EECS 16A Designing Information Devices and Systems I Fall 2018 Discussion 14A

1. Orthonormal Matrices and Projections

An orthonormal matrix, **A**, is a matrix whose columns, \vec{a}_i , are:

- Orthogonal (ie. $\langle \vec{a}_i, \vec{a}_i \rangle = 0$ when $i \neq j$)
- Normalized (ie. vectors with length equal to 1, $\|\vec{a}_i\| = 1$). This implies that $\|\vec{a}_i\|_2 = \langle \vec{a}_i, \vec{a}_i \rangle = 1$.
- (a) Suppose that the matrix $\mathbf{A} \in \mathbb{R}^{N \times M}$ has linearly indpendent columns. The vector \vec{y} in \mathbb{R}^N is not in the subspace spanned by the columns of \mathbf{A} . What is the projection of \vec{y} onto the subspace spanned by the columns of \mathbf{A} ?

Answer: When finding a projection onto a subspace, we're trying to find the "closest" vector in that subspace. This can be found by first finding \vec{x} that minimizes $||\vec{y} - A\vec{x}||$. From least squares, we know that $\hat{\vec{x}} = (A^T A)^{-1} A^T \vec{y}$. The projection of \vec{y} onto the columns of \vec{A} is then $\hat{\vec{y}} = A\hat{\vec{x}} = A(A^T A)^{-1}A^T \vec{y}$.

(b) Show if $\mathbf{A} \in \mathbb{R}^{N \times N}$ is an orthonormal matrix then the columns, \vec{a}_i , form a basis for \mathbb{R}^N .

Answer:

We want to show that the columns of **A** form a basis for \mathbb{R}^N . To show that the columns form a basis for \mathbb{R}^N we need to show two things:

- The columns must form a set of *N* linearly independent vectors.
- Any vector $\vec{x} \in \mathbb{R}^N$ can be represented as a linear combination of the vectors in the set.

We already know we have N vectors, so first we will show they are linearly independent. We shall do this by showing that $\vec{A}\vec{\beta} = \vec{0}$ implies that $\vec{\beta}$ can be only $\vec{0}$.

$$\mathbf{A}\vec{\boldsymbol{\beta}} = \vec{0} \tag{1}$$

$$\beta_1 \vec{a}_1 + \ldots + \beta_N \vec{a}_N = \vec{0} \tag{2}$$

Then to exploit the properties of orthogonal vectors, we consider taking the inner product of each side of the above equation with \vec{a}_i .

$$\langle \vec{a}_i, \beta_1 \vec{a}_1 + \ldots + \beta_N \vec{a}_N \rangle = \langle \vec{a}_i, \vec{0} \rangle = 0 \tag{3}$$

Now we apply the distributive property of the inner product and the definition of orthonormal vectors,

$$\langle \vec{a}_i, \beta_1 \vec{a}_1 \rangle + \ldots + \langle \vec{a}_i, \beta_i \vec{a}_i \rangle + \ldots + \langle \vec{a}_i, \beta_N \vec{a}_N \rangle = 0 \tag{4}$$

$$0 + \ldots + \beta_i \langle \vec{a}_i, \vec{a}_i \rangle + \ldots + 0 = 0 \tag{5}$$

$$0 + \ldots + \beta_i \vec{a}_i^T \vec{a}_i + \ldots + 0 = 0$$
 (6)

Because $\vec{a}_i^T \vec{a}_i = 1$, $\beta_i = 0$ for the equation to hold. Then, since this is true for all i from 1 to N, all the elements of the vector beta must be zero $(\vec{\beta} = \vec{0})$. Because $\vec{x} = \vec{0}$ implies $\vec{\beta} = \vec{0}$, the columns of $\bf A$ are linearly independent.

