Object Detection

Haofeng Chen

Motivation

• **Image classification**: often assume there is a single object in the image

Motivation

- **Image classification**: often assume there is a single object in the image
- Real-world images can include multiple instances of objects with the same/different classes

Motivation

- Image classification: often assume there is a single object in the image
- Real-world images can include multiple instances of objects with the same/different classes
- Object Detection: produce bounding boxes that surround each instance

Classification

CAT

Object Detection

CAT, DOG, DUCK

Problem Definition: Object Detection

Object Detection

- Input: Image
- Output: multiple instances of
 - object location (bounding box)
 - object class

Instance

 Distinguishes individual objects, in contrast to considering them as a single semantic class

Problem Definition: Object Detection

Object Detection

- Input: Image
- Output: multiple instances of
 - object location (bounding box)
 - object class

Bounding box

- Rigid box that confines the instance
- Multiple possible parametrizations
 - (width, height, center x, center y)
 - o (x1, y1, x2, y2)
 - o (x1, y1, x2, y2, rotation)

Problem Definition: Object Detection

Object Detection

- Input: Image
- Output: multiple instances of
 - object location (bounding box)
 - object class

Object class

- Semantic class of the instance
 - Similar to image classification
 - Predict a vector of scores

People that say that Al will take over the world:

My own Al:

Modern Object Detection Architecture

- R-CNN
- Fast R-CNN
- Faster R-CNN
- Mask R-CNN
- SSD
- YOLO (v1, v2, v3, v4)
- FPN
- DETR

Object Detection: how can we detect multiple instances?

- Boxes can be centered at any location in the image
- Varying width/height
- Sliding window: infeasible

Object Detection: Anchor Boxes!

- Neural network prefers discrete prediction over continuous regression
- Preselect templates of bounding boxes to alleviate the regression problem
- For each anchor box, NN decides
 - Does it contain an object? (objectness classification)
 - Small refinement to the box (object localization)

Object Detection: Single-Stage and Two-Stage Architectures

Stage 1

- For every output pixels
 - For every anchor boxes
 - Predict bounding box offsets
 - Predict anchor confidence (objectness/class)
- Output
 - Bounding boxes if single-stage
 - Region proposals (region-of-interest, Rol) if two-stage

Stage 2

- For Rol
 - Perform pooling using the Rol (Rol pooling)
 - Predict bounding box offsets
 - Predict object class

Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and

pattern recognition. 2016.

Object Detection: Single-Stage and Two-Stage Architectures

Stage 1

- For every output pixels
 - For every anchor boxes
 - Predict bounding box offsets
 - Predict anchor confidence (objectness/class)
- Output
 - Bounding boxes if single-stage
 - Region proposals (region-of-interest, Rol) if two-stage

Stage 2

- For Rol
 - Perform pooling using the Rol (Rol pooling)
 - Predict bounding box offsets
 - Predict object class

Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." arXiv preprint arXiv:1506.01497 (2015).

Object Detection: Single-Stage vs Two-Stage Architectures

Single-Stage

- + Faster
- Can perform worse on small objects due to the low resolution of feature maps

Two-Stage

- + Performance is often higher
- + Easily extendable to various instance-based tasks
- Slow

Details for Two-Stage Object Detectors

Stage 1

For every output pixels

- For every anchor boxes
 - Predict bounding box offsets
 - Predict anchor confidence (objectness/class)
- Output
 - Region proposals (region-of-interest, Rol)

Stage 2

- For Rol
 - Perform pooling using the Rol (Rol pooling)
 - Predict bounding box offsets
 - Predict object class

Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." arXiv preprint arXiv:1506.01497 (2015).

Feature extractor

- Every pixel makes prediction
- Image classification: single output

Details for Two-Stage Object Detectors

Stage 1

- For every output pixels
 - For every anchor boxes
 - Predict bounding box offsets
 - Predict anchor confidence (objectness/class)
- Output
 - Region proposals (region-of-interest, Rol)

Stage 2

- For Rol
 - Perform pooling using the Rol (Rol pooling)
 - Predict bounding box offsets
 - Predict object class

Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." arXiv preprint arXiv:1506.01497 (2015).

