

09/673400
529 Rec'd PCT/PTC 17 OCT 2000

Sequence Protocol

<110> metaGen Gesellschaft für Genomforschung mbH

<120> Human Nucleic Acid Sequences from Hysteromyomic Tissue

<140> PCT/DE99/01178

<141> 1999-04-14

<160> 55

<210> 1

<211> 779

<212> DNA

<213> homo sapiens

<400> 1

agcgagcagc ggcggccggcg cggagagacg cagcggaggt tttcctgggt tcggacccca 60
gccccggat ggtgaaatcc tccctgcagc ggatcctcaa tagccactgc ttgcgcagag120
agaaggaaagg ggataaaacc agcgccacca tccacgccag ccgcaccatg ccgctcccta180
gcctgcacag cccggccggc agcagcagtg agagttccag ggttcccttc cactgctgta240
gtaacccggg tccggggcct cgggttgtct cctgatgccc ctacccacc cctgaagatc300
ccaggtgggc gagggaaatag tcaaaggacacaatctt cagctaattt attctactcc360
gatgatcgcc tgaatgtaac agaggaacta acgtccaacg acaagacgag gatttcaac420
gtccagtcca ggctcacaga cgccaaacgc attaactggc gaacagtgtc gagtgccggc480
actgctctac atcgagatcc cgggcccgcg gctgcccggag gggagcaagg acagcttgc540
agttccctg ggagttcgct gaggagcagc tgcgaggccg accatgtctt aatttgc600
cacaagaacc ccgaggacag agccgccttg ctccgaacct tcagttttt cgggcttgag660
attttgagac cggggcatcc ccttggttcc ccaagagacc cgacgcttgc ttcatggcc720
tacaagtttc gagagagatg ctttggggag aggaagaagg attaggggccc gcgtcggt 779

<210> 2

<211> 2310

<212> DNA

<213> homo sapiens

<400> 2

gttctccgaa acatggagtc ctgtaggcaa ggtcttacct gaatcaggat gaggagtg 60
tgggtccagg tggggctgct ggcgtgccc ctgcttgcg cgtacctgca catccaccc 120
cctcagcgct cccctgcct tcactcatgg aagtctttagt gcaagttttt cacttacaag 180
ggactgcgta ttttcttacaaa agaetctgtg ggtgtgttgcg gaagttccaga gataggttgt 240
cttttacacg gtttccaac atccagctac gactggata agatttggga aggtctgacc 300
ttgaggtttc atcgggtgat tgcccttgc ttctttagt ttggcttcag tgacaaaccg 360
agaccacatc actattccat atttgagcag gccagcatcg tggaaagcgt tttgcggcat 420
ctggggctcc agaaccgcag gatcaacctt ctttcttgcg actatggaga tattttgtct 480
caggagctt ctttacaggta caagcagaat cgatctggtc ggcttaccat aaagagtctc 540
tgtctgtcaa atggaggtat ctttcttgcg actcaccgtc cactccttctt caaaaagcta 600
ctcaaagatg gaggtgtgtct gtcacccatc ctcacacgcg tggaaatctt ctttgcgtt 660
tctcgaggta tcacccatc ctttggggccg tataactggc cctctgagatg tgagctgtgg 720
gacatgtggg cagggatccg caacaatgac gggaaacttag tcattgacag tctcttacag 780
tacatcaatc agaggaagaa gttcagaagg cgctgggtgg gagctcttgc ctctgttaact 840
atccccatcc attttatcta tggccattt gatcctgtaa atccctatcc agatttttt 900
gagctgtaca ggaaaacgct gcccgggtcc acagtgtcga ttctggatga ccacattagc 960
caatatccac agcttagagga tcccatgggc ttcttgcattt cttatatggg cttcatcaac1020
tccttcttgcg ctggaaagag tagttccctt gtattaccc ccttactccc ttatgtgttg1080
tgtattccac ttaggaagaa atgccccaaa gaggtcttgc ccatcaaaca taattctctc1140
acaaagtcac ttactcaa atgggtgaac agtgtatagg aagaagccag caggagctct1200
gactaagggtt gacataatag tccacctccc attacttgc tatctgatca aatgtataga1260
cttggcttttgc tttttgtgc tatttagaaaa ttctgtatgag cattactatt cactgatgc1320

gaaagacgtt ctttgcata aaagacttt tttaacactt tggacttctc taaaatattt1380
agaagtgcta atttctggcc caccccaac aggaattcta tagtaagggg gaggagaagg1440
ggggctcctt ccctctcctc gaatgacgtt atggcacat gcctttaaa agtctttaa1500
gcaacacaga gctgagtcct ctttgtata ccttggatt tagtgttca tcagctgtt1560
ttagttataa acatttgtt aaaatagata ttggttaaa tgatacaga ttttaggtat1620
gatTTAGAC tatgattac ctatacatta tatatattt ataaagatac taaaaccagca1680
tacccctact ctgccaggt agtgaagcta attaaacacg ttgggttct gaataaattg1740
aactaaatcc aaactattc ctaaaatcac aggacattaa ggaccaatag catctgtgcc1800
agagatgtac tttttagtc tgggaagacc aattctaaca gcaaataaca gtctgagact1860
cctcatcacct cagtggtag aagcatgtt ctcttgagct acagtagagg ggaagggtt1920
gttgtgttagt caagtccca tgctgaatgt acactgattt ctttatgtt actgcttaac1980
tccccactgc ctgtcccaga gaggcttcc aatgttagctc agtaatttctt gttactttac2040
agacaggaaa gttccagaaa ctttaagaac aaactctgaa agacctatga gcaaatggtg2100
ctgaataactt ttttttaaa gccacatttcc attgtcttag tcaaagcagg attattaagt2160
gattatttaa aattcgttt tttaaatttag caacttcaag tataacaact ttgaaactgg2220
aataagtgtt tattttctat taataaaaaat gaattgtgac aaaaaaaaaa aaaggcttcg2280
gctttgaag tctatgtgtt gggggggggg 2310

<210> 3
<211> 854
<212> DNA
<213> homo sapiens

<400> 3

ctgcacgggg gctcgggctc actataaaag gtgggagcgc gtgggtcccc agcaacgacg 60
agtttcagaa cgatggagag ctcccgcggt aggctgctgc ccctcctggg cgccgcccctg120
ctgtgtatgc tacctctgtt gggtacccgt gcccaggagg acgcccagct ccagccccga180
gcccggaca tctactctgc cgtggatgtt gcctcccaacg agaaggagct gatcgaagcg240
ctgcaagaag tcttgaagaa gctcaagagt aaacgtgttcc ccatctatga gaagaagtat300
ggccaagtcc ccatgtgtga cgccggtagt cagtggtcag tgagggaaagg ggcaggatc360
gggaagctgt gtgactgtcc cccggggacc tcctgcaatt ccttcctctt gaagtgttta420
tgaaggggctc tccatttctcc tccatacata cccatccctc tactttcccc agaggaccac480
acccctctcc ctggagtttgc gcttaagcaa cagataaaat ttttattttc ctctgaagg540
aaagggtctt tttcctgtt tttcaaaaat aaaagaacac attagatgtt actgtgtgaa600
gaataatgcc ttgtatggtg ttgatacgtt ttttattttt tttgtctgac660
aaactcttgtt gtacctttgtt gtaaaagaagg gaagctttgtt gttttttgtt720
tgtggcatgg cagaatgaaa attagatcta gctaattctcg gtatgtca ttacaacctg780
gaaaataaat caccctaagt gacacaaattt gaagcatgtt caaattatac ataataaaagt840
gttttaataa attt 854

<210> 4
<211> 1112
<212> DNA
<213> homo sapiens

<400> 4

cggccagcccc gtcggggggcc cggagggggac tcggagcggg ccaagggggc gctccggcgg 60
gcccggactcg ggaggtgaccc ggacagctgtt cctctctgac accaccccg 120
cctgcctctt ttttgcattt agagctgcctt accttttctt gctattcctt cctgcaggct 180
tgctggctca gggccaggat gacctggacc cgctggcc gttccctgtt cactgtccagg 240
acacccacta tagcgaccat atcgacaacc cagactacta tgattatcaa gaggtgactc 300
ctcgccctc cgaggaacag ttccagttcc agtcccagca gcaagtccaa caggaagtca 360
tcccgcccccc aaccccgaaa ccaggaaatg cagagctgga gcccacagag cctggccctc 420
ttgactgccc tgaggaacag taccctgttca cccgccttca ctccatcac acggccttgc 480
aacagtgtctt caacggggc tgcttctaca gcctccggc gttgtacgtt attaacaagg 540
agatctgtgt tctgtacgtt ttttgcattt agggacttcc cctggactgac ctgttgcggg 600
acaagttctc caaatgtggc gtatggcca gcagggccctt gtggcaatcc gtggccggct 660
cctgtgccag gagctgtggg agctgttgg gttgtctgg catcctgtt cctggccctc 720
ctggatctg gggccctcg gcccctgcctt acctgggtt tttttccca tccccatgtt 780
ccttttattt tttttttttt tagtggactg cagccctggg gttgtcaggc tgccgtgcct 840
caggccccctc cttcagcctg tggccacccctc tggggcactca ccactgcccc 900

gtctgcccct cgggttgggg gagtatccca ggcctctcg tgggaccctg gccctgacg 960
ggcctctca gcccgtttt aggacagaca gtccccgag taggctaca tccccccacc1020
ccagctggtc tgcttgatt tcctacagcc cccgtggca tggaccacct ttatTTATA1080
caaaattaaa aacaagttt tacaaaaaaa aa 1112

<210> 5
<211> 1051
<212> DNA
<213> homo sapiens

<400> 5

gcgcaggcgc gaagaagctg gcagggggcac gagccgggg cgggtttgaa gacgcgtcgt 60
tggttttgg aggccgtgaa acagccgtt gagtttggct gcccgtggag aacgtttgtc 120
aggggccccgg ccaagaagga ggccgcctg ttacatgggt gtcctatgggt ttcaagcgg 180
accgcagtga ccgggttctac agcaccgggt gtcgggctg ttgccatgtc cgacccggg 240
cgatcatcct ggggacttgg tacatggtag taaacctatt gatggcaatt ttgtgactg 300
tggaaagtgac tcatccaaac tccatgccag ctgtcaacat tcagttgaa gtcatcggt 360
attactattc gtctgagaga atggctgata atgcctgtgt tcttttgcc gtctctgttc 420
ttatgtttat aatcaggta atgctggttt atggagcaat ttcttatcaa gtgggttggc 480
tgattccatt cttctgttac cgactttttg acttcgtcct cagttgcctg gttgctatta 540
gttctctcac ctatttgcca agaatcaaag aatatctgga tcaactacct gatTTCCCT 600
acaaagatga cctcctggcc ttggactcca gtcgcctcct gttcattgtt ctttgtttct 660
ttgccttatt catcattttt aaggcttatac taattaactg tgTTTGGAAAC tgcataaaat 720
acatcaacaa ccgaaacgtg cccggagattt gtcgttaccc tgcctttgaa gcacccctc 780
agtacgtttt gccaacctat gaaatggccg tgaaaatgcc tgaaaaagaa ccaccacctc 840
cttacttacc tgcctgaaga aattctgcct ttgacaataa atcctataacc agctttttgt 900
ttgtttatgt tacagaatgc tgcaattcag ggctcttcaa acttggtag atataaaaata 960
tggggccctt ttggtttaa agcaatttat ttccaaaac actaaggag ccttttgga1020
catctggtta aacggcctt ttggttttt t 1051