Now, we will show that any vector $\vec{x} \in \mathbb{R}^N$ can be represented as a linear combination of the columns of \mathbf{A} .

$$\vec{x} = \mathbf{A}\vec{\beta} = \beta_1 \vec{a}_1 + \ldots + \beta_N \vec{a}_N \tag{7}$$

Because we know that the N columns of **A** are linearly independent, then there exists A^{-1} . Applying the inverse to the equation above,

$$\mathbf{A}^{-1}\mathbf{A}\vec{\boldsymbol{\beta}} = \mathbf{A}^{-1}\vec{\boldsymbol{x}} \tag{8}$$

$$\vec{\beta} = \mathbf{A}^{-1}\vec{x},\tag{9}$$

we find that there exists a unquie β that allow us to represent any \vec{x} as a linear combination of the columns of A.

(c) When $\mathbf{A} \in \mathbb{R}^{N \times M}$ and $N \geq M$ (i.e. tall matrices), show that if the matrix is orthonormal, then $\mathbf{A}^T \mathbf{A} = \mathbf{I}_{M \times M}$.

Answer: Want to show $\mathbf{A}^T \mathbf{A} = \mathbf{I}_{M \times M}$.

$$\mathbf{A}^{T}\mathbf{A} = \begin{bmatrix} \vec{a}_{1}^{T}\vec{a}_{1} & \vec{a}_{2}^{T}\vec{a}_{1} & \dots & \vec{a}_{n}^{T}\vec{a}_{1} \\ \vec{a}_{2}^{T}\vec{a}_{1} & \vec{a}_{2}^{T}\vec{a}_{2} & \dots & \vec{a}_{n}^{T}\vec{a}_{2} \\ \vdots & \vdots & & \vdots \end{bmatrix} = \mathbf{I}_{M \times M}$$
(10)

When $\vec{a}_i^T \vec{a}_i = \|\vec{a}_i\|^2 = 1$ and when $i \neq j$, $\vec{a}_i^T \vec{a}_j = 0$ because the eigenvectors are orthogonal.

(d) Again, suppose $\mathbf{A} \in \mathbb{R}^{N \times M}$ where $N \geq M$ is an orthonormal matrix. Show that the projection of \vec{y} onto the subspace spanned by the columns of \mathbf{A} is now $\mathbf{A}\mathbf{A}^T\vec{y}$.

Answer:

Starting with the result from part a,

$$\mathbf{A}\vec{\hat{x}} = \mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \vec{y},\tag{11}$$

we can apply the result from part c,

$$\mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\vec{y} = \mathbf{A}(\mathbf{A}^{-1}\mathbf{A})^{-1}\mathbf{A}^T\vec{y}$$
(12)

$$= \mathbf{A}\mathbf{I}\mathbf{A}^T\vec{\mathbf{y}} \tag{13}$$

$$= \mathbf{A}\mathbf{A}^T \vec{\mathbf{y}} \tag{14}$$

2. Orthogonal Matching Pursuit

Let's work through an example of the OMP algorithm. Suppose that we have a vector $\vec{x} \in \mathbb{R}^4$ that is sparse and we know that it has only 2 non-zero entries. In particular,

$$\mathbf{M}\vec{\mathbf{x}} \approx \vec{\mathbf{y}} \tag{15}$$

$$\begin{bmatrix} | & | & | & | \\ \vec{m}_1 & \vec{m}_2 & \vec{m}_3 & \vec{m}_4 \\ | & | & | & | \end{bmatrix} \vec{x} \approx \vec{y}$$
 (16)

$$\begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \approx \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix}$$
 (17)

where exactly 2 of x_1 to x_4 are non-zero. Use Orthogonal Matching Pursuit to estimate x_1 to x_4 .

(a) Why can we not solve for \vec{x} directly?

Answer:

We cannot solve for \vec{x} directly because we have three measurements (or equations) but four unknowns. Since our system is underdetermined, we cannot solve for the unique \vec{x} directly.

(b) Why can we not apply the least squares process to obtain \vec{x} ?

Answer:

Recall the least squares solution: $\vec{x} = (\mathbf{M}^T \mathbf{M})^{-1} \mathbf{M}^T \vec{y}$. $\mathbf{M}^T \mathbf{M}$ is only invertible if it has a trivial null space, i.e., if \mathbf{M} has a trivial null space. However, in this case, \mathbf{M} is a 3×4 matrix, so there is at least one free variable, which means that its null space is non-trivial. Therefore, $\mathbf{M}^T \mathbf{M}$ is not invertible, and we cannot use least squares to solve for \vec{x} .

