Wojskowa Akademia Techniczna Wprowadzenie do Automatyki

Sprawozdanie z pracy laboratoryjnej nr 3

Projekt układu sterowania z wykorzystaniem PLC i mikrokontrolerów

Data wykonania ćwiczenia: 18.04.2024 r.

Prowadzący ćwiczenia: mgr inż. Małgorzata Rudnicka-Schmidt

Wykonał: Szymon Florek

Grupa: WCY22IY2S1

Treść zadania:

Schemat podłączenia PLC:

Schemat podłączenia Arduino:

Założenia

I1 P₁ - przycisk wysyłania windy na 0 kondygnację

12 P2 - przycisk wysyłania windy na 1 kondygnację

13 P₃ - przycisk wysyłania windy na 2 kondygnację

14 P₄ - przycisk wysyłania windy na 3 kondygnację

15 P₅ - czujnik (sensor) obecności windy na 0 kondygnacji

16 P₆ - czujnik (sensor) obecności windy na 1 kondygnacji

17 P₇ - czujnik (sensor) obecności windy na 2 kondygnacji

18 P₈ - czujnik (sensor) obecności windy na 3 kondygnacji

Sterowanie silnikiem windy

F/R, S/S – wejścia sterujące silnikiem połączone z wyjściami PLC

F/R z wyjściem Q1

S/S z wyjściem Q2

F/R (bit kierunku)	S/S (bit stopu)	reakcja		
0	1	stop		
0	0	个(w górę)		
1	0	↓(w dół)		
1	1	kombinacja niewykorzystana (niedozwolona)		

Sterowanie silnikiem windy (ARDUINO)

```
Pin 5 - F/R (bit kierunku) - Q1
Pin 4 - S/S (bit stopu) - Q2
```

Uwaga: Wiszące wejścia S/S i F/R powodują ruch windy do góry (wtedy sygnały S/S i F/R mają wartości zerowe).

The #define directives in Arduino sketch:

```
#define Button1Pin A0 //nazwa pinu dla "Przycisk żądanie 0-go poziomu"

#define Button2Pin A1 //nazwa pinu dla "Przycisk żądanie 1-go poziomu"

#define Button3Pin A2 //nazwa pinu dla "Przycisk żądanie 2-go poziomu"

#define Button4Pin A3 //nazwa pinu dla "Przycisk żądanie 3-go poziomu"

#define Sensor1Pin A4 //nazwa pinu dla "Sensor obecności kabiny na 0-wym poziomie"

#define Sensor2Pin A5 //nazwa pinu dla "Sensor obecności kabiny na 1-ym poziomie"

#define Sensor3Pin 12 //nazwa pinu dla "Sensor obecności kabiny na 2-im poziomie"

#define Sensor4Pin 13 //nazwa pinu dla "Sensor obecności kabiny na 3-im poziomie"

#define OutputQ1Pin 5 //nazwa pinu dla Forward/Reverse Signal (bit kierunku)

#define OutputQ2Pin 4 //nazwa pinu dla Start/Stop Signal (bit stopu)
```

Definicja stanów maszyny stanowej:

```
* 0000 0 – winda ustawia się na 1 piętrze – stan początkowy
```

- * 0001 1 winda znajduje się na 0 piętrze
- * 0010 2 winda znajduje się na 1 piętrze
- * 0011 3 winda znajduje się na 2 piętrze
- * 0100 4 winda porusza się z 0 na 1 piętro
- * 0101 5 winda porusza się z 0 na 2 piętro
- * 0110 6 winda porusza się z 1 na 2 piętro
- * **0111 7** winda porusza się z 1 na 0 piętro
- * 1000 8 winda porusza się z 2 na 1 piętro
- * 1001 9 winda porusza się z 2 na 0 piętr

Sposób kodowania stanów maszyny stanowej:

Stan	X1	X2	Х3	X4
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

Diagram przejść maszyny stanowej:

Tabela przejść stanów:

