1/1 WPAT - ©Thomson Derwent

Accession Nbr:

2001-410092 [44]

Sec. Acc. CPI:

C2001-124399

Title:

Production of (meth)acrolein and (meth)acrylic acid, useful as basic chemicals, by continuous gas phase oxidation of precursor uses reactor with heat exchanger plates

Derwent Classes:

A41 E17

Patent Assignee:

(BADI) BASF AG

Inventor(s):

HECHLER C; MACHHAMMER O; OLBERT G; STABEL U; ZEHNER P

Nbr of Patents:

6

Nbr of Countries:

22

Patent Number:

DE19952964 A1 20010510 DW2001-44 C07C-057/05 11p * AP: 1999DE-1052964 19991103

🖼 WO 2001 32301 A1 2001 0510 DW 2001-44 B01 J-008/02 Ger

AP: 2000WO-EP10851 20001103

DSNW: JP US

DSRW: AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

TR

EP1232004 A1 20020821 DW2002-62 B01J-008/02 Ger

FD: Based on WO200132301

AP: 2000EP-0975991 20001103; 2000WO-EP10851 20001103

DSR: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

TR

☑JP2003513056 W 20030408 DW2003-33 C07C-027/00 29p

FD: Based on WO200132301

AP: 2000WO-EP10851 20001103; 2001JP-0534499 20001103

EP1232004 B1 20040616 DW2004-39 B01J-008/02 Ger

This Page Diction (400)200;

FD: Based on WO200132301

AP: 2000EP-0975991 20001103; 2000WO-EP10851 20001103

DSR: BE DE FR NL

🖾 DE50006848 G 20040722 DW2004-50 B01J-008/02

FD: Based on EP1232004; Based on WO200132301

AP: 2000DE-5006848 20001103; 2000EP-0975991 20001103; 2000WO-

EP10851 20001103

Priority Details:

1999DE-1052964 19991103

IPC s:

C07B-061/00 B01J-008/02 C07C-027/00 C07C-057/05 B01J-019/24 C07C-045/27 C07C-045/35 C07C-047/22 C07C-051/235 C07C-057/055.

Abstract:

DE19952964 A

NOVELTY - In continuous gas phase oxidation of 3 or 4 carbon (C) precursors to (meth)acrolein and/or (meth)acrylic acid in the presence of a catalyst in a reactor with reaction mixture feed at one end and discharge at the opposite end, the reaction chamber contains devices through which heat exchange medium flows, for removing the heat of reaction, the devices are heat exchanger plates.

USE - (Meth)acrolein and (meth)acrylic acid are useful as basic chemicals. ADVANTAGE - The usual tube aggregate reactors do not give isothermal conditions across the reactor cross-section. To avoid hotspots, the maximum operating temperature must be limited with large amounts of heat exchange medium. There is also a technical upper limit to the reactor diameter and increasing the capacity by increasing the length increases the pressure drop. Both this and very high conversion reduce the selectivity. The present process is more economical, especially in terms of the cost of heat exchange medium, and gives better selectivity, even at very high conversion, whilst the plant has greater capacity. It is also possible to use a boiling liquid, especially water, as cooling medium, so that no secondary cooling medium is needed. (Dwg.0/5)

Manual Codes:

CPI: A01-D05 A01-D08 E10-C04G E10-D01A

Update Basic:

2001-44

Update Basic (Monthly):

2001-08

Update Equivalents:

2001-44; 2002-62; 2003-33; 2004-39; 2004-50

Update Equivalents (Monthly):

2001-08; 2002-09; 2003-05; 2004-06; 2004-08

This Page Grown juspio)

(19) BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENT- UND MARKENAMT

® Offenlegungsschrift

_® DE 199 52 964 A 1

(7) Aktenzeichen:

199 52 964.7

(2) Anmeldetag:

3. 11. 1999

(3) Offenlegungstag:

10. 5. 2001

(f) Int. Cl.⁷: C 07 C 57/05

C 07 C 45/27 C 07 C 47/22

(7) Anmelder:

BASF AG, 67063 Ludwigshafen, DE

(74) Vertreter:

Patent- und Rechtsanwälte Bardehle, Pagenberg, Dost, Altenburg, Geissler, Isenbruck, 68165 Mannheim

② Erfinder:

Hechler, Claus, Dr., 67063 Ludwigshafen, DE; Machhammer, Otto, Dr., 68163 Mannheim, DE; Olbert, Gerhard, 69221 Dossenheim, DE; Stabel, Uwe, Dr., 67166 Otterstadt, DE; Zehner, Peter, Dr., 67071 Ludwigshafen, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Werfahren zur katalytischen Gasphasenoxidation zu (Meth)Acrolein und/oder (Meth)Acrylsäure
- Es wird ein Verfahren zur kontinuierlichen Gasphasenoxidation von C_{3} und C_{4} -Vorläufern zu (Meth)acrolein und/oder (Meth)acrylsäure in Gegenwart eines Katalysators in einem Reaktor vorgeschlagen, der an einem Reaktorende eine Zuführung für das Reaktionsgemisch und am entgegengesetzten Reaktorende eine Abführung für das Reaktionsgemisch aufweist und der mit im Reaktorinnenraum angeordneten Einrichtungen zur Abführung der Reaktionswärme ausgestattet ist, die von einem Wärmetauschmittel durchströmt sind und als Wärmetauscherplatten ausgebildet sind.

