Was f: M-1 N , g: N-1 L Abb Komportion, $g \circ f : M \rightarrow L, x \mapsto g(f(x))$ A: L -> K Abb $\mathcal{A}\circ(g\circ f)=(\mathcal{R}\circ g)\circ f: M\to \mathcal{K}, \times \mapsto \mathcal{R}(g(\mathcal{R}(x)))$ hogof historiet. Umhhrabli(=) g of = gof = idm gex (=) f mg) restanit a fog = idN [gex (=) f my] (\Longrightarrow) fog = idn und gof = idn [get (=) f big] Umhehrable (=)

1: M-> N , g: N'-> L Det. got mur wenn N=N! Manchonal def low fini $(N \subseteq N')$, ds. $\mathcal{C}^{\mathcal{N}}: \mathcal{N} \rightarrow \mathcal{N}'$ 3 0 CO f

17

9

Wenn g (Imbehvabl. =) g enidentij, $f^{-1} = g$ $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$

M, N Mengen

Def: M and N gluchmacht, (=) en gill Big M->N

2. D: N, Z, Q gludmærktig

- · Endl. Menge mit n Elementer ist glerdmächtz zu n
- · M Mange => M and Pot(M) mild gluismadtij.
 - Z.B: M=W: er gibt, mehr Tilmenger nor Wals Elemente.

f: M-1N, M.N endlich Menge, |M|=|N|
finj (=) f minj (=) f bij.

1.5 Relationen

Es seien M und N Mengen.

Definition

- ▶ Eine *Relation zwischen M und N* ist eine Teilmenge $R \subseteq M \times N$.
- ▶ Im Fall M = N sagen wir: R ist Relation auf M.

Terminologie und Notation

Es sei $R \subseteq M \times N$ eine Relation zwischen M und N. Für $(x,y) \in R$ schreiben wir auch

und sagen

x steht bzgl. R in Relation zu y.

Relationen (Forts.)

Beispiele

- ightharpoonup < auf \mathbb{N} ightharpoonup < ightharpoonup <
- ► M Menge $\subseteq \text{auf Pot}(M)$ $A,\emptyset \subseteq M$ $(A,\emptyset) \in \subseteq (=)$ $A \subseteq \emptyset$
- M Mengeauf M
- ► M Menge \times able in Rd. $x, y \in M$ $M \times M$ auf M
- \blacktriangleright {(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)} auf {1,2,3}
- ▶ M, N, Mengen, $f: M \to N$ Abbildung. $\{(x, f(x)) \mid x \in M\}$.

Relationen (Forts.)

Beispiele

► A: Einwohner von Aachen

```
für a, b \in A: a \ N \ b: a \ \text{ist Nachkomme von } b
```

▶ D: Studierende von *Diskrete Strukturen*

```
für s, t \in D: s \in t: s hat die gleichen Eltern wie t für s, t \in D: s \in t: s hat den gleichen Geburtstag wie t
```

► P: farbige Glasperlen in einer Dose

```
für p, q \in P: p F q: p hat die gleiche Farbe wie q
```

Eigenschaften

Definition

M Menge, R Relation auf M. Dann heißt R:

(R) reflexiv:

für $x \in M$:

xRx

(S) symmetrisch:

für $x, y \in M$:

 $x R y \Rightarrow y R x$

(A) antisymmetrisch: für $x, y \in M$:

 $x R y \text{ und } y R x \Rightarrow x = y$

(T) transitiv:

für $x, y, z \in M$:

 $x R y \text{ und } y R z \Rightarrow x R z$

(V) vollständig:

für $x, y \in M$:

x R y oder y R x

Eigenschaften (Forts.)

Beispiel

- < auf \mathbb{N} :
 - ▶ transitiv
 - ▶ nicht reflexiv
 - ▶ nicht symmetrisch
 - antisymmetrisch
 - ► nicht vollständig

Eigenschaften (Forts.)

Beispiel

```
▶ R auf \{1\} gegeben durch R = \{(1,1)\}
```

R reflexiv

▶ R auf $\{1,2\}$ gegeben durch $R = \{(1,1)\}$

R nicht reflexiv

Abschlüsse

Definition

M Menge, R Relation auf M

- ► transitiver Abschluss von R: Relation S auf M mit
 - ► S transitiv und $R \subseteq S$
 - \int für jede Relation T auf M: T transitiv und $R \subseteq T \Rightarrow S \subseteq T$
- ► reflexiver Abschluss von R: Relation S auf M mit
 - ► S reflexiv und $R \subseteq S$
 - für jede Relation T auf M: T reflexiv und $R \subseteq T \Rightarrow S \subseteq T$
- ▶ symmetrischer Abschluss von R: Relation S auf M mit
 - ► *S* symmetrisch und $R \subseteq S$
 - für jede Relation T auf M: T symmetrisch und $R \subseteq T \Rightarrow S \subseteq T$

Abschlüsse (Forts.)

