Trabajo Académico final

Roberto Alvarado May 28, 2025

UTPL

Dataset y presentación de datos

Creación de base de datos

SQLITE, es una herramienta de manejo de bases de datos sql

```
sqlite3 cancer.db
sqlite3> .mode csv
sqlite3> .import global.csv
sqlite3> .exit
```

Limpieza de datos

```
//Eliminar columnas que no sirven
database_csv.loc[:,database_csv.columns != "Patient_ID"]
database_clean.loc[:,database_clean.columns != "Country_Region"]

//Conseguir el atributo objectivo
database_clean.loc[:,database_clean.columns == "Target_Severity_Score"]
```

Analizar data

• Explorar data

https://github.com/Kanaries/pygwalker

- · Hacerse preguntas
- · Hacer diagramas para responder estas preguntas con diagramas

Global Cancer dataset 2019-2025

Attributes ['Patient_ID','Age', 'Gender', 'Year', 'Genetic_Risk', 'Air_Pollution', 'Alcohol_Use', 'Smoking', 'Obesity_Level', 'Cancer_Type', 'Cancer_Stage', 'Treatment_Cost_USD', 'Survival_Years','Target_Severity_Rate']

¿Comó es la distribución de genéros de esta base datos?

¿Comó es la distribución de los tipos de cancer de esta base datos?

¿Comó es la distribución de los resultados?

¿Existen tipos de cancer en general más severo el uno de otro?

¿Existen tipos de cancer en general más severo el uno de otro?

La severidad según la edad como se presenta

```
cols = 4
rows = 2 fig, axes = plt.subplots(rows, cols, figsize=(16, 4 * rows))
fig.suptitle("Costos_usegún_utipo_ude_cancer_")
for i, cancer in enumerate(cancer_types):
    ax = axes[i // cols, i % cols]
    subset = database_clean[database_clean['Cancer_Type'] == cancer]
    ax.hist(subset['Treatment_Cost_USD'], bins=10, color='steelblue', edgecolor='black')
    ax.set_title(f"{cancer}_u-uTreatment_Cost")
    ax.set_xlabel('USD')
    ax.set_ylabel('Count')

plt.tight_layout()
plt.savefig("./figures/img6.png")
plt.show()
```

La severidad según la edad como se presenta

¿Cuál es la relación entre obesidad y la severidad?

¿Cuál es la relación entre el alcoholismo y la severidad?

```
import matplotlib.pyplot as plt
import numpy as np
x = database clean['Smoking']
y = database clean['Target Severity Score']
m, y i = np.polyfit(x, y, 1)
v pred = m * x + v i
plt.figure(figsize=(8, 5))
plt.scatter(x, y, alpha=0.3, label='Data')
plt.plot(x, y pred, color='red', label=f'y = {slope:.2f}x + {intercept:.2f}')
                        Linear Regression: Smoking vs Severity
            Data
            v = 0.21x + 3.90
                                                                                10
                                         Smoking
```