

An open source framework that provides a simple, universal API for building distributed applications

github.com/ray-project/ray

Melih Elibol

What is Ray?

Ray provides a Task parallel API and actor API built on dynamic task graphs

Dynamic Task Graphs

Ray execution model

What is Ray?

• Ray provides a **Task parallel** API and **actor** API built on **dynamic task graphs**

Task Parallelism	Actors	Ray programming model
Dynamic Task Graphs		Ray execution model

What is Ray?

• Ray provides a **Task parallel** API and **actor** API built on **dynamic task graphs**

Libraries and Applications		
Task Parallelism	Actors	Ray programming model
Dynamic Task Graphs		Ray execution model

Ray Architecture

Head node

Driver Worker Scheduler Raylet Object Store Global Control Store (GCS)

Worker node

Worker node

Ray Core API

- put(object) -> ObjectRef
- get(List[ObjectRef]) -> List[object]
- remote(Function) -> RemoteFunction
- RemoteFunction(*args, **kwargs) -> List[ObjectRef]

```
def zeros(shape):
    return np.zeros(shape)

def dot(a, b):
    return np.dot(a, b)
```

<u>Tasks</u>

```
@ray.remote
def zeros(shape):
    return np.zeros(shape)

@ray.remote
def dot(a, b):
    return np.dot(a, b)
```

Tasks

```
@ray.remote
def zeros(shape):
    return np.zeros(shape)
@ray.remote
def dot(a, b):
  return np.dot(a, b)
ref1 = zeros.remote([5, 5])
ref2 = zeros.remote([5, 5])
ref3 = dot.remote(ref1, ref2)
ray.get(ref3)
```

Tasks

```
@ray.remote
def zeros(shape):
                                    class Counter(object):
    return np.zeros(shape)
                                        def init (self):
                                            self.value = 0
@ray.remote
                                        def inc(self):
def dot(a, b):
                                            self.value += 1
  return np.dot(a, b)
                                            return self.value
ref1 = zeros.remote([5, 5])
ref2 = zeros.remote([5, 5])
ref3 = dot.remote(ref1, ref2)
ray.get(ref3)
```

<u>Tasks</u>

```
@ray.remote
def zeros(shape):
    return np.zeros(shape)
@ray.remote
def dot(a, b):
  return np.dot(a, b)
ref1 = zeros.remote([5, 5])
ref2 = zeros.remote([5, 5])
ref3 = dot.remote(ref1, ref2)
ray.get(ref3)
```

<u>Actors</u>

```
@ray.remote
class Counter(object):
    def __init__(self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value
```

@ray.remote

<u>Tasks</u>

```
def zeros(shape):
    return np.zeros(shape)
@ray.remote
def dot(a, b):
  return np.dot(a, b)
ref1 = zeros.remote([5, 5])
ref2 = zeros.remote([5, 5])
ref3 = dot.remote(ref1, ref2)
ray.get(ref3)
```

<u>Actors</u>

```
@ray.remote
class Counter(object):
    def init (self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value
c = Counter.remote()
ref4 = c.inc.remote()
ref5 = c.inc.remote()
ray.get([ref4, ref5])
```



```
ref1 = zeros.remote([5, 5])
ref2 = zeros.remote([5, 5])
ref3 = dot.remote(ref1, ref2)
ray.get(ref3)
```

Actors


```
c = Counter.remote()
ref4 = c.inc.remote()
ref5 = c.inc.remote()
ray.get([ref4, ref5])
```

The Ray API: Actor Handles

Invoke actor methods from other tasks/actors.

```
@ray.remote
class Counter(object):
    def init (self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value
c = Counter.remote()
ref = c.inc.remote()
```

```
# Use the actor from a
# different task

@ray.remote
def use_actor(c):
    ref = c.inc.remote()
    ray.get(ref)
```

NumS

Melih Elibol
Lianmin Zheng
Mohamed Elgharbawy
Sehoon Kim
Devin Petersohn
Alvin Cheung
Michael I. Jordan
Ion Stoica

University of California, Berkeley

NumS is an open-source project publically available under the Apache 2.0 license.

PROBLEM

The Problem

NumS aims to make **terabyte-scale data modeling easier** for the **Python** scientific computing community.

- We have an abundance of very fast compute devices and libraries to manage parallelism among these devices.
- However, existing libraries expect the Python scientific computing community to learn advanced parallel computing concepts and algorithms to make use of these devices, an uncommon skill among Python users.
- What can be done to make numerical computing at these scales accessible to Python programmers?

