

February 3<sup>rd</sup>, 2025

Kristin Eccles, PhD

Research Scientist, Computational Toxicology Research Group

Health Canada

#### Outline



- 1. The Problem
- 2. What is High-throughput screening and why do we need it
- 3. The ToxCast/Tox21 Program
  - Chemical Selection
  - 2. HTS Analysis/ Assays
  - 3. Data Processing
    - 1. Model Fitting, PODs, and Flags
  - 4. Data Release/ Data Exploration
    - 1. EPA: CompTox Dashboard
    - 2. NTP: Integrated Chemical Environment
  - 5. Data Interpretation
- 4. Wednesday: HTS Dose-Response Modeling in R

)

#### The Problem

- The "too many chemicals" problem
- A lot of toxicity data (potency, target tissues, etc.) on few chemicals
- Many data poor chemicals
  - Measured in serum, environmental media, in commerce
  - Lack of toxicity information



#### The risk assessment process

Step 1: Hazard Identification

Step 2: Hazard Characterization

Step 3: Exposure Assessment

Step 4: Risk Characterization

Step 5: Risk Mitigation

#### Traditional methods for hazard characterization

#### in vivo





#### The problem:

- Expensive and time consuming
- Animal welfare issues to consider
- Focus on apical endpoints
- Biological relevance to humans

Toxicology for the 21st century

- New Approach Methods: broadly defined as any technology, methodology, or approach that can be used to replace, reduce or refine animals used for toxicity testing and allow for more rapid or effective prioritization and/or assessment of chemicals.
  - Computational models (e.g., physiological based toxicokinetic models)
  - in chemico (cell free), in vitro (cell based) assays, or 'omics' methods
  - Whole Organism (e.g., zebrafish embryo)



Joint Environment and Climate Change Canda and Health Canada [Draft] Strategy to Replace, Reduce or Refine Vertebrate Animal Testing



#### The 3Rs

- Replace: Avoiding or replacing the use of animals in areas where they otherwise would have been used.
- Reduce: Minimising the number of animals used consistent with scientific aims.
- Refine: Minimising the pain, suffering, distress or lasting harm that research animals might experience.



Arck, 2019 Journal of Reproductive Immunology

## What is high-throughput screening?

- High throughput screening (HTS) is the use of automated equipment to rapidly test thousands to millions of samples for biological activity at varying levels of biological organisation
- in vitro approach rapidly provides screening level data on chemical hazard





#### Tox21 Program

- USA Federal collaboration among EPA, NIH, including National Center for Advancing Translational Sciences (NCATS) and the National Toxicology Program (NTP) at the National Institute of Environmental Health Sciences (NIEHS), and the Food and Drug Administration (FDA).
- Tox21 aims to:
  - Prioritize substances for further in-depth toxicological evaluation
  - Identify mechanisms of action for further investigation (e.g., toxicity-associated and disease-associated pathways)
  - Develop models that better predict how substances will affect biological responses (predictive toxicology)
  - Employ testing methods using human cells (in vitro approaches)
  - Reduce time, effort, and costs associated with testing
  - Contribute to the reduction, refinement, and replacement of animals used in toxicity testing

n assays =  $^{\sim}1500$ n chemicals =  $^{\sim}10$ K



Richard et al. 2020

## NTP = National Toxicology Program EPA = Environmental Protection Agency NCATS = National Center for Advancing Translational Sciences

