一、填空题与选择题

2、设3阶矩阵 A 满足 |A+2E|=|A-2E|=|A-E|=0, A^* 为 A 的伴随矩阵,则

$$\left|\frac{1}{2}A^* - A + E\right| = \underline{\qquad}.$$

3、设矩阵A,B均为三阶方阵,交换矩阵A的第一、二两行得到矩阵A, 将矩阵B的第一列乘以数2加到第三

列得到矩阵
$$\mathbf{\textit{B}}_{1}$$
,若 $\mathbf{\textit{A}}_{1}\mathbf{\textit{B}}_{1}=\begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 2 & -1 & 0 \end{pmatrix}$,则 $\mathbf{\textit{AB}}=$ ______.

4、设 $\alpha_1, \alpha_2, \alpha_3$ 是向量空间 \mathbb{R}^3 的一组基,则由基 $\alpha_1, \frac{1}{2}\alpha_2, \frac{1}{3}\alpha_3$ 到基 $\alpha_1, \alpha_2 - \alpha_1, \alpha_3 - \alpha_2$ 的过

渡矩阵为

5、设矩阵
$$\mathbf{B} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
,矩阵 $\mathbf{A} \ni \mathbf{B}$ 相似,则矩阵 $\mathbf{A} - \mathbf{E}$ 的秩 $\mathbf{R}(\mathbf{A} - \mathbf{E}) = \underline{\qquad}$.

- 6、若二次型 $f = x_1^2 + 3x_2^2 + 6x_3^2 + 2tx_1x_2 + 4x_1x_3$ 为正定二次型,则t的取值范围
- 7、若向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,向量组 $\alpha_1, \alpha_2, \alpha_4$ 线性相关,则_______.
- (A) α_1 必可由 α_2 , α_3 , α_4 线性表示
- (B) $\boldsymbol{\alpha}_2$ 必不可由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4$ 线性表示
- (C) α_4 必可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示
 - (D) $\boldsymbol{\alpha}_4$ 必不可由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性表示
- 8、(1) 如果矩阵 \mathbf{A} , \mathbf{B} 满足 $\mathbf{A}\mathbf{B} = \mathbf{E}$, 则矩阵 \mathbf{A} 可逆, 且 $\mathbf{A}^{-1} = \mathbf{B}$;
 - (2) 如果n阶矩阵A,B满足 $(AB)^2 = E$,则 $(BA)^2 = E$;
 - (3) 如果n阶矩阵A,B均不可逆,则矩阵A+B不可逆;
 - (4) 如果n阶矩阵A,B均不可逆,则矩阵AB不可逆

上述命题正确的是

- (A) (1), (2) (B) (1), (3) (C) (2), (3) (D) (2), (4)

二、计算行列式
$$\begin{vmatrix} \lambda & 0 & 0 & 4 \\ -1 & \lambda & 0 & 3 \\ 0 & -1 & \lambda & 2 \\ 0 & 0 & -1 & \lambda+1 \end{vmatrix}$$
.

三、设矩阵
$$\mathbf{A} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} (1,1,1)$, 矩阵 \mathbf{X} 满足 $\mathbf{A}\mathbf{X} + \mathbf{B} = \mathbf{B}\mathbf{A} + \mathbf{X}$, 求矩阵 \mathbf{X}^{10} .

四、 设向量组(I) $\alpha_1, \alpha_2, \alpha_3$ 线性无关,向量组(II) $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性相关,向量组(III) $\alpha_1, \alpha_2, \alpha_3, \alpha_5$ 线性无关,证明:向量组(IV) $\alpha_1, \alpha_2, \alpha_3, \alpha_5 - \alpha_4$ 线性无关.

五、已知非齐次线性方程组(
$$I$$
 $\begin{cases} a_{1} \ _{1}x+_{1} & a_{1} \neq _{2} a \neq _{3} \\ a_{2} \ _{1}x+_{1} & a_{2} \neq _{2} a \neq _{3} \end{cases}$ 有惟一解 $\alpha = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$,且方程组 $\alpha = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$,且方程组

(I
$$\begin{cases} a_{1} \ _{1}^{1}x + _{1} \ a_{1} \ _{2}^{1} \ _{2} \ a_{1}^{1}x + _{3}^{1} \ a_{2} \ _{2}^{1} \ a_{2}^{1}x + _{1}^{1} \ a_{3} \ _{2}^{1}x + _{2}^{1} \ a_{3}^{1}x + _{3}^{1} \ a_{3}^{1}x + _{2}^{1} \ a_{3}^{1}x + _{3}^{1} \ a_{3}^{1}x + _$$

求方程组(II)的系数矩阵的秩R(B); (2)求齐次线性方程组Bx = 0的基础解系; (3)求方程组Bx = b的通解.

六、已知次数不超过n的多项式的全体构成的集合

$$P[x]_n = \{f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \mid a_n, a_{n-1}, \dots, a_1, a_0 \in \mathbb{R} \}$$

对于通常的多项式加法和数乘运算构成线性空间. 在 $P[x]_n$ 中定义映射 T 如下:对任意 $f(x) \in P[x]_n$, T(f(x)) = xf'(x),其中 f'(x)为 f(x)的一阶导函数。 (1)验证T 是 $P[x]_n$ 上的线性变换; (2)当n = 3,求 T 在 $P[x]_3$ 的基 1+x, $x+x^2$, x^2+x^3 , x^3 下的矩阵.

七、设3阶实对称矩阵 \boldsymbol{A} 的对角线上元素之和为2,且满足 $\boldsymbol{A}\boldsymbol{\alpha}_1 = \boldsymbol{0}$, $\boldsymbol{A}\boldsymbol{\alpha}_2 = \boldsymbol{0}$,其中 $\boldsymbol{\alpha}_1 = \begin{pmatrix} 1,0,1 \end{pmatrix}^T$, $\boldsymbol{\alpha}_2 = \begin{pmatrix} 0,1,1 \end{pmatrix}^T$.

(1) 求矩阵A的全部特征值与特征向量; (2) 求正交变换

 $\boldsymbol{x} = \boldsymbol{P}\boldsymbol{y}$,将二次型 $f(x_1, x_2, x_3) = \boldsymbol{x}^{\mathsf{T}} \boldsymbol{A}\boldsymbol{x}$ 化为标准形,其中 $\boldsymbol{x} = (x_1, x_2, x_3)^{\mathsf{T}}$.

八、设A为2阶实方阵,且|A|<0,证明: A可对角化.