Todo list

sauber und ausführlich machen	III
alle tabellen nochmal korrektur lesen	
make tables look nice	Ш
eventuell table heads dick machen	Ш
sets hinzufügen	Ш
entweder überall gams äquivalnt ergänzen oder überall weg lassen	Ш
tables and figures verzeichniss	1
hier noch mit rein das batterie speicher in kombination mit einem windpark positive spillovers haben kann	3
- vor und nachteile, begrenzte kapazität des anschlusspunkts, überschüssige energie kann zum laden genutzt werden.	3
forschungsfrage ergänzen	4
noch mit rein erste entscheidung RL -> dann 4 mögliche Ausgänge!!!!!!!!!	9
den part nochmal nachdenken	9
den part mit den speicherzuständen eventuell in die Modelierungsansatz Diskussion .	9
abshcnitt eränzen	9
aussortieren was noch mit oben rein soll	9
ausführliche Erklärung stochastische Programmierung	10
gewinnmaximierung	11

abkürzungen	11
verweis wissenschaftliche arbeit und appendix für umsetzung	11
abschnitt ergänzen	11
den part nochmal nachdenken	12
abschnitt ergänzen	12
Übersicht über zeitlichen Ablauf der einzelnen Märkte	13
eventuell raus lassen oder halt in vereinfachungsassumptions mit rein	14
den Part Menge als abstrakte binäre Aktivierungsvariable eventuell nochmal über- arbeiten und entsprechend oben anpassen	15
eventuell binär variable nur an Preis koppeln und das dann anders heraus ziehen	15
strict a einführen	17
formelzeichen kontrollieren	17
alle gleichungen checken wegen ∀	17
alle gleichungen mit nummerierung und beschreibung? überarbeiten	17
annahme perfekte Vorraussicht Windpark	18
ref	18
mindestmenge?	18
eventuell erklärung wieder mit positive und negative Arbeit?	18
strikte variante einfügen	21
speicherkapazitätkosten weg lassen?	24
entscheiden ob ich kapazitätkosten noch mit rein nehme	28
referenz ergänzen	29
price in titel ergänzen	40
verweis einfügen	41
appendix verweis	41
variablen noch in anfangstabelle einfügen	46

nochmal nach windprofil suchen im gesamten text und schauen ob das da noch korrekt erklärt ist	46		
ziel für das hoch und runter setzten der linie> erklärung was ich damit bezwecken möchte in dem entsprechendem Mark habe ich das schon mit drinne?	46		
das ist eine grafik mit den alten average preise, mache eine graifk mit den richtigen grenzpreisen	47		
grafiken verschiedene Preisszenarien	47		
appendix verweis zu python code			
abbildungen ergänzen			
den teil drinne lassen?			
ref entsoe	48		
Python Code appendix verweis	48		
eventuell nochmal umformulieren da sehr ähnlich zu DA	50		
letzen satz mit rein nehmen?	51		

Fakultät Wirtschaftswissenschaften Professur für BWL, insbesondere Energiewirtschaft

Research Project

Optimizing Strategies for battery storages in combination with renewable energy production facility at the German aFFr/DA markets

Sebastian Trümper

Born on: 13th September 1990 in Naumburg

Matriculation number: 3631139

30th March 2025

Supervisor

Dr. Hannes Hobbie, Margrit Wicke, Dr. Christoph Zöphel

Abstract

abstract

Table of Contents

Ab	strac	t		
1	Introduction			
2 Literature Review				5
3	Methology			
	3.1	Gener	al model explanation	9
	3.2	Marke	t Modeling Approaches	10
	3.3	Mode	Design Descriptions	13
		3.3.1	RL	14
		3.3.2	DA	17
		3.3.3	RA	18
		3.3.4	Battery & Working Point Adjustments	19
		3.3.5	Access Point	20
		3.3.6	Complete Model	21
	3.4	Timeli	ne Creation	39
	3.5	Simpli	fication	49
4	Resu	ults		52
5	Con	clusion		53
6	App	endix .		54
Bil	oliogr	aphy .		55

valnt

ergän-

Sets & Variables & Parameters

			sauber
Abbreviatio	ons		und
Abbreviations Description		aus- führlich	
aFRR automatic Frequency Restoration Reserve GAMS General Algebraic Modeling System TSO transmission system operators			
			machen
CBMP	grenzüberschreitenden Grenzpreis		alle ta-
ARIMA SARIMA		Autoregressive Integrated Moving Average Seasonal Autoregressive Integrated Moving Average	
TBATS	Trigonometric seasonality Box-Cox transforma	ntion	noch-
	ARMA errors Trend Seasonal components		mal kor-
			rektur
			lesen
iroß geschi	riebene Variablen werden endogen ermittelt. Klein gesc	hriebene Variablen werden	make
xogen vor	geschrieben.		tables
-			look
			nice
Variable	Description		eventuel
RL	Regelleistungsmarkt		table
DA	Day Ahead Markt		heads
RA	Regelarbeitsmarkt		dick
Q_y^i	Gebotsmenge der Art i(=in/out) am Markt y		machen
(X_y^i)	(lineare Gebotsmenge der Art i(=in/out) am Markt y)		Thuche.
P_y^i	Gebotspreis der Art i(=in/out) am Markt y		
E ⁱⁿ _{DA}	EnergyInDA(t)		energy in d
Eout	EnergyOutDA(t)	er	nergy out c
E ⁱⁿ _{RT}	EnergyInRT(t)		energy in r
E _{RT} out	EnergyOutRT(t)	e	energy out
ER	emergency reload B_y^i	Binäre Variable die den Zu	ıschlag (B=
			sets
			– hinzufü-
Parameter			gen
Variables - simplified model + wind park			entwede
	·		überall
			gams

Parameter	GAMS Equivalent	Description
f _{DA}	priceForeCastDA(t)	forecast price day ahead
f_{RT}	priceForeCastRT(t)	forecast price real time r
$ ho_{DA}$	priceProbDA	probability for price μ
$ ho_{RT}$	priceProbRT	probability for price μ
r	Rate mit der der Stromspeicher geladen/entladen werden kann	
а	Anschlusskapazität	
z ⁱⁿ (t)	binaryInDA(t)	binary variable if bid is ac
$Z^{Out}(t)$	binaryOutDA(t)	binary variable if bid is ac
$\omega_{DA}(pDA)$	Wahrscheinlichkeit für Zuschlag bei Preis P_{DA}	
$\omega_{\scriptscriptstyle V}^i(P_{\scriptscriptstyle V}^i)$	Gebotswahrscheinlichkeit für P ⁱ _v	
$p_y^i(s_y^i)$	Gebotspreis der Art i(=in/out) am Markt y für Szenario s ⁱ	
$\omega_y^i(s_y^i)$	Gebotswahrscheinlichkeit für entsprechendes Preisszenario s_{v}^{i}	
c _y	Marktclearingpreis der Art i(=in/out) am Markt y	
m	eine sehr große Zahl	

Table 1: Variables

Parameter	GAMS	Description
f _{DA}	priceForeCastDA(t)	forecast price day ahead market
f_{RT}	priceForeCastRT(t)	forecast price real time market
E_{DA}^{in}	EnergyInDA(t)	energy in day ahead market
E_{DA}^{out}	EnergyOutDA(t)	energy out day ahead market
E_{RT}^{in}	EnergyInRT(t)	energy in real time market
E_{RT}^{out}	EnergyOutRT(t)	energy out real time market
E ⁱⁿ stor		
E _{stor}		
p_{WP}^+	costs of emergency working point p_{WP}^-	costs of emergency working point

Table 2: Variables

	Ertrag _{DA}	erzielter Ertrag im Day Ahead Markt	
	B_{DA}	binär Variable welche signalisiert	
		ob am Day Ahead Markt teilgenommen wird	
Q _{DA} gebotene Menge am Day Ahead		gebotene Menge am Day Ahead Markt	
	<i>P_{DA}</i> gebotener Preis am Day Ahead Markt		

tables and figures verzeichniss

1 Introduction

1. Einführung ins Thema Kurze Darstellung des Themas.

Warum ist das Thema relevant (wissenschaftlich, gesellschaftlich, praktisch)?

Aktueller Forschungsstand oder gesellschaftlicher Kontext (je nach Fachgebiet).

Beispiel: "In den letzten Jahren ist das Interesse an nachhaltiger Stadtentwicklung stark gestiegen. Besonders die Rolle grüner Infrastruktur wird dabei zunehmend als zentral betrachtet."

2. Problemstellung Was genau ist die Forschungsfrage oder das Problem?

Gibt es eine Forschungslücke oder ein konkretes Problem, das du adressierst?

Beispiel: "Trotz umfangreicher Forschung zur Wirkung urbaner Grünflächen fehlen Studien zur langfristigen Wirkung auf die mentale Gesundheit in dicht besiedelten Quartieren."

3. Zielsetzung und Forschungsfrage(n) Was willst du mit der Arbeit erreichen?

Welche Forschungsfrage(n) leitest du daraus ab?

Beispiel: "Ziel dieser Arbeit ist es, die Wirkung von urbaner Begrünung auf das subjektive Wohlbefinden von Stadtbewohner:innen zu untersuchen. Die zentrale Forschungsfrage lautet daher: Welche Effekte hat grüne Infrastruktur auf das psychische Wohlbefinden in urbanen Räumen?"

4. Methodisches Vorgehen (kurz) Wie wirst du vorgehen (z.B. Literaturarbeit, empirisch, qualitativ/quantitativ)?

Beispiel: "Zur Beantwortung der Forschungsfrage wird eine qualitative Inhaltsanalyse von Experteninterviews durchgeführt."

5. Aufbau der Arbeit Wie ist die Arbeit strukturiert?

Kurzer Überblick über die Kapitel.

Beispiel: "Kapitel 2 stellt die theoretischen Grundlagen dar, Kapitel 3 erläutert das methodische

Vorgehen, Kapitel 4 präsentiert die Ergebnisse und Kapitel 5 diskutiert diese im Kontext der Forschungsfrage."

positive synergie plant/battery

Im Allgemeinen ok, ich lasse das erstmal so stehen und überarbeite dann wenn ich genauer weiß wo genau der rote Pfaden liegen wird.

The accelerating transition towards renewable energy sources presents both opportunities and challenges for modern power systems. But, the inherent variability and limited predictability of renewable energy generation pose challenges to grid stability and economic efficiency. As a result, flexible technologies such as battery energy storage systems (BESS) have become increasingly important to ensure reliable and market-efficient integration of renewable resources.

When deployed in conjunction with renewable energy plants, battery storage systems offer complementary capabilities. While wind farms primarily participate in the day-ahead market based on forecasted production, battery systems can operate more strategically by responding rapidly to price signals and grid requirements.

In particular, the provision of ancillary services—especially frequency regulation has emerged as a promising revenue stream for storage technologies. Germany's balancing markets, including the secondary control reserve (aFRR), offer significant potential for batteries due to their fast ramping capabilities and high availability.

Combining renewable energy generation with battery storage in a co-located hybrid system allows operators to diversify revenue streams by participating simultaneously in multiple electricity markets. However, such joint operation requires sophisticated optimization techniques that consider market mechanisms, physical constraints, and operational synergies. In this context, mathematical programming tools such as GAMS (General Algebraic Modeling System) are well-suited to model and solve complex multi-market dispatch problems.

This paper presents a mixed-integer optimization model developed in GAMS to simulate the joint operation of a wind farm and a co-located battery storage system. The wind farm's revenues are derived from the German day-ahead electricity market, while the battery system

hier noch mit rein das batterie speicher in kombination mit einem windpark positive spillovers haben kann

> - vor und nachteile begren

participates in the secondary balancing market. The model aims to maximize total system profit while adhering to market and technical constraints.

> forschungs ergän-

2 Literature Review

- 1. perfektes wissen unrealistisch
- 2. konkrete preise unrealistisch

durch die steigenden durchdringung des energie markt mit erneuerbaren energien gibt es ein paar neue herausforderungen für die betreiber von erneuerbaren kraftwerken und netzbetreiberen.

- geringe preise bei underforecast hohe preise bei overforecast -> besonders starke auswirkung bei hohen anteil erneuerbarer energien
- -> wie gleiche ich den nachteil aus -> temporäre verschiebung der produktion durch speicher
- eventuell paper wieso batterien der beste speicher wären und dann entsprechend diese noch in das model mit den randdaten einfügen
- verschiedene analysestrategien für batterie management vorstellen

Energy Storage Arbitrage Under Day-Ahead and Real-Time Price Uncertainty

-> binäre variablen + speicherstatus is an szenario gebunden (komplexität explodiert) -> außerdem ohne besonderheiten des deutschen marktes

Optimal Operation of Independent Storage Systems in Energy and Reserve Markets With High Wind Penetration -> kein deutsches marktdesign

Bidding strategy for a battery storage in the German secondary balancing power market –zwar deutscher markt aber altes marktdesign

Demonstration of participation in the German balancing power market using a large-capacity hybrid battery storage system - neues marktdesign aber kein fokus auf model sondern generelle setup analyse

-> probleme mit den forecast ... eventuell dazu nochmal ein paper

wir probieren ein relativ leichtes model zu schaffen aus dem man generelle strategien ableiten

kann. - unabhängiges model von den forecast daten approximierter speicher (siehe modell)

- wirtschaftliche frage/herausfordung - systemische frage/herausforderung The integration of battery storage systems with renewable energy sources, particularly wind energy, has garnered increasing attention in recent years as a strategy to mitigate the variability of renewables and improve grid stability. Numerous studies have explored the techno-economic feasibility and operational strategies of hybrid wind-storage systems, especially in the context of market participation and ancillary service provision.

