

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2003-324220
(43)Date of publication of application : 14.11.2003

(51)Int.Cl.

H01L 35/34
C23C 14/08
C23C 14/28
H01L 35/22

(21)Application number : 2002-130297

(71)Applicant : TOYOTA MOTOR CORP

(22)Date of filing : 02.05.2002

(72)Inventor : YAMAGUCHI MASATAKA
TAKAI YOSHIAKI
YOSHIDA TAKASHI
SUDO KIMIHIKO

(54) METHOD FOR MANUFACTURING OXIDE BASED THERMOELECTRIC CONVERSION THIN FILM BASED ON LASER VAPOR DEPOSITION METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain an oxide based thermoelectric conversion thin film of large area wherein crystal orientation is aligned.

SOLUTION: A target 4 and a substrate 1 are arranged in face to face with each other in a vacuum chamber 8. The target 4 is irradiated with laser light 7, and a plume 3 is generated, and the oxide based thermoelectric conversion thin film 2 is formed on the substrate 1. The target 4 is inclined at a prescribed angle by using a slant plate 6 formed of stainless or the like, and the plume 3 is subjected to precession. The temperature and oxygen partial pressure of the substrate 1 are set in prescribed ranges, and the crystal orientation of the oxide based thermoelectric conversion thin film 2 is aligned, so that thermoelectric characteristics are improved.

LEGAL STATUS

[Date of request for examination] 24.12.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2003-324220

(P2003-324220A)

(43)公開日 平成15年11月14日(2003.11.14)

(51)Int.Cl.⁷

H 01 L 35/34
C 23 C 14/08
14/28
H 01 L 35/22

識別記号

F I
H 01 L 35/34
C 23 C 14/08
14/28
H 01 L 35/22

テマコト⁸(参考)
4 K 0 2 9

K

審査請求 未請求 請求項の数 4 O L (全 5 頁)

(21)出願番号 特願2002-130297(P2002-130297)

(22)出願日 平成14年5月2日(2002.5.2)

(71)出願人 000003207

トヨタ自動車株式会社
愛知県豊田市トヨタ町1番地

(72)発明者 山口 正隆
愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内

(72)発明者 高井 吉明
愛知県名古屋市千種区不老町 名古屋大学
大学院内

(74)代理人 100075258
弁理士 吉田 研二 (外2名)

最終頁に続く

(54)【発明の名称】 レーザ蒸着法による酸化物系熱電変換薄膜の製造方法

(57)【要約】

【課題】 大面積で結晶方向の揃った酸化物系熱電変換薄膜を得る。

【解決手段】 真空チャンバ8内にターゲット4及び基板1を対向配置し、ターゲット4にレーザ光7を照射してブルーム3を発生させ、基板1上に酸化物系熱電変換薄膜2を形成する。ステンレスなどの傾斜板6を用いてターゲット4を所定角度だけ傾斜させてブルーム3を歳差運動させる。また、基板1の温度及び酸素分圧を所定の範囲に設定することで酸化物系熱電変換薄膜2の結晶方向を揃え、熱電特性を向上させる。

【特許請求の範囲】

【請求項1】 レーザ光をチャンバ内に配置されたターゲットに照射し、前記ターゲットの構成粒子を蒸発せしめることで、前記ターゲットに対向配置された基板上に酸化物系熱電変換薄膜を形成する方法であって、前記ターゲットを前記基板面に対して所定角度だけ傾斜させ、かつ、前記ターゲットをブルームが円運動を行うように回転させて前記レーザ光を照射し、前記基板温度を680度以上720度以下に調整し、前記チャンバ内の酸素分圧を0.8 Torr以上1.0 Torr以下に調整し、前記酸化物系熱電変換薄膜の結晶方向を少なくとも一方に向揃えることを特徴とする製造方法。

