CLAIMS

- 1. Probe consisting of at least about 15 nucleotides of the transcribed spacer region between the 16S and 23S rRNA genes of prokaryotic organisms, and more particularly bacteria, and preferably from about 15 nucleotides to about the maximum number of nucleotides of the spacer refion and more preferably from about 15 to about 100 nucleotides.
- 2. Probe according to claim 1, for use in a hybridization assay, liable to be obtained in the process which comprises constructing an oligonucleotide that is sufficiently complementary to hybridize to a sequence of the spacer region between rRNA genes, particularly the spacer region between the 16S rRNA gene and the 23S rRNA gene, selected to be unique to non-viral organisms, particularly prokaryotic organisms, more particularly bacteria, sought to be detected, with said sequence of the spacer region between rRNA genes being selected

either by

- * comparing the nucleotide sequence of the spacer region between the rRNA genes of the sought organism with the nucleotide sequence of the spacer region between the rRNA genes of the closest neighbours,
- nucleotides, and preferably from about 15 to about the maximum number of nucleotides of the spacer region, and more preferably from about 15 to about 100 nucleotides of the spacer region between rRNA genes of the sought organism which presents at least one mismatch with the spacer region between the rRNA genes of at least one of the closest neighbours,

- or by

- deleting, in the spacer region between th rRNA genes of the organism to be sought, the tRNA genes and possibly the signal sequences, to obtain a shortened spacer region and
 - determining by trial and error a specific nucleotide sequence of at least about 15 nucleotides, and preferably from about 15 to about the maximum number of nucleotides of the spacer region, and more preferably from about 15 to about 100 nucleotides, from the shortened spacer region, said sequence being able to hybridize specifically with the nucleic acids (DNA and/or RNAs) of the sought organism.
- 3. Probe according to anyone of claims 1 or 2, containing
- either a sequence belonging to a nucleic acid selected from the following group of nucleic acids and which includes from 15 to the maximum number of nucleotides of the selected nucleic acid:

Group NGI1:

CGATGCGTCG TTATTCTACT TCGC	NGI1
GCGAAGTAGA ATAACGACGC ATCG	NGILIC
GCGAAGUAGA AUAACGACGC AUCG	NGILICR
CGAUGCGUCG UUAUUCUACU UCGC	NGILR

Group NGI2:

TTCGTTTACC	TACCCGTTGA	CTAAGTAAGC	AAAC	NGI2
GTTTGCTTAC	TTAGTCAACG	GGTAGGTAAA	CGAA	NGIZIC
GUUUGCUUAC	UUAGUCAACG	GGUAGGUAAA	CGAA	NGIZICR
INIGGUUUACC	UACCCGUUGA	CUAAGUAAGC	AAAC	NGI2R

Group NMI1:

GGTCAAGTGT	GACGTCGCCC	TG		NMI1
CAGGGCGACG	TCACACTTGA	CC	•	NMILIC

SUBSTITUTE SHEET

	•
CAGGGCGACG UCACACUUGA CC	NMILICR
GGUCAAGUGU GACGUCGCCC UG	NMI1R
Group NMI2:	
GTTCTTGGTC AAGTGTGACG TC	NMI2
GACGTCACAC TTGACCAAGA AC	NMI2IC
GACGUCACAC UUGACCAAGA AC	NMI2ICR
GUUCUUGGUC AAGUGUGACG UC	NMI2R
A	
Group NMI3: GCGTTCGTTA TAGCTATCTA CTGTGC	NMI3
GCGTTCGTTA TAGCTATCIA CIGIGC GCACAGTAGA TAGCTATAAC GAACGC	NMI3IC
	NMI3ICR
GCACAGUAGA UAGCUAUAAC GAACGC	NMI3R
GCGUUCGUUA UAGCUAUCUA CUGUGC	MATOK
Group NMI4:	
TGCGTTCGAT ATTGCTATCT ACTGTGCA	NMI4
TGCACAGTAG ATAGCAATAT CGAACGCA	NMI4IC
UGCACAGUAG AUAGCAAUAU CGAACGCA	NMI4ICR
UGCGUUCGAU AUUGCUAUCU ACUGUGCA	NMI4R
Group NMI5:	
TTTTGTTCTTGGTCAAGTGTGACGTCGCCCTGAATGGATTCTG	TCCATT
	NMI5
AATGGAACAGAATCCATTCAGGGCGACGTCACACTTGACCAAGA	ACAAAA
	NMI5C
AAUGGAACAGAAUCCAUUCAGGGCGACGUCACACUUGACCAAGA	AACAAAA
	NMI5ICR
UUUUGUUCUUGGUCAAGUGUGACGUCGCCCUGAAUGGAUUCUG	JUCCAUU
	NMI5R
Group NMI6	1707 6
TTTGCCTAAC ATTCCGTTGA CTAGAACATC AGAC	NMI6
GTCTGATGTT CTAGTCAACG GAATGTTAGG CAAA	NMI6IC
GUCUGAUGUU CUAGUCAACG GAAUGUUAGG CAAA	NMI6ICR
UUUGCCUAAC AUUCCGUUGA CUAGAACAUC AGAC	NMI6R

