# Unidad 1: Introducción

BBDD01, Sesión 1:

Introducción a las bases de datos.

Oscar Gutierrez Blanco Jose A. Gutierrez de Mesa Javier Albert Segui

# **INDICE**

- oIntroducción
- ONiveles de abstracción
- oInstancias y esquemas
- o Modelos de datos
- oLenguajes de un SGBD
- o Estructura de un SGBD
- oUsuarios de un BD
- oSistemas informáticos
- oProceso de diseño en BBDD

Referencias: Silberschatz 4ª Ed. pp 1-16



## Introducción

- oBD: Colección de datos interrelacionados con el objetivo de integrar y compartir
- oSGBD: Conjunto de programas que acceden a los datos
- oSGBD + BD contienen información sobre una parcela de la realidad
- oSGBD proporciona un entorno conveniente y eficiente para usar
- OAplicaciones Bases de Datos:
  - Banca. Transacciones
  - Líneas Aéreas: reserva de billetes
  - Universidades: registros, calificaciones
  - Ventas: productos, clientes, proveedores, etc.
  - Fabricación: inventario, producción, etc.
  - Recursos Humanos: salarios, registros empleados, etc.
- o Bases de Datos toca todos aspectos de nuestras vidas.



## Introducción

 $1950-1980? \Rightarrow Datos sobre ficheros$ 

#### Características:

- Redundancia e Inconsistencias de los datos: Múltiple formatos y duplicidad de información
- Dificultad para acceder a los datos: escribir un nuevo programa para una nueva tarea
- Aislamiento de Datos: múltiple formatos y ficheros
- Problemas de integridad (contenidas en el programa) :
  - Restricciones de integridad (balance de una cuenta  $\rightarrow$  0)
  - Difícil añadir restricciones o cambiarlas
- Atomicidad de las modificaciones: fallos pueden producir inconsistencias
- Concurrencia de múltiples usuarios: necesario para incrementar rendimiento y controlar el acceso
- Problemas de seguridad

Solución ⇒ Utilización de Sistemas de Bases de Datos



OArquitectura de tres niveles: Abstracción de datos



- o Nivel Físico ⇒ describe <u>cómo</u> se almacena un registro (ejemplo: cliente). Depende del SGBD
- Nivel Lógico ⇒ describe los datos almacenados en la base de datos y las relaciones entre ellos.
   Esquema global de BD

- Nivel Vistas o externo ⇒ ocultan detalles de tipo de datos. Programas de aplicación se escriben a este nivel
  - Cada usuario o grupos de usuarios tiene su propia vista
  - Pueden ocultar información (ejemplo salario) para determinados usuarios



- Los niveles proporcionan <u>independencia</u> <u>de datos</u>: No cambia el esquema sino el mapa entre dos niveles.
- Ejemplos prácticos:
  - 1. Se desea migrar una BD (con un diseño en tres niveles: Diccionario de Datos, conceptual E/R, lógico relacional, físico Oracle) de Oracle a SQL Server.
    - No cambia: modelo conceptual, modelo lógico
    - Cambia: modelo físico, regenerándolo para cumplir las reglas y peculiaridades del nuevo SGBD.
  - 2. Una nueva aplicación requiere un nuevo campo >> Una tabla en el modelo global tiene un atributo más.
    - Se crea un esquema externo nuevo para esa aplicación, conteniendo ese nuevo campo
    - El resto de las aplicaciones no se ven afectadas ya que sus esquemas externos no han cambiado.



