概率论与数理统计 第二章 随机变量及其概率分布

黄正华

Email: huangzh@whu.edu.cn

武汉大学 数学与统计学院

2012年10月16日

目录

- 1 随机变量与分布函数
- ② 离散型随机变量
- ③ 连续型随机变量
- 4 随机变量函数的分布

- 1 随机变量与分布函数
- ② 离散型随机变量
- ③ 连续型随机变量
- 4 随机变量函数的分布

Example 1

有 5 件产品, 其中 2 件是次品. 从中不放回地任取 2 件, 求抽取到的次品数分别 是 0, 1, 2 的概率.

解: 设
$$A_k$$
={抽取到 k 件次品}, $k = 0, 1, 2$.
$$P(A_0) = \frac{\binom{3}{2}}{\binom{5}{2}} = 0.3$$

$$P(A_1) = \frac{\binom{3}{1}\binom{2}{1}}{\binom{5}{2}} = 0.6$$

$$P(A_2) = \frac{\binom{2}{2}}{\binom{5}{2}} = 0.1$$

Example 1

有 5 件产品, 其中 2 件是次品. 从中不放回地任取 2 件, 求抽取到的次品数分别 是 0, 1, 2 的概率.

 \mathbf{H} : 设 $A_k = \{ \text{抽取到 } k \text{ 件次品} \}, k = 0, 1, 2.$

另一种表达方式是: 用X表示抽取到的次品数. 则

Example 1

有 5 件产品, 其中 2 件是次品. 从中不放回地任取 2 件, 求抽取到的次品数分别 是 0, 1, 2 的概率.

解: 设 $A_k = \{ \text{抽取到 } k \text{ 件次品} \}, k = 0, 1, 2.$

另一种表达方式是: 用 X 表示抽取到的次品数. 则

$$P\{X=0\}=0.3, \quad P\{X=1\}=0.6, \quad P\{X=2\}=0.1$$

Example 1

有 5 件产品, 其中 2 件是次品. 从中不放回地任取 2 件, 求抽取到的次品数分别 是 0, 1, 2 的概率.

 \mathbf{H} : 设 $A_k = \{ \text{抽取到 } k \text{ 件次品} \}, k = 0, 1, 2.$

另一种表达方式是: 用 X 表示抽取到的次品数. 则

$$P{X = 0} = 0.3, P{X = 1} = 0.6, P{X = 2} = 0.1$$

求某一事件发生的概率, 表达为变量 X 取某一值的概率.

随机变量(Random Variable)

再例如

$$X = \begin{cases} 0, & \text{正面} \\ 1. & \text{背面} \end{cases} \qquad X = \begin{cases} 1, & \mathbb{R} \\ 2, & \text{自} \\ 3. & \text{红} \end{cases}$$

随机变量(Random Variable)

再例如

$$X = \begin{cases} 0, & \text{正面} \\ 1. & \text{背面} \end{cases} \qquad X = \begin{cases} 1, & \mathbb{R} \\ 2, & \text{自} \\ 3. & \text{红} \end{cases}$$

变量 X 表达了随机试验的结果, 我们谓之"随机变量 X".

随机变量: 离散型& 连续型

• 离散型 —— 比如掷硬币, X 的取值为 0, 1 这样离散的点.

随机变量: 离散型& 连续型

- 离散型 —— 比如掷硬币, X 的取值为 0, 1 这样离散的点.
- 连续型 —— 比如"灯泡的使用寿命在 700 小时至 1000 小时", 可以表达成 $700 \leqslant X \leqslant 1000$

随机变量 X 是连续地取 700 到 1000 之间的任意值.

随机变量的方便之处

引入了随机变量之后,随机事件就可以用随机变量来描述.

随机变量的方便之处

引入了随机变量之后, 随机事件就可以用随机变量来描述.

例如,在某城市中考察人口的年龄结构,年龄在80岁以上的长寿者,年龄介于18岁至35岁之间的年轻人,以及不到12岁的儿童,它们各自的比率如何.

随机变量的方便之处

引入了随机变量之后, 随机事件就可以用随机变量来描述.

例如, 在某城市中考察人口的年龄结构, 年龄在80岁以上的长寿者, 年龄介于18岁至35岁之间的年轻人, 以及不到12岁的儿童, 它们各自的比率如何.

引进随机变量 X: X 表示随机抽取一个人的年龄; 则上述几个事件可以分别表示成 $\{X>80\},$ $\{18\leqslant X\leqslant 35\}$ 及 $\{X<12\}.$

分布函数

Definition 2

设 X 为一个随机变量, x 为任意实数, 称函数

$$F(x) = P(X \leqslant x)$$

为 X 的分布函数.

分布函数

Definition 2

设X为一个随机变量,x为任意实数,称函数

$$F(x) = P(X \leqslant x)$$

为 X 的分布函数.

$$F(x_0) = P(X \leqslant x_0)$$
 的含义:

随机点能落到 x_0 左边的概率.

关于
$$F(x) = P(X \leqslant x)$$

- 为什么是函数?
- ② 定义域和值域是什么?
- ◎ 方便之处?

$F(x) = P(X \le x)$ 为什么是函数?

对于每一个实数 x, $\{X \le x\}$ 都是一个事件, 因此有一个确定的概率 $P(X \le x)$ 与 x 相对应.

所以, 概率 $P(X \le x)$ 是 x 的函数.

$F(x) = P(X \le x)$ 的定义域和值域是什么?

- 定义域: $(-\infty, +\infty)$.
- 值域: [0, 1].

$F(x) = P(X \le x)$ 的方便之处?

比如

F(x) 是自变量 x 的非降函数, 即当 $x_1 < x_2$ 时, 必有 $F(x_1) \leq F(x_2)$.

F(x) 是自变量 x 的非降函数, 即当 $x_1 < x_2$ 时, 必有 $F(x_1) \le F(x_2)$. 因为当 $x_1 < x_2$ 时有

$$F(x_2) - F(x_1) = P(x_1 < X \le x_2) \ge 0,$$

从而有 $F(x_1) \leqslant F(x_2)$.

F(x) 对自变量 x 右连续, 即对任意实数 x, F(x+0) = F(x).

F(x) 对自变量 x 右连续, 即对任意实数 x, F(x+0) = F(x). 事实上,

$$\lim_{\Delta x \to 0^+} [F(x + \Delta x) - F(x)] = \lim_{\Delta x \to 0^+} P(x < X \leqslant x + \Delta x)$$
$$= P(x < X \leqslant x)$$
$$= P(\varnothing) = 0$$

F(x) 对自变量 x 右连续, 即对任意实数 x, F(x+0) = F(x). 事实上,

$$\lim_{\Delta x \to 0^+} [F(x + \Delta x) - F(x)] = \lim_{\Delta x \to 0^+} P(x < X \leqslant x + \Delta x)$$
$$= P(x < X \leqslant x)$$
$$= P(\varnothing) = 0$$

右连续性是随机变量的分布函数的普遍性质.

- 对连续的随机变量, F(x) 是连续函数.
- ② 对离散的随机变量, 在可能值 x_i , (i = 1, 2, ...) 处, F(x) 是右连续的.

$$F(-\infty) = 0, F(+\infty) = 1.$$

为什么是 $F(x) = P(X \leq x)$?

- 这种定义方式当然是人为的:
- 可以定义为 $F(x) = P(X \ge x)$, 其他的内容也作相应的改写.
- 这时的函数就是"左连续"的了.

- 1 随机变量与分布函数
- 2 离散型随机变量
- ③ 连续型随机变量
- 4 随机变量函数的分布

离散型随机变量(Discrete Random Variable)

离散型随机变量的取值为

- **o** 有限个: x_1, x_2, \dots, x_n .
- ② 可列无穷个: $x_1, x_2, \cdots, x_n, \cdots$.

离散型随机变量(Discrete Random Variable)

离散型随机变量的取值为

- **o** 有限个: x_1, x_2, \cdots, x_n .
- ② 可列无穷个: $x_1, x_2, \dots, x_n, \dots$

Definition 3 (分布律(以可列无穷个的情形为例))

设离散型随机变量 X 可能取的值为 $x_1, x_2, \cdots, x_n, \cdots, 则$

$$P(X = x_k) = p_k \qquad (k = 1, 2, \cdots, n, \cdots)$$

称为离散型随机变量 X 的分布律或分布列.

也称为概率分布(Probability Distribution).

分布律的表示

分布律常用表格的形式表示:

X	x_1	x_2	 x_n	
p_k	p_1	p_2	 p_n	

分布律的表示

分布律常用表格的形式表示:

X	x_1	x_2	 x_n	
p_k	p_1	p_2	 p_n	

比如例 1 中随机变量 X 的分布律为

X	0	1	2
p_k	0.3	0.6	0.1

分布律的表示

分布律常用表格的形式表示:

X	x_1	x_2	 x_n	
p_k	p_1	p_2	 p_n	

其中 p_k 满足以下两个性质:

- **1** $p_k \geqslant 0;$
- ② $\sum_{k=1}^{\infty} p_k = 1$. (验算的依据)

Example 4

设袋中装有 6 个球, 编号为 $\{-1, 2, 2, 2, 3, 3\}$. 从袋中任取一球, 求取到的球的号 X 的分布律.

Example 4

设袋中装有 6 个球, 编号为 $\{-1, 2, 2, 2, 3, 3\}$. 从袋中任取一球, 求取到的球的号 X 的分布律.

解: X 所有可能取值为 -1, 2, 3, 而且

$$P{X = -1} = 1/6$$

 $P{X = 2} = 3/6 = 1/2$
 $P{X = 3} = 2/6 = 1/3$

Example 4

设袋中装有 6 个球, 编号为 $\{-1, 2, 2, 2, 3, 3\}$. 从袋中任取一球, 求取到的球的号X 的分布律.

解: X 所有可能取值为 -1, 2, 3, 而且

$$P{X = -1} = 1/6$$

 $P{X = 2} = 3/6 = 1/2$

$$P\{X=3\} = 2/6 = 1/3$$

所以X的分布律为

X	-1	2	3
p_k	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{3}$

回答为什么要引入随机变量

• 方便性 —— 将试验结果数字化, 方便表达.

回答为什么要引入随机变量

- 方便性 —— 将试验结果数字化, 方便表达.
- 全面性 —— 在第一章我们只是求某一单独结果, 这里是要把所有的结果都求出来.

几类重要的离散型随机变量的分布

- 0-1分布
- 二项分布
- 泊松分布

0-1分布

Definition 5

如果随机变量 X 只可能取 0 和 1 两个值, 且它的分布列为

$$P(X=1) = p,$$

$$P(X=0) = 1 - p.$$

其中0 . 则称 <math>X 服从0 - 1 分布(或两点分布).

0-1分布

Definition 5

如果随机变量 X 只可能取 0 和 1 两个值, 且它的分布列为

$$P(X=1) = p,$$

$$P(X=0) = 1 - p.$$

其中0 . 则称<math>X 服从0 - 1 分布(或两点分布).

0-1 分布的概率分布表为:

X	1	0
P	p	1-p

0-1分布

Definition 5

如果随机变量 X 只可能取 0 和 1 两个值, 且它的分布列为

$$P(X=1) = p,$$

$$P(X=0) = 1 - p.$$

其中0 . 则称 X 服从<math>0 - 1 分布(或两点分布).

0-1 分布的概率分布表为:

\overline{X}	1	0
P	p	1-p

我们当然可以制造一个"1-2分布"出来.

Definition 6

如果随机变量 X 只可能取的值为 0, 1, 2, ..., n, 它的分布列为

$$P(X = k) = \binom{n}{k} p^k q^{n-k} \quad k = 0, 1, 2, \dots n$$

其中 0 , <math>q = 1 - p. 则称 X 服从参数为 n, p 的二项分布(the Binomial Distribution), 记为 $X \sim B(n, p)$.

Definition 6

如果随机变量 X 只可能取的值为 0, 1, 2, ..., n, 它的分布列为

$$P(X = k) = \binom{n}{k} p^k q^{n-k} \quad k = 0, 1, 2, \dots n$$

其中 0 , <math>q = 1 - p. 则称 X 服从参数为 n, p 的二项分布(the Binomial Distribution), 记为 $X \sim B(n, p)$.

• X 是 n 重 Bernoulli 试验中, 事件 A 发生的次数.

Definition 6

如果随机变量 X 只可能取的值为 0, 1, 2, ..., n, 它的分布列为

$$P(X = k) = \binom{n}{k} p^k q^{n-k} \quad k = 0, 1, 2, \dots n$$

其中 0 , <math>q = 1 - p. 则称 X 服从参数为 n, p 的二项分布(the Binomial Distribution), 记为 $X \sim B(n, p)$.

- X 是 n 重 Bernoulli 试验中, 事件 A 发生的次数.
- $\binom{n}{k} p^k q^{n-k}$ 是二项式 $(p+q)^n$ 展开的一般项, 所以谓之二项分布.

Definition 6

如果随机变量 X 只可能取的值为 0, 1, 2, ..., n, 它的分布列为

$$P(X = k) = \binom{n}{k} p^k q^{n-k} \quad k = 0, 1, 2, \dots n$$

其中 0 , <math>q = 1 - p. 则称 X 服从参数为 n, p 的二项分布(the Binomial Distribution), 记为 $X \sim B(n, p)$.

- X 是 n 重 Bernoulli 试验中, 事件 A 发生的次数.
- $\binom{n}{k} p^k q^{n-k}$ 是二项式 $(p+q)^n$ 展开的一般项, 所以谓之二项分布.
- 当 n = 1 时, 二项分布就是 0 1 分布.

某车间有8台5.6千瓦的车床,每台车床由于工艺上的原因,常要停车.设各车床停车是相互独立的,每台车床平均每小时停车12分钟.

- 求在某一指定的时刻车间恰有两台车床停车的概率.
- ❷ 全部车床用电超过30千瓦的可能有多大?

某车间有8台5.6千瓦的车床,每台车床由于工艺上的原因,常要停车.设各车床停车是相互独立的,每台车床平均每小时停车12分钟.

- 求在某一指定的时刻车间恰有两台车床停车的概率.
- ② 全部车床用电超过 30 千瓦的可能有多大?

解: 由于每台车床使用是独立的,而且只有开车与停车两种情况,且停车的概率为 12/60 = 0.2, 因此, 这是一个 8 重伯努利试验.

某车间有8台5.6千瓦的车床,每台车床由于工艺上的原因,常要停车.设各车床停车是相互独立的,每台车床平均每小时停车12分钟.

- 求在某一指定的时刻车间恰有两台车床停车的概率.
- ② 全部车床用电超过 30 千瓦的可能有多大?

解: 由于每台车床使用是独立的,而且只有开车与停车两种情况,且停车的概率为 12/60 = 0.2, 因此, 这是一个 8 重伯努利试验.

