SỞ GD&ĐT HÀ NỘI TRƯ**ỜNG THPT VIỆT ĐỨC**

NỘI DUNG ÔN TẬP VÀ KIỂM TRA HỌC KÌ II NĂM HỌC 2020-2021 - MÔN TOÁN KHỐI 10

I. Thống nhất chương trình:

Đại số:

- Bất đẳng thức bậc hai.
- Phương trình bất phương trình quy về bậc hai
- Góc lượng giác và cung lượng giác
- Giá trị lượng giác của cung (góc) lượng giác
- Giá trị lượng giác của cung (góc) liên quan đặc biệt
- Một số công thức lượng giác

Hình học:

- Phương trình đường thẳng; Khoảng cách và góc; Phương trình đường tròn

II. Ma trận đề:

A. Phần trắc nghiệm (5 điểm)

STT	Các chủ đề	Tổng số câu
1	Bất phương trình bậc hai	2
2	Bât phương trình qui về bậc hai	4
3	Góc và cung lượng giác	4
4	GTLG của góc và cung có liên quan đặc biệt	4
5	Một số công thức lượng giác	4
6	Phương trình đường thẳng. Khoảng cách , góc	4
7	Phương trình đường tròn	3
	Tổng số câu:	25

B. Phần tự luận (5 điểm)

Câu 1: Bất phương trình quy về bậc hai: BPT chứa dấu GTTĐ + BPT chứa căn bậc 2

Câu 2: Lượng giác: tính GTLG, rút gọn, CM đẳng thức,...

Câu 3: Hình học: Viết PT đường thẳng, đường tròn, góc, khoảng cách, ...

ĐỀ ÔN TẬP SỐ 1

(Biên soạn: cô Đồng Thị Kim Thủy)

I. TRẮC NGHIỆM

Câu 1: Tập nghiệm của hệ bất phương trình
$$\begin{cases} x^2 - 4x + 3 > 0 \\ x^2 - 6x + 8 > 0 \end{cases}$$
 là

A.
$$(-\infty;1)\cup(3;+\infty)$$
. **B.** $(-\infty;1)\cup(4;+\infty)$. **C.** $(-\infty;2)\cup(3;+\infty)$. **D.** $(1;4)$.

Câu 2: Khi xét dấu biểu thức
$$f(x) = \frac{x^2 + 4x - 21}{x^2 - 1}$$
 ta có

A.
$$f(x) > 0$$
 khi $-7 < x < -1$ hoặc $1 < x < 3$.

B.
$$f(x) > 0$$
 khi $x < -7$ hoặc $-1 < x < 1$ hoặc $x > 3$.

	C. $f(x) > 0$ khi $-1 < x$	x < 0 hoặc $x > 1$.		
	D. $f(x) > 0$ khi $x > -1$	1.		
Câu 3:	Tập nghiệm của bất phương trình $ x^2 - 5x + 4 > x - 2$ là			
	A. $[2; 2+\sqrt{2}).$		B. $(3+\sqrt{3};+\infty)$.	
	C. $[2; 2+\sqrt{2}) \cup (3+\sqrt{3})$	$\overline{3};+\infty$).	D. $[2; 2+\sqrt{2}) \cup [3+\sqrt{2}]$	$\sqrt{3};+\infty$
Câu 4:	Bất phương trình: $\sqrt{-x^2}$ A. $3 < x \le 5$.		hiệm là C. $-5 < x \le -3$.	D. $-3 < x \le -2$.
Câu 5:	Bất phương trình: $\sqrt{2x}$	$\frac{1}{x}$ < 3 – x có nghiệm là		
	A. $\left[-\frac{1}{2}; 4 - 2\sqrt{2} \right]$.	B. $(3;4+2\sqrt{2})$.	C. $(4-2\sqrt{2};3)$.	D. $(4+2\sqrt{2};+\infty)$.
Câu 6:	Bất phương trình: $ x^4 - 2x^2 - 3 \le x^2 - 5$ có bao nhiều nghiệm nguyên?			
	A. 0. C. 2.		B. 1.D. Nhiều hơn 2 nhưng	g hữu hạn.
Câu 7:	Góc có số đo 108° đổi r			
	A. $\frac{3\pi}{5}$.	B. $\frac{\pi}{10}$.	C. $\frac{3\pi}{2}$.	D. $\frac{\pi}{4}$.
Câu 8:	Góc có số đo $\frac{2\pi}{5}$ đổi sa	ng độ là		
	A. 240°.	B. 135°.	C. 72°.	D. 270°.
Câu 9:	Một đường tròn có bán kính 20 cm. Tìm độ dài của cung trên đường tròn đó có số đo $\frac{\pi}{15}$ (tính gần			
	đúng đến hàng phần tră A. 4,19cm.	m). B. 4,18cm.	C. 95,49 cm.	D. 95,50cm.
Câu 10:	Cho góc lượng giác (C	OA, OB) có số đo bằng	$\frac{\pi}{5}$. Hỏi trong các số sa	au, số nào là số đo của một
	góc lượng giác có cùng tia đầu, tia cuối với góc lượng giác (OA, OB) ?			
	A. $\frac{6\pi}{5}$.	B. $-\frac{11\pi}{5}$.	$\frac{9\pi}{5}$.	D. $\frac{31\pi}{5}$.
Câu 11:	Giá trị $\cot \frac{89\pi}{6}$ là	-	•	
	A. $\sqrt{3}$.	B. $-\sqrt{3}$.	C. $\frac{\sqrt{3}}{3}$.	D. $-\frac{\sqrt{3}}{3}$.
Câu 12:	Giá trị của tan 180° là	D 0	C. –1.	D V1 2 / - 4 - 1
Cân 13•	A. 1. Cho $\frac{\pi}{2} < a < \pi$. Kết qu	B. 0 .	C1.	D. Không xác định.
Cau 15.	2	a dung ia	D sin a < 0 ass a < 0	
	A. $\sin a > 0$, $\cos a > 0$. C. $\sin a > 0$, $\cos a < 0$.		B. $\sin a < 0$, $\cos a < 0$ D. $\sin a < 0$, $\cos a > 0$	
Câu 14:	Đơn giản biểu thức A =		α $-\cos\left(\frac{\pi}{2} + \alpha\right) - \sin\left(\frac{\pi}{2} + \alpha\right)$	$\left(\frac{\pi}{2} + \alpha\right)$, ta có:
	$\mathbf{A.} \ A = 2\sin a.$	B. $A = 2\cos a$.	$\mathbf{C.} \ A = \sin a - \cos a \ .$	D. $A = 0$.

Câu 15: Trong các công thức sau, công thức nào sai?

$$\mathbf{A.} \cot 2x = \frac{\cot^2 x - 1}{2 \cot x}.$$

C.
$$\cos 3x = 4\cos^3 x - 3\cos x$$
.

B.
$$\tan 2x = \frac{2 \tan x}{1 + \tan^2 x}$$
.

D.
$$\sin 3x = 3\sin x - 4\sin^3 x$$
.

Câu 16: Trong các công thức sau, công thức nào sai?

A.
$$\cos 2a = \cos^2 a - \sin^2 a$$
.

C.
$$\cos 2a = 2\cos^2 a - 1$$
.

B.
$$\cos 2a = \cos^2 a + \sin^2 a$$
.

D.
$$\cos 2a = 1 - 2\sin^2 a$$
.

Trong các công thức sau, công thức nào sai?