1

Beschreibung

Die Erfindung betrifft ein Verfahren zur kontinuierlichen Gasphasenoxidation zu (Meth)acrolein und/oder (Meth)acrylsäure. Der Begriff (Meth)acrolein steht im folgenden für "Acrolein oder Methacrolein", analog bezeichnet (Meth)acrylsäure, die Substanzen Acrylsäure oder Methacrylsäure.

(Meth)acrolein und (Meth)acrylsäure sind bedeutende Grundchemikalien.

Die bekannten großtechnischen Verfahren zur Gasphasenoxidation zu (Meth)acrolein und/oder (Meth)acrylsäure (beispielsweise nach DE-A-19 62 431), werden in der Regel in Rohrbündelreaktoren durchgefiilut, die eine große Anzahl, von z. Zt. bis zu 28 000, zwischen Rohrböden eingeschweißte Reaktionsrohre aufweisen. Vorzugsweise wird hierbei bei Temperaturen zwischen 200 und 450°C und gegebenenfalls erhöhtem Druck gearbeitet. Die Reaktionsrohre sind mit dem heterogenen Oxidationskatalysator gefüllt und werden vom Reaktionsgemisch durchströmt. Der 20 Reaktorinnenraum zwischen den Reaktionsrohren ist von einem Wärmetauschmittel durchströmt, in der Regel eine Salzschmelze, häufig eine Mischung aus Kaliumnitrat, Natriumnitrit und Natriumnitrat, das die Reaktionswärme abführt.

Derartige Salzschmelzen können im Temperaturbereich von etwa 200 bis 480°C drucklos d.h. unter hydrostatischem Druck als primärer Wärmeträger zur Wärmeabfuhr verwendet werden. Das Salz wird zwischen Reaktoreintritt und -austritt in der Regel im Mittel um ca. 2°C aufgeheizt. 30 Durch Erzeugung von Dampf mit einem Druck von etwa 20 bis 60 bar wird das Salz in einem sekundären Kühlkreis auf die Zulauftemperatur zurückgekühlt.

Zur Erzielung eines guten Wärmeübergangskoeffizienten durch eine ausreichend hohe Strömungsgeschwindigkeit des 35 Salzes um die Rohre wird das Salz im Reaktor im Querstrom zu den Rohren mit mehrfacher Umlenkung sowie im Gegenstrom zum Reaktionsgas geführt. Hierdurch sind im Reaktor radiale Temperaturunterschiede in der Salzschmelze bis zu 7°C vorhanden.

Die Temperaturregelung des Reaktors erfolgt über die Salzeintrittstemperatur, die zur Vermeidung von Totaloxidation so niedrig gewählt werden muß, daß am Ort der höchsten Temperatur im Reaktor, dem Hotspot, die gewünschte, reguläre Reaktion noch optimal abläuft.

Derartige Reaktoren haben somit zum einen den Nachteil, daß infolge der Radialströmung des Wärmetauschmittels keine Isothermie über den Reaktorquerschnitt erreicht werden kann, sondern stets radiale Temperaturdifferenzen in der Salzschmelze zwischen den innen gelegenen Reaktionsrohren im Vergleich zu weiter außen gelegenen Reaktionsrohren auftreten. Dies macht sich insbesondere im Hotspot-Bereich negativ bemerkbar mit der Folge, daß die Maximaltemperatur, bei der der Reaktor insgesamt betrieben werden kann, begrenzt werden muß, wofür hohe Mengenströme an 55 Wärmetauschmittel notwendig sind.

Ein weiterer Nachteil ist, daß der Durchmesser von Rohrbündelreaktoren durch Abmessungen und Gewicht der Rohrböden eine technische Obergrenze hat. Die Kapazität der Anlage kann somit nur durch Vergrößern der Reaktorlänge erhöht werden. Mit zunehmender Höhe der Katalysatorschüttung in den Reaktorrohren nimmt jedoch der Druckverlust zu mit ungünstigen Auswirkungen auf die Selektivität

Das bekannte Verfahren in Rohrbündelreaktoren hat den 65 weiteren Nachteil, daß bei sehr hohen Umsätzen die Selektivität aufgrund der Temperaturinhomogenitäten stark absinkt. Zum Erreichen einer insgesamt hohen Ausbeute ist es

2

dagegen anzustreben, alle Reaktionsrohre gleichförmig bei einem optimalen Wert von Umsatz und Selektivität zu betreiben.

