Model ## (Beta(α , β)) X has a Beta(α , β) distribution us. the parameters α , $\beta > 0$ if its PDF is

$$f(x;\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \quad 0 \le x \le 1$$

$$(6 \cdot \#\#)$$

(A challenging exercise)

Exercise ## , Let (X_1, X_2) be a continuous random vector with joint PDF $f_X(x_1, x_2)$ and for which there exists an open subset $U \subseteq \mathbb{R}^2$ such that $P((X_1, X_2) \in U) = 1$. Let $(Y_1, Y_2) = g(X_1, X_2) = (g_1(X_1, X_2), g_2(X_1, X_2))$ be such that $g = (g_1, g_2)$ is a one-to-one function on U and

$$\det\begin{pmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} \\ \frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_2} \end{pmatrix} \neq 0,$$

where det A denotes the determinant of matrix A, Let $h = (h_1, h_2)$ be the pointwise inverse of g so that $(X_1, X_2) = h(Y_1, Y_2) = (h_1(Y_1, Y_2), h_2(Y_1, Y_2))$. Then (Y_1, Y_2) is a continuous random vector and its joint PDF is given by

$$f_Y(y_1,y_2) = f_X(h(y_1,y_2))$$
 det $\begin{pmatrix} \frac{\partial h_1}{\partial y_1} & \frac{\partial h_1}{\partial y_2} \\ \frac{\partial h_2}{\partial y_1} & \frac{\partial h_2}{\partial y_2} \end{pmatrix}$, $(y_1,y_2) \in g(u)$.

Now if X1 and X2 are independent random variables such that X1 ~ Gamma (a1, 1) and X2 ~ Gamma (a2,1), use the above result, known as the transformation theorem, to show that $X_1 = X_1/(X_1 + X_2)$ has a Beta (a1, a2) distribution, Hint: Consider the transformation, $(X_1, X_2) = g(X_1, X_2) = (X_1/(X_1 + X_2), X_2)$.

Labork ## (Sampling from the Beta distribution)

- 1. Use the result in the previous Exercise to generate 1000 samples from the Beta (2,4) distribution by using the MATLAB gamrnd function for generating samples from the Gamma distribution.
- 2. Obtain the histogram for the generated Beta samples and superimpose on it the curve for the Beta (2,4) PDF (which can be evaluated using the MATLAB betapdf function).