5.13.4

Hemanth Reddy-Al25BTECH11018

September 30, 2025

Question

Let **A** be a 2×2 matrix with non-zero entries and let $\mathbf{A}^2=\mathbf{I}$, where **I** is 2×2 identity matrix. Define

 $Tr(\mathbf{A})$ - sum of diagonal elements of \mathbf{A} and

|A|- determinant of matrix A.

Statement - 1: $Tr(\mathbf{A}) = 0$.

Statement - 2: $|\mathbf{A}| = 1$

- Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for Statement-1.
- Statement 1 is true, Statement 2 is false.
- Statement 1 is false, Statement 2 is true.
- Statement 1 is true, Statement 2 is true; Statement 2 is a correct explanation for Statement-1.

Theoretical Solution

Solution:

Given,

A is a 2 \times 2 matrix with non-zero entries and $\mathbf{A}^2 = \mathbf{I}$

The Cayley-Hamilton Theorem states that every square matrix satisfies its own characteristic equation.

For a 2×2 matrix $\bf A$, the characteristic equation is given by $\lambda^2\text{-Tr}(A)$ $\lambda+\det(A){=}0.$

By the theorem,
$$\mathbf{A}^2 - Tr(A)\mathbf{A} + \det(\mathbf{A})\mathbf{I} = 0$$
 (1)

Substituting $\mathbf{A}^2 = \mathbf{I}$ into the equation:

$$\mathbf{I} - Tr(A)\mathbf{A} + |\mathbf{A}|\mathbf{I} = 0 \tag{2}$$

$$Tr(A)\mathbf{A} = det(A)\mathbf{I} + \mathbf{I}$$
 (3)

Theoretical Solution

Rearranging the terms:

$$\mathbf{A} = \mathbf{I}(\frac{1 + det(A)}{Tr(A)}) \tag{4}$$

If the trace, $Tr(\mathbf{A})$, is not zero, we would have $\mathbf{A} = \mathbf{I}(\frac{1+det(A)}{Tr(A)})$. This would mean \mathbf{A} is a scalar multiple of the identity matrix, which contradicts the problem statement that \mathbf{A} has non-zero entries.

The only way for the equation to hold true for a general matrix $\bf A$ with non-zero entries is if the coefficient of $\bf A$ on the left side is zero(see eq. 4.3), which means ${\rm Tr}({\bf A}){=}0$. In this case, the right side must also be zero, so $1{+}{\rm det}({\bf A}){=}0$

$$det(\mathbf{A}) = -1. \tag{5}$$

Statement - 1 is true, Statement - 2 is false.