atp=

ALM i praksis - Dag 2

1. og 2. november 2016

Indhold - Blok B

Feedback på øvelse

Renteafdækning

- Renteafdækningsinstrumenter
- Solvens 2 diskonteringskurven og dennes risici

Øvelse

- Afdækning af passivernes rentefølesomhed
- Case study: ATP's nye livrenteprodukt

atp=

Renteafdækning

Den mest almindelige swap er en par-swap

• En par-swap er sammensat af to instrumenter

- En 'bullet' obligation
 - Fast, årlig kupon + tilbagebetaling af hovedstol ved udløb
- En 'floater' obligation
 - Variabel, halvårlig kupon + tilbagebetaling af hovedstol ved udløb

Bullet bond (stående lån)

- En 'bullet' obligation består af
 - en række faste, årlig kuponbetalinger
 - tilbagebetaling af hovedstol ved udløb

$$cf = \{c_{T_1}, cf_{T_2}, \dots, cf_{T_n}\}, \text{ hvor } cf_{T_1} = \dots = cf_{T_{n-1}} = k \text{ og } cf_{T_n} = 100 + k$$

høj varighed

$$PV(t, R_t(\cdot)) = \sum_{i=1}^{n} cf_{T_i} \cdot \left(1 + R_t(T_i)\right)^{-(T_i - t)}$$

Floater

- En 'floater' obligation består af
 - Variabel, halvårlig kupon
 - tilbagebetaling af hovedstol ved udløb
- Kuponen fastsættes forud for et halvt år ad gangen
 - så nutidsværdien bliver 100 ved hver 'fixing'
- Sidste gang kuponen bliver fastsat (til tid T_{n-1}) gælder der derfor

$$PV_{T_{n-1}} = (100 + k_{T_{n-1}}) \cdot (1 + R_{T_{n-1}}(T_n))^{-(T_n - T_{n-1})} \equiv 100$$

• Dette gælder rekursivt tilbage til den første kupon

$$k_0 = \frac{100}{\left(1 + R_t(T_1)\right)^{-(T_1 - t)}} - 100$$

Receiver swap

- I en receiver-swap modtager man betalingerne fra bullet-obligationen og betaler den variable rente på floateren
 - Ved indgåelse er markedsværdien af hvert ben 100 ('par'), dvs. den samlede værdi af parswappen er nul.
 - Hovedstolen på hvert ben er den samme, så hovedstolene udveksles ikke
- Man bytter med andre ord en flydende rente for en fast heraf navnet 'swap'

Ulemper ved par swaps

- Par swaps er det mest benyttede afdækningsinstrument
- Kan være komplekse at fortolke, da de bidrager til nøglevarigheden i alle løbetidssegmenter
- Fører til højere gearing af balancen
 - kan medføre 'shorting' i de korte løbetider ved høje renteniveauer

Nulkupon swaps

- I kurset benytter vi i stedet nulkupon swaps
- En nulkupon-swap består af
 - En 'Nulkupon' obligation
 - Én fast betaling til tid T

$$cf = \{cf_T\}, \text{ hvor } cf_T = 100$$

 $PV(t, R_t(T)) = cf_T \cdot (1 + R_t(T))^{-(T-t)}$

- Den samme 'floater' som for par swaps
 - Hovedstolen er ikke 'par' ...
 - ... men PV af det nulkupon-obligationen ved udstedelse ...
 - ... så den samlede værdi af swappen er nul ved udstedelse

Solvens 2 diskonteringskurven

- Under Solvens 2 anvendes en modificeret diskonteringskurve
 - udgangspunktet er den observerede rentekurve
- Rentekurven modificeres efter
 - last liquid point: længste løbetid, som i praksis kan afdækkes
 - ultimate forward rate: den langsigtede (ukendte) rente i fremtiden
 - converence period: overgangsperioden fra LLP til UFR er realiseret
 - hertil kommer nogle "tillæg" som ikke omhandles her

I Danmark er

- last liquid point = 20 år
- ultimate forward rate = 4,2 pct.
- convergence period = 10 år

Forward-renter

- Diskonteringsfaktoren* for en betaling til tid T er givet ved
 - $P(T) = (1 + R(T))^{-T}$
- For $T_i = \{1,2,3,...\}$ kan diskonteringsfaktoren skrives som
 - $P(T_i) = \prod_{j=1}^{i} (1 + f_j)^{-1}$
- hvor forwardrenterne f_i er givet ved
 - $\bullet \quad f_j = \frac{P(T_j)}{P(T_{j+1})} 1$
- Akademisk anvendes ofte kontinuert rentekonvention
 - $P^{c}(T_{i}) = e^{-R^{c}(T)T} = e^{-(f_{1}^{c} + f_{2}^{c} + \dots + f_{i}^{c})}$
 - $\bullet \quad f_j^c = ln\left(\frac{P_{T_j}^c}{P_{T_{j+1}}^c}\right)$