<210> 6
<211> 1516
<212> DNA
<213> homo sapiens

<400> 6

gttgcctca tccctctcat acagggtgac caggacgttc ttgagccagt cccgcattgc 60
cagggggaaag aagatccatg agaaggagaa ggcctggag gcaggagacc accccgtgga 120
gctgctggcc cgggacttcg agaagaacta taacatgtac atcttcctg tacactggca 180
gttcggccag ctggaccagc accccattga cgggtaccc tcccacaccc agctggctcc 240
actgcgtgct cccctcatcc ccatggagca ttgcaccacc cgcttttcg agacctgtga 300
cctggacaat gacaagtaca tgccttggta tgagtggcc ggctgcctcg gcatcaagca 360
gaaggatato gacaaggatc ttgtgatcta aatccactcc ttccacagta ccggattctc 420
tcttaaccc tccccttcgt ttgttttttca atgtttaaaa ttgtttggatg gtttgttgc 480
ctgcctggag acaagggtgct aacatagatt taagtgaata cattaacggt gctaaaaatg 540
aaaattctaa cccaaagaaca tgacattttt agctgttaact taactattaa ggcctttcc 600
acacgcattt atagtcccat tttctcttg ccatttggat ctttgcctat tgcatttttg 660
ggcacatggg gtggacacgg atctgctggg ctctgcctt aacacacatt gcaagcttca 720
cttttctctt tagtggctg ttgaaacta atacttaccg agtcagactt tgcattttc 780
tcatttcagg gtctggctg cctgtgggt tccccagggt gcctggaggt gggcaaagg 840
aagtaacaga cacacgatgt tgcatttttggat gttttggga ctagaggctc agtgggtgg 900
gagatccctg cagaacccac caaccagaaac gtgggttggcc tgaggctgta actgagagaa 960
agattctggg gctgtgttat gaaaatatac acatttcac ataagccac ttcatcaccal020
tttccctctt taccttcag tgcatttttctt tttcacattt ggctgttgc tcaaacttt 1080
gggagcacgg actgtcagtt ctctgggaag tggtcagcgc atcctgcagg gcttctcc 1140
ctctgtctt tggagaacca gggcttctt cagggctctt agggactgccc aggtgtttc 1200
agccaggaag gccaaaatca agagtggat gtagaaagtt gtaaaataga aaaagtggag 1260
ttggtaatc ggttggctt tcctcacatt tggatgattt tcataagggtt tttagcatgt 1320
tcctccctt ctccacccctc ccctttttc ccccaagaat acagagaaaa ctcaaagtt 1380
atggggaggg tcggatccta caggcctgag aatcggtcaa ctccaagcat ttcatggaaa 1440
aggcggcttc ctaattaatc ctacaaaccc ccacccagga tggtaggggg tttcaccaat 1500

tcctccaaaa ataaaa

1516

<210> 7
<211> 2367
<212> DNA
<213> homo sapiens

<400>, 7

cgccggact cttggcgggt gaaggtgtgt gtcagcttt gcgtcaactcg agccctggc 60
gctgcttgct aaagagccga gcacgcgggt ctgtcatcat gtcgcgtac gggcggtacg 120
gaggagaaac caaggtgtat gttggtaacc tggaaactgg cgctggcaaa ggagagttag 180
aaagggtttt cagttattat ggtcctttaa gaactgtatg gattgcgaga aatccctccag 240
gattgcctt tgtggattc gaagatccta gagatgcaga agatgcagta cgaggactgg 300
atgaaagggt gatttgtggc tcccggagtga ggggtgaact atcgacaggc atgcctcgga 360
gatcacgttt tgatagacca cctgcccgcac gtcccttga tccaaatgtat agatgctatg 420
agtgtggcga aaaggacat tatgtttatg attgtcatcg ttacagccgg cgaagaagaa 480
gcaggtcacg gtctagatca cattctcgat ccagaggaag gcgatactct cgctcacgca 540
gcaggagcag gggacgaagg tcaaggctcg catctccctcg acgtcaaga tctatctctc 600
ttcgttagatc aagatcagtc tcactcgaaa gatctaggc tggttctata aaaggatcga 660
ggtatttcca atccccgtcg aggtcaagat caagatccag gtctatttca cgaccaagaa 720
gcagccgatc aaagtccaga tctccatctc caaaaagaag tcgttccca tcaggaagtc 780
ctcgcagaag tgcaagtccct gaaaagaatgg actgaagctc tcaagttcac cctttaggaa 840
aaagttattt tgtttacatt attataaggg atttgtatg tctgtaaagt gtaacctagg 900
aaagataatt caaccatcta atcaaaatgg atctggatta ctatgtaaat tcacagcagt 960
aagataaat aaattttgtt gaatgttata acatcatatg gtctgaaaat gtgggtttt1020
atttggcaca tttaaataaa atgtttctaa cttagatttt gatttgtgtt caatattaac1080
acttcttaat ttgatatatt tgagagtcag acattataat tgtaacacctt attcatacat1140
acctacattc agaattgaaa ggtgttgggt aagtcttcaa catcactatt ctatgcataa1200
aacttggcca gnatcttaag ggactttgaa aattccatct tacccttgc gctctggta1260
agatgacctg agtcccttat gatacagcct gaatgcata tgacagatcc ttaagtttagc1320
taatccgttt gaagttgggt ttagtaggtt ttgtatgatc agtggtaag caagtaggac1380
cactgatgtg tctaaatgag catgacaggg actaaacgaa actgattaaa tttatgaga1440
atagaaaactg atttctggat gatcttata ctaattgcag ctttcagct actagggtggc1500
atagtgttaa ttaggactcc ccaagatatg gggagttcta ctctcaatgg tctgtttct1560
ttgctttcta cattagttaa ccagttttat accaaaaat gcatgttga ggaattgtct1620
gaaattggga caaaacaccc tcatgtaaac cagcttgc aaaaaatcca gcccagatac1680
tcttcata cttcaatggta ttgtcttatt ctgagcaag acctgttggt aatcttcaag1740
ctaggttttg cagttcccaa ccacaacatt cttctatTTT gccaggctgg tgcaaagtaa1800
ttaaagatgt caatcagaaa tgtcaatgag actaaagtgg ttttgtaaat ctcaagctata1860
tttagcaaca ctccatgttag ctaatattt ttggtagcat ctggtagacc tttagaatgtt1920
acatagccag taggttcttt attcaaaattt taagtatctt aagaatagta gggcagtaac1980
agttactttt gagagttttc tggtaagct tttaccaggc attctctagc ctggtagacc2040
aaaaaaaaaa aacctgctgg ttgcgcagat acctaggctt gtccattta tgcatttcag2100
caaagtattt ggataacttggg aataactggc tgcataact ttattcggt2160
gttgaccgc tagtagttg gaagttattt ggattgtttt tggaaattttg actggctgaa2220
ttatgggtgg tataaaatgtt tggtaatc tggcaggctt atttattctgt tgcacttgg2280
tagcttaat tggctgtat tatttaaga taagttact caacaataaa tctgcagaga2340
ttgaacaaat aaaaaaaaaa aaaaaaaaaa 2367

<210> 8
<211> 568
<212> DNA
<213> homo sapiens

<400> 8

ctcgagccgt gggcagtggc cgcaatgcg cggagacact gaccttcagc gcctcggtc 60
cagcgccatg ggcgcctcca ggaagttctt cgttggggaa aactggaaaga tgaacggcg120
gaagcagagt ctgggggagc tcatacgccac tctgaacgcg gccaagggtgc cggccgacac180
cgagggtggtt tggctcccc ctactgccta tatcgacttc gcccggcaga agcttagatcc240
caagattgtctt gttggctgcgca agaactgcta caaagtgtact aatggggctt ttactggggaa300
gatcagccctt ggcatacgatca aagactgcgg agccacgtgg gtggccctgg ggcactcaga360

gagaaggcat gtcttgggg agtcagatga gctgattggg cagaaagtgg cccatgtct 420
ggcagagggc ctcggagtaa tcgcctgcat tggggagaag ctagatgaaa gggaaagctgg 480
catcaactgag aatgttgtt tcgagcagac aaaggcatc ggggatgact tgaaggactg 540
gatcaagttc gtcctggcct gttggcct 568

<210> 9
<211> 1775
<212> DNA
<213> homo sapiens

<400> 9

ctcgggggcc attttgtcaa gagacgaaga ctgagcgggt gtggccgcgt tgccgacctc 60
caggcagcgt cggcttct acgcagaacc cgggagtagg agactcagaa tcgaatctct 120
tctccctccc cttcttgta gatTTTTT atcttcagct acatTTTCGG ctttgtgaga 180
aaccttacca tcaaacacga tggccagcaa cgttaccaac aagacagatc ctcgctccat 240
gaactcccgt gtattcattt ggaatctcaa cactttgtg gtcaagaaat ctgtatgtgga 300
ggcaatctt tcgaagtatg gcaaaattgt gggctgtctt gttcataagg gctttgcctt 360
cgttcagtat gttaatgaga gaaatgcccg ggctgtgtc gcaggagagg atggcagaat 420
gattgctggc caggTTTtag atattaacct ggctgcagag ccaaaagtga accgaggaaa 480
agcagggtgtg aaacgatctg cagcggagat gtacggctcc tctttgact tggactatga 540
cttcaacgg gactattatg ataggatgtc cagttaccca gcacgtgtac ctcttcctcc 600
tcctattgtc cgggctgttag tgccctcgaa acgtcagcgt gtatcaggaa acacttcacg 660
aaggggcaaa agtggottca attctaagag tggacagcgg ghatcttcca agtctggaaa 720
gttggaaagga gatgaccttc aggccattaa gaaggagctg acccagataa aacaaaaagt 780
ggattctctc ctggaaaacc tggaaaaaaat tgaaaaggaa cagagcaac aagcagtaga 840
gatgaagaat gataagttag aagaggagca gagcagcgc tccgtgaaga aagatgagac 900
taatgtgaag atggagtctg aggggggtgc agatgactct gctgaggagg gggacctact 960
ggatgatgat gataatgaag atcggggggta tgaccagctg gagttgatca agatgatgat 1020
aaaagaggct gaggaaggag aggatgacag agacagcgc aatggcgagg atgactctt 1080
agcacatagt ggggtttaga aatcttattcc cattatttct ttaccttaggc gcttgtctaa 1140
gatcaaattt ttcaccagat cctctccct agtacattca gcacatgtc actgttctcc 1200
ccatccttgt cttccccatg ttcattaatt catattgccc cgcccttagt cccattttca 1260
cttccttga cgctccttagt agttttgtt agtcttaccc tgtaatttt gcttttaattt 1320
ttgatacctc tttatgactt aacaataaaa aggatgtatg gttttatca actgtctcc 1380
aaataatctc ttgttatgca gggagtacag ttctttcat tcatacataa gttcagtagt 1440
tgcttcccta actgcaaagg caatctcatt tagttgagta gctcttggaa gcagcttga 1500
gttagaagta tgtgtgttac accctcacat tagtgtgtc tggggccag ttcaacaca 1560
atgtaacaat gtatTTTgt gaatgagagt tggcatgtca aatgcattct ctagaaaaat 1620
aattagtgtt atagtcttaa gattttttt ctaaagttga tactgtgggt tattttgtg 1680
aacagcctga tggggac ctttttccct caaaataaac aagtcccttat taaaccagg 1740
attggagaa aaaaaaaaaa aaaaaaaaaa aaaaa 1775

