Отчет о выполнении лабораторной работы Измерение коэффициента поверхностного натяжения воды

Лепарский Роман

18 апреля 2021 г.

1 Аннотация

Цель работы: 1) измерение коэффициента поверхностного натяжения исследуемой жидкости при разной температуре с использованием известного коэффициента поверхностного натяжения другой жидкости; 2) определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости.

2 Теоретические сведения

Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной границы раздела двух сред. Для сферического пузырька внутри жидкости избыточное давление дается формулой Лапласа:

$$\Delta p = \frac{2\sigma}{r} \tag{1}$$

Эта формула лежит в основе предлагаемого метода определения коэффициента поверхностного натяжения жидкости. Измеряется давление, необходимое для выталкивания в жидкость пузырька газа.

3 Экспериментальная установка

Рис. 1: Схема установки

В резервуар В заливают исследуемую жидкость. Измерения производятся сначала для спирта, чтобы найти радиус пузырька, потом для воды, чтобы определить ее коэффициент поверхностного натяжения воды.

4 Приборы и материалы

В работе используются:

- прибор Ребиндера с термостатом;
- исследуемые жидкости;
- стаканы.

5 Обработка результатов

Запишем результаты измерений для спирта:

$$\Delta P = 88.2 \pm 0.9 \text{ Ha}$$

 $\sigma_{\rm c} = 0.0223 \text{ H/M}$

Отсюда, по формуле (1) найдем радиус иглы:

$$r = rac{2\sigma}{\Delta P} = 0.5056 \pm 0.005 \; {
m MM}$$

Это значение совпадает с измеренным под микроскопом (0.5 мм).

Далее будем проводить измерения с водой. Глубина погружения иглы, измеренная напрямую $\Delta h = 4.2$ мм. Давление воды на этой глубине $P_{\rm B} = 41.16$ Па. Это значение совпадает с разностью давлений внутри пузырька ($P_1 = 225.4$ Па; $P_2 = 307.7$ Па).

Измерим зависимость температуры жидкости, от давления в пузырьке. Найдем для каждой температуры коэффициент σ .

T, K	P , Πa	σ , H/M
298	305,76	0,0764
303	301,84	0,0754
308	299,88	0,0749
313	297,92	0,0744
318	294	0,0735
323	292,04	0,0730
328	288,12	0,0720
333	286,16	0,0715

Рассчитаем по классической формуле погрешность:

$$\sigma_{\sigma}=0{,}0002~\mathrm{H/m}$$

Построим по данным значениям график $\sigma(T)$

Из этого графика находим коэффициент наклона:

$$\frac{d\sigma}{dT} = -(138 \pm 4) \cdot 10^{-6} \text{ H/m*K}$$

С помощью него найдем следующие величины:

$$q = -T\frac{d\sigma}{dT}$$

$$\frac{Q_{\Pi}}{\Pi} = \sigma - T\frac{d\sigma}{dT}$$

Запишем результаты в таблицу:

T, K	q, H/M	$Q/\Pi,\mathrm{H/M}$
298	0,0413	0,0350
303	0,0420	0,0333
308	0,0427	0,0322
313	0,0434	0,0310
318	0,0441	0,0293
323	0,0448	0,0281
328	0,0455	0,0264
333	0,0462	0,0253

Найдем погрешности:

$$\begin{split} \sigma_q &= 0{,}0006~\mathrm{H/m} \\ \sigma_{Q/\Pi} &= 0{,}0006~\mathrm{H/m} \end{split}$$

Построим графики по найденным значениям:

6 Вывод

С помощью уравнения Лапласа нам удалось найти радиус иглы $r=0.5056\pm0.005$ мм, причем, с большей точностью по сравнению с прямым измерением. Также удалось определить коэффициент поверхностного натяжения воды $\sigma=0.0764\pm0.0002$ H/м (t = 25 °C) и его зависимость от температуры $\frac{d\sigma}{dT}=-(138\pm4)\cdot10^{-6}$ H/м*K. Эти значения лежат близко к табличным ($\sigma=0.073$ H/м; $\frac{d\sigma}{dT}=-168\cdot10^{-6}$ H/м*K). Допустимость аппроксимации зависимости $\sigma(T)$ прямой подтверждается последним графиком.