

UNIVERSIDAD DE LA FRONTERA FACULTAD DE INGENIERÍA, CIENCIAS Y ADMINISTRACIÓN DEPARTAMENTO DE INGENIERÍA MATEMÁTICA

Mejora de Implementación para cálculos en la generación de dos fotones por encargo con Ruido Térmico

Trabajo para optar al Título de Ingeniero Matemático

Alfredo Jaramillo Prof. Guía: Dr. Robert Guzmán 23 de Marzo 2012 Introducción, contexto Físico-Matemático

Emisión de fotones desde un átomo atrapado

Emisión de fotones desde un átomo atrapado

Contexto de Aplicación

Ramas de punta de la Física, como la Teoría de la Información Cuántica tienen aplicaciones, como Criptografía y Teleportación Cuántica, en las que se utiliza fuentes determinísticas de fotones.

Disposición Experimental Ión de Calcio (Ca^+) atrapado en una cavidad.

Disposición Experimental Ión de Calcio (Ca^+) atrapado en una cavidad.

Esquematización Transiciones

Esquematización Transiciones

Identificación de niveles energéticos en el Hilbert asociado

Identificación de niveles energéticos en el Hilbert asociado

En \mathcal{H}_{at}

$$|4\rangle \rightarrow 4^2 P_{3/2}$$

$$|3\rangle \rightarrow 4^2 P_{1/2}$$

$$|2\rangle \rightarrow 3^2 D_{5/2}$$

$$|1\rangle \rightarrow 3^2 D_{3/2}$$

$$|0\rangle \rightarrow 4^2 S_{1/2}.$$

Identificación de niveles energéticos en el Hilbert asociado

En \mathcal{H}_{at}

$$|4\rangle \rightarrow 4^2 P_{3/2}$$

 $|3\rangle \rightarrow 4^2 P_{1/2}$

$$|2\rangle \rightarrow 3^2 D_{5/2}$$

$$|1\rangle \rightarrow 3^2 D_{3/2}$$

$$|0\rangle \rightarrow 4^2 S_{1/2}$$
.

Operador de transiciones

$$|i\rangle\langle j|: |i\rangle\langle j|k\rangle = \delta_{jk}|i\rangle$$

Identificación número de fotones de un modo en el Hilbert asociado

Identificación número de fotones de un modo en el Hilbert asociado

En \mathcal{H}_a y \mathcal{H}_b : estados de Fock

 $|n\rangle \to n$ fotones en el modo a o b.

Identificación número de fotones de un modo en el Hilbert asociado

En \mathcal{H}_a y \mathcal{H}_b : estados de Fock

 $|n\rangle \to n$ fotones en el modo a o b.

Operador de creación, aniquilación

$$a^{\dagger}: \qquad a^{\dagger} | n \rangle = \sqrt{n+1} | n+1 \rangle$$

Transiciones Atómicas

$$\hat{a}_{ij} \equiv |i\rangle\langle j| \otimes I_a \otimes I_b$$

Transiciones Atómicas

$$\hat{a}_{ij} \equiv |i\rangle\langle j| \otimes I_a \otimes I_b$$

Creación, aniquilación

$$\hat{a} \equiv I_{at} \otimes \hat{a} \otimes I_b$$

Transiciones Atómicas

$$\hat{a}_{ij} \equiv |i\rangle\langle j| \otimes I_a \otimes I_b$$

Creación, aniquilación

$$\hat{a} \equiv I_{at} \otimes \hat{a} \otimes I_b$$

Ejemplo de interacción

$$|1\rangle\langle 0|\hat{a}+\hat{a}^{\dagger}|0\rangle\langle 1|$$

Ecuación Maestra

$$\frac{d}{dt}\rho(t) = \frac{1}{i\hbar} \left[H(t), \rho(t) \right] + \mathcal{L}(\rho)$$

Ecuación Maestra

$$\frac{d}{dt}\rho(t) = \frac{1}{i\hbar} \left[H(t), \rho(t) \right] + \mathcal{L}(\rho)$$

Operador densidad

$$\rho \equiv |\psi\rangle\langle\psi|$$

Ecuación Maestra

$$\frac{d}{dt}\rho(t) = \frac{1}{i\hbar} \left[H(t), \rho(t) \right] + \mathcal{L}(\rho)$$

Operador densidad

$$\rho \equiv |\psi\rangle\langle\psi|$$

Condición inicial

$$|\psi(0)\rangle = |1\rangle \otimes |0\rangle \otimes |0\rangle$$

Hamiltoniano

$$H = H_0 + H_I$$

$$H_0 = \omega_a \hat{a}^{\dagger} \hat{a} + \omega_b \hat{b}^{\dagger} \hat{b} + \sum_{i=0}^{4} \omega_i |i\rangle\langle i|$$

$$H_I = \Omega_1(t) |3\rangle\langle 1| e^{-iv_a t} + \Omega_2(t) |4\rangle\langle 0| e^{-iv_b t}$$

$$+ g_a |3\rangle\langle 0| \hat{a} + g_b |4\rangle\langle 2| \hat{b} + \text{h.c}$$

