10 ÜBERSETZUNGEN UND CODIERUNGEN

Hinweise für die Tutorien

10.1 VON WÖRTERN ZU ZAHLEN UND ZURÜCK

10.1.1 Dezimaldarstellung von Zahlen

zur Definition

$$\begin{aligned} \operatorname{Num}_{10}(\varepsilon) &= 0 \\ \forall w \in Z_{10}^* \ \forall x \in Z_{10} : \operatorname{Num}_{10}(wx) &= 10 \cdot \operatorname{Num}_{10}(w) + \operatorname{num}_{10}(x) \end{aligned}$$

noch ein Beispiel rechnen?

10.1.2 Andere Zahldarstellungen

• beachte Analogie der Definitionen von Num₁₀ und Num₂

$$\mathrm{Num}_2(\varepsilon)=0$$
 sowie
$$\forall w\in Z_2^* \ \forall x\in Z_2: \mathrm{Num}_2(wx)=2\cdot \mathrm{Num}_2(w)+\mathrm{num}_2(x)$$

• Algorithmus für Umwandlung von Wort nach Zahl erarbeiten:

// Eingabe:
$$w \in Z_2^*$$
 $x \leftarrow 0$

for $i \leftarrow 0$ to $|w| - 1$ do
 $x \leftarrow 2x + \text{num}_2(w(i))$
od

// am Ende: $x = \text{Num}_2(w)$

• Die Schleifeninvariante sieht man besser bei

$$/\!\!/$$
 Eingabe: $w \in Z_2^*$ $x \leftarrow 0$ $v \leftarrow \varepsilon$ for $i \leftarrow 0$ to $|w| - 1$ do $v \leftarrow v \cdot w(i)$ $x \leftarrow 2x + \operatorname{num}_2(w(i))$ od $/\!\!/$ am Ende: $v = w \wedge x = \operatorname{Num}_2(w)$

• Invariante suchen und finden lassen: $x = \text{Num}_2(v)$

Dass das eine Schleifeninvariante ist, nicht in allen Details beweisen. Aber den Kern erkennen: laut Definition von Num₂ ist nämlich

$$Num_2(v \cdot w(i)) = 2Num_2(v) + num_2(w(i))$$

- klar machen, wie allgemein bei Basis k die Umwandlung funktioniert: $\operatorname{Num}_k(wx) = k \cdot \operatorname{Num}_k(w) + \operatorname{num}_k(x)$.
- Beispiel rechnen, z.B. $Num_3(111) = \cdots = 13$.
- Num₂(1) = 1, Num₂(11) = 3, Num₂(111) = 7, Num₂(1111) = 15, Wer sieht allgemein: $\forall m \in \mathbb{N}_0 : \text{Num}_2(1^m) = 2^m 1$?
 - Wie überträgt sich das auf den Fall k = 3? $\forall m \in \mathbb{N}_0 : \text{Num}_3(2^m) = 3^m 1$.
- Und dann vielleicht noch die folgende Spielerei:
 - $Z'_3 = \{1, 0, 1\}$ mit $num'_3(1) = -1$, $num'_3(0) = 0$, und $num'_3(1) = 1$ sowie

$$\operatorname{Num}_3'(\varepsilon) = 0$$

$$\forall w \in {Z_3'}^* \ \forall x \in Z_3' : \operatorname{Num}_3'(wx) = 3 \cdot \operatorname{Num}_3'(w) + \operatorname{num}_3'(x)$$

- Man berechne erst mal z. B. $Num'_3(110)$ (gibt -6) und $Num'_3(111)$ (gibt 7)
- Was passiert, wenn man in einer Zahldarstellung aus allen 1 ein ₹ macht und umgekehrt?: Darstellung der entsprechenden negierten Zahl.

Z.B.
$$Num'_3(111) = -Num'_3(111) = 6$$

10.1.3 Von Zahlen zu ihren Darstellungen

- Eventuell noch mal die Spielerei mit Num'3:
 - Welche positiven Zahlen haben eine Repräsentation? Welche negativen? (Antwort: alle alle) Und die Null geht natürlich auch.
 - Wie sieht man einem Wort an, ob es eine positive oder eine negative Zahl repräsentiert? (betrachte vorderste Nicht-Null: 1 oder T?)
 - (Hausaufgabe für Tüftler: Wie addiert man zwei solche Zahlen?)
 - Hinweis: Îm Rechner benutzt man aber nur $Z_2 = \{0, 1\}$. Da muss man sich was anderes überlegen für negative Zahlen.