<210> 10
<211> 509
<212> DNA
<213> homo sapiens

<400> 10

caggtcgagt ggccactgctc cagaccagac ttgcgtcgta ctcgtgcgc tcgcttcgct 60
tttccctccgc aaccatgtct gacaaaacccg atatggctga gatcgagaaa ttgcataagt 120
cgaaactgaa gaagacagag acgcaagaga aaaatccact gccttccaaa gaaacgattg 180
aacaggagaa gcaaggcaggc gaatcgtaat gaggcgtgcg ccgccaatat gcactgtaca 240
ttccacaagc attgccttct tattttactt cttagctg ttacttttgaatgtc 300
agagggttggaa tcaagttaa atgactgtgc tgcccttcc acatcaaagg gactacttga 360
acaacggaaag ggccgcggcc taccttccc atctgtctat ctatctggct ggcaggaaag 420
ggaagagttg caggttgggt aggaagaagt ggggtggaag aagttggatg ggccgcccagt 480
aaaacttggg taaaccgaac ttggccaaag 509

<210> 11
<211> 2191
<212> DNA

<213> homo sapiens

<400> 11

actgagcgag ggccagccgt gcggcatcta caccgagcgc tggctccg gcctcgctg 60
ccagccgtcg cccgacgagg cgacgcgcgc gcaggcgtg ctggacgcgc gcccgtctg 120
cgtcaacgct agtgcgtca gcccgtcg cgccatctg ctggacgcgc cgccagctcc 180
agaaaatgct agtgagtcgg aggaagaccc cagccccggc agtgtggaga gcccgtccgt 240
ctccagcacg caccgggtgt ctgatccaa gttccacccc ctccattcaa agataatcat 300
catcaagaaa gggcatgcta aagacagcca ggcgtacaaa gttgactacg agtctcagag 360
cacagatacc cagaacttct cctccgagtc caagccccgg acagaatatg gtccctgccc 420
tagagaaatg gaagacacac tgaatcacct gaagttcctc aatgtgtcga gtcccagggg 480
tgtacacatt cccaactgtg acaagaaggg atttataag aaaaagcagt gtgcgccttc 540
caaaggcagg aagccccggc tctgctgggtgt tttggataag tatgggcagg ctctccagg 600
ctacaccacc aaggggaaagg aggacgtgca ctgctacagc atgcagagca agtagacgcc 660
tgccgcaagg ttaatgtgga gctcaaatat gccttatttt gcacaaaaga ctgccaagga 720
catgaccagc agctggctac agcctcgatt tatattctg tttgtggta actgattttt 780
tttaaaccaa agtttagaaa gaggtttttt aatgcctat gtttctttt aatggtaaac 840
ttgagcatct ttcaacttcc cagtagtcag caaagagcag tttgaattttt cttgtcgctt 900
cctatcaaaa tattcagaga ctgcggcaca gcacccagac ttcatgcgcc cgtggatgc 960
tcaccacatg ttggcgtcaag cggccgacca ctgactttgt gacttagggc gctgtgttgc1020
ctatgttagag aacacgttcc accccccactt cccgtacagt ggcacacaggc tttatcgaga1080
ataggaaaaac cttaaacccc cggtcatccg gacatccaa cgcatgcctc tggagctcac1140
agccttctgt ggtgtcattt ctgaaacaag ggcgtggatc cctcaaccaa gaagaatgtt1200
tatgtcttca agtgcacgtt actgtttggg gacttggta gaaaataagg tggagtctta1260
cttggtaaaa aaatatgtat ctaagaatgt tctaggcac tctgggacc tataaaggca1320
ggtatttcgg gccctccctc tcaggaatct tcctgaagac atggcccaagt cgaaggccca1380
ggatggctt tgctcgccgc ccgtggggta ggagggacag agagacaggg agagtca1440
tccacattca gaggcatcac aagtaatggc acaattttcc ggtatgactgc agaaaatagt1500
gtttgttagt tcaacaactc aagacgaagc ttatcttgcg ggataagctc tttaaaggca1560
aagctttattt ttcatcttc atcttttgc tccttagca caatgtaaaa aagaatagta1620
atatcagaac aggaaggagg aatggcttc tgcccggccc atccaggaca ctgggagcac1680
atagagattc acccatgttt gttgaactt gacttatttc catgctttc tttataattc1740
acacataatat gcagagaaga tatgttcttgc ttaacattgt atacaacata gccccaaata1800
tagtaagatc tatacttagat aatccttagat gaaatgttag agatgtata tgatataact1860
gtggccatga ctgagggaaag gagctcacgc ccagagactg ggctgtctc ccggaggcc1920
aaccacaagaa ggtctggcaa agtcaggctc agggagactc tgccctgctg cagacctcg1980
tgtggacaca cgctgcatacg agctctccctt gaaaacagag ggtctcaag acattctgcc2040
tacctattag cttttcttta ttttttaac ttttggggg gaaaagtatt tttgagaagt2100
ttgtcttgca atgtattttt aaatagtaaa taaagttttt accattaaaa aaaaaggag2160
aaaaaaagggaaa aaaaaggccgc gcccggact a 2191

<210> 12

<211> 1769

<212> DNA

<213> homo sapiens

<400> 12

attatttaca tttcaaaaata attccctta atcggttac tcctaagttc attaccattg 60
ttggccacc tttaggttcca ccacttgggtt gttaccccaag ccctgggttca aacaggggac 120
atggcaaggg gacacaggac agaggggtcc ccagctgcca cctcaccacat cgcaattcat 180
ttagtagcag gcacaggggc agctccggca cggctttctc aggcctatgc cgagcgcctcg 240
agggctggag agcgggaaga caggcagtgc tcggggagtt gcagcaggac gtcaccagga 300
gggcgaacgg ccacgggagg gggggcccccgg gacattgcgc agcaaggagg ctgcaggggc 360
tcggcctgca ggcggccggc ccacgaggca ctggggccca gggctgtgtc cgagagaggc 420
ccacagtggc ctgggtgacg ctgtatgccc tcaccgctca gcccctgggg ctggcttggc 480
agacagtaca gcatccaggc gaggtaaggg catggggcga gaccagacta ggcggaggccg 540
gcggggccggc gtgaatgagc tctcaggagg gaggatggtg caggcagggg tgaggagcgc 600
agggggccggc gagcgggagg cactggcctc cagagccgtt ggccaaggccg ggctcgccgg 660
gcggccgacgg agccgggatc ggtgcctcag cggtcggtt ggagacgagg ccaggtctcc 720
agctgggggtg gacgtgccccca ccagctgccc aaggcaagac gcccggccgt gtggacgtga 780
caagcaggac atgacatggc ccgggtgtgac ggcgaggaca gaggaggccg gtccggccctt 840

cctgaacacc ttaggctggt ggggctgcgg caagaagcgg gtctgtttct ttacttcctc 900
cacggagtgcg gcacactatg gctgccctct gggctccag aacccacaac atgaaagaaa 960
tgggtctacc cagctcaagc ctgggccttt gaatccggac aaaaaacccct ctagcttggal020
aatgaatatg ctgcacttta caaccactgc actacctgac tcaggaatcg gctctggaag1080
gtgaagctag aggaaccaga cctcatcagc ccaacatcaa agacaccatc ggaacagcag1140
cgccccgcgc acccaccccc caccggcgcac tccatcttca tggccacccc ctgcggcggal200
cggttgacca ccagccacca catcatccca gagctgagct cctccagcgg gatgacgccc1260
tccccaccac ctcccttctc ttcttttca tccttctgtc tctttgttc tgagcttcc1320
tgtctttcct ttttcttag agattcaaag cctccacgac tctgtttccc ccgtcccttc1380
tgaatataat ttgcaactaag tcatttgcac tggttggagt tggagacg gccttgagtc1440
tcagtagcag tggcggtgag tggagccac cttggcaagt gcctgtgcag ggcccggccg1500
ccctccatct gggccgggtg actgggcggc ggctgtgtgc cggaggcctc accctgcct1560
cgcttagtct ggaagctccg accgacatca cggagcagcc ttcaagcatt ccattacgccc1620
ccatctcgct ctgtgccttccccaccagg gttcagcag gggcttggga ctcatcatcal680
ataaacactg ttacagcaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa1740
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1769

<210> 13
<211> 1026
<212> DNA
<213> homo sapiens

<400> 13

aaaagctgtc cgcgccccca gcccaggccc agctttgggg ttgtccctgg acttgtcttg 60
gttccagaac ctgacgaccc ggcgacggcg acgtcttctt tgactaaaag acagtgtcca 120
gtgctccagc cttaggatct acggggaccc cctcccgccg cggcaccatg cccaaactct 180
ctggcaactg gaaaatcatc cgatcgaaaa acttcgagga attgtctaaa gtgctggggg 240
tgaatgtat gctgaggaag attgtctgtgg ctgcagcgtc caagccagca gtggagatca 300
aacaggaggg agacacttac tacatcaaaa cctccaccac cgtgcgcacc acagagatta 360
acttcaaggt tggggaggag tttgaggagc agactgtgga tgggaggccc tgtaagagcc 420
tggtaaatg ggagagttag aataaaatgg tctgtgagca gaagctctg aaggggagagg 480
gcccccaagac ctcgtggacc agagaactga ccaacgatgg ggaactgatc ctgaccatga 540
cgccggatga ctgtgtgtgc accagggtct acgtccgaga gtgagtgccc acaggtagaa 600
ccgcggccga agccaccac tggccatgtc caccgcctg cttaactgccc ccctccgtcc 660
cacccttcc ttcttaggata gcgctccctt taccggatc acttctgggg gtaactggga 720
tgcctcttgc agggtcttgc ttctttgac ctcttcttc ctcccttaca ccaacaaaga 780
ggaatggctg caagagccca gatcacccat tccgggttca ctcccccgcct ccccaagtca 840
gcagtccctag ccccaaaacca gcccagagca gggctctct aaaggggact tgagggcctg 900
agcaggaaag actggccctc tagttctac ctttgcctt tttttttttt acagtttaga 960
atatttattt gtttatattt ttaaaatgt ttaaaaaat aaaaaaaaaa aaaaaaaaaa1020
aaaaaaaaa 1026

<210> 14
<211> 676
<212> DNA
<213> homo sapiens

<400> 14

ggccattttgc tgaagagacg aagactgagc ggttgtggcc gcgttgcggc cctccagcag 60
cagtcggctt ctctacgcag aaccggggag taggagactc agaatcgaat ctcttctccc120
tcccccttctt gggcagcaag gcaacccca tccctactca ctggagctca gctttgat180
ttaacctccc ttccccaccc ttccagaaca cacacattcc attccaaaac tgat1ttata240
aagacatttt aaacataatg atgcaacttg gtgtcacta cagcaatgt acaggtgttt300
tttttttaat tggccaaaa accggggaccc ggatttaaga tgat1ttttt aaaaatttcta360
tttctat1ttt ttcggcagca gttgggttag aggaggagga gccttttagc ctcccaaaaa420
ctgacctctc tacttccctcg tttttttt agattgattg atgatgtggaa aaggggctttg480
cttgtctgtc actgaaaact ttatccttgc gtttttggg gaaactgcgtt tgaaagaga540
aaagaaatga actttactga ctgcacattt tgacccccc gttttcgaa tctggcaat600
tttaattttt gttttacagt gagat1ttttt gatctcagca cagaagtaat ccaat1tttt660
tttagcatttt ccgact 676

```
<210> 15  
<211> 1254  
<212> DNA  
<213> homo sapiens
```

