

Esercitazioni di CHIMICA

2. ATOMI, FORMULE, MOLI, REAZIONI E STECHIOMETRIA

HEY LADIES

TAKE MY NUMBER

× 10°° 5.0221415

6.0221415 * 10²³ .0221415 * 10²³ 6.0221415 × 10²³ 6.0221415

Numero atomico e Numero di massa

Numero atomico (Z): è il numero di protoni

- In un atomo neutro, Z è anche il numero degli elettroni
- Viene scritto a pedice del simbolo chimico

Numero di massa (A): è la somma del numero di protoni e neutroni contenuti nel nucleo

- Nucleoni = Protoni + Neutroni
- Viene scritto ad apice del simbolo dell'elemento

Isotopi: sono atomi di uno stesso elemento (quindi con lo stesso Z) ma con differente A. La differenza nel numero di massa è dovuta ad un diverso numero di neutroni presenti nel nucleo.

ES 2.1] Completare la tabella relativa alle particelle subatomiche di specie neutre.

Elemento	Protoni	Elettroni	Neutroni
$^{235}_{92}U$			
		35	44

ES 2.2] Identificare l'elemento $^{27}_{13}X$

1 H																		2 He
3 Li	4 Be												5 B	6 C	7 N	8	9 F	10 Ne
11 Na	12 Mg												13 Al	14 Si	15 P	16 S	17 CI	18 Ar
19 K	20 Ca	21 Sc		22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37	38	39		40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb 55	Sr 56	Y 57	*	Zr 72	Nb 73	Mo 74	Tc 75	Ru 76	Rh 77	Pd 78	Ag 79	Cd	In 81	Sn 82	Sb 83	Te 84	85	Xe 86
Cs 87	Ba 88	La 89	**	Hf 104	Ta 105	W 106	Re 107	Os 108	lr 109	Pt 110	Au 111	Hg 112	TI 113	Pb 114	Bi 115	Po 116	At 117	Rn 118
Fr	Ra	Ac		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Uuq	Uup	Uuh	Uus	Uuo

Ioni

Lo ione è un atomo elettricamente carico:

- Catione: ha perso uno o più elettrodi rispetto all'atomo neutro, quindi ha (almeno) una carica positiva
- Anione: ha guadagnato uno o più elettrodi rispetto all'atomo neutro, quindi ha (almeno) una carica negativa

A differenza degli atomi, gli ioni non hanno lo stesso numero di protoni e di elettroni.

ES 2.3] Indicare quanti protoni, elettroni e neutroni sono presenti negli ioni riportati in tabella.

Specie	Protoni	Elettroni	Neutroni
⁵² Cr ³⁺ (Z = 24)			
$^{40}\text{Ca}^{2+}$ (Z = 20)			
$^{127}I^{-}(Z=53)$			
³² S ²⁻ (Z = 16)			

Cifre significative

Una misura è espressa da un numero seguito da un'unità di misura. Tale numero è costituito da una o più cifre, che si distinguono in significative e non significative. Sono cifre significative tutte quelle cifre i cui valori sono noti con certezza, più la prima tra quelle incerte.

REGOLE:

- 1) Tutti i numeri diversi da 0 sono cifre significative (C.S.)
- 2) Gli 0 che precedono la prima cifra ≠ 0 non sono C.S.
- 3) Gli 0 che seguono cifre ≠ 0 sono C.S.
- 4) IL RISULTATO DI UN PROBLEMA VA ESPRESSO CON UN NUMERO DI C.S. PARI A QUELLE DEL DATO CHE NE HA DI MENO

Questa regola è quella che viene applicata nella correzione della prova scritta!

ES 2.4] Determinare il numero di cifre significative presenti nei seguenti numeri.

- 0.00789
- 0.789
- 78.90
- 7.8900
- 7.0089

ES 2.5] Un rettangolo ha la base che misura 12 cm e l'altezza vale 6.55 cm. Calcolare l'area del rettangolo.

La prova scritta dell'Esame di Chimica richiede l'espressione del risultato dei problemi col numero corretto di cifre significative!

Masse e mole

Massa atomica (MA) = è la massa relativa di un elemento rispetto all'atomo di 12 C. Si esprime in unità di massa atomica (u), che vale 1/12 della massa dell'atomo 12 C.

Massa molecolare = è la somma delle masse atomiche che compaiono nella molecola o nella formula minima di una sostanza non molecolare.

