ChE 597 Computational Optimization

Homework 1

January 21st 11:59 pm

1. A small engineering consulting firm has 3 senior designers available to work on the firm's 4 current projects over the next 2 weeks. Each designer has 80 hours to split among the projects, and the following table shows the manager's scoring (0 = nil to 100 = perfect) of the capability of each designer to contribute to each project, along with his estimate of the hours that each project will require.

	Project			
Designer	1	2	3	4
1	90	80	10	50
2	60	70	50	65
3	70	40	80	85
Required	70	50	85	35

- (a) Formulate an allocation LP to choose an optimal work assignment.
- (b) Solve your model using pyomo.

2. The following map shows the 8 intersections at which automatic traffic monitoring devices might be installed. A station at any particular node can monitor all the road links meeting that intersection. Numbers next to nodes reflect the monthly cost (in thousands of dollars) of operating a station at that location. This problem is known as the set covering problem in combinatorial optimization.

- (a) Formulate the problem of providing full coverage at minimum total cost as a set covering integer program.
- (b) Use pyomo to solve part (a)
- (c) Revise your formulation of part (a) to obtain an ILP minimizing the number of uncovered road links while using at most 2 stations.
- (d) Use pyomo to solve part (c)

- 3. Prove the following results covered in class. Hint: Use the definition of convex functions, the first and second order characterizations.
 - (a) Univariate functions:
 - Exponential function: e^{ax} is convex for any a over \mathbb{R}
 - Power function: x^a is convex for $a \ge 1$ or $a \le 0$ over \mathbb{R}_+ (nonnegative reals)
 - Power function: x^a is concave for $0 \le a \le 1$ over \mathbb{R}_+
 - Logarithmic function: $\log x$ is concave over \mathbb{R}_{++}
 - (b) Affine function: $a^Tx + b$ is both convex and concave
 - (c) Quadratic function: $\frac{1}{2}x^TQx + b^Tx + c$ is convex provided that $Q \succeq 0$ (positive semidefinite)
 - (d) Least squares loss: $||y Ax||_2^2$ is always convex (since $A^T A$ is always positive semidefinite)
 - (e) **Norm:** ||x|| is convex for any norm; e.g., ℓ_p norms,

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$
 for $p \ge 1$, $||x||_\infty = \max_{i=1,\dots,n} |x_i|$

(f) **Support function:** for any set C (convex or not), its support function

$$I_C^*(x) = \max_{y \in C} x^T y$$

is convex.

(g) **Max function:** $f(x) = \max\{x_1, \dots, x_n\}$ is convex.

- 4. Prove the following properties of convex sets.
 - (a) **Intersection**: the intersection of convex sets is convex.
 - (b) Scaling and translation: if C is convex, then

$$aC + b = \{ax + b : x \in C\}$$

is convex for any a, b.

(c) Affine images and preimages: if f(x) = Ax + b and C is convex then

$$f(C) = \{ f(x) : x \in C \}$$

is convex, and if D is convex then

$$f^{-1}(D) = \{x : f(x) \in D\}$$

is convex.

(d) **Perspective images and preimages:** the perspective function is $\mathbf{P}: \mathbb{R}^n \times \mathbb{R}_{++} \to \mathbb{R}^n$ (where \mathbb{R}_{++} denotes positive reals),

$$\mathbf{P}(x,z) = \frac{x}{z}$$

for z > 0. If $C \subseteq \text{dom}(\mathbf{P})$ is convex then so is $\mathbf{P}(C)$, and if D is convex then so is $\mathbf{P}^{-1}(D)$

(e) **Linear-fractional images and preimages:** the perspective map composed with an affine function,

$$f(x) = \frac{Ax + b}{c^T x + d}$$

is called a **linear-fractional function**, defined on $c^Tx + d > 0$. If $C \subseteq \text{dom}(f)$ is convex then so if f(C), and if D is convex then so is $f^{-1}(D)$

- 5. Prove the following properties of convex functions
 - (a) Nonnegative linear combination: f_1, \ldots, f_m convex implies $a_1 f_1 + \ldots + a_m f_m$ convex for any $a_1, \ldots, a_m \ge 0$
 - (b) **Pointwise maximization:** if f_s is convex for any $s \in S$, then $f(x) = \max_{s \in S} f_s(x)$ is convex. Note that the set S here (number of functions f_s) can be infinite
 - (c) **Partial minimization:** if g(x,y) is convex in x,y, and C is convex, then $f(x) = \min_{y \in C} g(x,y)$ is convex