Machine Learning

Learning Model

Fabio Vandin

October 9th, 2023

A Formal Model (Statistical Learning)

We have a learner (us, or the machine) has access to:

- **1** Domain set \mathcal{X} : set of all possible objects to make predictions about
 - domain point $x \in \mathcal{X} = instance$, usually represented by a vector of *features*
 - χ is the *instance space*
- **2** Label set \mathcal{Y} : set of possible labels.
 - often two labels, e.g $\{-1, +1\}$ or $\{0, 1\}$
- **3 Training data** $S = ((x_1, y_1), \dots, (x_m, y_m))$: finite sequence of labeled domain points, i.e. pairs in $\mathcal{X} \times \mathcal{Y}$
 - this is the learner's input
 - S: training example or training set

- **4 Learner's output** h: prediction rule $h: \mathcal{X} \to \mathcal{Y}$
 - also called predictor, hypothesis, or classifier
 - *A(S)*: prediction rule produced by learning algorithm *A* when training set *S* is given to it
 - sometimes \hat{f} used instead of h
- **5 Data-generation model**: instances are generated by some probability distribution and labeled according to a function
 - D: probability distribution over X (NOT KNOWN TO THE LEARNER!)
 - labeling function $f: \mathcal{X} \to \mathcal{Y}$ (NOT KNOWN TO THE LEARNER!)
 - label y_i of instance x_i : $y_i = f(x_i)$, for all i = 1, ..., m
 - each point in training set S: first sample x_i according to \mathcal{D} , then label it as $y_i = f(x_i)$
- **6** Measures of success: error of a classifier = probability it does not predict the correct label on a random data point generate by distribution \mathcal{D}

Loss

Given domain subset $A \subset \mathcal{X}$, $\mathcal{D}(A) =$ probability of observing a point $x \in A$.

Let A be defined by a function $\pi: \mathcal{X} \to \{0,1\}$:

$$A = \{x \in \mathcal{X} : \pi(x) = 1\}$$

In this case we have $\mathbb{P}_{x \sim \mathcal{D}}[\pi(x)] = \mathcal{D}(A)$

Error of prediction rule $h: \mathcal{X} \to \mathcal{Y}$ is

$$L_{\mathcal{D},f}(h) \stackrel{\text{def}}{=} \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq f(x)] \stackrel{\text{def}}{=} \mathcal{D}(\{x : h(x) \neq f(x)\})$$

Notes:

- $L_{\mathcal{D},f}(h)$ has many different names: **generalization error**, *true* error, risk, **loss**, ...
- often f is obvious, so omitted: $L_{\mathcal{D}}(h)$

Learner outputs $h_{S}: \mathcal{X} \to \mathcal{Y}$.

Lateral training set SGoal of the learner?

Goal: find h_S which minimizes the generalization error $L_{\mathcal{D},f}(h)$

or LD,f(h)

anknown

Goal: find h_S which minimizes the generalization error $L_{\mathcal{D},f}(h)$

 $L_{\mathcal{D},f}(h)$ is unknown!

What about considering the error on the training data, that is, reporting in output h_S that minimizes the error on training data?

Goal: find h_S which minimizes the generalization error $L_{\mathcal{D},f}(h)$

 $L_{\mathcal{D},f}(h)$ is unknown!

What about considering the error on the training data, that is, reporting in output h_S that minimizes the error on training data?

Training error: $L_S(h) \stackrel{\text{def}}{=} \underbrace{\{i:h(x_i) \neq y_i, 1 \leq i \leq m\}}_{m}$ for which h predictions in $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$

Goal: find h_S which minimizes the generalization error $L_{\mathcal{D},f}(h)$

 $L_{\mathcal{D},f}(h)$ is unknown!

What about considering the error on the training data, that is, reporting in output h_S that minimizes the error on training data?

Training error: $L_S(h) \stackrel{\text{def}}{=} \frac{|\{i:h(x_i)\neq y_i, 1\leq i\leq m\}|}{m}$

Note: the *training error* is also called *empirical error* or *empirical risk*

Empirical Risk Minimization

Learner outputs $h_S: \mathcal{X} \to \mathcal{Y}$.

Goal: find h_S which minimizes the generalization error $L_{\mathcal{D},f}(h)$

 $L_{\mathcal{D},f}(h)$ is unknown!

What about considering the error on the training data, that is, reporting in output h_S that minimizes the error on training data?

Training error: $L_S(h) \stackrel{def}{=} \frac{|\{i:h(x_i)\neq y_i, 1\leq i\leq m\}|}{m}$

Note: the *training error* is also called *empirical error* or *empirical risk*

Empirical Risk Minimization (ERM): produce in output h minimizing $L_S(h)$

What can go wrong with ERM?

Consider our simplified movie ratings prediction problem. Assume

data is given by:

What can go wrong with ERM?

Consider our simplified movie ratings prediction problem. Assume data is given by:

$$= P_{r} \int_{\mathbb{R}^{2}} h_{s}(\vec{x}) \neq f(\vec{x})$$

Assume \mathcal{D} and f are such that:

- instance x is taken uniformly at random in the square (D)
- label is 1 if x inside the inner square, 0 otherwise (f)
- area inner square = 1, area larger square = 2

Is it a good predictor?

$$L_S(h_S) = 0$$
 but $L_{D,f}(h_S) = 1/2$

Good results on training data but poor generalization error ⇒ **overfitting**

When does ERM lead to good performances in terms of generalization error?