Bacterial species identification using sequencing data

Introduction to Bioinformatics - Module 1

Ifeoluwa J. Akintayo

Bacteria Identification

The process of determining the taxon a bacteria isolate belongs.

It is important as a bacteriologist to identify pathogens in order to give the appropriate treatment options.

Bacteria Identification Methods

- Phenotypic Method (Macroscopy & Microscopy)
 - ✓ Appearance
 - ✓ Gram stains etc
- Biochemical test Method
 - ✓ Acid production
 - ✓ Gas production
 - ✓ Enzyme production
 - ✓ Sugar fermentation etc
- Genotypic Method Genetic material of the organism
 - ✓ Pattern-Fingerprint based technology
 - √ Sequence based technology

Sequence-based technique

The use of DNA sequences of the unknown species, compared to a comprehensive sequence database (e.g *National Center for Biotechnology Information* - NCBI) of known species - Many organisms have similarities to a known species.

with the use of

Sequence alignment tool– arrangement of DNA nucleotides of an unknown species to a set of known species to identify regions of similarities.

Methods for species identification using sequencing data

Basic Local Alignment Search Tool – BLAST

SpeciesFinder

• K-merFinder

Pathogenwatch

Basic Local Alignment Search Tool - BLAST

- Matches unknown sequence to known published sequences
- Compares genes and protein sequences against public database
- Search database for maximum alignment
- Returns most similar sequences from the database

How does BLAST work?

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch

Click on BLAST

BLAST OUTPUT

SpeciesFinder

Predicts species by using 16S rRNA genes- a gene present in all bacteria species

- The gene is predicted from the sequence, predicted sequence is aligned against the 16S database
- The species associated with the best hit is the final prediction.

K-merFinder

http://cge.cbs.dtu.dk/services/KmerFinder/

• Predicts species by examining the number of overlapping 16-mers

K is number of bases = 16

 KmerFinder tool cuts the unknown species genome into 16mers, this is compared with 16mers of the known species in the database and gives the best matching species.

> **ATGCTAGTCAGGGTCACTGACGTGCAGTCG** Sequence

ATGCTAGTCAGGGTCA 16-mers

TGCTAGTCAGGGTCAC

GCTAGTCAGGGTCACT

Share the same K-mers

GTCAGGGTCACTGACGTGCAGTCG

Known species

Unknown species

Center for Genomic Epidemiology

Your job is being processed

Wait here to watch the progress of your job, or fill in the form below to get an email message upon completion.							
To get notified by email:	Notify me via email						
This page will update itself automatically.							

Center for Genomic Epidemiology

Home Services Instructions Output

KmerFinder-3.2 Server - Results

KmerFinder 3.2 results:

Template	Num	Score	Expected	Template_length	Query_Coverage	Template_Coverage	Depth	tot_query_Coverage
NZ_CP070071.1 Escherichia coli strain FDAARGOS_1287 chromosome, complete genome	11051	156560	3	169133	92.56	93.85	0.93	92.56
NZ_AP022362.1 Escherichia coli strain E302 chromosome, complete genome	5996	2494	55	173594	1.47	1.39	0.01	60.75
NZ_CP015088.1 Escherichia coli O25b:H4 extrachomosomal sequence	14431	101	0	997	0.06	8.53	0.10	0.30

Pathogenwatch

GENOMES

COLLECTIONS

UPLOAD DOCUMENTATION

NEW UPLOAD PREVIOUS UPLOADS •

What would you like to upload?

Single Genome FASTAs

One or more FASTA files, one genome per FASTA file.

(e.g. bacterial genomes)

Multi-genome FASTAs

Multiple genomes per file, one genome per record. (e.g. viral genomes)

FASTQ

One or more pairs of read files in FASTQ format.

- SpeciesFinder
- KmerFinder
- Pathogenwatch

Chenk Sou

