BÀI GIẢNG CSHTT

Recommender Systems

Nguyen Van Hieu Information Technology Faculty The University of Danang, University of Science and Technology (UD-UST)

CÁC HTTT

HTTT trong các tổ chức

Mức trên: Hệ thống quản lý tri thức và hệ thống thông tin kinh doanh chuyên ngành . QL chiến lược

Mức giữa: HT thông tin quản lý và Hệ hỗ trợ quyết định. QL chiến thuật
Mức dưới: Thương mại điện tử, thương mại không dây (M-commerce:
Mobile-commerce) và các hệ thống doanh nghiệp. QL chức
năng (tác nghiệp)

• Sự quá tải thông tin (Information overload)

• Sự quá tải thông tin (Information overload)

Vấn đề: Cần hệ thống hỗ trợ ra quyết định(DSS)
 Cần hệ thống gợi ý (RS)

- Sự quá tải thông tin(Information overload)
- Phần thưởng của Netflix là 1 triệu USD, "BellKor's Pragmatic Chaos"
 đã giành chiến thắng hồi năm 2009.
- Thuật toán của nhóm này hiệu quả hơn 10% so với dịch vụ "khuyên dùng" của Netflix

Nguồn: Lester Mackey, 2009

- Tìm hiểu sở thích trong quá khứ của người dùng
- Dự đoán sở thích mới: Bob có thích dâu tây không?

- Giả định : người dung có mối quan hệ "liên quan"
- Ví dụ:
 - Nếu Jack thích A, B, C
 - Nếu John thích A, B
 - Thì khả năng John thích C là rất cao
- Dự đoán sở thích dựa vào
 - Thông tin người dùng
 - Thông tin sản phẩm
 - Thông tin quá khứ,
 - Xếp hạng, số lần kích chuột

Gợi ý bán hàng của Amazon

• Gợi ý giải trí

Gợi ý giải trí

• Gợi ý từ khóa

Gợi ý Bought together

Gợi ý theo Tag

Giới thiệu

- Gợi ý khác
 - Gợi ý theo bình luận (comments)
 - Gợi ý theo sản phẩm mới (new item)
 - Gợi ý theo số lần xem (views)
 - . . .

Mục đích của RS

- Dự vào "Sở thích" của người dùng trong quá khứ, để dự đoán "Sở thích" trong tương lai và thực hiện gợi ý cho người dùng
- Hệ thống gợi ý tùy thuộc vào feedback của người dùng:
 - Xếp hạng * đến *****
 - Thích hoặc không thích
 - Số lần kích chuột
 - Thời gian quan sát sản phẩm

Dữ liệu truyền thống trong RS

•

				111	CITIO		
		1	2		i	***	m
	1	5	3		1	2	
	2		2				4
Users	:			5			
Osers	u	3	4	?	2	1	
	:					4	
	n			3	2		

Items

- $\hat{r}: U \times I \rightarrow R$
- \hat{r}_{ui} : xếp hạng của người dùng u cho sản phẩm i
- Dự đoán các sản phẩm chưa được xếp hạng (các ô trống)
- Sắp xếp theo thứ tự, để gợi ý cho người dùng

Mô hình hóa bài toán

- U: ID người dùng, I ID sản phẩm, R giá trị đánh giá (rating)
- Tập dữ liệu: $D: U \times I \times R$
- Tập dữ liệu huấn luyện: $D^{Train} \subseteq D$
- Tập dữ liệu thử: $D^{Test} \subseteq D$
- <u>Bài toán</u>: cho D^{Train} , tìm $\hat{r}: U \times I \rightarrow R$ (giá trị dự đoán): $\varepsilon(\hat{r},r)$ thỏa mản điều kiện cho trước với $(u,i,r) \in D^{Test}$ $r: U \times I \rightarrow R$
- $oldsymbol{arepsilon}$ là RMSE (root mean squared error) thì $oldsymbol{arepsilon}(\widehat{oldsymbol{r}}\,,oldsymbol{r})$ cần phải tối thiểu.

$$RMSE = \sqrt{\frac{\sum_{(u,i,r) \in \mathcal{D}^{test}} (r - \hat{r}_{(u,i)})^2}{|\mathcal{D}^{test}|}}$$

Dữ liệu ví dụ

Training data

user	Item	rating
1	21	1
1	213	5
2	345	4
2	123	4
2	768	3
3	76	5
4	45	4
5	568	1
5	342	2
5	234	2
6	76	5
6	56	4

Test data

user	Item	rating
1	62	?
1	96	?
2	7	?
2	3	?
3	47	?
3	15	?
4	41	?
4	28	?
5	93	?
5	74	?
6	69	?
6	83	?

