

DESAFIOS NA CONSTRUÇÃO DE UM SISTEMA DE NAVEGAÇÃO DE ROBÔS AUTÔNOMOS MÓVEIS BASEADO EM VISÃO:

DETECÇÃO DE FECHAMENTO DE LOOP

Alexandra Miguel Raibolt da Silva (raibolt@ime.eb.br)

Sumário

- Introdução
- Conceitos Básicos e Estado da Arte
- A Proposta
- Viabilidade
- Experimentos e Resultados
- Conclusão
- Referências

Introdução

Contextualização

O problema de SLAM

- Pode ser caracterizado pela resolução de tarefas complexas, tais quais:
 - Mapeamento;
 - Localização.

• Estas duas tarefas não podem ser realizadas de formas independentes, isto é, elas atuam de forma complementar.

Introdução Contextualização

Influência da incerteza na localização e mapeamento

Localização sem erros

Localização com erros

Mapeamento sem erros

Mapeamento com erros

Contextualização

Veículos Terrestres Não-Tripulados (VTNTs)

- Aplicações do uso de VTNTs:
 - Defesa;
 - Operações militares;
 - Busca;
 - Resgate e salvamento;
 - Serviços domésticos.

Introdução Contextualização

Odometria Visual + SLAM = VSLAM

- Vantagens VSLAM:
 - Utilização de câmeras;
 - Alternativa barata a sensores e lasers.

- Técnicas para solução de VSLAM:
 - Redes Neurais Convolucionais;
 - Redes Neurais Recorrentes.

Contextualização Introdução

Detecção de Fechamento de Loop

https://www.youtube.com/watch?v=-EQAJOoRqEQ

Caracterização do Problema

Caracterização do Problema

- Técnicas de Aprendizado de Máquina baseadas em Aprendizado Profundo, como por exemplo, Redes Neurais Convolucionais, apesar de serem exploradas em sistemas VSLAM, são pouco exploradas para a tarefa de Detecção de Fechamento de Loop.
- Entretanto, um problema ainda enfrentado ao treinar tais arquiteturas, está relacionado ao poder computacional necessário, onde, torna-se um recurso caro, ou até mesmo indisponível.

Motivação

Motivação

- Buscamos alternativas baratas, robustas e com desempenho computacional eficiente.
- Descartando a utilização de recursos como sensores de distância e lasers, que, comumente são recursos caros e que demandam de um poder computacional alto.

Objetivo

Objetivo

• Integração de um modelo híbrido de arquitetura de Rede Neural Artificial com um sistema de Localização e Mapeamento Simultâneos baseado em visão capaz de solucionar o problema de Detecção de Fechamento de Loop.

Conceitos Básicos e Estado da Arte

Odometria Visual

Câmera Monocular

Câmera Stereo

Câmera Omnidirecional

Câmera RGB-D

Detecção e Descrição de Características

- Um Descritor de Recurso Local ou um Descritor Binário Local exerce a função de encontrar características "interessantes" presentes em uma imagem.
- Não importa como a imagem é modificada (e.g., rotação, escala, redução, expansão, distorção, etc.), sempre encontraremos as mesmas características para esta mesma imagem.

Detecção e Descrição de Características

Detector	Descritor	Rotação	Escala	Brilho	Ponto de Vista
SIFT	SIFT	√	✓	√	✓
SURF	SURF	√	√	√	√
KAZE	KAZE	√	√	Х	Х
-	BRIEF	Х	Х	\checkmark	Х
ORB	ORB	√	Х	√	Х
BRISK	BRISK	√	√	√	✓
-	FREAK	√	√	√	Х
AKAZE	AKAZE	√	✓	Х	X

Detecção e Correspondência de Características

Detecção e Correspondência de Características

Saco de Características Visuais

Redes Neurais Convolucionais

Redes Neurais Recorrentes

Modelo Híbrido de Arquitetura de Rede Neural Artificial

Trabalhos Relacionados

- A eficiência entre descritores pode ser vistas em diversos trabalhos realizado pela comunidade cientifica, onde foram aplicadas diversas análises e avaliações [1], [2], [3], [4].
- Em Dai et al. [5] os autores fornecem um estudo comparativo de três classes distintas de Descritores de Recursos Locais, são eles: recursos artesanais, Redes Neurais Convolucionais treinadas e Redes Neurais Convolucionais pré-treinadas para avaliar sua eficiência para a tarefa de correspondência de pontos-chave em aplicações de Robótica, levando em consideração a capacidade dos descritores em lidarem com alterações condicionais.

