

건설기계란?

"건설기계"란? 포크맨 Fork Man "건설기계"란 건설공사에 사용할 수 있는 기계로서 대통령령으로 정하는 것을 말한다.(건설기계관리법 제 2조(정의 등)) 가. 건설기계 - 일반건설기계 26개 기종 - 특수건설기계 8개 기종

* https://www.youtube.com/watch?v=AjYMGbm1OgI

건설기계 종류

• sample_submission.csv [제출양식]

- ID : 부여번호
- Y_LABEL: 예측한 오일 상태 유무 (0: 정상 / 1: 이상)

(엔진)오일 사용시간 증가

- --> 오일 산화&질화(20, 18)
- --> soot, water 등 발생 (40, 17)
- --> 오일 오염

17	FH2O	Water 수치(By FT-IR)
18	FNOX	NOx 수치(By FT-IR)

• NOx : 연료를 태우면서 발생하는 오염물질(질소산화물)

20	FOXID	Oxidation 수치(By FT-IR)
21	FSO4	SO4 수치(By FT-IR)
40	SOOTPERCENTAGE	Soot 함유량(%)

- --> 디젤엔진 오일 내 Scoot함유량을 측정 --> 오일 산화&질화 파악
- --> scoot --> 덩어리 형성 --> 오일 점도 커짐 --> 엔진 기능 저하

^{*} https://koreascience.kr/article/JAKO200311921971952.pdf

viscosity : 오일의 점도

51	V100	Viscosity @ 100 degrees
52	V40	Viscosity @ 40 degrees

- 오일 분석에서 '점도'는 중요한 요소.
- 온도 --> 점도 측정에 큰 영향을 미치는 요소
- [온도 --> 점도 --> 오일 분석]
- * 40degree : 40도는 산업기계의 작동 평균 온도와 가 까운 수치
- * 100degree : 엔진오일은 100도에서 테스트하는 것이 일반적
- https://www.machinerylubrication.com/Read/30428/t esting-oil-viscosity

모빌 서브 윤활유 분석 - 엔진 분석

테스트	목적	중요성
냉각수 지표	엔진 오일의 <mark>나트륨, 칼륨 및 붕소 수</mark> 준 확인	마모된 헤드 개스킷, 갈라진 블록 또는 헤드로 인해 발생하는 <mark>냉각수 누수를</mark> 나타냅니다.
연료 혼입	크랭크케이스를 통해 유입되는 미연소 연료의 양 측정	크랭크케이스에 유입된 연료는 오일의 점도를 떨어뜨리고 세정력을 약화시킨다. 미연소 연료의 양이 과도할 경우 잠재적으로 기계적인 문제가 유발될 수 있음을 나타냅니다
금속	오염 물질과 마모 입자를 비롯해 오일에 유입된 금속 물질의 존재 여부 및 함량 확인	금속의 마모된 함량을 통해 부품의 마모 여부나 오일 내 유해 오염 물질의 유입 여부를 확인할 수 있습니다. 또한 화학 첨가제의 일부를 구성하는 금속들의 함량도 파악 가능합니다.
산화도	윤활유의 산화 및 품질 저하 수준 확인	산화는 다음과 같은 현상을 유발합니다. • 마모 및 부식 증가 • 장비 수명 단축 • 점도 증가 • 과도한 침전물 발생 및 플러깅
PQ 지수	현재의 분광 분석법을 통해 검출이 어려운 철금속의 피로 마모 및 금속 간 접촉으로 인한 마모도 확인	PQ 지수를 통해 아래와 같은 문제를 조기에 발견할 수 있습니다. • 내마모성 베어링의 마모 • 플레인 베어링 마모 • 피스톤 스커핑 초기 징후 • 기어 마모
검댕	오일내의 검댕 함량 확인 (중량 백분율)	과도한 검댕 오염은 다음과 같은 현상을 유발합니다. • 엔진 성능 감소 • 연비 저하 • 과도한 침전물과 슬러지 • 오일 수명 단축 • 가스누출 (블로우-바이) 상승
전산가 (TAN)	산성 오일의 산화 부산물 정도 측정	전산가 상승은 오일의 산화가 높아져 오일 내에 산도가 증가하는 것을 알려 줍니다.
전염기가 (TBN)	산의 형성을 중화시키는데 사용되는 오일의 알칼리도 확인	전염기가 감소는 다음을 의미할 수 있습니다. • 연료 특성의 변화나 오일 산화가 빨리 진행되어 발생한 산화물에 의해 발생하는 오일의 성능 저하 • 산 중화 능력 감소
점도	오일의 흐름에 대한 저항의 정도 확인	 점도가 높아지는 원인으로는 검댕의 증가, 불용성 함유물, 오염된 물 또는 점도가 높은 연료나 윤활유와의 혼합을 들 수 있습니다. 오염된 물 또는 점도가 낮은 연료나 윤활유와의 혼합이 점도가 낮아지는 원인이 될 수 있습니다. 적정 수준보다 높거나 낮은 점도는 장비의 초기 마모를 유발할 수 있습니다.
수분	수분 오염 여부 확인	오염된 물은 심각한 부식과 그로 인한 마모, 유막 두께의 감소 또는 수소 취성 현상을 유발할 수 있습니다.

