ATM Networks

- Introduction
- **ATM Cells**
- Virtual-circuit switching

Cell Switching (ATM)

- Connection-oriented packet-switched network
- Used in both WAN and LAN settings
- Signaling (connection setup) Protocol: Q.2931
 - Specified by ATM forum
- Packets are called *cells*
- 5-byte header + 48-byte payload
- Commonly transmitted over SONET
- other physical layers possible

ATM Multiplexing

Variable vs Fixed-Length Packets

- No Optimal Length
- if small: high header-to-data overhead
- if large: low utilization for small messages
- Fixed-Length Easier to Switch in Hardware
- simpler
- enables parallelism

Big vs Small Packets

Small Improves Queue behavior

- finer-grained pre-emption point for scheduling link
- maximum packet = 4KB
- link speed = 100Mbps
- transmission time = 4096 x 8/100 = 327.68 us
- high priority packet may sit in the queue 327.68us
- in contrast, $53 \times 8/100 = 4.24$ us for ATM
- near cut-through behavior
- two 4KB packets arrive at same time
- link idle for 327.68us while both arrive
- at end of 327.68us, still have 8KB to transmit
- in contrast, can transmit first cell after 4.24us
- at end of 327.68us, just over 4KB left in queue

The ATM Cell

Big vs Small (cont)

- Small Improves Latency (for voice)
- voice digitally encoded at 64KBps (8-bit samples at 8KHz)
- need full cell's worth of samples before sending cell
- example: 1000-byte cells implies 125ms per cell (too long)
- smaller latency implies no need for echo cancellors
- ATM Compromise: 48 bytes = (32+64)/2

Cell Format

User-Network Interface (UNI)

	5		
384 (48 bytes)	Payload		
8	ype CLP HEC (CRC-8)		ng defined)
-	CLP		ll bei
8	Type		ol (sti
16	IDA	tch format	GFC: Generic Flow Control (still being
8	VPI	host-to-switch fo	FC: Gene
4	GFC	– hc	Ü

- VCI: Virtual Circuit Identifier VPI: Virtual Path Identifier
- Type: management, congestion control, AAL5 (later)
 - CLPL Cell Loss Priority
- HEC: Header Error Check (CRC-8)
- Network-Network Interface (NNI)
 - switch-to-switch format
- GFC becomes part of VPI field

ATM Switching

6

10

ATM Virtual Connections

Virtual Paths in an ATM Network

Virtual circuit Switching

VC Setup Delays

13

VC Routing Table

Next identifier	44	23	16	34
Output port	13	15	13	7
Identifier	12	15	7.2	58
Entry for packets with identifier 15				

VC Signaling

4

Broadband ISDN reference model

User Plane Layers

17

ATM QOS Parameters

- Non-negotiable parameters: characteristics of networks
- Cell error ratio
- Cell misinsertion ratio: undetected header errors.
- Severely-errored cell block ratio: Bursty errors
- Negotiable parameters: User can ask during setup
- Cell loss ratio
- Cell transfer delay
- Cell delay variation

ATM Service Categories

- Constant bit rate (CBR): Rigorous timing requirements, voice, circuit emulation.
- Real-time Variable Bit Rate: VBR traffic such as video.
- Non-real-time VBR: Bursty data sources, no rigorous timing requirments
- Available bit rate (ABR): Sources that can adapt to available bandwidth in the network. Low cell loss ratio.
- Unspecified bit rate (UBR): No QOS guarantees.

AAL Sublayers

21

AAL1 Process

For Constant rate transfers, e.g., 64kbps PCM voice call

Segmentation and Reassembly

- ATM Adaptation Layer (AAL)
- AAL 1 and 2 designed for applications that need guaranteed rate (e.g., voice, video)
 - AAL 3/4 designed for packet data
- AAL 5 is an alternative standard for packet data

22

AAL1 PDUs

(a) SAR PDU header

CSI	Seq. Count	SNP
1 bit	3 bits	4 bits

(b) CS PDU with pointer in structured data transfer

Application scenario for AAL2

Originally, for variable bit rate (VBR) applications with end-to-end delay requirements, e.g., compressed video.

Now, BW-efficient transfer of low-bit-rate short-packet traffic with low-delay requirements. Allows multiplexing of multiple users on a single ATM connection, e.g., cell phone traffic, compressed audfo.

Pad message to multiple of 4 bytes. Add header and trailer. Each SAR-PDU consists of 2-byte header, 2-byte trailer, and 44-byte User message Assume null payload. AAL 3/4 Process 2 44 2 PAD Information Information 4 Η Service specific Higher layer convergence sublayer Common part SAR sublayer convergence ATM layer sublayer

AAL3 for connection-oriented bursty data with low loss, no delay requirements. AAL4 for connection-less data transfers.

This example assumes Add 3-byte header to Segment into SAR PDUs each user packet 26 24 byte packets Assume null **AAL2 Process** 4 P_3 48 7 \mathbf{P}_2 P_1 4 24 48 2 Н Service specific Higher layer SAR sublayer convergence Common part convergence ATM layer sublayer sublayer

Cell Format

10	CRC-10
9	Length
352 (44 bytes)	Payload //
10	MID
4	SEQ
7	Туре
40	ATM header

- Type

• BOM: beginning of message

• COM: continuation of message

EOM end of message

SEQ: sequence of number

MID: message id

- Length: number of bytes of PDU in this cell

AAL 3/4

• Convergence Sublayer Protocol Data Unit (CS-PDU)

16	Len	
8	Etag	:
8	0	
0-24	Pad	•
< 64 KB	User data 🦙	
16	BASize	
8	Btag	
8	CPI	(
		'

CPI: commerce part indicator (version field)

- Btag/Etag:beginning and ending tag

- BAsize: hint on amount of buffer space to allocate

Length: size of whole PDU

30

4 A I 5

CS-PDU Format

32	CRC-32
16	Len
16	Reserved
0- 47 bytes	Pad
< 64 KB	Data 7

pad so trailer always falls at end of ATM cell

- Length: size of PDU (data only)

- CRC-32 (detects missing or misordered cells)

Cell Format

- end-of-PDU bit in Type field of ATM header

A more efficient alternative to AAL3/4

message and stream modes

assured and nonassured delivery

Higher layer Information

Service specific convergence sublayer

Common part convergence sublayer

Assume null

SAR sublayer

ATM layer

AAL 5 PDU

| Information | Pad | UU | CPI | Length | CRC | | Constant | CRC | CRC | Constant | CRC |

33