Number theory assignment 02

N'Dah Jean KOUAGOU

January 19, 2019

7. Let I and J be coprime ideals in a commutative ring R satisfying an equality of ideals $IJ=K^n$. Let's show that we have $I=(I+K)^n$ and $J=(J+K)^n$

$$\bullet \ (I+K)^n \subseteq I$$

We have

$$(I+K)^n = \left\{ finite \sum (x_{i_1} + z_{i_1})(x_{i_2} + z_{i_2}) \dots (x_{i_n} + z_{i_n}) : (x_{i_j}, z_{i_j}) \in I \times K \right\}$$

Let $X = \sum (x_{i_1} + z_{i_1})(x_{i_2} + z_{i_2}) \dots (x_{i_n} + z_{i_n}) : (x_{i_j}, z_{i_j}) \in (I + K)^n$.

$$X = \sum (x_{i_1} + z_{i_1})(x_{i_2} + z_{i_2}) \dots (x_{i_n} + z_{i_n}) : (x_{i_j}, z_{i_j})$$

$$= \sum (x_{i_1}x_{i_2} + x_{i_1}z_{i_2} + z_{i_1}x_{i_2} + z_{i_1}z_{i_2})(x_{i_3} + z_{i_3}) \dots (x_{i_n} + z_{i_n})$$

$$= \sum (\underbrace{x_{i_1}x_{i_2}}_{\in I^2 \subseteq I} + \underbrace{x_{i_1}z_{i_2}}_{\in I} + \underbrace{z_{i_1}x_{i_2}}_{\in I} + \underbrace{z_{i_1}z_{i_2}}_{\in K^2})(x_{i_3} + z_{i_3}) \dots (x_{i_n} + z_{i_n})$$

$$\cdot$$

$$=\sum(\underbrace{x_{i_1}x_{i_2}\dots x_{i_n}}_{\in I^n}+\underbrace{x_{i_1}(\dots)}_{\in I}+\underbrace{x_{i_2}(\dots)}_{\in I}+\dots+\underbrace{x_{i_n}(\dots)}_{\in I}+\underbrace{z_{i_1}z_{i_2}\dots z_{i_n}}_{\in K^n=IJ\subset I})\in I$$

It follows that $X \in I$ and so $(I + K)^n \subseteq I$.

• $I \subseteq (I+K)^2$

Let $x \in I$. Since I and J are coprime (I + J = R), then there exist $x_0 \in I$, $y_0 \in J$ such that $x_0 + y_0 = 1$. Then we have:

$$x = x(x_0 + y_0)$$

$$= xx_0 + \underbrace{xy_0}_{\in IJ = K^n}$$

$$= (x(x_0 + y_0))x_0 + xy_0 \text{ substituting } x \text{ in the first term by } x(x_0 + y_0)$$

$$= \underbrace{xx_0^2 + \underbrace{xy_0 + xx_0y_0}_{\in IJ = K^n}}$$

$$= (x(x_0 + y_0))x_0^2 + \underbrace{xy_0 + xx_0y_0}_{\in IJ = K^n} \text{ substituting } x \text{ in the first term by } x(x_0 + y_0)$$

$$= \underbrace{xx_0^3 + \underbrace{xx_0^2y_0 + xy_0 + xx_0y_0}_{\in IJ = K^n}}$$

$$\vdots$$

$$= \underbrace{xx_0^{n-1} + \underbrace{xy_0(\dots)}_{\in IJ = K^n}}$$

$$\vdots$$

$$= \underbrace{xx_0^{n-1} + \underbrace{xy_0(\dots)}_{\in IJ = K^n}}$$

But we have $(I+K)^n=I^n+K^n+\sum_{i=1}^{n-1}\binom{n}{i}I^iK^{n-i}$, where $\binom{n}{i}=\frac{n!}{i!(n-i)!}$. So $I^n + K^n \subseteq (I + K)^n$ and we conclude that $I \subseteq (I + K)^n$. Therefore $|I = (I + K)^n|$ and by symmetry we have $\overline{J = (J + K)^n}$

8. We take $A = \mathbb{Z}[\sqrt{-6}]$.

(a) Let's determine the primes of A of norm ≤ 8

Let $x = a + b\sqrt{-6} \in A$. We have $N(x) = a^2 + 6b^2$

There is no element of A of norm $N \in \{2, 3, 5, 8\}$ because the equation $a^2 + 6b^2 = N$ does not have a solution

for $N \in \{2, 3, 5, 8\}$.

