Agrégation interne 2008, épreuve 1

Notations

On désigne par \mathbb{C} le corps des nombres complexes.

Soit E un \mathbb{C} -espace vectoriel de dimension finie. On désigne par E^* l'espace vectoriel dual de E. On désigne par $\operatorname{End}(E)$ l'algèbre des endomorphismes de E et par $\operatorname{GL}(E)$ le groupe des endomorphismes inversibles de E. On note 1_E l'application identique de E.

Si u est un endomorphisme de E, on note tu l'endomorphisme de E^* transposé de u; si X est une partie de End (E), on note tX l'ensemble des transposés des éléments de X.

Soit u une application linéaire d'un espace vectoriel E dans un espace vectoriel E et soit x un vecteur de E. Pour alléger les notations, il nous arrivera d'écrire ux pour désigner l'image u(x) du vecteur x par l'application u.

Soit n un entier ≥ 1 ; on désigne par $\mathcal{M}_n(\mathbb{C})$ l'algèbre des matrices carrées complexes à n lignes et n colonnes. On note $E_{i,j}$ la matrice de $\mathcal{M}_n(\mathbb{C})$ dont tous les coefficients sont nuls excepté celui de la i-ème ligne et j-ème colonne qui est égal à 1. On note $\mathrm{GL}(n,\mathbb{C})$ le groupe des matrices inversibles et 1_n la matrice unité de $\mathcal{M}_n(\mathbb{C})$.

Soient \mathcal{A} et \mathcal{B} deux \mathbb{C} -algèbres possédant chacune un élément unité; un morphisme unitaire d'algèbres de \mathcal{A} dans \mathcal{B} est une application \mathbb{C} -linéaire qui préserve les produits et les éléments unités. Les deux premières parties sont indépendantes. La sixième partie est indépendante des précédentes.

Partie I

- 1. Soit W un \mathbb{C} -espace vectoriel de dimension finie. Soient p_1, \dots, p_n des endomorphismes de W. Pour $i=1,\dots,n$, on note W_i l'image de p_i . Démontrer que les conditions suivantes sont équivalentes :
 - (i) L'espace vectoriel W est somme directe des sous-espaces W_i et, pour $i=1,\dots,n,$ p_i est le projecteur d'image W_i parallèlement à la somme directe des W_j , $j \neq i$.
 - (ii) Pour $i=1,\dots,n$, on a $p_i^2=p_i$; pour $j\neq i$, on a $p_ip_j=0$; et on a $p_1+\dots+p_n=1_W$.
- 2. Soit toujours W un \mathbb{C} -espace vectoriel de dimension finie, soit n un entier ≥ 1 et soit ρ : $M_n(\mathbb{C}) \to \operatorname{End}(W)$ un morphisme unitaire d'algèbres.
 - (a) Pour $i = 1, \dots, n$, on note p_i l'endomorphisme $\rho(E_{i,i})$. Démontrer que les endomorphismes p_i satisfont à la condition (ii) de la question **I.1.**
 - (b) Pour $i = 1, \dots, n$, on note W_i l'image de p_i . Démontrer que la restriction de $\rho(E_{i,j})$ à W_j induit un isomorphisme de W_j sur W_i .
 - (c) Dans la suite de cette question, ou fixe une base (w_1, \dots, w_r) de l'espace vectoriel W_1 . On pose

$$v_1 = w_1, \ v_2 = \rho(E_{2,1}) w_1, \cdots, \ v_n = \rho(E_{n,1}) w_1.$$

Démontrer que la famille (v_1, \dots, v_n) est libre et que, pour tous entiers s, t et k compris entre 1 et n, on a

$$\rho\left(E_{s,t}\right)v_{k}=\delta_{t,k}v_{s},$$

où le symbole de Kronecker $\delta_{t,k}$ vaut 1 lorsque t=k, et vaut 0 sinon.

(d) Plus généralement, pour $1 \leq j \leq r$, on note V_j le sous-espace vectoriel de W engendré par les vecteurs $\rho(E_{k,1})w_j$, pour $k=1,\cdots,n$. Démontrer que W est somme directe des sous-espaces V_j , $1 \leq j \leq r$.

(e) Démontrer qu'il existe une base de l'espace vectoriel W dans laquelle, pour toute matrice $M \in \mathcal{M}_n(\mathbb{C})$, la matrice de l'endomorphisme $\rho(M)$ est la matrice diagonale par blocs :

$$\operatorname{diag}(M,\cdots,M) = \begin{pmatrix} M & 0 & \cdots & 0 \\ 0 & M & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & M \end{pmatrix}.$$

Partie II

Dans cette partie, on désigne par E un \mathbb{C} -espace vectoriel de dimension finie. On dit qu'une partie X de $\operatorname{End}(E)$ est $\operatorname{irréductible}$ si les seuls sous-espaces vectoriels de E stables par tous les éléments de X sont $\{0\}$ et E. On désigne par A une sous-algèbre irréductible de $\operatorname{End}(E)$ qui contient 1_E , et on se propose de démontrer qu'elle est égale à $\operatorname{End}(E)$.