A.
$$\cos a + \cos b = 2\cos\frac{a+b}{2}.\cos\frac{a-b}{2}$$
.

C.
$$\sin a + \sin b = 2\sin \frac{a+b}{2} \cdot \cos \frac{a-b}{2}$$
.

B.
$$\cos a - \cos b = 2\sin\frac{a+b}{2}.\sin\frac{a-b}{2}$$
.

D.
$$\sin a - \sin b = 2\cos \frac{a+b}{2} \cdot \sin \frac{a-b}{2}$$
.

Câu 18: Rút gọn biểu thức: $\sin(a-17^\circ).\cos(a+13^\circ)-\sin(a+13^\circ).\cos(a-17^\circ)$, ta được:

A.
$$\sin 2a$$
.

B.
$$\cos 2a$$
.

$$\mathbf{C.} - \frac{1}{2}$$
.

D.
$$\frac{1}{2}$$

Câu 19: Góc giữa hai đường thẳng $\Delta_1: a_1x+b_1y+c_1=0$ và $\Delta_2: a_2x+b_2y+c_2=0$ được xác định theo công thức:

A.
$$\cos(\Delta_1, \Delta_2) = \frac{a_1 a_2 + b_1 b_2}{\sqrt{a_1^2 + b_1^2} \cdot \sqrt{a_2^2 + b_2^2}}$$
.

B.
$$\cos(\Delta_1, \Delta_2) = \frac{|a_1 a_2 + b_1 b_2|}{\sqrt{a_1^2 + b_1^2} \cdot \sqrt{a_2^2 + b_2^2}}$$
.

C.
$$\cos(\Delta_1, \Delta_2) = \frac{|a_1 a_2 + b_1 b_2|}{\sqrt{a_1^2 + b_1^2} + \sqrt{a_1^2 + b_1^2}}$$
.

D. $\cos(\Delta_1, \Delta_2) = \sqrt{\frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{a^2 + b^2}}$.

D.
$$\cos(\Delta_1, \Delta_2) = \sqrt{\frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{a^2 + b^2}}$$

Câu 20: Khoảng cách từ điểm M(15;1) đến đường thẳng $\Delta:\begin{cases} x=2+3t \\ y=t \end{cases}$ là

A.
$$\sqrt{5}$$
.

B.
$$\frac{1}{\sqrt{10}}$$
.

C.
$$\sqrt{10}$$
.

D.
$$\frac{16}{\sqrt{5}}$$
.

Câu 21: Tìm côsin góc giữa 2 đường thẳng Δ_1 : 10x + 5y - 1 = 0 và Δ_2 : $\begin{cases} x = 2 + t \\ v = 1 - t \end{cases}$.

A.
$$\frac{3}{10}$$
.

B.
$$\frac{\sqrt{10}}{10}$$
.

C.
$$\frac{3\sqrt{10}}{10}$$
.

D.
$$\frac{3}{5}$$
.

Câu 22: Cho đường thẳng $\Delta: 7x+10y-15=0$. Trong các điểm sau điểm nào cách xa đường thẳng Δ nhất?

A.
$$N(0;4)$$
.

B.
$$M(1;-3)$$
.

C.
$$P(8;0)$$
.

D. Q(1;5).

Câu 23: Cho đường tròn có phương trình (C): $x^2 + y^2 + 2ax + 2by + c = 0$. Khẳng định nào sau đây là **sai**?

A. Đường tròn có tâm là I(a;b).

B. Đường tròn có bán kính là $R = \sqrt{a^2 + b^2 - c}$.

C.
$$a^2 + b^2 - c > 0$$
.

D. Tâm của đường tròn là I(-a;-b).

Câu 24: Đường tròn $x^2 + y^2 - 2x + 10y + 1 = 0$ đi qua điểm nào trong các điểm dưới đây?

$$\mathbf{C}. (-1;3).$$

Câu 25: Xác định vị trí tương đối giữa 2 đường tròn (C_1) : $x^2 + y^2 - 4x = 0$ và $(C_2)_1 x^2 + y^2 + 8y = 0$.

D. Tiếp xúc ngoài.

II. TƯ LUẬN.

Bài 1: Giải các phương trình sau

a)
$$|3x-2| = x^2 + 2x + 3$$

b)
$$\sqrt{-x^2+6x-5} > 8-2x$$

a)
$$|3x-2| = x^2 + 2x + 3$$
 b) $\sqrt{-x^2 + 6x - 5} > 8 - 2x$ c) $\sqrt{3x^2 + 6x + 4} < 2 - 2x - x^2$

Bài 2:

- a) Tìm số đo a° của góc lượng giác (Ou, Ov) với $0 \le a \le 360^{\circ}$, biết một góc lượng giác cùng tia đầu, tia cuối với góc đó có số đo là: 395°
- **b)** Rút gọn biểu thức $A = \sin \frac{7\pi}{6} + \cos 9\pi + \tan \left(-\frac{5\pi}{4} \right) + \cot \frac{7\pi}{2}$

Bài 3:

- a) Viết phương trình đường tròn có tâm I(1;-5) và đi qua O(0;0).
- **b**) Cho đường tròn (C): $x^2 + y^2 + 4x + 4y 17 = 0$. Viết phương trình tiếp tuyến d của đường tròn trong các trường hợp sau:
 - i) Điểm tiếp xúc là M(2;1)
 - ii) d song song với đường thẳng $\Delta: 3x-4y-2021=0$

ĐỀ ÔN TẬP SỐ 2

(Biên soạn: cô Phan Thị Thanh Bình)

I. TRẮC NGHIỆM

Cho tam thức bậc hai $f(x) = 2x^2 + 3x + 1$, mệnh đề nào sau đây đúng Câu 1:

A.
$$f(x) < 0, \forall x \in \left(-1; -\frac{1}{2}\right)$$
.

B.
$$f(x) < 0, \forall x \in (-\infty; -1)$$
.

C.
$$f(x) > 0, \forall x \in \left(-\infty; -\frac{1}{2}\right)$$
.

D.
$$f(x) > 0, \forall x \in (-1; +\infty)$$
.

Cho tam thức bậc hai $f(x) = x^2 - bx + 3$. Với giá trị nào của b thì f(x) = 0 có nghiệm? Câu 2:

A.
$$b \in (-\infty; -2\sqrt{3}] \cup [2\sqrt{3}; +\infty).$$

B.
$$[-2\sqrt{3}; 2\sqrt{3}].$$

C.
$$\left(-\infty; -2\sqrt{3}\right) \cup \left(2\sqrt{3}; +\infty\right)$$
.

D.
$$(-2\sqrt{3}; 2\sqrt{3})$$
.

Bất phương trình $x^2 - 3x + 1 + |x - 2| \le 0$ có tất cả bao nhiều nghiệm là số nguyên? Câu 3:

- A. Vô số.
- **B.** 4.
- **C.** 3.
- **D.** 2.

Bất phương trình $\sqrt{2x^2-6x+1} < x-2$ có tập nghiệm là nửa khoảng [a;b). Tính 2a+b. Câu 4:

- **A.** $6 + \sqrt{7}$.
- **B.** $\frac{9+\sqrt{7}}{2}$. **C.** $5+\sqrt{7}$.
- **D.** 6.

