CAS CS 585 Image and Video Computing

Lecture by Margrit Betke

Topics: Image and Video Formats, Color, Projections, Multi-object Labeling (recursive & sequential), and Face Detection

Digital Image File Formats

Computer Science

Image:

Header

Table
= Map = Raster
of Pixel Values

Size of table, color, compression scheme

Gray-scale images: generally
1 byte per pixel
Medical images: typically
2 bytes per pixel

Color images: 3 numbers (each 1 byte) per pixel

Example: PGM Image

Computer Science

Image file

Image ??

Example: PGM Image

Computer Science

Image file

Image

Light: Electromagnetic Waves

Computer Science

Wavelength λ

Visible Range

RGB Color Space

Red

Example: PPM Image

Computer Science

Image file

P3
3 3 255

0 0 0 255 0 0 0 0 0
0 255 0 0 0 255 255 0
0 0 0 0 255 0 0 0

Image ??

Example: PPM Image

Computer Science

Image file

P3 3 3 255

0 0 0 255 0 0 0 0 0 0 255 0 0 0 0 255 255 0 0 0 0 0 0 255 0 0

Image

Hue-Saturation-Value (HSV) Color Space

Object Detection

Computer Science

1. Find bounding box around black object in grayscale background

Background may contain black pixels

Algorithm ??

Using Black Color & Projections for Object Detection

Computer Science

1. Find bounding box around black object in grayscale background

Background may contain black pixels

Algorithm:

- Count number of black pixels in each row and column
- Analyze these histograms or projections of black pixels onto x- and y-axes.

Using Black Color & Projections for Object Detection

Computer Science

1. Find bounding box around black object in grayscale background

Background may contain black pixels

Algorithm:

- Count number of black pixels in each row and column
- Analyze these histograms or projections of black pixels onto x- and y-axes.

P1(y)=
$$\Sigma_x B(x,y)$$
, P2(x)= $\Sigma_y B(x,y)$

Examples of Projections

Examples of Projections

Examples of Projections

Computer Science

From Machine Vision by Jain et al.

Object Detection: Alternative Algorithm: "Flood Fill"

Computer Science

1. Convert to binary image:

-->

Black = "-1" pixels White = "1" pixels

- Scan row by row until first "-1" pixel is reached and label it "object 1."
- 3. Find all neighbors of the current pixel that are "-1" and assign the object label of the current object in a recursive, depth first search manner.
- 4. When there are no more "-1" neighbors, continue scanning the image until the next "-1" pixel is reached and label it with the next object label and go to step 3.

Sequential Multi-Object Labeling Algorithm

- □ Horn, page 69
- More explanation with an example next time

D C B A

Sequential Labeling Algorithm

Computer Science

Case 1:

Case 2:

Case 3:

Case 4:

D labeled B, C not

Either
B or C
labeled

Neither B,C, or D labeled B, C labeled same different

∠ C B A

Back to Algorithm that uses Black Color & Projections for Object Detection

Computer Science

1. Find bounding box around black object in grayscale background

Background may contain black pixels

Algorithm:

- Count number of black pixels in each row and column
- Analyze these histograms or projections of black pixels onto x- and y-axes.

P1(y)=
$$\Sigma_x B(x,y)$$
, P2(x)= $\Sigma_y B(x,y)$

Using Skin Color for Face Detection

Computer Science

2. Find bounding box around face in color image
Algorithm ??

Using Skin Color for Face Detection

Computer Science

2. Find bounding box around face in color image

Algorithm: Same Idea

- Find all pixels with skin color
- Count number of skin color pixels in each row and column
- Analyze these histograms or projections of skin-color pixels onto x- and y-axes.

Normalized Green

0.7

Using skin color for face detection

face 9.2 ▲ Figure 6.12 Skin color clusters obtained from training: the horizontal axis is Rnorm and the vertical axis is Gnorm. The cluster labeled as t_4 is the primary face color, cluster t 5 and t 6 are secondary face clusters associated with shadowed or bearded areas of a face. (Figure from V. Bakic.) ▼ Figure 6.13 Face extraction examples: (left) input image; (middle) labeled image; and (right) boundaries of the extracted face region. (Images from V.Bakic.)

From Computer Vision by Shapiro & Stockman

Computer Science

facial shadows

Normalized Red

beard