

Hidráulica Gral. y Aplicada

Gráficos y Tablas

Pág. 1 de 9

PREFIJOS

T۶	٩h	la

Prefijo	Símbol	Factor	Término
	0		
tera	T	1012	un billón
giga	G	10 ⁹	mil millones
mega	M	10 ⁶	un millón
kilo	k	10 ³	mil
hecto	h	10 ²	cien
deca	da	10	diez
deci	d	10 ⁻¹	un décimo
centi	С	10 ⁻²	un centésimo
mili	m	10 ⁻³	un milésimo
micro	μ	10 ⁻⁶	un millonésimo
nano	n	10 ⁻⁹	un milmillonésimo
pico	р	10 ⁻¹²	un billonésimo

PROPIEDADES FÍSICAS DEL **AIRE** a presión atmosférica

Tabla 2

Tabla 3

Temperatura	Densidad	Viscosidad dinámica	Viscosidad cinemática	Velocidad del sonido
	ρ	μ	ν	C
°C	kg/m³	N.s/m ² 10 ⁻⁵	$m^2/s 10^{-5}$	m/s
-30	1.452	1.56	1.08	312
-20	1,394	1,61	1,16	319
-10	1,342	1,67	1,24	325
0	1,292	1,72	1,33	331
10	1,247	1,76	1,42	337
20	1,204	1,81	1,51	343
30	1,164	1,86	1,60	349
40	1,127	1,91	1,69	355
50	1,092	1,95	1,79	360
60	1,060	2,00	1,89	366
70	1,030	2,05	1,99	371
80	1,000	2,09	2,09	377
90	0,973	2,13	2,19	382
100	0,946	2,17	2,30	387
200	0,746	2,57	3,45	436
300	0,616	2,93	4,75	480

PROPIEDADES FÍSICAS APROXIMADAS DE LÍQUIDOS COMUNES, a 20°C y presión atmosférica estándar

Líquido	Densidad relativa	Módulo de elasticidad volumétrica	Presión de vapor	Tensión Superficial
	ρ_{r}	K	p_{v}	σ
		GPa	kPa	N/m
Agua	1	2,07	2,45	0,074
Aceite crudo	0,85 - 0,93			0,023-0,038
Aceite	0,85 - 0,88			0,035-0,038
Alcohol etílico	0,790	1,210	5,86	0,022
Benceno	0,880	1,030	10,00	0,029
Carboro, teracloruro de	1,590	1,100	13,10	0,027
Mercurio	13,570	26,200	0,00	0,510
Querosén	0,810			0,023-0,032

