Wentworth Institute of Technology Electromechanical Engineering Program

ELMC815 Electromechanical Systems I Laboratory Exercise #8 (Formal report)

Objective: To solve multi-degree of freedom problems both analytically and by simulation.

Procedure:

For $m_1=m_2=1$ kg and k=4 N/m, in the following problem:

- a) Write the differential equations that describe the system.
 - -Determine the natural frequencies
 - -Determine the corresponding mode shapes.
 - -Analytically determine the response: $x_1(t)$ and $x_2(t)$ for initial conditions:

$$x_1(0) = 2$$
 $x_2(0) = 4$ $\dot{x}_1(0) = 0$ $\dot{x}_2(0) = 0$

b) Integrate the system of equations by Laplace transforms:

Solve the system for $X_1(s)$, $X_2(s)$.

- -b1) Use **Partial Fraction** decomposition to determine the response: $x_1(t)$ and $x_2(t)$
- **b2**) Use the **Matlab** function *ilaplace or Dsolve* to find $x_1(t)$ and $x_2(t)$ from $X_1(s)$ and $X_2(s)$
- c) Write the differential equations from a) in **State-Space** form, determine the matrices A, B, C, D
 - -Simulate the problem by **Simulink** (use **State Space Toolbox** and insert elements from matrices A, B, C, D)
- d) Simulate the problem by **Working Model**
- e) Compare the analytical results with the simulated results.

Use Excel to write equation from a) and create a graph with multiple data from b), c), and d), to be compared.

Conclusions: