Polynomials

Roots and Discriminants

Find Root

$$Ax^{2} + 2Bx + C = 0$$

$$Ax^{3} + 3Bx^{2} + 3Cx + D = 0$$

$$Ax^{4} + 4Bx^{3} + 6Cx^{2} + 4Dx + E = 0$$

Step 1) Translate Parameter

$$x = \hat{x} - B/A$$

Find Root

$$A\hat{x}^{2} + \hat{C} = 0$$

$$A\hat{x}^{3} + 3\hat{C}\hat{x} + \hat{D} = 0$$

$$A\hat{x}^{4} + 6\hat{C}\hat{x}^{2} + 4\hat{D}\hat{x} + \hat{E} = 0$$

Sum of Roots =

Step 2) Solve simpler Polynomials

Step 3) Transform Back

$$x = \hat{x} - B/A$$

Homogeneous Polynomials

$$Ax^{2} + 2Bxw + Cw^{2} = 0$$

$$Ax^{3} + 3Bx^{2}w + 3Cxw^{2} + Dw^{3} = 0$$

$$Ax^{4} + 4Bx^{3} + 6Cx^{2}w + 4Dxw^{2} + Ew^{3} = 0$$

$$[x \ w] = [\hat{x} \ \hat{x}] \stackrel{\text{\'e}}{=} \frac{1}{A} b \mathring{u} \mathring{u}$$

Solving Homogeneous Cubic Polynomials

$$Ax^3 + 3Bx^2w + 3Cxw^2 + Dw^3 = 0$$

$$\begin{bmatrix} x & w \end{bmatrix} \stackrel{\text{\'e}eA}{\text{\'e}eB} \quad \begin{array}{ccc} B \grave{\textbf{u}} & \acute{\textbf{e}}B & C \grave{\textbf{u}}\grave{\textbf{u}}\acute{\textbf{e}}x \grave{\textbf{u}}\acute{\textbf{e}}x \grave{\textbf{u}} \\ \mathring{\textbf{e}}\acute{\textbf{e}}B & C \mathring{\textbf{u}} & \acute{\textbf{e}}C & D \mathring{\textbf{u}}\mathring{\textbf{u}}\acute{\textbf{e}}w \mathring{\textbf{u}}\acute{\textbf{e}}w \mathring{\textbf{u}} \\ \end{array} = 0$$

General Homogeneous Parameter Transform

$$\begin{bmatrix} x & w \end{bmatrix} = \begin{bmatrix} \hat{x} & \hat{w} \end{bmatrix} \hat{e}^{a} \quad b \hat{u} \\ \hat{e}^{c} \quad d \hat{u} \end{bmatrix}$$
$$\mathbf{p} = \hat{\mathbf{p}} \mathbf{T}$$

Elements of Transformed C

$$\mathbf{T} = \stackrel{\text{\'e}a}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}} \stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}} \stackrel{\text{\'e}}}{\stackrel{\text{\'e}}} \stackrel{\text{\'e}}}{\stackrel{\text{\'e}}} \stackrel{\text{\'e}}}{\stackrel{\text{\'e}}} \stackrel{\text{\'e}}}{\stackrel{\text{\'e}}} \stackrel{\text{\'e}}{\stackrel{\text{\'e}}}} \stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}} \stackrel{\text{\'e}}}{\stackrel{\text{\'e}}} \stackrel{\text{\'e}}}{\stackrel{\text{\'e}}} \stackrel{\text{\'e}}}{\stackrel{\text{\'e}}} \stackrel{\text{\'e}}}{\stackrel{\text{\'e}}} \stackrel{\text{\'e}}} \stackrel{\text{\'e}}}{\stackrel{\text{\'e}}} \stackrel{\text{\'e}}}{\stackrel{\text{\'e}}} \stackrel{\text{\'e}}} \stackrel{\text{\'e}}}{\stackrel{\text{\'e}}} \stackrel{\text{\'e}}} \stackrel{\text{\'e}} \stackrel{\text{\'e}}} \stackrel{\text$$

$$\begin{array}{c} () \\$$

Elements of Transformed Cubic

$$\hat{C} = \begin{array}{c} \hat{C}, \hat{d} \\ \hat{C}, \hat{d} \end{array}$$

Make B[^] zero

When is Transform Singular

Evaluate C^

Apply variant of epsilondelta

Apply

Final C^

Evaluate D^

Evaluate D^

Transformed Cubic

$$\hat{A}\hat{x}^3 + 3\hat{C}\hat{x}\hat{w}^2 + \hat{D}\hat{w}^3 = \hat{A}(\hat{x}^3 + 3\hat{C}\hat{x}\hat{w}^2 + \hat{D}\hat{w}^3)$$

An Interesting Choice for a,b

Implications for value of c,d

c,d C

Solution

1) Find Roots of

2) Calculate

3) Solve for x^

$$\hat{x}^3 + \hat{D}\hat{w}^3 = 0$$

4) Transform back via

$$[x \ w] = [\hat{x} \ \hat{w}] \stackrel{\text{\'e}a}{=} b \hat{u}$$

$$\stackrel{\text{\'e}}{=} d \hat{u}$$

Only Time This Won't Work

(a,b)=(c,d) is a double root of Quadratic (a,b) is a root of C

It is a double root of C

1DH Discriminants

Why Discriminants Work

Why Discriminants Work

Tangency

Parametrize Line

$$P(a,b) = aR + bS$$

$$\mathbf{P} = \begin{bmatrix} a & b \end{bmatrix} \stackrel{\text{\'e}}{\mathbb{R}^1} \quad R^2 \quad R^3 \mathring{\mathbf{u}}$$

$$\stackrel{\text{\re}}{\mathbb{R}^2} \quad S^2 \quad S^3 \mathring{\mathbf{u}}$$

$$\mathbf{P} = \mathbf{aV}$$

Points on Line And Quadric

Double Roots Mean Tangent

Reinterpret Diagram

Fragment
$$\mathbf{V} = \stackrel{\text{\'e}R^1}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}}} \stackrel{R^2}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}}} \stackrel{R^3}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}}}$$

$$\mathbf{L} = \hat{\mathbf{e}} L_1 \hat{\mathbf{u}}$$

$$\hat{\mathbf{e}} L_2 \hat{\mathbf{u}}$$

$$\hat{\mathbf{e}} L_3 \hat{\mathbf{g}}$$

Line Tangent To Quadric

Line Tangent to Cubic

Polynomials

Resultants

Resultant of Two Polynomials $Q(X) = AX^2 + 2BX + C$

$$Q(X) = AX^{2} + 2BX + C$$
$$R(X) = DX^{2} + 2EX + F$$

$$\mathbf{R}(Q,R) = f(A,B,C,D,E,F)$$

 $\mathbf{R} = 0 \ \hat{\mathbf{U}} \quad Q \text{ and } R \text{ have a common root}$

Calculating the Resultant

$$Q(X) = AX^{2} + 2BX + C = 0$$

$$R(X) = DX^{2} + 2EX + F = 0$$

$$aQ + bR = 0$$

$$DQ - AR = 0$$

$$D(AX^{2} + 2BX + C)$$

$$-A(DX^{2} + 2EX + F) = 0$$

$$2(BD - AE)X + (CD - AF) = 0$$

Resultant of Q and R

$$Q(x, w) = Ax^{2} + 2Bxw + Cw^{2}$$

$$R(x, w) = Dx^{2} + 2Exw + Fw^{2}$$

$$\mathbf{R}(Q,R) = +A^2F^2 - 4ABEF + 4ACE^2 - 2ACDF$$

+4B^2DF - 4BCED +C^2D^2

$$\mathbf{R}(Q,R) = \begin{array}{|c|c|} \hline R & R \\ \hline Q & Q \end{array} - \begin{array}{|c|c|} \hline Q & R \\ \hline Q & R \end{array}$$

