Step	Algorithm: $C := AB^T + BA^T + C$	
1a	$\{C=\widehat{C}$	}
	$C \to \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right), A \to \left(\begin{array}{c c} A_T \\ \hline A_B \end{array}\right), B \to \left(\begin{array}{c c} B_T \\ \hline B_B \end{array}\right)$ where C_{BR} is 0×0 , A_B and B_B have 0 rows	,
2	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right)$	
3	while $m(C_{BR}) < m(C)$ do	
2,3	$ \left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) \wedge m(C_{BR}) < m(C) $	
5a	$ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c c} C_{00} & * & * \\ \hline c_{10}^T & \gamma_{11} & * \\ \hline C_{20} & c_{21} & C_{22} \end{array}\right), \left(\begin{array}{c} A_T \\ \hline A_B \end{array}\right) \rightarrow \left(\begin{array}{c} A_0 \\ \hline a_1^T \\ \hline A_2 \end{array}\right), \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \rightarrow \left(\begin{array}{c} B_0 \\ \hline b_1^T \\ \hline B_2 \end{array}\right) $ where γ_{11} is 1×1 , a_1 and b_1 have 1 row	
6	$ \begin{cases} \begin{pmatrix} C_{00} & * & * \\ c_{10}^{T} & \gamma_{11} & * \\ C_{20} & c_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} C_{00} & * & * \\ c_{10}^{T} & \gamma_{11} & * \\ A_{2}B_{0}^{T} + \widehat{C}_{20} & A_{2}b_{1} + \widehat{c}_{21} & A_{2}B_{2}^{T} + B_{2}A_{2}^{T} + \widehat{C}_{22} \end{pmatrix} $	
8	$ \gamma_{11} := a_1^T b_1 + b_1^T a_1 + \gamma_{11} c_{10}^T := a_1^T B_0^T + c_{10}^T c_{21} := B_2 a_1 + c_{21} $	
7	$ \begin{cases} \begin{pmatrix} C_{00} & * & * \\ c_{10}^T & \gamma_{11} & * \\ C_{20} & c_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} C_{00} & * & * \\ a_1^T B_0^T + \hat{c}_{10}^T & a_1^T b_1 + b_1^T a_1 + \hat{\gamma}_{11} & * \\ A_2 B_0^T + \hat{C}_{20} & A_2 b_1 + B_2 a_1 + \hat{c}_{21} & A_2 B_2^T + B_2 A_2^T + \hat{C}_{22} \end{pmatrix} $	
5b	$ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} C_{00} & * & * \\ \hline c_{10}^T & \gamma_{11} & * \\ \hline C_{20} & c_{21} & C_{22} \end{array}\right), \left(\begin{array}{c} A_T \\ \hline A_B \end{array}\right) \leftarrow \left(\begin{array}{c c} A_0 \\ \hline a_1^T \\ A_2 \end{array}\right), \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \leftarrow \left(\begin{array}{c} B_0 \\ \hline b_1^T \\ B_2 \end{array}\right) $	
2	$ \left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) $	
	endwhile	
2,3	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) \land \neg (m(C_{BR}) < m(C))$	
1b	$\{C := AB^T + BA^T + \widehat{C}.$	}

Step	Algorithm: $C := AB^T + BA^T + C$	
1a	{	}
4		
	where	
2		
Δ.		
3	while do	
0.0		
2,3	^	
-		
5a		
	where	
6	{	
8		
7	{	
5b		
		\supset
2		
	endwhile	
		7
2,3	$\land \neg ($	
1b	<u></u>	_/
τn	{	}

Step	Algorithm: $C := AB^T + BA^T + C$
1a	$\{C=\widehat{C}$
4	
	where
2	
3	while do
2,3	
5a	
	where
6	
8	
7	
5b	
90	
2	
	endwhile
2,3	
1b	$\{C := AB^T + BA^T + \widehat{C}.$

Step	Algorithm: $C := AB^T + BA^T + C$
1a	${C = \widehat{C}}$
4	where
2	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right)$
3	while do
2,3	$\left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) \wedge \right.$
5a	where
6	
8	
7	
5b	
2	$\left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right)$
	endwhile
2,3	$ \left\{ \left(\frac{C_{TL}}{C_{BL}} \middle * \right) = \left(\frac{\widehat{C}_{TL}}{A_B B_T^T + \widehat{C}_{BL}} \middle A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \right) \land \neg () \right\} $ $ \left\{ C := A P^T + P A^T + \widehat{C} \right\} $
1b	$\{C := AB^T + BA^T + \widehat{C}.$

