The Hardness of "Lemmings"

Another NP-complete Game

Philip Geißler

May 14, 2018

Lemmings - an Overview

Figure 1: the game cover¹

- published by Psygnosis
- developed by DMA Design
- single player
- puzzle genre
- real time strategy

[•] released in 1991

¹https://goo.gl/1fnsdu [2]

Lemmings - the Basics

Figure 2: an exemplary level²

² https://classicreload.com/lemmings.html

Table of Contents

An Introduction to "Lemmings"

Formalization

3SAT tangent

Complexity Proofs

NP

NP - Hard

NP - Complete

Sources

Formalization

Formalization

- time and space is discrete in "Lemmings"
- all other parameters are also discrete
- ightarrow level and solution can be formalized

```
level: L = (\text{limit}^3, \text{save}, \text{lems}, \text{start}, \text{wdt}, \text{hgt}, \text{grid}, \text{exit}, \text{skills})
level size: |L| \approx |grid| = constant \cdot wdt \cdot hgt
solution: S = \{m_1, m_2, m_3, \cdots\}
move: m_j = (\text{time}, x, y, \#\text{lemming}, \#\text{skill})
```

 $^{^{3}}$ Assumption: bounded by polynomial time in the size of the level

The Decision Problem

- $\forall (L \in LEMMINGS) \exists S_x \text{ with } Dc(L, S_x) = Yes$
- → LEMMINGS comprises all solvable levels
- \hookrightarrow 1-LEMMINGS comprises all solvable levels with 1 Lemming
 - only LEMMINGS & 1-LEMMINGS will be investigated further

$$\text{3SAT: } F = (\overline{x_1} \vee x_2 \vee x_4) \wedge (\overline{x_3} \vee x_3 \vee \overline{x_4}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge \cdots \\ \text{exact 3SAT: } F = (\overline{x_1} \vee x_2 \vee x_4) \wedge (\overline{x_4} \vee \overline{x_2} \vee x_3) \wedge \cdots$$

3SAT is NP-hard⁴

$$(x_i) \to (x_i \vee x_i \vee x_i) \quad () \to (x_i \vee x_i \vee x_i) \wedge (\overline{x_i} \vee \overline{x_i} \vee \overline{x_i})$$
$$(x_i \vee x_j) \to (x_i \vee x_j \vee x_i)$$

⁴ https://dl.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=805047 [3]

Complexity Proofs

LEMMINGS ∈ *NP*

"[An input that returns 'yes' must] be verifiable by deterministic computations that can be performed in polynomial time⁵"

- → LEMMINGS be verified in polynomial time iff:
 - timesteps are evaluatable in time polynomial in the input size
 - moves are verifiable in time polynomial in the input size
 - timesteps are polynomial in the input size⁶
 - moves are polynomial in the input size

⁵ https://goo.gl/5BZjRf about problems in NP

⁶ see assumptions

LEMMINGS $\in NP$

Figure 3: *S* is verifiable for *L* in $\mathcal{O}\left(|L|^{c'}\right)$

goal: reduce LEMMINGS to 3SAT

- \rightarrow for each exact 3SAT problem, one can construct an equivalent problem in LEMMINGS
 - clause conjunction \rightarrow level L_x
 - ullet literals & clauses o gadgets
 - ullet assignment of values to literals o strategy S_{x} (1st part)
 - evaluation of the attempt for specific literals in each clause \rightarrow strategy \mathcal{S}_{\times} (2nd part)
 - for every satisfiable 3SAT, a strategy S_x solving L_x exists
 - for every solution of L_x , solution of 1 specific clause is found
- \hookrightarrow if reduction is possible: $L_x \in LEMMINGS$

LEMMINGS \in *NP-Hard*

reduction example

level:
$$(\overline{x_1} \lor x_2 \lor x_4) \land (\overline{x_4} \lor \overline{x_2} \lor x_3) \land (\overline{x_3} \lor x_3 \lor \overline{x_4})$$

strategy pt.1: $x_1 = false$ $x_2 = true$
 $x_3 = false$ $x_4 = false$
strategy pt.2: $(\overline{\underline{x_1}} \lor x_2 \lor x_4) \land (\overline{\underline{x_4}} \lor \overline{x_2} \lor x_3) \land (\overline{x_3} \lor \underline{x_3} \lor \overline{x_4})$
 $\Rightarrow \overline{x_1} \land \overline{x_4} \land x_3$
 $= true \land true \land false$
 $= \underline{false}$

LEMMINGS ∈ *NP-Hard*

Figure 4: the clause gadget [1]

- the lemming can escape through digging a hole
- each hole represents a check for the truthness of the corresponding literal in the clause
- \hookrightarrow if the literal is true, the entire clause evaluates to true

LEMMINGS \in *NP-Hard*

Figure 5: the variable gadget [1]

- the lemming can escape through bashing and building a bridge
- one side corresponds to $x_j = true$, the other to $x_j = false$
- the clause lemming falls through the chosen hole and dies if he chose wrong
- \hookrightarrow if all clause lemmings can choose right, the variables satisfy the clause

LEMMINGS ∈ *NP-Hard*

algorithm example

one combination of options leads to "true" if the problem is satisfiable

 $(\overline{v_1} \vee v_2 \vee \overline{v_3}) \wedge (\overline{v_2} \vee v_3 \vee v_4) \wedge (v_1 \vee \overline{v_2} \vee \overline{v_4}) \wedge (\overline{v_1} \vee \overline{v_3} \vee \overline{v_4}) \quad [1]$

LEMMINGS \in *NP-Complete*

Figure 6: NP-Complete as intersection of NP and NP-Hard

- LEMMINGS $\in NP \land LEMMINGS \in NP$ -Hard
- $\rightarrow \mathsf{LEMMINGS} \in \mathit{NP-Complete}$

Sources

Quellen

Cormode, Graham, The Hardness of the Lemmings Game, or Oh no, more NP-Completeness Proofs, 01.2004

Agent Palmer, Lemmings marched blindly into a Wonderful

- Gaming Legacy, 12.2014

 http://agentpalmer.com/10250/media/
 lemmings-marched-blindly-into-a-wonderful-gaming-legacy.
- Cook, Stephen A., The complexity of theorem-proving procedures, 05.1971

 https://dl.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=805047

The Hardness of "Lemmings"

Another NP-complete Game

Philip Geißler

May 14, 2018

The Hardness of "Lemmings"

Another NP-complete Game

Philip Geißler

May 14, 2018

$\textbf{1-LEMMINGS} \in \textit{NP-Complete}$

- also in NP-Complete
- much harder construction:

