Data Visualization and Pre-processing Assignment -2

Assignment Date	26 September 2022
Team ID	PNT2022TMID00318
Project Name	AI BASED DISCOURSE FOR BANKING INDUSTRY
Student Name	Mohammed Farvees
Student Roll Number	312319106101
Maximum Marks	2 Marks

Question-1.Download dataset

Solution:

RowNumit Customer Surname	CreditSoorGeograph	Gender	Age	Tenure		Balance	NumOfPrcHa	sCrCarc IsActive	M E	Estimated Exite	d.
1 15634602 Hargrave	619 France	Female		42	2	0	1	1	1	101348.9	1
2 15647311 HIII	608 Spain	Female		41	1	83807.86	1	0	1	112542.6	0
3 15619304 Onio	502 France	Female		42	8	159660.8	3	1	0	113931.6	1
4 15701354 Boni	699 France	Female		39	1	. 0	2	0	0	93826.63	0
5 15737888 Mitchell	850 Spain	Female		43	2	125510.8	1	1	1	79084.1	0
6 15574012 Chu	645 Spain	Male		44	8	113755.8	2	1	0	149756.7	1
7 15592531 Bartlett	822 France	Male		50	7	. 0	2	1	1	10062.8	0
8 15656148 Obinna	376 Germany	Female		29	4	115046.7	4	1	0	119346.9	1
9 15792365 He	501 France	Male		44	4	142051.1	2	0	1	74940.5	0
10 15592389 H?	684 France	Male		27	2	134603.9	1	1	1	71725.73	Ð
11 15767821 Bearce	528 France	Male		31	6	102016.7	2	0	0	80181.12	0
12 15737173 Andrews	497 Spain	Male		24	3	0	2	1	0	76390.01	0
13 15632264 Kay	476 France	Female:		34	10	-0	2	1	0	26260.98	0
14 15691483 Chin	549 France	Female		25	5	- 0	2	0	0	190857.8	0
15 15600882 Scott	635 Spain	Female		35	7	- 0	2	1	1	65951.65	0
16: 15643966 Goforth	616 Germany	Male		45	3	143129.4	2	0	1	64327.26	0
17: 15737452 Romeo	653 Germany	Male		58	1	132602.9	1	1	0	5097.67	1
18 15788218 Henderso	549 Spain	Female		24	9	0	2	1	1	14406.41	0
19 15661507 Muldrow	587 Spain	Male		45	6	. 0	1	0	0	158684.8	0
20: 15568982 Hao	726 France	Female		24	6	- 0	2	1	1	54724.03	. 0
21 15577657 McDonal	d 732 France	Male		41	8	0	2	1	1	170886.2	0
22 15597945 Dellucci	636 Spain	Female		32	8	0	2	1	0	138555.5	0
23 15699309 Gerasimo	510 Spain	Female		38	4	0	1	1	0	118913.5	1
24 15725737 Mosman	669 France	Male		46	3	0	2	0	1	8487.75	0
25 15625047 Yen	846 France	Female		38	5	0	1	1	1	187616.2	0
26 15738191 Maclean	577 France	Male		25	3	0	2	0	1	124508.3	0
27 15736816 Young	756 Germany	Male		36	2	136815.6	1	1	1	170042	0
28 15700772 Nebechi	571 France	Male		44	9	0	2	0	0	38433.35	0
29 15728693 McWillia	n 574 Germany	Female		43	3	141349.4	1	1	1	100187.4	0
30 15656300 Lucciano	411 France	Male		29	0	59697.17	2	1	1	53483.21	0
31 15589475 Azikiwe	591 Spain	Female		39	3	0	3	1	0	140469.4	1
32 15706552 Odinakao	533 France	Male		36	7	85311.7	1	0	1	156731.9	0
33 15750181 Sanderso	s 553 Germany	Male		41	9	110112.5	2	0	0	81898.81	0
34 15659428 Maggard	520 Spain	Female		42	6		2	1	1	34410.55	0
35 15732963 Clements	722 Spain	Female		29	9	-0	2	1	1	142033.1	0
36 15794171 Lombard	o 475 France	Female		45	0	134254	1	1	0	27822.99	1
37 15788448 Watson	490 Spain	Male		31	3	145260.2	1	0	1	114066.8	0
38 15729599 Lorenzo	804 Spain	Male		33	7	76548.6	1	0	1	98453.45	0
39 15717426 Armstron	850 France	Male		36	7	0	1	1	1	40812.9	0
40 15585768 Cameron	582 Germany	Male		41	6	70349.48	2	0	1	178074	0

