EXERCICE 8 F Solution

Soit (G, \cdot) un groupe tel que :

$$\forall x \in G, \ x^2 = e.$$

Montrer que (G, \cdot) est abélien.

22 Théorème de Lagrange

Soit G un groupe fini de cardinal n, noté multiplicativement. On souhaite montrer que pour tout $x \in G$, $x^n = 1$.

- 1. Soit H un sous-groupe de G.
 - a. Montrer que l'on définit une relation d'équivalence sur G en posant, pour tous $x, y \in G$,

$$x \sim y \iff x^{-1}y \in H.$$

- **b.** Quelle est la classe d'équivalence d'un élément $x \in G$?
- c. En déduire que #H divise #G.
- 2. Soit $x \in G$.
 - a. Justifier l'existence d'un unique entier $n_x \in \mathbb{N}^*$ tel que $x^{n_x} = 1$ et :

$$\forall k \in \mathbb{Z}, \quad x^k = 1 \Longleftrightarrow n_x \mid k$$
.

L'entier n_x est appelé l'ordre de x.

b. Conclure.

 ${\color{red} {f 1}}$ Soit $n\in {\mathbb N}.$ On considère la matrice carrée

$$M = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \in \mathbf{M}_3(\mathbb{R}).$$

- Montrer qu'il existe deux réels a_n et b_n que l'on déterminera tels que Mⁿ = a_nM + b_nI₃.
- Retrouver le résultat de la question 1. en utilisant un polynôme annulateur de degré 2 de M.
- 3. Retrouver le résultat de la question 1. en développant $((M + I_3) I_3)^n$.

carrees.

- Soit A un anneau commutatif non nul. Un élément $x \in A$ est dit *nilpotent* s'il existe $n \in \mathbb{N}$ tel que $x^n = 0$.
 - 1. a. Quels sont les éléments nilpotents d'un anneau intègre?
 - b. Un élément nilpotent est-il inversible?
 - Montrer que les éléments nilpotents de A en forment un idéal N (appelé nilradical de A).
- 3. Soit $x \in A$ un élément nilpotent et $n \in \mathbb{N}$ tel que $x^n = 0$.
 - a. Montrer que 1-x est inversible et exprimer son inverse en fonction de x.
 - **b.** Montrer que $(1-x)^2$ est inversible et exprimer son inverse en fonction de x.
 - **c.** Montrer que pour tout $p \in \mathbb{N}$, $(1-x)^{p+1}$ est inversible, avec :

$$(1-x)^{-p-1} = \sum_{k=0}^{n-1} {p+k \choose p} x^k.$$

4. On suppose que pour tout $n \in \mathbb{N}^*$, $n1_A \in A^\times$; on notera $\frac{1}{n}$ l'inverse de $n1_A$. Pour tout $x \in \mathbb{N}$, on pose

$$\mathbf{e}^{x} = \sum_{n \in \mathbb{N}} \frac{x^{n}}{n!}.$$

Justifier cette écriture et montrer que :

$$\forall (x, y) \in \mathbb{N}^2, \quad \mathbf{e}^{x+y} = \mathbf{e}^x \mathbf{e}^y.$$

- 37 1. Montrer que $\mathbb{Q}(\sqrt{3}) = \{a + b\sqrt{3}\}_{a,b\in\mathbb{Q}}$ est un corps.
 - Déterminer les automorphismes du corps Q(√3).
 - 3. Les corps Q et Q(√3) sont-ils isomorphes?
- 3 On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=2, u_1=1, u_2=-1$ et, pour tout $n\in\mathbb{N}$, $tilde{\mathbb{N}}$ $tilde{\mathbb{N}}$

$$P = \begin{pmatrix} 1 & 1 & 4 \\ 1 & -1 & 2 \\ 1 & 1 & 1 \end{pmatrix}$$

et on pose par ailleurs :

$$\forall n \in \mathbb{N}, \quad \mathbf{U}_n = \begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix}.$$

- **1.** Déterminer une matrice $A \in M_3(\mathbb{R})$ telle que $U_{n+1} = AU_n$ pour tout $n \in \mathbb{N}$. Expliciter U_n en fonction de A, U_0 et $n \in \mathbb{N}$.
- 2. a. Montrer que P est inversible, calculer P ^ 1 puis D = P ^ 1 AP. Déterminer l'expression de D ^ n pour tout $n \in \mathbb{N}$.
 - **b.** Exprimer A^n en fonction de P, D et n.

c. En déduire l'expression de u_n en fonction de n.