Lindbladiano

$$\mathcal{L}(\rho) = \frac{\Gamma_{04}}{2} (2 a_{04} \rho a_{04}^{\dagger} - a_{04}^{\dagger} a_{04} \rho - \rho a_{04}^{\dagger} a_{04}) + \frac{\Gamma_{03}}{2} (2 a_{04} \rho a_{03}^{\dagger} - a_{03}^{\dagger} a_{03} \rho - \rho a_{03}^{\dagger} a_{03}) + \frac{\Gamma_{13}}{2} (2 a_{13} \rho a_{13}^{\dagger} - a_{13}^{\dagger} a_{13} \rho - \rho a_{13}^{\dagger} a_{13}) + \frac{\Gamma_{24}}{2} (2 a_{24} \rho a_{24}^{\dagger} - a_{24}^{\dagger} a_{24} \rho - \rho a_{24}^{\dagger} a_{24}) + \frac{\Gamma_{14}}{2} (2 a_{14} \rho a_{14}^{\dagger} - a_{14}^{\dagger} a_{14} \rho - \rho a_{14}^{\dagger} a_{14}) + \kappa_{a} (2 \hat{a} \rho \hat{a}^{\dagger} - \hat{a}^{\dagger} \hat{a} \rho - \rho \hat{a}^{\dagger} \hat{a}) + \kappa_{b} (2 \hat{b} \rho \hat{b}^{\dagger} - \hat{b}^{\dagger} \hat{b} \rho - \rho \hat{b}^{\dagger} \hat{b}).$$

Lindbladiano

$$\mathcal{L}(\rho) = \frac{\Gamma_{04}}{2} (2 a_{04} \rho a_{04}^{\dagger} - a_{04}^{\dagger} a_{04} \rho - \rho a_{04}^{\dagger} a_{04}) + \frac{\Gamma_{03}}{2} (2 a_{04} \rho a_{03}^{\dagger} - a_{03}^{\dagger} a_{03} \rho - \rho a_{03}^{\dagger} a_{03}) + \frac{\Gamma_{13}}{2} (2 a_{13} \rho a_{13}^{\dagger} - a_{13}^{\dagger} a_{13} \rho - \rho a_{13}^{\dagger} a_{13}) + \frac{\Gamma_{24}}{2} (2 a_{24} \rho a_{24}^{\dagger} - a_{24}^{\dagger} a_{24} \rho - \rho a_{24}^{\dagger} a_{24}) + \frac{\Gamma_{14}}{2} (2 a_{14} \rho a_{14}^{\dagger} - a_{14}^{\dagger} a_{14} \rho - \rho a_{14}^{\dagger} a_{14}) + \kappa_{a} (2 \hat{a} \rho \hat{a}^{\dagger} - \hat{a}^{\dagger} \hat{a} \rho - \rho \hat{a}^{\dagger} \hat{a}) + \kappa_{b} (2 \hat{b} \rho \hat{b}^{\dagger} - \hat{b}^{\dagger} \hat{b} \rho - \rho \hat{b}^{\dagger} \hat{b}).$$

Ruido Térmico

$$2\kappa\bar{n}(\hat{a}\rho\hat{a}^{\dagger}+\hat{a}^{\dagger}\rho\hat{a}-\hat{a}^{\dagger}\hat{a}\rho-\rho\hat{a}\hat{a}^{\dagger}).$$

Integración Ecuación Maestra

Método de Heun

```
Entrada: f, Y_0, h, n, \{t_i\}_{i=0}^{n-1}, \epsilon
      Salida: \{Y_i\}_{i=0}^{n-1}
      Inicio
             Para i = 0 hasta i = n - 1 Hacer
                    Y_{i+1}^{(0)} = Y_i + hf(t_i, Y_i);
 3
                    Y_{i+1}^{(1)} = Y_i + \frac{h}{2} \left\{ f(t_i, Y_i + f\left(t_{i+1}, Y_{i+1}^{(0)}\right)) \right\};
 4
                    error = errRel(Y_{i+1}^{(1)}, Y_{i+1}^{(0)});
 5
                     k=2:
 6
                     Mientras error > \epsilon Hacer
                           Y_{i+1}^{(k)} = Y_i + \frac{h}{2} \left\{ f\left(t_i, Y_i + f(t_{i+1}, Y_{i+1}^{(k-1)})\right) \right\};
 8
                           error = errRel\left(Y_{i+1}^{(k)}, Y_{i+1}^{(k-1)}\right);
 9
                         k = k + 1:
10
11
                    Y_{i+1} = Y_{i+1}^{(k)};
12
             Fin
13
      Fin
14
```

 $\cite{Necesidad}\ de\ mejora?$

Tiempos Implementación anterior

$N_a = N_b$	2	3	4	5	6	7	8	9
Tiempo	24m	2h18m	8h	1d	3d9h	14d19h	21d	38d
$R_f \%$	90.6	92.4	91.1	91.3	94.0	93.8	94.2	88.9
$R_e \%$	3.9	3.7	3.7	3.8	2.2	2.6	2.1	3.6
$R_c \%$	4.7	4.6	4.6	4.8	3.4	3.6	3.2	7.3

Cuadro: Tiempos de ejecución y porcentajes por rutina del trabajo anterior.