Question-2.Load the dataset

Solution:

import numpy as np import pandas as pd
import seaborn as sns importmatplotlib.pyplot
as plt import sklearn data =
pd.read_csv(r'Churn_Modelling.csv') df.head

<pre>cbound</pre>	method	NDFrame.he	ead of	Row	Number Cu				CreditScore	Geography	Gender	А
9		1 15634	1602	Hargrave				Female	42			
1		2 15647	311	H111	6	98 5	pain	Female				
2		3 15619	304	Onlo	5	02 Fr	ance	Female	42			
3		4 15701	1354	Bon1	6	99 Fr	ance	Female	39			
4		5 15737	7888	Mitchell	8	50 S	pain	Female	43			
+++	4.4		444	444	-	- 4		444	+++			
9995	999	96 15606	229	Obijiaku	7	71 Fr	ance	Male	39			
9996	999	15569	1892	ohnstone	5	16 Fr	ance	Male	35			
9997	999	98 15584	1532	Liu	7	09 Fr	ance	Female	36			
9998	999	9 15682	2355 5	abbatini	7	72 Gen	many	Male	42			
9999	1000	15628	3319	Walker	7	92 Fr	ance	Female	28			
	Tenure	Balance	NumOf	Products	HasCrCard	IsActi	veMer	nber \				
0	2	0.00		1	1			1				
1	1	83807.86		1	0			1				
2	8	159660.88		3	1 0			0				
3	1	0.00		2	9			0				
4	2	125510.82		1	1			1				
***	* * * *	111		***				* * *				
9995	5	9.00		2	1			0				
9996	10	57369.61		1	1 0							
9997	7	0.00						1				
9998	3	75075.31		2	1			0				
9999	4	130142.79		1	1			9				
		edSalary É										
Ð		31348,88	1									
1		12542.58	0									
2		13931.57	1									
3		93825.63	6									
4		79084.10	6									

9995		06270.64	0									
9996		31699.77	B									
9997		12085.58	1									
9998		2888.52	1									
9999	33	38198.78	8									

Question-3.Perform Below Visualizations.

3.1 Univariate Analysis

Solution:

sns.displot(data['CreditScore'])

sns.histplot(data['CreditScore'])

sns.boxplot(x = data['CreditScore'])

sns.distplot(data['Age'])

sns.histplot(data['Age'])

sns.boxplot(data['Age'])

3.2 Bivariate Analysis

Solution:

plt.figure(figsize=(7,7))

sns.lineplot(data = data, x = 'Tenure', y = 'CreditScore')

plt.figure(figsize=(10,10)) sns.barplot(data = data, x =

 $\begin{aligned} &plt.figure(figsize=(10,10))\\ &sns.barplot(data = data, \ x = 'CreditScore', \ y = 'Tenure') \end{aligned}$

plt.figure(figsize=(10,10))
sns.lineplot(data['Age'], data['EstimatedSalary'])

plt.figure(figsize=(17,17))
sns.barplot(data['Age'], data['EstimatedSalary'])

sns.scatterplot(data = data, x = 'CreditScore', y = 'Age')

3.3 Multivariate Analysis

Solution: sns.scatterplot(data = data, x = 'CreditScore', y = 'Balance', hue = 'Gender')

sns.scatterplot(data['Tenure'], data['CreditScore'], hue = data['Gender'])

sns.scatterplot(data['Age'], data['Balance'], hue = data['Gender'])

sns.pairplot(data)

Question-4.Perform descriptive statistics on the dataset.

Solution: data.mean(numeric_only

= True)

```
RowNumber
                    5.000500e+03
 CustomerId
                    1.569094e+07
 CreditScore
                    6.505288e+02
                    3.892188e+81
 Tenure
                    5.012800e+00
 Balance
                    7.648589e+84
 NumOfProducts
                    1.5302000+00
 HasCrCard
                    7.055000e-01
 IsActiveMember
                    5.151000e-01
 Estimated5alary
                    1.808982e+85
                    2.037000e-01
 Exited
 dtype: float64
```

