Digital Integrated Circuit Lecture 16 Power

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

GIST Lecture

Review of Previous Lecture

Lecture 15

- Power
 - -Instanteneous power

$$P(t) = I(t)V(t)$$

Switching power consumption

$$P_{switching} = \frac{CV_{DD}^2}{T} = CV_{DD}^2 f_{sw}$$

Apple M2 CPU performance

Performance-power graph

(Apple)

5.2 Dynamic Power

5.2. Dynamic power (1)

- Estimate the switching power when operating at 1 GHz.
 - $-1.0 \text{ V } 65 \text{ nm process } (\lambda \text{ is } 25 \text{ nm.})$
 - $-C = 1 \text{ fF/}\mu\text{m (gate)} + 0.8 \text{ fF/}\mu\text{m (diffusion)}$
 - -50M logic transistors (Average width: 12λ), activity factor = 0.1
 - -950M memory transistors (Average width: 4λ)), activity factor = 0.02
 - Each transistor has a capacitance of 1.8 fF/ μ m.
 - For logic transistors, the capacitance is 27 nF.
 - For memory transistors, the capacitance is 171 nF.
 - -The answer is 6.1 W.

5.2. Dynamic power (2)

Remember that

$$P_{switching} = \alpha C V_{DD}^2 f$$

- Try to minimize:
- Activity factor (α)
- -Capacitance (C)
- Suply voltage (V_{DD}^2)
- -Frequency (f)

5.2. Dynamic power (3)

- Activity factor estimation
 - Define P_i to be the probability that node i is 1. Also, $\overline{P_i} = 1 P_i$.
 - -Then,

$$\alpha_i = \overline{P_i} P_i$$
 Assumption?

- Completely random data has $P_i=0.5$ and $\alpha=0.25$. (It is the maximum value of $\overline{P_i}$ P_i .)
- Data is often not completely random.

5.2. Dynamic power (5)

- Switching probability
 - Activity factor of the output is $\overline{P_Y}$ P_Y .

Gate	P _Y
AND2	$P_{\mathcal{A}}P_{B}$
AND3	$P_{\mathcal{A}}P_{B}P_{C}$
OR2	$1 - \overline{P}_{\mathcal{A}}\overline{P}_{\mathcal{B}}$
NAND2	$1 - P_A P_B$
NOR2	$\overline{P}_{\!\mathcal{A}}\overline{P}_{\!\mathcal{B}}$
XOR2	$P_{\mathcal{A}}\overline{P}_{\mathcal{B}} + \overline{P}_{\mathcal{A}}P_{\mathcal{B}}$

5.2. Dynamic power (6)

- A 4-input AND
 - Two-level implementation

$$Y = \overline{\overline{AB} + \overline{CD}} = \overline{\overline{AB}} \overline{\overline{CD}} = ABCD$$

– Estimate the activity factor at each node if the inputs have P=0.5.

5.2. Dynamic power (7)

- Capacitance
- Gate capacitance (In this text, "gate" is not a contact.)
 - Fewer stages of logic
 - -Small gate sizes
- Wire capacitance
 - -Good floorplanning to keep communicating blocks close to each other
 - Drive long wires with inverters or buffers rather than complex gates

5.2. Dynamic power (8)

- Voltage domains
 - Provide separate supplies to different blocks

– Level converters required when crossing from low to high ${\cal V}_{DD}$

domains

Fig. 5.15

- Frequency
 - Dynamic power is directly proportional to frequency. A chip should not run faster than neccessary.

Thank you!