PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2003278536 A

(43) Date of publication of application: 02.10.03

(51) Int. CI

F01N 3/28

F01N 3/02

F01N 3/08

F01N 3/20

F01N 3/24

F01N 3/36

F02D 45/00

(21) Application number: 2002078524

(71) Applicant:

TOYOTA MOTOR CORP

(22) Date of filing: 19.03.02

(72) Inventor:

KOBAYASHI MASAAKI MATSUSHITA SOICHI

OKI HISASHI HAYASHI KOTARO

(54) EXHAUST EMISSION CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE

(57) Abstract:

PROBLEM TO BE SOLVED: To prevent lowering in the purifying performance of a particulate filter, in an exhaust emission control device for an internal combustion engine equipped with the particulate filter supported by an NOx occluded agent.

SOLUTION: In this exhaust emission control device for the internal combustion engine equipped with the particulate filter supported by the NOx occluded agent, a pre-catalyst wherein an oxidation catalyst 212 is supported on a supporting layer 211 made from titania or silica is disposed upstream from the particulate filter. Clogging of the particulate filter is prevented, while SOx poisoning of the pre-catalyst is also prevented.

COPYRIGHT: (C)2004,JPO

211 212

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1]An exhaust emission control device of an internal-combustion engine characterized by comprising the following. An introduction catalyst with which an oxidation catalyst was supported by supporting layer who is provided in a flueway of an internal-combustion engine and consists of a titania or silica.

A particulate filter in which it was provided in a downstream flueway from said introduction catalyst, and a NO_x occlusion agent was supported.

[Claim 2]An exhaust emission control device of the internal-combustion engine according to claim 1 having further a reducing agent supply device which supplies a reducing agent into an upstream flueway from said introduction catalyst. [Claim 3]An exhaust emission control device of the internal-combustion engine according to claim 2 when said reducing agent supply device recovers poisoning of said particulate filter, wherein it performs reducing agent supply that a rise in heat of said introduction catalyst should be controlled.

[Translation done.]

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention]Especially this invention relates to the structure of the catalyst arranged at the exhaust system of an internal-combustion engine about the exhaust-air-purification art of an internal-combustion engine.

[0002]

[Description of the Prior Art]In recent years, improvement in exhaust emission is demanded from the internal-combustion engine carried in vehicles etc. In addition to the nitrogen oxides (NO_x) contained during exhaust air, especially the diesel engine that uses gas oil as fuel requires the art which purifies particles (PM:Particulate Matter), such as soot and SOF (Soluble Organic Fraction).

[0003]By the former, to such a demand, for example like the exhaust emission control device of the internal-combustion engine indicated to JP,6-159037,A, When the oxygen density of exhaust air is high, occlusion of the nitrogen oxides (NO_x) under exhaust air is carried out, The art which arranges the particulate filter in which the NO_x occlusion agent which carries out reduction purifying was supported to the flueway of an internal-combustion engine is proposed emitting the nitrogen oxides (NO_x) which were carrying out occlusion, when the oxygen density of exhaust air falls and a reducing agent exists.

[0004]

[Problem(s) to be Solved by the Invention]By the way, in the exhaust emission control device of the conventional internal-combustion engine mentioned above. Since the soot under exhaust air, etc. will be adsorbed and accumulated via SOF in said upstream end face if SOF contained during exhaust air is caught in the upstream end face of a particulate filter, it becomes easy to generate plugging in the upstream end face of a particulate filter.

[0005]On the other hand, how to control generating of plugging in the upstream end face of a particulate filter can be considered by arranging the catalyst (an introduction catalyst is called hereafter) which can purify SOF to an upstream flueway from the particulate filter in which the NO_x occlusion agent was supported.

[0006]However, if poisoning of the introduction catalyst may be carried out with a sulfur oxide (SO_x) and poisoning dissolution processing of an introduction catalyst is performed in the above-mentioned method in such a case, Poisoning of the particulate filter may be carelessly carried out with the sulfur oxide (SO_x) emitted from the introduction catalyst.

[0007] This invention is made in view of the various actual condition which was described above, and an object of this invention is to provide the art in which the fall of the cleaning capacity of a particulate filter can be prevented in the exhaust emission control device of the internal-combustion engine provided with the particulate filter in which the NO_X occlusion agent was supported.

[8000]

[Means for Solving the Problem]The following means were used for this invention in order to solve a technical problem which was described above. Namely, an exhaust emission control device of an internal-combustion engine concerning this invention, It is provided in a flueway of an internal-combustion engine, is provided in a downstream flueway from an introduction catalyst with which an oxidation catalyst was supported by supporting layer who consists of a titania or silica, and said introduction catalyst, and is characterized by having a particulate filter in which a NO_x occlusion agent was supported.

[0009]While this invention arranges an introduction catalyst which has an oxidation function upstream of a particulate filter in which a NO_x occlusion agent was supported, It is characterized [greatest] by a sulfur oxide (SO_x) constituting a supporting layer of an introduction catalyst from a titania (TiO_2) or silica (SiO_2) by which occlusion cannot be carried out

easily.

[0010]In an exhaust emission control device of this internal-combustion engine, since SOF contained during exhaust air in an introduction catalyst is oxidized and purified, it is lost that SOF adheres to the upstream end face of a particulate filter. As a result, in the upstream end face of a particulate filter, particles (PM:Particulate Matter), such as soot contained during exhaust air, are not accumulated.

[0011]Since a sulfur oxide (SO_x) comprises a titania (TiO_2) or silica (SiO_2) by which occlusion cannot be carried out easily, a supporting layer of an introduction catalyst loses that his poisoning (SO_x) poisoning is carried out with a sulfur oxide (SO_x) which an introduction catalyst is exhausting. As a result, SO_x poisoning of a particulate filter which it becomes unnecessary to have performed poisoning dissolution processing of an introduction catalyst, and originated in poisoning dissolution processing of an introduction catalyst is prevented.

[0012]It may be made for an exhaust emission control device of an internal-combustion engine concerning this invention to be further provided with a reducing agent supply device which supplies a reducing agent into an upstream flueway from an introduction catalyst.

[0013]In this case, a reducing agent supply device supplies a reducing agent into an upstream flueway from an introduction catalyst, for example, when recovering poisoning of a particulate filter. As poisoning of a particulate filter here, poisoning by a sulfur oxide (SO_x) , poisoning by particles (PM:Particulate Matter), etc. can be illustrated.

[0014]With exhaust air which has flowed from the upper stream of a flueway, a reducing agent supplied into a flueway from a reducing agent supply device flows into an introduction catalyst, and it will flow into a particulate filter continuously. [0015]Since heat of an introduction catalyst will be taken by reducing agent if a reducing agent flows into an introduction catalyst, a rise in heat of an introduction catalyst is prevented. Although a titania (TiO₂) and silica (SiO₂) which constitute a supporting layer of an introduction catalyst are put to an elevated temperature, grain growth may be carried out here and sintering of an oxidation catalyst may be induced, When a rise in heat of an introduction catalyst is prevented by supply of a reducing agent which was described above, sintering of an oxidation catalyst will be prevented according to it. [0016]Some reducing agents which flowed into an introduction catalyst react within this introduction catalyst, and evaporation and in order to carry out a pyrolysis, it becomes easy to mix a reducing agent and exhaust air homogeneously. As a result, gas which flows out of an introduction catalyst and which exhausts, and in other words flows into a particulate filter, Since a reducing agent and exhaust air serve as gas mixed homogeneously, a reducing agent comes to spread round the wide range of a particulate filter uniformly, with reproduction of particulate collection capability or dissolution of SO_x poisoning can be performed suitably.

[0017]

[Embodiment of the Invention]Hereafter, the concrete embodiment of the exhaust emission control device of the internal-combustion engine concerning this invention is described based on a drawing.

[0018] <u>Drawing 1</u> is a figure showing the outline composition of the internal-combustion engine which applies this invention, and its pumping system. The internal-combustion engine 1 which shows <u>drawing 1</u> is 4 stroke cycle diesel engine of the water cooling type which uses gas oil as fuel.

[0019]The internal-combustion engine 1 possesses four cylinders from the No. 1 (#1) cylinder 2 to the No. 4 (#4) cylinder 2. The fuel injection valve 3 which injects fuel directly is formed in the combustion chamber of each cylinder 2 at each of the four above mentioned cylinders 2. Each fuel injection valve 3 is connected with the accumulator (common rail) 4 which accumulates fuel to predetermined pressure. The common-rail-pressure sensor 4a which outputs the electrical signal corresponding to the pressure of the fuel in this common rail 4 is attached to the common rail 4.

