

DIALOG(R) File 351:DERWENT WPI
(c) 1999 Derwent Info Ltd. All rts. reserv.

003198377

WPI Acc No: 81-58929D/198133

Mechanically laying reinforcements for laminated components - using
machine which winds unidirectional layers of filaments for subsequent
bonding and cure

Patent Assignee: POTT R (POTT-I)

Inventor: POTT R

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Main IPC	Week
DE 3003666	A	19810806					198133 B

Priority Applications (No Type Date): DE 3003666 A 19800201

Patent Details:

Patent	Kind	Lan	Pg	Filing Notes	Application	Patent
DE 3003666	A		33			

Abstract (Basic): DE 3003666 A

Reinforcement system for flat or similar shape components or
laminates consists of filaments which are laid to and fro in closed
configurations to suit requirements, they are deposited as at least one
layer covering the whole area and are bonded together either by
pre-impregnating with resin and/or pre-bonding or by laying transverse
adhesive strips, welding filaments, sewn threads, woven threads, etc.

Reinforcement patterns are laid/orientated exactly to suit
requirements, their filaments do not cross each other in a woven
manner, numerous fibres are suitable (e.g. glass, carbon, polyester).

Derwent Class: A32

International Patent Class (Additional): D04H-003/04

?LOGOFF

24nov99 09:51:23 User147493 Session D1161.2

BEST AVAILABLE COPY

Am

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑯ Offenlegungsschrift
⑯ DE 30 03 666 A 1

⑯ Int. Cl. 3:

D 04 H 3/04

⑯ Anmelder:
Pott, Richard, 4937 Lage, DE

⑯ Aktenzeichen: P 30 03 666.9
⑯ Anmeldetag: 1. 2. 80
⑯ Offenlegungstag: 6. 8. 81

⑯ Erfinder:
gleich Anmelder

⑯ Gelege zur Herstellung einer Verstärkung von im wesentlichen aus Flächen bestehenden Bauteilen und eine Vorrichtung zur Herstellung desselben

DE 30 03 666 A 1

DAVIDSON 144

ORIGINAL INSPECTED

DE 30 03 666 A 1

4. Gelege nach Anspruch 1, dadurch gekennzeichnet, daß Bereiche des Geleges als Doppel Lage (22) ausgebildet sind.
5. Gelege nach Anspruch 1, dadurch gekennzeichnet, daß ein oder mehrere Lagen (22) nur als Teilflächen gelegt sind.
6. Gelege nach Anspruch 1 und einem der nachfolgenden Ansprüche, dadurch gekennzeichnet, daß in dem Gelege ein Durchtritts- querschnitt (24) frei von der Führung der Faserstränge (20) gelassen ist.
7. Gelege nach Anspruch 1, dadurch gekennzeichnet, daß die Verbindungsmitte (23) im Randbereich des Geleges liegen.
8. Gelege nach Anspruch 1 und einem der nachfolgenden Ansprüche, dadurch gekennzeichnet, daß das Gelege im Verhältnis der einzelnen Lagen zueinander fadenverkreuzungsfrei gelegt ist.
9. Gelege nach Anspruch 1, dadurch gekennzeichnet, daß das Gelege als eigenstabiles Gebilde ausgebildet ist.
10. Gelege nach Anspruch 1 und einem der nachfolgenden Ansprüche, dadurch gekennzeichnet, daß partielle Verstärkungen des Geleges durch Abstandsveränderung der Faserstränge (20) vorgesehen sind.
11. Gelege nach Anspruch 1 und einem der nachfolgenden Ansprüche, dadurch gekennzeichnet, daß das Gelege aus Fasersträngen (20) besteht mit unidirektionalen Fasern in den Strängen.
12. Gelege nach Anspruch 1 und 11, dadurch gekennzeichnet, daß das Gelege aus Kohlenstoff-, Aramid-, Boron-, Silikat- oder Polyesterfasern besteht in reiner oder gemischter Form.

