Solutions to Jech's Set Theory, The Third Millenium Edition, Revised and Expanded

Steve Sabean

August 3, 2021

Contents

Ι	Basic Set Theory	1
1	Axioms of Set Theory	3
2	Ordinal Numbers	11

iv CONTENTS

Part I Basic Set Theory

Chapter 1

Axioms of Set Theory

1.1 Exercise 1

Verify (1.1).

Solution. If a = c and b = d, then (a, b) = (c, d) as a consequence of an axiom of first-order logic with equality, namely, that equals may be substituted for equals in a formula.

Conversely, suppose that (a, b) = (c, d). Then

$$\{\{a\},\{a,b\}\} = \{\{c\},\{c,d\}\}.$$

If a = b, then

$$\{\{a\},\{a,b\}\} = \{\{a\},\{a,a\}\} = \{\{a\}\}.$$

Therefore $\{a\} = \{c\}$ and $\{a\} = \{c,d\}$. Hence, a = c = d, from which it follows that a = c and b = d. If $a \neq b$, then $\{a\} = \{c\}$ and $\{a,b\} = \{c,d\}$. Therefore a = c, and from this it follows that $\{a,b\} = \{a,d\}$. Hence b = d.

1.2 Exercise 2

There is no set X such that $P(X) \subset X$.

Solution. Suppose there exists a set X such that $P(X) \subset X$. Let $Y = \{x : x \in X \text{ and } x \notin x\}$. Clearly, $Y \subset X$, hence $Y \in P(X)$ and therefore $Y \in X$. However $Y \in Y$ if and only if $Y \notin Y$. We have therefore reached a contradiction and conclude that no such set X exists.

Let

$$N = \bigcap \{X : X \text{ is inductive}\}.$$

N is the smallest inductive set. Let us use the following notation:

$$0 = \emptyset$$
, $1 = \{0\}$, $2 = \{0, 1\}$, $3 = \{0, 1, 2\}$,

If $n \in \mathbb{N}$, let $n+1 = n \cup \{n\}$. Let us define < (on \mathbb{N}) by n < m if and only if $n \in m$.

A set T is transitive if $x \in T$ implies $x \subset T$.

1.3 Exercise 3

If X is inductive, then the set $\{x \in X : x \subset X\}$ is inductive. Hence **N** is transitive, and for each $n, n = \{m \in \mathbf{N} : m < n\}$.

Solution. Let X be inductive. Let $Y = \{x \in X : x \subset X\}$. Since X is inductive, $\emptyset \in X$. Since $\emptyset \subset X$, $\emptyset \in Y$. Let $x \in Y$, then $x \in X$ and $x \subset X$. Since X is inductive, $x \cup \{x\} \in X$. If $y \in x \cup \{x\}$, then $y \in x$ or y = x. If $y \in x$, then since $x \subset X$, we have $y \in X$. If y = x, then clearly $y \in X$. Hence $x \cup \{x\} \subset X$. Thus, it follows that $x \cup \{x\} \in Y$ and therefore Y is inductive.

Since N is inductive, the set $M = \{n \in \mathbb{N} : n \subset \mathbb{N}\}$ is inductive. Clearly, $M \subset \mathbb{N}$, and since M is inductive, $\mathbb{N} \subset M$, and therefore $M = \mathbb{N}$. From this it follows that for every $n \in \mathbb{N}$, $n \subset \mathbb{N}$. Hence, \mathbb{N} is transitive. If $n \in \mathbb{N}$, then $n \subset \mathbb{N}$. Hence if $m \in n$, then $m \in \mathbb{N}$, and by definition, m < n. Therefore $n \subset \{m \in \mathbb{N} : m < n\}$. Conversely, if $k \in \{m \in \mathbb{N} : m < n\}$, then k < n and consequently $k \in n$. It follows that $\{m \in \mathbb{N} : m < n\} \subset n$ and therefore that $n = \{m \in \mathbb{N} : m < n\}$.

1.4 Exercise 4

If X is inductive, then the set $\{x \in X : x \text{ is transitive}\}$ is inductive. Hence every $n \in \mathbb{N}$ is transitive.

Solution. Let X be inductive. Let $Y = \{x \in X : x \text{ is transitive}\}$. Since X is inductive, $\emptyset \in X$. Since \emptyset is transitive (vacuously), $\emptyset \in Y$. Let $x \in Y$, then $x \in X$ and x is transitive. Since X is inductive, $x \cup \{x\} \in X$. If $y \in x \cup \{x\}$,

1.5. EXERCISE 5

then $y \in x$ or y = x. If $y \in x$, then since x is transitive, $y \subset x$ and therefore $y \subset x \cup \{x\}$. If y = x, then clearly $y \subset x \cup \{x\}$. Hence $x \cup \{x\}$ is transitive, from which it follows that $x \cup \{x\} \in Y$. Therefore Y is inductive.

