Lecture 8: The Curse of Dimensionality

Attendance code: 3MQWR9DH

Iain Styles

5 November 2018

Learning Outcomes

By the end of this lecture you should:

- Understand why the dimensionality of data can be reduced without losing information
- Understand and explain the properties of high dimensional random vectors
- Explain the implications of the Johnson-Lindesnstrauss lemma
- Reduce the dimensionality of a dataset using random projections

Distances in MNIST

▶ 1000 points from the test set and 1000 points from the training set

Distances in MNIST

▶ 1000 points from the test set and 1000 points from the training set

- ▶ Mean/median of \approx 2300 and a standard deviation of \approx 300.
- ▶ 68% of pairwise distances lie between 2000 and 2600, and 95% between 1700 and 2900.

Distances in MNIST

▶ 1000 points from the test set and 1000 points from the training set

- ▶ Mean/median of \approx 2300 and a standard deviation of \approx 300.
- ▶ 68% of pairwise distances lie between 2000 and 2600, and 95% between 1700 and 2900.
- Not as "bad" as we might expect? Why?

Data is not uniformly distributed

- Data is not uniformly distributed
- ► Lies on some low-dimensional structure embedded in the high-dimensional space.

- Data is not uniformly distributed
- ► Lies on some low-dimensional structure embedded in the high-dimensional space.
- Example: non-varying pixels in MNIST

- Data is not uniformly distributed
- ► Lies on some low-dimensional structure embedded in the high-dimensional space.
- Example: non-varying pixels in MNIST

- Data is not uniformly distributed
- ► Lies on some low-dimensional structure embedded in the high-dimensional space.

Example: non-varying pixels in MNIST

▶ 175 pixels (22%) do not vary and can be ignored.

Intrinsic Dimensionality

More generally, low-dimensional structure can be bent into high-dimensional objects

Intrinsic Dimensionality

- More generally, low-dimensional structure can be bent into high-dimensional objects
- ► A rolled-up poster (intrinsically 2d); cooked spaghetti (1d)

Intrinsic Dimensionality

- More generally, low-dimensional structure can be bent into high-dimensional objects
- ► A rolled-up poster (intrinsically 2d); cooked spaghetti (1d)
- MNIST digits have intrinsic (underlying) degree of freedom
 - ► Ten digit class.
 - Width and height
 - Minor shape variation (1 vs 1)
- A few ten's of intrinsic variables
- ► How do we extract them?

Dimensionality Reduction

- Limit to *linear* methods: single, global linear transformation.
- ▶ Aim: find a transformation to a new coordinate system that preserves structure and reduces the dimensionality.
- ► Hope: that it will mitigate the issues seen in high-dimensional spaces.
- Many methods: PCA, NNMF, LDA
- We will study random projections: simple, low-cost, elegant theory.

- ► Very simple basic idea
- ightharpoonup N samples in M dimensions, arranged as an $M \times N$ matrix X

- Very simple basic idea
- ightharpoonup N samples in M dimensions, arranged as an $M \times N$ matrix X
 - Generate K random vectors with M components randomly sampled from $\mathcal{N}(0,1)$. Arrange these as a matrix \mathbf{R} of size $M \times K$, with one vector per column.

- Very simple basic idea
- ightharpoonup N samples in M dimensions, arranged as an $M \times N$ matrix X
 - ▶ Generate K random vectors with M components randomly sampled from $\mathcal{N}(0,1)$. Arrange these as a matrix \mathbf{R} of size $M \times K$, with one vector per column.
 - ▶ Normalise the columns of **R** so each has unit length.

- Very simple basic idea
- ightharpoonup N samples in M dimensions, arranged as an $M \times N$ matrix X
 - Generate K random vectors with M components randomly sampled from $\mathcal{N}(0,1)$. Arrange these as a matrix \mathbf{R} of size $M \times K$, with one vector per column.
 - Normalise the columns of R so each has unit length.

