CHƯƠNG 3: CHUỐI SỐ

- 1. KHÁI NIỆM CƠ BẢN VỀ CHUỖI SỐ
- 2. CHUÕI SỐ DƯƠNG
- 3. CHUỗI SỐ CÓ DẦU BẮT KY
- 4. CHUÕI LŨY THÙA

§1. KHÁI NIỆM CƠ BẢN VỀ CHUỖI SỐ

1.1. Định nghĩa

• Cho dãy số có vô hạn các số hạng $u_1, u_2, ..., u_n, ...$ Biểu thức

$$u_1 + u_2 + \dots + u_n + \dots = \sum_{n=1}^{\infty} u_n$$

được gọi là chuỗi số.

• Các số $u_1, u_2, \dots, u_n, \dots$ là các số hạng và u_n được gọi là số hạng tổng quát của chuỗi số.

- Tổng n số hạng đầu tiên $S_n=u_1+u_2+\ldots+u_n$ được gọi là *tổng riêng thứ n* của chuỗi số.
- Nếu dãy $\left\{S_n\right\}_{n\in\mathbb{N}}$ hội tụ đến số S hữu hạn thì ta nói chuỗi số hội tụ và có tổng là S, ta ghi là $\sum_{n=1}^{\infty}u_n=S$. Ngược lại, ta nói chuỗi số phân kŷ.

VD 1. Xét sự hội tụ của chuỗi nhân $\sum_{n=1}^{\infty} aq^{n-1}$ với $a \neq 0$.

Giải

- q = 1: $S_n = na \rightarrow +\infty \Rightarrow \text{chuỗi phân kỳ}$.
- $q \neq 1$: $S_n = u_1 \cdot \frac{1 q^n}{1 q} = a \cdot \frac{1 q^n}{1 q}$

Với
$$\left|q\right|<1$$
 thì $S_n \to \frac{a}{1-q} \Rightarrow$ chuỗi hội tụ.

Với
$$|q|>1$$
 thì $S_n\to +\infty\Rightarrow$ chuỗi phân kỳ.

Vậy
$$\sum_{n=1}^{\infty} aq^{n-1}$$
 hội tụ $\Leftrightarrow |q| < 1$.

VD 2. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

Giải. Ta có:

$$S_n = \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)}$$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$=1-\frac{1}{n+1} \rightarrow 1 \Rightarrow \text{chuỗi hội tụ.}$$

VD 3. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n}\right)$.

Giải. Ta có:
$$\ln\left(1+\frac{1}{n}\right) = \ln(n+1) - \ln n$$

$$\Rightarrow S_n = (-\ln 1 + \ln 2) + (-\ln 2 + \ln 3) \\ + (-\ln 3 + \ln 4) + \dots + [-\ln n + \ln(n+1)]$$

$$= \ln(n+1) \to +\infty \Rightarrow \text{chuỗi phân kỳ}.$$

VD 4. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.

$$\begin{array}{l} \textbf{Giải.} \ S_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \ldots + \frac{1}{\sqrt{n}} \\ \Rightarrow S_n > n. \frac{1}{\sqrt{n}} = \sqrt{n} \to +\infty \Rightarrow \text{chuỗi phân kỳ.} \end{array}$$

1.2. Điều kiện cần để chuỗi số hội tụ

• Nếu chuỗi $\sum_{n=1}^{\infty}u_n$ hội tụ thì $\lim_{n\to\infty}u_n=0$,

ngược lại nếu $\lim_{n\to\infty} u_n \neq 0$ thì $\sum_{n=1}^{\infty} u_n$ phân kỳ.

VD 5. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{n^4}{3n^4 + n + 2}$.

Giải. Ta có:

$$u_n = \frac{n^4}{3n^4 + n + 2} \rightarrow 1 \neq 0 \Rightarrow \text{chuỗi phân kỳ}.$$

VD 6. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{n^5}{n^4 + 1}$ **Giải.** Ta có:

$$u_n = \frac{n^5}{n^4 + 1} \rightarrow +\infty \neq 0 \Rightarrow \text{chuỗi phân kỳ}.$$

1.3. Tính chất

• Nếu $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ hội tụ thì:

$$\sum_{n=1}^{\infty} (u_n + v_n) = \sum_{n=1}^{\infty} u_n + \sum_{n=1}^{\infty} v_n.$$

- Nếu $\sum_{n=1}^{\infty} u_n$ hội tụ thì: $\sum_{n=1}^{\infty} \alpha u_n = \alpha \sum_{n=1}^{\infty} u_n$.
- Tính chất hội tụ hay phân kỳ của chuỗi số không đổi nếu ta thêm hoặc bớt đi hữu hạn số hạng.

