Prova 2

- 1. Uma partícula de massa m > 0 movimenta-se sob a ação de uma força F(x) = -kx, onde k < 0. Com relação à função x = x(t) pode ser afirmado que:
 - (a) Trata-se de uma função constante.
 - (b) Trata-se de uma função oscilatória.
 - (c) v(t) = x'(t) > 0 para todo $t \in \mathbb{R}$, portanto x é uma função crescente.
 - (d) v(t) = x'(t) < 0 para todo $t \in \mathbb{R}$, portanto x é uma função decrescente.
 - (e) Nenhuma das afirmações anteriores é correta.
- **2.** Define-se o trabalho W como:

$$W = \int F(x) dx = \int F(x(t)) x'(t) dt.$$

Considere válida a relação F = (m v)'. Supondo que $m = m_0 \gamma^{-1/2}$, onde $\gamma(v) = (1 - v^2/c^2)$, na aula foi demonstrado que $W = m c^2$. Supondo agora que $W = mc^2$, se m for apenas uma função de v, pode ser afirmado que:

- (a) $m = A \gamma^{1/2}$, onde A é uma constante.
- (b) $m = \gamma^{1/2} + A$, onde A é uma constante.
- (c) $m = A \gamma^{-1/2}$, onde A é uma constante.
- (d) $m = \gamma^{-1/2} + A$, onde A é uma constante.
- (e) Nenhuma das afirmações anteriores é correta.
- **3.** Considere válida a relação F = (m v)', onde $m = m_0 \gamma^{-1/2}$, com $\gamma(v) = (1 v^2/c^2)$. Suponha que F = mg, com g constante. Em tal caso, se a velocidade inicial for nula, ou seja, se v(0) = 0, pode ser afirmado que:
 - (a) v é estritamente crescente e $\lim_{t\to\infty} v(t) = +\infty$.
 - (b) v é uma função oscilatória, mas $\lim_{t\to\infty}v(t)$ não existe.
 - (c) v é estritamente decrescente e $\lim_{t\to\infty} v(t) = -\infty$.
 - (d) v é uma função oscilatória e $\lim_{t\to\infty}v(t)$ existe.
 - (e) Nenhuma das afirmações anteriores é correta.

- 4. Com relação à função $f(x) = \Gamma(x) \Gamma(1-x) \sin \pi x$ pode ser afirmado que:
 - (a) $\lim_{x\to 0} f(x)$ não existe.
 - (b) $\lim_{x\to 0} f(x)$ existe e seu valor é racional.
 - (c) f(x) = f(x+k), para algum k inteiro.
 - (d) Trata-se de uma função constante.
 - (e) Nenhuma das afirmações anteriores é correta.
- 5. Definindo, para cada $n \in \mathbb{N}$, a integral imprópria $f(n) = \int_0^\infty \frac{t^{n-1}}{e^t 1} dt$, com relação a f(2k+1) pode ser afirmado que:
 - (a) Se a integral converge, então o quadrado de f(2k+1) é racional.
 - (b) Diverge para todo $k \in \mathbb{N}$.
 - (c) Se a integral converge, então f(2k+1) é limitado com relação a k.
 - (d) Se a integral converge, então f(2k+1) é racional.
 - (e) Nenhuma das afirmações anteriores é correta.
- **6.** Seja $f: \mathbb{R}^2 \to \mathbb{R}$ a função definida como:

$$f(x,y) = \frac{x^2y}{x^4 + y^2}$$
, se $(x,y) \neq (0,0)$

- e f(x,y) = 0, no caso (x,y) = (0,0). Com relação a tal função f pode ser afirmado que:
- (a) $\lim_{(x,y)\to(0,0)} f(x,y)$ existe e vale 1/2.
- (b) $\lim_{(x,y)\to(0,0)} f(x,y)$ existe e vale 0.
- (c) $\lim_{x\to 0} f(x,x) = 1/2$.
- (d) $\lim_{x\to 0} f(x,x) = 2.$
- (e) Nenhuma das afirmações anteriores é correta.
- 7. Com relação à função $f:\mathbb{R}^2 \to \mathbb{R}$ definida como:

$$f(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt.$$

pode ser afirmado que:

- (a) $f(\frac{1}{2}, \frac{1}{2})$ é racional mas não inteiro.
- (b) f(1,0) é racional.
- (c) f(1,1) é irracional.
- (d) $f(1, \frac{1}{2}) = f(\frac{1}{2}, 1)$.
- (e) Nenhuma das afirmações anteriores é correta.

8. Dados n números $x_1, x_2, \ldots, x_n \in \mathbb{R}$, sejam a, b definidos como:

$$a = \sum_{i=1}^{n} x_i^2,$$

$$b = \sum_{i=1}^{n} x_i.$$

Com relação à matriz A definida como:

$$A = \left(\begin{array}{cc} a & b \\ b & n \end{array}\right)$$

pode ser afirmado que:

- (a) A não é uma matriz definida positiva.
- (b) A é uma matriz definida negativa.
- (c) A não é uma matriz definida negativa.
- (d) A é uma matriz definida positiva.
- (e) Nenhuma das afirmações anteriores é correta.

9. Considere a curva no plano determinada pela função $f: \mathbb{R} \to \mathbb{R}^2$ definida como:

$$f(t) = (e^t \cos t, e^t \sin t).$$

Observe que quando t toma valores de $-\infty$ até 0, tal curva descreve uma espiral a partir da origem de coordenadas até atingir o ponto $(1,0) \in \mathbb{R}^2$. Com relação ao comprimento de arco desta curva para $-\infty < t < 0$ pode ser afirmado que:

- (a) Tal comprimento de arco é infinito.
- (b) Tal comprimento de arco é finito e seu valor é racional.
- (c) Tal comprimento de arco é finito e seu valor é irracional.
- (d) Tal comprimento de arco é finito e seu valor pertence ao conjunto $\{0, 1/2, 1, 2\sqrt{\pi}\}$.
- (e) Nenhuma das afirmações anteriores é correta.

10. Seja $A \in M_n(\mathbb{R})$ matriz $n \times n$ simétrica, ou seja, $A_{ij} = A_{ji}$ para todo $i, j = 1, \ldots, n$. Considere $f : \mathbb{R}^n \to \mathbb{R}$ definida como:

$$f(x) = \langle x, Ax \rangle.$$

Com relação aos pontos extremos de f na bola unitária, ou seja, ||x|| = 1, pode ser afirmado que:

- (a) Os pontos críticos de f não podem ser pontos de máximo.
- (b) Os pontos críticos de f não podem ser pontos de mínimo.
- (c) Os pontos críticos de f são autovetores da matriz A.
- (d) Os pontos críticos de f são todos pontos de sela.
- (e) Nenhuma das afirmações anteriores é correta.