

You are investigating the lithology in a carbonate formation using several well logs measured at 0.5 ft intervals, Figure 1. The well logs are:

- Gamma ray log (GR) can be used to evaluate the amount of shale mixed with the carbonates;
- Caliper log (CALI) can be used to characterize the condition of the borehole (the nominal value 6 in);
- **Porosity log**  $(\phi)$  an indirect measurement of the rock porosity;
- **Density log** ( $\delta$ ) an indirect measurement of the rock density;

Your goal is to use all these data and Bayesian Inversion to construct the probability density function of P-wave velocity in the borehole, and then to find the most likely value of P-velocity as well as the uncertainty associated with this value at every depth. You know that velocity, porosity and density are not independent, as discussed next.

# Wyllie

You know that the velocity is related to the porosity using the Wyllie equation

$$\frac{1}{v} = \frac{1-\phi}{v_M} + \frac{\phi}{v_F} \,, \tag{1}$$

where  $v_M$  and  $v_F$  are the matrix and fluid velocities, respectively, and that the density is linearly related to porosity by the expression

$$\delta = (1 - \phi) \,\delta_M + \phi \delta_F \,\,\,\,(2)$$

where  $\delta_M$  and  $\delta_F$  are the matrix and fluid densities, respectively.

#### Gardner

The density is related to the velocity using the Gardner equation

$$\delta = 1.74v^{0.25} \,\,\,\,(3)$$

where v and  $\delta$  are given in km/s and g/cm<sup>3</sup>, and that the density is also linearly related to porosity by the expression

$$\delta = (1 - \phi) \, \delta_M + \phi \delta_F \,, \tag{4}$$

where  $\delta_M$  and  $\delta_F$  are the matrix and fluid densities, respectively.

Use the following constants, as needed:

$$\delta_F = 1.00 g/cm^3$$

$$\delta_M = 2.71 g/cm^3$$

$$v_F = 1.50 km/s$$

$$v_M = 6.64 km/s$$

Use the Wyllie equation if your CWID is an even number, or the Gardner equation otherwise.

1. Construct the prior joint probability density functionbased on the observed values of  $\phi$  and  $\delta$  and for a P-wave velocity related to the GR log by the empirical relation

$$v = 5.654 - 0.008 GR, (5)$$

Specify what distributions you are using and justify your choice of parameters. Assume that a-priori all variables are independent.

- 2. Construct the theoretical joint probability density function assuming uncertainty relative to the theoretical prediction. Specify what distribution you are using and justify your choice of parameters.
- 3. Construct the posterior joint probability density function based on the prior and theoretical probability density functions.
- 4. Compare the model prior and posterior probability density functions and explain the observed differences.

# **Extra credit:**

- 1. Repeat this exercise at all depth levels and plot the P-wave velocity distributions as a function of depth.
- 2. Redo the Bayesian inversion using other distributions for the various PDFs. Compare your results for the different assumptions.
- 3. Repeat the Bayesian inversion assuming that the logs are correlated from one depth level to another.



Figure 1: Well logs and the prior and posterior velocity PDFs.

**N.B.** This is an individual assignment – your work is subject to the Mines Academic Integrity policy.

# **INSTRUCTIONS**

# **FORMAT**

- Submit the assignment to Canvas as a standalone **Jupyter notebook**.
- Make sure to run **Kernel/Restart & Run All** in Jupyter before submission.

# **CLARITY**

- Include text documenting your reasoning and how you approached the solution.
- Show all intermediate mathematical derivation steps, if applicable.
- Include figures demonstrating the solution and explain their meaning.

#### **PROGRAMMING**

- Include detailed comments documenting the functionality of your codes.
- Organize your programs in clear functional blocks.
- Isolate repeated code in functions. Provide unit tests for all defined functions.
- Define and initialize all variables; indicate in comments their physical units.

#### **POLICIES**

- Incomplete or incorrect answers receive partial credit at the discretion of the grader.
- Submissions lose 25%/day if late for two days and are not graded afterward.
- Multiple submissions to Canvas are allowed, but only the last one is graded.

#### **GRADING RUBRIC**

- 1. Construct the prior joint probability density function.
  - List all assumptions, equations used, distribution, procedure, and choice of parametrization.
  - Justify your choices. (15 pts)
  - Plot the prior joint probability density function. (15 pts)
- 2. Construct the theoretical joint probability density function.
  - List all assumptions, equations used, distribution, procedure, and choice of parametrization.
  - Justify your choices. (15 pts)
  - Plot the theoretical joint probability density function. (15 pts)
- 3. Construct the posterior joint probability density function.
  - List all assumptions, equations used, distribution, procedure, and choice of parametrization.
  - Justify your choices. (15 pts)
  - Plot the posterior joint probability density function. (15 pts)
- 4. Compare the model prior and posterior probability density functions and explain the differences. (10 pts)

# Extra credit

- 1. Plot the P-wave velocity distributions as a function of depth. Explain your results. Use identical ranges for the prior and posterior tracks. (10 pts)
- 2. Choose other distributions for the various PDFs and redo the inversion at all depths. (10 pts)
  - List all assumptions, equations used, and distributions. Justify your choices.
  - Plot the prior, joint, and posterior probability density functions for a single depth.
  - Plot the P velocity distributions as a function of depth.
  - Compare the results obtained for the different assumptions. Explain the differences.
- 3. Repeat the inversion assuming that the logs have some correlation from one depth level to another. Use identical ranges for the prior and posterior tracks. (30 pts)