Mining Massive Datasets

Lecture 6

Artur Andrzejak

http://pvs.ifi.uni-heidelberg.de

Note on Slides

A substantial part of these slides come (either verbatim or in a modified form) from the book Mining of Massive Datasets by Jure Leskovec, Anand Rajaraman, Jeff Ullman (Stanford University). For more information, see the website accompanying the book: http://www.mmds.org.

Recommender Systems

High dim.

Locality sensitive hashing

Clustering

Dimensionality <u>reduction</u> Graph data

PageRank, SimRank

Community Detection

Spam Detection

Infinite data

Filtering data streams

Web advertising

Queries on streams

Machine learning

SVM

Decision Trees

Perceptron, kNN

Apps

Recommen der systems

Association Rules

Duplicate document detection

Programming in Spark & MapReduce

The Netflix Prize: Introduction

The Netflix Prize

Training data

- 100 million ratings, 480,000 users, 17,770 movies
- 6 years of data: 2000-2005

Test data

- Last few ratings of each user (2.8 million)
- Evaluation criterion: Root Mean Square Error (RMSE) =

$$\sqrt{\frac{1}{|R|}} \sum_{(i,x) \in R} (\hat{r}_{xi} - r_{xi})^2$$

- Netflix's system RMSE: 0.9514
- Competition
 - 2,700+ teams
 - \$1 million prize for 10% improvement on Netflix

The Netflix Utility Matrix R

Matrix R

17,700 movies

					→
1	3	4			
	3	5			5
		4	5		5
		3			
		3			
2			2		2
				5	
	2	1			1
	3			3	
1					

480,000 users

Utility Matrix R: Evaluation

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Grand Prize: 0.8563

Contrasting Recommendation Methods

Recall: Utility Matrix

Goal:

movies

- estimate rating of movie 1 by user 5

users

11 | 12 ?

Content-Based Recommendations

- We construct for each item a vector i ("item profile")
 and for each user a vector x ("user profile")
 - Item profile i: k "natural" attributes of an item
 - User vector x: a combination of item profiles for <u>similar</u> items rated by this user (also a k-vector)
- Prediction heuristic:
 - A content-based prediction $\mathbf{r}_{x,i}$ is approximated as similarity of these two k-vectors: $\mathbf{r}_{x,i} = \mathbf{u}(x,i)$
 - I.e., given a user profile x and item profile i, estimate their similarity as:

$$u(x,i) = \cos(x,i) = \frac{x \cdot i}{||x|| \cdot ||i||}$$

Content-Based R.: Interpretation

- In content-based recommendation, we represented each item and each user as a vector in a k-dimensional space
- = => Item i close to a user x gets a high recommendation rating

Item-Item Collaborative Filtering

users

		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
ms	3	2	4		1	2		3		4	3	5		<u>0.41</u>
ite	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31 S={3,6}
	6	1		3		3			2			4		<u>0.59</u>

- Find set S of items similar to item i=1 rated by target user x=5, and predict r_{5,1} as a weighted sum of ratings (by user x) over all items in S
- = > Rating r_{5,1} is predicted as a weighted sum of other rows (= item ratings)

User-User CF Collaborative Filtering

- Find set Q of users similar to target user x=5 who have rated item i=1, and predict r_{5,1} as a weighted sum of ratings for item 1 by all users in Q
- => Rating r_{5,1} is predicted as a weighted sum of other columns (~ users)

Merging Content-Based and CF Methods

users

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5.			5		4	
	2			5	4			4			2	1	3
items	3	2	4		1	2		.3		4	3	5	
ite	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

Content-based: each rating is a product of two k-vectors "outside" the utility matrix

CF: each rating is a <u>linear</u> combination of other ratings from the utility matrix

Can we combine both worlds: => product of vectors from UM?

