

RANGER CLASS COMPETITION MISSIONS

Ocean Observing Systems: Launching a New Era of Ocean Science & Discovery
This document contains information about the RANGER class missions. The EXPLORER Class and SCOUT
Class Competition Mission documents contain information specific to those classes.

COMPETITION SCORING OVERVIEW

The competition consists of underwater missions, technical reports, engineering presentations, and poster displays with the following scoring breakdown:

- Mission
 - RANGER and EXPLORER 300 points (max), plus a time bonus
- Engineering & communication 230 points (max)
 - Technical reports
 - RANGER and EXPLORER 90 points (max)
 - Engineering evaluations
 - RANGER and EXPLORER 90 points (max)
 - Poster displays
 - RANGER and EXPLORER 50 points (max)
 - International competition teams ONLY 5 bonus points for media outreach

Note that regional contests may not require all of these components. Contact your regional coordinator for more information.

THINK OF YOURSELVES AS ENTREPRENEURS

From deepwater oil drilling to the exploration of shipwrecks and installation of instruments on the seafloor, individuals who possess "entrepreneurial skills" are in high demand and stand out in the crowd of potential job candidates. What are entrepreneurial skills? They include the ability to understand the breadth of business operations (from finances to research and development to media outreach), work as an integral part of a team, and apply technical knowledge and skills in new and innovative ways.

To help you to better understand and develop these skills, the MATE ROV competition is asking you to think of yourself as an entrepreneur. Your first task is to create a company or organization that specializes in solutions to real-world marine technology problems. Use the following questions as a guide.

- What is your company name?
- Who are its leaders the CEO (chief executive officer the leader) and CFO (chief financial officer who oversees the budget and spending)?
- Who manages Government and Regulatory Affairs (i.e. who's in charge of reviewing the competition rules and making sure that they are understood and followed by everyone)?

- Who is responsible for research and development (R&D)?
- Who is responsible for system(s) engineering? Design integration? Testing? Operations?
- Who is responsible for funding-raising, marketing, and media outreach?
- What other positions might you need? (Depending on your personnel resources, more than one person may fill more than one role.)
- What products and services do you provide?
- Who are your potential clients?

In this case, the MATE Center and scientists, engineers, and technicians at the University of Washington are your "clients" who recently released a request for proposals. A request for proposals (RFP) is a document that an organization posts to solicit bids from potential companies for a product or service. The specifics of your product design and rules of operation are included within the RANGER Class Design & Building Specifications and Competition Rules document. The specifics of the mission – that is, the tasks that you must accomplish – are described below.

MISSION OVERVIEW

RANGER class companies will compete in ONE mission that consists of the following four distinct tasks:

Task #1: Complete a primary node and install a scientific instrument on the seafloor.

Task #2: Design, construct, and install a temperature sensor over a hydrothermal vent opening and measure temperature over time.

Task #3: Replace an Acoustic Doppler Current Profiler (ADCP) on a mid-water column mooring platform.

Task #4: Remove biofouling from structures and instruments within the observatory.

Companies may choose to do the four tasks in any order they wish; however, the <u>steps</u> of task #1 and task #3 must be completed in order. (See the "Mission Notes" for each task for details.) Companies may leave a task to complete other tasks, but the steps of task #1 and task #3 must be completed in order. For example, a company could complete the first four steps of task #1, remove some nearby biofouling (task#4), then continue to complete task #1.

Your company will get up to **TWO** attempts to complete this single mission (contact your regional coordinator to confirm the number of attempts that you will receive). The higher of the two scores will be added to your engineering and communication score (see the **Engineering & Communication** document) to determine the total, overall score for the competition.

TIME

You will have 5 minutes to set up your system, 15 minutes to complete the mission tasks, and 5 minutes to demobilize your equipment and exit the control shack. During the 5-minute set-up, you may place your vehicle in the water for testing and/or trimming purposes, provided that a member of your

MISSIONS

company has a hand on the vehicle at all times and uses extreme caution. The 15-minute mission period will begin after the full 5 minutes of set up time expires, regardless of whether you are ready to start the mission. It may begin sooner if your CEO notifies the mission judges that your company is ready to begin.

At any time during the mission, you may pilot your ROV to the surface and remove the vehicle from the water for such things as buoyancy adjustments, payload changes, and troubleshooting, but the 15-minute mission clock will only be stopped by a judge who determines it is necessary for reasons beyond your control. Otherwise, the clock will only stop after all mission tasks are successfully completed, the ROV has returned to the surface under its own power so that it touches the side of the pool, and a member of your company at the launch station has physically touched the vehicle. Your ROV is not required to return to the surface between mission tasks.

Your 5-minute demobilization will begin as soon as the 15-minute mission time ends, regardless of where your ROV is located (i.e., still at depth, on the surface, etc.).

TIME BONUS

Your company will receive a time bonus if you:

- 1) successfully complete the four mission tasks;
- 2) return your ROV to the surface under its own power so that it touches the side of the pool; and
- 3) physically touch your vehicle before the mission time ends.

Your company will receive 1 point for every minute and 0.01 point for every second under 15 minutes remaining.

GOOD LUCK!

The MATE Center would like to thank the John Delaney, Deborah Kelley, and Chuck McGuire of the University of Washington for their technical expertise and assistance with this year's mission scenario and tasks. We also thank the Center for Ocean Sciences Education Excellence Networked Ocean World (COSEE NOW) and Rutgers University for their contributions. We appreciate their vision and support in bringing "interactive oceans" to the 2013 competition teams and the entire ocean community!

OCEAN OBSERVING SYSTEMS: TAKING THE PULSE OF THE OCEAN

The ocean is the planet's largest ecosystem. It drives an incredible range of natural phenomena, including our climate, and directly impacts human society (from the food we eat to the energy we use) – and we impact it. There are currently 7 billion people on planet Earth; more than half the population lives or works near the ocean. By 2030, there will be a billion more, with another billion arriving in the following two decades. Many nations rely on the economic contributions of goods and services associated with ocean activities, such as oil and gas, food, transportation, and recreation, for their overall economic health.

The pressure that we place on our ocean continues to increase – water pollution, overfishing, and ocean acidification from the use of fossil fuels are a few examples of our impact. How the ocean responds to this pressure will, in turn, put pressure on us. For example, patterns of ocean circulation and changing sea-surface temperatures correlate closely with ever-shifting patterns of drought and flooding on the continents, which consequently links directly to patterns of plentiful food and famine. It is critical that we better understand the ocean so that we can better manage this vital resource. Our future and the ocean's future depend upon it.

Technology revolutions have transformed society. Just as the Internet revolution of the 1990's provided instantaneous information transfer around the world, this last decade has ushered in the sensor revolution – the Internet connected to sensors that, in a way, are giving the planet its first electronic nervous system.

Meteorologists have used sensors and the Internet to monitor and predict weather for the past two decades. Monitoring the ocean and predicting its "weather" has been much more difficult. Historically, oceanographers have gone to sea in ships to study specific processes in small geographic areas of the ocean for limited periods of time. In the 1950's, the geographic range and duration of ocean research was extended through the use of satellite systems for surface imaging and communications. However, the data collected in this way is still only providing a piece of the ocean puzzle. Scientists crave a better way to collect data and do it continually. The next step is to develop the technology that will allow researchers to keep sensors "permanently" in place.

Ocean observing systems are collections of instruments and sensors above and below the waves that provide around-the-clock information about what is happening in the ocean (e.g. changing temperatures, currents, salinity, biological productivity). A global system of ocean observatories is now emerging that uses a suite of technologies to answer many different questions. Sensors on satellites miles above the earth look at both large and small areas of the ocean surface, providing key data about the temperature, color, and height of the water. Radar towers on land collect information about the movement of the water at the surface, including the speed and direction of the currents. Sensors and instruments attached to stationary buoys collect information at the same location over long periods of time. AUVs traveling below the surface collect information about water conditions. Instruments connected to networks of underwater hubs called "nodes" continuously collect data and send it back to land through fiber optic cables. The same cables also provide electrical power to the nodes and other

equipment.

Using data collected by ocean observatories, scientists can forecast ocean conditions, much like meteorologists do for the weather, which can better inform the decisions affecting coastal and ocean resources, and, therefore, us.

The global system of ocean observatories

The Ocean Observatories Initiative (OOI) is a project funded by the U.S. National Science Foundation (NSF). The goal of OOI is to construct a networked infrastructure of sensor systems to measure the physical, chemical, geological, and biological variables in the ocean and on the seafloor. The network will include moorings, AUVs, and cabled seafloor systems all connected by a cyberinfrastructure. Scientists, engineers, and technicians at the University of Washington led the design and are now constructing a cabled observing system called Regional Scale Nodes (RSN), which will become OOI's first cabled ocean observatory, and the largest in the U.S.

When complete, the RSN will consist of nearly 1,000 kilometers of cable capable of providing 56 kilowatts of electrical power and up to 240 Gigabits per second of telecommunication bandwidth. To date, a ship has laid 900 kilometers of cable from a shore station in Pacific City, Oregon west across the Juan de Fuca tectonic plate to the Axial Seamount, then south along the Cascadia subduction zone to Hydrate Ridge. Seven primary nodes that will serve as connection points for moorings and other instrumentation have been installed. These primary nodes will be populated with instruments and water column moorings at Hydrate Ridge, Axial Volcano, and along shallow coastal sites (collectively known as the Endurance Array) west of Newport, Oregon.

The observatory is scheduled to become operational in 2014 and designed to operate continuously for 25 years. Once operational, data and video imagery will be transmitted in real-time and will be

accessible to users around the world, including scientists, educators, students, and decision-makers.

The network is designed to be expandable. The ultimate goal is to create an observatory that, when complemented by Canada's NEPTUNE cabled observatory to the north, will encompass an entire tectonic plate and all the natural phenomena that occur there – whether below the seafloor, on the seafloor, in the ocean, or at the air-sea interface.

