# 8150 Homework III

Dahlen Elstran March 7, 2025

# Stein Problems

Exercise 1

## Tie Problems

# Exercise 2

Prove that if

$$\sum_{n=-\infty}^{\infty} c_n (z-a)^n \text{ and } \sum_{n=-\infty}^{\infty} c'_n (z-a)^n$$

are Laurent series expansions of f(z), then  $c_n = c'_n$  for all n.

#### Proof.

Let  $f(z) = \sum_{n=-\infty}^{\infty} c_n (z-a)^n = \sum_{n=-\infty}^{\infty} c'_n (z-a)^n$ . Then we know, for any integer k,

$$f(z)(z-a)^{-k-1} = \sum_{n=-\infty}^{\infty} c_n(z-a)^{n-k-1} = \sum_{n=-\infty}^{\infty} c'_n(z-a)^{n-k-1}$$

Then let  $\gamma$  be any closed contour in the annulus going around a once, and because it is a compact set of points, the Luarent serieses can be integrated termwise:

$$\sum_{n=-\infty}^{\infty} c_n \oint_{\gamma} (z-a)^{n-k-1} dz = \sum_{n=-\infty}^{\infty} c_n' \oint_{\gamma} (z-a)^{n-k-1} dz$$

We know that

$$\oint (z-a)^{n-k-1}dz = 2i\pi \text{ if } n = k \text{ and } 0 \text{ if } n \neq k$$

So then we are left with  $2i\pi c_m = 21\pi c_n'$  for any k, which proves the statement.

#### Exercise 3

Expand  $\frac{1}{1-z^2} + \frac{1}{3-z}$  in a series of the form  $\sum_{n=0}^{\infty} -\infty a_n z^n$ . How many such expansions are there? In which domain is each of them valid?

### Proof.

We find that:

$$\frac{1}{z-3} = -\frac{1}{3} \frac{1}{1-3z^{-1}} = -\frac{1}{3} \sum_{k \ge 0} 3^{-k} z^k \text{ for } |z| < 3$$
$$= \frac{1}{z} \frac{1}{1-3z^{-1}} = z^{-1} \sum_{k \ge 0} 3^k z^{-k} \text{ for } |z| > 3$$

and:

$$\frac{1}{1-z^2} = \sum_{k\geq 0} z^{2k} \text{ for } |z| < 1$$

$$= \frac{1}{z^2} \frac{-1}{1-z^{-2}} = -z^{-2} \sum_{k>0} z^{-2k} \text{ for } |z| > 1$$

So we can just list all the possible combinations to find:

$$f(z) = -\frac{1}{3} \sum_{k \ge 0} 3^{-k} z^k + \sum_{k \ge 0} z^{2k} \text{ for } |z| \in (-\infty, 1)$$

$$f(z) = -\frac{1}{3} \sum_{k \ge 0} 3^{-k} z^k - z^{-2} \sum_{k \ge 0} z^{-2k} \text{ for } |z| \in (1, 3)$$

$$f(z) = z^{-1} \sum_{k \ge 0} 3^k z^{-k} + \sum_{k \ge 0} z^{2k} \text{ for } |z| \in (-\infty, 1) \cup (3, \infty)$$

$$f(z) = z^{-1} \sum_{k \ge 0} 3^k z^{-k} - z^{-2} \sum_{k \ge 0} z^{-2k} \text{ for } |z| \in (3, \infty)$$

#### Exercise 4

Let P(z) and Q(z) be polynomials with no common zeros. Assume Q(a) = 0. Find the principal part of P(z)/Q(z) at z = a if the zero a is (i) simple; (ii) double. Express your answers explicitly using P and Q.

#### Proof.

i.

ii.