

Сложность алгоритма

"О" большое	верхняя граница сложности
Θ (Тета)	точная оценка сложности
Ω (Омега)	нижняя граница сложности

Сложность алгоритма

0(1)	константная	
O(log(n))	логарифмическая	
O(n)	линейная	
O(n log(n))	линейно-логарифмическая	
O(n^k)	полиномиальная	
O(n!)	факториальная	

Операции с массивами

получение размера	0(1)
элемент по индексу	0(1)
вставка в конец/ удаление с конца	0(1)
вставка в конец (с расширением)	0 (n)
вставка/удаление (с произвольного места)	O(n)

Тестировщикавтоматизаторна Python

Хэш-таблицы

вставка пары	0(1)
удаление пары	0(1)
получение значения по ключу	0(1)
получение размера	0 (n)

Односвязный список

вставка в конец/начало	0(1)
вставка на произвольное место	0(1)
удаление из начала	0(1)
удаление с произвольного места	0(n)
получение размера списка	0 (n)

Стек

вставка наверх (push)	0(1)
удаление сверху (рор)	0(1)
верхний элемент (top)	0(1)
размер (size)	0(1)

Модуль: Алгоритмы и структуры данных

Очередь на циклическом массиве

вставка в конец	0(1)
удаление из начала	0(1)
получение первого элемента	0(1)
общий размер	0(1)

Графы

наличие ребра	O(E)	0(1)
степень вершины	0(1)	0(V)
память	O(V + E)	0(V ^2)
вставка/ удаление	0(1)	O (d)
обход графа	O(V + E)	0(V ^2)
алгоритм Дейкстры (время)	O(V ^2+ E)	
алгоритм Дейкстры (доп.память)	0(V)	

|V| - количество вершин

|Е| - количество ребер

d - степень вершины

Алгоритм Дейкстры

Цель: поиск минимального пути в графе Создание словаря расстояний D Создание словаря просмотренных вершин U Выбор вершины с наименьшим d Во все непросмотренные вершины записать расстояния до них Повтор п.3-4 |V| раз

Бинарные деревья

Бинарное дерево - это граф, обладающий свойствами:		
1. связный (нет вершин без ребер)		
2. не имеет циклов		
3. неориентированный		
4. невзвешенный		
5. имеет не более 2 потомков		

Тестировщикавтоматизаторна Python

Виды обхода деревьев

обход в глубину (DFS)	префиксный (pre-order)
	инфиксный (in-order)
	постфиксный (post-order)
обход в ширину (BFS)	

Алгоритмы поиска

линейный поиск	O(n)
двоичный поиск	O(log(n))
поиск в графе	0 (n)
двоичное дерево поиска	O(log(n))
поиск в хэш-таблице	0(1)

Сортировка пузырьком

"всплывание" максимума вправо		
Лучший случай	0 (n)	
Средняя оценка	O(n^2)	
Худший случай	O(n^2)	

Модуль: Алгоритмы и структуры данных

Сортировка вставками

поиск положения в отсортированной части	
Лучший случай	0 (n)
Средняя оценка	O(n^2)
Худший случай	O(n^2)

Сортировка слиянием

"разделяй и властвуй" деление на части и слияние с сортировкой	
Лучший случай	O(n log(n))
Средняя оценка	O(n log(n))
Худший случай	O(n log(n))

Быстрая сортировка

"разделяй и властвуй" деление массива на части относительно опорного элемента	
Лучший случай	O(n log(n))
Средняя оценка	O(n log(n))
Худший случай	O(n^2)