Examples I for Time Series (S8)

NB: Stationarity by itself always means 'second-order' stationarity

[1]

- (a) Let Y_1 and Y_2 be independent and identically distributed random variables, each with mean zero and variance σ^2 , and let c be a constant.
- (i) Find the mean and covariance of $\{X_t\}$ defined by

$$X_t = Y_1 \cos(ct) + Y_2 \sin(ct),$$

and hence show that the process is stationary.

(ii) For the case $c = \pi/4$ show that $\{X_t\}$ is *strictly* stationary if and only if Y_1 and Y_2 each have the Gaussian (normal) distribution.

[You will need to use Bernstein's theorem which states that if U and V are IID random variables, and $(U+V)/\sqrt{2}$ has the same distribution as U and V, then U and V are Gaussian (normal). Also recall that $\cos(\pi/4) = 1/\sqrt{2}$.]

- (b) Let Y_1 be a random variable with mean zero and variance σ^2 , and let c be a constant.
- (i) Find the mean and covariance of $\{X_t\}$ defined by

$$X_t = Y_1 \cos(ct),$$

and hence determine when the process is stationary.

(ii) Show that when the process in (b)(i) is stationary that its autocorrelation sequence must be of the form

$$\rho_{\tau} = (-1)^{|\ell\tau|}, \qquad \tau \in \mathbb{Z},$$

for some $\ell \in \mathbb{Z}$.

(iii) The sequence $\{\rho_{\tau}\}$ is positive semidefinite, if, for all $n \geq 1$, for any t_1, t_2, \ldots, t_n contained in \mathbb{Z} , and for any set of nonzero real numbers a_1, a_2, \ldots, a_n

$$\sum_{j=1}^{n} \sum_{k=1}^{n} \rho_{t_j - t_k} a_j a_k \ge 0.$$

Show that this inequality condition is satisfied by $\rho_{\tau} = (-1)^{|\ell\tau|}$ for $\ell, \tau \in \mathbb{Z}$.

[2] Let $\{X_t\}$ be defined by

$$X_t = \phi X_{t-1} + \epsilon_t, \qquad t = 1, 2, 3, \dots$$

where $X_0 = 0$. Find the 3×3 covariance matrix of X_1 , X_2 and X_3 . Here $\{\epsilon_t\}$ is a white noise process with mean zero and variance σ_{ϵ}^2 .