- Very simple basic idea
- ightharpoonup N samples in M dimensions, arranged as an $M \times N$ matrix X
 - Generate K random vectors with M components randomly sampled from $\mathcal{N}(0,1)$. Arrange these as a matrix \mathbf{R} of size $M \times K$, with one vector per column.
 - Normalise the columns of R so each has unit length.

 - The columns of X' contain the samples projected onto K dimensions

- Distances in large n are of limited use
- Desire to map to a lower-dimensional space to make distances meaningful again
- ► Map should preserve local structure (nearest-neighbours stay nearest neighbours, etc)

- Distances in large n are of limited use
- Desire to map to a lower-dimensional space to make distances meaningful again
- Map should preserve local structure (nearest-neighbours stay nearest neighbours, etc)
- Key: The Johnson-Lindenstrauss lemma
- ▶ Given a set X of N data points in \mathbb{R}^M ...

- Distances in large n are of limited use
- Desire to map to a lower-dimensional space to make distances meaningful again
- Map should preserve local structure (nearest-neighbours stay nearest neighbours, etc)
- Key: The Johnson-Lindenstrauss lemma
- ▶ Given a set X of N data points in \mathbb{R}^M ...
- ▶ There is a linear map $f : \mathbb{R}^M \mapsto \mathbb{R}^K$ where K < M

- Distances in large n are of limited use
- Desire to map to a lower-dimensional space to make distances meaningful again
- Map should preserve local structure (nearest-neighbours stay nearest neighbours, etc)
- Key: The Johnson-Lindenstrauss lemma
- ▶ Given a set X of N data points in \mathbb{R}^M ...
- ▶ There is a linear map $f : \mathbb{R}^M \mapsto \mathbb{R}^K$ where K < M
- The map obeys

$$(1-\varepsilon)\|x_1-x_2\|^2 \leq \|f(x_1)-f(x_2)\|^2 \leq (1+\varepsilon)\|x_1-x_2\|^2$$

for all $x_1, x_2 \in X$ and for $0 < \varepsilon < 1$ and $K > 8 \ln(N)/\varepsilon^2$.

Interpreting Johnson-Lindenstrauss

► Helpful to rewrite as

$$1 - \varepsilon \le \frac{\|f(x_1) - f(x_2)\|^2}{\|x_1 - x_2\|} \le 1 + \varepsilon \tag{1}$$

Interpreting Johnson-Lindenstrauss

Helpful to rewrite as

$$1 - \varepsilon \le \frac{\|f(x_1) - f(x_2)\|^2}{\|x_1 - x_2\|} \le 1 + \varepsilon \tag{1}$$

- Clarifies that J-L is a a statement about relative distances.
- lacktriangle The map f preserves relative distances to a range $1\pm arepsilon$
- ▶ Since $K > 8 \ln(N)/\varepsilon^2$, smaller ε requires larger K.

Finding the map *f*

- ▶ J-L states that the linear map $f : \mathbb{R}^M \to \mathbb{R}^K$ is onto a *random subspace*.
- ▶ Refinement by Frankl and Maehara (2008) states that J-L holds when "f is a random, orthonormal linear transformation"
- ► Random? ✓
- ► Linear? ✓
- ▶ Orthonormal?

Finding the map f

- ▶ J-L states that the linear map $f : \mathbb{R}^M \mapsto \mathbb{R}^K$ is onto a *random subspace*.
- ▶ Refinement by Frankl and Maehara (2008) states that J-L holds when "f is a random, orthonormal linear transformation"
- ▶ Random? √
- ► Linear? ✓
- Orthonormal?
- Normalisation $(\mathbf{r}_i \cdot \mathbf{r}_i = 1)$ is easy
- ▶ Orthogonality $(\mathbf{r}_i \cdot \mathbf{r}_j = 0, i \neq j)$ is less so can be costly

Finding the map f

- ▶ J-L states that the linear map $f : \mathbb{R}^M \mapsto \mathbb{R}^K$ is onto a *random subspace*.
- ▶ Refinement by Frankl and Maehara (2008) states that J-L holds when "f is a random, orthonormal linear transformation"
- ▶ Random? √
- ► Linear? ✓
- Orthonormal?
- Normalisation $(\mathbf{r}_i \cdot \mathbf{r}_i = 1)$ is easy
- ▶ Orthogonality $(\mathbf{r}_i \cdot \mathbf{r}_j = 0, i \neq j)$ is less so can be costly
- ▶ The curse of dimensionality to the rescue. . . !

