

Tiger Lake UP3 Platform

Tiger Lake IID3 Key Feature Summary

Feature	Description
Thermal (SoC)	UP3 4+2: 15W
SoC	TGL UP3 CPU (4+2) PCH – LP
CPU IO	PCIe Gen4, 4x Type-C (TBT, USB 4.0, DP), DDR4,LPDDR4x, LPDDR5, CSI, DSI, DDI, eDP
PCH-LP	12 lanes HSIO, USB2, USB 3.2, eSPI, SPI, LPSS, I2C, SMBus
Power Delivery	CPU FIVR/PCH FIVR w/discrete VR ROP USB-C PD Controller
Memory	DDR4 - Max 64GB @ 3200MT/s LPDDR4x - Max 32GB @ 4266MT/s
Storage	PCIe/SATA
Boot	SPI NOR
Discrete Graphics	Optional x4 PCIe – Hybrid Graphics support w/Hot Plug
Internal Display	eDP , MIPI DSI
External displays	4 Wired Type-C (DP/TBT) Wireless (Miracast2.0 r2) (Wi-Fi) DDI(DP, HDMI)
Wireless	Quasar CNVi w/Harrison Peak (Wi-Fi/BT) module WWAN - XMM 7560
Clocking	38.4MHz Platform Xtal
Wired COMMs	Integrated GbE w/ discrete Gbit Lan Phy

SBC-TI22 Power Diagram

low-power states).

Title <Title> Document Number <Doc> Size A3 Rev <RevCode>

TIGER LAKE PCH:

HSIO Lane #

MCP -DP\HDMI

5.3 Display Interfaces

Table 33. DDI Ports Availability

SKU	UP4 Processor Line	UP3 Processor Line
DDI A	eDP*/MIPI_0	eDP*/MIPI_0
DDI B	eDP*/DP*/HDMI*/MIPI_1	eDP*/DP*/HDMI*
TCP0	DP*/HDMI*	DP*/HDMI*
TCP1	DP*/HDMI*	DP*/HDMI*
TCP2	DP*/HDMI*	DP*/HDMI*
TCP3	N/A	DP*/HDMI*

Title

Size | Document Number | Rev |
A3 | <Doc> | Rev |
Choc> | Choc |
Choc |
Choc | Choc |
Choc | Choc |
Choc | Choc |
Choc | Choc |
Choc | Choc |
Choc |
Choc | Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |
Choc |

MEMORY CHANNEL A

Pin Descriptions

Pin Name	Description	Pin Name	Description
A0-A16	SDRAM address bus	SCL	I ² C serial bus clock for SPD/TS and register
BAO, BA1	Regsiter bank select input	SDA	I ² C serial data line for SPD/TS and register
BG0, BG1	Regsiter bank group select input	SA0-SA2	I ² C slave address select for SPD/TS and register
RAS_n ²	Register row address strobe input	PAR	Register parity input
CAS_n ³	Register column address strobe input	VDD	SDRAM core power
WE_n ⁴	Register write enable input		
CS0_n, CS1_n, CS2_n, CS3_n	DIMM Rank Select Lines input	12V	Optional Power Supply on socket but not used on RDIMM
CKE0, CEK1	Register clock enable lines input	VREFCA	SDRAM command/address reference supply
ODT0, ODT1	Register on-die termination control lines input	VSS	Power supply return (ground)
ACT_n	Register input for activate input	VDDSPD	Serial SPD/TS positive power supply
DQ0-DQ63	DIMM memory data bus	ALERT_n Register ALERT_n output	
CB0-CB7	DIMM ECC check bits	VPP	SDRAM Supply
TDQS9_t-TDQS17_t TDQS_c-TDQS17_c	Dummy loads for mixed populations of x4 based and x8 based RDIMMs.		
DQS0_t-DQS17_t	Data Buffer data strobes (positive line of differential pair)	RESET_n	Set Register and SDRAMs to a Known State
DBIO_n-DBI8_n	Data Bus Inversion	EVENT_n	SPD signals a thermal event has occurred
CK0_t, CK1_t	Register clock input (positive line of dif- ferential pair)	VTT	SDRAM I/O termination supply
CK0_c, CK1_c	Register clock input (negative line of differential pair)	RFU	Reserved for future use

Each lane of 8bits (Byte) of Data has it's own Data Strobe

- 1. RAS n is a multiplexed function with A16.
- 2. CAS_n is a multiplexed function with A15.
- 3. WE_n is a multiplexed function with A14.

