Theoretische Informatik und Logik Übungsblatt 2 (2017S) Lösungen

Aufgabe 2.1 Geben Sie jeweils eine kontextfreie Grammatik an, welche die folgenden Sprachen erzeugt, sowie eine Linksableitung und einen Ableitungsbaum für ein von Ihnen gewähltes Wort $w \in L$ mit $|w| \geq 6$. Geben Sie weiters jeweils einen Homomorphismus h so an, dass $h(L) = \{\underline{0}^{3n}\underline{1}^{2n} \mid n \geq 0\}$.

a)
$$L = \{w\underline{\mathbf{a}}^{|w|} \mid w \in \{\underline{\mathbf{b}},\underline{\mathbf{c}}\}^*\}$$

b)
$$L = \{(\underline{ab})^n (\underline{01})^k (\underline{cd})^{2n} \mid k, n \ge 0\}$$

Lösung

a) $G = (\{S\}, \{\underline{\mathtt{a}}, \underline{\mathtt{b}}, \underline{\mathtt{c}}\}, \{S \to \underline{\mathtt{b}}S\underline{\mathtt{a}} \mid \underline{\mathtt{c}}S\underline{\mathtt{a}} \mid \varepsilon\}, S)$

Linksableitung für w = bcbaaa:

 $S \Rightarrow \underline{\mathbf{b}} S \underline{\mathbf{a}} \Rightarrow \underline{\mathbf{b}} \underline{\mathbf{c}} S \underline{\mathbf{a}} \underline{\mathbf{a}} \Rightarrow \underline{\mathbf{b}} \underline{\mathbf{c}} \underline{\mathbf{b}} S \underline{\mathbf{a}} \underline{\mathbf{a}} \Rightarrow \underline{\mathbf{b}} \underline{\mathbf{c}} \underline{\mathbf{b}} \underline{\mathbf{a}} \underline{\mathbf{a}}$

Ableitungsbaum für $w = \underline{bcbaaa}$:

Z.B. Folgender Homomorphismus $h: \{\underline{\mathtt{a}},\underline{\mathtt{b}},\underline{\mathtt{c}}\}^* \longrightarrow \{\underline{\mathtt{0}},\underline{\mathtt{1}}\}^*$ bildet $L = \{w\underline{\mathtt{a}}^{|w|} \mid w \in \{\underline{\mathtt{b}},\underline{\mathtt{c}}\}^*\}$ auf $h(L) = \{\underline{\mathtt{0}}^{3n}\underline{\mathtt{1}}^{2n} \mid n \geq 0\}$ ab:

$$h(a) = 1^2$$
, $h(b) = 0^3$, $h(c) = 0^3$

b) $G = (\{S, T, A, B\}, \{\underline{\mathtt{a}}, \underline{\mathtt{b}}, \underline{\mathtt{c}}, \underline{\mathtt{d}}, \underline{\mathtt{0}}, \underline{\mathtt{1}}\}, P, S)$, wobei

$$P = \{S \to ASBB \mid T, \quad T \to \underline{\mathsf{O1}}T \mid \varepsilon, \quad A \to \underline{\mathsf{ab}}, \quad B \to \underline{\mathsf{cd}}\}$$

Linksableitung für w = ab01cdcd:

 $S\Rightarrow ASBB\Rightarrow \underline{\mathtt{ab}}SBB\Rightarrow \underline{\mathtt{ab}}TBB\Rightarrow \underline{\mathtt{ab01}}TBB\Rightarrow \underline{\mathtt{ab01}}BB\Rightarrow \underline{\mathtt{ab01}}\mathtt{cd}B\Rightarrow \underline{\mathtt{ab01}}\mathtt{cd}B\Rightarrow$

Ableitungsbaum für w = ab01cdcd:

