Módulo 1 – Compiladores

1.1 Questões Teóricas

1.1.1.

1.2 Questões Práticas

1.2.1. As tabelas, assim como o código com as macros resolvidas, são apresentadas abaixo. O código máquina foi deduzido para fins de debug no simulador.

Código sem	macro		Tabela	de S	ímbo	los+I	Lista		Cód	igo	Máquina	1
SECTION			FRONT:	10	29					O	1	2
OO. COPY	ZERO, O	LDER	FINAL:	30	19				09	33	35	3
03. COPY	ONE, OL		ZERO:	33	01				09	34	36	4
06. INPUT	LIMIT		ONE:	34	04				12	37		5
08. OUTPTUT	OLD		OLDER:	35	02	11 24	1		13	36		6
10. FRONT:	LOAD	OLDER	OLD:	36	05	09 13	3 23 2	27	10	35		7
12.	ADD	OLD	LIMIT:	37	07	17 31	L		01	36		8
14.	STORE	NEW	NEW:	38	15	21 26	5		11	38		9
16.	SUB	LIMIT							02	37		10
18.	JMPP	FINAL	MNT						07	30		11
20.	OUTPUT	NEW	Nome	Arg	s	Link	ıa		13	38		12
22.	COPY	OLD, OLDER	M1	3		1			09	36	35	13
25.	COPY	NEW, OLD	M2	3		5			09	38	36	14
28.	JMP	FRONT							05	10		15
30. FINAL:	OUTPUT	LIMIT	MDT						13	37		16
32. STOP			Linha	Cód	igo				14			17
SECTION	DATA		1	COP	Y	#1,	#2					18
33. ZERO:	CONST 0		2	INP	UT	#3			00			19
34. ONE:	CONST 1		3	OUT	PUT	#2			01			20
35. OLDER:	SPACE		4	END	MACR	.0			00			21
36. OLD:	SPACE		5	OUT	PUT	#1			00			22
37. LIMIT:	SPACE		6	COP	Y	#2,			00			23
38. NEW:	SPACE		7	COP	Y	#1,	#2		00			24
			8	END	MACR	.0						25

1.2.2.	Códi	igo sem m	nacro		Tabela	de Símbolos	Cód	igo Máquina	1
		SECTION	TEXT		FAT:	04			2
	00.	INPUT	N		FIM:	18	T	12a 22r	3
	02.	LOAD	N		AUX:	21	T	10a 22r	4
	04.	FAT:	SUB	ONE	N:	22	T	02a 23r	5
	06.		JMPZ	FIM	ONE:	23	T	08a 18r	6
	08.		STORE	AUX			T	11a 21r	7
	10.		MUL	N			H	03a 22r ; ACC *= N	8
	12.		STORE	N			H	11a 22r ; N = ACC	9
	14.		LOAD	AUX			H	10a 21r; ACC = AUX	10
	16.		JMP	FAT			H	05a 04r ; laço for	11
	18.	FIM:	OUTPUT	N			H	13a 22r ; print(N!)	12
	20.	STOP					T	14a	13
		SECTION	DATA						14
	21.	AUX:	SPACE					00a	15
	22.	N:	SPACE					00a	16
	23.	ONE:	CONST 1					01a	17

								_				
1.2.3.	Cod:	igo					imbo	olos	s+Lista	Cód	igo Máquina	1
	02.	EH_MUL:	MACRO 8	τN	PRINT1:	16	11					2
	02.	LOAI	O &N		FIM:	18	15			10	N	3
	04.	DIV	TRI	ES	N:	19	01	03	09	04	TRES	4
	06.	MUL	TRI	ES	TRES:	20	05	07		03	TRES	5
	08.	SUB	&N		UM:	21	17			02	N	6
	10.	JMPZ	Z PR	INT1	ZERO:	22	13			80	PRINT1	7
		END_MACE	RO									8
	00.		INPUT	N						12	N	9
	02.		EH_MUL	N						; e	scrito acima	10
	12.		OUTPUT	ZERO						13	ZERO	11
	14.		JMP	FIM						05	FIM	12
	16.	PRINT1:	OUTPUT	UM						13	UM	13
	18.	FIM:	STOP							14		14
	19.	N:	SPACE							00		15
	20.	TRES:	CONST	3						03		16
	21.	UM:	CONST	1						01		17
	22.	ZERO:	CONST	0						00		18

1.2.4.	Código			Tabela	de S	ímbo	olos	s+L:	ista	ì.	Cód	igo Máquina	1
	OO. INPUT	N		WHILE:	04	27					12	N	2
	02. LOAD	N		FIM:	28	05					10	N	3
	04. WHILE:	JUMPZ	FIM	N:	29	01	03	13	21	25	80	FIM	4
	06.	DIV	DOIS	AUX:	30	11	15	17	19		04	DOIS	5
	08.	MUL	DOIS	DOIS:	31	07	09				03	DOIS	6
	10.	STORE	AUX								11	AUX	7
	12.	LOAD	N								10	N	8
	14.	SUB	AUX								02	AUX	9
	16.	STORE	AUX								11	AUX	10
	18.	OUTPUT	AUX								13	AUX	11
	20.	LOAD	N								10	N	12
	22.	DIV	DOIS								04	DOIS	13
	24.	STORE	N								11	N	14
	26.	JUMP	WHILE								05	WHILE	15
	28. FIM:	STOP									14		16
	29. N:	SPACE									00		17
	30. AUX:	SPACE									00		18
	31. DOIS:	CONST	2								02		19

1.2.5. Os códigos de cada módulo são apresentados a seguir.

Código (fat	or=0)		Tabela	de Símbolos	Cód	igo Máquina	1
00. MOD_A:	BEGIN		MOD_A:	00			2
00. Y:	EXTERN		Υ:	00			3
00. MOD_B:	EXTERN		MOD_B:	00			4
00.	PUBLIC	VAL	L1:	10			5
00.	PUBLIC	L1	VAL:	11			6
00.	INPUT	Y			12	00	7
02.	LOAD	VAL	Tabela	de Usos	10	11	8
04.	ADD	Y	Y:	5+ 7+	01	00	9
06.	STORE	Y + 2	MOD_B:	9+	11	00 + 2	10

08.	JMPP MOD_B		07 00	11
10. L1:	STOP	Tabela de Definições	14	12
11. VAL:	CONST 5	MOD_A: OO	05	13
END		L1: 10		14
		VAL: 11		15

