Ben Hammond

Physics Period 3

Dr. Kosic

250321

Speed of Sound Lab

Ben Hammond

Physics Period 3

Dr. Kosic

250321

Pre-Lab Questions

1. Harmonics practice questions.

a. The tube will resonate at $L = n\lambda/4$, when n = 1, 3, 5, 7, etc. Sketch wavelengths in the diagrams of the open ended tubes to show resonance at $L = \lambda/4$, $L = 3\lambda/4$, and $L = 5\lambda/4$. You may want to refer to your book.

b. Look up the terms rarefaction and compression and label where these occur in the diagram represented by $L = 5\lambda/4$.

c. Look up the terms anti-node and node and label where these occur in the same diagram.

- 2. The velocity of sound in air in meters per second is modeled by the equation v = 331 + 0.6T where "T" is in degrees Celsius.
- a. Use the temperature probe to record the temperature near your apparatus. Record your finding.

21°C

b. Calculate the accepted velocity of sound at the current room temperature using the given equation. You will later compare your results to this value.

$$v = 331 + 0.6 * 21$$

Data


```
err = | accepted - calculated | / accepted * 100
err = | 343.6 - 320 | / 343.6 * 100
err = 6.87%
Graph:
```

Post Lab Questions

- 1. What does the slope in the line in your graph represent?
- 2. Refer back to pre-lab question 1. When determining L, why would one not consider n = 2, 4, 6, etc?
- 3. The low E string on a guitar is 64.5cm long guitar and is tuned to play an "open" note at 82.41Hz.
 - 1. Find the wavelength of the fundamental vibration.
 - 2. What is the wavelength of the sound produced?
 - 3. Why is there a difference in your answers for part a and b?

Last updated: 250321