【請求項2】 請求項1記載の方法において、前記酸化物系熱電変換薄膜は、Coを含むことを特徴とする製造方法。

【請求項3】 請求項1記載の方法において、前記酸化物系熱電変換薄膜は、(Ca, Co, O)、(Bi, Sr, Ca, Co, O)、(Na, Co, O)の群から選択された少なくとも一つ以上を含むことを特徴とする製造方法。

【請求項4】 請求項1記載の方法において、前記酸化物系熱電変換薄膜は、(Ca, Al, Co, O)、(Zn, Al, O)、(Zn, Gd, O)、(Zn, In, O)の群から選択された少なくとも一つ以上を含むことを特徴とする製造方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明はレーザ蒸着法による酸化物系熱電変換薄膜の製造方法に関し、特に結晶軸の配向に関する。

【0002】

【従来の技術】熱エネルギーから電気エネルギーへの変換、あるいはその逆課程が可能な熱電変換材料は、無稼働部、無排出、小型軽量、高信頼性等の優れた特徴を有していることから、様々な分野において使用されている。ペルチェ効果を利用した熱電冷却は、温度制御が容易であることから幅広い分野において実用化されているが、ゼーベック効果を利用した熱電発電は、僻地での使用などその用途が限られてきた。しかしながら、近年、石油資源などの産出量が2010年～2020年頃にピークを迎えると予想され、エネルギーの安定供給、経済成長及び環境保全を実現しながらも石油問題の早急な解決に迫られており、これまで用いられていなかった廃熱エネルギーの効率利用が必要不可欠となっている。現在、生活において用いられているエネルギーのほとんどが廃熱として放出されており、熱電変換材料でこれらを回収して再利用する技術は熱エネルギー変換システムとして極めて有望視されている。

【0003】現在、実用化されている熱電変換材料であ

るBi₂Te₃、PbTeなどの金属間化合物は、有毒な元素を含有していることから製造・使用に問題がある。さらに、高温での使用を考えた場合、構成成分の気化蒸発とそれによる汚染、酸化物層の生成などによる熱電変換効率の低下が生じ、使用可能な温度に限界がある。そこで、熱電変換の広範な使用を目指すには、低コストで高温においても安定的に使用が可能である環境負荷の少ない材料が求められている。

【0004】このような背景から、高温においても安定に存在できる酸化物系熱電材料の利用が注目されている。多くの酸化物系材料は、一般に高温大気中において安定しており、毒性も低く、製造も容易なため耐熱材料などの様々な分野で利用されている。酸化物系材料はイオン性が大きく、電子はイオン上に局在する傾向が強い。さらに、原子間の軌道の重なりが小さいために、電子性キャリアの移動度は一般に小さいとされ、従来の熱電理論では熱電材料に向いていないとされていた。しかしながら、ここ数年で酸化物系の新材料の性能は層状構造や強相関系などをキーワードとして急速に向上しており、既存材料と同程度以上の性能が得られている系もある。また、結晶構造の対応性や元素置換の容易さ、低次元構造による熱電性能の向上なども期待されている。

【0005】酸化物系の新素材としては(Ca, Co, O)、(Bi, Sr, Ca, Co, O)、(Na, Co, O)などのCo元素を含む混合組成で構成される材料が確認されている。しかし、このような酸化物系熱電変換材料は、高い性能を有するにも関わらず応用を考えた際の素子化が困難である問題はある。その理由の1つとして、層状構造に起因する異方的な電気抵抗率を持つため、バルク体では性能が一桁程度低下するからである。したがって、結晶の方向を揃えることが、酸化物系熱電変換材料の応用に向けた重要な課題となっている。

【0006】

【発明が解決しようとする課題】このように、酸化物系熱電変換材料を用いる場合、その結晶方位を揃えることが要求される。一般に、熱電変換材料の性能はゼーベック係数S、抵抗率ρ、熱伝導率κを用いて、 $Z = S^2 / \rho \kappa$ で表され、この値の大きいものが望まれる。例えばCo系層状酸化物は、REBa₂Cu₃O_{6.6}(RE:希土類元素)超伝導体と同様に、層状構造に起因する物理的異方性を有しているため、Zに含まれる抵抗率などが結晶軸方向などにより大きく異なり、Zを向上させるには結晶軸を配向させることが必要となる。

