Name: ROSSHNI PL

Email: 240801279@rajalakshmi.edu.in

Roll no: 240801279 Phone: 9150237513

Branch: REC

Department: I ECE AF

Batch: 2028

Degree: B.E - ECE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_MCQ

Attempt : 1 Total Mark : 15

Marks Obtained: 15

Section 1: MCQ

1. Which of the following operations can be used to traverse a Binary Search Tree (BST) in ascending order?

Answer

Inorder traversal

Status: Correct Marks: 1/1

2. Find the in-order traversal of the given binary search tree.

Answer

1, 2, 4, 13, 14, 18

Status: Correct Marks: 1/1

3. The preorder traversal of a binary search tree is 15, 10, 12, 11, 20, 18, 16, 19. Which one of the following is the postorder traversal of the tree?

Answer

11, 12, 10, 16, 19, 18, 20, 15

Status: Correct Marks: 1/1

4. Which of the following is the correct post-order traversal of a binary search tree with nodes: 50, 30, 20, 55, 32, 52, 57?

Answer

20, 32, 30, 52, 57, 55, 50

Status: Correct Marks: 1/1

5. Which of the following is the correct pre-order traversal of a binary search tree with nodes: 50, 30, 20, 55, 32, 52, 57?

Answer

50, 30, 20, 32, 55, 52, 57

Status: Correct Marks: 1/1

6. Find the pre-order traversal of the given binary search tree.

Answer

13, 2, 1, 4, 14, 18

Status: Correct Marks: 1/1

7. Which of the following is the correct in-order traversal of a binary search tree with nodes: 9, 3, 5, 11, 8, 4, 2?

Answer

2, 3, 4, 5, 8, 9, 11

Status : Correct

Marks : 1/1

8. Find the post-order traversal of the given binary search tree.

Answer

10, 17, 20, 18, 15, 32, 21

Status: Correct Marks: 1/1

9. While inserting the elements 5, 4, 2, 8, 7, 10, 12 in a binary search tree, the element at the lowest level is $\underline{\hspace{1cm}}$.

Answer

12

Status: Correct Marks: 1/1

10. In a binary search tree with nodes 18, 28, 12, 11, 16, 14, 17, what is the value of the left child of the node 16?

Answer

240874 Status: Correct Marks: 1/1

11. Find the postorder traversal of the given binary search tree.

Answer

1, 4, 2, 18, 14, 13

Status: Correct

Marks : 1/1

12. While inserting the elements 71, 65, 84, 69, 67, 83 in an empty binary search tree (BST) in the sequence shown, the element in the lowest level is

•

Answer

67

Status: Correct Marks: 1/1

13. Which of the following is a valid preorder traversal of the binary search tree with nodes: 18, 28, 12, 11, 16, 14, 17?

Answer

18, 12, 11, 16, 14, 17, 28

Status: Correct Marks: 1/1

14. How many distinct binary search trees can be created out of 4 distinct keys?

Answer

14

Status: Correct Marks: 1/1

15. Find the preorder traversal of the given binary search tree.

Answer

9, 2, 1, 6, 4, 7, 10, 14

Status: Correct Marks: 1/1

240801279

Name: ROSSHNI PLV

Email: 240801279@rajalakshmi.edu.in

Roll no: 240801279 Phone: 9150237513

Branch: REC

Department: I ECE AF

Batch: 2028

Degree: B.E - ECE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 1_COD_Question 5

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

Imagine you are tasked with developing a simple GPA management system using a singly linked list. The system allows users to input student GPA values, insertion should happen at the front of the linked list, delete record by position, and display the updated list of student GPAs.

Input Format

The first line of input contains an integer n, representing the number of students.

The next n lines contain a single floating-point value representing the GPA of each student.

The last line contains an integer position, indicating the position at which a student record should be deleted. Position starts from 1.

Output Format

After deleting the data in the given position, display the output in the format "GPA: " followed by the GPA value, rounded off to one decimal place.

Refer to the sample output for formatting specifications.

