① 特許出願公開

平4-154953 ⑫ 公 開 特 許 公 報(A)

@Int. Cl. 5

急別記号

43公開 平成4年(1992)5月27日

C 23 C 14/02 G 11 B 11/10

庁内整理番号 9046-4K 9075-5D Α

審査請求 未請求 請求項の数 4 (全4頁)

機能性素子の製造方法 60発明の名称

②特 頤 平2-273812

②出 蘭 平2(1990)10月12日

東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 雅 也 @発明者 小 林

東京都大田区下丸子3丁目30番2号 キヤノン株式会社 の 出願 人

外1名 70代 理 人 弁理士 丸島 儀一

明

1. 発明の名称

機能性素子の製造方法

2. 特許請求の範囲

- (1) 基体上に機能性維務態を有する機能性素子の 製造方法に於て基体を空気以外の乾燥した気体の 雰囲気中で保持した後機能性堆積膜を形成するこ とを特徴とする機能性素子の製造方法。
- (2) 前記気体の水分満度が容量基準で300ppm以 下である請求項 (1) の機能性素子の製造方法。
- (3) 前記気体が容素、アルゴン、酸素から選ばれ る少なくとも1種を含有する請求項(1)の機能性
- 素子の製造方法。
- (4) 前記機能性堆積膜が金属膜である請求項(1) の機能性素子の製造方法。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は基体上に機能性堆積膜を有する機能性 素子例えば情報記録媒体、半導体デバイス、電子 写真用感光デバイス、面像入力用ラインセンサー、

機像デバイス、光起電力素子等の製造方法に関す るものである。

「従来の技術」

従来、情報記録媒体、半導体デバイス、電子写 真用感光デバイス、画像入力用ラインセンサー、扱 像デバイス、光起電力素子等の基体上に機能性堆 糖膜が形成された機能性素子が提案され、また実 用化されている。これらの機能性素子は機能性堆 精雕の基体への密着性を向上させ又機能性堆積膜 の離食を防止するために基体に含まれている水分 やガス分を除去する即ち脱気目的で膜を形成する 前に基体を真空中で所定の時間保持する必要が あった。

しかしながら従来の脱気方法では基体を真空中 で処理する為の設備投資が高く又真空にする際に 基体に付着したゴミなどの問題点があった。 (発明が解決しようとしている問題点)

即ち本発明は上記問題点に鑑みなされたもので あり機能性薄膜の基体への密着性に優れ且つ安定 性に優れた機能性素子をより安価に製造すること

ができる機能性素子の製造方法を提供することを 目的とするものである。

(問題占を解決するための手段)

本発明の機能性素子の製造方法は、基体上に機能性堆積膜を有する機能性素子の製造方法に於て 基体を空気以外の乾燥した気体の雰囲気中で保持 した後機能性堆積膜を形成することを特徴とする ものである。

次に図を用いて本発明を詳細に説明する。

第1図は本発明に係る機能性素子の基体の脱気を 行なう脱気装置の1実施態様を示すものである。

第1回に終て基体8は基体支持台6上に配置し気 体導入バルブ4より空気以外の気体を導入し股気装置1内を気体で置換し、ファン3により脱気装置1 内の気体の分布を均一化する。そしてガス排出バ ルカションを発展し、脱気装置1内の圧力を調整する。

本発明に於て用いられる気体としては空気以外 の気体が好ましく特に酸素、窒素及びアルゴンガ スから選ばれる少なくとも1種を含有する気体が好 ましい。

更に基体の脱気時間としては機能性堆積膜の基 体への密着性が向上するという点で1時間以上特に 5.時間~9.時間が好ましい。

気体の水分の含有量としては300ppm (容量基準) 以下とした場合基体の脱気をより完全に行なうことができる。

この様にして脱気を行なった基体に機能性堆積 腰を形成して機能性素子を得ることができる。

第2回は基体上に光磁気記録版を形成するインラ イン式大磁気記録整体の成績装置の概略図である。 第2回において、21は基体の投入炉、22は保護 誘電体膜の成板用スパンタ炉、23は金属非晶質膜 の板板用スパンタ炉、24は22と同様の保護誘電体 順の板板用スパンタ炉、24は22と同様の保護誘電体

上記の軽気を行なった基体を投入炉21に入れた 後接気され成額用スパツタ炉22に接送されて基体 上に保護時電体腺が形成され次いでスパツタ炉23 に搬送されて光磁気配焊線となる金属非晶質膜が 形成され更にスパツタ炉24に搬送され金属非晶質

