Изпит по ДИС-1(Теория), част 1 специалност "Информатика" 1-ви курс 09.02.2015 година

Име:	фа	ıĸ.	номер	:
	Tage 1			

1. (3 точки) Довършете дефиницията:

Редицата $\{a_n\}_{n=1}^\infty$ клони към $+\infty$, ако за всяко...

- 2. (7 точки) Формулирайте и докажете теоремата за граница на разлика на две сходящи редици.
- 3. $(3+3\ moч\kappa u)$ Довършете дефиницията (по два начина): Казваме, че функцията $f(x):\mathbb{R}\to\mathbb{R}$ клони към $-\infty$ когато x клони към -4 отляво, ако: (Коши)

(Хайне)

- **4.** (6 точки) Нека $a_n > 0$ за всяко $n \in \mathbb{N}$. Докажете, че ако редицата $\{a_n\}_1^\infty$ е сходяща, то за границата и́ a е изпълнено $a \geq 0$;
 - **5.** (3 точки) Довършете дефиницията: Функцията f(x) се нарича диференцируема в точката a , ако е дефинирана в

И

- 6. (3 точки) Формулирайте теоремата на Коши за крайните нараствания:
- 7. (7 точки) Нека $f:\mathbb{R}\to\mathbb{R}$ е навсякъде диференцируема. Докажете, че ако $f'(x)\leq 0$ за всяко $x\in\mathbb{R}$, то f е намаляваща в \mathbb{R} .
 - **8.** *(3 точки)* Нека $g(x) = \sqrt[3]{x}$. Определете точките, в които g(x) е диференцируема. *отговор:*
 - **9.** продължение (3 точки) Определете точките, в които G(x) = x.g(x) е диференцируема. *отговор:*
 - 10. (3+6 точки) Формулирайте и докажете теоремата Лагранж за крайните нараствания.

Отговорите на $1,\,3,\,5,\,6,\,8$ и 9 се попълват на този лист, за $2,\,4,\,7,$ и 10 се използват само допълнителни листа.

Изпит по ДИС-1(Теория), част 1 специалност "Информатика" 1-ви курс 09.02.2015 година

Име:	фак. но	омер:
	1	

11. (3 точки) Довършете дефиницията:

Редицата $\{a_n\}_{n=1}^{\infty}$ клони към +3, ако за всяко...

- 12. (7 точки) Формулирайте и докажете теоремата за граница на сума на две сходящи редици.
- **13.** (3+3 точки) Довършете дефиницията (по два начина):

Казваме, че функцията $f(x): \mathbb{R} \to \mathbb{R}$ клони към -4 отдолу, когато x клони към $-\infty$, ако: (Коши)

(Хайне)

- **14.** (6 точки) Нека $a_n < 0$ за всяко $n \in \mathbb{N}$. Докажете, че ако редицата $\{a_n\}_1^\infty$ е сходяща, то за границата й a е изпълнено $a \leq 0$;
 - 15. (3 точки) Довършете дефиницията:

Функцията f(x) се нарича диференцируема в точката a, ако е дефинирана в

и

- 16. (3 точки) Формулирайте теоремата на Ферма.
- 17. (7 точки) Нека $f: \mathbb{R} \to \mathbb{R}$ е навсякъде диференцируема. Докажете, че ако f е намаляваща в \mathbb{R} , тогава $f'(x) \le 0$ за всяко $x \in \mathbb{R}$.
 - **18.** (3 точки) Нека $g(x) = \sqrt{|x-1|}$. Определете точките, в които g(x) е диференцируема.

отговор:

- **19.** продължение (3 точки) Определете точките, в които G(x) = (x-1)g(x) е диференцируема. отговор:
- **20.** $(3+6 \ mou \kappa u)$ Формулирайте и докажете теоремата Рол.

Отговорите на 1, 3, 5, 6, 8 и 9 се попълват на този лист, за 2, 4, 7, и 10 се използват само допълнителни листа.