- Gợi ý không cá nhân hóa (Non-Personalized Recommendation)
- · Gợi ý cá nhân hóa cho người dùng
 - Lọc cộng tác
 - Lọc nội dung
 - Kết hợp

- Gợi ý không cá nhân hóa: gợi ý sản phẩm
 - Được mua, được xem, được bình luận,... "Nhiều nhất"
 - Mới nhất,
 - Cùng tác giả, cùng nhà sản xuất, cùng thể loại
 - Được mua, được chọn cùng nhau (sử dụng luật kết hợp)

- Gợi ý theo cá nhân hóa cho người dùng:
- Lọc cộng tác
- Cộng tác = sử dụng dữ liệu của người khác
 - Kỷ thuật "Láng giềng" (Neighborhood-based hay Memory-based)
 - Cơ sở người dùng: dựa vào dữ liệu quá khứ của người dùng tương tự
 - Cơ sở sản phẩm: dự vào dữ liệu quá khứ của sản phẩm tương tự
 - Kỷ thuật dự vào mô hình (model based)
 - Matrix factorization

- Gợi ý theo cá nhân hóa cho người dùng:
- Lọc nội dung
 - Kỷ thuật dựa vào hồ sơ (profiles) người dùng
 - Kỷ thuật dựa vào sản phẩm có thuộc tính tương tự đã được người dùng xếp hạng trong quá khứ

Tài liệu

FRANCESCO RICCI
LIOR ROKACH
BRACHA SHAPIRA
PAUL B. KANTOR EDITORS

RECOMMENDER
SYSTEMS
HANDBOOK

∅ Springer

xây dựng hệ thống gợi ý

Hệ thống gợi ý hai chiều

 $\widehat{r}: U \times I \to R$

- U tập người dùng
- I tập sản phẩn
- \widehat{r} hàm xác định độ đo của người dùng u với sản phẩm i

Hệ thống gợi ý hai chiều

- Người dùng u sẽ được giới thiệu sản phẩm l', sao cho sản phẩm l' tương tự sản phẩm i.
- Người dung u' được giới thiệu sản phẩm i, nếu sản phẩm i được đánh giá cao bởi người u, và người u và u' có cùng sở thích
- ❖ Kết hợp

Hệ thống gợi ý đa chiều

•

$$\widehat{r}: U \times I \times C \rightarrow R$$

- U tập người dùng
- I tập sản phẩm
- C tập ngữ cảnh
- \widehat{r} hàm xác định độ đo

Hệ thống gợi ý đa chiều

Users

Age

25

18

27

24

Name

John

Bob

Alice

Mary

101

102

103

104

ld	Name	Cost
2	Item 2	10
3	Item 3	20
5	Item 5	15
7	Item 7	40

Hệ thống gợi ý

- Hướng tiếp cận
 - Đề xuất cải tiến phương pháp gợi ý đa chiều hiện có (khó khăn 😊)
 - Đề xuất can thiệp đơn giản -- > hệ thống mới
- Ý tưởng:
 - Hệ thống gợi ý đa chiều ===> Hệ thống gợi ý 2 chiều
 - Can thiệp xử lý đầu vào
 - Can thiếp xử lý đầu ra
 - Sử dụng phương pháp 2 chiều truyền thống.

Xử lý đầu vào

Xử lý đầu vào(tiếp)

user	item	time	Bạn Đồng hành	Thời tiết	rate
1	2	Cuối tuần	Bạn bè	Trời nắng	4
1	. 5	Cuối tuần	Một mình	Trời âm u	1
1	3	Lễ - tết	Gia đình	Trời trong xanh	5
2	2	Ngày trong tuần	Bạn bè	Trời nắng	2
2	1	Lễ - tết	Gia đình	Trời trong xanh	3
3	5	Lễ - tết	Gia đình	Trời trong xanh	4
3	4	Cuối tuần	Bạn bè	Trời nắng	3
4	3	Lễ - tết	Gia đình	Trời trong xanh	5