§2. CHUÕI SỐ DƯƠNG

2.1. Định nghĩa

• $\sum_{n=1}^{\infty} u_n$ được gọi là *chuỗi số dương* nếu $u_n \geq 0$, $\forall n$.

Khi $u_n > 0$, $\forall n$ thì chuỗi số là dương thực sự.

2.2. Các định lý so sánh

Định lý 1. Cho hai chuỗi số dương $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ thỏa:

$$0 \le u_n \le v_n, \ \forall n \ge n_0.$$

- Nếu $\sum_{n=1}^{\infty} v_n$ hội tụ thì $\sum_{n=1}^{\infty} u_n$ hội tụ.
- Nếu $\sum_{n=1}^{\infty} u_n$ phân kỳ thì $\sum_{n=1}^{\infty} v_n$ phân kỳ.

VD 1. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{1}{n \cdot 2^n}$.

Giải. Ta có: $\frac{1}{n \cdot 2^n} \le \frac{1}{2^n}, \forall n \ge 1.$

Do $\sum_{n=1}^{\infty} \frac{1}{2^n}$ hội tụ nên $\sum_{n=1}^{\infty} \frac{1}{n \cdot 2^n}$ hội tụ.

VD 2. Xét sự hội tụ của chuỗi điều hòa $\sum_{n=1}^{\infty} \frac{1}{n}$ bằng cách

so sánh với
$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n} \right)$$
.

Giải. Xét hàm số $f(t) = t - \ln(1+t)$ ta có:

$$f'(t) = \frac{t}{1+t} > 0, \ \forall t > 0 \Rightarrow f(t) > 0, \ \forall t > 0$$
$$\Rightarrow \frac{1}{n} > \ln\left(1 + \frac{1}{n}\right) > 0, \ \forall n \ge 1.$$

Do
$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n} \right)$$
 phân kỳ nên $\sum_{n=1}^{\infty} \frac{1}{n}$ phân kỳ.

Định lý 2

Cho hai chuỗi số $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ thỏa:

$$u_n > 0$$
 và $v_n > 0$ với n đủ lớn và $\lim_{n \to \infty} \frac{u_n}{v_n} = k$.

- Nếu k = 0 thì $\sum_{n=1}^{\infty} u_n$ phân kỳ $\Rightarrow \sum_{n=1}^{\infty} v_n$ phân kỳ.
- Nếu $k=+\infty$ thì $\sum_{n=1}^{\infty}u_n$ hội tụ $\Rightarrow \sum_{n=1}^{\infty}v_n$ hội tụ.
- Nếu $0 < k < +\infty$ thì $\sum_{n=1}^{\infty} u_n, \; \sum_{n=1}^{\infty} v_n$ cùng tính chất.

VD 3. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{2^n(n+1)}{n \cdot 3^{n+1}}$ bằng cách so sánh với $\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$.

Giải. Ta có
$$\frac{2^n(n+1)}{n \cdot 3^{n+1}} : \left(\frac{2}{3}\right)^n = \frac{n+1}{3n} \to \frac{1}{3}.$$

Do
$$\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$$
 hội tụ nên $\sum_{n=1}^{\infty} \frac{2^n(n+1)}{n \cdot 3^{n+1}}$ hội tụ.

Chú ý

Chuỗi $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ hội tụ khi $\alpha > 1$ và phân kỳ khi $\alpha \le 1$.

VD 4. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{n+1}{\sqrt{2n^5+3}}$.

Giải. Ta có
$$\frac{n+1}{\sqrt{2n^5+3}}: \frac{1}{\sqrt{n^3}} \to \frac{1}{\sqrt{2}}.$$

Do
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3}}$$
 hội tụ nên $\sum_{n=1}^{\infty} \frac{n+1}{\sqrt{2n^5+3}}$ hội tụ.

