Exercise 1

 $TMA4300\ Computer\ Intensive\ Statistical\ Models$

Mads Adrian Simonsen, William Scott Grundeland Olsen

 $03~{\rm februar},\,2021$

Problem A: Stochastic simulation by the probability integral transform and bivariate techniques
1.
2.
(a)
(b)
3.
(a)
(b)
(c)
4.
5
Problem B: The gamma distribution
1.
(a)
(b)
2.
(a)
(b)
3.
(a)
(b)
4.
5.
(a)
(b)
Problem C: Monte Carlo integration and variance reduction
1.
2.
3.
(a)
(b)
Problem D: Rejection sampling and importance sampling

 $\lceil y_1 \rceil$

2

Subproblem 1.

We consider a vector of multinomially distributed counts

and the observed data is $\mathbf{y} = \begin{bmatrix} 125 & 18 & 20 & 34 \end{bmatrix}^{\mathsf{T}}$. The multinomial mass function is given as

$$f(\mathbf{y} \mid \theta) \propto (2 + \theta)^{y_1} (1 - \theta)^{y_2 + y_3} \theta^{y_3},$$

and assuming a prior that is Uniform(0,1) the posterior will be

$$f(\theta \mid \mathbf{y}) \propto f^*(\theta) := (2 + \theta)^{y_1} (1 - \theta)^{y_2 + y_3} \theta^{y_3},$$

for $\theta \in (0,1)$. We wish to sample from this using a Uniform(0,1) proposal density, that is, $g(\theta \mid \mathbf{y}) = 1$, for $\theta \in (0,1)$. To do a rejection sampling (not weighted rejection sampling), we need to know the normalizing constant of $f(\theta \mid \mathbf{y})$. That is, the constant k such that $f(\theta \mid \mathbf{y}) = kf^*(\theta \mid \mathbf{y})$. This can be found as

$$\frac{1}{K} = \int_{\mathbb{R}} f^*(\theta \mid \mathbf{y}) d\theta = \int_0^1 f^*(\theta \mid \mathbf{y}) d\theta \approx 2.3577 \cdot 10^{28},$$

and we find it using the integrate()-function in R below. To use the rejection sampling we also need that

$$\frac{f(\theta \mid \mathbf{y})}{g(\theta \mid \mathbf{y})} = f(\theta \mid \mathbf{y}) \le k,$$

and a value for k is found in the code block below. We then simulate $\Theta \sim \text{Uniform}(0,1)$ and $U \sim \text{Uniform}(0,1)$ and calculate $\alpha = f(\theta \mid \mathbf{y})/k$. Then, if $U \leq \alpha$, Θ is returned, and if not, the procedure is run again. We then sample from the posterior distribution in the code block below.

```
y \leftarrow c(125, 18, 20, 34)
                           # Observed data
# Define the un-normalized posterior distribution f*(theta \mid y)
posterior_star <- function(theta, y) {</pre>
  return((2 + theta)^(y[1]) * (1 - theta)^(y[2] + y[3]) * theta^(y[4]))
# Find the normalizing constant 1 / K
norm_const <- integrate(function(theta)(posterior_star(theta, y)),</pre>
                         lower = 0,
                         upper = 1)$value
# Defining the normalized posterior distribution f(theta | y)
posterior <- function(theta, y) {</pre>
  return(posterior star(theta, y) / norm const)
# Finding the maximum
posterior_star_max <- optimize(function(theta)(posterior_star(theta, y)),</pre>
                                 interval = c(0, 1),
                                 maximum = TRUE)$objective
# k such that f(theta | y) \le k
k <- posterior_star_max / norm_const</pre>
# Rejection sampling algorithm
rejection_sampling <- function(M, y) {
 n \leftarrow 10 * M # Wish M samples from f, need to generate more from Unif(0, 1)
  Theta <- runif(n)
  U <- runif(n)
  count <- 0
              # Count how many times the algorithm runs
  accept <- c() # List of the accepted samples</pre>
```

```
while(length(accept) < M) {
  test_u <- U[count]
  alpha <- posterior(Theta[count], y) / k
  if(test_u <= alpha) {
    accept <- rbind(accept, Theta[count])
    count <- count + 1
  } else {
    count <- count + 1
  }
}
return(list("accept" = accept, "co" = count))
}</pre>
```

Subproblem 2.

