METHOD FOR THE CREATION OF A HYDRAULIC NETWORK USED FOR OPTIMIZED HEAT TRANSFER AND MATERIAL CONVEYANCE

Publication number:	DE18319367 (A1)		Also published as:
Publication date:	2004-11-25	₩	O2004097323 (A1)
Inventor(s):	HERMANN MICHAEL [DE] +	£"	EP152542B (A1)
Applicant(s):	FRAUNHOFER GES FORSCHUNG [DE] +	長	EP1525428 (B1)
Classification:		ñ	AT313776 (T)
- international:	F24J2/20; F28F3/12; F28F7/02; F24J2/04; F28F3/00;		
	F28F7/00; (IPC1-7): B29C33/04; F17D1/08; F24J2/20; F28D15/02		Cited documents:
- European:	F24J2/20; F28F3/12; F28F7/02		DE19528168 (A1)
	DE20031019367 20030429		DE2619372 (A1)
	DE20001010007 20000420	P	EP0857554 (A2)

Abstract not available for DE 10319367 (A1) Abstract of corresponding document: WO 2004097323 (A1)

Priority number(s): DE20031019367 20030429

The invention relates to a method for creating a hydraulic network used for transferring heat and/or material. According to said method, a given transfer area or a given transfer volume is provided with a multibranched hydraulic network. The course of the hydraulic network is defined by means of several Iterative steps in which paths are established between branching points at identical distances from previously established paths and borders of the transfer volume or transfer area. The branching points are defined by minimum or maximum distances from the borders of the transfer volume or transfer area. Hydraulic systems that are optimized regarding thermal efficiency and hydraulic performance can be created for any geometry of the transfer area or transfer volume by varying the networking parameters by means of an optimization method.

Data supplied from the espacenet database - Worldwide

(10) DE 103 19 367 A1 2004 11.25

(12)

Offenlegungsschrift

(21) Aktenzeichen: 103 19 367.7 (22) Anmeldetag: 29.04.2003

(43) Offenlegungstag: 25.11.2004

B29C 33/04, F24J 2/20, F28D 15/02

Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 München, DE

Gagel, R., Dipl.-Phys.Univ. Dr.rer.nat., Pat.-Anw., 81241 München

(72) Erfinder:

Hermann, Michael, Dipl.-Inc., 79110 Freiburg, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

DE 195 28 168 A1 26 19 372 A1 DE

(51) Int CL7: F17D 1/08

08 57 554 A2

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen Prüfungsantrag gemäß § 44 PatG ist gestellt.

(54) Bezeichnung: Verfahren zur Erstellung eines Hydrauliknetzwerkes für einen optimierten Wärmeübertragungsund Stofftransport

(57) Zusammenfassung: Die vorliegende Erfindung betrifft ein Verfahren zur Erstellung eines Hydrauliknetzwerkes zur Wärme- und/oder Stoffübertragung, bei dem eine vorgegebene Übertragungsfläche oder ein vorgegebenes Übertragungsvolumen mit einem mehrfach verzweigten Hydrauliknetzwerk versehen ist. Der Verlauf des Hydrauliknetzwerkes wird dabei durch mehrere Iterationsschritte festgelegt, bei denen jeweils Pfade in gleichen Abständen zu vorangehend gelegten Pfaden und Begrenzungen des Übertragungsvolumens bzw. der Übertragungsfläche zwischen Verzweigungspunkten gelegt werden. Die Verzweigungspunkte werden durch Mindest- bzw. Höchstabstände zu den Begrenzungen des Übertragungsvolumens bzw. der Übertragungsfläche festgelegt, Durch Variation der Vernetzungsparameter mit einem Optimierungsverfahren können für iede beliebige Geometrie der Übertragungsfläche bzw. des Übertragungsvolumens hinsichtlich der thermischen Effizienz sowie der hydraulischen Leistung optimierte Hydraulikstrukturen erstellt werden.

DF 103 19 367 A1 2004 11.25

Beschreibung

Technisches Anwendungsgebiet

[0001] Die vorliegende Erfindung betrifft ein Verfahren zur Erstellung eines Hydrauliknetzwerkes zur Wärmeund/oder Stoffübertragung, bei dem eine vorgegebenen Übertragungsfläche oder ein vorgegebenes Übertraqungsvolumen mit einem mehrfach verzweigten Hydrauliknetzwerk versehen wird.

