CÁLCULO E ANÁLISE NUMÉRICA <u>Bitácora 09</u>

Clase expositiva do luns, 4 de marzo de 2024 Número de asistentes: 71

Autores

Antón Expósito Campo Helena Franco López África Franco Montero Isabel Gude Gómez

Índice

 Revisión da Bitácora 8. Método de Newton. Derivadas parciais de segunda orde. Teorema das derivadas parciais mixtas e Matriz Hessiana. Vector gradiente. 	2		
	4 6		
		6. Función vectorial	8
		7 Matriz Jacobiana	9

1. Revisión da Bitácora 8

À hora de revisar a bitácora anterior, que resumía os contidos sobre planos tanxentes e o método de Newton-Raphson, salientouse o bo traballo realizado. Unicamente sinaláronse algúns aspectos a mellorar:

1.1 Na realización das derivadas cómpre indicar en función de que variables estanse a facer:

$$\frac{\partial f}{\partial x}(x,y) = \frac{-1}{2}(9 - x^2 - y^2)^{\frac{-1}{2}}(-2x) = \frac{x}{\sqrt{9 - x^2 - y^2}}$$
$$\frac{\partial f}{\partial y}(x,y) = \frac{y}{\sqrt{9 - x^2 - y^2}}$$

- **1.2** A revisión do exercicio 3 deu lugar a unha reflexión sobre o plano tanxente. Este plano é horizontal no punto (0,0) xa que se anulan as derivadas, e ademais indica puntos críticos como máximos ou mínimos.
- **1.3** Formalmente, os subíndices dun vector de incógnitas deben comezar en 1 e non en 0, empezariamos no 0 ao traballar en linguaxes de programación, como SageMath.

$$x = (x_1, x_2, ..., x_n)$$

2. Método de Newton

Continuando coa clase anterior, se a matriz $Df(x^k)$ é invertible, entón podemos aproximar a raíz α despexándoa da seguinte relación:

$$Df(x^k)(\alpha - x^k) \approx -f(x^k) \Rightarrow Df(x^k)(x^{k+1} - x^k) \approx -f(x^k)$$

A nosa nova incógnita é x^{k+1} que se corresponde co termo seguinte da ecuación.

$$x^{k+1} - x^k = -(Df^{-1}(x^k)f(x^k))$$

$$x^{k+1} = x^k - (Df^{-1}(x^k) f(x^k))$$

Esta ecuación final aseméllase coa ecuación do método de Newton para unha incógnita:

$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)}$$

Pero en vez de dividir pola derivada de f(x), agora multiplicamos pola inversa da matriz Jacobiana. É por isto que $Df(x^k)$ ten que ser unha matriz invertible.

No exemplo proposto nas transparencias da clase búscase calcular as solucións do sistema:

$$1 - x^2 - y^2 = 0$$
, $x^2 - y^2 = 0$

Fig.1: Representación do sistema

$$f_1(x_1, x_2) = 1 - x_1^2 - x_2^2$$
 $f_2(x_1, x_2) = x_1^2 - x_2^2$

 \boldsymbol{f}_1 representa unha circunferencia e \boldsymbol{f}_2 as súas bisectrices. Aquí sería fácil atopar as solucións á man e sen ningunha complicación, pero os casos reais poderían ser máis sofisticados.

Na práctica, invertir a matriz $Df(x^k)$ non é moi doado, por isto é mellor empregar un algoritmo para resolver en cada iteración o sistema lineal de ecuacións:

$$Df(x^{k})(x^{k+1}-x^{k}) = -f(x^{k})$$

Chamando $\delta x^k := x^{k+1} - x^k$, obtemos o seguinte algoritmo:

Dado $x^0 \in \mathbb{R}^n$, para k = 0, 1, 2... resolvemos:

$$Df(x^k)\delta x^k = -f(x^k),$$

Este algoritmo ten como obxectivo achar δ e unha vez atopado este valor utilizalo para calcular o seguinte iterante:

$$x^{k+1} := x^k + \delta x^k$$

Para calcular a inversa dunha matriz ou resolver sistemas, existen varios métodos, como por exemplo o método de Gauss ou o de Cramer, pero implican un custo computacional moi elevado. Actualmente, SageMath xa contén métodos moito máis eficientes para levar a cabo estas operacións xerando así un menor consumo de enerxía. Este tipo de algoritmos que optimizan o consumo de enerxía denomínanse algoritmos verdes.

