

COMPILER CONSTRUCTION

Top-Down Parsing

Chapter 5 Top-Down Parsing

Outline

- Overview of Top-down Parser
- LL(k) Grammar and Predict Set
- Recursive-descent LL(1) Parsers
- Table-driven LL(1) Parsers
- Obtaining LL(1) Grammars

Overview

- This chapter discusses the principles for **automatic** construction of the parsing phase of a compiler
 - Ch. 2 presents a recursive-descent parser for the syntax analysis phase of a small compiler
 - Recursive-descent parsers belong to the more general class of top-down (also called LL) parsers, which were introduced in Ch. 4
- Discuss top-down parsers in greater detail
 - Analyze the conditions under which such parsers can be reliably and
 - construct from grammars automatically
 - The analysis builds on the algorithms and grammarprocessing concepts presented in Ch. 4

Top-Down and Bottom-Up Parsers

- Top-down parsers are in theory not as powerful as the bottom-up parsers (Ch. 6)
- However, top-down parsers have been constructed for many programming languages
 - because of their simplicity, performance, and excellent error diagnostics
 - They are also convenient for prototyping relatively simple front-ends of larger systems that require a rigorous definition and treatment of the system's input

Two Forms of Top-Down Parsers

Recursive-descent parsers

- contain a set of mutually recursive procedures that cooperate to parse a string
- Code for these procedures can be written directly from a suitable grammar

Table-driven LL parsers

- use a generic LL(k) parsing engine and a parse table that directs the activity of the engine
- The entries for the parse table are determined by the particular LL(k) grammar

Recap: Mutual Recursion

- Mutual recursion is a form of recursion
 - where two mathematical or computational objects are defined in terms of each other
 - such as functions or data types
- Example
 - Determine whether a non-negative number is even or odd?
 - It is done by defining two separate functions that call each other, decrementing each time

```
bool is_even(unsigned int n)
{
    if (n == 0)
        return true;
    else
        return is_odd(n - 1);
}
bool is_odd(unsigned int n) {
    if (n == 0)
        return false;
    else
        return is_even(n - 1);
}
```


Parsing Problem

- Every string in a grammar's language
 - can be generated by a derivation
 - that begins with the grammar's start symbol
 - We learn from previous chapters
- While it is relatively straightforward to use a grammar's productions to generate sample strings in its language,
 - reversing the process does not seem as simple

Parsing Problem (Cont'd)

- The parsing problem:
 - Given an input string, how can we show why the string is or is not in the grammar's language
 - in this chapter, we consider **a parsing technique** that is successful with many context-free grammars
- This parsing technique is known by the following names:
 - Top-down, because the parser begins with the grammar's start symbol and grows a parse tree from its root to its leaves
 - Predictive, because the parser must predict at each step in the derivation which grammar rule is to be applied next
 - LL(k), because these techniques scan the input from left to right (the first "L" of LL), produce a leftmost derivation (the second "L" of LL), and use k symbols of lookahead
 - Recursive descent, because this kind of parser can be implemented by a collection of mutually recursive procedures

Reprise: Recursive-Descent Parsing

- A parsing procedure is associated with each nonterminal A
- The procedure associated w/ A
 - is charged with accomplishing one step of a derivation
 - by choosing and applying one of A's productions
- The parser chooses the appropriate production for A by <u>inspecting the next k tokens</u> (terminal symbols) in the input stream

```
procedure STMT()

if ts.peek() = id

then

call MATCH(ts,id)
call MATCH(ts, assign)
call VAL()
call EXPR()
else

if ts.peek() = print
then

call MATCH(ts, print)
call MATCH(ts, print)
call MATCH(ts, id)
else

call error()

end
```

Figure 2.7: Recursive-descent parsing procedure for Stmt. The variable ts is an input stream of tokens.

- The Predict set for production $A \Rightarrow \alpha$ is the set of tokens that trigger application of that production
- The **Predict set** for $A \Rightarrow \alpha$ is determined primarily by
 - the detail in α the **right-hand side** (RHS) of the production
 - Other CFGs productions may participate in the computation of a production's Predict set

LL(k) Grammars

- The CFGs is an LL(k) grammar,
 - if it is possible to construct an LL(k) parser for the CFGs such that the parser recognizes the CFGs's language
- With the LL(k) parser,
 - the choice of production can be predicated on the next k tokens of input, where
 - the constant k is chosen before the parser takes inputs
 - The first "L" stands for scanning input from left to right
 - The second "L" for producing a leftmost derivation
 - The "k" for using k input symbol of lookahead at each step to make parsing decisions

Predict Set of an LL(k) Parser

- In other words,
 - an LL(k) parser can peek at the next k tokens to decide which production to apply
- The *strategy* for choosing productions must be established when the parser is constructed
 - The strategy is formalized by defining a function called Predictk(p)
 - This function considers the grammar production p and computes the set of length-k token strings that predict the application of rule p

Predict Strategy of an LL(1) Parser

- Consider the input string $\alpha a \beta \in \Sigma^*$
- Suppose the parser has constructed the derivation $S \Rightarrow_{lm}^* \alpha A Y_1 \dots Y_n$, where
 - α has been matched and
 - A is the leftmost nonterminal in the derived sentential form
- To continue the leftmost derivation, some production for A must be applied
 - Because the input string contains an `a' as the next input token, the parse must continue with a production for A that derives `a' as its first terminal symbol

- We use the following to find the set P
 - $-P = \{ p \in ProductionsFor(A) \mid a \in Predict(p) \}$
 - $p \in ProductionsFor(A)$
 - 1. p refers to the productions that could be derived from A
 - $a \in Predict(p)$
 - 2. a refers to the FIRST and FOLLOW sets for each given p

