Ecuaciones diferenciales

ED no homogéneas. Coeficientes Indeterminados: Método de Superposición **Semana 05: Teoría**

Profesores del curso:

Hermes Pantoja Carhuavilca Sergio Quispe Rodríguez Patricia Reynoso Quispe Cristina Navarro Flores Orlando Galarza Gerónimo César Barraza Bernaola Daniel Camarena Pérez

Índice

1 Coeficientes indeterminados: Método de superposición

Objetivos

- Identificar la solución general de una EDO lineal no homogénea.
- **Aplicar** el método de coeficientes indeterminados método de superposición, en la resolución EDOs lineales no homogéneas de coeficientes constantes

COEFICIENTES INDETERMINADOS: MÉTODO DE SUPERPOSICIÓN

1

Logros

- Identifica la solución general de una EDO lineal no homogénea. (L.4.5.2.5)
- Aplica el método de coeficientes indeterminados método de superposición, en la resolución EDOs lineales no homogéneas de coeficientes constantes. (L.4.5.2.6)

Solución de una EDO lineal no homogénea

Dada una ecuación lineal no homogénea de n-ésimo orden

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x), \quad g(x) \neq 0.$$
 (1)

Cualquier función $y_p(x)$ que verifique esta ecuación, se dice que es una **solución** particular.

Sea $y_p(x)$ una solución particular de (1) y sea $y_1(x), y_2(x), \ldots, y_n(x)$ un conjunto fundamental de soluciones de la ecuación homogénea asociada a (1). Entonces la **solución general** de (1) está dado por

$$y(x) = \underbrace{c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x)}_{y_H} + y_p(x)$$
 (2)

A la función $y_H = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_n y_n(x)$ se le conoce como función complementaria de la ecuación (1).

Ejemplo

Sea la ecuación diferencial no homogénea y'' + 9y = 27. Para hallar su solución general primero debemos resolver la ecuación homogénea asociada:

$$y'' + 9y = 0,$$

La solución de esta ecuación es $y_H(x) = c_1 \sin(3x) + c_2 \cos(3x)$. Ahora hallamos una solución particular, en este caso la solución particular es: $y_p(x) = 3$. Por lo tanto, la solución general de la ecuación inicial es

$$y(x) = y_H(x) + y_p(x) = c_1 \sin(3x) + c_2 \cos(3x) + 3$$

Uno de los métodos para hallar la solución particular de una ecuación no homogénea se explica en las siguientes diapositivas.

Ejercicio

Sabiendo que la función $y(x)=c_1e^{2x}+c_2e^{5x}+6e^x$ es la solución general de la ecuación

$$y'' - 7y' + 10y = 24e^x, \qquad x \in \mathbb{R}.$$
 (3)

Identifique las partes de la solución.

Solución:

La forma de la solución sugiere que la función

$$y_H(x) = c_1 e^{2x} + c_2 e^{5x}$$

es la solución de la ecuación homogénea asociada: y'' - 7y' + 10y = 0. Para corroborar esta afirmación debemos demostrar que las funciones $y_1(x) = e^{2x}$, $y_2(x) = e^{5x}$ son soluciones de la ecuación homogénea y que además son linealmente independientes.

Verifique que y_1 y y_2 son soluciones de la ecuación homogénea.

Para corroborar que son *LI* debemos calcular el Wronskiano:

$$W(e^{2x},e^{5x}) = egin{array}{cc} e^{2x} & e^{5x} \ 2e^{2x} & 5e^{5x} \ \end{array} igg| = 3e^{7x}
eq 0 \ orall x \in \mathbb{R}.$$

Por lo tanto, son soluciones LI.

Por otro lado, a partir de la elección anterior, resulta evidente que la solución particular es

$$y_p(x)=6e^x.$$

Verifique que esta solución satisface la ecuación (3).

En resumen, la solución de una ecuación lineal no homogénea de n-ésimo orden esta dado por

$$y(x) = y_H(x) + y_P(x)$$

donde $y_H(x)$ tiene la forma de $y_H(x) = c_1y_1(x) + c_2y_2(x) + \ldots + c_ny_n(x)$, mientras que $y_P(x)$ es una función que no depende de ninguna constante.