Código (fator=12) Tabela de Símbolos Código Máquina 1 00. MOD_B: BEGIN MOD_B: 00 2 00. VAL: EXTERN VAL: 00 3 00. L1: EXTERN L1: 00 4 00. PUBLIC Y Y: 08 5 00. PUBLIC MOD_B 6 00. OUTPUT Y Tabela de Usos 13 08 7 02. OUTPUT VAL VAL: 3+ 13 00 8 04. OUTPUT Y + 2 L1: 7+ 13 10 9 06. JMP L1 05 00 10 08. Y: SPACE 3 Tabela de Definições 00 11 END MOD_B: 00 00 12 Y: 08 00 13								
00. VAL: EXTERN VAL: 00 3 00. L1: EXTERN L1: 00 4 00. PUBLIC Y Y: 08 5 00. PUBLIC MOD_B 6 00. OUTPUT Y Tabela de Usos 13 08 7 02. OUTPUT VAL VAL: 3+ 13 00 8 04. OUTPUT Y + 2 L1: 7+ 13 10 9 06. JMP L1 05 00 10 08. Y: SPACE 3 Tabela de Definições 00 11 END MOD_B: 00 00 12	Código (fat	or=12)		Tabela	de Símbolos	Cód	igo Máquina	1
00. L1: EXTERN L1: 00 00. PUBLIC Y Y: 08 00. PUBLIC MOD_B 00. OUTPUT Y Tabela de Usos 13 08 02. OUTPUT VAL VAL: 3+ 13 00 04. OUTPUT Y + 2 L1: 7+ 13 10 06. JMP L1 08. Y: SPACE 3 Tabela de Definições 00 END MOD_B: 00 00	00. MOD_B:	BEGIN		MOD_B:	00			2
00. PUBLIC Y Y: 08 00. PUBLIC MOD_B 6 00. OUTPUT Y Tabela de Usos 13 08 7 02. OUTPUT VAL VAL: 3+ 13 00 8 04. OUTPUT Y + 2 L1: 7+ 13 10 9 06. JMP L1 05 00 10 08. Y: SPACE 3 Tabela de Definições 00 11 END MOD_B: 00 00 12	OO. VAL:	EXTERN		VAL:	00			3
00. PUBLIC MOD_B 6 00. OUTPUT Y Tabela de Usos 13 08 7 02. OUTPUT VAL VAL: 3+ 13 00 8 04. OUTPUT Y + 2 L1: 7+ 13 10 9 06. JMP L1 05 00 10 08. Y: SPACE 3 Tabela de Definições 00 11 END MOD_B: 00 00 12	00. L1:	EXTERN		L1:	00			4
00. OUTPUT Y Tabela de Usos 13 08 7 02. OUTPUT VAL VAL: 3+ 13 00 8 04. OUTPUT Y + 2 L1: 7+ 13 10 9 06. JMP L1 05 00 10 08. Y: SPACE 3 Tabela de Definições 00 11 END MOD_B: 00 00 12	00.	PUBLIC	Y	Υ:	08			5
02.	00.	PUBLIC	MOD_B					6
04.	00.	OUTPUT	Y	Tabela	de Usos	13	08	7
06. JMP L1 05 00 10 08. Y: SPACE 3 Tabela de Definições 00 11 END MOD_B: 00 00 12	02.	OUTPUT	VAL	VAL:	3+	13	00	8
08. Y: SPACE 3 Tabela de Definições 00 11 MOD_B: 00 00 12	04.	OUTPUT	Y + 2	L1:	7+	13	10	9
END MOD_B: 00 00	06.	JMP	L1			05	00	10
	08. Y:	SPACE	3	Tabela	de Definições	00		11
Y: 08 00	END			MOD_B:	00	00		12
				Υ:	08	00		13

Por fim, apresenta-se o código montado com o mapa de bits.

Códigos não ligados	Tabela Global	Código Máquina	R	1
00. 12 00	$MOD_A: OO+ O = OO$	12a 20r	0 1	2
02. 10 11	L1: $10+ 0 = 10$	10a 11r	0 1	3
04. 01 00	VAL: 11+ 0 = 11	01a 20r	0 1	4
06. 11 00 + 2	$MOD_B: 00+ 12 = 12$	11a 22r	0 1	5
08. 07 00	Y: 08+ 12 = 20	07a 12r	0 1	6
10. 14		14a	0	7
11. 05		05a	0	8
12. 13 08		13a 20r	0 1	9
14. 13 00		13a 11r	0 1	10
16. 13 10		13a 22r	0 1	11
18. 05 00		05a 10r	0 1	12
20. 00		00a	0	13
21. 00		00a	0	14
22. 00		00a	0	15

1.2.6. Os códigos de cada módulo são apresentados a seguir. Para facilitar a ligação, é mostrado o código máquina não-ligado de cada um.

Código (fator=0)	Tabela de Símbolos	Código Máquina	1
OO. MOD_A: BEGIN	MOD_A: OO		2
OO. Y: EXTERN	Y: 00		3
OO. MOD_B: EXTERN	MOD_B: OO		4
OO. PUBLIC VAL	_L1: 02		5
00. PUBLIC _L2	_L2: 04		6
OO. PUBLIC ONE	VAL: 13		7
OO. INPUT Y	ONE: 14	12 Y	8
O2L1: JMP MOD_B		05 MOD_B	9
04L2: LOAD VAL	Tabela de Usos	10 VAL	10

06. SUB ONE Y: 1+ O2 ONE 08. STORE VAL MOD_B: 3+ 11 VAL 10. JMPP _L1								
10. JMPP _L1	06.	SUB	ONE	Υ:	1+	02	ONE	11
12. STOP Tabela de Definições 14 13. VAL: CONST 5 MOD_A: 00 05 14. ONE: CONST 1 _L1: 02 01 16 END _L2: 04 VAL: 13	08.	STORE	VAL	MOD_B:	3+	11	VAL	12
13. VAL: CONST 5 MOD_A: 00 05 14. ONE: CONST 1 _L1: 02 01 END _L2: 04 VAL: 13	10.	JMPP	_L1			07	_L1	13
14. ONE: CONST 1 _L1: 02 01 16 END _L2: 04	12. STOP			Tabela	de Definições	14		14
END _L2: 04	13. VAL:	CONST	5	MOD_A:	00	05		15
VAL: 13	14. ONE:	CONST	1	_L1:	02	01		16
	END			_L2:	04			17
ONE: 14				VAL:	13			18
				ONE:	14			19

