

2 (a) In the extreme (ase when
$$\Pr(B) = 1$$

A. B are statistically independent but $(\text{onf}(A \rightarrow B) = 1)$

On the other hand, $\Pr(B)$ is related to $\Pr(A \rightarrow B) = 1$

Lift $(A \rightarrow B)$ and $(\text{onv}(A \rightarrow B))$ are able to capture the information of $\Pr(B)$.

(b) i. $(\text{snf}(A \rightarrow B))$

When $\Pr(B) = 1$
 $(\text{onf}(A \rightarrow B)) = (\text{onf}(B \rightarrow A))$

iff
$$I = Rr(A/B)$$

iff $Rr(A) = I$

$$lift (A \rightarrow B) = \frac{lonf(A \rightarrow B)}{S(A)} = \frac{S(A)B)}{S(A) - S(B)} = \frac{lonf(B \rightarrow A)}{S(A)} = lift(B \rightarrow A)$$

When
$$S(A) \neq S(B)$$
 and $S(AUB) \neq S(A)-S(B)$

 $(onV(A \rightarrow B) = \frac{1 - S(B)}{1 - \frac{S(AUB)}{S(A)}} = \frac{S(A) - S(A) - S(A)}{S(A) - S(AUB)} = \frac{1 + \frac{S(AUB) - S(A)}{S(A)}}{S(A) - S(AUB)}$

SCAUBJ-SU).SB)

For perfect implication
$$A \rightarrow B$$
,

 $Conf(A \rightarrow B) = I = maximum achievable value$

ii lift $(A \rightarrow B)$

For perfect implication $A \rightarrow B$,

 $Iift(A \rightarrow B) = \overline{S(B)} \neq N$ (maximum achievable value)

in general,

 SO lift is not desirable.

Iii $Conv(A \rightarrow B)$

For perfect implication $A \rightarrow B$,

 $Conv(A \rightarrow B) = \overline{C(B)} = + \infty$ (ignore \overline{C}) (ass)

 SO $Conv$ is desirable.

(d) (e) See the codes

Q3 (a) Let Ei be the event that the i-th non-zero column is not charen.

Then
$$P(E_1 \dots E_m) = P(E_1) \cdot P(E_2|E_2) \dots P(E_m) = P(E_n) \cdot P(E_n) \cdot P(E_m)$$

$$= (P(E_n))^m = (\frac{n-k}{n})^m$$

Note that $P(E_2|E_1) \leq P(E_2)$ (and similar inequalities)

holds naturally in this case.

(b) $\left(\frac{n-k}{n}\right)^m = \left(1 - \frac{k}{n}\right)^m = \left(1 - \frac{1}{n}\right)^m$

Then $\left(1 - \frac{1}{2}\right)^m \approx \left(1 - \frac{1}{n}\right)^m \approx e^{-lo}$

then $\left(1 - \frac{1}{2}\right)^m \approx \left(1 - \frac{1}{n}\right)^m \approx e^{-lo}$

(c) $S_1 \cdot S_2 \cdot Jaccord \cdot Similarity = \frac{1}{2}$

1 o random (yells permutation of gives $\frac{1}{3}$

(d) See the codes