Course code: CAS 205 Instructor: Dr. Azza Taha

Year:2013-2014 (Fall Semester) Final Exam. (16-1-2014) Time allowed: 3 hrs.

Marks: 50

Answer the following questions:

Question 1: Choose the correct answer:

b. $\{a^n b^p : n \neq p\}$ c. $\{a^n b^m : n \geq m\}$ d. $\{a^n b^n : n \geq 0\}$ (10 Marks)

				· · · · · · · · · · · · · · · · · · ·			
1.	If $A = \{1, 2, 3, 4, 5\}$ and $B = \{5, 4, 5, 4, 5\}$	6, 7}, then A– B eq	uals				
	a. 4 b. 5	c. 7	d. 3				
2.	Select a bijective function:						
	a. $f: Z \rightarrow Z: f(x) = 2x$	c. I: $R \rightarrow R$: $I(x) =$	X				
	b. $g: R \to R: g(x) = x^2$	d. h: $Z \to \{0, 1\} : I$	h(x) = 0 if x is even	ven and $h(x) = 1$ otherwise			
3.	If the function f is bijective, then	f is invertible.					
	a. True	b. False					
4.	If $ A = 3$ and $ B = 2$, then $ A x$	B equals					
	a. 6	b. 9	c. 4	d. 8			
5.	If $a = c$ and $b = d$ then $(a, b) = (c$	e, d)					
	a. True	b. False					
6.	Let $A = \{a, b, c\}$, if w is a string over A and $ www = 36$, what is the length of w?						
	a. 6	b. 12	c. 18	d. 36			
7.	'. If $L = \{aba, ba\}$, which of the following strings is NOT in L^* :						
	a. aa	b. bb	c. ab	d. All of the previous			
8.	3. Find L in L. $\{\lambda, a\} = \{\lambda, a, b, ab, ba, aba\}$						
		$c. L = \{\lambda, a, b\}$					
	b. $L = \{\lambda, b, ab\}$						
9.	9. Let $G = \{D,S\}$, $\{0,1,2,,9\}$, P , $S >$, where P is:						
	$S \rightarrow D0 D2 D4 D6 D8$						
	$D \rightarrow \lambda \mid D0\mid D \mid 1\mid D2\mid D3\mid D4\mid D5\mid D7\mid D8\mid D9$						
	Which of the following strings is						
	a. 13	b. 22	c. 24	d. 28			
10. Choose a <i>correct</i> grammar generating the language { a , aaa , $aaaaa$,, a^{2n+1} ,}							
	a. $S \rightarrow a \mid aa S$						
	b. $S \rightarrow \lambda \mid a \mid aa S$						
	c. $S \rightarrow a \mid a \mid S$						
	d. $S \rightarrow \lambda \mid a \mid S$						
11. The language $L = \{ a^{n^2} : 1 \le n \le 4 \}$ is regular.							
	a. True	b. False					
12. Select a regular language:							
	a. $\{1^n : n \ge 0, n \ne 1\}$						

- 13. Regular expressions are algebraic notations used to describe regular languages.
 - a. True

b. False

- 14. Choose a regular expression to describe the language $\{\lambda, a, b, ca, bc, cca, bcc, ..., c^n a, bc^n, ...\}$
 - a. $\lambda + bc*a$

c. $\lambda + ac^* + bc^*$

- b. $\lambda + c*a + bc*$
- d. $\lambda + ac^* + cb^*$
- 15. Choose the correct language described by the regular expression a*(a+b)
 - a. $\{\lambda, a, b, aa, ab, aaa, aab, \ldots\}$
 - b. {a, b, aa, ab, aaa, aab, ...}
 - c. {a, b, aa, ba, bb, ab, aaa, baa, ...}
 - d. $\{\lambda, a, b, aa, ba, aaa, baa, ...\}$
- 16. Let $G = \{S\}$, $\{a\}$, P, S>, where P is: $S \to \lambda | aS|$, then G is a regular grammar.
 - a. True

b. False

- 17. The language $L = \{ a^n b^n c^n : n \ge 0 \}$ is context-free.
 - a. True

- b. False
- 18. The concatenation of two context-free languages is context-free.
 - a. True

- b. False
- 19. Two finite machines M_1 and M_2 are said to be **equivalent** if $L(M_1) = L(M_2)$.
 - a. True

- b. False
- 20. The language accepted by the following DFA is:
 - a. {a}

- c. { $b^n a b^m : m, n \ge 0$ }
- b. $\{b^n a b^n : n \ge 0\}$
- d. { $b^n a b^m a : m, n \ge 0$ }

Question 2: (10 Marks)

- 1) Construct the following machines over the alphabet $\{0, 1\}$:
 - 1. DFA that accepts the language {00, 01}.
 - 2. DFA that accepts the language L = $\{01w: w \in \{0, 1\}^*\}$
 - 3. NFA that accepts the language $L = \{u00v: u, v \in \{0, 1\}^*\}$
 - 4. NFA without λ -transition and with a single final state that accepts the language: $\{0\} \cup \{1^n : n \ge 1\}$
 - 5. A Mealy machine that produces an output 1 for any input.

Question 3:

1) Why the NFA is less efficient in recognizing strings than DFA?

(2 Marks)

2) Consider the NFA given by the following table:

(4 Marks)

	λ	a	b
Start 0	{1, 2}	{1}	ф
1	ф	ф	{2}
Final 2	ф	{2}	ф

- 1. Find the lambda closure for all states.
- 2. Convert the machine into DFA and draw the graph for the resulting machine.
- 3) Construct NFA for the following regular expression using RE to FA algorithm: (4 Marks) a*b c* + ac

Question 4:

- 1) Using Pumping lemma for regular languages, show that the language $\{a^nbc^n: n \ge 0\}$ is Not regular. (3 Marks)
- 2) Step by step find a regular expression describes the language accepted by the following automaton using FA to RE algorithm: (4 Marks)

3) Construct grammars for the following languages:

(3 Marks)

- a. $L = \{ ba^nb : n \ge 0 \}$
- b. $M = \{a^n \ b \ c^n : n \ge 0 \}$

Question 5:

- 1) Show that the function f(n) = n + 1, $n \ge 0$ is *Turing Computable* where the number n is represented in binary form. (3 Marks)
- 2) Construct PDA to describe the language $\{a^{n+2} c b^n : n \ge 0\}$ (4 Marks)
- 3) Write regular expression to describe each of the following languages: (3 Marks)
 - a. $L = \{a^n b^m, n, m \geq 1\}$
 - b. $M = \{ a^n b^m, n \ge 2, m \ge 3 \}$
 - c. The set of all strings over the alphabet $\{a, b\}$ that begin and end with the same letter.

Good Quck