Two Forms of Resultant

Identities:

Resultant of Q and C

$$\mathbf{C}(x, w) = Ax^3 + 3Bx^2w + 3Cxw^2 + Dw^3$$

 $\mathbf{Q}(x, w) = Ex^2 + 2Fxw + Gw^2$

$$\mathbf{R}(\mathbf{Q}, \mathbf{C}) = -A^{2}(G^{3}) + 6AB(FG^{2}) - 6AC(2F^{2}G - EG^{2}) - 2AD(-4F^{3} + 3EFG)$$
$$-9B^{2}(EG^{2}) + 18BC(EFG) - 6BD(2EF^{2} - E^{2}G)$$
$$-9C^{2}(E^{2}G) + 6CD(E^{2}F)$$
$$-D^{2}(E^{3})$$

$$R(Q,C) = -2$$

Forms of Q,C Resultant

Identit

y:

Resultant of two Cubics?

What's Really Going on With Resultants?

Possible Relationships Roots of P between P and Q

Linear Combos of Q and R

$$aQ + bR = 0$$

Q,R Have Enclosed Roots

$$aQ + bR = 0$$

Q,R Have Interleaved Roots

$$aQ + bR = 0$$

Q,R Have Common Root

$$aQ + bR = 0$$

Three Possible Evolutions of Roots of \mathbb{R}^{2Q+bR}

$$\det(aQ + bR) = \alpha^2 + 2\alpha\beta + 2\alpha\beta + \beta \sqrt{R} + \beta \sqrt{R}$$

$$\mathbf{R}(Q,R) = \begin{array}{|c|c|} \hline R & R \\ \hline Q & Q \\ \hline \end{array}$$

Possible Evolutions of Roots of Two Cubics

$$det(a\mathbf{C} + b\mathbf{D}) =$$

The Cross Ratio

$$\chi = \frac{|\mathbf{AB}|/|\mathbf{BD}|}{|\mathbf{AC}|/|\mathbf{CD}|}$$

$$c = \frac{|\mathbf{p}'\mathbf{q}\mathbf{x}\mathbf{m}||\mathbf{r}'\mathbf{s}\mathbf{x}\mathbf{m}|}{|\mathbf{q}'\mathbf{s}\mathbf{x}\mathbf{m}||\mathbf{p}'\mathbf{r}\mathbf{x}\mathbf{m}|}$$

Generalized Cross Ratio of Two Quadratic Polynomials

2DH Curves

Quadratic

The Quadratic Curve Equation

$$Ax^{2} +2Bxy+Cy^{2}$$
$$+2Dxw+2Eyw$$
$$+Fw^{2} = 0$$

$$\begin{bmatrix} x & y & w \end{bmatrix} \stackrel{\acute{e}A}{\stackrel{e}{e}B} & C & E \stackrel{\acute{u}\acute{e}}{\stackrel{e}{u}\acute{e}} y \stackrel{\acute{u}}{\stackrel{\iota}{u}} = \mathbf{p} \mathbf{Q} \mathbf{p}^T = 0 \\ \stackrel{\acute{e}D}{\stackrel{e}{e}D} & E & F \stackrel{\acute{u}\acute{e}}{\stackrel{e}{e}} w \stackrel{\acute{e}}{\stackrel{e}{u}}$$

Transform to

$$U_i = -1, 0, +1$$

The Catalog

$$x^{2} + y^{2} = 0$$

Analysis/Synthesis of Forms

- Detect Which Type
- Construct Desired Type from Geometric Info
- Deconstruct Known Type into Geometric Info
- Stationary Transforms

Reducible Quadratics

$$\mathbf{PQP}^T = (\mathbf{P}\mathbf{X})^2$$

$$\mathbf{PQP}^{T} = 2(\mathbf{P}\mathbf{X})(\mathbf{P}\mathbf{M})$$

$$\mathbf{PQP}^{T} = (\mathbf{P}\mathbf{X}\mathbf{L})^{2} + (\mathbf{P}\mathbf{X}\mathbf{M})^{2}$$

Determinant of Reducible

Q

TraceAdjoint of Reducible

Q

Conic Sections and Polars

Second Polar

Third Polar

$$P_3 \rightarrow Q \leftarrow P_2 = 0$$

Polar Line To P3

How Does Third Polar Relate to Q?

