UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA MAT01169 – CÁLCULO NUMÉRICO PROF. RESPONSÁVEL: RUDNEI DIAS DA CUNHA

## LISTA DE EXERCÍCIOS Nº 4 – INTERPOLAÇÃO E AJUSTE DE CURVAS

1. A tabela abaixo fornece a demanda diária máxima de energia elétrica em uma cidade. Encontre a data do pico máximo e o valor deste pico.

| x (data)    | 5 de outubro | 15 de outubro | 25 de outubro | 4 de novembro |  |
|-------------|--------------|---------------|---------------|---------------|--|
| y (demanda) | 10           | 15            | 20            | 13            |  |

Observe que as demandas são medidas a cada 10 dias. Portanto, podemos considerar x como o vetor (0, 10, 20, 30). Com isso, os coeficientes do polinômio interpolador na forma de Newton são:  $c_0$ =10,0000,  $c_1$ =0,5000,  $c_2$ =0,  $c_3$ =-0,0020, e o polinômio é  $p_3(x)$ =10+0,5x-0,002x(x-10)(x-20)=10+0,1x+0,06x<sup>2</sup>-0,0020x<sup>3</sup>.

Derivando  $p_3(x)$  e igualando a zero, podemos obter as raízes da equação de segundo grau como -0,8012344974 e 20,80123450. Descartando a raiz negativa, vemos que o valor máximo alcançado por  $p_3(x)$  nesse intervalo é 20,04057610 e a data correspondente é 25 de outubro.

## 2. Considere a tabela abaixo:

| <i>x</i> (*) | 26     | 28     | 30     | 32     | 34     | 36     | 38     | 40     | 42     |
|--------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| sin x        | 0,4383 | 0,4694 | 0,5000 | 0,5299 | 0,5591 | 0,5877 | 0,6156 | 0,6427 | 0,6691 |

Determine o valor de sin(32,2567°) usando a) um polinômio interpolador de grau 3 e b) um polinômio interpolador de grau 6. Compare os resultados obtidos entre si e com o valor obtido com uma calculadora científica.

Para o item a), podemos escolher os valores tabelados para os ângulos de 30°, 32°, 34° e 36°. O polinômio interpolador é  $p_3(x)$ = 0,5+0,01495960000x-0,0000875(x-30)(x-32)-0,000002083(x-30)(x-32)(x-34) e o valor interpolado é  $p_3(32,2567)$ =0,5336849.

Para o item b), escolhemos os valores tabelados para os ângulos de 26°, 28°, 30°, 32°, 34°, 36° e 38°. O polinômio interpolador é

 $p_6(x)=0,4383+0,01555(x-26)-0,0000625(x-26)(x-28)-0,000004167(x-26)(x-28)(x-30) +0,000000521(x-26)(x-28)(x-30)(x-32)-0,000000026(x-26)(x-28)(x-30)(x-32)(x-34)-0.000000004(x-26)(x-28)(x-30)(x-32)(x-34)(x-36)$ 

e o valor interpolado é p<sub>6</sub>(32,2567)=0,533685001.

O erro relativo entre ambas aproximações é da ordem de 0,000000189.

O valor obtido com uma calculadora HP-48SX é  $\sin(32,2567^\circ)=0,533713409192$  e os erros relativos entre esse e os valores obtidos com os polinômios  $p_3$  e  $p_6$  são, respectivamente, 0,00005342 e 0,00005323. Observe que o erro relativo para a aproximação por  $p_6$  é menor, apesar de ambos indicarem que as aproximações são aceitáveis.

3. Dada a tabela abaixo para a função  $f(x)=e^x$ , calcule f(1,05) e delimite o erro para o valor interpolado, utilizando aritmética de ponto-flutuante com quatro algarismos significativos.

| <b>x</b> 1 |       | 1,1   | 1,2   |  |
|------------|-------|-------|-------|--|
| $e^x$      | 2,718 | 3,004 | 3,320 |  |

O polinômio interpolador é  $p_2(x)=2,718+2,86(x-1)+1,5(x-1)(x-1,1)$ . Uma aproximação para f(1,05) é dada por p₂(1,05)=2,8572 (usando arredondamento por corte), e o erro valor exato  $e^{1,05}$ =2,85761118 e relativo entre 0 para 2,85761118-2,8572

$$\frac{2,85761118 - 2,8572}{2.85761118} = 0,000157866.$$

Determine a parábola que melhor se ajusta aos pontos (-3;3), (0;1), (2;1) e (4;3). Compare com o polinômio que interpola esses pontos.

O polinômio interpolador é  $p_3(x)=3-0,6667(x+3)+0,1333(x+3)x+0,0167(x+3)x(x-2)$  e a função de ajuste quadrática é  $p_2(x)=0,8505186087-0,1924954240x+0,1784624772x^2$ . O gráfico abaixo mostra as duas curvas; qual delas é a "melhor" depende do uso a que se destinaria cada curva.



