O autorima, radu i problemu Pravougaoni kontejner Konveksni kontejner Primena i zaključak Literatura

Aproksimacija pravougaonika minimalnih površina i konveksnih kontejnera za pakovanje konveksnih poligona

Geometrijski algoritmi - prezentacija rada iz časopisa

Nikola Belaković 1023/2023

Matematički fakultet, Univerzitet u Beogradu

novembar 2023.

O autorima, radu i problemu Pravougaoni kontejner Konveksni kontejner Primena i zaključak Literatura

Sadržaj

- O autorima, radu i problemu
 - Podaci o autorima
 - O problemu
 - Prethodna istraživanja
 - Osnovni pojmovi
- Pravougaoni kontejner
 - Algoritam
 - Algoritam korak 1
 - Algoritam korak 2
 - Rezultati
- Konveksni kontejner
 - Algoritam
 - Rezultati
- Primena i zaključak
- 5 Literatura

O autorima

- Journal of Computational Geometry 8(1) (2017) 1-10.
- Autori rada su:
 - Helmut Alt (alt@mi.fu-berlin.de)
 Institute of Computer Science, Freie Universität Berlin,
 Germany
 - Mark de Berg (mdberg@win.tue.nl)
 Department of Computing Science, Eindhoven, the Netherlands
 - Christian Knauer (christian.knauer@uni-bayreuth.de)
 Universität Bayreuth, Institut für Angewandte Informatik, AG
 Algorithmen und Datenstrukturen (Al VI),Bayreuth, Germany

O problemu

- Klasičan problem kombinatorne optimizacije u geometriji
- Dat je skup konveksnih poligona $P = \{p1, p2,...,pk\}$ sa ukupno p tačaka
- Problem pronalaženja kontejnera minimalne površine za razdvojeno pakovanje datog skupa konveksnih poligona pomoću translacije.
- Razmatraju se dva tipa kontejnera:
 - Pravougaonik sa stranicama paralelnim osama
 - Proizvoljni konveksni kontejner
- Ovaj rad je prvi dokazao da se ovaj NP-teški optimizacioni problem uopšte može aproksimirati

Prethodna istraživanja varijanti ovog problema

- Najosnovniji problem je odlučivanje da li se dati skup objekata može upakovati u dati kontejner.
- Problemi kod kojih je oblik objekta pravougaonik rešivi sa faktorom optimizacije 2
- Problemi u kojima je dozvoljena rotacija
- Problemi pakovanja konveksnih poligona pod krutim pokretom rešivi sa faktorom optimizacije 4

Osvnovni pojmovi

- $h_{\mathsf{max}} := \mathsf{max}_{p \in P} \, \mathsf{height}(p)$ najveća visina svih poligona
- $w_{\max} := \max_{p \in P} \operatorname{width}(p)$ najveća širina svih poligona
- Skup poligona P se deli u visinske klase pomoću parametra α , $0<\alpha<1$, koji se određuje tako da faktor aproksimacije bude optimalan
- Kičma poligona p, u oznaci s(p), predstavlja segment koji povezuje najnižu i najvišu tačku poligona p
- c parametar koji se koristi za podelu mini-kontejnera i koji će biti određen tako da faktor aproksimacije bude optimalan

Osnove algoritma

- Skup P se deli na skupove tako da P_i sadrži poligone $p \in P$ za koje važi $h_{i+1} < \operatorname{height}(p) \le h_i$, gde je $h_i = \alpha^i \cdot h_{max}$
- Opšta strategija algoritma se deli u dva koraka
 - Svaku visinsku klasu P_i smestiti u kontejner B_i visine h_i
 - Svaki neprazan B_i zameniti kolekcijom osno-poravnatih mini-kontejnera koji se smeštaju u kontejner B

Korak 1 - Pakovanje poligona iz jedne visinske klase

- Razmatramo visinsku klasu P_i koja sadrži poligone čija visina leži u opsegu $(\alpha h_i, h_i]$
- Definišemo polustranicu $\sigma := [0, \infty) \times [0, h_i]$, polu-beskonačna pravougla traka visine h_i

Slika: Primer pakovanja skupa poligona iz jedne visinske klase

Korak 1 - Pakovanje poligona iz jedne visinske klase

- Poligone iz P_i sortiramo prema nagibu njihovih kičmi i postavljamo ih u σ sledeći pohlepni pristup
- Pomeramo ih što više na levo, sve dok ne udare u prethodno postavljeni poligon ili levi rub σ , zadržavajući najniži vrh na donjem rubu σ .
- Nakon što postavimo sve poligone, zatvaramo kontejner B_i, tako da desni rub B_i određujemo vertikalnom linijom kroz najdesniji vrh bilo kog od postavljenih poligona.

Lema 1.