[0002] Der Wärmetransport mit Fluiden stellt eine wichtige technische Aufgabe sowohl bei konventionellen Wärmetauschern als auch bei der Nutzung erneuerbarer Energien dar, so beispielsweise bei der Übertragung der absorbierten Solarstrahlung auf das Wärmeträgermedium in einem Sonnenkollektor als auch bei der Abgabe dieser Energie an einen Speicher. Bei der energetischen Betrachtung solcher Systeme muss sowohl die thermische Effizienz bei der Wärmeübertragung als auch die für den Fluidtransport benötigte hydraulische Leistung berücksichtigt werden. Um Wärme von einer Wärmeübertragungsfläche auf eine Kanalstruktur zu übertragen, müssen die Kanäle mötlichst oleichmäßüs auf dieser Fläche vereitellt werden.

[0003] Aus dem Stand der Technik sind bereits zahlreiche Hydraullincetwerke bekannt, bei denen die Kanäle relativ gleichmäßig auf die Wärmeübertragungsfläche verteilt sind. So sind beispielsweise Wärmeübertragungssysteme bekannt, bei denen die Flaidkanäle mäanderförnig über die Fläche verlaufen. Eine derartige Ausgestaltung wird auch als Serpentinenabsorber bezeichnet. Welterhin sind beispielsweise auf dem Gebiet der Solartechnik so genannte Harfenabsorber bekannt, bei denen die Kanäle parallel zueinander angeodnet sind und auf der Ein- und Austrittsseite in Sammelkanäle münden. Eine weitere bekannte Ausgestaltung ist der so genannte (Rissenabsorber, bei dem das Fluid eine die Wärmeübertragungsfläche begrenzende flache Kammer durchströmt, so dasse se vollflächig mit der Wärmeübertragungsfläche in Kontakt ist.

[0004] Diese bisher bekannten Konstruktionen sind jedoch häufig mit Nachteilen verbunden. So können bei määnderförmig angeordneten Fluidkanäien hohe Druckvertuste entstehen, die eine hohe Pumpleistung erfordern. Eine Paralleianordnung von Kanälen kann aufgrund der Druckvertuste beim Übergang des Fluids von den Sammelkanälen in die paralleien Kanäle bzw. umgekehrt zu einer ungleichmäßigen Volumenstromverteilung und damit zu entsprechenden Temperaturunterschieden auf der Wärmeibertragungsfäher übren. Bei vollidächigen Konstruktionen besteht schließlich die Gefahr, dass einzelne Bereiche der Kammer schlecht oder gar nicht durchströmt werden. Bei den letztgenannten Systemen ist zudem die Wärmekapazität aufgrund des größeren Fluidinhalts in der Rogel höher als bei kanalartigen Systemen, was sich negativ auf das dynamische Verhalten auswirken kann.

Stand der Technik

[9005] Aus der EP 0 857 554 A2 sind Formen und Werkzeuge mit einem feingliedrig verzweigten Temperierkanalnetzwerk bekannt, das in der At eines arteriellen Gefäßsysteme aufgebaut ist. in einer in der Druckschrift dergestellten Ausgestaltung wird hierfür ein binär verzweigtes Hydraullknetzwerk eingesetzt. Ein grundsätzliches Problem besteht jedoch in der Estellung eines derartigen verzweigten Hydraullknetzwerkes, odass es die Wärmeübertragungsfläche bzw. das Wärmeübertragungsvolumen möglichst gleichmäßig durchsetzt. Durch die in der Druckschrift angegebene Vorgehensweise, in der Natur vorkommende Verzweigungsarten als Vorbild zu nehmen, wird die Erstellung eines derartigen Netzwerkes deutlich erschwert.

Aufgabenstellung

[0006] Ausgehend von diesem Stand der Technik besteht die Aufgabe der vorliegenden Erfindung darin, ein Verfahren zur Erstellung eines Hydrauliknetzwerkes zur Wärme- und/oder Stoffübertragung anzugeben, das sich bei beliebigen Geometrien der Übertragungsfläche bzw. des Übertragungsvolumens einfach durchführen lässt und einen optimietren Wärmeübertragungs- und Stofftransport ermöglicht.

