

Técnicas de análisis cuantitativas y cualitativas Sesión 1

Eduardo Corbelle Rico

Máster Universitario en Xestión Sustentable da Terra e o Territorio Universidade de Santiago de Compostela

Curso 2015-2016

Objetivos de la sesión

- Estadística descriptiva
 - Estadísticos de posición y dispersión
 - Principales tipos de gráficos
- Estadística inferencial
 - · Conceptos básicos de muestreo
 - Intervalos de confianza
 - Contrastes de hipótesis
- Introducción a R

Contidos

1 Presentación de la materia

2 Estadística descriptiva

3 Estadística inferencial: error de muestreo, contraste hipótesis

Descripción de la materia

Título Técnicas de análisis cuantitativas y cualitativas

Carácter Obligatoria

Duración 3 ECTS (75 h)

- 21 h presenciales
- 3 h tutorías
- 51 h trabajo individual

Calendario

Octubre 2015

I	m	m	Χ	٧	S	d
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	

Profesor

Eduardo Corbelle Rico

eduardo.corbelle@usc.es

Escola Politécnica Superior, Lugo Pav. II, planta 2^a inferior (despacho 11)

Tutorías: lunes y viernes, 9-12h

Criterios de evaluación

- Resolución de 4 casos prácticos
- Entrega inicial hasta 29 de noviembre de 2015
 - Recomendaciones de mejora: 20 de diciembre de 2015
- Fecha límite de entrega: 17 de enero de 2016

- Lenguaje y entorno de programación para análisis estadístico y gráfico
- Software libre (GPL)
- Multiplataforma
- www.r-project.org

Presentación de la materia

00000000

"Piled Higher and Deeper", Jorge Cham, www.phdcomics.com.

Replicable / reproducible

Replicability Reproducibility

Reproduction of the original results using the same tools

by the original author on the same machine by someone in the same lab/using a different machine by someone in a different lab Reproduction using different software, but with access to the original code Completely independent reproduction based only on text description, without access to the original code

Davison, 2014

http://rrcns.readthedocs.org/en/latest/reproducible_research.html

- Entorno de desarrollo para R
- Software libre (AGPL)
- Multiplataforma
- www.rstudio.com/

Presentación de la materia

2 Estadística descriptiva

Sestadística inferencial: error de muestreo, contraste hipótesis

Salario bruto medio en España, 2010

22 790 euros/año

Instituto Nacional de Estadística. Encuesta de estructura salarial 2010 (resultados provisionales), http://www.ine.es/prensa/np720.pdf

"Unos tienen mucho y otros nada, pero la media es la correcta" El Roto, *Viñetas para una crisis*, Mondadori, 2011.

Estadísticos descriptivos: medidas de posición

- Media aritmética (arithmetic mean)
- Mediana (median)
- Moda (mode)

Estadísticos descriptivos: medidas de posición

- Media aritmética (*arithmetic mean*)
- Mediana (*median*)
- Moda (*mode*)

Salarios brutos, 2010

Salario medio	22 790 euros
Salario mediano	19 017 euros
Salario modal	16 489 euros

Instituto Nacional de Estadística. Encuesta de estructura salarial 2010 (resultados provisionales). URL: http://www.ine.es/prensa/np720.pdf

Estadísticos descriptivos: medidas de dispersión

Desv. típica (std. deviation)	$\sigma = \sqrt{\frac{\sum (X_i - \mu)^2}{n}}$
Varianza (<i>variance</i>)	σ^2
Coeficiente de variación	$cv = rac{\sigma}{\mu}$
Desv. absoluta mediana	mad = M(X - M(X))
Recorrido (range)	max(X) - min(X)

Representación gráfica

Funcións de densidade e distribución

Distribución del salario bruto anual

Instituto Nacional de Estadística. Encuesta de estructura salarial 2010 (resultados provisionales), http://www.ine.es/prensa/np720.pdf

Diagrama de barras

Diagrama de caja

Diagrama de caja

Práctica

- Repaso de estadística descriptiva
- Introducción a R y RStudio

3 Estadística inferencial: error de muestreo, contraste hipótesis

Estadística inferencial

Inferi

(Del lat. inferre, llevar a).

1. tr. Sacar una consecuencia o deducir algo de otra cosa.

Censo y muestra

Foto: US Census Bureau. A census taker at work, ca. 1940.

Utilidad de una muestra

¿Hasta qué punto...

- la muestra representa a la población?
- podemos confiar en lo que inferimos a partir de ella?

Representatividad

Muestra representativa

Una muestra es representativa de la población si todos los individuos tuvieron la misma probabilidad de haber sido escogidos

Muestra aleatoria simple (MAS) y variantes

Error de muestreo

Error de muestreo

Presentación de la materia

Error de muestreo

Desviación típica del estimador (p.ej. media muestral).

Su valor depende...