PROPIEDADES FÍSICAS DEL AGUA

<u> </u>	GUA					
Temperatura	Densidad	Viscosidad	Viscosidad cinemática	Módulo de elasticidad volumétrica	Tensión Superficial	Presión de Vapor
	ρ	μ	ν	K	σ	\mathbf{p}_{v}
ºC	kg/m ³	N·s/m ² ·10 ⁻³	m ² /s·10 ⁻⁶	Pa·10 ⁷	N/m·10 ⁻²	Pa
0	999,9	1,792	1,792	204	7,62	588
1	999,9	1,732	1,732	201	7,02	000
2	1000,0	1,674	1,674			
3	1000,0	1,619	1,619			
4	1000,0	1,568	1,568			
5	1000,0	1,519	1,519	206	7,54	882
6	1000,0	1,473	1,473			
7	999,9	1,429	1,429			
8	999,9	1,387	1,387			
9	999,8	1,348	1,348			
10	999,7	1,310	1,310	211	7,48	1.176
11	999,6	1,274	1,274			
12	999,5	1,239	1,240			
13	999,4	1,206	1,207			
14	999,3	1,175	1,176			
15	999,1	1,145	1,146	214	7,41	1.666
16	999,0	1,116	1,117			
17	998,8	1,088	1,089			
18	998,6	1,060	1,061			
19	998,4	1,034	1,036			
20	998,2	1,009	1,011	220	7,36	2.447
21	998,0	0,984	0,986			
22	997,8	0,961	0,963			
23	997,6	0,938	0,940			
24	997,5	0,916	0,918			
25	997,1	0,895	0,898	222	7,26	
26	996,8	0,875	0,878			
27	996,5	0,855	0,858			
28	996,3	0,836	0,839			
29	996,0	0,818	0,821	000	7.40	4 007
30 35	995,7	0,800	0,803	223 224	7,18 7,10	4.297
40	994,1 992,2	0,723 0,656	0,727 0,661	224 227	7,10 7,01	7.400
45	990,2	0,599	0,605	229	6,92	7.400
50	988,1	0,599	0,605	230	6,82	12.22
55	985,7	0,506	0,513	231	6,74	12.22
60	983,2	0,469	0,477	228	6,68	19.60
65	980,6	0,469	0,478	226	6,58	13.00
70	977,8	0,406	0,415	225	6,50	30.70
75	974,9	0,380	0,390	223	6,40	00.70
80	971,8	0,357	0,367	221	6,30	46.40
85	968,6	0,336	0,347	217	6,20	
90	965,3	0,317	0,328	216	6,12	68.20
95	961,9	0,299	0,311	211	6,12	
100	958,4	0,284	0,296	207	5,94	97.50
	•	-			•	

Pág. 2 de 9

Tabla periódica de Elementos

CUADRO SINTÉTICO DE UNIDADES

Magnitud	Dimen sión	Unidades Sistem	a – (Símbolo)		Equivalencias entre la unidad del Si (Sistema Internacional de Unidades) y otras unidades de		
		SI	cgs	Técnico	variado uso		
Longitud	L	metro (m)	centímetro (cm)	metro (m)	1 m = 0,5468 braza 6,2137x10 ⁻⁴ milla 5,396x10 ⁻⁴ milla náutica 3,2808 pie 39,370113 pulgada 1,1811034 vara 1,09361425 yarda 2,07x10 ⁻⁴ legua 4,97x10 ⁻³ estadio		
Masa	M	kilogramo (kg)	gramo (g)	unidad técnica de masa (utm)	1 kg = 6,02x10 ⁻²⁶ uma (unidad de masa atómica) 0,101972 utm (unidad técnica de masa) 0,06854 slug 2,20461 libra-masa 1,102x10 ⁻³ tonelada métrica (t) (La norma IRAM 2 admite el uso de esta unidad por razones prácticas 1t=1Mg)		
Tiempo	Т	segundo (s)	segundo (s)	segundo (s)	La norma IRAM 2 admite como múltiplos del segundo: el día (d), la hora (h), el minuto (min ó m). 1 d = 24 h = 1440 min = 86400 s		
Temperatura Termodinám ica		kelvin (k)			Un intervalo de temperatura medido en K es igual al medido en grados centígrados (°C). El estado de temperatura, es tal que: t (° Celcius) = t (K) – 273,15 t (° Celcius) = 5/9 [(° Fahrenheit) – 32]		
Velocidad	L/T	metro por segundo (m/s)	centímetro por segundo (cm/s)	metro por segundo (m/s)	1 m/s = 3,6 km/h 2,237 milla/h 1,944 nudos 3,281 pie/s		
Velocidad Angular		radián por segundo (rad/s)			1 rad/s = $(60/2\pi)$ RPM		
Aceleración	L/T ²	metro por segundo al cuadrado (m/s²)			1 m/s ² = 3,280843 pie/s ²		
Aceleración angular		radián por segundo al cuadrado (rad/ s²)			1 rad/ $s^2 = 60/2\pi$ RPM/s		
Fuerza, Peso	ML/T ²	newton (1N = kg.m/s²)	dina	kilogramo fuerza (kg) ó (kgf)	$\begin{array}{lll} 1 \ N = & 0,101972 & kgf \acute{o} \ k\bar{g} \\ & 10^5 & dina \\ & 101,972 & gramos \ (peso) \\ & 1,01972x10^{-4} & tonelada \ m\'{e}trica \ (peso) \\ & 1,124x10^{-4} & tonelada \ corta \\ & 1,0036x10^{-4} & tonelada \ larga \\ & 0,2248 & libra \ fuerza \\ & 0,2732 & libra \ troy \\ & 3,5970 & onza \ fuerza \\ & 3,2785 & onza \ troy \\ \end{array}$		
Presión, Tensión Mecánica, Módulo de Elasticidad	M/L T ²	pascal (1 Pa=N/ m²)	baria (1b=dina/ cm²)	kgf/c m ²	1 Pa = 10 ⁻⁵ bares 10 ⁻⁶ megapascal 0,01 milibar 1,02x10 ⁻⁵ kgf/cm ² 1,45x10 ⁻⁴ libra/pulgada ² 0,02 libra/pie ² 9,8687x10 ⁻⁶ atmósferas 7,501x10 ⁻³ milímetros de mercurio a 0°C 2,954x10 ⁻⁴ pulgadas de mercurio a 0°C 1,02x10 ⁻⁴ pies de columna de agua a 0°C 1,01972x10 ⁻⁴ t/m ² 1,02 atm técnica		