[0020]Said common rail 4 is open for free passage with the fuel pump 6 via the fuel feeding pipe 5. The fuel pump 6 is a pump which operates considering the running torque of the output shaft (crankshaft) of the internal-combustion engine 1 as a driving source, The pump pulley 6a attached to the input shaft of this fuel pump 6 is connected via the crank pulley 1a and the belt 7 which were attached to the output shaft (crankshaft) of the internal-combustion engine 1.

[0021]When the running torque of a crankshaft is transmitted to the input shaft of the fuel pump 6, in the fuel injection system constituted in this way the fuel pump 6, The regurgitation of the fuel supplied from the fuel tank which operates as a driving source and does not illustrate the torque transmitted to the input shaft of this fuel pump 6 from the crankshaft is carried out by a predetermined pressure.

[0022]The common rail 4 is supplied via the fuel feeding pipe 5, pressure is accumulated to predetermined pressure with the common rail 4, and the fuel breathed out from said fuel pump 6 is distributed to the fuel injection valve 3 of each cylinder 2. And if driving current is impressed to the fuel injection valve 3, the fuel injection valve 3 will open and, as a result, fuel will be injected from the fuel injection valve 3 to the combustion chamber of each cylinder 2.

[0023]Next, the inhalation-of-air branch pipe 8 is connected to the internal-combustion engine 1, and each branch pipe of the inhalation-of-air branch pipe 8 is open for free passage via the combustion chamber of each cylinder 2, and the inlet port which is not illustrated.

[0024]Said inhalation-of-air branch pipe 8 is connected to the inlet pipe 9, and this inlet pipe 9 is connected to the air cleaner box 10. The air flow meter 11 which outputs the electrical signal corresponding to the mass of the inhalation of air which flows through the inside of this inlet pipe 9 to the downstream inlet pipe 9, and the intake air temperature sensor 12 which outputs the electrical signal corresponding to the temperature of the inhalation of air which flows through the inside of this inlet pipe 9 are attached from said air cleaner box 10.

[0025]The intake throttle valve 13 which adjusts the flow of the inhalation of air which flows through the inside of this inlet pipe 9 is formed in the part in which it is located in the style of right above the inhalation-of-air branch pipe 8 in said inlet pipe 9. The actuator 14 for an inhalation-of-air diaphragm which comprises a stepper motor etc. and carries out the opening-and-closing drive of this intake throttle valve 13 is attached to the intake throttle valve 13.

[0026]In the inlet pipe 9 located between said air flow meter 11 and said intake throttle valve 13. The compressor housing 15a of the centrifugal supercharger (turbocharger) 15 which operates considering the heat energy of exhaust air as a driving source is formed. The intercooler 16 for cooling the inhalation of air which was curtailed within said compressor housing 15a, and became an elevated temperature is formed in the downstream inlet pipe 9 from the compressor housing 15a.

[0027]In the suction system constituted in this way, the inhalation of air which flowed into the air cleaner box 10 flows into the compressor housing 15a via the inlet pipe 9, after dust, dust, etc. under inhalation of air are removed by the air filter in this air cleaner box 10 which is not illustrated.

[0028]The inhalation of air which flowed into the compressor housing 15a is curtailed by the rotation of a compressor wheel by which the inner package was carried out to this compressor housing 15a. After being cooled by the intercooler 16, if needed, by the intake throttle valve 13, the inhalation of air which was curtailed within said compressor housing 15a, and became an elevated temperature has a flow adjusted, and flows into the inhalation-of-air branch pipe 8. The inhalation of air which flowed into the inhalation-of-air branch pipe 8 is distributed to the combustion chamber of each cylinder 2 via each branch pipe, and burns considering the fuel injected from the fuel injection valve 3 of each cylinder 2 as an ignition source.

[0029]On the other hand, the exhaust branch pipes 18 are connected to the internal-combustion engine 1, and it is open for free passage with the combustion chamber of each cylinder 2 via the exhaust port which each branch pipe of the exhaust branch pipes 18 does not illustrate.

[0030]Said exhaust branch pipes 18 are connected with the turbine housing 15b of said centrifugal supercharger 15. Said turbine housing 15b is connected with the exhaust pipe 19, and this exhaust pipe 19 is connected to the muffler which is not illustrated in the lower stream.

[0031]In the middle of said exhaust pipe 19, the exhaust-air-purification mechanism 20 for purifying the harmful gas component under exhaust air is arranged, and the introduction catalyst 21 is arranged from this exhaust-air-purification mechanism 20 at the upstream exhaust pipe 19.

[0032]The particulate filter in which said exhaust-air-purification mechanism 20 catches particles (PM:Particulate Matter) contained during exhaust air, such as soot and SOF (Soluble OrganicFraction), It comprises a casing for accommodating said particulate filter. Below, the exhaust-air-purification mechanism 20 shall be called the particulate filter 20. [0033]as for said particulate filter 20 carried out, the 2nd exhaust passage where the 1st exhaust passage where the end face was opened wide and the termination was blockaded, and a end face were blockaded, and the termination was opened wide passes a septum, for example – alternation – and it is a wall flow type filter which has been arranged at honeycomb shape and which consists of a porous substrate.

[0034]Cordierite etc. can be illustrated as a substrate of the above mentioned porosity. The carrier layer which consists of coat material, such as alumina (aluminum₂O₃) and zirconia (ZrO₂), is formed in the surface of the septum of this substrate, and the internal surface of the fine pores of a septum, and the NO_x occlusion agent and the oxidation catalyst are supported by said carrier layer.

[0035]The above mentioned alkaline metal like potassium (K), sodium (Na), lithium (Li), or caesium (Cs) as a NO_X occlusion agent, At least one [selected from barium (Ba), calcium (Ca) or alkaline-earth metals like strontium (Sr), and a lantern (La) and rare earth like yttrium (Y)] can be illustrated. The precious metals, such as platinum (Pt), can be illustrated as the above mentioned oxidation catalyst.

[0036]The particulate filter 20 constituted in this way will purify exhaust air according to the following mechanisms. [0037]first, the nitrogen oxides (NO_x) contained during exhaust air when the oxygen density of the exhaust air which flows

into the particulate filter 20 is high - a NO $_{\rm x}$ occlusion agent - occlusion - it absorbs or adsorbs ("occlusion" is only called hereafter).

[0038]Then, when the oxygen density of the exhaust air which flows into the particulate filter 20 falls, a NO_x occlusion agent will emit the nitrogen oxides (NO_x) which were carrying out occlusion. If it exists in that case while reducing components, such as hydrocarbon (HC) and carbon monoxide (CO), exhaust, While an oxidation catalyst will promote the oxidation-reduction reaction of a reducing component and nitrogen oxides (NO_x) and hydrocarbon (HC) and carbon monoxide (CO) oxidize to water (NO_x) or carbon dioxide (NO_x) as a result, Nitrogen oxides (NO_x) are returned to nitrogen (NO_x).

[0039]Since there is a limitation in the NO_x occlusion capacity of a NO_x occlusion agent, before the NO_x occlusion capacity of a NO_x occlusion agent is saturated, it is necessary to reproduce the NO_x occlusion capacity of a NO_x occlusion agent. As a method of reproducing the NO_x occlusion capacity of a NO_x occlusion agent, By making fuel (hydrocarbon (HC)) add into exhaust air from the fuel addition valve 25, The method of making the amount of reducing components contained during exhaust air increasing while reducing the oxygen density of the exhaust air which flows into the particulate filter 20, with recovering the NO_x occlusion capacity of a NO_x occlusion agent can be illustrated.

[0040]On the other hand, particulate filter 20 the very thing catches PM contained during exhaust air, when the exhaust air in the 1st flueway moves into the 2nd flueway through the fine pores of a septum. However, since a limitation is among the amounts of PM which particulate filter 20 the very thing can catch, it is necessary to purify suitably PM caught by the particulate filter 20.

[0041]here, the NO_x occlusion agent and oxidation catalyst which were supported by the particulate filter 20 were mentioned above — as — the nitrogen oxides (NO_x) under exhaust air — occlusion — and, although it will return, Active oxygen will be generated by the NO_x occlusion agent when temperature up of the NO_x occlusion agent is carried out by the reaction fever generated when nitrogen oxides (NO_x) are returned.

[0042]Thus, since the active oxygen generated has very high reactivity, it reacts to PM caught in the particulate filter 20 promptly, and makes it PM oxidized and purified.

[0043]Said introduction catalyst 21 comprises an oxidation catalyst which oxidizes SOF (Soluble Organic Fraction) contained during exhaust air, an unburnt fuel component, etc., and a casing for accommodating this oxidation catalyst. The concrete composition of this introduction catalyst 21 is mentioned later.

