

Recursive quantum algorithms for integrated optics

Gelo Noel M. Tabia

Institute of Computer Science, University of Tartu, Estonia

Motivation

It is known that any d-dimensional unitary can be achieved by a linear optical network with d modes and $O(d^2)$ gates.

Reck triangular array of beam splitters for d=4.

However, for specific unitary families, we do not know what the optimal network is.

Main contribution

We provide matrix decompositions for quantum Fourier transforms and Grover inversion that operate on 2d modes using two copies of the same operation on d modes.

Preliminaries

The elementary gates are phase shifters and beam splitters. For a phase shifter with phase parameter θ ,

$$P_{\theta} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}$$

 $\begin{array}{c} \\ \theta \\ \\ \hline \end{array}$

For a beam splitter with reflectivity ϵ ,

$$B_{\epsilon} = \begin{pmatrix} \sqrt{\epsilon} & \sqrt{1 - \epsilon} \\ \sqrt{1 - \epsilon} & -\sqrt{\epsilon} \end{pmatrix}$$

Let $P_{\theta}(j)$ be a phase shift θ on mode j. Let $B_{\epsilon}(i,j)$ denote a beam splitter with reflectivity ϵ on modes i and j. Note that B_0 is equivalent to a swap operation.

Quantum Fourier transforms

This is a discrete Fourier transform on quantum states used in algorithms such as phase estimation.

$$F_4 = \frac{1}{\sqrt{4}} \begin{pmatrix} 1 & 1 & 1 & 1\\ 1 & i & -1 & -i\\ 1 & -1 & 1 & -1\\ 1 & -i & -1 & i \end{pmatrix}$$

Below is the circuit for F_8 built using two copies of F_4 . It exhibits a pattern for the general case described in Box 1.

Let Σ_{2d} denote the permutation $(1,2,...,2d)\mapsto (1,d+1,2,d+2,....,d,2d)$. It uses d(d-1)/2 swap operations. Let Σ_{2d}^{-1} denote its inverse.

- 1) Apply the circuit for Σ_{2d}^{-1} .
- 2) Apply the circuit for Z_{2d} . 2) Apply F_d on modes 1 to d and F_d on modes d+1 to 2d.
- 3) Use the following phase shifters: $P_{\frac{\pi}{d}}(d+2),...,P_{\frac{k\pi}{d}}(d+k+1),...,P_{\frac{(d-1)\pi}{d}}(2d)$
- 4) Apply the circuit for Σ_{2d} .
- 5) Use the following beam splitters: $B_{1/2}(1,2)$, $B_{1/2}(3,4)$,..., $B_{1/2}(2d-1,2d)$
- 6) Apply the circuit for Σ_{2d}^{-1} .

Grover's algorithm

This is a quantum search on an unstructured database, which achieves a quadratic speedup over the classical case.

Here we describe a recursive circuit for W. To start, consider the unitary V_4 below and how it is used to construct V_8 . The recipe for V_{2d} given V_d is described in Box 2.

The following shows how W_8 is built using two copies of the circuit for V_4 and W_4 . The procedure for W_{2d} using V_d and W_d is described in Box 3.

Performance under realistic errors

The fidelity histograms for 3-qubit QFT (left) and 8-item Grover search (right) with 10^7 trials is given below.

Error model: 4% on beam splitter reflectivities and 5% absorption loss in phase shifters

Acknowledgement: This work is funded by institutional research grant IUT2-1 from the Estonian Research Council and by the European Union through the European Regional Development Fund.

Contact information: Gelo Noel Macuja Tabia (gelo.tabia@ut.ee) Institute of Computer Science, University of Tartu, J.Liivi 2, 50409, Tartu, Estonia