X1(t)	X2(t)	X3(t)	X4(t)	l1	12	13	15	16	17	X1(t+1)	X2(t+1)	X3(t+1)	X4(t+1)	STANY
0	0	0	0	*	*	*	0	*	*	0	0	0	0	
0	0	0	0	*	*	*	1	*	*	0	1	0	0	
0	0	0	0	*	*	*	*	*	0	0	0	0	0	0
0	0	0	0	*	*	*	*	*	1	1	0	0	0	
0	0	0	0	*	*	*	*	0	*	0	0	0	0	o
0	0	0	0	*	*	*	*	1	*	0	0	1	0	"
0	0	0	1	*	1	*	*	*	*	0	1	0	0	
0	0	0	1	*	*	1	*	*	*	0	1	0	1	1
0	0	1	0	1	*	*	*	*	*	0	1	1	1	_
0	0	1	0	*	*	1	*	*	*	0	1	1	0	2
0	0	1	1	1	*	*	*	*	*	1	0	0	1	3
0	0	1	1	*	1	*	*	*	*	1	0	0	0	3
0	1	0	0	*	*	*	*	0	*	0	1	0	0	4
0	1	0	0	*	*	*	*	1	*	0	0	1	0	4
0	1	0	1	*	*	*	*	*	0	0	1	0	1	_
0	1	0	1	*	*	*	*	*	1	0	0	1	1	5
0	1	1	0	*	*	*	*	*	0	0	1	1	0	
0	1	1	0	*	*	*	*	*	1	0	0	1	1	6
0	1	1	1	*	*	*	0	*	*	0	1	1	1	7
0	1	1	1	*	*	*	1	*	*	0	0	0	1	/
1	0	0	0	*	*	*	*	0	*	1	0	0	0	8
1	0	0	0	*	*	*	*	1	*	0	0	1	0	•
1	0	0	1	*	*	*	0	*	*	1	0	0	1	9
1	0	0	1	*	*	*	1	*	*	0	0	0	1	9
0	0	0	1	*	0	0	*	*	*	0	0	0	1	1
0	0	1	0	0	*	0	*	*	*	0	0	1	0	2
0	0	1	1	0	0	*	*	*	*	0	0	1	1	3

Funkcje przejścia:

Dla X1(t+1):

Dla X2(t+1):

•
$$(x_2(t+1)) = \overline{x_1} \overline{x_2} \overline{x_3} x_4 J_2 + \overline{x_1} \overline{x_2} \overline{x_3} x_4 J_3 + \overline{x_1} \overline{x_2} x_3 \overline{x_4} J_4 + \overline{x_1} \overline{x_2} x_3 \overline{x_4} J_3 + \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} J_5 + \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} J_5 + \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} J_5 + \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} J_5$$

Dla X3(t+1):

$$\begin{array}{l} \bullet \times_{3} (++1) = \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{6}} + \overline{x_{1}} \overline{x_{2}} x_{3} \overline{x_{4}} \overline{J_{1}} + \overline{x_{1}} \overline{x_{2}} x_{3} \overline{x_{4}} \overline{J_{6}} + \\ + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \overline{J_{7}} \\ + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \overline{J_{7}} \\ + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \overline{J_{7}} + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \overline{J_{7}} \\ + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \overline{J_{7}} + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \overline{J_{7}} \\ + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \overline{J_{7}} + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \overline{J_{7}} \\ + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \overline{J_{7}} + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \overline{J_{7}} \\ + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \overline{J_{7}} + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \overline{J_{7}} \\ + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \overline{J_{7}} + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \overline{J_{7}} \\ + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \overline{J_{7}} + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \overline{J_{7}} \\ + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \overline{J_{7}} + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \overline{J_{7}} \\ + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \overline{J_{7}} + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \overline{J_{7}} \\ + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \overline{J_{7}} + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \overline{J_{7}} \\ + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{J_{7}} \\ + \overline{x_{1}} \overline{x_{2}} \overline{x_{3}}$$

Dla X4(t+1):

Tabela funkcja wyjścia:

Stan	X1	X2	Х3	X4	FR(Q1)	S/S(Q2)
0	0	0	0	0	1	0
1	0	0	0	1	0	1
2	0	0	1	0	0	1
3	0	0	1	1	0	1
4	0	1	0	0	0	0
5	0	1	0	1	0	0
6	0	1	1	0	0	0
7	0	1	1	1	1	0
8	1	0	0	0	1	0
9	1	0	0	1	1	0

Dla Q1(FR):

$$Q_1 = \overline{X_1} \times 2 \times_3 \times_9 + \overline{X_1} \overline{X_2} \overline{X_3} \overline{X_9} + \overline{X_1} \overline{X_2} \overline{X_3} \overline{X_9} + \overline{X_1} \overline{X_2} \overline{X_3} \overline{X_9}$$

Dla Q2(S/S):

$$Q_2 = \overline{X_1 X_2 X_3 X_4} + \overline{X_1 X_2 X_3 X_4} + \overline{X_1 X_2 X_3 X_4}$$

Program LD i FBD:

Program arduino:

```
/* Szymon Florek WCY22IY2S1
* Winda pozusza sie miedzy kondygnacjami 0,1,2
* stan poczatkowy - winda ustawia sie na kondygnacji 1
* Opis stanów:
* 0000 0 – winda ustawia się na 1 piętrze – stan początkowy
* 0001 1 – winda znajduje się na 0 piętrze
* 0010 2 – winda znajduje się na 1 piętrze
* 0011 3 – winda znajduje się na 2 piętrze
* 0100 4 – winda porusza się z 0 na 1 piętro
* 0101 5 – winda porusza się z 0 na 2 piętro
* 0110 6 – winda porusza się z 1 na 2 pietro
* 0111 7 – winda porusza się z 1 na 0 piętro
* 1000 8 – winda porusza się z 2 na 1 piętro
* 1001 9 – winda porusza się z 2 na 0 piętro
*/
#define Button1Pin A0
#define Button2Pin A1
#define Button3Pin A2
#define Button4Pin A3
#define Sensor1Pin A4
#define Sensor2Pin A5
#define Sensor3Pin 12
#define Sensor4Pin 13
#define OutputQ1Pin 5
#define OutputQ2Pin 4
//variables to store button input
boolean button0 = 0;
boolean button1 = 0;
boolean button2 = 0;
//variables to store sensor input
boolean sensor0 = 0;
boolean sensor1 = 0;
```

```
boolean sensor2 = 0;
//variables to store state of state machine
boolean X1 = 0;
boolean X2 = 0;
boolean X3 = 0;
boolean X4 = 0;
//variables to store output for the motor
boolean Q1 = 0;
boolean Q2 = 0;
//function that reads input of sensors and buttons
void readInput(){
button0 = digitalRead(Button1Pin);
button1 = digitalRead(Button2Pin);
button2 = digitalRead(Button3Pin);
sensor0 = digitalRead(Sensor1Pin);
sensor1 = digitalRead(Sensor2Pin);
sensor2 = digitalRead(Sensor3Pin);
}
//setup function to set read/write modes for pins
void setup(){
pinMode(Button1Pin, INPUT);
pinMode(Button2Pin, INPUT);
pinMode(Button3Pin, INPUT);
pinMode(Sensor1Pin, INPUT);
pinMode(Sensor2Pin, INPUT);
pinMode(Sensor3Pin, INPUT);
pinMode(OutputQ1Pin, OUTPUT);
pinMode(OutputQ2Pin, OUTPUT);
Serial.begin(9600);
```

```
//function to calculate the next state;
void calculateState(){
boolean X1copy = 0;
boolean X2copy = 0;
boolean X3copy = 0;
boolean X4copy = 0;
//calculate next state based on previous state and input
X1copy = (!X1 && !X2 && X3 && X4 && button0)
|| (!X1 && !X2 && X3 && X4 && button1)
|| (X1 && !X2 && !X3 && !X4 && !sensor1)
|| (X1 && !X2 && !X3 && X4 && !sensor0);
X2copy = (!X1 \&\& !X2 \&\& !X3 \&\& X4 \&\& button1)
|| (!X1 && !X2 && !X3 && X4 && button2)
|| (!X1 && !X2 && X3 && !X4 && button0)
|| (!X1 && !X2 && X3 && !X4 && button2)
|| (!X1 && X2 && !X3 && !X4 && !sensor1)
|| (!X1 && X2 && !X3 && X4 && !sensor2)
|| (!X1 && X2 && X3 && !X4 && !sensor2)
|| (!X1 && X2 && X3 && X4 && !sensor0);
X3copy = (!X1 \&\& !X2 \&\& !X3 \&\& !X4 \&\& sensor1)
| | (!X1 && !X2 && X3 && !X4 && button0)
|| (!X1 && !X2 && X3 && !X4 && button2)
|| (!X1 && X2 && !X3 && !X4 && sensor1)
|| (!X1 && X2 && !X3 && X4 && sensor2)
| | (!X1 && X2 && X3 && !X4 && !sensor2)
|| (!X1 && X2 && X3 && !X4 && sensor2)
|| (!X1 && X2 && X3 && X4 && !sensor0)
| | (X1 && !X2 && !X3 && !X4 && sensor1)
| | (!X1 && !X2 && X3 && !X4 && !button0 && !button2)
|| (!X1 && !X2 && X3 && X4 && !button0 && !button1);
X4copy = (!X1 \&\& !X2 \&\& !X3 \&\& X4 \&\& sensor2)
|| (!X1 && !X2 && X3 && !X4 && button0)
|| (!X1 && !X2 && X3 && X4 && button0)
```

```
|| (!X1 && X2 && !X3 && X4 && !sensor2)
| | (!X1 && X2 && !X3 && X4 && sensor2)
| | (!X1 && X2 && X3 && !X4 && sensor2)
|| (!X1 && X2 && X3 && X4 && !sensor0)
| | (!X1 && X2 && X3 && X4 && sensor0)
|| (X1 && !X2 && !X3 && X4 && !sensor0)
| | (X1 && !X2 && !X3 && X4 && sensor0)
| | (!X1 && !X2 && !X3 && X4 && !button1 && !button2)
|| (!X1 && !X2 && X3 && X4 && !button0 && !button1);
//make next state current state
X1 = X1copy;
X2 = X2copv:
X3 = X3copy;
X4 = X4copy;
}
//function to calculate output for the elevator motor
void calculateOutput(){
Q1 = (!X1 \&\& X2 \&\& X3 \&\& X4)
|| (X1 && !X2 && !X3 && !X4)
| | (X1 && !X2 && !X3 && X4)
|| (!X1 && !X2 && !X3 && !X4);
Q2 = (!X1 && !X2 && !X3 && X4)
|| (!X1 && !X2 && X3 && !X4)
|| (!X1 && !X2 && X3 && X4);
//function to set output onto the pins
void writeOutput(){
digitalWrite(OutputQ1Pin, Q1);
digitalWrite(OutputQ2Pin, Q2);
}
```

```
void report(){
Serial.println("Odczyt przyciskow: ");
Serial.print("przycisk 0:");
Serial.println(button0);
Serial.print("przycisk 1:");
Serial.println(button1);
Serial.print("przycisk 2:");
Serial.println(button2);
Serial.println("Odczyt sensorow: ");
Serial.print("sensor 0:");
Serial.println(sensor0);
Serial.print("sensor 1:");
Serial.println(sensor1);
Serial.print("sensor 2:");
Serial.println(sensor2);
Serial.println("Obliczony stan: ");
Serial.print(X1);
Serial.print(X2);
Serial.print(X3);
Serial.println(X4);
Serial.println("Wyjscia (Q1Q2): ");
Serial.print(Q1);
Serial.println(Q2);
}
void loop() {
readInput();
calculateState();
calculateOutput();
writeOutput();
report();
}
```

