2020数学竞赛模拟考试自测题(2)解答

一、(本题共5小题,每小题6分,共30分)解答下列各题,要求写出重要步骤。

1.
$$\Re I(\alpha) = \int_0^{+\infty} \frac{dx}{(1+x^2)(1+x^{\alpha})}$$
.

2. $\Re \int \arcsin x \arccos x dx$.

3. 计算
$$\iint_D (x+y)dxdy, 其中D: x^2+y^2 \leq x+y.$$

4、
$$f(x,y)$$
 是 $\{(x,y)|x^2+y^2 \le 1\}$ 上连续可微函数,满足 $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \sin\sqrt{x^2+y^2}$,

求积分

$$I = \iint_{x^2 + y^2 \le 1} \left(\frac{x}{\sqrt{x^2 + y^2}} \frac{\partial f}{\partial x} + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial f}{\partial y} \right) dx dy$$

5. 求极限
$$\lim_{n\to\infty}\cos\frac{a}{n\sqrt{n}}\cos\frac{2a}{n\sqrt{n}}\cdots\cos\frac{na}{n\sqrt{n}}$$
.

2. 由分部积分有

$$\int \arcsin x \arccos x dx = x \arcsin x \arccos x - \int x \left(\frac{\arccos x}{\sqrt{1 - x^2}} - \frac{\arcsin x}{\sqrt{1 - x^2}}\right) dx$$

$$= x \arcsin x \arccos x + \int (\arccos x - \arcsin x) d\sqrt{1 - x^2}$$

$$= x \arcsin x \arccos x + (\arccos x - \arcsin x)\sqrt{1 - x^2} - \int \sqrt{1 - x^2} \left(\frac{-1}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - x^2}} \right) dx$$

$$= x \arcsin x \arccos x + (\arccos x - \arcsin x)\sqrt{1 - x^2} + 2x + C.$$

3. 方法一、用极坐标. 因为D的边界的极坐标方程为 $r=\cos\theta+\sin\theta$,所以D的极坐标表示式为:

$$D: \begin{cases} 0 \le r \le \cos \theta + \sin \theta \\ -\frac{\pi}{4} \le \theta \le \frac{3\pi}{4} \end{cases}$$

故
$$\iint_{D} (x+y)dxdy = \int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}} (\cos\theta + \sin\theta)d\theta \int_{0}^{\cos\theta + \sin\theta} r^{2} dr$$
$$= \frac{1}{3} \int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}} [\sqrt{2} \sin(\frac{\pi}{4} + \theta)]^{4} d\theta = \frac{4}{3} \int_{0}^{\pi} \sin^{4}t dt$$
$$= \frac{8}{3} \int_{0}^{\frac{\pi}{2}} \sin^{4}t dt = \frac{8}{3} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{2}.$$

方法二、用变量替换. 因为D的边界为 $(x-\frac{1}{2})^2+(y-\frac{1}{2})^2=\frac{1}{2}$.故令 $x=\frac{1}{2}+u,y=\frac{1}{2}+v$

则
$$D$$
 变为 $G: u^2 + v^2 \le \frac{1}{2}$.由于 $|J| = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$,则

$$\iint\limits_{D} (x+y)dxdy = \iint\limits_{G} (u+\frac{1}{2}+v+\frac{1}{2})dudv$$

$$= \int_0^{2\pi} d\theta \int_0^{\frac{1}{\sqrt{2}}} (r\cos\theta + r\sin\theta + 1)rdr = \frac{\pi}{2}.$$

4. 解: 利用极坐标 $x = r \cos \theta$, $y = r \sin \theta$

$$I = \int_0^1 dr \int_0^{2\pi} \left(\cos \theta \frac{\partial f}{\partial x} + \sin \theta \frac{\partial f}{\partial y} \right) r d\theta = \int_0^1 dr \int_{x^2 + y^2 = r^2} \left(\frac{\partial f}{\partial x} dy - \frac{\partial f}{\partial y} dx \right)$$

$$= \int_0^1 dr \iint_{x^2 + y^2 \le r^2} \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right) dx dy = \int_0^1 dr \iint_{x^2 + y^2 \le r^2} \sin \sqrt{x^2 + y^2} dx dy$$

$$= \int_0^1 dr \int_0^{2\pi} d\theta \int_0^r \rho \sin \rho d\rho = 2\pi \int_0^1 (-r \cos r + \sin r) dr = 2 - \sin 1 - 2 \cos 1$$