Beispiel

R Relation auf $\{1, 2, 3\}$ gegeben durch $R = \{(1, 2), (2, 3)\}$

▶ ein transitiver Abschluss von R:

$$S = \{(1,2),(2,3),(1,3)\}$$

▶ ein reflexiver Abschluss von R:

$$S = \{ (1,7), (2,3), (1,1), (2,2), (3,3) \}$$

▶ ein symmetrischer Abschluss von *R*:

$$S = \{(1,2),(2,3),(2,4),(2,2)\}$$

Abschlüsse (Forts.)

Proposition

M Menge, R Relation auf M

▶ es gibt genau einen transitiven Abschluss S von R für $x, y \in M$: $x S y \Leftrightarrow$ es gibt $n \in \mathbb{N}, x_0, \dots, x_n \in M$:

$$x_0 R x_1 R \dots R x_n$$

$$x_0 R x_1 R \dots R x_n$$

$$x = x_0 R x_1 R \dots R x_n = y$$

$$= x_0 R x_1 R \dots R x_n R x_n \dots R x_n$$

$$= x_0 R x_1 R \dots R x_n R x_n R x_n \dots R x_n$$

$$= x_0 R x_1 R \dots R x_n R x_n R x_n R x_n \dots R x_n$$

- ▶ es gibt genau einen reflexiven Abschluss S von R für $x, y \in M$: $x S y \Leftrightarrow x R y$ oder x = y
- ▶ es gibt genau einen symmetrischen Abschluss S von R für $x, y \in M$: $x S y \Leftrightarrow x R y$ oder y R x

Äquivalenzrelationen und Ordnungen

Es sei M eine Menge und R eine Relation auf M.

Definition

ightharpoonup R heißt Äquivalenzrelation auf M, falls R

erfüllt.

► R heißt (partielle) Ordnung auf M, falls R

erfüllt.

► R heißt Totalordnung auf M, falls R eine Ordnung ist und falls R vollständig ist.

Äquivalenzrelationen und Ordnungen (Forts.)

Es sei M eine Menge.

Beispiele

- ▶ "≤" auf \mathbb{R} ist Totalordnung.

 (R) \mathcal{M} (R)
- \blacktriangleright ,,<" auf $\Bbb R$ ist antisymmetrisch und transistiv, aber weder reflexiv noch symmetrisch.
- ▶ "⊆" auf $\operatorname{Pot}(M)$ ist Ordnung. (T) (A) $A \subseteq \mathbb{R}$ where $A \subseteq \mathbb{R}$ is $A \subseteq \mathbb{R}$ with $A \subseteq \mathbb{R}$ and $A \subseteq \mathbb{R}$ with $A \subseteq \mathbb{R}$ with A
- ▶ $M = \mathbb{Z}$ oder $M = \mathbb{N}$. Definiere *Teilbarkeitsrelation* ,, | " durch

$$u \times \text{tull } y \stackrel{\text{\tiny α}}{=} x \mid y : \Leftrightarrow \text{Es existiert } z \in M \text{ mit } xz = y.$$

$$x \mid y : \Leftrightarrow \text{Es existiert } z \in M \text{ mit } xz = y.$$

$$x \mid y : \Leftrightarrow \text{Es existiert } z \in M \text{ mit } xz = y.$$

$$x \mid y : \Leftrightarrow \text{Es existiert } z \in M \text{ mit } xz = y.$$

$$x \mid y : \Leftrightarrow \text{Es existiert } z \in M \text{ mit } xz = y.$$

Dann ist " | " reflexiv und transitiv.

,, | ist Ordnung auf $\mathbb N$ aber keine Totalordnung. ,, | ist keine Ordnung auf $\mathbb Z$.

Äquivalenzrelationen und Ordnungen (Forts.)

Es sei *M* eine Menge.

Beispiele

- ▶ Gleichheit "=" ist eine Äquivalenzrelation auf M.
- ▶ Es sei N eine Menge und $f: M \rightarrow N$ Abbildung. Die *Bildgleichheit* " R_f " auf M ist definiert durch:

$$xR_fx' :\Leftrightarrow f(x) = f(x').$$

 R_f ist Äquivalenzrelation auf M.

▶ $M = \mathbb{Z}$. Die Paritätsrelation " \equiv_2 " ist definiert durch

$$x \equiv_2 y :\Leftrightarrow x - y$$
 gerade.

