Serial No.: 10/085,474

: February 26, 2002 Filed

Page : 2 of 10

AMENDMENTS TO THE CLAIMS:

This listing of claims replaces all prior versions and listings of claims in the

application:

LISTING OF CLAIMS:

1. (Currently Amended) A device, comprising:

a waveguide core having a bottom surface and a top surface that defines a beveled mirror,

the beveled mirror confining, within the waveguide core, reflections of a mode transmitted along

the waveguide core an angle;

a cladding layer adjacent to the bottom surface, the cladding layer having a thickness

equal to or greater than an evanescent tail of a the mode to be transmitted along the waveguide

core;

a detector layer; and

an attenuating layer coupled to the bottom surface of the waveguide core and positioned

on top of the detector layer;

wherein the beveled mirror directs the mode is transmitted along from within the

waveguide core to the attenuating layer, the mode traveling through the attenuating layer and

into the detector layer.

2. (Currently Amended) The device of claim 1, wherein the beveled mirror is at an angle

relative to the waveguide core that is at least equal to an angle of total internal reflection of the

waveguide core.

Serial No.: 10/085,474

Filed : February 26, 2002

Page : 3 of 10

3. (Canceled)

4. (Previously Presented) The device of claim 1, wherein the detector layer comprises a

base of a phototransistor.

5. (Canceled)

6. (Currently Amended) The device of claim 1 5, wherein the waveguide core is

disposed over a substrate and the beveled mirror directs the mode, propagated through the

waveguide core, through the detector layer into the substrate.

7. (Previously Presented) The device of claim 1, wherein the detector layer comprises an

intrinsic layer region of a photodiode having an n-type region and a p-type region.

8. (Currently Amended)

9. (Currently Amended) The device of claim 7 8, wherein the waveguide core is

disposed over a substrate and the beveled mirror directs the mode, propagated through the

waveguide core, through the detector layer into the substrate.

Serial No.: 10/085,474

: February 26, 2002

: 4 of 10 Page

10 to 30. (Canceled)

31. (Currently Amended) A device, comprising:

a waveguide core having a bottom surface;

a cladding layer adjacent to the bottom surface, the cladding layer having a thickness equal to or greater than an evanescent tail of a mode to be transmitted along the waveguide core;

a detector layer; and

an attenuating layer coupled to the bottom surface of the waveguide core and positioned on top of the detector layer; and

a beveled mirror disposed on the waveguide core, the beveled mirror confining reflections of the mode within the waveguide core, the beveled mirror directing the mode from within the waveguide core to the attenuating layer.

- 32. (Previously Presented) The device of claim 31, wherein the waveguide core has a top surface that defines an angle, the angle being at least equal to an angle of total internal reflection of the waveguide core.
- 33. (Currently Amended) The device of claim 31, wherein the waveguide core defines a beveled mirror is disposed at the angle.

Applicants: Paul Davids et al. Attorney's Docket No.: 10559-682001 Intel Docket No.: P13240 Serial No.: 10/085,474

: February 26, 2002

Filed

Page : 5 of 10

34. (Previously Presented) The device of claim 31, wherein the detector layer comprises a base of a phototransistor.

35. (Canceled)

- 36. (Currently Amended) The device of claim 31 35, wherein the waveguide core is disposed over a substrate and the beveled mirror directs the mode propagated through the waveguide core and through the detector layer into the substrate.
- 37. (Previously Presented) The device of claim 31, wherein the detector layer comprises an intrinsic layer region of a photodiode having an n-type region-and a p-type region.
 - 38. (Canceled)
- 39. (Currently Amended) The device of claim 37 38, wherein the waveguide core is disposed over a substrate and the beveled mirror directs the mode propagated through the waveguide core and through the detector layer into the substrate.
 - 40. (Currently Amended) A device, comprising:
 - a waveguide core having a bottom surface, the waveguide core for transmitting a mode; a cladding layer adjacent to the bottom surface;

Applicants: Paul Davids et al.

Serial No.: 10/085,474

Attorney's Docket No.: 10559-682001

Intel Docket No.: P13240

Filed : February 26, 2002

Page : 6 of 10

a detector layer; and

an attenuating layer coupled to the bottom surface of the waveguide core and positioned on top of the detector layer; and

a beveled mirror disposed on the waveguide core, the beveled mirror confining reflections of the mode within the waveguide core, the beveled mirror directing the mode from within the waveguide core to the attenuating layer, the mode traveling wherein the mode is transmitted along the waveguide core through the attenuating layer into the detector layer.

- 41. (Previously Presented) The device of claim 40, wherein the waveguide core has a top surface that defines an angle, the angle being at least equal to an angle of total internal reflection of the waveguide core.
- 42. (Currently Amended) The device of claim 40, wherein the waveguide core defines a beveled mirror is disposed at the angle.
- 43. (Previously Presented) The device of claim 40, wherein the detector layer comprises a base of a phototransistor.
 - 44. (Canceled)

Serial No.: 10/085,474

: February 26, 2002 Filed

: 7 of 10 Page

45. (Currently Amended) The device of claim 40 [[44]], wherein the waveguide core is disposed over a substrate and the beveled mirror directs a mode propagated through the waveguide core through the detector layer into the substrate.

46. (Previously Presented) The device of claim 40, wherein the detector layer comprises an intrinsic layer region of a photodiode having an n-type region-and a p-type region.

47. (Canceled)

- 48. (Currently Amended) The device of claim 46 47, wherein the waveguide core is disposed over a substrate and the beveled mirror directs a mode, propagated through the waveguide core, through the detector layer into the substrate.
- 49. (Previously Presented) The device of claim 40, wherein the cladding layer has a thickness equal to or greater than an evanescent tail of a mode to be transmitted along the waveguide core.
- 50. (Previously Presented) The device of claim 49, wherein the mode is transmitted along the waveguide core through the attenuating layer into the detector layer.