Rekursive Aufzählbarkeit Die Reduktion

Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen

November 2011

Semi-Entscheidbarkeit

Eine Sprache L wird von einer TM M entschieden, wenn

- M auf jeder Eingabe hält, und
- M genau die Wörter aus L akzeptiert.

Eine Sprache *L*, für die eine TM existiert, die *L* entscheidet, wird als *rekursiv* oder auch als *entscheidbar* bezeichnet.

Eine Sprache L wird von einer TM M erkannt, wenn

- M jedes Wort aus L akzeptiert, und
- M kein Wort akzeptiert, das nicht in L enthalten ist.

Def: Eine Sprache *L*, für die eine TM existiert, die *L* erkennt, wird als *semi-entscheidbar* bezeichnet.

Beispiel

Das Halteproblem

$$H = \{\langle M \rangle w \mid M \text{ hält auf } w\}$$
.

ist nicht entscheidbar.

Behauptung: Das Halteproblem ist jedoch semi-entscheidbar.

Folgendes TM-Programm erkennt H:

Erhält M' eine Eingabe der Form $\langle M \rangle w$ so

- simuliert M' die TM M mit Eingabe w, und
- akzeptiert, falls M auf w hält.

Syntaktisch inkorrekte Eingaben werden von M' verworfen.

Aufzähler, Rekursive Aufzählbarkeit – Definition

Ein Aufzähler für eine Sprache $L \subseteq \Sigma^*$ ist eine Variante einer TM mit einem angeschlossenen Drucker im Sinne eines zusätzlichen Ausgabebandes, auf dem sich der Kopf nur nach rechts bewegt.

Gestartet mit leerem Arbeitsband, gibt der Aufzähler alle Wörter aus L (möglicherweise mit Wiederholungen) auf dem Drucker aus. Die ausgegebenen Wörter sind dabei durch ein Zeichen getrennt, das nicht in Σ enthalten ist.

Definition

Eine Sprache, für die es einen Aufzähler gibt, heißt *rekursiv* aufzählbar.

Aufzähler – Illustration

rekursiv aufzählbar = semi-entscheidbar

Satz

Eine Sprache *L* ist genau dann semi-entscheidbar, wenn sie rekursiv aufzählbar ist.

Beweis: L ist rekursiv aufzählbar $\Rightarrow L$ ist semi-entscheidbar

Sei A ein Aufzähler für L. Wir konstruieren eine TM M, die L erkennt.

Bei Eingabe w arbeitet M wie folgt:

- M simuliert A mit Hilfe einer Spur, die die Rolle des Druckers übernimmt.
- Wenn immer ein neues Wort gedruckt worden ist, vergleicht M dieses Wort mit w und akzeptiert bei Übereinstimmung.

- Falls w ∈ L, so wird w irgendwann gedruckt und somit von M akzeptiert.
- Falls w ∉ L, so wird w nicht gedruckt und somit nicht akzeptiert.

Beweis: L ist semi-entscheidbar $\Rightarrow L$ ist rekursiv aufzählbar

Sei nun M eine TM M, die L erkennt. Wir konstruieren einen Aufzähler A für L.

Programm von A:

For i = 1, 2, 3, ...

- Simuliere i Schritte von M auf jedem Wort aus w_1, \ldots, w_i .
- Wird dabei eines der Worte akzeptiert, so drucke es aus.

Korrektheit:

A druckt offensichtlich nur Wörter aus L aus. Aber druckt er auch alle Wörter aus L aus?

- Sei w_k ein Wort aus L.
- Dann wird w_k von M nach einer endlichen Anzahl von Schritten, sagen wir nach t_k vielen Schritten, akzeptiert.
- D.h. w_k wird von A ausgedruckt, und zwar in jeder Iteration $i \ge \max\{k, t_k\}$.

Schnitte von Sprachen

Satz

- a) Wenn die Sprachen L_1 und L_2 rekursiv sind, so ist auch die Sprache $L_1 \cap L_2$ rekursiv.
- b) Wenn die Sprachen L_1 und L_2 rekursiv aufzählbar sind, so ist auch die Sprache $L_1 \cap L_2$ rekursiv aufzählbar.

