#### REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR

| FORM TO THE ABOVE ADDI                                                               | ₹ESS.             |                                |                |                                  |                     |  |  |
|--------------------------------------------------------------------------------------|-------------------|--------------------------------|----------------|----------------------------------|---------------------|--|--|
| 1. REPORT DATE (DE                                                                   | D-MM-YYYY)        | 2. REPORT TYPE Briefing Slides |                | 3. DATES COVER                   | RED (From - To)     |  |  |
| 4. TITLE AND SUBTIT                                                                  |                   | n Fluoropolymer / Na           | nacomposito    | 5a. CONTRACT N                   | IUMBER              |  |  |
| Surfaces                                                                             | mace Formation o  | ii Fidolopolyillei / Na        | nocomposite    | 5b. GRANT NUME                   | BER                 |  |  |
|                                                                                      |                   |                                |                | 5c. PROGRAM EL                   | LEMENT NUMBER       |  |  |
| 6. AUTHOR(S)                                                                         |                   |                                |                | 5d. PROJECT NU                   | MBER                |  |  |
| Andrew J. Guenthner; Raymond S. Campos; Jeffrey R. Alsto                             |                   |                                | on;            | 5 - TAOK NUMBE                   | ·n                  |  |  |
| Madani A. Kahn; Ti                                                                   | mothy S. Haddad;  | Joseph M. Mabry                |                | 5e. TASK NUMBE                   | :K                  |  |  |
|                                                                                      |                   |                                |                | 5f. WORK UNIT N                  | UMBER               |  |  |
| 7. PERFORMING ORG                                                                    | SANIZATION NAME   | S) AND ADDRESS(ES)             |                | 8. PERFORMING<br>REPORT NO.      | ORGANIZATION        |  |  |
| Air Force Research                                                                   | Laboratory (AFMO  | C)                             |                | KEI OKI NO.                      |                     |  |  |
| AFRL/RQRP                                                                            |                   |                                |                |                                  |                     |  |  |
| 10 E. Saturn Blvd.<br>Edwards AFB, CA 93524                                          |                   |                                |                |                                  |                     |  |  |
| 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)                            |                   |                                |                | 10. SPONSOR/MONITOR'S ACRONYM(S) |                     |  |  |
| Air Force Research                                                                   | Laboratory (AFM)  | 7)                             |                |                                  |                     |  |  |
| Air Force Research Laboratory (AFMC) AFRL/RQR                                        |                   |                                |                | 11. SPONSOR/MONITOR'S REPORT     |                     |  |  |
| 5 Pollux Drive                                                                       |                   |                                | NUMBER(S)      |                                  |                     |  |  |
| Edwards AFB, CA 9                                                                    |                   |                                |                | AFRL-RQ-ED-                      | VG-2014-274         |  |  |
| 12. DISTRIBUTION / A Approved for public                                             |                   |                                |                |                                  |                     |  |  |
| 13. SUPPLEMENTAR                                                                     |                   |                                |                |                                  |                     |  |  |
| Submitted for Fluoropolymer 2014 PA Case Number: 14497; Clearance Date: 09 Oct 2014. |                   |                                |                |                                  |                     |  |  |
|                                                                                      | +497, Clearance D | ale. 09 Oct 2014.              |                |                                  |                     |  |  |
| 14. ABSTRACT Briefing Charts                                                         |                   |                                |                |                                  |                     |  |  |
|                                                                                      |                   |                                |                |                                  |                     |  |  |
|                                                                                      |                   |                                |                |                                  |                     |  |  |
|                                                                                      |                   |                                |                |                                  |                     |  |  |
|                                                                                      |                   |                                |                |                                  |                     |  |  |
|                                                                                      |                   |                                |                |                                  |                     |  |  |
|                                                                                      |                   |                                |                |                                  |                     |  |  |
|                                                                                      |                   |                                |                |                                  |                     |  |  |
|                                                                                      |                   |                                |                |                                  |                     |  |  |
|                                                                                      |                   |                                |                |                                  |                     |  |  |
|                                                                                      |                   |                                |                |                                  |                     |  |  |
| 15. SUBJECT TERMS                                                                    |                   |                                |                |                                  |                     |  |  |
| 16. SECURITY CLASSIFICATION OF:                                                      |                   |                                | 17. LIMITATION | 18. NUMBER                       | 19a. NAME OF        |  |  |
|                                                                                      |                   |                                | OF ABSTRACT    | OF PAGES                         | RESPONSIBLE PERSON  |  |  |
| a. REPORT                                                                            | b. ABSTRACT       | c. THIS PAGE                   |                | 21                               | 19b. TELEPHONE NO   |  |  |
| Unclassified                                                                         | Unclassified      | Unclassified                   | SAR            |                                  | (include area code) |  |  |



