Problem 2

2. Accuracy of Gaussian Naïve Bayes over 3 datasets:

-50.csv: 0.890173410405

-200.csv: 0.964769647696

-400.csv: 0.96449704142

3.

Accuracy of Decision Tree Classifier over -50.csv dataset:

0.809248554913

Gaussian Naïve Bayes has higher test accuracy over -50.csv dataset (0.890173410405) than Decision Tree (0.809248554913). Thus, Naïve Bayes has a better test error.

4.

-50.csv:

When $6 \le$ minimum leaf size ≤ 13 , the decision tree archives a higher accuracy compare to the maximum depth criterion and the Naïve Bayes.

-200.csv:

Compared to maximum depth criterion, when minimum leaf size is 3 or [9, 13], the decision tree archives a higher accuracy.

While obviously, the accuracy is lower than that of Naïve Bayes (0.964769647696). Thus, Decision tree with minimum leaf size doesn't perform better than Naïve Bayes.

-400.csv:

Compared to maximum depth criterion, when minimum leaf size is among [13, 15], the decision tree archives a higher accuracy.

Obviously, the accuracy is lower than that of Naïve Bayes (0.96449704142). Thus, Decision tree with minimum leaf size doesn't perform better than Naïve Bayes.

Problem 3

1.

2. When $\beta \rightarrow \infty$, training error rate=0.901283333333, test error rate=0.902.

 $\beta = \frac{n+\beta}{N+k\cdot\beta'}$, k is the number of classes. When $\beta \to \infty$, n and N can be ignored, which means some features will not influence classifier accuracy anymore.