Wind Energy and Day-Ahead Market Participation Wind farms primarily participate in the day-ahead electricity market, where they are scheduled based on forecasted generation. However, due to the intermittent nature of wind, the accuracy of forecasts plays a critical role in market performance. According to Morales et al. (2014), wind power producers face significant uncertainty in both generation and market prices, leading to potential imbalances and penalties. Strategies such as improved forecasting (Pinson, 2013) and risk-aware bidding (Bathurst et al., 2002) have been proposed to mitigate these uncertainties and maximize revenue in day-ahead markets.

Role of Battery Storage in Power Systems Battery energy storage systems (BESS) offer operational flexibility by decoupling generation from consumption, enabling energy arbitrage, peak shaving, and ancillary service provision (Zakeri and Syri, 2015). When co-located with wind farms, storage systems can enhance the economic value of wind energy by reducing curtailment and participating in multiple electricity markets (Lund et al., 2015).

In hybrid configurations, storage can shift energy from periods of high generation and low prices to periods of high demand and prices, effectively arbitraging across the day-ahead market. Beyond arbitrage, BESS are particularly suited for participation in ancillary service markets due to their fast response and ramping capabilities.

Participation in the German Secondary Balancing Market Germany's ancillary service market includes primary (FCR), secondary (aFRR), and tertiary (mFRR) reserves. Battery storage has gained a competitive edge in the secondary control reserve market (aFRR), given its technical characteristics and minimal ramping delay (Regelleistung.net, 2023). Research by Nooij and van den Broek (2021) demonstrates that batteries can significantly contribute to balancing markets, especially under regulatory frameworks that favor flexibility.

The economic potential of battery participation in the German balancing market has been explored in various studies. For instance, Schittekatte et al. (2020) analyzed the revenue stacking potential for BESS across different markets in Germany, highlighting that aFRR remains one of the most lucrative avenues for flexible assets. However, market saturation and regulatory changes can significantly influence profitability (Kunze et al., 2019).

Optimization Models for Hybrid Systems To capture the complexity of market interactions and technical constraints, mixed-integer linear programming (MILP) and stochastic optimization models are widely employed (Conejo et al., 2010). These models consider operational constraints, forecast uncertainties, and market rules to optimize bidding strategies and dispatch schedules. Recent studies (e.g., Zhang et al., 2021; Garcia et al., 2022) have modeled co-located wind-storage systems, optimizing their joint operation to maximize total profit across energy and ancillary service markets.

The integration of such models within software environments like GAMS (General Algebraic Modeling System) allows for a detailed representation of temporal constraints, market dynamics, and technical performance, making it suitable for evaluating real-world hybrid systems.

Research Gap and Contribution While a growing body of literature addresses the economic optimization of wind and storage systems, few studies explicitly model a co-located system participating simultaneously in the day-ahead and the German secondary balancing markets. Furthermore, most models assume ideal or simplified market conditions, leaving room for more detailed representations that reflect the regulatory and technical nuances of actual markets. This paper contributes to the literature by developing a GAMS-based optimization model that captures the joint operation of a wind farm and battery storage, with distinct market participation strategies and revenue streams.

Carlo Brancucci Martinez-AnidoCarlo Brancucci Martinez-AnidoGreg BrinkmanBri-Mathias S. HodgeBri-Mathias S. Hodge he analysis concludes that electricity price volatility increases even as electricity prices decrease with increasing wind penetration levels. The impact of wind power on price volatility is larger in the shorter term (5-min compared to hour-to-hour). The results presented show that over-forecasting wind power increases electricity prices while under-forecasting wind power reduces them.

3 Methology

3.1 General model explanation

was wird in dem model überhaupt dargestellt - profit maximierender ansatz

- reihenfolge der Entscheidungen
- wann klärt sich welche szenario unsicherheit auf

Ziel des Modells ist es auf möglichst einfache Weise eine Vermearktungsoptimierugn eines batterie speichers in kombination mit einem windpark vor zu nehmen. Generell gibt es verschiedenste Möglichkeiten dies zu modellieren. Der Batteriespeicher wird am sekundären Regelleistungs und Regelarbeitsmarkt vermarktet. Der Windpark wird am Day-Ahead-Markt angeboten. Wichtig hierbei ist es alle 3 Märkte miteinander zu verbinden ohne eine zu hohe komplexität zu benötigen die die Berechenbarkeit einschränkt. Besonders wichtig ist dies zum Beispiel beim Batteriespeicher. Der aktuelle Ladestatus viertelstündlich neu berechnet. Selbst bei nur 2 möglichen Szenarien wären das $2^{96} = 79228162514264337593543950336$ mögliche Batteriespeicher Zustände am Ende des Tages. Wenn man beachtet das die Planung immer für den Folgetag erfolgt müsste man sogar $2^{182} = 6,13*10^{54}$ mögliche Batteriespeicher Zustände beachten bevor man wieder Planungssicherheit hat. Da dies offensichtlich nicht mehr berechenbar ist muss man von perfekter Vorraussicht ausgehen und so nur einen Batteriespeicherweg berechnen. Oder Bestimmte vorgänge innerhalb der Zeitkurve approimieren.

Lösungsansätze für dieses und andere Probleme sind im Abschnitt [] zu finden Weiterhin ist zu beachten des sich der Windpark und der Batteriespeicher einen gemeinsamen Anschlusspunkt teilen, so ist die maximale Leistung beider begrenzt.

Es folgt eine Diskussion verschiedener Modellansätze. Anschließend werden die Einzelmodelle der verschiedenen Märkte betrachtet und zum schluss zusammen geführt.

Zur Analyse des vorliegenden Problems wurde ein Model in GAMS erstellt. Ziel des Models war es auf möglichst geringem Rechenaufwand einen Batteriespeicher zu optimieren der mit einer Analage zur produktion erneuerbarer energien kombiniert wurde. Dabei sollte vermmieden werden auf sehr detailierte Zeitreihenvorhersagen, weil sehr aufwendig, angewiesen zu sein. Es sollten aber auch Grundannahmen wie perfekte Vorraussicht vermieden werden um realistische Planungsentscheidungen ab zu bilden.

noch
mit rein
erste
entscheidur
RL ->
dann
4 mögliche
Aus-

gänge!!!!!!!

den
part
nochmal
nachden
ken

den
part
mit den
speicherzus
eventuell
in die
Modelierungsansatz

abshcnitt eränzen

aussortie rei

Diskus-

sion

(Zur Vereinfachung werden zuerst alle Formeln für nur einen Zeitschritt aufgestellt. Am Ende wird die Zeitvariable entsprechend hinzugefügt.)

Das grundlegende Modell stellt einen Energiespeicher da, der am Regelleistungsmarkt, Day Ahead Markt und Regelarbeitsmarkt vermarktet werden kann. Der darraus resultierende Profit soll maximiert werden. Für jede Teilentscheidung/Markt existiert ein eigenes Modell. So kann, für jedes Teilmodell, vermieden werden die anschließenden Marktergebnisse (Zuschlag oder Ablehnung) zu integrieren. Dies ist wichtig, da anderen Falls der Algorithmus allwissend wäre und nur perfekte Gebote errechnen würde. Die Ergebnisse eines jeden Teilmodells werden immer an das nachfolgende Modell übergeben und erst an dieser Stelle ausgewertet. Jedes Teilmodell ermittelt Mengengebote zu bestimmten Preisen. Die verschiedenen Preise werden durch verschiedene Szenarien abgebildet. Jedem Szenario ist eine bestimmte Wahrscheinlichkeit zugeordnet. (Die Preis-Wahrscheinlichkeits-Kombinationen der verschiedenen Szenarien wurden vorher exogen mittels SARIMA-Analyse ermittelt.) Ein Gebot stellt sich dann wie folgt dar:

ausführliche Erklärung stochastische Programmierung

- modeldesign erklären -> verschiedene designoptionen dann "design optionen"/alternativen/erklärung?!? part erklären normalerweise liegt die logik in den daten und ich lasse den solver die logik in den daten erkennen. wenn ich aber keinen realistischen vorcast daten habe muss ich die logik in das programm schon selber legen.

das wesentliche meiner

- anschluss punkt
- kombination aus park und batterie

3.2 Market Modeling Approaches

ansatz wie das darzustellende umgesetzt wird damit es optimierbar ist

- eventuell in Konzepte umbenennen und ganz allgemein über verschiedene konzepte sprechen

Verschiedene Modellierungsansätze erfordern unterschiedliche zu grunde liegende Datensätze und anders herum. So erfordert zum Beispiel ein stochastische model, welches eine opti-

mierung über mehrere unsichere mögliche Szenarien vornimmt, einen Datensatz der diese verschiedenen Szenarien abbildet. Bei der direkten verwendung historischer Daten benötigt man ein model, welches von einer perfekten Vorhersage ausgeht und so nur eine Datenreihe berücksichtigt.

Im folgenden werden verschiedene Ansätze bezüglich Model und Daten besprochen.

gewinnmax

Ein möglicher Modelierungsansatz ist der der dem Model die perfekte Vorhersage unterstellt, hier werden historische Daten eingespeist und anschließend die Ergebnisse unter dieser Prämisse betrachtet. So werden dann die perfekten Ergebnisse mit einem abgeschätzen Prozentsatz herunterskaliert um zu einem realistisch erzielbaren ergebnis zu kommen. Der Vorteil dieser Methode in unserem Fall läge in der einfachen Komplexität. Da man immer genau weiß was eintritt muss auch nur ein einzelner Zeitstrahl verfolgt werden. Der Nachteil liegt ganz klar darin das man bei der Betrachtung der Ergebnisse eventuell auf falsche Strategien schließt. So müssen in unserem Fall Entscheidungen getroffen werden mit unsicherer Zukunft Szenarien. So kann es sein das zum Beispiel die Anschlusskapazität es nicht zulässt zugleich am DA-Markt und am RA- zu bieten. Bei perfekter Vorraussicht weiß ich genau welche entscheidung bei gegeben Daten die richtige ist auch wenn der Unterschied zwischen den beiden Entscheidungen nur marginal ist. Dies ist dann aber nur eine Einzelfallentscheidung, in realität kann es aber sein, dass eine andere strategie, über mehrere Fälle hinweg sich als vorteilhaft herausstellt. So lassen sich mit diesem Ansatz gut Einzelfall entscheidungen treffen aber nicht gut auf eine allgemeine Strategie schließen. Um eine Allgemeinere Strategie ableiten zu können bieten sich stochastische programmieransätze an. Diese bestimmen optimale Entscheidungen unter betrachtung mehrerer möglicher unsicherer Zukunftszenarien. So wird im Model eine entscheidungsvariable mit mehreren szenarien und deren eintrittswahscheinlichkeiten kombiniert um so auf eine best mögliche Entscheidung unter Unsicherheit zu schließen. So lassen sich einfacher optimalere allgemein gültige Strategien ableiten, allerdings ist hier die Erstellung der dafür notwendigen Daten wesentlich schwieriger. So braucht man verschiedene Datensätze die die verschiedenen Szenarien präsentieren und muss diese Datensätze auch mit eintrittswahrscheinlichkeiten bewerten. Im folgenden werden mehrere Ansätze diskutiert wie man dies für Zeitreihen-Datensätze macht . Außerdem müssen müssen oft vereinfachende Annahmen getroffen werden um die Modelkomplexität zu reduzieren. Besonders wichtig ist dies zum Beispiel beim Batteriespeicher. In unserem Model wird der aktuelle Ladestatus des Batteriespeichers viertelstündlich neu berechnet. Selbst bei nur 2 möglichen betrachteten Szenarien müsste man $2^{96} = 79228162514264337593543950336$ mögliche Batteriespeicher

<mark>abkürzun</mark>ge

verweis
wissenschaft
liche
arbeit
und appendix
für umsetzung

abschnitt ergänzen Zustände am Ende des Tages betrachten. Wenn man beachtet das die Planung immer für den Folgetag erfolgt müsste man sogar $2^{182} = 6,13*10^{54}$ mögliche Batteriespeicher Zustände beachten bevor man wieder Planungssicherheit hat. Deswegen werden erfolgt eine Betrachtung verschiedener Vereinfachungen in Kapitel []

In Summe sind die Vorteile eine stochastischem Ansätzes größer, vor allem um die hier vorliegende Forschungsfrage nach allgemein güiltigen Strategien zu beantworten. Zur erstellung von optimalen allgemeinen strategien

den part nochmal nachden

abschnitt ergän-

ken

3.3 Model Design Descriptions

Das Modell ist in der Lage an drei Märkten zu bieten. Ein Gebot umfasst immer eine Menge sowie einen dazu gehörigen Preis. Zuerst erfolgt das Gebot am Regelleistungsmarkt, dann am Day Ahead Markt und schließlich das Gebot am Regelarbeitsmarkt.

- vielleicht noch einen allgemeine aussage wie szenarien in den verschieden Marktmodellen zu interpretieren sind. .. oder ich beschreibe zuerst die verschiedenen märkte und dann die erstellung der dafür nötigen Daten.

Ziel ist es dabei den Profit zu maximieren, dieser setzt sich aus der Menge und dem Preis zusammen. Die Menge ist dabei die Menge die am Markt angeboten wird und der Preis ist der Preis zu dem die Menge angeboten wird.

So ergibt sich der Ertrag wie folgt:

Ertrag = *Menge* ∗ *Preis*

In Kombination mit unserem stochastischen Ansatz wird eine Wahrscheinlichkeit (ω) hinzugefügt. Die bedeutung der einzelnen Wahrscheinlichkeiten ist in der detailierten Beschreibung der einzelnen Märkte zu finden. Der zu erwartende Ertrag ergibt sich dann aus der summe aller möglichkeiten:

 $Ertrag = \sum_{s} Menge * Preis * \omega(Preis)$

Die verschiedenen Preise weren in Form von verschiedenen Szenarien abgebildet. Die Mengengebote können für jedes Preisszeanrio separat abgegeben werden. In Tabelle ?? ist ein Beispiel für die Szenarien und deren Wahrscheinlichkeiten zu finden. Die Wahrscheinlichkeit in diesem Fall würde angeben mit welcher Wahrscheinlichkeit das Gebot zum dazugehörigen Preis angenommen werden würde.