*P fordi det er prisen på en nulkupon obligation

Ekstrapolation i diskonteringsfaktorer

$$P(t) = e^{-UFRt} + \sum_{j=1}^{N} \zeta_j \cdot W(t, u_j), \quad t \ge 0$$

- hvor vægtene ζ kalibreres til markedsdata
- Wilson-funktionerne W er givet ved

$$W(t, u_j) = e^{-UFR \cdot (t + u_j)} \cdot \left\{ \alpha \cdot \min(t, u_j) - 0.5 \cdot e^{-\alpha \cdot \max(t, u_j)} \cdot (e^{\alpha \cdot \min(t, u_j)} - e^{-\alpha \cdot \min(t, u_j)}) \right\}$$

The following notation holds:

- N, the number of zero coupon bonds with known price function
- m_i , i=1, 2, ... N, the market prices of the zero coupon bonds
- u_i , i=1, 2, ... N, the maturities of the zero coupon bonds with known prices
- t, the term to maturity in the price function
- UFR, the ultimate unconditional forward rate, continuously compounded
- a, mean reversion, a measure for the speed of convergence to the UFR
- ζ_i , i=1, 2, ... N, parameters to fit the actual yield curve

- Input er den observerede markedskurve, \tilde{R}_{u_i} ,
- løbetiderne u_i
- samt et 'gæt' på konvergensparameteren, α

$$m_i = P(u_i) = \exp(-u_i \cdot \tilde{R}_{u_i})$$
 for continuously compounded rates,

Ud fra disse kan vægtene ζ bestemmes ved at løse det lineære ligningssystem

$$m_{1} = P(u_{1}) = e^{-UFR \cdot u_{1}} + \sum_{j=1}^{N} \zeta_{j} \cdot W(u_{1}, u_{j})$$

$$m_{2} = P(u_{2}) = e^{-UFR \cdot u_{2}} + \sum_{j=1}^{N} \zeta_{j} \cdot W(u_{2}, u_{j})$$

.....

$$m_N = P(u_N) = e^{-UFR \cdot u_N} + \sum_{j=1}^N \zeta_j \cdot W(u_N, u_j)$$

Den danske kurve er fastlagt ved

- *last liquid point*: $T_{cut-off} = 20$
 - løbetider: $u_i = \{1,2,3,...,20\}$
- convergence period: $T_{conv} = 10$
- Ultimate Forward Rate: UFR = 0.042
- **Tolerance**: tol = 0,0003
- Start alpha: $\alpha_0 = 0.1$
- Alpha-skridtlænge: $\Delta \alpha = 0.01$

- Det sker ved at iterere over konvergensparameteren α indtil forward-renten i 30 års punktet afviger mindre end 3 bp fra UFR
 - forward-rente til løbetid T: $F_{\alpha}(T) = \frac{P_{\alpha}(T)}{P_{\alpha}(T+1)} 1$

$$\alpha_{UFR} = \alpha_0 + j \cdot \Delta \alpha$$

$$j = \min_{i \in \{1, 2, \dots\}} \{ |F_{\alpha_0 + i \cdot \Delta \alpha} (T_{cut - off} + T_{conv}) - UFR | < tol \}$$

I øvelserne bruger vi et fast α =0,38

Startbalance – Selskab med fuldt afdækning

	===========	:======	=====	======	:===========	=======	=====	=====	
	ASSETS 01-07-2016	mv	shr	dur	LIABILITIES	mv	shr	dur	
	05YZeroSwap	0	 0왕	4759	Annuity	458046	100%	57768	
	10YZeroSwap	0	0%	5661			. – – – – .		
nteafdæk-	15YZeroSwap	-0	-0%	-2202	Total reserve	458046	92%		
ning i swaps	20YZeroSwap	0	0%	49460	Bonus Potential	41954	8%	109%	
	25YZeroSwap	-0	-0%	-0					
	30YZeroSwap	-0	-0%	-0					
	BondPF	241706	48%	14440					
	CashPF	-0	-0%	0					
	EquityPF	258294	52%	-0	Delta1Key1	3259			
	TaxPF	0	0%	-0	Delta1Key2	5987			
					Delta1Key3	-2294		Negativ rentefølsomhed	
					DeltalKey4	51206		15-års punktet!	
					DeltalKey5	0.00]	Rentefølsomheden er nu	
					DeltalKey6	0.00		for løbetider over 20 år	
					IB	18145			
					KB	23810			
					RetroRsrv	476190			
					TotAccount	476190			
	Balance	500000		 72117	 (125%)	500000	. — — — — .	 458046	

Afdækningen fungerer under alle renteantagelser

- For begge renteantagelser gælder
 - Tæt korrelation mellem afkast på afdækning og ændring i hensættelse
 - Hældningen passer ikke helt (hvorfor?)

