```
In [1]: greetings = "Assalam-o-Alaikum!"
print(greetings)
```

Assalam-o-Alaikum!

Import Libraries

```
In [2]: import pandas as pd
```

Data

Out[6]:		Crockery Items	Prices	Last Month Items Sold
	0	Cup	50	10
	1	Bottle	60	15
	2	Plate	30	12
	3	Hotpot	100	2
	4	Glass	70	27
	5	Knife	30	12
	6	Spoon	40	11

Total Sales By Crockery Items On The End Of Month

```
In [7]: df["Total Sales"] = df["Prices"] * df["Last Month Items Sold"]
df

Out [7]: Crockery Items Prices Last Month Items Sold Total Sales
```

[7]:		Crockery Items	Prices	Last Month Items Sold	l otal Sales
	0	Cup	50	10	500
	1	Bottle	60	15	900
	2	Plate	30	12	360
	3	Hotpot	100	2	200
	4	Glass	70	27	1890
	5	Knife	30	12	360
	6	Spoon	40	11	440

Making Quality By Items Prices

```
In [11]: df["Quality"] = df["Prices"].apply(quality)
df
```

Out[11]:		Crockery Items	Prices	Last Month Items Sold	Total Sales	Quality
	0	Cup	50	10	500	High
	1	Bottle	60	15	900	High
	2	Plate	30	12	360	Normal
	3	Hotpot	100	2	200	Premium
	4	Glass	70	27	1890	Premium
	5	Knife	30	12	360	Normal
	6	Spoon	40	11	440	Normal

Costly Item In The List

```
In [12]: costly_item = df[df["Prices"] == df["Prices"].max()]
costly_item

Out[12]: Crockery Items Prices Last Month Items Sold Total Sales Quality
```

3 Hotpot 100 2 200 Premium

Cheapest Items In The List

```
In [14]: cheapest_items = df[df["Prices"] == df["Prices"].min()]
    cheapest_items
```

Out[14]:		Crockery Items	Prices	Last Month Items Sold	Total Sales	Quality
	2	Plate	30	12	360	Normal
	5	Knife	30	12	360	Normal

Most Sold Out Item

```
In [16]: msi = df[df["Last Month Items Sold"] == df["Last Month Items Sold"].max()]
msi
```

Out[16]:		Crockery Items	Prices	Last Month Items Sold	Total Sales	Quality
	4	Glass	70	27	1890	Premium

Least Sold Out Item

```
In [17]: lsi = df[df["Last Month Items Sold"] == df["Last Month Items Sold"].min()]
lsi
```

Out[17]:		Crockery Items	Prices	Last Month Items Sold	Total Sales	Quality
	3	Hotpot	100	2	200	Premium

Higest Sale From Items

```
In [18]: hsfi = df[df["Total Sales"] == df["Total Sales"].max()]
hsfi
```

Out[18]:		Crockery Items	Prices	Last Month Items Sold	Total Sales	Quality
	4	Glass	70	27	1890	Premium

Lowest Sale From Items

```
In [19]: lsfi = df[df["Total Sales"] == df["Total Sales"].min()]
lsfi
```

```
        Out[19]:
        Crockery Items
        Prices
        Last Month Items Sold
        Total Sales
        Quality

        3
        Hotpot
        100
        2
        200
        Premium
```

Average Price Of Items

```
In [24]: AvgPOI = df["Prices"].mean()
print("Average Price Of Items = $" + str(int(AvgPOI)))
Average Price Of Items = $54
```

Average Items Sold In A Month

```
In [25]: AvgSI = df["Last Month Items Sold"].mean()
print("Average Items Sold In A Month = $" + str(int(AvgSI)))
```

Average Items Sold In A Month = \$12

Average Sales In A Month

```
In [27]: AvgSIM = df["Total Sales"].mean()
print("Average Sales In A Month = $" + str(int(AvgSIM)))
```

```
Average Sales In A Month = $664
```

Total Prices Of Items

```
In [29]: TPI = df["Prices"].sum()
print("Total Prices Of Items = $" + str(TPI))

Total Prices Of Items = $380
```

Total Last Month Items Sold

```
In [37]: TLMIS = df["Last Month Items Sold"].sum()
print("Total Last Month Items Sold =", str(TLMIS))

Total Last Month Items Sold = 89
```

Total Income Of Last Month

```
In [36]: TILM = df["Total Sales"].sum()
print("Total Income Of Last Month = $" + str(TILM))
```

Total Income Of Last Month = \$4650

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js