Übersich über zeitlichen Ablauf der einzelnen Märkte

Scenario sout	Price $p(s_{RL}^{out})$	Probability $\omega(s_{RL}^{out})$
s1	90	0.6
s2	100	0.5
s3	110	0.4

Table 3.1: Example Scenario Data Table

Die zu optimierende Zielfunktion für dieses beispiel wäre dann wie folgt: $maxProfit = \sum_{s_{RL}^{out}} Q_{RL}^{out} (s_{RL}^{out}) * p(s_{RL}^{out}) * \omega(s_{RL}^{out})$

In den folgenden Kapiteln werden zuerst die einzelnen Märkte individuell beschrieben subsection 3.3.1 bis ??. Nachfolgend wird die Überführung der Einzelmarktprobleme in eine Gesamtentscheidung erläutert [subsection 3.3.6].

3.3.1 RL

general description

Der aFFr Markt in deutschland trennt sich in 2 Teile auf. Zum einen in den Regelleistungsmarkt und zum anderen in den Regelarbeitsmarkt. Am Regelleistungsmarkt wird die bereitstellung von positiver oder negativer Regelleistung für ein 4 Stunden Zeitfenster am nächsten Tag geboten. Auktionsschluss ist jeweils um 9 Uhr am Vortag. Die Abrechnung erfolgt in [(Euro/MW)/h] der bezahlte Preis entspricht dabei dem eigenem Gebotspreis ("Pay-as-bid"-Verfahren). [https://www.next-kraftwerke.de/wissen/day-ahead-handel] Bei bezugschlagtem Regelleistungsgebot muss auch für den selben Zeitraum am Regelarbeitsmarkt Gebote abgegeben werden werden. Die Mindestgebotsmenge beträgt 1 MW und zur Teilnahme ist eine Präquailifikation notwendig.

model implementation

Für den Regelleistungsmarkt ergibt sich dann die folgende Zielfunktion.

$$maxProfit_{RL} = Q_{RL} * p_{RL} * \omega_{RL}(p_{RL}) \quad \forall t_{block}$$

raus
lassen
oder
halt in
vereinfachungs
sassumptions
mit rein

eventuel

Durch Umwandlung in ein Szenario abhängiges Problem ergibt sich dann die folgende Gleichung:

$$maxProfit_{RL} = \sum\nolimits_{t_{block}, s_{RL}} Q_{RL}(t_{block}, s_{RL}) * p_{RL}(t_{block}, s_{RL}) * \omega_{RL}(t_{block}, s_{RL})$$

Zu beachten ist, dass auch die Menge nun Szenarioabhängig ist, so kann theoretisch auf für jedes angenommene Szenario separat geboten werden. Praktisch ist dies nicht an zu nehmen, da der Algorithmus die höchst mögliche Menge immer dem höchsten Preiserwartungswert zuordnen wird. Auf diese Weise dient die Menge als abstrakte binäre Aktivierungsvariable der verschiedenen Preisszenarien.

Zu beachten ist das sowohl positive als auch negative Leistungsgebote abgegeben werden können. Die Aufteilung in angenommene und Abgelehnte Gebote erfolgt durch die Wahrscheinlichkeiten ω und $1-\omega$. Das wäre an dieser Stelle noch nicht nötig, macht aber die spätere integration der anderen Mörkte einfacher.

Part Menge als abstrakte binäre Aktivierungsvariable eventuell nochmal überarbeiten und entsprecheno oben anpassen

den

eventuell binär variable nur an Preis koppeln und das

$$\max Profit_{RL} =$$

accepted RL in & out:

$$\begin{split} & + \sum_{S_{RL}^{out}} \sum_{S_{RL}^{in}} (\omega_{RL}^{in}(t_{block}, S_{RL}^{in}) * \omega_{RL}^{out}(t_{block}, S_{RL}^{out})) * (\\ & + (Q_{RL}^{in}(t_{block}, S_{RL}^{in}) * \rho_{RL}^{in}(t_{block}, S_{RL}^{in}))) \\ & + (Q_{RL}^{out}(t_{block}, S_{RL}^{out}) * \rho_{RL}^{out}(t_{block}, S_{RL}^{out})) \end{split}$$

accepted RL in & declined out:

$$+ \sum_{S_{RL}^{out}} \sum_{S_{RL}^{in}} (\omega_{RL}^{in}(t_{block}, S_{RL}^{in}) * (1 - \omega_{RL}^{out}(t_{block}, S_{RL}^{out}))) * (1 + (Q_{RL}^{in}(t_{block}, S_{RL}^{in})) * \rho_{RL}^{in}(t_{block}, S_{RL}^{in})))$$

declined RL in & accepted out:

$$+\sum_{\substack{S_{RL}^{out} \ S_{RL}^{in}}} \sum_{\substack{s_{RL}^{in}}} ((1 - \omega_{RL}^{in}(t_{block}, S_{RL}^{in})) * \omega_{RL}^{out}(t_{block}, S_{RL}^{out})) * ($$

$$+(Q_{RL}^{out}(t_{block}, S_{RL}^{out}) * \rho_{RL}^{out}(t_{block}, S_{RL}^{out}))$$

$$\forall t_{hour} = \left\lfloor \frac{t_{quarter}}{4} \right\rfloor, t_{block} = \left\lfloor \frac{t_{quarter}}{16} \right\rfloor$$
(3.1)

Die Nebenbedingungen 3.2 bis ??tellen sicher das die Gebotenen Mengen positiv sind. Außerdem das die Anschlusskapazität a nicht überschritten wird [3.4] und das die Batterie die entsprechende Leistung bedienen kann [3.3]. Außerdem ist es wichtig das der Batteriespeicher Status im entsprechenden Zeitfenster die Gebotene Leistung erfüllen kann [3.5 & 3.6]. Hierbei ist zu beachten das die Gebotene Leistung pro Stunde notiert ist und der Batteriespeicher im viertelstunden takt berechnet wird. Deswegen muss die gebotene Leistung mit 0.25 multipliziert werden um den viertelstunden wert zu entsprechen. Sollte also beispielsweise 100MW geboten am RL geboten werden so muss für jede viertelstunde im entsprechenden Block 25MWh postive bzw. negative Arbeit vorgehalten werden.

$$0 \le Q_{RL}^{in}(s_{RL}^{in}), Q_{RI}^{out}(s_{RI}^{out}) \quad \forall s_{RL}^{in}, s_{RI}^{out}$$

$$(3.2)$$

$$r \ge \sum_{s_{RL}^{in}} Q_{RL}^{in}(s_{RL}^{in}), \sum_{s_{RL}^{out}} Q_{RL}^{out}(s_{RL}^{out})$$

$$(3.3)$$

$$a + \sum_{s_{RL}^{in}} Q_{RL}^{in}(s_{RL}^{in}) \ge \sum_{s_{RL}^{out}} Q_{RL}^{out}(s_{RL}^{out})$$

$$(3.4)$$

$$Q_{RL}^{in}(t_{block}, s_{RL}^{in})) * 0.25 \le BatCap - BatStat(t_{quarter, s_{RA}}) \quad \forall t_{block} = \left\lfloor \frac{t_{quarter}}{16} \right\rfloor$$
 (3.5)

$$Q_{RL}^{out}(t_{block}, s_{RL}^{out}) * 0.25 \le BatStat(t_{quarter, s_{RA}}) \quad \forall t_{block} = \left\lfloor \frac{t_{quarter}}{16} \right\rfloor$$
 (3.6)

3.3.2 DA

general description

Die erneuerbare Energien anlage wird am Day-Ahead Markt vermarktet. Hier werden Gebote für 1h Fenster am folgetag getätigt. Die Auktion schließt um 12 am Vortag. Die Mindestmenge beträgt 0.1 MWh. Es werden Gebote zwischen -500 Euro und 3000 Euro aktzeptiert. Die Abrechnung erfolgt in [Euro/MWh] und der Preis wird im "Pay-as-cleared" Verfahren festgelegt. Das heißt alle bekommen den Preis des am höchsten noch bezugschlagtem Teilnehmers.

model implementation

Simultan zu dem vorherigen Kapitel ergeben sich dann dich Gleichungen für den Day Ahead Markt. Der Day Ahead Markt ist der Markt an dem der Strom des Windparks vermarktet wird. Dementsprechend gibt es keine positiven und negativen Gebote. Als Windpark Betreiber verfügen wir über Betriebskosten nahe 0 und können unseren Strom zu einem sehr niedrigem Preis anbieten. In der Praxis versetzt uns das in die Lage quasi frei wählen zu können ob wir am Day Ahead Markt bezugschlagt werden und den Clearing Preis erhalten oder nicht. Die Wahrscheinlichkeit $\omega_{DA}(t_{hour},s_{DA})$ gibt hierbei die Wahrscheinlichkeit für den entsprechenden $p(t_{hour},s_{DA})$ an. So wird der zu erwartende Profit wie folgt berechnet:

strict a einführen

formelzeich kontrollieren

alle gleichungen checken wegen ∀

alle

gleichungen mit
nummerierung
und
beschreibung?

arbeiten

$$\max_{Q_{DA}(t_{hour}, s_{DA})} Profit_{DA} = \sum_{t_{hour}} Q_{DA}(t_{hour}) * \sum_{t_{hour}, s_{DA}} p(t_{hour}, s_{DA}) * \omega_{DA}(t_{hour}, s_{DA})$$
(3.7)

$$\rightarrow max_{Q_{DA}(t_{hour},s_{DA})}Profit_{DA} = \sum_{t_{hour}} Q_{DA}(t_{hour}) * p_{DA}^{exp}(t_{hour})$$
(3.8)

3

Wichtig zu beachten ist das wir nicht frei wählen können wieviel Strom über den Windpark generiert wird sondern das wir nach oben hin durch gegebene Wetterbedingungen begrenzt sind. Außerdem verfügen wir auch über die möglichkeit anstatt strom in das netz ein zu speisen den strom zu speichern und damit die Batterie wieder auf zuladen [3.10].

$$0 \le Q_{DA}(t_{hour}, s_{DA}) \quad \forall t_{hour}, s_{DA} \tag{3.9}$$

$$Q_{DA}(t_{hour}) \le capPark * windProfil(t_{hour}) - Q_{reload}(t_{hour}) \quad \forall t_{hour}$$
 (3.10)

$$Q_{DA}(t_{hour}) \le a \quad \forall t_{hour} \tag{3.11}$$

3.3.3 RA

general description

Am sekundären Regelarbeitsmarkt wird auf 15 Minuten Fenster Geboten. Auktionsschluss ist jeweils 25 Minuten vor Begin des 15 Minuten Blocks. Jeder vorqualifizierte Teilnehmer darf an diesem Markt mit bieten, egal ob ein zuschlag am Regelleistungsmarkt erfolgt ist oder nicht. Wurde ein Regelleistungsmarktgebot bezugschlagt so muss auch auf das entsprechende Zeitfenster am Regelarbeitsmarkt geboten werden. Bezahlt wird jeweils nur die tatsächlich erbrachte Leistung. Der Abbruf der Leistung erfolgt anhand der Merit-Order Liste, vom billigsten zum teuersten Anbieter. Mit einem hohem angebotenen Regelarbeitspreis sinkt so die wahrscheinlichkeit für den Abruf der angebotenen Regelarbeit. Dies ist ein Pay-as-cleared Market sprich alle Teilnehmer bekommen den Preis des letzten bezugschlagtem Teilnehmers. Seit dem Beitritt Deutschlands zum PICASSO Netzwerk entspricht der Grenzpreis dem CBMP

annahmo perfekte Vorraussicht Wind-

park

ref

eventuell erklärung

mindestme

model implementation

Simultan zum Regelleistungsmarkt ergibt sich der Regelarbeitsmarkt. Die Wahrscheinlichkeit gibt hierbei an wie warscheinlich ein Abbruf der Arbeit ist.

$$\max Profit = \sum_{t_{quarter}} \left[\sum_{S_{RA}} 1/|S_{RA}| * p_{RA}^{in}(t_{quarter}, S_{RA}) * Q_{RA}^{in}(t_{quarter}, S_{RA}) \right]$$

$$+ \sum_{S_{RA}} 1/|S_{RA}| * p_{RA}^{out}(t_{quarter}, S_{RA}) * Q_{RA}^{out}(t_{quarter}, S_{RA})$$

$$(3.12)$$

Auch die zu erbringende Arbeit unterliegt ein paar Restriktionen. So muss natürlich der Batteriespeicher in der Lage sein die Arbeit zu leisten [3.18 & 3.17]. Und der Anschlusspunkt muss auch noch über genügend Kapaziäteten verfügen [3.16 & 3.15].

$$\sum_{S_{PA}} Q_{RA}^{out}(t_{quarter}, s_{RA}) \le r/4 \quad \forall s_{RA}, t_{quarter}$$
(3.13)

$$\sum_{S_{PA}} Q_{RA}^{in}(t_{quarter}, s_{RA}) \le r/4 \quad \forall s_{RA}, t_{quarter}$$
(3.14)

$$\sum_{S_{RA}} Q_{RA}^{out}(t_{quarter}, S_{RA}) \le a/4 \quad \forall S_{RA}, t_{quarter}$$
(3.15)

$$\sum_{S_{RA}} Q_{RA}^{in}(t_{quarter}, S_{RA}) \le a/4 \quad \forall S_{RA}, t_{quarter}$$
(3.16)

$$\sum_{S_{RA}} Q_{RA}^{out}(t_{quarter}, S_{RA}) \le BatStat(t_{quarter, S_{RA}}) \quad \forall S_{RA}, t_{quarter}$$
(3.17)

$$\sum_{S_{RA}} Q_{RA}^{in}(t_{quarter}, S_{RA}) \le BatCap - BatStat(t_{quarter}, S_{RA}) \quad \forall S_{RA}, t_{quarter}$$
 (3.18)

