Inteligența artificială. Învățare automată. Concepte de bază.

Conf. Dr. Radu Ionescu raducu.ionescu@gmail.com

Facultatea de Matematică și Informatică Universitatea din București

Inteligența artificială și învățarea automată

Sistem de notare

- Nota este formată din:
- nota la examen 50%
- nota la laborator 50%
- Vor fi două note la laborator, câte una pentru fiecare materie.
 Nota finală de la laborator este formată din media notelor de laborator
- Notele de la examen şi laborator trebuie să fie ambele peste 5
 (regula se aplică şi la restanță, nu se reportează notele)
- La examen vor fi subjecte din ambele materii
- Pentru materia "Învățare automată", studenții vor prezenta un proiect individual în săptămâna a 8-a (respectiv a 14-a)

Sistem de notare

- Proiectul constă în dezvoltarea unei metode de clasificare şi participarea la competiția (TBA) propusă pe platforma Kaggle
- Notele vor fi proporționale cu rata de acuratețe obținută:
- Locurile 1-20 => nota maximă 10
- Locurile 21-50 => nota maximă 9
- Locurile 51-80 => nota maximă 8
- Locurile 81-100 => nota maximă 7
- Locurile 101-120 => nota maximă 6
- Locul 121 sau mai jos => nota maximă 5
- Proiectul trebuie prezentat în ultimul laborator (se acordă 2 puncte pentru prezentare)
- Pentru notă > 5, trebuie depăşită performanţa baseline

La ce se referă inteligența artificială?

- Scopul suprem al inteligenței artificiale este de a construi sisteme care să atingă nivelul de inteligență al omului
- Testul Turing: un computer prezintă un nivel de inteligență uman dacă un interlocutor uman nu reușește să distingă, în urma unei conversații în limbaj natural, că vorbește cu un om sau cu un calculator

La ce se referă învățarea automată?

- O mare parte din cercetători consideră că acest scop poate fi atins prin imitarea modului în care o oamenii învață
- Învățarea automată domeniu care studiază modul în care calculatoarele pot fi înzestrate cu abilitatea de a învăța, fără ca aceasta să fie programată în mod explicit
- În acest context, învățarea se referă la recunoașterea unor tipare / structuri (patterns) complexe și la luarea deciziilor inteligente bazate pe observațiile din date

Problemă "bine pusă" de învățare automată

- Ce probleme pot fi rezolvate* folosind învățarea automată?
- Problemă "bine pusă" de învățare automată:
- Spunem despre un program pe calculator că învață dintr-o experiență E în raport cu o clasă de task-uri T și o măsură de performanță P, dacă performanța sa în rezolvarea taskurilor T, măsurată prin P, se îmbunătățește odată cu experiența E

• (*) rezolvate cu un anumit grad de acuratețe

Problemă "bine pusă" de învățare automată

- Arthur Samuel (1959) a scris un program pentru a juca dame (probabil primul program bazat pe conceptul de învăţare)
- Programul a jucat împotriva lui însuși 10 mii de jocuri

 Programul a fost conceput să găsească ce poziții ale tablei de joc erau bune sau rele în funcție de probabilitatea de a câștiga

sau pierde

- În acest caz:
- E = 10000 de jocuri
- T = joacă dame
- P = dacă câştigă sau nu

Când se aplică învățarea automată?

 Se aplică în situații în care este foarte greu (imposibil) să definim un set de reguli de mână / să scriem un program

- Exemple de probleme unde putem aplica învățarea automată:
- Detectarea facială
- Înțelegerea vorbirii
- Prezicerea preţului acţiunilor
- Recunoașterea obiectelor

Esența învățării automate

Există un tipar în

Dar nu îl putem exprima programatic / matematic

Avem date / exemple în care regăsim acest tipar

Programare tradițională

Învățare automată

Ce este învățarea automată?

[Arthur Samuel, 1959] field of study that

gives computers the ability to learn without being explicitly programmed

[Kevin Murphy] algorithms that

automatically detect patterns in data use the uncovered patterns to predict future data or other outcomes of interest

[Tom Mitchell] algorithms that

improve their performance (P) at some task (T) with experience (E)

Scurt istoric al inteligenței artificiale

A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence.

(John McCarthy)

Scurt istoric al inteligenței artificiale

"We propose that a 2 month, 10 man study of artificial intelligence be carried out during the summer of 1956 at Dartmouth College in Hanover, New Hampshire." The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it.

An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves. We think that a significant advance can be made in one or more of these problems if a carefully selected group of scientists work on it together for a summer."

