ISE 426 Optimization models and applications

Lecture 17 — October 30, 2014

- "Good" and "bad" formulations
- Branch&bound for MILP
- Examples of B&B

Reading:

- ▶ Hillier & Lieberman, Chapter 13, 13.4 to 13.5
- Winston & Venkataramanan, Chapter 9
- ▶ Winston, Chapter 9

Relaxations and efficiency

Integer programming problems:

(IP) min
$$c_1x_1 + c_2x_2 \dots + c_nx_n$$

 $a_{11}x_1 + a_{12}x_2 \dots + a_{1n}x_n \le b_1$
 $a_{21}x_1 + a_{22}x_2 \dots + a_{2n}x_n \le b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 \dots + a_{mn}x_n \le b_m$
 $x_i \in \mathbb{Z} \quad \forall i \in J \subseteq \{1, 2, \dots, n\}$

or, for short,

(IP) min
$$c^{\top}x$$

 $Ax \leq b$
 $x_i \in \mathbb{Z} \quad \forall i \in J \subseteq N,$

can be solved using their LP relaxation:

$$(LP) \quad \min \quad c^{\top} x \\ Ax \le b.$$

A global optimum z of (LP) is a **lower bound** for (IP).

Relaxations and efficiency

If an optimal solution x^* of (LP) is feasible for (IP), i.e., for all $i \in J$ we have $x_i^* \in \mathbb{Z}$, we're done!

This is **not** the case, usually...

What do we know about the optimal solutions of (LP)? They are all *vertices* of the polyhedron

$$\{x \in \mathbb{R}^n : A^\top x \le b\}$$

Therefore, it would be just great if all vertices of (LP) were feasible for (IP). Solving IPs would amount to solving LPs, which are a lot easier.

A good model may not achieve just that, but it can help a lot.

Relaxations: the clique inequality

Two models for one problem have the same feasible set and global optima, but may be solved differently:

$$\left. \begin{array}{ll} P_1: \min & -7x_1 - 8x_2 - 9x_3 \\ \text{s.t.} & x_1 + x_2 \leq 1 \\ x_1 + x_3 \leq 1 \\ x_2 + x_3 \leq 1 \\ x_1, x_2, x_3 \in \{0, 1\} \end{array} \right\} \equiv \left\{ \begin{array}{ll} P_2: \min & -7x_1 - 8x_2 - 9x_3 \\ \text{s.t.} & x_1 + x_2 + x_3 \leq 1 \\ x_1, x_2, x_3 \in \{0, 1\} \end{array} \right.$$

Consider relaxations R_1 , R_2 of P_1 , P_2 with $x_i \in [0,1]$.

 R_1 : optimal soln. $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$, obj.f. -12: lower bound for P_1 , P_2

 R_2 : optimal solution (0,0,1), obj.f. -9: lower bound for P_2 and P_1 , and **feasible** for P_2 and P_1 !

 \Rightarrow optimum of P_1 , P_2 : -9, and P_2 is a better model than P_1

Relaxations: the clique inequality

Good vs. bad models: Uncapacitated Facility Location

A set *J* of retailers has to be served by a set *S* of plants, yet to be built. We don't know where the plants will be, but there is a set *I* of potential sites, and there is

- ▶ a cost f_i for building plant $i \in I$
- ▶ a (transportation) cost c_{ij} from plant i to retailer j

Each retailer will be served by exactly one plant . Choose a subset *S* of *I* such that the total cost is minimized.

Variables:

- ▶ x_i , $i \in I$: 1 if plant i is built, 0 otherwise
- y_{ij} assigns retailer j to plant i: 1 if i serves retailer j, 0 otherwise

Good vs. bad models: Uncapacitated Facility Location

Objective function:

$$\sum_{i \in I} f_i x_i + \sum_{i \in I} \sum_{j \in J} c_{ij} y_{ij}$$

Constraints:

- ▶ for each customer, one facility: $\sum_{i \in I} y_{ij} = 1$
- ▶ customers go to mall *i* if it's there:

$$\sum_{j\in J} y_{ij} \le |J| x_i \quad \forall i \in I$$

or

$$y_{ij} \leq x_i \quad \forall i \in I, j \in J$$

Good vs. bad models: Uncapacitated Facility Location

$$(A) \qquad (B)$$

$$\min \sum_{i \in I} f_i x_i + \sum_{i \in I} \sum_{j \in J} c_{ij} y_{ij} \qquad \min \sum_{i \in I} f_i x_i + \sum_{i \in I} \sum_{j \in J} c_{ij} y_{ij}$$

$$\sum_{i \in I} y_{ij} = 1 \quad \forall i \in I \qquad \sum_{i \in I} y_{ij} = 1 \quad \forall i \in I$$

$$\sum_{j \in J} y_{ij} \leq |J| x_i \quad \forall i \in I \qquad y_{ij} \leq x_i \quad \forall i \in I, j \in J$$

$$x_i, y_{ij} \in \{0, 1\} \qquad x_i, y_{ij} \in \{0, 1\}$$

- (A) and (B) are equivalent. However, for |I| = |J| = 40,
- (A) takes 14 hours¹
- (B) takes 2 seconds

¹On AMPL with an old version of CPLEX.

How do we solve an Integer Programming problem?

