Berechenbarkeit und Komplexität Optimierungsprobleme und polynomielle Reduktion

Prof. Berthold Vöcking präsentiert von Prof. Joost-Pieter Katoen

6. Januar 2009

Wiederholung

Definition (Komplexitätsklasse P)

P ist die Klasse der Probleme, für die es einen Polynomialzeitalgorithmus gibt.

Definition (Komplexitätsklasse NP)

NP ist die Klasse der Entscheidungsprobleme, die durch eine NTM M erkannt werden, deren worst case Laufzeit $t_M(n)$ polynomiell beschränkt ist.

Laufzeit einer NTM

Definition (Laufzeit der NTM)

Sei M eine NTM. Die Laufzeit von M auf einer Eingabe $x \in L(M)$ ist definiert als

 $T_M(x) :=$ Länge des kürzesten akzeptierenden Rechenweges von M auf x .

Für $x \notin L(M)$ definieren wir $T_M(x) = 0$.

Die worst case Laufzeit $t_M(n)$ für M auf Eingaben der Länge $n \in \mathbb{N}$ ist definiert durch

$$t_M(n) := \max\{T_M(x) \mid x \in \Sigma^n\}$$
.

Alternative Charakterisierung der Klasse NP

Satz

Eine Sprache $L \subseteq \Sigma^*$ ist genau dann in NP, wenn es einen Polynomialzeitalgorithmus V (einen sogenannten Verifizierer) und ein Polynom p mit der folgenden Eigenschaft gibt:

$$x \in L \Leftrightarrow \exists y \in \{0,1\}^*, |y| \le p(|x|) : V \text{ akzeptiert } y \# x.$$

Die große offene Frage der Informatik lautet

$$P = NP$$
?

Hierbei ist P natürlich auf Entscheidungsprobleme eingeschränkt. Das machen wir implizit immer dann, wenn P zu NP in Bezug gesetzt wird.

Offensichtlich gilt

$$P \subseteq NP$$
.

Klar: Denn eine (deterministische) TM ist eine spezielle NTM.

Arbeitshypothese: $P \neq NP$

Exponentielle Laufzeitschranke für Probleme aus NP

Satz

Für jedes Entscheidungsproblem $L \in NP$ gibt es einen Algorithmus A, der L entscheidet, und dessen worst case Laufzeit durch $2^{q(n)}$ nach oben beschränkt ist, wobei q ein geeignetes Polynom ist.

Fazit: $P \subseteq NP \subseteq EXPTIME$

Exponentielle Laufzeitschranke für Probleme aus NP

Beweis:

Um die Eingabe $x \in \{0,1\}^n$ zu entscheiden,

- starte Verifiz. V mit y # x für jedes Zertifikat $y \in \{0,1\}^{p(n)}$;
- akzeptiere, falls V eines der generierten Zertifikate akzeptiert.

Laufzeitanalyse:

- Sei p' eine polynomielle Laufzeitschranke für V.
- Die Laufzeit unseres Algorithmus ist dann höchstens

$$2^{p(n)} \cdot p'(p(n) + 1 + n) \le 2^{p(n)} \cdot 2^{p'(p(n)+1+n)}$$

 $\le 2^{p(n)+p'(p(n)+1+n)} = 2^{q(n)}$.

für das Polynom
$$q(n) = p(n) + p'(p(n) + 1 + n)$$
.

Optimierungsprobleme und ihre Entscheidungsvariante

Beim Rucksackproblem (KP) suchen wir eine Teilmenge K von N gegebenen Objekten mit Gewichten w_1, \ldots, w_N und Nutzenwerten p_1, \ldots, p_N , so dass die Objekte aus K in einen Rucksack mit Gewichtsschranke b passen und dabei der Nutzen maximiert wird.