data.median(numeric_only = True)

```
RowNumber
                   5.000500e+03
 CustomerId
                   1.569074e+07
 CreditScore
                  6.520000e+02
                   3.700000e+01
 Age
 Tenure
                   5.000000e+00
 Balance
                   9.719854e+04
 NumOfProducts
                   1.000000e+00
 HasCrCard
                   1.000000e+00
 IsActiveMember
                   1.000000e+00
 EstimatedSalary
                  1.001939e+05
 Exited
                   0.000000e+00
 dtype: float64
data['CreditScore'].mode()
        850
 dtype: int64
data['EstimatedSalary'].mode()
         24924.92
  dtype: float64
data['HasCrCard'].unique()
 array([1, 0])
data['Tenure'].unique()
 array([ 2, 1, 8, 7, 4, 6, 3, 10, 5, 9, 0])
data.std(numeric_only=True)
 RowNumber
                  2886,895689
 CustomerId
                 71935,186123
 CreditScore
                    96.653299
                   10.487806
 Age
 Tenure
                    2,892174
 Balance
                 62397.405202
 NumOfProducts
                   0.581654
0.455840
0.499797
 HasCrCard
IsActiveMember
```

data.describe()

EstimatedSalary

dtype: float64

Exited

57510.492818

8,482769

	Rowllamber	CustomerId	Credit5core	Age	Tenure	Balance	MumOfProducts	Has(r(ard	IsActiveMember	EstimatedSalary	Exited
count	10000.90000	1.000000e+04	10000-000000	10000.000000	10000-000000	10000.000000	10000.000000	10000.00000	10000.000000	10000-000000	10000.000000
mean	5000 50000	1 569094e+07	650.528800	35,921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	2606.89568	7.193619e+04	96 653299	10.487806	2.892174	62397.406202	0.581954	0.45584	0.499797	57510.492818	0.402769
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1 000000	0.00000	0.000000	11.580000	0.000000
25%	2500.75000	1.562853e+07	584 000000	32 000000	3.000000	0.000000	1,000000	0.00000	0.000000	51002.110000	0.000000
50%	5000.50000	1.569074e+07	652,000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	7500 25000	1.575323e+07	718.000000	44 000000	7.000000	127644 240000	2.000000	1.00000	1.000000	149388.247500	0.000000
max	10000.00000	1 581569e+07	850 000000	92.000000	10:000000	250698.090000	4 000000	1.00000	1.000000	199992 480000	1.000000

data['Tenure'].value_counts()

Name: Tenure, dtype: int64

Question-5.Handle the Missing values.

Solution: data.isnull().any()

RowNumber	False
CustomerId	False
Surname	False
CreditScore	False
Geography	False
Gender	False
Age	False
Tenure	False
Balance	False
NumOfProducts	False
HasCrCard	False
IsActiveMember	False
EstimatedSalary	False
Exited	False
dtype: bool	

data.isnull().sum()

RowNumber	0
CustomerId	0
Surname	Ø
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

Question-6.Find the outliers and replace the outliers

Solution: sns.boxplot(data['CreditScore'])#Outlier detection - box plot

 $fig, ax = plt.subplots(figsize = (5,3)) \ \#Outlier \ detection - Scatter \ plot \ ax.scatter(data['Balance'], \ data['Exited'])$

x-axis label
ax.set_xlabel('Balance')

y-axis label ax.set_ylabel('Exited')
plt.show()

sns.boxplot(x=data['Balance'])

from scipy import stats #Outlier detection – zscore zscore =

np.abs(stats.zscore(data['CreditScore'])) print(zscore) print('No. of Outliers : ', np.shape(np.where(zscore>3)))

```
0.332952
1
       0.447540
2
       1.551761
3
       0.500422
4
       2.073415
        . . .
9995
      1.250458
9996
      1.405920
       0.604594
9997
9998
      1.260876
9999
     1.469219
Name: CreditScore, Length: 10000, dtype: float64
No. of Outliers: (1, 0)
```

q = data.quantile([0.75,0.25]) q

	RowNumber	CustomerId	Surnane	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0.75	7500.25	15753233.75	2238.25	718.0	1.0	1,0	44.0	7.0	127644.24	2.0	1.0	1.0	149388.2475	0.0
0.25	2500.75	15628528.25	773.75	584,0	0.0	0.0	32.0	3.0	0.00	1,0	0.0	0.0	51002.1100	0.0

iqr = q.iloc[0] - q.iloc[1]iqr

```
RowNumber
                 4999.5000
CustomerId
              124705.5000
               1464.5000
Surname
CreditScore
                 134,0000
Geography
                    1.0000
                    1.0000
Gender
Age
                   12.0000
Tenure
                    4.0000
        127644.2400
Balance
NumOfProducts
                1.0000
HasCrCard
                    1.0000
                    1.0000
IsActiveMember
EstimatedSalary
               98386.1375
                    0.0000
Exited
dtype: float64
```