- De la heterogeneidad (dispersión) de la población
- Del tamaño de la muestra

Estimación por intervalo Estimación de la media de la población (μ)

Media muestral
$$\bar{x} = \frac{\sum x_i}{n}$$

Estimación de la media de la población (μ)

Media muestral
$$\bar{x} = \frac{\sum x_i}{n}$$

Media muestral
$$\, \bar{x} = \frac{\sum x_i}{n} \,$$
 Error de muestreo $\, S_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \approx \frac{s}{\sqrt{n}} \,$

Estimación de la media de la población (μ)

Media muestral
$$\bar{x} = \frac{\sum x_i}{n}$$

Error de muestreo
$$S_{ar{x}}=rac{\sigma}{\sqrt{n}}pproxrac{s}{\sqrt{n}}$$

Distribución de \bar{x}

- Normal, si
 - $X \sim N(\mu, \sigma)$; σ conocida
 - σ conocida; n > 30
 - n > 100
- t de Student con n-1 grados de libertad

Estimación de la proporción de la población (P)

Proporción muestral p

Estimación de la proporción de la población (P)

Proporción muestral p

Error de muestreo $S_p \approx \sqrt{\frac{\hat{p}\hat{q}}{n}}$

Estimación de la proporción de la población (P)

Proporción muestral p

Error de muestreo
$$S_p pprox \sqrt{rac{\hat{p}\hat{q}}{n}}$$

Distribución de \hat{p}

- Normal, si
 - $n \ge 30$, $n\hat{p} > 5$, y $n\hat{q} > 5$

Ejemplo: sacos de café

Peso medio según envasado: 50 kg

Ejemplo: sacos de café

Peso medio según envasado: 50 kg

10 sacos al azar

48.8 47.7 46.8 47.2 51.6 49.0 50.4 50.9 48.0 48.7

media muestral: 48.9 kg

Dos hipótesis en estudio

H₀ Hipótesis nula

H₁ Hipótesis alternativa

Dos hipótesis en estudio

H₀ Hipótesis nula

H₁ Hipótesis alternativa

$$H_0$$
 $\bar{x} = 50$ kg

 H_1 $\bar{x} \neq 50$ kg

¿Existe evidencia suficiente para descartar H_0 ... v aceptar, por lo tanto, H_1 ?

«Si fuera cierta la hipótesis nula H_0 , la muestra, o mejor T, debería de comportarse de una determinada manera [...]. Si extraída una muestra al azar, acontece un suceso para T que tenía poca probabilidad de ocurrir si fuera cierta H_0 —es decir, bajo H_0 — o bien es que hemos tenido tan mala suerte de haber elegido una muestra "muy rara", o, lo que es más probable, la hipótesis nula era falsa».

García Pérez, A (2003), Estadística aplicada: Conceptos básicos, Universidad Nacional de Educación a Distancia, Madrid.

Errores posibles

Error de tipo I

Rechazar H_0 siendo, en realidad, cierta

Error de tipo II

No rechazar H_0 siendo falsa

Errores posibles

Error de tipo I

Rechazar H_0 siendo, en realidad, cierta

Error de tipo II

No rechazar H_0 siendo falsa

Elección	H_0 es en realidad	
	Cierta	Falsa
Rechazar No rechazar	Error Tipo I Éxito	Éxito Error Tipo II

Control sobre los errores

Podemos ejercer cierto control sobre los errores...

De tipo I: al escoger el nivel de significación (p-valor, α)

 $P(\text{Rechazar } H_0|H_0 \text{ cierta}) = P(\text{Error de tipo 1}) = \alpha$

De tipo II: mediante la *potencia* del test $(1 - \beta)$

 $P(\text{Rechazar } H_0|H_1 \text{ cierta}) = 1 - P(\text{Error de tipo 2}) = 1 - \beta$

Criterios de decisión

Simples y más habituales

 $\alpha < 0'05$ Rechazar H_0

 $\alpha > 0'05$ Aceptar H_0

Criterios de decisión

Simples y más habituales

 $\alpha < 0'05$ Rechazar H_0

 $\alpha > 0'05$ Aceptar H_0

Alternativa más conservadora

 $\alpha < 0'01$ Rechazar H_0

 $\alpha > 0'20$ Aceptar H_0

Resto de casos Aumentar la potencia (aumentar n)

Contraste bilateral

$$H_0$$
 $\bar{x} = 50$ kg

$$H_1$$
 $\bar{x} \neq 50 \ \mathrm{kg}$

Contraste bilateral

```
H_0 \ \bar{x} = 50 \ \text{kg}
H_1 \bar{x} \neq 50 kg
```

```
> t.test(x, mu=50, alternative="two.sided")
One Sample t-test
data: x
t = -2.1492, df = 9, p-value = 0.06011
alternative hypothesis: true mean is not equal to 50
95 percent confidence interval:
47.76272 50.05728
sample estimates:
mean of x
    48.91
```

Contraste unilateral

 H_0 $\bar{x} \geq 50$ kg

 H_1 $\bar{x} < 50$ kg

Contraste unilateral

```
H_0 \bar{x} \geq 50 kg
H_1 \ \bar{x} < 50 \ \text{kg}
```

```
> t.test(x, mu=50, alternative="less")
One Sample t-test
data: x
t = -2.1492, df = 9, p-value = 0.03006
alternative hypothesis: true mean is less than 50
95 percent confidence interval:
     -Inf 49.83968
sample estimates:
mean of x
    48.91
```

Práctica 2

Contrastes de hipótesis con R y RStudio

Ejercicio de evaluación

Errores de muestreo e intervalos de confianza Fecha de entrega recomendada: 25 de octubre.