【0007】酸化物系薄膜を製造する方法の1つにレーザ蒸着法が知られている。レーザ蒸着法は、減圧下でターゲットに高エネルギーのレーザ光を照射し、ターゲット成分で構成される蒸発物を発生させて基板上に薄膜を成長させる方法である。成膜時の基板温度、雰囲気、圧力、レーザ光のエネルギー密度、周波数など多くのパラメータを制御することが可能であり、薄膜組成比の制御は

容易で成膜速度が速いなどの利点がある。具体的には、
雰囲気制御した内部圧力が調整可能な真空チャンバ内に
基板とターゲットをそれぞれの面を平行にして配置し、
チャンバ外部に配置したレーザ装置により発振された高
エネルギーのパルスルーレーザを光学手段により誘導し、ターゲットに照射する。レーザ光の照射された部分がレーザエネルギーにより励起され、ターゲットを構成する粒子が飛び出し紡錘状の発光状態であるブルームを形成し、構成粒子が基板に到達することで薄膜が形成される。

【0008】しかしながら、ブルームの頂点を中心とした狭い範囲の薄膜しか得られないため、必要な面積を有する薄膜を形成することが困難である。すなわち、基板とターゲットをそれぞれの面が平行になるように配置する従来方法では、チャンバや光学系の大幅な改造が必要とされ、特に酸化物系熱電変換材料をレーザ蒸着法で成長させた場合、ブルームの広がる範囲が非常に狭くなるため広い面積の薄膜形成が困難となる問題がある。

【0009】一方、特開平6-271394号公報に開示されるように、酸化物系超伝導薄膜をレーザ蒸着法により成膜する際に、ターゲットがレーザ照射面をその底面に対して傾斜した形状に形成し、このように傾斜面を有するターゲットを自転させてレーザ光を照射する技術も提案されている。ターゲットに傾斜面を形成し、ブルームに歳差運動を生じさせることで大きな面積の薄膜を得ることが可能であるが、このような技術を酸化物系熱電変換材料にそのまま適用しても、結晶方向を揃えることは困難であり、熱電変換特性に優れた薄膜を得ることはできない。

【0010】本発明は、上記従来技術の有する課題に鑑みられたものであり、その目的は、広い面積を有し、かつ、結晶方向が揃った熱電変換薄膜を製造することができる方法を提供することにある。

【0011】

【課題を解決するための手段】上記目的を達成するためには、本発明は、レーザ光をチャンバ内に配置されたターゲットに照射し、前記ターゲットの構成粒子を蒸発せしめることで、前記ターゲットに対向配置された基板上に酸化物系熱電変換薄膜を形成する方法であって、前記ターゲットを前記基板面に対して所定角度だけ傾斜させ、かつ、前記ターゲットをブルームが円運動を行うように回転させて前記レーザ光を照射し、前記基板温度を680度以上720度以下に調整し、前記チャンバ内の酸素分圧を0.8 Torr以上1.0 Torr以下に調整し、前記酸化物系熱電変換薄膜の結晶方向を少なくとも一方向に揃えることを特徴とする。

【0012】ここで、前記酸化物系熱電変換薄膜は、Coを含む膜とすることができます。

【0013】また、前記酸化物系熱電変換薄膜は、(Ca, Co, O)、(Bi, Sr, Ca, Co, O)、(Na, Co, O)の群から選択された少なくとも一つ

以上を含むものとすることができます。

【0014】また、前記酸化物系熱電変換薄膜は、(Ca, Al, Co, O)、(Zn, Al, O)、(Zn, Cd, O)、(Zn, In, O)の群から選択された少なくとも一つ以上を含むものとすることができます。

【0015】このように、本発明ではターゲットを傾斜させることでブルームに円運動(歳差運動)を起こさせ、広い面積で均一な膜を生成する。そして、基板温度と酸素分圧を調整することで、酸化物系薄膜の結晶方向を揃えて熱電特性の向上を図るものである。

