به نام او

طاها شعباني

11-198491

پروژه اول cad

CA1: FPGA Hardware Resources in Multiplier Designs

مقدمه:

در این پروژه، هدف طراحی ضرب کننده ۴ بیتی به سه طریق متفاوت است. (ضرب کننده با DSP، ضرب کننده با LUT و ضرب کننده تقریبی (approximate).

: Accurate multiplier with DSP blocks

: Implementation

در ابتدا یک design file برای خود multiplier می سازیم. سپس از بخش ip catalog و multiplier را انتخاب کرده و تنظیمات آن را مشخص می کنیم :

ورودی ها : ۴ بیت خروجی : ۸ بیت حذف clk تغییر نوع ورودی و خروجی به unsigned

سپس در داخل فایل ایجاد شده با دستور component و اسم multipler ایجاد شده و map کردن پین های ورودی و خروجی، از ip core مورد نظر استفاده می کنیم.

در داخل testbench هم با generate کردن ۶۴ عدد رندم، درستی تابع را چک می کنیم.

در نهایت نتیجه simulation با شکل زیر می شود :

0 ns	.	20 ns		40 ns		60 ns	L	80 ns		100 ns		120 ns	:	140 ns	
15	10	1	10	3	10	14	4	10	1	14	7	1	4	2	0
15	5	2	(1	3	2	:	4		14	<u> </u>		L	5	13	3
225	50	2	10	9	20	28	16	140	14	196	7	14	70	26	0

: Device utilization

پس از اجرای سنتز و مشاهده مشخصات پردازش نتایج زیر حاصل شد:

			Graph Table
Resource	Utilization	Available	Utilization %
DSP	1	740	0.14
Ю	16	500	3.20

جزییات ورودی و خروجی ها هم در report به صورت زیر میباشد:

7. Primitives

+		+-		+	+
1	Ref Name	I	Used	Ī	Functional Category
+		+-		+	+
I	OBUF	I	8	I	IO
1	IBUF	I	8	I	IO
+		+-		+	+

: Power consumption

در بخش power report می توان مشخصات توان مصرف شده، دمای کار و ... را مشاهده نمود :

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 4.793 W
Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 32.0°C

Thermal Margin: 53.0°C (36.3 W)
Effective BJA: 1.5°C/W
Power supplied to off-chip devices: 0 W

Launch Power Constraint Advisor to find and fix

invalid switching activity

Confidence level:

: Performance

برای بررسی performance از بخش performance برای بررسی performance از بخش delay میتوان delay های مختلف را مشاهده کرد :

Name	Slack ^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock	Destination Clock	Exception	Clock Uncertainty
3 Path 1	co	3	2	1	a[2]	c[5]	9.894	6.569	3.325	00	input port clock			0.000
3 Path 2	co	3	2	1	a[2]	c[7]	9.886	6.555	3.331	00	input port clock			0.000
3 Path 3	00	3	2	1	a[2]	c[4]	9.823	6.532	3.290	00	input port clock			0.000
3 Path 4	00	3	2	1	a[2]	c[2]	9.789	6.515	3.275	00	input port clock			0.000
3 Path 5	co	3	2	1	a[2]	c[6]	9.789	6.576	3.213	00	input port clock			0.000
3 Path 6	co	3	2	1	a[2]	c[3]	9.704	6.534	3.170	00	input port clock			0.000
→ Path 7	00	3	2	1	a[2]	c[1]	9.686	6.520	3.166	00	input port clock			0.000
3 Path 8	00	3	2	1	a[2]	c[0]	9.659	6.525	3.134	00	input port clock			0.000

که همانطور که از شکل پیداست و طبق رابطه:

Performance = 1 / total max delay

خواهيم داشت :

Performance = 1 / 9.894 = 10.11%

: Accurate multiplier with LUTs

: Implementation

مشابه بخش اول ابتدا یک design file و simulation file می سازیم و کد فایل و testbench را در آن ها قرار می دهیم، با این تفاوت که برای پیاده سازی عمل ضرب و با استفاده از کتابخانه هایی نظیر IEEE.std_logic_unsigned از خود عملگر ضرب استفاده می کنیم.

در داخل testbench هم با generate کردن ۶۴ عدد رندم، درستی تابع را چک می کنیم.

در نهایت نتیجه simulation با شکل زیر می شود :

				JU.402	112									
0 ns		20 ns		40 ns	Livi			80 ns						140 ns
15	10	1	10	3	10	14	4	10	1	14	7		4	2
15	5	2	1	3	<u> </u>	2	4		14			1	5	13
225	50	2	10	9	20	28	16	140	14	196	7	14	70	26

: Device utilization

پس از اجرای سنتز و مشاهده مشخصات پردازش نتایج زیر حاصل شد:

Utilization	Available	Utilization
16	133800	0.01
16	500	3.20
	16	16 133800

جزییات ورودی و خروجی ها هم در report به صورت زیر میباشد :

7. Primitives

+	+-		+-	+
Ref Name	ĺ	Used	I	Functional Category
+	+-		+-	+
LUT6	Ī	10	I	LUT
OBUF	Ī	8	I	IO
IBUF	Ī	8	I	10
LUT4	I	4	I	LUT
LUT2	Ī	3	I	LUT
CARRY4	Ī	2	I	CarryLogic
LUT5	Ī	1	I	LUT
LUT3	Ī	1	I	LUT
+	+-		+-	+

