

Figure 1. Schematic diagram

Figure 2. SDF and IBM

Table 1. Physical properties

Gas phase	
Viscosity	1.8 × 10⁻⁵ Pa ⋅ s
Density	1 kg/m^3
Solid phase	
Density	1500 kg/m^3
Spring constant	50 N/m
Coefficient of restitution	0.9
Coefficient of friction	0.3

Table 2. Calculation conditions

Particle diameter	250 μm
Number of particles	500,000
Grid size	0.5 mm
Calculation time	0.24 s

Figure 3. Powder distribution In case suction filling, the punch speed was 500 mm/s.

Figure 4. Number of particles in die region

Figure 5. Flux of powder into die region

Figure 6. Drag force

Figure 7. Pressure force

Figure 8. Number of suctioned particles

Figure 9. Powder distribution

Figure 10. Number of particles in die region

Figure 11. Filling time

Figure 12. Flux of powder into die region

Figure 13. Drag force

Figure 14. Pressure force

Figure 15. Number of suctioned particles by drag force

Figure 16. Number of suctioned particles by pressure gradient

Figure 17. Air velocity