Der Homomorphismus $h: \{\underline{\mathtt{a}}, \underline{\mathtt{b}}, \underline{\mathtt{c}}, \underline{\mathtt{d}}, \underline{\mathtt{0}}, \underline{\mathtt{1}}\}^* \longrightarrow \{\underline{\mathtt{0}}, \underline{\mathtt{1}}\}^* \text{ mit z.B.}$

$$h(\underline{\mathbf{a}}) = \underline{\mathbf{0}}^3, \quad h(\underline{\mathbf{b}}) = h(\underline{\mathbf{0}}) = h(\underline{\mathbf{1}}) = h(\underline{\mathbf{c}}) = \varepsilon, \quad h(\underline{\mathbf{d}}) = \underline{\mathbf{1}}$$

bildet
$$L = \{(\underline{\mathtt{a}}\underline{\mathtt{b}})^n (\underline{\mathtt{0}}\underline{\mathtt{1}})^k (\underline{\mathtt{c}}\underline{\mathtt{d}})^{2n} \mid k, n \geq 0\}$$
 auf $h(L) = \{\underline{\mathtt{0}}^{3n}\underline{\mathtt{1}}^{2n} \mid n \geq 0\}$ ab.

Aufgabe 2.2 Sind folgende Sprachen kontextfrei? Falls ja, so beweisen Sie dies mit Hilfe des Satzes von Chomsky-Schützenberger (indem Sie entsprechende Sprachen D_n und R sowie einen entsprechenden Homomorphismus h angeben). Falls nein, so beweisen Sie dies mit Hilfe entsprechender Abschlusseigenschaften. (Sie können dabei davon ausgehen, dass eine Sprache der Form $\{\underline{\mathbf{a}}^{kn}\underline{\mathbf{b}}^{ln}\underline{\mathbf{c}}^{mn}\mid n\geq 0\}$ für beliebige Konstanten k,l,m>0 nicht kontextfrei ist).

- a) $L = \{(\underline{\mathtt{a}}\underline{\mathtt{b}})^n(\underline{\mathtt{c}}\underline{\mathtt{d}})^{2n} \mid n \ge 0\}$
- b) $L = \{ \underline{0}^n \underline{a}^k \underline{1}^m \mid k \ge 0, n \le m \}$
- c) $L = \{\underline{\mathbf{a}}^{2n}\underline{\mathbf{b}}^{2n}\underline{\mathbf{c}}^{2017}\underline{\mathbf{d}}^m \mid n, m \geq 0\} \cap \{\underline{\mathbf{a}}^n\underline{\mathbf{b}}^m\underline{\mathbf{c}}^k\underline{\mathbf{d}}^{2m} \mid k, n, m \geq 0\}$ (*Hinweis*: Bestimmen Sie zunächst L.)
- $d) \{\underline{\mathbf{a}}^{2n}\underline{\mathbf{b}}^{2017}\underline{\mathbf{c}}^{3n}\underline{\mathbf{b}}^{5n} \mid n \ge 1\}$

Lösung

a) $L = \{(\underline{\mathtt{a}}\underline{\mathtt{b}})^n (\underline{\mathtt{c}}\underline{\mathtt{d}})^{2n} \mid n \geq 0\}$ ist kontextfrei, da $L = h(D_1 \cap R)$, wobei

$$R = \{(\}^* \{)\}^*$$

und

$$h:\{\underline{(},\underline{)}\}^*\longrightarrow \{\underline{\mathtt{a}},\underline{\mathtt{b}},\underline{\mathtt{c}},\underline{\mathtt{d}}\}^*\quad \text{ mit }\quad h(\underline{(})=\underline{\mathtt{a}}\underline{\mathtt{b}},\quad h(\underline{)})=(\underline{\mathtt{c}}\underline{\mathtt{d}})^2$$

b) $L = \{\underline{0}^n \underline{\mathbf{a}}^k \underline{1}^m \mid k \geq 0, n \leq m\}$ ist kontextfrei, da $L = h(D_3 \cap R)$, wobei

$$R = \{(\}^* \{ [\}^* \{ \langle \}^* \{ \rangle \}^* \{] \}^* \{ \} \}^*$$

und

$$h: \{[,],(,),\langle,\rangle\}^* \longrightarrow \{\underline{\mathtt{a}},\underline{\mathtt{0}},\underline{\mathtt{1}}\}^* \text{ mit}$$

$$h(()=\underline{\mathtt{O}},\quad h([)=\varepsilon,\quad h(\langle)=\underline{\mathtt{a}},\quad h(\rangle)=\varepsilon,\quad h())=h(])=\underline{\mathtt{1}}$$

c) Wir überlegen zunächst, dass $L = \{\underline{\mathtt{a}}^{2n}\underline{\mathtt{b}}^{2n}\underline{\mathtt{c}}^{2017}\underline{\mathtt{d}}^{4n} \mid n \geq 0\}$ ist und beweisen nun, dass L nicht kontextfrei ist:

Beweis indirekt. Angenommen, $L=\{\underline{\mathtt{a}}^{2n}\underline{\mathtt{b}}^{2n}\underline{\mathtt{c}}^{2017}\underline{\mathtt{d}}^{4n}\mid n\geq 0\}$ ist kontextfrei. Sei dann $h:\{\underline{\mathtt{a}},\underline{\mathtt{b}},\underline{\mathtt{c}},\underline{\mathtt{d}}\}^*\longrightarrow \{\underline{\mathtt{a}},\underline{\mathtt{b}},\underline{\mathtt{c}}\}^*$ ein Homomorphismus mit

$$h(a) = a, h(b) = b, h(c) = \varepsilon, h(d) = c.$$

Da die Familie der kontextfreien Sprachen gegenüber beliebigen Homomorphismen abgeschlossen ist, müsste auch $h(L) = \{\underline{\mathtt{a}}^{2n}\underline{\mathtt{b}}^{2n}\underline{\mathtt{c}}^{4n} \mid n \geq 1\}$ kontextfrei sein, was aber nicht der Fall ist. Widerspruch! Somit kann auch L nicht kontextfrei sein.

d) Beweis indirekt. Angenommen, die Sprache $L=\{\underline{\mathtt{a}}^{2n}\underline{\mathtt{b}}^{2017}\underline{\mathtt{c}}^{3n}\underline{\mathtt{b}}^{5n}\mid n\geq 1\}$ ist kontextfrei. Sei dann

$$M = (\{q_0, q_1\}, \{\underline{\mathtt{a}}, \underline{\mathtt{b}}, \underline{\mathtt{c}}\}, \{\underline{\mathtt{a}}, \underline{\mathtt{b}}, \underline{\mathtt{c}}\}, \delta, q_0, \{q_1\})$$

die (deterministische) gsm mit

$$\delta(q_0, \underline{\mathbf{a}}) = (q_0, \underline{\mathbf{a}}), \qquad \delta(q_0, \underline{\mathbf{b}}) = (q_0, \varepsilon), \qquad \delta(q_0, \underline{\mathbf{c}}) = (q_1, \underline{\mathbf{b}}), \qquad \delta(q_1, \underline{\mathbf{c}}) = (q_1, \underline{\mathbf{b}}), \\ \delta(q_1, \underline{\mathbf{b}}) = (q_1, \underline{\mathbf{c}}).$$

Da die Familie der kontextfreien Sprachen gegenüber beliebigen gsm-Abbildungen abgeschlossen ist, müsste auch $M(L)=\{\underline{\mathtt{a}}^{2n}\underline{\mathtt{b}}^{3n}\underline{\mathtt{c}}^{5n}\mid n\geq 1\}$ kontextfrei sein, was aber nicht der Fall ist. Widerspruch! Somit kann auch L nicht kontextfrei sein.

(Man beachte, dass in diesem Falle die Verwendung eines Homomorphismus nicht ausreicht, da der erste Block von Symbolen $\underline{\mathbf{b}}$ gelöscht werden muss, während der zweite Block auf eine entsprechende Anzahl von Symbolen $\underline{\mathbf{c}}$ abgebildet werden muss.)

Aufgabe 2.3 Geben Sie für jede der folgenden Grammatiken an, ob diese regulär, kontextfrei, monoton, kontextsensitiv und/oder unbeschränkt ist. Geben Sie weiters an, welche Sprache von der jeweils angegebenen Grammatik erzeugt wird, und ob diese regulär, kontextfrei, kontextsensitiv und/oder rekursiv aufzählbar ist.

