

An analysis of phytochemical diversity in *Scutellaria* to identify species with medicinal potential

Bryce Askey¹, Yeong Hun Song¹, Yoonkyung Lee², Ru Dai¹, Tong Geon Lee^{1,3,4}, Sangtae Kim², and Jeongim Kim^{1,3}

¹Horticultural Sciences Department, University of Florida, Gainesville, FL, USA

²Department of Biology, Sungshin Women's University, Seoul, Republic of Korea

³Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, USA

⁴Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA

Introduction to the Scutellaria genus

- Part of the Lamiaceae family
- Rich in medicinal flavonoids

Baicalein	Antitumor, hepatoprotective, & more		
Wogonin	Anti-inflammatory, anxiolytic, & more		
Oroxylin A	Neuroprotective, & anti-RSV		
Scutellarein	Anti-RSV		

 Several species more well-studied because of their medicinal uses

S. baicalensis

S. lateriflora

Scutellaria baicalensis

- Most famous species
 - Used often in Chinese medicine Huang Qin
- Unique flavonoid profiles observed
 - Some specific to roots, and some to shoots
- Organ-specific biosynthetic pathway proposed by Zhao et al. (2016)
- Reference genome published by Zhao et al. (2019)

Scutellaria contains >470 species

Extent of flavonoid profile similarity is largely unknown

An improved understanding of flavonoid diversity in *Scutellaria* can:

1) Reveal interspecific differences in the underlying biosynthetic pathway

2) Better characterize the evolutionary history of the biosynthetic pathway

3) Help identify candidate species for biotechnology applications

Approach

Phylogenetic analysis

- 1) Sequence chloroplast DNA
- 2) Construct tree and separate into clades

Chemical analysis

- 1) Flavonoid profiling of herbarium samples
- 2) Organ-specific flavonoid profiling

Better understanding of flavonoid diversity in Scutellaria

Genome size analysis

1) Flow cytometry

2) Collect chromosome #s from literature

Phylogenetic analysis

- Tree constructed from chloroplast sequences of 50 species + 1 outgroup
 - Both subgenera represented (*Scutellaria* and *Apelthanthus*)
 - 22 out of 38 species-groups represented
- Separated into 4 clades for downstream comparison

Unpublished phylogenetic data provided by **Yoonkyung Lee** and **Sangtae Kim**

6

Chemical analysis

- 39 species selected for targeted profiling via HPLC
 - Flavonoids extracted from aerial parts
- Order of species determined by hierarchical clustering
- Weak relationship between flavonoid and phylogenetic data
- Subset of species selected for further profiling

Chemical analysis

Scale bar represents 5 cm 9

Genome size analysis

Species	Estimated genome size (GI	Estimated genome size (Gbp)	
	Measured in this study	Published previously	Published previously
S. baicalensis		0.38 (Xu et al., 2020)	2n = 18 (Xu et al., 2020)
	0.54	0.41 (Zhao et al., 2019)	2n = 18 (Zhao et al., 2019)
		0.41 (Cole et al., 2008)	
S. strigillosa		0.38 (Lee & Kim, 2017)	
S. dependens	0.44		
S. indica var. coccinea		0.38 (Lee & Kim, 2017)	
S. barbata	0.52	0.35 (Xu et al., 2020)	2n = 26 (Xu et al., 2020)
S. insignis		0.46 (Lee & Kim, 2017)	
S. racemosa	0.44	0.37 (Cole et al., 2008)	2n = 18 (Cole et al., 2008)
S. arenicola	0.85		
S. havanensis	0.37		
S. altissima	0.39		
S. tournefortii	0.39		
S. leonardii	0.50		
S. pekenensis var. alpina	0.38		

Discussion & conclusion

- Diversity in flavonoid accumulation indicates differences in biosynthetic pathway
- Several biotechnology targets identified
 - S. havanensis Baicalin in roots and shoots
 - *S. racemosa* Oroxylin A in shoots
- Weak relationship between phylogenetic and flavonoid data
- Future work increase size of dataset, and transcriptomic and genomic analyses

S. havanensis

S. racemosa

Acknowledgements

Yeong Hun Song¹ - preliminary chemical analyses and developed HPLC method

Yoonkyung Lee² and **Sangtae Kim²** – phylogenetic and genome size analyses, and provided plant materials

Ru Dai¹ and **Jeongim Kim^{1,3}** - sample preparation and keeping my plants alive

Brian Pearson⁴ and **John B. Nelson⁵** - provided seed and plant materials

¹Horticultural Sciences Department, University of Florida, Gainesville, FL, USA

²Department of Biology, Sungshin Women's University, Seoul, Republic of Korea

³Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, USA

⁴Environmental Horticulture Department, University of Florida, Gainesville, FL, USA

⁵University of South Carolina Herbarium, University of South Carolina, Columbia, SC, USA

Funding for this project provided by: USDA NIFA-HATCH (Project #005681) and the National Research Foundation of Korea (NRF-2017R1D1A1B03034952)