### Independencia de datos:

- **Lógica**: es la capacidad de modificar el esquema conceptual sin tener que alterar los esquemas externos ni los programas de aplicación (solo el mapa)
- Física: es la capacidad de modificar el esquema interno sin tener que alterar el esquema conceptual
- Las aplicaciones dependen del esquema externo → no cambian
- La interfaz (o mapa) entre niveles esta definida para que cambios en una parte, no influyan en otras
- **Ojo**: La independencia es sólo de arriba abajo (si hay que incluir un campo en el nivel externo, afecta al global y al físico)



# Base de datos, esquema e instancia

- o Conceptos equivalentes a variable, tipo y valor en lenguajes de programación
- o BD ⇒ contenedor de información, al igual que una variable
  - Lo deseable es **la** (una) BD de **la** empresa, pero un economista que realiza la nómina de distintas empresas tendría una BD para cada una de ellas
- o Esquema ⇒ Estructura lógica de una base de datos
  - (recoge restricciones en el mundo real)
  - Equivalente al tipo de una variable en un programa
  - Esquema físico ⇒ cómo almacenar los datos en el disco
  - Esquema lógico ⇒ qué datos son relevantes en el universo del discurso
- o Instancia ⇒ el contenido de una base de datos en un instante determinado (conjunto de datos concretos que almacena)
  - Análogo al valor de una variable
  - También llamada ocurrencia, ejemplar, estado (de la BD) o instantánea
  - El back-up contiene una instancia de una BD
  - El Universo Discurso (UD) evoluciona en el tiempo, y con él la BD, generando instancias distintas
  - Virtualmente el número de instancias puede ser infinito.

(buena discusión de esto en Piattini2006, pag 100)



## **Instancias**

- Cuando se crea una base de datos, sólo se está definiendo su **esquema**, aún no tiene datos, por lo que se dice que tiene un **estado vacío** o es **instancia vacía**
- Cuando se cargan los datos iniciales (tablas con datos "maestros") ⇒ Estado inicial o instancia inicial
- Los estados pueden ser infinitos debido a la evolución del sistema, pero siempre satisfaciendo las restricciones del UD
- El SGBD (Sistema Gestor de Base de Datos) se encarga de que sólo se almacenen estados ó instancias válidos, ajustados a las reglas del esquema proporcionado
- Si las reglas son erróneas ⇒ Base de Datos contendrá estados o instancias imposibles en el mundo real (por fallos en el diseño). Ejemplo: (Sexo: Varón, nº embarazos=2)



## Diccionario de datos

- La validación de las instancias se lleva a cabo mediante el esquema, almacenado en una sección de la BD
- llamada Meta-Base de Datos, o Base de Datos del Sistema, o Catálogo del Sistema
- Actúa como catálogo del sistema, permitiendo al SGBD saber qué reglas debe aplicar
- Metadatos ⇒ Intensión de la Base de Datos
- Instancia determinada ⇒ Extensión del esquema de la Base de Datos.



### Modelos de datos

- Son una colección de herramientas conceptuales para describir:
  - Datos
  - Relaciones entre datos
  - La semántica de los datos
  - Restricciones de los datos
- Modelo Entidad-Relación
- Modelo Relacional
- Otros modelos
  - Modelo orientado a objetos
  - Modelo relacional orientado a objetos
  - Modelos de datos semi-estructurados
  - Modelos viejos: en red y jerárquico

## Modelos de datos



# Modelo entidad relación (MER)

- Modelo E-R (del mundo real)
  - Entidades (objetos): clientes, cuentas
  - Atributos (características): nombre, apellidos, dni
  - Relaciones entre entidades: cuenta A-101 pertenece a Javier
    - Relación impositora asocia clientes con cuentas
- Usado ampliamente para el diseño de bases de datos
  - Diseño de bases de datos con modelo E-R se convierte usualmente en el modelo relacional que es usado para procesamiento y almacenamiento
  - Sencillo, fácil de entender, usado incluso para hablar con nuestro cliente
- El esquema global se representa mediante un diagrama.



# Modelos de datos

o Ejemplo (parcial) de esquema en el modelo entidad relación.



