Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subiectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).

```
A. Fie următoarea definiție de funcție LISP

(DEFUN F(L)

(COND

((NULL L) 0)

((> (F (CAR L)) 2) (+ (CAR L) (F (CDR L)))))

(T (F (CAR L)))

)
```

Rescrieți această definiție pentru a evita dublul apel recursiv (**F (CAR L))**. Nu redefiniți funcția. Nu folosiți SET, SETQ, SETF. Justificați răspunsul.

C. Să se scrie un program PROLOG care generează lista permutărilor mulţimii 1..N, cu proprietatea că valoarea absolută a diferenţei între 2 valori consecutive din permutare este >=2. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru N=4 \Rightarrow [[3,1,4,2], [2,4,1,3]] (nu neapărat în această ordine)

D.	Se consideră o listă neliniară. Să se scrie o funcție LISP care să aibă ca rezultat lista inițială din care au fost eliminați toți atomii nenumerici de pe nivelurile pare (nivelul superficial se consideră 1). Se va folosi o funcție MAP. <u>Exemplu</u> pentru lista (a (1 (2 b)) (c (d))) rezultă (a (1 (2 b)) ((d)))