No.

テーマ

曲りに対する感度を上げる ~ プロ意識で取り組んだ熱処理曲りの低減~

会社・事業所名 (フリガナ) アイチセイコウ カブシキガイシャ 愛知製鋼株式会社

発表者名 (フリガナ) オリタ ツヨシ 折田 剛

当社は、愛知県東海市に本社があり、「良きクルマは良きハガネから」の理念から誕生した特殊鋼メーカーです。主な製品は、丸棒・ステンレス形鋼等の圧延製品、自動車用部品の鍛造製品、磁石応用製品等を製造しています。

サークル員は、6人で構成され平均年齢35歳。 新人増員でサークルレベル低下。今回、 取り組んだ設備は、ステンレス専用棒材 固溶化熱処理炉の81号炉です。

製品課品質スローガンから過去の実績を振り返ると、直長より後工程から曲りの苦情があると 言われ調査実施。熱処理後の材料曲りの標準が自工程では標準120mm以下/全長に対し、 後工程では100mm以下/全長との事。私達の常識が後工程では非常識である事が分かった。

サークル会合で、後工程の要望する曲り幅にする為、若手の成長が不可欠と考え若手の中心である折田の成長を狙いテーマリーダーにと思っていた所、折田自身が 自ら立候補してくれて活動を開始することにした。

	サ ー ク ル 名 (フリガナ)			発表形式
QCサークル紹介	チャレンジ11 (チ	ャレンジイレブン)	プロジェクター
本 部 登 録 番 号	64-75	サークル結成年月	1990	年 6月
メ ン バ ー 構 成	6 名	会合は就業時間 7	内 · ·	外,一面方
平 均 年 齢	35 歳 (最高 52 歳、最低 20 歳)	月あたりの会合回数		6 回
テ ー マ 暦	本テーマで 78件目 社外発表 12件目	1回あたりの会合時間		1 時間
本テーマの活動期間	'19年 4 月 ~ '19年 7 月	本テーマの会合回数		14 回
発表者の所属	知多工場 製品課 精熱直		勤続	4 年

5.目標の設定

項目	現状	目標	期間	
81号炉	全長120mm以下	全長100mm以下	`19-4-5	
熱処理曲り	(6m材)	(6m材)	~`19-7-31	

「81号炉熱処理曲りの低減」を現状、全長 120mm以下のものを'19年7月末までに 100mm以下にする事を目標に担当を 決めて進めていくことにした。

D-1140 F 700	45.11	スケジュール			
取り組み項目	担当	19/4	5	6	7
テーマ選定	折田・大塚				
目標の設定	IIID	↔			
現状の把握	大塚	◆····)	•		
要因解析	岩永		*****		
対策の実施	IIID		→	·····	
結果の確認	折田			₹	
効果確認・標準化	長友·大塚				₩
今後の進め方	近藤・岩永				+ +

6.現状把握

現状把握で、曲り発生箇所を特定する為、 設備の点検項目をもとに材料の流れを観察。 炉内設備だけが覗き窓からではピンポイント しか見れず、後日、定点観察カメラを設置 して確認する事にした。

 点検値所
 点検結果

 材料通過状態
 △

 炉内ローラー
 △

 断熱材
 △

定点観察の結果確認

重なってないか?

定点観察の結果を確認すると、炉内で重なった材料が 水冷装置で重なったまま水冷される事で曲りが発生して いる事が分かった。スタッフに曲り発生のメカニズム についてアドバイスしてもらうと、材料が重なった部分 で冷却速度が変わり曲りに繋がっているとの事。 材料の重なりを防止すれば、曲り幅も小さく出来る。

7. 要因解析

さっそく、要因の検証だ!

炉内で材料が重なる要因を特性要因図で解析した所、 ①熱処理前の材料の曲り ②ローラーがズレている の2点が挙げられ、要因の 検証をする事にした。

①熱処理前の材料の曲り

寸法(mm)	最大曲がり(mm)				
16. 25	6				
17. 00	5				
18. 25	4				
14. 00	6				
16. 00	17				
19. 25	5				
17- 00	16				
13. 00	8				
14. 00	12				
16. 00	10				
	標準				
	1 "				
20mn	20mm以内/全長				
曲り幅調査表					
TT > 1ED 01 TT 4-4					

熱処理前の曲りで、ローラーの溝を乗り越えて重なるのではないかと考え、曲り幅を計測してみたが、どの寸法でも曲りはあるが標準の範囲内である事が分かった。

②ローラーがズレている

以前は、カンコツで調整していたものを今回は正確に計測。 ローラーのズレ幅は、最大で26mmある事が分かった。 ローラーの溝の位置がズレていると材料が重なってしまう。

炉内で材料が重なった!

9. 要因の検証まとめ

炉内の材料重なりの現象

標準内ではあるが、熱処理前の 材料の曲りとローラーのズレの 2つの要因が合わさって、材料 が重なると考え再現テスト実施。 カメラ映像を確認してみると、 やはり材料の重なりが発生した。

基準点は

装入側と抽出側 にしましょう

10. 対策の検討と実施

今までズレの調整を目視で実施していたものを、正確に合わせる為、 炉の装入側から抽出側までロープを這わせ、さらにロープを張る装置を 取り付ける事で正確にローラーのズレを合わせる事が出来るようにした。

進め方 材料の重なりとローラーのズレを確認

30日目で材料の

対策事項を確認するにあたり、材料の重なりはカメラで定点観察。ローラ-のズレはマーキング位置の確認で実施する。しかし、30日目に材料の 重なりが発生。ローラーのズレを確認すると、20mmズレが発生していた。

操業中のローラーズレを なくすことは困難の為、 操業中にズレを修正する 事が出来ないか系統図で 対策を検討し、バール 冶具作製を採用。

13. 対策実施

新人の2人も専用冶具 の検討に参加し作製。 操業中でもズレ幅が分か るようにマーキングして ズレていれば調整実施。 手順を明確にし、全員の スキル評価を実施した。

14. 結果の確認

15. 副効果

ローラーズレ治具内製化・・・約22千円/月 後工程での仮矯正費用・・・約18千円/月

創意工夫		. :	折田レベル評価	
提案件数	65件	チーム	ワーク	GÇ≨注
採用件数	49件		自主性	
効果賞件数	6件		レベ	_{別念エ夫} ルアップしき

▍活動後のサークルレベル

16.標準化) **5 W 1 円で管理 !**

何を	誰が	何処で	なぜ	どのように	いつ	フォロー
① ローラーのズレ	折田	現地現物	ズレが無いか	1回/月点検	7月25日	大塚班長
②ロープ巻き取り装置	折田・岩永	現地現物	破損が非	81号炉の 状態管理は		7
③作業標準書	但井	机上	材料曲	美に任せて!		
④調整治具	折田	現地現物	破損が無いか	1回/月点検 日常管理点検表作成	, <u>t</u>	Č F III
りズレ修正の作業手順書作成	折田·大塚	現地現物	教育・訓練	作業手順書作成	7月. 17	ΙШ

17. 今後の取り組み

現在取り組みテーマ 31号炉SUS630曲りの低減

項目	担当	スケジュール '19/9 10 11 12 '20/1
テーマ選定	折田	·····>
目標設定	大塚	>
現状把握	岩永	>
要因解析	川口	>
対策実施	折田	>

今回の活動で学んだ 事を現在取組み中の テーマにも活かして いきます。