#### Chemical Selection



## HTS Assays/ Analysis (non-exclusive list)

| Assay                                          | Assay End Point*                                                                                      | Cell Type                                                                                                                           | Assay Readout                                                  |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Cell<br>viability<br>Apoptosis                 | Intracellular ATP,<br>caspase-3/7                                                                     | Hek293, Jurkat, HepG2, Sh-SY5Y,<br>SK-N-SH, BJ, HUV-EC-C, MRC-5,<br>mesangial, kidney<br>proximal tubules, N2a, H-4-II-E,<br>NIH3T3 | Luminescence                                                   |
| Membrane<br>integrity                          | LDH release,<br>protease release                                                                      | HEK293, mesangial                                                                                                                   | Fluorescence,                                                  |
| Mitochondrial toxicity                         | Membrane potential                                                                                    | HepG2                                                                                                                               | Fluorescence                                                   |
| DNA damage                                     | Micronucleus                                                                                          | СНО                                                                                                                                 | Fluorescence                                                   |
| Cytokine                                       | IL-8, TNF-α                                                                                           | THP-1                                                                                                                               | Homogenous<br>time-resolved<br>fluorescence                    |
| Nuclear<br>receptor                            | AR, ERα, FXR, PPARδ, PPARγ, RXR,<br>TRβ, VDR, GR, hPXR, AhR,<br>rPXR, CAR, ERR                        | Hek293, HeLa, HepG2                                                                                                                 | β-Lactamase<br>reporter,<br>luciferase reporter                |
| Toxicity<br>pathway                            | AP-1, HIF-1α, SIE, NF-κB, HSR,<br>ESRE, ARE/Nrf2, CREB, p53, real-<br>time cytotoxicity and viability | ME-180,HeLa, HepG2, Hek293,<br>CHO, HCT-116, HepG2                                                                                  | β-Lactamase<br>reporter,<br>luciferase reporter                |
| hERG channel                                   | Thallium influx                                                                                       | U-20S                                                                                                                               | Fluorescence                                                   |
| G-protein-<br>coupled<br>receptor<br>signaling | TRHR, TSHR                                                                                            | Hek293                                                                                                                              | Fluorescence,<br>homogeneous time-<br>resolved<br>fluorescence |
| Enzyme<br>activity                             | AChE                                                                                                  | SH-SY5Y                                                                                                                             | Fluorescence                                                   |
| Developmental pathway                          | Retinol signaling, Hedgehog/Gli,<br>SBE/Smad                                                          | C3H10T1/2, 3T3, HEK 293T                                                                                                            | Luciferase reporter, fluorescence                              |

- Nomination process
  - Assays are selected based on their biological and toxicological relevance and adaptability to miniaturization and qHTS screening

### Understanding assay naming convention

- TOX21\_CAR\_Agonist
- LTEA\_HepaRG\_CYP1A1\_dn (DMSO)
- LTEA\_HepaRG\_CYP1A1\_up (DMSO)
- CCTE\_Simmons\_AUR\_TPO\_dn (methimazole)
- APR\_HepG2\_MitoticArrest\_24h\_up
- APR\_HepG2\_MitoticArrest\_24h\_dn
- APR\_HepG2\_MitoticArrest\_72h\_dn
- APR\_HepG2\_MitoticArrest\_72h\_up

### Data Processing

• Turning plate read outs into concentration-response curves





14

## Mode fitting: Concentration-response modeling



Fig. 1 The three models utilized by the tcpl package. The constant model and its associated formula for  $\mu_i$  is shown in orange, the Hill model and its associated formula for  $\mu_i$  is shown in blue, and the gain-loss model and its associated formula for  $\mu_i$  is shown in blue

- best model is chosen using AIC



Fig. 3 The point-of-departure estimates calculated by the tcpl package. The shaded rectangle represents the baseline region,  $0\pm3bmad$ . The dark stripped line represents the efficacy cutoff. The vertical lines show where the point-of-departure estimates are defined: the activity concentration at baseline (ACB) in red, activity concentration at cutoff (ACC) in yellow, and activity concentration at 50% maximal activity (AC<sub>50</sub>) in blue

bmad = baseline median absolute deviation

## tcplfit2



## Hit call/ Flagging

- Hitc: interpret the continuous hitc into active or inactive
  - Must meet activity thresholds
- Flag omit
  - QA/QC
  - Removed the least reproducible curve-fits
    - Very low AC<sub>50</sub> (below the screened conc range)
    - Low efficacy (within 1.2-fold of the cutoff)
    - Low n of tested concentrations
    - library(tcpl): ?MC6\_Methods(lvl = 6)



The hill\_tp and gnls\_tp parameters are equal and greater than coff; however, the maximum median value (max\_med) is not greater than the cutoff making the series inactive.

https://cran.r-project.org/web/packages/tcpl/vignettes/Data\_processing-Archive tcpl v2.html

### Data Release/ Data Exploration

#### Tox21 Toolbox

- The Tox21 toolbox contains useful tools for accessing and visualizing the Tox21 quantitative high throughput screening (qHTS) 10K library data, as well as integrating with other publicly available data.
- Integrated Chemical Environment (ICE): <a href="https://ice.ntp.niehs.nih.gov">https://ice.ntp.niehs.nih.gov</a>
  - Has extra curation step

