UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO

Računalništvo in matematika – 2. stopnja

Tim Kalan **VEČSTRANSKI PODPISI**

Magistrsko delo

Mentor: doc. dr. Tilen Marc

Kazalo

1	Uvo	od	1		
2	Kriptografske osnove 2				
	2.1	Aritmetika v \mathbb{Z}_p^*	2		
	2.2	Zgoščevalne funkcije	4		
	2.3	Kriptografija javnega ključa	5		
	2.4	Digitalni podpisi	7		
	2.5		8		
		2.5.1 Temelji varnosti	9		
		2.5.2 Model slučajnega oraklja	10		
		2.5.3 Simulatorji	10		
	2.6	Interaktivni protokoli	1		
		2.6.1 Dokazi brez razkritja znanja	2		
		· · · · · · · · · · · · · · · · · · ·	13		
			14		
3		1 1	.5		
	3.1	Varnost Schnorrovega podpisa			
	3.2	Primer: Schnorrov podpis v \mathbb{Z}_p^*	١7		
4	Pre	gled skupinskih podpisov 1	.9		
	4.1	Skupinski podpisi	19		
	4.2	Pragovni podpisi	20		
	4.3	Večstranski podpisi	20		
	4.4	Agregirani podpisi	21		
5	Več	stranski Schnorrov podpis 2	21		
0	5.1		21		
	0.1	5.1.1 Robustnost, varnost in napadalec			
		5.1.2 Slučajni orakelj pri ASM			
	5.2	Konstrukcija večstranskega Schnorrovega podpisa			
	0.2		24		
		3	25 25		
		<i>y</i> 1	26		
			26		
	5.3		20 28		
	5.5		28 28		
		1 1			
		3 3	29		
		1 0	30		
	F 4		30		
	5.4		31		
		•	32		
		5.4.2 Dokaz varnosti	34		
6	Var	nost večstranskih podpisov v splošnem 4	1		

7	m MuSig2			
	7.1	Konstrukcija	42	
Literatura				

Program dela

Mentor naj napiše program dela skupaj z osnovno literaturo.

Osnovna literatura

1. S. Micali, K. Ohta in L. Reyzin, *Accountable-subgroup multisignatures*, v: Proceedings of the 8th ACM conference on Computer and Communications Security (ur. P. Samarati), ACM, Philadelphia, PA, USA, 2001, str. 245–254, DOI: 10.1145/501983.502017, dostopno na https://doi.org/10.1145/501983.502017.

Podpis mentorja:

Večstranski podpisi

Povzetek

Tukaj napišemo povzetek vsebine. Sem sodi razlaga vsebine in ne opis tega, kako je delo organizirano.

Multisignatures

Abstract

An abstract of the work is written here. This includes a short description of the content and not the structure of your work.

Math. Subj. Class. (2020): 94A60, 11T71

Ključne besede: kriptografija, digitalni podpis, Schnorrov podpis, večstranski

odpis

Keywords: cryptography, digital signature, Schnorr signature, multisignature

1 Uvod

Odkar se je na svetu pojavil koncept (ročnega) podpisa, je večina primerov uporabe temeljila na pridobivanju podpisov več deležnikov, saj je bila večina podpisanih dokumentov sporazum ali pogodba med večimi deležniki. Odličen primer je npr. Deklaracija neodvisnosti Združenih držav Amerike, vidna na sliki 1.

Slika 1: Deklaracija neodvisnosti Združenih držav Amerike s podpisi podpornikov spodaj. Vir slike Wikipedia [15].

S pojavom računalnika in napredkom v kriptografiji se je pojavila alternativna oblika podpisovanja. *Digitalni podpisi* so dandanes povsod. Uporabljeni so vsakič, ko dostopamo do spletnih strani, prenašamo podatke ali pa opravljamo kakršnakoli plačila. Poleg avtomatiziranih podpisovanj, ki se zgodijo v ozadju zgoraj omenjenih procesov, pa so digitalni podpisi na voljo tudi kot alternativa ročnemu podpisu človeka. V praktično vseh pogledih so mnogo varnejši od tradicionalnih podpisov, omogočajo bolj sistematično preverjanje (prek računalnikov) in so skorajda enostavnejši za uporabo in prenašanje.

Prav tako lahko digitalne podpise uporabimo, če mora skupina deležnikov podpisati pogodbo – vsak enostavno pripne svoj digitalni podpis. Če je skupina velika, če je računska moč omejena (npr. če želimo zmanjšati ceno transakcij pri tehnologiji veriženja blokov), ali pa če enostavno želimo preverjevalcu podpisov olajšati delo, lahko poskrbimo, da se skupina podpiše z enim samim, večstranskim podpisom. Ta podpis vseeno priča o vseh podpisnikih, njegova verifikacija oz. preverjanje, pa zajema približno enako dela, kot preverjanje enega samega podpisa.

Taki podpisi so samo en izmed možnih načinov, kako se skupina podpiše. Od ostalih načinov izstopajo po tem, da omogočajo vpogled v sestavo skupine podpisnikov, kar nudi preverjevalcu več informacij pri odločanju, če je podpis sprejemljiv, hkrati pa ohranja odgovornost individualnih članov skupine. Pri tradicionalnih sku-

pinskih podpisih podpis samo priča o podpisu celotne skupine, ustvari pa ga lahko katerkoli član. Take lastnosti so v določenih primerih zelo zaželene, npr. pri tehnologiji veriženja blokov je zelo pomembno, da je znano iz katerih naslovov prihajajo transakcije. To, v kombinaciji s popularizacijo Schnorrovega podpisa, je privedlo mnogo raziskovalcev do želje po večstranskih podpisih, ki vrnejo navadne Schnorrove podpise, in so tako enostavno zamenljivi.

V poglavju 2 najprej predstavimo kriptografske osnove, ki so potrebne za razumevanje besedila. To zajema modularno aritmetiko in grupe, zgoščevalne funkcije, kriptografijo javnega ključa, nekaj splošnih definicij pri digitalnih podpisih in potem še nekaj besed o varnosti. V poglavju 3 predstavimo Schnorrov podpis, ki je osnova za ostale sheme, ki jih obravnavamo. V poglavju 4 so predstavljeni vsi možni načini za podpisovanje skupin. Poglavje 5 predstavi večstranski Schnorrov podpis, tam tudi dokažemo njegovo varnost v modelu slučajnega oraklja.

2 Kriptografske osnove

Preden si lahko natančneje pogledamo, kako lahko skupina generira en sam podpis sporočila, si moramo pogledati nekaj kriptografskih osnov. Bolj kompleksnejši pojmi bodo opisani sproti, namen tega poglavja je predstaviti stvari, ki so predpogoj za branje praktično kakršnegakoli kriptografskega besedila s področja digitalnih podpisov.

2.1 Aritmetika v \mathbb{Z}_p^*

V kriptografiji imamo pogosto opravka z multiplikativnimi grupami, najenostavnejša med njimi (in tudi tradicionalno največ uporabljena) je multiplikativna grupa naravnih števil modulo p, ki jo označimo \mathbb{Z}_p^* . Njeni elementi so števila v $\{0, 1, \ldots, p-1\}$, ki so tuja številu p. V posebnem primeru, ko je p praštevilo, so to torej števila $\{1, 2, \ldots, p-1\}$ in je red grupe (število elementov) $\operatorname{ord}(\mathbb{Z}_p^*) = |\mathbb{Z}_p^*| = p-1$. Operacija v tej grupi je, kot ime že nakazuje, množenje modulo p.

Spomnimo se, da je red elementa g v grupi najmanjše naravno število q, da velja $g^q \equiv 1 \pmod{p}$, kjer je 1 enota za množenje. V primeru, da je p praštevilo, je grupa \mathbb{Z}_p^* ciklična, kar pomeni, da v njej obstaja element g, katerega red je enak redu grupe, torej ord(g) = p - 1. V tem primeru se g imenuje generator.

Primer 2.1 (Grupa \mathbb{Z}_{11}^*). Ker je 11 praštevilo, v grupi \mathbb{Z}_{11}^* obstaja generator, oz. je grupa ciklična z redom 10 = 11 - 1. Z zaporednim računanjem potenc lahko vidimo, da je ord(2) = 10, torej je 2 generator.

$$2^1 \equiv 2 \pmod{11}$$
 $2^6 \equiv 9 \pmod{11}$ $2^2 \equiv 4 \pmod{11}$ $2^7 \equiv 7 \pmod{11}$ $2^3 \equiv 8 \pmod{11}$ $2^8 \equiv 3 \pmod{11}$ $2^4 \equiv 5 \pmod{11}$ $2^9 \equiv 6 \pmod{11}$ $2^5 \equiv 10 \pmod{11}$ $2^{10} \equiv 1 \pmod{11}$

 \Diamond

Opomba 2.2. Spomnimo se kongruence: $a \equiv b \pmod{m} \iff m \mid a - b$.

Za konec tega popdpoglavja si oglejmo še dve trditvi, ki bosta pomembni pri dokazovanju pravilnega delovanja Schnorrovega podpisa.

Trditev 2.3. Naj bosta p in q praštevili, kjer q deli p-1, oz. $q \mid p-1$. Naj bo g element grupe \mathbb{Z}_p^* reda q, kar pomeni, da je $g^q \equiv 1 \pmod{p}$. Naj bo k naravno število. Potem velja

$$g^k \bmod p = g^{k \bmod q} \bmod p.$$

Dokaz. Po osnovnem izreku o deljenju naravnih števil, lahko k na en sam način zapišemo kot k = nq + r, kjer velja $n \in \mathbb{N}, r < q$.

Leva stran enačbe se potem prepiše

$$g^k \mod p = g^{nq+r} \mod p =$$

$$= (g^q)^n g^r \mod p =$$

$$= 1^n g^r \mod p =$$

$$= g^r \mod p.$$

Desna stran pa se prepiše kot

$$g^{k \bmod q} \bmod p = g^{(nq+r) \bmod q} \bmod p =$$

$$= g^r \bmod p.$$

Ker sta obe strani enaki, je trditev dokazana.

Trditev 2.4. Naj bodo a, b in p naravna števila. Potem za modularno množenje in potenciranje velja

$$a \cdot b \bmod p = (a \bmod p) \cdot (b \bmod p) \bmod p, \tag{2.1}$$

$$a^b \bmod p = (a \bmod p)^b \bmod p. \tag{2.2}$$

 $Dokaz.\ a$ in blahko po osnovnem izreku o deljenju naravnih števil na en sam način zapišemo kot

$$a = n_a p + r_a,$$
$$b = n_b p + r_a,$$

kjer velja $r_a < p$.

(2.1): Levo stran preoblikujemo

$$a \cdot b \mod p = (n_a p + r_a) \cdot (n_b p + r_b) \mod p =$$

= $(n_a n_b p^2 + n_a p r_b + n_b p r_a + r_a r_b) \mod p =$
= $r_a r_b \mod p$,

desno pa

$$(a \bmod p) \cdot (b \bmod p) \bmod p = (n_a p + r_a \bmod p) \cdot (n_b p + r_b \bmod p) \bmod p = r_a r_b \bmod p.$$

Ker se strani ujemata, je trditev dokazana.

(2.2): Ker je potenciranje samo zaporedna uporaba množenj, lahko trditev pokažemo z indukcijo na b in enačbo (2.1):

• b=2: Primer, ko je b=1 (ali b=0) je trivialen, če pa je b=2, pa se problem reducira v

$$a \cdot a \mod p \stackrel{?}{=} (a \mod p) \cdot (a \mod p) \mod p$$
,

kar drži neposredno po enačbi (2.1).

• $n \to n+1$: Predpostavimo, da enačba (2.2) drži za b=n (I.P.). Ko je b=n+1, dobimo

$$a^{n+1} \mod p = a^n a \mod p =$$

$$\stackrel{(2.1)}{=} (a^n \mod p)(a \mod p) \mod p =$$

$$\stackrel{\text{I.P.}}{=} (a \mod p)^n (a \mod p) \mod p =$$

$$= (a \mod p)^{n+1} \mod p.$$

S tem je indukcija končana in trditev dokazana.

2.2 Zgoščevalne funkcije

V grobem so (kriptografske) zgoščevalne funkcije take funkcije, ki prejmejo poljubno dolg binarni niz (ki lahko predstavlja besede, številke, celotne dokumente, ...), vrnejo pa binarni niz, ki ima vnaprej določeno dolžino. Tem rezultatom pravimo zgostitve. Namen zgoščevalnih funkcij je za dokument ustvariti unikaten niz, ki zelo verjetno unikatno identificira dokument. Želimo si, da je v praksi nemogoče najti dva različna niza z enako zgostitvijo, natančno pa zgoščevalne funkcije definiramo:

Definicija 2.5. Kriptografska zgoščevalna funkcija $H: \{0,1\}^* \to \{0,1\}^n$ je funkcija, ki slika binarne nize m poljubne dolžine v njihove zgostitve H(m), tj. binarne nize vnaprej določene dolžine n. Zadoščati mora naslednjim lastnostim:

- **Določenost** pomeni, da bo zgoščevanje enakih nizov vedno privedlo do enake zgostitve. Zapišemo lahko $\forall m: ((h_1 = H(m) \land h_2 = H(m)) \implies h_1 = h_2).$
- **Učinkovitost** pomeni, da lahko računalnik izračuna poljubno zgostitev v doglednem času. Izračun zgostitve mora biti računsko učinkovit. Običajno tu zahtevamo, da je časovna zahtevnost funkcije *H* polinomska v dolžini vhodnega niza.
- Enosmernost oz. odpornost na prasliko pomeni, da iz predložene zgostitve zelo težko ugotovimo, kateri niz je funkcija prejela kot vhod. Če torej poznamo zgostitev h za nek neznan m, je računsko neizvedljivo najti niz m, da velja h = H(m).
- Odpornost na drugo prasliko pomeni, da če poznamo niz in njegovo zgostitev, zelo težko najdemo drug niz z enako zgostitvijo. Če torej poznamo niz m_1 , je računsko neizvedljivo najti zgostitev m_2 , da velja $H(m_1) = H(m_2)$.
- Skoraj brez trčenj oz. odpornost na trčenja pomeni, da je verjetnost, da imata dva izraza enako zgostitev, majhna. Želimo, da je računsko neizvedljivo najti dva niza m_1 in m_2 , ki imata enako zgostitev, oz., da velja $H(m_1) = H(m_2)$.

• **Učinek plazu** pomeni, da vsaka sprememba v vhodnem nizu povzroči veliko spremembo v zgostitvi. Ob katerikoli spremembi se vsak bit zgostitve se spremeni z verjetnostjo vsaj 1/2.

Opomba 2.6. Vse varne kriptografske zgoščevalne funkcije, ki so v uporabi zadoščajo zgornjim lastnostim. To pomeni, da za nobeno od teh funkcij nihče še ni našel trka.

Primer 2.7. Ena izmed najbolj znanih zgoščevalnih funkcij je SHA-256. Njeno ime pomeni *Secure Hash Algorithm* (slov. varen zgoščevalni algoritem), 256 pa predstavlja dolžino vrnjene zgostitve. Pogostokrat to ime zasledimo pri nameščanju programske opreme, kjer služi kot avtentikator, da smo res naložili pravo stvar. Preverja namreč, da se zgostitvi naloženih in prenešenih datotek ujemajo.

Za primer si lahko ogledamo zgostitvi dveh podobnih nizov, *Ljubljana* in *Ljubljena*. Kljub podobnosti bomo videli, da sta rezultata popolnoma drugačna, kar si tudi želimo pri zgoščevalnih funkcijah.

```
SHA-256(Ljubljana) = b7f147d8b4a6703a951336654355071f9752385f85d0860379e99b484aee7a82
SHA-256(Ljubljena) = 995d2d8ffb40e1838219e65dd2c665701ba34a90e11f7195a4b791838b6787fe
```

Za preglednost nismo prevajali besed v binarne nize, to bi storili npr. z ASCII ali UTF-8 tabelo. Prav tako smo rezultat napisali v šestnajstiškem sistemu, saj je tako krajši. Iz rezultatov pa nazorno vidimo učinek plazu, saj sta popolnoma drugačna.

2.3 Kriptografija javnega ključa

Prve šifre, ki smo jih uporabljali ljudje, so bile simetrične, kar pomeni, da sta osebi za komunikacijo obe morali poznati skriven ključ, ki je definiral, kako je bila šifra ustvarjena.

Primer 2.8 (Cezarjeva šifra). Ena najbolj znanih šifer, ki izvira iz Antičnega Rima, je *Cezarjeva šifra*. Njen ključ je število, ki je krajše od dolžine naše abecede, v Cezarjevem primeru je bilo to število 3. Šifra potem deluje tako, da vsako črko zamakne za toliko mest v abecedi, kolikor definira ključ. Npr. za slovensko abecedo, bi šifra zamaknila črke:

A B C Č D E F G H I J K L M N O P R S Š T U V Z Ž Č D E F G H I J K L M N O P R S Š T U V Z Ž A B C

To bi izraz JAVNI KLJUČ preslikalo v MČARL NOMŽF. Cezarjeva šifra se imenuje tudi zamična šifra.

V prejšnjem stoletju pa se je pojavila alternativa, imenovana asimetrična kriptografija, oz. kriptografija javnega ključa. Glavna prednost te je, da osebi za komunikacijo ne rabita poznati enakega skrivnega ključa, vendar ima vsak od njiju par ključev, ki ju imenujemo **javni ključ** (angl. public key) in **zasebni ključ** (angl. secret/private key) in označimo kot par (pk, sk). Vsaka oseba objavi svoj javni ključ in poskrbi, da nihče ne izve, kaj je njen zasebni ključ.

