INTRODUCTION

- Class webpage: http://people.sutd.edu.sg/~nengli_lim/teaching/
- Textbook: Pattern Recognition and Machine Learning, Bishop 2006
- Grading:
 - HW: 50% (5 x 10%), Midterm: 20%, Final: 30%
 - Participation bonus/penalty: -2% to 2% of final score

ACKNOWLEDGEMENTS

- MIT 6.036 Introduction to Machine Learning
- SUTD 50.007 Machine Learning (Alex Binder)
- Stanford CS229 Machine Learning

WHAT IS MACHINE LEARNING?

Hard-Coded

Trained

Giving computers the ability to learn without being explicitly programmed – Arthur Samuel (1959)

TYPES OF MACHINE LEARNING

Supervised Learning

TYPES OF WACHINE LEARNING

They like chasing the round thing...

Unsupervised Learning

TYPES OF MACHINE LEARNING

Reinforcement Learning

Machine Learning

- · Labeled data
- · Direct feedback
- · Predict outcome/future

- · No labels
- · No feedback
- · "Find hidden structure"

- Decision process
- · Reward system
- · Learn series of actions

Regression (Linear)

Learning a function

$$y = f(x)$$

$$x \in \mathbb{R}$$

$$y \in \mathbb{R}$$

2000 USA Presidential Elections.

Votes for Buchanan and Bush in cities of Florida on a log scale.

Regression (Non-linear)

Classification (Linear)

Tumor size

Classification (Non-linear)

Clustering

Different cluster analysis results on "mouse" data set:

Dimensionality Reduction: Subspace Learning

Dimensionality Reduction: Manifold Learning

REINFORCEMENT LEARNING

ATARI GAMES

ALPHAGO

Machine Learning

DEEP LEARNING

GOOGLE CAT VIDEOS

5 min break

Linear algebra review

Let u and v be vectors in \mathbb{R}^d . The inner-product is defined as

$$\langle u, v \rangle = \left\langle \begin{bmatrix} u_1 \\ \vdots \\ u_d \end{bmatrix}, \begin{bmatrix} v_1 \\ \vdots \\ v_d \end{bmatrix} \right\rangle = \sum_{i=1}^d u_i v_d = \begin{bmatrix} u_1, \cdots, u_d \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_d \end{bmatrix} = u^T v$$

Recall the properties of the inner product:

(i)
$$\langle u, v \rangle = \langle v, u \rangle$$
 (symmetry)

(ii)
$$\langle au_1 + bu_2, v \rangle = a \langle u_1, v \rangle + b \langle u_2, v \rangle$$
 (linearity)

Now let $A = \{a_{ij}\}$ be a $d \times d$ matrix. We have

$$\langle u, Av \rangle = \sum_{i=1}^{d} u_i (Av)_i$$

$$= \sum_{i=1}^{d} u_i \sum_{j=1}^{d} a_{ij} v_j$$

$$= \sum_{i=1}^{d} a_{ij} u_i \sum_{j=1}^{d} v_j$$

$$= \langle A^T u, v \rangle,$$

where A^T is the transpose, or adjoint, of matrix A.

If $A^T = A^{-1}$, then A is an orthogonal matrix, i.e. $A^T = A^{-1}$ if and only if its columns are orthonormal vectors.

Example

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^T = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^{-1}$$

If $A^T = A$, then we say that A is self-adjoint, or symmetric.

Example

Hessian matrix of a (2-variable) function f(x, y):

$$\nabla^2 f = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix}$$

Covariance matrices

Definition

The covariance matrix of a random vector $[X_1, ..., X_d]^T$ is a $d \times d$ matrix whose $(i, j)^{th}$ entry is the covariance $cov(X_i, X_i) = \mathbb{E}[(X_i - \mathbb{E}[X_i])(X_i - \mathbb{E}[X_i])].$

Example

Covariance matrix of a mean-zero random vector $[X, Y]^T$; i.e. $\mathbb{E}[X] = 0 = \mathbb{E}[Y]$:

$$\begin{bmatrix} \mathbb{E}\left[X^2\right] & \mathbb{E}\left[XY\right] \\ \mathbb{E}\left[YX\right] & \mathbb{E}\left[Y^2\right] \end{bmatrix}$$

Gaussian probability density function

One dimension:

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Multi-variate case $(x \in \mathbb{R}^d)$:

$$p(x) = \frac{1}{\sqrt{\det A} \left(\sqrt{2\pi}\right)^d} e^{-\frac{1}{2}\left\langle x - \mu, A^{-1}(x - \mu)\right\rangle},$$

where A is the covariance matrix.

