1st Semester Examination, 2022

Time: 3 hours

Full Marks: 60

Answer from all the Parts as per direction

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words as far as practicable

(DIGITAL LOGIC)

PART - I

1.	Answer all	the questions	and	fill in	the blan	ks
	as required	•				
	•	· ·			* * * *	1×8

- (i) The decimal equivalent of the binary number (1111.011)2 is _____.
 - (a) $(15.375)_{10}$
 - (b) $(10.123)_{10}$

	(c)	$(11.1/5)_{10}$			
	(d)	$(9.23)_{10}$			
(ii)	There are cells in a 3-variable K-map.				
	(a)	6			
	(b)	8			
	(c)	16			
	(<i>d</i>)	9			
(iii)		EE double precision floating point numis is 64 bit.			
(iv)	Booth algorithm is used for binary multiplication.				
(v)	The primary difference between a counter and a register is				
	(a)	A counter has the capability to store notice of information whereas a register has one bit.			
	(b)	A register counts data			

- (c) A register has no specific sequence of states
- (d) A counter has no particular sequence of states

AND THE RESERVE

- (vi) Decoders and Encoders are doing reverse operation.
 - (a) True.
 - (b) False
 - (c) Can't say
 - (d) None of these
- (vii) EPROM uses an array of _____.
 - (a) p-channel enhancement type MOSFET
 - (b) n-channel enhancement type MOSFET
 - (c) p-channel depletion type MOSFET
 - (d) n-channel depletion type MOSFET
- (viii) Flash memory is a non-volatile storage device in which data
 - (a) Can be erased physically

- (b) Can be erased magnetically
- (c) Can be erased electrically
- (d) Cannot be erased.

PART - II

- 2. Answer any eight of the following questions within two to three sentences each: $1\frac{1}{2} \times 8$
 - (a) What is use of Karnaugh Maps?
 - (b) Why NAND and NOR gate are called universal set of gates?
 - (c) What is fast adder?
 - (d) 2's complement of the binary number (101100) is _____.
 - (e) Define Guard Bits.
 - (f) What is flip-flop?
 - (g) What is the use of counter?
 - (h) Define finite state machine.

- (i) What is EPROM?
- (j) Define size of memory.

PART - III

- 3. Answer any eight of the following questions within 75 words each: 2×8
 - (a) Define character code.
 - (b) Define absorption law of Boolean algebra.
 - (c) Add the numbers +16 and -8 using 2's complement method.
 - (d) Draw logic gate of the Boolean expression: (A+B)+(A.B)'
 - (e) What are the uses of register?
 - (f) What is multiplexer?
 - (g) Define Programmable Array Logic.
 - (h) Define synchronous DRAM.

- Why we use optical disks?
- (i) Define cost of memory.

PART - IV

Answer all questions within 500 words each: 6×4

(a) Simplifying the Boolean expression $f(A,B,C,D) = \sum m(0,1,2,3,4,8,10,11,12,13)$ using K-maps.

Or

- (b) Define logic gates. Design NAND gate and NOR gate.
- the decreased matter and many stages on the CA (a) Discuss the steps of Booth Algorithm with 5. examples. Or

- (b) Write notes on:
 - (i) IEEE single precision floating point numbers.

- (ii) Fast Adder.
- 6. (a) Explain Master-Slave flip-flop with its truth table and timing diagram.

Or

- (b) What is multiplexer? Design (4×1) multiplexer circuit.
- 7. Write short notes on: (Any two)
 - (i) Flash memory
 - (ii) PROM
 - (iii) DRAM
 - (iv) Magnetic hard disk.