Xử lý đầu vào(tiếp)

user	item	time	Bạn Đồng hành	Thời tiết	rate
1	2	Cuối tuần	Bạn bè	Trời nắng	4
1	5	Cuối tuần	Một mình	Trời âm u	1
1	3	Lễ - tết	Gia đình	Trời trong xanh	5
2	2	Ngày trong tuần	Bạn bè	Trời nắng	2
2	1	Lễ - tết	Gia đình	Trời trong xanh	3
3	5	Lễ - tết	Gia đình	Trời trong xanh	4
3	4	Cuối tuần	Bạn bè	Trời nắng	3
4	3	Lễ - tết	Gia đình	Trời trong xanh	5

user	item	rate	
1	3	5	
2	1	3	
3	5	4	
4	3	5	

Xử lý đầu vào(tiếp)

• Sử dụng các phương pháp gợi ý truyền thống cho tập dữ liệu

user	item	rate
1	3	5
2	1	3
3	5	4
4	3	5

Kỷ thuật phân rã ma trận (matrix factorization)

- Cở sở lý luận (Tối ưu hóa bằng Gradient Descent)
- Cho f: $R^n \rightarrow R$, tìm x sao cho f(x) nhỏ nhất
- Ý tưởng:
 - Từ ngẫu nhiên giá trị x_0 qua một bước cập nhật x_1 , có nghĩa là xây dựng $x_{n+1}: f(x_{n+1}) \leqslant f(x_n)$

Kỷ thuật phân rã ma trận (matrix factorization)

- Cở sở lý luận (Tối ưu hóa bằng Gradient Descent)
- Chọn hướng để cập nhật: $-\frac{\partial f}{\partial x}(x_n)$

•
$$x_{n+1} = x_n - \beta \cdot \frac{\partial f}{\partial x}(x_n)$$

Kỷ thuật phân rã ma trận (matrix factorization)

- •Ý tưởng: Chia ma trận X thành W và H: $X \approx W \times H^T$
- W và H có thể xây dựng ma trận X càng chính xác càng tốt

- $W \in \mathbb{R}^{U \times K}$, mỗi dòng (người dùng u) với K nhân tố
- $H \in \mathbb{R}^{K \times I}$, mỗi dòng (sản phẩm i) với K nhân tố

Kỷ thuật phân rã ma trận

Hàm dự đoán

$$\widehat{r_{ui}} = \sum_{k=1}^{K} w_{uk} \times h_{ik}$$

Kỷ thuật phân rã ma trận

- Bản chất: xác định giá trị tham số W và H
- Hàm mục tiêu đạt min

$$O^{MF} = \sum_{u,i \in D^{train}} (r_{ui} - \hat{r}_{ui})^2 = \sum_{u,i \in D^{train}} \left(r_{ui} - \sum_{k=1}^{K} w_{uk} h_{ik} \right)^2$$

 Ý tưởng: Khởi tạo ngẫu nhiên giá trị của W và H, sau mỗi bước cập nhật giá trị, và kết thúc khi đạt giá trị min

Kỷ thuật MF

Xác định tăng hay giảm W và H

$$\frac{\partial}{\partial w_{uk}} O^{MF} = -2(r_{ui} - \hat{r}_{ui}) h_{ik}$$
$$\frac{\partial}{\partial h_{ik}} O^{MF} = -2(r_{ui} - \hat{r}_{ui}) w_{uk}$$

• Cập nhật: $w_{uk}^{new} = w_{uk}^{old} - \beta \cdot \frac{\partial}{\partial w_{uk}} O^{MF} = w_{uk}^{old} + 2\beta \cdot (r_{ui} - \hat{r}_{ui}) h_{ik}$

$$h_{ik}^{new} = h_{ik}^{old} - \beta \cdot \frac{\partial}{\partial h_{ik}} O^{MF} = h_{ik}^{old} + 2\beta \cdot (r_{ui} - \hat{r}_{ui}) w_{uk}$$

Kỷ thuật MF

 $\lambda \in (0..1)$ và $||\cdot||_F$ là chuẩn Frobenius:

Ngăn ngừa học vẹt

$$||\mathbf{W}||_F = \sqrt{\sum_{u=1}^{|U|} \sum_{k=1}^{K} |w_{uk}|^2}$$

$$O^{MF} = \sum_{u,i \in D^{train}} \left(r_{ui} - \sum_{k=1}^{K} w_{uk} h_{ik} \right)^{2} + \lambda \cdot \left(\|W\|_{F}^{2} + \|H\|_{F}^{2} \right)$$

Cập nhật đến khi chập nhận hoặc số lần quy định trước

$$w_{uk}^{new} = w_{uk}^{old} + \beta \cdot \left(2(r_{ui} - \hat{r}_{ui})h_{ik} - \lambda \cdot w_{uk}^{old} \right)$$

$$h_{ik}^{new} = h_{ik}^{old} + \beta \cdot \left(2(r_{ui} - \hat{r}_{ui}) w_{uk} - \lambda \cdot h_{ik}^{old} \right)$$