Group HDI1:

SUBSTITUTE SHEET

	•
TTATTATGCG CGAGGCATAT TG	HDIİ
CAATATGCCT CGCGCATAAT AA	HDI1IC
CAAUAUGCCU CGCGCAUAAU AA	HDI11CR
UUAUUAUGCG CGAGGCAUAU UG	HDI1R
Group BCI1:	DOT1
TTAAACATCT TACCAAAG	BCI1
CTTTGGTAAG ATGTTTAA	BCI1IC BCI1ICR
CUUUGGUAAG AUGUUUAA	BCIIICR
UUAAACAUCU UACCAAAG	BCIIR .
Group BCI2:	
TTGATGTTTA AACTTGCTTG GTGGA	BCI2
TCCACCAAGC AAGTTTAAAC ATCAA	BCI2IC
UCCACCAAGC AAGUUUAAAC AUCAA	BCI2ICR
UUGAUGUUUA AACUUGCUUG GUGGA	BCI2R
Group BPI1:	
CCACACCCAT CCTCTGGACA GGCTT	BPI1
AAGCCTGTCC AGAGGATGGG TGTGG	BPILIC
AAGCCUGUCC AGAGGAUGGG UGUGG	BPILICR
CCACACCCAU CCUCUGGACA GGCUU	BPI1R
Group HII1:	
ACGCATCAAA TTGACCGCAC TT	HIII
AAGTGCGGTC AATTTGATGC GT	HIIIIC
AAGUGGGGUC AAUUUGAUGC GU	HIIIICR
ACGCAUCAAA UUGACCGCAC UU	HIIIR
noiminate and the second secon	
Group HII2:	
ACTTTGAAGT GAAAACTTAA AG	HII2
CTTTAAGTTT TCACTTCAAA GT	HIIZIC
CUUUAAGUUU UCACUUCAAA GU	HII2ICR
ACUUUGAAGU GAAAACUUAA AG	HII2R
Communication Charles	
Group SAI1: AATCGAAAGG TTCAAATTGT T	SAI1
AATCGAAAGG TICAAATTGT T AACAATTTGA ACCTTTCGAT T	SAIIIC
ARCARTIIGA ACCIIICOMI I	

Ĺ

AACAAUUUGA ACCUUUCGAU U	SAILICR
AAUCGAAAGG UUCAAAUUGU U	SAIIR
Group SAI2:	
GGAAACCTGC CATTTGCGTC TT	SAI2
AAGACGCAAA TGGCAGGTTT CC	SAIZIC
AAGACGCAAA UGGCAGGUUU CC	SAIZICR
GGAAACCUGC CAUUUGCGUC UU	SAI2R
Group SAI3:	SAI3
TCCACGATCT AGAAATAGAT TGTAGAA	SAI3IC
TTCTACAATC TATTTCTAGA TCGTGGA	SAISICR
UUCUACAAUC UAUUUCUAGA UCGUGGA	SAI3R
UCCACGAUCU AGAAAUAGAU UGUAGAA	SALSK
Group SAI4:	
TCTAGTTTTA AAGAAACTAG GTT	SAI4
AACCTAGTTT CTTTAAAACT AGA	SAI4IC
AACCUAGUUU CUUUAAAACU AGA	SAI4ICR
UCUAGUUUUA AAGAAACUAG GUU	SAI4R
OCUAGOOODA ARGAMACO	,
Group SPI1:	
GTGAGAGATC ACCAAGTAAT GCA	SPI1
TGCATTACTT GGTGATCTCT CAC	SPIIIC
UGCAUUACUU GGUGAUCUCU CAC	SPIIICR
GUGAGAGAUC ACCAAGUAAU GCA	SPIIR
÷	·
Group SPI2	SPI2
AGGAACTGCG CATTGGTCTT	SP12 SP12IC
AAGACCAATG CGCAGTTCCT	SPI2IC SPI2ICR
AAGACCAAUG CGCAGUUCCU	SPI2ICK SPI2R
AGGAACUGCG CAUUGGUCUU	25158
Company CDI2	
Group SPI3 GAGTTTATGA CTGAAAGGTC AGAA	SPI3
TTCTGACCTT TCAGTCATAA ACTC	SPI3IC
UUCUGACCUU UCAGUCAUAA ACUC	SPI3ICR
GAGUUUAUGA CUGAAAGGUC AGAA	SPI3R
GAGUUUAUGA CUGAAAGGUC AGIA.	

