微積分

1

以下の問いに答えよ.

- (i) $\sin x = 1 x^2$ を満たす実数 x が存在することを示せ.
- (ii) 関数

$$\frac{3x}{x^2 - x - 2}$$

の原始関数を求めよ.

- (iii) z = f(x,y) を C^1 級関数とし、 $x = \frac{u^2 v^2}{2}$, y = uv とする. $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v}$ を $u, v, \frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ を 用いて表せ.
- (iv) $f(x,y) = x^3 + y^3 3xy$ のすべての極値を求めよ.
- (v) $D = \{(x,y) \in \mathbb{R}^2 \mid 0 \le y \le x \le 1\}$ とする.

$$\iint_D xe^y dxdy$$

を求めよ.

An English Translation:

Calculus

1

Answer the following questions.

- (i) Prove that there exists a real number x satisfying $\sin x = 1 x^2$.
- (ii) Find the primitive function of

$$\frac{3x}{x^2 - x - 2}.$$

- (iii) Let z=f(x,y) be a C^1 -class function, and let $x=\frac{u^2-v^2}{2}$ and y=uv. Express $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ by using $u,v,\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
- (iv) Find all the extrema of $f(x, y) = x^3 + y^3 3xy$.
- (v) Let $D = \{(x,y) \in \mathbb{R}^2 \mid 0 \le y \le x \le 1\}$. Find

$$\iint_D xe^y dxdy.$$