Introduction to Data Science 2019 Assignment 1

François Lauze, Thomas Hamelryck

In Assignment 1 you will work with probability, statistics and hypothesis testing.

Assignment 1 will be made available Tuesday February 5th, 12.00 (noon) and your report should be uploaded to Absalon no later than Monday February 18th 22.00.

Guidelines for the assignment:

- The assignments in IDS must be completed and written individually. This means that your code and report must be written completely by yourself.
- Exercises in blue are coding execises and will be evaluated as such: do provide a working code! Code files must be handed in in a zip file. Some code templates are provided in Absalon, please use them.
- Upload your report as a single PDF file (no Word) named firstname.lastname.pdf.

Does smoking affect your lung capacity?

It is well known that smoking is not good for your health, but how can we quantify this in a statistical way? In this assignment you will work with a dataset consisting of information on the lung function, smoking status and demographics of 654 youth and children aged 3-19. See the Appendix A below for a detiled description of the data material, and see in particular Appendix B below for a description of the so-called FEV1 measure, which quantifies lung function.

While this assignment is not very heavy on implementation, we want nevertheless you to get familiar with Python, numpy and matplotlib.

Exercise 1 (Reading and processing data).

- a) Read the data from the file smoking.txt, and divide the dataset into two groups consisting of smokers and non-smokers. Write a script which computes the average lung function, measured in FEV1, among the smokers and among the non-smokers, using the template meanFEV1.py supplied on Absalon.
- b) Report your computed average FEV1 scores. Are you surprised?

Deliverables. a) Uploaded code and b) the average lung functions and a one-liner.

Exercise 2 (Boxplots). Make a box plot of the FEV1 in the two groups. What do you see? Are you surprised?

Deliverables. Figure with box plot and a one-liner describing what you find.

Exercise 3 (Hypothesis testing). Next we will perform a *hypothesis test* to investigate the difference between the FEV1 level in the two populations *smokers* and *non-smokers*.

- a) Based on the supplied template hyptest.py, write a script that performs a two-sided t-test whose null hypothesis is that the two populations have the same mean. Use a significance level of $\alpha = 0.05$, and return a binary response indicating acceptance or rejection of the null hypothesis.
- b) Report your result and discuss it. Are you surprised?

Deliverables. a) Uploaded code and b) the value of the t-statistic and of the degrees of freedom ν , the returned p-value, whether or not you rejected the hypothesis, and a short discussion of the result.

Confounders

Exercise 4 (Correlation). Make a 2D plot of age versus FEV1. What do you see? Compute the correlation between age and FEV1.

Deliverables. The 2D plot, the correlation, and a one-liner.

Exercise 5 (Histograms). Create a histogram over the age of subjects in each of the two groups *smokers* and *non-smokers*. What do you see? Does this explain your results on lung function in the two groups?

Deliverables. The two histograms, and a couple of lines of discussion.

A The data material

The file smoking.txt, which can be found in Absalon, contains a 654×6 matrix, where each column corresponds to (in the given order):

- age a positive integer (years)
- FEV1 a continuous valued measurement (liter)
- height a continuous valued measurement (inches)
- gender binary (female: 0, male: 1)
- smoking status binary (non-smoker: 0, smoker: 1)
- weight a continuous valued measurement (kg)

This data is collected from 654 youth and children and each row in the matrix can thus be considered as an observation describing one child/youth.

Figure 1: Illustration of a spirometry test.

B Measurement of lung function

Lung function can be measured using a *spirometry* test, where the person blows in to an apparatus as illustrated in Figure 1, and several parameters are computed based on the result. One of these parameters is the *forced expiratory volume in one second* (FEV1), which measures the volume that a person can exhale in the first second of a forceful expiration after a full inspiration. This measure will be used as an indicator of lung function in this assignment. A decrease in FEV1 generally indicates a decrease in lung function.

References

- [1] Y.S. Abu-Mostafa, M. Magdon-Ismail and H.-T. Lin, *Learning from Data. A short course*, AMLBooks.com 2012.
- [2] J. Grus, Datascience from scratch. First principles with Python, O'Reilly 2015.