Rappel : Droite vectorielle $L = \{\lambda \overrightarrow{w} | k \in \mathbb{R}\}$ et vecteur \overrightarrow{x}

unique décomposition $\overrightarrow{x} = \overrightarrow{x}^{||} + \overrightarrow{x}^{\perp}$.

Theorem (projection orthogonale de \overrightarrow{x} sur la droite L)

 $\overrightarrow{x}^{\parallel} = (\overrightarrow{x} \cdot \overrightarrow{u}) \overrightarrow{u}$ avec \overrightarrow{u} vecteur de L de norme 1

Chapitre 1 Chapitre 2 Chapitre 3

Rappel

Theorem (Caractérisation des applications linéaires)

Soit $T: \mathbb{R}^m \to \mathbb{R}^n$ une application. L'application T est linéaire (càd il existe une matrice $n \times m$ A telle que pour tout $\overrightarrow{X} \in \mathbb{R}^m$, $T(\overrightarrow{X}) = A \overrightarrow{X}$) si et seulement si

(a)
$$\forall \overrightarrow{v} \in \mathbb{R}^m$$
, $\forall \overrightarrow{w} \in \mathbb{R}^m$ on a $T(\overrightarrow{v} + \overrightarrow{w}) = T(\overrightarrow{v}) + T(\overrightarrow{w})$

(b)
$$\forall \overrightarrow{v} \in \mathbb{R}^m$$
, $\forall k \in \mathbb{R}$ on a $T(k\overrightarrow{v}) = kT(\overrightarrow{v})$.

$$T\begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} = T(x_1 \overrightarrow{e}_1 + \dots \times_m \overrightarrow{e}_m) = (T(\overrightarrow{e}_1) \dots T \overrightarrow{e}_m))\begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$

Definition (Projections.)

Soit $\vec{a} \neq \vec{0}$ dans \mathbb{R}^2 et $L = <\vec{a}>$ une droite vectorielle dans \mathbb{R}^2 . Chaque vecteur \overrightarrow{x} de \mathbb{R}^2 admet une unique décomposition

$$\overrightarrow{x} = \overrightarrow{x}^{||} + \overrightarrow{x}^{\perp},$$

où $\overrightarrow{x}^{||}$ est parallèle à L et où $\overrightarrow{x}^{\perp}$ est orthogonal à L. L'application $\mathbb{R}^2 \longrightarrow \mathbb{R}^2, \overrightarrow{x} \longrightarrow \mathcal{T}(\overrightarrow{x}) = \overrightarrow{x}^{||}$ est la projection (orthogonale) sur la droite L, souvent notée proj_L .

Soit $\overrightarrow{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ vecteur directeur unitaire de L, alors

$$\operatorname{proj}_{L}(\overrightarrow{x}) = (\overrightarrow{x} \cdot \overrightarrow{u})\overrightarrow{u}.$$

 $\overrightarrow{x} o \operatorname{proj}_L(\overrightarrow{x})$ est linéaire de matrice $\begin{bmatrix} u_1^2 & u_1u_2 \\ u_1u_2 & u_2^2 \end{bmatrix}$.

Chapitre 1 Chapitre 2 Chapitre 3

Problem

Calculer la projection dans

•
$$\mathbb{R}^2$$
 sur $D = < \begin{bmatrix} 3 \\ -2 \end{bmatrix} >$

$$ullet$$
 \mathbb{R}^3 sur $D=$

Problem

On considère les matrices

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix},$$

$$D = \frac{1}{5} \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}, \quad E = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad F = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

Quelle matrice correspond à une projection?

