Linear Algebra

Instructor: Jing YAO

课件中的部分素材与图片来自网络,仅用于本课程教学,侵删

1

Matrices and Gaussian Elimination

1.1

GAUSSIAN ELIMINATION OF

EQUATIONS

-INTRODUCTION

(方程组的 高斯消元法)

• A linear equation in the variables $x_1, ..., x_n$ is an equation that can be written in the form

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = b$$

where *b* and the coefficients $a_1, ..., a_n$ are real or complex numbers, usually known in advance.

n: any positive integer

• A system of linear equations (or a linear system) is a collection of one or more linear equations involving the same variables — say, x_1, \ldots, x_n .

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Such systems often appear in science and engineering problems:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

n 个未知量(unknowns, variables), m 个方程(equations).

应用: 营养医学

全国18岁及以上成人超重率为30.1%,肥胖率为11.9%;

6-17岁儿童青少年超重率为9.6%,肥胖率为6.4%。

【国家卫生计生委在线发布(2015年7月3日)

http://www.nhfpc.gov.cn/]

应用: 营养医学 每100g食物营养成分表(数据来源:人民网)

	大米	面粉	萝卜	白菜	丝瓜	猪肉	鸭蛋	鲫鱼	需求
蛋白质(g)	7.5	12	2.0	1.1	1.5	17	13	13	b_1
脂肪(g)	0.5	0.8	0.4	0.1	0.1	29	15	1.1	b_2
碳水化合物(g)	79	70	5	2	5	1.1	0.5	0.1	b_3
无机盐类(g)	0.4	1.5	系数矩	i阵 ₀ coef	ficient	matrix	1.8	0.8	b_4
钙(mg)	10	22	19	86	28	11	71	54	$b_{\overline{5}}$
磷(mg)	100	180	23	27	45	i阵 au	igment 210	ted ma	b_6
铁(mg)	1.0	7.6	1.9	1.2	0.8	0.4	3.2	2.5	b_7

向量 vectors α_1 α_2

• • •

 $oldsymbol{lpha}_k$

未知量 unknowns X_1 X_2

• • •

 x_k

线性方程组 system of linear equations

$$x_1\boldsymbol{\alpha}_1 + x_2\boldsymbol{\alpha}_2 + \dots + x_k\boldsymbol{\alpha}_k = \boldsymbol{\beta}$$

Matrix Notation

n 个未知量m个方程的 线性方程组

The essential information of a linear system can be recorded compactly in a rectangular array called a matrix.

方程组的系数(及常数 项)排成的数表(即矩 阵, matrix)

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \end{cases}$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

$$[\mathbf{A}, \mathbf{b}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

A 称为方程组的系数矩阵, [A,b] 称为增广矩阵.

coefficient matrix

augmented matrix

对线性方程组的研究可 转化为对这张表的研究

• Given the system:

$$\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ 2x_2 - 8x_3 = 8 \\ -4x_1 + 5x_2 + 9x_3 = -9 \end{cases}$$

$$\begin{bmatrix}
1 & -2 & 1 \\
0 & 2 & -8 \\
-4 & 5 & 9
\end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ -4 & 5 & 9 & -9 \end{bmatrix}$$

augmented matrix

3 by 4 matrix 3行4列矩阵

The size of a matrix tells how many rows and columns it has. If m and n are positive integers, an $m \times n$ (read "m by n") **matrix** is a rectangular array of numbers with m rows and n columns.

Gaussian Elimination - Introduction

- A solution (解) of the system is a list $(k_1, k_2, ..., k_n)$ of numbers that makes each equation a true statement when the values $k_1, ..., k_n$ are substituted for $x_1, ..., x_n$, respectively.
- The set of all possible solutions is called the solution set (解集)
 of the linear system.
- Two linear systems are called **equivalent** (等价, 同解) if they have the same solution set.
- The basic strategy for solving a linear system is to replace one system with an equivalent system (i.e., one with the same solution set) that is easier to solve.

消元法的基本思想:通过消元变形把方程组化成容易求解的同解方程组.