- ProductionsFor(A)
 - returns an iterator that visits each production for nonterminal A
 - ProductionsFor(A) is defined in Sec. 4.5.1 on page 127

- One of the following conditions must be true of the set P and the next input token a:
 - 1. P is the empty set
 - 2. P contains more than one production
 - 3. P contains exactly one production

1.P is the empty set

- In this case, no production for A can cause the next input token to be matched
- The parse cannot continue and a syntax error is issued,
 with a as the offending token
- The productions for A can be helpful in issuing error messages that indicate which terminal symbols could be processed at this point in the parse
- Sec. 5.9 considers error recovery and repair in greater detail

- 2.P contains more than one production
 - In this case, **the parse could continue**, but nondeterminism would be required to pursue the independent application of each production in P
 - For efficiency, we require that our parsers operate deterministically
 - Thus, parser construction must ensure that this case cannot arise

- 3.P contains exactly one production
 - In this case, the leftmost parse can proceed deterministically by applying the only production in set P

Compute Predict Set

```
function Predict(p : A \rightarrow X_1 ... X_m) : Set

ans \leftarrow First(X_1 ... X_m)

if RuleDerivesEmpty(p)

then

ans \leftarrow ans \cup Follow(A)

return (ans)

end
```

Figure 5.1: Computation of Predict sets.

- Now, we show how to compute Predict(p)
- Consider a production $p: A \Rightarrow X_1 \dots X_m$, $m \ge 0$
 - When m = 0, it means A ⇒ λ (there are no symbols on A's RHS)
- From Fig. 5.1, the symbols included in the predict set are drawn from **one or both of the following**:
 - The set of possible terminal symbols that are **first produced in some derivation** from $X_1 ... X_m$ (Marker 1 in Fig. 5.1)
 - The terminal symbols that can **follow A** in some sentential form (Marker 3 in Fig. 5.1)

Compute Predict Set (Cont'd)

function $Predict(p : A \rightarrow X_1 ... X_m) : Set$ $ans \leftarrow First(X_1 ... X_m)$ if RuleDerivesEmpty(p)then $ans \leftarrow ans \cup Follow(A)$ return (ans)end

Figure 5.1: Computation of Predict sets.

Marker 1

- The Predict procedure initializes *ans* to FIRST($X_1 ... X_m$)
 - that is the set of terminal symbols that can appear first (leftmost) in any derivation of $X_1 \dots X_m$
 - Refer to Fig. 4.8 for computing FIRST set

Marker 2

- It detects if $X_1 ... X_m \Rightarrow \lambda$ with the procedure RuleDerivesEmpty(p),
 - which is true if, and only if, **production p can derive** λ (Refer to Fig. 4.7 for symbols and productions deriving λ)

Marker 3

- The symbols in FOLLOW(A) are further computed and included in ans,
 - **FOLLOW(A)** symbols refer to the set of symbols that follow A when A⇒ λ (A derives λ); FOLLOW is defined in Fig. 4.11
 - Thus, the function shown in Fig. 5.1 computes the set of length-1 token strings that predict rule p
 - NOTE: λ is not a terminal symbol, so it does not participate in any Predict set

Check if Grammar G is LL(1)

- *Given $A \Rightarrow \alpha \mid \beta$,
 - which is two distinct productions of a grammar G
 - The grammar G is LL(1) if and only if the following conditions hold:
 - 1. FIRST(α) cannot contain any terminal in FIRST(β)
 - **2**. At most one of α and β can derive λ
 - 3. if $\beta \Rightarrow^* \lambda$, FIRST(α) cannot contain any terminal in FOLLOW(A) if $\alpha \Rightarrow^* \lambda$, FIRST(β) cannot contain any terminal in FOLLOW(A)

Check if Grammar G is LL(1) (Cont'd)

- 1. FIRST(α) cannot contain any terminal in FIRST(β)
- **2.** At most one of α and β can derive λ
- \rightarrow In other words, the above conditions are equivalent to the statement, "FIRST(α) and FIRST(β) are disjoint sets."
- 3. if $\beta \to^* \lambda$, FIRST(α) cannot contain any terminal in FOLLOW(A) if $\alpha \to^* \lambda$, FIRST(β) cannot contain any terminal in FOLLOW(A)
- \rightarrow The above condition is equivalent to the statement that "<u>if λ is in FIRST(β)</u>, then **FIRST(\alpha)** and **FOLLOW(A)** are disjoint sets, and likewise, if λ is in FIRST(α)."
- Or, you can say grammar G is in an LL(1) grammar,
 - if the productions for each nonterminal A in G must have **disjoint predict sets**, as computed with one symbol of lookahead

Check if Grammar G is LL(1) (Cont'd)

- The procedure shown in Fig. 5.4 determines
 - whether a grammar is LL(1) based on the grammar's Predict sets
 - The Predict sets for each nonterminal A are checked for intersection
 - If no two rules for A have any prediction symbols in common, then the grammar is LL(1)

```
function IsLL1(G) returns Boolean
                                  foreach A \in N do
                                      PredictSet \leftarrow \emptyset
                                      foreach p \in ProductionsFor(A) do
To determine if Predcit
                                        \rightarrow if Predict(p) \cap PredictSet \neq \emptyset
                                                                                                              (4)
set for p is also in the
                                          then return (false)
PredictSet for the visited
                                          PredictSet \leftarrow PredictSet \cup Predict(p) \leftarrow
                                                                                                   PredictSet keeps the
nonterminals
                                  return (true)
                                                                                                   Predcit set of all the
                              end
                                                                                                   visited nonterminals
```

Figure 5.4: Algorithm to determine if a grammar G is LL(1).

