Unsupervised LEBANING: Given a dataset, we want to build a "model" for the dataset.

PROBABILISTIC Models OF DATA:

- Graphical models are probabilistic models for generating data.

- Precursors for modern "deep" generative models.

CORE ISSUES:

- 1. Succinct representations of distributions
- 2. Modeling dependencies.

APPLICATIONS:

- a. "Generate" new examples.
- b. "In-Painting"
- c. Applied Sciences useful in identifying relations.

PROBABILITY:

INDEPENDENCE:

$$(x,y)$$
 random variables $(j_0;_0)$ distribution)
 (x,y) random variables $(j_0;_0)$ distribution)
 (x,y) (x,y)

eg: weather today is independent of stock market.

	Heart Problems	Wake Up Time	Age
P 1	NO)/ BM	19
92	yes	6:30 AM	45
P 3	ye c	7 AM	40
14	NO	1284)	24
P5	No	(O BM)	25
:		;	
P10	785	6 An	59

Comparing features directly:

Waking up early is bad for heart.

CONDITIONAL INDEPENDENCE:

X, Y, Z random variables.

Graphical Models are distributions with "Consmained" conditional independence ("CI") relations.

BAYELIAN NETWORKS:

$$\times \in \mathcal{L}^{d}$$
 (x_1, x_2, \dots, x_d)

A Directed Acyclic Graph (OAG) on [d] rertices - G

A distribution D is a Bayesnet with graph 6.

$$P(x = x_1, x_2, ..., x_d) = \frac{d}{11} P[x = x_i] \times Pa(i) = x_{pa(i)}$$

pa (i) = the parent of i.

Example

$$P(X = X_1, X_2, x_3, x_4) = Pr(X_1 = x_1) \cdot Pr(X_2 = x_2 | X_1 = x_1) \cdot Pr(X_3 = x_3 | X_1 = x_1) \cdot Pr(X_4 = x_4 | X_2 = x_2, X_3 = x_3).$$

LEARN THE BAYES NET FROM SAMPLES:

- -> Given o Samples x', x2,...,x"
- -> Learn the underlying directed dependency graph.

Example:

$$Pr[x = x_1, x_2, \dots, x_n] = Pr[x_1 = x_1] \cdot Pr[x_2 = x_2 \mid x_1 = x_1]$$

. Pr [x3:x3 | x1:x1, x2:x3] ... Pr[x7:20 | x1:x1
... x0:1:x0:1

- Make an assumption about the true "graph".

 (being "simple" in some Sense).

 eg: Degree is bounded?

 The "unknown" graph is a tree /path...
- -> learn the structure graph under assumptions on the graph.
- -> learn the distribution assuming you even know the graph.
- Some features are missing?

 (Hidden Markov Models)

Suppose he get samples from a distribution generated by a tree Bayes network.

-> Can you learn the distribution from samples?

Each node has a single porent.

CHOW - LIV ALLBERTHM 1968:

- We can learn tree-shaped Bayesian networks.