Durch Ablagerungen von Nebenprodukten auf dem Katalysator kommt es dazu, daß außen liegende Rohre im Verlauf des Betriebs erhöhten Druckverlust aufweisen. Hierdurch ergibt sich eine uneinheitliche Durchströmung der Rohre, was niedrigere Umsatzraten in den äußeren Rohren zur Folge hat. Zusätzlich zum Umsatzverlust in diesen außen liegenden Rohren kommt es zu einer erhöhten Durchströmung der innen liegenden Rohre, so daß dort der Druckverlust steigt und die Ausbeute sinkt. Auch wenn nur Ablagerungen am Anfang eines Rohres vorhanden sind, wird die Reaktionsrate der Katalysatorschüttung auf der gesamten Rohrlänge beeinträchtigt.

Die DE-C-197 54 185 beschreibt beispielsweise einen Reaktor mit einem zylinderförmigen Reaktorbehälter, wobei im Reaktorbehälter als Thermobleche ausgebildete Wärmetauscherplatten in vertikaler Orientierung auf dem Siebboden des Reaktors nebeneinander, mit vorgegebenem Abstand voneinander angeordnet sind. Die Platten werden von einem Kühlmedium durchströmt, das im Bereich der Behälterdecke über geeignete Einrichtungen den Wärmetauscherplatten zugeführt und im Bereich des Behälterbodens über geeignete Einrichtungen aus den Wärmetauscherplatten abgeführt wird. Zwischen den Wärmetauscherplatten wird im Gegenstrom zum Kühlmedium ein gasförmiges Reaktionsmedium, mit Zuführung im Bereich des Behälterbodens und Abführung im Bereich der Behälterdecke geleitet. Die Druckschrift gibt jedoch keinen Hinweis darauf, daß ein derartiger Reaktor besonders vorteilhaft für die katalytische Gasphasenoxidation zu (Meth)acrolein (Meth)acrylsäure eingesetzt werden kann, wobei insbesondere die Selektivität der Reaktion zum jeweiligen Hauptprodukt gegenüber der Durchführung der Reaktion in einem Rohrbündekeaktor verbessert ist.

Die DE-A-197 19 375 beschreibt ein Verfahren zur Herstellung von Ethylenoxid durch katalytische Gasphasenoxidation von Ethylen mit Sauerstoff in einem Reaktor wobei der Katalysator in Reaktionszonen zwischen Wärmetauscherplatten angeordnet ist und vom gasförmigen Reaktionsgemisch durchströmt wird. Bei der katalytischen Gasphasenoxidation zu Ethylenoxid wird eine vergleichsweise geringe Wärmemenge je Volumeneinheit des Katalysators entwickelt.

Es ist Aufgabe der Erfindung, ein Verfahren zur Herstellung (Meth)acrolein und/oder (Meth)acrylsäure zur Verfügung zu stellen, daß sich durch eine erhöhte Wirtschaftlichkeit, insbesondere bezüglich des Wärmetauschmittelaufwandes sowie durch eine verbesserte Selektivität auch bei sehr hohen Umsätzen sowie bei Anlagen mit großer Kapazität kennzeichnet.

Die Erfindung geht aus von einem Verfahren zur kontinuierlichen Gasphasenoxidation von C₃- oder C₄-Vorläufern zu (Meth)acrolein und/oder (Meth)acrylsäure in Gegenwart eines Katalysators in einem Reaktor mit Zuführung für das Reaktionsgemisch an einem Reaktorende und Abführung am gegenüberliegenden Reaktorende sowie mit im Reaktorinnenraum angeordneten Einrichtungen zur Abführung der Reaktionswärme, die von einem Wärmetauschmittel durchströmt sind.

Die Lösung ist dadurch gekennzeichnet, daß die Einrichtungen Wärmetauscherplatten sind.

In überraschender Weise wurde gefunden, daß die katalytische Gasphasenoxidation zu (Meth)acrolein und/oder (Meth)acrylsäure trotz der gegenüber der Ethylenoxidherstellung wesentlich höheren Wärmeentwicklung je Volumeneinheit Katalysator und der starken Hotspot-Problema-

4

tik, die bei der Ethylenoxidherstellung von geringer Bedeutung ist, in einem Reaktionsraum zwischen Wärmetauscherplatten und somit einer zweidimensional, über den Reaktorquerschnitt ausgedehnten Katalysatorschüttung, durchgeführt werden kann und die Reaktion dennoch beherrschbarbleibt. Dabei wurde eine nicht vorhersehbare Selektivitätssteigerung der Bildung von (Meth)acrolein und/oder (Meth)acrylsäure erreicht.

