

Mécanique des Fluides Compressibles Ondes de choc droites - Applications

Dr. Flavio NOCA

Semestre printemps 2019-2020

Réservoir

Présence d'un choc dans une conduite

Ecoulements dans les tuyères – gaz parfait

En combinant les deux

Ecoulements dans les tuyères

Côté 1

$$c_p T + \frac{u^2}{2} = c_p T_0$$
 $\frac{1}{\gamma - 1} \gamma r T + \frac{u^2}{2} = \frac{1}{\gamma - 1} \gamma r T_0$

 \blacktriangleright En introduisant la vitesse du son $a^2 = \gamma rT$

$$\frac{1}{\gamma - 1}a^2 + \frac{u^2}{2} = \frac{1}{\gamma - 1}a_0^2$$

> Au col:

$$\frac{1}{\gamma - 1} a_*^2 + \frac{a_*^2}{2} = \frac{1}{\gamma - 1} a_0^2 \qquad \qquad \frac{\gamma + 1}{2} a_*^2 = a_0^2$$

ightharpoonup Or, comme $T_{0,1} = T_{0,2}$ alors $a_{0,1} = a_{0,2}$

$$a_{*,1} = a_{*,2} = a_*$$

Ecoulements dans les tuyères – gaz parfait

Présence d'un choc dans une tuyère

Relation de Prandtl

Conservation de la quantité de mouvement

$$p_{1} + \rho_{1}w_{n,1}^{2} = p_{2} + \rho_{2}w_{n,2}^{2} \qquad w_{n,2} - w_{n,1} = \frac{p_{1}}{\rho_{1}w_{n,1}} - \frac{p_{2}}{\rho_{2}w_{n,2}}$$
Conservation de l'énergie

Conservation de l'énergie

$$c_{p}T + \frac{w_{n}^{2}}{2} = c_{p}T_{0} \qquad \qquad \frac{\gamma}{\gamma - 1} \frac{p}{\rho} + \frac{w_{n}^{2}}{2} = \frac{a_{0}^{2}}{\gamma - 1} = \frac{\gamma + 1}{2(\gamma - 1)} a_{*}^{2} \qquad \qquad \frac{\gamma + 1}{2} a_{*}^{2} = a_{0}^{2}$$

$$rT = \frac{p}{\rho}$$

$$\frac{p}{\rho w_n} = \frac{\gamma + 1}{2\gamma} \frac{a_*^2}{w_n} - \frac{\gamma - 1}{2\gamma} w_n$$

Relation de Prandtl

> Par suite

$$w_{n,2} - w_{n,1} = \frac{\gamma + 1}{2\gamma} a_*^2 \left(\frac{1}{w_{n,1}} - \frac{1}{w_{n,2}} \right) + \frac{\gamma - 1}{2\gamma} (w_{n,2} - w_{n,1})$$

Qui peut s'écrire comme

$$\left(w_{n,2} - w_{n,1}\right) \left[1 - \frac{\gamma - 1}{2\gamma} - \frac{\gamma + 1}{2\gamma} \frac{a_*^2}{w_{n,1} w_{n,2}}\right] = 0$$

> On a les solutions

$$w_{n,1} = w_{n,2} \quad \text{et}$$

et
$$w_{n,1}w_{n,2} = a_*^2 = \frac{2}{\gamma + 1}a_0^2$$

Relation de Prandtl

Pression totale et col sonique

> Au Chapitre 5, on a trouvé une expression pour le débit

$$\dot{m} = \gamma M \left(1 + \frac{\gamma - 1}{2} M^2 \right)^{-\frac{\gamma + 1}{2(\gamma - 1)}} \frac{p_0}{a_0} A$$

> On utilise aussi la forme sans dimension, avec $a_0 = \sqrt{\gamma r T_0}$

$$\frac{\dot{m}\sqrt{rT_0}}{p_0 A} = \sqrt{\gamma} M \left(1 + \frac{\gamma - 1}{2} M^2\right)^{-\frac{\gamma + 1}{2(\gamma - 1)}}$$

Ecoulements dans les tuyères – gaz parfait

Dans une conduite à géométrie variable

Pression totale et col sonique

> Pour le débit dans une section arbitraire de la région 1

$$\frac{\dot{m}_1 \sqrt{rT_0}}{p_{0.1} A_1} = \sqrt{\gamma} M_1 \left(1 + \frac{\gamma - 1}{2} M_1^2 \right)^{-\frac{\gamma + 1}{2(\gamma - 1)}}$$