Symétries

Chapitre 1 Chapitre 2 Chapitre

Résumé (Symétries)

Soit L une droite dans le plan qui passe par l'origine. On décompose un vecteur du plan \overrightarrow{x} comme $\overrightarrow{x} = \overrightarrow{x}^{||} + \overrightarrow{x}^{\perp}$, où $\overrightarrow{x}^{||}$ est parallèle à L et où $\overrightarrow{x}^{\perp}$ est orthogonal à L. L'application linéaire

 $T(\overrightarrow{x}) = \overrightarrow{x}^{||} - \overrightarrow{x}^{\perp}$ est la symétrie par rapport à la droite L et est souvent notée sym_L et est donnée $\operatorname{par} \operatorname{sym}_L(\overrightarrow{x}) = \overrightarrow{x}^{||} - \overrightarrow{x}^{\perp}$. La formule suivante relie $\operatorname{proj}_L(\overrightarrow{x})$ et $\operatorname{sym}_L(\overrightarrow{x})$:

$$\operatorname{sym}_{L}(\overrightarrow{x}) = 2\operatorname{proj}_{L}(\overrightarrow{x}) - \overrightarrow{x} = 2(\overrightarrow{x} \cdot \overrightarrow{u})\overrightarrow{u} - \overrightarrow{x}$$

La matrice de la symétrie est de la forme

$$\begin{bmatrix} a & b \\ b & -a \end{bmatrix} \quad avec \quad a^2 + b^2 = 1,$$

avec $a = u_1^2 - u_2^2$, $b = 2u_1u_2$ où u_1 et u_2 sont les coordonnées d'un vecteur unitaire de la droite L.

Problem

On considère les matrices

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix},$$

$$D = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad E = \begin{bmatrix} 1 & 0.5 \\ 0 & 1 \end{bmatrix}, \quad F = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

Quelle matrice correspond à une symétrie?

Problem

Calculer la symétrie dans \mathbb{R}^2 par rapport à la droite passant par 0 et de vecteur directeur $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Chapitre 1 Chapitre 2 Chapitre 3

Projections et Symétrie dans l'espace

L une droite dans l'espace qui passe par l'origine. Un vecteur \overrightarrow{x} se décompose en $\overrightarrow{x} = \overrightarrow{x}^{||} + \overrightarrow{x}^{\perp}$, où $\overrightarrow{x}^{||}$ est parallèle à L et où $\overrightarrow{x}^{\perp}$ est orthogonal à L.

Résumé (Projections et symétries dans l'espace)

On a les formules, en fonction du vecteur unitaire \overrightarrow{u} de la droite L Projection sur la droite L $\operatorname{proj}_L(\overrightarrow{x}) = (\overrightarrow{x} \cdot \overrightarrow{u}) \overrightarrow{u}$ Symétrie par rapport à L $\operatorname{sym}_L(\overrightarrow{x}) = 2(\overrightarrow{x} \cdot \overrightarrow{u}) \overrightarrow{u} - \overrightarrow{x}$ Projection sur le plan $V = L^{\perp}$ $\operatorname{proj}_V(\overrightarrow{x}) = \overrightarrow{x} - (\overrightarrow{x} \cdot \overrightarrow{u}) \overrightarrow{u}$ Symétrie par rapport à $V = L^{\perp}$ $\operatorname{sym}_V(\overrightarrow{x}) = -\operatorname{sym}_I(\overrightarrow{x}) = \overrightarrow{x} - 2(\overrightarrow{x} \cdot \overrightarrow{u}) \overrightarrow{u}$

Problem

Calculer la symétrie dans \mathbb{R}^3 par rapport à la droite passant par 0

et de vecteur directeur
$$\begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} \sim 0 = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}$$

$$T(\vec{e}_{1}) = 2 \cdot \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ sym}(\vec{x}) = 2 \cdot (\vec{x} \cdot \vec{y}) \cdot \vec{y} - \vec{x}$$

$$= \frac{2}{3} \cdot 1 \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1/3 \\ -2/3 \\ -2/3 \end{pmatrix} \qquad T(\vec{e}_{3}) = 2 \cdot \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1/3 \\ -2/3 \\ -1/3 \end{pmatrix}$$

$$= \frac{2}{3} \cdot \begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -2/3 \\ -1/3 \\ -1/3 \end{pmatrix}$$

