

WORLD INTELLECTUAL PROPERTY OR ANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

(11) International Publication Number:

WO 93/05172

C12Q 1/02, G01N 33/68

A1

(43) International Publication Date:

18 March 1993 (18.03.93)

(21) International Application Number:

PCT/US92/07359

(22) International Filing Date:

28 August 1992 (28.08.92)

(30) Priority data:

752,861

30 August 1991 (30.08.91) U

US

(71) Applicant: CREATIVE BIOMOLECULES, INC. [US/US]; 35 South Street, Hopkinton, MA 01748 (US).

(72) Inventors: SMART, John, E.; 50 Meadow Brook Road, Weston, MA 02193 (US). OPPERMANN, Hermann; 25 Summer Hill Road, Medway, MA 02053 (US). OZKAYNAK, Engiñ; 44 Purdue Drive, Milford, MA 01757 (US). KUBERASAMPATH, Thangavel; 6 Spring Street, Medway, MA 02053 (US). RUEGER, David, C.; 19 Downey Street, Hopkinton, MA 01748 (US). PANG, Roy, H., L.; 15 Partridge Road, Etna, NH 03750 (US). COHEN, Charles, N.; 98 Wintrop Street, Medway, MA 02053 (US).

(74) Agent: KELLEY, Robin, D.; Testa, Hurwitz & Thibeault, 53 State Street/Exchange Place, Boston, MA 02018-2809 (US).

(81) Designated States: AU, CA, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: MORPHOGENIC PROTEIN SCREENING METHOD

(57) Abstract

Disclosed is a method of screening candidate compounds for the ability to modulate the level of morphogenic protein in mammalian system. The method includes determining a parameter indicative of the level of production of a morphogenic in a cell culture known to produce the morphogen, incubating a candidate compound with the culture for a time sufficient to allow the compound to affect the production of the morphogenic protein, and then assaying the culture again to detect a change in the level of morphogenic protein production.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCI on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FI	Finland	MN	Mongolia
AU	Australia	FR	France	MR	Mauritania
BB	Barbados	GA	Gabon	MW	Malawi
BÉ ·	Belgium	GB	United Kingdom	NL	Netherlands
BF	Burkina Faso	GN	Guinea	NO	Norway
BG.	Bulgaria	GR	Greece	NZ	New Zealand
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	ΙE	Ireland	PT	Portugal
CA	Canada	IT	Italy	RO	Romania
CF	Central African Republic	JР	Japan	RU	Russian Federation
CG	Congo	KР	Democratic People's Republic	SD	Sudan
CH	Switzerland		of Korea	SE	Sweden
Ci	Côte d'Ivaire	· KR	Republic of Korea	SK	Slovak Republic
CM	Cameroon	rı 	Liechtenstein	SN	Senegal
		LK	Sri Lanka	รบ	Soviet Union
cs	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	MC	Monaca	TG	Togo
OE	Germany			UA	Ukraine
DK	Denmark	MG	Madagascar		
ES	Spain	MI.	Mali	US	United States of America

WO 93/05172 PCT/US92/07359

MORPHOGENIC PROTEIN SCREENING METHOD

The invention relates to a method of screening drugs for the ability to modulate the level in mammals of proteins which can induce tissue morphogenesis and to methods of determining which animal tissue(s) and/or cell types within a tissue express a particular morphogenic protein.

Background of the Invention

Cell differentiation is the central characteristic of morphogenesis which initiates in the embryo, and continues to various degrees throughout the life of an organism in adult tissue repair and regeneration mechanisms. Members of the TGF-β superfamily include subfamilies of highly-related genes that now are suspected to play important roles in cell differentiation and morphogenesis during development and/or during adult life. For example, the Drosophila decapentaplegic gene product (DPP) has been implicated in formation of the dorsal-ventral axis in fruit flies; activins induce mesoderm and anterior structure formation in mammals; Müllerian inhibiting substance (MIS) may be required for male sex development in mammals; growth/differentiation factor-1 (GDF-1) has been implicated in nerve development and maintenance; other morphogenic proteins (BMP-2, -3, -4 and OP-1) induce bone formation.

The development and study of a bone induction model system has identified the developmental cascade of bone differentiation as consisting of chemotaxis of mesenchymal cells, proliferation of these progenitor cells, differentiation of cartilage, ossification and hypertrophy of this cartilaginous tissue, vascular invasion, bone formation, remodeling, and finally, marrow differentiation (Reddi (1981) Collagen Rel. Res. This bone model system, which is studied 1:209-206). in adult mammals, recapitulates the cascade of bone differentiation events that occur in formation of bone in the developing fetus. In other studies, the epithelium of the urinary bladder has been shown to induce new bone formation. Huggins (1931, Arch. Surg. 22:377-408) showed that new bone formation could be induced by surgical transplantation of urinary bladder epithelium onto the parietal fascia. Urist (1965, Science 150:893-899) demonstrated that implantation of demineralized bone segments resulted in endochondral bone formation. The latter study and observation suggested the existence of an osteogenic protein and that bovine diaphyseal bone was a source of enriched preparations of osteogenic protein (Sampath et al., J. Biol. Chem. 265:13198-13205, 1990; Urist, ibid; Reddi et al., Proc. Nat. Aca. Sci. 69:1601-1605, 1972; Sampath et al., Proc. Natl. Acad. Sci. 80:6591-6595, Proteins capable of inducing endochondral bone formation in mammals when implanted in association with a matrix now have been identified in a number of different mammalian species, as have the genes encoding these proteins, (see, for example, U.S. Patent No. 4,968,590; U.S.S.N. 315,342 filed February 23, 1989;

WO 93/05172

and U.S.S.N. 599,543, filed October 18, 1990). Human OP-1 DNA has been cloned from various cDNA and genomic libraries using a consensus probe (Ozkaynak et al., EMBO J. 9:2085-2093, 1990). Purified human recombinant OP-1, expressed in mammalian cells, has been shown to induce new bone formation in vivo. Like other members of the TGF-β superfamily, OP-1 is produced as a precursor, glycosylated, processed and secreted as a mature dimer. Mature OP-1 is cleaved at a maturation site following a sequence with the pattern of RXXR (Panganiban et al., Mol. Cell. Biol. 10:2669-2677, 1990).

The degree of morphogenesis in adult tissue varies among different tissues and depends on, among other factors, the degree of cell turnover in a given tissue. On this basis, tissues can be divided into three broad categories: 1) tissues with static cell populations such as nerve and skeletal muscle where there is little or no cell division and most of the cells formed during development persist throughout adult life and, therefore, possess little or no ability for normal regeneration after injury; 2) tissues containing conditionally renewing populations such as liver where there is generally little cell division but, in response to an appropriate stimulus or injury, cells can divide to produce daughters of the same differentiated cell type; and 3) tissues with permanently renewing populations including blood, bone, testes, and stratified squamous epithelia which are characterized by rapid and continuous cell turnovér in the adult. Here, the terminally differentiated cells have a short life span and are replaced through

proliferation of a distinct subpopulation of cells, known as stem or progenitor cells.

It is an object of this invention to provide a method of screening compounds which, when administered to a given tissue from a given organism, cause an alteration in the level of morphogenic protein ("morphogen") produced by the tissue. Such compounds, when administered systemically, will result in altered systemic or local levels of morphogenic activity. morphogenic activity includes the ability to induce proliferation and sequential differentiation of progenitor cells, and the ability to support and maintain the differentiated phenotype or sequence of phenotypes through the progression of events that results in the formation of normal adult tissue (including organ regeneration). Thus, broadly, the invention provides a key to development of additional modalities of therapies involving modulation of morphogenic protein production in animals or adult mammals, e.g., humans, and consequent correction of conditions involving pathologic alteration of the balance of tissue cell turnover. Another object of the invention is to provide methodologies for identifying or selecting a combination of compound(s) which may increase a progenitor cell population in a mammal, stimulate progenitor cells to differentiate in vivo or in vitro, maintain the differentiated phenotype or sequence of phenotypes of a tissue, induce tissuespecific growth in vivo, or replace diseased or damaged tissues or organs in vivo. Another object of the invention is to determine the tissue(s) or organ(s) of origin of a given morphogen. Another object of the

invention is to determine the specific cell type(s) within the tissue(s) or organ(s) of origin, or cell line(s) derived from the tissue(s), or organ(s) of origin, that is responsible for the synthesis and production of a given morphogen. These and other objects and features of the invention will be apparent from the description, drawing, and claims which follow.

Summary of the Invention

The invention features a method of screening candidate compounds for the ability to modulate the effective local or systemic concentration or level of morphogenic protein in an organism. The method is practiced by incubating one or more candidate compound(s) with cells from a test tissue type of an organism known to produce a given morphogen for a time sufficient to allow the compound(s) to affect the production, i.e., expression and/or secretion, of morphogen by the cells; and then assaying cells and the medium conditioned by the cells for a change in a parameter indicative of the level of production of the morphogenic protein. The procedure may be used to identify compounds showing promise as drugs for human use capable of increasing or decreasing morphogen production in vivo, thereby to correct or alleviate a diseased condition.

In a related aspect, the invention features a method of screening tissue(s) of an organism to assess whether or at what level cells of the tissue(s) produce a particular morphogen, thereby to determine a tissue(s) of origin of the morphogen. This permits selection of the tissue cell type to be used in the screening. As used herein, "tissue" refers to a group of cells which are naturally found associated, including an organ.

As an example of tissue(s) or organ(s) which produce high levels of morphogen relative to the level produced by other types of tissues, it has been discovered that OP-1, first found in bone tissue is produced at relatively high levels in cells derived

WO 93/05172

from renal, e.g., kidney or bladder, or adrenal tissue; that GDF-1 is produced at relatively high levels in cells derived from nerve, e.g., brain tissue; that DPP is produced at relatively high levels in cells derived from one of the following drosophila tissues: dorsal ectoderm, epithelial imaginal disc, visceral mesoderm, or gut endoderm; that Vgr-1 is produced at relatively high levels in cells derived from mouse lung tissue; and that Vgl is produced at relatively high levels in cells derived from xenopus fetal endoderm tissue. In addition, BMP3 and CBMP2B transcripts have been identified in abundance in lung tissue. As used herein, "derived" means the cells are the cultured tissue itself, or are a cell line whose parent cells are the tissue itself.

Preferred methods for determining the level of or a change in the level of a morphogen in a cultured cell include using an antibody specific for the morphogen, e.g., in an immunoassay such as an ELISA or radioimmunoassay; and determining the level of nucleic acid, most particularly mRNA, encoding the morphogen using a nucleic acid probe that hybridizes under stringent conditions with the morphogen RNA, such as in an RNA dot blot analysis. Where a change in the presence and/or concentration of morphogen is being determined, it will be necessary to measure and compare the levels of morphogen in the presence and absence of the candidate compound. The nucleic acid probe may be a nucleotide sequence encoding the morphogen or a fragment large enough to hybridize specifically only to RNA encoding a specific morphogen under stringent conditions. As used herein, "stringent conditions" are

defined as conditions in which non-specific hybrids will be eluted but at which specific hybrids will be maintained, i.e., incubation at 0.1% SSC (15mM NaCl, 5mM Na citrate) at 50°C for 15 minutes.

Examples of morphogens whose levels may be determined according to the invention include OP-1, OP-2, GDF-1, Vgr-1, DPP, 60A CBMP2A, CBMP2B, BMP 2, 3, 4, Thus, if an immunoassay is used to 5, 6, or Vql. indicate the presence and/or concentration of a morphogen, an antibody specific for one of these morphogens only, and which will not detect the presence of other morphogens, will be used. Similarly, if nucleic acid hybridization is used to indicate the level of RNA encoding the morphogen, a nucleotide probe specific for one of these morphogens only will be used under hybridization conditions such that the probe should not be capable of hybridizing with RNA encoding a different morphogen. A morphogen includes an active C-terminal core region, which includes at least six cysteine residues, and a region N-terminal to the Cterminal region that is relatively non-homologous to the equivalent N-terminal regions of other morphogens. In addition, the 3' noncoding region of the mRNA is Thus, a nucleic acid probe unique to each morphogen. encoding all or a portion of the sequences N-terminal to the C-terminal core region of a morphogen, or encoding all or a portion of the sequences C-terminal to or 3' to the core region of a morphogen may be used as a probe which detects mRNA encoding that morphogen only.

"Morphogenic proteins" or "morphogens", as used herein, include naturally-occurring osteogenic proteins

WO 93/05172

capable of inducing the full developmental cascade of bone formation, as well as polypeptide chains not normally associated with bone or bone formation, but sharing substantial sequence homology with osteogenic Such proteins, as well as DNA sequences proteins. encoding them, have been isolated and characterized for a number of different species. See. for example, U.S. Patent No. 4,968,590 and U.S. Patent Number. 5,011,691, U.S. application Serial Number 1989; 422,699, filed October 17, 1989, and 600,024 and 599,543, both filed October 18, 1990; Sampath et al., (1990) J. Biol. Chem. 265:13198-13205; Ozkaynak et al. (1990) EMBO J. 9:2085-2093; and Lee, Proc. Nat. Aca. Sci. 88:42504254 (1991), all of which are hereby incorporated by reference. Many of these proteins subsequently were discovered to have utility beyond bone morphogenesis. See, e.q., USSN 667,274 filed March 11, 1991. The mature forms of morphogens share substantial amino acid sequence homology, especially in the C-terminal core regions of In particular, most of the proteins the proteins. share a seven-cysteine skeleton in this region, in addition to other apparently required amino acids. Table II, infra, shows the amino acid sequence homologies for nine morphogens over the carboxy terminal 102 amino acids.

Among the morphogens useful in this invention are proteins originally identified as osteogenic proteins, such as the OP-1, OP-2 and CBMP2 proteins, as well as amino acid sequence-related proteins such as DPP (from Drosophila), Vgl (from Xenopus), Vgr-1 (from mouse, see U.S. 5,011,691 to Oppermann et al.), GDF-1 (from mouse, see Lee (1991) PNAS 88:4250-4254), all of which are

presented in Table II and Seq. ID Nos.5-14), and the recently identified 60A protein (from Drosophila, Seq. ID No. 24, see Wharton et al. (1991) PNAS 88:9214-9218.) The members of this family, which include members of the TGF- β super-family of proteins, share substantial amino acid sequence homology in their The proteins are translated as a C-terminal regions. precursor, having an N-terminal signal peptide sequence, typically less than about 30 residues, followed by a "pro" domain that is cleaved to yield the mature sequence. The signal peptide is cleaved rapidly upon translation, at a cleavage site that can be predicted in a given sequence using the method of Von Heijne ((1986) Nucleic Acids Research 14:4683-4691.) Table I, below, describes the various morphogens identified to date, including their nomenclature as used herein, their Seq. ID references, and publication sources for the amino acid sequences for the full length proteins not included in the Seq. Listing. disclosure of these publications is incorporated herein by reference.

TABLE I

"OP-1" refers generically to the group of
morphogenically active proteins expressed
from part or all of a DNA sequence
encoding OP-1 protein, including allelic
and species variants thereof, e.g., human
OP-1 ("hOP-1", Seq. ID No. 5, mature
protein amino acid sequence), or mouse
OP-1 ("mOP-1", Seq. ID No. 6, mature
protein amino acid sequence.) The

WO 93/05172

conserved seven cysteine skeleton is defined by residues 38 to 139 of Seq. ID Nos. 5 and 6. The cDNA sequences and the amino acids encoding the full length proteins are provided in Seq. Id Nos. 16 and 17 (hOP1) and Seq. ID Nos. 18 and 19 (mOP1.) The mature proteins are defined by residues 293-431 (hOP1) and 292-430 (mOP1). The "pro" regions of the proteins, cleaved to yield the mature, morphogenically active proteins are defined essentially by residues 30-292 (hOP1) and residues 30-291 (mOP1).

"OP-2"

refers generically to the group of active proteins expressed from part or all of a DNA sequence encoding OP-2 protein, including allelic and species variants thereof, e.g., human OP-2 ("hOP-2", Seq. ID No. 7, mature protein amino acid sequence) or mouse OP-2 ("mOP-2", Seq. ID No. 8, mature protein amino acid The conserved seven cysteine sequence). skeleton is defined by residues 38 to 139 of Seq. ID Nos. 7 and 8. The cDNA sequences and the amino acids encoding the full length proteins are provided in Seq. ID Nos. 20 and 21 (hOP2) and Seq. ID Nos. 22 and 23 (mOP2.) The mature proteins are defined essentially by residues 264-402 (hOP2) and 261-399 (mOP2). The "pro" regions of the proteins, cleaved to yield

the mature, morphogenically active proteins likely are defined essentially by residues 18-263 (hOP2) and residues 18-260 (mOP2). (Another cleavage site also occurs 21 residues upstream for both OP-2 proteins.)

"CBMP2"

refers generically to the morphogenically active proteins expressed from a part or all of a DNA sequence encoding the CBMP2 proteins, including allelic and species variants thereof, e.g., human CBMP2A ("CBMP2A(fx)", Seq ID.No. 9) or human CBMP2B DNA ("CBMP2B(fx)", Seq. ID No. 10). The amino acid sequence for the full length proteins, referred to in the literature as BMP2A and BMP2B, or BMP2 and BMP4, appear in Wozney, et al. (1988) Science 242:1528-1534. The pro domain for BMP2 (BMP2A) likely includes residues 25-248 or 25-282; the mature protein, residues 249-396 or 283-396. The pro domain for BMP4 (BMP2B) likely includes residues 25-256 or 25-292; the mature protein, residues 257-408 or 293-408.

"DPP(fx)"

refers to protein sequences encoded by the Drosophila DPP gene and defining the conserved seven cysteine skeleton (Seq. ID No. 11). The amino acid sequence for the full length protein appears in Padgett, et al (1987) Nature 325: 81-84. The pro

domain likely extends from the signal peptide cleavage site to residue 456; the mature protein likely is defined by residues 457-588.

- "Vgl(fx)" refers to protein sequences encoded by the Xenopus Vgl gene and defining the conserved seven cysteine skeleton (Seq. ID No. 12). The amino acid sequence for the full length protein appears in Weeks (1987) Cell 51: 861-867. The prodomain likely extends from the signal peptide cleavage site to residue 246; the mature protein likely is defined by residues 247-360.
- "Vgr-1(fx)" refers to protein sequences encoded by the murine Vgr-1 gene and defining the conserved seven cysteine skeleton (Seq. ID No. 13). The amino acid sequence for the full length protein appears in Lyons, et al, (1989) PNAS 86: 4554-4558. The prodomain likely extends from the signal peptide cleavage site to residue 299; the mature protein likely is defined by residues 300-438.
- "GDF-1(fx)" refers to protein sequences encoded by the human GDF-1 gene and defining the conserved seven cysteine skeleton (Seq. ID No. 14). The cDNA and encoded amino sequence for the full length protein is

provided in Seq. ID. No. 32. The prodomain likely extends from the signal peptide cleavage site to residue 214; the mature protein likely is defined by residues 215-372.

"60A"

refers generically to the morphogenically active proteins expressed from part or all of a DNA sequence (from the Drosophila 60A gene) encoding the 60A proteins (see Seq. ID No. 24 wherein the cDNA and encoded amino acid sequence for the full length protein is provided). "60A(fx)" refers to the protein sequences defining the conserved seven cysteine skeleton (residues 354 to 455 of Seq. ID No. 24.) The pro domain likely extends from the signal peptide cleavage site to residue 324; the mature protein likely is defined by residues 325-455.

"BMP3(fx)"

refers to protein sequences encoded by the human BMP3 gene and defining the conserved seven cysteine skeleton (Seq. ID No. 26). The amino acid sequence for the full length protein appears in Wozney et al. (1988) Science 242: 1528-1534. The prodomain likely extends from the signal peptide cleavage site to residue 290; the mature protein likely is defined by residues 291-472.

"BMP5(fx)" refers to protein sequences encoded by the human BMP5 gene and defining the conserved seven cysteine skeleton (Seq. ID No. 27). The amino acid sequence for the full length protein appears in Celeste, et al. (1991) PNAS 87: 9843-9847. The pro domain likely extends from the signal peptide cleavage site to residue 316; the mature protein likely is defined by residues 317-454.

"BMP6(fx)" refers to protein sequences encoded by the human BMP6 gene and defining the conserved seven cysteine skeleton (Seq. ID No. 28). The amino acid sequence for the full length protein appear sin Celeste, et al. (1990) PNAS 87: 9843-5847. The pro domain likely includes extends from the signal peptide cleavage site to residue 374; the mature sequence likely includes residues 375-513.

The OP-2 proteins have an additional cysteine residue in this region (e.g., see residue 41 of Seq. ID Nos. 7 and 8), in addition to the conserved cysteine skeleton in common with the other proteins in this family. The GDF-1 protein has a four amino acid insert within the conserved skeleton (residues 44-47 of Seq. ID No. 14) but this insert likely does not interfere with the relationship of the cysteines in the folded

structure. In addition, the CBMP2 proteins are missing one amino acid residue within the cysteine skeleton.

The morphogens are inactive when reduced, but are active as oxidized homodimers and when oxidized in combination with other morphogens of this invention. Thus, as defined herein, a morphogen is a dimeric protein comprising a pair of polypeptide chains, wherein each polypeptide chain comprises at least the C-terminal six cysteine skeleton defined by residues 43-139 of Seq. ID No. 5, including functionally equivalent arrangements of these cysteines (e.g., amino acid insertions or deletions which alter the linear arrangement of the cysteines in the sequence but not their relationship in the folded structure), such that, when the polypeptide chains are folded, the dimeric protein species comprising the pair of polypeptide chains has the appropriate three-dimensional structure, including the appropriate intra- and inter-chain disulfide bonds such that the protein is capable of acting as a morphogen as defined herein. Specifically, the morphogens generally are capable of the following biological functions in a morphogenically permissive stimulating proliferation of progenitor environment: cells; stimulating the differentiation of progenitor cells; stimulating the proliferation of differentiated cells; and supporting the growth and maintenance of differentiated cells, including the "redifferentiation" of transformed cells. In addition, it is also anticipated that these morphogens are capable of

inducing redifferentiation of committed cells under appropriate environmental conditions.

Morphogens useful in this invention comprise one of two species of generic amino acid sequences: Generic Sequence 1 (Seq. ID No. 1) or Generic Sequence 2 (Seq. ID No. 2); where each Xaa indicates one of the 20 naturally-occurring L-isomer, α-amino acids or a derivative thereof. Generic Sequence 1 comprises the conserved six cysteine skeleton and Generic Sequence 2 comprises the conserved six cysteine skeleton plus the additional cysteine identified in OP-2 (see residue 36, Seq. ID No. 2). In another preferred aspect, these sequences further comprise the following additional sequence at their N-terminus:

Cys Xaa Xaa Xaa Xaa (Seq. ID No. 15)
1 5

Preferred amino acid sequences within the foregoing generic sequences include: Generic Sequence 3 (Seq. ID No. 3), Generic Sequence 4 (Seq. ID No. 4), Generic Sequence 5 (Seq. ID No. 30) and Generic Sequence 6 (Seq. ID No. 31), listed below. These Generic Sequences accommodate the homologies shared among the various preferred members of this morphogen family identified in Table II, as well as the amino acid sequence variation among them. Specifically, Generic Sequences 3 and 4 are composite amino acid sequences of the following proteins presented in Table II and identified in Seq. ID Nos. 5-14: human OP-1 (hOP-1, Seq. ID Nos. 5 and 16-17), mouse OP-1 (mOP-1, Seq. ID

Nos. 6 and 18-19), human and mouse OP-2 (Seq. ID Nos. 7, 8, and 20-22), CBMP2A (Seq. ID No. 9), CBMP2B (Seq. ID No. 10), DPP (from Drosophila, Seq. ID No. 11), Vgl, (from Xenopus, Seq. ID No. 12), Vgr-1 (from mouse, Seq. ID No. 13), and GDF-1 (from mouse, Seq. ID No. 14.) The generic sequences include both the amino acid identity shared by the sequences in Table II, as well as alternative residues for the variable positions within the sequence. Note that these generic sequences allow for an additional cysteine at position 41 or 46 in Generic Sequences 3 or 4, respectively, providing an appropriate cysteine skeleton where inter- or intramolecular disulfide bonds can form, and contain certain critical amino acids which influence the tertiary structure of the proteins.

Generic Sequence 3

Leu Tyr Val Xaa Phe

1 5

Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa

10

Xaa Ala Pro Xaa Gly Xaa Xaa Ala

15 20

Xaa Tyr Cys Xaa Gly Xaa Cys Xaa

25 30

Xaa Pro Xaa Xaa Xaa Xaa

45

Xaa Xaa Xaa Asn His Ala Xaa Xaa

40

Xaa Xaa Leu Xaa Xaa Xaa Xaa

50

Xaa Xaa Xaa Xaa Xaa Xaa Cys

55 60

Cys Xaa Pro Xaa Xaa Xaa Xaa

65

Xaa Xaa Xaa Leu Xaa Xaa Xaa

70 75

Xaa Xaa Xaa Xaa Val Xaa Leu Xaa

80

Xaa Xaa Xaa Met Xaa Val Xaa

85 90

Xaa Cys Gly Cys Xaa

95

wherein each Xaa is independently selected from a group of one or more specified amino acids defined as follows: "Res." means "residue" and Xaa at res.4 = (Ser, Asp or Glu); Xaa at res.6 = (Arg, Gln, Ser or Lys); Xaa at res.7 = (Asp or Glu); Xaa at res.8 = (Leu or Val); Xaa at res.11 = (Gln, Leu, Asp, His or Asn); Xaa at res.12 = (Asp, Arg or Asn); Xaa at res.14 = (Ile or Val); Xaa at res.15 = (Ile or Val); Xaa at res.18 = (Glu, Gln, Leu, Lys, Pro or Arg); Xaa at res.20 = (Tyr or Phe); Xaa at res.21 = (Ala, Ser, Asp, Met, His, Leu or Gln); Xaa at res.23 = (Tyr, Asn or Phe); Xaa at

res.26 = (Glu, His, Tyr, Asp or Gln); Xaa at res.28 = (Glu, Lys, Asp or Gln); Xaa at res.30 = (Ala, Ser, Pro or Gln); Xaa at res.31 = (Phe, Leu or Tyr); Xaa at res.33 = (Leu or Val); Xaa at res.34 = (Asn, Asp, Ala or Thr); Xaa at res.35 = (Ser, Asp, Glu, Leu or Ala); Xaa at res.36 = (Tyr, Cys, His, Ser or Ile); Xaa at res.37 = (Met, Phe, Gly or Leu); Xaa at res.38 = (Asn or Ser); Xaa at res.39 = (Ala, Ser or Gly); Xaa at res.40 = (Thr, Leu or Ser); Xaa at res.44 = (Ile or Val); Xaa at res.45 = (Val or Leu); Xaa at res.46 = (Gln or Arg); Xaa at res.47 = (Thr, Ala or Ser); Xaa at res.49 = (Val or Met); Xaa at res.50 = (His or Asn); Xaa at res.51 = (Phe, Leu, Asn, Ser, Ala or Val); Xaa at res.52 = (Ile, Met, Asn, Ala or Val); Xaa at res.53 = (Asn, Lys, Ala or Glu); Xaa at res.54 = (Pro or Ser); Xaa at res.55 = (Glu, Asp, Asn, or Gly); Xaa at res.56 = (Thr, Ala, Val, Lys, Asp, Tyr, Ser or Ala); Xaa at res.57 = (Val, Ala or Ile); Xaa at res.58 = (Pro or Asp); Xaa at res.59 = (Lys or Leu); Xaa at res.60 = (Pro or Ala); Xaa at res.63 = (Ala or Val); Xaa at res.65 = (Thr or Ala); Xaa at res.66 = (Gln, Lys, Arg or Glu); Xaa at res.67 = (Leu, Met or Val); Xaa at res.68 = (Asn, Ser or Asp); Xaa at res.69 = (Ala, Pro or Ser); Xaa at res.70 = (Ile, Thr or Val); Xaa at res.71 = (Ser or Ala); Xaa at res.72 = (Val or Met); Xaa at res.74 = (Tyr or Phe); Xaa at res.75 = (Phe, Tyr or Leu); Xaa at res.76 = (Asp or Asn); Xaa at res.77 = (Asp, Glu, Asn or Ser); Xaa at res.78 = (Ser, Gln, Asn or Tyr); Xaa at res.79 = (Ser, Asn, Asp or Glu); Xaa at res.80 = (Asn, Thr or Lys); Xaa at res.82 = (Ile or Val); Xaa at res.84 = (Lys or Arg); Xaa at res.85 = (Lys, Asn, Gln or His); Xaa at res.86 = (Tyr or His);

Xaa at res.87 = (Arg, Gln or Glu); Xaa at res.88 =
(Asn, Glu or Asp); Xaa at res.90 = (Val, Thr or Ala);
Xaa at res.92 = (Arg, Lys, Val, Asp or Glu); Xaa at
res.93 = (Ala, Gly or Glu); and Xaa at res.97 = (His or
Arg);

Generic Sequence 4

Cys Xaa Xaa Xaa Leu Tyr Val Xaa Phe 10 5 1 Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa 15 Xaa Ala Pro Xaa Gly Xaa Xaa Ala 25 20 Xaa Tyr Cys Xaa Gly Xaa Cys Xaa 30 Xaa Pro Xaa Xaa Xaa Xaa 40 Xaa Xaa Xaa Asn His Ala Xaa Xaa 50 45 Xaa Xaa Leu Xaa Xaa Xaa Xaa 55 Xaa Xaa Xaa Xaa Xaa Xaa Cys 65 60 Cys Xaa Pro Xaa Xaa Xaa Xaa 70 Xaa Xaa Xaa Leu Xaa Xaa Xaa 80 75 Xaa Xaa Xaa Xaa Val Xaa Leu Xaa 85 Xaa Xaa Xaa Met Xaa Val Xaa 95 90

Xaa Cys Gly Cys Xaa 100

wherein each Xaa is independently selected from a group of one or more specified amino acids as defined by the following: "Res." means "residue" and Xaa at res.2 = (Lys or Arg); Xaa at res.3 = (Lys or Arg); Xaa at res.4 = (His or Arg); Xaa at res.5 = (Glu, Ser, His, Gly, Arg or Pro); Xaa at res.9 = (Ser, Asp or Glu); Xaa at res.11 = (Arg, Gln, Ser or Lys); Xaa at res.12 = (Asp or Glu); Xaa at res.13 = (Leu or Val); Xaa at res.16 = (Gln, Leu, Asp, His or Asn); Xaa at res.17 = (Asp, Arg, or Asn); Xaa at res.19 = (Ile or Val); Xaa at res.20 = (Ile or Val); Xaa at res.23 = (Glu, Gln, Leu, Lys, Pro or Arg); Xaa at res.25 = (Tyr or Phe); Xaa at res.26 = (Ala, Ser, Asp, Met, His, Leu, or Gln); Xaa at res.28 = (Tyr, Asn or Phe); Xaa at res.31 = (Glu, His, Tyr, Asp or Gln); Xaa at res.33 = Glu, Lys, Asp or Gln); Xaa at res.35 = (Ala, Ser or Pro); Xaa at res.36 = (Phe, Leu or Tyr); Xaa at res.38 = (Leu or Val); Xaa at res.39 = (Asn, Asp, Ala or Thr); Xaa at res.40 = (Ser, Asp, Glu,Leu or Ala); Xaa at res.41 = (Tyr, Cys, His, Ser or Ile); Xaa at res.42 = (Met, Phe, Gly or Leu); Xaa at res.44 = (Ala, Ser or Gly); Xaa at res.45 = (Thr, Leu or Ser); Xaa at res.49 = (Ile or Val); Xaa at res.50 = (Val or Leu); Xaa at res.51 = (Gln or Arg); Xaa at res.52 = (Thr, Ala or Ser); Xaa at res.54 = (Val or Met); Xaa at res.55 = (His or Asn); Xaa at res.56 = (Phe, Leu, Asn, Ser, Ala or Val); Xaa at res.57 = (Ile, Met, Asn, Ala or Val); Xaa at res.58 = (Asn, Lys, Ala or Glu); Xaa at res.59 = (Pro or Ser); Xaa at res.60 = (Glu, Asp, or Gly); Xaa at res.61 = (Thr, Ala, Val, Lys, Asp, Tyr, Ser or Ala); Xaa at res.62 = (Val, Ala

or Ile); Xaa at res.63 = (Pro or Asp); Xaa at res.64 = (Lys or Leu); Xaa at res.65 = (Pro or Ala); Xaa at res.68 = (Ala or Val); Xaa at res.70 = (Thr or Ala); Xaa at res.71 = (Gln, Lys, Arg or Glu); Xaa at res.72 = (Leu, Met or Val); Xaa at res.73 = (Asn, Ser or Asp); Xaa at res.74 = (Ala, Pro or Ser); Xaa at res.75 = (Ile, Thr or Val); Xaa at res.76 = (Ser or Ala); Xaa at res.77 = (Val or Met); Xaa at res.79 = (Tyr or Phe); Xaa at res.80 = (Phe, Tyr or Leu); Xaa at res.81 = (Asp or Asn); Xaa at res.82 = (Asp, Glu, Asn or Ser); Xaa at res.83 = (Ser, Gln, Asn or Tyr); Xaa at res.84 = (Ser, Asn, Asp or Glu); Xaa at res.85 = (Asn, Thr or Lys); Xaa at res.87 = (Ile or Val); Xaa at res.89 = (Lys or Arg); Xaa at res.90 = (Lys, Asn, Gln or His); Xaa at res.91 = (Tyr or His); Xaa at res.92 = (Arg, Gln or Glu); Xaa at res.93 = (Asn, Glu or Asp); Xaa at res.95 = (Val, Thr or Ala); Xaa at res.97 = (Arg, Lys, Val, Asp or Glu); Xaa at res.98 = (Ala, Gly or Glu); and Xaa at res. 102 = (His or Arg).

Similarly, Generic Sequence 5 (Seq. ID No. 30) and Generic Sequence 6 (Seq. ID No. 31) accommodate the homologies shared among all the morphogen protein family members identified in Table II. Specifically, Generic Sequences 5 and 6 are composite amino acid sequences of human OP-1 (hOP-1, Seq. ID Nos. 5 and 16-17), mouse OP-1 (mOP-1, Seq. ID Nos. 6 and 18-19), human and mouse OP-2 (Seq. ID Nos. 7, 8, and 20-22), CBMP2A (Seq. ID No. 9), CBMP2B (Seq. ID No. 10), DPP (from Drosophila, Seq. ID No. 11), Vgl, (from Xenopus, Seq. ID No. 12), Vgr-1 (from mouse, Seq. ID No. 13), and GDF-1 (from mouse, Seq. ID No. 14), human BMP3

(Seq. ID No. 26), human BMP5 (Seq. ID No. 27), human BMP6 (Seq. ID No. 28) and 60(A) (from Drosophila, Seq. ID Nos. 24-25). The generic sequences include both the amino acid identity shared by these sequences in the C-terminal domain, defined by the six and seven cysteine skeletons (Generic Sequences 5 and 6, respectively), as well as alternative residues for the variable positions within the sequence. As for Generic Sequences 3 and 4, Generic Sequences 5 and 6 allow for an additional cysteine at position 41 (Generic Sequence 5) or position 46 (Generic Sequence 6), providing an appropriate cysteine skeleton where inter- or intramolecular disulfide bonds can form, and containing certain critical amino acids which influence the tertiary structure of the proteins.

Generic Sequence 5

Leu Xaa Xaa Xaa Phe

5

1

Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa

10

Xaa Xaa Pro Xaa Xaa Xaa Ala

15 20

Xaa Tyr Cys Xaa Gly Xaa Cys Xaa

25 30

Xaa Pro Xaa Xaa Xaa Xaa

Xaa Xaa Xaa Asn His Ala Xaa Xaa

40 45

Xaa Xaa Xaa Xaa Xaa Xaa Xaa

50

Xaa Xaa Xaa Xaa Xaa Xaa Cys

55 60

Cys Xaa Pro Xaa Xaa Xaa Xaa

65

Xaa Xaa Xaa Leu Xaa Xaa Xaa

70 75

Xaa Xaa Xaa Xaa Val Xaa Leu Xaa

80

Xaa Xaa Xaa Met Xaa Val Xaa

85 90

Xaa Cys Xaa Cys Xaa

95

wherein each Xaa is independently selected from a group of one or more specified amino acids defined as follows: "Res." means "residue" and Xaa at res.2 = (Tyr or Lys); Xaa at res.3 = Val or Ile); Xaa at res.4 = (Ser, Asp or Glu); Xaa at res.6 = (Arg, Gln, Ser, Lys or Ala); Xaa at res.7 = (Asp, Glu or Lys); Xaa at res.8 = (Leu, Val or Ile); Xaa at res.11 = (Gln, Leu, Asp, His, Asn or Ser); Xaa at res.12 = (Asp, Arg, Asn or Glu); Xaa at res.14 = (Ile or Val); Xaa at res.15 = (Ile or Val); Xaa at res.16 (Ala or Ser); Xaa at res.18 = (Glu, Gln, Leu, Lys, Pro or Arg); Xaa at res.19 =

(Gly or Ser); Xaa at res.20 = (Tyr or Phe); Xaa at res.21 = (Ala, Ser, Asp, Met, His, Gln, Leu or Gly); Xaa at res.23 = (Tyr, Asn or Phe); Xaa at res.26 = (Glu, His, Tyr, Asp, Gln or Ser); Xaa at res.28 = (Glu, Lys, Asp, Gln or Ala); Xaa at res.30 = (Ala, Ser, Pro, Gln or Asn); Xaa at res.31 = (Phe, Leu or Tyr); Xaa at res.33 = (Leu, Val or Met); Xaa at res.34 = (Asn, Asp, Ala, Thr or Pro); Xaa at res.35 = (Ser, Asp, Glu, Leu, Ala or Lys); Xaa at res.36 = (Tyr, Cys, His, Ser or Ile); Xaa at res.37 = (Met, Phe, Gly or Leu); Xaa at res.38 = (Asn, Ser or Lys); Xaa at res.39 = (Ala, Ser, Gly or Pro); Xaa at res.40 = (Thr, Leu or Ser); Xaa at res.44 = (Ile, Val or Thr); Xaa at res.45 = (Val, Leu or Ile); Xaa at res.46 = (Gln or Arg); Xaa at res.47 = (Thr, Ala or Ser); Xaa at res.48 = (Leu or Ile); Xaa at res.49 = (Val or Met); Xaa at res.50 = (His, Asn or Arg); Xaa at res.51 = (Phe, Leu, Asn, Ser, Ala or Val); Xaa at res.52 = (Ile, Met, Asn, Ala, Val or Leu); Xaa at res.53 = (Asn, Lys, Ala, Glu, Gly or Phe); Xaa at res.54 = (Pro, Ser or Val); Xaa at res.55 = (Glu, Asp, Asn, Gly, Val or Lys); Xaa at res.56 = (Thr, Ala, Val, Lys, Asp, Tyr, Ser, Ala, Pro or His); Xaa at res.57 = (Val, Ala or Ile); Xaa at res.58 = (Pro or Asp); Xaa at res.59 = (Lys, Leu or Glu); Xaa at res.60 = (Pro or Ala); Xaa at res.63 = (Ala or Val); Xaa at res.65 = (Thr, Ala or Glu); Xaa at res.66 = (Gln, Lys, Arg or Glu); Xaa at res.67 = (Leu, Met or Val); Xaa at res.68 = (Asn, Ser, Asp or Gly); Xaa at res.69 = (Ala, Pro or Ser); Xaa at res.70 = (Ile, Thr, Val or Leu); Xaa at res.71 = (Ser, Ala or Pro); Xaa at res.72 = (Val, Met or Ile); Xaa at res.74 = (Tyr or Phe); Xaa at res.75 = (Phe, Tyr, Leu or His); Xaa at res.76 = (Asp, Asn or

Leu); Xaa at res.77 = (Asp, Glu, Asn or Ser); Xaa at res.78 = (Ser, Gln, Asn, Tyr or Asp); Xaa at res.79 = (Ser, Asn, Asp, Glu or Lys); Xaa at res.80 = (Asn, Thr or Lys); Xaa at res.82 = (Ile, Val or Asn); Xaa at res.84 = (Lys or Arg); Xaa at res.85 = (Lys, Asn, Gln, His or Val); Xaa at res.86 = (Tyr or His); Xaa at res.87 = (Arg, Gln, Glu or Pro); Xaa at res.88 = (Asn, Glu or Asp); Xaa at res.90 = (Val, Thr, Ala or Ile); Xaa at res.92 = (Arg, Lys, Val, Asp or Glu); Xaa at res.93 = (Ala, Gly, Glu or Ser); Xaa at res.95 = (Gly or Ala) and Xaa at res.97 = (His or Arg).

Generic Sequence 6

Cys Xaa Xaa Xaa Leu Xaa Xaa Phe 10 Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa 15 Xaa Xaa Pro Xaa Xaa Xaa Ala 20 25 Xaa Tyr Cys Xaa Gly Xaa Cys Xaa 30 Xaa Pro Xaa Xaa Xaa Xaa 40 Xaa Xaa Xaa Asn His Ala Xaa Xaa 45 Xaa Xaa Xaa Xaa Xaa Xaa Xaa 55 Xaa Xaa Xaa Xaa Xaa Cys 65 60 Cys Xaa Pro Xaa Xaa Xaa Xaa

70

Xaa Xaa Xaa Leu Xaa Xaa Xaa 75 80

Xaa Xaa Xaa Xaa Val Xaa Leu Xaa 85

Xaa Xaa Xaa Xaa Met Xaa Val Xaa 90 95

Xaa Cys Xaa Cys Xaa 100

wherein each Xaa is independently selected from a group of one or more specified amino acids as defined by the following: "Res." means "residue" and Xaa at res.2 = (Lys, Arg, Ala or Gln); Xaa at res,3 = (Lys, Arg or Met); Xaa at res.4 = (His, Arg or Gln); Xaa at res.5 = (Glu, Ser, His, Gly, Arg, Pro, Thr, or Tyr); Xaa at res.7 = (Tyr or Lys); Xaa at res.8 = (Val or Ile); Xaa at res.9 = (Ser, Asp or Glu); Xaa at res.11 = (Arg, Gln, Ser, Lys or Ala); Xaa at res.12 = (Asp, Glu, or Lys); Xaa at res.13 = (Leu, Val or Ile); Xaa at res.16 = (Gln, Leu, Asp, His, Asn or Ser); Xaa at res.17 = (Asp, Arg, Asn or Glu); Xaa at res.19 = (Ile or Val); Xaa at res.20 = (Ile or Val); Xaa at res.21 = (Ala or Ser); Xaa at res.23 = (Glu, Gln, Leu, Lys, Pro or Arg); Xaa at res.24 = (Gly or Ser); Xaa at res.25 = (Tyr or Phe); Xaa at res.26 = (Ala, Ser, Asp, Met, His, Gln, Leu, or Gly); Xaa at res.28 = (Tyr, Asn or Phe); Xaa at res.31 = (Glu, His, Tyr, Asp, Gln or Ser); Xaa at res.33 = Glu, Lys, Asp, Gln or Ala); Xaa at res.35 = (Ala, Ser, Pro, Gln or Asn); Xaa at res.36 = (Phe, Leu or Tyr); Xaa at res.38 = (Leu, Val or Met); Xaa at res.39 = (Asn, Asp, Ala, Thr or Pro); Xaa at res.40 = (Ser, Asp, Glu, Leu, Ala or Lys); Xaa at res.41 = (Tyr,

Cys, His, Ser or Ile); Xaa at res.42 = (Met, Phe, Gly or Leu); Xaa at res.43 = (Asn, Ser or Lys); Xaa at res.44 = (Ala, Ser, Gly or Pro); Xaa at res.45 = (Thr, Leu or Ser); Xaa at res.49 = (Ile, Val or Thr); Xaa at res.50 = (Val, Leu or Ile); Xaa at res.51 = (Gln or Arg); Xaa at res.52 = (Thr, Ala or Ser); Xaa at res.53 = (Leu or Ile); Xaa at res.54 = (Val or Met); Xaa at res.55 = (His, Asn or Arg); Xaa at res.56 = (Phe, Leu, Asn, Ser, Ala or Val); Xaa at res.57 = (Ile, Met, Asn, Ala, Val or Leu); Xaa at res.58 = (Asn, Lys, Ala, Glu, Gly or Phe); Xaa at res.59 = (Pro, Ser or Val); Xaa at res.60 = (Glu, Asp, Gly, Val or Lys); Xaa at res.61 = (Thr, Ala, Val, Lys, Asp, Tyr, Ser, Ala, Pro or His); Xaa at res.62 = (Val, Ala or Ile); Xaa at res.63 = (Pro or Asp); Xaa at res.64 = (Lys, Leu or Glu); Xaa at res.65 = (Pro or Ala); Xaa at res.68 = (Ala or Val); Xaa at res.70 = (Thr, Ala or Glu); Xaa at res.71 = (Gln, Lys, Arg or Glu); Xaa at res.72 = (Leu, Met or Val); Xaa at res.73 = (Asn, Ser, Asp or Gly); Xaa at res.74 = (Ala, Pro or Ser); Xaa at res.75 = (Ile, Thr, Val or Leu); Xaa at res.76 = (Ser, Ala or Pro); Xaa at res.77 = (Val, Met or Ile); Xaa at res.79 = (Tyr or Phe); Xaa at res.80 = (Phe, Tyr, Leu or His); Xaa at res.81 = (Asp, Asn or Leu); Xaa at res.82 = (Asp, Glu, Asn or Ser); Xaa at res.83 = (Ser, Gln, Asn, Tyr or Asp); Xaa at res.84 = (Ser, Asn, Asp, Glu or Lys); Xaa at res.85 = (Asn, Thr or Lys); Xaa at res.87 = (Ile, Val or Asn); Xaa at res.89 = (Lys or Arg); Xaa at res.90 = (Lys, Asn, Gln, His or Val); Xaa at res.91 = (Tyr or His); Xaa at res.92 = (Arg, Gln, Glu or Pro); Xaa at res.93 = (Asn, Glu or Asp); Xaa at res.95 = (Val, Thr, Ala or Ile); Xaa at res.97 = (Arg, Lys, Val, Asp or Glu); Xaa at res.98 = (Ala, Gly, Glu or Ser); Xaa at res.100 = (Gly or Ala); and Xaa at res.102 = (His or Arg).

Particularly useful sequences for use as morphogens in this invention include the C-terminal domains, e.g., the C-terminal 96-102 amino acid residues of Vgl, Vgr-1, DPP, OP-1, OP-2, CBMP-2A, CBMP-2B, GDF-1 (see Table II, below, and Seq. ID Nos. 5-14), as well as proteins comprising the C-terminal domains of 60A, BMP3, BMP5 and BMP6 (see Seq. ID Nos. 24-28), all of which include at least the conserved six or seven cysteine skeleton. In addition, biosynthetic constructs designed from the generic sequences, such as COP-1, 3-5, 7, 16, disclosed in U.S. Pat. No. 5,011,691, also are useful. Other sequences include the inhibins/activin proteins (see, for example, U.S. Pat. Nos. 4,968,590 and 5,011,691). Accordingly, other useful sequences are those sharing at least 70% amino acid sequence homology or "similarity", and preferably 80% homology or similarity with any of the sequences above. These are anticipated to include allelic and species variants and mutants, and biosynthetic muteins, as well as novel members of this morphogenic family of proteins. Particularly envisioned in the family of related proteins are those proteins exhibiting morphogenic activity and wherein the amino acid changes from the preferred sequences include conservative changes, e.g., those as defined by Dayoff et al., Atlas of Protein Sequence and Structure; vol. 5, Suppl. 3, pp. 345-362, (M.O. Dayoff, ed., Nat'l BioMed. Research Fdn., Washington, D.C. 1979). As used

herein, potentially useful sequences are aligned with a known morphogen sequence using the method of Needleman et al. ((1970) <u>J.Mol.Biol.</u> 48:443-453) and identities calculated by the Align program (DNAstar, Inc.). "Homology" or "similarity" as used herein includes allowed conservative changes as defined by Dayoff et al.

