Improving classification performance on Titanic dataset

Result from project 1

	1. AIC	2. BIC	3. Ridge	4. Lasso
Number of parameter s	6	3	8	5
Parameter	Pclass -0.7529 Sex 2.2610 Age 0.2535 Embarked 0.2845 Title 0.3444 Age*Class -0.2785	Pclass -0.9219 Sex 2.2909 Title 0.3840	Pclass -0.255532 Sex 0.397340 Age -0.056094 Fare -0.006139 Embarked 0.061012 Title 0.149729 IsAlone 0.016209 Age*Class 0.002501	Pclass -0.119751 Sex 0.202281 Age -0.016549 Embarked 0.021558 Title 0.064091
Accuracy	0.76794	0.76794	0.74162	0.77033

3 Objectives

- Improving Classification Performance with discretization
- Improving Classification Performance with different model
- Improving Classification Performance with hyperparameters tuning

Brief desciption on data pre-processing

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
651	652	1	2	Doling, Miss. Elsie	female	18.0	0	1	231919	23.0000	NaN	S
290	291	1	1	Barber, Miss. Ellen "Nellie"	female	26.0	0	0	19877	78.8500	NaN	S
396	397	0	3	Olsson, Miss. Elina	female	31.0	0	0	350407	7.8542	NaN	S
815	816	0	1	Fry, Mr. Richard	male	NaN	0	0	112058	0.0000	B102	S
87	88	0	3	Slocovski, Mr. Selman Francis	male	NaN	0	0	SOTON/OQ 392086	8.0500	NaN	S
615	616	1	2	Herman, Miss. Alice	female	24.0	1	2	220845	65.0000	NaN	S
127	128	1	3	Madsen, Mr. Fridtjof Arne	male	24.0	0	0	C 17369	7.1417	NaN	S
209	210	1	1	Blank, Mr. Henry	male	40.0	0	0	112277	31.0000	A31	С
310	311	1	1	Hays, Miss. Margaret Bechstein	female	24.0	0	0	11767	83.1583	C54	С

- Fill in age, embark, fare missing value
- Drop passenger id, cabin and ticket
- Create family size feature
- Extract title from name

Feature discretization/Binning

Among all variables, only age and fare are continous variables

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Fare	Embarked	Family Size	IsAlone	Title	FareBin	AgeBin
296	0	3	Hanna, Mr. Mansour	male	23.50	0	0	7.2292	С	1	1	Mr	(-0.001, 7.91]	(16.0, 32.0]
578	0	3	Caram, Mrs. Joseph (Maria Elias)	female	28.00	1	0	14.4583	С	2	0	Mrs	(14.454, 31.0]	(16.0, 32.0]
644	1	3	Baclini, Miss. Eugenie	female	0.75	2	1	19.2583	С	4	0	Miss	(14.454, 31.0]	(-0.08, 16.0]
339	0	1	Blackwell, Mr. Stephen Weart	male	45.00	0	0	35.5000	s	1	1	Mr	(31.0, 512.329]	(32.0, 48.0]
383	1	1	Holverson, Mrs. Alexander Oskar (Mary Aline To	female	35.00	1	0	52.0000	s	2	0	Mrs	(31.0, 512.329]	(32.0, 48.0]
732	0	2	Knight, Mr. Robert J	male	28.00	0	0	0.0000	s	1	1	Mr	(-0.001, 7.91]	(16.0, 32.0]
185	0	1	Rood, Mr. Hugh Roscoe	male	28.00	0	0	50.0000	s	1	1	Mr	(31.0, 512.329]	(16.0, 32.0]
529	0	2	Hocking, Mr. Richard George	male	23.00	2	1	11.5000	s	4	0	Mr	(7.91, 14.454]	(16.0, 32.0]
558	1	1	Taussig, Mrs. Emil (Tillie Mandelbaum)	female	39.00	1	1	79.6500	s	3	0	Mrs	(31.0, 512.329]	(32.0, 48.0]
515	0	1	Walker, Mr. William Anderson	male	47.00	0	0	34.0208	S	1	1	Mr	(31.0, 512.329]	(32.0, 48.0]