Coeficientes indeterminados: Método de superposición

Dada la ecuación diferencial ordinaria lineal no homogénea de coeficientes constantes

$$a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 \frac{dy}{dx} + a_0 y = g(x), \quad g(x) \neq 0.$$
 (4)

este método permite hallar la solución particular u_p . El método se basa en la siguiente idea:

Existen ciertas funciones que al ser derivadas n veces, siguen teniendo la misma forma o similar a la función original, ejemplo de este tipo de funciones son las funciones senos, cosenos, exponenciales y polinómicas.

Ecuaciones diferenciales

Para hallar la solución particular y_p de la ecuación (4) debemos hacer lo siguiente:

- Primer paso: Reconocer la forma de la función g(x).
- Segundo paso: Plantear la solución particular $y_p(x)$ de acuerdo a la forma de la función g(x), pero colocando coeficientes literales.
- Tercer paso: Reemplazar la solución planteada en la ecuación original.

Ejemplo

Resolver la ecuación $y'' - 4y = e^{3x}$

- Primer paso: $g(x) = e^{3x}$ es una función exponencial.
- Segundo paso: Se plantea que $y_p(x) = Ae^{3x}$. ¿Por qué?
- Tercer paso: Reemplazando en la ecuación se obtiene el valor A=1/5, luego $y_p(x)=\frac{1}{5}e^{3x}$.

La idea de este método es plantear soluciones que dependen de algunas constantes literales y luego calcular sus valores adecuados que satisfacen a la ecuación.

La solución particular de prueba y_p de la ecuación (4) depende del tipo de función g(x).

- $\mathbf{g}(x) = constante \Rightarrow$ Solución particular de prueba: $y_p = A$.
- g(x) = polinomio de grado 1 \Rightarrow Solución particular de prueba: $y_p = Ax + B$.
- g(x)= polinomio de grado 2 \Rightarrow Solución particular de prueba: $y_p = Ax^2 + Bx + C$.
- $g(x) = me^{\alpha x} \Rightarrow$ Solución particular de prueba: $y_p = Ae^{\alpha x}$.
- $g(x) = m\sin(\beta x)$ o $g(x) = m\cos(\beta x) \Rightarrow y_p = A\sin(\beta x) + B\cos(\beta x)$.
- $g(x) = m\sin(\beta x) + n\cos(\beta x) \Rightarrow y_p = A\sin(\beta x) + B\cos(\beta x).$

En la siguiente lámina, mostramos ejemplos de la forma que adquiere $y_p(x)$ para diferentes funciones g(x).

TABLA Soluciones particulares de prueb	TABLA	Soluciones	particulares	de prueb
---	--------------	------------	--------------	----------

g(x)	Forma de y_p
1. 1 (cualquier constante)	A
2. $5x + 7$	Ax + B
3. $3x^2 - 2$	$Ax^2 + Bx + C$
4. $x^3 - x + 1$	$Ax^3 + Bx^2 + Cx + E$
5. $sen 4x$	$A\cos 4x + B\sin 4x$
6. $\cos 4x$	$A\cos 4x + B\sin 4x$
7. e^{5x}	Ae^{5x}
8. $(9x-2)e^{5x}$	$(Ax + B)e^{5x}$
9. x^2e^{5x}	$(Ax^2 + Bx + C)e^{5x}$
10. $e^{3x} \sin 4x$	$Ae^{3x}\cos 4x + Be^{3x}\sin 4x$
11. $5x^2 \sin 4x$	$(Ax^2 + Bx + C)\cos 4x + (Ex^2 + Fx + G)\sin 4x$
12. $xe^{3x}\cos 4x$	$(Ax + B)e^{3x}\cos 4x + (Cx + E)e^{3x}\sin 4x$

Figure: Soluciones particulares de prueba de acuerdo a la forma de la función g(x).

