Université libre de Bruxelles Autumn 2022

Mock Exam in Differential Geometry I 2nd December 2024

Last name:

Mark:

First name:	
Please notice the following:	
♦ You may bring only a pen and a bottle of water (a drink) to the exam.	
Please do not bring any paper to the exam.	
This mock exam covers only the material about smooth surfaces. The real exam also questions and/or problems about smooth manifolds.	will contain
♦ To test yourself, try to solve (and write down clearly!) as much as possible in 3	nrs.
Please fill in only above this line!	
HW 1–5 5–10 11 12 13 14 15 Σ	

Part A

Please write your answers in this part directly below each problem. Estimated time required: 20 min.
Problem 1 (2P). Formulate the definition of a smooth surface.
Problem 2 (2P). Formulate the proposition about the representability of a smooth surface as a zero
locus of a function.
Problem 3 (2P). Complete the following definition: Let S_1 and S_2 be two smooth surfaces. A map $f: S_1 \to S_2$ is said to be smooth, if

Problem 7 (2P). The map $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (x^2 - y^2, 2xy)$ is... [] a diffeomorphism. [] a local diffeomorphism at each point. a local diffeomorphism at each point except the origin. [] none of the above. **Problem 8** (2P). Let $f: S_1 \to S_2$ be a smooth surjective map between two smooth surfaces. If it is only known that $d_p f$ is injective at each point $p \in S_1$, then f must be... [] a diffeomorphism. [] a local diffeomorphism. [] injective. [] none of the above. **Problem 9** (2P). Chose a correct statement from the following list:... [] Each smooth surface in \mathbb{R}^3 is orientable. [] Each smooth compact surface in \mathbb{R}^3 is orientable. [] If a smooth surface $S \subset \mathbb{R}^3$ is orientable, then S is compact. If S is non-orientable, then a unit normal field may still exist on S. **Problem 10** (2P). For an arbitrary smooth function f on a smooth surface S the following holds:

[] If $p \in \text{supp } f$, then $f(p) \neq 0$. [] If $p \notin \text{supp } f$, then $f(p) \neq 0$. [] If $p \notin \text{supp } f$, then f(p) = 0. [] None of the above applies.

Part C

Please write your solutions to the problems in Parts C and D on the blank sheets provided. Estimated time required: 1 hr 20 min.

Problem 11 (5+5P). Define $H: \mathbb{R}^3 \to \mathbb{R}$ by H(x, y, z) = x + y + z.

(i) Determine all critical points of $h \colon S \to \mathbb{R}$, where

$$S := \left\{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z^2 + 1 \right\} \qquad \text{and} \qquad h = H \big|_S.$$

(ii) Determine which critical points of h are points of local maxima/minima.

Problem 12 (10P). Show that if a surface $S \subset \mathbb{R}^3$ is represented both as $f^{-1}(c)$ and $g^{-1}(d)$ for some $f,g \in C^{\infty}(\mathbb{R}^3)$ such that $\nabla f(p) \neq 0$ and $\nabla g(p) \neq 0$ for any $p \in S$, then there exists a smooth nowhere vanishing function $\lambda \in C^{\infty}(S)$ such that $\nabla f(p) = \lambda(p) \nabla g(p)$ holds for all $p \in S$.

Problem 13 (10P). Let S be a smooth compact surface in \mathbb{R}^3 with positive Gauss curvature. Show that the Gauss map of S is surjective.

Part D

Estimated time required: 1 hr.

Problem 14 (10P). Let $S \subset \mathbb{R}^3$ be a smooth surface. Let p be a critical point of a smooth function $f \colon S \to \mathbb{R}$. Show that if the Hessian of f at p is positive-definite, then f has a local minimum at p.

Problem 15 (10P). Show that there are no smooth compact surfaces, whose Gauss curvature is everywhere non-positive.