Šifriranje potem poteka tako, da pridobimo javni ključ od osebe, s katero želi komunicirati, ga uporabimo za šifriranje in objavimo šifrirano sporočilo. Lastnik ustreznega zasebnega ključa (vsakemu javnemu pripada natanko en zasebni) potem pridobi šifrirano sporočilo in ga z zasebnim ključem dešifrira. Kriptosistemi delujejo na način, da lahko sporočilo, šifrirano z javnim ključem dešifrira samo ustrezen zasebni ključ. Tako zagotovimo varno komunikacijo.

Primer 2.9 (RSA). En prvih algoritmov javnega ključa, ki se uporablja še danes, je RSA. Njegova varnost izhaja iz (domnevne) težavnosti problema iskanja prafaktorjev velikega števila. Svoj ključ definiramo tako, da si izberemo dve (zelo veliki) praštevili p in q, ter ju zmnožimo v n=pq. Za primer vzemimo p=23 in q=17. n je potem enak 391. Izbrati si moramo še eksponent e, vzemimo npr. e=3. Naš javni ključ je potem par

$$(n, e) = (391, 3).$$

Postopek šifriranja poteka tako, da oseba, s katero komuniciramo, izbere sporočilo m, npr. m=10, pridobi naš javni ključ, in izračuna šifro c kot

$$c = m^e \mod n = 10^3 \mod n = 218.$$

Dogovoriti se moramo še o zasebnem ključu. Za to bomo potrebovali eksponent za dešifriranje d, tako da bo veljalo

$$(m^e)^d \equiv 1 \pmod{\varphi(n)},$$

kjer φ označuje Eulerjevo funkcijo. Iščemo torej multiplikativni inverz eksponenta e, modulo $\varphi(n)$. V našem primeru je to d=235. Zasebni ključ je potem

$$(p,q,d) = (23,17,235).$$

Iz zasebnega ključa torej lahko kadarkoli izračunamo javnega, saj enostavno zmnožimo p in q ter izračunamo inverz, v splošnem pa iz n učinkovito ne moremo pridobiti faktorjev p in q, kar nam zagotavlja varnost.

Ko prejmemo šifrirano sporočilo c, ga dešifriramo tako, da izračunamo

$$m = c^d \mod n = 218^{235} \mod 391 = 10.$$

 \Diamond

Poleg šifriranja, brez da bi si delili ključ, pa je kriptografija javnega ključa omogočila tudi digitalne podpise. Ti so uporabljeni vsakič, ko pošljemo transakcijo ali dostopamo do katerekoli spletne strani. Delujejo na podoben način, kot šifriranje z javnim ključem, le da najprej uporabimo zasebni ključ na sporočilu, prek javnega ključa pa preverjamo veljavnost podpisa. Velikokrat sta šifrianje in podpisovanje uporabljena hkrati, saj tako pošljemo šifrirano sporočilo, za katerega lahko oseba, s katero komuniciramo preveri, da je res prišlo od nas.

2.4 Digitalni podpisi

Ideja kriptografskih ali digitalnih podpisov (angl. digital signatures) je, da služijo kot izboljšava človeškega ročnega podpisa. Za razliko od ročnega podpisa, lahko z digitalnim dosežemo pravo identifikacijo posameznika, ki temelji na njegovem zasebnem ključu. Tako smo lahko za digitalno podpisan dokument prepričani, da ga je res podpisal lastnik točno določenega zasebnega ključa (če predpostavimo, da podpisnik ključa ni posredoval nikomur).

Podpis dokumenta poteka nekoliko drugače, kot pri ročnih podpisih. Pri ročnem podpisu ta postane del dokumenta, digitalni podpis pa je od njega ločen, vseeno pa nastane s pomočjo zgostitve podpisanega dokumenta, zato bo podpis za dva različna dokumenta vedno drugačen.

Ostane še vprašanje preverjanja avtentičnosti podpisa. Pri ročnem podpisu to lahko storimo prek primerjave z znanim, preverjeno avtentičnim podpisom. Ta postopek je zamuden in nenatančen, veliko večino ročnih podpisov je moč ponarediti z nekaj prakse. Preverjanje digitalnega podpisa pa temelji na kriptografiji javnega ključa. Ker je podpis nastal s pomočjo podpisnikovega zasebnega ključa, lahko s pomočjo ujemajočega javnega ključa preverimo avtentičnost.

Da se lažje pogovarjamo o kriptografskih sistemih, je smotrno definirati kaj točno so deležniki, kot so podpisnik, preverjevalec in napadalec. V kriptografskih besedilih so pogosto definirani kot verjetnostni Turingovi stroji, mi pa se bomo izognili tej formalizaciji in se pogovarjali enostavno o naključnostnih algoritmih. To so navadni, deterministični algoritmi, ki imajo dostop do dodatnega parametra, vira naključnih bitov ω . Ta vir si lahko predstavljamo kot seznam bitov, ki ga algoritem lahko bere, ko ga potrebuje (npr. za generiranje naključnih števil). Branje je ponavadi enkratno dejanje, ko algoritem prebere bit, mora pri naslednjem klicu prebrati sosednji bit.

Definicija 2.10. Digitalni ali kriptografski podpis $\mathcal{S} = (\mathcal{P}, \mathcal{G}, \mathcal{S}, \mathcal{V})$ je četvorka učinkovitih algoritmov \mathcal{P} za ustvarjanje parametrov podpisa, \mathcal{G} za ustvarjanje ključa, \mathcal{S} za podpisovanje in \mathcal{V} za preverjanje podpisa. Definirana je nad končno množico možnih sporočil \mathcal{M} , vrnjeni podpis pa leži v končni množici podpisov Σ .

• \mathcal{P} je algoritem za ustvarjanje javnih parametrov podpisa. Definira grupo G, ki bo uporabljena pri podpisu. V praksi je ta korak izpuščen, sodelujoči pri podpisu uporabijo dobro poznane varne grupe. Formalno pa je to algoritem, ki prejme varnostni parameter k in vrne parametre grupe G, oz.

$$G = \mathcal{P}(k)$$
.

• \mathcal{G} je naključnostni algoritem za ustvarjanje para ključev (pk, sk), ki za svoj vhod prejme parametre grupe G (javno dostopni ali pa ustvarjeni prek \mathcal{P}). Z javnim ključem pk lahko preverjevalec preveri avtentičnost podpisa, z zasebnim ključem sk pa podpisnik podpisuje. Formalno velja

$$(pk, sk) = \mathcal{G}(G).$$

• \mathcal{S} je naključnostni algoritem, ki za svoja argumenta prejme zasebni ključ sk in sporočilo m, vrne pa podpis σ sporočila m z zasebnim ključem sk oz.

$$\sigma = \mathcal{S}(\operatorname{sk}, m).$$

• \mathcal{V} je determinističen algoritem, ki preverja veljavnost podpisov. Za svoje argumente prejme javni ključ pk, sporočilo m in podpis σ , vrne veljaven, če je podpis veljaven in neveljaven, sicer. Velja torej

$$\mathcal{V}(\mathrm{pk}, m, \sigma) = \begin{cases} veljaven, & \sigma = \mathcal{S}(\mathrm{sk}, m), \\ neveljaven, & \sigma \neq \mathcal{S}(\mathrm{sk}, m). \end{cases}$$

2.5 Varnost

Poglavitna lastnost vsakega kriptosistema je njegova *varnost*. Ker je namen digitalnih podpisov zagotoviti sogovorniku, da je sporočilo res poslal lastnik zasebnega ključa, je največja varnostna skrb, da bi *napadalec* lahko ponaredil pošiljateljev podpis in si s tem prisvojil njegovo identiteto. To napadalcu lahko uspe na več nivojih, od najmanj do najbolj škodljivega:

- Eksistencialno ponarejanje (angl. existential forgery) pomeni, da obstaja sporočilo, za katerega napadalec lahko ustvari ponarejen podpis (torej podpis, pri katerem ni bil uporabljen zasebni ključ). To pomeni, da lahko najde vsaj en par sporočila in podpisa (m, σ) , da velja $\mathcal{V}(pk, m, \sigma) = veljaven$.
- Selektivno ponarejanje (angl. selective forgery) pomeni, da lahko napadalec z nezanemarljivo verjetnostjo podpiše sporočilo, ki mu ga da nekdo drug in ga lastnik zasebnega ključa še ni podpisal. Torej, če napadalcu nekdo predloži sporočilo m, lahko z nezanemarljivo verjetnostjo najde podpis σ , da velja $\mathcal{V}(pk, m, \sigma) = veljaven$.
- **Popoln zlom** (angl. *total break*) pomeni, da napadalec pridobi zasebni ključ napadenega in s tem pridobi vse potrebne podatke za podpisovanje poljubnih sporočil v njegovem imenu.

Poleg zgoraj definiranih *ciljev napadalca*, lahko za vsak kriptosistem definiramo tudi *model napada*, in pa *tip varnosti*, ki ga zagotavlja shema. Varnost večine shem za digitalne podpise temelji na (domnevni) težavnosti določenih matematičnih problemov.

Stinson [12] definira naslednje modele napada:

- Napad samo s ključem je napad, kjer napadalec pozna javni ključ žrtve pk. Predpostavimo tudi, da napadalec vedno pozna delovanje sheme za podpisovanje S in ima dostop do javnih parametrov podpisa G. Z javnim ključem torej lahko preverja veljavnost podpisov, ni pa prejel nobenega podpisanega sporočila.
- Napad z znanimi sporočili je napad, kjer napadalec poseduje seznam parov sporočil in njihovih podpisov $(m_1, \sigma_1), (m_2, \sigma_2), \ldots$, kjer za vsak i velja $\sigma_i = \mathcal{S}(sk, m_i)$.
- Napad z izbranimi sporočili je napad, kjer napadalec podpisniku da seznam sporočil m_1, m_2, \ldots , ta pa mu vrne seznam podpisov, da za vsak i velja $\sigma_i = \mathcal{S}(\operatorname{sk}, m_i)$. Napadalčev cilj je iz predloženih parov izvleči zasebni ključ, ali pa na nek drug način podpisati še ne podpisano sporočilo.

Ostane nam še pregled varnosti, ki jo lahko pričakujemo oz. zahtevamo od sheme za podpisovanje. Takšna shema ne more biti $brezpogojno\ varna$, kar bi pomenilo, da je tudi z neomejenimi računskimi zmožnostmi nemogoče ponarediti podpis. To je zato, ker lahko napadalec sistematično preveri vse podpise za neko sporočilo s pomočjo algoritma \mathcal{V} , dokler ne najde pravega. Pričakujemo pa lahko $računsko\ varnost$, kar pomeni, da napadalec ne more najti ponaredka v doglednem času, če ima omejene računske sposobnosti, in/ali pa $dokazljivo\ varnost$, kar pomeni, da lahko varnost prevedemo na težavnost nekega matematičnega problema.

2.5.1 Temelji varnosti

V primeru 2.9 smo omenili, da je varnost algoritma RSA odvisna od težavnosti problema iskanja prafaktorjev velikega števila. To je le eden izmed mnogih problemov, ki služijo kot osnova za varnost kriptografskih sistemov. V kriptografiji javnega ključa se pogosto srečamo s cikličnimi grupami, ki podpirajo množenje. V nadaljevanju bomo pogosto uporabili operacijo množenja, za izračune tipa

$$I = g^s$$
,

kjer je g generator ciklične grupe, s pa zasebni ključ. Zaradi notacije bi morda kdo hitro pomislil, da lahko zgornjo enačbo obrnemo in s izračunamo kot

$$s = \log_g(I).$$

Taki izračuni v (nekaterih) cikličnih grupah žal (ali pa na srečo) niso tako enostavni, prišli smo do koncepta diskretnega logaritma. V diskretnih cikličih grupah, kot je npr. \mathbb{Z}_p^* , ni koncepta urejenosti, kar smo videli tudi v primeru 2.1, zato nam » približki « logaritma ne pomagajo čisto nič. Za izračun takih logaritmov se moramo zanesti na drugačne metode, kot za izračun navadnih.

Definicija 2.11 (Problem diskretnega logaritma [1]). Naj bo G ciklična grupa reda q, ki jo generira element g. Naj bo h naključni element iz grupe G. Naj velja $g^x = h$. Eksponent x Potem imenujemo **Diskretni logaritem** (**DL**).

Zamislimo si igro, kjer izzivalec in nasprotnik kot vhod prejmeta opis grupe G (torej q in $g \in G$). Izzivalec potem izbere naključen element $\alpha \in G$ in izračuna $h = g^{\alpha}$. h pošlje nasprotniku, ta pa mora odgovoriti nazaj z elementom α . To igro imenujemo **problem diskretnega logaritma (PDL)** (angl. discrete logarithm problem).

Pri tej igri nas zanima verjetnost pravilnega odgovora nasprotnika, ki je računsko omejen. S tem mislimo, da ima na voljo polinomsko mnogo časa (glede na velikost grupe). Če je grupa G takšna, da je verjetnost zanemarljiva, pravimo, da za grupo G drži $predpostavka \ diskretnega \ logaritma.$

Če naš kriptosistem torej živi v ciklični grupi, v kateri je problem diskretnega logaritma težek, nam to zagotavlja, da iz javnega ključa ni računsko izvedljivo pridobiti zasebnega. To je osnova za varnost mnogih kriptografskih sistemov, kot sta npr. ElGamal in Schnorrov podpis.

Preden nadaljujemo, natančneje definirajmo, kaj pomeni, da je verjetnost zanemarljiva.

Definicija 2.12 (Zanemarljiva funkcija [1]). Zanemarljiva funkcija je taka funkcija $\mu : \mathbb{N} \to \mathbb{R}$, da za vsako število c > 0 obstaja naravno število $n_0 \in \mathbb{N}$, da za vsak $n > n_0$ velja

$$|\mu(n)| < \frac{1}{n^c}.$$

To so torej funkcije, ki padajo proti nič hitreje, kot inverz kateregakoli polinoma. V kontekstu diskretnega logaritma je verjetnost izračuna pravilnega odgovora nasprotnika zanemarljiva v odvisnosti od velikosti grupe.

V besedilu bomo večkrat govorili o »zanemarljivih verjetnostih«, kar pomeni, da se bodo verjetnosti v odvisnosti od določene spremenljivke vedle kot zanemarljive funkcije.

2.5.2 Model slučajnega oraklja

Ko obravnavamo varnost kriptosistemov, se ponavadi pogovarjamo o *standardnemu modelu* kriptografije. Ta model ima samo eno predpostavko: napadalec je omejen samo s časom in količino računske moči, ki mu je na voljo (tu je običajno predpostavljeno, da ima napadalec realno računsko moč). Občasno se znajdemo v primeru, ko moramo za dokaz varnosti sprejeti dodatne predpostavke. V tem primeru govorimo o alternativnih modelih kriptografije.

Ko imamo opravka z zgoščevalnimi funkcijami, je pogosto potrebno sprejeti dodatne predpostavke, da lahko pokažemo varnost. Specifično, ko imamo opravka z zgoščevalno funkcijo $H:A\to B$ predpostavimo, da je bila ta funkcija izbrana naključno med vsemi funkcijami, ki slikajo $A \ v \ B$. To idealizirano verzijo zgoščevalne funkcije imenujemo **slučajni orakelj** (angl. $random\ oracle$). Za poljuben vhod torej vedno vrne enak odgovor, vendar je bil ta odgovor popolnoma naključno izbran.

Model slučajnega oraklja (angl. random oracle model) je model kriptografije, kjer poleg standardnih predpostavk, vsako uporabo zgoščevalne funkcije nadomestimo s slučajnim orakljem [1]. Predpostavimo, da imajo do oraklja dostop vsi vpleteni v kriptosistem, vključno z napadalcem.

Varnostni dokazi, ki temeljijo na uporabi takih slučajnih orakljev, vseeno pričajo o varnosti shem, ki namesto orakljev uporabljajo zgoščevalne funkcije, vsaj dokler je uporabljena zgoščevalna funkcija varna (npr. zanjo nihče še ni našel trčenja).

2.5.3 Simulatorji

Pogosto je cilj varnostnih dokazov pokazati, da je varnost neke sheme enakovredna težavnosti nekega problema, za katerega domnevamo, da je težek. V takih primerih je govorimo o metodi dokazovanja z redukcijo (angl. reduction proof). Ta metoda temelji na predpostavki, da če bi napadalec lahko učinkovito napadel shemo, bi lahko tudi učinkovito rešil težaven problem. Simulatorji so način, kako lahko izpeljemo redukcijo iz napada na reševanje težavnega problema.

V takih dokazih se ponavadi uporabljajo simulatorji. To so algoritmi, ki posnemajo delovanje iskrenih podpisnikov ali pa kar celotne kriptografske sheme. Ideja je, da simulator ne pozna zasebnih ključev, vendar pa za napadalca lahko posnema celotno delovanje sheme. Cilj dokazov varnosti je pokazati, da če lahko napadalec uspešno izvede napad na shemo (npr. ponaredi podpis ali pa pridobi zasebni ključ),

potem lahko simulator uporabi informacije iz napadalčevega napada, da reši domnevno težek problem (npr. problem diskretnega logaritma). Ker domnevamo, da se tega problema ne da rešiti učinkovito, lahko zaključimo, da je shema varna. Za večino shem so koristni le simulatorji, ki delujejo v polinomskem času.