Durante a clase mencionouse o computador cuántico galego, chamado Qmio, que é capaz de realizar cálculos complexos con maior rapidez e eficiencia.

Fig.2: Qmio, o computador cuántico galego

3. Derivadas parciais de segunda orde

As derivadas parciais de segunda orde fanse con respecto as derivadas parciais de x e de y:

$$\frac{\partial^2 f}{\partial x^2}(x,y) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x}(x,y) \right) = f_{xx}(x,y)$$

$$\frac{\partial^2 f}{\partial y \partial x}(x,y) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}(x,y) \right) = f_{xy}(x,y)$$

$$\frac{\partial^2 f}{\partial y^2}(x,y) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y}(x,y) \right) = f_{yy}(x,y)$$

$$\frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}(x,y) \right) = f_{yx}(x,y)$$

Danse así 4 opcións de derivadas parciais de segunda orde para funcións de dous variables.

3.1 Calcular as derivadas parciais segundas:

$$f(x,y) = x\cos y + ye^x$$

 $Dom(f)=\mathbb{R}^2$; xa que tanto o dominio do coseno como de e^x é todo \mathbb{R} $Im(f)=\mathbb{R}$; se x=0 quedaría que f(x,y)=y, polo que a imaxe abrangue todo \mathbb{R}

Primeiro calculamos as derivadas primeiras en función de x e de y, coas que poderíamos calcular o plano tanxente:

$$\frac{\partial f}{\partial x}(x,y) = \cos y + ye^{x}$$
$$\frac{\partial f}{\partial y}(x,y) = -x \sin y + e^{x}$$

Tras isto, podemos calcular as derivadas parciais segundas:

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} (x, y) \right) = \frac{\partial}{\partial x} (\cos y + y e^{x}) = y e^{x}$$

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} (x, y) \right) = \frac{\partial}{\partial y} \left(-x \operatorname{sen} y + e^{x} \right) = -x \operatorname{cosy}$$

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} (x, y) \right) = \frac{\partial}{\partial y} (\cos y + y e^{x}) = -\operatorname{sen} y + e^{x}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} (x, y) \right) = \frac{\partial}{\partial x} \left(-x \operatorname{sen} y + e^{x} \right) = -\operatorname{sen} y + e^{x}$$

Neste caso as derivadas cruzadas dan o mesmo resultado, isto é o esperado sempre que se cumpran certas hipóteses que veremos no seguinte teorema.

4. Teorema das derivadas parciais mixtas e Matriz Hessiana

Se f(x, y) e as súas derivadas parciais $f_x(x, y)$, $f_y(x, y)$, $f_{xy}(x, y)$ e $f_{yx}(x, y)$ están definidas nunha rexión aberta que conteña ao punto (a, b) e son continuas en (a, b), entón cúmprese o dito anteriormente:

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \left(x, y \right) \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \left(x, y \right) \right)$$

A partir das derivadas segundas da función f, podemos construír a Matriz Hessiana:

$$Hf(x,y) = \begin{pmatrix} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{pmatrix}$$

Durante este momento da clase propuxéronse dous exercicios para resolver:

- 1) Sexa $f(x, y) = ln(1 x^2 y^2)$. Calcular as derivadas parciais segundas da función $f: f_{xx}(x, y), f_{xy}(x, y), f_{yy}(x, y)$ e $f_{yx}(x, y)$ e a matriz Hessiana de f.
- 2) Sexa $f(x, y) = -\sqrt{9 x^2 y^2}$. Calcular as derivadas parciais segundas da función $f: f_{xx}(x, y), f_{xy}(x, y), f_{yy}(x, y)$ e $f_{yx}(x, y)$ e a matriz Hessiana de f.

