(NATURAL SCIENCE)

Vol. 63 No. 12 JUCHE106(2017).

Eu, Dy가 동시첨가된 결함소록석형재료의 발광특성

김명성, 한영남

희토류이온을 첨가한 무기물재료들은 효과성이 높고 환경에 영향을 미치지 않으며 비용이 적게 드는것으로 하여 조명장치, 현시장치, 빛촉매제조 등에 광범히 리용되고있다.[1-3]

 $KNbWO_6\cdot H_2O:Eu^{3+}$ 는 464nm에서 려기되여 612nm에서 $^5D_0\to^7F_2$ 이행에 해당한 등적색빛을 나타내며 $KNbWO_6\cdot H_2O:Dy^{3+}$ 는 388nm에서 려기되여 574nm에서 $^6H_{15/2}\to^4F_{7/2}$ 이행에 해당한 강한 노란색빛을 나타낸다.[5] 그러나 Eu와 Dy가 동시첨가된 결함소록석형재료의 발광특성에 대한 연구결과는 발표된것이 없다.

우리는 수열법으로 합성한 니오비움월프람산칼리움기질에 희토류이온인 Eu³⁺, Dy³⁺을 동 시첨가하였을 때 재료의 발광특성을 고찰하였다.

실험 방법

시약으로는 분석순의 Nb₂O₅, *n*-C₈H₁₇OH, KOH, HCl, Eu(NO₃)₃·6H₂O, Dy(NO₃)₃·6H₂O, H₂WO₄을 리용하였다.

KNbWO₆·H₂O의 합성[5] 1.0g의 Nb₂O₅과 5.0g의 KOH를 60mL의 증류수와 섞어 30min동 안 교반하고 80mL들이 수열반응장치에 넣어 조립한 다음 180℃에서 2일동안 반응시켜 K₈Nb₆O₁₉용액을 얻었다. 다음 2.4mL의 K₈Nb₆O₁₉용액(0.018 6mol/L)에 20mL의 *n*−옥타놀을 넣고 Nb와 W의 물질량비가 1:2.5 되게 H₂WO₄을 첨가한 다음 묽은 염산으로 용액의 pH를 7.2로 조절하였다. 용액을 40mL들이 수열반응장치에 넣어 조립한 후 220℃에서 2일동안 반응시킨다. 방온도까지 식히고 시료를 증류수와 에타놀로 원심분리기에서 세척한 다음 60℃에서 10h동안 건조시켜 KNbWO₆·H₂O를 제조하였다.

KNbWO₆·H₂O:xLn³⁺(Ln=Eu, Dy)의 합성 KNbWO₆·H₂O 0.05g과 0.2mol/L Dy(NO₃)₃용액 2.5mL를 혼합하고 증류수 60mL를 넣은 다음 수열장치를 조립하고 180℃에서 2일동안 수열반응시킨다. 얻어진 앙금을 원심분리기에서 증류수로 세척하고 60℃에서 10h동안 진공건조시킨 다음 450℃에서 2h동안 가열하여 KNbWO₆·H₂O:xDv³⁺를 합성하였다.

같은 방법으로 Eu³+, Dy³+이 동시첨가된 KNbWO₆·H₂O:xLn³+(Ln=Eu, Dy)를 합성하였다. 분석방법 분말X선회절분석기(《Rigaku Miniflex》)로 시료의 구조를 분석하고 X선형광분 석기(《ZSM Primus II》)로 조성을 결정하였다.

시료의 형광스펙트르는 방온도에서 형광분광광도계(《RF 5000》)로 측정하였다.

실험결과 및 해석

조성분석 합성한 시료들에 대한 X선형광분석결과 조성식들은 다음과 같다. KNbWO₆·H₂O:0.126Dy³⁺, KNbWO₆·H₂O:0.089Eu³⁺0.042Dy³⁺, KNbWO₆·H₂O:0.092Eu³⁺0.036Dy³⁺

구조 및 상분석 합성한 시료들의 XRD도형은 그림 1과 같다.

그림 1에서 보는바와 같이 모든 시료의 XRD 도형들은 결함소록석형구조의 KNbWO₆·H₂O표준도형(JCPDS 25-0668)과 잘 일치하며 불순물상은 나타나지 않았다. KNbWO₆·H₂O:0.126Dy³⁺의 살창상수는 a=1.046 7nm로서 KNbWO₆·H₂O(a=1.049 9nm)에 비하여 작아졌다. 이것은 희토류이온이 혼입된 다음 기질결정의 골격구조는 그대로 유지되며 결정살창이약간 줄어드는것은 이온반경이 작은 Eu³⁺ 및 Dy³⁺이 K⁺과 치환[4]되였기때문이다.

KNbWO₆·H₂O:0.126Dy³⁺의 발광특성 574nm의 발 광파장에서 KNbWO₆·H₂O:0.126Dy³⁺의 려기스펙트 르는 그림 2와 같다.