Kỷ thuật MF

```
1: procedure MATRIXFACTORIZATION(\mathcal{D}^{train}, K, \beta, \lambda, stopping condition)
     // Let W[|U|][K] and H[|I|][K] be latent factors of users and items
     W \leftarrow \mathcal{N}(0, \sigma^2)
      H \leftarrow \mathcal{N}(0, \sigma^2)
 4:
         while (Stopping criterion is NOT met) do
 5:
              Draw randomly (u, i, r) from \mathcal{D}^{train}
              \hat{r} \leftarrow 0
6:
7:
         for k \leftarrow 1, \ldots, K do
8:
                   \hat{r} \leftarrow \hat{r} + W[u][k] \cdot H[i][k]
9:
              end for
               e_{ii} = r - \hat{r}
10:
11:
               for k \leftarrow 1, \dots, K do
                    W[u][k] \leftarrow W[u][k] + \beta \cdot (e_{ui} \cdot H[i][k] - \lambda \cdot W[u][k])
12:
13:
                    H[i][k] \leftarrow H[i][k] + \beta \cdot (e_{ui} \cdot W[u][k] - \lambda \cdot H[i][k])
14:
               end for
15:
          end while
16:
          return {W, H}
17: end procedure
```

Kỷ thuật phân rã ma trận

- Sau khi có kết quả W và H
- Dự đoán thế nào?

Kỷ thuật phân rã ma trận

• Xếp hạng của người dùng u cho sản phẩm i được dự đoán bằng:

$$\hat{r}_{ui} = \mathbf{w} \cdot \mathbf{h}^T = \sum_{k=1}^K w_{uk} h_{ik}$$

• Ví dụ: dự đoán kết quả của người dùng 2 cho sản phẩm 2 là:

Xử lý đầu ra

Xử lý đầu ra (tiếp)

- Nếu không xử lý có kết quả xếp hạng theo thứ tự
- A B C D,....

STT	Tên địa điểm	Khoảng cách(km)	Dự đoán	
1.	A	78.5	4.8	
2.	В	14.3	4.6	
3.	С	110.2	4.5	
4.	D	33.4	4.1	
5.	E	18.7	3.7	
6.	F	2.4	3.5	
7.	G	11.2	3.4	
8.	Н	45.3	3.3	
9.	I	24.5	2.9	
10.	J	62.1	2.6	

Xử lý đầu ra (tiếp)

- R < 20 km, thì kết quả xếp hạng theo thứ tự
- B E F G,....

STT	Tên địa điểm	Khoảng cách(km)	Dự đoán	
1.	A	78.5	4.8	
2.	В	14.3	4.6	
3.	С	110.2	4.5	
4.	D	33.4	4.1	
5.	E	18.7	3.7	
6.	F	2.4	3.5	
7.	G	11.2	3.4	
8.	Н	45.3	3.3	
9.	I	24.5	2.9	
10.	J	62.1	2.6	

Mô hình đề xuất

```
1: procedure ContextAware-MF (D^{Train}, Iter, K, \beta, \lambda)
// W[|U|][K] và H[|I|][K] là 2 tham số cần tìm
2: W := N(0,\sigma^2) //khởi tạo giá trị theo phân phối chuẩn
3: H := N(0,\sigma^2) //khởi tạo giá tri theo phân phối chuẩn
4: D^{TrainC} = Pre-filtering(D^{Train})
5: for (iter:=1; iter \leq Iter * |D^{TrainC}|; iter++)
          Chọn ngẫu nhiên một dòng (u, i, r_{ui}) từ D^{TrainC}
          \hat{r}_{...} := 0
8:
          for (k:=1; k\leq K; k++)
          \hat{r}_{ui} := \hat{r}_{ui} + W[u][k] * H[i][k]
          end for
         e_{ui} = r_{ui} - \hat{r}_{ui}
         for (k:=1; k<=K; k++)
           W[u][k] := W[u][k] + \beta * (e_{ui} * H[i][k] - \lambda * W[u][k])
           H[i][k] := H[i][k] + \beta * (e_{ui} * W[u][k] - \lambda * H[i][k])
14:
15:
          end for
          Break nếu đã hội tụ
16:
17: end for
18: return (W. H)
19: Post-filtering(Tâp kết quả được dự đoán dùng W, H)
```