Schnitte von Sprachen – Beweis a)

Seien M_1 und M_2 zwei TM, die L_1 bzw. L_2 entscheiden.

TM M, die $L_1 \cap L_2$ entscheidet:

- Auf Eingabe w, simuliert M zunächst das Verhalten von M_1 auf w und dann das Verhalten von M_2 auf w.
- Falls M₁ und M₂ das Wort w akzeptieren, so akzeptiert auch M; sonst wird w von M verworfen.

- Falls $w \in L_1 \cap L_2$, so wird M akzeptiert.
- Sonst wird w verworfen.

Schnitte von Sprachen – Beweis b)

Seien nun M_1 und M_2 zwei TM, die L_1 bzw. L_2 erkennen.

TM M, die $L_1 \cap L_2$ erkennt:

- Auf Eingabe w, simuliert M zunächst das Verhalten von M_1 auf w und dann das Verhalten von M_2 auf w.
- Falls M_1 und M_2 akzeptieren, so akzeptiert auch M.

Wir verwenden dieselbe TM M wie in a)

- Falls $w \in L_1 \cap L_2$, so wird w von M akzeptiert.
- Sonst wird w nicht akzeptiert.

Vereinigungen von Sprachen

Satz

- a) Wenn die Sprachen L_1 und L_2 rekursiv sind, so ist auch die Sprache $L_1 \cup L_2$ rekursiv.
- b) Wenn die Sprachen L_1 und L_2 rekursiv aufzählbar sind, so ist auch die Sprache $L_1 \cup L_2$ rekursiv aufzählbar.

Vereinigungen von Sprachen – Beweis a)

Seien M_1 und M_2 zwei TM, die L_1 bzw. L_2 entscheiden.

TM M, die $L_1 \cup L_2$ entscheidet

- Auf Eingabe w, simuliert M zunächst das Verhalten von M₁ auf w und dann das Verhalten von M₂ auf w.
- Falls M_1 oder M_2 akzeptiert, so akzeptiert auch M. Sonst verwirft M die Eingabe.

- Falls $w \in L_1 \cup L_2$, so wird w von M_1 oder M_2 und somit auch von M akzeptiert.
- Sonst verwerfen M_1 und M_2 , so dass auch M verwirft.

Vereinigungen von Sprachen – Beweis b)

Seien nun M_1 und M_2 zwei TM, die L_1 bzw. L_2 erkennen.

Welches Problem tritt auf, wenn wir die Simulation aus a) einfach übernehmen?

Idee: Simuliere M_1 und M_2 parallel statt sequentiell ...

Vereinigungen von Sprachen – Beweis b)

TM M, die $L_1 \cup L_2$ erkennt

- Wir nehmen o.B.d.A. an, dass M über zwei Bänder verfügt.
- Auf Band 1 wird M_1 auf w simuliert.
- Auf Band 2 wird M₂ auf w simuliert.
- Sobald ein Schritt erreicht wird, in dem M_1 oder M_2 akzeptieren, so akzeptiert auch M.

- Falls $w \in L_1 \cup L_2$, so wird w von M_1 oder M_2 und somit auch von M akzeptiert.
- Sonst wird w nicht akzeptiert.

$"2 \times rekursiv aufzählbar = rekursiv"$

Lemma *

Seien $L \subseteq \Sigma^*$ und $\bar{L} = \Sigma^* \setminus L$ rekursiv aufzählbar. Dann ist L rekursiv.

Beweis: Seien M und \bar{M} Maschinen, die L bzw. \bar{L} erkennen.

Die TM M' entscheidet L durch eine parallele Simulation von M und \overline{M} auf der Eingabe w:

- M' akzeptiert w, sobald M akzeptiert.
- M' verwirft w, sobald \bar{M} akzeptiert.

Da entweder $w \in L$ oder $w \notin L$, tritt eines dieser Ereignisse nach endlicher Zeit ein, so dass die Terminierung von M' sichergestellt ist.

