11868 LLM Systems Deep Learning Framework Design

Lei Li

Carnegie Mellon University

Language Technologies Institute

Recap

- Learning algorithm for Neural Network
 - o stochastic gradient descent
- Computation Graph
 - o topological traversal along the DAG
- Auto Differentiation
 - o building backward computation graph

Today's Topic

- How to design a deep learning framework
 - Design ideas in TensorFlow
 - Abadi et al., "TensorFlow: A System for Large-Scale Machine Learning", OSDI 2016

Need for DL Programming System

- Deep learning already claiming big successes
- Huge need for high-productivity tools for developing machine learning solutions for various applications
- Instead of writing cuda and differentiation code for each specific model

Deep Learning Programming Framework

- Open source library for machine learning computation using data flow graphs
- TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms
- PyTorch is a programming framework for tensor computation, deep learning, and auto differentiation

TensorFlow

- Key idea: express a numeric computation as a computation graph
 - following what we described in last lecture
- Graph nodes are operations with any number of inputs and outputs
- Graph edges are tensors which flow between nodes
 - o tensor: multidimensional array

Programming Model

Computation graph in tensorflow

$$h = RELU(Wx + b)$$

Variables

$$h = RELU(Wx + b)$$

- Variables are stateful nodes which output their current value.
- State is retained across multiple executions of a graph
- mostly parameters

Placeholders

$$h = RELU(Wx + b)$$

- Placeholders are nodes whose value is fed in at execution time
- Inputs, Labels, ...

Mathematical Operations

$$h = RELU(Wx + b)$$

MatMul: Multiply two matrices

Add: Add elementwise

ReLU: Activate with elementwise rectified linear function

$$ReLu(x) = \begin{cases} 0, & x <= 0 \\ x, & x > 0 \end{cases}$$

Programming the Graph

```
import tensorflow as tf
b = tf.Variable(tf.zeros((100,)))
W = tf.Variable(tf.random\_uniform((784, 100), -
1, 1))
x = tf.placeholder(tf.float32, (1, 784))
h = tf.nn.relu(tf.matmul(x, W) + b)
           h = RELU(Wx + b)
```


Running the Graph

Deploy graph with a session: a binding to a particular execution context (e.g. CPU, GPU)


```
1 import tensorflow as tf
3 with tf.Session() as sess:
    # Phase 1: constructing the graph
    a = tf.constant(15, name="a")
    b = tf.constant(5, name="b")
    prod = tf.multiply(a, b, name="Multiply")
    sum = tf.add(a, b, name="Add")
    res = tf.divide(prod, sum, name="Divide")
10
    # Phase 2: running the session
11
12
    out = sess.run(res)
13
    print(out)
```

Defining Loss

- Use placeholder for labels
- Build loss node using labels and prediction

```
prediction = tf.nn.softmax(...) #Output of neural
network
label = tf.placeholder(tf.float32, [100, 10])

cross_entropy = -tf.reduce_sum(label *
tf.log(prediction), axis=1)
```

Gradient Computation

```
train_step =
tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
```

- tf.train.GradientDescentOptimizer is an Optimizer object
- tf.train.GradientDescentOptimizer(lr).minimize(cross_entropy) adds optimization operation to computation graph
- TensorFlow graph nodes have attached gradient operations
- Gradient with respect to parameters computed with Auto Differentiation (recall previous lecture)

Core TensorFlow Constructs

- All nodes return tensors, or higher-dimensional matrices
- How a node computes is indistinguishable to TensorFlow
- You are metaprogramming constructing the graph for the real computation. No computation occurs yet!

Implementing Graph Nodes

Design Principles

- Dataflow graphs of primitive operators
- Deferred execution (two phases)
 - 1. Define program i.e., symbolic dataflow graph w/ placeholders
 - 2. Executes optimized version of program on set of available devices

Dynamic Flow Control

- Problem: support ML algos that contain conditional and iterative control flow, e.g.
 - Recurrent Neural Networks (RNNs) and LSTMs
 - Autoregressive decoder
- Solution: Add conditional (if statement) and iterative (while loop) programming constructs

TensorFlow Architecture

- Core in C++
 - Very low overhead
- Different front ends for specifying/driving the computation
 Python and C++, easy to add more

TensorFlow Implementation

- Semi-interpreted
- Call to kernel per primitive operation
- Can batch operations with custom C++
- Basic type-safety within dataflow graph (error at graph construction time)

Key Components

• Similar to MapReduce, Apache Hadoop, Apache Spark, ...

Client

Master

Computation Graph Partition

Computation Graph Partition

Execution

Synchronous vs Asynchronous

- Determined by node: Queue nodes used for barriers
- Synchronous nearly as fast as asynchronous
- Default model is asynchronous

Fault Tolerance

- Assumptions:
 - Fine grain operations: "It is unlikely that tasks will fail so often that individual operations need fault tolerance";-)
 - o "Many learning algorithms do not require strong consistency"
- Solution: user-level checkpointing (provides 2 ops)
 - o save(): writes one or more tensors to a checkpoint file
 - o restore(): reads one or more tensors from a checkpoint file

Performance

Single Node

	Training step time (ms)			
Library	AlexNet	Overfeat	OxfordNet	GoogleNet
Caffe [38]	324	823	1068	1935
Neon [58]	87	211	320	270
Torch [17]	81	268	529	470
TensorFlow	81	279	540	445

Performance

Distributed Throughput

Abadi et al., "TensorFlow: A System for Large-Scale Machine Learning", OSDI 2016

Summary

- Key Contributions
 - Programmability
 - Accessibility / ease of use
 - Richness of Libraries
 - Ready-made community

MiniTorch Code Explanation

Reading for Next Class

Attention is all you need. 2017