Ejercicios

1 Determinar la solución particular de la ecuación $y'' + 4y' - 2y = 2x^2 - 3x + 6$. Solución:

- Primer paso: $g(x) = 2x^2 3x + 6$ es una función polinómica de grado 2.
- Segundo paso: Planteamos la solución particular:

$$y_p(x) = Ax^2 + Bx + C$$

Tercer paso: Reemplazar la solución planteada en la ecuación original. Tener en cuenta que

$$y_p'(x) = 2Ax + B, \qquad y_p''(x) = 2A,$$

Por lo tanto

$$2A + 4(2Ax + B) - 2(Ax^{2} + Bx + C) = 2x^{2} - 3x + 6$$

$$\Rightarrow -2Ax^{2} + (8A - 2B)x + (2A + 4B - 2C) = 2x^{2} - 3x + 6$$

$$\Rightarrow A = -1, \quad B = -5/2, \quad C = -9 \quad \Rightarrow \quad y_{p}(x) = -x^{2} - \frac{5}{2}x - 9$$

2 Determinar la solución particular de la ecuación $y'' - y' + y = 2\sin(3x)$.

Solución:

- Primer paso: $g(x) = 2\sin(3x)$ es una función senoidal.
- Segundo paso: Planteamos la solución particular:

$$y_p(x) = A\sin(3x) + B\cos(3x)$$

 Tercer paso: Reemplazar la solución planteada en la ecuación original. Tener en cuenta que

$$y_p'(x) = 3A\cos(3x) - 3B\sin(3x)$$

 $y_p''(x) = -9A\sin(3x) - 9B\cos(3x).$

Por lo tanto, al reemplazar en la ecuación original y luego de efectuar:

$$\begin{aligned} [-8A + 3B] \sin(3x) + [-8B - 3A] \cos(3x) &= 2\sin(3x) \\ \Rightarrow \quad A &= -\frac{16}{73}, \quad B &= \frac{6}{73} \\ \Rightarrow \quad y_p(x) &= -\frac{16}{73} \sin(3x) + \frac{6}{73} \cos(3x) \end{aligned}$$

3 Hallar la solución general de $y''' + y'' = e^x \cos(x)$.

Solución:

Parte 1: Hallando la solución homogénea y_H La ecuación auxiliar está dado por

$$r^{3} + r^{2} = 0$$

 $\Rightarrow r^{2}(r+1) = 0$
 $\Rightarrow r_{1} = 0, \quad r_{2} = 0, \quad r_{3} = -1$

Por lo tanto

$$y_H(x) = c_1 e^{0x} + c_2 x e^{0x} + c_3 e^{-x} = c_1 + c_2 x + c_3 e^{-x}$$

Parte 2: Hallando la solución particular y_p

- Primer paso: $g(x) = e^x \cos(x)$.
- Segundo paso: Planteamos la solución particular:

$$y_p(x) = Ae^x \sin(x) + Be^x \cos(x)$$

 Tercer paso: Reemplazar la solución planteada en la ecuación original. Tener en cuenta que

$$\begin{split} y_p'(x) &= (A-B)e^x \sin(x) + (A+B)e^x \cos(x) \\ y_p''(x) &= -2Be^x \sin(x) + 2Ae^x \cos(x) \\ y_p'''(x) &= -2(A+B)e^x \sin(x) + 2(A-B)e^x \cos(x). \end{split}$$

Por lo tanto

$$[4A + B]e^{x}\cos(x) + [-2A - 4B]e^{x}\sin(x) = e^{x}\cos(x)$$

$$\Rightarrow A = \frac{1}{5}, \quad B = -\frac{1}{10}$$

$$\Rightarrow y_{p}(x) = \frac{1}{5}e^{x}\sin(x) - \frac{1}{10}e^{x}\cos(x)$$

Finalmente la solución general de la ecuación inicial es

$$y(x) = y_H(x) + y_p(x) = c_1 + c_2 x + c_3 e^{-x} + \frac{1}{5} e^x \sin(x) - \frac{1}{10} e^x \cos(x)$$

4 Resolver la EDO: $y'' - 2y' - 3y = 4x - 5 + 6xe^{2x}$.

Solución: Aquí debe hallarse la solución general.

Parte 1: Hallando la solución homogénea y_H

La ecuación auxiliar está dado por

$$r^2 - 2r - 3 = 0$$

 $\Rightarrow (r+1)(r-3) = 0$
 $\Rightarrow r_1 = -1, r_2 = 3,$

Por lo tanto: $y_H(x) = c_1 e^{-x} + c_2 e^{3x}$

Parte 2: Hallando la solución particular y_p

q(x) consta de tipos de funciones: Polinomios y exponencial:

- Primer paso: $q(x) = (4x 5) + (6x)e^{2x}$.
- Segundo paso: Planteamos la solución particular:

$$y_p(x) = (Ax + B) + (Cx + D)e^{2x}$$

 Tercer paso: Reemplazar la solución planteada en la ecuación original. Tener en cuenta que

$$y'_p(x) = A + Ce^{2x} + 2Cxe^{2x} + 2De^{2x}$$

 $y''_p(x) = 2Ce^{2x} + 2Ce^{2x} + 4Cxe^{2x} + 4De^{2x}$.