BAD ORIGINAL

430032/0326

16. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß die Erhebungen (4) auswechselbar oder verschiebbar im Tisch (1) od.dgl. oder Rahmen (15) angeordnet sind.
17. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß die Erhebungen (4) als Stifte, Stössel, Bolzen od. dgl. ausgebildet und beweglich an oder unter dem Tisch (1) od.dgl. oder Rahmen (15) befestigt oder gelagert sind.
18. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß die Oberfläche (10) des Tisches (1) od.dgl. oder Rahmens (15) zur Aufnahme von Erhebungen (4) wie Stifte, Stössel, Bolzen od.dgl. von der Oberfläche her bzw. zur Durchführung derselben von der Unterfläche her gelocht ausgebildet ist, wobei die Lochung in einem Rastersystem liegt.
19. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, daß die Lochung aus einer Anzahl von Führungsbohrungen (310) besteht, in denen die stösselartigen Erhebungen (4), Stifte oder Bolzen, axial verschiebbar liegen.
20. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß der Tisch (1) od.dgl. oder Rahmen (15) drehtellerartig ausgebildet bzw. gelagert ist und eine Mittenkennzeichnung als Nulllinie trägt, deren Stellung im Verhältnis zur Translationsbewegung des Fadenführers (3) winkelverstellbar ist, wobei Kennzeichnungen zur Feststellung der Winkelveränderung und Arretierungsmittel für den Tisch (1) od.dgl. oder Rahmen (15) vorgesehen sind.
21. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, daß die Drehtischplatte (110) auf einer feststehenden Grundplatte (13) angeordnet ist, die mit Kennzeichnungsmitteln versehen ist.

130032/0326

BAD ORIGINAL

28. Vorrichtung nach Anspruch 27, dadurch gekennzeichnet, daß der Zuführungsarm (34) mit einem Schwenkgelenk (134) auf einem Ständer (35) gelagert ist, wobei er abhängig oder unabhängig vom Fadenführer (3) einen hin- und hergehenden Bewegungsantrieb aufweist.
29. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß die Schiene (30) auf einem Maschinengestell (5) auf Schienen (50) verfahrbar gelagert ist und mit einem steuerbaren Bewegungsantrieb versehen ist.
30. Vorrichtung nach Anspruch 29, dadurch gekennzeichnet, daß die Bewegung der Schiene (30) planparallel zur oberen Fläche (10) des Tisches (1) vorgesehen ist.
31. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß der Vorrichtung eine Steuereinheit (St) zugeordnet ist, ein Computer bzw. eine numerische Steuerung (NC), wobei die Steuereinheit elektrisch mindestens mit dem Fadenführer (3), vorzugsweise auch mit den stösselartigen Erhebungen (4) und dem Vorschubantrieb (30,37M) für den Fadenführer verbunden ist.
32. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß die obere Fläche (10) des Tisches (1) gewölbt ausgebildet ist.
33. Vorrichtung nach Anspruch 32, dadurch gekennzeichnet, daß die Erhebungen (4) im rechten Winkel zur Oberfläche (10) des Tisches (1) od.dgl. stehen.

130032/0326

BAD ORIGINAL

So beschreibt z.B. die DE-PS 20 54 448 eine Vorrichtung zur Herstellung von nichtgewebten Netz- oder Gitterstoffen. Hierbei werden durch Einzelfäden Gitterstoffe erstellt, allerdings nicht als Verstärkungsfasergelege, und nur zur Herstellung kontinuierlicher Bahnen. Diese Gelege werden auch als Schußfadenbahnen bezeichnet und können kontinuierlich mit Kettfadenbahnen und/oder Trägern aus textilen und anderen Materialien, insbesondere Papier, Metallfolie oder verschiedenen Filmen vereinigt werden. Dabei wird ein erster Schußfaden von einer Spule abgezogen, läuft durch das Innere einer Hohlwelle und durch einen gekröpften Arm eines Drehflügels hindurch, wonach er beim Umlauf des Flügels von hohlen Kegeln und zylindrischen Drahtspiralen um zwei Randkettfäden herumgelegt wird. Ein zweiter Schußfaden, der von einer Spule ebenfalls über Kopf abgezogen wird, läuft durch einen zentrierten Fadenführer, ein gekrümmtes Rohr und durch eine zentrierende Öse und schließlich durch einen weiteren gekröpften Arm des Drehflügels hindurch und wird dann in der gleichen Weise wie der erste Schußfaden um die Randkettfäden herumgeführt. Der Nachteil besteht darin, daß beide zulaufenden Fäden ein einziges Gelege bilden, und zwar nur bahnförmig, das also nicht in den Konturen in sich abgeschlossen ist, wobei im Randbereich ständig Fadenverkreuzungen vorkommen. Diese ergeben Knotenstellen, die nachteilhaft sein können. Würde ein solches Fadengelege als Verstärkungsmaterial verwendet, so ist es notwendig, aus der Bahn die entsprechenden Formen auszustanzen oder auszuschneiden und weiter zu verarbeiten, wodurch ein Ausfransen gerade der oft unter starker Beanspruchung stehenden Randbereiche unvermeidbar ist.

