

AN MRI-COMPATIBLE DEVICE FOR OBTAINING PATIENT-SPECIFIC PLANTAR SOFT TISSUE MATERIAL PROPERTIES

Michael J. Stebbins ^{1,2}, Michael J. Fassbind ¹, Peter R. Cavanagh ³, David R. Haynor ⁴, Baocheng Chu ⁴ and William R. Ledoux ^{1,2,3}

¹RR&D Center of Excellence for Limb Loss Prevention and Prosthetic Engineering, Department of Veterans Affairs; Departments of ²Mechanical Engineering, ³Orthopaedics and Sports Medicine, and ⁴Radiology, University of Washington email: wrledoux@u.washington.edu, web: www.amputation.research.va.gov

BACKGROUND

- More than 60% of all nontraumatic lower-limb amputations occur in people with diabetes [1].
- Diabetes has been shown to increase the stiffness of the plantar soft tissue in cadaveric samples [2].
- A previous Magnetic Resonance Imaging (MRI) study measured internal deformation of the foot *in* vivo under static loading [3].
- Purpose: to develop an MRIcompatible device for obtaining patient-specific plantar soft tissue material properties using *in vivo*, dynamic loading.

METHODS

- A cyclic, displacement-controlled, compressive load will be applied to the foot while gated MRI obtains internal tissue deformation data at multiple points on the loading/unloading curve.
- An inverse finite element analysis (FEA) will then be solved for the material properties of the plantar skin, adipose, and muscle tissues.

Loading Device Features (Figure 1):

- o Tap water-filled hydraulic system
- Stepper motor-powered linear actuator drives a master piston
- o Valve and syringe air-bleed system
- High-pressure, vacuum-resistant nylon tubing
- o Outputs:
 - 1 Hz triangle-wave displacement
 - maximum amplitude of 15mm
 - maximum load of 1500N

MRI-Compatibility:

 Equipment inside the imaging room is non-metallic, except for emergency-stop (E-stop) button spring and three screws.

Figure 1: Hydraulic loading device schematic.

MRI-Compatibility, continued:

- The test subject holding fixture (Figure 2) is designed to:
 - adjust the loading platen location to facilitate forefoot or hindfoot testing of either foot
 - restrain the subject's foot, leg, and torso in order to minimize movement of the imaged volume

Figure 2: Test subject holding fixture.

Test Subject Safety Features:

- A system pressure-releasing solenoid valve is triggered by:
 - test subject E-stop button
 - test operator E-stop button
 - over-pressure detection by code
- A mechanical valve releases system pressure above test maximum.

Gated MRI Protocol:

- Gated MRI synchronizes imaging with phases of periodic motion to minimize motion-induced artifacts.
- Triggered via LabVIEW-generated Peripheral Pulse Unit (PPU) signal.

Experiment Outputs:

- Force on test subject's foot (from hydraulic system pressure)
- Sixteen 3D MR images of the foot in incremental states of loading (8 images) and unloading (8 images)
- o Master piston displacement
- o Gating signal trigger

RESULTS

Assembled and Tested:

- Motion control components
- o Gating signal trigger
- o Data acquisition components
- o LabVIEW code

Bench Top Testing Underway:

- o Hydraulic system
- Safety system
- o Test subject holding fixture
- o Actual vs. measured force
- Actual vs. prescribed loading platen displacement

REFERENCES

- Centers for Disease Control and Prevention, National Diabetes Fact Sheet: General Information and National Estimates on Diabetes in the United States, 2007.
- 2. Pai S., et al. *Journal of Biomechanics*, **43**:1754-60, 2010.
- 3. Petre M, et al. *Journal of Biomechanics*, **41**:470-4, 2008.

ACKNOWLEDGEMENTS

This work was supported by VA RR&D Grant A6973R.