CÁLCULO DIFERENCIAL E INTEGRAL I

LEEC, LEGI, LEIC (Tagus) e LERC 1º TESTE (Versão A)

12 /Novembro /2011

Duração: 1h30m

1. Considere os seguintes subconjuntos de \mathbb{R} :

$$A = \left\{ x \in \mathbb{R} : x^4 - x^3 \ge 2x^2 \right\}, \qquad B = \left\{ x \in \mathbb{R} : \left| x - \frac{1}{2} \right| \le \frac{3}{2} \right\}$$

- a) Mostre que $A = [-\infty, -1] \cup \{0\} \cup [2, +\infty[$ e identifique os conjuntos $B \in A \cap B$.
- **b)** Indique, caso existam em \mathbb{R} , max $(A \cap \mathbb{R}^-)$, min $(A \cap \mathbb{R}^+)$, inf $(A \cap \mathbb{R}^+ \cap (\mathbb{R} \setminus \mathbb{Q}))$, min $(A \cap B)$, sup $(A \cap B)$ e inf $((A \cap \mathbb{R}^-) \setminus \mathbb{Q})$.
- c) Se possível, dê exemplos de:
 - i) uma sucessão crescente de termos em $A \cap (\mathbb{R} \setminus \mathbb{Q})$ que converge para 5.
 - ii) uma sucessão de termos em $A \cap B$ que é divergente.
- **2.** Considere a sucessão (a_n) definida por

$$\begin{cases} a_1 = -2 \\ a_{n+1} = \frac{a_n}{1+a_n} & \text{se } n > 1 \end{cases}$$

a) Mostre, por indução, que se tem

$$\forall n \geq 2$$
 $a_n > 0$

- b) Mostre que a sucessão $(a_n)(n \ge 2)$ é monótona decrescente.
- c) Justifique que a sucessão é convergente e calcule $\lim a_n$.
- **3.** Calcule (caso existam em \mathbb{R}):

$$\lim \frac{n!+1}{n^n+n}, \quad \lim \frac{2n(n+1)^2+3}{3n(n^2+n+1)+6}, \quad \lim \frac{3^n+7n}{5+2^n+n}, \quad \lim \sqrt[n]{\frac{(n+1)!}{n!+2}}$$

4. Calcule (caso existam em $\overline{\mathbb{R}}$) os limites:

$$\lim_{x \to 1} \frac{\sin(x^2 - 1)}{x - 1}, \quad \lim_{x \to +\infty} \frac{2\sqrt{x} + 3x^2 - 5}{x(x - 1)}$$

5. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ a função definida por

$$f(x) = \frac{1}{1+x^2}$$

Mostre que:

a) Se (u_n) é uma sucessão crescente e

$$\forall n \in \mathbb{N} \quad u_n < 2$$

então (u_n) e $(f(u_n))$ são sucessões convergentes (em \mathbb{R}).

- b) Se (v_n) é uma sucessão crescente, então $(f(v_n))$ é sucessão convergente (em \mathbb{R}).
- c) Se (w_n) é uma sucessão qualquer de números reais, então $(f(w_n))$ tem subsucessões convergentes.

CÁLCULO DIFERENCIAL E INTEGRAL I

LEEC, LEGI, LEIC (Tagus) e LERC 1º TESTE (Versão B)

12 /Novembro /2011

Duração: 1h30m

1. Considere os seguintes subconjuntos de \mathbb{R} :

$$A = \left\{ x \in \mathbb{R} : 2x^2 - x^3 \le x^4 \right\}, \qquad B = \left\{ x \in \mathbb{R} : \left| x + \frac{1}{2} \right| \le \frac{3}{2} \right\}$$

- a) Mostre que $A = [-\infty, -2] \cup \{0\} \cup [1, +\infty[$ e identifique os conjuntos $B \in A \cap B$.
- **b)** Indique, caso existam em \mathbb{R} , max $(A \cap \mathbb{R}^-)$, min $(A \cap \mathbb{R}^+)$, inf $(A \cap \mathbb{R}^+ \cap (\mathbb{R} \setminus \mathbb{Q}))$, min $(A \cap B)$, sup $(A \cap B)$ e inf $((A \cap \mathbb{R}^-) \setminus \mathbb{Q})$.
- c) Se possível, dê exemplos de:
 - i) uma sucessão decrescente de termos em $A \cap (\mathbb{R} \setminus \mathbb{Q})$ que converge para -5.
 - ii) uma sucessão de termos em $A \cap B$ que é divergente.
- **2.** Considere a sucessão (a_n) definida por

$$\begin{cases} a_1 = 2\\ a_{n+1} = \frac{a_n}{1 - a_n} & \text{se } n > 1 \end{cases}$$

a) Mostre, por indução, que se tem

$$\forall n \geq 2$$
 $a_n < 0$

- b) Mostre que a sucessão $(a_n)(n \ge 2)$ é monótona crescente.
- **c)** Justifique que a sucessão é convergente e calcule $\lim a_n$.
- **3.** Calcule (caso existam em $\overline{\mathbb{R}}$):

$$\lim \frac{2-n!}{n^n+2n}, \quad \lim \frac{2n(n+3)^2+5}{4n^2(n+3)+1}, \quad \lim \frac{4^n-5n}{1+n^3+3^n}, \quad \lim \sqrt[n]{\frac{n!-2}{(n+1)!}}$$

4. Calcule (caso existam em $\overline{\mathbb{R}}$) os limites:

$$\lim_{x \to 2} \frac{\sin(x-2)}{x^2 - 4}, \quad \lim_{x \to +\infty} \frac{x(x+1)}{3x^2 + 3\sqrt{x} + 2}$$

5. Seja $g: \mathbb{R} \longrightarrow \mathbb{R}$ a função definida por

$$g(x) = \frac{1}{2+x^2}$$

Mostre que:

a) Se (u_n) é uma sucessão decrescente e

$$\forall n \in \mathbb{N} \quad u_n > 2$$

então (u_n) e $(g(u_n))$ são sucessões convergentes (em \mathbb{R}).

- b) Se (v_n) é uma sucessão decrescente, então $(g(v_n))$ é sucessão convergente (em \mathbb{R}).
- c) Se (w_n) é uma sucessão qualquer de números reais, então $(g(w_n))$ tem subsucessões convergentes.