- or a variant sequence which distinguishes of any of the preceding sequences:
 - * either by addition to or removal from any of their respective extremities of one or several nucleotides;
 - or changing within any of said sequences of one or more nucleotides;
 - * or both;

yet provided that in any of the above circumstances said probe still hybridizes with the same RNA or DNA target as the corresponding unmodified sequence.

- 4. Probe for detecting one or more <u>Neisseria</u> gonorrhoeae strains, containing:
- either a sequence belonging to a nucleic acid selected from the following groups of nucleic acids and which includes from 15 to the maximum number of nucleotides of the selected nucleic acid:

Group NGI1:

CGATGCGTCG	TTATTCTACT	TCGC	NGI1
GCGAAGTAGA	ATAACGACGC	ATCG	NGILIC
GCGAAGUAGA	AUAACGACGC	AUCG	NGILICR
CGAUGCGUCG	UUAUUCUACU	UCGC	NGI1R

Group : NGI2:

TTÇGTTTACC	TACCCGTTGA	CTAAGTAAGC	AAAC	NGI2
GTTTGCTTAC	TTAGTCAACG	GGTAGGTAAA	CGAA	NGIZIC
GUUUGCUUAC	UUAGUCAACG	GGUAGGUAAA	CGAA	NGIZICR
UUGGUUUACC	UACCCGUUGA	CUAAGUAAGC	AAAC	NGI2R

- or a variant sequence which distinguishes of any of the preceding sequences:
 - * either by addition to or removal from any of their respective extremities of one or several nucleotides;

- * or changing within any of said sequences of one or more nucleotides;
- * or both;
- yet provided that in any of the above circumstances said probe still hybridizes with the same RNA or DNA target as the corresponding unmodified sequence.
- Process for detecting Neisseria gonorrhoeae strains in a biological sample, wherein said process comprises contacting said biological sample - in which the nucleic acids (DNAs and/or RNAs) of the strains have been made accessible to hybridization, if need be, under suitable denaturation conditions, with nucleic acid to be detected being possibly amplified using the polymerase chain reaction, with two primers, more preferably two more evolutionarily conserved primers, flanking the target sequence of the probe with a probe according to any of the probes of claim 4 under conditions enabling hybridization between the probe and complementary nucleic acids of the Neisseria gonorrhoeae strains, which may be present in the sample, and detecting the hybrids possibly formed, particularly with a probe hybridizing to both DNA and RNA of a Neisseria gonorrhoeae strain which may be present in the biological sample.
 - 6. Process for detecting Neisseria gonorrhoeae, in a biological sample, according to claim 5, wherein: the hybridization medium contains about 3 x SSC, (SSC = 0.15 M NaCl, 0.015 M sodium citrate, pH 7.0) about 25 mM of phosphate buffer pH 7.1, 20% deionized formamide, 0.02% Ficoll, 0.02% bovine serum albumin, 0.02% polyvinylpyrrolidone, and about 0.1 mg/ml sheared, denatured salmon sperm DNA,

and/or

the wash medium contains about 3 x SSC, 25 mM phosphate buffer pH 7.1, and 20% deionized formamide and wherein the probe used is any of the probes of claim 4, the

hybridization temperatur being suitably adjusted to the range of ab ut 50°C and/or the wash temperature to the rang of about 50°C, and particularly wherein said corresponding relevant the and sequence (HT) and wash temperature hybridization temperature (WT), respectively, are as follows:

GCGAAGTAGA ATAACGACGC ATCG

HT and/or WT: 50 °C.

GUUUGCUUAC UUAGUCAACG GGUAGGUAAA CGAA

HT and/or WT: 50 °C.