Since N is inductive, the set $M = \{n \in \mathbb{N} : n \text{ is transitive}\}$ is inductive. Clearly, $M \subset \mathbb{N}$, and since M is inductive, $\mathbb{N} \subset M$, and therefore $M = \mathbb{N}$. From this it follows that for every $n \in \mathbb{N}$, n is transitive.

1.5 Exercise 5

If X is inductive, then the set $\{x \in X : x \text{ is transitive and } x \notin x\}$ is inductive. Hence $n \notin n$ and $n \neq n+1$ for each $n \in \mathbb{N}$.

Solution. Let X be inductive. Let $Y = \{x \in X : x \text{ is transitive and } x \notin x\}$. Since X is inductive, $\emptyset \in X$. Since \emptyset is transitive and $\emptyset \notin \emptyset$, $\emptyset \in Y$. Let $x \in Y$, then $x \in X$, x is transitive, and $x \notin x$. Since X is inductive, $x \cup \{x\} \in X$. If $y \in x \cup \{x\}$, then $y \in x$ or y = x. If $y \in x$, then since x is transitive, $y \subset x$ and therefore $y \subset x \cup \{x\}$. If y = x, then clearly $y \subset x \cup \{x\}$. Hence $x \cup \{x\}$ is transitive. Suppose that $x \cup \{x\} \in x \cup \{x\}$. Then $x \cup \{x\} \in x$ or $x \cup \{x\} = x$. If $x \cup \{x\} \in x$, then since x is transitive, we have $x \cup \{x\} \subset x$. Therefore, since $x \in x \cup \{x\}$, we have $x \in x$, which is a contradiction. If $x \cup \{x\} = x$, then since $x \in x \cup \{x\}$, we again have $x \in x$. Thus in either case we have reached a contradiction, and conclude that $x \cup \{x\} \notin x \cup \{x\}$. Therefore $x \cup \{x\} \in Y$. Hence Y is inductive.

Since N is inductive, the set $M = \{n \in \mathbb{N} : n \text{ is transitive and } n \notin n\}$ is inductive. Clearly, $M \subset \mathbb{N}$, and since M is inductive, $\mathbb{N} \subset M$, and therefore $M = \mathbb{N}$. Therefore $n \notin n$ for every $n \in \mathbb{N}$. Since $n \in n \cup \{n\}$, but $n \notin n$, it follows that $n \neq n + 1$.

1.6 Exercise 6

If X is inductive, then the set $\{x \in X : x \text{ is transitive and every nonempty } z \subset x \text{ has an } \in \text{-minimal element}\}$ is inductive (t is $\in \text{-minimal in } z$ if there is no $s \in z$ such that $s \in t$).

Solution. Let X be inductive. Let $Y = \{x \in X : x \text{ is transitive and every nonempty } z \subset x \text{ has an } \in \text{-minimal element}\}$. Since X is inductive, $\emptyset \in X$. Since \emptyset is transitive and since \emptyset has no nonempty subsets, $\emptyset \in Y$. Let $x \in Y$,

then $x \in X$, x is transitive, and every nonempty subset of x has an \in -minimal element. Since X is inductive, $x \cup \{x\} \in X$. If $y \in x \cup \{x\}$, then $y \in x$ or y = x. If $y \in x$, then since x is transitive, $y \subset x$ and therefore $y \subset x \cup \{x\}$. If y = x, then clearly $y \subset x \cup \{x\}$. Hence $x \cup \{x\}$ is transitive. Let z be a nonempty subset of $x \cup \{x\}$. If $z - \{x\}$ is empty, then clearly $z = \{x\}$, hence z has an \in -minimal element, namely, x. If $z - \{x\}$ is nonempty, then since $z - \{x\} \subset x$, it follows that $z - \{x\}$ has an \in -minimal element. Let t be an \in -minimal element of $z - \{x\}$. Then t is also an \in -minimal element of z. To see this, suppose that $x \in t$. Since x is transitive, $t \in x$ implies $t \subset x$. Hence, $x \in t$ implies $x \in x$. This means that x has no \in -minimal element, which is a contradiction. Therefore, $x \cup \{x\} \in Y$. Hence Y is inductive. \square

1.7 Exercise 7

Every nonempty $X \subset \mathbb{N}$ has an \in -minimal element. [Pick $n \in X$ and look at $X \cap n$.]

Solution. Let $X \subset \mathbb{N}$ be nonempty. Since X is nonempty, let $n \in X$. If $n \cap X = \emptyset$, then $m \in n$ implies $m \notin X$. Hence n is an \in -minimal element of X. If $n \cap X$ is nonempty, then since $n \cap X$ is a nonempty subset of n, by Exercise 1.6, $n \cap X$ has an \in -minimal element. Let t be an \in -minimal element of $n \cap X$. Suppose that $s \in X$ such that $s \in t$. Since, n is transitive, $t \in n$ implies $t \subset n$, and therefore $s \in n$. This contradicts the minimality of t. Therefore, no such s exists and we conclude that t is an \in -minimal element of X.

