

Revisiting Fake News Detection: Towards Temporality-aware Evaluation by Leveraging Engagement Earliness

Junghoon Kim*, Junmo Lee*, Yeonjun In, Kanghoon Yoon, Chanyoung Park†

Korea Advanced Institute of Science & Technology (KAIST)

{jhkim611, bubblego0217, yeonjun.in, ykhoon08, cy.park}@kaist.ac.kr

- Fake News Detection
 - Task of identifying news articles containing false information
 - Vital for **societal security**, **public health**, etc.
 - 0 Binary classification of "veracity labels" (0: real, 1: fake)
 - Content-based 0
 - Leverage patterns from the news article text itself
 - E.g., semantic representations, emotional features
 - Social graph-based
 - Additionally utilize social context knowledge
 - E.g., user info, retweets
 - → Model such social contexts into graph structures

Fake news dataset \mathcal{D}

- Shortcomings in previous works
 - O Conventional social graph-based methods are **inconsistent with real-world scenarios**
 - In practice, a model would only be trained with data up to a specific point in time (collected in advance), with **future data only available at test time**, i.e., **temporality-aware** setting

- Shortcomings in previous works
 - O Conventional social graph-based methods adopt a *temporality-ignorant* setting, assuming access to future data
 - Article-related (e.g., textual contents & veracity labels): train / test divided via random split
 - Context related (e.g., users, tweets): using social contexts after training time during training

- Shortcomings in previous works
 - O Conventional social graph-based methods suffer a sharp decrease in performance under this new setting
 - Why? Single fixed structure (patterns) for both training & testing (inherent design flaw)
 - → Substantial change in structure after training (more realistic)

- In a nutshell,
 - O Conventional social graph-based methods are unrealistic & unfit under real-world, temporality-aware settings
 - Where news articles & social context data (+ graph structure) are split by time

- In a nutshell,
 - O Conventional social graph-based methods are unrealistic & unfit under real-world, temporality-aware settings
 - Where news articles & social context data (+ graph structure) are split by time
 - Why? Single fixed structure (patterns) for both training & testing (inherent design flaw)
 - → Substantial change in structure after training (more realistic)
 - Need for more robust features & modeling

Solution: let's exploit time-independent patterns, i.e., engagement earliness!

Hypothesis

• Fake News Affinity (FNA) score for each active user $u \in \mathcal{U}$

O
$$FNA(u) = \frac{\text{\# of engagements with fake news by } u}{\text{\# of all engagements by } u}$$
 (\uparrow FNA $\approx \uparrow$ attraction to fake news)

- Confirmation bias: people have a tendency to engage with either only fake news or real news
 - O General, well-known social behavior, i.e., independent of time

Hypothesis

• Fake News Affinity (FNA) score for each active user $u \in \mathcal{U}$

O
$$FNA(u) = \frac{\text{\# of engagements with fake news by } u}{\text{\# of all engagements by } u} (\uparrow FNA \approx \uparrow attraction to fake news)$$

- Hypothesis: Confirmation bias would amplify in users displaying earlier engagement patterns
 - O Stronger opinions & beliefs would lead to quicker news consumption & responses e.g., retweets
 - More polarized!

Data Analysis

• Two perspectives: engagement-wise & user-wise earliness patterns

O The skewed tendency intensifies with early engagements (users) over late engagements (users)

Data Analysis

- Joint earliness patterns
 - O Four groups
 - Early users' early engagements (EE), early users' late engagements (EL)
 - Late users' early engagements (LE), late users' late engagements (LL)

O Further capture potentially missed patterns: EL is more skewed than LL, LE is more skewed than LL

Data Analysis

Implications

O Earlier user engagements imply a stronger confirmation bias, i.e., a stronger tendency to link news articles of the same veracity (clean edges) within the social graph

O Edges containing *later* user engagements have a higher likelihood of connecting "real" – "fake" news article nodes (noisy edges)

O Such underlying patterns represent fundamental social behaviors and thus occur similarly regardless of time

O Utilizing this, let's identify and adjust the weights of these noisy edges that hinder detection performance \rightarrow Graph Structure Learning (GSL)

- <u>D</u>etecting fake news via e<u>A</u>rliness-guided re<u>W</u>eighti<u>N</u>g
 - O Edge feature construction
 - O Reweighting via edge weight estimator f
 - O Fake news detection via GNN classifier *g*

fake news

real news

- I. Edge feature construction
 - O Reflects our previous findings regarding engagement earliness
 - O $\bar{z}_{ij} \in \mathbb{R}^4$ for existing edge between node pair p_i, p_j obtained by
 - Dividing the engagements into four groups (EE, EL, LE, LL)
 - Concatenating the size of each group
 + column-wise normalization
 - → Represents the earliness profile of each edge