Latent Factor Models

Improving Content-Based Approach

users

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3		?	5	•••••	•••••	.5	••••••	4	
2			5	4		••••••	·4····	•••••	******	· <u>2</u>	.1	3
3	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

$$? = \frac{p_x \cdot q_i}{\parallel p_x \parallel \cdot \parallel q_i \parallel} = C_{x,i} \cdot \begin{bmatrix} p_{x,1} \\ \vdots \\ p_{x,k} \end{bmatrix} \cdot \begin{bmatrix} q_{i,1} \\ \vdots \\ q_{i,k} \end{bmatrix}$$

- Representing each item by a k-vector q_i and each user by k-vector p_x is a very good idea
- But <u>can we replace "hand-crafted" item-profiles by</u> <u>synthetic profiles</u> derived from the utility matrix?
 - Similarly, for user profiles?

Latent Factor Models

Other view: factorize the utility matrix R

= represent as product of two "thin" matrices)

						us	er	S					f
	1		3			5			5		4		
SI			5	4			4			2	1	3	
items	2	4		1	2		3		4	3	5		_
it.		2	4		5			4			2		≈
			4	3	4	2					2	5	
	1		3		3			2			4		
	-												

factors (length k)							
.1	4	.2					
5	.6	.5					
2	.3	.5		1.			
1.1	2.1	.3		: 2.			
7	2.1	-2		۷.			
-1	.7	.3					
	.1 5 2 1.1	.14 5 .6 2 .3 1.1 2.1 7 2.1	.14 .2 5 .6 .5 2 .3 .5 1.1 2.1 .3 7 2.1 -2	.14 .2 5 .6 .5 2 .3 .5 1.1 2.1 .3 7 2.1 -2			

users											
1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

- Let's assume we can approximate the utility matrix R as a product of "thin" Q · PT
- R has missing entries but let's ignore that for now!
 - Basically, we will want the reconstruction error to be small on known ratings and we don't care about the values on the missing ones

Ratings as Products of Factors

Prediction: estimating the missing rating of user x for item i

Similar to cos(q_i,p_x) but no scalar factor

	.1	4	.2
(0)	5	.6	.5
items	2	.3	.5
ite	1.1	2.1	.3
	7	2.1	-2
	-1	.7	.3

factors

_						0.00						
S	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
fa	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1
-												

users

PI

Q

Ratings as Products of Factors

Prediction: estimating the missing rating of user **x** for item **i**

\hat{r}_{xi}	$= q_i \cdot$	p_x
	\mathbf{q}_{if}	$\cdot p_{xf}$
	f q _i = row i of o _x = columr	

	.1	4	.2
(0	5	.6	.5
items	2	.3	.5
ite	1.1	2.1	.3
	7	2.1	-2
	-1	.7	.3
	•	-	

tactors

ł
l
ı
ł
l
 I

_	U3GI3											
S	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
<u>fa</u>	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

PI

LICARC

Latent Factor Models

Finding the Latent Factors

Latent Factor Models

Our goal is to find matrices P and Q such

that:
$$\min_{P,Q} \sum_{(i,x) \in R} (r_{xi} - q_i \cdot p_x)^2$$

users

1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9	d
8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3	
2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1	S

Minimizing a function

- **A** simple way to minimize a function f(x):
 - Compute a derivative ∇f
 - Start at some point y and evaluate $\nabla f(y)$
 - Make a step in the reverse direction of the gradient: $y = y \nabla f(y)$
 - Repeat until converged

Back to Our Problem

- Want to minimize SSE for unseen test data
- Idea: Minimize SSE on training data
 - Want large k (# of factors) to capture all the signals
 - But, SSE on test data begins to rise for k > 2
- Why?
- This is a classic example of overfitting:
 - With too much freedom (too many free parameters) the model starts fitting noise
 - That is it fits too well the training data and thus not generalize well to unseen test data

