# CRUDE OIL PRICE PREDICTION

**MENTORS: KARTHIK MUSKULA &** 

**DHANYAPRIYA SOMASUNDARAM** 



# Members

na Vishnu u Nandhini dindla Divya Naveen Kumar Pradeep Kumar t Patil



# **Business Problem:**



With a global trading price of 88\$ per barrel, oil prices have hit an all-time high in the last seven years. Due to rise in oil price the economy are getting affected vary badly.

### **Objective:**

Oil is a product that goes completely in a different direction for a single market event as the oil prices are rarely based on real-time data, instead, it is driven by externalities making our attempt to forecast it even more challenging

As the economy will be highly affected by oil prices our model will help to understand the pattern in prices to help the customers and businesses to make smart decisions.

# Factors That Affect the Price of Oil



affected by most of the factors, but the one's that affect the most ar and supply



# **Project Architecture / Project Flow**



# taset

wnloaded the crude oil price dataset from NASDAQ website.

aset has total 9345 rows and 2 columns which includes the crude oil price on 02-01-1986 to 21-12-2022.



# Exploratory Data Analysis (EDA)

### **Dataset Details**

Dataset contains 9345 rows and 2 columns

Datatypes are DataTime and Float Data ranges from 02-01-1986 to 21-12-2022.

| A1 | <u> </u>   | fx Date |   |   |   |   |   |   |   |   |
|----|------------|---------|---|---|---|---|---|---|---|---|
|    | Α          | В       | С | D | E | F | G | Н | 1 | J |
| 1  | Date       | Price   |   |   |   |   |   |   |   |   |
| 2  | 02-01-1986 | 25.56   |   |   |   |   |   |   |   |   |
| 3  | 03-01-1986 | 26      |   |   |   |   |   |   |   |   |
| 4  | 06-01-1986 | 26.53   |   |   |   |   |   |   |   |   |
| 5  | 07-01-1986 | 25.85   |   |   |   |   |   |   |   |   |
| 6  | 08-01-1986 | 25.87   |   |   |   |   |   |   |   |   |
| 7  | 09-01-1986 | 26.03   |   |   |   |   |   |   |   |   |
| 8  | 10-01-1986 | 25.65   |   |   |   |   |   |   |   |   |
| 9  | 13-01-1986 | 25.08   |   |   |   |   |   |   |   |   |
| 10 | 14-01-1986 | 24.97   |   |   |   |   |   |   |   |   |
| 11 | 15-01-1986 | 25.18   |   |   |   |   |   |   |   |   |
| 12 | 16-01-1986 | 23.98   |   |   |   |   |   |   |   |   |
| 13 | 17-01-1986 | 23.63   |   |   |   |   |   |   |   |   |
| 14 | 20-01-1986 | 21.33   |   |   |   |   |   |   |   |   |
| 15 | 21-01-1986 | 20.61   |   |   |   |   |   |   |   |   |
| 16 | 22-01-1986 | 20.25   |   |   |   |   |   |   |   |   |
| 17 | 23-01-1986 | 19.93   |   |   |   |   |   |   |   |   |



# **Exploratory Data Analysis (EDA)**

- Dataset has total 9345 rows and 2 columns which includes the crude oil price data from 02-01-1986 to 21-12-2022.
- Calculated Mean, Median, Variance, Skewness, Kurtosis. Mean = 46.028511, Median = 36.060000, Variance = 871.16243, Kurtosis = -0.553953 (Flat peak or Platykurtic), Skewness = 0.761338 (Positive Skewness or Right skewed).
- We found that the dataset has 6 null values. We applied mean imputation technique to remove the null values from the data.
- Calculated the correlation between Price and Year. Correlation = 0.723501 (Positive correlation)
- We used outlier detection technique (Histogram, Boxplot, Describe function) and found that the data has some outliers.
- We used boxplot formula to calculate the upper extreme and lower extreme values and removed the outliers using drop function.
- Finally, null values and outliers have been removed from the data.

