6 Théorème d'Euler

6.1 Montrer que si pgcd(a, m) = 1 et si pgcd(b, m) = 1, alors pgcd(ab, m) = 1.

Indication: il y a deux preuves possibles:

- 1) utiliser les théorèmes de Bézout et de Bachet de Mériziac;
- 2) utiliser la proposition de la page 4.1.
- 6.2 Montrer que si pgcd(a, m) = 1, alors $pgcd(a^n, m) = 1$ pour tout $n \in \mathbb{N}$.

Ordre d'un élément

- **6.3** Calculer $2, 4, 8, 16, 32, 64, \dots, 2^n$
 - 1) modulo 7

2) modulo 10

Que remarque-t-on?

Montrer que si on élève un entier a à des puissances positives : a, a^2, a^3, \ldots , alors nécessairement deux de ces puissances seront congrues modulo m.

Indication : combien d'éléments y a-t-il dans $\mathbb{Z}/m\mathbb{Z}$?

- 6.5 Montrer que les conditions suivantes sont équivalentes :
 - 1) a et m sont premiers entre eux;
 - 2) il existe $k \in \mathbb{N}$ avec $1 \leq k < m$ tel que $a^k \equiv 1 \mod m$.

Indications:

- 1) Supposons qu'il existe $k \in \mathbb{N}$ avec $1 \le k < m$ tel que $a^k \equiv 1 \mod m$. Montrer que a et m sont premiers entre eux, grâce à la proposition de la page 4.1.
- 2) Supposons a et m premiers entre eux.
 - (a) Justifier, à l'aide de l'exercice 6.2, que les classes $\overline{1}$, \overline{a} , $\overline{a^2}$, $\overline{a^3}$, ..., $\overline{a^{m-1}}$ sont des unités de $\mathbb{Z}/m\mathbb{Z}$.
 - (b) Combien y a-t-il au plus d'unités dans $\mathbb{Z}/m\mathbb{Z}$?
 - (c) En déduire qu'il existe $n \ge 0$ et $1 \le k \le m-1$ tels que $\overline{a^{n+k}} = \overline{a^n}$, c'est-à-dire $a^{n+k} \equiv a^n \mod m$.
 - (d) Conclure que $a^k \equiv 1 \mod m$, grâce à l'exercice 4.2.

Soit a un entier premier à m. L'exercice précédent implique l'existence d'un entier k avec $1 \le k < m$ tel que $a^k \equiv 1 \mod m$.

Le plus petit entier positif α tel que $a^{\alpha} \equiv 1 \mod m$ s'appelle l'**ordre** de a modulo m.

6.6 Trouver l'ordre des éléments non nuls de $\mathbb{Z}/5\mathbb{Z}$.

- **6.7** Trouver l'ordre des unités de $\mathbb{Z}/9\mathbb{Z}$.
- **6.8** Trouver l'ordre de $\overline{2}$ dans $\mathbb{Z}/m\mathbb{Z}$ pour les valeurs 11, 17, 31, 9 et 14 de m.
- **6.9** Trouver l'ordre des éléments non nuls de $\mathbb{Z}/11\mathbb{Z}$.

Théorème d'Euler

Si a et m sont premiers entre eux, alors $a^{\varphi(m)} \equiv 1 \mod m$.

- **6.10** Le but de cet exercice est de prouver le théorème d'Euler.
 - 1) Soit $(\mathbb{Z}/m\mathbb{Z})^* = \{\overline{r}_1; \overline{r}_2; \dots; \overline{r}_{\varphi(m)}\}$ l'ensemble des unités de $\mathbb{Z}/m\mathbb{Z}$.
 - (a) Justifier, à l'aide de l'exercice 6.1, que $\overline{ar_i}$ est une unité de $\mathbb{Z}/m\mathbb{Z}$ quel que soit $1 \leq i \leq \varphi(m)$.
 - (b) Montrer que l'application

$$\frac{(\mathbb{Z}/m\mathbb{Z})^*}{\overline{r_i}} \quad \longrightarrow \quad \frac{(\mathbb{Z}/m\mathbb{Z})^*}{\overline{a}\,\overline{r_i}}$$

est bijective.