3

酸上に再び保護膜が形成され排出炉25で排出され 基体上に機能性堆積膜を有する光磁気記録媒体が 得られる。

本発明に於て用いられる挑体としては、製造する機能性素子によっても異なるが例えば情報記録 媒体の場合、ポリカーボネート、ポリメチルメタ クリレート等の樹脂基体が挙げられる。

以下実施例を用いて本発明を更に詳細に説明する。

実施例1

この状態で基体を1時間、3時間、5時間、7時間、9時間処理した後各々の基体に第2回に示す光 磁気記録媒体成膜装置を用いて成膜し5枚の光磁気 デイスクを得た。

この様にして得た光磁気ディスクの基体及び機 能性堆積膜の密着力を測定する為にクロスハッチ テストを行なった。

参考例1

ポリカーボネート差板2を直接第2図の光磁気記 肄業体成膜装置にセツトして投入炉®で各々1,3, 5,7,9時間真空脱気をした後実施例1と同様に して成際し5枚の光磁気デイスクを製造した。

上記実施例1及び参考例1で作成した各々の光磁 気デイスクについてそのキユーリー温度を測定し たところ第3回に示す様なキユーリー温度曲線を得 た。

次に基体と機能性集積膜の密着力を測定する為 に成績後の基体に終列な刃物で1mm間隔でたて、 よこ各8本養空して線を引き1辺1mmの正方形の ますを25 コ形成しその上に粘着テープを貼りつけ て十分に密着させた後にその粘着テープを削りて テープに付着した正方形のますの数により基体へ の腕の密着度を衝突した。(クロスハツチテスト)

6

即ちます 25 コのうちテープにつていきたものが 0 コ (0/25) の場合膜の密着は良好であり、基体の 水分、ガス分は十分除去されていると判断した。そ の結果を表1に示す。

表 - 1

処理時間(hr)	1	3	5	7	9
実施例1	17/25	8/ ₂₅	9/25	9/25	9/25
参考例1	29/25	19/25	9/25	9/25	9/25

第3回及び表-1より実施例1の光磁気デイスク は真空中で基体の処理を行なった光磁気デイスク とほぼ同等の性能を有することが分かる。 実施例2~4

水分含有量を表2に示すようにした以外は実施例 1と間様にして光磁気記録媒体を作製した。

これら記録媒体につき、実施例1と同様の方法で キューリー温度を測定し、クロスハツチテストを 行なった。

7

その結果を表2に示す。

***** - 3

		キユーリー温度 (℃)				クロスハツチテスト					
	ガスの 種 類	時間	3	5	7	9	1 時 問	3	5	7	9
実施例5	Ar					160	25	8 25	25	25 25	25
6	02	148	155	160	160	160	18 25	7 25	0 25	0 25	25 25
7	Ar + N2	150	155	160	160	160	17 25	8/25	25	25	0 25
8	Ar + O ₂	150	155	160	160	160	18/25	8 25	25 25	%	25
参 考1	-	140	150	160	160	160	20 25	10/25	% 25	%	25 25

9

事 - 9

				ax.		_						
実施例	水分 (PPM) (容量基準)	キューリー温度 (℃)					クロスハツチテスト					
		1時間	3	5	7	9	1時間	3	5	7	9	
2	50	155	158	160	160	160	1/25	°/25	25 25	0 25	25	
3	100	150	155	160	160	160	12 25	7 25	0 25	0 25	0 25	
4	500	135	145	155	160	160	20 25	15	7 25	0 25	0 25	
(参考例1)	300	140	150	160	160	160	20/25	10/25	0 25	25	0 25	

実施例5~8

使用する気体の種類を表3に示すようにした以外 は実施例1と同様にして光磁気記録媒体を作製した。 これら記録媒体につき実施例2と同様の方法で キユーリー温度を測定しクロスハツチテストを行 なった。

その結果を表3に示す。

(発明の効果)

以上説明した様に本発明によれば簡便且つ低コ ストで基体の水分、ガス分等を除去でき高性能な 機能性素子を得ることができる。

4. 図面の簡単な説明

第1図は本発明の基体の脱気処理を行なう装置の 概略図、

第2図はインライン式光記録媒体の製造装置の概 略図、

第3図は実施例1及び参考例1の基体の処理時間 及びキューリー温度の関係を示すグラフである。

10

- 1…前処理装置
- 2… 基体 3… ファン
- 4…ガス導入バルブ
- 5…ガス排出バルブ
- 6…基体支持台
- 7…ゲートバルブ
- 21…投入炉
- 22…下地保護層成膜炉

-359-

23…記録曆成膜炉 24…上地保護曆成膜炉

25 …排出炉

出願人 キャノン株式会社 代理人 丸 島 傷 一 西 山 恵 三

11

