Pag 1029 N 394 ~ Esercizio quide

$$x^3 - 8i = 0$$

Posso riscrivere l'equezione come $x^3 = + 8i$

8i la parto in forma trigonometrica

 $r = \sqrt{a^2 + b^2} = \log x^2 = 8$
 $x \cdot Dato de non ce parte reale, $x - \frac{\pi}{2}$ se boo Busse

8i = 8 (cos $\frac{\pi}{2} + i$ siu $\frac{\pi}{2}$) = 8 e i $\frac{\pi}{2}$

No la seuse parti

 $x = \frac{\pi}{2} + 2k\pi$

The seuse parti

 $x = \frac{\pi}{2} + 2k\pi$
 $x = \frac{\pi}{2} + 2k\pi$$

363 (vorante).
$$\times = 2 + 2 \cdot 3 \cdot i$$
 $\Gamma = \sqrt{\alpha^2 + b^2} = \sqrt{4 + 12} = \sqrt{6} = 4$
 $\Delta = \operatorname{arctg}\left(\frac{25}{2}\right) = \operatorname{arctg}\left(5\right) = \frac{1}{3}$
 $\times = 4 \cdot 2 \cdot 5$
 $\times = \sqrt{4} \cdot 6$
 $\times = \sqrt{$

Es G Reva B

$$x^2 - (2-i)x + 3-i = 0$$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+1-4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+1-4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+1-4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+1-4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+1-4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+1-4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+1-4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+1-4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+1-4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |2+1-4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |4-1-4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |4-1-4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |4-1-4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4-1-4i - |4-1-4i| = -9$
 $\Delta = [-(2-i)]^2 - 4(3-i) = 4$