130032/0326

BAD ORIGINAL

odgl. miteinander verbunden sind. Dadurch ist erzielt, daß durch einen einzigen gesteuerten Arbeitsprozeß ein weiter-verarbeitungsfertiges Zwischenprodukt von der aufgespulten Rohware bis zum verpressungsfertigen Faser-
5 gelege hergestellt wird. Dieses Zwischenprodukt weist keinerlei Nachteile auf in bezug auf ausfransende Ränder, herausfallende Fäden oder Fasern, sondern ist in genau vorgegebenen Formen in gleichmäßiger oder in gewünschter Dicke vorhanden. Bei dem erfindungsgemäßen
10 Verstärkungsfasergelege entfällt der arbeitsaufwendige Zuschnitt aus Bahnenmaterial und der damit verbundene Abfall und Verschnitt, abgesehen davon, daß, wie bereits erwähnt, auch keine Beschädigung des Teiles selbst am Transport mehr möglich ist. Die Teile lassen sich für die
15 Preßverformung mit höchster Genauigkeit maschinell vorfertigen.

Als Verstärkungsfasern werden Faserstränge verwendet aus unidirekionalen Glas-, Kohlenstoff-, Aramid-, Boron-, Silikat- oder Polyesterfasern bzw. aus ähnlichen oder
20 mit ähnlichen Eigenschaften versehenem Material, wobei die Gelege unter Vermeidung jedweder Fadenverkreuzung, die zwangsläufig einen Festigkeits- und Steifigkeitsverlust zur Folge hätte, hergestellt werden.

Ein weiterer Gedanke der Erfindung besteht darin, daß eine
25 Anzahl von aufeinanderliegenden Einzellagen aus ausgerichteten Fasersträngen od.dgl. angeordnet sind, deren Orientierungswinkel im Verhältnis zueinander und zur Hauptbelastungssachse des herzustellenden Bauteiles frei wählbar ist. Damit läßt sich das Fasergelege nicht nur der Kontur
30 des herzustellenden Bauteiles anpassen, sondern auch dessen Belastungen, die später auf das Bauteil zukommen. Es ist vorteilhaft, zunächst in Richtung der Hauptbelastungssachse eine Lage des Geleges herzustellen.

00000000

Wird das erfindungsgemäße Gelege für die Herstellung eines Kunststofflaminates benötigt, so ist der erhebliche Vorteil gegeben, daß die Form schon durch das Gelege gleichmäßig mit einem Faseranteil versehen ist, 5 selbstverständlich soweit gleichmäßig, wie eben das gewünschte Gelege hergestellt wird, und nach dem Verpressen in einer Form unter Druck und Hitze wird das Bauteil formgepreßt, ohne daß Schnittabfall, lose Kanten oder irgendetwas die Zug- und Bruchfestigkeit Störendes in der Gesamtstruktur des Bauteiles vorhanden ist. 10 Bevor das Kunststofflaminat in die Form gelangt, kann es durch ein Harzbad geführt werden, vielleicht durch ein Quetschwalzenpaar, um zusätzliches Harz vom Gelege abzuquetschen, um dann in die Form zu kommen. 15 Die Form kann eben sein, gewölbt oder sonst irgendwie strukturiert sowohl in der Oberfläche als auch im Verlauf der Flächen. So können die verschiedensten Bauteile hergestellt werden, die im wesentlichen aus Flächen bestehen. Unter dem Begriff "Flächen" ist nicht 20 nur eine ebene Fläche zu verstehen, sondern es kann eine gewölbte Fläche sein, eine bombierte od. dgl.

