7 Pushdown Automata

[Linz § 7, Kozen L. 23]

The Problem:

We have a **correspondence** between **regular languages** and **DFA's/NFA's**But (so far) not with **CFL's** and — (What??)

The **problem** is that for **CFL's** e.g. $\{a^nb^n \mid n \ge 0\}$ an "automaton" would require unbounded memory.

The Solution:

A finite automaton with **unbounded memory** in the form of a **stack** i.e. a **pushdown automaton (PDA)**

It turns out we need **nondeterministic PDA's (NPDA's)**

An **NPDA** is like an **NFA** except that it has a **stack**.

 \boldsymbol{B}

上

Input File

• Pops (and reads) the top of the stack (A)

At each step, M:

- Depending on this (A), input (a_3) and state
 - pushes sequence of symbols on stack
 - **moves read head** 1 cell to the right
 - Enters **new state** (according to **transition rules**)

Also λ -transitions: just pop and push (NOT read cell or move head)

Formal definition: An **NPDA** is a 7-tuple:

$$M = (Q, \Sigma, \Gamma, \delta, s, \perp, F)$$

where

Q: set of states

 Σ : **input** alphabet

Γ: **stack** alphabet

 δ : transition function

 $s \in Q$: start state

 $\bot \in \Gamma$: initial stack symbol

 $F \subseteq Q$: set of **final states**, and

 $\delta: Q \times (\Sigma \cup \{\lambda\}) \times \Gamma \rightarrow \mathfrak{P}_{fin}(Q \times \Gamma^*)$

where $\mathcal{P}_{fin}(X) = \text{set of finite subsets of } X$.

This is where **nondeterminism** comes in!

Notation: $\alpha, \beta, ...$ for elements of Γ^* , i.e. sequence of stack items.

Notation for Transition Function:

$$\delta: Q \times (\Sigma \cup \{\lambda\}) \times \Gamma \longrightarrow \mathcal{P}_{\text{fin}}(Q \times \Sigma^*)$$

If
$$(q, \alpha) \in \delta(p, a, A)$$

we write

$$\delta:(p,a,A)\longrightarrow(q,\alpha)$$

This is a **transition** of M.

Notation:
$$s, p, q, (f) \in Q$$

$$a, b, \ldots \in \Sigma$$

$$\bot, A, B, \ldots \in \Gamma$$

$$\alpha, \beta, \ldots \in \Gamma^*$$

s: start state

So the transition

$$\delta:(p,a,A)\longrightarrow(q,B_1...B_k)\quad (k\geq 0)$$

means:

pop A, push B_1, \ldots, B_k (B_k first, B_1 last), move head right 1 cell, enter q. and

$$\delta:(p,\lambda,A)\longrightarrow(q,B_1\ldots B_k)\quad (k\geq 0)$$

means:

pop
$$A$$
,
push B_1, \ldots, B_k (B_k first, B_1 last),
enter q .

Configurations

[Linz: "Instantaneous descriptions"]

A configuration of M is a triple

$$(p, u, \alpha) \in Q \times \Sigma^* \times \Gamma^*$$

p = current state,

u = unread part of input $(a_3 \dots a_n \text{ in the diagram})$

 $\alpha = \text{current stack contents}$ (ABCB \perp in the diagram)

A **configuration** gives **complete info** about the **current state** of M during computation.

With input u, the start configuration is:

 (s, u, \perp)

Next configuration relation: \vdash (or \vdash_M)

(a) Suppose
$$\delta:(p,a,A)\longrightarrow(q,\alpha)$$

Then
$$(p, av, A\beta) \vdash (q, v, \alpha\beta)$$

(b) Suppose
$$\delta:(p,\lambda,A)\longrightarrow(q,\alpha)$$

Then
$$(p, v, A\beta) \vdash (q, v, \alpha\beta)$$

Configuration changes over a number of steps:

For **configurations** C, C', ...

Define $C \stackrel{n}{\vdash} C'$ for $n \ge 0$, by **induction** on n:

$$C \stackrel{0}{\vdash} C' \iff C = C'$$

$$C \stackrel{n+1}{\vdash} C' \iff C \stackrel{n}{\vdash} C'' \stackrel{1}{\vdash} C'$$

for some C''.

Then,
$$C \stackrel{*}{\vdash} C' \iff C \stackrel{n}{\vdash} C'$$
 for some $n = 0, 1, ...$

Note:

 $\stackrel{*}{\vdash}$ is the **transitive-reflexive closure** of \vdash .

A configuration sequence for M is a sequence

$$C = C_1 \underset{M}{\vdash} C_2 \underset{M}{\vdash} \dots \underset{M}{\vdash} C_n = D$$

i.e., $C \underset{M}{\vdash} D$

where C is the **initial configuration** (s, u, \bot) and D is the **final configuration** (q, λ, α) .

So the language accepted by M is:

$$L(M) = \{u \in \Sigma^* \mid (s, u, \bot) \stackrel{*}{\vdash} (q, \lambda, \alpha) \text{ where } q \in F\}$$

i.e., the set of all strings over Σ that can put M into a **final state** at the end of the string.

Notes:

- (1) α at the end is irrelevant.
- (2) If the stack is empty at any stage, M must stop there!
- (3) We write **PDA** for **NPDA**.

Example 1: Give a PDA which accepts

$$L = \{w \in \{a, b\}^* \mid n_a(w) = n_b(w)\}$$

Define M:

$$Q = \{s, f\}$$

 $\Sigma = \{a, b\}$
 $\Gamma = \{\bot, A, B\}$
 $F = \{f\}$

 δ :

- $(1) \quad (s, a, \bot) \longrightarrow (s, A \bot)$
- (2) $(s, a, A) \longrightarrow (s, AA)$ 'A' pushed on stack
- (3) $(s, a, B) \longrightarrow (s, \lambda)$ 'a' cancels 'B' on top of stack!
- $(4) \quad (s, b, \bot) \longrightarrow (s, B\bot)$
- (5) $(s, b, B) \longrightarrow (s, BB)$ 'B' pushed on stack
- (6) $(s, b, A) \longrightarrow (s, \lambda)$ 'b' cancels 'A'!
- (7) $(s, \lambda, \bot) \longrightarrow (f, \lambda)$ Successful! Get ' \bot ' at end of word!

Notes:

- (1) At any stage, stack contains:
- \perp plus **either** all A's: excess of 'a' so far in w or all B's: excess of 'b' so far in w

- (2) At the end (i.e. reading ' λ '): want the stack to have only ' \perp '
- (3) There is **no transition** from (s, λ, A) or (s, λ, B) These mean **excess** of 'a' or 'b' at end of word!
- (4) Check: does this work for the empty word? Yes! Just use (7).