- II. Noisy edge suppression
 - O Obtain adjusted edge weights: $w_{ij} = f(\bar{z}_{ij}) = sigmoid(MLP(\bar{z}_{ij}))$
 - $w_{ij} \in [0,1]$
 - O Regularize f via **ranking loss**: $\mathcal{L}_{rank} = \frac{1}{K^2} \sum_{i=1}^K \sum_{j=1}^K \max(0, -\left(\frac{w_{clean}^{(i)}}{w_{clean}^{(j)}} \frac{w_{noisy}^{(j)}}{w_{noisy}}\right) + margin)$
 - Maximize the distance between the weights of sampled clean edges (\uparrow) and noisy edges (\downarrow)
 - Observation of only K^2 pairs is sufficient in practice & significantly reduces training time
 - O Replace the original adjacency matrix with the adjusted weights

III. Fake news detection

- O Initial node features: obtained from text via pre-trained BERT
- O Inputs for GNN classifier g (e.g., GCN)
 - Training node features
 - Adjusted training adjacency matrix
- O Prediction loss: $\mathcal{L}_{GNN} = \sum_{p_n \in \mathcal{P}_{train}} l(\hat{y}_n, y_n)$
 - $l(\hat{y}_n, y_n)$: cross entropy loss

real news

fake news

- Summary of DAWN
 - $O \quad \mathcal{L}_{final} = arg \min_{\theta, \phi} \mathcal{L}_{GNN} + \alpha \mathcal{L}_{rank}$
 - α : balancing hyperparameter
 - O After splitting the data by time & training on the training graph,
 - O The best performing model on the validation graph is used for final prediction on the test graph

- Baselines
 - O **G1**: four content-based methods
 - dEFEND\c, DualEmo/c, BERT, GPT3.5

0	G2: six social graph-based methods
	 GCNFN, UPFD, FANG, GCN, GAT, GraphSAGE
0	G3: two GSL-based methods
	RS-GNN, DECOR

Dataset	PolitiFact	GossipCop
# News Articles	597	8,763
# Real News	282	6,764
# Fake News	315	1,999
# Users	162,262	129,820
# Tweets (Engagements)	255,227	516,172

- Datasets
 - O **PolitiFact** & **GossipCop**: labeled news articles & related tweets by users on X (Twitter)
 - O Temporality-aware evaluation
 - Train : val : test = 70% : 10% : 20% in temporal order
 - News articles, users & tweets split accordingly

- Detection performance
 - O Under temporality-aware settings,
 - Up to 5.6%p (acc.) 7.3%p (F1.) enhancement
 - Robust performance due to time-independent earliness patterns

	Method	Polit	iFact	Gossi	pCop
	Method		f1.	acc.	f1.
	dEFEND\c [24]	81.2	79.6	75.4	68.3
G1	DualEmo\c [33]	84.0	81.5	77.9	71.9
	BERT [6]	84.2	81.7	76.4	69.1
	GPT3.5	75.7	77.9	62.8	56.6
	GCNFN [20]	84.8	82.3	85.3	82.9
	UPFD [7]	84.6	82.1	82.0	77.8
G2	FANG [21]	85.5	82.6	86.1	83.4
G2	GCN [15]	86.4	83.0	87.4	84.7
	GAT [27]	86.7	79.5	86.5	83.6
	GraphSAGE [11]	85.4	80.9	87.5	85.5
G3	RS-GNN [4]	80.8	62.8	85.9	83.6
G3	DECOR [31]	<u>87.4</u>	84.7	88.1	85.7
Ours	DAWN	91.9	89.8	93.7	93.0

- Detection performance
 - Under temporality-aware settings,
 - Up to 5.6%p (acc.) 7.3%p (F1.) enhancement
 - Robust performance due to time-independent earliness patterns
 - 0 Under temporality-ignorant settings,
 - Significantly outperforms baselines
 - Marginal performance drop from previous sett

100

95

UPFD

F1 (%) 85 80

Versatility of DAWN 0 under various scenarios

ent	G2	FANG [2:	1]	85.5	82.6	86.1	83.4
	GCN [1]	86.4	83.0	87.4	84.7
		GAT [27]		86.7	79.5	86.5	83.6
		GraphSA	GE [11]	85.4	80.9	87.5	85.5
	G3	RS-GNN	[4]	80.8	62.8	85.9	83.6
	G3	DECOR [[31]	87.4	84.7	88.1	<u>85.7</u>
	Ours	DAWN		91.9	89.8	93.7	93.0
s settir	•						
PolitiF	act	Setting (Cony.)	100	Temporality-	Gossip(
PolitiF Temporali	act		95		Gossip@ ignorant Set aware Settin	ting (Conv.)	93.4 _{93.0}
PolitiF Temporali	Fact ity-ignorant S ity-aware Sel	90.0 _{89.8}		Temporality-	ignorant Set aware Settin	ting (Conv.) g (Ours) 89.6	93.4 <mark>93.0</mark>
PolitiF Temporali Temporali	act ity-ignorant s ity-aware Set	90.0 _{89.8}	95.	Temporality-	ignorant Set aware Settin	ting (Conv.) g (Ours) 89.6	93.4 _{93.0}

