	$\Delta_{1}^{\#1}{}_{\alpha\beta}$	$\Delta_{1}^{\#2}{}_{+}^{}lphaeta}$	$\Delta_{1}^{\#3}{}_{lphaeta}$	$\Delta_{1^{-}lpha}^{\#1}$	$\Delta_{1}^{\#2}{}_{lpha}$	$\Delta_{1^{-}\alpha}^{\#3}$	$\Delta_{1^{-}\alpha}^{\#4}$	$\Delta_{1}^{\#5}{}_{lpha}$	$\Delta_{1^-lpha}^{\#6}$
$\Delta_{1+}^{\#1} \dagger^{\alpha\beta}$	$\frac{4}{3} \left(-\frac{1}{a_0 + 4a_1 - 4a_2} + \frac{2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9}{2(2a_1 + a_2)(a_5 + 3a_7) + a_9^2 + a_0(2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9)} \right)$	$\frac{2}{3}\sqrt{2}\left(-\frac{1}{a_0+4a_1-4a_2}-\frac{2(2a_1+a_2-2a_5-6a_7+2a_9)}{2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9)}\right)$	$-\frac{4 \left(2 a_{1}+a_{2}+a_{9}\right)}{3 \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$	0	0	0	0	0	0
$\Delta_{1+}^{\#2} \dagger^{\alpha\beta} \boxed{\frac{2}{3}}$	$\sqrt{2} \left(-\frac{1}{a_0 + 4a_1 - 4a_2} - \frac{2(2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9)}{2(2a_1 + a_2)(a_5 + 3a_7) + a_9^2 + a_0(2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9)} \right)$	$-\frac{2}{3(a_0+4a_1-4a_2)}+\frac{8(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4\sqrt{2}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0	0	0	0	0	0
$\Delta_{1}^{#3} \dagger^{\alpha\beta}$	$-\frac{4 (2 a_1+a_2+a_9)}{3 (2 (2 a_1+a_2) (a_5+3 a_7)+a_9^2+a_0 (2 a_1+a_2-2 a_5-6 a_7+2 a_9))}$	$\frac{4\sqrt{2}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$-\frac{4 \left(a_{0}-2 a_{1}-a_{2}\right)}{3 \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$	0	0	0	0	0	0
$\Delta_1^{#1} \dagger^{\alpha}$	0	0	0	$\frac{4(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4\sqrt{2}(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0	0	$-\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4(2a_1+a_2+a_9)}{3\sqrt{3}(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$
$\Delta_1^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{4\sqrt{2}(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{8(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0	0	$-\frac{8(2a_1+a_2+a_9)}{3\sqrt{3}(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$
$\Delta_1^{\#3} \uparrow^{\alpha}$	0	0	0	0	0	$-\frac{10}{9(a_0+2a_5-6a_7)}-\frac{1}{6(3a_0-2(a_5-8a_6+5a_7-4c_{13}k^2))}$	$\frac{1}{18} \sqrt{5} \left(\frac{4}{a_0 + 2a_5 - 6a_7} - \frac{3}{3a_0 - 2a_5 + 16a_6 - 10a_7 + 8c_{13}k^2} \right)$	$-\frac{1}{\sqrt{2} (9a_0-6(a_5-8a_6+5a_7-4c_{13}k^2))}$	$-\frac{1}{9a_0-6(a_5-8a_6+5a_7-4c_{13}k^2)}$
$\Delta_1^{\#4} \uparrow^{\alpha}$	0	0	0	0	0	$\frac{1}{18} \sqrt{5} \left(\frac{4}{a_0 + 2a_5 - 6a_7} - \frac{3}{3a_0 - 2a_5 + 16a_6 - 10a_7 + 8c_{13}k^2} \right)$	$-\frac{2}{9(a_0+2a_5-6a_7)}-\frac{5}{6(3a_0-2(a_5-8a_6+5a_7-4c_{13}k^2))}$	$-\frac{\sqrt{\frac{5}{2}}}{9 a_0 - 6 (a_5 - 8 a_6 + 5 a_7 - 4 c_{13} k^2)}$	$-\frac{\sqrt{5}}{9a_0-6(a_5-8a_6+5a_7-4c_{13}k^2)}$
