Eigenvectors l'Eigenvalues of Operators:

An Eigenvector of a Linear operator A on vector space V_F is a vector $|x\rangle \in V$ Sahisfying

The scalar of is called an Eigenvalue of A.

Comments

- Clearly, if |x > is an eigenvector of A then a|x > is also
 an Eigenvector with the same Eigenvalue.
- · An operator can have many different Eigenvectors e Eigenvalues.
- · Distinct eigenvectors of an operator A can have same eigenvalues.

Some examples:

- Consider the simplest example, the Identity operator I(x) = I(x)
 - Every vector is an eigenvector of I with eigenvalue 1.
 - Thus identify operator has n=dim(V) Linearly independent Eigenvectors.
- The projection operator $P_{\alpha} = \frac{|\alpha\rangle\langle\alpha|}{\langle\alpha|\alpha\rangle}$ has $\begin{array}{ccc}
 P_{\alpha} & |\alpha\rangle & |\alpha\rangle & |\alpha\rangle \\
 P_{\alpha} & |\alpha\rangle & |\alpha\rangle
 \end{array}$ $\begin{array}{cccc}
 P & |\alpha\rangle & |\alpha\rangle
 \end{array}$
 - (2) $\forall |\beta\rangle s.t. \langle \langle |\beta\rangle = 0$ $= |e_i\rangle \langle e_i| + |e_2\rangle \langle e_2|$ $P_{\prec}|\beta\rangle = 0$ $|\Delta|\langle \rangle = |\alpha_1| |e_1\rangle + |\alpha_2| |e_2\rangle$ $\Rightarrow P|\langle \rangle = |\alpha\rangle$
 - Thus P2 has I Eigenvector with Eigenvalue I and (n-1) linearly independent (orthogonal to 1x>) eigenvectors with eigenvalue 0.

Ex. Consider $P = a_1 |x_1\rangle \langle x_1| + a_2 |x_2\rangle \langle x_2|$ with $\langle x_1 | x_2 \rangle = 0$. Can you find all the Eigenvectors & Eigenvalues of P?

· Eigenvalues 1 Eigenvectors of Hermitian operators!

As mentioned earlier, Hermitian operators play a central role in many physical application, in particular in Quantum mechanics where they represent operators corresponding to observable quantities.

We will now disceus two important results regarding Eigenvalues & Eigenvectors of Hermition operators.

1. All eigenvalues of a hermitian operator are real.

$$\chi_{\chi}^{*} = \frac{\langle \chi | H | \chi^{*} \rangle}{\langle \chi | \chi^{*} \rangle} = \frac{\langle \chi | H^{\dagger} | \chi \rangle}{\langle \chi | \chi \rangle} = \frac{\langle \chi | H^{\dagger} | \chi \rangle}{\langle \chi | \chi \rangle} = \frac{\chi_{\chi}}{\langle \chi | \chi \rangle}$$

2. Eigenvectors of Hermitian operators with different Eigenvalues are orthogonal to each other.

Let
$$H|x\rangle = \lambda_{\alpha}|x\rangle$$
 $H|\beta\rangle = \lambda_{\beta}|\beta\rangle$
 $\langle \beta|H|x\rangle = \lambda_{\alpha}\langle \beta|x\rangle$
 $\langle \alpha|H|\beta\rangle = \lambda_{\beta}\langle \alpha|\beta\rangle$
 $\langle \beta|H|x\rangle^* = \langle \alpha|H^{\dagger}|\beta\rangle = \langle \alpha|H^{\dagger}|\beta\rangle$
 $\lambda_{\alpha}\langle \beta|x\rangle^*$
 $\lambda_{\alpha}\langle \beta|x\rangle^*$
 $\lambda_{\alpha}\langle \beta|x\rangle^*$
 $\lambda_{\alpha}\langle \beta|x\rangle^*$

...
$$\lambda_{x} \langle x | \beta \rangle = \lambda_{p} \langle x | \beta \rangle$$

 \Rightarrow If $\lambda_{x} \neq \lambda_{p}$ then $\langle x | \beta \rangle = 0$

• If we have two linearly independent Eigenvectors of Hermition operator H with same Eigenvalue then they may not necessarily be orthogonal!

In fact, if
$$|x_1\rangle$$
, $|x_2\rangle$ are 8.t. $H|x_1\rangle = \lambda |x_1\rangle$
 $H|x_2\rangle = \lambda |x_2\rangle$, then

 $|x_1\rangle = \alpha_1 |x_1\rangle + \alpha_2 |x_2\rangle$, we have

 $|x_1\rangle = \lambda |x_2\rangle$

This implies that within the subspace Spanned by eigenvectors (of Hermition operator) with same eigenvalue, we can simply use the Gram-Schmidt orthogonalization to construct eigenvectors which are orthogonal.