[0044]In the exhaust system constituted in this way, the gaseous mixture (burned gas) which burned in each cylinder 2 of the internal-combustion engine 1 is discharged via an exhaust port to the exhaust branch pipes 18, and, subsequently flows into the turbine housing 15b of the centrifugal supercharger 15 from the exhaust branch pipes 18. The exhaust air which flowed into the turbine housing 15b rotates the turbine wheel supported enabling free rotation in the turbine housing 15b. The running torque of a turbine wheel will be transmitted to the compressor wheel of the compressor housing 15a mentioned above in that case.

[0045]The exhaust air discharged from said turbine housing 15b flows into the introduction catalyst 21 via the exhaust pipe 19, and SOF, an unburnt fuel component, etc. under exhaust air are oxidized and purified. The exhaust air which had SOF, an unburnt fuel component, etc. purified in the introduction catalyst 21 flows into the particulate filter 20, and soot, nitrogen oxides (NO_x) , etc. which are contained during this exhaust air are removed or purified. The exhaust air removed or purified is emitted into the atmosphere through the exhaust pipe 19 in soot or nitrogen oxides (NO_x) by the exhaust-air-purification mechanism 20.

[0046]Next, the exhaust branch pipes 18 and the inhalation-of-air branch pipe 8 of the internal-combustion engine 1 are opened for free passage via the exhaust-gas-recirculation passage (EGR passage) 22 which makes a part of exhaust air which flows through the inside of the exhaust branch pipes 18 recycle to the inhalation-of-air branch pipe 8.

[0047]In the middle of said EGR passage 22, it comprises an electromagnetic valve etc. and the flow control valve (an EGR valve is called hereafter) 23 which changes the flow of the exhaust air (EGR gas is called hereafter) which flows through the inside of said EGR passage 22 according to the size of applied power is formed.

[0048]In said EGR passage 22, EGR cooler 24 which cools the EGR gas which flows through the inside of this EGR passage 22 is formed in the upstream part from EGR valve 23.

[0049]In the exhaust-gas-recirculation mechanism constituted in this way, if EGR valve 23 is opened, EGR passage 22 will be in switch-on, a part of exhaust air which flows through the inside of the exhaust branch pipes 18 will flow into said EGR passage 22, and it will be led to the inhalation-of-air branch pipe 8 through EGR cooler 24.

[0050]In that case, by EGR cooler 24, heat exchange will be performed between the EGR gas which flows through the inside of EGR passage 22, and a predetermined refrigerant, and EGR gas will be cooled.

[0051]It is led to the combustion chamber of each cylinder 2, the EGR gas which flowed back from the exhaust branch pipes 18 to the inhalation-of-air branch pipe 8 via EGR passage 22 being mixed with the clean air which has flowed from the upper stream of the inhalation-of-air branch pipe 8, and burns considering the fuel injected from the fuel injection valve 3 as an ignition source.

[0052]Here, since inactive gas ingredients, such as water (H_2O) and carbon dioxide (CO_2), are contained in EGR gas, if EGR gas contains in gaseous mixture, the combustion temperature of gaseous mixture can lower, with the yield of nitrogen oxides (NO_x) will be controlled.

[0053]Since the volume of EGR gas will be reduced while the temperature of EGR gas itself falls if EGR gas is cooled in EGR cooler 24, When EGR gas is supplied to a combustion chamber, while it is lost that the ambient temperature of this combustion chamber rises unnecessarily, the quantity (volume of clean air) of the clean air supplied to a combustion chamber does not decrease unnecessarily.

[0054] The fuel addition mechanism for adding fuel is formed during exhaust air at the internal-combustion engine 1. This fuel addition mechanism is provided with the following.

The fuel addition valve 25 which opens when driving power is impressed, and injects fuel [into the exhaust branch pipes 18] from the inside of the exhaust port of the No. 1 (#1) cylinder 2.

The fuel supply line 26 which supplies some fuel breathed out from the fuel pump 6 to said fuel addition valve 25.

[0055]In the reducing agent feed mechanism constituted in this way, some fuel breathed out from the fuel pump 6 is supplied to the fuel addition valve 25 via the fuel supply line 26. The fuel addition valve 25 opens, when driving power is impressed, and it injects fuel [into the exhaust branch pipes 18].

[0056]The fuel injected into the exhaust branch pipes 18 from the fuel addition valve 25 will flow into the introduction catalyst 21 through the turbine housing 15b and the exhaust pipe 19 with the exhaust air which has flowed from the upper stream of the exhaust branch pipes 18, and, subsequently will flow into the particulate filter 20 from the introduction catalyst 21.

[0057]If occlusion of the nitrogen oxides (NO_x) is carried out to the NO_x occlusion agent of the particulate filter 20 in that case, it will be returned and purified by using as a reducing agent fuel in the gas which the nitrogen oxides (NO_x) described above.

[0058]Since platinum (Pt) as an oxidation catalyst is supported by the particulate filter 20, in it, oxygen and fuel which are included in the above mentioned gas generate oxidation reaction according to an oxidation catalyst, and the temperature in the particulate filter 20 rises to it. Thus, since it will be urged to generation of active oxygen by a NO_x occlusion agent if the temperature in the particulate filter 20 is raised, it also becomes possible to oxidize and purify PM caught by the particulate filter 20.

[0059]The NO_X occlusion agent supported by the particulate filter 20, In order to carry out occlusion of the sulfur oxide (SO_X) under exhaust air according to the same mechanism as nitrogen oxides (NO_X) , If the oxygen density in the particulate filter 20 becomes SUTOIKI atmosphere or a rich atmosphere while the temperature in the particulate filter 20 is raised by addition of fuel which was described above, The pyrolysis of the sulfur oxide (SO_X) absorbed by the NO_X occlusion agent is carried out to SO_{3-} or SO_{4-} , and subsequently, SO_{3-} and SO_{4-} will react to hydrocarbon (HC) under exhaust air, and carbon monoxide (CO), and will be returned to gas-like SO_{2-} .

[0060]The electronic control unit (ECU:Electronic Control Unit) 27 for controlling this internal-combustion engine 1 is put side by side in the internal-combustion engine 1 constituted as stated above.

[0061]It adds to the common-rail-pressure sensor 4a mentioned above in this ECU27, the air flow meter 11, the intake air temperature sensor 12, and the intake-pipe-pressure sensor 17, Various sensors, such as the crank position sensor 28 and the water temperature sensor 29 which were attached to the internal-combustion engine 1, and also the accelerator opening sensors 30 which output the electrical signal corresponding to the control input of the accelerator pedal which does not carry out a figure, are connected via electric wiring, The output signal of these various sensors is inputted into ECU27.

[0062]In addition to the above mentioned various sensor, the fuel injection valve 3, the actuator 14 for an inhalation-of-air diaphragm, EGR valve 23, and fuel addition valve 25 grade are connected to ECU35 via electric wiring, It is possible to control the fuel injection valve 3, the actuator 14 for an inhalation-of-air diaphragm, EGR valve 23, or the fuel addition

valve 25 according to the output signal of the various sensor which ECU35 described above.

[0063]Next, the concrete composition of the introduction catalyst 21 in this embodiment is described.

[0064]As the introduction catalyst 21 is shown in <u>drawing 2</u>, two or more exhaust passages are provided with the carrier substrate 210 arranged at honeycomb shape. This carrier substrate 210 comprises a sintered metal of porosity, such as cordierite, for example.

[0065]As the above mentioned surface of the carrier substrate 210 is shown in $\frac{drawing 3}{3}$, it is covered with the supporting layer 211, and the oxidation catalyst 212 represented by platinum (Pt) is supported by the supporting layer 211. [0066]Although the coated layer which consists of alumina (aluminum₂O₃) as the above mentioned supporting layer is common, although alumina (aluminum₂O₃) cannot induce sintering of platinum (Pt) easily due to a pyrosphere, it has the characteristic of being easy to carry out occlusion of the sulfur oxide (SO_x) under exhaust air.

[0067]For this reason, the catalyst for which the coated layer which consists of alumina (aluminum $_2$ O $_3$) as a supporting layer was used becomes easy to generate what is called SO $_x$ poisoning to which occlusion of the sulfur oxide (SO $_x$) under exhaust air is unnecessarily carried out, and the cleaning capacity of a catalyst falls by it.

