- 1. Wie viele Relationen auf einer endlichen Menge A mit n Elementen gibt es? Lösung:
 - (a) Denn für eine Relation müssen immer 2 Elemente aus einer Menge ausgewählt werden. Da diese auch das gleiche sein können, gibt es für das erste n Möglichkeiten. Für das 2. wieder n.

Somit ergeben sich n^2 Paare. Für jedes dieser gibt es die Möglichkeit es in der Relation zu enthalten, oder nicht. Dadurch ergibt sich eine binäre Auswahl pro Element.

Es gibt somit 2^{n^2} Möglichkeiten.

- 2. Gib für $A = \{x, y, z\}$ Relationen an mit folgenden Eigenschaften:
 - (a) Reflexiv, aber nicht symmetrisch
 - (b) Weder symmetrisch noch antisymmetrisch
 - (c) Antisymmetrisch, aber nicht asymmetrisch
 - (d) Total, aber nicht transitiv
 - (e) Symmetrisch und total

Lösung:

- (a) $R := \{(x, x), (y, y), (z, z)\}$
- (b) $R := \{(x, y), (y, z), (z, x)\}$
- (c) $R := \{(x, x), (y, y), (z, z)\}$
- (d) $R := \{(x, y), (y, z), (z, x), (y, y), (x, x), (z, z)\}$
- (e) $R := \{(x,y), (y,z), (z,x), (y,x), (z,y), (x,z)\}$
- 3. Hier sind alle Relationen auf der Menge $A = \{x, y\}$:

	C_x y	l	1
<i>x</i> → <i>y</i>	$C_x \longrightarrow_y$	x	$C_x \longrightarrow y^{\gamma}$
<i>x</i> ← <i>y</i>	$C_x \leftarrow y$	x — y	$C_x \longrightarrow C_x$
<i>x</i> ← → <i>y</i>	$C_x \longrightarrow y$	$x \longrightarrow y$	$C_x \longrightarrow y^{\gamma}$

Welche dieser Relationen sind reflexiv, welche symmetrisch, welche asymmetrisch, welche antisymmetrisch, welche transitiv und welche total?

Lösung:

r := Reflexiv at := Antisymmetrisch

s :=Symmetrisch tr :=Transitiv

a := Asymmetrisch t := Total

s,a,at,tr	a, tr	a, tr	r, s, at, tr
a, at, tr	at	at	r, at, tr, t
a, at, tr	at	at	r, at, tr, t
s, tr	s, tr	s, tr	r, s, tr, t

4. Zeige, dass wenn $xRy \Rightarrow \neg yRx$ erfüllt ist, dann auch $(xRy \land yRx) \Rightarrow x = y$. Verwende dazu die Regel zur Auflösen der Implikation $(A \Rightarrow B)$ ist äquivalent zu $\neg A \lor B$ und die de morgansche Regel.

Lösung:

(a) Die erste Implikation kann umgeformt werden als:

$$xRy \Rightarrow \neq xRy$$

$$\Leftrightarrow (\neg xRy \vee \neg yRx)$$

Dies ist äquivalent zur Bedingung der zweiten Bedingung:

$$(xRy \land yRx) \Rightarrow x = y$$

$$\Leftrightarrow \neg(xRy \land yRx) \lor x = y$$

$$\Leftrightarrow (\neg xRy \vee \neg yRx) \vee x = y$$

Somit ist die zweite Aussage immer wahr, wenn die erste wahr ist.

5. Es sei R eine beliebige Relation auf einer Menge A. Die Relation R^S auf A sei definiert als

$$R^S := \{(x, y) \in A \times A : xRy \vee yRx\}$$

- Was bedeutet das für das Bild mit Pfeilen?
- Zeige, dass R^S eine symmetrische Relation ist.
- Zeige, dass R^S die kleinste symmetrische Relation auf A ist, die R enthält. Für jede symmetrische Relation R' auf A mit $R\subseteq R'$ gilt $R^S\subseteq R'$
- ullet Beweise oder widerlege: Wenn R transitiv ist, ist auch R' transitiv.

Lösung:

1

(a) Jeder Pfeil, der nur in eine Richtung geht wird durch einen Doppelpfeil ersetzt. (\mathbb{R}^S macht jede Relation symmetrisch).

- (b) R^S ist symmetrisch, denn falls ein Paar $(x,y) \in R^S$ muss entweder $xRy \lor yRx$ aus der Relation R gelten.
 - Somit muss auch das Paar $(y,x) \in \mathbb{R}^S$, denn wenn beim vorherigen xRy war muss nun yRx oder umgekehrt sein.
- (c)
- (d)
- 6. Gibt es Relationen, die sowohl reflexiv, aus auch asymmetrisch sind? (Vorsicht: genau hinsehen!)

Lösung:

(a) Es gibt nur eine Relation, die reflexiv sowie asymmetrisch ist. Dies ist die Relation auf der leeren Menge.

$$A = \{\}$$

Reflexivität:

 $\forall x \in A : xRx$, da $A = \{\}$ ist dies der Fall.

Asymmetrie:

 $\forall x,y\in A:(xRy\wedge yRx)\Rightarrow x=y$ Da $A=\{\}$ ist die Prämisse immer falsch, wodurch die Implikation wahr wird.