<400> 15

<210> 16

<211> 537

<212> DNA

<213> homo sapiens

<400> 16

```

ggcccgccc cccaccctcg acatgcgtt ccggcgacgc cttagcgctg accccccacgc 60
aacccagcga aactccgggg aggccgcggg cacgatggac ggtcgggtgc agctgatgaal20
ggccctcctg gccggggcccc tccggccccgc ggcgcgtcgc tggaggaacc cgattccctt180
tcccgagacg tttgacggag ataccgaccg actcccgag ttcatcgtd agacgtgctc240
ctacatgttc gtggacgaga acacgttctc caacgacgccc ctgaagggtga cgttcctcat300
caccggcctc acggggccag ccctgcagtgc ggtgatcccc tacatcagga aggagagccc360
cctgctcaat gattaccggg gctttctggc cgagatgaag cgagtctttg gatggggagga420
ggacgaggac ttcttaggccc ggagaccctc gggcctgggg gcgggtgctc tgggaagagt480
tcgctgtgcc agtggccacc gctagggtct ccacaggcgc cctccccagg gaatgct 537

```

<210> 17

<211> 823

<212> DNA

<213> homo sapiens

<400> 17

```

tagactgaac aggaggggggta gtcctgggta gcgcgcgggt ctaaatcggtt acttggcggg 60
aagttcccat gagtctttgc cagcgtcccc ctccctttgt gaggattggg atattccgac120
tccttaaggg cctggcgcac ataaggtgtg accttttcat tcccggttgtt atggagggcc180
acatctgcca gagcctggag tctgcgaagg ccgggaccgg qttccccggc ccacagtggg240
ggtgtgcaaa ccccgagagaaa ctggggttgca aattcgtgaa gaatcagcat catgtttggc300
agctgagttat tggagccagg agcctgccc gagggtttga gaacagagtg ctgttttaga360
gctggcagca gcatctcagc ccaagagaag gttatatattcc cagaggatgt cagtcccaag420
gaccaggtagc tgccatcagt ttggattctg aaaactaact ggcataaca ctgggtgttag480
aaacatgttgc gccttatgtt tcagaggaca tgctcagcag atccaaagaga tatatttggc540
aacttttctt aqaaaaaqgca cattqqgtat cattcattac attcttgagg ttttttggg600

```

ttttttttt tttttttga gacagtcttg ctgtattgcc caggctgggaa gtgtggggc660
acaatcacag ctcattgcat cctcaatcac ccagggccta agcaatcctc ccacccgtata720
gctgggacta cagctcacag cacaccgggc taaaattttt ttttggtag acggttttc780
tatgttgcggc ggggtgggggg cagggtccgg gggtcagatg gtc 823

<210> 18
<211> 1082
<212> DNA
<213> homo sapiens

<400> 18

ggcgccccat aagggtgtgac ctttcattc cggttgttat ggagggccac atctgccaga 60
gcctggagtc tgcaaggcc gggaccggg tccccggccc acagtgggg tggcaaaacc 120
cgagagaact ggtcgctgaa acctctacaa cttagttgac cgtaactgcc agagccctgc 180
cctgaattcc tgccttact ccctctttaa gattgcgtac ccactgcaga gtgctgaaga 240
cggggttagcc acgagggtgc aaattcgtga agaatcagca tcattgttgg cagctgagta 300
ttggagccag gaggcctgcca tgagggtttt agaacagagt gctgttttag agctggcage 360
agcatctcag cccaagagaa ggttatattc ccagaggatg tcagtcctaa ggaccagtag 420
ctggccatcag ttggattct gaaaactaac tggcatcaac actgggtgta gaaacatgct 480
tgccttatgt atcagaggac atgctcagca gatccaagag atatatttgg caacttttc 540
tagaaaaggc acattgggta tcattcatta cattctttag tttttttggg tttttttttt 600
tttttttga gacagtcttg ctgtattgcc caggctggag tgggtggca caatcacagc 660
tcattgcatc ctcaatcacc caggcctaag caatcctccc accttgcgtac tggactaca 720
gctcacagca cacctggcta aaattttttt tttttttttt tttttttttt tttttttttt 780
ggctggcttc aggctcctgg gtcagatgg tcctcctgcc tcagtttcca aaggcacagg 840
ccaagttgtt gctttgtccc ttgcattcat gcccacaag aggttctata ccttttaatg 900
aattgacttt cataaaattgg ttatgttggg gggcaagttc ttaagctgg aaattgtaaa 960
ttcctcctga aatgtttttt catgcagttt ccatgaacta atactacaat aaaggatggt1020
cttgggtgtc aaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa1080
aa 1082

<210> 19
<211> 1548
<212> DNA
<213> homo sapiens

<400> 19

cccatccat agggaaatgag ctgggctgtc ctttctcccc acgttcacct gcacttcgtt 60
agagagcagt gttcacatgc cacaccacaa gatccccaca atgacataac tccattcaga 120
gactggcgtg actgggctgg gtctccccac ccccccccttc agctcttgc tcaactcagaa 180
tctggcagcc agttccgtcc tgacagagg cacagcatat attgggtggat tcttgcgtccat 240
agtgcacatcg cttaagaat taacgaaagc agtgtcaaga cagtaaggat tcaaaccatt 300
tgccaaaaat qagtctaaqt qcatttactc tcttgcgtccat attggattttt ggtaccagtg 360
gccagacta tgattatgat tttccctat caatttatgg gcaatcatca ccaaactgtg 420
caccagaatg taactgcctt gaaagctacc caagtgcctt gtactgtgt gagctgaaat 480
tgaaaagtgt accaatggtg cctcctggaa tcaagttatct ttacctttagg aataaccaga 540
ttgaccatat tgatggaaat ggctttgaga atgtaactga tctgcagttt ctcattcttag 600
atcacaaacct tctagaaaaac tccaagataa aaggagatgt tttctctaaa ttgaaacaac 660
tgaagaagct gcatataaaac cacaacaacc tgacagatc tggggccca cttccaaat 720
ctctggagga tctgcagttt actcataaca agatcacaaa gctgggctct tttgaaggat 780
tggtaaacctt gacccatc catctccagc acaatcggtt gaaagaggat gctgtttcag 840
ctgcttttaa aggtctttaa tcactcgat accttgactt gagcttcaat cagatagcc 900
gactgccttc tggctccctt gtctctctt taactctctt cttagacaac aataagatca 960
gcaacatccc tgatgatgtt ttcaagcggtt ttaatgcatt gcaatcttgc tcttgcgtccat 1020
acaacgaact ggctgtatgtt ggaataccctt gaaattctt caatgtgtca tccctgggtt 1080
agctggatct gtcctataac aagctttttt acataccacat tgcataatggaa aacccgtttttt 1140
actattacct ggaggtcaat caacttgcgtt agtttgcgtt aaagagatcc tgcataatggaa 1200
tggggccatt atcctactcc aagatcaagc atttgcgtt ggatggcaat cgcattctcag 1260
aaaccagtct tccaccggat atgtatgtt gtctacgtgt tgcttaacgaa gtcacttta 1320
attaatatct gtatcctgga acaatattttt atgggtatgt ttttctgtgt gtcagttttc 1380
atagtatcca tatttttattt cttccatgaa ttttaaaatc tgaggaaat 1440

gttttgtaaa catttatTTT ttttAAAGG AAAAGGATGG AAAGGCCAGG GCCTAATTc1500
catccaccaa ggaacacacc acattattcc acggaatagg ccatcggg 1548

<210> 20
<211> 844
<212> DNA
<213> homo sapiens

<400> 20

acctgcagag gggccatac ggccgttggc tggattcccg tcgttaactta aaggaaatt 60
ttcacaatgt ccggagccct tggatgtcctg caaatgaagg aggaggatgt cctaagttc120
cttgccagcag gaaccactt aggtggcacc aatcttgcact tccagatgga acagtacatc180
tataaaagga aaagtgtatgg catctatatc ataaatctca agaggacctg ggagaagctt240
ctgctggcag ctgcgtcaat tggtgcatt gaaaaccctg ctgatgtcag tgttatatcc300
tccaggaata ctggccagag ggctgtgctg aagtttgctg ctgccactgg agccactcca360
attgctggcc gtttcaactcc tggAACCTTC actaaccaga tccaggcagc cttccggag420
ccacggcttc ttgtggttac tgaccccagg gctgaccacc agcctctcac ggaggcatct480
tatgttaacc tacctaccat tgcgctgtgt aacacagatt ctccctgtcg ctatgtggac540
attgcaatcc catgcaacaa caaggtaatg attttaggt cttaggttg tgaatgcgtg600
ctctagaaaa aacattcctg tgcacattgt tagagttgg agtttgaggct actgactggc660
cgatgaactc gcaagtgttag gttagtgc acatgagggg caagtttcg ctaacaccac720
aagggtctct ggcccaatga gtggagttt atagtaattc ttgctacaag tataacatta780
ctgcatgaca gctttgtgga gaaatgaaaaa catttggaaa atagtgtgtt ctctgccttg840
tcca 844

<210> 21
<211> 862
<212> DNA
<213> homo sapiens

<400> 21

gagcaagaga gaaggaggcc cagacagtga gggcaggagg gagagaagag acgcagaagg 60
agagcgagcg agagagaaag ggttctggat tggggggggag agcaaggaggg ggaggaaggc120
ggtagagagag gcggggccct cgggaggggtg aaagggggga ggagaaggcc ggggcacggal80
ggcccgagcg agggacaaga ctccgactcc agctctgcact ttttgcggc ctctcggtt240
ccactgcagc catgtcactc ctcttgcgg tggctctcagc ccttcacatc ctcattctta300
tactgctttt cgtggccact ttggacaagt cctgtggac tctccctggg aaagagtccc360
tgaatctctg gtacgactgc acgtggaaaca acgacaccaa aacatggcc tgcagtaatg420
tcagcgagaa tggctggctg aaggcgggtc aggtcctcat ggtgctctcc ctcattctct480
gctgtctctc cttcatcctg ttcatgttcc agctctacac catgcacga ggaggctct540
tctatgccac cggcctctgc cagcttgc ccaagcgtggc ggtgtttact ggcccttga600
tctatgccat tcacggcgag gagatctgg agaagcaccg gcgagggggc agcttcggat660
actgttge eetggcgtgg gtttttttttcc ccctcgccct ggtcagcggc atcatctaca720
tccacctacg gaagcggggag tgagcgcccc gcctcgctcg gctgcccccg ccccttcccg780
gccccctcg ccgcgcgtcc tccaaaaaaat aaaaccttaa ccgcggggaa aaaaaaaaaa840
aaaaaggaag gaaaaaaaaa aa 862