10.2 VON EINEM ALPHABET ZUM ANDEREN

10.2.1 Ein Beispiel: Übersetzung von Zahldarstellungen

Warum macht man Übersetzungen? Zumindest die folgenden vier Möglichkeiten fallen einem ein:

- Lesbarkeit:
- Kompression:
- Verschlüsselung:
- Fehlererkennung und Fehlerkorrektur:

Fällt Ihnen noch was ein?

10.2.2 Homomorphismen

• Definitionen: Es seien A und B zwei Alphabete und $h:A\to B^*$ eine Abbildung. Zu h kann man in der Ihnen inzwischen vertrauten Art eine Funktion $h^{**}:A^*\to B^*$ definieren vermöge

$$h^{**}(\varepsilon) = \varepsilon$$
$$\forall w \in A^* : \forall x \in A : h^{**}(wx) = h^{**}(w)h(x)$$

Homomorphismus ε-frei, wenn für alle $x \in A$ gilt: $h(x) \neq ε$.

- Beispiel:
 - -h(a) = 001 und h(b) = 1101
 - dann ist $h(bba) = h(b)h(b)h(b) = 1101 \cdot 1101 \cdot 001 = 11011101001$
- ε-freier Homomorphismus: Warum will man das? Sonst geht "Information verloren". keine Codierung mehr; Betrachte
 - h(a) = 001 und $h(b) = \varepsilon$
 - angenommen h(w) = 001 Was war dann w? Man weiß nur: es kam genau ein a vor, aber wieviele b und wo ist nicht klar.
- präfixfreier Code: für *keine* zwei verschiedenen Symbole $x_1, x_2 \in A$ gilt: $h(x_1)$ ist ein Präfix von $h(x_2)$.

Beispiel

- -h(a) = 001 und h(b) = 1101 ist präfixfrei
- h(a) = 01 und h(b) = 011 ist *nicht* präfixfrei
- Präfixfreiheit leicht zu sehen, wenn alle h(x) gleich lang sind: präfixfrei \iff injektiv; Beispiel: ASCII

10.2.3 Beispiel Unicode: UTF-8 Codierung

Man könnte, wenn die Zeit reicht, ja mal für ein paar Zeichen die UTF-8 Codierung bestimmen. Zum Beispiel gibt es für π in Unicode ein Zeichen, nämlich das mit der Nummer 0x03C0. Und das Integralzeichen \int hat Nummer 0x222B.

Wenn ich den Algorithmus richtig gemacht habe, ergibt sich

• für π : Code Point 0x03C0, in Bits 0000 0011 1100 0000 = 00000 01111 000000 :

UTF-8 octet sequence (binary)
110 <i>xxxxx</i> 10 <i>xxxxxx</i>

also UTF-8 Codierung 11001111 10000000

• für \int : Code Point 0x222B, in Bits 0010 0010 0010 1011 = 0010 001000 101011 man benutzt die Zeile

Char. number range (hexadecimal)	UTF-8 octet sequence (binary)
0000 0800 - 0000 FFFF	1110 <i>xxxx</i> 10 <i>xxxxxx</i> 10 <i>xxxxxx</i>

also UTF-8 Codierung 11100010 10001000 10101011

• Man überlege sich: UTF-8 ist präfixfrei

10.3 HUFFMAN-CODIERUNG

Nehmen Sie acht Symbole: a, b, c, d, e, f, g, h

- 1. Fall: Jedes Zeichen kommt genau einmal vor.
 - Huffman-Code-Baum erstellen, Wort badcfehg codieren, wie lang wird die Codierung?
- 2. Fall: a kommt einmal vor, b zweimal, c 4-mal, d 8-mal, e 16-mal, f 32-mal, g 64-mal, h 128-mal.
 - Huffman-Code-Baum erstellen, Wort badcfehg codieren, wie lang wird die Codierung?
- Wie lang wird ein Wort mit zweiter Zeichenverteilung, wenn man es mit dem ersten Code codiert?
- Wie lang wird ein Wort mit erster Zeichenverteilung, wenn man es mit dem zweiten Code codiert?
- Ziel: Sehen, dass Huffman-Codierung irgendwie zu funktionieren scheint, aber eben *h* auf das zu codierende Wort *w* zugeschnitten wird.

10.3.1 Weiteres zu Huffman-Codes

Verallgemeinerung: nicht von den Häufigkeiten einzelner Symbole ausgehen, sondern für Teilwörter einer festen Länge b > 1 die Häufigkeiten berechnen.

Ein Fünftel, weil jeder Zehnerblock durch zwei Bits codiert wird.