## Modelo relacional

Se utilizan tablas para los datos y relaciones
 Ejemplo de instancia en el modelo relacional



# Ejemplo de Base de datos relacional

La relación entre tablas se establece por el valor contenido

|   | id-cliente | nombre-cliente | calle-cliente | ciudad-cliente |
|---|------------|----------------|---------------|----------------|
|   | 19.283.746 | González       | Arenal        | La Granja      |
|   | 01.928.374 | Gómez          | Carretas      | Cerceda        |
|   | 67.789.901 | López          | Mayor         | Peguerinos     |
|   | 18.273.609 | Abril          | Preciados     | Valsaín        |
| < | 32.112.312 | Santos         | Mayor         | Peguerinos     |
|   | 33.666.999 | Rupérez        | Ramblas       | León           |
|   | 01.928.374 | Gómez          | Carretas      | Cerceda        |

(a) La tabla cliente

| número-cuenta              | saldo |  | id-cliente | número-cuenta |
|----------------------------|-------|--|------------|---------------|
| C-101                      | 500   |  | 19.283.746 | C-101         |
| C-215                      | 700   |  | 19.283.746 | C-201         |
| C-102                      | 400   |  | 01.928.374 | C-215         |
| C-305                      | 350   |  | 67.789.901 | C-102         |
| C-201                      | 900   |  | 18.273.609 | C-305         |
| C-217                      | 750   |  | 32.112.312 | C-217         |
| C-222 700                  |       |  | 33.666.999 | C-222         |
| (b) La tabla <i>cuenta</i> |       |  | 01.928.374 | C-201         |

(b) La tabla impositor



## Modelo de datos

- oOrientado a Objetos: similar al modelo E-R.
  - Colección de Objetos ⇒ valores almacenados en variables + métodos que operan sobre ellos.
  - Los que tienen iguales valores y métodos  $\Rightarrow$  Se agrupan en clases
  - Se accede a los valores por medio de métodos
  - Cada objeto tiene identidad única independiente de los datos⇒ dos objetos con valores iguales son diferentes.

### Modelo de datos

- o Modelo jerárquico:
  - Los registros se organizan como colecciones de árboles
  - Establece relaciones de 1 a n



- Asimetría: ¿Qué compró cli1?/¿Quién compró prod2?
- Problemas: ¿dónde almaceno un producto aun no comprado?



## Modelo de datos

### oModelo de red

- Se establecen grafos dirigidos, o mas bien diversos árboles
- Establece relaciones de n a m, mediante un nexo (pedido en el ej)



- Simétrico
- Cada ped 1 y sólo 1 "padre" de cada tipo



Instancia

# Lenguajes de un SGBD (LDD)

- o SGBD ⇒ programarlo para introducir el esquema de definición de la BD
  - LDD (Lenguaje de definición de datos) Se puede dividir en:
    - LDA (Lenguaje de definición de Almacenamiento): utilizado sólo para crear el esquema
    - LDV (Lenguaje de definición de vistas)

Ej:

create table cuenta (número-cuenta char(10), saldo integer)

- $\circ$  Genera el esquema de la base de datos  $\Rightarrow$  Metadatos (datos sobre los datos)
- o Se guarda en el **catálogo** de la Base de Datos



# El catálogo de un SGBD relacional

- o Almacena el esquema de la base de datos
  - Nombre de las relaciones
  - Nombre de atributos
  - Nuevos dominios
  - Restricciones:
    - Dominio de datos
    - Claves candidatas y primarias
    - Claves extranjeras o foráneas
    - Valores NULL/NOT NULL
  - Vistas
  - Estructura de almacenamiento
  - Índices y métodos de acceso
  - Autorización: Usuarios/Permisos/Datos
  - En sistemas avanzados también almacena:
    - Funciones de usuario
    - Operadores
    - Estadísticas para la gestión del SGBD
    - Disparadores (triggers)



# El catálogo de un SGBD relacional

- o Es una BD sobre la BD
- o Ejemplo: relación de catálogo que describe esquemas de relación.