Da je simulator uporaben za dokaz varnosti, mora zadoščati naslednjim lastnostim:

- Nerazločljivost: Napadalec ne ve, ali komunicira s pravim podpisnikom ali s simulatorjem. Če bi lahko napadalec razlikoval, potem bi lahko zaključili, da shema napadalcu razkrije neko skrivnost (ker je prisotnost skrivnosti edina razlika med pravim podpisnikom in simulatorjem).
- Brez skrivnosti: Simulator ne pozna zasebnih ključev. Ta lastnost je ključna, saj nam pove, da napadalec prek interakcije z dejanskim podpisnikom ne izve nobene dodatne informacije. Če je napadalec uspešen pri interakciji s simulatorjem ali pa podpisnikom, ki ima zasebni ključ, potem smo lahko prepričani, da prisotnost zasebnega ključa ne pomaga pri napadu.
- **Prilagodljivost**: Simulator in napadalec med seboj komunicirata. Pogosto je potrebno, da simulator prilagodi svoje odločitve na podlagi napadalčevih odločitev.

V modelu slučajnega oraklja prilagodljivost dobi dodatno dimenzijo. Simulator poleg celotnega protokola simulira tudi delovanje oraklja. To mu omogoča, da napadalca »previje« na prejšnje stanje, prilagodi odgovor oraklja in ponovno izvede korak sheme.

2.6 Interaktivni protokoli

V tem razdelku bomo govorili o *interaktivnih protokolih* (angl. *interactive protocols*). To so protokoli, kjer si dva sogovornika izmenjujeta sporočila, dokler ne prideta do skupnega zaključka. Pogosto se uporabljajo za namene avtentikacije, kjer ena stran dokazuje svojo identiteto drugi. Zaradi te uporabe, bomo sogovornika poimenovali dokazovalec (angl. prover) in preverjevalec (angl. verifier).

Avtentikacijo lahko vidimo kot poseben primer dokazovanja. Dokazovalec želi dokazati preverjevalcu, da je res tisti, za katerega se izdaja. Protokoli, kjer je cilj dokazati neko trditev, sodijo v skupino *interaktivnih sistemov dokazovanja* (angl. *interactive proof systems*). Formalno morajo taki protokoli zadoščati dvema lastnostma:

- Kompletnost (angl. completeness): Če trditev, ki se dokazuje, drži, potem bo preverjevalec sprejel dokaz dokazovalca (če noben od njiju ne bo goljufal).
- Zadostnost (angl. soundness): Če trditev, ki se dokazuje, ne drži, potem noben dokazovalec (tudi tak, ki goljufa) ne more predložiti dokaza, ki bi ga preverjevalec sprejel, razen z zanemarljivo verjetnostjo.

Dejanski interaktivni protokol pa potem deluje kot izmenjava sporočil, kjer dokazovalec poskuša prepričati preverjevalca, da trditev drži, preverjevalec pa s serijo vprašanj preverja, če je dokazovalec iskren in če trditev res drži. Pogosto predpostavimo, da ima dokazovalec neomejeno računsko moč, vendar ni iskren, preverjevalec pa je omejen na polinomsko računsko moč in je iskren.

Primer 2.13 (Reševanje sudokuja). Za enostaven primer interaktivnega dokaza si oglejmo reševanje posplošenega Sudokuja. Tradicionalni Sudoku je problem, kjer moramo v 9×9 mrežo zapolniti števila od 1 do 9 tako, da se v vsaki vrstici, stolpcu in 3×3 kvadratu ne ponovijo nobena števila. Problem posplošimo tako, da ga prenesemo na poljubno mrežo velikosti $n^2 \times n^2$ in dovolimo uporabo števil od 1 do n^2 .

Znano je, da je ta problem NP-poln [16], kar pomeni, da je težko najti rešitev, vendar je enostavno preveriti, če je rešitev pravilna. Če želi dokazovalec prepričati preverjevalca, da zna rešiti vse Sudokuje, lahko to storita tako, da si preverjevalec izbere naključne Sudokuje, jih pošlje dokazovalcu, ta pa jih reši in vrne rešitve. Preverjevalec nato preveri, če so rešitve pravilne. Po dovolj velikem številu preverjenih Sudokujev, bo preverjevalec lahko prepričan, da dokazovalec res zna reševati Sudokuje.

Opomba 2.14. Interaktivni sistemi dokazovanja ne proizvedejo pravih dokazev v matematičnem smislu. Vedno obstaja določena verjetnost (ki je sicer zanemraljiva), da lahko goljufiv dokazovalec prepriča iskrenega preverjevalca o trditvi, ki ne drži. Ker pa je ta verjetnost zanemarljiva, nas to dejstvo ne moti.

2.6.1 Dokazi brez razkritja znanja

Dokazi brez razkritja znanja (angl. zero-knowledge proofs) so posebna vrsta interaktivnih sistemov dokazovanja, ki poleg kompletnosti in zadostnosti zadoščajo še tretji lastnosti:

• Brez razkritja znanja (angl. zero-knowledge): Če trditev, ki se dokazuje, drži, potem noben preverjevalec (tudi tak, ki goljufa) ne bo iz dokaza izvedel ničesar več, kot samo to, da trditev drži.

To je torej orodje, prek katerega lahko dokazovale dokaže, da nekaj ve, brez da bi izdal, kaj to je.

Primer 2.15 (Jama Ali Babe [3]). V zgodbi o jami Ali Babe nastopata Ana in Bojan. Živita ob jami Ali Babe, ki je v obliki prstana. Pri vhodu sta na levo in desno vidni dve poti, ki se kasneje združita, vendar prehod preprečujejo vrata, ki jih lahko odpre samo skrivno geslo. Ana je ugotovila, kaj to geslo je, vendar ga ne želi povedati Bojanu, vseeno pa ga želi prepričati, da geslo pozna.

Da Ana Bojanu dokaže svoje znanje, si zamisli igro. Najprej bo ona odšla v jamo po eni izmed poti. Potem bo v jamo vstopil Bojan in povedal, če želi, da se Ana vrne po levi ali desni poti. Če se bo Ana dovolj velikokrat vrnila po poti, ki jo je povedal Bojan (in nikoli po napačni), bo lahko z veliko verjetnostjo prepričan, da Ana res pozna geslo. Primer enega kroga protokola je prikazan na sliki 2.

Slika 2: Igra Ane in Bojana v jami Ali Babe. Vir slike Wikipedia [17].

2.6.2 Dokazi znanja brez razkritja znanja

Za namene kriptografije so pogosto zanimivi dokazi brez razkritja znanja. Da vzpostavimo zaupanje (npr. med dvema strankama, ki se ne poznata), pa ne želimo samo, da ena stranka dokaže obstoj neke skrivnosti, ampak tudi, da to skrivnost dejansko pozna. To je osnovna ideja dokazov znanja brez razkritja znanja (angl. zero-knowledge proofs of knowledge).

Odličen primer tovrstnega dokaza je dokaz znanja o tem, da poznamo diskretni logaritem dane vrednosti. Ta dokaz ima neposredno uporabo v kriptografiji, saj tako lahko dokažemo, da nek javni ključ res pripada nam. Denimo, da smo ustvarili par ključev (I,s), kjer je $I=g^s$ javni ključ, s pa zasebni ključ. Če nam preverjevalec predloži vrednost $I=g^s$, mi pa ga uspemo prepričati, da poznamo vrednost s, potem je to dovolj, da preverjevalec verjame, da je I res naš javni ključ (razen z zanemarljivo verjetnostjo).

Dokazovanje dejstva, da nek javni ključ res pripada nam prek interaktivnega protokola ima veliko uporabno vrednost. Tovrstne dokaze imenujemo *identifikacijski* protokoli oz. sheme.

Primer 2.16 (Schnorrov identifikacijski protokol). En izmed najenostavnejših protokolov za dokaz znanja brez razkritja znanja je Schnorrov protokol [2]. Tesno je povezan s Schnorrovim podpisom, ki ga bomo spoznali v naslednjem razdelku. Protokol poteka med dokazovalcem, ki želi dokazati preverjevalcu, da pozna diskretni logaritem dane vrednosti, in preverjevalcem, ki želi to preveriti.

Pred začetkom se morata strinjati o ciklični grupi G reda q, ki jo generira element g. Ta grupa predstavlja ogrodje za protokol. Prav tako je obema na voljo javni podatek

$$I = q^s \in G$$
.

Cilj dokazovalca je, da preverjevalca prepriča, da pozna vrednost $s \in [0, q-1]$, ne da bi mu o njej razkril karkoli drugega. Protokol poteka v več korakih:

1. Zaveza: Dokazovalec si enakomerno naključno izbere vrednost $r \in [0, q-1]$ in izračuna

$$X = q^r \in G$$
.

To vrednost pošlje preverjevalcu.

2. **Izziv:** Preverjevalec si izbere naključno vrednost $e \in [0, q - 1]$ in jo pošlje dokazovalcu.

3. Odgovor: Dokazovalec izračuna odgovor

$$y = r + es$$

in ga pošlje preverjevalcu.

4. **Preverjanje:** Preverjevalec preveri, če velja

$$g^y = X \cdot I^e$$
.

Če enakost drži, preverjevalec verjame, da dokazovalec pozna vrednost s, saj je

$$g^y = g^{r+es} = g^r \cdot g^{es} = X \cdot I^e.$$

Varnost protokola temelji na težavnosti problema diskretnega logaritma in pa na dejstvu, da je izziv določen po zavezi. Zato dokazovalec ne more izračunati prepričjivega odgovora, preden dobi izziv. Bolj formalno bomo varnost dokazali pri dokazu varnosti Schnorrovega podpisa v razdelku 3.1.

2.6.3 Fiat-Shamirjeva hevristika

Dokazi znanja brez razkritja znanja so torej odlično splošno orodje, s katerim se lahko prepričamo o identiteti sogovornika, brez da bi ta rabil razkriti skrivni ključ. V praksi pa je težava, da so taki protokoli interaktivni, kar pomeni, da zahtevajo neposredno komunikacijo med dokazovalcem in preverjevalcem. Ta komunikacija je zamudna in draga.

Fiat in Shamir sta leta 1987 [10] predlagala način, kako lahko interaktivne dokaze znanja spremenimo v neinteraktivne. Osnovna ideja je, da namesto preverjevalca, breme izbire izziva prenesemo na slučajnega oraklja, do katerega imata dostop tako dokazovalec kot preverjevalec. Hevristika torej deluje samo v modelu slučajnega oraklja.

Primer 2.17 (Schnorrova shema in Fiat-Shamirjeva hevristika). S pomočjo Fiat-Shamirjeve hevristike lahko Schnorrovo identifikacijsko shemo spremenimo v neinteraktivno, kar praktično neposredno privede do Schnorrovega podpisa, ki ga bomo spoznali v naslednjem razdelku.

Glavna ideja je, da se znebimo preverjevalčevega izziva. Namesto tega dokazovalec uporabi oraklja H, da pridobi zgostitev vseh javnih vrednosti:

$$e = H(g||q||I||X).$$

Na podlagi te zgostitve dokazovalec izračuna odgovor y = r + es in ga pošlje preverjevalcu skupaj z vrednostjo X in e.

Preverjevalec ima sedaj dovolj podatkov, da tudi sam izračuna vrednost zgostitve in preveri enakost.

Fiat-Shamirjeva hevristika tu ohranja varnost, saj dokazovalec še vedno ne more izračunati prepričljivega odgovora, preden izračuna zavezo (razen, če najde trčenje v H). Varnost bomo dokazali v razdelku 3.1.

3 Schnorrov podpis

Eden izmed najenostavnejših, dokazano varnih podpisov je *Schnorrov podpis* [2]. Kot vsi podpisi, tudi ta potrebuje štiri algoritme: za ustvarjanje javnih parametrov, ustvarjanje ključa, podpisovanje sporočil in preverjanje podpisa.

Čeprav je Schnorr originalno [2] opisal podpis v multiplikativnih grupah naravnih števil modulo p, pri njem ni nič, kar bi specifično delalo samo v teh grupah. Zares je Schnorrov podpis mogoče posplošiti na katerekoli končne grupe, kjer obstaja učinkovit algoritem za množenje in je problem diskretnega logaritma 2.11 težek.

• Parametri: Naj bo grupa G končna grupa reda p. V njej si izberemo element g reda q, pri čemer mora biti q dovolj veliko praštevilo (njegova velikost je odvisna od varnostnega parametra k). V splošnem pa sta lahko p in q tudi enaka. Ker računanje potega v podgrupi, ki jo določa g, se običajno privzame, da je G kar grupa reda q, ki jo generira g.

Poleg grupe G si morata podpisnik in preverjevalec izbrati še varno kriptografsko zgoščevalno funkcijo $H: \{0,1\}^* \to \mathbb{Z}_q$. Za varno funkcijo smatramo vsako, ki zadošča lastnostim iz definicije 2.5. Velikost kodomene te funkcije definira velikost končnega podpisa. Iz zgostitve, dolge $\log_2 q$ bitov, dobimo podpis, dolg $2\log_2 q$ bitov [12].

• Ključ: Za ustvarjanje ključa si izberemo naključno število $s \in [0, q-1]$ in izračunamo

$$I = q^s$$

z uporabo učinkovitega algoritma za množenje. Javni ključ I je torej element grupe G, zasebni ključ s pa je element \mathbb{Z}_q . Ker smo predpostavili, da je v grupi G težek problem diskretnega logaritma, iz javnega ključa I ni mogoče pridobiti zasebnega ključa s.

• Podpis: Za podpis sporočila m si najprej izberemo naključno število $r \in [0, q-1]$ in izračunamo zavezo (angl. commitment)

$$X = q^r$$
.

Ta korak je popolnoma enak, kot pri ustvarjanju ključa, vendar ima pomembno razliko. Zasebni ključ se ne spreminja, pri izbiri r pa je potrebno paziti, da je ta res naključna, in da se r ne ponovi (glej opombo 3.1).

Potem z uporabo zgoščevalne funkcije $H:\{0,1\}^* \to \mathbb{Z}_q$ izračunamo *izziv* (angl. *challenge*)

$$e = H(X||m),$$

kjer »||« označuje stikanje nizov. Za konec je potrebno izračunati še

$$y = es + r$$
,

podpis sporočila m pa je potem par (X, y) oz.

$$\mathcal{S}(s,m) = (X,y).$$

• **Preverjanje**: Za preverjanje veljavnosti podpisa (X', y') sporočila m je potrebno najprej izračunati

$$e' = H(X'||m)$$

in nato preveriti, če velja

$$q^{y'} \stackrel{?}{=} X' \cdot I^{e'}$$
.

Ker Schnorrov podpis deluje v skoraj poljubnih končnih grupah, je zelo prilagodljiv in uporaben. V zadnjem času je precej popularna uporaba Schnorrovih podpisov v *eliptičnih grupah*. Te omogočajo izbiro manjših parametrov, kar naredi podpis bolj časovno in prostorsko učinkovit.

Opomba 3.1. V primeru, da je enak r uporabljen večkrat, podpisnik tvega, da lahko napadalec iz dveh njegovih podpisov izračuna njegov zasebni ključ s. Naj bosta (X_1, y_1) in (X_2, y_2) podpisa sporočil m_1 in m_2 . Potem velja

$$y_1 - y_2 = e_1 s + r_1 - e_2 s - r_2 = (e_1 - e_2)s + (r_1 - r_2).$$

V primeru, da sta r_1 in r_2 enaka, lahko napadalec z enostavnim izračunom inverza $(e_1 - e_2)$ pridobi zasebni ključ s (za izračun e_1 in e_2 ima napadalec dovolj informacij, saj je izbrana zgoščevalna funkcija javna).

Izkaže se, da je lahko problematična že uporaba generatorja naključnih števil za pridobivanje r, ki ne vrača enakomerno porazdeljenih števil. Če napadalec dobi dovolj veliko količino sporočil in podpisov, lahko v tem primeru reši problem skritega števila in pridobi zasebni ključ [13].

3.1 Varnost Schnorrovega podpisa

Ko govorimo o varnosti Schnorrovega podpisa, imamo v mislih odpornost sheme proti eksistencialnem ponarejanju, kjer napadalec lahko za katerokoli sporočilo dobi veljaven podpis. Želimo torej, da napadalcu ne uspe ponarediti podpisa za katerokoli sporočilo, ki še ni bilo podpisano.

Kot omenjeno na začetku poglavja, je varnost Schnorrovega podpisa odvisna od težavnosti problema diskretnega logaritma. Varnost Schnorrovega podpisa je zato odvisna od varnosti grupe, v kateri deluje. V primeru, da je problem diskretnega logaritma težek, je Schnorrov podpis varen.

Definicija 3.2 (Varnost Schnorrovega podpisa). Za Schnorrov podpis v grupi G pravimo, da je varen, če:

- Je problem diskretnega logaritma v grupi G težek.
- Obstaja napadalec, ki lahko pridobi veljaven podpis (X, y) za katerokoli sporočilo m, ki ga je podpisnik že podpisal. Vendar pa je verjetnost, da napadalec uspešno ponaredi podpis za novo sporočilo m', ki ga podpisnik še ni podpisal, zanemarljiva.
- Obstaja slučajni orakelj H, do katerega imajo dostop vsi deležniki. Z drugimi besedami, smo v modelu slučajnega oraklja.

Varnost podpisa je mogoče dokazati tako, da pokažemo varnost Schnorrove identifikacijske sheme, opazimo, da nam uporaba Fiat-Shamirjeve hevristike vrne ravno Schnorrov podpis, in pokažemo, da je ta transformacija varna.