Pág. 4 de 9

CUADRO SINTÉTICO DE UNIDADES (cont.)

Magnitud	Dimen				Equivalencias entre la unidad del Si (Sistema
	sión	SI	cgs	Técnico	 Internacional de Unidades) y otras unidades de variado uso
Densidad	M/L ³	kilogramo por metro cúbico (kg/m³)	gramo por centímetro cúbico (g/cm³)	unidad técnica de masa por metro cúbico (utm/m³) ó kg.s²/m⁴	1 kg/m³ 0,13 onza/galón 0,06 libra/pie³ 3,61x10⁻⁵ libra/pulgada³ 1,941x10⁻³ slug/pie³
Peso específico	M/L ² T ²	newton por metro cúbico (N/m³)	dina por centímetro cúbico (dina/cm³)	kilogramo fuerza por metro cúbico (kgf/m³)	1 N/m³ = 0,1 dina/cm³ 0,102 kgf/m³ 1,0102x10⁻⁴ t/m³ 1,0102x10⁻⁴ g/cm³ 6,366x10⁻³ libra/pie³ 3,684x10⁻⁵ libra/pulgada³ 0,1719 libra/yarda³ 9,9025x10⁻⁴ libra/galón seco 8,561x10⁻⁴ libra/galón líquido
Viscosidad dinámica	M/LT	newton segundo por metro cuadrado Ns/m²)	poise (dyn.s/ cm²)	kilogramo fuerza segundo por metro cuadrado (kgf . s / m²)	1 N.s/m² 10 poise 1000 centipoise 0,101972 kgf/m² 0,204 libra·s/pie²
Viscosidad cinemática	L ² /T	metro cuadrado por segundo (m2/s)	stoke (cm2/s)	m²/s	$1 \text{ m}^2/\text{s} = 10^4$ stoke 10^6 centistoke 10,764 pie ² /s
Trabajo, Energía, Cantidad de Calor	ML ² /T ²	joule (1J = 1 Nm)	ergio (dina.cm)	kilogrametro (kgm)	1 J = 10' ergio 0,101972 kḡ·m 9,48x10 ⁻⁴ British Themal Unit (BTU) 0,7375 pie.libra 2,389x10 ⁻⁴ kilocalorías
Ángulo Plano		radián (rad)			La norma IRAM 2 admite como unidades el grado (º), el minuto ('), el segundo (") 1º = 60' = 3600" 1 rad = 57º 17' 44,81" = 63,661977 grados centesimale
Ángulo Sólido		estereorradián (sr)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Superficie	L ²	metro cuadrado (m²)	centímetro cuadrado (cm²)	metro cuadrado (m²)	1 m ² = 10 ⁻² área 10 ⁻⁴ hectárea 1550,0 pulgada ² 2,47104×10 ⁻⁴ acre 10,76387 pie ² 1,19599 yarda ² 3,861×10 ⁻⁷ milla ²
Volumen	L ³	metro cúbico (m³)	centímetro cúbico (cm ³)	metro cúbico (m³)	1 m³ = 1000 litros (l) (La Norma IRAM 2 admite el uso de esta unidad por razones prácticas) 35,318 pie³ 1,307954 yarda³ 264,2 galones (U.S.L.Gal) 220 galones imperiales 61028 pulgada³ 6,2897 barriles 227 galón seco (U.S.)
Frecuencia	T ⁻¹ ML ² /T ³	Hertz (Hz)	orgio nas	kiloarómatra ras:	11W 10 / avais/s
Potencia	ML ² /I ³	watt (1W=1J/s)	ergio por segundo	kilográmetro por segundo (kgm/s)	1 W = 10 ⁷ ergio/s 0,101972 kḡ·m /s 1,3596x10 ⁻¹ caballo vapor (CV) o HP métrico 1,341x10 ⁻³ HP americano 9,48x10 ⁻⁴ B.T.U./s 2,389x10 ⁻⁴ kilocalorías/s
Energía superficial		newton por metro (N/m)	dina por centímetro (dina/cm)	kilogramo por metro (kgf/m)	1 N/m = 1000 dina/cm 0,101972 kgf/m 6,852x10 ⁻² libra/pie