$$= \frac{2}{3} \cdot \begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -2/3 \\ -1/3 \\ -1/3 \end{pmatrix}$$

$$= \frac{2}{3} \cdot \begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -2/3 \\ -1/3 \\ -1/3 \end{pmatrix}$$

$$= \frac{2}{3} \cdot \begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -2/3 \\ -1/3 \\ -1/3 \end{pmatrix}$$

$$= \frac{2}{3} \cdot \begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -2/3 \\ -1/3 \\ -1/3 \end{pmatrix}$$

$$= \frac{2}{3} \cdot \begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1/3 \\ -1/3 \\ -1/3 \end{pmatrix}$$

$$= \frac{2}{3} \cdot \begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1/3 \\ -1/3 \\ -1/3 \end{pmatrix}$$

$$= \frac{2}{3} \cdot \begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1/3 \\ -1/3 \\ -1/3 \end{pmatrix}$$

$$= \frac{2}{3} \cdot \begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1/3 \\ -1/3 \\ -1/3 \end{pmatrix}$$

$$= \frac{2}{3} \cdot \begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1/3 \\ -1/3 \\ -1/3 \end{pmatrix}$$

$$= \frac{2}{3} \cdot \begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1/3 \\ -1/3 \end{pmatrix}$$

$$= \frac{2}{3} \cdot \begin{pmatrix} -1/3 \\ -1/3 \end{pmatrix} = \begin{pmatrix} -1/3 \\ -1/3 \end{pmatrix}$$

$$= \frac{2}{3} \cdot \begin{pmatrix} -1/3 \\ -1/3 \end{pmatrix} = \begin{pmatrix} -1/3 \\ -1/3 \\ -1/3 \end{pmatrix}$$

$$= \frac{2}{3} \cdot \begin{pmatrix} -1/3 \\ -1/3 \end{pmatrix} = \begin{pmatrix} -1/3 \\ -$$

Dans \mathbb{R}^3 on considère le plan **P** d'équation $x - \sqrt{2}y + z = 0$.

- **1** Donner un vecteur \vec{n} orthogonal à ce plan.
- ② Déterminer les vecteurs $\vec{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ appartenant à **P**.
- 3 matrice de la projection orthogonale sur le plan **P**?
- matrice de la symétrie orthogonale par rapport au plan **P**?

Dans \mathbb{R}^3 on considère le plan **P** d'équation $x - \sqrt{2}y + z = 0$.

- On Donner un vecteur \vec{n} orthogonal à ce plan.

 Obéterminer les vecteurs $\vec{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ appartenant à \vec{P} .
- matrice de la projection orthogonale sur le plan P?
- matrice de la symétrie orthogonale par rapport au plan P?

Rotations.

FIGURE – Rotation d'angle θ

Definition (Coordonnées polaire.)

A un point $(x, y) \in \mathbb{R}^2$ on associe un couple (r, ρ) où r est un réel positif ou nul et ρ un angle entre 0 ret 2π tels que

$$x = r \cos(\rho)$$

$$y = r \sin(\rho)$$

Chapitre 1 Chapitre 2 Chapitre 3

$$\cos(\rho + \theta) = \cos(\rho)\cos(\theta) - \sin(\rho)\sin(\theta)$$
$$\sin(\rho + \theta) = \cos(\rho)\sin(\theta) + \sin(\rho)\cos(\theta)$$

rotation d'angle θ :

$$\overrightarrow{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} r\cos(\rho) \\ r\sin(\rho) \end{bmatrix} \rightsquigarrow \overrightarrow{y} = \begin{bmatrix} r\cos(\rho + \theta) \\ r\sin(\rho + \theta) \end{bmatrix}$$