Mole = è la quantità di sostanza che contiene un numero di particelle elementari (atomi, ioni, molecole) uguali al numero di atomi contenuti in 12 g di ¹²C.

Massa molare (MM) = è la massa in grammi di una mole di una qualsiasi sostanza (elementare o composta), ed è numericamente uguale alla massa atomica, molecolare o della formula della sostanza.

ES 2.6] Il ferro è costituito dai quattro isotopi riportati in tabella. Calcolare la massa atomica media del Fe, riportando 6 cifre significative

Isotopo	Massa (u)	Abbondanza (%)
⁵⁴ Fe	53.9396	5.82
⁵⁶ Fe	55.9349	91.66
⁵⁷ Fe	56.9354	2.19
⁵⁸ Fe	57.9333	0.33

Calcolo con le moli

Mole, Massa e Massa Molare sono legati dalla relazione:

$$n(mol) = \frac{m(g)}{MM(g \cdot mol^{-1})}$$

Mole, Numero di Avogadro e Numero di molecole (o atomi non legati) sono legati dalla relazione :

$$molecole = n \cdot N_A$$
 $atomi = n \cdot N_A$

$$atomi = n \cdot N_A$$

Mole, Numero di Avogadro e Numero di atomi in una molecola sono legati dalla relazione

$$atomi = a \cdot n \cdot N_A$$

dove a è il numero di atomi all'interno della molecola (es: a = 2 per H in H_2SO_4)

ES 2.7] Calcolare il numero di moli presenti in 2.53 g di acido ossalico, avente formula (COOH)₂.

L'**acido ossalico** è uno dei componenti principali delle formulazioni dei prodotti sbiancanti, antiruggine, e per il trattamento superficiale dei manufatti in legno. Viene anche usato per la fabbricazione di inchiostri, detersivi e gomma. È altresì uno dei componenti più usati per la lucidatura del marmo.

ES 2.8] Calcolare quanti grammi dell'elemento idrogeno sono presenti in 0.745 g di acetone, avente formula CH₃COCH₃.

L'acetone è un liquido incolore e infiammabile miscibile con acqua, etanolo e etere, e trova principalmente impiego come solvente. È infatti utilizzato in cosmetica per rimuovere lo smalto per unghie, ma anche i residui di adesivi cianoacrilici (colla Super Attak). In laboratorio viene utilizzato come solvente organico e come coadiuvante all'asciugatura della vetreria di laboratorio dopo averla lavata. Dalla condensazione di acetone e fenolo si ottiene il bisfenolo A, intermedio essenziale per la produzione dei policarbonati (plastiche anti-urto utilizzate ad esempio per i caschi motociclistici).

ES 2.9] Calcolare la massa, il numero di molecole e il numero di atomi di C di un campione contenente 0.970 mol di etano, avente formula C₂H₆.

L'**etano** è l'unico alcano a due atomi di carbonio, ed è un idrocarburo alifatico. A temperatura e pressione ambiente è un gas estremamente infiammabile, esplosivo in miscela con l'aria, incolore, inodore e atossico. Industrialmente si ottiene per distillazione frazionata del gas naturale, di cui è uno dei principali componenti insieme al metano. Nell'industria chimica, è la materia prima per la produzione dell'etene (etilene) per cracking catalico: dall'etilene si ottiene, per polimerizzazione, una vasta gamma di materie plastiche (polimeri).

- ES 2.10] Calcolare le moli di carbonio contenute in un diamante di 0.42 g. [3.5 · 10⁻² mol]
- ES 2.11] Calcolare la massa, in tre cifre significative, di un atomo di zolfo. [5.32 · 10⁻²³ g]
- ES 2.12] Calcolare le moli di ferro contenute in 150 g di magnetite, avente formula Fe_3O_4 . [1.94 mol]
- ES 2.13] Calcolare la massa di zolfo combinata con 5.0 g di idrogeno atomico in nell'acido solfidrico. [80 g]
- ES 2.14] Calcolare la massa di metano contenuta in un campione preparato mescolandone 3.82 mol e 6.010 · 10²¹ molecole. [61.4 g]

Composizione percentuale

ES 2.15] Calcolare la composizione percentuale, riportando 4 cifre significative, di $K_2Cr_2O_7$.