Die Legerichtungen der unterschiedlichen Lagen sollen im Winkel zueinander liegen, damit jeweils besondere Eigenschaften, wie hohe Biegesteifigkeit in einer bestimmten 25 Richtung oder Zugbelastungsfähigkeit, vorzugsweise in der Hauptbelastungssachse erzielt wird.

Durch die Bildung des vorbeschriebenen Geleges bzw. durch die erfindungsgemäße Vorrichtung ist es möglich, durch einen einzigen gesteuerten Arbeitsprozeß, evtl. aufgegliedert in einzelne Legeprozesse, ein weiterverarbeitungsfertiges Zwischenprodukt von der aufgespulten Rohware, vorzugsweise von Fasersträngen, bis zum verpressungsfertigen Fasergelege herzustellen. 30

in unterschiedlichen Abständen voneinander stehenden Erhebungen in alternierender Bewegung steuerbar ist unter entsprechendem Vorschub des Tisches oder Rahmens bzw. des Fadenführers selbst. Durch diese Vorrichtung ist erzielt,
5 daß ein in sich abgeschlossenes Gelege hergestellt werden kann mit relativ einfachen Mitteln. Ist eine Lage des Geleges mit dieser Vorrichtung geschaffen, kann diese bereits durch quer zu den gelegten Fasersträngen aufgebrachten Verbindungsmitteln, wie Klebestreifen, Schweißfäden, Nähfäden od.dgl. befestigt werden, nach Drehung
10 der plattenartigen Fläche bzw. der rahmenartig umgriffenen Fläche oder nach Drehung der Leit- und Führungs- elemente des Fadenführers wird ein anderer Orientierungswinkel gewählt im Verhältnis zur Hauptbelastungssachse
15 des Bauteiles und eine neue Lage auf die erste Lage des Geleges aufgebracht, wiederum vorzugsweise die Gesamtfläche abdeckend.

Ein weiterer Gedanke zur Ausbildung der erfindungsgemäßen Vorrichtung besteht darin, daß die alternierende Bewegung des Fadenführers im Verhältnis zur Tischoberfläche oder zum Rahmen einstellbar ist, so daß unterschiedliche Lagen der Legung im Winkel zueinander liegen.

Ferner besteht ein wesentlicher Gedanke der erfindungsgemäßen Vorrichtung darin, daß die Erhebungen auswechselbar oder verschiebbar am Tisch oder Rahmen angeordnet sind. Dabei können die Erhebungen als Stifte, Bolzen od. dgl. ausgebildet sein und beweglich an oder unter dem Tisch oder dem Rahmen befestigt werden. Die Oberfläche des Tisches od.dgl. bzw. des Rahmens zur Aufnahme von Erhebungen, wie Stifte, Bolzen od.dgl. von der Oberfläche her bzw. zur Durchführung derselben von der Unterfläche her, ist gelocht ausgebildet, wobei die Lochung in einem Rastersystem liegt.

Wie bereits schon ausgeführt, wird nach Herstellung eines Geleges der drehstellerartig gelagerte Arbeitstisch oder Rahmen in die exakt vorgegebene Winkelstellung zur Arbeitsachse des Fadenführers gebracht, welcher vorzugsweise oberhalb des Arbeitstisches angeordnet ist und nur in einer einzigen Achse, vorzugsweise in einer Querachse zum Arbeitstisch in einer alternierenden Bewegung unter entsprechendem Vorschub den unter Vorspannung stehenden Faden um die herausragenden Stifte führt und ablegt. Soll das Verstärkungsfasergelege aus mehreren Lagen bestehen, so wird aus Festigkeits- und Steifigkeitsgründen für das spätere Kunststoffbauteil eine genau definierte Zuordnung der Faserorientierungswinkel zur Bauteillängsachse oder Hauptbeanspruchungssachse angestrebt. Hierzu wird auf einfache Weise der drehstellerartig gelagerte Arbeitstisch oder der Rahmen um den entsprechenden Betrag gedreht und der programmgesteuerte Fadenführer unter Beibehaltung seiner ursprünglichen Arbeitsrichtung veranlaßt, eine weitere Faserlage aufzulegen.