- 7. Kit for the detection in vitro of a large number, preferably all Neisseria gonorrhoeae strains in a biological sample, with said kit containing: either
- at least one probe selected among any of those according to claim 4;
- the buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the DNAs and/or RNAs of a large Neisseria preferably all strains of number, gonorrhoeae to be carried out;
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate,

- at least two probes, targeting the same nucleic acid molecule, and of which at least one specific for Neisseria gonorrhoeae and which is selected from any one of the probes of claim 4,
- the buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the DNAs and/or RNAs of a strain of Neisseria gonorrhoeae to be carried out,
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate,

- at least one probe select d among any of those according to claim 4, which is fixed to a solid support,
- the primers needed for performing enzymatic amplification of the DNA and/or RNA containing the target sequence of the above-mentioned probe, when appropriate,
- the buffers or components necessary for producing the buffers enabling enzymatical amplification and/or enabling hybridization reaction between these probes and the DNAs and/or RNAs of a strain of Neisseria gonorrhoeae to be carried out,
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate.
- 8. Probe for detecting one or more <u>Neisseria</u> meningitidis strains, containing:
- either a sequence belonging to a nucleic acid selected from the following group of nucleic acids and which includes from 15 to the maximum number of nucleotides of the selected nucleic acid:

Group NMI1:

GGTCAAGTGT	GACGTCGCCC	TG	NMI1
CAGGGCGACG	TCACACTTGA	cc	NMILIC
CAGGGCGACG	UCACACUUGA	CC	NMILICR
GGUCAĀGUGU	GACGUCGCCC	UG	NMI1R

Group NMI2:

GTTCTTGGTC	AAGTGTGACG	TC	NMI2
GACGTCACAC	TTGACCAAGA	AC	NMIZIC
GACGUCACAC	UUGACCAAGA	AC	NMI2ICR
GUUCUUGGUC	AAGUGUGACG	UC	NMI2R

Group NMI3:

GCGTTCGTTA	TAGCTATCTA	CTGTGC	NMI3
GCACAGTAGA	TAGCTATAAC	GAACGC	NMI3IC
GCACAGUAGA	UAGCUAUAAC	GAACGC	NMI3ICR

GCGUUCGUUA UAGCUAUCUA CUGUGC NMI3R

Group NMI4:

TGCGTTCGAT ATTGCTATCT ACTGTGCA NMI4

TGCACAGTAG ATAGCAATAT CGAACGCA NMI4IC

UGCACAGUAG AUAGCAAUAU CGAACGCA NMI4ICR

UGCGUUCGAU AUUGCUAUCU ACUGUGCA NMI4R

Group NMI5:

TTTTGTTCTTGGTCAAGTGTGACGTCGCCCTGAATGGATTCTGTTCCATT

NMI5

AATGGAACAGAATCCATTCAGGGCGACGTCACACTTGACCAAGAACAAAA

NMI5C

AAUGGAACAGAAUCCAUUCAGGGCGACGUCACACUUGACCAAGAACAAAA

NMI5ICR

UUUUGUUCUUGGUCAAGUGUGACGUCGCCCUGAAUGGAUUCUGUUCCAUU

NMI5R

Group NMI6:

TTTGCCTAAC	ATTCCGTTGA	CTAGAACATC	AGAC	NMI6
GTCTGATGTT				NMI6IC
GUCUGAUGUU				NMI6ICR
UUUGCCUAAC				NMI6R
UUUGCCUAAC	AUUCCGUUGA	CONGRACACE	110110	

- or a variant sequence which distinguishes of any of the preceding sequences:
 - either by addition to or removal from any of their respective extremities of one or several nucleotides;
 - * or changing within any of said sequences of one or more nucleotides;
 - * or both;

yet provided that in any of the above circumstances said probe still hybridizes with the same RNA or DNA target as the corresponding unmodified sequence.

9. Process for detecting <u>Neisseria meningitidis</u> strains in a biological sample, wherein said process

comprises contacting said biological sample - in which the nucleic acids (DNAs and/or RNAs) of the strains have been made accessible to hybridization, if need be, under suitable denaturation conditions, with nucleic acid to be detected being possibly amplified using the polymerase chain reaction, with two primers, more preferably two more evolutionarily conserved primers, flanking the target sequence of the probe with a probe according to any one of claim 8 under conditions enabling hybridization between the probe and complementary nucleic acids of the Neisseria meningitidis strains, which may be present in the and detecting the hybrids possibly formed particularly with a probe hybridizing to both DNA and RNA of a Neisseria meningitidis strain which may be present in the biological sample.