Answer

Example: Check if the Grammar is LL Find Predict Sets.

```
function Predict(p: A \rightarrow X_1 \dots X_m): Set
    ans \leftarrow First(X_1 \dots X_m)
    if RuleDerivesEmpty(p)
```

then

 $ans \leftarrow ans \cup Follow(A)$

return (ans) end

Figure 5.1: Computation of Predict sets.

$$N = \{S, C, A, B, Q\}$$

- ProductionsFor(C) $// C \Rightarrow c \mid \lambda$

R1110

(3)

- Predict(C)
 - First(C) = $\{c, \lambda\}$
 - // Compute Follow(C) since we have λ in the *First set* of C

 X_{m} First $(X_1 X_m)$ Derives Follow(A)

- Follow(C) = {d, \$}
- NOTE: Predict set does not contain λ

	Ruie	$\overline{}$	$\alpha_1 \cdots \alpha_m$	$I \cap Su(X_1 \dots X_m)$	Delives	I Ollow(A)	ATISWEI
	Number				Empty?		
	1	S	AC\$	a,b,q,c,\$	No		a,b,q,c,\$
	2	С	С	С	No		С
A C \$	3		λ		Yes	d,\$	d,\$
) А О Ф	4	Α	a B C d	а	No		а
λ	5		BQ	b,q	Yes	с,\$	b,q,c,\$
a B C d	6	В	b B	b	No		b
B Q → b B	7		λ		Yes	q,c,d,\$	q,c,d,\$
λ	8	Q	q	q	No		q
o q	9		λ		Yes	с,\$	c,\$
λ							

Figure 5.3: Predict calculation for the grammar of Figure 5.2.

 $8 Q \rightarrow$

Figure 5.2: A CFGs.

Example: Check if the Grammar is LL(1)

```
function Predict(p : A \rightarrow X_1 ... X_m) : Set

ans \leftarrow First(X_1 ... X_m)

if RuleDerivesEmpty(p)

then

ans \leftarrow ans \cup Follow(A)

return (ans)

end
```

Figure 5.1: Computation of Predict sets.

```
function IsLL1(G) returns Boolean

foreach A \in N do

PredictSet \leftarrow \emptyset

foreach p \in ProductionsFor(A) do

if Predict(p) \cap PredictSet \neq \emptyset

then return (false)

PredictSet \leftarrow PredictSet \cup Predict(p)

return (true)

end
```

Figure 5.4: Algorithm to determine if a grammar *G*

- $N = \{S, C, A, B, Q\}$
- ProductionsFor(A)
 - aBCd
 - BQ
- Predict(a B C d) \cap Predict(B Q) = \emptyset (empty set)
 - Predict(a B C d) = $\{a\}$
 - **Predict(**B Q**)** = $\{b, q, c, \$\}$
- The grammar listed in Fig. 5.2 is LL(1)

Rule Number	Α	$X_1 \dots X_m$	$First(\mathcal{X}_1 \ldots \mathcal{X}_m)$	Derives Empty?	Follow(A)	Answer
1	S	AC\$	a,b,q,c,\$	No		a,b,q,c,\$
2	С	С	С	No		С
3		λ		Yes	d,\$	d,\$
4	Α	a B C d	а	No		а
5		BQ	b,q	Yes	c,\$	b,q,c,\$
6	В	b B	b	No		b
7		λ		Yes	q,c,d,\$	q,c,d,\$
8	Q	q	q	No		q
9		λ		Yes	c,\$	c,\$

Figure 5.3: Predict calculation for the grammar of Figure 5.2.

More about First, Follow, and Predict Sets

- Compute FIRST and FOLLOW sets
 - We should always derive *First* and *Follow sets* regardless of the result of *RuleDerivesEmpty*() at **Marker 2** in Fig. 5.1
 - When computing FIRST, you should show λ if necessary
- On the other hand, we derive the *Predict set* depending on the result of *RuleDerivesEmpty(*)
- Hence, the Fig. 5.3 should be revised as below
- The above rules should be applied to our quiz/midterm/final

Rule Number			$First(\mathcal{X}_1 \dots \mathcal{X}_m)$	Follow(A)	Empty?	Predict set
1	S	AC\$	a,b,q,c,\$	\$	No	a,b,q,c,\$
2	С	С	С		No	С
3		λ	λ	d,\$	Yes	d,\$
4	Α	a B C d	а	-	No	а
5		BQ	b,q <mark>\</mark>	с,\$	Yes	b,q,c,\$
6	В	b B	b		No	b
7		λ	λ	q,c,d,\$	Yes	q,c,d,\$
8	Q	q	q		No	q
9		λ	λ	с,\$	Yes	с,\$

Figure 5.3: Predict calculation for the grammar of Figure 5.2.

Recursive-descent LL(1) Parsers

- Now, we show the procedures of constructing a recursive-descent parser for an LL(1) grammar
 - The parser's input is a sequence of tokens provided by the stream *ts*
 - *ts* offers the following methods:
 - 1. peek, which examines the next input token without advancing the input
 - 2.advance, which advances the input by one token
- The parsers we construct rely on the match method shown in Fig. 5.5
 - This method checks the token stream *ts* for the presence of a particular token

Recursive-descent Procedure in the Parser

- A separate procedure for each nonterminal *A* is illustrated in Fig. 5.6,
 - where *A* has rules p_1, p_2, \ldots, p_n
 - The code constructed for each p_i is obtained by **scanning the RHS of rule** p_i from left to right
 - In other words, the above means $A \Rightarrow p_1 \mid p_2 \mid \ldots \mid p_n$, and $p_i = X_1 \ldots X_m$
 - **ts.peek()** \in **Predict(** p_i **)** means the Predict set of p_i is used to see if the next input matches the rule p_i

```
procedure A(ts)

switch (...)

tase ts.peek() \in Predict(p_1)

tase ts.peek() \in Predict(p_i)

tase ts.peek() \in Predict(p_i)

tase ts.peek() \in Predict(p_n)

tase ts.peek() \in Predict(p_n)
```

Figure 5.6: A typical recursive-descent procedure. Successful LL(1) analysis ensures that only one of the case predicates is true.