Diese Arbeitsgänge lassen sich unter jeweiliger Veränderung der Achse des Arbeitstisches beliebig oft wiederholen bis zur Erreichung der gewünschten Gelege-Gesamtdicke. Anstelle des vorgeschriebenen drehstellerartig gelagerten Arbeitstisches kann auch, wie bereits erwähnt, eine Rahmenkonstruktion verwendet werden, welche ebenfalls um die Hochachse drehbar ist. Bei der Rahmenkonstruktion besteht jedoch nicht die Möglichkeit, beliebige Konturen über eine Programmsteuerung vorzuwählen. Man kann diese deshalb vorzugsweise für Bauteile einsetzen, deren Größe den vorgeschriebenen Arbeitstisch überragen würde. Die Programmsteuerung der Stifte oder Bolzen bzw. des Fadenführers erfolgt gegebenenfalls über einen Computer bzw. über eine sogenannte NC-Steuerung, da dann die genaue Anpassung des

Die Fig. 1 zeigt eine mögliche Ausführung einer Vorrichtung zur Herstellung eines erfindungsgemäßen Geleges. Auf einer plattenartig ausgebildeten Fläche 10 eines Tisches 1 soll das erfindungsgemäße Gelege 2 hergestellt werden, wobei 5 der Faserstrang 20 fadenartig von einer Spule 21 abgezogen wird, der von einem eine Translationsbewegung ausführenden Fadenführer 3 um auf der Oberfläche des Tisches 1 angeordnete Erhebungen 4 ausführt.

Der Tisch 1 ist vorzugsweise als Drehtisch ausgebildet mit 10 einem Ständer 11, einem Fuß 12, einer feststehenden Grundplatte 13 und der Drehtischplatte 110. Auf der Oberfläche 10 des Tisches 1 sind Erhebungen 4 angeordnet, die beim dargestellten Ausführungsbeispiel Stifte, Stössel oder Bolzen sein können. Die verwendeten stösselartigen Erhebungen 4 15 sind aus der Drehtischplatte 110 herausgefahren, während die nicht verwendeten stösselartigen Erhebungen 4 im Inneren der Drehtischplatte 110 liegen. Ein möglicher Steuermechanismus ist in Fig. 6 dargestellt und später beschrieben.

Um die Erhebungen 4 wird das Gelege 2 gelegt, wobei der 20 Faserstrang 20 zu Beginn zunächst festgelegt werden kann durch Anknüpfung an eine der Erhebungen 4. In hin- und hergehender Bewegung jeweils um die Erhebungen fahrend, wird, wie dargestellt, das Gelege hergestellt, derart, daß die Faserstränge einer Lage jeweils unidirektional liegen bzw. 25 im wesentlichen unidirektional.

Der Fadenführer 3, der im vorliegenden Fall korrekt eigentlich "Faserstrangführer" genannt werden könnte, aber üblicherweise Fadenführer genannt wird, wird mittels eines Translationsmechanismus bewegt. Er kann auf einer Schiene 30 fahren 30 und trägt in seinem Inneren einen polumschaltbaren Motor 31, der die Räder 32 antreibt. Unterhalb der Schiene 30 befinden sich Steuerelemente 33, die entweder über einen Steuercomputer St od.dgl. jeweils als Anschläge entsprechend der Stellung der

Vorwärtsbewegung durchgeführt, um die alternierende Bewegung des Fadenführers 3 zu ermöglichen. Hier kann auch ein Schrittmotor eingebaut werden im Bereich des Getriebes 37. Die Rücklaufbewegung kann schnell erfolgen. Das Getriebe 37 muß demzufolge variabel sein, um nicht Zeit zu verlieren, wenn die Schiene 30 schnell zurückgefahren werden muß. Die Rückfahrbewegung kann von Hand gesteuert werden oder die Steuerung erfolgt ebenfalls über den Steuercomputer, der sowohl das Getriebe 37 als auch den Motor M steuert sowie auch die Steuerelemente 33. Die Kettenräder 136 sind jeweils paarweise über einer Welle 336 verbunden.

