CORRECTED ROC ANALYSIS FOR MISCLASSIFIED BINARY OUTCOMES¹

CHEN CHEN, RACHEL GIBLON DECEMBER 6, 2022

Introduction & Motivation

Methods

Results

Conclusions

INTRODUCTION & MOTIVATION

- Misclassification outcome is a common systematic error in EHR
 - o Incorrect diagnosis, screening test, etc
- Ignoring misclassification in outcome:
 - Regression estimators will be biased
 - Loss of efficiency
 - violates the assumption for ROC analysis:binary outcomes are classified correctly

	Diseased	Not Diseased	
Exposed			
Not Exposed			

Aim:Correct ROC analysis to account for misclassification bias and increase accuracy and obtained bias-corrected AUC

LITERATURE REVIEW

Authors and Year	Correction method	Advantage	Disadvantage
Neuhaus (1999)	Modified likelihood function to account misclassification rate	Consistent estimators to reduce bias	Less efficient, assume misclassification rate is known
Magder and Hughes (1997)	EM algorithms	Applicable to case-control study and other forms of binary regression; accommodate differential misclassification;	Identifiability issue when specificity and sensitivity are unknown
Mcinturff et al (2004)	Bayesian method: Beta priors to sensitivity and specificity. Different magnitude compared to Magder and Hughes.	Include prior information for covariates	Computation heavy

METHODS- modified likelihood

Misclassification rate: false positive and false negative

$$\gamma_0(\mathbf{X}) = P(Y = 1 | T = 0, \mathbf{X}) \text{ and } \gamma_1(\mathbf{X}) = P(Y = 0 | T = 1, \mathbf{X}).$$

T represent true unobserved outcome and Y represent observed misclassified outcome

Standard logistics regression model

$$logit[P(T=1|\mathbf{X},\beta)] = log\left(\frac{P(T=1|\mathbf{X})}{1-P(T=1|\mathbf{X})}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p = \mathbf{X}'\beta.$$

Misclassification-adjusted likelihood

$$P(\mathbf{Y} = 1 | \mathbf{X}, \boldsymbol{\beta}) = \sum_{t=0}^{\infty} P(Y = 1 | \mathbf{X}, T) \times P(T | \mathbf{X})$$

$$= \{1 - \gamma_1(\mathbf{X}) - \gamma_0(\mathbf{X})\} \times P(T = 1 | \mathbf{X}) + \gamma_0(\mathbf{X})$$

$$= \{1 - \gamma_1(\mathbf{X}) - \gamma_0(\mathbf{X})\} \times \frac{exp(\mathbf{X}'\boldsymbol{\beta})}{1 + exp(\mathbf{X}'\boldsymbol{\beta})} + \gamma_0(\mathbf{X})$$

METHODS- misclassification-adjusted predictive probability

Predictive probability using misclassification-adjusted estimator

$$\hat{P}(T = 1 | Y, X, \hat{\beta}^{M}) = \frac{P(Y | T = 1, X) \times \hat{P}(T = 1 | X, \hat{\beta}^{M})}{\hat{P}(Y | X, \hat{\beta}^{M})} = \frac{P(Y | T = 1, X) \times \hat{P}(T = 1 | X, \hat{\beta}^{M})}{\hat{P}(Y | X, \hat{\beta}^{M})} = \frac{\left[1 - \gamma_{1}(X) - \gamma_{0}(X)\right] \times \hat{P}^{M}(X) + \gamma_{0}(X)}{\hat{P}(X)} \qquad Y = 1$$

$$P(Y = 1 | X, \beta) = \sum_{i=0}^{n} P(Y = 1 | X, T) \times P(T | X) \\
= \{1 - \gamma_{1}(X) - \gamma_{0}(X)\} \times P(T = 1 | X) + \gamma_{0}(X) \\
= \{1 - \gamma_{1}(X) - \gamma_{0}(X)\} \times \frac{\exp(X'\beta)}{1 + \exp(X'\beta)} + \gamma_{0}(X)\} = \frac{\left[\gamma_{1}(X) - Y \times (2\gamma_{1}(X) - 1)\right] \times \hat{P}^{M}(X)}{\{1 - Y_{1}(X) - \gamma_{0}(X)\} \times \hat{P}^{M}(X) + \gamma_{0}(X)\}}$$

METHODS- misclassification adjusted ROC

Standard ROC

$$ROC(\alpha, \mathbf{B}, \mathbf{q}) = (FP(\alpha, \mathbf{B}, \mathbf{q}), TP(\alpha, \mathbf{B}, \mathbf{q}))$$

$$AUC(\mathbf{B}, \mathbf{q}) = \int_{a} ROC(t, \mathbf{B}, \mathbf{q}) dt$$

$$TP(\alpha, \mathbf{B}, \mathbf{q}) = \frac{\sum_{i=1}^{N} I(B_i = 1) \times I(q_i > \alpha)}{\sum_{i=1}^{N} I(B_i = 1)}$$

$$FP(\alpha, \mathbf{B}, \mathbf{q}) = \frac{\sum_{i=1}^{N} I(B_i = 0) \times I(q_i > \alpha)}{\sum_{i=1}^{N} I(B_i = 0)}$$

B is a sets of general outcome and q is risk prediction score

Misclassification adjusted ROC

$$ROC_M(\alpha) = (FP_M(\alpha), TP_M(\alpha))$$

$$AUC_{M} = \int_{\alpha} ROC_{M}(t)dt,$$

$$TP_{M}(\alpha) = \frac{\sum_{i=1}^{N} \hat{P}(T_{i} = 1 | Y_{i}, X_{i}, \hat{\beta}^{M}) \times I(\hat{P}^{M}(X_{i}) > \alpha)}{\sum_{i=1}^{N} \hat{P}(T_{i} = 1 | Y_{i}, X_{i}, \hat{\beta}^{M})}$$

$$FP_{M}(\alpha) = \frac{\sum_{i=1}^{N} \hat{P}(T_{i} = 0 | Y_{i}, X_{i}, \hat{\beta}^{M}) \times I(\hat{P}^{M}(X_{i}) > \alpha)}{\sum_{i=1}^{N} \hat{P}(T_{i} = 0 | Y_{i}, X_{i}, \hat{\beta}^{M})}$$

RESULTS: SIMULATIONS

- ROC adjustment removed almost all bias in the AUC
- Larger variance in bootstrap-based confidence intervals

RESULTS: SIMULATIONS

- ROC adjustment removed almost all bias in the AUC
- Larger variance in bootstrap-based confidence intervals
- Bias remained close to zero over a range of FP and FN misclassification rates
- SE on adjusted AUC estimates was sensitive to increases in misclassification

RESULTS: REAL DATA

ROC Curves

CONCLUSIONS

- Misclassified (binary) outcomes biased AUC estimates
- Existing methods focus on parameter estimates of the regression model
- Corrected ROC analysis addresses this problem
- Computationally straightforward (sample R & STATA code provided)

- Assumptions of this method:
 - Misclassification rates are known or can be inferred.
 - Sample size is large enough for maximum likelihood estimates

