EE2021 Devices and Circuits

Multi-Stage Amplifier Analysis, Speed up method

Lecture Outline

- PMOS Multi-Stage Amplifier,
- BJT Multi-Stage Amplifier,
- NMOS Multi-Stage Amplifier,

Not all transistors are equally important (serve different roles) in multi-stage amplifier

BJT Equivalent Resistance Summary (Table 1)

Blue: look into collector terminal Red: look into base terminal Green: look into emitter terminal

Conf	r _x	Conf	r _x	Conf	r _x
R_{C} r_{x} R_{E}	$r_{\pi} + (1 + \beta)R_{E}$ $\approx r_{\pi} (1 + g_{m}R_{E})$	R _S R _E	$r_o \left\{ 1 + g_m \left[(r_\pi + R_S) / / R_E \right] \left(\frac{r_\pi}{r_\pi + R_S} \right) \right\}$ $If R_S = 0 and r_\pi << R_E$ $\Rightarrow r_{x,\text{max}} = r_o (\beta + 1)$	r _x E	$\frac{1}{g_m}$
R _s V	$\frac{R_{S} + r_{\pi}}{1 + \beta} / / r_{o}$ $\approx \frac{R_{S}}{1 + \beta} + \frac{1}{g_{m}}$	R _C	$\frac{1}{g_m} \times \frac{r_o + R_C}{r_o + \frac{R_C}{\beta}}$		

MOS Equivalent Resistance Summary (Table 2)

Blue: look into drain terminal

Red: look into gate terminal

Green: look into source terminal

Conf	r _x	Conf	r _x	Conf	r _x
r _x R _E	∞	r _x R _S R _E	$r_o \left[1 + \left(g_m - g_{mb} \right) R_E \right]$	r _x	$\frac{1}{g_m}$
R _s V r _x C	$\frac{1}{g_m - g_{mb}}$	R _C , D	$\frac{1}{g_m - g_{mb}} \times \frac{r_o + R_C}{r_o}$		

BJT Amplifier Configurations (Table 3)

BJT	G_{m}	A_{\vee}
CE	g_{m}	Derive Based on 2-port Network
CB B	$-g_m$	Derive Based on 2-port Network
CC V _i -V _{out}	Too Complex To Be Useful	$\frac{g_m R_L}{1 + g_m R_L}$
CE with Emitter Degeneration	$\frac{g_m}{1+g_m R_E}$	Derive Based on 2-port Network

MOS Amplifier Configurations (Table 4)

MOS	G_{m}	A_{\vee}
CS A	$g_{\it m}$	Derive Based on 2-port Network
CG	$-(g_m - g_{mb})$ Drop g_{mb} if no body effect	Derive Based on 2-port Network
CD V _i -V _{out}	Too Complex To Be Useful	$\frac{g_m R_L}{1 + (g_m - g_{mb}) R_L} \approx \frac{g_m}{g_m - g_{mb}}$ $Drop \ g_{mb} \ if \ no \ body \ effect$
CS with R _E	$\frac{g_m}{1 + (g_m - g_{mb})R_E}$ $Drop \ g_{mb} \ if \ no \ body \ effect$	Derive Based on 2-port Network

Similarity of Circuit AC Analysis to Differentiation

$$\frac{\partial(x^2)}{\partial x} = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - x^2}{\Delta x}$$

$$= 2x$$

$$\frac{\partial(e^x)}{\partial x} = \lim_{\Delta x \to 0} \frac{e^{x + \Delta x} - e^x}{\Delta x}$$

$$= e^x$$

$$\frac{\partial(\sin x)}{\partial x} = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x}$$

$$= \cos x$$

$$f(x) = x^2 + e^x + \sin x$$

$$f'(x) = 2x + e^x + \cos x$$

Find out the derivative directly using differentiation table

Differentiation Table

f(x)	f'(x)
X ⁿ	n∙x ⁿ⁻¹
sin(x)	cos(x)
e ^x	e ^x

Differentiation

- Find derivative for important functions
- Group all these derivatives into a so-called differentiation table
- To derive derivative for more complex function, use the table to write down the individual derivatives directly

AC Analysis of Complicated Circuit

Multi-Stage Amplifier

Why multi-stage?