Apply feature discretization/binning

- Pandas method Qcut is applied to Fare
- Pandas method cut is applied to Age

Without discretization vs with discretization

	Sex_Code	Pclass	Embarked_Code	Title_Code	Family Size	Age	Fare
0	1	3	2	3	2	22.0	7.2500
1	0	1	0	4	2	38.0	71.2833
2	0	3	2	2	1	26.0	7.9250
3	0	1	2	4	2	35.0	53.1000
4	1	3	2	3	1	35.0	8.0500
5	1	3	1	3	1	28.0	8.4583
6	1	1	2	3	1	54.0	51.8625
7	1	3	2	0	5	2.0	21.0750
8	0	3	2	4	3	27.0	11.1333
9	0	2	0	4	2	14.0	30.0708

	Sex_Code	Pclass	Embarked_Code	Title_Code	FamilySize	AgeBin_Code	FareBin_Code
0	1	3	2	3	2	1	0
1	0	1	0	4	2	2	3
2	0	3	2	2	1	1	1
3	0	1	2	4	2	2	3
4	1	3	2	3	1	2	1
5	1	3	1	3	1	1	1
6	1	1	2	3	1	3	3
7	1	3	2	0	5	0	2
8	0	3	2	4	3	1	1
9	0	2	0	4	2	0	2

How feature discretization/Binning affect performance?

Intution:

- Some information may loss because of feature discretization
- Hypothesis:
 - Performance should increase for linear model
 - Performance will be at least the same for non-linear model
 - Should have little to no effect on tree-based model
 - Less overfitting with feature discretization

Rationale behind the hypothesis

 With 2 features, binning can create similar effect for linear model as non-linear classifier

Rationale of the hypothesis

- However, for nonlinear model(e.g. decision tree), binning does not help
- Less overfit, because reduce noise/variance (at the cost of increasing bias)

Result

Without discretization

	MLA Name	MLA Parameters	MLA Train Accuracy Mean	MLA Test Accuracy Mean	MLA Test Accuracy 3*STD	MLA Time
0	GradientBoostingClassifier	{'ccp_alpha': 0.0, 'criterion': 'friedman_mse'	0.922285	0.825373	0.05769	0.100948
1	RandomForestClassifier	$\label{thm:condition} \mbox{\ensuremath{\mbox{\sc l'bootstrap': True, 'ccp_alpha': 0.0, 'class_w}}$	0.98764	0.813433	0.025526	0.182288
2	LogisticRegressionCV	{'Cs': 10, 'class_weight': None, 'cv': None, '	0.809738	0.791418	0.057831	0.82209
3	DecisionTreeClassifier	{'ccp_alpha': 0.0, 'class_weight': None, 'crit	0.987828	0.784701	0.040376	0.007579
4	SVC	{'C': 1.0, 'break_ties': False, 'cache_size':	0.677341	0.688433	0.069231	0.085074

With discretization

	MLA Name	MLA Parameters	MLA Train Accuracy Mean	MLA Test Accuracy Mean	MLA Test Accuracy 3*STD	MLA Time
4	SVC	{'C': 1.0, 'break_ties': False, 'cache_size':	0.83839	0.826493	0.059286	0.070706
0	Gradient Boosting Classifier	{'ccp_alpha': 0.0, 'criterion': 'friedman_mse'	0.872097	0.822388	0.033657	0.089094
1	RandomForestClassifier	{'bootstrap': True, 'ccp_alpha': 0.0, 'class_w	0.899813	0.811194	0.034027	0.182235
3	DecisionTreeClassifier	{'ccp_alpha': 0.0, 'class_weight': None, 'crit	0.899813	0.808955	0.044439	0.005686
2	LogisticRegressionCV	{'Cs': 10, 'class_weight': None, 'cv': None, '	0.80206	0.778731	0.052277	0.311267

Analysis

- -Performance does not increase for logistic regression(Without discretization testing accuracy:0.791418, With discretization:0.778731)
- -All other models' test accuracy increase
- -For tree-based models, the test accuracy mostly remain the same or slightly increase
- -Without discretization, some models' train accuracy goes up to >0.9

Explaination

- Is the dataset linearly seperable?
- Is the two features with binning apply important?
- Is the model optimize?