Morphogen sequences which are detectable according to the methods of the invention include but are not limited to those having greater than 60% identity, preferably greater than 65% identity, with the amino acid sequence defining the conserved six cysteine skeleton of hOP1 (e.g., residues 43-139 of Seq. ID No. 5). These most preferred sequences include both allelic and species variants of the OP-1 and OP-2 proteins, including the Drosophila 60A protein. Accordingly, morphogens which are detectable according to the invention include active proteins comprising species of polypeptide chains having the generic amino acid sequence herein referred to as "OPX", which accommodates the homologies between the various identified species of OP1 and OP2 (Seq. ID No. 29).

The morphogens detectable in the methods of this invention include proteins comprising any of the polypeptide chains described above, whether isolated from naturally-occurring sources, or produced by recombinant DNA or other synthetic techniques, and includes allelic and species variants of these proteins, naturally-occurring or biosynthetic mutants thereof, chimeric variants containing a domain(s) or

region(s) of one ramily member functionally arranged with another domain(s) or regions(s) of a second family member, as well as various truncated and fusion constructs. Deletion or insertion or addition mutants also are envisioned to be active, including those which may alter the conserved C-terminal cysteine skeleton, provided that the alteration does not functionally disrupt the relationship of these cysteines in the folded structure. Accordingly, such active forms are considered the equivalent of the specifically described constructs disclosed herein. The proteins may include forms having varying glycosylation patterns, varying N-termini, a family of related proteins having regions of amino acid sequence homology, and active truncated or mutated forms of native or biosynthetic proteins, produced by expression of recombinant DNA in host cells.

The morphogenic proteins can be expressed from intact or truncated cDNA or from synthetic DNAs in procaryotic or eucaryotic host cells, and purified, cleaved, refolded, and dimerized to form morphogenically active compositions. Currently preferred host cells include <u>E. coli</u> or mammalian cells, such as CHO, COS or BSC cells. A detailed description of the morphogens detectable according to the methods of this invention is disclosed in copending US patent application Serial Nos. 752,764, filed August 30, 1991, and 667,274, filed March 11, 1991, the disclosure of which are incorporated herein by reference.

The screening method of the invention provides a simple method of determining a change in the level of morphogenic protein as a result of exposure of cultured cells to one or more compound(s). The level of a morphogenic protein in a given cell culture, or a change in that level resulting from exposure to one or more compound(s) indicates that direct application of the compound modulates the level of the morphogen expressed by the cultured cells. If, for example, a compound upregulated the production of OP-1 by a kidney cell line, it would then be desirable to test systemic administration of this compound in an animal model to determine if it upregulated the production of OP-1 in vivo. If this compound did upregulate the endogenous circulating levels of OP-1, it would be consistent with administration of the compound systemically for the purpose of correcting bone metabolism diseases such as osteoporosis. The level of morphogen in the body may be a result of a wide range of physical conditions, e.g., tissue degeneration such as occurs in diseases including arthritis, emphysema, osteoporosis, kidney diseases, lung diseases, cardiomyopathy, and cirrhosis of the liver. The level of morphogens in the body may also occur as a result of the normal process of aging. A compound selected by the screening method of the invention as, for example, one which increases the level of morphogen in a tissue, may be consistent with the administration of the compound systemically or locally to a tissue for the purpose of preventing some form of tissue degeneration or for restoring the degenerated tissue to its normal healthy level.

Other advantages of the invention include determining the tissue or tissues of origin of a given morphogen in order to administer a compound aimed at modulating the systemic level of morphogen for treatment of a disease or condition in which the level of morphogen production has become altered.

Brief Description of the Drawings

- Fig. 1 shows the fragments of OP-1, used as probes in Northern hybridizations useful in the processes of the invention.
- Fig. 2 shows results of Northern blot analysis of RNA using different OP-1-specific probes.
- Fig. 3 shows results of Northern blot analysis of RNA from different cells types probed with an OP-1 probe.

Detailed Description

The invention is based on the discovery of a family of structurally related morphogenic proteins (BMPs), also called osteogenic proteins (OPs), and more particularly that various of these proteins play an important role, not only in embryogenesis, but also in tissue and organ maintenance and repair in juvenile and adult mammals. Morphogenic proteins which have been identified include BMP 2, 3, 4, 5, 6, OP-1 and OP-2 (murine and human), Vgr-1, Vgl, DPP, GDF-1, CMBP-2A, CMBP-2B, 60A, and the inhibin/activin class of proteins. Other recombinant proteins include COP1, COP3, COP4, COP5, COP7, and COP16. While, as explained herein, the morphogen have significant homologies and similarities in structure, it is hypothesized that variants within the morphogenic protein genes may have specific roles in specific tissue involving, for example, stimulation of progenitor cell multiplication, tissue specific or tissue preferred phenotype maintenance, and/or stimulation or modulation of the rate of differentiation, growth or replication of tissue cells characterized by high turnover. The effect on the longterm physiology, maintenance and repair of particular tissues by particular species of the morphogens is currently unknown in any significant detail. methods useful in determining which particular tissues express which particular morphogen(s), and for finding changes which stimulate or depress morphogen expression in vivo, would enable discovery and development of strategies for therapeutic treatment of a large number of diseased states, and provide drugs designed to implement the strategy.

This invention provides such methods and, more specifically, two generic processes for obtaining data which ultimately will permit determination of structure/activity relationships of specific naturally occurring mammalian morphogens and drugs capable of modulating their production. For example, using the assay of the invention, it has been determined that OP-1, first found in bone and demonstrated to be osteoinductive, is synthesized primarily in kidney, bladder, and adrenal This surprising discovery, coupled with the observation that patients with kidney disease often express loss of bone mass, suggests that the bone loss in these patients may be due to pathologic depression of OP-1 synthesis in kidney, and suggests that administration of OP-1 systemically or stimulation of OP-1 expression and secretion by the kidney may arrest bone loss, or effect remineralization through increased bone formation (i.e., osteogenesis).

There are two fundamental aspects of the invention. One aspect involves an assay to determine tissues and cell types capable of synthesis and secretion of the morphogens; the other involves the use of the identified cell types configured in a screening system to find substances useful therapeutically to modulate, i.e., stimulate or depress, morphogen expression and/or secretion.

The assay to determine the tissue of origin of a given morphogen involves screening a plurality (i.e., two or more) different tissues by determining a parameter indicative of production of a morphogen in the tissue, and comparing the parameters. The tissue(s) of origin will, of course, be the tissue that produces that morphogen.

The other assay of the invention involves screening candidate compounds for their ability to modulate the effective systemic or local concentration of a morphogen by incubating the compound with a cell culture that produces the morphogen, and assaying the culture for a parameter indicative of a change in the production level of the morphogen. Useful candidate compounds then may be tested for in vivo efficacy in a suitable animal model. These compounds then may be used in vivo to modulate effective morphogen concentrating in the disease treatment.

1. Morphogen Tissue Distribution

Morphogens are broadly distributed in developing and adult tissue. For example, DPP and 60A are expressed in both embryonic and developing Drosophila tissue. Vgl has been identified in Xenopus embryonic tissue. transcripts have been identified in a variety of murine tissues, including embryonic and developing brain, lung, liver, kidney and calvaria (dermal bone) tissue. addition, both CBMP2B and CBMP3 have been identified in lung tissue. Recently, Vgr-1 transcripts also have been identified in adult murine lung, kidney, heart, and brain tissue, with particularly high levels in the lung (see infra). GDF-1 has been identified in human adult cerebellum and in fetal brain tissue. In addition, recent Northern blot analyses indicate that OP-1 is encoded by multiple transcripts in different tissues. This potential alternative splicing is consistent with the hypothesis that the longer transcripts may encoded additional proteins (e.g., bicistronic mRNA) and each form may be tissue or developmentally related.

OP-1 and the CBMP2 proteins, both first identified as bone morphogens, have been identified in mouse and human placenta, hippocampus, calvaria and osteosarcoma tissue as determined by identification of OP-1 and CMBP2-specific sequences in cDNA libraries constructed from these tissues (see USSN 422,699, incorporated herein by reference). Additionally, the OP-1 protein is present in a variety of embryonic and developing tissues including kidney, liver, heart and brain as determined by Western blot analysis and immunolocalization (see infra). OP-1-specific transcripts also have been identified in both embryonic and developing tissues, most abundantly in developing kidney, bladder, adrenal and (see infra). OP-1 also has been identified as a mesoderm inducing factor present during embryogenesis. Moreover, OP-1 has been shown to be associated with satellite cells in the muscle and associated with potential pluripotential stem cells in bone marrow following damage to adult murine endochondral bone, indicating its morphogenic role in tissue repair and regeneration. addition, a novel protein GDF-1 comprising a 7 cysteine skeleton, has been identified in neural tissue (Lee, 1991, Proc. Nat. Aca. Sci. 88: 4250-4254).

Knowledge of the tissue distribution of a given morphogen may be useful in choosing a cell type for screening according to the invention, or for targeting that cell type or tissue type for treatment. The proteins (or their mRNA transcripts) are readily identified in different tissues using standard methodologies and minor modifications thereof in tissues where expression may be low. For example, protein distribution may be determined using standard Western blot analysis or immunocytochemical techniques, and antibodies specific to the morphogen or

morphogens of interest. Similarly, the distribution of morphogen transcripts may be determined using standard Northern hybridization protocols and a transcript-specific probe and hybridization conditions.

2. Useful Morphogens

As defined herein a protein is morphogenic if it is capable of inducing the developmental cascade of cellular and molecular events that culminate in the formation of new, organ-specific tissue and comprises at least the conserved C-terminal six cysteine skeleton or its functional equivalent (see supra). Specifically, the morphogens generally are capable of all of the following biological functions in a morphogenically permissive environment: stimulating proliferation of progenitor cells; stimulating the differentiation of progenitor cells; stimulating the proliferation of differentiated cells; and supporting the growth and maintenance of differentiated cells, including the "redifferentiation" of transformed Details of how the morphogens detectable according to the methods of this invention first were identified, as well as a description on how to make, use and test them for morphogenic activity are disclosed in USSN 667,274, filed March 11, 1991 and USSN 752,764, filed August 30, 1991, the disclosures of which are hereby incorporated by reference. As disclosed therein, the morphogens may be purified from naturally-sourced material or recombinantly produced from procaryotic or eucaryotic host cells, using the genetic sequences disclosed therein. Alternatively, novel morphogenic sequences may be identified following the procedures disclosed therein.

Particularly useful proteins include those which comprise the naturally derived sequences disclosed in Table II. Other useful sequences include biosynthetic constructs such as those disclosed in U.S. Pat. 5,011,691, the disclosure of which is incorporated herein by reference (e.g., COP-1, COP-3, COP-4, COP-5, COP-7, and COP-16).

Accordingly, the morphogens detectable according to the methods and compositions of this invention also may be described by morphogenically active proteins having amino acid sequences sharing 70% or, preferably, 80% homology (similarity) with any of the sequences described above, where "homology" is as defined herein above.

The morphogens detectable according to the method of this invention also can be described by any of the 6 generic sequences described herein (Generic Sequences 1, 2, 3, 4, 5 and 6). Generic sequences 1 and 2 also may include, at their N-terminus, the sequence

Cys Xaa Xaa Xaa Xaa (Seq. ID No. 15)
1 5

Table II, set forth below, compares the amino acid sequences of the active regions of native proteins that have been identified as morphogens, including human OP-1 (hOP-1, Seq. ID Nos. 5 and 16-17), mouse OP-1 (mOP-1, Seq. ID Nos. 6 and 18-19), human and mouse OP-2 (Seq. ID Nos. 7, 8, and 20-23), CBMP2A (Seq. ID No. 9), CBMP2B (Seq. ID No. 10), BMP3 (Seq. ID No. 26), DPP (from Drosophila, Seq. ID No. 11), Vgl, (from Xenopus, Seq. ID No. 12), Vgr-1 (from mouse, Seq. ID No. 13), GDF-1 (from mouse, Seq. ID

Nos. 14, 32 and 33), 60A protein (from Drosophila, Seq. ID Nos. 24 and 25), BMP5 (Seq. ID No. 27) and BMP6 (Seq. ID No. 28). The sequences are aligned essentially following the method of Needleman et al. (1970) J. Mol. Biol., 48:443-453, calculated using the Align Program (DNAstar, Inc.) In the table, three dots indicates that the amino acid in that position is the same as the amino acid in hOP-1. Three dashes indicates that no amino acid is present in that position, and are included for purposes of illustrating homologies. For example, amino acid residue 60 of CBMP-2A and CBMP-2B is "missing". Of course, both these amino acid sequences in this region comprise Asn-Ser (residues 58, 59), with CBMP-2A then comprising Lys and Ile, whereas CBMP-2B comprises Ser and Ile.

TABLE II

hOP-1	Cys	Lys	Lys	His	Glu	Leu	Tyr	Val	
mOP-1	• • •	• • •	• • •	• • •	•••	• • •	• • •	• • •	
hOP-2	• • •	Arg	Arg	• • •	•••	• • •	• • •	• • •	
mOP-2	• • •	Arg	Arg	• • •	• • •	• • •	• • •	• • •	
DPP	• • •	Arg	Arg	• • •	Ser	• • •		• • •	
Vgl	• • •	• • •	Lys	Arg	His	• • •	• • •	• • •	
Vgr-1	• • •	• • •	• • •	• • •	Gly	• • •	• • •	•••	
CBMP-2A		• • •	Arg	• • •	Pro		• • •	• • •	
CBMP-2B	• • •	Arg	Arg		Ser	• • •	• • •	• • •	
вмР3		Ala	Arg	Arg	Tyr		Lys	• • •	
GDF-1	• • •	Arg	Ala	Arg	Arg	• • •	•••	• • •	
60A		Gln	Met	Glu	Thr	• • •	• • •	• • •	
BMP5	• • •	• • •	• • •		•••	• • •	• • •	• • •	
BMP6	•••	Arg	• • •	• • •	• • •	• • •	• • •	• • •	
	1				5				
h0P-1	Ser	Phe	Arg	Asp	Leu	Gly	Trp	Gln	Asp
mOP-1	•••	• • •	• • •		• • •	• • •	• • •	• • •	• • •
hOP-2	• • •	• • •	Gln	• • •	• • •	• • •	• • •	Leu	• • •
mOP-2	Ser	• • •	• • •	• • •	•••	• • •	• • •	Leu	• • •
DPP	Asp	• • •	Ser	• • •	Val	•••,	• • •	Asp	• • •
Vgl	Glu	• • •	Lys	• • •	Val	•••.	• • •		Asn
Vgr-1	•••	•••	Gln	• • •	Val	• • •	• • •	• • •	• • •
CBMP-2A	Asp	• • •	Ser	• • •	Val		• • •	Asn	• • •
CBMP-2B	Asp	• • •	Ser	• • •	Val	• • •	• • •	Asn	• • •
вмрз	Asp	•••	Ala	• • •	Ile	• • •	• • •	Ser	Glu
GDF-1	• • •	•••		Glu	Val	• • •	• • •	His	Arg
60A	Asp	• • •	Lys				• • •	His	• • •

PCT/US92/07359

BMP5	• • •	•••	• • •	• • •	•••	•••	•••	• • •	• • •
BMP6	• • •		Gln	• • •	• • •	• • •	• • •	• • •	• • •
		10					15		

hOP-1	Trp	Ile	Ile	Ala	Pro	Glu	Gly	Tyr	Ala
mOP-1	• • •	• • •	• • •	• • •	•••	• • •	• • •	• • •	• • •
hOP-2	• • •	Val	• • •	• • •	• • •	Gln	•••	• • •	Ser
mOP-2	• • •	Val	• • •	• • •	• • •	Gln	•••	• • •	Ser
DPP	•••	• • •	Val	• • •	• • •	Leu	• • •	• • •	Asp
Vgl	• • •	Val	• • •		•••	Gln	• • •	• • •	Met
Vgr-1		• • •	• • •	• • •	• • •	Lys		• • •	• • •
CBMP-2A	• • •	• • •	Val	• • •	• • •	Pro		• • •	His
CBMP-2B	• • •	• • •	Val	• • •	• • •	Pro	• • •		Gln
вмР3	• • •	• • •	• • •	Ser	• • •	Lys	Ser	Phe	Asp
GDF-1	•••	Val	• • •	• • •	• • •	Arg	• • •	Phe	Leu
60A	• • •	• • •	• • •	• • •	• • •		• • •	• • •	Gly
BMP5	• • •	• • •	• • •	• • •	• • •		• • •	• • •	• • •
BMP6	• • •	• • •	• • •		• • •	Lys	• • •	•••	• • •
			20				•	25	
hOP-1	Ala	Tyr	Tyr	Cys	Glu	Gly	Glu	Cys	Ala
mOP-1	• • •			• • •	• • •	• • •	• • •	• • •	• • •
hOP-2	•••	• • •	• • •			• • •	• • •	• • •	Ser
mOP-2	• • •	• • •	• • •	• • •	•••	•••	• • •	• • •	•••
DPP	• • •	• • •		• • •	His	• • •	Lys	• • •	Pro
Vgl	• • •	Asn		• • •	Tyr	• • •	• • •	•••	Pro
Vgr-1	• • •	Asn	• • •	• • •	Asp	• • •	• • •	• • •	Ser
CBMP-2A	• • •	Phe		• • •	His	• • •	Glu	• • •	Pro
CBMP-2B	• • • •	Phe	• • •		His	• • •	Asp	•••	Pro
BMP3	• • •	• • •			Ser	• • •	Ala	• • •	Gln
GDF-1		Asn	• • •	• • •	Gln	• • •	Gln	• • •	• • •
60A		Phe	• • •		Ser	• • •	•••	• • •	Asn
BMP5		Phe	•••	• • •	Asp	• • •	• • •	•••	Ser
BMP6	• • •	Asn	• • •	• • •	Asp	• • •	•••	• • •	Ser
				30					35

hOP-1	Phe	Pro	Leu	Asn	Ser	Tyr	Met	Asn	Ala
mOP-1		• • •	• • •	• • •	• • •	•••	• • •	• • •	• • •
hOP-2		• • •	•••	Asp	• • •	Cys	•••	• • •	•••
mOP-2	• • •		• • •	Asp	• • •	Cys	• • •	•••	• • •
DPP	• • •	•••	•••	Ala	Asp	His	Phe	•••	Ser
٧gl	Tyr		• • •	Thr	Glu	Ile	Leu	• • •	Gly
Vgr-1	• • •	•••	•••	• • •	Ala	His	• • •	• • •	• • •
CBMP-2A	• • •	•••	• • •	Ala	Asp	His	Leu	• • •	Ser
CBMP-2B	• • •	• • •	•••	Ala	Asp	His	Leu	•••	Ser
GDF-1	Leu	•••	Val	Ala	Leu	Ser	Gly	Ser**	• • •
вир3	• • •	• • •	Met	Pro	Lys	Ser	Leu	Lys	Pro
60A	• • •	• • •	•••	• • •	Ala	His	• • •	•••	• • •
BMP5	• • •	• • •	•••	• • •	Ala	His	Met	•••	• • •
BMP6	• • •	• • •	• • •	• • •	Ala	His	Met	•••	• • •
					40				
hOP-1	Thr	Asn	His	Ala	Ile	Val	Gln	Thr	Leu
mOP-1	• • •	•••	• • •		•••	•••	• • •	• • •	• • •
hOP-2	• • •	• • •	• • •	• • •	• • •	Leu	•••	Ser	• • •
mOP-2	• • •	•••	• • •	• • •	•••	Leu	• • •	Ser	• • •
DPP	• • •	• • •	•••	• • •	Val	• • •	• • •	• • •	• • •
Vgl	Ser	• • •	• • •	• • •	• • •	Leu	• • •	• • •	• • •
Vgr-1	•••	• • •	• • •	• • •	• • •	• • •	•••	• • •	• • •
CBMP-2A	•••	• • •	• • •	•••	•••	• • •	• • •	• • •	•••
CBMP-2B	•••	• • •	• • •	• • •	•••	•••	• • •	• • •	• • •
BMP3	Ser	•••	•••	•••	Thr	Ile	• • •	Ser	Ile
GDF-1	Leu	• • •	• • •	•••	Val	Leu	Arg	Ala	• • •
60A	•	• • •	•••	• • •	•••	• • •	• • •	• • •	• • •
BMP5	• • •	• • •	• • •	•••	•••	• • •	• • •	• • •	• • •
BMP6	• • •	• • •	• • •	• • •		• • •	•••	• • •	• • •
	45					50			

hOP-1	Val	His	Phe	Ile	Asn	Pro	Glu	Thr	Val
mOP-1	• • •		• • •	• • •		• • •	Asp	• • •	• • •
hOP-2	• • •	His	Leu	Met	Lys	• • •	Asn	Ala	• • •
mOP-2	• • •	His	Leu	Met	Lys	• • •	Asp	Val	•••
DPP	• • •	Asn	Asn	Asn		• • •	Gly	Lys	• • •
Vgl	• • •		Ser	•••	Glu	• • •	• • •	Asp	Ile
Vgr-1	• • •	• • •	Val	Met	• • •	• • •	• • •	Tyr	• • •
CBMP-2A	• • •	Asn	Ser	Val		Ser		Lys	Ile
CBMP-2B	• • •	Asn	Ser	Val	• • •	Ser		Ser	Ile
вир3	• • •	Arg	Ala**	Gly	Val	Val	Pro	Gly	Ile
GDF-1	Met	• • •	Ala	Ala	Ala	• • •	Gly	Ala	Ala
60A	• • •		Leu	Leu	Glu	• • •	Lys	Lys	• • •
BMP5	• • •	• • •	Leu	Met	Phe	• • •	Asp	His	• • •
BMP6	• • •	• • •	Leu	Met	• • •	• • •	• • •	Tyr	• • •
		55					60		
hOP-1	Pro	Lys	Pro	Cys	Cys	Ala	Pro	Thr	Gln
mOP-1	•••	• • •	•••	• • •		• • •	•••	• • •	• • •
hOP-2	• • •	• • •	Ala	• • •	• • •	• • •	• • •	• • •	Lys
mOP-2	•••	• • •	Ala	• • •	• • •	• • •	• • •	• • •	Lys
DPP	• • •		Ala	• • •	• • •	Val	• • •	• • •	• • •
Vgl	• • •	Leu	• • •	• • •	• • •	Val	• • •	• • •	Lys
Vgr-1	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	Lys
CBMP-2A	• • •	• • •	Ala	• • •	• • •	Val	• • •	• • •	Glu
CBMP-2B	• • •	• • •	Ala	• • •	• • •	Val	• • •	• • •	Glu
BMP3		Glu	• • •	• • •	• • •	Val	• • •	Glu	Lys
GDF-1	Asp	Leu	• • •	• • •	• • •	Val	• • •	Ala	Arg
60A			• • •	• • •	•••	• • •	• • •	• • •	Arg
вир5	• • •	• • •	•••	• • •		• • •	• • •	• • •	Lys
BMP6	• • •	• • •	•••	• • •	•••	• • •	•••	• • •	Lys
			65					70	

hOP-1	Leu	Asn	Ala	Ile	Ser	Val	Leu	Tyr	Phe
mOP-1		• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
hOP-2	•••	Ser		Thr	• • •	• • •	• • •	• • •	Tyr
mOP-2	• • •	Ser		Thr	• • •	• • •	• • •	•••	Tyr
Vgl	Met	Ser	Pro	• • •	• • •	Het	• • •	Phe	Tyr
Vgr-1	Val	• • •	• • •	•••	•••	• • •	• • •	• • •	• • •
DPP	• • •	Asp	Ser	Val	Ala	Met	• • •	•••	Leu
CBMP-2A	• • •	Ser	• • •	• • •	• • •	Met	• • •	• • •	Leu
CBMP-2B	•••	Ser	• • •	• • •	• • •	Met	• • •	• • •	Leu
вмр3	Met	Ser	Ser	Leu	•••	Ile	• • •	Phe	Tyr
GDF-1	• • •	Ser	Pro	•••	• • •	•••	• • •	Phe	• • •
60A	• • •	Gly	• • •	Leu	Pro	• • •	• • •	• • •	His
BMP5	• • •		• • •		• • •	• • •	• • •	• • •	• • •
BMP6	• • •	• • •	• • •	• • •	• • •	•••	•••	•••	• • • •
				7 5					80
h0P-1	Asp	Asp	Ser	Ser	Asn	Val	Ile	Leu	Lys
mOP-1	• • •		• • •	•••	•••	•••		• • •	• • •
h0P-2	•••	Ser	• • •	Asn	•••	• • •	• • •	• • •	Arg
mOP-2	•••	Ser	• • •	Asn	• • •	• • •	• • •	• • •	Arg
DPP	Asn	• • •	Gln	• • •	Thr	• • •	Val	• • •	• • •
Vgl	• • •	Asn	Asn	Asp	• • •	• • •	Val	• • •	Arg
Vgr-1	•••	• • •	Asn	• • •	• • • .	• • •	• • •	• • •	• • •
CBMP-2A	• • •	Glu	Asn	Glu	Lys	. •••	Val	• • •	• • •
CBMP-2B	• • •	Glu	Tyr	Asp	Lys	• • •	Val	• • •	• • •
вирз	• • •	Glu	Asn	Lys	• • •	• • •	Val	• • •	• • •
GDF-1		Asn	• • •	Asp	• • •	• • •	Val	• • •	Arg
60A	Leu	Asn	Asp	Glu	• • •	• • •	Asn	• • •	•••
·BMP5	•••	• • •	•••	• • •	• • •	•••	•••	• • •	• • •
BMP6	•••	• • •	Asn	•••	• • •	• • •		• • •	•••
					05				

hOP-1	Lys	Tyr	Arg	Asn	Met	Val	Val	Arg
mOP-1	• • •		• • •	• • •	• • •	• • •	• • •	• • •
hOP-2	• • •	His	• • •	• • •	• • •	• • •	• • •	Lys
mOP-2	• • •	His	• • •	• • •	• • •	• • •	• • •	Lys
DPP	Asn	•••	Gln	Glu	• • •	Thr	•••	Val
Vgl	His	• • •	Glu	• • •	• • •	Ala	• • •	Asp
Vgr-1	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
CBMP-2A	Asn	• • •	Gln	Asp	• • •	• • •	• • •	Glu
CBMP-2B	Asn	• • •	Gln	Glu	• • •	• • •	• • •	Glu
вирз	Val	•••	Pro	• • •	• • •	Thr	• • •	Glu
GDF-1	Gln		Glu	Asp	• • •	• • •	• • •	Asp
60A				•••	• • •	Ile	• • •	Lys
BMP5	• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •
BMP6	• • •	• • •	• • •	Trp			• • •	• • •
	90					95		
hOP-1	Ala	Cys	Gly	Cys	His			
mOP-1	• • •		• • •		• • •			
hOP-2	• • •	• • •	• • •	• • •	• • •			
mOP-2	• • •	• • •		• • •	• • •			
DPP	Gly	• • •	• • •	• • •	Arg			
Vgl	Glu		• • •	• • •	Arg			
Vgr-1	• • •	• • •	• • •	• • •	• • •			
CBMP-2A	Gly	• • •	•••	• • •	Arg			
CBMP-2B	Gly	<i>:</i>	• • •		Arg			
вир3	Ser	•••	Ala	• • •	Arg			
GDF-1	Glu	•••	• • •	• • •	Arg			
60A	Ser	•••	•••	•••	• • •	•		
BMP5	Ser	• • •	• • •	• • •	• • •			
BMP6		• • •	• • •	• • •	• • •			

100

**Between residues 56 and 57 of BMP3 is a Val residue; between residues 43 and 44 of GDF-1 lies the amino acid sequence Gly-Gly-Pro-Pro.

As is apparent from the foregoing amino acid sequence comparisons, significant amino acid changes can be made within the generic sequences while retaining the morphogenic activity. For example, while the GDF-1 protein sequence depicted in Table II shares only about 50% amino acid identity with the hOP1 sequence described therein, the GDF-1 sequence shares greater than 70% amino acid sequence homology (or "similarity") with the hOP1 sequence, where "homology" or "similarity" includes allowed conservative amino acid changes within the sequence as defined by Dayoff, et al., Atlas of Protein Sequence and Structure vol.5, supp.3, pp.345-362, (M.O. Dayoff, ed., Nat'l BioMed. Res. Fd'n, Washington D.C. 1979.)

The currently most preferred protein sequences detectable as morphogens in this invention include those having greater than 60% identity, preferably greater than 65% identity, with the amino acid sequence defining the conserved six cysteine skeleton of hOP1 (e.g., residues 43-139 of Seq. ID No. 5). These most preferred sequences include both allelic and species variants of the OP-1 and OP-2 proteins, including the Drosophila 60A protein. Accordingly, in still another preferred aspect, the invention includes detection of morphogens comprising species of polypeptide chains having the generic amino acid sequence referred to herein as "OPX", which defines the seven cysteine skeleton and accommodates the identities between the various identified mouse and human OP1 and OP2 proteins. OPX is presented in Seq. ID No. 29. described therein, each Xaa at a given position

independently is selected from the residues occurring at the corresponding position in the C-terminal sequence of mouse or human OP1 or OP2 (see Seq. ID Nos. 5-8 and/or Seq. ID Nos. 16-23).

3. Tissue-Specific Expression of OP-1

Once a morphogen is identified in a tissue, its level may be determined either at the protein or nucleic acid level. By comparing the levels of production of a given morphogen among different tissues, it is possible to determine the tissue(s) of origin of that morphogen. The level of production of the morphogen OP-1 in different tissues is one example of a morphogen having a tissue of origin, i.e., the kidney, which contains a cell type that can also be used as the cell type which is used to screen, according to the invention, different compounds for their potential effects on morphogen (OP-1) production.

The level of OP-1 varies among different tissue types. In order to screen compounds for their effect on the production of OP-1 by a given cell type, it may be desirable to determine which tissues produce levels of OP-1 which are sufficiently high to show a potential decrease and sufficiently low to show a potential increase in production. Different tissues may be screened at the RNA level as follows.

Any probe capable of hybridizing specifically to a transcript, and distinguishing the transcript of interest from other, related transcripts may be used. Because the morphogens to be detected in the methods of this invention share such high sequence homology in their C-terminal domain, the tissue distribution of a specific morphogen transcript may best be determined using a probe specific

for the "pro" region of the immature protein and/or the N-terminal heterogeneous region of the mature protein. Another useful probe sequence is the 3'non-coding region immediately following the stop codon. These portions of the sequence vary substantially among the morphogens of this invention, and accordingly, are specific for each protein. For example, a particularly useful Vgr-1-specific probe sequence is the PvuII-SacI fragment, a 265 bp fragment encoding both a portion of the pro region and the N-terminus of the mature sequence. Similarly, particularly useful mOP-1-specific probe sequences are the BstXI-BglI fragment, a 0.68kb sequence that covers approximately twothirds of the mOP1 pro region; a StuI-StuI fragment, a 0.2 kb sequence immediately upstream of the 7-cysteine domain, and an EarI-PstI fragment, a 0.3kb fragment containing the 3'untranslated sequence. Similar approaches may be used, for example, with hOP-1 (SEQ. ID NO.16) or human or mouse OP-2 (SEQ. ID NOS.20 and 22).

Using morphogen-specific oligonucleotides probes, morphogen transcripts can be identified in mammalian tissues, using standard methodologies well known to those having ordinary skill in the art. Briefly, total RNA from mouse embryos and organs from post-natal animals is prepared using the acid guanidine thiocyanate-phenol-chloroform method (Chomczynski et al., Anal. Biochem. 162:156-159, 1987). The RNA may be dissolved in TES buffer (10 mM Tris-HC1, 1 mM EDTA, 0.1% SDS, pH 7.5) and treated with Proteinase K (approx. 1.5 mg per g tissue sample) at 45°C for 1 hr. Poly(A)⁺ RNA selection on oligo(dT)-cellulose (Type 7, Pharmacia LKB Biotechnology Inc., Piscataway, NJ) may be done in a batch procedure by mixing 0.1 g oligo(dT)-cellulose with 11 ml RNA solution (from 1 g

tissue) in TES buffer and 0.5 M NaCl). Thereafter the oligo(dT) cellulose is washed in binding buffer (0.5 M NaCl, 10 mM Tris-HCl, 1 mM EDTA, pH 7.5) and poly(A) + RNA is eluted with water. Poly(A) $^{+}$ RNA (5 or 15 μ g/lane) is fractionated on 1 or 1.2% agarose-formaldehyde gels (Selden, in Current Protocols in Molecular Biology, Ausubel et al. eds., pp. 1-4, 8, 9, Greene Publishing and Wiley-Interscience, New York, 1991). 1 μ l of 400 μ g/ml ethidium bromide is added to each sample prior to heat denaturation (Rosen et al., Focus 12:23-24, 1990). Following electrophoresis, the gels are photographed and the RNA is blotted overnight onto Nytran nitrocellulose membranes (Schleicher & Schuell Inc., Keene, NH) with 10 x The membranes are baked at 80°C for 30-60 min. and irradiated with UV light (1 mW/cm2 for 25 sec.). Northern hybridization conditions may be as previously described (Ozkaynak et al., EMBO J. 9:2085-2093, 1990). For re-use, the filters may be deprobed in 1 mM Tris-HCl, 1 mM EDTA, 0.1% SDS, pH 7.5, at 90-95°C and exposed to film to assure complete removal of previous hybridization signals.

One probe which may be used to screen for transcripts encoding a morphogen includes a portion of or the complete OP-1 cDNA, which may be used to detect the presence of OP-1 mRNA or mRNAs of related morphogens. The sequence of the murine cDNA gene is set forth in SEQ ID NO:14.

OP-1 mRNA expression was analyzed in 17 day mouse embryos and 3 day post-natal mice by sequentially hybridizing filters with various probes. Probes from regions other than the highly conserved 7-cysteine domain were selected because this region is highly variable among

WO 93/05172

members of the TGF-β superfamily. Fig. 1 shows the fragments of OP-1, used as probes in the Northern hybridizations. The solid box indicates the putative signal peptide and the hatched box corresponds to the TGF-β-like domain that contains the seven cysteine residues. Asterisks indicate the potential N-glycosylation sites. The arrow marks the location of the cleavage site for OP-1 maturation. Three solid bars below the diagram indicate the OP-1 specific fragments used in making ³²P-labeled probes (0.68 kb BstXI - BglI fragment, 0.20 kb StuI - StuI fragment and 0.34 kb EarI - PstI non-coding fragment).

Hybridization with a probe that covers approximately two thirds of the pro region (the 0.68 kb BstXI-BglI fragment), reveals a 4 kb message and 3 messages at 1.8 kb, 2.2 kb and 2.4 kb (Fig. 2B and D, and Fig. 3). In the Northern hybridization of Fig. 2, equal amounts (15 μ g) of poly(A) + RNA were loaded into each lane, electrophoresed on a 1% agarose-formaldehyde gel, blotted and hybridized. 0.24 - 9.49 kb RNA ladder (Bethesda Research Labs, Inc.) was used as size standard. The same filter was used for sequential hybridizations with labeled probes specific for OP-1 (Panels B and D), Vgr-1 (Panel C), and EF-Tu (Panel A). Panel A: the EF-Tu specific probe (a control) was the 0.4 kb HindIII-SacI fragment (part of the coding region), the SacI site used belonged to the vector; Panel the OP-1 specific probe was the 0.68 kb BstXI-BglI fragment (two thirds of the pro region and upstream sequences of the mature domain, not including any sequences from the 7-cysteine domain); Panel C: the Vgr-1 specific probe was the 0.26 kb PvuII-SacI fragment (part of the pro region and the amino-terminal sequences of the mature

domain, including the first cysteine) (Lyons et al., 1989, Proc. Nat. Aca. Sci. 86: 4554, hereby incorporated by reference). Panel D: the OP-1 (3' flanking) specific probe was the 0.34 kb EarI-PstI fragment (3' untranslated sequences immediately following the sequences encoding OP-1).

In Fig. 3, the tissues to be used for RNA preparation were obtained from two week old mice (Panel A) or 5 week old mice (Panel B), with the exception of poly A+RNA which was obtained from kidney adrenal gland of two week old mice (Panel B). Equal amounts of poly A+RNA (15 µg for Panel A and 5 µg for Panel B) were loaded into each well. After electrophoresis (1.2% agaroseformaldehyde gels) and blotting, RNA was hybridized to the OP-1 specific 3' flanking probe described in the legend of Fig. 2 (Panel D). The 0.24-9.5 kb RNA ladder was used as size standard. The arrowheads indicate the OP-1 specific messages. The lower section of Panels A and B show the hybridization pattern obtained with the EF-Tu specific probe (a control).

Although the size of the Vgr-1 specific message is close to the 4 kb OP-1 species (Fig. 2 Panel C), the OP-1 4 kb mRNA is somewhat larger. To further rule out cross-hybridization with a non-OP-1 message, the 0.2 kb StuI-StuI fragment which represents the gene specific sequences immediately upstream of those encoding the 7-cysteine domain was used. This probe gave a hybridization pattern similar to the one shown in Fig. 2 Panel B (data not shown). A third probe, the 0.34 kb EarI-PstI fragment containing 3' untranslated sequences, also confirmed the pattern (Fig. 2 Panel D). Thus, the same four OP-1 specific messages were observed with three distinct probes.

The appearance of a new 4 kb OP-1 mRNA species was initially interpreted as cross hybridization of the OP-1 probe with Vgr-1 mRNA, which is approximately this size (Fig. 2 Panel C). However, the 4 kb message was detected with three different OP-1 specific probes, including one specific to the 3' untranslated region, and moreover it was separated from Vgr-1 message on the basis of size. Most likely, therefore, the 4 kb mRNA (and the three species of 1.8 kb, 2.2 kb and 2.4 kb) results from alternative splicing of OP-1 transcripts. The 4 kb OP-1 mRNA could also represent a bicistronic mRNA. The 4 kb message is a minor species in kidney, while it is more prominent in adrenal tissue.

The level of OP-1 expression was compared in different tissues using poly(A) + RNA prepared from brain, spleen, lung, kidney and adrenal gland, heart, and liver of 13 day post-natal mice. The RNA was analyzed on Northern blots by hybridization to various probes (Fig. 3. Equal amounts of mRNA, as judged by optical density, were fractionated on agarose formaldehyde gels. Ethidium bromide staining of the gels revealed some residual ribosomal RNA in addition to the mRNA and provided another assurance that the mRNA was not degraded and that there was not significant quantitative or qualitative variation in the preparation. As control for mRNA recovery, EF-Tu (translational elongation factor) mRNA was probed (assuming uniform expression of EF-Tu in most tissues). A great variation in the level of OP-1 expression was observed in spleen, lung, kidney and adrenal tissues whereas EF-Tu mRNA levels appeared relatively constant in these tissues (Fig. 3 Panel A). The highest level of OP-1 mRNA was found in the kidneys. Uniformly lower levels of EF-Tu mRNA were

found in brain, heart and liver (Fig. 3 Panel A).

Additional analysis of OP-1 mRNA showed the presence of significant amounts of OP-1 mRNA in the bladder (data not shown). In summary, next to kidney, bladder and adrenal tissue, brain tissue contained the highest levels of OP-1 RNA, whereas heart and liver did not give detectable signals.

OP-1 mRNA patterns display qualitative changes in the various tissues. Of the four messages found in brain, the 2.2 kb message is most abundant whereas in lung and spleen the 1.8 kb message predominates. Levels of the 1.8-2.4 kb in the kidney OP-1 mRNA are approximately two times higher in 3 day post-natal mice than in 17 day embryos, perhaps reflecting phases in bone and/or kidney development. mRNA was also prepared from carefully separated renal and adrenal tissues of 5 week old mice. Northern blot analysis (Figure 4, Panel B) revealed that the high levels of 2.2 kb mRNA were derived from renal tissue whereas the 4 kb mRNA was more prominent in adrenal tissue.

The detection of of OP-1 message primarily in the kidney but also in bladder links OP-1 expression specifically with the urinary tract. Interestingly, the related Vgr-1 is also expressed at significant levels in kidney although its main site of expression in lung.

Once the tissue-specific expression of a given morphogen is known, cell types known to exist in that tissue or cell lines derived from that tissue can be screened, in a similar manner, to identify the cell type within that tissue that is actually responsible for the tissue specific synthesis and secretion of the morphogen. Once a cell type which produces the morphogen in an amount

sufficient to detect increases or decreases in the production level of the morphogen upon exposure to a compound is identified, it may be used in tissue culture assay to rapidly screen for the ability of compound to upregulate or down regulate the synthesis and secretion of the morphogen. The level of morphogen production by the chosen cell type is determined with and without incubating the cell in culture with the compound, in order to assess the effects of the compound on the cell's ability to synthesize or secrete the morphogen. This can be accomplished by detection of the level of production of the morphogen either at the protein or mRNA level.

4. Growth of Cells in Culture

Cell cultures derived from kidney, adrenals, urinary bladder, brain, or other organs, may be prepared as described widely in the literature. For example, kidneys may be explanted from neonatal, new born, young or adult rodents (mouse or rat) and used in organ culture as whole or sliced (1-4 mm) tissues. Primary tissue cultures and established cell lines, also derived from kidney, adrenals, urinary, bladder, brain, or other tissues may be established in multiwell plates (6 well, 24 well, or 96 well) according to conventional cell culture techniques, and are cultured in the absence or presence of serum for a period of time (1-7 days). Cells may be cultured, for example, in Dulbecco's Modified Eagle medium (Gibco, Long Island, NY) containing serum (e.g., fetal calf serum at 1%-10%, Gibco) or in serum-deprived medium, as desired, or in defined medium (e.g., containing insulin, transferrin, glucose, albumin, or other growth factors).

Samples for testing the level of morphogen production include culture supernatants or cell lysates, collected periodically and evaluated for OP-1 production by immunoblot analysis of a portion of the cell culture itself, collected periodically and used to prepare polyA+ RNA for RNA analysis (Sambrook et al., eds., Molecular Cloning, 1989, Cold Spring Harbor Press, Cold Spring Harbor, NY). To monitor de novo OP-1 synthesis, some cultures are labeled with 35 S-methionine/35 S-cysteine mixture for 6-24 hours and then evaluated for morphogen production by conventional immunoprecipitation methods (Sambrook et al., eds., Molecular Cloning, 1989, Cold Spring Harbor Press, Cold Spring Harbor, NY). Alternatively, the production of morphogen or determination of the level of morphogen production may be ascertained using a simple assay for a parameter of cell growth, e.g., cellular proliferation or death. For example, where a morphogen is produced by a cultured cell line, the addition of antibody specific for the morphogen may result in relief from morphogen inhibition of cell growth. measurement of cellular proliferation can be used as an indication of morphogen production by a tissue.

5. Determination of Level of Morphogenic Protein

In order to quantitate the production of a morphogenic protein by a cell type, an immunoassay may be performed to detect the morphogen using a polyclonal or monoclonal antibody specific for that morphogen. For example, OP-1 may be detected using a polyclonal antibody specific for OP-1 in an ELISA, as follows.

1 $\mu g/100$ ul of affinity-purified polyclonal rabbit IgG specific for OP-1 is added to each well of a 96-well

plate and incubated at 37°C for an hour. The wells are washed four times with 0.16M sodium borate buffer with 0.15 M NaCl (BSB), pH 8.2, containing 0.1% Tween 20. minimize non-specific binding, the wells are blocked by filling completely with 1% bovine serum albumin (BSA) in BSB for 1 hour at 37°C. The wells are then washed four times with BSB containing 0.1% Tween 20. A 100 ul aliquot of an appropriate dilution of each of the test samples of cell culture supernatant is added to each well in triplicate and incubated at 37°C for 30 min. After incubation, 100 ul biotinylated rabbit anti-OP-1 serum (stock solution is about 1 mg/ml and diluted 1:400 in BSB containing 1% BSA before use) is added to each well and incubated at 37°C for 30 min. The wells are then washed four times with BSB containing 0.1% Tween 20. strepavidin-alkaline (Southern Biotechnology Associates, Inc. Birmingham, Alabama, diluted 1:2000 in BSB containing 0.1% Tween 20 before use) is added to each well and incubated at 37°C for 30 min. The plates are washed four times with 0.5M Tris buffered Saline (TBS), pH 7.2. substrate (ELISA Amplification System Kit, Life Technologies, Inc., Bethesda, MD) are added to each well incubated at room temperature for 15 min. Then, 50 ul amplifier (from the same amplification system kit) is added and incubated for another 15 min at room temperature. reaction is stopped by the addition of 50 ul 0.3 M sulphuric acid. The OD at 490 nm of the solution in each well is recorded. To quantitate OP-1 in culture media, a OP-1 standard curve is performed in parallel with the test samples.

6. Preparation of Polyclonal Antibody

Polyclonal antibody is prepared as follows. Each rabbit is given a primary immunization of 100 ug/500 ul E. coli-produced OP-1 monomer (amino acids 328-431 of SEQ. ID NO: 11) in 0.1% SDS mixed with 500 ul Complete Freund's Adjuvant. The antigen is injected subcutaneously at multiple sites on the back and flanks of the animal. The rabbit is boosted after a month in the same manner using incomplete Freund's Adjuvant. Test bleeds are taken from the ear vein seven days later. Two additional boosts and test bleeds are performed at monthly intervals until antibody against OP-1 is detected in the serum using an ELISA assay. Then, the rabbit is boosted monthly with 100 ug of antigen and bled (15 ml per bleed) at days seven and ten after boosting.

7. <u>Preparation of Monoclonal Antibody and Neutralizing Monoclonal Antibody</u>

Monoclonal antibody specific for a given morphogen may be prepared as follows. A mouse is given two injections of E. coli produced OP-1 monomer (amino acids 328-431 in SEQ ID NO:11). The first injection contains 100ug of OP-1 in complete Freund's adjuvant and is given subcutaneously. The second injection contains 50 ug of OP-1 in incomplete adjuvant and is given intraperitoneally. The mouse then receives a total of 230 ug of OP-1 (amino acids 307-431 of SEQ ID NO:11) in four intraperitoneal injections at various times over an eight month period. One week prior to fusion, The mouse is boosted intraperitoneally with 100 ug of OP-1 (15-139) and 30 ug of the N-terminal peptide (Ser293-Asn309-Cys) conjugated through the added cys residue to bovine serum albumin with

SMCC crosslinking agent. This boost is repeated five days (IP), four days (IP), three days (IP) and one day (IV) prior to fusion. The mouse spleen cells are then fused to myeloma (e.g., 653) cells at a ratio of 1:1 using PEG 1500 (Boehringer Mannheim), and the cell fusion is plated and screened for OP-1-specific antibodies using OP-1 (307-431) as antigen. The cell fusion and monoclonal screening are according to procedures widely available in the art. The neutralizing monoclonal is identified by its ability to block the biological activity of OP-1 when added to a cellular assay which responds biologically to added OP-1.