$\Delta_1^{\#5} \uparrow^{\alpha}$	0	0	0	$-\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$-\frac{8(2a_1+a_2+a_9)}{3\sqrt{3}(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$-\frac{1}{\sqrt{2} (9 a_0 - 6 (a_5 - 8 a_6 + 5 a_7 - 4 c_{13} k^2))}$	$-\frac{\sqrt{\frac{5}{2}}}{9 a_0 - 6 (a_5 - 8 a_6 + 5 a_7 - 4 c_{13} k^2)}$	$\frac{8(-a_0+2a_1+a_2)}{9(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))} - \frac{1}{9a_0-6(a_5-8a_6+5a_7-4c_{13}k^2)}$	$(\sqrt{2} (12a_0^2 - 3a_9^2 - a_0 (30a_1 + 15a_2 + 2a_5 - 64a_6 + 22a_7 + 6a_9 - 32c_{13}k^2) + 2(2a_1 + a_2) (a_5 - 32a_6 + 11a_7 - 16c_{13}k^2)))/$ $(9(2(2a_1 + a_2) (a_5 + 3a_7) + a_9^2 + a_0 (2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9))$ $(3a_0 - 2(a_5 - 8a_6 + 5a_7 - 4c_{13}k^2)))$
$\Delta_1^{\#6} \uparrow^{lpha}$	0	0	0	$\frac{4(2a_1+a_2+a_9)}{3\sqrt{3}(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$-\frac{1}{9 a_0-6 (a_5-8 a_6+5 a_7-4 c_{13} k^2)}$		$(\sqrt{2} (12a_0^2 - 3a_9^2 - a_0 (30a_1 + 15a_2 + 2a_5 - 64a_6 + 22a_7 + 6a_9 - 32c_{13}k^2) + 2(2a_1 + a_2)(a_5 - 32a_6 + 11a_7 - 16c_{13}k^2)))/$ $(9 (2 (2a_1 + a_2)(a_5 + 3a_7) + a_9^2 + a_0 (2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9))$ $(3a_0 - 2(a_5 - 8a_6 + 5a_7 - 4c_{13}k^2)))$	$\frac{-4a_0 + 8a_1 + 4a_2}{9(2(2a_1 + a_2)(a_5 + 3a_7) + a_9^2 + a_0(2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9))} - \frac{2}{9a_0 - 6(a_5 - 8a_6 + 5a_7 - 4c_{13}k^2)}$
$\mathcal{T}_{1}^{#1}\dagger^{\alpha}$	0	0	0	0	0	0	0	0	0

	Γ ^{#1} ₂ + αβ	Γ ^{#2} ₂ + αβ	Γ ₂ + _{αβ}	$h_{2}^{\#1}_{\alpha\beta}$	Γ ^{#1} ₂ αβχ	Γ ^{#2} ₂ αβχ	Γ#1 +	Δ ₃ -1 1
$\Gamma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{1}{4} (a_0 - 2 a_1 - a_2)$	0	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	0	0	0	$-\alpha \beta \chi$	$-\alpha\beta\chi$
$\Gamma_{2}^{\#2} \dagger^{\alpha\beta}$	0	$-\frac{3}{4}(a_0+2a_5-6a_7)$	0	0	0	0	$-\frac{3}{4}(a_0)$	3 (a0.
$\Gamma_{2}^{\#3} \dagger^{\alpha\beta}$	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	0	$-\frac{3}{4}(2a_1+a_2-2a_5-6a_7+2a_9)$	0	0	0	Γ ₃ -1	4 +2 <i>a</i> 5-(
$h_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0	$-\frac{a_0 k^2}{8}$	0	0	αβχ 2. a.5 - 6 ι	6 a 7)
$\Gamma_{2}^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0	0	$\frac{1}{4}(a_0-2a_1-a_2)$	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	<i>a</i> ₇)	
$\Gamma_2^{\#2} + \alpha \beta \chi$	0	0	0	0	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	$-\frac{3}{4} (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)$		

 $\frac{?}{?}$ $\frac{3a_{6}+5a_{7}}{3}>0$?