Objetivo General

Objetivo General

• Mejorar la implementación numérica del modelo de generación de fotones incluyendo ruido térmico.

¿Cómo obtendremos la mejora?

of radius R ...

• Traducir de MATLAB a FORTRAN (70%).

- Traducir de MATLAB a FORTRAN (70%).
- Obtener códigos mejorados y dinámicos.

- Traducir de MATLAB a FORTRAN (70%).
- Obtener códigos mejorados y dinámicos.
- Mejorar algoritmos específicos, Hamiltoniano, Lindbladiano (98 %).

Objetivos específicos

- Traducir de MATLAB a FORTRAN (70%).
- Obtener códigos mejorados y dinámicos.
- $\bullet\,$ Mejorar algoritmos específicos, Hamiltoniano, Lindbladiano (98 %).
- Determinar el comportamiento de la implementación numérica para mayores dimensiones y ruido térmico.

Objetivos específicos

- Traducir de MATLAB a FORTRAN (70%).
- Obtener códigos mejorados y dinámicos.
- $\bullet\,$ Mejorar algoritmos específicos, Hamiltoniano, Lindbladiano (98 %).
- Determinar el comportamiento de la implementación numérica para mayores dimensiones y ruido térmico.
- Estudiar posibilidades de paralelización.

Estudio de algoritmos, operadores

Algoritmo Principal

```
Entrada: Parámetros
```

Salida: Datos de Cálculos

1 Inicio

- 2 Carga de parámetros y definición de variables;
- 3 Inicialización de $\rho(0)$;
- 4 Integración y registro;
- 5 Fin

```
Integración y registro: Calculos(\rho)
                   Entrada: \rho
                   Salida: \{\eta_i\}_{i=1}^{N_{at}+N_{mod}}
                   Inicio
                        Para i = 0 hasta N_{at} - 1 Hacer
               2
                          \eta_{i+1} = tr(|i\rangle\langle i|\rho);
               3
                       Fin
               4
                        Para i = 1 hasta N_{mod} Hacer
                           \eta_{i+N_{at}} = tr\left(a_i^{\dagger} a_i \rho\right);
               6
                        Fin
               7
                  \mathbf{Fin}
```

Integración y registro: errRel

Entrada: ρ , ρ' Salida: error

- 1 Inicio
- $error = \frac{\|\rho \rho'\|}{\|\rho\|};$
- з Fin

Integración y registro: errRel

```
Entrada: \rho, \rho'
Salida: error
1 Inicio
2 error = \frac{\|\rho - \rho'\|}{\|\rho\|};
3 Fin
```

Integración y registro: f

```
Entrada: t, \rho

Salida: z = f(t, \rho)

1 Inicio

2 h = H(t);

3 c = -i[h, \rho];

4 l = lindbladiano(\rho);

5 z = c + l;

6 Fin
```

Principal: Integración y registro

```
Entrada: f, \rho_0, h, n, \{t_i\}_{i=0}^{n-1}, \epsilon
       Salida: \{Calculos(\rho_i)\}_{i=1}^{n-1}
       Inicio
               Para i = 0 hasta i = n - 1 Hacer
 2
 3
                      Calculos(\rho_i) y registro;
                      \rho_{i+1}^{(0)} = \rho_i + h f(t_i, \rho_i);
 4
                     \rho_{i+1}^{(1)} = \rho_i + \frac{h}{2} \left\{ f(t_i, \rho_i + f\left(t_{i+1}, \rho_{i+1}^{(0)}\right)) \right\};
  5
                      error = errRel\left(\rho_{i+1}^{(1)}, \rho_{i+1}^{(0)}\right);
 6
 7
                      k=2:
                      Mientras error > \epsilon Hacer
                              \rho_{i+1}^{(k)} = \rho_i + \frac{h}{2} \left\{ f\left(t_i, \rho_i + f(t_{i+1}, \rho_{i+1}^{(k-1)})\right) \right\};
 9
                              error = errRel\left(\rho_{i+1}^{(k)}, \rho_{i+1}^{(k-1)}\right);
10
                            k = k + 1;
11
12
                      \rho_{i+1} = \rho_{i+1}^{(k)};
13
               Fin
14
15
       Fin
```

Operador de transiciones \hat{a}_{ij}

$$\hat{a}_{ij} \equiv |i\rangle\langle j| \otimes I_a \otimes I_b = \begin{pmatrix} \frac{\mathbb{O}_{11}^m}{\mathbb{O}_{12}^m} & \frac{\mathbb{O}_{12}^m}{\mathbb{O}_{12}^m} & \cdots & \frac{\mathbb{O}_{1n}^m}{\mathbb{O}_{2n}^m} \\ \frac{\mathbb{O}_{21}^m}{\mathbb{O}_{22}^m} & \frac{\mathbb{O}_{22}^m}{\mathbb{O}_{22}^m} & \cdots & \frac{\mathbb{O}_{2n}^m}{\mathbb{O}_{2n}^m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbb{O}_{n1}^m & \mathbb{O}_{n2}^m & \cdots & \mathbb{O}_{nn}^m \end{pmatrix}$$

