Funzioni

Funzione

Definizione

 $D
eq \emptyset, C
eq \emptyset$

Una funzione $f:D \to C$ è una corrispondenza (sottoinsieme dell'insieme

 $D \times C := \{(x,y) : x \in D, \ y \in C\}$) che associa ad ogni elemento $x \in D$ uno ed un solo elemento $y \in C$ che si indica con f(x) e si dice valore o immagine di f in x

 $orall x \in D \; \exists ! y \in C : y = f(x)$

- Dominio: D
- Variabile indipendente: x
- Codominio: C
- Variabile dipendente: y = f(x)
- Immagine: $\operatorname{Im}(f) = f(D) = \{f(x) : x \in D\} \subset C$
- Una funzione si dice limitata
 - superiormente se $orall x \in D \ \exists M \in \mathbb{R} : M \geq f(x)$
 - inferiormente se $\forall x \in D \; \exists m \in \mathbb{R} : m \leq f(x)$
 - se è limitata sia superiormente che inferiormente

Iniettiva, suriettiva, biiettiva

Definizione

Una funzione f si dice:

- Iniettiva se $\forall x_1, x_2 \in D, \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$, equivalentemente $f(x_1) = f(x_2) \implies x_1 = x_2$
- Suriettiva se $\forall y \in C \ \exists x \in D \mid y = f(x)$, ovvero $\mathrm{Im}(f) = C$
- Biiettiva se $\forall y \in C \; \exists ! x \in D \mid y = f(x)$, ovvero se è sia iniettiva che suriettiva

Composizione di funzioni

Definizione

```
f:D_f	o C_f,\,g:D_g	o C_g
Se C_f\subset D_g (quindi \mathrm{Im}(f)\subset\mathrm{Dom}(g)) si può definire la composizione g\circ f:D_f	o C_g,\;(g\circ f)(x)=g(f(x))
```

Funzione inversa

Definizione

Se f è biiettiva si può definire la funzione inversa $f^{-1}:C \to D$, $x=f^{-1}(y)$

Grafico

Definizione

$$egin{aligned} \operatorname{Gr}(f) &:= \{(x,y) \in \mathbb{R}^2 : x \in D, \ y = f(x) \} \ (x,y) \in \operatorname{Gr}(f) \iff (y,x) \in \operatorname{Gr}(f^{-1}) \end{aligned}$$

Simmetrica

Definizione

Una funzione f è:

- Pari se $f(-x) = f(x) \ \ \forall x \in D$
- Dispari se $f(-x) = -f(x) \ \ \forall x \in D$
- Periodica se $\exists t \in \mathbb{R} \mid f(x+t) = f(x) \ \ \forall x \in D$

Monotona

Definizione

Una funzione f si dice:

- Crescente se $x_1 < x_2 \implies f(x_1) \le f(x_2)$
- Strettamente crescente se $x_1 < x_2 \implies f(x_1) < f(x_2)$
- Decrescente se $x_1 < x_2 \implies f(x_1) \ge f(x_2)$
- Strettamente crescente se $x_1 < x_2 \implies f(x_1) > f(x_2)$

Disuguaglianza triangolare

Formule

La funzione modulo ha la seguente proprietà:

$$|x_1 + x_2| \leq |x_1| + |x_2| \;\; orall x_1, x_2 \in \mathbb{R}$$