- 1. Soient u et v des éléments de End (E) qui commutent entre eux. Démontrer que tout sous-espace propre de l'un est stable par l'autre.
- 2. Soit X une partie irréductible de $\operatorname{End}(E)$. Démontrer que l'ensemble des endomorphismes de E qui commutent à tous les éléments de X est l'ensemble des endomorphismes scalaires.
- 3. Rappelons que \mathcal{A} est une sous-algèbre irréductible de End (E) contenant 1_E . Démontrer que ${}^t\mathcal{A}$ est une sous-algèbre irréductible de End (E^*) .
- 4. Soit x un vecteur non nul de E. Préciser à quoi est égal le sous-espace vectoriel Ax de E.
- 5. Soit $u \in \text{End}(E)$ un endomorphisme de rang 1. Démontrer qu'il existe un vecteur y de E et une forme linéaire $\ell \in E^*$ tels que l'on ait $u(x) = \ell(x) y$ pour tout $x \in E$.
- 6. Démontrer que, si l'algèbre \mathcal{A} contient un endomorphisme de rang 1, alors elle les contient tous. En déduire que l'on a alors $\mathcal{A} = \operatorname{End}(E)$.
- 7. Dans cette question, on suppose que \mathcal{A} contient un endomorphisme u dont le rang r est ≥ 2 , et on se propose de démontrer qu'il existe un endomorphisme $u' \in \mathcal{A}$, non nul, dont le rang est strictement plus petit que r.
 - (a) Démontrer qu'il existe x et y dans E et v dans A tels que le couple de vecteurs (u(x), u(y)) soit libre et que l'on ait vu(x) = y.
 - (b) Démontrer qu'il existe alors $\lambda \in \mathbb{C}$ tel que la restriction de l'endomorphisme $uv \lambda 1_E$ à l'image u(E) de u ne soit ni injective ni nulle.
 - (c) Vérifier que l'endomorphisme $u' = uvu \lambda u$ convient.
- 8. Démontrer finalement que $\mathcal{A} = \text{End}(E)$.

Partie III

Soit n un entier ≥ 1 . On appelle dérivation de $\mathcal{M}_n(\mathbb{C})$ toute application linéaire d de $\mathcal{M}_n(\mathbb{C})$ dans $\mathcal{M}_n(\mathbb{C})$ telle que, pour tous X et $Y \in \mathcal{M}_n(\mathbb{C})$, on ait

$$d(XY) = d(X)Y + Xd(Y).$$

- 1. Soit $A \in \mathcal{M}_n(\mathbb{C})$; démontrer que l'application d_A de $\mathcal{M}M_n(\mathbb{C})$ dans $\mathcal{M}_n(\mathbb{C})$ définie par $d_A(X) = AX XA$ est une dérivation.
- 2. Dans cette question, on se propose de démontrer que toute dérivation de $\mathcal{M}_n(\mathbb{C})$ est de la forme ci-dessus.

(a) Soit $d: \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ une dérivation. Démontrer que l'application ρ de $\mathcal{M}_n(\mathbb{C})$ dans $\mathcal{M}_{2n}(\mathbb{C})$ définie par :

$$\rho\left(X\right) = \left(\begin{array}{cc} X & d\left(X\right) \\ 0 & X \end{array}\right)$$

est un morphisme unitaire d'algèbres.

(b) Démontrer qu'il existe une matrice inversible $P = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ où A, B, C, D appartiennent à $\mathcal{M}_n(\mathbb{C})$, telle que l'on ait, pour tout $X \in \mathcal{M}_n(\mathbb{C})$:

$$P\rho\left(X\right) = \left(\begin{array}{cc} X & 0\\ 0 & X \end{array}\right)P.$$

(c) Conclure.

Partie IV

Soit n un entier ≥ 1 . Pour toute matrice $M \in \mathcal{M}_n(\mathbb{C})$, on note $\mathrm{Tr}(M)$ la trace de M, somme des coefficients diagonaux de M.

1.

(a) Démontrer que l'application ψ de $\mathcal{M}_n(\mathbb{C}) \times \mathcal{M}_n(\mathbb{C})$ dans \mathbb{C} définie par :

$$\psi(X,Y) = \operatorname{Tr}(XY)$$
,

est une forme bilinéaire symétrique non dégénérée.

