Smallest constant for a Gagliardo-Nirenberg functional inequality

Supervisor: Prof. Florian Méhats NGUYEN Quan Ba Hong

Université de Rennes 1, France

June 24, 2019

Variational problem

GOAL: Determine the best constant $C_{\sigma,N}$ for the interpolation estimate

$$||f||_{2\sigma+2}^{2\sigma+2} \le C_{\sigma,N}^{2\sigma+2} ||\nabla f||_2^{\sigma N} ||f||_2^{2+\sigma(2-N)}, \tag{1}$$

for $0 < \sigma < \frac{2}{N-2}$, $N \ge 2$.

To compute $C_{\sigma,N}$, it suffices to minimize the functional

$$J^{\sigma,N}(f) := \frac{\|\nabla f\|_2^{\sigma N} \|f\|_2^{2+\sigma(2-N)}}{\|f\|_{2\sigma+2}^{2\sigma+2}}.$$
 (2)

Main result

Theorem 1

For $0 < \sigma < \frac{2}{N-2}$, $\alpha := \inf_{u \in H^1(\mathbb{R}^N)} J^{\sigma,N}(u)$ is attained at a function ψ with the following properties:

- 1) ψ is positive and a functional of |x| alone.
- 2) $\psi \in H^1(\mathbb{R}^N) \cap C^{\infty}(\mathbb{R}^N)$.
- 3) ψ is a solution of equation

$$\frac{\sigma N}{2} \Delta \psi - \left(1 + \frac{\sigma}{2} \left(2 - N\right)\right) \psi + \psi^{2\sigma + 1} = 0,\tag{3}$$

of minimal L^2 norm (the ground state).

In addition, $\alpha = \frac{\|\psi\|_2^{2\sigma}}{\sigma+1}$.

Compactness lemma

Lemma 2 (Compactness lemma)

For $0 < \sigma < \frac{2}{N-2}$, the embedding

$$H^1_{\mathrm{radial}}\left(\mathbb{R}^N\right) \hookrightarrow L^{2\sigma+2}\left(\mathbb{R}^N\right)$$

is compact.

Strauss's estimate: If $N \geq 2$ and $u \in H^1_{\text{radial}}(\mathbb{R}^N)$, then

$$|u(x)| \le \frac{C}{|x|^{\frac{N-1}{2}}} ||u||_{H^1}.$$

Proof of the main theorem:

• $J^{\sigma,N}$ is invariant under the scaling $u^{\lambda,\mu}(x) := \mu u(\lambda x)$:

$$J^{\sigma,N}\left(u^{\lambda,\mu}\right)=J^{\sigma,N}\left(u
ight),\ \ \forall\mu\in\mathbb{R},\ \lambda\in\mathbb{R}.$$

• $\exists \{u_n\}_n \subset H^1\left(\mathbb{R}^N\right) \cap L^{2\sigma+2}\left(\mathbb{R}^N\right) \text{ s.t.}$

$$\alpha = \inf J^{\sigma,N}(u) = \lim_{n \to \infty} J^{\sigma,N}(u_n) < \infty.$$

• We can assume $u_n > 0$ and u_n radially symmetric.

Symmetrization

The symmetric-decreasing rearrangement f^* of a function f satisfies:

- 1) f^* is radially symmetric.
- 2) For $f \in L^p(\mathbb{R}^N)$, $||f||_p = ||f^*||_p$, $\forall 1 \leq p \leq \infty$.
- 3) $\|\nabla f\|_2 \ge \|\nabla f^*\|_2$.

For each u_n ,

$$\begin{cases} \|u_n^*\|_2 = \|u_n\|_2, \ \|u_n^*\|_{2\sigma+2} = \|u_n\|_{2\sigma+2}, \\ \|\nabla u_n^*\|_2 \le \|\nabla u_n\|_2, \end{cases}$$

and thus

$$J^{\sigma,N}(u_n^*) \leq J^{\sigma,N}(u_n)$$
.

- With suitable μ_n , λ_n , we obtain a sequence $\psi_n(x) := u^{\lambda_n,\mu_n}(x)$ satisfying
 - a) $\psi_n \geq 0$ and radially symmetric,
 - b) $\psi_n \in H^1(\mathbb{R}^N)$,
 - c) $\|\psi_n\|_2 = \|\nabla \psi_n\|_2 = 1$,
 - d) $J^{\sigma,N}(\psi_n)\downarrow \alpha$ as $n\to\infty$.
- Since $(\psi_n)_n$ is bounded in $H^1(\mathbb{R}^N)$, some subsequence has a weak H^1 limit ψ^* .

