A Buildup-based Error Minimization Method with Application to Protein Structure Determination

Zhenli Sheng (盛鎮醴) email: szl@lsec.cc.ac.cn

Institute of Computational Mathematics and Scientific/Engineering Computing,
Chinese Academy of Sciences

joint work with Ya-xiang Yuan

September 13, 2013 ICNONLA-Changchun

Outline

- Problem introduction
- Related works review
 - Matrix decomposition method
 - Buildup method
- Our algorithm
- Numerical experiments

Outline

Problem introduction

Distance Geometry Problem

Find the coordinate vectors x_1, x_2, \ldots, x_n that satisfy several given distances among them. Mathematically, this problem can be stated as following,

Distance Geometry Problem

Find $x_1, x_2, \ldots, x_n \in \mathbb{R}^r$, such that

$$||x_i - x_i|| = d_{ij}, \quad (i, j) \in S.$$

or

$$||x_i|| \le ||x_i - x_j|| \le u_{ij}, \quad (i, j) \in S.$$

- ► The given data may have noise.
- ▶ This problem can be formulated as a global optimization problem.
- ► It has many applications.

Global optimization: conventional error functions

stress function

$$Stress(x_1, x_2, ..., x_n) = \sum_{(i,j) \in S} (\|x_i - x_j\| - d_{i,j})^2,$$

smoothed stress function

$$SStress(x_1, x_2, ..., x_n) = \sum_{(i,j) \in S} (\|x_i - x_j\|^2 - d_{i,j}^2)^2,$$

generalized stress function

$$GStress(x_1, x_2, \dots, x_n) = \sum_{(i,j) \in S} \min^2 \{ \frac{\|x_i - x_j\|^2 - l_{i,j}^2}{l_{i,j}^2}, 0 \} + \max^2 \{ \frac{\|x_i - x_j\|^2 - u_{i,j}^2}{u_{i,j}^2}, 0 \}.$$

It has too many local minimizers, thus is very difficult to find the global solution.

Application I: Graph Realization

Figure: Graph Realization in 2D

Given a graph G=(V,E), each edge has a weight.

Application II: Protein Structure Determination

Figure: Two proteins: 1PTQ and 1HQQ, in different display ways

- ▶ 3D problem.
- ► Measure distances by NMR or X ray crystallography.
- ► Many properties of proteins rely on structure.

Application III: Sensor Network Localization

Figure: Illustration of wireless sensor networks: anchor and sensor

- ▶ 2D problem.
- ▶ There are some anchors: locations are known.

Outline

- Related works review
 - Matrix decomposition method
 - Buildup method

Matrix Decomposition Method

Matrix decomposition method [Blumenthal 1953, Torgerson 1958] works for Distance Geometry problem with full set of exact distances.

Given a full set of distances, $d_{ij} = ||x_i - x_j||, \quad i, j = 1, 2, \dots, n.$

▶ Set $x_n = (0, 0, 0)^T$, thus $d_{in} = ||x_i||$, we have

$$d_{ij}^{2} = \|x_{i} - x_{j}\|^{2}$$

$$= \|x_{i}\|^{2} - 2x_{i}^{T}x_{j} + \|x_{j}\|^{2}$$

$$= d_{in}^{2} - 2x_{i}^{T}x_{j} + d_{jn}^{2}, \quad i, j = 1, 2, ..., n - 1$$
(1)

- ▶ Define $X = (x_1, x_2, ..., x_n)^T$ and $D = \{(d_{in}^2 d_{ij}^2 + d_{jn}^2)/2 : i, j = 1, 2, ..., n 1\}, (1) \Rightarrow XX^T = D.$
- Let $D = U\Sigma U^{\mathrm{T}}$, V = U(:, 1:3) and $\Lambda = \Sigma(1:3, 1:3)$. Then $X = V\Lambda^{1/2}$ is the best rank-3 approximation. [Eckart-Young 1936]

Buildup Method

Algorithm 1: Buildup Method for Distance Geometry Problem with sparse data

Given: distance matrix D, i.e. d_{ii} , $(i,j) \in S$.

