# High-Speed Serial Interface Circuits and Systems

Design Exercise3 – LC VCO

## **LC VCO Structure**

- ✓LC Tank
  - Spiral inductor (symmetric type)
  - Ideal capacitor
- ✓ Varactor
  - Accumulation varactor
- ✓ Cross coupled circuit
  - Negative resistance
  - To compensate for the loss of the tank
- √Source MOSFET
- **✓**OSC frequency

$$f_o = \frac{1}{2\pi\sqrt{LC}}$$



# **Design Example**

- ✓ LC voltage controlled oscillator (VCO)
  - Supply voltage: 1.8V
  - Frequency tuning range: > 30-MHz
  - Oscillation frequency: 1.5-GHz
  - Phase noise @ 1-MHz offset with 1.5-GHz: < -125dBc

## **Inductor Model**

- An equivalent circuit model of inductor
  - Series connection of resistance and inductance
  - Analyze inductance into using Z-parameter





< Simulation schematic >

## Inductor

- Inductor selection
  - Tsmc18rf → RF\_Device → Inductor → ind\_sym → symbol
  - Symmetric inductor selection



## **Inductor Parameters**

Setting of frequency, inductor width, inner radius and number of turns.



- Freq(Hz) : 1.5G
- Inductor\_Width (M): 30u
- Inner\_Radius (M): 90u
- Number\_Of\_Turns: 4
- → Inductance : 5.54nH
- $\rightarrow$  Q\_factor : 8.88

# Port for S-parameter Simulation

- Port
  - Show Categories check
  - analogLib → Sources → Ports → port → symbol



# S-parameter Simulation Setup

#### Simulation condition setting

- Analysis : sp (S-Parameter Analysis)
- Ports : Port0 (schematic node choice)
- Sweep Variable : Frequency
- Sweep Range: 100M ~ 5G
- Sweep Type : Logarithmic
- Number of Steps: 301
- Enabled check → OK → Netlist and Run





High-Speed Circuits and Systems Lab., Yonsei University

# **Plotting Z-parameter**

- Simulation condition setting
  - Results → Direct Plot → Main Form
  - Function: ZP
  - Add To Outputs choice
  - Modifier : Real → Z11 and Imaginary → Z11
  - OK





# **Z-parameter Results**

- $Z = R + j\omega L$ 
  - Resistance = Real [Z11]
  - Inductance = Imaginary [Z11] /  $\omega$
  - Check the SRF(self resonance frequency)





High-Speed Circuits and Systems Lab., Yonsei University

## **Inductance**

- Simulation condition setting
  - $L = \frac{\omega L}{\omega} = \frac{Imag[Z11]}{\omega}$
  - Calculator (Visualization & Analysis XL)
  - Wave choice → imag(zpm('sp 1 1))/(2\*pi\*xval(zpm('sp 1 1)))



## **Inductance**

- Inductance simulation
  - Inductance : 5.54nH @ 1.50GHz



## **Q**-factor

In an series RL circuit

$$Q = \omega \frac{energy \, stored}{energy \, loss} = \frac{\omega L}{R} = \frac{imag(Z11)}{real(Z11)}$$

- Calculator (Visualization & Analysis XL)
- Wave choice → imag(zpm('sp 1 1))/real(zpm('sp 1 1))



# **Q-factor Results**

- Inductor Q-factor simulation
  - Inductor Q-factor: 8.89 @ 1.50GHz





## **Accumulation Mode Varactor**

• On (Accumulated channel)



• OFF(Depleted)





## **Oscillator with Varactor**



• Change average capacitance from control voltage.

