Color Image Processing

Image Processing with Biomedical Applications ELEG-475/675 Prof. Barner

Color Image Processing

- Full-color and pseudo-color processing
- Color vision
- Color space representations
- Color processing
 - Correction
 - Enhancement
 - Smoothing/sharpening
 - Segmentation

Image Processing Color Image Processing

Prof. Barner, ECE Department, University of Delaware Color Fundamentals (II)

FIGURE 6.2 Wavelengths comprising the visible range of the electromagnetic spectrum. (Courtesy of the General Electric Co., Lamp Business Division.)

**ECHTOMATIC light spectrum: 400-700 nm

**Descriptive quantities:

Radiance – total energy that flows from a light source (Watts)

Luminance – amount of energy and observer perceives from a light source (lumens)

Brightness – subjected descriptor of intensity

Image Processing

Color Image Processing

Poof. Barner, ECE Department, University of Delaware

Lumiversity of Delaware

**Lumi

Brightness and Chromaticity

- Brightness notion of intensity
- Hue an attribute associated with the dominant wavelength (color)
 - The color of an object determines its hue
- Saturation relative purity, or the amount of white light mixed with a hue
 - Pure spectrum colors are fully saturated, e.g., red
- Saturation is inversely proportional to the amount of white light in a color
- Chromaticity is hue and saturation together
 - A color may be characterized by its brightness and chromaticity

Image Processing Color Image Processing Prof. Barner, ECE Department, University of Delaware

Primary and Secondary Colors

- Add primary colors to obtain secondary colors of light:
- Magenta, cyan, and yellow
- Primarily colors of:
- Light - sources
- Red, green, blue
- Pigments - absorbs (subtracts) a primary color of light and reflects (transmits) the other two
- Magenta (absorbs green), cyan (absorbs red), and yellow (absorbs blue)
- Secondary pigments:
- Red, green, and blue

- Processing
- Prof. Barner, ECE. Department,
- University of Delaware

- Color Image Processing
- Prof. Barner, ECE. Department,
- University of Delaware
- Color flower Processing
- Color flower Processing
- Color flower Processing
- Color flower Processing
- Prof. Barner, ECE. Department,
- University of Delaware
- Color flower Processing
- Color flo

Tristimulus values: X – red; Y – green; Z – blue Trichromatic coefficients: \[\begin{array}{c} x = \frac{X}{X+Y+Z} \\ y = \frac{Y}{X+Y+Z} \\ z = \frac{Z}{X+Y+Z} \\ x+y+z = 1 \end{array} alternate approach: chromaticity diagram Gives color composition as a function of red (x) and green (y) Solve for blue (z) according to the above Projects 3-D color space on to two dimensions \[\begin{array}{c} \text{Proc.ssing} \text{Prof. Bamer, ECE Department,} \\ \text{Color Image Processing} \text{Prof. Bamer, ECE Department,} \\ \text{University of Delaware} \text{8} \end{array}

Tristimulus Representation