- If $a^2 + 6b^2 = 1$, then $x = a + b\sqrt{-6} \in A^*$.
- If $a^2 + 6b^2 = 4$, then $a = \pm 2$ and b = 0. If $x = \alpha \beta$, with $\alpha, \beta \in A$ then

$$\begin{split} N(x) &= N(\alpha\beta) = N(\alpha)N(\beta) = 4 \\ &\Rightarrow \begin{cases} N(\alpha) = 1 \\ N(\beta) = 4 \end{cases} & or \begin{cases} N(\alpha) = 4 \\ N(\beta) = 1 \end{cases} & or \begin{cases} N(\alpha) = 2 \\ N(\beta) = 2 \text{ impossible} \end{cases} \end{split}$$

. Then α is a unit or β is a unit. So 2 and -2 are primes of norm 4.

- If $a^2 + 6b^2 = 6 \times 1 = 2 \times 3$, then a = 0 and $b = \pm 1$ and since there is no element of norm 2 or 3 then x = 6 and x = -6 are primes of norm 6.
- If $a^2 + 6b^2 = 7 = 7 \times 1$, then $a = \pm 1$ and $b = \pm 1$. Using the same reasoning it comes that $x = -1 \sqrt{-6}$, $x = -1 + \sqrt{-6}$, $x = 1 - \sqrt{-6}$ and $x = 1 + \sqrt{-6}$ are primes of norm 7.

Then all primes of A of norm ≤ 8 are x = 2, x = -2, x = -6, x = 6, $x = -1 - \sqrt{-6}$, $x = -1 + \sqrt{-6}$ $x = 1 - \sqrt{-6}$ and $x = 1 + \sqrt{-6}$.

(b)

Let's show that 15 has two distinct factorizations into irreducible elements in A. We have:

$$15 = 3.5 = (3 + \sqrt{-6})(3 - \sqrt{-6})$$

- We have $N(3) = 9 \times 1 = 3^2$ and there is no element of norm 3. So if $3 = \alpha \beta$ then and α is a unit or β is a unit. Thus 3 is irreducible.
- Also $N(5) = 25 = 5^2$ and by the same reasoning, 5 is irreducible.
- We have $N(3+\sqrt{-6})=N(3-\sqrt{-6})=15=3.5$ Then $3+\sqrt{-6}$ and $3-\sqrt{-6}$ are irreducible because there is no element of norm 3 or 5.

We conclude that 15 has two distinct factorizations into irreducible elements in A.

(c) Let's write 15A a sa product of prime ideals of A

We have 15A = (3A)(5A).

- In $\mathbb{Z}/3\mathbb{Z}$, -6 = 0, a square. So $3A = (3, \sqrt{-6})^2$.
- In $\mathbb{Z}/5\mathbb{Z}$, -6 = 4, a square. So $5A = (5, \sqrt{-6} 2)(5, \sqrt{-6} + 2)$

Therefore $|15A = (3, \sqrt{-6})^2 (5, \sqrt{-6} - 2)(5, \sqrt{-6} + 2)$.

9.

• $\alpha = 5 + i$

$$\alpha \bar{\alpha} = 5^2 + 1^2$$
$$= 26$$
$$\alpha \bar{\alpha} = 2 \times 13.$$

$$2 = 1^{2} + 1^{2} = (1+i)(1-i)$$
$$13 = 3^{2} + 2^{2} = (3+2i)(3-2i)$$

$$\alpha \bar{\alpha} = (1+i)(1-i)(3+2i)(3-2i).$$

Let's find α .

*(3+2i)

$$\frac{(5+i)(3-2i)}{(3+2i)(3-2i)} = \frac{15-10i+3i+2}{13}$$
$$= \frac{17-7i}{13} \notin \mathbb{Z}[i].$$

(3+2i) doesn't divide α . So (3-2i) divides it.

(1+i) and (1-i) divide α .

$$(3-2i)(1+i) = 3-2i+3i+2=5+i$$

Thus

$$\alpha = 5 + i = (1+i)(3-2i)$$

• $\beta = 239 + i$

$$\beta \bar{\beta} = 239^2 + 1^2$$
$$= 57122$$
$$\beta \bar{\beta} = 2 \times 13^4.$$

$$13 = 3^{2} + 2^{2} = (3+2i)(3-2i)$$
$$= (1+i)(1-i)(3+2i)^{4}(3-2i)^{4}.$$
$$2 = 1^{2} + 1^{2} = (1-i)(1+i)$$

Let's find β .

• (3+2i)

$$\frac{(239+i)(3-2i)}{(3+2i)(3-2i)} = \frac{717-478i+3i+2}{13}$$
$$= \frac{719-476i}{13}.$$

(3+2i) doesn't divide β but (3-2i) divides it. (1+i) and (1-i) divide β .

