Fonctions usuelles - TD3 Fonctions réciproques

Exercice 1. Echauffement

- a) Soit f et g deux fonctions bijectives de $\mathbb R$ dans $\mathbb R$. Montrer que $(f\circ g)^{-1}=g^{-1}\circ f^{-1}$
- b) Vrai ou faux : Si f est bornée et bijective alors f^{-1} est bornée.

Solution de l'exercice 1.

- a) On a $(g^{-1} \circ f^{-1}) \circ (f \circ g)) = g^{-1} \circ f^{-1} \circ f \circ g = g^{-1} \circ Id \circ g = Id$ et pareil de l'autre coté ce qui permet de conclure.
- b) faux, penser à arctan par exemple.

Exercice 2. Fonction croissante

Soit $f: \mathbb{R} \to \mathbb{R}$ une application strictement croissante et continue.

- a) Montrer que f est injective, que $f(\mathbb{R})$ est un intervalle ouvert, et que l'application f^{-1} définie sur $f(\mathbb{R})$ est continue.
 - Donner un exemple d'une telle fonction f pour lequel on ait : $f(\mathbb{R}) = \mathbb{R}$, et un exemple pour lequel on ait : $f(\mathbb{R}) =]0;1[$
- b) On suppose de plus que f est dérivable et que f ne s'annule pas; montrer que f^{-1} est dérivable et que pour tout $y \in f(\mathbb{R})$, on a :

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

- c) On suppose de plus que f est C^2 ; montrer que f^{-1} est C^2 et calculer $(f^{-1})''$.
- d) On considère l'application $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = 2x 1 + \cos x$. Montrer que f est bijective, et que f^{-1} est C^2 .

Solution de l'exercice 2.

a) Pour la continuité de f^{-1} : Soit $y_0 \in f(\mathbb{R})$ et $\epsilon > 0$. On a pour tout $y \in f(\mathbb{R})$, grâce à la stricte croissance de la fonction :

$$f^{-1}(y_0) - \epsilon < f^{-1}(y) < f^{-1}(y_0) + \epsilon \Leftrightarrow f(f^{-1}(y_0) - \epsilon) < y < f(f^{-1}(y_0) + \epsilon)$$

On a $f(f^{-1}(y_0) - \epsilon) < y_0 < f(f^{-1}(y_0) + \epsilon)$ et on peut donc trouver $\alpha > 0$ tel que : $f(f^{-1}(y_0) - \epsilon) < y_0 - \alpha < y_0 + \alpha < f(f^{-1}(y_0) + \epsilon)$. On conclut facilement.

Pour l'exemple avec $f(\mathbb{R}) =]0; 1[$, on peut partir de la fonction arctan et la modifier pour que l'image soit l'intervalle]0; 1[.

b) Soit $y_0 = f(x_0) \in f(\mathbb{R})$ et k suffisamment petit pour qu'on ait : $y_0 + k \in f(\mathbb{R})$. Soit $h(k) = f^{-1}(y_0 + k) - f^{-1}(y_0)$; on a $\lim_{k \to 0} h(k) = 0$ (grâce à la continuité de f^{-1}) et on a : $f^{-1}(y_0 + k) = f^{-1}(y_0) + h(k) = x_0 + h(k)$ d'où $k = f(x_0 + h(x)) - f(x_0)$ et enfin : $\frac{f^{-1}(y_0 + k) - f^{-1}(y_0)}{k} = \frac{h(k)}{k} = \frac{h(k)}{f(x_0 + h(x)) - f(x_0)} = \frac{h(k)}{h(k)f'(x_0) + h(k)\epsilon(h(k))} = \frac{1}{f'(x_0) + \epsilon(h(k))}$. On conclut facilement.

