Exercícios - Ponteiros e alocação dinâmica

Questão 01. Faça um programa que leia um valor N e crie dinamicamente um vetor de N elementos e passe esse vetor para uma função que vai ler os elementos desse vetor. Depois, no programa principal, o vetor preenchido deve ser impresso. Além disso, antes de finalizar o programa, deve-se liberar a área de memória alocada.

Questão 02. Faça uma função que receba um valor N e crie dinamicamente um vetor de N elementos e retorne um ponteiro. Crie uma função que receba um ponteiro para um vetor e um valor N e imprima os N elementos desse vetor. Construa também uma função que receba um ponteiro para um vetor e libere esta área de memória. Ao final, crie uma função principal que leia um valor N e chame a função criada acima. Depois, a função principal deve ler os N elementos desse vetor. Então, a função principal deve chamar a função de impressão dos N elementos do vetor criado e, finalmente, liberar a memória alocada através da função criada para liberação.

Questão 03. Crie uma estrutura chamada Cadastro. Essa estrutura deve conter o nome, a idade e o endereço de uma pessoa. Agora, escreva uma função que receba um inteiro positivo N e retorne o ponteiro para um vetor de tamanho N, alocado dinamicamente, dessa estrutura. Solicite também que o usuário digite os dados desse vetor dentro da função.

Questão 04. Faça um programa que leia um valor inteiro N não negativo. Se o valor de N for inválido, o usuário deverá digitar outro até que ele seja válido (ou seja, positivo). Em seguida, leia um vetor V contendo N posições de inteiros, em que cada valor deverá ser maior ou igual a 2. Esse vetor deverá ser alocado dinamicamente.

Questão 05. Escreva um programa que aloque dinamicamente uma matriz de inteiros. As dimensões da matriz deverão ser lidas do usuário. Em seguida, escreva uma função que receba um valor e retorne 1, caso o valor esteja na matriz, ou retorne 0, no caso contrário.

Questão 06. Crie uma função que receba uma string (um vetor de caracteres cujo último caractere é ' \setminus 0') e retorne o ponteiro para essa string invertida.

Questão 07. Escreva uma função que receba um valor inteiro positivo N por parâmetro e retorne o ponteiro para um vetor de tamanho N alocado dinamicamente. Esse vetor deverá ter os seus elementos preenchidos com certo valor, também passado por parâmetro. Se N for negativo ou igual a zero, um ponteiro nulo deverá ser retornado.

Questão 08. Escreva uma função que receba como parâmetro um valor N e retorne o ponteiro para uma matriz alocada dinamicamente contendo N linhas e N colunas. Essa matriz deve conter o valor 1 na diagonal principal e 0 nas demais posições.

Questão 09. Escreva uma função que receba como parâmetro dois vetores, A e B, de tamanho N cada. A função deve retornar o ponteiro para um vetor C de tamanho N alocado dinamicamente, em que C[i]=A[i]+B[i]...

Questão 10. Escreva uma função que receba como parâmetro duas matrizes, A e B, e seus tamanhos. A função deve retornar o ponteiro para uma matriz C, em que C é o produto da multiplicação da matriz A pela matriz B. Se a multiplicação das matrizes não for possível, retorne um ponteiro nulo.

Questão 11. Construa um programa (main) que aloque em tempo de execução (dinamicamente) uma matriz de ordem M x N (linha por coluna), usando 1+M chamadas a função malloc. Agora, aproveite este programa para construir uma função que recebendo os parâmetros M e N aloque uma matriz de ordem M x N e retorne um ponteiro para esta matriz alocada. Crie ainda uma função para liberar a área de memória alocada pela matriz. Finalmente, crie um novo programa (main) que teste/use as duas funções criadas acima.

Questão 12. Criar uma estrutura que represente uma pessoa, contendo nome, data de nascimento e CPF. Crie uma variável que é um ponteiro para esta estrutura (no programa principal). Depois crie uma função que receba este ponteiro e preencha os dados da estrutura e também uma uma função que receba este ponteiro e imprima os dados da estrutura. Finalmente, faça a chamada a esta função na função principal.

Questão 13. Crie um programa que declare uma estrutura (registro) para o cadastro de alunos. (a) Deverão ser armazenados, para cada aluno: matrícula, sobrenome (apenas um) e ano de nascimento. (b) Ao início do programa, o usuário deverá informar o número de alunos que serão armazenados (c) O programa deverá alocar dinamicamente a quantidade necessária de memória para armazenar os registros dos alunos.

- (d) O programa deverá pedir ao usuário que entre com as informações dos alunos.
- (e) Ao final, mostrar os dados armazenados e liberar a memória alocada.

Questão 14. Considere um cadastro de produtos de um estoque, com as seguintes informações para cada produto:

- Código de identificação do produto: representado por um valor inteiro
- Nome do produto: com até 50 caracteres
- Quantidade disponível no estoque: representado por um número inteiro
- Preço de venda: representado por um valor real
- (a) Defina uma estrutura, denominada produto, que tenha os campos apropriados para guardar as informações de um produto
- (b) Crie um conjunto de N produtos (N é um valor fornecido pelo usuário) e peça ao usuário para entrar com as informações de cada produto
- (c) Encontre o produto com o maior preço de venda
- (d) Encontre o produto com a maior quantidade disponível no estoque

Questão 15. Faça um programa que leia números do teclado e os armazene em um vetor alocado dinamicamente. O usuário irá digitar uma sequência de números, sem limite de quantidade. Os números serão digitados um a um e, sendo que caso ele deseje encerrar a entrada de dados, ele irá digitar o número ZERO. Os dados devem ser armazenados na memória deste modo:

Inicie com um vetor de tamanho 10 alocado dinamicamente; Após, caso o vetor alocado esteja cheio, aloque um novo vetor do tamanho do vetor anterior adicionado espaço para mais 10 valores (tamanho N+10, onde N inicia com 10); Copie os valores já digitados da área inicial para esta área maior e libere a memória da área inicial; Repita este procedimento de expandir dinamicamente com mais 10 valores o vetor alocado cada vez que o mesmo estiver cheio. Assim o vetor irá ser 'expandido' de 10 em 10 valores. Ao final, exiba o vetor lido.

Questão 16. Faça um programa para associar nomes às linhas de uma matriz de caracteres. O usuário irá informar o número máximo de nomes que poderão ser armazenados. Cada nome poderá ter até 30 caracteres com o '\0'. O usuário poderá usar 5 opções diferentes para manipular a matriz:

Gravar um nome em uma linha da matriz; Apagar o nome contido em uma linha da matriz; Informar um nome, procurar a linha onde ele se encontra e substituir por outro nome; Informar um nome, procurar a linha onde ele se encontra e apagar; Pedir para recuperar o nome contido em uma linha da matriz;

Questão 17. Faça um programa que:

- (a) Peça para o usuário entrar com o nome e a posição (coordenadas X e Y) de N cidades e as armazene em um vetor de estruturas (N é informado pelo usuário);
- (b) Crie uma matriz de distâncias entre cidades de tamanho N x N;
- (c) Calcule as distância entre cada duas cidades e armazene na matriz;
- (d) Exiba na tela a matriz de distâncias obtida;
- (e) Quando o usuário digitar o número de duas cidades o programa deverá retornar a distância entre elas.

Questão 18. Faça um programa que leia quatro números a,b,c,d, que serão as dimensões de duas matrizes, e:

- Crie e leia uma matriz, dadas as dimensões dela;
- Crie e construa uma matriz que seja o produto de duas matrizes. Na sua função main(), imprima as duas matrizes e o produto entre elas, se existir.

Fonte: Moodle2 ED Atílio