(P) min
$$cx$$

 $Ax \ge b$
 $x_i \in \mathbb{Z}, i \in J \subseteq \{1, 2 \dots, n\}$

- Relaxing integrality gives an LP problem (easy)
- Solving LP gives a lower bound
- ▶ But the solution x^* may have fractional component $x_i^* \notin \mathbb{Z}$, with $i \in J$ (for example, 3.31), infeasible for (P).
- \Rightarrow **Divide** the solution set, **partition** the problem into two new subproblems, P_1 and P_2 , with

$$P_1: x_i \leq \lfloor x_i^{\star} \rfloor$$
 $P_2: x_i \geq \lceil x_i^{\star} \rceil$

- $(P_1: x_i \leq 3 \text{ and } P_2: x_i \geq 4)$ and recursively solve P_1 and P_2 .
- ▶ Good: **no** feasible solution of P_1 or P_2 has $x_i = 3.31$

The Branch&Bound - Devide and concour

- ▶ If we solve the LP relaxation of P_1 and find a fractional point, we can recursively branch on P_1 and obtain two new subproblems P_3 and P_4 .
- ▶ In principle, we have to branch on any node P_k unless its LP relaxation returns a feasible solution or it is infeasible.

$$0 b = -9.2$$

$$ub = ?$$

The **Bound** in Branch&Bound

In practice, the upper bound is very useful! Suppose you just found an **upper** bound of 194.

- \triangleright P_3 has a **lower** bound of 146, P_4 of 203
- ▶ 203 is a lower bound for P_4 ⇒ any feasible solution of P_4 has objective function value worse than 203 (i.e., ≥ 203)
- ▶ We already have something better (194) \Rightarrow discard P_4

How to find upper bounds?

Example: Knapsack problem

The general Knapsack problem is:

$$\min \sum_{i=1}^{n} w_i x_i
\sum_{i=1}^{n} c_i x_i \ge C
x_i \in \{0, 1\} \qquad \forall i = 1, 2 \dots, n$$

Suppose that variables are sorted in non-decreasing order w.r.t. weight/value². The LP relaxation is solved as follows:

- 1. Set R := C
- **2. for** i:1,2...,n
- 3. **if** $c_i < R$, **then** $x_i := 1$; $R := R c_i$
- 4. **else** $x_i := R/c_i$; **stop**

²Those with a small weight/value ratio are more likely to be chosen.

Solve the LP relaxation

- Solve this by the greedy method.
- ► Solution: $x_0^* = (1, 1, \frac{5}{7}, 0, 0), V_0^* = 11\frac{4}{7}.$
- ▶ V_0^* the lower bound for the problem IP_0 .
- ▶ Split the problem into two cases: $X_3 = 1$ (IP_1)and $X_3 = 0$ (IP_2) and consider the LP relaxations LP_1 and LP_2 .

Consider subproblem

Solve LP_1 problem $X_3 = 1$ (we will consider LP_2 later)

- Solve this by the greedy method.
- Solution: $x_1^* = (1, \frac{5}{7}, 1, 0, 0), V_1^* = 14\frac{4}{7}.$
- ▶ V_1^* the lower bound for the problem IP_1 .
- ▶ Split the problem into two cases: $X_2 = 1$ and $X_2 = 0$ and consider the LP relaxations LP_3 and LP_4 .

Consider subproblem

Solve
$$LP_3$$
, $X_2 = 1$, $X_3 = 1$.

- Solve this by the greedy method.
- Solution: $x_3^* = (\frac{8}{10}, 1, 1, 0, 0), V_3^* = 15\frac{2}{10}.$
- ▶ V_3^* the lower bound for the problem IP_3 .
- ▶ Split the problem into two cases: $X_2 = 1$ and $X_2 = 0$ and consider the LP relaxations L_3 and L_4 .

Consider subproblem

Solve
$$LP_3$$
, $X_2 = 0$, $X_3 = 1$.

- Solve this by the greedy method.
- Solution: $x_4^* = (1, 0, 1, 1, 0), V_4^* = 17.$
- ▶ V_4^* the upper bound for the whole IP problem! Also is the optimal solution to IP_4 .

Example: Knapsack problem

Solve LP_2 problem $X_3 = 0$

- Solve this by the greedy method.
- Solution: $x_2^* = (1, 1, 0, 1, 0), V_2^* = 14.$
- ▶ V_2^* is the new upper bound for the entire problem!! Also optimal solution to IP_2 .
- ► Key observation: lower bound for *IP*₃ is bigger than upper bound for the entre problem. DONE!!!!!

Branch&Bound

```
z^{ub} = +\infty
\triangleright \mathcal{L} \leftarrow \{P\}
• while \mathcal{L} \neq \emptyset
            Choose P' from \mathcal{L} and set \mathcal{L} = \mathcal{L} \setminus \{P'\}
            Relax P' \rightarrow \text{obtain } LP'
            solve LP', obtain solution x^{LP'} and lower bound z^{LP'}
            look for solution feasible for P', obj. z^{P'}
            if z^{P'} < z^{\text{ub}}, set z^{\text{ub}} \leftarrow z^{P'}
            if z^{LP'} < z^{ub} and x^{LP'} infeasible for P
                    choose x_i: x_i^{LP'} \notin \mathbb{Z}
                    create P'': x_i : \leq |x_i^{LP'}|
                    create P''': x_i :\geq \lceil x_i^{LP'} \rceil
                    \mathcal{L} \leftarrow \mathcal{L} \cup \{P'', P'''\}
```