 $a_0 < 0 \&\& a_7 > \frac{1}{10} (3 a_0 - 2 a_5 + 16 a_6) \&\& c_{13} > 0$

Lagrangian density $\frac{1}{4} + \alpha \beta \left[\frac{1}{4} \left(-a_0 - 6 a_1 + 5 a_2 \right) \right] - \frac{a_0 + 2 a_1 - 3 a_2}{2 \sqrt{2}} \qquad \frac{1}{4} \left(-2 a_1 - a_2 - a_9 \right) \\
\frac{4}{4} + \alpha \beta \left[-\frac{a_0 + 2 a_1 - 3 a_2}{2 \sqrt{2}} \right] \qquad \frac{1}{2} \left(-2 a_1 + a_2 \right) \qquad \frac{2 a_1 + a_2 + a_9}{2 \sqrt{2}}$ 0 0 0 0 0 $+^{\alpha\beta}$ $\frac{1}{4} \left(-2a_1 - a_2 - a_9 \right)$ $\frac{2a_1 + a_2 + a_9}{2\sqrt{2}}$ $\left| -\frac{3}{4} \left(2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9 \right) \right|$ 0 $\frac{1}{12} (a_0 - 2 a_1 - a_2)$ $\frac{a_0 - 2 a_1 - a_2}{6 \sqrt{2}}$ $\frac{a_0-2a_1-a_2}{6a_1/2}$ $\frac{1}{6}(a_0-2a_1-a_2)$ $-\frac{2a_1+a_2+a_9}{2\sqrt{3}}$ $\frac{2a_1+a_2+a_9}{2\sqrt{6}}$ 0 0 0 $\frac{-3a_0+2(a_5-8a_6+5a_7-4c_{13}k^2)}{12\sqrt{2}}$ 0 $\left| \frac{1}{12} \left(-9 a_0 - 14 a_5 - 8 a_6 + 50 a_7 - 4 c_{13} k^2 \right) \right| \frac{1}{3} \sqrt{5} \left(a_5 - 2 a_6 - a_7 - c_{13} k^2 \right)$ $-\frac{a_0}{4} + \frac{1}{6} (a_5 - 8 a_6 + 5 a_7 - 4 c_{13} k^2)$ $\frac{1}{12} \sqrt{\frac{5}{2}} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 - 4 c_{13} k^2 \right) \right)$ $\frac{1}{12} \sqrt{5} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 - 4 c_{13} k^2 \right) \right)$ 0 $\frac{1}{3}\sqrt{5}(a_5-2a_6-a_7-c_{13}k^2)$ $\frac{1}{12}(-9a_0+2a_5-40a_6+34a_7-20c_{13}k^2)$ $-\frac{2a_1+a_2+a_9}{2\sqrt{6}} \qquad -\frac{2a_1+a_2+a_9}{2\sqrt{3}} \qquad \frac{-3a_0+2(a_5-8a_6+5a_7-4c_{13}k^2)}{12\sqrt{2}}$ $\left| \frac{1}{12} \sqrt{\frac{5}{2}} \left(-3a_0 + 2(a_5 - 8a_6 + 5a_7 - 4c_{13}k^2) \right) \right| \frac{1}{12} \left(-3a_0 - 2(6a_1 + 3a_2 - 7a_5 + 8a_6 - 23a_7 + 6a_9 + 4c_{13}k^2) \right) \right|$ $-\frac{3a_{0}-6a_{1}-3a_{2}+4a_{5}+16a_{6}+8a_{7}-6a_{9}+8c_{13}k^{2}}{6a_{1}-6a_{2}+8a_{3}-6a_{9}+8c_{13}k^{2}}$ $\frac{1}{12}$ (-6 a_0 - 6 a_1 - 3 a_2 + 10 a_5 - 32 a_6 + 38 a_7 - 6 a_9 - 16 c_{13} k^2) 0 0 0

$\Delta^{\#1}_{2^+ lphaeta}$	$\Delta^{\#2}_{2^+lphaeta}$	$\Delta^{\#3}_{2^+lphaeta}$	${\mathcal T}_{2}^{\#1}{}_{lphaeta}$	$\Delta_{2}^{\#1}{}_{lphaeta\chi}$	$\Delta^{\#2}_{2^-lphaeta\chi}$	- 5	$\frac{2\left(\Delta_{1}^{\#}\right)^{\alpha}}{\Delta_{1}^{\#1}}$	Sou $SO(\frac{50}{7})$		
