Measuring the strength and speed of epidemics

McMaster University Origins Institute Colloquium November 2016

Jonathan Dushoff

http://lalashan.mcmaster.ca/DushoffLab

Outline

Introduction

Speed of epidemics Strength of epidemics

Generation intervals through time

Estimating the effect of generation intervals Moment approximations

Strength and Speed of Epidemics HIV example

Infectious diseases

US annual mortality rate (CDC)

Models

Dynamic models

Small-scale events ⇔ Large-scale patterns and outcomes

Dynamic models

Measles reports from England and Wales

Dynamic modeling

Connects scales

Yellow fever in Panama

endemic equilibrium

Speed of epidemics

- Exponential growth:
 - Growth proportional to size

Exponential growth

Exponential growth

Speed

- We measure epidemic speed using little r:
 - ► The ratio of the *change* in disease impact to the *amount* of disease impact
 - Units: [1/time]
 - Disease increases like e^{rt}
- ▶ Time scale is C = 1/r
 - ▶ Ebola, C ≈ 1 month
 - ▶ HIV in SSA, $C \approx 18$ *month*

Strength of epidemics

endemic equilibrium

Basic reproductive number

- We describe epidemic strength with big R
- Number of potential new cases per case
- To eliminate disease, we must:
 - ▶ Reduce transmission by a factor of R or
 - Reduce number of susceptible people by a factor of R or
- Examples:
 - ▶ Ebola, $\mathcal{R} \approx 2$
 - ▶ HIV in SSA, $\mathcal{R} \approx 5$

Linking little r and big R

Generation intervals

- The generation distribution measures generations of the disease
 - Interval between "index" infection and resulting infection
- What does G tell us about how dangerous the epidemic is?
 - It depends on what else we know!

Approximate generation intervals

Generations and \mathcal{R}

Generations and \mathcal{R}

Generations and \mathcal{R}

Conditional effect of generation time

- ▶ Given the reproductive number R
 - faster generation time G means faster spread time C
 - More danger
- Given the spread time C
 - faster generation time G means $smaller \mathcal{R}$
 - Less danger

Outline

Introduction

Speed of epidemics
Strength of epidemics

Generation intervals through time

Estimating the effect of generation intervals Moment approximations

Strength and Speed of Epidemics HIV example

Generation intervals through time

- Generation intervals can be estimated by:
 - Observing patients:
 - How long does it take to become infectious?
 - How long does it take to recover?
 - What is the time profile of infectiousness/activity?
 - Contact tracing
 - Who (probably) infected whom?
 - When did each become ill (serial interval)?

Growing epidemics

- Generation intervals look faster at the beginning of an epidemic
 - A disproportionate number of people are infectious right now
 - They haven't finished all of their transmitting
 - We are biased towards observing faster events

Forward and backward intervals

16 Champredon and Dushoff, 2015. DOI:10.1098/rspb.2015.2026

What changes backward intervals?

What changes forward intervals?

Comparison to simulations

Conclusion

- Backward intervals change if the number of infectious individuals is changing as you look back
- Forward intervals change if the number of susceptible individuals is changing as you look forward
- Lack of care in defining generation intervals can lead to bias
 - Results also tell us how to correct this bias

Outline

Introduction

Speed of epidemics Strength of epidemics

Generation intervals through time

Estimating the effect of generation intervals Moment approximations

Strength and Speed of Epidemics HIV example

The "effective" generation time

▶ If the generation interval were absolutely fixed at a time interval of G, then

 $\mathcal{R} = \exp(G/C)$

Define the effective generation time so that this remains true:

 $\mathcal{R} = \mathsf{exp}(\hat{ ilde{G}}/ ilde{C})$

▶ We can show \hat{G} is a "filtered mean" of the distribution g:

 $\exp(-\hat{ extit{G}}/ extit{ extit{C}}) = \langle \exp(- au/ extit{ extit{C}})
angle_g.$

C = 15d

Example: Post-death transmission and safe burial

- How much Ebola spread occurs before vs. after death
- Highly context dependent
 - Funeral practices, disease knowledge
- Weitz and Dushoff Scientific Reports 5:8751.

