0.1 Mengder

En samling av tall kalles en $mengde^1$, og et tall som er en del av en mengde kalles et element i denne mengden. Mengder kan inneholde et endelig antall elementer og de kan inneholde uendelig mange elementer.

0.1 Mengder

For to reelle tall a og b, hvor a < b, har vi at

- [a,b] er mengden av alle reelle tall større eller lik a og mindre eller lik b.
- (a, b] er mengden av alle reelle tall større enn a og mindre eller lik b.
- [a,b) er mengden av alle reelle tall større eller lik a og mindre enn b.

[a,b] kalles et lukket intervall, mens både (a,b] og [a,b) kalles halvåpne intervall.

Mengden av tre tall a, b og c skrives som $\{a, b, c\}$.

At x er et element i en mengde M skrives som $x \in M$.

At x ikke er et element i en mengde M skrives som $x \notin M$.

Språkboksen

 $x \in M$ uttales "x inneholdt i M" eller "x er et element i M".

Eksempel 1

Mengden av alle heltall større enn 0 og mindre enn 10 skriver vi som

$$\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Denne mengden inneholder 9 elementer. 3 er et element i denne mengden, og da kan vi skrive $3 \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

10 er ikke et element i denne mengden, og da kan vi skrive $10 \notin \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$

¹En mengde kan også være en samling av andre matematiske objekter, som for eksempel funksjoner, men i denne boka holder det å se på mengder av tall.

Eksempel 2

Skriv opp ulikhetene som gjelder for alle $x \in M,$ og om 1 er inneholdt i M.

- a) M = [0, 1]
- b) M = (0, 1]
- c) M = [0, 1)

Svar

- a) $0 \le x \le 1$. Videre er $1 \in M$.
- b) $0 < x \le 1$. Videre er $1 \in M$.
- c) $0 \le x < 1$. Videre er $1 \notin M$.

0.2 Navn på mengder

- \mathbb{N} Mengden av alle positive heltall¹
- \mathbb{Z} Mengden av alle heltall²
- Mengden av alle rasjonale tall
- $\mathbb R$ $\,$ Mengden av alle reelle tall
- $\mathbb C$ Mengden av alle komplekse tall

 $^{^{1}}$ Inneholder ikke~0.

²Inneholder 0.

0.2 Verdi- og definisjonsmengder

Alle funksjoner har en definisjonsmengde og en verdimengde. For en funksjon f(x), er definisjonsmengden den mengden som utelukkende inneholder alle verdier x kan ha. Denne mengden skrives da som D_f . Hvilke verdier x kan ha er bestemt av to ting:

- Hvilken sammenheng x skal brukes i.
- Om f ikke er definert for visse x-verdier.

La oss først bruke f(x) = 2x + 1 som et eksempel. Denne funksjonene er definert for alle $x \in \mathbb{R}$. Vi kunne derfor latt \mathbb{R} være definisjonsmengden til f, men for enhelhets skyld velger vi her $D_f = [0,1]$. Mengden som utelukkende inneholder alle verdier f kan ha når $x \in D_f$, er verdimengden til f. Denne mengden skrives som V_f . I dette tilfellet er (forklar for deg selv hvorfor) $f \in [1,3]$, altså er $V_f = [1,3]$.

La oss videre se på funksjonen $g(x) = \frac{1}{x}$. Denne funksjonen er ikke definert for x = 0, noe som betyr at vi allerede har fått en restriksjon på definisjonsmengden til g. Også her gjør vi det enkelt, og unngår 1 = 0 med god klaring ved å sette $D_g = [1, 2]$. Da er (forklar for deg selv hvorfor) $V_g = \left[\frac{1}{2}, 1\right]$.

0.3 Verdi- og definisjonsmengder

Gitt en funksjon f(x). Mengden som utelukkende inneholder alle verdier x kan ha, er da definisjonsmengden til f. Denne mengden skrives som D_f .

Mengden som utelukkende inneholder alle verdier f kan ha når $x \in D_f$, er verdimengden til f.

 $^{^1}$ I seksjon ?? skal vi se nærmere på funksjoner som g når x nærmer seg 0.

0.3 Betingelser

Symbolet \Rightarrow bruker vi for å vise til at hvis én ting er sann, så er en annen (eller flere) ting sann også. For eksempel, alle tall som er delelige med 2 er partall. For et tall n kan vi skrive dette slik:

$$\frac{n}{2} = \text{heltall} \Rightarrow n \text{ er et partall}$$

Videre kan man spørre seg om det omvendte gjelder; hvis n er et partall, er det da delelig med 2?