Por lo tanto, reemplazando en la ecuación:

$$[-3A]x + [-2A - 3B] + [-3C]xe^{2x} + [2C - 3D]e^{2x} = 4x - 5 + 6xe^{2x}$$

$$\Rightarrow A = -\frac{4}{3}, \quad B = \frac{23}{9}, \quad C = -2, \quad D = -\frac{4}{3}$$

$$\Rightarrow y_p(x) = -\frac{4}{3}x + \frac{23}{9} - 2xe^{2x} - \frac{4}{3}e^{2x}$$

Finalmente la solución general de la ecuación inicial es

$$y(x) = y_H(x) + y_p(x) = c_1 e^{-x} + c_2 e^{3x} + -\frac{4}{3}x + \frac{23}{9} - 2xe^{2x} - \frac{4}{3}e^{2x}$$

5 La EDO $y''+my'+ny=-16xe^x$ tiene por solución general $y(x)=c_1e^{2x}+c_2e^{-3x}+y_p$ Halle la solución particular.

Solución:

Notar que la solución de su homogénea asociada es $y_H = c_1 e^{2x} + c_2 e^{-3x}$, lo que implica que las raíces de la ecuación auxiliar son r = 2 y r = -3.

La ecuación auxiliar factorizada será (r-2)(r+3)=0

Ecuación auxiliar: $r^2 + r - 6 = 0$.

Ecuación homogénea asociada: y'' + y' - 6y = 0

Se ha determinado la EDO: $y'' + y' - 6y = -16xe^x$.

Por lo tanto $y_p = (Ax + B)e^x$, luego:

$$y'(x) = (Ax + A + B)e^x$$

$$y'' = (Ax + 2A + B)e^x$$

Reemplazando en la EDO no homogénea, se tiene:

$$(-4Ax + (3A - 4B))e^x = -16xe^x$$

De donde se halla: A = 4 y $B = 3 \Rightarrow y_p = (4x + 3)e^x$.

6 Hallar la solución general de la EDO $y'' + y = 4 \sin^2 x$ Solución: Resolviendo la homogénea:

$$y'' + y = 0$$

Ecuación auxiliar:

$$r^2 + 1 = 0$$

Resolviendo: $r = 0 \pm 1i$ Solución de la homogénea:

$$y_H = c_1 e^{0x} \cos(x) + c_2 e^{0x} \sin(x)$$

$$y_H = c_1 \cos(x) + c_2 \sin(x)$$

Ahora se hallará la solución particular, pero primero recordar que:

$$\sin^2(x) = \frac{1 - \cos(2x)}{2}$$

Reemplazando en la EDO se tiene:

$$y'' + y = 2 - 2\cos(2x)$$

Luego:

$$\begin{aligned} y_p &= A + \left(B\cos(2x) + C\sin(2x)\right) \\ y_p' &= -2B\sin(2x) + 2C\cos(2x) \\ y''p &= 4B\cos(2x) - 4C\sin(2x) \end{aligned}$$

Reemplazando en la EDO no homogénea anterior:

$$A + 5B\cos(2x) - 3C\sin(2x) = 2 - 2\cos(2x)$$

y comparando los coeficientes respectivos se halla:

$$A = 2$$
, $B = -2/5$, $C = 0$.

Finalmente la solución general será:

$$y = c_1 \cos(x) + c_2 \sin(x) + (2 + \frac{2}{5} \cos(2x))$$

Conclusiones

- Para resolver EDOs lineales no homogéneas, primero se debe resolver la EDO homogénea asociada y luego encontrar la solución particular.
- 2 El método de coeficientes indeterminados parte de la hipótesis que la solución tiene una forma similar al resto de la EDO, g(x), esto se asume pues al derivar ciertas funciones n veces se llega a una expresión similar a la planteada originalmente y así se determinan los coeficientes.

Gracias UTEC UNIVERSIDAD DE INGENIERIA YTECNOLOGÍA

