Gorrieri cheatsheet

Alessandro Amella

19 dicembre 2023

1 Teoremini

- Una gramm. ricorsiva sx non è $LL(k) \ \forall k$
- Una gramm. ambigua non è $LL(k) \ \forall k$
- $\exists L$ lib. det. : $\nexists G$ di classe LL(k): $L = L(G) \ \forall k$, idem per LR(k)
- Linguaggi lib. det. ⊂ linguaggi liberi (strettamente)
- Una gramm. è $LL(1) \Leftrightarrow$ non ho conflitti nella tabella di parsing LL(1)
- Se L è lib. det. e gode di prefix property \Leftrightarrow L è LR(0)
- L regolare \Rightarrow L generabile da gramm. di classe LL(1)
- L libero \Leftrightarrow L accettato da PDA
- L(G) lib. det. e G non è ambigua \Leftarrow G è LL(k) per qualche k (non il contrario)
- L(G) lib. det. e G non è ambigua \Leftarrow G è LR(k) per qualche k (non il contrario)
- L lib. det. \Leftrightarrow L accettato per stato finale da DPDA
- L gode di **prefix property** \Leftrightarrow L accettato per pila vuota da DPDA
- L lib. det. \Rightarrow generabile da gramm. non ambigua
- L da gramm. $LL(k) \subset L$ da gramm. SLR(1)

2 Regole di semantica

2.1 Valutazione sinistra / destra / parallela

- Sx (dx) = valuto prima argomento a sx (dx), poi l'altro (dunque avrò un caso in cui un elemento è da valutare e l'altro è già stato valutato) \Rightarrow deterministico se valutare sx o dx.
- Parallelo = regole "specchiate" \Rightarrow nondeterministico se sx o dx.

2.2 Valutazione interna / esterna

- Interno = prima di dare il risultato valuto tutti gli argomenti.
- Esterno = short circuit evaluation ⇒ ho almeno 1 regola con la quale fornisco il risultato senza aver valutato tutti gli argomenti (es. nella somma in valutazione ES, se addendo dx è 0, restituisco direttamente addendo sx senza valutarlo: fare la somma sarebbe inutile).

3 Verifica che la grammatica è ambigua

Devi mostrare, con un albero, che ci sono più modi per arrivare alla stessa espressione. Ad esempio:

$$c := y := 2 \mid c; c \mid$$
 while tt do c

Posso comporre l'espressione "while t
t do y:=2; y:=2" in due modi (disegna gli alberi):

c while tt do
$$c$$
 while tt do c ; c while tt do $y := 2; y := 2$ (1)

$$c$$
 $c; c$ while tt do $c; c$ while tt do $y := 2; y := 2$ (2)

4 Classifica il linguaggio / pumping lemma a rovescio

Qualunque esercizio "classifica il linguaggio se regolare, libero, non libero" ha 2 possibilità:

- 1. Il linguaggio è regolare ⇒ sei fortunato, basta che fornisci una grammatica regolare che lo generi (in teoria anche un'espressione regolare va bene).
- 2. Il linguaggio è libero ⇒ devi fornire una grammatica libera che lo generi e poi dimostrare che non è regolare con il pumping lemma a rovescio.
- 3. NEWS!! Esame 20/12/2023, NON LIBERO \Rightarrow o pumping theorem (non lemma) a rovescio, sennò pensi a un L generato da espressione regolare tale che l'intersezione non fornisce un linguaggio libero, e di conseguenza neanche il linguaggio dato come consegna è libero.

Esempio di pumping **lemma** a rovescio con $L = \{a^n b^{2m} c^{n+1} \mid n, m \ge 0\}$, scrivi:

- "Fisso N > 0 generico."
- Scegli una z che usa come "potenze" la N: " $z=a^Nbc^{N+1}, |z|\geq N, z\in L$ ".
- " $\forall u, v, w$ tali che $z = uvw, |uv| \leq N, |v| \geq 1$ devo avere $v = a^j \forall j \geq 1$ "
- "Ma $\exists k=2: uv^2w=a^{N+j}bc^{N+1}\notin L$ " (più aumento j più a avrò rispetto a c)
- " $\Rightarrow L$ non è regolare"

5 Chiusura

ez teorema: L_1 regolare $\cap L_2$ libero $\to L_3$ libero

	Intersez. \cap	Unione \cup	Concat. ·	Complem. \overline{L}	Differenza \	Ripetiz. *
Regolari	Sì	Sì	Sì	Sì	Sì	Sì
Liberi	No	Sì	Sì	No	No	Sì
Lib. det.	No	No	Sì	Sì	No	Sì

Esempio

Se L_1 è regolare e L_2 libero deterministico, cos'è $L_1 \setminus L_2 = \{w \mid w \in L_1 \land w \notin L_2\}$?

