Arbres: propriétés fondamentales

universite

Généralités

Une des structures les plus importantes car une des plus utilisées.

- Modélisation
- Organisation des données : fichiers, processus
- Structures de données : arbres binaire de recherche, tas, arbres AVL
- utilisé dans beaucoup d'algorithmes sur les graphes notamment
- Arbre d'expression

 $(2 \times (a+b))/(a-3 \times b) + 2 \times a$

Terminologie

- **graphe :** ensemble de nœuds reliés entre eux par des arcs (orientés) ou des arêtes (non orienté).
- arbre: graphe connexe sans cycles
 - propriété : chemin unique entre deux nœuds.
- arbre enraciné : arbre avec un nœud particulier appelé racine.
 - propriété : chemin unique de tout nœud vers la racine.
- Parent d'un nœud : nœud qui le suit dans le chemin vers la racine.
 - racine : pas de nœud parent
 - autres nœuds : un unique parent
- Enfants d'un nœud : ensemble des nœuds qui l'admettent pour parent.
 - un nœud sans enfant est appelé feuille
 - sinon nœud intérieur
 - tout nœud est soit feuille soit nœud intérieur
- Arbre binaire : arbre enraciné où chaque nœud a au plus 2 enfants.

Sous-arbre

- ancêtres d'un nœud : ensemble des nœuds sur le chemin entre ce nœud et la racine
 - la racine est un ancêtre de tous les nœuds, racine comprise
- un nœud x est un descendant d'un nœud a si et seulement si a est un ancêtre de x
 - tout nœud est descendant de la racine
- un nœud *x* avec tous ses descendants (et les arêtes induites) est appelé **sous-arbre** (issu de x)
 - le sous-arbre issu de x est un arbre dont la racine est x

Mesures sur les arbres

- taille d'un arbre : nombre de nœuds
- longueur d'un chemin : nombre de nœuds qui le constituent
- **profondeur d'un nœud** : longueur du chemin qui le relie à la racine
- hauteur d'un arbre : profondeur maximale d'un nœud
 - la hauteur d'un arbre à un seul nœud est 1
 - la hauteur d'un arbre vide est 0
- nombre de feuilles, etc...

Arbres binaires

Arbre enraciné dont tous les nœuds ont au plus 2 enfants qui sont orientés : on distingue un enfant gauche et un enfant droit.

sous-arbre gauche (resp. droit) d'un nœud x: sous-arbre issu de l'enfant gauche (resp. droit) de x

Arbre binaires particuliers

- **arbre filiforme** : chaque nœud interne a exactement un fils (cf liste). Supposons qu'il soit de taille *n* :
 - nombre de feuilles : 1
 - hauteur: n
- **arbre binaire complet** de hauteur *h* : tous les nœuds de profondeur strictement inférieure à *h* ont exactement deux fils.
 - nombre de nœuds de profondeur $d: 2^{d-1}$
 - taille de l'arbre : $2^0 + 2^{\bar{1}} + \dots + 2^{h-1} = 2^h 1$

Propriétés des arbres binaires

théorème

Tout arbre binaire de taille n et de hauteur h vérifie :

$$\lceil \log(n+1) \rceil \le h \le n$$

Vient de l'inégalité suivante :

$$h \le n \le 2^h - 1$$

- borne inférieure : arbre filiforme.
- borne supérieure : arbre complet.

Corollaire : borne inférieure pour les tris par comparaisons.

Arbre binaire en tant que type abstrait

- arbre_vide(a: Arbre): booleen:teste si l'arbre est vide
- racine(a: Arbre): entier:retourne la valeur à la racine de l'arbre
- gauche(a: Arbre): Arbre: retourne le sous-arbre gauche
- droite(a: Arbre): Arbre: retourne le sous-arbre droit

Précondition pour les trois dernières primitives : l'arbre ne doit pas être vide

Implémentations possibles des arbres binaires

- par l'utilisation d'un tableau (cf tas)
- par chaînage

Par chaînage

```
struct Noeud{
   val: entier
   g: référence sur Noeud
   d: référence sur Noeud
}
```

Le type Arbre est une référence sur Noeud (comme listes chaînées). Arbre vide vaut Ni l.

Parcours d'arbre

On veut parcourir l'ensemble des nœuds d'un arbre pour les traiter (par exemple les afficher).

- pas d'ordre naturel comme pour les listes
- par convention, on choisit toujours le côté gauche avant le droit
- plusieurs types de parcours (vrai aussi pour les graphes)
 - en profondeur
 - en largeur

Parcours en profondeur

- on descend à gauche tant que c'est possible et sinon à droite
- on voit 3 fois chaque nœud interne, donc on peut choisir à quel moment on le traite
 - première fois : parcours **préfixe**
 - deuxième fois : parcours infixe
 - troisième fois : parcours postfixe

Parcours en profondeur

```
Algorithme: parcours_profondeur(a: Arbre)
  Entrées: a: Arbre
  Résultat: Traitement de tous les noeuds de l'arbre
1 si arbre\ vide(a) = Faux
     traiter en préfixe la racine de a;
     parcoursProfondeur(gauche(a));
     traiter en infixe la racine de a;
     parcoursProfondeur(droite(a));
     traiter en postfixe la racine de a;
```

Complexité : *n* traitements où *n* est la taille de l'arbre.

Algorithme itératif?

3

5

6

Parcours en largeur

On traite les nœuds par ordre de profondeur :

- racine
- ensemble des enfant de la racine
- ensemble des enfants des enfants de la racine
- etc... on parcourt par profondeur croissante et de gauche à droite

Parcours en largeur

8

```
Algorithme: parcours largeur(a: Arbre)
  Entrées: a: Arbre
  Sorties: Traitement de tous les noeuds de l'arbre
  Variables locales : a_traiter : File d'arbres, a_tmp : Arbre
1 a traiter \leftarrow creer file();
2 insere file(a traiter, a);
  tant que file\_vide(a\_traiter) = Faux
      a \ tmp \leftarrow extrait \ file(a \ traiter);
      \mathbf{si} \ arbre\_vide(a\_tmp) = Faux
         traiter racine(a tmp);
          insere file(gauche(a tmp), a traiter);
          insere file(droite(a_tmp), a_traiter);
```

Complexité : O(n) traitements où n est la taille de l'arbre.

Quel parcours obtient-on si on remplace la file par une pile?