Beispiel:

Sei
$$G_{BSP} = (\{S\}, \{\mathtt{a}, \mathtt{b}\}, \{S \rightarrow Saa \mid a \in \{\mathtt{a}, \mathtt{b}\}\} \cup \{S \rightarrow \varepsilon\}, S).$$

 G_{BSP} ist kontextfrei und unbeschränkt. Wegen z.B. der Produktion $S \to S\underline{\mathtt{a}}\underline{\mathtt{a}}$ ist G_{BSP} nicht regulär, und wegen $S \to \varepsilon$ nicht monoton und kontextsensitiv, nachdem S auch auf der rechten Seite von Produktionen vorkommt.

 $\mathcal{L}(G_{BSP}) = (\{\underline{\mathtt{a}}\underline{\mathtt{a}}\}^* \cup \{\underline{\mathtt{b}}\underline{\mathtt{b}}\}^*)^*$ ist aber regulär, und damit auch kontextfrei, kontextsensitiv und rekursiv aufzählbar.

a)
$$G_1 = (\{S, T\}, \{\underline{\mathbf{x}}, \mathbf{y}\}, \{S \to TT, \quad T \to \underline{\mathbf{x}} \mid \mathbf{y} \mid \varepsilon\}, S)$$

b)
$$G_2 = (\{A, B\}, \{\underline{0}, \underline{1}, \#\}, \{A \to \underline{0}A\underline{1} \mid \underline{0}B\underline{1}, \underline{0}B\underline{1} \to \underline{0}\#\underline{1}\}, A)$$

c)
$$G_3 = (\{S, X, A, B\}, \{0, b\}, \{S \to AB, AB \to X, X \to AB, A \to 0\}, S)$$

d)
$$G_4 = (\{S\}, \{\underline{\mathtt{a}}, \underline{\mathtt{b}}, \underline{\mathtt{c}}\}, \{S \to \underline{\mathtt{abc}}S \mid \underline{\mathtt{cab}}\} \cup \{xy \to yx \mid x, y \in \{\underline{\mathtt{a}}, \underline{\mathtt{b}}, \underline{\mathtt{c}}\}\}, S)$$

Lösung

- a) G_1 ist eine kontextfreie und unbeschränkte Grammatik. Wegen z.B. der Produktion $S \to TT$ ist G_1 nicht regulär, wegen $T \to \varepsilon$ ist G_1 auch nicht monoton oder kontextsensitiv.
 - $\mathcal{L}(G_1) = \{\varepsilon, \underline{\mathbf{x}}, \underline{\mathbf{y}}, \underline{\mathbf{x}}\underline{\mathbf{x}}, \underline{\mathbf{x}}\underline{\mathbf{y}}, \underline{\mathbf{y}}\underline{\mathbf{x}}, \underline{\mathbf{y}}\underline{\mathbf{y}}\}$ ist endlich, also sicher regulär, und somit auch eine kontext-freie, kontextsensitive und rekursiv aufzählbare Sprache (Chomsky Hierarchie!).
- b) G_2 ist eine monotone und auch kontextsensitive und unbeschränkte Grammatik. Keine der Produktionen ist regulär, wegen $\underline{0}B\underline{1} \to \underline{0}\#\underline{1}$ ist G_2 auch nicht kontextfrei.
 - $\mathcal{L}(G_2) = \{\underline{0}^n \underline{\#} \underline{1}^n \mid n \geq 1\}$ ist eine kontextfreie Sprache, und somit auch kontextsensitiv und rekursiv aufzählbar (jedoch keinesfalls regulär).
- c) G_3 ist eine unbeschränkte Grammatik. Wegen z.B. der Produktion $AB \to X$ ist sie weder regulär, noch kontextfrei, noch monoton oder kontextsensitiv.
 - $\mathcal{L}(G_3) = \{\}$ ist aber regulär, und damit, aufgrund der Chomsky Hierarchie auch kontextfrei, kontextsensitiv und rekursiv aufzählbar.
- d) G_4 ist monoton und unbeschränkt. Wegen z.B. der Produktion $\underline{\mathtt{a}}\underline{\mathtt{b}} \to \underline{\mathtt{b}}\underline{\mathtt{a}}$ ist sie weder regulär, noch kontextfrei, noch kontextsensitiv.
 - $L(G_4) = \{w \in \{\underline{\mathtt{a}},\underline{\mathtt{b}},\underline{\mathtt{c}}\}^+ \mid |w|_{\underline{\mathtt{a}}} = |w|_{\underline{\mathtt{b}}} = |w|_{\underline{\mathtt{c}}}\}$ ist kontextsensitiv und rekursiv aufzählbar, jedoch keinesfalls regulär oder kontextfrei (was man leicht z.B. mit Hilfe des Pumping Lemmas zeigen kann).