Código (fator=15) Tabela de Símbolos Código Máquina 1 00. MOD_B: BEGIN MOD_B: 00 2 00. MOD_C: EXTERN MOD_C: 00 3 00. ONE: EXTERN ONE: 00 4 00. PUBLIC Y Y: 08 5 00. PUBLIC MOD_B 6 6 00. LOAD Y Tabela de Usos 10 Y 7 02. ADD ONE MOD_C: 7+ 01 ONE 8 04. STORE Y ONE: 3+ 11 Y 9 06. JMP MOD_C 05 MOD_C 10 08. Y: SPACE Tabela de Definições 00 11 END MOD_B: 00 12 12 Y: 08 13								
00. MOD_C: EXTERN MOD_C: 00 3 00. ONE: EXTERN ONE: 00 4 00. PUBLIC Y Y: 08 5 00. PUBLIC MOD_B 6 6 00. LOAD Y Tabela de Usos 10 Y 7 02. ADD ONE MOD_C: 7+ 01 ONE 8 04. STORE Y ONE: 3+ 11 Y 9 06. JMP MOD_C 05 MOD_C 10 08. Y: SPACE Tabela de Definições 00 11 END MOD_B: 00 12	Código (fat	or=15)		Tabela	de Símbolos	Cód	igo Máquina	1
00. ONE: EXTERN ONE: 00 4 00. PUBLIC Y Y: 08 5 00. PUBLIC MOD_B 6 00. LOAD Y Tabela de Usos 10 Y 7 02. ADD ONE MOD_C: 7+ 01 ONE 8 04. STORE Y ONE: 3+ 11 Y 9 06. JMP MOD_C 05 MOD_C 10 08. Y: SPACE Tabela de Definições OO 11 END MOD_B: 00 12	00. MOD_B:	BEGIN		MOD_B:	00			2
00. PUBLIC Y Y: 08 00. PUBLIC MOD_B 6 00. LOAD Y Tabela de Usos 10 Y 7 02. ADD ONE MOD_C: 7+ 01 ONE 8 04. STORE Y ONE: 3+ 11 Y 9 06. JMP MOD_C 05 MOD_C 10 08. Y: SPACE Tabela de Definições 00 11 END MOD_B: 00 12	OO. MOD_C:	EXTERN		MOD_C:	00			3
00. PUBLIC MOD_B 6 00. LOAD Y Tabela de Usos 10 Y 7 02. ADD ONE MOD_C: 7+ O1 ONE 8 04. STORE Y ONE: 3+ 11 Y 9 06. JMP MOD_C 05 MOD_C 10 08. Y: SPACE Tabela de Definições O0 11 END MOD_B: 00 12	OO. ONE:	EXTERN		ONE:	00			4
00. LOAD Y Tabela de Usos 10 Y 7 02. ADD ONE MOD_C: 7+ 01 ONE 8 04. STORE Y ONE: 3+ 11 Y 9 06. JMP MOD_C 05 MOD_C 10 08. Y: SPACE Tabela de Definições 00 11 END MOD_B: 00 12	00.	PUBLIC	Y	Υ:	08			5
02. ADD ONE MOD_C: 7+ 01 ONE 8 04. STORE Y ONE: 3+ 11 Y 9 06. JMP MOD_C 05 MOD_C 10 08. Y: SPACE Tabela de Definições 00 11 END MOD_B: 00	00.	PUBLIC	MOD_B					6
04. STORE Y ONE: 3+ 11 Y 06. JMP MOD_C 05 MOD_C 10 08. Y: SPACE Tabela de Definições 00 11 END MOD_B: 00	00.	LOAD	Y	Tabela	de Usos	10	Y	7
06. JMP MOD_C 05 MOD_C 10 08. Y: SPACE Tabela de Definições 00 11 END MOD_B: 00 12	02.	ADD	ONE	MOD_C:	7+	01	ONE	8
08. Y: SPACE Tabela de Definições 00 11 MOD_B: 00 12	04.	STORE	Y	ONE:	3+	11	Y	9
END MOD_B: OO	06.	JMP	MOD_C			05	MOD_C	10
	08. Y:	SPACE		Tabela	de Definições	00		11
Y: 08	END			MOD_B:	00			12
				Υ:	08			13

```
Código (fator=24)
                            Tabela de Símbolos
                                                     Código Máquina
                            MOD_C:
00. MOD_C:
            BEGIN
                                    00
00. _L2:
                            _L2:
                                    00
            EXTERN
00. Y:
                            Υ:
                                    00
            EXTERN
00. VAL:
            EXTERN
                            VAL:
                                    00
00.
            PUBLIC MOD_C
00.
                    Y
                                                     13 Y
            OUTPUT
                            Tabela de Usos
02.
            OUTPUT
                    VAL
                            _L2:
                                     5+
                                                     13 VAL
                            Υ:
04.
                    _L2
                                    1+
                                                     05 _L2
            JMP
   END
                            VAL:
                                    3+
                            Tabela de Definições
                                                                                  12
                            MOD_C: 00
```

A seguir, apresenta-se o código máquina dos módulos ligados.

Códigos não ligados	Tabela Global	Código Máquina	1
00. 12 Y	$MOD_A: OO+O=OO$	12a 23r	2
02. 05 MOD_B	$_{L1}:$ 02+ 0 = 02	05a 15r	3
04. 10 VAL	$_{L2}:$ 04+ 0 = 04	10a 13r	4
06. 02 ONE	VAL: 13+ 0 = 13	02a 14r	5
08. 11 VAL	ONE: $14 + 0 = 14$	11a 13r	6
10. 07 _L1	$MOD_B: 00+ 15 = 15$	07a 02r	7
12. 14	Y: 08+ 15 = 23	14a	8
13. 05	$MOD_C: 00+ 24 = 24$	05a	9

14.	01		01a	10
15.	10	Υ	10a 23r	11
17.	01	ONE	01a 14r	12
19.	11	Υ	11a 23r	13
21.	05	MOD_C	05a 24r	14
23.	00		00a	15
24.	13	Υ	13a 23r	16
26.	13	VAL	13a 13r	17
28.	05	_L2	05a 04r	18

1.2.7. Os códigos de cada módulo são apresentados a seguir. Para facilitar a ligação, é mostrado o código máquina não-ligado de cada um.

Código (fator=0)	Tabela de Símbolos	Código Máquina	1
OO. MOD1: BEGIN	MOD1: 00		2
OO. MOD2: EXTERN	MOD2: 00		3
OO. VALS: EXTERN	VALS: 00		4
00. PUBLIC L1	L1: 06		5
00. PUBLIC L2	L2: 14		6
OO. INPUT VALS	R: 15	12 VALS	7
02. INPUT VALS + 1		12 VALS + 1	8
O4. JMP MOD2	Tabela de Usos	05 MOD2	9
06. L1: LOAD VALS	MOD2: 5+	10 VALS	10
08. DIV VALS + 1	VALS: 1+ 3+ 7+ 9+	04 VALS + 1	11
10. STORE RES		11 RES	12
12. OUTPUT RES	Tabela de Definições	13 RES	13
14. L2: STOP	L1: 06	14	14
15. R: SPACE	L2: 14	00	15
END	R: 15		16

Código (fat	or=16)	Tabela	de Símbolos	Cód	igo Máquina	1
00. MOD2:	BEGIN	MOD2:	00			2
00. L1:	EXTERN	L1:	00			3
00. L2:	EXTERN	L2:	00			4
00. PUBLIC	VALS	VALS:	06			5
00. PUBLIC	MOD2					6
OO. LOAD	VALS + 1	Tabela	de Usos	10	VALS + 1	7
02. JMPZ	L2	L1:	5+	80	L2	8
04. JMP	L1	L2:	3+	05	L1	9
06. VALS:	SPACE 2			00	02	10
END		Tabela	de Definições			11
		MOD2:	00			12
		VALS:	06			13

A seguir, apresenta-se o código máquina dos módulos ligados, de forma que os códigos objeto de cada um estão sobrepostos.