5.
$$\pm \cos x = 1 - \frac{x^2}{2!} + o(x^3)(x \to 0)$$
,

$$\cos\frac{ka}{n\sqrt{n}} = 1 - \frac{\left(\frac{ka}{n\sqrt{n}}\right)^2}{2!} + o\left(\left(\frac{ka}{n\sqrt{n}}\right)^3\right) = 1 - \frac{k^2a^2}{2n^3} + o\left(\left(\frac{1}{n^3}\right)\right)$$

$$\ln(1+x) = x - \frac{x^2}{2} + o(x^2)(x \to 0) \quad \text{(4)}$$

$$\ln \cos \frac{ka}{n\sqrt{n}} = \ln(1 - \frac{k^2a^2}{2n^3} + o(\frac{1}{n^3})) = -\frac{k^2a^2}{2n^3} + o(\frac{1}{n^3}), \quad k = 1, 2, \dots, n.$$

于是
$$\sum_{k=1}^{n} \ln \cos \frac{ka}{n\sqrt{n}} = -\frac{a^2}{2} \frac{1}{n^3} \sum_{k=1}^{n} k^2 + o(\frac{1}{n^3}) = -\frac{a^2}{2} \frac{1}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} + o(\frac{1}{n^3})$$
.

所以
$$\lim_{n\to\infty} \sum_{k=1}^{n} \ln \cos \frac{ka}{n\sqrt{n}} = -\frac{a^2}{6}$$
.

故
$$\lim_{n\to\infty}\cos\frac{a}{n\sqrt{n}}\cos\frac{2a}{n\sqrt{n}}\cdots\cos\frac{na}{n\sqrt{n}}=\lim_{n\to\infty}e^{\sum_{k=1}^{n}\ln\cos\frac{ka}{n\sqrt{n}}}=e^{-\frac{a^2}{6}}.$$

二、(10 分)(1)证明方程 $x^n + x^{n-1} + \dots + x = 1$ (n > 1为整数)在区间($\frac{1}{2}$,1)内有且仅有一个实根;(2)记(1)中的实根为 x_n ,证明 $\lim_{n \to \infty} x_n$ 存在,并求此极限。

证(1)设 $f(x) = x^n + x^{n-1} + \dots + x - 1$ (n > 1),则 f(x) 在[$\frac{1}{2}$,1]上连续,且

$$f(\frac{1}{2}) = \frac{\frac{1}{2}(1 - \frac{1}{2^n})}{1 - \frac{1}{2}} - 1 = -\frac{1}{2^n} < 0$$
, $f(1) = n - 1 > 0$,

由闭区间上连续函数的介值定理, $\exists \xi \in (\frac{1}{2},1)$, 使 $f(\xi) = 0$ 。 $\exists x \in (\frac{1}{2},1)$, 因

$$f'(x) = nx^{n-1} + (n-1)x^{n-2} + \dots + 2x + 1 > 0$$
,

故则 f(x) 在 $[\frac{1}{2},1]$ 上单调增加。综上所述,方程 f(x)=0 在 $(\frac{1}{2},1)$ 内有且仅有一个实根。

(2) 由 $x_n \in (\frac{1}{2}, 1)$ 知数列 $\{x_n\}$ 有界,又

$$x_n^n + x_n^{n-1} + \dots + x_n = 1$$
,

$$x_{n+1}^{n+1} + x_{n+1}^{n} + x_{n+1}^{n-1} + \dots + x_{n+1} = 1$$
,

因 $x_{n+1}^{n+1}>0$,所以 $x_n^n+x_n^{n-1}+\cdots+x_n>x_{n+1}^n+x_{n+1}^{n-1}+\cdots+x_{n+1}$,于是有 $x_n>x_{n+1}$, $n=1,2,\cdots$,

