

FLIGHT PRICE PREDICTION USING AUTOML

JOVITA - V

Data Science Intern - Hexaware Company

PROBLEM STATEMENT

- Flight ticket prices can be something hard to guess, today we might see a price, check out the price of the same flight tomorrow, and it will be a different story.
- To solve this problem, we have been provided with prices of flight tickets for various airlines between the months of March and June of 2019 and between various cities, using which we aim to build a model which predicts the prices of the flights using various input features

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	Additional_Info	Price
0	IndiGo	24/03/2019	Banglore	New Delhi	$BLR \to DEL$	22:20	01:10 22 Mar	2h 50m	non-stop	No info	3897
1	Air India	1/05/2019	Kolkata	Banglore	$CCU \to IXR \to BBI \to BLR$	05:50	13:15	7h 25m	2 stops	No info	7662
2	Jet Airways	9/06/2019	Delhi	Cochin	$DEL \to LKO \to BOM \to COK$	09:25	04:25 10 Jun	19h	2 stops	No info	13882
3	IndiGo	12/05/2019	Kolkata	Banglore	$CCU \to NAG \to BLR$	18:05	23:30	5h 25m	1 stop	No info	6218
4	IndiGo	01/03/2019	Banglore	New Delhi	$BLR \to NAG \to DEL$	16:50	21:35	4h 45m	1 stop	No info	13302

Dataiku

Data Preparation

Python(Jupyter Notebook)

Build a Model and Pickle file

Streamlit and Heroku

Deployed

AIRLINE
SOURCE
DESTINATION
TOTAL_STOPS

UNIVARIATE & BIVARIATE ANALYSIS

DATA PRE-PROCESSING

- MISSING VALUES
- SPLIT
- ENCODING
- REMOVING OUTLIERS

CORRELATION &
HEAT MAP

FEATURE SELECTION


```
#tpot
tpot = TPOTRegressor(verbosity=2,random_state=25,generations=10, population_size=100,cv=5,scoring='r2')
tpot.fit(X_train,y_train)
HBox(children=(HTML(value='Optimization Progress'), FloatProgress(value=0.0, max=1100.0), HTML(value='')))
Generation 1 - Current best internal CV score: 0.7936157462935419
Generation 2 - Current best internal CV score: 0.8312078964908446
Generation 3 - Current best internal CV score: 0.8329787103215971
Generation 4 - Current best internal CV score: 0.8359282146747379
Generation 5 - Current best internal CV score: 0.8359282146747379
Generation 6 - Current best internal CV score: 0.8396294347884963
Generation 7 - Current best internal CV score: 0.8409451942605746
Generation 8 - Current best internal CV score: 0.8409451942605746
Generation 9 - Current best internal CV score: 0.8421393077143066
Generati 10 - Current best internal CV score: 0.8423255803146166
Best piteline: ExtraTreesRegressor(input) matrix, bootstrap=False, max features=1.0, min samples leaf=1, min samples split=10, n estimators=100)
TPOTRegressor(generations=10, random_state=25, scoring='r2', verbosity=2)
```


CONCLUSION

• Hence, at the end, we were successfully able to train our regression model 'Extra tree Regressor' to predict the flights of prices with an r2_score of 84%, and have achieved the required task successfully.

DEPLOYMENT

THANK YOU

