50X1-HUM

25X1

50X1-HUM

#101

Доклады Академин Наук СССР 1950. Tom LXXIII, No 2

303-305°

Reports of the deeleny of Science of the ESA (Year Stries) - Section of Ecchnical Accines - V. 23 1950, pp. 303-305 TEXHUYECKAS ФИЗИКА

I. Dekhtyar и. ДЕХТЯР

к вопросу о жаропрочности сплавов

(Представлено академиком Н. Т. Гудцовым 15 II 1950)

В последнее время в литературе встречаются попытки найти физические принципы легирования жаропрочных сплавов. Так например, к. Осипов (1), исходя из анализа так называемых N(E)-кривых для α ү-Ге, дает объяснение большей жаропрочности ү-твердых растворов, гогласующееся с опытом. Его рассуждения сводятся к следующему.

Сравнивая N (E)-кривые для α - и γ -Fe, можно заметить, что в опрееленном интервале энергий кривая для α-Ге идет выше кривой γ-Ге. при образовании твердых растворов из переходных элементов происходит обобщение N(E)-кривых, причем результирующая кривая в эсновном сохраняет характер исходных N(E)-кривых, свойственных либо α -, либо γ -Fe, так как он определяется, главным образом, кристаллической симметрией и природой растворитсля.

Если, например, сплавляемые элементы (добавка Ni к Fe) обладают решеткой, то обобщенная N (E)-кривая будет мало отличаться от V(E)-кривых компонент, и при пластической деформации внешние условия не произведут существенных изменений в распределении и энергии электронов; связь сохранит преимущественно металлический

Если же добавить к γ -Fe хром, у которого N(E)-кривая близка к кривой для ү-Ге, то при сплавлении электроны будут локализоваться преимущественно вблизи атомов растворителя, что приведет к знаительному усилению связи, которая в этом случае значительно отличается от металлической.

В тесной связи с этими выводами находятся данные, полученные пами по исследованию диффузии в некоторых сплавах и данные по -самодиффузии (2-4).

Анализ этих данных (табл. 1) показывает, что с достаточной степенью точности можно считать, что энергия активации для самодиффузии E_a пропорциональна энергии связи E_{cs} , причем для металлов с координационным числом z=12 этот коэффициент $k\cong 0,65$ (а для металлов с $z=8,\;k\simeq0,85$). Расчет данных по исследованию диффузии в α-твердых растворах Cu—Zn, Ag—Cd и Ag—Zn показывает, что и в этом случае иммеет место такое же соотношение между E_a и E_{cs} .

Сопоставляя данные для энергии активации при самодиффузии и энергии активации для ползучести (5) при высоких температурах, замечаем, что в пределах ошибок опыта они совпадают (см. табл. 2).

На основании того что $E_a=kE_{cs}$, можно утверждать, что блиэкие значения энергий активации различных на первый взгляд процессов указывают не только на то, что механизмы этих процессов имеют, повидимому, одинаковый характер, но и на то, что эпергию активации,

эспований к ero anchuñ. необходи-I_вО₁₈] было папым, по ос, почему занимают

-ими по_{степ}е

эселинх Опир

ий $SI = O_{\theta \eta y}^{m_{\eta y}}$ троп в фор

яьной асим-

' c อกเพล ли одинякох синтезов,

метричных эня целого

энчные по-

сопряжечных ко-

ьных плоражения. оседними зковые с noe pac-

)_{нпр} бла--араметра 2,70 Å.

кучилось Стояния ₽ **2,**58 Å резкой

шгличан пара-

⊐олучи-A. He-Ском-5м к А1 и. Для

мелите струкифрам I,33 = 3,03 и

c Alло

∋лов J, 69, лов rans.

Таблица 1

Металл	<i>Е_а</i> в ккал/г-ат	<i>Е_{св}</i> в ккал/г-ат	$k = \frac{E_a}{E_{cs}}$	Металл	E _a	E _{cu}	$k = \frac{E_a}{E_{cs}}$
Pb	27,65 ⁽²⁾ 29,95 ⁽²⁾ 17,28 ⁽³⁾ 51,0 ⁽²⁾ 62.9 ⁽³⁾ 57,2 ⁽²⁾	47,5 47,8 27,4 92,0 92,0 81,0	0,58 0,63 0,63 0,56 0,68 0,70	Cu	51,0 ⁽³⁾ 45,6 ⁽³⁾ 37,5 ⁽³⁾ 48,0 ⁽⁴⁾ 78,0 ⁽⁴⁾	81,2 68,0 55,0 94,0 94,0	0,62 0,68 0,68 0,51 0,83

