Second-Order Necessary Conditions

The Second-Order Sufficient Conditions Are Not Necessary

As the example in the previous video revealed, the second-order sufficient conditions cannot identify all local minimizers.

Unfortunately, we cannot find conditions that are necessary and sufficient for local minimizers¹.

¹Except for some special functions

But, We Can Find Further Conditions That Local Minimizers Must Satisfy

Theorem: Second-order Necessary Conditions [NW06]

If x^* is a local minimizer of f and $\nabla^2 f$ exists and is continuous in an open neighborhood of x^* , then $\nabla f(x^*) = 0$ and $p^T \nabla^2 f(x^*) p \ge 0$, for all $p \ne 0$.

Example

Use the second-order necessary conditions to classify the stationary points of the following 1D functions:

1.
$$f(x) = -(x-2)^2$$

2. $f(x) = x^3$

2.
$$f(x) = x^{2}$$

References

J. Nocedal and S. J. Wright, *Numerical Optimization*, second ed., Springer–Verlag, Berlin, Germany, 2006.