Aufgabe 2.4 Geben Sie für jede der folgenden Aussagen an, ob diese korrekt ist, oder nicht, und begründen Sie jeweils Ihre Antwort.

- a) Die von der Grammatik $G = (\{A\}, \{\underline{0}, \underline{1}\}, \{A \to AA \mid \underline{0} \mid \underline{1}\}, A)$ erzeugte Sprache ist inhärent mehrdeutig.
- b) Ist L regulär, so ist auch jede Grammatik, die L erzeugt, regulär.
- c) Sind die beiden Sprachen L_1 und L_2 kontextfrei, so ist auch $L_1 L_2$ kontextfrei.
- d) Sind die beiden Sprachen L_1 und L_2 nicht regulär, so ist auch $L_1 \cup L_2$ nicht regulär.
- e) Sei $Q = \{L \mid L \in \mathbf{NP}, L \notin \mathbf{P}\}$ eine Eigenschaft rekursiv aufzählbarer Sprachen L. Dann ist Q genau dann entscheidbar, wenn $\mathbf{P} = \mathbf{NP}$.
- f) Sei $A \leq_p B$ und A **NP**-hart. Dann ist B in **NP**.
- g) Sei $A \leq_p B$ und $B \in \mathbf{NP}$. Dann gilt: A ist entscheidbar.

Lösung

a) Nein. Zwar ist G mehrdeutig, da es z.B. für das Wort $\underline{111}$ zwei verschiedene Linksableitungen gibt:

$$A \to AA \to \underline{1}A \to \underline{1}AA \to \underline{1}\underline{1}A \to \underline{1}\underline{1}\underline{1}$$
 bzw.
 $A \to AA \to AAA \to 1AA \to 11A \to 111$

Die von G erzeugte Sprache $L(G)=\{\underline{0},\underline{1}\}^+$ ist aber nicht mehrdeutig, da sie z.B. von folgender eindeutiger Grammatik G' erzeugt wird:

$$G' = (\{A\}, \{\underline{0}, \underline{1}\}, \{A \to \underline{0}A \mid \underline{1}A \mid \underline{0} \mid \underline{1}\}, A)$$

- b) Nein. Denn ist die Sprache L regulär, so ist sie z.B. auch kontextfrei, und kann daher auch von einer kontextfreien Grammatik erzeugt werden.
- c) Nein. Sei $L_1 = \Sigma^*$ und L_2 eine kontextfreie Sprache über Σ . Dann ist $L_1 L_2$ das Komplement von L_2 . Kontextfreie Sprachen sind aber nicht unter Komplementbildung abgeschlossen, $L_1 L_2$ muss daher nicht notwendigerweise kontextfrei sein.
- d) Nein. Sei L_1 nicht regulär, und $L_2 = \overline{L}_1$. Dann ist aber $L_1 \cup L_2 = \Sigma^*$, was aber sicher regulär ist.
- e) Das ist korrekt. Nach dem Satz von Rice ist jede nicht triviale Eigenschaft rekursiv aufzählbarer Sprachen nicht entscheidbar. Ist $\mathbf{P} \neq \mathbf{NP}$, so ist die Eigenschaft Q nicht trivial und daher unentscheidbar. Ist hingegen $\mathbf{P} = \mathbf{NP}$, so gibt es offensichtlich einen Entscheidungsalgorithmus: Die Anwort ist immer "nein".
- f) Diese Aussage ist nur dann möglicherweise korrekt, wenn $A \in \mathbf{NP}$ und somit \mathbf{NP} -vollständig ist. Ist dies aber nicht der Fall, so kann B wegen $A \leq_p B$ keinesfalls in \mathbf{NP} sein.
- g) Ja, diese Aussage ist jedenfalls korrekt. Denn ist $B \in \mathbf{NP}$ (und somit entscheidbar), dann ist A wegen $A \leq_p B$ jedenfalls entscheidbar.