con
$$m = N_a \cdot N_b$$
 y $n = N_{at}$

Operador de transiciones \hat{a}_{ij}

$$\hat{a}_{ij} \equiv |i\rangle\langle j| \otimes I_a \otimes I_b = \begin{pmatrix} \frac{\mathbb{O}_{11}^m}{\mathbb{O}_{12}^m} & \frac{\mathbb{O}_{12}^m}{\mathbb{O}_{12}^m} & \frac{\mathbb{O}_{12}^m}{\mathbb{O}_{12}^m}$$

$$con m = N_a \cdot N_b y n = N_{at}$$

Operador de transiciones generalizado

$$\hat{a}_{ij} := |i\rangle\langle j| \otimes I^{n_1} \otimes I^{n_2} \otimes \ldots \otimes I^{n_d}.$$

Operador de aniquilación del modo a

$$(I^n \otimes \hat{a} \otimes I^l)_{i,j} = \left\{ \begin{array}{cc} \sqrt{\lceil \frac{i}{l} \rceil \mod m} & , j = i + l, i = 1 \dots (n \cdot m - 1) \cdot l \\ 0 & , \text{c.o.c.} \end{array} \right.$$

Operador de aniquilación del modo a

$$(I^n \otimes \hat{a} \otimes I^l)_{i,j} = \left\{ \begin{array}{cc} \sqrt{\lceil \frac{i}{l} \rceil \mod m} &, j = i + l, i = 1 \dots (n \cdot m - 1) \cdot l \\ 0 &, \text{c.o.c.} \end{array} \right.$$

Operador de aniquilación generalizado

$$\hat{a}_{g}^{k,m} := I^{n_1} \otimes I^{n_2} \otimes \ldots \otimes I^{n_{g-1}} \otimes \hat{a}^k \otimes I^{n_{g+1}} \otimes \ldots \otimes I^{n_m}$$

Cómputo Eficiente Operadores

$$\mathcal{O}(dimt^3) \to \mathcal{O}(dimt^2)$$

Variables

Variables

N: Número de espacios componentes del espacio mayor.

 n_i : $i = 1 \dots N$. Dimensión del i-ésimo espacio.

$$\Pi_1^g \equiv \prod_{i=1}^{g-1} n_i \text{ con } g = 2 \dots N.$$

$$\Pi_2^g: \equiv \prod_{i=g+1}^N n_i.$$

$$T^g: \equiv (n_g - 1)\Pi_2^g.$$

$$\Pi_3^g: \qquad \equiv T^g + \Pi_2^g.$$

$$\Pi: \equiv \prod_{i=2}^{N} n_i.$$

ord: Arreglo de enteros: dimensión de cada subespacio.

$$N = 3, n_1 = 5$$

$$\rho = \begin{pmatrix} \vdots \\ B_1 \\ \vdots \\ B_2 \\ \vdots \\ B_n \end{pmatrix} \rightarrow a\rho = \begin{pmatrix} \mathcal{B}_1 \\ \vdots \\ \mathcal{B}_2 \\ \vdots \\ \vdots \\ \mathcal{B}_n \\ \vdots \end{pmatrix}$$

 $n = \Pi_1$ bloques de T^g filas y dimt columnas.

Si
$$M = \mathcal{B}_i$$
 y $S = B_i$:

$$M_{kl} = \gamma_k S_{kl}$$

$$\gamma_k = \sqrt{\left\lceil \frac{k}{\Pi_2^g} \right\rceil} \bmod n_g$$

$$k = 1 \dots T^g, \ l = 1 \dots dimt$$

Algoritmo: arMod

```
Entrada: \rho, id
    Salida: r = \hat{a}\rho
    Inicio
         k = ord[id];
         pi1 = producto(ord[1:id-1]);
 3
         pi2 = producto(ord[id + 1 : dimt]);
 4
        T = (k-1) * pi2;
 5
         pi3 = T + pi2;
 6
 7
         r = ceros(dimt);
         Para bi = 0 hasta (pi1 - 1) \cdot pi3; bi + = pi3 Hacer
 8
              Para ei = 1 hasta T Hacer
 9
                   Para ej = 1 hasta dimt Hacer
10
11
                       r[bi + ei, ej] = \gamma \cdot \rho[pi2 + bi + ei, ej];
12
                   Fin
13
              Fin
14
         Fin
15
16
    Fin
```

n° operaciones Algoritmo arMod

$$\mathcal{O}\left(dimt^2 \cdot \left(\frac{n_g - 1}{n_g}\right)\right) = \mathcal{O}\left(dimt^2\right)$$

n° operaciones Algoritmo arMod

$$\mathcal{O}\left(dimt^2 \cdot \left(\frac{n_g - 1}{n_g}\right)\right) = \mathcal{O}\left(dimt^2\right)$$

Análogo para $\hat{\rho}\hat{a}$ y $\hat{\rho}\hat{a}^{\dagger}$.

$$\rho = \begin{pmatrix} B_1 \\ B_2 \\ \vdots \\ B_{\Pi} \end{pmatrix} \rightarrow a_{ij} \rho = i \text{-\'esimo} \left\{ \begin{pmatrix} \cdots \\ B_j \\ \cdots \end{pmatrix} \right\}$$

 N_{at} bloques fila, de Π filas y dimt columnas.