Step	Algorithm: $C := AB^T + BA^T + C$
1a	${C = \widehat{C}}$
4	where
2	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right)$
3	while $m(C_{BR}) < m(C)$ do
2,3	$\left\{ \begin{array}{c c} \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) \wedge m(C_{BR}) < m(C) \end{array} \right)$
5a	where
6	
8	
7	
5b	
2	$ \left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) $
	endwhile
2,3	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) \wedge \neg (m(C_{BR}) < m(C))$
1b	$\{C := AB^T + BA^T + \widehat{C}.$

Т

Step	Algorithm: $C := AB^T + BA^T + C$	
1a	$\{C=\widehat{C}$	}
4	$C o \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) , \ A o \left(\begin{array}{c c} A_T \\ \hline A_B \end{array} \right) , \ B o \left(\begin{array}{c c} B_T \\ \hline B_B \end{array} \right)$ where C_{BR} is 0×0 , A_B and B_B have 0 rows	
2	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right)$	$\left. ight\}$
3	while $m(C_{BR}) < m(C)$ do	
2,3	$\left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) \wedge m(C_{BR}) < m(C)$	$igg\}$
5a	where	
6		$\left. \begin{array}{c} \\ \end{array} \right\}$
8		
7		$\left. \begin{array}{c} \\ \end{array} \right\}$
5b		
2	$\left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right)$	
	endwhile	
2,3	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) \wedge \neg (m(C_{BR}) < m(C))$	$\left. \right\}$
1b	$\{C := AB^T + BA^T + \widehat{C}.$	}

Step	Algorithm: $C := AB^T + BA^T + C$	
1a	$\{C=\widehat{C}$	}
4	$C \to \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right), A \to \left(\begin{array}{c c} A_T \\ \hline A_B \end{array}\right), B \to \left(\begin{array}{c c} B_T \\ \hline B_B \end{array}\right)$ where C_{BR} is 0×0 , A_B and B_B have 0 rows	
2	$ \left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) $	$oxed{\ }$
3	while $m(C_{BR}) < m(C)$ do	
2,3	$ \left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) \land m(C_{BR}) < m(C) $	$\left. \begin{array}{c} \\ \end{array} \right\}$
5a	$ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c c} C_{00} & * & * \\ \hline c_{10}^T & \gamma_{11} & * \\ \hline C_{20} & c_{21} & C_{22} \end{array}\right), \left(\begin{array}{c} A_T \\ \hline A_B \end{array}\right) \rightarrow \left(\begin{array}{c c} A_0 \\ \hline a_1^T \\ \hline A_2 \end{array}\right), \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \rightarrow \left(\begin{array}{c} B_0 \\ \hline b_1^T \\ \hline B_2 \end{array}\right) $ where γ_{11} is 1×1 , a_1 and b_1 have 1 row	
6		$\left \right\}$
8		
7		$\left. \begin{array}{c} \\ \end{array} \right\}$
5b	$C_{20} \mid c_{21} \mid C_{22} \mid C_{22} \mid C_{23} \mid C_{24} \mid C_{25} \mid C$	
2	$\left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right)$	$\left. \right\}$
	endwhile	
2,3	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & A_B B_B^T + B_B A_B^T + \widehat{C}_{BR} \end{array} \right) \wedge \neg (m(C_{BR}) < m(C))$	$\left. \right\}$
1b	$\{C := AB^T + BA^T + \widehat{C}.$	}

Step Algorithm:
$$C := AB^T + BA^T + C$$

1a $\{C = \widehat{C}$

4 $C \rightarrow \left(\frac{C_{TL}}{C_{BR}} | \frac{1}{S} \otimes X_0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

2 $\{\left(\frac{C_{TL}}{C_{BL}} | \frac{1}{S} \otimes X_0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

3 white $C_{BR} | \text{sto} \times X_0 \otimes X_0$

Step Algorithm:
$$C := AB^T + BA^T + C$$

1a $\{C = \widehat{C}\}$

4 $C \to \left(\frac{C_{TL}}{C_{BR}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}$