<210> 22
<211> 546
<212> DNA
<213> homo sapiens

<400> 22

cccaagccaag ggtccttcag gtggaggc ctgggtgact ttggaaagtcc gttagtgc 60
attgcagata atttttagct tagggcctgg tggctaggc ggttctctcc tttccagtcg120
gagacctctg ccgcacacat gctccgcac atcatcggtc aggccaagaa gcatccgagc180
ttgatcccc tctttgtatt tattggaaact ggagctactg gagcaacact gtatctttg240
cgctggcat tggtaatcc agatgtttgt tggacagaa ataaccacca gcccctggaaac300
aaactgggtc ccaatgatca atacaagtgc tactcgtga atgtggattt cagcaagctg360
aagaaggaac gtccagattt ctaaatgaaa tggttcacta taacgctgct ttagaatgaa420

ggcttccag aagccacatc cgacacaattt tccacttaac caggaatat ttctcctttt480
aatgaatga aatcaatggt gggggcgct attgaaagcc ctattgggt tcaagtgttg540
aataaa 546

<210> 23
<211> 1591
<212> DNA
<213> homo sapiens

<400> 23

gccgaggagc cgagcccgcc accccccccgc ccgcccgcg ccgcccattgg ctgcctcg 60
aacagtaaga ccgaggacca ggcgaacgag gagaaggcgc aggtgaggcc aacaaaaaga 120
tcgagaagca gctgcagaag gacaaggcagg tctaccggc cacgcacccgc ctgctgctgc 180
tgggtgtgg agaatctggt aaaagcaccat tggtaagca gatgaggatc ctgcatttta 240
atgggtttaa tggagacagt gagaaggcaa ccaaagtgcg ggacatcaaa aacaacctga 300
aagaggcgtat tggaccattt gtggccgcca tgagcaaccc ggtgcccccc gtggagctgg 360
ccaaacccga gaaccaggatc agagtggact acattctgag tggatgaaac gtgcctgact 420
ttgacttccc tcccgaattt tatgagcatg ccaaggctct gtggaggat gaaggagtgc 480
gtgcctgcta cgaacgctcc aacgagttacc agctgattga ctgtgcccag tacttctgg 540
acaagatcga cgtgatcaag caggctgact atgtgcccag cgatcaggac ctgcattcgct 600
gccgtgtctt gacttctgga atctttgaga ccaagttcca ggtggacaaa gtcaacttcc 660
acatgtttga cgtgggtggc cagcgcgtat aacgcccggaa gtggatccag tgcttcaacg 720
atgtgactgc catcatcttc gtgggtggcca gcagcagctt caacatgttc atccgggagg 780
acaaccagac caaccgcctg caggaggctc tggaccctttt caagagcatc tggaacaaca 840
gatggctgctc caccatctt ctgatcctgt tcctcaacaa gcaagatctg ctgcgtgaga 900
aagtccctgc tggaaatcg aagattgagg actactttcc agaatttgct cgctacacta 960
ctcctgagga tgctactccc gagcccgag aggacccacg cgtgaccggc gccaagtact1020
tcattcgaga tggatcttgc aggatcagca ctgcccagtgg agatggggctg cactactgct1080
accctcattt cacctgcgt gtggacactg agaacatccg ccgtgtgttc aacgactgccc1140
gtgacatcat tcagcgcattt caccctcgatc agtacgagct gctctaagaa gggaaacccccc1200
aaatttaattt aaagccttaa gcacaattaa ttaaaagtga aacgtaattt tacaagcagt1260
taatcaccca ccataggggca tgattaacaa agcaacctttt cccttcccccc gagtgatttt1320
gcgaaacccc ctttccctt cagttgtttt agatgttcca aatttagaaa gcttaaggcg1380
gcctacagaa aaagaaaaaa aggccacaaa agttccctt cactttcagt aaaaataat1440
aaaacagcag cagcaaacaa ataaaaatgaa ataaaaagaaa caaatgaaat aaatattgtg1500
ttgtgcagca ttaaaaaaaaa tcaaaaataaa aattaaatgt gagcaaagga aaaaaaaaaa1560
ggcaaaaggg gaaagaagaa aaaaaaaaaaaaaa1560 1591

<210> 24
<211> 441
<212> DNA
<213> homo sapiens

<400> 24

ggcaggcaga tacgttcgtc agcttgcctt tttctgcccc tggacgcgcg cgaagaagca 60
tcgttaaagt ctctcttcac cctggcgta tgcataagtc agagtctctt aaagagcccg120
aacagctgag gaagctcttc attggagggt tgagctttga aacaactgtat gagagcctgaa180
ggagccattt tgagcaatgg ggaacgctca cggactgtgt ggttatgaga gatccaaaca240
ccaaagcgttc caggggcttt gggttgtca catatgccac tggatggaggag gtggatgcag300
ctatgaatgc aaggccacac aagggtggatg gaagagttgtt ggaaccaaag agagctgttt360
cagagaagat ttgaaaagcc aggtgccact tacctgtgaa aaggatattt tggatggatt420
aaggagact tgagacatca c 441

<210> 25
<211> 1131
<212> DNA
<213> homo sapiens

<400> 25

cgggaggtga aatccgggttc taaccgggtcc ggggctccca gcgctataaaa aactttataaa 60

```

accccccggga gcccggagcag tgtgaagaag aggcgagaac gaccccccggga ccgacccaaag 120
cccgcgcgcc gctgcatccc gcgtccagca cctacgtccc gtcggcgctcg cccggcccac 180
catgccaag agaaaaggctg aaggggatgc taaggggagat aaagcaaagg tgaaggacga 240
accacagaga agatccgcga ggttgtctgc taaacctgct cctccaaagc cagagcccaa 300
gcctaaaaag gcccctgcaa agaaggggaga gaaggtaccc aaaggaaaaa agggaaaaagc 360
tgatgctggc aaggagggga ataacctgc agaaaatggg gatgccccaa cagaccaggc 420
acagaaagct gaaggtgctg gagatgccaa gtgaagtgtg tgcattttg ataactgtgt 480
acttctggtg actgtacagt ttgaaatact atttttatc aagtttataaaaatgcaga 540
attttggttt atttttttttt ttttttaaaa agctatgtt ttagcacaca gaacacttca 600
ttgttggttt tgggggaaagg ggcatatgtc actaatagaa tgtctccaaa gctggattga 660
tgtggagaaa acacccccccttcc ctcttagtt tgagagactt cctcttggct cccaggagga 720
gggattccct gactttgaca cacatggcca ccttggcaca aaagccttgc ggtatagaaa 780
aacaaatttg tttttatgtc ctcttctccc tttccatctt tcagcataga cttaactccc 840
ttaagcccaag acatctgttg agacctgacc cctagtcatt ggttaccagt gtgtcaggca 900
atctggactt tccagtgatg ccactgagat ggcacctgtc aaaagagcag tggttccatt 960
tctagattgt ggatcttcag ataaattctg ccattttcat ttcacttcct gaaagtccagg 1020
gtcggcttgt gaaaagttgt taaacaacat gctaaatgtg aaatgtcaac cctcactctal 1080
aaactttcccttcc ctgggtcaga ggatccgatg gaggacttca attgggggtt t 1131

```

<210> 26
<211> 1071
<212> DNA
<213> homo sapiens

<400> 26

gtacccctcaa	agacagagac	accaagaaga	atcggAACAT	acaggGTTTG	atatCAAAGG	60
tttataaaagc	caatatCTGG	gaaAGAGAAA	accGTGAGAC	ttccAGATCT	tctCTGGTGA	120
agtgttgttt	cctgcaacga	tcacgaacat	gaacatCAAA	ggatCGCCAT	ggaaAGGGTC	180
cctccTGTG	ctgctgggt	caaacctgct	cctgtGCCAG	agcgtGGCCC	cctgccccat	240
ctgtcccgcc	ggggctgccc	gatgccaggt	gacccttCGA	gaccgtttG	accgcGCCGT	300
cgtcctgtcc	cactacatcc	ataacCTCTC	ctcagaaaATG	ttcagcGAAT	tcgataAAACG	360
gtatacccat	ggccgggggt	tcattaccaa	ggccatCAAC	agctGCCACA	cttcttccct	420
tgccaccccc	gaagacaagg	agcaagCCCA	acagatGAAT	caaaaAGACT	ttctgagcct	480
gatagtccgc	atattgcgat	cctggaatga	gcctctgtat	catctggTCA	cggaaAGTAGC	540
tggtatgcaa	gaagccccgg	aggctatcct	atccaaAGCT	gtagagATTG	aggagcaaAC	600
caaacggcTT	ctagagggca	tggagctgat	agtcaGCCAG	gttcatCCTG	aaacccaAGA	660
aaatgagatc	taccctgtct	ggtcgggact	tccatCCCTG	cagatGGCTG	atgaagAGTC	720
tcgccttct	gttattata	acctgctCCA	ctgcctacGC	agggattcac	ataaaatcga	780
caattatctc	aagctcctga	agtGCCGAAT	catccacaAC	aacaactgCT	aagcccACAT	840
ccatTTcatc	tatttctgag	aaggTCCTTA	atgatCCGTT	ccattgcaAG	cttcttttag	900
ttgtatctct	tttgaatcca	tgcttgggt	taacaggTCT	cctctaaaa	aataaaaACT	960
gactccttag	agacatcaaa	atctaaaaaaaa	acttaatGGG	ccgggCgcAG	tggtcatgg	1020
ctgtgggcccc	ggcacTTTGG	gaggCCGAGG	caggcggatc	aggaggtcag	g	1071

<210> 27
<211> 896
<212> DNA
<213> homo sapiens

<400> 27

```

gtgaccggct cagacccggtt ctggagacaa aaggggccgc ggccggccgga gcggggacggg 60
cccggcgcgg gaggggagcgá agagcgcggg cagcgcagcgá gatgcagcac cgaggcttc120
tcctccctac cctcctcgcc ctgctggcgc tcacctccgc ggtcgccaaa aagaaaagata180
aggtaagaa qggcggggccg gggagcgcagt gcgctgagtg ggctctggggg ccctgcaccc240
ccagcagcaa ggattgcggc gtgggtttcc gcgaggccac ctgcggggcc cagaccacg300
gcatcccggtg cagggtgccc tgcaactgga agaaggagtt tggagccgac tgcaagtaca360
agtttgagaa ctgggggtgcg tgtgatgggg gcacaggccac caaagtccgc caaggcaccc420
tgaagaaggc gcgcataaat gctcagtgcc aggagaccat ccgcgtcacc aagccctgc480
cccccaagac caaagcaaaag gccaaagccca agaaagggaa gggaaaggac tagacgccaa540
gcctggatgc caaggagccc ctggtgtcac atggggcctg gcccacgccc tccctctccc600
aggccccqaga tttgtacccac cagtcgccttc tgtctgcctcg tttagctttaa tcaatcatgc660

```

cctgccttgt ccctctcaact ccccagcccc acccctaagt gcccaaagt gggagggaca720
aggattctg ggaagcttga gcctcccca aagcaatgtg agtcccagag cccgctttg780
ttcttccca caattccatt actaagaaac acatcaaata aactgactt ttcccccaaa840
aaaaagctct tctttttaa tataaaaaaa aaaaaaaaaa aaaaaaaa aagaaa 896