Ejemplo

$$\rho = \left(\begin{array}{c} B_1 \\ B_2 \\ B_3 \end{array}\right),$$

entonces:

$$\hat{a}_{13}\rho = \begin{pmatrix} B_3 \\ \mathbb{O}^{\Pi} \\ \mathbb{O}^{\Pi} \end{pmatrix}.$$

Algoritmo: raAt

```
Entrada: \rho, i, j.
    Salida: r = \hat{a}_{ij}\rho\hat{a}_{ij}^{\dagger}
    Inicio
        pi = producto(ord[2:dimt]);
 2
        i1 = i \cdot pi;
 3
        j1 = j \cdot pi;
4
        r = ceros(pi);
 5
        Para ei = 1 hasta dimt Hacer
 6
            Para ei = 1 hasta pi Hacer
 7
                r[ei, j1 + ej] = rho[ei, i1 + ej];
 8
            Fin
 9
        Fin
10
   Fin
11
```

 n° asignaciones Algoritmo ra
At

$$\frac{dimt^2}{N_{at}} = \mathcal{O}(dimt^2)$$

n° asignaciones Algoritmo raAt

$$\frac{dimt^2}{N_{at}} = \mathcal{O}(dimt^2)$$

Análogo para $\hat{\rho}\hat{a}_{ij}^{\dagger}$.

Expresión $\hat{a}\hat{\rho}\hat{a}^{\dagger}$

$$\rho = \begin{pmatrix} \ddots & \vdots & | \ddots & \vdots & | \ddots & | \ddots & | \vdots & | \ddots & | \vdots & | \ddots & | \ddots & | \vdots & | \ddots & | \end{pmatrix},$$

bloques de orden T^g , con $n = \Pi_1^g$ y distancia entre bloques Π_2^g .

$$a\rho a^{\dagger} = \begin{pmatrix} \mathcal{B}_{11} & \cdots & \mathcal{B}_{12} & \cdots & \mathcal{B}_{1n} & \cdots \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots \\ \overline{\mathcal{B}_{21}} & \cdots & \overline{\mathcal{B}_{21}} & \cdots & \overline{\mathcal{B}_{2n}} & \cdots \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots \\ \hline \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots \\ \overline{\mathcal{B}_{n1}} & \cdots & \overline{\mathcal{B}_{n2}} & \cdots & \overline{\mathcal{B}_{nn}} & \cdots \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots \end{pmatrix},$$

Si
$$M = \mathcal{B}_{ij}$$
 y $S = B_{ij}$:

$$M_{kl} = \gamma_{kl} S_{kl}$$

$$\gamma_{kl} = \sqrt{\left(\left\lceil \frac{k}{\Pi_2^g} \right\rceil \bmod n_g \right) \left(\left\lceil \frac{l}{\Pi_2^g} \right\rceil \bmod n_g \right)}$$

$$k, l = 1 \dots T^g$$

Algoritmo: aratMod

```
Entrada: \rho, id
     Salida: r = \hat{a}\rho\hat{a}^{\dagger}
     Inicio
          k = ord[id];
 2
      pi1 = producto(ord[1:id-1]);
 3
      pi2 = producto(ord[id + 1 : dimt]);
       T = (k-1) \cdot pi2;
 5
 6
       pi3 = T + pi2;
          r = ceros(dimt);
 7
          Para \{bi, bj\} = 0 \ hasta \ (pi1 - 1) \cdot pi3; \ \{bi, bj\} + = pi3 \ Hacer
 8
                Para \{ei, ej\} = 1 hasta T Hacer
 9
                     \gamma = \sqrt{\left(\left\lceil \frac{ei}{pi2} \right\rceil \bmod k\right) \left(\left\lceil \frac{ej}{pi2} \right\rceil \bmod k\right)};
10
                     r[bi + ei, bi + ej] = \gamma \cdot \rho[pi2 + bi + ej, pi2 + bj + ej];
11
                 Fin
12
          Fin
13
     Fin
14
```

n° operaciones Algoritmo aratMod

$$\mathcal{O}\left(dimt^2\left(\frac{n_g-1}{n_g}\right)^2\right) = \mathcal{O}\left(dimt^2\right)$$

n° operaciones Algoritmo aratMod

$$\mathcal{O}\left(dimt^2\left(\frac{n_g-1}{n_g}\right)^2\right) = \mathcal{O}\left(dimt^2\right)$$

Similar para $\hat{a}^{\dagger}\hat{\rho}\hat{a}$, $\hat{a}^{\dagger}\hat{a}\hat{\rho}$, $\hat{\rho}\hat{a}^{\dagger}\hat{a}$ y $\hat{\rho}\hat{a}\hat{a}^{\dagger}$.