Cách khác

Khi
$$n \to \infty$$
 thì: $\frac{n+1}{\sqrt{2n^5+3}} \sim \frac{n}{\sqrt{2} \cdot n^{\frac{5}{2}}} = \frac{1}{\sqrt{2} \cdot n^{\frac{3}{2}}}.$

Do
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{2n^2}}$$
 hội tụ nên $\sum_{n=1}^{\infty} \frac{n+1}{\sqrt{2n^5+3}}$ hội tụ.

2.3. Các tiêu chuẩn hội tụ

2.3.1. Tiêu chuẩn D'Alembert

Cho chuỗi số dương
$$\sum_{n=1}^{\infty} u_n$$
 và $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = D$.

- Nếu D < 1 thì chuỗi hội tụ.
- Nếu D > 1 thì chuỗi phân kỳ.
- Nếu D=1 thì chưa thể kết luận.

VD 5. Xét sự hội tụ của chuỗi số
$$\sum_{n=1}^{\infty} \frac{1}{3^n} \left(1 + \frac{1}{n}\right)^n$$
.

Giải. Ta có:
$$\frac{u_{n+1}}{u_n} = \frac{1}{3^{n+1}} \left(\frac{n+2}{n+1}\right)^{n+1} : \frac{1}{3^n} \left(\frac{n+1}{n}\right)^n$$

$$=\frac{n+2}{3(n+1)}\left(\frac{n^2+2n}{n^2+2n+1}\right)^n\to\frac{1}{3}<1\Rightarrow \text{chuỗi hội tụ.}$$

VD 6. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{5^n (n!)^2}{(2n)!}.$

Giải. Ta có:
$$\frac{u_{n+1}}{u_n} = \frac{5^{n+1}(n+1)!(n+1)!}{(2n+2)!} : \frac{5^n \cdot n! \cdot n!}{(2n)!}$$

$$= \frac{5(n+1)^2}{(2n+2)(2n+1)} \rightarrow \frac{5}{4} > 1 \Rightarrow \text{chuỗi phân kỳ}.$$

2.3.2. Tiêu chuẩn Cauchy

Cho chuỗi số dương $\sum_{n=1}^{\infty} u_n$ và $\lim_{n\to\infty} \sqrt[n]{u_n} = C$.

- Nếu C < 1 thì chuỗi hội tụ.
- Nếu C > 1 thì chuỗi phân kỳ.
- Nếu C=1 thì chưa thể kết luận.

VD 7. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$.

Giải. Ta có:
$$\sqrt[n]{u_n} = \left(\frac{1}{2}\right)^n \to 0 < 1 \Rightarrow \text{chuỗi hội tụ.}$$

VD 8. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{n^n}{3^n}$.

Giải. Ta có:
$$\sqrt[n]{u_n} = \frac{n}{3} \to +\infty \Rightarrow$$
 chuỗi phân kỳ.

2.3.3 Tiêu chuẩn tích phân

Cho hàm số f(x) liên tục, không âm và đơn điệu giảm trên $[k,+\infty), k \in N^*$

Khi đó Chuỗi
$$\sum_{n=k}^{\infty} f(n)$$
 hội tụ $\Leftrightarrow \int_{k}^{+\infty} f(x) dx$ hội tụ

VD 9. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2}}.$

Giải. Ta có:

$$\int_{1}^{+\infty} \frac{dx}{\sqrt[3]{x^2}} \text{ phân kỳ} \Rightarrow \text{chuỗi } \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2}} \text{ phân kỳ.}$$

VD 10. Xét sự hội tụ của chuỗi số $\sum_{n=2}^{\infty} \frac{1}{n \ln^3 n}$.

Giải. Ta có:

$$\int_{2}^{+\infty} \frac{dx}{x \ln^{3} x} = \int_{\ln 2}^{+\infty} \frac{dt}{t^{3}} \text{ hội tụ} \Rightarrow \sum_{n=2}^{\infty} \frac{1}{n \ln^{3} n} \text{ hội tụ.}$$

§3. CHUỗI SỐ CÓ DẤU TÙY Ý

3.1. Chuỗi đan dấu

a) Định nghĩa. Chuỗi số $\sum_{n=1}^{\infty} (-1)^n u_n$ được gọi là chuỗi số đan dấu nếu $u_n > 0, \ \forall n$.