Códigos não ligados	Tabela Global	Código Máquina	1
00. 12 VALS	L1: $06+ 0 = 06$	12 22	2
02. 12 VALS + 1	L2: $14+ 0 = 14$	12 23	3
04. 05 MOD2	RES: $15+ 0 = 15$	05 16	4

```
06. 10
        VALS
                          MOD2:
                                   00 + 16 = 16
                                                          22
                                                     10
                                   06 + 16 = 22
08. 04
        VALS + 1
                          VALS:
                                                     04
                                                          23
10. 11
        RES
                                                          15
                                                     11
12. 13
        RES
                                                     13
                                                          15
14. 14
                                                     14
15. 00
                                                     00
                                                              fim do MOD1.o
16. 10
        VALS + 1
                                                     10
                                                          23
                                                                                         11
18. 08
        L2
                                                     80
                                                          14
                                                                                         12
20. 05
        L1
                                                     05
                                                          06
                                                                                         13
22. 00
        02
                                                     00
                                                         02
                                                              fim do MOD2.o
```

1.2.8. Os códigos de cada módulo são apresentados a seguir. Para facilitar a ligação, é mostrado o código máquina não ligado de cada um.

Código (fator=0)	Tabela de Símbolos	Código Máquina	1
OO. MOD1: BEGIN	MOD1: 00		2
OO. MOD2: EXTERN	MOD2: 00		3
00. PUBLIC N1	N1: 15		4
00. PUBLIC N2	N2: 16		5
00. PUBLIC N3	N3: 17		6
00. PUBLIC RETURN	RETURN: 08		7
SECTION TEXT			8
OO. INPUT N1	Tabela de Usos	12 N1	9
02. INPUT N2	MOD2: 7+	12 N2	10
04. INPUT N3		12 N3	11
O6. JMP MOD2	2 Tabela de Definições	05 MOD2	12
08. RETURN: INPUT N1	MOD1: 00	12 N1	13
10. LOAD N1	N1: 15	10 N1	14
12. JMPP MOD:	N2: 16	O7 MOD1	15
14. STOP	N3: 17	14	16
SECTION DATA	RETURN: 08		17
15. N1: SPACE		00	18
16. N2: SPACE		00	19
17. N3: SPACE		00	20
END			21

Código (fator=18)	Tabela de Símbolos			Cód	ligo	Máquina
OO. MOD2: BEGIN	MOD2: 00					2
OO. N1: EXTERN	N1: 00					3
OO. N2: EXTERN	N2: 00					4
OO. N3: EXTERN	N3: 00					5
OO. RETURN: EXTERN	RETURN: 00					6
00. PUBLIC MOD2	N2_MAIOR_QUE_N1_E_N3:	18				7
SECTION TEXT	CASO_N3_N2:	30				8
OO. LOAD N1	N1_MAIOR_QUE_N2:	36		10	N1	9
02. SUB N2	N1_MAIOR_QUE_N2_E_N3:	48		02	N2	10
04. JMPP N1_MAIOR_QUI	E_N2 CASO_N3_N1:	60	07	N1_MAIO	R_QU	E ₁ N2
; N2_MAIOR_QUE_N1:						12
06. LOAD N2	Tabela de Usos			10	N2	13
08. SUB N3	N1: 1+ 15+ 19+ 27+ 37+	55+	61+	02	NЗ	14

1	O. JMPP	N2_MAIOR_QUE_N1_E_N3	N2: 3+ 7+ 25+ 31+ 45+	49+ 57+	07	N2_MAIOR_QUE_N1
	;CASO_N	1_N3:	N3: 9+ 13+ 21+ 33+ 39+	43+ 51+ 63+		16
1	2. OUTPUT	N1	RETURN: 17+ 29+ 35+ 47-	+ 59+ 65+	13	N3 17
1	4. OUTPUT	N3			13	N1 18
1	6. JMP	RETURN	Tabela de Definições		05	RETURN
1	8. N2_MAIO	R_QUE_N1_E_N3:	MOD2:	00		20
	LOAD	N1	N2_MAIOR_QUE_N1_E_N3:	18	10	N1 21
2	O. SUB	N3	CASO_N3_N2:	30	02	N3 22
2	2. JMPP	CASO_N3_N2	N1_MAIOR_QUE_N2:	36	07	CASO ₂₃ N3_N2
	;CASO_N	1_N2:	N1_MAIOR_QUE_N2_E_N3:	48		24
2	4. OUTPUT	N1	CASO_N3_N1:	60	13	N1 25
2	6. OUTPUT	N2			13	N2 26
2	8. JMP	RETURN			05	RETURN
3	O. CASO_N3	5_N2:				28
	OUTPUT	N3			13	N3 29
3	2. OUTPUT	N2			13	N2 30
3	4. JMP	RETURN			05	RETURN
3	6. N1_MAIO	R_QUE_N2:				32
	LOAD	N1			10	N1 33
3	8. SUB	N3			02	N3 34
4	O. JMPP	N1_MAIOR_QUE_N2_E_N3			07	N1_MAJOR_QUE_N2
	;CASO_N	[2_N3:				36
4	2. OUTPUT	N2			13	N2 37
4	4. OUTPUT	N3			13	N3 38
4	6. JMP	RETURN			05	RETURN
4	8. N1_MAIO	R_QUE_N2_E_N3:				40
	LOAD	N2			10	N2 41
5	0. SUB	N3			02	N3 42
5	2. JMPP	CASO_N3_N1			07	CASO 43N3_N1
	;CASO_N	72_N1:				44
5	4. OUTPUT	N2			13	N2 45
5	6. OUTPUT	N1			13	N1 46
5	8. JMP	RETURN			05	RETURN
6	O. CASO_N3	S_N1:				48
	OUTPUT	N3			13	N3 49
6	2. OUTPUT	N1			13	N1 50
6	4. JMP	RETURN			05	RETURN
	SECTION	DATA				52
	END					53

A seguir, apresenta-se o código máquina dos módulos ligados.