$$\rho = \begin{pmatrix} B_{11} & B_{12} & B_{1n} \\ B_{21} & B_{22} & B_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ B_{n1} & B_{n2} & B_{nn} \end{pmatrix} \rightarrow \hat{a}_{ij}\hat{\rho}\hat{a}_{ij}^{\dagger} = i\text{-}\acute{e}simo\{\begin{pmatrix} \vdots \\ \vdots \\ B_{jj} & \vdots \\ \vdots & \vdots & \vdots \\ B_{nn} & B_{nn} \end{pmatrix}.$$

$$\rho = \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1n} \\ B_{21} & B_{22} & \cdots & B_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ B_{n1} & B_{n2} & \cdots & B_{nn} \end{pmatrix} \rightarrow \hat{a}_{ij}\hat{\rho}\hat{a}_{ij}^{\dagger} = i\text{-}\acute{e}simo \{ \begin{pmatrix} \vdots \\ \vdots \\ B_{jj} & \cdots \\ \vdots \\ \vdots & \vdots \\ B_{nn} \end{pmatrix}.$$

$$\begin{pmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \\ B_{31} & B_{32} & B_{33} \end{pmatrix} \rightarrow \begin{pmatrix} B_{33} & \mathbb{O}^{\Pi} & \mathbb{O}^{\Pi} \\ \mathbb{O}^{\Pi} & \mathbb{O}^{\Pi} & \mathbb{O}^{\Pi} \\ \mathbb{O}^{\Pi} & \mathbb{O}^{\Pi} & \mathbb{O}^{\Pi} \end{pmatrix}.$$

Algoritmo: aratAt

```
Entrada: \rho, i, j.
   Salida: r = \hat{a}_{ij}\rho\hat{a}_{ij}^{\dagger}
  Inicio
       pi = producto(ord[2:dimt]);
2
     i1 = i \cdot pi;
3
    j1 = j \cdot pi;
5
   r = ceros(pi);
       Para \{ei, ej\} = 1 hasta pi Hacer
6
          r[i1 + ei, i1 + ej] = rho[j1 + ei, j1 + ej];
7
       Fin
8
  Fin
```

Algoritmo: aratAt

```
Entrada: \rho, i, j.
   Salida: r = \hat{a}_{ij}\rho\hat{a}_{ij}^{\dagger}
  Inicio
       pi = producto(ord[2:dimt]);
    i1 = i \cdot pi;
3
   j1 = j \cdot pi;
  r = ceros(pi);
      Para \{ei, ej\} = 1 hasta pi Hacer
          r[i1 + ei, i1 + ej] = rho[j1 + ei, j1 + ej];
7
       Fin
8
  Fin
9
```

 $\frac{dimt^2}{N_{at}^2} = \mathcal{O}(dimt^2)$ asignaciones, también para $\hat{a}_{ij}^{\dagger}\hat{a}_{ij}\hat{\rho}$ y $\hat{\rho}\hat{a}_{ij}^{\dagger}\hat{a}_{ij}$.

Ejemplo de Algoritmo Específico

Ejemplo de Algoritmo Específico

Algoritmo: Lindbladiano

Ejemplo de Algoritmo Específico

Algoritmo: Lindbladiano

```
Entrada: \rho, l
   Salida: l = l + \text{Lindbladiano}(\rho)
   Inicio
2
        // En este trabajo;
         // exprAt = 'arat', 'atar', 'rata';
3
        // exprMod = 'arat', 'atar', 'rata', 'atra', 'raat';
       Para i = 1 hasta niniter At Hacer
5
        l = l + \operatorname{araAt2}(\rho, intAt(i), gammaAt(i), exprAt);
6
       Fin
       Para i = 1 hasta nmod Hacer
        l = l + \operatorname{araMod2}(\rho, mod(i), gammaMod(i), exprMod);
       Fin
10
   Fin
```

Resultados

Evolución niveles atómicos

Figura: Evolución del nivel $|0\rangle$.

Evolución niveles atómicos

Figura: Evolución del nivel $|1\rangle$.

Evolución niveles atómicos

Figura: Evolución del nivel $|2\rangle$.

Evolución modos electromagnéticos

Figura: Evolución población modo a.

Tiempos de ejecución

Tiempos de ejecución

	$N_a=N_b$									
$ar{n}$	2	3	4	5	6	7	8	9	10	
0.001	17s	1 m 02 s	3 m01 s	6m54s	15 m 40 s	35m53s	1h31m	2h03m	4h16m	
0.005	18s	1 m 03 s	3m04s	6m56s	15m26s	36 m16 s	1h38m	2h51m	4h34m	
0.01	19s	1 m 10 s	3m21s	7 m 45 s	15m31s	38 m 00 s	1h35m	2h54m	5h02m	
0.05	20s	1m11s	3m25s	7 m 41 s	15 m 36 s	45 m 40 s	1h59m	3h09m	4h44m	
0.1	20s	1m14s	3m32s	8 m 02 s	16m58s	46 m 09 s	1h41m	3h58m	5h55m	
0.5	22s	1 m20 s	3m51s	8m55s	18m42s	50 m 27 s	2h10m	4h06m	6h16m	

Cuadro: Tiempos de ejecución para diferentes dimensiones de los espacios modales.

