Spieltheorie

Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory

Outline

- Spieltheorie Einführung
- Evolutionary Game Theory
- Spieltheorie in Netzwerken

- •Erstens
- •Zweitens
- Drittens

Outline

- Spieltheorie Einführung
 - Das Spiel
 - Terminologien
 - Nash Gleichgewichte
 - Mixed Strategies
- Evolutionary Game Theory
 - Evolutionär Stabile Strategie (EES)
 - Abstrakte Spiele
 - EES vs. Nash Gleichgewicht
- Spieltheorie in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Spieltheorie Spiel

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - •EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Spieltheorie Das Gefangenen Dilemma

Video: http://www.youtube.com/watch?v=ED9gaAb2BEw

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - •EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Spieltheorie Das Gefangenen Dilemma

Alice

		schweigen	gestehen
Dilbert	schweigen	-1,-1	-10,0
Dilbert	gestehen	0,-10	-6,-6

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - •EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Spieltheorie Das Gefangenen Dilemma

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Spieltheorie Terminologie: Best Response

Ich schweige, denn wenn alle schweigen, ist das insgesammt gesehen am besten.

Dilbert schweigt, das beste was ich also tun kann ist gestehen.

Alice

Dilbert schweigen gestehen

	schweigen	gestehen
7	-1,-1	-10,0
7	0,-10	-6,-6

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Spieltheorie Terminologie: Dominante Strategie

Ich schweige, denn egal was Alice macht, schweigen ist die bessere Strategie.

Ich schweige

Alice

Dilbert schweigen gestehen 1,1 -5,0 gestehen 0,-5 -6,-6

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Spieltheorie Terminologie: Nash Gleichgewicht

Im Nash Gleichgewicht ist jede Strategie ein best response.

Schweige ich, so wird Alice gestehen. Also bleibt mir nur auch zu gestehen. Es war Alice!

Dilbert schweigen gestehen

 schweigen
 gestehen

 en
 -1,-1
 -19,0

 en
 0,-10
 -6,-6

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Spieltheorie Terminologie: Mixed Strategys

Schere Stein Papier Schere 0,0 0,1 1,0 Stein 1,0 0,0 0,1 Papier 0,1 1,0 0,0

Outline

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - •EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Dilbert

Spieltheorie Terminologie: Mixed Strategys

10% Stein, 40% Schere, 50% Papier

20% Papier, 40% Stein, 40% Schere

Alice

	Schere	Stein	Papier
Schere	0,0	0,1	1,0
Stein	1,0	0,0	0,1
Papier	0,1	1,0	0,0

Outline

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - •EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Dilbert

Spieltheorie Terminologie: Mixed Strategys

33% Stein, 33% Schere, 33% Papier 33% Papier, 33% Stein, 33% Schere

Nash Gleichgewicht in gemischter Strategie

Alice

	Schere	Stein	Papier
Schere	0,0	0,1	1,0
Stein	1,0	0,0	0,1
Papier	0,1	1,0	0,0

Outline

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - •EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Dilbert

Evolutionary Game Theory

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - •EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Evolutionary Game Theory Analogien

Evolutionary Game Theory Beispiel: Das Körpergrößenspiel

Population von Käfern

Fitness hängt hauptsächlich von Essen ab

Mutation: Große Käfer

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Evolutionary Game Theory Beispiel: Das Körpergrößenspiel

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - •EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Evolutionary Game Theory Beispiel: Das Körpergrößenspiel

1. Käfer

2. Käfer

	Kiein	groß
klein	5,5	1,8
groß	8,1	3,3

Idain

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - •EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Nash Gleichgewicht

Eine Wahl der Strategien, die beibehalten bleibt, sobald die Spieler diese einmal "erreicht" haben.

Analogon im evolutionären Setting

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Nash Gleichgewicht

Eine Wahl der Strategien, die beibehalten bleibt, sobald die Spieler diese einmal "erreicht" haben.

Evolutionär Stabile Strategien

Genetisch bedingte Strategie, die in einer Population bestehen bleibt, wenn sie einmal die "Vorherrschaft" errungen hat.

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Oder Anders:

"Benutzt" die gesamte Population eine bestimmte Strategie für die gilt: "Jede kleine Gruppe an Eindringlingen, die eine andere Strategie benutzt, stirbt mit der Zeit ab". Dann spricht man von einer Evolutionär stabilen Strategie (ESS)

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Formal:

- Die Fitness eines Organismus ist die erwartete Auszahlung bei einer Interaktion mit einem zufälligen Mitglied der Population.
- Invasion: Strategie T invadiert Strategie S auf Ebene x, für kleines x > 0, wenn ein x-tel der Population Strategie T benutzt und ein 1-x-tel der Population Strategie S.
- Eine Strategie S ist evolutionär stabil, falls für y > 0 (klein) mit x < y gilt: Für jede Strategie T, die S auf Ebene x (<y) invadiert gilt: Die Fitness aller S-Individuen ist größer oder gleich der Fitness der T-Individuen.

