Partitioning and Divide-and-Conquer

Thoai Nam

High Performance Computing Lab (HPC Lab)

Faculty of Computer Science and Technology

HCMC University of Technology

Introduction

Partitioning

Partitioning simply divides the problem into parts.

Divide and Conquer

Characterized by dividing problem into sub-problems of same form as larger problem. Further divisions into still smaller sub-problems, usually done by recursion.

- ✓ Recursive divide and conquer amenable to parallelization because separate processes can be used for divided parts
- ✓ Also usually data is naturally localized.

Partitioning

- Data partitioning or domain decomposition
 - o Used in EPC?
- Functional decomposition

Divide-and-Conquer (D&C)

Divide

- Divide a problem into sub-problems that are of the same form as the large problem
- Recursion: smallest subproblems called final tasks

Conquer

o Run final tasks

Combine

Aggregation

D&C matrix multiplication

Divide

Divide A, B sizeof nxn into 8
 matrix sizeof n/2xn/2:

$$A^{11}$$
, A^{12} , A^{21} , A^{22} , B^{11} , B^{12} , B^{21} , B^{22}

Matrix multiplication

$$X^{11} = A^{11}.B^{11}$$
 $Y^{11} = A^{12}.B^{21}$
 $X^{12} = A^{11}.B^{12}$ $Y^{12} = A^{12}.B^{22}$
 $X^{21} = A^{21}.B^{11}$ $Y^{21} = A^{22}.B^{21}$
 $X^{22} = A^{21}.B^{12}$ $Y^{22} = A^{22}.B^{22}$

Combine

$$C^{11} = X^{11} + Y^{11}$$
 $C^{12} = X^{12} + Y^{12}$
 $C^{21} = X^{21} + Y^{21}$ $C^{22} = X^{22} + Y^{22}$

$$A = \begin{pmatrix} A^{11} & A^{12} \\ A^{21} & A^{22} \end{pmatrix}, B = \begin{pmatrix} B^{11} & B^{12} \\ B^{21} & B^{22} \end{pmatrix}, C = A \cdot B = \begin{pmatrix} C^{11} & C^{12} \\ C^{21} & C^{22} \end{pmatrix}$$

$$C^{11} = A^{11}.B^{11} + A^{12}.B^{21}$$
 $C^{12} = A^{11}.B^{12} + A^{12}.B^{22}$ $C^{21} = A^{21}.B^{11} + A^{22}.B^{21}$ $C^{22} = A^{21}.B^{12} + A^{22}.B^{22}$

Conquer

- o If matrix size is small enough, then C = A.B
- Others, recursion & parallel computation

$$X^{11} = A^{11}.B^{11}$$
 $Y^{11} = A^{12}.B^{21}$
 $X^{12} = A^{11}.B^{12}$ $Y^{12} = A^{12}.B^{22}$
 $X^{21} = A^{21}.B^{11}$ $Y^{21} = A^{22}.B^{21}$
 $X^{22} = A^{21}.B^{12}$ $Y^{22} = A^{22}.B^{22}$

D&C matrix multiplication algorithm

```
Matrix Multiplication (A, B, C, n) { // n là kích thước
2.
            if (n \le n_0) { // n_0 là kích thước bài toán nhỏ nhất
                 C = A.B; // Giải thuật tuần tự
3.
4.
                 return;
5.
       // Bước (1)
            Phân rả A, B thành A^{11}, A^{12}, A^{21}, A^{22}, B^{11}, B^{12}, B^{21}, B^{22} với
6.
                      kích thước n/2xn/2;
       // Bước (2)
7.
             #pragma parallel for // Song song vòng lặp for
8.
            for (i=0; i<8; i++) {
9.
                 Matrix Multiplication (A^{11}, B^{11}, X^{11}, n/2);
                 Matrix Multiplication (A^{11}, B^{12}, X^{12}, n/2);
10.
11.
                 Matrix Multiplication (A^{21}, B^{11}, X^{21}, n/2);
                 Matrix Multiplication (A^{21}, B^{12}, X^{22}, n/2);
12.
                 Matrix Multiplication (A^{12}, B^{21}, Y^{11}, n/2);
13.
14.
                 Matrix Multiplication (A^{12}, B^{22}, Y^{12}, n/2);
                 Matrix Multiplication (A^{21}, B^{22}, Y^{21}, n/2);
15.
                 Matrix Multiplication (A^{22}, B^{22}, Y^{22}, n/2);
16.
17.
       // Bước (3)
            C^{11} = X^{11} + Y^{11};
18.
            C^{12} = X^{12} + Y^{12};
19.
            C^{21} = X^{21} + Y^{21};
20.
            C^{22} = X^{22} + Y^{22};
21.
22.
            return;
23. }
```

