Digital Integrated Circuits homework 1 陳柏翔 313510156

(Spec: $L_{min} = 32$ nm, $V_{DD} = 1V$, $W_{min} = 64$ nm, with resolution of 1nm \circ)

(1) Design a CMOS Schmitt trigger circuit shown at Fig.1 using medium V_t such that $V_{out} = 0.5 V_{DD}$ when $V^+ = 0.51 \sim 0.54 V_{DD}$, $V^- = 0.46 \sim 0.49 V_{DD}$ and both rising and falling ΔV are the same. Fig.2 ($V_{DD} = V_{CC}$) proposes an extra bias voltage V_B and extra transistors P4 and N4 to control the two threshold voltages V_L and V_H .

(a) Give the W/L of each device and V^+ , V^- (in table form) of the circuits at Fig.1/Fig.2. Discuss your design procedures to determine the size of each transistor.

■ 決定 P/NMOS 初版寬度:

在設計 Schmitt trigger circuit 前,從其中的核心部分開始設計,即普通的 Inverter。因此我的第一步是要決定 Inverter 的 W_n 與 W_p ,能夠使 $V_{in}=0.5\ V_{DD}$ 時所對應的 $V_{out}=0.5\ V_{DD}$ 。

為了達到這個目的,流經 Inverter 的 PMOS 與 NMOS 的 I_{DS} 就必須要相等(否則 V_{out} 無法維持在 $0.5\,V_{DD}$)。而 I_{DS} 可以由電晶體的寬度 W_p 與 W_n 來控制,L 雖然也可以調整,但是一顆 IC 的製程基本上不太會發生每顆電晶體的 L 都不同這樣的事,所以我統一設置 $L=L_{min}$ 。

我首先決定 W_n ,由於面積與成本有密切的相關性,因此我希望寬度設置得越小越好,而在此作業中最小寬度的限制為 $W_{min}=64\mathrm{nm}$,因此我設置 $W_n=64\mathrm{nm}$ 。

接著是決定 W_p ,由於電洞移動速率係數 μ_p 較電子移動速率係數 μ_n 慢(約慢 2 倍),因此我使用 HSPICE 測量 $V_{in}=0\sim 1.0V$ 時所得到的 V_{out} ,並同時掃描 $W_p=1.25$ $W_n\sim 2.25$ W_n 的範圍來找到最適合的 W_p :

測量結果顯示當 $W_p=106\mathrm{nm}$ 時最接近期望得到的結果。經過以上過程決定好了預設的 W_n 與 W_p 值,同時也確定了 M2 與 M5 的寬度。

■ 決定 M1, M3, M4, M6 的寬度:

根據前一步驟的設定,我首先將 Schmitt trigger circuit 中的所有 PMOS 及所有 NMOS 的寬度統一設置為 $W_p=106$ nm 與 $W_n=64$ nm, 並用 DC 分析對於改變 V_{in} 所得到的 V_{out} 結果如下:

得到的 V^+ = 0.602V, V^- = 0.368V 不符合題目的要求。因此要從講義中推導的公式分析該如何調整寬度,以達到 V^+ = 0.51~0.54 V_{DD} , V^- = 0.46~0.49 V_{DD} :

$$V^{+} = \frac{V_{DD} + \sqrt{\frac{\beta_{1}}{\beta_{3}}}V_{T2}}{1 + \sqrt{\frac{\beta_{1}}{\beta_{3}}}} \quad \Longrightarrow \quad \frac{\beta_{1}}{\beta_{3}} = \frac{W_{1}}{W_{3}} = \left(\frac{V_{DD} - V^{+}}{V^{+} - V_{T2}}\right)^{2} \quad \Longrightarrow \quad \text{if } \frac{\beta_{1}}{\beta_{3}} \downarrow \text{ then } V^{+} \uparrow$$

由於原先的 V^+ 有過高的現象,要使其下降就需要將 β_1/β_3 的比例調高, 且因為預設 W_n 已經是以最小寬度去設置的,所以需要將 W_1 調大。

以上的推導是針對 V^+ ,也就是 NMOS 的部分做討論,而在 PMOS 的部分其實就同理於 NMOS,改將 M4 的寬度調大,能夠使得原先過低的 V^- 增加。