Izrek 3.3. Naj bo G ciklična grupa v kateri je problem diskretnega logaritma težek. Potem je Schnorrova identifikacijska shema v grupi G varna (napadalec ne more prepričati dokazovalca, da je on pravi dokazovalec, brez da bi poznal zasebni ključ).

Dokaz. Dokaz poteka z redukcijo uspešnega napada na rešitev problema diskretnega logaritma. Naj bo F naključnostni algoritem, ki teče v polinomskem času. Algoritem F imenujemo napadalec. Na podlagi napadalca F konstruirajmo algoritem A, ki iz uspešnega napada napadalca F na Schnorrovo identifikacijsko shemo konstruira rešitev problema diskretnega logaritma.

Algoritem A prejme vse javne parametre sheme (G, g, q, I) kot vhod. Potem algoritem deluje v naslednjih korakih:

1.

Kot smo videli v primeru 2.17, lahko Fiat-Shamirjevo hevristiko uporabimo, da iz Schnorrove identifikacijske sheme pridobimo neinteraktivno verzijo. Če namesto zgostitve vseh javnih vrednosti zgostimo zavezo in sporočilo, dobimo ravno Schnorrov podpis. Če torej lahko pokažemo, da je ta transformacija varna, smo dokazali varnost Schnorrovega podpisa.

Izrek 3.4. Naj bo S' identifikacijska shema in S podpisna shema, pridobljena iz S' z uporabo Fiat-Shamirjeve hevristike. Če je S' varna, potem je tudi S varna.

Dokaz. Naj bo napadalec F na podpisno shemo \mathcal{S} naključnostni algoritem, ki teče v polinomskem času. Naj bo število napadalčevih klicev slučajnega oraklja polinomsko omejeno v varnostnem parametru k.

Brez škode za splošnost predpostavimo, da bo napadalec F vsak klic slučajnega oraklja na nekem vhodu opravil največ enkrat. Predpostavimo tudi, da če napadalec F prejme veljaven podpis nekega sporočila,

Ker je varna Schnorrova identifikacijska shema in pretvorba iz identifikacijske sheme v podpisno, lahko zaključimo, da je Schnorrov podpis varen.

TODO: DOKAZ VARNOSTI: NAREDIM PREK IDENTIFIKACIJSKE SHEME + FIAT SHAMIR + ORAKLEJ

3.2 Primer: Schnorrov podpis v \mathbb{Z}_p^*

Za ilustrativni primer si poglejmo, kako je bil Schnorrov podpis prvotno opisan [2]. Predstavljeni podpis je poseben primer podpisa, opisanega zgoraj, kjer je grupa G multiplikativna grupa naravnih števil modulo praštevila p. Za namene tega dela si ga je posebej koristno pogledati, saj bo enaka grupa uporabljena tudi pri njegovi večstranski različici v poglavju 5.

• Parametri: Najprej je potrebno generirati par praštevil p in q, tako da q deli p-1. Praštevilo p definira grupo \mathbb{Z}_p^* , ki je multiplikativna grupa celih števil modulo p. V tej grupi je potem potrebno izbrati element g, ki je reda q. Za varnost je potrebno, da ima p vsaj 2048 bitov, q pa vsaj 224 bitov.

Kot v splošni verziji Schnorrovega podpisa, si morata podpisnik in preverjevalec izbrati še varno kriptografsko zgoščevalno funkcijo $H: \{0,1\}^* \to \mathbb{Z}_q$.

• Ključ: Za ustvarjanje para ključev je potreben izbor naključnega števila $s \in [0, q-1]$ in izračun

$$I = g^s \bmod p$$
.

Ta izračun nam da par ključev

$$pk = (p, q, g, I),$$
$$sk = s.$$

• Podpis: Za podpis enega sporočila mora podpisnik generirati naključno število $r \in [0, q-1]$ in izračunati zavezo

$$X = g^r \bmod p$$
.

Potem z uporabo funkcije H izračunamo izziv

$$e = H(X||m),$$

Za konec je potrebno izračunati še

$$y = es + r \bmod q,$$

podpis sporočila m pa je potem par (X, y) oz.

$$S(s,m) = (X,y).$$

Postopek je torej enak splošni verziji Schnorrovega podpisa, le da je v tem primeru uporabljeno modularno množenje.

• Preverjanje: Za preverjanje veljavnosti podpisa (X', y') sporočila m, je potrebno izračunati

$$e' = H(X'||m)$$

in preveriti, če velja

$$g^{y'} \stackrel{?}{\equiv} X' \cdot I^{e'} \pmod{p}. \tag{3.1}$$

Z nekaj modularne aritmetike lahko pokažemo, da enačba (3.1) preverja veljavnost Schnorrovega podpisa.

Po trditvi 2.3 lahko levo stran enačbe za preverjanje Schnorrovega podpisa (3.1) prepišemo

$$g^{y'} \mod p = g^{es+r \mod q} \mod p =$$

= $g^{es+r} \mod p$.

Desno stran enačbe (3.1) pa po trditvi 2.4 lahko prepišemo

$$X' \cdot I^{e'} \bmod p = g^r \bmod p \cdot (g^s \bmod p)^e \bmod p =$$

$$\stackrel{(2.2)}{=} (g^r \bmod p) \cdot (g^{es} \bmod p) \bmod p =$$

$$\stackrel{(2.1)}{=} g^{es+r} \bmod p,$$

kjer smo pri prehodu v drugo vrstico uporabili lastnost (2.2), pri prehodu v tretjo pa lastnost (2.1). Ker se obe strani ujemata za veljavne podpisne vrednosti, ta enačba res preverja Schnorrov podpis.

4 Pregled skupinskih podpisov

Ko pridemo do podpisovanja skupin, si lahko zamislimo več različnih rešitev. Micali v [11] definira dve lastnosti oz. spektra, ki jim lahko zadošča podpis skupine:

- **Prilagodljivost** (angl. *flexibility*): Popolnoma prilagodljiv podpis skupine je takšen, ki ga lahko proizvede katerakoli podskupina originalne skupine podpisnikov. Ko je podpis preverjen, se mora tisti, ki ga je preveril, odločiti, če je ustrezen del skupine podal svoj podpis. Popolnoma neprilagodljiv podpis bi bil takšen, ki ga lahko v imenu skupine ustvari katerikoli član.
- Odgovornost (angl. accountability): Če lahko iz podpisa ugotovimo, kateri člani so sodelovali pri ustvarjanju, nam podpis omogoča odgovornost. Ta lastnost je lahko zaželena, če se želimo prepričati, ali je ustrezen del skupine sodeloval pri podpisu (npr. ali je pri podpisovanju sodeloval generalni direktor podjetja). V drugih primerih pa si želimo anonimnost posameznih članov (npr. če bi generiranje podpisa predstavljalo nekakšno tajno glasovanje, bi želeli vedeti samo, koliko članov je sodelovalo).

V nadaljevanju bomo skupino potencialnih podpisnikov (torej podpisnikov, ki imajo možnost sodelovati pri podpisovanju) označili z $P = P_1, \ldots, P_L$, kjer ima skupina L članov. Dejanski podpis pa bo generiral samo del skupine $S \subseteq P$.

TODO: JE SMISELNO DATI TU FORMALNE DEFINICIJE VSEH VRST PODPISOV?

4.1 Skupinski podpisi

Skupinski podpis (angl. group signature) v imenu celotne skupine P ustvari en anonimen član. To torej pomeni, da je podpis popolnoma neprilagodljiv, saj ni možno prisiliti skupine, da bi podpis ustvaril več kot en član. Prav tako v splošnem noben član, niti tisti, ki preverja podpis, ne more ugotoviti, kdo je podpis ustvaril. Da skupinski podpisi omogočijo vsaj delno odgovornost, skupina določi vodjo skupine, ki ima možnost razkriti identiteto podpisnika, če pride do težav. V tem primeru seveda vodja predstavlja atraktivno tarčo za napad. Skupinske podpise sta si zamislila Chaum in van Heyst [4].

Primer 4.1. Skupinski podpisi so zelo uporabni v primerih, ko moramo vedeti samo, da neka oseba pripada skupini. Primer je recimo dostop do varovanih območij, kjer je neprimerno, da bi natančno sledili vsem posameznikom, vseeno pa mora biti dostop omejen samo zaposlenim.

4.2 Pragovni podpisi

Če želimo zagotoviti, da se s podpisom strinja zadosten delež skupine, lahko uporabimo **pragovni podpis** (angl. *threshold signature*). Ta nam omogoča določeno mero prilagodljivosti, saj lahko katerikoli zadosten delež skupine ustvari podpis. Še vedno je nemogoče upoštevati morebitno hierarhično strukturo skupine. Po definiciji pragovnih podpisov, ti ne omogočajo odgovornosti, nekateri celo zagotavljajo popolno anonimnost podpisnikov.

Večina pragovnih podpisov temelji na interpolaciji polinoma (l-1)-stopnje z l točkami. Podpis je potem ustvarjen s pomočjo vrednosti polinoma v neki točki. Po interpolaciji se informacija o tem, točno katere točke smo uporabili, izgubi. Take podpise imenujemo tudi l-od-L sheme.

Primer 4.2. Denimo, da ima banka sef, v katerem hrani vse pomembne dokumente in denar, ki ga hrani. Zaradi izjemne pomembnosti sefa si ne želimo, da bi ga lahko odprla katerakoli posamezna oseba. Če osebje banke uporabi pragovni podpis, lahko zagotovi, da je pri odpiranju sefa vedno prisotnih več ljudi, vseeno katerih. Vsak zaposleni dobi točko interpolacije, ko se jih zbere dovolj, lahko skupaj ugotovijo vrednost polinoma v vnaprej določeni točki in odklenejo sef.

4.3 Večstranski podpisi

Za nekatere uporabe podpisov, bi si od njih želeli podobne lastnosti, kot jih ima večstranski ročen podpis. Pri njem lahko hitro preberemo podpisnike, torej imamo popolno prilagodljivost. Vidimo lahko seznam podpisnikov, torej lahko presodimo, če so med njimi tisti, ki smo jih želeli. Prav tako podpisniki nosijo popolno odgovornost, saj na papirju piše njihovo ime.

Podoben učinek bi z digitalnimi podpisi lahko dosegli, če bi namesto enega podpisa skupine, od članov zbrali individualne podpise in jih nanizali v seznam. Dobili bi torej digitalni podpis skupine, ki ponuja popolno prilagodljivost in odgovornost. Težava je samo, da je dolžina podpisa (in s tem čas preverjanja) proporcionalna številu podpisnikov. **Večstranski podpisi** (angl. multisignatures) ohranijo lastnosti seznama podpisov, rezultat sheme je pa en sam podpis, ki je enako dolg ne glede na število podpisnikov, prav tako je od števila neodvisen čas preverjanja. Tega s seznamom podpisov ni mogoče doseči, saj tako dolžina podpisa, kot čas preverjanja podpisa rasteta linearno s številom podpisnikov (vsak doda en podpis seznamu, ki ga je potrebno preveriti). Večstranski podpisi so torej odlična posplošitev ročnih podpisov skupin, ki vseeno ohrani učinkovito preverjanje.

Primer 4.3. Recimo, da imamo nek organ, ki izdaja certifikate avtentičnosti uporabnikov (npr. potrjuje avtentičnost javnih ključev). Za večjo robustnost in varnost, je lahko ta organ razporejen na več strežnikov. Tako preprečimo razpad sistema v

primeru izpada enega strežnika. Zato je torej tudi pomembno, da certifikacijo uporabnika potrdi nekaj strežnikov, ne pa nujno vsi. Tu lahko torej neka podskupina vseh strežnikov organa skupaj izda en večstranski podpis, ki potrjuje avtentičnost uporabnika.

4.4 Agregirani podpisi

Rezultat agregiranega podpisa je zelo podoben večstranskemu. Poleg standardnih algoritmov pri digitalnih podpisih za ustvarjanje parametrov \mathcal{P} , ustvarjanje ključev \mathcal{G} , podpisovanje \mathcal{S} in preverjanje \mathcal{V} , imajo agregirani podpisi (angl. aggregate signatures) še dodaten algoritem za združevanje podpisov \mathcal{C} . Ta algoritem prejme seznam trojic javnih ključev, sporočil in podpisov, vrne pa en sam podpis. Od večstranskih podpisov se razlikuje po tem, da sporočila niso nujno vsa enaka [14].

Primer 4.4. Recimo, da avtentičnost ključev posameznih podpisnikov preverja niz centrov za certificiranje podpisov, kjer vsak naslednji center jamči za avtentičnost centra pod njem. Prvi center zajamči avtentičnost našega ključa, naslednji zajamči avtentičnost centra in tako naprej. Ko bi želel nekdo prejeti naš certificiran javni ključ, bi moral preveriti veljavnost podpisov vseh centrov, s pomočjo agregiranih podpisov bi to lahko storil z enim samim preverjanjem.

5 Večstranski Schnorrov podpis

Micali et al. [11] so prvi definirali formalni model za večstranske podpise in podali formalni dokaz varnosti za podpisno shemo v tem modelu. Zamislili so si večstranski podpis, ki temelji na Schnorrovem in ga poimenovali **večstranski podpis podskupine z odvoronostjo** (angl. *Accountable-Subgroup Multisignature (ASM)*). V tem razdelku predstavimo njihov model, podpis in argument varnosti.

5.1 Večstranski podpis podskupine z odgovornostjo

Kljub daljšemu imenu, večstranski podpis podskupine z odgovornostjo le bolj formalno definira idejo večstranskega podpisa, predstavljeno v razdelku 4.3. Ideja oz. cilj večstranskega podpisa je torej, da lahko katerakoli podskupina podpisnikov S, neke skupine P, brez potrebe po **centru zaupanja** (angl. trusted third party (TTP)) ustvari podpis. Generiranje ključev je torej popolnoma v domeni skupine P. Podpis, ki ga ustvari S predstavlja splošno preverljiv dokaz strukture S in dejstva, da vsak član skupine stoji za (torej podpisuje) sporočilom m.

Definicija 5.1 (Večstranski podpis (podskupine z odgovornostjo)). Skupina P je sestavljena iz L podpisnikov, torej

$$P = P_1, P_2, \dots, P_L.$$

Podpisnik predstavlja naključnostni polinomski algoritem. Vsak podpisnik pozna svojo identifikacijsko številko (eno od števil $1, \ldots, L$) in pa $varnostni\ parameter\ k$, ki je enak za vse podpisnike.

Kot vsi digitalni podpisi 2.10, ima tudi ta štiri glavne komponente:

- \mathcal{P} je algoritem za ustvarjanje parametrov. Pognan je samo enkrat, na začetku sodelovanja. Vrne par parametrov (G, q, g), kjer je G grupa reda q, ki jo generira g. Velikost parametrov je odvisna od varnostnega parametra k.
- \mathcal{G} je algoritem za ustvarjanje ključev. Za neko skupino podpisnikov P je pognan samo enkrat, na začetku sodelovanja. Vsak podpisnik P_i dobi kot vhod seznam vseh podpisnikov v P in požene \mathcal{G} , ki vrne par ključev (pk_i, sk_i). Zapišemo lahko torej

$$\mathcal{G}_i(L) = (\mathrm{pk}_i, \mathrm{sk}_i),$$

kjer smo brez škode za splošnost predpostavili, da velikost skupine L enolično opiše skupino P (npr. vsak podpisnik je predstavljen z indeksom v skupini).

• \mathcal{S} je protokol za podpisovanje. Pognan je vsakič, ko neka podskupina S želi ustvariti podpis. Vsak podpisnik kot vhod prejme seznam vseh podpisnikov S, njihove javne ključe pk $_j$, kjer j teče po identifikacijskih številkah vseh članov S, sporočilo m in lasten zasebni ključ sk $_i$. Algoritem \mathcal{S} je porazdeljen protokol, pri izvedbi morajo sodelovati vsi člani S. Po uspešni izvedbi lahko en od članov objavi podpis σ .

TODO: RAZMISLI, KAKO BI NA PAMETEN NAčIN NAPISAL TO Z ENAčBO, ENAKO ZA PREVERJANJE

• \mathcal{V} je algoritem za preverjanje veljavnosti podpisa. Požene ga tisti, ki želi preveriti veljavnost večstranskega podpisa. Ni nujno, da je to eden izmed podpisnikov iz P. Kot vhod algoritem dobi seznam podpisnikov S, pripadajoče javne ključe, sporočilo m in morebiten podpis σ . Algoritem potem vrne

$$\mathcal{V}((id_1,\ldots,id_l),(\mathrm{pk}_{id_1},\ldots,\mathrm{pk}_{id_l}),m,\sigma) = \begin{cases} veljaven, & \text{podpis veljaven,} \\ neveljaven, & \text{sicer.} \end{cases}$$

5.1.1 Robustnost, varnost in napadalec

Definiran večstranski podpis ni robusten. To pomeni, da v primeru izpada enega od podpisnikov P_i , ki je del podskupine S, ta ne more ustvariti večstranskega podpisa. Podpis še vedno lahko ustvari $S \setminus \{P_i\}$. To dejstvo nam dovoli definicijo napadalca, ki ima zelo velik vpliv na celoten sistem, saj ne iščemo robustnosti.