Als Ausgangsverbindungen können grundsätzlich alle geeigneten C₃- bzw. C₄-Edukte, insbesondere C₃- bzw. C₄-Alkanen, -Altrenen, -Alkanolen und/oder -Alkanalen und/oder Vorstufen hiervon, besonders vorteilhaft von Propen, Acrolein, tert.-Butanol, Isobuten, Isobutan, Isobutyraldehyd, Methacrolein, Isobuttersäure oder Methyl-tert.-butylether hergestellt. Weiterhin können alle Vorstufen der genannten Verbindungen verwendet werden, bei denen sich die eigentliche Ç₃-/C₄-Ausgangsverbindung erst intermediär während der Gasphasenoxidation bildet. Beispielhaft genannt für die Herstellung der Methacrylsäure sei Methyl-tert.-butylether oder Isobuttersäure.

Besonders vorteilhaft ist die katalytische Gasphasenreaktion von Propen und/oder Acrolein zu Acrylsäure mit molekularem Sauerstoff.

Vorzugsweise wird hierbei bei Temperaturen zwischen 200 und 450°C und ggf. erhöhtem Druck gearbeitet. Vorzugsweise werden als heterogene Katalysatoren oxidische Mehrkomponenten-Katalysatoren auf der Basis der Oxide von Molybdän, Bismut und Eisen in der 1. Stufe (Oxidation von Propen zu Acrolein) und der Oxide von Molybdän und Vandium in der 2. Stufe (Oxidation von Acrolein zu Acryl- 30 säure) eingesetzt. Wird Propan als Ausgangsstoff verwendet, so kann dieses zu einem Propen-/Propan-Gemisch umgesetzt werden durch katalytische Oxidehydrierung, wie in US-A-5,510,558 beschrieben, durch homogene Oxidehydrierung, entsprechend in CN-A-1 105 352 oder durch katalytische Dehydrierung, wie in EP-A-0 253 409 beschrieben. Bei Einsatz eines Propen-/Propan-Gemischs wirkt Propan als Verdünnungsgas. Geeignete Propen-/Propan-Gemische sind auch Raffineriepropen (70% Propen und 30% Propan) oder Crackerpropen (95% Propen und 5% Propan). Grundsätzlich können Propen-/Propan-Gemische wie die o. g. mit Sauerstoff oder Luft oder einem Gemisch aus Sauerstoff und Stickstoff jeder Zusammensetzung zu Acrolein und Acrylsäure oxidiert werden.

Bei der katalytischen Gasphasenoxidation wird nicht 45 reine Acrylsäure, sondern ein gasförmiges Gemisch erhalten, das neben der Acrylsäure als Nebenkomponenten im wesentlichen nicht umgesetztes Acrolein und/oder Propen, Wasserdampf, Kohlenmonoxid, Kohlendioxid, Stickstoff, Propan, Sauerstoff, Essigsäure, Propionsäure, Formaldehyd, 50 weitere Aldehyde und Maleinsäureanhydrid enthalten kann. Üblicherweise enthält das Reaktionsproduktgemisch, jeweils bezogen auf das gesamte Reaktionsgemisch, 1 bis 30 Gew.-% Acrylsäure, 0,05 bis 1 Gew.-% Propen und 0,05 bis 1 Gew.-% Acrolein, 0,05 bis 10 Gew.-% Sauerstoff, 0,05 bis 2 Gew.-% Essigsäure, 0.01 bis 2 Gew.-% Propionsäure, 0,05 bis 1 Gew.-% Formaldehyd, 0,05 bis 2 Gew.-% Aldehyde, 0,01 bis 0,5 Gew.-% Maleinsäureanhydrid und 20 bis 98 Gew.-%, vorzugsweise 50 bis 98 Gew.-% inerte Verdünnungsgase. Als inerte Verdünnungsgase sind insbesondere 60 gesättigte C₁-C₆-Kohlenwasserstoffe, wie 0 bis 90 Gew.-% Methan und/oder Propan, daneben 1 bis 30 Gew.-% Wasserdampf, 0,05 bis 15 Gew.-% Kohlenoxide und 0 bis 90 Gew.-% Stickstoff, jeweils bezogen auf 100 Gew.-% Verdünnungsgas, enthalten.