2 $\left\{\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

3 while $m(C_{BR}) < m(C)$ do

2,3 $\left\{\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)\right\}$

5a $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

5a $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

6a $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

7b $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

8c $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

8c $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

8c $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

8c $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

8c $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

8c $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

8c $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

8c $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

8c $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

8c $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

8c $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

8c $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

8c $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

8c $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

8c $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

8c $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

8c $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

8c $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

8c $\left(\frac{C_{TL}}{C_{BL}} \mid s \mid 0 \times 0, A_B \text{ and } B_B \text{ have 0 rows}\right)$

9c $\left(\frac{C_{TL}}{C_{BL}} \mid$

$$\begin{array}{lll} \text{Step} & \text{Algorithm: } C := AB^T + BA^T + C \\ 1a & \{C = \widehat{C} & \} \\ \end{array} \\ & 4 & C \rightarrow \left(\frac{C_{TL}}{C_{BL}} \mid \frac{1}{C_{BR}} \mid A \rightarrow \left(\frac{A_T}{A_B}\right), B \rightarrow \left(\frac{B_T}{B_B}\right) \\ & \text{where } C_{BR} \mid \mathbf{S} \mid 0 \times 0, A_B \text{ and } B_B \text{ have } 0 \text{ rows} \\ 2 & \left\{\left(\frac{C_{TL}}{C_{BL}} \mid \frac{1}{C_{BR}}\right) = \left(\frac{\widehat{C}_{TL}}{A_B B_T^T + \widehat{C}_{BL}} \mid A_B B_B^T + B_B A_B^T + \widehat{C}_{BR}\right) \\ 3 & \text{while } m(C_{BR}) < m(C) \text{ do} \\ 2,3 & \left\{\left(\frac{C_{TL}}{C_{BL}} \mid \frac{1}{C_{BR}}\right) = \left(\frac{\widehat{C}_{TL}}{A_B B_T^T + \widehat{C}_{BL}} \mid A_B B_B^T + B_B A_B^T + \widehat{C}_{BR}\right) \wedge m(C_{RR}) < m(C) \\ 5a & \left(\frac{C_{TL}}{C_{BL}} \mid \frac{1}{C_{BR}}\right) \rightarrow \left(\frac{\widehat{C}_{O0}}{C_{O0}} \mid \frac{1}{2} \right), \left(\frac{A_T}{A_B}\right) \rightarrow \left(\frac{A_0}{a_1^T}\right), \left(\frac{B_T}{B_B}\right) \rightarrow \left(\frac{B_0}{b_1^T}\right) \\ & \text{where } \gamma_{11} \text{ is } 1 \times 1, a_1 \text{ and } b_1 \text{ have } 1 \text{ row} \\ 6 & \left\{\left(\frac{C_{O0}}{C_{O0}} \mid \frac{1}{2} \mid \frac{1}{C_{2D}}\right) - \left(\frac{C_{O0}}{C_{2D}} \mid \frac{1}{C_{2D}}\right) - \left(\frac{A_T}{A_B}\right) + \widehat{C}_{B_1} \right\} \\ & \gamma_{11} := a_1^T b_1 + b_1^T a_1 + \gamma_{11} \\ & \alpha_0^T := a_1^T B_0^T + c_0^T \\ & \alpha_{21} := B_2 a_1 + c_{21} \\ \end{array} \right\} \\ 7 & \left\{\left(\frac{C_{O0}}{C_{O0}} \mid \frac{1}{2} \mid \frac{1}{C_{2D}}\right) - \left(\frac{A_T}{A_B}\right) + \widehat{C}_{A_D} A_2 b_1 + \widehat{C}_{A_D} A_2 b_1 + \widehat{C}_{A_D} A_2 b_1^T + \widehat{C}_{A_D} A_2^T + \widehat{C}_{B_D} \right) \right\} \\ 5b & \left(\frac{C_{TL}}{C_{BL}} \mid \frac{1}{C_{BR}}\right) \leftarrow \left(\frac{C_{O0}}{C_0} \mid \frac{1}{2} \mid \frac{1}{C_{2D}}\right) - \left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right) + \widehat{C}_{B_0} + \widehat{C}_{B_0} \\ & \widehat{C}_{C_0} \mid \widehat{C}_{C_1} \mid \widehat{C}_{C_2}\right) - \widehat{C}_{C_1} \mid \widehat{C}_{C_2}\right) - \widehat{C}_{C_2} \left(\frac{A_0}{A_1} \mid \frac{1}{A_B}\right) \leftarrow \left(\frac{B_0}{a_1^T}\right) + \widehat{C}_{B_0} + \widehat{C}_{B_0} \\ & \widehat{C}_{C_0} \mid \widehat{C}_{C_1} \mid \widehat{C}_{C_2}\right) - \widehat{C}_{C_1} \mid \widehat{C}_{C_2}\right) - \widehat{C}_{C_2} \mid \widehat{C}_{C_2}\right) - \widehat{C}_{C_1} \mid \widehat{C}_{C_2}\right) - \widehat{C}_{C_1} \mid \widehat{C}_{C_2}\right) - \widehat{C}_{C_2} \mid \widehat{C}_{C_2}\right) - \widehat{C}_{C_2} \mid \widehat{C}_{C_2}\right) + \widehat{C}_{C_2} \mid \widehat{C}_{C_2} \mid \widehat{C}_{C_2}\right) - \widehat{C}_{C_2} \mid \widehat{C}_{C_2}\mid \widehat$$