#### REL\_AND\_ATTR\_CATALOG

| REL_NAME            | ATTR NAME          | ATTR_TYPE | MEMBER_OF_PK | MEMBER_OF_FK | FK_RELATION     |
|---------------------|--------------------|-----------|--------------|--------------|-----------------|
| EMPLEADO            | NOMBRE             | VSTR15    | no           | no           |                 |
| EMPLEADO            | INIC               | CHAR      | no           | no           |                 |
| EMPLEADO            | APELLIDO           | VSTR15    | no           | no           |                 |
| EMPLEADO            | NSS                | STR9      | SÍ           | no           |                 |
| EMPLEADO            | FECHA_NCTO         | STR9      | no           | no           |                 |
| EMPLEADO            | DIRECCIÓN          | VSTR30    | no           | no           |                 |
| EMPLEADO            | SEXO               | CHAR      | no           | no           |                 |
| EMPLEADO            | SALARIO            | INTEGER   | no           | no           |                 |
| EMPLEADO            | NSS_SUPERV         | STR9      | no           | sí           |                 |
| EMPLEADO            | ND                 | INTEGER   | no           | SÍ           | EMPLEADO        |
| DEPARTAMENTO        | NOMBRED            | VSTR10    | no           | no           | DEPARTAMENT     |
| DEPARTAMENTO        | NÚMEROD            | INTEGER   | sí           | no           | DEI TOTO MILETO |
| DEPARTAMENTO        | MGRSSN             | STR9      | no           | sí           |                 |
| DEPARTAMENTO        | FECHA_INIC_JEFE    | STR10     | no           | no           | EMPLEADO        |
| LOCALIZACIONES_DEPT | NÚMEROD            | INTEGER   | sí           | sí           | EIIII EE/IDO    |
| LOCALIZACIONES_DEPT | LOCALIZACIÓND      | VSTR15    | sí           | no           | DEPARTAMENT     |
| PROYECTO            | NOMBREP            | VSTR10    | no           | no           | DEI ATTAMEN     |
| PROYECTO            | NÚMEROP            | INTEGER   | sí           | no           |                 |
| PROYECTO            | LOCALIZACIÓNP      | VSTR15    | no           | no           |                 |
| PROYECTO            | NUMD               | INTEGER   | no           | SÍ           |                 |
| TRABAJA_EN          | NSSE               | STR9      | SÍ           | sí           | DEPARTAMENT     |
| TRABAJA_EN          | NP                 | INTEGER   | sí           | SÍ           | EMPLEADO        |
| TRABAJA_EN          | HORAS              | REAL      | no           | no           | PROYECTO        |
| DEPENDIENTE         | NSSE               | STR9      | sí           | sí           |                 |
| DEPENDIENTE         | NOMBRE DEPENDIENTE | VSTR15    | SÍ           | no           | EMPLEADO        |
| DEPENDIENTE         | SEXO               | CHAR      | no           | no           | E-HI LEADO      |
| DEPENDIENTE         | FECHA_NCTO         | STR9      | no           | no           |                 |



# El catálogo de un SGBD relacional

o Ej. acceso de usuario mediante herramienta administrativa:





# Lenguajes de un SGBD (LMD)

- o Lenguajes de un SGBD
  - LMD
    - De Alto Nivel o no procedimental:
      - Típico lenguaje de consulta orientado a conjuntos
      - Qué obtener pero no cómo obtenerlo
      - Son declarativos
    - De Bajo Nivel o procedimental:
      - Trabajan registro a registro
      - Están integrados en un lenguaje de programación de propósito general (Lenguaje anfitrión).
    - Los LMD utilizados de forma independiente se les llama lenguajes de consulta
  - SQL (Select Query Language) es el lenguaje de consultas más utilizado. Es un estándar.
  - Especializados: 4GL



# Lenguajes de un SGBD (SQL)

- oSQL: ampliamente usado como lenguaje no-procedimental Ejemplo: En la BD de la trasparencia 16
  - Encontrar el nombre del cliente cuyo identificador es 19.283.746

SELECT cliente.nombre\_cliente FROM cliente WHERE cliente.id\_cliente= '19.238.746'

