Exercice 254:

Déterminer les $n \in \mathbb{N}$ tel qu'existe $A \in \mathcal{M}_n(\mathbb{R})$ de polynôme minimal $X^3 + 2X + 2$. Même question dans $\mathcal{M}_n(\mathbb{Q})$.

Pour $\mathcal{M}_n(\mathbb{R})$: On note $P = X^3 + 2X + 2$. On obtient $P' = 3X^2 + 2$.

Ainsi, par théorème de la bijection, P n'admet qu'une seule racine réel α . On note β et $\overline{\beta}$ ses racines complexes conjuguées.

Pour n < 3, il n'existe pas de matrice de $\mathcal{M}_n(\mathbb{R})$ admettant P comme polynôme minimal (Théorème de Caley-Hamilton).

Pour n=3, la matrice $A=\begin{pmatrix} 0 & 0 & 2 \\ -1 & 0 & 2 \\ 0 & -1 & 0 \end{pmatrix}$ admet comme polynôme caractéristique $\chi_A=P$.

P est un polynôme annulateur de A (théorème de Caley-Hamilton), et P est scindé à racines simples donc P est le polynôme minimal de A.

Pour n > 3, la matrice $B = \begin{pmatrix} \alpha I_{n-3} \\ A \end{pmatrix}$ admet comme polynôme caractéristique $\chi_B = (X - \alpha)^{n-3} P$.

P est un polynôme annulateur de B et tout polynôme annulateur de B divise P donc P est le polynôme minimal de B.

 $\begin{aligned} & \mathbf{Pour} \ \mathcal{M}_n(\mathbb{Q}) : \quad \text{On suppose par l'absurde que } \alpha \in \mathbb{Q}, \ \text{donc il existe} \ (p,q) \in \mathbb{Z} \times \mathbb{N}^* \ \text{t.q.} \ p \wedge q = 1. \\ & P(\alpha) = 0 \implies \left(\frac{p}{q}\right)^3 + 2 \cdot \frac{p}{q} + 2 = 0 \implies p^3 + 2pq^2 + 2q^3 = 0 \ \text{donc par th\'eor\`eme de Gauss}, \ p|2 \ \text{et} \ q|2 \ \text{donc} \\ & \alpha \in \left\{\frac{1}{2},1,2,-\frac{1}{2},-1,-2,\right\} \ \text{Absurde. Donc} \ \alpha \notin \mathbb{Q} \ \text{et} \ P, \ \text{de degr\'e} \ 3 \ , \ \text{est irr\'eductible dans} \ \mathbb{Q}[X]. \end{aligned}$

Pour $n \in 3\mathbb{N}$, la matrice $C = \begin{pmatrix} A & & \\ & \ddots & \\ & & A \end{pmatrix} \in \mathcal{M}_n(\mathbb{Q})$ admet bien comme polynôme minimal P.

Pour $n \notin 3\mathbb{N}$, par l'absurde on suppose qu'il existe $C \in \mathcal{M}_n(\mathbb{Q})$ ayant P comme polynôme minimal. χ_C et P ont même racines, donc $\chi_C = (X - \alpha)^p \left((X - \beta)(X - \overline{\beta}) \right)^q$ avec p + 2q = n donc $p \neq q$ car $n \notin 3\mathbb{N}$.

- Si p > q, $\chi_C = (X \alpha)^{p-q} P^q$ donc $(X \alpha)^{p-q} \in \mathbb{Q}[X]$. Or le coefficient de degré p - q - 1 de $(X - \alpha)^{p-q}$ est $(q - p)\alpha \notin \mathbb{Q}$. Absurde.
- Si q > p, $\chi_C = ((X \beta)(X \overline{\beta}))^{q-p} P^p$ donc $((X \beta)(X \overline{\beta}))^{q-p} \in \mathbb{Q}[X]$. Or le coefficient de degré q - p - 1 de $((X - \beta)(X - \overline{\beta}))^{q-p}$ est $2\operatorname{Re}(\beta)$. Par relation coefficient racines sur P, $\alpha + 2\operatorname{Re}(\beta) = 0$ donc $(p - q)(2\operatorname{Re}(\beta)) \notin \mathbb{Q}$. Absurde.