Definicija 5.2 (Napadalec pri ASM). Napadalec v modelu večstranskih podpisov podskupine z odgovornostjo F ima naslednje zmožnosti:

- Ima popoln nadzor nad vsemi komunikacijskimi kanali med člani skupine P.
 Lahko bere, spreminja in preprečuje dostavo vseh sporočil. Prav tako lahko v imenu kateregakoli podpisnika pošlje sporočilo.
- Kadarkoli lahko pokvari kateregakoli podpisnika. Ko je podpisnik pokvarjen, napadalec izve njegovo celotno notranje stanje, vključno z vsemi skrivnostmi.
- Nadzira lahko vhod algoritma za ustvarjanje ključev \mathcal{G} za vse podpisnike. Vsakemu lahko poda drugačno skupino P.

 Od kateregakoli nepokvarjenega podpisnika lahko kadarkoli zahteva podpis nekega sporočila skupaj s podskupino, ki jo določi napadalec. To je napad z izbranim sporočilom in podskupino.

Zaradi obširnih zmožnosti napadalca, ta lahko vedno prepreči podpis sporočila. Naš cilj, kar se tiče varnosti, je, da preprečimo eksistencialno ponarejanje podpisa. Želimo torej, da napadalec ni zmožen ponarediti podpisa za katerokoli sporočilo v imenu katerekoli podskupine.

Definicija 5.3 (Varnost pri ASM). Naj bo k varnostni parameter (ki si ga delijo vsi podpisniki). Naj bo c > 0 poljubna konstanta. Naj bo F napadalec, ki ustreza definiciji 5.2, torej lahko nadzoruje in spreminja dejanja podpisnikov skupine S. Naj bo njegova računska moč omejena s polinomskim časom v parametru k. Naj bo p verjetnost, da napadalec F vrne trojico (σ, m, S) , za katero velja:

- σ je veljaven večstranski podpis sporočila m s strani skupine S.
- Obstaja nepokvarjen podpisnik P_j iz skupine S, od katerega napadalec F ni zahteval podpisa sporočila m s strani skupine S.

Shemi za večstranske podpise podskupine z odgovornostjo bomo rekli, da je \mathbf{varna} , če je verjetnost p zanemarljiva, oz. velja

$$p < k^{-c}$$
.

Kot je standardno pri varnostni obravnavi digitalnih podpisov, tudi tu predpostavimo, da preverjevalec kljub močnemu napadalcu lahko vedno pridobi prave javne ključe podpisnikov iz S. To pomeni, da pozna prave identitete podpisnikov, tudi če napadalec lahko doseže, da podpisnik P_1 ne ve, kdo je zares podpisnik P_2 v času podpisovanja.

5.1.2 Slučajni orakelj pri ASM

Varnostna obravnava shem za večstranske podpise podskupine z odgovornostjo zahteva model slučajnega oraklja. Zato predpostavimo, da je k_2 še en varnostni parameter. Vsi člani skupine P in napadalec imajo dostop do slučajnega oraklja $H: \{0,1\}^* \to \{0,1\}^{k_2}$, ki je naključno izbrana funkcija med vsemi funkcijami, ki slikajo med $\{0,1\}^*$ in $\{0,1\}^{k_2}$.

5.2 Konstrukcija večstranskega Schnorrovega podpisa

V nadaljevanju bomo konstruirali večstransko verzijo Schnorrovega podpisa, predstavljenega v poglavju 3. Končna shema spada med večstranske podpise podskupin z odgovornostjo. Ideja konstrukcije je, da začnemo z naivno verzijo, nato pa rešimo njene probleme, kar nas privede do formalne definicije v razdelku 5.3 in dokaza varnosti v razdelku 5.4.

5.2.1 Naivna verzija

Vsi podpisniki v skupini P poznajo skupne parametre p,q in g. Vsak podpisnik P_i si neodvisno in naključno izbere skrivno število $s_i \in [0, \dots q-1]$ in izračuna

$$I_i = q^{s_i} \mod p$$
.

Tako vsak podpisnik ustvari svoj par ključev

$$pk_i = (p, q, g, I_i),$$

$$sk_i = s_i.$$

Poljubna podskupina $S = \{P_{id_1}, \dots, P_{id_l}\}$ skupine P podpiše sporočilo m s tremi krogi komunikacije:

1. Vsak podpisnik P_i iz podskupine S si izbere naključen element $r_i \in [0, q-1]$ in izračuna zavezo

$$X_i = g^{r_i} \bmod p$$
.

Podpisniki potem pošljejo svoje zaveze izbranemu podpisniku D.

2. D izračuna skupno zavezo

$$\tilde{X} = (X_{id_1} \cdot X_{id_2} \cdot \dots \cdot X_{id_l}) \bmod p.$$

in jo pošlje vsem podpisnikom.

3. Vsak podpisnik s pomočjo slučajnega oraklja izračuna izziv

$$e = H(\tilde{X}||m||S)$$

in svoje individualne podpise

$$y_{id_i} = es_{id_i} + r_{id_i} \bmod q.$$

Individualni podpisi so potem spet poslani podpisniku D, ta pa sedaj lahko izračuna

$$\tilde{y} = (y_{id_1} + y_{id_2} + \dots + y_{id_l}) \bmod q$$

in vrne končen večstranski podpis

$$\sigma = (\tilde{X}, \tilde{y}).$$

Preverjanje veljavnosti podpisa je podobno kot pri navadnemu Schnorrovemu podpisu. Da preverimo podpis (\tilde{X}', \tilde{y}') sporočila m najprej izračunamo

$$e' = H(\tilde{X}'||m||S)$$

in preverimo, če velja

$$g^{\tilde{y}'} \stackrel{?}{\equiv} \tilde{X}' \cdot \left(\prod_{P_i \in S} I_i\right)^{e'} \pmod{p}.$$

5.2.2 Generiranje parametrov: Predpostavka DL

Micali et al. [11] so izpostavili in rešili več problemov z zgornjo naivno idejo. Prvi problem se pojavi pri generiranju skupnih parametrov javnega ključa p,q in g. Ker si podpisniki delijo samo varnostni parameter k in pa slučajnega oraklja H, morajo za parametre uporabiti H na vnaprej dogovorjen način. Napadalec bo tako poznal točen postopek ustvarjanja skupnih parametrov, kar mu potencialno da prednost. Izkaže se, da lahko s primerno uporabo H poskrbimo, da to ne predstavlja nevarnosti, in generiranje parametrov dodamo k predpostavki diskretnega logaritma za večstranske podpise.

Definicija 5.4 (Predpostavka diskretnega logaritma pri ASM). Predpostavka o varnosti je poleg standardnega PDL tu razširjena še z algoritmom za pridobivanje deljenih parametrov in jo lahko zapišemo:

• Parametri: Naključnostni algoritem GenPrimes(k) 1 teče v pričakovanem polinomskem času:

Algoritem 1 Algoritem GenPrimes(k) za generiranje praštevil.

```
q \leftarrow naključno izbrano k-bitno število p \leftarrow 2q+1 while q ni praštevilo in p ni praštevilo do q \leftarrow naključno izbrano k-bitno število p \leftarrow 2q+1 end while return p,q
```

- $Težavnost\ DL$: Naj bo A poljuben naključnostni algoritem, ki teče v polinomskem času in svoje parametre sprejme
 - praštevili p in q, da velja p = 2q + 1 in q je dolg k-bitov,
 - naključni element $g \in \mathbb{Z}_p^*$ reda q,
 - naključni element I iz podgrupe \mathbb{Z}_p^* , ki jo generira g.

Naj p_k^A označuje verjetnost, da Avrne $s \in [0,q-1],$ tako da velja

$$I \equiv q^s \pmod{p}$$
.

Potem za vsako konstanto c > 0 in za vsak dovolj velik k velja, da je verjetnost p_k^A zanemarljiva, oz.

$$p_k^A < k^{-c}.$$

Pri obravanavi večstranskega Schnorrovega podpisa bomo torej predpostavili, da držita obe točki iz definicije 5.4. Predpostavka o težavnosti diskretnega logaritma je za sheme, ki temeljijo na njem standardna, prva predpostavka pa nam zagotavlja učuinkovit in standarden način za generiranje skupnih parametrov, ki napadalcu ne izda dodatnih informacij.

5.2.3 Napad na generiranje ključev

Naslednja težava nastopi v obliki napada v fazi generiranja ključev. Ker napadalec nadzoruje vso komunikacijo, si lahko privošči vstopiti v podpisovanje kot zadnji izmed podpisnikov P_L , in lahko zadnji generira svoj par ključev. Če si torej izbere naključen $s \in [0, q-1]$, lahko izračuna svoj javni ključ kot

$$I_L = \left(\prod_{i=1}^{L-1} I_i\right)^{-1} \cdot g^s \pmod{p}.$$

To mu omogoča, da se podpisuje v imenu celotne podskupine S, saj bo pri množenju v enačbi za preverjanje tako izničil vse ostale javne ključe.

Za rešitev tega problema se lahko zanesemo na dokaze o znanju brez razkritja znanja. Torej, da preprečimo napad na generiranje ključev, od vsakega podpisnika P_i zahtevamo, da poleg svojega javnega ključa I_i objavi tudi dokaz o znanju brez razkritja znanja za svoj zasebni ključ glede na javni ključ. Objaviti mora torej dokaz, da pozna diskretni logaritem I_i modulo g. Ta dokaz je neinteraktiven, saj obravnavmo model slučajnega oraklja in lahko uporabimo Fiat-Shamirjevo hevristiko.

Ker tovrstni dokazi brez preverjevalca nimajo smisla, se na tej točki vredno vprašati, kdo bo preverjal veljavnost dokazov. Izkaže se, da je najbolj enostavno, da se dokaze doda v posamezne javne ključe. Tako pade breme preverjanja na tistega, ki bo preverjal podpis. Problematično je dejstvo, da taka sprememba podaljša javne ključe in privede do izgube učinkovitosti. Preverjanje veljavnosti podpisa bo sedaj poleg dveh modularnih potenciranj potrebovalo še dodatnih 2|S|, saj je potrebno preveriti vse dokaze javnih ključev. Posamezni preverjevalec podpisov lahko sicer dodatno delo opravi le enkrat za vsako skupino, če natančno beleži rezultate preverjanja dokazov.

5.2.4 Učinkovitost podpisovanja: Merklova drevesa

Kot bomo videli, je za dokaz varnosti potrebno, da lahko simulator (torej algoritem, ki bo simuliral proces podpisovanja napadalcu), v polinomskem času za vsakega pokvarjenega podpisnika P_j pridobi diskretni logaritem I_j iz predloženega dokaza o znanju brez razkritja znanja. Izkaže pa se, da če je P_j dokaz izračuna s q klici slučajnega oraklja, potem simulator uspešno pridobi diskretni logaritem z verjetnostjo največ 1/q. Še več, če je k pokvarjenih podpisnikov, bo simulator uspešen z verjetnostjo največ $1/q^k$. Z drugimi besedami, če želimo polinomski simulator, je podpisnikov lahko največ logaritemsko mnogo v številu klicev oraklja q.

TODO: KAJ POMENI LOGARITEMSKO MNOGO - JE TO PRAV?

Ta problem lahko rešimo tako, da vsak podpisnik P_i najprej izračuna svoj par ključev (s_i, I_i) in tudi zavezo X_i . Potem si vsi izmenjajo I_i in X_i . Vsak podpisnik lahko sedaj izračuna skupni izziv

$$e = H(X_1||I_1||X_2||I_2||\dots||X_L||I_L).$$

Podpisniki za dokaz znanja sedaj uporabijo Schnorrov podpis e s svojim parom ključev.

TODO: A TO PRAVILNO RAZUMEM?

Kot bomo videli, bo to pomenilo, da za generiranje dokazov k pokvarjenih podpisnikov sedaj rabi le kq klicev oraklja, torej je polinomski simulator uspešen z verjetnostjo 1/kq. To omogoča, da je podpisnikov več kot logaritemsko mnogo. Pojavi pa se drugačen problem z učinkovitostjo, saj mora sedaj vsak podpisnik v svojem javnem ključu hraniti še Schnorrov podpis sporočila e in pa tudi vse javne ključe sopodpisnikov in njihove zaveze. Brez teh podatkov namreč dokaz znanja (Schnorrov podpis) ni preverljiv. To pomeni, da je za katerokoli podskupino S velikost ključa proporcionalna velikosti celotne skupine P. Poleg tega mora sedaj preverjevalec preveriti, da se vsi vektorji javnih ključev ujemajo. V primerjavi z osnovno naivno idejo, kjer je preverjevalec potreboval le |S| navadnih Schnorrovih javnih ključev, je v tej izvedbi velikost javnega ključa nedopustno velika.

Da nazaj pridobimo učinkovit podpis, se lahko zanesemo na slučajnega oraklja in kriptografsko orodje, imenovano **Merklovo drevo** (angl. *Merkle tree*). V osnovi je to *binarno drevo*, torej drevo, kjer ima vsako vozlišče največ dva otroka. Ideja je, da v liste shranimo zgostitve katerekolih podatkov, pridobljene s pomočjo izbranega slučajnega oraklja ali zgoščevalne funkcije. Drevo potem gradimo navzgor tako, da v vsako vozlišče shranimo zgostitev stika zgostitev levega in desnega otroka. Tako nadaljujemo do korena. Pomembno je, da je za pridobivanje zgostitev uporabljena zgoščevalna funkcija, ki je skoraj brez trčenj ali pa slučajni orakelj. Osnovna struktura je prikazana na sliki 3.

Slika 3: Primer Merklovega drevesa s štirimi listi. Imamo torej 4 vhodne podatke x_1, x_2, \ldots, x_4 , na vsakem nivoju drevesa se izračuna stik in zgostitev. Ustvarjeno s pomočjo [9].

Pomembno je opaziti, da če zgoščevalna funkcija ustvarja zgostitve, dolge k bitov, bodo toliko dolgi vsi podatki, ki jih hranijo vsa vozlišča drevesa. Za Merklova drevesa je ključno, da je v primeru varne zgoščevalne funkcije računsko zelo težko spremeniti katerokoli vrednost v drevesu, brez da bi se spremenila vrednost v korenu. Enako velja za spremembe vhodnih podatkov. Merklova drevesa nam torej omogočajo, da se zavežemo L vrednostim x_1, x_2, \ldots, x_L tako, da enostavno vrnemo en sam k-bitni niz. To storimo tako, da shranimo zgostitve vrednosti x_1, x_2, \ldots, x_L v liste drevesa in izračunamo koren. Vrednostim se zavežemo tako, da preverjevalcu damo vrednost

korena. Ko mu kasneje želimo razkriti vrednosti, mu jih enostavno povemo, on pa lahko z izračunom drevesa preveri, da so vrednosti prave. Povzeto po [7].

Trditev 5.5 (Overjevalna pot [7]). Naj bo A zavezovalec, ki se želi zavezati vrednostim x_1, x_2, \ldots, x_L preverjevalcu B. Če se A zaveže tako, da B pove vrednost korena Merklovega drevesa, izračunanega na podlagi vrednosti x_1, x_2, \ldots, x_L , potem lahko dokaže zavezo eni vrednosti x_i ($1 \le i \le L$) tako, da preverjevalcu B pove $1 + \lceil \log L \rceil$ vrednosti: x_i in pa **overjevalno pot**, torej vrednosti, shranjene v sestrskih vozliščih vseh vozlišč na poti med vključno x_i in korenom (brez korena, ki ga B že pozna).

Dokaz. Trditev lahko dokažemo z indukcijo na globino Merklovega drevesa d. Naj bo x vrednost, za katero želimo dokazati zavezo in w_1, w_2, \ldots, w_d overjevalna pot.

- d=2: Če je globina drevesa 2, želimo pokazati, da moramo poleg x povemo samo eno dodatno vrednost. Ta vrednost je torej zgostitev x-ove sosednje vrednosti y. Ko B izračuna H(x||y), je to že koren, in lahko vrednost primerja z zabeleženo.
- $n \to n+1$: Predpostavimo torej, da za globino drevesa n lahko preverimo zavezo s podanimi 1+d vrednostmi. To nam omogoča izračuna vrednosti v enem od korenovih otrok v drevesu globine n+1, po indukcijski predpostavki. Če poznamo še vrednost drugega otroka, je možen izračun korena.

Merklova drevesa lahko sedaj uporabimo, da naredimo večstranski podpis bolj učinkovit. Podpisniki še vedno predložijo dokaze znanja prek Schnorrovega podpisa, po izmenjavi dokazov pa vsak izračuna Merklovo drevo z listi I_1, I_2, \ldots, I_L . To drevo bo torej globine $\log L$. Za svoj javni ključ potem vsak podpisnik P_i nastavi I_i in overjevalno pot za I_i . Ker je ponavadi I_i veliko daljši od dolžine zgostitev, in ker je v overjevalni poti le $\log L$ zgostitev, se ključ ne podaljša veliko (npr. če je I_i dolg 2000 bitov in so zgostitve 200-bitne, bo 1000 podpisnikov ustvarilo ključe, dolge manj od 4000 bitov, torej manj kot dvakrat daljše).

Ko sedaj preverjevalec preverja podpis sporočila m s strani S, lahko za vsakega podpisnika izračuna vrednost korena Merklovega drevesa in preveri, da se vse ujemajo. Obstoj enega nepokvarjenega podpisnika tako prisili vse pokvarjene, da uporabljajo prave ključe (ali pa najdejo trk v zgoščevalni funkciji, kar je izjemno težko). S to spremembo smo tako uspešno ohranili podpise varne in časovno učinkovite.

5.3 Definicija večstranskega Schnorrovega podpisa

Sedaj smo pripravili vse potrebno, da podamo natančno definicijo končne sheme.