Example 1 Solve the given system of equations.

$$\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ 2x_2 - 8x_3 = 8 \\ -4x_1 + 5x_2 + 9x_3 = -9 \end{cases}$$

Solution: The elimination procedure is shown here <u>with</u> and <u>without</u> matrix notation, and the results are placed side by side for comparison.

- (1) 消元法的基本思想: 通过消元变形把方程组化成容易求解的同解方程组.
- (2) 用消元法解线性方程组的消元步骤可以在增广矩阵上实现

Gaussian Elimination - Introduction

$$\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ 2x_2 - 8x_3 = 8 \\ -4x_1 + 5x_2 + 9x_3 = -9 \end{cases}$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ -4 & 5 & 9 & -9 \end{bmatrix}$$

Forward

Forward elimination
$$\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ 2x_2 - 8x_3 = 8 \\ -3x_2 + 13x_3 = -9 \end{cases}$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 0 & -3 & 13 & -9 \end{bmatrix}$$

$$\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ x_2 - 4x_3 = 4 \\ -3x_2 + 13x_3 = -9 \end{cases}$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & -3 & 13 & -9 \end{bmatrix}$$

form
$$\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ x_2 - 4x_3 = 4 \\ x_3 = 3 \end{cases}$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

form
$$\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ x_2 - 4x_3 = 4 \\ x_3 = 3 \end{cases} \qquad \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Back substitution

$$\begin{cases} x_1 - 2x_2 = -3 \\ x_2 = 16 \end{cases}$$

$$x_3 = 3$$

$$\begin{cases} x_1 - 2x_2 = -3 \\ x_2 = 16 \end{cases} \qquad \begin{bmatrix} 1 & -2 & 0 & -3 \\ 0 & 1 & 0 & 16 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

$$\begin{cases} x_1 = 29 \\ x_2 = 16 \\ x_3 = 3 \end{cases}$$

Example 1 Solve the given system of equations.

$$\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ 2x_2 - 8x_3 = 8 \end{cases}$$
 <https://www.m/nngryjuc>
$$-4x_1 + 5x_2 + 9x_3 = -9$$

https://www.geogebra.org/ m/nngryjuc

Each of the original equations determines a plane in three-dimensional space. The point (29, 16, 3) lies in all three planes

$$\begin{cases} x_1 = 29 \\ x_2 = 16 \\ x_3 = 3 \end{cases}$$

线性方程组的初等变换 (operations on equations in a linear system)

增广矩阵的初等行变换

(29, 16, 3) lies in all three planes. (operations on the rows of the augmented matrix)

Elementary operations on linear systems (线性方程组的初等变换)

- ① Interchange two equations (交换两个方程的位置);
- ② Multiply an equation by a nonzero number (用一个非零的数乘某一个方程);
- ③ Add a multiple of an equation to another (将一个方程的倍数加到另一个方程上).

Remark: The linear system is changed to a new equivalent system by a series of elementary operations. (线性方程组经初等变换后, 得到的线性方程组与原线性方程组同解).

Elementary Row Operations (ERO: 矩阵的初等行变换)

- Elementary row operations include the following:
 - 1. (Interchange, 对换) Interchange two rows.
 - 2. (Scaling, 倍乘) Multiply all entries in a row by a nonzero constant.
 - 3. (Replacement, 倍加) Replace one row by the sum of itself and a multiple of another row.
- Two matrices are called **row equivalent** (行等价) if there is a sequence of *elementary row operations* that transforms one matrix into the other.
- It is important to note that row operations are reversible(可逆).
- If the augmented matrices of two linear systems <u>are row</u> equivalent, then the two systems have the same solution set.

- A system of linear equations is said to be consistent (相容) if it has either one solution or infinitely many solutions.
- A system is **inconsistent** (不相容) if it has *no solution*.
- Two fundamental questions about a linear system are as follows:
 - 1. Is the system consistent; that is, does at least one solution *exist*?
 - 2. If a solution exists, is it the *only* one; that is, is the solution *unique*?

Existence(存在性) and Uniqueness(唯一性) of solutions