To modify R_{in}, R_{out} or the overall gain

Steps for Multi-stage Amplifier Analysis

Different from single stage

PMOS Example (DC Analysis)

Remove AC source and load section for DC analysis

 $\begin{array}{l} \text{K}_p = 2\text{mA/V}^2 \\ \text{V}_{\text{THP}} = -1\text{V} \\ \lambda_p = 0.01\text{V}^{\text{-}1} \end{array}$

V_{G,M1}=Gate voltage of M₁ V_{S,M1}=Source voltage of M₁ V_{G,M2}=Gate voltage of M₂ V_{S,M2}=Source voltage of M₂

Identify Source and Load

PMOS Example (DC Analysis)

$$K_p$$
=2mA/V²
 V_{THP} =-1V
 λ_p =0.01V⁻¹

Determine DC biasing

Good approximation, no

calculations

need to go through detailed

$$I_{D,M2} = I_{D,M1} = I_{S,M1} = I_{BIAS} = 1mA$$

Determine AC small signal parameter

$$g_{m,M1} = g_{m,M2} = \sqrt{4K_p I_{D,M1}}$$

= 2.8mA/V

$$g_{mb} \approx -\frac{g_m}{4} = -0.71 \text{mA/V}$$

$$r_i = \infty$$

$$r_{o} = \frac{1}{\lambda_{p} I_{D}} = 100 k\Omega$$

PMOS Example (AC Analysis)

PMOS Example (Identify Single Stage)

 Each single stage amplifier can be replaced with its twoport network equivalent consisting of R_{in}, R_{out} and G_m

PMOS Example (Identify 2-Port Parameters)

 Identify the 2-port network and the corresponding R_{in}, R_{out} and G_m

PMOS Example (Finding R_{in2})

While estimating R_{in2}, we throw away half of the circuit

Combine R_D and R_L in parallel

Table 2

Configurat ion D

$$\Rightarrow R_{in2} = \frac{1}{g_{m,M2} - g_{mb,M2}} \frac{r_{o,M2} + (R_L // R_D)}{r_{o,M2}} \approx \frac{1}{g_{m,M2} - g_{mb,M2}} = 285$$

PMOS Example (Finding R_{out1})

PMOS Example (Finding R_{in1})

Table 2, Configuration A: The resistance looking into the gate of M_1 is ∞

$$\begin{array}{c} \longrightarrow \\ R_{in1} = R_{A1} // R_{A2} \\ = 13.3k \end{array}$$

PMOS Example (Finding Rout2)

PMOS Example (2-Port)

Replace each single stage amplifier with their twoport network equivalent

$$R_{in1} = R_{A1} // R_{A2}$$

$$= 13.3k$$

$$R_{out1} = r_{o,M1} \Big[1 + (g_{m,M1} - g_{mb,M1}) R_{S1} \Big]$$

$$= 135k$$

$$G_{m1} = \frac{g_{m,M1}}{1 + (g_{m,M1} - g_{mb,M1}) R_{S1}}$$

$$= 2.08m$$

$$R_{in2} = \frac{1}{g_{m,M2} - g_{mb,M2}} \frac{r_{o,M2} + R_D // R_L}{r_{o,M2}}$$

$$\approx 285$$

$$R_{out2} = R_D // \{r_{o,M2} [1 + (g_{m,M2} - g_{mb,M2}) R_{out1}] \}$$

$$\approx 2k$$

$$G_{m2} = -(g_{m,M2} - g_{mb,M2})$$

$$= -3.51m$$

PMOS Example (2-Port)

$$V_{1} = V_{s} \times \frac{R_{in1}}{R_{in1} + R_{s}}$$

$$\approx V_{s}$$

$$V_{2} = I_{1} \times (R_{out1} // R_{in2})$$

$$= -G_{m1}V_{1}(R_{out1} // R_{in2})$$

$$\approx -0.59V_{1} \approx -0.59V_{s}$$

$$V_{out} = I_2 \times (R_{out2} // R_L)$$

$$= -G_{m2} V_2 (R_{out2} // R_L)$$

$$\approx 5.86 V_2$$

$$= -3.46 V_s$$

$$A_V = \frac{V_{out}}{V_s} = -3.46$$

PMOS Example (2-Port)