Regional Scale Nodes, OOI's first U.S. cabled observatory

And, in our scenario, expansion is already starting to take place. Scientists, engineers, and technicians at the University of Washington recently released a request for proposals (RFP) for ROV services to extend the network of cables, nodes, and instruments on the Axial Seamount. They are interested in expanding their existing Axial Seamount Hydrothermal Emissions Study (ASHES) experiments to better understand the underlying geology of a hydrothermal vent field located just north of the seamount. In addition to installing nodes and deploying instruments, the RFP includes routine maintenance work on existing water column moorings located near the seamount.

A bathymetric map of the ASHES site highlighting the Inferno vent chimney

A photo mosaic of the Inferno vent chimney

This is where your mission begins.

REQUEST FOR PROPOSALS (RFP)

1. General

a. RSN and Study Site Overview

The Regional Scale Nodes (RSN) cabled observatory off the coast of Washington and Oregon is part of the NSF-funded Ocean Observatories Initiative (OOI). The system currently consists of seven scientific underwater terminals or "hubs" called primary nodes that are located on and around the Juan de Fuca plate. These nodes are connected by 900 kilometers of submarine fiber optic cable that terminates at a shore station in Pacific City, Oregon. The shore station provides power and allows for two-way communication to/from the nodes. The nodes and cable are the primary infrastructure, or "backbone," of the RSN.

Each node consists of two components: the Backbone Interface Assembly (BIA) and the Science Interface Assembly (SIA). The BIA is connected to the backbone cable and is the "frame" of each primary node. The SIA fits down into and is connected to the BIA. It includes ports for scientific instruments. The SIA is removable for servicing with an ROV.

The seven primary nodes were installed at the following sites: Axial Seamount (2 nodes); Mid-Plate (1 node); at the base of the slope of the Cascadia Margin (1 node); Hydrate Ridge (1 node); and at 600 and 110 meters water depth along the Endurance Array offshore of Newport, Oregon.

The RSN primary infrastructure, showing the location of the primary nodes

The primary infrastructure will provide power and communication to a secondary infrastructure

that will consist of about 40 kilometers of submarine extension cables, underwater science sensors, instruments, moorings, and other nodes. The second infrastructure will be installed and routinely maintained by ROVs.

b. Document Scope and Purpose

This and accompanying competition documents contain the technical specifications and requirements for the ROV services needed to support the successful installation and maintenance of the secondary infrastructure as well as the servicing of the existing RSN structures and instrumentation. In 2013, ROV services include:

- Installing the SIA into the BIA of a primary node previously deployed at the ASHES site
 then connecting the BIA to the backbone cable via the Cable Termination Assembly
 (CTA). ASHES is located ~2 km west of the one of the primary nodes installed at the
 Axial Seamount.
- Deploying an ocean bottom seismometer (OBS) at ASHES and connecting it to the SIA for power and communications. The OBS currently rests on an elevator previously deployed at the site.
- Designing then installing a temperature sensor over a vent field at ASHES and recording the temperature of the vent flow over time.
- Removing an Acoustic Doppler Current Profiler (ADCP) from a water column mooring
 platform located near the Axial Seamount for maintenance and service and replacing it
 with a new ADCP.
- Locating and removing biofouling from existing structures and instruments at both the Axial Seamount and the ASHES site.

2. Acronyms and Definitions

Ocean observatory work uses a number of acronyms, as do most professions. The following is a list of acronyms used within this document.

RSN: Regional Scale Node

BIA: Backbone Interface Assembly **SIA:** Scientific Interface Assembly **CTA:** Cable Termination Assembly **OBS:** Ocean Bottom Seismometer The **RSN** is the cabled observatory.

The **primary infrastructure** is the underwater component of the RSN that serves as the backbone of the observatory. It provides high-voltage DC power and two-way communication links from shore to the submarine network. It consists of cable and primary nodes.

The **secondary infrastructure** will receive its power and communication from the primary

infrastructure and consists of secondary nodes, extension cabling, and instrumentation.

3. Specifications

See the specific tasks described below as well as the **Design & Building Specifications and Competition Rules** document.

4. Maintenance and Technical Support

The company shall warrant the ROV and associated systems and equipment for at least the duration of the competition event. Repair or replacement shall be at the company's expense, including the cost of shipping the ROV to and from the competition facility.

During regional events, the company shall provide at least one day of technical support to resolve hardware, software, and operational issues. They shall provide at least three days of the same for the international event.

5. Shipping and Storage

Refer to the **Shipping Information** document for specifics on shipping the ROV to the competition site.

Delivery of the ROV and associated systems and equipment shall be no later than the date of the geographically closest regional contest or by June 20, 2013, which is the start date of the international competition.

6. Evaluation Criteria

- a. Technical report
- **b.** Engineering presentation
- c. Poster display
- d. Performance

References (for the scenario and the mission tasks):

John R. Delaney and Deborah S. Kelley, University of Washington School of Oceanography. *Next-Generation Science in the Ocean Basins: Expanding the Oceanographer's Tool-Box Utilizing Submarine Electro-Optical Sensor Networks.*

An Introduction to the Integrated Ocean Observing System (IOOS), <u>www.cencoos.org/visual_media/classroom/IOOSintro/IOOSintro.htm</u>

ASHES Virtual Site, http://www.pmel.noaa.gov/vents/nemo/explorer/ashes.html

Biofouling Protection for Marine Instruments, <u>www.severnmarinetech.com</u>

Biofouling, www.stccmop.org/blog/schillij/biofouling

COSEE NOW, http://coseenow.net/

Favali, P., De Santis, A., & Beranzoli, L. (2012). Seafloor Observatories: A New Vision of the Earth from the Abyss. Springer. ISBN: 3642113737, 9783642113734.

Hotaling, L., Sullivan, D., & Zande, J. (2007). The Sensor Revolution: Benefits and Challenges for the Marine Technical Workforce. *Marine Technology Society Journal*, 41(3)

Interactive Oceans, <u>www.interactiveoceans.washington.edu</u>

Ocean Observatories Initiative: Transforming Our Understanding of How the Ocean Works, www.oceanobservatories.org

Ocean Observing Systems, http://coseenow.net/about/ocean-observing-systems/

Physical Oceanography, Hydrology, Water Quality, and Modeling, http://kinneticlabs.com/pages/oceanographic.html

United Nations Department of Economic and Social Affairs. (2004). World Population in 2300, New York, 1-254.

Using Ocean Observing Systems in K-12 Education, http://marine.rutgers.edu/outreach/rtd/oos.htm

Task #1: Complete a primary node and install a scientific instrument on the seafloor.

Your company is required to complete a primary node, install a scientific instrument, and connect that instrument to the node.

Completing the primary node involves installing the Science Interface Assembly (SIA) into the Backbone Interface Assembly (BIA) and inserting the Cable Termination Assembly (CTA) into the BIA. Then, companies will deploy an Ocean Bottom Seismometer (OBS) within the ASHES study site. Installing the OBS will require pulling a pin to release the instrument from an elevator, deploying the OBS within the designated location, and inserting the OBS cable connector into the SIA for power and communications.

The backbone interface assembly of an RSN

This task involves the following steps:

- Transferring the SIA to the seafloor 5 points
- Installing the SIA so that it rests completely within the BIA 20 points
- Removing the CTA from the seafloor 5 points
- Inserting the CTA into the bulkhead connector on the BIA 20 points
- Pulling the pin to release the OBS from the elevator 10 points
- Removing the OBS from the elevator 5 points
- Deploying the OBS in the designated location on the seafloor 20 points
- Opening the door of the BIA 10 points
- Removing the OBS cable connector from the elevator 5 points
- Inserting the OBS cable connector into the bulkhead connector on the SIA 20 points

Total points = 120

Mission notes:

Companies may alternate between task #1 and other tasks, but the steps of task #1 must be completed in order, with the following exception: companies may remove the OBS cable connector from the elevator at any point after pulling the pin to release the OBS and opening the door of the BIA. Companies may skip any step of task #1, but will not receive points if they complete that step at a later time. All steps of task #1 must be completed to receive a time bonus.

Companies will install the SIA into the opening on top of the BIA. The BIA is constructed of ½-inch PVC

with corrugated plastic walls and will be located on the seafloor. The SIA is constructed from a milk crate. A U-bolt is attached in the center of one side of the milk crate as a lift point. The SIA will be located on the surface, at the mission station. Companies may attach the SIA to their vehicle during the 5-minute set up period. Companies will receive 5 points when any part of the SIA touches any part of the BIA. Companies will receive 20 points when the SIA is completely installed and resting flat within the BIA. (Note that the SIA will extend several centimeters above the top of the BIA when properly installed.) Companies will only receive one SIA. If it is dropped, your company must retrieve it to complete the mission.

The SIA weighs less than 2 Newtons in water.

Once the SIA is installed into the BIA, companies must connect the main power cable (or CTA) to the node. The CTA is constructed from a 1-inch PVC coupling. A screw hook and screw eye will act as lift points for the CTA. The CTA will be resting upright on the pool bottom within 2 meters of the BIA. Companies will receive 5 points when the ROV is in possession of the CTA, and the CTA is no longer in contact with the seafloor. Once removed from the seafloor, the CTA must be installed into the bulkhead connector on the node. The bulkhead connector is constructed from 2-inch PVC pipe and is located on a bottom corner of the BIA, opposite the BIA door. Companies will receive 20 points when the CTA is installed into the bulkhead connector and the two bolts protrude through the 2-inch end cap. Velcro will secure the CTA into the bulkhead connector. If the CTA is knocked over during retrieval, or dropped during transport, your company must retrieve it to complete the mission.

The CTA weighs less than 1 Newton in water.

The OBS, its cable, and the OBS cable connector will be located on an elevator previously deployed to the seafloor. The elevator is constructed of ½-inch PVC. The OBS, its cable, and the OBS cable connector will be resting on plastic net meshing covering the top of the elevator. The elevator will be located within 3 meters of the BIA. Companies will receive 10 points for pulling a pin to release the OBS from the elevator. The pin is a 6-inch metal J-bolt and will penetrate through holes drilled into the elevator and through matching holes drilled into the OBS framework. The pin must be completely removed from holes in the OBS and the holes in the elevator. Once removed, the pin may be left on the seafloor without penalty.

