Continuous Assessment-II

Dissertation submitted in fulfilment of the requirements for the Degree of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING - DATA SCIENCE WITH MACHINE LEARNING

By

NAKKA AMARNATH

Registration No: 12301412

Section: K23UP

Roll No: 60

School of Computer Science and Engineering

Lovely Professional University Phagwara, Punjab (India) October 2025

1. Introduction

CSE Solutions, a mid-sized enterprise, requires a network infrastructure for its 5-floor office building. This report details the network design, addressing the need for efficient communication and scalability. The design incorporates a mix of star and bus topologies, a VLSM-based IP addressing scheme, and dynamic routing to ensure seamless inter-floor connectivity.

2. Topology Selection

The network design employs a hybrid topology:

- Floors 1-3: Star topology. Each floor has a dedicated switch, and all computers on that floor connect to that switch. This provides high performance and fault tolerance.
- **Floors 4-5:** Bus topology. The switches on these floors are connected in a bus configuration.

3. IP Addressing Scheme and Subnet Allocation

The network uses public IP addresses. VLSM is used for efficient address allocation.

- Floors 1-3: Class B addressing (172.16.0.0/16)
- Floors 4-5: Class A addressing (10.0.0.0/8)

Subnet Allocation Table

Floor	Subnet Address	Subnet Mask	IP Address Range	Broadcast Address	Server(s)
Floor 1	172.16.0.0 /28	255.255.255.240	172.16.0.1 - 172.16.0.14	172.16.0.15	НТТР
Floor	172.16.0.16	255.255.255.240	172.16.0.17	172.16.0.31	DNS

2	/28		- 172.16.0.30		
Floor 3	172.16.0.32 /28	255.255.255.240	172.16.0.33 - 172.16.0.46	172.16.0.47	FTP
Floor 4	10.0.0.0 /28	255.255.255.240	10.0.0.1 - 10.0.0.14	10.0.0.15	None
Floor 5	10.0.0.16 /28	255.255.255.240	10.0.0.17 - 10.0.0.30	10.0.0.31	DHCP, Email

4.Router Interface IP Addresses and Subnet Masks

Router	Interface To	IP Address	Subnet Mask
Router 1	Floor 1	172.16.0.1/17	255.255.128.0
Router 1	Router 2	192.168.1.1/30	255.255.255.252
Router 2	Floor 2	172.16.128.1/23	255.255.254.0
Router 2	Router 1	192.168.1.2/30	255.255.255.252
Router 2	Router 3	192.168.1.5/30	255.255.255.252
Router 3	Floor 3	172.16.130.1/17	255.255.128.0
Router 3	Router 2	192.168.1.6/30	255.255.255.252
Router 3	Router 4	192.168.1.9/30	255.255.255.252
Router 4	Floor 4	10.0.0.1/26	255.255.255.192
Router 4	Router 3	192.168.1.10/30	255.255.252

Router 4	Router 5	192.168.1.13/30	255.255.255.252
Router 5	Floor 5	10.0.0.65/23	255.255.254.0
Router 5	Router 4	192.168.1.14/30	255.255.255.252

4. Routing Strategy

Dynamic routing using RIP is implemented to facilitate communication between floors. Routers are configured as follows:

- Routers: 5 routers are used.
 - Router 1: Connects to the switch on Floor 1.
 - Router 2: Connects to the switch on Floor 2.
 - Router 3: Connects to the switch on Floor 3.
 - Router 4: Connects to the switch on Floors 4 and 5.
 - Router 5: Connects to Router 1, 2, 3, and 4.
- Inter-Floor Connectivity: Routers 1, 2, 3, and 4 connect to Router 5 in a star topology.

5. Innovations and Scalability

- Hybrid Topology Optimization: The combination of star and bus topologies optimizes both performance and cost. The star topology on Floors 1-3 provides high performance and fault tolerance for critical services. The bus topology on Floors 4-5 provides a cost-effective solution.
- VLSM for Efficient Addressing: VLSM ensures efficient use of the IP address space by allocating the minimum number of addresses required per floor.
- **Dynamic Routing:** RIP automates route propagation and adaptation to network changes, simplifying management and improving resilience.
- **Scalability:** The design can be scaled by adding more switches and routers as the company grows. The VLSM scheme allows

for easy expansion of the IP address allocation.

6. Deployment & Monitoring

Total Number of Networks:

- LAN Networks (One per floor): 5
- Point-to-Point Networks (Between routers): 4 (Router 1 to Router 5, Router 2 to Router 5, Router 3 to Router 5, Router 4 to Router 5)
- Total Networks: 9

Total Number of LANs:

- Each floor has 1 LAN.
- There are 5 floors.
- Total LANs: 5

Total Number of Default Gateways:

Each LAN has a unique default gateway (router interface IP) to handle outbound traffic.