Scurt istoric al inteligenței artificiale

- Anii 1960-1980: "Al Winter"
- Anii 1990: Reţelele neuronale domină, în principal datorită descoperirii algoritmului de propagare a erorii înapoi pentru reţele cu mai multe straturi
- Anii 2000: Metodele kernel domină, în principal din cauza instabilității rețelelor neuronale
- Anii 2010: Revenirea la rețele neuronale, în principal datorită conceptului de învățare profundă (deep learning)

De ce funcționează în prezent?

Mai multă putere de calcul

Mai multe date

Modele mai bune

Numărul de exemple pentru antrenare

Esența învățării automate Mii de algoritmi de învățare automata existenți

Cercetătorii publică sute de noi algoritmi în fiecare an

Simplificând decenii de cercetare în domeniu, putem reduce învățarea automată la:

Învățarea unei funcții f care să mapeze un input X către un output Y, anume f: X -> Y

Exemplu: X: email-uri, Y: {spam, non-spam}

Esența învățării automate

```
Input: X (imagini, texte, email-uri...)

Output: Y (spam sau non-spam...)

Funcție Target (necunoscută)
f: X \rightarrow Y (realitatea / "adevărata" mapare)

Date
(x_1,y_1), (x_2,y_2), ..., (x_N,y_N)
```

Model

g:
$$X \rightarrow Y$$

y = g(x) = sign($w^T x$)

Esența învățării automate

Orice algoritm de învățare automată are 3 componente:

Reprezentare / Modelare Evaluare / Funcție obiectiv Optimizare

Ce cunoștințe sunt necesare?

Biologie Matematică Neurologie aplicată Optimizare Biologia învățării Sursă de inspirație Algebră liniară Ex: rețele neuronale Derivate și integrale Învățare Ex: minim local automată Informatică Statistică Algoritmi Tehnici de estimare

- Structuri de date
- Analiza complexității
- Ex: arbori k-d

- Paradigme teoretice
- Optimalitate, eficiență
- Ex: regula Bayes

Paradigme ale învățării

- Învățare supervizată (supervised learning)
- Învățare nesupervizată (unsupervised learning)
- Învățare semi-supervizată (semi-supervised learning)
- Învățare ranforsată (reinforcement learning)

- Paradigme non-standard:
- Învățarea activă (active learning)
- Învățare prin transfer (transfer learning)

- Avem la dispoziție exemple de obiecte etichetate
- Exemplu 1: recunoașterea obiectelor din imagini cu eticheta obiectelor conținute

 Exemplu 2: recunoașterea caracterelor scrise de mână (setul de date MNIST)

- Imagini de 28 x 28 de pixeli
- Reprezentăm imagine ca un vector x cu 784 de componente
- Antrenăm un clasificator f(x) astfel încât:
- $f: x \rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

 Exemplu 2: recunoașterea caracterelor scrise de mână (setul de date MNIST)

- Pornind de la un set de antrenare, de exemplu 6000 de imagini per clasă
- Rata de eroare poate ajunge la 0.23% (cu rețele neuronale convoluționale)
- Printre primele sisteme (bazate pe învățare) comerciale utilizate pe scară largă pentru procesare de coduri poștale și cecuri bancare

Exemplu 3: detectare facială

- O abordare constă în plimbarea unei ferestre peste imagine
- Scopul este să clasificăm fereastra într-una din cele două clase posibile: față sau non-față (transformarea problemei într-una de clasificare)

Exemplu 3: detectare facială

- Pornim de la un set cu imagini cu fețe cu diverse variații de vârstă, gen, condiții de iluminare, dar nu translație.
- Şi un set mult mai mare cu imagini care nu conţin feţe

Exemplu 4: detectare de spam

- Problema este de a clasifica un e-mail în spam și non-spam
- Apariția cuvântului "Viagra" este un indicator de spam
- Un exemplu de reprezentare este un vector cu frecvenţa cuvintelor

Numărăm cuvintele

rama rama ramaumar002@hotmail.com via yahoo.com

to ▼

From: Mrs. Rama Umar

Groupe Bank of Africa (Annexe) Burkina Faso

Foreign Department Operation.

My name is Mrs.Rama Umar. I am working with Bank of Africa here in Burkina Fallate foreign customer.

When I discovered that there had been neither deposits nor withdrawals from this ac none of the family member or relations of the late person are aware of this account, (Five Million USA Dollars).

Obţinem X

/	free	100	1
	money	2	
	÷	÷	
	account	2	
	:	÷	

Yoshua Bengio <yoshua.bengio@gmail.com>

to Dong-Hyun, Ian, Dumitru, Pierre, Aaron, Mehdi, Ben, Will, Charlie,

Nice slides!