## SUPEROLEOPHOBIC SURFACE FORMATION ON FLUOROPOLYMER / NANOCOMPOSITE SURFACES

15 October 2014

Andrew J. Guenthner<sup>1</sup>, Raymond S. Campos<sup>2</sup>, Jeffrey R. Alston<sup>3</sup>, Madani A. Kahn<sup>4</sup>, Timothy S. Haddad<sup>5</sup>, Joseph M. Mabry<sup>1</sup>

<sup>1</sup>Aerospace Systems Directorate, Air Force Research Laboratory <sup>2</sup>University of Texas, Dallas <sup>3</sup>National Research Council/ AFRL <sup>4</sup>City College of New York <sup>5</sup>ERC Incorporated Ph: 661/275-5769; e-mail: andrew.guenthner@us.af.mil

DISTRIBUTION A: Approved for public release; distribution is unlimited.



### **Outline**



- Fluoropolymer / Fluorinated Silica Nanocomposites
  - Less Binder -> More Roughness -> Superoleophobicity
- Effect of Fluoropolymer Type
- Effect of Silica Particle Type
  - Fumed vs. Precipitated
  - Fluorinated vs. Non-fluorinated

Acknowledgements: Air Force Research
Laboratory, Air Force Office of Scientific
Research (AFOSR) – program support; PWG
Team Members!







# Baseline fluoropolymer Nanocomposite



•<u>Hi-Sil233</u> (PPG Industries):

-precipitated amorphous silica

-Surface area, BET: 135 m<sup>2</sup>/g

-Silanol group density: 5-12 nm<sup>-2</sup>

-Average particle size: 22 nm

Properties of 1H,1H,2H,2H-heptadecafluorodecyl(dimethyl)chlorosilane-treated Hi-Sil233 (FF-Hi-Sil233)

| Average Diameter (nm)                       | 22  |
|---------------------------------------------|-----|
| BET Surface Area (m <sup>2</sup> /g)        | 92  |
|                                             |     |
| BET C Constant                              | 21  |
| Water Vapor Uptake (wt%)                    | 2.8 |
| Wt % Fluorine                               | 9.9 |
| Grafting Density (chains nm <sup>-2</sup> ) | 1.6 |
| Graft Layer Molar Volume (cc)               | 311 |

5 mg/mL fluoropolymer in AK225G

<u>Viton®</u> Extreme ETP-600S: DuPont
terpolymer consisting of ethylene,
tetrafluoroethylene, perfluoro(methylvinyl)
ether, and bromotetrafluorobutene





Campos, R.; Guenthner, A. J.; Haddad, T. S.; Mabry, J. M. "Fluoroalkyl-functionalized Silica Particles: Synthesis, Characterization, and Wetting Characteristics", *Langmuir*, 27,10206-10215 (2011).

Campos, R.; Guenthner, A. J.; Meuler, A. J.; Tuteja, A.; Cohen, R. E.; McKinley, G. H.; Haddad, T. S.; Mabry J. M. "Superoleophobic surfaces through control of stochastic sprayed-on topography", *Langmuir*, 28, 9834-9841 (2012).



## **Spray Coating Process**



### • Silica Types

- FF-Modified Hi-Sil233
- Unmodified Hi-Sil233
- FF-Modified 7 nm fumed silica, 390 m<sup>2</sup>/g, Aldrich)

### • fluoropolymer Types

- Viton Extreme ETP-600S (described previously)
- Technoflon BR 9151: Solvay Solexis pentapolymer consisting of Vinylidene (VF<sub>2</sub>), HFP (hexafluoropropylene), TFE (tetrafluoroethylene), PMVE (perfluoromethylvinylether CF<sub>2</sub>=CF-OCF<sub>3</sub>) and ethylene
- Spray coating done via airbrush (Paasche, VLSTPRO) with a 1.06 mm diameter tip using compressed air (25 psi). The airbrush was repeatedly passed over the substrate laterally at an approximate distance of 15-20 cm from the substrate until 20 mL of the coating mixture had been deposited. The resultant deposition level is around is 20 mg/cm².