 $_{,,,}\equiv_{2}$ ist eine Äquivalenzrelation auf \mathbb{Z} .

Weitere Beispiele

- ► C auf \mathbb{R} : (7) (x) = x (R) / (5) / (5) für $x, y \in \mathbb{R}$: $x \in C$ $y : \Leftrightarrow x = y$ oder x = -y
- ► *C* auf {1, 2, 3, 4}

$$C = \{(1,1),(2,2),(3,3),(4,4),(1,2),(2,1),(1,4),(4,1),(2,4),(4,2)\}$$

▶ D: Studierende von Diskrete Strukturen

für $s,t\in D$: s E t: s hat die gleichen Eltern wie t Agriculture für $s,t\in D$: s G t: s hat den gleichen Geburtstag wie t

▶ P: farbige Glasperlen in einer Dose

für $p, q \in P$: p F q: p hat die gleiche Farbe wie q

Definition

M Menge, C Äquivalenzrelation auf M, $x \in M$

 \ddot{A} quivalenzklasse von x in M bzgl. C:

$$[x] = [x]_C := \{ \tilde{x} \in M \mid \tilde{x} \ C \ x \}$$

Terminologie:

▶ Repräsentant von $[x]_C$: x

auch: jedes
$$x' \in M$$
 mit $x' \in \bar{l} \times l_{c}$, claim
$$[x]_{c} = \{ \hat{x} \in M \mid \hat{x}(x) \neq x' = x' \in X \in X \}$$

$$[x']_{c} = \{ \hat{x} \in M \mid \hat{x}(x) \neq x' = x' \in X \in X \}$$

$$[x']_{c} = \{ \hat{x} \in M \mid \hat{x}(x) \neq x' = x' \in X \in X \}$$

Beispiele

ightharpoonup C auf \mathbb{R} :

$$f "" x, y \in \mathbb{R}: \quad x \ C \ y : \Leftrightarrow x = y \ oder \ x = -y$$

für
$$x \in \mathbb{R}$$
: $[x]_C = \{x, -x\}$ 2. \mathcal{B} ; $\{0\}$, $\{-1, 1\}$ Repräsentanten für $[x]_C$: x ode $\mathbb{A}-x$

► \equiv_2 auf \mathbb{Z} : für $x, y \in \mathbb{Z}$: $x \equiv_2 y \Leftrightarrow x - y$ gerade.

$$[0]_{\equiv_2} = \text{gende Zahlen is } \mathcal{H}$$
 $[1]_{\equiv_2} = \text{myende Zahlen}.$

Repräsentanten für $[0]_{\equiv_2}$: yill gerach Rahl.

Beispiele

► *C* auf {1, 2, 3, 4}

$$C = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,1), (1,4), (4,1), (2,4), (4,2)\}$$

$$[1]_{C} = \{1, 2, 4\}$$

$$[3]_{C} = \{3\}$$

► *M* Menge, = auf *M*

für
$$x \in M$$
: $[x]_{=} = \{x\}$

Proposition

M Menge, C Äquivalenzrelation auf M

- ▶ Für $x \in M$ gilt: $x \in [x]_C$. wyw (R)
- Für $x, y \in M$ sind äquivalent:

$$(a) \triangleright [x]_C = [y]_C$$

$$(a) \triangleright [x]_C \subseteq [y]_C$$

$$(c) \triangleright x C y$$

(a) =) (b)
$$4/a$$

(b) =1 (c) $x \in [x]_c = x \in [y]_c (x)$
(c) =1 (d) $x \in [x]_c = x \in [y]_c (x)$

Definition

M Menge, C Äquivalenzrelation auf M

Quotientenmenge von M modulo C:

$$M/C := \{ [x]_C \mid x \in M \}$$

Terminologie und Notation:

► Quotientenabbildung von M/C:

$$\kappa: M \to M/C, \quad x \mapsto [x]_C$$

Quotientenmengen (Forts.)

Beispiel

$$C$$
 auf $\{1, 2, 3, 4\}$

$$c = \{(1,1),(2,2),(3,3),(4,4),(1,2),(2,1),(1,4),(4,1),(2,4),(4,2)\}$$

$$\subseteq \{(1,1),(2,2),(3,3),(4,4),(1,2),(2,1),(1,4),(4,1),(4,1),(4,2)\}$$

$$\{1,2,3,4\}/C = \{\{1,2,4\},\{3\}\}\}$$

$$\gamma_{1} : \Lambda \mapsto [\Lambda]_{c} \qquad \gamma \mapsto [\gamma]_{c}$$

$$2 \mapsto [\Lambda]_{c} = [\gamma]_{c}$$

$$4 \mapsto [\Lambda]_{c} = [\gamma]_{c}$$