Gọi M, m lần lượt là nghiệm nguyên lớn nhất và nhỏ nhất của bất phương trình $\frac{x^2 - x - 10}{x^2 + 2x - 3} \ge 2$. Câu 5: Tính M+m.

- **A.** −5.
- **B.** -4.
- \mathbf{C}_{1} -3.
- **D.** -2.

Câu 6:	Cho bất phương trình $f(x) = 3x^2 + 2(2m-1)x + m + 4 \le 0, m$ là tham số, $m \in \mathbb{Z}$. Hỏi có bao nhiều giá trị của m để bất phương trình vô nghiệm?			
	A. Vô số.	B. 2.	C. 3.	D. 4.
Câu 7:	Một đường tròn có bán	kính 4cm. Tìm độ dài c	ủa cung trên đường tròn	đó có số đo $\frac{7\pi}{12}$.
	A. 210π .	B. 8π.	C. $\frac{7\pi}{3}$.	D. $\frac{\pi}{3}$.

A.
$$\frac{28}{9}$$
.

B.
$$\frac{1}{9}$$
.

C.
$$\frac{28\pi}{9}$$
.

$$\frac{\pi}{Q}$$
.

D. $\frac{\pi}{3}$.

A.
$$\frac{\pi}{3}$$
 và $\frac{16\pi}{3}$.

B.
$$\frac{3\pi}{4}$$
 và $\frac{25\pi}{4}$.

B.
$$\frac{3\pi}{4}$$
 và $\frac{25\pi}{4}$. **C.** $\frac{3\pi}{7}$ và $\frac{115\pi}{7}$. **D.** $\frac{3\pi}{2}$ và $-\frac{11\pi}{2}$.

D.
$$\frac{3\pi}{2}$$
 và $-\frac{11\pi}{2}$

Câu 10: Cho góc lượng giác
$$(Ou,Ov)$$
 có số đo là $-\frac{13\pi}{10}$. Tìm số đo của góc hình học uOv .

A.
$$\frac{7}{10}$$
.

B.
$$\frac{7\pi}{10}$$
.

$$\frac{\mathbf{C}}{10}$$
.

D.
$$\frac{3\pi}{10}$$
.

Câu 11: Tính giá trị của biểu thức
$$A = \cos 37^{\circ} \cdot \cos 23^{\circ} - \sin 37^{\circ} \cdot \sin 23^{\circ}$$
.

A.
$$-\frac{1}{2}$$
.

B.
$$\frac{1}{2}$$
.

C.
$$-\frac{\sqrt{3}}{2}$$
.

D.
$$\frac{\sqrt{3}}{2}$$
.

Câu 12: Rút gọn biểu thức
$$P = \sin(x + 8\pi) - 2\sin(x - 6\pi)$$
.

A.
$$2\sin x$$
.

B.
$$\sin x$$
.

$$\mathbf{C}$$
. $-\sin x$.

$$\mathbf{D}$$
. $-2\sin x$.

Câu 13: Cho
$$\sin \alpha = \frac{1}{3}$$
 và $\frac{\pi}{2} < \alpha < \pi$. Tính $\cos \alpha$.

A.
$$\frac{2\sqrt{2}}{3}$$

A.
$$\frac{2\sqrt{2}}{3}$$
. **B.** $-\frac{2\sqrt{2}}{3}$. **C.** $\frac{2}{3}$.

C.
$$\frac{2}{3}$$
.

D.
$$-\frac{2}{3}$$
.

Câu 14: Cho tan
$$\alpha = -3$$
. Tính giá trị của biểu thức $P = \frac{\sin \alpha - 3\cos \alpha}{\cos \alpha + 2\sin \alpha}$.

A.
$$\frac{5}{6}$$
.

B.
$$-\frac{5}{6}$$
.

$$\frac{\mathbf{C}}{5}$$
.

D.
$$\frac{6}{5}$$
.

Câu 15: Cho
$$\cos \alpha = \frac{1}{3}$$
. Tính $\cos 2\alpha$.

A.
$$\frac{2}{3}$$
.

B.
$$-\frac{2}{3}$$
.

$$\frac{7}{9}$$
.

D.
$$-\frac{7}{9}$$
.

A.
$$\sin(a+b) = \sin a \cdot \cos b - \cos a \cdot \sin b$$
.

B.
$$\cos(a-b) = \cos a \cdot \cos b + \sin a \cdot \sin b$$
.

C.
$$\sin a - \sin b = 2\sin \frac{a+b}{2}$$
. $\cos \frac{a-b}{2}$. D. $\tan (a-b) = \frac{\tan a - \tan b}{1 - \tan a + \tan b}$

D.
$$\tan(a-b) = \frac{\tan a - \tan b}{1 - \tan a \cdot \tan b}$$

Câu 17: Rút gọn biểu thức $P = \frac{\cos x + \sin x}{\cos x - \sin x} - \frac{\cos x - \sin x}{\cos x + \sin x}$ A. $P = 2 \tan 2x$. **B.** $P = 2 \cot 2x$. C. $P = \tan^2 x$. **D.** $P = \cot^2 x$. Câu 18: Cho $\sin x \cdot \sin 2x + \cos x \cdot \cos 2x = \frac{1}{3}$. Tính giá trị của $\cos x$. **A.** $\frac{2}{3}$. **B.** $\frac{1}{3}$. **C.** $-\frac{1}{3}$. **D.** $-\frac{2}{3}$. **Câu 19:** Trong mặt phẳng Oxy, khoảng cách từ điểm M(15;1) đến đường thẳng x-3y-2=0 là **B.** $\frac{16}{\sqrt{5}}$. **C.** $\sqrt{10}$. **A.** $\frac{1}{\sqrt{10}}$. **D.** $\sqrt{5}$. **Câu 20:** Góc giữa đường thẳng $\sqrt{3}x + y - 2 = 0$ và trục hoành bằng **A.** 30°. B. 60°. C. 90°. D. 120°. **Câu 21:** Trong mặt phẳng Oxy, cho A(3;0), B(0;-4), tọa độ của điểm M thuộc Oy sao cho diện tích tam giác MAB bằng 6 là C. (0;-1).**A.** (0;8). **B.** (0;1). **D.** (0;-8). Câu 22: Trong mặt phẳng Oxy, cho điểm M(2;5), đường thẳng d qua M cắt các tia Ox, Oy lần lượt tại A(a;0) và B(0;b). Diện tích tam giác *OAB* nhỏ nhất khi a+b bằng **A.** 49. **B.** 40. C. 20. **D.** 14. **Câu 23:** Xác định tâm *I* và bán kính *R* của đường tròn (C): $x^2 + y^2 - 4x - 2y + 1 = 0$ **A.** I(2;1), R = 2. **B.** $I(2;1), R = \sqrt{6}$. **C.** I(-2;-1), R = 2. **D.** $I(-2;-1), R = \sqrt{6}$. **Câu 24:** Phương trình đường tròn tâm I(3;-4) và tiếp xúc với đường thẳng (d): 2x-y+5=0 là **A.** $x^2 + y^2 - 6x + 8y - 15 = 0$. **B.** $x^2 + y^2 - 6x + 8y - 20 = 0$. C. $x^2 + y^2 + 6x - 8y - 15 = 0$. **D.** $x^2 + y^2 + 6x - 8y - 20 = 0$.