Sample Test Case

```
Input: 4
    3.8
    3.2
    3.5
   4.1
    Output: GPA: 4.1
    GPA: 3.2
    GPA: 3.8
    Answer
    // You are using GCC
    #include<stdio.h>
    #include<stdlib.h>
    typedef struct gpa{
      float value;
      struct gpa*next;
Node;
    Node*newnode(float value){
      Node*newgpa=(Node*)malloc(sizeof(Node));
       newgpa->value=value;
      newgpa->next=NULL;
      return newgpa;
    }
    Node*insertAtStart(Node*head,float value){
      Node*newgpa=newnode(value);
return newgpa;
      newgpa->next=head;
```

```
240801279
     void traverse(Node*head){
       while(head!=NULL){
          printf("GPA: %.1f\n",head->value);
          head=head->next;
       }
     }
     void deleteAtPosition(Node**head,int pos){
       pos-=1;
       Node*temp=*head;
       if(pos==0){
          *head=temp->next;
ree(te
return;
          free(temp);
       while(--pos){
          temp=temp->next;
       Node*temp1=temp->next;
       temp->next=temp->next->next;
       free(temp1);
     }
     int main()
       int n,pos;
       float value;
Node*head=NULL;
for(int i=0:i<n::
          scanf("%f",&value);
          head=insertAtStart(head,value);
       }
       scanf("%d",&pos);
       deleteAtPosition(&head,pos);
       traverse(head);
     }
```

Status: Correct Marks: 10/10

240801279

Name: ROSSHNI PL

Email: 240801279@rajalakshmi.edu.in

Roll no: 240801279 Phone: 9150237513

Branch: REC

Department: I ECE AF

Batch: 2028

Degree: B.E - ECE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 1

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

John is learning about Binary Search Trees (BST) in his computer science class. He wants to create a program that allows users to delete a node with a given value from a BST and print the remaining nodes using an inorder traversal.

Implement a function to help him delete a node with a given value from a BST.

Input Format

The first line of input consists of an integer N, representing the number of nodes in the BST.

The second line consists of N space-separated integers, representing the values of the BST nodes.

The third line consists of an integer V, which is the value to delete from the BST.

Output Format

The output prints the space-separated values in the BST in an in-order traversal, after the deletion of the specified value.

If the specified value is not available in the tree, print the given input values inorder traversal.

```
Sample Test Case
```

```
Input: 5
1051527
15
Output: 2 5 7 10
Answer
#include <stdio.h>
#include <stdlib.h>
struct TreeNode {
  int data:
struct TreeNode* left;
  struct TreeNode* right;
};
struct TreeNode* createNode(int key) {
  struct TreeNode* newNode = (struct TreeNode*)malloc(sizeof(struct
TreeNode));
  newNode->data = key;
  newNode->left = newNode->right = NULL;
  return newNode;
}
// You are using GCC
struct TreeNode* insert(struct TreeNode* root, int key) {
if(root==NULL){
```

```
return createNode(key);
       else if(key<root->data){
         root->left=insert(root->left,key);
       else if(key>root->data){
         root->right=insert(root->right,key);
       return root;
    }
    struct TreeNode* findMin(struct TreeNode* root) {
       //Type your code here
findMin(root);
       if(root->left==NULL) return root;
    struct TreeNode* deleteNode(struct TreeNode* root, int key) {
       //Type your code
       if(root==NULL) return NULL;
       if(key<root->data){
         root->left=deleteNode(root->left,key);
       }
       else if(key>root->data){
         root->right=deleteNode(root->right,key);
24080 else{
         if(root->left&&root->right){
           struct TreeNode* temp=findMin(root->right);
           root->data=temp->data;
           root->right=deleteNode(root->right,temp->data);
         }
         else{
           struct TreeNode* temp=root;
           if(root->left==NULL){
             root=root->right;
           else{
              root=root->left;
           free(temp);
```

```
240801279
return root;
     void inorderTraversal(struct TreeNode* root) {
       //Type your code here
       if(root==NULL) return;
       inorderTraversal(root->left);
       printf("%d ",root->data);
       inorderTraversal(root->right);
     }
     int main()
    int N, rootValue, V;
       scanf("%d", &N);
       struct TreeNode* root = NULL;
       for (int i = 0; i < N; i++) {
          int key;
          scanf("%d", &key);
         if (i == 0) rootValue = key;
         root = insert(root, key);
       }
       scanf("%d", &V);
       root = deleteNode(root, V);
..orderT
return 0;
                                                      240801270
                           240801279
       inorderTraversal(root);
                                                                          Marks: 10/10
     Status: Correct
```

