Lecture 4 Minterm and Maxterm

- Conversion of English sentences to Boolean equations.
- Example
 - The alarm will ring iff the alarm switch is on and the door is not closed or it is after 6 PM and the window is not closed.
 - Boolean equation
 - Z = AB' + CD'
 - If Z = 1, the alarm will ring.
 - Draw the network. Z will drive the alarm.

Combinational Network Using a Truth Table

- Problem statement
 - ❖Input 3 bits A, B, C = Binary number N. Output f. Output f = 1 if N > = 011 and f = 0 if N < 011.

ABC	f	
000	0	
001	0	
010	0	
011	1	
100	1	
101	1	
110	1	
111	1	

Derive Algebraic Expression from Truth Table

• Using f = 1 gives the SOP form.

• Using f = 0 gives the POS form.

Maxterms are multiplied together so that if any one of them is 0, f will be 0. See what happens if uses OR.

$$f = (A+B+C)(A+B+C')(A+B'+C)$$

= $(A+B)(A+B'+C) = A+BC$

Minterm and Maxterm

> Minterm

- A minterm of n variables = product of n literals in which each variable appears exactly once either in T or F form, but not in both. (Also known as a standard product term)
- Each minterm has value 1 for exactly one combination of values of variables.
 E.g. ABC (111) => m₇
- A function can be written as a sum of minterms, which is referred to as a minterm expansion or a standard sum of products.

Minterm/Maxterm

> Three variables

Row No.	A B C	Minterms	Maxterms
0	0 0 0	$A'B'C'=m_0$	$A + B + C = M_0$
1	0 0 1	$A'B'C = m_1$	$A + B + C' = M_1$
2	0 1 0	$A'BC' = m_2$	$A + B' + C = M_2$
3	0 1 1	$A'BC = m_3$	$A + B' + C' = M_3$
4	1 0 0	$AB'C' = m_4$	$A' + B + C = M_4$
5	1 0 1	$AB'C = m_5$	$A' + B + C' = M_5$
6	1 1 0	$ABC' = m_6$	$A' + B' + C = M_6$
7	111	$ABC = m_7$	$A' + B' + C' = M_7$

Minterm Notation

The other way to represent f is:

$$f(A,B,C) = m_3 + m_4 + m_5 + m_6 + m_7$$

or

$$f(A,B,C) = \sum m(3,4,5,6,7)$$

Another view,

$$f (A,B,C) = 0.m_0 + 0.m_1 + 0.m_2 + 1. m_3 + 1. m_4 + 1. m_5 + 1. m_6 + 1. m_7$$

✓ Minterms present in f correspond with the 1's of f in the truth table.

Maxterm

Maxterm

- A maxterm of n variables = sum of n literals in which each variable appears exactly once in T or F from, but not in both.
- Each maxterm has a value of 0 for exactly one combination of values of variables. E. g. A + B + C' (001) => M₁ (the value is 0). Therefore M_i = m'_i.
- A function can be written as a product of maxterms, which is referred to as a maxterm expansion or a standard product of sums.

Maxterm Notation

$$f = (A+B+C)(A+B+C')(A+B'+C)$$

 $f (A,B,C) = M_0M_1M_2$ or
 $f (A,B,C) = \Pi M (0,1,2)$

✓ Maxterms present in f correspond with the 0's of f in the truth table.

M and m Relationship

- If the minterm expansion for f $(A,B,C) = m_3 + m_4 + m_5 + m_6 + m_7$, what is the maxterm expansion for f(A,B,C)?
 - ✓ Choose those not present in the minterms.
 - So the Maxterm expansion for $f(A,B,C) = M_0M_1M_2$.

Complement of minterm

- Complement of a minterm is the corresponding maxterm.
- Example

if
$$f = f(A,B,C) = m_3 + m_4 + m_5 + m_6 + m_7$$

$$f' = (m_3 + m_4 + m_5 + m_6 + m_7)'$$

= m'_3 m'_4 m'_5 m'_6 m'_7
= $M_3 M_4 M_5 M_6 M_7$

Find the Minterm Expansion

What is the maxterm expansion

for f?

Find the Maxterm Expansion

• f(a,b,c,d) = a'(b'+d) + acd'.

=
$$(a'+cd')(a+b'+d)$$
; Use $(x+y)(x'+z)=xz+x'y$.

=
$$(a'+c)(a'+d')(a+b'+d)$$
; Use $(x+y)(x+z) = x+yz$.

$$=\Pi M(4,6,8,9,11,12,13,15);$$

primed =
$$1$$
, unprimed = 0 .

Note that maxterm = 0.

General Expressions

• n variables (i = 0 to 2^n -1 values)

Minterm : $F = \sum a_i m_i$

If $a_i = 1$, then minterm m_i exists.

Maxterm : $F = \Pi(a_i + M_i);$

If $a_i = 1$, then the maxterm does not exist.

- ✓ Note that $\Sigma a_i m_i = \Pi(a_i + M_i)$
- $\checkmark F' = [\Pi(a_i + M_i)]' = \Sigma a_i' M_i' = \Sigma a_i' m_i = \Pi(a_i' + M_i)$

Incompletely Specified Functions

- Don't care terms.
 - A'B'C and ABC' are "don't care" term.
 We don't care the value of these terms, whether it is 1 or 0.
 - ✓ Example

$$F = A'B' + BC + AB$$
 (assign 1 to both X's).

\underline{A}	B	C	F
O	O	0	1
O	O	1	X
0	1	O	0
0	1	1	1
1	0	O	0
1	0	1	0
1	1	O	X
1	1	1	1

Minterm Expansion for Don't Care

- Example
 - Minterm

•
$$F = \Sigma m(0,3,7) + \Sigma d(1,6)$$

- Maxterm
 - $F = \Pi M(2,4,5) \cdot \Pi D(1,6)$

\underline{A}	B	\boldsymbol{C}		F
0	0	0		1
0	0	1		X
0	1	0		0
0	1	1	*	1
1	0	0		0
1	0	1		0
1	1	0		X
1	1	1		1

Examples

• 1's complement adder

Chap 4

C-H16

Full Adder

One bit

X	Y	Cin	Cout	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$Sum = X'Y'C_{in} + X'YC'_{in} + XY'C'_{in} + XYC_{in}$$

$$= X'(Y'C_{in} + YC'_{in}) + X(Y'C'_{in} + YC_{in})$$

$$= X'(Y \oplus C_{in}) + X(Y \oplus C_{in})' = X \oplus Y \oplus C_{in}$$

$$C_{out} = X'YC_{in} + XY'C_{in} + XYC'_{in} + XYC_{in}$$

$$= (X'YC_{in} + XYC_{in}) + (XY'C_{in} + XYC_{in}) + (XYC'_{in} + XYC_{in})$$

$$= YC_{in} + XC_{in} + XY$$

2's Complement Adder

• Form 2's complement for minus operand for subtraction

Chap 4

C-H18