بسم الله الرحمن الرحيم

فصل سوم

زبانهای منظم و گرامرهای منظم (۲)

Regular Languages and Regular Grammars (2)

کاظم فولادی kazim@fouladi.ir دانشکدهی مهندسی برق و کامپیوتر دانشگاه تهران

Reverse of a Regular Language

Theorem:

The reverse $\boldsymbol{L}^{\!R}$ of a regular language \boldsymbol{L} is a regular language

Proof idea:

Construct NFA that accepts $\it L^R$:

invert the transitions of the NFA that accepts L

Proof

Since L is regular, there is NFA that accepts L

Example:

Invert Transitions

Make old initial state a final state

Add a new initial state

Resulting machine accepts L^R

 L^R is regular

Linear Grammars

Linear Grammars

Grammars with at most one variable at the right side of a production

Examples:
$$S \rightarrow aSb$$

$$S \to Ab$$

$$S \to \lambda$$

$$A \rightarrow aAb$$

$$A \rightarrow \lambda$$

A Non-Linear Grammar

Grammar
$$G: S oup SS$$
 $S oup \lambda$ $S oup aSb$ $S oup bSa$

$$L(G) = \{w: n_a(w) = n_b(w)\}$$

Another Linear Grammar

Grammar
$$G: S \to A$$

$$A \to aB \mid \lambda$$

$$B \to Ab$$

$$L(G) = \{a^n b^n : n \ge 0\}$$

Right-Linear Grammars

All productions have form: $A \rightarrow xB$

or

$$A \rightarrow x$$

Example: $S \rightarrow abS$

$$S \rightarrow a$$

Left-Linear Grammars

All productions have form:

$$A \rightarrow Bx$$

or

$$A \rightarrow x$$

Example: $S \rightarrow Aab$

$$S \rightarrow Aab$$

$$A \rightarrow Aab \mid B$$

$$B \rightarrow a$$

Regular Grammars

Regular Grammars

A regular grammar is any right-linear or left-linear grammar

Examples:

$$G_1$$
 G_2 $S \rightarrow abS$ $S \rightarrow Aab$ $A \rightarrow Aab \mid B$ $B \rightarrow a$

Observation

Regular grammars generate regular languages

Examples:

$$G_1$$

$$S \rightarrow abS$$

$$S \rightarrow a$$

$$L(G_1) = (ab) * a$$

$$G_2$$

$$S \rightarrow Aab$$

$$A \rightarrow Aab \mid B$$

$$B \rightarrow a$$

$$L(G_2) = aab(ab) *$$

Regular Grammars Generate Regular Languages

Theorem

```
Languages
Generated by
Regular Grammars
Regular Grammars
```

Theorem - Part 1

Any regular grammar generates a regular language

Theorem - Part 2

Any regular language is generated by a regular grammar

Proof - Part 1

```
Languages
Generated by
Regular Grammars
Regular Grammars
```

The language L(G) generated by any regular grammar G is regular

The case of Right-Linear Grammars

Let G be a right-linear grammar

We will prove: L(G) is regular

Proof idea: We will construct NFA M with L(M) = L(G)

Grammar G is right-linear

Example:
$$S \rightarrow aA \mid B$$
 $A \rightarrow aa \mid B$ $B \rightarrow b \mid B \mid a$

Construct NFA M such that every state is a grammar variable:

$$A \rightarrow aa B$$

$$B \rightarrow b B \mid a$$

Add edges for each production:

$$S \rightarrow aA$$

$$S \rightarrow aA \mid B$$

$$S \rightarrow aA \mid B$$

 $A \rightarrow aa \mid B$

 $S \Rightarrow aA \Rightarrow aaaB \Rightarrow aaabB \Rightarrow aaaba$

NFA M

Grammar

G

$$S \rightarrow aA \mid B$$

$$A \rightarrow aa B$$

$$B \rightarrow bB \mid a$$

$$L(M) = L(G) =$$

$$aaab*a + b*a$$

In General

A right-linear grammar G

has variables:
$$V_0, V_1, V_2, \dots$$

and productions:
$$V_i \rightarrow a_1 a_2 \cdots a_m V_j$$

or

$$V_i \rightarrow a_1 a_2 \cdots a_m$$

We construct the NFA $\,M\,$ such that:

each variable V_i corresponds to a node:

For each production: $V_i \rightarrow a_1 a_2 \cdots a_m V_j$

we add transitions and intermediate nodes

For each production: $V_i \rightarrow a_1 a_2 \cdots a_m$

we add transitions and intermediate nodes

Resulting NFA M looks like this:

It holds that: L(G) = L(M)

The case of Left-Linear Grammars

Let G be a left-linear grammar

We will prove: L(G) is regular

Proof idea:

We will construct a right-linear grammar G' with $L(G) = L(G')^R$

Since G is left-linear grammar the productions look like:

$$A \rightarrow Ba_1a_2 \cdots a_k$$

$$A \rightarrow a_1 a_2 \cdots a_k$$

Construct right-linear grammar G'

In
$$G: A \to Ba_1a_2\cdots a_k$$

$$A \to Bv$$

In
$$G'$$
: $A \to a_k \cdots a_2 a_1 B$ $A \to v^R B$

Construct right-linear grammar G'

It is easy to see that: $L(G) = L(G')^R$

Since G' is right-linear, we have:

$$L(G')$$
 \longrightarrow $L(G')^R$ \longrightarrow $L(G)$ Regular Regular Language Language

Proof - Part 2

Any regular language $\,L\,$ is generated by some regular grammar $\,G\,$

Any regular language L is generated by some regular grammar G

Proof idea:

Let M be the NFA with L = L(M).

Construct from M a regular grammar G such that L(M) = L(G)

Since L is regular there is an NFA M such that L = L(M)

Convert M to a right-linear grammar

$$L(G) = L(M) = L$$

G $q_0 \rightarrow aq_1$ $q_1 \rightarrow bq_1$ $q_1 \rightarrow aq_2$ $q_2 \rightarrow bq_3$ $q_3 \rightarrow q_1$ $q_3 \rightarrow \lambda$

In General

For any transition:

For any final state:

$$(q_f)$$

$$q_f \to \lambda$$

Since G is right-linear grammar

G is also a regular grammar

with
$$L(G) = L(M) = L$$