

- 1. Prepare & Transform Data
- 2. Modeling
- Evaluating

6. Deploy Strategy / Real Time Event Handling

Typical Modeling

BAD?

R.Brilenkov

model violu Data sci

Evaluation Metric for Portfolio Management

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_i - Actual_i)^2}{N}}$$

	Actually / Positive (1)	Actually Negative (0)
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)

Regression - Tailly on 17 Classification January

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_{i} - Actual_{i})^{2}}{N}}$$

Root Mean Squared Log Error (RMSLE)

$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2} \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log(p_i + 1) - \log(a_i + 1))^2}$$
actual

$$-\frac{\text{MSE}(\text{model})}{\text{MSE}(\text{baseline})}$$

$$\frac{\text{MSE}(\text{model})}{\text{MSE}(\text{baseline})}$$

$$\frac{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{N} (\overline{y}_i - \hat{y}_i)^2}$$

$$\underbrace{\mathsf{MSE}}_{} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

$$\frac{1}{RMSE} = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_i - Actual_i)^2}{N}}$$

$$R^{2} = 1 - \frac{\text{MSE}(\text{model})}{\text{MSE}(\text{baseline})} \qquad \frac{\text{MSE}(\text{model})}{\text{MSE}(\text{baseline})} \qquad \frac{\sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{N} (\overline{y}_{i} - \hat{y}_{i})^{2}}$$

on Offler 3100 DIN RUW 191 4

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

measure of how close a fitted line is to data points

Sum Square → Cancelling Positive/Negative errors

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_i - Actual_i)^2}{N}}$$

'square root' → show large number deviations punishes large errors.

Sum Square → Cancelling Positive/Negative errors

RMSE is highly affected by outlier values

Other Type??

Root Mean Squared Error (RMSE) Root Mean Squared Log Error (RMSLE)
$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}\sqrt{\frac{1}{n}\sum_{i=1}^{n}(\log(p_i+1)-\log(a_i+1))^2}$$

- 1.If both predicted and actual values are small: RMSE and RMSLE are same.
- 2.If either predicted or the actual value is big: RMSE > RMSLE
- 3.If both predicted and actual values are big: RMSE > RMSLE (RMSLE becomes almost negligible)

ารางสุด							
Confusion Matrix		Target					
Confusion Watrix		Positive	Negative				
Model	Positive	а	b	Positive Predictive Value	a/(a+b)		
iviodei	Negative	С	d	Negative Predictive Value	d/(c+d)		
			Specificity	Accuracy = (a+d)/(a+b+c+d)			
		a/(a+c)	d/(b+d)				

$$F_1 = \left(rac{ ext{recall}^{-1} + ext{precision}^{-1}}{2}
ight)^{-1} = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}.$$

Confusion Matrix

	Actually Positive (1)	Actually Negative (0)
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)

Un PURSINE

Type I Error

Auro VIE

Type II Error

Bions Va tradestates 1,170

$$\widehat{Y} = 0$$

NEGATIVE

Confusion Matrix		Target	
		Positive	Negative
Model	Positive	а	b
	Negative	С	d
		Sensitivity	Specificity
		a/(a+c)	d/(b+d)

- .90-1 = excellent (A)
- .80-.90 = good(B)
- .70-.80 = fair(C)
- .60-.70 = poor(D)
- .50-.60 = fail (F)

Training Population

Final Accuracy = Average(Round 1, Round 2, ...)

Good Practice??

Why ML failed for Investing

Trading Strategy Statistics				
52-Week High Breakout System - 5% trailing stop loss				
1927				
19 years				
96.4				
31.33 days				
168.71				
38.40%				
6.04%				
-3.06%				
1.98				
8 consecutive trades				
8 consecutive trades 13 consecutive trades				

Evaluation Metric for *Portfolio Management*

Evaluation Metric for *Portfolio Management*

Any ideas for ML

18 Signed 12 Jupit

(6/18/20/20)

Example of Applications from ML

Risk Analysis Exposures derived from Yewno's Knowledge Graph Concept Exposures ble Fee-A **Concept Exposures** Systemic Risk Dynamic exposures to non-traditional risk factors Daily network-level company systemic risk scores **Judicial Exposure Country Exposure** Company level network exposure to countries across Judicial performance analytics and exposures for global companies time