Darstellung der Erfindung

[0007] Die Aufgabe wird mit dem Verfahren gemäß Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen des Verfahrens sind Gegenstand der Unteransprüche oder lassen sich aus der nachfolgenden Beschreibung sowie dem Ausführungsbeispiel entnehmen.

[0008] Bei dem vorliegenden Verfahren zur Erstellung eines Hydrauliknetzwerkes zur Wärme- und/oder Stoffübertragung, bei dem eine vorgegebene Übertragungsfläche oder ein vorgegebenes Übertragungsvolumen

DE 103 19 367 A1 2004.11.25

mit einem mehrfach, vorzugsweise binär, verzweigten Hydrauliknetzwerk versehen wird, wird der Verlauf des Hydrauliknetzwerkes durch folgende Schritte festgelegt:

- Festlegen eines Fluideintrittspunktes und eines Fluidaustrittspunktes;
- Legen eines ersten Pfades zwischen Fluideintritt- und Fluidaustrittspunkt mit annähernd gleichem Abstand zu seitllichen Begrenzungen der Übertragungsfläche oder des Übertragungsvolumens;
- Festlegen von ersten Verzweigungsstartpunkten und endpunkten an Stellen des ersten Pfades, an denen ein vorgebbarer Höchstabstand zu den seitlichen Begrenzungen überschritten bzw. ein vorgebbarer Mindestabstand unterschritten wird, in einem ersten Iterationsschrift;
- Verbinden der ersten Verzweigungsstartpunkte und endpunkte durch Legen Jeweils zumindest zweier zweiter Plade mit annähernd gleichem Abstand zu nächstliegenden seitlichen Begrenzungen der Übertragungsfläche oder des Übertragungsvolumens und dem ersten Plad:
- Festiggen von weiteren Verzweigungsstartpunkten und endpunkten an Stellen tie jeweils unmittelbar vorangehend gelegten Pfade, an denen ein vorgebbarer Höchstebstand zu nächstigenden seillichen Begrenzungen der Übertragungstläche oder des Übertragungsvolumens überschritten bzw. ein vorgebbarer Mindeslabstand unterschritten wid in einem weiteren Interariossachirit.
- Verbinden der weiteren Verzweigungsstartpunkte und endpunkte durch Legen Jeweits zumindest zweier weiterer Pfade mit annähernd gleichem Abstand zu nächstliegenden seitlichen Begrenzungen der Übertragungsfläche oder des Übertragungsvolumens und einem nächstliegenden der bisher gelegten Pfade; und
- gegeben der ein vorgebbare Anzahl von Iterationsschrittes, bis eine vorgebbare Anzahl von Iterat seinsgegeben der ein vorgebbare Mindestabstand der als Letzes gelegten Pfade zu den nächsliegen betrette in der Begrenzungen der Übertragungsfläche oder des Übertragungsvolumens erreicht ist. Die nach Beendgung der Iterationsschritt ein betzen Iterationsschritt anhaltenen Pfade swie deren Verbründung mit dem Flutidelimitis- und Fluidaustrittspunkt über Teile der bisher gelegten Pfade legen die Struktur des Hydrauliknetzwerkes fast. Aan anschließende entsprechend derfertiot wird.

[0009] Vorzugsweise wird als hydrauliknetzwerk bei einer vorgegebenen Übertragungsfläche ein binäres Netzwerk und bei einem vorgegebenen Übertragungsvollumen ein ternäres Netzwerk gebildet, so dass an jeder Verzweigung ein Kanali nentweder zwei oder drei Pfade bzw. Kanāle verzweigt. Mit einer idealen Verzweigungsstruktur teilt sich der Volumenstrom des Fluids an jedem Verzweigungspunkt jeweils zur Hälfte auf den rechten und linken Kanal auf. Dies geschheit ni allen Iterationsstufen, also bei jeder weiteren Verzweigung, so dass eine gleichmäßige Volumenstromverteilung entsteht. Gleichzeitig sind die Verzweigungswinkel nur verhältnismäßig kielin, od dass die Strömung nur sanft umgelenkt wird, die einzelnen Kanalie annähernd parallel zueinander verlaufen und der Druckverfust gering ist. Bei manchen konkreten Anwendungen gibt es aufgrund einer asymmetrischen Übertragungsfläche zwangsläufig leichte Abweichungen von diesem vorzugsweisen idealfall.

