Errata for:

Data-driven Modeling of Structured Populations: A Practical Guide to the Integral Projection Model

Stephen P. Ellner, Dylan Z. Childs and Mark Rees

Last update: July 7, 2017

Page 15: Equation (2.3.6), C_1 should be C_0 as it is in the life-cycle diagram, Figure 2.2.

Section 2.3: We think that the statement about "piecewise continuous" in the footnote is true, but at least one proof in the book isn't valid regardless of what the curves are that divide \mathbb{Z}^2 into subregions. A slightly less general definition, which should be sufficient for any applications, is as follows. For the basic model where the individual-level state space \mathbb{Z} is a bounded interval [L, U], a partition of \mathbb{Z} is a set of intervals

$$\mathbf{Z}_1 = (z_0, z_1), \mathbf{Z}_2 = (z_1, z_2), \cdots, \mathbf{Z}_m = (z_{m-1}, z_m)$$
(1)

where

$$L = z_0 < z_1 < z_2 < \dots < z_M = U. \tag{2}$$

A partition breaks \mathbf{Z}^2 into a set of open rectangles

$$\mathbf{Z}_{ij} = \mathbf{Z}_i \times \mathbf{Z}_j = \{(z', z) : z' \in \mathbf{Z}_i, z \in \mathbf{Z}_j\}.$$

Define the kernels K_{ij} to be K restricted to \mathbf{Z}_{ij} .

We say that K is *piecewise continuous* if there exists a partition such that each of the kernels K_{ij} is continuous on \mathbf{Z}_{ij} , and can be defined on the boundary of \mathbf{Z}_{ij} so that it is continuous on the closed rectangle $\bar{\mathbf{Z}}_{ij}$ consisting of \mathbf{Z}_{ij} and its boundary.

The reason this definition works is the general theory in Chapter 6 (originally in the Appendices to ?) applied to the closed intervals $\bar{\mathbf{Z}}_i = [z_0, z_1]$ as a set of continuous components, with continuous component-to-component kernels K_{ij} . There are then state distribution functions $n_i(z,t)$ defined on each $\bar{\mathbf{Z}}_i$, and in terms of the general theory, this is an IPM with continuous kernels. But we can also think of it as defining a single distribution function n(z,t) on all of [L,U], consisting of $n_1, n_2, \dots n_M$ side-by-side.

Each of the points z_i is in two adjacent components, but this doesn't matter because single points contribute nothing to the As an example consider $\mathbf{Z} = [0, 2]$ and the (nonsensical) kernel K(z', z) = 1 if z' > 1, and 0 otherwise. The partition is $\mathbf{Z}_1 = (0, 1), \mathbf{Z}_2 = (1, 2)$ and the kernels are

$$K_{11} = K_{12} \equiv 0, K_{21} = K_{22} \equiv 1.$$
 (3)

The population dynamics are

$$n_{1}(z',t+1) = \int_{0}^{1} K_{11}(z',z)n_{1}(z,t)dz + \int_{1}^{2} K_{12}(z',z)n_{2}(z,t)dz = 0$$

$$n_{2}(z',t+1) = \int_{0}^{1} K_{21}(z',z)n_{1}(z,t)dz + \int_{1}^{2} K_{22}(z',z)n_{2}(z,t)dz$$

$$= \int_{0}^{1} n_{1}(z,t)dz + \int_{1}^{2} n_{2}(z,t)dz.$$

$$(4)$$

So $n_1(1, t+1) = 0$, while $n_2(1, t+1) > 0$ unless there were no individuals at time t. However, the values of n_1 and n_2 at the one point z = 1 have no effect on the integrals in the population dynamics, so we can regard n(1, t+1) as being undefined, or give it an arbitrary value such the average $n_1(1, t+1)$ and $n_2(1, t+1)$.

The contrived kernel is (??) a counter-example to the claim in section 6.9 that a piecewise continuous kernel, as defined in that section, maps $L_1(\mathbf{Z})$ into $C(\mathbf{Z})$. The gap in the proof is the assertion that the functions f_n converge almost everywhere, which is not necessarily true regardless of how the partitioning into sets \mathcal{U}_k is done. But on the set of domains $\bar{\mathbf{Z}}_i$ the component kernels are all continuous and the f_n converge pointwise, which is sufficient for the rest of the proof. In example (??), n_1 is continuous on $\bar{\mathbf{Z}}_1$ and n_2 is continuous on $\bar{\mathbf{Z}}_2$, and that is exactly what it means to be continuous on the state space with domains $\bar{\mathbf{Z}}_1$ and $\bar{\mathbf{Z}}_2$.