Unfitted Bulk Finite Element Method for Solving Surface Partial Differential Equations

Spencer Patty

Texas A&M University Department of Mathematics

Advisor: Andrea Bonito

srobertp@math.tamu.edu

August 4, 2015

White Blood Cell Motion

We model the motion of a free white blood cell in a liquid environment. The cell is represented implicitly as $\Omega = \{ \mathbf{x} \in \Lambda \mid \varphi(\mathbf{x},t) \geq 0 \}.$

The Level Set Method + Incompressible Navier-Stokes

$$\begin{cases} \frac{\partial \varphi}{\partial t} + \mathbf{u} \cdot \nabla \varphi = 0 & \text{in } [0, T] \times \Lambda \\ \rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) - \nabla \cdot (2\mu \nabla^s \mathbf{u}) + \nabla p = \mathbf{f} & \text{in } [0, T] \times \Lambda \\ \nabla \cdot \mathbf{u} = 0 & \text{in } [0, T] \times \Lambda \\ [2\mu \nabla^s \mathbf{u} - pI] \cdot \mathbf{n} = \mathbf{f}_{\Gamma} & \text{on } [0, T] \times \Gamma \end{cases} \tag{1}$$

with stabilization terms.

Here \mathbf{f}_{Γ} represents the various physics that take place on the boundary of cell, for instance motion to minimize surface tension or minimize bending energy of membrane. In the more complicated cases \mathbf{f}_{Γ} must be calculated as a solution to a geometric pde that lives on the manifold Γ .

Partial Differential Equation on Surface, Γ

Solve pde on bulk finite element with the mesh unfitted to the surface which is defined only implicitly such as by a level set method. In the case of Canham-Helfrich energy minimization in 2D (a simplified case), we need to be able to solve for

$$\mathbf{f}_{\Gamma} = k \left(\Delta_{\Gamma} H + \frac{1}{3} H^3 \right), \qquad \mathbf{x} \in \Gamma$$
 (2)

where H is the total curvature of the surface. Now, the vector curvature $H\mathbf{n}$ can be written as a scale multiple of $\Delta_{\Gamma}X$ where X is the identity operator on the surface, thus we study the surface Laplacian or Laplace-Beltrami equation.

Classical Laplace-Beltrami Equation

Find $u \in C^2(\Gamma)$ such that

$$-\Delta_{\Gamma}u + cu = f, \qquad \mathbf{x} \in \Gamma$$

Unfitted Bulk Finite Element Method

One direction of research is in using a smeared Dirac delta function

$$\delta_{\varepsilon}(\mathbf{x}) = \begin{cases} \frac{1}{\varepsilon} \psi\left(\frac{\phi(\mathbf{x})}{\varepsilon}\right), & |\varphi(\mathbf{x})| < \varepsilon \\ 0, & \text{else} \end{cases} \tag{3}$$

with half-width $\varepsilon=ch^{\beta}$ and kernel ψ . Sadly when $\beta=1$, there are $\mathcal{O}(1)$ errors using δ_{ε} . But for example, with $\beta=3/4$, we get $\mathcal{O}(h^{3/2})$ convergence using

Figure : Example $\delta_{\epsilon}(\mathbf{x})$ for $\Gamma=$ rotated capsule.

Unfitted Bulk Finite Element Method with Smeared Dirac Function

Find $u_h \in V_h$ such that for all $v_h \in V_h = \mathbb{P}^1 (\mathcal{T}_h)$,

$$\int_{\Omega} \delta_{\varepsilon}(\mathbf{x}) \left(\nabla u_h \cdot \nabla v_h + c u_h v_h \right) |\nabla \varphi_h| d\mathbf{x} = \int_{\Omega} \delta_{\varepsilon}(\mathbf{x}) f^e v_h |\nabla \varphi_h| d\mathbf{x}$$