We have:

$$(3-2i)^{4}(1+i) = (1+i)(3-2i)^{2}(3-2i)^{2}$$

$$= (1+i)(5-12i)(5-12i)$$

$$= (1+i)(-119-120i)$$

$$\beta = (3-2i)^{4}(1+i) = 1-239i$$

So

$$\beta = 239 + i = i(1+i)(3-2i)^4$$

Let's find a relation between (5+i) and (239+i).

$$(5+i)^{4} = (1+i)^{4}(3-2i)^{4}$$

$$= (1+i)^{3}(1+i)(3-2i)^{4}$$

$$= (1+i)(1+i)^{2}(1+i)(3-2i)^{4}$$

$$= i(1-i)(1+i)^{2}(1+i)(3-2i)^{4}$$

$$= (1-i)(1+i)^{2}i(1+i)(3-2i)^{4}$$

$$= (1-i)(1+i)^{2}(239+i)$$

$$= (1-i)(1+i)(1+i)(239+i)$$

$$(5+i)^{4} = 2(1+i)(239+i)$$

For every complex number $z = a + bi = re^{i\theta}$, with $\theta \notin \frac{\pi}{2} + \pi \mathbb{Z}$, we have: $\cos(\theta) = \frac{a}{r}$ and $\sin(\theta) = \frac{b}{r}$. So $tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{b}{a}$ and $\theta = arctan(\frac{b}{a})$.

$$Arg[(5+i)^4] = Arg[2(1+i)(239+i)] \Leftrightarrow 4Arg(5+i) = Arg[2(1+i)] + Arg(239+i)$$

$$\Leftrightarrow 4Arg(5+i) - Arg(239+i) = Arg(2+2i)$$

$$\Leftrightarrow 4arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right) = \arctan\left(\frac{2}{2}\right)$$

$$\Leftrightarrow 4\arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right) = \arctan(1)$$

$$\Leftrightarrow 4\arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right) = \frac{\pi}{4}$$

$$\Leftrightarrow 16\arctan\left(\frac{1}{5}\right) - 4\arctan\left(\frac{1}{239}\right) = \pi.$$

11. Let A be a commutative ring and, $I, J \subset A$ two ideals.

(a) Let's show that $(I \cap J)(I + J) \subseteq IJ$

We have:

$$(I\cap J)(I+J) = \left\{finite\sum x_iy_i : x_i \in I\cap J, y_i \in I+J\right\}$$

. Let $X = \sum x_i y_i \in (I \cap J)(I+J)$. We have for all $z \in I \cap J$ and $a+b \in I+J$, $z(a+b) = \underbrace{za}_{\in IJ} + \underbrace{xb}_{\in IJ} \in IJ$.

Since $(I \cap J)(I+J)$ is an ideal then a finite summation of all elements in the form $z(a+b): z \in I \cap J, a+b \in I+J$

is an element of IJ. It follows that $X = \sum x_i y_i \in (I \cap J)(I + J)$.

Therefore $(I \cap J)(I + J) \subseteq IJ$.

• Case $A = \mathbb{Z}$.

There exist $n, m \in \mathbb{Z}$ such that $I = n\mathbb{Z}$ and $J = m\mathbb{Z}$. Then $IJ = mn\mathbb{Z}, I \cap J = lcm(m.n)\mathbb{Z}$ and $I + J = gcd(m, n)\mathbb{Z}$.

Let l=pcm(m,n) and d=gcd(m,n). We have $I\cap J=l\mathbb{Z},\ I+J=d\mathbb{Z}$ and so $(I\cap J)(I+J)=ld\mathbb{Z}.$

Since $lcm(n, m) \times gcd(n, m) = n \times m$ for all integers n, m, then ld = mn.

We conclude that $(I \cap J)(I + J) = IJ$ in the case $A = \mathbb{Z}$.

(b)

Let $m \geq 1$, As I+J=A. Then there exists $x \in I$ and $y \in J$ such that x+y=1. Then

$$\begin{split} 1 &= (x+y)^{2m} \\ &= \sum_{k=0}^{2m} \binom{2m}{k} x^{2m-k} y^k \\ &= \binom{2m}{0} x^{2m} + \binom{2m}{1} x^{2m-1} y + \binom{2m}{2} x^{2m-2} y^2 + \dots + \binom{2m}{2m-1} x y^{2m-1} + \binom{2m}{2m} y^{2m} \\ &= \underbrace{\binom{2m}{0} x^{2m}}_{\in I^{2m} \subset I^m} + \underbrace{\binom{2m}{1} x^{2m-1} y}_{\in I^{2m-1} \subset I^m} + \underbrace{\binom{2m}{2} x^{2m-2} y^2 + \dots + \underbrace{\binom{2m}{m} x^m y^m}_{\in I^m} + \underbrace{\binom{2m}{m+1} x^{m-1} y^{m+1}}_{\in J^{m+1} \subset J^m} + \dots + \underbrace{\binom{2m}{2m} y^{2m}}_{\in J^{2m} \subset J^m} \end{split}$$

Then $1 \in I^m + J^m$.

. We conclude that $I^m + J^m = A$ for all integer $m \ge 1$.