Linguagens Formais e Autômatos

▼ CONJUNTO

• É uma coleção de elementos, em que não são consideradas ocorrências múltiplas dos mesmos nem há relação de ordem entre eles.

• Exemplo:

- A inclusão do elemento no conjunto {♣, ♦, ♥, ♠} resulta no próprio conjunto {♣, ♦, ♥, ♠}, pois o mesmo já faz parte do conjunto.
- O conjunto {♠,♠,♥,♠} é igual ao conjunto {♠,♠,♠,♥}, uma vez que não existe relação de ordem entre os elementos que os compõem.

▼ SÍMBOLO

- Corresponde a uma representação gráfica única e indivisível, pode incluir qualquer combinação de caracteres.
 - Exemplos: "a", "abc", "♠", "1", etc.
- Símbolos podem ser agrupados na forma de um conjunto, caso em que o mesmo recebe o nome de alfabeto.
- Conjuntos, por outro lado, podem ser formados por elementos de outra natureza, e não apenas por símbolos.
 - Conjuntos formado por cadeias (sequências finitas de símbolos).
 - Conjunto cujos elementos também são conjuntos.

▼ ENUMERAÇÃO

- Alguns conjuntos podem ser especificados através da simples enumeração de todos os seus elementos, denotados entre chaves e separados por vírgulas.
- Exemplo:
 - O conjunto {a,b,c,d,e,f} é formado pelas seis primeiras letras do alfabeto romano.
 - O conjunto {01, 231, 33, 21323} contém os elementos 01,231,33 e 21323.

▼ NOMES

• Conjuntos podem ser referenciados através de nomes.

• Exemplo:

$$X = \{0, 1, 2, 3\}, Y = \{a, b, c, d, e, f\}.$$

▼ NÚMERO DE ELEMENTOS

- O número de elementos contido em um conjunto A é denotado por |A|.
- Exemplo:

$$\circ X = \{0, 1, 2, 3\} \rightarrow |X| = 4.$$

▼ PERTENCIMENTO

- Utiliza-se os símbolos \in e \in .
- Exemplo:

$$X = \{0, 1, 2, 3\} \rightarrow 0 \subseteq X, 5 \subseteq X.$$

▼ CONJUNTO FINITOS E INFINITOS

- Conjunto finitos: pode ser denotado enumerando-se todos os elementos que o compõe.
- Conjunto infinitos: podem ser denotados através da especificação de regras ou propriedades que devem ser satisfeitas por todos os seus elementos.
 - Exemplo: $P = \{x | x \text{ \'e um n\'umero primo}\}.$

▼ CONJUNTO VAZIO

- O conjunto não contém nenhum elemento.
- Por definição, | ∅□ |= 0.∅

▼ SUBCONJUNTO

- A ⊆ B → A contido em B → somente se todos os elementos de A forem também elementos de B
 - A é um subconjunto de B
 - B contém A
- Os conjuntos ∅ □e A são, por definição, subconjuntos de qualquer conjunto A
- Exemplo:

$$\circ \ A = \{b, c, d\}, B = \{a, b, c, d, e\} \ e \ C = \{e, a, d, b, c\} \ \rightarrow A \subseteq B \ e \ B \subseteq C$$

▼ UNIÃO, INTERSECÇÃO E CONJUNTOS DISJUNTOS

- $A \cup B = \{x \mid x \in A \text{ ou } x \in B\} \dots \cup 0, n \text{ Ai} = A0 \cup A1 \cup A2 \cup \dots \cup An$
- $A \cap B = \{x \mid x \in A \text{ e } x \in B\}... \cap 0, n \text{ Ai} = A0 \cap A1 \cap A2 \cap ... \cap An$
- Dois conjuntos são ditos disjuntos se $A \cap B = \emptyset$

▼ DIFERENÇA

• $A - B = \{ x \mid x \in A \in X \mid B \} \rightarrow \text{todos os elementos de } A \text{ que não pertencem a } B$

▼ COMPLEMENTAÇÃO

A contemplação de A em relação a B → (B-A) → elementos de B que não estão em A

▼ PRODUTO CARTESIANO

- É o conjunto formado por todos os pares ordenados (a, b) em que a é um elemento de A, e b é um elemento de B.
- $A \times B = \{ (a, b) | a \subseteq A \in b \subseteq B \}.$

▼ ALFABETOS, PALAVRAS, LINGUAGENS E GRAMÁTICAS

- ▼ Símbolo e Caractere
 - São entidades abstratas básicas, não definidas formalmente
 - Exemplo: letras e dígitos

▼ Alfabeto

- Conjunto finito de símbolos
- Exemplo:

•
$$\sum 1 = \{ a, b, c \}$$

$$\circ$$
 $\Sigma 2 = \{ 0, 1, 2, ..., 9 \}$

$$\circ \quad \Sigma 3 = \{ \}$$

- Conjunto de símbolos, uma sequência finita de símbolos justapostas
- Exemplo:

$$\circ \Sigma 1 = \{ a, b, c \}$$

$$\circ \Sigma 2 = \{0, 1, 2, ..., 9\}$$

$$\circ \quad \Sigma 3 = \{ \}$$

▼ Palavra/ Cadeia de Caracteres → w

- a, abc, são palavras sobre {a,b,c}
- Palavra vazia: sem símbolos → é uma palavra sobre qualquer alfabeto

▼ Comprimento de uma palavra

- número de símbolos que compõem uma palavra → | w |
- Exemplo:
 - | abcb | = 4
 - 0 = |03 | •

