FIT5186 Intelligent Systems

Week 3 Tutorial Solution

(a) The two classes are linearly separable as lines can be drawn to separate the two classes.

(b) Dichotimiser

Inputs (x_1, x_2)	5	7	3	5	0	-1	-2	-3
	1	3	2	4	0	-3	3	0
	-1	-1	-1	-1	-1	-1	-1	-1
Outputs(desired)	0	0	0	0	1	1	1	1

Final weights = $\begin{pmatrix} -5 & -1 & 0 \end{pmatrix}$ (using dichot.exe)

Equation of boundary lines: - $5x_1$ - x_2 - 0 = 0

Tutorial 3 Solution

(c) 2-category classifier

Inputs (x_1, x_2)	5	7	3	5	0	-1	-2	-3
·	1	3	2	4	0	-3	3	0
	-1	-1	-1	-1	-1	-1	-1	-1
Outputs(desired)	1	1	1	1	0	0	0	0
	0	0	0	0	1	1	1	1

Final weights = $\begin{pmatrix} 5 & 1 & 1 \\ -5 & -1 & 0 \end{pmatrix}$ (using rclass.exe)

Equation of boundary lines: $5x_1 + x_2 - 1 = 0$

 $-5x_1 - x_2 - 0 = 0$

2

(d) Dichotimiser

Method 1

Input = (2, 0), o =
$$f[(-5 - 1 0) \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}] = f(-10) = 0 \Rightarrow \text{Class } 1$$

Input = (0, 1), o = $f[(-5 - 1 0) \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}] = f(-1) = 0 \Rightarrow \text{Class } 1$
Input = (0, 5), o = $f[(-5 - 1 0) \begin{pmatrix} 0 \\ 5 \\ -1 \end{pmatrix}] = f(-5) = 0 \Rightarrow \text{Class } 1$
Input = (0.2, -0.2), o = $f[(-5 - 1 0) \begin{pmatrix} 0.2 \\ -0.2 \\ -1 \end{pmatrix}] = f(-0.8) = 0 \Rightarrow \text{Class } 1$
Input = (-1, 5.5), o = $f[(-5 - 1 0) \begin{pmatrix} -1 \\ 5.5 \\ -1 \end{pmatrix}] = f(-0.5) = 0 \Rightarrow \text{Class } 1$

Method 2

2-Category Classifier

Method 1

Input = (2, 0), o =
$$f\begin{bmatrix} 5 & 1 & 1 \\ -5 & -1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$$
] = $f\begin{bmatrix} 9 \\ -10 \end{bmatrix}$ = $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ \Rightarrow Class 1

Input = (0, 1), o =
$$f\begin{bmatrix} 5 & 1 & 1 \\ -5 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} = f \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \Rightarrow \text{Class 1}$$

Input = (0, 5), o =
$$f\begin{bmatrix} 5 & 1 & 1 \\ -5 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 5 \\ -1 \end{bmatrix} = f \begin{pmatrix} 4 \\ -5 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \Rightarrow \text{Class 1}$$

Input = (0.2, -0.2), o =
$$f\begin{bmatrix} 5 & 1 & 1 \\ -5 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0.2 \\ -0.2 \\ -1 \end{bmatrix} = f \begin{pmatrix} -0.2 \\ -0.8 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow$$
 Indecision region

Input = (-1, 5.5), o =
$$f\begin{bmatrix} 5 & 1 & 1 \\ -5 & -1 & 0 \end{bmatrix} \begin{pmatrix} -1 \\ 5.5 \\ -1 \end{bmatrix} = f\begin{pmatrix} -0.5 \\ -0.5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow$$
 Indecision region

Method 2

Tutorial 3 Solution 4