Planning and executing Machine Learning project

Few examples

- What is most dominant element in the image
- What is the sentiment of the text negative / positive
- Recommend article/product to customer
- Categorization of text into one of "buckets" - e.g. urgent message, low priority, spam
- Product rating prediction
- Product purchase prediction

- Chatbots
- Language translation
- Speech recognition
- Sales prediction
- Stock price prediction
- What is the temperature going to be tomorrow?

What is machine learning?

A Tool!

Task performed by human

Task performed by machine

Presentation plan

Project stages:

- * Planning
- Executing
- After release

Planning

Software engineering vs. data science

	Software	Data science	
Project goal	build product features	build best performing model	
Long term process	keep adding/ improving features	keep improving model to fit current business needs	

Scientific method in data science

source: https://www.thedatalab.com/about-us/what-is-data-sciene

Data science - process

Formulating hypothesis and running experiments

Collecting and preprocessing data

Choose your (model's) goal

Metrics:

```
- Accuracy (% of examples correct)
```

- Precision (% of detections that are right)

- Amount of error (for regression problems)

- * When your prediction is good enough for production? e.g. for product recommendation 70% accuracy might be enough
- * Can you <u>hide</u> results when you're not certain about your prediction?

How difficult is my problem?

- Who else did something similar?
- Google for ready solution in articles, blogs, scientific papers

Build, find ready model or buy

Build your model from scratch

Find ready service

If not available or not good enough, build from scratch

Ready services

Amazon Machine Learning

Ready services

Watson Developer Cloud

Watson Developer Cloud			Start free on Bluemix Sign in to Bluemix		
			APIs ∨ Docs Developer Tools Starter Kits Community		
Language	Speech	Vision	Data Insights		
Conversation	Speech to Text	Visual Recognition	Discovery		
Document Conversion	Text to Speech		Discovery News		
Language Translator			Tradeoff Analytics		
Natural Language Classifier					
Natural Language Understanding					
Personality Insights					
Retrieve and Rank					
Tone Analyzer					

Ready services

Other SaaS

Ready service doesn't solve all problems

Buy	Build	
~	*	Collecting and labeling data
~	~	Data cleaning and preparation
	*	Building and training the model
		Building separate application to host the model
~	•	Building API to communicate with your model
	~	Preparing production environment and "go live"
	~	Maintenance

What data will I need to build my model?

Of course depends on problem, but minimum requirement is: What data would human need to solve this problem?

Sepal length ÷	Sepal width +	Petal length ÷	Petal width ÷	Species 4
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa
4.4	2.9	1.4	0.2	I. setosa
4.9	3.1	1.5	0.1	I. setosa
5.4	3.7	1.5	0.2	I. setosa
4.8	3.4	1.6	0.2	I. setosa

Data science from engineering perspective

- It's still software!
 - don't forget best practices: version controlling, thorough documentation, folders structure, deployment, CI, code reviews
- Great data scientist is not necessarily great software developer
 - might not know best coding practices, how to build production ready code, how to maintain it
 - will need help from your IT department

Plan your folder structure

Template from Cookiecutter Data Science

Executing

Execution - steps

- Getting data
- Preprocessing data
- Building first (baseline) model
- Automating: building solid pipeline to make each experiment reproducible
- Keep improving model until reaching goal
- Putting in production

Collecting data and labeling

Collecting data

- * How much data? The more the better:) (with exceptions, e.g. transfer learning)
- "Effortless collection"
- How easy it is to collect data I need for my problem

Labeling data

- Done by human; might be easier/faster than you think
- Sometimes data is already "labeled" e.g. product recommendation

Data cleanup and preprocessing

- * You might spend here much more time than you think (90/10 rule)
- Automate!
 - make it easy for you and other project participants

Building baseline model

- Don't waste too much time here
- Use as a reference
- What current state-of-art can you quickly copy?

Reproducibility of your experiments

Keras v2.ipynb

Keras v3.ipynb

Keras v4.ipynb

Living pieces

Each step can change one of the pieces in your pipeline:

- new data available
- improved way to clean data
- new insights from data

- new hypothesis modifies model structure
- ... or just testing different model parameters

Reproducibility

- * Ideal scenario: with the "push of a single button" anyone in the project can get similar experiment results; Any experiment you've ever executed
- * For each past experiment, make it easy for you and everyone else to use similar:
 - data training/test/valid data, preprocessed results, training results (saved models)
 - * code (preprocessing, model, validation etc.)
 - environment underlying libraries, e.g. different experiment results on python2 and python3
 - decisions each hypothesis should be documented; why you're doing it, experiment outcome etc.

Build automated pipeline

Solutions:

- Simpler Python/Bash scripts
 - * Each script is responsible for separate part of pipeline
 - makes it easy to substitute any part
 - Use e.g. jupyter notebook or git versioning to document each experiment, tool that puts all parts of the pipeline together
- Advanced Docker
 - Kubernetes container orchestration
 - Don't try it at home :)
- Will take time and additional effort, but later you will save a lot of time while running new experiments

Doker components

- For each experiment it versions your:
 - environment
 - each change in collected and preprocessed data
 - your model and model parameters
 - experiment outcome

```
{
  "Commit":"d6cd1e2bd19e03a81132a23b2025920577f84e37",
  "Environment":"gcr.io/docker_image_with_our_project",
  "Input_Data": "gs://google_storage_bucket/in/",
  "Output_Data": "gs://google_storage_bucket/out/"
  "Model": "CNN.py"
  "Parameters": {
      "Learning_rate": 0.03,
      "Batch_size": 100,
      .....
  "Hidden_layers": 2
  }
}
```

Pachyderm http://pachyderm.io

Pachyderm v1.6 is out and ready for production use!

Version control for data

Reproducibility - Decisions

- Use "Lab notebook" that documents how you came to the decisions that shaped your analysis
 - Explain why you're doing it
- For simpler projects:
 - jupyter notebook
 - git versioning/branches
 - GitHub issues (with appropriate tags)

Putting in production

- Building application to serve the data
 - requires separate presentation:)

After release

Your model in production

Maintenance

- best practices still apply monitoring, support, SLA and fixing bugs, etc.
- monitoring dashboard what average score (e.g. confidence level)
 am I getting on real-world data)
- collect the data to be able to reproduce results when something goes wrong
- Model versioning
 - You might need to serve multiple versions at the same time

Thank you

Questions?