Relación entre ruido térmico y demora de ejecución

Relación entre ruido térmico y demora de ejecución

	$ar{n}$									
n	0.0	0.001	0.005	0.01	0.05	0.1	0.5			
0	3654	0	0	0	0	0	0			
1	4513	0	0	0	0	0	0			
2	3853	11896	10974	0	0	0	0			
3	3627	3743	4630	15560	14910	10906	1492			
4	4353	4361	4396	4440	5090	9094	17573			
5	0	0	0	0	0	0	935			

Cuadro: Número de correcciones n en la integración, $N_a = N_b = 7$.

Proporciones de demora generales

Proporciones de demora generales

$N_a = N_b$	2	3	4	5	6	7	8	9	10	Media
$\bar{n} = 0.005$										
R_f	90.5	92.7	93.5	93.8	92.3	89.3	90.0	89.6	90.3	91.3
R_e	2.7	2.5	2.2	2.1	2.6	3.4	2.8	2.6	2.2	2.6
R_c	2.5	1.7	1.7	1.5	1.7	2.4	2.7	3.6	4.1	2.4
$\bar{n} = 0.05$										
R_f	90.5	90.8	93.7	94. 2	94.3	87.9	89.0	89.8	87.8	90.9
R_e	3.0	3.8	2.3	2.1	2.0	4. 2	3.4	2.8	2.3	2.9
R_c	1.9	1.7	1.4	1.4	1.5	2.1	2.4	3.2	3.2	2.1
$\bar{n} = 0.5$										
R_f	90.8	92.8	93.8	94.0	92.7	89.9	89.2	88.9	88.3	91.2
R_e	3.0	2.9	2.4	2.2	2.7	3.4	3.4	3.3	2.8	2.9
R_c	2.0	1.4	1.3	1.2	1.3	2.0	2.4	2.6	2.8	1.9

Cuadro: %'s de tiempos de ejecución para diferentes dimensiones de los espacios modales.

Proporciones de demora específicos

Proporciones de demora específicos

		$N_a = N_b$					
Algo.	SubAlgo.	2	4	6	8	10	12
R_f	Li	69	75	71	59	55	54
$I\iota_f$	СН	31	25	29	41	45	46
Li	Md	93	97	97	96	96	95
1/1	At	7	3	3	4	4	5
СН	AtMd	87	89	91	93	93	94
OII	At	13	11	9	7	7	6

Cuadro: %'s de demora sobre el total (del resp. ámbito).

P0: Rutina sin paralelizar.

P0: Rutina sin paralelizar.

P1: Cálculo paralelo de Lindbladiano y Conmutador.

- P0: Rutina sin paralelizar.
- P1: Cálculo paralelo de Lindbladiano y Conmutador.
- P2: Cálculo paralelo de loops presentes en cálculo de operadores.

Resultados Paralelización, eficiencia

- P0: Rutina sin paralelizar.
- P1: Cálculo paralelo de Lindbladiano y Conmutador.
- P2: Cálculo paralelo de loops presentes en cálculo de operadores.
- P3: Combinación de P1 y P2.

 T_s : Tiempo serial.

 T_s : Tiempo serial.

 T_p : Tiempo paralelo real.

 T_s : Tiempo serial.

 T_p : Tiempo paralelo real.

 T_t : Tiempo paralelo de todos los hilos de procesamiento.

 T_s : Tiempo serial.

 T_p : Tiempo paralelo real.

 T_t : Tiempo paralelo de todos los hilos de procesamiento.

 $\alpha \colon \equiv \frac{T_s}{T_p}, \, Speedup$ o "factor de mejora".

 T_s : Tiempo serial.

 T_p : Tiempo paralelo real.

 T_t : Tiempo paralelo de todos los hilos de procesamiento.

 α : $\equiv \frac{T_s}{T_p}$, Speedup o "factor de mejora".

 E_A : $\equiv 100 \cdot \frac{T_s}{T_t} \%$, "eficiencia".

Resultados Paralelización, eficiencia

Resultados Paralelización, eficiencia

$N_a = N_b$	2		4		6	
Rutina	α	$E_A \%$	α	$E_A \%$	α	$E_A \%$
P1	1.16	59	1.11	57	1.04	54
P2	0.98	50	1.25	63	1.25	64
P3	1.32	45	1.68	57	1.63	57
				•	•	
$N_a = N_b$		8		10		12
$N_a = N_b$ Rutina	α	$E_A\%$	α	$E_A\%$	α	$E_A\%$
	α 1.29					
Rutina		$E_A\%$	α	$E_A\%$	α	$E_A\%$

Cuadro: Rendimiento paralelizaciones. $\bar{n} = 0.001$

Resultados Paralelización, tiempos

Resultados Paralelización, tiempos

	$N_a = N_b$							
Rutina	2	4	6	8	10	12		
P0	24s	4 m 03 s	18m49s	1h19m	3h59m	8h13m		
P1	20s	3 m38 s	18 m 09 s	1h01m	3h04m	6h29m		
P2	24s	3m14s	15 m 03 s	1h05m	3h16m	6h41m		
P3	18s	2m24s	11 m 31 s	42 m 58 s	2h10m	4h45m		

Cuadro: Tiempos de demora rutinas paralelizadas. $\bar{n} = 0.001$

Conclusiones

• Mejoraron notablemente los tiempos de cálculo.

