## FONCTIONS PART2 E04

## EXERCICE N°2 (Le corrigé)

On considère la fonction f définie par:  $f(x) = -3x^2 + 10x - 4$ 

On note  $C_f$  la courbe représentative de f dans un repère orthonormé.

1) Existe-t-il des tangentes à  $C_f$  de coefficient directeur -2?

Si oui, déterminer les coordonnées du ou des points de  $C_f$  où cette(ces) tangente(s) existe(nt).

Il s'agît de résoudre sur  $\mathbb{R}$  l'équation f'(x) = -2

(Relisez l'exercice précédent...)

Pour tout réel x,

$$f'(x) = -6x + 10$$

d'où

$$f'(x) = -2 \Leftrightarrow -6x+10 = -2 \Leftrightarrow x = 2$$

Cette équation admet une unique solution : 2

donc il existe une tangente à  $C_f$  qui admet -2 comme coefficient directeur

De plus  $f(2) = -3 \times 2^2 + 10 \times 2 - 4 = 4$ 

On en déduit que cette tangente passe par le point de  $C_f$  de coordonnées (2; 4)

2) Existe-t-il des tangentes à  $C_f$  de coefficient directeur 4 ?

Si oui, déterminer les coordonnées du ou des points de  $C_f$  où cette(ces) tangente(s) existe(nt).

Il s'agît de résoudre sur  $\mathbb{R}$  l'équation f'(x) = 4

$$f'(x) = 4 \Leftrightarrow -6x+10 = 4 \Leftrightarrow x = 1$$

Cette équation admet une unique solution : 1

donc il existe une tangente à  $C_f$  qui admet 4 comme coefficient directeur

De plus 
$$f(1) = -3 \times 1^2 + 10 \times 1 - 4 = 3$$

On en déduit que cette tangente passe par le point de  $C_f$  de coordonnées (1;3)

3) Tracer la courbe représentative de ainsi que les tangentes considérées précédemment.

À l'aide de la calculatrice, on calcule les coordonnées de quelques points.

Ensuite, on trace les tangentes (si si, avant la courbe, car elles vont nous guider pour le tracé de cette dernière)

Pour finir, on trace la courbe du mieux possible en évitant de faire des segments de droite.

Pour le tracé des tangentes, on peut relire l'exercice n'3 de la fiche A01.