VD 1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}, \sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n+1}{2^{n+1}} \text{ là các chuỗi đan dấu.}$$

b) Định lý Leibnitz

Nếu dãy $\{u_n\}_{n\in\mathbb{N}}$ giảm nghiêm ngặt và $u_n\to 0$ thì chuỗi

$$\sum_{n=1}^{\infty} (-1)^n u_n$$
 hội tụ. Khi đó, ta gọi là *chuỗi Leibnitz*.

VD 2. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$.

Giải. Dãy $u_n = \frac{1}{n}$ giảm ngặt và $\frac{1}{n} \to 0 \Rightarrow$ chuỗi hội tụ.

VD 3. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} (-1)^n \frac{2^n+1}{2^{n+1}}.$

Giải. $u_n = \frac{1}{2} + \frac{1}{2^{n+1}} \rightarrow \frac{1}{2} \neq 0 \Rightarrow$ không có kết luận.

Đặt
$$\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} (-1)^n \frac{2^n + 1}{2^{n+1}}$$
, ta có:

• Với
$$n = 2k : v_n = \frac{1}{2} + \frac{1}{2^{2k+1}} \to \frac{1}{2}$$
.

• Với
$$n=2k+1$$
 : $v_n=-\frac{1}{2}-\frac{1}{2^{2k+2}} \to -\frac{1}{2}.$

Do
$$\nexists \lim_{n \to \infty} v_n$$
 nên $v_n \not\to 0 \Rightarrow \sum_{n=1}^{\infty} v_n$ phân kỳ.

$$\frac{\mathbf{VD 4.}}{\sqrt{n} + (-1)^n} \times \frac{\mathbf{Ciai}}{\sqrt{n} + (-1)^n} = \frac{(-1)^n \left[\sqrt{n} - (-1)^n\right]}{n-1} = \frac{(-1)^n \sqrt{n}}{n-1} = \frac{1}{n-1}$$

- $\sum_{n=2}^{\infty} \frac{1}{n-1}$ là chuỗi điều hòa nên phân kỳ.
- $\sum_{n=2}^{\infty} \frac{(-1)^n \sqrt{n}}{n-1}$ là chuỗi Leibnitz nên hội tụ.

Vậy chuỗi $\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n} + (-1)^n}$ phân kỳ.

3.2. Chuỗi có dấu tùy ý

a) Định nghĩa

- Chuỗi $\sum_{n=1}^{\infty} u_n$, $u_n \in \mathbb{R}$ được gọi là chuỗi có dấu tùy ý.
- $\sum_{n=1}^{\infty} u_n$ được gọi là *hội tụ tuyệt đối* nếu $\sum_{n=1}^{\infty} |u_n|$ hội tụ.
- $\sum_{n=1}^{\infty}u_n$ được gọi là *bán hội tụ* nếu $\sum_{n=1}^{\infty}u_n$ hội tụ và $\sum_{n=1}^{\infty}\left|u_n\right|$ phân kỳ.
- **VD 5.** Chuỗi số $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ là bán hội tụ.

b) Định lý

Nếu $\sum_{n=0}^{\infty} |u_n|$ hội tụ thì chuỗi có dấu tùy ý $\sum_{n=0}^{\infty} u_n$ hội tụ.

VD 6. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{\cos(n^n)}{2}$.

Do
$$\left|u_n\right| \leq \frac{1}{n^2}$$
 và $\sum_{n=1}^{\infty} \frac{1}{n^2}$ hội tụ nên $\sum_{n=1}^{\infty} \frac{\left|\cos(n^n)\right|}{n^2}$ hội tụ. Vây chuỗi số đã cho hội tụ tuyết đối

Vậy chuỗi số đã cho hội tụ tuyệt đối.

VD 7. Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{(-1)^n + (-2)^{n+1}}{3^n}.$

Giải. Ta có:

$$\frac{(-1)^n + (-2)^{n+1}}{3^n} = \frac{(-1)^n}{3^n} + \frac{(-2)^{n+1}}{3^n}.$$

Chuỗi $\sum_{n=1}^{\infty} \frac{(-1)^n}{3^n}$ hội tụ theo tiêu chuẩn Leibnitz.

