Лабораторна робота №5

$$Y_{j} = 1 + 2X_{j} + \varepsilon_{j}, \quad n = \overline{1,1000}$$

 $X_{i} \sim N(1,1), \qquad \varepsilon_{i} \sim N(0,(X_{i} - 1)^{2})$

n = 1000

```
> A1<-c(); B1<-c()
> A2<-c(); B2<-c()
> N = 1000
> for(i in 1:N) {
    X < -rnorm(n, 1, 1)
     eps<- c()
     for(x in X) eps<-c(eps, rnorm(1, 0, gfunc(x)))</pre>
    Y < -1 + 2 * X + eps
     D < -data.frame(Y,X)
     colnames(D)<-c("Y","X")</pre>
   mod1 < -lm(Y \sim X, data = D)
   A1<-c(A1, mod1$coefficients[1])
     B1<-c(B1, mod1$coefficients[2])
    vv<-(mod1$residuals)^2</pre>
   Dres<-data.frame(vv, X^2, X)
colnames(Dres)<-c("v","Xsq", "X")</pre>
     mod2 < -1m(vv \sim Xsq + X, data = Dres)
    ww<-1/pmax(mod2$fitted.values, 1e-5)</pre>
                                                        #"зріз" від'ємних та близьких до нуля значень
прогнозу дисперсії
     lmW < -lm(Y \sim X, weights = ww, data = D)
     A2<-c(A2, lmw$coefficients[1])
B2<-c(B2, lmw$coefficients[2])
```

Рисунки на наступних сторінках зображають діаграми розсіювання даних та діаграми прогноз-залишки для вибірки з 1000 згенерованих елементів на першому (звичайний МНК) та другому (двокроковий адаптивний навантажений МНК) відповідно.

Далі — таблиці з даними оцінок для середнього та дисперсії розподілу коефіцієнтів а та b за допомогою 1000 повторів генерації даних та знаходження оцінок для цих коефіцієнтів на першому (A1, B1) та другому (A2, B2) кроці адаптивного МНК, а також гістограми відповідних розподілів.

Зеленим кольором в таблицях позначено ближчі до справжніх значення коефіцієнтів а та b. При n = 25 та 50 звичайна МНК-модель дає кращі оцінки коефіцієнтів. Але при збільшенні коефіцієнту «зрізу» (e.g. e-2 чи e-3) різниця між оцінками може ста ти менш значною. Наприклад, можна отримати таку таблицю:

Α	MEAN	SD	В	MEAN	SD
STEP 1	-2.000735	0.7423715	STEP 1	0.9892657	0.6914535
STEP 2	-1.993161	0.3607206	STEP 2	1.004716	0.3543287

Проте загалом результати роботи вказують на зростання доцільності використання саме ад аптивного методу для знаходження коефіцієнтів при збільшенні об'єму вибірки.

•	n = 100				
Α	MEAN	SD	В	MEAN	SD
STEP 1	-2.006623	0.1392853	STEP 1	0.996739	0.1274625
STEP 2	-2.001262	0.0375627	STEP 2	0.9985423	0.03609452
•	<u>n = 25</u>		 		
Α	MEAN	SD	В	MEAN	SD
STEP 1	-1.991917	0.7457154	STEP 1	0.9986159	0.6625453
STEP 2	-2.01058	0.7859033	STEP 2	0.9617716	0.8999805
•	n = 50		 		
Α	MEAN	SD	В	MEAN	SD
STEP 1	-2.006501	0.5618257	STEP 1	0.9958356	0.5368918
JILI I	2.000301	0.3010237			
STEP 2	-1.966082	0.9768374	STEP 2	0.9761962	0.8572907
		0.9768374			
STEP 2	-1.966082 n = 100	0.9768374)	 STEP 2	0.9761962	0.8572907
STEP 2	-1.966082 n = 100 MEAN	0.9768374 <u>)</u>	 STEP 2	0.9761962 	0.8572907 SD 0.3674382
STEP 2 A STEP 1	-1.966082 n = 100 MEAN -2.000857	0.9768374)	 STEP 2 B STEP 1	0.9761962 MEAN 1.00169	0.8572907 SD 0.3674382
STEP 2 A STEP 1	-1.966082 n = 100 MEAN -2.000857 -2.005999	0.9768374)	 STEP 2 B STEP 1	0.9761962 MEAN 1.00169	0.8572907 SD 0.3674382
STEP 2 A STEP 1 STEP 2	-1.966082 n = 100 MEAN -2.000857 -2.005999 n = 500 MEAN	0.9768374) SD 0.4059337 0.1556211	 STEP 2 B STEP 1 STEP 2	0.9761962 MEAN 1.00169 0.9942298	0.8572907 SD 0.3674382 0.1533314
A STEP 1 STEP 2	-1.966082 n = 100 MEAN -2.000857 -2.005999 n = 500 MEAN -1.995341	0.9768374) SD 0.4059337 0.1556211	STEP 2 B STEP 1 STEP 2	0.9761962 MEAN 1.00169 0.9942298 MEAN 1.003684	0.8572907 SD 0.3674382 0.1533314 SD 0.1671175
A STEP 1 STEP 2 A STEP 1	-1.966082 n = 100 MEAN -2.000857 -2.005999 n = 500 MEAN -1.995341	0.9768374 D SD 0.4059337 0.1556211 D SD 0.1850261 0.05290454	STEP 2 B STEP 2 B STEP 1	0.9761962 MEAN 1.00169 0.9942298 MEAN 1.003684	0.8572907 SD 0.3674382 0.1533314 SD 0.1671175
A STEP 1 STEP 2 A STEP 1	-1.966082 n = 100 MEAN -2.000857 -2.005999 n = 500 MEAN -1.995341 -2.000308	0.9768374 D SD 0.4059337 0.1556211 D SD 0.1850261 0.05290454	STEP 2 B STEP 2 B STEP 1	0.9761962 MEAN 1.00169 0.9942298 MEAN 1.003684	0.8572907 SD 0.3674382 0.1533314
A STEP 1 STEP 2 A STEP 1 STEP 2	-1.966082 n = 100 MEAN -2.000857 -2.005999 n = 500 MEAN -1.995341 -2.000308 n = 200 MEAN	0.9768374 D SD 0.4059337 0.1556211 D SD 0.1850261 0.05290454	STEP 2 B STEP 2 B STEP 1 STEP 2	0.9761962 MEAN 1.00169 0.9942298 MEAN 1.003684 0.9990279 MEAN	0.8572907 SD 0.3674382 0.1533314 SD 0.1671175 0.05150707