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

1-x "benutzen" Strategie Klein

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Fittnes eines kleinen Käfers

Wahrscheinlichkeit kleinen Käfer zu treffen

$$5(1-x) + 1x = 5 - 4x$$

	klein	groß
klein	5,5	1,8
groß	8,1	3,3

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Fitness eines großen Käfers

Wahrscheinlichkeit kleinen Käfer zu treffen

$$8(1-x) + 3x = 8 - 5x$$

	klein	groß
klein	5,5	1,8
groß	8,1	3,3

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

"klein" ist nicht evolutionär stabil, da für kleine x die Fitness von groß stets größer ist als die von klein

	klein	groß
klein	5,5	1,8
groß	8,1	3,3

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

x "benutzen" Strategie klein

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Fitness eines großen Käfers

Wahrscheinlichkeit großen Käfer zu treffen

$$3(1-x) + 8x = 3 + 5x$$

	klein	groß
klein	5,5	1,8
groß	8,1	3,3

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Fitness eines kleinen Käfers

Wahrscheinlichkeit großen Käfer zu treffen

$$(1-x) + 5x = 1 + 4x$$

	klein	groß
klein	5,5	1,8
groß	8,1	3,3

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

"groß" ist evolutionär stabil, da für kleine x die Fitness von "groß" stets größer ist als die von "klein"

	klein	groß
klein	5,5	1,8
groß	8,1	3,3

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Evolutionary Game Theory Empirisch nachgewiesen

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Evolutionary Game Theory Allgemeine Beschreibung

Strategien: S, T, (1-x) sind S-Organismen

Erwartete Auszahlung für **S**-Organismus

$$a(1-x)+bx$$

Erwartete Auszahlung für **T**-Organismus

$$c(1-x)+dx$$

S ist evolutionär stabil, falls

$$a(1-x)+bx > c(1-x)+dx$$
 S T

S a,a b,c

T c,b d,d

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Evolutionary Game Theory Allgemeine Beschreibung

S ist evolutionär stabil, falls

$$a(1-x)+bx > c(1-x)+dx$$

- 1. a > c
- 2. a = c und b > d

	5	<i>T</i>
S	a,a	b,c
7	c,b	d,d

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - •EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Evolutionary Game Theory ESS vs. Nash

S,S ist Nash Gleichgewicht für a größer gleich c

S,S ist ESS für

1.
$$a > c$$

2.
$$a = c \text{ und } b > d$$

Ist S evolutionär stabil, dann ist (S,S) ein Nash Gleichgewicht

	S	T
S	a,a	b,c
7	c,b	d,d

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Evolutionary Game Theory ESS und mixed Strategies

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - •EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

4000 Autos wollen von A nach B

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - •EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

4000 Autos wollen von A nach B

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - •EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

4000 Autos wollen von A nach B

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - •EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

4000 Autos wollen von A nach B

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - •EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Statt 2 Spielern 4000

Nash
Equilibrium ist
immer noch
Menge an Best
Response
Strategien

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - •EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - •EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Game Theorie and Networks Braess's Paradox

4000 Autos wollen von A nach B

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - •EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Game Theorie and Networks Braess's Paradox

4000 Autos wollen von A nach B

Einziges Nash Gleichgewicht: 4000/100*2 = 80

- GT Einführung
 - Das Spiel
 - Terminologien
 - Nash
 - Mixed Strategies
- Evolutionary GT
 - •EES
 - Abstrakte Spiele
 - EES vs. Nash
- GT in Netzwerken
 - Einführung
 - Gleichgewichte
 - Braess Paradox

Vielen Dank

Quellen

Inhalt

Davide Easley, Jon Kleinberg, Networks Crowds and Markets, Cambridge University Press, 2010, Kapitel 6,7 und 8

Video

http://wn.com/prisoner's_dilemma, accessed November 29, 2010

Bilder

Käfer

Myers, P., R. Espinosa, C. S. Parr, T. Jones, G. S. Hammond, and T. A. Dewey. 2006. The Animal Diversity Web (online). Accessed November 26, 2010 at http://animaldiversity.org.

Baum

Christmas Tree by Phillip J Rhoades, http://www.ungab.com/coloring