$$A_{V} = \frac{V_{out}}{V_{s}} = \frac{V_{1}}{V_{s}} \times \frac{V_{2}}{V_{1}} \times \frac{V_{out}}{V_{2}}$$

$$= \frac{\left(R_{A1} // R_{A2}\right)}{R_{S} + \left(R_{A1} // R_{A2}\right)} \times \underbrace{\left[-G_{m1}\left(R_{out1} // R_{in2}\right)\right]}_{\text{1st Stage CS with Degeneration}} \underbrace{\left[-G_{m2}\left(R_{out2} // R_{L}\right)\right]}_{\text{2nd Stage CG}}$$

$$= \frac{\left(R_{A1} // R_{A2}\right)}{R_{S} + \left(R_{A1} // R_{A2}\right)} \times \underbrace{\frac{-g_{m,M1}}{1 + \left(g_{m,M1} - g_{mb,M1}\right)} R_{S1}}_{\text{1st Stage CS with Degeneration}} \underbrace{\frac{g_{m,M2} - g_{mb,M2}}{2 \text{nd Stage CG}}}_{\text{2nd Stage CG}}$$

$$= -3.46$$

BJT Example (DC Analysis)

V_{B,Q1}=Base voltage of Q₁ V_{E,Q1}=Emitter voltage of Q₁ V_{B,Q2}=Base voltage of Q₂ V_{C,Q2}=Collector voltage of Q₂

 $I_S = 10^{-15} A$ $\beta = 100$ $V_A = 100 V$

Identify Source and Load

BJT Example (DC Analysis)

 $I_S = 10^{-15} A$ $\beta = 100$ $V_A = 100 V$ The goal of DC analysis is to find the collector current flowing through Q_1 and Q_2 (I_{C1} , I_{C2}). To find the collector current, we can assume $V_{BE,Q1}$ and $V_{BE,Q2}$ equal to 0.7V, and obtain the current through KCL and KVL.

Determine DC Biasing

Determine DC Blasting
$$V_{B,Q1} = \frac{R_{B1}}{R_{A1} + R_{B1}} \times V_{DD} = 2.5V \quad \text{Simple resistor divider}$$

$$V_{E,Q1} = V_{B,Q1} - 0.7 = 1.8V \quad \text{Using the approximation}$$

$$\Rightarrow I_{C,Q1} \approx I_{E,Q1} = \frac{V_{E,Q1}}{R_{E1}} = 500 \, \mu\text{A}$$

$$\Rightarrow I_{B,Q1} = \frac{I_{C,Q1}}{\beta} = 5 \, \mu\text{A}$$

$$V_{B,Q2} = \frac{R_{B2}}{R_{A2} + R_{B2}} \times V_{DD} = 2.5V \quad \text{Simple resistor divider}$$

$$V_{E,Q2} = V_{B,Q2} - 0.7 = 1.8V \quad \text{Using the approximation}$$

$$V_{BE,Q2} = 0.7V$$

$$\Rightarrow I_{C,Q2} \approx I_{E,Q2} = \frac{V_{E,Q2}}{R_{E2}} = 500 \, \mu\text{A}$$

$$\Rightarrow I_{B,Q2} = \frac{I_{C,Q2}}{\beta} = 5 \, \mu\text{A}$$

BJT Example (Small Signal AC Equivalent)

Determine AC small signal parameter

$$\therefore I_{C,Q1} = I_{C,Q2} = 500 \,\mu \quad and \quad V_T = 25mV$$

$$\Rightarrow g_{m,Q1} = g_{m,Q2} = \frac{I_{C,Q1}}{V_T} = 20mA/V$$

$$\Rightarrow r_{\pi,Q1} = r_{\pi,Q2} = \frac{\beta}{g_{m,Q1}} = 5k$$

$$r_{o,Q1} = r_{o,Q2} = \frac{V_A}{I_{C,Q1}} \approx 200k$$

Notice that all AC small signal parameters depend on collector current

Find g_m , r_{π} and r_o

BJT Example (AC Analysis)