20: end procedure

- Các tham số:
 - Iter số lần lặp,
 - K số nhân tố tiềm ẩn,
 - B tốc độ học,
 - λ hệ số chính tắc hóa
- Tìm kiếm theo phương pháp siêu tham số

Gợi ý minh họa ứng dụng

- Hệ thống gợi ý địa điểm du lịch tại tp Đà Nẵng
 - Thành viên: họ tên, ngày sinh, giới tính, tên đăng nhập, mật khẩu,...vv
 - Địa điểm du lịch: tên, địa chỉ, hình đại diện, nội dung, chủ đề, lịch sử truy cập,...vv
 - Ngữ cảnh: bạn đồng hành, thời gian, thời tiết, vị trí, khoảng cách, tốc độ mạng,...vv.
 - Đánh giá:

Cải tiến kỷ thuật MF (Biased matrix factorization)

- Cơ sở kỷ thuật phân rã ma trận
- Giá trị trung bình toàn cục :

• Độ lệch của người dùng u:
$$b_u = \frac{\sum_{(u',i,r) \in \mathcal{D}^{train}|u'=u}(r-\mu)}{|\{(u',i,r) \in \mathcal{D}^{train}|u'=u\}|}$$

 $\mu = \frac{\sum_{(u,i,r) \in \mathcal{D}^{train}} r}{|\mathcal{D}^{train}|}$

• Độ lệch của sản phẩm i: $b_i = \frac{\sum_{(u,i',r) \in \mathcal{D}^{train}|i'=i} (r-\mu)}{|\{(u,i',r) \in \mathcal{D}^{train}\}|i'=i|}$

T	Training data		Test data		
user	Item	rating	user	Item	rating
1	21	1	1	62	?
1	213	5	1	96	?
2	345	4	2	7	7
2	123	4	2	3	?
2	768	3	3	47	?
3	76	5	3	15	2
4	45	4	4	41	2
5	568	1	4	28	?
5	342	2	5	93	7
5	234	2	5	74	7
6	76	5	6	69	9
6	56	4	6	83	2

Cải tiến kỷ thuật MF (Biased matrix factorization)

Hàm dự đoán

$$\hat{r}_{ui} = \mu + b_u + b_i + \sum_{k=1}^K w_{uk} h_{ik}$$

Cải tiến MF

- 1. Procedure: ResultPrediction_BMF(D^{train} , K, β , λ , stopping condition)
- Let $s \in S$ be a student, $i \in I$ a item, $p \in P$ a score
- Let W[S][K] and H[I][K] be latent factors of

students and tasks

Let $b_s[S]$ and $b_i[I]$ be students-bias and task-bias

$$2. \quad \mu \leftarrow \frac{\sum_{p \in D^{train}} p}{\left| D^{train} \right|}$$

- 3. for each student s do
- 4. $b_s[s] \leftarrow \frac{\sum_i (p_{si} \mu)}{|D_s^{train}|}$
- end for
- 6. for each task i do

7.
$$b_i[I] \leftarrow \frac{\sum_{u} (p_{si} - \mu)}{|D_i^{train}|}$$

8. end for

- 9. $W \leftarrow N(0, \sigma^2)$
- 10. $H \leftarrow N(0, \sigma^2)$
- 11. while (Stopping criterion is NOT met) do
- 12. Draw randomly (s, i, p_{si}) from D^{train}
- 13. $\hat{\rho}_{si} \leftarrow \mu + b_s[s] + b_i[i] + \sum_{k}^{K} (W[s][k] * H[i][k])$
- $14. \quad e_{si} = p_{si} \hat{p}_{si}$
- 15. $\mu \leftarrow \mu + \beta * e_{si}$
- 16. $b_s[s] \leftarrow b_s[s] + \beta * (e_{si} \lambda * b_s[s])$
- 17. $b_i[i] \leftarrow b_i[i] + \beta * (e_{si} \lambda * b_i[i])$
- 18. for $k \leftarrow 1, ..., K$ do
- 19. $W[s][k] \leftarrow W[s][k] + \beta * (2e_{si} * H[i][k] \lambda * W[s][k])$
- 20. $H[i][k] \leftarrow H[i][k] + \beta * (2e_{si} * W[s][k] \lambda * H[i][k])$
- 21. end for
- 22. end while
- 23. return $\{W, H, b_s, b_i, \mu\}$
- 24. end procedure.