C.
$$x^2 + y^2 + 6x - 8y - 15 = 0$$

D.
$$x^2 + y^2 + 6x - 8y - 20 = 0$$

Câu 25: Cho hai đường tròn $(C_1): x^2 + y^2 - 4x + 4y - 8 = 0$ và $(C_2): (x-2)^2 + (y-1)^2 = 15$. Số giao điểm của (C_1) và (C_2) là

A. 0.

B. 1.

C. 2.

D. Vô số.

II. TỰ LUẬN.

Bài 1: Giải bất phương trình

1) Giải bất phương trình:
$$\frac{|x-2|}{x^2 - 5x + 6} \ge 3$$

2) Giải bất phương trình sau:
$$\sqrt{x^3 - 3x - 10} > x - 2$$

3) Giải bất phương trình sau: $x-3+\sqrt{15-x} \ge 2\sqrt{x^2-7x+24}$.

2) Rút gọn biểu thức sau
$$A = \frac{\sin(\alpha + \pi).\cos(\alpha - \frac{\pi}{2}).\tan(7\pi + \alpha)}{\cos(5\pi - \alpha).\sin(\frac{3\pi}{2} + \alpha).\tan(2\pi + \alpha)}$$
.

Bài 3:

- 1) Viết phương trình đường tròn có tâm I(1,9) và tiếp xúc với đường thẳng 4x-3y+3=0
- 2) Viết phương trình tiếp tuyến của đường tròn $(x-1)^2 + y^2 = 40$ biết tiếp tuyến song song với đường thẳng 3x y + 17 = 0.
- 3) Cho đường tròn tâm I(2;3), bán kính R=1. Tìm giá trị của k để đường thẳng $\Delta: y=kx$ cắt đường tròn tạo thành dây cung có độ dài bằng $\sqrt{2}$.

ĐỀ ÔN TẬP SỐ 3

(Biên soạn: thầy Bùi Hữu Thước)

I. TRẮC NGHIỆM

Câu 1: Bất phương trình $x^2 + 4x + 3 < 0$ có tập nghiệm là: **A.** (-3;-1). **B.** \mathbb{R} . **C.** $(-\infty;-3) \cup (-1;+\infty)$. **D.** [-3:-1].

- **Câu 2:** Cho bất phương trình $x^2 2mx + 8m 7 > 0$ (m là tham số thực). Điều kiện cần và đủ để bất phương trình nghiệm đúng với $\forall x \in (-\infty;0)$ là
 - **A.** 1 < m < 7. **B.** $1 \le m \le 7$. **C.** $m \ge \frac{7}{8}$. **D.** $m \le \frac{7}{8}$.
- **Câu 3:** Bất phương trình |x+2| > 3 có tập nghiệm là

A. [-5;1]. **B.** \mathbb{R} . **C.** $(-\infty;-5) \cup (1;+\infty)$. **D.** (-5;1).

- **Câu 4:** Bất phương trình $\sqrt{x^2+1} > x-1$ có tập nghiệm là **A.** $(-\infty;1)$. **B.** \mathbb{R} . **C.** $(-\infty;-1) \cup (1;+\infty)$. **D.** \emptyset .
- Câu 5: Bất phương trình $x+1>\sqrt{x+1}$ có tập nghiệm là A. $(-\infty;0)$. B. \mathbb{R} . C. $(0;+\infty)$. D. $(1;+\infty)$.
- **Câu 6:** Tập hợp tất cả các giá trị của tham số m để bất phương trình $\sqrt{m-x} > x$ có tập nghiệm **A.** $(-\infty;0)$. **B.** $(1;+\infty)$. **C.** $(0;+\infty)$. **D.** \mathbb{R} .
- Câu 7: Giá trị của sin 750° bằng

A. $\frac{1}{2}$. **B.** $-\frac{1}{2}$. **C.** $\frac{\sqrt{2}}{2}$. **D.** 0.

Câu 8: Giá trị của $\tan\left(\frac{2023\pi}{4}\right)$ bằng

A. 1. **B.** -1. **C.** $\frac{\sqrt{3}}{3}$. **D.** 0.

	$\mathbf{A.} \sin\!\left(\alpha + \frac{5\pi}{13}\right) > 0.$	B. $\cos\left(\alpha + \frac{5\pi}{13}\right) > 0$.	C. $\tan\left(\alpha + \frac{5\pi}{13}\right) > 0$.	$\mathbf{D.} \cot \left(\alpha + \frac{5\pi}{13} \right) > 0.$
Câu 10:	Cho $\sin \alpha = \frac{3}{5} \text{ và } \frac{\pi}{2} < \alpha$	$\alpha < \frac{3\pi}{2}$ khi đó giá trị củ	a cosα bằng	
	A. $-\frac{4}{5}$.	B. $\frac{\sqrt{3}}{5}$.	C. $\frac{\sqrt{3}}{5}$.	D. $\frac{4}{5}$.
Câu 11:	Cho $\cos \alpha > 0$ khi đó kể	ết luận nào sau đây chắc	chắn đúng?	
	$\mathbf{A.} \cos(-\alpha) > 0.$	$\mathbf{B.} \sin(-\alpha) > 0.$	$\mathbf{C.} \sin(-\alpha) < 0.$	$\mathbf{D.} \ \tan(-\alpha) > 0.$
Câu 12:	Trong các phát biểu sau	, phát biểu nào đúng ch		
	A. $\sin(A+B) = \sin C$.		B. $cos(A+B) = cosC$	
	$\mathbf{C.} \ \tan(A+B) = \tan C.$,	$\mathbf{D.} \cot(A+B) = \cot C$	
Câu 13:	Trong các phát biểu sau A. $tan(A + B) = -\cot A$		o mọi tam giác ABC vu B. $tan(A+B) = -\cot A$	
	$\mathbf{C.} \cos(A+B) = \cos A.$	•	$\mathbf{D.} \cos(A+B) = \cos C$	
Cân 14·	Giá trị của biểu thức		,	
Cuu 14.		$\cos^2 6^0 + \cos^2 8^0 + \dots + \cos^2 8^0$	$^{2}82^{0} + \cos^{2}84^{0} + \cos^{2}86$	$^{0} + \cos^{2} 88^{0} + \cos^{2} 90^{0}$ bằng
	A. 21 [·]	B. 22 [·]	C. 23 [·]	D. Kết quả khác.
Câu 15:	Cho $\sin \alpha = \frac{5}{13}$ và $0 < \alpha$	$\alpha < \frac{\pi}{2}$ khi đó giá trị của	$\cos\left(\alpha - \frac{\pi}{4}\right)$ bằng	
Câu 15:	Cho $\sin \alpha = \frac{5}{13} \text{ và } 0 < \alpha$ A. $\frac{\sqrt{2}}{34}$.			D. $-\frac{7\sqrt{2}}{26}$.
	A. $\frac{\sqrt{2}}{34}$.	B. $-\frac{\sqrt{2}}{26}$.	C. $\frac{17\sqrt{2}}{26}$.	D. $-\frac{7\sqrt{2}}{26}$.
	A. $\frac{\sqrt{2}}{34}$. Cho tan $\alpha = 3$ khi đó gi	$\mathbf{B.} - \frac{\sqrt{2}}{26}$. á trị của $\tan\left(\alpha + \frac{\pi}{4}\right)$ bà	C. $\frac{17\sqrt{2}}{26}$.	D. $-\frac{7\sqrt{2}}{26}$. D. $\frac{17}{7}$.
Câu 16:	A. $\frac{\sqrt{2}}{34}$. Cho tan $\alpha = 3$ khi đó gi	$\mathbf{B.} - \frac{\sqrt{2}}{26}$. á trị của $\tan\left(\alpha + \frac{\pi}{4}\right)$ bà $\mathbf{B.} -4$.	C. $\frac{17\sqrt{2}}{26}$.	_0
Câu 16:	A. $\frac{\sqrt{2}}{34}$. Cho $\tan \alpha = 3$ khi đó gi A. $\frac{7}{17}$. Cho $\cos \alpha = -\frac{3}{5}$ và $0 < \frac{3}{5}$	$\mathbf{B.} - \frac{\sqrt{2}}{26}.$ á trị của $\tan\left(\alpha + \frac{\pi}{4}\right)$ bà $\mathbf{B.} -4.$ $\alpha < \pi \text{ khi đó giá trị của}$	C. $\frac{17\sqrt{2}}{26}$.	_0