: Power consumption

در بخش power report می توان مشخصات توان مصرف شده، دمای کار و ... را مشاهده نمود :

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 4.862 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 32.1°C

Thermal Margin: 52.9°C (36.2 W)

Effective &JA: 1.5°C/W
Power supplied to off-chip devices: 0 W
Confidence level: Low

Launch Power Constraint Advisor to find and fix

invalid switching activity

: Performance

برای بررسی performance از بخش performance برای بررسی performance از بخش delay های delay های مختلف را مشاهده کرد :

Name	Slack ^1	Levels	Routes	High Fanout	From	To	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock	Destination Clock	Exception	Clock Uncertainty
3 Path 1	00	5	4	11	b[1]	c[0]	7.826	3.949	3.877	co	input port clock			0.000
→ Path 2	00	6	4	11	b[1]	c[2]	7.796	4.245	3.551	co	input port clock			0.000
3 Path 3	00	5	4	11	b[1]	c[1]	7.766	4.115	3.650	co	input port clock			0.000
→ Path 4	00	6	4	11	b[1]	c[3]	7.719	4.179	3.540	co	input port clock			0.000
3 Path 5	00	5	3	11	b[1]	c[4]	7.540	3.879	3.661	co	input port clock			0.000
→ Path 6	00	4	2	9	b[3]	c[5]	6.795	4.076	2.719	co	input port clock			0.000
→ Path 7	00	4	2	9	b[3]	c[6]	6.664	3.786	2.878	co	input port clock			0.000
→ Path 8	00	4	2	10	a[3]	c[7]	6.496	3.771	2.724	co	input port clock			0.000

که همانطور که از شکل پیداست و طبق رابطه:

Performance = 1 / total max delay

خواهیم داشت :

Performance = 1 / 7.826 = 12.76%

: Approximate multiplier with LUTs

: Implementation

مشابه بخش اول ابتدا یک design file و simulation file می سازیم و کد فایل و testbench را در آن ها قرار می دهیم، با این تفاوت که برای پیاده سازی عمل ضرب، از 0.0 0.0 اوقع در کتابخانه unisim استفاده می کنیم و مقادیر 0.0 از تابع منطقی و تبدیل logic به truth table پر می کنیم. در نهایت با خروجی کردن 0.0 0.0 بیتی (در پیاده سازی من با نام 0.0 کنومجی قابل مشاهده است.

در داخل testbench هم با generate کردن ۶۴ عدد رندم، درستی تابع را چک می کنیم.

در نهایت نتیجه simulation با شکل زیر می شود :

				38.482	ns														
0 ns		20 ns		40 ns		60 ns		80 ns	1	100 ns		120 ns		140 ns		160 ns		180 ns	;
15	10	1	10	3	10	14	4	10	1	14	7	1	4	2	0	15	0	12	7
15	5	2	1	3	χ :	2	4	X	14		(1		5	13	3	12	4	5	8
146	68	4	20	10	40	56	32	216	28	144	12	28	108	52	0	184	0	120	112

: Device utilization

پس از اجرای سنتز و مشاهده مشخصات پردازش نتایج زیر حاصل شد:

			Graph Table
Resource	Utilization	Available	Utilization %
LUT	7	133800	0.01
Ю	16	500	3.20

جزییات ورودی و خروجی ها هم در report به صورت زیر میباشد:

7. Primitives

+	+	++
		Functional Category
+	+	++
OBUF	8	IO
IBUF	8	10
LUT6	7	LUT
LUT5	7	LUT
+	+	++

: Power consumption

در بخش power report می توان مشخصات توان مصرف شده، دمای کار و ... را مشاهده نمود :

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 2.986 W
Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 29.3°C

Thermal Margin: 55.7°C (38.1 W)

Effective &JA: 1.5°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

invalid switching activity

: Performance

برای بررسی performance از بخش performance برای بررسی performance از بخش delay می توان delay های مختلف را مشاهده کرد :

Name	Slack	^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock	Destination Clock	Exception	Clock Uncertainty
3 Path 1		00	4	3	4	a[3]	c[3]	6.985	3.504	3.480	co	input port clock			0.000
3 Path 2		00	3	2	4	b[0]	c[0]	6.440	3.569	2.871	00	input port clock			0.000
3 Path 3		00	3	2	4	a[3]	c[4]	6.335	3.398	2.937	00	input port clock			0.000
3 Path 4		00	3	2	4	b[3]	c[6]	6.272	3.454	2.818	00	input port clock			0.000
3 Path 5		00	3	2	4	b[0]	c[1]	6.241	3.387	2.853	00	input port clock			0.000
3 Path 6		00	3	2	4	b[0]	c[2]	6.237	3.382	2.855	00	input port clock			0.000
3 Path 7		00	3	2	4	b[3]	c[5]	6.153	3.447	2.707	00	input port clock			0.000

که همانطور که از شکل پیداست و طبق رابطه:

Performance = 1 / total max delay

خواهیم داشت :

Performance = 1 / 7.826 = 14.31%

:	بندى	حمع	٩	بانہ	ىا	كات	نک
•	بحدي	(7	(5.	-₹-		_

- ۱. همانطور که انتظار میرفت، performance برای approximate multiplier از دو تای دیگر بیشتر است و بعد از آن نیز lut multiplier.
 - ۲. مقدار خطای approximate multiplier برای میانگین ۶۴ ضرب در حدود ۲۰ حساب شد :

avg 26 Integer

پایان...