Kỷ thuật láng giềng

- Ý tưởng của Lọc cộng tác: "người tương tự" có thể thích "sản phẩm tương tự" hoặc ngược lại
- Xác định "mối tương quan" giữa các người dùng và các sản phẩm

Picture from https://class.coursera.org/recsys-001/lecture

Kỷ thuật láng giềng (cơ sở người dùng)

- Sử dụng "sự tương tự người dùng"
- Đô đo tương đồng của 2 người dùng
 - Cosine

$$sim_{cosine}(u, u') = \frac{\sum_{i \in I_{uu'}} r_{ui} \cdot r_{u'i}}{\sqrt{\sum_{i \in I_{uu'}} r_{ui}^2} \sqrt{\sum_{i \in I_{uu'}} r_{u'i}^2}}$$

Pearson

$$sim_{pearson}(u, u') = \frac{\sum_{i \in I_{uu'}} (r_{ui} - \bar{r}_{u})(r_{u'i} - \bar{r}_{u'})}{\sqrt{\sum_{i \in I_{uu'}} (r_{ui} - \bar{r}_{u})^{2} \sum_{i \in I_{uu'}} (r_{u'i} - \bar{r}_{u'})^{2}}}$$

Kỷ thuật mô hình láng giềng (tiếp)

- Hàm dự đoán
 - Tổng

$$\hat{r}_{ui} = \frac{\sum_{u' \in K_u} sim(u, u') \cdot r_{u'i}}{\sum_{u' \in K_u} |sim(u, u')|}$$

• Độ lệch

$$\hat{r}_{ui} = \bar{r}_{u} + \frac{\sum_{u' \in K_{u}} sim(u, u') \cdot (r_{u'i} - \bar{r}_{u'})}{\sum_{u' \in K_{u}} |sim(u, u')|}$$

Recommendation tasks: Example

Rating prediction from explicit feedback

How would Steve rate the Titanic movie?

-	Titanic	Pulp Fiction	Iron Man	Forrest Gump	The Mummy
Joe	1	4	5		3
Ann	5	1		5	2
Mary	4	1	2	5	
Steve	?	3	4		4

Item recommendation from implicit feedback

Which movie(s) Steve would like to see/buy?

	Titanic	Pulp Fiction	Iron Man	Forrest Gump	The Mummy
Joe	1	1	1		1
Ann	1	1		1	1
Mary	1	1	1	1	
Steve	?	1	1	?	1

User similarity: Example

Cosine similarity:

sim(u, u')	Joe	Ann	Mary	Steve
Joe	1.0	0.283	0.372	0.962
Ann	-	1.0	0.915	0.232
Mary	1 22	- 19 <u>00</u>	1.0	0.254
Steve	1000	2000		1.0

Pearson similarity:

sim(u, u')	Joe	Ann	Mary	Steve
Joe	1.0	-0.716	-0.762	-0.005
Ann	_	1.0	0.972	0.565
Mary	-	() - 22	1.0	0.6
Steve	_	-	_	1.0

Prediction using 2 most similar users: Example

rating prediction using 2 most similar users:

▶ U_{Titanic} = {Joe, Ann, Mary},

$$K_{Steve,2}^{Titanic} = \{Mary, Ann\}$$

►
$$\bar{r}_{Steve} = \frac{11}{3} = 3.67$$
 $\bar{r}_{Mary} = \frac{12}{4} = 3$ $\bar{r}_{Ann} = \frac{13}{4} = 3.25$

$$\bar{r}_{Mary} = \frac{12}{4} = 3$$

$$\bar{r}_{Ann} = \frac{13}{4} = 3.25$$

Using Pearson sim:

$$\hat{r}_{ST} = \bar{r}_S + \frac{sim(S,M) \cdot (r_{MT} - \bar{r}_M) + sim(S,A) \cdot (r_{AT} - \bar{r}_A)}{|sim(S,M)| + |sim(S,A)|} = 3.67 + \frac{0.6 \cdot (4-3) + 0.565 \cdot (5-3.25)}{0.6 + 0.565} = 1.36$$

Mô hình láng giềng(tiếp)

```
1: procedure USERKNN-CF (\bar{r}_u, r,D^{train})
2: for u=1 to N do
     Tính Sim_uu'
4: end for
5: Sort Sim_uu'
6: for k=1 to K do
7: K_u \leftarrow k
8: end for
9: for i = 1 to M do
10: Tính \widehat{r_{uu}}
11: end for
```

12: end procedure

- Ưu điểm
 - Tính toán đơn giản
 - Có độ chính xác cao
- Nhược điểm
 - Vấn đề người dùng mới
 - Vấn đề sản phẩm mới
- Cách khắc phục
 - Kết hợp lọc cộng tác và lọc dựa trên một số thuộc tính của người dùng
 - Bổ sung thông tin về sản phẩm mới "NEW"