$4(2a_1+a_2-2a_5-6a_7+2a_9)$ $5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9)$	0	$-\frac{4 \left(2 a_{1}+a_{2}+a_{9}\right)}{\sqrt{3} \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$	0	0	0	4 -	#6 \alpha . \ 1	3) irrep $= 0$ $+ 3 \Delta_{0+}^{#2}$ $= 0$ $= 0$		
0	$-\frac{4}{3(a_0+2a_5-6a_7)}$	0	0	0	0		$+ \Delta_{1^{-}}^{#5^{\alpha}}$ $\Delta_{1^{-}}^{#2^{\alpha}}$			
$\frac{4(2a_1+a_2+a_9)}{(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0	$-\frac{4 \left(a_{0} - 2 a_{1} - a_{2}\right)}{3 \left(2 \left(2 a_{1} + a_{2}\right) \left(a_{5} + 3 a_{7}\right) + a_{9}^{2} + a_{0} \left(2 a_{1} + a_{2} - 2 a_{5} - 6 a_{7} + 2 a_{9}\right)\right)}$	0	0	0			aints 2 $\Delta_{0+}^{\#4}$		
0	0	0	$-\frac{8}{a_0 k^2}$	0	0		#4 a +		_#1	
0	0	0	0	$\frac{4 (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)}{2 (2 a_1 + a_2) (a_5 + 3 a_7) + a_9^2 + a_0 (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)}$	$-\frac{4 (2 a_{1}+a_{2}+a_{9})}{\sqrt{3} (2 (2 a_{1}+a_{2}) (a_{5}+3 a_{7})+a_{9}^{2}+a_{0} (2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}))}$		- Δ ₁ ^{#3 c}		Γ ₀ ^{#1} + 0	
0	0	0	0	$-\frac{4 (2 a_1+a_2+a_9)}{\sqrt{3} (2 (2 a_1+a_2) (a_5+3 a_7)+a_9^2+a_0 (2 a_1+a_2-2 a_5-6 a_7+2 a_9))}$	$-\frac{4 (a_0 - 2 a_1 - a_2)}{3 (2 (2 a_1 + a_2) (a_5 + 3 a_7) + a_9^2 + a_0 (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9))}$	<u> </u>	- ω ω	3 1 1 #	$\Gamma_{0+}^{#2} + 0 \frac{1}{4}$	(-30

"1" α	Lagrangian density	
0	$-\frac{1}{3} a_0 \Gamma_{\alpha \mu}^{\mu} \Gamma_{\beta}^{\alpha\beta} + \frac{1}{3} a_1 \Gamma_{\alpha \mu}^{\mu} \Gamma_{\beta}^{\alpha\beta} + \frac{1}{6} a_2 \Gamma_{\alpha \mu}^{\mu} \Gamma_{\beta}^{\alpha\beta} -$	Δ
0	$2 a_6 \Gamma_{\alpha \mu}^{\mu} \Gamma_{\beta}^{\alpha\beta} + \frac{1}{3} a_9 \Gamma_{\alpha \mu}^{\mu} \Gamma_{\beta}^{\alpha\beta} - \frac{1}{8} a_0 \Gamma_{\alpha\beta\mu} \Gamma^{\alpha\beta\mu} - a_1 \Gamma_{\alpha\beta\mu} \Gamma^{\alpha\beta\mu} +$	Δ
	$\frac{1}{4} a_5 \Gamma_{\alpha\beta\mu} \Gamma^{\alpha\beta\mu} + \frac{9}{4} a_7 \Gamma_{\alpha\beta\mu} \Gamma^{\alpha\beta\mu} - \frac{1}{2} a_9 \Gamma_{\alpha\beta\mu} \Gamma^{\alpha\beta\mu} - \frac{1}{8} a_0 \Gamma_{\alpha\mu\beta} \Gamma^{\alpha\beta\mu} -$	Δ
0	$\frac{1}{2} a_2 \Gamma_{\alpha\mu\beta} \Gamma^{\alpha\beta\mu} + \frac{1}{4} a_5 \Gamma_{\alpha\mu\beta} \Gamma^{\alpha\beta\mu} + \frac{9}{4} a_7 \Gamma_{\alpha\mu\beta} \Gamma^{\alpha\beta\mu} - \frac{1}{2} a_9 \Gamma_{\alpha\mu\beta} \Gamma^{\alpha\beta\mu} - \frac{1}{2} a_{10} \Gamma_{\alpha\mu\beta} \Gamma^{\alpha\beta\mu} - \frac{1}{2} \alpha_{10} \Gamma^{\alpha\beta\mu} - \frac{1}{2} \Gamma^{\alpha\beta\mu} - \frac{1}{2} \Gamma^{\alpha\beta\mu} - \frac{1}$	Δ