[0010] Vorzugsweise werden die Durchmesser bzw. die Querschnitte der mit jeder Verzweigung neu gebildeten Kanäle der Hydraulikstruktur jeweils so gewählt, dass sich der Volumenstrom an jeder Verzweigung zu gleichen Teilen auf die neu gebildeten Kanäle auffellt. Die Durchmesser der einzelnen Kanäle können dabei unterschiedlich ausfallen, falls unterschiedliche Längen der neu gebildeten Kanäle kömpensiert werden müssen,

[0011] Selbstverständlich lässt sich jedoch auch eine andere Verfeilung der Kanalquerschnitte an den Verzweigungen wählen, falls dies für eine Optimierung der Wämenbetragung sowie eine Minimierung Druckverluste bei einem vorgegebenen Übertragungsvolumen oder einer vorgegebenen Übertragungsfläche erforderlich ist.

[0012] Vorzugsweise werden die Vernetzungsparameter des Hydrauliknetzwerkes bei der Durchführung des vorliegenden Verfahrens mit einem Oglimierungsverfahren varietiert, um die für die jeweilige Anwendung og-ilmalen Vernetzungsparameter zu erhalten. Als Vernetzungsparameter kommen hierbei beispielsweise die Mindest- und Höchstabstände, die Positionen von Fluidenitrittis- und Fluidaustrittspunkt, die Zahl der Iterationsschritte undfooder das Verhältnis der Durchmesser der Kanäle der Hydraulikstruktur vor und nach joder Verzweigung in Frage. Hierbei können sowohl einzelne als auch beliebige Kombinationen dieser Vernetzungsparameter dem Optimierungsverfahren unterzogen werden. Bei dem Optimierungsverfahren verden die Vernetzungsparameter ausgehend von einem vorgegebenen Startparametersatz variiert und damit verschiedene Geometrien der Hydraulikstruktur erzeugt. Diese unterschiedlichen Geometrien werden durch thermische und hydraulischen Simulationen hinsichtlich ihrer Gesamtelffizienz berechnet. Die Gesamtelffizienz ergibt sich dabei aus einer Berechnung der thermischen Effizienz und der hydraulischen Leistung, Beide Berechnungen können mit einem so genannten CFD-Programm (Computational Fluid Dynamics) oder mit anderen vereinfachten Simulationswerkzeugen durchgeführt werden. Die Parameter der besten Variante oder eine Kombination von Parameterm aus mehreren der Varianten wird als neuer Startogrametersatz verwendet. Von diesen werden

DE 103 19 367 A1 2004.11.25

wiederum neue Varianten erzeugt usw. Durch dieses Optimierungsverfahren, beispielsweise das Optimierungsverfahren der "Evolutionsstrategie", können insbesondere vielparametrische Probleme, für die es keine analvtische Gesamtbeschreibung gibt, gelöst werden.

[1013] Das Verfahren zur Erstellung der Hydraulikstrukturen lässt sich beispielsweise für Anwendungen in Somnenkollektoren, Heiz- und Kühlelermenten jeglicher Art und Größe, Latentwärmespeichem oder Brennstoffzeilen, um nur einige zu nennen, einsetzen. Insbesondere dreid/mensionale Hydrauliknetzwerke können beispielsweise in Sorptionswärmespeichern eingesetzt werden, bei denen sowohl der Wärme- als auch der Stofftransport möglichst gleichmäßig im Raum erfolgen soll. Dabei soll jedoch das Speichervolumen nur minimal eingeschränkt werden, so dass Strukturen benötigt werden, die bei geringern Eigenvolumen möglichst den gesamten Raum bedienen können. Ebenso kann das vorliegende Verfahren zum Erzeugen von Strörungskanälen für den Stoffransport (Reaktionsaase und entstehendes Wasser) in Brennstoffzellen eingesetzt werden.