1.8 Exercise 8

If X is inductive then so is $\{x \in X : x = \emptyset \text{ or } x = y \cup \{y\} \text{ for some } y\}$. Hence each $n \neq 0$ is m+1 for some m.

Solution. Let X be inductive. Let $Y = \{x \in X : x = \emptyset \text{ or } x = y \cup \{y\} \text{ for some } y\}$. Clearly, $\emptyset \in Y$. Let $x \in Y$, then $x \in X$. Since X is inductive, $x \cup \{x\} \in X$, and it follows that $x \cup \{x\} \in Y$.

Hence $\mathbf{N} \subset Y$. Therefore, either $n = \emptyset = 0$ or $n = m \cup \{m\}$ for some m. If the latter, then $m \in n$ and therefore $m \in \mathbf{N}$. Hence n = m + 1.

1.9. EXERCISE 9 7

1.9 Exercise 9

Induction. Let A be a subset of N such that $0 \in A$, and if $n \in A$ then $n + 1 \in A$. Then A = N.

Solution. Suppose that $A \neq N$. Then N-A is a nonempty subset of N. Therefore, by Exercise 1.7, N-A has an \in -minimal element. Let t be an \in -minimal element of N-A. Since $0 \in A$, we have $t \neq 0$. Therefore, by Exercise 1.8, t = s + 1 for some $s \in N$. Suppose that $s \notin A$. Then $s \in N-A$. However, since $s \in t$, this contradicts the minimality of t in N-A. Hence $s \in A$, from which it follows that $t = s + 1 \in A$. But this is another contradiction, and we conclude that A = N.

1.10 Exercise 10

Each $n \in \mathbf{N}$ is T-finite.

Solution. Let $A = \{n \in \mathbb{N} : n \text{ is T-finite}\}$. Clearly 0 is T-finite, since if X is a nonempty subset of $P(0) = \{0\}$, then $X = \{0\}$, where obviously 0 is \subset -maximal in X. Let $n \in A$ and X a nonempty subset of P(n+1). Consider the set $Y = \{y : y = x - \{n\} \text{ for some } x \in X\}$. Clearly $Y \subset P(n)$ and Y is nonempty because X is. Therefore let u be a \subset -maximal element of Y. If $u \cup \{n\} \notin X$, then u is a \subset -maximal element of X. To see this, suppose that $v \in X$ with $u \subset v$. Then $v - \{n\} \in Y$, and since $n \notin u$, we have $u \subset v - \{n\}$, which contradicts the maximality of u. On the other hand, if $u \cup \{n\} \in X$, then $u \cup \{n\}$ is a \subset -maximal element of X. In this case, we suppose that $v \in X$ with $u \cup \{n\} \subset v$. Then $u = (u \cup \{n\}) - \{n\} \subset v - \{n\}$. Since $v - \{n\} \in Y$, this contradicts the maximality of u. Hence X has a \subset -maximal element. Therefore $v \in X$ is T-finite. \square

1.11 Exercise 11

N is T-infinite; the set $N \subset P(N)$ has no \subset -maximal element.

Solution. Suppose that N has a \subset -maximal element k. Since $k+1=k\cup\{k\}\in N$ and since $k\subset k+1$, we have reached a contradiction. Hence N has no \subset -maximal element.

1.12 Exercise 12

Every finite set is T-finite.

Solution. Let X be a finite set. Then there exists an $n \in \mathbb{N}$ such that there exists a one-to-one mapping, f, of X onto n, i.e., $f: X \to n$. Let $A \subset P(X)$ be nonempty. Thus, for each $x \in A$, we have $f(x) \subset n$. Let $M = \{y : y = f(x) \text{ for some } x \in A\}$. Then M is a nonempty collection of subsets of n, and since n is T-finite, M has a \subset -maximal element k. The claim is that $u = f_{-1}(k)$ is \subset -maximal in X. Indeed, let $v \in A$ with $u \subset v$. Since f is one-to-one, we therefore have $f(u) \subset f(v)$. However, this contradicts the maximality of f(u). Hence every nonempty collection of subsets of X has a \subset -maximal element, and hence X is T-finite.

1.13 Exercise 13

Every infinite set is T-infinite. [If S is infinite, consider $X = \{u \subset S : u \text{ is finite}\}.$]

Solution. Let S be infinite and $X = \{u \subset S : u \text{ is finite}\}$. Since $\emptyset \subset S$ and \emptyset is finite, we have $\emptyset \in X$ and hence X is nonempty. Suppose that X has a \subset -maximal element, v. Then S-v is nonempty, hence, let $x \in S-v$. It follows that $v \subset v \cup \{x\}$. However, $v \cup \{x\}$ is finite since v is finite. Therefore, we have reached a contradiction and conclude that X has no \subset -maximal element, i.e., X is T-infinite.