Avoiding Overfitting

- To solve overfitting we introduce regularization:
 - Allow <u>rich</u> model where there are <u>sufficient data</u>
 - Use <u>scarce</u> model where <u>data quantity is low</u>
- What is a rich/scarce model in our case?
 - For a user x we control factors in p_x (for item i: q_i)
- Scarce model could be:
 - for user x: lot of zeros in p_x
 - For item i: lot of zeros in q_i
- But function "number of zeros" is hard to optimize
- => Use squared norm: $||p_x||^2 = p_{x,1}^2 + \cdots + p_{x,k}^2$
 - A fair approximation of "number of zeros"

Avoiding Overfitting

Regularization:

- Allow rich model where there are sufficient data
- Shrink model where data are scarce

$$\min_{P,Q} \left[\sum_{(x,i)\in R} (r_{xi} - q_i p_x)^2 \right] + \left[\lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2 \right]$$
"error" "length"

 λ_1 , λ_2 ... user set regularization parameters

Note: We do not care about the "raw" value of the objective function, but we want P, Q that achieve the minimum of the objective

Role of "Length"

- Assume that user x made only 1 rating r_{xi}
 - We use a simple model e.g. $p_x = 0$ as the error term $(r_{xi} q_i p_x)^2$ is at most r_{xi}^2
 - => The regularization "penalty" $||p_x||^2$ is also small
- Assume that user y made 100 ratings
 - It make sense to make p_y complex ($||p_y||^2 >> 0$) so that the sum of 100 errors $(r_{vi} q_i p_v)^2$ remain small
 - Large $||p_y||^2$ is not good for minimizing the objective function but still better than having 100 large errors!
- The same for items i (freq. rated <=> "rich" qi)

The Effect of Regularization

Optimizing by Stochastic Gradient Descent

Fitting a Line

- Example: Fit a straight line $y = w_1 + w_2 x$ to a set of points $(x_1, y_1), \dots, (x_n, y_n)$
- Objective function is :

$$Q(w) = \sum_{i=1}^{n} Q_i(w) = \sum_{i=1}^{n} (w_1 + w_2 x_i - y_i)^2$$
(where $w = [w_1, w_2]^T$ is a 2-vector)

Gradient descend:

- We iterate over values of vector w until Q(w) does not improve
- Each step changes w opposite to the direction of "fastest growth" of Q(w), where w is our optimization variable (2 scalars)
- We get the direction of "fastest growth" as a gradient of $\nabla Q(w)$ at a current value of w
 - Gradient in respect to w, all other vars in Q(w) are constant!
 - Gradient = [first derivative of Q(w) by w_1 ; ... of Q(w) by w_2]^T

Gradient Descent

Procedure GD(Q(w)) #for minimization of Q(w)

- Input: Objective function Q(w)
 - w is a vector of m parameters to be optimized
- Init: Assign w a start value (may be random)
- Repeat until convergence (e. g. Q(w) gets no smaller): $w := w \alpha \nabla Q(w)$
- Example for $Q(w) = \sum_{i=1}^{n} Q_i(w) = \sum_{i=1}^{n} (w_1 + w_2 x_i y_i)^2$
- Since $Q(w) = \sum_{i=1}^{n} Q_i(w)$, we have $\nabla Q(w) = \sum_{i=1}^{n} \nabla Q_i(w)$
- Each $\nabla Q_i(w)$ is (use chain rule for derivatives):

$$\nabla Q_{i}(w) = \begin{bmatrix} \frac{dQ_{i}(w)}{dw_{1}} \\ \frac{dQ_{i}(w)}{dw_{2}} \end{bmatrix} = \begin{bmatrix} 2(w_{1} + w_{2}x_{i} - y_{i}) \\ 2(w_{1} + w_{2}x_{i} - y_{i})x_{i} \end{bmatrix}$$

