

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2024 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

CHEMISTRY PAPER-I

TIME ALLOWED: THREE HOURS	PART-I (MCQS)	MAXIMUM MARKS = 20
PART-I(MCQS): MAXIMUM 30 MINUTES	PART-II	MAXIMUM MARKS = 80

NOTE: (i) Part-II is to be attempted on the separate Answer Book.

- (ii) Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks.
- (iii) All the parts (if any) of each Question must be attempted at one place instead of at different places.
- (iv) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q. Paper.
- (v) No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed.
- (vi) Extra attempt of any question or any part of the attempted question will not be considered.

15.

16. 17. 18.

19.

20.

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2024 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

CHEMISTRY, PAPER-I

	TIME ALLOWED: THREE HOURS PART-I (MCQs) : MAXIMUM 30 MINUTES	(PART	r-I MCQ r-II)	MAXI	MUM N	MARKS: 20 IARKS: 80
	NOTE: (i) First attempt PART-I (MCQs) on separater 30 minutes. (ii) Overwriting/cutting of the options/an (iii) There is no negative marking. All MCC	swers wi	Il not be p	iven credit.	h shall b	e taken back
	PART-I (MCOs	COMP	ULSORY)		
	Q.1. (i) Select the best option/answer and fill in the ap (ii) Answers given anywhere else, other than OMR A	propriate	Box 🔳 o	the OMR A		neet.(20x1-20)
1.	When we consider a proton (p*) instead of an electro	on (e) in	a one dim	ensional (1D) I	ox of 0.	nm, then the
	energy levels:					
2.	 (A) Become less widely spaced (B) Become more with Which of the following statements concerning the quit. (A) If the value of azimuthal quantum number (i) is zer. (B) The spin quantum number (s) indicates the orientation of the magnetic quantum number (m) indicates the position. (C) The magnetic quantum number (m) indicates the position. 	o, the elec-	mbers (r, tronic distr spin of the	n, and s) is fals ibution has sphe nucleus with re-	e? crical sym spect to a	metry magnetic field
3.	A characteristic of an oxidizing agent is that it is always	ays:	distant.			
Call	(A) A non-metal (B) Oxidized in a redox reacti		(Gaining	electrons	(D)	None of these
4.	During electrolysis, the oxidation takes place at the:	1	Both (A	V B CDV	m	None of these
	(A) Anode (B) Cathode) & (B)	(D)	None of these
5.	The process of chemical adsorption which is a surface (A) Is exothermic (B) Takes place at high temper	rature ((1) Is rever	sible	(D)	None of these
6.	The most commonly used adsorbent for chromatogra	phic sepa	rations of	organic compo		
	(A) Activated charcoal (B) Aluminium	((Silica g	el	(D)	None of these
7.	If x/m is the amount of adsorbate per unit mass of the	he adsorb	ent and P	is the pressure	, then ac	cording to the
	Langmuir adsorption isotherm, which one of the follo	owings is	correct?			
	(A) $x/m > P$ (B) $x/m = 1/P$	((x/m ∝ l	,	(D)	None of these
8.	Inversion of the cane sugar in the presence of a mine	ral acid is	the best e	cample of:		
	(A) Heterogeneous catalyst (B) Homogeneous cata	dvsis ((Extrem	ely fast reaction		None of these
9.	At standard conditions of temperature and pressure and HCl is: (A) H ₂ > N ₂ > O ₂ > HCl (B) N ₂ > O ₂ > I	the order H ₂ > HCl	(C) HCl=	quare velocity $O_2 > N_2 > H_2$	(D)	None of these
10.	The density of an ideal gas under the given condition (A) Is proportional to its molecular mass (B) Increase	sees with i	nereasing r	ressure keepin	e temper	ature constant
	(C) Decreases with increasing temperature, keeping pro	essure con	stant	i casimo, morphi	(D)	None of these
	According to the third law of thermodynamics, the e	ntropy of	a pure an	perfect crysti	alline sul	ostance is:
	(A) Zero at 0 °C (B) Zero at 0 K		() Zero a	O-F	(1)	Mone or mese
-	syn ! I am of the followings is a factor which does no	t influence	ce the rate	of a chemical	reaction?	
	(A) Malamilarity of the reaction (B) Order of the reacti	ion (C)	Lemperatu	e of the reaction	(D)	None of these
-	According to transition state theory, the rate constant	t of a che	micai rea	HOH		
3.	(A) Depends upon inverse of temperature		(B)	Is directly prop	ortional t	to temperature
	(C) Is inversely proportional to negative free energy cl	nange (ΔG	(D)	None of these		.,
4	Design stoody state of a unimolecular gaseous phase	reaction:				
*	(A) The concentration of activated molecules goes on	decreasing	Sec.			
	(D) The concentration of activated molecules goes on	mereasing				
	(C) The concentration of activated molecules remains	constant			(D) None of these
<	Viscosity of a liquid at a given temperature is:					
-	(A) Erictional resistance between adjacent layers		(B) Expor	tability to flow	on the v	valls of tube
	Independent of the sizes of molecules and their shi	ape		None of these		
6			is:	13158, 301	. 72	
	(A) Constant then 00° (B) Less than 150° but greater	Francis Vene	Fee. 1	ways less than	90° (I	O) None of the
7	Which of the followings has the highest oxidation str	ite of the	central at	om?		
-	(A) K ₃ [Fe(CN) ₆] (B) Na[Co(CO) ₄]		(C) Fe(C)	0)5	(1	D) None of the
0	the empirical formula CoCly 4NH	. One me	ole of it gi	es one mole o	f AgCl	on treatment w
o.	AgNO ₃ solution. NH ₃ is not removed with conc. H ₂ So	C-4. ** ****	Dec sector o	The rate of the second second second		
	(A) Co(NH ₁) ₄ Cl ₃ (B) [Co(NH ₃) ₄ Cl ₂]Cl		(Ø) [Co()	NH ₃) ₃ Cl ₃]NH ₃	(D) None of the
	(A) Co(NH ₃) ₄ Cl ₃ (B) [Co(NH ₃) ₄ Cl ₂]Cl There are two scales of energy to measure the crysta	l field sp	litting. W	hich is true fr	om the f	ollowing?
9.	There are two scales of energy to $\Delta_{Oh} = 6D_q$ (A) $\Delta_{Oh} = 10D_o$ (B) $0.4 \Delta_{Oh} = 6D_q$		(C) 0.6 A	$Otr = 4D_q$	(D) None of the
	Pahr Magneton is:				-	
0. (The value of one Bohr Magneton is: (A) 9.27 x 10 ⁻²¹ erg·G ⁻¹ (B) 92.7 x 10 ⁻²¹ erg·G ⁻¹	(C) 5	.28 x 10 ⁻²⁰	erg-G-1	(D) N	Page 1 of