Pour le débit dans une section arbitraire de la région 2

$$\frac{\dot{m}_2 \sqrt{rT_0}}{p_{0.2} A_2} = \sqrt{\gamma} M_2 \left(1 + \frac{\gamma - 1}{2} M_2^2 \right)^{-\frac{\gamma + 1}{2(\gamma - 1)}}$$

> En particulier, au col sonique des deux régions:

$$\begin{split} & \frac{\dot{m}_{1}\sqrt{rT_{0}}}{p_{0,1}A_{*,1}} = \sqrt{\gamma}\left(\frac{\gamma+1}{2}\right)^{-\frac{\gamma+1}{2(\gamma-1)}} \\ & \frac{\dot{m}_{2}\sqrt{rT_{0}}}{p_{0,2}A_{*,2}} = \sqrt{\gamma}\left(\frac{\gamma+1}{2}\right)^{-\frac{\gamma+1}{2(\gamma-1)}} \end{split}$$

Pression totale et col sonique

$$\frac{\dot{m}_1 \sqrt{rT_0}}{p_{0,1} A_{*,1}} = \sqrt{\gamma} \left(\frac{\gamma + 1}{2}\right)^{-\frac{\gamma + 1}{2(\gamma - 1)}} = \frac{\dot{m}_2 \sqrt{rT_0}}{p_{0,2} A_{*,2}}$$

> Le débit est invariant le long de la tuyère

$$\dot{m}_1 = \dot{m}_2$$

> On a ainsi le résultat suivant:

$$p_{0,1}A_{*,1} = p_{0,2}A_{*,2}$$

Rappel: Tuyère Convergente - Divergente

Opération d'une soufflerie supersonique

- \blacktriangleright Diminuer p_2 enlèverait le choc mais ne changerait rien aux conditions d'essais dans la veine -> aucun intérêt de diminuer encore plus p_2
- Par contre, est-il possible de relever la pression arrière tout en maintenant les mêmes conditions d'essais?

Opération d'une soufflerie supersonique

 \blacktriangleright La nouvelle pression arrière $\mathcal{P}_{0,2}$ est plus grande que la pression \mathcal{P}_2

Opération d'une soufflerie supersonique

- Est-il possible de faire mieux? (relever encore plus la pression arrière)
- Ecoulement permanent sans choc

Ceci n'est pas possible à cause du démarrage

Ecoulements dans les tuyères – gaz parfait

- Problème: le démarrage crée un choc
- Situation 1: si le choc se positionne dans la veine d'essai en régime permanent

Il faut alors que le deuxième col soit plus grand que le premier col pour que cette situation existe!

Ecoulements dans les tuyères – gaz parfait

- Que se passe-t-il si le deuxième col est réduit? (l'objectif initial était d'avoir 2 cols identiques)
- \blacktriangleright Le choc retourne dans le divergent afin que $p_{0,2}$ 'soit plus élevé (choc plus faible)

L'écoulement devient subsonique dans la veine d'essai, donc réduire la taille du deuxième col après démarrage n'est pas une bonne solution.

Ecoulements dans les tuyères – gaz parfait

On peut diminuer la pression arrière pour «avaler le choc»

Puis on remonte la pression arrière

Ecoulements dans les tuyères – gaz parfait

On peut ensuite réduire le deuxième col (avec un système de vérins) tout en remontant la pression arrière (afin de maintenir le choc près du col) jusqu'à ce que les deux cols soient de même taille - et l'onde de choc disparaît complètement

- Le principe est identique aux tuyères
- Dans le cas idéal

 \blacktriangleright Lors du démarrage de l'avion, un choc apparaît devant la tuyère car pour un nombre de Mach M tel que:

$$1 < M < M_0$$

$$\left(A/A_{*}\right) < \left(A_{0}/A_{0,*}\right)$$

 \triangleright Au démarrage $1 < M < M_0$

 \blacktriangleright On augmente le nombre de Mach jusqu'à $M_{_0}>1$

L'avion (réacteur) peut accélérer au-delà de son nombre de Mach de vol

Si l'avion accélère un peu plus, il n'y a pas de solution stable du choc

> Le choc est alors «avalé» vers une position stable

> L'avion peut ensuite ralentir pour mettre le choc légèrement plus loin que le col