0	$\frac{1}{2} a_2 \Gamma^{\alpha\beta\mu} \Gamma_{\beta\alpha\mu} - \frac{1}{2} a_5 \Gamma^{\alpha\beta\mu} \Gamma_{\beta\alpha\mu} - \frac{1}{2} a_0 \Gamma^{\alpha\beta\mu} \Gamma_{\beta\mu\alpha} + a_2 \Gamma^{\alpha\beta\mu} \Gamma_{\beta\mu\alpha} -$	T
0	$a_5 \Gamma^{\alpha\beta\mu} \Gamma_{\beta\mu\alpha} + \frac{1}{2} a_9 \Gamma^{\alpha\beta\mu} \Gamma_{\beta\mu\alpha} + \frac{1}{12} a_0 \Gamma^{\alpha}_{\alpha}^{\beta} \Gamma_{\beta\mu}^{\mu} - \frac{2}{3} a_1 \Gamma^{\alpha}_{\alpha}^{\beta} \Gamma_{\beta\mu}^{\mu} -$	T
0	$\frac{1}{3} a_2 \Gamma^{\alpha}_{\alpha}{}^{\beta} \Gamma^{\mu}_{\beta\mu} + \frac{1}{2} a_5 \Gamma^{\alpha}_{\alpha}{}^{\beta} \Gamma^{\mu}_{\beta\mu} + \frac{1}{2} a_7 \Gamma^{\alpha}_{\alpha}{}^{\beta} \Gamma^{\mu}_{\beta\mu} - \frac{1}{2} a_9 \Gamma^{\alpha}_{\alpha}{}^{\beta} \Gamma^{\mu}_{\beta\mu} +$	Δ
	$\frac{1}{12} a_0 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\mu}_{\beta \mu} + \frac{1}{2} a_5 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\mu}_{\beta \mu} + \frac{1}{2} a_7 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\mu}_{\beta \mu} - \frac{1}{6} a_9 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\mu}_{\beta \mu} +$	
0	$a_1 \Gamma^{\alpha\beta\mu} \Gamma_{\mu\beta\alpha} - \frac{1}{2} a_5 \Gamma^{\alpha\beta\mu} \Gamma_{\mu\beta\alpha} + \frac{1}{2} a_9 \Gamma^{\alpha\beta\mu} \Gamma_{\mu\beta\alpha} + \frac{1}{6} a_0 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\mu}_{\beta\mu} -$	
0	$a_7 \Gamma^{\alpha}_{\alpha}^{\beta} \Gamma^{\mu}_{\beta\mu} + \frac{1}{6} a_9 \Gamma^{\alpha}_{\alpha}^{\beta} \Gamma^{\mu}_{\beta\mu} - \frac{1}{2} a_7 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\mu}_{\beta\mu} + \frac{1}{3} a_1 \Gamma^{\alpha}_{\alpha}^{\beta} \Gamma^{\mu}_{\mu\beta} +$	
0	$\frac{1}{6} a_2 \Gamma^{\alpha}_{\alpha}{}^{\beta} \Gamma^{\mu}_{\mu\beta} - \frac{1}{2} a_7 \Gamma^{\alpha}_{\alpha}{}^{\beta} \Gamma^{\mu}_{\mu\beta} + \frac{1}{6} a_9 \Gamma^{\alpha}_{\alpha}{}^{\beta} \Gamma^{\mu}_{\mu\beta} - \frac{1}{2} a_0 \Gamma^{\alpha\beta\mu} \partial_{\beta}h_{\alpha\mu} -$	
