CLAIMS

We claim:

1

A method for filling a polygon with a minimum number of rectangles, comprising the steps of:

3

bordering said polygon, including:

4

selecting a starting border width; and

5

merging border segments where possible; and then

6

orthogonally filling.

- 1
- A method for filling an original polygon envelope with
- a minimum number of stripes, comprising the steps of: 2
- 3
- creating a border polygon;
- 4

generating orthogonal fill stripes; and

EN999023

39

T)

5 processing uncovered areas.

- 1 3. The method of claim 2, further comprising the step of:
- 2 receiving input parameters, said input parameters
- including parameters defining a minimum stripe width, a
- 4 maximum stripe width, and a merge adjacent borders
- flag.
- 1 4. The method of claim 2, said input parameters further
- 2 including stripe overlap amount.
- 1 5. The method of claim 3, said input parameters further
- 2 including wire with ends size delta, and maximum number of
- 3 borders.
- 1 6. The method of claim 3 said step of creating a border
- 2 polygon further comprising the steps of:
- 3 calculating a maximum current polygon border width

4	parameter for a current polygon;
5	responsive to said maximum current polygon border width
6	parameter, calculating a border width parameter for a
7	current border;
8	creating a border polygon with a width equal to said
9	border width parameter;
10	responsive to said merge adjacent borders flag being
11	enabled, creating a new border including merging said
12	current border with a previous border if possible;
13	responsive to said new border from said merging step,
14	creating a new fill polygon;
15	creating a least encompassing rectangle for said new
16	fill polygon;
17	responsive to said least encompassing rectangle being
18	contained entirely within said original polygon
19	envelope, ending said step of creating a border polygon
20	and passing any uncovered area within said new fill
21	polygon to said generating tep; otherwise, returning

22	to said step for calculating width to process said new
23	fill polygon as said current polygon.
1	7. The method of claim 6, said step for calculating a
2	maximum current polygon border width further comprising the
3	steps of:
4	adjusting said maximum stripe width input parameter to
5	a new upper limit which reflects characteristics of
6	said current polygon as well as any previous border
7	polygons.
1	8. The method of claim \uparrow , said adjusting step further
2	comprising the steps of:
3	calculating the length of each side of said current
4	polygon;
5	deriving a smallest side length parameter equal to the
6	larger of (1) a first factor times said minimum stripe
7	width or (2) the length of the shortest side obtained
8	from said step for calculating\length;

9	setting said smallest side length parameter from said
10	deriving step to a reduced amount by a second factor;
11	if said durrent polygon is an inner border and said
12	smallest side length parameter is less than the
13	previous border width, setting said smallest side
14	length equal to said previous border width;
15	if said smallest side length parameter is greater than
16	said maximum stripe width parameter, setting said
17	smallest side length parameter equal to said maximum
18	strip width parameter; and
19	returning said smallest side length parameter for
20	processing as said maximum current polygon border width
21	parameter.
1	9. The method of claim 8, said step for calculating a
2	border width for a current border further comprising the
3	steps of:
4	responsive to said minimum\stripe width parameter and

5

said maximum current polygon border width parameter,

6	deriving a border width variable selectively operable
7	for determining that said current polygon is impossible
8	to be bordered or that said generating orthogonal fill
9	stripe step be executed.
1	10. The method \setminus of claim 9, said step for deriving a border
2	width variable further comprising the steps of:
3	initializing said border width variable equal to said
4	maximum current polygon border width parameter;
5	rounding said border width variable;
6	if said border width variable exceeds said maximum
7	stripe width parameter, setting said border width
8	variable equal to said maximum stripe width parameter;
9	iteratively shrinking and expanding said current
10	polygon with a shrink value equal to said border width
11	variable;
12	if said shrinking step causes said current polygon to
13	shrink to nothing, then indicating a solution is not

14	possible;
15	if said shrinking and expanding steps create a new
16	polygon which completely covers said current polygon,
17	then terminating said iteratively shrinking and
18	expanding steps and returning said border width
19	variable for use in subsequent processing; and
20	if said shrinking and expanding steps create a polygon
21	which does not cover said current polygon, then
22	returning said minimum strip width parameter for use as
23	said border width variable in subsequent processing.
1	11. The method of claim 6, said step for generating
2	orthogonal fill stripes, further comprising the steps of:
3	analyzing areas to be filled to determine optimal
4	stripe direction; and
5	iteratively generating fill stripes in said optimal
6	stripe direction to fill said areas to be filled.
	\

- 1 12. The method of claim 6, said step for processing uncovered areas further comprising the steps of:
- locating all uncovered polygon areas by subtracting the union of all existing fill shapes from said original polygon envelope; and
- iteratively process each said uncovered polygon area,

 selectively bordering and orthogonally filling those

 uncovered polygon areas which are exterior polygons,

 and filling with a single rectangle uncovered polygon

 areas which are interior polygons.
 - 1 13. The method of claim 8, said first factor being 3 and 2 said second factor being 0.8.
- 1 14. An artwork generating system, comprising:
- an exposure tool for exposing a glass master to a polygon envelop as a plurality of polygon fill stripes;
- a polygon fill control module defining an optimum set

