Homework 14

Put your name and student ID here 2021-06-03

Q1: Let us consider fitting a straight line, $y = \beta_0 + \beta_1 x$, to points (x_i, y_i) , where $i = 1, \dots, n$.

- 1. Write down the normal equations for the simple linear model via the matrix formalism.
- 2. Solve the normal equations by the matrix approach and see whether the solutions agree with the earlier calculation derived in the simple linear models.

Q2: Consider fitting the curve $y = \beta_0 x + \beta_1 x^2$ to points (x_i, y_i) , where i = 1, ..., n.

- 1. Use the matrix formalism to find expressions for the least squares estimates of β_0 and β_1 .
- 2. Find an expression for the covariance matrix of the estimates.

Q3: Suppose that in the model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, i = 1, \dots, n,$$

the errors ϵ_i have mean zero and are uncorrelated, but $Var(\epsilon_i) = \rho_i^2 \sigma^2$, where the $\rho_i > 0$ are known constants, so the errors do not have equal variance. Because the variances are not equal, the theory developed in our class does not apply.

- (a) Try to transform suitably the model such that the basic assumptions (i.e., the errors have zero mean and equal variance, and are uncorrelated) of the standard statistical model are satisfied.
- (b) Find the least squares estimates of β_0 and β_1 for the transformed model.
- (c) Find the variances of the estimates of Part (b).

Q4: Consider the multiple linear model $Y = X\beta + \epsilon$, where X is the $n \times p$ design matrix, $\beta = (\beta_0, \dots, \beta_{p-1})^{\top}$ is a vector of p parameters, and the error $\epsilon \sim N(0, \sigma^2 I_n)$. Now consider the problem of estimating $\theta = \beta_0 + \beta_1 + \dots + \beta_{p-1}$. Assume that $\operatorname{rank}(X) = p < n$. Let $\hat{\beta} = (\hat{\beta}_0, \dots, \hat{\beta}_{p-1})^{\top}$ be the least squares estimate of β . Let $\hat{\theta} = \hat{\beta}_0 + \hat{\beta}_1 + \dots + \hat{\beta}_{p-1}$.

- (a) Show that $\hat{\theta}$ is an unbaised estimate of θ .
- (b) Find the variance of the estimate $\hat{\theta}$.
- (c) Let $\hat{\theta}_c = c^{\top} Y$ be an unbiased estimate of θ for any $\beta \in \mathbb{R}^{p \times 1}$, where $c \in \mathbb{R}^{n \times 1}$ is any fixed vector. Prove that $\operatorname{Var}(\hat{\theta}_c) \geq \operatorname{Var}(\hat{\theta})$. (Notice that $\hat{\theta}$ is also a linear combination of y_i . This result implies that $\hat{\theta}$ is the best linear unbiased estimator for θ .)

Q5: Consider the linear model in matrix formalism

$$Y = X\beta + \epsilon$$
,

where $\boldsymbol{Y} = (y_1, \dots, y_n)^{\top}$, $\boldsymbol{\beta} = (\beta_0, \dots, \beta_{p-1})^{\top}$, \boldsymbol{X} is the $n \times p$ design matrix, and $\boldsymbol{\epsilon} = (\epsilon_1, \dots, \epsilon_n)^{\top} \sim N(\boldsymbol{0}, \sigma^2 I_n)$ with unknown $\sigma > 0$. Assume that $\operatorname{rank}(\boldsymbol{X}) = r < p$.

- (a) Show that the least squares estimator (LSE) for β is not unique.
- (b) Show that there exists an $n \times r$ submatrix X^* of X with rank r such that $X = X^*Q$, where Q is a $r \times p$ matrix.
- (c) Let $\beta^* = Q\beta$. Then the linear model becomes $Y = X^*\beta^* + \epsilon$. Find an LSE for β^* and show that the LSE is unique. Find an unbiased estimate of σ^2 and show its variance.

1