综上所述,数列 $\{x_n\}$ 单调有界,故 $\{x_n\}$ 收敛。记 $a=\lim_{n\to\infty}x_n$,由于 $\frac{x_n-x_n^{n+1}}{1-x_n}=1$,令 $n\to\infty$ 并注

意到
$$\frac{1}{2} < x_n < x_1 < 1$$
,有 $\frac{a}{1-a} = 1$,解得 $a = \frac{1}{2}$,即 $\lim_{n \to \infty} x_n = \frac{1}{2}$ 。

三、(10 分)设 f(x) 和 g(x) 在 $(-\infty, +\infty)$ 上可导,它们在 $(-\infty, +\infty)$ 上分别存在有限的极限,又设

当 $x \in (-\infty, +\infty)$ 时, $g'(x) \neq 0$.证明: $\exists \xi \in (-\infty, +\infty)$, 使得

$$\frac{f(+\infty) - f(-\infty)}{g(+\infty) - g(-\infty)} = \frac{f'(\xi)}{g'(\xi)}.$$

证: 令 $x = \tan t, t \in (-\frac{\pi}{2}, \frac{\pi}{2})$, 定义

$$F(t) = f(\tan t)$$
, $G(t) = g(\tan t)$,

则
$$F(-\frac{\pi}{2}) = \lim_{t \to \frac{\pi^{+}}{2}} f(\tan t) = f(-\infty); F(\frac{\pi}{2}) = \lim_{t \to \frac{\pi^{-}}{2}} f(\tan t) = f(+\infty);$$

$$G(-\frac{\pi}{2}) = \lim_{t \to \frac{\pi}{2}^+} g(\tan t) = g(-\infty); \ G(\frac{\pi}{2}) = \lim_{t \to \frac{\pi}{2}^-} g(\tan t) = g(+\infty).$$

故 F(t),G(t) 在 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 上连续,在 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 内可导,且 $G'(t) = g'(\tan t) \cdot \sec^2 t \neq 0$,由 Cauchy 中值

定理,
$$\exists \eta \in (-\frac{\pi}{2}, \frac{\pi}{2})$$
,使得

$$\frac{F(\frac{\pi}{2}) - F(-\frac{\pi}{2})}{G(\frac{\pi}{2}) - G(-\frac{\pi}{2})} = \frac{F'(\eta)}{G'(\eta)} = \frac{f'(\tan t) \cdot \sec^2 t}{g'(\tan t) \cdot \sec^2 t} = \frac{f'(\tan t)}{g'(\tan t)}.$$

令 $\xi = \tan \eta \in (-\infty, +\infty)$,上式即为

$$\frac{f(+\infty) - f(-\infty)}{g(+\infty) - g(-\infty)} = \frac{f'(\xi)}{g'(\xi)}.$$

四、(12 分) 证明: 多项式 $\sum_{k=1}^{n} \frac{(2x-x^2)^k - 2x^k}{k}$ 能被 x^{n+1} 整除。

证: 方法一、 由
$$\ln(1+x) = \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^k + o(x^n)$$
, $\ln(1-x) = -\sum_{k=1}^{n} \frac{1}{k} x^k + o(x^n)$,

得
$$-\ln(1-x)^2 = -2\ln(1-x) = -\sum_{k=1}^n \frac{2}{k} x^k + o(x^n),$$

$$-\ln(1-x)^{2} = -\ln(1-2x+x^{2}) = -\sum_{k=1}^{n} \frac{(2x-x^{2})^{k}}{k} + o(x^{n}),$$

两式相减得:

$$0 = \sum_{k=1}^{n} \frac{(2x - x^2)^k - 2x^k}{k} + o(x^n).$$

所以
$$\sum_{k=1}^{n} \frac{(2x-x^2)^k - 2x^k}{k} = o(x^n)(x \to 0).$$

右边是x的多项式,不含 $1, x, x^2, \dots x^n$ 各项,故 $\sum_{k=1}^n \frac{(2x-x^2)^k-2x^k}{k}$ 能被 x^{n+1} 整除。