Drawing $\Theta_1, \dots, \Theta_M \sim f(\theta \mid \mathbf{y})$, the Monte Carlo estimate of $\mu = \mathrm{E}(\theta \mid \mathbf{y})$ is

$$\hat{\mu} = \frac{1}{M} \sum_{i=1}^{M} \Theta_i.$$

We do this for M=10000 in the code block below. Figure 1 shows the result of this. We see the estimation of the posterior mean $E(\theta \mid \mathbf{y})$ using Monte Carlo integration and numerical integration together with the theoretical posterior density distribution and a generated histogram of the samples. In the figure the posterior density is plotted using a normalizing constant we find by numerical integration in R below, giving the normalizing constant norm_const.

```
M <- 10000
              # Number of samples from f(theta | y)
Theta_samp <- rejection_sampling(M, y) # M samples from f(theta | y)
mu_est <- mean(Theta_samp$accept) # = 1/M * sum(Theta_samp)</pre>
mu_num <- integrate(function(theta)(theta * posterior(theta, y)),</pre>
                    lower = 0,
                    upper = 1)$value  # Value of mu by numerical integration
# Plot
ggplot() +
  geom_histogram(
   data = as.data.frame(Theta_samp$accept),
   mapping = aes(x = Theta_samp\$accept, y = ..density..),
   binwidth = 0.01,
   boundary = 0
  ) +
  stat_function(
   fun = posterior,
   args = list(y = y),
   aes(col = "Posterior density")
  ) +
 geom_vline(
   aes(xintercept = c(mu_est, mu_num),
        col = c("Estimated posterior mean", "Numerical posterior mean"),
        linetype = c("dashed", "dotted"))
  ) +
  guides(linetype = FALSE) + # Remove linetype from label
```

```
ggtitle("Estimation of the posterior mean") +
xlab("theta") +
ylab("Density") +
theme_minimal() +
theme(plot.title = element_text(hjust = 0.5)) +
theme(legend.title = element_blank())
```


Figure 1: Estimation of the posterior mean $E(\theta \mid \mathbf{y})$ using Monte Carlo integration and numerical integration. A histogram of the samples is also shown together with the theoretical posterior density distribution.

In the following code block we find the values of mu_est and mu_num.

```
mu_est
## [1] 0.6225143
mu_num
```

[1] 0.6228061

From this it is clear that the estimated posterior mean is $\hat{\mu} \approx 0.623$ using Monte Carlo integration, and $\mu \approx 0.623$ using numerical integration with integrate(). Figure 1 also shows that these means corresponds well to the real posterior mean.

Subproblem 3.

We are now interested in the number of random numbers the sampling algorithm needs to obtain one sample from $f(\theta \mid \mathbf{y})$. The expected number of trials up to the first sample from $f(\theta \mid \mathbf{y})$ is c given by the condition

$$\frac{f(\theta \mid \mathbf{y})}{g(\theta \mid \mathbf{y})} = f(\theta \mid \mathbf{y}) \le c.$$

We may then choose

$$c \ge \max_{\theta \in [0,1]} f(\theta \mid \mathbf{y}),$$

and we choose the equality. Thus we may find c in R using the optimize()-function, and call this const_num to symbolize that this is the numerically calculated value, as in the following code block.

[1] 7.799308

Using the sampler, the expected number of random numbers that has to be generated in order to obtain one sample of $f(\theta \mid \mathbf{y})$ is given in the following code block.

Theta_samp\$co / M

[1] 7.8237

Subsection 4.

. . .