PART-II

	(ii)	Part-II is to be attempted on the separate Answer Book. Attempt ONLY FOUR questions from PART-II by selecting TWO questions from SECTION. ALL questions carry EQUAL marks.					
	(iii) All the parts (if any) of each Question must be attempted at one place instead of						
	12.0	Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper,	200				
		No Page/Space be left blank between the answers. All the blank pages of Ans	wer Book				
	(v)	must be exceed					
	any part of the question will not be considered.						
	(vi)	Use of Calculator is allowed.					
	(VII)	Use of Calculator is allowed.					
Q. 21×	(a)	What is the de Broglie hypothesis and how was this proved experimentally?	(10)				
-	6	Explain in detail	(05)				
	(b)	How do you compare the Gibb's and Helmholtz free energies?	(05) (20)				
	(c)	Explain occurrence and oxidation states of Lanthanides.	(00) (00)				
		Explain in detail the Nernst equation.	(10)				
-	(a)	Justify that half life period of third order reaction is inversely proportional to	(05)				
	(b)	square of the initial concentration of reactants,					
	/	What are Eigen function and Eigen values? Explain with examples.	(05) (20)				
	(c)	What are Eigen function and Eigen					
	6	Discuss in detail the Hess's law with the help of suitable examples.	(10)				
	(a)	Diames the Hamiltonian operator in detail.	(05)				
	(b)	Explain the phase diagram by applying the Gibb's phase rule for a two	(05) (20)				
	(c)	component system with the help of a suitable example.					
Q. 5.	(a)	Derive the equation for rate constant of a third order reaction with same initial	(10)				
		concentrations. Give its half life and examples as well.	(05)				
	(b)	What is solvent extraction? Discuss its theory and uses for the extraction of	(05)				
		metals.	(05) (20)				
	(c)	What is theory of buffer solutions? Explain.	(02) (20)				
			(10)				
Q. 6.	(a)	Explain the kinetics of the enzymes catalysis	(05)				
	(b)	Give postulates of Werner's theory of co-ordination compounds. How does it	(00)				
		justify the formulae of CoCl ₃ · 6NH ₃ , CoCl ₃ · 5NH ₃ , CoCl ₃ · 4NH ₃ , and CoCl ₃ · 3NH ₃ ?					
		How the electrochemical series will help us, that whether a particular metal will	(05) (20)				
- 4	(c)	How the electrochemical series will help us, that whether a particular metal will					
		react with an acid or not?					
1		and a standard and base (SUAD) concept with suitable	(10)				
Q. 7.	(a)	Discuss in detail the soft and hard acid and base (SHAB) concept with suitable	(10)				
		examples. Derive relationship between equilibrium constant and Gibb's free energy.	(05)				
1	(b)	Derive relationship between equilibrium constant and Glob's free energy.	(05) (20				
1	(c)	What are different statistical tests in chemical analysis? Explain.					
-		Discuss the nomenclature and structure of coordination complexes with	(10)				
Q. 8.	(a)	Discuss the nomenciature and structure of coordination complexes with					
		coordination number 2-10.	(05)				
	(b)	How do you calculate the degree of dissociation (a) of a weak electrolyte by	()				
		Kohlrausch law?	(05) (2				
	(c)	The hydrolysis of CH3COO 12H5 with NaOH is a second order reaction. How	(05) (2				
		do you follow the progress of this reaction in the laboratory?					