=

P3 Relation to Q

Make A Transformation Out Of P1,P2,P3

Conic Section on 5 Points

$$Ax^2 + 2Bxy + Cy^2 + 2Dxw + 2Eyw + Fw^2 = 0$$

$\acute{e}_{\chi_1^2}$	$2x_1y_1$	y_1^2	$2x_1w_1$	$2y_1w_1$	w ² ùê A ù	é0ù
éx ₁ ² ê M	M	M	M	M	Μ <mark>ψê</mark> ρύ	ê ₀ ú
ê M ê M	M	M	M	M	Múê ú	= ê 0 ý
	M	М	M	M	Múêrú	e ê ⁰ ú
ê X ₅ ²	$2x_5y_5$	y_{5}^{2}	$2x_5w_5$	$2y_5w_5$	éAù W ² ùêBú MúêCú MúêCú MúêDú MúêE W ² ùêFú	ĝoģ

A (Better) Way

$$Q_1 = \begin{array}{c} A & C \\ \hline B & D \end{array} + \begin{array}{c} D & A \\ \hline C & B \end{array}$$

$$Q_2 = \begin{array}{c|c} & & & \\ \hline & & \\ \hline & & & \\ \hline \end{array}$$

Linear Combo of Q1 and Q2

$$\mathbf{Q} = a \mathbf{Q}_1 + b \mathbf{Q}_2$$

Pick α,β to make Point E be on

Q

$$0 = \mathbf{E}\mathbf{Q}\mathbf{E}^{T}$$

$$= \mathbf{E}(a\mathbf{Q}_{1} + b\mathbf{Q}_{2})\mathbf{E}^{T}$$

$$= a(\mathbf{E}\mathbf{Q}_{1}\mathbf{E}^{T}) + b(\mathbf{E}\mathbf{Q}_{2}\mathbf{E}^{T})$$

$$a = \mathbf{E}\mathbf{Q}_2\mathbf{E}^T$$
$$b = -\mathbf{E}\mathbf{Q}_1\mathbf{E}^T$$

Quadratic on 5 Points

$$\mathbf{Q} = a \mathbf{Q}_1 + b \mathbf{Q}_2$$

Six Points (ABCDEF) on Quadratic

Pascal's Theorem

2DH Curves

Cubic

The Cubic Curve Equation

$$Ax^{3} +3Bx^{2}y +3Cxy^{2} +Dy^{3}$$
$$+3Ex^{2}w+6Fxyw+3Gy^{2}w$$
$$+3Hxw^{2} +3Jyw^{2}$$
$$+Kw^{3} = 0$$

Standard Positions

$$Ax^{3} +3Bx^{2}y +3Cxy^{2} +Dy^{3}$$

$$+3Ex^{2}w+6Fxyw+3Gy^{2}w$$

$$+3Hxw^{2} +3Jyw^{2}$$

$$+Kw^{3}$$

$$=0$$

Transform to make some coefficients zero

$$Ax^{3} + 3Bx^{2}y + 3Cxy^{2} + Dy^{3}$$
 $Ax^{3} + 3Bx^{2}y + 3Cxy^{2} + Dy^{3}$
 $+3Ex^{2}w + 6Fxyw + 3Gy^{2}w$ $+3Ex^{2}w + 6Fxyw + 3Gy^{2}w$
 $+3Hxw^{2} + 3Jyw^{2}$ $+3Hxw^{2} + 3Jyw^{2}$
 $+Kw^{3}$ $+Kw^{3}$
 $=0$ $=0$

