## ECON 709 - PS 3

## Alex von Hafften\*

## 9/27/2020

- 1. A random point (X, Y) is distributed uniformly on the square with vertices (1, 1), (1, -1), (-1, 1), and (-1, -1). That is, the joint PDF is f(x, y) = 1/4 on the square and f(x, y) = 0 outside the square. Determine the probability of the following events:
- (a)  $X^2 + Y^2 < 1$
- (b) |X + Y| < 2
- 2. Let the joint PDF of X and Y be given by  $f(x,y)=g(x)h(y) \ \forall x,y\in\mathbb{R}$  for some functions g(x) and h(y). Let a denote  $\int_{-\infty}^{\infty}g(x)dx$  and b denote  $\int_{-\infty}^{\infty}h(x)dx$
- (a) What conditions a and b should satisfy in order for f(x, y) to be a bivariate PDF?

For f(x,y) to be a PDF, it should integrate to one:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$$

$$\implies \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x) h(y) dx dy = 1$$

$$\implies \int_{-\infty}^{\infty} g(x) dx \int_{-\infty}^{\infty} h(y) dy = 1$$

$$\implies ab = 1$$

$$\implies a = b^{-1}$$

<sup>\*</sup>I worked on this problem set with a study group of Michael Nattinger, Andrew Smith, and Ryan Mather. I also discussed problems with Emily Case, Sarah Bass, and Danny Edgel.

(b) Find the marginal PDF of X and Y.

The marginal PDF of X:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
$$= \int_{-\infty}^{\infty} g(x) h(y) dy$$
$$= g(x) \int_{-\infty}^{\infty} h(y) dy$$
$$= b \cdot g(x)$$

The marginal PDF of Y:

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$
$$= \int_{-\infty}^{\infty} g(x) h(y) dx$$
$$= h(y) \int_{-\infty}^{\infty} g(x) dx$$
$$= a \cdot h(y)$$

(c) Show that X and Y are independent.

Proof: X and Y are independent if the product of their marginal distributions is their joint distribution:

$$f_X(x) \cdot f_Y(y) = b \cdot g(x) \cdot a \cdot h(y)$$

$$= b \cdot g(x) \cdot b^{-1} \cdot h(y)$$

$$= g(x) \cdot h(y)$$

$$= f(x, y)$$

3. Let the joint PDF of X and Y be given by

$$f(x,y) = \begin{cases} cxy & \text{if } x,y \in [0,1], x+y \le 1\\ 0, & \text{otherwise} \end{cases}$$

(a) Find the value of c such that f(x, y) is a joint PDF.

$$\int_0^1 \int_0^{1-x} f(x,y) dy dx = 1$$

$$\Rightarrow \int_0^1 \int_0^{1-x} cxy dy dx = 1$$

$$\Rightarrow c \int_0^1 \left[ \frac{xy^2}{2} \right]_{y=0}^{1-x} dx = 1$$

$$\Rightarrow \frac{c}{2} \int_0^1 x (1-x)^2 dx = 1$$

$$\Rightarrow \frac{c}{2} \int_0^1 x - 2x^2 + x^3 dx = 1$$

$$\Rightarrow \frac{c}{2} \left[ \frac{x^2}{2} - \frac{2x^3}{3} + \frac{x^4}{4} \right]_{x=0}^1 = 1$$

$$\Rightarrow \frac{c}{2} \left[ \frac{1}{2} - \frac{2}{3} + \frac{1}{4} \right] = 1$$

$$\Rightarrow \frac{c}{2} \left( \frac{1}{12} \right) = 1$$

$$\Rightarrow c = 24$$

(b) Find the marginal distributions of X and Y.

$$\begin{split} f_X(x) &= \int_0^{1-x} f(x,y) dy \\ &= \int_0^{1-x} 24xy dy \\ &= \left[ 12xy^2 \right]_{y=0}^{1-x} \\ &= \begin{cases} 12x(1-x)^2, x \in [0,1] \\ 0, \text{ otherwise.} \end{cases} \end{split}$$

$$f_Y(y) = \int_0^{1-y} f(x, y) dx$$

$$= \int_0^{1-y} 24xy dx$$

$$= \left[ 12x^2 y \right]_{x=0}^{1-y}$$

$$= \begin{cases} 12(1-y)^2 y, y \in [0, 1] \\ 0, \text{ otherwise.} \end{cases}$$

(c) Are X and Y independent? Compare your answer to Problem 2 and discuss.