[0014] Zur technischen Umsetzung sind verschiedene Herstellverfahren nutzbar, so beisplelsweise Präges Gleßen, Rollbond, Fräsen oder Laminieren. Auch bekannte Rapid-Protokyping-Verfahren eiglens Präges beisplesverständlich zum Herstellen des Hydrauliknetzwerkes. Ebenso können diverso Materialien zum Einsatz kommen, wie beispleisweise Kunstoff. Metall. Ecovordherz. Gleßekeramik und anderei.

Ausführungsbeispiel

Kurze Beschreibung der Zeichnungen

[0015] Das vorliegende Verfahren wird nachfolgend anhand eines Ausführungsbeispiels in Verbindung mit den Zeichnungen nochmals kurz erläutert. Hierbei zeigen:

[0016] Fig. 1 eine Gegenüberstellung von zwei bekannten Hydraulikstrukturen des Standes der Technik mit einem nach dem vorliegenden Verfahren erstellten Hydrauliknetzwerk:

[0017] Fig. 2 verschiedene Schritte bei der Durchführung des vorliegenden Verfahrens;

[0018] Fig. 3 ein Beispiel zur Darstellung des in einer Ausgestaltung des Verfahrens eingesetzten Glättungsalgorithmus; und

[0019] Fig. 4 unterschiedliche Hydraulikstrukturen, die mit unterschiedlichen Vernetzungsparametern des vorliegenden Verfahrens erstellt wurden.

Wege zur Ausführung der Erfindung

[0020] Fig. 1 zeigt beispielhaft eine Gegenüberstellung zwischen zwei bekannten Hydraulikstrukturen und einer mit dem vorliegenden Verfahren erstellten Hydraulikstruktur.

[0021] In Teilabbildung a) ist die bekannte m\u00e4ander\u00f6rmige Anordnung eines Fluidkanals 2 an einer W\u00e4rme-\u00fcbertagungsf\u00e4\u00e4net 1 zu erkennen. In einer derartigen Struktur k\u00f6nnen allerdings hohe Druckverluste entstehen.

[0022] Teilabbildung b) zeigt eine parallele Anordnung von Strömungskanälen 2, die jeweils in Sammelkanäle 3 münden. Bei dieser Ausgestaltung können aufgrund der Druckverlutste beim Übergang von den Sammelkanälen 3 bzw. in die Sammelkanäle 3 ungleichmäßige Volumenstromverteilungen auftreten.

[0023] Teilabbildung c) zeigt schließlich ein mehrfach verzweigtes Hydraullknetzwerk, das mit dem vorliegenden Verfahren erstellt unrde. Hierbei sind sehr gut die einzelnen Verzweigungen 4 zu erkennen, an denen der Flüdstrom jeweils in zwei Teilkanäle 2 aufgeteilt wird. Aufgrund der kleinen Winkel dieser Verzweigungen sowie der guten Ausfüllung der Wärmeübertragungsfläche 1 durch die einzelnen Teilkanäle 2 kommt es einerseils zu sehr geringen Druckverfulsten und andererseils zu einer hohen thermischen Effizienz bei der Wärmeübertragung von der oder auf die Wärmeübertragungsfläche 1.

[0024] Fig. 2 zeigt beispielhaft eine Möglichkeit zum Erstellen eines derartigen mehrfach verzweigten Hydrauliknetzwerkes gemäß dem vorllegenden Verfahren.

[0025] Zunächst werden der Fluideintritts- 5 und Fluidaustrittspunkt 6 an der Übertragungsfläche 1 festgelegt

DE 103 19 367 A1 2004 11 25

(Teilabbildung 1). Diese Punkte werden miteinander verbunden. Anschließend werden von beiden Punkten 5, 6 aus jeweils im Abstand so (vorgegebene Schrittweite) die Senkrechten auf der entstandenen Strecke bestimmt (Teilabbildung 2). Diese Senkrechten schneiden den Rand 11 der Übertragungsfläche 1 in jeweils zwei Punkten. Die Strecke zwischen diesen Schnittbunkten wird halbiert. Die Verbindung vom Fluideintritts-5 und Fluidaushittspunkt 6 zu diesen Mittelpunkt bliden jeweils das erste Teilstück des ersten Pfades 7 (von zwei Seiten aus betrachtet). Nun werden diese Verfahrensschritte – ausgehend von den neu entstandenen Punkten, also den Mittelpunkten – wiederholt: Bildung der Verbindungsstrecke, der Senkrechten, Mittelpunktbestimmung, neues Pfadstück des ersten Pfades 7 (falbebildung 3).

