

## Classification of spiral images of healthy individuals and with Parkinson's disease using convolutional neural networks

João Paulo Folador

jpfolador@gmail.com, doctoral student

Prof. Adriano O. Andrade, PhD

adriano@ufu.br

Centre for Innovation and Technology Assessment in Health, Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Brazil http://www.niats.feelt.ufu.br/



### Parkinson's disease





#### Motivation

- Parkinson's disease (PD) is present in about 1% of the world's population over 65 years, and still remains incurable.
- PD is a disease that has a difficult diagnosis.
- Know the various symptoms is the key to the correct diagnosis and understanding of the disease.
- Techniques involving Artificial Intelligence have been applied to aid in the detection of symptoms, and techniques involving deep learning have achieved more expressive results than traditional techniques.



#### Data collection

 The Research Ethics Committee of the Federal University of Uberlândia approved the research under the number 07075413.6.0000.5152.

| Group  | Total | Sex (F/M) | Age (years)      |
|--------|-------|-----------|------------------|
| Health | 12    | 8/4       | $60,08 \pm 6,13$ |
| PD     | 15    | 7/8       | $65,33 \pm 9,17$ |



## Data collection

- Original drawings done by the participants
- First, the participant followed the model of Archimedes' spiral and then performed the drawing freely
- The images were scanned and preprocessed (Gimp software was used in this step)





# In lumine scientiae progressum

#### Data collection



- Each individual drew about 3 (three) or 4 (four) spirals
- The spirals were resized to width and height of 256 x 256 pixels.
- 51 images was collected from each group, totalizing 102 images.



## Convolutional Neural Network (CNN)

Convolution + pooling layers

Fully connected layers



- 1: Input image of Convolutional Neural Network
- 2: Convolution layer that yields the feature maps
- 3: Pooling layer is used to dimensionality reduction
- 4: The Fully connected layer represents a vector with all features to classify the images (it looks like a multilayer perceptron network MLP)
- 5: The last layer has one neuron (unit) to classify between two kinds of classes



## Example of a CNN





### Data augmentation

A technique to increase the data, there is the increase of the number of samples modifying the original sample and then apply it in CNN

- Rotation (rotation\_range=20°)
- Vertical flipping (vertical\_flip=true)
- Shear (shear range=0.2)
- Horizontal shifting (width\_shift\_range=0.2)
- Zoom (zoom\_range=0.2)
- Rescale (rescale=1./255)



original

rotation

vertical flipping



## Development environment

- API Keras, a library to explore the machine learning techniques
- Program language Python 3.5
- TensorFlow 1.2, a engine to work with machine learning
- The CPU and GPU process all the calculus in parallel by the library CUDA from NVidia
- Intel i7 2.4 GHz + 8 GB RAM DDR 3 + Video board de 2GB Nvidia GT 650









#### Results

#### 75% training and 25% validation





#### Results

**Accuracy** is expected to measure how well the test predicts both categories

**Specificity** the ability of the system to accurately predict the absence of the condition for cases that do not actually have it.

| Test | Steps per<br>epoch | Epochs | Nº of convolution layers | Average validation accuracy | Specificity | Time<br>spent (s) |
|------|--------------------|--------|--------------------------|-----------------------------|-------------|-------------------|
| 1    | 100                | 10     | 2                        | 73.4 %                      | 62.0 %      | 64                |
| 2    | 200                | 10     | 2                        | 75.2 %                      | 60.4 %      | 158               |
| 3    | 800                | 10     | 2                        | <b>78.9</b> %               | 64.8 %      | 727               |
| 4    | 1000               | 10     | 2                        | 78.0 %                      | 59.8 %      | 1854              |



### Results





#### Discuss and conclusion

- The classic configuration of CNN obtained a satisfactory classification (average of 76.3%) in the identification of healthy individuals and Parkinson's disease spirals.
- Larger data volume is required to perform other tests and get better results
- We need **refine the network parameters**, test other error calculation functions other than the mean squared error, etc.
- Test another architecture CNNs
- A simple CNN network with few images brought a satisfactory result illustrating the high performance of the Deep Learning techniques



## Acknowledgements







#### Thank you!

CAPES - Programa CAPES / DFATD-88887.159028 / 2017-00 FAPEMIG-APQ-00942-17

A. O. Andrade é Bolsista de Produtividade do CNPq, Brasil (304818/2018-6 e 305223 / 2014-3)



## Classification of spiral images of healthy individuals and with Parkinson's disease using convolutional neural networks

João Paulo Folador

jpfolador@gmail.com, doctoral student

Prof. Adriano O. Andrade, PhD

adriano@ufu.br

Centre for Innovation and Technology Assessment in Health, Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Brazil http://www.niats.feelt.ufu.br/