

Uning Game's Encourse, $\oint \vec{E} \cdot d\vec{s} = Q_{\text{enc}}$ $= \int d\vec{s} = Q_{\text{enc}}$ [by symmetry, we can take & outside the integral] $\frac{3\vec{E}_{e} = \frac{2}{4\pi E_{0}n^{2}} \left[1 + e^{-2nla} \left(\frac{2n^{2} + 2n + 1}{a^{2}} \right) \right]$ Nucleus is shifted to n=d where \(\varepsilon = \varepsilon \) (at x=d) $\frac{1}{41180} = \frac{1}{41180} =$ e^{-2dla} = 1-2 d + 2 (d)² - 4 (d³).

a (a) 3 (a) e-zdla $\left(\frac{2}{4}\right)^2$ + 2d +1 $\left(\frac{1}{3}\right)^3$ [neglecting powers \approx 3 $\left(\frac{1}{3}\right)^3$ [$\frac{1}{3}$ [$\frac{1}{3}$] ≈ a [1- (1-4 (d)3)]

4118 d2 [3 (a)] $= \frac{1}{4\pi \xi_0} d\xi \left(\frac{3}{3} \frac{d^3}{a^3} \right)$ $= \frac{1}{3\pi \xi_0} d\xi \left(\frac{3}{3} \frac{d^3}{a^3} \right)$ Atomic polarisability a = p (dipole moment)

p=qd => d= qd/ (ad/3H8, 3) = 3H8, 2