- **Step 1**: Find a clique of four points and determine their coordinates.
- Step 2: Choose a point to be added, apply liner or nonlinear least square to locate the point.
- Step 3: Repeat Step 2 until all points are determined or no more points can be determined.
- \spadesuit The algorithm bases on a simple observation: in \mathbb{R}^3 , four distances can uniquely determine a point.
- ♠ It was first proposed by [Dong-Wu 2002]. We will specify details of each step later.

Determine first four points

- ► Find a clique of four points: greedy search
- ▶ How to determine their coordinates?

Denote
$$x_i = (u_i, v_i, w_i)^T$$
, set $x_1 = (0, 0, 0)^T$ and $x_2 = (d_{12}, 0, 0)^T$.
$$\begin{cases} u_3^2 + v_3^2 = d_{31}^2 \\ (u_3 - u_2)^2 + v_3^2 = d_{32}^2 \end{cases} \Rightarrow \begin{cases} u_3 = (d_{31}^2 - d_{32}^2 + u_2^2)/(2u_2) \\ v_3 = \sqrt{d_{31}^2 - u_3^2}, \quad w_3 = 0 \end{cases}$$

$$\begin{cases} u_4^2 + v_4^2 + w_4^2 = d_{41}^2 \\ (u_4 - u_2)^2 + v_4^2 + w_4^2 = d_{42}^2 \Rightarrow \\ (u_4 - u_3)^2 + (v_4 - v_3)^2 + w_4^2 = d_{43}^2 \end{cases} \begin{cases} u_4 = (d_{41}^2 - d_{42}^2 + u_2^2)/(2u_2) \\ v_4 = \dots \\ w_4 = \sqrt{d_{41}^2 - u_4^2 - v_4^2} \end{cases}$$

$$v_4 = (d_{42}^2 - d_{43}^2 + (u_4 - u_2)^2 + (u_4 - u_3)^2 + v_3^2)/(2v_3)$$

▶ In the noisy case, the "sqrt" part may cause problems.

Suppose x_j (to be determined) has l known distances with x_i, x_2, \ldots, x_l (has been determined).

▶ linear least square [Wu-Wu 2007]: The arrivation reast square [vvu-vvu 2007]: $d_{ij}^{2} = \|x_{i}\|^{2} - 2x_{i}^{T}x_{j} + \|x_{j}\|^{2}, (i = 1, 2, ..., I). \Rightarrow Ax_{j} = b, \text{ where}$ $A = 2 \begin{pmatrix} x_{11} - x_{21} & x_{12} - x_{22} & x_{13} - x_{23} \\ x_{21} - x_{31} & x_{22} - x_{32} & x_{23} - x_{33} \\ \vdots & \vdots & \vdots \\ x_{l-1,1} - x_{l1} & x_{l-1,2} - x_{l2} & x_{l-1,3} - x_{l3} \end{pmatrix},$ $b = \begin{pmatrix} (\|x_{1}\|^{2} - \|x_{2}\|^{2}) - (d_{1j}^{2} - d_{2j}^{2}) \\ (\|x_{2}\|^{2} - \|x_{3}\|^{2}) - (d_{2j}^{2} - d_{3j}^{2}) \\ \vdots \\ (\|x_{l-1}\|^{2} - \|x_{l}\|^{2}) - (d_{l-1,j}^{2} - d_{lj}^{2}) \end{pmatrix}$

Suppose x_j (to be determined) has l known distances with x_i, x_2, \ldots, x_l (has been determined).

