11 曲線のエネルギーとその変分

- 11.1 M を完備 Riemann 多様体とし、N を M の閉部分多様体とする。p を N 上にない M の点とする。 $d(p,N)=\inf_{q'\in N}d(p,q')$ とおく.
 - (1) d(p,q) = d(p,N) をみたす $q \in N$ が存在することを示せ. [ヒント: Hopf-Rinow の定理により有界閉集合はコンパクト.]
 - (2) (1) のような q に対して p と q を結ぶ最短測地線 γ を任意に一つとる. γ が N に 直交することを示せ. [ヒント:曲線 γ の最短性を直接利用してもよいが,ここで はエネルギーを使う方針を示す.直交しないとする.そのとき始点 p を固定する γ の変分 (γ_s) で,変分ベクトル場 V が $\langle V(b),\dot{\gamma}(b)\rangle < 0$ をみたすようなものをとれる. ある $s=s_0$ が存在して $E(\gamma_{s_0})< E(\gamma)$ であることを示し, γ が最短測地線であること と合わせて矛盾を導け.]
- 11.2 (1) V を向きづけられた奇数次元実計量ベクトル空間とする。向きを保つ任意の直交変換 $\varphi: V \to V$ に対し, $\varphi(v) = v$ をみたす 0 でないベクトル $v \in V$ が存在することを示せ.
 - (2) (M,g) を向きづけられた偶数次元 Riemann 多様体とし、断面曲率が正である*とする. 任意の閉測地線 γ に対し、 γ がそれよりも短い閉曲線にホモトピックであることを示せ[†]. [ヒント: 仮定と (1) により、閉測地線 γ に沿って非自明な平行ベクトル場 V = V(t) をとることができる. V を変分ベクトル場とする γ の変分 (γ_s) をとる(ただし各 γ_s も閉曲線とする). エネルギー $E(s) = E(\gamma_s)$ について E'(0) = 0, E''(0) < 0 を示し、利用せよ.]

^{*}各点 $p \in M$ におけるすべての 2 次元部分空間 $\sigma \subset T_pM$ に対し $K(\sigma) > 0$ であるという意味.

^{†(}なめらかな)閉曲線 $\gamma:[a,b]\to M$ とは、始点 $\gamma(a)$ と終点 $\gamma(b)$ が一致していて、しかも $t\in\mathbb{R}$ に対して

 $[\]tilde{\gamma}(t) = \gamma(t - k(b - a)),$ ただし $t \in \mathbb{Z}$ は $t - k(b - a) \in [a, b]$ となるように選ぶ

と定めたとき $\tilde{\gamma}:\mathbb{R}\to M$ がなめらかな曲線であるようなもの. 円周 S^1 からの C^∞ 級写像のことだといってもよい. さらに上記の $\tilde{\gamma}$ が測地線であるとき,閉曲線 γ は(閉)測地線であるという.