(3.19)

3.3.4 Battery & Working Point Adjustments

Die grundlegenden eigenschaften des Batteriespeichers werden durch Parameter in kombination mit Nebenbedingungen beschrieben. So verfügt der Batteriespeicher über eine

maximale Lade und Entladeleistung r und eine maximale Kapazität BatCap. Der Batteriestatus wird viertelstündlich neu berechnet und ist in der Gleichung 3.21 zu finden. Da die Nachlademenge Q_{reload} , die vom Windpark stammt, stündlich berechnet wird muss sie noch für die viertelstunden umgerechnet werden. Ansonsten ergibt sich der Batteriespeicherstatus für den Zeitpunkt $t_{quarter} + 1$ aus der Batteriespeicherstatus des vorherigen Zeitpunkts $t_{quarter}$ und der tatsächlich erbrachten negativen Regelarbeit abzüglich der tatsächlich erbrachten positiven Regelarbeit. Des weiteren besteht die möglichkeit einer Arbeitspunktanpassung WP. Diese kann vorgenommen werden um den Ladestand den Batterie so an zu passen das die eingegangenen Verbindlichkeiten erfüllt werden können.

$$BatStat(t_{quarter,S_{RA}} + 1) = BatStat(t_{quarter,S_{RA}}) + \frac{1}{4}Q_{reload}(t_{hour})$$

$$+ \sum_{S_{RA}} 1/|s_{RA}| * Q_{RA}^{in}(t_{quarter}, s_{RA})$$

$$- \sum_{S_{RA}} 1/|s_{RA}| * Q_{RA}^{out}(t_{quarter}, s_{RA})$$

$$- \sum_{S_{RA}} 1/|s_{RA}| * WP_{out}(t_{quarter}, s_{RA})$$

$$+ \sum_{S_{RA}} 1/|s_{RA}| * WP_{in}(t_{quarter}, s_{RA})$$

$$\forall t_{quarter}, t_{hour} = \left| \frac{t_{quarter}}{4} \right|$$
 (3.21)

$$0 \le BatStat(t_{quarter}) \tag{3.22}$$

$$BatStat(t_{quarter,S_{RA}}) \le BatCap$$
 (3.23)

3.3.5 Access Point

Der Acceess Point repräsentiert den gemeinsamen Anschlusspunkt von Windpark und Batteriespeicher an das Stromnetz. Die maximale Leistung die durch den Anschlusspunkt fließen kann begrägt *a.* Diese Leistungsgrenze gillt in beide Richtungen wie in Gleichung 3.24 und 3.25 zu sehen ist. Da die Bedingung für alle viertel Stunden gelten muss wir die Arbeit des Windparks geviertelt.

(3.20)

$$a + Q_{RA}^{in}(t_{quarter}, s_{RA}) + WP_{in}(t_{quarter}, s_{RA})$$

$$\geq \frac{1}{4}Q_{DA} + Q_{RA}^{out}(t_{quarter}, s_{RA}) + WP_{out}(t_{quarter}, s_{RA})$$

$$\forall s_{RA}, t_{quarter}, t_{hour} = \left\lfloor \frac{t_{quarter}}{4} \right\rfloor \qquad (3.24)$$

$$a + \frac{1}{4}Q_{DA} + Q_{RA}^{out}(t_{quarter}, s_{RA}) + WP_{out}(t_{quarter}, s_{RA})$$

$$\geq Q_{RA}^{in}(t_{quarter}, s_{RA}) + WP_{in}(t_{quarter}, s_{RA})$$

$$\forall s_{RA}, t_{quarter}, t_{hour} = \left\lfloor \frac{t_{quarter}}{4} \right\rfloor \qquad (3.25)$$

3.3.6 Complete Model

Um alles in einem gesamten model zusammenfügen zu können sind noch ein paar anpassungen notwending. Zum einen wird der RL markt zuerst geschlossen. Das heißt wenn die entscheidung am für den DA markt fällt ist das der Ausgang vom RL Markt bekannt. Das bedeutet wiederum die Variablen am in den Anschließenden Märkten können unter berücksichtigung der verschiedenen möglichen Ausgänge geplant werden. Um dieß möglich zu machen werden alle folgenden Variablen in die 4 Grundszenarion aufgesplittet.

Diese wären:

- 1. angenommenes positives und negatives Regelleistungsmarktgebot $\rightarrow Variable^{...rB}$
- 2. angenommener positives und abgelehntes negatives Regelleistungsmarktgebot $\rightarrow Variable^{...rO}$
- 3. abgelehntes positives und angenommener negatives Regelleistungsmarktgebot $\rightarrow Variable^{...rl}$
- 4. abgelehntes positives und negatives Regelleistungsmarktgebot $\rightarrow Variable^{...rN}$

So können außerdem Dimensionen pro Variable vermieden werden und die komplexität des grundmodels reduziert werden. Um aber alle Grundsätzlichen Preisoptionen (Szenarien) und deren Folgeplanungen in allen Variablen berücksichtigen zu können werden wird die Dimension der Variablen Q_{DA} , $Q_R^{out}A\&Q_R^{in}A$ um die Dimensionen $S_R^{out}L\&S_R^{in}L$ erweitert. Die resultierenden, gesplitteten und hoch dimensionierten Objekt-Funktionen der folgemärkte werden dann entsprechend in die zu maximierende Profitgleichung der ersten Entscheidung am

strikte variante einfügen RL markt eingefügt [3.26]. Außerdem müssen die stündlich berechneten Erträge aus den Regelleistungsmarkt und dem Day-Ahead Markt noch für die viertelstündliche Berechnung angepasst werden

$$\max Profit = - Costs \\ + \sum_{t_{quarter}}$$

accepted RL in & out:

$$+ \sum_{\substack{s_{RL}^{out} \\ s_{RL}^{out}}} \sum_{\substack{s_{RL}^{in} \\ s_{RL}^{out}}} (\omega_{RL}^{in}(t_{block}, s_{RL}^{in}) * \omega_{RL}^{out}(t_{block}, s_{RL}^{out})) * ($$

$$+ (\frac{1}{4} * (Q_{RL}^{in}(t_{block}, s_{RL}^{in}) * p_{RL}^{in}(t_{block}, s_{RL}^{in})))$$

$$+ (\frac{1}{4} * (Q_{RL}^{out}(t_{block}, s_{RL}^{out}) * p_{RL}^{out}(t_{block}, s_{RL}^{out})))$$

$$+ (\frac{1}{4} * (Q_{DA}^{rB}(t_{hour}) * p_{DA}^{exp}(t_{hour})))$$

$$+ (\sum_{S_{RA}} 1 / |s_{RA}| * p_{RA}^{in}(t_{quarter}, s_{RA}) * Q_{RA}^{inrB}(t_{quarter}, s_{RA}))$$

$$+ (\sum_{S_{RA}} 1 / |s_{RA}| * p_{RA}^{out}(t_{quarter}, s_{RA}) * Q_{RA}^{outrB}(t_{quarter}, s_{RA})))$$

accepted RL in & declined out:

$$\begin{split} &+ \sum_{S_{RL}^{out}} \sum_{s_{RL}^{in}} (\omega_{RL}^{in}(t_{block}, s_{RL}^{in}) * (1 - \omega_{RL}^{out}(t_{block}, s_{RL}^{out}))) * (\\ &+ (\frac{1}{4} * (Q_{RL}^{in}(t_{block}, s_{RL}^{in}) * p_{RL}^{in}(t_{block}, s_{RL}^{in}))) \\ &+ (\frac{1}{4} * (Q_{DA}^{rl}(t_{hour}) * p_{DA}^{exp}(t_{hour}))) \\ &+ (\sum_{S_{RA}} 1 / |s_{RA}| * p_{RA}^{in}(t_{quarter}, s_{RA}) * Q_{RA}^{inrl}(t_{quarter}, s_{RA}))) \\ &+ (\sum_{S_{RA}} 1 / |s_{RA}| * p_{RA}^{out}(t_{quarter}, s_{RA}) * Q_{RA}^{outrl}(t_{quarter}, s_{RA}))) \end{split}$$

declined RL in & accepted out:

$$\begin{split} &+ \sum_{S_{RL}^{out}} \sum_{s_{RL}^{in}} ((1 - \omega_{RL}^{in}(t_{block}, s_{RL}^{in})) * \omega_{RL}^{out}(t_{block}, s_{RL}^{out})) * (\\ &+ (\frac{1}{4} * (Q_{RL}^{out}(t_{block}, s_{RL}^{out}) * \rho_{RL}^{out}(t_{block}, s_{RL}^{out}))) \\ &+ (\frac{1}{4} * (Q_{DA}^{rO}(t_{hour}) * \rho_{DA}^{exp}(t_{hour}))) \\ &+ (\sum_{S_{RA}} 1 / |s_{RA}| * \rho_{RA}^{in}(t_{quarter}, s_{RA}) * Q_{RA}^{inrO}(t_{quarter}, s_{RA}))) \\ &+ (\sum_{S_{RA}} 1 / |s_{RA}| * \rho_{RA}^{out}(t_{quarter}, s_{RA}) * Q_{RA}^{outrO}(t_{quarter}, s_{RA}))) \end{split}$$

declined RL in & out:

$$\begin{split} &+ \sum_{S_{RL}^{out}} \sum_{s_{RL}^{in}} ((1 - (\omega_{RL}^{in}(t_{block}, S_{RL}^{in}))) * (1 - \omega_{RL}^{out}(t_{block}, S_{RL}^{out}))) * (1 + (\frac{1}{4} * (Q_{DA}^{rN}(t_{hour}) * \rho_{DA}^{exp}(t_{hour})))) \\ &+ (\sum_{S_{RA}} 1 / |S_{RA}| * \rho_{RA}^{in}(t_{quarter}, S_{RA}) * Q_{RA}^{inrN}(t_{quarter}, S_{RA})) \\ &+ (\sum_{S_{RA}} 1 / |S_{RA}| * \rho_{RA}^{out}(t_{quarter}, S_{RA}) * Q_{RA}^{outrN}(t_{quarter}, S_{RA}))) \end{split}$$

23

(3.27)

$$Costs = (BatCap * batCosts) - workingCosts$$

speicherkap weg lassen?

Die Kosten hierbei ergeben sich aus den Arbeitspunktanpassung und den Kosten für die benötigte Speicherkapazität [3.27]. Die zu erwartenden WorkingPointkosten ergeben sich dabei aus dem gegenteiligen Marktespreis des Regelarbeitmarktes faktoriert um um einen WorkingPointFaktor WPF. Diese Annahme legt zur Grunde, dass wenn ich zum Beispiel spontan Leistung abgeben möchte jemand anderes sich spontan dazu bereit erklören muss diese Leistung wiederum auf zu nehmen. Sprich wir haben eine positive Leistungsabgabe und zahlen dafür das jemand anderes eine negative Leistungsabgabe bereitstellt. Der Preis für diese negative Leistungsabgabe ist vom Preis des negativen Regelarbeitmarktes abgeleitet und um einen workingPoint factor angepasst [3.29].

$$workingCosts = \sum_{t_{quarter}}$$

accepted RL in & out:

$$\sum_{S_{RL}^{out}} \sum_{s_{RL}^{in}} (\omega_{RL}^{in}(t_{block}, s_{RL}^{in}) * \omega_{RL}^{out}(t_{block}, s_{RL}^{out}))) * ($$

$$+ \sum_{S_{RA}} WP_{RA}^{inrB}(t_{quarter}, s_{RA}) * p_{ER}^{in} * WPF * 1/|s_{RA}|)$$

$$+ \sum_{S_{RA}} WP_{RA}^{outrB}(t_{quarter}, s_{RA}) * p_{ER}^{in} * WPF * 1/|s_{RA}|$$

$$(3.28)$$

(3.28)

accepted RL in & declined out:

$$\begin{split} & + \sum_{S_{RL}^{out}} \sum_{s_{RL}^{in}} (\omega_{RL}^{in}(t_{block}, s_{RL}^{in}) * (1 - \omega_{RL}^{out}(t_{block}, s_{RL}^{out})))) * (1 + \sum_{S_{RA}} WP_{RA}^{inrl}(t_{quarter}, s_{RA}) * \rho_{ER}^{in} * WPF * 1 / |s_{RA}|) \\ & + \sum_{S_{RA}} WP_{RA}^{outrl}(t_{quarter}, s_{RA}) * \rho_{ER}^{in} * WPF * 1 / |s_{RA}| \end{split}$$

declined RL in & accepted out:

$$+ \sum_{\substack{S_{RL}^{out} \\ S_{RL}}} \sum_{\substack{s_{RL}^{in} \\ S_{RL}}} ((1 - \omega_{RL}^{in}(t_{block}, s_{RL}^{in})) * \omega_{RL}^{out}(t_{block}, s_{RL}^{out}))) * ($$

$$+ \sum_{\substack{S_{RA} \\ S_{RA}}} WP_{RA}^{inrO}(t_{quarter}, s_{RA}) * p_{ER}^{in} * WPF * 1/|s_{RA}|)$$

$$+ \sum_{\substack{S_{RA} \\ S_{RA}}} WP_{RA}^{outrO}(t_{quarter}, s_{RA}) * p_{ER}^{in} * WPF * 1/|s_{RA}|$$

declined RL in & out:

$$+\sum_{\substack{S_{RL}^{out} \\ S_{RL}^{out}}} \sum_{\substack{S_{RL}^{in} \\ S_{RL}^{out}}} (1 - (\omega_{RL}^{in}(t_{block}, S_{RL}^{in}) * (1 - \omega_{RL}^{out}(t_{block}, S_{RL}^{out}))))) * ($$

$$+\sum_{\substack{S_{RA} \\ S_{RA}}} WP_{RA}^{inrN}(t_{quarter}, S_{RA}) * p_{ER}^{in} * WPF * 1/|S_{RA}|)$$

$$+\sum_{\substack{S_{RA} \\ S_{RA}}} WP_{RA}^{outrN}(t_{quarter}, S_{RA}) * p_{ER}^{in} * WPF * 1/|S_{RA}|$$

$$\forall t_{hour} = \left\lfloor \frac{t_{quarter}}{4} \right\rfloor$$
(3.29)