10. Process for detecting <u>Neisseria meningitidis</u>, in a biological sample, according to claim 9, wherein: the hybridization medium contains about 3 x SSC, (SSC = 0.15 M NaCl, 0.015 M sodium citrate, pH 7.0) about 25 mM of phosphate buffer pH 7.1, 20% deionized formamide, 0.02% Ficoll, 0.02% bovine serum albumin, 0.02% polyvinylpyrrolidone, and about 0.1 mg/ml sheared, denatured salmon sperm DNA, and/or

the wash medium contains about 3 x SSC, 25 mM phosphate buffer pH 7.1, and 20% deionized formamide and wherein the probe used is anyone of the probes of claim 8, the hybridization temperature being suitably adjusted to range of about 40 to 58°C and/or the wash temperature to the range of about 40 to 58°C, and particularly, wherein said target sequence and the corresponding relevant hybridization temperature (HT) wash temperature (WT), respectively, and follows:

CAGGGCGACG TCACACTTGA CC

HT and/or WT: 45°C

GACGTCACAC TTGACCAAGA AC

HT and/or WT: 45°C

GCACAGTAGA TAGCTATAAC GAACGC

HT and/or WT: 40°C

TGCACAGTAG ATAGCAATAT CGAACGCA

HT and/or WT: 48°C

TTTTGTTCTTGGTCAAGGTGTGACGTCGCCCTGAATGGATTCTGTTCCATT

HT and/or WT: 58°C

GTCTGATGTT CTAGTCAACG GAATGTTAGG CAAA

HT and/or WT: 50°C

11. Kit for the detection in vitro of a large number, preferably all Neisseria meningitidis strains in a biological sample, with said kit containing: either

- at least one probe selected among any of those according to claim 8;
- the buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the DNAs and/or RNAs of a large number, preferably all strains of Neisseria meningitidis to be carried out;
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate,

- at least two probes, targeting the same nucleic acid molecule, and of which at least one is specific for Neisseria meningitidis and which is selected from any one of the probes of claim 8,
- the buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the DNAs and/or RNAs of a strain of Neisseria meningitidis to be carried out,
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate,

- at least one probe selected among any of those according to claim 4, which is fixed to a solid support,
- the primers needed for performing enzymatical amplification of the DNA and/or RNA containing the target sequence of the above-mentioned probe, when appropriate,
- the buffer or components necessary for producing the buffers enabling enzymatical amplification and/or enabling hybridization reaction between these probes and the DNAs and/or RNAs of a strain of Neisseria meningitidis to be carried out,
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate.
- 12. Probe for detecting one or more <u>Haemophilus</u> ducreyi strains, containing:
- either a sequence belonging to a nucleic acid selected from the following group of nucleic acids and which includes from 15 to the maximum number of nucleotides of the selected nucleic acid:

Group HDI1:

TTATTATGCG	CGAGGCATAT	TG	HDI1
CAATATGCCT	CGCGCATAAT	AA	HDI1IC
CAAUAUGCCU	CGCGCAUAAU	AA	HDILICR
UUAUÜAUGCG	CGAGGCAUAU	UG	HDI1R

- or a variant sequence which distinguishes of any of the preceding sequences:
 - * either by addition to or removal from any of their respective extremities of one or several nucleotides;
 - or changing within any of said sequences of one or more nucleotides;
 - * or both;

SUBSTITUTE SHEET

yet provided that in any of the above circumstances said probe still hybridizes with the same RNA or DNA target as the corresponding unmodified sequence.

- Process for detecting Haemophilus ducreyi strains in a biological sample, wherein said process comprises contacting said biological sample - in which the nucleic acids (DNAs and/or RNAs) of the strains have been made accessible to hybridization, if need be, under suitable denaturation conditions, nucleic acid to be detected being possibly amplified using the polymerase chain reaction, with two primers, more preferably two more evolutionarily conserved primers, flanking the target sequence of the probe with a probe according to any one of claim 12 under conditions enabling hybridization between the probe and complementary nucleic acids of the Haemophilus ducreyi strains, which may be present in the sample, detecting the hybrids possibly formed, particularly with a probe hybridizing to both DNA and RNA of a Haemophilus ducreyi strain which may be present in the biological sample.
- 14. Process for detecting <u>Haemophilus ducreyi</u>, in a biological sample, according to anyone of claim 13, wherein:

the hybridization medium contains about 3 x SSC, (SSC = 0.15 M NaCl, 0.015 M sodium citrate, pH 7.0) about 25 mM of phosphate buffer pH 7.1, 20% deionized formamide, 0.02% Ficoll, 0.02% bovine serum albumin, 0.02% polyvinylpyrrolidone, and about 0.1 mg/ml sheared, denatured salmon sperm DNA,

and/or

the wash medium contains about 3 x SSC, 25 mM phosphate buffer pH 7.1, and 20% deionized formamide and wherein the probe used is anyone of the probes of claim 12, the hybridization temperature being suitable adjusted to the range of about 40°C and/or the wash temperatur

to the range of about 40°C, and particularly, wherein said target sequence and the corresponding relevant hybridization temperature (HT) and wash temperature (WT), respectively, are as follows:

CAATATGCCT CGCGCATAAT AA

HT and/or WT: 40 °C.

- 15. Kit for the detection in vitro of a large number, preferably all Haemophilus ducreyi strains in a biological sample, with said kit containing: either
- at least one probe selected among any of those according to claim 12;
- the buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the DNAs and/or RNAs of a large number, preferably all strains of Haemophilus ducreyi to be carried out;
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate,

or

- at least two probes, targeting the same nucleic acid molecule, and of which at least one is specific for Haemophilus ducreyi and which is selected from any one of the probes of claim 12,
- the buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the DNAs and/or RNAs of a strain of Haemophilus ducreyi to be carried out,
- means for detecting the hybrids resulting from the preceding hybridization, when appropriate,

- at least one probe selected among any of those according to claim 12, which is fixed to a solid support,
- the primers needed for performing enzymatical amplification of the DNA and/or RNA containing the

target sequence of the above-mentioned probe, when appropriate,

- the buffer or components necessary for producing the buffers enabling enzymatical amplification and/or enabling hybridization reaction between these probes and the DNAs and/or RNAs of a strain of Haemophilus ducreyi to be carried out,
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate.
- 16. Probe for detecting one or more <u>Branhamella</u> <u>catarrhalis</u> strains, containing:
- either a sequence belonging to a nucleic acid selected from the following group of nucleic acids and which includes from 15 to the maximum number of nucleotides of the selected nucleic acid:

Group BCI1:

TTAAACATCT	TACCAAAG	BCI1
CTTTGGTAAG	ATGTTTAA	BCI1IC
CUUUGGUAAG	AUGUUUAA	BCIlICR
UUAAACAUCU	UACCAAAG	BCI1R

Group BCI2:

TTGATGTTTA	AACTTGCTTG	GTGGA	BCI2
TCCACCAAGC	AAGTTTAAAC	ATCAA	BCIZIC
UCCACCAAGC	AAGUUUAAAC	AUCAA	BCI2ICR
UUGAUGUUUA	AACUUGCUUG	GUGGA	BCI2R

- or a variant sequence which distinguishes of any of the preceding sequences:
 - * either by addition to or removal from any of their respective extremities of one or several nucleotides;
 - * or changing within any of said sequences of one or more nucleotides;
 - * or both;

yet provid d that in any of the above circumstances said probe still hybridizes with the same RNA or DNA target as the corresponding unmodified sequence.

17. Process for detecting Branhamella catarrhalis strains in a biological sample, wherein said process comprises contacting said biological sample - in which the nucleic acids (DNAs and/or RNAs) of the strains have been made accessible to hybridization, if need be, under suitable denaturation conditions, nucleic acid to be detected being possibly amplified using the polymerase chain reaction, with two primers, more preferably two more evolutionarily conserved primers, flanking the target sequence of the probe with a probe according to any one of claim 16 under conditions enabling hybridization between the probe and acids of complementary nucleic the Branhamella catarrhalis strains, which may be present sample, and detecting the hybrids possibly formed, particularly with a probe hybridizing to both DNA and RNA of a Branhamella catarrhalis strain which may be present in the biological sample.