Recursive-descent Procedure in the Parser (Cont'd)

 $A \Rightarrow p_1 \mid p_2 \mid \dots \mid p_n$, where $p_i = \lambda$ For example, when $p_2 = \lambda$, the Code for p_2 is: "return;" The example code is in Fig. 5.7 of the Grammar Rule 3, 7, 9 in Fig. 5.2

```
 \begin{aligned} & \text{switch} \, (\dots) \\ & \text{case} \, ts. \, \text{peek}(\,\,) \in \mathsf{Predict}(p_1) \\ & / \star \quad \mathsf{Code} \, \mathsf{for} \, p_1 \\ & \star / \star \\ & \mathsf{case} \, ts. \, \mathsf{peek}(\,\,) \in \mathsf{Predict}(p_i) \end{aligned} \qquad \qquad \star / \\ & / \star \quad \mathsf{Code} \, \mathsf{for} \, p_2 \\ & / \star \quad \star / \\ & / \star \quad \star / \\ & / \star \quad \star \\ & / \star \quad \star \\ & / \star \quad \star / \\ & \mathsf{case} \, ts. \, \mathsf{peek}(\,\,) \in \mathsf{Predict}(p_n) \\ & / \star \quad \mathsf{Code} \, \mathsf{for} \, p_n \\ & \mathsf{case} \, default \\ & / \star \quad \mathsf{Syntax} \, \mathsf{error} \end{aligned} \qquad \star / \\ & \mathsf{end}
```

procedure A(ts)

Figure 5.6: A typical recursive-descent procedure. Successful LL(1) analysis ensures that only one of the case predicates is true.

29

- Since m = 0, there are no symbols to visit
- In such cases, the parsing procedure simply returns immediately
- Otherwise, $A \Rightarrow p_1 \mid p_2 \mid \ldots \mid p_n \text{ and } p_j = X_1 \ldots X_m$, where each X_i could be terminal or nonterminal
 - Considering each X_i, there are two possible cases, as follows:

1. X_i is a terminal symbol

If $A \Rightarrow \lambda$

- In this case, a call to match(ts, X_i) is written into the parser to insist that X_i is the next symbol in the token stream
 - If the token is successfully matched, then the token stream is advanced
 - Otherwise, the input string cannot be in the grammar's language and an **error** message is issued

2. X_i is a nonterminal symbol

- A call to X(ts) is written into the parser
 - In this case, there is a procedure responsible for continuing the parse by choosing an appropriate production for X_i

Example: Recursive-descent Procedure

- Fig. 5.7 shows the parsing procedures
 - which are created for the LL(1) grammar shown in Fig. 5.2
 - For presentation purposes, the default case (representing a syntax error) is not shown
- As an example, we examine the procedure for parsing the nonterminal A

Figure 5.2: A CFGs.

```
procedure S()
    switch (...)
        case ts.peek() \in \{a, b, q, c, \$\}
            call A()
            call C()
            call MATCH($)
end
procedure C()
    switch (...)
        case ts.peek() \in \{c\}
            call MATCH(C)
        case ts.peek() \in \{d, \$\}
            return ()
procedure A()
    switch (...)
        case ts.peek() \in \{a\}
            call MATCH(a)
            call B()
            call C()
            call MATCH(d)
        case ts.peek() \in \{b, q, c, \$\}
            call B()
            call Q()
procedure B()
    switch (...)
        case ts.peek() \in \{b\}
            call MATCH(b)
            call B()
        case ts.peek() \in \{q, c, d, \$\}
            return ()
end
procedure Q()
    switch (...)
        case ts.peek() \in \{q\}
            call MATCH(q)
        case ts.peek() \in \{C, \$\}
            return ()
end
```

Figure 5.7: Recursive-descent code for the grammar shown in Figure 5.2. The variable *ts* denotes the token stream produced by the scanner.

Example: Recursive-descent Procedure (Con'td)

1. X_i is a terminal symbol

- In this case, a call to match(ts, X_i) is written into the parser to insist that X_i is the next symbol in the token stream
 - If the token is successfully **matched**, then the token stream is advanced

2. X_i is a nonterminal symbol

- A call to X(ts) is written into the parser
 - In this case, there is a procedure responsible for continuing the parse by choosing an appropriate production for X_i

Rule Number	Α	$X_1 \dots X_m$	$First(\mathcal{X}_1 \dots \mathcal{X}_m)$	Derives Empty?	Follow(A)	Answer
1	S	AC\$	a,b,q,c,\$	No		a,b,q,c,\$
2	С	С	С	No		С
3		λ		Yes	d,\$	d,\$
4	Α	a B C d	а	No		а
5		BQ	b,q	Yes	c,\$	b,q,c,\$
6	В	b B	b	No		b
7		λ		Yes	q,c,d,\$	q,c,d,\$
8	Q	q	q	No		q
9		λ		Yes	с,\$	c,\$