Problem (Rucksackproblem, Knapsack Problem – KP)

Eingabe: $b \in N$, $w_1, ..., w_N \in \{1, ..., b\}$, $p_1, ..., p_N \in N$

zulässige Lösungen: $K \subseteq \{1, ..., N\}$, so dass $\sum_{i \in K} w_i \leq b$

Zielfunktion: *Maximiere* $\sum_{i \in K} p_i$

Entscheidungsvariante: $p \in N$ sei gegeben. Gibt es eine zulässige Lösung mit Nutzen mindestens p?

Beim Bin Packing Problem suchen wir eine Verteilung von N Objekten mit Gewichten w_1, \ldots, w_N auf eine möglichst kleine Anzahl von Behältern mit Gewichtskapazität jeweils b.

Problem (Bin Packing Problem - BPP)

Eingabe: $b \in \mathbb{N}$, $w_1, ..., w_N \in \{1, ..., b\}$

zulässige Lösungen: $k \in \mathbb{N}$ und Fkt $f : \{1, \dots, N\} \rightarrow \{1, \dots, k\}$,

so dass
$$\forall i \in \{1, \dots, k\} : \sum_{j \in f^{-1}(i)} w_j \leq b$$

Zielfunktion: *Minimiere k (= Anzahl Behälter)*

Entscheidungsvariante: $k \in \mathbb{N}$ ist gegeben. Passen die Objekte in k Behälter?

Optimierungsprobleme und ihre Entscheidungsvariante

Beim TSP ist ein vollständiger Graph aus N Knoten (Orten) mit Kantengewichten (Kosten) gegeben. Gesucht ist eine Rundreise (ein Hamiltonkreis, eine Tour) mit kleinstmöglichen Kosten.

Problem (Traveling Salesperson Problem – TSP)

Eingabe: $c(i, i) \in \mathbb{N}$ für $i, j \in \{1, ..., N\}$ mit c(j, i) = c(i, j)

zulässige Lösungen: Permutationen π auf $\{1, \ldots, N\}$

Zielfunktion: *Minimiere* $\sum c(\pi(i), \pi(i+1)) + c(\pi(N), \pi(1))$

Entscheidungsvariante: $b \in \mathbb{N}$ ist gegeben. Gibt es eine Tour der Länge höchstens *b*?

Zertifikat & Verifizierer für Optimierungsprobleme

Satz

Die Entscheidungsvarianten von KP, BPP und TSP sind in NP.

Beweis:

Entscheidungsvarianten von Opt.problemen haben einen natürlichen Kandidaten für ein Zertifikat, nämlich zulässige Lösungen.

Es muss allerdings gezeigt werden, dass

- diese Lösungen eine polynomiell in der Eingabelänge beschränkte Kodierungslänge haben, und
- ihre Zulässigkeit durch einen Polynomialzeitalgorithmus überprüft werden kann.

Zertifikat & Verifizierer für Optimierungsprobleme

- KP: Die Teilmenge $K \subseteq \{1, \ldots, N\}$ kann mit N Bits kodiert werden. Gegeben K kann die Einhaltung von Gewichts- und Nutzenwertschranke in polynomieller Zeit überprüft werden.
- BPP: Die Abbildung $f:\{1,\ldots,N\} \to \{1,\ldots,k\}$ kann mit $O(N\log k)$ Bits kodiert werden. Gegeben f kann die Einhaltung der Gewichtsschranken in polynomieller Zeit überprüft werden.
- TSP: Für die Kodierung einer Permutation π werden $O(N \log N)$ Bits benötigt. Es kann in polynomieller Zeit überprüft werden, ob die durch π beschriebene Rundreise die vorgegebene Kostenschranke b einhält.

- Mit Hilfe eines Algorithmus, der ein Optimierungsproblem löst, kann man offensichtlich auch die Entscheidungsvariante lösen. (Wie?)
- Häufig funktioniert auch der umgekehrte Weg. Wir illustrieren dies am Beispiel von KP.
- In den Übungen zeigen wir dasselbe für TSP und BPP.

Satz

Wenn die Entscheidungsvariante von KP in polynomieller Zeit lösbar ist, dann auch die Optimierungsvariante.