若用 X 表示"任意时刻同时停车的车床数",则 $X \sim B(8,0.2)$,其分布律为

$$P(X=k) = {8 \choose k} (0.2)^k (0.8)^{8-k}, \quad (k=0,1,2,\cdots,8)$$

● 所求概率为

$$P(X=2) = {8 \choose 2} (0.2)^2 (0.8)^6 = 0.2936$$

● 所求概率为

$$P(X=2) = {8 \choose 2} (0.2)^2 (0.8)^6 = 0.2936$$

● 由于 30 千瓦的电量至多能供 5 台车床同时工作, "用电超过 30 千瓦"意味着有 6 台或 6 台以上的车床同时工作,

● 所求概率为

$$P(X=2) = {8 \choose 2} (0.2)^2 (0.8)^6 = 0.2936$$

● 由于 30 千瓦的电量至多能供 5 台车床同时工作, "用电超过 30 千瓦"意味着有 6 台或 6 台以上的车床同时工作, 所求事件的概率为

$$P(X \ge 6) = P(X = 6) + P(X = 7) + P(X = 8)$$
$$= {8 \choose 6} (0.2)^6 (0.8)^2 + {8 \choose 7} (0.2)^7 0.8 + (0.2)^8$$
$$= 0.00123$$

Example 8 (课堂练习)

拋硬币 10 次,写出正面向上的次数 X 的分布律;并求正面向上次数不小于 3 的概率.

Example 8 (课堂练习)

抛硬币 10 次,写出正面向上的次数 X 的分布律;并求正面向上次数不小于 3 的概率.

解: 随机变量服从二项分布: $X \sim B(10, 0.5)$. 分布律为

$$P(x = k) = {10 \choose k} 0.5^k \times 0.5^{10-k}$$
$$= {10 \choose k} 0.5^{10}, \qquad k = 0, 1, 2, \dots, 10.$$

Example 8 (课堂练习)

抛硬币 10 次,写出正面向上的次数 X 的分布律;并求正面向上次数不小于 3 的概率.

解: 随机变量服从二项分布: $X \sim B(10, 0.5)$. 分布律为

$$P(x = k) = {10 \choose k} 0.5^k \times 0.5^{10-k}$$
$$= {10 \choose k} 0.5^{10}, \qquad k = 0, 1, 2, \dots, 10.$$

正面向上次数不小于3的概率:

$$P(X \ge 3) = 1 - P(X = 0) - P(X = 1) - P(X = 2)$$
$$= 1 - 0.5^{10} - {10 \choose 1} 0.5^{10} - {10 \choose 2} 0.5^{10}$$
$$= 1 - (1 + 10 + 45) \times 0.5^{10} \approx 0.945$$

泊松定理(Poisson theorem)

Theorem 9 (泊松定理)

设对每个自然数 $n, 0 < p_n < 1$. 若存在极限 $\lim_{n \to \infty} np_n = \lambda$, 则

$$\lim_{n \to \infty} \binom{n}{k} p_n^k (1 - p_n)^{n-k} = \frac{\lambda^k}{k!} e^{-\lambda} \quad (k = 0, 1, 2, \dots).$$

证:
$$\diamondsuit np_n = \lambda_n$$
, 有
$$\binom{n}{p_n^k} (1 - p_n)^k$$

$$\binom{n}{k} p_n^k (1 - p_n)^n$$

$$\binom{n}{k} p_n^k (1 - p_n)^n$$

$$\binom{n}{k} p_n^k (1 - p_n)^{n}$$

$$\binom{n}{k} p_n^k (1 - p_n)^{n-1}$$

$${n \choose k} p_n^k (1 - p_n)^{n-k}$$

$$= \frac{n(n-1)\cdots(n-k+1)}{k!} (\frac{\lambda_n}{n})^k (1 - \frac{\lambda_n}{n})^n (1 - \frac{\lambda_n}{n})^{-k}$$

$$\binom{n}{k} p_n^k (1 - p_n)^{n-1}$$

$$\binom{n}{k} p_n^k (1 - p_n)^{n-1}$$

$$\binom{n}{k} p_n^k (1 - p_n)^{n-1}$$

$$\binom{n}{k} p_n^k (1 - p_n)^{n-k}$$

$$\binom{n}{k} p_n^k (1 - p_n)^{n-k}$$

$$\binom{n}{k} p_n^k (1 - p_n)^{n-1}$$

$$\binom{n}{k} p_n^k (1 - p_n)^{n - 1}$$

$$\binom{n}{k} p_n^k (1 - p_n)^{n-k}$$

$$\binom{n}{k} p_n^k (1 - p_n)^{n-k}$$

$$\binom{n}{k} p_n^k (1 - p_n)^{n-k}$$

- $\binom{n}{k} p_n^k (1-p_n)^{n-k}$

 $= (1 - \frac{1}{n})(1 - \frac{2}{n}) \cdots (1 - \frac{k-1}{n}) \frac{\lambda_n^k}{k!} (1 - \frac{\lambda_n}{n})^n (1 - \frac{\lambda_n}{n})^{-k}$

 $\overline{\mathbf{u}}$: $\diamondsuit np_n = \lambda_n$, 有

$$\binom{n}{k} p_n^k (1 - p_n)^{n-k}$$

$$\binom{n}{k} p_n^k (1 - p_n)^{n-1}$$
$$n(n-1) \cdots (n-1) \cdots (n-1$$

$$= \frac{\binom{k}{r}^{p_n(1-p_n)}}{k!}$$

$$(k)^{p_n(1-p_n)}$$

$$= \frac{n(n-1)\cdots(n-k)}{n-k}$$

对任意固定的 $k(0 \le k \le n)$, 当 $n \to \infty$ 时

$$(k)^{p_n(1-p_n)}$$

$$= \frac{n(n-1)\cdots(n-k+1)}{k!} (\frac{\lambda_n}{n})^k (1-\frac{\lambda_n}{n})^n (1-\frac{\lambda_n}{n})^{-k}$$

 $= (1 - \frac{1}{n})(1 - \frac{2}{n}) \cdots (1 - \frac{k-1}{n}) \frac{\lambda_n^k}{n!} (1 - \frac{\lambda_n}{n})^n (1 - \frac{\lambda_n}{n})^{-k}$

 $(1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{k-1}{n})\to 1, \quad (1-\frac{\lambda_n}{n})^{-k}\to 1, \quad \lambda_n^k\to \lambda^k$

 $\overline{\mathbf{u}}$: $\diamondsuit np_n = \lambda_n$. 有

及

$$\binom{n}{k} p_n^k (1 - p_n)^{n-k}$$

$$n(n-1) \cdots (n-k)$$

$$\binom{n}{k} p_n^k (1 - p_n)^{n-k}$$

$$= \frac{n(n-1)\cdots(n-k)}{n-k}$$

 $=\frac{n(n-1)\cdots(n-k+1)}{k!}\left(\frac{\lambda_n}{n}\right)^k\left(1-\frac{\lambda_n}{n}\right)^n\left(1-\frac{\lambda_n}{n}\right)^{-k}$

 $= (1 - \frac{1}{n})(1 - \frac{2}{n}) \cdots (1 - \frac{k-1}{n}) \frac{\lambda_n^k}{n!} (1 - \frac{\lambda_n}{n})^n (1 - \frac{\lambda_n}{n})^{-k}$

对任意固定的 $k(0 \le k \le n)$, 当 $n \to \infty$ 时

 $\lim_{n \to \infty} (1 - \frac{\lambda_n}{n})^n = \lim_{n \to \infty} (1 - \frac{\lambda_n}{n})^{-\frac{\lambda_n}{\lambda_n}(-\lambda_n)} = e^{-\lambda}$

 $(1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{k-1}{n})\to 1, \quad (1-\frac{\lambda_n}{n})^{-k}\to 1, \quad \lambda_n^k\to \lambda^k$

 $\overline{\mathbf{u}}$: $\diamondsuit np_n = \lambda_n$. 有

及

所以

$$\binom{n}{k} p_n^k (1 - p_n)^{n-k}$$
$$= \frac{n(n-1)\cdots(n-k)}{n-k}$$

$$=\frac{n(n-1)\cdots(n-k)}{k!}$$

$$=\frac{n(n-1)\cdots(n-k+1)}{k!}\left(\frac{\lambda_n}{n}\right)^k\left(1-\frac{\lambda_n}{n}\right)^n\left(1-\frac{\lambda_n}{n}\right)^{-k}$$

 $= (1 - \frac{1}{n})(1 - \frac{2}{n}) \cdots (1 - \frac{k-1}{n}) \frac{\lambda_n^k}{n!} (1 - \frac{\lambda_n}{n})^n (1 - \frac{\lambda_n}{n})^{-k}$

对任意固定的 $k(0 \le k \le n)$, 当 $n \to \infty$ 时

 $(1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{k-1}{n})\to 1, \quad (1-\frac{\lambda_n}{n})^{-k}\to 1, \quad \lambda_n^k\to \lambda^k$

 $\lim_{n \to \infty} (1 - \frac{\lambda_n}{n})^n = \lim_{n \to \infty} (1 - \frac{\lambda_n}{n})^{-\frac{\lambda_n}{\lambda_n}(-\lambda_n)} = e^{-\lambda}$

 $\lim_{n \to \infty} \binom{n}{k} p_n^k (1 - p_n)^{n-k} = \frac{\lambda^k}{k!} e^{-\lambda} \quad (k = 0, 1, 2, \dots)$

泊松定理的应用

在应用中, 当 n 很大, 且 p 很小(比如 $n \ge 20$, $p \le 0.05$)时, 有以下的泊松分布近似公式

$$\binom{n}{k} p^k (1-p)^{n-k} \approx \frac{\lambda^k}{k!} e^{-\lambda}$$

其中 $\lambda = np$.

而关于 $\frac{\lambda^k}{k!}e^{-\lambda}$ 的值, 可以查表(见教材附表 2).

泊松分布(Poisson distribution)

Definition 10 (泊松分布)

如果随机变量 X 所有可能取的值为 0,1,2,...,它取各个值的概率为

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad (k = 0, 1, 2, \dots)$$

其中 $\lambda > 0$ 是常数, 则称 X 服从参数为 λ 的 泊松分布, 记为 $X \sim P(\lambda)$.

● A 的含义将在第四章给出(随机变量的期望与方差);

- ♪ か含义将在第四章给出(随机变量的期望与方差);
- ② 可以验证

$$\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!}$$
$$= e^{-\lambda} \cdot e^{\lambda} = 1$$
(泰勒级数展开式: $e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$)

- ♪ か含义将在第四章给出(随机变量的期望与方差);
- ② 可以验证

$$\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!}$$
$$= e^{-\lambda} \cdot e^{\lambda} = 1$$
$$x^2 \qquad x^n$$

(泰勒级数展开式:
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$
)

◎ 在现实生活中有着广泛的应用. 例如

- ♪ か含义将在第四章给出(随机变量的期望与方差);
- ② 可以验证

$$\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!}$$
$$= e^{-\lambda} \cdot e^{\lambda} = 1$$
$$r^2$$

(泰勒级数展开式:
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$
)

- ③ 在现实生活中有着广泛的应用. 例如
 - 某段时间内电话机接到的呼唤次数;

- ♪ か含义将在第四章给出(随机变量的期望与方差);
- ② 可以验证

$$\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!}$$
$$= e^{-\lambda} \cdot e^{\lambda} = 1$$

(泰勒级数展开式:
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$
)

- 3 在现实生活中有着广泛的应用. 例如
 - 某段时间内电话机接到的呼唤次数;
 - 候车的乘客数;

- ♪ か含义将在第四章给出(随机变量的期望与方差);
- ② 可以验证

$$\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!}$$
$$= e^{-\lambda} \cdot e^{\lambda} = 1$$

(泰勒级数展开式:
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$
)

- ③ 在现实生活中有着广泛的应用. 例如
 - 某段时间内电话机接到的呼唤次数;
 - 候车的乘客数;
 - 一本书一页中的印刷错误数.

某商店出售某种商品. 根据经验, 此商品的月销售量 X 服从 $\lambda = 3$ 的泊松分布.

问在月初进货时要库存多少件此种商品,才能以99%的概率满足顾客要求?

某商店出售某种商品. 根据经验, 此商品的月销售量 X 服从 $\lambda=3$ 的泊松分布.

问在月初进货时要库存多少件此种商品,才能以99%的概率满足顾客要求?

 \mathbf{F} : 设月初库存 M 件, 依题意

$$P(X = k) = \frac{3^k}{k!}e^{-3}, \quad (k = 0, 1, 2, \dots)$$

某商店出售某种商品. 根据经验, 此商品的月销售量 X 服从 $\lambda=3$ 的泊松分布.

问在月初进货时要库存多少件此种商品,才能以99%的概率满足顾客要求?

 \mathbf{m} : 设月初库存 M 件, 依题意

$$P(X = k) = \frac{3^k}{k!}e^{-3}, \quad (k = 0, 1, 2, \dots)$$

那么

$$P(X \le M) = \sum_{k=0}^{M} \frac{3^k}{k!} e^{-3} \ge 0.99$$

某商店出售某种商品. 根据经验, 此商品的月销售量 X 服从 $\lambda=3$ 的泊松分布.

问在月初进货时要库存多少件此种商品,才能以99%的概率满足顾客要求?

 \mathbf{w} : 设月初库存 M 件, 依题意

$$P(X = k) = \frac{3^k}{k!}e^{-3}, \quad (k = 0, 1, 2, \dots)$$

那么

$$P(X \le M) = \sum_{k=0}^{M} \frac{3^k}{k!} e^{-3} \ge 0.99$$

即

$$\sum_{k=M+1}^{\infty} \frac{3^k}{k!} e^{-3} \le 0.01$$

某商店出售某种商品. 根据经验, 此商品的月销售量 X 服从 $\lambda=3$ 的泊松分布.

问在月初进货时要库存多少件此种商品,才能以99%的概率满足顾客要求?

 \mathbf{W} : 设月初库存M件,依题意

$$P(X = k) = \frac{3^k}{k!}e^{-3}, \quad (k = 0, 1, 2, \dots)$$

那么

$$P(X \leqslant M) = \sum_{k=0}^{M} \frac{3^k}{k!} e^{-3} \geqslant 0.99$$

即

$$\sum_{k=M+1}^{\infty} \frac{3^k}{k!} e^{-3} \le 0.01$$

查附表 2 (see next slide),

某商店出售某种商品. 根据经验, 此商品的月销售量 X 服从 $\lambda=3$ 的泊松分布.

问在月初进货时要库存多少件此种商品,才能以99%的概率满足顾客要求?

 \mathbf{W} : 设月初库存 M 件, 依题意

$$P(X = k) = \frac{3^k}{k!}e^{-3}, \quad (k = 0, 1, 2, \dots)$$

那么

$$P(X \le M) = \sum_{k=0}^{M} \frac{3^k}{k!} e^{-3} \ge 0.99$$

即

$$\sum_{k=M+1}^{\infty} \frac{3^k}{k!} e^{-3} \le 0.01$$

查附表 2 (see next slide), 得 $M+1 \ge 9$ 时有上式成立. 所以 M 最小应是 8.

见教材泊松分布表.

$$P(X \geqslant x) = \sum_{r=x}^{\infty} \frac{\lambda^r}{r!} e^{-\lambda}$$

		$r=x$ \cdot	
x	$\lambda = 2.5$	$\lambda = 3.0$	
:	:	:	:
8	i i	0.011905	:
9	i :	0.003803	:
10	:	0.001102	:
<u>:</u>	:	:	:

一本 500 页的书, 共 500 错字, 每个字等可能的出现在每一页上, 求在给定的某一页上最多两个错字的概率.

一本 500 页的书, 共 500 错字, 每个字等可能的出现在每一页上, 求在给定的某 一页上最多两个错字的概率.

设 X 表示在给定的某一页上出现的错字的个数, 则 $X \sim B(500, \frac{1}{500})$.