Tube de Pitot subsonique - rappel

 \blacktriangleright Un premier procédé pour déterminer le nombre de Mach local M_1 consiste à déterminer la pression totale p_0 et la pression statique p_1 et d'utiliser la relation isentrope

$$\frac{p_0}{p_1} = \left(1 + \frac{\gamma - 1}{2} M_1^2\right)^{\frac{\gamma}{\gamma - 1}}$$
 Equation du tube de Pitot subsonique

La mesure de la température totale nous donne la température statique

$$\frac{T_0}{T_1} = 1 + \frac{\gamma - 1}{2} M_1^2$$

Et finalement

$$u_1 = M_1 \sqrt{\gamma r T_1}$$
 $q_1 = \frac{1}{2} \rho_1 u_1^2 = \frac{\gamma p_1}{2} M_1^2$

Tube de Pitot supersonique

Problème: Onde de choc devant le tube de Pitot

On ne mesure pas les bonnes grandeurs totales en raison du choc

Principe théorique

Rappel de formules

$$\frac{p_{0,2}}{p_{0,1}} = \left(\frac{\frac{\gamma+1}{2}M_1^2}{1+\frac{\gamma-1}{2}M_1^2}\right)^{\frac{\gamma}{\gamma-1}} \frac{1}{\left(\frac{2\gamma}{\gamma+1}M_1^2 - \frac{\gamma-1}{\gamma+1}\right)^{\frac{1}{\gamma-1}}}$$

$$\frac{p_2}{p_1} = 1 + \frac{2\gamma}{\gamma + 1} \left(M_1^2 - 1 \right) = \frac{2\gamma}{\gamma + 1} M_1^2 - \frac{\gamma - 1}{\gamma + 1}$$

$$\frac{p_{0,1}}{p_1} = \left(1 + \frac{\gamma - 1}{2} M_1^2\right)^{\frac{\gamma}{\gamma - 1}}$$

Principe théorique

On obtient alors

$$\frac{p_{0,2}}{p_2} = \frac{p_{0,2}}{p_{0,1}} \frac{p_{0,1}}{p_1} \frac{p_1}{p_2} = \left(\frac{\frac{\gamma+1}{2}M_1^2}{1 + \frac{2\gamma}{\gamma+1}(M_1^2 - 1)}\right)^{\frac{\gamma}{\gamma-1}}$$

$$\frac{1}{1 + \frac{2\gamma}{\gamma+1}(M_1^2 - 1)}$$
point d'arrêt

 \triangleright Si on mesure $p_{0,2}$ et p_2 derrière le choc, on peut en déduire le nombre de Mach

En pratique ceci est difficile

car p_2 est difficile à mesurer

$$\frac{p_{0,2}}{p_{0,1}} = \left(\frac{\frac{\gamma+1}{2}M_1^2}{1+\frac{\gamma-1}{2}M_1^2}\right)^{\frac{\gamma}{\gamma-1}} \frac{1}{\left(\frac{2\gamma}{\gamma+1}M_1^2 - \frac{\gamma-1}{\gamma+1}\right)^{\frac{1}{\gamma-1}}}$$

$$\frac{p_{0,1}}{p_1} = \left(1 + \frac{\gamma - 1}{2} M_1^2\right)^{\frac{\gamma}{\gamma - 1}}$$

Formule de Rayleigh pour un tube de Pitot supersonique

$$\frac{p_{0,2}}{p_1} = \frac{\left(\frac{\gamma+1}{2}M_1^2\right)^{\frac{\gamma}{\gamma-1}}}{\left(\frac{2\gamma}{\gamma+1}M_1^2 - \frac{\gamma-1}{\gamma+1}\right)^{\frac{1}{\gamma-1}}}$$

Si on mesure p_{0,2} et p₁, on peut en déduire le nombre de Mach

 \triangleright La pression statique p_1 peut être obtenue de deux manières

Méthode 1:

Dans une soufflerie supersonique: mesure de p_1 sur la paroi en amont du Pitot

Méthode 2:

A une distance de +/- 10 diamètres en aval, la pression statique est pratiquement égale à $\,p_{\rm 1}\,$

Méthode 2:

A une distance de +/- 10 diamètres en aval, la pression statique est pratiquement égale à $p_{\scriptscriptstyle 1}$

Essais à haute enthalpie

Tube à choc

Soufflerie à haute enthalpie

Soufflerie à haute enthalpie

Tube à choc

Origine des rayons cosmiques

Les rayons cosmiques (protons) sont accélérés (accélération de Fermi) au niveau des ondes de choc des supernova.

