

RTR532 2018 Spring Lecture 05

Digital filters with VHDL II (continued)

Administrative stuff

- PS01 PS04 results ETA May 6th
- Final project templates ETA May 6th
- Final project templates to be filled in by May 10th

Meanwhile

- Kriss & Gatis attended course «Expert VHDL Design» by Doulos
- https://www.doulos.com/c ontent/training/vhdl exper t.php

Filter defined by transfer function

$$H(z) = \frac{B(z)}{A(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_N z^{-N}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + A_M z^{-M}}$$

 Question remains - how to implement it in hardware ?

How do you start designing a filter?

- Choose type bandpass, low pass, high pass
- Cutoff frequency, phase response linearity
- Frequencies normalized
- Coefficients using filter design tools (Matlab filter design)

Digital filter forms – comparison (figures from wikipedia)

Direct Form I

Direct Form II

Digital filter forms - comparison

	Direct Form I	Direct Form II
Multiplication operations	5	5
Accumulation operations	3	4
Delay taps	4	2

FPGA Available resources

	Low end FPGA Spartan6 LX9	Middle range FPGA KU3P	High end FPGA VU13P
Flip Flops	11'440	325'000	3'456'000
Multiplier and accumulator-s	16	1′368	12'288 (called DPS slices)
Transceiver bandwidth	0	32.75 * 16 = 524 Gb/s	32.75 * 128 = 4192 Gb/s
Price (\$)	20	1500	15'000++

Case study – Spartan6 LX9

• Delay tap flip flops = bit width, e.g. 18

	Direct Form I	Direct Form II
Multiplications	5	5
Accumulations	3	4
Delay taps	4	2
	(4*18=72 flip flops)	(2*18=36 flip flops)

	Low end FPGA Spartan6 LX9
Flip Flops	11'440
Multiplier and accumulators	16
Transceiver bandwidth	0
Price (\$)	20

- We can fit in Spartan-6 LX9:
 - 2nd order IIR filter 5/16 multipliers, 2*2*18 = 72 flip flops
 - 3rd order IIR filter 7/16 multipliers, 3*2*18 = 108 flip flops
 - ..up to 7th order IIR filter 15/16 multipliers, 7*2*18 = 252 flip flops
 - 16th order FIR filter
- Problem limited DSP slices (multiplier elements)

How to find data about FPGA Resources?

Several ways:

- 1. You know the IC search by part number, check datasheet
- 2. You design the board choose FPGA suitable for application

Multipliers are also called DSP slices, DSP blocks, etc... Pay attention!

FPGA Multiplier (Spartan-6)

UG389_c1_03_111411

11

Filter design approaches

- Standard / simple:
 - Pipelined filter architecture
- Advanced filter design architectures:
 - Multi-Cycle filters
 - Shared multiplier

Pipelined filter architecture

One clock – sample clock

Draw pipelined filter architecture for 2nd order FIR filter.

Multi-cycle filters

- Two clocks:
 - Sample clock (slower)
 - Multiplication and accumulation clock (faster)
- Draw pipelined filter architecture for 2nd order FIR filter (one multiplier).

Shared multipliers

- Hardware resource used in multiple filters
- Filters' outputs phased

Draw shared multiplier filter architecture for two
 2nd order FIR filters (one multiplier)

Thoughts on filter type (FIR / IIR) and order

- Required cutoff slope depends on filter order
- High order IIR filters are sensitive to quantization errors (fixed point rounding, truncation)
- Possible solution cascade of «simple filter»

Bi-Quad (2nd order) filters

- 2nd order FIR part
- 2nd order IIR part
- Cascade as required

$$H(z) = \prod_{i=1}^{N} \left(\frac{b_{i0} + b_{i1} Z^{-1*} + b}{1 + a_{i0} Z^{-1*} + a_{i1} Z^{-2}} \right)$$

VHDL BiQuad IIR implementation example

Direct Form I – BiQuad

- Low pass, fl = 500Hz, Fs = 48000Hz, PBR = .08 dB, SBR = .03 dB
- Input 18b signed
- Coefficients 32b (form 2 bit integer, 30 bits fraction)
- Output 18b signed
- Coefficients:
 - B0=0.0010232
 - B1=0.0020464
 - B2=0.0010232
 - A1=-1.9075016
 - A2=0.9115945
- Based on:

https://eewiki.net/display/LOGIC/IIR+Filter+Design+in+VHDL+Targeted+for+18-Bit%2C+48+KHz+Audio+Signal+Use — make sure to check it out later, download the code.

Reading more

- https://se.mathworks.com/help/signal/ug/iir-filterdesign.html
- https://eewiki.net/display/LOGIC/IIR+Filter+Design +in+VHDL+Targeted+for+18-Bit%2C+48+KHz+Audio+Signal+Use
- https://www.xilinx.com/support/documentation/w hite_papers/wp330.pdf