Komplemente von Sprachen

Beobachtung 1:

Wenn die Sprache L rekursiv ist, so ist auch \bar{L} rekursiv, da wir das Akzeptanzverhalten einer TM M, die M entscheidet invertieren können.

Beobachtung 2:

Die Menge der rekursiv aufzählbaren Sprachen ist hingegen nicht gegen Komplementbildung abgeschlossen.

Beispiel:

- H ist rekursiv aufzählbar.
- Wäre \bar{H} ebenfalls rekursiv aufzählbar, so wäre H nach Lemma * rekursiv.
- Also ist \bar{H} nicht rekursiv aufzählbar.

Schlussfolgerung

Korollar

Für jede Sprache L gilt eine der vier folgenden Eigenschaften.

- **1** L ist rekursiv und sowohl L als auch \bar{L} sind rekursiv aufzählbar.
- ② L ist rekursiv aufzählbar, aber \bar{L} ist nicht rekursiv aufzählbar
- \odot \bar{L} ist rekursiv aufzählbar, aber L ist nicht rekursiv aufzählbar
- ullet sowohl L als auch $ar{L}$ sind nicht rekursiv aufzählbar

Beispiele:

- Kategorie 1: Graphzusammenhang, Hamiltonkreis
- Kategorie 2: H, H_{ϵ} , \bar{D}
- Kategorie 3: D, \bar{H} , \bar{H}_{ϵ}
- Kategorie 4: $H_{all} = \{ \langle M \rangle \mid M \text{ hält auf jeder Eingabe} \}$

Berechenbarkeitslandschaft

nicht rek. aufz. Probleme, deren Komplement ebenfalls nicht rek. aufz. ist

z.B.
$$H_{
m all}$$

Allgemeines Halteproblem

Das allgemeine Halteproblem ist definiert als

$$H_{\text{all}} = \{\langle M \rangle \mid M \text{ hält auf jeder Eingabe}\}$$

Wie kann man nachweisen, dass sowohl $H_{\rm all}$ als auch $H_{\rm all}$ nicht rekursiv aufzählbar sind?

Wir verwenden eine spezielle Variante der Unterprogrammtechnik, die Reduktion.

Die Reduktion

Definition

Es seien L_1 und L_2 Sprachen über einem Alphabet Σ . Dann heißt L_1 auf L_2 reduzierbar, Notation $L_1 \leq L_2$, wenn es eine berechenbare Funktion $f: \Sigma^* \to \Sigma^*$ gibt, so dass für alle $x \in \Sigma^*$ gilt

$$x \in L_1 \Leftrightarrow f(x) \in L_2$$
.

Die Reduktion

Lemma

Falls $L_1 \leq L_2$ und L_2 rekursiv aufzählbar ist, so ist L_1 rekursiv aufzählbar.

Beweis: Wir konstruieren eine TM M_1 , die L_1 erkennt, durch Unterprogrammaufruf einer TM M_2 , die L_2 erkennt:

- Die TM M_1 berechnet f(x) aus ihrer Eingabe x.
- Dann simuliert M_1 die TM M_2 mit der Eingabe f(x) und übernimmt das Akzeptanzverhalten.

$$M_1$$
 akz $x \Leftrightarrow M_2$ akz $f(x) \Leftrightarrow f(x) \in L_2 \Leftrightarrow x \in L_1$.

Die Reduktion

Wdh: Die Reduktion

Im Umkehrschluss gilt:

Lemma

Falls $L_1 \leq L_2$ und L_1 nicht rekursiv aufzählbar ist, so ist L_2 nicht rekursiv aufzählbar.

Anwendung der Reduktion

 H_{ϵ} ist nicht rekursiv, aber rekursiv aufzählbar. Folglich ist \bar{H}_{ϵ} nicht rekursiv aufzählbar.

Wir zeigen nun

Behauptung A

 $ar{H}_{\epsilon} \leq ar{H}_{\mathsf{all}}$

Behauptung B

$$\bar{H}_{\epsilon} \leq H_{\mathsf{all}}$$

Aus diesen Reduktionen folgt:

Satz

Sowohl \bar{H}_{all} als auch H_{all} sind nicht rekursiv aufzählbar.