一本 500 页的书, 共 500 错字, 每个字等可能的出现在每一页上, 求在给定的某 一页上最多两个错字的概率.

设 X 表示在给定的某一页上出现的错字的个数, 则 $X \sim B(500, \frac{1}{500})$.

因为 n 很大, p 很小, 所以可以用泊松分布近似计算. 依题意, X 近似服从

 $\lambda = np = 1$ 的泊松分布.

一本 500 页的书, 共 500 错字, 每个字等可能的出现在每一页上, 求在给定的某一页上最多两个错字的概率.

解: 设 X 表示在给定的某一页上出现的错字的个数,则 $X \sim B(500, \frac{1}{500})$.

因为 n 很大, p 很小, 所以可以用泊松分布近似计算. 依题意, X 近似服从 $\lambda = np = 1$ 的泊松分布.

$$P(X \le 2) \approx \sum_{k=0}^{2} \frac{1}{k!} e^{-1}$$

= $e^{-1} + e^{-1}$

$$= e^{-1} + e^{-1} + \frac{e^{-1}}{2}$$
$$= \frac{5}{2}e^{-1} \approx 0.92$$

一本 500 页的书, 共 500 错字, 每个字等可能的出现在每一页上, 求在给定的某一页上最多两个错字的概率.

解: 设 X 表示在给定的某一页上出现的错字的个数,则 $X \sim B(500, \frac{1}{500})$.

因为n 很大,p 很小,所以可以用泊松分布近似计算. 依题意,X 近似服从

$$\lambda = np = 1$$
 的泊松分布.

$$P(X \le 2) \approx \sum_{k=0}^{2} \frac{1}{k!} e^{-1}$$

$$= e^{-1} + e^{-1} + \frac{e^{-1}}{2}$$

$$= \frac{5}{2} e^{-1} \approx 0.92$$

或者查表得 $P(X \le 2) = 1 - P(X \ge 3) = 1 - 0.080301 \approx 0.92$.

小结: 三种重要的离散型随机变量分布的关系

- 二项分布在三者中处于中心地位;
- 0-1 分布是二项分布中 n=1 的情形. 所以, 0-1 分布也可以记成: $X \sim B(1, p)$.
- 泊松分布是二项分布中 $n \to \infty$ 的极限情形. 在二项分布计算中, 当 n 较大, p 较小时, 常转化为泊松分布来近似计算.

练习

- 对离散型随机变量 $X, P\{X=k\} = \frac{a}{N}, k = 1, 2, \dots, N.$ 则 a =____.
- ② 对离散型随机变量 X, $P\{X = k\} = a \frac{\lambda^k}{k!}$, $k = 0, 1, 2, \dots$ 则 $a = \underline{\hspace{1cm}}$.
- ③ 设随机变量 $X \sim P(\lambda)$, 且 $P\{X = 1\} = P\{X = 2\}$. 求 $P\{X = 4\}$.

练习

- 对离散型随机变量 $X, P\{X = k\} = \frac{a}{N}, k = 1, 2, \dots, N.$ 则 a =_____.
- ② 对离散型随机变量 X, $P\{X = k\} = a \frac{\lambda^k}{k!}$, $k = 0, 1, 2, \dots$ 则 $a = \underline{\hspace{1cm}}$.
- 设随机变量 $X \sim P(\lambda)$, 且 $P\{X = 1\} = P\{X = 2\}$. 求 $P\{X = 4\}$.
 - ① a = 1; ② $a = e^{-\lambda}$; ③ $\frac{2}{3}e^{-2}$.

设随机变量 X 的分布律为

设随机变量 X 的分	巾 律万				
	X	-1	2	3	
	p_k	0.25	0.5	0.25	
					ī

求 X 的分布函数, 并求 $P\{X \le 0.5\}$, $P\{1.5 < X \le 2.5\}$, $P\{2 \le X \le 3\}$.

设随机变量 Y 的分布律为

闵随机 受重 X 的分	巾 律刀				
	X	-1	2	3	
	p_k	0.25	0.5	0.25	
					ī

解: 要求 $F(x) = P\{X \le x\}$, 注意到随机变量 X 的所有可能取值为 -1, 2, 3.

求 X 的分布函数, 并求 $P\{X \leq 0.5\}$, $P\{1.5 < X \leq 2.5\}$, $P\{2 \leq X \leq 3\}$.

设随机变量 X 的分布律为

求 X 的分布函数, 并求 $P\{X \le 0.5\}$, $P\{1.5 < X \le 2.5\}$, $P\{2 \le X \le 3\}$.

解: 要求
$$F(x) = P\{X \le x\}$$
, 注意到随机变量 X 的所有可能取值为 -1 , 2, 3.

① 当 x < -1 时,

 $F(x) = P\{X \leqslant x\}$

设随机变量 X 的分布律为

X	-1	2	3
p_k	0.25	0.5	0.25

求
$$X$$
 的分布函数, 并求 $P\{X \le 0.5\}$, $P\{1.5 < X \le 2.5\}$, $P\{2 \le X \le 3\}$.

解: 要求
$$F(x) = P\{X \le x\}$$
, 注意到随机变量 X 的所有可能取值为 -1 , 2, 3.

① 当 x < -1 时,

$$-2$$
 -1 0 1 2 3 x

$$F(x) = P\{X \leqslant x\} = P\{\varnothing\} = 0.$$

\overline{X}	-1	2	3
p_k	0.25	0.5	0.25

② 当
$$x=-1$$
 时, $F(x)=P\{X\leqslant x\}=P\{X\leqslant -1\}$

X	-1	2	3
p_k	0.25	0.5	0.25

 $\stackrel{\text{def}}{=} x = -1 \text{ pd}, \ F(x) = P\{X \leqslant x\} = P\{X \leqslant -1\} = P\{X = -1\} = 0.25.$

$$\begin{array}{c|cccc} X & -1 & 2 & 3 \\ p_k & 0.25 & 0.5 & 0.25 \end{array}$$

②
$$\stackrel{\text{def}}{=} x = -1$$
 $\stackrel{\text{def}}{=} F(x) = P\{X \le x\} = P\{X \le -1\} = P\{X = -1\} = 0.25.$

$$F(x) = P\{X \leqslant x\}$$

$$\begin{array}{|c|c|c|c|c|c|} \hline X & -1 & 2 & 3 \\ \hline p_k & 0.25 & 0.5 & 0.25 \\ \hline \end{array}$$

②
$$\stackrel{\text{def}}{=} x = -1 \text{ ff}, F(x) = P\{X \leqslant x\} = P\{X \leqslant -1\} = P\{X = -1\} = 0.25.$$

③ 当
$$-1 < x < 2$$
 时,

$$F(x) = P\{X \le x\} = P\{X = -1\} = 0.25.$$

X	-1	2	3
p_k	0.25	0.5	0.25

- ② $\stackrel{\text{def}}{=} x = -1$ $\stackrel{\text{def}}{=} F(x) = P\{X \le x\} = P\{X \le -1\} = P\{X = -1\} = 0.25.$
- ③ 当 -1 < x < 2 时,

$$F(x) = P\{X \le x\} = P\{X = -1\} = 0.25.$$

 $F(x) = P\{X \leqslant x\}$

\overline{X}	-1	2	3	-
p_k	0.25	0.5	0.25	_

②
$$\stackrel{\text{def}}{=} x = -1$$
 $\stackrel{\text{def}}{=} F(x) = P\{X \le x\} = P\{X \le -1\} = P\{X = -1\} = 0.25.$

③ 当 -1 < x < 2 时,

$$F(x) = P\{X \le x\} = P\{X = -1\} = 0.25.$$

④ 当
$$2 \leqslant x < 3$$
 时,

$$F(x) = P\{X \le x\} = P\{X = -1\} + P\{X = 2\} = 0.75.$$

⑤ 当 $x \geqslant 3$ 时,

$$F(x) = P\{X \leqslant x\}$$

 $5 \times x \geqslant 3$ 时,

$$F(x) = P\{X \leqslant x\} = P\{X = -1\} + P\{X = 2\} + P\{X = 3\} = 1.$$

⑤ 当 $x \ge 3$ 时.

$$-2$$
 -1 0 1 2 3 $2^{2}\{X\leqslant x\}=P\{X=-1\}+P\{X=2\}+P\{X=3\}=1.$

$$F(x) = P\{X \leqslant x\} = P\{X = -1\} + P\{X = 2\} + P\{X = 3\} = 1.$$

$$F(x) = P\{X \leqslant x\} = P\{X = -1\} + P\{X = 2\} + P\{X = 3\} = 1.$$
所以
$$F(x) = \begin{cases} 0 & x < -1 \\ 0.25 & -1 \leqslant x < 2 \\ 0.75 & 2 \leqslant x < 3 \\ 1 & x \geqslant 3 \end{cases}$$

当 $x \geqslant 3$ 时,

$$F(x) = P\{X \leqslant x\} = P\{X = -1\} + P\{X = 2\} + P\{X = 3\} = 1.$$
 所以

$$F(x) = \begin{cases} 0 & x < -1 \\ 0.25 & -1 \le x < 2 \\ 0.75 & 2 \le x < 3 \\ 1 & x \geqslant 3 \end{cases}$$

$$P{X \le 0.5} = F(0.5) = 0.25$$

$$F(x) = \begin{cases} 0 & x < -1 \\ 0.25 & -1 \le x < 2 \\ 0.75 & 2 \le x < 3 \\ 1 & x \ge 3 \end{cases}$$

$$P\{X \le 0.5\} = F(0.5) = 0.25$$

$$P\{1.5 < X \le 2.5\} = F(2.5) - F(1.5)$$

$$= 0.75 - 0.25$$

= 0.5

$$P\{X \leqslant 0.5\} = F(0.5) = 0.25$$

$$P\{1.5 < X \leqslant 2.5\} = F(2.5) - F(1.5)$$

$$F(x) = \begin{cases} 0 & x < -1 \\ 0.25 & -1 \leqslant x < 2 \\ 0.75 & 2 \leqslant x < 3 \\ 1 & x \geqslant 3 \end{cases} \qquad P\{2 \leqslant X \leqslant 3\} = F(3) - F(2) + P\{X = 1\}$$

 $P\{2 \le X \le 3\} = F(3) - F(2) + P\{X = 2\}$

= 0.75

= 1 - 0.75 + 0.5

$$P\{X \leqslant 0.5\} = F(0.5) = 0.25$$

$$P\{1.5 < X \leqslant 2.5\} = F(2.5) - F(1.5)$$

$$= \begin{cases} 0 & x < -1 \\ 0.25 & -1 \leqslant x < 2 \\ 0.75 & 2 \leqslant x < 3 \\ 1 & x \geqslant 3 \end{cases} = 0.5$$

$$P\{2 \leqslant X \leqslant 3\} = F(3) - F(2) + P\{X = 2\}$$

= 1 - 0.75 + 0.5

- 1 随机变量与分布函数
- ② 离散型随机变量
- ③ 连续型随机变量
- 4 随机变量函数的分布

从"统计直方图"谈起

任意抽取 500 个零件, 测得其长度落在 96~104 范围内(单位毫米).

组	频数	频率
$96 \sim 97$	6	0.012
$97 \sim 98$	25	0.050
$98 \sim 99$	72	0.144
$99 \sim 100$	133	0.266
$100\sim101$	120	0.240
$101\sim 102$	88	0.176
$102\sim103$	46	0.092
$103 \sim 104$	10	0.020

特点:

● 每一个小矩形的面积 = 这一组数据发生的频率;

特点:

- 每一个小矩形的面积 = 这一组数据发生的频率;
- ❷ 所有的小矩形面积之和 = 1.

特点:

- 每一个小矩形的面积 = 这一组数据发生的频率;
- ❷ 所有的小矩形面积之和 = 1.
- ◎ 直方图的纵坐标, 体现了频率分布的疏密程度, 不妨称之"频率密度".

当观测值增多,且分组越细时,可以看到一条理论分布曲线.

当观测值增多,且分组越细时,可以看到一条理论分布曲线.

当观测值增多,且分组越细时,可以看到一条理论分布曲线.

当观测值增多,且分组越细时,可以看到一条理论分布曲线.

这条理论分布曲线,反映了连续型随机变量的概率分布密度,谓之<mark>概率密度</mark>函数,记为 f(x).

这条理论分布曲线,反映了连续型随机变量的概率分布密度,谓之概率密度函数,记为 f(x).

且易知 f(x) 的性质:

• $f(x) \ge 0$;

这条理论分布曲线,反映了连续型随机变量的概率分布密度,谓之概率密度函数,记为f(x).

且易知 f(x) 的性质:

• $f(x) \ge 0$; 从几何上看, 概率密度函数的曲线在横轴的上方;

这条理论分布曲线,反映了连续型随机变量的概率分布密度,谓之概率密度 函数,记为 f(x).

且易知 f(x) 的性质:

- $f(x) \ge 0$; 从几何上看, 概率密度函数的曲线在横轴的上方;
- $P\{a \leqslant X \leqslant b\} = \int_a^b f(x) dx;$

这条理论分布曲线,反映了连续型随机变量的概率分布密度,谓之概率密度 函数,记为 f(x).

且易知 f(x) 的性质:

- $f(x) \ge 0$; 从几何上看, 概率密度函数的曲线在横轴的上方;
- $P\{a \le X \le b\} = \int_a^b f(x) dx;$ $P\{a < X \le b\} = P\{a \le X < b\} = P\{a < X < b\} = \int_a^b f(x) dx;$

这条理论分布曲线,反映了连续型随机变量的概率分布密度,谓之概率密度 函数,记为 f(x).

且易知 f(x) 的性质:

- $f(x) \ge 0$; 从几何上看, 概率密度函数的曲线在横轴的上方;
- $P\{a \le X \le b\} = \int_a^b f(x) \, \mathrm{d}x;$ $P\{a < X \le b\} = P\{a \le X < b\} = P\{a < X < b\} = \int_a^b f(x) \, \mathrm{d}x;$ 计算连续型随机变量在某一区间上取值的概率时, 区间端点对概率无影响.

$$\bullet \int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = 1;$$

• $\int_{-\infty}^{+\infty} f(x) dx = 1$; 这是因为 $-\infty < X < +\infty$ 是必然事件, 所以 $\int_{-\infty}^{+\infty} f(x) dx = P\{-\infty < X < +\infty\} = P(\Omega) = 1$

•
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$
; 这是因为 $-\infty < X < +\infty$ 是必然事件, 所以
$$\int_{-\infty}^{+\infty} f(x) dx = P\{-\infty < X < +\infty\} = P(\Omega) = 1$$

从几何上看,对于任一连续型随机变量,概率密度函数与数轴所围成的面积 是 1;

•
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$
; 这是因为 $-\infty < X < +\infty$ 是必然事件, 所以
$$\int_{-\infty}^{+\infty} f(x) dx = P\{-\infty < X < +\infty\} = P(\Omega) = 1$$

从几何上看,对于任一连续型随机变量,概率密度函数与数轴所围成的面积 是 1:

• $P\{X=a\}=0$.

• $\int_{-\infty}^{+\infty} f(x) dx = 1$; 这是因为 $-\infty < X < +\infty$ 是必然事件, 所以

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = P\{-\infty < X < +\infty\} = P(\Omega) = 1$$

从几何上看, 对于任一连续型随机变量, 概率密度函数与数轴所围成的面积 是 1:

• $P{X = a} = 0$. 即连续型随机变量取某一实数值的概率为零.