25

Zur Berechnung des Batteriespeicherstatus ergibt sich dann folgende Gesamtgleichung:

$$BatStat(t_{quarter,S_{RA}} + 1) = BatStat(t_{quarter,S_{RA}})$$

accepted RL in & out:

$$\begin{split} &+ \sum_{S_{RL}^{out}} \sum_{s_{RL}^{in}} (\omega_{RL}^{in}(t_{block}, s_{RL}^{in}) * \omega_{RL}^{out}(t_{block}, s_{RL}^{out})) * (\\ &+ Q_{reload}^{rB}(t_{hour})/4) \\ &+ (WP_{RA}^{inrB}(t_{quarter}, s_{RA}) + Q_{RA}^{inrB}(t_{quarter}, s_{RA})) \\ &- (WP_{RA}^{outrB}(t_{quarter}, s_{RA}) + Q_{RA}^{outrB}(t_{quarter}, s_{RA})) \end{split}$$

accepted RL in & declined out:

$$\begin{split} &+ \sum_{S_{RL}^{out}} \sum_{S_{RL}^{in}} (\omega_{RL}^{in}(t_{block}, S_{RL}^{in}) * (1 - \omega_{RL}^{out}(t_{block}, S_{RL}^{out}))) * (\\ &+ Q_{reload}^{rl}(t_{hour}) / 4) \\ &+ (WP_{RA}^{inrl}(t_{quarter}, S_{RA}) + Q_{RA}^{inrl}(t_{quarter}, S_{RA})) \\ &- (WP_{RA}^{outrl}(t_{quarter}, S_{RA}) + Q_{RA}^{outrl}(t_{quarter}, S_{RA})) \end{split}$$

declined RL in & accepted out:

$$\begin{split} &+ \sum_{S_{RL}^{out}} \sum_{S_{RL}^{in}} ((1 - \omega_{RL}^{in}(t_{block}, S_{RL}^{in})) * \omega_{RL}^{out}(t_{block}, S_{RL}^{out})) * (\\ &+ Q_{reload}^{rO}(t_{hour}) / 4) \\ &+ (WP_{RA}^{inrO}(t_{quarter}, S_{RA}) + Q_{RA}^{inrO}(t_{quarter}, S_{RA})) \\ &- (WP_{RA}^{outrO}(t_{quarter}, S_{RA}) + Q_{RA}^{outrO}(t_{quarter}, S_{RA})) \end{split}$$

declined RL in & out:

$$+\sum_{S_{RL}^{out}}\sum_{S_{RL}^{in}}(1-(\omega_{RL}^{in}(t_{block},S_{RL}^{in})*(1-\omega_{RL}^{out}(t_{block},S_{RL}^{out}))))*($$

$$+Q_{reload}^{rN}(t_{hour})/4)$$

$$+(WP_{RA}^{inrN}(t_{quarter},S_{RA})+Q_{RA}^{inrN}(t_{quarter},S_{RA}))$$

$$-(WP_{RA}^{outrN}(t_{quarter},S_{RA})+Q_{RA}^{outrN}(t_{quarter},S_{RA}))$$

$$\forall t_{quarter},t_{hour}=\left\lfloor \frac{t_{quarter}}{4} \right\rfloor$$

$$(3.30)$$

Die Anschlusspunkt- Restriktionen muss für alle möglichen Ausgänge und Folgevariablen definiert werden. Außerdem als absicherung in die positive und in die negative Richtung.

$$a + \sum_{S_{RL}^{m}, S_{RL}^{out}} WP_{RA}^{intB}(t_{quarter}, S_{RA}) + Q_{RA}^{intB}(t_{quarter}, S_{RA})$$

$$\geq \sum_{S_{OA}, S_{RL}^{m}, S_{RL}^{out}} (Q_{DA}^{rB}(t_{hour}) * 0.25)$$

$$+ \sum_{S_{OL}^{m}, S_{RL}^{out}} WP_{RA}^{intB}(t_{quarter}, S_{RA}) + Q_{RA}^{outrB}(t_{quarter}, S_{RA})$$

$$\forall t_{quarter}, t_{hour} = \begin{bmatrix} t_{quarter} \\ 4 \end{bmatrix}$$

$$\Rightarrow \sum_{S_{RL}^{m}, S_{RL}^{out}} (Q_{DA}^{rI}(t_{quarter}, S_{RA}) + Q_{RA}^{outrI}(t_{quarter}, S_{RA})$$

$$\geq \sum_{S_{OA}, S_{RL}^{m}, S_{RL}^{out}} (Q_{DA}^{rI}(t_{hour}) * 0.25)$$

$$+ \sum_{S_{OL}^{m}, S_{RL}^{out}} WP_{RA}^{intO}(t_{quarter}, S_{RA}) + Q_{RA}^{outrI}(t_{quarter}, S_{RA})$$

$$\forall t_{quarter}, t_{hour} = \begin{bmatrix} t_{quarter} \\ 4 \end{bmatrix}$$

$$\Rightarrow \sum_{S_{RL}^{m}, S_{RL}^{out}} (Q_{DA}^{rO}(t_{hour}) * 0.25)$$

$$+ \sum_{S_{OL}^{m}, S_{RL}^{out}} (Q_{DA}^{rO}(t_{hour}) * 0.25)$$

$$+ \sum_{S_{OL}^{m}, S_{RL}^{out}} WP_{RA}^{intO}(t_{quarter}, S_{RA}) + Q_{RA}^{outrO}(t_{quarter}, S_{RA})$$

$$\forall t_{quarter}, t_{hour} = \begin{bmatrix} t_{quarter} \\ 4 \end{bmatrix}$$

$$\Rightarrow \sum_{S_{OL}^{m}, S_{RL}^{out}} WP_{RA}^{intN}(t_{quarter}, S_{RA}) + Q_{RA}^{intN}(t_{quarter}, S_{RA})$$

$$\geq \sum_{S_{OL}, S_{RL}^{out}, S_{RL}^{out}} WP_{RA}^{intN}(t_{quarter}, S_{RA}) + Q_{RA}^{intN}(t_{quarter}, S_{RA})$$

$$\geq \sum_{S_{OL}, S_{RL}^{out}, S_{RL}^{out}} WP_{RA}^{intN}(t_{quarter}, S_{RA}) + Q_{RA}^{intN}(t_{quarter}, S_{RA})$$

$$\geq \sum_{S_{OL}, S_{RL}^{out}, S_{RL}^{out}} WP_{RA}^{intN}(t_{quarter}, S_{RA}) + Q_{RA}^{outrN}(t_{quarter}, S_{RA})$$

$$\geq \sum_{S_{OL}, S_{RL}^{out}, S_{RL}^{out}} WP_{RA}^{intN}(t_{quarter}, S_{RA}) + Q_{RA}^{outrN}(t_{quarter}, S_{RA})$$

$$\leq \sum_{S_{OL}, S_{RL}^{out}, S_{RL}^{out}} WP_{RA}^{intN}(t_{quarter}, S_{RA}) + Q_{RA}^{outrN}(t_{quarter}, S_{RA})$$

$$\leq \sum_{S_{OL}, S_{RL}^{out}, S_{RL}^{out}} (Q_{DA}^{intN}(t_{quarter}, S_{RA}) + Q_{RA}^{outrN}(t_{quarter}, S_{RA})$$

$$\leq \sum_{S_{OL}, S_{RL}^{out}, S_{RL}^{out}} (Q_{DA}^{intN}(t_{quarter}, S_{RA}) + Q_{RA}^{outrN}(t_{quarter}, S_{RA})$$

$$\leq \sum_{S_{OL}, S_{RL}^{out}, S_{RL}^{out}} (Q_{DA}^{intN}(t_{quarter}, S_{RA}) + Q_{DA}^{outrN}(t_{quarter}, S_{RA})$$

$$\leq \sum_{S_{OL}, S_{RL}^{out}, S_{RL}^{out}} (Q_{DA}^{i$$

$$a + \sum_{S_{DA}, S_{RL}^{SD}, S_{RL}^{SD}} (Q_{DA}^{PA}(t_{hour}) * 0.25)$$

$$+ \sum_{S_{RL}^{D}, S_{RL}^{SDA}} WP_{RA}^{DutrB}(t_{quarter}, S_{RA}) + Q_{RA}^{outrB}(t_{quarter}, S_{RA})$$

$$\geq \sum_{S_{RL}^{D}, S_{RL}^{SDA}} WP_{RA}^{pinrB}(t_{quarter}, S_{RA}) + Q_{RA}^{inrB}(t_{quarter}, S_{RA})$$

$$\forall t_{quarter}, t_{hour} = \left\lfloor \frac{t_{quarter}}{4} \right\rfloor \qquad (3.35)$$

$$a + \sum_{S_{RL}^{D}, S_{RL}^{SDA}} (Q_{DA}^{pint}(t_{hour}) * 0.25)$$

$$+ \sum_{S_{RL}^{D}, S_{RL}^{SDA}} WP_{RA}^{intr}(t_{quarter}, S_{RA}) + Q_{RA}^{outri}(t_{quarter}, S_{RA})$$

$$\geq \sum_{S_{RL}^{D}, S_{RL}^{SDA}} WP_{RA}^{intr}(t_{quarter}, S_{RA}) + Q_{RA}^{intr}(t_{quarter}, S_{RA})$$

$$\forall t_{quarter}, t_{hour} = \left\lfloor \frac{t_{quarter}}{4} \right\rfloor \qquad (3.36)$$

$$a + \sum_{S_{RL}^{D}, S_{RL}^{SDA}} (Q_{DA}^{rO}(t_{hour}) * 0.25)$$

$$+ \sum_{S_{RL}^{D}, S_{RL}^{SDA}} WP_{RA}^{intr}(t_{quarter}, S_{RA}) + Q_{RA}^{outrO}(t_{quarter}, S_{RA})$$

$$\forall t_{quarter}, t_{hour} = \left\lfloor \frac{t_{quarter}}{4} \right\rfloor \qquad (3.37)$$

$$a + \sum_{S_{RL}^{D}, S_{RL}^{SDA}} (Q_{DA}^{rO}(t_{hour}) * 0.25)$$

$$+ \sum_{S_{RL}^{D}, S_{RL}^{SDA}} WP_{RA}^{intrO}(t_{quarter}, S_{RA}) + Q_{RA}^{outrO}(t_{quarter}, S_{RA})$$

$$\geq \sum_{S_{RL}^{D}, S_{RL}^{SDA}} WP_{RA}^{intrO}(t_{quarter}, S_{RA}) + Q_{RA}^{intrO}(t_{quarter}, S_{RA})$$

$$\leq \sum_{S_{RL}^{D}, S_{RL}^{SDA}} WP_{RA}^{intrO}(t_{quarter}, S_{RA}) + Q_{RA}^{in$$

working point Kosten - unterschiedliche q's sparen uns eine dimension und wir können besser je nach eintreffenden szenario bestimmte marktregulatorische und reale restriktionen in gleichungen formulieren - außerdem bedarf es einer zusammenführung der verschiedenen skalierungen der zeitachsen und einer entsprechenden skalierung der Werte der betroffenen Zeitreihen. - auch die batterie, workingpoint variablen müssen entsprechend hoch

entscheider
ob ich
kapazitätko
ten
noch
mit rein
nehme

dimensioniert werden.