Códigos não ligados	Tabela Global		Código Máquina 1
00. 12 N1	MOD1:	00+ 0 = 0	12 15 2
02. 12 N2	N1:	15+ 0 = 15	12 16 3
04. 12 N3	N2:	16+ 0 = 16	12 17 4
06. 05 MOD2	N3:	17+ 0 = 17	05 18 5
08. 12 N1	RETURN:	08+ 0 = 08	12 15 6
10. 10 N1	MOD2:	00+ 18 = 18	10 15 7
12. 07 MOD1	N2_MAIOR_QUE_N1_E_N3:	18+ 18 = 36	07 00 8
14. 14	CASO_N3_N2:	30 + 18 = 48	14 9
15. 00	N1_MAIOR_QUE_N2:	36+ 18 = 54	00

							_
16.	00		N1_MAIOR_QUE_N2_E_N3:	48+ 18 = 66	00		1
17.	00		CASO_N3_N1:	60+ 18 = 78	00		1
18.	10	N1			10	15	1
20.	02	N2			02	16	1
22.	07	N1_MAIOR_QUE_N2			07	54	1
24.	10	N2			10	16	1
26.	02	N3			02	17	1
28.	07	N2_MAIOR_QUE_N1	_E_N3		07	36	1
30.	13	N1			13	15	1
32.	13	N3			13	17	2
34.	05	RETURN			05	08	2
36.		N1			10	15	2
38.		N3			02	17	2
40.		CASO_N2_N3			07	48	2
42.		N1			13	15	2
44.		N2			13	16	2
46.	05	RETURN			05	80	2
48.		N3			13	17	2
50.		N2			13	16	2
52.		RETURN			05	80	3
54.		N1			10	15	3
56.		N3			02	17	3
58.		N1_MAIOR_QUE_N2_	_E_N3		07	66	3
60.		N2			13	16	3
62.		N3			13	17	3
64.		RETURN			05	80	3
66.		N2			10	16	3
68.		N3			02	17	3
70.		CASO_N1_N3			07	78	3
72.		N2			13	16	4
74.		N1			13	15	4
76.		RETURN			05	08	4
78.		N3			13	17	4
80.		N1			13	15	4
82.	05	RETURN			05	80	4

1.2.9.

Módulo 2 – Assembly x86-64

2.1 Questões Teóricas

2.1.1.

2.2 Questões Práticas

```
2.2.1. SIZE EQU 6
     section .data
     little dd 42434445h, 45454545h, 4A4B4C4Dh,
             dd 414D4E4Fh, 46454948h, 4C474D46h
     section .bss
     big resd SIZE
     temp resd 1
     section .start
     global _start
     _start:
         mov ecx, SIZE
         mov eax, little
                                                                                        14
         mov esi, big
                                                                                        15
         laco1: mov ebx, esi
         add ebx, 3
                               ; ebx aponta para o último byte da dword big endian
         laco2: mov dl, [eax]
         mov [ebx], dl
                                                                                        19
         dec ebx
                                                                                        20
         inc eax
                                                                                        21
         cmp ebx, esi
                              ; 4 bytes foram preenchidos? se não, repete
         jae laco2
                                                                                        23
         add esi, 4
         dec ecx
                               ; mais um número convertido
         cmp ecx, 0
         ja laco1
                               ; tem mais número? se sim, repete
         done: mov eax, 1
                                                                                        28
         mov ebx, 0
                                                                                        29
         int 80h
```

2.2.2.

```
(a) section .data
   MAX equ 100
   section .bss
   a resd MAX
   section .text
   global _start
   _start:
  sub esi, esi ; i=0
   for:
       cmp esi, MAX
       jae end_for
       mov eax, esi
                                                                                    12
                             ; eax = i \gg 1
       shr eax, 1
                                                                                    13
       mov DWORD [a + 4*esi], eax ; a[i] = i >> i
                                                                                    14
       inc esi
                                                                                    15
       jmp for
```

```
end_for:
mov eax, 1
mov ebx, 0
int 80h
```

```
(b) section .data
   ROW equ 5
   COL equ 5
   array1 dd 1, 89, 99, 91, 92,
               79, 2, 70, 60, 55,
            dd
               70, 60, 3, 90, 89,
               60, 55, 68, 4, 66,
            dd
            dd 51, 59, 57, 2, 5
   array2 TIMES ROW dd 1, 2, 3, 4, 5
   section .bss
   array3 TIMES ROW resb COL
   section .text
                                                                                       12
   global _start
                                                                                       13
   _start:
                   ; i=0
       mov esi, 0
                                                                                       15
       for_i:
                                                                                       16
           cmp esi, ROW
                                                                                       17
           jae end_for_i
                                                                                       18
           mov edi, 0
           for_j:
                cmp edi, COL
                jae end_for_j
                imul eax, esi, ROW ; eax = offset da linha em elementos
                                                                                       23
                mov ebx, edi
                shl ebx, 2
                                    ; ebx = offset da coluna em bytes
                mov ecx, DWORD [array1 + 4*eax + ebx]
                cmp ecx, DWORD [array2 + 4*eax + ebx] ; array1 == array2 ?
                                                                                       27
                je set_1
                                                                                       28
                mov BYTE [array3 + eax + edi], "0"
                                                                                       29
                jmp continue
           set_1:
               mov BYTE [array3 + eax + edi], "1"
                                                                                       32
            continue:
                ; printf("%c", array3[i][j])
                                                                                       34
               mov ecx, eax
                                                                                       35
               mov eax, 4
               mov ebx, 1
                                                                                       37
                add ecx, array3
                add ecx, edi
                                                                                       39
               mov edx, 1
                                                                                       40
                int 80h
                                                                                       41
                inc edi
                                    ; j++
                jmp for_j
           end_for_j:
                                                                                       44
            inc esi
                                                                                       45
            jmp for_i
```

```
(c) section .data
   SIZE
           equ 11
   vetor dd 0x10002231, 0x80154491, 0x91929394,
           dd 0x11223344, 0x12131415, 0x79270601,
           dd 0x55127380, 0x16112212, 0x39089607,
           dd 0x51557721, 0x16846676
   section .text
   global _start
   _start:
   sub eax, eax ; res=0
  mov ecx, SIZE ; i=SIZE
   while:
      ; res += vetor[i++]
                                                                                    13
      add eax, DWORD [vetor + 4*ecx - 4]
       loop while
                                                                                    15
  mov eax, 1
                                                                                    16
  mov ebx, 0
                                                                                    17
   int 80h
```

```
(d) %include "io.mac"
   section .data
   MAX equ 100
   section .bss
   a TIMES MAX resw MAX
   section .text
   global _start
   _start:
   mov esi, 0
                   ; i=0
   for_i:
       cmp esi, MAX
       jae end_for_i
                     ; j=0
       mov edi, 0
                                                                                   13
       for_j:
       cmp edi, MAX
       jae end_for_j
                                                                                  16
                    ; ecx = i
       mov ecx, esi
                                                                                  17
       cmp esi, edi
                                                                                  18
       je set_as_3i ; i==j?
                                                                                  19
                     ; ecx = 8*i
       shl ecx, 3
       sub ecx, esi
                     ; ecx = 7*i
                                                                                  21
       jmp continue
   set_as_3i:
                                                                                  23
                     ; ecx = 4*i
       shl ecx, 2
                                                                                  24
       sub ecx, esi
                     ; ecx = 3*i
   continue:
```

```
imul eax, esi, MAX
    imul ebx, edi, 2
                                                                                     28
    mov WORD [a + 2*eax + ebx], cx; atualiza matriz
                                                                                     29
                                                                                     30
    jmp for_j
                                                                                     31
    end_for_j:
    inc esi
                                                                                     33
    jmp for_i
                   ; return 0
end_for_i:
                                                                                     35
mov eax, 1
                                                                                     36
mov ebx, 0
int 80h
```

```
(e) %include "io.mac"
   section .bss
   count resd 1
   start resb 1
   section .text
   global _start
   _start:
   sub esi, esi ; sum=0 mov DWORD [count], 100 ; count=100
   sub esi, esi
   ; lê um caracter (dígito) do usuário
   mov eax, 3
   mov ebx, 0
                                                                                       12
   mov ecx, start
                                                                                       13
   mov edx, 1
   int 80h
   ; converte para número
                                                                                       16
   sub BYTE [start], "0"
                                                                                       17
   while:
                                                                                       18
       mov eax, esi
                               ; eax = sum
                                                                                       19
                               ; eax = sum // 2
       shr eax, 1
       shl eax, 1
                               ; eax = (sum // 2) * 2
                                                                                       21
                               ; eax = -(sum \% 2)
       sub eax, esi
                               ; sum%2 == 0 ?
       cmp eax, 0
                                                                                       23
       je sub_start
       add esi, DWORD [start] ; sum += start
       jmp continue
   sub_start:
       sub esi, DWORD [start] ; sum -= start
   continue:
       inc BYTE [start]
                               ; start++
                                                                                       30
       dec DWORD [count]
                               ; count--
                                                                                       31
       cmp DWORD [count], 0
       ja while
                                                                                       33
   ; return sum
   mov eax, 1
                                                                                       35
   mov ebx, esi
                                                                                       36
   int 80h
```