Câu 18: Phát biểu nào sau đây đúng với mọi cung lượng giác có số đo α ?

Biết $0 < \alpha < \frac{\pi}{2}$ khẳng định nào sau đây chắc chắn đúng?

Câu 9:

A. $\cos 2\alpha = \cos \alpha - \sin \alpha$.

B. $\cos 2\alpha = \cos^2 \alpha + \sin^2 \alpha$.

C. $\cos 2\alpha = \cos^3 \alpha - \sin^3 \alpha$.

D. $\cos 2\alpha = \cos^4 \alpha - \sin^4 \alpha$.

Câu 19: Trong mặt phẳng Oxy cho đường thẳng $(\Delta): 3x + 4y - 12 = 0$ và điểm M(1;1) khi đó khoảng cách từ điểm M đến cho đường thẳng (Δ) là

A. 1.

B. -1.

C. −5.

D. 5.

Câu 20: Trong mặt phẳng Oxy cho hai đường thẳng $(\Delta_1): 3x+4y-12=0$ $(\Delta_2): 4x-3y-12=0$. Khi đó góc giữa hai đường thẳng (Δ_1) và (Δ_2) có số đo là

A. 120° .

 $\mathbf{B}_{\bullet} 90^{0}$.

 $C_{\bullet} 60^{\circ}$.

 $D. 45^{\circ}$

Câu 21: Trong mặt phẳng Oxy cho đường thẳng $(\Delta): 3x + 4y - 12 = 0$ và điểm A(1;1) khi đó số điểm Mnằm trên đường thẳng (Δ) mà AM = 2021 là:

A. 0.

B. 1.

C. 2.

D. Nhiều hơn 2.

Câu 22: Trong mặt phẳng Oxy cho hai điểm A(0;3), B(4;0) khi đó phân giác của góc OAB có phương

A. 2x+y-3=0. **B.** 2x-y-3=0. **C.** 2x-y+3=0. **D.** x+2y-3=0.

Câu 23: Trong mặt phẳng Oxy cho hai điểm A(-1;-1), B(2;3) khi đó đường tròn tâm A và đi qua B có phương trình là:

A. $(x+1)^2 + (y+1)^2 = 25$.

B. $(x+1)^2 + (y+1)^2 = 5$.

C. $(x-1)^2 + (y-1)^2 = 25$.

D. $(x+1)^2 + (y+1)^2 = \sqrt{5}$.

Câu 24: Điều kiện cần và đủ của tham số m để phương trình $x^2 + y^2 - 2mx + 2my + 3m^2 - 6m + 5 = 0$ trở thành phương trình của một đường tròn là:

A. 1 < m < 5.

B. $\begin{bmatrix} m < 1 \\ m > 5 \end{bmatrix}$ **C.** -5 < m < -1. **D.** $\begin{bmatrix} m < -5 \\ m > -1 \end{bmatrix}$.

Tập hợp tất cả các tâm của họ đường tròn $x^2 + y^2 - 4(\sin \alpha)x + 4(\cos \alpha)y + 3 = 0$ (α là tham số thực) là

A. Một đường thẳng.

B. Môt đoan thẳng.

C. Môt đường tròn.

D. Môt cung tròn.

II. TỰ LUẬN

Bài 1:

a) Giải bất phương trình: $|x-1| > x^2 - 5x + 7$

b) Giải bất phương trình: $x+1 \ge \sqrt{x^2-2x+5}$

c) Tìm điều kiên của tham số m để bất phương trình $\sqrt{2x-2m} > x$ có nghiêm

Bài 2:

a) Cho $\cos \alpha = \frac{15}{17}$ và $0 < \alpha < \pi$. Tính giá trị của $\tan \alpha$

b) Rút gọn biểu thức $A = \frac{\sin x + \sin 2x + \sin 3x}{\cos x + \cos 2x + \cos 3x}$

Bài 3:

a) Trong mặt phẳng Oxy cho hai điểm A(-1;-1), B(5;7). Viết phương trình đường tròn nhận AB làm đường kính.

b) Trong mặt phẳng Oxy cho đường tròn $(C):(x-1)^2+(y-2)^2=2^2$. Viết phương trình các tiếp tuyến của đường tròn (C) biết trằng tiếp tuyến này song song với đường thẳng (Δ): 3x + 4y = 0

c) Trong mặt phẳng Oxy cho đường tròn $(C):(x-1)^2+(y-2)^2=2^2$ với tâm I và điểm M(1;10). Viết phương trình đường thẳng (d) qua M sao cho đường thẳng này cắt đường tròn tại hai điểm A, B mà diện tích tam giác IAB lớn nhất.

SỞ GIÁO DỤC ĐÀO TẠO HÀ NỘI TRƯỜNG THPT VIỆT ĐỨC

ĐỀ THI HỌC KÌ II MÔN TOÁN LỚP 11 **NĂM HQC 2019 – 2020**

Thời gian: 90 phút

I. PHẦN TRẮC NGHIỆM:

Câu 1: Kết quả nào cho ta tìm được góc α?

$$\mathbf{A.} \begin{cases} \sin \alpha = \frac{3}{7} \\ \cos \alpha = \frac{4}{7} \end{cases}$$

A.
$$\begin{cases} \sin \alpha = \frac{3}{7} \\ \cos \alpha = \frac{4}{7} \end{cases}$$
B.
$$\begin{cases} \sin \alpha = \frac{\sqrt{3}}{5} \\ \cos \alpha = \frac{\sqrt{2}}{5} \end{cases}$$
C.
$$\begin{cases} \sin \alpha = 0.75 \\ \cos \alpha = 0.25 \end{cases}$$
D.
$$\begin{cases} \sin \alpha = -0.8 \\ \cos \alpha = -0.6 \end{cases}$$

C.
$$\begin{cases} \sin \alpha = 0.75 \\ \cos \alpha = 0.25 \end{cases}$$

$$\mathbf{D.} \begin{cases} \sin \alpha = -0.8 \\ \cos \alpha = -0.6 \end{cases}$$

Trong tam giác ABC, đẳng thức nào đúng? Câu 2:

A. $\sin B = \cos(A + C)$. **B.** $\sin B = \sin(A + C)$. **C.** $\sin B = \cos(A - C)$. **D.** $\sin B = \sin(A - C)$.

Kết quả rút gọn của biểu thức: $\frac{\sin \alpha + \tan \alpha}{\cos \alpha + 1}$ bằng: Câu 3:

A. $\sin \alpha$.

B. $\frac{1}{\cos \alpha}$.

 \mathbf{C} . $\tan \alpha$.