An OBS installed on the seafloor

The OBS is constructed from a length of 3-inch PVC pipe set inside a ½-inch PVC pipe framework. A U-bolt is set in the top center of the OBS as a lift point. Once released from the elevator by pulling the pin, companies will receive 5 points for removing the OBS from the elevator. The ROV must be in possession of the OBS and no part of the OBS may be touching the elevator or seafloor.

The OBS weighs less than 2 Newtons in water.

Once the OBS is removed from the elevator, companies will receive 20 points for deploying the OBS into a designated area. The designated area will be represented by a ½-inch PVC square. The OBS must be deployed completely within this designated area. No part of the OBS may be touching any of the PVC pipe that denotes the perimeter of the designated area.

Once the OBS is properly deployed, companies must connect the OBS cable to the SIA bulkhead connector. The OBS cable connector is constructed of ½-inch PVC pipe, with a screw hook and screw eye that will act as lift points. A 5 meter length of rope connects the OBS and the OBS cable connector. This rope will be coiled on the elevator near the OBS cable connector. The front end of the OBS cable connector is covered with Velcro loops. Companies will receive 5 points for removing the OBS cable connector from the elevator. The ROV must be in possession of the OBS cable and no part of the connector may be touching the elevator or the seafloor.

The OBS cable connector weighs less than 1 Newton in water.

Removing the OBS cable connector from the elevator is the one step of this task that may be completed out of order. Companies will receive points for picking up the OBS cable connector at any time after they remove the pin from the OBS and elevator. Alternatively, companies may leave the OBS cable connector on the elevator until after opening the door on the BIA. At that point they may return to the

elevator, remove the OBS cable connector, and install the connector into the SIA bulkhead connector.

Once the OBS is deployed into the designated area, companies must open the door on the BIA to expose the SIA bulkhead connector inside. The door of the BIA is constructed from a corrugated plastic sheet. Two hinges allow the door to open. A handle is located on the right side of the door and is constructed from ½-inch PVC pipe. Companies will receive 10 points for opening the door on the BIA. If the door subsequently closes due to ROV and/or water movement, points will not be taken away from your company. However, the door must be opened again to complete this step of the task.

Companies will receive 20 points for installing the OBS cable into the bulkhead connector on the SIA. If the SIA was not installed correctly, companies will need to reinstall the SIA in the proper orientation. To do so, companies must first unplug the CTA from the BIA. Only when the CTA is unplugged can the SIA be removed and reinstalled in the proper orientation. The CTA must be inserted again before the OBS cable can be installed into the bulkhead connector on the SIA. Companies that need to remove and reinstall the SIA within the BIA will not lose points they have received for task #1. For example, if a company finds that they have installed the SIA backwards in the BIA, and subsequently detaches the CTA from the BIA, they will not lose points for detaching the BIA or removing the SIA from the BIA.

Mission prop specifications

See the RANGER Construction Photos, Mission Prop Photos, and SolidWorks Assemblies and Drawings documents for visuals.

All PVC used in construction is DURA brand PVC. If items are unavailable or built to different specifications in your area, check online at www.duraplastics.com to purchase specific PVC pieces. Alternatively, certain dimensions may need to be extended or shortened to match DURA brand products.

Backbone Interface Assembly (BIA):

The backbone interface assembly (BIA) is constructed from a framework of ½-inch PVC pipe. Corrugated plastic form the walls of the BIA over the ½-inch PVC pipe framework. The BIA is designed so that a 33 cm x 33 cm x 28 cm milk crate (see SIA specifications below) fits into it. If your company is using a milk crate of different dimension than listed in the SIA specifications below, you may need to alter the specifications of the BIA to accommodate your milk crate.

To construct the BIA:

- 1. Start with constructing the top portion of the BIA, which is a rectangle approximately 42 cm long by 37 cm long. The corners of the rectangle are built with ½-inch PVC side outs (corner pieces) with a short arm pointing down. PVC tees are also incorporated, with their middle openings also pointing down.
- 2. Cut a 9 cm length of ½-inch PVC pipe and insert it into the long end of a ½-inch PVC side out.

- Attach the side opening of a ½-inch PVC tee to the other end of the 9cm length of PVC pipe. Cut another 9 cm length of ½-inch PVC pipe and insert it into the other side opening of the PVC tee. Attach the long end of a ½-inch PVC side out to the other end of the 9 cm length of pipe.
- 3. Cut a 15 cm length of ½-inch PVC pipe. Insert the pipe into a short opening of the PVC side out. Attach the side opening of a ½-inch PVC tee to other end of this length of pipe. Cut another 15 cm length of ½-inch PVC pipe and insert it into the other side opening of the PVC tee. Attach the short opening of a ½-inch PVC side out to the other end of this 15 cm length of pipe.
- 4. Cut a 9 cm length of ½-inch PVC pipe and insert it into the long end of the ½-inch PVC side out. Attach the side opening of a ½-inch PVC tee to the other end of the 9 cm length of pipe. Cut another 9 cm length of ½-inch PVC pipe and insert it into the other side opening of the PVC tee. Attach the long end of a ½-inch PVC side out to the other end of the 9 cm length of pipe.
- 5. Cut a 3 cm length of PVC pipe. Insert it into the short opening of the PVC side out. Attach the side opening of a ½-inch PVC tee to other end of this length of pipe. Cut a 20.5 cm length of ½-inch PVC pipe and insert it into the other side opening of the PVC tee. Attach the side opening of a ½-inch PVC tee to other end of this length of pipe. Cut a 3 cm length of PVC pipe. Insert this length of pipe into the other side opening of the PVC tee. Insert the other end of this 3 cm length of pipe into the short opening of the ½-inch PVC side out from step #2.

At this point you should have a rectangle approximately 42 cm long by 37 cm long. Each corner should be a ½-inch PVC side out with short ends pointing down. Twist all five PVC tees so their empty middle openings are facing down as well.

See RANGER mission photo #1.

- 6. Cut nine 3 cm lengths of ½-inch PVC pipe. Insert these 3 cm lengths of PVC pipe into the four openings of the short ends of the PVC side outs and the five middle openings of the PVC tees. Attach nine ½-inch PVC 45° elbows to the other end of each 3 cm length of PVC pipe. Twist each 45° elbow so it faces outwards, away from the center of the BIA.
- 7. Cut four 47 cm lengths of ½-inch PVC pipe. Insert these lengths of pipe into the 45° elbows at the four corners of the BIA (the elbows coming down from the PVC side outs). Attach the middle opening of a ½-inch PVC tee to the other end of each length of pipe.
- 8. Cut eight 7 cm lengths of ½-inch PVC pipe. Insert the 7 cm length of pipe into the side openings of each PVC tee at the bottom of each "leg" (47 cm length of pipe). Attach a ½-inch 45° elbow to the end of each 7 cm length of pipe.
- 9. Cut two 34.5 cm lengths of PVC pipe. Insert them into the 45° elbows that are on the same side of the rectangle. Attach the middle opening of a ½-inch PVC tee to the other end of each length of pipe.
- 10. Cut a 20.5 cm length of pipe and two 20 cm lengths of pipe. Connect the two ½-inch PVC tees at the bottom of the "legs" with the 20.5 cm length of pipe. Insert the 20 cm lengths of pipe into the other side openings of the PVC tees. Insert the other ends of these 20 cm lengths of pipes into the 45° elbows on the ends of the corner legs (step 8).

- 11. Cut three 21 cm lengths of PVC pipe. Insert these pipes into the three remaining 45° elbows on the BIA. Attach the side opening of a PVC tee to the other end of each length of pipe. Cut three 10 cm lengths of ½-inch PVC pipe. Insert these lengths of pipe into the other side openings of each PVC tee. Attach the middle opening of ½-inch PVC tee to the other ends of these 10 cm lengths of ½-inch PVC pipe.
- 12. Cut six 25 cm lengths of $\frac{1}{2}$ -inch PVC pipe. Insert the 25 cm lengths of pipe into the other side openings of the PVC tees. Insert the other ends of these 25 cm lengths of pipes into the 45° elbows on the ends of the corner legs (step 8).

Design note: You may need to slightly alter the lengths of some PVC pipe to achieve the best fit for constructing the BIA.

- 13. Cut three 3 cm lengths of PVC pipe. Insert these lengths of pipe into the middle opening of the ½-inch PVC tees on the three legs of the BIA. Attach a 45° elbow to the other end of each 3 cm length of pipe.
- 14. Cut a 26 cm length and two 18 cm lengths of ½-inch PVC pipe. Insert the 26 cm length of pipe into the middle opening of a PVC tee and insert the two 18 cm lengths of PVC pipe into the side openings of the PVC tee. Attach the side opening of a PVC tee to the other end of each 18 cm length of PVC pipe. Cut two 10 cm lengths of PVC pipe. Insert them into the side openings of each PVC tee. Twist the PVC tees so the middle opening is flat and facing in the opposite direction of the middle opening of the PVC tee in the middle of this construction (step 13).
- 15. Cut two 5 cm lengths and one 40 cm length of ½-inch PVC pipe. Insert the 5 cm lengths of PVC pipe into the middle openings of the two PVC tees. Attach a 90° elbow to the other end of each 5 cm length of pipe. Insert the 40 cm length of PVC pipe between the two 90° elbows.

At this point you should have a flat topped, octagonal bottomed pyramid structure approximately 1 meter across at the bottom. The side of the BIA with the two ½-inch PVC struts is the front of the BIA and will have a door that the ROV must open. The opposite side of the BIA is the back and will have the bulkhead connector where the CTA must be inserted.

See RANGER mission photo #2, #3 and #4.

The back and the sides of the BIA will be covered with corrugated plastic sheets. The front of the BIA will have a small corrugated sheet covering part of it, and a larger corrugated sheet that will act as a door to reveal the SIA within. The front of the BIA is designated as the side with two legs on one side, separated by the 20.5 cm length of PVC pipe.

