Advanced Artificial Intelligence

Workshop 1 Answer Sheet

Stewart Charles Fisher II ID: 25020928 25020928@students.lincoln.ac.uk

December 2022

School of Computer Science University of Lincoln United Kingdom

Word Count: (Word Count)

Contents

1	Tas	k 1: Revise the Following Calculated Probabilities	1
	1.1	What is the probability of not having measles given that a person has a rash? In other	
		words, calculate $P(\neg m r)$	1
	1.2	What is the probability of having measles given that a person has a rash? In other words,	
		calculate $P(m r)$	1
_			
2		k 2: Exercise Using the Bayes Rule]
	2.1	Calculate $P(d t)$	1

1 Task 1: Revise the Following Calculated Probabilities

- 1.1 What is the probability of not having measles given that a person has a rash? In other words, calculate $P(\neg m|r)$.
 - $P(\neg m|r) = 1 P(m|r)$
 - $P(m|r) = \frac{P(m \cap r)}{P(r)}$
 - $\bullet \ P(r) = P(m \cap r) + P(\neg m \cap r)$
 - $P(\neg m|r) = 1 \frac{P(m \cap r)}{P(m \cap r) + P(\neg m \cap r)}$
 - $P(\neg m|r) = \frac{P(\neg m \cap r)}{P(m \cap r) + P(\neg m \cap r)}$
 - $P(\neg m|r) = \frac{0.8}{0.1 + 0.8} = 0.89$
- 1.2 What is the probability of having measles given that a person has a rash? In other words, calculate P(m|r).
 - $P(m|r) = 1 P(\neg m|r)$
 - P(m|r) = 1 0.89 = 0.11

2 Task 2: Exercise Using the Bayes Rule

- **2.1** Calculate P(d|t).
 - $P(d|t) = \frac{P(t|d) \cdot P(d)}{P(t)}$
 - $P(d|t) = \frac{P(t|d)}{10000 \cdot P(t)}$
 - $P(d|t) = \frac{0.99}{10000 \cdot P(t)}$
 - $P(t) = P(t|d) \cdot P(d) + P(t|\neg d) \cdot P(\neg d)$
 - $P(t) = 0.99 \cdot \frac{1}{10000} + 0.05 \cdot \frac{9999}{10000} = 0.05$
 - $P(d|t) = \frac{0.99}{10000 \cdot 0.05} = 0.002$