我首先設置比例變數 $n_ratio = W_1/W_3$ 與 $p_ratio = W_4/W_6$,並同樣用 DC 分析掃描 $n_ratio = 1\sim 4$ 以及 $p_ratio = 2\sim 5$,找出大概要的比例值後,再直接調整 M1 與 M4 的寬度做模擬:

(針對比例變數做掃描的結果,幫助我先找出大概的寬度值。)

接著我以 $V^+ = 0.525V$, $V^- = 0.475V$ 為目標,經過多次微調後所得最終結果如下,雖然有微小誤差但已經非常接近我的目標:

Design of Fig.1 circuit:

Size \ MOS	M1(N)	M2(N)	M3(N)	M4(P)	M5(P)	M6(P)	V ⁺	V-
Width	190 nm	64 nm	64 nm	580 nm	106 nm	106 nm	0.473V	0.527V
Length	32 nm	32 nm	32 nm	32 nm	32 nm	32 nm		

以上是我對於 Fig.1 電路的設計, 而完整的模擬結果應作業題目要求, 將 附於(b)小題。

■ 用 Bias Voltage 控制 V+與 V-:

討論完 Fig.1 的電路後,接著要討論 Fig.2 的電路,並了解如何使用 V_B 控制 V^+,V^- 兩個 thresholds。

首先,考慮到在 PMOS 部分 P3, P4 串聯、而 NMOS 部分 N3, N4 串聯,所以它們各自流經的電流大小會相等,因此我將寬度設置為 $W_{p3}=W_{p4}$ 以及 $W_{n3}=W_{n4}$ 。再來如同先前設計 Fig.1 的電路用一樣的步驟,我 先將所有 PMOS 的寬度統一設為 $W_p=106$ nm、 $W_n=64$ nm 做測量:

上圖的實驗是設置 $V_B = V_{DD}$ 所得的結果,接著與當初 Fig.1 的電路結果 比較可以發現 V^+ 與 V^- 的間隙(即 ΔV)較小,且有明顯偏向右邊的跡 象。

為解決以上問題,首先從 Fig.2 的結構來看觀察到 V_B 如果越大,則 N4 就越接近飽和、P4 則越接近關閉,使得 Forward switching 越貼近原 先 Fig.1 電路的狀況,但 Reverse switching 則否(就是造成偏右邊的原因), 因此想要不偏任何一邊就要將 V_B 靠近往 0.5V 的位置,我使用 DC 分析掃描不同的 V_B 來找到最佳的置中點:

我找到最佳 $V_B=0.56V$,而這邊得到一個結論,就是 V_B 可以決定偏壓的位置,利於用來使 ΔV 相等。

再來考量 ΔV 較小的情況,可以透過先前一樣的做法,調整 W_1/W_3 來讓 ΔV 增大,但不同於先前間距過大的情況,這邊是間距過小所以要將 W_3 調大。最終結果如下:

• Design of Fig.2 circuit:

Size \ MOS	P1	P2	Р3	P4	V_b	
Width	106 nm	106 nm	212 nm	212 nm	0.56V	
Length	32 nm	32 nm	32 nm	32 nm		
Size \ MOS	N1	N2	N3	N4	V ⁺	V-
Width	64 nm	64 nm	128 nm	128 nm	0.473V	0.522V
Length	32 nm	32 nm	32 nm	32 nm		

以上是我對於 Fig.2 電路的設計,而完整的模擬結果應作業題目要求,將於R(b)小題。

(b) Run SPICE to verify your results. Your report must have the figures of VTC and I_{sc} (current from V_{DD} to GND) vs V_{in} .

以下是我的最終設計的 HSPICE 分析結果,VTC 中間放大的圖以及 V^+,V^- 數值已於前面的(a)小題中討論完畢。

• Fig.1 Circuit

VTC diagram:

 I_{sc} (Current from V_{DD}) vs V_{in} :

(next page)

■ Fig.2 Circuit

VTC diagram:

 I_{sc} (Current from V_{DD}) vs V_{in} :

