O código em anexo (vggnet_transfer.ipynb) contém a execução da rede de convolução vgg16 para a nossa coleção fashion_mnist. Com base no código, responda:

- a) Sabendo que a vggnet foi treinada com a coleção imagenet (imagens coloridas em 227x227), execute o código onde a coleção fashion_mnist foi adaptada para aproveitar o pré-treinamento da rede VGG16. Critique a execução com base nas adaptações feitas.
- Imagens com resolução 28x28, aumentadas para 48x48
- Imagens em preto e branco
- Quantidade de exemplos de treino menor que o de validação.

 Train Loss	Train Acc.	Val. Loss	Val. Acc.	Test Loss	Test Acc.
1.2761	0.5370	2.1608	0.3081	3.2307	0.2973

O modelo não consegue generalizar bem, visto a diferença entre a precisão de treino e validação/teste.

b) Discuta possíveis melhorias para utilização efetiva da rede VGG16 (qualquer alteração é permitida, com exceção da utilização de exemplos de teste no treinamento). Implemente suas ideias, apresente e discuta a interpretação dos resultados obtidos.

- Alterar a quantidade de exemplos de treino para a proporção 90:10 (45:5:50)
- Aumentar a resolução das imagens para 224x224 Consome muita memória
- Aumentar a quantidade de neurônios da primeira camada totalmente conectada
- Aumentar a quantidade de epochs

	Train Loss	Train Acc.	Val. Loss	Val. Acc.	Test Loss	Test Acc.
II	1.1420	0.5800	1.8946	0.4290	3.5493	0.4304

Comparado ao modelo treinado do zero feito na atividade anterior, o modelo é bastante inferior, porém com as alterações este modelo generaliza melhor ao inicial.

c) Altere o código para que seja utilizada a rede ResNet50 no lugar da VGG16.