5. A temperatura da atmosfera varia de forma não linear ao longo da altitude, dependendo das camadas da mesma. A tabela abaixo mostra valores típicos da temperatura T, em °C, em função da altitude h (em km):

| camada     | h (km) | <i>T</i> (°C) | camada       | h (km) | <i>T</i> (°C) |
|------------|--------|---------------|--------------|--------|---------------|
| Troposfera | 0      | 15,0          | Troposfera   | 10     | -49,9         |
| Troposfera | 1      | 8,5           | Tropopausa   | 15     | -56,5         |
| Troposfera | 2      | 2,0           | Estratosfera | 20     | -56,5         |
| Troposfera | 3      | -4,5          | Estratosfera | 25     | -51,6         |
| Troposfera | 4      | -11,0         | Estratosfera | 30     | -46,6         |
| Troposfera | 5      | -17,5         | Estratosfera | 40     | -22,8         |
| Troposfera | 6      | -24,0         | Mesosfera    | 50     | -2,5          |
| Troposfera | 7      | -30,5         | Mesosfera    | 60     | -26,1         |
| Troposfera | 8      | -36,9         | Mesosfera    | 70     | -53,6         |
| Troposfera | 9      | -43,4         | Mesosfera    | 80     | -74,5         |

Determine um ou mais polinômios (de ajuste ou de interpolação) que permitam avaliar a temperatura em função da altitude, dentro de cada camada da atmosfera.

Exibindo os pontos (h,T) da tabela num gráfico, observa-se que a curva tem um formato semelhante ao de uma curva cúbica, apresentando, porém, três regiões de comportamento linear (h=0 km até h=10 km; h=10 km a h=15 km; e h=15 km a h=20 km). Dessa forma, pode-se calcular a curva de ajuste linear para a primeira região, e



interpolar linearmente os pontos correspondentes às demais regiões. A partir de h=20, temos outras duas regiões a considerar: h=20 km a h=50 km e h=50 km a h= 80 km. Nessas duas, escolhemos a interpolação de Newton.

O gráfico a seguir exibe as cinco regiões consideradas acima, exibidas nas cores azul, verde, preto, ciano e vermelho, respectivamente.

6. O coeficiente de arrasto,  $C_D$ , de um objeto em movimento na atmosfera apresenta um comportamento altamente não linear, pois depende de vários fatores como a sua forma, altitude, velocidade, pressão e densidade atmosféricas, dentre outros. A tabela abaixo mostra os valores de  $C_D$  para o foguete balístico alemão V2, desenvolvido na  $2^a$  Guerra Mundial, em função da sua velocidade:

| Velocidade (Mach) | $C_D$ | Velocidade (Mach) | $C_D$ |
|-------------------|-------|-------------------|-------|
| 0,0               | 0,25  | 2,5               | 0,15  |
| 0,5               | 0,18  | 3,0               | 0,14  |
| 1,0               | 0,28  | 3,5               | 0,12  |
| 1,2               | 0,36  | 4,0               | 0,11  |
| 1,5               | 0,26  | 5,0               | 0,10  |
| 2,0               | 0,17  |                   |       |

Suponha que se deseja calcular o  $C_D$  a uma velocidade de 1,25 Mach. Para tal, compare o valor obtido com um polinômio interpolador e com um polinômio de ajuste de graus adequados. Explique.

Para se calcular o  $C_D$  desejado, pode-se utilizar os pontos (1,0; 0,28); (1,2; 0,36); (1,5; 0,26). Calculando-se o polinômio interpolador de Newton, obtemos como coeficientes:  $c_0=0,28$ ;  $c_1=0,4$ ;  $c_2=-1,41667$ , resultando no polinômio  $N_2(v)=0,28+0,4v-1,41667(v-1,0)(v-1,2)$ . Já o polinômio de ajuste de grau 2 tem, como seus coeficientes,  $a_0=-1,88$ ;  $a_1=3,62667$ ;  $a_2=-1,41667$ , e o polinômio de ajuste é  $p_2(v)=-1,88+3,62667v-1,41667v^2$ .

Avaliando ambos os polinômios em v=1,25, verificamos que  $N_2(1,25)=p_2(1,25)=0,361667$ . Com efeito, se expandirmos e recombinarmos os termos do polinômio  $N_2(v)$ , veremos que ele é idêntico a  $p_2(v)$ .