Theorem

Let A be a self-adjoint matrix. Then there exists an orthonormal eigenbasis (v_1, \ldots, v_d) with eigenvalues $\lambda_1, \ldots, \lambda_d$ such that

$$A = \begin{bmatrix} | & \cdots & | \\ v_1 & \ddots & v_d \\ | & \cdots & | \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_d \end{bmatrix} \begin{bmatrix} | & \cdots & | \\ v_1 & \ddots & v_d \\ | & \cdots & | \end{bmatrix}^{-1}.$$

First-order approximation

$$f(x + h) \approx f(x) + \langle \nabla f(x), h \rangle$$

Example

In two dimensions,

$$f(x_1+h_1,x_2+h_2)\approx f(x_1,x_2)+\left\langle\begin{bmatrix}\frac{\partial f}{\partial e_1}(x_1,x_2)\\\frac{\partial f}{\partial e_2}(x_1,x_2)\end{bmatrix},\begin{bmatrix}h_1\\h_2\end{bmatrix}\right\rangle$$

Gradient ascent

What direction should h take to maximally increase f?

Theorem (Cauchy-Schwarz inequality)

 $|\langle u, v \rangle| \le ||u|| \, ||v||$, and both sides are equal if and only if $v = \lambda u$ for some $\lambda \in \mathbb{R}$.

Note that if $v = \lambda u$, we have

$$\langle u, v \rangle = \langle u, \lambda u \rangle$$

= $\lambda \langle u, u \rangle = \lambda \|u\|^2$,

so we get maximum increase if $h = \lambda \nabla f$ and $\lambda > 0$ (and similarly maximum decrease if $\lambda < 0$).

Second-order approximation

$$f(x+h) \approx f(x) + \langle \nabla f(x), h \rangle + \frac{1}{2} \langle h, \nabla^2 f(x) h \rangle$$

Example

In two dimensions,

$$f(x_1 + h_1, x_2 + h_2) \approx f(x_1, x_2) + \left\langle \begin{bmatrix} \frac{\partial f}{\partial e_1}(x_1, x_2) \\ \frac{\partial f}{\partial e_2}(x_1, x_2) \end{bmatrix}, \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} \right\rangle$$

$$+ \frac{1}{2} \left\langle \begin{bmatrix} h_1 \\ h_2 \end{bmatrix}, \begin{bmatrix} \frac{\partial^2 f}{\partial e_1^2}(x_1, x_2) & \frac{\partial^2 f}{\partial e_1 \partial e_2}(x_1, x_2) \\ \frac{\partial^2 f}{\partial e_2 \partial e_1}(x_1, x_2) & \frac{\partial^2 f}{\partial e_2^2}(x_1, x_2) \end{bmatrix}, \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} \right\rangle$$

Newton's method

Let $\tilde{f}(x) := f(x) + \langle \nabla f(x), h \rangle + \frac{1}{2} \langle h, \nabla^2 f(x)h \rangle$. To find the best h to maximize (minimize) \tilde{f} , we take the gradient with respect to h and set to 0:

$$\nabla_h \tilde{f}(x) = \nabla f(x) + \nabla^2 f(x) h = 0,$$

which implies that

$$h = \left(\nabla^2 f(x)\right)^{-1} \left(-\nabla f(x)\right).$$

In summary, we optimize at each time step by

$$x_{n+1} = x_n + \alpha h,$$

where $h = \pm \nabla f(x_n)$ in the case of gradient descent (ascent), and $h = (\nabla^2 f(x))^{-1} (-\nabla f(x))$ in Newton's method.

 Newton's method converges faster with fewer iterations, but each iteration is computationally more expensive as one has to invert the Hessian matrix.

Gentle introduction to tensors

We encountered the quadratic form

$$\langle x, Ax \rangle$$

several times already; now we will discuss its significance in terms of tensors.

Definition

A k-tensor $T: \underbrace{\mathbb{R}^d \times \cdots \times \mathbb{R}^d}_{k \text{ times}} \to \mathbb{R}$ is a scalar function which is linear in each component.

Example

Given a vector u, the function

$$x \mapsto \langle u, x \rangle$$

is a 1-tensor.

Example

Given a matrix A, the function

$$(x,y)\mapsto \langle x,Ay\rangle$$

is a 2-tensor.

Example

The determinant of a $d \times d$ matrix, as a function of the d columns (or rows), is a d-tensor.

Theorem

All 1-tensors T(x) can be written as

$$\langle u_T, x \rangle$$

for some vector u_T , and all 2-tensors S(x, y) can be expressed as

$$\langle x, A_S y \rangle$$

for some matrix A_S .