

Algebra

Alessandro D'Andrea

28. Proprietà del determinante

Richiami

- ► I concetti di area, volume e loro generalizzazioni a dimensione alta possono essere utilizzati per studiare la dipendenza lineare
- Questi concetti vengono formalizzati nella nozione di determinante
- E' possibile calcolare il determinante di una matrice con tecniche di eliminazione di Gauss
- Oggi: Varie proprietà del determinante
- Calcolo del determinante con lo sviluppo di Laplace

Espressione del determinante

Se

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix},$$

allora

$$|A| = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \dots a_{n\sigma(n)}$$

è un'espressione

- separatamente lineare nelle righe di A
 - Come espressione nei coefficienti di una singola riga, è lineare senza termine noto
- alternante nelle righe di A
 - E' sufficiente verificarlo per due righe consecutive, ed è facile
- che vale 1 sull'identità
 - Basta sostituire l'identità

Matrici trasposte - I

$$|A| = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \dots a_{n\sigma(n)}$$

Il secondo indice in ogni coefficiente si ottiene dal primo applicando σ . Possiamo riordinare il prodotto rispetto al secondo coefficiente, notando che

$$a_{1\sigma(1)}a_{2\sigma(2)}\dots a_{n\sigma(n)}=a_{\sigma^{-1}(1)1}a_{\sigma^{-1}(2)2}\dots a_{\sigma^{-1}(n)n}.$$

Ricordando che $sgn(\sigma^{-1}) = sgn(\sigma)$, si ha allora

$$|A| = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma^{-1}) a_{\sigma^{-1}(1)1} a_{\sigma^{-1}(2)2} \dots a_{\sigma^{-1}(n)n}$$
$$= \sum_{\tau \in S_n} \operatorname{sgn}(\tau) a_{\tau(1)1} a_{\tau(2)2} \dots a_{\tau(n)n}.$$

Questo è il determinante della matrice che al posto i, j ha il coefficiente a_{ii} , detta matrice trasposta di A.

1

Matrici trasposte - II

Il determinante di una matrice A coincide con il determinante della sua matrice trasposta A^t .

La matrice trasposta di A si ottiene scrivendo per righe le colonne di A (o viceversa). Le righe di A sono colonne di A^t e le colonne di A sono righe di A^t .

Poiché $|A| = |A^t|$, il determinante di A è separatamente lineare nelle righe di A^t , cioè nelle colonne di A.

Il determinante di una matrice è separatamente lineare e alternante sia nelle sue righe che nelle sue colonne.

5

Matrici non singolari - I

Se le righe di una matrice A sono linearmente dipendenti, allora il determinante di A è 0.

Poiché una matrice e la sua trasposta hanno lo stesso determinante, se le colonne di una matrice sono linearmente dipendenti, allora il suo determinante è 0.

Viceversa, se le colonne di una matrice $n \times n$ sono linearmente indipendenti, il procedimento di eliminazione di Gauss produce, come risultato finale, una matrice con n pivot (non nulli), che deve essere necessariamente diagonale.

Ma il determinante di una matrice diagonale è il prodotto degli elementi sulla diagonale! Se sono tutti diversi da 0, anche il determinante è diverso da 0.

Matrici non singolari - II

- Una matrice quadrata ha colonne linearmente indipendenti se e solo se il suo determinante è non nullo.
- Una matrice quadrata ha righe linearmente indipendenti se e solo se il suo determinante è non nullo.
- Una matrice quadrata ha righe linearmente indipendenti se e solo se ha colonne linearmente indipendenti.

Una matrice quadrata si dice singolare (non singolare) se il suo determinante è 0 (diverso da 0).

Matrici triangolari - I

Nell'espressione

$$|A| = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \dots a_{n\sigma(n)}$$

ciascun addendo è un prodotto di *n* coefficienti della matrice, scelti in modo che siano uno per riga e uno per colonna.

Una matrice quadrata si dice **triangolare superiore** se tutti i coefficienti al di sotto della diagonale principale sono nulli. Ad esempio:

$$\begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & -3 \\ 0 & 0 & 6 \end{pmatrix}$$

è triangolare superiore.

8

Matrici triangolari - II

Se dobbiamo scegliere, in una matrice $n \times n$ triangolare superiore n elementi che stiano in righe e colonne distinte, dobbiamo necessariamente prendere almeno un elemento al di sotto della diagonale principale, **a meno che** li prendiamo tutti sulla diagonale.

Pertanto, nell'espressione che calcola il determinante, tutti gli addendi saranno nulli, tranne al più $a_{11}a_{22}\dots a_{nn}$, che è presente con segno +.

Riassumendo, il determinante di una matrice triangolare superiore si ottiene moltiplicando gli elementi sulla sua diagonale principale.

NB: la trasposta di una matrice triangolare superiore si dice triangolare inferiore. Per quanto detto, anche il determinante di una matrice triangolare inferiore si ottiene moltiplicando gli elementi della sua diagonale principale.

Sviluppo di Laplace - I

Sia A una matrice $n \times n$ a coefficienti in K, il cui coefficiente di riga i e colonna j indichiamo con a_{ij} : ad esempio, gli elementi sulla prima colonna sono a_{11}, \ldots, a_{n1} .

Con A_{ij} indichiamo la matrice che si ottiene da A rimuovendone l'i-esima riga e la j-esima colonna. Ogni A_{ij} è quindi una matrice $(n-1)\times(n-1)$.

