TRAFFIC AND CAPACITY ANALYTICS FOR MAJOR PORTS

NALAIYA THIRAN PROJECT BASED LEARNING

ON

PROFESSIONAL READINESS FOR INNOVATION,

EMPLOYABILITY AND ENTREPRENEURSHIP

A PROJECT REPORT

Submitted by

Santhiya L (TL) - 922319104030

Sriyokeshwari K - 922319104035

Suruthi R - 922319104037

Bavani D - 922319104006

UNIVERSITY COLLEGE OF ENGINEERING, DINDIGUL.

NOVERMBER 2022

UNIVERSITY COLLEGE OF ENGINEERING, DINDIGUL.

DOMAIN: DATA ANALYTICS

TEAM ID: PNT2022TMID49243

INTERNAL MENTOR:

Sasikala Devi M

University college of Engineering,

Dindigul.

INDUSTRY MENTOR:

Rakesh Miskin

INDEX

s.no	Topic	
1.	INTRODUCTION	5
1.1	Project Overview	5
1.2	Purpose	6
2	IDEATION PHASE	8
2.1	Literature survey	8
2.2	Existing problem	13
2.3	Problem Statement Definition	14
2.4	Empathy Map Canvas	16
2.5	Ideation & Brainstorming	17
3	PROJECT DESIGN PHASE 1	20
3.1	Proposed Solution	20
3.2	Problem Solution fit	22
3.3	Solution Architechture	22
4	PROJECT DESIGN PHASE 2	24
4.1	Customer journey	24
4.2	Functional requirement	24
4.3	Non-Functional requirements	25
4.4	Data Flow Diagrams	26

4.5	Technical Architecture	29
4.6	User Stories	33
5	PROJECT PLANNING AND	24
	DEVELOPMENT PHASE	34
5.1	Sprint Delivery Schedule	34
5.2	Sprint Planning & Estimation	36
5.3	Reports from JIRA	37
6	TESTING	40
6.1	Performance testing	40
7	RESULTS	41
7.1	Performance Metrics	41
7.2	Advantages & disadvantages	44
8	CONCLUSION	44
8.1	Reference	45
8.2	Future scope	45
9	APPENDIX	45
9.1	GitHub Link	45

1.INTRODUCTION

1.1 Project overview

India has been the world's fastest-growing major economy for four of the past five years, due to rising demand for goods and services. The movement of goods across the country and beyond its borders has created economic opportunities for millions of India's citizens. Today, the logistics sector represents five percent of India's Gross Domestic Product (GDP)¹and employs 2.2 crore people. India handles 4.6 billion tonnes of goods each year, amounting to a total annual cost of INR 9.5 lakh crore. These goods represent a variety of domestic industries and products: 22 percent are agricultural goods, 39 percent are mining products, and 39 percent are manufacturing-related commodities.

Trucks and other vehicles handle most of the movement of these goods. Railways, coastal and inland waterways, pipelines, and airways account for the rest. Recognising the critical role of the sector in the country's future, the Government of India (GOI) is pursuing a range of actions to improve its logistics performance. These include the development of dedicated rail-based freight corridors, improvements to the capacity and connectivity of coastal and inland waterbased shipping. It is also looking at the buildout of road infrastructure projects such as Bharatmala and the Golden Quadrilateral, and the creation of supportive policies. As national freight activity grows about five-fold by 2050, India's freight transport ecosystem has a critical role to play in supporting India's ambitious priorities. Some of these include international competitiveness, job growth, urban and rural livelihoods, and clean air and environment.

As products are made, they move along a supply chain until they reach the consumer. To move those goods, the logistics sector combines vehicles and warehouses, all of which are selected to efficiently move and process

them. The types of vehicles and storage facilities selected are typically based on the type of goods being moved and the distance over which they are being moved. This process of supply chain managers efficiently deploying and using a set of vehicles and warehouses to move goods through the production process to their final use by consumers is critical to the wellbeing of communities and economies.