file:///C:/Users/admin/D ownloads/engine%20an alysis%20service%20prof ile.pdf

Symbol	이름	일반적인 소스
Ag	은	일부 대형 선박 및 기관차 엔진은 베어링에 은을 사용했으며 은 부식 손상을 방지하기 위해 무아연 엔진 오일이 필요합니다.
Al	알류미 늄	많은 장비 구획에서 널리 사용되는 금속. 흙, 먼지, 모래에는 이산화규소(실리카)와 함께 산화알루미늄(알루미나)이 포함되어 있는 경우가 많습니다.
В	붕소	붕소 기반 첨가제는 내마모성을 위해 일부 오일 제조업체에서 사용합니다.
Ва	바륨	바륨 설포네이트는 일부 오일 제형에 사용되는 방청 첨가제입니다. 바륨은 또한 합 금 금속일 수 있습니다.
Ca	칼슘	칼슘 설포네이트는 많은 오일 제형에서 널리 사용되는 세제 첨가제입니다.

Cd	카드뮴	카드뮴은 일부 땜납 또는 베어링 금속 합금 또는 전기도금 부품에서 발견될 수 있습니다.
CI	염소	염소는 염수(염화나트륨)를 식별하는 데 유용합니다.
Cr	크롬	크롬은 일반적으로 강철을 강화하거나 단단한 코팅을 제공하는 합금으로 사용됩니다.
Cu	구리	구리는 종종 냉각기에 사용됩니다. 청동(구리 및 주석 합금)은 종종 부시, 베어링, 스 러스트 와셔, 마찰판 및 기타 연금속 응용 분야에 사용됩니다.
Fe	철	철 또는 강철 부품은 대부분의 장비 유형에 널리 사용됩니다.
K	칼륨	칼륨 첨가제는 일부 오일 및 냉각수에서 발견될 수 있습니다.

Li	리튬	리튬 복합 그리스는 고온 융점으로 인해 널리 사용됩니다. 유격실에 원치 않는 고온 그 리스가 있으면 오일 갤러리를 막을 수 있습니다.
Mg	마그 네슘	마그네슘 설포네이트는 칼슘 설포네이트 세제 대신 또는 함께 사용되는 인기 있는 세제 첨가제입니다.
Mn	망간	망간은 금속 합금일 수 있습니다.
Mo	몰리 브덴	몰리브덴 첨가제는 내마모성을 위해 일부 오일 제형에 사용됩니다.
Na	나트 륨	엔진 오일에서 발견되는 나트륨은 일반적으로 냉각수 누출을 나타내지만 해양 환경에서는 해수 섭취일 수 있습니다. 청소 세제 및 외부 오염 물질에도 나트륨이 포함될 수 있습니다.

Ni	니켈	니켈은 금속 합금 또는 전기 도금된 코팅일 수 있습니다.
Р	인	인은 아연 디티오포스페이트 내마모성 및 황인 극압 화합물과 같은 널리 사용되는 오일 첨가제에서 발견됩니다.
Pb	선두	납은 보통 베어링이나 땜납에 자주 사용되는 부드러운 금속입니다.
S	황	유황은 종종 오일 및 오일 첨가제에서 발견됩니다. NZ 디젤 연료는 법에 의해 최대 10mg/kg 황 함량으로 제한됩니다.
Si	규소	실리콘은 거품 방지 첨가제로 사용될 수 있습니다. 흙, 먼지 및 모래는 일반적으로 이산화규소(실리카)이며 종종 이산화알루미늄(알루미나)을 동반합니다. 또한 실리콘 엘라스토머, 유체 및 실런트.

	子	<hbox< th=""></hbox<>
Sn	X	청동은 구리와 주석의 합금입니다. 주석은 또한 땜납 및 플레인 베어링과 금속 도금에 도 사용됩니다.
Ti	티탄	티타늄은 항공 및 경주용으로 사용되는 강하고 가벼운 금속입니다. 일부 오일 제조업체에서는 티타늄 마찰 방지 첨가제를 사용합니다. 산화티타늄은 페인트와 플라스틱에 널리 사용되는 미백제입니다.
V	바나 듐	바나듐은 강철 합금 금속일 수 있습니다. 일부 해양 벙커 연료에서도 발견될 수 있습니다.
Zn	아연	아연 디티오포스페이트(ZnDTP 또는 ZDP)는 많은 윤활유 제형에서 매우 인기 있는 내마모 첨가제입니다. 일부 장비 제조업체는 이러한 이유로 최소 아연 함량을 요구할 것입니다.