1.14 Exercise 14

The Separation Axioms follow from the Replacement Schema. [Given ϕ , let $F = \{(x, x) : \phi(x)\}$. Then $\{x \in X : \phi(x)\} = F(X)$ for every X.]

Solution. Let p and X be sets and let $\phi(u, p)$ be a formula. Let $F = \{(x, x) : \phi(x, p)\}$. Clearly, $\{x \in X : \phi(x, p)\} = F(X)$. Therefore, by Replacement, $\{x \in X : \phi(x, p)\}$ is a set.

9

Exercise 15 1.15

Instead of Union, Power Set, and Replacement Axioms consider the following weaker versions:

$$\forall X \exists Y \bigcup X \subset Y, \qquad \text{i.e., } \forall X \exists Y \ (\forall x \in X)(\forall u \in x)u \in Y, \qquad (1.8)$$

$$\forall X \exists Y \ P(X) \subset Y, \qquad \text{i.e., } \forall X \exists Y \ \forall u(u \subset X \to u \subset Y), \qquad (1.9)$$

$$\forall X \exists Y \ P(X) \subset Y$$
, i.e., $\forall X \exists Y \ \forall u (u \subset X \to u \subset Y)$, (1.9)

If a class
$$F$$
 is a function, then $\forall X \exists Y \ F(X) \subset Y$. (1.10)

Then axioms 1.4, 1.5, and 1.7 can be proved from (1.8), (1.9), and (1.10), using the Separation Schema (1.3).

Solution. Using (1.8), let X and Y be such that $(\forall x \in X)(\forall u \in x) \ u \in Y$. Let $Z = \{u \in Y : (\exists x \in X) \ u \in x\}$. Then by the Separation Schema, Z is a set, and $Z = \bigcup X$.

Similarly, using (1.9), consider $Z = \{u \in Y : u \subset X\}$ And using (1.10), consider $Z = \{u \in Y : (\exists x \in X) \ \phi(x, u, p)\}.$

Chapter 2

Ordinal Numbers

2.1 Exercise 1

The relation "(P, <) is isomorphic to (Q, <)" is an equivalence relation (on the class of all partially ordered sets).

Solution. Let (P, <) be a partially ordered set. Let $\mathrm{id}_P : P \to P$ be the identity function, i.e., $\mathrm{id}_P(p) = p$ for every $p \in P$. Clearly, id_P is a one-to-one function of P onto itself. Also, id_P is obviously order-preserving, and since $\mathrm{id}_P = \mathrm{id}_P^{-1}$, it follows that id_P^{-1} is order-preserving. Therefore, id_P is an automorphism of (P, >). Hence, (P, >) is isomorphic to itself.

Let P(,<) be isomorphic to Q(,<) and let $f:P\to Q$ be an isomorphism. Then $f^{-1}:Q\to P$ is one-to-one, onto, and order-preserving. f^{-1} is therefore an isomorphism, and hence, (Q,<) is isomorphic to (P,<).

Let (P,<) be isomorphic to (Q,<) and (Q,<) be isomorphic to (R,<). Then there exist isomorphisms $f:P\to Q$ and $g:Q\to R$. Therefore the composition $g\circ f$ is one-to-one and onto since f and g are. Furthermore, $g\circ f$ is order-preserving, since x>y implies f(x)>f(y) which further implies g(f(x))>g(f(y)). The inverse composition, $f^{-1}\circ g^{-1}$ is also order-preserving. Hence $g\circ f$ is an isomorphism and thus (P,<) is isomorphic to (R,<).

2.2 Exercise 2

 α is a limit ordinal if and only if $\beta < \alpha$ implies $\beta + 1 < \alpha$, for every β .

Solution. Let α be a limit ordinal. If $\alpha=0$, then there is no β such that $\beta<\alpha$. On the other hand, if $\alpha\neq 0$, then let β be an ordinal such that $\beta<\alpha\leq \beta+1$. Let $x\in\beta+1$. Then, either $x\in\beta$, whereupon $x\in\alpha$, or $x=\beta$, where again we have $x\in\alpha$. Hence, $x\in\beta+1$ implies $x\in\alpha$, or, $\beta+1\subset\alpha$. If $\beta+1=\alpha$, then α is a successor ordinal and therefore not a limit ordinal, which is a contradiction. If $\beta+1\neq\alpha$, then by Lemma 2.11(iii), we have $\beta+1<\alpha$, which is also a contradiction and we therefore conclude that $\beta<\alpha$ implies $\beta+1<\alpha$

Conversely, suppose that α is not a limit ordinal, i.e., α is a successor ordinal. Then $\alpha = \beta + 1$ for some β . Clearly, $\beta < \alpha$. However, $\beta + 1 \not< \alpha$. \square

2.3 Exercise 3

If a set X is inductive, then $X \cap Ord$ is inductive. The set $\mathbf{N} = \bigcap \{X : X \text{ is inductive}\}\$ is the least limit ordinal $\neq 0$.