## **Varactor**

- Varactor selection
  - Tsmc18rf → Varactor → Varactor\_RF → mos\_var → symbol



# **Varactor Modeling**

- An equivalent circuit model of varactor
  - Parallel connection of resistance and capacitance
  - Analyze capacitance into using Y-parameter





< Test schematic >

### S - Parameter

#### Simulation condition setting

Analysis : sp (S-Parameter Analysis)

• Ports : Port0 (schematic node choice)

• Sweep Variable : Frequency

• Sweep Range: 100M ~ 40G

• Sweep Type : Logarithmic

• Number of Steps: 301

• Enabled check → OK → Netlist and Run





**Plotting Y- Parameter** 

Simulation condition setting

Results → Direct Plot → Main Form

• Function: YP

Add To Outputs choice

Modifier : Real → Y11 and Imaginary → Y11

OK





## Y- Parameter

- $Y = 1/R + j\omega C$ 
  - Resistance = 1/ Real [Y11]
  - Capacitance = Imaginary [Y11] /  $\omega$





# Capacitance

Simulation condition setting

• 
$$C = \frac{\omega C}{\omega} = \frac{Imag[Y11]}{\omega}$$

- Calculator (Visualization & Analysis XL)
- Wave choice → imag(yp(1 1 ?result "sp")) /(2\*pi\*xval(yp(1 1 ?result "sp")))



# Capacitance

- Capacitance simulation
  - Capacitance: 184fF @ 1.50GHz



## **Q-factor**

In an parallel RC circuit..

$$Q = \omega \frac{energy \, stored}{energy \, loss} = \omega CR = \frac{imag(Y11)}{real(Y11)}$$

- Calculator (Visualization & Analysis XL)
- Wave choice → imag(ypm('sp 1 1))/real(ypm('sp 1 1))



# **Q-factor Results**

Varactor Q-factor simulation



# Capacitance

- Control voltage sweep
  - Tools → Parametric Analysis
    - Voltage : -1.8V ~ 1.8V



• Calculator → Family → value → 파형 선택 (Capacitance) → Plot



# **Capacitance**

V<sub>SG</sub> VS Capacitance



## **LC VCO Schematic**



OSC Frequency (Vcont = 0V)

Design Variables

Launch Session Setup Analyses Variables Outputs Simulation Results Tools Help

**4** 

0 100n conservative

cādence

- Control Voltage 0V
  - OSC frequency: 1.47GHz
  - Transient simulation (100ns)
  - Output 파형 및 Frequency 측정



OSC Frequency (Vcont = 1.8V)

Design Variables

Control Voltage 1.8V

30

• OSC frequency: 1.51GHz

• Transient simulation (100ns)

• Output 파형 및 Frequency 측정



Launch Session Setup Analyses Variables Outputs Simulation Results Tools Help

0 100n conservative

cādence

# Phase Noise (PSS)



tstab: Oscillation 안정 구간 설정

Select

Select

# Phase Noise (Pnoise)

- Pnoise
  - Setup PSS first, then Pnoise





Output : Voltage 설정 Output Node 설정 Input : none

## **Phase Noise**

- Phase noise
  - Calculator (Visualization & Analysis XL)
  - Function Panel (phaseNoise 입력)
    - Harmonic Number: 1
    - Signal dataset : pss\_fd
    - Noise dataset : pnoise
  - Apply



## **Phase Noise**

- Phase noise
  - $V_{cont} = 1.48V$
  - 1.5GHz, -129.9dBc @ 1MHz



High-Speed Circuits and Systems Lab., Yonsei University

# **VCO Comparison**

- Phase noise
  - Ring VCO: -99dBc @ 0.75GHz 1MHz offset
  - LC VCO: -132dBc @ 1.17GHz 1MHz offset
  - LC VCO is better for phase noise.





# **VCO Comparison**

- Frequency tuning range
  - Ring VCO: 416MHz @ control voltage (0V ~ 0.8V)
  - LC VCO: 100MHz @ control voltage (0V ~ 1.8V)
  - Ring VCO is better for frequency tuning range.





## **Homework**

- ✓ Design 2-GHz (±100MHz) LC VCO with tuning range larger than 100MHz
- ✓ Verify and plot output waveforms and  $K_{VCO}$ . (Use plot method of DE2)
- ✓ Verify and plot phase noise with control voltage(0V, 0.9V, 1.8V) generating 2-GHz clock.
- ✓ Indicate LC VCO schematic, inductor value, and using varactor count in the report.
- ✓ LC VCO specification
  - -Supply voltage: 1.8V
  - -Load capacitance: 1.5 pF
  - -Phase noise: Min -115dBc/Hz
  - -Frequency tuning range: Min 100MHz
- ✓ Deadline : 09/24(Thu) 19:00
  - Upload pdf file to YSCEC