- Encontrar el saldo del cliente anterior

SELECT cuenta.saldo
FROM impositor, cuenta
WHERE impositor.id\_ cliente= '19 238 746'
AND

impositor.numero\_cuenta=cuenta.numero\_cuenta

| id-cliente | nombre-cliente | calle-cliente | ciudad-cliente |
|------------|----------------|---------------|----------------|
| 19.283.746 | González       | Arenal        | La Granja      |
| 01.928.374 | Gómez          | Carretas      | Cerceda        |
| 67.789.901 | López          | Mayor         | Peguerinos     |
| 18.273.609 | Abril          | Preciados     | Valsaín        |
| 32.112.312 | Santos         | Mayor         | Peguerinos     |
| 33.666.999 | Rupérez        | Ramblas       | León           |
| 01.928.374 | Gómez          | Carretas      | Cerceda        |

(a) La tabla cliente

| número-cuenta | saldo |
|---------------|-------|
| C-101         | 500   |
| C-215         | 700   |
| C-102         | 400   |
| C-305         | 350   |
| C-201         | 900   |
| C-217         | 750   |
| C-222         | 700   |
|               |       |

<sup>(</sup>b) La tabla cuenta

| liente | número-cuenta                                                                |  |
|--------|------------------------------------------------------------------------------|--|
| 83.746 | C-101                                                                        |  |
| 83.746 | C-201                                                                        |  |
| 28.374 | C-215                                                                        |  |
| 89.901 | C-102                                                                        |  |
| 73.609 | C-305                                                                        |  |
| 12.312 | C-217                                                                        |  |
| 66.999 | C-222                                                                        |  |
| 28.374 | C-201                                                                        |  |
|        | 83.746<br>83.746<br>28.374<br>89.901<br>73.609<br>12.312<br>66.999<br>28.374 |  |

(b) La tabla impositor

- o Los programas de aplicación acceden a la base de datos por:
  - Extensiones de un lenguaje de programación convencional (COBOL, PL1..) que permiten embeber SQL
  - Interfaces de aplicación (ODBC/JDBC) que permiten enviar consultas SQL a la base de datos



# Esquema de funcionamiento de un SGB



Tipos de usuarios

Procesadores de consultas

Gestor de almacenamiento



### Estructura de un SGBD a nivel interno

#### o Gestor de almacenamiento

- Interface entre los datos y programas de alto nivel y consultas
- Responsable del almacenamiento, recuperación y actualización de la base de datos
- Componentes:
  - Gestor autorización e integridad ⇒ satisface las ligaduras de integridad y la autorización de usuarios para acceder
  - Gestor de transacciones ⇒ asegura que la BD quede en estado consistente (correcto) a pesar de fallos en el sistema y transacciones concurrentes (ACID)
  - Gestor de archivos ⇒ gestiona la reserva de espacio en disco y las estructuras de archivos empleadas para la representación de la información almacenada
  - Gestor de memoria intermedia ⇒ trae los datos del disco a la memoria principal y decide qué datos tratar en la memoria cache.

### Estructura de un SGBD a nivel interno

#### o Procesador de consultas

- Intérprete del LDD ⇒ interpreta las instrucciones LDD y las registra en un conjunto de tablas que tienen metadatos
- Compilador del LMD ⇒ traduce instrucciones del LMD a instrucciones de bajo nivel que entiende el motor de evaluación de consultas
- Precompilador del LMD ⇒ convierte las instrucciones del LMD en llamadas a procedimientos normales del anfitrión
- Optimizador de consultas ⇒ obtiene la consulta más eficiente equivalente a la original para ser procesada posteriormente
- Motor de evaluación de consultas ⇒ ejecuta las instrucciones de bajo nivel generadas por el compilador del LMD.



## Herramientas

- Carga de Datos de ficheros existentes
- OHerramientas de conversión (importar/exportar)
- oCopia de Seguridad (Back-up)
- o Reorganización de ficheros
- o Control del rendimiento para la supervisión de la base de datos
- o Compresión de datos
- OSistema de comunicaciones.

