CHAPTER 1

Mathematical Review

1.1 Linear Algebra

1.1.1 Three-Dimensional Vector Algebra

Exercise 1.1

a) Show that $O_{ij} = \hat{e}_i \cdot \mathcal{O}\hat{e}_j$. b) If $\mathcal{O}\vec{a} = \vec{b}$ show that $b_i = \sum_i O_{ij} a_j$.

Solution 1.1

1. Using (1.7) and (1.13), we get that

$$\hat{e}_i \cdot \mathcal{O}\hat{e}_j = \hat{e}_i \cdot \sum_{k=1}^3 \hat{e}_k O_{kj} = \sum_{k=1}^3 \hat{e}_i \cdot \hat{e}_k O_{kj} = \sum_{k=1}^3 \delta_{ik} O_{kj} = O_{ij}. \tag{1.1-1}$$

2. Similarly,

$$\vec{b} = \sum_{i=1}^{3} b_i \hat{e}_i = \mathscr{O}\vec{a} = \mathscr{O}\sum_{j=1}^{3} a_j \hat{e}_j = \sum_{j=1}^{3} a_j \mathscr{O}\hat{e}_j = \sum_{j=1}^{3} a_j \sum_{i=1}^{3} \hat{e}_i O_{ij} = \sum_{i=1}^{3} \left(\sum_{j=1}^{3} O_{ij} a_j\right) \hat{e}_i.$$

From the uniqueness of linear expression by a basis, we arrive at

$$b_i = \sum_{j=1}^3 O_{ij} a_j. (1.1-2)$$

Exercise 1.2

Calculate $[\mathbf{A}, \mathbf{B}]$ and $\{\mathbf{A}, \mathbf{B}\}$ when

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 2 \\ 0 & 2 & -1 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

Solution 1.2

$$[\mathbf{A}, \mathbf{B}] \equiv \mathbf{A}\mathbf{B} - \mathbf{B}\mathbf{A} = \begin{pmatrix} 0 & -1 & 1 \\ 1 & -1 & 3 \\ -3 & 0 & -1 \end{pmatrix} - \begin{pmatrix} 0 & 1 & -3 \\ -1 & -1 & 0 \\ 1 & 3 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -2 & 4 \\ 2 & 0 & 3 \\ -4 & -3 & 0 \end{pmatrix},$$

$$\{\mathbf{A}, \mathbf{B}\} \equiv \mathbf{A}\mathbf{B} + \mathbf{B}\mathbf{A} = \begin{pmatrix} 0 & -1 & 1 \\ 1 & -1 & 3 \\ -3 & 0 & -1 \end{pmatrix} + \begin{pmatrix} 0 & 1 & -3 \\ -1 & -1 & 0 \\ 1 & 3 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -2 \\ 0 & -2 & 3 \\ -2 & 3 & -2 \end{pmatrix}.$$

1.1.2 Matrices

Exercise 1.3

If **A** is an $N \times M$ matrix and **B** is a $M \times K$ matrix show that $(\mathbf{AB})^{\dagger} = \mathbf{B}^{\dagger} \mathbf{A}^{\dagger}$.

Solution 1.3

It is obvious that

$$(\mathbf{B}^{\dagger}\mathbf{A}^{\dagger})_{ij} = \sum_{k=1}^{M} (\mathbf{B}^{\dagger})_{ik} (\mathbf{A}^{\dagger})_{kj} = \sum_{k=1}^{M} B_{ki}^{*} A_{jk}^{*} = \left(\sum_{k=1}^{M} A_{jk} B_{ki}\right)^{*} = [(\mathbf{A}\mathbf{B})^{*}]_{ji} = [(\mathbf{A}\mathbf{B})^{\dagger}]_{ij}, \quad (1.3-1)$$

which means that $(\mathbf{A}\mathbf{B})^{\dagger} = \mathbf{B}^{\dagger}\mathbf{A}^{\dagger}$.

Exercise 1.4

Show that

- a. $tr(\mathbf{AB}) = tr(\mathbf{BA})$.
- b. $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$.
- c. If U is unitary and $\mathbf{B} = \mathbf{U}^{\dagger} \mathbf{A} \mathbf{U}$, then $\mathbf{A} = \mathbf{U} \mathbf{B} \mathbf{U}^{\dagger}$.
- d. If the product C = AB of two Hermitian matrices is also Hermitian, then A and B commute.
- e. If **A** is Hermitian then A^{-1} , if it exists, is also Hermitian.

f. If
$$\mathbf{A} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
, then $\mathbf{A}^{-1} = \frac{1}{(A_{11}A_{22} - A_{12}A_{21})} \begin{pmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{pmatrix}$.

