Sequential circuit

S.M. Shovan

Contents

- Concept of Sequential circuits
- Types of sequential circuits
- Latch
 - S-R latch (NOR, NAND, with enable)
 - Latch timing problem
- Flipflop
 - S-R flipflop
 - D flipflop
 - J-K flipflop
 - T flipflop

Concept of sequential circuits

- Next state depends on current state
- Stores current state in a memory (Latch / Flipflop)

Types of sequential circuits

Basic (NOR) S-R Latch

- When S=0 and R=0, the SR-Latch is in *Memory state*
- When S=1 and R=0, the SR-Latch is in the *Set state*
- When S=0 and R=1, the SR-Latch is in the Reset state
- S=1 and R=1 generates illogical results

S	R	Q	Q	
1	0	1	0	0-4-4-4-
0	0	1	0	Set state Memory
0	1	0	1	
0	0	0	1	Reset state Memory
1	1	0	0	Undefined

(b) Function table

S	R	Q	Q	
1	0	1	0	Set state
0	0	1	0	Set state
0	1	0	1	
0	0	0	1	Reset state
1	1	0	0	Undefined
0 0	0)	1	

(b) Function table

Tiṃe	R	S	Q	Q	Comment
	0	0	٠.	?	Stored state unknown
	0	1	1	0	"Set" Q to 1
	0	0	1	0	Now Q "remembers" 1
	1	0	0	1	"Reset" Q to 0
	0	0	0	1	Now Q "remembers" 0
↓	1	1	0	0	Both go low
Y	0	0	?		Unstable!

Basic (NAND) S-R Latch / S R Latch

- When S=1 and R=1, the SR-Latch is in *Memory state*
- When S=0 and R=1, the SR-Latch is in the *Set state*
- When S=1 and R=0, the SR-Latch is in the *Reset state*
- S=0 and R=0 generates illogical results

S	R	Q	Q	
0	1	1	0	Cot otata
1	1	1	0	Set state Memory
1	0	0	1	
1	1	0	1	Reset state Memory
0	0	1	1	Undefined

(b) Function table

S-R latch with control (Enable)

Enable	S	R	Q	Q
0	0	0	Men	nory
0	0	1	Men	nory
0	1	0	Men	nory
0	1	1	Men	nory
1	0	0	Men	nory
1	0	1	0	1
1	1	0	1	0
1	1	1	Not U	sed

Latch timing problem

- Solution:
- -- Flipflop (Edge triggered)

S-R flipflop with clock

CLK	S	R	Q	Q
0	0	0	Mer	nory
0	0	1	Mer	nory
0	1	0	Mer	nory
0	1	1	Mer	nory
1	0	0	Mer	nory
1	0	1	0	1
1	1	0	1	0
1	1	1	Not U	sed

Truth table of S-R flipflop

TRUTH TABLE

S	R	Q _N	Q_{N+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	-
1	1	1	-

D-flipflop

Table of truth:

clk	D	Q	ā
0	0	Q	Q
0	1	Q	ā
1	0	0	1
1	1	1	0

Memory

Memory

Reset

Set

Truth table of D flipflop

Q	D	Q(t+1)
0	0	0
0	1	1
1	0	0
1	1	1

J-K flipflop with truth table

A JK flip-flop has the characteristic table below:

J	К	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q(t)'

TRUTH TABLE

J	K	Q _N	Q_{N+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

T flipflop with truth table

T	$Q_{_{\scriptscriptstyle N}}$	Q_{n+1}
0	0	0
0	1	1
1	0	1
1	1	0