5.2.3 Python, primene u numeričkoj matematici

RTI - Praktikum iz računarskih alata u matematici

Duško Sretenović 0042/2017Đorđe Nikolić 0076/2017Strahinja Perak 0381/2017Mihailo Knežević 0602/2017

February 23, 2020

Sadržaj

1	\mathbf{Pse}	eudoinverzne matrice	4				
	1.1	$\{1\}$ -inverz	5				
	1.2	$\{1,2\}$ -inverz	5				
	1.3	$\{1,3\}$ -inverz	6				
	1.4	$\{1,4\}$ -inverz	6				
	1.5	Moore-Penrose-ov inverz	7				
2	Kor	Korišćenje programa					
		Unos matrice					
		Prikaz matrice					
	2.3	Zamena simboličkih vrednosti	10				
	2.4	Izračunavanje pseudoinverza	10				
3	Alg	oritam	11				

1 Pseudoinverzne matrice

Neka je data matrica $A = [a_{ij}]_{m \times n} \in \mathbb{R}^{m \times n}$. Potrebno je pronaći matricu $X \in \mathbb{R}^{n \times m}$ koja je rešenje sistema *Penrose-ovih* jednačina:

- 1. $A \cdot X \cdot A = A$
- $2. X \cdot A \cdot X = X$
- 3. $(A \cdot X)^T = A \cdot X$
- 4. $(X \cdot A)^T = X \cdot A$

Definicija 1. Neka je $A = [a_{ij}]_{m \times n} \in \mathbb{R}^{m \times n}$. Matrica $X \in \mathbb{R}^{n \times m}$ je pseudoinverzna matrica matrice A ukoliko zadovoljava neku od Penrose-ovih jednačina.

Ukoliko matrica X, zadovoljava sve Penrose-ove jednačine za proizvoljnu matricu $A \in \mathbb{R}^{m \times n}$, tada se matrica X naziva Moore-Penrose-ov inverz matrice A.

Teorema 1. Za datu matricu $A = [a_{ij}]_{m \times n} \in \mathbb{R}^{m \times n}$ Moore-Penrose-ov inverz uvek postoji i on je jedinstven.

Osim *Moore-Penrose-ovog* inverza, nama su od interesa i skupovi matrica koje ispunjavaju samo neke od *Penrose-ovih* jednačina. Definišimo sledeće skupove:

- 1. $A\{1\} = \{X \in \mathbb{R}^{n \times m} \mid A \cdot X \cdot A = A\}$
- 2. $A\{2\} = \{X \in \mathbb{R}^{n \times m} \mid X \cdot A \cdot X = X\}$
- 3. $A{3} = {X \in \mathbb{R}^{n \times m} \mid (A \cdot X)^T = A \cdot X}$
- 4. $A\{4\} = \{X \in \mathbb{R}^{n \times m} \mid (X \cdot A)^T = X \cdot A\}$

Ukoliko matrica $X \in A\{1\}$ onda se ona naziva $\{1\}$ -inverzom matrice A. Presek skupova $A\{1\}$, $A\{2\}$, $A\{3\}$ i $A\{4\}$ nije prazan, tako da matrica X može pripadati većem broju skupova. Recimo, ukoliko matrica $X \in A\{1\}$ i $X \in A\{2\}$, pišemo $X \in A\{1,2\}$ i matricu X nazivamo $\{1,2\}$ -inverzom matrice A. Bitno je napomenuti da presek ova četiri skupa daje jedinstvenu matricu koja se naziva Moore-Penrose-ov inverz matrice A.

1.1 $\{1\}$ -inverz

Matrica $X \in \mathbb{R}^{n \times m}$ je {1}-inverz matrice $A \in \mathbb{R}^{m \times n}$ ukoliko zadovoljava prvu Penrose-ovu jednačinu $A \cdot X \cdot A = A$.

Da bismo dobili {1}-inverz moramo prvo odrediti vrednosti matrica $P \in \mathbb{R}^{m \times m}$ i $Q \in \mathbb{R}^{n \times n}$. Za njih važi da je proizvod $P \cdot A \cdot Q = E_r = \begin{bmatrix} I_r & \mathbb{O} \\ \hline \mathbb{O} & \mathbb{O} \end{bmatrix}$, gde je r rang matrice A.