| 13.439  | 15.6333 | 16.15   | 15.0363 | 19.1557 | 13.2835 | 14.5815 | 13.7973 | 15.2005 | 14.846  | 14.9617 | 14.787  |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 18.8643 | 19.5481 | 17.5276 | 18.1105 | 18.9514 | 20.8278 | 19.8295 | 18.9876 | 19.4565 | 18.8989 | 19.7178 | 19.3948 |
| 17.3271 | 15.7048 | 16.4755 | 16.2289 | 16.4938 | 15.6395 | 16.0159 | 16.2386 | 16.7777 | 14.9782 | 14.714  | 15.0232 |
| 20.736  | 18.9659 | 20.8915 | 18.6126 | 18.6071 | 19.32   | 19.8117 | 19.7109 | 20.059  | 19.8064 | 19.7155 | 19.4067 |
| 20.4016 | 27.0722 | 26.1405 | 22.8005 | 23.5425 | 21.5638 | 19.5568 | 21.6855 | 20.8739 | 28.7705 | 30.7838 | 30.8862 |
| 21.4832 | 21.9565 | 20.0257 | 20.4879 | 23.1718 | 21.8438 | 20.5235 | 20.711  | 21.0791 | 21.8839 | 22.9082 | 22.0915 |
| 20.3148 | 21.1471 | 20.004  | 19.5419 | 19.5627 | 21.36   | 21.5557 | 19.7174 | 20.9168 | 20.3226 | 21.0492 | 21.3109 |
| 19.8133 | 18.2943 | 16.2214 | 19.2772 | 19.0118 | 18.03   | 18.5765 | 19.5265 | 19.5    | 17.4132 | 18.0505 | 17.7477 |
| 16.799  | 17.4205 | 17.2376 | 15.7128 | 16.1657 | 18.4391 | 18.7464 | 15.6832 | 17.9142 | 17.3665 | 17.2948 | 17.3059 |
| 19.5635 | 18.3382 | 18.938  | 18.5961 | 18.3895 | 17.7455 | 18.1892 | 18.5017 | 19.1265 | 18.198  | 17.8018 | 18.1348 |
| 23.0885 | 21.9352 | 23.8605 | 20.605  | 19.4114 | 21.156  | 21.006  | 22.2457 | 21.2917 | 23.4252 | 24.0345 | 23.1676 |
| 20.0738 | 20.1595 | 18.9225 | 21.2532 | 23.3648 | 20.2809 | 20.015  | 21.1686 | 20.9505 | 19.8268 | 20.8624 | 20.238  |
| 14.9532 | 13.8905 | 12.611  | 15.354  | 15.9095 | 14.3159 | 14.1005 | 15.019  | 14.834  | 12.8861 | 14.0027 | 15.0443 |
| 17.7073 | 20.2165 | 22.8636 | 15.2941 | 15.1824 | 20.0105 | 18.792  | 16.8371 | 17.371  | 22.8284 | 21.4933 | 22.4804 |
| 27.0039 | 31.5736 | 28.616  | 29.9761 | 29.1965 | 29.6561 | 31.757  | 28.9545 | 29.4165 | 32.9295 | 31.9741 | 32.6205 |
| 26.8833 | 27.0543 | 22.8229 | 27.659  | 28.9668 | 26.1881 | 26.7732 | 26.3348 | 27.5735 | 21.9435 | 23.5152 | 26.0919 |
| 25.8281 | 27.6722 | 28.7871 | 23.2333 | 21.6795 | 26.201  | 25.7805 | 25.725  | 26.4691 | 25.9852 | 27.6159 | 28.675  |
| 29.275  | 30.719  | 32.5163 | 33.8242 | 32.323  | 31.0252 | 30.8515 | 31.247  | 29.9295 | 31.8647 | 30.8892 | 28.7905 |
| 38.6119 | 43.7205 | 42.4555 | 37 9579 | 37.5914 | 41.19   | 38.359  | 38.5033 | 40.659  | 46.0862 | 48.9081 | 44.3365 |
| 52.9043 | 62.5891 | 58.6752 | 52.7622 | 52.2767 | 57.2952 | 57.4582 | 54.461  | 51.8574 | 56.4025 | 58.9524 | 62.3364 |
| 69.2118 | 69.4323 | 63.7285 | 62.7428 | 67.002  | 71.3368 | 68.5946 | 64.0065 | 68.9435 | 62.24   | 61.5545 | 63.5152 |
| 66.5237 | 70.7413 | 83.7177 | 64.607  | 60.1174 | 74.3295 | 70.7152 | 64.0567 | 67.3204 |         | 82.4614 | 76.0933 |
| 107.827 | 109.745 | 57.7405 | 99.2642 | 92,4742 | 115.614 | 119.658 | 100.461 | 116.075 | 72.6985 | 77.1074 | 103.654 |
| 54 1368 | 67.4814 | 68.7643 | 49.9845 | 49.1905 | 63.3573 | 64.9067 | 54.919  | 60.47   | 70.8753 | 72.9382 | 65,4335 |
| 82.3941 | 76.6274 |         | 78.7647 | 77.2224 | 78.0986 | 78.5295 | 81.3    | 74.8595 | 81 4895 | 81.1429 | 77.3343 |
| 103.818 |         | 96.2133 |         |         | 96.7674 |         | 99.8155 | 97.4621 | 96.7476 | 90.7471 | 87.9355 |
| 100.246 |         |         | 101.037 | 97.7189 |         | 85.9841 | 102.065 |         | 89.16   |         | 94.6738 |
| 92.9071 | 103.166 | 98.4495 | 95.9144 | 96,2995 | 102.397 | 97.124  | 95.7445 | 95.7835 | 95.5241 | 99.1295 | 102.922 |
| 98.5535 | 94.5805 | 69.7045 | 98.9568 | 94.955  | 100.583 | 102.21  | 97.2478 | 99.0914 | 82.782  | 86.1348 | 93.2265 |
| 53.6523 | 45.0505 | 41.4686 | 50.0975 | 48.0055 | 49.4468 | 55.7062 | 47.533  | 55.7535 | 44.1563 | 46.7591 | 46.9339 |
| 42.107  | 44.9325 | 48.8373 | 36.3706 | 36.1818 | 43.8527 | 47.1255 | 39.999  | 46.1379 | 44.1018 | 47.279  | 44.4395 |
| 50.3458 | 48.5432 | 54.6609 | 52.6326 | 52.2595 | 48.9314 | 47.3667 | 49.5021 | 49.8676 | 54.1318 | 51.6295 | 50.5629 |
| 66.9379 | 66.7609 | 54.7359 | 63.1704 | 63.5041 | 67.0171 | 67.1536 | 63.7009 | 67.8746 | 58.3633 | 67.6657 | 68.8052 |
| 60.3875 | 55.687  | 59.1786 | 55.9839 | 54.5352 | 55.8905 | 56.112  | 57.8543 | 58.7652 | 56.8609 | 55.7786 | 57.503  |
| 25.561  | 41.3143 | 44.5735 | 46.4655 | 48.6224 | 40.9483 | 39.6681 | 31.9814 | 34.9779 | 41.2379 | 41.0378 | 39.7164 |
| 63.8982 | 67.3909 | 70.9143 | 64.8541 | 59.329  | 69.9595 | 70.379  | 63.559  | 65.394  | 72.4784 | 77.4433 | 71.0843 |
| 100.332 | 93.675  | 83 8773 | 94.4072 | 90.0338 | 96.5196 | 104.761 | 102.021 | 104.611 | 87.2086 | 89.7267 | 87.115  |
| Apr     | Aug     | Dec     | Feb     | Jan     | Jul     | Jun     | Mar     | May     | Nov     | Oct     | Sep     |

