Arithmetically saturated models of PA and disjunctive correctness

Athar Abdul-Quader (joint with M. Łełyk)

Purchase College, SUNY

2023 ASL Winter Meeting January 6, 2023

Truth predicates / CT⁻

Theorem

Let $\mathcal{M} \models \mathsf{PA}$ be countable and recursively saturated. Then there is $T \subseteq M$ such that $(\mathcal{M}, T) \models \mathsf{CT}^-$. That is, T is a full, compositional truth predicate.

- Compositional: satisfies Tarski's compositional axioms (ie, $T(\phi \land \psi) \leftrightarrow T(\phi) \land T(\psi)$).
- Full: for each $\phi \in \mathsf{Sent}^{\mathcal{M}}$, either $T(\phi)$ or $T(\neg \phi)$.
- Kotlarski, Krajewski, Lachlan (1981).
- Enayat, Visser (2015): perspicuous model-theoretic proof.
- CT⁻ is conservative over PA: if $\phi \in \mathcal{L}_{PA}$, CT⁻ $\vdash \phi$ if and only if PA $\vdash \phi$.

(After this: assume all models of PA in this talk are countable and recursively saturated.)

Induction

Definition

Let $\mathcal{M} \models \mathsf{PA}$. $X \subseteq M$ is inductive if the expansion $(\mathcal{M}, X) \models \mathsf{PA}^*$: that is, if the expansion satisfies induction in the language $\mathcal{L}_{\mathsf{PA}} \cup \{X\}$.

- CT is the theory CT⁻ + "T is inductive"
- CT is not conservative over PA: CT ⊢ Con(PA)

Induction

Definition

Let $\mathcal{M} \models \mathsf{PA}$. $X \subseteq M$ is inductive if the expansion $(\mathcal{M}, X) \models \mathsf{PA}^*$: that is, if the expansion satisfies induction in the language $\mathcal{L}_{\mathsf{PA}} \cup \{X\}$.

- CT is the theory CT⁻ + "T is inductive"
- CT is not conservative over PA: CT ⊢ Con(PA)
- CT_0 : $CT^- + "T$ is Δ_0 -inductive" also proves Con(PA).

Disjunctive Correctness

Definition

Let $c \in M$, $\langle \phi_i : i \leq c \rangle$ be a (coded) sequence of sentences in \mathcal{M} . Then we define $\bigvee \phi_i$ inductively:

- $ullet \bigvee_{i\leq 0}\phi_i=\phi_0$, and
- $\bullet \bigvee_{i \le n+1} \phi_i = \bigvee_{i \le n} \phi_i \vee \phi_{n+1}.$

DC is the principle of disjunctive correctness:

$$\forall c \forall \langle \phi_i : i \leq c \rangle T(\bigvee_{i \leq c} \phi_i) \leftrightarrow \exists i \leq c T(\phi_i).$$

Disjunctive Correctness

Definition

Let $c \in M$, $\langle \phi_i : i \leq c \rangle$ be a (coded) sequence of sentences in \mathcal{M} . Then we define $\bigvee \phi_i$ inductively:

- $ullet \bigvee_{i\leq 0}\phi_i=\phi_0$, and
- $\bullet \bigvee_{i \le n+1} \phi_i = \bigvee_{i \le n} \phi_i \vee \phi_{n+1}.$

DC is the principle of disjunctive correctness:

$$\forall c \forall \langle \phi_i : i \leq c \rangle T(\bigvee_{i \leq c} \phi_i) \leftrightarrow \exists i \leq c T(\phi_i).$$

Theorem (Enayat-Pakhomov)

$$CT^- + DC = CT_0$$
.

DC-out vs DC-in

- DC-out: $T(\bigvee_{i < c} \phi_i) \to \exists i \leq c T(\phi_i)$.
- DC-in: $\exists i \leq cT(\phi_i) \rightarrow T(\bigvee_{i \leq c} \phi_i)$.

Theorem (Cieśliński, Łełyk, Wcisło)

- CT⁻ + DC-out is not conservative over PA. (in fact, it is equivalent to CT₀).
- CT⁻ + DC-in is conservative over PA.

Disjunctive Triviality

Idea (for conservativity of DC-in): every $\mathcal{M} \models PA$ countable has an elementary extension \mathcal{N} with an expansion to CT^- that is disjunctively trivial.

Disjunctive Triviality

Idea (for conservativity of DC-in): every $\mathcal{M} \models PA$ countable has an elementary extension \mathcal{N} with an expansion to CT^- that is disjunctively trivial.

That is, $(\mathcal{N}, T) \models \mathsf{CT}^-$ and, for each $c > \omega$, $\langle \phi_i : i \leq c \rangle$, $T(\bigvee_{i \leq c} \phi_i)$. Hence, $(\mathcal{N}, T) \models \mathsf{DC}\text{-in}$.

