Topology Qualifying Exam Notes

D. Zack Garza

Saturday 30th May, 2020

Contents

1	Definitions	1
	Theorems 2.1 Point-Set 2.2 Algebraic	
3	Examples 3.1 Common Spaces and Operations	
4	Notation	17

1 Definitions

- Topology: Closed under arbitrary unions and finite intersections.
- Basis: A subset $\{B_i\}$ is a basis iff

 - $\begin{array}{ll} -x \in X \implies x \in B_i \text{ for some } i. \\ -x \in B_i \bigcap B_j \implies x \in B_k \subset B_i \bigcap B_k. \\ -\text{ Topology generated by this basis: } x \in N_x \implies x \in B_i \subset N_x \text{ for some } i. \end{array}$
- Dense: A subset $Q \subset X$ is dense iff $y \in N_y \subset X \implies N_y \cap Q \neq \emptyset$ iff $\overline{Q} = X$.
- Neighborhood: A neighborhood of a point x is any open set containing x.
- Hausdorff
- Second Countable: admits a countable basis.
- Closed (several characterizations)
- Closure in a subspace: $Y \subset X \implies \operatorname{cl}_Y(A) := \operatorname{cl}_X(A) \cap Y$.
- Bounded
- Compact: A topological space (X, τ) is **compact** if every open cover has a *finite* subcover.

That is, if $\{U_j \mid j \in J\} \subset \tau$ is a collection of open sets such that $X \subseteq \bigcup_{j \in J} U_j$, then there exists a finite subset $J' \subset J$ such that $X \subseteq \bigcup_{j \in J'} U_j$.

- Locally compact For every $x \in X$, there exists a $K_x \ni x$ such that K_x is compact.
- Connected: There does not exist a disconnecting set $X = A \coprod B$ such that $\emptyset \neq A, B \subsetneq$, i.e. X is the union of two proper disjoint nonempty sets.

Equivalently, X contains no proper nonempty clopen sets.

- Additional condition for a subspace $Y \subset X$: $\operatorname{cl}_Y(A) \cap V = A \cap \operatorname{cl}_Y(B) = \emptyset$.
- Locally connected: A space is locally connected at a point x iff $\forall N_x \ni x$, there exists a $U \subset N_x$ containing x that is connected.
- Retract: A subspace $A \subset X$ is a retract of X iff there exists a continuous map $f: X \longrightarrow A$ such that $f \mid_A = \mathrm{id}_A$. Equivalently it is a left inverse to the inclusion.
- Uniform Continuity: For $f:(X,d_x)\longrightarrow (Y,d_Y)$ metric spaces,

$$\forall \varepsilon > 0, \ \exists \delta > 0 \text{ such that} \quad d_X(x_1, x_2) < \delta \implies d_Y(f(x_1), f(x_2)) < \varepsilon.$$

• Lebesgue number: For (X, d) a compact metric space and $\{U_{\alpha}\} \rightrightarrows X$, there exist $\delta_L > 0$ such that

$$A \subset X$$
, diam $(A) < \delta_L \implies A \subseteq U_\alpha$ for some α .

- Paracompact
- Components: Set $x \sim y$ iff there exists a connected set $U \ni x, y$ and take equivalence classes.
- Path Components: Set $x \sim y$ iff there exists a path-connected set $U \ni x, y$ and take equivalence classes.
- Separable: Contains a countable dense subset.
- Limit Point: For $A \subset X$, x is a limit point of A if every punctured neighborhood P_x of x satisfies $P_x \cap A \neq \emptyset$, i.e. every neighborhood of x intersects A in some point other than x itself.

Equivalently, x is a limit point of A iff $x \in \operatorname{cl}_X(A \setminus \{x\})$.

2 Theorems

2.1 Point-Set

- Closed subsets of Hausdorff spaces are compact? (check)
- Cantor's intersection theorem?
- Tube lemma
- Properties pushed forward through continuous maps:

- Compactness?
- Connectedness (when surjective)
- Separability
- Density **only when** f is surjective
- Not openness
- Not closedness
- A retract of a Hausdorff/connected/compact space is closed/connected/compact respectively.

Proposition 2.1.

A continuous function on a compact set is uniformly continuous.

Proof.

Take $\left\{B_{\frac{\varepsilon}{2}}(y) \mid y \in Y\right\} \rightrightarrows Y$, pull back to an open cover of X, has Lebesgue number $\delta_L > 0$, then $x' \in B_{\delta_L}(x) \implies f(x), f(x') \in B_{\frac{\varepsilon}{2}}(y)$ for some y.