(b) Démontrer que, si (X_1, \dots, X_{n^2}) est une base de l'espace vectoriel $\mathcal{M}_n(\mathbb{C})$, il existe une autre base (X'_1, \dots, X'_{n^2}) de $\mathcal{M}_n(\mathbb{C})$ telle que, pour tous entiers i et j compris entre 1 et n^2 , on ait

$$\psi\left(X_{i}, X_{j}'\right) = \delta_{i,j}$$
 (symbole de Kronecker).

2. Démontrer que, pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, on a :

$$\sum_{1 \le i \le n^2} X_i A X_i' = \operatorname{Tr}(A) \mathbf{1}_n.$$

Partie V

On considère dans cette partie un sous-groupe G de $\mathrm{GL}(n,\mathbb{C})$ ayant la propriété suivante :

(P) il existe un entier $m \ge 1$ tel que l'on ait $g^m = \mathbf{1}_n$ pour tout $g \in G$.

On fixe l'entier m.

- 1. Démontrer que chaque élément g de G est diagonalisable. Que peut-on dire de ses valeurs propres ?
- 2. Démontrer que l'ensemble $\{Tr(g) \mid g \in G\}$ est fini.
- 3. On suppose, dans cette question, que l'ensemble G, considéré comme ensemble d'endomorphismes de \mathbb{C}^n (en identifiant $\mathcal{M}_n(\mathbb{C})$ et $\operatorname{End}(\mathbb{C}^n)$), est irréductible.
 - (a) Démontrer que l'ensemble G contient une base de l'espace vectoriel $\mathcal{M}_n\left(\mathbb{C}\right)$.

- (b) Démontrer que l'ensemble G est fini (on pourra utiliser les questions IV.1. et V.2.).
- 4. Dans cette question, on ne suppose plus que l'ensemble G soit irréductible.
 - (a) Démontrer qu'il existe des entiers non nuls p et q, avec p + q = n, et une base de l'espace vectoriel \mathbb{C}^n dans laquelle chaque élément q de G s'écrit par blocs :

$$\left(\begin{array}{cc} T\left(g\right) & U\left(g\right) \\ 0 & V\left(g\right) \end{array}\right)$$

où $T(g) \in M_p(\mathbb{C})$ et $V(g) \in M_q(\mathbb{C})$.

- (b) Posons $G_1 = \{g \in G \mid T(g) = \mathbf{1}_p\}$ et $G_2 = \{g \in G \mid V(g) = \mathbf{1}_q\}$. Démontrer que G_1 et G_2 sont des sous-groupes distingués de G. Déterminer $G_1 \cap G_2$.
- (c) Soient K un groupe et H un sous-groupe de K. L'indice de H dans K est le cardinal de l'ensemble quotient K/H. Etablir le résultat général suivant : Soient K un groupe, K_1 et K_2 des sous-groupes distingués de K, tous deux d'indice fini dans K; alors l'indice de $K_1 \cap K_2$ dans K est fini.
- (d) Conclure.

Partie VI

Soient n et m des entiers ≥ 1 . Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $B \in \mathcal{M}_m(\mathbb{C})$; on définit la matrice $A * B \in \mathcal{M}_{nm}(\mathbb{C})$ par :

$$A * B = \left(\begin{array}{ccc} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1}B & a_{n2}B & \cdots & a_{nn}B \end{array}\right).$$

1. Démontrer que l'application ϕ de $\mathcal{M}_n(\mathbb{C}) \times \mathcal{M}_m(\mathbb{C})$ dans $\mathcal{M}_{nm}(\mathbb{C})$ définie par $\phi(A, B) = A * B$ est bilinéaire et satisfait à :

$$(A*B)(A'*B') = AA'*BB'$$

pour toutes matrices $A, A' \in \mathcal{M}_n(\mathbb{C}), B, B' \in \mathcal{M}_m(\mathbb{C})$.

- 2. Démontrer que l'image de l'application ϕ engendre l'espace vectoriel $\mathcal{M}_{nm}\left(\mathbb{C}\right)$. On suppose désormais n=m.
- 3. Posons

$$P = \sum_{1 < i, j < n} E_{i,j} * E_{j,i}.$$

- (a) Démontrer que l'on a $P^2 = 1_{n^2}$.
- (b) Démontrer que, pour toutes matrices $A, B \in \mathcal{M}_n(\mathbb{C})$, on a :

$$P(A*B)P = B*A.$$

- 4. Soient A et $B \in M_n(\mathbb{C})$.
 - (a) Calculer la trace et le déterminant de la matrice A * B.
 - (b) Déterminer les valeurs propres de A * B en fonction de celles de A et de B.