Matrice P i Q se dobijaju tako što matricu A elementarnim transformacijama svedemo na matricu E_r , gde svaki put kada izvršimo elementarnu transformaciju neke vrste matrice A, istu tu transformaciju izvršimo i na matrici P, a svaki put kada izvršimo elementarnu transformaciju neke kolone matrice A, istu tu transformaciju izvršimo i na matrici Q.

Nakon što smo pronašli matrice P i Q, $\{1\}$ -inverz matrice A predstavlja matrica $Q \cdot \left[\begin{array}{c|c} I_r & X_1 \\ \hline X_2 & X_3 \end{array}\right] \cdot P$. Ovakav inverz se naziva uopšteni $\{1\}$ -inverz. Ukoliko matrice X_1 , X_2 i X_3 zamenimo konkretnim vrednostima, dobijeni $\{1\}$ -inverz se naziva partikularni $\{1\}$ -inverz.

1.2 $\{1, 2\}$ -inverz

Kako $\{2\}$ -inverzi obično nemaju veliku primenu u praksi, odmah se traži $\{1,2\}$ -inverz. To je inverz koji zadovoljava prve dve Penrose-ove jednaćine. U literaturi se naziva i refleksivni pseudoinverz. Da bismo odredili $\{1,2\}$ -inverz

matrice $A_{m \times n}$ potrebno je pronaći matricu X oblika $Q \cdot \left[\begin{array}{c|c} I_r & X_1 \\ \hline X_2 & X_2 \cdot X_1 \end{array}\right] \cdot P$. Svaka matrica oblika X jeste $\{1,2\}$ -inverz matrice A. Nakon određivanja $\{1\}$ -inverza postupak za dobijanje $\{1,2\}$ -inverza je trivijalan.

1.3 $\{1,3\}$ -inverz

 $\{1,3\}\text{-inverz matrice }A\text{ je bilo koja matrica }X\text{ koja zadovoljava prvu i treću }Penrose\text{-}ovu\text{ jednačinu }A\cdot X\cdot A=A\text{ i }(A\cdot X)^T=A\cdot X\text{. Slično kao i kod opšteg }\{2\}\text{-inverza, }\{3\}\text{-inverz matrice }A\text{, odnosno matrica koja zadovoljava samo treću }Penrose\text{-}ovu\text{ jednačinu nema veliku primenu, pa se obično odmah nalazi }\{1,3\}\text{-inverz. Neka je }A\in\mathbb{R}^{m\times n}\text{ i neka su matrice }P\in\mathbb{R}^{m\times m}\text{ i }Q\in\mathbb{R}^{m\times n}\text{ takve da važi }P\cdot A\cdot Q=E_r=\begin{bmatrix}I_r&\mathbb{Q}\\\overline{\mathbb{Q}}&\mathbb{Q}\end{bmatrix}\text{. Tada je svaka matrica }X\text{ za koju važi }X=Q\cdot\begin{bmatrix}X_0&-X_0\cdot S_2\cdot S_4^{-1}\\X_2&X_3\end{bmatrix}\cdot P\text{, gde je }S=P\cdot P^T=\begin{bmatrix}S_1&S_2\\S_3&S_4\end{bmatrix}, \{3\}\text{-inverz matrice }A\text{. Za nalaženje }\{1,3\}\text{-inverza, potrebno je samo zameniti matricu }X_0\text{ sa matricom }I_r\text{. Dakle, svaka matrica koja zadovoljava prvu i treću }Penrose\text{-}ovu\text{ jednačinu ima oblik }X=Q\cdot\begin{bmatrix}I_r&-S_2\cdot S_4^{-1}\\X_2&X_3\end{bmatrix}\cdot P\text{. }Uopšteni \{1,3\}\text{-inverz matrice ima }minimax\text{ osobine pa se često primenjuje pri rešavanju linearnih sistema jednačina.}$

