Math 493 Lecture 20

Thomas Cohn

11/13/19

Recall from last time: We have F, a field not of characteristic 2, V, a finite dimensional F-vector space, and \langle , \rangle , a symmetric bilinear form on V ($\langle , \rangle : V \times V \to F$).

Prop: (From last time) there is an orgthogonal basis for V, i.e., a basis (e_1, \ldots, e_n) s.t. $\langle e_i, e_j \rangle = 0$ for $i \neq j$, if and only if $V \cong [a_1, \ldots, a_n]$ for some choice of $a_1, \ldots, a_n \in F$, for which $a_i = \langle e_i, e_i \rangle$.

Notation: given $a_1, \ldots, a_n \in F$, $[a_1, \ldots, a_n]$ is the quadratic space with vector space F^n and the form is

$$\langle e_i, e_j \rangle = \begin{cases} 0 & i \neq j \\ a_i & i = j \end{cases}$$

For $[a_1, \ldots, a_n]$ in the standard basis, the matrix of the form is the diagonal matrix

$$\begin{bmatrix} a_1 & & 0 \\ & \ddots & \\ 0 & & a_n \end{bmatrix}$$

Recall: The kernel of a quadratic space V is $\{v \in V \mid \langle v, w \rangle = 0, \forall w \in V\}$.

Defn: We say V is **non-degenerate** if $\ker V = \{0\}$.

Prop: Say $V = [a_1, \ldots, a_n]$. The following are equivalent:

- (1) V is non-degenerate
- (2) $a_i \neq 0, \forall i$
- (3) The discriminant is nonzero

Proof: (2) \Leftrightarrow (3) is clear because the discriminant is $a_1 \cdots a_n$.

If some $a_i = 0$, then $\langle e_i, e_j \rangle = 0$, $\forall j$. So $e_i \in \ker V$, as $\left\langle e_i, \sum_{j=1}^n \alpha_j e_j \right\rangle = \sum_{j=1}^n \alpha_j \left\langle e_i, e_j \right\rangle = 0$. So V is degenerate.

Say all a_i are nonzero. Then let $v = \alpha_1 e_1 + \dots + \alpha_n e_n$ be a nonzero element of V. So $\exists \alpha_i \neq 0$. So $\langle v, e_i \rangle = \alpha_i \langle e_i, e_i \rangle = \alpha_i a_i \neq 0$. So $v \notin \ker V$, so $\ker V = \{0\}$. \square

Cor: Every V is isomorphic to $U \perp W$, where the form is identically 0 on U and W is non-degenerate. Proof: Write $V = [a_1, \ldots, a_n]$. Say $a_1, \ldots, a_m = 0, a_{m+1}, \ldots, a_n \neq 0$. Then let $U = [a_1, \ldots, a_m]$ and $W = [a_{m+1}, \ldots, a_n]$. \square

This is great! It allows us to basically always work with non-degenerate forms.

Observe that for any field F, we have $[a] \cong [ab^2]$, for any $b \in \mathbb{F}^{\times}$.

Proof: Let V = [a] for basis e with $\langle e, e \rangle = a$. Let $W = [ab^2]$ for basis f with $\langle f, f \rangle = ab^2$. Then define a linear map $T: V \to W$ where $e \mapsto \frac{1}{h}f$. We have

$$\langle T(e), T(e) \rangle = \left\langle \frac{1}{b} f, \frac{1}{b} f \right\rangle = \left(\frac{1}{b} \right)^2 \langle f, f \rangle = \left(\frac{1}{b} \right)^2 a b^2 = a = \langle e, e \rangle$$

so T is an isometry. Thus, $V \cong W$. In fact, we have $[a_1, \ldots, a_n] \cong [a_1b_1^2, \ldots, a_nb_n^2]$ for any $b_1, \ldots, b_n \in F^{\times}$. \square

Prop: Two non-degenerate quadratic spaces over $\mathbb C$ are isometric iff they have the same dimension.

Proof: The same dimension requirement is obviously necessary.

By our previous observation, $[a_1,\ldots,a_n]\cong [1,\ldots,1]$ if a_1,\ldots,a_n are all nonzero (we can select $b_i=\frac{1}{\sqrt{a_i}}$). In particular, $[a_1,\ldots,a_n]\cong [a'_1,\ldots,a'_n]$ if both are non-degenerate. \square

Over \mathbb{R} , if a > 0, then $[a] \cong [1]$, and if a < 0, then $[a] \cong [-1]$. (In both cases, take $b = 1/\sqrt{|a|}$). In general,

$$[a_1,\ldots,a_n]\cong[\underbrace{1,\ldots,1}_r,\underbrace{-1,\ldots,-1}_{n-r}]$$