▶ linear least square [Wu-Wu 2007]: The arrival reast square [vvu-vvu 2007]: $d_{ij}^{2} = \|x_{i}\|^{2} - 2x_{i}^{T}x_{j} + \|x_{j}\|^{2}, (i = 1, 2, ..., I). \Rightarrow Ax_{j} = b, \text{ where}$ $A = 2 \begin{pmatrix} x_{11} - x_{21} & x_{12} - x_{22} & x_{13} - x_{23} \\ x_{21} - x_{31} & x_{22} - x_{32} & x_{23} - x_{33} \\ \vdots & \vdots & \vdots \\ x_{l-1,1} - x_{l1} & x_{l-1,2} - x_{l2} & x_{l-1,3} - x_{l3} \end{pmatrix},$ $b = \begin{pmatrix} (\|x_{1}\|^{2} - \|x_{2}\|^{2}) - (d_{1j}^{2} - d_{2j}^{2}) \\ (\|x_{2}\|^{2} - \|x_{3}\|^{2}) - (d_{2j}^{2} - d_{3j}^{2}) \\ \vdots \\ (\|x_{l-1}\|^{2} - \|x_{l}\|^{2}) - (d_{l-1,j}^{2} - d_{lj}^{2}) \end{pmatrix}$

 \spadesuit In the noisy case, solve $\min_{x_j} ||Ax_j - b||_2$.

Suppose x_j (to be determined) has l known distances with x_1, x_2, \ldots, x_l (has been determined).

▶ nonlinear least square [Sit-Wu-Yuan 2009]:

Suppose x_j (to be determined) has I known distances with x_1, x_2, \ldots, x_I (has been determined).

- ▶ nonlinear least square [Sit-Wu-Yuan 2009]:
 - 1. Calculate missing distances among these I points.

Suppose x_j (to be determined) has l known distances with x_1, x_2, \ldots, x_l (has been determined).

- ▶ nonlinear least square [Sit-Wu-Yuan 2009]:
 - 1. Calculate missing distances among these I points.
 - 2. Apply matrix decomposition method to solve it.

Suppose x_j (to be determined) has l known distances with x_1, x_2, \ldots, x_l (has been determined).

- ▶ nonlinear least square [Sit-Wu-Yuan 2009]:
 - 1. Calculate missing distances among these I points.
 - 2. Apply matrix decomposition method to solve it.
 - Move these points back to the original reference system using overlapped points.

Suppose x_j (to be determined) has I known distances with x_1, x_2, \ldots, x_I (has been determined).

- ▶ nonlinear least square [Sit-Wu-Yuan 2009]:
 - 1. Calculate missing distances among these I points.
 - 2. Apply matrix decomposition method to solve it.
 - Move these points back to the original reference system using overlapped points.
 - In this way, we determine the new point, as well as re-determine the / points, which can be viewed as adjustment.

Remarks about Buildup method

- ► Exact distance: efficient and accurate.
- ► Accumulation of round error may ruin the result.
- Nonlinear technique is more stable. However, it still can tolerate very small noise, usually $\leq 0.01\%$.

Outline

Our algorithm

Motivation

Two observations:

- ▶ It is almost impossible to find the global minimizer or a good local minimizer of any error function, from a randomly chosen initial point.
- ▶ Buildup method is extremely fast, which is its most charming feature, but it cannot tolerate large noises.

Motivation

Two observations:

- ▶ It is almost impossible to find the global minimizer or a good local minimizer of any error function, from a randomly chosen initial point.
- Buildup method is extremely fast, which is its most charming feature, but it cannot tolerate large noises.

Many existing methods can be viewed as two processes:

- ► Find a good initial point:

 Embedding Method [Crippen-Havel 1988] trys to estimate the missing data, and then apply matrix decomposition method to obtain a solution.

 SDP Method [Biswas-Toh-Ye 2007, Toh 2013] solves a relaxed SDP.
- ▶ Minimize an error function to adjust the positions (Postprocess).