1.4 $\{1,4\}$ -inverz

Neka je data matrica $A \in \mathbb{R}^{m \times n}$, i neka je njena normalna forma oblika $P \cdot A \cdot Q = E_r = \begin{bmatrix} I_r & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{bmatrix}$, pri čemu je $T = Q^T \cdot Q = \begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix}$. Za matricu X kažemo da je $\{1,4\}$ -inverz početne matrice A ako zadovoljava sledeće jednakosti:

$$A \cdot X \cdot A = A$$
$$(X \cdot A)^T = X \cdot A$$

Matrica X za koju važi da je $\{1,4\}$ -inverz matrice A ima oblik X= $Q \cdot \left[\frac{I_r}{-T_4^{-1} \cdot T_3 \mid X_3} \right] \cdot P$. Matrice X_1 i X_3 su proizvoljne matrice, za koje važi $X_1 \in \mathbb{R}^{r \times (m-r)}$ i $X_3 \in \mathbb{R}^{(n-r) \times (m-r)}$. Takođe, može se dokazati tačnost tvrd $\bar{}$ enja u suprotnom smeru, odnosno da se svaki $\{1,4\}$ -inverz može predstaviti u obliku proizvoda matrica $Q \cdot \begin{bmatrix} I_r & X_1 \\ -T_4^{-1} \cdot T_3 & X_3 \end{bmatrix} \cdot P$. U opštem $\{1,4\}$ -inverzu broj slobodnih parametara je $N_{1,4} = n \cdot (m-r)$. Partikularnim $\{1,4\}$ -inverzom matrice A nazivamo matricu oblika $Q \cdot \left| \begin{array}{c|c} I_r & X_1 \\ \hline -T_{\scriptscriptstyle A}^{-1} \cdot T_3 & X_3 \end{array} \right| \cdot P$ sa konkretnim vrednostima parametara X_1 i X_3 .

1.5 Moore-Penrose-ov inverz

Moore-Penrose-ov inverz matrice A je matrica X koja u potpunosti zadovoljava sistem *Penrose-ovih* jednačina:

1.
$$A \cdot X \cdot A = A$$

$$2. X \cdot A \cdot X = X$$

3.
$$(A \cdot X)^T = A \cdot X$$

$$4. \ (X \cdot A)^T = X \cdot A$$

Pokazuje se da
$$Moore\text{-}Penrose\text{-}ov$$
 inverz matrice A uvek ima oblik:
$$X = Q \cdot \left[\frac{I_r}{-T_4^{-1} \cdot T_3} \, \left| \, \frac{-S_2 \cdot S_4^{-1}}{T_4^{-1} \cdot T_3 \cdot S_2 \cdot S_4^{-1}} \right] \cdot P.$$

2 Korišćenje programa

Program se pokreće otvaranjem main.py fajla. Pokretanjem se otvara tekstualni meni čiji je izgled prikazan na slici.

Izaberite jednu od sledecih opcija:

- 1. Unos matrice
- 2. Prikaz matrice
- 3. Zamenjivanje simbolickih vrednosti u matrici
- 4. Izracunavanje opsteg {1}-inverza
- 5. Izracunavanje opsteg {1, 2}-inverza
- 6. Izracunavanje opsteg {1, 3}-inverza
- 7. Izracunavanje opsteg {1, 4}-inverza
- 8. Izracunavanje Mur-Penrouzovog inverza
- 9. Kraj rada

Vas izbor:

Nakon ovoga, korisnik unosi redni broj opcije koju želi da izvrši i pritiskom tastera *Enter* se ta komanda izvršava. Ukoliko je unet broj 9, program se zaustavlja.

2.1 Unos matrice

Prilikom izbora opcije unosa, program traži od korisnika da unese dimenzije matrice, odnosno broj vrsta i broj kolona. Nakon toga, korisnik unosi elemente matrice. Primer unosa jedne matrice koja ima dve vrste i četiri kolone je dat na slici.

```
Broj vrsta u matrici: 2
Broj kolona u matrici: 4
Unesite matricu:
x y 8 -7
1 2 5 0
```

Elementi matrice mogu biti simboličke vrednosti, proizvoljni izrazi ili konkretne numeričke vrednosti. Pravilno učitavanje matrice zahteva da se u svakoj liniji ulaza nađe tačno onoliko elemenata koliko ima i kolona. Učitavanje se završava kada se pročita onoliko linija ulaza koliko ima i vrsta u matrici. Unutar jedne vrste, elemente matrice je potrebno razdvojiti razmakom, a ukoliko je element izraz, tada izraz treba napisati bez korišćenja razmaka. Na primer, element $x^2 + 3/7 - \sqrt{3}$ se pravilno unosi na sledeći način: $x^{**}2 + 3/7 - \operatorname{sqrt}(3)$, dok bi pogrešno bilo napisati x ** $2 + 3/7 - \operatorname{sqrt}(3)$.