BJT Example (Identify Single Stage)

 Each single stage amplifier can be replaced with its twoport network equivalent consists of R_{in}, R_{out} and G_m

BJT Example (Identify 2-Port Parameters)

 Identify the 2-port network and the corresponding R_{in}, R_{out}, G_m, and A_V

BJT Example (Finding R_{in2})

BJT Example (Finding R_{out1})

BJT Example (Finding R_{in1})

BJT Example (Finding Rout2)

BJT Example (Finding $A_{V1} = V_2/V_1$)

Combine Ring and R_{F1} in parallel

Configurat ion
$$\bigcirc$$

$$A_{V1} = \frac{v_2}{v_1} = \frac{g_{m,Q1}(R_{E1} // R_{in2})}{1 + g_{m,Q1}(R_{E1} // R_{in2})}$$
 ≈ 1

BJT Example (2-Port)

Replace each single stage amplifier with their twoport network equivalent

$$R_{in1} = R_{A1} // R_{B1} // \{r_{\pi,Q1} \left[1 + g_{m,Q1} \left(R_{E1} // R_{in2} \right) \right] \}$$

$$= 4.8k$$

$$R_{out1} = R_{E1} // \left[\frac{R_S // R_{A1} // R_{B1}}{\beta + 1} + \frac{1}{g_{m,Q1}} \right]$$

$$= 50$$

$$A_{V1} = \frac{v_2}{v_1} = \frac{g_{m,Q1} \left(R_{E1} // R_{in2} \right)}{1 + g_{m,Q1} \left(R_{E1} // R_{in2} \right)}$$

$$\approx 1$$

$$R_{in2} = R_{A2} // R_{B2} // r_{\pi,Q2}$$

$$= 2.5k$$

$$R_{out2} = R_{C2} // r_{o,Q2}$$

$$\approx 2k$$

$$G_{m2} = g_{m,Q2}$$

$$= 20m$$

BJT Example (2-Port)

$$v_{1} = v_{s} \times \frac{R_{in1}}{R_{in1} + R_{s}}$$

$$\approx v_{s}$$

$$v_{2} = v_{1} \times \frac{g_{m,Q1}(R_{E1} // R_{in2})}{1 + g_{m,Q1}(R_{E1} // R_{in2})}$$

$$\approx v_{1}$$

$$v_{out} = i_2 \times (R_{out2} // R_L)$$

$$= -G_{m2} v_2 (R_{out2} // R_L)$$

$$\approx -33 v_2$$

$$= -33 v_s$$

$$A_V = \frac{v_{out}}{v_s} = -33$$

BJT Example (2-Port)

$$A_{V} = \frac{V_{out}}{V_{s}} = \frac{V_{1}}{V_{s}} \times \frac{V_{2}}{V_{1}} \times \frac{V_{out}}{V_{2}}$$

$$= \frac{R_{in1}}{R_{S} + R_{in1}} \underbrace{A_{V1}}_{1st} \underbrace{CC}_{2nd Stage CE} \underbrace{\left[-G_{m2}(R_{out2} // R_{L})\right]}_{2nd Stage CE}$$

$$= \frac{R_{in1}}{R_{S} + R_{in1}} \underbrace{\frac{g_{m,Q1}(R_{E1} // R_{in2})}{1 + g_{m,Q1}(R_{E1} // R_{in2})}}_{1st Stage CC} \underbrace{\left(-g_{m,Q2}\right)(R_{C2} // r_{o,Q2} // R_{L})}_{2nd Stage CE}$$

$$= -33.33$$

Current Source

Not all transistors are amplifiers

Identify transistors used as current source

Some transistors are used as non-ideal current source

Two Stage Amplifier Example (DC Analysis)

Identify Source and Load

Two Stage Amplifier Example (Current Mirror Biasing)