To sustain the growing demand for freight transport without driving existing externalities to extreme levels, Indian stakeholders need to take steps to shift to a new freight paradigm that is more cost-effective, clean, and efficient. This new freight transportation paradigm will also help India achieve its development goals, including improved air quality, improved GDP, better public health, enhanced logistics productivity, more employment opportunities, and is inline with India's clean mobility ambitions. With a strong foundation of supportive policies and market trends, India can leverage the opportunities by implementing a set of solutions.

1.2 Purpose

The purpose of this project is to improve the railway market share in some commodities and overcome the challenges and maintain sustainable growth in all its commodities. We also try to reduce the congestion on rail corridors and improving port connectivity. And lastly help in the development of dedicated freight corridor across Key ports. All of this is done by analysing already existing data or new data on Railway traffic and data on amount of capacity of passenger and goods a train carries from each port.

Skill tag:

By the end of this Project, you will:

Know fundamental concepts and can work on IBM Cognos Analytic
 Gain a broad understanding of plotting different graphs.

2.IDEATION PHASE

2.1 Literature Survey

S.no	Tittle	Publication	Author	Summary
		year		
1	PERFORMANC	January,	Anindita-Mandal	The performance of 13
	E	2016		significant Indian ports is
	ANALYSIS OF			examined in the report
	MAJOR PORTS			with regard to important
	IN			operational performance
	INDIA: A			indicators. India's
	QUANTITATIV			participation in global
	E			trade is growing as a
	APPROACH			result of its rapid
				economic expansion. This
				increases the strain on
				these ports, which handle
				a sizable amount of the
				commerce, to operate as
				efficiently as possible.
				The study examines the
				state of each port in
				various performance
				categories by conducting
				a systematic analysis of
				various performance

				indicators over a 10-year
				period (from 2003 to
				2013).
2	ENHANCING	April,2020	Shuhong Peng,	The topic of this essay is
	PORT		Junaid Quair	how to employ
	ACTIVITIES			technological
	USING			improvements to enhance
	INFORMATION			port services and
	AND			operations. The goal is to
	COMMUNICATI			provide a comprehensive
	ON			study of the limited
	TECHNOLOGY.			research on smart ports
				with a focus on the role of
				ICT (Information and
				Communication
				Technology). A few of
				the port services that are
				optimised by smart port
				management include
				commodity inspection,
				customs clearance,
				transportation planning,
				procedures, and
				applications, customer
				service, market
				information exchange,
				and insurance
				provisioning. It has been
				suggested to use IoT

				platforms to build a networked and collaborative platform that enables information sharing among various hardware and infrastructures in order to install smart applications.
3	CONCENTRATI ON ANALYSIS OF CONTAINER TERMINALS IN INDIA.	July,2021	K.Chandrasekha r Iyer, V.P.S.N.Nanya m	This article investigates India's container terminals' propensity for reconcentration. India's container terminals have grown by 46% in the last five years, and since 2015, they have grown by 9% annually. To take advantage of the underutilised capacity at container terminals, efforts to modernise equipment and digitise processes have been made. This has led to a rise in the use of container terminals across the nation. In terms of the growth share matrix over

				the under-consideration period, the Adani International Container Terminal (AICT) has emerged as the top performer. analyses India's container terminals' tendencies toward reconcentration.
4	AN	August,2015	Jasem	As a result of the effects
	INTEGRATED		AlHammadi and	of globalisation during
	BERTH		Ali Diabat	the past 10 years,
	ALLOCATION			maritime transportation
	AND YARD			has seen remarkable
	ASSIGNMENT			growth. The rapidly
	PROBLEM FOR			growing demand for
	BULK PORTS:			commodities supplied by
	FORMULATION			water has led to a lot of
	AND CASE			attention being paid to
	STUDY			improving port efficiency
				by encouraging the
				efficient use of available
				resources. Optimization is
				crucial in achieving the
				economical goal of
				improving port efficiency