Algorithm: $C := AB^T + BA^T + C$
$C \to \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right), A \to \left(\begin{array}{c c} A_T \\ \hline A_B \end{array}\right), B \to \left(\begin{array}{c c} B_T \\ \hline B_B \end{array}\right)$ where C_{BR} is 0×0 , A_B and B_B have 0 rows
while $m(C_{BR}) < m(C)$ do
$ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c c} C_{00} & * & * \\ \hline c_{10}^T & \gamma_{11} & * \\ \hline C_{20} & c_{21} & C_{22} \end{array}\right), \left(\begin{array}{c} A_T \\ \hline A_B \end{array}\right) \rightarrow \left(\begin{array}{c} A_0 \\ \hline a_1^T \\ \hline A_2 \end{array}\right), \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \rightarrow \left(\begin{array}{c} B_0 \\ \hline b_1^T \\ \hline B_2 \end{array}\right) $ where γ_{11} is 1×1 , a_1 and b_1 have 1 row
$ \gamma_{11} := a_1^T b_1 + b_1^T a_1 + \gamma_{11} c_{10}^T := a_1^T B_0^T + c_{10}^T c_{21} := B_2 a_1 + c_{21} $
$ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} C_{00} & * & * \\ \hline c_{10}^T & \gamma_{11} & * \\ \hline C_{20} & c_{21} & C_{22} \end{array}\right), \left(\begin{array}{c} A_T \\ \hline A_B \end{array}\right) \leftarrow \left(\begin{array}{c c} A_0 \\ \hline a_1^T \\ A_2 \end{array}\right), \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \leftarrow \left(\begin{array}{c} B_0 \\ \hline b_1^T \\ B_2 \end{array}\right) $
endwhile

Algorithm: $C := AB^T + BA^T + C$

$$C \to \left(\begin{array}{c|c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right), A \to \left(\begin{array}{c|c} A_T \\ \hline A_B \end{array}\right), B \to \left(\begin{array}{c|c} B_T \\ \hline B_B \end{array}\right)$$

where C_{BR} is 0×0 , A_B and B_B have 0 rows

while $m(C_{BR}) < m(C)$ do

$$\left(\begin{array}{c|c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right) \to \left(\begin{array}{c|c} C_{00} & * & * \\ \hline c_{10}^T & \gamma_{11} & * \\ \hline C_{20} & c_{21} & C_{22} \end{array}\right) , \left(\begin{array}{c} A_T \\ \hline A_B \end{array}\right) \to \left(\begin{array}{c} A_0 \\ \hline a_1^T \\ \hline A_2 \end{array}\right) , \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \to \left(\begin{array}{c} B_0 \\ \hline b_1^T \\ \hline B_2 \end{array}\right)$$

where γ_{11} is 1×1 , a_1 and b_1 have 1 row

$$\gamma_{11} := a_1^T b_1 + b_1^T a_1 + \gamma_{11}$$

$$c_{10}^T := a_1^T B_0^T + c_{10}^T$$

$$c_{21} := B_2 a_1 + c_{21}$$

$$\left(\begin{array}{c|c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c|c} C_{00} & * & * \\ \hline c_{10}^T & \gamma_{11} & * \\ \hline C_{20} & c_{21} & C_{22} \end{array}\right) , \left(\begin{array}{c} A_T \\ \hline A_B \end{array}\right) \leftarrow \left(\begin{array}{c|c} A_0 \\ \hline a_1^T \\ A_2 \end{array}\right) , \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \leftarrow \left(\begin{array}{c} B_0 \\ \hline b_1^T \\ B_2 \end{array}\right)$$

endwhile