task 1

June 1, 2022

1 A Jupyter notebook for first task with Jupyter

Load the libraries and define first functions

Start creating first charts

1.1 Monthly air temperature for Year 2013

read the data .csv file for Year 2013

```
[41]: df = get_df('2013')
    generate plot based on 2013 data

[40]: plt.plot(yearly_avg('Air_Temp'))
    plt.title('Monthly Air Temperature for 2013')
    plt.xlabel('Month')
    plt.ylabel('Temperature')
    plt.show()
```


1.2 Monthly air temperature for Year 2014

```
[44]: df = get_df('2014')

[45]: plt.plot(yearly_avg('Air_Temp'))
   plt.title('Monthly Air Temperature for 2014')
   plt.xlabel('Month')
   plt.ylabel('Temperature')
   plt.show()
```


1.3 Monthly air temperature for Year 2015

```
[46]: df = get_df('2015')

[48]: plt.plot(yearly_avg('Air_Temp'))
    plt.title('Monthly Air Temperature for 2015 (Incomplete)')
    plt.xlabel('Month')
    plt.ylabel('Temperature')
    plt.show()
```


^{*}The data is not full for year 2015 hence the lower average

1.4 2013-2015 Yearly Average Temperature Bar Chart

```
[94]: def get_years(years):
    full_period=[];
    for i in years:
        df = get_df(i)
        full_period.append(df)
    return full_period

years = [2013, 2014, 2015]

heights = [year['Air_Temp'].mean() for year in full_period]

plt.bar(years, heights)
    plt.title('2013-2015 Yearly Average Temperature')
    plt.xlabel('Year')
    plt.ylabel('Temperature')
    plt.show()
```


*The data is not full for year 2015 hence the lower average

```
[95]: def max_temp(s):
          return s[s['Air_Temp']==s['Air_Temp'].max()]
      def min_temp(s):
          return s[s['Air_Temp'] == s['Air_Temp'].min()]
[96]: def min_man_temps(arr):
          return [(max_temp(s)['Air_Temp'].values[0],
                   max_temp(s)['date'].values[0],
                   min_temp(s)['Air_Temp'].values[0],
                   min_temp(s)['date'].values[0]
              ) for s in get_years(arr)]
[97]: alphas = [height/max(heights) for height in heights]
      colors = [(.1, .7, .2, a) for a in alphas]
      plt.bar(years, heights, .6, color=colors)
      plt.ylabel('Farenheit', fontsize=12)
      plt.title('Average Temperature', fontsize=16)
      plt.xticks(np.arange(2013,2016,1), rotation=60, fontsize=12)
      columns = ['Max', 'Date', 'Min', 'Date']
      plt.table(cellText=min_man_temps(years),
               rowLabels=years,
               colLabels=columns,
```

```
rowColours=colors,
    cellColours=[[c]*4 for c in colors])
plt.xticks([])
plt.show()
```


Code creates a bar chart and a table with \max/\min temperatures for each year and the dates when they happened