

WHAT IS CLAIMED IS:

1 1. A method for accessing an anatomic space having a wall with an
2 outer surface, said method comprising:

3 embedding a distal end of an access tube into the outer surface; and
4 introducing an access device through the access tube, penetrating the wall
5 and into the anatomic space while the access tube stabilizes the wall.

1 2. A method as in claim 1, wherein embedding comprises engaging
2 an anchor structure at the distal end of the access tube against the outer surface and
3 deploying the anchor structure into said surface.

1 3. A method as in claim 2, wherein the anchor structure comprises
2 one or more penetrating points.

1 4. A method as in claim 3, wherein the penetrating points are
2 deployed by rotating the access tube about its central axis to cause the penetrating points
3 to penetrate into and capture the wall.

1 5. A method as in claim 4, further comprising drawing the access tube
2 proximally to raise the wall over the anatomic space.

1 6. A method as in claim 1, wherein introducing comprising
2 positioning a needle in the access tube and passing the needle through the wall and into
3 the anatomic space.

1 7. A method as in claim 6, further comprising positioning a guidewire
2 through the needle after said needle has been passed into the anatomic space.

1 8. A method for accessing the pericardial space between the visceral
2 and parietal pericardium, said method comprising:

3 percutaneously positioning a distal end of an access tube over the parietal
4 pericardium;

5 embedding the distal end of the access tube into the parietal pericardium
6 but not into the visceral pericardium;

7 proximally drawing on the access tube to separate the parietal pericardium
8 from the visceral pericardium to enlarge the pericardial space therebetween; and

9 penetrating an access device through the access tube and parietal
10 pericardium and into the pericardial space.

1 9. A method as in claim 8, wherein percutaneously positioning the
2 distal end of the access tube comprises passing the access tube deep to the xiphoid
3 process.

1 10. A method as in claim 8, wherein penetrating comprises positioning
2 a needle in the access tube and passing the needle into the pericardial space.

1 11. A method as in claim 10, further comprising positioning a
2 guidewire through the needle after said needle has been passed into the pericardial space.

1 12. A method as in claim 8 wherein embedding comprises engaging an
2 anchor structure at the distal end of the access tube against the parietal pericardium and
3 deploying the anchor structure into said parietal pericardium.

1 13. A method as in claim 12, wherein the anchor structure comprises
2 one or more penetrating points.

1 14. A method as in claim 13, wherein the penetrating points are
2 deployed by rotating the access tube about the long axis to cause the penetrating points to
3 penetrate into and capture the parietal pericardium.

1 15. A method as in claim 8, further comprising drawing the access tube
2 to separate the parietal pericardium over the pericardial space.

1 16. A system for accessing an anatomic space having a wall with an
2 outer surface, said system comprising:

3 an access tube having a distal end which can be selectively embedded into
4 tissue; and

5 a needle having a lumen therethrough, said needle being configured to pass
6 through the access tube and penetrate into the anatomic space when the access tube is
7 embedded into the anatomic space wall.

1 17. A system as in claim 16, wherein the access tube includes an
2 anchor structure at its distal end.

1 18. A system as in claim 17, wherein the anchor structure comprises
2 one or more penetrating points.

1 19. A system as in claim 18, wherein the penetrating points are
2 inclined so that they penetrate into tissue when the access tube is rotated about its long
3 axis.

1 20. A system as in claim 16, further comprising a guidewire configured
2 to be positioned into the anatomic space through the needle.

1 21. A kit for accessing the pericardial space between the visceral and
2 parietal pericardium, said kit comprising:
3 an access tube having a distal end which can be selectively embedded into
4 tissue; and
5 instructions for use setting forth a method as in claim 1.