Practical Activity 9 Classification using ensemble models

September 19, 2023

1 Practical Activity 9

1.1 Classification using Random Forest Ensemble

This notebook is an exercise for developing a Random Forest classifier for predicting the types of wine. We apply the concepts discussed in Week 9. We walk through RF Classifier in this practical. Note: this activity is unmarked. It develops your skills for predictive model development using Ensemble approaches.

1.2 Task

Our aim is to build a classification model to predict types of wine. We will be using the wine dataset which contains 178 observations and 13 variables: Alcohol, Malic acid, Ash, Alcalinity of ash, Magnesium, Total phenols, Flavanoids, Nonflavanoid phenols, Proanthocyanins, Color intensity, Hue, OD280/OD315 of diluted wines, Proline; and the Outcome - class_0, class_1 and class_2. The dataset is available at https://scikitlearn.org/stable/modules/generated/sklearn.datasets.load_wine.html#sklearn.datasets.load_wine

1.3 Evaluation Metric

We will evaluate the performance of the model using precision, recall and F1 score. See https://en.wikipedia.org/wiki/Precision_and_recall for more details.

1.3.1 Step 1 - Load libaries

```
[29]: import matplotlib.pyplot as plt
  import numpy as np
  import pandas as pd

from sklearn.datasets import load_wine
  from sklearn.ensemble import RandomForestClassifier
  from sklearn.metrics import classification_report
  from sklearn.model_selection import train_test_split
```

1.3.2 Step 2 - Load data

```
[17]: # Load data
      data = load wine()
      # Transform the data to dataframe format
      df = pd.DataFrame(data=np.c_[data['data'], data['target']],
                           columns= data['feature_names'] + ['target'])
      # Transform the outcome to categorical
      df['target'] = df.target.astype('str')
      df.head()
[17]:
         alcohol malic acid
                               ash alcalinity_of_ash magnesium total_phenols \
      0
           14.23
                        1.71 2.43
                                                  15.6
                                                             127.0
                                                                             2.80
      1
           13.20
                        1.78 2.14
                                                  11.2
                                                             100.0
                                                                             2.65
      2
           13.16
                                                  18.6
                                                             101.0
                                                                             2.80
                        2.36 2.67
      3
           14.37
                        1.95 2.50
                                                  16.8
                                                             113.0
                                                                             3.85
      4
           13.24
                        2.59 2.87
                                                  21.0
                                                             118.0
                                                                             2.80
         flavanoids nonflavanoid_phenols proanthocyanins color_intensity
                                                                                hue
      0
               3.06
                                      0.28
                                                       2.29
                                                                         5.64 1.04
      1
               2.76
                                      0.26
                                                       1.28
                                                                         4.38 1.05
      2
               3.24
                                      0.30
                                                       2.81
                                                                         5.68 1.03
                                                       2.18
                                                                         7.80 0.86
      3
               3.49
                                      0.24
      4
               2.69
                                      0.39
                                                                         4.32 1.04
                                                       1.82
         od280/od315_of_diluted_wines proline target
      0
                                  3.92
                                         1065.0
                                                   0.0
      1
                                  3.40
                                         1050.0
                                                   0.0
      2
                                  3.17
                                         1185.0
                                                   0.0
      3
                                  3.45
                                         1480.0
                                                   0.0
      4
                                  2.93
                                          735.0
                                                   0.0
[18]: # Shape
      df.shape
[18]: (178, 14)
[19]: # Statistical summary
      df.describe()
[19]:
                alcohol malic_acid
                                                  alcalinity_of_ash
                                                                       magnesium
                                             ash
            178.000000
                         178.000000
                                                         178.000000
                                                                      178.000000
                                      178.000000
      count
              13.000618
                                                                       99.741573
      mean
                           2.336348
                                        2.366517
                                                          19.494944
      std
               0.811827
                           1.117146
                                        0.274344
                                                           3.339564
                                                                       14.282484
                                                                       70.000000
      min
              11.030000
                           0.740000
                                        1.360000
                                                          10.600000
      25%
              12.362500
                           1.602500
                                        2.210000
                                                          17.200000
                                                                       88.000000
      50%
              13.050000
                           1.865000
                                        2.360000
                                                          19.500000
                                                                       98.000000
      75%
              13.677500
                           3.082500
                                        2.557500
                                                          21.500000 107.000000
```