方法二、令
$$f(x) = \sum_{k=1}^{n} \frac{(2x - x^2)^k - 2x^k}{k}$$
, 因为 $f(0) = 0$,所以 $f(x)$ 能被 x 整除.故令

$$f(x) = a_r x^r + a_{r+1} x^{r+1} + \dots + a_{2n} x^{2n}, r \ge 1, a_r \ne 0$$
.

$$f'(x) = \sum_{k=1}^{n} [(2-2x)(2x-x^2)^{k-1} - 2x^{k-1}]$$

$$= (2-2x) \cdot \frac{1 - (2x-x^2)^n}{1 - (2x-x^2)} - \frac{2(1-x^n)}{1-x}$$

$$= \frac{2 - 2(2-x)^n x^n - 2 + 2x^n}{1-x} = \frac{2x^n [1 - (2-x)^n]}{1-x}$$

$$= 2x^n \frac{(1 - (2-x))[1 + (2-x) + (2-x)^2 + \dots + (2-x)^{n-1}]}{1-x}$$

$$= -2x^{n}[1 + (2-x) + (2-x)^{2} + \dots + (2-x)^{n-1}]$$

知, f'(x)能被 x^n 整除.

但
$$f'(x) = ra_r x^{r-1} + (r+1)a_{r+1} x^r + \dots + 2na_{2n} x^{2n-1}.$$

所以
$$r-1 \ge n$$
, $r \ge n+1$, 故 $\sum_{k=1}^{n} \frac{(2x-x^2)^k - 2x^k}{k}$ 能被 x^{n+1} 整除。

五、(12分) 记
$$I(r) = \int_0^{\pi} \ln(1 - 2r\cos x + r^2) dx$$
, $0 < r < 1$, 证明 $2I(r) = I(r^2)$, 并求 $I(r)$ 。

解
$$I(r) = \int_0^{\pi} \ln(1 - 2r\cos x + r^2) dx = \int_0^{\pi} \ln(1 + 2r\cos x + r^2) dx$$
 (代换 $x = \pi - t$)

$$2I(r) = \int_0^{\pi} \left[\ln(1 - 2r\cos x + r^2) + \ln(1 - 2r\cos x + r^2) \right] dx$$

$$= \int_0^{\pi} \ln(1 - 2r^2\cos 2x + r^4) dx = \frac{1}{2} \int_0^{2\pi} \ln(1 - 2r^2\cos x + r^4) dx$$

$$= \frac{1}{2} \int_{-\pi}^{\pi} \ln(1 - 2r^2\cos x + r^4) dx \quad (周期性)$$

$$= \int_0^{\pi} \ln(1 - 2r^2\cos x + r^4) dx \quad (偶函数) = I(r^2) .$$

依次规律有 $I(r) = \frac{1}{2}I(r^2) = \dots = \frac{1}{2^n}I(r^{2^n})$, 故 I(r) = 0。

注意 I(1) = 0, 若r > 1, $I(r) = 2\pi \ln r$ 。

六、(12 分) 设曲线 y = f(x) 有渐近线,且 f''(x) > 0,证明:函数 y = f(x) 的图象从上方趋近于此渐近线.

证:由题意,知此渐近线为水平渐近线或斜渐近线,设其方程为 y = ax + b.令 F(x) = f(x) - ax - b, 不妨设 $x \in (0,+\infty)$,则

$$\lim_{x \to +\infty} F(x) = \lim_{x \to +\infty} [f(x) - ax - b] = 0,$$

且F''(x) = f''(x) > 0,所以F'(x)在 $[0,+\infty)$ 上严格单调增加.

 $\forall x_0 \in (0,+\infty)$, 若 $F'(x_0) > 0$, 在 $[x_0,x]$ 用 L --中值定理, $\exists \xi \in (x_0,x)$, 使得

$$F(x) = F(x_0) + F'(\xi)(x - x_0) > F(x_0) + F'(x_0)(x - x_0)$$

令 $x \to +\infty$,得 $\lim_{x \to +\infty} F(x) = +\infty$,与 $\lim_{x \to +\infty} F(x) = 0$ 矛盾,所以,对 $\forall x \in (0,+\infty)$,有 $F'(x) \le 0$,因此, F(x) 在 $(0,+\infty)$ 上单调减少.

