

Workload-Driven Horizontal Partitioning and Pruning for Large HTAP Systems

Paris, 16 April 2018

Martin Boissier & Daniel Kurzynski

Project Goal

Background:

- In our research, we focus HTAP-optimized main memory-resident databases for modern enterprise systems
- Own research database called Hyrise*, an open source columnar HTAP database

Current Situation:

- NUMA architectures pose new challenges for data distribution, scheduling, and query execution
- Optimizing for NUMA has large impact (cf. [1, 2])

Our Goal:

• Evaluate various partitioning approaches to distribute a table's data to n NUMA nodes with the goal to maximize tuples skipped (i.e., data skipping)

Modern NUMA Systems

Modern NUMA Systems

- For optimal performance on NUMA systems:
 - data shall be equally distributed
 - processing shall be data-local *
- We see two problems with this statement:
 - Equal distribution works fine for both TPC-C and TPC-H it does not for real-world systems
 - Partitioning elimination/pruning is considered an orthogonal topic it should not be
- This projects evaluates means to "combine both worlds"

Workload-Driven Partitioning

- We evaluated several partitioning approaches
 - almost all of them to be too simple
 - Aggressive Data Skipping by Sun et al. is one exception [3]

Aggressive Data Skipping

- Approach initially motivated for large-scale systems like Spark
- We misused the approach to create partitioning schemes
 - Configurable by the number of partitions to yield
 - We limit partition count to number of NUMA nodes
- The process
 - Parse workload and extract relevant selections + frequent item set mining
 - Scan data for distribution of features
 - Merge features to create partitions

Created Partitioning Scheme

- clustered and non-trivial
 - Feature 1:
 mandt = 2 & koart <> 'k' & koart = 'd'
 - Feature 2: mandt = 2 & koart = 'k' & bukrs = '9999'
 - •
- Created partitions are freely defined by 15 features

Aggressive Data Skipping

Problem:

- Objective is the number of pruned tuples
- Heavily favors selective and frequent Queries
 - i.e., OLTP queries
- Many ways to adapt for multiple workload classes
 - Weighting by runtime, what-if based query costs, ...
- Idea: execute partitioning twice and merge

Merging Partition Schemes

Results (i)

Results (ii)

My Personal Outlook

- Self-driving trend & distributed systems force us to put more emphasis on (re-)partitioning
- What is missing?
 - More work on skew-aware and pruning-optimized partitioning
 - Proper cost models for adept partitioning schemes
 - Personally, I doubt AI & DL will solve these problems for us
 - More emphasis on repartitioning (not only for NUMA systems! [4])