				as opposed to the pricey
				alternative of increasing
				existing capacity. The
				integrated dynamic
				hybrid berth allocation
				and yard assignment
				problem is examined in
				the context of bulk ports
				in the current research
				(BYAP). Key ideas are
				taken into account in
				order to construct an
				usable and realistic
				model.
5	FROM	May,2017	Virginia	Due to the high volume
	HISTORICAL		Fernandez	of maritime traffic and its
	POSITIONING		Argudas,Giulian	consequences on the
	DATA TO		a	economy, ecology, safety,
	UNSUPERVISE		Pallota,Michele	and security, a system
	D MARITIME		Vespe	that can monitor maritime
	TRAFFIC			traffic without
	MONITORING			supervision is required.
				An automated method for
				creating synthetic
				maritime traffic is
				suggested in this research.
				The primary goal of
				marine surveillance is to
				make it possible to
				•

automatically monitor, analyse, and comprehend nautical activity. To improve the MSA, the proposed technique is utilised to analyse, model, and depict large amounts of marine traffic data (Maritime Situational Awareness). Creates a network-based picture of maritime traffic by analysing past selfreporting positioning data. The representation of maritime traffic using self-reporting data has been addressed by a number of ways. They are spatio-temporal techniques and spatialgrid approaches, respectively. Anomaly identification, scenario forecasting, and real-time automated maritime traffic monitoring have been completed.

2.2 Existing Problem

The importance of the efficiency and performance of a port has been recognized for many years. The performance of ports has been measured by two types of indicators, financial and operational. This study focuses on operational indicators of port performance. One of the first studies addressing this topic defined two metrics from the field of traffic engineering: "occupancy," the percentage of time that all berths are occupied ("berth occupancy rate"); and "congestion," the percentage of time that the number of ships in port exceeds the number of available berths (Nicolaou, 1967).

The first indicator has the drawback of not describing how occupancy is distributed over time. For example, 50% berth occupancy is as true of a situation in which half of the berths are always occupied and half are always empty, as it is of all berths being occupied half of the time. These clearly different scenarios point out the need for an additional indicator. The second indicator described above, congestion, does not quite meet the need because large ports encompassing long sailing distances can accommodate more sailing vessels than berths without technically being congested. Another study proposed different operational indicators, most of which were related to the productivity of cranes and tons of cargo loaded/unloaded hour.

Others, such as waiting time, service time and turn-around time, are more directly and comprehensively related to the operational performance of the port (UNCTAD, 1976). The ratio of waiting time to service time has proven to be an appropriate measure of timeliness of service of the terminal. Generally, acceptable values for this ratio are 30% and below (UNCTAD, 1985). The significance of this ratio is, however, determined by specific rules, and by the costs associated with waiting.

Moreover, the use of this indicator alone can result in misleading information if a very low wait-to-service ratio is caused by a very inefficient service team. Other indicators related to throughput from, for example, berths or cranes are useful from some perspectives, but they are related to terminal performance, and not specifically to port traffic performance.

2.3 problem statement definition :

l am	Describe customer with 3-4 key characteristics - who are they?	Describe the customer and their attributes here
I'm trying to	List their outcome or "Job" the care about - what are they trying to achieve?	List the thing they are trying to achieve here
but	Describe what problems or barriers stand in the way – what bothers them most?	Describe the problems or barriers that get in the way here
because	Enter the "root cause" of why the problem or barrier exists – what needs to be solved?	Describe the reason the problems or barriers exist
which makes me feel	Describe the emotions from the customer's point of view – how does it impact them emotionally?	Describe the emotions the result from experiencing the problems or barriers

Customer Problem Statement Template: Create a problem statement to understand your customer's point of view. The Customer Problem Statement template helps you focus on what matters to create experiences people will love.