▼ Prefixo

- Qualquer sequencia inicial de símbolos de uma palavra
- Exemplo: $\{abcb\} \rightarrow \mathcal{E}$, a, ab, abc, abcd

▼ Sufixo

- Qualquer sequencia final de símbolos de uma palavra
- Exemplo: $\{abcb\} \rightarrow \mathcal{E}$, b, cb, bcb, abcb

▼ Subpalavra

- Qualquer sequencia (seja no início, meio ou fim) dentro de uma palavra
- Exemplo: prefixo e sufixos são subpalavras

▼ Conjunto de palavras

- Conjunto de palavras sobre ∑
 - ∘ Σ^* → conjunto que inclui a palavra vazia (ε 1)1
 - \circ Σ^+ \to conjunto que não inclui a palavra vazia

▼ Linguagem Formal

- Conjunto de palavras sobre um alfabeto
- Exemplo: ling. Formal sobre $\Sigma = \{ a, b \}$
 - o Conjunto vazio → { }
 - ∘ Conjunto formado pela palavra vazia \rightarrow { ε }
 - Conjunto dos palíndromos

▼ Concatenação

- Sempre feita duas a duas, colocando uma palavra justaposta a outra (une duas palavras)
- Exemplo: para $v = ab e w = cd \rightarrow vw = abcd$
- Propriedades:
 - Associativa: v(wt) = (vw)t
 - Elemento neutro : $\mathbb{I} \mathcal{E} \mathbf{w} = \mathbf{w} = \mathbf{w} \mathbb{I} \mathcal{E}$

▼ Concatenação Sucessiva

- Concatenação sucessiva de uma palavra com ela mesma
- indefinida para £^0

▼ Gramática

- Conjunto finito de regras para uma Linguagem Formal, quando aplicada sucessivas vezes, geram palavras
- è um formalismo Axiomático de geração
- Linguagem Gerada
 - $\circ \quad G = (V,T,P,S)$
 - \circ linguagem gerada por $G \to L(G)$ ou Gera(G)
 - o todas as palavras de símbolos terminais deriváveis, a partir de S
 - L(G) = { w ∈ T* | S → + w } → A linguagem gerada pela gramática G é o conjunto de todas as palavras formadas por símbolos terminais que podem ser derivadas a partir da variável inicial S
 - ∨ → Conjunto finito de símbolos, variáveis ou não terminais (sempre letras maiúsculas)
 - o $T \rightarrow Conjunto finito de símbolos, terminais(sempre letras minúsculas), disjunto de <math>V$
 - P \rightarrow Conjunto finito de pares ($\alpha \mathbb{I}, \beta$)
 - Regra de produção
 - α é palavra de (V 🛮 T)+
 - β é palavra de (V □ T)*

- ∘ S → elemento de V, variável inicial
- Notação de $(\alpha \square, \beta)$

$$\circ \alpha \rightarrow \beta$$

$$\circ \alpha \rightarrow \beta 1, \alpha \rightarrow \beta 2, ..., \alpha \rightarrow \beta n$$

$$\circ \alpha \rightarrow \beta 1 |\beta 2|...|\beta n$$

- Derivação α → β
 - Processo de aplicar as regras de produções sucessivas que permitem gerar as palavras da linguagem
 - o è denotada por → e é definida indutivamente
 - Inicia-se sempre em S
 - o notações para →
 - →*: fecho transitivo e reflexivo da relação, zero ou mais passos de derivação sucessivas
 - → + : fecho transitivo da relação, um ou mais passos de derivação sucessivas
 - → i : exatos i passo de derivação sucessivas, i é um número natural
- Exemplo: números naturais

$$\circ$$
 G = (V, T, P, S)

$$\circ$$
 V = { S, D }

$$\circ$$
 T = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 }

$$S \rightarrow D$$
, \rightarrow Regra 1

$$S \rightarrow DS$$
, $\rightarrow Regra 2$

$$D \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$$
 $\rightarrow Regra 3$

- Derivação para o número 243
 - S → Regra 2
 - DS → Regra 3
 - 2S → Regra 2
 - 2DS → Regra 3

- 24S → Regra 1
- 243 → Regra 2

$$\circ$$
 S \rightarrow DS \rightarrow 2S \rightarrow 2DS \rightarrow 24S \rightarrow 24D \rightarrow 243

- Equivalência de Gramáticas
 - G1 e G2 são equivalente se e somente se GERA(G1) = GERA(G2) →
 Conjunto de palavras aceitas devem ser iguais
- Exemplo:
- { ww | w é uma palavra de {a,b}* } → como a regra de produção é ww isso significa que a primeira parte tem que ser igual a segunda para ser uma palavra
- Isto é: abab, abbabb, aaaaaa, baba.

$$\circ$$
 G = (V, T, P, S) = ({S, X, Y, A, B, F}, {a, b}, P, S)

$$\circ P = \{ S \rightarrow XY,$$

$$X \rightarrow XaA \mid XbB \mid F$$

$$Aa \rightarrow aA, Ab \rightarrow bA,$$

$$AY \rightarrow Ya, Ba \rightarrow aB,$$

$$Bb \rightarrow bB, BY \rightarrow Yb,$$

Fa
$$\rightarrow$$
 aF, Fb \rightarrow bF,

$$FY \rightarrow \mathbb{I}E$$
 }

• Como formar a palavra "baba"