5	of \said poly	gon fill stripes for filling said polygon
6	envelope, sa	id control module being operable for
7	generat	ing a first plurality of fill stripes
8	compris	ing a plurality of border polygons;
9	generat	ing zero to a plurality of orthogonal fill
10	stripes	; and
11	generat	ing zero to a plurality of fill stripes for
12	process	ing uncovered areas.
1	15. A method for	filling an original polygon envelope with
2	a minimum number	of stripes, comprising the steps of:
3	generating a	first plurality of stripes for creating a
4	border polyg	on;
5	generating a	second plurality zero or more stripes
6	comprising o	rthogonal fill stripes; and
7	generating a	third plurality of zero or more stripes
8	for processi	ng uncovered areas.
	EN999023	47

7

A system for filling an original polygon envelope with 1 2 a minimum number of stripes, comprising: 3 means for generating a first plurality of stripes for 4 creating a border polygon; 5 means for \generating a second plurality of zero or more 6 stripes comprising orthogonal fill stripes; and 7 means for generating a third plurality of zero or more stripes for processing uncovered areas. 8 A program storage device readable by a machine, 17. 1 tangibly embodying a program of instructions executable by a 2 machine to perform method steps for filling an original 3 4 polygon envelope with a minimum number of stripes, said 5 method steps comprising: generating a first plurality of stripes for creating a 6

border polygon;

8		generaling a second plurality of zero or more stripe
9		comprising orthogonal fill stripes; and
10		generating a third plurality of zero or more stripes
11		for processing uncovered areas.
1	18.	An article of manufacture comprising:
2		a computer useable medium having computer readable
3		program code means embodied therein for filling an
4		original polygon envelope with a minimum number of
5		stripes, the computer readable program means in said
6		article of manufacture comprising:
7		computer readable program code means for causing a
8		computer to effect generating a first plurality of
9		stripes for creating a border polygon;
10		computer readable program code means for causing a
11		computer to effect generating a second plurality of
12		zero or more stripes comprising orthogonal fill
13		stripes; and

- 14 computer readable program code means for causing a
 15 computer to effect generating a third plurality of zero
 16 or more stripes for processing uncovered areas.
 - 1 19. A computer program product or computer program element
 - 2 for filling an original polygon envelope with a minimum
 - number of stripes, according to the steps of:
- 4 generating a first plurality of stripes for creating at
- 5 least one bordeή polygon;
- 6 generating a second plurality of zero or more stripes
- 7 comprising orthogonal fill stripes; and
- generating a third plurality of zero or more stripes
- 9 for processing uncovered areas.
- 1 20. A program storage device readable by a machine,
- 2 tangibly embodying a program of instructions executable by a
- 3 machine to perform method steps for filling an original
- 4 polygon envelope with a minimum number of stripes, said
- 5 method steps comprising:

6	receiving input parameters, said input parameters
7	including parameters defining a minimum stripe width, a
8	maximum stripe width, and a merge adjacent borders
9	flag;
10	first generating a first plurality of stripes for
11	creating at least one border polygon;
12	second generating a second plurality of zero or more
13	stripes comprising orthogonal fill stripes; and
14	third generating \setminus a third plurality of zero or more
15	stripes for processing uncovered areas;
16	said first generating step including the steps of:
17	
18	calculating a maximum current polygon border width
19	parameter for a current polygon;
20	responsive to said maximum current polygon border
21	width parameter, calculating a border width
22	parameter for a current border;

23	creating a border polygon with a width equal to
24	said border width parameter;
25	responsive to said merge adjacent borders flag
26	being enabled, creating a new border including
27	merging said current border with a previous border
28	if possible;
29	responsive to said new border from said merging
30	step, creating a new fill polygon;
31	creating a least encompassing rectangle for said
32	new fill polygon; and
33	responsive to said least encompassing rectangle
34	being contained entirely within said original
35	polygon envelope, ending said step of creating a
36	border polygon and passing any uncovered area
37	within said new fill polygon to said step for
38	generating step a second plurality of zero or ;
39	otherwise, returning to said step for calculating
40	width to process said new fill polygon as said
41	current polygon.

13

A system for filling an original polygon envelope with 1 2 a minimum number of stripes, said method steps comprising: receiving means for receiving input parameters, said 3 4 input parameters including parameters defining a 5 minimum stripe\width, a maximum stripe width, and a 6 merge adjacent borders flag; 7 first generating means for generating a first plurality of stripes for creating at least one border polygon; 8 . 9 second generating means for generating a second 10 plurality of zero or more stripes comprising orthogonal fill stripes; and 11 12 third generating means for generating a third plurality

EN999023

of zero or more stripes for processing uncovered areas;