A well-articulated customer problem statement allows you and your team to find the ideal solution for the challenges your customers face. Throughout the process, you'll also be able to empathize with your customers, which helps you better understand how they perceive your product or service.

2.4 Emapathy map canvas

2.5 Ideation and Brain storming:

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount of creative solutions.

Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Step-2: Brainstorm, Idea Listing and Grouping

Step-3: Idea Prioritization

3.PROJECT DESIGN PHASE 1

3.1 Proposed solution:

Project team shall fill the following information in proposed solution template.

S.No.	Parameter	Description
1.	Problem Statement (Problem to	Improving port connectivity and
	be solved)	reducing the congestion on the rail
		corridors using Data Analytics.
		Overpopulation is the main reason
		behind a trffic jam.
2.	Idea / Solution description	Smart ports are an effective solu on to
		increase the network capacity and
		frequency of the rail
		freight.Properloading and deloading of
		freights with IOT aide can influence the
		rail freight with safe transporta on and
		build trust on people to increase use of
		rail freight.
3.	Novelty / Uniqueness	Traffic survey and assessment of
		traffic volumes identification of
		technically and economically viable
		route /Alignment.

4.	Social Impact / Customer	Adequate resources will be provided.	
	Satisfaction	India's electrical crisis 86% of the open	
		wages on the railway are used to	
		deliver poles to different power plants	
		in India. An appropriate supply of	
		resources will be made available to	
		prevent power outages.	
5.	Business Model (Revenue Model)	Railway ports provide for the tracking of	
		the flow of commodities being	
		transferred from one location to another.	
		Government can ensure reduced traffic	
		on the ports by using a data analytics	
		dashboard.	
6.	Scalability of the Solution	With the establishment of the railway as	
		a development effort and the use of data	
		analytics, the Indian economy has	
		moved into a high growth zone.	

3.2Problem solution fit:

3.3 Solution Architecture:

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

➤ Find the best tech solution to solve existing business problems.

- ➤ Describe the structure, characteristics, behaviour, and other aspects of the software to project stakeholders.
 - ➤ Define features, development phases, and solution requirements.
- ➤ Provide specifications according to which the solution is defined, managed, and delivered.

4 PROJECT DESIGN PHASE 2

4.1 Customer Journey:

4.2 Functional Requirements:

Following are the functional requirements of the proposed solution.:

FR No.	Func onal Requirement	Sub Requirement (Story / Sub-Task)
	(Epic)	
FR-1	User Registration	Registration through Form
		Registration through Gmail
		Registration through LinkedIN

FR-2	User Confirmation	Confirmation via Email Confirmation via OTP Confirmation via SMS
FR-3	User Input Acceptance	The dashboard accepts user Input by means of selecting the location of the ports.
FR-4	Options for user to filter location of ports	The user can use filter options to view ports by countries.
FR-5	Visualization of ports	The dashboard provides various visualization techniques to understand the flow.

4.3 Non Functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional	Description
	Requirement	
NFR-1	Usability	The dashboard is able to provide the
		user the consistency and the aesthetic
		they expect. The user can constantly use
		the dashboard without any flow in the
		visual quality.
NFR-2	Security	The dashboard is much secured that the
		data of the users are kept confidential
		and also it is not prone to any kind of
		attacks.

NFR-3	Reliability	The failure rate is minimal and the
		failure can easily be rectified using the
		measures. Thus this makes the dashboard
		much reliable.
NFR-4	Performance	The dashboard gives better
		performance.It provides the user a
		convenient and flexible user interface.
NFR-5	Availability	The dashboard is always available to
		serve the users. The availability is
		ensured in such a way that the user can
		access the dashboard any time anywhere.
NFR-6	Scalability	The dashboard is highly scalable.It can
		with stand any increase or decrease of
		loads

4.4 Data Flow Diagrams:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

Basic Logistic freight forward system DFD: Warehouse Management system DFD:

Traffic and Capacity analytics for major ports

Transport Management System(TMS) DFD:

4.5 Technical Architecture:

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2.