그림 1. 합성한 시료들의 XRD도형 1-KNbWO₆·H₂O, 2-KNbWO₆·H₂O:0.126Dy³⁺, 3-KNbWO₆·H₂O:0.092Eu³⁺0.036Dy³⁺, 4-KNbWO₆·H₂O표준도형

그림 2에서 보는바와 같이 351, 366, 388, 426nm에서 Dy^{3+} 의 $^6H_{15/2} \rightarrow ^6P_{7/2}$, $^6H_{15/2} \rightarrow ^6P_{5/2}$, $^6H_{15/2} \rightarrow ^4F_{7/2}$, $^6H_{15/2} \rightarrow ^4G_{11/2}$ 과 같은 전자적이행에 해당한 려기파장들이 나타난다. 이것은 Dy^{3+} 이 결정구조안에서 이온통로에 위치[5]하고있기때문이다.

려기파장 388nm에서 KNbWO₆·H₂O:0.126Dy³⁺의 발광스펙트르는 그림 3과 같다.

그림 2. KNbWO₆·H₂O:0.126Dy³⁺의 려기스펙트르

그림 3. KNbWO₆·H₂O:0.126Dy³⁺의 발광스펙트르

그림 3에서 보는바와 같이 481, 574nm에서 Dy³⁺의 ⁴F_{9/2}→⁶H_{15/2}, ⁴F_{9/2}→⁶H_{13/2}과 같은 전 자적이행에 해당한 발광봉우리들이 나타난다. 388nm의 파장으로 려기시킬 때 Dy³⁺은 대칭

그림 4. KNbWO₆·H₂O:xEu³⁺yDy³⁺의 발광스펙트르 1-x=0.092, y=0.036, 2-x=0.089, y=0.042

성이 비교적 낮은 위치 즉 기질구조에서 비중심대 칭위치를 차지하며 치환된 Dy³⁺에 의하여 388nm의 려기파장에서 강한 노란색빛을 내보낸다.

KNbWO₆·H₂O:xEu³⁺yDy³⁺의 발광특성 려기파장 388nm에서 KNbWO₆·H₂O:xEu³⁺yDy³⁺의 발광스펙트 르는 그림 4와 같다.

그림 4에서 보는바와 같이 481, 574, 612nm에서 발광봉우리가 나타났는데 이것은 각각 Dy^{3+} 의 ${}^4F_{9/2}$ → ${}^6H_{15/2}$, ${}^4F_{9/2}$ → ${}^6H_{13/2}$, Eu^{3+} 의 5D_0 → 7F_2 과 같은 전자적이행에 해당한다.

– 98 -

Dy³⁺이 첨가되였을 때와 Dy³⁺과 Eu³⁺이 동시에 첨가되였을 때 CIE색자리표계에서 위치 변화가 명백하다. 388nm에서 려기된 KNbWO₆·H₂O:0.126Dy³⁺의 색위치는 (0.389 4, 0.449 1) 이고 KNbWO₆·H₂O:0.092Eu³⁺0.036Dy³⁺의 색위치는 (0.447 6, 0.442 1)이다. 즉 Eu³⁺과 Dy³⁺이 첨 가된 경우 Dy³⁺만 첨가된 경우보다 흰빛으로 다가간다.

맺 는 말

수열법으로 희토류이온이 동시첨가된 KNbWO₆·H₂O:0.092Eu³⁺0.036Dy³⁺를 제조하였다. KNbWO₆·H₂O에서 K⁺은 Eu³⁺과 Dy³⁺에 의하여 교환되며 KNbWO₆·H₂O:0.092Eu³⁺0.036Dy³⁺는 결함소록석형구조를 가진다.

Eu³+과 Dy³+이 동시에 첨가된 KNbWO₆·H₂O:0.092Eu³+0.036Dy³+재료는 388nm의 려기과 장에서 연한 노란색을 나타낸다.

참 고 문 헌

- [1] Y. B. Liao et al.; J. Alloys Compounds, 561, 214, 2013.
- [2] O. S. Dymshits et al.; J. Non-Crystalline Solids, 409, 54, 2015.
- [3] M. A. Frechero et al.; J. Non-Crystalline Solids, 407, 349, 2015.
- [4] Raju Reddy Jitta et al.; J. Alloys and Compounds, 618, 815, 2015.
- [5] Yong Nam Han et al.; J. RSC Adv., 4, 24142, 2014.

주체106(2017)년 8월 5일 원고접수

Luminescence Characteristics of Eu, Dy Co-Doped Defect Pyrochlore-Type Material

Kim Myong Song, Han Yong Nam

We prepared $KNbWO_6 \cdot H_2O:0.092Eu^{3+}0.036Dy^{3+}$ by hydrothermal method.

 K^+ of KNbWO $_6\cdot H_2O$ is exchanged by Eu³⁺ and Dy³⁺, and KNbWO $_6\cdot H_2O:0.092Eu^{3+}0.036Dy^{3+}$ keeps its defect pyrochlore structure.

 Eu^{3+} and Dy^{3+} co-doped KNbWO $_6\cdot H_2O:0.092Eu^{3+}0.036Dy^{3+}$ present thin yellow under the excitation wavelength of 338nm.

Key words: luminescence, defect pyrochlore structure, hydrothermal method, KNbWO6·H2O