Das Gelege wird vorzugsweise derart ausgeführt, daß der Tisch 1 mit seiner Drehtischplatte 110 in der Nulllinie steht. Ein Zeiger zeigt dabei auf die entsprechende Markierung 0. Ist das Gelege in dieser Form vollendet, so kann zwischendurch eine Verklebung, Verschweißung, Verbindung od. dgl. der jetzt paarweise liegenden Faserstränge 20 in einer Lage des Geleges erfolgen, und zwar quer zur Verlaufsrichtung der dann liegenden Faserstränge. Es kann aber auch sofort die zweite Lage begonnen werden, nachdem der Tisch 1 mit seiner Drehtischplatte 110 in eine beliebige Stellung gebracht wird zur genauen definierten Zuordnung der Faser-Orientierungswinkel, beispielsweise zur Bauteil-Längsachse oder zur Hauptbeanspruchungssachse des späteren Bauteiles. Die Verdrehung kann vom Steuergerät St aus vorgenommen werden, indem hier der Winkel eingespeist wird und sie kann auch von Hand erfolgen, wobei die jeweilige Stellung des Drehtisches durch den Zeiger 210, der an der Drehtischplatte 110 befestigt ist, ablesbar ist. Entsprechende Kennzeichnungen sind auf der feststehenden Grundplatte 13 angeordnet.

In Fig. 4 ist das Ausführungsbeispiel der Herstellung eines Geleges 2 gezeigt mit darunterliegender Formplatte 6, wobei in der 0°-Linie nur mittig ein Bereich abgedeckt wurde, vorzugsweise sogar doppelt. Es besteht somit die Möglichkeit, daß eine Lage 22 des Geleges 2 als Doppellage ausgebildet ist. Ferner besteht die Möglichkeit, daß die Lage nicht die Gesamtfläche des zukünftigen Bauteiles abdeckt, sondern nur Teilflächen mit dieser Lage bedeckt werden. Ist das Gelege soweit fertiggestellt, wie es in Fig. 4 dargestellt ist, kann unter Zuhilfenahme der Formplatte 6 das gesamte Gelege von den Erhebungen 4 abgenommen werden. Bei diesem dargestellten Ausführungsbeispiel besteht das Gelege aus zwei im Winkel zur Längsachse des zukünftigen Bauteiles gearbeiteten Lagen und beispielsweise einer doppelten Mittellage, die eben nur als Teilfläche ausgebildet ist.

Fig. 5 zeigt das fertig in der Form gepreßte Bauteil. Dabei ist nur zur Verdeutlichung das Gelege 2 am Ende zu sehen. Im allgemeinen sollte es beim Verpressen voll von Kunststoff eingeschlossen werden.

Es besteht somit die Möglichkeit, nach Erstellung jeweils einer oder mehrerer Lagen des Verstärkungsfasergeleges und gegebenenfalls Fixierung der Faserstränge aneinander, miteinander u.dgl., derart, daß eine Verstärkungsfaserplatte vorhanden ist, diese unter Zuhilfenahme der Formplatte 6 und ggf. einer nicht dargestellten Aufnahmeverrichtung von dem Arbeitstisch oder auch einer Rahmenkonstruktion abzunehmen und unmittelbar einem Harzbad bzw. einer Imprägniervorrichtung zuzuführen zwecks Vorimprägnierung des Verstärkungsfasergeleges, um hieraus in einem weiteren Arbeitsgang direkt daran anschließend oder später mittels einer Preßform oder Laminierform das Bauteil zu erstellen. Die Teile lassen sich für die Preßverformung somit mit höchster Genauigkeit maschinell vorfertigen. Es ist eine

Bei Zurücksteuerung der Erhebungen 4 können einstellbare Anschlagschrauben 82 die Bewegung der stösselartigen Erhebungen 4 bzw. der Kerne 81 derselben begrenzen.

Die Bewegungseinrichtung für die Erhebungen 4, ihre Anbringung und ihre Ausbildung ist variierbar. So können auch einfach in die Führungsbohrungen 310 oben Erhebungen 4 eingesetzt werden; die beispielsweise bolzenartig sind. Dies kann auch von Hand geschehen oder durch Einstechen in eine Platte. Das dargestellte Ausführungsbeispiel der Fig. 6 zeigt eine steuerbare Einrichtung.