- Lipschitz continuity implies uniform continuity (take $\delta = \varepsilon/C$)
 - Counterexample to converse: $f(x) = \sqrt{x}$ on [0, 1] has unbounded derivative.
- Extreme Value Theorem: for $f: X \longrightarrow Y$ continuous with X compact and Y ordered in the order topology, there exist points $c, d \in X$ such that $f(x) \in [f(c), f(d)]$ for every x.

Theorem 2.2.

Points are closed in T_1 spaces.

Theorem 2.3.

A metric space X is sequentially compact iff it is complete and totally bounded.

Theorem 2.4.

A metric space is totally bounded iff every sequence has a Cauchy subsequence.

Theorem 2.5.

A metric space is compact iff it is complete and totally bounded.

Theorem 2.6(Baire).

If X is a complete metric space, then the intersection of countably many dense open sets is dense in X.

Theorem 2.7.

A continuous bijective open map is a homeomorphism.

Theorem 2.8.

A closed subset A of a compact set B is compact.

Proof.

- Let $\{A_i\} \rightrightarrows A$ be a covering of A by sets open in A.
- Each $A_i = B_i \cap A$ for some B_i open in B (definition of subspace topology)
- Define $V = \{\dot{B}_i\}$, then $V \rightrightarrows A$ is an open cover.
- Since A is closed, $W := B \setminus A$ is open
- Then $V \bigcup W$ is an open cover of B, and has a finite subcover $\{V_i\}$
- Then $\{V_i \cap A\}$ is a finite open cover of A.

Theorem 2.9.

The continuous image of a compact set is compact.

Theorem 2.10.

A closed subset of a Hausdorff space is compact.

2.2 Algebraic

Todo: Merge the two van Kampen theorems.

Theorem 2.11(Van Kampen).

The pushout is the northwest colimit of the following diagram

$$A \coprod_{Z} B \longleftarrow A$$

$$\uparrow \qquad \qquad \iota_{A} \downarrow$$

$$B \longleftarrow_{\iota_{B}} Z$$

For groups, the pushout is given by the amalgamated free product: if $A = \langle G_A \mid R_A \rangle$, $B = \langle G_B \mid R_B \rangle$, then

$$A *_{Z} B = \left\langle G_{A}, G_{B} \mid R_{A}, R_{B}, T \right\rangle$$

where T is a set of relations given by

$$T = \left\{ \iota_A(z)\iota_B(z)^{-1} \mid z \in Z \right\}.$$

Suppose $X = U_1 \bigcup U_2$ such that $U_1 \cap U_2 \neq \emptyset$ is path connected. Then taking $x_0 \in U := U_1 \cap U_2$ yields a pushout of fundamental groups

$$\pi_1(X; x_0) = \pi_1(U_1; x_0) *_{\pi_1(U; x_0)} \pi_1(U_2; x_0).$$

Example 2.1.

 $A = \mathbb{Z}/4\mathbb{Z} = \langle x \mid x^4 \rangle, B = \mathbb{Z}/6\mathbb{Z} = \langle y \mid x^6 \rangle, Z = \mathbb{Z}/2\mathbb{Z} = \langle z \mid z^2 \rangle.$ Then we can identify Z as a

subgroup of A, B using $\iota_A(z) = x^2$ and $\iota_B(z) = y^3$. So

$$A *_{Z} B = \langle x, y \mid x^{4}, y^{6}, x^{2}y^{-3} \rangle$$

.

Theorem 2.12 (Van Kampen).

If $X = U \bigcup V$ where $U, V, U \cap V$ are all path-connected then

$$\pi_1(X) = \pi_1 U *_{\pi_1(U \cap V)} \pi_1 V,$$

where the amalgamated product can be computed as follows: If we have presentations

$$\pi_1(U, w) = \left\langle u_1, \dots, u_k \mid \alpha_1, \dots, \alpha_l \right\rangle$$

$$\pi_1(V, w) = \left\langle v_1, \dots, v_m \mid \beta_1, \dots, \beta_n \right\rangle$$

$$\pi_1(U \cap V, w) = \left\langle w_1, \dots, w_p \mid \gamma_1, \dots, \gamma_q \right\rangle$$

then

$$\pi_{1}(X, w) = \langle u_{1}, \dots, u_{k}, v_{1}, \dots, v_{m} \rangle$$

$$\mod \langle \alpha_{1}, \dots, \alpha_{l}, \beta_{1}, \dots, \beta_{n}, I(w_{1}) J(w_{1})^{-1}, \dots, I(w_{p}) J(w_{p})^{-1} \rangle$$

$$= \frac{\pi_{1}(U) * \pi_{1}(B)}{\langle \{I(w_{i})J(w_{i})^{-1} \mid 1 \leq i \leq p\} \rangle}$$

where

$$I: \pi_1(U \cap V, w) \to \pi_1(U, w)$$
$$J: \pi_1(U \cap V, w) \to \pi_1(V, w).$$