Таблица 2

Металл (сплав)	Zn	Çd	Bt	Al	Cu	Fe	α-латунь
E_a (самодиффузия) в ккал/г-ат	17,6	17,8	30,0	37,5	57,2	78,2	41,7 ⁽²⁾
в ккал/г-ат	16,8	15,2	20,0	37,0	56,0	90,0	42,0

получаемую для диффузии, можно считать физическим критерием жаропрочности данного сплава.

"Здесь же следует отметить, что жаропрочность обусловливается рядом других факторов, пока трудно учитываемых. С другой стороны, энергию активации, получаемую из данных по исследованию диффу-

зии, можно качественно увязать с характером хода N (E) кривых (распределения плотности состояний) для металлов (сплавов); при этом всегда следует иметь в виду, что при одинаковом числе эл/ат. и одинаковом координационном числе для сравниваемых металлов (сплавов) большому значению $N_{\text{макс}}(E)$, соответствует меньшая энергия связи, и наоборот. Это можно иллюстрировать следующими примерами.

На рис. 1. представлены N(E)-кривые для Ag и Cu, причем оказалось, что $N_m(E)_{\text{Cu}} < N_m(E)_{\text{Ag}}$ (в пределах первой зоны Бриллюэна), а E(Cu) > E(Ag). В то же время и энергия активации для самодиффузии меди.

больше таковой для серебра (см. табл. 1). На Опыты показали (°), что при диффузии Мо в α- и γ-Fe энергии активации в обоих случаях одинаковы и равны ~ 58 500 кал/г-ат, хотя коэффициенты диффузии сильно отличаются.

Механизм диффузии одинаков и для α - и для γ -твердого раствора. Но принимая во внимание, что $k_{\alpha} > k_{\gamma}$, получаем, что при равных значениях E_{α} эпергия связи в γ -твердом растворе больше таковой для α -твердого раствора. Это согласуется с концепцией о резонансе N(E)-кривых (1).

Опыты по диффузии Ni в γ -Fe (7) и Cr в γ -Fe (8) показали, что в первом случае E_a =67 ккал/г-ат, а во втором случае E_a =112 ккал/г-ат. Вблизи от высиих запятых уровней плотность состояний на N (E)-кри-

° 1.0й для Ni к γ-l l-γ-твердо

Учити ческий з сплава и железа

Сове в ү-Ге. Ст (~8 мало об лении э дого ра энергия

> Впол диффуз Иссл показые щение это так

эпергиі пизма і личесть Скорост скорост

позвол

1 К. 1948. 4 R. Mel 1947; J. 7 С. W кен, И кель, АН УР лица 1

 $h = \frac{E_a}{E_{c\theta}}$

0,62 0,68 0,68

0,68 0,54 0,83

ица 2

α-латунь

 $41,7^{(2)}$

42,0

•итерием

ливается стороны, диффухаракделения илавов); ду, что наковом смых ме-Маке (E) и наобо-

вые для $(E)_{Cu} < \phi$ филлюремя и и меди

ующими

эпергии эт, хотя

эствора. равных вой для допансе

-ли, что эм/г-ат. ∄)-кривой для ү-Ге меньше, чем для Ni; поэтому при добавке 8—9% Ni к ү-Ге плотность состояний несколько уменьшится и энергия связи у-твердого раствора возрастет.

Учитывая, что в этом случае связи носят преимущественно металлический характер и принимая $k \cong 0,65$, получаем для энергии связи сплава величину ~ 100 ккал/г-ат — большую, чем для энергии связи железа ($E_{co} = 94$ ккал/г-ат (см. табл. 1)).

Совершенно другая картина получается при диффузии хрома (z=8) в γ -Fe. Хром имеет N(E)-кривую, близкую к таковой для α -Fe. Добавка Сг ($\sim 8\,^0/_0$) к γ -Fe дает незначительный резонанс, электроны при этом мало обобщаются, что создает большую неравномерность в распредемении электронов, а это выразится в том, что энергия связи γ -тверрого раствора значительно возрастает, а следовательно, возрастает и энергия активации при диффузии. Это подтверждается опытом (8).

Вполне очевидно значение данных, получаемых из исследования

диффузии в сплавах для выяснения механизма ползучести.

Исследование процесса самодиффузии и диффузии в сплавах (9) показывает, что наиболее вероятным механизмом эдесь является замещение диффундирующими атомами вакантных мест в решетке. Если это так, то (принимая во внимание факт приблизительного равенства внергии активации при диффузии и ползучести) при объяснении мехализма ползучести следует учесть роль таких вакантных мест. Их количество зависит от температуры.

Скорость процесса ползучести будет, очевидно, зависеть как от скорости образования вакансий, характера их распределения, так и скорости заполнения их соседними атомами. Учет этих факторов

позволит выяснить механизм процесса.

Лаборатория металлофизики Академии изук УССР Киев Поступило 8 XII 1949

цитированная литература

¹ К. Осипов, ДАН, 60, 1535 (1948). ² Р. Бэррер, Диффузия в твердых телах, 1948. ³W. А. Јонивои, Metals Technology, Т. Р., 1272 (1941). ⁴ С. Вігснена I and R. Мең I, Mining and Metallurgy, ноябрь, 555 (1947). ⁵ Ф. Зейти, Физика металлов, 1947; Ј. Каптог, ASM Handbook (1939). ⁶ Ј. Наш, Trans. Am. Soc. Met., 35 331 (1945). ⁷ С. Wells and R. Meh I, Met. Technology, Т. Р., 1281, 1282 (1940). ⁶ С. Геририкен, И. Дехтяри Л. Кумок, Доновіді АН УРСР, № 2 (1949). ⁹ Я. И. Френкель Введение в теорию металлов, 1948; С. Геририкен и И. Дехтяр, Доновіді АН УРСР, № 5 (1949).

5 дан, т. 73, № 2

305

50X1-HUM

склянке в тем-

иому раствору Эм реактивного

окраска, обра—30-минутного
-краской пробыке образом.
то же состава,
отсутствии ни-

Поступило 23 VI 1949

. Ephraim.

B TEM. Reports of the academy of Sciences of the 2 SIR (Kew Series), v. To Feb. 1950 - pp. 633-635 1050. Tom LXX, No. 4

химия

В.G. Livshits YK. Y. Poper Б. Г. ЛИВШИЦ и К. В. ПОПОВ

УТОЧНЕНИЕ ДИАГРАММЫ СОСТОЯНИЯ СИСТЕМЫ Fe — Cr — C

(Представлено академиком Н. Т. Гудцовым 27 X1 1949)

Целью настоящего исследования было уточнение изотермического разреза диаграммы состояния системы Fe — Cr — С при температуре ниже критической. Основной результат исследования представлен на рис. 1 в виде изотермического разреза диаграммы состояния рассматри-

ваемой системы. Исследуя процессы, протекающие при термообработке хромистых Исследуя процессы, протекающие при термообработке хромистых сталей, авторы установили, что существующей диаграммой состояния сталей, авторы установили, что существующей диаграммой состояния сталей. В практически невозможно из-за ее системы Fe — Cr — C пользоваться практически невозможно из-за ее

неточности. Современные представления о диаграмме состояния этой системы опираются в основном на четыре работы (1-4), выполненные на сплавах промышленной чистоты. Изотермический разрез при 20° по Тофауте с сотрудниками и исправления по последующим работам приведены на рис. 1. Первые исследования (1-3) выполнены на литых сплавах весьма грубой структу. ры. В этих случаях сплавы исследовались в состояниях, далеких от равновесия при температуре ниже критической, так как охлаждение сплавов проводилось со слишком большой скоростью. Выделение карбидных фаз производилось весьма примитивным способом — растворением в ки-

Рис. 1. Изотермический разрез диаграммы состояния системы Fe—Cr—C при температуре ниже критической. I—присутствие кубического карбила по Миркину и Блантеру, 2—границы фазовых областей по Тофауте. 3—то же по Миркину и Блантеру, 4—то же по нашим данным

слоте. В работах. (2, 3) совершенно недостаточно использован рентгеновский анализ. Следующие исследователи (4) выполнили свою работу новский анализ. Следующие исследователи (4) выполнили свою работу на кованой стали, избежав тем самым затруднений, связанных с применением литого материала. Кроме того, они применили более медленное охлаждение в районе карбидных превращений. К сожалению, выделение карбидов в этой работе производилось также растворением в кислоте. Не использовали эти авторы и всех возможностей рентгеновского анализа. Несмотря на все недостатки методики, исследователям (4) удалось получить надежные опытные данные, позволяющие утверждать, что карбиды хрома (CrFe) 7C3 и (CrFe) 23C6 встречаются в стали при менынем содержании хрома, чем это следует из днаграммы состояния, предложенной Тофауте с сотрудниками. Однако эти опытные данные

6 дап, т. 70, № 4

≝юго воздуха.

авторы использовали неправильно, предложенный ими разрез диаграммы состояния невозможен, что видно из продолжения до пересечения нанесенных ими линий. В настоящей работе учтены экспериментальные данные этих авторов (4).

Исследование изолированных карбидных фаз позволяет определять границы областей фазового равновесия на диаграмме состояния с гораздо большей точностью, чем качественный анализ сплава в целом. Поэтому представилось целесообразным не изготавливать большого количества сплавов с высоким содержанием углерода, в которых трудно получить однородную структуру, а ограничиться сталью, которая срав-

нительно легко гомогенизируется в кованом состоянии.

Состав исследованной стали приведен в табл. 1. Сталь для настоящего исследования была выплавлена в 50-килограммовой индукционной печи. Приближение к равновесию достигалось 100-часовыми выдержками при температуре 700°, а для стали с высоким содержанием хромаособо медленным охлаждением с длительными выдержками в области 600—400°. Выделение карбидов производилось путем электрохимического растворения по методу, предложенному Н. М. Поповой (5). Выделенные карбидные осадки подвергались рентгенофазовому анализу по методу порошков с определением постоянных решетки *.

Результаты рентгенофазового и химического анализа карбидов при-

ведены в табл. 1.

Таблица 1

.№ n/n	Обознач. сталн	Состав стали		исутству- карби-	олерж. Сг карбидах %	Постоянные решетки карбидов в Å					
		С	Cr	Прису ют кар ды **	Содерж. в карбил в %		цементита		тригон	ального	
1 2 3 4 5 6 7 8 9 10 * 11 * 12 **	В Г Б Е Ж Д И Л М — И	1,07 1,20 0,51 1,00 1,24 0,50 0,98 0,88 0,80 0,43 0,72 1,00	1,82 1,84 1,98 3,82 4,25 4,34 7,8 10,0 12,4 11,1 11,0 7,8	ц + т ц + т	11,5 23,4 20,2 33,0	4,504 4,512 4,507 4,505 ———————————————————————————————————	5,062 5,075 5,071 5,066	6,714 6,711 6,714 6,714 ————————————————————————————————————	13,85 13,85 13,85 13,84 13,92 13,92 13,93 ———————————————————————————————————	4,488 4,488 4,501 4,490 4,487 4,495	

* №№ 10, 11 и 12 представляют опытные данные И. Л. Миркина и М. Е. Блантер**а** (4) ** № 13 представляет результат фазового анализа карбида, выделенного нз обезуглероженного слоя стали И. *** Обозначения: и — цементит (Fe, Cr)3 С; т — тригональный карбид (Cr, Fe)7 С, к— кубический карбид (Сг, Fe) $_{23}$ С6.

При нанесении границы областей (CrFe)₃Cl+ (CrFe)₇C₃+ феррит и (CrFe) ₇C₃ + феррит возникает вопрос, действительно ли в карбидных осадках стали Д (0,50% С и 4,34% Сг) и И (0,98% С и 7,8% Сг) при приближении к равновесию при температуре ниже критической нет це-

личесть можно: нально: ложени тит — т стоянии Если о ся, что 派 (1,2 равнов стали / KO BO31 тройног

ментита

Han пенного настоян карбид ного ка ложен рый де предел Точ

12% C осадке не уда щегося лилось няющи щих ка Тре

для ег ванных ласти 30М, ч лежит M_{\odot} (0,8 ный ка лыдуш встреч.

кубиче

Oő. кубиче хрома стали Π_0

ницы. Панесс сотруд диагр:

(1927).(1934)(1935-HOBa

^{*} Содержание хрома в карбидных осадках определялось спектрографически по методу, разработанному В. Г. Корицким и И. М. Веселовской в даборатории спектрального анализа Московского института стали специально для данного случая, за что авторы выражают им свою глубокую благодарность.