ALM i praksis - Dag 2 1. og 2. november 2016

Der skal afdækkes efter skat

Uændret renteniveau

ALM i praksis - Dag 2 1. og 2. november 2016

... men der er ugler i mosen!

- Insolvens synes alligevel uundgåelig
 - fordi afdækningen ikke amortiserer som hensættelsen
 - der er simpelthen ikke penge nok til at dække den finansielle forpligtelser

ALM i praksis - Dag 2 1. og 2. november 2016

Bonuspotentiale efter 10 vs gennemsnitlig 30-årig rente

Stigende renteniveau

Uændret renteniveau

Hedging LR AfterTax End-of-Period BP vs Interest Rate Level

Øvelse: Renteafdækning revisited

Opgave

- Diskutér hvordan den del af forpligtelserne, som ikke kan afdækkes bør påvirke
 - Selskabets afdækningsstrategi
 - Selskabets investeringsstrategi. I eksemplerne investerede selskabet 50 pct. i aktier og 50 pct. i obligationer.
- Vælg hvilke løbetider, jeres selskab afdækker
 - vælg 2-5 løbetider
 - begrund jeres valg
- Vælg hvilken afdækningsgrad* jeres selskab skal anvende
 - begrund jeres valg

*Afdækningsgrad =
$$\frac{Varighed\ af\ swaps}{Varighed\ af\ GY}$$

atp=

Case Study: ATP's nye pensionsprodukt

Market value accounting and its implications for ATP

- Market value accounting since 2003
 - "Pure" market rate discounting
 - Long-dated liabilities discounted at 30Y rate
 - Allows delta-hedging (in normal markets)
 - Huge interest rate sensitivity
 - Fully hedged in swaps and bonds
 - Decrease in interest rates increased value of liabilities dramatically.
- Discounting curve under Solvency 2
 - Long-dated liabilities valued at UFR
 - Long-dated liabilities cannot be hedged
 - Discounted value ≠ value of (delta) hedge

The problem

- The old annuity product at ATP
 - 80 pct. of contribution converted to nominal life-long annuity at the time of payment
 - Annuity level (tariff) updated annually to reflect current market rates and life expectancy.
- Large hedge demand at long-dated maturities
 - Increasingly difficult and costly to maintain the necessary hedge
 - Long-dated liabilities non-hedgeable (due to "semi" market rate discounting).
- The Board of ATP wants guarantees!
 - Not an option to move to unit-link type products
 - "Could you please design a hedgeable life-long guarantee".

... and one more thing

- "Please make sure to preserve the business model"
 - The liability side of the balance sheet is very simple
 - ... allowing a very sophisticated asset side
 - Accommodation of all guarantees in one (simple) business model.
- Implication 1: Type of guarantee
 - All pension rights in the form of "guaranteed annual pension"
 - No individual unit-link accounts.
- Implication 2: Same status of new and old guarantees
 - Collective risk sharing of financial and biometric risks
 - New and old guarantees should entail same, or at least very similar, risks and have the same "claim" on free reserves (BP).

Traditional annuity vs rolling annuity

- Consider a person paying a contribution of 100 at time 0 and retiring at R
 - Denote by $p_t(T)$ the price at time t of a zero-coupon bond (ZCB) maturing at time T
- Traditional (deferred) life-long annuity
 - Ignore tax, safety loadings, technical basis etc.
 - Guaranteed annuity level = $100/\int_{R}^{\infty} p_0(w)S(w|0)dw$.

Expected, unit cash-flow = prob. of survival

- The rolling annuity replaces the long interest rate guarantee with shorter ones
 - Assume interest rate guarantee of 15 years
 - Initial guarantee: $z(0) = \frac{100}{\int_{R}^{\infty} S(w|0)dw} \frac{1}{p_0(15)}$
 - Guarantee after 15 years: $z(15) = z(0) \frac{1}{p_{15}(30)}$
 - Final guarantee: $z(30) = \frac{z(15) \int_{R}^{\infty} S(w|30) dw}{\int_{R}^{\infty} p_{30}(w) S(w|30) dw}$.