Die Methacrylsäure kann analog zu Acrylsäure durch katalytische Gasphasenreaktion von C₄-Ausgangsverbindungen mit molekularem Sauerstoff hergestellt werden. Beson-

ders vorteilhaft ist die Methacrylsäure, z. B. durch katalytische Gasphasenoxidation von Isobuten, Isobutan, tert.-Butanol, Isobutyraldehyd, Methacrolein oder Methyl-tert.-butylether erhältlich. Als Katalysatoren werden ebenfalls übergangsmetallische Mischoxidkatalysatoren (z. B. Mo, V, W und/oder Fe) verwendet. Besonders geeignete Verfahren sind solche, bei denen die Herstellung ausgehend von Methacrolein erfolgt, insbesondere dann, wenn das Methacrolein durch gasphasenkatalytische Oxidation von tert.-Butanol, Isobutan oder Isobuten oder durch Umsetzung von Formaldehyd mit Propionaldehyd gemäß EP-\u00b3-0 092 097 erzeugt wird. Somit besteht auch die Möglichkeit, Methacrylsäure zweistufig herzustellen durch (1) Kondensation von Propionaldehyd mit Formaldehyd (in Gegenwart eines sekundären Amins als Katalysator) zu Methacrolein und (2) anschließende Oxidation des Methacroleins zu Methacryl-

Ebenso wie bei der Herstellung der Acrylsäure wird nicht reine Methacrylsäure, sondern ein gasförmiges Gemisch erhalten, das neben der Methacrylsäure als Nebenkomponenten im wesentlichen nicht umgesetztes Methacrolein und/oder Wasserdampf, Kohlenmonoxid, Kohlendioxid, Stickstoff, Sauerstoff, Essigsäure, Propionsäure, weitere Aldehyde und Maleinsäureanhydrid enthalten kann. Das erfindungsgemäße Verfahren wird insbesondere dann eingesetzt, wenn das Reaktionsgemisch 0,02 bis 2 Gew.-% Methacrolein bezogen auf das gesamte Reaktionsgemisch und ansonsten im wesentlichen die gleichen entsprechenden Bestandteile wie bei der Herstellung der Acrylsäure enthält.

Die Form des Reaktors ist grundsätzlich keinen Einschränkungen unterworfen, es können übliche zylindrische Reaktoren, jedoch auch quaderförmige Reaktoren eingesetzt werden.

Ebenso bestehen keine Einschränkungen bezüglich der Ausrichtung der Reaktoren; die Reaktoren können grundsätzlich in jeder Position ausgerichtet sein, wobei für den Sonderfall der zylindrischen Reaktoren eine vertikale Ausrichtung in der Regel bevorzugt ist.

Erfindungsgemäß werden für das Verfahren zur kontinuierlichen Gasphasenoxidation zu (Meth)acrolein und/oder (Meth)acrylsäure Reaktoren eingesetzt, die mit Wärmetauscherplatten ausgestattet sind.

Wärmetauscherplatten sind überwiegend flächenförmige Gebilde, die einen mit Zu- und Abführleitungen versehenen Innenraum mit geringer Dicke im Verhältnis zur Fläche aufweisen. Sie werden in der Regel aus Blechen, häufig aus Stahlblechen, hergestellt. Je nach Anwendungsfall, insbesondere den Eigenschaften des Reaktionsmediums sowie des Wärmetauschmittels können jedoch spezielle, insbesondere korrosionsfeste, Werkstoffe zum Einsatz kommen. Die Zu- bzw. Abführeinrichtungen für das Wärmetauschmittel sind in der Regel an einander entgegengesetzten Enden der Wärmetauschplatten angeordnet; bei der Reaktoren mit Wärmetauscherplatten für die Durchführung von Reaktionen mit hoher Wärmetönung, wobei es sich gleichermaßen um exotherme wie auch um endotherme Reaktionen handeln kann.

Bezüglich der in dem erfindungsgemäßen Verfahren einsetzbaren Wärmetauschmittel gibt es keine grundsätzlichen Einschränkungen. Es können sowohl anorganische wie auch organische flüssige Wärmetauschmittel eingesetzt werden, die bei der Reaktionstemperatur der katalytischen Gasphasenoxidation im flüssigen Aggregatzustand verbleiben oder teilweise oder ganz verdampfen.

Besonders vorteilhaft ist es hierbei, ein Wärmetauschmittel einzusetzen, das bei der Reaktionstemperatur der katalytischen Gasphasenoxidation zumindest teilweise verdampft. Besonders bevorzugt ist hierfür Wasser. Durch Ausnutzung •

der Siedekühlung wird hierbei eine effiziente Wärmeabführung gewährleistet, wobei für die Abführung der selben Wärmemenge gegenüber dem Einsatz eines Wärmetauschmittels, das seinen Aggregatzustand nicht ändert, eine wesentliche Einsparung der erforderlichen Menge erreicht wird.

5

Bei Anordnung des Katalysators in einer Schüttung um die Wärmetauscherplatten ist von Vorteil, daß sich das Reaktionsgas im Falle von lokalen Verlegungen nach dem Vorbeiströmen an der Verengung wieder auf den vollen Katalysatorquerschnitt zwischen zwei Wärmetauscherplatten verteilen kann und der gesamte Reaktionsquerschnitt zum Umsatz beitragen kann.

