Алгебра 3 2023 Кузнецов

1 Листок 1

1. Существует ли функтор из Grp в Ab, переводящий группу в её центр? Покажем, что нет такого функтора. Предположим, что это функтор \mathcal{F} . Рассмотрим группы $G=S_2$ и $H=S_n$ с таким n, что центр S_n тривиален (например, n=5). Рассмотрим гомоморфизмы $g\colon G\to H$, являющийся просто вложением, и $h\colon H\to G$, переводящий чётные перестановки в e, а нечётные в (12). Тогда $hg=id_G$. Отсюда

$$\mathcal{F}(h)\mathcal{F}(g) = id_{\mathcal{F}(G)}.$$

Но $\mathcal{F}(G)$ — это центр группы G, то есть в нашем случае вся G. А $\mathcal{F}(g)$ действует из G в центр H, то есть обязана быть тривиальным гомоморфизмом (всё в e). Но тогда

$$\mathcal{F}(h)\mathcal{F}(g)$$

тоже обязано всё переводить в e, а это не так $(id_{\mathcal{F}(G)})$ тождественно, а не переводит всё в e).

2. а) $\mathbb{Z} \to \mathbb{Q}$ — эпиморфизм колец. Я так понимаю, коммутативных колец с единицей. Допустим, есть $f_!, f_2 \colon \mathbb{Q} \to K$, совпадающие на \mathbb{Z} . Надо показать, что они совпадают на всём \mathbb{Q} . Предположим,

$$f_1\left(\frac{m}{n}\right) \neq f_2\left(\frac{m}{n}\right).$$

Пусть $a = f_2(m/n) - f_1(m/n)$. Имеем na = 0. Тогда

$$f_1\left(\frac{1}{n}\right)na=0,$$

$$f_1\left(\frac{1}{n}\right)f_1(n)a = 0,$$

$$a = 0.$$

Вот и доказали.