

Исследование алгоритмов БПФ и их параллельных форм

Выполнил: студент группы М9123-09.04.04рпис, А.В. Марков

Научный руководитель: Доцент департамента ПИиИИ, к.т.н., А.А. Чусов

Актуальность работы

- БПФ **основной инструмент** в цифровой обработке сигналов: изображения, аудио, видео, радиосвязь
- Объем обрабатываемых данных стремительно растет требуется всё более быстрые алгоритмы для анализа
- Классические алгоритмы БПФ плохо масштабируются важно адаптировать их **под многопроцессорные архитектуры**

Цель и задачи

Цель:

Разработка и исследование параллельных реализаций алгоритмов БПФ.

Задачи:

- 1. Подготовить обзор алгоритмов БПФ и существующих библиотек
- 2. Выполнить анализ предметной области
- 3. Разработать математические модели параллельных схем БПФ
- 4. Реализовать алгоритмы и выполнить эксперименты
- 5. Исследовать производительность в различных ситуациях
- 6. Сформулиовать практические выводы по результатам исследования

Принцип работы ДПФ

Прямое ДПФ:
$$X[k] = \sum_{n=0}^{N-1} x[n] \cdot e^{-2\pi i \frac{kn}{N}}, \quad k=0,1,\dots,N-1$$

Обратное ДПФ:
$$x[n] = rac{1}{N} \sum_{k=0}^{N-1} X[k] \cdot e^{2\pi i rac{kn}{N}}, \quad n=0,1,\dots,N-1$$

Обзор существующих алгоритмов

Алгоритм	Ключевые особенности				
Кули– Тьюки	Базовый алгоритм; эффективен при длине $N=2^k$				
Райдера	Предназначен для простых чисел N ; преобразует ДПФ в свёртку				
Блюстайна	Работает с произвольной длиной N				
Стокхама	Итеративная структура; эффективен по памяти и легко распараллеливается				
Гуда– Томаса	Основан на КТО; не требует поворотных множителей; эффективен при взаимно простых множителях $N=N_1\cdot N_2$				

Сравнение библиотек БПФ

Характеристика \ Библиотека	FFTW	cuFFT	TurboFFT	NumPy/SciPy	PyCUDA/Numba
Поддержка CPU	+	_	_	+	_
Поддержка GPU	_	+	+	_	+
Высокая производительность	+	+	+	_	+
Оптимизация под архитектуру	+	_	+	_	_
Параллелизм (многопоточность)	+	_	+	+ (BLAS)	_
Аппаратная оптимизация	_	+	+	_	+

Метрики оценки эффективности

1. Время выполнения:

$$T_{total} = O\left(rac{C}{P}
ight) + T_{comm}(N,P)$$

2. Энергопотребление CPU:

$$E_{total}(P) = T_{total} \cdot P \cdot E_{CPU}$$

3. Энергоэффективность CPU:

$$\eta(P) = rac{C}{E_{total}(P)}$$

Разработанные схемы

Архитектура системы

- Язык реализации: С++
- Поддержка многопоточности (OpenMP + std::thread)
- Визуализация и анализ результатов в Jupyter Notebook
- Компоненты:
 - Генератор последовательностей
 - Исполнитель алгоритмов
 - Измерители (время, энергопотребление)

Реализация

- Объектно-ориентированный подход (С++)
- Интерфейс алгоритмов: IFourierTransform
- Интерфейс измерителей: IMeasurer
- Визуализация при помощи библиотек: matplotlib, pandas

Архитектурно-контекстная диаграмма

Экспериментальное тестирование

- Наборы данных:
 - Синусоидальные сигналы
 - Случайные и импульсные последовательности
- Метрики:
 - Время выполнения
 - Энергопотребление

Исследование

- Масштабируемость с увеличением числа потоков
- Эффективность алгоритмов:
 - ∘ При малых N Стокхам
 - При больших N Кули–Тьюки с произвольным основанием
- Энергосбережение с приближенными методами

Заключение

- 1. Подготовлен обзор алгоритмов БПФ и существующих библиотек
- 2. Выполнен анализ предметной области
- 3. Разработаны математические модели параллельных схем БПФ
- 4. Реализованы алгоритмы и выполнить эксперименты
- 5. Исследована производительность в различных ситуациях
- 6. Сформулированы практические выводы по результатам исследования

Цель достигнута, задачи решены

Практическая и научная значимость

- Практическая:
 - Оптимизация БПФ для многопроцессорных систем.
 - Возможность адаптации под разные архитектуры
- Научная:
 - Расширение моделей оценки эффективности
 - Анализ приближённых методов и их применимости

Спасибо за внимание!