Površina kontejnera B_i za poligone P_i zadovoljava formulu area $(B_i) \leq \frac{2}{\alpha} \cdot \sum_{p \in P_i} area(p) + 2h_i \cdot \max_{p \in P_i} width(p)$

Korak 2 - Generisanje i pakovanje mini-kontejnera

- ullet Korak 1 rezultira kolekcijom kontejnera B_i različitih dužina I_i
- Zamjenjujemo svaki B_i mini-kontejnerima iste dužine na sledeći način:
 - Delimo B_i na kutije širine $c \cdot w_{\text{max}}$ i visine h_i , osim za poslednju kutiju koja može imati širinu manju od w_{max} .
 - Svaki poligon $p \in P_i$ dodeljujemo kutiji koja sadrži njegov levi najviši vrh (ako levi najviši vrh leži na granici između dve kutije, dodeljujemo ga desnoj kutiji).
 - Generišemo mini-kontejner iz svake kutije produžavajući je udesno dok joj širina ne postane tačno $(c+1)\cdot w_{\text{max}}$.
- Dobijamo kolekciju R_i od najviše $l_i/(c \cdot w_{\max}) + 1$ mini-kontejnera, svaki sa širinom tačno $(c+1) \cdot w_{\max}$.

$$\sum_{b \in R_i} \operatorname{area}(b) \le (1 + \frac{1}{c}) \cdot \operatorname{area}(B_i) + (c+1)w_{\mathsf{max}}h_i$$

Rezultati

Teorema 1.

Neka je P skup poligona na ravni sa ukupno n temena. Možemo spakovati P u vremenu O(nlogn) u pravougaoni kontejner B takav da je area $(B) \leq 17.45 \cdot opt$, gde je opt minimalna površina bilo kog pravougaonog kontejnera za P

- Dokaz: Iz formule sa prošlog slajda, primenom Leme 1 dobija se da je area $(B) \le ((1+\frac{1}{c})(\frac{2}{\alpha}+\frac{2}{1-\alpha})+\frac{c+1}{1-\alpha}) \cdot opt$
- Faktor ispred *opt* se uprošćava na $f(c,\alpha):=(1+\frac{1}{c})\cdot \frac{2+c\alpha}{\alpha-\alpha^2}$
- Korišćenjem parcijalnih izvoda za traženje optimalnih vrednosti za α i c dobijamo da je $\alpha=0.407...,c=2.214...$ i $f(c,\alpha)=17.449...$

Algoritam

- Tražimo $\varphi^* \in S^1$ koji minimizuje $h_{\max}(\varphi)w_{\max}(\varphi)$, gde je $h_{\max}(\varphi)$ maksimalni opseg u pravcu koji je normalan na φ , a $w_{\max}(\varphi)$ opseg u pravcu φ
- Pronalazimo B kao u prethodnom algoritmu sa orijentacijom φ^* i vraćamo ga kao rezultat algoritma
- Funkcije $h_{\max}(\varphi)$ i $w_{\max}(\varphi)$ sa sastavljene od funkcija $\alpha \cdot \sin{(\varphi + b)}$, za neke konstante $a, b \in \mathbb{R}$
- Broj ovih funkcija je jednak broju parova antipodalnih čvorova u svim poligonima

Rezultati

Teorema 2.

Neka je P skup konveksnih poligona na ravni sa ukupno n temena. Možemo spakovati P u vremenu O(nlogn) u konveksni poligon B takav da je area $(B) \leq 27 \cdot opt$, gde je opt minimalna površina bilo kog pravougaonog kontejnera za P

- Dokaz: Kao za Teoremu 1. sa korišćenjem dodatne formule $h_{\max}(\varphi^*) \cdot w_{\max}(\varphi^*) \le h_{\text{opt}} \cdot w_{\text{opt}} = \text{area}(B_{\text{opt}}) \le 2 \cdot \text{opt}$
- Dobija se da je area $(B) \leq \frac{c+1}{c} (\frac{2}{\alpha} + \frac{4}{1-\alpha} + \frac{2c}{1-\alpha}) \cdot opt$
- Faktor ispred *opt* će biti $f(c,\alpha) := \frac{c+1}{c} (\frac{2}{\alpha} + \frac{4}{1-\alpha} + \frac{2c}{1-\alpha})$
- Korišćenjem parcijalnih izvoda za traženje optimalnih vrednosti za α i c dobijamo da je $\alpha=1/3, c=2$ i $f(c,\alpha)=27$

Primena i zaključak

- Primena ovih algoritama je velika i značajna
 - Obrada lima i odeće isecanje skupa uzoraka iz velikog komada materijala minimizirajući otpad
 - Problem pakovanja trake skup objekata je potrebno upakovati na traku određene fiksne širine koristeći što kraći deo trake
 - Minimiziranje skladišnih kontejnera u tri dimenzije
- Rezultati pokazuju da se ovaj NP-teški optimizacioni problem može aproksimirati
- Faktor aproksimacije je veliki, ali trenutno ne postoji bolji rezultat od ovog
- U budućnosti treba uraditi iste stvari samo da umesto translacije bude dozvoljena i rotacija poligona

Literatura

- A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM J. Comput., 26(2):401 409, Apr. 1997.
- R. Harren, K. Jansen, L. Pradel, and R. van Stee. A (5/3 + e)-approximation for strip packing. Comput. Geom., $47(2):248\ 267,\ 2014.$
- L. von Niederhausern. Packing polygons. Master's thesis, EPFL Lausanne, FU Berlin, 2014.
- H.-K. Ahn and O. Cheong. Aligning two convex figures to minimize area or perimeter. Algorithmica, 62(1-2):464 479, 2012.