# **Optimization in Machine Learning**

# First order methods GD – Multimodality and Saddle points





#### Learning goals

- Multimodality, GD result can be arbitrarily bad
- Saddle points, major problem in NN error landscapes, GD can get stuck or slow crawling

# **UNIMODAL VS. MULTIMODAL LOSS SURFACES**



Snippet of a loss surface with many local optima

# **GD: ONLY LOCALLY OPTIMAL MOVES**

- GD makes only locally optimal moves
- It may move away from the global optimum



Source: Goodfellow et al., 2016

- Initialization on "wrong" side of the hill results in weak performance
- In higher dimensions, GD may move around the hill (potentially at the cost of longer trajectory and time to convergence)



# **LOCAL MINIMA**

• In practice: Only local minima with high value compared to global minimium are problematic.







# **GD AT SADDLE POINTS**

#### **Example:**

$$f(x_1, x_2) = x_1^2 - x_2^2$$
  
 $\nabla f(x_1, x_2) = (2x_1, -2x_2)^{\top}$   
 $\mathbf{H} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$ 

- Along  $x_1$ , curvature is positive ( $\lambda_1 = 2 > 0$ ).
- Along  $x_2$ , curvature is negative ( $\lambda_2 = -2 < 0$ ).





- How do saddle points impair optimization?
- Gradient-based algorithms **might** get stuck in saddle points



Red dot: Starting location



- How do saddle points impair optimization?
- Gradient-based algorithms **might** get stuck in saddle points



Step 1 ...



- How do saddle points impair optimization?
- Gradient-based algorithms **might** get stuck in saddle points



... Step 2 ...



- How do saddle points impair optimization?
- Gradient-based algorithms might get stuck in saddle points



... Step 10 ... got stuck and cannot escape saddle point



- How do saddle points impair optimization?
- Gradient-based algorithms **might** get stuck in saddle points



... Step 10 ... got stuck and cannot escape saddle point



### SADDLE POINTS IN NEURAL NETWORKS

- For the empirical risk  $\mathcal{R}:\mathbb{R}^d\to\mathbb{R}$  of a neural network, the expected ratio of the number of saddle points to local minima typically grows exponentially with d
- In other words: Networks with more parameters (deeper networks or larger layers) exhibit a lot more saddle points than local minima
- Reason: Hessian at local minimum has only positive eigenvalues.
   Hessian at saddle point has positive and negative eigenvalues.