(c) Let us start by reviewing the OMP procedure,

Inputs:

- A matrix M, whose columns, \vec{m}_i , make up a set of vectors, $\{\vec{m}_i\}$, each of length n
- A vector \vec{v} of length n
- The sparsity level *k* of the signal

Outputs:

- A vector \vec{x} , that contains k non-zero entries.
- A error vector $\vec{e} = \vec{y} \mathbf{M}\vec{x}$

Procedure:

- Initialize the following values: $\vec{e} = \vec{y}$, j = 1, k, A = [
- while $(j \le k)$:
 - i. Compute the inner product for each vector in the set, \vec{m}_i , with \vec{e} : $c_i = \langle \vec{m}_i, \vec{e} \rangle$.
 - ii. Column concatenate matrix **A** with the column vector that had the maximum inner product value with \vec{e} , c_i : $\mathbf{A} = \begin{bmatrix} \mathbf{A} & | & \vec{m}_i \end{bmatrix}$
 - iii. Use least squares to compute \vec{x} given the **A** for this iteration: $\vec{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \vec{y}$
 - iv. Update the error vector: $\vec{e} = \vec{y} A\vec{x}$
 - v. Update the counter: j = j + 1

(d) Compute the inner product of every column with the \vec{y} vector. Which column has the largest inner product? This will be the first column of the matrix **A**.

Answer:

$$\left\langle \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 5\\1\\1 \end{bmatrix} \right\rangle = 5$$

$$\left\langle \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \begin{bmatrix} 5\\1\\1 \end{bmatrix} \right\rangle = 3$$

$$\left\langle \begin{bmatrix} 2\\2\\0 \end{bmatrix}, \begin{bmatrix} 5\\1\\1 \end{bmatrix} \right\rangle = 12$$

$$\left\langle \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 5\\1\\1 \end{bmatrix} \right\rangle = 6$$

The third column has the largest inner product with $\begin{bmatrix} 5\\1\\1 \end{bmatrix}$, so $\mathbf{A} = \begin{bmatrix} 2\\2\\0 \end{bmatrix}$.

(e) Now, find the projection of \vec{y} onto the columns of \mathbf{A} (ie. $\text{proj}_{\text{Col}(\mathbf{A})}\vec{y} = \mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\vec{y}$). Use this to update the error vector.

Answer:

$$\vec{\hat{x}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \vec{y} = \begin{pmatrix} \begin{bmatrix} 2 & 2 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 2 & 2 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix} = \frac{1}{8} \cdot 12 = \frac{3}{2}$$

$$\operatorname{proj}_{\operatorname{Col}(\mathbf{A})} \vec{y} = \mathbf{A} \hat{\vec{x}} = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} \cdot \frac{3}{2} = \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix}$$

$$\vec{e} = \vec{y} - \operatorname{proj}_{\operatorname{Col}(\mathbf{A})} \vec{y} = \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$$

(f) Now compute the inner product of every column with the new error vector. Which column has the largest inner product? This will be the second column of **A**.

Answer:

$$\left\langle \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\-2\\1 \end{bmatrix} \right\rangle = 2$$

$$\left\langle \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \begin{bmatrix} 2\\-2\\1 \end{bmatrix} \right\rangle = 0$$

$$\left\langle \begin{bmatrix} 2\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\-2\\1 \end{bmatrix} \right\rangle = 0$$

$$\left\langle \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\-2\\1 \end{bmatrix} \right\rangle = 3$$

The fourth column has the largest inner product with $\begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$, so $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 2 & 0 \\ 0 & 1 \end{bmatrix}$.

(g) We now have two non-zero entries for our vector, \vec{x} . Find the values of those two entries.

(Reminder:
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
)

Answer:

$$\vec{\hat{x}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \vec{y} = \begin{pmatrix} \begin{bmatrix} 2 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 2 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 2 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Therefore, $x_3 = 1$ and $x_4 = 2$, so $\vec{x} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \end{bmatrix}$.