Exercice 3. Fonctions circulaires réciproques

- a) Etudier la fonction $f: x \mapsto \arcsin(\sin(x))$ et tracer sa courbe représentative.
- b) Pour tout $x \in [-1, 1]$ déterminer une relation entre $\arccos(x)$ et $\arccos(-x)$
- c) Exprimer, pour tout réel x non nul, $\arctan(x)$ en fonction de $\arctan(1/x)$.
- d) Que pensez-vous de la fonction $f(x) = \arg \tanh(x) \arg \tanh(1/x)$?

Solution de l'exercice 3.

- a) On a que f est 2π -périodique. Pour $x \in [-\frac{\pi}{2}; \frac{\pi}{2}]$, f(x) = x. Pour $x \in [\frac{\pi}{2}; \frac{3\pi}{2}]$, $f(x) = \pi x$. Ceci vient directement de la définition de arcsin : c'est la fonction qui a x associe le $y \in [-\frac{\pi}{2}; \frac{\pi}{2}]$ tel que $x = \sin(y)$.
- b) On a $\arccos(x) = \pi \arccos(-x)$.
- c) On prend $y = \arctan(x)$ (donc $y \in [-\frac{\pi}{2}; \frac{\pi}{2}]$). D'où $\arctan(\frac{1}{x}) = \arctan(\frac{1}{\tan(y)}) = \arctan(\frac{\cos(y)}{\sin(y)}) = \arctan(\frac{\sin(\frac{\pi}{2}-y)}{\cos(\frac{\pi}{2}-y)}) = \arctan(\frac{\sin(-\frac{\pi}{2}-y)}{\cos(-\frac{\pi}{2}-y)})$. Si x > 0 alors $y \in [0; \frac{\pi}{2}]$ et $\frac{\pi}{2} y \in 0; \frac{\pi}{2}$] donc $\arctan(1/x) + \arctan(x) = \frac{\pi}{2}$. Si x < 0 alors $y \in [-\frac{\pi}{2}; 0]$ et $-\frac{\pi}{2} y \in [-\frac{\pi}{2}; 0]$ donc $\arctan(1/x) + \arctan(x) = -\frac{\pi}{2}$.
- d) La fonction tanh est à valeur dans]-1;1[et x et $\frac{1}{x}$ ne peuvent pas appartenir en même temps à cet ensemble. Donc f(x) n'est définie nulle part.

Exercice 4. étude de x^3

Soit f la fonction définie par $f(x) = x^3$

- a) Montrer que f est strictement croissante. Sa dérivée est-elle strictement positive ?Cette fonction est-elle surjective ?
- b) la fonction réciproque f^{-1} est-elle dérivable?

Solution de l'exercice 4.

- a) Pour montrer que f est strictement croissante, il suffit de séparer les cas x>0 et x<0 puis de regrouper les deux. Sa dérivée s'annule en 0. La fonction est bien sûr surjective.
- La fonction réciproque n'est pas dérivable en particulier car la dérivée de la fonction s'annule.

Exercice 5. Etude d'une fonction

Soit f la fonction définie par $f(x) = \frac{-2}{x+1} + 1$

- a) Donner le domaine de définition et l'image de f
- b) Quels sont les points d'intersection du graphe de f avec les axes de coordonnées?
- c) Quels sont les intervalles de croissance ou de décroissance de f?
- d) Déterminer la fonction réciproque f^{-1} , en précisant son domaine de définition et son image.

Solution de l'exercice 5.

- a) f est définie sur $\mathbb{R} \setminus \{-1\}$ et à valeur dans $\mathbb{R} \setminus \{1\}$
- b) On a f(x) = 0 qui donne x = 1 et f(0) = -1
- c) On a $f'(x) = \frac{2}{(x+1)^2} > 0$ donc f est strictement croissante sur $]-\infty; -1[$ et strictement croissante sur $]-1, +\infty[$
- d) En faisant $y = \frac{-2}{x+1} + 1$, on obtient $x = \frac{1+y}{1-y}$ d'où $f^{-1}(y) = \frac{1+y}{1-y}$ définie sur $\mathbb{R} \setminus \{1\}$ et à valeur dans $\mathbb{R} \setminus \{-1\}$