Kỷ thuật láng giềng (cơ sở sản phẩm)

Kỷ thuật láng giềng (tiếp)

- Đô đo tương đồng
 - Cosine

$$sim_{cosine}(i, i') = \frac{\sum_{u \in U_{ii'}} r_{ui} r_{ui'}}{\sqrt{\sum_{u \in U_{ii'}} r_{ui}^2} \cdot \sqrt{\sum_{u \in U_{ii'}} r_{ui'}^2}}$$

Pearson

$$sim_{pearson}(i, i') = \frac{\sum_{u \in U_{ii'}} (r_{ui} - \bar{r}_i)(r_{ui'} - \bar{r}_{i'})}{\sqrt{\sum_{u \in U_{ii'}} (r_{ui} - \bar{r}_i)^2} \cdot \sqrt{\sum_{u \in U_{ii'}} (r_{ui'} - \bar{r}_{i'})^2}}$$

Kỷ thuật láng giềng (tiếp)

- Hàm dự đoán
 - Tổng

$$\hat{r}_{ui} = \frac{\sum_{i' \in K_i} sim(i, i') \cdot r_{ui'}}{\sum_{i' \in K_i} |sim(i, i')|}$$

• Độ lệch

$$\hat{r}_{ui} = \bar{r}_i + \frac{\sum_{i' \in K_i} sim(i, i') \cdot (r_{ui'} - \bar{r}_{i'})}{\sum_{i' \in K_i} |sim(i, i')|}$$

Recommendation tasks: Example

Rating prediction from explicit feedback

How would Steve rate the Titanic movie?

-	Titanic	Pulp Fiction	Iron Man	Forrest Gump	The Mummy
Joe	1	4	5		3
Ann	5	1		5	2
Mary	4	1	2	5	
Steve	?	3	4		4

Item recommendation from implicit feedback

Which movie(s) Steve would like to see/buy?

	Titanic	Pulp Fiction	Iron Man	Forrest Gump	The Mummy
Joe	1	1	1		1
Ann	1	1		1	1
Mary	1	1	1	1	
Steve	?	1	1	?	1

User similarity: Example

Cosine similarity:

sim(u, u')	Joe	Ann	Mary	Steve
Joe	1.0	0.283	0.372	0.962
Ann	-	1.0	0.915	0.232
Mary	1 22	- 19 <u>00</u>	1.0	0.254
Steve	1000	2000		1.0

Pearson similarity:

sim(u, u')	Joe	Ann	Mary	Steve
Joe	1.0	-0.716	-0.762	-0.005
Ann	_	1.0	0.972	0.565
Mary	-	() - 22	1.0	0.6
Steve	_	-	_	1.0

Item similarity: Example

Cosine similarity:

sim(i, i')	Titanic	Pulp Fiction	Iron Man	Forrest Gump	The Mummy
Titanic	1.0	0.386	0.299	0.982	0.372
Pulp Fiction	11-	1.0	0.975	0.272	0.929
Iron Man	90.00	10 -	1.0	0.211	0.858
Forrest Gump		_	<u> </u>	1.0	263
The Mummy	_	_	_	_	1.0

Pearson similarity:

sim(i, i')	Titanic	Pulp Fiction	Iron Man	Forrest Gump	The Mummy
Titanic	1.0	-0.956	-0.815	NaN	-0.581
Pulp Fiction	8-	1.0	0.948	NaN	0.621
Iron Man	_	_	1.0	NaN	0.243
Forrest Gump		-	-	1.0	NaN
The Mummy	_	_	_	_	1.0

NaN values are usually converted to zero, such cases should be rare in case of enough data

Prediction using 2 most similar items: Example

► $I_{\underline{S}teve} = \{\underline{P}ulp\ Fiction, \underline{I}ron\ Man, The\ \underline{M}ummy\}$

$$K_{\underline{\underline{I}itanic},2}^{Steve} = \{\underline{\underline{I}ron\ Man}, \underline{\underline{T}he\ \underline{\underline{M}ummy}}\}$$

$$ightharpoonup \overline{r}_T = \frac{10}{3} = 3.34, \qquad \overline{r}_I = \frac{11}{3} = 3.67, \qquad \overline{r}_M = \frac{9}{3} = 3$$