[0068]When SO_x poisoning of a catalyst occurs, while raising the temperature of a catalyst to 500 ** - 700 **, It is necessary to perform processing (SO_x poisoning dissolution processing is called hereafter) for making the oxygen density of the exhaust air which flows into a catalyst into a rich atmosphere oxygen density (namely, oxygen density of the exhaust air discharged from the internal-combustion engine currently operated by the rich air fuel ratio). [0069]By the way, since the sulfur oxide (SO_x) by which occlusion was carried out to the catalyst will be emitted into exhaust air if SO_x poisoning dissolution processing which was described above is performed, Occlusion of the sulfur oxide

 (SO_x) is again carried out with the particulate filter 20, with there is a problem that SO_x poisoning of the particulate filter 20 will be promoted unnecessarily.

[0070]So, in the exhaust emission control device of the internal-combustion engine concerning this embodiment, the coated layer which is that the occlusion of the sulfur oxide (SO_x) is hard to be carried out, and consists of a titania (TiO_2) or silica (SiO_2) was used as the supporting layer 211 of the introduction catalyst 21.

[0071]Since the exhaust air discharged from the internal-combustion engine 1 will flow into the introduction catalyst 21 first if arranged upstream of the particulate filter 20 which the introduction catalyst 21 constituted in this way mentioned above, SOF under exhaust air will be oxidized and purified in the introduction catalyst 21.

[0072]When SOF under exhaust air was oxidized and purified in the introduction catalyst 21 and exhaust air flows into the particulate filter 20, it is lost that SOF adheres to the upstream end face of the particulate filter 20.

[0073]As a result, in the upstream end face of the particulate filter 20, particles, such as soot under exhaust air, will not be adsorbed and accumulated by SOF, with generating of plugging in the upstream end face of the particulate filter 20 will be prevented.

[0074]Since the supporting layer 211 of the introduction catalyst 21 comprises a coated layer which consists of the titania (TiO_2) or silica (SiO_2) which cannot carry out occlusion of the sulfur oxide (SO_x) easily, The occlusion of the sulfur oxide (SO_x) under exhaust air becomes is hard to be carried out to the introduction catalyst 21, and SO_x poisoning of the introduction catalyst 21 is prevented.

[0075] Thus, since it becomes unnecessary to perform SO_x poisoning dissolution processing to the introduction catalyst 21 when SO_x poisoning of the introduction catalyst 21 is prevented, It is lost that originate in execution of the SO_x poisoning dissolution processing to the introduction catalyst 21, and SO_x poisoning of the particulate filter 20 is promoted.

[0076]However, since the NO_x occlusion agent of the particulate filter 20 carries out occlusion of the sulfur oxide (SO_x) according to the same mechanism as nitrogen oxides (NO_x), in SO_x poisoning, the particulate filter 20 may make it original.

[0077]For this reason, when SO_x poisoning of the particulate filter 20 occurs, it is necessary to perform SO_x poisoning dissolution processing to the particulate filter 20.

[0078]As a method of performing SO_x poisoning dissolution processing to the particulate filter 20, the method of adding fuel into exhaust air from the fuel addition valve 25 can be illustrated. While the temperature in the particulate filter 20 will rise when some addition fuel oxidizes in the particulate filter 20 (combustion) if fuel is added into exhaust air from the fuel addition valve 25, The remaining addition fuel will act as a reducing agent of a sulfur oxide (SO_x).

[0079]Since the introduction catalyst 21 also has an oxidation function in that case, although a small quantity oxidizes in

the introduction catalyst 21 very much in inside [it is the fuel added into exhaust air from the fuel addition valve 25] (combustion), Since it is consumed by evaporation of the addition fuel which the heat generated in that case described above, the superfluous rise in heat of the introduction catalyst 21 will be controlled.

[0080]Although the titania (TiO₂) and silica (SiO₂) which form the supporting layer 211 of the introduction catalyst 21 are put to an elevated temperature, grain growth may be carried out here and sintering of the oxidation catalyst 212 may be induced, Since the superfluous temperature up of the introduction catalyst 21 is prevented by making fuel add into exhaust air of the introduction catalyst 21 upper stream from the fuel addition valve 25 even if it is a case where SO_x poisoning dissolution processing of the particulate filter 20 is performed, sintering of the oxidation catalyst 212 will be prevented. [0081]As mentioned above, addition fuel in the introduction catalyst 21 Since [evaporation and/or since it will become easy to mix addition fuel and exhaust air homogeneously if a pyrolysis is carried out], The gas discharged from the introduction catalyst 21 and the gas which in other words flows into the particulate filter 20 turn into gas which addition fuel and exhaust air mixed homogeneously.

[0082]As a result, while it is lost that liquefied fuel adheres and piles up the upstream end face of the particulate filter 20, addition fuel comes to spread round the wide range of the particulate filter 20 uniformly.

[0083]Therefore, in the exhaust emission control device of the internal-combustion engine in this embodiment. By arranging the introduction catalyst 21 which has the supporting layer 211 who consists of a titania (TiO₂) or silica (SiO₂) upstream of the particulate filter 20, Generating of plugging in the upstream end face of the particulate filter 20 can be prevented, preventing superfluous SO_x poisoning of the particulate filter 20.

[0084]As a result, according to the exhaust emission control device of the internal-combustion engine in this embodiment, it becomes possible to become possible to utilize the cleaning capacity of the particulate filter 20 effectively, with to raise the emission of the internal-combustion engine 1.

[0085]Although the composition with which only an oxidation catalyst is supported by the supporting layer of an introduction catalyst was mentioned as the example in this embodiment, it may be the composition that it is not restricted to this and the NO_x occlusion agent etc. were supported in addition to the oxidation catalyst. What is necessary is just the composition of having the characteristic which oxidizes and purifies SOF which the catalyst which, in short, has the characteristic that the supporting layer of the introduction catalyst 21 cannot do occlusion of the sulfur oxide (SO_x) easily, and is supported by the supporting layer is exhausting.

[0086]Although gas oil which is the fuel for the internal-combustion engine 1 was mentioned as the example as a reducing agent concerning this invention in this embodiment, What is necessary is to be under exhaust air, to generate reducing components, such as hydrocarbon and carbon monoxide, and just to be able to illustrate liquid fuel, such as fluids, such as gases, such as hydrocarbon, hydrogen, and carbon monoxide, propane, propylene, and butane, or gasoline, and kerosene, etc. However, when avoiding the complicatedness at the time of storing and supplying a reducing agent, it can be said that gas oil which was illustrated by this embodiment is preferred.

[0087]Although the composition with which the introduction catalyst 21 and the particulate filter 20 are accommodated in a separate casing in the exhaust pipe 19 of the internal-combustion engine 1 was mentioned as the example and this embodiment explained it, an introduction catalyst and a particulate filter may be made to be accommodated in the same casing.

[0088]

[Effect of the Invention]In the exhaust emission control device of the internal-combustion engine concerning this invention, since the introduction catalyst which has an oxidation function upstream of the particulate filter in which the NO_x occlusion agent was supported is arranged, it is lost that SOF adheres to the upstream end face of a particulate filter.

[0089]Thereby, in the upstream end face of a particulate filter, the soot under exhaust air, etc. are not accumulated via SOF, with plugging in the upstream end face of a particulate filter is controlled.

[0090]In the exhaust emission control device of the internal-combustion engine concerning this invention, since the introduction catalyst has a supporting layer who consists of a titania (TiO₂) or silica (SiO₂), SO_x poisoning of an introduction catalyst will be prevented.

 $[0091]SO_x$ poisoning of the particulate filter which did not need to perform SO_x poisoning dissolution processing to the introduction catalyst, with originated in SO_x poisoning dissolution processing of the introduction catalyst by this will be prevented.

[0092]Therefore, according to the exhaust emission control device of the internal-combustion engine concerning this invention, it becomes possible to become possible to prevent the fall of the cleaning capacity of a particulate filter, with to

raise the exhaust emission of an internal-combustion engine.

[Translation done.]

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] The figure showing the outline composition of the internal-combustion engine which applies this invention, and its pumping system

[Drawing 2]The figure showing the structure of the carrier substrate of an introduction catalyst

[Drawing 3]The enlarged drawing on the surface of a carrier substrate of an introduction catalyst

[Description of Notations]

- 1 Internal-combustion engine
- 6 Fuel pump
- 18 ... Exhaust branch pipes
- 19 ... Exhaust pipe
- 20 ... Particulate filter
- 21 ... Introduction catalyst
- 25 ... Fuel addition valve
- 26 ... Fuel supply line
- 210 .. Carrier substrate
- 211 .. Supporting layer
- 212 .. Oxidation catalyst

[Translation done.]