#### **Inferences:**

Since Heatmap provide us easy tool to understand the correlation between two entities, we used the heatmap to represent the correlation between the two variables year & month.

# tlier Detection





#### ices:

ere are outliers above the positive upper extreme whisker.
ere are no outliers below the negative side of the lower whisker.
e the data doesn't follow Normal Distribution. Right skewed data.

# oing outliers





e no outliers above the positive upper whisker.

# **Data Visualization**Bar Plot of Variation of Price over Years

Variation of Price



38 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 202

# **Box plot**



LOT: Inferences: Years 2018 and 2020 show outliers. 2018 The price of oil dropped in November 2018 becaus umber of factors, including "rising petro-nations' oil production, the U.S. shale oil boom, and swelling in North can oil inventories," according to Market Watch. 2020 As rising Covid cases prompted fears of demand own, due to that the price of the oil dropped.

# ation arly)

pecial type of scatter plot in represents the dataset with behind or ahead as compared e difference between these ed lag or lagged and it is

series is showing autoregressive good for time series modelling lives a Positive correction ace they can be modelled.



# **Time series Decomposition Method**





### s Smoothing



xponential trend in Moving average & it shows orginal Oil Price data.



# **Model Building**

# **MODEL BASED METHODS**

|   | MODEL              | RMSE_Values  | MAPE_Values |
|---|--------------------|--------------|-------------|
| 0 | Linear_model       | 2.918314e+01 | 48.066785   |
| 1 | Exp_model          | 4.420679e+01 | 92.698980   |
| 2 | Quad_model         | 3.435598e+97 | 150.729517  |
| 3 | Add_sea_model      | 4.425814e+01 | 48.859428   |
| 4 | Add_sea_quad_model | 9.655196e+01 | 150.898063  |
| 5 | Mult_sea_model     | 4.904882e+01 | 94.686302   |
| 6 | Mult_add_sea_model | 4.423942e+01 | 92.699036   |

# **ARIMA Model**

#### SARIMAX Results

| Dep. Variable: | V                | No. Observations: | 9331       |
|----------------|------------------|-------------------|------------|
|                |                  |                   |            |
| Model:         | SARIMAX(0, 0, 2) | Log Likelihood    | -16089.679 |
| Date:          | Mon, 09 Jan 2023 | AIC               | 32185.357  |
| Time:          | 15:32:38         | BIC               | 32206.781  |
| mile.          | 13.32.30         | ыс                | 32200.701  |
| Sample:        | 0                | HQIC              | 32192.634  |
|                | 0331             |                   |            |