- By Compactness lemma, we can take ψ_n strongly convergent to ψ^* in $L^{2\sigma+2}\left(\mathbb{R}^N\right)$ for $0<\sigma<\frac{2}{N-2}$.
- Prove $\|\psi^*\|_2 = \|\nabla\psi^*\|_2 = 1$ and $\psi_n \to \psi^*$ in H^1 .
- ullet The minimizing function ψ^* satisfies the Euler-Lagrange equation

$$\left. \frac{d}{d\varepsilon} \right|_{\varepsilon=0} J^{\sigma,N} \left(\psi^* + \varepsilon \eta \right) = 0, \ \forall \eta \in C_0^{\infty} \left(\mathbb{R}^N \right).$$

• ψ^* satisfies

$$\frac{\sigma N}{2} \Delta \psi^* - \left(1 + \frac{\sigma}{2} (2 - N)\right) \psi^* + \alpha (\sigma + 1) (\psi^*)^{2\sigma + 1} = 0 \text{ in } \mathcal{D}'.$$

Supervisor: Prof. Florian Méhats NGUYEN COn the smallest constant for a Gagliardo-Nire June

8/12

• Let $\psi = [\alpha (\sigma + 1)]^{\frac{1}{2\sigma}} \psi^*$,

$$\frac{\sigma \textit{N}}{2}\Delta\psi - \left(1 + \frac{\sigma}{2}\left(2 - \textit{N}\right)\right)\psi + \psi^{2\sigma + 1} = 0 \text{ in } \mathcal{D}'.$$

- Regularize ψ by bootstrap argument: $\psi \in C^{\infty}(\mathbb{R}^N)$.
- The infimum of $J^{\sigma,N}$ is given by

$$\alpha = \frac{\|\psi\|_2^{2\sigma}}{\sigma + 1}.$$

Minimal L^2 norm

Multiply

$$\frac{\sigma N}{2}\Delta\varphi - \left(1 + \frac{\sigma}{2}\left(2 - N\right)\right)\varphi + \varphi^{2\sigma + 1} = 0$$

• by φ and integrate over \mathbb{R}^N , obtain

$$\frac{\sigma N}{2} \|\nabla \varphi\|_{2}^{2} + \left(1 + \frac{\sigma}{2} (2 - N)\right) \|\varphi\|_{2}^{2} = \|\varphi\|_{2\sigma + 2}^{2\sigma + 2},$$

• by $x \cdot \nabla \varphi$, obtain

$$\begin{split} \frac{\sigma N}{2} \left(\frac{N}{2} - 1 \right) \|\nabla \varphi\|_2^2 + \frac{N}{2} \left(1 + \frac{\sigma}{2} \left(2 - N \right) \right) \|\varphi\|_2^2 \\ &= \frac{N}{2\sigma + 2} \|\varphi\|_{2\sigma + 2}^{2\sigma + 2}. \end{split}$$

• Solving $\|\nabla \varphi\|_2^2$ and $\|\varphi\|_{2\sigma+2}^{2\sigma+2}$ in terms of $\|\varphi\|_2^2$:

$$\|\nabla \varphi\|_2^2 = \|\varphi\|_2^2, \ \|\varphi\|_{2\sigma+2}^{2\sigma+2} = (\sigma+1)\|\varphi\|_2^2.$$

Thus

$$J^{\sigma,N}\left(\varphi\right) = \frac{\|\varphi\|_2^{2\sigma}}{\sigma+1},$$

in particular,

$$J^{\sigma,N}(\psi) = \frac{\|\psi\|_2^{2\sigma}}{\sigma+1}.$$

• $J^{\sigma,N}(\varphi) \geq J^{\sigma,N}(\psi)$ then implies $\|\varphi\|_2 \geq \|\psi\|_2$.

Corollary 3

Let $0 < \sigma < \frac{2}{N-2}$. Then, the following equation

$$\Delta u - u + u^{2\sigma + 1} = 0$$

has a positive, radial solution of class $H^1(\mathbb{R}^N)$.

Corollary 4

The smallest constant for which the interpolation estimate (1) holds is given by

$$C_{\sigma,N} = \left(\frac{\sigma+1}{\|\psi\|_2^{2\sigma}}\right)^{\frac{1}{2\sigma+2}}.$$