Plot majoration

Problem: compute the largest subset of "strictly majorating" plots

Plot majoration

Problem: compute the largest subset of "strictly increasing" plots

Plot majoration

Problem: compute the largest subset of "strictly majorating" plots

Plot majoration

Problem: compute the largest subset of "strictly majorating" plots

Problem: compute the longest path in a DAG

Longest path in a DAG

Longest path in a DAG

compute the topological sort of the graph for all $u \in V$ initialize l(u) = 0

for all $u \in V$ in topological order

 $l(u) = \max_{(v,u) \in E} l(v) + 1$

output u with maximum l(u)

l(u): nb of edges on the longest path ending at u

Longest path in a DAG

compute the topological sort of the graph

for all $u \in V$ initialize l(u) = 0

for all $u \in V$ in topological order

 $l(u) = \max_{(v,u)\in E} l(v) + 1$

output u with maximum l(u)

l(u): nb of edges on the longest path ending at u

Maximum flow in networks

and some other Combinatorial optimization problems

Flow network

Directed weighted graph G = (V, E, c)

c(p,q): capacity of edge (p,q)source $s \in V$, sink $t \in V$

Accessiblity assumption: all nodes appear on a path from s to t

Examples:

Water systems Production lines Traffic roads Transportation of goods Electricity

A longest path in a DAG can be computed in time O(n + m)

Flow network (cont)

Capacity $c: V \times V \to \mathbb{R}$ with $c(p,q) \ge 0$ if $(p,q) \notin E$, then assume c(p,q) = 0

Flow $f: V \times V \to \mathbb{R}$

Capacity constraint

for all $p, q \in V$, $f(p,q) \le c(p,q)$

Flow network (cont)

Flow conservation

Flow

Flow value (definition):

$$|f| = \sum_{p \in V} f(s, p) - \sum_{p \in V} f(p, s)$$

what flows out of the source minus what flows into the source

Property:

$$|f| = \sum_{p \in V} f(p, t) - \sum_{p \in V} f(t, p)$$

Maximum flow problem

Given a flow network G = (S, A, c), compute the **maximum** flow, *i.e.* the flow of maximum value |f|

Residual capacity of an edge

for each edge $(p,q) \in E$ with current flow f(p,q), define $c_f(p,q) = c(p,q) - f(p,q)$ $c_f(q,p) = f(p,q)$

flow network

 G_f : residual network

Augmenting path

An augmenting path is a simple path in the residual network

Ford-Fulkerson method (1962)

initialize flow f to 0;

while there exists an augmenting path from s to t do augment flow f along this path by the residual capacity of the path(*)

 $\mathtt{return}\, f$

(*) minimum residual capacity of an edge on the path

Note: augmenting the flow means incrementing the flow on "forward edges" and decrementing the flow on "backward edges"

Example

Example (cont)

Example (cont)

Example (cont)

Cut

Cut (definition):
$$(X,Y)$$
 cut of $G=(V,E,c)$: (X,Y) partition of V such that $s\in X,t\in Y$

Capacity of the cut: $c(X,Y) = \sum \{c(x,y) | x \in X, y \in Y\}$ Flow through the cut: $f(X,Y) = \sum \{f(x,y) | x \in X, y \in Y\} - \sum \{f(x,y) | x \in X, y$

$$f(X,Y) = \sum \{f(x,y)|x \in X, y \in Y\} - \sum \{f(y,x)|x \in X, y \in Y\}$$

$$X = \{A,B,C,D\}$$
 $Y = \{E,F\}$ $c(X,Y) = 14$ $f(X,Y) = 12$

Cut (cont)

Note that the flow from Y to X *is* counted negatively, but the capacity does *not* take into account edges from Y to X

 $c(X,Y) = 26 \quad f(X,Y) = 19$

Properties

Properties Let
$$(X,Y)$$
 be a cut. Then
(i) $f(X,Y) = |f|$
(ii) $f(X,Y) \le c(X,Y)$

The maximum flow is bounded by the minimum capacity of a cut

Properties

Properties Let
$$(X,Y)$$
 be a cut. Then
(i) $f(X,Y) = |f|$
(ii) $f(X,Y) \le c(X,Y)$

The maximum flow is bounded by the minimum capacity of a cut

Theorem (max-flow min-cut theorem)

The following conditions are equivalent:

- (i) f is a maximum flow
- (ii) there is no augmenting paths in the residual network
- (iii) |f| = c(X', Y') for some cut (X', Y')

⇒ maximum flow equals minimum cut capacity

Minimum cut

$$X'=Y'=Y'=c(X',Y')=12$$
 (X',Y') of minimum capacity $f(X',Y')=12$ is the maximum flow

Minimum cut

$$X' = \{A,C\}$$

 $Y' = \{B,D,E,F\}$
 $c(X',Y') = 12$
 (X',Y') of minimum capacity
 $f(X',Y') = 12$ is the maximum flow
$$\begin{array}{c}
S \downarrow \\
A \\
6/8 \\
6/8
\\
5/6
\\
7
\\
1/3 3/3 C \\
8/8
\\
4/6
\\
Y
\\
1/3 = 12$$

Implementation of Ford-Fulkerson method

initialize flow f to 0;
while there exists an augmenting path from s to t do
 augment flow f along this path
return f

How to choose the augementing path?