Pág. 5 de 9

Áreas, baricentros y momentos de inercia

Areas, baricer	ntros y moi		nercia	Tabla 7
Sección	Àrea	Distancia baricéntrica	Momentos de inercia	
$ \begin{array}{c c} & y \\ & -e_y = b/2 \\ & -e_x = b/2 \\ & -e_x = b/2 \end{array} $	A = b⋅h	$e_{x} = \frac{h}{2}$ $e_{y} = \frac{b}{2}$	$I_{x} = \frac{b \cdot h^{3}}{12}$ $I_{y} = \frac{h \cdot b^{3}}{12}$	
x b b b b b b b b	$A = \frac{b \cdot h}{2}$	$e_X = \frac{h}{3}$	$I_{x} = \frac{b \cdot h^{3}}{36}$ $I_{y} = \frac{h \cdot \left(b_{1}^{3} + b_{2}^{3}\right)}{12}$ $I_{b} = \frac{b \cdot h^{3}}{12}$ $I_{s} = \frac{b \cdot h^{3}}{4}$	
x R G A	$A = \pi \cdot R^2$ I	$e_X = \frac{D}{2}$	$I_{X} = I_{Y} = \frac{\pi \cdot R^{4}}{4}$	
h x G x	$A = \frac{b \cdot h}{2}$	$e_{x} = \frac{h}{2}$ $e_{y} = \frac{b}{2}$	$I_{x} = \frac{b \cdot h^{3}}{48}$ $I_{y} = \frac{h \cdot b^{3}}{48}$	
a x P P P P P P P P P P P P P P P P P P	$A = \frac{\sqrt{3}}{2} \cdot a^2$	$e_x = \frac{a}{2}$ $e_y = R$ $a = R \cdot \sqrt{3}$	$I_{x} = I_{y} = I_{\xi} = I_{\eta} = \frac{5 \cdot \sqrt{3}}{144} \cdot a^{4}$	
x h G x	$A = \frac{h \cdot (a+b)}{2}$	$e_X = \frac{h}{3} \cdot \frac{(a+2 \cdot b)}{(a+b)}$	$I_{x} = \frac{h^{3}}{36} \cdot \frac{\left(a^{2} + 4 \cdot a \cdot b + b^{2}\right)}{a + b}$ $I_{y} = \frac{h}{48} \cdot \left(a^{3} + a^{2} \cdot b + a \cdot b^{2} + b^{3}\right)$	

