CS465: Computer Systems Architecture

Computer Arithmetic Review

*Slides adapted from Computer Organization and Design by Patterson and Henessey

Outline

- This review includes topics that are well covered in CS367
- Operations on integers (Ch3.2)
 - Addition and subtraction
 - Overflow
- Floating-point numbers (Ch3.5)
 - Representation
 - Addition and multiplication

Example: Integer Addition

• Example: 7 + 6

When Overflow Occurs?

- Overflow if result out of range
- For signed integers:
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is I
 - Adding two –ve operands
 - Overflow if result sign is 0

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)
 +7: 0000 0000 ... 0000 0111
 -6: 1111 1111 ... 1111 1010
 +1: 0000 0000 ... 0000 0001
- Overflow if result out of range
 - Subtracting two +ve or two -ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is I

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation
 -2.34 × 10⁵⁶
 +0.002 × 10⁻⁴
 +987.02 × 10⁹

 not normalized
- In binary
 - $\pm 1.xxxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: I.0 ≤ |significand| < 2.0
 - Always has a leading pre-binary-point I bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "I." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Bias = $2^{(|exp|-1)-1}$
 - Single: Bias = 127; Double: Bias = 1023

Single-Precision Range

- Range of normalized numbers
- Exponents 00000000 and IIIIIIII reserved
- Smallest value
 - Exponent: 0000001 \Rightarrow actual exponent = I - I27 = -I26
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value

 - Fraction: III...II ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Range of normalized numbers
- Exponents 0000...00 and IIII...II reserved
- Smallest value
 - Exponent: 0000000001 \Rightarrow actual exponent = I - 1023 = -1022
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value

 - Fraction: III...II ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Example

What number is represented by the single-precision float

11000000101000...00

- S = |
- Fraction = $01000...00_2$
- Exponent = $10000001_2 = 129$

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = I
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 011111111110_2$
- Single: | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
- Double: |0||||||||||0||000...00

Denormalized Numbers

• Exponent = $000...0 \Rightarrow$ hidden bit is 0

$$x = (-1)^S \times (0 + Fraction) \times 2^{-126}$$

- Smaller than normalized numbers
 - Allow for gradual underflow, with diminishing precision
- Denormalized with fraction = 000...0

$$X = (-1)^{S} \times (0+0) \times 2^{-126} = \pm 0.0$$

Two representations of 0.0!

Other Special Patterns

- Exponent = I...I
 - Fraction = all zero \Rightarrow Infinities
 - Result of computations like X/0
 - Allows operations to continue past overflow situations
 - E.g. X/0 > 10
- Exponent = | ... |
 - Fraction = not all zero ⇒ Not a number
 - Result of computations like sqrt(-4) or 0/0
 - Support mixing numerical and symbolic computation or other extensions

IEEE 754 FP Definition

S Exponent Fraction

Single precision

<u>Exponent</u>	<u>Fraction</u>	<u>Object</u> 0 denom	
0	0		
0	nonzero		
1-254	anything	+/- fl. pt.#	
255	0	+/- infinity	
255	nonzero	NaN	

- Overflow: exponent is too large to be represented in the bits
- Underflow: a non-zero fraction that is to small to be represented (negative exponent too large to be represented in the bits)

Outline

- This review includes topics that are well covered in CS367
- Operations on integers
 - Addition and subtraction
 - Overflow
- Floating-point numbers
 - Representation
 - Addition and multiplication ←

Floating-Point Addition

- Consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- I.Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2.Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change) = 0.0625

Rounding Modes

 Assume that we can only keep two digits to the right of binary point

Value	1.01 <mark>01</mark>	1.0111	-1.01 <mark>10</mark>	1.1010
Round up	1.10	1.10	-1.01	1.11
Round down	1.01	1.01	-1.10	1.10
Truncate (round to zero)	1.01	1.01	-1.01	1.10
Round to nearest even	1.01	1.10	-1.10	1.10

- Round to even
 - If <half, round down; if >half, round up
 - If ==half, use evenness to break the tie

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- I.Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 adjusting by -127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.110 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve × −ve ⇒ −ve
 - $-1.110_2 \times 2^{-3} = -0.21875$