Lista 3: Otimização II

A. Ramos *

October 10, 2017

Abstract

Lista em constante atualização.

- 1. Mínimos quadrados
- 2. Penalidade
- 3. Para os exercícios que forem convenientes pode ser usado alguma linguagem de programação.
- 1. Considere a função $f(x) = \frac{1}{2}r(x)^T r(x)$ onde $r(x) = (x_1^2 x_2, 2x_1 x_2, e^{x_1})^T$.
 - (a) O sistema r(x) = 0 tem solução?
 - (b) Calcule f(x), $\nabla f(x)$, $\nabla^2 f(x)$, J(x), $J(x)^T J(x)$ e S(x). O termo S(x) é pequeno?
- 2. Considere $r(x) = (x_1^2 + x_2^2, 2x_1x_2, 4x_2)^T$
 - (a) O sistema r(x) = 0 tem solução? É única? Caso afirmativo, encontre-a e caso negativo justifique
 - (b) Aplique duas iterações do método de Gauss-Newton com passo completo a partir do ponto $x^0 := (1, -1)^T$ para minimizar $f(x) = \frac{1}{2}r(x)^T r(x)$.
- 3. Seja $A \in M_{m \times n}(\mathbb{R}), L \in M_{p \times n}(\mathbb{R}), b \in \mathbb{R}^n$ e $\lambda \in \mathbb{R}_{++}$. Considere o problema de mínimos quadrados regularizado

minimizar
$$||Ax - b||^2 + \lambda ||Lx||^2$$
.

Mostre que o problema tem solução única se, e somente se $Ker(A) \cap Ker(L) = \{0\}.$

- 4. Seja $r(x) := (r_1(x), \dots, r_m)^T$ uma função vetorial onde cada função resíduo r_i junto com sua derivada são Lipschitziana com constante de Lipschitz L num compacto $K \subset \mathbb{R}^n$.
 - Encontre as constante de Lipschitz para o Jacobiano J(x) e para $\nabla f(x)$, com $f(x) := \frac{1}{2}r(x)^T r(x)$.
- 5. Considere um conjunto geral de dados $\{(t_i,y_i)\}_{i=1,\dots,m}$ e suponha que queremos explicar essas observações usando o modelo $y=\phi(x,t):=x_1e^{x_2t}+x_3+x_4t$, onde $x=(x_1,x_2,x_3,x_4)^T$ são parámetros desconhecidos os quais queremos estimar. Escreva o problema de estimar os parametros x como um problema de minimos quadrados. Determine r(x), f(x), $\nabla r(x)$, $\nabla f(x)$ e $\nabla^2 f(x)$.
- 6. Use o método de Gauss-Newton e Levenberg-Marquardt para resolver o problema de mínimos quadrados

minimizar
$$f(x) := \frac{1}{2}[(x_2 - x_1^2)^2 + (1 - x_1)^2]$$
, com ponto inicial $x^0 = (0, 0)^T$.

7. Considere o problema de minimizar $f(x) := \frac{1}{2} ||Ax + b||^2$, com $A \in M_{m \times n}(\mathbb{R})$ de posto completo e m > n. Usando a decomposição SVD para matriz $A, A = U\Sigma V^T$, prove que o minimo é

$$x^* = \sum_{i=1}^n \frac{u_i^T b}{\sigma_i} v_i,$$

onde u_i e v_i são as colunas de U e V respectivamente, e os σ_i são os valores singulares de A. Observe que se σ_i é pequeno, a solução do problema x^* é bem sensível a pertubações do vetor b.

- 8. Considere a região $\Omega := \{x \in \mathbb{R}^n : g(x) \leq 0\}$, onde $g : \mathbb{R}^n \to \mathbb{R}^p$. Se $A \in M_{p \times p}(\mathbb{R})$ é uma matriz simétrica definida positiva, $P(x) := \max\{0, g(x)\}^T A \max\{0, g(x)\}$ pode ser usada como função penalidade.
- 9. Use a função de penalidade inversa para resolver o problema

minimizar
$$-x_1^2 - x_2^2$$
 sujeito a $x_1 \le 8, x_2 \le 8, x_1 + x_2 \ge 1$,

com ponto inicial $x^0 := (2,2)^T$.

Observação: Se $\Omega := \{x : c_i \ge 0, i = 1, \dots, m\}$, a função de penalidade inversa é $\sum_{i=1}^m \frac{1}{c_i(x)}$.

^{*}Department of Mathematics, Federal University of Paraná, PR, Brazil. Email: albertoramos@ufpr.br.

- 10. Seja $g: \mathbb{R}^n \to \mathbb{R}$ uma função de classe C^1 . Mostre que $\max^2\{0, g(x)\}$ é derivável e que o gradiente é $\max\{0, g(x)\}\nabla g(x)$.
- 11. Considere o método de barreira e $\mathcal{B}(x,\rho) := f(x) + \rho B(x)$. Mostre que:
 - (a) $\mathcal{B}(x^{k+1}, \rho_{k+1}) \leq \mathcal{B}(x^k, \rho_k)$
 - (b) $B(x^k) \le B(x^{k+1})$
 - (c) $f(x^{k+1}) \le f(x^k)$
- 12. Considere o algoritmo de penalidade externa com penalidade quadrática $P(x) = \frac{1}{2}(\|h(x)\|^2 + \|\max\{0, g(x)\}\|^2)$ para os seguintes problemas de minimização.
 - (a) Minimizar $x_1^2 + x_2^2$ s.a $2x_1 x_2 = 2$
 - (b) Minimizar $x_1^2 + x_2^2$ s.a $x_1 + x_2^2 \ge 2$

Para cada problema mencionado

- (a) Represente graficamente a região factível
- (b) Encontre a solução global x^* e encontre os multiplicadores de Lagrange associados λ^* e μ^* .
- (c) Para cada ρ_k descreve o subproblema a resolver. Ache a solução global desse subproblema
- (d) Verifique se $\rho_k \to \infty$. Então, $x^k \to x^*$, $\rho_k h(x^k) \to \lambda^*$ e $\rho_k \max\{0, g(x)\} \to \mu^*$. Qual condição de qualificação cumpre x^* ?
- 13. Mostre que a atualização $\lambda^{k+1} = \lambda^k + \rho_k h(x^k)$ corresponde ao método de máxima subida (gradiente) aplicado ao problema

$$\text{maximizar} f(x) + h(x)^T \lambda + \frac{\rho_k}{2} ||h(x)||^2$$

que é o dual do problema minf(x) s.a h(x) = 0.

14. Em $\mathbb R$ considere o problema de minimização

minimizar
$$ln(x+1)$$
 s. a. $x \ge 0$

- (a) Use o método de barreira logaritmica para provar que se o parametro de penalidade μ é maior ou igual a 1, o subproblema não tem solução e quando μ é menor que 1, a solução é $x(\mu) = \mu/(1-\mu)$. Mostre também que quando $\mu \to 0$, temos que $x(\mu) \to x^* = 0$ onde x^* é a solução ótima.
- 15. Considere o problema de otimização

minimizar
$$x_1x_2$$
 sujeito a $2x_2 - x_1 + 3 = 0$.

- (a) Para quais valores do parametro de penalidade, o método de penalidade com penalidade quadrática tem mínimo ?
- (b) Calcule o mínimo de cada subproblema como função do parâmetro de penalidade. Encontre o ponto limite dessa sequência quando o parâmetro de penalidade vai para o infinito.