Trabalhos Relacionados

Trabalhos Relacionados

- Loo et al. [6] aprimora o mapeamento da Odometria Visual através de uma Rede Neural Convolucional de previsão de profundidade de imagem única.
- Zhang et al. [7] apresenta uma nova abordagem para a solução do problema de detecção de fechamento de loop para sistemas VSLAM baseado em Redes Neurais Convolucionais

Destaque

Descritores de Recursos Locais e Descritores Binários Locais

SLAM baseado em visão

Redes Neurais Convolucionais + Detecção de Fechamento de Loop

A Proposta

A Proposta A Proposta

A Proposta

Viabilidade

Viabilidade

Linguagem de Programação e Bibliotecas

Viabilidade

Kit de Desenvolvimento NVIDIA Jetson Nano

Experimentos e Resultados

- Avaliação de uma abordagem de Saco de Características Visuais extraindo características através de Descritores de Recursos Locais e Descritores Binários Locais no microcomputador Jetson Nano para as tarefas de reconhecimento e classificação em seis conjuntos de dados visuais por meio do classificador Multilayer Perceptron:
 - MNIST, JAFFE, Extended CK+, FEI, CIFAR-10, e FER-2013.

- Descritores de Recursos Locais:
 - SIFT, SURF, and KAZE.
- Descritores Binários Locais:
 - BRIEF, ORB, BRISK, AKAZE, e FREAK.

Etapa de Treinamento

Etapa de Representação de Características					
Algoritmos	Dataset	Conjunto de dados visuais			
		MNIST	Extended CK+	CIFAR-10	FER-2013
SIFT	Treinamento	02:37	01:01	02:59	02:51
SURF		00:49	00:16	00:54	00:25
KAZE		02:59	01:02	02:59	02:52
ORB		00:32	00:17	00:46	00:39
BRISK		-	00:29	00:57	01:00

Etapa de Treinamento

Geração de Vocabulário Visual						
Algoritmos	Dataset	Conjunto de dados visuais				
		MNIST	Extended CK+	CIFAR-10	FER-2013	
SIFT	Treinamento	02:30	00:48	05:14	02:50	
SURF		00:01	00:05	00:03	00:20	
KAZE		01:45	00:39	05:09	04:13	
ORB		02:39	01:46	03:22	02:43	
BRISK		-	00:06	00:00	00:06	

Etapa de Treinamento

Etapa de Representação de Imagem						
Algoritmos	Dataset	Conjunto de dados visuais				
		MNIST	Extended CK+	CIFAR-10	FER-2013	
SIFT	Treinamento	01:04	00:11	00:56	00:33	
SURF		00:13	00:10	00:20	00:29	
KAZE		01:04	00:11	00:56	00:33	
ORB		01:02	00:12	00:55	00:33	
BRISK		_	00:10	00:01	00:19	

Etapa de Teste

Etapa de Representação de Características e Representação de Imagem						
Algoritmos	Dataset	Conjunto de dados visuais				
		MNIST	Extended CK+	CIFAR-10	FER-2013	
SIFT	Teste	00:35	00:04	00:46	00:25	
SURF		00:09	00:01	00:08	00:06	
KAZE		00:39	00:04	00:46	00:25	
ORB		00:16	00:01	00:20	00:09	
BRISK		-	00:02	00:11	00:09	

Avaliação comparativa entre Descritores

Etapa de Teste

Algoritmos	Dataset	Modelo Perceptron Multicamadas						
	Dataset	MLP1	MLP2	MLP3	MLP4	MLP5	MLP6	
BRIEF	FEI	0.78	0.74	0.77	0.76	0.82	0.85	
AKAZE		0.85	0.87	0.83	0.84	0.83	0.86	
FREAK		0.47	0.47	0.47	0.51	0.51	0.54	

Avaliação comparativa entre Descritores

Etapa de Teste

Matriz de Confusão

Rede Neural Convolucional de Descritores

• Foi investigado técnicas e métodos que pudessem ser utilizadas para o desenvolvimento da reformulação de filtros convolucionais de uma arquitetura de Rede Neural Convolucional tradicional através de um Descritor Binário Local, e consequentemente, utilizadas também na implementação da adaptação de Rede Neural Convolucional, apresentando o novo design de camadas para a arquitetura proposta.

- Assim, propomos a reformulação das camadas convolucionais por meio de Descritores Binários Locais.
- Com isto, apresentamos duas novas camadas para arquiteturas profundas: (a) Detecção de Característica Local e (b) Convolução de Descritor Local, como uma alternativa viável e eficiente às camadas convolucionais.

Detecção de Característica Local

- Primeira camada da arquitetura proposta.
- Responsável por executar a (a) detecção de pontos-chave Nl no conjunto de dados de treinamento e, em seguida; (b) os descritores são calculados, portanto, para cada imagem, N pontos-chave serão detectados e para cada ponto-chave, M descritores serão calculados, com isso; (c) é gerando um vetor de características F.

Detecção de Característica Local

Convolução de Descritor Local

- Alternativa à camada convolucional de uma Rede Neural Convolucional tradicional.
- Consiste em (a) reduzir a dimensionalidade por meio do algoritmo Aprendizado de Dicionário aplicado ao vetor de característica gerado pela camada de Detecção de Característica Local anterior, gerando um dicionário esparso D (conjunto de átomos), ou seja, gerando um vetor de características esparso a partir do descritor; (b) seguida por um processo de binarização, neste caso, a função Sinal, transformando a natureza do dicionário esparso D, em binário e esparso sgn(D); (c) seguida ainda, por uma transformação do dicionário esparso, que nada mais é do que a transformação de um vetor de características em uma matriz quadrada, e, finalmente, é definido para o centro de todas as matrizes quadradas, um valor negativo (-1).