强调一个问题: 概率为 0 的事件不一定是不可能事件. 即

$$P(A) = 0 \implies A = \varnothing.$$

• $\int_{-\infty}^{+\infty} f(x) dx = 1$; 这是因为 $-\infty < X < +\infty$ 是必然事件, 所以

$$\int_{-\infty}^{+\infty} f(x) dx = P\{-\infty < X < +\infty\} = P(\Omega) = 1$$

从几何上看, 对于任一连续型随机变量, 概率密度函数与数轴所围成的面积 是 1;

• $P\{X = a\} = 0$. 即连续型随机变量取某一实数值的概率为零.

强调一个问题: 概率为 0 的事件不一定是不可能事件. 即

$$P(A) = 0 \implies A = \varnothing.$$

比如, P(AB) = 0, 就不能推得"A, B 是互不相容事件".

连续型随机变量的分布函数

• 设连续型随机变量的概率密度函数为 f(x), 则其概率分布函数为

$$F(x) = P\{X \leqslant x\} \tag{1}$$

$$= \int_{-\infty}^{x} f(t) \, \mathrm{d}t \tag{2}$$

$$= \int_{-\infty}^{x} f(x) \, \mathrm{d}x \tag{3}$$

连续型随机变量的分布函数

ullet 设连续型随机变量的概率密度函数为 f(x), 则其概率分布函数为

$$F(x) = P\{X \leqslant x\} \tag{1}$$

$$= \int_{-\infty}^{x} f(t) \, \mathrm{d}t \tag{2}$$

$$= \int_{-\infty}^{x} f(x) \, \mathrm{d}x \tag{3}$$

• 对于任意实数 $a \le b$, 有 $P\{a < X \le b\} = F(b) - F(a) = \int_a^b f(x) dx$;

连续型随机变量的分布函数

ullet 设连续型随机变量的概率密度函数为 f(x), 则其概率分布函数为

$$F(x) = P\{X \leqslant x\} \tag{1}$$

$$= \int_{-\infty}^{x} f(t) \, \mathrm{d}t \tag{2}$$

$$= \int_{-\infty}^{x} f(x) \, \mathrm{d}x \tag{3}$$

- 对于任意实数 $a \le b$, 有 $P\{a < X \le b\} = F(b) F(a) = \int_a^b f(x) dx$;
- 若 f(x) 在点 x 处连续, 则 F'(x) = f(x).

设随机变量 X 具有概率密度

$$f(x) = \begin{cases} kx, & 0 \le x < 3, \\ 2 - \frac{x}{2}, & 3 \le x \le 4, \\ 0, & \cancel{\sharp} \dot{\Xi}. \end{cases}$$
 (4)

① 确定常数 k; ② 求 X 的分布函数 F(x); ③ 求 $P\{1 < X \leq 3.5\}$.

设随机变量 X 具有概率密度

$$f(x) = \begin{cases} kx, & 0 \le x < 3, \\ 2 - \frac{x}{2}, & 3 \le x \le 4, \\ 0, & \cancel{\sharp} \dot{\Xi}. \end{cases}$$
 (4)

① 确定常数 k; ② 求 X 的分布函数 F(x); ③ 求 $P\{1 < X \leq 3.5\}$.

解: ① 由 $\int_{-\infty}^{+\infty} f(x) dx = 1$, 得

$$\int_0^3 kx \, dx + \int_3^4 (2 - \frac{x}{2}) \, dx = 1$$

设随机变量 X 具有概率密度

$$f(x) = \begin{cases} kx, & 0 \le x < 3, \\ 2 - \frac{x}{2}, & 3 \le x \le 4, \\ 0, & \cancel{\sharp} \dot{\Xi}. \end{cases}$$
 (4)

① 确定常数 k; ② 求 X 的分布函数 F(x); ③ 求 $P\{1 < X \leq 3.5\}$.

解: ① 由
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$
, 得

$$\int_0^3 kx \, dx + \int_3^4 (2 - \frac{x}{2}) \, dx = 1$$

解得
$$k = \frac{1}{6}$$
.

设随机变量 X 具有概率密度

$$f(x) = \begin{cases} kx, & 0 \le x < 3, \\ 2 - \frac{x}{2}, & 3 \le x \le 4, \\ 0, & \cancel{\cancel{4}} : \end{cases}$$
 (4)

① 确定常数 k; ② 求 X 的分布函数 F(x); ③ 求 $P\{1 < X \leq 3.5\}$.

解: ① 更为详细的解释是: 由积分的区域可加性, 得

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = \int_{-\infty}^{0} f(x) \, \mathrm{d}x + \int_{0}^{3} f(x) \, \mathrm{d}x + \int_{3}^{4} f(x) \, \mathrm{d}x + \int_{4}^{+\infty} f(x) \, \mathrm{d}x$$

设随机变量 X 具有概率密度

$$f(x) = \begin{cases} kx, & 0 \le x < 3, \\ 2 - \frac{x}{2}, & 3 \le x \le 4, \\ 0, & \cancel{\sharp} \dot{\Xi}. \end{cases}$$
 (4)

① 确定常数 k; ② 求 X 的分布函数 F(x); ③ 求 $P\{1 < X \leq 3.5\}$.

解: ① 更为详细的解释是: 由积分的区域可加性, 得

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = \int_{-\infty}^{0} f(x) \, \mathrm{d}x + \int_{0}^{3} f(x) \, \mathrm{d}x + \int_{3}^{4} f(x) \, \mathrm{d}x + \int_{4}^{+\infty} f(x) \, \mathrm{d}x$$
$$= \int_{-\infty}^{0} 0 \, \mathrm{d}x + \int_{0}^{3} kx \, \mathrm{d}x + \int_{3}^{4} (2 - \frac{x}{2}) \, \mathrm{d}x + \int_{4}^{+\infty} 0 \, \mathrm{d}x$$

设随机变量 X 具有概率密度

$$f(x) = \begin{cases} kx, & 0 \le x < 3, \\ 2 - \frac{x}{2}, & 3 \le x \le 4, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$
 (4)

① 确定常数 k; ② 求 X 的分布函数 F(x); ③ 求 $P\{1 < X \leq 3.5\}$.

解: ① 更为详细的解释是:由积分的区域可加性,得

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = \int_{-\infty}^{0} f(x) \, \mathrm{d}x + \int_{0}^{3} f(x) \, \mathrm{d}x + \int_{3}^{4} f(x) \, \mathrm{d}x + \int_{4}^{+\infty} f(x) \, \mathrm{d}x$$
$$= \int_{-\infty}^{0} 0 \, \mathrm{d}x + \int_{0}^{3} kx \, \mathrm{d}x + \int_{3}^{4} (2 - \frac{x}{2}) \, \mathrm{d}x + \int_{4}^{+\infty} 0 \, \mathrm{d}x$$
$$= \int_{0}^{3} kx \, \mathrm{d}x + \int_{3}^{4} (2 - \frac{x}{2}) \, \mathrm{d}x$$

$$f(x) = \begin{cases} \frac{x}{6}, & 0 \le x < 3, \\ 2 - \frac{x}{2}, & 3 \le x \le 4, \\ 0, & 其它. \end{cases}$$

$$f(x) = \begin{cases} \frac{x}{6}, & 0 \le x < 3, \\ 2 - \frac{x}{2}, & 3 \le x \le 4, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$

2
$$\forall f(x) = \int_{-\infty}^{x} f(t) dt$$

$$f(x) = \begin{cases} \frac{x}{6}, & 0 \le x < 3, \\ 2 - \frac{x}{2}, & 3 \le x \le 4, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$

$$f(x) = \begin{cases} \frac{x}{6}, & 0 \le x < 3, \\ 2 - \frac{x}{2}, & 3 \le x \le 4, \\ 0, & \mbox{\em \sharp} \mbox{\em Ξ}. \end{cases}$$

- 2 $\forall F(x) = \int_{-\infty}^{x} f(t) dt$
 - x < 0 时,

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{x} 0 dt = 0.$$

$$f(x) = \begin{cases} \frac{x}{6}, & 0 \le x < 3, \\ 2 - \frac{x}{2}, & 3 \le x \le 4, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$

② 对 $F(x) = \int_{-\infty}^{x} f(t) dt$

- x < 0 时, $F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{x} 0 dt = 0.$
- $0 \le x < 3$ 时, $F(x) = \int_{-\infty}^{0} 0 \, dt + \int_{0}^{x} \frac{t}{6} \, dt = \frac{x^{2}}{12}.$

$$f(x) = \begin{cases} \frac{x}{6}, & 0 \le x < 3, \\ 2 - \frac{x}{2}, & 3 \le x \le 4, \\ 0, & \not\exists \dot{\Xi}. \end{cases}$$

② 对 $F(x) = \int_{-\infty}^{x} f(t) dt$

- x < 0 时, $F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{x} 0 dt = 0.$
- $0 \le x < 3$ 时, $F(x) = \int_{-\infty}^{0} 0 \, dt + \int_{0}^{x} \frac{t}{6} \, dt = \frac{x^{2}}{12}.$
- $3 \le x < 4$ 时, F(x) $= \int_{-\infty}^{0} 0 \, dt + \int_{0}^{3} \frac{t}{6} \, dt + \int_{3}^{x} (2 \frac{t}{2}) \, dt$ $= -3 + 2x x^{2}/4$

$$f(x) = \begin{cases} \frac{x}{6}, & 0 \leqslant x < 3, \\ 2 - \frac{x}{2}, & 3 \leqslant x \leqslant 4, \\ 0, & \not\exists \dot{\Xi}. \end{cases}$$

- ② 对 $F(x) = \int_{-\infty}^{x} f(t) dt$
 - x < 0 Ff, $F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{x} 0 dt = 0.$
 - $0 \le x < 3$ 时, $F(x) = \int_{-\infty}^{0} 0 \, dt + \int_{0}^{x} \frac{t}{6} \, dt = \frac{x^{2}}{12}.$
 - $3 \le x < 4$ 时, F(x) $= \int_{-\infty}^{0} 0 \, dt + \int_{0}^{3} \frac{t}{6} \, dt + \int_{3}^{x} (2 - \frac{t}{2}) \, dt$ $= -3 + 2x - x^{2}/4$
 - $x \ge 4$ 时, F(x) = 1.

$$f(x) = \begin{cases} \frac{x}{6}, & 0 \le x < 3, \\ 2 - \frac{x}{2}, & 3 \le x \le 4, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$

即

注意: 等号加在分段点的左边、右边均可.

$$f(x) = \begin{cases} \frac{x}{6}, & 0 \le x < 3, \\ 2 - \frac{x}{2}, & 3 \le x \le 4, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$

即

$$f(x) = \begin{cases} \frac{x}{6}, & 0 \le x < 3, \\ 2 - \frac{x}{2}, & 3 \le x \le 4, \\ 0, & 其它. \end{cases} \qquad F(x) = \begin{cases} 0, & x < 0, \\ \frac{x^2}{12}, & 0 \le x < 3, \\ -3 + 2x - \frac{x^2}{4}, & 3 \le x < 4, \\ 1, & x \geqslant 4. \end{cases}$$

注意: 等号加在分段点的左边、右边均可.

$$P\{1 < x \le 3.5\} = F(3.5) - F(1) = 41/48.$$

三种重要的连续型随机变量的分布类型

- 均匀分布;
- 2 指数分布;
- 3 正态分布.

均匀分布

Example 15

设概率密度函数为

$$f(x) = \begin{cases} C, & a \le x \le b, \\ 0, & \not\exists \dot{\Xi}. \end{cases}$$
 (5)

求常数 C.

均匀分布

Example 15

设概率密度函数为

$$f(x) = \begin{cases} C, & a \le x \le b, \\ 0, & \not\exists \dot{\Xi}. \end{cases}$$
 (5)

求常数C.

解: 由
$$\int_{-\infty}^{+\infty} f(x) dx = \int_{a}^{b} C dx = C(b-a) = 1$$
, 得
$$C = \frac{1}{b-a}$$

Definition 16

如果随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \leqslant x \leqslant b, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$
 (6)

则称 X 服从 [a, b] 上的均匀分布(Uniform distribution).

记为 $X \sim U[a, b]$.

分布函数为

$$F(x) = \begin{cases} 0, & x < a, \\ \frac{x-a}{b-a}, & a \leqslant x < b, \\ 1, & x \geqslant b. \end{cases}$$

分布函数为

$$F(x) = \begin{cases} 0, & x < a, \\ \frac{x - a}{b - a}, & a \le x < b, \\ 1, & x \ge b. \end{cases}$$

f(x) 及 F(x) 的图形分别为

分布函数为

$$F(x) = \begin{cases} 0, & x < a, \\ \frac{x - a}{b - a}, & a \le x < b, \\ 1, & x \ge b. \end{cases}$$

f(x) 及 F(x) 的图形分别为

如果
$$X \sim U[a, b]$$
, 则对区间 $(c, c+l) \subset [a, b]$, 有
$$P\{c < X \leqslant c+l\} = \int_c^{c+l} f(x) \, \mathrm{d}x = \int_c^{c+l} \frac{1}{b-a} \, \mathrm{d}x = \frac{l}{b-a}$$

如果
$$X \sim U[a, b]$$
, 则对区间 $(c, c+l) \subset [a, b]$, 有
$$P\{c < X \leqslant c+l\} = \int_{c}^{c+l} f(x) dx = \int_{c}^{c+l} \frac{1}{b-a} dx = \frac{l}{b-a}$$

这说明 X 取值于 [a,b] 中任意小区间的概率与该小区间的长度成正比, 而与该小区间的具体位置无关. 这就是均匀分布的概率意义.

指数分布

Definition 17

如果随机变量 X 的概率密度为

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & \text{\pi} \vec{\text{$\text{$\delta}$}}. \end{cases}$$
 (7)

(其中 $\lambda > 0$ 为常数), 则称 X 服从参数为 λ 的指数分布(Exponential distribution).

记为 $X \sim E(\lambda)$.

指数分布

• 若 $X \sim E(\lambda)$, 则 X 的分布函数为

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \geqslant 0, \\ 0, & x < 0. \end{cases}$$

指数分布

• 若 $X \sim E(\lambda)$, 则 X 的分布函数为

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \geqslant 0, \\ 0, & x < 0. \end{cases}$$

- 指数分布也被称为"寿命分布", 如下列事件都可近似看作是服从指数分布的:
 - 电子元件的寿命,
 - 电话通话的时间,
 - 随机服务系统的服务时间等.

最常见的分布形态

最常见的分布形态

☞ 正态分布 (Normal distribution)

最常见的分布形态

☞ 正态分布 (Normal distribution)

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}. \tag{8}$$

正态分布的定义

Definition 18

如果随机变量 X 的概率密度为

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}, \qquad (-\infty < x < +\infty)$$

其中 μ , σ (σ > 0) 为常数,

正态分布的定义

Definition 18

如果随机变量 X 的概率密度为

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}, \qquad (-\infty < x < +\infty)$$

其中 μ , σ (σ > 0) 为常数,

则称 X 服从参数为 μ , σ 的正态分布(Normal distribution),

正态分布的定义

Definition 18

如果随机变量 X 的概率密度为

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}, \qquad (-\infty < x < +\infty)$$

其中 μ , σ (σ > 0) 为常数,

则称 X 服从参数为 μ , σ 的正态分布(Normal distribution), 记为

$$X \sim N(\mu, \sigma^2).$$

正态分布实例

图: 高尔顿机¹

¹高尔顿: Francis Galton (1822 – 1911), 英国人.