240801279

240801219

240801279

Name: ROSSHNI PL

Email: 240801279@rajalakshmi.edu.in

Roll no: 240801279 Phone: 9150237513

Branch: REC

Department: I ECE AF

Batch: 2028

Degree: B.E - ECE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 2

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

Mike is learning about Binary Search Trees (BSTs) and wants to implement various operations on them. He wants to write a basic program for creating a BST, inserting nodes, and printing the tree in the pre-order traversal.

Write a program to help him solve this program.

Input Format

The first line of input consists of an integer N, representing the number of values to insert into the BST.

The second line consists of N space-separated integers, representing the values to insert into the BST.

Output Format

The output prints the space-separated values of the BST in the pre-order traversal.

```
Sample Test Case
```

```
Input: 5
    31524
    Output: 3 1 2 5 4
    Answer
    #include <stdio.h>
#include <stdlib.h>
    struct Node {
      int data:
      struct Node* left;
      struct Node* right;
    };
    struct Node* createNode(int value) {
      struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
      newNode->data = value;
return newNode;
      newNode->left = newNode->right = NULL;
    // You are using GCC
    // You are using GCC
    struct Node* insert(struct Node* root, int key) {
      //Type your code here
      if(root==NULL) return createNode(key);
      if(key<root->data){
        root->left=insert(root->left,key);
      else if(key>root->data){
        root->right=insert(root->right,key);
return root;
```

```
void printPreorder(struct Node* node) {
       if(node==NULL) return;
       printf("%d ",node->data);
       printPreorder(node->left);
       printPreorder(node->right);
     }
     int main() {
struct Node* root = NULL;
       int n;
       scanf("%d", &n);
       for (int i = 0; i < n; i++) {
         int value;
         scanf("%d", &value);
         root = insert(root, value);
return 0;
                                                     240801279
       printPreorder(root);
                                                                        Marks: 10/10
     Status: Correct
```

240801279

240801219

240801279

Name: ROSSHNI PLV

Email: 240801279@rajalakshmi.edu.in

Roll no: 240801279 Phone: 9150237513

Branch: REC

Department: I ECE AF

Batch: 2028

Degree: B.E - ECE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 3

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

You are required to implement basic operations on a Binary Search Tree (BST), like insertion and searching.

Insertion: Given a list of integers, construct a Binary Search Tree by repeatedly inserting each integer into the tree according to the rules of a BST.

Searching: Given an integer, search for its presence in the constructed Binary Search Tree. Print whether the integer is found or not.

Write a program to calculate this efficiently.

Input Format

The first line of input consists of an integer n, representing the number of nodes

in the binary search tree.

The second line consists of the values of the nodes, separated by space as integers.

The third line consists of an integer representing, the value that is to be searched.

Output Format

The output prints, "Value <value> is found in the tree." if the given value is present, otherwise it prints: "Value <value> is not found in the tree."

```
Sample Test Case
Input: 7
8 3 10 1 6 14 23
Output: Value 6 is found in the tree.
Answer
struct Node* insertNode(struct Node* root, int value) {
  if (root == NULL) {
    return createNode(value);
root->left = insertNode(root->left, value);
  } else if (value > root->data) {
    root->right = insertNode(root->right, value);
  return root;
}
struct Node* searchNode(struct Node* root, int value) {
  if (root == NULL || root->data == value) {
    return root;
  if (value < root->data) {
    return searchNode(root->left, value);
  } else {
```

return searchNode(root->right, value);

Status: Correct

Marks : 10/10

2,40801279

2,0801279

Name: ROSSHNI PL

Email: 240801279@rajalakshmi.edu.in

Roll no: 240801279 Phone: 9150237513

Branch: REC

Department: I ECE AF

Batch: 2028

Degree: B.E - ECE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 4

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

John, a computer science student, is learning about binary search trees (BST) and their properties. He decides to write a program to create a BST, display it in post-order traversal, and find the minimum value present in the tree.

