

Examen de Sistemas Operativos. 20 de junio de 2007.

Nombre y apellidos, Grupo y NIA:

NOTAS:

- * La fecha de publicación de las notas, así como de revisión se notificarán por Aula Global
- * Para la realización del presente examen se dispondrá de 3 horas
- * No se pueden utilizar libros ni apuntes, ni usar móvil (o similar)
- * Será necesario presentar el DNI o carnet universitario para realizar la entrega del examen

Ejercicio 1 (3 puntos)

Responda a las siguientes preguntas:

 ¿Cuáles son los segmentos (o regiones) básicos del modelo de memoria de un proceso?
Indique sus características.

Las regiones de memoria básicas son: código (lectura, ejecución y no modificación), datos (lectura, escritura y no ejecución) y pila (lectura, escritura y no ejecución).

Cada una almacena el código del programa, las variables estáticas y dinámicas y las variables locales, respectivamente.

2) ¿Qué problema puede presentar una planificación de procesos que use prioridades fijas?

Se puede producir la inanición de un proceso. Es decir que un proceso nunca llegue a ejecutarse porque siempre haya en el sistema procesos más prioritarios.

Ejercicio 2 (7 puntos)

En un determinado sistema operativo la planificación de procesos se realiza atendiendo a la prioridad. El sistema tiene tres niveles de prioridad (1, 2 y 3), siendo 1 el nivel más prioritario y 3 el menos prioritario. Dentro de cada nivel de prioridad, se realiza una planificación round-robin con una rodaja de tiempo de 200 ms.

Además, para evitar la inanición de los procesos menos prioritarios se utiliza un algoritmo de envejecimiento. Si un proceso pasa 600 ms. en una cola de un cierto nivel de prioridad sin ejecutarse, se le pasa a la cola inmediatamente superior. Cuando dicho proceso es expulsado de la CPU, vuelve a la cola de su prioridad original. Si se aplica a un proceso que se encuentra en la cola más prioritaria el algoritmo de envejecimiento se admite que su prioridad pueda ser incluso más alta (se admiten número negativo de prioridad).

En la siguiente tabla se especifican un conjunto de procesos con su prioridad, su tiempo de llegada y e tiempo total necesario para su ejecución.

Proceso	Prioridad	T. llegada	T. ejecución
P1	3	100	600
P2	2	200	500
P3	1	300	200
P4	1	400	300
P5	2	500	700

Se desea calcular:

- a) El tiempo que cada proceso se mantiene en espera desde su llegada al sistema hasta que finaliza.
- b) El tiempo de retorno de cada proceso (tiempo transcurrido desde que el proceso llega hasta que finaliza su ejecución).
- c) El tiempo medio de espera y el tiempo medio de retorno.

Repita los cálculos en el caso de que la política usada en cada cola de prioridad sea FIFO.

La siguiente tabla expresa la evolución de los procesos en la CPU y en las colas. Cada proceso se expresa mediante 4 valores (pe,pr,tr,te), donde pe representa la prioridad efectiva, pr la prioridad real, tr el tiempo restante y te el tiempo den envejecimiento.

T	CPU	Q1	Q2	Q3
100	P1(3,3,600,0)			
200	P2(2,2,500,0)			P1(3,3,500,0)
300	P3(1,1,200,0)		P2(2,2,400,0)	P1(3,3,500,100)
400	P3(1,1,100,0)	P4(1,1,300,0)	P2(2,2,400,100)	P1(3,3,500,200)
500	P3->FIN		P2(2,2,400,200)	P1(3,3,500,300)
	P4(1,1,300,0)		P5(2,2,700,0)	
800	P4->FIN		P5(2,2,700,300)	
	P2(2,2,400,0)		P1(2,3,500,0)	
1000	P5(2,2,700,0)		P1(2,3,500,200)	
			P2(2,2,200,0)	
1200	P1(2,3,500,0)		P2(2,2,200,200)	
			P5(2,2,500,0)	
1400	P2(2,2,200,0)		P5(2,2,500,0)	P1(3,3,300,0)
1600	P2->FIN			P1(3,3,300,200)
	P5(2,2,500,0)			
1800	P5(2,2,300,0)			P1(3,3,300,400)
2000	P5(2,2,100,0)		P1(3,3,300,0)	
2100	P5-> FIN			
	P1(3,3,300,0)			
2400	P1-> FIN			

Proceso	Tfin	Tret	Tesp
P1	2400	2400-100=2300	2300-600=1700
P2	1600	1600-200=1400	1400-500=900
P3	500	500-300=200	200-200=0
P4	800	800-400=400	400-300=100
P5	2100	2100-500=1600	1600-700=900
Promedio		1180	720

En el caso de FIFO, se tiene:

T	CPU	Q1	Q2	Q3
100	P1(3,3,600,0)			
200	P2(2,2,500,0)			P1(3,3,500,0)
300	P3(1,1,200,0)		P2(2,2,400,0)	P1(3,3,500,100)
400	P3(1,1,100,0)	P4(1,1,300,0)	P2(2,2,400,100)	P1(3,3,500,200)
500	P3->FIN		P2(2,2,400,200)	P1(3,3,500,300)
	P4(1,1,300,0)		P5(2,2,700,0)	
800	P4->FIN		P5(2,2,700,300)	
	P2(2,2,400,0)		P1(2,3,500,0)	
1100	P5(1,2,700,0)		P1(2,3,500,300)	
			P2(2,2,100,0)	
1400	P5(1,2,400,0)	P1(1,3,500,0)	P2(2,2,100,300)	
1700	P5(1,2,100,0)	P1(1,3,500,300)		

Ingeniería Informática

Convocatoria junio de 2007

			MAP .	
		P2(1,2,100,0)	0.5	
1800	P5->FIN	P2(1,2,100,100)		
	P1(1,3,500,0)			
2300	P1->FIN			
	P2(1,2,100,0)			
2400	P2->FIN			

Proceso	Tfin	Tret	Tesp
P1	2300	2300-100=2200	2200-600=1600
P2	2400	2400-200=2200	2200-500=1700
P3	500	500-300=200	200-200=0
P4	800	800-400=400	400-300=100
P5	1800	1800-500=1300	1300-700=600
Promedio		1260	800