REAL ANALYSIS QUALIFYING EXAMINATION Spring 1998 (Saeki and Peller)

Unless otherwise stated, let (X, \mathcal{A}, μ) be a measure space.

- 1. (a) What does it mean that $f: X \to \mathbb{C}$ is \mathcal{A} -measurable?
 - (b) Prove that if $f, g: X \to \mathbb{C}$ are both \mathcal{A} -measurable, then so is f+g.
- **2.** Let S be the smallest σ -algebra of subsets of \mathbb{R}^2 that contains $\mathcal{F} := \{I \times J : I \text{ and } J \text{ are bounded open intervals of } \mathbb{R}\}.$ Prove that $S = \mathcal{B}(\mathbb{R}^2)$, the Borel subsets of \mathbb{R}^2 .
- **3.** Let (f_n) be a sequence of real-valued measurable functions on X that converges to some function f at each point of X. Prove that f is measurable and that for each $\alpha \in \mathbb{R}$, we have

$$\mu(\{f > \alpha\}) \le \liminf_{n \to \infty} \mu(\{f_n > \alpha\}).$$

- **4.** Let $f \in L^1(\mu)$ and $\varepsilon > 0$. Prove that there exists $\delta > 0$ such that $E \in \mathcal{A}$ and $\mu(E) < \delta \Rightarrow \int_E |f| d\mu < \varepsilon$.
- **5.** Let $E_n \in \mathcal{A}$ for each $n \in \mathbb{N}$. Prove that

$$\mu\left(\bigcup_{1}^{\infty} E_n\right) \leq \sum_{1}^{\infty} \mu(E_n).$$

- **6.** Let $f: X \to [0, \infty]$ be measurable and $0 . Prove <math display="block">\int_X f^p d\mu = p \int_0^\infty t^{p-1} \mu(\{f>t\}) dt.$
- 7. Prove the completeness of $L^p(\mu)$ for $1 \le p < \infty$.
- **8.** Suppose f_n , $f \in L^1(\mu)$ and $||f_n f||_1 \to 0$. Prove that $\limsup_{n \to \infty} \int \log |f_n| d\mu \le \int \log |f| d\mu.$

[Consider an appropriate subsequence of $(|f_n| - \log |f_n|)_1^{\infty}$.]