<210> 28
<211> 1050
<212> DNA
<213> homo sapiens

<400> 28

tttcatttt tttttttttt ttttcttag ttcaagttt atacaaacta caaaagatta 60
atgggttgct ctactaatac atcatacaaa ccagtagcct gcccacaacg ccaactcagg 120
ccattctac caaaggaaga aaggctggc tctccacccc ctgttagggaa ggcctgcctt 180
gtaagacacc acaattcggc tgaatctgaa gtcttgcgtt ttactaatgg aaaaaaaaaa 240
tacagaagag gttttgttct catggctgcc cacccgagcc tggcactaaa acagcccagc 300
gctcacttct gcttggagaa atattcttg ctcttttggaa catcaggctt gatggtatca 360
ctgccagggtt tccagccagc tgggcacact tccccatgtt tgtcagtgtt ctggaaggcc 420
tgaactagtc tcaaagtctc atccacagag cggccaaacag ggaggtcatt tacagtgtc 480
tgccgaagaa tacccttatac atcaatgata aaaaggcccc tgaacgagat gccttcatca 540
gcctttaaga cccctataatc ctgagcaatg gtgcgttcg ggtctgatac caaaggaatg 600
ttcatgggtc ccagtccctcc ttgtttctt ggtgtattga cccatgttag atgacagaag 660
tgagaatcca cagaagcacc aatcaattgg cagttgagtt tcttaaattt tcctgccccta 720
tcactgaaag caatgatctc cgtggggcac acaaagggtga agtcaagagg gtaaaaagaag 780
aacacaacat atttccctt gtagtcagac aggctgatat cttaaactg accatctggc 840
ataacagctg tggctttgaa gttggggca ggggtcccaa ttttagcatt tcctgaagac 900
atcttcctat cagcagtccc aacacaagtc gcagaaacta accaccgaca ccaggcaaga 960
acaagacgca caagagctt cccggggcgct gcctttatag ccagtaggga tctcgccaca1020
gtcggAACGG acgggggtgc cggagtagga 1050

<210> 29
<211> 581
<212> DNA
<213> homo sapiens

<400> 29

caggcttcct tctggcaaca ggcgtgggtc acgctctcgc tcggctttc tgccgccatc 60
ttgggtccgc gttccctgca caaaatgccc ggcgaacacc agaaaccgtc cctgctacag120
agcaggagtt gccgcagccc caggctgaga caggtctgg aacagaatct gacagtgtg180
aatcagtacc agagcttcaa gaacaggatt ccacccaggc aaccacacaa caagcccagc240
tggccggcagc agctgaaatc gatgaagaac cagtcagtaa agcaaaaacag agtcggagtg300
aaaagaaggc acggaaggct atgtccaaac tgggtcttcg gcaggttaca ggagttaacta360
gagtcaactat ccggaaatct aagaatatcc tctttgtcat cacaacca gttgtctaca420
agagccctgc ttcaagatacg tacatagtt ttggggaaagc cagatcgaag attatcccag480
caagcacaac tagcagctgc tgagaagtc aagttcaggtg aactgtctca acgttcagga540
aaccccccggc ttccactgtt gaggggaggt aaggggaggg t 581

<210> 30
<211> 264
<212> DNA
<213> homo sapiens

<400> 30

gggactatgt tggagcctg cgaaagaagt ttgtgtgggg actgtggca gtgaatgcgt 60
tgggaacaat atggaaaact gggagctgcc ctcagttct ccccaagttg gactcacttt120
cgggggtgtcc caaaagcctg attccagggc ctgcttagccc gaccccggtg acgcctccac180
ccgcgcctgg ccccagcctt caccgcgtat cgccgcctc cggggcacac cctccgcccag240
aaaacagccg cggggcgccg agac 264

<210> 31

<211> 111
<212> DNA
<213> homo sapiens

<400> 31

cggcgaatca cttataaatg gcgcgcgaagc aggagcccgaggctaaatt gcaggagggg 60
tgagcgaatg ctgtgcttc atgggcctct tacgttgatg aggcaaagta t 111

<210> 32

<211> 76

<212> PRT

<213> homo sapiens

<400> 32

Pro	Phe	Cys	Glu	Glu	Thr	Lys	Thr	Glu	Arg	Leu	Trp	Pro	Arg	Cys	Arg
1				5					10					15	
Pro	Pro	Ala	Ala	Val	Gly	Phe	Ser	Thr	Gln	Asn	Pro	Gly	Val	Gly	Asp
				20				25					30		
Ser	Glu	Ser	Asn	Leu	Phe	Ser	Leu	Pro	Phe	Leu	Gly	Ser	Lys	Ala	Asn
							40					45			
Pro	Ile	Pro	Thr	His	Trp	Ser	Ser	Ala	Leu	Ile	Phe	Asn	Leu	Pro	Ser
	50					55					60				
Pro	Pro	Phe	Gln	Asn	Thr	His	Ile	Pro	Phe	Gln	Asn				
	65					70				75					

<210> 33

<211> 72

<212> PRT

<213> homo sapiens

<400> 33

Ser	Ser	Phe	Leu	Phe	Ser	Phe	Gln	Thr	Gln	Phe	His	Lys	Asn	Arg	Lys
1				5					10					15	
Asp	Lys	Val	Phe	Ser	Ser	Arg	Gln	Ala	Lys	Pro	Phe	Pro	His	His	Gln
			20					25					30		
Ser	Ile	Leu	Lys	Ile	His	Glu	Glu	Val	Glu	Arg	Ser	Val	Ser	Gly	Arg
			35				40					45			
Leu	Lys	Gly	Ser	Ser	Ser	Ser	Asn	Pro	Thr	Ala	Ala	Glu	Lys	Ile	Glu
	50					55					60				
Ile	Glu	Ile	Leu	Lys	Ile	Thr	Ser								
	65					70									

<210> 34

<211> 70

<212> PRT

<213> homo sapiens

<400> 34

Lys	Lys	Leu	Asp	Tyr	Phe	Cys	Ala	Glu	Ile	Lys	Asn	Ser	His	Cys	Lys
1				5					10					15	

Thr	Lys	Ile	Lys	Ile	Ala	Gln	Ile	Arg	Lys	Pro	Gly	Gly	Ala	Lys	Cys
			20					25					30		
Gln	Val	Ser	Lys	Val	His	Phe	Phe	Ser	Leu	Ser	Lys	Arg	Ser	Ser	Thr
		35				40						45			
Lys	Thr	Ala	Arg	Ile	Lys	Phe	Ser	Val	Ala	Asp	Lys	Gln	Ser	Pro	Phe
		50			55						60				
His	Ile	Ile	Asn	Gln	Ser										
		65			70										

<210> 35

<211> 60

<212> PRT

<213> homo sapiens

<400> 35

Ser	Ser	Gly	Pro	Ala	Pro	Gly	Cys	Ser	Pro	Phe	Ala	Gly	Thr	Arg	Lys
1				5					10				15		
Asn	Phe	Pro	Ser	Met	Val	Val	Leu	Glu	Arg	Thr	Phe	Leu	Lys	Ile	Asn
			20					25					30		
Tyr	Ile	Phe	Leu	Cys	Ile	Pro	Met	Glu	Phe	Gln	Phe	Ile	Arg	Cys	Ser
		35				40						45			
Pro	Trp	Pro	Pro	Gln	Asn	Thr	Glu	Val	Ile	Pro	Ala				
	50					55					60				

<210> 36

<211> 63

<212> PRT

<213> homo sapiens

<400> 36

Ala	Ser	Gly	Val	His	Thr	Glu	Thr	His	Arg	Tyr	Asn	Leu	Leu	Ser	Ala
1				5					10					15	
Lys	Ser	Arg	Lys	Lys	Gly	Trp	Gly	Tyr	Leu	Gly	Trp	Leu	Gly	Phe	Asp
			20					25					30		
Phe	Leu	Leu	Val	Cys	Leu	Phe	Cys	Thr	Lys	Thr	Val	Leu	Ser	Phe	Glu
				35			40					45			
Tyr	Arg	Arg	Asp	Ile	Ser	Ile	Tyr	Met	Leu	Ser	Asn	Gln	Asp	Gly	
	50					55					60				

<210> 37

<211> 170

<212> PRT

<213> homo sapiens

<400> 37

Ala	Arg	Ala	Ala	Arg	Ala	Ala	Gln	Thr	Pro	His	Leu	Thr	Leu	Pro	Ala
1				5					10					15	
Asp	Leu	Gln	Thr	Leu	His	Leu	Asn	Arg	Pro	Thr	Leu	Ser	Pro	Glu	Ser
			20					25					30		

Lys	Leu	Glu	Trp	Asn	Asn	Asp	Ile	Pro	Glu	Val	Asn	His	Leu	Asn	Ser
		35					40					45			
Glu	His	Trp	Arg	Lys	Thr	Glu	Lys	Trp	Thr	Gly	His	Glu	Glu	Thr	Asn
	50					55					60				
His	Leu	Glu	Thr	Asp	Phe	Ser	Gly	Asp	Gly	Met	Thr	Glu	Leu	Glu	Leu
65					70					75					80
Gly	Pro	Ser	Pro	Arg	Leu	Gln	Pro	Ile	Arg	Arg	His	Pro	Lys	Glu	Leu
				85					90					95	
Pro	Gln	Tyr	Gly	100	Gly	Pro	Gly	Lys	Asp	Ile	Phe	Glu	Asp	Gln	Leu
									105					110	Tyr
Leu	Pro	Val	His	Ser	Asp	Gly	Ile	Ser	Val	His	Gln	Met	Phe	Thr	Met
		115					120					125			
Ala	Thr	Ala	Glu	His	Arg	Ser	Asn	Ser	Ser	Ile	Ala	Gly	Lys	Met	Leu
130						135					140				
Thr	Lys	Val	Glu	Lys	Asn	His	Glu	Lys	Glu	Lys	Ser	Gln	His	Leu	Glu
145					150					155					160
Gly	Ser	Ala	Ser	Ser	Ser	Leu	Ser	Ser	Asp						
					165					170					

<210> 38

<211> 144

<212> PRT

<213> homo sapiens

<400> 38

Ala	Arg	Ala	Pro	Thr	Leu	Asp	Met	Arg	Phe	Arg	Arg	Arg	Leu	Ser	Ala
1				5					10					15	
Asp	Pro	His	Ala	Thr	Gln	Arg	Asn	Ser	Ala	Glu	Ala	Arg	Gly	Thr	Met
			20					25					30		
Asp	Gly	Arg	Val	Gln	Leu	Met	Lys	Ala	Leu	Leu	Ala	Gly	Pro	Leu	Arg
		35					40					45			
Pro	Ala	Ala	Arg	Arg	Trp	Arg	Asn	Pro	Ile	Pro	Phe	Pro	Glu	Thr	Phe
	50					55					60				

Asp	Gly	Asp	Thr	Asp	Arg	Leu	Pro	Glu	Phe	Ile	Val	Gln	Thr	Cys	Ser
65				70						75					80
Tyr	Met	Phe	Val	Asp	Glu	Asn	Thr	Phe	Ser	Asn	Asp	Ala	Leu	Lys	Val
				85					90					95	
Thr	Phe	Leu	Ile	Thr	Arg	Leu	Thr	Gly	Pro	Ala	Leu	Gln	Trp	Val	Ile
			100					105					110		
Pro	Tyr	Ile	Arg	Lys	Glu	Ser	Pro	Leu	Leu	Asn	Asp	Tyr	Arg	Gly	Phe
		115					120					125			
Leu	Ala	Glu	Met	Lys	Arg	Val	Phe	Gly	Trp	Glu	Glu	Asp	Glu	Asp	Phe
	130					135					140				

