Übung 3 - Numerisches Programmieren

Hayden Liu Weng

Technische Universität München

Fakultät für Informatik

Lehrstuhl für Wissenschaftliches Rechnen

BigBlueButton, 10. Nov 2021

- Gegeben: Stützpunkte (x_i, y_i) als Samples von f(x)
- Gesucht: f(x)
- Vorgehen: Konstruiere g(x) mit $g(x_i) = f(x_i)$ und idealerweise $g(x) \approx f(x)$

- Gegeben: Stützpunkte (x_i, y_i) als Samples von f(x)
- Gesucht: f(x)
- Vorgehen: Konstruiere g(x) mit $g(x_i) = f(x_i)$ und idealerweise $g(x) \approx f(x)$
- Ansatz: $g(x) = \sum_{i=0}^{n} g_i(x) \cdot c_i$
- Lösung: Ac = y $A_{i,j} = g_j(x_i)$
- Typische Wahl für Basisfunktionen bei Polynominterpolation:
 - Monome: $g_i(x) = x^i$
 - Newtonverfahren: $g_i(x) = \prod_{j=0}^{i-1} (x x_j)$
 - Lagrangepolynome: $g_i(x) = \prod_{j=0, j \neq i}^n \frac{x x_j}{x_i x_j}$

Bearbeitung Aufgabe 1

$$P_0 = \begin{pmatrix} 0 \\ 3 \end{pmatrix}, P_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, P_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

- a) Monom Basis
- b) Trigonometrische Basis
- c) Tchebycheff Basis
- d) Lagrange Basis

Bearbeitung Aufgabe 1

$$P_0 = \begin{pmatrix} 0 \\ 3 \end{pmatrix}, P_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, P_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Bearbeitung Aufgabe 1

$$P_0 = \begin{pmatrix} 0 \\ 3 \end{pmatrix}, P_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, P_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Interpolation: Vergleich Basisfunktionen

- Komplexität für Lösung des Gleichungssystems:
 - Monome → Vandermonde Matrix → $O(n^3)$
 - Newton → Dreiecks Matrix → $O(n^2)$
 - Lagrange → Identitätsmatrix Matrix → O(1) (trivial)
- Komplexität für Auswertung von g(x):
 - Monome (Hornerschema) \rightarrow O(n)
 - Newton (Hornerschema) → O(n)
 - Lagrange → $O(n^2)$
 - → Kosten-Nutzen: am besten bei Newton Verfahren
- Sonderfall Aitken-Neville Methode:
 - Ahnlich wie Newton aber nur einzelne Funktionsauswertungen
 - → Nur bei wenigen Auswertungen rentabel (sonst Newton)

Newton Verfahren zur Interpolation

• Initialisierung:
$$c_{i,0} = f(x_i) = y_i$$
 (1)

. Iterationsvorschrift:
$$c_{i,k} = \frac{c_{i+1,k-1} - c_{i,k-1}}{x_{i+k} - x_i}. \tag{2}$$

Darstellung:

• Polynom:
$$p(x) = c_{0,0} + c_{0,1} \cdot (x - x_0) + \ldots + c_{0,n} \cdot \prod_{i=0}^{n-1} (x - x_i)$$
 (3)

Interpolation mit Newton Verfahren

Bearbeitung Aufgabe 2

$$P_0 = \begin{pmatrix} 0 \\ 3 \end{pmatrix}, P_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, P_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 $P_3 = \begin{pmatrix} 1.5 \\ 0 \end{pmatrix}$

a) Berechne Newton Polynom für P₀ bis P₂

b) Weiterer Punkt P₃

$$P_0 = {0 \choose 3}, P_1 = {1 \choose 0}, P_2 = {2 \choose 1}$$
 $P_3 = {1,5 \choose 0}$

Newton Verfahren zur Interpolation

• Initialisierung:
$$c_{i,0} = f(x_i) = y_i$$
 (1)

. Iterationsvorschrift:
$$c_{i,k} = \frac{c_{i+1,k-1} - c_{i,k-1}}{x_{i+k} - x_i}. \tag{2}$$

Darstellung:

• Polynom:
$$p(x) = c_{0,0} + c_{0,1} \cdot (x - x_0) + \ldots + c_{0,n} \cdot \prod_{i=0}^{n-1} (x - x_i)$$
 (3)

Xi	i∖k	0	1	2	3
X_0	0	y ₀	P ₁	P ₄	P ₆
X ₁	1	y ₁	P ₂	P ₅	
X_2	2	y ₂	P ₃		
X_3	3	y ₃			

Aitken-Neville Berechnung

- Initialisierung: $p[i,0] = f(x_i) = y_i$
- Iterationsvorschrift:

$$p[i,k] := p[i,k-1] + (x-x[i])/(x[i+k]-x[i]) * (p[i+1,k-1]-p[i,k-1])$$

• Interpolationswert an Stelle x: p[0,n]

Interpolation mit Aitken-Neville

Bearbeitung Aufgabe 3

$$P_0 = {0 \choose 3}, P_1 = {1 \choose 0}, P_2 = {2 \choose 1}$$
 $P_3 = {1,5 \choose 0}$

a) Berechne Funktionswert an x=0,5 für Interpolationspolynom für P₀ bis P₂

Aitken-Neville Berechnung

- Initialisierung: $p[i,0] = f(x_i) = y_i$
- Iterationsvorschrift:

$$p[i,k] := p[i,k-1] + (x-x[i])/(x[i+k]-x[i]) * (p[i+1,k-1]-p[i,k-1])$$

• Interpolationswert an Stelle x: p[0, n]

$$f(x) = \frac{1}{1 + 25x^2}$$

Runge Effekt bei Interpolation

Bearbeitung Aufgabe 4

a) Wie verhält sich das Interpolationspolynom bei wachsender Zahl an Stützpunkten?

b) Wie könnte man dies verbessern?

c) Zeichnen Sie ihre Vermutungen ein.

Runge Effekt bei Interpolation

Bearbeitung Aufgabe 4

a) Wie verhält sich das Interpolationspolynom bei wachsender Zahl an Stützpunkten?

b) Wie könnte man dies verbessern?

c) Zeichnen Sie ihre Vermutungen ein.

Hayden Liu Weng.

25