Port infrastructure and stack holder	Enabling Technologies	Smart port service	Smart port goals
 Road Rail Bridge Parking Shipping 	 Sensor IoT Fog Computing Cloud Computing Big data Technology 	 Port monitoring Infrastructure Management Energy management 	 Economic Developmet Energy awareness

Table 1: Technology and Component

s.no	Component	Description	Technology
1	User Interface	How user interacts with application e.g. Web UI, Mobile App, Chatbot etc	HTML, CSS, JavaScript
2	Application Logic-1	Logic for a process in the application	Python
3	Application Logic-2	Logic for a process in the application	IBM Watson STT service
4	Application Logic-3	Logic for a process in the application	IBM Watson Assistant
5	Data base	Data Type, Configurations etc.	MySQL
6	Cloud Database	Database Service on Cloud	IBM Cloudant etc.

7	File Storage	File storage requirements	IBM Block Storage
8	External API-1	Purpose of External API used in the application	IBM Weather API, etc.
9	External API-2	Purpose of External API used in the application	Aadhar API, etc.
10	Machine Learning Model	Purpose of Machine Learning Model	Object Recognition Model, etc.
11	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud Local Server Configuration: Cloud Server Configuration:	Local, Cloud Foundry, Kubernetes, etc.

Table-2: Application Characteristics:

S.no	Characteristic	Description	Tecnology
1	Open-Source Frameworks	List the open- source frameworks used	Technology of Opensource framework
2	Security Implementations	List all the security / access controls implemented, use of firewalls etc.	e.g. SHA-256, Encryptions, IAM Controls, OWASP etc.
3	Scalable Architecture	Justify the scalability of architecture (3 – tier, Microservices)	Technology used

4	Availability	Justify the availability of application (e.g. use of load balancers, distributed servers etc.)	Technology used
5	Performance	Design consideration for the performance of the application (number of requests per sec, use of Cache, use of CDN's) etc.	Technology used
7	Appilication	Design uesd	Technology used

4.6 User Stories:

5.PROJECT PLANNING AND DEVELOPMENT PHASE

5.1 Sprints Delivery Scheduling:

Sprint	Functional	User	User Story /	Story	Priority	Team Members
Number	Requirement	Story	Task	Points		
	(Epic)					
Sprint-1	Working with	USN-	Understanding	10	Medium	Santhiya, Sriyokeshwari,
	the data set	1	the dataset			Suruthi,Bavani.
Sprint-1	Working with	USN-	Loading the	10	High	Santhiya, Sriyokeshwari,
	the data set	2	data set.			Suruthi,Bavani.

Sprint-2	Prepare the	USN-	Convert the	10	Medium	Santhiya,Sriyokeshwari,
	data	3	data into			Suruthi,Bavani.
			required			
			format			
Sprint-2	Data	USN-	Explore the	10	Medium	Santhiya,Sriyokeshwari,
	exploration	4	data's which			Suruthi,Bavani.
			is			
			uploaded in			
			the			
			IBM			
			Cognos			
Sprint-3	Data	USN-	Creating the	10	High	Santhiya,Sriyokeshwari,
	visualization	5	data			Suruthi,Bavani.
			visualization			
			on chart			
Sprint-3	Dashboard	USN-	Creating a	10	High	Santhiya,Sriyokeshwari,
		6	dashboard			Suruthi,Bavani.
Sprint-4	Report	USN-	Creating the	10	High	Santhiya,Sriyokeshwari,
		7	report			Suruthi,Bavani.
Sprint-4	Export	USN-	Export the	10	High	Santhiya,Sriyokeshwari,
		8	report to the			Suruthi,Bavani.
			GitHub			

5.2 Sprint Planning And Estimation:

Project Tracker, Velocity & Burndown Chart:(4 Marks)