18. Process for detecting <u>Branhamella catarrhalis</u>, in a biological sample, according to claim 17, wherein: the hybridization medium contains about 3 x SSC, (SSC = 0.15 M NaCl, 0.015 M sodium citrate, pH 7.0) about 25 mM of phosphate buffer pH 7.1, 20% deionized formamide, 0.02% Ficoll, 0.02% bovine serum albumin, 0.02% polyvinylpyrrolidone, and about 0.1 mg/ml sheared, denatured salmon sperm DNA,

the wash medium contains about 3 x SSC, 25 mM phosphate buffer pH 7.1, and 20% deionized formamide and wherein the probe used is anyone of the probes of claim 16, the hybridization temperature being suitable adjusted to the range of about 30°C to 42°C and/or the wash temperature to the range of about 30°C to 42°C, and

and/or

particularly, wherein said target sequence and the corresponding relevant hybridization temperature (HT) and wash temperature (WT), respectively, are as follows:

CTTTGGTAAG ATGTTTAA

HT and/or WT: 30°C

TCCACCAAGC AAGTTTAAAC ATCAA

HT and/or WT: 42°C

19. Kit for the detection in vitro of a large number, preferably all <u>Branhamella catarrhalis</u> strains in a biological sample, with said kit containing: either

- at least one probe selected among any of those according to claim 16;
- the buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the DNAs and/or RNAs of a large number, preferably all strains of Branhamella catarrhalis to be carried out;
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate,

or

- at least two probes, targeting the same nucleic acid molecule, and of which at least one is specific for <u>Branhamella catarrhalis</u> and which is selected from any one of the probes of claim 16,
- the buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the DNAs and/or RNAs of a strain of Branhamella catarrhalis to be carried out,
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate,

or

- at least one probe selected among any of those according to claim 16, which is fixed to a solid support,

- the primers needed for performing enzymatical amplification of the DNA and/or RNA containing the target sequence of the above-mentioned probe, when appropriate,
- the buffer or components necessary for producing the buffers enabling enzymatical amplification and/or enabling hybridization reaction between these probes and the DNAs and/or RNAs of a strain of Branhamella catarrhalis to be carried out,
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate.
- 20. Probe for detecting one or more <u>Bordetella</u> <u>pertussis</u> strains, containing:
- either a sequence belonging to a nucleic acid selected from the following group of nucleic acids and which includes from 15 to the maximum number of nucleotides of the selected nucleic acid:

Group BPI1:

CCACACCCAT	CCTCTGGACA	GGCTT	BPI1
AAGCCTGTCC	AGAGGATGGG	TGTGG	BPI1IC
AAGCCUGUCC	AGAGGAUGGG	UGUGG	BPI1ICR
CCACACCCAU	CCUCUGGACA	GGCUU	BPI1R

- or a variant sequence which distinguishes of any
 of the preceding sequences:
 - * either by addition to or removal from any of their respective extremities of one or several nucleotides;
 - * or changing within any of said sequences of one or more nucleotides;
 - * or both;

yet provided that in any of the above circumstances said probe still hybridizes with the same RNA or DNA target as the corresponding unmodified sequence.

- 21. Process for detecting Bordetella pertussis strains in a biological sample, wherein said process comprises contacting said biological sample - in which the nucleic acids (DNAs and/or RNAs) of the strains have been made accessible to hybridization, if need be, under suitable denaturation conditions, with nucleic acid to be detected being possibly amplified using the polymerase chain reaction, with two primers, more preferably two more evolutionarily conserved primers, flanking the target sequence of the probe with a probe according to any one of claim 20 under conditions enabling hybridization between the probe and complementary nucleic acids of the Bordetella pertussis strains, which may be present in the sample, detecting the hybrids possibly formed, particularly with a probe hybridizing to both DNA and RNA of a Bordetella pertussis strain which may be present in the biological sample.
- 22. Process for detecting <u>Bordetella pertussis</u>, in a biological sample, according to claim 21, wherein: the hybridization medium contains about 3 x SSC, (SSC = 0.15 M NaCl, 0.015 M sodium citrate, pH 7.0) about 25 mM of phosphate buffer pH 7.1, 20% deionized formamide, 0.02% Ficoll, 0.02% bovine serum albumin, 0.02% polyvinylpyrrolidone, and about 0.1 mg/ml sheared, denatured salmon sperm DNA, and/or

the wash medium contains about 3 x SSC, 25 mM phosphate buffer pH 7.1, and 20% deionized formamide and wherein the probe used is anyone of the probes of claim 20, the hybridization temperature being suitable adjusted to the range of about 55°C and/or the wash temperature to the range of about 55°C, and particularly, wherein said target sequence and the corresponding relevant hybridization temperature (HT) and wash temperature (WT), respectively, are as follows:

Ĺ

AAGCCTGTCC AGAGGATGGG TGTGG HT and/or WT: 55°C.