To construct the walls:

1. Use three sheets of 60 cm x 38 cm corrugated plastic. Fit the corrugated plastic over the two side walls and back wall of the BIA. Cut the top corners of the corrugated plastic down to fit the shape of the BIA.

- 2. The corrugated plastic should cover from the 45° elbows near the top of the BIA to the bottom edge of the BIA. Bottom corners do not need to be covered.
- 3. Use cable/zip ties and screws to hold the corrugated plastic onto the BIA framework.
- 4. Cut a 19 cm x 38 cm sheet of corrugated plastic. Fit the corrugated plastic over the left side front of the BIA, from the left PVC pipe to the left corner of the BIA. Use screws and cable/zip ties to secure it to the PVC pipe. Cut the top left corner of the corrugated plastic down to fit the shape of the BIA.
- 5. Cut a 42 cm x 38 cm length of corrugated plastic. Fit this adjacent to the 19 cm x 38 cm sheet of corrugated plastic, covering the rest of the front side of the BIA. Do NOT secure it to the PVC framework of the BIA. Cut the top right corner of the corrugated plastic down to fit the shape of the BIA.
- 6. Use two 3 ½-inch brass hinges (Home Depot part **#237-070**) to attach the 42 cm x 38 cm corrugated plastic to the 19 cm x 38 cm corrugated plastic. Use #10 1-inch bolts instead of the screws that come with the hinges. This will eliminate the sharp points of the screws and allow for tighter connections with the plastic. Use a 10-24 nut to secure the bolts through the hinges. When attaching the bolts through the corrugated plastic, use a 1 ¼-inch x ¼-inch Fender washer on the two outside bolts of each hinge. This will increase the surface area against the corrugated plastic and prevent damage.
- 7. Cut a 10 cm length of ½-inch PVC pipe. Attach a ½-inch 90° PVC elbow to each end. Drill two 5/32-inch holes into the open end of each 90° PVC elbow. This is the handle to open the corrugated plastic door of the BIA.
- 8. Place the handle on the side of the corrugated plastic opposite the hinges, 3 cm from the far edge of the plastic. The handle should be positioned so the open ends of the 90° PVC elbow are flat against the corrugate plastic and the handle.
- 9. Drill four holes into the corrugated plastic, each one adjacent to the holes drilled into the open end of the 90° PVC elbow. Insert cable/zip ties through the holes of each 90° PVC elbow, through the holes in the corrugated plastic. Tighten the ties to secure the handle to the corrugated plastic.

See RANGER mission photo #5, #6 and #7.

Design note: Check sign-making/printing stores for corrugated plastic. Corrugated plastic can also be reused from the 2012 competition props. Use the same corrugate plastic sheet that covered the sides of the shipwreck.

Science Interface Assembly (SIA):

The science interface assembly (SIA) fits into the top opening of the BIA. The SIA is constructed from a milk crate. These specifications use a milk crate 33 cm x 33 cm x 28 cm. If your company is using a milk crate of different dimensions, you may need to alter the specifications of the BIA above to accommodate your milk crate. A flat ABS plastic sheet covers the 33 cm x 33 cm opening of the milk crate. A 2-inch hole in the ABS sheet is the bulkhead connector for the OBS cable to be inserted into. A

#310 1 ½-inch pipe U-bolt (Home Depot part #117-996) is placed in the center of the top wall of the SIA.

To construct the SIA:

- 1. Cut a 33 cm x 30 rectangle of 1/8-inch flat ABS plastic sheeting.
- 2. Use a 2-inch hole saw to drill a hole through the ABS plastic sheeting. Alternatively use a smaller drill bit to drill multiple holes in a 2-inch circle and cut the ABS plastic to complete the hole. The center point of the hole should be located on the midline on the 33 cm dimension, 16.5 cm from each edge. The center point of the hole should be off center on the 30 cm dimension, 12 cm from one edge, 18 cm from the other edge.
- 3. Cut an 8 cm length of 2-inch PVC pipe. Attach two 1 ½-inch corner braces (Home Depot part #163-518) to opposite sides of one end of the 8 cm length of pipe. Use round headed #10 ½-inch bolts instead of the screws that come with the corner braces. The bolts should be fitted from inside the 2-inch pipe to the outside. Use a 10-24 nut to secure the braces to the 2-inch PVC pipe. If you cannot find #10 ½-inch bolts, use #10 1-inch bolts and use a hacksaw to cut them off AFTER tightening on the 10-24 nut.
- 4. Align the 8 cm length of 2-inch PVC pipe over the hole cut into the ABS sheet. Secure the other ends of the corner braces to the ABS sheet. Use #10 bolts from the ABS through the corner braces.
- 5. Cut a 5 cm x 5 cm square of industrial strength Velcro hooks (Home Depot part #90593). Cut the corners off of the Velcro square to make it octagonal. Attach the Velcro hooks to the inside of a 2-inch PVC end cap.
- 6. Attach the 2-inch end cap to the end of the 8 cm length of 2-inch PVC pipe.

See RANGER mission photo #8.

- 7. Attach a 1 ½-inch pipe U-bolt in the center of a side wall (33 cm x 28 cm wall) of the milk crate. The U-bolt should stick up 5.5 cm above the outer wall of the milk crate. Use 1 ¼-inch x ¼-inch Fender washers to secure the U-bolt. This wall will be defined as the 'top' of the SIA.
- 8. Use cable/zip ties to secure the ABS plastic sheet over the open side of the milk crate. Place the ABS sheet at the very top of the milk crate (the side with the U-bolt). This may leave a small 2 cm opening along the bottom. Orient the plastic sheet so that the opening of the bulkhead connector is closer to the top of the milk crate.

Add flotation/ballast as necessary to the SIA to achieve the desired weight in water.

See RANGER mission photo #9 and #10.

Cable Termination Assembly:

The cable termination assembly (CTA) is constructed from a 1-inch PVC coupling with a 1-inch end cap attached to each end. Two #10, 1-inch bolts act as the plugs. A #6 screw hook (Home Depot part **#14672**) and a #6 Screw eye (Home Depot part **#14092**) act as grab points on the assembly. 8 meters of

1/8-inch braided nylon and polypropylene rope (Home Depot part #14068, Home Depot SKU #140287, ACE Hardware part #75851) attach the assembly to surface, side of the pool. Velcro will help to secure the CTA into BIA bulkhead connector.

To construct the CTA:

- 1. Drill two 5/32-inch holes into the 1-inch PVC end cap covered with Velcro. The holes should be along a centerline and be drilled 2.5 cm apart. Screw a #10 1-inch bolt through each hole, from the inside of the end cap to the outside.
- 2. Cut an 8 cm x 1 cm strip of industrial strength Velcro hooks. Attach this Velcro strip over the top of a 1-inch PVC end cap. The strip should be positioned equidistance between the two #10 bolts, with 2 cm of the strip over each side of the 1-inch end cap.
- 3. Drill a 5/32-inch hole in the exact center of another 1-inch PVC end cap. Drill a 3/16-inch hole 1 cm out from the hole in the center. Screw a #6 Screw eye into the center hole. The Screw eye should be completely screwed into the end cap. Insert one end of the 1/8-inch rope into the off-center hole. Tie an overhand knot into the rope so that it is secured inside the end cap.
- 4. Cut two 4 cm lengths of 1-inch PVC pipe. Insert a 4 cm length into both ends of a 1-inch PVC coupling. Attach the two 1-inch PVC end caps to each end of the 1-inch coupling.
- 5. Drill a 5/32-inch hole into the center 1-inch PVC coupling, 3 cm from either end. Screw a #6 Screw hook into this hole. The Screw hook should be screwed in until only 2 mm of the thread remains outside of the 1-inch coupling.
- 6. On the opposite side of the coupling from the screw hook, drill four 3/32-inch holes. Two holes should be placed 1 cm from each end of the coupling. Each set of holes should be 2 cm apart from each other, 1 cm to either side of the bottom of the connector. The bottom is defined as the line directly opposite the #6 Screw hook.
- 7. Insert a #6, ½-inch screw into each hole. The two screws placed near the end cap that contains the Screw eye and 1/8-inch rope should not be screwed all the way in. The head of the screw should be approximately 2 to 3 mm from the PVC coupling. These screws will act as small legs to hold the CTA upright.
- 8. Twist the end caps into proper alignment. The end cap containing the two #10 1-inch bolts should be twisted so that the two bolts are flat; a line between the two bolts should be parallel with the ground. Twist the other 1-inch end cap so that 1/8-inch rope is directly below the #6 Screw eye.
- 9. Twist the #6 Screw eye and #6 Screw hook into proper alignment. The Screw eye should be twisted so that the eye is parallel with the pool bottom. Turn the Screw hook so that the open end of the hook faces the screw eye.

Use PVC glue to secure the end caps onto the 1-inch PVC pipe once the alignment of your CTA is correct. Drill small holes into the top and bottom of each end to allow water to fill connector.

Add flotation/ballast as necessary to the CTA to achieve the desired weight in water.

See RANGER mission photo #11.

CTA bulkhead connector:

A bulkhead connector for the CTA must be attached to the back of the BIA. The bulkhead connector is constructed from 2-inch PVC pipe and a 2-inch end cap.

To construct the CTA bulkhead connector:

- 1. Cut a 5 cm x 5 cm square of industrial strength Velcro loops. Cut the corners off of the Velcro square to make it octagonal. Attach the Velcro loops to the inside of a 2-inch PVC end cap.
- 2. Use a spade bit to drill two 5/8-inch holes into the 2-inch PVC end cap. The center points of the two holes should be approximately 2.5 cm apart from each other and approximately 0.75 cm below the centerline of the end cap.

Design note: The two 5/8-inch holes should accommodate the ends of the two #10 bolts on the front of the CTA bulkhead connector. Measure and drill accordingly to fit of the connector. There should be 2-inch PVC pipe inside the end cap when calculating locations to drill your holes.