【0016】

【発明の実施の形態】以下、図面に基づき本発明の実施形態について説明する。

【0017】図1には、本実施形態に係るレーザ蒸着装置の構成が示されている。真空チャンバ8内にターゲットホルダ5が配置され、ターゲットホルダ5は中心軸周りに回転自在に支持される。ターゲットホルダ5には酸化物系熱電材料のターゲット4が載置されるが、本実施形態においてはターゲット4とターゲットホルダ5との間に一部にステンレス板等の傾斜板6が設けられ、これによりターゲット4に傾斜角を形成している。ターゲット4の傾斜角は傾斜板6の厚さにより調整される。

【0018】一方、ターゲット4に対向するよう基板1が配置され、図示しないヒータにより基板1を所望の温度に制御する。チャンバ8内にはガス導入管9が設けられ、酸素ガスなどの雰囲気ガスが真空チャンバ8内に導入される。

【0019】このような装置構成において、基板1の温度及び酸素分圧を所定の範囲に制御しつつ外部からレーザ光7をターゲット4に向けて照射する。ターゲット4はターゲットホルダ5の回転に伴い自転し、ターゲット4が傾いていることからレーザ光7により生じたブルーム3は円運動(歳差運動)を行いつつ、基板1上に酸化物系熱電変換薄膜2が形成される。ターゲット4に傾斜角を形成することで、従来技術と同様に基板1上に広範囲に渡って均一な酸化物系熱電変換薄膜2を形成することが可能となる。さらに、本実施形態においては基板1の温度及び酸素分圧を所定の範囲に調整するため、酸化物系熱電変換薄膜2の結晶方向が揃い、熱電変換特性を向上させることができる。本実施形態における基板1の温度範囲は具体的には680℃以上720℃以下の範囲であり、酸素分圧は0.8 Torr以上1.0 Torr以下の範囲である。以下、実施例を用いてより詳細に説明する。

【0020】

【実施例】(比較例)図1に示されたレーザ蒸着装置において、ステンレスの傾斜板6を除去し、ターゲット4を傾斜せずに基板1に対向配置させた。ターゲット4には、直径20mm、厚さ10mmの円板状のCa₃Co₄O₉組成焼結体を使用し、基板1には25mm×10

mm、厚さ0.5 mmのMgO単結晶基板を使用した。基板1の表面温度は680°C、酸素分圧は1.0 Torr、基板1とターゲット4との間の距離は50 mm、レーザ光の照射エネルギーは1 J/cm²、レーザ周波数10 Hzとした。ガス導入管9から高純度酸素ガスを導入し、真空排気ポンプのコンダクタ弁を調整して真空チャンバ8内の圧力を1.0 Torrに調整した。この状態でレーザ光7をターゲット4に照射し、基板1上に膜厚300 nmのCa₃Co₄O₉薄膜2を形成した。

【0021】得られたCa₃Co₄O₉薄膜2について、ICP発光分析法による膜厚評価を行ったところ、ブルーム中心から離れるにつれ膜厚が薄くなることが確認された。

【0022】図2には、比較例（傾斜角0°C）における基板中心からの距離と膜厚との関係が示されている。基板中心から離れるほど膜厚は薄くなり、ターゲット4に傾斜角が形成されていない場合、広い面積に渡って均一な膜厚を形成することができないことが確認された。

【0023】（実施例1）図1に示されたレーザ蒸着装置において、ターゲット4とターゲットホルダ5との間にステンレスの傾斜板6を挿入し、ターゲット4の傾斜角を6度及び10度と2段階に変化させてCa₃Co₄O₉薄膜2を形成した。傾斜角以外の成膜条件は比較例と同一である。得られたCa₃Co₄O₉薄膜2について、ICP発光分析法による膜厚評価を行ったところ、図2に示されるような結果が得られた。傾斜角6度及び10度の場合のいずれにおいても、比較例に対して膜厚の均一性が向上していることが確認される。なお、傾斜角6度の場合よりも10度の方がより均一であるが、あまりに傾斜させると逆に均一性が損なわれることになる。