7. A tabela abaixo mostra os valores da densidade do ar,  $\rho$  e da altitude de referência, H, em função da altitude, h, de acordo com o modelo atmosférico norte-americano de 1976 (NOAA):

| h (km) | $\rho$ (kg/m <sup>3</sup> ) | H (km) | h (km) | $\rho  (\text{kg/m}^3)$ | H (km) |
|--------|-----------------------------|--------|--------|-------------------------|--------|
| 0      | 1,225                       | 10,42  | 20     | 0,0889                  | 7,62   |
| 1      | 1,112                       | 10,30  | 30     | 0,0184                  | 7,15   |
| 2      | 1,007                       | 10,19  | 40     | 0,00400                 | 6,99   |
| 3      | 0,909                       | 10,06  | 50     | 0,00103                 | 7,06   |
| 4      | 0,819                       | 9,95   | 60     | $3,1\times10^{-4}$      | 7,24   |
| 5      | 0,736                       | 9,82   | 80     | $1,85 \times 10^{-5}$   | 7,20   |
| 6      | 0,660                       | 9,70   | 100    | 5,60×10 <sup>-7</sup>   | 6,85   |
| 8      | 0,526                       | 9,46   | 150    | 2,08×10 <sup>-9</sup>   | 7,43   |
| 10     | 0,414                       | 9,21   | 200    | $2,54 \times 10^{-10}$  | 8,97   |
| 15     | 0,195                       | 8,16   | 300    | 1,92×10 <sup>-11</sup>  | 12,06  |

A função recomendada para obter-se a densidade em função de uma altitude não listada na tabela é  $\rho(h) = \rho(0)e^{(-h/H_m)}$ , onde  $^H_m$  é o valor médio de H para as duas altitudes tabeladas que são menor e maior do que a altitude não listada.

Calcule  $\rho(12)$  e  $\rho(175)$ , utilizando uma curva de ajuste adequada, e compare os resultados obtidos com aqueles dados pela função recomendada.

Exibindo-se os pontos tabulados, confirma-se que os mesmos seguem uma distribuição exponencial. Naturalmente, portanto, uma curva de ajuste exponencial é a mais indicada para se aproximar tais pontos. No entanto, se calcularmos os coeficientes c e k da curva de ajuste exponencial com base apenas nos pares de pontos (h; p), e sobrepusermos o gráfico da curva correspondente aos pontos tabelados, veremos que essa curva não aproxima adequadamente os pontos.

No entanto, como já indicado pela curva sugerida no enunciado da questão, devemos normalizar a altitude pela altitude de referência. Calculando então os coeficientes da curva de ajuste exponencial sobre os valores de h, divididos pela altitude de referência correspondente, obtemos c= 1,2259251 e k= -1,0000667, correspondendo à curva de ajuste g(h)=c e<sup>(k h/H)</sup>, a qual é exibida no gráfico a seguir:



Como foi solicitado calcular a densidade em altitudes não tabuladas, utiliza-se como H o valor médio das duas altitudes tabuladas que englobam uma dada altitude. A tabela a seguir mostra os valores obtidos com a função recomendada e a função de ajuste exponencial:

| h   | $H_m \rho (NOAA)$ |                           | $\rho$ (ajuste)           | Erro relativo            |  |
|-----|-------------------|---------------------------|---------------------------|--------------------------|--|
| 12  | 8,685             | 0,307663                  | 0,307867                  | 6,62976×10 <sup>-4</sup> |  |
| 175 | 8,2               | 6,60171×10 <sup>-10</sup> | 6,59729×10 <sup>-10</sup> | 6,68684×10 <sup>-4</sup> |  |

8. Considere a variação da viscosidade η em função da temperatura:

| <i>T</i> ( <b>°</b> <i>C</i> ) | 7,5  | 10,9 | 14,0 | 15,0 | 16,0 | 18,0 | 21,0 |
|--------------------------------|------|------|------|------|------|------|------|
| η                              | 1409 | 1276 | 1175 | 1148 | 1121 | 1069 | 990  |

Encontre a melhor função de ajustamento e a) determine a viscosidade para  $T=4^{\circ}C$  e  $T=25^{\circ}C$ ; b) determine o valor de T para  $\eta$  igual a 1200.

O gráfico abaixo mostra que podemos aproximar os pontos por uma função de ajuste linear ou, talvez, uma função quadrática ou cúbica:



Escolhendo a função cúbica,  $p_3(T)=1860,715457-78,5587827T+2,82705021T^2-0,0504756155T^3$ , obtemos os seguintes valores, para o item a)  $p_3(4)=1588,482690$  e  $p_3(25)=874,9707778$ .

Para responder o item b), podemos proceder de duas formas:

- 1. a primeira é resolvendo o problema inverso,  $\eta \times T$ , de tal sorte que, usando um polinômio interpolador cúbico, como no item a), obtemos  $T(\eta)=47,08311107+0,0097122189\eta-0,00005901780780\eta^2+0,00000002284677761\eta^3$ , de onde T(1200)=13,23136223 (verifique no gráfico que tal valor é admissível);
- 2. a segunda forma consiste em se utilizar um processo de busca de uma raiz para a função  $p_3(T)$ -1200=0; usando o método de Newton-Raphson com  $T_0$ =12

(obtido por inspeção no gráfico),  $\varepsilon$ =10-6,  $\delta$ =10-7,  $k_{max}$ =20, obtemos a aproximação em 3 iterações,  $T_3$ = 13,20767099386105. Observe a diferença entre os dois resultados obtidos, causada pelos erros de arredondamento nos dois processos numéricos usados; no entanto, calculando DIGSE entre T(1200) e  $T_3$ , vemos que há pelo menos dois dígitos significativos exatos.