Determine DC Biasing

$$I_{D,M1A} = K_n \left(V_{GS,M1A} - V_{THN0} \right)^2 \cdot \cdot \cdot \cdot \cdot (1)$$

$$I_{D,M1A} = \frac{V_{DD} - V_{GS,M1A}}{R_{REF}} \cdot \cdot \cdot \cdot \cdot \cdot (2)$$

$$\Rightarrow 6.6V_{GS,M1A}^2 - 13.2V_{GS,M1A} + 6.6 = 5 - V_{GS,M1A}$$

$$\Rightarrow 6.6V_{GS,M1A}^2 - 12.2V_{GS,M1A} + 1.6 = 0$$

$$\Rightarrow V_{GS,M1A} = \frac{-(-12.2) \pm \sqrt{(12.2)^2 - 4(6.6)(1.6)}}{2(6.6)}$$

$$= 1.71 \quad or \quad 0.142$$

$$\because V_{GS,M1A} = 0.142 \Rightarrow M_{1A} \quad turns \quad off$$

$$\Rightarrow V_{GS,M1A} = 1.71$$

$$\Rightarrow I_{D,M1A} = I_{D,M1} = 1mA$$
Similarly
$$I_{D,M2} = I_{D,M3} = I_{D,M3A} = 1mA$$

Two Stage Amplifier Example (Small Signal AC Equivalent)

Notice that all AC small signal parameters depend on drain current

Find g_m , r_{π} and r_o

Determine AC small signal parameters

Slide

6B-55

Two Stage Amplifier Example (AC Analysis)

Two Stage Amplifier Example (Identify Single Stage)

 Each single stage amplifier can be replaced with its twoport network equivalent consists of R_{in}, R_{out} and G_m

Two Stage Amplifier Example (Identify 2-Port Parameters)

 Identify the 2-port network and the corresponding R_{in}, R_{out}, G_m, and A_V

Two Stage Amplifier Example (Finding R_{in2} and R_{in1})

Two Stage Amplifier Example (Finding R_{out1})

Two Stage Amplifier Example (Finding R_{out2})

Two Stage Amplifier Example (Finding $A_{V2}=V_{out}/V_2$)

Table 4

Configurat ion C

$$A_{V2} = \frac{v_{out}}{v_2} = \frac{g_{m,M2}(R_o /\!/ R_L)}{1 + (g_{m,M2} - g_{mb,M2})(R_o /\!/ R_L)}$$

$$\approx 0.78$$

Two Stage Amplifier Example (2-Port)

Replace each single stage amplifier with their twoport network equivalent

$$R_{in1} = R_i = R_{B1} + \left(\frac{1}{g_{m,M1A}} \right)$$

$$= 10.3k$$

$$R_{out1} = R_{C1} // r_{o,M1}$$

$$\approx 2k$$

$$G_{m1} = g_{m,M1}$$

$$= 2.83 mA / V$$

$$R_{in2} = R_{A2} // R_{B2}$$

$$= 50k$$

$$R_{out2} = \frac{1}{g_{m,M2} - g_{mb,M2}} // R_o$$

$$\approx 282$$

$$A_{V2} = \frac{v_{out}}{v_2} = \frac{g_{m,M2} (R_o // R_L)}{1 + (g_{m,M2} - g_{mb,M2})(R_o // R_L)}$$

$$= 0.78$$

Two Stage Amplifier Example (2-Port)

$$v_{1} = v_{s} \times \frac{R_{in1}}{R_{in1} + R_{S}}$$

$$v_{out} = v_{2} \times \frac{g_{m,M2}(R_{o} // R_{L})}{1 + (g_{m,M2} - g_{mb,M2})(R_{o} // R_{L})}$$

$$\approx v_{s}$$

$$v_{2} = i_{1} \times (R_{out1} // R_{in2})$$

$$= -G_{m1}v_{1} \times (R_{out1} // R_{in2})$$

$$\approx -4.2v_{s}$$

$$\approx -4.2v_{s}$$

$$A_{V} = \frac{v_{out}}{v_{s}} = -4.2$$

Two Stage Amplifier Example (2-Port)

$$A_{V} = \frac{V_{out}}{V_{s}} = \frac{V_{1}}{V_{s}} \times \frac{V_{2}}{V_{1}} \times \frac{V_{out}}{V_{2}}$$