Detection of the Characteristic Pion-Decay Signature in Supernova Remnants

M. Ackermann, M. Ajello, A. Allafort, J. Baldini, J. Ballet, G. Barbiellini, J. M. G. Baring, D. Bastieri, P. M. K. Bechtol, J. R. Bellazzini, M. R. D. Blandford, J. E. D. Bloom, E. Bonamente, P. J. B. Bonamente, P. J. Bonamente, P. J. B. Bonamente, P. J. Bonamente, P. J. Bonamente, P. J. Bonamente, P. B. Bonamente, P. Bonamente, P. B. Bonamente, P. Bonamente, P. B. Bonamente, P. Bonamente, P. B. Bonamente,

www.sciencemag.org SCIENCE VOL 339 15 FEBRUARY 2013

Lithotripsie par Ondes de Choc

Cavitation par lithotripsie

11 PFLOP/s Simulations of Cloud Cavitation Collapse

Diego Rossinelli¹, Babak Hejazialhosseini¹, Panagiotis Hadjidoukas¹, Costas Bekas², Alessandro Curioni², Adam Bertsch³, Scott Futral³, Steffen J. Schmidt⁴, Nikolaus A. Adams⁴ and Petros Koumoutsakos¹

¹Professorship for Computational Science, ETH Zürich, Switzerland

²IBM Research Division, Zürich Research Laboratory, Switzerland

³Lawrence Livermore National Laboratory, U.S.A.

⁴Institute of Aerodynamics and Fluid Mechanics, TU München, Germany

CFD: Record Mondial – 14.4 Petaflops

Record Shattering Supercomputing Performance In CFD Wins ACM Gordon Bell Prize

Scientists from Switzerland, Germany and the U.S have set a new supercomputing simulation record in fluid dynamics by reaching 14.4 Petaflops of sustained performance to win the 2013 ACM Gordon Bell Prize. The simulation, which represents a 150-fold improvement over current state-of-the-art performance levels for this type of application, has potential utility for improving the design of high pressure fuel injectors and propellers, shattering kidney stones, and therapeutic approaches for cancer treatment. The research was led by scientists at the CSE LAB in ETH Zurich in collaboration with IBM Research Zurich, the Technical University of Munich and the Lawrence Livermore National Laboratory (LLNL). The results were presented by the team at SC13 in Denver, where the winner of the ACM Gordon Bell Prize was announced on November 21, 2013.

The simulation conducted by the team resolved unique phenomena associated with clouds of collapsing bubbles. This condition occurs when vapor bubbles formed in a liquid collapse due to changes in pressure. The successful effort employed 13 trillion cells and 6.4 million threads on LLNL's "Sequoia" IBM BlueGene/Q, one of the fastest supercomputers in the world. The simulation resolved 15,000 bubbles and a 20-fold reduction in time to solution over previous research. The paper describing this achievement was one of six papers chosen as finalists for the 2013 Gordon Bell Prize.

Calculateur

IBM Sequoia Blue Gene (Lawrence Livermore Lab)

1.5 millions coeurs

20 PetaFlop/s

8 MégaWatts

Cloud interaction parameter

$$\beta = \alpha_0 (\frac{R_{eq}}{R_{avg}})^2$$

Brennen et al.

$$\alpha_0 = \frac{\sum_i^N R_i^3}{R_c^3} \quad \text{Initial volume fraction}$$

$$R_{eq} = \sqrt[3]{\sum_i^N R_i^3} \quad \text{Equivalent radius}$$

$$R_{avg} = \frac{\sum_{i}^{N} R_{i}}{N}$$
 Average radius

Simulation RESOLUTION

 $\Delta x \approx 2 \ \mu m$ $\Delta t \approx 1 \ ns$

INPUTS

 $50 \ \mu m < R_i < 200 \ \mu m$ $R_c \approx 1.5 \ mm$ domain size $\approx 16 \ mm$ $p_{\infty} = 10 \ MPa$

RESULTS

Peak Pressure $\approx 150 MPa$

Peak Duration $\approx 0.1 \ \mu s$

Collapse Time $\approx 6 \ \mu s$