Beweis: Entscheidungsvariante A → Zwischenvariante B

Zwischenvariante: Gesucht ist nicht eine optimale Lösung sondern nur der optimale Zielfunktionswert.

Polynomialzeitalgorithmus B für die Zwischenvariante

Wir verwenden eine Binärsuche mit folgenden Parametern:

- Der minimale Profit ist 0. Der maximale Profit ist $P := \sum_{i=1}^{N} p_i$.
- Wir finden den optimalen Zielfunktionswert durch Binärsuche auf dem Wertebereich $\{0, P\}$.
- Sei A ein Polynomialzeitalgorithmus für die Entscheidungsvariante von KP.
- In jeder Iteration verwenden wir Algorithmus *A*, der uns sagt in welche Richtung wir weitersuchen müssen.

Die Anzahl der Iterationen der Binärsuche ist $\lceil \log(P+1) \rceil$.

Diese Anzahl müssen wir in Beziehung zur Eingabelänge n setzen.

Untere Schranke für die Eingabelänge:

- Die Kodierungslänge von $a \in \mathbb{N}$ ist $\kappa(a) := \lceil \log(a+1) \rceil$.
- Die Funktion κ ist subadditiv, d.h. für alle $a, b \in \mathbb{N}$ gilt $\kappa(a+b) < \kappa(a) + \kappa(b)$.
- Die Eingabelänge *n* ist somit mindestens

$$\sum_{i=1}^{N} \kappa(p_i) \geq \kappa \left(\sum_{j=1}^{N} p_j \right) = \kappa(P) = \lceil \log(P+1) \rceil.$$

Also reichen n Aufrufe von A um den optimalen Zielfunktionswert zu bestimmen.

Beweis: Zwischenvariante B → Optimierungsvariante C

Aus einem Algorithmus B für die Zwischenvariante konstruieren wir jetzt einen Algorithmus C für die Optimierungsvariante.

Algorithmus C

- \bullet $K := \{1, \ldots, N\};$
- 2 p := B(K);
- § for i := 1 to N do if $B(K \setminus \{i\}) = p$ then $K := K - \{i\}$;
- lacktriangle Ausgabe K.

Laufzeit: N + 1 Aufrufe von Algorithmus B, also polynomiell beschränkt, falls die Laufzeit von B polynomiell beschränkt ist.

Polynomielle Reduktion

Definition (Polynomielle Reduktion)

 L_1 und L_2 seien zwei Sprachen über Σ_1 bzw. Σ_2 . L_1 ist polynomiell reduzierbar auf L_2 , wenn es eine Reduktion von L_1 nach L_2 gibt, die in polynomieller Zeit berechenbar ist. Wir schreiben $L_1 \leq_p L_2$.

D.h. $L_1 \leq_p L_2$, genau dann, wenn es eine Funktion $f: \Sigma_1^* \to \Sigma_2^*$ mit folgenden Eigenschaften gibt:

- f ist in polynomieller Zeit berechenbar
- $\forall x \in \Sigma_1^* : x \in L_1 \iff f(x) \in L_2$

Polynomielle Reduktion

Lemma

$$L_1 \leq_p L_2, L_2 \in P \Rightarrow L_1 \in P.$$

Beweis: Die Reduktion f habe die polyn. Laufzeitschranke $p(\cdot)$. Sei B ein Algorithmus für L_2 mit polyn. Laufzeitschranke $q(\cdot)$.

Algorithmus A für L_1 :

- ① Berechne f(x).
- 2 Starte Algorithmus B für L_2 auf f(x).

Schritt 1 hat Laufzeit höchstens p(|x|). Schritt 2 hat Laufzeit höchstens q(|f(x)|) < q(p(|x|) + |x|).

Beispiel einer polyn. Reduktion: COLORING \leq_p SAT

Die eigentliche Stärke des Reduktionsprinzips ist es, dass man Probleme unterschiedlichster Art aufeinander reduzieren kann.