$$u = q.iloc[0] + (1.5*iqr)$$

```
RowNumber
                  1.499950e+04
  CustomerId
                  1.5940290+07
  Surname
                  4.435888e+83
  CreditScore
                 9.190000e+02
  Geography
                  2.500000e+00
  Gender
                  2.5800000e+00
  Age
                  6.200000e+01
  Tenune
                  1.3000000+01
  Balance
                  3.191106e+05
  NumOfProducts
                  3.500000e+00
  Hastrtand
                  2.500000e+00
  IsActiveMember
                  2.500000e+00
  EstimatedSalary
                  2.969675e+05
  Exited
                  0.000000e+00
  dtype: float64
l = q.iloc[1] - (1.5*iqr)
 RowNumber
                  -4.998500e+03
 CustomerId
                   1.544147e+07
                  -1.423000e+03
 Surname
 CreditScore
                  3.830000e+02
 Geography
                  -1.500000e+00
                  -1.500000e+00
 Gender
 Age
                   1.400000e+01
 Tenure
                  -3.000000e+00
 Balance
                  -1.914664e+05
 NumOfProducts -5.000000e-01
 HasCrCard
                  -1.500000e+00
 IsActiveMember
                  -1.500000e+00
 EstimatedSalary -9.657710e+04
 Exited
                   0.000000e+00
 dtype: float64
Q1 = data['EstimatedSalary'].quantile(0.25) #Outlier detection - IQR
Q3 = data[EstimatedSalary'].quantile(0.75) iqr = Q3 - Q1 print(iqr)
upper=Q3 + 1.5 * iqr lower=Q1 - 1.5 * iqr count =
np.size(np.where(data['EstimatedSalary'] > upper)) count = count +
np.size(np.where(data['EstimatedSalary'] < lower)) print('No. of
outliers: ', count)
98386.1375
 No. of outliers: 0
```

data['CreditScore'] = np.where(np.logical_or(data['CreditScore']>900, data['CreditScore']<383), 65 0, data['CreditScore']) sns.boxplot(data['CreditScore'])


```
\label{eq:upper} $$ upper = data.Age.mean() + (3*data.Age.std()) $$ Woutlier detection - 3 sigma lower = data.Age.mean() - (3*data.Age.std()) columns = data[ ( data['Age'] > upper ) | ( data['Age'] < lower ) ] print('Upper range : ', upper) print('Lower range : ', lower) print('No. of Outliers : ', len(columns))
```

```
Upper range : 70.38521935511383
Lower range : 7.458380644886169
No. of Outliers : 133
```

Q1 = data[i].quantile(0.25) Q3 =

columns = ['EstimatedSalary', 'Age', 'Balance', 'NumOfProducts', 'Tenure', 'CreditScore'] #After outl ier removal

```
for i in columns:
```

```
data[i].quantile(0.75) iqr = Q3 - Q1 upper=Q3 +
1.5 * iqr lower=Q1 - 1.5 * iqr count =
np.size(np.where(data[i] > upper)) count = count +
np.size(np.where(data[i] < lower)) print('No. of
outliers in ', i, ':', count)

No. of outliers in EstimatedSalary : 0
No. of outliers in Age : 0
No. of outliers in Balance : 0
No. of outliers in NumOfProducts : 0
No. of outliers in Tenure : 0
No. of outliers in CreditScore : 0
```

Question-7. Check for Categorical columns and perform encoding

Solution:

 $from \ sklearn.preprocessing \ import \ LabelEncoder, \ OneHotEncoder \\ le = LabelEncoder() \ oneh = OneHotEncoder() \ data['Surname'] = \\ le.fit_transform(data['Surname']) \ data['Gender'] = le.fit_transform(data['Gender']) \\ data['Geography'] = le.fit_transform(data['Geography']) \ data.head()$

			2011/08/201	e. Hee	4000000	200	422	40000	W. W. S. S.	W 100 2 1			F. 67 . 16 . 16 . 1	2.30
	Kownumber	Lustomerid	Surnane	CreditScore	Geography	bender	age	tenure	Balance	NumurProducts	Hastrtard	15ACC1Veryember	EstimatedSalary	Exite
)	1	15634602	1115	619	0	0	42	2	0.00	1	.1	1	101348.88	
1	2	15647311	1177	608	2	0	41	- 1	83807.86		0	1	112542.58	
2	3	15619304	2040	502	٥	0	42	8	159660.80	3	1	0	113931.57	
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63	
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10	

Question-8.Split the data into dependent and independent variables split the data in X and Y