X and Y independent if the product of the marginal distributions equals their joint distribution at all points in the support. If x = y = 0.9, f(0.9, 0.9) = 0 because (0.9, 0.9) is not in the support, x + y = 0.9 + 0.9 = 1.8 > 1. But each marginal distribution is define over [0, 1], so the product of the marginals is positive at (0.9, 0.9):  $f_X(0.9)f_Y(0.9) = [12(0.9)(1 - (0.9))^2][12(1 - 0.9)^2(0.9)] = 0.0117$ .

- In (2), the support for the joint distribution is  $\mathbb{R}^2$ , whereas the support for the joint distribution depends on the realization of the random variable.
  - 4. Show that any random variable is uncorrelated with a constant.

Proof: Let  $a \in \mathbb{R}$  and X be a random variable with distribution  $F_X$ . Define random variable Y as the degenerate random variable that equals a. Thus, the distribution Y is

$$F_Y(y) = \begin{cases} 0, & y < a \\ 1, & y \ge a \end{cases}$$

To show X is uncorrelated with a constant, I show that X and Y are independent and then, by a theorem in the Lecture 3 Notes, we know that X and Y are uncorrelated.

To find the joint distribution of X and Y, consider two cases: y < a and  $y \ge a$ . For y < a,

$$F(x,y) = P(X \le x \text{ and } Y \le y)$$
$$= P(X \le x \text{ and } Y \le a)$$
$$= 0$$

For  $y \geq a$ :

$$F(x,y) = P(X \le x \text{ and } Y \le y)$$
$$= P(X \le x)$$
$$= F_X(x)$$

Thus, the joint distribution is

$$F(x,y) = \begin{cases} 0, & y < a \\ F_X(x), & y \ge a \end{cases}$$

The joint distribution equals the product of the marginals:

$$F(x,y) = \begin{cases} 0 * F_X(x), & y < a \\ 1 * F_X(x), & y \ge a \end{cases} = \begin{cases} F_Y(y) * F_X(x), & y < a \\ F_Y(y) * F_X(x), & y \ge a \end{cases}.$$

- 5. Let X and Y be independent random variables with means  $\mu_X, \mu_Y$  and variances  $\sigma_X^2, \sigma_Y^2$ . Find an expression for the correlation of XY and Y in terms of these means and variances.
- 6. Prove the following: For any random vector  $(X_1, X_2, ..., X_n)$ ,

$$Var\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} Var(X_i) + 2\sum_{1 \le i < j \le n} Cov(X_i, X_j).$$

Proof by induction.

7. Suppose that X and Y are joint normal, i.e. they have the joint PDF:

$$f(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}}\exp(-(2(1-\rho^2))^{-1}(x^2/\sigma_X - 2xy/\sigma_X\sigma_Y + y^2/\sigma_Y^2))$$

(a) Derive the marginal distributions of X and Y, and observe that both normal distributions.

## Gaussian integrals

- (b) Derive the conditional distribution of Y given X = x. Observe that it is also a normal distribution.
- (c) Derive the joint distribution of (X, Z) where  $Z = (Y/\sigma_Y) (\rho X/\sigma_X)$ , and then show that X and Z are independent.
- 8. Consider a function  $g: \mathbb{R} \to \mathbb{R}$ . Recall that the inverse image of a set A, denoted  $g^{-1}(A)$  is  $g^{-1}(A) = \{x \in \mathbb{R} : g(x) \in A\}$ . Let there be functions  $g_1: \mathbb{R} \to \mathbb{R}$  and  $g_2: \mathbb{R} \to \mathbb{R}$ . Let X and Y be two random variables that are independent. Suppose that  $g_1$  and  $g_2$  are both Borel-measurable, which means that  $g_1^{-1}(A)$  and  $g_2^{-1}(A)$  are both in the Borel  $\sigma$ -field whenever A is in the Borel  $\sigma$ -field. Show that the two random variables  $Z:=g_1(X)$  and  $W:=g_2(Y)$  are independent. (Hint: use the 1st or the 2nd definition of independence.)