## Teori Peluang

Oleh Al Jupri, S.Pd., M.Sc.
Jurusan Pendidikan Matematika
FPMIPA
Universitas Pendidikan Indonesia
2010

# Topik yang dipelajari

- Sejarah Teori Peluang
- Percobaan dan Ruang Sampel
- Pengertian Peluang
- Peluang dari Dua Percobaan
- Peluang yang Pasti dan yang Mustahil
- Frekuensi Harapan
- Peluang Dua Kejadian yang Saling Bebas
- Peluang Gabungan Dua Kejadian

# Sejarah Teori Peluang

- Dimulai dari "meja" judi pada sekitar abad 17.
- Chevalier de Mere (bangsawan Perancis) bertanya pada Blaise Pascal (1623-1662).
- Lalu, Pascal dan Fermat (1601-1665) mengembangkannya menjadi teori Peluang.

Al Jupri, S.Pd., M.Sc.

Jurusan Pendidikan Matematika, FPMIPA
Universitas Pendidikan Indonesia
2010

## Percobaan dan Ruang Sampel

- Percobaan atau eksperimen
- Ruang sampel adalah himpunan semua kemungkinan yang terjadi pada suatu percobaan
- Contoh: Melempar sebuah uang logam.
   Ruang sampel = {G, A}
   G dan A masing-masing disebut titik sampel.

Himpunan bagian dari ruang sampel disebut kejadian.

Kejadian dengan satu titik sampel disebut kejadian sederhana.

## Contoh percobaan lain

Melempar sebuah dadu bersisi enam

Ruang sampel =  $\{1, 2, 3, 4, 5, 6\}$ 

Titik Sampel: 1, 2, 3, 4, 5, dan 6.

Kejadian sederhana: {1}, {2}, ...atau {6}.

#### Al Jupri, S.Pd., M.Sc.

Jurusan Pendidikan Matematika, FPMIPA
Universitas Pendidikan Indonesia
2010

## Pengertian Peluang

Jika diketahui suatu kejadian A dengan ruang sampel 5, maka peluang kejadian A, ditulis P (A), adalah sebagai berikut:

$$P(A) = \frac{n(A)}{n(S)} = \frac{\text{banyaknya cara terjadinya kejadian } A}{\text{banyak semua kemungkinan}}$$

Al Jupri, S.Pd., M.Sc.

Jurusan Pendidikan Matematika, FPMIPA
Universitas Pendidikan Indonesia
2010

#### Contoh Penentuan Peluang Kejadian

Contoh 1: Jumlah murid kelas IX adalah 40 orang, terdiri dari 15 putri dan 25 putra. Akan dipilih seorang murid secara acak. Berapa peluang terpilihnya murid putri?

Jawab: 
$$n(A) = 15$$
,  $n(S) = 40$ 

Jadi, 
$$P(A) = \frac{n(A)}{n(S)} = \frac{15}{40} = \frac{3}{8}$$

#### Contoh Penentuan Peluang Kejadian

Contoh 2: Dalam permainan dadu, disepakati aturan bahwa kita menang jika keluar angka 1 atau 2, serta kalah jika keluar angka lainnya. Berapa peluang kita menang dan peluang kita kalah?

Jawab:

$$P(\text{menang}) = \frac{2}{6} = \frac{1}{3}$$
  $P(\text{kalah}) = \frac{4}{6} = \frac{2}{3}$ 

## Peluang dari Dua Percobaan

Contoh 1: Bila dua uang logam identik dilempar, maka tentukan peluang muncul kedua-duanya gambar!

Jawab:

| = | G      | A      |
|---|--------|--------|
| G | (G, G) | (G,A)  |
| Α | (A, G) | (A, A) |

$$P(\{G,G\})=\frac{1}{4}$$

## Peluang dari Dua Percobaan

Contoh 2: Bila dua dadu bersisi enam identik dilempar, maka tentukan peluang muncul kedua mata dadu berjumlah 6.