Help him by implementing the program.

Input Format

The first line of input consists of an integer N, representing the number of elements to insert into the BST.

The second line consists of N space-separated integers data, which is the data to be inserted into the BST.

Output Format

The first line of output prints the space-separated elements of the BST in postorder traversal.

The second line prints the minimum value found in the BST.

```
Sample Test Case
 Input: 3
 5 10 15
Output: 15 10 5
The minimum value in the BST is: 5
 Answer
 #include <stdio.h>
 #include <stdlib.h>
 struct Node {
   int data:
   struct Node* left;
   struct Node* right;
struct Node* createNode(int data) {
   struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
   newNode->data = data;
   newNode->left = newNode->right = NULL;
   return newNode;
}
 // You are using GCC
 struct Node* insert(struct Node* root, int data) {
   //Type your code here
   if(root==NULL){
     return createNode(data);
  if(data<root->data){
     root->left=insert(root->left,data);
```

```
else if(data>root->data){
        root->right=insert(root->right,data);
      return root;
    }
    void displayTreePostOrder(struct Node* root) {
      if(root==NULL) return;
      displayTreePostOrder(root->left);
      displayTreePostOrder(root->right);
      printf("%d ",root->data);
    }
    int findMinValue(struct Node* root) {
      //Type your code here
      if(root->left==NULL){
         return root->data;
      return findMinValue(root->left);
    }
    int main() {
      struct Node* root = NULL;
      int n, data;
      scanf("%d", &n);
      for (int i = 0; i < n; i++) {
        scanf("%d", &data);
        root = insert(root, data);
      displayTreePostOrder(root);
      printf("\n");
      int minValue = findMinValue(root);
      printf("The minimum value in the BST is: %d", minValue);
      return 0;
Status : Correct
                                                                         Marks : 10/10
```

Name: ROSSHNI PLV

Email: 240801279@rajalakshmi.edu.in

Roll no: 240801279 Phone: 9150237513

Branch: REC

Department: I ECE AF

Batch: 2028

Degree: B.E - ECE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 5

Attempt: 1 Total Mark: 10 Marks Obtained: 10

Section 1: Coding

1. Problem Statement

In his computer science class, John is learning about Binary Search Trees (BST). He wants to build a BST and find the maximum value in the tree.

Help him by writing a program to insert nodes into a BST and find the maximum value in the tree.

Input Format

The first line of input consists of an integer N, representing the number of nodes in the BST.

The second line consists of N space-separated integers, representing the values of the nodes to insert into the BST.

Output Format

The output prints the maximum value in the BST.

```
Sample Test Case
```

```
Input: 5
1051527
Output: 15
Answer
#include <stdio.h>
#include <stdlib.h>
struct TreeNode {
  int data:
  struct TreeNode* left:
  struct TreeNode* right;
};
struct TreeNode* createNode(int key) {
  struct TreeNode* newNode = (struct TreeNode*)malloc(sizeof(struct
TreeNode));
  newNode->data = key;
  newNode->left = newNode->right = NULL;
  return newNode;
// You are using GCC
struct TreeNode* insert(struct TreeNode* root, int key) {
  //Type your code here
  if(root==NULL) return createNode(key);
  if(key<root->data){
    root->left=insert(root->left,key);
  else if(key>root->data){
    root->right=insert(root->right,key);
  return root;
```

```
240801279
                                                     240801279
     int findMax(struct TreeNode* root) {
    //Type your code here
       if(root==NULL) return NULL;
       if(root->right==NULL){
         return root->data;
       }
       return findMax(root->right);
     int main() {
       int N, rootValue;
       scanf("%d", &N);
       struct TreeNode* root = NULL;
      for (int i = 0; i < N; i++) {
         int key;
         scanf("%d", &key);
         if (i == 0) rootValue = key;
         root = insert(root, key);
       }
       int maxVal = findMax(root);
       if (maxVal != -1) {
         printf("%d", maxVal);
       }
return 0;
                                                     240801270
                                                                        Marks: 10/10
     Status: Correct
```

240801279

240801219

240801219