Question

Does every countable, recursively saturated model of PA have a disjunctively trivial expansion?

Intuitively: seems like it should follow from the existence of disjunctively trivial elementary extensions using resplendence?

First we look at a simple case: for which sets $X \subseteq M$ can there be T such that $(\mathcal{M},T) \models \mathsf{CT}^-$ and $X = \{c : \neg T(\bigvee_{i \le c} (0=1))\}$. Clearly, X must contain ω and be closed under successors and predecessors. What else?

First we look at a simple case: for which sets $X \subseteq M$ can there be T such that $(\mathcal{M}, T) \models \mathsf{CT}^-$ and $X = \{c : \neg T(\bigvee_{i \le c} (0 = 1))\}$. Clearly, X must contain ω and be closed under successors and predecessors. What else?

Definition

Let $X \subseteq M$. X is separable if for each $a \in M$, there is $c \in M$ such that for each $n \in \omega$, $(a)_n \in X$ if and only if $n \in c$.

(Here we use some standard fixed coding of M-finite sets and sequences.)

First we look at a simple case: for which sets $X \subseteq M$ can there be T such that $(\mathcal{M}, T) \models \mathsf{CT}^-$ and $X = \{c : \neg T(\bigvee_{i \le c} (0 = 1))\}$. Clearly, X must contain ω and be closed under successors and predecessors. What else?

Definition

Let $X \subseteq M$. X is separable if for each $a \in M$, there is $c \in M$ such that for each $n \in \omega$, $(a)_n \in X$ if and only if $n \in c$.

(Here we use some standard fixed coding of M-finite sets and sequences.)

Theorem

Let $\mathcal{M} \models \mathsf{PA}$ be countable and recursively saturated. Let $X \subseteq M$. Then \mathcal{M} has an expansion (\mathcal{M}, T) to CT^- such that $X = \{c : \neg T(\bigvee_{i \leq c} (0 = 1))\}$ if and only if X contains ω , is closed under successors and predecessors, and X is separable.

Arithmetic Saturation

Definition

 \mathcal{M} is arithmetically saturated if whenever $a, b \in M$ and p(x, b) is a consistent type that is arithmetic in tp(a) is realized in \mathcal{M} .

Folklore: \mathcal{M} is arithmetically saturated if it is recursively saturated and ω is a strong cut: that is, for each a there is $c>\omega$ such that for each $n\in\omega$, $(a)_n\in\omega$ if and only if $(a)_n< c$. Exercise: ω is a strong cut iff it is separable.

Corollary

Let \mathcal{M} be countable and recursively saturated. Then \mathcal{M} is arithmetically saturated if and only if it has a disjunctively trivial expansion to CT^- .

Generalizing

Similar arguments can be made for long conjunctions of (0=0), binary disjunctions / conjunctions, many other "pathologies".

Fix θ an atomic sentence. Let $\Phi(p,q)$ be a finite propositional "template" (essentially a propositional formula with variables p, q, but we allow quantifiers over dummy variables) such that:

- q appears in $\Phi(p,q)$,
- if $\mathcal{M} \models \theta$, then $\Phi(\top, q)$ is equivalent to q, and
- if $\mathcal{M} \models \neg \theta$, then $\Phi(\bot, q)$ is equivalent to q.

Define $F: M \to \mathsf{Sent}^{\mathcal{M}}$ by $F(0) = \theta$ and $F(x+1) = \Phi(\theta, F(x, \theta))$.

Examples

•
$$\Phi(p,q) = q \lor p$$
. Then $F(x) = \bigvee_{i \le x} \theta$.

•
$$\Phi(p,q) = q \wedge q$$
. Then $F(x) = \bigwedge_{i \leq x}^{\text{bin}} \theta$. (Binary conjunctions).

- $\Phi(p,q) = \neg \neg q$. Then $F(x) = (\neg \neg)^x \theta$.
- $\Phi(p,q) = (\forall y)q$. Then $F(x) = \underbrace{\forall y \dots \forall y}_{x \text{ times}} \theta$.

Separability Theorems

The following results are generalizations of unpublished work by J. Schmerl. (Sent to A. Enayat in private communication, 2012).

Theorem

Suppose $D = \{F(x) : x \in M\}$. Let $X \subseteq M$ be separable, closed under successors and predecessors, and for each $n \in \omega$, $n \in X$ if and only if $\mathcal{M} \models F(n)$, then \mathcal{M} has an expansion $(\mathcal{M}, T) \models \mathsf{CT}^-$ such that $X = \{x : (\mathcal{M}, T) \models T(F(x))\}$.