又对 $\forall x_1 \in (0,+\infty)$, 若 $F(x_1) < 0$,则 $x > x_1$ 时

$$F(x) \leq F(x_1) < 0$$

故 $\lim_{x\to +\infty} F(x) \le F(x_1) < 0$,这与 $\lim_{x\to +\infty} F(x) = 0$ 矛盾;若 $F(x_1) = 0$,因为 $\lim_{x\to +\infty} F(x) = 0$,所以,当 $x>x_0$ 时, $F(x) \equiv 0$,此时,F'(x) = 0,这与 F''(x) > 0 矛盾. 故对 $\forall x \in (0,+\infty)$,F(x) > 0,即 f(x) > ax + b,因此,函数 y = f(x) 的图象从上方趋近于此渐近线.

$$f(x) = \begin{cases} \lim_{n \to \infty} \frac{1}{n} (1 + \cos \frac{x}{n} + \cos \frac{2x}{n} + \dots + \cos \frac{n-1}{n} x), x > 0 \\ \lim_{n \to \infty} [1 + \frac{1}{n!} (\int_0^1 \sqrt{1 + x^3 + x^5} \, dx)^n], & x = 0 \\ f(-x), & x < 0 \end{cases}$$

(1)讨论 f(x) 在 x = 0 处的可导性;

(2)求 f(x) 在[$-\pi$, π]上的最大值.

解: (1) 当
$$x > 0$$
 时, $f(x) = \lim_{n \to \infty} \frac{1}{n} (1 + \cos \frac{x}{n} + \cos \frac{2x}{n} + \dots + \cos \frac{n-1}{n} x)$

$$= \frac{1}{x} \lim_{n \to \infty} (1 + \cos \frac{x}{n} + \cos \frac{2x}{n} + \dots + \cos \frac{n-1}{n} x) \frac{x}{n}$$

$$= \frac{1}{x} \int_0^x \cos x dx = \frac{\sin x}{x},$$

当
$$x=0$$
 时, $f(0)=\lim_{n\to\infty}[1+\frac{1}{n!}(\int_0^1\sqrt{1+x^3+x^5}\,dx)^n]$,记 $a=\int_0^1\sqrt{1+x^3+x^5}\,dx$,显 然

 $1 < a < \sqrt{3}$,考虑级数 $\sum_{n=1}^{\infty} \frac{a^n}{n!}$,因为

$$\frac{b_{n+1}}{b_n} = \frac{a^{n+1}}{(n+1)!} \cdot \frac{n!}{a^n} = \frac{a}{n+1} \to 0 (n \to \infty)$$

根据比值判别法知 $\sum_{n=1}^{\infty} \frac{a^n}{n!}$ 收敛,由级数收敛的必要条件得

$$\lim_{n\to\infty}\frac{1}{n!}(\int_0^1\sqrt{1+x^3+x^5}\,dx)^n=0,$$

所以f(0) = 1.

当
$$x < 0$$
时, $f(x) = f(-x) = \frac{\sin(-x)}{-x} = \frac{\sin x}{x}$.故

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{\frac{\sin x}{x} - 1}{x} = 0$$

即 f(x) 在 x = 0 处可导.

(2) 当
$$0 < x \le \pi$$
 时 , $f'(x) = \frac{x \cos x - \sin x}{x^2}$, 令 $g(x) = x \cos x - \sin x$, 则 $g' = -x \sin x \le 0$ 且仅当 $x = \pi$ 时 $g'(x) = 0$,所以 $g \downarrow$, $g(x) < g(0) = 0$,所以 $f'(x) < 0$, $f \downarrow$.又 $f(x)$ 为偶函数,所以 $f(x)$ 在 $[-\pi, \pi]$ 上的最大值为 $f(0) = 1$.