Figure 5.3: Predict calculation for the grammar of Figure 5.2.

```
procedure S()
          switch (...)
              case ts.peek() \in \{a, b, q, c, \$\}
                  call A()
                  call C()
                  call MATCH($)
     end
     procedure C()
         switch (...)
              case ts.peek() \in \{c\}
                  call MATCH(C)
              case ts.peek() \in \{d, \$\}
                  return ()
     end
     procedure A()
          switch (...)
                                                         Predict(A \Rightarrow a B C d)
             case ts.peek() \in \{a\} \blacktriangleleft
                  call MATCH(a)
                                             Terminal
                  call B()
                  call C()◀
                                             Nonterminal
                  call MATCH(d)
                                                         Predict(A \Rightarrow B Q)
Rule #5
              case ts.peek() \in \{b, q, c, \$\} \blacktriangleleft
                  call B()
                  call Q()
     end
     procedure B()
          switch (...)
              case ts.peek() \in \{b\}
                  call MATCH(b)
                  call B()
             case ts.peek() \in \{q, c, d, \$\}
                  return ()
     end
     procedure Q()
          switch (...)
              case ts.peek() \in \{q\}
                  call MATCH(q)
              case ts.peek() \in \{C, \$\}
                  return ()
     end
```

Figure 5.7: Recursive-descent code for the grammar shown in Figure 5.2. The variable *ts* denotes the token stream produced by the scanner.

Why Table-driven LL(1) Parsers?

- The task of creating recursive-descent parsers is mechanical and can be automated
- However, the size of the parser's code grows with the size of the grammar
 - Moreover, the overhead of method calls and returns can be a source of inefficiency
- The table-driven LL(1) parsers are developed to tackle the above issues
 - The parser itself is standard across all grammars, so we need only provide an **adequate parse table**
 - The parser mimics a leftmost derivation
 - It is also known as **nonrecursive predictive parser**

Facilities of Table-Driven LL(1) Parsers

A parsing table

- to describe the relationships among the nonterminals and the input tokens
- generated from the given LL(1) grammar

A stack

- keeps the derived **nonterminals** during parsing
- is used to simulate the actions performed by match and by the calls to the nonterminals' procedures
- The stack is used to make the transition from explicit code to table-driven processing

Overall architecture of the table-driven LL(1) parsers

Methods for the stack

- Typical methods: push and pop
- Obtaining the top-of-stack contents method: TOS
 - The value is obtained without popping the stack

The LL(1) Parse Table

- We first show how to build the LL(1) parse table
 - Note that the given CFGs is the LL(1) grammar, which means the CFGs should pass the **IsLL1 test** in Fig. 5.4
- Its rows and columns
 - are labeled by the nonterminals and terminals of the CFGs, respectively
- It is indexed
 - by the top-of-stack symbol (obtained by the TOS() call) and
 - by the **next input token** (obtained by the *ts*.**peek**() call)

Predict(p) ==
Next input token

Example: The LL(1) Parse Table

- Each nonblank entry in a row is a production that
 - has the **row's nonterminal** as its **left-hand side** (LHS) symbol
 - is typically represented by its rule number in the grammar
- The table is used as follows:
 - The nonterminal symbol at the top-of-stack determines which row is chosen
 - The next input token (i.e., the lookahead) determines which column is chosen
- Example:
 - "LLtable[S, a]" means that top-of-stack is S and the next input token is a
 - "LLtable[S, a] = 1" means that when top-of-stack is S and the next input token is a, we apply the 1^{st} rule in Fig. 5.2; that is, the stack contents will become "A C \$"

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$3 \mid \lambda$
$4 A \rightarrow a B C d$
5 B Q
$6 B \rightarrow b B$
7 λ
$8 Q \rightarrow q$
9 λ

	Lookancau					
Nonterminal		(Nex	kt inp	out to	oken)	
symbol	а	b	С	d	q	\$
S	1	1	1		1	1
С			2	3		3
Α	4	5	5		5	5
В		6	7	7	7	7
Q			9		8	9

jure 5.10: LL(1) table. The blank entries should trigger error actions in the parser.

Figure 5.2: A CFGs.

The LL(1) Parse Table Construction

- The procedure itself is shown in Fig. 5.9
- Input:
 - The target **CFGs**, *G*; we use the CFGs in Fig. 5.2 as example
 - The **productions** *p* for all the nonterminals defined in *G*
 - The **Predict set** of all the productions p as in Fig. 5.3
 - The two-dimensional **parsing table**, *LLtable*
- Output: the parsing table shown in Fig. 5.10
 - Upon the procedure's completion, any entry with 0 represents an error since it means a terminal symbol does not predict any production for the associated nonterminal

	Lookahead					
Nonterminal	а	b	С	d	q	\$
S	1	1	1		1	1
С			2	3		3
Α	4	5	5		5	5
В		6	7	7	7	7
Q			9		8	9

Rule Number	Α	$X_1 \dots X_m$	Predict Set
1	S	AC\$	a,b,q,c,\$
2	С	С	С
3		λ	d,\$
4	Α	a B C d	; a
5		BQ	b,q,c,\$
6	В	b B	l b
7		λ	q,c,d,\$
8	Q	q	; q
9		λ .	c,\$

Modified Fig. 5.3: Predict calculation for the grammar of Fig. 5.2

procedure FillTable(LLtable)
foreach $A \in N$ do
foreach $a \in \Sigma$ do LLtable[A][a] $\leftarrow 0$ foreach $A \in N$ do
foreach $a \in ProductionsFor(A)$ do
foreach $a \in Predict(p)$ do LLtable[A][a] $\leftarrow p$ end

Figure 5.9: Construction of an LL(1) parse table.

