Ray modelling

B. Arntsen

NTNU
Department of Geoscience
borge.arntsen@ntnu.no

UNIS, Svalbard April 2024

Content

- 1. Waves, Rays and Wavefronts
- 2. Ray modeling in simple models
- 3. Ray modeling for complex structures
- 4. Seismic imaging using rays

Ray modeling

- ▶ The objective is to model (simulate) a seismic experiment
- ► Seismic wave proagation is complex
- ► Ray modeling is an attempt to simplify

Structure of wavefields

Snapshots reveals the structure of seismic waves

Direction of wave related to gardient

Wavefron width related to source pulse

Ray modelling

Putting this together we can compute the wavefield generated by a seismic source by

- ▶ Draw a line from the source to the wavefront
- ► The shape of the wavefront is simply the source pulse
- ► The amplitude of the wavefron decays inversly proportional to distance (Energy conservation)
- ► All of this can be expressed with an equation

Ray modelling

$$p(r,t)=\frac{s(t-\tau)}{r},$$

where

- ▶ t: Time
- r: Distance
- \triangleright v_p : P-wave velocity
- \triangleright p(r,t): Pressure
- \triangleright s(t): Source pulse
- ightharpoonup au = r/vp : Traveltime

Transmission through interface

The transmitted ray follows Snell's law

$$\frac{\sin(\theta_0)}{v_0} = \frac{\sin(\theta_1)}{v_1}$$

where

- \triangleright v_0 : P-wave velocity above interface
- ▶ *v*₁: P-wave velocity below interface

Traveltime

The time to reach the wavefront is called the traveltime and can be calculated as:

$$\tau = \frac{I_0}{v_0} + \frac{I_1}{v_1}$$

Reflection

Reflected ray

The reflected ray follows Snell's law implying that the angle with the vertical is the same for the reflected as for the incoming ray.

Ray modeling is very useful to calculate traveltimes and visualize seismic waves in a simple way

Seismic imaging with rays

Ray modeling is also used for seismic imaging

Seismic imaging with rays

Ray modeling is also used for seismic imaging

