

Sentiment Analysis of GDELT Dataset for Forecasting Crude Oil Price

XIANG LI

GRANT CHARLTON

CS555: DISTRIBUTED SYSTEMS

COLORADO STATE UNIVERSITY

Background Information

- Crude oil price fluctuate due to many reasons
 - ◆ Political, military and economic

- Accurately predicting the crude oil price is a challenge
 - ◆ Hard to track and analyze the impact of geopolitical events

Problem Characterization

- Global Data on Events, Location, and Tone (GDELT) dataset
 - Contain metadata for all news and articles published worldwide
 - Use CAMEO code to categorize event type
- Big Data & Machine Learning Prediction Trends
 - ♦ High school dropouts, Weather, Cyber attacks, Health and disease

Trade-off Space for Solutions

- Dataset Size vs Prediction Accuracy
 - ◆ Larger training dataset = more accuracy for prediction model
 - GDELT dataset has terabytes of data

- Realtime vs Offline Computation
 - ◆ Realtime computation makes the latest model, but it takes time and affects user's experience
 - ◆ Offline computation can serve for more users, but may not keep the model fresh

Methodology - Data

- Using Google BigQuery
- WTI Crude Oil Price

DATE	DCOILWTICO
2012/11/21	87.08
2012/11/22	
2012/11/23	87.01
2012/11/26	87.28
2012/11/27	86.81
2012/11/28	86.1
2012/11/29	87.64

GDELT Event

GLOBALEVENTID	SQLDATE	EventCode	GoldsteinScale	AvgTone	NumSources
702903793	20171101	110	-2	2.425755593	1
703000189	20171101	20	3	12.18487395	1
702932720	20171101	23	3.4	-2.09331711	2
703008622	20171101	141	-6.5	-1.69366716	1
703046931	20171101	20	3	-3.84615385	1
703008623	20171101	141	-6.5	-1.69366716	1
702879800	20171101	20	3	2.800819252	3

Methodology – Used Libraries

- Spark Mllib
 - Used for training, testing and evaluating the model

- DataFrames
 - Distributed collection of data = table in relational database
 - Used for storing data from csv files
 - Much efficient than RDD

Methodology - Algorithm

- Data-preprocessing
 - ◆ Merge dataset and normalize values by NumSources
 - $AvgToneScore = \Sigma(AvgTone * \frac{NumSources}{TotalSources})$
 - $igsim GoldsteinScaleScore = \Sigma(GoldsteinScale * \frac{NumSources}{TotalSources})$
- Linear Regression
 - data format = (label, [feature1, feature2, ...]), dense vector for features
 - ◆ Row[date] = (price, [AvgToneScore, GoldsteinScaleScore])

Performance Benchmarks - Setting

- Operating System
 - ♦ Linux
 - Program written in Scala
- Dataset Size
 - ♦ WTI Crude Oil Price (21.6KB)
 - ◆ GDELT Events (5GB)
- Spark
 - worker nodes (10)
 - executor-memory (2G)
 - driver-memory (2G)

Performance Benchmarks - Evaluation

- Actual oil price vs Predicted oil price
- Coefficient of Determination $R^2 = \frac{\sum (\hat{y}_i \bar{y})^2}{\sum (y_i \bar{y})^2},$
 - \bullet How well a linear regression model fits the data (lies between 0 1)
 - ◆It can always be increased by adding more variables into the model
- Root Mean Square Error <= 1</p>

$$ext{RMSD} = \sqrt{rac{\sum_{t=1}^n (\hat{y}_t - y_t)^2}{n}}.$$

Performance Benchmarks – Days Delay

Key Innovations

- Crude oil price does have a correlation with worldwide events
- Events will affect the crude oil price in 2 days
- GDELT dataset is powerful, it has potential to be used in various ways in the future