Contents

Fli	ip Flops	1
	Clocks	1
	Caveat	1
	D Flip Flop	2
	D Flip Flop (Clocked)	3
	SR Flip Flop	4
	JK Flip Flop	5
	T Flip Flop	6

Flip Flops

The purpose of a flip flop is to preserve the data over a duration of time. Ones that are clocked will ignore all of the inputs given until the clock is signaled.

Clocks

- Rising Edge: the transition from low to high
- Falling Edge: the transition from high to low

Figure 1: Clock Diagram

Caveat

There is a problem called **metastability** which is when the clock and data line are changed at around the same time, the hardware has a hard time telling which one came first, so there may be undefined behavior that would incur.

D Flip Flop

- When E is high (1), Q follows D with Q' the complement of Q
- When E is low (0), the output remains the same (no state change) and D is ignored
- E: Enable
- D: Data
- Q Q' : Output

D Flip-flop

Figure 2: D Flip Flop with Truth Table

D Flip Flop (Clocked)

- Captures the value of the D input at a specific portion of the clock cycle (rising or falling edge)

Figure 3: D Latch Diagram

SR Flip Flop

- When both S and R are low, the outputs are in a constant state
- Q and Q' are complementary; when Q is high, Q' is low

Figure 4: SR Latch

	INPUTS		OUTPU	STATE
			T	
CLK	S	R	Q	
X	0	0	No	Previous
1 - 110			Change	
†	0	1	0	Reset
†	1	0	1	Set
A	1	1	14-3	Forbidde
	783			n

Figure 5: SR Truth Table

JK Flip Flop

- All state changes are synced to a clock point
 - When J is 1 and K is 0, on the next clock rising edge, Q will go high
 - When K is 1 and J is 0, on the next clock rising edge Q will go low
 - When J and K are both 0, nothing will happen when the clock is pulsed
 - If J and K are 1, no matter the state of Q, it will change to the opposite state (flipping)

С	J	K	Q	Q
Т	0	0	latch	latch
Т	0	1	0	1
Т	1	0	1	0
工	1	1	toggle	toggle
х	0	0	latch	latch
х	0	1	latch	latch
х	1	0	latch	latch
Х	1	1	latch	latch

Figure 6: JK Flip Flop Diagram

T Flip Flop

• When T is high, every clock cycle will toggle the outputs

T Flip-flop

Table of truth:

Т	Q	ā
0	Q	ā
1	Q	Q
0	Q	Q
1	Q	ā

Figure 7: T Flip Flop Diagram