Problem (Knotenfärbung – COLORING)

Eingabe: Graph G = (V, E), Zahl $k \in \{1, \dots, |V|\}$

Frage: Gibt es eine Färbung $c:V \to \{1,\ldots,k\}$ der Knoten von G

mit k Farben, so dass benachbarte Knoten verschiedene Farben

haben, d.h. $\forall \{u, v\} \in E : c(u) \neq c(v)$.

Problem (Erfüllbarkeitsproblem / Satisfiability — SAT)

Eingabe: Aussagenlogische Formel ϕ in KNF Frage: Gibt es eine erfüllende Belegung für ϕ ?

Beispiel einer polyn. Reduktion: COLORING \leq_p SAT

Satz

 $COLORING <_{p} SAT.$

Beweis:

Wir beschreiben eine polynomiell berechenbare Funktion f, die eine Eingabe (G, k) für das COLORING-Problem auf eine Formel ϕ für das SAT-Problem abbildet, mit der Eigenschaft

G hat eine k-Färbung $\Leftrightarrow \phi$ ist erfüllbar.

Beschreibung der Funktion f:

Die Formel ϕ hat für jede Knoten-Farb-Kombination $(v, i), v \in V$, $i \in \{1, \dots, k\}$, eine Variable x_{ν}^{i} . Die Formel für (G, k) lautet

$$\phi \ = \ \bigwedge_{v \in V} \underbrace{(x_v^1 \vee x_v^2 \vee \ldots \vee x_v^k)}_{\mathsf{Knotenbedingung}} \land \bigwedge_{\{u,v\} \in E} \bigwedge_{i \in \{1,\ldots,k\}} \underbrace{(\bar{x}_u^i \vee \bar{x}_v^i)}_{\mathsf{Kantenbedingung}}$$

Anzahl der Literale =
$$O(k \cdot |V| + k \cdot |E|) = O(|V|^3)$$
.

Die Länge der Formel ist somit polynomiell beschränkt und die Formel kann in polynomieller Zeit konstruiert werden.

Aber ist die Konstruktion auch korrekt?

Korrektheit:

zz: G hat eine k Färbung $\Rightarrow \phi$ ist erfüllbar

- Sei c eine k-Färbung für G.
- Für jeden Knoten v mit c(v) = i setzen wir $x_v^i = 1$ und alle anderen Variablen auf 0.
- Knotenbedingung: Offensichtlich erfüllt.
- Kantenbedingung: Für jede Farbe i und jede Kante $\{u, v\}$ gilt $\bar{x}_u^i \vee \bar{x}_v^i$, denn sonst hätten u und v beide die Farbe i.
- Damit erfüllt diese Belegung die Formel ϕ .

Beispiel einer polyn. Reduktion: COLORING \leq_p SAT

zz: ϕ ist erfüllbar \Rightarrow G hat eine k Färbung

- Fixiere eine beliebige erfüllende Belegung für ϕ .
- Wegen der Knotenbedingung gibt es für jeden Knoten v mindestens eine Farbe mit $x_v^i = 1$.
- Für jeden Knoten wähle eine beliebige derartige Farbe aus.
- Sei $\{u,v\} \in E$. Wir behaupten $c(u) \neq c(v)$.
- Zum Widerspruch nehmen wir an, c(u) = c(v) = i. Dann wäre $x_u^i = x_v^i = 1$ und die Kantenbedingung $\bar{x}_u^i \vee \bar{x}_v^i$ wäre verletzt.

Beispiel einer polyn. Reduktion: COLORING \leq_p SAT

COLORING \leq_p SAT impliziert die folgenden beiden Aussagen.

Korollar

Wenn SAT einen Polynomialzeitalgorithmus hat, so hat auch COLORING einen Polynomialzeitalgorithmus.

Korollar

Wenn COLORING keinen Polynomialzeitalgorithmus hat, so hat auch SAT keinen Polynomialzeitalgorithmus.