$$Ax^{3} + 3Bx^{2}y + 3Cxy^{2} + Dy^{3}$$
 $Ax^{3} + 3Bx^{2}y + 3Cxy^{2} + Dy^{3}$
 $+3Ex^{2}w + 6Fxyw + 3Gy^{2}w$ $+3Ex^{2}w + 6Fxyw + 3Gy^{2}w$
 $+3Hxw^{2} + 3Jyw^{2}$ $+3Hxw^{2} + 3Jyw^{2}$
 $+Kw^{3}$ $+Kw^{3}$
 $=0$ $=0$

$$Ax^{3} +3Bx^{2}y +3Cxy^{2} +Dy^{3}$$

$$+3Ex^{2}w+6Fxyw+3Gy^{2}w$$

$$+3Hxw^{2} +3Jyw^{2}$$

$$+Kw^{3}$$

$$=0$$

My Favorite Standard Position

$$Ax^{3} +3Bx^{2}y +3Cxy^{2} +Dy^{3}$$

$$+3Ex^{2}w+6Fxyw+3Gy^{2}w$$

$$+3Hxw^{2} +3Jyw^{2}$$

$$+Kw^{3}$$

$$=0$$

$$-3Gy^2w = Ax^3 + 3Ex^2w + 3Hxw^2 + Kw^3$$

The Catalog – Reducible Cubics

$$-3Gy^{2}w = Ax^{3} + 3Ex^{2}w + 3Hxw^{2} + Kw^{3}$$

$$G = 0$$

$$0 = Ax^{3} + 3Ex^{2}w + 3Hxw^{2} + Kw^{3}$$

The Catalog – Reducible Cubics – $3Cv^2w = \Delta v^3 + 3Ev^2w + 3Hvw^2$

| DICS
$$-3Gy^2w = Ax^3 + 3Ex^2w + 3Hxw^2 + Kw^3$$

 $A = 0$

$$0 = |3Ex^2 + 3Hxw + Kw^2 - 3Gy^2| w$$

The Catalog

$$G = 0 - 3Gy^{2}w = Ax^{3} + 3Ex^{2}w + 3Hxw^{2} + Kw^{3}$$

$$A = 0$$

$$y^{2}w = x^{3} + 3Hxw^{2} + Kw^{3}$$

$$Y = \sqrt{X^{3} + cX + d}$$

Not A Two Parameter Class

$$Y = \sqrt{X^3 + cX + d}$$

Scale in X and Y

$$sY = \sqrt{\left|\sqrt[3]{s^2}X\right|^3 + c\left(\sqrt[3]{s^2}X\right) + d}$$

$$Y = \sqrt{X^3 + \hat{c}X + \hat{d}}$$

 $\hat{c} = cs^{-4/3}, \hat{d} = ds^{-2}$ $\frac{c^3}{d^2} = \frac{\hat{c}^3}{\hat{d}^2} = \text{constant}$