8. <u>Identification of OP-1 Producing Cell Line Which</u> Displays OP-1 Surface Receptors

During the process of routinely testing the effects of increasing concentrations of OP-1 and TGF-B on the proliferation of various cell lines, a cell line was identified which, surprising, appears not only to synthesize and secrete OP-1, but also to display cell surface receptors to which the secreted OP-1 binds and acts to inhibit proliferation of the cells. This cell line was identified after the following observations. Addition of increasing concentrations of OP-1 or TGF-ß failed to increase or decrease the relatively low basal rate of proliferation of the cells. However, addition of a monoclonal antibody, which neutralizes the activity of Op-1, resulted in a large increase in the proliferation of the cells. In addition, simultaneous addition of the same quantity of OP-1 neutralizing monoclonal to a fixed amount of OP-1 resulted in an increase in proliferation which was intermediate between the low

basal level observed with OP-1 alone and the high level observed with the monoclonal alone. This cell line, which is an epithelial cell line that was derived from a bladder cell carcinoma, may be used in an assay of the invention. The parameter to be tested according to the invention is cellular proliferation. Thus, a compound(s) that increases or decreases the level of OP-1 production may be tested on this cell line as follows.

9. Assay for Identifying Drugs Which Affect OP-1 Synthesis

A simple medium flux screening assay can be configured in a standard 24 or 96 well microtiter dishe, in which each well contains a constant number of a cell line having the characteristics described above. Increasing concentrations of an OP-1 neutralizing monoclonal antibody is added from left to right across the dish. A constant amount of different test substances is added from top to bottom on the dish. An increase in the synthesis and secretion of OP-1 (over its constitutive (non-induced) level) will be indicated by an increase in the amount of OP-1 neutralizing antibody required to release the cells from the antimitogenic activity of OP-1. A decrease in the synthesis and secretion of OP-1 (below its constitutive (repressed) level) will be indicated by the observation that decreased concentrations of the OP-1 neutralizing monoclonal antibody will be required to release the cells from the antimitogenic activity of OP-1. One of the major advantages of this assay is that the end point, i.e., the dilution of antibody which has an effect on cell proliferation, is a measure of mitosis, or an increase in

the number of cells per well. Because several convenient and rapid assays exist for quantitating cell numbers, this assay is faster and requires significantly fewer steps to perform.

The assay may be performed as follows. After addition of appropriate concentrations of the OP-1 neutralizing monoclonal antibody and test substances to the wells containing the cells, the dishes are placed in an incubator at 37°C for a period of 1-3 days. After completion of incubation/growth period, the dishes are removed and the cells in the individual wells are washed and stained with a vital stain, such as crystal violet. Washing and staining procedures are well-known in the art. The cells are then lysed and the stain dissolved in a constant amount of a solvent, such as ethanol. Quantitations of the dissolved stain, which is readily performed on an automated plate vendor, allows for direct quantitation of the number of cells in each well.

The above-described assay has the advantages of being rapid and easy to perform becaue it requires few steps. Another advantage is intrinsic to the assay; drugs which are screened according to this procedure that result in cell death (i.e., cytotoxic substances) are immediately, identifiable without the need of operator observation. In addition, although drugs that stop the growth of the cells (i.e., cytostatic substances) are scored as positive due to failure to see increases in cell numbers, they are automatically scored as suspect due to the failure of the highest concentrations of OP-1 neutralizing monoclonal antibody to release the cells from the antimitogenic activity of OP-1.

10. Candidate Drugs to Screen

The screening methods of the invention is used to test compounds for their effect on the production of morphogenic protein by a given cell type. Examples of compounds which may be screened include but are not limited to chemicals, biological response modifiers (e.g., lymphokines, cytokines, hormones, or vitamins), plant extracts, microbial broths and extracts medium conditioned by eukaryotic cells, body fluids, or tissue extracts.

The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: John Smart

Herman Oppermann

Engin Ozkaynak

Thangavel Kuberasampath

David C. Rueger

Roy H.L. Pang

Charles M. Cohen

- (ii) TITLE OF INVENTION: MORPHOGENIC PROTEIN SCREENING METHOD
- (iii) NUMBER OF SEQUENCES: 33
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Creative BioMolecules
 - (B) STREET: 35 South Street
 - (C) CITY: Hopkinton
 - (D) STATE: Massachusetts
 - (E) COUNTRY: U.S.A.
 - (F) ZIP: 01748
- (V) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 5.25, 360kb storage
 - (B) COMPUTER: IBM XT
 - (C) OPERATING SYSTEM: DOS 3.30
 - (D) SOFTWARE: ASC II TEXT
- (vi) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 667,274
 - (B) FILING DATE: March 11, 1991
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 752,861
 - (B) FILING DATE: AUGUST 30, 1991

(viii)ATTORNEY/AGENT INFORMATION

- (A) NAME: PITCHER, EDMUND R.
- (B) REG. NO.: 27,829
- (C) DOCKET NO.: CRP-058PC

(ix) TELEPHONE:

- (A) 617/248-7000
- (B) TELEFAX: 617/248-7100

(2)	INFORMATION	FOR	SEQ	ID	NO:	1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 97 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: Generic Sequence 1
 - (D) OTHER INFORMATION: Each Xaa indicates one of the 20 naturally-occurring L-isomer, α -amino acids or a derivative thereof.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

 Xaa Xaa Xaa Xaa Xaa Xaa

5

Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 30

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys 55 60

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys 85 90

Xaa Cys Xaa

95

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 97 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: Generic Sequence 2
 - (D) OTHER INFORMATION: Each Xaa indicates one of the 20 naturally-occurring L-isomer, α -amino acids or a derivative thereof.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Xaa Xaa Xaa Xaa Xaa

.

1

Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa 20 25

Cys Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa 30

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys 55 60

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys 85 90

Xaa Cys Xaa

95

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 97 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: Generic Sequence 3
 - (D) OTHER INFORMATION: wherein each

 Xaa is independently selected from
 a group of one or more specified
 amino acids as defined in the
 specification.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Leu Tyr Val Xaa Phe

.

Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa

10

Xaa Ala Pro Gly Xaa Xaa Xaa Ala

15 20

Xaa Tyr Cys Xaa Gly Xaa Cys Xaa

25 30

Xaa Pro Xaa Xaa Xaa Xaa

35

Xaa Xaa Xaa Asn His Ala Xaa Xaa

4

Xaa Xaa Leu Xaa Xaa Xaa Xaa

50

Xaa Xaa Xaa Xaa Xaa Xaa Cys

55 60

Cys Xaa Pro Xaa Xaa Xaa Xaa

Xaa Xaa Xaa Leu Xaa Xaa Xaa 70 75 Xaa Xaa Xaa Xaa Val Xaa Leu Xaa 80

Xaa Xaa Xaa Met Xaa Val Xaa 85

Xaa Cys Gly Cys Xaa 95

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 102 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: Generic Sequence 4
 - (D) OTHER INFORMATION: wherein each

 Xaa is independently selected from
 a group of one or more specified
 amino acids as defined in the
 specification.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Cys Xaa Xaa Xaa Leu Tyr Val Xaa Phe 1 5 10

Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa

15

Xaa Ala Pro Xaa Gly Xaa Xaa Ala

20 25

Xaa Tyr Cys Xaa Gly Xaa Cys Xaa

30 35

Xaa Pro Xaa Xaa Xaa Xaa

Asn Xaa Xaa Asn His Ala Xaa Xaa 45 Xaa Xaa Leu Xaa Xaa Xaa Xaa 55 Xaa Xaa Xaa Xaa Xaa Xaa Cys 65 60 Cys Xaa Pro Xaa Xaa Xaa Xaa Xaa 70 Xaa Xaa Xaa Leu Xaa Xaa Xaa 80 75 Xaa Xaa Xaa Xaa Val Xaa Leu Xaa 85 Xaa Xaa Xaa Met Xaa Val Xaa 95 90 Xaa Cys Gly Cys Xaa 100

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 139 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (ix) FEATURE:
 - (A) NAME: hOP-1 (mature form)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Gln Lys Gln Arg Ser Ser Ser Gly 5 1 Gln Thr Pro Lys Asn Arg Ser Lys 15 10 Ala Asn Val Ala Ala Glu Leu Arg Met 25 20 Gln Ser Ser Asp Gln Arg Glu Asn Ser 35 30

Ala	Cys	Lys		His	Glu	Leu	Tyr	Val 45
Ser	Phe	Arg	40 Asp		Gly	Trp	Gln	
	7 1.0	Tla	NΙο	50 Bro	Glu	Gly	ጥ ህ ኮ	Ala
55	ire	116	AIG	110	60		-1-	
Ala		Tyr	Cys	Glu	Gly	Glu 70	Cys	Ala
Phe	65 Pro	Leu	Asn	Ser	Tyr	Met	Asn	Ala
		75					80	
Thr	Asn	His	Ala 85	Ile	Val	Gln	Thr	Leu 90
Val	His	Phe	Ile	Asn 95	Pro	Glu	Thr	Val
Pro	Lys	Pro	Cys	Cys	Ala 105	Pro	Thr	Gln
Leu	Asn 110	Ala	Ile	Ser	Val	Leu 115	Tyr	Phe
Asp	Asp	Ser 120	Ser	Asn	Val	Ile	Leu 125	Lys
Lys	Tyr		Asn 130	Met	Val	Val	Arg	Ala 135
Cvs	Glv	Cvs						

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 139 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (ix) FEATURE:
 - (A) NAME: mOP-1 (mature form)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Ser 1	Thr	Gly	Gly	Lys 5	Gln	Arg	Ser	Gln
Asn	Arg	Ser	Lys	_		Lys	Asn	Gln
10 Glu	Ala	Leu	Arg	Met	15 Ala	Ser	Val	Ala
	20					25		
Glu	Asn	Ser 30	Ser	Ser	Asp	Gln	Arg 35	Gln
Ala	Cys	Lys	Lys 40	His	Glu	Leu	Tyr	Val 45
Ser	Phe	Arg	Asp	Leu 50	Gly	Trp	Gln	Asp
Trp 55	Ile	Ile	Ala	Pro	Glu 60	Gly	Tyr	Ala
Ala	Tyr 65	Tyr	Cys	Glu	Gly	Glu 70	Cys	Ala
Phe	Pro	Leu 75	Asn	Ser	Tyr	Met	Asn 80	Ala
Thr	Asn	His	Ala 85	Ile	Val	Gln	Thr	Leu 90
Val	His	Phe	Ile	Asn 95	Pro	Asp	Thr	Val
Pro	Lys	Pro	Cys	Cys	Ala 105	Pro	Thr	Gln
Leu	Asn 110	Ala	Ile	Ser	Val	Leu 115	Tyr	Phe

Asp	Asp	Ser	Ser	Asn	Val	Ile	Leu	Lys
		120					125	
Lys	Tyr	Arg	Asn	Met	Val	Val	Arg	Ala
			130					135
Cys	Gly	Cys	His					

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 139 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: hOP-2 (mature form)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Val	Arg	Pro	Leu	Arg	Arg	Arg	Gln
			5				
Lys	Lys	Ser	Asn	Glu	Leu	Pro	Gln
				15			
Asn	Arg	Leu	Pro	Gly	Ile	Phe	Asp
20					25		
Val	His	Gly	Ser	His	${ t Gly}$	Arg	Gln
	30					35	
Cys	Arg	Arg	His	Glu	Leu	Tyr	Val
	•	40					45
Phe	Gln	Asp	Leu	Gly	Trp	Leu	Asp
			50				
Val	Ile	Ala	Pro	Gln	Gly	Tyr	Ser
				60			
Tyr	Tyr	Cys	Glu	Gly	Glu	Cys	Ser
65					70		
Pro	Leu	Asp	Ser	Cys	Met	Asn	Ala
	75		•	-		80	
Asn	His	Ala	Ile	Leu	Gln	Ser	Leu
		85					90
	Lys Asn 20 Val Cys Phe Val Tyr 65 Pro	Lys Lys Asn Arg 20 Val His 30 Cys Arg Phe Gln Val Ile Tyr Tyr 65 Pro Leu 75	Lys Lys Ser Asn Arg Leu 20 Val His Gly 30 Cys Arg Arg 40 Phe Gln Asp Val Ile Ala Tyr Tyr Cys 65 Pro Leu Asp 75 Asn His Ala	Lys Lys Ser Asn Asn Arg Leu Pro 20 Val His Gly Ser 30 Cys Arg Arg His 40 Phe Gln Asp Leu 50 Val Ile Ala Pro Tyr Tyr Cys Glu 65 Pro Leu Asp Ser 75 Asn His Ala Ile	Lys Lys Ser Asn Glu 15 Asn Arg Leu Pro Gly 20 Val His Gly Ser His 30 Cys Arg Arg His Glu 40 Phe Gln Asp Leu Gly 50 Val Ile Ala Pro Gln 60 Tyr Tyr Cys Glu Gly 65 Pro Leu Asp Ser Cys 75 Asn His Ala Ile Leu	Lys Lys Ser Asn Glu Leu 15 Asn Arg Leu Pro Gly Ile 20 Val His Gly Ser His Gly 30 Cys Arg Arg His Glu Euu 40 Phe Gln Asp Leu Gly Trp 50 Val Ile Ala Pro Gln Gly Gly Tyr Tyr Cys Glu Gly Glu 65 Pro Leu Asp Ser Cys Met 75 Asn His Ala Ile Leu Gln	Lys Ser Asn Glu Leu Pro Asn Arg Leu Pro Gly Ile Phe 20

Val	His	Leu	Met	Lys 95	Pro	Asn	Ala	Val
Pro 100	Lys	Ala	Cys	Cys	Ala 105	Pro	Thr	Lys
Leu	Ser 110	Ala	Thr	Ser	Val	Leu 115	Tyr	Tyr
Asp	Ser	Ser 120	Asn	Asn	Val	Ile	Leu 125	Arg
Lys	His	Arg	Asn 130	Met	Val	Val	Lys	Ala 135
Cys	Gly	Cys	His					

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 139 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: mOP-2 (mature form)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

715
Gln
His
Asp
Glu
Val
45
Asp
Ser

								_
Ala	<u> </u>	Tyr	Cys	Glu	Gly	Glu 70	Cys	Ala
	65					70		
Phe	Pro	Leu	Asp	Ser	Cys	Met	Asn	Ala
		75					80	
Thr	Asn	His	Ala	Ile	Leu	Gln	Ser	Leu
	-		85					90
Val	His	Leu	Met	Lys	Pro	Asp	Val	Val
				95				
Pro	Lys	Ala	Cys	Cys	Ala	Pro	Thr	Lys
100	_				105			
Leu	Ser	Ala	Thr	Ser	Val	Leu	Tyr	Tyr
	110					115		
Asp	Ser	Ser	Asn	Asn	Val	Ile	Leu	Arg
-		120					125	
Lys	His	Arg	Asn	Met	Val	Val	Lys	Ala
-			130					135
Cys	Gly	Cys	His					

(2)	INFO	ORMA	rion	FOR	SEQ	ID I	10:9	:			
•	(i)	SI	EQUE	CE (CHARA	ACTE	RIST	cs:			
	•	(2	A) LE	ENGTI	H: 9	96 an	nino	acio	is		
		(1	3) TY	PE:	ami	ino a	acids	3			
		(() TO	POL	OGY:	lir	near				
	(ii)) MC	LECU	JLE :	TYPE:	ı pı	rote:	in			
	(ix)		EATUI								
	\	•			CBN	1P-2 <i>I</i>	A(fx))			
	(xi	•	•						QI Q	NO:9) :
											_
	Cys	Lys	Arg	His		Leu	Tyr	Val	Asp	Phe	Ser
	1				5				_	10	
	Asp	Val	Gly		Asn	Asp	Trp	Ile		Ala	Pro
				15					_ 20	_	
	Pro	Gly	Tyr	His	Ala	Phe	Tyr		His	Gly	Gli
	-		25					30			
	Cys	Pro	Phe	Pro	Leu	Ala		His	Leu	Asn	Sei
		35					40			_	
	Thr	Asn	His	Ala	Ile		Gln	Thr	Leu	Val	
	45					50					55
	Ser	Val	Asn	Ser		Ile	Pro	Lys	Ala	Cys	Cys
					60			_	_	65	_
	Val	Pro	Thr		Leu	Ser	Ala	Ile		Met	Lei
-				70					75		
	Tyr	Leu		Glu	Asn	Glu	Lys		Val	Leu	Lys
			80					85			
	Asn	Tyr	Gln	Asp	Met	Val		Glu	Gly	Cys	Gly
		90					95				

Cys Arg 100

(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:1	0:					
	(i)	S	EQUE	NCE	CHAR	ACTE	RIST	ics:					
		(A) LENGTH: 101 amino acids											
		(B) T	YPE:	am	ino	acid	s					
		(C) T	OPOL	OGY:	1i	near						
	(ii) MOLECULE TYPE: protein												
	(ix) FEATURE:												
	(A) NAME: CBMP-2B(fx)												
	(xi) S	EQUE:	NCE :	DESC:	RIPT	ION:	SE	Q ID	NO:	10:		
		• -											
							Cys	Arg	Arg	His	Ser		
							1				5		
	Leu	Tyr	Val	Asp	Phe	Ser	Asp	Val	Gly	Trp	Asn		
					10					15			
	Asp	Trp	Ile	Val	Ala	Pro	Pro	Gly	Tyr	Gln	Ala		
	٠			20					25				
	Phe	Tyr	Cys	His	Gly	Asp	Cys	Pro	Phe	Pro	Leu		
			30					35					
	Ala	Asp	His	Leu	Asn	Ser	Thr	Asn	His	Ala	Ile		
	-	40					45						
	Val	Gln	Thr	Leu	Val	Asn	Ser	Val	Asn	Ser			
	50					55					60		
	Ile	Pro	Lys	Ala	Cys	Cys	Val	Pro	Thr		Leu		
					65			-		70			
	Ser	Ala	Ile	Ser	Met	Leu	Tyr	Leu		Glu	Tyr		
			-	75					80				
	Asp	Lys	Val	Val	Leu	Lys	Asn	Tyr	Gln	Glu	Met		
			85					90					

Val Val Glu Gly Cys Gly Cys Arg

95

(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO:1	1:				
	(i)	S	EQUE	NCE (CHAR	ACTE	RIST	cs:				
		(2	A) Ll	ENGT	H:	102 a	amin	o ac	ids			
	(B) TYPE: amino acids											
	(C) TOPOLOGY: linear											
	(ii) MOLECULE TYPE: protein											
	(ix) F1	EATUI	RE:			•					
		(2	A) N2	AME:	DPI	P(fx))					
	(xi) SI	EQUE	NCE I	DESCI	RIPT:	ON:	SE	Q ID	NO:	11:	
	Cys	Arg	Arg	His	Ser	Leu	Tyr	Val	Asp	Phe	Ser	
	1				5					10		
	Asp	Val	Gly	Trp	Asp	Asp	Trp	Ile	Val	Ala	Pro	
				15					20			
	Leu	Gly	Tyr	Asp	Ala	Tyr	Tyr	Cys	His	Gly	Lys	
			25					30				
	Cys	Pro	Phe	Pro	Leu	Ala	Asp	His	Phe	Asn	Ser	
		35					40					
	Thr	Asn	His	Ala	Val	Val	Gln	Thr	Leu	Val		
	45					50					55	
	Asn	Asn	Asn	Pro		Lys	Val	Pro	Lys		Cys	
					60					65		
	Cys	Val	Pro		Gln	Leu	Asp	Ser	Val	Ala	Met	
				70					75			
	Leu	Tyr	Leu	Asn	Asp	Gln	Ser		Val	Val	Leu	
			80					85				
	Lys		Tyr	Gln	Glu	Met		Val	Val	Gly	Cys	
		90					95					

Gly Cys Arg

(2)) INFORMATION	FOR	SEQ	ID	NO: 12	2:
-----	---------------	-----	-----	----	--------	----

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 102 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: Vgl(fx)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Cys Lys Lys Arg His Leu Tyr Val Glu Phe Lys
1 5 10

Asp Val Gly Trp Gln Asn Trp Val Ile Ala Pro 15 20

Gln Gly Tyr Met Ala Asn Tyr Cys Tyr Gly Glu 25 30

Cys Pro Tyr Pro Leu Thr Glu Ile Leu Asn Gly
35 40

Ser Asn His Ala Ile Leu Gln Thr Leu Val His
45 50 55

Ser Ile Glu Pro Glu Asp Ile Pro Leu Pro Cys
60 65

Cys Val Pro Thr Lys Met Ser Pro Ile Ser Met
70 75

Leu Phe Tyr Asp Asn Asn Asp Asn Val Val Leu 80 85

Arg His Tyr Glu Asn Met Ala Val Asp Glu Cys
90 95

Gly Cys Arg

121	INFORMATION	FOD	CEO	TD	NO . 13 .
(2)	INFORMATION	ruk	SEU	ΤD	MO: IO

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 102 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: Vgr-1(fx)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Cys Lys Lys His Glu Leu Tyr Val Ser Phe Gln
1 5 10

Asp Val Gly Trp Gln Asp Trp Ile Ile Ala Pro
15 20

Xaa Gly Tyr Ala Ala Asn Tyr Cys Asp Gly Glu
25 30

Cys Ser Phe Pro Leu Asn Ala His Met Asn Ala 35 40

Thr Asn His Ala Ile Val Gln Thr Leu Val His
45 50 55

Val Met Asn Pro Glu Tyr Val Pro Lys Pro Cys 60 65

Cys Ala Pro Thr Lys Val Asn Ala Ile Ser Val
70 75

Leu Tyr Phe Asp Asp Asn Ser Asn Val Ile Leu 80 85

Lys Lys Tyr Arg Asn Met Val Val Arg Ala Cys 90 95

Gly Cys His

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 106 amino acids
- (B) TYPE: protein
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (F) TISSUE TYPE: BRAIN
- (ix) FEATURE:
- (D) OTHER INFORMATION:
 /product= "GDF-1 (fx)"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Cys Arg Ala Arg Arg Leu Tyr Val Ser Phe Arg Glu Val Gly
1 5 10

Trp His Arg Trp Val Ile Ala Pro Arg Gly Phe Leu Ala Asn Tyr 15 20 25

Cys Gln Gly Gln Cys Ala Leu Pro Val Ala Leu Ser Gly Ser Gly 30 35 40

Gly Pro Pro Ala Leu Asn His Ala Val Leu Arg Ala Leu Met His
45 50 55

Ala Ala Ala Pro Gly Ala Ala Asp Leu Pro Cys Cys Val Pro Ala 60 65 70

Arg Leu Ser Pro Ile Ser Val Leu Phe Phe Asp Asn Ser Asp Asn 75 80 85

Val Val Leu Arg Gln Tyr Glu Asp Met Val Val Asp Glu Cys Gly 90 95 100

Cys Arg 105

(2)	IN	FORE	IATIO	ON FO	R SE	Q II	NO:	15:									
		(i	(SEQUE (A) (B) (C) (D)	LENG TYPE STRA	TH: : an NDED	5 am ino NESS	ino acid : si	acid ngle	ls							
		(ii	.) I	OLEC	ULE	TYPE	: pe	ptid	e								
		(xi	.) §	EQUE	NCE	DESC	RIPT	ION:	SEQ	ID	NO: 1	5:					
	Су 1	s Xa	a Xa	a Xa	.a Xa 5	a											
(2)	IN	FORM	ATIC	N FO	R SE	Q ID	NO:	16:									
		(i	· (EQUE A) B) C) D)	LENG TYPE STRA	TH: : nu NDED	1822 clei NESS	bas c ac : si	e pa id ngle								
		(ii) H	OLEC	ULE	TYPE	: cD	NA			•						
		(vi	(RIGI A) F)	ORGA	NISM	: HO										
		(ix	´ (EATU A) B) D)	NAME LOCA	TION	: 49	13		tand	ard_	name:	= "h	OP1"			
		(xi) S	EQUE	NCE I	DESC	RIPT	ION:	SEQ	ID I	NO:1	6:					
GGT	GCGG(GCC (CGGA	GCCC	GG A	GCCC	GGGT	A GC	GCGT	AGAG	CCG	GCGC	Me		C GTO		57
				GCT Ala												10)5
				CTG Leu												15	i3
				AGC Ser 40												20	1
				CGC Arg												24	9

CCG Pro	CGC Arg	CCG Pro 70	His	CTC Leu	CAG Gln	GGC Gly	AAG Lys 75	CAC His	AAC Asn	TCG Ser	GCA Ala	CCC Pro 80	Met	TTC Phe	ATG Met	297
CTG Leu	GAC Asp 85	CTG Leu	TAC Tyr	AAC Asn	GCC Ala	ATG Met 90	GCG Ala	GTG Val	GAG Glu	GAG Glu	GGC Gly 95	GGC Gly	GGG Gly	CCC	GGC Gly	345
GGC Gly 100	Gln	GGC Gly	TTC Phe	TCC Ser	TAC Tyr 105	CCC Pro	TAC Tyr	AAG Lys	GCC Ala	GTC Val 110	TTC Phe	AGT	ACC Thr	CAG Gln	GGC Gly 115	393
CCC Pro	CCT Pro	CTG Leu	GCC Ala	AGC Ser 120	CTG Leu	CAA Gln	GAT Asp	AGC Ser	CAT His 125	TTC Phe	CTC Leu	ACC Thr	GAC Asp	GCC Ala 130	GAC Asp	441
ATG Met	GTC Val	Met	AGC Ser 135	TTC Phe	GTC Val	AAC Asn	CTC Leu	GTG Val 140	GAA Glu	CAT His	GAC Asp	AAG Lys	GAA Glu 145	TTC Phe	TTC Phe	489
CAC His	CCA Pro	CGC Arg 150	Tyr	CAC His	CAT His	CGA Arg	GAG Glu 155	TTC Phe	CGG Arg	TTT Phe	GAT Asp	CTT Leu 160	TCC Ser	AAG Lys	ATC Ile	537
CCA Pro	GAA Glu 165	GGG Gly	GAA Glu	GCT Ala	GTC Val	ACG Thr 170	GCA Ala	GCC Ala	GAA Glu	TTC Phe	CGG Arg 175	ATC Ile	TAC Tyr	AAG Lys	GAC Asp	585
TAC Tyr 180	ATC Ile	CGG Arg	GAA Glu	CGC Arg	TTC Phe 185	GAC Asp	AAT Asn	GAG Glu	ACG Thr	TTC Phe 190	CGG Arg	ATC Ile	AGC Ser	GTT Val	TAT Tyr 195	633
CAG Gln	GTG Val	CTC Leu	CAG Gln	GAG Glu 200	CAC His	TTG Leu	GGC Gly	AGG Arg	GAA Glu 205	TCG Ser	GAT Asp	CTC Leu	TTC Phe	CTG Leu 210	CTC Leu	681
GAC Asp	AGC Ser	Arg	ACC Thr 215	CTC Leu	TGG Trp	GCC Ala	TCG Ser	GAG Glu 220	GAG Glu	GGC Gly	TGG Trp	CTG Leu	GTG Val 225	TTT Phe	GAC Asp	729
ATC Ile	ACA Thr	GCC Ala 230	ACC Thr	AGC Ser	AAC Asn	CAC His	TGG Trp 235	GTG Val	GTC Val	AAT Asn	CCG Pro	CGG Arg 240	CAC His	AAC Asn	CTG Leu	777
GGC Gly	CTG Leu 245	CAG Gln	CTC Leu	TCG Ser	GTG Val	GAG Glu 250	ACG Thr	CTG Leu	GAT Asp	GGG Gly	CAG Gln 255	AGC Ser	ATC Ile	AAC Asn	CCC Pro	825
AAG Lys 260	TTG Leu	GCG Ala	GGC Gly	CTG Leu	ATT Ile 265	GGG Gly	CGG Arg	CAC His	GGG Gly	CCC Pro 270	CAG Gln	AAC Asn	AAG Lys	CAG Gln	CCC Pro 275	873

TTC ATG GTG GCT TTC TTC AAG GCC ACG GAG GTC CAC TTC CGC AGC ATC Phe Met Val Ala Phe Phe Lys Ala Thr Glu Val His Phe Arg Ser Ile 280 285 290	921
CGG TCC ACG GGG AGC AAA CAG CGC AGC CAG AAC CGC TCC AAG ACG CCC Arg Ser Thr Gly Ser Lys Gln Arg Ser Gln Asn Arg Ser Lys Thr Pro 295 300 305	969
AAG AAC CAG GAA GCC CTG CGG ATG GCC AAC GTG GCA GAG AAC AGC AGC Lys Asn Gln Glu Ala Leu Arg Met Ala Asn Val Ala Glu Asn Ser Ser 310	1017
AGC GAC CAG AGG CAG GCC TGT AAG AAG CAC GAG CTG TAT GTC AGC TTC Ser Asp Gln Arg Gln Ala Cys Lys His Glu Leu Tyr Val Ser Phe 325 330 335	1065
CGA GAC CTG GGC TGG CAG GAC TGG ATC ATC GCG CCT GAA GGC TAC GCC Arg Asp Leu Gly Trp Gln Asp Trp Ile Ile Ala Pro Glu Gly Tyr Ala 340 350 355	1113
GCC TAC TAC TGT GAG GGG GAG TGT GCC TTC CCT CTG AAC TCC TAC ATG Ala Tyr Tyr Cys Glu Gly Glu Cys Ala Phe Pro Leu Asn Ser Tyr Met 360 365 370	1161
AAC GCC ACC AAC CAC GCC ATC GTG CAG ACG CTG GTC CAC TTC ATC AAC Asn Ala Thr Asn His Ala Ile Val Gln Thr Leu Val His Phe Ile Asn 375 380 385	1209
CCG GAA ACG GTG CCC AAG CCC TGC TGT GCG CCC ACG CAG CTC AAT GCC Pro Glu Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln Leu Asn Ala 390 395 400	1257
ATC TCC GTC CTC TAC TTC GAT GAC AGC TCC AAC GTC ATC CTG AAG AAA Ile Ser Val Leu Tyr Phe Asp Asp Ser Ser Asn Val Ile Leu Lys Lys 405	1305
TAC AGA AAC ATG GTG GTC CGG GCC TGT GGC TGC CAC TAGCTCCTCC Tyr Arg Asn Met Val Val Arg Ala Cys Gly Cys His 420 425 430	1351
GAGAATTCAG ACCCTTTGGG GCCAAGTTTT TCTGGATCCT CCATTGCTCG CCTTGGCCAG	1411
GAACCAGCAG ACCAACTGCC TTTTGTGAGA CCTTCCCCTC CCTATCCCCA ACTTTAAAGG	1471
TGTGAGAGTA TTAGGAAACA TGAGCAGCAT ATGGCTTTTG ATCAGTTTTT CAGTGGCAGC	1531
ATCCAATGAA CAAGATCCTA CAAGCTGTGC AGGCAAAACC TAGCAGGAAA AAAAAAACAAC	1591
GCATAAAGAA AAATGGCCGG GCCAGGTCAT TGGCTGGGAA GTCTCAGCCA TGCACGGACT	1651
CGTTTCCAGA GGTAATTATG AGCGCCTACC AGCCAGGCCA CCCAGCCGTG GGAGGAAGGG	1711
GGCGTGGCAA GGGGTGGGCA CATTGGTGTC TGTGCGAAAG GAAAATTGAC CCGGAAGTTC	1771
CTGTAATAAA TGTCACAATA AAACGAATGA ATGAAAAAAA AAAAAAAAA A	1822

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 431 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (D) OTHER INFORMATION: /Product="OP1-PP"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Met His Val Arg Ser Leu Arg Ala Ala Ala Pro His Ser Phe Val Ala 1 5 10 15

Leu Trp Ala Pro Leu Phe Leu Leu Arg Ser Ala Leu Ala Asp Phe Ser 20 25 30

Leu Asp Asn Glu Val His Ser Ser Phe Ile His Arg Arg Leu Arg Ser 35 40 45

Gln Glu Arg Glu Het Gln Arg Glu Ile Leu Ser Ile Leu Gly Leu
50 55 60

Pro His Arg Pro Arg Pro His Leu Gln Gly Lys His Asn Ser Ala Pro 65 70 75 80

Het Phe Het Leu Asp Leu Tyr Asn Ala Het Ala Val Glu Glu Gly Gly 85 90 95

Gly Pro Gly Gly Gln Gly Phe Ser Tyr Pro Tyr Lys Ala Val Phe Ser 100 105 110

Thr Gln Gly Pro Pro Leu Ala Ser Leu Gln Asp Ser His Phe Leu Thr 115 120 125

Asp Ala Asp Met Val Met Ser Phe Val Asn Leu Val Glu His Asp Lys 130 135 140

Glu Phe Phe His Pro Arg Tyr His His Arg Glu Phe Arg Phe Asp Leu 145 150 155 160

Ser Lys Ile Pro Glu Gly Glu Ala Val Thr Ala Ala Glu Phe Arg Ile 165 170 175

Tyr Lys Asp Tyr Ile Arg Glu Arg Phe Asp Asn Glu Thr Phe Arg Ile 180 185 190

Ser Val Tyr Gln Val Leu Gln Glu His Leu Gly Arg Glu Ser Asp Leu 195 200 205

Phe Leu Leu Asp Ser Arg Thr Leu Trp Ala Ser Glu Glu Gly Trp Leu 210 Val Phe Asp Ile Thr Ala Thr Ser Asn His Trp Val Val Asn Pro Arg 230 His Asn Leu Gly Leu Gln Leu Ser Val Glu Thr Leu Asp Gly Gln Ser 255 Ile Asn Pro Lys Leu Ala Gly Leu Ile Gly Arg His Gly Pro Gln Asn Lys Gln Pro Phe Met Val Ala Phe Phe Lys Ala Thr Glu Val His Phe Arg Ser Ile Arg Ser Thr Gly Ser Lys Gln Arg Ser Gln Asn Arg Ser Lys Thr Pro Lys Asn Gln Glu Ala Leu Arg Met Ala Asn Val Ala Glu Asn Ser Ser Ser Asp Gln Arg Gln Ala Cys Lys Lys His Glu Leu Tyr Val Ser Phe Arg Asp Leu Gly Trp Gln Asp Trp Ile Ile Ala Pro Glu Gly Tyr Ala Ala Tyr Tyr Cys Glu Gly Glu Cys Ala Phe Pro Leu Asn Ser Tyr Met Asn Ala Thr Asn His Ala Ile Val Gln Thr Leu Val His 375 Phe Ile Asn Pro Glu Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln Leu Asn Ala Ile Ser Val Leu Tyr Phe Asp Asp Ser Ser Asn Val Ile Leu Lys Lys Tyr Arg Asn Met Val Val Arg Ala Cys Gly Cys His 425

(2)	INFORMATION	FOR	SEO	ID	NO:18:
-----	-------------	-----	-----	----	--------

- (i) SEQUENCE CHARACTERISTICS:
 - LENGTH: 1873 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - TOPOLOGY: linear (D)
- MOLECULE TYPE: cDNA (ii)
- ORIGINAL SOURCE: (vi)
 - (A) ORGANISM: MURIDAE
 - TISSUE TYPE: EMBRYO
- (ix) FEATURE:

 - (A) NAME/KEY: CDS (B) LOCATION: 104..1393
 - (D) OTHER INFORMATION: /note= "MOP1 (CDNA)"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

CTG	CAGC.	AAG '	TGAC	CTCG	GG T	CGTG	GACC	G CT	GCCC'	TGCC	CCC'	TCCG	CTG	CCAC	CTGGGG	;	60
CGG	CGCG	GGC (CCGG'	IGCC	CC G	GATC(GCGC	G TA	GAGC	CGGC	GCG	ATG Met 1	CAC His	GTG Val	CGC Arg		115
TCG Ser 5	CTG Leu	CGC Arg	GCT Ala	GCG Ala	GCG Ala 10	CCA Pro	CAC His	AGC Ser	TTC Phe	GTG Val 15	GCG Ala	CTC Leu	TGG Trp	GCG Ala	CCT Pro 20		163
CTG Leu	TTC Phe	TTG Leu	CTG Leu	CGC Arg 25	TCC Ser	GCC Ala	CTG Leu	GCC Ala	GAT Asp 30	TTC Phe	AGC Ser	CTG Leu	GAC Asp	AAC Asn 35	GAG Glu		211
GTG Val	CAC His	TCC Ser	AGC Ser 40	TTC Phe	ATC [.] Ile	CAC His	CGG Arg	CGC Arg 45	CTC Leu	CGC Arg	AGC Ser	CAG Gln	GAG Glu 50	CGG	CGG Arg		259
GAG Glu	ATG Met	CAG Gln 55	CGG Arg	GAG Glu	ATC Ile	CTG Leu	TCC Ser 60	ATC Ile	TTA Leu	GGG Gly	TTG Leu	CCC Pro 65	CAT His	CGC Arg	CCG Pro		307
CGC Arg	CCG Pro 70	CAC His	CTC Leu	CAG Gln	GGA Gly	AAG Lys 75	CAT His	AAT Asn	TCG Ser	GCG Ala	CCC Pro 80	ATG Met	TTC Phe	ATG Met	TTG Leu		355
GAC Asp 85	CTG Leu	TAC Tyr	AAC Asn	GCC Ala	ATG Met 90	GCG Ala	GTG Val	GAG Glu	GAG Glu	AGC Ser 95	GGG Gly	CCG Pro	GAC Asp	GGA Gly	CAG Gln 100		403

			Tyr	AAG Lys			Ser				CCT Pro	451
				AGC Ser		Leu					GTC Val	499
				GTG Val								547
	CAC His			TTC Phe 155	CGG				AAG			595
				GCC Ala								643
				GAG Glu								691
				AGG Arg								739
				GAG Glu								787
				GTG Val 235								835
				CTG Leu								883
				CAT His								931
				ACG Thr								979
				AGC Ser				Lys				1027
				GCC Ala 315			Glu					1075

CAG AGG CAG GCC TGC AAG AAA CAT GAG CTG TAC GTC AGC TTC CGA GAC Gln Arg Gln Ala Cys Lys His Glu Leu Tyr Val Ser Phe Arg Asp 325 330 340	1123
CTT GGC TGG CAG GAC TGG ATC ATT GCA CCT GAA GGC TAT GCT GCC TAC Leu Gly Trp Gln Asp Trp Ile Ile Ala Pro Glu Gly Tyr Ala Ala Tyr 345 350 355	1171
TAC TGT GAG GGA GAG TGC GCC TTC CCT CTG AAC TCC TAC ATG AAC GCC Tyr Cys Glu Gly Glu Cys Ala Phe Pro Leu Asn Ser Tyr Met Asn Ala 360 365 370	1219
ACC AAC CAC GCC ATC GTC CAG ACA CTG GTT CAC TTC ATC AAC CCA GAC Thr Asn His Ala Ile Val Gln Thr Leu Val His Phe Ile Asn Pro Asp 375 380 385	1267
ACA GTA CCC AAG CCC TGC TGT GCG CCC ACC CAG CTC AAC GCC ATC TCT Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln Leu Asn Ala Ile Ser 390 395 400	1315
GTC CTC TAC TTC GAC GAC AGC TCT AAT GTC ATC CTG AAG AAG TAC AGA Val Leu Tyr Phe Asp Asp Ser Ser Asn Val Ile Leu Lys Lys Tyr Arg 405 410 420	1363
AAC ATG GTG GTC CGG GCC TGT GGC TGC CAC TAGCTCTTCC TGAGACCCTG Asn Met Val Val Arg Ala Cys Gly Cys His 425 430	1413
ACCITIGCGG GGCCACACCI TICCAAATCI TCGATGTCIC ACCATCIAAG TCTCICACTG	1473
CCCACCTTGG CGAGGAGAAC AGACCAACCT CTCCTGAGCC TTCCCTCACC TCCCAACCGG	1533
AAGCATGTAA GGGTTCCAGA AACCTGAGCG TGCAGCAGCT GATGAGCGCC CTTTCCTTCT	1593
GGCACGTGAC GGACAAGATC CTACCAGCTA CCACAGCAAA CGCCTAAGAG CAGGAAAAAT	1653
GTCTGCCAGG AAAGTGTCCA GTGTCCACAT GGCCCCTGGC GCTCTGAGTC TTTGAGGAGT	1713
AATCGCAAGC CTCGTTCAGC TGCAGCAGAA GGAAGGGCTT AGCCAGGGTG GGCGCTGGCG	1773
ICTGTGTTGA AGGGAAACCA AGCAGAAGCC ACTGTAATGA TATGTCACAA TAAAACCCAT	1833
GAATGAAAAA AAAAAAAAA AAAAAAAAA AAAAGAATTC	1873

20) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 430 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (D) OTHER INFORMATION: /product= "mOP1-PP"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
- Met His Val Arg Ser Leu Arg Ala Ala Ala Pro His Ser Phe Val Ala 1 5 10 15
- Leu Trp Ala Pro Leu Phe Leu Leu Arg Ser Ala Leu Ala Asp Phe Ser 20 25 30
- Leu Asp Asn Glu Val His Ser Ser Phe Ile His Arg Arg Leu Arg Ser
- Gln Glu Arg Arg Glu Met Gln Arg Glu Ile Leu Ser Ile Leu Gly Leu 50 55 60
- Pro His Arg Pro Arg Pro His Leu Gln Gly Lys His Asn Ser Ala Pro 65 70 75 80
- Met Phe Met Leu Asp Leu Tyr Asn Ala Met Ala Val Glu Glu Ser Gly 85 90 95
- Pro Asp Gly Gln Gly Phe Ser Tyr Pro Tyr Lys Ala Val Phe Ser Thr 100 105 110
- Gln Gly Pro Pro Leu Ala Ser Leu Gln Asp Ser His Phe Leu Thr Asp 115 120 125
- Ala Asp Met Val Met Ser Phe Val Asn Leu Val Glu His Asp Lys Glu
- Phe Phe His Pro Arg Tyr His His Arg Glu Phe Arg Phe Asp Leu Ser 145 150 155 160
- Lys Ile Pro Glu Gly Glu Arg Val Thr Ala Ala Glu Phe Arg Ile Tyr
- Lys Asp Tyr Ile Arg Glu Arg Phe Asp Asn Glu Thr Phe Gln Ile Thr
- Val Tyr Gln Val Leu Gln Glu His Ser Gly Arg Glu Ser Asp Leu Phe 195 200 205

- Leu Leu Asp Ser Arg Thr Ile Trp Ala Ser Glu Glu Gly Trp Leu Val 210 215 220
- Phe Asp Ile Thr Ala Thr Ser Asn His Trp Val Val Asn Pro Arg His 225 230 235 240
- Asn Leu Gly Leu Gln Leu Ser Val Glu Thr Leu Asp Gly Gln Ser Ile 245 250 255
- Asn Pro Lys Leu Ala Gly Leu Ile Gly Arg His Gly Pro Gln Asn Lys 260 265 270
- Gln Pro Phe Met Val Ala Phe Phe Lys Ala Thr Glu Val His Leu Arg 275 280 285
- Ser Ile Arg Ser Thr Gly Gly Lys Gln Arg Ser Gln Asn Arg Ser Lys 290 295 300
- Thr Pro Lys Asn Gln Glu Ala Leu Arg Met Ala Ser Val Ala Glu Asn 305 310 315 320
- Ser Ser Ser Asp Gln Arg Gln Ala Cys Lys Lys His Glu Leu Tyr Val 325 330 335
- Ser Phe Arg Asp Leu Gly Trp Gln Asp Trp Ile Ile Ala Pro Glu Gly 340 345 350
- Tyr Ala Ala Tyr Tyr Cys Glu Gly Glu Cys Ala Phe Pro Leu Asn Ser 355 360 365
- Tyr Met Asn Ala Thr Asn His Ala Ile Val Gln Thr Leu Val His Phe 370 375 380
- Ile Asn Pro Asp Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln Leu 385 390 395 400
- Asn Ala Ile Ser Val Leu Tyr Phe Asp Asp Ser Ser Asn Val Ile Leu 405 410 415
- Lys Lys Tyr Arg Asn Met Val Val Arg Ala Cys Gly Cys His
 420 425 430

(2)	INFORMATION	FOR	SEQ	ID	NO:20:
-----	-------------	-----	-----	----	--------

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1723 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens
- (F) TISSUE TYPE: HIPPOCAMPUS

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 490..1696
- (D) OTHER INFORMATION: /note= "hOP2 (cDNA)"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

GGCGCCGGCA GAGCAGGAGT GGCTGGAGGA GCTGTGGTTG GAGCAGGAGG TGGCACGGCA	60
GGGCTGGAGG GCTCCCTATG AGTGGCGGAG ACGGCCCCAGG AGGCGCTGGA GCAACAGCTC	120
CCACACCGCA CCAAGCGGTG GCTGCAGGAG CTCGCCCATC GCCCCTGCGC TGCTCGGACC	180
GCGGCCACAG CCGGACTGGC GGGTACGGCG GCGACAGAGG CATTGGCCGA GAGTCCCAGT	240
CCGCAGAGTA GCCCCGGCCT CGAGGCGGTG GCGTCCCGGT CCTCTCCGTC CAGGAGCCAG	300
GACAGGTGTC GCGCGGCGGG GCTCCAGGGA CCGCGCCTGA GGCCGGCTGC CCGCCCGTCC	360
CGCCCCGCCC CGCCCGCCGC CGCCCGCCGA GCCCAGCCTC CTTGCCGTCG GGGCGTCCCC	420
AGGCCCTGGG TCGGCCGCGG AGCCGATGCG CGCCCGCTGA GCGCCCCAGC TGAGCGCCCC	480
CGGCCTGCC ATG ACC GCG CTC CCC GGC CCG CTC TGG CTC CTG GGC CTG Het Thr Ala Leu Pro Gly Pro Leu Trp Leu Leu Gly Leu 1 5 10	528
GCG CTA TGC GCG CTG GGC GGC GGC CCC GGC CTG CGA CCC CCG CCC Ala Leu Cys Ala Leu Gly Gly Gly Pro Gly Leu Arg Pro Pro Pro 15 20 25	576
GGC TGT CCC CAG CGA CGT CTG GGC GCG CGC GAG CGC CGG GAC GTG CAG Gly Cys Pro Gln Arg Arg Leu Gly Ala Arg Glu Arg Arg Asp Val Gln 30 40 45	624
CGC GAG ATC CTG GCG GTG CTC GGG CTG CCT GGG CGG C	672