5.3.1 Skupni parametri

Vsi podpisniki se strinjajo o skupnem varnostnem parametru k in sekundarnem varnostnem parametru k', ki je deterministično izračunan iz k (v praksi zadostuje kar k' = 100). Za velikost L skupine podpisnikov P predpostavimo, da je polinomska v k.

Shemo obravnavamo v modelu slučajnega oraklja, tako da imajo vsi podpisniki dostop do slučajnega oraklja H. Na dogovorjen način ga uporabijo, da ustvarijo pet neodvisnih orakljev

$$H_1, H_2 : \{0, 1\}^* \to \{0, 1\},$$

 $H_3, H_5 : \{0, 1\}^* \to \{0, 1\}^{k'},$
 $H_4 : \{0, 1\}^* \to \{0, 1\}^{2k'}.$

Prav tako predpostavimo, da imajo vsi podpisniki dostop do algoritma GenPrimes.

Za lažjo obravnavo si izberemo še enega izmed podpisnikov, in ga označimo z D. Ta podpisnik bo vrnil končni podpis, ne ve pa nobenih dodatnih skrivnosti. D lahko tudi predstavlja vse podpisnike, a je opis sheme malce lažji, če si izberemo enega – v tem primeru je on prejemnik vseh sporočil ostalih podpisnikov, svoje odgovore pa potem oddaja (angl. broadcast) ostalim podpisnikom. Če si ne izberemo podpisnika D, si podpisniki sporočila pošiljajo v krogu (vsak pošlje svoje sporočilo desnemu sosedu, ko prejme sporočilo levega, spet pošlje desnemu. Vsak torej pošlje L sporočil, na koncu imajo vsi vse potrebne podatke za izračune).

5.3.2 Generiranje ključev

Vsi podpisniki morajo sami generirati parametre p, q in g. Za prva dva uporabijo algoritem GenPrimes(k) 1. Za izvor naključnosti uporabijo zaporedje $H_1(2^k), H_1(2^k+1), \ldots$ Za generiranje elementa g reda q uporabijo izvor naključnosti $H_2(2^k), H_2(2^k+1), \ldots$

Ko ima vsak podpisnik P_i ($1 \le i \le L$) na voljo skupne parametre, si enakomerno naključno izbere svoj zasebni ključ $s_i \in [0, q-1]$ in izračuna

$$I_i = q^{s_i} \mod p$$
.

Do tu je postopek enak, kot pri naivni verziji. Da preprečimo napad na generiranje ključev, mora vsak podpisnik na tem mestu izbrati naključen $r_i \in [0, q-1]$ in izračunati zavezo

$$X_i = q^{r_i} \bmod p$$
.

Potem si podpisniki med seboj izmenjajo vrednosti (X_i, I_i) . Vsak na tem mestu lahko izračuna

$$e = H_3(X_1||I_1||X_2||I_2||...||X_L||I_L),$$

 $y_i = es_i + r_i,$

in pošlje y_i vsem ostalim podpisnikom.

Na tem mestu ima vsak podpisnik P_i na voljo par (X_j, y_j) vseh ostalih podpisnikov $(1 \le j \le L)$. Ta par predstavlja Schnorrov podpis in s tem dokaz znanja brez razkritja znanja zasebnega ključa s_j glede na javni ključ I_j . Ker je izziv e izračunan iz podatkov vseh podpisnikov, onemogoča naknadne spremembe ključev.

Vsak podpisnik P_i mora preveriti veljavnost vseh podpisov (X_j, y_j) vseh ostalih podpisnikov P_j $(1 \leq j \leq L)$. To stori s standardnim izračunom za preverjanje Schnorrovega podpisa (3.1):

$$g^{y_j} \stackrel{?}{\equiv} X_j \cdot I_j^e \pmod{p}.$$

Ko podpisnik P_i ugotovi, da so vsi podpisi veljavni, lahko izračuna Merklovo drevo, ki ima v listih po vrsti razporejene I_1, I_2, \ldots, I_L in za svojo zgoščevalno funkcijo uporablja H_4 . Ko je drevo izračunano, P_i prebere overjevalno pot pot $_i$ svojega ključa I_i in vrne javni ključ

$$pk_i = (p, q, g, I_i, pot_i).$$

5.3.3 Podpisovanje

Naj bo $S = \{P_{id_1}, P_{id_2}, \dots, P_{id_l}\}$ podskupina velikosti l skupine P, ki želi večstransko podpisati sporočilo m. To lahko storijo s tremi krogi komunikacije:

1. Vsak podpisnik $P_{id_j}(1 \leq j \leq l)$ si izbere naključno število $r_j \in [0,q-1]$ in izračuna zavezo

$$X_j = g^{r_j} \bmod p$$
.

Zavezo X_j nato pošlje podpisniku D.

 $2.\ D$ izračuna skupno zavezo

$$\tilde{X} = (X_1 \cdot X_2 \cdot \dots \cdot X_l) \bmod p$$

in jo pošlje vsem podpisnikom $P_{id_j} (1 \le j \le l)$.

3. Vsak podpisnik $P_{id_j} (1 \le j \le l)$ izračuna

$$e = H_5(\tilde{X}||m||S),$$

$$y_j = es_j + r_j$$

in pošlje y_i podpisniku D.

Na tem mestu ima D vse kar rabi, da dokonča podpis. Najprej izračuna

$$\tilde{y} = (y_1 + y_2 + \dots + y_l) \bmod q$$

in nato vrne končni podpis

$$\sigma = (\tilde{X}, \tilde{y}).$$

5.3.4 Preverjanje

Preverjanje je podobno naivni verziji, le da je potrebno dodatno preveriti ustreznost Merklovih korenov. Če torej preverjevalec želi preveriti veljavnost podpisa $\sigma = (\tilde{X}, \tilde{y})$ sporočila m, moramo predpostaviti, da lahko dostopa do vseh javnih ključev $\{\operatorname{pk}_{id_1}, \operatorname{pk}_{id_2}, \ldots, \operatorname{pk}_{id_l}\}$ vseh podpisnikov $S = \{P_{id_1}, P_{id_2}, \ldots, P_{id_l}\}$.

Najprej mora preverjevalec preveriti, da se vseh l izvodov skupnih parametrov p,q in g ujema. Da dokončno potrdi veljavnost in ustreznost javnih ključev, za vsakega podpisnika $P_{id_j}(1 \leq j \leq l)$ s pomočjo njegovega javnega ključa I_{id_j} in overjevalne poti pot $_{id_j}$ izračuna vrednost v korenu Merklovega drevesa V_{id_j} , kot prikazano v trditvi 5.5. Ko izračuna vse vrednosti korenov V_{id_j} , mora preveriti, da so res enake.

Ko se preverjevalec prepriča o veljavnosti ključev, postopa podobno kot pri naivni verziji. Najprej mora izračunati

$$\tilde{I}_S = (I_{id_1} \cdot I_{id_2} \cdot \dots \cdot I_{id_l}) \bmod p.$$

Če si dosledno beleži izračune, lahko preverjevalec ta del preverjanja podpisa opravi le enkrat za vsako podskupino podpisnikov S.

Potem mora preverjevalec izračunati izziv s pomočjo slučajnega oraklja

$$e = H_5(\tilde{X}||m||S)$$

in preveriti, če velja

$$g^{\tilde{y}} \stackrel{?}{\equiv} \tilde{X} \tilde{I}_S^e \pmod{p}. \tag{5.1}$$

Če je torej podpis $\sigma=(\tilde{X},\tilde{y})$ veljaven podpis sporočila m,lahko levo stran enačbe (5.1) zapišemo kot

$$g^{\tilde{y}} \bmod p = g^{(y_1 + y_2 + \dots + y_l) \bmod q} \bmod p$$

$$\stackrel{2.3}{=} g^{y_1 + y_2 + \dots + y_l} \bmod p$$

$$= g^{es_1 + r_1 + es_2 + r_2 + \dots + es_l + r_l} \bmod p$$

$$= g^{r_1 + r_2 + \dots r_l} g^{e(s_1 + s_2 + \dots s_l)} \bmod p,$$

desno pa po trditvi 2.4

$$\tilde{X}\tilde{I}_{S}^{e} \bmod p = ((X_{1} \cdot X_{2} \cdot \cdots \cdot X_{l}) \bmod p)((I_{id_{1}} \cdot I_{id_{2}} \cdot \cdots \cdot I_{id_{l}}) \bmod p)^{e} \bmod p
= ((g^{r_{1}} \bmod p \cdot g^{r_{2}} \bmod p \cdot \cdots \cdot g^{r_{l}} \bmod p) \bmod p) \cdot
\cdot ((g^{s_{1}} \bmod p \cdot g^{s_{2}} \bmod p \cdot \cdots \cdot g^{s_{l}} \bmod p) \bmod p)^{e} \bmod p
\stackrel{2.4}{=} (g^{r_{1}} \cdot g^{r_{2}} \cdot \cdots \cdot g^{r_{l}}) \bmod p)((g^{s_{1}} \cdot g^{s_{2}} \cdot \cdots \cdot g^{s_{l}}) \bmod p)^{e} \bmod p
\stackrel{2.4}{=} (g^{r_{1}} \cdot g^{r_{2}} \cdot \cdots \cdot g^{r_{l}})(g^{s_{1}} \cdot g^{s_{2}} \cdot \cdots \cdot g^{s_{l}})^{e} \bmod p
= g^{r_{1} + r_{2} + \cdots r_{l}} g^{e(s_{1} + s_{2} + \cdots s_{l})} \bmod p.$$

Ker se leva in desna stran ujemata, enačba (5.1) pravilno preveri pravilnost večstranskega Schnorrovega podpisa.

5.4 Varnost večstranskega Schnorrovega podpisa

Dokazati si želimo, da je shema, definirana v zgornjem razdelku 5.3 varna, torej ustreza pogojem definicije varnosti 5.3, kjer ima napadalec F sposobnosti, definirane v 5.2. Varnost torej pomeni, da je preprečeno eksistencialno ponarejanje, zaradi napadalčevega nadzora nad komunikacijskim omrežjem pa si lahko privošči napad z izbranimi sporočili. Še več, ker se ukvarjamo z večstranskimi podpisi, si napadalec lahko izbere še podskupino, ki bo sporočilo podpisovala. Napadalec lahko torej na katerikoli točki od katerekoli podskpupine zahteva podpis kateregakoli izbranega sporočila.

Zaradi kompleksnosti napadalca, dokaz varnosti poteka tako, da najprej dokažemo ekvivalentnost med šibkejšim napadalcem F' in prvotnim napadalcem F, potem pa dokažemo varnost v primeru šibkega napadalca F'.

5.4.1 Šibek napadalec in šibka varnost

Za enostavnejšo analizo definiramo **šibkega napadalca** (ali nasprotnika) (angl. $weak \ adversary$) F'. Njegov cilj je enak izvornemu napadalcu F. Želi si torej ponarediti podpis s pomočjo napada z izbranim sporočilom in podskupino. Izbere si lahko podpisnika, in od njega zahteva podpis izbranega sporočila skupaj z izbrano podskupino S. Napadalca se razlikujeta v tem, da je F' bistveno šibkejši, oz. ima manj nadzora nad potekom podpisovanja in komunikacijo med podpisniki.

Definicija 5.6 (Šibek napadalec pri ASM). Šibek napadalec F' v modelu večstranskega Schnorrovega podpisa ima naslednje zmožnosti:

- Preden skupina P generira svoje ključe, izbere podpisnika P_i , ki ga bo napadel.
- Ko je podpisnik P_i napaden, mora F' zanj priskrbeti vse vhode za algoritme in vse vhodna sporočila, ki jih prejme. Prav tako lahko vidi vsa poslana sporočila podpisnika. Efektivno pri podpisovanju sodelujeta le F' in P_i .
- Po generiranju ključev, lahko šibek napadalec F' od podpisnika P_i zahteva podpis izbranega sporočila skupaj z izbrano podskupino S (napad z izbranim sporočilom in podskupino).

Ker mora šibek napadalec za izbranega podpisnika predložiti vse vhode in komunikacijo, lahko vidimo delovanje šibkega napadalca F' kot delovanje napadalca F, ki pokvari vse podpisnike, razen podpisnika P_i . V obeh primerih bo podpisnik P_i v podpisu sodeloval le z napadalcem, ki zanj nadzoruje celoten potek podpisovanja. Ta povezava tipov napadalcev je formalno opisana v izreku 5.8. Pred dokazom izreka pa moramo, tako kot za napadalca F, tudi tu definirati, kaj pomeni varnost sheme.

Definicija 5.7 (Šibka varnost pri ASM). Naj bo k varnostni parameter (ki si ga delijo vsi podpisniki). Naj bo c > 0 poljubna konstanta. Naj bo F' šibek napadalec, ki je omejen s polinomskim časom v parametru k in ustreza definiciji 5.6. Naj bo P_i podpisnik, ki ga šibek napadalec napada. Naj bo p verjetnost, da šibek napadalec F' vrne trojico (σ, m, S) , za katero velja:

- σ je veljaven večstranski podpis sporočila m s strani skupine S.
- Podpisnik P_i je v skupini S, vendar šibek napadalec F' od njega ni zahteval podpisa sporočila m s strani skupine S.

Shemi za večstranske podpise podskupine z odgovornostjo bomo rekli, da je **šibko** \mathbf{varna} , če je verjetnost p zanemarljiva, oz. velja

$$p < k^{-c}$$
.

Sedej imamo vse potrebno, da dokažemo ekvivalentnost šibke varnosti in varnosti, in s tem ekvivalentnost šibkega napadalca in napadalca.

Izrek 5.8. Naj bo velikost L skupine podpisnikov P polinomsko omejena v varnostnem parametru k. Potem je večstranski Schnorrov podpis skupine velikosti L iz razdelka 5.3 varen natanko tedaj, ko je šibko varen.

Dokaz. Ker se definicija varnosti in šibke varnosti razlikuje le v uporabi napadalca F ali šibkega napadalca F', je potrebno pokazati le, da sta F in F' ekvivalentna (ob ustrezni velikost skupine podpisnikov).

- (\Rightarrow) : Predpostavimo, da podpis ni šibko varen. Kot smo že prej smo omenili, je delovanje šibkega napadalca F' enako delovanju napadalca F, ki pokvari vse podpisnike razen enega. Napadalec F ima torej vse zmožnosti, ki jih ima šibek napadalec F'. Če podpis ni šibko varen, lahko F s simulacijo F', opisano zgoraj, z nezanemarljivo verjetnostjo vrne ponarejen podpis, torej shema tudi ni varna.
- (\Leftarrow) : Predpostavimo, da podpis ni varen. Obstaja torej napadalec F, ki je omejen s polinomskim časom v varnostnem parametru k in uspešno izvede napad z izbranim sporočilom in podskupino.

Konstruirajmo šibkega napadalca F': skladno z definicijo si pred generiranjem ključev izbere podpisnika P_i ($1 \le i \le L$), ki ga bo napadel. Od tega trenutka naprej pri podpisovanju sodelujeta samo podpisnik P_i in šibek napadalec F', ki ima vlogo vseh ostalih podpisnikov.

Ko napadalec F izvede napad, mora torej šibek napadalec F' simulirati delovanje vseh podpisnikov razen P_i . Vedenje šibkega napadalea F' je tekom napada odvisno od dejanj napadalea F:

- Če se napadalec F odloči pokvariti kateregakoli podpisnika, ki ni P_i , mu mora šibek napadalec F' (v vlogi podpisnika) posredovati potrebne zasebne informacije. To lahko stori, saj simulira delovanje podpisnika.
- Če napadalec F pokvari podpisnika P_i , je šibek napadalec pri svojem napadu neuspešen.
- Če si napadalec F izbere podpisnika (razen P_i) za tarčo napada z izbranim sporočilom in podskupino, mora šibek napadalec F' simulirati odziv podpisnika. To ponovno lahko stori, saj simulira delovanje podpisnika.
- Če napadalec F izbere podpisnika P_i za tarčo napada z izbranim sporočilom in podskupino, šibek napadalec F' prejme zahtevek za napad od F in ga posreduje podpisniku P_i . Ta podpisnik normalno pošlje svoj odgovor napadalcu F.

Ko F konča svoj napad, vrne trojico (σ, m, S) . Če je to veljaven ponaredek, jo vrne tudi šibek napadalec F'. Če ponaredek ni veljaven, če P_i ni eden izmed podpisnikov v S, ali pa če je P_i tekom podpisovanja pokvarjen s strani F, je šibek napadalec neuspešen pri svojem napadu. Poglejmo si verjetnost, da F' uspe pri

svojem napadu:

$$\begin{split} & \operatorname{Pr}(F' \text{ vrne veljaven ponaredek}) = \\ & = \operatorname{Pr}(F \text{ vrne veljaven ponaredek } \cap P_i \in S \text{ in ni pokvarjen}) \\ & = \sum_{i=1}^L \operatorname{Pr}(F' \text{ izbere } P_i) \cdot \operatorname{Pr}(F \text{ vrne veljaven ponaredek } \cap P_i \in S \text{ in ni pokvarjen}) \\ & = \sum_{i=1}^L \frac{1}{L} \cdot \operatorname{Pr}(P_i \in S \text{ in ni pokvarjen} \mid F \text{ vrne veljaven ponaredek}) \\ & \cdot \operatorname{Pr}(F \text{ vrne veljaven ponaredek}) \\ & \geq \frac{1}{L} \cdot \operatorname{Pr}(F \text{ vrne veljaven ponaredek}), \end{split}$$

kjer smo pri prehodu iz tretje v četrto vrstico uporabili osnovno lastnost verjetnosti, ki pravi

$$Pr(A \cap B) = Pr(A \mid B) \cdot Pr(B),$$

pri prehodu v zadnjo vrstico pa smo upoštevali, da velja

$$\sum_{i=1}^{L} \Pr(P_i \in S \text{ in ni pokvarjen} \mid F \text{ vrne veljaven ponaredek}) \ge 1.$$
 (5.2)

Neenačba (5.2) drži, saj mora pri uspešnem ponarejanju sodelovati vsaj en nepokvarjen podpisnik. Če torej F vrne veljaven ponaredek, bo vsaj ena od verjetnosti v zgornji vsoti enaka 1.

