《系统工程导论》系统决策 自61 张嘉玮 20016011528

【1】某公司需要对生产某种新产品建大厂和建小厂作出决定。该新产品计划生产10年。已

知建大厂的投资费用为 280 万元,而建小厂的投资费用为 140 万元

预见在 10 年内该产品的销售情况的离散分布状态是: 销售量高的概率为 0.5; 中等的概率为 0.3; 销售低的概率为 0.2。

公司进行了产量-成本-利润分析,在工厂规模和市场销售量的不同组合下, 其益损情况如下:

- 1) 大工厂,销售量高,每年可获得 100 万元收益。
- 2) 大工厂,销售量中等,每年可获得 60 万元收益。
- 3) 大工厂,销售量低,由于开工不足,每年要亏损 20 万元。
- 4) 小工厂,销售量高,由于供不应求,每年只获得25万元收益。
- 5) 小工厂,销售量中等,每年可获得 20 万元收益。
- 6) 大工厂,销售量低,每年仍可获得 18 万元收益。 请绘制决策树,并使用决策树法进行决策。

解:

绘制决策树如下图所示:

故应该建大厂。

【2】生产空气污染检测器的关键零件——薄膜,其材料是某种化学溶剂,该化学溶剂的质量较难控制。按过去生产资料统计,其质量可分为 5 种状态,不同状态所出现的废品率及状态概率如表 1 所示。工厂对提高化学溶剂质量的态度有:方案 A1 (提纯处理),方案A2 (不提纯处理),提纯处理后化学溶剂质量可以提高到 S1 状态。但所需提纯费用也相当可观,两方案的益损值表如表 2 所示。

为既保证化学溶剂质量,又使益损期望值获得较大,工厂准备在应用化学溶剂前增加一道检验工序,以决定在不同质量状态下是否需要提纯的问题,但增加一道工序需增加费用150万元,请对是否值得增加该道检验工序进行决策。

表1 不同状态下的废品率及状态概率 分布表

状态	S1	S2	S3	S4	S5
废品率	0	0.1	0.2	0.3	0.4
状态概	0.2	0.2	0.1	0.2	0.3
率					

表2 方案 A1 与 A2 在不同状态下的 益损值表

状 态		S1	S2	S3	S4	S5
益损值	A1	500	500	500	500	500
	A2	2200	1600	100	400	-20
				0		0

解: 使用决策树进行决策。

分析: 如果选择检测, 那么在决定是否需要提纯之前将获得状态信息; 如果不进行检

测,那么在确定是否提纯时,是不知道状态信息的。

决策树如下:

则应该选择增加检测工序。

- 【3】某商店经营者要确定某种商品的进货量。该商品以 50 箱为单位批发。批发 50、100、150 和大于或等于 200 箱的价格分别是每箱 100、90、80 和70 元。该商品在计划期的零售价是每箱 140 元。经营者估计在计划期卖出 50、100、150、200、250 和300箱的概率分别是0.1、0.3、0.2、0.2、0.1 和0.1。计划期结束时所有剩下的商品将以每箱 60元的价格处理掉。假定该经营者是中立型决策者。
 - 1) 根据效用理论确定其最优的进货数量;
 - 2) 根据极小化最大后悔值准则确定其最优的进货数量.

解: 1)

由于最多能在计划期买出300箱,故进货大于300的情况无需考虑,其收益必小于进货300的方案。

方案A={a1=50,a2=100,a3=150,a4=200,a5=250,a6=300}

状态S={s1=50,s2=100,s3=150,s4=200,s5=250,s6=300}

概率: P(s1|a) =0.1; P(s2|a) =0.3; P(s3|a) =0.2;

P(s4|a) = 0.2; P(s5|a) = 0.1; P(s6|a) = 0.1

对任意a∈A

后果: g(sj|ai)=-ai*Price(ai)+140*min(ai,sj)+60*max(ai-sj,0), 其中Price (ai) 为进货量为ai时,对应的价格。

得下面的不同方案和不同状态对应的后果:

g(sj ai)	a1 (50)	a2 (100)	a3 (150)	a4 (200)	a5 (250)	a6 (300)
S1(0.1)	2000	1000	1000	2000	1500	1000
S2(0.3)	2000	5000	5000	6000	5500	5000
S3(0.2)	2000	5000	9000	10000	9500	9000
S4(0.2)	2000	5000	9000	14000	13500	13000
S5(0.1)	2000	5000	9000	14000	17500	17000
S6(0.1)	2000	5000	9000	14000	17500	21000

后果集: C={1000,1500,2000,5000,5500,6000,9000,9500,10000, 13000,13500,14000,17000,17500,21000}

v(1000)=0; v(21000)=1

由于该人是中立型的,因此效益与后果成正比,可得:

后果	1000	1500	2000	5000	5500	6000	9000	9500
效益	0	0.025	0.0500	0.200	0.225	0.2500	0.4000	0.4250
后果	10000	13000	13500	14000	17000	17500	21000	
效益	0.4500	0.6000	0.625	0.650	0.8000	0.8250	1	

不同方案对应的效益为:

$$u(ai) = \sum_{k=1}^{6} p(s_k \mid ai) * v(g(s_k \mid ai))$$

得:

行动ai	50	100	150	200	250	300
效益u(ai)	0.0500	0.180	0.3	0.43	0.445	0.44

则U (a5=250) =0.445对应的效益最大, 即选择进货250件。

2) 根据极小化极大的计算公式可得:

R(50):

$$r(50|50)=0$$
; $r(100|50)=0.20$; $r(150|50)=0.4$; $r(200|50)=0.6$; $r(250|50)=0.775$; $r(300|50)=0.95$ 则 $R(50)=0.95$

R(100):

$$r(50|100)=0.050$$
; $r(100|100)=0.050$; $r(150|100)=0.25$
 $r(200|100)=0.450$; $r(250|100)=0.625$; $r(300|100)=0.80$
则R (100) =0.80

R(150):

R(200):

$$r(50|200)=0$$
; $r(100|200)=0$; $r(150|200)=0$
 $r(200|200)=0$; $r(250|200)=0.175$; $r(300|200)=0.350$
则R (200) =0.35

R(250):

$$r(50|250)=0.025$$
; $r(100|250)=0.025$; $r(150|250)=0.025$
 $r(200|250)=0.025$; $r(250|250)=0$; $r(300|250)=0.175$
则: $R(250)=0.175$

R(300):

$$r(50|300)=0.050$$
; $r(100|300)=0.050$; $r(150|300)=0.05$
 $r(200|300)=0.050$; $r(250|300)=0.025$; $r(300|300)=0$
则R (300) =0.05

Min(R(a))=0.05,a=300

则根据最小化最大后悔值的原理下,应该进货300件。