

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Primer Semestre de 2019

Tarea 1

Fundamentos de la Matemática - MAT 2405 Fecha de Entrega: 2019/03/27

> Integrantes del grupo: Nicholas Mc-Donnell, Maximiliano Norbu

Problemas

Problema 15 pts:

- (a) (5 pts) Dadas oraciones α y β , muestre que ($\alpha \iff \beta$) y (($\alpha \implies \beta$) \wedge ($\beta \implies \alpha$)) son lógicamente equivalentes.
- (b) (10 pts) Demuestre por inducción en oraciones que toda oración es lógicamente equivalente a alguna oración que no tiene el símbolo \iff .

Solución problema 1:

(a) Viendo la siguiente tabla con todas las valuaciones posibles se nota que son lógicamente equivalentes pues ambas siempre tienen el mismo valor de verdad.

α	β	$\alpha \implies \beta$	$\beta \implies \alpha$	$\alpha \iff \beta$	$((\alpha \implies \beta) \land (\beta \implies \alpha))$
V	V	V	V	V	V
V	F	F	V	F	F
F	V	V	F	F	F
F	F	V	V	V	V

(b) Sabemos que a partir de oraciones base, hay 6 tipos de oraciones que se pueden armar (incluyendo a la oración en sí). Sean α y β oraciones cualesquiera, los tipos de oraciones que se pueden armar con estas son:

- 1) α
- $2) \neg \alpha$
- 3) $\alpha \wedge \beta$
- 4) $\alpha \vee \beta$
- 5) $\alpha \implies \beta$
- 6) $\alpha \iff \beta$

Como la base del lenguaje son las letras propocicionales y estas no tienen equivalencias, asumiré que ni α ni β tienen equivalencias (esto para ver que podemos construir todo a partir de algo que no tiene equivalencias). Sabemos que si α y β no tienen equivalencias, entonces las oraciones del tipo 1 al tipo 5 tampoco tienen equivalencias. Ahora, llamemos γ una oración de tipo 1 a 5 cualquiera. Esta es lógicamente equivalente a $\neg \neg \gamma$ pues, sea \mathcal{V} una valuación cualquiera:

$$si \mathcal{V}(\gamma) = V
\Longrightarrow \mathcal{V}(\neg \gamma) = F
\Longrightarrow \mathcal{V}(\neg \neg \gamma) = V
y si $\mathcal{V}(\gamma) = F
\Longrightarrow \mathcal{V}(\neg \gamma) = V
\Longrightarrow \mathcal{V}(\neg \neg \gamma) = F$$$

Por ende, γ y $\neg\neg\gamma$ son lógicamente equivalentes. Como $\neg\neg\gamma$ es solo agregarle signos " \neg " a γ , sabemos que $\neg\neg\gamma$ no contiene equivalencias.

Ahora, llamemos κ una oración de tipo 6, digamos, $\alpha \iff \beta$ donde α y β son oraciones sin equivalencias. Por el ejercicio 1.a κ es lógicamente equivalente a $((\alpha \implies \beta) \land (\beta \implies \alpha))$, oración que no tiene equivalencias.

Por inducción de oraciones, esto se puede extender a toda oración constructible del lenguaje, por ende toda oración es lógicamente equivalente a otra que no contiene equivalencias.

Problema 10 pts:

- (a) (5 pts) Demuestre que si Σ es un conjunto no vacío de oraciones que cumple ambos $\Sigma \models \varphi$ y $\Sigma \models \neg \varphi$, entonces Σ no es satisfacible.
- (b) (5 pts) ¿Es el conjunto vacío ϕ satisfacible? ¿Se cumplen $\phi \models \varphi$ y/o $\phi \models \neg \varphi$?

Solución problema 2:

- (a) Se asume que Σ es satisfacible, entonces existe una valuación \mathcal{V} tal que toda oración en Σ sea verdad. Pero si φ es verdad, entonces $\neg \varphi$ es falso, ahora $\Sigma \models \neg \varphi$, por lo que $\neg \varphi$ es verdad, pero una oración no puede ser verdadera y falsa ya que una valuación solo puede dar un valor para cada oración. Con esto se concluye que Σ no es satisfacible.
- (b) Por definición, ya que \emptyset no tiene oraciones se cumple que para toda valuación <u>todas</u> las oraciones de \emptyset son verdad. Ahora si $\emptyset \models \varphi$, significa que toda valuación que satisface \emptyset también satisface φ , pero como toda valuación satisface \emptyset , en particular hay una tal que φ sea falso, análogamente con $\neg \varphi$.