The LL(1) Parse Table Construction (Cont'd)

RULE_NUM(p) p

- The procedure visits all of the productions
 p in G and every terminal a in Predict(p)
 - for each nonterminal A in Gfor each production p of the nonterminal Afor each terminal a in the predict set of p $LLtable[A][a] = RULE_NUM(p)$
- NOTE:
 - In Fig. 5.3, **RULE_NUM**(p) = $\{1, ..., 9\}$
 - p is a production $(X_1 ... X_m)$ of nonterminal A
 - E.g., p could be (A C \$), (a B C d), or (b B)

		Lookahead				
Nonterminal	а	b	C	d	q	\$
S	1	1	1		1	1
С			2	3		3
Α	4	5	5		5	5
В		6	7	7	7	7
Q			9		8	9

S	Rule Number	Α	$X_1 \dots X_m$	Predict Set
	1	S	AC\$	a,b,q,c,\$
١	2	С	С	С
	3		λ	d,\$
Γ	4	Α	aBCd	а
	5		BQ .	b,q,c,\$
_	6	В	b B	b
	7		λ	q,c,d,\$
	8	Q	q	q
	9		λ	c.\$

Modified Fig. 5.3: Predict calculation for the grammar of Fig. 5.2

procedure FillTable(LLtable)

foreach $A \in N$ do

foreach $\mathbf{a} \in \Sigma$ do $LLtable[A][\mathbf{a}] \leftarrow 0$

foreach $A \in N$ do

foreach $p \in ProductionsFor(A)$ do

foreach $a \in Predict(p)$ do $LLtable[A][a] \leftarrow p$

end

Figure 5.9: Construction of an LL(1) parse table.

The LL(1) Parse Table Construction (Cont'd)

A how-to example

- When p is $(B \Rightarrow b B)$
 - Predict(p) = {b}
 - $RULE_NUM(p) = 6$
- We set LLtable[B][b] = 6
 - Be ware of the above **flow**

	Lookahead					
Nonterminal	а	b	С	d	q	\$
S	1	1	1		1	1
С			2	3		3
Α	4	5	5		5	5
В		6	7	7	7	7
Q			9		8	9

Fig. 5.10: LL(1) table for grammar in Fig. 5.2

Rule	Α	$X_1 \dots X_m$	Predict Set
Number	0	A O A	I . h
1	5	AC\$	a,b,q,c,\$
2	С	С	С
3		λ	d,\$
4	Α	a B C d	; a
5		BQ	b,q,c,\$
6	В	b B	l b
7		λ	q,c,d,\$
8	Q	q	; q
9		λ	c,\$

Modified Fig. 5.3: Predict calculation for the grammar of Fig. 5.2

procedure FillTable(LLtable)
foreach $A \in N$ do
foreach $a \in \Sigma$ do LLtable[A][a] $\leftarrow 0$ foreach $A \in N$ do
foreach $a \in ProductionsFor(A)$ do
foreach $a \in Predict(p)$ do LLtable[A][a] $\leftarrow p$ end

Figure 5.9: Construction of an LL(1) parse table.

Parsing Procedure for Generic LL(1) Parser

- To start the parsing procedure, we call push(S)
- Next, we do the following iteratively until TOS() == \$ (Marker 8)
 - -If **TOS()** is a terminal symbol (**Marker 6**)-
 - -Call match(ts, TOS()) to check if the symbols of ts.peek() and TOS() are the same; if so, pop() the top of the stack (Marker 9)
 - -If TOS() is a nonterminal symbol (Marker 10)
 - -Consult the parsing table and find the corresponding rule at the table entry (i.e., LLtable[TOS(), ts.peek()])
 - -If the table entry is 0, raise Error
 - -If the table entry is not 0, **apply** the rule

Nonterminal	Lookahead (ts.peek())					
symbol (TOS())	а	b	С	ď	q	\$
S	1	1	1		1	1
С			2	3		3
Α	4	5	5		5	5
В		6	7	7	7	7
Q			9		8	9

```
procedure LLPARSER(ts)
   call PUSH(S)
   accepted \leftarrow false
   while not accepted do
     \rightarrow if TOS() \in \Sigma
       then
           call MATCH(ts, TOS())
           if TOS() = $
           then accepted \leftarrow true
           call POP()
       else
           p \leftarrow LLtable[TOS(), ts.peek()]
           if p = 0
           then
               call ERROR(Syntax error—no production applicable)
           else call APPLY(p)
end
procedure APPLY(p: A \rightarrow X_1 \dots X_m)
   call POP()
```

Fig. 5.10: LL(1) table for grammar in Fig. 5.2

end

for i = m downto 1 do call $PUSH(X_i)$

Figure 5.8: Generic LL(1) parser.

9

(10)

Example: Execution Trace of an LL(1) Parse

- Parse the input string: a b b d c \$
 - Use the parser generated by the grammar in Fig. 5.2,
 - the Predict set in Fig. 5.3, and
 - the LL(1) parsing table in Fig. 5.10
 - Fig. 5.11 shows parsing trace (stack contents and applied rules)

		L	ook	ahea	ıd	
Nonterminal	а	b	С	d	q	\$
S	1	1	1		1	1
С			2	3		3
Α	4	5	5		5	5
В		6	7	7	7	7
Q			9		8	9

Figure 5.10: LL(1) table. The blank entries should trigger error actions in the parser.