Convolução de Descritor Local

Onde, bi são os pesos de descritor, gerados a partir da matriz de transformação de sgn(D).

Comportamento da operação de convolução

0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

Kernel						
0	-1	0				
-1	5	-1				
0	-1	0				

114		

Comportamento da operação de convolução

Experimentos e Resultados

Rede Neural Convolucional de Descritores

Arquitetura básica de Rede Neural Convolucional de Descritores

- Conceitualmente, a DescNet proposta neste trabalho pode ser facilmente implementada em qualquer estrutura de aprendizado profundo existente.
- Como topologia da rede, para estes experimentos, foi utilizado a arquitetura ResNet-152.
- Portanto, a mesma arquitetura utilizada para implementar a Rede Neural Convolucional tradicional serviu como linha de base para a implementação da DescNet.

Resultados no conjunto de dados visuais MNIST

Resultados no conjunto de dados visuais CIFAR-10

Jul unifeso

Comparação com Linha de Base

 A Tabela consolida os resultados obtidos da DescNet de melhor desempenho em comparação com sua linha de base (ResNet-152) correspondente.

Conjunto de	DescNet				I	Linha de Base			
dados visuais	Top-1 Top-25		Parâmetros	Tempo de	Top-1	Top-5	Parâmetros	Tempo de	
	Top-1	10p-25	aprendíveis	Treinamento	10b-1	Tob-9	aprendíveis	Treinamento	
MNIST	56%	90%	50,307,978	01:01:02	67%	89%	58,295,178	02:59:54	
CIFAR-10	23%	65%	50,307,978	05:29:46	38%	77%	58,295,178	07:44:53	

Conclusão

Conclusão

Conclusão

- Experimentos foram realizados para comparar sua eficiência com um modelo de Rede Neural Convolucional tradicional.
- Alcançamos resultados razoáveis sobre a camada convolucional padrão em conjuntos de dados visuais competitivos (MNIST e CIFAR-10) enquanto permite economia no número de parâmetros do modelo e, consequentemente, economia computacional significativa tornando a DescNet um modelo aplicável em ambientes reais com recursos escassos e limitados.
- Nossa abordagem é promissora, onde os métodos propostos possuem o potencial de realizar a tarefa de Detecção de Fechamento de Loop de um sistema VSLAM eficaz e com desempenho eficiente em trabalhos futuros.

Referências

Referências

Referências

- [1] PATEL, Akash et al. Performance analysis of various feature detector and descriptor for real-time video based face tracking. International Journal of Computer Applications, v. 93, n. 1, 2014.
- [2] CHATOUX, Hermine; LECELLIER, François; FERNANDEZ-MALOIGNE, Christine. Comparative study of descriptors with dense key points. In: 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016. p. 1988-1993.
- [3] BAYRAKTAR, Ertuğrul; BOYRAZ, Pinar. Analysis of feature detector and descriptor combinations with a localization experiment for various performance metrics. Turkish Journal of Electrical Engineering and Computer Science, v. 25, n. 3, p. 2444-2454, 2017.
- [4] TAREEN, Shaharyar Ahmed Khan; SALEEM, Zahra. A comparative analysis of sift, surf, kaze, akaze, orb, and brisk. In: 2018 International conference on computing, mathematics and engineering technologies (iCoMET). IEEE, 2018. p. 1-10.

Referências

Referências

- [5] Dai, Z., Huang, X., Chen, W., He, L., & Zhang, H. (2019, May). A Comparison of CNN-Based and Hand-Crafted Keypoint Descriptors. In 2019 International Conference on Robotics and Automation (ICRA) (pp. 2399-2404). IEEE.
- [6] Loo, S. Y., Amiri, A. J., Mashohor, S., Tang, S. H., & Zhang, H. (2019, May). CNN-SVO: Improving the mapping in semi-direct visual odometry using single-image depth prediction. In 2019 International Conference on Robotics and Automation (ICRA) (pp. 5218-5223). IEEE.
- [7] Zhang, X., Su, Y., & Zhu, X. (2017, September). Loop closure detection for visual SLAM systems using convolutional neural network. In 2017 23rd International Conference on Automation and Computing (ICAC) (pp. 1-6). IEEE.

DESAFIOS NA CONSTRUÇÃO DE UM SISTEMA DE NAVEGAÇÃO DE ROBÔS AUTÔNOMOS MÓVEIS BASEADO EM VISÃO:

DETECÇÃO DE FECHAMENTO DE LOOP

Alexandra Miguel Raibolt da Silva (raibolt@ime.eb.br)

OBRIGADA!