## **Coating Morphology**





Top-down (upper panels) and cross-sectional (lower panels) views of FF-Hi-Sil233 / Viton coatings with silica to fluoropolymer ratios of:

- a) 20:80 (wt) b) 40:60 (wt)
- c) 60:40 (wt) d) 80:20 (wt)







# Effect of Binder on Sub-Micron Roughness





Cross-sectional morphology of FF-Hi-Sil233 / Viton coatings at the FF-silica loading levels indicated. Unfilled arrows indicate fine features in the silica particle that are filled in by binder; filled arrows indicate where such features are conformal to the surface.

The fluoropolymer binder "fills in" fine features in the coating surface that would otherwise be present



# **Quantification of Nanocomposite Roughness Characteristics**



### FF-Hi-Sil233 / Viton®





Average roughness as measured by interferometry, sensitive to features larger than about 1 µm

Fractal dimensionality as measured by cross-sectional SEM; sensitive to features from 0.1 - 10µm

At higher silica loading levels, the roughness exists principally at sub-micron length scales



## Elemental Composition of FF-Hi-Sil233 /Viton Surfaces





At 80 wt% loading, any binder pools on the surface are few and isolated



## Superamphiphobicity of FF-Silica / Viton Surfaces







Liquid repulsion characteristics can be tuned by adjusting the level of FF-silica



## Superamphiphobicity of FF-Silica / Viton Surfaces





Parameter map showing liquid repulsion characteristics; filled symbols = fully wetted state; open symbols = Cassie-Baxter state; triangles = mixed behavior



# Effect of Silica Type on Silica Particle Morphology





Hi-Sil morphology is more variable, with more large aggregates



# Morphology of FF-Fumed Silica / Viton Nanocomposites







80 wt% FF-Fumed Silica in Viton®





Smoother surface should limit fine sale roughness



# Water Contact Angles for FF-Silica Nanocomposites



#### FF-HiSil233 in Viton®

Water Contact Angles of prec-FDec-MCS/ Viton Coatings



#### FF-HiSil233 in Technoflon®

### Water Contact Angles



Silica Particle Concentration (wt%)

Similar water repellence for FF-Hi-Sil233 for different fluoropolymer types. Somewhat lower receding angles for Technoflon® at low loading



# Hexadecane Contact Angles for FF-Silica Nanocomposites



FF-HiSil233 in Viton®

FF-HiSil233 in Technoflon®





Despite similar contact angles at low loadings, systems incorporating Viton® achieve superoleophobic behavior, while those based on Technoflon® do not



# Water Contact Angles for FF-Silica Nanocomposites



FF-HiSil233 in Viton®

#### Water Contact Angles of prec-FDec-MCS/ Viton Coatings



#### FF-Fumed Silica in Viton®

Dynamic Water Contact Angles of 7 nm fumed treated with FDec-MCS/ Viton Coating 1st Iteration



With fumed silica, the transition to superhydrophobic behavior requires a higher silica loading, likely due to the smoother nature of the silica aggregates



# Morphology of Untreated Hi-Sil233 / Viton Nanocomposites







Hi-Sil233
Precipitated
Silica, 80
wt% in
Viton®, no
treatment







Smoother surface, leads to higher weight fractions needed for liquid repellence



# Morphology of Untreated Hi-Sil233 / Viton Nanocomposites





Fluorine tends to be evenly distributed among interstices of aggregate, enriched near bottom, but does not pool on the surface



# FF-Silica Nanocomposites Support Plastron Formation







## **Summary**



- Fluoroalkyl-functionalized silica particles and fluoropolymers can be spray coated on to a variety of substrates to form superamphiphobic surfaces
- The morphology of these silica / fluoropolymer sprayed surfaces is dominated by the roughness characteristics of the silica aggregates, and the degree to which the fluoropolymer creates a smoother surface topography
- In general, at low silica loadings, excess fluoropolymer eliminates roughness at the smallest length scales, decreasing the liquid repellence of the surface
- In experiments to date, precipitated silica, which tends to form aggregates with roughness across a wider range of length scales, has produced greater liquid repellence than fumed silica
- In untreated silica at the highest loadings, fluoropolymer does not appear to cover the surface evenly enough to produce a high level of liquid repellence