Space of Irreducible Cubics

$$\frac{c^3}{d^2}$$
 =constant

Plot Y squared

$$Y^2 = X^3 + cX + d$$

Samples of Irreducible Cubics

$$Y = \sqrt{X^3 + cX + d}$$

Particularly Interesting

Cases

$$Y^2 = X^3 - 3X + 2$$

= $(X + 2) (X - 1)^2$

$$Y^2 = X^3 - 3X - 2$$

= $(X - 2)(X + 1)^2$

Acnode and Crunode

$$Y^2 = X^3 - 3X + 2$$

= $(X + 2) (X - 1)^2$

$$Y^2 = X^3 - 3X - 2$$

= $(X - 2)(X + 1)^2$

Irreducible Cubic Curves

$$x^3 - 3xw^2 + 2w^3 - y^2w = 0$$

$$0 = x^3 - y^2 w$$

$$0 = x^3 - y^2 w$$
 $x^3 - 3xw^2 - 2w^3 - y^2 w = 0$

$$y^2w = x^3 + cxw^2 + dw^3$$

Invariants

$$I_{cube} = 24G^2 (E^2 - AH)$$

$$I_{hexagon} = 24G^{3} \left(A(EH - AK) + 2E(AH - E^{2}) \right)$$

$$\mathbf{D} = 16A^3G^6 \left(A^3K^2 + 4H^3 \right)$$

Doubly Reducible

$$I_{cube} = 0$$
 $G = 0$
 $I_{hexagon} = 0$
 $\mathbf{D} = 0$

Reducible

$$I_{cube} = 24G^{2}E^{2}$$

$$A = 0 \quad I_{hexagon} = -48G^{3}E^{3}$$

$$\mathbf{D} = 0$$

Irreducible

$$I_{cube} = -24H$$

$$G = 1, A = 1, E = 0$$
 $I_{hexagon} = -24K$

D=16
$$(K^2 + 4H^3)$$

SubAtomic Cubics - Reducible

+...

SubAtomic Cubics - Reducible

+...

SubAtomic Cubics - Irreducible

SubAtomic Cubics - Irreducible C = aA + bB

Caylean

First Derivatives

$$f(x, y, w) = Ax^{3} + 3Bx^{2}y + 3Cxy^{2} + Dy^{3} + 3Ex^{2}w + 6Fxyw + 3Gy^{2}w + 3Hxw^{2} + 3Jyw^{2} + Kw^{3}$$

$$\frac{\P f}{\P x} = f_x = 3Ax^2 + 6Bxy + 3Cy^2$$
$$+6Exw + 6Fyw$$
$$+3Hw^2$$

Second Derivatives

$$\frac{\P_{X}}{\P_{X}} = f_{X} = 3AX^{2} + 6BXy + 3Cy^{2} \qquad f_{XX} = 6AX + 6By + 6Ew \\
+6EXW + 6FyW \qquad f_{XY} = 6BX + 6Cy + 6FW \\
+3HW^{2} \qquad f_{XW} = 6EX + 6Fy + 6HW^{2}$$

Typical Points

Inflection Points

$$Q = C P$$

$$\det \mathbf{Q} = 0$$

Hessian

$$\mathbf{H}(x,y,w) = \det \hat{\mathbf{e}} f f_{xy} \qquad \underset{yw}{f_{xw}} \dot{\mathbf{u}} = \mathbf{P} \mathbf{C} \mathbf{C} \mathbf{P} = 0$$

$$\hat{\mathbf{e}} f f_{xw} \qquad \underset{yw}{f_{xw}} \dot{\mathbf{u}} = \mathbf{P} \mathbf{C} \mathbf{C} \mathbf{P} = 0$$

Hessian Diagram Forms

Note: Hessian transforms with original curve

Hessian of Hessian

Tensor Diagrams

Summary

Basic Points of Tensor Diagrams

- Fixes Representation Problems
 - Co/Contravariant
 - Higher Order with more prongs
- Manipulation Tools
 - Epsilon Delta identity
 - Substitution
- Representation of Invariant Quantities

Good Things

- Complicated polynomials have compact representation
- Aids visualization of algebraic structure
- Factoring is easier (local control)
- Suggests invariant quantities

Bad Things

- Combinatorial explosion for high orders and high dimensionality
- Resultants and Discriminants not as pretty as I would like

Tools for experimentation

- Diagram drawing program that can drag connected networks
- Symbolic algebra program that specializes in epsilons

Work to do

- Relate invariant diagrams to geometry (Geom to Dgm, Dgm to Geom)
 - Raw diagram fragments
 - Cross ratio generalizations
 - Not enough diagrams to cover all geometric cases
- Push to higher orders/dimensions