La composizione percentuale di un elemento *X* che compare *a* volte in una molecola si calcola secondo la formula:

$$\%X = \frac{a \cdot MA(g \cdot mol^{-1})}{MM(g \cdot mol^{-1})}$$

Dove MA è la massa di una mole di quell'elemento e MM è la massa molare della molecola considerata.

ES 2.16] Un minerale contiene il 32.6% di CaO. Calcolare la percentuale di Ca nel minerale.

% E.E2

ES 2.17] Determinare quale ossido di Pb contiene il 7.17% di O.

PbO

ES 2.18] Calcolare la composizione percentuale degli elementi e quella di NaF nella criolite (AlF₃·3NaF), riportandola con 4 cifre significative.

$$00.00 = 4.30$$
; % $A = 32.85$; % $A = 12.85$; % $A = 54.30$; % $A = 32.85$; % $A = 12.85$;

ES 2.19] Nonostante il cloroformio (CHCl₃) sia una sostanza tossica che può causare seri danni a fegato, reni e cuore, per molti anni esso è stato impiegato come anestetico per inalazione. Calcolarne la composizione percentuale riportandola con 4 cifre significative.

$$90.68 = 10.06$$
; $$443$; $$0.01 = 3.09$

ES 2.20] Le seguenti sostanze sono fertilizzanti che contribuiscono alla presenza di azoto nel suolo: urea $(NH_2)_2CO$, nitrato di ammonio NH_4NO_3 , guanidina $NHC(NH_2)_2$, ammoniaca NH_3 . Sulla base della loro composizione percentuale, quale tra questi fertilizzanti è la fonte più ricca di azoto?

Formula minima e Formula molecolare

La molecola è un raggruppamento di due o più atomi che possiede proprietà chimiche caratteristiche.

Può essere costituita da atomi dello stesso elemento (omonucleare) o da elementi diversi (eteronucleare).

Formula molecolare: rappresenta la costituzione atomica di una molecola in lettere (per indicare gli elementi) e cifre (per indicare il numero di atomi dello stesso elemento nella molecola). Esempio: $C_6H_{12}O_6$

Formula minima: è la scrittura della formula molecolare dove il numero di atomi di ciascun elemento costituente è ridotto al massimo comun divisore. Esempio: CH₂O

ES 2.21] La nicotina è un composto organico contenente: C 74.03%, H 8.70%, N 17.27%. La determinazione della massa molare ha dato come risultato approssimato 162.1 g · mol⁻¹. Determinare la formula minima e la formula molecolare della nicotina.

La nicotina è un alcaloide parasimpaticomimetico piuttosto tossico: 30-60 mg possono essere fatali per l'uomo. È particolarmente concentrata nelle foglie di cui, nel tabacco, costituisce circa lo 0,3-5% del peso secco; è anche presente in: pomodoro, patata, melanzana, peperone. Allo stato puro è liquida e incolore, ed è in parte causa dell'odore del tabacco. La nicotina è una sostanza stupefacente, e i suoi consumatori abituali sviluppano una forte dipendenza psichica dalla sostanza. A concentrazioni elevate la nicotina blocca il recettore dell'acetilcolina (questa è la ragione della sua tossicità). Alcuni studi suggeriscono anche un ruolo diretto nella patogenesi del cancro.

ES 2.22] Un campione di un composto contiene 0.193 g di K, $6.93 \cdot 10^{-2} \text{ g}$ di N e 0.237 g di O. Determinare la formula minima del composto.

K₁O³

ES 2.23] Un composto (MM = $161.97 \text{ g} \cdot \text{mol}^{-1}$) contiene il 2.490% di H, il 38.24% di P ed il 59.27% di O. Determinare la formula molecolare del composto.

 $H^{\dagger}D^{7}O^{8}$

ES 2.24] L'ATP contiene il 23.7% di C, il 3.20% di H, il 13.8% di N, il 41.0% di O, il 18.3% di P. Determinare la formula minima dell'ATP.

 $C^{10}H^{19}N^2O^{13}L^3$

ES 2.25] Il perossiacilnitrato è uno dei componenti dello smog, ed è composto da C, H, N ed O. Determinare la sua formula molecolare sapendo che la massa molare è di 120 g mol⁻¹ e che l'analisi elementare ha fornito le seguenti composizioni percentuali: 19.8% di C, 2.50% di H e 11.6% di N.