D. $\cot \alpha$

Câu 4: Tập nghiệm của bất phương trình 3x < -5 - 2x là:

A. $S = (-\infty; -1)$.

B. $S = (1; +\infty)$. **C.** $S = (-1; +\infty)$. **D.** $S = (-\infty; 1)$.

Cho hình Elip biết tọa độ một tiêu điểm là F(-1;0) và một đỉnh là A(3;0). Phương trình chính Câu 5: tắc của Elip là:

A. $\frac{x^2}{0} + \frac{y^2}{5} = 1$. **B.** $\frac{x^2}{0} + \frac{y^2}{8} = 1$. **C.** $\frac{x^2}{0} + \frac{y^2}{3} = 1$. **D.** $\frac{x^2}{6} + \frac{y^2}{5} = 1$.

Hình Elip có một đỉnh của hình chữ nhật cơ sở có tọa độ là M(4;3). Phương trình chính tắc của Câu 6:

A. $\frac{x^2}{16} - \frac{y^2}{9} = 1$. **B.** $\frac{x^2}{16} + \frac{y^2}{4} = 1$. **C.** $\frac{x^2}{16} + \frac{y^2}{9} = 1$. **D.** $\frac{x^2}{4} + \frac{y^2}{3} = 1$.

Phương trình nào sau đây là phương trình đường tròn? **Câu 7:**

A. $x^2 + y^2 - 2xy - 3 = 0$.

B. $x^2 - y^2 + 5x - 4y - 1 = 0$.

C. $x^2 + v^2 - 2x = 0$.

D. $x^2 + y^2 - 2x - 3y + 15 = 0$.

Tìm góc hợp bởi hai đường thẳng $\Delta_1: 3x + y + 15 = 0$ và $\Delta_2: \begin{cases} x = 10 + t \\ y = 1 + 2t \end{cases} (t \in R)$. Câu 8:

A. 45° .

B. 60° .

 $\mathbf{C.} \ 90^{\circ}.$

D. 0^{0} .

Cho tam giác ABC có A(2;-1), B(4;5), C(-3;2). Phương trình tổng quát của đường cao AH là: Câu 9:

A.
$$3x + 7y + 1 = 0$$

B.
$$7x + 3y - 11 = 0$$

C.
$$-3x + 7y + 13 = 0$$
.

A.
$$3x + 7y + 1 = 0$$
. **B.** $7x + 3y - 11 = 0$. **C.** $-3x + 7y + 13 = 0$. **D.** $7x + 3y + 13 = 0$.

Câu 10: Cho hai đường tròn $(C_1): x^2 + y^2 = 4$ và $(C_2): (x+3)^2 + (y-4)^2 = 25$. Vị trí tương đối giữa 2 đường tròn là:

A. Tiếp xúc ngoài.

B. Cắt nhau.

C. Tiếp xúc trong.

D. Không cắt nhau.

Câu 11: Với giá trị nào của tham số m thì bất phương trình $x^2 - 2mx + 4 \ge 0$ có tập nghiệm là \mathbb{R} ?

$$\mathbf{A.} \begin{bmatrix} m \le -2 \\ m \ge 2 \end{bmatrix}.$$

B.
$$-2 < m < 2$$
. **C.** $m < -2$ $m > 2$. **D.** $-2 \le m \le 2$.

Câu 12: Tập nghiệm của bất phương trình $2-x+\sqrt{2-x} < x+\sqrt{2-x}$ là:

A.
$$S = [2; +\infty)$$
.

B.
$$S = (1; +\infty)$$
.

$$\mathbf{C}$$
, $S = \emptyset$.

D. S = (1, 2].

Câu 13: Bất phương trình $|2x-8| \le x+4$ có tập nghiệm là:

A.
$$S = \left(-\infty; \frac{4}{3}\right] \cup \left[12; +\infty\right)$$
.

B.
$$S = \left[\frac{4}{3}; 12 \right].$$

C.
$$S = (-\infty; 12]$$
.

D.
$$S = \left[\frac{4}{3}; +\infty\right)$$
.

Câu 14: Bất phương trình nào sau đây có tập nghiệm là \mathbb{R} ?

A.
$$\frac{x^2 - 4x + 4}{x^2 + 3} > 0$$
. **B.** $\frac{x - 4}{x^2 - x + 2} > 0$. **C.** $-x^2 + 4x - 5 < 0$. **D.** $x^2 - 5x + 4 > 0$.

B.
$$\frac{x-4}{x^2-x+2} > 0$$

$$\mathbf{C.} - x^2 + 4x - 5 < 0.$$

D.
$$x^2 - 5x + 4 > 0$$
.

Câu 15: Cho $\cos \alpha = \frac{2}{5}$; $\left(\frac{3\pi}{2} < \alpha < 2\pi\right)$. Khi đó $\sin \alpha$ bằng:

A.
$$-\frac{\sqrt{21}}{5}$$
. **B.** $\frac{\sqrt{21}}{5}$. **C.** $-\frac{3}{5}$.

B.
$$\frac{\sqrt{21}}{5}$$
.

C.
$$-\frac{3}{5}$$
.

D.
$$\frac{3}{5}$$
.

Câu 16: Tập nghiệm của hệ bất phương trình $\begin{cases} x^2 - 3x + 2 \ge 0 \\ x - 1 < 0 \end{cases}$ là:

A.
$$S = (-\infty; 1)$$
.

B.
$$S = (1; 2]$$
.

B.
$$S = (1; 2]$$
. **C.** $S = [2; +\infty)$. **D.** $S = (-\infty; 1]$.

D.
$$S = (-\infty; 1]$$

Câu 17: Trong các mênh đề sau, mênh đề nào sai?

$$\mathbf{A.} \, \cos(3\pi - x) = -\cos x \, .$$

B.
$$\sin\left(x + \frac{\pi}{2}\right) = -\cos x$$
.

$$\mathbf{C.} \sin(9\pi + x) = -\sin x.$$

D.
$$\tan\left(\frac{3\pi}{2} - x\right) = \cot x$$
.

Câu 18: Cho hai điểm A(-3,0), B(0,4). Tìm trên tia Ox điểm M sao cho diện tích tam giác MAB bằng 10(đvdt).

A.
$$M(2;0)$$
 và $M(-8;0)$.

B.
$$M(2;0)$$
.

C.
$$M(7;0)$$
 và $M(-13;0)$.

D.
$$M(7;0)$$
.

Câu 19: Với giá trị nào của tham số m thì bất phương trình $x^2 - 2(m+1)x + 1 < 0$ có nghiệm? $\mathbf{A.} \begin{bmatrix} m > 0 \\ m < -2 \end{bmatrix}.$ **B.** $-2 \le m \le 0$. **C.** $m \ge 0$ $m \le -2$. **D.** -2 < m < 0.