Appendix

Formelzeichen	Erklärung
ω()	Wahrscheinlichkeit für Preis/Mengen Kombination
E()	Ertrag von Preis/Mengen
	Kombination am Markt
RL ^{in/out}	Preis/Mengen Kombination am Regelleistungsmarkt
DA	Preis/Mengen Kombination am Day Ahead Markt
RA ^{in/out}	Preis/Mengen Kombination am Regelarbeitsmarkt

Table 3.2: table

Um die optimale Erststufenentscheidung zu berechnen wird der Erwartungswert sämtlicher Zweige des Szenario-Baum ausgerechnet. Die Entscheidung zu welchem Preis am positiven sowie negativen Regelleistungsmarkt geboten werden soll erfolgt zeitgleich. Daraus ergeben sich 4 Szenarien:

- 1. RLin & RLout angenommen
- 2. nur *RLⁱⁿ* angenommen
- 3. nur *RL^{out}* angenommen
- 4. RLⁱⁿ & RL^{out} abgelehnt

Es folgt eine systematische Darstellung dieser Rechnung:

$$maxProfit = \\ \sum \sum \omega(RL^{in}) * \omega(RL^{out}) * \left[E(RL^{in}) + E(RL^{out}) \right. \\ + \sum_{DA} \omega(DA) * \left(E(DA) \right. \\ + \sum_{RA^{in}} \omega(RA^{in}) * E(RA^{in}) \\ + \sum_{RA^{out}} \omega(RA^{out}) * E(RA^{out}) \right) \\ + \sum_{DA} (1 - \omega(DA) * \left(\sum_{RA^{in}} \omega(RA^{in}) * E(RA^{in}) \right. \\ + \sum_{RA^{out}} \omega(RA^{out}) * E(RA^{out}) \right) \\ + \sum_{DA} (1 - \omega(DA) * \left(E(DA) \right. \\ + \sum_{DA} \omega(DA) * \left(E(DA) \right. \\ + \sum_{RA^{out}} \omega(RA^{out}) * E(RA^{out}) \right) \\ + \sum_{DA} (1 - \omega(DA)) * \left(\sum_{RA^{in}} \omega(RA^{in}) * E(RA^{out}) \right. \\ + \sum_{DA} (1 - \omega(DA)) * \left(\sum_{RA^{in}} \omega(RA^{in}) * E(RA^{out}) \right. \\ + \sum_{RA^{out}} \omega(RA^{out}) * E(RA^{out}) \right)$$

$$+\sum_{DA}\omega(RL^{in})*(1-\omega(RL^{out}))*\left[E(RL^{in})+E(RL^{out})\right.$$

$$+\sum_{DA}\omega(DA)*\left(E(DA)\right.$$

$$+\sum_{RA^{in}}\omega(RA^{in})*E(RA^{in})$$

$$+\sum_{RA^{out}}\omega(RA^{out})*E(RA^{out})\right)$$

$$+\sum_{DA}(1-\omega(DA))*\left(\sum_{RA^{in}}\omega(RA^{out})*E(RA^{in})\right.$$

$$+\sum_{RA^{out}}\omega(RA^{out})*E(RA^{out})\right)$$

$$+\sum_{DA}(1-\omega(DA))*\left(E(DA)\right.$$

$$+\sum_{DA}\omega(DA)*\left(E(DA)\right.$$

$$+\sum_{RA^{out}}\omega(RA^{out})*E(RA^{in})\right.$$

$$+\sum_{RA^{out}}\omega(RA^{out})*E(RA^{in})\right.$$

$$+\sum_{DA}(1-\omega(DA))*\left(\sum_{RA^{out}}\omega(RA^{in})*E(RA^{in})\right.$$

$$+\sum_{DA}(1-\omega(DA))*\left(\sum_{RA^{out}}\omega(RA^{out})*E(RA^{out})\right)\right]$$

Berechnung optimale Erststufenentscheidungen

Da die einzelnen Mengen, je nach Szenario, unterschiedlichen Restriktionen unterliegen werden ihnen separate Variablen zugewiesen. Es folgt eine ausführliche Formel für die Berechnung der optimalen Erststufenentscheidung: (Die einzelnen Mengen Formelzeichen setzen sich wie folgt zusammen:

- 1. Q Menge
- 2. Qy am welchem Markt die Menge Geboten wird
- 3. Q_y^i (nur für die Regelmärkte) welche Art von Leistung geboten wird: negativ \to in / positiv \to out

4. Q_y^{ir} - welchen Restriktionen die Menge unterliegt, da in vorhergehenden Märkten entsprechende Zuschläge erfolgt sind

Beispiele:

- \cdot Q_{RA}^{outrRL} positive Menge am Regelarbeitsmarkt restriktiert durch ein bezuschlagtes Regelleistungsmarkt-Gebot
- Q_{DA}^{rRL} Menge am Day Ahead Markt restriktiert durch ein bezuschlagtes Regelleistungsmarkt-Gebot
- \cdot Q_{RA}^{in} negative Menge am Regelarbeitsmarkt mit keinen Restriktionen

for accepted RL in&out:

$$\sum_{S_{RL}^{out}} \sum_{S_{RL}^{in}} \omega_{RL}(S_{RL}^{in}) * \omega_{RL}(S_{RL}^{out}) * \left[\frac{1}{4} * Q_{RL}^{in}(S_{RL}^{in}) * p(S_{RL}^{in}) + \frac{1}{4} * Q_{RL}^{out}(S_{RL}^{out}) * p(S_{RL}^{out}) \right] \\ + \sum_{S_{DA}} \omega_{DA}(S_{DA}) \qquad \left(\frac{1}{4} (Q_{DA}^{rRL}(S_{DA}) * p(S_{DA})) + \sum_{S_{RA}^{in}} Q_{RA}^{inrRLDA}(S_{RA}^{in}) * p(S_{RA}^{in}) * \omega_{RA}(S_{RA}^{in}) \right) \\ + \sum_{S_{DA}^{out}} Q_{RA}^{outrRLDA}(S_{RA}^{out}) * p(S_{RA}^{out}) * \omega_{RA}(S_{RA}^{out}) \right) \\ + \sum_{S_{DA}} (1 - \omega_{DA}(S_{DA})) \qquad * \left(\sum_{S_{RA}^{in}} Q_{RA}^{inrRL}(S_{RA}^{in}) * p(S_{RA}^{in}) * \omega_{RA}(S_{RA}^{in}) + \sum_{S_{DA}^{outrRL}} Q_{RA}^{outrRL}(S_{RA}^{out}) * p(S_{RA}^{out}) * \omega_{RA}(S_{RA}^{out}) \right) \right]$$

for accepted RL in & declined out:

$$\begin{split} + \sum_{S_{RL}^{out}} \sum_{S_{RL}^{in}} \omega_{RL}(s_{RL}^{in}) * (1 - \omega_{RL}(s_{RL}^{out})) * \left[Q_{RL}^{in}(s_{RL}^{in}) * \rho(s_{RL}^{in}) \right. \\ + \sum_{S_{DA}} \omega_{DA}(s_{DA}) * \left(Q_{DA}^{rRL}(s_{DA}) * \rho(s_{DA}) \right. \\ + \sum_{S_{RA}^{out}} Q_{RA}^{inrRLDA}(s_{RA}^{in}) * \rho(s_{RA}^{in}) * \omega_{RA}(s_{RA}^{in}) \\ + \sum_{S_{DA}^{out}} Q_{RA}^{outrDA}(s_{RA}^{out}) * \rho(s_{RA}^{out}) * \omega_{RA}(s_{RA}^{out}) \right) \\ + \sum_{S_{DA}} (1 - \omega_{DA}(s_{DA})) \\ * \left(\sum_{S_{RA}^{in}} Q_{RA}^{inrRL}(s_{RA}^{in}) * \rho(s_{RA}^{in}) * \omega_{RA}(s_{RA}^{in}) \\ + \sum_{S_{OUT}^{out}} Q_{RA}^{out}(s_{RA}^{out}) * \rho(s_{RA}^{out}) * \omega_{RA}(s_{RA}^{out}) \right) \right] \end{split}$$

for declined RL in& accepted out:

$$\begin{split} &+\sum_{S_{RL}^{out}}\sum_{s_{RL}^{in}}(1-\omega_{RL}(s_{RL}^{in}))*\omega_{RL}(s_{RL}^{out})*\left[Q_{RL}^{out}(s_{RL}^{out})*\rho(s_{RL}^{out})\right.\\ &+\sum_{S_{DA}}\omega_{DA}(s_{DA}) \\ &+\sum_{S_{RA}^{in}}Q_{DA}^{inrDA}(s_{DA})*\rho(s_{DA})\\ &+\sum_{S_{RA}^{in}}Q_{RA}^{outrRLDA}(s_{RA}^{out})*\rho(s_{RA}^{out})*\omega_{RA}(s_{RA}^{out})\\ &+\sum_{S_{DA}^{out}}Q_{RA}^{outrRLDA}(s_{RA}^{out})*\rho(s_{RA}^{out})*\omega_{RA}(s_{RA}^{out})\right)\\ &+\sum_{S_{DA}}(1-\omega_{DA}(s_{DA}))\\ &+\sum_{S_{RA}^{out}}Q_{RA}^{in}(s_{RA}^{in})*\rho(s_{RA}^{in})*\omega_{RA}(s_{RA}^{in})\\ &+\sum_{S_{QA}^{outrRL}}Q_{RA}^{outrRL}(s_{RA}^{out})*\rho(s_{RA}^{out})*\omega_{RA}(s_{RA}^{out})\right) \end{split}$$

for declined RL in& out:

$$\begin{split} + \sum_{S_{RL}^{out}} \sum_{S_{RL}^{in}} (1 - \omega_{RL}(S_{RL}^{in})) * (1 - \omega_{RL}(S_{RL}^{out})) * \left[\sum_{S_{DA}} \omega_{DA}(S_{DA}) \right. & * \left(Q_{DA}(S_{DA}) * p(S_{DA}) \right. \\ & + \sum_{S_{RA}^{in}} Q_{RA}^{inrDA}(S_{RA}^{in}) * p(S_{RA}^{in}) * \omega_{RA}(S_{RA}^{in}) \right. \\ & + \sum_{S_{DA}^{out}} Q_{RA}^{outrDA}(S_{RA}^{out}) * p(S_{RA}^{out}) * \omega_{RA}(S_{RA}^{out}) \right) \\ & + \sum_{S_{DA}} (1 - \omega_{DA}(S_{DA})) \\ & * \left(\sum_{S_{RA}^{in}} Q_{RA}^{in}(S_{RA}^{in}) * p(S_{RA}^{in}) * \omega_{RA}(S_{RA}^{in}) \right. \\ & + \sum_{S_{DA}^{out}} Q_{RA}^{out}(S_{RA}^{out}) * p(S_{RA}^{out}) * \omega_{RA}(S_{RA}^{out}) \right) \right] \end{split}$$

Nebenbedingungen

 $Q_{DA} \leq capPark$ Anschlusspunkt:

$$a + Q_{RA}^{in} \ge Q_{RA}^{outrRLDA} + Q_{DA}^{rRL}$$

$$a + Q_{RA}^{in} \ge Q_{RA}^{outrDA} + Q_{DA}$$

$$a + Q_{RA}^{in} \ge Q_{RA}^{out}$$

Batterie Restriktionen:

$$Q_{RL}^{out}, Q_{RL}^{in}, Q_{RA}^{out}, Q_{RA}^{in}, Q_{RA}^{outrRL}, Q_{RA}^{inrRL}, Q_{RA}^{outrDA}, Q_{RA}^{inrDA}, Q_{RA}^{outrRLDA}, Q_{RA}^{inrRLDA} \leq r$$

Markt Restriktionen:

$$\sum_{S_{RA}^{out}} Q_{RA}^{outrRL} \ge \sum_{S_{RL}^{out}} Q_{RL}^{out}$$

$$\sum_{S_{RA}^{in}}Q_{RA}^{inrRL}\geq\sum_{S_{RL}^{in}}Q_{RL}^{in}$$

$$\sum_{S_{RA}^{out}}Q_{RA}^{outrRLDA} \geq \sum_{S_{RI}^{out}}Q_{RL}^{out}$$

$$\sum_{s_{RA}^{in}}Q_{RA}^{inrRLDA} \geq \sum_{s_{RL}^{in}}Q_{RL}^{in}$$

Berechnung optimale Zweitstufenentscheidung

Die vorher berechneten optimalen Gebotsmengen $q_{RL}^{in^*}$ & $q_{RL}^{out^*}$ und Preise $p(s_{RL}^{out})$ & $p(s_{RL}^{in})$ werden nun exogen in das Modell eingespeist. Sie werden mit einer binären Variable gekoppelt welche angibt ob zum entsprechenden Preis ein Zuschlag erfolgt. Die korrekte Setzung der binären Variable wird über eine Kombination aus 2 Nebenbedingungen sicher gestellt.

Schematisch stellt sich dies dann wie folgt dar:

$$\sum_{s} q^{*}(s) * p(s) * B(s)$$
s.t.:
$$c \le p(s) + M * B(s) \quad \forall s$$

$$c \ge p(s) - M * (1 - B(s)) \quad \forall s$$

Das gesamte Modell für den Day Ahead Markt ergibt sich dann wie folgt dar:

$$\begin{split} maxProfit &= \\ q_{RL}^{in*}(s_{RL}^{in}) * p(s_{RL}^{in}) * B_{RL}^{in}(s_{RL}) \\ + q_{RL}^{out*}(s_{RL}^{out}) * p(s_{RL}^{out}) * B_{RL}^{out}(s_{RL}) \\ + \sum_{S_{DA}} \omega_{DA}(s_{DA}) & * \left(Q_{DA}(s_{DA}) * p(s_{DA}) \right. \\ & + \sum_{S_{RA}^{in}} Q_{RA}^{inrDA}(s_{RA}^{in}) * p(s_{RA}^{in}) * \omega_{RA}(s_{RA}^{in}) \\ & + \sum_{S_{QA}^{out}} Q_{RA}^{outrDA}(s_{RA}^{out}) * p(s_{RA}^{out}) * \omega_{RA}(s_{RA}^{out}) \right) \\ & + \sum_{S_{DA}} (1 - \omega_{DA}(s_{DA})) * \left(\sum_{S_{RA}^{in}} Q_{RA}^{in}(s_{RA}^{in}) * p(s_{RA}^{in}) * \omega_{RA}(s_{RA}^{in}) \right. \\ & + \sum_{S_{QA}^{out}} Q_{RA}^{out}(s_{RA}^{out}) * p(s_{RA}^{out}) * \omega_{RA}(s_{RA}^{out}) \right) \end{split}$$

Nebenbedingungen

Anschlusspunkt:

$$\begin{aligned} \alpha + Q_{RA}^{in} &\geq Q_{RA}^{outrRLDA} + Q_{DA}^{rRL} \\ \alpha + Q_{RA}^{in} &\geq Q_{RA}^{outrDA} + Q_{DA} \\ \alpha + Q_{RA}^{in} &\geq Q_{RA}^{out} \end{aligned}$$

Batterie Restriktionen:

$$Q_{RA}^{out}, Q_{RA}^{in}, Q_{RA}^{outrRL}, Q_{RA}^{inrRL}, Q_{RA}^{outrDA}, Q_{RA}^{inrDA}, Q_{RA}^{outrRLDA}, Q_{RA}^{inrRLDA} \leq r$$