Example

The number of iterations depends on the choice of the paths

Example (cont)

The number of iteration depends on the choice of the paths

Example (cont)

The number of iteration depends on the choice of the paths

Example (cont)

The number of iteration depends on the choice of the paths

Example (cont)

The number of iteration depends on the choice of the paths

Integer-valued flow

- If all capacities are integers, then all intermediate flow values and residual capacities are integers as well
- ▶ If C is the max-flow, then Ford-Fulkerson makes at most C iterations $\Rightarrow O(|E| \cdot C)$ time

Edmonds-Karp algorithm

Main idea: To augment the flow, choose the **shortest**(*) augmenting path in the residual network (using BFS)

(*) in terms of number of edges, i.e. without weights

Theorem

Computing the maximum flow using this strategy requires at most $n\cdot m$ augmentations. The running time is $\mathcal{O}(n\cdot m^2)$

This strategy is known as the Edmonds-Karp algorithm (1972), but was discovered by Dinitz (1970)

Other strategies

Push-relabel algorithm : $O(n^2 \cdot m)$

Relabel-to-front algorithm : $O(n^3)$

Exercise

Run the Ford-Fulkerson algorithm on the following network:

Maximum bipartite matching

Maximum matching

Bipartite graph $G = (V, E), V = L \uplus R$, and

$$\forall (p,q) \in E, p \in L \ et \ q \in R$$

Matching: $C \subseteq E$ such that for all $p \in V$ \exists at most one edge in C incident to p (i.e. having p as one of the endpoints)

Maximum matching: matching with the maximum number of edges

NB: maximum ≠ maximal (by inclusion!)

Maximum vs maximal matching

A maximum matching is maximal, but there are maximal matching of smaller size. Computing the smallest maximal matching is difficult!

Encoding by maximum flow

Encoding by maximum flow

Encoding of a bipartite graph by a directed graph. Maximum matching and corresponding maximal flow. Each edge has capacity 1.

Correctness: Let $G = (V = L \uplus R, E)$ be a bipartite graph and G' be the corresponding directed graph. If C is a matching of G, then there exists a flow in G' of value |C|. Conversely, if f is a flow in G' (of an integer value), then there exists a matching in G of cardinality f.

The complexity can be shown to be $O(n \cdot m)$.

Improvements have been proposed: for example, the Hopcroft-Karp algorithm works in time $\mathcal{O}(\sqrt{n}\cdot m)$

What about min cut here?

Question: we know that max flow is 3, can you find a min cut with capacity 3?

What about min cut here?

Question: we know that max flow is 3, can you find a min cut with capacity 3?

How to obtain min-cut from maxflow

Consider the residual network and compute all nodes accessible from s

How to obtain min-cut from maxflow

Consider the residual network and compute all nodes accessible from s

How to obtain min-cut from maxflow

Consider the residual network and compute all nodes accessible from s

Edge connectivity

Edge connectivity

▶ Edge connectivity (network reliability) of an *undirected* graph = minimum number of edges that has to be deleted to make the graph disconnected

Edge connectivity and cuts

- find a cut such that the number of edges crossing the cut is minimized
- minimum number of edges crossing a cut = edge connectivity

Edge connectivity and max flow

Assume we know one node on each side of the min cut

- ▶ Then we can
 - turn the graph into a weighted directed graph (each edge weighted 1)
- ▶ use Ford-Fulkerson to compute max flow (=edge connectivity)
- ▶ In this case: max flow = nb of edge-disjoint paths

Edge connectivity and max flow

Assume we know one node on each side of the min cut

- ▶ Then we can
- turn the graph into a weighted directed graph (each edge weighted 1)
- ▶ use Ford-Fulkerson to compute max flow (=edge connectivity)
- ▶ In this case: max flow = nb of edge-disjoint paths

Computing edge connectivity

turn the graph into directed graph, set all edge capacities to 1 pick any node v for all $u \in V \backslash \{v\}$

run max-flow algorithm with source \boldsymbol{v} and sink \boldsymbol{u} output the minimum flow obtained