MEMORY CHANNEL B

Catastrophic Error: This signal indicates that the system has experienced a catastrophic error and cannot continue to operate. The processor will set this signal for non-recoverable machine check errors or other unrecoverable internal errors. CATERR# is used for signaling the following types of errors: Legacy MCERRs, CATERR# is asserted for 16 BCLKs. Legacy IERRs, CATERR# remains asserted until warm or cold reset.

DV24 DW4?

DW49 A48

PROCHOT#

The PROCHOT# (processor hot) signal is asserted by the processor when the TCC is active. Only a single PROCHOT# pin exists at a package level. When any DTS temperature reaches the TCC activation temperature, the PROCHOT# signal will be asserted. PROCHOT# assertion policies are independent of Adaptive Thermal Monitor enabling. The PROCHOT# signal can be configured to the following modes:

- Input Only: PROCHOT is driven by an external device.
 Output Only: PROCHOT is driven by processor.
 Bi-Directional: Both Processor and external device can drive PROCHOT signal

Time Synchronization GPIO 0: Timed GPIO event for time synchronization for interfaces that do not support time synchronization natively.

Time Synchronization: Used for synchronization both input (latch time when pin asserted) and output (toggle pin when programmed time is hit).

+VCCST_CPU

TIME SYNC:
The PCM supports two Timed GPIOs as native function (TIME SYNC) that is muxed on GPIO pins. The intent usage of the Timed GPIO function is for time synchronization purpose.
Timed GPIO can be an input or an output.
As an input, a GPIO input event triggers the HW to capture the PCH Always Running Timer (ART) time in the Time Capture register. The GPIO input event must be asserted for at least two crystal oscillator clocks period in order for the event to be recognized. ART time and the software programmed time allowering sets the HW to generate a GPIO output event and capture the ART time in the Time Capture register. If periodic mode is enabled, HW generates the periodic GPIO events based on the programmed interval. The GPIO output event is asserted by HW for at least two crystal oscillator clocks period.

Signal Name	Description	Dir.	Buffer Type	Link Type	Availability
BPM#[3:0]	Breakpoint and Performance Monitor Signals: Outputs from the processor that indicate the status of breakpoints and programmable counters used for monitoring processor performance.	I/O	GTL	SE	UP3/UP4/H Processor Lines
PROC_PRDY#	Probe Mode Ready: PROC_PRDY# is a processor output used by debug tools to determine processor debug readiness.	0	OD	SE	UP3/UP4/H Processor Lines
PROC_PREQ#	Probe Mode Request: PROC_PREQ# is used by debug tools to request debug operation of the processor.	I	GTL	SE	UP3/UP4/H Processor Lines
PROC_TCK	Test Clock: This signal provides the clock input for the processor Test Bus (also known as the Test Access Port). This signal should be driven low or allowed to float during power on Reset.	I	GTL	SE	UP3/UP4/H Processor Lines
PROC_TDI	Test Data In: This signal transfers serial test data into the processor. This signal provides the serial input needed for JTAG specification support.	I	GTL	SE	UP3/UP4/H Processor Lines
PROC_TDO	Test Data Out: This signal transfers serial test data out of the processor. This signal provides the serial output needed for JTAG specification support.	0	OD	SE	UP3/UP4/H Processor Lines
PROC_TMS	Test Mode Select: A JTAG specification support signal used by debug tools.	I	GTL	SE	UP3/UP4/H Processor Lines
PROC_TRST#	Test Reset: Resets the Test Access Port (TAP) logic. This signal should be driven low during power on Reset. Refer to the appropriate processor Debug Port Design Guide (Refer to Section 1.10, "Related Documents") for complete implementation details.	I	GTL	SE	UP3/UP4/H Processor Lines