2.2 Prikaz matrice

Ukoliko je korisnik uneo matricu, njeno trenutno stanje se može prikazati odabirom ove opcije. Matrica će biti odštampana na ekranu koristeći najbolje moguće simbole koji su u tom trenutku na raspologanju. Primer rezultata ove komande je na slici.

U ovom slučaju matrica je ispisana uz pomoć ASCII štampača jer je program pokrenut kao konzolna aplikacija. Ako bi program bio pokrenut u jupyter-notebook okruženju, matrica bi bila ispisana pomoću LATEX-a. Ova komanda je otporna na greške, odnosno izvršavanje ove komande će obavestiti korisnika da matrica nije učitana, ukoliko korisnik pre toga nije uneo matricu.

2.3 Zamena simboličkih vrednosti

Ovom opcijom korisnik može da zameni određene simbole u matrici. Simboli se mogu zameniti numeričkim vrednostima, izrazima ili čak drugim simbolima. Prilikom zamene jednog simbola izrazom koriste se ista pravila kao i kod unosa matrice, odnosno izraz ne sme sadržati znake razmaka. Ukoliko se zamenjuje neki simbol koji ne postoji u matrici, nikakva promena se neće desiti. Na slikama je dat primer zamene simbola x i y vrednostima 8 i $\sqrt{3}$ u

2.4 Izračunavanje pseudoinverza

Biranjem opcija pod rednim brojem 4, 5, 6, 7 i 8 se mogu izračunati određeni pseudoinverzi. Prilikom izračunavanja pseudoinverza na ekranu se prikazuju matrice Q, R i P, kao i pseudoinverz koji predstavlja proizvod ove tri matrice. Matrice Q i P imaju isto značenje kao i u prvom delu teksta, dok je matrica R blok matrica koja je sastavljena od matrica X_0 , X_1 , X_2 i X_3 .

3 Algoritam

Celokupan rad sa matricama odvija se u modulu *calculator.py*. Kako je postupak pronalaženja svakog opšteg pseudoinverza podskup postupka pronalaženja *Moore-Penrose-ovog* inverza, biće objašnjen samo algoritam pronalaženja *Moore-Penrose-ovog* inverza.

Najpre se izračunavaju matrice P i Q pomoću metode $calculate_P_Q$ koja se nalazi u klasi Calculator unutar modula calculator.py (kod se može videti otvaranjem ovog fajla pomoću bilo kog tekst editora). Bitno je napomenuti da matrice P i Q nisu jedinstvene, ali poštovanjem algoritma koji je implementiran se uvek dobijaju isti rezultati. Označimo matricu koju je korisnik uneo sa A. Ulaz ove metode je matrica A, a izlaz su matrice P i Q. Način na koji se izračunavaju matrice P i Q je sledeći:

- 1. Izvršimo Gauss-Jordan-ovu eliminaciju nad svim vrstama matrice A. Svaka elementarna operacija izvršena nad matricom A primenjuje se i na matricu P.
- 2. Izvršimo Gauss-Jordan-ovu eliminaciju nad svim kolonama matrice A. Svaka elementarna operacija izvršena nad matricom A primenjuje se i na matricu Q.

Algoritam koji vrši Gauss-Jordan-ovu eliminaciju nad vrstama matrice A je realizovan u metodi $gauss_jordan_row$. Ulaz algoritma je matrica A, a izlaz su matrica P i nova matrica A. Neka matrica A ima m vrsta i n kolona. Na početku algoritma se kreira jedinična matrica P dimenzija $m \times m$ i inicijalizuju se promenljive i i j sa vrednošću 0. U programskom jeziku Python se koristi indeksiranje od nule (zero-based indexing), tako da poslednja vrsta i poslednja kolona matrice A imaju indekse m-1 i n-1, respektivno.