рез диаграмперессчения иментальные

т определять тояния с гонва в целом. јольшого коорых трудно эторая срав-

для настоядукционной ∎ выдержкаем хрома -і в области ктрохимичеэй (⁵). Выанализу по

бидов при-

блица 1

- n A

-- спального

4,488 4,4884,501 4,490 4,4874,495

та и М. Е.

енного из

Gr, Fe), Ca;

-сррит и бидных Cr) npu лет це-

ески по M CHERTлчая, за

ментига. Не присутствует ли здесь цементит в такой форме и таком количестве, что обнаружить его рентгеновским анализом просто невозможно? Ответ на этот вопрос дает сравнение постоянных решетки тригонального карбида, выделенного из разной стали. Исходя из общих положений учения о равновесиях в области тройного равновесия цементит — тригональный карбид — феррит, каждая из этих фаз имеет постоянный состав, а следовательно, и постоянные параметры решетки. Если обратиться к постоянной а тригонального карбида, то оказывается, что для стали Б (0,51% С и 1,98% Сг), Е (1,00% С и 3,82% Сг) и Ж (1,24% С и 4,25% Сг), несомненно относящейся к области тройного равновесия, размер этого нараметра не меняется. При переходе же к стали Д (0,50% С и 4,34% Сг) величина а тригонального карбида резко возрастает. Это указывает на то, что сталь Д лежит уже вне области тройного равновесия феррит — цементит — тригопальный карбид.

Наименьшее содержание хрома в карбидном осадке в случае несомненного присутствия только тригонального карбида, наблюдавшееся в настоящей работе, составляет 33%. Наибольшее содержание хрома в карбидном осадке в случае несомпенного присутствия смеси тригонального карбида и цементита было 23,4%. Эти две цифры определяют положение предела растворимости жслеза в тригональном карбиде, который должен находиться между ними. Условно нами принято, что этот

предел находится при 28% Ст (точка И на рис. 1).

Точка О — предел растворения хрома в цементите — нанесена при 12% Ст потому, что более высокого содержания хрома в карбидном осадке в случае несомненного присутствия только цементита наблюдать не удалось. Положение точки а1, выражающей состав феррита, находящегося в равновесии с цементитом и тригональным карбидом, определилось пересечением прямых (на рис. 1 не приведены) Ес и Жж, соединяющих точки состава сталей Е и Ж с точками состава соответствующих карбидных осадков.

Треугольник области равновесия феррит — тригональный карбид кубический карбид определен в настоящей работе менее точно, так как для его построения не был применен количественный анализ изолированных карбидов. Граница, отделяющая эту область от двухфазной области феррит — тригонадыный карбид, построена на рис. 1 таким образом, что сталь И (0,98% С и 7,8% Сr) и Л (0,88% С и 10,0% Сr) лежит в двухфазной области феррит - тригональный карбид, а сталь М (0,80% С и 12,4% Сг) — в трехфазной области феррит — тригональный карбил — кубический карбид. Учтено, что по опытным данным прелыдущих исследований (табл. 1, №№ 10, 11, 12) кубический карбид встречается в стали с 11% Ст по крайней мере до содержания С в 1,0%.

Область трехфазного равновесия феррит — тригональный карбид кубический карбид своим железным углом опускается до содержаний хрома несколько ииже 7,8%, так как в сильно обезуглероженном слое

стали И (7,8% Сг) был обнаружен кубический карбид.

Положение точки P на рис. 1 получено экстраполяцией этой границы. Точка К — предел растворимости железа в кубическом карбиде нанесена по непосредственным экспериментальным данным Тофауте с сотрудниками (3), не использованным самими авторами при построении диаграммы состояния.

Поступило 27 XI 1949 Ser Server

питированная литература

¹ A. Westgren, G. Phragmen, Tr. Negresco, Jernkont, Afn., 111, 513 (1927). ² W. Tofaute, A. Sponheuer u. H. Bennek, Arch. f. Eisenhüttenwes., 8 (1934—35). ³ W. Tofaute, C. Küttner u. A. Büttinghaus, ibid., 9, No 12 (1935—36). ⁴ И.Л. Миркии и М.Е. Блантер, Металлург, № 8 (1940). ⁵ Н. М. Понова, Зав. лабор., № 10 (1945).

635

Declassified in Part - Sanitized Copy Approved for Release 2012/11/14: CIA-RDP80-00926A006100030010-2

50X1-HUM