+VCCSTG_TERM (CPU OUTPUT)

R345 100R

R348 R347 49.9R

Processor Internal Pull-Up / Pull-Down Terminations

Signal Name	Pull Up/Pull Down	Rail	Value
BPM#[3:0]	Pull Up/Pull Down	VCC _{IO} _OUT	16-60 Ω
PROC_PREQ#	Pull Up	VCC _{STG}	3 ΚΩ
PROC_TDI	Pull Up	VCC _{STG}	3 ΚΩ
PROC_TMS	Pull Up	VCC _{STG}	3 ΚΩ
PROC_TRST#	Pull Down	VCC _{STG}	3 ΚΩ
PROC_TCK	Pull Down	VCC _{STG}	3 ΚΩ
CFG[17:0]	Pull Up	VCC _{IO} OUT	3 КΩ

<RevCode> Thursday, December 23, 2021 Sheet

Document Number <Doc> <RevCode> Thursday, December 23, 2021

U1H 8 OF 21 PCIE4_M.2_SSD_TX_P3 PCIE4_M.2_SSD_TX_N3 PCIE4_M.2_SSD_RX_P3 PCIE4_M2_SSD_TX_P1 PCIE4_M2_SSD_TX_N1 PCIE4_M2_SSD_RX_P1 PCIE4_M2_SSD_RX_N1 PCIE4 TX P 3 PCIE4 TX P 1 P7 PCIE4_TX_N_3 PCIE4_RX_P_3 PCIE4_TX_N_1 PCIE4 RX P 1 N2 PCIE4_RX_N_3 PCIE4_RX_N_1 PCIE4_M.2_SSD_TX_P0 PCIE4_M.2_SSD_TX_N0 PCIE4_M.2_SSD_RX_P0 PCIE4_M.2_SSD_RX_N0 PCIE4_M.2_SSD_TX_P2 PCIE4_M.2_SSD_TX_N2 PCIE4_M.2_SSD_RX_P2 PCIE4_TX_P_2 PCIE4_TX_P_0 T7 PCIE4_TX_N_2 PCIE4_RX_P_2 PCIE4_TX_N_0 PCIE4 RX P 0 PCIE4_RX_N_0 Y12 PCIE4_RCOMP_P_R23 2.21K PCIE4_RCOMP Capacitance on RCOMP nets (PCIe4 RCOMP P/N) cannot exceed 2.5pF each. This includes routing and via caps TGL_UP3_IP_EXT/BGA

2.2 PCIe4 Gen4 Interface Signals

Signal Name	Description	Dir	Buffer Type	Link Type	Availability
PCIE4_RCOMP_P PCIE4_RCOMP_N	Resistance Compensation for PEG channel	I	Analog	Diff	UP3/UP4/H Processor Lines
PCIE4_TX_P[3:0] PCIE4_TX_N[3:0]	PCIe Transmit Differential Pairs	0	PCIE	Diff	UP3/UP4/H Processor Lines
PCIE4_RX_P[3:0] PCIE4_RX_N[3:0]	PCIe Receive Differential Pairs	1	PCIE	Diff	UP3/UP4/H Processor Lines

Title

Size Document Number

A3 Code>

Date: Thursday, December 23, 2021 Sheet 9 of 41

PCI Express* Clock Output: Serial Reference 100 MHz PCIe* specification compliant differential output clocks to PCIe* devices