3 Examples

3.1 Common Spaces and Operations

Point-Set:

- Finite discrete sets with the discrete topology
- Subspaces of \mathbb{R} : $(a,b),(a,b],(a,\infty)$, etc.

$$- \{0\} \bigcup \left\{ \frac{1}{n} \mid n \in \mathbb{Z}^{\geq 1} \right\}$$

- (1)
- The topologist's sine curve

- One-point compactifications
- ℝ^ω
- Hawaiian earring
- Cantor set

Non-Hausdorff spaces:

- The cofinite topology on any infinite set.
- \mathbb{R}/\mathbb{Q}
- The line with two origins.

General Spaces:

$$S^n, \mathbb{D}^n, T^n, \mathbb{RP}^n, \mathbb{CP}^n, \mathbb{M}, \mathbb{K}, \Sigma_q, \mathbb{RP}^{\infty}, \mathbb{CP}^{\infty}.$$

"Constructed" Spaces

- Knot complements in S^3
- Covering spaces (hyperbolic geometry)
- Lens spaces
- Matrix groups
- Prism spaces
- Pair of pants
- Seifert surfaces
- Surgery
- \bullet Simplicial Complexes
 - Nice minimal example:

Exotic/Pathological Spaces

- \bullet \mathbb{HP}^n
- Dunce Cap

• Horned sphere

Operations

- Cartesian product $A \times B$
- Wedge product $A \vee B$
- Connect Sum A # B
- Quotienting A/B
- Puncturing $A \setminus \{a_i\}$
- Smash product
- Join
- Cones
- Suspension
- Loop space
- Identifying a finite number of points

3.2 Alternative Topologies

- Discrete
- Cofinite
- Discrete and Indiscrete
- Uniform

The cofinite topology:

- Non-Hausdorff
- Compact

The discrete topology:

- Discrete iff points are open
- Always Hausdorff
- Compact iff finite
- Totally disconnected
- If the domain, every map is continuous

The indiscrete topology:

- Only open sets are \emptyset, X
- Non-Hausdorff
- If the codomain, every map is continuous
- Compact
- Acyclic
- Alexander duality
- Basis
 - For an R-module M, a basis B is a linearly independent generating set.
- Boundary
- Boundary of a manifold

- Points $x \in M^n$ defined by

$$\partial M = \{x \in M : H_n(M, M - \{x\}; \mathbb{Z}) = 0\}$$

- Cap Product
 - Denoting $\Delta^p \xrightarrow{\sigma} X \in C_p(X;G)$, a map that sends pairs (*p*-chains, *q*-cochains) to (*p q*)-chains $\Delta^{p-q} \longrightarrow X$ by

$$H_p(X;R) \times H^q(X;R) \xrightarrow{\frown} H_{p-q}(X;R)$$

 $\sigma \frown \psi = \psi(F_0^q(\sigma))F_q^p(\sigma)$

where F_i^j is the face operator, which acts on a simplicial map σ by restriction to the face spanned by $[v_i \dots v_j]$, i.e. $F_i^j(\sigma) = \sigma|_{[v_i \dots v_j]}$.

- Cellular Homology
- CW Cell
 - An *n*-cell of X, say e^n , is the image of a map $\Phi: B^n \longrightarrow X$. That is, $e^n = \Phi(B^n)$. Attaching an *n*-cell to X is equivalent to forming the space $B^n \coprod X$ where $f : \partial B^n \longrightarrow X$.
 - * A 0-cell is a point.
 - * A 1-cell is an interval $[-1,1]=B^1\subset\mathbb{R}^1$. Attaching requires a map from $S^0=$ $\{-1,+1\} \longrightarrow X$

