Aufgabenblatt 7

Operations Research – Wirtschaftsinformatik – Online

Sommersemester 2023

Prof. Dr. Tim Downie

Simplex Algorithmus - Sonderfälle

mit Lösungen

Lösen Sie mit dem Simplex-Algorithmus (einschließlich dualem Simplex) der folgenden LPs. Achten Sie dabei auf die verschiedene Sonderfälle.

Aufgabe 1

$$\max Z(x_1, x_2) = \frac{1}{2}x_1 + x_2$$

Unter den Nebenbedingungen

$$\begin{array}{rcl}
x_2 & \leqslant & 2 \\
\frac{1}{2}x_1 + 2x_2 & \leqslant & 4 \\
2x_1 + \frac{1}{2}x_2 & \leqslant & 4 \\
x_1, x_2 & \geqslant & 0.
\end{array}$$

Was für Entartung hat diese LP?

Zeigen Sie, dass es zwei Wege zur optimalen Lösung gibt.

Hinweis: Der z-Wert der optimalen Lösung ist $z^* = \frac{12}{5}$.

Die θ -Werte vom Nulltableau sind 2, 2, und 8. Beide y_1 und y_2 sind geeignete Austrittsvariable.

Zuerst probieren wir y_1 als die Austrittsvariable

	-								
Ta	b.0	x_1	x_2	Ta	b.1	x_1	y_1	θ	
z	0	$-\frac{1}{2}$	-1	z	2	$-\frac{1}{2}$	1		
y_1	2	0	1	x_2	2	0	1	∞	Wähle den kleinsten positiven θ -Wert x_1 tauscht mit y_3
y_2	4	$\frac{1}{2}$	2	y_2	0	$\frac{1}{2}$	-2	0	
y_3	4	2	$\frac{1}{2}$	y_3	3	2	$-\frac{1}{2}$	$\frac{1}{2}$	

$T\epsilon$	ab.2	y_3	y_1
z	$\frac{11}{4}$	$\frac{1}{4}$	$\frac{7}{8}$
x_2	2	0	1
y_2	$-\frac{3}{4}$	$-\frac{1}{4}$	$-\frac{15}{8}$
x_1	$\frac{3}{2}$	$\frac{1}{2}$	$-\frac{1}{4}$
θ		-1	$-\frac{7}{15}$

Nun gibt es einen negativen Wert für BV y_2 !

Dual Schritt Tauschen y_3 mit y_2

Ta	b.3	y_3	y_2
z	$\frac{12}{5}$	$\frac{2}{15}$	$\frac{7}{15}$
x_2	$\frac{8}{5}$	$-\frac{2}{15}$	$\frac{8}{15}$
y_1	$\frac{2}{5}$	$\frac{2}{15}$	$-\frac{8}{15}$
x_1	$\frac{8}{5}$	$\frac{8}{15}$	$-\frac{2}{15}$

Endkriterium, da alle Werte in der Lösungsspalte und Z-Zeile sind positive. Diese braucht 3 Iterationen.

Nun probieren wir y_2 als die Austrittsvariable

Ta	b.0	x_1	x_2
z	0	$-\frac{1}{2}$	-1
y_1	2	0	1
y_2	4	$\frac{1}{2}$	2
y_3	4	2	$\frac{1}{2}$

Tal	b.1	x_1	y_2
z	2	$-\frac{1}{4}$	$\frac{1}{2}$
y_1	0	$-\frac{1}{4}$	$-\frac{1}{2}$
x_2	2	$\frac{1}{4}$	$\frac{1}{2}$
y_3	3	$\frac{15}{8}$	$-\frac{1}{4}$

Ta	b.2	y_2	y_3
z	$\frac{12}{5}$	$\frac{7}{15}$	$\frac{2}{15}$
y_1	$\frac{2}{5}$	$\frac{8}{15}$	$\frac{2}{15}$
x_2	$\frac{8}{5}$	$\frac{8}{15}$	$-\frac{2}{15}$
x_1	$\frac{8}{5}$	$-\frac{2}{15}$	$\frac{8}{15}$

Die optimale Lösung ist diesmal in 2 Schritten gefunden.