• CLKOUT_PCIE_P/N [6:0] = Can be used for PCIe* Gen1, Gen2, and Gen3 support

• CLKOUT_PCIE_P/N [4, 3, 0] = Must be used for PCIe* Gen4 support +3<u>V3</u>S +3<u>V3</u>S 48/270 U1K NOP R28 R29 11 OF 21 10K/1% 10K/1% OD GPP_F19/SRCCLKREQ6# OD GPP_H11/SRCCLKREQ5# TRIP #2 CLKOUT_PCIE_P6 CLKOUT_PCIE_N6 CLKOUT_PCIE_P6 CLKOUT_PCIE_N6 100 MHz PCIe CLK BW2 OD GPP_H10/SRCCLKREQ4#
OD GPP_D8/SRCCLKREQ3# CLKOUT_PCIE_P5 CLKOUT_PCIE_P5 << LAN 2 - EB-TI22A I211 CLKOUT_PCIE_N5
100 MHz PCIe CLK OD GPP_D6/SRCCLKREQ2#
OD GPP_D6/SRCCLKREQ1# OD GPP_D5/SRCCLKREQ0# CLKOUT_PCIE_P4 ->> M.2_SSD_SUS_CLK BW5 CLKOUT_PCIE_N4
100 MHz PCIe CLK XTAL_OUT Suspend Clock: This clock is a digitally buffered version of the RTC clock. XTAL_IN CL7 CLKOUT_PCIE_P3 CLKOUT PCIE P3 < CL8 CLKOUT_PCIE_P3
CLKOUT_PCIE_N3
100 MHz PCIe CLK TRIP #1 CLKOUT_PCIE_N3 (->> M.2_BTWIFI_SUS_CLK out GPD8/SUSCLK XTAL_RTC_32K_OUT M.2 - Key B CLKOUT_PCIE_P2 CLKOUT_PCIE_N2 CB4 CLKOUT_PCIE_P2
CLKOUT_PCIE_N2
100 MHz PCIe CLK DR47 XTAL RTC 32K IN R15 1K, 1%, 0201 RTCX1 BY4
CLKOUT_PCIE_P1
CLKOUT_PCIE_N1
100 MHz PCIe CLK RTCRST# SRTCRST# M.2 - Key E CLKOUT_PCIE_P1 CLKOUT_PCIE_N1 NOP DK37 CN7 CLKOUT_PCIE_P0 CLKOUT_PCIE_P0 << M.2 - Key M CLKOUT_PCIE_NO CLKOUT_PCIE_NO CLKOUT_PCIE_P0
CLKOUT_PCIE_N0
100 MHz PCIe CLK DJ5 XCLK_BIASREF X2 32.768KHz TGL_UP3_IP_EXT/BGA VCCPRTC_3P3 RTC Battery RTC RESET BUTTON BATT_HOLDER_2032 1uF

Rev <RevCode> Document Number

U1P 16 OF 21 VSS 223 VSS 289 A32 B2 B23 VSS_224 VSS_290 A45 VSS_225 VSS_291 A49 B27 VSS 226 VSS 292 AA41 AA48 B32 B36 VSS_227 VSS_293 VSS_228 VSS 294 B39 B42 AB5 AB7 VSS_229 VSS_295 VSS_230 VSS_231 VSS_296 VSS_297 AB8 AC44 AC49 B52 B8 VSS_232 VSS_233 VSS_298 VSS_299 AD4 AD48 BA48 VSS_234 VSS_300 BA53 VSS 235 VSS 301 AD8 AF4 BB4 BB8 VSS_236 VSS_302 VSS_237 VSS_238 VSS 303 BC1 BC2 BD12 AF8 VSS_304 AG41 VSS_305 VSS_306 VSS_239 AG42 VSS 240 AG44 AG45 BD4 BD48 VSS_241 VSS_242 VSS_307 VSS 308 AG47 AG48 BD8 BF39 VSS_243 VSS_309 VSS_244 VSS_245 VSS_310 VSS_311 VSS_312 VSS_313 VSS_314 BF44 BF42 BF42 BF44 BF44 VSS 310 AG53 AH4 AH8 VSS_246 VSS_247 AK12 VSS_314 BF45 VSS_248 VSS_249 AK4 BF47 BF5 AK48 VSS_250 VSS_316 AK5 VSS_251 VSS_252 VSS 317 AK7 AK8 BF7 BF8 VSS_318 VSS_253 VSS_254 VSS_319 VSS_320 BG48 AM1 AM2 AM4 BG53 BH1 VSS_255 VSS_256 VSS_321 VSS 322 AM8 AN41 BH2 BH4 VSS_257 VSS_323 VSS_324 VSS 258 AN42 BH8 BK12 VSS_259 VSS_325 AN44 VSS_260 VSS_261 VSS_326 VSS_327 BK4 BK48 AN45 AN47 VSS_262 VSS_263 VSS_328 AN48 BK8 VSS 329 AN53 AP4 BL49 BM1 VSS_264 VSS_330 VSS 265 VSS 331 AP8 AT4 BM4 BM41 VSS_266 VSS_332 VSS_267 VSS_268 VSS 333 AT48 BM42 VSS_334 BM44 AT51 VSS_269 VSS_270 VSS_335 VSS_336 AT8 AV12 AV39 BM47 VSS_271 VSS_272 VSS_337 VSS_338 BM8 AV4 AV5 BN48 BP41 VSS_273 VSS_339 VSS_274 VSS_275 VSS 340 BP49 BP5 BP50 BP7 AV7 VSS_341 AV8 VSS_276 VSS_277 VSS 342 AW1 VSS_343 AW2 VSS_344 VSS_345 VSS_278 AW48 BT44 VSS 279 AY4 AY41 BT48 BU49 VSS_346 VSS_347 VSS_280 VSS 281 AY42 AY44 BV3 BV48 VSS_282 VSS_348 VSS_283 VSS_284 VSS_349 VSS_350 AY45 BV5 AY47 BW10 VSS_285 VSS_286 VSS_351 VSS_352 AY8 BY41 AY9 BY42 VSS_287 VSS_353 B13 VSS 288 TGL_UP3_IP_EXT/BGA