 $C^{7}H^{3}NO^{2}$

Equazione chimica

Rappresenta i fenomeni che hanno luogo durante una reazione chimica.

È scritta in maniera simile ad un'equazione matematica a due membri. Al primo membri compaiono i reagenti, al secondo ci sono i prodotti.

Una reazione non può avere luogo o viene rallentata (fino a fermarsi o regredire) se non è soddisfatta una serie di condizioni: presenza dei reagenti in misura adeguata, condizioni di temperatura, pressione e luce adatte alla specifica reazione.

Bilanciamento di equazioni chimiche

Bilanciamento delle masse: la somma delle masse dei reagenti deve essere uguale alla somma delle masse dei prodotti. Siccome la materia è costituita da atomi, ne deriva che il numero degli atomi indicati a sinistra dell'equazione chimica (cioè gli atomi delle specie chimiche reagenti) deve essere uguale al numero degli atomi indicati a destra (cioè gli atomi delle specie chimiche prodotte).

Bilanciamento delle cariche: siccome le reazioni chimiche possono avvenire anche tra specie ioniche, il numero di cariche presenti al primo membro dell'equazione deve coincidere con quelle del secondo membro.

$$3(Ag^{+} + e^{-} \rightarrow Ag)$$

$$Al \rightarrow Al^{3+} + 3e^{-}$$

$$3Ag^{+} + Al \rightarrow 3Ag + Al^{3+}$$

ES 2.26] Bilanciare la seguente equazione chimica:

$$Na_2CO_3 + HCI \rightarrow NaCI + CO_2 + H_2O$$

ES 2.27] Bilanciare la seguente equazione chimica:

$$5b_2S_3 + OH^- \rightarrow 5bS_3^{3-} + 5bO_3^{3-} + H_2O$$

ES 2.28] Bilanciare la seguente equazione chimica:

$$SnCl_2 + Na_2CO_3 + H_2O \rightarrow Sn(OH)_2 + NaCl + CO_2$$

$$SnCl_2 + Na_2CO_3 + H_2O \rightarrow Sn(OH)_2 + 2NaCI + CO_2$$

ES 2.29] Bilanciare la seguente equazione chimica:

$$Al_2O_3 + NaOH + H_2O \rightarrow Na[Al(OH)_4]$$

$$A_2O_3 + 2NaOH + 3H_2O \rightarrow 2Na[A](OH)_4$$

ES 2.30] Bilanciare la seguente equazione chimica:

$$[Cd(CN)_4]^{2-} + H_2S \rightarrow CdS + HCN + CN^{-}$$

$$[Cq(CN)^{\dagger}]_{5^{-}} + H^{5}Z \rightarrow CqZ + 5HCN + 5CN$$

ES 2.31] Bilanciare la seguente equazione chimica:

$$TiO^{2+} + CH_3COO^- + H_2O \rightarrow CH_3COOH + TiO(OH)_2$$

$$\text{TiO}^{2+} + 2\text{CH}_3\text{COO} + 2\text{H}_2\text{O} \rightarrow 2\text{CH}_3\text{COOH} + \text{TiO(OH)}_2$$

ES 2.32] Bilanciare la seguente equazione chimica:

$$[Mn(CN)_6]^{4-} + HS^- + NH_3 \rightarrow MnS + CN^- + NH_4^+$$

$$[Mu(CN)^{9}]_{4} + HS + HS + NH^{3} \rightarrow MuS + 6CN + NH^{4}$$

Relazioni ponderali tra reagenti e prodotti

Calcolo stechiometrico: permette di determinare matematicamente le quantità di reagenti e prodotti coinvolti in una reazione chimica.

ES 2.33] Da 10.0 g di reagente, calcolare quanti grammi di ogni prodotto si ottengono dalla reazione $2Pb(NO_3)_2 \rightarrow 2PbO + 4NO_2 + O_2$.

QUALE LEGGE CHIMICA PERMETTEREBBE DI VERIFICARE L'ESATTEZZA DEL PROBLEMA?

Il nitrato di piombo si presenta comunemente come un cristallo incolore o come polvere bianca ed è solubile in acqua. All'inizio del XIX secolo, iniziò ad essere prodotto e commerciato in Europa e negli Stati Uniti per essere usato come materia prima per la produzione di pigmenti per pitture, ma fu presto sostituito da colori meno tossici a base di diossido di titanio. A partire dal 2000, il nitrato di piombo ha iniziato ad essere utilizzato per la cianurazione dell'oro, un processo che permette di estrarre circa il 90% dell'oro contenuto nel minerale. Il nitrato di piombo è tossico ed è classificato come sostanza probabilmente carcinogena per l'uomo.