GC0 Ala	CCA Pro	CCC Pro	GCC Ala 65	Ala	TCC Ser	CGG Arg	CTG Leu	CCC Pro 70	Ala	TCC Ser	GCG	CCG Pro	CTC Leu 75	Phe	ATG Met	720
CTO Leu	GAC Asp	CTG Leu 80	Tyr	CAC	GCC Ala	ATG Met	GCC Ala 85	Gly	GAC Asp	GAC Asp	GAC Asp	GAG Glu 90	Asp	GGC Gly	GCG Ala	768
CCC	GCG Ala 95	Glu	CGG Arg	CGC Arg	CTG Leu	GGC Gly 100	CGC Arg	GCC Ala	GAC Asp	CTG Leu	GTC Val 105	Met	AGC Ser	TTC Phe	GTT Val	816
AAC Asn 110	Met	GTG Val	GAG Glu	CGA Arg	GAC Asp 115	CGT Arg	GCC Ala	CTG Leu	GGC Gly	CAC His 120	CAG Gln	GAG Glu	CCC Pro	CAT His	TGG Trp 125	864
AAG Lys	GAG Glu	TTC Phe	CGC Arg	TTT Phe 130	GAC Asp	CTG Leu	ACC Thr	CAG Gln	ATC Ile 135	CCG Pro	GCT Ala	GGG Gly	GAG Glu	GCG Ala 140	GTC Val	912
ACA Thr	GCT Ala	GCG Ala	GAG Glu 145	TTC Phe	CGG Arg	ATT Ile	TAC Tyr	AAG Lys 150	GTG Val	CCC Pro	AGC Ser	ATC Ile	CAC His 155	CTG Leu	CTC	960
AAC Asn	AGG Arg	ACC Thr 160	CTC Leu	CAC His	GTC Val	AGC Ser	ATG Met 165	TTC Phe	CAG Gln	GTG Val	GTC Val	CAG Gln 170	GAG Glu	CAG Gln	TCC Ser	1008
AAC Asn	AGG Arg 175	GAG Glu	TCT Ser	GAC Asp	TTG Leu	TTC Phe 180	TTT Phe	TTG Leu	GAT Asp	CTT Leu	CAG Gln 185	ACG Thr	CTC Leu	CGA Arg	GCT Ala	1056
GGA Gly 190	GAC Asp	GAG Glu	GGC Gly	TGG Trp	CTG Leu 195	GTG Val	CTG Leu	GAT Asp	GTC Val	ACA Thr 200	GCA Ala	GCC Ala	AGT Ser	GAC Asp	TGC Cys 205	1104
TGG Trp	TTG Leu	CTG Leu	AAG Lys	CGT Arg 210	CAC His	AAG Lys	GAC Asp	CTG Leu	GGA Gly 215	CTC Leu	CGC Arg	CTC Leu	TAT Tyr	GTG Val 220	GAG Glu	1152
ACT Thr	GAG Glu	GAC Asp	GGG Gly 225	CAC His	AGC Ser	GTG Val	Asp	CCT Pro 230	GGC Gly	CTG Leu	GCC Ala	GGC Gly	CTG Leu 235	CTG Leu	GGT Gly	1200
CAA Gln	Arg	GCC Ala 240	CCA Pro	CGC Arg	TCC Ser	Gln	CAG Gln 245	CCT Pro	TTC Phe	GTG Val	GTC Val	ACT Thr 250	TTC Phe	TTC Phe	AGG Arg	1248
GCC Ala	AGT Ser 255	CCG Pro	AGT Ser	CCC Pro	Ile .	CGC Arg 260	ACC Thr	CCT Pro	CGG Arg	Ala	GTG Val 265	AGG Arg	CCA Pro	CTG Leu	AGG Arg	1296

AGG Arg 270	AGG Arg	CAG Gln	CCG Pro	AAG Lys	AAA Lys 275	AGC Ser	AAC Asn	GAG Glu	CTG Leu	CCG Pro 280	CAG Gln	GCC Ala	AAC Asn	CGA Arg	CTC Leu 285	1344
CCA Pro	GGG Gly	ATC Ile	TTT Phe	GAT Asp 290	GAC Asp	GTC Val	CAC His	GGC Gly	TCC Ser 295	CAC His	GGC Gly	CGG Arg	CAG Gln	GTC Val 300	TGC Cys	1392
CGT Arg	CGG Arg	CAC His	GAG Glu 305	CTC Leu	TAC Tyr	GTC Val	AGC Ser	TTC Phe 310	CAG Gl'n	GAC Asp	CTC Leu	GGC Gly	TGG Trp 315	CTG Leu	GAC Asp	1440
TGG Trp	GTC Val	ATC Ile 320	GCT Ala	CCC Pro	CAA Gln	GGC Gly	TAC Tyr 325	TCG Ser	GCC Ala	TAT Tyr	TAC Tyr	TGT Cys 330	GAG Glu	GGG Gly	GAG Glu	1488
TGC Cys	TCC Ser 335	TTC Phe	CCA Pro	CTG Leu	GAC Asp	TCC Ser 340	TGC Cys	ATG Met	AAT Asn	GCC Ala	ACC Thr 345	AAC Asn	CAC His	GCC Ala	ATC Ile	1536
											GCA Ala					1584
TGC Cys	TGT Cys	GCA Ala	CCC Pro	ACC Thr 370	AAG Lys	CTG Leu	AGC Ser	GCC Ala	ACC Thr 375	TCT Ser	GTG Val	CTC Leu	TAC Tyr	TAT Tyr 380	GAC Asp	1632
											AAC Asn					1680
			TGC Cys		T GA	GTCA	GCC0	GCC	CAGO	CCT	ACTO	CAG				1723

WO 93/05172 PCT/US92/07359

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 402 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:

(A)OTHER INFORMATION: /product= "hOP2-PP"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Met Thr Ala Leu Pro Gly Pro Leu Trp Leu Leu Gly Leu Ala Leu Cys

1 10 15

Ala Leu Gly Gly Gly Pro Gly Leu Arg Pro Pro Pro Gly Cys Pro
20 25 30

Gln Arg Arg Leu Gly Ala Arg Glu Arg Arg Asp Val Gln Arg Glu Ile 35 40 45

Leu Ala Val Leu Gly Leu Pro Gly Arg Pro Arg Pro Arg Ala Pro Pro 50 55 60

Ala Ala Ser Arg Leu Pro Ala Ser Ala Pro Leu Phe Met Leu Asp Leu 65 70 75 80

Tyr His Ala Met Ala Gly Asp Asp Glu Asp Gly Ala Pro Ala Glu 85 90 95

Arg Arg Leu Gly Arg Ala Asp Leu Val Met Ser Phe Val Asn Met Val
100 105 110

Glu Arg Asp Arg Ala Leu Gly His Gln Glu Pro His Trp Lys Glu Phe 115 120 125

Arg Phe Asp Leu Thr Gln Ile Pro Ala Gly Glu Ala Val Thr Ala Ala 130 135 140

Glu Phe Arg Ile Tyr Lys Val Pro Ser Ile His Leu Leu Asn Arg Thr 145 150 155 160

Leu His Val Ser Het Phe Gln Val Val Gln Glu Gln Ser Asn Arg Glu
165 170 175

Ser Asp Leu Phe Phe Leu Asp Leu Gln Thr Leu Arg Ala Gly Asp Glu 180 185 190

Gly Trp Leu Val Leu Asp Val Thr Ala Ala Ser Asp Cys Trp Leu Leu 195 200 205

Cys His

Lys Arg His Lys Asp Leu Gly Leu Arg Leu Tyr Val Glu Thr Glu Asp Gly His Ser Val Asp Pro Gly Leu Ala Gly Leu Leu Gly Gln Arg Ala Pro Arg Ser Gln Gln Pro Phe Val Val Thr Phe Phe Arg Ala Ser Pro 250 Ser Pro Ile Arg Thr Pro Arg Ala Val Arg Pro Leu Arg Arg Arg Gln Pro Lys Lys Ser Asn Glu Leu Pro Gln Ala Asn Arg Leu Pro Gly Ile Phe Asp Asp Val His Gly Ser His Gly Arg Gln Val Cys Arg Arg His Glu Leu Tyr Val Ser Phe Gln Asp Leu Gly Trp Leu Asp Trp Val Ile Ala Pro Gln Gly Tyr Ser Ala Tyr Tyr Cys Glu Gly Glu Cys Ser Phe Pro Leu Asp Ser Cys Met Asn Ala Thr Asn His Ala Ile Leu Gln Ser Leu Val His Leu Met Lys Pro Asn Ala Val Pro Lys Ala Cys Cys Ala 360 Pro Thr Lys Leu Ser Ala Thr Ser Val Leu Tyr Tyr Asp Ser Ser Asn 370 380 Asn Val Ile Leu Arg Lys His Arg Asn Met Val Val Lys Ala Cys Gly 385 390

344

392

100

(2) INFORMATION FOR SEQ ID NO:22:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1926 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: MURIDAE (F) TISSUE TYPE: EMBRYO	
<pre>(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 931289 (D) OTHER INFORMATION: /note= "m</pre>	nOP2 cDNA"
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2	2:
GCCAGGCACA GGTGCGCCGT CTGGTCCTCC CCGTCT	GGCG TCAGCCGAGC 5
CCGACCAGCT ACCAGTGGAT GCGCGCCGGC TGAAAGTCCG AG	ATG GCT ATG CGT 104 Met Ala Met Arg 1
CCC GGG CCA CTC TGG CTA TTG GGC CTT GCT CTG TGC Pro Gly Pro Leu Trp Leu Leu Gly Leu Ala Leu Cys 5 10 15	
GGC CAC GGT CCG CGT CCC CCG CAC ACC TGT CCC CAG Gly His Gly Pro Arg Pro Pro His Thr Cys Pro Gln 25 30	CGT CGC CTG GGA 200 Arg Arg Leu Gly 35
GCG CGC GAG CGC CGC GAC ATG CAG CGT GAA ATC CTG Ala Arg Glu Arg Arg Asp Met Gln Arg Glu Ile Leu 40 45	GCG GTG CTC GGG 248 Ala Val Leu Gly 50
CTA CCG GGA CGG CCC CGA CCC CGT GCA CAA CCC GCG	

CCA GCG TCC GCG CCC CTC TTC ATG TTG GAC CTA TAC CAC GCC ATG ACC Pro Ala Ser Ala Pro Leu Phe Met Leu Asp Leu Tyr His Ala Met Thr

GAT GAC GAC GGC GGG CCA CCA CAG GCT CAC TTA GGC CGT GCC GAC Asp Asp Asp Gly Gly Pro Pro Gln Ala His Leu Gly Arg Ala Asp

75

				Val				Arg				GGC Gly	440
		CCA Pro 120	His								Gln	ATC Ile	488
		Glu										GAA Glu	536
-	Thr	CAC His										GAA Glu	584
		GAG Glu											632
		CTC Leu											680
		AGT Ser 200											728
		TAT Tyr											776
		CTG Leu											824
		TTC Phe											872
		CCA Pro											920
		AAC Asn 280				Gly							968
		GAG Glu			Arg .				Tyr				1016

GAC CTT GGC TGG CTG GAC TGG GTC ATC GCC CCC CAG GGC TAC TCT GCC Asp Leu Gly Trp Leu Asp Trp Val Ile Ala Pro Gln Gly Tyr Ser Ala 310 315 320	1064
TAT TAC TGT GAG GGG GAG TGT GCT TTC CCA CTG GAC TCC TGT ATG AAC Tyr Tyr Cys Glu Gly Glu Cys Ala Phe Pro Leu Asp Ser Cys Met Asn 325 330 335 340	1112
GCC ACC AAC CAT GCC ATC TTG CAG TCT CTG GTG CAC CTG ATG AAG CCA Ala Thr Asn His Ala Ile Leu Gln Ser Leu Val His Leu Het Lys Pro 345 350 355	1160
GAT GTT GTC CCC AAG GCA TGC TGT GCA CCC ACC AAA CTG AGT GCC ACC Asp Val Val Pro Lys Ala Cys Cys Ala Pro Thr Lys Leu Ser Ala Thr 360 365 370	1208
TCT GTG CTG TAC TAT GAC AGC AGC AAC AAT GTC ATC CTG CGT AAA CAC Ser Val Leu Tyr Tyr Asp Ser Ser Asn Asn Val Ile Leu Arg Lys His 375	1256
CGT AAC ATG GTG GTC AAG GCC TGT GGC TGC CAC TGAGGCCCCG CCCAGCATCC Arg Asn Met Val Val Lys Ala Cys Gly Cys His 390 395	1309
TGCTTCTACT ACCTTACCAT CTGGCCGGGC CCCTCTCCAG AGGCAGAAAC CCTTCTATGT	1369
TATCATAGCT CAGACAGGGG CAATGGGAGG CCCTTCACTT CCCCTGGCCA CTTCCTGCTA	1429
AAATTCTGGT CTTTCCCAGT TCCTCTGTCC TTCATGGGGT TTCGGGGCTA TCACCCCGCC	1489
CTCTCCATCC TCCTACCCCA AGCATAGACT GAATGCACAC AGCATCCCAG AGCTATGCTA	1549
ACTGAGAGGT CTGGGGTCAG CACTGAAGGC CCACATGAGG AAGACTGATC CTTGGCCATC	1609
CTCAGCCCAC AATGGCAAAT TCTGGATGGT CTAAGAAGGC CGTGGAATTC TAAACTAGAT	1669
GATCTGGGCT CTCTGCACCA TTCATTGTGG CAGTTGGGAC ATTTTTAGGT ATAACAGACA	1729
CATACACTTA GATCAATGCA TCGCTGTACT CCTTGAAATC AGAGCTAGCT TGTTAGAAAA	1789
AGAATCAGAG CCAGGTATAG CGGTGCATGT CATTAATCCC AGCGCTAAAG AGACAGAGAC	1849
AGGAGAATCT CTGTGAGTTC AAGGCCACAT AGAAAGAGCC TGTCTCGGGA GCAGGAAAAA	1909
AAAAAAAAC GGAATTC	1926

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 399 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (D) OTHER INFORMATION: /product= "mOP2-PP"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Met Ala Met Arg Pro Gly Pro Leu Trp Leu Leu Gly Leu Ala Leu Cys 1 5 10 15

Ala Leu Gly Gly His Gly Pro Arg Pro Pro His Thr Cys Pro Gln 20 25 30

Arg Arg Leu Gly Ala Arg Glu Arg Arg Asp Met Gln Arg Glu Ile Leu Ala 35 40 45

Val Leu Gly Leu Pro Gly Arg Pro Arg Pro Arg Ala Gln Pro Ala Ala 50 55 60 65

Ala Arg Gln Pro Ala Ser Ala Pro Leu Phe Met Leu Asp Leu Tyr His Ala
70 75 80

Het Thr Asp Asp Asp Gly Gly Pro Pro Gln Ala His Leu Gly Arg 85 90 95

Ala Asp Leu Val Met Ser Phe Val Asn Met Val Glu Arg Asp Arg Thr 100 105 110

Leu Gly Tyr Gln Glu Pro His Trp Lys Glu Phe His Phe Asp Leu Thr 115 120 125 130

Gln Ile Pro Ala Gly Glu Ala Val Thr Ala Ala Glu Phe Arg Ile Tyr 135 140 145

Lys Glu Pro Ser Thr His Pro Leu Asn Thr Thr Leu His Ile Ser Met : 150 155 160

Phe Glu Val Val Gln Glu His Ser Asn Arg Glu Ser Asp Leu Phe Phe 165 170 175

Leu Asp Leu Gln Thr Leu Arg Ser Gly Asp Glu Gly Trp Leu Val Leu 180 185 190

Asp Ile Thr Ala Ala Ser Asp Arg Trp Leu Leu Asn His His Lys Asp 200 205 210

Leu	Gly	Leu	Arg	Leu 215	Tyr	Val	Glu	Thr	Ala 220	Asp	Gly	His	Ser	Met 225	Asp
Pro	Gly	Leu	Ala 230	Gly	Leu	Leu	Gly	Arg 235	Gln	Ala	Pro	Arg	Ser 240	Arg	Gln
Pro	Phe	Het 245	Val	Thr	Phe	Phe	Arg 250	Ala	Ser	Gln	Ser	Pro 255	Val	Arg	Ala
Pro	Arg 260	Ala	Ala	Arg	Pro	Leu 265	Lys	Arg	Arg	Gln	Pro 270	Lys	Lys	Thr	Àsn
Glu 275	Leu	Pro	His	Pro	Asn 280	Lys	Leu	Pro	Gly	Ile 285	Phe	Asp	Asp	Gly	His 290
Gly	Ser	Arg	Gly	Arg 295	Glu	Val	Cys	Arg	Arg 300	His	Glu	Leu	Tyr	Val 305	Ser
Phe	Arg	Asp	Leu 310	Gly	Trp	Leu	Asp	Trp 315	Val	Ile	Ala	Pro	Gln 320	Gly	Tyr
Ser	Ala	Tyr 325	Tyr	Cys	Glu	Gly	Glu 330	Cys	Ala	Phe	Pro	Leu 335	Asp	Ser	Cys
Met	Asn 340	Ala	Thr	Asn	His	Ala 345	Ile	Leu	Gln	Ser	Leu 350	Val	His	Leu	Met
Lys 355	Pro	Asp	Val	Val	Pro 360	Lys	Ala	Cys	Cys	Ala 365	Pro	Thr	Lys	Leu	Ser 370
Ala	Thr	Ser	Val	Leu 375	Tyr	Tyr	Asp	Ser	Ser 380	Asn	Asn	Val	Ile	Leu 385	Arg
Lys	His	Arg	Asn 390	Ket	Val	Val		Ala 395	Cys	Gly	Cys	His			

(2) INFORMATION FOR SEQ ID NO:24:

- SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1368 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1368
 - (D) OTHER INFORMATION: /STANDARD NAME="60A"
 - PUBLICATION INFORMATION:
 - (A) AUTHORS: WHARTON, KRISTI A.; THOMSEN, GERALD H.; GELBERT, WILLIAM M.
 - (B) TITLE: DROSOPHILA 60A GENE...
 - (C) JOURNAL: PROC. NAT'L ACAD. SCI. USA

 - (D) VOLUME: 88
 (E) RELEVANT RESIDUES IN SEQ ID NO:3: FROM 1 TO 1368
 - (F) PAGES: 9214-9218
 - (G) DATE: OCT 1991
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

ATG Met 1	Ser	Gly	Leu	Arg	AAC Asn	Thr	Ser	Glu	Ala	Val	GCA Ala	GTG Val	CTC Leu	GCC Ala 15	TCC Ser	48
CTG Leu	GGA Gly	CTC Leu	GGA Gly 20	ATG Met	GTT Val	CTG Leu	CTC Leu	ATG Met 25	TTC Phe	GTG Val	GCG Ala	ACC Thr	ACG Thr 30	CCG Pro	CCG Pro	96

GCC GTT GAG GCC ACC CAG TCG GGG ATT TAC ATA GAC AAC GGC AAG GAC 144 Ala Val Glu Ala Thr Gln Ser Gly Ile Tyr Ile Asp Asn Gly Lys Asp 35

CAG ACG ATC ATG CAC AGA GTG CTG AGC GAG GAC GAC AAG CTG GAC GTC 192 Gln Thr Ile Met His Arg Val Leu Ser Glu Asp Asp Lys Leu Asp Val 50

240 TCG TAC GAG ATC CTC GAG TTC CTG GGC ATC GCC GAA CGG CCG ACG CAC Ser Tyr Glu Ile Leu Glu Phe Leu Gly Ile Ala Glu Arg Pro Thr His 65

CTG AGC AGC CAC CAG TTG TCG CTG AGG AAG TCG GCT CCC AAG TTC CTG 288 Leu Ser Ser His Gln Leu Ser Leu Arg Lys Ser Ala Pro Lys Phe Leu 95 85

CTO Lev	GAC Asp	GTC Val	TAC Tyr 100	His	CGC Arg	ATC Ile	ACG Thr	GCG Ala 105	Glu	GAG Glu	GGT Gly	CTC	AGC Ser 110	Asp	CAG Gln		336
GAT Asp	GAG Glu	GAC Asp 115	Asp	GAC Asp	TAC Tyr	GAA Glu	CGC Arg 120	GGC Gly	CAT His	CGG Arg	TCC Ser	AGG Arg 125	Arg	AGC	GCC	:	384
GAC Asp	CTC Leu 130	Glu	GAG Glu	GAT Asp	GAG Glu	GGC Gly 135	GAG Glu	CAG Gln	CAG Gln	AAG Lys	AAC Asn 140	TTC Phe	ATC Ile	ACC Thr	GAC Asp		432
CTG Leu 145	GAC Asp	AAG Lys	CGG Arg	GCC Ala	ATC Ile 150	Asp	GAG Glu	AGC Ser	GAC Asp	ATC Ile 155	ATC Ile	ATG Met	ACC Thr	TTC Phe	CTG Leu 160	4	480
AAC Asn	AAG Lys	CGC Arg	CAC His	CAC His 165	AAT Asn	GTG Val	GAC Asp	GAA Glu	CTG Leu 170	CGT Arg	CAC His	GAG Glu	CAC His	GGC Gly 175	CGT Arg	-	528
CGC Arg	CTG Leu	TGG Trp	TTC Phe 180	GAC Asp	GTC Val	TCC Ser	AAC Asn	GTG Val 185	CCC Pro	AAC Asn	GAC Asp	AAC Asn	TAC Tyr 190	CTG Leu	GTG Val	5	576
	GCC Ala															6	524
ACC Thr	GCC Ala 210	AAC Asn	AGG Arg	GAG Glu	TTC Phe	ACC Thr 215	ATC Ile	ACG Thr	GTA Val	TAC Tyr	GCC Ala 220	ATT Ile	GGC Gly	ACC Thr	GGC Gly	6	572
ACG Thr 225	CTG Leu	GGC Gly	CAG Gln	CAC His	ACC Thr 230	ATG Met	GAG Glu	CCG Pro	CTG Leu	TCC Ser 235	TCG Ser	GTG Val	AAC Asn	ACC Thr	ACC Thr 240	7	720
GGG Gly	GAC Asp	TAC Tyr	GTG Val	GGC Gly 245	TGG Trp	TTG Leu	GAG Glu	CTC Leu	AAC Asn 250	GTG Val	ACC Thr	GAG Glu	GGC Gly	CTG Leu 255	CAC His	. 7	68
GAG Gļu	TGG Trp	CTG Leu	GTC Val 260	AAG Lys	TCG Ser	AAG Lys	Asp	AAT Asn 265	CAT His	GGC Gly	ATC Ile	TAC Tyr	ATT Ile 270	GGA Gly	GCA Ala	8	16
CAC His	GCT Ala	GTC Val 275	AAC Asn	CGA Arg	CCC Pro	Asp	CGC Arg 280	GAG Glu	GTG Val	AAG Lys	Leu	GAC Asp 285	GAC Asp	ATT Ile	GGA Gly	8	64.
CTG Leu	ATC Ile 290	CAC His	CGC Arg	AAG Lys	Val	GAC Asp 295	GAC Asp	GAG Glu	TTC Phe	Gln	CCC Pro 300	TTC Phe	ATG Met	ATC Ile	GGC Gly	9	12

Phe			CTG Leu						9	960
			GCC Ala						10	800
			CCG Pro						10)56
			CTG Leu						11	.04
			CCA Pro 375						11	.52
			CTC Leu						12	00
			GTC Val						12	48
			ACC Thr						12	96
			GTG Val			Tyr			13	44
		TGC Cys	CAT His 455	TGA					13	68

(2) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 455 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Met Ser Gly Leu Arg Asn Thr Ser Glu Ala Val Ala Val Leu Ala Ser 1 5 10 15

Leu Gly Leu Gly Met Val Leu Leu Met Phe Val Ala Thr Thr Pro Pro 20 25 30

Ala Val Glu Ala Thr Gln Ser Gly Ile Tyr Ile Asp Asn Gly Lys Asp
40
45

Gln Thr Ile Met His Arg Val Leu Ser Glu Asp Asp Lys Leu Asp Val 50 55 60

Ser Tyr Glu Ile Leu Glu Phe Leu Gly Ile Ala Glu Arg Pro Thr His 65 70 75 80

Leu Ser Ser His Gln Leu Ser Leu Arg Lys Ser Ala Pro Lys Phe Leu 85 90 95

Leu Asp Val Tyr His Arg Ile Thr Ala Glu Glu Gly Leu Ser Asp Gln 100 105 110

Asp Glu Asp Asp Asp Tyr Glu Arg Gly His Arg Ser Arg Arg Ser Ala 115 120 125

Asp Leu Glu Glu Asp Glu Gly Glu Gln Gln Lys Asn Phe Ile Thr Asp 130 135 140

Leu Asp Lys Arg Ala Ile Asp Glu Ser Asp Ile Ile Met Thr Phe Leu 145 150 155 160

Asn Lys Arg His His Asn Val Asp Glu Leu Arg His Glu His Gly Arg 165 170 175

Arg Leu Trp Phe Asp Val Ser Asn Val Pro Asn Asp Asn Tyr Leu Val 180 185 190

Met Ala Glu Leu Arg Ile Tyr Gln Asn Ala Asn Glu Gly Lys Trp Leu 195 200 205

Thr Ala Asn Arg Glu Phe Thr Ile Thr Val Tyr Ala Ile Gly Thr Gly 210 215 220

Thr Leu Gly Gln His Thr Met Glu Pro Leu Ser Ser Val Asn Thr Thr Gly Asp Tyr Val Gly Trp Leu Glu Leu Asn Val Thr Glu Gly Leu His Glu Trp Leu Val Lys Ser Lys Asp Asn His Gly Ile Tyr Ile Gly Ala His Ala Val Asn Arg Pro Asp Arg Glu Val Lys Leu Asp Asp Ile Gly Leu Ile His Arg Lys Val Asp Asp Glu Phe Gln Pro Phe Met Ile Gly Phe Phe Arg Gly Pro Glu Leu Ile Lys Ala Thr Ala His Ser Ser His His Arg Ser Lys Arg Ser Ala Ser His Pro Arg Lys Arg Lys Ser Val Ser Pro Asn Asn Val Pro Leu Leu Glu Pro Met Glu Ser Thr Arg 345 Ser Cys Gln Met Gln Thr Leu Tyr Ile Asp Phe Lys Asp Leu Gly Trp His Asp Trp Ile Ile Ala Pro Glu Gly Tyr Gly Ala Phe Tyr Cys Ser Gly Glu Cys Asn Phe Pro Leu Asn Ala His Met Asn Ala Thr Asn His 390 Ala Ile Val Gln Thr Leu Val His Leu Leu Glu Pro Lys Lys Val Pro Lys Pro Cys Cys Ala Pro Thr Arg Leu Gly Ala Leu Pro Val Leu Tyr 420 His Leu Asn Asp Glu Asn Val Asn Leu Lys Lys Tyr Arg Asn Met Ile 440

Val Lys Ser Cys Gly Cys His

450

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo Sapiens
- (ix) FEATURE:
 - (A) NAME/KEY: Protein
 - (B) LOCATION: 1..102
 - (D) OTHER INFORMATION: /note="BMP3"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 104 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME/KEY: Protein
 - (B) LOCATION: 1..104
 - (D) OTHER INFORMATION: /note="BMP3"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

Cys Ala Arg Arg Tyr Leu Lys Val Asp Phe Ala Asp Ile Gly Trp Ser 1 5 10 15

Glu Trp Ile Ile Ser Pro Lys Ser Phe Asp Ala Tyr Try Cys Ser Gly
20 25 30

Ala Cys Gln Phe Pro Het Pro Lys Ser Leu Lys Pro Ser Asn His Ala 35 40 45

Thr Ile Glm Ser Ile Val Ala Arg Ala Val Gly Val Val Pro Gly Ile
50 55 60

Pro Glu Pro Cys Cys Val Pro Glu Lys Met Ser Ser Leu Ser Ile Leu 65 70 75 80

Phe Phe Asp Glu Asn Lys Asn Val Val Leu Lys Val Tyr Pro Asn Met 85 90 95

Thr Val Glu Ser Cys Ala Cys Arg 100

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 102 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: HOMO SAPIENS
- (ix) FEATURE:
 - (A) NAME/KEY: Protein
 - (B) LOCATION: 1..102
 - (D) OTHER INFORMATION: /note= "BMP5"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

Cys Lys Lys His Glu Leu Tyr Val Ser Phe Arg Asp Leu Gly Trp Gln 1 5 10 15

Asp Trp Ile Ile Ala Pro Glu Gly Tyr Ala Ala Phe Tyr Cys Asp Gly 20 25 30

Glu Cys Ser Phe Pro Leu Asn Ala His Met Asn Ala Thr Asn His Ala 35 40 45

Ile Val Gln Thr Leu Val His Leu Met Phe Pro Asp His Val Pro Lys 50 55 60

Pro Cys Cys Ala Pro Thr Lys Leu Asn Ala Ile Ser Val Leu Tyr Phe 65 70 75 80

Asp Asp Ser Ser Asn Val Ile Leu Lys Lys Tyr Arg Asn Met Val Val 85 90 95

Arg Ser Cys Gly Cys His 100

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 102 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: HOMO SAPIENS
- (ix) FEATURE:
 - (A) NAME/KEY: Protein
 - (B) LOCATION: 1..102
 - (D) OTHER INFORMATION: /note= "BMP6"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

Cys Arg Lys His Glu Leu Tyr Val Ser Phe Gln Asp Leu Gly Trp Gln 1 5 10 15

Asp Trp Ile Ile Ala Pro Lys Gly Tyr Ala Ala Asn Tyr Cys Asp Gly 20 25 30

Glu Cys Ser Phe Pro Leu Asn Ala His Met Asn Ala Thr Asn His Ala 35 40 45

Ile Val Gln Thr Leu Val His Leu Met Asn Pro Glu Tyr Val Pro Lys 50 55 60

Pro Cys Cys Ala Pro Thr Lys Leu Asn Ala Ile Ser Val Leu Tyr Phe 70 75 80

Asp Asp Asn Ser Asn Val Ile Leu Lys Lys Tyr Arg Trp Met Val Val 85 90 95

Arg Ala Cys Gly Cys His 100

- (2) INFORMATION FOR SEQ ID NO:29:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 102 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (ix) FEATURE:
 - (A) NAME/KEY: Protein
 - (B) LOCATION: 1..102
 - (D) OTHER INFORMATION: /label= OPX
 /note= "WHEREIN XAA AT EACH POS'N IS INDEPENDENTLY
 SELECTED FROM THE RESIDUES OCCURRING AT THE
 CORRESPONDING POS'N IN THE C-TERMINAL SEQUENCE OF HOUSE
 OR HUMAN OP1 OR OP2 (SEE SEQ. ID NOS. 5,6,7 and 8 or
 16,18,20 and 22.)"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

Cys Xaa Xaa His Glu Leu Tyr Val Xaa Phe Xaa Asp Leu Gly Trp Xaa 1 5 10 15

Asp Trp Xaa Ile Ala Pro Xaa Gly Tyr Xaa Ala Tyr Tyr Cys Glu Gly 20 25 30

Glu Cys Xaa Phe Pro Leu Xaa Ser Xaa Met Asn Ala Thr Asn His Ala 35 40 45

Ile Xaa Gln Xaa Leu Val His Xaa Xaa Xaa Pro Xaa Xaa Val Pro Lys 50 55 60

Xaa Cys Cys Ala Pro Thr Xaa Leu Xaa Ala Xaa Ser Val Leu Tyr Xaa 65 70 75 80

Asp Xaa Ser Xaa Asn Val Xaa Leu Xaa Lys Xaa Arg Asn Met Val Val 85 90 95

Xaa Ala Cys Gly Cys His 100

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 97 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: Generic Sequence 5
 - (D) OTHER INFORMATION: wherein each Xaa is independently selected from a group of one or more specified amino acids as defined in the specification.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

Leu Xaa Xaa Xaa Phe 1 Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa 10 Xaa Xaa Pro Xaa Xaa Xaa Xaa Ala 20 15 Xaa Tyr Cys Xaa Gly Xaa Cys Xaa 25 30 Xaa Pro Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn His Ala Xaa Xaa 40 Xaa Xaa Xaa Xaa Xaa Xaa Xaa 50 Xaa Xaa Xaa Xaa Xaa Xaa Cys

Cys Xaa Pro Xaa Xaa Xaa Xaa 65

Xaa Xaa Xaa Leu Xaa Xaa Xaa 70

Xaa Xaa Xaa Xaa Val Xaa Leu Xaa 80

Xaa Xaa Xaa Xaa Het Xaa Val Xaa 85

Xaa Cys Xaa Cys Xaa 95

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 102 amino acids
 - (B) TYPE: amino acids
- (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: Generic Sequence 6
 - (D) OTHER INFORMATION: wherein each Xaa is independently selected from a group of one or more specified amino acids as defined in the specification.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

Cys Xaa Xaa Xaa Xaa Leu Xaa Xaa Xaa Phe

1 5 10

Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa

15

Xaa Xaa Pro Xaa Xaa Xaa Ala

20 2

Xaa Tyr Cys Xaa Gly Xaa Cys Xaa

30 35

Xaa Pro Xaa Xaa Xaa Xaa

40

Xaa Xaa Xaa Asn His Ala Xaa Xaa

45 50

Xaa Xaa Xaa Xaa Xaa Xaa Xaa

55

Xaa Xaa Xaa Xaa Xaa Xaa Cys

60

Cys Xaa Pro Xaa Xaa Xaa Xaa

70

Xaa Xaa Xaa Leu Xaa Xaa Xaa

75 80

Xaa Xaa Xaa Xaa Val Xaa Leu Xaa

85

Xaa Xaa Xaa Met Xaa Val Xaa

90 95

Xaa Cys Xaa Cys Xaa

100

(2)	INFO	ORMA	TION	FOR	SEQ	ID	NO:3	2:								
	(i) (A) (B) (C) (D)	L T S	ENGT YPE: TRAN	H: 1 nuc DEDN	CHAR 238 leic ESS: lin	base aci sin	pai d, a	rs,	372		o ac	ids				
	(ii)	H	OLEC	ULE	TYPE	: cD	NA								-	
	(iii (A) (F)	0	RGAN	ISM:	SOUR hum PE:	an	N									
	(iv) (A) (B) (D)	N.	AME/	KEY: ION: INF	CDS ORMA oduc te=	TION t= "	GDF-									·
	(x) (A) (B) (C) (D) (E) (F) (G) (xi)	AI TI J(V(RI PA	UTHOI LTTLI DURNA DLUMI ELEVA AGES:	RS: : E: E: AL: : 8: 8: 8: 8: 8: 8: 8:	RESI	Se-ssion Ssion Na OUES 254	Jin n of t'l .	Gro Acad -123	. Sc:	i.		tiat	ion :	Fact	or 1	
GGGGAC	ACCG	GCC	CCGC	CCT (CAGC	CCAC'	rg g	ICCC	GGGC	C GC	CGCG	GACC	CTG	CGCA	CTC	60
TCTGGT	CATC	GCCI	rggg/	AGG A	. 1	ATG (let]	CCA (Pro 1	CCG (Pro]	CCG (Pro (CAG (Gln (CAA (Gln (GGT (Gly)	CCC '	rgc (Cys. (GC Gly 10	113
<i>:</i>	CAC (CAC His	CTC Leu	CTC Leu	CTC Leu 15	CTC Leu	CTG Leu	GCC Ala	CTG Leu	CTG Leu 20	CTG Leu	CCC Pro	TCG Ser	CTG Leu	CCC Pro 25	158
	CTG Leu	ACC Thr	CGC Arg	GCC Ala	CCC Pro 30	GTG Val	CCC Pro	CCA Pro	GGC Gly	CCA Pro 35	GCC Ala	GCC Ala	GCC Ala	CTG Leu	CTC Leu 40	203
	CAG (GCT Ala	CTA Leu	GGA Gly	CTG Leu 45	CGC Arg	GAT Asp	GAG Glu	CCC Pro	CAG Gln 50	GGT Gly	GCC Ala	CCC Pro	AGG Arg	CTC Leu 55	248

		Val	ATG Met					GAC Asp 70	293
		Ser	GGC Gly						338
			GTG Val						383
			GAC Asp						428
		Ala	GGG Gly						473
			GAA Glu						518
			GCG Ala						563
			GTG Val						608
			CTG Leu						653
			GAG Glu						698
			AGC Ser	Arg					743
	Pro		TGC Cys	Arg			Ser		788
	Thr		CCG Pro	Leu			Ala		833

				Glu					Gly				GGC Gly 265	878
	CGC Arg													923
	CGC Arg													968
	GGT Gly													1013
	CCG Pro													1058
	GCC Ala	Pro												1103
	 TCG Ser	Pro					Phe							1148
	CTG Leu	Arg					Met					Cys		1193
Cys	TAAC	CCGG	GG C	GGGC	AGGG.	A CC	CGGG	CCCA	ACA	ATAA	ATG	CCGC	GTGG	1238

(34) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 372 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (F) TISSUE TYPE: BRAIN
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION:
 - (D) OTHER INFORMATION: /function= /product= "GDF-1"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

Met Pro Pro Pro Gln Gln Gly Pro Cys Gly 1 5 10

His His Leu Leu Leu Leu Leu Leu Leu Leu Leu Pro Ser Leu Pro 15 20 25

Leu Thr Arg Ala Pro Val Pro Pro Gly Pro Ala Ala Ala Leu Leu 30 35 40

Gln Ala Leu Gly Leu Arg Asp Glu Pro Gln Gly Ala Pro Arg Leu
45 50 55

Arg Pro Val Pro Pro Val Met Trp Arg Leu Phe Arg Arg Arg Asp 60 65 70

Pro Gln Glu Thr Arg Ser Gly Ser Arg Arg Thr Ser Pro Gly Val
75 80 85

Thr Leu Gln Pro Cyc His Val Glu Glu Leu Gly Val Ala Gly Asn 90 95 100

Ile Val Arg His Ile Pro Asp Arg Gly Ala Pro Thr Arg Ala Ser 105 110 115

Glu	ı Pro	Val	. Ser	Ala 120		Gly	His	Cys	Pro 125	Glu	Trp	Thr	Val	Val 130
Phe	Asp	Leu	Ser	Ala 135		Glu	Pro	Ala	Glu 140		Pro	Ser	Arg	Ala 145
Arg	Leu	Glu	Leu	Arg 150		Ala	Ala	Ala	Ala 155	Ala	Ala	Ala	Pro	Glu 160
Gly	Gly	Trp	Glu	Leu 165		Val	Ala	Gln	Ala 170	Gly	Gln	Gly	Ala	Gly 175
Ala	Asp	Pro	Gly	Pro 180	Val	Leu	Leu	Arg	Gln 185	Leu	Val	Pro	Ala	Leu 190
Gly	Pro	Pro	Val	Arg 195	Ala	Glu	Leu	Leu	Gly 200	Ala	Ala	Trp	Ala	Arg 205
Asn	Ala	Ser	Trp	Pro 210	Arg	Ser	Leu	Arg	Leu 215	Ala	Leu	Ala	Leu	Arg 220
Pro	Arg	Ala	Pro	Ala 225	Ala	Cys	Ala	Arg	Leu 230	Ala	Glu	Ala	Ser	Leu 235
Leu	Leu	Val	Thr	Leu 240	Asp	Pro	Arg	Leu	Cys 245	His	Pro	Leu	Ala	Arg 250
Pro	Arg	Arg	Asp	Ala 255	Glu	Pro	Val	Leu	Gly 260	Gly	Gly	Pro	Gly	Gly 265
Ala	Cys	Arg	Ala	Arg 270	Arg	Leu	Tyr	Val	Ser 275	Phe	Arg	Glu	Val	Gly 280
Trp	His	Arg	Trp	Val 285	Ile	Arg	Pro	Arg	Gly 290	Phe	Leu	Ala	Asn	Tyr 295
Cys	Gln	Gly	Gln	Cys 300	Ala	Leu	Pro	Val	Ala 305	Leu	Ser	Gly	Ser	Gly 310
Gly	Pro	Pro	Ala	Leu 315	Asn	His	Ala	Val	Leu 320	Arg	Ala	Leu	Met	His 325
Ala	Ala	Ala	Pro	Gly 330	Ala	Ala	Asp	Leu	Pro 335	Cys	Cys	Val	Pro	Ala 340
Arg	Leu	Ser	Pro	Ile 345	Ser	Val	Leu	Phe	Phe 350	Asp	Asn	Ser	Asp	Asn 355
Val	Val	Leu	Arg	Gln 360	Tyr	Gl u	Asp	Het	Val 365	Val	Asp	Glu	Cys	Gly 370
C	۸													

Cys Arg 372

What is claimed is:

1. A method of screening candidate compounds for the ability to modulate the effective concentration of a morphogen in an organism, said method comprising

incubating a candidate compound with cells from a test tissue type known to produce a morphogen for a time sufficient to allow said compound to affect the production of said morphogen, and

assaying said cells for a parameter indicative of a change in the level of production of said morphogen.

- 2. The method of claim 1 wherein said morphogen is OP-1.
- 3. The method of claim 2 wherein said test tissue type is a human renal-derived tissue.
- 4. The method of claim 3 wherein said renal-derived tissue is a kidney or bladder-derived tissue.
- 5. The method of claim 2 wherein said test tissue type is adrenal-derived tissue.
- 6. The method of claim 1 wherein said morphogen is GDF-1.
- 7. The method of claim 6 wherein said test tissue type is derived from human nerve tissue.

- 8. The method of claim 7 wherein said nerve tissue is brain-derived tissue.
- 9. The method of claim 1 wherein said morphogen is DPP.
- 10. The method of claim 9 wherein said test tissue type is derived from one of the following drosophila tissues: dorsal ectoderm, epithelial imaginal disc visceral mesoderm, or gut endoderm.
- 11. The method of claim 1 wherein said morphogen is Vgr-1.
- 12. The method of claim 11 wherein said test tissue type is mouse lung tissue.
- 13. The method of claim 1 wherein said morphogen is Vgl.
- 14. The method of claim 13 wherein said test tissue type is xenopus fetal endoderm tissue.
- 15. A method of assessing a tissue of an organism for its level of production of a morphogen and for screening candidate compounds for the ability to modulate the effective concentration of said morphogen produced by cells of said tissue, said method comprising

selecting a test tissue type producing a high level of morphogen relative to the level of morphogen produced by other tissue types;

incubating a candidate compound with cultured cells of said selected tissue type for a time sufficient to allow said compound to affect the production of said morphogen; and

assaying said selected tissue cells for a parameter indicative of a change in the level of production of said morphogen.

- 16. The method of claim 1 or 15 wherein said parameter indicative of the level of said morphogen is determined using an antibody specific for said morphogen.
- 17. The method of claim 1 or 15 wherein said parameter indicative of the level of said morphogen is determined by measuring cellular proliferation in cells which are sensitive to the concentration of secreted OP-1.
- 18. The method of claim 1 or 15 wherein said parameter indicative of the level of said morphogen is determined using a nucleic acid probe that hybridizes under stringent conditions with nucleic acid encoding said morphogen.
- 19. The method of claim 18 wherein said morphogen comprises a minimally active core C-terminal region comprising at least six cysteine residues, and said nucleic acid probe hybridizes with an mRNA encoding a region N-terminal to said core region.
- 20. The method of claim 18 wherein said morphogen comprises a minimally active core C-terminal region

comprising at least six cysteine residues, and said nucleic acid probe hybridizes with an mRNA encoding a region 3' to said core region.

1 / 3 4

Fig 1

2 / 3 🖫

Fig 2

Fig 3

International Applicati

I. CLASS	IFICATION OF SUBJ	ECT MATTER (if several classification	ation symbols apply, indicate all)6	
According	g to International Paten	t Classification (IPC) or to both Natio	onal Classification and IPC	
Int.Cl	1. 5 C12Q1/02	; G01N33/68		
II. FIELD	S SEARCHED			
		Minimum D	ocumentation Searched	
Classifica	tion System		Classification Symbols	
Int.Cl	. 5	C12Q; G01N;	С07К	
		Documentation Searched to the Extent that such Docum	other than Minimum Documentation tents are Included in the Fields Searched ⁸	
m podi	MENTS CONSTITUTE	D TO BE RELEVANT ⁹		
Category ^o	Citation of Do	cument, ¹¹ with Indication, where app	ropriate, of the relevant passages 12	Relevant to Claim No.13
X	JOURNAL vol. 6, pages 76 H.ZHOU E		RESEARCH	1,15,18
Y	see abst see page 55 see page 772, lef see page		line 12 - page	6
	44		-/	
"A" docu cons: "E" earlic filing "L" docum which citati "O" docu other "P" docum later	idered to be of particula er'document but publish g date ment which may throw d h is cited to establish the ion or other special reason ment referring to an ora r means ment published prior to than the priority date co	al state of the art which is not relevance ed on or after the international loubts on priority claim(s) or e publication date of another on (as specified) al disclosure, use, exhibition or the international filing date but	"I" later document published after the interna or priority date and not in conflict with th cited to understand the principle or theory invention "X" document of particular relevance; the clair cannot be considered novel or cannot be convive an inventive step "Y" document of particular relevance; the clair cannot be considered to involve an inventi document is combined with one or more or ments, such combination being obvious to in the art. "&" document member of the same patent fam	te application but y underlying the med invention sonsidered to med invention ve step when the ther such docu- a person skilled
v. CERTIFI				
	ctual Completion of the		Date of Mailing of this International Search	h Report
ternational S	Searching Authority EUROPEAN	PATENT OFFICE	Signature of Authorized Officer LUZZATTO E.R.	

III. DOCUM	ENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)	
Category a	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
x	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA. vol. 86, June 1989, WASHINGTON US pages 4554 - 4558 K.LYONS ET AL. cited in the application see abstract see page 4557, left column, line 34 - page 4558, line 18; figure 5	1,11,15,
x	WO,A,9 102 744 (CELTRIX LABORATORIES) 7 March 1991 see page 1, line 1 - page 3, line 34 see page 29, line 1 - line 28	15,16
(PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA. vol. 88, May 1991, WASHINGTON US pages 4250 - 4254 SJ. LEE see abstract	6
	WO,A,9 000 619 (UNIVERSITY COLLEGE LONDON) 25 January 1990 see page 1, line 1 - page 2, line 18 see page 4, line 14 - page 14, line 10	1,15
,Y	BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. vol. 179, no. 1, 30 August 1991, DULUTH, MINNESOTA US pages 116 - 123 E. ÖZKAYANAK ET AL. see the whole document	1,15
<i>:</i>		

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO. US 9207359 SA 64596

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 09/12/92

Patent document cited in search report	Publication date	1	Patent family member(s)	Publication date
WO-A-9102744	07-03-91	AU-A- CA-A- EP-A-	6187090 2064878 0489062	03-04-91 22-02-91 10-06-92
WO-A-9000619	25-01-90	JP-T-	3505669	12-12-91

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classificati n 5:

(11) International Publication Number:

WO 93/05172

C12Q 1/02, G01N 33/68

A1

(43) International Publication Date:

18 March 1993 (18.03.93)

(21) International Application Number:

PCT/US92/07359

(22) International Filing Date:

28 August 1992 (28.08.92)

(74) Agent: KELLEY, Robin, D.; Testa, Hurwitz & Thibeault, 53 State Street/Exchange Place, Boston, MA 02018-2809

(US).

(30) Priority data:

752,861

30 August 1991 (30.08.91) US (81) Designated States: AU, CA, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL,

(71) Applicant: CREATIVE BIOMOLECULES, INC. [US/ US]; 35 South Street, Hopkinton, MA 01748 (US).

(72) Inventors: SMART, John, E.; 50 Meadow Brook Road, Weston, MA 02193 (US). OPPERMANN, Hermann; 25 Summer Hill Road, Medway, MA 02053 (US). OZKAY-NAK, Engin; 44 Purdue Drive, Milford, MA 01757 (US). KUBERASAMPATH, Thangavel; 6 Spring Street, Medway, MA 02053 (US). RUEGER, David, C.; 19 Downey Street, Hopkinton, MA 01748 (US). PANG, Roy, H., L.; 15 Partridge Road, Etna, NH 03750 (US). COHEN, Charles, N.; 98 Wintrop Street, Medway, MA 02053 (US).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: MORPHOGENIC PROTEIN SCREENING METHOD

(57) Abstract

Disclosed is a method of screening candidate compounds for the ability to modulate the level of morphogenic protein in mammalian system. The method includes determining a parameter indicative of the level of production of a morphogenic in a cell culture known to produce the morphogen, incubating a candidate compound with the culture for a time sufficient to allow the compound to affect the production of the morphogenic protein, and then assaying the culture again to detect a change in the level of morphogenic protein production.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gahon	MW	Malawi
B8	Barhados	GB	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guinea	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL	Poland
BJ	Benin	IE	Ireland	PT	Portugal
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	JP	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CC	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SK	Slovak Republic
CI	Côte d'Ivoire	LI	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	SU	Soviet Union
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	MC	Monaco	TG	Logo
ΟE	Germany	MG	Madagascar	UA	Ukraine
DK	Denmark	MI.	Mali	us	United States of America
ES	Spain	MN	Mongolia	VN	Viet Nam
Fì	Finland		•		

PCT/US92/07359

MORPHOGENIC PROTEIN SCREENING METHOD

The invention relates to a method of screening drugs for the ability to modulate the level in mammals of proteins which can induce tissue morphogenesis and to methods of determining which animal tissue(s) and/or cell types within a tissue express a particular morphogenic protein.

