CHENXUANYIN ZOU

Arr zcxy0218@gmail.com · Arr (+86) 188-4248-8849 · **in** Homepage · Arr 02.18.1998

EDUCATION

Northeastern University (985), China, Shenyang

Sep. 2020 – present

State Key Laboratory of Synthetical Automation for Process Industries

Acadamic Master in Control Theory and Control Engineering (top 5) – comprehensive ranking 1/31

Supervisor: Jun Fu (Cheungkong Scholar)

Northeastern University (985), China, Shenyang

Sep. 2016 – Jun. 2020

B.S. in Automation – (Lang shijun's Automation Experimental Class–the best class) GPA: 3.85/5.0

RESEARCH INTERESTS

- 1. **Multiobjective optimization**: focus on efficient a priori Newton-type multiobjective algorithms for constrained multiobjective problems, propose an upper bounding problem of the individual descent of one objective with quadratic convergence and give a
- 2. **Semi-infinite programming**: construct a finite-constraint upper bounding problem to approximate the semi-infinite problem and iterate the parameters in the problem such that it converges to a sub-optimal solution.
- 3. **Optimal control**: mainly utilize the control vector parameterization (CVP) technique and the maximum principle to solve the optimal control problems.
- 4. **Dynamic optimization of nonlinear systems**: apply the semi-infinite programming algorithm to optimal control and integrate it with dynamic multiobjective optimization problems of nonlinear systems with path constraints to control the Fed-batch bioreactor and Lysine Fermentation.

PUBLICATIONS

1. Jun Fu, Chenxuanyin Zou, Mingsheng Zhang, Xinglong Lu, and Yuzhe Li,

Multiobjective dynamic optimization of nonlinear systems With path constraints.

IEEE Transactions on Systems, Man, and Cybernetics: Systems

DOI: 10.1109/TSMC.2022.3201685

2. Jun Fu, Chenxuanyin Zou

An alternated direction sequential quadratic method for constrained multiobjective optimization. Under writing and preparing to publish on *Mathematical Programming* or *SIAM J. Optim*.

ACADEMIC EXPERIENCE

MCM/ICM - Meritorious Winner

2018 - 2019

Aim: Design an escape plan for Louvre Museum for terrorist attacks.

• Utilize the charging and discharging process of capacitance to approximate the process of people entering and leaving the rooms, design a charged circuit according to the building structure of the Louvre Museum, then discharge it. The best escape plan is the path through which electrons move in the circuit.

Research in the State Key Laboratory

2019 - 2023

- Integrate the heuristic algorithms and deterministic algorithms to adopt their advantages. I use the gradient-type method to converge to the local minimum because of their efficiency and the genetic algorithm (GA) to jump out of the local part through the mutation operator.
- Integrate the multiobjective optimization algorithms and the path constraints handling technique to solve the optimal control problems of nonlinear dynamic systems.
- Propose an alternated direction method for constrained multiobjective optimization problems.

Internship and Hand-on Experience in Courses

2018 - 2021

- China Baowu Steel Group Corporation Limited & SIASUN Robot & Automation CO., LTD
- Quancer experimental equipment with MATLAB (Eg. coupled tank, inverted pendulum, etc.)
- Control of an experimental blowing machine with PLC (SIEMENS & ABB).

Academic Material Writing Experience

2021 - 2022

For supervisor

- First Prize of Natural Science Award of the Ministry of Education
- The nomination form for IEEE Fellow

AWARDS AND SCHOLARSHIPS

Third-class Scholarship,	Undergraduate Scholarship of NEU (30%)×3	2016-2019
Second-class Scholarship,	Undergraduate Scholarship of NEU (10%)	2019-2020
First-class Scholarship,	Graduate Scholarship of NEU (40%)×3	2020-2023
Suzhou Industrial Park Scholarship,	Enterprise Scholarship (1/31)	2022-2023
Meritorious Winner,	MCM/ICM (13%)	2019-2020

RELATED COURSES

• Numerical analysis(97), Fundamental of modern control theory(95), Process control systems(95), Introduction to modern robust control(100), Optimal control(96), Modern control systems I-II (I-95, II-93), Design of computer control systems for industrial processes(92), Data-driven intelligent modeling methods(89), Linear and non-linear control systems, and Fundamental of Artificial Intelligence(87), etc.

OTHERS

- Fabrication of welding circuit board made a voice controlled vehicle (Altium Designer, Multsim, etc.)
- Video production made a 3-minute introductory video (Adobe Premiere Pro)
- Driving skills got the driver's license in 2016.