ES 2.34] Calcolare la massa di SO_2 che si ottiene a partire da 67.5 g di S_2Cl_2 , secondo la reazione $2S_2Cl_2 + 2H_2O \rightarrow SO_2 + 4HCl + 3S$.

g0.01

ES 2.35] Bilanciare l'equazione $SbCl_3 + Na_2CO_3 + H_2O \rightarrow SbO(OH) + NaCl + CO_2$ e calcolare quanto $SbCl_3$ è necessario utilizzare per produrre 48.25 g di CO_2 .

g 7.331

ES 2.36] Bilanciare l'equazione $Ca_3(PO_4)_2 + H_3PO_4 \rightarrow Ca(H_2PO_4)_2$ e calcolare quanti atomi di P si ottengono a partire da 1.59 g di H_3PO_4 .

770I · Lt'I

ES 2.37] Il protossido di azoto è anche chiamato «gas esilarante» per via dei suoi effetti euforizzanti. Può essere preparato per decomposizione termica del nitrato di ammonio, e come sottoprodotto si ottiene acqua. Considerando che la nomenclatura di tutti questi composti è stata precedentemente mostrata in sede di esercitazione, scrivere l'equazione bilanciata di questa reazione e calcolare la massa di protossido di azoto che si forma a partire da 0.46 mol di reagente.

 $802 \cdot O_2H2 + O_2N \leftarrow \varepsilon ON_4HN$

Resa di reazione

Nella realtà, le reazioni chimiche non avvengono quantitativamente (ovvero col completo consumo di tutti i reagenti e con la completa formazione di tutti i prodotti nelle quantità previste dall'equazione bilanciata.

Va pertanto definita la resa di reazione:

$$\eta(\%) = \frac{m_{reale}(g)}{m_{teorica}(g)} \cdot 100$$

Calcolo della massa di un REAGENTE, quando è nota la resa

$$m_{reale}(g) = m_{teorica}(g) \cdot \frac{100}{\eta(\%)}$$

Calcolo della massa di un PRODOTTO, quando è nota la resa

$$m_{reale}(g) = m_{teorica}(g) \cdot \frac{\eta(\%)}{100}$$

ES 2.38] Si fa avvenire la reazione NaOH + $H_2SO_4 \rightarrow Na_2SO_4 + H_2O$, introducendo in un recipiente 80.0 g di NaOH ed un eccesso di H_2SO_4 . Se si ottengono 130 g di Na_2SO_4 , calcolare la resa di reazione.

ES 2.39] Calcolare quanto Zn si dovrebbe far reagire, secondo la reazione Zn + $H_2SO_4 \rightarrow ZnSO_4 + H_2$, per ottenere 35.0 g di H_2 , sapendo che la resa di reazione è dell'85.0%.

1.34 Kg

ES 2.40] Per ossidare 2.76 g di PbS con una resa del 85.3%, secondo la reazione $4H_2O_2 + PbS \rightarrow PbSO_4 + 4H_2O$, calcolare quanta H_2O_2 occorre e quanto PbSO₄ si ottiene.

8 86.2 : 4.02dq : 8 72.1 : 4.04H

ES 2.41] Il processo chimico-industriale di fermentazione di $C_6H_{12}O_6$ a C_2H_5OH e CO_2 ha una resa dell'80%. Calcolare la massa di C_2H_5OH che si ottiene da 2.0 q di $C_6H_{12}O_6$.

82 Kg

ES 2.42] Il diossido di titanio viene ottenuto insieme a solfato ferroso e acqua facendo reagire il minerale ilmenite (FeTiO₃) con acido solforico. Scrivere e bilanciare la reazione, e calcolarne la resa sapendo che da 8.00 t di minerale si ottengono 3.67 t di diossido di titanio.

 $\text{FeTiO}_3 + \text{H}_2\text{SO}_4 \rightarrow \text{TiO}_2 + \text{FeSO}_4 + \text{H}_2\text{O}; 87.1\%$

Reagente limitante

Se uno dei reagenti di una reazione chimica è disponibile in quantità insufficienti rispetto al rapporto indicato dai coefficienti stechiometrici, si dice che è in difetto (reagente limitante).

