

PES University, Bangalore

(Established under Karnataka Act No. 16 of 2013)

UE19CS205

SAMPLE PAPER-III SOLUTION FOR

IN SEMESTER ASSESSMENT (ISA-1)- B.TECH III SEMESTER October, 2020

Automata Formal Languages & Logic

Time: 2 Hrs Answer All Questions Max Marks: 60

Suppose that you really, really dislike the string AFLL and want to build a language 1 for everything except that string. Let $\Sigma = \{A, B, C, D, ..., Z\}$ and consider the language L_{AFLL} defined as follows: $L_{\sim AFLL} = \{ w \in \Sigma^* \mid w \neq AFLL \}$ For example, $\lambda \in L_{AFLL}$, any other string like HELLO $\in L_{AFLL}$, FLYR $\in L_{AFLL}$ etc., but AFLL $\notin L_{\sim AFLL}$ Design a DFA for the language $L_{\sim AFLL}$ Solution: B-Z {A-Z}-L b Describe the language (i.e., set of all strings) accepted by the following automaton: Solution: The language accepted by the given automata is starting with a and ending with a and minimum string is aa.

2 a Let $\Sigma = \{1, 2, 3\}$. A path in a graph is a series of nodes $v_1, v_2, ..., v_n$ such that each pair of adjacent nodes in the path is connected by an edge.

We can represent a path in Graph as a nonempty string where the letters spell out the path in the graph. For example, the path A, C, C, D would be represented by the string ACCD.

Let $L = \{ w \in \Sigma^* \mid w \text{ represents a path in } G \}$, where G is the graph given above. For example:

 $A \in L$, $B \in L$, $C \in L$, $D \in L$

 $AB \in L$, $ABB \in L$, $ABBBBB \in L$, etc

 $BBBBB \in L$

 $CCCC \in L, CCD \in L$

 $ACCD \in L$

 $\varepsilon \notin L$

 $\mathsf{BBAC} \notin \mathsf{L}$

 $ABBC \notin L$, $ADC \notin L$, $DAC \notin L$

Design a Finite Acceptor for the above Language L.

b Minimize the following DFA:

Solution:

Table filling method .

		q0	q1	q2	q3
	*q4				
	q3				
	q2				
0	q1		8	-	
-+	100		-		

Mark the distinguishable and indistinguishable pairs.

Distinguishable: (final,non-final) pair

Indistinguishable: (final,final) pair (,non-final,non-final) pair

Since q4 is the final state ,pairs(q0,q4)(q1,q4)(q2,q4)(q3,q4) will be marked as distinguishable pairs.

Next.

• (q0,q1) on a (q3,q4) (q0,q1) on b (q1,q2)

Since (q3,q4) is marked as distinguishable we will mark (q0,q1) as distinguishable.

• (q0,q2) on a (q3,q4) (q0,q2) on b (q1,q1)

Since (q3,q4) is marked as distinguishable we will mark (q0,q2) as distinguishable.

• (q0,q3) on a (q3,q4) (q0,q3) on b (q1,q2)

Since (q3,q4) is marked as distinguishable we will mark (q0,q3) as distinguishable.

• (q1,q2) on a (q4,q4) (q1,q2) on b (q2,q1)

As (q4,q4) is indistinguishable, we need to check (q2,q1).

• (q2,q1) on a (q4,q4) (q2,q1) on b (q1,q2)

It appears that $\,q1,\,q2$ are indistinguishable .

Next,

• (q1,q3) on a (q4,q4), (q1,q3) on b (q1,q2)

Since (q1,q2) is marked as indistinguishable,we will mark (q1,q3)as indistinguishable.

• (q2,q3) on a (q4,q4), (q1,q3) on b (q1,q2)

Since (q1,q2) is marked as indistinguishable,we will mark (q2,q3)as indistinguishable.

	q0	q1	q2	q3
*q4	X	X	X	X
q3	X	\checkmark	~	
q2	X	~		
q1	X			

		2. Describe the language of the following grammar as concisely as possible:	
		$S \rightarrow aA \mid \lambda$	
		$A \rightarrow bS$	
		Solution:	
		(ab)*=sequences of ab including λ .	
4	a	Construct a regular grammar to generate a number which can optionally have a	5
		decimal in which case the precision is exactly 2.	
		(We assume by default that the number is positive)	
		valid strings :	
		123.12	
		2	
		56754	
		929292929292.12	
		0.21	
		Invalid strings:	
		12.1232 2.23332	
		e666.76	
		12.	
		12.2	
		Solution:	
		Deceley François a	
		Regular Expression:	
		[0-9]+(\.[0-9][0-9])?	
		or	
		\d+(\.\d[2])?	
		((((L 1)	
		Regular Grammar:	
		$S \rightarrow (0-9)A$	
		$A \rightarrow .B \mid \lambda$.	
		$B \to (0-9)C \lambda.$	
		$C \rightarrow (0-9) \lambda$.	

Solution:

Finite Automata to Regular Expression by state elimination method.

Eliminate state q1

Eliminate state q2

Regular Expression for the given automata is $(1+011)^*$

5 a Is the following CFG ambiguous? If yes, show this. If no, explain why.

 $A \rightarrow aBbA \mid aBbAcA \mid d$

 $B \rightarrow e$

A and B are nonterminals, A is the start symbol, a, b, c, d, and e are terminals.

Solution:

Yes, the grammar is ambiguous. Two different leftmost derivation for the string: aebaebdcd

Leftmost Derivation 1:

A⇒ aBbA

- ⇒ aebA
- **⇒** aebaBbAcA
- **⇒** aebaebAcA
- **⇒** aebaebdcA
- **⇒** aebaebdcd

Parse Tree 1:

Leftmost Derivation 2:

A⇒ aBbAcA

- ⇒aebAcA
- ⇒aebaBbAcA
- ⇒aebaebAcA
- ⇒aebaebdcA
- **⇒** aebaebdcd

Parse Tree 2:

Acknowledgement : The sample paper solution is prepared by Prof. Sangeeta V I.