2.2.3.

```
(a) int fool(int n) {
      return 7*n;
  (b) int foo2 (int n) {
      return n / 2147483648; // n / 2^31
     }
  (c) int foo3 (int *p) {
      return *p + *p;
  (d) short int foo4 (short int x, short int y) {
      return x - y; // C é right-pusher
2.2.4. f4:
     enter 0, 0
     mov ebx, DWORD [ebp + 8] ; ebx recebe o ponteiro/vetor de shorts x mov ecx, DWORD [ebp + 12] ; ecx recebe o número de elementos n
     mov ax, WORD 1
     for_loop:
         cmp ecx, 0
         jle end_f4
                                  ; estende o sinal de ax em eax
          cwd
         cdq
                                   ; estende o sinal de eax em edx
         mul WORD [ebx]
                                   ; dx.ax = ax * elemento
                                                                                            11
         dec ecx
                                   ; um elemento a menos a ser multiplicado
         add ebx, 2
                                   ; ebx aponta para o próximo elemento
         jmp for_loop
      end_f4:
                                                                                            15
                                  ; edx = dx.000...
     shl edx, 16
                                                                                            16
     shl eax, 16
                                   ; eax = ax.000...
                                                                                            17
                                   ; eax = ...000.ax
     shr eax, 16
     add eax, edx
                                   ; eax = dx.ax
     leave
     ret
2.2.5. f4:
     enter 4, 0 ; variável local: DWORD para o resultado mov esi, DWORD [ebp + 8] ; esi recebe o ponteiro/vetor de shorts x
     mov edi, \textit{DWORD} [ebp + 12] ; edi recebe o ponteiro/vetor de shorts y
     mov ecx, DWORD [ebp + 16] ; ecx recebe o número de elementos n
     for_loop:
         cmp ecx, 0
          jle end_f4
          mov ax, WORD [esi]
```

```
cwd
                                ; estende o sinal de ax em eax
                                ; estende o sinal de eax em edx
    cdq
   mul WORD [edi]
                                ; dx.ax = short_x * short_y
                                                                                12
    shl edx, 16
                                ; edx = dx.000...
                                                                                13
    shl eax, 16
                               ; eax = ax.000...
    shr eax, 16
                                : eax = ...000.ax
                               ; eax = dx.ax
    add eax, edx
    add DWORD [ebp - 4], eax
                               ; atualiza montante
    dec ecx
                               ; um par a menos a ser multiplicado
                               ; esi aponta para o próximo elemento
    add esi, 2
                                                                                19
    add edi, 2
                               ; edi aponta para o próximo elemento
    jmp for_loop
end_f4:
mov eax, DWORD [ebp - 4] ; eax recebe o resultado
                                                                                23
leave
                                                                                24
ret
```