Aufgabe 2.5 Zeigen Sie mit Hilfe entsprechender polynomieller Reduktionen, dass die folgenden Probleme **NP**-vollständig sind. Sie können dabei jeweils davon ausgehen, dass bereits bekannt ist, dass die Probleme in **NP** liegen.

a) Problem: Nicht-Tautologie (NT)

Gegeben: Aussagenlogische Formel α mit Variablen $x_1, ..., x_n$

Gefragt: Ist α widerlegbar?

(Hinweis: Verwenden Sie dafür die NP-Vollständigkeit des Problems SAT)

b) Problem: k-COLOR

Gegeben: Ungerichteter Graph $G = (V, E), k \in \mathbb{N}$

Gefragt: Gibt es eine Zuordnung von k > 3 verschiedenen Farben zu Knoten in V so,

dass keine zwei benachbarten Knoten v_1, v_2 dieselbe Farbe haben?

(Hinweis: Verwenden Sie dafür die NP-Vollständigkeit des Dreifärbbarkeitsproblems 3-COLOR)

Lösung

a) NT ist **NP**-hart, denn wir können SAT auf NT in polynomieller Zeit reduzieren $(SAT \leq_p NT)$:

Zunächst erstellen wir aus der Formel α die Formel $NOT(\alpha)$. Gibt es eine Belegung T, die $NOT(\alpha)$ widerlegt, dann erfüllt genau diese Belegung T die Formel α . Ist also $NOT(\alpha)$ keine Tautologie, dann ist α erfüllbar. Umgekehrt gilt: Ist α erfüllbar, dann ist $NOT(\alpha)$ keine Tautologie.

Da $NT \in \mathbf{NP}$ und $SAT \leq_p NT$ haben wir also gezeigt, dass NT \mathbf{NP} -vollständig ist.

b) k-COLOR ist **NP**-hart, denn wir können 3-COLOR auf k-COLOR reduzieren (3-COLOR $\leq_p k$ -COLOR):

Die Idee der Reduktion ist, weitere k-3 Knoten zu V hinzuzufügen, die jeweils eine der k Farben von k-COLOR "verbrauchen", sodass kein weiterer Knoten dieselbe Farbe haben darf. Dazu verbindet man sie jeweils einfach mit allen Knoten in V'.

Sei I eine Instanz von 3-COLOR mit G=(V,E). Wir erstellen einen neuen Graphen G'=(V',E') aus G indem wir k-3 neue Knoten zu V hinzufügen, um V' zu erhalten. E' erhalten wir folgendermaßen: Wir beginnen mit E'=E. Für jeden hinzugefügten Knoten u erweitern wir die Kantenmenge: $E'\cup\{(u,v)\mid u\in V'-V,v\in V',u\neq v\}$. Dann gilt: G' ist genau dann k-färbbar, wenn G 3-färbbar ist:

Ist G dreifärbbar, so behalten wir die 3-Färbung der Knoten von G in G' bei und färben jeden der k-3 Knoten in V'-V in einer anderen Farbe. G' ist dann also k-färbbar.

Hat andererseits G' eine k-Färbung, dann haben alle hinzugefügten k-3 Knoten eine andere Farbe (nachdem sie mit allen anderen Knoten im Graphen verbunden sind). Die Knoten in V sind daher nur mit 3 Farben gefärbt, G ist also dreifärbbar.

Da k-COLOR \in **NP** und 3-COLOR $\leq_p k$ -COLOR haben wir also gezeigt, dass auch k-COLOR **NP**-vollständig ist.