Chapter 6 Block Cipher Operation

 \rightarrow

정보보안

Abridged version

Modes of Operation

Motivation

- A block cipher by itself is only suitable for the encryption of one fixedlength block.
- A mode of operation describes how to repeatedly apply a cipher's single-block operation to securely transform amounts of data larger than a block.

ECB (Electronic Code Book)

Encryption

-
$$C_j = E(K, P_j)$$

for $j = 1, ..., N$

Pard SH. DHEY HETHORSE

Decryption

-
$$P_j = D(K, C_j)$$

for $j = 1, ..., N$

(b) Decryption

Disadvantage of ECB

- ECB is deterministic. THE HAPON SOUTH PARTY
 - The disadvantage of ECB is that identical plaintext blocks are encrypted into identical ciphertext blocks.
 - A striking example of the degree to which ECB can leave plaintext data patterns in the ciphertext can be seen when ECB mode is used to encrypt a bitmap image which uses large areas of uniform color.

Original Image

Encrypted using ECB mode

Encrypted using other modes

针漫型特别空气

IV (Initialization Vector)

ヨフリタトるH子と Vector

- Motivation
 - An initialization vector (IV) is a block of bits that is used by several modes to randomize the encryption and hence to produce distinct ciphertexts even if the same plaintext is encrypted multiple times.
- · Security requirements 동일한 ખામગા કુબલાર Duby 24લું.
 - The IV does not need to be secret.
 - An initialization vector is never reused under the same key.
 - In CBC mode, the IV must, in addition, be unpredictable at encryption time.

CBC (Cipher Block Chaining)

- Encryption
 - $C_0 = IV$
 - $C_i = E(K, [P_i \oplus C_{j-1}])$

STON SELLES TON LIZENOFER

对是 IV是是 (12 H多

- Decryption
 - $C_0 = IV$
 - $P_i = D(K, C_i) \oplus C_{i-1}$

(a) Encryption 254 128 Lit

CFB (Cipher Feedback)

Encryption

$$- C_0 = IV$$

$$- C_j = E(K, C_{j-1}) \oplus P_j$$

Decryption

$$- C_0 = IV$$

$$- P_j = E(K, C_{j-1}) \oplus C_j$$

OFB (Output Feedback)

Encryption

$$-I_0 = IV$$

$$- I_j = O_{j-1}$$

$$- O_j = E(K, I_j)$$

$$- C_j = P_j \oplus O_j$$

Decryption

$$-I_0 = IV$$

$$- I_j = O_{j-1}$$

$$- O_j = E(K, I_j)$$

$$- P_j = C_j \oplus O_j$$

CTR (Counter)

일 ! 기능 , 세일 취형관 격업 가능

Encryption

$$- C_j = P_j \oplus E(K, T_j)$$

Decryption

$$- P_j = C_j \oplus E(K, T_j)$$

(b) Decryption

Characteristics

- CFB, OFB, CTR
 - The block cipher is only used in the encryption direction.
- OFB, CTR
 - Bit errors in transmission do not propagate.
 - The block cipher operations may be performed in advance.

• CTR

- The *i*th block of plaintext or ciphertext can be processed in random-access fashion.
- CTR mode is well suited to operate on a multi-processor machine where blocks can be encrypted/decrypted in parallel.

NIST Block Cipher Modes

- 8 confidentiality modes
 - ECB, CBC, OFB, CFB, CTR, XTS-AES, FF1, FF3.
- 1 authentication mode
 - CMAC BLOCK GPER OBSOFN SIDE ZHOUZEZON: CHALC
- 5 combined modes for confidentiality and authentication
 - CCM, GCM, KW, KWP, TKW