Improving Classification Performance with hyperparameters tuning

Without discretization

	MLA Name	MLA Parameters	MLA Train Accuracy Mean	MLA Test Accuracy Mean	MLA Test Accuracy 3*STD
2	RandomForestClassifier	{'criterion': 'entropy', 'max_depth': 8, 'n_es	90.472955	86.410815	5.319646
3	LogisticRegressionCV	{'Cs': 10, 'penalty': 'l2'}	86.063145	85.150016	5.011195
1	Gradient Boosting Classifier	{'learning_rate': 0.2, 'loss': 'deviance', 'ma	92.511855	84.879984	7.425558
4	DecisionTreeClassifier	{'criterion': 'gini', 'max_depth': 4, 'random	90.086761	84.670324	7.729409
0	SVC	{'C': 100}	74.595554	74.335287	6.483699

With discretization

	MLA Name	MLA Parameters	MLA Train Accuracy Mean	MLA Test Accuracy Mean	MLA Test Accuracy 3*STD
4	DecisionTreeClassifier	{'criterion': 'gini', 'max_depth': 4, 'random	89.632818	86.799306	4.844119
2	RandomForestClassifier	$\label{lem:continuous} \mbox{\ensuremath{\mbox{\sc f'criterion': 'entropy', 'max_depth': 5, 'n_es}}$	89.188418	86.599677	4.703276
1	GradientBoostingClassifier	{'learning_rate': 0.15, 'loss': 'deviance', 'm	91.315719	85.893921	6.720044
3	LogisticRegressionCV	{'Cs': 10, 'penalty': 'l2'}	86.759518	85.665497	4.817815
0	SVC	{'C': 0.1}	88.488571	84.223976	5.274345

Analysis

- All model improves after grid search
- Comparing with or without discretization:
 - Performance increases slightly for logistic regression(Without discretization testing accuracy:0.8515, With discretization:0.8566)
 - All other models' test accuracy increase with discretization
 - The second most significant increase is from decision tree model(Without discretization testing accuracy:0.84670, With discretization:0.86799)
 - The most significant increase is from SVC(Without discretization testing accuracy:0.74335, With discretization:0.84224)

Best model overall

Decision Tree with discretization

Feature importance

```
Feature: 0, Score: 0.53253
Feature: 1, Score: 0.18366
Feature: 2, Score: 0.02068
Feature: 3, Score: 0.06581
Feature: 4, Score: 0.14558
Feature: 5, Score: 0.02165
Feature: 6, Score: 0.03010
```


Conclusion

- Compare to the logistic regression model in project 1, the performance has been improved by completing the 3 objectives.
 - Using feature discretization, most models' test accuracy improve
 - Using different kind of models, tree-based model (e.g. decision tree) works much better for this dataset
 - Using hyper-parameters tuning, all models' test accuracy improve significantly

Reference

Decision Tree visualization

- https://mljar.com/blog/visualize-decision-tree/
- https://machinelearningmastery.com/calculate-feature-importance-withpython/

Feature discretization

- https://www.kaggle.com/tilii7/feature-discretization-less-is-better
- https://scikitlearn.org/stable/auto_examples/preprocessing/plot_discretization_classific ation.html
- https://pbpython.com/pandas-qcut-cut.html
- https://scikitlearn.org/stable/auto_examples/preprocessing/plot_discretization.html