Rule Number	Α	$X_1 \dots X_m$	Predict Set		
1	S	AC\$	a,b,q,c,\$		
2	С	С	С		
3		λ	d,\$		
4	Α	aBCd	a		
5		BQ	b,q,c,\$		
6	В	b B	l b		
7		λ	q,c,d,\$		
8	Q	q	q		
9		λ ,	c,\$		
Modified Fig. 5.3: Predict calculation					

for the grammar of Fig. 5.2

	$4 A \rightarrow a B C d$
_	5 B Q
	$6 B \rightarrow b B$
_	7 λ
	$8 Q \rightarrow q$
	9 λ

 $1 S \rightarrow A C $$

	\$c \$	Apply 2: G→c Match Accept	c\$ \$
Figure	column, wi	of an LL(1) parse. The stack i ith top-of-stack as the rightmo g is shown in the right column,	st character. The , processed from left
2020			40

Parse Stack	Action	Input
S	A	abbdc\$
\$CA	Apply 1: S→AC\$	abbdc\$
\$CdCBa	Apply 4: A→aBCd	abbdc\$
\$CdCB	Match	bbdc\$
\$CdCBb	Apply 6: B→bB	bbdc\$
\$CdCB	Match	bdc\$
\$CdCBb	Apply 6: B→bB	bdc\$
\$CdCB	Match	dc\$
\$CdC	Apply 7: $B \rightarrow \lambda$	dc\$
\$Cd	Apply 3: $C \rightarrow \lambda$	dc\$
\$C	Match	c\$
\$c	Apply 2: C→c	c\$
\$	Match	\$
	Accept	

Action

Remaining

Parse

Figure 5.2: A CFGs.

Parse Stack	Action	Remaining Input
S		abbdc\$
\$CA	Apply 1: S→AC\$ Apply 4: A→aBCd	abbdc\$
\$CdC	Ва	abbdc\$
*SCdC	Match B	bbdc\$
\$CdC	Apply 6: B→bB Bb	bbdc\$
\$CdC	Match B	bdc\$
\$CdC	Apply 6: B→bB	bdc\$
	Match	
\$CdC	Apply 7: B→λ	dc\$
\$CdC	Apply 3: $C \rightarrow \lambda$	dc\$
\$Cd	Match	dc\$
\$C	Apply 2: C→c	c\$
\$c		c\$
\$	Match	\$
	Accept	
5.11: Trace (of an LL(1) parse. The stack	is shown in t

Figure 5 the left column, with top-of-stack as the rightmost character. The input string is shown in the right column, processed from left to right.

Obtaining LL(1) Grammars

- It can be difficult for inexperienced compiler writers to create LL(1) grammars
 - because LL(1) requires **a unique prediction** for each combination of nonterminal and lookahead symbols
 - It is easy to write productions that violate this requirement
- Two common types for LL(1) prediction conflicts
 - common prefixes and left recursion
- We introduce simple grammar transformations
 - that eliminate ambiguity caused by common prefixes and left recursion, and
 - these transformations allow us to obtain LL(1) form for most CFGss
 - However, there are some languages of interest for which no LL(1) grammar can be constructed; refer to Sec. 5.6 for more information

Common Prefixes

- Two productions for the **same nonterminal** share a **common prefix**
 - if the productions' RHSs begin with the same string of grammar symbols

Taking the grammar in Fig. 5.12 as an example

- both Stmt productions are predicted by the if token (ambiguous!)
- Even if we allow greater lookahead, the *else* that distinguishes the two productions can lie arbitrarily far ahead in the input
 - I.e., Expr and StmtList can each generate a terminal string larger than any constant k
- \rightarrow Grammar shown in Fig. 5.12 is not LL(k) for any k

```
1 Stmt → if Expr then StmtList endif
2 | if Expr then StmtList else StmtList endif
3 StmtList → StmtList; Stmt
4 | Stmt
5 Expr → var + Expr
6 | var
```

Figure 5.12: A grammar with common prefixes.

rule in the set

46

Eliminating Common Prefixes w/ Factoring

• Simplified steps for Fig. 5.13:

For each nonterminal A

- Find the longest common prefixes
 α in the productions for A,
- expand the productions of A to A',
 which is a new nonterminal, &
- replace what follows α of original productions with A'

An example of ambiguous grammar:

$$A \Rightarrow \alpha \beta_1 \mid \alpha \beta_2$$

Re-written productions:

$$A \Rightarrow \alpha A'$$

```
A' \Rightarrow \beta_1 \mid \beta_2
```

```
A \alpha
1 Stmt \rightarrow if Expr then StmtList endif
2 | if Expr then StmtList else StmtList endif
3 StmtList \rightarrow StmtList; Stmt
4 A \alpha | \alpha Stmt A'
5 Expr \rightarrow var + Expr
6 | var
```

Figure 5.12: A grammar with common prefixes.

```
procedure Factor()

foreach A \in N do

\alpha \leftarrow LongestCommonPrefix(ProductionsFor(A))

while |\alpha| > 0 do

V \leftarrow \text{new NonTerminal}()

Productions \leftarrow Productions \cup \{A \rightarrow \alpha V\}

foreach p \in ProductionsFor(A) \mid RHS(p) = \alpha \beta_p do

Productions \leftarrow Productions - \{p\}

Productions \leftarrow Productions \cup \{V \rightarrow \beta_p\}

A \leftarrow LongestCommonPrefix(ProductionsFor(A))

Next

production
```

Figure 5.13: Factoring common prefixes.

Results of Factoring

- Rewrite the productions with common prefixes
 - to defer the decision until enough of the input has been seen that we can make the right choice
 - Fig. 5.14 shows the rewritten grammar for Fig. 5.12
- A simple way to see the Factoring
 - Keep the longest common prefixes α
 - Identify A' and create new productions for A'
 - Put what follows α (in the original grammar) to the RHS(A')

Figure 5.12: A grammar with common prefixes.

```
1 Stmt \rightarrow if Expr then StmtList V_1

2 V_1 \rightarrow endif

3 | else StmtList endif

4 StmtList \rightarrow StmtList; Stmt

5 | Stmt

6 Expr \rightarrow var V_2

7 V_2 \rightarrow + Expr

8 | \lambda
```

Figure 5.14: Factored version of the grammar in Figure 5.12.