U nastavku sledi glavni deo algoritma *Gauss-Jordan-ove* eliminacije nad vrstama:

- 1. Na početku vršimo inicijalizaciju postavljanjem i = 0 i j = 0.
- 2. Ako je $i \geq m$ ili $j \geq n$ algoritam završava sa radom. U suprotnom se prelazi na sledeći korak.
- 3. Ako je $A_{i,j}=0$, pronalazimo prvu vrstu koja se nalazi ispod *i*-te vrste koja ima vodeći element različit od nule i vršimo zamenu *i*-te vrste i pronađene vrste. Ako takva vrsta ne postoji, uvećavamo j za 1 i vraćamo se na korak 2.
- 4. Pomnožimo *i*-tu vrstu sa koeficijentom $\frac{1}{A_{i,i}}$.
- 5. ($\forall k \in [\,0,m-1] \land k \neq i)$ Množimo i-tuvrstu sa $\frac{-A_{k,j}}{A_{i,j}}$ i dodajemo k-tojvrsti.
- 6. Uvećavamo i za 1 i j za 1 i vraćamo se na korak 2.

Algoritam koji vrši Gauss-Jordan-ovu eliminaciju nad kolonama matrice A se dobija dualno u odnosu na algoritam koji radi nad vrstama. Zanimljivo je da se može sve realizovati samo sa algoritmom koji radi nad vrstama. Nakon završetka prve Gauss-Jordan-ove eliminacije nad vrstama, dobijamo matricu P i novu matricu A. Zatim je potrebno da transponujemo matrice A i Q i da ponovo uradimo Gauss-Jordan-ovu eliminaciju nad vrstama, ali sada za ulaz algoritma unosimo transponovane matrice A i Q. Nakon toga potrebno je još jednom transponovati matrice A i Q i rezultat je isti kao da smo radili eliminaciju nad kolonama.

Nakon što su pronađene matrice P i Q, preostalo je još pronaći matricu R. Ona se pronalazi standardnom procedurom koja je objašnjena na predavanjima i u prvom delu ovog teksta. Blok matrica R se sastoji od matrica X_0 , X_1 , X_2 i X_3 . Matrica R je dimenzija $n \times m$. Matrica X_0 je jedinična matrica dimenzija $r \times r$, gde je r rang matrice A. Rang matrice se lako pronalazi uz pomoć SymPy metode rank koja se poziva nad određenom matricom, a zatim se (kvadratna) jedinična matrica dimenzija r dobija komandom eye(r). Za određivanje matrica X_1 i X_2 je neophodno prvo pronaći matrice $S = P \cdot P^T$

i $T=Q^T\cdot Q$. Nakon toga se iz ovih matrica izvlače blokovi $S_2,\ S_4,\ T_3$ i T_4 . Ovo se u Python-u može uraditi vrlo jednostavno uz pomoć tzv. slicing-a. Na narednoj slici je prikazan deo koda koji izvlači matrice S_2 , dimenzija $r\times (m-r),\ S_4$, dimenzija $(m-r)\times (m-r),\ T_3$, dimenzija $(n-r)\times r$ i T_4 , dimenzija $(n-r)\times (n-r)$.

```
S = P * P.transpose()
T = Q.transpose() * Q

S2 = S[:r, r:]
S4 = S[r:, r:]
T3 = T[r:, :r]
T4 = T[r:, r:]
```

Kada smo pronašli gore navedene matrice, X_1 dobijamo pomoću formule $-S_2 \cdot S_4^{-1}$, dok X_2 dobijamo pomoću formule $-T_4^{-1} \cdot T_3$. Na kraju, matrica X_3 je jednaka proizvodu matrica X_2 i X_1 , odnosno $T_4^{-1} \cdot T_3 \cdot S_2 \cdot S_4^{-1}$. Konačno, kada smo pronašli sve delove matrice R, Moore-Penrose-ov inverz matrice A je matrica $Q \cdot R \cdot P$.

Literatura

- [1] Malešević B., Jovović I., Složenost algoritama i odabrane metode optimizacije, elektronsko izdanje (2018) p. 21
- [2] Some Basic Operations in Python, http://people.bu.edu/andasari/courses/basicpython/basicpython.html, pristupljeno 20.12.2019.
- [3] Vera M. J., Primena uopštenih inverza u rešavanju fazi linearnih sistema, elektronsko izdanje (2018) p. 116, http://www.ftn.uns.ac.rs/539013902/disertacija, pristupljeno 21.12.2019.