Solution. Let X be an inductive set. Then, by the Separation Schema, we have that $X \cap Ord$ is a set. Since X is inductive, $\emptyset \in X$. Clearly, $0 = \emptyset \in Ord$. Hence $\emptyset \in X \cap Ord$. Let $x \in X \cap Ord$. Since X is inductive, $x+1 = x \cap \{x\} \in X$. Using (2.5), we have $x+1 \in Ord$. Therefore $x+1 \in X \cap Ord$. Hence, $X \cap Ord$ is inductive.

By Exercise 1.3, N is transitive. By Exercise 1.7, (N, \in) is well-founded. Since $X \cap Ord$ is inductive, we have $N \subset X \cap Ord \subset Ord$. Therefore, by Lemma 2.11(iv), it follows that N is linearly ordered by \in . Hence, N is transitive and well-ordered by \in , that is, N is an ordinal. Since $\emptyset \in N$, we have $N \neq 0$. Let $n \in N$ be a nonzero ordinal. Then, by Exercise 1.8, there exists $m \in N$ such that n = m + 1. Thus, n is a successor ordinal. Therefore, by Exercise 2.2, N is a limit ordinal, in fact, it is the least nonzero limit ordinal.

2.4 Exercise 4

(Without the Axiom of Infinity). Let $\omega = \text{least limit } \alpha \neq 0$ if it exists, $\omega = Ord$ otherwise. Prove that the following statements are equivalent:

- 1. There exists an inductive set.
- 2. There exists an infinite set.

2.5. EXERCISE 5 13

3. ω is a set.

[For (ii) \rightarrow (iii), apply Replacement to the set of all finite subsets of X.]

Solution. (i) \rightarrow (ii). Suppose that there exists an inductive set. Let $\mathbf{N} = \bigcap \{X : X \text{ is inductive}\}$. By Exercise 1.11, \mathbf{N} is T-infinite. Hence, by Exercises 1.12 and 1.13, \mathbf{N} is infinite.

(ii) \rightarrow (iii). Suppose that there exists an infinite set, X, and that $\omega = Ord$. Let $Y = \{y \in P(Y) : y \text{ is finite}\}$. If $y \in Y$, then y is finite; therefore there exists a one-to-one mapping, f, of y onto some $n \in \omega$. By Replacement, we have f(Y) is a set. Clearly $\emptyset \in Y$ and $f(\emptyset) = 0$. Thus, f(Y) is nonempty, since $0 \in f(Y)$. Suppose that $n \in f(Y)$. Then there exists $y \in Y$ such that f(y) = n. Since X is infinite, it follows that X - y is nonempty. Hence, let $z \in X - y$. Therefore, $y \cup \{z\} \in Y$ and thus $f(y \cup \{z\}) = n + 1$. It follows that $n + 1 \in f(Y)$. Therefore, by induction, $f(Y) = \omega$, and we have ω is a set

(iii) \rightarrow (i). Let ω be a set. Then $0 < \omega$, and for every $n \in \omega$, $n+1 \in \omega$ since ω is a limit ordinal. Hence ω is inductive.

2.5 Exercise 5

If W is a well-ordered set, then there exists no sequence $\langle a_n : n \in \mathbb{N} \rangle$ in W such that $a_0 > a_1 > a_2 > \dots$

Solution. Suppose that there exists such a sequence. Let $X = \{a_n : n \in \mathbb{N}\}$. Then X is a nonempty subset of W. Therefore, let x be the least element of X. Let n be the least $n \in \mathbb{N}$ such that $a_n = x$. Hence, $a_{n+1} \geq a_n$. We have therefore reached a contradiction, and conclude that no such sequence exists.

2.6 Exercise 6

There are arbitrarily large limit ordinals; i.e., $\forall \alpha \; \exists \beta > \alpha \; (\beta \text{ is a limit.})$ [Consider $\lim_{n\to\omega} \alpha_n$, where $\alpha_{n+1} = \alpha_n + 1$.]

