Seminar 3

- 1. $(\mathbb{C}, +)$ has the following subgroups: $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +)$. (\mathbb{C}^*, \cdot) has the following subgroups: $(\mathbb{Q}^*, \cdot), (\mathbb{R}^*, \cdot), (\mathbb{C}^*, \cdot)$.
- 2. $H \neq \emptyset$, as $z = 1 \in H$. $\forall z \in H, z^{-1} \in H$ we get: $|z \cdot z^{-1}| = |z| \cdot |z^{-1}| = 1$, hence $z \cdot z^{-1} \in H$. So, (H, \cdot) is a subgroup of (\mathbb{C}^*, \cdot) . But, for (H, +), it is not true, as $z = 1 \in H$, but $z - z \notin H$, because $|z - z| = |0| = 0 \neq 1$.
- 3. For (i) and (ii) see Seminar 2, exercise 2. (iii) We know that $I_n \in SL_n(\mathbb{C})$, so $SL_n(\mathbb{C}) \neq \emptyset$. And $\forall A, B \in SL_n(\mathbb{C})$, we have $det(A \cdot B^{-1}) = det(A) \cdot det(B^{-1}) = det(A) \cdot (det(B))^{-1} = 1$, as $B \cdot B^{-1} = I_n$. So $(SL_n(\mathbb{C}), \cdot)$ is a subgroup of $(GL_n(\mathbb{C}), \cdot)$.
- 4. We can easily prove this using Seminar 2, exercise 3.
- 5. (i)
 - $\Rightarrow n\mathbb{Z} \subseteq m\mathbb{Z} \Rightarrow n \in m\mathbb{Z} \Rightarrow \exists l \in \mathbb{Z} \text{ such that } n = ml \Rightarrow m \mid n.$

 - (ii)

(iii) $m\mathbb{Z} + n\mathbb{Z} = \{a + b \mid a \in m\mathbb{Z}, b \in n\mathbb{Z}\} = \{ml + nk \mid l, k \in \mathbb{Z}\}.$

We know that: $m\mathbb{Z} + n\mathbb{Z} \leq (\mathbb{Z}, +)$ and $S(\mathbb{Z}, +) = \{a\mathbb{Z} \mid a \in \mathbb{N}\}$, so we get that: $\exists d \in \mathbb{N}$ such that $m\mathbb{Z} + n\mathbb{Z} = d\mathbb{Z}$.

Take $m = m \cdot 1 + n \cdot 0$, which is from $m\mathbb{Z} + n\mathbb{Z} = d\mathbb{Z} \Rightarrow d \mid m$. The same goes for $n = m \cdot 0 + n \cdot 1 \in m\mathbb{Z} + n\mathbb{Z} = d\mathbb{Z} \Rightarrow d \mid n$.

Let $d_1 \in \mathbb{Z}$ be such that $d_1 \mid m$ and $d_1 \mid n$. Then $m\mathbb{Z} \subseteq d_1\mathbb{Z}$ and $n\mathbb{Z} \subseteq d_1\mathbb{Z}$. So, we get that: $m\mathbb{Z} + n\mathbb{Z} \subseteq d_1\mathbb{Z} \Rightarrow d\mathbb{Z} \subseteq d_1\mathbb{Z}$. And, from (i): $d_1 \mid d$.

In conclusion, d = (m, n).

- 6. \implies Let $H \subseteq K \Rightarrow H \cup K = K \leq G$. Same $K \subseteq H \Rightarrow H \cup K = H \leq G$.
 - Suppose that $H \nleq K$ and $K \nleq H$. We must prove: $H \cup K \nleq G$. $H \nleq K \Rightarrow \exists h \in H, h \notin K$. $K \nleq H \Rightarrow \exists k \in K, k \notin H$.

But $h, k \in H \cup K$.

Suppose $H \cup K \leq G$. Then $h \cdot k \in H \cup K$. This means $h \cdot k \in H$ or $h \cdot k \in K$.

If $h \cdot k \in H \Rightarrow h^{-1} \cdot h \cdot k \in H$, as $H \leq G \Rightarrow 1 \cdot k \in H$, which is a contradiction.

The same goes for $h \cdot k \in K$.

In the end $H \cup K \nleq G$.

- 7. \implies Clear.
 - \sqsubseteq Let H be a stable subset of (G,\cdot) . Let $h \in H \neq \emptyset$. Then $h^2 = h \cdot h \in H$ and, inductively, $h^k \in H$, $\forall k \in \mathbb{N}^*$. Since H is finite, $\exists m, n \in \mathbb{N}^*$ with m > n such that $h^m = h^n$. Then $1 = h^{m-n} \in H$, and so $h^k \in H$, $\forall k \in \mathbb{N}$. Then $h^{-1} = h^{m-n-1} \in H$. Hence H is a subgroup of (G,\cdot) .
- 8. $Z(G) \neq \emptyset$ as $x = 1 \in Z(G)$, the identity element in Z(G). We show that $\forall x, y \in Z(G) \Rightarrow x \cdot y \in Z(G)$ and $x^{-1} \in Z(G)$.

xg = gx and $yg = gy, \forall g \in G \Rightarrow (xy)g = xyg = xgy = gxy = g(xy) \Rightarrow xy \in Z(G)$.

$$xg = gx, \forall g \in G \Rightarrow x^{-1}xg = x^{-1}gx \Rightarrow g = x^{-1}gx \Rightarrow gx^{-1} = x^{-1}gxx^{-1} \Rightarrow gx^{-1} = x^{-1}g \Rightarrow x^{-1} \in Z(G).$$

$$Z(G) = G \Leftrightarrow G$$
 is abelian.

9. $Z(GL_2(\mathbb{R})) = \{ A \in GL_2(\mathbb{R}) \mid A \cdot B = B \cdot A, \forall B \in GL_2(\mathbb{R}) \}.$

$$A \in GL_2(\mathbb{R}) \Rightarrow det A \neq 0$$
, where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

Take $B_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $B_2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, with $B_1, B_2 \in GL_2(\mathbb{R})$.

$$A \cdot B_1 = \begin{bmatrix} a & a+b \\ c & c+d \end{bmatrix}$$
 and $B_1 \cdot A = \begin{bmatrix} a+c & b+d \\ c & d \end{bmatrix}$.

But $A \cdot B_1 = B_1 \cdot A$. So we get the next equalities: a = a + c and $a + b = d + b \Rightarrow c = 0$ and a = d.

We do the same things for B_2 and get that b = 0.

In the end, $A = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} = a \cdot I_2 \in GL_2(\mathbb{R})$. One checks that these verify the condition.

10. We know that $e \circ \sigma = \sigma \circ e$, $\forall \sigma \in S_3$.

Suppose that $\exists \sigma \in S_3$ with $\sigma \neq e$ such that $\sigma \in Z(S_3, \circ)$. Then $\exists a, b \in \{1, 2, 3\}$ with $a \neq b$ such that $\sigma(a) = b$. Let $c \in \{1, 2, 3\} \setminus \{a, b\}$. Consider $\tau \in S_3$ defined by $\tau(b) = c$, $\tau(c) = b$ and $\tau(a) = a$. We must have $\sigma \circ \tau = \tau \circ \sigma$. But $\sigma(\tau(a)) = b$ and $\tau(\sigma(a)) = c$, which is a contradiction.

So $Z(S_3, \circ) = \{e\}$. And similarly goes for S_n .