Motivation

Two observations:

- ▶ It is almost impossible to find the global minimizer or a good local minimizer of any error function, from a randomly chosen initial point.
- Buildup method is extremely fast, which is its most charming feature, but it cannot tolerate large noises.

Many existing methods can be viewed as two processes:

- Find a good initial point: Embedding Method [Crippen-Havel 1988] trys to estimate the missing data, and then apply matrix decomposition method to obtain a solution. SDP Method [Biswas-Toh-Ye 2007, Toh 2013] solves a relaxed SDP.
- Minimize an error function to adjust the positions (Postprocess).

Our basic idea:

▶ Incorporate Buildup Method and error function minimization .

Algorithm 2: Buildup-based Error Minimization Method for Distance Geometry Problem with sparse and noisy distances

Given: distance matrix D, i.e. d_{ij} , $(i,j) \in S$.

- **Step 1**: Find a clique of four points and determine their coordinates.
- Step 2: Choose a point to be added, apply nonlinear least square to roughly locate the point.
- **Step 3**: Apply error minimization to these l+1 points.
- Step 4: Repeat Step 2-3 until all points are determined or no more points can be determined.
- Step 5: Apply error minimization to all the determined points.

How to choose a new point?

Let \mathcal{Y} be index set whose position bas been determined and $\mathcal{N} = \{1, 2, \dots, n\} \setminus \mathcal{Y}$, we define

$$deg(i) = \sharp \{d_{ik} \neq 0 \mid i \in \mathcal{N}, k \in \mathcal{Y}\}$$

Then, in Step 2 we choose point j, such that

$$j = \arg\min_{i} \{ \sum_{k \in \mathcal{Y}} d_{ik} \mid deg(i) = \max_{i \in \mathcal{N}} deg(i) \}.$$
 (2)

How Build-up works

New error function

Existing error functions focus on measuring the (relative) difference error, we propose the following two error function to measure quotient error.

$$f(x_1,x_2,\ldots,x_n)=\sum_{(i,j)\in S}h(\frac{\|x_i-x_j\|}{d_{ij}})$$

where

$$h(x) = \begin{cases} \frac{1}{2}(x-1)^2, & \text{if } x \ge 1, \\ x - 1 - \log(x), & \text{if } 0 < x < 1. \end{cases}$$

or

$$h(x) = x - 1 - \log(x), \quad x > 0.$$

Theorem

h(x) is twice continuously differentiable in $(0,+\infty)$, $\lim_{x\to 0} h(x) = \infty$, $\lim_{x\to \infty} h(x) = \infty$. It is convex and achieves its minimum 0 at 1.

Why this function?

Figure: Hooke's law models the properties of springs for small changes in length

► "Force" function:

$$F = \begin{cases} x - 1, & x \ge 1, \\ 1 - \frac{1}{x}, & x < 1. \end{cases}$$

then the energy function is h(x).

► Another proposal:

$$h(x) = x - (1 + \ln(x))$$

Properties of new error function

Theorem

Suppose

$$f(x) = \sum_{(i,j) \in S} h(\frac{\|x_i - x_j\|}{d_{ij}})$$

$$= \sum_{(i,j) \in S} \begin{cases} \frac{1}{2} (\frac{\|x_i - x_j\|}{d_{ij}} - 1)^2, & \text{if } \|x_i - x_j\| \ge d_{ij}, \\ \frac{\|x_i - x_j\|}{d_{ij}} - 1 - \log(\frac{\|x_i - x_j\|}{d_{ij}}), & \text{otherwise} \end{cases}$$

let $N(i) = \{j : d_{ij} \neq 0\}$ denote the neighbours of point i, and $x = (x_1; x_2; ...; x_n)$ is a column vector in \mathbb{R}^{3n} , then we have

$$\frac{\partial f}{\partial x_{i}} = \sum_{j \in N(i)} \begin{cases} \left(\frac{1}{d_{ij}^{2}} - \frac{1}{d_{ij}\|x_{i} - x_{j}\|}\right)(x_{i} - x_{j}), & \text{if } \|x_{i} - x_{j}\| \geq d_{ij}, \\ \left(\frac{1}{d_{ij}\|x_{i} - x_{j}\|} - \frac{1}{\|x_{i} - x_{j}\|^{2}}\right)(x_{i} - x_{j}), & \text{otherwise} \end{cases},$$

to be continued...