Background of the Invention

Cell differentiation is the central characteristic of morphogenesis which initiates in the embryo, and continues to various degrees throughout the life of an organism in adult tissue repair and regeneration mechanisms. Members of the TGF-β superfamily include subfamilies of highly-related genes that now are suspected to play important roles in cell differentiation and morphogenesis during development and/or during adult life. For example, the Drosophila decapentaplegic gene product (DPP) has been implicated in formation of the dorsal-ventral axis in fruit flies; activins induce mesoderm and anterior structure formation in mammals; Müllerian inhibiting substance (MIS) may be required for male sex development in mammals; growth/differentiation factor-1 (GDF-1) has been implicated in nerve development and maintenance; other morphogenic proteins (BMP-2, -3, -4 and OP-1) induce bone formation.

The development and study of a bone induction model system has identified the developmental cascade of bone differentiation as consisting of chemotaxis of mesenchymal cells, proliferation of these progenitor cells, differentiation of cartilage, ossification and hypertrophy of this cartilaginous tissue, vascular invasion, bone formation, remodeling, and finally, marrow differentiation (Reddi (1981) Collagen Rel. Res. 1:209-206). This bone model system, which is studied in adult mammals, recapitulates the cascade of bone differentiation events that occur in formation of bone in the developing fetus. In other studies, the epithelium of the urinary bladder has been shown to induce new bone formation. Huggins (1931, Arch. Surg. 22:377-408) showed that new bone formation could be induced by surgical transplantation of urinary bladder epithelium onto the parietal fascia. Urist (1965, Science 150:893-899) demonstrated that implantation of demineralized bone segments resulted in endochondral The latter study and observation bone formation. suggested the existence of an osteogenic protein and that bovine diaphyseal bone was a source of enriched preparations of osteogenic protein (Sampath et al., J. Biol. Chem. 265:13198-13205, 1990; Urist, ibid; Reddi et al., Proc. Nat. Aca. Sci. 69:1601-1605, 1972; Sampath et al., Proc. Natl. Acad. Sci. 80:6591-6595, 1983). Proteins capable of inducing endochondral bone formation in mammals when implanted in association with a matrix now have been identified in a number of different mammalian species, as have the genes encoding these proteins, (see, for example, U.S. Patent No. 4,968,590; U.S.S.N. 315,342 filed February 23, 1989;

and U.S.S.N. 599,543, filed October 18, 1990). Human OP-1 DNA has been cloned from various cDNA and genomic libraries using a consensus probe (Ozkaynak et al., EMBO J. 9:2085-2093, 1990). Purified human recombinant OP-1, expressed in mammalian cells, has been shown to induce new bone formation in vivo. Like other members of the TGF-β superfamily, OP-1 is produced as a precursor, glycosylated, processed and secreted as a mature dimer. Mature OP-1 is cleaved at a maturation site following a sequence with the pattern of RXXR (Panganiban et al., Mol. Cell. Biol. 10:2669-2677, 1990).

The degree of morphogenesis in adult tissue varies among different tissues and depends on, among other factors, the degree of cell turnover in a given tissue. On this basis, tissues can be divided into three broad categories: 1) tissues with static cell populations such as nerve and skeletal muscle where there is little or no cell division and most of the cells formed during development persist throughout adult life and, therefore, possess little or no ability for normal regeneration after injury; 2) tissues containing conditionally renewing populations such as liver where there is generally little cell division but, in response to an appropriate stimulus or injury, cells can divide to produce daughters of the same differentiated cell type; and 3) tissues with permanently renewing populations including blood, bone, testes, and stratified squamous epithelia which are characterized by rapid and continuous cell turnover in the adult. Here, the terminally differentiated cells have a short life span and are replaced through

proliferation of a distinct subpopulation of cells, known as stem or progenitor cells.

It is an object of this invention to provide a method of screening compounds which, when administered to a given tissue from a given organism, cause an alteration in the level of morphogenic protein ("morphogen") produced by the tissue. Such compounds, when administered systemically, will result in altered systemic or local levels of morphogenic activity. morphogenic activity includes the ability to induce proliferation and sequential differentiation of progenitor cells, and the ability to support and maintain the differentiated phenotype or sequence of phenotypes through the progression of events that results in the formation of normal adult tissue (including organ regeneration). Thus, broadly, the invention provides a key to development of additional modalities of therapies involving modulation of morphogenic protein production in animals or adult mammals, e.g., humans, and consequent correction of conditions involving pathologic alteration of the balance of tissue cell turnover. Another object of the invention is to provide methodologies for identifying or selecting a combination of compound(s) which may increase a progenitor cell population in a mammal, stimulate progenitor cells to differentiate in vivo or in vitro, maintain the differentiated phenotype or sequence of phenotypes of a tissue, induce tissuespecific growth in vivo, or replace diseased or damaged tissues or organs in vivo. Another object of the invention is to determine the tissue(s) or organ(s) of origin of a given morphogen. Another object of the

invention is to determine the specific cell type(s) within the tissue(s) or organ(s) of origin, or cell line(s) derived from the tissue(s), or organ(s) of origin, that is responsible for the synthesis and production of a given morphogen. These and other objects and features of the invention will be apparent from the description, drawing, and claims which follow.

Summary of the Invention

The invention features a method of screening candidate compounds for the ability to modulate the effective local or systemic concentration or level of morphogenic protein in an organism. The method is practiced by incubating one or more candidate compound(s) with cells from a test tissue type of an organism known to produce a given morphogen for a time sufficient to allow the compound(s) to affect the production, i.e., expression and/or secretion, of morphogen by the cells; and then assaying cells and the medium conditioned by the cells for a change in a parameter indicative of the level of production of the morphogenic protein. The procedure may be used to identify compounds showing promise as drugs for human use capable of increasing or decreasing morphogen production in vivo, thereby to correct or alleviate a diseased condition.

In a related aspect, the invention features a method of screening tissue(s) of an organism to assess whether or at what level cells of the tissue(s) produce a particular morphogen, thereby to determine a tissue(s) of origin of the morphogen. This permits selection of the tissue cell type to be used in the screening. As used herein, "tissue" refers to a group of cells which are naturally found associated, including an organ.

As an example of tissue(s) or organ(s) which produce high levels of morphogen relative to the level produced by other types of tissues, it has been discovered that OP-1, first found in bone tissue is produced at relatively high levels in cells derived

from renal, e.g., kidney or bladder, or adrenal tissue; that GDF-1 is produced at relatively high levels in cells derived from nerve, e.g., brain tissue; that DPP is produced at relatively high levels in cells derived from one of the following drosophila tissues: dorsal ectoderm, epithelial imaginal disc, visceral mesoderm, or gut endoderm; that Vgr-1 is produced at relatively high levels in cells derived from mouse lung tissue; and that Vgl is produced at relatively high levels in cells derived from xenopus fetal endoderm tissue. In addition, BMP3 and CBMP2B transcripts have been identified in abundance in lung tissue. As used herein, "derived" means the cells are the cultured tissue itself, or are a cell line whose parent cells are the tissue itself.

Preferred methods for determining the level of or a change in the level of a morphogen in a cultured cell include using an antibody specific for the morphogen, e.g., in an immunoassay such as an ELISA or radioimmunoassay; and determining the level of nucleic acid, most particularly mRNA, encoding the morphogen using a nucleic acid probe that hybridizes under stringent conditions with the morphogen RNA, such as in an RNA dot blot analysis. Where a change in the presence and/or concentration of morphogen is being determined, it will be necessary to measure and compare the levels of morphogen in the presence and absence of The nucleic acid probe may the candidate compound. be a nucleotide sequence encoding the morphogen or a fragment large enough to hybridize specifically only to RNA encoding a specific morphogen under stringent conditions. As used herein, "stringent conditions" are defined as conditions in which non-specific hybrids will be eluted but at which specific hybrids will be maintained, i.e., incubation at 0.1X SSC (15mM NaCl, 5mM Na citrate) at 50°C for 15 minutes.

Examples of morphogens whose levels may be determined according to the invention include OP-1, OP-2, GDF-1, Vgr-1, DPP, 60A CBMP2A, CBMP2B, BMP 2, 3, 4, 5, 6, or Vgl. Thus, if an immunoassay is used to indicate the presence and/or concentration of a morphogen, an antibody specific for one of these morphogens only, and which will not detect the presence of other morphogens, will be used. Similarly, if nucleic acid hybridization is used to indicate the level of RNA encoding the morphogen, a nucleotide probe specific for one of these morphogens only will be used under hybridization conditions such that the probe should not be capable of hybridizing with RNA encoding a different morphogen. A morphogen includes an active C-terminal core region, which includes at least six cysteine residues, and a region N-terminal to the Cterminal region that is relatively non-homologous to the equivalent N-terminal regions of other morphogens. In addition, the 3' noncoding region of the mRNA is unique to each morphogen. Thus, a nucleic acid probe encoding all or a portion of the sequences N-terminal to the C-terminal core region of a morphogen, or encoding all or a portion of the sequences C-terminal to or 3' to the core region of a morphogen may be used as a probe which detects mRNA encoding that morphogen only.

"Morphogenic proteins" or "morphogens", as used herein, include naturally-occurring osteogenic proteins

capable of inducing the full developmental cascade of bone formation, as well as polypeptide chains not normally associated with bone or bone formation, but sharing substantial sequence homology with osteogenic Such proteins, as well as DNA sequences proteins. encoding them, have been isolated and characterized for a number of different species. See. for example, U.S. Patent No. 4,968,590 and U.S. Patent Number. 5,011,691, U.S. application Serial Number 1989; 422,699, filed October 17, 1989, and 600,024 and 599,543, both filed October 18, 1990; Sampath et al., (1990) J. Biol. Chem. 265:13198-13205; Ozkaynak et al. (1990) EMBO J. 9:2085-2093; and Lee, Proc. Nat. Aca. Sci. 88:42504254 (1991), all of which are hereby incorporated by reference. Many of these proteins subsequently were discovered to have utility beyond bone morphogenesis. See, e.g., USSN 667,274 filed March 11, 1991. The mature forms of morphogens share substantial amino acid sequence homology, especially in the C-terminal core regions of the proteins. In particular, most of the proteins share a seven-cysteine skeleton in this region, in addition to other apparently required amino acids. Table II, infra, shows the amino acid sequence homologies for nine morphogens over the carboxy terminal 102 amino acids.

Among the morphogens useful in this invention are proteins originally identified as osteogenic proteins, such as the OP-1, OP-2 and CBMP2 proteins, as well as amino acid sequence-related proteins such as DPP (from Drosophila), Vgl (from Xenopus), Vgr-1 (from mouse, see U.S. 5,011,691 to Oppermann et al.), GDF-1 (from mouse, see Lee (1991) PNAS 88:4250-4254), all of which are

presented in Table II and Seq. ID Nos.5-14), and the recently identified 60A protein (from Drosophila, Seq. ID No. 24, see Wharton et al. (1991) PNAS 88:9214-9218.) The members of this family, which include members of the TGF-β super-family of proteins, share substantial amino acid sequence homology in their The proteins are translated as a C-terminal regions. precursor, having an N-terminal signal peptide sequence, typically less than about 30 residues, followed by a "pro" domain that is cleaved to yield the mature sequence. The signal peptide is cleaved rapidly upon translation, at a cleavage site that can be predicted in a given sequence using the method of Von Heijne ((1986) Nucleic Acids Research 14:4683-4691.) Table I, below, describes the various morphogens identified to date, including their nomenclature as used herein, their Seq. ID references, and publication sources for the amino acid sequences for the full length proteins not included in the Seq. Listing. disclosure of these publications is incorporated herein by reference.

TABLE I

"OP-1" refers generically to the group of morphogenically active proteins expressed from part or all of a DNA sequence encoding OP-1 protein, including allelic and species variants thereof, e.g., human OP-1 ("hOP-1", Seq. ID No. 5, mature protein amino acid sequence), or mouse OP-1 ("mOP-1", Seq. ID No. 6, mature protein amino acid sequence.) The

conserved seven cysteine skeleton is defined by residues 38 to 139 of Seq. ID Nos. 5 and 6. The cDNA sequences and the amino acids encoding the full length proteins are provided in Seq. Id Nos. 16 and 17 (hOP1) and Seq. ID Nos. 18 and 19 (mOP1.) The mature proteins are defined by residues 293-431 (hOP1) and 292-430 (mOP1). The "pro" regions of the proteins, cleaved to yield the mature, morphogenically active proteins are defined essentially by residues 30-292 (hOP1) and residues 30-291 (mOP1).

"OP-2"

refers generically to the group of active proteins expressed from part or all of a DNA sequence encoding OP-2 protein, including allelic and species variants thereof, e.g., human OP-2 ("hOP-2", Seq. ID No. 7, mature protein amino acid sequence) or mouse OP-2 ("mOP-2", Seq. ID No. 8, mature protein amino acid sequence). The conserved seven cysteine skeleton is defined by residues 38 to 139 of Seq. ID Nos. 7 and 8. The cDNA sequences and the amino acids encoding the full length proteins are provided in Seq. ID Nos. 20 and 21 (hOP2) and Seq. ID Nos. 22 and 23 (mOP2.) The mature proteins are defined essentially by residues 264-402 (hOP2) and 261-399 (mOP2). The "pro" regions of the proteins, cleaved to yield

the mature, morphogenically active proteins likely are defined essentially by residues 18-263 (hOP2) and residues 18-260 (mOP2). (Another cleavage site also occurs 21 residues upstream for both OP-2 proteins.)

"CBMP2"

refers generically to the morphogenically active proteins expressed from a part or all of a DNA sequence encoding the CBMP2 proteins, including allelic and species variants thereof, e.g., human CBMP2A ("CBMP2A(fx)", Seq ID No. 9) or human CBMP2B DNA ("CBMP2B(fx)", Seq. ID No. 10). The amino acid sequence for the full length proteins, referred to in the literature as BMP2A and BMP2B, or BMP2 and BMP4, appear in Wozney, et al. (1988) Science 242:1528-1534. The pro domain for BMP2 (BMP2A) likely includes residues 25-248 or 25-282; the mature protein, residues 249-396 or 283-396. The pro domain for BMP4 (BMP2B) likely includes residues 25-256 or 25-292; the mature protein, residues 257-408 or 293-408.

"DPP(fx)"

refers to protein sequences encoded by the Drosophila DPP gene and defining the conserved seven cysteine skeleton (Seq. ID No. 11). The amino acid sequence for the full length protein appears in Padgett, et al (1987) Nature 325: 81-84. The pro

domain likely extends from the signal peptide cleavage site to residue 456; the mature protein likely is defined by residues 457-588.

- "Vgl(fx)" refers to protein sequences encoded by the Xenopus Vgl gene and defining the conserved seven cysteine skeleton (Seq. ID No. 12). The amino acid sequence for the full length protein appears in Weeks (1987) Cell 51: 861-867. The prodomain likely extends from the signal peptide cleavage site to residue 246; the mature protein likely is defined by residues 247-360.
- "Vgr-1(fx)" refers to protein sequences encoded by the murine Vgr-1 gene and defining the conserved seven cysteine skeleton (Seq. ID No. 13). The amino acid sequence for the full length protein appears in Lyons, et al, (1989) PNAS 86: 4554-4558. The prodomain likely extends from the signal peptide cleavage site to residue 299; the mature protein likely is defined by residues 300-438.
- "GDF-1(fx)" refers to protein sequences encoded by the human GDF-1 gene and defining the conserved seven cysteine skeleton (Seq. ID No. 14). The cDNA and encoded amino sequence for the full length protein is

provided in Seq. ID. No. 32. The prodomain likely extends from the signal peptide cleavage site to residue 214; the mature protein likely is defined by residues 215-372.

"60A"

refers generically to the morphogenically active proteins expressed from part or all of a DNA sequence (from the Drosophila 60A gene) encoding the 60A proteins (see Seq. ID No. 24 wherein the cDNA and encoded amino acid sequence for the full length protein is provided). "60A(fx)" refers to the protein sequences defining the conserved seven cysteine skeleton (residues 354 to 455 of Seq. ID No. 24.) The pro domain likely extends from the signal peptide cleavage site to residue 324; the mature protein likely is defined by residues 325-455.

"BMP3(fx)"

refers to protein sequences encoded by the human BMP3 gene and defining the conserved seven cysteine skeleton (Seq. ID No. 26). The amino acid sequence for the full length protein appears in Wozney et al. (1988) Science 242: 1528-1534. The prodomain likely extends from the signal peptide cleavage site to residue 290; the mature protein likely is defined by residues 291-472.

"BMP5(fx)" refers to protein sequences encoded by the human BMP5 gene and defining the conserved seven cysteine skeleton (Seq. ID No. 27). The amino acid sequence for the full length protein appears in Celeste, et al. (1991) PNAS 87: 9843-9847. The pro domain likely extends from the signal peptide cleavage site to residue 316; the mature protein likely is defined by residues 317-454.

"BMP6(fx)" refers to protein sequences encoded by the human BMP6 gene and defining the conserved seven cysteine skeleton (Seq. ID No. 28). The amino acid sequence for the full length protein appear sin Celeste, et al. (1990) PNAS 87: 9843-5847. The pro domain likely includes extends from the signal peptide cleavage site to residue 374; the mature sequence likely includes residues 375-513.

The OP-2 proteins have an additional cysteine residue in this region (e.g., see residue 41 of Seq. ID Nos. 7 and 8), in addition to the conserved cysteine skeleton in common with the other proteins in this family. The GDF-1 protein has a four amino acid insert within the conserved skeleton (residues 44-47 of Seq. ID No. 14) but this insert likely does not interfere with the relationship of the cysteines in the folded

structure. In addition, the CBMP2 proteins are missing one amino acid residue within the cysteine skeleton.

The morphogens are inactive when reduced, but are active as oxidized homodimers and when oxidized in combination with other morphogens of this invention. Thus, as defined herein, a morphogen is a dimeric protein comprising a pair of polypeptide chains, wherein each polypeptide chain comprises at least the C-terminal six cysteine skeleton defined by residues 43-139 of Seq. ID No. 5, including functionally equivalent arrangements of these cysteines (e.g., amino acid insertions or deletions which alter the linear arrangement of the cysteines in the sequence but not their relationship in the folded structure), such that, when the polypeptide chains are folded, the dimeric protein species comprising the pair of polypeptide chains has the appropriate three-dimensional structure, including the appropriate intra- and inter-chain disulfide bonds such that the protein is capable of acting as a morphogen as defined herein. Specifically, the morphogens generally are capable of the following biological functions in a morphogenically permissive environment: stimulating proliferation of progenitor cells; stimulating the differentiation of progenitor cells; stimulating the proliferation of differentiated cells; and supporting the growth and maintenance of differentiated cells, including the "redifferentiation" of transformed cells. In addition, it is also anticipated that these morphogens are capable of

inducing redifferentiation of committed cells under appropriate environmental conditions.

Morphogens useful in this invention comprise one of two species of generic amino acid sequences: Generic Sequence 1 (Seq. ID No. 1) or Generic Sequence 2 (Seq. ID No. 2); where each Xaa indicates one of the 20 naturally-occurring L-isomer, α-amino acids or a derivative thereof. Generic Sequence 1 comprises the conserved six cysteine skeleton and Generic Sequence 2 comprises the conserved six cysteine skeleton plus the additional cysteine identified in OP-2 (see residue 36, Seq. ID No. 2). In another preferred aspect, these sequences further comprise the following additional sequence at their N-terminus:

Cys Xaa Xaa Xaa Xaa (Seq. ID No. 15)
1 5

Preferred amino acid sequences within the foregoing generic sequences include: Generic Sequence 3 (Seq. ID No. 3), Generic Sequence 4 (Seq. ID No. 4), Generic Sequence 5 (Seq. ID No. 30) and Generic Sequence 6 (Seq. ID No. 31), listed below. These Generic Sequences accommodate the homologies shared among the various preferred members of this morphogen family identified in Table II, as well as the amino acid sequence variation among them. Specifically, Generic Sequences 3 and 4 are composite amino acid sequences of the following proteins presented in Table II and identified in Seq. ID Nos. 5-14: human OP-1 (hOP-1, Seq. ID Nos. 5 and 16-17), mouse OP-1 (mOP-1, Seq. ID

Nos. 6 and 18-19), human and mouse OP-2 (Seq. ID Nos. 7, 8, and 20-22), CBMP2A (Seq. ID No. 9), CBMP2B (Seq. ID No. 10), DPP (from Drosophila, Seq. ID No. 11), Vgl, (from Xenopus, Seq. ID No. 12), Vgr-1 (from mouse, Seq. ID No. 13), and GDF-1 (from mouse, Seq. ID No. 14.) The generic sequences include both the amino acid identity shared by the sequences in Table II, as well as alternative residues for the variable positions within the sequence. Note that these generic sequences allow for an additional cysteine at position 41 or 46 in Generic Sequences 3 or 4, respectively, providing an appropriate cysteine skeleton where inter- or intramolecular disulfide bonds can form, and contain certain critical amino acids which influence the tertiary structure of the proteins.

Generic Sequence 3

5

Leu Tyr Val Xaa Phe

1

Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa

10

Xaa Ala Pro Xaa Gly Xaa Xaa Ala

15 20

25

Xaa Tyr Cys Xaa Gly Xaa Cys Xaa

Xaa Pro Xaa Xaa Xaa Xaa

35

30

Xaa Xaa Xaa Asn His Ala Xaa Xaa
40
45

Xaa Xaa Leu Xaa Xaa Xaa Xaa

50

Xaa Xaa Xaa Xaa Xaa Xaa Cys

55 60

Cys Xaa Pro Xaa Xaa Xaa Xaa Xaa

65

Xaa Xaa Xaa Leu Xaa Xaa Xaa

70 75

Xaa Xaa Xaa Xaa Val Xaa Leu Xaa

80

Xaa Xaa Xaa Met Xaa Val Xaa

85 90

Xaa Cys Gly Cys Xaa

95

wherein each Xaa is independently selected from a group of one or more specified amino acids defined as follows: "Res." means "residue" and Xaa at res.4 = (Ser, Asp or Glu); Xaa at res.6 = (Arg, Gln, Ser or Lys); Xaa at res.7 = (Asp or Glu); Xaa at res.8 = (Leu or Val); Xaa at res.11 = (Gln, Leu, Asp, His or Asn); Xaa at res.12 = (Asp, Arg or Asn); Xaa at res.14 = (Ile or Val); Xaa at res.15 = (Ile or Val); Xaa at res.18 = (Glu, Gln, Leu, Lys, Pro or Arg); Xaa at res.20 = (Tyr or Phe); Xaa at res.21 = (Ala, Ser, Asp, Met, His, Leu or Gln); Xaa at res.23 = (Tyr, Asn or Phe); Xaa at

res.26 = (Glu, His, Tyr, Asp or Gln); Xaa at res.28 = (Glu, Lys, Asp or Gln); Xaa at res.30 = (Ala, Ser, Pro or Gln); Xaa at res.31 = (Phe, Leu or Tyr); Xaa at res.33 = (Leu or Val); Xaa at res.34 = (Asn, Asp, Ala or Thr); Xaa at res.35 = (Ser, Asp, Glu, Leu or Ala); Xaa at res.36 = (Tyr, Cys, His, Ser or Ile); Xaa at res.37 = (Met, Phe, Gly or Leu); Xaa at res.38 = (Asn or Ser); Xaa at res.39 = (Ala, Ser or Gly); Xaa at res.40 = (Thr, Leu or Ser); Xaa at res.44 = (Ile or Val); Xaa at res.45 = (Val or Léu); Xaa at res.46 = (Gln or Arg); Xaa at res.47 = (Thr, Ala or Ser); Xaa at res.49 = (Val or Met); Xaa at res.50 = (His or Asn); Xaa at res.51 = (Phe, Leu, Asn, Ser, Ala or Val); Xaa at res.52 = (Ile, Met, Asn, Ala or Val); Xaa at res.53 = (Asn, Lys, Ala or Glu); Xaa at res.54 = (Pro or Ser); Xaa at res.55 = (Glu, Asp, Asn, or Gly); Xaa at res.56 = (Thr, Ala, Val, Lys, Asp, Tyr, Ser or Ala); Xaa at res.57 = (Val, Ala or Ile); Xaa at res.58 = (Pro or Asp); Xaa at res.59 = (Lys or Leu); Xaa at res.60 = (Pro or Ala); Xaa at res.63 = (Ala or Val); Xaa at res.65 = (Thr or Ala); Xaa at res.66 = (Gln, Lys, Arg or Glu); Xaa at res.67 = (Leu, Met or Val); Xaa at res.68 = (Asn, Ser or Asp); Xaa at res.69 = (Ala, Pro or Ser); Xaa at res.70 = (Ile, Thr or Val); Xaa at res.71 = (Ser or Ala); Xaa at res.72 = (Val or Met); Xaa at res.74 = (Tyr or Phe); Xaa at res.75 = (Phe, Tyr or Leu); Xaa at res.76 = (Asp or Asn); Xaa at res.77 = (Asp, Glu, Asn or Ser); Xaa at res.78 = (Ser, Gln, Asn or Tyr); Xaa at res.79 = (Ser, Asn, Asp or Glu); Xaa at res.80 = (Asn, Thr or Lys); Xaa at res.82 = (Ile or Val); Xaa at res.84 = (Lys or Arg); Xaa at res.85 = (Lys, Asn, Gln or His); Xaa at res.86 = (Tyr or His);

Xaa at res.87 = (Arg, Gln or Glu); Xaa at res.88 =
(Asn, Glu or Asp); Xaa at res.90 = (Val, Thr or Ala);
Xaa at res.92 = (Arg, Lys, Val, Asp or Glu); Xaa at
res.93 = (Ala, Gly or Glu); and Xaa at res.97 = (His or Arg);

Generic Sequence 4

Cys Xaa Xaa Xaa Leu Tyr Val Xaa Phe 10 1 5 Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa 15 Xaa Ala Pro Xaa Gly Xaa Xaa Ala 20 Xaa Tyr Cys Xaa Gly Xaa Cys Xaa 30 Xaa Pro Xaa Xaa Xaa Xaa Xaa 40 Xaa Xaa Xaa Asn His Ala Xaa Xaa 45 Xaa Xaa Leu Xaa Xaa Xaa Xaa 55 Xaa Xaa Xaa Xaa Xaa Xaa Cys 60 Cys Xaa Pro Xaa Xaa Xaa Xaa 70 Xaa Xaa Xaa Leu Xaa Xaa Xaa 75 80 Xaa Xaa Xaa Xaa Val Xaa Leu Xaa 85 Xaa Xaa Xaa Met Xaa Val Xaa 90 95

Xaa Cys Gly Cys Xaa 100

wherein each Xaa is independently selected from a group of one or more specified amino acids as defined by the following: "Res." means "residue" and Xaa at res.2 = (Lys or Arg); Xaa at res.3 = (Lys or Arg); Xaa at res.4 = (His or Arg); Xaa at res.5 = (Glu, Ser, His, Gly, Arg or Pro); Xaa at res.9 = (Ser, Asp or Glu); Xaa at res.11 = (Arg, Gln, Ser or Lys); Xaa at res.12 = (Asp or Glu); Xaa at res.13 = (Leu or Val); Xaa at res.16 = (Gln, Leu, Asp, His or Asn); Xaa at res.17 = (Asp, Arg, or Asn); Xaa at res.19 = (Ile or Val); Xaa at res.20 = (Ile or Val); Xaa at res.23 = (Glu, Gln, Leu, Lys, Pro or Arg); Xaa at res.25 = (Tyr or Phe); Xaa at res.26 = (Ala, Ser, Asp, Met, His, Leu, or Gln); Xaa at res.28 = (Tyr, Asn or Phe); Xaa at res.31 = (Glu, His, Tyr, Asp or Gln); Xaa at res.33 = Glu, Lys, Asp or Gln); Xaa at res.35 = (Ala, Ser or Pro); Xaa at res.36 = (Phe, Leu or Tyr); Xaa at res.38 = (Leu or Val); Xaa at res.39 = (Asn, Asp, Ala or Thr); Xaa at res.40 = (Ser, Asp, Glu, Leu or Ala); Xaa at res.41 = (Tyr, Cys, His, Ser or Ile); Xaa at res.42 = (Met, Phe, Gly or Leu); Xaa at res.44 = (Ala, Ser or Gly); Xaa at res.45 = (Thr, Leu or Ser); Xaa at res.49 = (Ile or Val); Xaa at res.50 = (Val or Leu); Xaa at res.51 = (Gln or Arg); Xaa at res.52 = (Thr, Ala or Ser); Xaa at res.54 = (Val or Met); Xaa at res.55 = (His or Asn); Xaa at res.56 = (Phe, Leu, Asn, Ser, Ala or Val); Xaa at res.57 = (Ile, Met, Asn, Ala or Val); Xaa at res.58 = (Asn, Lys, Ala or Glu); Xaa at res.59 = (Pro or Ser); Xaa at res.60 = (Glu, Asp, or Gly); Xaa at res.61 = (Thr, Ala, Val, Lys, Asp, Tyr, Ser or Ala); Xaa at res.62 = (Val, Ala

WO 93/05172

or Ile); Xaa at res.63 = (Pro or Asp); Xaa at res.64 = (Lys or Leu); Xaa at res.65 = (Pro or Ala); Xaa at res.68 = (Ala or Val); Xaa at res.70 = (Thr or Ala); Xaa at res.71 = (Gln, Lys, Arg or Glu); Xaa at res.72 = (Leu, Met or Val); Xaa at res.73 = (Asn, Ser or Asp); Xaa at res.74 = (Ala, Pro or Ser); Xaa at res.75 = (Ile, Thr or Val); Xaa at res.76 = (Ser or Ala); Xaa at res.77 = (Val or Met); Xaa at res.79 = (Tyr or Phe); Xaa at res.80 = (Phe, Tyr or Leu); Xaa at res.81 = (Asp or Asn); Xaa at res.82 = (Asp, Glu, Asn or Ser); Xaa at res.83 = (Ser, Gln, Asn or Tyr); Xaa at res.84 = (Ser, Asn, Asp or Glu); Xaa at res.85 = (Asn, Thr or Lys); Xaa at res.87 = (Ile or Val); Xaa at res.89 = (Lys or Arg); Xaa at res.90 = (Lys, Asn, Gln or His); Xaa at res.91 = (Tyr or His); Xaa at res.92 = (Arg, Gln or Glu); Xaa at res.93 = (Asn, Glu or Asp); Xaa at res.95 = (Val, Thr or Ala); Xaa at res.97 = (Arg, Lys, Val, Asp or Glu); Xaa at res.98 = (Ala, Gly or Glu); and Xaa at res. 102 = (His or Arg).

Similarly, Generic Sequence 5 (Seq. ID No. 30) and Generic Sequence 6 (Seq. ID No. 31) accommodate the homologies shared among all the morphogen protein family members identified in Table II. Specifically, Generic Sequences 5 and 6 are composite amino acid sequences of human OP-1 (hOP-1, Seq. ID Nos. 5 and 16-17), mouse OP-1 (mOP-1, Seq. ID Nos. 6 and 18-19), human and mouse OP-2 (Seq. ID Nos. 7, 8, and 20-22), CBMP2A (Seq. ID No. 9), CBMP2B (Seq. ID No. 10), DPP (from Drosophila, Seq. ID No. 11), Vgl, (from Xenopus, Seq. ID No. 12), Vgr-1 (from mouse, Seq. ID No. 13), and GDF-1 (from mouse, Seq. ID No. 14), human BMP3

(Seq. ID No. 26), human BMP5 (Seq. ID No. 27), human BMP6 (Seq. ID No. 28) and 60(A) (from Drosophila, Seq. ID Nos. 24-25). The generic sequences include both the amino acid identity shared by these sequences in the C-terminal domain, defined by the six and seven cysteine skeletons (Generic Sequences 5 and 6, respectively), as well as alternative residues for the variable positions within the sequence. As for Generic Sequences 3 and 4, Generic Sequences 5 and 6 allow for an additional cysteine at position 41 (Generic Sequence 5) or position 46 (Generic Sequence 6), providing an appropriate cysteine skeleton where inter- or intramolecular disulfide bonds can form, and containing certain critical amino acids which influence the tertiary structure of the proteins.

Generic Sequence 5

Leu Xaa Xaa Yaa Phe

1

5

Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa

10

Xaa Xaa Pro Xaa Xaa Xaa Ala

15 20

Xaa Tyr Cys Xaa Gly Xaa Cys Xaa

25 30

Xaa Pro Xaa Xaa Xaa Xaa

35

Xaa Xaa Xaa Asn His Ala Xaa Xaa
40 45

Xaa Xaa Xaa Xaa Xaa Xaa Xaa

50

Xaa Xaa Xaa Xaa Xaa Xaa Cys

55 60

Cys Xaa Pro Xaa Xaa Xaa Xaa Xaa

65

Xaa Xaa Xaa Leu Xaa Xaa Xaa

70 75

Xaa Xaa Xaa Xaa Val Xaa Leu Xaa

80

Xaa Xaa Xaa Met Xaa Val Xaa

85 90

Xaa Cys Xaa Cys Xaa

95

wherein each Xaa is independently selected from a group of one or more specified amino acids defined as follows: "Res." means "residue" and Xaa at res.2 = (Tyr or Lys); Xaa at res.3 = Val or Ile); Xaa at res.4 = (Ser, Asp or Glu); Xaa at res.6 = (Arg, Gln, Ser, Lys or Ala); Xaa at res.7 = (Asp, Glu or Lys); Xaa at res.8 = (Leu, Val or Ile); Xaa at res.11 = (Gln, Leu, Asp, His, Asn or Ser); Xaa at res.12 = (Asp, Arg, Asn or Glu); Xaa at res.14 = (Ile or Val); Xaa at res.15 = (Ile or Val); Xaa at res.16 (Ala or Ser); Xaa at res.18 = (Glu, Gln, Leu, Lys, Pro or Arg); Xaa at res.19 =

(Gly or Ser); Xaa at res.20 = (Tyr or Phe); Xaa at res.21 = (Ala, Ser, Asp, Met, His, Gln, Leu or Gly); Xaa at res.23 = (Tyr, Asn or Phe); Xaa at res.26 = (Glu, His, Tyr, Asp, Gln or Ser); Xaa at res.28 = (Glu, Lys, Asp, Gln or Ala); Xaa at res.30 = (Ala, Ser, Pro, Gln or Asn); Xaa at res.31 = (Phe, Leu or Tyr); Xaa at res.33 = (Leu, Val or Met); Xaa at res.34 = (Asn, Asp, Ala, Thr or Pro); Xaa at res.35 = (Ser, Asp, Glu, Leu, Ala or Lys); Xaa at res.36 = (Tyr, Cys, His, Ser or Ile); Xaa at res.37 = (Met, Phe, Gly or Leu); Xaa at res.38 = (Asn, Ser or Lys); Xaa at res.39 = (Ala, Ser, Gly or Pro); Xaa at res.40 = (Thr, Leu or Ser); Xaa at res.44 = (Ile, Val or Thr); Xaa at res.45 = (Val, Leu or Ile); Xaa at res.46 = (Gln or Arg); Xaa at res.47 = (Thr, Ala or Ser); Xaa at res.48 = (Leu or Ile); Xaa at res.49 = (Val or Met); Xaa at res.50 = (His, Asn or Arg); Xaa at res.51 = (Phe, Leu, Asn, Ser, Ala or Val); Xaa at res.52 = (Ile, Met, Asn, Ala, Val or Leu); Xaa at res.53 = (Asn, Lys, Ala, Glu, Gly or Phe); Xaa at res.54 = (Pro, Ser or Val); Xaa at res.55 = (Glu, Asp, Asn, Gly, Val or Lys); Xaa at res.56 = (Thr, Ala, Val, Lys, Asp, Tyr, Ser, Ala, Pro or His); Xaa at res.57 = (Val, Ala or Ile); Xaa at res.58 = (Pro or Asp); Xaa at res.59 = (Lys, Leu or Glu); Xaa at res.60 = (Pro or Ala); Xaa at res.63 = (Ala or Val); Xaa at res.65 = (Thr, Ala or Glu); Xaa at res.66 = (Gln, Lys, Arg or Glu); Xaa at res.67 = (Leu, Met or Val); Xaa at res.68 = (Asn, Ser, Asp or Gly); Xaa at res.69 = (Ala, Pro or Ser); Xaa at res.70 = (Ile, Thr, Val or Leu); Xaa at res.71 = (Ser, Ala or Pro); Xaa at res.72 = (Val, or Ile); Xaa at res.74 = (Tyr or Phe); Xaa at res.75 = (Phe, Tyr, Leu or His); Xaa at res.76 = (Asp, Asn or

Leu); Xaa at res.77 = (Asp, Glu, Asn or Ser); Xaa at res.78 = (Ser, Gln, Asn, Tyr or Asp); Xaa at res.79 = (Ser, Asn, Asp, Glu or Lys); Xaa at res.80 = (Asn, Thr or Lys); Xaa at res.82 = (Ile, Val or Asn); Xaa at res.84 = (Lys or Arg); Xaa at res.85 = (Lys, Asn, Gln, His or Val); Xaa at res.86 = (Tyr or His); Xaa at res.87 = (Arg, Gln, Glu or Pro); Xaa at res.88 = (Asn, Glu or Asp); Xaa at res.90 = (Val, Thr, Ala or Ile); Xaa at res.92 = (Arg, Lys, Val, Asp or Glu); Xaa at res.93 = (Ala, Gly, Glu or Ser); Xaa at res.95 = (Gly or Ala) and Xaa at res.97 = (His or Arg).

Generic Sequence 6

Cys Xaa Xaa Xaa Xaa Leu Xaa Xaa Xaa Phe Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa 15 Xaa Xaa Pro Xaa Xaa Xaa Ala 20 Xaa Tyr Cys Xaa Gly Xaa Cys Xaa 30 35 Xaa Pro Xaa Xaa Xaa Xaa 40 Xaa Xaa Xaa Asn His Ala Xaa Xaa 45 50 Xaa Xaa Xaa Xaa Xaa Xaa Xaa 55 Xaa Xaa Xaa Xaa Xaa Xaa Cys 65 60 Cys Xaa Pro Xaa Xaa Xaa Xaa 70

Xaa Xaa Xaa Leu Xaa Xaa Xaa 75 80
Xaa Xaa Xaa Xaa Val Xaa Leu Xaa 85
Xaa Xaa Xaa Xaa Met Xaa Val Xaa 90 95
Xaa Cys Xaa Cys Xaa 100

wherein each Xaa is independently selected from a group of one or more specified amino acids as defined by the following: "Res." means "residue" and Xaa at res.2 = (Lys, Arg, Ala or Gln); Xaa at res.3 = (Lys, Arg or Met); Xaa at res.4 = (His, Arg or Gln); Xaa at res.5 = (Glu, Ser, His, Gly, Arg, Pro, Thr, or Tyr); Xaa at res.7 = (Tyr or Lys); Xaa at res.8 = (Val or Ile); Xaa at res.9 = (Ser, Asp or Glu); Xaa at res.11 = (Arg, Gln, Ser, Lys or Ala); Xaa at res.12 = (Asp, Glu, or Lys); Xaa at res.13 = (Leu, Val or Ile); Xaa at res.16 = (Gln, Leu, Asp, His, Asn or Ser); Xaa at res.17 = (Asp, Arg, Asn or Glu); Xaa at res.19 = (Ile or Val); Xaa at res.20 = (Ile or Val); Xaa at res.21 = (Ala or Ser); Xaa at res.23 = (Glu, Gln, Leu, Lys, Pro or Arg); Xaa at res.24 = (Gly or Ser); Xaa at res.25 = (Tyr or Phe); Xaa at res.26 = (Ala, Ser, Asp, Met, His, Gln, Leu, or Gly); Xaa at res.28 = (Tyr, Asn or Phe); Xaa at res.31 = (Glu, His, Tyr, Asp, Gln or Ser); Xaa at res.33 = Glu, Lys, Asp, Gln or Ala); Xaa at res.35 = (Ala, Ser, Pro, Gln or Asn); Xaa at res.36 = (Phe, Leu or Tyr); Xaa at res.38 = (Leu, Val or Met); Xaa at res.39 = (Asn, Asp, Ala, Thr or Pro); Xaa at res.40 = (Ser, Asp, Glu, Leu, Ala or Lys); Xaa at res.41 = (Tyr,

Cys, His, Ser or Ile); Xaa at res.42 = (Met, Phe, Gly Cys, His, Ser or Ite); Xaa at res. 42 = (Met, Phe, Clv or Pro); Xaa at res. 43 = (Met, Phe, Clv or Pro); Xaa at res. 45 = (T) or Leu); Xaa at res.43 = (Asn, Ser or Lys); Xaa at res.49 = (Ile, Val or Thr); Xaa at Leu or Ser); Xaa at res.49
Ara): Xaa at res.49 (Ile, Val or Thr); Xaa at res.52 (Thr); Xaa at res.51 (Gln or Ser): Xaa at res. res. 50 = (Val, Arg); Xaa at res. 51 = (Gin or Val or Met); Xaa at res. 51 = (Val or Met); Xaa at res. 53 PCT/US92/07359 Arg); Xaa at res.52 = (Thr, Ala or Ser); Xaa at res.55 = (Val or Met); Xaa at res.56 = (Pha. Lan "(Leu or Ile);
Asn, Ser, Ala or Arg); Xaa at res.54 = (Val or Met); Xaa at res.56 = (Ile, Met, Leu, Asn. res.55 (His, Asn or Arg); Xaa at res.56 (Phe, Leu, Ala, Clu, Asn, Ser, Ala or Val); Xaa at res.57 a (Ile, Met, Asn, Ser or Val); Xaa at res.59 a (Pro. Ser or Val); Xaa at Ala, Val or Leu); Kaa at res. 50 and Caly Or Phe); Kaa at res. 50 and Caly. Asa. Asa. Caly. Val or Lys); Kaa at res. 61 and Caly. Val or Lys); Kaa at res. 61 and Caly. Kaa at res. 61 and Caly. Val or Lys); Kaa at res. 61 and Caly. Thr. Ala. Val. Lvs. Asp. Tvr. Ser or Val. Xaa at res. 61 ser. Ala. Pro or His. res.60 = (Glu, Asp, Gly, Val or Lys); Xaa at res.61 = (Val, Ala, Pro or His); Xaa at res.63 = (Pro (Thr. Xaa at res.62 Lys. Asp. Tyr. Ser. Ala. Pro or His); Xaa at res.64 (Lys. Leu or Glu); Xaa at (Pro or Glu); Xaa at res.63 (Pro Yaa at res.62 (Val, Ala or Ile); Xaa at res.63 = (Ala or Val); Xaa at res.63 = (Ala or Val) or Asp); Xaa at res. 64 = (Lys, Leu or Glu); Xaa at res. 70 = (Thr. Ala or Glu); Xaa at res. 71 = (Ala or Val); Xaa at res. 71 = (Ala or Val); res.65
Xaa at res.70 or Ala); Xaa at res.66 (Ala or Val.); Xaa at res.72 = (Ala or Val.); Xaa at res.72 = (Leu. Met o) Xaa at res.70 (Gln, Lys, Arg or Glu); Lys, Arg or Glu); Xaa at res.73 (Asn. Ser. Asn or Glv); Met or Glv); Met or (Gln, Val); Yaa at res.72 (Leu, Met or Ser); Xaa at res.72 (Leu, Met or Ser); Xaa at res.75 (Tle. Thr Val); Xaa at res.73 = (Asn, Ser, Asp or Gly); Xaa at res.76 = (Ser, Ala or Pro); Xaa at res. 74 = (Ala, Pro or Ser); Xaa at res. 75 = (Ile, Thr, Or Ser); Xaa at res. 75 = (Tvr or Tvr or Val or Leu); Xaa at res.76 = (Ser, Ala or Pro); Xaa at res.80 = (Phe. Tvr. Len or His); Xaa at res.79 = (Tyr or res.77
Phe); Xaa at res.80 Ile); Xaa at res.79 (Tyr or Leu); Xaa at res.82 (Asp, Glu) Phe); Xaa at res.80 = (Phe, Tyr, Leu or His); Xaa at res.83 = (Ser, Gln, Asn, Tyr, Or, Tyr, Or, Tyr, Or, res.81
Asn or Ser); Asn or Leu); Xaa at res.82 = (Asp. Glu or Lys); Xa Asp); Xaa at res.83 = (Ser, Gln, Asn, Tyr or Lys); Xaa at res.87 = (Ile, Asp); Xaa at res.84 = (Ser, Asn, Asp, Glu or Lys); Xaa at res.89 = (Lys); Xaa at res.87 = (at res.85 = (Asn, Thr or Lys); Xaa at res.87 = (Lys or Arg); Xaa at res.99 = (Lys or Arg); Xaa at res.99 = (Xaa at res.9) res.90 Asn); Xaa at res.vy (Lys or Arg); Xaa at res.92 (Lys or Val); Xaa at res.92 (Aro. Gln. Gln. or Pro); res.90 (Tyr or His); Asn, Gln, His or Val); Asa at res.93 (Asn. Glu or Asp); Xaa at res.91 (Asn. Glu or Asp); Xaa at res.95 (Asn. Glu or Pro); (Tyr or His);

Xaa at res.93;

(Val. Thr. Ala (Asn. Glu or Asp); Xaa at res.97;

(Arg. Glu or Asp); Xaa at res.97;

(Arg. Lvs. 1) (Val, Thr, Ala or Ile); Xaa at res.97 = (Arg, Lys, Val,

Asp or Glu); Xaa at res.98 = (Ala, Gly, Glu or Ser); Xaa at res.100 = (Gly or Ala); and Xaa at res.102 = (His or Arg).

Particularly useful sequences for use as morphogens in this invention include the C-terminal domains, e.g., the C-terminal 96-102 amino acid residues of Vgl, Vgr-1, DPP, OP-1, OP-2, CBMP-2A, CBMP-2B, GDF-1 (see Table II, below, and Seq. ID Nos. 5-14), as well as proteins comprising the C-terminal domains of 60A, BMP3, BMP5 and BMP6 (see Seq. ID Nos. 24-28), all of which include at least the conserved six or seven cysteine skeleton. In addition, biosynthetic constructs designed from the generic sequences, such as COP-1, 3-5, 7, 16, disclosed in U.S. Pat. No. 5,011,691, also are useful. Other sequences include the inhibins/activin proteins (see, for example, U.S. Pat. Nos. 4,968,590 and 5,011,691). Accordingly, other useful sequences are those sharing at least 70% amino acid sequence homology or "similarity", and preferably 80% homology or similarity with any of the sequences above. These are anticipated to include allelic and species variants and mutants, and biosynthetic muteins, as well as novel members of this morphogenic family of proteins. Particularly envisioned in the family of related proteins are those proteins exhibiting morphogenic activity and wherein the amino acid changes from the preferred sequences include conservative changes, e.g., those as defined by Dayoff et al., Atlas of Protein Sequence and Structure; vol. 5, Suppl. 3, pp. 345-362, (M.O. Dayoff, ed., Nat'l BioMed. Research Fdn., Washington, D.C. 1979). As used

herein, potentially useful sequences are aligned with a known morphogen sequence using the method of Needleman et al. ((1970) J.Mol.Biol. 48:443-453) and identities calculated by the Align program (DNAstar, Inc.). "Homology" or "similarity" as used herein includes allowed conservative changes as defined by Dayoff et al.