- 3. Cut a 10 cm length of 2-inch PVC. Insert the 10 cm length of PVC into a 2-inch end cap.
- 4. Cut the top half of the 2-inch PVC away. The two holes drilled in the 2-inch end cap should be just below the centerline. The bottom of the bulkhead connector is the side with the two holes. The top of the bulkhead connector is the opposite side of the centerline from those two holes. At the edge of the end cap, use a saw to cut halfway through the 2-inch PVC pipe. Then cut the PVC lengthwise to remove half the 2-inch PVC pipe.
- 5. Using the open PVC pipe as the top, use screws to secure the CTA bulkhead connector to the back right side (door is front) of the BIA. Countersink screws in the 2-inch PVC pipe so the heads of the screws do not interfere with the CTA connection.

See RANGER mission photo #12, #13 and #14.

Elevator:

The elevator is constructed out of a ½-inch PVC framework. The top of the elevator is covered with a plastic mesh. The mesh can be plastic square mesh (Home Depot part #889250A) or plastic hexagonal mesh (Home Depot part #090786). A pin will hold an OBS onto the elevator. The pin is a 6-inch J-bolt with ¼-inch threads (ACE Hardware part #57933).

To construct the elevator:

- 1. Cut six 22 cm lengths and six 17 cm lengths of ½-inch PVC pipe. Insert two of the 22 cm lengths of pipe into the side openings of a ½-inch PVC tee. Insert a 17 cm length into the middle opening of the same PVC tee. Repeat this process with another PVC tee, two 22 cm lengths into the side openings, a 17 cm length of pipe into the middle opening.
- 2. Attach the other ends of the 17 cm lengths of pipe into opposite openings on a ½-inch PVC

- cross. Twist the pipe so all pieces lay flat.
- 3. Insert the remaining two lengths of 22 cm ½-inch PVC pipe into the other two openings on the PVC cross. Attach the middle opening of ½-inch PVC tee to the ends of both 22 cm lengths of pipe.
- 4. Insert the remaining four lengths of 17 cm pipe into the side openings of both PVC tees (four openings total). Twist so all pipe lays flat.
- 5. Use four ½-inch side outs to complete the rectangle. The short ends of the side out should attach to the open ends of eight lengths of PVC pipe. The long openings of the four side outs should all face the same way.

See RANGER mission photo #15 (top left).

- 6. Cut four 22 cm lengths, six 17 cm lengths, two 15 cm lengths and two 3 cm lengths of ½-inch PVC pipe. Insert one 15 cm length and one 3 cm length of pipe into the side openings of a PVC tee. Repeat this with the other 15 cm length and 3 cm length of pipe. Combined with the PVC tee, these should be 22 cm long.
- 7. Repeat the above steps 1 through 5, using the combination 22 cm lengths of pipe (15 cm, tee, 3 cm) into the side openings of the same PVC tee.
- 8. Cut four lengths of 5 cm ½-inch PVC pipe. Insert these lengths of pipe into the long openings of the four PVC side outs. Attach the long openings of the four PVC side outs from the other construction to the other end of the four 5 cm lengths of pipe.
- 9. The side of the elevator with the two extra PVC tees is the top. Twist the middle openings of those two PVC tees so they are facing upwards.
- 10. Cut two 5.5 cm lengths of PVC pipe and insert them into the middle openings of the two PVC tees. Attach a 90° elbow to the other end of each 5.5 cm length of pipe. Twist the elbows so their openings face each other.
- 11. Cut a 34.5 cm length of ½-inch PVC pipe. Insert it between the openings of both 90° PVC elbows.
- 12. Drill a 3/8-inch hole completely through both sides of the left most 90° PVC elbow. Make sure the edges of the drill holes are smooth.

The 3/8-inch holes in the 90° elbow will match up with similar holes in the legs of the OBS. The 6-inch J bolt will fit through both holes, securing the OBS onto the elevator until the pin is removed. The height of the holes may need to be slightly altered to accommodate easy removal of the pin. Vary the length of the 5.5 cm pipe as needed.

See RANGER mission photo #15 and #16.

Ocean Bottom Seismometer (OBS):

The ocean bottom seismometer (OBS) is constructed of a 3-inch PVC housing capped on each end by a 3-inch knock out cap (Home Depot part# **39102**, SKU#**508260**, Home Depot online# **39102**). A ½-inch

PVC framework surrounds the 3-inch PVC housing. 5 meters of 1/8-inch braided nylon and polypropylene rope (Home Depot part #14068, Home Depot SKU #140287, ACE Hardware part #75851) connect the OBS to the OBS cable connector.

To construct the OBS:

- 1. Cut a 20 cm length of 3-inch PVC pipe. Drill two 1/4-inch holes 5.6 cm apart in the middle of the 3-inch PVC pipe. Attach a #310 1 ½-inch pipe U-bolt (Home Depot part #117-996) through these two holes. The U-bolt should stick up 6 cm above the wall of the 3-inch pipe. The U-bolt will define the top of the OBS.
- 2. Drill a 3/16-inch hole 2 cm from one edge of one knock out cap. Insert one end of the 5 meter length of rope through this hole, from the outside of the knock out cap through to the inside. Tie an overhand knot to secure the rope inside the cap. Insert 3-inch knock out caps into both sides of the 3-inch PVC pipe. Position the rope so it is closest to the bottom side of the canister (opposite the U-bolt).
- 3. Drill small holes into the 3-inch PVC pipe so that it will fill with water when submerged.
- 4. Cut a 7 cm length of ½-inch PVC pipe. Attach the side opening of a PVC tee to each end of the 7 cm length of pipe.
- 5. Cut two 3 cm lengths of ½-inch PVC pipe. Insert two of the 3 cm lengths into the two remaining side openings of both PVC tees. Attach a ½-inch 90° PVC elbow to the end of each 3 cm length of pipe. Twist the elbows so they face in an opposite direction as the middle openings of the PVC tees.
- 6. Cut two 3 cm lengths of ½-inch PVC pipe. Insert the 3 cm lengths of PVC pipe into the other openings on the 90° PVC elbow. Attach the middle opening of a PVC tee to the other end of each 3 cm length of pipe.
- 7. Cut two 3 cm lengths of pipe. Insert them into the middle opening of the PVC tees from step #3. Attach a $\frac{1}{2}$ -inch 90° PVC elbow to the end of each 3 cm length of pipe. Twist the elbows so they are perpendicular to the PVC tees.
- 8. Repeat steps 4 through 7 to create the other side of the ½-inch framework.
- 9. Cut two 16 cm lengths of $\frac{1}{2}$ -inch PVC pipe. Connect the 90° elbows from one half of the framework to the 90° elbows on the other half of the framework.
- 10. Position the 3-inch PVC pipe into the middle of the ½-inch framework, with the U-bolt facing straight up.
- 11. Use 2-inch screws through the 90° elbows and into the 3-inch pipe to secure the OBS in place.
- 12. There are eight ½-inch PVC tees used to construct the OBS. Twist the tees so all eight are parallel in orientation.
- 13. Set the OBS on the top mesh of the elevator. Align one of the $\frac{1}{2}$ -inch $\frac{90}{90}$ elbows with the $\frac{1}{2}$ -inch $\frac{1}{2}$ -inch
- 14. Drill a 3/8-inch hole completely through both sides of the 90° PVC elbow on the OBS. Make sure the edges of the drill holes are smooth. Fit the pin through the holes of both 90° elbows. The pin should slide easily into and out of all holes.

Add flotation/ballast as necessary to the OBS to achieve the desired weight in water.

See RANGER mission photo #17.

OBS cable connector:

The OBS cable connector is constructed from ½-inch PVC. 5 meters of 1/8-inch braided nylon and polypropylene rope connect it to the OBS. Two grab points on the connector are constructed from a #6 screw hook (Home Depot part #14672) and a #6 screw eye (Home Depot part #14092).

To construct the OBS cable connector:

- 1. Drill two 5/32-inch holes into a ½-inch PVC end cap. One hole should be in the center of the end cap, the other hole should be 0.5 cm away from the center point. Insert the end of the 5 meter rope through the hole that is not in the center of the end cap. Tie an overhand knot in the rope to secure it inside the end cap.
- 2. Cut four 3 cm lengths of ½-inch PVC pipe. Insert two 3 cm lengths of pipe into opposite openings on a ½-inch PVC cross. Attach the end cap with the rope to one 3 cm length of pipe. Attach a ½-inch PVC coupling to the other 3 cm length of pipe.
- 3. Insert another 3 cm length of pipe into the other end of the ½-inch coupling. Attach a second ½-inch coupling to the 3 cm length of pipe.
- 4. Insert the fourth 3 cm length of pipe into the other end of the ½-inch coupling. Attach a ½-inch end cap to the 3 cm length of pipe.
- 5. Cut a 3.5 cm x 3.5 cm square of industrial strength Velcro loops (Home Depot Part #90593). Cover the front of the ½-inch end cap with the Velcro.
- 6. Drill a 5/32-inch hole in the coupling nearest the ½-inch cross. The hole should be 0.5 cm from the border of the coupling and the cross.
- 7. Insert a #6 screw hook into this hole. Continue to twist the hook into the hole until it screws into the other wall of the PVC coupling. Orient the end of the screw hook so it faces the PVC cross
- 8. Insert a #6 screw eye into the center hole on the PVC end cap. Screw the eye all the way into the end cap.
- 9. Twist the PVC coupling containing the screw hook so it is perpendicular to the PVC cross. Twist the screw eye so it is parallel with the PVC cross and the rope emerges below the eye.

Add flotation/ballast as necessary to the OBS cable connector to achieve the desired weight in water.

See RANGER mission photo #18, #19, #20 and #21.

Designated area for OBS deployment:

The designated area for deploying the OBS is constructed from ½-inch PVC pipe.

To construct the designated area:

Cut four 46 cm length of ½-inch PVC pipe. Attach four ½-inch 90° elbows to create a 0.5 meter x 0.5 meter square. Use rebar or other weight inside the pipe to provide additional negative buoyancy.