[0026] Diese Vorgehensweise wird wiederholt, bis der Abstand der Punkte gering genug geworden ist (Teilabbildungen 4 bis 6). Schließlich werden die letzen Punkte miteinander verbunden. Das Ziel bei der Ermittlung dieses ørsten Pfades 7 besteht darin, einen möglichst gleichen Abstand zum rechten und linken Rand 11 der Übertraubungsläche 1 zu erreichen.

[0027] Im nächsten Schritt (Teilabblictung 7) wird der Start- und Endpunkt für die nächste Iteration, Δh , die erste Verzweigung, bestimmt Hierzu verfolgt man in Strömungerichtung Teilstück für Teilstück des erzeugten ersten Prädes 7 (0. Iterationsstufe) und ermitteit jeweils die Abstände zum rechten und Ilnken Rand 11 (d_a bzw. d_b). Scbald einer dieser Abstände über einem vorgegebenen Maximalwert d_{max} liegt, wird der Startpunkt 8 für die erste Verzweigung gesetzt. Nun läuft man auf dem Pfad weiter, bis einer den beiden Abstände unter einem vorgegebenen Minimalwert d_{max} (z. B. d_{max} = 0,8- d_{max}) liegt. Dort wird der Endpunkt 9 der Verzweigung gesetzt. Je nach Form der Fläche können auch mehrere Verzweigungen auftreten, beispielsweise vor und nach einer Einschnütung. Nach Bestimmung der Verzweigungspunkte 8, 9 wird der erste Pfad 7 geglättet (Teilabbildung 8).

[0028] Nun wird das Verfahren analog zu den beschriebenen Schritten in der vorangehenden O. Iterationsstufe – beginnen bei den zuvor berechneten Staft- und Endpunkten 8, 9 – durchgeführt (Teilabildung) 9; Zunächst werden dazu wiederum die Punkte 8, 9 verbunden und die Senkrechten im Abstand s, bestimmt (der Index bezeichnet die Iterationsstufe; die Schrittweite s kann sich in jeder Iteration ändern). Die jeweilige Senkrechte schneidet den ersten Pfad 7 der 0. Iterationsstufe. Mit diesem entstehendem Schnittpunkt und den Schnittpunkten mit dem Rand 11 wird die Senkrechte in eine rechte und eine linke Strocke gefeilt. Die Verbindung vom Staft 8 bzw. Endpunkt 9 zu den Mittelpunkten dieser Strecken blien die ersten Elstücke auf den Pfaden 10 der ersten Iterationsstufe (rechter und linker Pfad 10). Das Verfahren wird entsprechend fortgesetzt, wobel nun die rechte bzw.

[0029] linke Teilfläche als Begrenzung berücksichtigt werden. Sobald die Pfade 10 der ersten Iterationschildigen erzeugt und die neuen Start vund Endpunkte ermittelt worden sind, wird wiederum – unter Berücksichtigung des Übergangs zum ersten Pfad 7 der 0. Iterationsstufe – der Glättungsalgorithmus angewandt (Teilabbildung 10).

[0030] Die beschriebenen Schritte werden fortgesetzt, bls eine vorgegebene Iterationstiefe oder ein Abbruchkriterium (z.B. ein minimaler Pfadabstand) erreicht wurde.

[0031] Die Änderung des Kanalquerschnitts von einer Iterationsstufe zur nächsten stellt einen weiteren Parameter dar, der das Strömungsverhalten beeinflusst.

[0032] Gegebenenfalls kann er sich auch innerhalb einer Iterationsstufe – d.h. bei parallelen Kanälen – unterscheiden, um unterschiedliche Kanallängen auszugleichen (hydraulischer Abgleich).