Solution. Suppose that there exists a largest limit ordinal, and let α_0 be this ordinal. For every $n < \omega$, let $\alpha_{n+1} = \alpha_n + 1$. Since $\langle \alpha_n : n < \omega \rangle$ is clearly

a nondecreasing sequence of ordinals, we may define the limit $\lim_{n\to\omega}\alpha_n=\sup\{\alpha_n:n<\omega\}$. By (2.4), $\sup\{\alpha_n:n<\omega\}$ is an ordinal, hence, let $\alpha_\omega=\sup\{\alpha_n:n<\omega\}$. If α_ω is a successor, then there exists an ordinal $\xi<\alpha_\omega$ such that $\xi+1=\alpha_\omega$. However, if $\xi<\alpha_\omega$, then $\xi\in\alpha_\omega$, and it follows that $\xi+1\in\alpha_\omega$. We have therefore reached a contradiction and conclude that α_ω is a limit ordinal. Since $\alpha_0<\alpha_\omega$, we see that α_0 is not the largest limit ordinal, which is yet another contradiction. Hence, we find that there indeed arbitrarily large limit ordinals.

2.7 Exercise 7

Every normal sequence $\langle \gamma_{\alpha} : \alpha \in Ord \rangle$ has arbitrarily large fixed points, i.e., α such that $\gamma_{\alpha} = \alpha$.

[Let
$$\alpha_{n+1} = \gamma_{\alpha_n}$$
, and $\alpha = \lim_{n \to \omega} \alpha_n$.]

Solution. First, since it is not done in the text, we state explicitly that Ord is well-ordered as a class. That is, if C is any nonempty class of ordinals, then C has a least element. By virtue of remark (2.3) following Lemma 2.11, $\bigcap C$ is the least element of C.

Given this declaration, it is necessary to verify the following extension of Lemma 2.4. If $\langle \gamma_{\alpha} : \alpha \in Ord \rangle$ is an increasing sequence of ordinals, then $\gamma_{\alpha} \geq \alpha$ for every $\alpha \in Ord$. To see this, suppose that the class $X = \{\gamma_{\alpha} : \gamma_{\alpha} < \alpha\}$ is nonempty, and let β be the least element of X. Then $\gamma_{\beta} < \beta$, and since $\langle \gamma_{\alpha} : \alpha \in Ord \rangle$ is an increasing sequence, we have $\gamma_{\gamma_{\beta}} < \gamma_{\beta}$. But this contradicts the fact that β is the least ordinal such that $\gamma_{\alpha} < \alpha$. We therefore conclude that X is empty, and therefore that $\gamma_{\alpha} \geq \alpha$ for every $\alpha \in Ord$.

Next, if $\langle \gamma_{\alpha} : \alpha \in Ord \rangle$ is a normal sequence and X is any nonempty set of ordinals, then $\gamma_{\sup X} = \sup \{ \gamma_{\alpha} : \alpha \in X \}$. For this, let $\beta = \sup X$. By remark (2.4) following Lemma 2.11, β is an ordinal. If $\beta = 0$, then $X = \{0\}$, and clearly $\gamma_0 = \sup \{ \gamma_0 \}$. If β is a successor ordinal, then $\beta = \delta + 1$ for some ordinal δ . Since $\beta = \sup X$, we have $\beta \geq \xi$ for every $\xi \in X$. Suppose, in addition, that $\delta \geq \xi$ for every $\xi \in X$. Then δ is an upper bound of X, and since $\delta < \beta$, we have a contradiction of the fact that $\beta = \sup X$. We therefore conclude that there exists $\epsilon \in X$ such that $\delta < \epsilon$. Since $\beta = \sup X$, we have $\beta \geq \epsilon$. Since $\beta = \inf \{ \zeta : \zeta > \delta \}$, we have $\epsilon \geq \beta$. Therefore $\beta = \epsilon$, and it follows that $\beta \in X$. Since $\langle \gamma_{\alpha} \rangle$ is increasing, it follows that $\gamma_{\beta} \geq \gamma_{\xi}$ for every

2.8. EXERCISE 8 15

 $\xi \in X$. Since $\gamma_{\beta} \in \{\gamma_{\alpha} : \alpha \in X\}$, it follows that $\gamma_{\beta} = \sup \{\gamma_{\alpha} : \alpha \in X\}$. If β is a nonzero limit ordinal, then let δ be an ordinal such that $\delta < \beta$. Since β is a limit and since $\beta = \sup X$, there exists $\epsilon \in X$ such that $\delta < \epsilon$. Since $\langle \gamma_{\alpha} \rangle$ is increasing, we have $\gamma_{\delta} < \gamma_{\epsilon}$. Hence, $\gamma_{\delta} < \sup \{\gamma_{\alpha} : \alpha \in X\}$, which yields, since $\langle \gamma_{\alpha} \rangle$ is continuous, $\gamma_{\beta} = \sup \{\gamma_{\delta} : \delta < \beta\} \leq \sup \{\gamma_{\alpha} : \alpha \in X\}$. However, since $\langle \gamma_{\alpha} \rangle$ increasing and $\beta = \sup X$, we have $\sup \{\gamma_{\alpha} : \alpha \in X\} \leq \gamma_{\beta}$. Therefore, $\gamma_{\beta} = \sup \{\gamma_{\alpha} : \alpha \in X\}$, as desired.