Fig. 7 zeigt eine Rahmenkonstruktion. Hier ist die obere Fläche 10 mit den Erhebungen durch einen Rahmen 15 gebildet. Dieser Rahmen kann aus Holz oder Metall bestehen. Die Fig. 7 zeigt eine Draufsicht. Der Rahmen wird der Form des herzustellenden Geleges angepaßt. Fig. 7 zeigt ein Zweilagengelege mit darunter angeordneter Formplatte 6.

In Fig. 8 ist ein Gelege gezeigt mit einer Lage. Hier wird deutlich, daß die Möglichkeit besteht, nach Erstellung jeweils einer oder mehrerer Lagen 22, die sich innerhalb der Erhebungen 4 befindliche Fläche aus parallelliegenden Einzelfasersträngen oder -fäden durch einen oder mehrere, vorzugsweise im Winkel von 45° zur Fadenachse im Abstand zueinanderliegende Schweiß-, Näh- oder Webfäden bzw. auch Klebestreifen so zu stabilisieren, daß sich das Gelege von dem Arbeitstisch bzw. der Rahmenkonstruktion als eigenstables Gebilde abnehmen läßt. Ferner besteht die Möglichkeit, die Stabilisierung des Verstärkungsfasergeleges durch streifenweise Verklebung oder Verharzung, ggf. auch Direktvorverharzung zu erreichen. Diese Verbindungsmittel können schon, da sie im Abstand zueinander stehen, wie die Fig. 8 zeigt, im Sinne einer Verwebung oder Vernähung ein Fadenkreuz mit dem eigentlichen Gelege 2 bilden, insbesondere, wenn der Randbereich mit einem Kettfaden umschlossen wird,

130032/0326

Vorprodukt geschaffen, das auch einen Masseneinsatz ermöglicht, insbesondere einen Masseneinsatz von Faser-verbundwerkstoffen in vielen Bereichen. Höhere Festigkeit, größere Steifigkeit, niedrigere Strukturgewichte, 5 kleinere Fertigungstoleranzen, geringerer manueller Aufwand, dies alles kann mit dem erfindungsgemäßen Gelege allein und durch die richtige Wahl und Anwendung der Verstärkungsfasern und ihrer materialgerechten Verarbeitungsverfahren ermöglicht werden mit relativ einfachen Mitteln, 10 wie die dargestellte Vorrichtung zeigt.

Wie bereits erwähnt, ist die Ausbildung sowohl des Geleges, als auch der Vorrichtung nicht auf die dargestellten Ausführungsbeispiele beschränkt. So kann das Raster, indem die Erhebungen 4 stehen, veränderbar sein und beliebig 15 gewählt werden, auch hinsichtlich seiner Größe, statt des Fadenführers 3 kann sich auch der Arbeitstisch bewegen bzw. unter dem translatorisch hin- und herlaufenden Fadenführer verfahrbar sein, genauso wie die Möglichkeit besteht, den Fadenführer auf einem Laufkranz anzurufen, so 20 daß die Winkelverstellung durch Verschwenkung der Lagerung und Bewegungsrichtung des Fadenführers vorgenommen werden kann. Auch die Ausbildung der Steuerung ist variierbar, vorzugsweise wird eine numerische Steuerung gewählt (NC).

Auch die Nachverarbeitung des Geleges ist variierbar. Es 25 wird vorzugsweise zunächst getränkt in einem Harzbad, und zwar vor der Einlegung in eine Preßform, ggf. erst noch durch ein Quetschwalzenpaar geführt zur Abquetschung überflüssigen Harzmaterials und dann in eine Form gebracht, in der das Bauteil unter Druck und Hitze formgepreßt wird. Innerhalb dieses Materials liegt dann das in sich geschlossene 30 Gelege 2.

Nummer:
Int. Cl. 3:
Anmeldetag:
Offenlegungstag:

30 03 688
D 04 H 3/04
1. Februar 1980
6. August 1981

3003666

Fig. 1

Fig. 8

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.