Left Recursion

- A production is left recursive
 - if its LHS symbol is also the first symbol of its RHS
 - Example: $A \Rightarrow A\alpha \mid \beta$
 - In Figure 5.14, the production StmtList→StmtList; Stmt is left-recursive

Left Recursive Grammar

- Grammars with **left-recursive productions** can never be LL(1)
 - With recursive-descent parsing, the application of this production A ⇒ Aα will cause procedure A to be invoked repeatedly without advancing the input
 - With the state of the parse unchanged, this behavior will continue indefinitely
 - Similarly, with table-driven parsing, application of this production will repeatedly push Aα on the stack without advancing the input

Left Recursion Example

- Consider the following left-recursive rules
 - 1. $A \rightarrow A \alpha$
 - **2.** | β
- Observations:
 - The rules produce strings like β α α
 - Each time Rule 1 is applied, an α is generated
 - The recursion ends when Rule 2 prepends a β to the string of α symbols
 - Using the regular-expression notation, the grammar generates $\beta\alpha^{\star}$
 - \rightarrow That is, the β is generated first, and α symbols are then generated via right recursion

Left Recursion Example (Cont'd)

- Consider the following left-recursive rules
 - 1. $A \rightarrow A \alpha$
 - 2. | β
- We can rewrite the grammar to:
 - 1. $A \rightarrow XY$
 - 2. $X \rightarrow \beta$
 - 3. $Y \rightarrow \alpha Y$
 - 4. | λ
- Furthermore,
 - The rules also produce strings like $\beta \alpha \alpha$
 - The EliminateLeftRecursion algorithm is shown in Fig. 5.15
 - Applying it to the grammar in Fig. 5.14 results in Fig. 5.16

procedure EliminateLeftRecursion()

if p = r

1 if $\exists r \in ProductionsFor(A) \mid RHS(r) = A\alpha$

foreach $p \in ProductionsFor(A)$ **do**

then Productions \leftarrow Productions $\cup \{A \rightarrow X Y\}$

Productions ← *Productions* ∪ { $Y \rightarrow \alpha Y, Y \rightarrow \lambda$ }

else *Productions* \leftarrow *Productions* \cup { $X \rightarrow RHS(p)$ }

 $X \leftarrow new\ NonTerminal()$

 $Y \leftarrow new NonTerminal()$

foreach $A \in N$ do

then

52

Another Left Recursion Example

- We trace the algorithm in Fig. 5.15 with productions:
 - (4) StmtList → StmtList ; Stmt
 - (5) Stmt
- Consider the nonterminal StmtList, we have (4) StmtList \rightarrow StmtList; Stmt
- Because RHS((4)) = StmtList α , Rule (4)(Marker 1) is left-recursive production (Note: α is "; Stmt", r is (4))
- Create two non-terminals X and Y
- Select Rule **(4)** (Note: **p** is **(4)**)
 - As p == r == (4), Create the production $StmtList \rightarrow XY$
- (Marker 3)

(Marker 2) end

- (Marker 4) Figure 5.15: Eliminating left recursion.

- Select Rule **(5)** (Note: *p* is **(5)**)
 - As p!=r, Create the production $X \rightarrow Stmt$

(Marker 3)

(Marker 2)

- (Marker 5)
- Finally, run out of production rules
- (Marker 6)

- Create $Y \rightarrow : Stmt Y \text{ and } Y \rightarrow \lambda$

Another Left Recursion Example (Cont'd)

- We trace the algorithm in Fig. 5.15 with producitons:
 - (4) $StmtList \rightarrow StmtList$; Stmt
 - (5) | Stmt
- Consider the nonterminal StmtList, we have (4) StmtList → StmtList; Stmt
- Because RHS((4)) = StmtList α, Rule (4) is left-recursive production (Note: α is "; Stmt", r is (4))
- Create two non-terminals X and Y
- Select Rule **(4)** (Note: *p* is **(4)**)
 - As p == r == (4), Create the production **StmtList** \rightarrow **X Y**
- Select Rule **(5)** (Note: **p** is **(5)**)
 - As p!=r, Create the production $X \rightarrow Stmt$
- Finally, run out of production rules
 - Create $Y \rightarrow$; Stmt Y and $Y \rightarrow \lambda$

```
procedure ELIMINATE LEFT RECURSION()

for each A \in N do

① if \exists r \in ProductionsFor(A) \mid RHS(r) = A\alpha

then

X \leftarrow \text{new NonTerminal}()

Y \leftarrow \text{new NonTerminal}()

for each p \in ProductionsFor(A) do

③ if p = r

4 then Productions \leftarrow Productions \cup \{A \rightarrow X Y\}

⑤ else Productions \leftarrow Productions \cup \{X \rightarrow RHS(p)\}

6 Productions \leftarrow Productions \cup \{Y \rightarrow \alpha Y, Y \rightarrow \lambda\}

end
```

Figure 5.15: Eliminating left recursion.

53

Figure 5.16: LL(1) version of the grammar in Figure 5.14.

You Are Suggested to ...

- Read Sec. 5.6 to know why the grammar in Fig. 5.12 is not LL(k)
- Read Sec. 5.7 for more about the properties of LL(1) parsers;
 Hint: a good summary of what we learn in this chapter
- Read Section 5.8 for more about the parser table
- Read Sec. 5.9 for error recorvery

May 5, 2020 5-

QUESTIONS?