[0033] Die Funktionsweise des in diesem Beispiel eingesetzten Glätungsalgorithmus soll exemplarisch anhand von Fig. 3 erklärt werden. Ausgehend von dem in Teilabbildung 1 dargestellten Pfad, der aus Teilstücken der Längen a_-a_ besteht, werden zunächst für jedes Teilstück neue Punkte bestimmt, die jeweils den Abstand fa, vom Anfangs- bzw. Endpunkt jedes Teilstücks haben, wobei f ein voreingestellter Faktor ist (günstig) ist z.B. f = 0,3). Auf diese Weise wird jedes Teilstück in der Teile gelettli. Im ersten Glättungsschrift werden nur diese neuen Punkte miteinander verbunden, so dass nur die Mittelteile der ursprünglichen Teilstücke übernommen und die bisherigen Ecken ignoriert werden (Teilabbildung 2). Dieses Verfahren wird mit dem jeweils neu entstandenen Pfad wiederholt, bis die gewünschle Glättung erreicht ist (Teilabbildungen 3 und 4).

[0034] Fig. 4 zeigt exemplarisch den Einfluss der Vernetzungsparameter auf das Aussehen der erzeugten Hydraulikstrukturen. So wurden in den Varianten A) bis D) die Schriftweite so, der Faktor f_{i_1} S., i_2 , i_3 , i_4 er Marialabstand $d_{m_2,0}$, der Faktor f_{i_1} G_{m_2,i,j} = f_{i_2} d_{m_2,j}) sowie die Anzahl der Iterationen n varient. Der obeh auf mit der Green der Gre

DE 103 19 367 A1 2004 11 25

schriebene Faktor f für den Glättungsalgorithmus war in allen Fällen gleich (f=0,3). Es ist erkennbar, dass je nach Wahl der Parameter entweder die Flächenausnutzung (Variante A) oder die günstige Hydraulik durch kleine Winkel bei Strömungsumlenkungen (Variante D) im Mittelpunkt stehen. Für die jeweilige Anwendung gilt es, die besten Parameter im Hinblick auf die Gesamteffizienz zu finden.

[0035] Auch wenn in dem vorangehenden Ausführungsbeispiel lediglich eine zweidimensionale Hydraulikstrutur erläuter wurde, so sind selbstverständlich mit dem vorliegenden Verlähren auch dreidlimensionale, baumartige Strukturen realisierbar. Hierbei kann beispielsweise analog zum Mittelpunkt einer Strecke im zweidimensionalen Fall der Schwerpunkt einer Schnittfälsen bei mit deildimensionalen Fall setstimmt werden. Statt der rechten und finken Teilstrecke im zweidimensionalen Fall, wie dies anhand der Fig. 2 erläutert wurde, werden hier beispielsweise drei flächengleiche Teilflächen berücksichtigt. Entsprechend verzweigt sich in diesem Beispiel dann ein Kanal an einem Verzweigungspunkt in der Teilskanäle. Die damit erzeugbare dreidimensionale Hydraulikstruktur erzeugt die gleichen Vorteile an einem Übertragungsvolumen wie dies mit der zweidimensionalen Hydraulikstruktur an einer Wörmeübertragungsfläche erreicht wird.

BEZUGSZEICHENLISTE

1	Wärmeübertragungsfläche
2	Kanäle der Hydraulikstruktur
3	Sammelkanal
4	Verzweigungspunkte
5	Fluideintrittspunkt
6	Fluidaustrittspunkt
7	erster Pfad
8	Verzweigungsstartpunkt
9	Verzweigungsendpunkt
10	Pfad
11	Seitliche Begrenzungen