•

1 per floor = 5 default gateways

Routing tables

Router 1:

Router 2:

Router 3:

Router 4:

Router 5:

Ping and TraceRT

Ping and tracert from floor 1 to floor 2

```
PC4
   Physical Config Desktop Programming Attributes
                                                                                                                                                                                  Χ
   Command Prompt
   Cisco Packet Tracer PC Command Line 1.0 C:\>ping 172.16.128.9
    Pinging 172.16.128.9 with 32 bytes of data:
   Reply from 172.16.128.9: bytes=32 time<1ms TTL=126 Reply from 172.16.128.9: bytes=32 time<1ms TTL=126 Reply from 172.16.128.9: bytes=32 time<1ms TTL=126 Reply from 172.16.128.9: bytes=32 time<1ms TTL=126
   Ping statistics for 172.16.128.9:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
    C:\>tracert 172.16.128.9
    Tracing route to 172.16.128.9 over a maximum of 30 hops:
                             0 ms 0 ms 172.16.0.1
0 ms 0 ms 20.0.0.2
0 ms 13 ms 172.16.128.9
             0 ms
    Trace complete.
    C:\>
□ Тор
```

Ping and tracert from floor 2 to floor 3

```
PC1(2)
  Physical Config Desktop Programming Attributes
  Command Prompt
                                                                                                                                                                                X
   Cisco Packet Tracer PC Command Line 1.0 C:\>ping 172.16.130.8
   Pinging 172.16.130.8 with 32 bytes of data:
  Reply from 172.16.130.8: bytes=32 time<1ms TTL=126 Reply from 172.16.130.8: bytes=32 time<1ms TTL=126 Reply from 172.16.130.8: bytes=32 time<1ms TTL=126 Reply from 172.16.130.8: bytes=32 time<1ms TTL=126
   Ping statistics for 172.16.130.8:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
   C:\>tracert 172.16.130.8
   Tracing route to 172.16.130.8 over a maximum of 30 hops:
                           0 ms 0 ms 172.16.128.1
12 ms 0 ms 30.0.0.2
0 ms 0 ms 172.16.130.8
           0 ms
   Trace complete.
   C:\>
Тор
```

Ping and tracert from floor 3 to floor 4

```
PC5(1)
 Physical Config Desktop Programming Attributes
  Command Prompt
                                                                                                                                                                                Х
  Cisco Packet Tracer PC Command Line 1.0 C:\>ping 10.0.0.2
  Pinging 10.0.0.2 with 32 bytes of data:
  Request timed out.
Reply from 10.0.0.2: bytes=32 time<1ms TTL=126
Reply from 10.0.0.2: bytes=32 time<1ms TTL=126
Reply from 10.0.0.2: bytes=32 time<1ms TTL=126
  Ping statistics for 10.0.0.2:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
  C:\>ping 10.0.0.2
   Pinging 10.0.0.2 with 32 bytes of data:
  Reply from 10.0.0.2: bytes=32 time<1ms TTL=126 Reply from 10.0.0.2: bytes=32 time<1ms TTL=126 Reply from 10.0.0.2: bytes=32 time=1ms TTL=126 Reply from 10.0.0.2: bytes=32 time<1ms TTL=126
  Ping statistics for 10.0.0.2:
  Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 1ms, Average = 0ms
  C:\>tracert 10.0.0.2
  Tracing route to 10.0.0.2 over a maximum of 30 hops:
                                                           172.16.130.1
40.0.0.2
                                          0 ms
0 ms
0 ms
                              0 ms
             0 ms
                                                                  40.0.0.2
                              0 ms
             0 ms
   Trace complete.
  C:\>
Top
```

Ping and tracert from floor 4 to floor 5

```
PC2(3)(3)
 Physical Config Desktop Programming Attributes
 Command Prompt
                                                                                                                                                                               Х
 Cisco Packet Tracer PC Command Line 1.0
C:\>ping 10.0.0.68
 Pinging 10.0.0.68 with 32 bytes of data:
 Request timed out.
Reply from 10.0.0.68: bytes=32 time<1ms TTL=126
Reply from 10.0.0.68: bytes=32 time<1ms TTL=126
Reply from 10.0.0.68: bytes=32 time<1ms TTL=126
 Ping statistics for 10.0.0.68:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
  C:\>ping 10.0.0.68
  Pinging 10.0.0.68 with 32 bytes of data:
 Reply from 10.0.0.68: bytes=32 time<1ms TTL=126
  Ping statistics for 10.0.0.68:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
  C:\>tracert 10.0.0.68
  Tracing route to 10.0.0.68 over a maximum of 30 hops:
             20 ms
                              0 ms
                                           0 ms
                                                                  10.0.0.1
                             0 ms
                                                                  50.0.0.2
                                             0 ms
            0 ms
  Trace complete.
  C:\>
```

Servers:

DHCP

DNS

7. GitHub Repository:

The full project (including configs, diagrams, and documentation) is uploaded to GitHub for tracking and collaboration. https://github.com/Aare007/CSE-307_CA_2.git

8. Conclusion:

This structured network design ensures efficient, scalable, and faulttolerant communication within Media Network Solutions. The mix of topologies, optimized IP addressing, and static routing provides a costeffective yet reliable solution for the enterprise.