Standard disease model

Disease model including post-death transmission

Disease model including post-death transmission

Scenarios

Conclusions

- Different parameters can produce indistinguishable early dynamics
- More after-death transmission implies
 - ▶ Higher R₀
 - Larger epidemics
 - Larger importance of safe burials

An approximation

- We connect these quantities with a moment approximation
- ▶ Define $\kappa = \sigma_G^2/\mu_G^2$ the squared coefficient of variation of the generation distribution
- $\mathcal{R} \approx (1 + \kappa \bar{G}/C)^{1/\kappa}$
 - Equal when G has a gamma distribution
 - Simple and straightforward
 - When is it a useful approximation?

Fitting to Ebola

- Simulate generation intervals based on data and approach from WHO report
- Use both lognormals and gammas
 - WHO used gammas
 - Lognormals should be more challenging

Approximating the distribution

Single-gamma approximation

Approximating the curve

Summary

- ▶ Generation intervals are the missing link between r and R
- We need better methods for estimating them, and propagating uncertainty to other parts of the model
- For many practical applications:
 - Knowing the mean generation interval is not enough
 - But knowing the mean and CV may be enough

Outline

Introduction

Speed of epidemics Strength of epidemics

Generation intervals through time

Estimating the effect of generation intervals Moment approximations

Strength and Speed of Epidemics HIV example

Strength: R – the reproductive number

- Expected number of new cases per cases
- $\triangleright \mathcal{R} = \beta DS/N$
 - Disease increases iff R > 1

endemic equilibrium

Speed: r – the growth rate

- \rightarrow $i(t) \approx i(0) \exp(rt)$
- ightharpoonup C = 1/r
- ► $T_2 = \ln(2)/r$

$\ensuremath{\mathcal{R}}$ and the generation interval

$$i(t) = \int k(\tau)i(t-\tau)\,d\tau$$

- $ightharpoonup \mathcal{R} = \int k(\tau) d\tau$
- ▶ Define the intrinsic generation interval distribution: $k(\tau) = \mathcal{R}g(\tau)$

${\cal R}$ and the generation interval

${\cal R}$ and the generation interval

r and the (other) generation interval

$$i(t) = \int k(\tau)i(t-\tau)\,d\tau$$

- if i(t) grows like $\exp(rt)$, then
- ▶ 1 = $\int k(\tau) \exp(-r\tau) d\tau$
- ▶ $b_0(\tau) = k(\tau) \exp(-r\tau)$ is the initial *backwards* generation interval

r and the (other) generation interval

Ebola

HIV

HIV

HIV

Strength of intervention

- Imagine we have an intervention that reduces transmission
 - $k(\tau) \rightarrow k(\tau)/L(\tau)$
 - ▶ Define *strength* $\theta = \mathcal{R}/\hat{\mathcal{R}}$ the proportional amount by which the intervention reduces transmission.
- We then have:
 - $\bullet \ \theta = 1/\langle 1/L(\tau)\rangle_{g(\tau)}$
 - θ is the harmonic mean of L, weighted by the generation distribution g.
- ▶ Outbreak can be controlled if $\theta > \mathcal{R}$

Speed of intervention

▶ Define the *speed* of an intervention be $\phi = r - \hat{r}$ – the amount by which the intervention slows down spread.

$$1 = \left\langle \frac{\exp(\phi \tau)}{L(\tau)} \right\rangle_{b(\tau)}$$

- \$\phi\$ is sort of a mean of the hazard associated with L
 - Averaged over the initial backwards generation interval
- ▶ Outbreak can be controlled if $\phi > r$.

A new way of looking

Measuring the epidemic

Measles reports from England and Wales

Measuring the intervention

Can treatment stop the HIV epidemic?

Are HIV generations fast or slow?

- Fast generations mean:
 - Testing and treating will help less
 - but lower epidemic strength

Condom intervention

Find and treat

Low early transmission

High early transmission

Range of estimates

Find and treat

Low early transmission

High early transmission

Range of estimates

Condom intervention

Condom intervention

Conclusion

- This perspective helps us understand why find and treat predictions are robust to assumptions about transmission
- Sometimes "strength" and sometimes "speed" can help us see epidemic control questions more clearly

Thanks

- Organizers
- Audience
- Collaborators
- ► Funders: NSERC, CIHR