TRENDS

Trends in Computing

- We can't expect faster CPU/GPU clock speeds.
- CPU memory is abundant, but shared memory has physical limitations.
- Network speeds in the cloud and GPU interconnects are rapidly increasing. AWS/Azure network bandwidth of 2.5GB/s are common, and latest NVLink/NVSwitch has 75GB/s bandwidth between any two connected GPUs.

SOLUTIONS

Existing Solutions

- NumPy Scales to multiple cores, but only per-operation as determined by the system's BLAS library.
- MPI as a specification provides a programming model for NumPy, Tensorflow, Pytorch, etc. to parallelize numerical algorithms, but MPI (and SPMD in general) is an uncommon programming model for Python programmers.
- Tensorflow and Pytorch have poor CPU support, and good multi-GPU implementations require SPMD-style programming.

OUR SOLUTION

Nums

A **Num**erical Cloud Computing **S**ystem that automatically translates NumPy to optimized distributed memory code.

OUR SOLUTION

NumS Design

OUR SOLUTION

NumS Design

EXAMPLE

Execution on Ray: RPC Calls

EXAMPLE

Execution on Ray: RPC Returns

EXAMPLE

Execution on Ray: References

Futures and Promises

Array Access Dependency Resolution

```
x = A[:, i].T @ B[:, i]
y = A[:, j].T @ B[:, i]
z = x * y
```


Block-Cyclic Heuristic

- **NumS** decomposes n-dimensional arrays into blocks.
- A cluster of nodes is represented as an n-dimensional grid.
- Persistent arrays are dispersed over n-dim grid of nodes.
- Balances data load and locality for optimizer.

Cluster grid_shape = (2, 2)

Newton Opt. Logistic Regression With Block-Cyclic

^{*} Mean statistic with min/max spread across 16 nodes on 128GB dataset.

Optimizer

- **Cluster State**: Estimate memory and network load on each node using array size.
- Objective: Place operations so that maximum memory and network load over all nodes is minimized.
- Computation State: An array-of-trees data structure on which we perform computations.
- Tree Search: An iterative algorithm that places a single operation per iteration according to the objective, and updates both the cluster state and computation state.

Execution of Element-wise Addition

BlockArray GraphArray GraphArray GraphArray BlockArray

Representations of Tensor Dot

Syntactic Representation

- A is 4 by 8
- B is 8 by 4

- a i is 4 by 4
- b_i is 4 by 4

GraphArray Representation

frontier nodes

Optimization of Tensor Dot

Optimization Objective

Schedule op on device1

	memory	net_in	net_out
device1	48	0	0
device2	32	0	0

Schedule op on device2

	memory	net_in	net_out
device1	32	0	32
device2	48	32	0

Capture desired scheduling behavior in a simple objective:

$$f(s_i) = ||M_i||_{\infty} + ||I_i||_{\infty} + ||O_i||_{\infty}$$

Where s_i corresponds to scheduling option i from state s. We minimize this objective over i.

Newton Opt. Logistic Regression With NumS

^{*} Mean statistic with min/max spread across 16 nodes on 128GB dataset.

RESULTS

Benchmarks

Logistic Regression Runtime (16 Nodes)

Setup

- 16 nodes with 64 cores, 512 RAM, 2.5GB/s network.
- Tests loading, executing, and evaluating each task.
- Missing bars == 00M.

Results

- **3-6x** speedup on LR over Dask and Spark.
- Competitive performance on QR Decomposition.
- **10-20x** speedup on basic linear algebra over Dask.

OPEN SOURCE RELEASE

NumS 0.1.3

pip install nums

- Top-level API coverage 40%, random module coverage > 90%.
- Full support for array assignment, broadcasting, and basic operations.
- I/O support for distributed file systems, S3, and CSV files.
- Prepackaged support for GLMs.
- Experimental integration with Modin (DataFrames) and XGBoost (Tree-based models).

FUTURE WORK

CS 267 Project Ideas

- Compile-time optimization of tensordot.
- Add support for sparse arrays via sparse probabilistic matrix factorization.
- Implement various notions of matrix inversion, ideally with guarantees on numerical stability.
 - Could also implement any linear algebra operation not currently supported.
- Implement statistical machine learning models, such as Gaussian processes, k nearest neighbors, naive Bayes, etc.
- Empirically, we see that our optimizer achieves near-optimal solutions. Can we prove a bound on the NumS optimization algorithm using L2 norms?