性质

• 对称轴为 $x = \mu$.

• 对称轴为 $x = \mu$.

性质

- ① 对称轴为 $x = \mu$.
- μ 称为"位置参数".

 $f_{\max}(x) = f(\mu) = \frac{1}{\sigma\sqrt{2\pi}}.$

$$f_{\max}(x) = f(\mu) = \frac{1}{\sigma\sqrt{2\pi}}.$$

 $f_{\max}(x) = f(\mu) = \frac{1}{\sigma\sqrt{2\pi}}.$

性质

Example 19 (选择题)

设两个正态分布 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$ 的密度函数如图所示, 则有【 】

- (A). $\mu_1 < \mu_2, \, \sigma_1 < \sigma_2$.
- (B). $\mu_1 < \mu_2, \, \sigma_1 > \sigma_2$.
- (C). $\mu_1 > \mu_2, \, \sigma_1 < \sigma_2$.
- (D). $\mu_1 > \mu_2, \, \sigma_1 > \sigma_2.$

Example 19 (选择题)

设两个正态分布 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$ 的密度函数如图所示, 则有【 】

- (A). $\mu_1 < \mu_2, \, \sigma_1 < \sigma_2$.
- (B). $\mu_1 < \mu_2, \, \sigma_1 > \sigma_2$.
- (C). $\mu_1 > \mu_2, \, \sigma_1 < \sigma_2$.
- (D). $\mu_1 > \mu_2, \, \sigma_1 > \sigma_2$.

Example 19 (选择题)

设两个正态分布 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$ 的密度函数如图所示, 则有【 】

- (A). $\mu_1 < \mu_2, \, \sigma_1 < \sigma_2$.
- (B). $\mu_1 < \mu_2, \, \sigma_1 > \sigma_2.$
- (C). $\mu_1 > \mu_2, \, \sigma_1 < \sigma_2$.
- (D). $\mu_1 > \mu_2, \, \sigma_1 > \sigma_2$.

分布函数

正态分布的分布函数为

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} dx, \quad (-\infty < x < +\infty)$$
 (9)

分布函数

正态分布的分布函数为

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} dx, \quad (-\infty < x < +\infty)$$
 (9)

分布函数

正态分布的分布函数为

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} dx, \quad (-\infty < x < +\infty)$$
 (9)

标准正态分布(Standard normal distribution)

$$\left\{ f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\},\right.$$

当 $\mu = 0$, $\sigma^2 = 1$ 时, 称 X 服从标准正态分布, 即 $X \sim N(0, 1)$.

● 密度函数为

$$\varphi(x) \triangleq \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\}, \quad (-\infty < x < +\infty)$$
 (10)

标准正态分布(Standard normal distribution)

$$\left\{ f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}, \right\}$$

当 $\mu = 0$, $\sigma^2 = 1$ 时, 称 X 服从标准正态分布, 即 $X \sim N(0, 1)$.

● 密度函数为

$$\varphi(x) \triangleq \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\}, \quad (-\infty < x < +\infty)$$
 (10)

② 分布函数为

$$\Phi(x) \triangleq \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\} dx, \quad (-\infty < x < +\infty)$$
 (11)

$$\Phi(-x) = 1 - \Phi(x) \tag{12}$$

$$\Phi(-x) = 1 - \Phi(x) \tag{12}$$

$$\Phi(-x) = 1 - \Phi(x) \tag{12}$$

$$\Phi(-x) = 1 - \Phi(x) \tag{12}$$

若
$$X \sim N(\mu, \sigma^2)$$
,则 $\frac{X - \mu}{\sigma} \sim N(0, 1)$.

证: 记
$$Y \triangleq \frac{X - \mu}{\sigma}$$
.

$$\label{eq:starting} \not \Xi \; X \sim N(\mu,\,\sigma^2), \; \mathbb{M} \; \frac{X-\mu}{\sigma} \sim N(0,\,1).$$

证: 记
$$Y \triangleq \frac{X - \mu}{\sigma}$$
. 则

$$P\{Y \leqslant y\} = P\left\{\frac{X - \mu}{\sigma} \leqslant y\right\}$$

$$\label{eq:resolvent} \Box{\itiff} \ X \sim N(\mu,\,\sigma^2), \ \Box{\itiff} \ \frac{X-\mu}{\sigma} \sim N(0,\,1).$$

证: 记
$$Y \triangleq \frac{X-\mu}{\sigma}$$
. 则
$$P\{Y\leqslant y\} = P\left\{\frac{X-\mu}{\sigma}\leqslant y\right\}$$

$$= P\{X\leqslant \sigma y + \mu\}$$

若
$$X \sim N(\mu, \sigma^2)$$
, 则 $\frac{X - \mu}{\sigma} \sim N(0, 1)$.

证: 记
$$Y \triangleq \frac{X - \mu}{\sigma}$$
.则

$$P\{Y \le y\} = P\left\{\frac{X - \mu}{\sigma} \le y\right\}$$
$$= P\{X \le \sigma y + \mu\}$$
$$= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\sigma y + \mu} e^{-\frac{(x - \mu)^2}{2\sigma^2}} dx$$

若
$$X \sim N(\mu, \sigma^2)$$
, 则 $\frac{X - \mu}{\sigma} \sim N(0, 1)$.

证: 记
$$Y \triangleq \frac{X - \mu}{\sigma}$$
.则

$$P\{Y \le y\} = P\left\{\frac{X - \mu}{\sigma} \le y\right\}$$
$$= P\{X \le \sigma y + \mu\}$$
$$= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\sigma y + \mu} e^{-\frac{(x - \mu)^2}{2\sigma^2}} dx$$

$$\diamondsuit \frac{x-\mu}{\sigma} = t,$$

若
$$X \sim N(\mu, \sigma^2)$$
,则 $\frac{X - \mu}{\sigma} \sim N(0, 1)$.

证: 记
$$Y \triangleq \frac{X - \mu}{\sigma}$$
. 则

$$P\{Y \le y\} = P\left\{\frac{X - \mu}{\sigma} \le y\right\}$$
$$= P\{X \le \sigma y + \mu\}$$
$$= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\sigma y + \mu} e^{-\frac{(x - \mu)^2}{2\sigma^2}} dx$$

$$\diamondsuit \frac{x-\mu}{\sigma} = t, \ \text{M} \ dx = \sigma dt; \ \text{If} \ x = \sigma y + \mu \iff t = y.$$

若
$$X \sim N(\mu, \sigma^2)$$
, 则 $\frac{X - \mu}{\sigma} \sim N(0, 1)$.

证: 记
$$Y \triangleq \frac{X - \mu}{\sigma}$$
. 则

$$P\{Y \le y\} = P\left\{\frac{X - \mu}{\sigma} \le y\right\}$$
$$= P\{X \le \sigma y + \mu\}$$
$$= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\sigma y + \mu} e^{-\frac{(x - \mu)^2}{2\sigma^2}} dx$$

令
$$\frac{x-\mu}{\sigma} = t$$
, 则 $\mathrm{d} x = \sigma \mathrm{d} t$; 且 $x = \sigma y + \mu \iff t = y$. 所以

$$P\{Y \leqslant y\} = \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

若
$$X \sim N(\mu, \sigma^2)$$
, 则 $\frac{X - \mu}{\sigma} \sim N(0, 1)$.

证: 记
$$Y \triangleq \frac{X - \mu}{\sigma}$$
. 则

$$P\{Y \le y\} = P\left\{\frac{X - \mu}{\sigma} \le y\right\}$$
$$= P\{X \le \sigma y + \mu\}$$
$$= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\pi}^{\sigma y + \mu} e^{-\frac{(x - \mu)^2}{2\sigma^2}} dx$$

令
$$\frac{x-\mu}{\sigma} = t$$
, 则 $\mathrm{d} x = \sigma \mathrm{d} t$; 且 $x = \sigma y + \mu \iff t = y$. 所以

$$P\{Y \leqslant y\} = \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

得 $Y \sim N(0, 1)$.

$P\{x_1 < X \leq x_2\}$ 的计算

•
$$\forall X \sim N(\mu, \sigma^2),$$

$$P\{X \leqslant a\} = P\left\{\frac{X - \mu}{\sigma} \leqslant \frac{a - \mu}{\sigma}\right\}$$
$$= \Phi\left(\frac{a - \mu}{\sigma}\right)$$

$P\{x_1 < X \leq x_2\}$ 的计算

•
$$P\{x_1 < X \leqslant x_2\} = \Phi\left(\frac{x_2 - \mu}{\sigma}\right) - \Phi\left(\frac{x_1 - \mu}{\sigma}\right)$$
.

公共汽车的车门高度,是按男子与车门定碰头的机会在 0.01 以下来设计的,设男子身高 X 服从正态分布 $N(170,6^2)$ (单位:cm),试确定车门的高度.

公共汽车的车门高度, 是按男子与车门定碰头的机会在 0.01 以下来设计的, 设男子身高 X 服从正态分布 $N(170, 6^2)$ (单位:cm), 试确定车门的高度.

 $\mathbf{\widetilde{\mathbf{R}}}$: 设车门的高度为 h (cm).

公共汽车的车门高度, 是按男子与车门定碰头的机会在 0.01 以下来设计的, 设男子身高 X 服从正态分布 $N(170, 6^2)$ (单位:cm), 试确定车门的高度.

<mark>解: 设车门的高度为 h (cm). 依题意有</mark>

$$P\{X > h\} = 1 - P\{X \leqslant h\} < 0.01$$

公共汽车的车门高度, 是按男子与车门定碰头的机会在 0.01 以下来设计的, 设男子身高 X 服从正态分布 $N(170,6^2)$ (单位:cm), 试确定车门的高度.

 \mathbf{m} : 设车门的高度为 h (cm). 依题意有

$$P\{X > h\} = 1 - P\{X \leqslant h\} < 0.01$$

即

$$P\{X \leqslant h\} > 0.99$$

公共汽车的车门高度, 是按男子与车门定碰头的机会在 0.01 以下来设计的, 设男子身高 X 服从正态分布 $N(170, 6^2)$ (单位:cm), 试确定车门的高度.

 \mathbf{m} : 设车门的高度为 h (cm). 依题意有

$$P\{X > h\} = 1 - P\{X \leqslant h\} < 0.01$$

即

$$P\{X \leqslant h\} > 0.99$$

因为
$$P\{X \leqslant h\} = \Phi(\frac{h-1.70}{6}),$$

公共汽车的车门高度, 是按男子与车门定碰头的机会在 0.01 以下来设计的, 设男子身高 X 服从正态分布 $N(170, 6^2)$ (单位:cm), 试确定车门的高度.

 \mathbf{m} : 设车门的高度为 h (cm). 依题意有

$$P\{X > h\} = 1 - P\{X \le h\} < 0.01$$

即

$$P\{X \leqslant h\} > 0.99$$

因为 $P\{X \leqslant h\} = \Phi(\frac{h-1.70}{6})$, 查标准正态分布表得 $\Phi(2.33) = 0.9901 > 0.99$,

公共汽车的车门高度, 是按男子与车门定碰头的机会在 0.01 以下来设计的, 设男子身高 X 服从正态分布 $N(170,6^2)$ (单位:cm), 试确定车门的高度.

 \mathbf{m} : 设车门的高度为 h (cm). 依题意有

$$P\{X > h\} = 1 - P\{X \leqslant h\} < 0.01$$

即

$$P\{X \leqslant h\} > 0.99$$

因为 $P\{X \le h\} = \Phi(\frac{h-1.70}{6})$,查标准正态分布表得 $\Phi(2.33) = 0.9901 > 0.99$,所以得

$$\frac{h - 1.70}{6} = 2.33$$

公共汽车的车门高度, 是按男子与车门定碰头的机会在 0.01 以下来设计的, 设男子身高 X 服从正态分布 $N(170, 6^2)$ (单位:cm), 试确定车门的高度.

 \mathbf{m} : 设车门的高度为 h (cm). 依题意有

$$P\{X > h\} = 1 - P\{X \leqslant h\} < 0.01$$

即

$$P\{X \leqslant h\} > 0.99$$

因为 $P\{X \le h\} = \Phi(\frac{h-1.70}{6})$, 查标准正态分布表得 $\Phi(2.33) = 0.9901 > 0.99$, 所以得

$$\frac{h - 1.70}{6} = 2.33$$

即 h = 184(cm).

67 / 89

68—95—99.7% 法则

95%

 μ -3 $\sigma\mu$ -2 $\sigma\mu$ - $\sigma\mu$ - $\sigma\mu$ - μ - $\sigma\mu$ +2 $\sigma\mu$ +3 σ

 μ -3 σ μ -2 σ μ - σ μ μ + σ μ +2 σ μ +3 σ

68% 的数据分布在距离均值1个方差的范围

$$P\{\mu - \sigma < X < \mu + \sigma\} = 0.68$$

95% 的数据分布在距离均值 2 个方差的范围

$$P\{\mu - 2\sigma < X < \mu + 2\sigma\} = 0.95$$

99.7%

99.7% 的数据分布在距离均值 3 个方差的范围

$$P\{\mu-3\sigma < X < \mu+3\sigma\} = 0.997$$

68—95—99.7% 法则

68%的数据分布在距离均值1个方差的范围区

$$P\{\mu - \sigma < X < \mu + \sigma\} = 0.68$$

95%的数据分布在距离均值2个方差的范围内

$$P\{\mu - 2\sigma < X < \mu + 2\sigma\} = 0.95$$

99.7% 的数据分布在距离均值 3 个方差的范围

$$P\{\mu-3\sigma < X < \mu+3\sigma\} = 0.997$$

- 1 随机变量与分布函数
- ② 离散型随机变量
- ③ 连续型随机变量
- 4 随机变量函数的分布

在许多实际问题中, 所考虑的随机变量往往依赖于另一个随机变量.

在许多实际问题中, 所考虑的随机变量往往依赖于另一个随机变量.

比方, 设 X 是圆柱体的直径, 它是随机变量. 而圆柱体的横断面面积 Y 也是随机变量.

在许多实际问题中,所考虑的随机变量往往依赖于另一个随机变量.

比方,设X是圆柱体的直径,它是随机变量.而圆柱体的横断面面积Y也是随机变量.在试验中,当X取的可能值x时,Y就取得可能值y.

在许多实际问题中,所考虑的随机变量往往依赖于另一个随机变量. 比方,设X是圆柱体的直径,它是随机变量.而圆柱体的横断面面积Y也是随机变量.在试验中,当X取的可能值x时,Y就取得可能值y.

不过 y 不是试验的直接结果, 而是通过普通的函数关系 $y = \frac{\pi}{4}x^2$ 而得.

在许多实际问题中,所考虑的随机变量往往依赖于另一个随机变量.

比方,设X是圆柱体的直径,它是随机变量.而圆柱体的横断面面积Y也是随机变量.在试验中,当X取的可能值x时,Y就取得可能值y.

不过 y 不是试验的直接结果, 而是通过普通的函数关系 $y=\frac{\pi}{4}x^2$ 而得. 这时随机变量 Y 是随机变量 X 的函数, 记为 $Y=\frac{\pi}{4}X^2$.

在许多实际问题中,所考虑的随机变量往往依赖于另一个随机变量.