U1S 19 OF 21 RSVD_23
RSVD_24
RSVD_25
RSVD_25
RSVD_27
RSVD_27
RSVD_28
RSVD_29
RSVD_31

RSVD_19
RSVD_19
RSVD_1P_30
RSVD_1P_30
RSVD_1P_30
RSVD_1P_30
RSVD_1P_31
RSVD_1P_32
RSVD_1P_33
RSVD_1P_34
RSVD_1P_35
RSVD_1P_35
RSVD_1P_36
RSVD_1P_36
RSVD_1P_36
RSVD_1P_37
RSVD_1P_38
RSVD_1P_38
RSVD_1P_38
RSVD_1P_38
RSVD_1P_39
RSVD_1P_36
RSVD_1P_36
RSVD_1P_37
RSVD_1P_38
RSVD_1P_38
RSVD_1P_39
RSVD_1P_39
RSVD_1P_39
RSVD_1P_39
RSVD_1P_36
RSVD_1P_36
RSVD_1P_37
RSVD_1P_38
RSVD_1P_38
RSVD_1P_39
RSVD_1P_39 DF53_RSVD_19 DF52 RSVD_20 DT52 DU53 PCH_IST_TP_1 PCH_IST_TP_0 DF50 DF49 RSVD_21 RSVD_22 CY30 CY15 RSVD_TP_25 RSVD_TP_26 RSVD_TP_27

A6 IST_TP_1
IST_TP_0 TGL_UP3_IP_EXT/BGA Document Number <Doc> Rev <RevCode>

Configuration Signals: The CFG signals have a default value of '1' if not terminated on the board. Refer to the appropriate platform design guide for pull-down recommendations when a logic low is desired. Intel recommends placing test points on the board for CFG pins. CFG[3], CFG[0]: Reserved configuration lane. • CFG[2]: TGL UP4/UP3 Reserved CFG[2]: H PCI Express* Static x16 Lanes Numbering Reversal. - 1 - (Default) Normal 0 - Reversed UP3/UP4/H Processor Lines • CFG[4]: eDP enable: CFG[17:0] GTL SE — 1 = Disabled. CFG[6:5]: TGL UP4/UP3 Reserved CFG[6:5]: H PCI Express* Bifurcation
 00 = 1 x8, 2 x4 PCI Express*
 01 = reserved
 10 = 2 x8 PCI Express*
 11 = 1 x16 PCI Express* • CFG[13:7]: Reserved configuration lanes. 0 - Reversed
 CFG[17:15]: Reserved configuration lanes.