Câu 20: Trên đường tròn lượng giác gốc A, điểm M biểu diễn điểm cuối cung lượng giác AM thỏa $sdAM = -\frac{\pi}{4} + \frac{k\pi}{2}$ $(k \in \mathbb{Z})$. Có bao nhiều điểm M?

A. 6.

B. 8.

D. 2.

Câu 21: Biểu thức $A = 4\cos x + 3$ có giá trị lớn nhất bằng:

D. 3.

Câu 22: Cho đường tròn (C) có tâm là I(2;-1). Đường thẳng d:3x-4y+5=0 cắt đường tròn (C) theo một dây cung có độ dài bằng 6. Phương trình đường tròn (C) là?

A. $x^2 + y^2 - 4x + 2y - 13 = 0$.

B. $x^2 + y^2 - 4x + 2y + 13 = 0$.

C. $x^2 + y^2 + 2x - 4y - 13 = 0$.

D. $x^2 + y^2 + 2x - 4y + 13 = 0$.

Câu 23: Tìm giá trị của tham số m để phương trình $x+m+1=2\sqrt{3-x}$ có nghiệm $x \in [-6;2]$?

A. $m \in (-\infty; -3]$. **B.** $m \in [-1;11]$. **C.** $m \in [-5; +\infty)$. **D.** $m \in [-4;0]$.

Câu 24: Cho bất phương trình $(x+2)\sqrt{-x^2-2x+8} \ge 0$. Tổng các nghiệm nguyên âm của bất phương trình là:

A. −4.

 $B_{\bullet} - 10$.

C. -7.

D. -3.

Câu 25: Cho điểm A(4;1) và hai đường thẳng $\Delta_1: 3x+y-3=0$, $\Delta_2: 3x+y+7=0$. Điểm M nằm trên đường thẳng Δ_1 và có khoảng cách đến đường thẳng Δ_2 bằng độ dài đoạn thẳng MA. Tọa độ điểm M là:

A. M(2;-3).

B. M(1;0).

C. M(-2;-1). **D.** M(0;3).

II. PHẦN TỰ LUẬN

Bài 1:

a) Cho $\sin \alpha = -\frac{3}{5}$ và $\pi < \alpha < \frac{3\pi}{2}$. Tính $\sin \left(\alpha + \frac{\pi}{6}\right)$?

b) Chứng minh đẳng thức: $\cos(\pi - x) - \sin(\frac{3\pi}{2} + x) + \cot(3\pi - x) + \tan(\frac{5\pi}{2} + x) = -2\cot x$

Bài 2:

a) Giải bất phương trình: $x - \sqrt{x^2 - 3x - 10} \ge 4$

b) Tìm giá trị của tham số m để BPT : $x^2 - 2\sqrt{9 - x^2} + m \ge 0$ nghiệm đúng với $\forall x \in [-3,3]$.

Bài 3: Trong hệ trục tọa độ Oxy, cho đường tròn (C): $x^2 + y^2 - 12x + 6y + 20 = 0$, đường thẳng

d: 2x-3y+12=0 và điểm A(3;1).

a) Xác định tọa độ tâm I và bán kính R của đường tròn (C).

b) Viết phương trình đường thẳng Δ đi qua điểm A và vuông góc với đường thẳng d.

c) Viết phương trình tiếp tuyến với đường tròn (C) tại điểm M(2;0).

SỞ GIÁO DUC ĐÀO TAO HÀ NÔI TRƯỜNG THPT VIỆT ĐỨC

ĐỀ THI HỌC KÌ II MÔN TOÁN LỚP 11 NĂM HỌC 2018 – 2019

Thời gian: 90 phút

I. PHẦN TRẮC NGHIỆM:

Trong mặt phẳng với hệ tọa độ Oxy, đường tròn (C) có tâm là I(2;-3) và tiếp xúc với đường Câu 1: thẳng $\Delta: 3x-4y+2=0$ là

A.
$$(x+2)^2 + (y-3)^2 = 4$$
.

B.
$$(x-2)^2 + (y+3)^2 = 4$$
.

C.
$$(x+2)^2 + (y-3)^2 = 16$$
.

D.
$$(x-2)^2 + (y+3)^2 = 16.$$

Bất phương trình nào sau đây có tập nghiệm là R? Câu 2:

A.
$$x^2 - 3x + 6 > 0$$
. **B.** $-3x^2 + 8x - 1 \le 0$. **C.** $x^2 - 2x - 3 > 0$. **D.** $2x^2 - 2x + 5 < 0$.

B.
$$-3x^2 + 8x - 1 \le 0$$

C.
$$x^2 - 2x - 3 > 0$$
.

D.
$$2x^2 - 2x + 5 < 0$$
.

Cho $-\frac{\pi}{2} < \alpha < 0$; $\cos \alpha = \frac{4}{5}$. Tính $\sin \alpha$. Câu 3:

A.
$$-\frac{3}{5}$$
.

B.
$$\frac{3}{5}$$
.

$$\frac{1}{5}$$
.

D.
$$-\frac{7}{25}$$
.

Trong mặt phẳng với hệ tọa độ Oxy, cho Elip $(E): \frac{x^2}{25} + \frac{y^2}{16} = 1$. Tìm tiêu cự của (E). Câu 4:

D. 10.

Cho góc lượng giác α thỏa mãn $\sin \alpha = \frac{2}{3}$. Tính $\sin(-\alpha)$. Câu 5:

A.
$$-\frac{2}{3}$$
.

B.
$$\frac{2}{3}$$
.

C.
$$\frac{\sqrt{5}}{3}$$
.

D.
$$-\frac{\sqrt{5}}{3}$$
.

Số nghiệm nguyên của bất phương trình $|x^2 - 2x| < 3$ là Câu 6:

A. 2.

B. 4.

D. 3.

Cho góc lượng giác α thỏa mãn $\pi < \alpha < \frac{3\pi}{2}$. Mệnh đề nào sau đây **đúng**? Câu 7:

A. $\cot \alpha < 0$.

B. $\sin \alpha < 0$.

C. $\cos \alpha > 0$.

D. $\tan \alpha < 0$.

Trong mặt phẳng với hệ tọa độ Oxy, lập phương trình chính tắc của Elip (E) biết rằng một tiêu **Câu 8:** điểm của (E) là $F_1(-\sqrt{10};0)$ và độ dài trục lớn là $2\sqrt{18}$.

A.
$$\frac{x^2}{18} + \frac{y^2}{16} = 1$$
.

A. $\frac{x^2}{19} + \frac{y^2}{16} = 1$. **B.** $\frac{x^2}{19} + \frac{y^2}{10} = 1$. **C.** $\frac{x^2}{10} + \frac{y^2}{9} = 1$. **D.** $\frac{x^2}{19} + \frac{y^2}{9} = 1$.

Câu 9: Mệnh đề nào sau đây **đúng**?