$$A = \frac{\pi \cdot R}{2}$$

$$e_{X} = 0.424 R$$

$$I_{X} = 0.1098 R^{4}$$

$$I_y = 0.3927R^4$$

Pág. 6 de 9

$$A = \frac{\pi \cdot R^2}{4}$$

$$e_x = 0.424 R$$

 $e_y = 0.424 R$

$$I_x = 0.0549 R^4$$
 $I_y = 0.1647 R^4$

$$I_v = 0.1647 R^4$$

$$A = R^{2} \cdot \left(1 - \frac{\pi}{4}\right)$$
 $e_{x} = R \cdot 0.223$ $e_{y} = R \cdot 0.223$

$$A = \pi \cdot a \cdot b$$

$$I_X = \frac{\pi \cdot a \cdot b^2}{4}$$

$$I_y = \frac{\pi \cdot b \cdot a^2}{4}$$

Factor k de pérdidas localizadas para distintos accesorios

Tabla 8

Accesorio	K/f _t	1
Válvula esclusa paso total	8	1
Válvula retención a clapeta	100	1
	120	ľ
Válvula retención disco basculante	90	1
	60	1
Válvula de retención a pistón	600	T
Válvula globo	340	1
Válvula ángulo	150	1
Válvula de pie a pistón	420	1
Válvula de pie a clapeta	75	1
Válvula esférica paso total	3	1
Válvula esférica paso reducido	12	1
	45	1
Válvula mariposa	35	ľ
	25	ľ
Válvula tapón	18]
Robinete	18	
Codo roscado a 90º	30	
Codo roscado a 45º	16]
Codo radio largo a 90º (R=1,5 D)	14	1
Codo radio largo a 45º (R = 1,5 D)	8	
Codo radio corto a 90º (R=1,5 D)	20	1
Codo radio corto a 45º (R = 1,5 D)	11	1
Te (en dirección del flujo)	20	
Te (flujo gira a 90º)	60	
F	I/ 0.F	1
Entrada a caño desde depósito	K=0,5	1
Salida caño a depósito	k = 1	J

para diámetros de 50 a 200mm para diámetros de 250 a 400mm para diámetros mayores de 400mm

para diámetros de 50 a 200mm para diámetros de 250 a 400mm para diámetros mayores de 400mm

Dián	Factor de fricción turbulento		
pulgadas	mm	f_t	
1/2	13	0,027	
3/4	19	0,025	
1	25	0,023	
1 1/4	32	0,022	
1 1/2	38	0,021	
2	51	0,019	
2 1/2	63	0,018	
3	76	0,018	
4	102	0,017	
5 6	127	0,016	
6	152	0,015	
8	203	0,014	
10	254	0,014	
12	305	0,013	
14	356	0,013	
16	406	0,013	
18	457	0,012	
20	508	0,012	
22	559	0,012	
24	610	0,012	

Ejemplo:

pérdida localizada válvula esclusa paso total de 1 pulgada de diámetro:

 $k = 8 \times ft_{1''} = 8 \times 0.023 = 0.184$

Pág. 7 de 9

VISCOSIDADES CINEMÁTICAS DE CIERTOS GASES Y LÍQUIDOS. Los gases son a presión estándar

Gráfico 1

Pág. 8 de 9

CANALES. ELEMENTOS GEOMÉTRICOS DE SECCIONES (Fuente: Hidráulica de Canales Abiertos, Ven Te Chow)