Markt Restriktionen:

$$Q_{RA}^{out} \ge q_{RI}^{out*}(s_{RI}^{out}) * B_{RI}^{out}(s_{RI}^{out})$$

$$Q_{RA}^{in} \ge q_{RI}^{in*}(S_{RI}^{in}) * B_{RI}^{in}(S_{RI}^{in})$$

$$Q_{RA}^{outrRL} \ge q_{RL}^{out^*}(s_{RL}^{out}) * B_{RL}^{out}(s_{RL}^{out})$$

$$Q_{RA}^{inrRL} \ge q_{RL}^{in*}(S_{RL}^{in}) * B_{RL}^{in}(S_{RL}^{in})$$

$$Q_{RA}^{outrDA} \ge q_{RI}^{out^*}(s_{RI}^{out}) * B_{RI}^{out}(s_{RI}^{out})$$

$$Q_{RA}^{inrDA} \ge q_{RL}^{in*}(S_{RL}^{in}) * B_{RL}^{in}(S_{RL}^{in})$$

$$Q_{RA}^{outrRLDA} \ge q_{RL}^{out^*}(s_{RL}^{out}) * B_{RL}^{out}(s_{RL}^{out})$$

$$Q_{RA}^{inrRLDA} \ge q_{RI}^{in^*}(s_{RI}^{in}) * B_{RI}^{in}(s_{RI}^{in})$$

Modell Restriktionen:

(Angenommene/Abgelehnte Gebote)

$$c_{RL}^{in} \le p(s_{RL}^{in}) + M * B_{RL}^{in}(s_{RL}^{in}) \quad \forall s_{RL}^{in}$$

$$c_{RI}^{in} \ge p(s_{RI}^{in}) - M * (1 - B_{RI}^{in}(s_{RI}^{in})) \quad \forall s_{RI}^{in}$$

$$c_{RI}^{out} \le p(s_{RI}^{out}) + M * B_{RI}^{out}(s_{RI}^{out}) \quad \forall s_{RI}^{out}$$

$$c_{RL}^{out} \ge p(s_{RL}^{out}) - M*(1 - B_{RL}^{out}(s_{RL}^{out})) \quad \forall s_{RL}^{out}$$

Berechnung optimale Drittstufenentscheidung

Die optimalen 1. und 2. Stufenentscheidungen werden eingefügt. Simultan zum vorherigen Schritt werden sie mit binären Variablen kombiniert die das eintreffen der verschiedenen Szenarien (Gebotsannahme/-ablehnung) signalisieren.

for accepted RL in&out:

$$+ q_{RL}^{out^*}(s_{RL}^{in}) * p(s_{RL}^{out}) * B_{RL}^{out}(s_{RL})$$

$$+ q_{DA}^*(s_{DA}) * p_{DA}(s_{DA}) * B_{DA}(s_{DA})$$

 $q_{Pl}^{in^*}(S_{Pl}^{in}) * p(S_{Pl}^{in}) * B_{Pl}^{in}(S_{Pl})$

$$+\sum_{s_{RA}^{in}}Q_{RA}^{in}(s_{RA}^{in})*p(s_{RA}^{in})*\omega_{RA}(s_{RA}^{in})$$

$$+ \sum_{s_{RA}^{out}} Q_{RA}^{out}(s_{RA}^{out}) * \rho(s_{RA}^{out}) * \omega_{RA}(s_{RA}^{out})$$

Nebenbedingungen

Anschlusspunkt:

$$a + \sum_{S_{RA}^{in}} q_{RA}^{in*} \geq Q_{RA}^{out} + \sum_{S_{RA}^{out}} (q_{DA}^{out*} * B_{DA}^{out})$$

Batterie Restriktionen:

$$Q_{RA}^{out},Q_{RA}^{in},Q_{RA}^{outrRL},Q_{RA}^{inrRL},Q_{RA}^{outrDA},Q_{RA}^{inrDA},Q_{RA}^{outrRLDA},Q_{RA}^{inrRLDA} \leq r$$

Markt Restriktionen:

$$Q_{RA}^{out} \ge q_{RL}^{out*}(s_{RL}^{out}) * B_{RL}^{out}(s_{RL}^{out})$$

$$Q_{RA}^{in} \ge q_{RL}^{in*}(s_{RL}^{in}) * B_{RL}^{in}(s_{RL}^{in})$$

(Angenommene/Abgelehnte Gebote)

$$c_{RI}^{in} \leq p(s_{RI}^{in}) + M * B_{RI}^{in}(s_{RI}^{in}) \quad \forall s_{RI}^{in}$$

$$c_{RI}^{in} \ge p(s_{RI}^{in}) - M * (1 - B_{RI}^{in}(s_{RI}^{in})) \quad \forall s_{RI}^{in}$$

$$c_{Rl}^{out} \le p(s_{Rl}^{out}) + M * B_{Rl}^{out}(s_{Rl}^{out}) \quad \forall s_{Rl}^{out}$$

$$c_{RI}^{out} \ge p(s_{RI}^{out}) - M*(1 - B_{RI}^{out}(s_{RI}^{out})) \quad \forall s_{RI}^{out}$$

$$c_{DA} \le p(s_{DA}) + M * B_{DA}(s_{DA}) \quad \forall s_{DA}$$

$$c_{DA} \ge p(s_{DA}) - M * (1 - B_{DA}(s_{DA})) \quad \forall s_{DA}$$

3.4 Timeline Creation

wie werden die verschiedenen Zeitreihen erzeugt

Um auf gute allgemeine Strategien schließen zu können braucht es gute Daten. Falsche daten würden auch zu falschen Ergebnissen/Strategien führen. Dabei gibt es verschiedene Ansätze diese Zeitreihendaten zu erstellen. Es folgt zuerst ein Überblick über die realwelt Daten um einen besseren eindruck davon zu bekommen was wir probieren nach zu armen / vorherzusagen bzw. über welche wesentlichen eigenschaften die verschiedenen Marktdaten verfügen Dazu werden die verschiedenen Marktdaten statischtisch dargestellt. Anschließend werden verschiedene Analysemethoden diskutiert, kombiniert und angewandt. In diesem Abschnitt werden verschiedene Methoden zur Erstellung von Zeitreihen diskutiert.

Market Data Analysis

RL

Im ersten Fenster der übersicht [3.1] sind der Realmarktdaten von 2023 für den negativen Kapazitätsmarktpreis zu sehen. Darunter ist der Trend und die Saisonalität abgebildtet.

Figure 3.1: Total Average Negativ Capacity Price

Bei einer genaueren Untersuchung der Saisonalität zeigt siche ein täglicher und ein leichter Wöchentlicher rythmus in den Daten. Da es sich um Daten handelt die sich auf 4h-Blöcke

beziehen sind alle 6 Lags als ein Tag zu interpretieren. Abbildung 3.2 zeigt dabei eine klaren täglichen rythmus in den Daten.

Figure 3.2: Autocorrelation Negative Capacity Price - 5 Days

Und Abbildung 3.3 lässt zudem einen leichten wöchentlichen Zyklus erkennen.

Figure 3.3: Autocorrelation Negative Capacity Price - 4 Weeks

Die Preise zu den positiven Kapazitätwerten verhalten sich ähnlich wie die negativen Kapazitätswerte.

Zur anaylse und Zeitreihenvorhersage dieser Daten bieten sich nun, aufgrund der starken autocorrelation verschiedene statistische methoden an. Dabei stellt sich besonders die ARIMA methode heraus. Diese beruht auf autoregression und ist somit besonders gut für zeitreihen mit starker autorkorrelation geeignet. Um auch die Saisonalen effekte gut abbilden zu können gibt es eine Variante the ARIMA methode die SARIMA methode.

Ein ausführlicher Test der SARIMA methode, und der dafür notwendigen Tests befindet sich in Appendix . Dabei hat sich gezeigt, das die SARIMA methode schwächen mit der komplexität in sehr langen Zeitreihen hat. So stieg die Rechenzeit expotential an und langfriste vorhersagen zeigten eine klare verzerrung hinsichtlich des letzten Trends. Da wir aber kurzfristig ähnliche Jahresverläufe erwarten ist diese verzerrung folgend dem Trend am Jahresende nicht sinnvoll. Außerdem ist die SARIMA analyse dafür ausgelegt Zeitreihendaten mit nur einer saisonalität zu erstellen. Für multiple Saisonalitäten wären aufwendige manuelle anpassungen nötig. Ein Algorithmus der diese Nachteile vermeidet fußt auf den vorher genannten Konzepten und nennt sich TBATS. TBATS is acronym for Trigonometric seasonality Box-Cox transformation ARMA errors Trend Seasonal components. Dieser Algorithmus von SKTIME erlaubt eine einfachere Zeitreihenvorhersage bei gegebener multipler Saisonalität [3].

appendix verweis

verweis

einfü-

gen

Die somit vorhergsagte Zeitreihe ähnelt sehr der realen Zeitreihe [Abbildung 3.4]. zu Beachten ist das die hier zu sehende Zeitreihe die Zeitreihe mit der höchsten Wahrscheinlichkeit ist. So liegen 50% der möglichen betrachteten Werte darüber und 50% darunter. Wenn wir mit hilfe des vortrainierten predictors mehrere Szenarien/Zeitreihen erstellen wollen so führt die inherente steigende ungewissheit mit steigenden Zeitabstand zu einer größerem intervall in dem die Daten liegen [Abbildung 3.5]. Das macht inhaltlich sinn und mag für viele anwendungsfälle sinnvoll sein, wir gehen aber davon aus das die mittlere vorhersage nicht an genauigkeit verliert und wollen daraus szenarien generieren. Zu diesem Zweck wird die wahrscheinlichste/mittlere zeitreihenvorhersage genommen und manuel nach oben und nach unten um bestimmte Prozentsäte hoch bzw. herunterskaliert. Die so erstellten Preisvorhersagen werden dann mit den realen Preisen verglichen und berechnet zu wievielen Prozent mit der skalierten Zeitreihe ein Gebotszuschlag erfolgt wäre.

Figure 3.4: Negative Capacity Price Prediction - 2023

Figure 3.5: Negative Capacity Price Prediction 10% Interval - 2023

- hier eventuell noch rein das wenige daten ein hohes rauschen erzeugen - wobei zuviele daten ein overfitting verursachen können

DA

Die Day-Ahead Markt Preise sind zwar Variabel unterliegen aber einem Täglichem wie Wöchentlichen Rythmus. Im Jahresverlauf sind nur allgemeine Trends ablesbar wie Abbildung 3.6 zeigt. Die außergewöhnliche Kurvenbewegung im Jahr 2022 ist mit dem Angriffskrieg Russlands gegen die Ukraine zu erklären und den daraus folgenden Turbulenzen am Gas Markt.

Da es sich beim DA Markt um einen pay-as-cleared markt handelt (alle bekommen den Preis des am höchsten bezugschlagtem Teilnehmers) und wir als Produzent erneurbarer Energien mit sehr geringen Opperationalen Kosten zu tun haben ist es für das model nur wichtig ob wir am markt teilnehmen und welcher clearing price zu erwarten ist.

wie and Grafik 3.7a bis 3.11b zu entnehmen ist zeigt der clearing price einen täglichen und

Figure 3.6: Overview DA prices

wöchentlich rythmus. Das Nivau verändert sich zwar lässt sich aber gut verhersagen. Aufgrund des Marktdesigns brauchen wir auch nur einen erwarteten clearing price da wir in der Realität ein 0-Preis Gebot abgeben können und somit sogut wie sicher bezuschlagt werden. Der Erwartete Preis wird für unser Model als Mittelwert der Jahre 2020 bis 2024 ohne das Jahr 2022 kalkuliert. So erhalten die Saisonale Struktur in den Daten und gleichen Ausreißer nach oben sowie nach unten aus. So ergibt sich je nach Tageszeit, Wochentag und Jahresverlauf ein zuverlässig zu erwartender clearing-price. Das Nivau kann auch noch nachträglich leicht durch einen Skalierungsfaktor angepasst werden ohne die inherente Struktur der Daten zu gefährden.

Figure 3.7: Daily and hourly DA-Data - 2020

Figure 3.8: Daily and hourly DA-Data - 2021

Figure 3.9: Daily and hourly DA-Data - 2022

Figure 3.10: Daily and hourly DA-Data - 2023

Figure 3.11: Daily and hourly DA-Data - 2024

Des weiteren gehen wir für unsere Simulation davon aus das der simulierte erneuerbare Energien park ein onshore wind park in Deutschland ist. Um ein Windprofil zu erhalten dividieren wir die gesamte produktion von onshore windanlagen durch die gesamte Kapazität dieser anlagen [[2]]. Das gewonnene profil entspricht aber dem mittelwert der deutschen windonshore produktion. Sprich sie ist der mittelwert des windes der über ganz deutschland weht. so arbeiten nie alle windkraftanlagen in deutschland gleichzeitig bei 100%. das kann aber für unseren einzelnen windpark durchaus passieren. Um der begrenzung der maximalen Anschlusskapazität also eine sinnvolle bedeutung zu geben müssen wir also dieses profil entsprechend skalieren. Hierfür gehen wir davon aus das die gesamte deutsche windproduktion zumindest ein indikator dafür ist wieviel wind gerade an unserer anlage weht, skalieren aber die tiefen runter und die höhen hoch. eine weitere bedingung der neuberechnung ist das die höchsten werte auf 1 liegen, unser windpark also mit voller Leistung produziert.