A. $\sin a + \sin b = 2\cos\frac{a+b}{2}\cos\frac{a-b}{2}$.

B. $\sin a + \sin b = -2\sin\frac{a+b}{2}\sin\frac{a-b}{2}$.

C. $\sin a + \sin b = 2\sin \frac{a+b}{2}\cos \frac{a-b}{2}$.

D. $\sin a + \sin b = 2\cos\frac{a+b}{2}\sin\frac{a-b}{2}$.

Câu 10: Trong mặt phẳng với hệ tọa độ Oxy, góc giữa hai đường thẳng 2x-y+1=0 và 5x+10y+3=0 là

A. 45⁰.

B. 120° .

 $\mathbf{C}. 90^{\circ}.$

D. 60° .

Câu 11: Tập xác định của hàm số
$$y = \frac{1 + \sqrt{2x^2 - 4x}}{\sqrt{2 - x}}$$
 là

A. $(-\infty; 2)$.

B. $(-\infty; 0]$.

C. $(-\infty; 0] \cup (2; +\infty)$. D. $(-\infty; 2]$.

Câu 12: Mênh đề nào sau đây đúng?

A. $\sin 4\alpha = 2\sin 2\alpha \cos 2\alpha$.

B. $\sin 4\alpha = 2\cos^2 2\alpha - 1$.

C. $\sin 4\alpha = 4\sin \alpha$.

D. $\sin 4\alpha = 2\sin \alpha \cos \alpha$.

Câu 13: Tập nghiệm của bất phương trình 2x-3 < 2(2x-2) là

A. $\left(\frac{1}{2}; +\infty\right)$.

B. $\left(-\infty; \frac{1}{2}\right)$. **C.** $\left(-\frac{1}{2}; +\infty\right)$. **D.** $\left(-\infty; -\frac{1}{2}\right)$.

Câu 14: Trong mặt phẳng với hệ tọa độ Oxy, phương trình $x^2 + y^2 - 2(m+1)x - 4(m-2)y + 8 = 0$ là phương trình đường tròn thì điều kiện của m là

 $\mathbf{A.} \left| \begin{array}{c} m \\ \\ m > \frac{9}{5} \end{array} \right|.$

B. $m \in \emptyset$. **C.** $1 < m < \frac{9}{5}$. **D.** $1 \le m \le \frac{9}{5}$.

Câu 15: Tập nghiệm của bất phương trình $x^5 - 4x^4 < 0$ là

A. $(-\infty;0)\cup(4;+\infty)$.

B. $(-\infty; 0) \cup (0; 4)$.

D. (0;4).

Câu 16: Điều kiện của m để bất phương trình $-x^2 - 2mx - m^2 - 2m - 4 > 0$ vô nghiệm là

A. $m \leq -2$.

B. m < 2.

Câu 17: Tập nghiệm của hệ bất phương trình $\begin{cases} x^2 + 3x \le 0 \\ \frac{1-x}{x+2} \ge 0 \end{cases}$ là?

A. [-3;0].

B. [-3;1].

 $\mathbf{C}. (-2;0].$

D. [-2;0].

Câu 18: Quả bóng gôn được đánh với vận tốc ban đầu $v_0(m/s)$ với góc đánh α có thể di chuyển xa với khoảng cách $d(\alpha) = \frac{v_0^2 \sin \alpha \cos \alpha}{5} (m)$. Hỏi với vận tốc đánh gôn ban đầu cho trước, quả bóng gôn có thể di chuyển xa nhất bằng bao nhiêu?

A. $\frac{v_o^2}{10}$.

B. $\frac{v_o^2}{5}$.

D. $\frac{\sqrt{2v_0^2}}{5}$.

Câu 19: Tập nghiệm của bất phương trình $\sqrt{x^2 - x - 2} > -x^2 + x + 8$ là tập hợp nào sau đây?

A. (-3;-2).

B. $(2; +\infty)$.

C. $(-\infty; -3) \cup (2; +\infty)$. D. $(-\infty; -2) \cup (3; +\infty)$.

Câu 20: Trong mặt phẳng với hệ tọa độ Oxy, có bao nhiều đường thẳng đi qua A(1;-2) và cách B(4;2)môt khoảng bằng 5?

A. Vô số.

B. 1.

C. 2.

D. 0.

Câu 21: Cho $\sin \alpha + \cos \alpha = \frac{\sqrt{2}}{3}$. Tính $\cos \left(\alpha - \frac{\pi}{4}\right)$.

A. $-\frac{2}{9}$. **B.** $-\frac{1}{3}$. **C.** $\frac{2}{9}$.

D. $\frac{1}{2}$.

Câu 22: Cho các góc lượng giác a,b và $T = \sin(a+b)\cos(a-b) - \cos(a+b)\sin(a-b)$. Mệnh đề nào sau đây đúng?

 $\mathbf{A.} \ T = \cos 2a \ .$

B. $T = \sin 2a$.

C. $T = \cos 2b$. **D.** $T = \sin 2b$.

Câu 23: Biết rằng $\cos(x+70^{\circ}) - \cos(x+90^{\circ}) - 2\sin 80^{\circ}\cos(x+80^{\circ}) = a\sin(bx+c^{\circ})$ là mệnh đề đúng với mọi góc lượng giác x (đơn vị: độ), a,b là các hằng số dương, $c \in [0;90]$. Mệnh đề nào sau đây là đúng?

A. a+b+c=-3.

B. a+b+c=1.

C. a+b+c=3. **D.** a+b+c=-1.

Câu 24: Trong mặt phẳng tọa độ Oxy cho đường tròn $(C):(x-2)^2+(y+1)^2=36$ và điểm A(-2;2). Biết rằng d là đường thẳng đi qua A cắt đường tròn (C) tại hai điểm M,N sao cho dây cung MN có độ dài lớn nhất. Trong các điểm $E\left(-1;1\right), F\left(-\frac{1}{2};4\right), G\left(-3;0\right), I\left(2;-1\right)$, điểm nào thuộc đường thẳng d?

A. Điểm F.

B. Điểm *I* .

 \mathbb{C} . Điểm E.

D. Điểm H.

Câu 25: Trong mặt phẳng với hệ tọa độ Oxy, khoảng cách từ điểm M(2;1) đến đường thẳng x+y-1=0

A. $\frac{2}{\sqrt{5}}$.

B. $\frac{2}{5}$.

C. $\sqrt{2}$.

D. 2.

II. PHẦN TỰ LUẬN:

Bài 1:

a) Giải bất phương trình sau: $\sqrt{3x^2 + 13x + 4} \le -x + 2$.

b) Tìm m để bất phương trình $x^2 + \sqrt{9 - x^2} - m \ge 0$ nghiệm đúng với mọi $x \in [-3,3]$.

Bài 2:

a) Cho các góc lượng giác α . Biết $\sin \alpha = \frac{12}{13}, \frac{\pi}{2} < \alpha < \pi$. Tính $\sin 2\alpha$.

b) Chứng minh rằng với mọi góc lượng giác x thì $\sin x \cdot \cos 5x + \sin 6x \cdot \cos 2x = \sin 7x \cdot \cos x$.

Bài 3: Trong mặt phẳng tọa độ Oxy có cho đường tròn (C): $x^2 + y^2 + 4x - 6y - 12 = 0$.

a) Viết phương trình tiếp tuyến của đường tròn (C) tại điểm A(2;0).

b) Viết phương trình đường thẳng đi qua A cắt đường tròn (C) tại điểm thứ hai B sao cho $AB = 5\sqrt{2}$.