We are now in a position to prove the main result. We define a sequence, $\langle \alpha_n : n < \omega \rangle$ recursively, as follows: Let $\alpha \in Ord$ and let $\alpha_0 = \alpha$, and $\alpha_{n+1} = \gamma_{\alpha_n}$. Let $\beta = \sup \{\alpha_n : n < \omega\}$. Thus, $\beta > \alpha$. Moreover, $\gamma_{\beta} = \gamma_{\sup\{\alpha_n : n < \omega\}} = \sup \{\gamma_{\alpha_n} : n < \omega\} = \sup \{\alpha_{n+1} : n < \omega\} = \beta$.

We may then find an even larger fixed point by taking $\alpha = \gamma_{\beta}$ and repeating the process. Hence $\langle \gamma_{\alpha} \rangle$ has arbitrarily large fixed points.

2.8 Exercise 8

For all α , β , and γ ,

(i)
$$\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$$
,

(ii)
$$\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$$
,

(iii)
$$(\alpha^{\beta})^{\gamma} = \alpha^{\beta \cdot \gamma}$$
.

Solution. In each case, we proceed by transfinite induction on γ .

(i) If $\gamma = 0$ then

$$\alpha \cdot (\beta + 0) = \alpha \cdot \beta$$
$$= \alpha \cdot \beta + 0$$
$$= \alpha \cdot \beta + \alpha \cdot 0$$

If $\gamma + 1$ is a successor ordinal then

$$\alpha \cdot (\beta + (\gamma + 1)) = \alpha \cdot ((\beta + \gamma) + 1)$$

$$= \alpha \cdot (\beta + \gamma) + \alpha$$

$$= (\alpha \cdot \beta + \alpha \cdot \gamma) + \alpha$$

$$= \alpha \cdot \beta + (\alpha \cdot \gamma + \alpha)$$

$$= \alpha \cdot \beta + \alpha \cdot (\gamma + 1)$$

If γ is a nonzero limit ordinal then

$$\alpha \cdot (\beta + \gamma) = \alpha \cdot \lim_{\xi \to \gamma} (\beta + \xi)$$

$$= \lim_{\xi \to \gamma} \alpha \cdot (\beta + \xi)$$

$$= \lim_{\xi \to \gamma} \alpha \cdot \beta + \alpha \cdot \xi$$

$$= \alpha \cdot \beta + \lim_{\xi \to \gamma} \alpha \cdot \xi$$

$$= \alpha \cdot \beta + \alpha \cdot \gamma$$

(ii) If $\gamma = 0$ then

$$\alpha^{\beta+0} = \alpha^{\beta}$$

$$= \alpha^{\beta} \cdot 1$$

$$= \alpha^{\beta} \cdot \alpha^{0}$$

If $\gamma + 1$ is a successor ordinal then

$$\alpha^{\beta+(\gamma+1)} = \alpha^{(\beta+\gamma)+1}$$

$$= \alpha^{\beta+\gamma} \cdot \alpha$$

$$= (\alpha^{\beta} \cdot \alpha^{\gamma}) \cdot \alpha$$

$$= \alpha^{\beta} \cdot (\alpha^{\gamma} \cdot \alpha)$$

$$= \alpha^{\beta} \cdot \alpha^{\gamma+1}$$

If γ is a nonzero limit ordinal then

$$\alpha^{\beta+\gamma} = \alpha^{\beta+\lim_{\xi \to \gamma} \xi}$$

$$= \alpha^{\lim_{\xi \to \gamma} (\beta+\xi)}$$

$$= \lim_{\xi \to \gamma} \alpha^{\beta+\xi}$$

$$= \lim_{\xi \to \gamma} \left(\alpha^{\beta} \cdot \alpha^{\xi}\right)$$

$$= \alpha^{\beta} \cdot \lim_{\xi \to \gamma} \alpha^{\xi}$$

$$= \alpha^{\beta} \cdot \alpha^{\lim_{\xi \to \gamma} \xi}$$

$$= \alpha^{\beta} \cdot \alpha^{\gamma}$$

2.9. EXERCISE 9

17

(iii) If $\gamma = 0$ then

$$(\alpha^{\beta})^{0} = 1$$
$$= \alpha^{0}$$
$$= \alpha^{\beta \cdot 0}$$

If $\gamma + 1$ is a successor ordinal then

$$(\alpha^{\beta})^{\gamma+1} = (\alpha^{\beta})^{\gamma} \cdot \alpha^{\beta}$$
$$= \alpha^{\beta \cdot \gamma} \cdot \alpha^{\beta}$$
$$= \alpha^{\beta \cdot (\gamma+1)}$$

