

# GTU COMPUTER ENGINEERING AGE PREDICTION FROM FACE USING DEEP LEARNING MODEL

CSE 495
PRELIMINARY PRESENTATION

Süleyman Gölbol

Project Supervisor: Dr. Burcu YILMAZ





### Contents



- **Project Schema and Description**
- Project Design Plan
- **Project Requirements**
- Success Criteria
- References



# Project Schema and Description





- Predicting age from face by taking a photograph of the person.
  - Detecting the face
  - Labelling the Person Using a Deep Learning Model
- Taking a picture of the person will be used to prevent selling tobacco products / alcohol to underaged people in marketplaces and other stores.



# Project Design Plan







### Project Requirements - 1



- Gathering different datasets.
- Cleansing datasets if it contains unnecessary data.
- Splitting datasets into training and test data.
- Finding suitable algorithms that detects the face features.
- Creating/updating model using different layers and activation functions.
- Training the faces with multiage pictures of people.
- Sending model over the internet to camera device for prediction.
- Detecting face and using photo as input in the model.
- Detecting the age of person using a mobile application for testing.



### Project Requirements - 2



- Programming Languages: Python, Java
- Libraries: Pandas / OpenCV/ Pytorch / Tensorflow / Keras
- Computer with a good GPU for faster training.
- Database access
- Phone/Camera for detection
- Different facial image datasets on internet.
- Different face photos of people for validation data by mutual consent.



### Success Criteria



- 1. Accuracy value over 85% using model for a dataset over 15000 values.
- 2. Detection should be made at most 5 seconds.
- 3. Accuracy value over 75% using different model using transfer learning and different color channels.



### Timeline



1<sup>st</sup> Meeting (Preliminary **Presentation**)

October 26, 2022, Wednesday

Gathering datasets, creating model.

2<sup>nd</sup> Meeting

December 07, 2022,

Training, model fixes on project.

Wednesday

Creating application for testing.

**Report Submission** 

January 15, 2023, Sunday

**Trailer Submission** 

January 15, 2023, Sunday

3<sup>rd</sup> Meeting (Final Presentation)

January 18, 2023, Wednesday

January 19, 2023, Thursday



#### References



- Yonghao He, Dezhong Xu, Lifang Wu, Meng Jian, Shiming Xiang, Chunhong Pan, "LFFD: A Light and Fast Face Detector for Edge Devices", April 2019
- 2. Jeff Heaton, "Applications of Deep Neural Networks with Keras", September 2020