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 1]

[Translation done.]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-278536 (P2003-278536A)

(43)公開日 平成15年10月2日(2003.10.2)

(51) Int.Cl. ⁷		識別記号			FΙ			テーマコード(参考)		
F 0 1 N	3/28	301		F	0 1 N	3/28		3	0 1 E	3G084
	3/02	301				3/02		3	0 1 E	3G090
	3/08					3/08			Α	3G091
									В	
	3/20					3/20			Α	
			審査請求	未請求	請求項	の数3	OL	(全	8 頁)	最終頁に続く
(21)出願番号		特願2002-76524(P2002	-76524)	(7	1) 出願人	00000	3207			
						トヨ	タ自動車	株式会	会社	
(22)出願日		平成14年3月19日(2002.	3. 19)			愛知	県豊田市	トヨ	夕町1番	地
				(7	2)発明者	1 小林	正明			
						愛知	具豊田市	トヨ	夕町1番	地 トヨタ自動
						車株:	式会社内			
				(7	2) 発明者	私下	宗一			
						愛知	具豊田市	トヨ	夕町1番	地 トヨタ自動
						車株	式会社内			
				(7	4) 代理人	10008	89244			
	•					弁理:	上 遠山	勉	(外3	名)
										最終頁に続く

(54) 【発明の名称】 内燃機関の排気浄化装置

(57)【要約】

【課題】 本発明は、NOx吸蔵剤が担持されたパティキュレートフィルタを備えた内燃機関の排気浄化装置において、パティキュレートフィルタの浄化能力の低下を防止することができる技術を提供することを課題とする。

【解決手段】 本発明は、NOx吸蔵剤が担持されたバティキュレートフィルタを備えた内燃機関の排気浄化装置において、チタニア又はシリカからなる担持層211 に酸化触媒212が担持された前置触媒をバティキレートフィルタの上流に配置し、前置触媒のSOx被毒を防止しつつバティキュレートフィルタの詰まりを防止することを特徴としている。

【特許請求の範囲】

【請求項1】 内燃機関の排気通路に設けられ、チタニア又はシリカからなる担持層に酸化触媒が担持された前置触媒と、

1

前記前置触媒より下流の排気通路に設けられ、NO_x吸蔵剤が担持されたパティキュレートフィルタと、を備えたことを特徴とする内燃機関の排気浄化装置。

【請求項2】 前記前置触媒より上流の排気通路内へ還 元剤を供給する還元剤供給手段を更に備えることを特徴 とする請求項1に記載の内燃機関の排気浄化装置。

[請求項3] 前記還元剤供給手段は、前記パティキュレートフィルタの被毒を回復させる際に、前記前置触媒の温度上昇を抑制すべく還元剤供給を行うことを特徴とする請求項2に記載の内燃機関の排気浄化装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、内燃機関の排気浄化技術に関し、特に内燃機関の排気系に配置された触媒の構造に関する。

[0002]

【従来の技術】近年、車両などに搭載される内燃機関に対して排気エミッションの向上が要求されている。特に、軽油を燃料とするディーゼル機関では、排気中に含まれる窒素酸化物(NO、)に加え、煤やSOF(Soluble Organic Fraction)などの微粒子(PM: Particula te Matter)を浄化する技術が要求されている。

【0003】とのような要求に対し、従来では、例えば、特開平6-159037号公報に記載された内燃機関の排気浄化装置のように、排気の酸素濃度が高い時には排気中の窒素酸化物(NOェ)を吸蔵し、排気の酸素濃度が低下し且つ還元剤が存在する時には吸蔵していた窒素酸化物(NOェ)を放出しつつ還元浄化するNOェ吸蔵剤が担持されたパティキュレートフィルタを内燃機関の排気通路に配置する技術が提案されている。

[0004]

【発明が解決しようとする課題】ところで、前述した従来の内燃機関の排気浄化装置では、排気中に含まれるSOFがバティキュレートフィルタの上流側端面に捕集されると、前記上流側端面において排気中の煤などがSOFを介して吸着及び集積されるため、パティキュレート 40フィルタの上流側端面に詰まりが発生し易くなる。

【0005】これに対し、NO、吸蔵剤が担持されたパティキュレートフィルタより上流の排気通路にSOFを浄化可能な触媒(以下、前置触媒と称する)を配置することにより、パティキュレートフィルタの上流側端面における詰まりの発生を抑制する方法が考えられる。

【0006】しかしながら、上記した方法では、前置触媒が硫黄酸化物 (SO_x) によって被毒される場合があり、そのような場合に前置触媒の被毒解消処理が行われると、前置触媒から放出された硫黄酸化物 (SO_x) に

よってパティキュレートフィルタが不用意に被毒されて しまう可能性がある。

【0007】本発明は、上記したような種々の実情に鑑みてなされたものであり、NO、吸蔵剤が担持されたパティキュレートフィルタを備えた内燃機関の排気浄化装置において、パティキュレートフィルタの浄化能力の低下を防止することができる技術を提供することを目的とする。

[0008]

【課題を解決するための手段】本発明は、上記したような課題を解決するために以下のような手段を採用した。すなわち、本発明に係る内燃機関の排気浄化装置は、内燃機関の排気通路に設けられ、チタニア又はシリカからなる担持層に酸化触媒が担持された前置触媒と、前記前置触媒より下流の排気通路に設けられ、NO、吸蔵剤が担持されたバティキュレートフィルタと、を備えたことを特徴としている。

【0009】との発明は、 NO_x 吸蔵剤が担持されたパティキュレートフィルタの上流に酸化機能を有する前置触媒を配置するとともに、前置触媒の担持層を硫黄酸化物(SO_x)が吸蔵され難いチタニア(TiO_x)又はシリカ(SiO_x)で構成したことを最大の特徴としている。

【0010】かかる内燃機関の排気浄化装置では、前置触媒において排気中に含まれるSOFが酸化及び浄化されるため、バティキュレートフィルタの上流側端面にSOFが付着することがなくなる。その結果、バティキュレートフィルタの上流側端面において、排気中に含まれる煤などの微粒子(PM:Particulate Matter)が集積することがない。

【0011】更に、前置触媒の担持層は、硫黄酸化物 (SO_x) が吸蔵され難いチタニア (TiO_z) 又はシリカ (SiO_x) で構成されているため、前置触媒が排気中の硫黄酸化物 (SO_x) によって被毒 (SO_x 被毒) されることがなくなる。その結果、前置触媒の被毒解消処理を行う必要がなくなり、前置触媒の被毒解消処理に起因したパティキュレートフィルタの SO_x 被毒が防止される。

【0012】本発明に係る内燃機関の排気浄化装置は、 前置触媒より上流の排気通路内へ還元剤を供給する還元 剤供給手段を更に備えるようにしてもよい。

【0013】 この場合、還元剤供給手段は、例えば、バティキュレートフィルタの被毒を回復させる時に、前置触媒より上流の排気通路内へ還元剤を供給する。ここでいうパティキュレートフィルタの被毒としては、硫黄酸化物 (SO_x) による被毒や微粒子 (PM: Particulate Matter) による被毒等を例示することができる。

【0014】還元剤供給手段から排気通路内へ供給された還元剤は、排気通路の上流から流れてきた排気ととも 50 に前置触媒へ流入し、続いてパティキュレートフィルタ へ流入することになる。

【0015】還元剤が前置触媒へ流入すると、前置触媒の熱が還元剤に奪われるため、前置触媒の温度上昇が防止される。ととで、前置触媒の担持層を構成するチタニア(TiO、)やシリカ(SiO、)は、高温に曝されると粒成長して酸化触媒のシンタリングを誘発する可能性があるが、上記したような還元剤の供給により前置触媒の温度上昇が防止されると、それに応じて酸化触媒のシンタリングが防止されることになる。

【0016】また、前置触媒に流入した還元剤の一部は 10 該前置触媒内で反応して気化及び熱分解するため、還元剤と排気とが均質に混合し易くなる。この結果、前置触媒から流出する排気、言い換えれば、パティキュレートフィルタへ流入するガスは、還元剤と排気とが均質に混合されたガスとなるため、還元剤がパティキュレートフィルタの広い範囲へ均等に行き渡るようになり、以て微粒子捕集能力の再生、或いはSO、被毒の解消を好適に行えるようになる。

[0017]

【発明の実施の形態】以下、本発明に係る内燃機関の排 気浄化装置の具体的な実施の形態について図面に基づい て説明する。

【0018】図1は、本発明を適用する内燃機関とその 吸排気系の概略構成を示す図である。図1に示す内燃機 関1は、軽油を燃料とする水冷式の4ストローク・サイ クル・ディーゼル機関である。