Jawab: Misalkan  $A = \{(5,1), (4,2), (3,3), (2,4), (1,5)\}$ 

|   | I      | 2      | 3      | 4      | 5      | 6      |
|---|--------|--------|--------|--------|--------|--------|
| I | (1, 1) | (1, 2) | (1, 3) | (1,4)  | (1,5)  | (1,6)  |
| 2 | (2, 1) | (2, 2) | (2, 3) | (2, 4) | (2, 5) | (2, 6) |
| 3 | (3, 1) | (3, 2) | (3, 3) | (3, 4) | (3, 5) | (3, 6) |
| 4 | (4,1)  | (4, 2) | (4, 3) | (4, 4) | (4, 5) | (4, 6) |
| 5 | (5, 1) | (5, 2) | (5, 3) | (5, 4) | (5, 5) | (5, 6) |
| 6 | (6, 1) | (6, 2) | (6, 3) | (6, 4) | (6, 5) | (6,6)  |

$$P(A) = \frac{5}{36}$$

## Kepastian dan Kemustahilan

Kejadian yang pasti terjadi peluangnya bernilai 1, sedangkan kejadian yang mustahil terjadi peluangnya 0.



Al Jupri, S.Pd., M.Sc.
Jurusan Pendidikan Matematika, FPMIPA
Universitas Pendidikan Indonesia
2010

# Frekuensi Harapan (F)

Frekuensi harapan kejadian A adalah nilai peluang kejadian A dikali banyak percobaan (n)

$$F(A) = P(A) \times n$$

Al Jupri, S.Pd., M.Sc.
Jurusan Pendidikan Matematika, FPMIPA
Universitas Pendidikan Indonesia
2010

# Kejadian yang Saling Bebas

Kejadian A dan kejadian B dikatakan saling bebas jika  $P(A - B) = P(A) \times P(B)$ .

Contoh: Pada pelemparan dua dadu bersisi enam identik, tentukan peluang munculnya mata dadu pertama angka 2 dan mata dadu kedua angka 3.

Jawab: Misalkan

$$A = \{(2,1), (2,2), (2,3), (2,4), (2,5), (2,6).$$
  
 $B = \{(1,3), (2,3), (3,3), (4,3), (5,3), (6,3)\}.$   
 $A \longrightarrow B = \{(2,3)\}$   
 $P(A \longrightarrow B) = 1/36 = P(A) \times P(B)$ 

#### Peluang Gabungan Dua Kejadian



Dari teori himpunan kita tahu:

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$
, maka  
 $P(A \cup B) = P(A) + P(B) - n(A \cap B)$ .  
Bila  $A \cap B = \{\}$ , maka  $A$  dan  $B$  disebut  
kejadian yang saling lepas.

### Peluang Gabungan Dua Kejadian

Contoh: dua dadu bersisi enam dilempar. Tentukan peluang munculnya dadu pertama muncul angka 5 atau dadu kedua muncul angka 2.

Jawab:  $P(A \cup B) = ...?$ 

| 7 | I      | 2      | 3      | 4      | 5      | 6      |
|---|--------|--------|--------|--------|--------|--------|
| I | (1, 1) | (1, 2) | (1, 3) | (1, 4) | (1,5)  | (1,6)  |
| 2 | (2, 1) | (2, 2) | (2, 3) | (2, 4) | (2, 5) | (2, 6) |
| 3 | (3, 1) | (3, 2) | (3, 3) | (3, 4) | (3, 5) | (3, 6) |
| 4 | (4,1)  | (4, 2) | (4, 3) | (4, 4) | (4, 5) | (4, 6) |
| 5 | (5, 1) | (5, 2) | (5, 3) | (5, 4) | (5, 5) | (5, 6) |
| 6 | (6, 1) | (6, 2) | (6, 3) | (6, 4) | (6, 5) | (6,6)  |