比方, 设 X 是圆柱体的直径, 它是随机变量. 而圆柱体的横断面面积 Y 也是随机变量. 在试验中, 当 X 取的可能值 x 时, Y 就取得可能值 y.

不过 y 不是试验的直接结果, 而是通过普通的函数关系 $y=\frac{\pi}{4}x^2$ 而得. 这时随机变量 Y 是随机变量 X 的函数, 记为 $Y=\frac{\pi}{4}X^2$.

一般地, 设 X 是随机变量, 则函数 Y = f(X) 也是随机变量.

在许多实际问题中, 所考虑的随机变量往往依赖于另一个随机变量.

比方,设X是圆柱体的直径,它是随机变量.而圆柱体的横断面面积Y也是随机变量.在试验中,当X取的可能值x时,Y就取得可能值y.

不过 y 不是试验的直接结果, 而是通过普通的函数关系 $y=\frac{\pi}{4}x^2$ 而得. 这时随机变量 Y 是随机变量 X 的函数, 记为 $Y=\frac{\pi}{4}X^2$.

一般地, 设X是随机变量, 则函数Y = f(X)也是随机变量.

本节将讨论如何从一些随机变量的概率分布, 导出这些随机变量的函数的 概率分布.

Example 22 设 X 的分布律为

X	-1	0	1	2
p_k	0.1	0.2	0.3	0.4

求 ① Y = 2X - 1 的分布律; ② $Y = X^2$ 的分布律.

Example 22 设 X 的分布律为

X	-1	0		2
p_k	0.1	0.2	0.3	0.4

解: ① 因为 *Y* 的可能取值为 -3, -1, 1, 3,

求 ① Y = 2X - 1 的分布律; ② $Y = X^2$ 的分布律.

Example 22 设 X 的分布律为

求 ①
$$Y = 2X - 1$$
 的分布律; ② $Y = X^2$ 的分布律.

$$\mathbf{m}$$
: ① 因为 Y 的可能取值为 -3 , -1 , 1 , 3 , 而且

$$P\{Y = -3\} = P\{X = -1\} = 0.1, P\{Y = -1\} = P\{X = 0\} = 0.2,$$

 $P{Y = 1} = P{X = 1} = 0.3, P{Y = 3} = P{X = 2} = 0.4$

求 ①
$$Y = 2X - 1$$
 的分布律; ② $Y = X^2$ 的分布律.

$$P{Y = -3} = P{X = -1} = 0.1, P{Y = -1} = P{X = 0} = 0.2,$$

求 ①
$$Y = 2X - 1$$
 的分布律; ② $Y = X^2$ 的分布律.

$$D(V = 2) = D(V = 1) = 0.1$$
 $D(V = 1)$

$$P{Y = -3} = P{X = -1} = 0.1, P{Y = -1} = P{X = 0} = 0.2,$$

	3 0.4	
$p_k = 0.1 = 0.2 = 0.3 = 0.3$		

 $P{Y = 1} = P{X = 1} = 0.3, P{Y = 3} = P{X = 2} = 0.4$

求 ① Y = 2X - 1 的分布律; ② $Y = X^2$ 的分布律.

X	-1	0	1	2

X	-1	0	1	2
p_k	0.1	0.2	0.3	0.4

求 ① Y = 2X - 1 的分布律; ② $Y = X^2$ 的分布律.

X	-1	0	1	2
Y = 2X - 1	-3	-1	1	3

	_1	0	1	2
		0.2	_	0.4
$\frac{p_k}{}$	0.1	0.2	0.5	0.4

解: ① 更直观的表达方式是:

求 ① Y = 2X - 1 的分布律; ② $Y = X^2$ 的分布律.

X	-1	0	1	2
Y = 2X - 1	-3	-1	1	3
p_k	0.1	0.2	0.3	0.4

② 类似地可求出 $Y = X^2$ 的分布律为

X	-1	0	1	2
$Y = X^2$	$(-1)^2$	$(0)^2$	$(1)^2$	$(2)^2$
p_k	0.1	0.2	0.3	0.4

② 类似地可求出 $Y = X^2$ 的分布律为

\overline{X}	-1	0	1	2
$Y = X^2$	$(-1)^2$	$(0)^2$	$(1)^2$	$(2)^2$
p_k	0.1	0.2	0.3	0.4

因为 Y 的可能取的值为 0, 1, 4, 而且

$$P{Y = 1} = P{X = -1} + P{X = 1} = 0.1 + 0.3 = 0.4$$

② 类似地可求出 $Y = X^2$ 的分布律为

\overline{X}	-1	0	1	2
$Y = X^2$	$(-1)^2$	$(0)^2$	$(1)^2$	$(2)^2$
p_k	0.1	0.2	0.3	0.4

因为 Y 的可能取的值为 0, 1, 4, 而且

$$P\{Y=1\} = P\{X=-1\} + P\{X=1\} = 0.1 + 0.3 = 0.4$$

所以 $Y = X^2$ 的分布律可整理为

\overline{Y}	0	1	4
p_k	0.2	0.4	0.4

离散型随机变量的函数的分布

当 X 是离散型随机变量时, Y=f(X) 也是随机变量, 这时设随机变量 X 的概率分布为

X	x_1	x_2	x_3	 x_k	
P	p_1	p_2	p_3	 p_k	

离散型随机变量的函数的分布

当 X 是离散型随机变量时, Y=f(X) 也是随机变量, 这时设随机变量 X 的概率分布为

X	x_1	x_2	x_3	 x_k	
P	p_1	p_2	p_3	 p_k	

当 X 取某值 x_k 时,随机变量 Y 取值 $y_k = f(x_k)$,如果所有 $f(x_k)$ 的值全不相等,则随机变量 Y 的概率分布是:

\overline{Y}	y_1	y_2	y_3	 y_k	
P	p_1	p_2	p_3	 p_k	

离散型随机变量的函数的分布

当 X 是离散型随机变量时, Y=f(X) 也是随机变量, 这时设随机变量 X 的概率分布为

X	x_1	x_2	x_3	 x_k	
P	p_1	p_2	p_3	 p_k	

当 X 取某值 x_k 时,随机变量 Y 取值 $y_k = f(x_k)$,如果所有 $f(x_k)$ 的值全不相等,则随机变量 Y 的概率分布是:

\overline{Y}	y_1	y_2	y_3	 y_k	
\overline{P}	p_1	p_2	p_3	 p_k	

如果某些 $y_k = f(x_k)$ 有相同的值,则这些相同的值仅取一次. 根据概率加法定理应把相应的概率值 p_i 加起来,就得到 Y 的分布.

设随机变量 X 的分布律为

\overline{X}	1	2	 n	
p	$\frac{1}{2}$	$(\frac{1}{2})^2$	 $\left(\frac{1}{2}\right)^n$	

求随机变量 $Y = \cos(\frac{\pi}{2}X)$ 的分布律.

设随机变量 X 的分布律为

\overline{X}	1	2	 n	
p	$\frac{1}{2}$	$(\frac{1}{2})^2$	 $(\frac{1}{2})^n$	

求随机变量 $Y = \cos(\frac{\pi}{2}X)$ 的分布律.

解: 因为

$$\cos(\frac{n\pi}{2}) = \begin{cases} -1, & n = 2(2k-1), \\ 0, & n = 2k-1, \\ 1, & n = 2(2k), \end{cases} (k = 0, 1, 2, \cdots)$$

设随机变量 X 的分布律为

\overline{X}	1	2	 n	
p	$\frac{1}{2}$	$(\frac{1}{2})^2$	 $(\frac{1}{2})^n$	

求随机变量 $Y = \cos(\frac{\pi}{2}X)$ 的分布律.

解: 因为

$$\cos(\frac{n\pi}{2}) = \begin{cases} -1, & n = 2(2k-1), \\ 0, & n = 2k-1, \\ 1, & n = 2(2k), \end{cases} (k = 0, 1, 2, \cdots)$$

所以 $Y = \cos(\frac{\pi}{2}X)$ 的所有可能的取值为 -1, 0, 1.

$$P\{Y=-1\} = (\frac{1}{2})^2 + (\frac{1}{2})^6 + (\frac{1}{2})^{10} + \dots = \frac{\frac{1}{4}}{1 - \frac{1}{16}} = \frac{4}{15},\tag{13}$$

$$P\{Y=-1\} = (\frac{1}{2})^2 + (\frac{1}{2})^6 + (\frac{1}{2})^{10} + \dots = \frac{\frac{1}{4}}{1 - \frac{1}{16}} = \frac{4}{15},\tag{13}$$

$$P\{Y=0\} = (\frac{1}{2})^1 + (\frac{1}{2})^3 + (\frac{1}{2})^5 + \dots = \frac{\frac{1}{4}}{1 - \frac{1}{4}} = \frac{2}{3},\tag{14}$$

$$P\{Y=-1\} = (\frac{1}{2})^2 + (\frac{1}{2})^6 + (\frac{1}{2})^{10} + \dots = \frac{\frac{1}{4}}{1 - \frac{1}{16}} = \frac{4}{15},\tag{13}$$

$$P\{Y=0\} = (\frac{1}{2})^1 + (\frac{1}{2})^3 + (\frac{1}{2})^5 + \dots = \frac{\frac{1}{4}}{1 - \frac{1}{4}} = \frac{2}{3},\tag{14}$$

$$P\{Y=1\} = (\frac{1}{2})^4 + (\frac{1}{2})^8 + (\frac{1}{2})^{12} + \dots = \frac{\frac{1}{16}}{1 - \frac{1}{16}} = \frac{1}{15}.$$
 (15)

$$P\{Y=-1\} = (\frac{1}{2})^2 + (\frac{1}{2})^6 + (\frac{1}{2})^{10} + \dots = \frac{\frac{1}{4}}{1 - \frac{1}{16}} = \frac{4}{15},\tag{13}$$

$$P\{Y=0\} = (\frac{1}{2})^1 + (\frac{1}{2})^3 + (\frac{1}{2})^5 + \dots = \frac{\frac{1}{4}}{1 - \frac{1}{4}} = \frac{2}{3},\tag{14}$$

$$P\{Y=1\} = (\frac{1}{2})^4 + (\frac{1}{2})^8 + (\frac{1}{2})^{12} + \dots = \frac{\frac{1}{16}}{1 - \frac{1}{16}} = \frac{1}{15}.$$
 (15)

故
$$Y = \cos(\frac{\pi}{2}X)$$
 的分布律为

\overline{Y}	-1	0	1
	4	2	1
p	$\overline{15}$	$\overline{3}$	$\overline{15}$

连续型随机变量的函数的分布

• 设 X 是连续型随机变量, 已知 $f_X(x)$ 为其概率密度, 那么应当如何确定随机变量 Y = g(X) 的概率密度 $f_Y(x)$ 呢?

连续型随机变量的函数的分布

- 设 X 是连续型随机变量, 已知 $f_X(x)$ 为其概率密度, 那么应当如何确定随机变量 Y = g(X) 的概率密度 $f_Y(x)$ 呢?
- 注: 为了区分不同随机变量的概率密度, 将随机变量 X, Y 的概率密度函数 分别记为 $f_X(x), f_Y(x)$.

连续型随机变量的函数的分布

- 设 X 是连续型随机变量, 已知 $f_X(x)$ 为其概率密度, 那么应当如何确定随机变量 Y = g(X) 的概率密度 $f_Y(x)$ 呢?
- 注: 为了区分不同随机变量的概率密度, 将随机变量 X, Y 的概率密度函数 分别记为 $f_X(x), f_Y(x)$.
- 下面先简单复习"积分上限的函数"的有关内容.

其一般形式为

$$F(x) = \int_{a}^{x} f(t) dt \qquad (16)$$

其一般形式为

$$F(x) = \int_{a}^{x} f(t) dt \qquad (16)$$

关于此函数,有一个重要的定理

Theorem 24

若函数 f 连续, 则

$$\left(\int_{a}^{x} f(t) \, \mathrm{d}t\right)' = f(x) \qquad (17)$$

其一般形式为

$$F(x) = \int_{a}^{x} f(t) dt \qquad (16)$$

关于此函数,有一个重要的定理

Theorem 24

若函数 f 连续, 则

$$\left(\int_{a}^{x} f(t) \, \mathrm{d}t\right)' = f(x) \qquad (17)$$

积分上限函数通常也记为

$$F(x) = \int_{a}^{x} f(x) \, \mathrm{d}x \qquad (18)$$

其一般形式为

$$F(x) = \int_{a}^{x} f(t) dt$$
 (16)

关于此函数,有一个重要的定理

Theorem 24

若函数 f 连续, 则

$$\left(\int_{a}^{x} f(t) \, \mathrm{d}t\right)' = f(x) \qquad (17)$$

积分上限函数通常也记为

$$F(x) = \int_{a}^{x} f(x) \, \mathrm{d}x \tag{18}$$

那么相应的结论为

$$\left(\int_{a}^{x} f(x) \, \mathrm{d}x\right)' = f(x) \qquad (19)$$

其一般形式为

$$F(x) = \int_{a}^{x} f(t) dt \qquad (16)$$

关于此函数,有一个重要的定理

Theorem 24

若函数 f 连续, 则

$$\left(\int_{a}^{x} f(t) \, \mathrm{d}t\right)' = f(x) \qquad (17)$$

积分上限函数通常也记为

$$F(x) = \int_{a}^{x} f(x) \, \mathrm{d}x \qquad (18)$$

那么相应的结论为

$$\left(\int_{a}^{x} f(x) \, \mathrm{d}x\right)' = f(x) \qquad (19)$$

积分上限的函数也可以构造复合函数, 比如 $F(\varphi(x))$, 则

$$F(\varphi(x)) = \int_{a}^{\varphi(x)} f(x) dx \qquad (20)$$

其一般形式为

$$F(x) = \int_{a}^{x} f(t) dt \qquad (16)$$

关于此函数,有一个重要的定理

Theorem 24

若函数 f 连续, 则

$$\left(\int_{a}^{x} f(t) \, \mathrm{d}t\right)' = f(x) \qquad (17)$$

积分上限函数通常也记为

$$F(x) = \int_{a}^{x} f(x) \, \mathrm{d}x \tag{18}$$

那么相应的结论为

$$\left(\int_{a}^{x} f(x) \, \mathrm{d}x\right)' = f(x) \qquad (19)$$

积分上限的函数也可以构造复合函数, 比如 $F(\varphi(x))$, 则

$$F(\varphi(x)) = \int_{a}^{\varphi(x)} f(x) dx \qquad (20)$$

$$(F(\varphi(x)))' = F'(\varphi(x))\varphi'(x)$$
 (21)

其一般形式为

$$F(x) = \int_{a}^{x} f(t) dt \qquad (16)$$

关于此函数,有一个重要的定理

Theorem 24

若函数 f 连续, 则

$$\left(\int_{a}^{x} f(t) \, \mathrm{d}t\right)' = f(x) \qquad (17)$$

积分上限函数通常也记为

$$F(x) = \int_{a}^{x} f(x) \, \mathrm{d}x$$

那么相应的结论为

$$\left(\int_{a}^{x} f(x) \, \mathrm{d}x\right)' = f(x) \qquad (19)$$

积分上限的函数也可以构造复合函数, 比如 $F(\varphi(x))$, 则

$$F(\varphi(x)) = \int_{a}^{\varphi(x)} f(x) \, \mathrm{d}x \qquad (20)$$

而

$$\left(F(\varphi(x))\right)' = F'(\varphi(x))\varphi'(x) \quad (21)$$

所以

(18)
$$\left(\int_{a}^{\varphi(x)} f(x) dx\right)' = f(\varphi(x))\varphi'(x)$$

进一步有

$$\left(\int_{\psi(x)}^{\varphi(x)} f(x) \, \mathrm{d}x\right)' = f(\varphi(x))\varphi'(x) - f(\psi(x))\psi'(x) \tag{22}$$

进一步有

$$\left(\int_{\psi(x)}^{\varphi(x)} f(x) \, \mathrm{d}x\right)' = f(\varphi(x))\varphi'(x) - f(\psi(x))\psi'(x) \tag{22}$$

这是因为

$$\int_{\psi(x)}^{\varphi(x)} f(x) dx = \int_{\psi(x)}^{a} f(x) dx + \int_{a}^{\varphi(x)} f(x) dx$$
$$= \int_{a}^{\varphi(x)} f(x) dx - \int_{a}^{\psi(x)} f(x) dx$$

进一步有

$$\left(\int_{\psi(x)}^{\varphi(x)} f(x) \, \mathrm{d}x\right)' = f(\varphi(x))\varphi'(x) - f(\psi(x))\psi'(x) \tag{22}$$

这是因为

$$\int_{\psi(x)}^{\varphi(x)} f(x) dx = \int_{\psi(x)}^{a} f(x) dx + \int_{a}^{\varphi(x)} f(x) dx$$
$$= \int_{a}^{\varphi(x)} f(x) dx - \int_{a}^{\psi(x)} f(x) dx$$

Example 25

试计算下列各式

黄正华 (武汉大学)

设随机变量 X 具有概率密度

反随机受重
$$X$$
 具有概率密度
$$f_X(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4, \\ 0, & \text{otherwise.} \end{cases}$$

求 Y = 2X + 8 的概率密度 $f_Y(y)$.

