Ejercicio 1

(Consejos: usar contraejemplos para probar falsedades)

- (a) (5pts.) Demostrar la falsedad de la afirmación: Si A es una matriz de 2×2 tal que $A^2 = 0$, entonces A = 0.
- (b) (5pts.) Sea A una matriz sobre el cuerpo \mathbb{K} . Demuestre que si A es invertible, entonces A^{-1} es invertible.
- (c) (5pts.) Probar que la suma de matrices triangulares superiores es una matriz triangular superior.
- (d) (5pts.) Dar la definición de matriz diagonal.

Ejercicio 2

(10pts.) Hallar todas las matrices A de la forma $\begin{pmatrix} a & 1 & 0 \\ 0 & b & 1 \\ 0 & 0 & c \end{pmatrix}$ tales que $A^2 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Ejercicio 3

Sean $a, b \in \mathbb{R}$

- (a) (5pts.) Describir de forma implícita al plano P que pasa por (1, -3, 2) y es paralelo a los vectores (2, 1, 0) y (-1, 0, 3).
- (b) (5pts.) Hallar la ecuación normal del plano que pasa por el origen y es perpendicular a P.
- (c) (5pts.) Para que valores de (a, b) el plano P es paralelo al plano descripto de forma implícita como x + ay + bz = 1.

Ejercicio 4

(20pts.) Considere las siguientes bases ordenadas de $\mathbb{R}_3[x]$.

$$\mathcal{B}_1 = \{x^2, x, 1\}$$

 $\mathcal{B}_2 = \{x^2 + 2x + 3, 4x^2 + 9x + 12, 7x^2 + 14x + 20\}$

- (a) Calcular la matriz de cambio de base de \mathcal{B}_1 a la base canónica de \mathcal{B}_2 .
- (b) Calcular la matriz de cambio de base de \mathcal{B}_2 a la base canónica de \mathcal{B}_1 .
- (c) Dar el polinomio p(x) tal que $[p(x)]_{\mathcal{B}_2} = \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix}$.

Ejercicio 5

Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal dada por

$$T(x, y, z) = (x - y + 2z, 3x + y + 4z, 5x - y + 8z)$$

- (a) (10pts.) Dar bases del núcleo y la imagen de T.
- (b) (5pts.) Decidir si la T es un isomorfismo.
- (b) (5pts.) Hallar la matriz asociada a T y decir si es diagonizable.

Ejercicio 6

(10pts.) Considere el siguiente subespacio de $\mathbb{R}_3[x]$:

$$W = \{ p(x) \in \mathbb{R}_3[x] \mid p(1) = p'(1) \}$$

Dar la dimensión de W y una base de W.

Ejercicio 7

(5pts.) Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ una transformación lineal, y sea $A = \begin{bmatrix} 2 & 0 \\ 3 & 7 \end{bmatrix}$ la matriz asociada a T con respecto de las bases $\mathcal{B} = \mathcal{B}' = \{(1,2),(0,1)\}$. Dar una definición de T.