Saarián	Área A	Perímetro mojado P	Radio Hidráulico R	Ancho Superficial T	Profundidad Hidráulica D	Factor de Sección Z		
Sección T T T T T T T T T T T T T T T T T T T	by	b+2 y	by b+2 y	ь	у	by ^{1.5}		
Trapecio	(b+zy) y	$b+2y\sqrt{1+z^2}$	$\frac{(b+zy)y}{b+2y\sqrt{1+z^2}}$	b+2zy	$\frac{(b+zy)y}{b+2z\cdot y}$	$\frac{((b+zy)y)^{1.5}}{\sqrt{b+2zy}}$		
Triángulo	zy ²	$2 \cdot y \sqrt{1+z^2}$	$\frac{zy}{2\sqrt{1+z^2}}$	2 z y	<u>y</u> 2	$\frac{\sqrt{2}}{2}$.2.y ^{2.5}		
Círculo	$\frac{1}{8}(\theta - \operatorname{sen}(\theta)) d_0^2$	$\theta \frac{d_0}{2}$	$\frac{1}{4} \cdot \left(1 - \frac{\operatorname{sen}(\theta)}{\theta} \right) d_0$	$\frac{\operatorname{sen}\left(\frac{\theta}{2}\right) \cdot d_{0}}{2 \cdot \sqrt{y \cdot \left(d_{0} - y\right)}} 6$	$\frac{1}{8} \cdot \left(\frac{\theta - \operatorname{sen}(\theta)}{\operatorname{sen}\left(\frac{\theta}{2}\right)} \right) d_0$	$\frac{\sqrt{2}}{32} \cdot \frac{(\theta - \operatorname{sen}(\theta))^{1.5}}{\left(\operatorname{sen}\left(\frac{\theta}{2}\right)\right)^{0.5}} \cdot \operatorname{d}_{0} 2.5$		
Parábola	$\frac{2}{3}$ T y	$T + \frac{8}{3} \frac{y^2}{T} *$	$\frac{2 \cdot T^2 y}{3 \cdot T^2 + 8 \cdot y^2} *$	$\frac{3}{2}\frac{A}{y}$	$\frac{2}{3}$ ·y	$\frac{2}{9} \sqrt[4]{6} \cdot \text{T y}^{1.5}$		
Rectángulo con esquinas redondeadas (y>r)	$\left(\frac{\pi}{2}-2\right)\tau^2+(b+2\tau)\cdot y$	$(\pi - 2) \tau + b + 2 \gamma$	$\frac{\left(\frac{\pi}{2} - 2\right)\tau^2 + (b+2\tau)y}{(\pi-2)\tau + b + 2y}$	b+2τ	$\frac{\left(\frac{\pi}{2}-2\right)r^2}{b+2r}+y$	$\frac{\left[\left(\frac{\pi}{2} - 2\right)\tau^2 + (b + 2\tau)y\right]^{1.5}}{\sqrt{b + 2\tau}}$		
Triángulo con fondo redondeado	$\frac{T^2}{4z} - \frac{r^2}{z} \cdot \left(1 - z \cot(z)^{-1}\right)$	$\frac{T}{z}\sqrt{1+z^2} - \frac{2\tau}{z} \cdot \left(1 - z \cot(z)^{-1}\right)$	$\frac{A}{P}$	$2\left[z\cdot(y-r)+r\sqrt{1+z^2}\right]$	$\frac{A}{T}$	$A \cdot \sqrt{\frac{A}{T}}$		
* Aproximación satisfactor	* Aproximación satisfactoria para el intervalo $0 < x \le 1$, donde $x = 4$.y/T. Cuando $x > 1$, utilice la expresión exacta $P = \frac{T}{2} \cdot \sqrt{1 + x^2 + \frac{1}{x} \cdot \ln(x + \sqrt{1 + x^2})}$							

Pág. 9 de 9

Diagrama de Moody

Gráfico 2

Se puede utilizar indistintamente la Expresión de Colebrook-White: $\frac{1}{\sqrt{f}} = -0.86 \cdot \ln \left(\frac{\varepsilon}{D \cdot 3.7} + \frac{2.51}{\Re \cdot \sqrt{f}} \right)$