See RANGER mission photo #22.

Task #2: Design, construct, and install a temperature sensor over a hydrothermal vent opening and measure temperature over time.

Prior to the competition, your company is required to engineer and construct a temperature sensor. During the competition, your company will be required to install your sensor over one of the hydrothermal vents at the ASHES site and obtain real-time temperature data over an extended time period. Companies will be required to report and graph temperature readings every 1.5 minutes over a 6-minute time frame. Accuracy of the temperature reading will only be judged at the initial reading.

This task involves the following steps:

- Designing and constructing a temperature sensor prior to the competition 15 points
- Installing the temperature sensor over the vent opening 10 points
- Measuring temperature over time up to 40 points maximum
 - o Initial temperature measurement up to 20 points
 - Initial temperature measurement is within 2°C of benchmark 20 points
 - Initial temperature measurement is within 4°C of benchmark 10 points
 - Initial temperature measurement is within 5°C of benchmark 5 points
 - O Temperature measurements over time up to 20 points
 - Temperature measurement at 1.5 minutes 5 points
 - Temperature measurement at 3 minutes 5 points
 - Temperature measurement at 4.5 minutes 5 points
 - Temperature measurement at 6 minutes 5 points
- Graphing all five data points (temperature versus time) 10 points

Total points = 75

Mission Notes:

Your company is responsible for designing and constructing its own temperature sensor. The MATE Center will NOT provide a sensor to your company at the competition. Your company is responsible for installing your temperature sensor in the "flow" of the hydrothermal vent. Your temperature sensor should be independent of your ROV. Once installed above the vent, the ROV can disengage and complete other tasks. The sensor may NOT have any thrusters or video capabilities; it must be completely deployed by the ROV. Your temperature sensor must be powered from the surface, no onboard batteries of any type are allowed. Companies may use USB to connect their sensor to a

computer. Companies may also use surface battery packs (limited to 12 volts maximum), or the MATE supply to provide power for their temperature sensor. These supplies must be fused with a 3 amp fast blow fuse. If companies are using the MATE supply to power their temperature sensor, both the ROV and sensor must run through the single 25 amp fuse before splitting off to the 3 amp sensor fuse.

The vent opening will be a constructed from %-inch PVC pipe and a %-inch PVC connector that protrudes from a 5-gallon bucket, which represents the vent structure. Companies' temperature sensors must measure the temperature of water coming out of the opening (pipe) on top of the vent (bucket). Companies will receive 10 points for positioning and installing their temperature sensor so that it can measure the temperature for a "long" duration (6 minutes of mission time).

Once installed, the temperature sensor must take 5 temperature measurements, one measurement every 1.5 minutes. The first measurement will be at 0 time; subsequent measurements will be at 1.5 minutes, 3 minutes, 4.5 minutes and 6 minutes. Companies should inform the mission station judge when they are acquiring their initial temperature measurement. The mission station judge will compare the first temperature measurement to a MATE temperature probe for accuracy. Companies will receive 20 points if their initial temperature measurement is within 2°C of the MATE benchmark. If companies do not measure the temperature accurately to within 2°C of the benchmark, companies will not receive full points and cannot receive a time bonus.

Companies will receive 5 points for each additional temperature measurement they take, up to a total of 20 points. Companies should inform the mission station judge when they are acquiring each of their temperature measurements. They must create a table to report the temperatures as well as the times those were measured using "0" time for the initial measurement. Although temperature measurements after the initial one are not compared for accuracy, the judge will use the temperature versus time data table to evaluate the company's graph. If a reading falls more than 15 seconds away from each of the expected time intervals (1.5 minutes, 3 minutes, 4.5 minutes, 6 minutes), companies will not receive points for the measurement at that interval. If a company runs out of time and cannot complete all of their temperature measurements, they will receive points for the readings they have taken. However, companies that do not complete all five measurements cannot get full mission points and therefore cannot receive a time bonus.

For both the initial temperature measurement and all subsequent time and temperature readings, it is up to one member of the company's mission team to inform the judge of the measurements. It is not the judge's responsibility to remind companies that it is time to take a temperature measurement.

When all five temperature measurements have been recorded, companies must graph their results. Companies will be provided with blank graph during the 5-minute set up period. The Y-axis will be marked "Temperature," and the X-axis "Time," but neither will have a scale included. Companies must create an axes grid and place their five data points onto this graph. If a company is unable to complete all five temperature readings, they cannot complete their graph.

Companies can complete their graph before the 15-minute mission time expires or during the 5-minute demobilization. Companies may only turn in one finalized graph to the mission station judges, but if needed, companies may request one extra blank graph from their mission station judge. Companies will receive 10 points for a completed graph. A completed graph has all five data points added at the proper time (X-axis) and within 0.5° C (Y-axis) of the measured value. If a company does not receive full points for their graph, they cannot receive a time bonus for the mission. Mission station judges may evaluate a graph after the mission time has ended, so a company could potentially lose a time bonus for an improper graph. Below is an example graph with three correct data points and two incorrect data points. The data table generated during the mission is printed to the right of graph.

Because two points are incorrect, the company would get zero points for this graph.

Mission prop specifications

See the RANGER Construction Photos, Mission Prop Photos, and SolidWorks Assemblies and Drawings documents for visuals.

All PVC used in construction is DURA brand PVC. If items are unavailable or built to different specifications in your area, check online at www.duraplastics.com to purchase specific PVC pieces. Alternatively, certain dimensions may need to be extended or shortened to match DURA brand products.

Hydrothermal Vent:

The vent is constructed using %-inch PVC pipe set inside a 5-gallon bucket. A hose will carry water into

the vent-pipe (opening) at the bottom of the 5-gallon bucket (vent structure). Water will exit out a ¾-inch PVC connector that is set upright in the exact center of a 5-gallon bucket lid. A MATE temperature probe is set approximately 4 cm down inside the ¾-inch connector.

To construct the vent:

- 1. Use a 1-inch hole saw to drill a hole in the side wall of the bucket at the bottom. Drill a second hole in the center of the bucket lid. Alternatively, you can use a smaller drill bit and widen the hole with a file or knife blade. The hole should be large enough to allow ¾-inch PVC pipe to fit through it.
- 2. Cut a 30 cm length of ¾-inch PVC pipe. Insert the 30 cm length of pipe through the hole in the side wall of the bucket. Attach a ¾-inch 90° elbow to the end of the pipe inside the bucket. Position the 90° elbow so it is at the bottom center of the 5-gallon bucket. Attach a ¾-inch slip x FHT PVC hose to pipe adapter fitting (Home Depot part #53360, Home Depot SKU #685707) to the end of the pipe outside of the bucket.
- 3. Cut a 32 cm length of ¾-inch PVC pipe. Insert this 32 cm length of pipe into the other end of the ¾-inch 90° elbow inside the 5-gallon bucket. This length of pipe should stick straight up. Put the lid on the bucket. The ¾-inch PVC pipe should fit through the hole in the center of the bucket lid. Attach a ¾-inch PVC coupling to the top of the ¾-inch PVC pipe.

A temperature probe will allow the MATE Center to measure the temperature of the vent for comparison. The MATE Center temperature probe will sit 4 cm inside the ¾-inch PVC coupling.

To add a temperature comparison probe:

1. Drill a hole 4 cm below the top of the ¾-inch PVC coupling. Insert the temperature probe into the hole and secure it in place.

See RANGER mission photo #23 and #24.

Task #3: Replace an Acoustic Doppler Current Profiler (ADCP) on a water column mooring platform.

Your company is required to remove and replace an ADCP that is located on a mooring platform suspended in the water column at the Axial Seamount site. Companies must first disconnect power to the platform, unlock the hatch, open the hatch to expose the ADCP, remove the ADCP, and replace it with a new ADCP. Once the new ADCP is installed, companies must close the hatch, lock the hatch, and reconnect power.

Moorings deployed along the Axial Seamount

This task involves the following steps:

- Disconnecting power to the platform 10 points
- Turning the handle to unlock the hatch 10 points
- Opening the hatch 10 points
- Removing the ADCP from the mooring platform 10 points
- Installing the new ADCP into the mooring platform 10 points
- Closing the hatch 10 points
- Turning the handle to lock the hatch 10 points
- Reconnecting power to the platform 10 points

Total points = 80

Mission Notes:

Task #2 must be completed in order. Companies may alternate between task #2 and other tasks, but the steps of task #2 must be completed in the order listed above. Companies may skip any step of task #2, but will not receive points if they complete that step at a later time, i.e., after steps later in the list. All steps of task #2 must be completed to receive a time bonus.

The mooring platform containing the ADCP is constructed from a milk crate. The mooring platform will be positively buoyant, but will be anchored in mid-water by four ropes attached to dive weights. Six manipulator/ROV attachment points (a.k.a., "grab" points) are located around the mooring platform – two screw hooks, two screw eyes and two U-bolts. Companies may use these grab points to stabilize the ROV relative to the platform as desired.

Companies must first disconnect power to the mooring platform. The connector is constructed from a 1-inch PVC coupling and two 1-inch end caps. A screw hook and screw eye will act as lift points for this connector. The bulkhead connector is constructed of 2-inch PVC and a 2-inch end cap. A small square of Velcro will secure the mooring platform connector into the bulkhead connector. Companies will receive 10 points for disconnecting power to the platform. A successful disconnect is when the platform connector is no longer in physical contact with any part of the bulkhead connector.

It will take less than 1 Newton to remove the platform connector from the bulkhead connector.

To reach the ADCP, companies must unlock then open the hatch on the top of the platform. Unlocking the hatch requires turning a handle located on the side of the platform. The handle is constructed from ½-inch PVC pipe and must be turned 90° to unlock the hatch. Companies will receive 10 points for turning the handle and unlocking the hatch. Once the hatch is unlocked, companies will receive 10 points for opening the hatch. The hatch is located on the top surface of the platform and is constructed from a sheet of corrugated plastic. A handle is constructed of ½-inch PVC pipe. Opening this hatch will reveal the ADCP inside the platform.

