Lecture_2

Lecture_2

- 1. Kinematic Chain
- 2. Mobility

Gruebler's Equation Summary: Mobility

- 3. Paradoxes
- 4. Inversion
- 5. Grashof Conditions

1. Kinematic Chain

is an assembly of links connected by means of pairs

- Locked Chain
- A Constrained Chain
- An Unconstrained Chain

2. Mobility

the mobility is the numbers of freedom

Gruebler's Equation

$$M = 3(L-1) - 2J_1 - J_2$$

Where:

- M: mobility
- *L*: number of links (**including ground**)
- J_1 : number of 1 degree of freedom joints
- J_2 : number of 2 degrees of freedom joints

where k links connect at a single joint, it must be counted as k-1 joints

Summary: Mobility

- ullet M>1: maybe an unconstrained mechanism
- M=1: a constrained mechanism
- M=0: a statically determinate structure
- ullet M<0: a statically indeterminate structure

3. Paradoxes

Because the Gruebler criterion pays no attention to link sizes or shapes, it can give misleading results in the face of unique geometric configurations.

4. Inversion

an inversion is created by grounding a different link in the kinematic chain.

5. Grashof Conditions

Let:

 $S = length \ of \ shortest \ link$

 $L = length \ of \ longest \ link$

 $P = length \ of \ one \ remaining \ link$

 $Q = length \ of \ other \ remaining \ link$

If $S + L \leq P + Q$, then the linkage is Grashof

• Class I case, S+L < P+Q

At least one link will be capable of making a full revolution with respect to the ground plane
Ground either link adjacent to the shortest: **Crank Rocker**Ground the shortest link adjacent to the shortest: **Double Crank**Ground the opposite link to the shortest: **Grashof Double Rocker**

- • Class II case, S+L>P+Q All inversions will be Triple Rockers
- $\bullet \ \ {\bf Class \, III \, \, case, } \ S+L=P+Q$

All inversions will be either **Double Ranks** or **Crank Rockers**

(d) Tripe-rocker #4 (RRR4)

(c) Triple-rocker #3 (RRR3)