Using Pearson sim:

$$\hat{r}_{ST} = \bar{r}_T + \frac{sim(T,I) \cdot (r_{SI} - \bar{r}_I) + sim(T,M) \cdot (r_{SM} - \bar{r}_M)}{|sim(T,I)| + |sim(T,M)|} = 3.34 + \frac{-.815 \cdot (4 - 3.67) - .581 \cdot (4 - 3)}{0.815 + 0.581} = 2.73$$

Prediction using 2 most similar users: Example

rating prediction using 2 most similar users:

▶ U_{Titanic} = {Joe, Ann, Mary},

$$K_{Steve,2}^{Titanic} = \{Mary, Ann\}$$

►
$$\bar{r}_{Steve} = \frac{11}{3} = 3.67$$
 $\bar{r}_{Mary} = \frac{12}{4} = 3$ $\bar{r}_{Ann} = \frac{13}{4} = 3.25$

$$\bar{r}_{Mary} = \frac{12}{4} = 3$$

$$\bar{r}_{Ann} = \frac{13}{4} = 3.25$$

Using Pearson sim:

$$\hat{r}_{ST} = \bar{r}_S + \frac{sim(S,M) \cdot (r_{MT} - \bar{r}_M) + sim(S,A) \cdot (r_{AT} - \bar{r}_A)}{|sim(S,M)| + |sim(S,A)|} = 3.67 + \frac{0.6 \cdot (4-3) + 0.565 \cdot (5-3.25)}{0.6 + 0.565} = 1.36$$

Phương pháp dự đoán cơ sở

- Baseline : dung để kiểm tra
- Giải thuật đề xuất tốt hơn bao nhiêu
- Mục đích chính là kiểm tra chứ không phải so sánh
- Baseline thông dụng:
 - Trung bình toàn cục
 - Trung bình người dung
 - Trung bình sản phẩm
 - Phương pháp dự đoán cơ sở (baseline predictor)

Dự đoán toàn cục

• Hàm dự đoán

$$\hat{r}_{ui} = \mu = \frac{\sum_{(u,i,r) \in \mathcal{D}^{train}} r}{|\mathcal{D}^{train}|}$$

Training data

user	Item	rating
1	21	1
1	213	5
2	345	4
2	123	4
2	768	3
3	76	5
4	45	4
5	568	1
5	342	2
5	234	2
6	76	5
6	56	4

Test data

user	Item	rating
1	62	?
1	96	?
2	7	?
2	3	?
3	47	?
3	15	?
4	41	?
4	28	?
5	93	?
5	74	?
6	69	?
6	83	?

Trung bình người dùng

• Hàm dự đoán

$$\hat{r}_{ui} = \frac{\sum_{(u',i,r) \in \mathcal{D}^{train} | u' = u} r}{|\{(u',i,r) \in \mathcal{D}^{train} | u' = u\}|}$$

Training data

user	Item	rating
1	21	1
1	213	5
2	345	4
2	123	4
2	768	3
3	76	5
4	45	4
5	568	1
5	342	2
5	234	2
6	76	5
6	56	4

Test data

user	Item	rating
1	62	?
1	96	?
2	7	?
2	3	?
3	47	?
3	15	?
4	41	?
4	28	?
5	93	?
5	74	?
6	69	?
6	83	?

Trung bình sản phẩm

• Hàm dự đoán

$$\hat{r}_{ui} = \frac{\sum_{(u,i',r) \in \mathcal{D}^{train}|i'=i} r}{|\{(u,i',r) \in \mathcal{D}^{train}|i'=i\}|}$$

Training data

usei	ILEIII	Tatilig
1	21	1
1	213	5
2	345	4
2	123	4
2	768	3
3	76	5
4	45	4
5	568	1
5	342	2
5	234	2
6	76	5

Test data

user	Item	rating
1	62	?
1	96	?
2	7	?
2	3	?
3	47	?
3	15	?
4	41	?
4	28	?
5	93	?
5	74	?
6	69	?
6	83	?

Phương pháp dự đoán cơ sở (baseline predictor)

• Hàm dự đoán

$$\hat{r}_{ui} = \mu + b_u + b_i$$

$$\mu = \frac{\sum_{(u,i,r) \in \mathcal{D}^{train}} r}{|\mathcal{D}^{train}|}$$

$$b_{u} = \frac{\sum_{(u',i,r) \in \mathcal{D}^{train}|u'=u} (r - \mu)}{|\{(u',i,r) \in \mathcal{D}^{train}|u'=u\}|}$$

$$b_i = \frac{\sum_{(u,i',r) \in \mathcal{D}^{train}|i'=i} (r - \mu)}{|\{(u,i',r) \in \mathcal{D}^{train}\}|i'=i|}$$