It will take less than 1 Newton to turn the handle to lock/unlock the hatch. It will take less than 1 Newton to open/close the hatch.

An ADCP ready for deployment

After the old ADCP is removed, a new ADCP must be installed into the mooring platform. Both the old ADCP and the new ADCP are identical in construction. The ADCP is constructed from a 3-inch pipe topped by an end cap. A U-bolt mounted in the end cap serves as a lift point. The old and new ADCP will be painted differently to distinguish one from the other. An ADCP cradle, constructed of ½-inch

MISSIONS

PVC, is mounted inside the platform. The new ADCP must be placed inside this cradle. Companies will receive 10 points for removing the old ADCP from the cradle. The ROV must be in possession of the old ADCP and no part of the ADCP may be touching the platform. The old ADCP must be returned to the surface. If the old ADCP is left on the seafloor when the mission time ends, companies will be assessed a 5-point penalty and will not receive a time bonus. If the old ADCP is in possession of the ROV when the mission time ends, companies will not incur a penalty.

The new ADCP will be located on the surface in the mission station area. Companies may attach the new ADCP to their vehicle during the 5-minute set up period. Companies will only get one ADCP. If it is dropped, your company must retrieve it to complete the mission. Companies will receive 10 points for installing the upgraded ADCP into the platform. The new ADCP must sit completely flat against the inside bottom of the platform, within the ½-inch PVC pipe ADCP cradle.

Both ADCPs will weigh less than 2 Newtons in water, though they may not be of exactly the same mass.

Once the new ADCP is installed into the platform, the hatch must be closed and locked. Companies will receive 10 points for closing the hatch on the platform. The hatch on top of the platform must sit flush with the side walls of the milk crate. If the hatch cannot be shut due to improper installation of the new ADCP (e.g. the ADCP is not all the way down into the cradle), companies must adjust the ADCP until is rests completely within the platform and the hatch is flush with the side-walls of the milk crate.

Companies will receive 10 points for relocking the closed hatch. Relocking the hatch requires turning the handle located on the side of the platform. The handle must be turned approximately 120°, until the PVC elbows of the locking mechanism prevent the hatch from opening.

Power must be reconnected once the hatch is closed and locked. Companies will receive 10 points for reconnecting power to the platform. To reconnect power, companies must insert the platform connector into the bulkhead connector. The power has been successfully reconnected when the bolts of the platform connector protrude through the holes in the bulkhead connector. The platform connector must remain in bulkhead connector as the ROV moves away from the mooring platform. If the platform connector comes out of the bulkhead connector at any time during the mission run, companies will lose the points they received for reconnecting power to the ADCP and must attempt to reconnect the power to regain these points.

Mission prop specifications

See the RANGER Construction Photos, Mission Prop Photos, and SolidWorks Assemblies and Drawings documents for visuals.

All PVC used in construction is DURA brand PVC. If items are unavailable or built to different specifications in your area, check online at www.duraplastics.com to purchase specific PVC pieces.

MISSIONS

Alternatively, certain dimensions may need to be extended or shortened to match DURA brand products.

Mooring platform:

The mooring platform is constructed from a milk crate. These specifications use a *Dean Foods* milk crate with a diamond pattern of holes on the sides. If your milk crate has different specifications, you may need to modify your design to some degree. Contact the Competition Coordinator, Jill Zande, if you need assistance in making modifications.

To construct the mooring platform:

1. Cut a 34 cm by 32 cm sheet of corrugated plastic.

Design note: Check sign-making/printing stores for corrugated plastic. Corrugated plastic can also be reused from the 2012 competition props. Use the same corrugate plastic sheet that covered the front of the calibration tank (milk crate).

- 2. Draw a line 4.5 cm in from one edge of the plastic sheeting. Draw another line 19.5 cm in from the same edge. Draw a line 3.5 cm in and 7.5 cm in from each adjacent edge of the corrugated plastic. There should be lines marking two 4 cm by 15 cm rectangular areas. Use a box cutter to cut out these two 4 cm by 15 cm rectangular holes into the corrugated plastic.
- 3. Use two 3-inch brass hinges (Home Depot part **#237-067**) to secure the corrugated plastic sheet over the open side of the milk crate. These hinges should be placed on the edge furthest away from the holes.
- 4. Position the hinges along the edge of the milk crate and drill holes into the plastic of the milk crate and into the corrugated plastic.
- 5. Use #10-24 1-inch long bolts instead of the screws that come with the hinges. This will eliminate the sharp points of the screws and allow for tighter connections with the plastic. Use a 10-24 nut to secure the bolts through the hinges. When attaching the bolts through the corrugated plastic, use a 1 ¼-inch x ¼-inch fender washer on the two outside bolts of each hinge. This will increase the surface area against the corrugated plastic and prevent damage.
- 6. Cut a 9 cm length of ½-inch PVC pipe. Attach a ½-inch 90° PVC elbow to each end. Drill two 5/32-inch holes into the open end of each 90° PVC elbow. This is the handle to open the corrugated plastic top to the mooring platform.
- 7. Place the handle on the side of the corrugated plastic opposite the hinges, 3 cm from the edge of the plastic. The handle should be positioned so the open ends of the 90° PVC elbow are flat against the corrugated plastic and the handle is located centrally between the two holes cut into the corrugate plastic.
- 8. Drill four holes into the corrugated plastic, each one adjacent to the holes drilled into the open end of the 90° PVC elbow. Insert cable/zip ties through the holes of each 90° PVC elbow, through the holes in the corrugated plastic. Tighten the ties to secure the handle to the corrugated plastic.

See RANGER mission photo #25.

Handle and locking mechanism:

The handle and locking mechanism is constructed from ½-inch PVC pipe. The handle must be turned to remove the locking mechanism before the top hatch can be opened.

To construct the locking mechanism and handle:

- 1. Cut a 19.5 cm length of ½-inch PVC pipe. Attach the side opening of a ½-inch PVC tee to each end of the 19.5 cm length of pipe. Align the PVC tees so their middle openings face the same direction.
- 2. Cut two 10.5 cm lengths of PVC pipe. Insert these 10 cm lengths of pipe into the middle openings of each PVC tee. Attach a ½-inch 90° PVC elbow to the end of each 10.5 cm length of PVC. Insert a 5.5 cm length of ½-inch PVC into the open end of each elbow. Align the 90° PVC elbows so that as the PVC tees lay flat on the ground, the 5.5 cm lengths of PVC stick straight up into the air.
- 3. Cut two lengths of 4 cm length of ½-inch PVC pipe and insert them into the side openings of the two PVC tees. As the locking mechanism lies flat on the ground, with the 5.5 cm lengths of pipe sticking straight up, a middle opening of a PVC tee will attach to the 4 cm length of PVC pipe on the right hand side of the locking mechanism. A ½-inch PVC coupling will attach to the 4 cm length of PVC pipe on the left hand side of the locking mechanism.
- 4. Before attaching the tee and coupling, fit the locking mechanism inside the milk crate. The 4 cm lengths of PVC pipe should fit into a diamond shaped hole on the sides of the *Dean Foods* milk crate. The PVC pipe should fit into the top most full diamond hole under the handle of the top hatch of the mooring.
- 5. Attach the middle opening of the PVC tee to the 4 cm length of pipe on the right side of the locking mechanism. Attach the ½-inch coupling to the 4 cm length of pipe on the left side of the locking mechanism.
- 6. Cut a 3 cm length of $\frac{1}{2}$ -inch PVC pipe and insert it into the open end of the $\frac{1}{2}$ -inch coupling. Attach a $\frac{1}{2}$ -inch 90° PVC elbow to the other end of the 3 cm length of pipe.
- 7. Cut an 11 cm length of ½-inch PVC pipe. Insert this 11 cm length of pipe into the open end of the 90° PVC elbow.
- 8. Twist the 90° PVC elbow until the 11 cm length of pipe is parallel two 5.5 cm length of pipes.

As an ROV turns the handle, the locking mechanism should rotate into or out of the holes cut into the corrugated plastic sheeting. If the corrugated plastic hinders the PVC locking mechanism, readjust the position or widen the holes. The locking mechanism should engage and disengage freely without brushing against the corrugated plastic top.

The handle will take less than 1 Newton to turn.

See RANGER mission photo #26 and #27.

Six manipulator attachments, or grab points, will be located around the mooring platform. Two grab points will be #310 1 ½-inch U-bolts (Home Depot part #117-996). One U-bolt will be mounted to the front-side of the platform (side opposite the hinges), while the other U-bolt will be mounted to the back-side of the platform (side with the hinges attached). U-bolts will be positioned horizontally along the centerline of the milk crate, 14 cm from the top of the milk crate and 13 cm from the bottom of the milk crate. Two #6 Screw eyes (Home Depot part #14092) will be located on the sides of the platform. Screw eyes will be located at the top, front side of both the left and right wall of the platform. Screw eyes will be positioned 2.5 cm from the top of the milk crate and 2.5 cm from the front edge of the milk crate. Two #6 Screw hooks (Home Depot part #14672) will be located on the sides of the platform as well. Screw hooks will be located at the bottom, front side of both the left and right wall of the platform. Screw hooks will be positioned 5 cm from the bottom of the milk crate and 2.5 cm from the front edge of the milk crate.

- 1. Attach a U-bolt to the front side center and back side center wall. Use 1 ¼-inch x ¼-inch fender washers to secure the U-bolt to the milk crate.
- 2. Drill four 5/32-inch holes into the top front (2.5 cm down, 2.5 cm in) and bottom front (5 cm up, 2.5 cm in) of the left and right side milk crate walls. Screw a #6 Screw eye into the holes at the top of the milk crate. Screw them in so that no threading shows outside the milk crate wall. Twist them so they are parallel to the ground. Screw a #6 Screw hook into the holes at the bottom of the milk crate. Screw them in so that approximately 0.5 cm to 1 cm of thread is showing outside the milk crate wall. Twist them so that the open end of the hook is facing upwards.