(Bi, Sr, Ca, Co, O)、(Na, Co, O)組成膜においても、同様に膜厚の検討を行ったが、傾斜角を6度及び10度とすることで膜厚の均一性が向上していることが確認された。

【0024】（実施例2）実施例1と同様にターゲット4とターゲットホルダ5との間にステンレスの傾斜板6を挿入してターゲット4に傾斜（傾斜角10度）を形成し、Ca₃Co₄O₉薄膜2の作成を行った。但し、基板1の表面温度を600°C～760°Cまで20°C毎に変化させて成膜した。ガス導入管9から高純度酸素ガスを導入し、真空排気ポンプのコンダクタ弁を調整して、真空チャンバ8内の圧力を1.0 Torrに調整した。この状態でレーザ光7をターゲット4に照射し、基板1上に膜厚300 nmのCa₃Co₄O₉薄膜2を形成した。得られた膜をX線回折装置で観測した。その結果、

680°C以上720°C以下の範囲でX線回折結果からc軸方向に結晶が揃い、かつ膜厚の均一性が向上した薄膜が得られていることが確認された。

【0025】（実施例3）実施例2と同様にステンレスの傾斜板6をターゲット4とターゲットホルダ5との間に挿入してターゲット4に傾斜（傾斜角10度）を形成し、Ca₃Co₄O₉薄膜2を形成した。基板1の温度を680°Cに固定し、成膜時の酸素分圧を0.2 Torrから1.2 Torrまで変化させて成膜した。得られた膜をX線回折装置で観測した。その結果、0.8 Torr以上1.0 Torr以下の範囲でX線回折結果からc軸方向に結晶が揃い、かつ膜厚の均一性が向上した薄膜が得られていることが確認された。

【0026】（実施例4）上記の比較例及び実施例1～3で作成したCa₃Co₄O₉薄膜2の抵抗率及びゼーベック係数を評価し、性能指数ZTを求めた。実施例1の傾斜角度6°C及び10°Cで成膜したCa₃Co₄O₉薄膜2のZTはそれぞれ0.12及び0.13であった。一方、比較例で作成したCa₃Co₄O₉薄膜2のZTは0.05であった。実施例2で作成した薄膜は、600°C～680°Cの範囲及び720°C～760°Cの範囲では結晶構造が得られず、ZTが低すぎて測定不可能であった。さらに、実施例3で作成した薄膜では、酸素分圧0.2 Torr～0.8 Torrの範囲で結晶構造が得られておらず、ZTが低すぎて測定不可能であった。

【0027】以上の実施例より、ターゲット4を傾斜させることで広い面積で膜厚を均一化でき、さらに基板温度を680°C～720°Cの範囲とし、酸素分圧を0.8 Torr～1.0 Torrの範囲に設定することで、結晶性に優れた酸化物系熱電変換薄膜が得られることが確認できた。

【0028】

【発明の効果】以上説明したように、本発明の製造方法によれば、大面積かつ結晶方向の揃った酸化物系熱電変換薄膜を得ることができる。

【図面の簡単な説明】

【図1】 本実施形態に係るレーザ蒸着装置の構成図である。

【図2】 実施形態における膜厚分布を示すグラフ図である。

【符号の説明】

- 1 基板、2 酸化物系熱電変換薄膜、3 ブルーム、
- 4 ターゲット、5 ターゲットホルダ、6 傾斜板、7 レーザ光、8 チャンバ、9 ガス導入管。

【図1】

【図2】

フロントページの続き

(72)発明者 吉田 隆
愛知県名古屋市千種区不老町 名古屋大学
大学院内

(72)発明者 須藤 公彦
愛知県名古屋市千種区不老町 名古屋大学
大学院内

F ターム(参考) 4K029 BA50 BB07 BD00 CA02 CA15
DB20 EA03 EA08