Univariate Multiple Imputation

Utrecht University Winter School: Missing Data in R

Kyle M. Lang

Department of Methodology & Statistics Utrecht University

Outline

Single Imputation

Multiple Imputation

MI-Based Analysis

Donor-Based Methods

SINGLE IMPUTATION

Imputation is Just Prediction*

Imputation is nothing more than a type of prediction.

- 1. Train a model on the observed parts of the data, Y_{obs} .
 - Train the imputation model.
- 2. Predict the missing values, Y_{mis} .
 - Generate imputations.
- 3. Replace the missing values with these predictions.
 - o Impute the missing data.

Imputation can be used to support either prediction or inference.

Our goals will dictate what type of imputation we need to do.

*Levels of Uncertainty Modeling

van Buuren (2018) provides a very useful classification of different imputation methods:

1. Simple Prediction

- The missing data are naively filled with predicted values from some regression equation.
- All uncertainty is ignored.

Prediction + Noise

- A random residual error is added to each predicted value to create the imputations.
- Only uncertainty in the predicted values is modeled.
- The imputation model itself is assumed to be correct and error-free.

3. Prediction + Noise + Model Error

- Uncertainty in the imputation model itself is also modeled.
- Only way to get fully proper imputations in the sense of Rubin (1987).

Do we really need to worry?

The arguments against single imputation can seem archaic and petty. Do we really need to worry about this stuff?

Do we really need to worry?

The arguments against single imputation can seem archaic and petty. Do we really need to worry about this stuff?

• YES!!! (At least if you care about inference)

The following are results from a simple Monte Carlo simulation:

	Complete Data	Conditional Mean	Stochastic	MI
cor(X, Y)	0.500	0.563	0.498	0.497
Type I Error	0.052	0.138	0.120	0.054

Mean Correlation Coefficients and Type I Error Rates

Do we really need to worry?

The arguments against single imputation can seem archaic and petty. Do we really need to worry about this stuff?

• YES!!! (At least if you care about inference)

The following are results from a simple Monte Carlo simulation:

	Complete Data	Conditional Mean	Stochastic	MI
cor(X, Y)	0.500	0.563	0.498	0.497
Type I Error	0.052	0.138	0.120	0.054

Mean Correlation Coefficients and Type I Error Rates

- Conditional mean substitution overestimates the correlation effect.
- Both single imputation methods inflate Type I error rates.
- MI provides unbiased point estimates and accurate Type I error rates.

Simulate Some Toy Data

```
library(mvtnorm)
library(dplyr)

nObs <- 1000 # Sample Size
pm <- 0.3 # Proportion Missing

sigma <- matrix(c(1.0, 0.5, 0.5, 1.0), ncol = 2)

dat0 <- rmvnorm(nObs, c(0, 0), sigma) %>% as.data.frame()
colnames(dat0) <- c("y", "x")</pre>
```

Simulate Some Toy Data

```
## Impose MAR Nonresponse:
dat1 <- dat0
mVec <- with(dat1, x < quantile(x, probs = pm))
dat1[mVec, "y"] <- NA

## Subset the data:
yMis <- dat1[mVec, ]
yObs <- dat1[!mVec, ]</pre>
```

Look at the Data

Look at the Data

```
y x
1 NA -0.912
2 1.467 0.667
3 -0.361 -0.017
4 0.928 -0.447
5 NA -2.678
```


Expected Imputation Model Parameters

Conditional Mean Substitution

Stochastic Regression Imputation

```
## Generate imputations:
imps <- imps +
    rnorm(nrow(yMis), 0, sigma)
## Fill missing cells in Y:
dat1[mVec, "y"] <- imps</pre>
head(dat1, n = 5) %>% round(3)
1 -0.885 -0.912
 1.467 0.667
3 -0.361 -0.017
 0.928 - 0.447
5 -0.390 -2.678
```


MULTIPLE IMPUTATION

Flavors of MI

MI simply repeats a single regression imputation M times.

• The specifics of the underlying regression imputation are important.

Flavors of MI

MI simply repeats a single regression imputation M times.

• The specifics of the underlying regression imputation are important.

Simply repeating the stochastic regression imputation procedure described above won't suffice.

Still produces too many Type I errors

	Complete Data	PN-Type	PNE-Type
cor(X, Y)	0.499	0.499	0.498
Type I Error	0.040	0.066	0.046

Mean Correlation Coefficients and Type I Error Rates

 Type I error rates for PN-Type MI are much better than they were for single stochastic regression imputation, but they're still too high.

Proper MI

The problems on the previous slide arise from using the same regression coefficients to create each of the M imputations.

Implies that you're using the "correct" coefficients.

This assumption is plainly ridiculous.