$$= \frac{R_{in1}}{R_{s} + R_{in1}} \underbrace{\left[-G_{m1}(R_{out1} // R_{in2})\right]_{2nd \text{ Stage CD}}}_{1\text{st Stage CS}} \underbrace{A_{V2}}_{2nd \text{ Stage CD}}$$

$$= \frac{R_{in1}}{R_{s} + R_{in1}} \underbrace{\left(-g_{m,M1}\right) \left(R_{C1} // R_{in2}\right)}_{1\text{st Stage CS}} \underbrace{g_{m,M2}\left(R_{L} // r_{o,M3}\right)}_{2nd \text{ Stage CD}}$$

$$= -4.2$$

7-50

How about Amplifier Design?

Amplifier Analysis

Determine the overall gain

of amplifier

Amplifier Design

Lecture Summary

- Conceptually explain the analysis of multi-stage amplifier.
- •Multi-stage amplifier analysis for 2-stage PMOS amplifiers.
- •Multi-stage amplifier analysis for 2-stage BJT amplifiers.
- •Multi-stage amplifier analysis for 2-stage NMOS amplifiers.

Reading Assignment

Reading: Reference Book (Sedra & Smith)
 Chapter 6, pp. 666 – 673. (Multi-stage amplifier)

BJT Equivalent Resistance Summary (Table 1)

Blue: look into collector terminal Red: look into base terminal Green: look into emitter terminal

Conf	r _x	Conf	r _x	Conf	r _x
R_{C} r_{x} R_{E}	$r_{\pi} + (1 + \beta)R_{E}$ $\approx r_{\pi} (1 + g_{m}R_{E})$	r _x R _s R _E	$r_{o} \left\{ 1 + g_{m} \left[(r_{\pi} + R_{S}) / / R_{E} \left(\frac{r_{\pi}}{r_{\pi} + R_{S}} \right) \right] \right\}$ $If R_{S} = 0 and r_{\pi} << R_{E}$ $\Rightarrow r_{x, \text{max}} = r_{o} (\beta + 1)$	r _x E	$\frac{1}{g_m}$
R _S W	$\frac{R_{S} + r_{\pi}}{1 + \beta} / / r_{o}$ $\approx \frac{R_{S}}{1 + \beta} + \frac{1}{g_{m}}$	R _C r _x	$\frac{1}{g_m} \times \frac{r_o + R_C}{r_o + \frac{R_C}{\beta}}$		

MOS Equivalent Resistance Summary (Table 2)

Blue: look into drain terminal

Red: look into gate terminal

Green: look into source terminal

Conf	r _x	Conf	r _x	Conf	r _x
r _x R _E	∞	r _x R _s R _E	$r_o \left[1 + \left(g_m - g_{mb} \right) R_E \right]$	r _x	$\frac{1}{g_m}$
R _s V r _x C	$\frac{1}{g_m - g_{mb}}$	R _C	$\frac{1}{g_m - g_{mb}} \times \frac{r_o + R_C}{r_o}$		

BJT Amplifier Configurations (Table 3)

BJT	G_{m}	A_{V}
CE (A)	g_m	Derive Based on 2-port Network
CB B	$-g_m$	Derive Based on 2-port Network
CC V _i -V _{out}	Too Complex To Be Useful	$\frac{g_m R_L}{1 + g_m R_L}$
CE with Emitter Degeneration	$\frac{g_m}{1+g_m R_E}$	Derive Based on 2-port Network

MOS Amplifier Configurations (Table 4)

MOS	G_{m}	A_{\vee}
CS A	$g_{\it m}$	Derive Based on 2-port Network
CG	$-(g_m - g_{mb})$ Drop g_{mb} if no body effect	Derive Based on 2-port Network
CD V _i -V _{out}	Too Complex To Be Useful	$\frac{g_m R_L}{1 + (g_m - g_{mb}) R_L} \approx \frac{g_m}{g_m - g_{mb}}$ $Drop \ g_{mb} \ if \ no \ body \ effect$
CS with R _E	$\frac{g_m}{1 + (g_m - g_{mb})R_E}$ $Drop \ g_{mb} \ if \ no \ body \ effect$	Derive Based on 2-port Network