<210> 39

<211> 178

<212> PRT

<213> homo sapiens

<400> 39

His 1	Ser	Leu	Gly	Arg 5	Ala	Pro	Val	Glu	Thr 10	Leu	Ala	Val	Ala	Thr 15	Gly
Thr	Ala	Asn	Ser 20	Ser	Gln	Ser	Thr	Arg 25	Pro	Gln	Ala	Arg	Gly 30	Ser	Pro
Gly	Leu	Glu 35	Val	Leu	Val	Leu	Leu 40	Pro	Ser	Lys	Asp	Ser 45	Leu	His	Leu
Gly	Gln 50	Lys	Ala	Pro	Val	Ile 55	Ile	Glu	Gln	Gly	Ala 60	Leu	Leu	Pro	Asp
Val 65	Gly	Asp	His	Pro	Leu 70	Gln	Gly	Trp	Pro	Arg 75	Glu	Ala	Gly	Asp	Glu 80
Glu	Arg	His	Leu	Gln 85	Gly	Val	Val	Gly	Glu 90	Arg	Val	Leu	Val	His 95	Glu
His 100	Val	Gly	Ala	Arg	Leu	His	Asp	Glu 105	Leu	Arg	Glu	Ser	Val 110	Gly	Ile
Ser 115	Val	Lys	Arg	Leu	Gly	Lys	Gly 120	Asn	Arg	Val	Pro	Pro 125	Ala	Thr	Arg
Arg 130	Gly	Pro	Glu	Gly	Pro	Gly 135	Gln	Glu	Gly	Leu	His 140	Gln	Leu	His	Pro
Thr 145	Val	His	Arg	Ala	Ala 150	Arg	Leu	Arg	Gly	Val 155	Ser	Leu	Gly	Cys	Val 160
Gly	Val	Ser	Ala	Lys 165	Ala	Ser	Pro	Glu	Ala 170	His	Val	Glu	Gly	Gly 175	Gly
Pro	Gly														

<210> 40

<211> 89

<212> PRT

<213> homo sapiens

<400> 40

Lys 1	Leu	Thr	Gly	Ile 5	Asn	Thr	Gly	Cys	Arg 10	Asn	Met	Leu	Ala	Leu 15	Cys
Ile	Arg	Gly	His 20	Ala	Gln	Gln	Ile	Gln 25	Glu	Ile	Tyr	Leu	Ala 30	Thr	Phe
Ser	Arg	Lys 35	Gly	Thr	Leu	Gly	Ile 40	Ile	His	Tyr	Ile	Leu 45	Glu	Val	Phe
Leu 50	Gly	Phe	Phe	Phe	Phe	Phe 55	Leu	Arg	Gln	Ser	Cys	Cys 60	Ile	Ala	Gln
Ala 65	Gly	Ser	Val	Val	Ala 70	Gln	Ser	Gln	Leu	Ile 75	Ala	Ser	Ser	Ile	Thr 80
Gln	Gly	Leu	Ser	Asn	Pro	Pro	Thr	Leu							

<210> 41
<211> 95
<212> PRT
<213> homo sapiens

<400> 41

Ile 1	Val	Thr	Trp	Arg 5	Lys	Val	Pro	Met	Ser 10	Leu	Cys	Gln	Arg	Pro 15	Pro
Pro	Phe	Val	Arg 20	Ile	Gly	Ile	Phe	Arg 25	Leu	Leu	Lys	Gly	Leu 30	Ala	His
Ile	Arg	Cys 35	Asp	Leu	Phe	Ile	Pro 40	Val	Val	Met	Glu	Gly 45	His	Ile	Cys
Gln	Ser 50	Leu	Glu	Ser	Ala	Lys 55	Ala	Gly	Thr	Arg	Phe 60	Pro	Gly	Pro	Gln
Trp 65	Gly	Cys	Ala	Asn	Pro 70	Arg	Glu	Leu	Gly	Cys 75	Lys	Phe	Val	Lys	Asn 80
Gln	His	His	Val	Trp 85	Gln	Leu	Ser	Ile	Gly 90	Ala	Arg	Ser	Leu	Pro 95	

<210> 42
<211> 154
<212> PRT
<213> homo sapiens

<400> 42

Cys 1	Gln	Leu	Val	Phe 5	Arg	Ile	Gln	Thr	Asp 10	Gly	Ser	Tyr	Trp	Ser 15	Leu
Gly	Leu	Thr	Ser 20	Ser	Gly	Asn	Ile	Thr 25	Phe	Ser	Trp	Ala	Glu 30	Met	Leu
Leu	Pro	Ala 35	Leu	Lys	Gln	His	Ser 40	Val	Leu	Lys	Thr	Ser 45	Trp	Gln	Ala
Pro	Gly 50	Ser	Asn	Thr	Gln	Leu 55	Pro	Asn	Met	Met	Leu 60	Ile	Leu	His	Glu
Phe 65	Ala	Thr	Gln	Phe	Ser 70	Arg	Val	Cys	Thr	Pro 75	Pro	Leu	Trp	Ala	Gly 80
Glu	Pro	Gly	Pro	Gly 85	Leu	Arg	Arg	Leu	Gln 90	Ala	Leu	Ala	Asp	Val 95	Ala
Leu	His	Asn	Asn 100	Gly	Asn	Glu	Lys	Val 105	Thr	Pro	Tyr	Val	Arg 110	Gln	Ala
Leu	Lys	Glu 115	Ser	Glu	Tyr	Pro	Asn 120	Pro	His	Lys	Arg	Arg 125	Gly	Thr	Leu
Ala	Lys 130	Thr	His	Gly	Asn	Phe 135	Pro	Pro	Ser	Asn	Asp 140	Leu	Asp	Arg	Arg
Ala 145	Thr	Gln	Asp	Ser	Pro 150	Ser	Cys	Ser	Val						

<210> 43
<211> 79
<212> PRT
<213> homo sapiens

<400> 43

Leu	Ala	Ser	Thr	Leu	Gly	Val	Glu	Thr	Cys	Leu	Pro	Tyr	Val	Ser	Glu
1				5					10					15	
Asp	Met	Leu	Ser	Arg	Ser	Lys	Arg	Tyr	Ile	Trp	Gln	Leu	Phe	Leu	Glu
			20					25					30		
Lys	Ala	His	Trp	Val	Ser	Phe	Ile	Thr	Phe	Leu	Ser	Phe	Phe	Gly	Phe
		35				40						45			
Phe	Phe	Phe	Phe	Glu	Thr	Val	Leu	Leu	Tyr	Cys	Pro	Gly	Trp	Ser	
	50			55						60					
Val	Val	Ala	Gln	Ser	Gln	Leu	Ile	Ala	Ser	Ser	Ile	Thr	Gln	Ala	
	65				70				75						

<210> 44
<211> 82
<212> PRT
<213> homo sapiens

<400> 44

Cys	Gln	Leu	Val	Phe	Arg	Ile	Gln	Thr	Asp	Gly	Ser	Tyr	Trp	Ser	Leu
1				5					10					15	
Gly	Leu	Thr	Ser	Ser	Gly	Asn	Ile	Thr	Phe	Ser	Trp	Ala	Glu	Met	Leu
			20					25					30		
Leu	Pro	Ala	Leu	Lys	Gln	His	Ser	Val	Leu	Lys	Thr	Ser	Trp	Gln	Ala
		35				40						45			
Pro	Gly	Ser	Asn	Thr	Gln	Leu	Pro	Asn	Met	Met	Leu	Ile	Leu	His	Glu
	50				55				60						
Phe	Ala	Thr	Ser	Trp	Leu	Pro	Arg	Leu	Gln	His	Ser	Ala	Val	Gly	Thr
	65				70				75						80

Gln Ser

<210> 45
<211> 68
<212> PRT
<213> homo sapiens

<400> 45

Arg	Gly	Ser	Lys	Asp	Arg	Asn	Ser	Gly	Gln	Gly	Ser	Gly	Ser	Tyr	Gly
1				5					10					15	
Gln	Leu	Ser	Cys	Arg	Gly	Phe	Ser	Asp	Gln	Phe	Ser	Arg	Val	Cys	Thr
			20					25					30		
Pro	Pro	Leu	Trp	Ala	Gly	Glu	Pro	Gly	Pro	Gly	Leu	Arg	Arg	Leu	Gln
		35					40					45			

Ala Leu Ala Asp Val Ala Leu His Asn Asn Gly Asn Glu Lys Val Thr
50 55 60

Pro Tyr Val Arg
65

<210> 46
<211> 87
<212> PRT
<213> homo sapiens

<400> 46

<210> 47
<211> 51
<212> PRT
<213> homo sapiens

<400> 47

<210> 48
<211> 20
<212> PRT
<213> homo sapiens

<400> 48

<210> 49
<211> 36
<212> PRT
<213> homo sapiens

<400> 49

Gly	Glu	Ser	Leu	Ile	Asn	Gly	Ala	Glu	Ala	Gly	Ala	Arg	Arg	Leu	Asn
1				5					10					15	
Cys	Arg	Arg	Gly	Glu	Arg	Met	Leu	Cys	Phe	His	Gly	Pro	Leu	Thr	Leu
			20					25					30		
Met	Arg	Gln	Ser												
			35												

<210> 50
<211> 26
<212> PRT
<213> homo sapiens

<400> 50

Lys	His	Ser	Ile	Arg	Ser	Pro	Leu	Leu	Gln	Phe	Ser	Leu	Arg	Ala	Pro
1				5					10					15	
Ala	Ser	Ala	Pro	Phe	Ile	Ser	Asp	Ser	Pro						
			20					25							

<210> 51
<211> 25
<212> PRT
<213> homo sapiens

<400> 51

Glu	Ala	His	Glu	Ser	Thr	Ala	Phe	Ala	His	Pro	Ser	Cys	Asn	Leu	Ala
1				5					10					15	
Phe	Gly	Leu	Leu	Leu	Arg	Arg	His	Leu							
			20					25							

