Planning, Learning and Decision Making: Homework 3. Partially observable Markov decision problems

Mykhaylo Marfeychuk, Roy De Prins 06 November 2018

1 Excercise 1) a

State Space = $\{A, B1, B2, C, D, E, F\}$

Action Space = $\{a, b, c\}$

Observation Space = $\{A, B, C, D, E, F\}$

2 Excercise 1) b

Probability matrix action 'a':

	A	B1	B2	С	D	\mathbf{E}	F
A	0.0	0.5	0.5	0.0	0.0	0.0	0.0
B1	0.0	0.0	0.0	0.0	0.0	1.0	0.0
B2	0.0	0.0	0.0	0.8	0.0	0.0	1.0
С	0.0	1.0	0.0	0.0	0.0	0.0	0.0
D	0.0	0.0	1.0	0.0	0.0	0.0	0.0
E	1.0	0.0	0.0	0.0	0.0	0.0	0.0
F	1.0	0.0	0.0	0.0	0.0	0.0	0.0

Probability matrix action 'b':

	A	B1	B2	С	D	E	F
A	0	0.5	0.5	0	0	0	0
В1	0	0	0	0	0	0	1
B2	0	0	0	0	0	1	0
С	0	1	0	0	0	0	0
D	0	0	1	0	0	0	0
E	1	0	0	0	0	0	0
F	1	0	0	0	0	0	0

Probability matrix action 'c':

	A	В1	B2	С	D	E	F
A	0	0.5	0.5	0	0	0	0
B1	0	0	0	1	0	0	0
B2	0	0	0	0	1	0	0
C	0	1	0	0	0	0	0
D	0	0	1	0	0	0	0
E	1	0	0	0	0	0	0
F	1	0	0	0	0	0	0

Observation Matrix for 'a', 'b' and 'c':

	A	В	С	D	\mathbf{E}	F
A	1	0	0	0	0	0
B1	0	1	0	0	0	0
B2	0	1	0	0	0	0
С	0	0	1	0	0	0
D	0	0	0	1	0	0
Е	0	0	0	0	1	0
F	0	0	0	0	0	1

Cost Function:

	a	b	$^{\mathrm{c}}$
A	1	1	1
B1	1	1	1
B2	1	1	1
С	1	1	1
D	1	1	1
E	1	1	1
F	0	0	0

3 Excercise 1) c

We calculated the Belief at time step t+1 with Python code, which gave the following output:

Belief at t+1 for action 'a': $[0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.5\ 0.5]$ Belief at t+1 for action 'b': $[0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.5\ 0.5]$ Belief at t+1 for action 'c': $[0.\ 0.\ 0.\ 0.\ 0.5\ 0.5\ 0.\ 0.$

```
import numpy as np
        pA = np.array([[0,0.5,0.5,0,0,0,0],
        pB = np.array([[0,0.5,0.5,0,0,0,0],
10
14
        pC = np.array([[0,0.5,0.5,0,0,0,0],
20
23
24
26
        observation_matrix = np.array([ [1,0,0,0,0,0],
27
                                           [0,1,0,0,0,0],
28
29
34
        belief = np.array([0.0,0.5,0.5,0.0,0.0,0.0,0.0])
35
        obsA = np.identity(7)
obsB = obsA
obsC = obsA
37
38
        def belief_update(belief, probability_action, observation):
40
            sum = 0
41
            t1 = np.dot(belief, probability_action)
42
            t2 = observation
43
44
            numerator= np.dot(t1, t2)
45
             for x in np.nditer(numerator):
46
                 sum += x
             return numerator/sum
48
49
        print("Belief at t+1 for action 'a':",belief_update(belief, pA, obsA))
50
        print("Belief at t+1 for action 'b':",belief_update(belief, pB, obsB))
51
        print("Belief at t+1 for action 'c':",belief_update(belief, pC, obsC))
```

Figure 1: The Python program for calculating the updated belief.