Expected no. of years in retirement = $\int_{R}^{\infty} S(w|0)dw$

Market value reserve

- Consider the reserve associated with a contribution paid at time 0
 - Let z(u) denote the guarantee at time $u \ge 0$
 - Prior to the final guaranteed increase, the reserve is
 - $V(u) = z(u)e(R|u)p_u(\tau_N(u)),$
 - where e(R|u) is the expected no. of years in retirement given survival to time u, and $\tau_N(u)$ is the time of the next increase.

- At or past the final guaranteed increase, the reserve is
 - $V(u) = z(u) \int_{\max\{u,R\}}^{\infty} p_u(w) S(w|u) dw$, i.e. the reserve for an ordinary, life-long annuity.
- Before the final increase, the reserve for a cohort equals the price of a ZCB maturing at $\tau_N(u)$ with principal $\bar{z}(u) \times total\ no.\ of\ years\ in\ retirement$
 - ullet The liability can be semi-statically hedged, i.e. hedge needs to be adjusted only every L years
 - For L up to 20 years, say, the hedge can be implemented in liquid markets
 - In practice, the reserve is based on updated mortality assumptions
 - Longevity risk is borne collectively, i.e. guarantees are unaffected.

Implementation at ATP

- Rolling annuities were implemented at ATP with effect from 1 January 2015
 - Guarantee period of L = 15 years
 - The effect from contributions received in 2015 can be seen as an increased "payment" in 2030
 - The remaining cash flow stems from ordinary annuities; both old guarantees and guarantees written in 2015 for members within 15 years of retirement.
- Hedgeable at large scale
 - The bulk of the (rolling annuity) cash flow is at maturities where market liquidity is high
 - Ordinary life-long annuities are issued only close to retirement.

ATP "hedge cash flow" for annuities

ALM i praksis - Dag 2 1. og 2. november 2016 27

Example: Longevity risk

- Table shows the relative reserve increase when applying a 20% mortality stress
 - **GM mortality law*** : $\mu(x) = 1.5 \cdot 10^{-5} \exp(0.1 \cdot x) + 2 \cdot 10^{-4}$
 - Stressed mortality law: $\tilde{\mu}(x) = 0.8 \, \mu(x)$
 - Flat yield curve : $p_t(T) = \exp(-(T-t)r)$, for some fixed r
 - Single premium at age x, age of retirement R=65 yrs, and guarantee period of L=15 yrs.

$\Delta V/V$	Age (x)										
Rate (r)	25	45	55	65	75	85	100				
0%	11.4%	11.0%	10.5%	9.0%	11.6%	14.9%	19.9%				
2%	11.4%	11.0%	8.7%	7.3%	10.0%	13.5%	19.1%				
4%	11.4%	11.0%	7.3%	5.9%	8.7%	12.3%	18.3%				

Independent of interest rate

^{*} Gompertz-Makeham law fitted to Danish unisex population mortality for 2011

Example: Building up of guarantee

Annual contribution of 100 indexed by inflation of 2% from age 25 to age 64. Interest rate of 3%, and guarantee period of L = 15 years.

Example: Duration

Left plot : Reserve for maturities over 30 years as fraction of the total reserve.

Right plot : Duration of total reserve measured in years.

In both plots the solid line represents a guarantee period of L=15 years, while the dashed lines represent guarantee periods of 5 and 25 years, respectively.

The vertical dotted line at age R = 65 years marks the age of retirement.

Summing up

- Initial minimum guarantee and subsequent guaranteed increases prior to retirement
 - Prior to the final increase, the reserve equals a zero-coupon bond maturing at the next increase
 - Rolling annuities can be hedged at large scale for guarantee periods of up to, say, 20 years
 - Keeping the duration below 20 years imply very similar financial and regulatory (S2) value
 - This simplifies risk management considerably
 - Rolling annuities have been implemented at ATP with a guarantee period of 15 years.
- Longevity risk can be reduced by weakening the "life expectancy guarantee"
 - However, the rolling annuities at ATP have full longevity risk (similar to existing annuities).
- Rolling annuity guarantees are intended as part of a with-profits contract
 - A complementing return-seeking portfolio is essential to obtain broad market exposure
 - The guarantees entail both longevity risk and hedging risk and thus can apply to only part of contributions
 - At ATP, rolling annuities are acquired for 80 pct. of contributions.

A Jarner and Preisel. Long guarantees with short duration: The rolling annuity. Scandinavian Actuarial Journal, 2016.