- ightharpoonup $\mathbf{r}_i \cdot \mathbf{r}_i = 0 \rightarrow \theta = 90^\circ$
- Generate 100,000 normalised random vectors of different dimensionality
- ▶ Compute the angle between each pair $(\mathbf{r}_i \cdot \mathbf{r}_i)$, plot histogram

- ightharpoonup $\mathbf{r}_i \cdot \mathbf{r}_j = 0 \rightarrow \theta = 90^\circ$
- Generate 100,000 normalised random vectors of different dimensionality
- ▶ Compute the angle between each pair $(\mathbf{r}_i \cdot \mathbf{r}_j)$, plot histogram

- ightharpoonup $\mathbf{r}_i \cdot \mathbf{r}_j = 0 \rightarrow \theta = 90^\circ$
- Generate 100,000 normalised random vectors of different dimensionality
- ▶ Compute the angle between each pair $(\mathbf{r}_i \cdot \mathbf{r}_j)$, plot histogram

- ightharpoonup $\mathbf{r}_i \cdot \mathbf{r}_j = 0 \rightarrow \theta = 90^\circ$
- Generate 100,000 normalised random vectors of different dimensionality
- ▶ Compute the angle between each pair $(\mathbf{r}_i \cdot \mathbf{r}_j)$, plot histogram

- ightharpoonup $\mathbf{r}_i \cdot \mathbf{r}_i = 0 \rightarrow \theta = 90^\circ$
- Generate 100,000 normalised random vectors of different dimensionality
- ▶ Compute the angle between each pair $(\mathbf{r}_i \cdot \mathbf{r}_j)$, plot histogram

- ightharpoonup $\mathbf{r}_i \cdot \mathbf{r}_j = 0 \rightarrow \theta = 90^\circ$
- Generate 100,000 normalised random vectors of different dimensionality
- ▶ Compute the angle between each pair $(\mathbf{r}_i \cdot \mathbf{r}_j)$, plot histogram

- ightharpoonup $\mathbf{r}_i \cdot \mathbf{r}_j = 0 \rightarrow \theta = 90^\circ$
- Generate 100,000 normalised random vectors of different dimensionality
- ▶ Compute the angle between each pair $(\mathbf{r}_i \cdot \mathbf{r}_j)$, plot histogram

- ightharpoonup $\mathbf{r}_i \cdot \mathbf{r}_j = 0 \rightarrow \theta = 90^\circ$
- Generate 100,000 normalised random vectors of different dimensionality
- ▶ Compute the angle between each pair $(\mathbf{r}_i \cdot \mathbf{r}_j)$, plot histogram

- ightharpoonup $\mathbf{r}_i \cdot \mathbf{r}_j = 0 \rightarrow \theta = 90^\circ$
- Generate 100,000 normalised random vectors of different dimensionality
- ▶ Compute the angle between each pair $(\mathbf{r}_i \cdot \mathbf{r}_j)$, plot histogram

▶ Random vectors in high dimensions are (nearly) orthogonal!

- ► Random vectors in high dimensions are (nearly) orthogonal!
- ► So no need to explicitly orthogonalise
- ▶ Means random projection is very cheap indeed!

Effect on MNIST Data

- Absolute distances reduced
- ightharpoonup Relative distances preserved to with factor pprox 3

Summary

- ▶ Problems in high dimensions
- ▶ One way for overcoming them

Summary

- Problems in high dimensions
- One way for overcoming them
- ▶ Next time: pushing the performance limits
- An alternative generative approach to classification