Sprint Total	Story Points	Duration	Sprint Start Date	Sprint End Date(Planne d)	Story Points Completed (as on Planned End Date)	Sprint ReleaseDa te (Actual)
Sprint-1	20	4Days	01 Nov2022	04 Nov2022	20	04 Nov2022
Sprint-2	20	5Days	05 Nov2022	10 Nov2022	20	05 Nov2022
Sprint-3	20	4Days	11 Nov2022	14 Nov2022	20	14 Nov2022
Sprint-4	20	4Days	15 Nov2022	19 Nov2022	20	19 Nov2022

Velocity: Imaginewe have a 4-day sprintduration, and the velocity of the team is 20 (points per sprint).

Let's calculate the team's averagevelocity (AV) per iteration unit (story points per day)

AV=Sprint duration/Velocity=80/4=20

5.3 Reports From Jira:

Sprints:

6.TESTING

6.1 Performance Testing:

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Screenshot / Values
1.	Dashboard design	No of Visualizations / Graphs – 7/16
2.	Data Responsiveness	6 data Responsiveness
3.	Amount Data to	88
	Rendered (DB2	
	Metrics)	

4.	Utilization of Data	3/6
	Filters	
5.	Effective User Story	No of Scene Added - 8
6.	Descriptive Reports	No of Visualizations / Graphs – 7/16

7. RESULT

7.1 Performance Metrics

An Interactive Dashboard Has been Created:

+ Tab 1 Tab 2 Tab 3 Sales by Sales Rep Received Inventory from Supplier Sales Rep Column P. Michaels S. Sunday A. Oni Received Inventory (Sum) Inventory Stock for Warehouse Sales trend Locations Actual (Sum) Calabar Ikeja Amuwo Арара 200 400 600 800 1000 Tab 1 Tab 2 Tab 3 +

7.2 Advantages & Disadvantages

ADVANTAGES

- Really simple to make virtualization
- Easier to analyse Data
- Easy to predict using visualizations
- Easy to understand by anyone
- Helps in constructing plan for foreseeable future

DISADVANTAGES

- Need to have an Account to upload data and create new Virtualizations
- Virtualization needs to be updated regularly
- Real-time Live update is not possible yet
- If the uploaded data is wrong the virtualization might be wrong

8. CONCLUSION

Traffic and Capcity analysis of major ports across India is done and various insights were drawn from it. An Interactive dashboard has been created from the given data set. The data was cleaned, prepared, understood and visualized using various visualization tools in IBM Cognos Analytics with Watson.

The visulaizations created are listed below:

- 1. Port-wise Traffic Distribution, Port wise Capacity Distribution
- 2. Port-wise Traffic vs Capacity by Line Chart
- 3. Port-wise Traffic Projected vs Achieved by Column Chart
- 4. Port-wise Traffic Projected vs Achieve by Stacked Column Chart
- 5. Port-wise Total Capacity Projects vs Total Capacity Achieve by Line and Bar Chart

- 6. Port-wise Traffic Projects vs Total Projected by Area Chart
- 7. Port-wise Total Capacity Achieve, Traffic Achieved using Stacked Bar
- 8. Filters
- 9. Port-wise Total Capacity Achieved using Map
- 10. Summary Cards and Visual using Total Capacity vs Actual Capacity Column Chart

8.1 Reference

- 1.Ministry of Commerce and Industry, 2020, "Press Release on National Logistics Policy". Government of India https://commerce.gov.in/pressreleases/national-logistics-market-will-generate-employment-and-makemsmes-competitive-nirmala-sith araman/
 - 2. . Dedicated Freight Corridor Corporation of India Limited, https://dfccil.com/

8.2 Future Scope

In the future subsequent updates, the project can be made so that the data can be updated in Real-Time. Further UI updates can also be made to make it more presentable and user friendly. More utilities can be added to the website

9. APPENDIX

9.1 Gitrepo link:

https://github.com/IBM-EPBL//IBM-Project-32590-1660210909