Stochastic Gradient Descent /1

- Assume that the objective function Q(w) is a sum $Q(w) = \sum_{i=1}^{n} Q_i(w)$
 - Typically a $Q_i(w)$ comes from i-th training sample
 - => gradient looks like this: $\nabla Q(w) = \sum_{i=1}^{n} \nabla Q_i(w)$
- Stochastic Gradient Descent
 - Instead of computing all $\nabla Q_1(w),...,\nabla Q_n(w)$ and then making a step $\mathbf{w} \coloneqq \mathbf{w} \alpha \nabla Q(w),...$
 - ... we make a step after computing <u>each</u> of the "partial gradients" $\nabla Q_i(w)$

Stochastic Gradient Descent /2

Procedure SGD(Q(w)) #for minimization of Q(w)

- Input: Objective function Q(w)
 - w is a vector of m parameters to be optimized
- Init: Assign w a start value (may be random)
- Repeat until convergence: # outer loop
 - For i = 1 to n: # inner loop
 - $\mathbf{w} := \mathbf{w} \beta \nabla Q_i(\mathbf{w})$

SGD vs. GD

Convergence of GD vs. SGD

Iteration/step

GD improves the value of the objective function at every step.

SGD improves the value but in a "noisy" way.

GD takes fewer steps to converge but each step takes much longer to compute.

In practice, **SGD** is much faster!

Gradient Descent for Latent Factors

Want to find matrices P and Q:

$$\min_{P,Q} \sum_{(x,i)\in R} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2 \right]$$

Gradient decent:

Singular Value Decomposition

- Initialize P and Q (using SVD with missing ratings = 0)
- Do gradient descent:

■
$$P \leftarrow P - \eta \cdot \nabla P$$
, where ∇P is ...

•
$$Q \leftarrow Q - \eta \cdot \nabla Q$$

How to compute gradient of a matrix?

Compute gradient of every element independently!

• where ∇Q is gradient/derivative of matrix Q:

$$\nabla Q = [\nabla q_{if}]$$
 and $\nabla q_{if} = \sum_{x,i} -2(r_{xi} - q_i p_x)p_{xf} + 2\lambda_2 q_{if}$

- Here q_{if} is entry f of row q_i of matrix Q
- Observation: Computing gradients is slow!

Stochastic Gradient Descent

$$\min_{P,Q} \sum_{(x,i)\in R} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2 \right]$$

- Gradient Descent (GD) vs. Stochastic GD
 - Idea: Instead of evaluating gradient over <u>all ratings</u> evaluate it for <u>an individual rating</u> and make a step
- GD: $Q \leftarrow Q \eta \left[\sum_{r_{xi}} \nabla Q(r_{xi}) \right]$
- SGD: $Q \leftarrow Q \mu \nabla Q(r_{xi})$
 - $\varepsilon_{xi} = 2(r_{xi} q_i \cdot p_x)$ (derivative of the "error") • $q_i \leftarrow q_i + \mu_1 (\varepsilon_{xi} p_x - \lambda_2 q_i)$ (update equation)
 - Faster convergence!
 - Need more steps but each step is computed much faster

Stochastic Gradient Descent

Stochastic gradient decent:

- Initialize P and Q (using SVD, pretend missing ratings are 0)
- Then iterate over the ratings (multiple times if necessary) and update factors:

For each r_{xi} :

$$\bullet \ \varepsilon_{xi} = 2(r_{xi} - q_i \cdot p_x)$$

$$q_i \leftarrow q_i + \mu_1 \left(\varepsilon_{xi} \ p_x - \lambda_2 \ q_i \right)$$

$$p_x \leftarrow p_x + \mu_2 \left(\varepsilon_{xi} \ q_i - \lambda_1 \ p_x \right)$$

Two loops:

- Repeat until convergence:
 - For each r_{xi}
 - Compute gradient, do a "step"

(derivative of the "error")

(update equation)

(update equation) μ ... learning rates

The Netflix Prize: The Winner

Modeling Local & Global Effects

Global:

- Mean movie rating: 3.7 stars
- The Sixth Sense is 0.5 stars above avg.
- Joe rates 0.2 stars below avg.
 - ⇒ Baseline estimation:

Joe will rate The Sixth Sense 4 stars

- Local neighborhood (CF/NN):
 - Joe didn't like related movie Signs
 - ⇒ Final estimate:
 Joe will rate The Sixth Sense 3.8 stars

Modeling Biases and Interactions

user bias

movie bias

user-movie interaction

Baseline predictor

- Separates users and movies
- Benefits from insights into user's behavior
- Among the main practical contributions of the competition
 - $\mu = \mu$ = overall mean rating
 - $\mathbf{b}_{\mathbf{x}} = \text{bias of user } \mathbf{x}$
 - $\mathbf{b}_{i}^{\hat{}}$ = bias of movie \mathbf{i}

User-Movie interaction

- Characterizes the matching between users and movies
- Attracts most research in the field
- Benefits from algorithmic and mathematical innovations

Baseline Predictor

We have expectations on the rating by user x of movie i, even without estimating x's attitude towards movies like i

- Rating scale of user x
- Values of other ratings user gave recently (day-specific mood, anchoring, multi-user accounts)

- (Recent) popularity of movie i
- Selection bias; related to number of ratings user gave on the same day ("frequency")

Putting It All Together

$$r_{xi} = \mu + b_x + b_i + q_i \cdot p_x$$

Mean rating user x movie i

Moverall Bias for movie i

User-Movie interaction

Example:

- Mean rating: $\mu = 3.7$
- You are a critical reviewer: your ratings are 1 star lower than the mean: $b_x = -1$
- Star Wars gets a mean rating of 0.5 higher than average movie: $b_i = +0.5$
- Predicted rating for you on Star Wars:

$$= 3.7 - 1 + 0.5 = 3.2$$

Fitting the New Model

Solve:

$$\min_{Q,P} \sum_{(x,i)\in R} (r_{xi} - (\mu + b_x + b_i + q_i p_x))^2$$
goodness of fit

$$+ \left(\frac{\lambda_{1}}{1} \sum_{i} \|q_{i}\|^{2} + \lambda_{2} \sum_{x} \|p_{x}\|^{2} + \lambda_{3} \sum_{x} \|b_{x}\|^{2} + \lambda_{4} \sum_{i} \|b_{i}\|^{2} \right)$$
regularization

 λ is selected via gridsearch on a validation set

- Stochastic gradient decent to find parameters
 - Note: Both biases b_x , b_i as well as interactions q_i , p_x are treated as parameters (we estimate them)

Performance of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91

Latent factors: 0.90

Latent factors+Biases: 0.89

Grand Prize: 0.8563

Temporal Biases Of Users

- Sudden rise in the average movie rating (early 2004)
 - Improvements in Netflix
 - GUI improvements
 - Meaning of rating changed
- Movie age
 - Users prefer new movies without any reasons
 - Older movies are just inherently better than newer ones

Y. Koren, Collaborative filtering with temporal dynamics, KDD '09

Temporal Biases & Factors

Original model:

$$r_{xi} = \mu + b_x + b_i + q_i \cdot p_x$$

Add time dependence to biases:

$$r_{xi} = \mu + b_x(t) + b_i(t) + q_i \cdot p_x$$

- Make parameters b_x and b_i to depend on time
- (1) Parameterize time-dependence by linear trends
 - (2) Each bin corresponds to 10 consecutive weeks

$$b_i(t) = b_i + b_{i,\mathrm{Bin}(t)}$$

- Add temporal dependence to factors
 - $p_x(t)$... user preference vector on day t

Adding Temporal Effects

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91

Latent factors: 0.90

Latent factors+Biases: 0.89

Latent factors+Biases+Time: 0.876

Still no prize! (2)
Getting desperate.
Try a "kitchen sink" approach!