Morphogen sequences which are detectable according to the methods of the invention include but are not limited to those having greater than 60% identity, preferably greater than 65% identity, with the amino acid sequence defining the conserved six cysteine skeleton of hOP1 (e.g., residues 43-139 of Seq. ID No. 5). These most preferred sequences include both allelic and species variants of the OP-1 and OP-2 proteins, including the Drosophila 60A protein. Accordingly, morphogens which are detectable according to the invention include active proteins comprising species of polypeptide chains having the generic amino acid sequence herein referred to as "OPX", which accommodates the homologies between the various identified species of OP1 and OP2 (Seq. ID No. 29).

The morphogens detectable in the methods of this invention include proteins comprising any of the polypeptide chains described above, whether isolated from naturally-occurring sources, or produced by recombinant DNA or other synthetic techniques, and includes allelic and species variants of these proteins, naturally-occurring or biosynthetic mutants thereof, chimeric variants containing a domain(s) or

region(s) of one family member functionally arranged with another domain(s) or regions(s) of a second family member, as well as various truncated and fusion constructs. Deletion or insertion or addition mutants also are envisioned to be active, including those which may alter the conserved C-terminal cysteine skeleton, provided that the alteration does not functionally disrupt the relationship of these cysteines in the folded structure. Accordingly, such active forms are considered the equivalent of the specifically described constructs disclosed herein. The proteins may include forms having varying glycosylation patterns, varying N-termini, a family of related proteins having regions of amino acid sequence homology, and active truncated or mutated forms of native or biosynthetic proteins, produced by expression of recombinant DNA in host cells.

The morphogenic proteins can be expressed from intact or truncated cDNA or from synthetic DNAs in procaryotic or eucaryotic host cells, and purified, cleaved, refolded, and dimerized to form morphogenically active compositions. Currently preferred host cells include <u>E. coli</u> or mammalian cells, such as CHO, COS or BSC cells. A detailed description of the morphogens detectable according to the methods of this invention is disclosed in copending US patent application Serial Nos. 752,764, filed August 30, 1991, and 667,274, filed March 11, 1991, the disclosure of which are incorporated herein by reference.

The screening method of the invention provides a channe in the level of the screening method of the channe in the level of the screening method of the invention provides a channe in the level of the screening method of the invention provides a channe in the level of the invention provides a channe in the level of the invention provides a channe in the level of the invention provides a channe in the level of the invention provides a channe in the level of the invention provides a channe in the level of the invention provides a channe in the level of the invention provides a channe in the level of the invention provides a channe in the level of the invention provides a channe in the level of the invention provides a channe in the level of the invention provides a channe in the level of the invention provides a channe in the level of the invention provides a channe in the level of the invention provides a channe in the level of th The screening method of the invention provides a change in the of culture of exposure of culture simple method of as a result of exposure of culture simple method of as a result of exposure of culture of culture of culture of exposure of culture of exposure of culture of exposure of culture of exposure of culture of the invention provides a change in the level of culture of exposure of exposure of culture of exposure of expo simple method of determining a change in the level of a cultured of a result of exposure of a result o cells to one or more compound(s). The level of a given cell culture, to a morphogenic protein in a given from evaceure to a morphogenic protein reculting from evaceure to a morphogenic phance in that level reculting from evaceure to a given chance in that level reculting from evaceure to a given chance in that level of a given cells to one of more compound(s). morphogenic protein in a given cell culture, or a one of from exposure to one of resulting from exposure application of that level resulting direct application of change in that indicates that direct application of change compound(s) WO 93105172 change in that level resulting from exposure to one of the mornhomen indicates that direct application of the mornhomen have compound(s) indicates the level of the mornhomen the compound modulates cells to one or more compound(s). more compound modulates that level of the morphogen the compound modulates the level of for example the compound modulates the calle the compound modulates the level of the morphogen a kidr of the morphogen the collision of OP-1 by a kidr or compound the cultured production of OP-1 by a kidr of compound the cultured production of OP-1 by a kidr of compound the compound the compound the production of OP-1 by a kidr of the compound the expressed by the cultured cells. If, for example, a kidney compound upregulated then be desirable to test systemic compound upregulated the production of OP-1 by systemic to test model to be desirable animal model to the compound in an animal model to cell line, administration of this compound in an animal model to cell administration of this compound in an animal model to cell line, administration of this compound in an animal model to cell line, administration of this compound in an animal model to compound in an animal model to compound in an animal model to cell line, and compound in an animal model to cell line, and compound in an animal model to cell line, and compound in an animal model to compound in an animal model to cell line, and compound in an animal model to cell line, and compound in an animal model to cell line, and compound in an animal model to cell line, and compound in an animal model to cell line, and compound cell line, it would then be desirable to test systemic it would then be desirable to animal model in an animal model in of op-1 in an animal model in a administration of this compound in an animal model to of op-1 in an animal model to of op-1 in this compound the production of op-1 in endogenous the production of openous the endogenous the endogenous the endogenous of this compound did unreadlate the endogenous determine if this compound did unreadlate the endogenous of this compound did unreadlate the endogenous determine if this compound did unreadlate the endogenous of the ine if this compound did it would be consistent with the this compound of open in the consistent with the vivo. If this compound did upregulate the endogenous the consistent with levels of OP-1, it would be consistent the vivo. circulating levels the compound systemically for the administration of the compound systemically for the compound systemical circulating levels of OP-1, lt would be consistent wi compound systemically for ench administration of the hone metaholism diseases administration of correction hone metaholism diseases administration of correction hone metaholism diseases and mirrores of corrections an administration of the compound systemically tor the body may bone metabolism diseases body may bone metabolism in the body may purpose of correcting perel of morohogen in the power of morohogen. Osteoporosis.

The level of morphogen in the body ma.

The level of physical conditions,

The level of morphogen in disease,

The level of morphogen in the body ma. be a result of a wide range of physical conditions, kidney tissue degeneration such as occurs in diseases emphysema. Osteoporosis, kidney e.g., including arthritis. e.g., tissue degeneration such as occurs in diseases, cardiomyonathy, and cirrhos including arthritis, lind diseases, cardiomyonathy, and diseases, diseases, lind diseases including arthritis, emphysema, osteoporosis, kidney may cardiomyopathy, the body may the level of morphogens in the diseases, of morphogens in the level of the liver. The level of morphogens in the body may of the liver. a result of the screening method of the also occur as a result of the screening method of also occur as a lected by the screening method of the also occur as also occur a also occur as a result or the normal process of the the screening method of the also occur as a result of the screening method of the also occur as a result or the screening method of the also occur as a result or the screening method of the also occur as a result or the screening method of the also occur as a result or the screening method of the also occur as a result or the screening method of the also occur as a result or the screening method of the also occur as a result or the screening method of the also occur as a result or the screening method of the also occur as a result or the screening method of the also occur as a result or the screening method of the also occur as a result or the screening method of the also occur as a result or the screening method of the also occur as a result of the screening method of the screening osteoporosis. A compound selected by the screening method of the mornhoren in a fice... may he consistent invention as invention mornhoren in a fice... invention as, for example, one which increases the with may be consistent with invention as, for example, one may be consistent or may be compound systemically or level of morphogen of the compound systemically or level of morphogen of the compound systemically or the administration of the compound systemically or level of morphogen of the compound systemically or level of the administration of the compound systemically or level level of morphogen in a tissue, may be consistent with the administration of the compound systemically or the administration of the nurnee of nroventing the nroventing the nurnee of nrov the administration of the compound systemically or some the administration of the purpose of preventing the locally to a degeneration or for restoring the locally to a degeneration or for restoring the locally form of tissue degeneration or for restoring the locally to a degeneration or for restoring the locally locally the degeneration of the locally form of the local locally form of the local loca of the liver. locally to a tissue for the purpose of preventing the form of tissue degeneration or healthy lavel form of tissue degeneration or for restoring level.

Other advantages of the invention includ determining the tissue or tissues of origin of a given morphogen in order to administer a compound aimed at modulating the systemic level of morphogen for treatment of a disease or condition in which the level of morphogen production has become altered.

Brief Description of the Drawings

Fig. 1 shows the fragments of OP-1, used as probes in Northern hybridizations useful in the processes of the invention.

Fig. 2 shows results of Northern blot analysis of RNA using different OP-1-specific probes.

Fig. 3 shows results of Northern blot analysis of RNA from different cells types probed with an OP-1 probe.

Detailed Description

The invention is based on the discovery of a family. of structurally related morphogenic proteins (BMPs), also called osteogenic proteins (OPs), and more particularly that various of these proteins play an important role, not only in embryogenesis, but also in tissue and organ maintenance and repair in juvenile and adult mammals. Morphogenic proteins which have been identified include BMP 2, 3, 4, 5, 6, OP-1 and OP-2 (murine and human), Vgr-1, Vgl, DPP, GDF-1, CMBP-2A, CMBP-2B, 60A, and the inhibin/activin class of proteins. Other recombinant proteins include COP1, COP3, COP4, COP5, COP7, and COP16. While, as explained herein, the morphogen have significant homologies and similarities in structure, it is hypothesized that variants within the morphogenic protein genes may have specific roles in specific tissue involving, for example, stimulation of progenitor cell multiplication, tissue specific or tissue preferred phenotype maintenance, and/or stimulation or modulation of the rate of differentiation, growth or replication of tissue cells characterized by high turnover. The effect on the longterm physiology, maintenance and repair of particular tissues by particular species of the morphogens is currently unknown in any significant detail. However, methods useful in determining which particular tissues express which particular morphogen(s), and for finding changes which stimulate or depress morphogen expression \underline{in} vivo, would enable discovery and development of strategies for therapeutic treatment of a large number of diseased states, and provide drugs designed to implement the strategy.

This invention provides such methods and, more specifically, two generic processes for obtaining data which ultimately will permit determination of structure/activity relationships of specific naturally occurring mammalian morphogens and drugs capable of modulating their production. For example, using the assay of the invention, it has been determined that OP-1, first found in bone and demonstrated to be osteoinductive, is synthesized primarily in kidney, bladder, and adrenal This surprising discovery, coupled with the observation that patients with kidney disease often express loss of bone mass, suggests that the bone loss in these patients may be due to pathologic depression of OP-1 synthesis in kidney, and suggests that administration of OP-1 systemically or stimulation of OP-1 expression and secretion by the kidney may arrest bone loss, or effect remineralization through increased bone formation (i.e., osteogenesis).

There are two fundamental aspects of the invention. One aspect involves an assay to determine tissues and cell types capable of synthesis and secretion of the morphogens; the other involves the use of the identified cell types configured in a screening system to find substances useful therapeutically to modulate, i.e., stimulate or depress, morphogen expression and/or secretion.

The assay to determine the tissue of origin of a given morphogen involves screening a plurality (i.e., two or more) different tissues by determining a parameter indicative of production of a morphogen in the tissue, and comparing the parameters. The tissue(s) of origin will, of course, be the tissue that produces that morphogen.

The other assay of the invention involves screening candidate compounds for their ability to modulate the effective systemic or local concentration of a morphogen by incubating the compound with a cell culture that produces the morphogen, and assaying the culture for a parameter indicative of a change in the production level of the morphogen. Useful candidate compounds then may be tested for <u>in vivo</u> efficacy in a suitable animal model. These compounds then may be used <u>in vivo</u> to modulate effective morphogen concentrating in the disease treatment.

1. Morphogen Tissue Distribution

Morphogens are broadly distributed in developing and adult tissue. For example, DPP and 60A are expressed in both embryonic and developing Drosophila tissue. Vgl has been identified in Xenopus embryonic tissue. Vgr-1 transcripts have been identified in a variety of murine tissues, including embryonic and developing brain, lung, liver, kidney and calvaria (dermal bone) tissue. addition, both CBMP2B and CBMP3 have been identified in lung tissue. Recently, Vgr-1 transcripts also have been identified in adult murine lung, kidney, heart, and brain tissue, with particularly high levels in the lung (see infra). GDF-1 has been identified in human adult cerebellum and in fetal brain tissue. In addition, recent Northern blot analyses indicate that OP-1 is encoded by multiple transcripts in different tissues. This potential alternative splicing is consistent with the hypothesis that the longer transcripts may encoded additional proteins (e.g., bicistronic mRNA) and each form may be tissue or developmentally related.

OP-1 and the CBMP2 proteins, both first identified as bone morphogens, have been identified in mouse and human placenta, hippocampus, calvaria and osteosarcoma tissue as determined by identification of OP-1 and CMBP2-specific sequences in cDNA libraries constructed from these tissues (see USSN 422,699, incorporated herein by reference). Additionally, the OP-1 protein is present in a variety of embryonic and developing tissues including kidney, liver, heart and brain as determined by Western blot analysis and immunolocalization (see infra). OP-1-specific transcripts also have been identified in both embryonic and developing tissues, most abundantly in developing kidney, bladder, adrenal and (see infra). OP-1 also has been identified as a mesoderm inducing factor present during embryogenesis. Moreover, OP-1 has been shown to be associated with satellite cells in the muscle and associated with potential pluripotential stem cells in bone marrow following damage to adult murine endochondral bone, indicating its morphogenic role in tissue repair and regeneration. addition, a novel protein GDF-1 comprising a 7 cysteine skeleton, has been identified in neural tissue (Lee, 1991, Proc. Nat. Aca. Sci. 88: 4250-4254).

Knowledge of the tissue distribution of a given morphogen may be useful in choosing a cell type for screening according to the invention, or for targeting that cell type or tissue type for treatment. The proteins (or their mRNA transcripts) are readily identified in different tissues using standard methodologies and minor modifications thereof in tissues where expression may be low. For example, protein distribution may be determined using standard Western blot analysis or immunocytochemical techniques, and antibodies specific to the morphogen or

morphogens of interest. Similarly, the distribution of morphogen transcripts may be determined using standard Northern hybridization protocols and a transcript-specific probe and hybridization conditions.

2. <u>Useful Morphogens</u>

As defined herein a protein is morphogenic if it is capable of inducing the developmental cascade of cellular and molecular events that culminate in the formation of new, organ-specific tissue and comprises at least the conserved C-terminal six cysteine skeleton or its functional equivalent (see supra). Specifically, the morphogens generally are capable of, all of the following biological functions in a morphogenically permissive environment: stimulating proliferation of progenitor cells; stimulating the differentiation of progenitor cells; stimulating the proliferation of differentiated cells; and supporting the growth and maintenance of differentiated cells, including the "redifferentiation" of transformed cells. Details of how the morphogens detectable according to the methods of this invention first were identified, as well as a description on how to make, use and test them for morphogenic activity are disclosed in USSN 667,274, filed March 11, 1991 and USSN 752,764, filed August 30, 1991, the disclosures of which are hereby incorporated by reference. As disclosed therein, the morphogens may be purified from naturally-sourced material or recombinantly produced from procaryotic or eucaryotic host cells, using the genetic sequences disclosed therein. Alternatively, novel morphogenic sequences may be identified following the procedures disclosed therein.

Particularly useful proteins include those which comprise the naturally derived sequences disclosed in Table II. Other useful sequences include biosynthetic constructs such as those disclosed in U.S. Pat. 5,011,691, the disclosure of which is incorporated herein by reference (e.g., COP-1, COP-3, COP-4, COP-5, COP-7, and COP-16).

Accordingly, the morphogens detectable according to the methods and compositions of this invention also may be described by morphogenically active proteins having amino acid sequences sharing 70% or, preferably, 80% homology (similarity) with any of the sequences described above, where "homology" is as defined herein above.

The morphogens detectable according to the method of this invention also can be described by any of the 6 generic sequences described herein (Generic Sequences 1, 2, 3, 4, 5 and 6). Generic sequences 1 and 2 also may include, at their N-terminus, the sequence

Cys Xaa Xaa Xaa Xaa (Seq. ID No. 15)

Table II, set forth below, compares the amino acid sequences of the active regions of native proteins that have been identified as morphogens, including human OP-1 (hOP-1, Seq. ID Nos. 5 and 16-17), mouse OP-1 (mOP-1, Seq. ID Nos. 6 and 18-19), human and mouse OP-2 (Seq. ID Nos. 7, 8, and 20-23), CBMP2A (Seq. ID No. 9), CBMP2B (Seq. ID No. 10), BMP3 (Seq. ID No. 26), DPP (from Drosophila, Seq. ID No. 11), Vgl, (from Xenopus, Seq. ID No. 12), Vgr-1 (from mouse, Seq. ID No. 13), GDF-1 (from mouse, Seq. ID

Nos. 14, 32 and 33), 60A protein (from Drosophila, Seq. ID Nos. 24 and 25), BMP5 (Seq. ID No. 27) and BMP6 (Seq. ID No. 28). The sequences are aligned essentially following the method of Needleman et al. (1970) <u>J. Mol. Biol.</u>, <u>48</u>:443-453, calculated using the Align Program (DNAstar, Inc.) In the table, three dots indicates that the amino acid in that position is the same as the amino acid in hOP-1. Three dashes indicates that no amino acid is present in that position, and are included for purposes of illustrating homologies. For example, amino acid residue 60 of CBMP-2A and CBMP-2B is "missing". Of course, both these amino acid sequences in this region comprise Asn-Ser (residues 58, 59), with CBMP-2A then comprising Lys and Ile, whereas CBMP-2B comprises Ser and Ile.

TABLE II

hOP-1	Cys	Lys	Lys	His	Glu	Leu	Tyr	Val	
mOP-1	• • •		• • •	• • •	• • •	• • •	• • •	• • •	
hOP-2	• • •	Arg	Arg	• • •	• • •	• • •	• • •		
mOP-2	• • •	Arg	Arg	• • •	• • •	• • •	• • •		
DPP	• • •	Arg	Arg	• • •	Ser	• • •	• • •	• • •	
Vgl	• • •	• • •	Lys	Arg	His	• • •	• • •	• • •	
Vgr-1	• • •	• • •		• • •	Gly		• • •	• • •	
CBMP-2A	• • •	• • •	Arg		Pro	• • •	• • •	• • •	
CBMP-2B	• • •	Arg	Arg	• • •	Ser	• • •	• • •	• • •	
BMP3	• • •	Ala	Arg	Arg	Tyr		Lys	• • •	
GDF-1	• • •	Arg	Ala	Arg	Arg		• • •		
60A		Gln	Het	Glu	Thr	• • •			
BMP5						• • •			
BMP6	• • •	Arg					• • •		
	1				5				
h0P-1	Ser	Phe	Arg	Asp	Leu	Gly	Trp	Gln	Asp
mOP-1	• • •			• • •		• • •		• • •	• • •
hOP-2			Gln		• • •	• • •		Leu	• • •
mOP-2	Ser		- • •			• • •		Leu	
DPP	Asp	• • •	Ser		Val	• • •		Asp	• • •
Vgl	Glu		Lys		Val			• • •	Asn
Vgr-1		• • •	Gln		Val	• • •	• • •	• • •	• • •
CBMP-2A	Asp		Ser	• • •	Val	• • •	• • •	Asn	• • •
CBMP-2B	Asp	• • •	Ser	• • •	Val	• • •	• • •	Asn	• • •
BMP3	Asp	• • •	Ala		Ile	• • •	• • •	Ser	Glu
GDF-1	• • •	•••	• • •	Glu	Val	• • •		His	Arg
60A	Asp		Lys					His	• • •

WO 93/05172

PCT/US92/07359

44

h0P-1	Trp	Ile	Ile	Ala	Pro	Glu	Gly	Tyr	Ala
mOP-1	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
hOP-2	• • •	Val	• • •	• • •	• • •	Gln	• • •	• • •	Ser
mOP-2	• • •	Val	• • •	• • •		Gln	• • •	• • •	Ser
DPP		• • •	Val		• • •	Leu	• • •	• • •	Asp
Vgl	• • •	Val			• • •	Gln	• • •	• • •	Het
Vgr-1	• • •		• • •			Lys	• • •	• • •	• • •
CBMP-2A		• • •	Val	• • •	• • •	Pro	• • •	• • •	His
CBMP-2B	• • •		Val	• • •		Pro	• • •	• • •	Gln
BMP3	• • •		• • •	Ser	• • •	Lys	Ser	Phe	Asp
GDF-1		Val				Arg	• • •	Phe	Leu
60A	• • •		• • •			• • •	• • •	• • •	Gly
BMP5	• • •	• • •					• • •		• • •
BMP6		• • •				Lys	• • •	• • •	• • •
			20					25	
hOP-1	Ala	Tyr	Tyr	Cys	Glu	Gly	Glu	Cys	Ala
mOP-1			•••	•••		• • •			• • •
hOP-2			• • •		• • •				Ser
mOP-2	• • •								• • •,
DPP	• • •		• • •		His		Lys		Pro
Vgl		Asn	• • •		Tyr		• • •		Pro
Vgr-1		Asn			Asp				Ser
CBMP-2A		Phe			His		Glu		Pro
CBMP-2B		Phe			His		Asp	• • •	Pro
вир3	•••				Ser		Ala		Gln
GDF-1	• • •	Asn			Gln		Gln		
60A	• • •	Phe			Ser				Asn
BMP5	•••	Phe	• • •	• • •	Asp				Ser
BMP6	• • •	Asn		• • •	Asp				Ser
				30	•				35

hOP-1	Phe	Pro	Leu	Asn	Ser	Tyr	Met	Asn	Ala
mOP-1	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
hOP-2	• • •	• • •	• • •	Asp	• • •	Cys		• • •	• • •
mOP-2	• • •		• • •	Asp	• • •	Cys	• • •	• • •	• • •
DPP		• • •	• • •	Ala	Asp	His	Phe	• • •	Ser
Vgl	Tyr	• • •		Thr	Glu	Ile	Leu		Gly
Vgr-1		• • •	• • •	•••	Ala	His	• • •	•••	• • •
CBMP-2A	• • •	• • •	• • •	Ala	Asp	His	Leu	• • •	Ser
CBMP-2B		• • •		Ala	Asp	His	Leu	• • •	Ser
GDF-1	Leu		Val	Ala	Leu	Ser	Gly	Ser**	• • •
BMP3			Met	Pro	Lys	Ser	Leu	Lys	Pro
60A	• • •	• • •		• • •	Ala	His			
BMP5					Ala	His	Met		
BMP6					Ala	His	Met		
					40				
hOP-1	Thr	Asn	His	Ala	Ile	Val	Gln	Thr	Leu
hOP-1 mOP-1	Thr	Asn	His	Ala	Ile	Val	Gln	Thr	Leu
mOP-1	•••	•••	•••	• • •	•••	• • •	• • •	• • •	•••
mOP-1 hOP-2	•••	•••	•••		•••	 Leu	•••	 Ser	•••
mOP-1 hOP-2 mOP-2	•••	•••	•••	•••	•••	 Leu Leu	•••	Ser	•••
mOP-1 hOP-2 mOP-2 DPP		•••		•••	 Val	Leu Leu		Ser Ser	•••
mOP-1 hOP-2 mOP-2 DPP Vg1	 Ser	•••		•••	 Val	Leu Leu Leu	•••	Ser Ser	•••
mOP-1 hOP-2 mOP-2 DPP Vg1 Vgr-1	 Ser	•••			val	Leu Leu Leu Leu	•••	Ser Ser	•••
mOP-1 hOP-2 mOP-2 DPP Vgl Vgr-1 CBMP-2A	 Ser 	•••		•••	 Val 	Leu Leu Leu		Ser Ser 	
mOP-1 hOP-2 mOP-2 DPP Vg1 Vgr-1 CBMP-2A	 Ser 				 Val 	Leu Leu Leu Leu		Ser Ser	
mOP-1 hOP-2 mOP-2 DPP Vg1 Vgr-1 CBMP-2A CBMP-2B BMP3	 Ser 				Val Thr	Leu Leu Leu Leu Leu Leu Leu Leu		Ser Ser Ser	
mOP-1 hOP-2 mOP-2 DPP Vg1 Vgr-1 CBMP-2A CBMP-2B BMP3 GDF-1	Ser Ser Leu				Val Thr	Leu Leu Leu Leu Leu Leu Leu Leu Leu	 Arg	Ser Ser Ser	Ile
mOP-1 hOP-2 mOP-2 DPP Vg1 Vgr-1 CBMP-2A CBMP-2B BMP3 GDF-1	Ser Ser Leu				Val Thr Val	Leu Leu Leu Ile Leu		Ser Ser Ser Ser	Ile

hOP-1	Val	His	Phe	Ile	Asn	Pro	Glu	Thr	Val
mOP-1							Asp	• • •	
hOP-2	• • •	His	Leu	Met	Lys	• • •	Asn	Ala	• • •
mOP-2		His	Leu	Met	Lys		Asp	Val	• • •
DPP		Asn	Asn	Asn		•••	Gly	Lys	• • •
Vgl	• • •		Ser	• • •	Glu	• • •	• • •	Asp	Ile
Vgr-1	• • •		Val	Met		• • •	• • •	Tyr	• • •
CBMP-2A		Asn	Ser	Val	• • •	Ser		Lys	Ile
CBMP-2B	• • •	Asn	Ser	Val	• • •	Ser		Ser	Ile
BMP3	• • •	Arg	Ala**	Gly	Val	Val	Pro	Gly	Ile
GDF-1	Met		Ala	Ala	Ala	• • •	Gly	Ala	Ala
60A	• • •	• • •	Leu	Leu	Glu		Lys	Lys	
BMP5	• • •		Leu	Met	Phe		Asp	His	
BMP6	• • •	• • •	Leu	Met		• • •	• • •	Tyr	
		55					60		
hOP-1	Pro	Lys	Pro	Cys	Cys	Ala	Pro	Thr	Gln
hOP-1 mOP-1	Pro	Lys	Pro	Cys	Cys	Ala	Pro	Thr	Gln
		-			-				
mOP-1	• • •	•••	• • •	•••	•••	• • •		•••	• • •
mOP-1 hOP-2	•••	•••	 Ala	•••	•••	•••	• • •	•••	 Lys
mOP-1 hOP-2 mOP-2	• • •	•••	 Ala Ala	•••	•••	•••	•••	•••	Lys Lys
mOP-1 hOP-2 mOP-2 DPP	•••	•••	Ala Ala Ala	•••	•••	···· ···· Val	•••	•••	Lys Lys
mOP-1 hOP-2 mOP-2 DPP Vgl	•••	 Leu	Ala Ala Ala	•••	•••	 Val	•••	•••	Lys Lys Lys
mOP-1 hOP-2 mOP-2 DPP Vgl Vgr-1		Leu	Ala Ala Ala	•••		 Val Val			Lys Lys Lys Lys
mOP-1 hOP-2 mOP-2 DPP Vg1 Vgr-1 CBMP-2A		 Leu	Ala Ala Ala Ala	•••		Val Val Val			Lys Lys Lys Lys Lys Lys
mOP-1 hOP-2 mOP-2 DPP Vg1 Vgr-1 CBMP-2A		 Leu	Ala Ala Ala Ala Ala			val val val val			Lys Lys Lys Lys Lys Glu
mOP-1 hOP-2 mOP-2 DPP Vg1 Vgr-1 CBMP-2A CBMP-2B BMP3		 Leu Glu	Ala Ala Ala Ala Ala			Val Val Val Val		 Glu	Lys Lys Lys Lys Glu Glu Lys
mOP-1 hOP-2 mOP-2 DPP Vg1 Vgr-1 CBMP-2A CBMP-2B BMP3 GDF-1	 	 Leu Glu Leu	Ala Ala Ala Ala Ala			Val Val Val Val Val		 Glu	Lys Lys Lys Lys Glu Glu Lys Arg
mOP-1 hOP-2 mOP-2 DPP Vg1 Vgr-1 CBMP-2A CBMP-2B BMP3 GDF-1		Leu Glu Leu	Ala Ala Ala Ala Ala			Val Val Val Val Val			Lys Lys Lys Glu Glu Lys Arg

h0P-1	Leu	Asn	Ala	Ile	Ser	Val	Leu	Tyr	Phe
mOP-1	• • •	• • •	• • •		• • •		• • •	• • •	• • •
hOP-2	• • •	Ser	• • •	Thr	• • •		• • •		Tyr
mOP-2	• • •	Ser	• • •	Thr			• • •		Tyr
Vgl	Het	Ser	Pro	• • •		Het	• • •	Phe	Tyr
Vgr-1	Val	• • •	• • •	• • •	• • •		• • •		• • •
DPP	• • •	Asp	Ser	Val	Ala	Het	• • •		Leu
CBMP-2A	• • •	Ser	• • •		• • •	Het	• • •		Leu
CBMP-2B	• • •	Ser	• • •			Het	• • •		Leu
BMP3	Met	Ser	Ser	Leu	• • •	Ile	• • •	Phe	Tyr
GDF-1	• • •	Ser	Pro				• • •	Phe	• • •
60A	• • •	Gly	• • •	Leu	Pro	• • •	• • •		His
BMP5	• • •	• • •	• • •			• • •	• • •		
BMP6	• • •	• • •	• • •				• • •	• • •	
				75					80
hOP-1	Asp	Asp	Ser	Ser	Asn	Val	Ile	Leu	Lys
mOP-1	• • •					•••	• • •		
hOP-2		Ser		Asn			• • •		Arg
mOP-2	• • •	Ser	• • •	Asn		• • •	• • •		Arg
DPP	Asn	• • •	Gln		Thr		Val		• • •
Vgl		Asn	Asn	Asp	• • •	• • •	Val		Arg
Vgr-1	• • •	• • •	Asn			•••	• • •	• • •	
CBMP-2A	• • •	Glu	Asn	Glu	Lys	• • •	Val		
CBMP-2B		Glu	Tyr	Asp	Lys		Val		• • •
вир3		Glu	Asn	Lys	• • •	• • •	Val	• • •	
GDF-1	• • •	Asn		Asp	• • •		Val	• • •	Arg
60A				C1			A		
	Leu	Asn	Asp	Glu	• • •	• • •	Asn	• • •	
BMP5	Leu	Asn	Asp	GIU	• • •	• • •		• • •	• • •
			-						

h0P-1	Lys	Tyr	Arg	Asn	Het	Val	Val	Arg
mOP-1	• • •		• • •	• • •	• • •		• • •	
h0P-2		His		• • •	• • •		• • •	Lys
mOP-2	• • •	His	• • •					Lys
DPP	Asn		Gln	Glu		Thr		Val
Vgl	His	• • •	Glu	• • •	• • •	Ala		Asp
Vgr-1			• • •		• • •		• • •	• • •
CBMP-2A	Asn	• • •	Gln	Asp		•••		Glu
CBMP-2B	Asn	• • •	Gln	Glu		• • •	• • •	Glu
BMP3	Val		Pro		•,••	Thr	• • •	Glu
GDF-1	Gln	• • •	Glu	Asp		• • •		Asp
60A		• • •	• • •			Ile		Lys
BMP5	• • •					• • •		
BMP6			• • •	Trp	• • • •	• • •		
	90					95		
hOP-1	Ala	Cys	Gly	Cys	His			
mOP-1				•••	• • •			
hOP-2				• • •	• • •			
mOP-2								
DPP	Gly	• • •	• • •	• • •	Arg			
Vgl	Glu				Arg			
Vgr-1								
CBMP-2A	Gly				Arg			
CBMP-2B	Gly	• • •			Arg			
BMP3	Ser		Ala		Arg			
GDF-1	Glu				Arg			
60A	Ser	• • •						
BMP5	Ser			• • •				
BMP6	• • •							
			100					

**Between residues 56 and 57 of BMP3 is a Val residue; between residues 43 and 44 of GDF-1 lies the amino acid sequence Gly-Gly-Pro-Pro. As is apparent from the foregoing amino acid sequence comparisons, significant amino acid changes can be made within the generic sequences while retaining the morphogenic activity. For example, while the GDF-1 protein sequence depicted in Table II shares only about 50% amino acid identity with the hOP1 sequence described therein, the GDF-1 sequence shares greater than 70% amino acid sequence homology (or "similarity") with the hOP1 sequence, where "homology" or "similarity" includes allowed conservative amino acid changes within the sequence as defined by Dayoff, et al., Atlas of Protein Sequence and Structure vol.5, supp.3, pp.345-362, (M.O. Dayoff, ed., Nat'l BioMed. Res. Fd'n, Washington D.C. 1979.)

The currently most preferred protein sequences detectable as morphogens in this invention include those having greater than 60% identity, preferably greater than 65% identity, with the amino acid sequence defining the conserved six cysteine skeleton of hOP1 (e.g., residues 43-139 of Seq. ID No. 5). These most preferred sequences include both allelic and species variants of the OP-1 and OP-2 proteins, including the Drosophila 60A protein. Accordingly, in still another preferred aspect, the invention includes detection of morphogens comprising species of polypeptide chains having the generic amino acid sequence referred to herein as "OPX", which defines the seven cysteine skeleton and accommodates the identities between the various identified mouse and human OP1 and OP2 proteins. OPX is presented in Seq. ID No. 29. described therein, each Xaa at a given position

independently is selected from the residues occurring at the corresponding position in the C-terminal sequence of mouse or human OP1 or OP2 (see Seq. ID Nos. 5-8 and/or Seq. ID Nos. 16-23).

3. Tissue-Specific Expression of OP-1

Once a morphogen is identified in a tissue, its level may be determined either at the protein or nucleic acid level. By comparing the levels of production of a given morphogen among different tissues, it is possible to determine the tissue(s) of origin of that morphogen. The level of production of the morphogen OP-1 in different tissues is one example of a morphogen having a tissue of origin, i.e., the kidney, which contains a cell type that can also be used as the cell type which is used to screen, according to the invention, different compounds for their potential effects on morphogen (OP-1) production.

The level of OP-1 varies among different tissue types. In order to screen compounds for their effect on the production of OP-1 by a given cell type, it may be desirable to determine which tissues produce levels of OP-1 which are sufficiently high to show a potential decrease and sufficiently low to show a potential increase in production. Different tissues may be screened at the RNA level as follows.

Any probe capable of hybridizing specifically to a transcript, and distinguishing the transcript of interest from other, related transcripts may be used. Because the morphogens to be detected in the methods of this invention share such high sequence homology in their C-terminal domain, the tissue distribution of a specific morphogen transcript may best be determined using a probe specific

for the "pro" region of the immature protein and/or the N-terminal heterogeneous region of the mature protein. Another useful probe sequence is the 3'non-coding region immediately following the stop codon. These portions of the sequence vary substantially among the morphogens of this invention, and accordingly, are specific for each protein. For example, a particularly useful Vgr-1-specific probe sequence is the PvuII-SacI fragment, a 265 bp fragment encoding both a portion of the pro region and the N-terminus of the mature sequence. Similarly, particularly useful mOP-1-specific probe sequences are the BstXI-BglI fragment, a 0.68kb sequence that covers approximately twothirds of the mOPl pro region; a StuI-StuI fragment, a 0.2 kb sequence immediately upstream of the 7-cysteine domain, and an Earl-Pstl fragment, a 0.3kb fragment containing the 3'untranslated sequence. Similar approaches may be used, for example, with hOP-1 (SEQ. ID NO.16) or human or mouse OP-2 (SEQ. ID NOS.20 and 22).

Using morphogen-specific oligonucleotides probes, morphogen transcripts can be identified in mammalian tissues, using standard methodologies well known to those having ordinary skill in the art. Briefly, total RNA from mouse embryos and organs from post-natal animals is prepared using the acid guanidine thiocyanate-phenol-chloroform method (Chomczynski et al., Anal. Biochem. 162:156-159, 1987). The RNA may be dissolved in TES buffer (10 mM Tris-HCl, 1 mM EDTA, 0.1% SDS, pH 7.5) and treated with Proteinase K (approx. 1.5 mg per g tissue sample) at 45°C for 1 hr. Poly(A) RNA selection on oligo(dT)-cellulose (Type 7, Pharmacia LKB Biotechnology Inc., Piscataway, NJ) may be done in a batch procedure by mixing 0.1 g oligo(dT)-cellulose with 11 ml RNA solution (from 1 g

tissue) in TES buffer and 0.5 M NaCl). Thereafter the oligo(dT) cellulose is washed in binding buffer (0.5 M NaCl, 10 mm Tris-HCl, 1 mm EDTA, pH 7.5) and poly(A) RNA is eluted with water. Poly(A) RNA (5 or 15 μ g/lane) is fractionated on 1 or 1.2% agarose-formaldehyde gels (Selden, in Current Protocols in Molecular Biology, Ausubel et al. eds., pp. 1-4, 8, 9, Greene Publishing and Wiley-Interscience, New York, 1991). 1 μ l of 400 μ g/ml ethidium bromide is added to each sample prior to heat denaturation (Rosen et al., Focus 12:23-24, 1990). Following electrophoresis, the gels are photographed and the RNA is blotted overnight onto Nytran nitrocellulose membranes (Schleicher & Schuell Inc., Keene, NH) with 10 x SSC. The membranes are baked at 80°C for 30-60 min. and irradiated with UV light (1 mW/cm² for 25 sec.). Northern hybridization conditions may be as previously described (Ozkaynak et al., EMBO J. 9:2085-2093, 1990). For re-use, the filters may be deprobed in 1 mM Tris-HCl, 1 mM EDTA, 0.1% SDS, pH 7.5, at 90-95°C and exposed to film to assure complete removal of previous hybridization signals.

One probe which may be used to screen for transcripts encoding a morphogen includes a portion of or the complete OP-1 cDNA, which may be used to detect the presence of OP-1 mRNA or mRNAs of related morphogens. The sequence of the murine cDNA gene is set forth in SEQ ID NO:14.

OP-1 mRNA expression was analyzed in 17 day mouse embryos and 3 day post-natal mice by sequentially hybridizing filters with various probes. Probes from regions other than the highly conserved 7-cysteine domain were selected because this region is highly variable among

members of the TGF- β superfamily. Fig. 1 shows the fragments of OP-1, used as probes in the Northern hybridizations. The solid box indicates the putative signal peptide and the hatched box corresponds to the TGF- β -like domain that contains the seven cysteine residues. Asterisks indicate the potential N-glycosylation sites. The arrow marks the location of the cleavage site for OP-1 maturation. Three solid bars below the diagram indicate the OP-1 specific fragments used in making 32 P-labeled probes (0.68 kb BstXI - BglI fragment, 0.20 kb StuI - StuI fragment and 0.34 kb EarI - PstI non-coding fragment).

Hybridization with a probe that covers approximately two thirds of the pro region (the 0.68 kb BstXI-BglI fragment), reveals a 4 kb message and 3 messages at 1.8 kb, 2.2 kb and 2.4 kb (Fig. 2B and D, and Fig. 3). In the Northern hybridization of Fig. 2, equal amounts (15 μ g) of poly(A) RNA were loaded into each lane, electrophoresed on a 1% agarose-formaldehyde gel, blotted and hybridized. A 0.24 - 9.49 kb RNA ladder (Bethesda Research Labs, Inc.) was used as size standard. The same filter was used for sequential hybridizations with labeled probes specific for OP-1 (Panels B and D), Vgr-1 (Panel C), and EF-Tu (Panel A). Panel A: the EF-Tu specific probe (a control) was the 0.4 kb HindIII-SacI fragment (part of the coding region), the SacI site used belonged to the vector; Panel B: the OP-1 specific probe was the 0.68 kb BstXI-BglI fragment (two thirds of the pro region and upstream sequences of the mature domain, not including any sequences from the 7-cysteine domain); Panel C: the Vgr-1 specific probe was the 0.26 kb PvuII-SacI fragment (part of the pro region and the amino-terminal sequences of the mature

domain, including the first cysteine) (Lyons et al., 1989, Proc. Nat. Aca. Sci. 86: 4554, hereby incorporated by reference). Panel D: the OP-1 (3' flanking) specific probe was the 0.34 kb EarI-PstI fragment (3' untranslated sequences immediately following the sequences encoding OP-1).

In Fig. 3, the tissues to be used for RNA preparation were obtained from two week old mice (Panel A) or 5 week old mice (Panel B), with the exception of poly A+RNA which was obtained from kidney adrenal gland of two week old mice (Panel B). Equal amounts of poly A+RNA (15 µg for Panel A and 5 µg for Panel B) were loaded into each well. After electrophoresis (1.2% agaroseformaldehyde gels) and blotting, RNA was hybridized to the OP-1 specific 3' flanking probe described in the legend of Fig. 2 (Panel D). The 0.24-9.5 kb RNA ladder was used as size standard. The arrowheads indicate the OP-1 specific messages. The lower section of Panels A and B show the hybridization pattern obtained with the EF-Tu specific probe (a control).

Although the size of the Vgr-1 specific message is close to the 4 kb OP-1 species (Fig. 2 Panel C), the OP-1 4 kb mRNA is somewhat larger. To further rule out cross-hybridization with a non-OP-1 message, the 0.2 kb StuI-StuI fragment which represents the gene specific sequences immediately upstream of those encoding the 7-cysteine domain was used. This probe gave a hybridization pattern similar to the one shown in Fig. 2 Panel B (data not shown). A third probe, the 0.34 kb EarI-PstI fragment containing 3' untranslated sequences, also confirmed the pattern (Fig. 2 Panel D). Thus, the same four OP-1 specific messages were observed with three distinct probes.

The appearance of a new 4 kb OP-1 mRNA species was initially interpreted as cross hybridization of the OP-1 probe with Vgr-1 mRNA, which is approximately this size (Fig. 2 Panel C). However, the 4 kb message was detected with three different OP-1 specific probes, including one specific to the 3' untranslated region, and moreover it was separated from Vgr-1 message on the basis of size. Most likely, therefore, the 4 kb mRNA (and the three species of 1.8 kb, 2.2 kb and 2.4 kb) results from alternative splicing of OP-1 transcripts. The 4 kb OP-1 mRNA could also represent a bicistronic mRNA. The 4 kb message is a minor species in kidney, while it is more prominent in adrenal tissue.

The level of OP-1 expression was compared in different tissues using poly(A) RNA prepared from brain, spleen, lung, kidney and adrenal gland, heart, and liver of 13 day post-natal mice. The RNA was analyzed on Northern blots by hybridization to various probes (Fig. 3. Equal amounts of mRNA, as judged by optical density, were fractionated on agarose formaldehyde gels. Ethidium bromide staining of the gels revealed some residual ribosomal RNA in addition to the mRNA and provided another assurance that the mRNA was not degraded and that there was not significant quantitative or qualitative variation in the preparation. As control for mRNA recovery, EF-Tu (translational elongation factor) mRNA was probed (assuming uniform expression of EF-Tu in most tissues). A great variation in the level of OP-1 expression was observed in spleen, lung, kidney and adrenal tissues whereas EF-Tu mRNA levels appeared relatively constant in these tissues (Fig. 3 Panel A). The highest level of OP-1 mRNA was found in the kidneys. Uniformly lower levels of EF-Tu mRNA were

found in brain, heart and liver (Fig. 3 Panel A). Additional analysis of OP-1 mRNA showed the presence of significant amounts of OP-1 mRNA in the bladder (data not shown). In summary, next to kidney, bladder and adrenal tissue, brain tissue contained the highest levels of OP-1 RNA, whereas heart and liver did not give detectable signals.

OP-1 mRNA patterns display qualitative changes in the various tissues. Of the four messages found in brain, the 2.2 kb message is most abundant whereas in lung and spleen the 1.8 kb message predominates. Levels of the 1.8-2.4 kb in the kidney OP-1 mRNA are approximately two times higher in 3 day post-natal mice than in 17 day embryos, perhaps reflecting phases in bone and/or kidney development. mRNA was also prepared from carefully separated renal and adrenal tissues of 5 week old mice. Northern blot analysis (Figure 4, Panel B) revealed that the high levels of 2.2 kb mRNA were derived from renal tissue whereas the 4 kb mRNA was more prominent in adrenal tissue.

The detection of of OP-1 message primarily in the kidney but also in bladder links OP-1 expression specifically with the urinary tract. Interestingly, the related Vgr-1 is also expressed at significant levels in kidney although its main site of expression in lung.

Once the tissue-specific expression of a given morphogen is known, cell types known to exist in that tissue or cell lines derived from that tissue can be screened, in a similar manner, to identify the cell type within that tissue that is actually responsible for the tissue specific synthesis and secretion of the morphogen. Once a cell type which produces the morphogen in an amount

sufficient to detect increases or decreases in the production level of the morphogen upon exposure to a compound is identified, it may be used in tissue culture assay to rapidly screen for the ability of compound to upregulate or down regulate the synthesis and secretion of the morphogen. The level of morphogen production by the chosen cell type is determined with and without incubating the cell in culture with the compound, in order to assess the effects of the compound on the cell's ability to synthesize or secrete the morphogen. This can be accomplished by detection of the level of production of the morphogen either at the protein or mRNA level.

4. Growth of Cells in Culture

Cell cultures derived from kidney, adrenals, urinary bladder, brain, or other organs, may be prepared as described widely in the literature. For example, kidneys may be explanted from neonatal, new born, young or adult rodents (mouse or rat) and used in organ culture as whole or sliced (1-4 mm) tissues. Primary tissue cultures and established cell lines, also derived from kidney, adrenals, urinary, bladder, brain, or other tissues may be established in multiwell plates (6 well, 24 well, or 96 well) according to conventional cell culture techniques, and are cultured in the absence or presence of serum for a period of time (1-7 days). Cells may be cultured, for example, in Dulbecco's Modified Eagle medium (Gibco, Long Island, NY) containing serum (e.g., fetal calf serum at 1%-10%, Gibco) or in serum-deprived medium, as desired, or in defined medium (e.g., containing insulin, transferrin, glucose, albumin, or other growth factors).

Samples for testing the level of morphogen production include culture supernatants or cell lysates, collected periodically and evaluated for OP-1 production by immunoblot analysis of a portion of the cell culture itself, collected periodically and used to prepare polyA+ RNA for RNA analysis (Sambrook et al., eds., Molecular Cloning, 1989, Cold Spring Harbor Press, Cold Spring Harbor, NY). To monitor de novo OP-1 synthesis, some cultures are labeled with 35 S-methionine/35 S-cysteine mixture for 6-24 hours and then evaluated for morphogen production by conventional immunoprecipitation methods (Sambrook et al., eds., Molecular Cloning, 1989, Cold Spring Harbor Press, Cold Spring Harbor, NY). Alternatively, the production of morphogen or determination of the level of morphogen production may be ascertained using a simple assay for a parameter of cell growth, e.g., cellular proliferation or death. For example, where a morphogen is produced by a cultured cell line, the addition of antibody specific for the morphogen may result in relief from morphogen inhibition of cell growth. measurement of cellular proliferation can be used as an indication of morphogen production by a tissue.

5. Determination of Level of Morphogenic Protein

In order to quantitate the production of a morphogenic protein by a cell type, an immunoassay may be performed to detect the morphogen using a polyclonal or monoclonal antibody specific for that morphogen. For example, OP-1 may be detected using a polyclonal antibody specific for OP-1 in an ELISA, as follows.

1 $\mu g/100$ ul of affinity-purified polyclonal rabbit IgG specific for OP-1 is added to each well of a 96-well

plate and incubated at 37°C for an hour. The wells are washed four times with 0.16M sodium borate buffer with 0.15 M NaCl (BSB), pH 8.2, containing 0.1% Tween 20. minimize non-specific binding, the wells are blocked by filling completely with 1% bovine serum albumin (BSA) in BSB for 1 hour at 37°C. The wells are then washed four times with BSB containing 0.1% Tween 20. A 100 ul aliquot of an appropriate dilution of each of the test samples of cell culture supernatant is added to each well in triplicate and incubated at 37°C for 30 min. incubation, 100 ul biotinylated rabbit anti-OP-1 serum (stock solution is about 1 mg/ml and diluted 1:400 in BSB containing 1% BSA before use) is added to each well and incubated at 37°C for 30 min. The wells are then washed four times with BSB containing 0.1% Tween 20. strepavidin-alkaline (Southern Biotechnology Associates, Inc. Birmingham, Alabama, diluted 1:2000 in BSB containing 0.1% Tween 20 before use) is added to each well and incubated at 37°C for 30 min. The plates are washed four times with 0.5M Tris buffered Saline (TBS), pH 7.2. substrate (ELISA Amplification System Kit, Life Technologies, Inc., Bethesda, MD) are added to each well incubated at room temperature for 15 min. Then, 50 ul amplifier (from the same amplification system kit) is added and incubated for another 15 min at room temperature. reaction is stopped by the addition of 50 ul 0.3 M sulphuric acid. The OD at 490 nm of the solution in each well is recorded. To quantitate OP-1 in culture media, a OP-1 standard curve is performed in parallel with the test samples.