Siedekühlung kann sowohl im Gleich- wie auch im Gegenstrom erfolgen. Bei Betrieb im Gleichstrom mit Anströmung von unten besteht zusätzlich die Möglichkeit, den Stand der siedenden Flüssigkeit so zu regulieren, daß gegen Ende der Reaktionsrohre eine geringere Wärmeabfuhr erfolgt und durch das dort nun höhere Temperaturniveau die Gesamtausbeute erhöht wird.

Bei Siedekühlung stellt sich auf der Kühlmediumseite entsprechend der Temperatur ein definierter Dampfdruck ein (bei Wasser Werte im Bereich von ca. 20 bis 120 bar), so daß eine entsprechend druckfeste Auslegung der Kühlmediumseite des Apparats erforderlich ist.

Erfindungsgemäß wird das Reaktionsgemisch an einem Reaktorende dem Reaktorinnenraum zwischen den Wärmetauscherplatten zugeführt und am entgegengesetzten Reaktorende abgeführt. Das Reaktionsgemisch durchströmt somit den Reaktor durch den Zwischenraum zwischen den Wärmetauscherplatten. Dadurch findet eine ständige Quervermischung des Reaktionsgemisches statt mit der Folge einer hohen Homogenität des selben. Dadurch kann bei vorgegebenem Umsatz eine wesentlich bessere Selektivität gegenüber einer Verfahrensführung erreicht werden, die eine Quervermischung nicht gewährleistet, wie es beispielsweise bei der Durchführung der Reaktion in den Reaktionsrohren eines Rohrbündelreaktors der Fall ist.

Bezüglich der Anordnung der Wärmetauscherplatten im Reaktor gibt es grundsätzlich keine Einschränkungen; die 40 Wärmetauscherplatten können beispielsweise spiralförmig, konzentrisch oder radial im Reaktor angeordnet sein.

Besonders bevorzugt wird eine Gleichstromführung von Wärmetauschmittel und Reaktionsgemisch durch den Reaktor geführt. Dadurch wird eine bessere Anpassung an das 45 Temperaturprofil der Reaktion, mit Hotspot in einem früheren Reaktionsstadium, gewährleistet.

Besonders vorteilhaft werden Wärmetauscherplatten eingesetzt, die keilförmig ausgebildet sind, d. h. deren Wärmetauscherplatten, von Wärmetauschmittel durchströmter Innenraum bevorzugt kontinuierlich in Richtung des Reaktionsgemischstromes abnimmt. Derartige keilförmige Wärmetauscherplatten können beispielsweise hergestellt werden, indem zwei Bleche übereinander gelegt und in zunehmend größeren Abständen verschweißt werden. Die Platten 55 werden anschließend in eine leicht geneigte Aufblasvorrichtung eingeklemmt und auf einen vorgegebenen Abstand aufgeblasen.

Mittels keilförmig ausgebildeter Wärmetauscherplatten kann die Anpassung an das Temperaturprofil der Reaktion 60 optimiert werden.

In einer weiteren vorteilhaften Ausgestaltung können die Wärmetauscherplatten vollständig oder partiell längsverschweißt sein. Dazu werden jeweils zwei Bleche übereinander gelegt, durch Rollnahtschweißung über Längsnähte verschweißt und mittels einer geeigneten Aufblasvorrichtung aufgeblasen.

Gemäß einer weiteren Ausführungsvariante sind im Re-

aktorinnenraum und denselben im wesentlichen vollständig ausfüllend ebene, rechteckige, parallel zueinander ausgerichtete Bleche eingebracht sind, wobei an jedem Blech jeweils zwei gegenüberliegende Seiten in die selbe Richtung rechtwinklig abgekantet sind und beim jeweils darauffolgenden Blech die anderen beiden einander gegenüberliegenden Seiten in die selbe Richtung um den selben Abstand rechteckig abgekantet sind, dergestalt, daß jeweils quaderförmige Räume entstehen, wobei die jeweils benachbarten Räume im Querstrom vom Reaktionsgemisch beziehungsweise vom Wärmetauschmittel durchströmt werden.

Gemäß einer weiteren Ausgestaltung sind die Wärmetauscherplatten in Längsrichtung des Reaktors parallel zueinander angeordnet.

Der Katalysator kann in Form von Katalysatorkörpern in den Zwischenraum zwischen den Wärmetauscherplatten eingeführt werden. Das Einbringen und der Wechsel der Katalysatorschüttung ist dabei einfacher und gleichmäßiger gegenüber dem Einfüllen in die Reaktionsrohre eines Rohrbündelreaktors. Es entstehen größere zusammenhängende Reaktionsräume und die Verstopfungsgefahr der Katalysatorschüttung ist kleiner. Dies führt zu gleichmäßigen Umsätzen und damit höherer Selektivität.

