Transient Mapping

Daichi Hiramatsu¹ and Corey Mutnik^{1,*}

¹Department of Physics & Astronomy,

University of Hawaii at Manoa,
2505 Correa Rd, Honolulu, HI, 96822, USA[†]

DATA COLLECTION

What JT Did For Newly Sorted/Reduced Data

$$l^{II} = 202^{\circ}...$$
 $b^{II} = \pm 5$

	b = (0)	b = (0)	b = (1)	b = (1)
	min	max	min	max
RA (no offset)	93°	+108°	+102°	$+117^{\circ}$
Dec (no offset)	-20°	+8°	-15°	+12°
RA (offset)	$+93^{\circ}$	+108°	+102°	$+117^{\circ}$
Dec (offset)	-20°	+8°	-15°	+12°

Sorting Pattern

DATA REDUCTION

- Sorted data by going through 1deg x 1deg FOV
- Identify stars as most variable
- Run LS
- Discuss how we established uncertainty in period how this propagates to distance calculations
- How are we going to determine distance discuss PL-relation

- FIG. 1: Stars were grouped in the pattern shown (down the collected observations)
 - split observations into 1 deg^2 chunks
 - isolated groups s.t. each one is a star with 12 or more obs
 - -- more than 12 detections to be a star
 - -- any sq deg that has more than one star
 - this reduced 1300 deg^2 observation data down to 300
 - before variability params: 1531417 stars in field
 - for variability parameters
 - -- log(average(upper quartile))
 log(average(lower quartile))
 - — expect variation to go at .2* mag (from sqrt noise)...so subtract .2mag to get the logritmic statistic
 - sorted biggest (most variable?) to smallest (least variable?)
 - ran LS on 80,000 most variable stars, rather than full star groupings (over 1million)

- major aliasing at 1 day and 0.5 day periods
- things that fall at at -50 (in Figure 2) means that those are VERY probably variable stars
- roughly ____ stars fell at -50 in Figure 2
- 80,000 stars tested for variability
- other stars (outside of 80000) are statistically unlikely to be variable

FIG. 2: prob(f) of 80,000, most variable, stars LS was run on

ANALYSIS

Pan-STARRS Comparison

- download Pan-STARRS data (finished)
- compare generated variable star list to PS RA and Dec
- validate observed variable stars
- Determine if PS parameters are worth anything (are candidates actually RR Lyraes)

FIG. 3: Aitoff projection of observed and PS RR Lyrae candidates. Blue are candidates from PS that $\dot{\xi}=0.05$, green are PS candidates that $\dot{\xi}=0.2$., observed data in red.

Simbad Completeness

- Pull established RR list from Simbad
- Pull other variable data from simbad, too
- Compare list of observed RR to catalogs
- Is anyone actually reading this outline, this bullet point serves no purpose
- Wow, its sad how little Jeff did since class began (especially after JT gave him the code to do it a month ago) 6 obs x 4 nights = January-April work period haha
- Establish completeness with Simbad

3D map galaxy - var. stars

- Use gri data to identify variable stars
- Use Period-Luminosity relationship to get distance
- Map 3D spatial distribution
- Determine deviation of variable stars from model
- Variations arise from non-gravitational effects
- Figure out dark matter distribution

$\begin{array}{c} \textbf{CONFIRM ACCELERATED EXPANSION -} \\ \textbf{SUPER NOVEA} \end{array}$

(a) Aitoff map.

FIG. 4: Aitoff projection of observed and PS RR Lyrae candidates. Blue are candidates from PS that $\dot{\epsilon}=0.05$, yellow are PS candidates that $\dot{\epsilon}=0.2$., observed data in red, simbad in black.

(b) Aitoff projection

- * dhiramat@hawaii.edu; cmutnik@hawaii.edu
- † Observational Astronomy 301