La reazione avverrà lo stesso, ma tutti i calcoli stechiometrici andranno effettuati <u>in funzione del numero di moli del reagente limitante</u>.

A meno di non fornire esattamente le giuste quantità dei reagenti, un problema sul reagente limitante si riconosce perchè vengono fornite le quantità di più di un reagente.

ES 2.43] Calcolare quanta NH_3 si ottiene partendo da 1000 g di N_2 e 500.0 g di H_2 , nella reazione $N_2 + 3H_2 \rightarrow 2NH_3$. Calcolare la quantità di reagente in eccesso (che non reagisce).

ES 2.44] Calcolare la massa di SO_2 che si ottiene da 67.5 g di S_2Cl_2 e 10.0 g di H_2O , secondo la reazione $2S_2Cl_2 + 2H_2O \rightarrow SO_2 + 4HCl + 3S$.

g 0.91

ES 2.45] Calcolare la massa di CaCl₂ che, insieme a NH₄OH, viene ottenuto per trattamento di 12.0 Kg di NH₄Cl con 12.0 Kg di Ca(OH)₂.

12.4 Kg

ES 2.46] Si fanno reagire 250 g di acido solforico con 200 g di idrossido ferrico e si ha formazione di solfato ferrico e acqua. Calcolare la massa dei prodotti che si formano.

 $g_{2}(SO_{4})_{3}$: 340 g; $H_{2}O_{2}O_{3}$

ES 2.47] L'assottigliamento dello strato di ozono nella stratosfera è motivo di grande preoccupazione da diversi anni. Si crede che l'ozono possa reagire col monossido d'azoto per sviluppare ossigeno e diossido di azoto. Se 0.740 g di ozono reagiscono con 0.670 g di monossido di azoto, calcolare il numero di moli del reagente in eccesso che rimangono inalterate a fine reazione.

 $lom \epsilon - 01 \cdot 6.8$

Esercizi di riepilogo

ES 2.48] Rispondere ai seguenti quesiti:

6- In quale di questi composti la percentuale in peso di calcio è maggiore?

- 1) CaI2
- 2) CaF₂
- 3) CaCl₂
- 4) CaBr₂

Risp:

1- L'isotopo più abbondante di un elemento avente Z = 20, possiede A = 40.

Scrivere in sequenza il simbolo dell'elemento, il numero di neutroni

Risp:

5- Il perclorato di potassio si può ottenere facendo reagire:

- 1) KOH + KClO₂
- 2) KOCl + KCl
- 3) H₂O₂ + HClO₄
- 4) KOH + HClO₄
- 5) KOH + HClO₃

Risp:

10- L'aria può essere considerata un miscuglio gassoso di N_2 (79%) e O_2 (21%).

Quale è il suo peso molecolare medio?

Risp:

Esercizi di riepilogo/2

ES 2.49] Rispondere ai seguenti quesiti:

- 6-Facendo reagire idruro di sodio (NaH) con acqua molto pura si ha:
- 1) liberazione di idrogeno e formazione del catione idronio
- 2) formazione di carbonato di sodio
- 3) liberazione di elettroni solvatati
- 4) sviluppo di idrogeno e formazione di idrossido di sodio
- 5) sviluppo di ossigeno e formazione di idrossido di sodio

[

1-Il magnesio è costituito da due isotopi con **12** e **14** neutroni. Qual è la percentuale di ²⁴Mg sapendo che il peso atomico del magnesio vale 24,30 uma (supporre massa del neutrone e del protone = 1 e dell'elettrone = 0)

- 9- Quale di queste condizioni iniziali conduce a produrre 9 grammi di H₂O dopo reazione completa?
- 1) $0.5 \text{ mol H}_2 + 0.2 \text{ mol O}_2$
- 2) 1 mol H₂ + 1 mol O₂
- 3) 2 moi $H_2 + 1$ mol O_2
- 4) 1 mol H₂ + 0,5 mol O₂
- 5) 0,5 mol H₂ + 2 mol O₂

7- Quale delle seguenti sostanze non può essere ossidata da KMnO₄ ?

- 1) ZnSO₄
- 2) FeSO₄
- 3) Formaldeide (COH₂)
- 4) H₂O₂
- 5) Glucosio

Risp:

1:%58:5:4