- 9331

Covariance Type: opg

|        | coef    | std err | z       | P> z  | [0.025 | 0.975] |
|--------|---------|---------|---------|-------|--------|--------|
| ma.L1  | -0.1213 | 0.003   | -40.770 | 0.000 | -0.127 | -0.115 |
| ma.L2  | -0.0155 | 0.006   | -2.703  | 0.007 | -0.027 | -0.004 |
| sigma2 | 1.8418  | 0.007   | 257.533 | 0.000 | 1.828  | 1.856  |

Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 356642.45

**Prob(Q):** 0.99 **Prob(JB):** 0.00

Heteroskedasticity (H): 11.12 Skew: -0.67

Prob(H) (two-sided): 0.00 Kurtosis: 33.26

#### Splitting the data into

Train data = 66.6%Test data = 33.4%

#### **Model with order**

# **Data Driven Methods**

|   | MODEL              | RMSE_Values  | MAPE_Values |
|---|--------------------|--------------|-------------|
| 0 | Ses_model          | 1.147909e+33 | 37.926884   |
| 1 | Holt_model         | inf          | 1181.995312 |
| 2 | Hwe_add_add_model  | 4.066831e+44 | 56.706486   |
| 3 | Hwe_mult_add_model | 2.841681e+44 | 56.403096   |

### **FB Prophet Model**



Train2 = data11.iloc[:len(data11)-150] # Total data observations

Test2 = data11.iloc[len(data11)-150:] # Only last 1

Result:

rmse: 9.83 MAE: 6.16 MSE: 96.54

R-squared Score: 0.88

#### Components



### el (Last Sample Method)

#### ead(6160) I(3172)



### Simple Averages Met

Train: 6159 Test: 3173



rmse:224710588217780.16

# Long Short Term Memory (LSTM) Model



**Train Score: 1.19 RMSE Test Score: 2.04 RMSE** 

Train-R2 score: 0.9973721176476127 Test-R2 Score: 0.99215850176137

# **Model Deployment using Streamlit**



# **Crude Oil Price Forecasting**



This data app uses Facebook's open-sources prophet library to automatically general future forecast values from imported dataset. You'll be able to import your data set from a CSV file, visualize trend and feature, analyze forecast performance, and finally download the created forecast



#### Import Data

Upload here

#### Drag and drop file here

Limit 200MB per file • CSV

Browse files

#### Select Forecast Period

How many periods would you like to forecast into the future?

### Uploading the data

Here, the user should uploa and enter the number of for for which he want the predic

# Visualized forecast data

|      | ds                  | yhat    | yhat_lower | yhat_upper |
|------|---------------------|---------|------------|------------|
| 9700 | 2023-12-12T00:00:00 | 80.2908 | 66.3457    | 93.8470    |
| 9701 | 2023-12-13T00:00:00 | 80.0786 | 66.1881    | 95.3446    |
| 9702 | 2023-12-14T00:00:00 | 80.5899 | 67.2124    | 94.7726    |
| 9703 | 2023-12-15T00:00:00 | 80.1658 | 65.1791    | 93.7202    |
| 9704 | 2023-12-16T00:00:00 | 80.9960 | 66.8745    | 96.0558    |
| 9705 | 2023-12-17T00:00:00 | 80.1438 | 65.8343    | 94.2432    |
| 9706 | 2023-12-18T00:00:00 | 80.5524 | 66.8627    | 94.5782    |
| 9707 | 2023-12-19T00:00:00 | 80.3275 | 65.6418    | 94.3695    |
| 9708 | 2023-12-20T00:00:00 | 80.2018 | 65.6389    | 94.9570    |
| 9709 | 2023-12-21T00:00:00 | 80.8024 | 65.8381    | 94.8606    |

This visual shows future predicted values of the next 365 days. "yhat" is the predicted value, and the upper and lower limits are (by default) 80% confidence intervals.

# Visualizations



This visualizes shows the accordance ("Blacker and predicte ("Blue line") time.

# **I** components



This visuals shows a trend of predicted value week trends, and year dataset covers multiputed. The blue shaded are upper and lower continterval



# **Challenges faced?**

The part of the project where we have faced the difficulty was in the model building stage deploying the final model. We ran into many errors in the process.

# How did you overcome?

How did you overcome: We finished the deployment for our project on time, even after facing many errors because of our team work and with the help of our mentors and projects team.



# Thank you