

- 1、学会命题的判断和分类。
- 2、学会联结词与自然语言的对应关系及其翻译方法。

联结词	自然语言	
^	既…又…、不仅…而且…、虽然…但 是…、并且、和、与	
→	如果P则Q、只要P就Q、P仅当Q、只有Q才P、除非Q否则¬P、因为P所以Q	
\leftrightarrow	等价、当且仅当、充分必要	
V	相容(可兼)的或	

- 3、学会通过真值表判断给定公式的类型。
- 4、学会主析取和主合取范式的求解方法。
- 5、重言式的证明、重言蕴涵式的证明。
- 6、重要的重言蕴涵式表、重要的等价公式表。

7、学会命题的符号化与有效论证的证明方法。

判断下列推理是否正确:

在模拟考试中,如果甲第三,那么如果乙第二,则丙第四。丁不是第一或甲第三。 乙第二。从而知,如果丁第一,那么丙第四。

证明: 令 P: 甲第三, Q: 乙第二, R: 丙第四, S: 丁第一。

前提: $P \rightarrow (Q \rightarrow R)$, $\neg S \lor P$, Q

(P△Q)→R 也可以

结论: S→R

推理形式: $P \rightarrow (Q \rightarrow R)$, $\neg S \lor P$, $Q \Rightarrow S \rightarrow R$ (结论是蕴涵式,故可考虑用 CP 规则)

- (1) S P (附加) (6分)
- (2) $\neg S \lor P$ P
- (3) P T,I,(1),(2)
- $(4) \quad P \rightarrow (Q \rightarrow R) \qquad P$
- $(5) \quad Q \rightarrow R \qquad T,I,(3),(4)$
- (6) Q P
- (7) R T,I,(5),(6)
- (8) S→R T,I,(1),(7),CP规则
- 8、学会谓词公式的符号化,特性谓词的添加。<mark>熟能生巧。</mark>

设个体域是全体实数的集合。对任意给定的x>0,都存在y>0,使得xy>0。

对任意给定的x>0,都存在y>0,使得xy>0。

设个体域是全体大学生的集合。所有的大学生都是国家的希望。

所有的大学生都是国家的希望。

9、学会求解谓词公式的解释。

 $(\exists x)(P(x)\to Q(x))\land 1$,其中,P(x): x>2; Q(x): x=0,个体域为 $\{1,2\}$

10、学会自由变元、约束变元、辖域的概念,约束变元的改名规则和自由变元的代入规则。学会求解前束范式。

求公式 $(\forall x)P(x,y)\leftrightarrow(\forall y)Q(y)$ 的前東范式。

解: $(\forall x)P(x,y)\leftrightarrow(\forall y)Q(y)$ 无双向蕴涵相关的谓词等价式

- $= ((\forall x)P(x, y) \rightarrow (\forall y)Q(y)) \land ((\forall y)Q(y) \rightarrow (\forall x)P(x, y))$
- $= (\neg(\forall x)P(x, y) \lor (\forall y)Q(y)) \land (\neg(\forall y)Q(y) \lor (\forall x)P(x, y))$
- $= ((\exists \mathbf{x}) \neg P(\mathbf{x}, \mathbf{y}) \lor (\forall \mathbf{y}) Q(\mathbf{y})) \land ((\exists \mathbf{y}) \neg Q(\mathbf{y}) \lor (\forall \mathbf{x}) P(\mathbf{x}, \mathbf{y}))$
- $= ((\exists x) \neg P(x, y) \lor (\forall \mathbf{u}) Q(\mathbf{u})) \land ((\exists \mathbf{v}) \neg Q(\mathbf{v}) \lor (\forall w) P(w, y))$
- $= (\exists x)(\forall u)(\neg P(x, y) \lor Q(u)) \land (\exists v)(\forall w)(\neg Q(v) \lor P(w, y))$
- $= (\exists x)(\forall u)(\exists v)(\forall w)((\neg P(x, y) \lor Q(u)) \land (\neg Q(v) \lor P(w, y))$
- 11、谓词逻辑的有效蕴涵和等价公式。

重要的有效蕴涵与等价式

(1) 命题演算中的等价式和蕴涵式可推广到谓词 演算中使用。

例如:

- $(\exists x)P(x) \land \neg (\exists x)P(x) = F$
- $(\forall x)P(x)\rightarrow(\exists x)Q(x) = \neg(\forall x)P(x)\lor(\exists x)Q(x)$
- $\neg(\exists x)Q(x) \lor \neg(\forall x)P(x) = \neg((\exists x)Q(x) \land (\forall x)P(x))$
- $(\exists x)P(x) \land ((\exists x)P(x) \rightarrow (\forall y)Q(y)) \Rightarrow (\forall y)Q(y)$

$(\forall x)(A(x) \land B(x)) = (\forall x)A(x) \land (\forall x)B(x)$

 $(\forall x)(A(x) \land B(x))$

- $= (\forall x) \neg (\neg A(x) \lor \neg B(x))$
- $= \neg(\exists x)(\neg A(x) \lor \neg B(x))$
- $= \neg((\exists x)(\neg A(x) \lor \neg B(x)))$
- $= \neg((\exists x) \neg A(x) \lor (\exists x) \neg B(x))$
- $= \neg(\exists x) \neg A(x) \land \neg(\exists x) \neg B(x)$
- $= (\forall x)A(x) \land (\forall x)B(x)$