Bucket sort

One "bucket" assigned to hold numbers that fall within each region. Numbers in each bucket sorted using a sequential sorting algorithm.

- Sequential sorting time complexity: O(nlog(n/m))
- Works well if the original numbers uniformly distributed across a known interval, say 0 to a-1

Parallel Bucket sort: version 1

Assign one processor for each bucket

Parallel Bucket sort: version 2

- Partition sequence into m regions, one region for each processor
- Each processor maintains p
 "small" buckets and separates
 the numbers in its region into
 its own small buckets
- Small buckets then emptied into p final buckets for sorting, which requires each processor to send one small bucket to each of the other processors (bucket i to processor i)

 Message-passing operation all-to-all broadcast

All-to-all broadcast

Numerical integration using rectangles

Area =
$$\int_{x_1}^{x_2} f(x) dx = \lim_{n \to \infty} \frac{1}{N} \sum_{i=1}^{N} f(x_i) (x_2 - x_1)$$

- Each region calculated using an approximation given by rectangles
- Aligning the rectangles: (a) & (b)

Numerical integration using rectangles (1)

- Master/slave
- SPMD (Single-Program Multiple-Data)
- Static task assignment

A better solution

```
11. area = 0;

// Tính diện tích trong vùng con tại mỗi P_i

12. for (x=start; x<end; x=x+\delta)

13.1. area = area + f(x) + f(x+\delta);

13.2. area = 0.5 * area * \delta;
```

```
// Tính \int_a^b f(x)dx với chu kỳ lấy mẫu (b-a)/N_0
// P_{group} là nhóm p tiến trình/bộ xử lý (P_i)
   Integration(a, b) {
          i = Get Rank(); // P; có Rank=i
2.
          if (i == 0) { // Master có Rank=0
               n = N_0; // Số mẫu cầu lấy
      // p bộ xử lý cùng thực hiện, Master cũng là một Slave
          bcast(&n, P<sub>group</sub>); // Master truyền, tất cả P<sub>i</sub> nhận
6.
          \delta = (b-a)/n; // Chu kỳ lấy mẫu
          region = (b-a)/p; // độ dài vùng con
          start = a + region * i; // điểm bắt đầu
          end = start + region; // điểm kết thúc
10.
           area = 0; // diện tích vùng con
11.
       // Tính diện tích trong vùng con tại mỗi P<sub>i</sub>
           for (x=start; x<end; x=x+\delta)
12.
               area = area + 0.5 * (f(x) + f(x+\delta)) * \delta;
13.
       // Tính tổng gộp diện tích các vùng con tại tất cả P,
          Reduce Add(&S, &area, P<sub>group</sub>);
14.
15.
          Return(S);
16. }
```

Numerical integration using rectangles (2)

```
area = \frac{\delta(f(a)+f(a+\delta))}{2} + \frac{\delta(f(a+\delta)+f(a+2\delta))}{2} + \dots + \frac{\delta(f(a+(n-1)\delta)+f(b))}{2}
\Leftrightarrow area = \delta(\frac{f(a)}{2}+f(a+\delta)+f(a+2\delta)+\dots+f(a+(n-1)\delta)+\frac{f(b)}{2}).
```

```
11. area = 0;

// Tính diện tích trong vùng con tại mỗi P_i

12. for (x=start; x<end; x=x+\delta)

13.1. area = area + f(x) + f(x+\delta);

13.2. area = 0.5 * area * \delta;
```

```
11. area = 0.5 * (f(start) + f(end));

// Tính diện tích trong vùng con tại mỗi P_i

12. for (x=start+\delta; x<end; x=x+\delta)

13.1. area = area + f(x);

13.2. area = area * \delta;
```