Aufgabe 2

$$\max Z(x_1, x_2) = x_1 + 2x_2$$

Unter den Nebenbedingungen

$$\begin{array}{rcl} x_1 - x_2 & \leqslant & 3 \\ -2x_1 - 2x_2 & \leqslant & -3 \\ x_1, x_2 & \geqslant & 0. \end{array}$$

Führen Sie einen Schritt des *dualen* Simplex Algorithmus durch. Was kann man aus Tableau 1 schließen?

Tal	b. 0	x_1	x_2
Z	0	-1	-2
y_1	3	1	-1
y_2	-3	-2	-2

Negativer y_2 -Wert \Rightarrow dualer Schritt.

Ta	b. 1	x_1	y_2
Z	3	1	-1
y_1	4.5	2	-0.5
x_2	1.5	1	-0.5

Alle Einträge in der y_2 -Spalte sind Negativ, kein gültiger Pivotwert ist vorhanden. Diese zeigt eine primale Entartung zweiter Art: Das zulässige Bereich ist unbegrenzt.

2

Aufgabe 3

$$\max Z(x_1, x_2, x_3) = 2x_1 + x_2 + 3x_3$$

Unter den Nebenbedingungen

$$\begin{array}{rcl} 4x_1 + x_2 - x_3 & = & 6 \\ x_2 + 3x_3 & \leqslant & 9 \\ 5x_1 + x_2 + x_3 & \leqslant & 14 \\ x_1, x_2, x_3 & \geqslant & 0. \end{array}$$

Stellen Sie die LP in Grundform, und lösen Sie sie mit dem Simplex-Algorithmus.

$T\epsilon$	ab.0	x_1	x_2	x_3
z	0	-2	-1	-3
y_1	6	4	1	-1
y_2	-6	-4	-1	1
y_3	9	0	1	3
y_4	14	5	1	1

Negativer y_2 -*Wert* \Rightarrow *dualer Schritt.*

Ta	b.1	x_1	y_2	x_3
z	6	2	-1	-4
y_1	0	0	1	0
x_2	6	4	-1	-1
y_3	3	-4	1	4
y_4	8	1	1	2

 $y_1 = 0$ zeigt primale Entartung erster Art. Pivospalte ist x_3 : kleinste Theta Wert mit positiven Pivotwert ist die x_3 -Zeile.

Ta	b.2	x_1	y_2	y_3
z	9	-2	0	1
y_1	0	0	1	0
x_2	$\frac{27}{4}$	3	$-\frac{3}{4}$	$\frac{1}{4}$
x_3	$\frac{3}{4}$	-1	$\frac{1}{4}$	$\frac{1}{4}$
y_4	$\frac{13}{2}$	3	$\frac{1}{2}$	$-\frac{1}{2}$

Nun gibt sowohl primale Entartung als auch duale Entartung (eine NBV y_2 ist gleich null) Pivospalte ist x_1 : kleinste Theta Wert mit poisitiven Pivotwert ist die y_4 -Zeile.

Ta	b.3	y_4	y_2	y_3
z	$\frac{40}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	$\frac{2}{3}$
y_1	0	0	3	0
x_2	$\frac{1}{4}$	-1	$-\frac{5}{4}$	$\frac{3}{4}$
x_3	$\frac{35}{12}$	$\frac{1}{3}$	$\frac{5}{12}$	$\frac{1}{12}$
x_1	$\frac{13}{6}$	$\frac{1}{3}$	$\frac{1}{6}$	$-\frac{1}{6}$

Alle Werte in der z-Zeile sind positiv. Optimale Lösung gefunden. $x_1^*=\frac{13}{6}, x_2^*=\frac{1}{4}, x_3^*=\frac{35}{12},$ $z^*=40/3$

