- ✅ 做大事,要成功,三个条件:
 - ø backbone! backbone! backbone!
 - ❷ 相当于特征提取模块,无论啥任务都需要它!

- ∅ 蒋先生告诉浩南的道理,也是深度学习告诉我们的。。。
- ❷ EfficientNet可以说是当下武林比较强悍的backbone!

- ✓ 这效果有点碾压:

 - ❷ 这事也就谷歌爸爸能干出来
 - ❷ 给我们提供了新─代的backbone! 74

❤ 整体感觉:

- ❷ 给了我们─代神器,拿来主义就好!直接用就可以,各种任务往里套!
- ♂ 很难解释为什么是这样的组合,每一个参数的设计,调出来的参数!
- ❷ 能在人家基础上基础延伸吗?好像挺难的,这个事一般人还真整不了!
- 用就得了,根据对速度和精度等指标的要求选择对应版本即可!

✓ 出发点:

❷ 网络的特征图个数,层数,输入分辨率都会对结果产生影响

✓ 出发点:

❷ 单独提升这些指标,都能使得效果有所提升,但是会遇到瓶颈 (FLOPS:例如卷积计算量=H*W*K*K*M*N,HW为输出长宽,K是卷积核大小 M为输入特征图的通道数,N为卷积核个数)

❤ 出发点:

❷ 综合提升这些指标,用参数搜索的方法(谷歌爸爸专属)来得出结果

✓ 基本网络架构:

Stage i	Operator $\hat{\mathcal{F}}_i$	Resolution $\hat{H}_i \times \hat{W}_i$	#Channels \hat{C}_i	\hat{L}_i
1	Conv3x3	224×224	32	1
2	MBConv1, k3x3	112×112	16	1
3	MBConv6, k3x3	112×112	24	2
4	MBConv6, k5x5	56×56	40	2
5	MBConv6, k3x3	28×28	80	3
6	MBConv6, k5x5	14×14	112	3
7	MBConv6, k5x5	14×14	192	4
8	MBConv6, k3x3	7×7	320	1
9	Conv1x1 & Pooling & FC	7×7	1280	1

✓ SE模块:

♂ 对每个特征图计算其权重 (注意力机制)

✅ 计算流程:

```
def efficientnet_params(model name):
""" Map EfficientNet model name to parameter coefficients.
params dict = {
    # Coefficients: width, depth, res, dropout
    'efficientnet-b0': (1.0, 1.0, 224, 0.2),
    'efficientnet-b1': (1.0, 1.1, 240, 0.2),
    'efficientnet-b2': (1.1, 1.2, 260, 0.3),
    'efficientnet-b3': (1.2, 1.4, 300, 0.3),
    'efficientnet-b4': (1.4, 1.8, 380, 0.4),
    'efficientnet-b5': (1.6, 2.2, 456, 0.4),
    'efficientnet-b6': (1.8, 2.6, 528, 0.5),
    'efficientnet-b7': (2.0, 3.1, 600, 0.5),
    'efficientnet-b8': (2.2, 3.6, 672, 0.5),
    'efficientnet-12': (4.3, 5.3, 800, 0.5),
return params_dict[model_name]
```


- ∅ 对比了一些传统算法,效果还是可以的
- Ø 同样是多个版本,跟backbone类似
- Ø 相同重量级的优势比较明显

✓ FPN层:

❷ 现在你说啥领域能不提及特征融合呢? 检测方法也是一样的:

✓ BiFPN:

♂ 可以重复多次,基础结构就是虚线框,堆叠多少次可以选择

✓ BiFPN:

	Input	Backbone Network	BiFPN		Box/class
	size R_{input}		#channels W_{bifpn}	#layers D_{bifpn}	#layers D_{class}
$D0 (\phi = 0)$	512	B0	64	3	3
D1 ($\phi = 1$)	640	B1	88	4	3
D2 ($\phi = 2$)	768	B2	112	5	3
D3 ($\phi = 3$)	896	B3	160	6	4
D4 ($\phi = 4$)	1024	B4	224	7	4
D5 ($\phi = 5$)	1280	B5	288	7	4
$D6 (\phi = 6)$	1280	B6	384	8	5
D7 ($\phi = 7$)	1536	B6	384	8	5
D7x	1536	B7	384	8	5