Do
$$\left| \frac{(-2)^{n+1}}{3^n} \right| = 2 \cdot \left(\frac{2}{3} \right)^n$$
 nên $\sum_{n=1}^{\infty} \frac{(-2)^{n+1}}{3^n}$ hội tụ.

Vậy
$$\sum_{n=1}^{\infty} \frac{(-1)^n + (-2)^{n+1}}{3^n}$$
 hội tụ.

.....

4. CHUΘI LŨY THÙA

4.1. Định nghĩa

Dịnh nghĩaChuỗi lũy thừa là chuỗi có dạng $\sum_{n=0}^{\infty} a_n (x - x_0)^n$

$$\sum_{n=1}^{\infty} a_n (x - x_0)^n$$

Bằng phép biến đổi $X = (x - x_0)$

ta đưa chuỗi trên về dạng $\sum a_n X^n$

Do đó các kết quả về chuỗi lũy thừa chỉ cần xét cho

trường hợp chuỗi có dạng $\sum a_n x^n$

$$\sum_{n=1}^{\infty} a_n x^n$$

Rõ ràng chuỗi $\sum_{n=1}^{\infty} a_n x^n$ hội tụ tại x=0

4.2. Định nghĩa bán kính hội tụ của chuỗi lũy thừa.

* Số R > 0 sao cho chuỗi lũy thừa $\sum_{n=1}^{\infty} a_n x^n$

hội tụ với mọi x: x < R và phân kỳ với mọi

x:|x|>R được gọi là bán kính hội tụ của chuỗi.

* Khoảng (-R, R) được gọi là **khoảng hội tụ** của chuỗi lũy thừa $\sum_{n=0}^{\infty} a_n x^n$

4.2. Định nghĩa bán kính hội tụ của chuỗi lũy thừa (tt)

*Nếu chuỗi lũy thừa
$$\sum_{n=1}^{\infty} a_n x^n$$

hội tụ $\forall x \in R$ ta cho $R = +\infty$.

*Nếu chuỗi lũy thừa
$$\sum_{n=1}^{\infty} a_n x^n$$

phân kỳ $\forall x \neq 0$ ta cho R = 0.

4.3. Cách tìm bán kính hội tụ của chuỗi lũy thừa.

a) Định lý Abel: Giả sử
$$\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = \rho$$

Khi đó bán kính hội tụ của chuỗi lũy thừa $\sum_{n=1}^{\infty} a_n x^n$

là:
$$R = \begin{cases} 0, & \rho = +\infty \\ \frac{1}{\rho}, & 0 < \rho < +\infty \\ +\infty, & \rho = 0 \end{cases}$$

4.3. Cách tìm bán kính hội tụ của chuỗi lũy thừa (tt)

b. Định lý Cauchy:

Giả sử
$$\lim_{n\to\infty} \sqrt[n]{a_n} = \rho$$

khi đó bán kính hội tụ của chuỗi lũy thừa $\sum a_n x^n$

là:
$$R = \begin{cases} 0, & \rho = +\infty \\ \frac{1}{\rho}, & 0 < \rho < +\infty \\ +\infty, & \rho = 0 \end{cases}$$

Chú ý: Để tìm miền hội tụ của chuỗi lũy thừa $\sum_{n=1}^{\infty} a_n x^n$

$$\sum_{n=1}^{\infty} a_n x^n$$

4.4. Cách tìm miền hội tụ của chuỗi lũy thừa

- *Bước 1: Ta dựa vào hai định lý trên để tìm bán kính hội tụ *R*.
- *Bước 2: Khoảng hội tụ của chuỗi lũy thừa này là: -R < x < R
- *Bước 3: Xét sự hội tụ của chuỗi **tại các đầu mút** của khoảng hội tụ.

