北京师范大学 2014~ 2015 学年第二学期期末考试试卷 (A卷)

课程名称:_	程名称: 复变函数			任课老师姓名:			
卷面总分: _ 院(系): <u>数</u> 姓名:		院		数学与应	用数学		卷口 其他口 级: 2013 级
题号		=		四	— —	六	总分
得分	1/3		39-50	40			

一. (20 分)(1) 叙述孤立奇点的的定义 (2) 求下列各函数在复平面 C(不含 ∞ 点) 中 的孤立奇点, 孤立奇点各属于哪一种类型 (极点要指明阶数).

0 $\sqrt{2}$ $\sqrt{$

(a)
$$\frac{1}{z(z^2+1)^2}$$
;

(a)
$$\frac{1}{z(z^2+1)^2}$$
; (b) $\frac{e^z-1-z}{z^2(\cos z-1)}$; (c) $\frac{1}{z^3\sin\left(\frac{1}{z}\right)}$.

$$(c) \ \frac{1}{z^3 \sin\left(\frac{1}{z}\right)}$$

风苍老师(签字):

二 (20 分) 叙述留数定理并计算下列积分:

(1)
$$\int_{|z|=2} \frac{z-6}{z^2(z^2-1)} dz$$
; (2) $\int_{-\infty}^{+\infty} \frac{x \sin x dx}{(1+x^2)(4+x^2)}$;

三. (15 分) 分式线性映射 $w=T(z)=\frac{z-1}{z+1}$ 将区域 $\Omega=\{z: \mathrm{Re}\, z<0, \mathrm{Im}\, z<0\}$ 映射 为什么区域 $T(\Omega)$ =? (作图标明原像区域和像区域.)

四. (20 分) 叙述儒歌 (Rouché) 定理并求方程 $z^5 - 5z^2 + z + 1 = 0$ 在圆环 1 < |z| < 2内根的个数.

五. (15 分) 设 f(z) 在区域 Ω 内解析, 且 |f(z)| 在区域 Ω 内为常数, 证明 f(z) 在 Ω 中 12-11

六 (10 %) (1) 说明多值函数 $(z(1-z)^2)^{\frac{1}{2}}$ 在割去线段 [0,1] 的 z 平面上可以分出三 个单倡解析分支 (2) 求出在 [0,1] 的上沿取正值的那个单值解析分支 go(z) 在点 z = -1 她的值 $(g_0(-1) = ?)$. (3) 计算积分

$$\int_0^1 \frac{\sqrt[3]{x(1-x)^2} dx}{(1+x)}.$$