### Usuarios de las BD

- oSegún la manera en que interactúen con la BD:
  - Programadores de aplicaciones ⇒ interactúan con el sistema a través de llamadas al LMD sobre otro lenguaje (anfitrión)
  - Usuarios sofisticados ⇒ realizan peticiones usando un lenguaje de consultas
  - Usuarios especializados ⇒ escriben aplicaciones especializadas
  - Usuarios normales ⇒ usuarios no sofisticados que interactúan con el sistema a través de aplicaciones permanentes
    - Oficinistas, clientes que acceden a través de web o puestos de consulta. Ej: reservas aéreas, banca.
  - Administrador de la Base de Datos (ABD)  $\Rightarrow$  control central sobre el sistema. Una o varias personas.
    - Definición del esquema
    - Definición de la estructura y métodos de acceso
    - Modificación del esquema y de la organización física
    - Concesión de la autorización para el acceso a los datos
    - · Mantenimiento rutinario: Back-up, espacio en disco, supervisión, etc.



# Sistemas Informáticos (Centralizado)

- oEl sistema de la Base de Datos se ejecuta en un único sistema informático, sin interactuar con ningún otro sistema
- Estos sistemas abarcan a los típicos equipos monopuesto, y a los sistemas multipuesto, donde la base de datos está centralizada en el sistema principal
- No suelen ofrecer soluciones excesivamente avanzadas en la gestión de la base de datos.

# Sistemas Informáticos (Centralizado)



# Sistemas Informáticos (Cliente-Servidor)

- Muy extendidos en la actualidad
- oLa base de datos se sitúa en un ordenador, el cuál realiza toda la gestión y almacenamiento de datos. Es el servidor
- oLos ordenadores (quizá menos potentes) hacen consultas sobre los datos del servidor ⇒ proporcionando una interface amigable de acceso a datos al usuario, descargando de esta tarea al servidor. Son los clientes
- oSistema cliente-servidor típico: Servidores de páginas Web con conexión a base de datos.



# Sistemas Informáticos (Cliente-Servidor)



# Sistemas Informáticos (Paralelos)

- oUtilizan varias CPU y discos en paralelo para optimizar el rendimiento
- oRendimiento:
  - Productividad : nº de tareas completadas en un intervalo de tiempo
  - Tiempo de respuesta : tiempo en completar una tarea.



# Sistemas Informáticos (Distribuidos)

o La información se almacena en varios ordenadores

o Dichos ordenadores están conectados entre sí por redes de comunicación.



## Clasificación Sistemas de Bases de Datos

- o Por Modelo de Datos: relacional, objeto-relacional, jerárquico, red
- oPor el nº de usuarios: monousuario, multiusuario
- o Nº de sitios en los que está dividido: centralizado, distribuido
- o Campo de aplicación:
  - Propósito general
  - Propósito específico : reserva de billetes de líneas aéreas (OLTP)
- oCoste.

## Proceso de Diseño de las BBDD

- o El proceso de diseño de una base de datos, idealmente, es un proceso secuencial e incremental
  - Captura de requisitos: Diccionario de Datos (Documentos + ME/R Ext)
  - Aproximación inicial (Análisis): Modelo Lógico (ME/R Ext → MR)
  - Solución específica (Diseño): Modelo Físico (MR específico del SGBD)
  - Programación: Implementación (Estructuras y consultas) (SQL)
  - Carga inicial (a veces conocida como carga de ficheros maestros) (SQL)
  - Pruebas (SQL, Java, otros lenguajes con acceso al SGBD).

#### oProblemas:

- Partimos de un enunciado en lenguaje natural: poco formal, dado a confusiones y ambigüedades, con información incompleta
- Errores en las primeras fases se magnifican en fases siguientes
- La base de datos es un ente vivo, cambia y se adapta, y por tanto el diseño también se debe adaptar: A veces hay que volver atrás a cambiar elementos, pero sin perder los datos ya almacenados.