Consideriamo l'espressione

$$f(A) = a_{11}|A_{11}| - a_{21}|A_{21}| + a_{31}|A_{31}| - \ldots + (-1)^n a_{n1}|A_{n1}|,$$

che produce un elemento di K.

Voglio mostrare che

- ▶ f è separatamente lineare nelle righe di A
- f è alternante nelle righe di A
- ▶ f vale 1 sull'identità (questa è facile!)

Sviluppo di Laplace - II

$$f(A) = a_{11}|A_{11}| - a_{21}|A_{21}| + a_{31}|A_{31}| - \dots + (-1)^n a_{n1}|A_{n1}|$$
 è separatamente lineare nelle righe di A .

Intanto, verifichiamo la moltiplicatività di f. Se moltiplico la prima riga di A per λ , cosa succede a f(A)?

Le matrici A_{21}, \ldots, A_{n1} sono state tutte ottenute rimuovendo la prima colonna e la seconda, ..., n-esima riga da A. Pertanto, se moltiplico la prima riga di A per λ , la prima riga di tali matrici viene moltiplicata per A. Questo non è vero della matrice A_{11} , che rimane la stessa. Invece a_{11} appartiene alla prima riga, e viene quindi moltiplicato per λ .

In conclusione, moltiplicando la prima riga di A per λ , ogni addendo nell'espressione di f(A) viene moltiplicato per λ .

La moltiplicatività rispetto alle altre righe è analoga. La dimostrazione dell'additività è identica.

Sviluppo di Laplace - III

$$f(A) = a_{11}|A_{11}| - a_{21}|A_{21}| + a_{31}|A_{31}| - \ldots + (-1)^n a_{n1}|A_{n1}|$$
 è alternante nelle righe di A .

Dimostriamo che scambiando la prima riga di A con la seconda, l'espressione di f(A) cambia segno. La dimostrazione si adatta al caso di righe consecutive. Basta poi ricordare che il gruppo simmetrico S_n è generato dalle trasposizioni di elementi consecutivi.

Se scambio la prima e la seconda riga di A, in tutte le matrici A_{31}, \ldots, A_{n1} vengono scambiate la prima e la seconda riga. Il loro determinante cambia segno, mentre i coefficienti a_{31}, \ldots, a_{n1} per i quali sono moltiplicati rimangono immutati.

Invece, lo scambio della prima e della seconda riga di A trasforma A_{11} in A_{21} e viceversa. Trasforma anche a_{11} in a_{12} e viceversa.

In conclusione, gli addendi dal terzo in poi cambiano segno, mentre $a_{11}|A_{11}|$ diventa $a_{21}|A_{21}|$ e $-a_{21}|A_{21}|$ diventa $-a_{11}|A_{11}|$. Ogni addendo nell'espressione di f(A) cambia quindi segno.

Sviluppo di Laplace - IV

Lo sviluppo di Laplace permette di esprimere il determinante di una matrice $n \times n$ come somma di determinanti di matrici $(n-1) \times (n-1)$, opportunamente moltiplicate per coefficienti della matrice.

Quello che abbiamo visto è lo sviluppo di Laplace lungo la prima colonna; si può in realtà effettuare lo sviluppo di Laplace lungo qualsiasi riga e qualsiasi colonna.

Le espressioni esplicite sono:

sviluppo lungo la i-esima riga

$$\det A = \sum_{k=1}^{n} (-1)^{i+k} a_{ik} |A_{ik}|$$

sviluppo lungo la i-esima colonna

$$\det A = \sum_{k=1}^{n} (-1)^{i+k} a_{ki} |A_{ki}|$$

Un esempio - I

Per abituarci a questa tecnica, vediamo un esempio di applicazione. Calcoliamo il determinante della matrice

$$M = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix}.$$

Facendo lo sviluppo di Laplace lungo la prima riga, si ottiene

$$|M| = 2 \begin{vmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{vmatrix} - (-1) \begin{vmatrix} -1 & -1 & 0 \\ 0 & 2 & -1 \\ 0 & -1 & 2 \end{vmatrix}$$

Sviluppando il secondo determinante a secondo membro lungo la prima colonna, si ottiene

Un esempio - II

$$|M| = 2 \begin{vmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{vmatrix} + \begin{vmatrix} -1 & -1 & 0 \\ 0 & 2 & -1 \\ 0 & -1 & 2 \end{vmatrix}$$
$$= 2 \begin{vmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{vmatrix} - \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix}$$

I determinanti delle due matrici si calcolano facilmente, e valgono 4 e 3 rispettivamente. Allora $|M|=2\cdot 4-3=5$.

Sviluppate solamente lungo righe o colonne che contengono molti zeri. Se utilizzate lo sviluppo di Laplace ricorsivamente per calcolare il determinante di una matrice senza zeri, otterrete l'espressione del determinante come somma e differenza di n! prodotti.

Un esercizio

Esercizio: se A_n indica la matrice $n \times n$

$$A_n = \begin{pmatrix} 2 & -1 & 0 & \dots & \dots & 0 \\ -1 & 2 & -1 & 0 & \dots & 0 \\ 0 & -1 & 2 & -1 & \dots & 0 \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & -1 & 2 & -1 \\ 0 & 0 & 0 & \dots & -1 & 2 \end{pmatrix},$$

mostrate che $|A_{n+2}| = 2|A_{n+1}| - |A_n|$ per ogni n > 0.

Quanto vale $|A_n|$? NB: $|A_1| = 2$, $|A_2| = 3$, $|A_3| = 4$, ...