. Formules trigonométriques pour la somme des angles, on a

$$T(\overrightarrow{x}) = \begin{bmatrix} r\cos(\rho + \theta) \\ r\sin(\rho + \theta) \end{bmatrix} = \begin{bmatrix} r\cos(\rho)\cos(\theta) - r\sin(\rho)\sin(\theta) \\ r\cos(\rho)\sin(\theta) + r\sin(\rho)\cos(\theta) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\theta)x_1 - \sin(\theta)x_2 \\ \sin(\theta)x_1 + \cos(\theta)x_2 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Le calcul qui précède montre que ${\cal T}$ est bien linéaire et admet pour matrice la matrice

 $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}.$

Résumé (Rotation)

La matrice d'une rotation dans \mathbb{R}^2 d'angle heta est la matrice

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix},$$

$$\left[\begin{array}{cc} a & -b \\ b & a \end{array}\right], \ avec \ a^2 + b^2 = 1$$

Les colonnes sont des vecteurs unitaires

Similitude

Chapitre 1 Chapitre 2 Chapitre 3

FIGURE - Similitude

Résumé (Rotation composée avec une homothétie : similitude)

Une matrice de la forme $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ est la matrice d'une rotation composée avec une homothétie.

On désigne par r et θ les coordonnées polaires du vecteur $\begin{bmatrix} a \\ b \end{bmatrix}$, alors l'angle de la rotation est de mesure θ et r est le rapport de l'homothétie.

Les colonnes sont de même taille

Résumé (Projections et symétries dans l'espace)

On a les formules, en fonction du vecteur unitaire \overrightarrow{u} de la droite L Projection sur la droite L $\operatorname{proj}_L(\overrightarrow{x}) = (\overrightarrow{x} \cdot \overrightarrow{u})\overrightarrow{u}$ Symétrie par rapport à L $\operatorname{sym}_L(\overrightarrow{x}) = 2(\overrightarrow{x} \cdot \overrightarrow{u})\overrightarrow{u} - \overrightarrow{x}$ Projection sur le plan $V = L^{\perp}$ $\operatorname{proj}_V(\overrightarrow{x}) = \overrightarrow{x} - (\overrightarrow{x} \cdot \overrightarrow{u})\overrightarrow{u}$ Symétrie par rapport à $V = L^{\perp}$ $\operatorname{sym}_V(\overrightarrow{x}) = \overrightarrow{x} - 2(\overrightarrow{x} \cdot \overrightarrow{u})\overrightarrow{u}$

Chapitre 1 Chapitre 2 Chapitre 3

Résumé (Rotation dans \mathbb{R}^2 d'angle θ)

$$\left[egin{array}{ccc} \cos(heta) & -\sin(heta) \ \sin(heta) & \cos(heta) \end{array}
ight], \quad \left[egin{array}{ccc} a & -b \ b & a \end{array}
ight], \; avec \; a^2 + b^2 = 1$$

Résumé (Transvection verticale et horizontale)

La matrice d'une transvection verticale est $\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$, et la matrice d'une transvection horizontale est $\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$, où $k \in \mathbb{R}$.

L'application linéaire $T:\mathbb{R}^3 \to \mathbb{R}^3$, $\vec{x} \mapsto A\vec{x}$ donnée par

$$A = \frac{1}{9} \left[\begin{array}{rrr} 8 & -2 & 2 \\ -2 & 5 & 4 \\ 2 & 4 & 5 \end{array} \right]$$

représente soit une projection orthogonale soit une symétrie orthogonale.

Déterminer laquelle des affirmations suivantes est vraie :

- 1 T est une projection sur une droite qu'on indiquera.
- ② T est une projection sur un plan dont on donnera l'équation.
- 3 T est une symétrie par rapport à une droite qu'on indiquera.
- T est une symétrie par rapport à un plan dont on donnera l'équation.

Chapitre 1 Chapitre 2 Chapitre 3

Même question pour

1

$$A = \frac{1}{3} \left[\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]$$

2

$$A = \frac{1}{6} \left[\begin{array}{rrr} 5 & -2 & 1 \\ -2 & 2 & 2 \\ 1 & 2 & 5 \end{array} \right]$$