Pri ponarejanju je torej F uspešen največ L-krat več kot F', kar pomeni, da shema ni šibko varna, saj je velikost skupine L polinomsko omejena.

5.4.2 Dokaz varnosti

Ker sta napadalec in šibek napadalec ekvivalentna, je dovolj pokazati varnost v primeru šibkega napadalea, shema pa je potem tudi varna po izreku 5.8.

Izrek 5.9 (Varnost večstranskega Schnorrovega podpisa). Če drži predpostavka o težavnosti diskretnega logaritma pri ASM 5.4, je večstranski Schnorrov podpis, definiran v razdelku 5.3, varen.

Želimo torej pokazati, da če obstaja šibek napadalec, ki je omejen s polinomskim časom v parametru k, potem obstaja nek algoritem A, ki prav tako teče v polinomskem času, s katerim lahko prekršimo predpostavko o diskretnem logaritmu pri ASM. Bolj specifično, prekršimo lahko predpostavko o težavnosti DL.

Želimo torej konstruirati algoritem A, ki za vhod prejme p,q,g in I, in vrne $s \in [0,q-1]$, da velja $g^s \equiv I \pmod{q}$. Ideja je, da A simulira proces podpisovanja, ki ga napada šibek napadalec F'. Cilj algoritma A je, da iz vrnjenega ponarejenega podpisa, pridobljenega ob uspešnem napadu, razbere diskretni logaritem, ki ga išče. Za doseganje tega cilja mora algoritem A biti sposoben simulirati delovanje vseh aspektov procesa podpisovanja (od slučajnega oraklja do podpisnika P_i , ki ga na začetku izbere šibek napadalec F' za svojo tarčo).

Bolj specifično, med svojim delovanjem šibki napadalec F' opravlja dve vrsti poizvedb pri slučajnem oraklju. Prva je zgoščevalna poizvedba, kjer F' pošlje slučajnemu oraklju nek niz, ta pa mu odgovori z njegovo zgostitvijo. Algoritem A lahko simulira odgovor na tovrstne poizvedbe z vračanjem naključnih odgovorov.

Druga vrsta poizvedb je podpisovalna poizvedba, kjer šibek napadalec F' podpisniku P_i (ki ga je izbral na začetku) pošlje sporočilo m in skupino S, ta pa mu nazaj pošlje zavezo X_i . Potem mora šibek napadalec F' igrati vlogo podpisnika D, ki agregira informacije (tekom podpisovanja zbere individualne zaveze in podpise, vrača pa skupne). Podpisniku P_i pošlje skupno zavezo \tilde{X} , nazaj pa dobi y_i . Podpisovalne poizvedbe torej potekajo v dveh krogih in predstavljajo izvedbo napada z izbranim sporočilom in podskupino nad podpisnikom P_i , katerega delovanje mora uspešno simulirati algoritem A.

Za lažjo konstrukcijo algoritma A, je smotrno šibkega napadalca F' še dodatno poenostaviti. Naj $q_{\text{zgoščevalna}}$ označuje največje število zgoščevalnih poizvedb, ki jih opravi F', $q_{\text{podpisovalna}}$ pa največje število podpisovalnih. Naj \mathcal{F} označuje poenostavljenega napadalca, ki deluje popolnoma enako kot šibek napadalec F', le da pred drugim krogom podpisovalne poizvedbe \mathcal{F} najprej pošlje zgoščevalno poizvedbo slučajnemu oraklju H_5 z vhodom (\tilde{X}, m, S) . Podobno, preden \mathcal{F} vrne ponarejen podpis (\tilde{X}, \tilde{y}) sporočila m_F , najprej opravi zgoščevalno poizvedbo pri slučajnemu oraklju H_5 z vhodom (\tilde{X}, m_F, S) . Tako \mathcal{F} vsaki podpisovalni poizvedbi in ponaredku dodeli zgostitev.

Dodatno predpostavimo še, da poenostavljen napadalec \mathcal{F} po vsaki zgoščevalni poizvedbi shrani odgovor, zato vsako zgoščevalno poizvedbo za določen vhod opravi le enkrat.

Poenostavljen napadalec \mathcal{F} torej opravi $q_{\text{podpisovalna}}$ podpisovalnih poizvedb in $q_{\text{zgoščevalna}} + q_{\text{podpisovalna}} + 1$ zgoščevalnih poizvedb. Skupno število klicev oraklja H_5 s strani \mathcal{F} označimo q_H . Shranjevanje odgovorov na poizvedbe je računsko zanemarljivo, zato \mathcal{F} opravi toliko dela, kot šibek napadalec F' skupaj s stroškom poizvedb. Če torej predpostavimo učinkovitost slučajnega oraklja, teče \mathcal{F} v polinomskem času, saj tudi šibek napadalec F' teče v polinomskem času.

Algoritem A bo za delovanje uporabljal poenostavljenega napadalca \mathcal{F} , saj bo tako za vsak potencialni ponaredek in vsak napad prejel predogled rezultata prek zgostitve, ki jo vrne H_5 .

Algoritem A mora torej znati odgovoriti na vse poizvedbe poenostavljenega napadalca \mathcal{F} . Na zgoščevalne poizvedbe odgovarja naključno, s pomočjo vnaprej izbranih simuliranih odgovorov $e_1, e_2, \ldots, e_{q_H}$ oraklja H_5 . Odgovor na podpisovalno poizvedbo za podpisnika P_i na vhodu m in S je malce bolj zapleten. Algoritem A stori sledeče:

- 1. Shrani konfiguracijo poenostavljenega napadalca \mathcal{F} .
- 2. Si izbere naključen odgovor e_j $(1 \le j \le q_H)$ oraklja H_5 , v upanju, da bo to zgostitev, ki bo identificirala to poizvedbo.
- 3. Si izbere naključen $y \in [0, q 1]$.
- 4. Izračuna

$$X_i = I_i^{-e_j} g^y \bmod p$$

in pošlje X_i v odgovor prvega kroga poizvedbe poenostavljenemu napadalcu \mathcal{F} .

5. Po prejetju \tilde{X} od \mathcal{F} preveri, če e_j ustreza poizvedbi na vhodu (\tilde{X}, m, S) . Če da, vrne y, sicer se vrne na korak 2.

Zgornje je primer splošne metode za analiziranje varnosti v kriptografiji, ki se imenuje **previjanje nazaj** (angl. rewinding). Popularna je pri analizi dokazov brez razkritja znanja in pri dokazih varnosti v modelu slučajnega oraklja. Metoda dovoli, da prek naključnih izbir algoritem odgovori na poizvedbo, preden je postavljena, za ceno največ toliko previjanj, kot ima poizvedba odgovorov.

Opomba 5.10. V kontekstu dokaza varnosti je napadalec naključnostni algoritem, omejen s polinomskim časom. Simulator (algoritem A), ki ga konstruiramo, pa je algoritem, ki tekom svojega delovanja uporablja napadalca kot podprogram. To simulatorju omogoča, da pozna celotno interno stanje napadalca, vključno z vsemi naključnimi izbirami, ki jih je napadalec opravil. Zato lahko simulator shranjuje stanja napadalca, in shranjena stanja uporabi, da ga previje nazaj na prejšnje stanje.

V tem primeru je previjanje nazaj nujno potrebno za simuliranje iskrenega podpisnika P_i . To je zato, ker poenostavljen napadalec \mathcal{F} igra vlogo vseh ostalih podpisnikov, torej ima odločilno vlogo pri izbiri skupne zaveze \tilde{X} . Na podlagi te zaveze je izračunan skupni izziv $e = H_5(\tilde{X}||m||S)$, ki ga P_i uporabi za izračun y_i .

Ko algoritem A simulira podpisni proces za poenostavljenega napadalca \mathcal{F} , mora torej A izračunati zavezo X_i in jo poslati v prvem krogu poizvedbe (namesto podpisnika P_i). Problem je, da na tej točki še ni znan izziv e. Za uspešno simulacijo mora algoritem A uganiti, kater odgovor oraklja H_5 bo ustrezal vhodu. Ker je možnih odgovorov oraklja q_H in je vsaka enako verjetna, je verjetnost, da algoritem A izbere pravilen odgovor, $1/q_H$. Pričakovano število potrebnih previjanj je torej q_H .

Sedaj lahko konstruiramo algoritem A na podlagi poenostavljenega napadalca \mathcal{F} . A torej prejme instanco problema diskretnega logaritma s podatki p,q,g in I (kot predstavljeno v definiciji 5.4). Podpisnika, ki ga poenostavljen napadalec napada, označimo P_i (to je torej edini nepokvarjeni podpisnik, v njegovo vlogo se mora postaviti algoritem A).

Algoritem A mora najprej doseči, da so parametri p,q in g iz predloženega problema diskretnega logaritma točno deljeni javni parametri pri večstranskem Schnorrovem podpisu. To doseže prek manipulacije izvora naključnosti za generiranje parametrov, torej orakljev H_1 in H_2 . Ker algoritem A simulira delovanje vseh slučajnih orakljev, lahko nastavi H_1 in H_2 tako, da bodo rezultati algoritma za generiranje ključev točno p,q in g. Za konec nastavi še javni ključ I_i podpisnika P_i na I.

Naslednji korak je dokaz znanja diskretnega logaritma $g^s \equiv I \pmod{q}$. Ta diskretni logaritem je točno ta, ki ga algoritem A išče, torej ga na tem mestu še ne pozna. Dokaz znanja lahko zaobidemo na podoben način, kot pri odgovarjanju na podpisovalne poizvedbe. V jedru problema je ponovno dejstvo, da mora A poslati zavezo X_i , preden pozna izziv e. Algoritem A mora torej ponovno uganiti pravilen odgovor, tokrat oraklja H_3 . Ponovno to lahko doseže s postopkom previjanja poenostavljenega napadalca \mathcal{F} . Če označimo število poizvedb, ki jih \mathcal{F} pošlje oraklju H_3 s q_{H_3} , lahko izračunamo, da je pričakovano število previjanj, ki jih opravi algoritem A, enako q_{H_3} .

Na tem mestu je vse pripravljeno, da lahko algoritem A začne simulirati postopek podpisovanja in požene poenostavljenega napadalca \mathcal{F} ter odgovarja na njegove poizvedbe kot opisano zgoraj. Ideja dokaza od tu naprej je, da ko poenostavljen napadalec \mathcal{F} vrne ponarejen podpis, algoritem A uporabi previjanje in **lemo o** razcepu 5.11 (angl. forking lemma), da pridobi še en ponarejen podpis. Iz teh dveh ponaredkov potem lahko izlušči odgovor na dani problem diskretnega logaritma.

Izrek 5.11 (Lema o razcepu [6]). Naj bo S podpisna shema, ki vrača dvodelne podpise $\sigma = (\sigma_1, \sigma_2)$, kjer σ_2 temelji na zgostitvi vhodnega sporočila m in σ_1 (npr. pri Schnorrovem podpisu je ta zgostitev izziv e = H(X||m)). Naj slučajni orakelj H vrača zgostitve dolžine n. Varnostni parameter naj bo k, tako da velja $n \gg \log(k)$.

Naj bo F naključnostni polinomski algoritem, ki ima na voljo vse javne podatke pri podpisni shemi S in dostop do oraklja H. Če lahko F z nezanemarljivo verjetnostjo vrne par (m,σ) , kjer je σ veljaven podpis sporočila m, potem lahko z nezanemarljivo verjetnostjo z enakimi vhodnimi podatki in uporabo drugega oraklja, F vrne dva para (m,σ) in (m,σ') , kjer podpisa temeljita na drugačnih zgostitvah.

Pred dokazom leme o razcepu, moramo najprej pokazati enostavnejšo lemo iz verjetnosti.

Lema 5.12. Naj bosta X in Y množici. Naj bo $0 < \epsilon < 1$ in A podmnožica $X \times Y$. Naj bo par (x,y) naključno izbran iz poljubne verjetnostne porazdelitve nad $X \times Y$, tako da velja

$$Pr((x,y) \in A) \ge \epsilon.$$

Potem obstaja podmnožica $\Omega \subset X$, tako da

- $Pr(x \in \Omega) > \epsilon/2$ in
- za vsak a iz Ω velja, da $Pr((a, y) \in A) \ge \epsilon/2$.

Dokaz. Za vsak x iz X definirajmo

$$p(x) = \Pr((x, y) \in A \mid x).$$

Zakon o popolni verjetnosti nam pove, da velja

$$\Pr((x,y) \in A) = \sum_{x \in X} \Pr(x) \cdot p(x) = \mathrm{E}[p(x)].$$

Ker je po predpostavki velja $\Pr((x,y) \in A) \ge \epsilon$, velja tudi

$$E[p(x)] \ge \epsilon$$
.

Definirajmo množico Ω kot

$$\Omega = \{ x \in X \mid p(x) > \epsilon/2 \}.$$

Neposredno iz definicije množice sledi drugi del leme: če je a v Ω , mora zanj veljati

$$p(a) = \Pr((a, y) \in A \mid a) \ge \epsilon/2.$$

Za prvi del leme pa najprej predpostavimo obratno, da je $\Pr(x \in \Omega) \leq \epsilon/2$. Ker za x, ki ni v Ω velja $p(x) < \epsilon/2$ (zunaj Ω je p(x) strogo manjši od $\epsilon/2$), lahko pričakovano vrednost ocenimo kot

$$E[p(x)] = E[p(x)\mathbb{I}_{x\in\Omega}] + E[p(x)\mathbb{I}_{x\notin\Omega}].$$

$$\leq 1 \cdot \Pr(x \in \Omega) + \frac{\epsilon}{2} \cdot \Pr(x \notin \Omega)$$

$$= \Pr(x \in \Omega) + \frac{\epsilon}{2} \cdot (1 - \Pr(x \in \Omega))$$

$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} \cdot \left(1 - \frac{\epsilon}{2}\right)$$

$$= \epsilon - \frac{\epsilon^2}{4}$$

$$< \epsilon.$$

To je v nasprotju z našo predpostavko, da velja $E[p(x)] \ge \epsilon$. Tako smo pokazali, da mora veljati $Pr(x \in \Omega) > \epsilon/2$, s čimer smo dokazali prvi del leme.

Sedaj imamo vse potrebno, da dokažemo lemo o razcepu.

Dokaz leme o razcepu 5.11. Naj bo F napadalec (naključnostni algoritem, ki teče v polinomskem času), ki nima na voljo nobenega sporočila. Z ω označimo vir naključnih bitov, prek katerih deluje F. Denimo, da med svojim napadom napadalec F slučajnemu oraklju H pošlje največ polinomsko mnogo poizvedb v varnostnem parametru k. Označimo poizvedbe, ki jih F stori z Q_1, Q_2, \ldots, Q_Q (brez škode za splošnost lahko predpostavimo, da so poizvedbe med seboj različne). Pripadajoče odgovore oraklja na poizvedbe označimo z $\rho_1, \rho_2, \ldots, \rho_Q$.

Predpostavimo, da lahko za naključno izbran vir bitov ω in naključno izbran orakelj H, napadalec F z nezanemarljivo verjetnostjo vrne par (m, σ) , kjer je σ veljaven podpis sporočila m. Verjetnost tu jemljemo nad vsemi viri bitov ω in nad vsemi orakljevimi odgovori $\rho_1, \rho_2, \ldots, \rho_Q$. To verjetnost označimo z $\Pr_{\omega, \rho_1, \rho_2, \ldots, \rho_Q}$.

Ker so odgovori oraklja izbrani iz naključne funkcije, je verjetnost, da je bila ena izmed poizvedb oraklju prav tista, ki je vsebovala sporočilo m in delni podpis σ_1 , nezanemarljiva. Sicer bi moral napadalec F uganiti odgovor na to poizvedbo. To je zato, da bi lahko ustvaril drugi del podpisa σ_2 (uganiti bi torej moral naključno vrednost, kar lahko stori z največ zanemarljivo verjetnostjo). Označimo poizvedbo s temi podatki $Q_{\beta} = (m, \sigma_1)$ ($1 < \beta < Q$). Ker je poizvedb polinomsko mnogo v varnostnem parametru k in je verjetnost uspeha nezanemarljiva, morata obstajati polinom P(k) in število β , za katera je verjetnost uspeha

$$\Pr_{\omega,\rho_1,\rho_2,\dots,\rho_Q}(F \text{ vrne veljaven ponaredek in } \mathcal{Q}_{\beta} = (m,\sigma_1)) \geq \frac{1}{P(k)},$$

kjer je poizvedba Q_{β} res temeljila na sporočilu in delnem podpisu, slučajnost pa izvira iz vira bitov ω in orakljevih odgovorov $\rho_1, \rho_2, \ldots, \rho_Q$.