Risposta: libero deterministico, perché $L_1 \setminus L_2 = L_1 \cap \overline{L}_2$ e:

- I ling. regolari sono chiusi per complementazione: L_2 regolare $\Rightarrow \overline{L}_2$ regolare.
- Per ez teorema: L_1 libero $\cap \overline{L}_2$ regolare \to ling. libero.
- $\Rightarrow L_1 \cap \overline{L}_2$ è libero deterministico.

6 First e follow

I first sono semplicemente il primo carattere di ogni produzione di un NT:

$$A \to \alpha_1 \mid \dots \mid \alpha_k$$

allora first(A) := first(
$$\alpha_1$$
) $\cup ... \cup$ first(α_k)

Ho che first $(x\beta) := \text{first}(x)$, e se x può essere ε ci aggiungo anche i first di β .

Per i follow la fola è più difficile:

• Per ogni prod. $x \to \alpha y \beta$:

$$follow(y) := follow(y) \cup (first(\beta) \setminus \{\varepsilon\})$$

• Per ogni prod. $x \to \alpha y$ o $x \to \alpha y \beta$ t.c. $\varepsilon \in \text{first}(\beta)$:

$$follow(y) := follow(y) \cup follow(x)$$

Spiegazione follow

Prendendo per esempio il follow di B in $A \to BC$, devi ricordarti:

- Il follow di B sarà il first di C (pensa: dopo B c'è C, dunque quello che followa B è il primo carattere di C, ossia first(C)).
- Se dopo la B non c'è niente (la produzione è $A \to B$) oppure $\varepsilon \in \operatorname{first}(C)$ (dunque la produzione potrebbe diventare $A \to B$), allora a follow(B) ci devi anche aggiungere il follow di A (la testa della produzione).

Esempio

1.
$$S \to AC$$

2.
$$A \to \varepsilon \mid aSA$$

3.
$$B \rightarrow \varepsilon \mid bB$$

4.
$$C \rightarrow cc \mid cBC$$

NT	First	Follow	
S	a, c, ε	\$, a	
A	a, ε	c	
В	b, ε	c	
\Box	c	\$, a	

6.1 Verificare che L è LL(1)

 $G \in LL(1) \Leftrightarrow \forall$ produz. distinte con la stessa testa $A \to \alpha \mid \beta$ si ha che:

1.
$$first(\alpha) \cap first(\beta) = \emptyset$$

2. 2.a.
$$\varepsilon \in \operatorname{first}(\alpha) \Rightarrow \operatorname{first}(\beta) \cap \operatorname{follow}(A) = \emptyset$$

2.b.
$$\varepsilon \in \text{first}(\beta) \Rightarrow \text{first}(\alpha) \cap \text{follow}(A) = \emptyset$$

Esempio

1.
$$S \rightarrow AA \mid bB$$

2.
$$A \rightarrow a \mid \varepsilon$$

3.
$$B \rightarrow b \mid \varepsilon$$

NT	First	Follow
S	a,b,ε	\$
A	a, ε	a, \$
B	b, ε	\$

1.
$$S \to AA \mid bB$$
: first $(AA) \cap first(bB) = \{\varepsilon, a\} \cap \{b\} = \emptyset$ ok

2.

2.a.
$$\varepsilon \in \mathrm{first}(AA) \Rightarrow \mathrm{first}(bB) \cap \mathrm{follow}(S) = \{b\} \cap \{\$\} = \emptyset$$
ok

2.b.
$$\varepsilon \notin \operatorname{first}(bB)$$
 ok

1.
$$A \to a \mid \varepsilon$$
: first(a) \cap first(ε) = \emptyset ok

2.

2.a.
$$\varepsilon \in \text{first}(\varepsilon) \Rightarrow \text{first}(a) \cap \text{follow}(A) = \{a\} \cap \{a,\$\} = \{a\} \neq \emptyset \text{ nop!!}$$

 \Rightarrow La grammatica NON è LL(1).