Properties of new error function (cont'd)

Theorem

and for p, q = 1, 2, 3,

$$\frac{\partial^{2} f}{\partial x_{ip} \partial x_{jq}} = \begin{cases} \sum_{j \in N(i)} \omega(x), & \text{if } i = j, \\ -\omega(x), & \text{if } i \neq j, \\ 0, & \text{otherwise} \end{cases}$$

where

$$\omega(x) = \begin{cases} \frac{1}{d_{ij}^{2}} - \frac{1}{d_{ij}\|x_{i} - x_{j}\|} + \frac{(x_{ip} - x_{jq})^{2}}{d_{ij}\|x_{i} - x_{j}\|^{3}}, & \text{if } \|x_{i} - x_{j}\| \ge d_{ij}, \\ \frac{1}{d_{ij}\|x_{i} - x_{j}\|} - \frac{1}{\|x_{i} - x_{j}\|^{2}} - \frac{(x_{ip} - x_{jq})^{2}}{d_{ij}\|x_{i} - x_{j}\|^{3}} + \frac{(x_{ip} - x_{jq})^{2}}{\|x_{i} - x_{j}\|^{4}}, & \text{otherwise.} \end{cases}$$

Algorithm 3: Buildup-based Error Minimization Method for Distance Geometry Problem with sparse and noisy distances

Given: distance matrix D, i.e. d_{ij} , $(i,j) \in S$.

Algorithm 4: Buildup-based Error Minimization Method for Distance Geometry Problem with sparse and noisy distances

Given: distance matrix D, i.e. d_{ii} , $(i,j) \in S$.

Step 1: Find a clique of four points and determine their coordinates.

Algorithm 5: Buildup-based Error Minimization Method for Distance Geometry Problem with sparse and noisy distances

Given: distance matrix D, i.e. d_{ij} , $(i,j) \in S$.

Step 1: Find a clique of four points and determine their coordinates.

Step 2: Choose a point to be added, apply nonlinear least square to roughly locate the point.

Algorithm 6: Buildup-based Error Minimization Method for Distance Geometry Problem with sparse and noisy distances

Given: distance matrix D, i.e. d_{ii} , $(i, j) \in S$.

Step 1: Find a clique of four points and determine their coordinates.

Step 2: Choose a point to be added, apply nonlinear least square to roughly locate the point.

Step 3: Apply error minimization to these l+1 points.

Algorithm 7: Buildup-based Error Minimization Method for Distance Geometry Problem with sparse and noisy distances

Given: distance matrix D, i.e. d_{ij} , $(i,j) \in S$.

- **Step 1**: Find a clique of four points and determine their coordinates.
- Step 2: Choose a point to be added, apply nonlinear least square to roughly locate the point.
- **Step 3**: Apply error minimization to these l+1 points.
- Step 4: Repeat Step 2-3 until all points are determined or no more points can be determined.

Our algorithm

Algorithm 8: Buildup-based Error Minimization Method for Distance Geometry Problem with sparse and noisy distances

Given: distance matrix D, i.e. d_{ij} , $(i,j) \in S$.

- **Step 1**: Find a clique of four points and determine their coordinates.
- Step 2: Choose a point to be added, apply nonlinear least square to roughly locate the point.
- **Step 3**: Apply error minimization to these l+1 points.
- Step 4: Repeat Step 2-3 until all points are determined or no more points can be determined.
- Step 5: Apply error minimization to all the determined points.