- If we don't know some values of our outcome variable, how can we know the "correct" coefficients to link the incomplete outcome to the observed predictors?
- In any fitted regression model, the coeffcients are only estimates of the population parameters.

Setting Up Proper MI

Proper MI also models uncertainty in the regression coefficients used to create the imputations.

- A different set of of coefficients is randomly sampled (using Bayesian simulation) to create each of the *M* imputations.
- The tricky part about implemented MI is deriving the distributions from which to sample these coefficients.

Our imputation model is simply a linear regression model:

$$Y = X\beta + \varepsilon$$

To fully account for model uncertainty, we need to randomly sample both β and $var(\varepsilon) = \sigma^2$.

Use Bayesian simulation to estimate posterior distributions for the imputation model parameters:

Recall the incomplete data from the single imputation examples.

Sample values of β_0 and β_1 :

•
$$\beta_0 = -0.105$$

•
$$\beta_1 = 0.56$$

Define the predicted best-fit line:

$$\hat{Y}_{mis} = -0.105 + 0.56 X_{mis}$$

Sample a value of σ^2 :

•
$$\sigma^2 = 0.849$$

Generate imputations using the same procedure described in Single Stochastic Regression Imputation:

$$Y_{imp} = \hat{Y}_{mis} + \varepsilon$$

 $\varepsilon \sim N(0, 0.849)$

Sample values of β_0 and β_1 :

•
$$\beta_0 = -0.053$$

•
$$\beta_1 = 0.419$$

Define the predicted best-fit line:

$$\hat{Y}_{mis} = -0.053 + 0.419 X_{mis}$$

Sample a value of σ^2 :

•
$$\sigma^2 = 0.888$$

Generate imputations using the same procedure described in Single Stochastic Regression Imputation:

$$Y_{imp} = \hat{Y}_{mis} + \varepsilon$$
$$\varepsilon \sim N(0, 0.888)$$

Sample values of β_0 and β_1 :

•
$$\beta_0 = -0.093$$

•
$$\beta_1 = 0.565$$

Define the predicted best-fit line:

$$\hat{Y}_{mis} = -0.093 + 0.565 X_{mis}$$

Sample a value of σ^2 :

•
$$\sigma^2 = 0.819$$

Generate imputations using the same procedure described in Single Stochastic Regression Imputation:

$$Y_{imp} = \hat{Y}_{mis} + \varepsilon$$

 $\varepsilon \sim N(0, 0.819)$

MI-BASED ANALYSIS

Doing MI-Based Analysis

An MI-based data analysis consists of three phases:

- 1. The imputation phase
 - Replace missing values with *M* plausible estimates.
 - Produce *M* completed datasets.
- 2. The analysis phase
 - Estimate M replicates of your analysis model.
 - \circ Fit the same model to each of the M datasets from Step 1.
- The pooling phase
 - Combine the M sets of parameter estimates and standard errors from Step 2 into a single set of MI estimates.
 - Use these pooled parameter estimates and standard errors for inference.

Incomplete Dataset

Pooling MI Estimates

Rubin (1987) formulated a simple set of pooling rules for MI estimates.

• The MI point estimate of some interesting quantity, Q^* , is simply the mean of the M estimates, $\{\hat{Q}_m\}$:

$$Q^* = \frac{1}{M} \sum_{m=1}^{M} \hat{Q}_m$$

Pooling MI Estimates

The MI variability estimate, T, is a slightly more complex entity.

• A weighted sum of the *within-imputation* variance, *W*, and the *between-imputation* variance, *B*.

$$W = \frac{1}{M} \sum_{m=1}^{M} \widehat{SE}_{Q,m}^{2}$$

$$B = \frac{1}{M-1} \sum_{m=1}^{M} (\hat{Q}_{m} - Q^{*})^{2}$$

$$T = W + (1 + M^{-1}) B$$

$$= W + B + \frac{B}{M}$$

Inference with MI Estimates

After computing Q^* and T, we combine them in the usual way to get test statistics and confidence intervals.

$$t = \frac{Q^* - Q_0}{\sqrt{T}}$$

$$CI = Q^* \pm t_{crit} \sqrt{T}$$

We must take care with our *df*, though.

$$df = (M-1)\left[1 + \frac{W}{(1+M^{-1})B}\right]^2$$

Fraction of Missing Information

Earlier today, we briefly discussed a very desirable measure of nonresponse: *fraction of missing information* (FMI).

$$FMI = \frac{r + \frac{2}{(df+3)}}{r+1} \approx \frac{(1+M^{-1})B}{(1+M^{-1})B + W} \to \frac{B}{B+W}$$

where

$$r = \frac{(1+M^{-1})B}{W}$$

The FMI gives us a sense of how much the missing data (and their treatment) have influence our parameter estimates.

