5.8.5, exercise 2.

book problem 1. Consider the following term

 $(\lambda x.\lambda y.x) (\lambda z.z) ((\lambda x.x)(\lambda y.y))$

- (a) For this term, show both the left-to-right and right-to-left call-by-value reduction sequences which end in values, using underlining notation.
- (b) Write down the contexts used for each step in those reduction sequences, and confirm that all contexts are accepted by the appropriate grammer in the chapter.

5.9, exercise 2.

book problem 2. for the purposes of this problem define $t\downarrow t$ ' to means $\exists t''.t \leadsto *t'' \land t' \leadsto *t''$ where \leadsto is normal-order reduction (where the outersmost β -redex is reduced, and reduction proceeds under λ -binders). As usual, variables can be safely renamed, so that we consider $\lambda x.x$ equivalent to $\lambda y.y$, for example.

For which of the following terms do we have $t \downarrow \lambda x. \lambda y. y$? Please indicated all the terms which satisfy this preperty.

- (a) $\lambda x.\lambda y.y$
- (b) $(\lambda x.x)\lambda y.y$
- (c) $(\lambda x.xx)(\lambda y.y)\lambda x.\lambda y.y$
- (d) $\lambda x.(\lambda x.\lambda y.yy)(\lambda x.x)$ (e) $\lambda x.\lambda x.(\lambda y.y)x$

6.8.1, exercises 2–3.

book problem 3. (2) Write a function add-components that takes in a pair (x,y) and returns the pair x+y

- (3) Write a function swap pair that takes in a pair (x, y) and returns the pair (y, x)
- 6.8.2, exercises 2–3.

book problem 4. (2) Suppose we wish to encode a data type consisting of basic colors *red* and *blue*, with possible repeated modifier *light*. So example data elements are: *red*, *blue*, *lightblue*, *light(lightred)*, etc. give definitionsfor the three constructors, *red*, *blue*, and *light*, using the Scott encoding.

- (3) Give definitions using the scott encoding for constructors *node* and *leaf* for a datatype of binary trees, with data stored at the nodes but not the leaves. So a tree like this, (insert picture of three with values only in internal nodes) (node1leaf(node2leafleaf))
- 6.9.2, exercise 1.

book problem 5. One way to write a function *eqnaut* to test whether two Peano numbers are equal is to remove a successor from each of them, until either both numbers are zero, in which case we return *true*; or else one is zero, and the other is not, in which we return *false*. (a) Based on this idea, define *eqnuat* using recursive equations. (b) Translte your encoding into a lamda term using the Scott encoding.

Problem 1. Given the λ -encoding of lists by:

$$nil = \lambda f.\lambda z.z$$
 $cons = \lambda x.\lambda xs.\lambda f.\lambda z.f \ x \ (xs f z)$

Show encodings of the head and tail functions satisfying the following equations

$$head(cons x xs) = x$$
 $tail(cons x xs) = xs$

It may help you to recall the approach used to encode the predecessor function.

Problem 2. Given the λ -encoding of the natural numbers by:

$$zero = \lambda f.\lambda x.x$$
 $succ = \lambda n.\lambda f.\lambda x.f(nfx)$

We have the following two definitions of addition:

$$add = \lambda m.\lambda n.\lambda f.\lambda x.m \ succ \ nf \ x$$
 $add' = \lambda m.\lambda n.\lambda f.\lambda x.m \ f(nf \ x)$

Show (by natural number induction) that, for all encodings of natural numbers m and n, we have $add\ m\ n=add'\ m\ n$.

Problem 3. (\star) A *snoc-list* is a cons-list in reverse: the sequence 1, 2, 3 is represented

$$cons\ 1\ (cons\ 2\ (cons\ 3\ nil))$$

as a cons-list, and

as a snoc-list. Give a λ -encoding of snoc-lists; that is, give λ definitions for lin, snoc, and foldl such that

$$foldl f z (snoc (... (snoc lin x_1)...) x_n) = f (... (f z x_1)...) x_n$$