BPM#[3:0] Breakpoint and Performance Monitor Signals: Outputs from the processor that indicate the status of breakpoints and programmable counters used for monitoring processor performance.

Processor Internal Pull-Up / Pull-Down Terminations

Signal Name	Pull Up/Pull Down	Rail	Value
BPM#[3:0]	Pull Up/Pull Down	VCC _{IO} OUT	16-60 Ω
PROC_PREQ#	Pull Up	VCC _{STG}	3 ΚΩ
PROC_TDI	Pull Up	VCC _{STG}	3 ΚΩ
PROC_TMS	Pull Up	VCC _{STG}	3 ΚΩ
PROC_TRST#	Pull Down	VCC _{STG}	3 ΚΩ
PROC_TCK	Pull Down	VCC _{STG}	3 ΚΩ
CFG[17:0]	Pull Up	VCC _{IO} OUT	3 ΚΩ

Processor Detect / Socket Occupied: Pulled down directly (0 Ohms) on the processor package to the ground. There is no connection to the processor silicon for this signal. System board designers may use this signal to determine if the processor is present.

Document Number <Doc> Rev <RevCode>

p.143/187 TL-EDS

12.6.3 Digital Display Interface (DDI) Signals

Signal Name	Description	Dir.	Buffer Type	Link Type	Availability
DDIA_TXP[3:0] DDIA_TXN[3:0] DDIB_TXP[3:0] TX DDIB_TXN[3:0]	Digital Display Interface Transmit: DisplayPort and HDMI Differential Pairs	0	DP*/HDMI	Diff	All Processor
DDIA_AUX_P DDIA_AUX_N DDIB_AUX_P AUX DDIB_AUX_N	Digital Display Interface Display Port Auxiliary: Half-duplex, bidirectional channel consist of one differential pair for each channel.	I/O	DP*	Diff	All Processor Lines.

p.103/507 TL-TDG

	Signal Mapping				
Description	Tiger Lake Processor	Tiger Lake PCH	CRB DisplayPort* Mapping	Note	
	DDIx_TXP/N[3:0]	N/A	N/A	1	
Main Link (Tx)	TCPx_TX_P/N[1:0] and TCPx_TXRX_P/N[1:0]	N/A	N/A	2	
	DDIx_AUXP/N	N/A	N/A	1	
Aux Channel AUX	TCPx_AUX_P/N	N/A	N/A	2	
Hot Plug Detect	N/A	DDSP_HPD_x	N/A		
DISP_UTILS	Recommend 50 ohm no	ominal trace impedance. Require	es level shifting on the platform.		
DDIA_RCOMP	150 ohm +/-1% pull-d	own to VSS		3	
TC RCOMP	150 ohm +/-1% conne	cted between TC RCOMP P and	TC RCOMP N	4	

- 1. Signals names apply for DDI A/B ports.
 2. Signals names apply for TCP ports.
 3. Provide good noise isolation, Platform Rdc<0.2 Ohm, require if any DDI implemented.
- Provide good noise isolation, Platform Rdc<0.2 Ohm, require if any TCP implemented.

p.103/507 TL-TDG

December 1	Signa	Note	
Description	Processor	РСН	Note
Main Link (Tx)	DDIx_TXP/N[3:0]	N/A	1
	TCPx_TX_P/N[0:1] and TCPx_TXRX_P/N[0:1]	N/A	2
DDC DDC	N/A	DDPx_CTRLCLK and DDPx_CTRLDATA	
Hot Plug Detect	N/A	DDSP_HPD_x	
DDIA_RCOMP	150 ohm +/-1% pull-down to VSS Ohm	, Provide good noise isolation, Rdc<0.2	3
TC_RCOMP	150 ohm +/-1% connected between	en TC_RCOMP_P and TC_RCOMP_N	4

12.6.3 Digital Display Interface (DDI) Signals

Signal Name		Description	Dir.	Buffer Type	Link Type	Availability
DDIA_TXP[3:0] DDIA_TXN[3:0] DDIB_TXP[3:0] DDIB_TXN[3:0]	ТX	Digital Display Interface Transmit: DisplayPort and HDMI Differential Pairs	0	DP*/HDMI	Diff	All Processor
DDIA_AUX_P DDIA_AUX_N DDIB_AUX_P DDIB_AUX_N	AUX	Digital Display Interface Display Port Auxiliary: Half-duplex, bidirectional channel consist of one differential pair for each channel.	I/O	DP*	Diff	Lines.