5. Vector gradiente

Sexa f(x, y) unha función para a que existen as derivadas parciais $\frac{\partial f}{\partial x}(x, y)$, $\frac{\partial f}{\partial y}(x, y)$ e son continuas, o vector gradiente defínese como:

$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}(x,y), \frac{\partial f}{\partial y}(x,y)\right)$$

5.1 Exemplo de vector gradiente:

$$T(x,y) = 100 - x^2 - y^2$$

$$\nabla T(x,y) = \left(\frac{\partial T}{\partial x}(x,y), \frac{\partial T}{\partial y}(x,y)\right) = (-2x, -2y)$$

A continuación veremos unha representación da función exposta no exemplo anterior.

Na Fig.3 vemos o paraboloide correspondente á gráfica da función, así como os seus conxuntos de nivel, representados por circunferencias no eixo X. Na orixe, pódese ver como a función vale 100.

Na Fig.4 represéntanse os conxuntos de nivel e os gradientes, estes vense como frechas perpendiculares aos conxuntos de nivel que sinalan cara o punto onde hai mas crecemento da función, que neste caso coincide co centro.

Fig.3: Paraboloide de T(x, y)

Fig.4: Conxuntos de nivel de T(x, y)

5.2 Mapa de Fontán

Neste mapa, xa tratado en anteriores clases, matizamos agora que non se pintaron os conxuntos de nivel para representar a altura, senón que a sensación de elevación deuse debuxando as rectas normais aos conxuntos de nivel, é dicir, os gradientes. Isto supuxo unha gran innovación.

6. Función vectorial

Cando temos máis variables, en vez de ter un vector gradiente, temos unha función vectorial que sigue a seguinte definición:

$$f: x \in Dom(f) \subseteq \mathbb{R}^n \to f(x) = (f_1(x), \dots, f_m(x)) \in \mathbb{R}^m$$

6.1 Exemplo 1:

$$f(x, y, z) = (2x - yz, ycos(x) + z)$$

 $Dom(f) = \mathbb{R}^3$; xa que non hai problema para definir a función en ningún punto.

$$Im(f) = \mathbb{R}^2$$

Gráfica en \mathbb{R}^5

É unha función de \mathbb{R}^3 en \mathbb{R}^2 , Neste caso, a función vectorial é de tres variables (n = 3) e ten dúas funcións compoñentes (m = 2):

$$f_1(x, y, z) = 2x - yz, \quad f_2(x, y, z) = y \cos(x) + z$$

6.2 Exemplo 2:

$$f(t) = (cos(t), sen(t), t)$$

 $Dom(f) = \mathbb{R}$; xa que non hai problema para definir a función en ningún punto.

$$Im(f) = \mathbb{R}^3$$

Gráfica en forma de espiral

É unha función de \mathbb{R} en \mathbb{R}^2 , Neste caso, a función vectorial é de unha variables (n = 1) e ten tres funcións compoñentes (m = 3):

$$f_1(t) = cos(t), f_2(t) = sen(t), f_3(t) = t$$

7. Matriz Jacobiana

Aínda que xa vimos esta matriz anteriormente cando dimos o método de Newton, agora imos estudala de forma xeral.

$$Df(x,y) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix} \mathbf{m} \mathbf{x} \mathbf{n}$$

Esta matriz caracterízase por ter tantas filas como compoñentes da imaxe e tantas columnas como variables independentes.

No caso particular de funcións escalares (m = 1), a matriz jacobiana coincide co vector gradiente, como por exemplo:

$$f(x,y) = \ln(x^{2} + y^{2})$$

$$Df(x,y) = \left(\frac{2x}{x^{2} + y^{2}} - \frac{2y}{x^{2} + y^{2}}\right) = \nabla f(x,y)$$