Das erreichen wir indem wir zuerst das gesamt deutsche windprofil um dessen mittelwert absenken. so erhalten wir eine zahlenreihe aus positiven und negativen zahlen, die wenn wir sie nun skalieren stärker nach unten und nach oben abweichen. Anschließend wird wieder der Mittelwert hinzu addiert so erreichen wir eine neue zahlenreihe deren durchschnitt und summe der ursprünglichen entspricht, deren maximum aber bei 1 liegt [3.39].

$$wp_{our} = ((wp_{ger} - w\bar{p}_{ger}) * wsf) + w\bar{p}_{ger}$$
(3.39)

Der skalierungsfaktor berechnet sich dabei wie folgt:

$$wsf = \frac{1 - w\bar{p}_{ger}}{\max(wp_{ger}) - w\bar{p}_{ger}}$$
(3.40)

RA

Die RA unterliegen einer sehr hohen Variabilität und lassen sich nur sehr schwer statistisch vorherzusagen. So verfügen sie nur über eine sehr schwache autocorrelation mit nur ganz leichtem wöchentlichem rythmus 3.12.

hier ist der angebotspreis nicht zwar nicht für den profit ausschlaggebend aber für die abbrufwahrscheinlichkeit die dann wiederum zur modellierung unserer Batteriespeichstatuses wichtig ist.

Figure 3.12: Total Average Positive Energy Price

Auch Trends sind in den Daten keine vorhanden. So zeigt die Abbildung 3.13 beispielhaft

variablen noch in anfangstabelle einfügen

nochmal nach windprofil suchen im gesamten text und schauen ob das da noch korrekt erklärt ist

das
hoch
und
runter
setzten
der linie
... ->
erklärung
was ich
damit
bezwecken

möchte

ziel für

jeweils 30 Tage aus dem frühen, mittleren und spätem Jahresverlauf. Auch hier sind weder Trends noch Saisonale entwicklungen zu erkennen.

Figure 3.13: Overview Positive Fnergy Price

Zu szenario generation werden Realmarkt daten aus dem Jahre 2023 herangezogen. Das Jahr 2023 wird zuerst hinsichtlich volatiler Energiequellen untersucht [siehe Tabelle 3.3]. Hierbei zeigt sich das besonders Solar und Wind Onshore Kraftwerke einer volatilen Produktion unterliegen.

Source	Standard Deviation
Geothermal	5.956190
Fossil Oil	85.360298
Waste	133.320136
Hydro Water Reservoir	167.126363
Hydro Run-of-river and poundage	310.405850
Biomass	429.594441
Nuclear	1223.169733
Hydro Pumped Storage	1543.402759
Wind Offshore	1833.588012
Fossil Gas	2916.794393
Fossil Hard coal	3364.505964
Fossil Brown coal/Lignite	3799.694920
Solar	9879.907341
Wind Onshore	10506.831136

Table 3.3: Standard deviation per energy generator type

Anschließend wird die summierte Produktion von Solar und Wind Onshore je Zeitpunkt berchnet und durch die gesamte Produktion aller Kraftwerke zum gleichen Zeitpunkt geteilt. So erzielen wir den relativen Anteil dieser besonders volatilen Kraftwerke an der gesamten Produktion. Die relative stündliche Produktion wurde dann verwendeten Tagesbezogene mittelwerte zu bestimmen. Die These ist nun das wenn ein Vorhersagefehler eintritt dieser

das ist
eine
grafik
mit den
alten
average
preise,
mache
eine
graifk
mit den
richtigen
grenzpreisen

grafiken

ver-

schiedene

Preis-

szenarier

appendix verweis

python

code

zu

besonders starke Auswirkungen hat wenn er an Tagen eintritt mit einem hohen Anteil volatiler produktion an der Gesamtproduktion. Diese relativen Produktionsdaten volatiler Kraftwerke werden nun in 36 Quantile eingeteilt. Das erste, mittlere und letzte Quantil werden nun zur Szenariogeneration benutzt.

Hierfür werden die Zeitpunkte der Quantile, die nun täglichen Daten beruhen, auf einen viertelstündlichen rythmus extrapoliert und dazugehörigen Regelarbeitsmarkt daten vom betreffenden Zeitabschnit exportiert. Simultan dazu werden die passenden Zeitabschnitte aus den DA und RL Zeitreihen exportiert.

So ergeben sich 10 mögliche Szenarien für Tage mit hoher, mittlerer und niedrigem Anteil einer volatilem Produktion. Die wahrscheinlichkeit wird dabei als gleichverteilt angenommen, so das jedes Szenario die eine Wahrscheinlichkeit von 10% hat.

Abbildung bis zeigt nun das zwar das allgemeine Preisniveau steigt, aber da man mit dem hohen Anteil erneuerbarer Energien kalkuliert und somit auf die hohe volatilität eingeplant ist halten sich ansonsten die Auswirkugen in grenzen. Die sehr hohen Ausreißer scheinen sich in den Szenarien zu zeigen in denen man nicht mit all zu hohen außreißern rechnet.

Data from ENTSOE transperency platform <a>->appendix

- verschiedene Methoden ... -> implementiert in python -> alle können dem model hinzugefügt werden -> ich habe dann aus diesen und jenen gründe diese Variante gewählt

abbildunge ergänzen

den teil drinne lassen?

ref entsoe_

Python

Code

appendix

/erweis

3.5 Simplification

wir betrachten uns als teil eines bieterbundes Um den rechenaufwand und die komplexität des models zu begrenzen wurden ein paar vereinfachungen vorgenommen.

Diese vereinfachungen beschränken kaum die realitätsnähe des Models.

Nochfolgende eine geordnete Aufführung welche Vereinfachungen getroffen wurden.

RL/DA Quantil Data

Bei diesen Zeitreihen ist zu beachten das die Werte am Vortag bestimmt werden, der eventuelle Vorhersagefehler der Produktion am Folgetag also noch nicht eingetreten ist. Deswegen können an dieser Stelle die Quantilsdaten über die 10 Szenarien gemittelt werden. So wird unnötige Komplexität vermieden und es können auch allgemeinere, strategische Aussagen über Gebotsverhalten am RL/DA markt in abhängigkeit möglicher hoher/mittlerer und niedriger absoluter Vorhersagefehler getroffen werden.

RL

Formal gibt es Mindestgebotsmengen jedoch können diese auch als Bieterbund erbracht werden. Zur vereinfachung der Nebenbedingungen betrachten wir uns als teil eines bieterbundes.

DA

Da der Day Ahead markt ein pay-as-cleared markt ist haben wir mit unserem Gebot nur einen einfluss darauf ob wir aktzeptiert werden oder nicht. Wir haben keinen einfluss darauf welcher preis für unseren strom bezahlt wird. Da wir uns als betreiber eines Solar oder windparks betrachten haben wir betriebskosten nahe 0 die als gleich 0 angenommen werden. Da die Day ahead preise über 0 liegen können wir als resultat in der praxis selbst entscheiden ob wir ein gebot abgeben zu einem preis der sicher aktzeptiert wird. Daraus folgt die vereinfachte optimierung für den DA-markt aus $Profit_{Da} = Q_{DA}*erwarteterPreis_{DA}$.

RA

Da auch der RA markt ein pay-as-cleared markt ist haben wir mit unserem Gebot nur einen einfluss darauf ob wir abgerufen werden oder nicht. Wir haben keinen einfluss darauf welcher preis für unseren strom bezahlt wird. Da wir uns als betreiber eines Batteriespeichers betriebskosten nahe 0 haben, werden diese in folge als 0 angenommen. So können wir den erwarteten RA markt preis soweit unterbieten das davon aus zu gehen ist das unser Gebot auch abgerufen wird. Das gilt auch anders herum. Da wir bei einem bezugschlagtem RL Gebot verpflichtet sind auch ein entsprechendes RA Gebot ab zu geben. So würde sich eine Nebenbedingung ergeben die die mindest Gebotsmenge am RA markt durch die aktzeptierte gebotsmenge am RL markt begrenzt. In zusammenhang mit den eingeführten betrachten Quantils-Szenarien würde dies aber zur einführung weiterer Dimensionen führen müssen die die rechenkomplexität unnötig erhöhen. Praktisch lässt sich diese Regulatorische Bedingung durch einen sehr hohen Arbeitspreis umgehen der quasi sicherstellt das wir nicht abgerufen werden. Außerdem Stellen wir sicher das für jeden zeitpunkt im bezugschlagtem RL block genügend Speicherkapazität vorhanden wäre um notfalls den Abruf bedienen zu können. So vermeiden wir die rechenaufwendige direkt Verknüpfung von RL und RA markt und bilden trotzdem die realen mechanismen 1 zu 1 ab.

eventuell nochmal umformulieren da sehr ähnlich zu DA

Battery Storage Status

Der status des batteriespeichers wird viertelstündlich neu berechnet. dabei wird vom batteriestatus des vorherigen zeitfenster alle zugänge aufaddiert und alle abgänge abgezogen. da die Zu und abgänge unsicher sind würden sich am ende eines berechnungszeitfenster immer neue mögliche Batteriezustände bilden in abhängigkeit aller möglichen vorherigen batteriezustände. Da wir 96 hintereinander folgende mögliche Batteriestatuse berechnen würde sich die komplexität aus den anzahl der möglichen ausgänge hoch 96 errechnen. Selbst bei nur 2 möglichen betrachteten Ausgängen ist dies nicht für 96 aufeinanderfolgende Zeitfenster berechnbar. Deswegen müssen wir die Berechnung das Batteriespeichers approximieren. Wir tun dies indem wir einen erwarteteten Batteriespeicherstatus zum zeitpunkt t_q uarter berechnen und dann für die folge rechnung mit diesem einem erwarteten wert weiter kalkulieren. wir tun dies indem wir alle ein und ausgänge mit der entsprechenden Wahrscheinlichkeit gewichten und so über einen längeren Zeitraum hinweg den richtigen Batteriespeicher status annähernd gut ermitteln.

Dieses Verfahren hat natürlich das potential potentielle kurven des Batterieladestatus ab zu flachen (je nachdem wie hoch die angenommenen verwendeten prozentsätze sind). In der Realität können natürlich auch mehrere 10% Ereignisse hintereinander eintreffen und so eine wesentlich stärkere Veränderung des Akku status in eine richtung verursachen als im Model erwartet wird. Um sicher zu stellen das der Batteriespeicher auch in der realität über die benötigte maximale kapazität verfügt, muss der reale Kapazität neu berechnet werden. Dies erfolgt indem man die mengengebote ungewichtet betrachtet und die maximale amplitude bestimmt. Dieser Wert entspricht dann der real benötigten Speicherkapazität. Um so größer das angenommener Speicher/Gebotsverhältnis ist um so weniger wird dies eine Rolle spielen, da es in der realität immer unwahrscheinlicher wird das sich unwahrscheinliche ereignisse mit zunehmener länge anneinader reihen.

letzen satz mit rein nehmen?

4 Results

5 Conclusion

1. nur ein tag, eventuell kommt der richtige reload erst in zusammenhang mit mehreren tagen zum tragen

6 Appendix

6.1 Further Model Constraints

$$\sum ((s_DA, s_{RL}^{in}, s_{RL}^{out}), Q_{DA}^{rB}(t_{hour}, s_{RL}^{in}, s_{RL}^{out})) \leq parkCap * parkProfile(t_{hour}) - \sum ((s_DA, s_{RL}^{in}, s_{RL}^{out}), Q_rB_reload(t_{hour}, s_{RL}^{in}, s_{RL}^{out}));$$

$$(6.1)$$

$$\sum ((s_DA, s_{RL}^{in}, s_{RL}^{out}), Q_{DA}^{rl}(t_{hour}, s_{RL}^{in}, s_{RL}^{out})) \leq parkCap * parkProfile(t_{hour}) - \sum ((s_DA, s_{RL}^{in}, s_{RL}^{out}), Q_rI_reload(t_{hour}, s_{RL}^{in}, s_{RL}^{out}));$$

$$(6.2)$$

$$\sum ((s_DA, s_{RL}^{in}, s_{RL}^{out}), Q_{DA}^{rO}(t_{hour}, s_{RL}^{in}, s_{RL}^{out})) \leq parkCap * parkProfile(t_{hour}) - \sum ((s_DA, s_{RL}^{in}, s_{RL}^{out}), Q_rO_reload(t_{hour}, s_{RL}^{in}, s_{RL}^{out}));$$

$$(6.3)$$

$$\sum ((s_D A, s_{RL}^{in}, s_{RL}^{out}), Q_{DA}^{rN}(t_{hour}, s_{RL}^{in}, s_{RL}^{out})) \leq parkCap * parkProfile(t_{hour}) - \sum ((s_D A, s_{RL}^{in}, s_{RL}^{out}), Q_r N_r eload(t_{hour}, s_{RL}^{in}, s_{RL}^{out}));$$

$$(6.4)$$

6.2 Digital Appendix

Bibliography

- [1] 50hertz, amprion, TENNET, TRANSNET BW. 'Modellbeschreibung aFRR-Abrechnung ab 01.10.2021: Modell- & Schnittstellenbeschreibung'. In: (). URL: https://www.regelleistung.net/xspproxy/api/StaticFiles/Regelleistung/Marktinformationen/Modalit%C3%A4ten_/Modalit%C3%A4ten_f%C3%BCr_Regelreserveanbieter_MfRRA/Modellbeschreibung_aFRR-Abrechnung_ab_01.10.2021.pdf.
- [2] ENTSO-E Transparency Platform. 8.04.2025. URL: https://transparency.entsoe.eu/.
- [3] *TBATS sktime documentation*. 5.04.2025. URL: https://www.sktime.net/en/latest/api_reference/auto_generated/sktime.forecasting.tbats.TBATS.html.

ChatGPT was utilized in this work for the following purposes:

- As a search tool for specific functions.
- As an aid in refining formulations.

All suggestions were carefully reviewed and assessed individually.

Statement of authorship

I hereby certify that I have authored this document entitled Analyzing Renewable Expansion Paths for Germany 2030 - A Cost-Efficient Calculation for Adaptive Power Plants independently and without undue assistance from third parties. No other than the resources and references indicated in this document have been used. I have marked both literal and accordingly adopted quotations as such. There were no additional persons involved in the intellectual preparation of the present document. I am aware that violations of this declaration may lead to subsequent withdrawal of the academic degree.

Dresden, 28th March 2025

S. Willy

Sebastian Trümper