Algorithm details

▶ In Step 3, we solve the following subproblem:

$$\min_{x_j,x_k \in N(i)} f(x_j,x_k)$$

where f is an error function.

▶ The subproblems are relatively very small, thus can be solved very quickly.

Algorithm details

▶ In Step 3, we solve the following subproblem:

$$\min_{x_j,x_k \in N(i)} f(x_j,x_k)$$

where f is an error function.

- ▶ The subproblems are relatively very small, thus can be solved very quickly.
- ▶ In Step 5, we solve

$$\min_{x_1,x_2,\ldots,x_n} f(x_1,x_2,\ldots,x_n)$$

► Since we can obtain very good starting point, we only exploit gradient method — line search Barzilai-Borwein method to solve these problems.

Buildup VS. our algorithm

- We re-use the same distance information (but only the given distances, not include calculated ones).
- ► In Buildup method equipped with nonlinear least square, if distances are noisy, then we have

$$||x_i-x_j||=d_{ij}+e_{ij},$$

where e_{ii} denotes noise.

$$\Rightarrow 2x_{i}^{\mathrm{T}}x_{j} = d_{in}^{2} - d_{ij}^{2} + d_{jn}^{2} - \boxed{(2d_{ij}e_{ij} + e_{ij}^{2})}$$

So, our conclusion is: When the noises are large, $(d_{ij}e_{ij}+e_{ij}^2/2)$ should not be ignored, namely, solving $X^TX=D$ can not give a good solution to the original problem. But it can serve as a warm starting point to minimize an error function to obtain a better solution

Outline

Numerical experiments

Numerical experiments

We simulate on real protein data, but the distance matrix is generated by us.

- 1. Download PDB file from Internet to get the true positions of atoms.
- 2. Use disk graph model to generate distance matrix from these coordinates, with different cutoffs (6Å or 5Å) and variant noise level.

$$d_{ij} = d_{ij}(1 + noise * randn)$$

- Make numerical experiments with these distance matrices. Note that distances are the only information we need to implement our algorithm.
- 4. Examine the RMSD error of calculated positions with the true positions (in these experiments, we know these information).

$$RMSD(X, Y) = \min_{Q, T} \{ ||X - YQ - T||_F / \sqrt{n} : Q^{\mathrm{T}}Q = I \}$$

ID	num	per	degree			RMSD	fval		time(s)			ndet
			max	min	ave				t1	t2	total	
1PTQ	402	5.46	38	4	21.9	7.56e-02	2.40	3.20	0.6	0.1	0.8	402
1HOE	558	4.05	38	6	22.6	6.63e-02	3.53	4.68	0.8	0.2	0.9	558
1LFB	641	3.40	40	5	21.8	2.63e-01	4.00	5.01	1.0	0.3	1.3	641
1PHT	811	3.35	48	5	27.1	1.13e-01	6.16	7.81	1.8	0.4	2.1	806
1POA	914	2.51	39	4	22.9	1.11e-01	5.87	7.54	2.0	0.4	2.4	914
1AX8	1003	2.30	39	5	23.0	2.06e-01	6.94	8.48	2.8	8.0	3.6	1003
1F39	1534	1.47	40	5	22.6	1.08e-01	9.69	12.69	7.4	0.7	8.1	1534
1RGS	2015	1.12	41	3	22.6	1.64e-01	13.16	16.78	15.3	1.2	16.6	2010
1KDH	2846	0.83	43	4	23.6	3.19e-01	72.22	24.61	43.7	4.3	48.0	2846
1BPM	3671	0.66	42	3	24.4	1.17e-01	25.83	33.27	86.9	1.8	88.7	3668
1RHJ	3740	0.65	40	4	24.4	1.01e-01	26.39	34.15	90.4	2.5	92.9	3740
1HQQ	3944	0.60	40	3	23.7	1.75e-01	26.55	34.78	109.9	2.7	112.6	3938
1TOA	4292	0.56	39	3	24.0	8.73e-02	29.94	38.59	147.1	3.2	150.3	4280
1MQQ	5681	0.44	44	5	25.2	1.73e-01	42.44	53.18	323.1	5.5	328.6	5681

