k	Reluted Rates	Exerises Pg 569 Day 1
	ds = 5 cm/s dt dt es=10cm dt de es=10cm	$\frac{dA}{dt} = \frac{dA}{ds} \cdot \frac{dS}{dt} = \frac{dP}{dt} \cdot \frac{dS}{dt}$ $= \frac{d}{ds} \cdot \frac{dS}{dt} = \frac{d}{ds} \cdot \frac{dS}{dt} = \frac{d}{ds} \cdot \frac{dS}{ds}$ $= \frac{d}{ds} \cdot \frac{dS}{ds} = \frac{d}{ds} \cdot \frac{dS}{ds} = \frac{dS}{ds} \cdot \frac{dS}{dt} = \frac{dS}{dt} \cdot \frac{dS}$
F	ds = 4 cm/s Ind dv @ S= 5cm dt ds & 5=7cm	$\frac{dV}{dt} = \frac{dV}{ds} \cdot \frac{ds}{dt} = \frac{ds}{ds} \cdot \frac{ds}{dt}$ $= \frac{d}{ds} (s^{3}) \cdot 4 = \frac{d}{ds} [6s^{2}] \cdot 4$ $= \frac{3s^{2}(4)}{3s^{2}} = \frac{12s}{4s} (4)$ $= \frac{12s^{2}}{300 \text{ cm}^{3}/s} = \frac{48c7}{336 \text{ cm}^{2}/s}$
Fi	de = -3cm/s de = -3cm/s At 0 W=20 dt l=50	Sinp $A = l\omega$ $dA = dl(\omega) + ld\omega$ $d+ d+ d+ d+$ $= -3(20) + 2(50)$ $= 40 cm2/s$

(a)
$$\frac{dA}{dt} = \frac{dA}{dr} \cdot \frac{dr}{dt}$$

$$5 = \frac{d(\pi r^2)}{dr} \cdot \frac{dr}{dt}$$

$$5 = 2\pi r \cdot \frac{dr}{dt}$$

$$\frac{dr}{dt} = \frac{5}{2\pi r^3}$$

= 5 mm/s

(b)
$$\frac{dP}{dt} = \frac{dA}{dD} \cdot \frac{dD}{dt}$$

$$5 = \frac{dJ}{dD} \left(\frac{TD^2}{4} \right) \cdot \frac{dD}{dt}$$

$$5 = \frac{dJ}{dD} \left(\frac{TD^2}{4} \right) \cdot \frac{dD}{dt}$$

$$5 = \frac{TD}{4D} \cdot \frac{dD}{dt}$$

$$= \frac{10}{TCD}$$

$$= \frac{5}{3T} \frac{m/s}{3T}$$

(7.)
$$\frac{dA}{dt} = 6 \frac{\text{km}^2}{\text{h}}$$
Find $\frac{dr}{dt} = 2 \frac{\text{gr km}^2}{\text{dt}}$

$$\frac{dA}{dt} = \frac{dA}{dr} \cdot \frac{dr}{dt}$$

$$6 = \frac{d}{dr} (\pi r^2) \cdot \frac{dr}{dt}$$

$$6 = 2\pi r \cdot \frac{dr}{dt}$$

$$\frac{3}{4t} = \frac{3}{Tr} \quad \text{when } A = 9\pi$$

$$= \frac{3}{\pi (3)} \quad r = 3$$

$$= \frac{1}{T} \frac{Km/h}{T}$$

$$\frac{dr}{dt} = 0.003 m/y$$
 Find $\frac{dV}{dt}$

$$\frac{dr}{dt} = 0.4 m/y$$

$$h = 15 m$$

$$V = (\pi r^{2}h)$$

$$\frac{dV}{dt} = (2\pi r \cdot \frac{dr}{dt})(h) + (\pi r^{2})(\frac{dh}{dt})$$

$$= 2\pi (0.5)(0.003)(15) + \pi (0.5)^{2}(0.4)$$

$$= 0.045\pi + 0.17$$

$$= 0.145\pi m^{3}/y$$

$$= 0.456 m^{3}/y$$

$$\frac{dV}{dt} = -2cm^{3}/min; Find dh e h=3cm$$

$$\frac{dV}{dt} = \frac{dV}{dt} \cdot \frac{dh}{dt}$$

$$\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt}$$

$$\frac{F}{h} = \frac{5}{3} \frac{5}{15}$$

$$r = \frac{dh}{dh} \left(\frac{3\pi h^3}{27} \right) \cdot \frac{dh}{dt}$$

$$-2 = \frac{\pi th^2}{9} \cdot \frac{dh}{dt}$$

$$\frac{dh}{dt} = \frac{206 - 18}{3\pi h^2}$$

- height

decreasing

@ = contonin,

$$= -\frac{18}{11(3)^2}$$
$$= -\frac{2}{11} \text{ cm/min}$$

Rg 3	Related	Rates Exercises	Continued Pg 570	Day I
26.		$\frac{dV}{dt} = 20$	0 cm3/5 - 20 cm3/5	
	a) Find	dh e h=15cm	b) when h=250	
	dV -	dv dh dh dt	$\frac{dV}{dt} = 200 \text{ cm}^3/\text{S}$ Find dh	
			Find the 1	
		$\frac{d}{dh}\left(\pi(h)^{2}(h)\right), \frac{dh}{dt}$	$\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt}$	
	180 =	$\frac{d}{dh}\left(\frac{\pi h^3}{3}\right) \cdot \frac{dh}{dt}$	200 = Th h2 . dh	
	(30 =	Trh2, dh	dh 200	
	dh dt		$\frac{dh}{dt} = \frac{200}{17h^2}$	
	dt	130 TTh ²	= 200 T(25)2	
		TT(15)2	= <u>8</u> cm	/s
	4	5TT cm/s		

Marie 181 U