Aufgabe 4

$$\max Z(x_1, x_2) = x_1 - x_2$$

Unter den Nebenbedingungen

$$\begin{array}{rcl} 2x_1 - x_2 & \leqslant & 0 \\ x_1 + 2x_2 & \leqslant & 1 \\ -2x_1 - x_2 & \leqslant & -2 \\ x_1, x_2 & \geqslant & 0. \end{array}$$

Die Startbasislösung ist wegen der 3. Restriktion unzulässig. Vorgehensweise: Dualer Schritt y_3 ist die Austrittsvariable und x_1 ist die Eintrittsvariable. Nun ist y_1 negativ: Dualer Schritt y_1 ist die Austrittsvariable und x_2 ist die Eintrittsvariable.

Tab.2		y_3	y_1
z	$-\frac{1}{2}$	$\frac{1}{4}$	$\frac{3}{4}$
x_2	1	$-\frac{1}{2}$	$-\frac{1}{2}$
y_2	$-\frac{3}{2}$	$\frac{5}{4}$	$\frac{3}{4}$
x_1	$\frac{1}{2}$	$-\frac{1}{4}$	$\frac{1}{4}$

Nun ist y_2 negativ, aber es gibt keinen negativen Pivowert in der Spalte. \Rightarrow Es gibt keine zulässige Lösung.

Aufgabe 5

$$\max Z(x_1, x_2, x_3, x_4) = 2x_1 + x_3 + x_4$$

Unter den Nebenbedingungen

$$\begin{array}{rcl} x_1 + x_2 + x_3 + 2x_4 & \leqslant & 4 \\ & -x_2 & \leqslant & 4 \\ & x_2 - x_4 & \leqslant & 0 \\ & x_4 & \geqslant & 2 \\ & x_2 \in \mathbb{R}, \ x_1, x_3, x_4 & \geqslant & 0. \end{array}$$

Hinweis: Da $x_2 \in \mathbb{R}$ ist eine negativem Basiswert für x_2 erlaubt.

Tab.0		x_1	x_2	x_3	x_4
z	0	-2	0	-1	-1
y_1	4	1	1	1	2
y_2	4	0	-1	0	0
y_3	0	0	1	0	-1
y_4	-2	0	0	0	-1

Es gibt sowohl primale Entartung als auch duale Entartung. Pivospalte ist x_1 : kleinste Theta Wert mit poisitiven Pivotwert ist die y_4 -Zeile.

Tab.1		x_1	x_2	x_3	y_4
z	2	-2	0	-1	-1
y_1	0	1	1	1	2
y_2	4	0	-1	0	0
y_3	2	0	1	0	-1
x_4	2	0	0	0	-1

Aktuelle z-Wert ist 2

 x_1 ist Eintrittsvariable. Alle θ -Werte sind unendlich oder Null: Wir können nun enden und die optimale Lösung ablesen.

Optimale Lösung gefunden: x_1 , x_2 und x_3 sind alle NBV also $x_1^* = x_2^* = x_3^* = 0$ und x_4 ist ein BV mit $x_4^* = 2$, $z^* = 2$

Was passiert wenn wir mit einem Austausch zwischen x_1 und y_1 fort setzen?

	Tal	b.2	y_1	x_2	x_3	y_4
	z	2	2	2	1	3
,	x_1	0	1	1	1	2
	y_2	4	-0	-1	0	0
	y_3	2	-0	1	0	-1
	x_4	2	0	0	0	-1

Keine Negativem Wert in der Z-Zeile und Lösungsspalte. Endkriterium Getroffen

Aktuelle z-Wert ist immer noch 2. Im Tab. 1 war x_1 eine NBV gleich Null. Im Tab. 2 ist x_1 eine Basis variable aber immer noch gleich Null. Die 2. Iteration hat nur gezeigt, dass diese optimal ist.

Optimale Lösung gefunden: $x_1^* = x_2^* = x_3^* = 0$, $x_4^* = 2$ $z^* = 2$