6. Preparation of Polyclonal Antibody

Polyclonal antibody is prepared as follows. Each rabbit is given a primary immunization of 100 ug/500 ul E. coli-produced OP-1 monomer (amino acids 328-431 of SEQ. ID NO: 11) in 0.1% SDS mixed with 500 ul Complete Freund's Adjuvant. The antigen is injected subcutaneously at multiple sites on the back and flanks of the animal. The rabbit is boosted after a month in the same manner using incomplete Freund's Adjuvant. Test bleeds are taken from the ear vein seven days later. Two additional boosts and test bleeds are performed at monthly intervals until antibody against OP-1 is detected in the serum using an ELISA assay. Then, the rabbit is boosted monthly with 100 ug of antigen and bled (15 ml per bleed) at days seven and ten after boosting.

7. Preparation of Monoclonal Antibody and Neutralizing Monoclonal Antibody

Monoclonal antibody specific for a given morphogen may be prepared as follows. A mouse is given two injections of E. coli produced OP-1 monomer (amino acids 328-431 in SEQ ID NO:11). The first injection contains 100ug of OP-1 in complete Freund's adjuvant and is given subcutaneously. The second injection contains 50 ug of OP-1 in incomplete adjuvant and is given intraperitoneally. The mouse then receives a total of 230 ug of OP-1 (amino acids 307-431 of SEQ ID NO:11) in four intraperitoneal injections at various times over an eight month period. One week prior to fusion, The mouse is boosted intraperitoneally with 100 ug of OP-1 (15-139) and 30 ug of the N-terminal peptide (Ser293-Asn309-Cys) conjugated through the added cys residue to bovine serum albumin with

SMCC crosslinking agent. This boost is repeated five days (IP), four days (IP), three days (IP) and one day (IV) prior to fusion. The mouse spleen cells are then fused to myeloma (e.g., 653) cells at a ratio of 1:1 using PEG 1500 (Boehringer Mannheim), and the cell fusion is plated and screened for OP-1-specific antibodies using OP-1 (307-431) as antigen. The cell fusion and monoclonal screening are according to procedures widely available in the art. The neutralizing monoclonal is identified by its ability to block the biological activity of OP-1 when added to a cellular assay which responds biologically to added OP-1.

8. <u>Identification of OP-1 Producing Cell Line Which</u> Displays OP-1 <u>Surface Receptors</u>

During the process of routinely testing the effects of increasing concentrations of OP-1 and TGF-B on the proliferation of various cell lines, a cell line was identified which, surprising, appears not only to synthesize and secrete OP-1, but also to display cell surface receptors to which the secreted OP-1 binds and acts to inhibit proliferation of the cells. This cell line was identified after the following observations. Addition of increasing concentrations of OP-1 or TGF-B failed to increase or decrease the relatively low basal rate of proliferation of the cells. However, addition of a monoclonal antibody, which neutralizes the activity of Op-1, resulted in a large increase in the proliferation of the cells. In addition, simultaneous addition of the same quantity of OP-1 neutralizing monoclonal to a fixed amount of OP-1 resulted in an increase in proliferation which was intermediate between the low

basal level observed with OP-1 alone and the high level observed with the monoclonal alone. This cell line, which is an epithelial cell line that was derived from a bladder cell carcinoma, may be used in an assay of the invention. The parameter to be tested according to the invention is cellular proliferation. Thus, a compound(s) that increases or decreases the level of OP-1 production may be tested on this cell line as follows..

9. Assay for Identifying Drugs Which Affect OP-1 Synthesis

A simple medium flux screening assay can be configured in a standard 24 or 96 well microtiter dishe, in which each well contains a constant number of a cell line having the characteristics described above. Increasing concentrations of an OP-1 neutralizing monoclonal antibody is added from left to right across the dish. A constant amount of different test substances is added from top to bottom on the dish. An increase in the synthesis and secretion of OP-1 (over its constitutive (non-induced) level) will be indicated by an increase in the amount of OP-1 neutralizing antibody required to release the cells from the antimitogenic activity of OP-1. A decrease in the synthesis and secretion of OP-1 (below its constitutive (repressed) level) will be indicated by the observation that decreased concentrations of the OP-1 neutralizing monoclonal antibody will be required to release the cells from the antimitogenic activity of OP-1. One of the major advantages of this assay is that the end point, i.e., the dilution of antibody which has an effect on cell proliferation, is a measure of mitosis, or an increase in

the number of cells per well. Because several convenient and rapid assays exist for quantitating cell numbers, this assay is faster and requires significantly fewer steps to perform.

The assay may be performed as follows. After addition of appropriate concentrations of the OP-1 neutralizing monoclonal antibody and test substances to the wells containing the cells, the dishes are placed in an incubator at 37°C for a period of 1-3 days. After completion of incubation/growth period, the dishes are removed and the cells in the individual wells are washed and stained with a vital stain, such as crystal violet. Washing and staining procedures are well-known in the art. The cells are then lysed and the stain dissolved in a constant amount of a solvent, such as ethanol. Quantitations of the dissolved stain, which is readily performed on an automated plate vendor, allows for direct quantitation of the number of cells in each well.

The above-described assay has the advantages of being rapid and easy to perform becaue it requires few steps. Another advantage is intrinsic to the assay; drugs which are screened according to this procedure that result in cell death (i.e., cytotoxic substances) are immediately, identifiable without the need of operator observation. In addition, although drugs that stop the growth of the cells (i.e., cytostatic substances) are scored as positive due to failure to see increases in cell numbers, they are automatically scored as suspect due to the failure of the highest concentrations of OP-1 neutralizing monoclonal antibody to release the cells from the antimitogenic activity of OP-1.

10. Candidate Drugs to Screen

The screening methods of the invention is used to test compounds for their effect on the production of morphogenic protein by a given cell type. Examples of compounds which may be screened include but are not limited to chemicals, biological response modifiers (e.g., lymphokines, cytokines, hormones, or vitamins), plant extracts, microbial broths and extracts medium conditioned by eukaryotic cells, body fluids, or tissue extracts.

The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: John Smart

Herman Oppermann Engin Ozkaynak

Thangavel Kuberasampath

David C. Rueger Roy H.L. Pang

Charles M. Cohen

- (ii) TITLE OF INVENTION: MORPHOGENIC PROTEIN SCREENING METHOD
- (iii) NUMBER OF SEQUENCES: 33
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Creative BioMolecules
 - (B) STREET: 35 South Street
 - (C) CITY: Hopkinton
 - (D) STATE: Massachusetts
 - (E) COUNTRY: U.S.A.
 - (F) ZIP: 01748
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 5.25, 360kb storage
 - (B) COMPUTER: IBM XT
 - (C) OPERATING SYSTEM: DOS 3.30
 - (D) SOFTWARE: ASC II TEXT
- (vi) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 667,274
 - (B) FILING DATE: March 11, 1991
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 752,861
 - (B) FILING DATE: AUGUST 30, 1991

(viii)ATTORNEY/AGENT INFORMATION

- (A) NAME: PITCHER, EDMUND R.
- (B) REG. NO.: 27,829
- (C) DOCKET NO.: CRP-058PC
- (ix) TELEPHONE:
 - (A) 617/248-7000
 - (B) TELEFAX: 617/248-7100

- (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 97 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: Generic Sequence 1
 - (D) OTHER INFORMATION: Each Xaa indicates one of the 20 naturally-occurring L-isomer, α -amino acids or a derivative thereof.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

 Xaa Xaa Xaa Xaa Xaa Xaa

 1 5
- Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa 20 25

- Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys 55 60

- Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys 85 90

Xaa Cys Xaa

.

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 97 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: Generic Sequence 2
 - (D) OTHER INFORMATION: Each Xaa indicates one of the 20 naturally-occurring L-isomer, α -amino acids or a derivative thereof.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Xaa Xaa Xaa Xaa Xaa

.

Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa 20 25

Cys Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa 30

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys 55 60

Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 70

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys 85 90

Xaa Cys Xaa

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 97 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: Generic Sequence 3
 - (D) OTHER INFORMATION: wherein each Xaa is independently selected from a group of one or more specified amino acids as defined in the specification.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Leu Tyr Val Xaa Phe

1

Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa

10

Xaa Ala Pro Gly Xaa Xaa Xaa Ala

15 20

Xaa Tyr Cys Xaa Gly Xaa Cys Xaa

25 30

Xaa Pro Xaa Xaa Xaa Xaa

35

Xaa Xaa Xaa Asn His Ala Xaa Xaa

) 4

Xaa Xaa Leu Xaa Xaa Xaa Xaa

50

Xaa Xaa Xaa Xaa Xaa Xaa Cys

55 60

Cys Xaa Pro Xaa Xaa Xaa Xaa Xaa

 Xaa
 Xaa
 Xaa
 Xaa
 Xaa
 Xaa
 Xaa
 Xaa
 Xaa
 Xaa
 Leu
 Xaa
 Xaa
 Xaa
 Leu
 Xaa
 Xaa
 Xaa
 Met
 Xaa
 Val
 Xaa
 Xaa
 Xaa
 Yaa
 Y

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 102 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: Generic Sequence 4
 - (D) OTHER INFORMATION: wherein each Xaa is independently selected from a group of one or more specified amino acids as defined in the specification.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Cys Xaa Xaa Xaa Xaa Leu Tyr Val Xaa Phe
1 5 10
Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa
15
Xaa Ala Pro Xaa Gly Xaa Xaa Ala
20 25

Xaa Tyr Cys Xaa Gly Xaa Cys Xaa
30 35

Xaa Pro Xaa Xaa Xaa Xaa 40

Asn Xaa Xaa Asn His Ala Xaa Xaa 45 50 Xaa Xaa Leu Xaa Xaa Xaa Xaa 55 Xaa Xaa Xaa Xaa Xaa Xaa Cys 60 65 Cys Xaa Pro Xaa Xaa Xaa Xaa 70 Xaa Xaa Xaa Leu Xaa Xaa Xaa 75 80 Xaa Xaa Xaa Xaa Val Xaa Leu Xaa 85 Xaa Xaa Xaa Xaa Met Xaa Val Xaa 90 95 Xaa Cys Gly Cys Xaa 100

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 139 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (ix) FEATURE:
 - (A) NAME: hOP-1 (mature form)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Lys Gln Ser Thr Gly Ser Gln Arg Ser 1 5 Gln Asn Arg Ser Lys Thr Pro Lys Asn 15 10 Ala Glu Ala Met Asn Val Ala Leu Arg 25 20 Gln Gln Glu Asn Ser Ser Ser Asp Arg 35 30

Ala	Cys	Lys	Lys 40	His	Glu	Leu	Tyr	Val
Ser	Phe	Arg	Asp	Leu 50	Gly	Trp	Gln	Asp
Trp 55	Ile	Ile	Ala	Pro	Glu 60	Gly	Tyr	Ala
Ala	Tyr 65	Tyr	Cys	Glu	Gly	Glu 70	Cys	Ala
Phe	Pro	Leu 75	Asn	Ser	Tyr	Met	Asn 80	Ala
Thr	Asn	His	Ala 85	Ile	Val	Gln	Thr	Leu 90
Val	His	Phe	Ile	Asn 95	Pro	Glu	Thr	Val
Pro 100	Lys	Pro	Cys	Cys	Ala 105	Pro	Thr	Gln
Leu	Asn 110	Ala	Ile	Ser	Val	Leu 115	Tyr	Phe
Asp	Asp	Ser 120	Ser	Asn	Val	Ile	Leu 125	Lys
Lys	Tyr	Arg	Asn 130	Met	Val	Val	Arg	Ala 135
Cys	Gly	Cys	His					

(2)	TNEO	БМ АТТ	ON FO	D SEC	N TO N	10.6.			
(2)			UENCE						
	(1)	_					acids	,	
		` '	TYPE				acius	ı	
		` '	TOPO						
	/::\	• •							
			ECULE	TIPE	pr	ocen	L		
	(IX)		TURE:		vn 1 /		es for	\	
	(e for	· · · ·	٤.
	(XI)	SEQ	UENCE	DESC	RIPTI	UN:	SEQ I	D NO:	0:
	Ser	Thr	Gly	Gly	Lys	Gln	Arg	Ser	Gln
	1				5				
	Asn	Arg	Ser	Lys	Thr	Pro	Lys	Asn	Gln
	10					15			
	Glu	Ala	Leu	Arg	Met	Ala	Ser	Val	Ala
		20					25		
	Glu	Asn	Ser	Ser	Ser	Asp	Gln	Arg	Gln
			30					35	
	Ala	Cys	Lys	Lys	His	Glu	Leu	Tyr	Val
				40					45
	Ser	Phe	Arg	Asp	Leu	Gly	Trp	Gln	Asp
					50				
	Trp	Ile	Ile	Ala	Pro	Glu	Gly	Tyr	Ala
	55					60			
	Ala	Tyr	Tyr	Cys	Glu	Gly	Glu	Cys	Ala
		65					70		
	Phe	Pro	Leu	Asn	Ser	Tyr	Met	Asn	Ala
			75					80	
	Thr	Asn	His	Ala	Ile	Val	Gln	Thr	Leu
				85					90
	Val	His	Phe	Ile	Asn	Pro	Asp	Thr	Val
					95				
	Pro	Lys	Pro	Cys	Cys	Ala	Pro	Thr	Gln
	100					105			
	Leu	Asn	Ala	Ile	Ser	Val	Leu	Tyr	Phe

110

Asp	Asp	Ser	Ser	Asn	Val	Ile	Leu	Lys
		120					125	
Lys	Tyr	Arg	Asn	Met	Val	Val	Arg	Ala
			130					135
Cys	Gly	Cys	His					

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 139 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: hOP-2 (mature form)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Ala	Val	Arg	Pro	Leu	Arg	Arg	Arg	Gln
1				5				
Pro	Lys	Lys	Ser	Asn	Glu	Leu	Pro	Gln
10			•		15			
Ala	Asn	Arg	Leu	Pro	Gly	Ile	Phe	Asp
	20					25		
Asp	Val	His	Gly	Ser	His	Gly	Arg	Gln
		30					35	
Val	Cys	Arg	Arg	His	Glu	Leu	Tyr	Val
			40					45
Ser	Phe	Gln	Asp	Leu	Gly	Trp	Leu	Asp
				50				
Trp	Val	Ile	Ala	Pro	Gln	Gly	Tyr	Ser
55					60			
Ala	Tyr	Tyr	Cys	Glu	Gly	Glu	Cys	Ser
	65					70		
Phe	Pro	Leu	Asp	Ser	Cys	Met	Asn	Ala
		75					80	
Thr	Asn	His	Ala	Ile	Leu	Gln	Ser	Leu
			85					90

Val	His	Leu	Met	Lys 95	Pro	Asn	Ala	Val
Pro 100	Lys	Ala	Cys	Cys	Ala 105	Pro	Thr	Lys
Leu	Ser 110	Ala	Thr	Ser	Val	Leu 115	Tyr	Tyr
Asp	Ser	Ser 120	Asn	Asn	Val	Ile	Leu 125	Arg
Lys	His	Arg	Asn 130	Met	Val	Val	Lys	Ala 135
Cys	Gly	Cys	His					

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 139 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (ix) FEATURE:
 - (A) NAME: mOP-2 (mature form)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Ala	Ala	Arg	Pro	Leu	Lys	Arg	Arg	Gln
1				5				
Pro	Lys	Lys	Thr	Asn	Glu	Leu	Pro	His
10					15			
Pro	Asn	Lys	Leu	Pro	Gly	Ile	Phe	Asp
	20					25		
Asp	Gly	His	Gly	Ser	Arg	Gly	Arg	Glu
		30					35	
Val	Cys	Arg	Arg	His	Glu	Leu	Tyr	Val
			40					45
Ser	Phe	Arg	Asp	Leu	Gly	Trp	Leu	Asp
				50				
Trp	Val	Ile	Ala	Pro	Gln	Gly	Tyr	Ser
55					60			

Ala	Tyr 65	Tyr	Cys	Glu	Gly	Glu 70	Cys	Ala
Phe	Pro	Leu 75	Asp	Ser	Cys	Met	Asn 80	Ala
Thr	Asn	His	Ala 85	Ile	Leu	Gln	Ser	Leu 90
Val	His	Leu	Met	Lys 95	Pro	Asp	Val	Val
Pro 100	Lys	Ala	Cys	Cys	Ala 105	Pro	Thr	Lys
Leu	Ser 110	Ala	Thr	Ser	Val	Leu 115	Tyr	Tyr
Asp	Ser	Ser 120	Asn	Asn	Val	Ile	Leu 125	Arg
Lys	His	Arg	Asn 130	Met	Val	Val	Lys	Ala 135
Cys	Gly	Cys	His					

(2)	INFO	DRMAI	NOI	FOR	SEQ	ID 1	10:9	:						
	(i) SEQUENCE CHARACTERISTICS:													
		(2	A) LE	ENGT	i: 9	96 an	nino	acio	is					
		(E	3) TY	PE:	ami	ino a	acids	5						
		((C) TO	POLO	GY:	lir	near							
	(ii)	MC	OLEC	JLE 1	YPE	pı	rote	Ln						
	(ix)	F	EATUE	RE:										
		•	A) NA				•							
	(xi)) SI	EQUE	ICE I	DESCI	RIPT	ION:	SE	O ID	NO:9) :			
	Cvs	Lvs	Ara	His	Pro	Leu	Tyr	Val	Asp	Phe	Ser			
	1		,		5		•		_	10				
	Asp	Val	Gly	Trp	Asn	Asp	Trp	Ile	Val	Ala	Pro			
				15					20					
	Pro	Gly	Tyr	His	Ala	Phe	Tyr	Cys	His	Gly	Glu			
			25					30						
	Cys	Pro	Phe	Pro	Leu	Ala	Asp	His	Leu	Asn	Ser			
		35					40							
		Asn	His	Ala	Ile		Gln	Thr	Leu	Val				
	45					50					55			
	Ser	Val	Asn	Ser	Lys 60	Ile	Pro	Lys	Ala	Cys 65	Cys			
	Val	Pro	Thr	Glu		Ser	Ala	Ile	Ser	Met	Lev			
	,,,,			70			• • • •		75					
	Tyr	Leu	Asp	Glu	Asn	Glu	Lys	Val	Val	Leu	Lys			
	•		80				-	85						
	Asn	Tyr	Gln	Asp	Met	Val	Val	Glu	Gly	Cys	Gly			
		90					95							
	Cys	Arg												
	100													

(2)	INFO	ORMA	TION	FOR	SEO	ID 1	NO:10) :			
(-)	(i)						RIST				
	(-,		_				amino		ids		
		•	•				acid				
		•	•				near	_			
	(ii)	•					rote	in			
	(ix)		EATU								
	(+ *)	•			CBI	4P_21	B(fx)	١			
	(xi	•	•						חד ר	NO:	١٥٠
	(* *)	, 3,	s Q o E i	.102				JE	2 10	110.	
							Cvs	Ara	Arg	His	Ser
							1	3	3		5
	Leu	Tvr	Val	Asp	Phe	Ser	Asp.	Val	Glv	Trp	Asn
		- 2 -			10		- 2.		2	15	
	Asp	Trp	Ile	Val	Ala	Pro	Pro	Gly	Tyr	Gln	Ala
	-	•		20				•	25		
	Phe	Tyr	Cys	His	Gly	Asp	Cys	Pro	Phe	Pro	Leu
		-	30		_		_	35			
	Ala	Asp	His	Leu	Asn	Ser	Thr	Asn	His	Ala	Ile
		40					45				
	Val	Gln	Thr	Leu	Val	Asn	Ser	Val	Asn	Ser	Ser
	50				•	55					60
	Ile	Pro	Lys	Ala	Cys	Cys	Val	Pro	Thr	Glu	Leu
					65					70	
	Ser	Ala	Ile	Ser	Met	Leu	Tyr	Leu	Asp	Glu	Tyr
				75					80		
	Asp	Lys	Val	Val	Leu	Lys	Asn	Tyr	Gln	Glu	Met
			85					90			
	Val	Val	Glu	Gly	Cys	Gly	Cys	Arg			
		95		-			100				

(2)	INFORMATION FOR SEQ ID NO:11:												
	(i) SEQUENCE CHARACTERISTICS:												
	(A) LENGTH: 102 amino acids												
		(B) TYPE: amino acids											
		(0	C) TO	POLO	OGY:	lir	near						
	(ii)	(ii) MOLECULE TYPE: protein											
	(ix)	(ix) FEATURE:											
	(A) NAME: DPP(fx)												
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:										11:		
	Cvs	Ara	Ara	His	Ser	Leu	Tyr	Val	Asp	Phe	Ser		
	1	9	3		5		•		_	10			
	_	Val	Glv	Trp	Asp	Asp	Trp	Ile	Val	Ala	Pro		
			3	15	-	•	-		20				
	Leu	Glv	Tvr	Asp	Ala	Tyr	Tyr	Cys	His	Gly	Lys		
		2	25	•		•	-	30					
	Cys	Pro	Phe	Pro	Leu	Ala	Asp	His	Phe	Asn	Ser		
	•	35					40						
	Thr	Asn	His	Ala	Val	Val	Gln	Thr	Leu	Val	Ası		
	45					50					55		
	Asn	Asn	Asn	Pro	Gly	Lys	Val	Pro	Lys	Ala	Суя		
					60					65			
	Cys	Val	Pro	Thr	Gln	Leu	Asp	Ser	Val	Ala	Met		
	_			70					75				
	Leu	Tyr	Leu	Asn	Asp	Gln	Ser	Thr	Val	Val	Let		
		•	80					85					
	Lys	Asn	Tyr	Gln	Glu	Met	Thr	Val	Val	Gly	Су		
	-	9.0					95						

Gly Cys Arg

(2)	<pre>INFORMATION FOR SEQ ID NO:12: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 102 amino acids (B) TYPE: amino acids</pre>											
		•	•		OGY:							
	(ii) MOLECULE TYPE: protein											
	(ix) FEATURE:											
	(A) NAME: Vgl(fx)											
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12										12:	
	Cve	T.ve	T.ve	Ara	His	T.en	ጥሆኖ	Val	Glu	Phe	T.ve	
	1	1 173	בעם	n. y	5	LCu	-1-	7 4 4 4	014	10	<i>-</i> ,-	
	-	Val	Glv	Trp	Gln	Asn	Trp	Val	Ile		Pro	
			4	15			•		20			
	Gln	Gly	Tyr	Met	Ala	Asn	Tyr	Cys	Tyr	Gly	Glu	
			25					30				
	Cys	Pro	Tyr	Pro	Leu	Thr	Glu	Ile	Leu	Asn	Gly	
		35					40					
	Ser	Asn	His	Ala	Ile	Leu	Gln	Thr	Leu	Val	His	
	45					50					5 5	
	Ser	Ile	Glu	Pro	Glu	Asp	Ile	Pro	Leu	Pro	Cys	
					60					65		
	Cys	Val	Pro	Thr	Lys	Met	Ser	Pro	Ile	Ser	Met	
				70					75			
	Leu	Phe	Tyr	Asp	Asn	Asn	Asp		Val	Val	Let	
			80					85				
	Arg		Tyr	Glu	Asn	Met		Val	Asp	Glu	Cys	
		90					95					
	Gly	Cys	Arg									

(2) INFORMATION FOR SEQ ID NO:13:

(i)	SE	EQUE	ICE (CHARA	ACTE	RIST	cs:			
	(2	A) LE	ENGTI	H: 1	102 a	amino	ac	ids		
	(E	3) TI	PE:	ami	ino a	acids	3			
	(() TO	POL	OGY:	lir	near				
(ii)) MC	DLECU	JLE 3	TYPE:	rd :	rote	in			
(ix)) FI	EATUE	RE:							
	(2	A) NA	AME:	Vgı	c-1(i	Ex)				
(xi) SI	EQUE	CE I	DESCI	RIPT	ON:	SE	Q ID	NO:	13:
Cys	Lys	Lys	His	Glu	Leu	Tyr	Val	Ser	Phe	Glr
1				5					10	
Asp	Val	Gly	Trp	Gln	Asp	Trp	Ile	Ile	Ala	Pro
			15					20		
Xaa	Gly	Tyr	Ala	Ala	Asn	Tyr	Cys	Asp	Gly	Glu
		25					30			

70 75

Cys Ser Phe Pro Leu Asn Ala His Met Asn Ala

Thr Asn His Ala Ile Val Gln Thr Leu Val His
45 50 55

40

Leu Tyr Phe Asp Asp Asn Ser Asn Val Ile Leu 80 85

Lys Lys Tyr Arg Asn Met Val Val Arg Ala Cys 90 95

Gly Cys His

35

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 106 amino acids
- (B) TYPE: protein
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (F) TISSUE TYPE: BRAIN
- (ix) FEATURE:
- (D) OTHER INFORMATION: /product= "GDF-1 (fx)"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Cys Arg Ala Arg Arg Leu Tyr Val Ser Phe Arg Glu Val Gly
1 5 10

Trp His Arg Trp Val Ile Ala Pro Arg Gly Phe Leu Ala Asn Tyr 15 20 25

Cys Gln Gly Gln Cys Ala Leu Pro Val Ala Leu Ser Gly Ser Gly 30 35 40

Gly Pro Pro Ala Leu Asn His Ala Val Leu Arg Ala Leu Met His 45 50 55

Ala Ala Ala Pro Gly Ala Ala Asp Leu Pro Cys Cys Val Pro Ala 60 65 70

Arg Leu Ser Pro Ile Ser Val Leu Phe Phe Asp Asn Ser Asp Asn 75 80 85

Val Val Leu Arg Gln Tyr Glu Asp Met Val Val Asp Glu Cys Gly 90 95 100

Cys Arg 105 (2) INFORMATION FOR SEQ ID NO:15:

(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 5 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: peptide	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:15:	
Cys Xaa 1	Xaa Xaa Xaa 5	
(2) INFORMAT	TION FOR SEQ ID NO:16:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 1822 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	HOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISH: HOMO SAPIENS (F) TISSUE TYPE: HIPPOCAMPUS	
(ix)	FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 491341 (D) OTHER INFORMATION:/standard_name= "hOP1"	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:16:	
GGTGCGGGCC CC	GGAGCCCGG AGCCCGGGTA GCGCGTAGAG CCGGCGCG ATG CAC GTG Met His Val 1	57
	CGA GCT GCG GCG CCG CAC AGC TTC GTG GCG CTC TGG GCA Arg Ala Ala Pro His Ser Phe Val Ala Leu Trp Ala 10 15	105
	CTG CTG CGC TCC GCC CTG GCC GAC TTC AGC CTG GAC AAC Leu Leu Arg Ser Ala Leu Ala Asp Phe Ser Leu Asp Asn 25 30 35	153
	CCG AGC TTC ATC CAC CGG CGC CTC CGC AGC CAG GAG CGG Ser Ser Phe Ile His Arg Arg Leu Arg Ser Gln Glu Arg 40 45 50	201
Arg Glu Met G	CAG CGC GAG ATC CTC TCC ATT TTG GGC TTG CCC CAC CGC Gln Arg Glu Ile Leu Ser Ile Leu Gly Leu Pro His Arg 65 65	249

CCG CGC CCG CAC Pro Arg Pro His 70	CTC CAG GGC Leu Gln Gly	AAG CAC AAC Lys His Asn 75	TCG GCA CCC AT Ser Ala Pro Me 80	TG TTC ATG et Phe Met	297
CTG GAC CTG TAC Leu Asp Leu Tyr 85	AAC GCC ATG Asn Ala Het 90	GCG GTG GAG Ala Val Glu	GAG GGC GGC GG Glu Gly Gly Gl 95	G CCC GGC Ly Pro Gly	345
GGC CAG GGC TTC Gly Gln Gly Phe 100	TCC TAC CCC Ser Tyr Pro 105	TAC AAG GCC Tyr Lys Ala	GTC TTC AGT AGVal Phe Ser TI	CC CAG GGC or Gln Gly 115	393
CCC CCT CTG GCC Pro Pro Leu Ala					441
ATG GTC ATG AGC Het Val Met Ser 135	TTC GTC AAC Phe Val Asn	CTC GTG GAA Leu Val Glu 140	His Asp Lys G	AA TTC TTC lu Phe Phe 45	489
CAC CCA CGC TAC His Pro Arg Tyr 150					537
CCA GAA GGG GAA Pro Glu Gly Glu 165	GCT GTC ACG Ala Val Thr 170	GCA GCC GAA Ala Ala Glu	TTC CGG ATC TAPHE Arg Ile Ty	AC AAG GAC yr Lys Asp	585
TAC ATC CGG GAA Tyr Ile Arg Glu 180	CGC TTC GAC Arg Phe Asp 185	AAT GAG ACG Asn Glu Thr	TTC CGG ATC AG Phe Arg Ile So 190	GC GTT TAT er Val Tyr 195	633
CAG GTG CTC CAG Gln Val Leu Gln					681
GAC AGC CGT ACC Asp Ser Arg Thr 215			Gly Trp Leu V		729
ATC ACA GCC ACC Ile Thr Ala Thr 230	AGC AAC CAC Ser Asn His	TGG GTG GTC Trp Val Val 235	AAT CCG CGG C Asn Pro Arg H 240	AC AAC CTG is Asn Leu	777
GGC CTG CAG CTC Gly Leu Gln Leu 245					825
AAG TTG GCG GGC Lys Leu Ala Gly 260					873

TTC ATG GTG GCT TTC TTC AAG GCC ACG GAG GTC CAC TTC CGC AGC ATC Phe Met Val Ala Phe Phe Lys Ala Thr Glu Val His Phe Arg Ser Ile 280 285 290	921
CGG TCC ACG GGG AGC AAA CAG CGC AGC CAG AAC CGC TCC AAG ACG CCC Arg Ser Thr Gly Ser Lys Gln Arg Ser Gln Asn Arg Ser Lys Thr Pro 295 300 305	969
AAG AAC CAG GAA GCC CTG CGG ATG GCC AAC GTG GCA GAG AAC AGC AGC Lys Asn Gln Glu Ala Leu Arg Het Ala Asn Val Ala Glu Asn Ser Ser 310	1017
AGC GAC CAG AGG CAG GCC TGT AAG AAG CAC GAG CTG TAT GTC AGC TTC Ser Asp Gln Arg Gln Ala Cys Lys His Glu Leu Tyr Val Ser Phe 325 330 335	1065
CGA GAC CTG GGC TGG CAG GAC TGG ATC ATC GCG CCT GAA GGC TAC GCC Arg Asp Leu Gly Trp Gln Asp Trp Ile Ile Ala Pro Glu Gly Tyr Ala 340 345 350 355	1113
GCC TAC TAC TGT GAG GGG GAG TGT GCC TTC CCT CTG AAC TCC TAC ATG Ala Tyr Tyr Cys Glu Gly Glu Cys Ala Phe Pro Leu Asn Ser Tyr Het 360 365 370	1161
AAC GCC ACC AAC CAC GCC ATC GTG CAG ACG CTG GTC CAC TTC ATC AAC Asn Ala Thr Asn His Ala Ile Val Gln Thr Leu Val His Phe Ile Asn 375 380 385	1209
CCG GAA ACG GTG CCC AAG CCC TGC TGT GCG CCC ACG CAG CTC AAT GCC Pro Glu Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln Leu Asn Ala 390 395 400	1257
ATC TCC GTC CTC TAC TTC GAT GAC AGC TCC AAC GTC ATC CTG AAG AAA Ile Ser Val Leu Tyr Phe Asp Asp Ser Ser Asn Val Ile Leu Lys Lys 405 410 415	1305
TAC AGA AAC ATG GTG GTC CGG GCC TGT GGC TGC CAC TAGCTCCTCC Tyr Arg Asn Met Val Val Arg Ala Cys Gly Cys His 420 425 430	1351
GAGAATTCAG ACCCTTTGGG GCCAAGTTTT TCTGGATCCT CCATTGCTCG CCTTGGCCAG	1411
GAACCAGCAG ACCAACTGCC TTTTGTGAGA CCTTCCCCTC CCTATCCCCA ACTTTAAAGG	1471
TGTGAGAGTA TTAGGAAACA TGAGCAGCAT ATGGCTTTTG ATCAGTTTTT CAGTGGCAGC	1531
ATCCAATGAA CAAGATCCTA CAAGCTGTGC AGGCAAAACC TAGCAGGAAA AAAAAAACAAC	1591
GCATAAAGAA AAATGGCCGG GCCAGGTCAT TGGCTGGGAA GTCTCAGCCA TGCACGGACT	1651
CGTTTCCAGA GGTAATTATG AGCGCCTACC AGCCAGGCCA CCCAGCCGTG GGAGGAAGGG	1711
GGCGTGGCAA GGGGTGGGCA CATTGGTGTC TGTGCGAAAG GAAAATTGAC CCGGAAGTTC	1771
CTGTAATAAA TGTCACAATA AAACGAATGA ATGAAAAAAA AAAAAAAAA A	1822

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 431 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (D) OTHER INFORMATION: /Product="OP1-PP"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Het His Val Arg Ser Leu Arg Ala Ala Ala Pro His Ser Phe Val Ala 1 5 10 . 15

Leu Trp Ala Pro Leu Phe Leu Leu Arg Ser Ala Leu Ala Asp Phe Ser 20 25 30

Leu Asp Asn Glu Val His Ser Ser Phe Ile His Arg Arg Leu Arg Ser

Gln Glu Arg Arg Glu Het Gln Arg Glu Ile Leu Ser Ile Leu Gly Leu 50 55 60

Pro His Arg Pro Arg Pro His Leu Gln Gly Lys His Asn Ser Ala Pro 65 70 75 80

Met Phe Met Leu Asp Leu Tyr Asn Ala Met Ala Val Glu Glu Gly Gly 85 90 95

Gly Pro Gly Gln Gly Phe Ser Tyr Pro Tyr Lys Ala Val Phe Ser 100 105 110

Thr Gln Gly Pro Pro Leu Ala Ser Leu Gln Asp Ser His Phe Leu Thr 115 120 125

Asp Ala Asp Met Val Met Ser Phe Val Asn Leu Val Glu His Asp Lys 130 135 140

Glu Phe Phe His Pro Arg Tyr His His Arg Glu Phe Arg Phe Asp Leu 145 150 155 160

Ser Lys Ile Pro Glu Gly Glu Ala Val Thr Ala Ala Glu Phe Arg Ile 165 170 175

Tyr Lys Asp Tyr Ile Arg Glu Arg Phe Asp Asn Glu Thr Phe Arg Ile 180 185 190

Ser Val Tyr Gln Val Leu Gln Glu His Leu Gly Arg Glu Ser Asp L u 195 200 205

Phe	Leu 210	Leu	Asp	Ser	Arg	Thr 215	Leu	Trp	Ala	Ser	Glu 220	Glu	Gly	Trp	Leu
Val 225	Phe	Asp	Ile	Thr	Ala 230	Thr	Ser	Asn	His	Trp 235	Val	Val	Asn	Pro	Arg 240
His	Asn	Leu	Gly	Leu 245	Gln	Leu	Ser	Val	Glu 250	Thr	Leu	Asp	Gly	Gln 255	Ser
Ile	Asn	Pro	Lys 260	Leu	Ala	Gly	Leu	Ile 265	Gly	Arg	His	Gly	Pro 270	Gln	Asn
Lys	Gln	Pro 275	Phe	Het	Val	Ala	Phe 280	Phe	Lys	Ala	Thr	Glu 285	Val	His	Phe
Arg	Ser 290	Ile	Arg	Ser	Thr	Gly 295	Ser	Lys	Gln	Arg	Ser 300	Gln	Asn	Arg	Ser
Lys 305	Thr	Pro	Lys	Asn	Gln 310	Glu	Ala	Leu	Arg	Met' 315	Ala	Asn	Val	Ala	Glu 320
Asn	Ser	Ser	Ser	Asp 325	Gln	Arg	Gln	Ala	Cys 330	Lys	Lys	His	Glu	Leu 335	Tyr
Val	Ser		Arg 340	Asp	Leu	Gly	Trp	Gln 345	Asp	Trp	Ile	Ile	Ala 350	Pro	Glu
Gly	Т														
	lyr	Ala 355	Ala	Туг	Tyr	Cys	Glu 360	Gly	Glu	Cys	Ala	Phe 365	Pro	Leu	Asn
Ser		355					360					365		Leu Val	
	Tyr 370	355 Met	Asn	Ala	Thr	Asn 375	360 His	Ala	Ile	Val	Gln 380	365 Thr	Leu		His
Phe 385	Tyr 370 Ile	355 Met Asn	Asn Pro	Ala Glu	Thr Thr 390	Asn 375 Val	360 His Pro	Ala Lys	Ile Pro	Val Cys 395	Gln 380 Cys	365 Thr Ala	Leu Pro	Val	His Gln 400

259

307

355

403

(2)	IN	FORM	OITA	N FO	R SE	Q ID	NO:	18:									
		(i	(A) B) C)	LENG TYPE STRA	TH: : nu NDED	1873 clei NESS	RIST base c ac : sin	e pa id	irs							
		(ii) H	OLEC	ULE '	TYPE	: cD	NA									
		(vi	(A) (NISM	: MU	RIDA EMB									
		(ix	((B) :	NAME.	TION	: 10	41		note	,= "M(0P 1	(CDN	A)"			
		(xi) S	EQUE	NCE I	DESCI	RIPT	ION:	SEQ	ID I	NO:18	8:					
CTGC	CAGCA	AAG :	TGAC	CTCG	GG T	CGTG	GACC	G CT	GCCC:	rgcc	CCC	rccg	CTG	CCAC	CTGGG	G 60)
CGGC	GCG	GC (CCGG.	I GCC(CC GO	GATC(GCGC	G TA(GAGC	CGGC	GCG			GTG Val		115	
TCG Ser 5	CTG Leu	CGC Arg	GCT Ala	GCG Ala	GCG Ala 10	CCA Pro	CAC His	AGC Ser	TTC Phe	GTG Val 15	GCG Ala	CTC Leu	TGG Trp	GCG Ala	CCT Pro 20	163	
CTG Leu	TTC Phe	TTG Leu	CTG Leu	CGC Arg 25	TCC Ser	GCC Ala	CTG Leu	GCC Ala	GAT Asp 30	TTC Phe	AGC Ser	CTG Leu	GAC Asp	AAC Asn 35	GAG Glu	211	

GTG CAC TCC AGC TTC ATC CAC CGG CGC CTC CGC AGC CAG GAG CGG CGG

Val His Ser Ser Phe Ile His Arg Arg Leu Arg Ser Gln Glu Arg Arg

GAG ATG CAG CGG GAG ATC CTG TCC ATC TTA GGG TTG CCC CAT CGC CCG

Glu Met Gln Arg Glu Ile Leu Ser Ile Leu Gly Leu Pro His Arg Pro

CGC CCG CAC CTC CAG GGA AAG CAT AAT TCG GCG CCC ATG TTC ATG TTG

Arg Pro His Leu Gln Gly Lys His Asn Ser Ala Pro Het Phe Het Leu

GAC CTG TAC AAC GCC ATG GCG GTG GAG GAG AGC GGG CCG GAC GGA CAG

Asp Leu Tyr Asn Ala Het Ala Val Glu Glu Ser Gly Pro Asp Gly Gln

60

40

55

70

GGC Gly	TTC Phe	TCC Ser	TAC Tyr	CCC Pro 105	TAC Tyr	AAG Lys	GCC Ala	GTC Val	TTC Phe 110	AGT Ser	ACC Thr	CAG Gln	GGC Gly	CCC Pro 115	CCT Pro	451
TTA Leu	GCC Ala	AGC Ser	CTG Leu 120	CAG Gln	GAC Asp	AGC Ser	CAT His	TTC Phe 125	CTC Leu	ACT Thr	GAC Asp	GCC Ala	GAC Asp 130	ATG Met	GTC Val	499
ATG Met	AGC Ser	TTC Phe 135	GTC Val	AAC Asn	CTA Leu	GTG Val	GAA Glu 140	CAT His	GAC Asp	AAA Lys	GAA Glu	TTC Phe 145	TTC Phe	CAC His	CCT Pro	547
CGA Arg	TAC Tyr 150	CAC	CAT His	CGG Arg	GAG Glu	TTC Phe 155	CGG Arg	TTT Phe	GAT Asp	CTT Leu	TCC Ser 160	AAG Lys	ATC Ile	CCC Pro	GAG Glu	595
GGC Gly 165	GAA Glu	CGG Arg	GTG Val	ACC Thr	GCA Ala 170	GCC Ala	GAA Glu	TTC Phe	AGG Arg	ATC Ile 175	TAT Tyr	AAG Lys	GAC Asp	TAC Tyr	ATC Ile 180	643
CGG Arg	GAG Glu	CGA Arg	TTT Phe	GAC Asp 185	AAC Asn	GAG Glu	ACC Thr	TTC Phe	CAG Gln 190	ATC Ile	ACA Thr	GTC Val	TAT Tyr	CAG Gln 195	GTG Val	691
CTC Leu	CAG Gln	GAG Glu	CAC His 200	TCA Ser	GGC Gly	AGG Arg	GAG Glu	TCG Ser 205	GAC Asp	CTC Leu	TTC Phe	TTG Leu	CTG Leu 210	GAC Asp	AGC Ser	739
CGC Arg	ACC Thr	ATC Ile 215	TGG Trp	GCT Ala	TCT Ser	GAG Glu	GAG Glu 220	GGC Gly	TGG Trp	TTG Leu	GTG Val	TTT Phe 225	GAT Asp	ATC Ile	ACA Thr	787
GCC Ala	ACC Thr 230	AGC Ser	AAC Asn	CAC His	TGG Trp	GTG Val 235	GTC Val	AAC Asn	CCT Pro	CGG Arg	CAC His 240	AAC Asn	CTG Leu	GGC Gly	TTA Leu	835
CAG Gln 245	Leu	TCT Ser	GTG Val	GAG Glu	ACC Thr 250	CTG Leu	GAT Asp	GGG Gly	CAG Gln	AGC Ser 255	ATC Ile	AAC Asn	CCC Pro	AAG Lys	TTG Leu 260	883
GCA Ala	GGC Gly	CTG Leu	ATT Ile	Gly	CGG Arg	His	Gly	Pro	CAG Gln 270	AAC Asn	AAG Lys	CAA Gln	CCC Pro	TTC Phe 275	ATG Met	931
GTG Val	GCC Ala	TTC Phe	TTC Phe 280	AAG Lys	GCC Ala	ACG Thr	GAA Glu	GTC Val 285	CAT His	CTC Leu	CGT	AGT Ser	ATC Ile 290	CGG Arg	TCC Ser	979
ACG Thr	GGG Gly	GGC Gly 295	Lys	CAG Gln	CGC Arg	AGC Ser	CAG Gln 300	AAT Asn	CGC Arg	TCC Ser	AAG Lys	ACG Thr 305	CCA Pro	AAG Lys	AAC Asn	1027
CAA Gln	GAG Glu 310	GCC Ala	CTG Leu	AGG Arg	ATG Met	GCC Ala 315	AGT Ser	GTG Val	GCA Ala	GAA Glu	AAC Asn 320	Ser	AGC Ser	AGT Ser	GAC Asp	1075

CAG AGG CAG GCC TGC AAG AAA CAT GAG CTG TAC GTC AGC TTC CGA GAC Gln Arg Gln Ala Cys Lys His Glu Leu Tyr Val Ser Phe Arg Asp 335 340	1123
CTT GGC TGG CAG GAC TGG ATC ATT GCA CCT GAA GGC TAT GCT GCC TAC Leu Gly Trp Gln Asp Trp Ile Ile Ala Pro Glu Gly Tyr Ala Ala Tyr 345 350 355	1171
TAC TGT GAG GGA GAG TGC GCC TTC CCT CTG AAC TCC TAC ATG AAC GCC Tyr Cys Glu Gly Glu Cys Ala Phe Pro Leu Asn Ser Tyr Het Asn Ala 360 365 370	1219
ACC AAC CAC GCC ATC GTC CAG ACA CTG GTT CAC TTC ATC AAC CCA GAC Thr Asn His Ala Ile Val Gln Thr Leu Val His Phe Ile Asn Pro Asp 375	1267
ACA GTA CCC AAG CCC TGC TGT GCG CCC ACC CAG CTC AAC GCC ATC TCT Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln Leu Asn Ala Ile Ser 390 395 400	1315
GTC CTC TAC TTC GAC GAC AGC TCT AAT GTC ATC CTG AAG AAG TAC AGA Val Leu Tyr Phe Asp Asp Ser Ser Asn Val Ile Leu Lys Lys Tyr Arg 410 415 420	1363
AAC ATG GTG GTC CGG GCC TGT GGC TGC CAC TAGCTCTTCC TGAGACCCTG Asn Met Val Val Arg Ala Cys Gly Cys His 425 430	1413
ACCTTTGCGG GGCCACACCT TTCCAAATCT TCGATGTCTC ACCATCTAAG TCTCTCACTG	1473
CCCACCTTGG CGAGGAGAAC AGACCAACCT CTCCTGAGCC TTCCCTCACC TCCCAACCGG	1533
AAGCATGTAA GGGTTCCAGA AACCTGAGCG TGCAGCAGCT GATGAGCGCC CTTTCCTTCT	1593
GGCACGTGAC GGACAAGATC CTACCAGCTA CCACAGCAAA CGCCTAAGAG CAGGAAAAAT	1653
GTCTGCCAGG AAAGTGTCCA GTGTCCACAT GGCCCCTGGC GCTCTGAGTC TTTGAGGAGT	1713
AATCGCAAGC CTCGTTCAGC TGCAGCAGAA GGAAGGGCTT AGCCAGGGTG GGCGCTGGCG	1773
TCTGTGTTGA AGGGAAACCA AGCAGAAGCC ACTGTAATGA TATGTCACAA TAAAACCCAT	1833
GAATGAAAAA AAAAAAAAA AAAAAAAAA AAAAGAATTC	1873

20) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 430 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (D) OTHER INFORMATION: /product= "mOP1-PP"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Met His Val Arg Ser Leu Arg Ala Ala Pro His Ser Phe Val Ala 1 5 10 15