<210> 52
<211> 3665
<212> DNA
<213> homo sapiens

<400> 52

ggccattttgc tgaagagacg aagactgagc ggttgtggcc gcgttgcga cctccagcag 60
cagtcggctt ctctacgcag aaccggggag taggagactc agaaatcgaa tctcttctcc 120

ctccccttct tgggcagcaa ggcgaacccc atccctactc actggagctc agctttgatt 180
tttaacctcc cttccccacc cttccagaac acacacattc cattccaaaa ctgattttat 240
aaagacattt taaacataat gatcaactt ggtgtgcact acagcaaatg tacaggtgtt 300
tttttttaa ttgttccaa aaccggggacc tggatttaag atgtaatttt taaaatttct 360
atttctattt tttctgcagc agttgggtta gaggaggagg agccttttag cctctcataa 420
actgacctgt ctacttcctc gtgtattttt aagattgatt gatgatgtgg aaagggtttt 480
gcttgcgtgc tactaaaaac ttatcctgc ggtttttgtg gaaactgctt ttggaaagag 540
aaaagaaaatg aactttactg acttgacatt tttgcacctc ccgttttct aatctgggct 600
attttattt ttgtttttt acagttagat tttttgatc ttcatatc attttcgggc 660
tttgcgttgc aacctttacc catcaaacac gatggccagc aacgttacca acaagacaga 720
tcctcgctcc atgaactccc gtgtattcat tggaaatctc aacactcttg tggcaagaa 780

atctgtatgtg gaggcaatct tttcgaagta tggcaaaatt gtgggctgct ctgttccataa 840
ggccttgc ttcgttcagt atgttaatga gagaaatgcc cggcgtcgt tagcaggaga 900
ggatggcaga atgattgctg gccagggtt agatattaac ctggctgcag agccaaaagt 960
gaaccgagga aaagcagggt tgaaacgatc tgcagcggag atgtacggct cctctttga1020
cttggactat gactttcaac gggactatta tgataggatg tacagttacc cagcacgtgt1080
acccctcct ctccttattt ctcggctgt agtgcctcg aaacgtcagc gtgtatcagg1140
aaacacttca cgaaggggca aaagtggctt caattctaag agtggacagc ggggatcttc1200
caagtctgga aagtggaaaag gagatgaccc tcaggccatt aagaaggagc tgaccaggat1260
aaaacaaaaaa gtggattctc tcctggaaaaa cctggaaaaa attggaaaagg aacagagcaa1320
acaagcagta gagatgaaga atgataagtc agaagaggag cagagcagca gctccgtga1380
gaaagatgag actaatgtga agatggagtc tgaggggggt gcagatgact ctgctgaggal440
gggggaccta ctggatgatg atgataatga agatcgaaaa gatgaccagc tggagttgtat1500
caaggatgtg gaaaaaggagg ctgaggaagg agaggatgac agagacaagg ccaatggcg1560
ggatgactct taagcacata gtggggttt gaaatcttat cccattattt ctttacntag1620
gchgcttgtct aagatcaaattt tttcaccag atccctcccc cttagtatctt cagcacatgc1680
tcactgttct ccccatcctt gtccccc tttcatatttgc cccgcctt1740
gtcccatttt cacttcctt gacgcctcta gttagttgt taagtcttac cctgtatattt1800
ttgcttttaa ttttgatacc tctttatgac ttaacaataa aaaggatgtt tgggttttat1860
caactgtctc caaaataatc tcttggatg cagggagtagc agtcttttc attcatacat1920
aagttcaagta gtgtttccca taactgcaaa ggcatactca ttttagtttag tggcttttt1980
aagcagctt gagttagaag tatgtgtgtt acaccctcac attagtgtgc tgggtggcc2040
agttcaacac aaatgttaaca atgtatTTT gtgaatgaga gttggcatgtt caaatgcac2100
ctctagaaaaa ataatttagt ttatagtctt aagatttttt ttctaaaggat gatactgtgg2160
gttatttttg tgaacagcct gatgtttggg accttttttcc tccaaaataa acaagtcctt2220
attaaaccag gaattttggag aaaaaaaaaaaa aaaaaaattt ttttattttt tatttttattt2280
ttgtttactt caaactttgt tttacagcgt cctccacaaa acctctagaa tgcactagat2340
atattttct tggagtctata atcatgatgc ataccaacac aacactactc aaattatattt2400
tcattggat gcatgttgc ttgaggagtc aacttgacat agagtggaga cttttccaaa2460
atggctttt catcctaattt aaagttttggg aagtatatcc tctctgcctt ttcatcagt2520
ctttgtggtc cagctggcac ccttctgag gtttgggtt tggcttaat gttttgtcc2580
ttaaatagga gaggctcaaa aacatcaaga tttcaggaaa atggcgacac tggcataatg2640
gaacccccct gettcttattt tggttttttta attactattt atagccccag ttacctctg2700
aattctgaag tggatataacc tccatgttcc tgaaaacaag aaaactcttta cttcctgata2760
ttccatagac tgccttccca ggtgattgag aacatagaga atgttacaca ttatttttac2820
tctaaatgt ctttacccc tgtagctt tctttgttt ttctctcaact ttattaatta2880
cagtgattgc atttttagca tccagttgtt agatgaatattt attaaacagc taccagtgtt2940
ggtgataacct catccttggaa aggcttagtt cattttgttt ttataacttca gttttccag3000
catagcagaa aatgccgctt ataatttttgc tgacacacaaa ccttggaaatc cccctgtaaa3060
gttgctatgg tttcatagca tgcggcactt gccccctttt catccactt attacaggca3120
aaaccctatgt ctatatttgc aggatTTT agatcatTTT ctgtaacagg tgacaaaagc3180
agaaaaagaat gaagaggctg aagtatgaac tacccttggg gcccataatc atgatataagg3240
caattttttt tggatgtttaa ttctgttcaaa aataactaccc acttgatgtt ttctaatctg3300
atgtgagctc atgttacaca gacttttagt aagtaacccg tgactagaaa ataaaactggaa3360
tgcttaggag agagtgtcag atgtataaga tgcttataaa acctgtttaa tattattgtt3420
agctgtatgtt ttttggaaa tactgtaccaa attaqtccac aatcaagtgtt ctactttcc3480
cttcactgtt gggcctctcc ctgcacagag cagtctgttt agctgtgaac accacaatct3540
gcagatgttc aagtccctt cataaaatgg catagttttt atatgttaccc tatgcataatt3600
ctcctgtata ttttaatca tctctacatt aaaatacctg ataaaatctt aataaaaaaaa3660
aaaaaa

<210> 53
<211> 301
<212> PRT
<213> homo sapiens

<400> 53

Gly 1	Asn	Leu	Tyr	Pro 5	Ser	Asn	Thr	Met	Ala 10	Ser	Asn	Val	Thr	Asn 15	Lys
Thr	Asp	Pro	Arg 20	Ser	Met	Asn	Ser	Arg 25	Val	Phe	Ile	Gly	Asn 30	Leu	Asn

Thr	Leu	Val	Val	Lys	Lys	Ser	Asp	Val	Glu	Ala	Ile	Phe	Ser	Lys	Tyr
		35					40					45			
Gly	Lys	Ile	Val	Gly	Cys	Ser	Val	His	Lys	Gly	Phe	Ala	Phe	Val	Gln
	50				55				60						
Tyr	Val	Asn	Glu	Arg	Asn	Ala	Arg	Ala	Ala	Val	Ala	Gly	Glu	Asp	Gly
	65			70					75						80
Arg	Met	Ile	Ala	Gly	Gln	Val	Leu	Asp	Ile	Asn	Leu	Ala	Ala	Glu	Pro
				85				90						95	
Lys	Val	Asn	Arg	Gly	Lys	Ala	Gly	Val	Lys	Arg	Ser	Ala	Ala	Glu	Met
			100					105				110			
Tyr	Gly	Ser	Ser	Phe	Asp	Leu	Asp	Tyr	Asp	Phe	Gln	Arg	Asp	Tyr	Tyr
		115				120				125					
Asp	Arg	Met	Tyr	Ser	Tyr	Pro	Ala	Arg	Val	Pro	Pro	Pro	Pro	Ile	
	130				135					140					
Ala	Arg	Ala	Val	Val	Pro	Ser	Lys	Arg	Gln	Arg	Val	Ser	Gly	Asn	Thr
	145			150					155						160
Ser	Arg	Arg	Gly	Lys	Ser	Gly	Phe	Asn	Ser	Ser	Gly	Gln	Arg	Gly	
			165					170			175				
Ser	Ser	Lys	Ser	Gly	Lys	Leu	Lys	Gly	Asp	Asp	Leu	Gln	Ala	Ile	Lys
		180						185			190				
Lys	Glu	Leu	Thr	Gln	Ile	Lys	Gln	Lys	Val	Asp	Ser	Leu	Leu	Glu	Asn
	195					200				205					
Leu	Glu	Lys	Ile	Glu	Lys	Glu	Gln	Ser	Lys	Gln	Ala	Val	Glu	Met	Lys
	210				215					220					
Asn	Asp	Lys	Ser	Glu	Glu	Glu	Gln	Ser	Ser	Ser	Ser	Val	Lys	Lys	Asp
	225			230					235						240
Glu	Thr	Asn	Val	Lys	Met	Glu	Ser	Glu	Gly	Ala	Asp	Asp	Ser	Ala	
			245					250					255		
Glu	Glu	Gly	Asp	Leu	Leu	Asp	Asp	Asp	Asp	Asn	Glu	Asp	Arg	Gly	Asp
	260					265					270				
Asp	Gln	Leu	Glu	Leu	Ile	Lys	Asp	Asp	Glu	Lys	Glu	Ala	Glu	Glu	Gly
	275					280					285				
Glu	Asp	Asp	Arg	Asp	Lys	Ala	Asn	Gly	Glu	Asp	Asp	Asp	Ser		
	290				295					300					

<210> 54
<211> 112
<212> PRT
<213> homo sapiens

<400> 54

Glu	Ser	Ser	Ser	Pro	Leu	Ala	Leu	Ser	Leu	Ser	Ser	Ser	Pro	Ser	Ser
1				5					10				15		
Ala	Ser	Phe	Ser	Ser	Ser	Leu	Ile	Asn	Ser	Ser	Trp	Ser	Ser	Pro	Arg

20 25 30

Ser	Ser	Leu	Ser	Ser	Ser	Ser	Ser	Arg	Ser	Pro	Ser	Ser	Ala	Glu	Ser
		35				40					45				
Ser	Ala	Pro	Pro	Ser	Asp	Ser	Ile	Phe	Thr	Leu	Val	Ser	Ser	Phe	Phe
	50				55					60					
Thr	Glu	Leu	Leu	Leu	Cys	Ser	Ser	Ser	Asp	Leu	Ser	Phe	Phe	Ile	Ser
65					70					75					80
Thr	Ala	Cys	Leu	Leu	Cys	Ser	Phe	Ser	Ile	Phe	Ser	Arg	Phe	Ser	Arg
		85							90					95	
Arg	Glu	Ser	Thr	Phe	Cys	Phe	Ile	Trp	Val	Ser	Ser	Phe	Leu	Met	Ala
		100						105						110	

<210> 55

<211> 107

<212> PRT

<213> homo sapiens

<400> 55

Thr	Arg	Asn	Leu	Glu	Lys	Lys	Lys	Lys	Lys	Asn	Phe	Leu	Phe	Leu	Tyr
1				5					10					15	
Phe	Ile	Ile	Val	Tyr	Phe	Lys	Leu	Cys	Phe	Thr	Ala	Ser	Ser	Thr	Lys
			20					25				30			
Pro	Leu	Glu	Cys	Thr	Arg	Tyr	Ile	Phe	Leu	Gly	Val	Ile	Ile	Met	Met
		35					40					45			
His	Thr	Asn	Thr	Thr	Leu	Leu	Lys	Leu	Tyr	Phe	Ile	Glu	Met	His	Val
	50				55						60				
Ala	Leu	Arg	Ser	Gln	Leu	Asp	Ile	Glu	Trp	Arg	Leu	Phe	Gln	Asn	Gly
65					70					75					80
Phe	Tyr	Ile	Leu	Met	Lys	Val	Trp	Glu	Val	Tyr	Pro	Leu	Cys	Leu	Phe
			85						90					95	
Ile	Ser	Ala	Leu	Trp	Ser	Ser	Trp	His	Pro	Phe					
		100						105							

1

12