【0019】内燃機関1は、1番(#1)気筒2から4番(#4)気筒2までの4つの気筒を具備している。前記した4つの気筒2の各々には、各気筒2の燃焼室に直接燃料を噴射する燃料噴射弁3が設けられている。各燃料噴射弁3は、燃料を所定圧まで蓄圧する蓄圧室(コモンレール)4と接続されている。コモンレール4には、該コモンレール4内の燃料の圧力に対応した電気信号を出力するコモンレール圧センサ4aが取り付けられている。

【0020】前記コモンレール4は、燃料供給管5を介して燃料ポンプ6と連通している。燃料ポンプ6は、内燃機関1の出力軸(クランクシャフト)の回転トルクを駆動源として作動するポンプであり、該燃料ポンプ6の入力軸に取り付けられたポンプブーリ6aが内燃機関1の出力軸(クランクシャフト)に取り付けられたクランクプーリ1aとベルト7を介して連結されている。

【0021】とのように構成された燃料噴射系では、クランクシャフトの回転トルクが燃料ボンブ6の入力軸へ伝達されると、燃料ボンブ6は、クランクシャフトから該燃料ボンブ6の入力軸へ伝達されたトルクを駆動源として作動し、図示しない燃料タンクから供給される燃料を所定の圧力で吐出する。

【0022】前記燃料ポンプ6から吐出された燃料は、 ービンハウジング15bは排気管19と接続され、この 燃料供給管5を介してコモンレール4へ供給され、コモ 50 排気管19は下流にて図示しないマフラーに接続されて

4

ンレール4にて所定圧まで蓄圧されて各気筒2の燃料噴射弁3へ分配される。そして、燃料噴射弁3に駆動電流が印加されると、燃料噴射弁3が開弁し、その結果、燃料噴射弁3から各気筒2の燃焼室へ燃料が噴射される。

【0023】次に、内燃機関1には、吸気枝管8が接続されており、吸気枝管8の各枝管は、各気筒2の燃焼室と図示しない吸気ポートを介して連通している。

【0024】前記吸気枝管8は、吸気管9に接続され、 との吸気管9は、エアクリーナボックス10に接続され ている。前記エアクリーナボックス10より下流の吸気 管9には、該吸気管9内を流れる吸気の質量に対応した 電気信号を出力するエアフローメータ11と、該吸気管 9内を流れる吸気の温度に対応した電気信号を出力する 吸気温度センサ12とが取り付けられている。

【0025】前記吸気管9における吸気枝管8の直上流に位置する部位には、該吸気管9内を流れる吸気の流量を調節する吸気絞り弁13が設けられている。吸気絞り弁13には、ステッパモータ等で構成されて該吸気絞り弁13を開閉駆動する吸気絞り用アクチュエータ14が取り付けられている。

【0026】前記エアフローメータ11と前記吸気絞り 弁13との間に位置する吸気管9には、排気の熱エネル ギを駆動源として作動する遠心過給機(ターボチャージ ャ)15のコンプレッサハウジング15aが設けられ、 コンプレッサハウジング15aより下流の吸気管9に は、前記コンプレッサハウジング15a内で圧縮されて 高温となった吸気を冷却するためのインタークーラ16 が設けられている。

【0027】とのように構成された吸気系では、エアクリーナボックス10に流入した吸気は、該エアクリーナボックス10内の図示しないエアフィルタによって吸気中の塵や埃等が除去された後、吸気管9を介してコンプレッサハウジング15aに流入する。

【0028】コンプレッサハウジング15aに流入した 吸気は、該コンプレッサハウジング15aに内装された コンプレッサホイールの回転によって圧縮されて高温となった吸気は、インタークーラ16にて冷却された後、必要に応じて吸気絞り弁13によって流量を調節されて吸気 大管8に流入する。吸気枝管8に流入した吸気は、各枝管を介して各気筒2の燃焼室へ分配され、各気筒2の燃料噴射弁3から噴射された燃料を着火源として燃焼される。

【0029】一方、内燃機関1には、排気枝管18が接続され、排気枝管18の各枝管が図示しない排気ポートを介して各気筒2の燃焼室と連通している。

【0030】前記排気枝管18は、前記遠心過給機15のタービンハウジング15bと接続されている。前記タービンハウジング15bは排気管19と接続され、この排気管19は下流にて図示しないマフラーに接続されて

いる。

【0031】前記排気管19の途中には、排気中の有害ガス成分を浄化するための排気浄化機構20が配置され、この排気浄化機構20より上流の排気管19には前置触媒21が配置されている。

5

【0032】前記排気浄化機構20は、排気中に含まれる煤やSOF(Soluble Organic Fraction)などの微粒子(PM:Particulate Matter)を捕集するパティキュレートフィルタと、前記パティキュレートフィルタを収容するためのケーシングとで構成されている。尚、以下では、排気浄化機構20をパティキュレートフィルタ20と称するものとする。

【0033】前記したパティキュレートフィルタ20は、例えば、基端が開放され且つ終端が閉塞された第1排気流路と、基端が閉塞され且つ終端が開放された第2排気流路とが隔壁を介して交互に且つハニカム状に配置された、多孔質の基材からなるウォールフロー型のフィルタである。

【0034】前記した多孔質の基材としては、コージェライト等を例示することができる。この基材の隔壁の表 20 面及び隔壁の細孔の内壁面には、アルミナ(Al,O₃)やジルコニア(ZrO₂)等のコート材からなる担体層が形成され、前記担体層には、NO_x吸蔵剤と酸化触媒が担持されている。

【0035】前記したNO_x吸蔵剤としては、カリウム(K)、ナトリウム(Na)、リチウム(Li)、若しくはセシウム(Cs)のようなアルカリ金属と、バリウム(Ba)、カルシウム(Ca)、若しくはストロンチウム(Sr)のようなアルカリ土類金属と、ランタン(La)やイットリウム(Y)のような希土類との中か 30 ら選択された少なくとも一つを例示することができる。前記した酸化触媒としては、白金(Pt)などの貴金属を例示することができる。

【0036】このように構成されたパティキュレートフィルタ20は、以下のようなメカニズムによって排気を 浄化することになる。

【0037】先ず、パティキュレートフィルタ20へ流入する排気の酸素濃度が高い時には、排気中に含まれる窒素酸化物 (NO_x) が NO_x 吸蔵剤によって吸蔵、吸収、若しくは吸着される(以下、単に「吸蔵」と称する)。

【0038】続いて、パティキュレートフィルタ20へ流入する排気の酸素濃度が低下すると、 NO_x 吸蔵剤は吸蔵していた窒素酸化物(NO_x)を放出することになる。その際、炭化水素(HC)や一酸化炭素(CO)などの還元成分が排気中に存在していれば、酸化触媒が還元成分と窒素酸化物(NO_x)との酸化還元反応を促進することになり、その結果、炭化水素(HC)や一酸化炭素(CO_x)へ酸化されるとともに、窒素酸化物(NO_x)が窒素(N_x)

に還元される。

【0039】尚、 NO_x 吸蔵剤の NO_x 吸蔵能力には限りがあるため、 NO_x 吸蔵剤の NO_x 吸蔵能力が飽和する前に NO_x 吸蔵剤の NO_x 吸蔵能力を再生させる必要がある。 NO_x 吸蔵剤の NO_x 吸蔵能力を再生させる方法としては、燃料添加弁25から排気中へ燃料(炭化水素(HC))を添加させることにより、バティキュレートフィルタ20に流入する排気の酸素濃度を低下させるとともに排気中に含まれる還元成分量を増加させ、以て NO_x 吸蔵剤の NO_x 吸蔵能力を回復させる方法を例示することができる。

6

【0040】一方、パティキュレートフィルタ20自体は、第1排気通路内の排気が隔壁の細孔を通じて第2排気通路内へ移動する際に、排気中に含まれるPMを捕集する。但し、パティキュレートフィルタ20自体が捕集可能なPM量には限りがあるため、パティキュレートフィルタ20に捕集されたPMは適宜浄化する必要がある。

【0041】ととで、パティキュレートフィルタ20に担持された NO_x 吸蔵剤及び酸化触媒は前述したように排気中の窒素酸化物(NO_x)を吸蔵及び還元することになるが、窒素酸化物(NO_x)が還元される際に発生する反応熱によって NO_x 吸蔵剤が昇温されると、 NO_x 吸蔵剤により活性酸素が生成されることになる。

【0042】このようにして生成される活性酸素は、極めて高い反応性を有するため、パティキュレートフィルタ20内に捕集されているPMと速やかに反応してPMを酸化及び浄化せしめることになる。

【0043】前記前置触媒21は、排気中に含まれるSOF(Soluble Organic Fraction)や未燃燃料成分などを酸化する酸化触媒と、この酸化触媒を収容するためのケーシングとで構成されている。この前置触媒21の具体的な構成については後述する。