Từ đó ta sẽ có được miền hội tụ của chuỗi lũy thừa

$$\sum_{n=1}^{\infty} a_n x^n$$

4.5. Một số ví dụ

VD1: Tìm miền hội tụ của chuỗi lũy thừa $\sum_{n=1}^{\infty} \frac{x^n}{n}$

Ta có:
$$a_n = \frac{1}{n} \Rightarrow \frac{|a_{n+1}|}{|a_n|} = \frac{n}{n+1} \rightarrow 1$$

Vậy $R = 1$

- * Khoảng hội tụ của chuỗi là -1 < x < 1
- *Xét sự hội tụ của chuỗi tại 2 đầu mút $x=\pm 1$

✓ Tại
$$x = 1$$
 ta có chuỗi $\sum_{n=1}^{\infty} \frac{1}{n}$ phân kỳ

4.5. Một số ví dụ - VD 1(tt)

✓ Tại
$$x = -1$$
 ta có chuỗi
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$$
 hội tụ theo tiêu chuẩn Leibnitz.

Vậy miền hội tụ của chuỗi là $-1 \le x < 1$

VD2: Tìm miền hội tụ của chuỗi
$$\sum_{n=1}^{\infty} \frac{(x+2)^n}{n \cdot 3^n}$$

Đặt
$$X = (x+2)$$
 chuỗi ban đầu trở thành $\sum_{n=1}^{\infty} \frac{X^n}{n \cdot 3^n}$

4.5. Một số ví dụ - VD2(tt)

Ta có:
$$a_n = \frac{1}{n \cdot 3^n} \Rightarrow \sqrt[n]{a_n} = \frac{1}{3\sqrt[n]{n}} \rightarrow \frac{1}{3}$$

Vậy $R = 3$

*Khoảng hội tụ của chuỗi là

$$-3 < X < 3 \Leftrightarrow -3 < (x+2) < 3$$

 $\Leftrightarrow -5 < x < 1$

4.5. Một số ví dụ - VD2(tt)

*Xét sự hội tụ của chuỗi tại 2 đầu mút x = -5 và x = 1:

Tại
$$x = -5$$
 ta có chuỗi $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ hội tụ.

Tại
$$x = 1$$
 ta có chuỗi $\sum_{n=1}^{\infty} \frac{1}{n}$ phân kỳ.

Vậy miền hội tụ của chuỗi là: $-5 \le x < 1$

4.5. Một số ví dụ (tt):

VD3: Tìm miền hội tụ của chuỗi $\sum_{n=1}^{\infty} \frac{x^{2n}}{n \cdot 9^n}$

Đặt
$$X = x^2$$
, chuỗi ban đầu trở thành $\sum_{n=1}^{\infty} a_n X^n$

Ta có:
$$a_n = \frac{1}{n.9^n}$$

$$\sqrt[n]{|a_n|} = \frac{1}{9\sqrt[n]{n}} \to \frac{1}{9}$$

$$V_{ay} R = 9$$

4.5. Một số ví dụ - VD3(tt)

*Khoảng hội tụ của chuỗi là

$$x^2 < 3 \Leftrightarrow -3 < x < 3$$

*Xét sự hội tụ của chuỗi tại 2 đầu mút $x = \pm 3$:

✓ Tại
$$x = \pm 3$$
 ta có chuỗi $\sum_{n=1}^{\infty} \frac{1}{n}$ phân kỳ.

Vậy miền hội tụ của chuỗi là: -3 < x < 3

4.5. Một số ví dụ (tt)

VD4: Tìm miền hội tụ của chuỗi $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1} \cdot \left(\frac{1-x}{1+x}\right)^n$

$$\text{Đặt } X = \frac{1-x}{1+x}$$

Chuỗi ban đầu trở thành $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1} X^n$

Ta có:
$$a_n = \frac{(-1)^n}{2n+1}$$

$$\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} = \frac{2n+1}{2n+3} \rightarrow 1 \Longrightarrow R = 1$$

4.5. Một số ví dụ - VD4 (tt)

*Khoảng hội tụ của chuỗi là

$$-1 < X < 1 \Leftrightarrow -1 < \frac{1-x}{1+x} < 1 \Leftrightarrow x > 0$$

*Xét sự hội tụ của chuỗi tại đầu mút x = 0:

Tại
$$x = 0$$
 ta có chuỗi $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1}$ hội tụ theo tiêu chuẩn Leibnitz.

Vậy miền hội tụ của chuỗi là: $0 \le x < +\infty$