- Mejoraron notablemente los tiempos de cálculo.
- Por lo anterior pudieron utilizarse mayores dimensiones.

- Mejoraron notablemente los tiempos de cálculo.
- Por lo anterior pudieron utilizarse mayores dimensiones.
- Mejoró el dinamismo en relación a reutilización y trabajo futuro.

• Traducir de MATLAB a FORTRAN (70 %). \checkmark

- Traducir de MATLAB a FORTRAN (70 %).✓
- \bullet Mejorar algoritmos específicos, Hamiltoniano, Lindbladiano (98 %).
 \checkmark

- Traducir de MATLAB a FORTRAN (70 %).✓
- \bullet Obtener códigos mejorados y dinámicos.
 \checkmark

- Traducir de MATLAB a FORTRAN (70 %).✓
- Obtener códigos mejorados y dinámicos.√
- Determinar el comportamiento de la implementación numérica para mayores dimensiones y ruido térmico.√

- Traducir de MATLAB a FORTRAN (70 %).✓
- Obtener códigos mejorados y dinámicos.√
- Determinar el comportamiento de la implementación numérica para mayores dimensiones y ruido térmico.√
- Estudiar posibilidades de paralelización.√

Trabajo Futuro

• Considerar estructura fina atómica, Spin.

Trabajo Futuro

- Considerar estructura fina atómica, Spin.
- Estudiar propiedades de los fotones emitidos, *Entrelazamiento*.

Claude Cohen-Tannoudji, Bernard Diu, Frank Laloe. Quantum Mechanics, Volume 1. WILEY-VCH, 1991.

- Claude Cohen-Tannoudji, Bernard Diu, Frank Laloe. Quantum Mechanics, Volume 1. WILEY-VCH, 1991.
- Sergio M. Dutra. Cavity Quantum Electrodynamics, The Strange Theory of Light in a Box. WILEY-INTERSCIENCE, 2005.

- Claude Cohen-Tannoudji, Bernard Diu, Frank Laloe. Quantum Mechanics, Volume 1. WILEY-VCH, 1991.
- Sergio M. Dutra. Cavity Quantum Electrodynamics, The Strange Theory of Light in a Box. WILEY-INTERSCIENCE, 2005.
- Gino Montecinos. Cálculo de Funciones de Correlación en la generación de dos fotones por encargo. Trabajo para optar al Título de Ingeniero Matemático. UFRO, 2008.

- Claude Cohen-Tannoudji, Bernard Diu, Frank Laloe. Quantum Mechanics, Volume 1. WILEY-VCH, 1991.
- Sergio M. Dutra. Cavity Quantum Electrodynamics, The Strange Theory of Light in a Box. WILEY-INTERSCIENCE, 2005.
- Gino Montecinos. Cálculo de Funciones de Correlación en la generación de dos fotones por encargo. Trabajo para optar al Título de Ingeniero Matemático. UFRO, 2008.
- R. Guzmán. Procesamiento de Información en Sistemas Cuánticos. Tesis Doctoral. USACH, 2004.

Christian Maurer, Christoph Becker, Carlos Russo, Jürgen Eschner and Rainer Blatt. A single-photon source based on a single Ca⁺ ion. New Journal of Physics, 6(2004)94.

- Christian Maurer, Christoph Becker, Carlos Russo, Jürgen Eschner and Rainer Blatt. A single-photon source based on a single Ca⁺ ion. New Journal of Physics, 6(2004)94.
- M. Keller, B. Lange, K. Hayasaka, W. Lange and H. Walther. A calcium ion in a cavity as a controlled single-photon source. New Journal of Physics, 6(2004)95.

- Christian Maurer, Christoph Becker, Carlos Russo, Jürgen Eschner and Rainer Blatt. A single-photon source based on a single Ca⁺ ion. New Journal of Physics, 6(2004)94.
- M. Keller, B. Lange, K. Hayasaka, W. Lange and H. Walther. A calcium ion in a cavity as a controlled single-photon source. New Journal of Physics, 6(2004)95.
- ► Howard Carmichael. An Open Systems Approach to Quantum Optics, Lectures presented at the Université Libre de Bruxelles, October 28 to November 4, 1991. Springer-Verlag, 1993.

- Christian Maurer, Christoph Becker, Carlos Russo, Jürgen Eschner and Rainer Blatt. A single-photon source based on a single Ca⁺ion. New Journal of Physics, 6(2004)94.
- M. Keller, B. Lange, K. Hayasaka, W. Lange and H. Walther. A calcium ion in a cavity as a controlled single-photon source. New Journal of Physics, 6(2004)95.
- Howard Carmichael. An Open Systems Approach to Quantum Optics, Lectures presented at the Université Libre de Bruxelles, October 28 to November 4, 1991. Springer-Verlag, 1993.
- Barbara Chapman, Gabriele Jost and Ruud Van Der Pas. Using OpenMP, Portable Shared Memory Parallel Programming. The MIT Press, 2008.

A grade cimientos

A mis padres, Ida y Victor

Al CEMCC, UFRO

Center for Optics and Photonics

A mi prof. guía, Dr. Robert Guzmán

 $Much as\ gracias$