Grand Prize: 0.8563

The big picture

Solution of BellKor's Pragmatic Chaos

The Last 30 Days

Ensemble team formed

- Group of other teams on leaderboard forms a new team
- Relies on combining their models
- Quickly also get a qualifying score over 10%

BellKor

- Continue to get small improvements in their scores
- Realize that they are in direct competition with Ensemble

Strategy

- Both teams carefully monitoring the leaderboard
- Only sure way to check for improvement is to submit a set of predictions
 - This alerts the other team of your latest score

24 Hours from the Deadline

Submissions limited to 1 a day

Only 1 final submission could be made in the last 24h

24 hours before deadline...

 BellKor team member in Austria notices (by chance) that Ensemble posts a score that is slightly better than BellKor's

Frantic last 24 hours for both teams

- Much computer time on final optimization
- Carefully calibrated to end about an hour before deadline

Final submissions

- BellKor submits a little early (on purpose), 40 mins before deadline
- Ensemble submits their final entry 20 mins later
-and everyone waits....

Netflix Prize

Home

Rules

Leaderboard

Update

Progress Prize 2007 - RMSE = 0.8723 - Winning Team: KorBell

Download

Leaderboard

Showing Test Score. Click here to show quiz score

Display top 20 ‡ leaders.

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time
Grand	Prize - RMSE = 0.8567 - Winning To	sam: RellKyr's Drags	natic Chang	
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	3.8.0	J.9	2005 01 10 2.121:40
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries !	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
8	Dace	0.8612	9.59	2009-07-24 17:18:43
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51
10	BigChaos	0.8623	9.47	2009-04-07 12:33:59
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07
12	BellKor	0.8624	9.46	2009-07-26 17:19:11
Progr	<u>ess Prize 2008</u> - RMSE = 0.8627 - W	inning Team: BellKo	r in BigChaos	
13	xiangliang	0.8642	9.27	2009-07-15 14:53:22
14	Gravity	0.8643	9.26	2009-04-22 18:31:32
15	Ces	0.8651	9.18	2009-06-21 19:24:53
16	Invisible Ideas	0.8653	9.15	2009-07-15 15:53:04
17	Just a guy in a garage	0.8662	9.06	2009-05-24 10:02:54
18	J Dennis Su	0.8666	9.02	2009-03-07 17:16:17
19	Craig Carmichael	0.8666	9.02	2009-07-25 16:00:54
20	acmehill	0.8668	9.00	2009-03-21 16:20:50

Million \$ Awarded Sept 21st 2009

BellKor Recommender System

The winner of the Netflix Challenge

Multi-scale modeling of the data:

Combine top level, "regional" modeling of the data, with a refined, local view:

Global:

Overall deviations of users/movies

Factorization:

Addressing "regional" effects

Collaborative filtering:

Extract local patterns

Global effects

References

- Yehuda Koren, Robert Bell and Chris Volinsky: Matrix Factorization Techniques for Recommender Systems, IEEE Computer, August 2009, http://goo.gl/D2JOa9
 - Easy-to-read paper on modern recommendation techniques
- Albert Au Yeung, Matrix Factorization: A Simple Tutorial and Implementation in Python, Blog post, 16 September 2010, http://goo.gl/kzoLaO
- Fun: James Surowiecki, The Wisdom of Crowds, Doubleday; Anchor 2004
 - Wikipedia (en): http://en.wikipedia.org/wiki/The_Wisdom_of_Crowds
 - Wikipedia (de): http://de.wikipedia.org/wiki/Die Weisheit der Vielen

Acknowledgments

 Some slides and plots borrowed from Yehuda Koren, Robert Bell and Padhraic Smyth

Further reading:

- Y. Koren, Collaborative filtering with temporal dynamics, KDD '09
- http://www2.research.att.com/~volinsky/netflix/bpc.html
- http://www.the-ensemble.com/

Thank you.

Questions?