Extract Anchor Boxes

- For each output pixel
 - "Objectness" classification
 - o Regression
- Often thousands of anchors for an image
- Pass anchors that correspond to ground-truth locations to the next stage, plus negative anchors

Bounding Box Regression

Given

- Anchor box size (p_w, p_h)
- Output pixel center location (p_x, p_y)

Predict bounding box refinement toward b

- Log-scaled scale relative ratio $d_w = \log(b_w/p_w), d_h = \log(b_h/p_h)$
- Relative center offset $d_x = (b_x p_x)/p_w, d_y = (b_y p_y)/p_h$

Details for Two-Stage Object Detectors

Stage 1

- For every output pixels
 - For every anchor boxes
 - Predict bounding box offsets
 - Predict anchor confidence (objectness/class)
- Output
 - o Region proposals (region-of-interest, Rol)

Stage 2

- For each Rol
 - Perform pooling using the Rol (Rol pooling)
 - Predict bounding box offsets
 - Predict object class

Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." arXiv preprint arXiv:1506.01497 (2015).

Rol Pooling

 Given region-of-interests (Rols), we want to pool from the backbone features

0.1	0.3	0.2	0.3	0.2	0.6	0.8	0.9
0.4	0.5	0.1	0.4	0.7	0.1	0.4	0.3
0.2	0.1	0.3	0.8	0.6	0.2	0.1	0.1
0.4	0.6	0.2	0.1	0.3	0.6	0.1	0.2
0.1	0.8	0.3	0.3	0.5	0.3	0.3	0.3
0.2	0.9	0.4	0.5	0.1	0.1	0.1	0.2
0.3	0.1	0.8	0.6	0.3	0.3	0.6	0.5
0.5	0.5	0.2	0.1	0.1	0.2	0.1	0.2

0.8	0.6
0.9	0.6

0.1	0.3	0.2	0.3	0.2	0.6	0.8	0.9
0.4	0.5	0.1	0.4	0.7	0.1	0.4	0.3
0.2	0.1	0.3	0.8	0.6	0.2	0.1	0.1
0.4	0.6	0.2	0.	0.3	0.6	0.1	0.2
0.1	0.8	0.3	0.3	0.5	0.3	0.3	0.3
0.2	0.9	0.4	0.5	0.1	0.1	0.1	0.2
0.3	0.1	0.8	0.6	0.3	0.3	0.6	0.8
0.5	0.5	0.2	0.	0.1	0.2	0.1	0.:

0.88	0.6
0.9	0.6

Details for Two-Stage Object Detectors

Stage 1

- For every output pixels
 - For every anchor boxes
 - Predict bounding box offsets
 - Predict anchor confidence (objectness/class)
- Output
 - Region proposals (region-of-interest, Rol)

Stage 2

- For each Rol
 - Perform pooling using the Rol (Rol pooling)
 - Predict bounding box offsets
 - Predict object class (semantic class / background)

Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." arXiv preprint arXiv:1506.01497 (2015).

Details for Two-Stage Object Detectors

Are We Done?

 Prediction might contain multiple boxes of the same instance

Post-Processing: Non-Maximum Suppression

- For boxes overlapping with each other above a threshold: keep the one with the maximum confidence. score
- Implementation
 - Sort by confidence
 - For each box (conf high to low)
 - If overlaps with confirmed predictions above a threshold
 - Discard
 - Else
 - Add to predictions

Non-Max

Feature Pyramid Network as the feature extractor

Traditional backbone

- Small feature maps have larger receptive field and contain better-extracted overall semantic information
- Want this semantic information in larger feature maps for prediction

Feature Pyramid Network

- Richer representation
- Enables multi-scale predictions

How should we evaluate our results?

- Start with the most simple case
- Given
 - o a single ground-truth box
 - a single predicted box

How should we evaluate our results?

- Start with the most simple case
- Given
 - o a single ground-truth box
 - a single predicted box
- Use Intersection-over-Union (IoU)

What if there are multiple boxes?