	max	14.830000	5.800000	3.230000	30.000000	162.0	000000	
		total_phenols	flavanoids	nonflavanoid_ph	enols proan	thocya	anins \	
	coun	t 178.000000	178.000000	178.0	00000	178.00	00000	
	mean	2.295112	2.029270	0.3	61854	1.59	90899	
	std	0.625851	0.998859	0.1	24453	0.5	72359	
	min	0.980000	0.340000	0.1	30000	0.410000 1.250000 1.555000 1.950000		
	25%	1.742500	1.205000	0.2	70000			
	50%	2.355000	2.135000	0.3	40000			
	75%	2.800000	2.875000	0.4	37500			
	max	3.880000	5.080000	0.6	60000	3.58	80000	
		color_intensi	ty hi	ıe od280/od315_o	15_of_diluted_wines prol		proline	
	coun	t 178.00000	00 178.0000	00	178.000	000	178.000000	
	mean	5.05809	0.9574	49	2.611	685	746.893258	
	std	2.31828	36 0.2285	72	0.709	990	314.907474	
	min	1.28000	0.4800	00	1.270	000	278.000000	
	25%	3.22000	0.7825	00	1.937	500	500.500000	
	50%	4.69000	0.9650	00	2.780	000	673.500000	
	75%	6.20000	00 1.12000	00	3.170	000	985.000000	
	max	13.00000	00 1.71000	00	4.000	000	1680.000000	
[20]:		nfo nfo()						
	<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 178 entries, 0 to 177</class></pre>							
	Data #	Oata columns (total 14 columns): # Column		Non-Null Count	Dtuno	20		
				Non-Null Count	Dtype 			
	0	alcohol		178 non-null	float64			
	1	malic_acid		178 non-null	float64			
	2	ash		178 non-null	float64			
	3	alcalinity_of_as	h	178 non-null	float64			
	4	magnesium		178 non-null	float64			
	5 total_phenols			178 non-null	float64			
	6	- <u>-</u> -		178 non-null	float64			
				178 non-null	float64			
				178 non-null	float64			
	9	color_intensity		178 non-null	float64			
	10	hue		178 non-null	float64			

[23]: df.target.hist()

12 proline

dtypes: float64(13), object(1)

memory usage: 18.8+ KB

13 target

178 non-null

178 non-null

float64

float64

object

11 od280/od315_of_diluted_wines 178 non-null

[23]: <AxesSubplot:>

The above shows that the target variable is quite balanced.

1.3.3 Step 3 - Create train and test data

```
[26]: # Split
train, test = train_test_split(df, test_size = 0.3, stratify = df['target'])

X_train = train.drop('target', axis=1)
y_train = train['target']

X_test = test.drop('target', axis = 1)
y_test = test['target']

# shapes
X_train.shape, X_test.shape
```

[26]: ((124, 13), (54, 13))

1.3.4 Step 4 - Build the random forest model

In this step, we will build the random forest model using sklearn, see https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html for details.

```
[28]: # build model
clf = RandomForestClassifier(max_depth=5, random_state=0)
# fit to data
clf.fit(X_train, y_train)
clf
```

[28]: RandomForestClassifier(max_depth=5, random_state=0)

1.3.5 Step 5 - Evaluate the performance

```
[30]: # prediction on train
pred_train = clf.predict(X_train)

target_names = ['class 0', 'class 1', 'class 2']
print(classification_report(y_train, pred_train, target_names=target_names))
```

	precision	recall	f1-score	support
class 0	1.00	1.00	1.00	41
class 1	1.00	1.00	1.00	50
class 2	1.00	1.00	1.00	33
accuracy			1.00	124
macro avg	1.00	1.00	1.00	124
weighted avg	1.00	1.00	1.00	124

The F1 score on train data is 1.00.

```
[32]: # prediction on test
pred_test = clf.predict(X_test)

target_names = ['class 0', 'class 1', 'class 2']
print(classification_report(y_test, pred_test, target_names=target_names))
```

	precision	recall	f1-score	support
	_			
class 0	1.00	0.89	0.94	18
class 1	0.90	0.90	0.90	21
class 2	0.88	1.00	0.94	15
accuracy			0.93	54
macro avg	0.93	0.93	0.93	54

weighted avg 0.93 0.93 54

The F1 score on test data is 0.93.

$\mathbf{2}$ Task

Try to find the best set of parameters for the random forest model. Try to build another ensemble approaches, using different ensemble set of models, e.g. the combination of LR and SVM.