See RANGER mission photo #28.

ADCP:

The ADCP that is removed from the platform will be identical to the new ADCP that is installed into the platform. Only color will be different. The ADCP is constructed from 3-inch ABS pipe, (companies that cannot find ABS pipe may substitute PVC pipe), a 3-inch PVC end cap, a 3-inch knock out cap (Home Depot part# **39102**, SKU#**508260**, Home Depot online# **39102**), and a 1 3/8-inch, long U-bolt (ACE Hardware, 5/16 x 1 3/8, long U-bolt, part #**51613**). The U-bolt rises 6 cm above the top of the end cap.

Design Note: The scientific instrument is a shortened version of the ELSS pod used in the 2009 ROV competition.

To construct the ADCP:

- 1. Cut a 16 cm length of 3-inch ABS pipe. Insert a 3-inch knockout cap into one end of the ABS pipe. Drill small holes into the pipe so that it fills with water.
- 2. Drill two holes into the top of a 3-inch PVC end cap. The center points of the holes should be

placed 4.3 cm apart, 2.15 cm on opposite sides of the center of the end cap. Insert the forks of the U-bolt through the holes. Use 5/16-inch nuts to tighten the U-bolt on both sides of the end cap.

3. Attach the end cap to the other end of the ABS pipe.

Insert foam into the inside of the end cap to provide positive buoyancy. Use weights inside the body of the scientific instrument to provide ballast. The balance of positive buoyancy and ballast should be less than 2 N when submerged in water.

The 3-inch end cap will be painted either red or yellow.

When the ADCP is complete, it should sit inside the milk crate, with the top of the U-bolt just below the top hatch of the platform.

See RANGER mission photo #29.

ADCP cradle:

Once the top hatch of the platform is open, the ADCP will need to be removed from its cradle and the new ADCP installed into the cradle. The cradle is constructed from a framework of ½-inch PVC pipe.

To construct the ADCP cradle:

- 1. Cut four 15 cm lengths of ½-inch PVC pipe. Attach the middle opening of a ½-inch PVC tee on both sides of each 15 cm length of pipe (8 tees total).
- 2. Cut sixteen 3 cm lengths of ½-inch PVC pipe. Insert these 3 cm lengths of pipe into both side openings of all eight PVC tees.
- 3. Attach a $\frac{1}{2}$ -inch 90° PVC elbow to the end of the 3 cm PVC pipes to make a square.
- 4. Use cable/zip ties to secure the ½-inch PVC pipe assembly to the bottom center of the milk crate. Make sure that the placement of the PVC pipe does not interfere with the handle and locking mechanism on the platform.

See RANGER mission photo #29 and #30.

Connector:

Design note: The connector is the exact same design as the CTA from mission #1, but without the Velcro connection.

The connector is constructed from a 1-inch PVC coupling with a 1-inch end cap attached to each end. Two #10, 1-inch bolts act as the plugs. A #6 screw hook (Home Depot part **#14672**) and a #6 Screw eye (Home Depot part **#14092**) act as grab points on the connector. Two meters of 1/8-inch braided nylon and polypropylene rope (Home Depot part **#14068**, Home Depot SKU **#140287**, ACE Hardware part **#75851**) attach the connector to a rope that holds the mooring platform in place.

To construct the connector:

- 1. Drill two 5/32-inch holes into the 1-inch PVC end cap covered with Velcro. The holes should be along a centerline and be drilled 2.5 cm apart. Screw a #10 1-inch bolt through each hole, from the inside of the end cap to the outside.
- 2. Drill a 5/32-inch hole in the exact center of another 1-inch PVC end cap. Drill a 3/16-inch hole 1 cm out from the hole in the center. Screw a #6 Screw eye into the center hole. The Screw eye should be completely screwed into the end cap. Insert one end of the 1/8-inch rope into the off-center hole. Tie an overhand knot into the rope so that it is secured inside the end cap.
- 3. Cut two 4 cm lengths of 1-inch PVC pipe. Insert a 4 cm length into both ends of a 1-inch PVC coupling. Attach the two 1-inch PVC end caps to each end of the 1-inch coupling.
- 4. Drill a 5/32-inch hole into the center 1-inch PVC coupling, 3 cm from either end. Screw a #6 screw hook into this hole. The screw hook should be screwed in until only 2 mm of the thread remains outside of the 1-inch coupling.
- 5. On the opposite side of the coupling from the screw hook, drill four 3/32-inch holes. Two holes should be placed 1 cm from each end of the coupling. Each set of holes should be 2 cm apart from each other, 1 cm to either side of the bottom of the connector. The bottom is defined as the line directly opposite the #6 Screw hook.
- 6. Insert a #6, ½-inch screw into each hole. The two screws placed near the end cap that contains the Screw eye and 1/8-inch rope should not be screwed all the way in. The head of the screw should be approximately 2 to 3 mm from the PVC coupling. These screws will act as small legs to hold the connector upright.
- 7. Twist the end caps into proper alignment. The end cap containing the two #10 1-inch bolts should be twisted so that the two bolts are flat; a line between the two bolts should be parallel with the ground. Twist the other 1-inch end cap so that 1/8-inch rope is directly below the #6 Screw eye.
- 8. Twist the #6 Screw eye and #6 Screw hook into proper alignment. The Screw eye should be twisted so that the eye is parallel with the pool bottom. Turn the Screw hook so that the open end of the hook faces the screw eye.
- 9. Cut four length of rope and tie one to each bottom corner of the mooring platform. The four ropes should be similar in length, but the overall length will be dependent on the depth of the pool. Attach dive weights to the other end of each length of rope.
- 10. Tie the 2 meter length of rope attached to the connector to one of the ropes holding the mooring platform to the seafloor.

Use PVC glue to secure the end caps onto the 1-inch PVC pipe once the alignment of your connector is correct. Drill small holes into the top and bottom of each end to allow water to fill connector.

See RANGER mission photo #31.

Bulkhead connector:

The bulkhead connector is constructed from 2-inch PVC pipe and a 2-inch end cap.

To construct the bulkhead connector:

1. Use a spade bit to drill two 5/8-inch holes into the 2-inch PVC end cap. The center points of the two holes should be approximately 2.5 cm apart from each other and approximately 0.75 cm below the centerline of the end cap.

Design note: The two 5/8-inch holes should accommodate the ends of the two #10 bolts on the front of the connector. Measure and drill accordingly to fit of the connector. There should be 2-inch PVC pipe inside the end cap when calculating locations to drill your holes.

- 2. Cut a 10 cm length of 2-inch PVC. Insert the 10 cm length of PVC into a 2-inch end cap.
- 3. Cut the top half of the 2-inch PVC away. The two holes drilled in the 2-inch end cap should be just below the centerline. The bottom of the bulkhead connector is the side with the two holes. The top of the bulkhead connector is the opposite side of the centerline from those two holes. At the edge of the end cap, use a saw to cut halfway through the 2-inch PVC pipe. Then cut the PVC lengthwise to remove half the 2-inch PVC pipe.
- 4. Using the open PVC pipe as the top, use screws to secure the connector to the top, right hand corner of the front of the mooring platform (hinges are the back side). The top of the cut portion of 2-inch PVC pipe should be 4 cm from the top of the milk crate. The front of the 2-inch PVC pipe should be flush with the right side of the milk crate. Use screws or bolts to secure the bulkhead connector to the milk crate.

See RANGER mission photo #32 and #33.

Flotation and Ballast:

The mooring platform will be situated in the mid-water; it will not be secured to the bottom by four anchors. Companies will not know the exact depth of the mooring platform. The platform itself will be positively buoyant and will be attached to its anchor weights on the bottom by 1/8-inch braided nylon and polypropylene rope (Home Depot part #14068, Home Depot SKU#140287, ACE Hardware part #75851).

To position the mooring platform in mid-water:

- 1. Secure pipe insulation foam or other flotation inside the platform or secure flotation to the bottom of the platform until it is positively buoyant. Any flotation inside the milk crate platform should not interfere with the locking mechanism or the insertion of the scientific instrument.
- 2. Cut 4 similar lengths of rope. Tie one end of each rope to each bottom corner of the milk crate. Tie a heavy weight to the other end of each rope. Adjust the lengths of each rope so the platform sits evenly in the water.

Position the dive weights so that the mooring platform is level in the water column. Lengthen or shorten the ropes as needed to achieve this.

See RANGER mission photo #34.

Task #4: Locate and remove biofouling from structures and instruments within the observatory.

Your company is required to remove biofouling from various structures and instruments.

This task involves the following steps:

Locate five areas of biofouling and removing all biofouling organisms – 5 points each

Total points = 25

An ADCP before and covered with biofouling six months after deployment

Mission Notes:

Companies are responsible for locating and removing all areas of biofouling from the various structures and instruments of the regional cabled observatory. The exact structures and instruments with biofouling will not be revealed; your company must locate them. Each area of biofouling will have multiple organisms that must be removed. Once removed, the organisms do not need to be returned to the surface. Companies may leave the organisms on the seafloor.

Mission prop specifications

See the RANGER Construction Photos, Mission Prop Photos, and SolidWorks Assemblies and Drawings documents for visuals.

Biofouling organisms:

Biofouling organisms will be constructed of 30 cm (12-inch) chenille pipe cleaners. The ends of the chenille pipe cleaners will be inserted into small 3/32-inch holes drilled into the $\frac{1}{2}$ -inch PVC pipe.

To construct a biofouling organism:

- 1. Bring the two ends of a 30 cm length of chenille pipe cleaner together. Tightly twist 5 cm of the ends of the pipe cleaner together. Spread out the folded end of the pipe cleaner into an oval approximately 8 cm long and 5 cm wide.
- 2. Use wire cutters to snip 0.3 cm from the twisted end of the pipe cleaners.
- 3. Using a 3/32-inch drill bit, drill a hole into the ½-inch PVC pipe of another mission task prop. Insert the twisted end of the pipe cleaner approximately 1 cm into the hole.

See RANGER mission photo #35.