Problema 5 pts:

ea α oración. Encuentre una derivación $\neg \neg \alpha$ a partir del conjunto $\Delta = \{\alpha\}$ utilizando los axiomas y regla de deducción vistas en clase.

Solución problema 3:

$$\varphi_1 = \alpha$$

$$\varphi_2 = (\neg \alpha \implies ((c \implies \neg \alpha) \implies \neg \alpha)) \tag{A1}$$

$$\varphi_3 = ((\neg \alpha \implies ((c \implies \neg \alpha) \implies \neg \alpha)) \implies ((\neg \alpha \implies (c \implies \neg \alpha)) \implies (\neg \alpha \implies \neg \alpha)))$$
 (A2)

$$\varphi_4 = ((\neg \alpha \implies (c \implies \neg \alpha)) \implies (\neg \alpha \implies \neg \alpha)) \tag{MP}$$

$$\varphi_5 = (\neg \alpha \implies (c \implies \neg \alpha)) \tag{A1}$$

$$\varphi_6 = (\neg \alpha \implies \neg \alpha) \tag{MP}$$

$$\varphi_7 = ((\neg \alpha \implies \neg \alpha) \implies (\alpha \implies \neg \neg \alpha)) \tag{A9}$$

$$\varphi_8 = (\alpha \implies \neg \neg \alpha) \tag{MP}$$

$$\varphi_9 = \neg \neg \alpha \tag{MP}$$

Problema 4:

3

onus

Encuentre una derivación de la oración β partir del conjunto $\{\neg\neg\beta\}$ utilizando los axiomas y regla de deducción vistas en clase.

Solución problema 4:

ado $\neg \neg \alpha$

$$\varphi_1 = \neg \neg \alpha$$

$$\varphi_2 = (\neg \neg \alpha \implies ((x \implies x) \implies \neg \neg \alpha)) \tag{A1}$$

$$\varphi_3 = ((x \implies x) \implies \neg \neg \alpha) \tag{MP}$$

$$\varphi_4 = (((x \implies x) \implies \neg \neg \alpha) \implies (\neg \alpha \implies \neg (x \implies x))) \tag{A9}$$

$$\varphi_5 = (\neg \alpha \implies \neg (x \implies x)) \tag{MP}$$

$$\varphi_6 = (\neg(x \implies x) \implies \alpha) \tag{A10}$$

$$\varphi_7 = ((\neg(x \implies x) \implies \alpha) \implies (\neg\alpha \implies (\neg(x \implies x) \implies \alpha))) \tag{A1}$$

$$\varphi_8 = (\neg \alpha \implies (\neg (x \implies x) \implies \alpha)) \tag{MP}$$

$$\varphi_9 = ((\neg \alpha \implies (\neg (x \implies x) \implies \alpha)) \implies ((\neg \alpha \implies \neg (x \implies x)) \implies (\neg \alpha \implies \alpha)))$$
 (A2)

$$\varphi_{10} = ((\neg \alpha \implies \neg (x \implies x)) \implies (\neg \alpha \implies \alpha)) \tag{MP}$$

$$\varphi_{11} = (\neg \alpha \implies \alpha) \tag{MP}$$

$$\varphi_{12} = (\alpha \vee \neg \alpha) \tag{A11}$$

$$\varphi_{13} = ((\alpha \implies \alpha) \implies ((\neg \alpha \implies \alpha) \implies ((\alpha \lor \neg \alpha) \implies \alpha))) \tag{A5}$$

$$\varphi_{14} = (\alpha \implies ((c \implies \alpha) \implies \alpha)) \tag{A1}$$

$$\varphi_{15} = ((\alpha \implies ((c \implies \alpha) \implies \alpha)) \implies ((\alpha \implies (c \implies \alpha)) \implies (\alpha \implies \alpha))) \tag{A2}$$

$$\varphi_{16} = ((\alpha \implies (c \implies \alpha)) \implies (\alpha \implies \alpha)) \tag{MP}$$

$$\varphi_{17} = (\alpha \implies (c \implies \alpha)) \tag{A1}$$

$$\varphi_{18} = (\alpha \implies \alpha) \tag{MP}$$

$$\varphi_{19} = ((\neg \alpha \implies \alpha) \implies ((\alpha \vee \neg \alpha) \implies \alpha)) \tag{MP}$$

$$\varphi_{20} = ((\alpha \vee \neg \alpha) \implies \alpha) \tag{MP}$$

$$\varphi_{21} = \alpha \tag{MP}$$