Mathematics Department Perth Modern Perth Modern

PERTH MODERN SCHOOL Independent Public School Independent Public School

Course Specialist Test 1 Year 12

Marks available:	42 marks
1	snoitenimexe
	Drawing instruments, templates, notes on one unfolded sheet of AACE paper, and up to three calculators approved for use in the WACE
1	correction fluid/tape, eraser, ruler, highlighters
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener
Materials required:	No cals allowed!!
Number of questions:	L
Working time allowed for this task: 40 mins	
Reading time for this test: 5 mins	
Task type:	Response/Investigation
Student name:	Teacher name:

Note: All part questions worth more than 2 marks require working to obtain full marks.

Formula sheet provided: no but formulae stated on page 2

%ET

Task weighting:

9gsq1**1**

Working out space

Mathematics Department Perth Modern

Useful formulae

Complex numbers

Control forms		
Cartesian form		
z = a + bi	$\overline{z} = a - bi$	
Mod $(z) = z = \sqrt{a^2 + b^2} = r$	$\operatorname{Arg}(z) = \theta$, $\tan \theta = \frac{b}{a}$, $-\pi < \theta \le \pi$	
$ z_1 z_2 = z_1 z_2 $	$\left \frac{z_1}{z_2}\right = \frac{ z_1 }{ z_2 }$	
$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$	$\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$	
$z\overline{z}= z ^2$	$z^{-1} = \frac{1}{z} = \frac{\overline{z}}{ z ^2}$	
$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$	$\overline{z_1}\overline{z_2} = \overline{z_1}\overline{z_2}$	
Polar form		
$z = a + bi = r(\cos \theta + i \sin \theta) = r \operatorname{cis} \theta$	$\overline{z} = r \operatorname{cis}(-\theta)$	
$z_1 z_2 = r_1 r_2 cis(\theta_1 + \theta_2)$	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis} (\theta_1 - \theta_2)$	
$cis(\theta_1 + \theta_2) = cis \theta_1 cis \theta_2$	$cis(-\theta) = \frac{1}{cis\theta}$	
De Moivre's theorem		
$z^n = z ^n cis(n\theta)$	$(cis \theta)^n = \cos n\theta + i \sin n\theta$	
$z^{\frac{1}{q}} = r^{\frac{1}{q}} \left(\cos \frac{\theta + 2\pi k}{q} + i \sin \frac{\theta + 2\pi k}{q} \right), \text{ for } k \text{ an integer}$		

$$(x-\alpha)(x-\beta) = x^2 - (\alpha + \beta)x + \alpha\beta$$

2| Page

Mathematics Department Perth Modern

Q7 (5 marks)

7 | Page

The locus of |z-a-2i|=|z-7-bi| where a & b are real constants is plotted below and can also be defined as $6\operatorname{Im}(z)=-8\operatorname{Re}(z)+61$. Determine the values of a & b showing full reasoning. (Not drawn to scale)

No cals allowed!!

If
$$z = 3 + 4i$$
 and $w = 1 - i$ determine the following exactly.

$$M_z^2$$
 (q

$$\frac{2}{1}$$
 (o

Determine all possible real number pairs a & b such that $\frac{i\mathcal{E} - \Delta i}{i + n}$.

Perth Modern

Q6 (5, 2 & 2 = 9 marks)

a) Solve $\xi^6 = 2 + 2\sqrt{3}i$ in polar form with principal arguments.

b) Plot these points on the axes below.

c) Determine the area of the polygon formed by joining the points in (b) above.

Q3 (2, 3 & 3 = 8 marks)

Consider the function $f(z) = z^3 + 2z^2 + 9z + 18$.

- a) Determine f(3i).
- b) Hence solve $z^3 + 2z^2 + 9z + 18 = 0$
- c) Consider $g(z) = (z^2 + bz + c)(z^2 + dz + e)$ where b, c, d & e are real constants and g(3+i) = 0 = g(2-3i). Determine the values of b, c, d & e.

Q4 (3 marks)

Use the diagram below to determine the complex number w in polar form with a principal argument.

(diagram not drawn to scale)

4 | P a g e

Q5 (2 & 3 = 5 marks)

Sketch the following locus of points on the axes below.

a)
$$|z-2-3i|+|z-5-7i|=5$$

b)
$$|z-7| = |z-3i| + \sqrt{58}$$