Solution 1.4

a. At this time, we assume that **A** is an $N \times M$ matrix while **B** is a $M \times N$ matrix. Then,

$$\operatorname{tr}(\mathbf{AB}) = \sum_{i=1}^{N} (\mathbf{AB})_{ii} = \sum_{i=1}^{N} \sum_{k=1}^{M} A_{ik} B_{ki} = \sum_{k=1}^{M} \sum_{i=1}^{N} B_{ki} A_{ik} = \sum_{k=1}^{M} (\mathbf{BA})_{kk} = \operatorname{tr}(\mathbf{BA}).$$
(1.4-1)

From this issue, we assume that both **A** and **B** are $N \times N$ matrices.

b. We find that

$$AB(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AA^{-1} = 1.$$

Since the inverse of a matrix is unique, we immediately get that

$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}. (1.4-2)$$

c. Due to $\mathbf{B} = \mathbf{U}^{\dagger} \mathbf{A} \mathbf{U}$, we can find

$$\mathbf{A} = \mathbf{1}\mathbf{A}\mathbf{1} = (\mathbf{U}\mathbf{U}^{\dagger})\mathbf{A}(\mathbf{U}\mathbf{U}^{\dagger}) = \mathbf{U}(\mathbf{U}^{\dagger}\mathbf{A}\mathbf{U})\mathbf{U}^{\dagger} = \mathbf{U}\mathbf{B}\mathbf{U}^{\dagger}. \tag{1.4-3}$$

d. Because C = AB of two Hermitian matrices is also Hermitian, we know that

$$\mathbf{C}^{\dagger} = (\mathbf{A}\mathbf{B})^{\dagger} = \mathbf{B}^{\dagger}\mathbf{A}^{\dagger} = \mathbf{C} = \mathbf{A}\mathbf{B}.$$

With $\mathbf{A}^{\dagger} = \mathbf{A}$, $\mathbf{B}^{\dagger} = \mathbf{B}$, we find

$$\mathbf{B}^{\dagger} \mathbf{A}^{\dagger} = \mathbf{B} \mathbf{A} = \mathbf{A} \mathbf{B}. \tag{1.4-4}$$

In other words, **A** and **B** commute.

e. It is obvious that if A^{-1} exists,

$$(\mathbf{A}^{-1})^{\dagger} \mathbf{A}^{\dagger} = (\mathbf{A} \mathbf{A}^{-1})^{\dagger} = \mathbf{1}^{\dagger} = \mathbf{1}.$$

We know $(\mathbf{A}^{\dagger})^{-1} = (\mathbf{A}^{-1})^{\dagger}$. Then, with $\mathbf{A} = \mathbf{A}^{\dagger}$, we find that

$$(\mathbf{A}^{-1})^{\dagger} = (\mathbf{A}^{\dagger})^{-1} = \mathbf{A}^{-1}. \tag{1.4-5}$$

Namely, \mathbf{A}^{-1} is also Hermitian if it exists.

1.1. LINEAR ALGEBRA 3

f. If $A_{11}A_{22} - A_{12}A_{21} \neq 0$, we can find

$$\mathbf{A} \times \frac{1}{A_{11}A_{22} - A_{12}A_{21}} \begin{pmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

which means that if $A_{11}A_{22} - A_{12}A_{21} \neq 0$,

$$\mathbf{A}^{-1} = \frac{1}{A_{11}A_{22} - A_{12}A_{21}} \begin{pmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{pmatrix}. \tag{1.4-6}$$

1.1.3 Determinants

Exercise 1.5

Verify the above properties for 2×2 determinants.

Solution 1.5

Exercise 1.6

Using properties (1)-(5) prove that in general

- 6. If any two rows (or columns) of a determinant are equal, the value of the determinant is zero.
- 7. $|\mathbf{A}^{-1}| = (|\mathbf{A}|)^{-1}$.
- 8. If $AA^{\dagger} = 1$, then $|A|(|A|)^* = 1$.
- 9. If $\mathbf{U}^{\dagger}\mathbf{O}\mathbf{U} = \mathbf{\Omega}$ and $\mathbf{U}^{\dagger}\mathbf{U} = \mathbf{U}\mathbf{U}^{\dagger} = \mathbf{1}$, then $|\mathbf{O}| = |\mathbf{\Omega}|$.

Solution 1.6

Exercise 1.7

Using Eq.(1.39), note that the inverse of a 2×2 matrix **A** obtained in Exercise 1.4f can be written as

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \begin{pmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{pmatrix}$$

and thus \mathbf{A}^{-1} does not exist when $|\mathbf{A}| = 0$. This result holds in general for $N \times N$ matrices. Show that the equation

$$Ac = 0$$

where **A** is an $N \times N$ matrix and **c** is a column matrix with elements c_i , i = 1, 2, ..., N can have a nontrivial solution ($\mathbf{c} \neq 0$) only when $|\mathbf{A}| = 0$.

Solution 1.7