Patentansprüche

- Verfahren zur Erstellung eines Hydraullik-Netzwerkes zur Wärme- und/oder Stoffübertragung, bei dem eine vorgegebene Übertragungsfläche (1) oder ein vorgegebenes Übertragungsvolumen mit einem mehrfach verzweigten Hydraulliknetzwerk versehen wird, dadurch gekennzeichnet, dass der Verlauf des Hydraulliknetzwerkes durch folgende Schritte festgelegt wird:
- Festlegen eines Fluideintrittspunktes (5) und eines Fluidaustrittspunktes (6);
- Legen eines ersten Pfades (7) zwischen Fluideintritts- (5) und Fluidaustrittspunkt (6) mit annähernd gleichem Abstand zu seitlichen Begrenzungen (11) der Übertragungsfläche (1) oder des Übertragungsvolumens;
- Festlegen von ersten Verzweigungsstartpunkten (8) und -endpunkten (9) an Stellen des ersten Pfades (7), an denen ein vorgebbarer H\u00f6chstabstand zu den seitlichen Begrenzungen (11) \u00fcberschritten bzw. ein vorgebbarer Mindestabstand unterschritten wird, in einem ersten Iterationsschritt:
- Verbinden der ersten Verzweigungsstartpunkte (8) und -endpunkte (9) durch Legen jeweils zumindest zweier zweiter Pfade (10) mit annähernd gleichem Abstand zu nächstliegenden seitlichen Begrenzungen (11) der Übertragungsfläche (1) oder des Übertragungsvolumens und dem ersten Pfad (7);
- Festlegen von weiteren Verzweigungsstartpunkten (8) und -endpunkten (9) an Stellen der jeweils unmittelbar vorangehend gelegten Pfade (10), an denen ein vorgebbarer Höchstabstand zu nächstliegenden seitlichen Be-

DE 103 19 367 A1 2004 11 25

grenzungen (11) der Übertragungsfläche (1) oder des Übertragungsvolumens überschritten bzw. ein vorgebbarer Mindestabstand unterschritten wird, in einem weiteren Iterationsschritt;

- Verbinden der welteren Verzweigungsstartpunkte (8) und -endpunkte (9) durch Legen jeweils zumindest zweier weiterer Pidac (10) mit annähend gleichem Abstand zu nächstliegenden seitlichen Begrenzungen (11) der Übertragungsfläche (1) oder des Übertragungsvolumens und einem nächstliegenden der bisher gelegten Pfade (7. 10): und
- Wiederhollung des weiteren Iterationsschrittes, bis eine vorgebbare Anzahl von Iterationsschritten oder ein vorgebbarer Mindestabstand der als Letztes gelegten Pfade zu den nächstliegenden Begrenzungen (11) der Übertragungsfäche (1) oder des Übertragungssichens er erreicht ist; wobei nach Beendigung der Iterationsschritte die jeweils im letzten Iterationsschritt gelegten Pfade (10) sowie deren Verbindung mit dem Fluideintritts- (3) und Fluidaustrittspunkt (6) über Teile der bisher gelegten Pfade die Struktur des Hydrauliknetzwerkes festlegen.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Optimierungsverfahren eingesetzt wird, bei dem ein oder mehrere Vernetzungsparameter des Hydrauliknetzwerkes variiert werden, um für vorgegebene Anwendungen optimale Vernetzungsparameter zur Festlegung des Verlaufs und der Dimensionierung des Hydrauliknetzwerkes zu erhalten.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass als Vernetzungsparameter die Mindest- und Höchstabstände variiert werden.
- 4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass als Vernetzungsparameter die Zahl der Iterationsschritte variiert wird
- Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass als Vernetzungsparameter das Verhältnis der Durchmesser von Kanälen (2) der Hydraulikstruktur vor und nach jeder Verzweigung variiert wird.
- Verfahren nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass als Vernetzungsparameter Positionen des Fluideintritts- (5) und Fluidaustrittspunktes (6) variiert werden.
- Verfahren nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass als Vernetzungsparameter eine Schrittweilte variiert wird, auf deren Basis die Pfade (7, 10) gelegt und die Verzweigungsstartpunkte (8) und – endpunkte (9) festgelegt werden.
- 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzelchnet, dass die Durchmesser von Kanälen der Hydraulikstruktur nach jeder Verzweigung so gewählt werden, dass sich ein durch die Verzweigung oeleiteter Vollumenstrom eines Fluids zu diechen Teilen auf die Kanäle aufteilt.
- 9. Verfahren nach einem der Ansprüche 1 bis 8 für die Erstellung eines Hydraulik-Netzwerkes zur Wärmeübertragung in Sonnenkollektoren.

Es folgen 3 Blatt Zeichnungen

DE 103 19 367 A1 2004.11.25

Anhängende Zeichnungen

Fig. 1

Fig. 4