#### EPA CompTox Chemicals Dashboard

- The EPA Computational Toxicology (CompTox) Chemicals Dashboard is a one-stopshop for chemistry, toxicity and exposure information for over 760,000 chemicals.
   Data and models within the Dashboard also help with efforts to identify chemicals of most need of further testing and reducing the use of animals in chemical testing. The CompTox Chemicals Dashboard integrates data from various sources including:
- ToxCast and Tox21 High-throughput chemical screening data
- General Use Assay Information: <a href="https://comptox.epa.gov/dashboard/">https://comptox.epa.gov/dashboard/</a>
- ToxCast: <a href="https://www.epa.gov/comptox-tools/exploring-toxcast-data">https://www.epa.gov/comptox-tools/exploring-toxcast-data</a>

## Data Interpretation/ Utilization

- Translating in vitro data into real world meaning
  - Using in pathway analysis (e.g., Estrogen and Androgen Receptors)
  - Input into in silico models
    - QSAR/ physiochemical properties for read-across
  - in vitro to in vivo extrapolation (IVIVE) (Dr. Marc Beal's Lecture)



# Future Directions for Tox21 (Phase III: 2014–present)

- Toxicodynamic Variability in Developmental Neurotoxicity
  - Goal: Incorporate genetic variation into cell-based test systems to better understand potential population differences in response to chemicals that may cause toxic neurological effects.
- Retrofitting Existing Tox21 High-Throughput Screening Assays with Metabolic Capability
  - Goal: To add xenobiotic metabolism capability to existing Tox21 assays so they provide more accurate and informative data regarding in vivo activity.
- Cell Line Selection for High Throughput Transcriptomics (HTTr)
  - Goal: Develop a strategy for selecting maximally diverse cell types/lines to maximally cover biological targets and pathways for high-throughput chemical screening using gene expression (i.e., transcriptomics).
- In Vitro Chemical Disposition
  - Goal: Understand the impact of chemical disposition within in vitro test systems across a broad range of chemical categories and develop a computational model to predict differences between the "nominal" concentration of a chemical compared with "true" concentration in the media and cells.

### Wednesday Hands-On Activity

#### Concentration-response modeling in R with ToxCast/Tox21 Data

- 1. Install R from <a href="https://cran.rstudio.com">https://cran.rstudio.com</a>
- 2. Install RStudio from: <a href="https://www.rstudio.com/products/rstudio/download/#download/">https://www.rstudio.com/products/rstudio/download/#download/</a>
- 3. If you have not used R before read over Intro to R: <a href="https://github.com/kristineccles/setac\_intro">https://github.com/kristineccles/setac\_intro</a> to r 2020/blob/main/intro to r lecture.pdf
  - Try out some of the scripts in this repo: <a href="https://github.com/kristineccles/setac">https://github.com/kristineccles/setac</a> intro to r 2020
- 4.Download (or clone) the repository with the materials for Wednesday: <a href="https://github.com/kristineccles/BIM4103-HTS-Dose-Response">https://github.com/kristineccles/BIM4103-HTS-Dose-Response</a>
  - 1. R scripts
  - 2. Data

#### References

Chang, X., Tan, Y. M., Allen, D. G., Bell, S., Brown, P. C., Browning, L., ... & Mumtaz, M. (2022). IVIVE: Facilitating the use of in vitro toxicity data in risk assessment and decision making. *Toxics*, *10*(5), 232.

Filer, D. L., Kothiya, P., Setzer, R. W., Judson, R. S., & Martin, M. T. (2017). tcpl: the ToxCast pipeline for high-throughput screening data. *Bioinformatics*, *33*(4), 618-620.

Richard, A. M., Judson, R. S., Houck, K. A., Grulke, C. M., Volarath, P., Thillainadarajah, I., ... & Thomas, R. S. (2016). ToxCast chemical landscape: paving the road to 21st century toxicology. *Chemical research in toxicology*, *29*(8), 1225-1251.

Richard, A. M., Huang, R., Waidyanatha, S., Shinn, P., Collins, B. J., Thillainadarajah, I., ... & Tice, R. R. (2020). The Tox21 10K compound library: collaborative chemistry advancing toxicology. *Chemical Research in Toxicology*, *34*(2), 189-216.

Vinken, M., Knapen, D., Vergauwen, L., Hengstler, J. G., Angrish, M., & Whelan, M. (2017). Adverse outcome pathways: a concise introduction for toxicologists. *Archives of toxicology*, *91*, 3697-3707.