Če označimo z Ω množico vseh naključnih virov bitov ω in z R množico vseh zaporedij $\rho_1, \rho_2, \ldots, \rho_Q$ orakljevih odgovorov, lahko uporabimo lemo 5.12, kjer je $X = \Omega, Y = R, A$ je dogodek, da je F uspešen in $\epsilon = 1/P(k)$. Lema nam zagotavlja obstoj množice Ω_{β} , ki vsebuje vse vire bitov ω , za katere velja, da je verjetnost

uspeha po orakljevih odgovorih ρ_1, \ldots, ρ_Q navzdol omejena z 1/2P(k), oz., da za vir bitov ω iz množice Ω_β velja

$$\Pr_{\rho_1,\rho_2,\dots,\rho_Q}(F \text{ vrne veljaven ponaredek in } \mathcal{Q}_{\beta} = (m,\sigma_1)) \geq \frac{1}{2P(k)}.$$

Sedaj lahko poleg β fiksiramo še vir bitov ω iz množice Ω_{β} . To nam da deterministično zaporedje poizvedb Q_1, Q_2, \ldots, Q_Q , kjer velja $Q_{\beta} = (m, \sigma_1)$, napadalec pa uspe z nezanemaljivo verjetnostjo. Na tem mestu lahko ponovno uporabimo lemo 5.12, kjer je X množica odgovoro na prvih $\beta - 1$ poizvedb, Y množica odgovorov na preostalih $Q - \beta + 1$ poizvedb, A je dogodek, da je F uspešen in $\epsilon = 1/2P(k)$. To nam zagotavlja obstoj množice $R_{\beta,\omega}$, ki vsebuje vsa zaporedja $(\rho_1, \ldots, \rho_{\beta-1})$, za katera velja, da je verjetnost uspeha po preostanku odgovorov $(\rho_{\beta}, \ldots, \rho_{Q})$ večja od 1/4P(k). To pomeni, da za zaporedje $(\rho_1, \ldots, \rho_{\beta-1})$ iz množice $R_{\beta,\omega}$, velja

$$\Pr_{\rho_{\beta},...,\rho_{Q}}(F \text{ vrne veljaven ponaredek in } \mathcal{Q}_{\beta} = (m,\sigma_{1})) \geq \frac{1}{4P(k)}.$$

Množici Ω_{β} in $R_{\beta,\omega}$ določata možne β,ω in $(\rho_1,\ldots,\rho_{\beta-1})$, za katere si lahko izberemo dve množici odgovorov $(\rho_{\beta},\ldots,\rho_{Q})$ in $(\rho'_{\beta},\ldots,\rho'_{Q})$, za kateri napadalec F z nezanemarljivo verjetnostjo vrne dva para (m,σ) in (m,σ') , kjer sta σ in σ' veljavna podpisa sporočila m, ki temeljita na drugačnih zgostitvah. Tu smo uporabili pogoj $n \gg \log(k)$ oz., da je dolžina orakljevih odgovorov n veliko večja od varnostnega parametra k. Ta pogoj nam zagotavlja, da je veliko različnih oraljevih odgovorov, oz. da je verjetnost, da se zgodi trčenje, zanemarljiva.

Torej, z naključno izbiro β , ω , $(\rho_1, \ldots, \rho_{\beta-1}), (\rho_{\beta}, \ldots, \rho_Q)$ in $(\rho'_{\beta}, \ldots, \rho'_Q)$ lahko z nezanemarljivo verjetnostjo dobimo dva veljavna podpisa σ in σ' sporočila m, ki temeljita na drugačnih zgostitvah.

Vrnimo se na dokaz varnosti večstranskega Schnorrovega podpisa. Ostali smo pri algoritmu A, ki tekom svojega delovanja poganja poenostavljenega napadalca \mathcal{F} .

Denimo, da \mathcal{F} vrne ponarejen podpis $(\tilde{X}_0, \tilde{y}_0)$ sporočila m_0 s strani podskupine S_0 . Še več, ponaredek je nastal na podlagi j_0 -te poizvedbe oraklju H_5 z vhodom (\tilde{X}_0, m_0, S_0) in odgovorom e_{j_0} . Ker A pozna celotno interno stanje poenostavljenega napadalca \mathcal{F} in si je shranjeval njegova interna stanja, lahko simulator A previje poenostavljenega napadalca \mathcal{F} nazaj na začetek podpisovnja z enakim virom naključnih bitov ω . Na njegove poizvedbe odgovarja enako kot prej, le na j_0 -to poizvedbo odgovori z novo naključno vrednostjo e'_{j_0} . Delovanje napadalca \mathcal{F} pred previjanjem imenujemo prvi pogon, delovanje po previjanju pa drugi pogon.

Ker so podpisovalne poizvedbe razdeljene na dva kroga in temeljijo na zgoščevalnih poizvedbah (za pridobitev izziva e), se lahko zgodi, da je j_0 -ta zgoščevalna poizvedba opravljena sredi ene od podpisovalnih. Označimo z r število podpisovalnih poizvedb v prvem pogonu, katerih prvi krog poenostavljen napadalec \mathcal{F} opravi pred j_0 -to zgoščevalno poizvedbo. Ker mora legitimen ponarejen podpis podpisovati sporočilo s strani skupine, ki tega sporočila še ni podpisala, lahko sklepamo, da nobena od podpisovalnih poizvedb v prvem pogonu ni temeljila na j_0 -ti zgoščevalni poizvedbi.

Ker je pri drugem pogonu uporabljen enak vir naključnih bitov ω in so odgovori na poizvedbe do j_0 -te enaki, nobena od prvih r-1 podpisovalnih poizvedb v

drugem pogonu ni temeljila na j_0 -ti zgoščevalni. V drugem pogonu napadalca lahko algoritem A torej vrne shranjene odgovore na prvih r-1 podpisovalnih poizvedb, kar med drugim pomeni, da za te poizvedbe ni potrebno previjanje nazaj. To pa je lahko potrebno pri r-ti podpisovalni poizvedbi, saj se drugi krog lahko zgodi po j_0 -ti podpisovalni poizvedbi. Verjetnost previjanja je $1-1/q_H$, kjer je $1/q_H$ verjetnost, da je drugi krog r-te podpisovalne poizvedbe izveden na podlagi enake zgoščevalne poizvedbe, kot pri prvem pogonu.

Opomba 5.13. V dejstvo, da nobena od prvih r-1 podpisovalnih poizvedb v drugem pogonu ni temeljila na j_0 -ti zgoščevalni poizvedbi, temelji na predpostavki, da ne dovoljujemo hkranih podpisovalnih poizvedb, ki je standardna pri dokazih z lemo o razcepu.

Če previjanje pri r-ti podpisovalni poizvedbi ni potrebno, potem so pogoji pri j_0 -ti zgoščevalni poizvedbi popolnoma enaki, kot pri prvem pogonu (enak vir naključnih bitov napadalca in enake zgoščevalne poizvedbe). Od tu lahko zaključimo, da bo tudi j_0 -ta poizdveba imela enak vhod: (\tilde{X}_0, m_0, S_0) , odgovor pa bo seveda drugačen. Če tudi v tem pogonu poenostavljen napadalec \mathcal{F} uspešno vrne ponaredek $(\tilde{X}_1, \tilde{y}_1)$ podpisa sporočila m_1 s strani podskupine S_1 , ki temelji na poizvebi j_0 , potem smo lahko prepričani, da velja $m_1 = m_0, S_1 = S_0$ in $\tilde{X}_1, = \tilde{X}_0$.

Ključno, enačbi za preverjanje podpisov potem lahko zapišemo kot

$$g^{\tilde{y}_0} \equiv \tilde{X}_0 \tilde{I}_{S_0}^{e_{j_0}} \pmod{p},$$

$$g^{\tilde{y}_1} \equiv \tilde{X}_1 \tilde{I}_{S_1}^{e'_{j_0}} \equiv \tilde{X}_0 \tilde{I}_{S_0}^{e'_{j_0}} \pmod{p}.$$

Opazimo, da lahko izrazimo \tilde{X}_0 na dva načina, ki ju enačimo:

$$\tilde{X}_0 \equiv g^{\tilde{y}_0} (\tilde{I}_{S_0}^{e_{j_0}})^{-1} \equiv g^{\tilde{y}_1} (\tilde{I}_{S_0}^{e'_{j_0}})^{-1} \pmod{p}.$$

Če premečemo dobljeno enačbo, dobimo

$$\tilde{I}_{S_0}^{-e'_{j_0}} \tilde{I}_{S_0}^{e_{j_0}} \equiv g^{\tilde{y}_0} (g^{\tilde{y}_1})^{-1} \pmod{p},$$

kar nam omogoča izraziti \tilde{I}_{S_0} kot

$$\tilde{I}_{S_0} \equiv g^{(\tilde{y}_0 - \tilde{y}_1)(e_{j_0} - e'_{j_0})^{-1}} \pmod{p}.$$

To torej pomeni, da A lahko izračuna diskretni logaritem \tilde{I}_{S_0} kot $(\tilde{y}_0 - \tilde{y}_1)(e_{j_0} - e'_{j_0})^{-1}$. Še vedno pa nismo pri koncu, saj to ni diskretni logaritem, ki nas zanima. Če podpisnike iz S_0 označimo $S_0 = \{P_{i_1}, \dots, P_{i_l}\}$, potem je

$$\tilde{I}_{S_0} = \prod_{j=1}^l I_{i_j},$$

kjer je vrednost, katere diskretni logaritem želimo izračunati, I_i , nujno ena izmed I_{i_j} , saj mora podpisnik P_i biti del skupine S_0 , če želimo, da je ponaredek veljaven. A mora sedaj pridobiti diskretne logaritme vseh ostalih I_{i_j} in jih odšteti iz diskretnega logaritma \tilde{I}_{S_0} . Tu uporabimo dejstvo, da mora P_i med generiranjem ključev pridobiti

in preveriti dokaze znanja brez razkritja znanja o diskretnih logaritmih vseh I_{i_j} , razen za $i_j = i$. Spomnimo se, da poenostavljen napadalec \mathcal{F} deluje tako, da si izbere tarčo (podpisnika P_i) in se nato postavi v vlogo vseh ostalih podpisnikov. To pomeni, da mora dokaze znanja generirati prav napadalec \mathcal{F} (ki torej pozna vrednosti s_{i_j}).

Ker so dokazi znanja brez razkritja znanja o diskretnih logaritmih samo Schnorrovi podpisi, lahko uporabimo lemo o razcepu 5.11, prek katere algoritem A lahko previje napadalca \mathcal{F} in prejme diskretni logaritem s_{i_j} , katerega znanje dokazuje \mathcal{F} . Ker vsi podpisniki za dokaz uporabijo enak izziv $H_3(X_1, I_1, \ldots, X_L, I_L)$, se mora zgoditi samo en razcep, da algoritem A alternativen izziv, na podlagi katerega lahko izračuna vse diskretne logaritme s_{i_j} .

Vprašanje, ki ostane, je časovna zahtevnost algoritma A. Standardne operacije podpisovanja so polinomske v varnostnem parametru k, zato so polinomske tudi za A. Prav tako so učinkoviti odgovori na zgoščevalne poizvedbe. Najbolj časovno zahteven del so previjanja, ki jih je lahko q_H za vsak podpis in generiranje ključev. Ker je poenostavljen napadalec \mathcal{F} polinomski algoritem, lahko opravi največ polinomsko poizvedb, torej je q_H polinomsko število v k. Časovna zahtevnost algoritma A pa je proporcionalna q_H , torej tudi polinomska v k.

Verjetnost uspeha algoritma A temelji na verjetnosti uspeha poenostavljenega napadalca \mathcal{F} . Ta verjetnost je pomnožena še s faktorjem, ki je obratno sorazmeren polinomu v q_H . Ker smo začeli z nezanemarljivo verjetnostjo, in jo skalirali samo s polinomskimi faktorji, je verjetnost uspeha algoritma A še vedno nezanemarljiva. A je torej res polinomski algoritem, ki z nezanemarljivo verjetnostjo vrne odgovor na problem diskretnega algoritma. Ker predpostavljamo, da tak algoritem ne obstaja, je večstranski Schnorrov podpis varen.

6 Varnost večstranskih podpisov v splošnem

Potreba po učinkovitosti je pripeljala avtorje do podpisov, ki potrebujejo le dva kroga. Potem je Drijvers pokazal, da so vse take sheme nevarne.

7 MuSig2

Zaradi nedavne popularizacije Schnorrovega podpisa se je zelo veliko dela vložilo v razvoj večstranskega podpisa, ki vrača popolnoma enake podpise, kot navaden Schnorrov podpis in je hkrati preverljiv z navadno Schnorrovo enačbo za preverjanje podpisov (3.1).

Prva izboljšava v primerjav z zgoraj definiranim podpisom je bila odstranitev enega izmed krogov podpisovanja. To predstavlja bistveno izboljšavo pri hitrosti podpisovanja, saj je komunikacija med podpisniki daleč najdražja operacija. Prvih nekaj poskusov se je izkazalo za dokazljivo nevarne (vsaj z uporabo standardnih metod) [5]. Z uporabo vpogledov iz dokaza pa je Jonasu, Ruffingu in Seurinu [8] uspelo narediti podpis, ki lahko enostavno zamenja Schnorrovega, je ućinkovit in dokazano varen v modelu slučajnega oraklja.

7.1 Konstrukcija

Podpis MuSig2 temelji na enaki naivni shemi, kot večstranski Schnorrov podpis. Večstranski Schnorrov podpis je glavno težavo naivne konstrukcije, torej napad na generiranje ključev, reševal z zahtevo po priložitvi dokaza znanja brez razkritja znanja o privatnih ključih posameznikov. To je pomenilo velike izgube, kar se tiče učinkovitosti podpisovanja in velikosti ključev.

Literatura

- [1] D. Boneh in V. Shoup, A graduate course in applied cryptography, Stanford University, Stanford, 2023.
- [2] C. P. Schnorr, Efficient identification and signatures for smart cards, v: Advances in Cryptology CRYPTO' 89 Proceedings (ur. G. Brassard), Springer New York, New York, NY, 1990, str. 239–252.
- [3] J.-J. Quisquater in dr. How to explain zero-knowledge protocols to your children, v: Advances in Cryptology CRYPTO' 89 Proceedings (ur. G. Brassard), Springer New York, New York, NY, 1990, str. 628–631.
- [4] D. Chaum in E. van Heyst, *Group signatures*, v: Advances in Cryptology EUROCRYPT '91 (ur. D. W. Davies), Springer Berlin Heidelberg, Berlin, Heidelberg, 1991, str. 257–265.
- [5] M. Drijvers in dr. On the security of two-round multi-signatures, v: 2019 IEEE Symposium on Security and Privacy (SP), 2019, str. 1084–1101, DOI: 10.1109/SP.2019.00050.
- [6] D. Pointcheval in J. Stern, Security proofs for signature schemes, v: Advances in Cryptology — EUROCRYPT '96 (ur. U. Maurer), Springer Berlin Heidelberg, Berlin, Heidelberg, 1996, str. 387–398.
- [7] S. Micali, Computationally sound proofs, SIAM Journal on Computing 30(4) (2000) 1253-1298, DOI: 10.1137/S0097539795284959, eprint: https://doi.org/10.1137/S0097539795284959, dostopno na https://doi.org/10.1137/S0097539795284959.
- [8] J. Nick, T. Ruffing in Y. Seurin, MuSig2: Simple Two-Round Schnorr Multi-Signatures, Cryptology ePrint Archive, Paper 2020/1261, 2020, DOI: 10.1007/978-3-030-84242-0_8, dostopno na https://eprint.iacr.org/2020/1261.
- [9] Nikhil, P. Mortensen in Jesse, Specifying the depth of a binary tree on the side, [ogled 25.10.2024], dostopno na https://tex.stackexchange.com/questions/176513/specifying-the-depth-of-a-binary-tree-on-the-side.
- [10] A. Fiat in A. Shamir, How to prove yourself: practical solutions to identification and signature problems, v: Advances in Cryptology — CRYPTO' 86 (ur. A. M. Odlyzko), Springer Berlin Heidelberg, Berlin, Heidelberg, 1987, str. 186–194.
- [11] S. Micali, K. Ohta in L. Reyzin, Accountable-subgroup multisignatures, v: Proceedings of the 8th ACM conference on Computer and Communications Security (ur. P. Samarati), ACM, Philadelphia, PA, USA, 2001, str. 245–254, DOI: 10.1145/501983.502017, dostopno na https://doi.org/10.1145/501983.502017.
- [12] D. R. Stinson in M. B. Paterson, *Cryptography: theory and practice*, Textbooks in Mathematics, CRC Press, 2018.

- [13] M. Tibouchi, Attacks on schnorr signatures with biased nonces, v: NTT Secure Platform Laboratories, ECC Workshop, 2017.
- [14] D. Boneh, Aggregate signatures, v: Encyclopedia of Cryptography and Security (ur. H. C. A. van Tilborg in S. Jajodia), Springer US, Boston, MA, 2011, str. 27–27, DOI: 10.1007/978-1-4419-5906-5_139, dostopno na https://doi.org/10.1007/978-1-4419-5906-5_139.
- [15] United States Declaration of Independence, [ogled 30.10.2024], dostopno na https://en.wikipedia.org/wiki/United_States_Declaration_of_Independence.
- [16] T. Yato in T. Seta, Complexity and completeness of finding another solution and its application to puzzles, IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 86-A (2003) 1052-1060, dostopno na https://api.semanticscholar. org/CorpusID:17154424.
- [17] Zero-knowledge proof, [ogled 9.9.2024], dostopno na https://en.wikipedia.org/wiki/Zero-knowledge proof.