$(\exists x)(A(x) \land B(x)) \Rightarrow (\exists x)A(x) \land (\exists x)B(x)$

- 1) $(\exists x)(A(x) \land B(x))$ P
- 2) $A(c) \land B(c)$ ES 1)
- 3) A(c) T 2) I
- 4) B(c) T 2) I
- 5) $(\exists x)A(x)$ EG 3)
- 6) $(\exists x)B(x)$ EG 4)
- 7) $(\exists x)A(x) \land (\exists x)B(x)$ T 5)6) I

12、谓词逻辑的推理方法,添加和消去量词的规则。

将下列推理符号化(<mark>个体域为我校全体学生</mark>),并用演绎法进行证明。

证明:

每个学生或者最喜欢去图书馆,或者最喜欢去食堂;每个学生当且仅当他(她)住在图书馆附近时最喜欢去图书馆;有的学生住在图书馆附近,但并非所有学生都住在图书馆附近;因此,有些学生最喜欢去食堂。

个体域为我校全体学生

令 P(x): x 最喜欢去图书馆; Q(x): x 最喜欢去食堂;

R(x): x 住在图书馆附近

符号化如下: $(\forall x)(P(x) \oplus Q(x)), (\forall x)(P(x) \leftrightarrow R(x)), (\exists x)R(x) \land \neg(\forall x)R(x) \Rightarrow (\exists x)Q(x)$

证明:	$(1) (\exists x) R(x) \land \neg(\forall x) R(x)$	P
	$(2) \neg (\forall x) R(x)$	T,(1),I
	$(3)(\exists x)\neg R(x)$	T,(2),E
	$(4) \neg R(c)$	ES,(3)
	$(5) (\forall x) (P(x) \leftrightarrow R(x))$	P
	$(6) P(c) \leftrightarrow R(c)$	US,(5)
	$(7) (P(c) \rightarrow R(c)) \land (R(c) \rightarrow P(c))$	T,(6),E
	$(8) P(c) \rightarrow R(c)$	T,(7),E
	$(9) \neg P(c)$	T,(4),(8),I
	$(10) (\forall x) (P(x) \oplus Q(x))$	P
	(11) $P(c) \oplus Q(c)$	US,(10)
	(12) Q(c)	T,(9)(11),I
	$(13) (\exists x) Q(x)$	EG,(12)

将下列推理符号化,并用演绎法进行证明。

每个学生或者最喜欢去图书馆,或者最喜欢去食堂;每个学生当且仅当他(她) 住在图书馆附近时最喜欢去图书馆;有的学生住在图书馆附近,但并非所有学生 都住在图书馆附近;因此,有些学生最喜欢去食堂。

令 S(x): x 是学生

R(x): x 住在图书馆附近

P(x): x 最喜欢去图书馆; Q(x): x 最喜欢去食堂;

符号化如下: $(\forall x)(S(x) \rightarrow (P(x) \oplus Q(x))), (\forall x)(S(x) \rightarrow (P(x) \leftrightarrow R(x))),$

 $(\exists x)(S(x) \land R(x)) \land \neg(\forall x)(S(x) \rightarrow R(x)),$

 $(19) (\exists x) (S(x) \land Q(x))$

$\Rightarrow (\exists x$	$\left(\frac{S(x)\wedge}{Q(x)}\right)$	
证明:	$(1) (\exists x) (S(x) \land R(x)) \land \neg (\forall x) (S(x) \rightarrow R(x))$	P
	$(2) \neg (\forall x) (S(x) \rightarrow R(x))$	T,(1),I
	$(3) (\exists x) \neg (S(x) \rightarrow R(x))$	T,(2),E
	$(4) \neg (S(c) \rightarrow R(c))$	ES,(3)
	$(5) \frac{S(c)}{-R(c)}$	T,(4),E
	$(6) \neg R(c)$	T,(5),I
	(7) S(c)	T,(5),I
	$(8) (\forall x) (S(x) \to (P(x) \leftrightarrow R(x)))$	P
	$(9) S(c) \rightarrow (P(c) \leftrightarrow R(c))$	US,(7)
	$(10) P(c) \leftrightarrow R(c)$	T,(7)(9),I
	$(11) (P(c) \rightarrow R(c)) \land (R(c) \rightarrow P(c))$	T,(10),E
	$(12) P(c) \rightarrow R(c)$	T,(11),I
	$(13) \neg P(c)$	T,(6),(12),I
	$(14) (\forall x)(S(x) \rightarrow (P(x) \oplus Q(x)))$	P
	$(15)(S(c) \to (P(c) \oplus Q(c)))$	US,(14)
	$(16) P(c) \oplus Q(c)$	T,(7),(15),I
	(17) Q(c)	T,(13)(16),I
	(18) S(c)∧Q(c)	T,(7)(17),I

EG,(18)