0	$\frac{1}{4} a_0 \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\beta} h^{\mu}_{\mu} + \frac{1}{4} a_0 \Gamma^{\alpha\beta}_{\alpha} \partial_{\beta} h^{\mu}_{\mu} - \frac{1}{4} a_0 h^{\mu}_{\mu} \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} +$	
U	$\frac{1}{4} a_0 h^{\mu}_{\ \mu} \partial_{\beta} \Gamma^{\alpha\beta}_{\ \alpha} - \frac{1}{2} a_0 h_{\alpha\mu} \partial_{\beta} \Gamma^{\alpha\beta\mu} + \frac{1}{4} a_0 h^{\alpha\beta} \partial_{\beta} \partial_{\alpha} h^{\mu}_{\ \mu} -$	
	$\frac{1}{8} a_0 \partial_{\beta} h^{\mu}_{\ \mu} \partial^{\beta} h^{\alpha}_{\ \alpha} + \frac{1}{2} a_0 \Gamma^{\alpha}_{\ \alpha}{}^{\beta} \partial_{\mu} h^{\mu}_{\beta} + \frac{1}{4} a_0 \partial^{\beta} h^{\alpha}_{\ \alpha} \partial_{\mu} h^{\mu}_{\beta} -$	
	$\frac{1}{2} a_0 h^{\alpha\beta} \partial_{\mu} \partial_{\beta} h_{\alpha}^{\ \mu} + \frac{1}{4} a_0 h^{\alpha}_{\ \alpha} \partial_{\mu} \partial_{\beta} h^{\beta\mu} + \frac{1}{4} a_0 h^{\alpha\beta} \partial_{\mu} \partial^{\mu} h_{\alpha\beta} -$	
	$\frac{1}{4} a_0 h^{\alpha}_{\alpha} \partial_{\mu} \partial^{\mu} h^{\beta}_{\beta} - \frac{1}{4} a_0 \partial_{\beta} h_{\alpha\mu} \partial^{\mu} h^{\alpha\beta} + \frac{1}{8} a_0 \partial_{\mu} h_{\alpha\beta} \partial^{\mu} h^{\alpha\beta} +$	
	$\frac{1}{2} a_0 h_{\beta\mu} \partial^{\mu} \Gamma^{\alpha}{}_{\alpha}{}^{\beta} + c_{13} \partial_{\alpha} \Gamma^{\nu}_{\mu\nu} \partial^{\mu} \Gamma^{\alpha\beta}{}_{\beta} - c_{13} \partial_{\mu} \Gamma^{\nu}_{\alpha\nu} \partial^{\mu} \Gamma^{\alpha\beta}{}_{\beta}$	
	Added source term: $h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi} \Delta_{\alpha\beta\chi}$	

	- #1	- #2	- #3	⊢ # <i>∆</i>	, #1	, #2	ш1
	Γ ₀ ^{#1}	Γ ₀ ^{#2}	Γ ₀ ^{#3}	Γ ₀ ^{#4}	$h_{0}^{\#1}$	$h_{0}^{\#2}$	Γ ₀ -1
Γ ₀ ^{#1} †	0	0	0	0	0	0	0
Γ ₀ ^{#2} †	0	$\frac{1}{4} \left(-3 a_0 - 2 \left(a_5 + 4 a_6 - 7 a_7 \right) \right)$	a ₅ -2a ₆ -a ₇	$\frac{-3a_0+2(a_5-8a_6+5a_7)}{4\sqrt{2}}$	0	0	0
Γ ₀ ^{#3} †	0	a ₅ - 2 a ₆ - a ₇	$\frac{1}{4}$ (-3 a_0 - 2 (a_5 + 4 a_6 - 7 a_7))	$\frac{-3 a_0 + 2 (a_5 - 8 a_6 + 5 a_7)}{4 \sqrt{2}}$	0	0	0
Γ ₀ ^{#4} †	0	$\frac{-3 a_0 + 2 (a_5 - 8 a_6 + 5 a_7)}{4 \sqrt{2}}$	$\frac{-3 a_0 + 2 (a_5 - 8 a_6 + 5 a_7)}{4 \sqrt{2}}$	$\frac{1}{4} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 \right) \right)$	0	0	0
$h_{0}^{\#1}$ †	0	0	0	0	$\frac{a_0 k^2}{4}$	0	0
$h_{0}^{\#2}$ †	0	0	0	0	0	0	0
Γ ₀ [#] -1 †	0	0	0	0	0	0	$-\frac{a_0}{2} - 2 a_1 + 2 a_2$