- 2) En déduire que $(a r_1) (a r_2) (a r_3) \dots (a r_{\varphi(m)}) \equiv r_1 r_2 r_3 \dots r_{\varphi(m)} \mod m$ et conclure que $a^{\varphi(m)} \equiv 1 \mod m$.
- **6.11** Soit \overline{a} une unité de $\mathbb{Z}/m\mathbb{Z}$. Montrer que son inverse vaut $\overline{a^{\varphi(m)-1}}$.
- 6.12 (Petit) théorème de Fermat

Si p est premier et si a n'est pas divisible par p, alors $a^{p-1} \equiv 1 \mod p$.

Démontrer ce théorème à l'aide du théorème d'Euler.

6.13 Soient a et m deux entiers premiers entre eux. Montrer que si l'ordre de a modulo m est α et si $a^k \equiv 1 \mod m$, alors α divise k.

Indication : la division euclidienne de k par α donne $k=\alpha\,q+r$ avec $0\leqslant r<\alpha$; montrer que r=0.

- **6.14** Trouver l'ordre des éléments non nuls de $\mathbb{Z}/13\mathbb{Z}$.
- **6.15** Trouver l'ordre des éléments non nuls de $\mathbb{Z}/17\mathbb{Z}$.
- **6.16** Trouver l'ordre des unités de $\mathbb{Z}/24\mathbb{Z}$.

- 6.17 Trouver le plus petit résidu non négatif de 2⁴⁷ modulo 23.
- 6.18 Montrer, à l'aide du petit théorème de Fermat, que si 7 ne divise pas n, alors 7 divise $n^{12} 1$.
- Montrer que $n^{13} n$ est divisible par 2, 3, 5, 7 et 13 pour tout entier n.

 Indication: montrer par exemple que $n^{13} \equiv n \mod 5$ en montrant que ou bien 5 divise n, ou bien $n^4 \equiv 1 \mod 5$.
- 6.20 Montrer que $\frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15}$ est un entier pour tout entier n.

 Indication: multiplier l'expression par 15 et montrer que l'entier obtenu est divisible par 5 et par 3 en utilisant le petit théorème de Fermat.

Réponses

6.3

$$1) \ 2^n \equiv \begin{cases} 2 \ \text{si } n \equiv 1 \mod 3 \\ 4 \ \text{si } n \equiv 2 \mod 3 \\ 1 \ \text{si } n \equiv 3 \mod 3 \end{cases}$$

$$2) \ 2^n \equiv \begin{cases} 2 \ \text{si } n \equiv 1 \mod 4 \\ 4 \ \text{si } n \equiv 2 \mod 4 \\ 8 \ \text{si } n \equiv 3 \mod 4 \\ 6 \ \text{si } n \equiv 4 \mod 4 \end{cases}$$

Les puissances de 2^n reprennent de façon cyclique les puissances précédentes.

- 6.6 Élément : $\overline{1}$ $\overline{2}$ $\overline{3}$ $\overline{4}$ Ordre : 1 4 4 2
- 6.7 Élément : $\overline{1}$ $\overline{2}$ $\overline{4}$ $\overline{5}$ $\overline{7}$ $\overline{8}$ Ordre : 1 6 3 6 3 2
- 6.8 m: 11 17 31 9 14 Ordre: 10 8 5 6 non inversible
- 6.9 Élément : $\overline{1}$ $\overline{2}$ $\overline{3}$ $\overline{4}$ $\overline{5}$ $\overline{6}$ $\overline{7}$ $\overline{8}$ $\overline{9}$ $\overline{10}$ Ordre : 1 10 5 5 5 10 10 10 5 2
- Élément: $\overline{2}$ $\overline{4}$ 6.14 $\overline{12}$ Ordre:
- 6.15 Élément : $\overline{4}$ $\overline{10}$ $\overline{16}$ Ordre:
- $\overline{17}$ $\overline{23}$ 6.16 Élément: $\overline{1}$ Ordre:
- **6.17** 8