2.2.6. Modificações necessárias no código C original: além de eliminar a definição original da função, deve também declarar a assinatura da soma em Assembly por extern void soma(int *M, int N, int *valor).

```
soma:
enter 0, 0
mov esi, DWORD [ebp + 8] ; esi = ponteiro de inteiros/matriz
mov ecx, DWORD [ebp + 12] ; ecx = contador
mov edi, 0
                           ; edi = offset da matriz
mov eax, 0
                          ; eax = resultado da soma
do_while:
   add eax, DWORD [esi + 4*edi] ; incrementa montante
                                  ; desce um "linha"
   add edi, DWORD [ebp + 12]
   inc edi
                                  ; avança uma "coluna"
                                 ; --ecx > 0 ? repete
   loop do_while
                                                                             11
mov ecx, DWORD [ebp + 16] ; ecx = ponteiro de saída
                                                                             12
mov DWORD [ecx], eax ; resultado da saída = montante
                                                                             13
leave
                                                                             14
ret
```

```
2.2.7. %include "io.mac"
     f1:
      enter 0, 0
                                       ; esi recebe a matriz 1/ponteiro de int 1
     mov esi, DWORD [ebp + 8]
     mov ebx, 0
                                        ; ebx = offset da linha em elementos (0, m, ...)
     mov ecx, 0
                                        ; ecx = contador c
     for_c:
          cmp ecx, DWORD [ebp + 20]
          jae end_f1
                                        ; c >= n ? fim da função
          mov edx, 0
                                        ; edx = contador d
          for d:
              cmp edx, DWORD [ebp + 16]
              \verb|jae end_for_d| \qquad \qquad ; \ \textit{d} >= \textit{m} ? \textit{fim do laço}
                                                                                            13
              mov eax, ebx
                                       ; eax = c*sizeof(int)
                                                                                            14
              add eax, edx ; eax = c*sizeof(int) + d
```

```
; printf("%d \ t", (matrix + c*sizeof(int) + d))
        PutLInt DWORD [esi + 4*eax]
                                                                                    17
        PutCh 9; ascii 9 = \t
        inc edx
                                 ; d++
                                                                                    19
        jmp for_d
                                                                                    20
    end_for_d:
    nwln
    add ebx, edx
                                 ; ebx = c*sizeof(int)
    inc ecx
                                 ; c++
                                                                                    24
    jmp for_c
                                                                                    25
end_f1:
                                                                                    26
leave
ret
```

```
2.2.8. %include "io.mac"
     section .data
         BUF_SIZE
                             equ 256
         type_entry_name db "Digite o nome do arquivo de entrada: "
         type_output_name
                             db "Digite o nome do arquivo de saída: "
     section .bss
         fd1
                    resd 1
         fd2 resd 1 file_in resb 30
         file_out resb 30
         buf
                   resb BUF_SIZE
     section .text
     global _start
                                                                                     13
     _start:
                                                                                     14
         ; printfs/scanfs
                                                                                      15
         PutStr type_entry_name
         GetStr file_in
         PutStr type_output_name
                                                                                     18
         GetStr file_out
                                                                                      19
         ; fd1 = fopen(file_in, "r")
                                                                                     20
         mov eax, 5
         mov ebx, file_in
         mov ecx, 00
                                ; modo leitura
         mov edx, 777
                          ; permisão completa a todos
         int 80h
                                                                                     25
         mov DWORD [fd1], eax ; fd1 = file descriptor da entrada
         ; fd2 = fopen(file_out, "w")
         mov eax, 5
                                ; syscall open file
         mov ebx, file_out
                                 ; modo escrita
         mov ecx, 01
                                                                                     30
         mov edx, 777
                                ; permisão completa a todos
                                                                                     31
         int 80h
                                                                                     32
         mov DWORD [fd2], eax ; fd2 = file descriptor da saída
                                                                                     33
         ; fread(buf, sizeof(char), BUF_SIZE, fd1)
         mov eax, 3
                                                                                     35
         mov ebx, DWORD [fd1]
                                                                                     36
         mov ecx, buf
```

```
mov edx, BUF_SIZE
int 80h
                                                                                 39
; fwrite(buf, sizeof(char), BUF_SIZE, fd2)
                                                                                 40
mov eax, 4
                                                                                 41
mov ebx, DWORD [fd2]
                                                                                 42
mov ecx, buf
mov edx, BUF_SIZE
int 80h
; fclose(fd1)
                                                                                 46
mov eax, 6
                                                                                 47
mov ebx, DWORD [fd1]
int 80h
; fclose(fd2)
mov eax, 6
                                                                                 51
mov ebx, DWORD [fd2]
                                                                                 52
int 80h
; return 0
mov eax, 1
mov ebx, 0
                                                                                 56
int 80h
```

```
2.2.9. section .data
         file_in db "myfile1.txt"
         file_out db "myfile2.txt"
         n
                    equ 100
     section .bss
         x resb n
         soma resd 1
     section .text
     global _start
     _start:
         ; abre arquivo de entrada
                                                                                     11
         mov eax, 5
                                                                                     12
         mov ebx, file_in
         mov ecx, 00
         mov edx, 777
                           ; permissão total a todos
         int 80h
                                                                                     16
         ; lê arquivo de entrada, preenchendo x
                                                                                     17
                           ; ebx = file descriptor da entrada
         mov ebx, eax
                                                                                     18
         mov eax, 3
         mov\ ecx,\ x
         mov edx, n
         int 80h
         ; fecha o arquivo
         mov eax, 6
         int 80h
         ; laço for para somar os elementos
         mov esi, 0
         mov eax, 0
                                                                                     28
         for_x:
                                                                                     29
             cmp esi, n
```

```
jae end_for_x
    mov al, BYTE [x + esi]
                                                                              32
   movsx eax, al
                                                                              33
    add DWORD [soma], eax
    inc esi
    jmp for_x
end_for_x:
; abre arquivo de saída
mov eax, 5
                                                                              39
mov ebx, file_out
                                                                              40
mov ecx, 01
mov edx, 700
                  ; permissão total ao dono, nada ao resto
int 80h
; escreve a soma
                                                                              44
                   ; ebx = file descriptor da saída
mov ebx, eax
                                                                              45
mov eax, 4
mov ecx, soma
mov edx, 4
                   ; soma é inteiro => 4 bytes
int 80h
                                                                              49
; fecha o arquivo
                                                                              50
mov eax, 6
                                                                              51
int 80h
; fim do programa
mov eax, 1
                                                                              54
mov ebx, 0
                                                                              55
int 80h
```

2.2.10. Note que os arrays/buffers x e y têm 200 bytes de conteúdo, e não 100.

```
section .data
   file_in db "myfile1.txt"
   file_out db "myfile2.txt"
   BUF_SIZE equ 100
section .bss
   x resw BUF_SIZE
   y resw BUF_SIZE
section .text
global _start
_start:
   ; abre arquivo de entrada
   mov eax, 5
   mov ebx, file_in
                                                                              13
   mov ecx, 00
   mov edx, 777
                     ; permissão total a todos
   int 80h
    ; lê arquivo de entrada, preenchendo x
   mov ebx, eax ; ebx = file descriptor da entrada
                                                                              18
   mov eax, 3
                                                                              19
   mov ecx, x
                                                                              20
   mov edx, BUF_SIZE
   add edx, edx
   int 80h
```

```
; fecha o arquivo
mov eax, 6
                                                                               25
int 80h
; laço for para preencher y
mov esi, 0
for_y:
    cmp esi, BUF_SIZE
    jae end_for_y
    cmp WORD [x + 2*esi], 0
                                                                               32
    ja write_1
                                                                               33
    mov WORD [y + 2*esi], 0
    jmp continue
write_1:
    mov WORD [y + 2*esi], 1
                                                                               37
continue:
                                                                               38
    inc esi
    jmp for_y
end_for_y:
; abre arquivo de saída
                                                                               42
mov eax, 5
mov ebx, file_out
mov ecx, 01
mov edx, 744
                  ; permissão total ao dono, leitura ao resto
int 80h
                                                                               47
; escreve o array y
mov ebx, eax
               ; ebx = file descriptor da saída
                                                                               49
mov eax, 4
                                                                               50
mov ecx, y
mov edx, BUF_SIZE
add edx, edx
int 80h
; fecha o arquivo
mov eax, 6
                                                                               56
int 80h
; fim do programa
mov eax, 1
                                                                               59
mov ebx, 0
                                                                               60
int 80h
```