 - * A 2-cell is a solid disk $B^2 \subset \mathbb{R}^2$ in the plane. Attaching requires a map $S^1 \longrightarrow X$. * A 3-cell is a solid ball $B^3 \subset \mathbb{R}^3$. Attaching requires a map from the sphere $S^2 \longrightarrow X$.
- Cellular Map
 - A map $X \xrightarrow{f} Y$ is said to be cellular if $f(X^{(n)}) \subseteq Y^{(n)}$ where $X^{(n)}$ denotes the n-skeleton.
- \bullet Chain
 - An element $c \in C_p(X; R)$ can be represented as the singular p simplex $\Delta^p \longrightarrow X$.
- Chain Homotopy
 - Given two maps between chain complexes $(C_*, \partial_C) \xrightarrow{f_* g} (D_*, \partial_D)$, a chain homotopy is a family $h_i: C_i \longrightarrow B_{i+1}$ satisfying

$$f_i - g_i = \partial_{B,i-1} \circ h_n + h_{i+1} \circ \partial_{A,i}$$

- Chain Map
 - A map between chain complexes $(C_*, \partial_C) \xrightarrow{f} (D_*, \partial_D)$ is a chain map iff each component $C_i \xrightarrow{f_i} D_i$ satisfies

$$f_{i-1} \circ \partial_{C,i} = \partial_{D,i} \circ f_i$$

(i.e this forms a commuting ladder)

- ullet Closed manifold
 - A manifold that is compact, with or without boundary.
- Coboundary
- Cochain
 - An cochain $c \in C^p(X;R)$ is a map $c \in \text{hom}(C_p(X;R),R)$ on chains.
- Cocycle
- Colimit
- Compact
 - A space X is compact iff every open cover of X has a finite subcover.
- Cone
 - For a space X, defined as

$$CX = \frac{X \times I}{X \times \{0\}}$$

Example: The cone on the circle CS^1

Note that the cone embeds X in a contractible space CX.

- Contractible
 - A space is contractible if its identity map is nullhomotopic.
- Contractible
- Coproduct
- Covering Space
- Cup Product
 - A map taking pairs (p-cocycles, q-cocycles) to (p+q)-cocyles by

$$\begin{split} H^p(X;R) \times H^q(X;R) &\xrightarrow{\smile} H^{p+q}(X;R) \\ (a \cup b)(\sigma) &= a(\sigma \circ I_0^p) \ b(\sigma \circ I_p^{p+q}) \end{split}$$

where $\Delta^{p+q} \xrightarrow{\sigma} X$ is a singular p+q simplex and

$$I_i^j:[i,\cdots,j]\hookrightarrow\Delta^{p+q}$$

is an embedding of the (j-i)-simplex into a (p+q)-simplex. On a manifold, the cup product is Poincare dual to the intersection of submanifolds.

- Applications $* T^2 \not\simeq S^2 \vee S^1 \vee S^1.$

Proof: todo

- CW Complex
- Cycle
- Deck Transformation
- Deformation
- Deformation Retract
 - A map r in $A \overset{\hookrightarrow}{\longleftarrow} X$ that is a retraction (so $r \circ \iota = \mathrm{id}_A$) that also satisfies $\iota \circ r \simeq \mathrm{id}_X$.
 - Note that this is equality in one direction, but only homotopy equivalence in the other.
- Degree of a Map
- Derived Functor
 - For a functor T and an R-module A, a left derived functor (L_nT) is defined as $h_n(TP_A)$, where P_A is a projective resolution of A.
- Dimension of a manifold
 - For $x \in M$, the only nonvanishing homology group $H_i(M, M \{x\}; \mathbb{Z})$
- Direct Limit
- Direct Product
- Direct Sum

- Eilenberg-MacLane Space
- Euler Characteristic
- Exact Functor
 - A functor T is right exact if a short exact sequence

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

yields an exact sequence

$$...TA \longrightarrow TB \longrightarrow TC \longrightarrow 0$$
,

and is left exact if it yields

$$0 \longrightarrow TA \longrightarrow TB \longrightarrow TC \longrightarrow \dots$$

Thus a functor is exact iff it is both left and right exact, yielding

$$0 \longrightarrow TA \longrightarrow TB \longrightarrow TC \longrightarrow 0$$

- Examples:
 - * $\cdot \otimes_R \cdot$ is a right exact bifunctor.
- Exact Sequence
- Excision
- Ext Group
- Flat
 - An *R*-module is flat if $A \otimes_R \cdot$ is an exact functor.
- Free and Properly Discontinuous
- Free module
 - A -module M with a basis $S = \{s_i\}$ of generating elements. Every such module is the image of a unique map $\mathcal{F}(S) = R^S \to M$, and if $M = \langle S \mid \mathcal{R} \rangle$ for some set of relations \mathcal{R} , then $M \cong R^S/\mathcal{R}$.
- Free Product
- Free product with amalgamation
- Fundamental Class
 - For a connected, closed, orientable manifold, [M] is a generator of $H_n(M; \mathbb{Z}) = \mathbb{Z}$.
- Fundamental classes
- Fundamental Group
- Generating Set

 $-S = \{s_i\}$ is a generating set for an R- module M iff

$$x \in M \implies x = \sum r_i s_i$$

for some coefficients $r_i \in R$ (where this sum may be infinite).