• We should report the FMI for an estimated parameter along with other ancillary statistics (e.g., t-tests, p-values, effect sizes, etc.).

Special Pooling Considerations

The Rubin (1987) pooling rules only hold when the parameter of interest, Q, follows an approximately normal sampling distribution.

 For substantially non-normal parameters, we may want to transform before pooling and back-transform the pooled estimate.

The following table, reproduced from van Buuren (2018), shows some recommended transformations.

Statistic	Transformation	Source
Correlation	Fisher's z	Schafer (1997)
Odds ratio	Logarithm	Agresti (2013)
Relative risk	Logarithm	Agresti (2013)
Hazard ratio	Logarithm	Marshall et al. (2009)
R^2	Fisher's z on square root	Harel (2009)
Survival probabilities	Complementary log-log	Marshall et al. (2009)
Survival distribution	Logarithm	Marshall et al. (2009)

Pooling Predictions

When doing an MI-based analysis, we generally want to pool results as late as possible in the analytic process.

- This pattern also holds when doing prediction with MI data (Wood, Royston, & White, 2015).
- ullet When doing prediction, we pool the M sets of predictions.
 - We don't generate predictions using the pooled parameters.
 - Caveat: For GLMs, we pool predictions before applying the inverse link function.
- When pooling fit measures based on predictions (e.g., MSE), we pool the M estimates of fit.
 - We don't generate fit values using pooled predictions or parameters.
- Variability between the *M* predictions (or any estimates derived therefrom) quantifies uncertainty due to missing data.

Pooling Predictions

According to Wood et al. (2015), the most natural approach also tends to perform best:

- 1. Train the prediction model on each of the ${\it M}$ imputed datasets separately.
- 2. Generate *M* sets of predictions by submitting the fully observed future data to the *M* models from above.
- 3. Average the M sets of predictions into a single vector of predicted values.
 - When estimating prediction error, calculate M separate measures of error, and pool these estimates.

DONOR-BASED METHODS

Model-Based vs. Donor-Based Methods

They types of MI we've discussed above are all model-based.

 The imputations are randomly sampled from an estimated distribution of the missing values (i.e., a probability model of the missing data).

Model-based methods are theoretically ideal when the missing data truly follow the chosen distribution.

• If the missing data do not follow the model, performance suffers.

Sometimes, the solution is to employ a different probability model.

We'll see this approach when we discuss MI for categorical variables.

Model-Based vs. Donor-Based Methods

If we're not able to choose a sensible distribution for the missing data, we can use *Donor-Based Methods*.

- Imputations are sampled from a pool of matched observed cases.
- The empirical distribution of the observed data is preserved.

One particularly useful donor-based method is *Predictive Mean Matching* (Little, 1988).

 The cases that make up the donor pool are matched based on their predicted outcome values.

Pros and Cons of Predictive Mean Matching

PMM tends to work well with continuous, non-normal variables.

- Relatively robust to misspecification of the imputation model
- · Imputed values are always valid

PMM does have some important limitations.

- In small samples, the same donor cases can be re-used many times.
- PMM cannot extrapolate beyond the observed range of the data.
- PMM cannot be used with some variable types.
 - Nominal variables
- PMM may perform poorly when the number of predictor variables is small.

References

- Agresti, A. (2013). *Categorical data analysis* (3rd ed.). Hoboken, NJ: John Wiley & Sons.
- Harel, O. (2009). The estimation of r^2 and adjusted r^2 in incomplete data sets using multiple imputation. *Journal of Applied Statistics*, *36*(10), 1109–1118. doi: 10.1080/02664760802553000
- Little, R. J. A. (1988). Missing-data adjustments in large surveys. *Journal of Business & Economic Statistics*, *6*(3), 287–296. doi: 10.1080/07350015.1988.10509663
- Marshall, A., Altman, D. G., Holder, R. L., & Royston, P. (2009). Combining estimates of interest in prognostic modelling studies after multiple imputation: Current practice and guidelines. *BMC Medical Research Methodology*, *9*(57). doi: 10.1186/1471-2288-9-57
- Rubin, D. B. (1987). *Multiple imputation for nonresponse in surveys* (Vol. 519). New York, NY: John Wiley & Sons.
- Schafer, J. L. (1997). *Analysis of incomplete multivariate data* (Vol. 72). Boca Raton, FL: Chapman & Hall/CRC.

References

van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Boca Raton, FL: CRC Press.

Wood, A. M., Royston, P., & White, I. R. (2015). The estimation and use of predictions for the assessment of model performance using large samples with multiply imputed data. *Biometrical Journal*, *57*(4), 614–632. doi: 10.1002/bimj.201400004