2.2.11. O programa a seguir multiplica matrizes de tamanhos arbitrários e compatíveis. O procedimento auxiliar GetMat realiza os laços de preenchimento das matrizes.

```
%include "io.mac"
section .data
    ROWS1 equ 5
    COLS1 equ 5
    ROWS2 equ COLS1
    COLS2 equ 5
section .bss
    mat1 TIMES ROWS1 resd COLS1
    mat2 TIMES ROWS1 resd COLS2
    mat3 TIMES ROWS1 resd COLS2
```

```
section .text
global _start
                                                                                      12
_start:
                                                                                      13
; preenche a matriz do lado esquerdo do produto
push ROWS1
                                                                                      15
push COLS1
push mat1
                                                                                      17
call GetMat
add esp, 12 ; esp restaurado
                                                                                      19
; preenche a matriz do lado direito do produto
                                                                                      20
push COLS2
push ROWS2
push mat2
call GetMat
                                                                                      24
add esp, 12; esp restaurado
                                                                                      25
; realiza a operação mat1 * mat2 = mat3
; mat1 \rightarrow m x l = ROWS1 x COLS1
; mat2 \rightarrow l x n = ROWS2 x COLS2
; mat3 \rightarrow m x n = ROWS1 x COLS2
                                                                                      29
mov esi, 0
                                                                                      30
for_i:
                                                                                      31
    cmp esi, ROWS1
                                               ; 0 <= i < m
    jae end_prod
    mov edi, 0
    for_j:
        cmp edi, COLS2
                                                                                      36
        jae end_for_j
                                              ; 0 <= j < n
                                                                                      37
        imul eax, esi, COLS2
                                              ; offset3 = n*i+j = COLS2*esi+edi
        add eax, edi
        mov DWORD [mat3 + 4*eax], 0
        mov ecx, 0
                                                                                      41
        for_k:
                                                                                      42
             cmp ecx, ROWS2
                                                                                      43
                                               ; 0 <= k < l
             jae end_for_k
            imul eax, esi, COLS1
                                               ; offset1 = l*i+k = COLS1*esi+ecx
            add eax, ecx
            mov ebx, DWORD [mat1 + 4*eax]
                                                                                      47
            imul eax, ecx, COLS2
                                                                                      48
                                               ; offset2 = n*k+j = COLS2*ecx+edi
            add eax, edi
                                                                                      49
            imul ebx, DWORD [mat2 + 4*eax] ; m1[i][k] * m2[k][j]
            imul eax, esi, COLS2
                                               ; offset3 = n*i+j = COLS2*esi+edi
            add eax, edi
             add DWORD [mat3 + 4*eax], ebx ; m3[i][j] += m1[i][k] * m2[k][j]
                                                                                      53
            inc ecx
                                                                                      54
             jmp for_k
                                                                                      55
        end_for_k:
        inc edi
                    ; j++
        jmp for_j ; próxima coluna da m2
                                                                                      58
    end_for_j:
                                                                                      59
    inc esi
                 ; i++
                                                                                      60
    jmp for_i
               ; próxima linha da m1
```

```
end_prod:
                                                                                62
; fim do programa
                                                                                63
mov eax, 1
                                                                                64
mov ebx, 0
                                                                                65
int 80h
GetMat:
enter 0, 0
mov esi, DWORD [ebp + 8] ; esi recebe a matriz 1/ponteiro de int
mov ebx, 0
                               ; ebx = offset da linha em elementos
                                                                                71
mov ecx, 0
                               ; ecx = contador i
row_for:
   cmp ecx, DWORD [ebp + 16]
    jae end_GetMat
                              ; i >= ROWS ? fim da função
                                                                                75
   mov edx, 0
                               ; edx = contador j
                                                                                76
   column_for:
       cmp edx, DWORD [ebp + 12]
       jae end_column_for ; j \ge COLS ? fim\ do\ laço
       mov eax, ebx
                              ; eax = i*sizeof(int)
                                                                                80
       add eax, edx
                              ; eax = i*sizeof(int) + j
                                                                                81
       GetLInt edi
                                                                                82
       mov DWORD [esi + 4*eax], edi
       inc edx
                               ; j++
       jmp column_for
   end_column_for:
    add ebx, edx
                               ; ebx = i*sizeof(int)
                                                                                87
    inc ecx
                               ; i++
                                                                                88
    jmp row_for
end_GetMat:
leave
                                                                                91
ret
```

2.2.12. Bias = 011 = 3, Regra = ceil.

Descrição	Binário	Mantissa	Expoente	Valor decimal
Menos zero	1 000 00	0.0	-2	-0.0
Número positivo mais próximo a zero	0 000 01	1/4	-2	$1/4 \times 2^{-2}$
Infinito negativo	1 111 00	-	-	-
Maior número normalizado	0 110 11	13/4	3	$1^{3/4} \times 2^{3}$
Menor número não-normalizado	1 000 11	3/4	-2	$-3/4 \times 2^{-2}$
5.0 - 0.75 = 4.25	0 101 01	$1^{1}/_{4}$	2	$1^{1/4} \times 2^{2} = 5.0$
4.0 + 3.0 = 7.0	0 101 11	13/4	2	$1^{3/4} \times 2^{2} = 7.0$

2.2.13. Bias = 0111 = 7, Regra = round

Descrição	Binário	Mantissa	Expoente	Valor decimal
Menos zero	1 0000 00	0	-2	-0.0
Número positivo mais próximo a zero	0 0000 01	1/4	-6	$^{1/4} \times 2^{-6}$
Maior número normalizado	0 1110 11	13/4	7	$1^{3/4} \times 2^{7}$
Menor número não-normalizado	1 0000 11	3/4	-6	$-3/4 \times 2^{-6}$
4.0 + 3.0 = 7.0	0 1001 11	13/4	2	$1^{3/4} \times 2^{2} = 7.0$
7.0 + 8.0 = 15.0	0 1010 11	$1^{3}/_{4}$	3	$1^3/4 \times 2^3 = 14.0$

2.2.14. Bias = 0111 = 7, Regra = fração mais próxima.

Número	Valor	Bit sinal	Bits expoente	Bits mantissa
Zero	0.0	0	0000	0000
Negativo mais próximo a zero	$-1/16 \times 2^{-6}$	1	0000	0001
Maior positivo	$1^{15}/16 \times 2^7$	0	1110	1111
n/a	-5.0	1	1001	0100
n/a	$19/16 \times 2^{-2}$	0	0101	1001
Menos um	-1.0	1	0111	0000
4 - 19/16 = 39/16 = 2.4375	40/16 = 2.5	0	1000	0100

2.2.15. Bias = 01111 = 15, Regra = par mais próximo.

Descrição	Binário	Mantissa	Expoente	Valor decimal
Número negativo mais próximo a zero	1 00000 0001	1/16	-14	$-1/16 \times 2^{-14}$
Maior número	0 11110 1111	$1^{15}/16$	15	$1^{15}/16 \times 2^{15}$
Menor número não-normalizado	1 00000 1111	15/16	-14	$15/16 \times 2^{-14}$
Menos um	1 01111 0000	1.0	0	-1.0