- Gluing Along a Map
- Group Ring
- Homologous
- Homotopic
- Homotopy
- Homotopy Class
- Homotopy Equivalence
- Homotopy Extension Property
- Homotopy Groups
- Homotopy Lifting Property
- Injection
 - A map ι with a **left** inverse f satisfying $f \circ \iota = \mathrm{id}$
- \bullet Intersection Pairing For a manifold M, a map on homology defined by

$$H_{\widehat{i}}M \otimes H_{\widehat{j}}M \longrightarrow H_{\widehat{i+j}}X$$
$$\alpha \otimes \beta \mapsto \langle \alpha, \beta \rangle$$

obtained by conjugating the cup product with Poincare Duality, i.e.

$$\langle \alpha, \beta \rangle = [M] \frown ([\alpha]^{\vee} \smile [\beta]^{\vee})$$

Then, if [A], [B] are transversely intersecting submanifolds representing α, β , then

$$\langle \alpha,\beta\rangle = [A\bigcap B]$$

If $\hat{i} = j$ then $\langle \alpha, \beta \rangle \in H_0 M = \mathbb{Z}$ is the signed number of intersection points.

- Inverse Limit
- Intersection Pairing
 - The pairing obtained from dualizing Poincare Duality to obtain

$$F(H_iM) \otimes F(H_{n-i}M) \longrightarrow \mathbb{Z}$$

Computed as an oriented intersection number between two homology classes (perturbed to be transverse).

- Intersection Form
 - The nondegenerate bilinear form cohomology induced by the Kronecker Pairing:

$$I: H^k(M_n) \times H^{n-k}(M^n) \longrightarrow \mathbb{Z}$$

where n = 2k.

- * When k is odd, I is skew-symmetric and thus a *symplectic form*.
- * When k is even (and thus $n \equiv 0 \mod 4$) this is a symmetric form.
- * Satisfies $I(x,y) = (-1)^{k(n-k)}I(y,x)$
- Kronecker Pairing
 - A map pairing a chain with a cochain, given by

$$H^n(X;R) \times H_n(X;R) \longrightarrow R$$

 $([\psi,\alpha]) \mapsto \psi(\alpha)$

which is a nondegenerate bilinear form.

- Kronecker Product
- Lefschetz duality
- Lefschetz Number
- Lens Space
- Local Degree
 - At a point $x \in V \subset M$, a generator of $H_n(V, V \{x\})$. The degree of a map $S^n \longrightarrow S^n$ is the sum of its local degrees.
- Local Orientation
- Limit
- Linear Independence
 - A generating S for a module M is linearly independent if $\sum r_i s_i = 0_M \implies \forall i, r_i = 0$ where $s_i \in S, r_i \in R$.
- Local homology
 - $-H_n(X,X-A;\mathbb{Z})$ is the local homology at A, also denoted $H_n(X\mid A)$
- Local Homology
- Local orientation of a manifold
 - At a point $x \in M^n$, a choice of a generator μ_x of $H_n(M, M \{x\}) = \mathbb{Z}$.
- Long exact sequence
- Loop Space
- Manifold
 - An *n*-manifold is a Hausdorff space in which each neighborhood has an open neighborhood homeomorphic to \mathbb{R}^n .

