Sample ACVFs / ACFs

Distribution & White Noise detection

STAT 464 / 864 Fall 2024
Discrete Time Series Analysis
Skyepaphora Griffith, Queen's University

Sample ACVFs

Let $\{x_t\}$ be an **observed**, N-length, stationary time series.

- The standard **ACVF estimator** is $\hat{\gamma}(h) = \frac{1}{N} \sum_{t=1}^{N-h} (x_t \bar{x})(x_{t+h} \bar{x})$
- igoplus Can only compute for |h| < N
- Don't trust this for lags h near N (or -N).

General Rule: Stick to lags less than log(N), or less than N/4

ACVFs and Seasonality

$$\hat{\gamma}(h) = \frac{1}{N} \sum_{t=1}^{N-h} (x_t - \bar{x})(x_{t+h} - \bar{x})$$

If $\{X_t\}$ has a cyclic component, $\hat{\gamma}_X$ should show a similar cycle.

Extreme example: $x(t) = \cos(2\pi t/d)$. For $|h| \ge 0$,

$$\hat{\gamma}(h+kd) = \frac{1}{N} \sum_{t=1}^{N-(h+kd)} (x_t - \bar{x})(x_{t+(h+kd)} - \bar{x})$$

$$= \frac{1}{N} \sum_{t=1}^{N-(h+kd)} (x_t - \bar{x})(x_{t+h} - \bar{x})$$

 $\hat{\gamma}(h+kd)$ will tend to be smaller than $\hat{\gamma}(h)$ as k increases

This is the original expression of $|\hat{\gamma}(h)|$, but with fewer terms

ACVFs and Seasonality:

$$\hat{\gamma}(h) = \frac{1}{N} \sum_{t=1}^{N-h} (x_t - \bar{x})(x_{t+h} - \bar{x})$$

Random component $\rightarrow \hat{\gamma}(h)$ is approximate.

Too much random → noise drowns out cyclic component

Suppose {Xt} has the classical decomposition (*)

Its theoretical ACVF is
$$\gamma_X(h) = \mathrm{Cov}(m_t+s_t+Y_t, m_{t+h}+s_{t+h}+Y_{t+h})$$

$$= \mathrm{Cov}(Y_t, Y_{t+h}) = \gamma_Y(h)$$

X and Y have the same theoretical ACVF.

But when observed, the **sample** ACVFs can be very different!

Still positive semidefinite

1) Symmetry: $\gamma(h) = \gamma(-h)$

 $a^T \hat{\Gamma}_N a = a^T \left(\frac{1}{N} A A^T \right) = \frac{1}{N} (A^T a)^T (a^T a) = \frac{1}{N} ||A^T a||^2 \ge 0$

So that's why we divide by **N** instead of **N-h**. Also these properties extend to $\hat{\rho}$.

Distribution of $\hat{ ho}$

Let m be some maximum time-lag.

Let $\hat{\rho} = (\hat{\rho}(1), \dots, \hat{\rho}(m))$, where $\hat{\rho}(h)$ is the sample ACF at lag h

Distribution (large N):
$$\hat{\rho} \sim \mathcal{MVN}(\rho, \frac{1}{N}W)$$

Mean vector:
$$\rho = (\rho(1), \dots, \rho(m))$$

$$W[i,j] = \sum_{k=1}^{\infty} \left[\rho(k+i) + \rho(k-i) + \rho(i)\rho(k) \right] \times \left[\rho(k+j) + \rho(k-j) + \rho(j)\rho(k) \right]$$

Example W | White Noise Detection

Consider $X_t \sim wn(0, \sigma^2)$.

Then $\hat{
ho}(1),\ldots,\hat{
ho}(m)$ are approximately independent $\mathcal{N}(0,1/N)$ RVs

To test if $\{x_t\}$ is white noise, we can test $\hat{\rho}$

For a given (nonzero) lag h,

Null Hypothesis: $H_0: \rho(h) = 0$

Alternative Hypothesis: $H_A: \rho(h) \neq 0$

Example W | White Noise Detection

- Under the wn(0, σ^2) hypothesis, $\hat{\rho}(i) \stackrel{.}{\sim} N(0, 1/N)$
- Reject H_A if $|\hat{\rho}(h)|$ is too large, say, > c
- Probability of type 1 error (under the null):

$$H_0: \rho(h) = 0$$

$$H_0: \rho(h) = 0$$
$$H_A: \rho(h) \neq 0$$

$$P(|\hat{\rho}(h)| > c) = P\left(\frac{|\hat{\rho}(h)|}{1/\sqrt{N}} > \frac{c}{1/\sqrt{N}}\right) \approx P\left(|Z| > \frac{c}{1/\sqrt{N}}\right)$$

where $Z \sim \mathcal{N}(0,1)$

Example W | White Noise Detection

- Now we want a **threshold** for P(type I error): some $\alpha \in (0,1)$ Typical choices: [α = 0.05] or [α = 0.01]

For
$$\alpha=0.05$$
 , we want $\frac{c}{1/\sqrt{N}}$

to = the 0.975-quantile (\approx 1.96)

$$\rightarrow c = \frac{1.96}{\sqrt{N}}$$

Example W | White Noise Detection

Conclusion:

- To test if $\{X_t\}$ is $wn(0, \sigma^2)$, at the $\alpha=0.05$ level, compute $\hat{\rho}(h)$ for some set of lags $\{h=0, 1, ..., m\}$
- $|\hat{\rho}(h)| > 1.96/\sqrt{N} \rightarrow \text{Reject the null hypothesis } \{X_t\} \sim \text{wn(0,} \sigma^2)$

ACFs in R

- igoplus Function acf () plots 2 horizontal dashed blue lines at $\pm 1.96/\sqrt{N}$
- $\hat{\rho}(h)$ that fall outside blue lines = evidence $\{X_t\}$ is not wn(0, σ^2)

Interpretation: If we compute $\hat{\rho}$ for white noise at **m** different lags, We expect $\hat{\rho}$ to fall outside the blue lines M x (alpha) times

We learned something today, in Time Series 🕛

What do we tell quin?