	Method	Polit	iFact	Gossi	pCop
	Method	acc.	f1.	acc.	f1.
	dEFEND\c [24]	81.2	79.6	75.4	68.3
G1	DualEmo\c [33]	84.0	81.5	77.9	71.9
	BERT [6]	84.2	81.7	76.4	69.1
	GPT3.5	75.7	77.9	62.8	56.6
	GCNFN [20]	84.8	82.3	85.3	82.9
	UPFD [7]	84.6	82.1	82.0	77.8
G2	FANG [21]	85.5	82.6	86.1	83.4
G2	GCN [15]	86.4	83.0	87.4	84.7
	GAT [27]	86.7	79.5	86.5	83.6
	GraphSAGE [11]	85.4	80.9	87.5	85.5
G3	RS-GNN [4]	80.8	62.8	85.9	83.6
G3	DECOR [31]	87.4	84.7	88.1	85.7
Ours	DAWN	91.9	89.8	93.7	93.0

- Case study
 - O DAWN's time-independent earliness features successfully identify & reweight edges, leading to a correct veracity prediction

- Case study
 - O DAWN's **time-independent** earliness features **successfully identify & reweight edges**, leading to a **correct veracity prediction**
 - O In comparison, previous methods wrongly reweight edges due to **substantial changes in graph structure**, leading to **incorrect predictions**

Conclusion

- We explore the need for a temporality-aware setting that better reflects real-world fake news detection scenarios – in which previous methods suffer significant performance drop
 - O Future data (both article-wise & context wise) should be unavailable during training
- In-depth analyses reveal time-independent patterns regarding engagement earliness
 - O Rooted in general social behaviors, e.g., confirmation bias
 - O Later user engagements contribute more to noisy edges within the social graph
- A novel framework **DAWN** is proposed to successfully utilize such patterns in the form of Graph Structure Learning
- We verify the versatility & robust effectiveness of DAWN through extensive experiments

Thank you for your attention!

Paper Code

Contact: jhkim611@kaist.ac.kr

Algorithm

Algorithm 1 Training Algorithm of DAWN

Input: $\mathcal{G}_{train} = (\mathcal{P}_{train}, \mathcal{A}_{train}), \mathcal{G}_{val} = (\mathcal{P}_{val}, \mathcal{A}_{val}), \mathcal{X},$ normalized edge features, K, α

Output: Edge weight estimator f, GNN classifier g

- 1: Randomly initialize the parameters of f and g
- 2: **for** i = 1 to # epochs **do**
- Get the reweighted training adjacency matrix W_{train} with f by Equation 3
- 4: Input W_{train} and training node features from X to g to get veracity predictions
- 5: Randomly sample *K* clean and noisy edges, respectively
- 6: Jointly optimize parameters θ and ϕ by Equation 6
- 7: Get the reweighted validation adjacency matrix W_{val} and perform validation on \mathcal{G}_{val}
- 8: end for
- 9: Return f and g best performing on \mathcal{G}_{val}

- Ablation study
 - O Feature variants
 - DAWN+RAND: random values from uniform distribution as edge features
 - DAWN-USER / DAWN-ENG: remove user- / engagement-wise earliness patterns
 - DAWN+RATIO: row-wise column normalization
 - DAWN+NF: concatenate node features as edge features

	PolitiFact	GossipCop
DAWN	89.8	93.0
DAWN+RAND	58.9	79.7
DAWN-USER	85.6	92.5
DAWN-ENG	83.2	92.1
DAWN+RATIO	76.1	89.2
DAWN+NF	72.0	80.7
DAWN-RANK	76.5	91.9
DAWN+BC	62.4	90.2
	DAWN+RAND DAWN-USER DAWN-ENG DAWN+RATIO DAWN+NF DAWN-RANK	DAWN 89.8 DAWN+RAND 58.9 DAWN-USER 85.6 DAWN-ENG 83.2 DAWN+RATIO 76.1 DAWN+NF 72.0 DAWN-RANK 76.5

- O Component variants
 - **DAWN-RANK**: remove \mathcal{L}_{rank} , i.e., $\alpha = 0$
 - **DAWN+BC**: replace \mathcal{L}_{rank} with binary classification loss

• Hyperparameter sensitivity (*K*, *margin*)

• Hyperparameter sensitivity $(t_d, thres_u)$

• Efficiency on large networks

Method	GossipCop		
Method	Runtime (s)	f1.	
GCN	0.286	84.7	
DECOR	0.544	85.7	
DAWN	2.41	93.0	

• Homophily comparison after adjustment

	Original graph	Adjusted by DECOR	Adjusted by DAWN
PolitiFact	0.724	0.807	0.821
GossipCop	0.932	0.943	0.954

• Performance under limited training data

Generalizability (Chinese dataset MCFEND)

Dataset	MCFEND
# News Articles	23,789
# Real News	6,074
# Fake News	17,715
# Users	803,779
# Engagements	2,102,902