- Manifold with boundary
 - A manifold in which open neighborhoods may be isomorphic to either \mathbb{R}^n or a half-space $\{\mathbf{x} \in \mathbb{R}^n \mid x_i > 0\}$.
- Mapping Cone
- Mapping Cylinder
- Mapping Path Space
- Mayer-Vietoris Sequence
- Monodromy
- Moore Space
- N-cell
- N-connected
- Nullhomotopic
 - A map $X \xrightarrow{f} Y$ is nullhomotopic if it is homotopic to a constant map $X \xrightarrow{c} \{y_0\}$; that is, there exists a homotopy
- Orientable manifold
 - A manifold for which an orientation exists, see "Orientation of a Manifold".
- Orientation Cover
 - For any manifold M, a two sheeted orientable covering space \tilde{M}_o . M is orientable iff \tilde{M} is disconnected. Constructed as

$$\tilde{M} = \coprod_{x \in M} \left\{ \mu_x \; \middle| \; \mu_x \text{ is a local orientation} \right\}$$

- Orientation of a manifold
 - A family of $\{\mu_x\}_{x\in M}$ with local consistency: if $x,y\in U$ then μ_x,μ_y are related via a propagation.
 - * Formally, a function

$$M^n \longrightarrow \coprod_{x \in M} H(X \mid \{x\})$$

 $x \mapsto \mu_x$

such that $\forall x \exists N_x$ in which $\forall y \in N_x$, the preimage of each μ_y under the map $H_n(M \mid N_x) \twoheadrightarrow H_n(M \mid y)$ is a single generator μ_{N_x} .

- TFAE:
 - * M is orientable.
 - * The map $W:(M,x)\longrightarrow \mathbb{Z}_2$ is trivial.
 - * $\tilde{M}_o = M \coprod \mathbb{Z}_2$ (two sheets).
 - * \tilde{M}_o is disconnected
 - * The projection $\tilde{M}_o \longrightarrow M$ admits a section.

- Oriented manifold
- Path
- Path Lifting Property
- Perfect Pairing
 - A pairing alone is an R-bilinear module map, or equivalently a map out of a tensor product since $p: M \otimes_R N \longrightarrow L$ can be partially applied to yield $\varphi: M \longrightarrow L^N = \text{hom}_R(N, L)$. A pairing is **perfect** when φ is an isomorphism. * Example: $\det_M: k^2 \times k^2 \longrightarrow k$
- Poincare Duality
 - For a closed, orientable n-manifold, following map $[M] \sim \cdot$ is an isomorphism:

$$D: H^k(M; R) \longrightarrow H_{n-k}(M; R)$$

 $D(\alpha) = [M] \frown \alpha$

- Projective Resolution
- Properly Discontinuous
- Pullback
- Pushout
- Quasi-isomorphism
- R-orientability
- Relative boundaries
- Relative cycles
- Relative homotopy groups
- Retraction
 - A map r in $A \stackrel{\hookrightarrow}{\longleftarrow}^{\iota} X$ satisfying

$$r \circ \iota = \mathrm{id}_A$$
.

Equivalently $X woldsymbol{-}_r A$ and $r|_A = \mathrm{id}_A$. If X retracts onto A, then i_* is injective.

- Short exact sequence
- Simplicial Complex
- Simplicial Map
 - For a map

$$K \xrightarrow{f} L$$

between simplicial complexes, f is a simplicial map if for any set of vertices $\{v_i\}$ spanning a simplex in K, the set $\{f(v_i)\}\$ are the vertices of a simplex in L.

- Simply Connected
- Singular Chain

$$x \in C_n(x) \implies X = \sum_i n_i \sigma_i = \sum_i n_i (\Delta^n \xrightarrow{\sigma_i} X)$$

• Singular Cochain

$$x \in C^n(x) \implies X = \sum_i n_i \psi_i = \sum_i n_i (\sigma_i \xrightarrow{\psi_i} X)$$

- Singular Homology
- Smash Product
- Surjection
 - A map π with a **right** inverse f satisfying

$$\pi \circ f = \mathrm{id}$$

• Suspension Compact represented as $\Sigma X = CX \coprod_{\mathrm{id}_X} CX$, two cones on X glued along X. Explicitly given by

$$\Sigma X = \frac{X \times I}{(X \times \{0\}) \bigcup (X \times \{1\}) \bigcup (\{x_0\} \times I)}$$

- Tor Group
 - For an R-module

$$\operatorname{Tor}_{R}^{n}(\cdot, B) = L_{n}(\cdot \otimes_{R} B)$$

where L_n denotes the *n*th left derived functor.

- Universal Cover
- Universal Coefficient Theorem for Cohomology
- Universal Coefficient Theorem for Change of Coefficient Ring
- Weak Homotopy Equivalence
- Weak Topology
- Wedge Product

4 Notation

- \bullet C_X
- $\Sigma(X)$
- $\bullet \Sigma_q$
- ι, π
- $\widehat{i+j}$: for an *n*-dimensional manifold, the "dual" dimension $\widehat{i+j} := n (i+j)$.