Solution:

x # independent values (inputs) x = data.iloc[:, 0:13]

	RowNumber	CustomerId	Surnane	CreditScore	Geography	Gender	Age	Tenure	Balance	MunOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	1	15634602	1115	519	0	0	42	2	0.00		1	1	101348.88
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58
2	3	15619304	2040	502	0	0	42	8	159660 80	3	1	0	113931.57
3	4	15701354	289	699	0	0	39	1	0.00	2	ō	0	93826.63
4	5	15737888	1822	850	2	0	43	2	125510 82	-1		1	79064.10
-644		36		-	-	900	-	-	-		-		
9995	9996	15606229	1999	771	0	1	39	5	0.00	2	1	0	96270.64
9996	9997	15569692	1336	516	0	1	35	10	57369.61	1	1	Ť	101699.77
9997	9998	15584532	1570	789	. 0	.0	36	. 7	0.00		0	1	42085.58
9998	9999	15682355	2345	772	1	1	42	3	75075.31	2	1	0	92888.52
9999	10000	15628319	2751	792	0	0	28	:4	130142.79		13	0	38190.78

10000 rows x 13 columns

y # dependent values (output) y = data['Exited']

```
0
       1
1
        0
2
        1
3
        0
4
        0
9995
       0
9996
        0
9997
        1
9998
       1
9999
        0
Name: Exited, Length: 10000, dtype: int64
```

Question-9. Scale the independent variables

Solution:

from sklearn.preprocessing import StandardScaler, MinMaxScaler sc = StandardScaler() x_scaled = sc.fit_transform(x) x_scaled

```
array([[-1.73187761, -0.78321342, -0.46418322, ..., 0.64609167, 0.97024255, 0.02188649],
[-1.7315312, -0.60653412, -0.3909112, ..., -1.54776799, 0.97024255, 0.21653375],
[-1.73118479, -0.99588476, 0.62898807, ..., 0.64609167, -1.03067011, 0.2406869],
...,
[ 1.73118479, -1.47928179, 0.07353887, ..., -1.54776799, 0.97024255, -1.00864308],
[ 1.7315312, -0.11935577, 0.98943914, ..., 0.64609167, -1.03067011, -0.12523071],
[ 1.73187761, -0.87055909, 1.4692527, ..., 0.64609167, -1.03067011, -1.07636976]])
```

Question-10.Split x and y into Training and Testing

Solution:

from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size = 0.3, random_state = 0) x_train

```
array([[ 0.92889885, -0.79703192, -1.47580983, ..., 0.64609167,
            0.97024255, -0.77021814],
          [ 1.39655257, 0.71431365, -1.58808148, ..., 0.64609167, -1.03067011, -1.39576675],
         [-0.4532777 , 0.96344969, -0.24082173, ..., -1.54776799,
           0.97024255, -1.49965629],
          [-0.60119484, -1.62052514, -0.36136603, ..., 0.64609167,
           -1.03067011, 1.41441489],
          [ 1.67853045, -0.37403866, 0.72589622, ..., 0.64609167,
         0.97024255, 0.84614739],
[-0.78548505, -1.36411841, 1.3829808, ..., 0.64609167,
          -1.03067011, 0.32630495]])
x_train.shape
 (7000, 13)
x test
    array([[ 1.52229946, -1.04525042, 1.39834429, ..., 0.64609167,
             0.97024255, 1.61304597],
           [-1.42080128, -0.50381294, -0.78208925, ..., 0.64609167,
            -1.03067011, 0.49753166],
           [-0.90118604, -0.7932923 , 0.41271742, ..., 0.64609167,
            0.97024255, -0.4235611 ],
           [ 1.49216178, -0.14646448, 0.6868966 , ..., 0.64609167,
            0.97024255, 1.17045451],
           [ 1.1758893 , -1.29228727, -1.38481071, ..., 0.64609167,
           0.97024255, -0.50846777],
[ 0.08088677, -1.38538833, 1.11707427, ..., 0.64609167,
             0.97024255, -1.15342685]])
x_test.shape
 (3000, 13)
y_train
  7681
           1
  9031 0
  3691
         0
  202
           1
  5625
         0
  9225
          0
  4859
          0
  3264
           0
  9845
           0
  2732
  Name: Exited, Length: 7000, dtype: int64
```

```
9394 0
898
      1
2398
     0
5906
      0
2343
      0
4004
     0
     0
7375
9307
     0
8394
     0
5233
     1
Name: Exited, Length: 3000, dtype: int64
```