Es ist jedoch auch möglich, zusätzlich oder alternativ zur 25 Katalysatorschüttung die Wärmetauscherplatten an ihren vom Reaktionsgemisch überströmten Außenseiten katalytisch zu beschichten. Wegen der im wesentlichen ebenen Form der Wärmetauscherplatten können diese im Vergleich zu Reaktionsrohren einfacher beschichtet werden.

Gemäß einer weiteren bevorzugten Ausführungsvariante können zwei oder mehrere Reaktionszonen mit getrennten Wärmetauschmittelkreisläufen in Richtung des Reaktionsgemischstromes angeordnet sein. Eine derartige Verfahrensvariante ist für die zweistufige Oxidation des C₃-Edukts zu Acrolein in einer ersten Verfahrensstufe mit Abführung der Reaktionswärme über einen ersten Stapel von Wärmetauscherplatten, Zwischenkühlung über einen zweiten Stapel von Wärmetauscherplatten und schließlich in der zweiten Oxidationsstufe zu Acrylsäure und Wärmeabführung über einen dritten Stapel von Wärmetauscherplatten besonders geeignet. Es ist jedoch auch möglich, unter Verzicht auf die Zwischenkühlung in einem Apparat mit lediglich zwei Stapeln von Wärmetauscherplatten die zweistufe Oxidation zu Acrylsäure durchzuführen.

Das erfindungsgemäße Verfahren hat somit den Vorteil, daß durch Einsatz von Kühlflächen mit außen liegender katalytischer Schüttung das Kühlmedium im Gleich- oder Gegenstrom zum Reaktionsgas geführt werden kann. Hierdurch wird im gesamten Reaktor in den einzelnen Reaktor Querschnitten eine Temperaturgleichverteilung erzielt, so daß die Hotspot-Temperatur über den gesamten Reaktorquerschnitt gleich ist, was zu verbesserter Ausbeute führt.

Besonders vorteilhaft ist die Verfahrensvariante mit Kühlung im Gleichstrom, weil die Temperatur des Kühlmediums bei Erreichen des Hotspots noch niedrig und die Kühlung dadurch sehr effektiv ist, wodurch der umzupumpende Mengenstrom an Kühlmittel erheblich reduziert werden kann.

Die weitere Verfahrensvariante, wonach als Kühlmedium eine siedende Flüssigkeit, insbesondere Wasser, eingesetzt wird, weist zusätzliche Vorteile auf die Wärmeabfuhr wird erheblich verbessert und bei Verwendung von Wasser ist zusätzlich kein sekundäres Kühlmedium erforderlich.

Die Erfindung wird im folgenden anhand einer Zeichnung näher erläutert.

In den Figuren werden gleiche oder entsprechende Merkmale mit gleichen Bezugsziffern versehen.

Fig. 1 stellt eine besonders bevorzugte Ausführungsform

7

eines zur Durchführung des Verfahrens besonders geeigneten Reaktors im Längsschnitt dar,

Fig. 1a einen Querschnitt durch den Reaktor aus Fig. 1, Fig. 1b einen Längsschnitt durch eine Wärmetauscherplatte des Reaktors aus Fig. 1,

Fig. 1c eine bevorzugte Anordnung der Schweißstellen der Wärmetauscherplatte aus Fig. 1b,

Fig. 2 einen Längsschnitt durch einen für die Durchführung des Verfahrens besonders geeigneten Reaktor mit Gleichstromführung von Reaktionsgemisch und Wärme- 10 tauschmittel.

Fig. 3 einen Längsschnitt durch eine weitere bevorzugte Ausführungsform eines für die Durchführung des Verfahrens besonders geeigneten Reaktors mit Gegenstromführung von Reaktionsgemisch und Wärmetauschmittel,

Fig. 4a einen vergrößerten Ausschnitt aus dem in Fig. 4 dargestellten Reaktor zur Verdeutlichung der Bauweise der Reaktorplatten,

Fig. 4b einen Querschnitt durch den in Fig. 4 dargestellten Reaktor und

Fig. 5 einen Längsschnitt durch einen Reaktor, der beispielhaft drei Reaktionszonen aufweißt.

Bei der Fig. 1 im Längsschnitt dargestellten Reaktor hat die Form eines Zylinders mit Zuführung des Reaktionsgemisches (1) im oberen Bereich und Abführung des Reaktionsgemisches (2) im unteren Reaktorbereich. Im Reaktorinnenraum sind in Reaktorlängsrichtung Wärmetauscherplatten (8) angeordnet, die die besonders bevorzugte keilförmige Ausbildung aufweisen. Die Reaktorplatten werden von einem Wärmetauschmittel durchströmt, daß über eine Zuführung (3) und eine Verteilerleitung (6) eingebracht und über eine Sammelleitung (7) und eine Abführleitung (4) abgeführt wird. Der Querschnitt in Fig. 1a verdeutlicht die im wesentlichen parallele Anordnung der Wärmetauscherplatten (8).