设随机变量 X 具有概率密度

攻随机受重
$$X$$
 具有概率密度 $f_X(x) = \begin{cases} rac{x}{8}, & 0 < x < 4, \\ 0, & ext{otherwise.} \end{cases}$

求 Y = 2X + 8 的概率密度 $f_Y(y)$.

$$XY = 2X + 8$$
 的概率密度 $f_Y(y)$.

 $F_Y(y) = P\{Y \leqslant y\}$

设随机变量 X 具有概率密度

攻随机受重
$$X$$
 具有概率密度 $f_X(x) = \begin{cases} rac{x}{8}, & 0 < x < 4, \\ 0, & ext{otherwise.} \end{cases}$

求
$$Y = 2X + 8$$
 的概率密度 $f_Y(y)$.

$$XY=2X+8$$
 的概率密度 $f_Y(y)$.

 $F_Y(y) = P\{Y \leqslant y\}$

$$\dot{X}Y = 2X + 8$$
 的概率密度 $f_Y(y)$.

4: 先来求 Y 的分布函数.

 $= P\{2X + 8 \leqslant y\}$

设随机变量
$$X$$
 具有概率密度
$$\int_{f_X(x)}^{x} - \int_{8}^{x}, \quad 0 < x < 4$$

$$f_X(x) = \begin{cases} 8, & \text{otherwise} \\ 0, & \text{otherwise} \end{cases}$$

$$f_X(x) = \begin{cases} 0 \\ 0, \text{ otherwise} \end{cases}$$

$$\int X(x) = \begin{cases} 0, & \text{otherwise} \end{cases}$$

先来求Y的分布函数. $F_Y(y) = P\{Y \leqslant y\}$

$$0$$
, otherwise. 求 $Y = 2X + 8$ 的概率密度 $f_Y(y)$.

$$f_X(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4, \\ 0, & \text{otherwise.} \end{cases}$$

$$(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4, \end{cases}$$

$$\int \frac{x}{8}, \quad 0 < x < 4$$

 $= P\{2X + 8 \leq y\}$

 $=P\left\{X\leqslant \frac{y-8}{2}\right\}$

$$\frac{1}{2}$$
, $0 < x < 4$

设随机变量 X 具有概率密度

及随机变量
$$X$$
 具有概率密度
$$\int \frac{x}{s}, \quad 0 < x < 4,$$

求 Y = 2X + 8 的概率密度 $f_Y(y)$.

先来求Y的分布函数. $F_Y(y) = P\{Y \leqslant y\}$

$$f_X(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4, \\ 0, & \text{otherwise} \end{cases}$$

 $= P\{2X + 8 \leqslant y\}$

 $=P\left\{X\leqslant \frac{y-8}{2}\right\}$

 $= \int_{-\infty}^{\frac{y-8}{2}} f_X(x) \, \mathrm{d}x.$

$$f_X(x) = \begin{cases} \frac{1}{8}, & 0 < x < 4, \\ 0, & \text{otherwise.} \end{cases}$$

 $f_X(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4, \\ 0, & \text{otherwise.} \end{cases}$

$$< x < 4,$$
 therwise.

$$x < 4$$
,

沒
$$x < 4$$
.

设随机变量 X 具有概率密度

$$f_X(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4, \\ 0, & \text{otherwise.} \end{cases}$$

求
$$Y = 2X + 8$$
 的概率密度 $f_Y(y)$.

先来求Y 的分布函数.

$$\mathbf{R}$$
: 先来求 Y 的分布函数.

 $F_Y(y) = P\{Y \leqslant y\}$ $= P\{2X + 8 \leqslant y\}$ $=P\left\{X\leqslant \frac{y-8}{2}\right\}$ $= \int_{-\infty}^{\frac{y-8}{2}} f_X(x) \, \mathrm{d}x.$

$$\left(\int_{-\infty}^{\varphi(x)} f(x) \, \mathrm{d}x\right)' = f(\varphi(x))\varphi'(x),$$

设随机变量 X 具有概率密度

 $f_X(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4, \\ 0, & \text{otherwise.} \end{cases}$

求 Y = 2X + 8 的概率密度 $f_Y(y)$.

$$\mathbf{w}$$
: 先来求 Y 的分布函数.

$$F_Y(y) = P\{Y \le y\}$$

$$= P\{2X + 8 \le y\}$$

$$= P\left\{X \le \frac{y - 8}{2}\right\}$$

$$= \int_{-\frac{y - 8}{2}}^{\frac{y - 8}{2}} f_X(x) dx.$$

注意到

$$\left(\int_{-\infty}^{\varphi(x)} f(x) \, \mathrm{d}x\right)' = f(\varphi(x))\varphi'(x),$$
对此积分上限函数求导,得
$$f_Y(y) = f_X\left(\frac{y-8}{2}\right) \cdot \left(\frac{y-8}{2}\right)'$$

设随机变量
$$X$$
 具有概率密度
$$f_X(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4, \\ 0, & \text{otherwise.} \end{cases}$$

$$F_Y(y) = P\{Y \le y\}$$

$$= P\{2X + 8 \le y\}$$

$$= P\left\{X \le \frac{y - 8}{2}\right\}$$

$$= \int_{-\infty}^{\frac{y - 8}{2}} f_X(x) dx.$$

注意到

$$\left(\int_{-\infty}^{\varphi(x)} f(x) \, \mathrm{d}x\right)' = f(\varphi(x))\varphi'(x),$$
对此积分上限函数求导,得

$$f_Y(y) = f_X\left(\frac{y-8}{2}\right) \cdot \left(\frac{y-8}{2}\right)'$$

$$=\frac{1}{2}f_X\left(\frac{y-8}{2}\right)$$

$$\overline{2}$$

设随机变量 X 具有概率密度

 $f_X(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4, \\ 0, & \text{otherwise.} \end{cases}$

求
$$Y = 2X + 8$$
 的概率密度 $f_Y(y)$.

先来求Y 的分布函数.

 $F_Y(y) = P\{Y \leqslant y\}$

$$= P\{2X + 8 \le y\}$$

$$= P\left\{X \le \frac{y - 8}{2}\right\}$$

 $= \int_{-\infty}^{\frac{y-\infty}{2}} f_X(x) \, \mathrm{d}x.$

$$\left(\int_{-\infty}^{\varphi(x)} f(x) \, \mathrm{d}x\right)' = f(\varphi(x))\varphi'(x),$$

对此积分上限函数求导, 得

$$f_Y(y) = f_X\left(\frac{y-8}{2}\right) \cdot \left(\frac{y-8}{2}\right)'_y$$
$$= \frac{1}{2}f_X\left(\frac{y-8}{2}\right)$$

$$= \begin{cases} \frac{1}{2} \cdot \frac{y-8}{2}, & 0 < \frac{y-8}{2} < 4, \\ 0, & \text{otherwise.} \end{cases}$$

设随机变量 X 具有概率密度

$$f_X(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4, \\ 0, & \text{otherwise.} \end{cases}$$

求
$$Y = 2X + 8$$
 的概率密度 $f_Y(y)$.

 \mathbf{m} : 先来求Y的分布函数.

$$F_Y(y) = P\{Y \le y\}$$

$$= P\{2X + 8 \le y\}$$

$$= P\left\{X \le \frac{y - 8}{2}\right\}$$

$$= \int_{-\frac{y - 8}{2}}^{\frac{y - 8}{2}} f_X(x) dx.$$

注意到

$$\left(\int_{-\infty}^{\varphi(x)} f(x) \, \mathrm{d}x\right)' = f(\varphi(x))\varphi'(x),$$

对此积分上限函数求导,得

$$f_Y(y) = f_X\left(\frac{y-8}{2}\right) \cdot \left(\frac{y-8}{2}\right)'_y$$
$$= \frac{1}{2} f_X\left(\frac{y-8}{2}\right)$$

$$= \begin{cases} \frac{1}{2} \cdot \frac{y-8}{2}, & 0 < \frac{y-8}{2} < 4, \\ 0, & \text{otherwise.} \end{cases}$$

$$= \begin{cases} \frac{y-8}{32}, & 8 < y < 16, \\ 0, & \text{otherwise.} \end{cases}$$

公式法

Theorem 27

已知随机变量 X 具有概率密度

$$f_X(x) = \begin{cases} f(x), & a < x < b, \\ 0, & otherwise. \end{cases}$$

对随机变量 Y = g(X), 要求 $f_Y(y)$.

公式法

Theorem 27

已知随机变量 X 具有概率密度

$$f_X(x) = \begin{cases} f(x), & a < x < b, \\ 0, & otherwise. \end{cases}$$

对随机变量 Y = g(X), 要求 $f_Y(y)$.

则对函数关系 y = g(x), 给出反函数 x = h(y), 有

$$f_Y(y) = \begin{cases} f(h(y)) \cdot |h'(y)|, & a < h(y) < b, \\ 0, & otherwise. \end{cases}$$

其中函数 y = g(x) 处处可导且单调.

解释: 设g(x)单增,则

$$F_Y(y) = P\{Y \le y\} = P\{g(X) \le y\}$$
$$= P\{X \le h(y)\}$$
$$= \int_{-\infty}^{h(y)} f_X(x) dx$$

所以

$$f_Y(y) = f_X(h(y)) \cdot h'(y)$$

$$= \begin{cases} f(h(y)) \cdot h'(y), & a < h(y) < b, \\ 0, & \text{otherwise.} \end{cases}$$

若 g(x) 单减, 同理.

设随机变量 X 具有概率密度

$$f_X(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4, \\ 0, & \text{otherwise.} \end{cases}$$

求
$$Y = 2X + 8$$
 的概率密度 $f_Y(y)$.

设随机变量 X 具有概率密度

$$f_X(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4, \\ 0, & \text{otherwise.} \end{cases}$$

求
$$Y = 2X + 8$$
 的概率密度 $f_Y(y)$.

$$\mathbf{m}$$: $\mathbf{m} = \mathbf{m} = \mathbf{m}$

设随机变量 X 具有概率密度

$$f_X(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4, \\ 0, & \text{otherwise.} \end{cases}$$

求
$$Y = 2X + 8$$
 的概率密度 $f_Y(y)$.

解: 由
$$y = g(x) = 2x + 8$$
, 得

$$x = h(y) = \frac{y-8}{2}, \qquad h'(y) = \frac{1}{2}.$$

设随机变量 X 具有概率密度

$$f_X(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4, \\ 0, & \text{otherwise.} \end{cases}$$

解: 由
$$y = q(x) = 2x + 8$$
, 得

$$x = h(y) = \frac{y-8}{2}, \qquad h'(y) = \frac{1}{2}.$$

$$f_Y(y) = \begin{cases} f(h(y)) \cdot |h'(y)| = \frac{h(y)}{8} \cdot |h'(y)|, & 0 < \frac{y-8}{2} < 4, \\ 0, & \text{otherwise.} \end{cases}$$

设随机变量 X 具有概率密度

$$f_X(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4, \\ 0, & \text{otherwise.} \end{cases}$$

解: 由
$$y = g(x) = 2x + 8$$
, 得

$$x = h(y) = \frac{y-8}{2}, \qquad h'(y) = \frac{1}{2}.$$

所以

$$f_Y(y) = \begin{cases} f(h(y)) \cdot |h'(y)| = \frac{h(y)}{8} \cdot |h'(y)|, & 0 < \frac{y-8}{2} < 4, \\ 0, & \text{otherwise.} \end{cases}$$

 $= \begin{cases} \frac{y-8}{32}, & 8 < y < 16, \\ 0, & \text{otherwise.} \end{cases}$

设连续型随机变量 X 具有概率密度 $f_X(x)$, 求随机变量 Y = kX + b 的概率密度 $f_Y(x)$ (其中 k, b 为常数, 且 $k \neq 0$).

设连续型随机变量 X 具有概率密度 $f_X(x)$, 求随机变量 Y = kX + b 的概率密度 $f_Y(x)$ (其中 k, b 为常数, 且 $k \neq 0$).

$$\mathbf{R}$$
: 设 Y 的分布函数为 $F_Y(y)$.

当 k > 0, 则

$$F_Y(y) = P\{Y \leqslant y\} = P\{kX + b \leqslant y\}$$

设连续型随机变量 X 具有概率密度 $f_X(x)$, 求随机变量 Y=kX+b 的概率密度 $f_Y(x)$ (其中 k, b 为常数, 且 $k \neq 0$).

$$\mathbf{R}$$
: 设 Y 的分布函数为 $F_Y(y)$.

当 k > 0, 则

$$F_Y(y) = P\{Y \leqslant y\} = P\{kX + b \leqslant y\}$$
$$= P\{X \leqslant \frac{y - b}{k}\}$$

设连续型随机变量 X 具有概率密度 $f_X(x)$, 求随机变量 Y = kX + b 的概率密度 $f_Y(x)$ (其中 k, b 为常数, 且 $k \neq 0$).

$$\mathbf{R}$$
: 设 Y 的分布函数为 $F_Y(y)$.

当 k > 0,则

$$F_Y(y) = P\{Y \le y\} = P\{kX + b \le y\}$$
$$= P\{X \le \frac{y - b}{k}\}$$
$$= \int_{-\infty}^{\frac{y - b}{k}} f_X(x) dx$$

设连续型随机变量 X 具有概率密度 $f_X(x)$, 求随机变量 Y = kX + b 的概率密度 $f_Y(x)$ (其中 k, b 为常数, 且 $k \neq 0$).

$$\mathbf{R}$$
: 设 Y 的分布函数为 $F_Y(y)$.