If γ is a nonzero limit ordinal then

$$(\alpha^{\beta})^{\gamma} = (\alpha^{\beta})^{\lim_{\xi \to \gamma} \xi}$$

$$= \lim_{\xi \to \gamma} (\alpha^{\beta})^{\xi}$$

$$= \lim_{\xi \to \gamma} \alpha^{\beta \cdot \xi}$$

$$= \alpha^{\lim_{\xi \to \gamma} \beta \cdot \xi}$$

$$= \alpha^{\beta \cdot \lim_{\xi \to \gamma} \xi}$$

$$= \alpha^{\beta \cdot \gamma}$$

2.9 Exercise 9

- (i) Show that $(\omega + 1) \cdot 2 \neq \omega \cdot 2 + 1 \cdot 2$.
- (ii) Show that $(\omega \cdot 2)^2 \neq \omega^2 \cdot 2^2$.

Solution. (i)

$$(\omega + 1) \cdot 2 = (\omega + 1) + (\omega + 1)$$

$$= (\omega + (1 + \omega)) + 1$$

$$= (\omega + \omega) + 1$$

$$= \omega \cdot 2 + 1$$

$$< \omega \cdot 2 + 2$$

$$= \omega \cdot 2 + 1 \cdot 2$$

(ii)
$$(\omega \cdot 2)^2 = (\omega \cdot 2) \cdot (\omega \cdot 2)$$
$$= (\omega \cdot (2 \cdot \omega)) \cdot 2$$
$$= (\omega \cdot \omega) \cdot 2$$
$$= \omega^2 \cdot 2$$
$$< \omega^2 \cdot 4$$
$$= \omega^2 \cdot 2^2$$

2.10 Exercise 10

If $\alpha < \beta$ then $\alpha + \gamma \leq \beta + \gamma$, $\alpha \cdot \gamma \leq \beta \cdot \gamma$, and $\alpha^{\gamma} \leq \beta^{\gamma}$.

Solution. In each case, we proceed by induction on γ . First we consider sums. If $\gamma=0$, we have $\alpha+0=\alpha<\beta=\beta+0$. If $\gamma+1$ is a successor ordinal, then $\alpha+\gamma\leq\beta+\gamma<(\beta+\gamma)+1$, therefore $\alpha+(\gamma+1)=(\alpha+\gamma)+1\leq(\beta+\gamma)+1=\beta+(\gamma+1)$. Finally, if γ is a nonzero limit ordinal, then for every $\xi<\gamma$, we have $\alpha+\xi\leq\beta+\xi$. From this it follows that $\lim_{\xi\to\gamma}\alpha+\xi\leq\lim_{\xi\to\gamma}\beta+\xi$, or, equivalently, $\alpha+\gamma\leq\beta+\gamma$.

Next we consider products. If $\gamma=0$, then $\alpha\cdot 0=0=\beta\cdot 0$. If $\gamma+1$ is a successor ordinal, then since $\alpha<\beta$, by virtue of Lemma 2.25(i) we have $\alpha\cdot (\gamma+1)=\alpha\cdot \gamma+\alpha<\alpha\cdot \gamma+\beta$ and by the preceding result for sums, $\alpha\cdot \gamma+\beta\leq \beta\cdot \gamma+\beta=\beta\cdot (\gamma+1)$. Therefore, $\alpha\cdot (\gamma+1)\leq \beta\cdot (\gamma+1)$. Finally, if γ is a nonzero limit ordinal, then for every $\xi<\gamma$, we have $\alpha\cdot \xi\leq \beta\cdot \xi$. From this it follows that $\lim_{\xi\to\gamma}\alpha\cdot \xi\leq \lim_{\xi\to\gamma}\beta\cdot \xi$, or, equivalently, $\alpha\cdot \gamma\leq \beta\cdot \gamma$.

Lastly we consider exponentials. If $\gamma = 0$, then $\alpha^0 = 1 = \beta^0$. If $\gamma + 1$ is a successor ordinal, then since $\alpha < \beta$, by Lemma 2.25(iii), we have $\alpha^{\gamma+1} = \alpha^{\gamma} \cdot \alpha < \alpha^{\gamma} \cdot \beta$, and by the preceding result for products, $\alpha^{\gamma} \cdot \beta \leq \beta^{\gamma} \cdot \beta = \beta^{\gamma+1}$. Therefore, $\alpha^{\gamma+1} \leq \beta^{\gamma+1}$. Finally, if γ is a nonzero limit ordinal, then for every $\xi < \gamma$, we have $\alpha^{\xi} \leq \beta^{\xi}$. From this it follows that $\lim_{\xi \to \gamma} \alpha^{\xi} \leq \lim_{\xi \to \gamma} \beta^{\xi}$, or, equivalently, $\alpha^{\gamma} \leq \beta^{\gamma}$.