【0044】このように構成された排気系では、内燃機関1の各気筒2で燃焼された混合気(既燃ガス)が排気ボートを介して排気枝管18へ排出され、次いで排気枝管18から遠心過給機15のタービンハウジング15bへ流入する。タービンハウジング15bに流入した排気は、タービンハウジング15b内に回転自在に支持されなタービンホイールを回転させる。その際、タービンホイールの回転トルクは、前述したコンプレッサハウジング15aのコンプレッサホイールへ伝達されることになる。

【0045】前記タービンハウジング15bから排出された排気は、排気管19を介して前置触媒21へ流入し、排気中のSOFや未燃燃料成分などが酸化及び浄化される。前置触媒21においてSOFや未燃燃料成分などを浄化された排気は、パティキュレートフィルタ20へ流入し、該排気中に含まれる煤や窒素酸化物(NO、)などが除去又は浄化される。排気浄化機構20に

て煤や窒素酸化物 (NO_x)を除去又は浄化された排気は、排気管19を通って大気中へ放出される。

【0046】次に、内燃機関1の排気枝管18と吸気枝管8とは、排気枝管18内を流れる排気の一部を吸気枝管8へ再循環させる排気再循環通路(EGR通路)22を介して連通されている。

[0047] 前記EGR通路22の途中には、電磁弁などで構成され、印加電力の大きさに応じて前記EGR通路22内を流れる排気(以下、EGRガスと称する)の流量を変更する流量調整弁(以下、EGR弁と称する)23が設けられている。

【0048】前記EGR通路22においてEGR弁23 より上流の部位には、該EGR通路22内を流れるEG Rガスを冷却するEGRクーラ24が設けられている。

【0049】とのように構成された排気再循環機構では、EGR弁23が開弁されると、EGR通路22が導通状態となり、排気技管18内を流れる排気の一部が前記EGR通路22へ流入し、EGRクーラ24を経て吸気技管8へ導かれる。

【0050】その際、EGRクーラ24では、EGR通 20路22内を流れるEGRガスと所定の冷媒との間で熱交換が行われ、EGRガスが冷却されることになる。

【0051】EGR通路22を介して排気枝管18から吸気枝管8へ還流されたEGRガスは、吸気枝管8の上流から流れてきた新気と混ざり合いつつ各気筒2の燃焼室へ導かれ、燃料噴射弁3から噴射される燃料を着火源として燃焼される。

【0052】 C C で、E G R ガスには水 (H₂O) や二酸化炭素 (CO₂) などの不活性ガス成分が含まれているため、E G R ガスが混合気中に含有されると、混合気 30の燃焼温度が低められ、以て窒素酸化物 (NO₂) の発生量が抑制される。

【0053】更に、EGRクーラ24においてEGRガスが冷却されると、EGRガス自体の温度が低下するとともにEGRガスの体積が縮小されるため、EGRガスが燃焼室内に供給されたときに該燃焼室内の雰囲気温度が不要に上昇することがなくなるとともに、燃焼室内に供給される新気の量(新気の体積)が不要に減少することもない。

【0054】また、内燃機関1には、排気中に燃料を添 40 加するための燃料添加機構が設けられている。この燃料添加機構は、駆動電力が印加された時に開弁して1番 (#1)気筒2の排気ボート内から排気枝管18内へ向けて燃料を噴射する燃料添加弁25と、燃料ボンプ6から吐出された燃料の一部を前記燃料添加弁25へ供給する燃料供給路26とを備えている。

【0055】とのように構成された還元剤供給機構で され、ECU35は、燃料ポンプ6から吐出された燃料の一部が燃料供給 じて燃料噴射弁3路26を介して燃料添加弁25へ供給される。燃料添加 GR弁23、或以弁25は、駆動電力が印加されたときに開弁し、排気枝 50 能となっている。

管18内へ向けて燃料を噴射する。

【0056】燃料添加弁25から排気枝管18内へ噴射された燃料は、排気枝管18の上流から流れてきた排気とともにタービンハウジング15b及び排気管19を経て前置触媒21へ流入し、次いで前置触媒21からパティキュレートフィルタ20へ流入することになる。

【0057】その際、パティキュレートフィルタ200 NO、吸蔵剤に窒素酸化物(NO_x)が吸蔵されていれば、その窒素酸化物(NO_x)が前記したガス中の燃料を還元剤として還元及び浄化される。

【0058】また、パティキュレートフィルタ20には、酸化触媒としての白金(Pt)が担持されているため、前記したガス中に含まれる酸素と燃料とが酸化触媒によって酸化反応を発生し、パティキュレートフィルタ20内の温度が上昇する。このようにしてパティキュレートフィルタ20内の温度が高められると、NOx吸蔵剤による活性酸素の生成が促されるため、パティキュレートフィルタ20に捕集されていたPMを酸化及び浄化することも可能となる。

り 【0059】更に、パティキュレートフィルタ20に担持されたNO、吸蔵剤は、窒素酸化物(NO、)と同様のメカニズムによって排気中の硫黄酸化物(SO、)を吸蔵するため、上記したような燃料の添加によってパティキュレートフィルタ20内の温度が高められるとともにパティキュレートフィルタ20内の酸素濃度がストイキ雰囲気若しくはリッチ雰囲気になると、NO、吸蔵剤に吸収されていた硫黄酸化物(SO、)がSO」・やSO、に熱分解され、次いでSO」・やSO、が排気中の炭化水素(HC)や一酸化炭素(CO)と反応して気体状のSO、に還元されることとなる。

 $[0\ 0\ 6\ 0]$ 以上述べたように構成された内燃機関 $[1\ c]$ は、該内燃機関 $[1\ c]$ を制御するための電子制御ユニット($[E\ C\ U]$: Electronic Control Unit) $[2\ 7\ m]$ が併設されている。

【0061】とのECU27には、前述したコモンレール圧センサ4a、エアフローメータ11、吸気温度センサ12、及び吸気管圧力センサ17に加え、内燃機関1に取り付けられたクランクボジションセンサ28や水温センサ29、更に図しないアクセルペダルの操作量に対応した電気信号を出力するアクセル開度センサ30などの各種センサが電気配線を介して接続され、これら各種センサの出力信号がECU27に入力されるようになっている。

【0062】ECU35には、前記した各種センサに加え、燃料噴射弁3、吸気絞り用アクチュエータ14、EGR弁23、燃料添加弁25等が電気配線を介して接続され、ECU35が前記した各種センサの出力信号に応じて燃料噴射弁3、吸気絞り用アクチュエータ14、EGR弁23、或いは燃料添加弁25を制御することが可能となっている

20

【0063】次に、本実施の形態における前置触媒21 の具体的な構成について述べる。

【0064】前置触媒21は、図2に示すように、複数 の排気流路がハニカム状に配置された担体基材210を 備えている。この担体基材210は、例えば、コージェ ライト等のような多孔質の焼結金属で構成されている。 【0065】前記した担体基材210の表面は、図3に 示すように、担持層211によって被覆されており、そ の担持層211には白金(Pt)に代表される酸化触媒 212が担持されている。

【0066】前記した担持層としてはアルミナ(Al, 〇3) からなるコート層が一般的であるが、アルミナ (A1,O₁)は、高温域で白金(Pt)のシンタリング を誘発し難いものの、排気中の硫黄酸化物(SOェ)を 吸蔵し易いという特性を有している。

【0067】このため、担持層としてアルミナ(A1, 〇」) からなるコート層が用いられた触媒は、排気中の 硫黄酸化物(SOx)を不要に吸蔵してしまい、それに よって触媒の浄化能力が低下する、所謂S○、被毒を発 生し易くなる。

【0068】触媒のSO、被毒が発生した場合には、触 媒の温度を500℃~700℃まで高めるとともに、触 媒に流入する排気の酸素濃度をリッチ雰囲気な酸素濃度 (すなわち、リッチ空燃比で運転されている内燃機関か ら排出される排気の酸素濃度)とするための処理(以 下、SOx被毒解消処理と称する)を行う必要がある。 【0069】ところで、前記したようなSO、被毒解消 処理が実行されると、触媒に吸蔵されていた硫黄酸化物 (SO_x)が排気中へ放出されるため、その硫黄酸化物 (SO_x)がパティキュレートフィルタ20によって再 度吸蔵され、以てパティキュレートフィルタ20のSO

【0070】そこで、本実施の形態に係る内燃機関の排 気浄化装置では、前置触媒21の担持層211として、 硫黄酸化物 (SO,) が吸蔵され難くいチタニア (Ti O₂) 若しくはシリカ(SiO₂) からなるコート層を用 いるようにした。

