Contents

1	System Identification		3
	1.1	Input and output data generation for a given plant	3
	1.2	Estimate plant transfer function $G(s)$ using "System Identification App"	4
	1.3	Estimated Model vs Actual Model	7
2	PII	O Controller Design	8
${ m L}$	ist	of Figures	
	1	Step response of system $G(s)$ with noise	4
	2	System Identification Configuration	4
	3	Confirm that generated data has been properly imported using time plot	5
	4	Estimate Transfer Function Configuration	5
	5	Estimated TF in work space	6
	6	Completion of Identification	6
	7	Estimated TF plot	6
	8	Estimated Model Info	7
	9	$G(s)$ and $\widehat{G}(s)$ in Time Domain	7
	10	$G(s)$ and $\widehat{G}(s)$ Pole-Zero Plot	7
	11	$G(s)$ and $\widehat{G}(s)$ Comparison	7
	12	$G(s)$ and $\widehat{G}(s)$ DC Gain	8
	13	PID Tuner GUI	8
	14	Closed-loop step response with PID controller	9
	15	Open-Loop vs Closed-Loop Step responses	9
	16	PID Controller Parameters	10

1 System Identification

1.1 Input and output data generation for a given plant

Following transfer function is used for this task:

$$G(s) = \frac{s+4}{s^3 + 4s^2 + 5s + 4}$$

Following MATLAB code is used for generate data,

```
clc; close all; clear;
s = tf('s');

G = (s + 4)/(s^3 + 4*s^2 + 5*s + 4);
dt = 0.0001;

t = 0:dt:8;
u = ones(length(t),1);
u(1:1/dt)=0;

% this sets the first 10 samples to zero
y = lsim(G,u,t); % this generates the plant response for input u
y = y + rand(length(t),1)*0.02; % add random noise to the response
plot(t,[u,y]); axis([0 8 0 1.2]);
```

From this code we get y as output which is time domain step response of system G(s) + added noise.

The generated step response,

Figure 1: Step response of system G(s) with noise

The simulation shows that the system settles around 1 with a nearly 0.2 overshoot.

1.2 Estimate plant transfer function G(s) using "System Identification App"

Here we import input-output(u,y) data to System Identification App in MATLAB and Estimate transfer function for plant.

- 1. Opened the System Identification App: Command - systemIdentification
- 2. Imported the input ('u') and output ('y'),

Figure 2: System Identification Configuration

Figure 3: Confirm that generated data has been properly imported using time plot

3. Set the number of poles and the number of zeros.

Figure 4: Estimate Transfer Function Configuration

4. Export estimated data to work space

Figure 5: Estimated TF in work space

Figure 6: Completion of Identification

Figure 7: Estimated TF plot

1.3 Estimated Model vs Actual Model

Estimated model we got,

$$\widehat{G}(s) = \frac{1.071s + 3.428}{s^3 + 3.575s^2 + 5s + 3.393}$$

This model fit to estimation data 98.62%

Figure 8: Estimated Model Info

Figure 9: G(s) and $\widehat{G}(s)$ in Time Domain

Figure 10: G(s) and $\widehat{G}(s)$ Pole-Zero Plot

Figure 11: G(s) and $\widehat{G}(s)$ Comparison

```
>> dcgain(G)
ans =
     1
>> dcgain(G_estimated)
ans =
     1.0104
```

Figure 12: G(s) and $\widehat{G}(s)$ DC Gain

The estimated gain, poles and zeros closely match the actual values. From above details we can see that from Matlab we got accurate transfer function estimation.

2 PID Controller Design

To improve the system's performance a PID controller was designed using MATLAB's PID Tuner tool. The tuned controller is defined by the following parameters:

$$C(s) = K_p + \frac{K_i}{s} + K_d s$$

Figure 13: PID Tuner GUI

We can use GUI and set Performance Specifications as we want and get tuned PID values. (e.g., "settling time < 0.5 seconds, overshoot < 10%"), input these in Tuning tab the PID Tuner.

Figure 14: Closed-loop step response with PID controller

Figure 15: Open-Loop vs Closed-Loop Step responses

Figure 16: PID Controller Parameters

Figure 17: Close-Loop Transfer Function for Controlled System

The closed-loop response demonstrates significantly faster rise time and improved stability compared to the open-loop system. PID controller did those improvement to system. It also lower overshoot, reduced steady-state error