Table: cut off=5Å, noise=0 01

ID	num	per		degree	9	RMSD	fval	time(s)			ndet
			max	min	ave			t1	t2	total	
1PTQ	402	8.79	61	6	35.3	4.96e-02	6.00	1.2	0.1	1.3	402
1HOE	558	6.55	65	11	36.5	3.51e-02	8.90	1.8	0.2	1.9	558
1LFB	641	5.57	59	8	35.7	5.53e-02	9.70	2.0	0.2	2.2	641
1PHT	811	5.37	75	7	43.5	7.34e-02	15.82	4.1	0.3	4.3	811
1POA	914	4.07	67	8	37.2	5.22e-02	15.04	3.9	0.3	4.2	914
1AX8	1003	3.74	59	7	37.5	4.25e-02	16.29	4.6	0.3	5.0	1003
1F39	1534	2.43	62	7	37.2	4.87e-02	25.55	10.6	0.5	11.2	1534
1RGS	2015	1.87	66	4	37.7	6.28e-02	33.92	19.4	1.0	20.4	2015
1KDH	2846	1.36	64	5	38.8	6.85e-02	49.81	47.7	1.6	49.2	2846
1BPM	3671	1.12	64	4	40.9	4.24e-02	68.33	96.6	2.0	98.6	3671
1RHJ	3740	1.10	61	5	41.2	3.21e-02	70.48	103.1	2.1	105.2	3740
1HQQ	3944	1.00	64	5	39.5	5.35e-02	69.81	121.7	2.4	124.1	3944
1TOA	4292	0.94	62	4	40.1	5.80e-02	77.70	151.9	2.6	154.6	4292
1MQQ	5681	0.75	66	7	42.4	3.34e-02	110.56	334.7	3.8	338.5	5681

Table: cutoff=6Å, noise=0.01

ID	num	per	degree			RMSD	fval	time(s)			ndet
			max	min	ave			t1	t2	total	
1PTQ	402	8.79	61	6	35.3	2.44e-01	149.64	2.4	0.3	2.7	402
1HOE	558	6.55	65	11	36.5	1.76e-01	221.95	4.0	0.3	4.3	558
1LFB	641	5.57	59	8	35.7	2.46e-01	241.74	4.6	0.5	5.1	641
1PHT	811	5.37	75	7	43.5	6.98e-01	397.14	8.0	0.6	8.6	811
1POA	914	4.07	67	8	37.2	1.77e-01	374.50	8.1	0.7	8.8	914
1AX8	1003	3.74	59	7	37.5	1.89e-01	405.16	9.3	0.7	10.0	1003
1F39	1534	2.43	62	7	37.2	2.44e-01	637.11	18.4	1.4	19.8	1534
1RGS	2015	1.87	66	4	37.7	3.13e-01	845.78	30.4	3.5	34.0	2015
1KDH	2846	1.36	64	5	38.8	2.97e-01	1240.51	69.7	4.1	73.8	2846
1BPM	3671	1.12	64	4	40.9	1.96e-01	1706.83	129.4	3.3	132.7	3671
1RHJ	3740	1.10	61	5	41.2	1.71e-01	1760.82	129.1	3.3	132.4	3740
1HQQ	3944	1.00	64	5	39.5	2.85e-01	1744.20	133.3	4.9	138.2	3944
1TOA	4292	0.94	62	4	40.1	2.36e-01	1938.62	182.6	5.0	187.6	4292
1MQQ	5681	0.75	66	7	42.4	2.04e-01	2771.67	400.3	6.1	406.4	5681

Table: cutoff=6Å, noise=0 05

Thank you for your attention!

szl@lsec.cc.ac.cn