Leu Trp Ala Pro Leu Phe Leu Leu Arg Ser Ala Leu Ala Asp Phe Ser 20 25 30

Leu Asp Asn Glu Val His Ser Ser Phe Ile His Arg Arg Leu Arg Ser 35 40 45

Gln Glu Arg Arg Glu Met Gln Arg Glu Ile Leu Ser Ile Leu Gly Leu 50 55 60

Pro His Arg Pro Arg Pro His Leu Gln Gly Lys His Asn Ser Ala Pro 65 70 75 80

Met Phe Met Leu Asp Leu Tyr Asn Ala Met Ala Val Glu Glu Ser Gly 85 90 95

Pro Asp Gly Gln Gly Phe Ser Tyr Pro Tyr Lys Ala Val Phe Ser Thr 100 105 110

Gln Gly Pro Pro Leu Ala Ser Leu Gln Asp Ser His Phe Leu Thr Asp 115 120 125

Ala Asp Met Val Met Ser Phe Val Asn Leu Val Glu His Asp Lys Glu 130 135 140

Phe Phe His Pro Arg Tyr His His Arg Glu Phe Arg Phe Asp Leu Ser 145 150 155 160

Lys Ile Pro Glu Gly Glu Arg Val Thr Ala Ala Glu Phe Arg Ile Tyr 165 170 175

Lys Asp Tyr Ile Arg Glu Arg Phe Asp Asn Glu Thr Phe Gln Ile Thr 180 185 190

Val Tyr Gln Val Leu Gln Glu His Ser Gly Arg Glu Ser Asp Leu Phe 195 200 205

Leu	Leu 210	Asp	Ser	Arg	Thr	Ile 215	Trp	Ala	Ser	Glu	Glu 220	Gly	Trp	Leu	Val
Phe 225	Asp	Ile	Thr	Ala	Thr 230	Ser	Asn	His	Trp	Val 235	Val	Asn	Pro	Arg	His 240
Asn	Leu	Gly	Leu	Gln 245	Leu	Ser	Val	Glu	Thr 250	Leu	Asp	Gly	Gln	Ser 255	Ile
Asn	Pro	Lys	Leu 260	Ala	Gly	Leu	Ile	Gly 265	Arg	His	Gly	Pro	Gln 270	Asn	Lys
Gln	Pro	Phe 275	Het	Val	Ala	Phe	Phe 280	Lys	Ala	Thr	Glu	Val 285	His	Leu	Arg
Ser	Ile 290	Arg	Ser	Thr	Gly	Gly 295	Lys	Gln	Arg	Ser	Gln 300	Asn	Arg	Ser	Lys
Thr 305	Pro	Lys	Asn	Gln	Glu 310	Ala	Leu	Arg	Het	Ala 315	Ser	Val	Ala	Glu	Asn 320
Ser	Ser	Ser	Asp	Gln 325	Arg	Gln	Ala	Cys	Lys 330	Lys	His	Glu	Leu	Tyr 335	Val
Ser	Phe	Arg	Asp 340	Leu	Gly	Trp	Gln	Asp 345	Trp	Ile	Ile	Ala	Pro 350	Glu	Gly
Tyr	Ala	Ala 355	Tyr	Tyr	Cys	Glu	Gly 360	Glu	Cys	Ala	Phe	Pro 365	Leu	Asn	Ser
Tyr	Met 370	Asn	Ala	Thr	Asn	His 375	Ala	Ile	Val	Gln	Thr 380	Leu	Val	His	Phe
Ile 385	Asn	Pro	Asp	Thr	Val 390	Pro	Lys	Pro	Cys	Cys 395	Ala	Pro		Gln 00	Leu
Asn	Ala	Ile	Ser	Val 405	Leu	Tyr	Phe	Asp	Asp 410	Ser	Ser	Asn	Val	Ile 415	Leu
Lys	Lys		Arg 20	Asn	Met	Val	Val	Arg 425	Ala	Cys	Gly	Cys	His 430		

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1723 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(∀i)ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens
- (F) TISSUE TYPE: HIPPOCAMPUS

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 490..1696
- (D) OTHER INFORMATION: /note= "hOP2 (cDNA)"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

GGCGCCGGCA GAGCAGGAGT GGCTGGAGGA GCTGTGGTTG GAGCAGGAGG TGGCACGGCA	60
GGGCTGGAGG GCTCCCTATG AGTGGCGGAG ACGGCCCAGG AGGCGCTGGA GCAACAGCTC	120
CCACACCGCA CCAAGCGGTG GCTGCAGGAG CTCGCCCATC GCCCCTGCGC TGCTCGGACC	180
GCGGCCACAG CCGGACTGGC GGGTACGGCG GCGACAGAGG CATTGGCCGA GAGTCCCAGT	240
CCGCAGAGTA GCCCCGGCCT CGAGGCGGTG GCGTCCCGGT CCTCTCCGTC CAGGAGCCAG	300
GACAGGTGTC GCGCGGCGGG GCTCCAGGGA CCGCGCCTGA GGCCGGCTGC CCGCCCGTCC	360
CGCCCCGCCC CGCCCGCCGA GCCCAGCCTC CTTGCCGTCG GGGCGTCCCC	420
AGGCCCTGGG TCGGCCGCGG AGCCGATGCG CGCCCGCTGA GCGCCCCAGC TGAGCGCCCC	480
CGGCCTGCC ATG ACC GCG CTC CCC GGC CCG CTC TGG CTC CTG GGC CTG Met Thr Ala Leu Pro Gly Pro Leu Trp Leu Leu Gly Leu 1 5 10	528
Met Thr Ala Leu Pro Gly Pro Leu Trp Leu Leu Gly Leu	528 576
Met Thr Ala Leu Pro Gly Pro Leu Trp Leu Leu Gly Leu 1 5 10 GCG CTA TGC GCG CTG GGC GGC GGC CCC GGC CTG CGA CCC CCG CCC Ala Leu Cys Ala Leu Gly Gly Gly Gly Pro Gly Leu Arg Pro Pro Pro	

					TCC											720
					GCC Ala											768
					CTG Leu											816
					GAC Asp 115											864
					GAC Asp											912
					CGG Arg											960
					GTC Val											1008
					TTG Leu											1056
					CTG Leu 195											1104
					CAC His											1152
					AGC Ser											1200
					TCC Ser											1248
GCC Ala	AGT Ser 255	CCG Pro	AGT Ser	CCC Pro	ATC Ile	CGC Arg 260	ACC Thr	CCT Pro	CGG Arg	GCA Ala	GTG Val 265	AGG Arg	CCA Pro	CTG Leu	AGG Arg	1296

AGG Arg 270	AGG Arg	CAG Gln	CCG Pro	AAG Lys	AAA Lys 275	AGC Ser	AAC Asn	GAG Glu	CTG Leu	CCG Pro 280	CAG Gln	GCC Ala	AAC Asn	CGA Arg	CTC Leu 285	1344
	GGG Gly															1392
	CGG Arg															1440
	GTC Val															1488
	TCC Ser 335															1536
	CAG Gln															1584
	TGT Cys															1632
	AGC Ser															1680
	TGC Cys				T GA	AGTC	AGCC	C GC	CCAG	CCCT	ACT	GCAG				1723

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 402 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A)OTHER INFORMATION: /product= "hOP2-PP"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Met Thr Ala Leu Pro Gly Pro Leu Trp Leu Leu Gly Leu Ala Leu Cys
1 10 15

Ala Leu Gly Gly Gly Pro Gly Leu Arg Pro Pro Pro Gly Cys Pro
20 25 30

Gln Arg Arg Leu Gly Ala Arg Glu Arg Arg Asp Val Gln Arg Glu Ile 35 40 45

Leu Ala Val Leu Gly Leu Pro Gly Arg Pro Arg Pro Arg Ala Pro Pro 50 55 60

Ala Ala Ser Arg Leu Pro Ala Ser Ala Pro Leu Phe Met Leu Asp Leu 65 70 75 80

Tyr His Ala Met Ala Gly Asp Asp Glu Asp Gly Ala Pro Ala Glu 85 90 95

Arg Arg Leu Gly Arg Ala Asp Leu Val Met Ser Phe Val Asn Met Val

Glu Arg Asp Arg Ala Leu Gly His Gln Glu Pro His Trp Lys Glu Phe 115 120 125

Arg Phe Asp Leu Thr Gln Ile Pro Ala Gly Glu Ala Val Thr Ala Ala 130 135 140

Glu Phe Arg Ile Tyr Lys Val Pro Ser Ile His Leu Leu Asn Arg Thr 145 150 155 160

Leu His Val Ser Met Phe Gln Val Val Gln Glu Gln Ser Asn Arg Glu 165 170 175

Ser Asp Leu Phe Phe Leu Asp Leu Gln Thr Leu Arg Ala Gly Asp Glu 180 185 190

Gly Trp Leu Val Leu Asp Val Thr Ala Ala Ser Asp Cys Trp Leu Leu 195 200 205

Lys	Arg 210	His	Lys	Asp	Leu	Gly 215	Leu	Arg	Leu	Tyr	Val 220	Glu	Thr	Glu	Asp
Gly 225	His	Ser	Val	Asp	Pro 230	Gly	Leu	Ala	Gly	Leu 235	Leu	Gly	Gln	Arg	Ala 240
Pro	Arg	Ser	Gln	Gln 245	Pro	Phe	Val	Val	Thr 250	Phe	Phe	Arg	Ala	Ser 255	Pro
Ser	Pro	Ile	Arg 260	Thr	Pro	Arg	Ala	Val 265	Arg	Pro	Leu	Arg	Arg 270	Arg	Gln
Pro	Lys	Lys 275	Ser	Asn	Glu	Leu	Pro 280	Gln	Ala	Asn	Arg	Leu 285	Pro	Gly	Ile
Phe	Asp 290	Asp	Val	His	Gly	Ser 295	His	Gly	Arg	Gln	Val 300	Cys	Arg	Arg	His
Glu 305	Leu	Tyr	Val	Ser	Phe 310	Gln	Asp	Leu	Gly	Trp 315		Asp	Trp	Val	Ile 320
Ala	Pro	Gln	Gly	Tyr 325	Ser	Ala	Tyr	Tyr	Cys 330	Glu	Gly	Glu	Cys	Ser 335	Phe
Pro	Leu	Asp	Ser 340	Cys	Met	Asn	Ala	Thr 345	Asn	His	Ala	Ile	Leu 350	Gln	Ser
Leu	Val	His 355	Leu	Het	Lys	Pro	Asn 360	Ala	Val	Pro	Lys	Ala 365	Cys	Cys	Ala
Pro	Thr 370	Lys	Leu	Ser	Ala	Thr 375	Ser	Val	Leu	Tyr	Tyr 380	Asp	Ser	Ser	Asn
Asn 385	Val	Ile	Leu	Arg	Lys 390	His	Arg	Asn	Met	Val 395	Val	Lys	Ala	Cys	Gly 400
Cys	His														

(2)	LOMBALL	ON FOR S	EQ ID NO.	22.										
		(A) LEN (B) TYP (C) STR	CHARACTE GTH: 1926 E: nuclei ANDEDNESS OLOGY: li	base pa c acid : single	irs									
	(ii)	MOLECULE	TYPE: c	NA										
	` '	` '	SOURCE: ANISH: MU SUE TYPE:											
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 931289 (D) OTHER INFORMATION: /note= "mOP2 cDNA"														
	(xi)	SEQUENCE	DESCRIPT	ION: SEQ	ID NO:22:									
	GCCAGG	CACA GGT	GCGCCGT C	TGGTCCTC	C CCGTCTGG	CG TCAGCCGA	.GC 50							
CCGACCA	GCT ACC	AGTGGAT	GCGCGCCGG	C TGAAAG		CG GCT ATG C et Ala Met A 1								
		u Trp Le				GCG CTG GGA								
						CGT CGC CTG Arg Arg Leu 35								
	Glu Ar					GCG GTG CTC								
				Ala Gln		GCT GCC CGG Lla Ala Arg 65								
	Ser Al					CAC GCC ATG								
		p Gly Gl				GC CGT GCC Gly Arg Ala								

			AAC Asn					440
			AAG Lys					488
			ACA Thr					536
			AAC Asn 155					584
			AAC Asn					632
			GGG Gly					, 680
			TGG Trp					728
			ACC Thr					776
			CGA Arg 235					824
			GCC Ala					872
			AGG Arg					920
			CCA Pro					968
			CGC Arg					1016

GAC CTT GGC TGG CTG GAC TGG GTC ATC GCC CCC CAG GGC TAC TCT GCC Asp Leu Gly Trp Leu Asp Trp Val Ile Ala Pro Gln Gly Tyr Ser Ala 310 315 320	1064
TAT TAC TGT GAG GGG GAG TGT GCT TTC CCA CTG GAC TCC TGT ATG AAC Tyr Tyr Cys Glu Gly Glu Cys Ala Phe Pro Leu Asp Ser Cys Het Asn 325 330 340	1112
GCC ACC AAC CAT GCC ATC TTG CAG TCT CTG GTG CAC CTG ATG AAG CCA Ala Thr Asn His Ala Ile Leu Gln Ser Leu Val His Leu Het Lys Pro 345	1160
GAT GTT GTC CCC AAG GCA TGC TGT GCA CCC ACC AAA CTG AGT GCC ACC Asp Val Val Pro Lys Ala Cys Cys Ala Pro Thr Lys Leu Ser Ala Thr 360 365 370	1208
TCT GTG CTG TAC TAT GAC AGC AGC AAC AAT GTC ATC CTG CGT AAA CAC Ser Val Leu Tyr Tyr Asp Ser Ser Asn Asn Val Ile Leu Arg Lys His 375 380 385	1256
CGT AAC ATG GTG GTC AAG GCC TGT GGC TGC CAC TGAGGCCCCG CCCAGCATCC Arg Asn Met Val Val Lys Ala Cys Gly Cys His 390 395	1309
TGCTTCTACT ACCTTACCAT CTGGCCGGGC CCCTCTCCAG AGGCAGAAAC CCTTCTATGT	1369
TATCATAGCT CAGACAGGGG CAATGGGAGG CCCTTCACTT CCCCTGGCCA CTTCCTGCTA	1429
AAATTCTGGT CTTTCCCAGT TCCTCTGTCC TTCATGGGGT TTCGGGGCTA TCACCCCGCC	1489
CTCTCCATCC TCCTACCCCA AGCATAGACT GAATGCACAC AGCATCCCAG AGCTATGCTA	1549
ACTGAGAGGT CTGGGGTCAG CACTGAAGGC CCACATGAGG AAGACTGATC CTTGGCCATC	1609
CTCAGCCCAC AATGGCAAAT TCTGGATGGT CTAAGAAGGC CGTGGAATTC TAAACTAGAT	1669
GATCTGGGCT CTCTGCACCA TTCATTGTGG CAGTTGGGAC ATTTTTAGGT ATAACAGACA	1729
CATACACTTA GATCAATGCA TCGCTGTACT CCTTGAAATC AGAGCTAGCT TGTTAGAAAA	1789
AGAATCAGAG CCAGGTATAG CGGTGCATGT CATTAATCCC AGCGCTAAAG AGACAGAGAC	1849
AGGAGAATCT CTGTGAGTTC AAGGCCACAT AGAAAGAGCC TGTCTCGGGA GCAGGAAAAA	1909
AAAAAAAAC GGAATTC	1926

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 399 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (D) OTHER INFORMATION: /product= "mOP2-PP"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Met Ala Met Arg Pro Gly Pro Leu Trp Leu Leu Gly Leu Ala Leu Cys
1 5 10 15

Ala Leu Gly Gly Gly His Gly Pro Arg Pro Pro His Thr Cys Pro Gln 20 25 30

Arg Arg Leu Gly Ala Arg Glu Arg Arg Asp Met Gln Arg Glu Ile Leu Ala 35 40 45

Val Leu Gly Leu Pro Gly Arg Pro Arg Pro Arg Ala Gln Pro Ala Ala 50 55 60 65

Ala Arg Gln Pro Ala Ser Ala Pro Leu Phe Met Leu Asp Leu Tyr His Ala 70 75 80

Met Thr Asp Asp Asp Gly Gly Pro Pro Gln Ala His Leu Gly Arg 85 90 95

Ala Asp Leu Val Met Ser Phe Val Asn Met Val Glu Arg Asp Arg Thr 100 105 110

Leu Gly Tyr Gln Glu Pro His Trp Lys Glu Phe His Phe Asp Leu Thr 115 120 125 130

Gln Ile Pro Ala Gly Glu Ala Val Thr Ala Ala Glu Phe Arg Ile Tyr 135 140 145

Lys Glu Pro Ser Thr His Pro Leu Asn Thr Thr Leu His Ile Ser Met
150 155 160

Phe Glu Val Val Gln Glu His Ser Asn Arg Glu Ser Asp Leu Phe Phe 165 170 175

Leu Asp Leu Gln Thr Leu Arg Ser Gly Asp Glu Gly Trp Leu Val Leu 180 185 190

Asp Ile Thr Ala Ala Ser Asp Arg Trp Leu Leu Asm His His Lys Asp 195 200 205 210

Leu Gly	Leu Arg	Leu Tyr 215	Val Glu	Thr Ala 220	Asp Gly	His Ser	Met Asp 225
Pro Gly	Leu Ala 230		Leu Gly	Arg Gln 235	Ala Pro	Arg Ser 240	Arg Gln
Pro Phe	Met Val	Thr Phe	Phe Arg 250		Gln Ser	Pro Val 255	Arg Ala
Pro Arg 260		Arg Pro	Leu Lys 265	Arg Arg	Gln Pro 270	Lys Lys	Thr Asn
Glu Leu 275	Pro His	Pro Asn 280	•	Pro Gly	Ile Phe 285	Asp Asp	Gly His 290
Gly Ser	Arg Gly	Arg Glu 295	Val Cys	Arg Arg	His Glu	Leu Tyr	Val Ser 305
Phe Arg	Asp Leu 310		Leu Asp	Trp Val	. Ile Ala	Pro Gln 320	Gly Tyr
Ser Ala	Tyr Tyr 325	Cys Glu	Gly Glu 330	•	Phe Pro	Leu Asp 335	Ser Cys
Met Asn 340		Asn His	Ala Ile 345	Leu Gln	Ser Leu 350	Val His	Leu Met
Lys Pro 355	Asp Val	Val Pro 360	Lys Ala	Cys Cys	Ala Pro 365	Thr Lys	Leu Ser 370
Ala Thr	Ser Val	Leu Tyr 375	Tyr Asp	Ser Ser 380	Asn Asn	Val Ile	Leu Arg 385
Lys His	Arg Asn 390		Val Lys	Ala Cys 395	Gly Cys	His	

(2) INFORMATION FOR SEQ ID NO: 24:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1368 base pairs
 (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1368
 - (D) OTHER INFORMATION:/STANDARD NAME="60A"
- (x) PUBLICATION INFORMATION:
 - (A) AUTHORS: WHARTON, KRISTI A.; THOMSEN, GERALD H.; GELBERT, WILLIAM M.
 - (B) TITLE: DROSOPHILA 60A GENE...
 - (C) JOURNAL: PROC. NAT'L ACAD. SCI. USA
 - (D) VOLUME: 88
 - (E) RELEVANT RESIDUES IN SEQ ID NO:3: FROM 1 TO 1368
 - (F) PAGES: 9214-9218
 - (G) DATE: OCT 1991
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

A	TG et 1	TCG Ser	GGA Gly	CTG Leu	CGA Arg 5	AAC Asn	ACC Thr	TCG Ser	GAG Glu	GCC Ala 10	GTT Val	GCA Ala	GTG Val	CTC Leu	GCC Ala 15	TCC Ser	48
I	TG eu	GGA Gly	CTC Leu	GGA Gly 20	ATG Met	GTT Val	CTG Leu	CTC Leu	ATG Met 25	TTC Phe	GTG Val	GCG Ala	ACC Thr	ACG Thr 30	CCG Pro	CCG Pro	96
A	CC	GTT Val	GAG Glu 35	GCC Ala	ACC Thr	CAG Gln	TCG Ser	GGG Gly 40	ATT Ile	TAC Tyr	ATA Ile	GAC Asp	AAC Asn 45	GGC Gly	AAG Lys	GAC Asp	144
									AGC Ser								192
									GGC Gly								240
C	TG	AGC	AGC	CAC	CAG	TTG	TCG	CTG	AGG	AAG	TCG	GCT	ccc	AAG	TTC	CTG	288

Leu Ser Ser His Gln Leu Ser Leu Arg Lys Ser Ala Pro Lys Phe Leu

		CGC Arg						336
		TAC Tyr						384
		GAG Glu						432
		ATC Ile 150						480
		AAT Asn						528
		GTC Val						576
		ATC Ile						624
		TTC Phe						672
		ACC Thr 230						720
		TGG Trp						768
		TCG Ser						816
		CCC Pro						864
		GTG Val						912

						ACG Thr 315				960
						CGC Arg				1008
						CCG Pro				1056
 			 		 	TTC Phe	 		 	1104
						GGC Gly				1152
						ATG Met 395				1200
 	 		 		 	GAG Glu	 		 	1248
						GCA Ala				1296
						AAG Lys				1344
		GGG Gly		TGA				•		1368

(2) INFORMATION FOR SEQ ID NO: 25:

- SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 455 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- SEQUENCE DESCRIPTION: SEQ ID NO:25:

Met Ser Gly Leu Arg Asn Thr Ser Glu Ala Val Ala Val Leu Ala Ser Leu Gly Leu Gly Met Val Leu Leu Met Phe Val Ala Thr Thr Pro Pro Ala Val Glu Ala Thr Gln Ser Gly Ile Tyr Ile Asp Asn Gly Lys Asp Gln Thr Ile Met His Arg Val Leu Ser Glu Asp Asp Lys Leu Asp Val Ser Tyr Glu Ile Leu Glu Phe Leu Gly Ile Ala Glu Arg Pro Thr His Leu Ser Ser His Gln Leu Ser Leu Arg Lys Ser Ala Pro Lys Phe Leu

Leu Asp Val Tyr His Arg Ile Thr Ala Glu Glu Gly Leu Ser Asp Gln 105

Asp Glu Asp Asp Asp Tyr Glu Arg Gly His Arg Ser Arg Arg Ser Ala 115 120 125

Asp Leu Glu Glu Asp Glu Gly Glu Gln Gln Lys Asn Phe Ile Thr Asp

Leu Asp Lys Arg Ala Ile Asp Glu Ser Asp Ile Ile Met Thr Phe Leu 150

Asn Lys Arg His His Asn Val Asp Glu Leu Arg His Glu His Gly Arg

Arg Leu Trp Phe Asp Val Ser Asn Val Pro Asn Asp Asn Tyr Leu Val 185

Met Ala Glu Leu Arg Ile Tyr Gln Asn Ala Asn Glu Gly Lys Trp Leu

Thr Ala Asn Arg Glu Phe Thr Ile Thr Val Tyr Ala Ile Gly Thr Gly 210

Thr 225	Ĺeu	Gly	Gln	His	Thr 230	Het	Glu	Pro	Leu	Ser 235	Ser	Val	Asn	Thr	Thr 240
Gly	Asp	Tyr	Val	Gly 245	Trp	Leu	Glu	Leu	Asn 250	Val	Thr	Glu	Gly	Leu 255	His
Glu	Trp	Leu	Val 260	Lys	Ser	Lys	Asp	Asn 265	His	Gly	Ile	Tyr	Ile 270	Gly	Ala
His	Ala	Val 275	Asn	Arg	Pro	Asp	Arg 280	Glu	Val	Lys	Leu	Asp 285	Asp	Ile	Gly
Leu	Ile 290	His	Arg	Lys	Val	Asp 295	Asp	Glu	Phe	Gln	Pro 300	Phe	Het	Ile	Gly
Phe 305	Phe	Arg	Gly	Pro	Glu 310	Leu	Ile	Lys	Ala	Thr 315	Ala	His	Ser	Ser	His 320
His	Arg	Ser	Lys	Arg 325	Ser	Ala	Ser	His	Pro 330	Arg	Lys	Arg	Lys	Lys 335	Ser
Val	Ser	Pro	Asn 340	Asn	Val	Pro	Leu	Leu 345	Glu	Pro	Het	Glu	Ser 350	Thr	Arg
Ser	Cys	Gln 355	Het	Gln	Thr	Leu	Tyr 360	Ile	Asp	Phe	Lys	Asp 365	Leu	Gly	Trp
His	Asp 370	Trp	Ile	Ile	Ala	Pro 375	Glu	Gly	Tyr	Gly	Ala 380	Phe	Tyr	Cys	Ser
Gly 385	Glu	Cys	Asn	Phe	Pro 390	Leu	Asn	Ala	His	Met 395	Asn	Ala	Thr	Asn	His 400
Ala	Ile	Val	Gln	Thr 405	Leu	Val	His	Leu	Leu 410		Pro	Lys	Lys	Val 415	Pro
Lys	Pro	Cys	Cys 420	Ala	Pro	Thr	Arg	Leu 425	Gly	Ala	Leu	Pro	Val 430	Leu	Tyr
His	Leu	Asn 435	Asp	Glu	Asn	Val	Asn 440	Leu	Lys	Lys	Tyr	Arg 445	Asn	Met	Ile
Val	Lys 450	Ser	Cys	Gly	Cys	His 455									

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo Sapiens
- (ix) FEATURE:
 - (A) NAME/KEY: Protein
 - (B) LOCATION: 1..102
 - (D) OTHER INFORMATION: /note="BMP3"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 104 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME/KEY: Protein
 - (B) LOCATION: 1..104
 - (D) OTHER INFORMATION: /note="BMP3"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

Cys Ala Arg Arg Tyr Leu Lys Val Asp Phe Ala Asp Ile Gly Trp Ser 1 5 10 15

Glu Trp Ile Ile Ser Pro Lys Ser Phe Asp Ala Tyr Try Cys Ser Gly 20 25 30

Ala Cys Gln Phe Pro Het Pro Lys Ser Leu Lys Pro Ser Asn His Ala 35 40 45

Thr Ile Gln Ser Ile Val Ala Arg Ala Val Gly Val Val Pro Gly Ile 50 55 60

Pro Glu Pro Cys Cys Val Pro Glu Lys Met Ser Ser Leu Ser Ile Leu 65 70 75 80

Phe Phe Asp Glu Asn Lys Asn Val Val Leu Lys Val Tyr Pro Asn Met 85 90 95

Thr Val Glu Ser Cys Ala Cys Arg 100

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 102 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (vi) ORIGINAL SOURCE: (A) ORGANISM: HOMO SAPIENS
- (ix) FEATURE:
 - (A) NAME/KEY: Protein
 - (B) LOCATION: 1..102
 - (D) OTHER INFORMATION: /note= "BMP5"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

Cys Lys Lys His Glu Leu Tyr Val Ser Phe Arg Asp Leu Gly Trp Gln
1 5 10 15

Asp Trp Ile Ile Ala Pro Glu Gly Tyr Ala Ala Phe Tyr Cys Asp Gly 20 25 30

Glu Cys Ser Phe Pro Leu Asn Ala His Met Asn Ala Thr Asn His Ala 35 40 45

Ile Val Gln Thr Leu Val His Leu Met Phe Pro Asp His Val Pro Lys 50 55 60

Pro Cys Cys Ala Pro Thr Lys Leu Asn Ala Ile Ser Val Leu Tyr Phe 65 70 75 80

Asp Asp Ser Ser Asn Val Ile Leu Lys Lys Tyr Arg Asn Met Val Val 85 90 95

Arg Ser Cys Gly Cys His 100

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 102 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: HOMO SAPIENS
- (ix) FEATURE:
 - (A) NAME/KEY: Protein
 - (B) LOCATION: 1..102
 - (D) OTHER INFORMATION: /note= "BMP6"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

Cys Arg Lys His Glu Leu Tyr Val Ser Phe Gln Asp Leu Gly Trp Gln 1 5 10 15

Asp Trp Ile Ile Ala Pro Lys Gly Tyr Ala Ala Asn Tyr Cys Asp Gly 20 25 30

Glu Cys Ser Phe Pro Leu Asn Ala His Met Asn Ala Thr Asn His Ala 35 40 45

Ile Val Gln Thr Leu Val His Leu Met Asn Pro Glu Tyr Val Pro Lys 50 55 60

Pro Cys Cys Ala Pro Thr Lys Leu Asn Ala Ile Ser Val Leu Tyr Phe 65 70 75 80

Asp Asp Asn Ser Asn Val Ile Leu Lys Lys Tyr Arg Trp Met Val Val 85 90 95

Arg Ala Cys Gly Cys His 100

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 102 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME/KEY: Protein
 - (B) LOCATION: 1..102
 - (D) OTHER INFORMATION: /label= OPX
 /note= "WHEREIN XAA AT EACH POS'N IS INDEPENDENTLY
 SELECTED FROM THE RESIDUES OCCURRING AT THE
 CORRESPONDING POS'N IN THE C-TERMINAL SEQUENCE OF HOUSE
 OR HUMAN OP1 OR OP2 (SEE SEQ. ID NOS. 5,6,7 and 8 or
 16,18,20 and 22.)"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

Cys Xaa Xaa His Glu Leu Tyr Val Xaa Phe Xaa Asp Leu Gly Trp Xaa 1 10 15

Asp Trp Xaa Ile Ala Pro Xaa Gly Tyr Xaa Ala Tyr Tyr Cys Glu Gly 20 25 30

Glu Cys Xaa Phe Pro Leu Xaa Ser Xaa Met Asn Ala Thr Asn His Ala 35 40 45

Ile Xaa Gln Xaa Leu Val His Xaa Xaa Xaa Pro Xaa Xaa Val Pro Lys 50 55 60

Xaa Cys Cys Ala Pro Thr Xaa Leu Xaa Ala Xaa Ser Val Leu Tyr Xaa 65 70 75 80

Asp Xaa Ser Xaa Asn Val Xaa Leu Xaa Lys Xaa Arg Asn Met Val Val 85 90 95

Xaa Ala Cys Gly Cys His 100

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 97 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:

95

- (A) NAME: Generic Sequence 5
- (D) OTHER INFORMATION: wherein each Xaa is independently selected from a group of one or more specified amino acids as defined in the specification.

(xi)SEQUENCE DESCRIPTION: SEQ ID NO:30:

Leu Xaa Xaa Xaa Phe Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa 10 Xaa Xaa Pro Xaa Xaa Xaa Ala 15 20 Xaa Tyr Cys Xaa Gly Xaa Cys Xaa 25 Xaa Pro Xaa Xaa Xaa Xaa 35 Xaa Xaa Xaa Asn His Ala Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 50 Xaa Xaa Xaa Xaa Xaa Xaa Cys 55 Cys Xaa Pro Xaa Xaa Xaa Xaa 65 Xaa Xaa Xaa Leu Xaa Xaa Xaa 75 Xaa Xaa Xaa Xaa Val Xaa Leu Xaa 80 Xaa Xaa Xaa Xaa Met Xaa Val Xaa Xaa Cys Xaa Cys Xaa

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 102 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: Generic Sequence 6
 - (D) OTHER INFORMATION: wherein each Xaa is independently selected from a group of one or more specified amino acids as defined in the specification.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

Cys Xaa Xaa Xaa Xaa Leu Xaa Xaa Phe

1 5 10

Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa

15

Xaa Xaa Pro Xaa Xaa Xaa Ala

0 2

Xaa Tyr Cys Xaa Gly Xaa Cys Xaa

30

35

50

Xaa Pro Xaa Xaa Xaa Xaa

45

40

Xaa Xaa Xaa Asn His Ala Xaa Xaa

Xaa Xaa Xaa Xaa Xaa Xaa Xaa

55

Xaa Xaa Xaa Xaa Xaa Cys

60

Cys Xaa Pro Xaa Xaa Xaa Xaa

70

Xaa Xaa Xaa Leu Xaa Xaa Xaa

75 80

Xaa Xaa Xaa Xaa Val Xaa Leu Xaa

85

Xaa Xaa Xaa Xaa Met Xaa Val Xaa

90 9

Xaa Cys Xaa Cys Xaa

(2)	INFOR	RMATION FOR SEQ ID NO:32:	
	(i)	SEQUENCE CHARACTERISTICS:	
	(A)	LENGTH: 1238 base pairs, 372 amino acids	
	(B)	TYPE: nucleic acid, amino acid	
	(c)	STRANDEDNESS: single	
	(D)	TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
) ORIGINAL SOURCE:	
	(A)	ORGANISH: human	
	(F)	TISSUE TYPE: BRAIN	
		FEATURE:	
	(A)	NAME/KEY: CDS	
	(B)		
	(D)		
		/product= "GDF-1"	
		/note= "GDF-1 CDNA"	
	(x)	PUBLICATION INFORMATION:	
	(A)	AUTHORS: Lee, Se-Jin	
	(B)	TITTLE: Expression of Growth/Differentiation Factor 1	
	(Ĉ)	JOURNAL: Proc. Nat'l Acad. Sci.	
	(D)	VOLUME: 88	
	(E)	RELEVANT RESIDUES: 1-1238	
	$(\overline{\mathbf{F}})$	PAGES: 4250-4254	
	(Ġ)	DATE: May-1991	
	(xi)		
GGGGA	CACCG G	GCCCCGCCCT CAGCCCACTG GTCCCGGGCC GCCGCGGACC CTGCGCACTC	60
ጥርጥር (יייראייר ר	GCCTGGGAGG AAG ATG CCA CCG CCG CAG CAA GGT CCC TGC GGC	113
TCTGG	JICAIC C	Met Pro Pro Gln Gln Gly Pro Cys Gly 1 5 10	
	CAC C	CAC CTC CTC CTC CTG GCC CTG CTG CTG CCC TCG CTG CCC	158
	His H	His Leu Leu Leu Leu Leu Leu Leu Leu Pro Ser Leu Pro	
		15 20 25	
	CTG A	ACC CGC GCC CCC GTG CCC CCA GGC CCA GCC GCC GCC CTG CTC	203
	Leu 1	Thr Arg Ala Pro Val Pro Pro Gly Pro Ala Ala Leu Leu	
		30 35 40	
	CAG	GCT CTA GGA CTG CGC GAT GAG CCC CAG GGT GCC CCC AGG CTC	248
	Gln	Ala Leu Gly Leu Arg Asp Glu Pro Gln Gly Ala Pro Arg Leu	
	·	50	

CGG Arg	CCG Pro	GTT Val	CCC Pro	CCG Pro 60	GTC Val	ATG Het	TGG Trp	CGC Arg	CTG Leu 65	TTT Phe	CGA Arg	CGC Arg	CGG Arg	GAC Asp 70	293
CCC Pro	CAG Gln	GAG Glu	ACC Thr	AGG Arg 75	TCT Ser	GGC Gly	TCG Ser	CGG Arg	CGG Arg 80	ACG Thr	TCC Ser	CCA Pro	GGG Gly	GTC Val 85	338
ACC Thr	CTG Leu	CAA Gln	CCG Pro	TGC Cyc 90	CAC His	GTG Val	GAG Glu	GAG Glu	CTG Leu 95	GGG Gly	GTC Val	GCC Ala	GGA Gly	AAC Asn 100	383
ATC Ile	GTG Val	CGC Arg	CAC His	ATC Ile 105	CCG Pro	GAC Asp	CGC Arg	GGT Gly	GCG Ala 110	CCC Pro	ACC Thr	CGG Arg	GCC Ala	TCG Ser 115	428
GAG Glu	CCT Pro	GTC Val	TCG Ser	GCC Ala 120	GCG Ala	GGG Gly	CAT His	TGC Cys	CCT Pro 125	GAG Glu	TGG Trp	ACA Thr	GTC Val	GTC Val 130	473
TTC Phe	GAC Asp	CTG Leu	TCG Ser	GCT Ala 135	GTG Val	GAA Glu	CCC Pro	GCT Ala	GAG Glu 140	CGC Arg	CCG Pro	AGC Ser	CGG Arg	GCC Ala 145	518
CGC Arg	CTG Leu	GAG Glu	CTG Leu	CGT Arg 150	TTC Phe	GCG Ala	GCG Ala	GCG Ala	GCG Ala 155	GCG Ala	GCA Ala	GCC Ala	CCG Pro	GAG Glu 160	563
GGC Gly	GGC Gly	TGG Trp	GAG Glu	CTG Leu 165	AGC Ser	GTG Val	GCG Ala	CAA Gln	GCG Ala 170	GGC Gly	CAG Gln	GGC Gly	GCG Ala	GGC Gly 175	608
GCG Ala	GAC Asp	CCC	GGG Gly	CCG Pro 180	GTG Val	CTG Leu	CTC Leu	CGC Arg	CAG Gln 185	TTG Leu	GTG Val	CCC Pro	GCC Ala	CTG Leu 190	653
GGG Gly	CCG Pro	CCA Pro	GTG Val	CGC Arg 195	GCG Ala	GAG Glu	CTG Leu	CTG Leu	GGC Gly 200	GCC Ala	GCT Ala	TGG Trp	GCT Ala	CGC Arg 205	698
AAC Asn	GCC Ala	TCA Ser	TGG Trp	CCG Pro 210	Arg	AGC Ser	CTC Leu	CGC Arg	CTG Leu 215	Ala	CTG Leu	GCG Ala	CTA Leu	CGC Arg 220	743
CCC Pro	CGG Arg	GCC Ala	CCT Pro	GCC Ala 225	Ala	TGC Cys	GCG Ala	CGC Arg	CTG Leu 230	Ala	GAG Glu	GCC	TCG Ser	CTG Leu 235	788
CTG Leu	CTG Leu	GTG Val	ACC	CTC Leu 240	Asp	CCG Pro	CGC Arg	CTG Leu	TGC Cys 245	His	CCC	CTG Leu	GCC Ala	CGG Arg 250	833

											CCC			878
											CAG Glu			923
											GCC Ala			968
											GGG Gly			1013
											CTC Leu			1058
											GTG Val			1103
											AGC Ser			1148
											GAG Glu			1193
CGC Arg 372	TAA	CCCG	GGG (CGGG	CAGG	GA C	CCGG	GCCCA	A ACA	ATA	AATG	CCG	CGTGG	1238

(34) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 372 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (i♥) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (F) TISSUE TYPE: BRAIN
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION:
 - (D) OTHER INFORMATION: /function= /product= "GDF-1"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

Met Pro Pro Pro Gln Gln Gly Pro Cys Gly
1 5 10

His His Leu Leu Leu Leu Leu Leu Leu Leu Pro Ser Leu Pro 15 20 25

Leu Thr Arg Ala Pro Val Pro Pro Gly Pro Ala Ala Ala Leu Leu
30 35 40

Gln Ala Leu Gly Leu Arg Asp Glu Pro Gln Gly Ala Pro Arg Leu
45 50 55

Arg Pro Val Pro Pro Val Met Trp Arg Leu Phe Arg Arg Arg Asp 60 65 70

Pro Gln Glu Thr Arg Ser Gly Ser Arg Arg Thr Ser Pro Gly Val
75 80 85

Thr Leu Gln Pro Cyc His Val Glu Glu Leu Gly Val Ala Gly Asn 90 95 100

Ile Val Arg His Ile Pro Asp Arg Gly Ala Pro Thr Arg Ala Ser 105 110 115

Glu	Pro	Val	Ser	Ala 120	Ala	Gly	His	Cys	Pro 125	Glu	Trp	Thr	Val	Val 130
Phe	Asp	Leu	Ser	Ala 135	Val	Glu	Pro	Ala	Glu 140	Arg	Pro	Ser	Arg	Ala 145
Arg	Leu	Glu	Leu	Arg 150	Phe	Ala	Ala	Ala	Ala 155	Ala	Ala	Ala	Pro	Glu 160
Gly	Gly	Trp	Glu	Leu 165	Ser	Val	Ala	Gln	Ala 170	Gly	Gln	Gly	Ala	Gly 175
Ala	Asp	Pro	Gly	Pro 180	Val	Leu	Leu	Arg	Gln 185	Leu	Val	Pro	Ala	Leu 190
Gly	Pro	Pro	Val	Arg 195	Ala	Glu	Leu	Leu	Gly 200	Ala	Ala	Trp	Ala	Arg 205
Asn	Ala	Ser	Trp	Pro 210	Arg	Ser	Leu	Arg	Leu 215	Ala	Leu	Ala	Leu	Arg 220
Pro	Arg	Ala	Pro	Ala 225	Ala	Cys	Ala	Arg	Leu 230	Ala	Glu	Ala	Ser	Leu 235
Leu	Leu	Val	Thr	Leu 240	Asp	Pro	Arg	Leu	Cys 245	His	Pro	Leu	Ala	Arg 250
Pro	Arg	Arg	Asp	Ala 255	Glu	Pro	Val	Leu	Gly 260	Gly	Gly	Pro	Gly	Gly 265
Ala	Cys	Arg	Ala	Arg 270	Arg	Leu	Tyr	Val	Ser 275	Phe	Arg	Glu	Val	Gly 280
Trp	His	Arg	Trp	Val 285	Ile	Arg	Pro	Arg	Gly 290	Phe	Leu	Ala	Asn	Tyr 295
Cys	Gln	Gly	Gln	Cys 300	Ala	Leu	Pro	Val	Ala 305	Leu	Ser	Gly	Ser	Gly 310
Gly	Pro	Pro	Ala	Leu 315	Asn	His	Ala	Val	Leu 320	Arg	Ala	Leu	Het	His 325
Ala	Ala	Ala	Pro	Gly 330	Ala	Ala	Asp	Leu	Pro 335	Cys	Cys	Val	Pro	Ala 340
Arg	Leu	Ser	Pro	Ile 345	Ser	Val	Leu	Phe	Phe 350	Asp	Asn	Ser	Asp	Asn 355
Val	Val	Leu	Arg	Gln 360	Tyr	Glu	Asp	Met	Val 365	Val	Asp	Glu	Cys	Gly 370
Cys	Arg 372													

What is claimed is:

1. A method of screening candidate compounds for the ability to modulate the effective concentration of a morphogen in an organism, said method comprising

incubating a candidate compound with cells from a test tissue type known to produce a morphogen for a time sufficient to allow said compound to affect the production of said morphogen, and

assaying said cells for a parameter indicative of a change in the level of production of said morphogen.

- 2. The method of claim 1 wherein said morphogen is OP-1.
- 3. The method of claim 2 wherein said test tissue type is a human renal-derived tissue.
- 4. The method of claim 3 wherein said renal-derived tissue is a kidney or bladder-derived tissue.
- 5. The method of claim 2 wherein said test tissue type is adrenal-derived tissue.
- 6. The method of claim 1 wherein said morphogen is GDF-1.
- 7. The method of claim 6 wherein said test tissue type is derived from human nerve tissue.

- 8. The method of claim 7 wherein said nerve tissue is brain-derived tissue.
- 9. The method of claim 1 wherein said morphogen is DPP.
- 10. The method of claim 9 wherein said test tissue type is derived from one of the following drosophila tissues: dorsal ectoderm, epithelial imaginal disc visceral mesoderm, or gut endoderm.
- 11. The method of claim 1 wherein said morphogen is Vgr-1.
- 12. The method of claim 11 wherein said test tissue type is mouse lung tissue.
- 13. The method of claim 1 wherein said morphogen is Vgl.
- 14. The method of claim 13 wherein said test tissue type is xenopus fetal endoderm tissue.
- 15. A method of assessing a tissue of an organism for its level of production of a morphogen and for screening candidate compounds for the ability to modulate the effective concentration of said morphogen produced by cells of said tissue, said method comprising

selecting a test tissue type producing a high level of morphogen relative to the level of morphogen produced by other tissue types;

incubating a candidate compound with cultured cells of said selected tissue type for a time sufficient to allow said compound to affect the production of said morphogen; and

assaying said selected tissue cells for a parameter indicative of a change in the level of production of said morphogen.

- 16. The method of claim 1 or 15 wherein said parameter indicative of the level of said morphogen is determined using an antibody specific for said morphogen.
- 17. The method of claim 1 or 15 wherein said parameter indicative of the level of said morphogen is determined by measuring cellular proliferation in cells which are sensitive to the concentration of secreted OP-1.
- 18. The method of claim 1 or 15 wherein said parameter indicative of the level of said morphogen is determined using a nucleic acid probe that hybridizes under stringent conditions with nucleic acid encoding said morphogen.
- 19. The method of claim 18 wherein said morphogen comprises a minimally active core C-terminal region comprising at least six cysteine residues, and said nucleic acid probe hybridizes with an mRNA encoding a region N-terminal to said core region.
- 20. The method of claim 18 wherein said morphogen comprises a minimally active core C-terminal region

comprising at least six cysteine residues, and said nucleic acid probe hybridizes with an mRNA encoding a region 3' to said core region.

Fig. 1

0.24-

1 2 1 2 1 2 1 2

Fig. 2

3/3

Fig. 3

	01 05 05							
		ECT MATTER (if several classification sy						
		Classification (IPC) or to both National Cl	assification and IPC					
Int.Cl. 5	C12Q1/02	; G01N33/68						
O. FTELDS SEAR	CHED							
		Minimum Docume	ntation Searched					
Classification Sys	st ag		Classification Symbols					
Int.Cl. 5		C12Q; GO1N;	CO7K					
								
		Documentation Searched other to the Extent that such Documents a						
		(0 the Extent that such Duckhents a	Le libridates in the Lines desirates					
				j				
•								
III. DOCUMENT	S CONSIDERE	D TO BE RELEVANT						
Category °	Citation of D	ocument, 11 with indication, where appropria	te, of the relevant passages 12	Relevant to Claim No.13				
			· · · · · · · · · · · · · · · · · · ·					
x	JOHENAL	OF BONE AND MINERAL RE	SEARCH	1,15,18				
^		no. 7, July 1991,		-,,				
		67 - 777						
	H.ZHOU							
Y	see abs	— · · · — ·	•	6				
		e 768, left column, lin	e 22 - line					
	55							
	see pag	e 771, right column, li	ne 12 - page					
	772, le	ft column, line 8						
	see pag	e 774, right column, li	ne 4 - line					
	44							
ļ			•					
			-/					
Ì								
	•							
9 Sandal anter	ories of cited do		"T" later document sublished after the interna	tional filing date				
		neral state of the art which is not	or priority date and not in conflict with the	e application but				
	to be of partic		invention	and the state of t				
"E" earlier do		ished on or after the international	"X" document of particular relevance; the claim					
"L" document	which may thro	w doubts on priority claim(s) or	involve an inventive step					
	which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the							
"O" document	referring to an	oral disclessive, use, exhibition or	document is combined with one or more of ments, such combination being obvious to	ther such docu-				
other men		to the international filing date but	in the art.	- param				
	the priority dat		"A" document member of the same patent fam	Щy				
IV. CERTIFICAT	10N							
		the International Search	Date of Mailing of this International Sear	ch Report				
	· · · · · · · · · · · · · · · · · · ·			•				
	09 DECEM	BER 1992	7 3 , 01, 93					
letenesis - 1 C :	A saakte-		Signature of Authorized Officer					
International Sear	•		LUZZATTO E.R.	İ				
	EUROPE	AN PATENT OFFICE	LUZZATIU E.R.					

Ш. DOCUN	MENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)	
Category °	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
x	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA. vol. 86, June 1989, WASHINGTON US pages 4554 - 4558 K.LYONS ET AL. cited in the application see abstract see page 4557, left column, line 34 - page 4558, line 18; figure 5	1,11,15,
x	WO,A,9 102 744 (CELTRIX LABORATORIES) 7 March 1991 see page 1, line 1 - page 3, line 34 see page 29, line 1 - line 28	15,16
Y	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA. vol. 88, May 1991, WASHINGTON US pages 4250 - 4254 SJ. LEE see abstract	6
r	WO,A,9 000 619 (UNIVERSITY COLLEGE LONDON) 25 January 1990 see page 1, line 1 - page 2, line 18 see page 4, line 14 - page 14, line 10	1,15
P,Y	BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. vol. 179, no. 1, 30 August 1991, DULUTH, MINNESOTA US pages 116 - 123 E. ÖZKAYANAK ET AL. see the whole document	1,15

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO. US 9207359 SA 64596

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 09/12/92

Patent document cited in search report	Publication date	I	atent family member(s)	Publication date	
WO-A-9102744	07-03-91	AU-A- 6187090 CA-A- 2064878 EP-A- 0489062		03-04-91 22-02-91 10-06-92	
WO-A-9000619	25-01-90	JP-T-	3505669	12-12-91	