Układ na tkinder.com:

Wnioski:

Program PLC: Przeprowadzając symulację stwierdzono poprawność programu. Maszyna pod wpływem różnych wartości na przyciskach oraz sensorach przechodzi do odpowiednich stanów. Wyjścia sterujące silnik również mają odpowiednie wartości dla odpowiednich stanów.

Program Arduino:

```
C:\Program Files (x86)\Arduino\hardware\tools\avr/bin/avr-ar" rcs "C:\Users\szyme\AppData\Local\Temp\build86c1372d0
"C:\Program Files (x86)\Arduino\hardware\tools\avr/bin/avr-ar" rcs "C:\Users\szyme\AppData\Local\Temp\build86c1372d0
"C:\Program Files (x86)\Arduino\hardware\tools\avr/bin/avr-ar" rcs "C:\Users\szyme\AppData\Local\Temp\build86c1372d0
"C:\Program Files (x86)\Arduino\hardware\tools\avr/bin/avr-gcc" -Os -W1, --gc-sections -mmcu=atmega328p -o "C:\Users\C:\Program Files (x86)\Arduino\hardware\tools\avr/bin/avr-objcopy" -O ihex -j .eeprom --set-section-flags=.eeprom=al
"C:\Program Files (x86)\Arduino\hardware\tools\avr/bin/avr-objcopy" -O ihex -R .eeprom "C:\Users\szyme\AppData\Local
Szkic u?ywa 4 248 bajtów z (13%) pami?ci programu. Maksimum to 32 256 bajtów.
Globalne zmienne u?ywaj? 350 bajtów z (17%) dynamicznej pami?ci, pozostawiaj?c 1 698 bajtów dla lokalnych zmiennch. M
```

Zbudowano układ na stronie tinkercad.com (układ na zrzucie ekranu). 6 guzików reprezentuje kolejno:

Dwie niebieskie diody pokazują nam stany wyjścia dla zadanego ustawienia np: Q1 (1) Q2 (0) dla stanu początkowego aby winda zaczęła poruszać się na początku w dół na 1 piętro.

DLA LD:

(zakłądajac podana na zajęciach informację, że winda hardwearowo na początku podczas ładowania programu jedzie na 3 piętro).