当 k > 0,则

$$F_Y(y) = P\{Y \le y\} = P\{kX + b \le y\}$$
$$= P\{X \le \frac{y - b}{k}\}$$
$$= \int_{-k}^{y - b} f_X(x) dx$$

上式两边对 y 求导数得

$$f_Y(y) = \frac{1}{k} f_X(\frac{y-b}{k}) \tag{23}$$

设连续型随机变量 X 具有概率密度 $f_X(x)$, 求随机变量 Y = kX + b 的概率密度 $f_Y(x)$ (其中 k, b 为常数, 且 $k \neq 0$). 当 k < 0,则

 $F_Y(y) = P\{Y \leqslant y\} = P\{kX + b \leqslant y\}$

$$\mathbf{M}$$
: 设 Y 的分布函数为 $F_Y(y)$.

当 k > 0,则

$$F_Y(y) = P\{Y \le y\} = P\{kX + b \le y\}$$
$$= P\{X \le \frac{y - b}{k}\}$$
$$= \int_{-\infty}^{\frac{y - b}{k}} f_X(x) dx$$

上式两边对y 求导数得

$$f_Y(y) = \frac{1}{k} f_X(\frac{y-b}{k}) \tag{23}$$

设连续型随机变量 X 具有概率密度 $f_X(x)$, 求随机变量 Y = kX + b 的概率密度 $f_Y(x)$ (其中 k, b 为常数, 且 $k \neq 0$).

$$\mathbf{R}$$
: 设 Y 的分布函数为 $F_Y(y)$.

当 k > 0,则

$$F_Y(y) = P\{Y \le y\} = P\{kX + b \le y\}$$
$$= P\{X \le \frac{y - b}{k}\}$$
$$= \int_{-\infty}^{\frac{y - b}{k}} f_X(x) dx$$

上式两边对 y 求导数得

$$f_Y(y) = \frac{1}{k} f_X(\frac{y-b}{k}) \tag{23}$$

当 k < 0,则

$$F_Y(y) = P\{Y \leqslant y\} = P\{kX + b \leqslant y\}$$
$$= P\{X \geqslant \frac{y - b}{b}\}$$

设连续型随机变量 X 具有概率密度 $f_X(x)$, 求随机变量 Y = kX + b 的概率密度 $f_Y(x)$

(其中 k, b 为常数, 且 $k \neq 0$).

$$\mathbf{R}$$
: 设 Y 的分布函数为 $F_Y(y)$.

当 k > 0, 则

$$F_Y(y) = P\{Y \leqslant y\} = P\{kX + b \leqslant y\}$$
$$= P\{X \leqslant \frac{y - b}{k}\}$$
$$= \int_{-\infty}^{\frac{y - b}{k}} f_X(x) dx$$

上式两边对 y 求导数得

$$f_Y(y) = \frac{1}{k} f_X(\frac{y-b}{k}) \tag{23}$$

当 k < 0. 则

$$F_Y(y) = P\{Y \leqslant y\} = P\{kX + b \leqslant y\}$$
$$= P\{X \geqslant \frac{y - b}{k}\}$$
$$= \int_{\frac{y - b}{k}}^{+\infty} f_X(x)$$

设连续型随机变量 X 具有概率密度 $f_X(x)$, 求随机变量 Y = kX + b 的概率密度 $f_Y(x)$

(其中 k, b 为常数, 且 $k \neq 0$).

$$\mathbf{R}$$
: 设 Y 的分布函数为 $F_Y(y)$.

当 k > 0, 则

$$F_Y(y) = P\{Y \leqslant y\} = P\{kX + b \leqslant y\}$$
$$= P\{X \leqslant \frac{y - b}{k}\}$$
$$= \int_{-k}^{\frac{y - b}{k}} f_X(x) dx$$

上式两边对 y 求导数得

$$f_Y(y) = \frac{1}{k} f_X(\frac{y-b}{k}) \tag{23}$$

当 k < 0. 则

$$F_Y(y) = P\{Y \le y\} = P\{kX + b \le y\}$$
$$= P\{X \ge \frac{y - b}{k}\}$$
$$= \int_{y - b}^{+\infty} f_X(x)$$

$$=1-\int_{-\infty}^{\frac{y-b}{k}}f_X(x)\,\mathrm{d}x$$

设连续型随机变量 X 具有概率密度 $f_X(x)$, 求随机变量 Y = kX + b 的概率密度 $f_Y(x)$

(其中
$$k$$
, b 为常数, 且 $k \neq 0$).

 \mathbf{M} : 设 Y 的分布函数为 $F_Y(y)$.

当 k > 0, 则

$$F_Y(y) = P\{Y \leqslant y\} = P\{kX + b \leqslant y\}$$
$$= P\{X \leqslant \frac{y - b}{k}\}$$
$$= \int_{-k}^{\frac{y - b}{k}} f_X(x) dx$$

上式两边对 y 求导数得

$$f_Y(y) = \frac{1}{L} f_X(\frac{y-b}{L})$$

当 k < 0. 则

$$F_Y(y) = P\{Y \leqslant y\} = P\{kX + b \leqslant y\}$$

$$= P\{X \geqslant \frac{y-b}{k}\}$$
$$= \int_{\frac{y-b}{2}}^{+\infty} f_X(x)$$

$$=1-\int_{-\infty}^{\frac{y-b}{k}}f_X(x)\,\mathrm{d}x$$

上式两边对 u 求导数得

(24)

$$f_Y(y) = -\frac{1}{L} f_X(\frac{y-b}{L})$$

(23)

设连续型随机变量 X 具有概率密度 $f_X(x)$, 求随机变量 Y = kX + b 的概率密度 $f_Y(x)$

 $F_Y(y) = P\{Y \leqslant y\} = P\{kX + b \leqslant y\}$

(其中 k, b 为常数, 且 $k \neq 0$).

$$\mathbf{R}$$
: 设 Y 的分布函数为 $F_Y(y)$.

当 k > 0, 则

当
$$k > 0$$
,则

$$= P\{X \leqslant \frac{y-b}{k}\}$$
$$= \int_{-k}^{\frac{y-b}{k}} f_X(x) dx$$

上式两边对 y 求导数得

$$f_Y(y) = \frac{1}{h} f_X(\frac{y-b}{h})$$

当 k < 0. 则

$$\exists k < 0, 则$$

$$F_Y(y) = P\{Y \le y\} = P\{kX + b \le y\}$$
$$= P\{X \ge \frac{y - b}{t}\}$$

$$= \int_{\frac{y-b}{k}}^{+\infty} f_X(x)$$
$$= 1 - \int_{-\infty}^{\infty} f_X(x) dx$$

$$f = 1$$

$$f_Y(y) = -\frac{1}{L} f_X(\frac{y-b}{L})$$

于是

$$f_Y(y) = \frac{1}{|k|} f_X(\frac{y-b}{k}) \tag{25}$$

(24)

$$f_Y(y) = \frac{1}{|k|} f_X(\frac{y-b}{k})$$
 (26)

$$f_Y(y) = \frac{1}{|k|} f_X(\frac{y-b}{k})$$
 (26)

对
$$X \sim N(\mu, \sigma^2)$$
, 则 $Y = \frac{X - \mu}{\sigma}$ 的概率密度为

$$f_Y(y) = \frac{1}{|k|} f_X(\frac{y-b}{k})$$
 (26)

对
$$X\sim N(\mu,\,\sigma^2),$$
 则 $Y=\frac{X-\mu}{\sigma}$ 的概率密度为
$$f_Y(y)=\frac{1}{|k|}f_X(\frac{y-b}{k})$$

$$f_Y(y) = \frac{1}{|k|} f_X(\frac{y-b}{k})$$
 (26)

对
$$X \sim N(\mu, \sigma^2)$$
, 则 $Y = \frac{X - \mu}{\sigma}$ 的概率密度为
$$f_Y(y) = \frac{1}{|k|} f_X(\frac{y - b}{k})$$

$$= \sigma f_X(\sigma y + \mu)$$

$$f_Y(y) = \frac{1}{|k|} f_X(\frac{y-b}{k})$$
 (26)

対
$$X \sim N(\mu, \sigma^2)$$
, 则 $Y = \frac{X - \mu}{\sigma}$ 的概率密度为
$$f_Y(y) = \frac{1}{|k|} f_X(\frac{y - b}{k})$$

$$= \sigma f_X(\sigma y + \mu)$$

$$= \sigma \cdot \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{\left((\sigma y + \mu) - \mu\right)^2}{2\sigma^2}\right\}$$

$$f_Y(y) = \frac{1}{|k|} f_X(\frac{y-b}{k})$$
 (26)

対
$$X \sim N(\mu, \sigma^2)$$
, 则 $Y = \frac{X - \mu}{\sigma}$ 的概率密度为
$$f_Y(y) = \frac{1}{|k|} f_X(\frac{y - b}{k})$$
$$= \sigma f_X(\sigma y + \mu)$$
$$= \sigma \cdot \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{\left((\sigma y + \mu) - \mu\right)^2}{2\sigma^2}\right\}$$
$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}},$$

$$f_Y(y) = \frac{1}{|k|} f_X(\frac{y-b}{k})$$
 (26)

対
$$X \sim N(\mu, \sigma^2)$$
, 则 $Y = \frac{X - \mu}{\sigma}$ 的概率密度为
$$f_Y(y) = \frac{1}{|k|} f_X(\frac{y - b}{k})$$
$$= \sigma f_X(\sigma y + \mu)$$
$$= \sigma \cdot \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{\left((\sigma y + \mu) - \mu\right)^2}{2\sigma^2}\right\}$$
$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}},$$

即 $Y \sim N(0, 1)$.

类似的, 若 $X \sim N(\mu, \sigma^2)$, 则

$$Y = aX + b \sim N(a\mu + b, a^2\sigma^2)$$
 (27)

类似的, 若
$$X \sim N(\mu, \sigma^2)$$
, 则
$$Y = aX + b \sim N(a\mu + b, a^2\sigma^2)$$
 (27)

一个常识: 正态随机变量的线性函数仍为正态分布.

设 $X \sim N(0, 1)$, 求 $Y = X^2$ 的概率密度.

设 $X \sim N(0, 1)$, 求 $Y = X^2$ 的概率密度.

 \mathbf{p} : 当 y < 0 时, 注意到 $Y = X^2$ 总是取非负值,

设 $X \sim N(0, 1)$, 求 $Y = X^2$ 的概率密度.

 \mathbf{p} : 当 y < 0 时, 注意到 $Y = X^2$ 总是取非负值, 因此,

$$F_Y(y) = P\{Y \leqslant y\} = P\{\varnothing\} = 0$$

设 $X \sim N(0, 1)$, 求 $Y = X^2$ 的概率密度.

 \mathbf{p} : 当 y < 0 时, 注意到 $Y = X^2$ 总是取非负值, 因此,

$$F_Y(y) = P\{Y \leqslant y\} = P\{\varnothing\} = 0$$

当 $y \geqslant 0$ 时,

$$F_Y(y) = P\{Y \leqslant y\} = P\{X^2 \leqslant y\}$$

设 $X \sim N(0, 1)$, 求 $Y = X^2$ 的概率密度.

 \mathbf{p} : 当 y < 0 时, 注意到 $Y = X^2$ 总是取非负值, 因此,

$$F_Y(y) = P\{Y \leqslant y\} = P\{\varnothing\} = 0$$

当 $y \geqslant 0$ 时,

$$F_Y(y) = P\{Y \leqslant y\} = P\{X^2 \leqslant y\}$$
$$= P\{-\sqrt{y} \leqslant X \leqslant \sqrt{y}\}$$

设 $X \sim N(0, 1)$, 求 $Y = X^2$ 的概率密度.

解: 当 y < 0 时, 注意到 $Y = X^2$ 总是取非负值, 因此,

$$F_Y(y) = P\{Y \leqslant y\} = P\{\varnothing\} = 0$$

当 $y \ge 0$ 时,

$$F_Y(y) = P\{Y \le y\} = P\{X^2 \le y\}$$

$$= P\{-\sqrt{y} \le X \le \sqrt{y}\}$$

$$= \int_{-\sqrt{y}}^{\sqrt{y}} f_X(x) dx = \frac{1}{\sqrt{2\pi}} \int_{-\sqrt{y}}^{\sqrt{y}} e^{-\frac{x^2}{2}} dx$$

设 $X \sim N(0, 1)$, 求 $Y = X^2$ 的概率密度.

 \mathbf{p} : 当 y < 0 时, 注意到 $Y = X^2$ 总是取非负值, 因此,

$$F_Y(y) = P\{Y \leqslant y\} = P\{\varnothing\} = 0$$

当 $y \ge 0$ 时,

$$F_Y(y) = P\{Y \le y\} = P\{X^2 \le y\}$$

$$= P\{-\sqrt{y} \le X \le \sqrt{y}\}$$

$$= \int_{-\sqrt{y}}^{\sqrt{y}} f_X(x) dx = \frac{1}{\sqrt{2\pi}} \int_{-\sqrt{y}}^{\sqrt{y}} e^{-\frac{x^2}{2}} dx$$

对 y 求导数, 综合得

$$f_Y(y) = \begin{cases} \frac{1}{\sqrt{2\pi}} y^{-\frac{1}{2}} e^{-\frac{y}{2}}, & y > 0, \\ 0, & y \leqslant 0. \end{cases}$$

设

$$f(x) = \begin{cases} x, & 0 \le x < 1, \\ 2 - x, & 1 \le x < 2, \\ 0, & \text{otherwise.} \end{cases}$$

求 X 的分布函数 F(x).

设

$$f(x) = \begin{cases} x, & 0 \leqslant x < 1, \\ 2 - x, & 1 \leqslant x < 2, \\ 0, & \text{otherwise.} \end{cases}$$

求 X 的分布函数 F(x).

解:

分布函数为

$$F(x) = \begin{cases} 0, & x < 0, \\ \int_0^x x \, dx = \frac{x^2}{2}, & 0 \leqslant x < 1, \\ \int_0^1 x \, dx + \int_1^x (2 - x) \, dx = -\frac{x^2}{2} + 2x - 1, & 1 \leqslant x < 2, \\ 1, & x \geqslant 2. \end{cases}$$

分布函数为

$$F(x) = \begin{cases} 0, & x < 0, \\ \int_0^x x \, dx = \frac{x^2}{2}, & 0 \leqslant x < 1, \\ \int_0^1 x \, dx + \int_1^x (2 - x) \, dx = -\frac{x^2}{2} + 2x - 1, & 1 \leqslant x < 2, \\ 1, & x \geqslant 2. \end{cases}$$

详解: 比如 $0 \le x < 1$ 时,

$$F(x) = \int_{-\infty}^{x} f(x) dx$$
$$= \int_{-\infty}^{0} f(x) dx + \int_{0}^{x} f(x) dx$$
$$= 0 + \int_{-\infty}^{x} x dx$$
$$= \frac{x^{2}}{2}$$

Example 32 (练习)

设

$$f(x) = \begin{cases} 2(1 - 1/x^2), & 1 \le x \le 2, \\ 0, & \text{otherwise.} \end{cases}$$

求 X 的分布函数 F(x).

Example 33 (练习)

设

$$f(x) = \begin{cases} c + x, & -1 < x \le 0, \\ c - x, & 0 < x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

确定常数 c, 并求分布函数 F(x).