Table 38. DisplayPort* Signals

		Signal Mapping			
Description	Tiger Lake Processor	Tiger Lake PCH	CRB DisplayPort* Mapping	Note	
	DDIx_TXP/N[3:0]	N/A	N/A	1	
Main Link (Tx)	TCPx_TX_P/N[1:0] and TCPx_TXRX_P/N[1:0]	N/A	N/A	2	
A Channel	DDIx_AUXP/N	N/A	N/A	1	
Aux Channel AUX	TCPx_AUX_P/N	N/A	N/A	2	
Hot Plug Detect	N/A	DDSP_HPD_x	N/A		
DISP_UTILS	Recommend 50 ohm ne	ominal trace impedance. Require	es level shifting on the platform.		
DDIA_RCOMP	150 ohm +/-1% pull-d	own to VSS		3	
TC_RCOMP	150 ohm +/-1% conne	cted between TC_RCOMP_P and	TC_RCOMP_N	4	

- 1. Signals names apply for DDI A/B ports.
- Signals names apply for TCP ports.
 Provide good noise isolation, Platform Rdc<0.2 Ohm, require if any DDI implemented.
 Provide good noise isolation, Platform Rdc<0.2 Ohm, require if any TCP implemented.

- Table 47. HDMI* Signals TCPx_TX_P/N[0:1] and TCPx_TXRX_P/N[0:1] DDC DDC Hot Plua Detec DDSP_HPD_x DDIA_RCOMP . Signal names apply for DDI A/B ports.
 - Signal names apply for TCP ports.

 Signal names apply for TCP ports.

 Provide good noise isolation, Platform Rdc<0.2 Ohm, require if any DDI implemented

 Provide good noise isolation, Platform Rdc<0.2 Ohm, require if any TCP implemented
 - <Title> Document Number Rev <RevCode>

VCCIN RAIL POWER CONVERSION 1/16 voltage divider C254 IMVP9 Controller - MP2940A 4.7uF 10V 1uF/X5R/6.3V +VCCIN SerialVID bus is a three wire (clock, data, alert) serial source synchronou interface used to transfer power management information between a microprocessor and one or more voltage regulator control ICs. For more information refer the SVID Protect R202 R440, R439 should be placed within 2 inches (50.8 mm) - (1.29 mill) of the processor socket, minimizing any potential error due to Vcc_SENSE/Ivss_SENSE line resistance. 18 VCCIN VCCSENSE VCC VCCIN SENSE P VCCIN_VSSSENSE VCC_VCCIN_SENSE_N 0R R632 14 ALT_N FROM FPGA R209 100R **VCCIN** trace impedance 50 oHm trace length match < 0.635 mm FROM FPGA VCCIN EN OR R208 02 0402 Sense traces should be referenced to a solid ground plane Avoid crossing over plane splits VCCIN_VR_IREF 10 TO FPGA OR R211 0201 VCCIN_VR_TEMP OR_R214 Voltage regulator thermal throttling logic output. Open drain output. This pin actively pulls low if the monitored temperature exceeds the programmed VRHOT# temperature threshold. >> VR READY VCCINTO FPGA R217 31.6K MAKE SURE THESE +VCCSTG_TERM ARE NOT STUFFED OTHERWISE THERE 040210nF 12C - 0X20 (Hex) WILL BE STARTUP ISSIE. VCCIN VR PROCHOT# Layout Editor NOTE: PLACE R222 AND R225' CLOSE TO MCP - WITHIN 11NCH when we are in sleep: SLP_S3#=0, In that case we don't want to pass anything. VCCIN_AUX RAIL POWER CONVERSION R235 C260 10nF/25V IMVP9 Controller - MP2940A 1uF/X5R/6.3V <//VCCIN_AUX_VR_CS1 </pre> R240 100R or connect +VCCST CPU to 0402 18 VID TABLE VCCIN AUX VCCSENSE R241 OR VCCIN AUX CORE VIDO R VCCIN AUX VSSSENSE VID 1 VID 2 **Output Voltage** Usage FROM FPGA VCCIN AUX CORE VID1 R 🔾 VCCIN_AUX R248 100R 0V Power Saving State 0R R246 VCCIN_AUX_VR_PH_FAULT FROM FPGA 0402 0 1.1V 1.65V Full Current, TGL-UP4 0 R_PWM1 OR-R251NOP VCCINAUX_VR_PROCHOT_FPGA VCCINAUX_VR_PROCHOT# VCCINAUX_VR_PROCHOT# VCCINAUX_VR_PROCHOT# TO FPGA Initial boot for TGL-UP3/UP4 Full current, TGL-UP3 OR R252 0201 VCCIN_AUX_VR_TEMP 1,27K,1% R254 VRHOT_N R249 130K/1% 0402 VRRDY: VR ready output of the controller. Open drain output that signals when the output voltage is outside of the proper operating range. The VCD(0 rall is expected for pull up; however, some systems may pull up to a maximum voltage of 3.3V, with external pull-up resistors. AGND_TP MAKE SURE THESE ARE NOT STUFFED K69727-001 I2C - 0X21 (Hex) OTHERWISE THERE WILL BE STARTUP IMVP9 CTLR-VCCIN / VCCIN_AUX Document Number

