San Jose State University Department of Computer Engineering

CMPE 200 Lab Report

Assignment 4 Report

Title: Array Processing, Stack and Recursive Procedure

Semester: Fall 2023 **Date:** 10/03/2023

by

Name: Sai Kashyap Kurella SID: 016018925

Source Code

```
# $a0 = array base address
# $a1 = n
\# \$s0 = n!
Main:
addi a0, 0, 0x100 \# array base address = <math>0x100
addi a1, 0, 0 # i = 0
addi $t0, $0, 3
addi $t1, $0, 50 # <math>$t1 = 50
CreateArray Loop:
slt $t2, $a1, $t1 # i < 50?
beq $t2, $0, Exit Loop # if not then exit loop
s11 $t2, $a1, 2 # $t2 = i * 4 (byte offset)
add $t2, $t2, $a0 # address of array[i]
mult $a1, $t0
mflo $t3 # $t3 = i * 3
sw $t3, 0($t2) # save array[i]
addi a1, a1, i = i + 1
j CreateArray_Loop
Exit Loop:
# your code goes in here...
# arithmetic calculation
lw $s1,356($t2)
lw $s2,376($t2)
add $s2,$s2,$s1
addi $s3,$zero,30
div $s2,$s3
mflo $s4
move $a1,$s4
sw $a1, 0($0)
# ...
# factorial computation
jal factorial # call procedure
add $s0, $v0, $0 # return value
sw $s0,16($0)
j exit
factorial:
addi $sp, $sp, -8
sw $ra, 4($sp)
sw $a1, 0($sp)
slti $t0,$a1,2
beg $t0,$zero,L1
addi $v0,$zero,1
addi $sp,$sp,8
jr $ra
L1: addi $a1,$a1,-1
jal factorial
lw $a1, 0($sp)
lw $ra, 4($sp)
addi $sp, $sp, 8
mul $v0,$a1,$v0
jr $ra
exit:
```

CMPE 200 Assignment 4 Test Log

Date: <u>10/03/2023</u>

Programmer's Names: Sai Kashyap Kurella

Record the observed contents of registers and data memory after each instruction is executed.

Addr	MIPS Instruction	Machine	Registers				Memory Content	
Auui		Code	\$a1	\$sp	\$ra	\$v0	[0x00]	[0x10]
3034	lw \$s1,356(\$t2)	0x8d510164	0x00000032	0x00002ffc	0x0000000	0x0000000	0x0000000	0x0000000
3038	lw \$s2,376(\$t2)	0x8d520178	0x00000032	0x00002ffc	0x0000000	0x0000000	0x0000000	0x0000000
303c	add \$s2,\$s2,\$s1	0x02519020	0x00000032	0x00002ffc	0x0000000	0x0000000	0x0000000	0x0000000
3040	addi \$s3,\$zero,30	0x20130013	0x00000032	0x00002ffc	0x0000000	0x0000000	0x0000000	0x0000000
3044	div \$s2,\$s3	0x0253001a	0x00000032	0x00002ffc	0x0000000	0x0000000	0x0000000	0x0000000
3048	mflo \$s4	0x0000a012	0x00000032	0x00002ffc	0x0000000	0x0000000	0x0000000	0x0000000
304c	move \$a1,\$s4	0x00142821	0x00000005	0x00002ffc	0x0000000	0x0000000	0x0000000	0x0000000
3050	sw \$a1, 0(\$0)	0xac050000	0x00000005	0x00002ffc	0x0000000	0x0000000	0x0000000	0x0000000
3054	Jal factorial	0x0c000c19	0x00000005	0x00002ffc	0x0000000	0x0000000	0x0000000	0x0000000
3058	add \$s0, \$v0, \$0	0x00408020	0x00000005	0x00002ffc	0x0000000	0x0000000	0x0000000	0x0000000
305c	sw \$s0,16(\$0)	0xac100010	0x00000005	0x00002ffc	0x0000000	0x0000000	0x0000000	0x0000000
3060	J exit	0x08000c28	0x00000005	0x00002ffc	0x0000000	0x0000000	0x0000000	0x0000000
3064	addi \$sp, \$sp, -8	0x23bdfff8	0x00000005	0x00002ffc	0x0000000	0x0000000	0x0000000	0x0000000
3068	sw \$ra, 4(\$sp)	0xafbf0004	0x00000005	0x00002ff4	0x0000000	0x0000000	0x0000000	0x0000000
306c	sw \$a1, 0(\$sp)	0xafa50000	0x00000005	0x00002ffc	0x0000000	0x0000000	0x0000000	0x0000000
3070	slti \$t0,\$a1,2	0x28a80002	0x00000005	0x00002ffc	0x0000000	0x0000000	0x0000000	0x0000000
3074	beq \$t0,\$zero,L1	0x10000003	0x00000005	0x00002ffc	0x0000000	0x0000000	0x00000005	0x0000000
3078	addi \$v0,\$zero,1	0x20020001	0x00000005	0x00002ffc	0x0000000	0x00000078	0x00000005	0x00000078
307c	addi \$sp,\$sp,8	0x23bd0008	0x00000005	0x00002ffc	0x00003058	0x00000078	0x00000005	0x00000078
3080	jr \$ra	0x03e00008	0x00000005	0x00002ffc	0x00003058	0x00000078	0x00000005	0x00000078
3084	L1: addi \$a1,\$a1,-1	0x20a5ffff	0x00000005	0x00002ffc	0x00003058	0x00000078	0x00000005	0x00000078
3088	jal factorial	0x0c00019	0x00000005	0x00002ffc	0x00003058	0x00000078	0x00000005	0x00000078
308c	lw \$a1, 0(\$sp)	0x8fa5000	0x00000005	0x00002ffc	0x00003058	0x00000078	0x00000005	0x00000078
3090	lw \$ra, 4(\$sp)	0x8fbf0004	0x00000005	0x00002ffc	0x00003058	0x00000078	0x00000005	0x00000078
3094	addi \$sp, \$sp, 8	0x23bd0008	0x0000005	0x00002ffc	0x00003058	0x00000078	0x0000005	0x00000078
3098	mul \$v0,\$a1,\$v0	0x70a21002	0x0000005	0x00002ffc	0x00003058	0x00000078	0x0000005	0x00000078
309c	jr \$ra	0x03e00008	0x0000005	0x00002ffc	0x00003058	0x00000078	0x00000005	0x00000078

Snapshot before execution:

Snapshot after execution:

Conclusion:							
In conclusion, this assignment has provided a valuable opportunity to delve into the world of MIPS assembly programming and gain a deeper understanding of various fundamental concepts within it. Building a 50-entry array at base address 0x100 and performing arithmetic calculations on it has allowed us to explore the implementation of arrays, stacks, procedures, and recursive procedures in MIPS.							