- Multiple ground-truth boxes
- Multiple predictions
- Might include
 - True positive (prediction matched with GT)
 - False positive (prediction not matched with any GT)
 - False negative (GT not matched with any prediction)

Bounding Box Matching

- Use IoU threshold
- Matched if
 - IoU above certain threshold
 - Class prediction is correct
 - GT not matched with other boxes (1-to-1)

Evaluation Metrics: Precision and Recall

- True Positive (TP)
- False Negative (FN)
- False Positive (FP)

Precision = TP / (TP + FP)

Recall = TP / (TP + FN)

Evaluation Metrics: Average Precision

- Go through every prediction in descending order of the prediction confidence
- Plot Precision-Recall Curve
- Area below the curve is
 Precision (AP)

Average

Rank	Correct?	Precision	Recall
1	True	1.0	0.2
2	True	1.0	0.4
3	False	0.67	
4	False	0.5	0.4
5	False	0.4	0.4
6	True	0.5	0.6
7	True	0.57	0.8
8	False	0.5	0.8
9	False	0.44	0.8
10	True	0.5	1.0

Evaluation Metrics: Average Precision

- To make AP more stable to score ordering, we sometimes take max precision to the right of the PR curve
- Use different IoU threshold for matching
 - AP50, AP75, AP95: match IoU threshold of 0.5, 0.75, 0.95
 - AP: average of AP with match IoU threshold of [0.5, 0.55, 0.6, ..., 0.95]

Two-Stage Detectors can do more!

- In addition to detecting boxes, at the final stage using Rol features, we can predict
 - 3D bounding boxes
 - Instance segmentation
 - Keypoints (human pose)
 - Meshes
 - Scene graphs
 - 0 ...
- A family of R-CNNs!

Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." arXiv preprint arXiv:1506.01497 (2015).

3D Object Detection

- Input
 - 2D image and/or 3D point cloud
- Output
 - 3D bounding box
 - Center location: x, y, z
 - Bounding box size: w, h, l
 - Rotation

3D Object Detection

Stage 1

- For every output pixel (from backbone)
 - For every anchor boxes
 - Predict bounding box offsets
 - Predict anchor confidence

(Optional, if two-stage networks) Stage 2

- For every region proposals
 - Predict bounding box offsets
 - Predict its semantic class

For example, Point R-CNN

Mask R-CNN

- Final stage parallel to box prediction
 - o Predict instance mask using a convolution head
- Rol Align especially helpful for segmentation by aggregating fine-grained features

Mesh R-CNN

- Final stage parallel to box prediction
 - Predict voxels
 - Align and refine meshes with graph convolution

Graph R-CNN

- Object detection + relationship detection
- Additional Relation Proposal Network
- Use Graph Convolution Network (GCN) for scene graph refinement

Yang, Jianwei, et al. "Graph r-cnn for scene graph generation." Proceedings of the European conference on computer vision (ECCV). 2018.

DETR: End-to-End Object Detection with Transformers

- Using Transformer to directly produce boxes
- Predict objects (much larger than number of boxes) using learned fixed number of object queries

Carion, Nicolas, et al. "End-to-end object detection with transformers." European Conference on Computer Vision. Springer, Cham, 2020.

Conclusion

Stage 1

- For every output pixels
 - For every anchor boxes
 - Predict bounding box offsets
 - Predict anchor confidence (objectness/class)
- Output
 - Region proposals (region-of-interest, Rol)

Stage 2

- For each Rol
 - Perform pooling using the Rol (Rol pooling)
 - Predict bounding box offsets
 - Predict object class (semantic class / background)
 - Predict other stuff! (segmentation, pose, mesh, etc.)
- Non-maximum Suppression

Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." arXiv preprint arXiv:1506.01497 (2015).

Implementing a Detector: Detectron2

- Open-source software for object detection and more
- Developed by Facebook with PyTorch
- Easily extendable with extensive documentations

Suggested Readings

- Rich feature hierarchies for accurate object detection and semantic segmentation
- Fast R-CNN
- Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
- Mask R-CNN
- Fast Point R-CNN
- Mesh R-CNN
- Graph R-CNN for Scene Graph Generation
- You Only Look Once: Unified, Real-Time Object Detection
- SSD: Single Shot MultiBox Detector
- End-to-End Object Detection with Transformers
- detectron2