Title

PWR IMVP9- VCCIN PH1/PH2/PH3

Size | Document Number | Rev | <RevCode>

Date: Tuesday, December 28, 2021 | Sheet 26 of 41

VCCIN_AUX POWER CONVERSION PHASE I

5

PWR +V1.8A Document Number Rev <RevCode>

M.2 E (WiFi/BT) Document Number Size A3 <Rev(

M.2 M (SSD)

Document Number

Rev <RevCode>

Document Numbe

SMBus_MUX/GPIO_EXPANDER Document Number Size A3

Title

TRIP 182

Size | Document Number | Rev | < Doc> | < Rev | < Rev

NDS335N,3A VCCST_CPU (1.05V) C515 C516 +12V MAIN C514 C0805 C0805 C1206 R436 10k C517 10nF.25V VCCSTG power rail can be enabled by OR Gate logic of CPU C10 GATE#, VCCST OVERAIDE (level translated) and XDP PRSSENT (optional - for debug). VCC1PO5 OUT_FET power rail from SoC can be used to derive VCCSTG. -VCCST_DIS R445 NDS335N,3A VCCST EN >> VCCST_EN = HIGH --> +VCCST_CPU = HIGH VCCST_EN = LOW--> +VCCST_CPU = LOW

UN-IMPELEMNTED (VCCSTG CPU & VCCST CPU WERE MERGED TOGETHER):

Concept of VccST/VccST-G Power Override Mechanism: When the external debugger is plugged in, POD_PRSNT2_N will be driven to GND. VccST/VccST-G will be forced on in all Sx states to support PCH Sx open-chassis debug via JTAG without additional isolation logic. If S0-only open-chassis PCH debug is acceptable, then the override mechanism in red is not required unless CPU C10 debug support is required. MCP SLP_S3# / SLP S4# * Primary **CPU** DP V cc ST-U INVERTER → V cc ST-U Portion in Purple applicable only if board supports Connected STBY Power Gates POD_PRSNT2_N JTAG Integrated 10 Load Switch) 0Ω (Emp V cc ST-G X DP O verride Logic in Red. Inverter must be in V3P3A domain. "OR" gates are conceptual and may be replaced with other implementations as long as the logic function described is fulfilled VCC1p05_OUT_FET VCCPRIM PCH * Refer to power delivery guidelines for choosing FIVR_1P05 the correct SLP_S signal for VCCST control.

IN VOLUME: VccSTG gated by SLP S3#

IN Premium, VccSTG gated by {CPU_C10_GATE#}