Die Fig. 1b und 1c machen die bevorzugte keilförmige Ausbildung der Wärmetauscherplatten (8) sowie deren Ausbildung durch miteinander punktverschweißte Bleche deutlich.

Fig. 2 zeigt beispielhaft einen Längsschnitt durch einen 40 Reaktor mit Gleichstromführung von Reaktionsgemisch und Wärmetauschmittel. Die Fig. 2 verdeutlicht, daß die Wärmetauscherplatten (8) der Flüssigkeitsspiegel des Wärmetauschmittels lediglich bis zu einer bestimmten Höhe steht, das Wärmetauschmittel also darüber verdampft. Die 45 Wärmeabführung findet somit durch Siedekühlung statt.

In Fig. 3 ist beispielhaft eine Gegenstromführung von Reaktionsgemisch und Wärmetauschmittel dargestellt.

Fig. 4 zeigt einen Längsschnitt durch einen quaderförmigen Reaktor; die Ausbildung der Wärmetauscherplatten (8) 50 ist im in Fig. 4a vergrößert dargestellten Ausschnitt verdeutlicht. Fig. 4b zeigt einen Querschnitt durch den in Fig. 4 dargestellten quaderförmigen Reaktor.

Der in Fig. 5 im Längsschnitt dargestellte Reaktor weist beispielhaft drei Reaktionszonen mit jeweils getrennten 55 Wärmetauschmittelkreisläufen auf.

Patentansprüche

1. Verfahren zur kontinuierlichen Gasphasenoxidation 60 von C₃- oder C₄-Vorläufern zu (Meth)acrolein und/ oder (Meth)acrylsäure in Gegenwart eines Katalysators in einem Reaktor mit Zuführung (1) für das Reaktionsgemisch an einem Reaktorende und Abführung (2) am entgegengesetzten Reaktorende sowie im Reaktorinnenraum angeordneten Einrichtungen (8) zur Abführung der Reaktionswärme, die von einem Wärmetauschmittel durchströmt sind, dadurch gekennzeich-

- net, daß die Einrichtungen (8) Wärmetauscherplatten sind.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein flüssiges Wärmetauschmittel eingesetzt wird, das beim Durchströmen der Wärmetauscherplatten (8) zumindest teilweise verdampft.
- 3. Verfahren nach Anspruch 1 oder 2, gekennzeichnet durch eine Gleichstromführung von Reaktionsgemisch und Wärmetauschmittel.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, gekennzeichnet durch eine keilförmige Ausbildung der Wärmetauscherplatten (8), wobei der von Wärmetauschmittel durchströmte Platteninnenraum bevorzugt kontinuierlich in Richtung des Reaktionsgemischstromes abnimmt.
- 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Wärmetauscherplatten (8) aus vollständig oder partiell längsverschweißten Blechen gebildet sind.
- 6. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß im Reaktorinnenraum und denselben im wesentlichen vollständig ausfüllend ebene, rechteckige, parallel zueinander ausgerichtete Bleche eingebracht sind, wobei an jedem Blech jeweils zwei gegenüberliegende Seiten in dieselbe Richtung rechtwinklig abgekantet sind und beim jeweils darauffolgenden Blech die anderen beiden einander gegenüberliegende Seiten in dieselbe Richtung um denselben Abstand rechteckig abgekantet sind, dergestalt, daß jeweils quaderförmige Räume entstehen, wobei die jeweils benachbarten Räume im Querstrom vom Reaktionsgemisch beziehungsweise vom Wärmetauschmittel durchströmt werden.
- 7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Wärmetauscherplatten (8) parallel zueinander angeordnet sind.
- 8. Verfahren nach Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die dem Reaktionsgemisch zugewandten Flächen der Wärmetauscherplatten vollständig oder teilweise katalytisch beschichtet sind.
- 9. Verfahren nach einem der Ansprüche 1 bis 8, gekennzeichnet durch zwei oder mehrere in Richtung des Reaktionsgemischstromes angeordnete Reaktionszonen mit getrennten Wärmetauschmittelkreisläufen.

Hierzu 6 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int. Cl.7: Offenlegungstag: DE 199 52 964 A1 C 07 C 57/05 10. Mai 2001

FIG.1B

Nummer: Int. Cl.⁷: Offenlegungstag: **DE 199 52 964 A1 C 07 C 57/05**10. Mai 2001

FIG.2

Nummer: Int. Cl.7: Offenlegungstag: DE 199 52 964 A1 C 07 C 57/05 10. Mai 2001

FIG.3

Nummer: Int. Cl.⁷: Offenlegungstag: DE 199 52 964 A1 C 07 C 57/05 10. Mai 2001

FIG.4A