Below, by "A is separable from D" we mean: for each a, if for all $n \in \omega$, $(a)_n \in D$, then there is c such that for all $n \in \omega$, $(a)_n \in A$ if and only if $n \in c$.

Theorem

Let D be any set of sentences, $(\mathcal{M}, T) \models \mathsf{CT}^-$, and $A = \{\phi \in D : (\mathcal{M}, T) \models T(\phi)\}$. Then A is separable from D.

Weak Superrationality

Definition

 $I \subseteq_{\mathsf{end}} M$ is weakly superrational if for each $a \in M$, there is c such that for each $n \in \omega$, $(a)_n \in I$ if and only if $(a)_n < c$.

Facts:

- A cut is weakly superrational if and only if it is separable.
- Strong cuts are weakly superrational. But not all weakly superratioanl cuts are strong.
- In fact, there are weakly superrational cuts which are not closed under addition, ones which are closed under addition but not multiplication, etc.
- The name comes from the notion of "rational" and "superrational" cuts appearing in a paper by R. Kossak (1989).

Non-local generalizations

Instead of simply looking at F-iterates of a single θ , what about all F-iterates? (Instead of long idempotent disjunctions of (0 = 1), what about all idempotent disjunctions?)

Fix $\Phi(p,q)$ a finite propositional template such that q appears in $\Phi(p,q)$, $p \wedge q \vdash \Phi(p,q)$, $\neg p \wedge \neg q \vdash \neg \Phi(p,q)$, and Φ has syntactic depth 1. (Just: $p \vee q$, $p \wedge q$, $\forall yq$, $q \wedge q$, $q \vee q$.) Define $F(x,\phi)$ inductively:

- $F(0, \phi) = \phi$.
- $F(x + 1, \phi) = \Phi(\phi, F(x, \phi)).$

We say F is accessible if p occurs in Φ ; F is additive otherwise. Notice: if F is additive, then $F(x, F(y, \phi)) = F(x + y, \phi)$. A cut $I \subseteq_{\mathsf{end}} M$ is F-closed if either F is accessible (and I is closed under successors), or F is additive and I is closed under addition.

Theorem

Let Φ and F be as in the previous slide, $I \subseteq_{\mathsf{end}} M$ be F-closed and weakly superrational. Then there is T such that $(\mathcal{M}, T) \models \mathsf{CT}^-$ and $I = \{x : \forall y \le x \forall \phi \in \mathsf{Sent}^{\mathcal{M}}(T(\phi) \leftrightarrow T(F(y, \phi)))\}.$

We also say $I \subseteq_{\mathsf{end}} M$ has no least F-gap above it if for each x > I, there is y > I such that for each $n \in \omega$, $y \odot n < x$, where \odot is + if F is accessible and \times if F is additive.

Theorem

Let Φ and F be as in the previous slide, $I \subseteq_{\mathsf{end}} M$ F-closed and has no least F-gap above it. Then there is T such that $(\mathcal{M}, T) \models \mathsf{CT}^-$ and $I = \{x : \forall y \le x \forall \phi \in \mathsf{Sent}^\mathcal{M}(T(\phi) \leftrightarrow T(F(y, \phi)))\}.$

Arithmetic Saturation, again

Theorem

Let $\mathcal M$ be countable, recursively saturated. Then the following are equivalent:

- M is arithmetically saturated.
- ② For every cut $I \subseteq_{end} M$ and every accessible F, there is T such that $(\mathcal{M}, T) \models \mathsf{CT}^-$ and

$$I = \{x : \forall y \le x \forall \phi \in \mathsf{Sent}^{\mathcal{M}}(T(\phi) \leftrightarrow T(F(y,\phi)))\}.$$

- For each cut I, if ω is strong, then either I is weakly superrational or has no least \mathbb{Z} -gap above it.
- Conversely, we also show that if I is the "F-correct cut" in the sense above, then either I is weakly superrational or has no least \mathbb{Z} -gap.
- If ω is not strong, then there exist cuts which are not weakly superrational and have no least \mathbb{Z} -gap above it.
- Corresponding version for additive *F* is in progress.

Thank you!

The results mentioned today will appear in Abdul-Quader and Łełyk, "Pathologically defined subsets of models of CT-." (Work in progress)

Some other references:

- Cieśliński, Łełyk and Wcisło, The two halves of disjunctive correctness. Journal of Mathematical Logic (in press).
- Enayat and Pakhomov, Truth, disjunction, and induction. Archive for Mathematical Logic 58, 753-766 (2019).
- Enayat and Visser, New constructions of satisfaction classes. In: Unifying the philosophy of truth, vol 36, 321-335 (2015).