See you next week,

-Yoshua

```
\begin{pmatrix}
\text{free} & 1 \\
\text{money} & 1 \\
\vdots & \vdots \\
\text{account} & 2 \\
\vdots & \vdots
\end{pmatrix}
```

Algoritm de detectare a spam-ului

Exemplu 5: prezicerea preţului acţiunilor la bursă

- Scopul este de a prezice preţul la o dată din viitor, de exemplu peste câteva zile
- Acesta este un task de regresie, deorece output-ul este unul continuu

Exemplu 6: prezicerea dificultății unei imagini

- Scopul este de a prezice cât de dificil ar fi pentru un om să recunoască obiectele din imagine
- Acesta este un task de regresie, deorece output-ul este unul continuu

Formele canonice ale problemelor de învățare supervizată

Clasificare

Regresie

Estimarea vârstei unei persone din imagini

• Clasificare?

Regresie?

Ce vârstă?

Paradigma de învățare supervizată

Functions \mathcal{F}

 $f: \mathcal{X} \to \mathcal{Y}$

Training data

$$\{(x_i,y_i)\in\mathcal{X} imes\mathcal{Y}\}$$

LEARNING

find $\hat{f} \in \mathcal{F}$ s.t. $y_i \approx \hat{f}(x_i)$

New data

Learning machine

 $\mathbf{y} = \hat{f}(x)$

~

Modele de învățare supervizată

- Clasificatorul Bayes naiv (cursul 2)
- Metoda celor mai apropiați vecini (cursul 3)
- Maşini cu vectori suport (cursurile 3,4)
- Metode kernel (cursurile 3,4)
- Rețele neuronale și învățare "deep" (cursurile 5, 6, 7)
- Arbori de decizie şi random forests
- Altele

- Avem la dispoziție exemple de obiecte fără etichete
- Exemplu 1: gruparea imaginilor după similaritate

Învățare nesupervizată

Exemplu 2: gruparea mamiferelor pe familii, specii, etc.

Generarea arborelui filogenetic pe baza secevnţelor ADN

Formele canonice ale problemelor de învățare nesupervizată

Grupare (clustering)

Reducerea dimensiunii

Modele de învățare nesupervizată

- K-means clustering
- Clustering ierarhic
- Analiza în componente principale
- Altele

Învățare semi-supervizată

- Avem la dispoziție exemple de obiecte etichetate şi exemple de obiecte netichetate
- Exemplu 1: recunoașterea obiectelor din imagini, unele cu eticheta obiectelor conținute

- Cu ce diferă această paradigmă de învățare?
- Sistemul învăță comportamentul inteligent pe baza unei recompense (reinforcement signal)
- Recompensa este primită după mai multe acțiuni (nu vine instant)
- Timpul contează (datele sunt secvenţiale, nu i.i.d.)
- Acțiunea sistemului influențeză datele

- Exemplu 1: învățarea jocului Go
- recompensă +/- pentru câștigarea/pierderea unui joc

- Exemplu 2: învățarea unui robot să meargă pe bicicletă
- recompensă +/- pentru mișcare înainte/cădere

- Exemplu 3: învățarea jocului Pong din pixeli
- recompensă +/- pentru
- creșterea scorului
- personal/al adversarului

Paradigma de învățare ranforsată

- Soluția bazată pe programare dinamică (grafuri mici) sau aproximare (grafuri mari)
- Scop: selectarea acţiunilor pentru a maximiza recompensa totală finală
- Acțiunile pot avea consecințe pe termen lung
- Sacrificarea unei recompense imediate poate conduce la câştiguri mai mari pe termen lung

- Exemplu AlphaGo:
- Comentator 1: "That's a very strange move"
- Comentator 2: "I thought it was a mistake"
- But actually, "the move turned the course of the game.
 AlphaGo went on to win Game Two, and at the post-game press conference, Lee Sedol was in shock."
- https://www.wired.com/2016/03/two-moves-alphago-lee-sedol-redefined-future/

Învățarea activă

 Având un set mare de exemple netichetate, trebuie să alegem un subset mult mai mic pe care să îl etichetăm pentru a obține un clasificator cât mai bun

Învățarea prin transfer

- Pornind la un model antrenat pe un domeniu / problemă anume, doresc să îl folosesc pentru o altă problemă / domeniu
- Exemplu 1: rețele neuronale convoluționale

Învățarea prin transfer

 Exemplu 2: învățare cu zero-exemple (Zeroshot learning)

Multe aplicații interesante, dar...

- Ce este etic şi ce nu?
- Trolley paradox

Multe aplicații interesante, dar...

- Ce este etic şi ce nu?
- Trolley paradox

Multe aplicații interesante, dar...

- Ce este etic şi ce nu?
- Trolley paradox
- http://moralmachine.mit.edu

Bibliografie

Springer Series in Statistics

Trevor Hastie Robert Tibshirani Jerome Friedman

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

Second Edition

O'REILLY"

Advances in Computer Vision and Pattern Recognition

Radu Tudor Ionescu Marius Popescu

Knowledge Transfer between Computer Vision and Text Mining

Similarity-based Learning Approaches