*被毒が不要に促進されてしまうという問題がある。

【0071】このように構成された前置触媒21が前述 したパティキュレートフィルタ20の上流に配置される と、内燃機関1から排出された排気が先ず前置触媒21 に流入するため、排気中のSOFが前置触媒21におい て酸化及び浄化されることとなる。

【0072】前置触媒21において排気中のSOFが酸 化及び浄化されると、パティキュレートフィルタ20に 排気が流入した際に、パティキュレートフィルタ20の 上流側端面にSOFが付着することがなくなる。

【0073】との結果、パティキュレートフィルタ20 の上流側端面において、排気中の煤等の微粒子がSOF によって吸着及び集積されることがなく、以てパティキ 生が防止されることとなる。

【0074】また、前置触媒21の担持層211は、硫 黄酸化物(SOx)を吸蔵し難いチタニア(TiOz)若 しくはシリカ(SiO₂)からなるコート層で構成され ているため、排気中の硫黄酸化物(SOx)が前置触媒 21に吸蔵され難くなり、前置触媒21のS〇、被毒が 防止される。

【0075】このように前置触媒21のSO、被毒が防 止されると、前置触媒21に対してSO,被毒解消処理 10 を行う必要がなくなるため、前置触媒21に対するSO *被毒解消処理の実行に起因してパティキュレートフィ ルタ20のSO、被毒が促進されることがなくなる。 【0076】但し、パティキュレートフィルタ20のN O、吸蔵剤は、窒素酸化物(NO、)と同様のメカニズム によって硫黄酸化物 (SO_x)を吸蔵するため、パティ キュレートフィルタ20が独自にS〇、被毒する場合が ある。

【0077】 このため、パティキュレートフィルタ20 のSO、被毒が発生した場合には、パティキュレートフ ィルタ20に対してSO、被毒解消処理を行う必要があ る。

【0078】パティキュレートフィルタ20に対するS 〇、被毒解消処理を実行する方法としては、燃料添加弁 25から排気中へ燃料を添加する方法を例示することが できる。燃料添加弁25から排気中へ燃料が添加される と、添加燃料の一部がパティキュレートフィルタ20に おいて酸化 (燃焼) することによってパティキュレート フィルタ20内の温度が上昇するとともに、残りの添加 燃料が硫黄酸化物(SOx)の還元剤として作用すると 30 とになる。

【0079】その際、前置触媒21も酸化機能を有して いるため、燃料添加弁25から排気中へ添加された燃料 のうちの極少量が前置触媒21において酸化(燃焼)さ れるものの、その際に発生する熱が前記した添加燃料の 気化に消費されるため、前置触媒21の過剰な温度上昇 が抑制されることになる。

【0080】ここで、前置触媒21の担持層211を形 成するチタニア(TiO,)やシリカ(SiO,)は、高 温に曝されると粒成長して酸化触媒212のシンタリン グを誘発する可能性があるが、パティキュレートフィル タ20のSO_x被毒解消処理が実行された場合であって も、燃料添加弁25から前置触媒21上流の排気中へ燃 料を添加させることにより前置触媒21の過剰な昇温が 防止されるため、酸化触媒212のシンタリングが防止 されることになる。

【0081】また、前述したように前置触媒21におい て添加燃料が気化およびまたは熱分解されると、添加燃 料と排気とが均質に混合し易くなるため、前置触媒21 から排出されるガス、言い換えれば、パティキュレート ュレートフィルタ20の上流側端面における詰まりの発 50 フィルタ20に流入するガスは、添加燃料と排気とが均 米い。

質に混合したガスとなる。

[0082] この結果、パティキュレートフィルタ20 の上流側端面に液状の燃料が付着及び集積することがな くなるとともに、添加燃料がパティキュレートフィルタ 20の広い範囲に均等に行き渡るようになる。

【0083】従って、本実施の形態における内燃機関の 排気浄化装置では、チタニア(TiO,)又はシリカ (SiO,)からなる担持層211を有する前置触媒2 1がパティキュレートフィルタ20の上流に配置される ことにより、パティキュレートフィルタ20の過剰なS 10 O. 被毒を防止しつつパティキュレートフィルタ20の 上流側端面における詰まりの発生を防止することができ る。

【0084】との結果、本実施の形態における内燃機関 の排気浄化装置によれば、バティキュレートフィルタ2 0の浄化能力を有効に活用することが可能となり、以て 内燃機関1のエミッションを向上させることが可能とな る。

【0085】尚、本実施の形態では、前置触媒の担持層 に酸化触媒のみが担持される構成を例に挙げたが、これ 20 に限られるものではなく、酸化触媒に加えてNO、吸蔵 剤などが担持された構成であってもよい。要は、前置触 媒21の担持層が硫黄酸化物(SOx)を吸蔵し難い特 性を有し、且つ、その担持層に担持される触媒が排気中 のSOFを酸化及び浄化する特性を有している構成であ ればよい。

【0086】また、本実施の形態では、本発明に係る還 元剤として、内燃機関1の燃料である軽油を例に挙げた が、排気中で炭化水素や一酸化炭素などの還元成分を発 生するものであればよく、例えば、炭化水素、水素、一 30 酸化炭素等の気体、プロパン、プロピレン、ブタン等の 液体、或いは、ガソリンや灯油などの液体燃料などを例 示することができる。但し、還元剤を貯蔵及び補給する 際の煩雑さを避ける上では、本実施の形態で例示したよ うな軽油が好ましいと言える。

【0087】また、本実施の形態では、内燃機関1の排 気管19において前置触媒21とパティキュレートフィ ルタ20とが別個のケーシングに収容される構成を例に 挙げて説明したが、前置触媒とパティキュレートフィル タが同一のケーシング内に収容されるようにしてもよ *40 212・・酸化触媒

[0088]

【発明の効果】本発明に係る内燃機関の排気浄化装置で は、NOx吸蔵剤が担持されたパティキュレートフィル タの上流に、酸化機能を有する前置触媒が配置されるた め、パティキュレートフィルタの上流側端面にSOFが 付着することがなくなる。

12

【0089】 これにより、パティキュレートフィルタの 上流側端面において排気中の煤などがSOFを介して集 積することがなく、以てパティキュレートフィルタの上 流側端面における詰まりが抑制される。

【0090】更に、本発明に係る内燃機関の排気浄化装 置では、前置触媒がチタニア(TiO₂)やシリカ(S i O,) からなる担持層を有しているため、前置触媒の S〇、被毒が防止されることになる。

【0091】とれにより、前置触媒に対してSO、被毒 解消処理を行う必要がなく、以て前置触媒のSO、被毒 解消処理に起因したパティキュレートフィルタのSOx 被毒が防止されることになる。

【0092】従って、本発明に係る内燃機関の排気浄化 装置によれば、パティキュレートフィルタの浄化能力の 低下を防止することが可能となり、以て内燃機関の排気 エミッションを向上させることが可能となる。

【図面の簡単な説明】

本発明を適用する内燃機関とその吸排気系の 【図1】 概略構成を示す図

前置触媒の担体基材の構造を示す図 【図2】

【図3】 前置触媒の担体基材表面の拡大図 【符号の説明】

1・・・・内燃機関

6・・・・燃料ポンプ

18 · · · 排気枝管

19 · · · 排気管

20・・・パティキュレートフィルタ

21・・・前置触媒

25・・・燃料添加弁

26・・・燃料供給路

210 · · 担体基材

2 1 1 · · 担持層

【図3】

[図2]

[図1]

フロントページの続き

(51)Int.Cl.'		識別記号	FI		テーマコード(参考)
FOIN	3/24		F 0 1 N	3/24	E
	3/36			3/36	Α
F 0 2 D	45/00	3 1 0	F 0 2 D	45/00	3 1 0 Z

(72) 発明者 大木 久

愛知県豊田市トヨタ町 1 番地 トヨタ自動 車株式会社内

(72)発明者 林 孝太郎

愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 3C084 AA01 BA03 BA04 BA05 BA13

BA14 DA10 DA22 FA07 FA10 FA11 FA13 FA18 FA20 FA27

FA33 FA37 FA38

3G090 AA01 AA06 BA01 CB04 EA02

EA05 EA06

3G091 AA02 AA10 AA11 AA18 AA24

AA28 AB02 AB06 AB09 AB13

BA07 BA11 BA14 CA18 CB02

CB07 EA01 EA03 EA05 EA06

EA07 EA08 EA16 FC01 GA06

GB01X GB02Y GB03Y GB04Y

GB05W GB06W GB10X HA10

HA15 HB05 HB06