Numerical integration using trapezoidal method

- Solution adapts to shape of curve. Use three areas, A,
 B, and C. Computation terminated when largest of A
 and B sufficiently close to sum of remain two areas
- Adaptive quadrature with false termination
 - Might cause us to terminate early, as two large regions are the same (i.e., C = 0)

Numerical integration using trapezoidal method

 $F(L, \delta)$ with L=[a, b] is an integral of f(.) from a to b with the sampling frequency $1/\delta$.

Divide

- o Divide L=[a, b] into p parts L_1, L_2, L_p with the same length (b-a)/p;
- o Concurrent computation $F(L_k, \delta)$ with all k from 1 to p

Combine

o Return ∑*Area_k*

Conquer

- o Input: L_k and δ_k ;
- o Compute $F(L_k, \delta_k)$
 - $Area_k$ = total area of sampling trapezoids in L_k ;
- o If the accuracy Δ_{k} is hold, then
 - Return Area_k

else

- Divide L_k into $L_{k(L)} = [a_k, (b_k a_k)/2] & L_{k(R)} = [(b_k a_k)/2 + 1, b_k]$
- \triangleright Compute $F(L_{k(L)}, \delta_k/2) \& F(L_{k(R)}, \delta_k/2)$

Integral representation of π

Integral representation of π

```
/* Calculate value of \pi and compares with actual value (to 25 digits) of pi to give error.
Integrates function f(x)=4/(1+x^2)*/
#include <math.h> //include files
#include <iostream.h>
#include "mpi.h"
void printit(); //function prototypes
int main(int argc, char *argv[])
  double actual pi = 3.141592653589793238462643;
  int n, rank, num proc, i;
   double temp_pi, calc_pi,
   int_size, part_sum, x;
  char response = 'y', resp1 = 'y';
```

```
MPI::Init(argc, argv); //initiate MPI
num proc = MPI::COMM_WORLD.Get_size();
rank = MPI::COMM_WORLD.Get rank();
if (rank == 0)
  printit(); /* I am root node, print out welcome */
  while (response == 'y') {
      if (resp1 == 'y') {
          if (rank == 0) { /*I am root node*/
          cout <
                                       " <<endl:
          cout <<"\nEnter the number of intervals: (0 will exit)" << endl;</pre>
          cin >> n;
      } else n = 0:
  MPI::COMM WORLD.Bcast(&n, 1, MPI::INT, 0); //broadcast n
  if (n==0) break; //check for quit condition
  else { int size = 1.0 / (double) n; //calcs interval size
         part sum = 0.0;
         for (i = rank + 1; i <= n; i += num proc) { //calcs partial sums
            x = int size * ((double)i - 0.5);
            part_sum += (4.0 / (1.0 + x*x));
```

```
temp_pi = int_size * part_sum; //collects all partial sums computes pi
    MPI::COMM_WORLD.Reduce(&temp_pi, &calc_pi, 1, MPI::DOUBLE, MPI::SUM, 0);
    if (rank == 0) { /*I am server*/}
      cout << "pi is approximately " << calc pi
       << ". Error is "
       << fabs(calc_pi - actual_pi)
       << endl
       <<"
                                     " << endl;
  } //end else
   if (rank == 0) { /*I am root node*/}
       cout << "\nCompute with new intervals? (y/n)" << endl;</pre>
       cin >> resp1;
 } //end while
 MPI::Finalize(); //terminate MPI
 return 0;
} //end main
```

```
//functions
void printit() {
    cout << "\n______" << endl
        << "Welcome to the pi calculator!" << endl
        << "Programmer: K. Spry" << endl
        << "You set the number of divisions \nfor estimating the integral: \n\tf(x)=4/(1+x^2)"
        << endl
        << "_____"
        << endl;
} //end printit
```