

Theoretische Informatik

Bearbeitungszeit: 10.06.2024 bis 16.06.2024, 16:00 Uhr Besprechung: 17.06.2024, 10:30 Uhr in Hörsaal 5E

> Abgabe: als PDF über das ILIAS Gruppenabgaben möglich und erwünscht

Aufgabe 1 (Turingberechenbarkeit I)10P

Gegeben sei die Turingmaschine $M = (\Sigma, \Gamma, Z, \delta, z_0, \square, F)$ mit $\Sigma = \{0, 1\}, \Gamma = \{0, 1, \square\},$ $Z = \{z_0, z_1, z_2, z_3, z_4, z_e\}, F = \{z_e\}$ und der untenstehenden Überführungsfunktion δ . Die Turingmaschine berechnet eine Funktion.

Die passende unvollständige Zustandsbeschreibung ist in folgender Tabelle angegeben.

z_0	
z_1	
z_2	
z_3	
z_4	Gegebenenfalls eine führende Null entfernen, fertig
$\overline{z_e}$	Endzustand

- a) Füllen Sie die Zustandsbeschreibung für die Zustände z_0, z_1, z_2 und z_3 aus.
- b) Die Turingmaschine M berechnet eine partielle Funktion $f: \mathbb{N} \to \mathbb{N}$ definiert durch

$$f(n) = \begin{cases} & \text{falls } \dots, \\ & \text{undefiniert} & \text{falls } \dots. \end{cases}$$

 $\mathbb N$ bezeichnet dabei wie im Skript die natürlichen Zahlen inklusive der 0. Vervollständigen Sie die Funktion f.

- c) Geben Sie eine vollständige Konfigurationenfolge für die Berechnung von f(8) an.
- d) Betrachten Sie M als Akzeptor. Geben Sie L(M) formal als Menge von Wörtern an.

Aufgabe 2 (Turing-Berechenbarkeit II)10P

Geben Sie eine Turingmaschine an, die die Funktion $f: \mathbb{N} \to \mathbb{N}$ mit

$$f(n) = \begin{cases} 1 & \text{falls } n \mod 5 = 0\\ 0 & \text{sonst} \end{cases}$$

berechnet.

END

Sie können hierzu gerne Übungsblatt 2 als Inspiration nehmen.

Aufgabe 3 (LOOP-Berechenbarkeit I)10P

Sei $f: \mathbb{N} \to \mathbb{N}$ eine Funktion, die durch das folgende LOOP-Programm berechnet wird:

```
x_0 := 1; \ x_2 := 1;
\texttt{LOOP}\ x_1\ \texttt{DO}
x_3 := 0;
\texttt{LOOP}\ x_2\ \texttt{DO}
\texttt{LOOP}\ x_0\ \texttt{DO}
x_3 := x_3 + 1
\texttt{END}
\texttt{END};
x_0 := x_3 + 0;
x_2 := x_2 + 1
```

Zur Erinnerung: Das LOOP-Programm startet mit der Eingabe n in der Variable x_1 , alle anderen Variablen sind mit 0 initialisiert und das Programm stoppt mit dem Wert f(n) in der Variable x_0 , wobei $n \in \mathbb{N}$.

- (a) Führen Sie das LOOP-Programm für n=4 aus und geben Sie f(4) an. Geben Sie dabei die Werte der vier benutzten Variablen (1) vor dem ersten Durchlauf und (2) nach jedem darauf folgenden Durchlauf der äußeren LOOP-Schleife an.
- (b) Beschreiben Sie zunächst informal die Bedeutung der drei LOOP-Schleifen und geben Sie dann eine formale mathematische Beschreibung für die Funktion f an.

Aufgabe 4 (LOOP-Berechenbarkeit II)10P

Zeigen Sie die folgende Aussage aus der Vorlesung durch Angabe eines LOOP-Programms:

IF $x_1 = c$ THEN P ELSE P' END ist LOOP-berechenbar.

Verwenden Sie \mathbf{nur} die elementaren Befehle, wie sie in der Definition von LOOP-Programmen aufgeführt sind.