Thm: (Sylvester's Law of Inertia) The number r is well-defined, i.e.,

$$[\underbrace{1,\ldots,1}_p,-1,\ldots,-1] \cong [\underbrace{1,\ldots,1}_q,-1,\ldots,-1] \quad \Rightarrow \quad p=q$$

Proof: Let V be a non-degenerate quadratic space. Say e_1, \ldots, e_n and f_1, \ldots, f_n are orgthogonal bases s.t.

$$\langle e_i, e_i \rangle = \left\{ \begin{array}{ll} 1 & 1 \leq i \leq p \\ -1 & p < i \leq n \end{array} \right.$$
 and $\langle f_i, f_i \rangle = \left\{ \begin{array}{ll} 1 & 1 \leq i \leq q \\ -1 & q < i \leq n \end{array} \right.$

Let $U = \operatorname{span}(e_1, \dots, e_p)$ and $W = \operatorname{span}(f_{q+1}, \dots, f_n)$. We claim $U \cap W = \{0\}$. Let $v \in U \cap W$. Then

$$v \in V \quad \Rightarrow \quad v = \alpha_1 e_1 + \dots + \alpha_p e_p, \alpha_i \in \mathbb{R} \qquad \Rightarrow \quad \langle v, v \rangle = \sum_{i=1}^p \alpha_i^2 \ge 0$$

$$v \in W \implies v = \beta_{q+1} f_1 + \dots + \beta_n f_n, \beta_i \in \mathbb{R} \implies \langle v, v \rangle = \sum_{i=q+1}^n \beta_i^2 \le 0$$

So $\langle v, v \rangle = 0$, so v = 0.

Thus, we have $U \cap W = \{0\}$, so dim $U + \dim W \le \dim V$. Thus, $p + (n - q) \le n$, so $p \le q$. We can now repeat our argument in the opposite direction, to obtain $q \le p$, so we have q = p. \square

In summary, if V is a non-degenerate quadratic space over \mathbb{R} of dimension n, $\exists ! r, s$ s.t. r+s=n and $V\cong [\underbrace{1,\ldots,1}_r,\underbrace{-1,\ldots,-1}_s]$.

Defn: (r, s) is the **signature** of V.

Let $F = \mathbb{F}_p$ (p odd, i.e., $p \neq 2$).

Prop: $F^{\times}/(F^{\times})^2 \cong \mathbb{Z}/2\mathbb{Z}$.

Proof: \mathbb{F}^{\times} is cyclic of even order. \square

Proof 2: Let $f: F^{\times} \to F^{\times}$ take $x \mapsto x^2$.

This is a group homomorphism $-f(xy) = (xy)^2 = x^2y^2 = f(x)f(y)$. $im(f) = (F^{\times})^2$. $ker(f) = \{x \in F^{\times} \mid x^2 = 1\}$. Well,

$$x^{2} = 1 \Leftrightarrow x^{2} - 1 = 0$$
$$\Leftrightarrow (x+1)(x-1) = 0$$
$$\Leftrightarrow x+1 = 0 \text{ or } x-1 = 0$$
$$\Leftrightarrow x = -1 \text{ or } x = 1$$

So by the First Isomorphism Theorem, $\#(F^{\times})^2 = \#\operatorname{im}(f) = \frac{\#F^{\times}}{\#\operatorname{ker}(f)} = \frac{\#F^{\times}}{2}$. Thus, $\#F^{\times}/(F^{\times})^2 = 2$. \square

In summary, $\exists a \in F^{\times}$ s.t. every element of F^{\times} has the form b^2 or ab^2 , for some $b \in F^{\times}$. This a is a non-square, and is not unique. Sometimes, we can have a = -1; other times, we cannot. In fact, -1 is a square iff $p \equiv 1 \pmod{4}$.

Ex: Let p = 43. Then $p \equiv 3 \pmod{4}$, so -1 is not a square, so a = -1 is allowed. So every element of \mathbb{F}_{43}^{\times} has the form $\pm b^2$ for some $b \in \mathbb{F}_{43}^{\times}$.

Ex: Let p = 41. Then $p \equiv 1 \pmod{4}$, so -1 is a square, so we can't use a = -1. 2 is also bad, as $2 = 17^2 \mod 41$.

Exer: Find some value for a for p = 41.

Fix $\varepsilon \in F^{\times}$ not a square. Just as in the real case, for any $a_1, \ldots, a_n \in F^{\times}$, we have an isomorphism $[a_1, \ldots, a_n] \cong [\underbrace{1, \ldots, 1}_r, \underbrace{\varepsilon, \ldots, \varepsilon}_{n-r}]$. But r is **not** well-defined – only $r \pmod 2$ is, because $[\varepsilon, \varepsilon] \cong [1, 1]$.

The key point of all of this is every element of F is a sum of 2 squares.