CIS102 Tutorial 5 Answers

Goldsmiths College, University of London

December 12 2006

1.

- (a) $\{v_1, v_4, v_5\}$
- (b) $\{e_3, e_4\}$
- (c) v_2 , e_5 , v_4 , e_4 , v_3 , e_3 , v_5
- (d) $v_2, e_5, v_4, e_4, v_3, e_3, v_5, e_2, v_2$
- 2. (a) The degree sequence 4,3,2,2 has a sum of 11. The sum should be equal to *twice* the number of edges, which would lead to 5.5 edges, which is clearly impossible.
 - (b) Degree sequence 4,3,3,2,2

(c) 4 regular graph with 8 vertices

- 3. (a) The *vertices* represent the sites, the *edges* connections. Two vertices are joined by an edge when the corresponding sites have a connection.
 - (b) It has 7 vertices.
 - (c) The *sum* of the degree sequence is *twice* the number of edges in the graph. 7+4+3+3+2+2+1=22, so there are 11 edges or connections between pairs of sites.
 - (d) There are 7 *vertices* or sites, but one of them has 7 *incident edges*. There are only 6 other sites for these edges to connect to, so one edge must be a parallel edge or a loop. By definition, a simple graph has no parallel edges or loops, so this degree sequence cannot be of a simple graph.

- 4. (a) A complete graph is one where every pair of vertices is joined by exactly one edge
 - (b) K_8 has degree sequence 7,7,7,7,7,7,7 so every vertex has degree 7. K_8 has $\frac{8\times7}{2}=28$ edges.

- (c) K_n has each vertex of degree n-1. The total number of edges $=\frac{n(n-1)}{2}$
- 5.

Yes, the graphs are isomorphic.

ν	v_a	v_b	v_c	v_d	v_e
f(v)	w_t	w_s	w_u	w_v	w_w

6.

7. (a)

d	no. of edges		
0	0		
2	7		
4	14		
6	21		

(b) Possible values of d when there are 8 vertices are 0,2,3,4,5,6,7.

8.