- 23. Kit for the detection in vitro of a large number, preferably all Bordetella pertussis strains in a biological sample, with said kit containing: either
- at least one probe selected among any of those according to claim 20;
- the buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the DNAs and/or RNAs of a large number, preferably all strains of Bordetella pertussis to be carried out;
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate,

or

- at least two probes, targeting the same nucleic acid molecule, and of which at least one specific for Bordetella pertussis and which is selected from any one of the probes of claim 20,
- the buffer or components necessary for producing the buffer enabling hybridization reaction betwen these probes and the DNAs and/or RNAs of a strain of Bordetella pertussis to be carried out,
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate,

- at least one probe selected among any of those according to claim 20, which is fixed to a solid support,
- the primers needed for performing enzymatical amplification of the DNA and/or RNA containing the target sequence of the above-mentioned probe, when appropriate,
- the buffer or components necessary for producing the buffers enabling enzymatical amplification

and/or enabling hybridization reaction between these probes and the DNAs and/or RNAs of a strain of <u>Bordetella pertussis</u> to be carried out,

- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate.
- 24. Probe for detecting one or more <u>Haemophilus</u> <u>influenzae</u> strains, containing:
- either a sequence belonging to a nucleic acid selected from the following group of nucleic acids and which includes from 15 to the maximum number of nucleotides of the selected nucleic acid:

Group HII1:

ACGCATCAAA	TTGACCGCAC	TT	HIII
AAGTGCGGTC	AATTTGATGC	GT	HII1IC
AAGUGCGGUC	AAUUUGAUGC	GÜ	HIIIICR
ACGCAUCAAA	UUGACCGCAC	ណ្ឌ	HII1R

Group HII2:

ACTTTGAAGT GAAAACT	raa ag	HII2
CTTTAAGTTT TCACTTC	AAA GT	HII2IC
CUUUAAGUUU UCACUUC	AAA GU	HII2ICR
ACUUUGAAGU GAAAACU	JAA AG	HII2R

- or a variant sequence which distinguishes of any of the preceding sequences:
 - * either by addition to or removal from any of their respective extremities of one or several nucleotides;
 - * or changing within any of said sequences of one or more nucleotides;
 - * or both;

yet provided that in any of the above circumstances said probe still hybridizes with the same RNA or DNA target as the corresponding unmodified sequence.

25. Process for detecting <u>Haemophilus influenzae</u> strains in a biological sample, wherein said process

comprises contacting said biological sample - in which the nucleic acids (DNAs and/or RNAs) of the strains have been made accessible to hybridization, if need be, under suitable denaturation conditions, with nucleic acid to be detected being possibly amplified using the polymerase chain reaction, with two primers, preferably two more evolutionarily conserved primers, flanking the target sequence of the probe with a probe according to anyone of claim 24 under conditions enabling hybridization between the probe and nucleic acids of complementary the Haemophilus influenzae strains, which may be present in the sample, and detecting the hybrids possibly formed, particularly with a probe hybridizing to both DNA and RNA of a Haemophilus influenzae strain which may be present in the biological sample.

26. Process for detecting <u>Haemophilus influenzae</u>, in a biological sample, according to claim 25, wherein: the hybridization medium contains about 3 x SSC, (SSC = 0.15 M NaCl, 0.015 M sodium citrate, pH 7.0) about 25 mM of phosphate buffer pH 7.1, 20% deionized formamide, 0.02% Ficoll, 0.02% bovine serum albumin, 0.02% polyvinylpyrrolidone, and about 0.1 mg/ml sheared, denatured salmon sperm DNA,

and/or

the wash medium contains about 3 x SSC, 25 mM phosphate buffer pH 7.1, and 20% deionized formamide and wherein the probe used is anyone of the probes of claim 24, the hybridization temperature being suitable adjusted to the range of about 35°C to 55°C and/or the wash temperature to the range of about 35°C to 55°C, and particularly wherein said target sequence and the corresponding relevant hybridization temperature (HT) and wash temperature (WT), respectively, are as follows:

AAGTGCGGTC AATTTGATGC GT

HT and/or WT: 55°C

CTTTAAGTTT TCACTTCAAA GT

HT and/or WT: 35°C

27. Kit for the detection in vitro of a large number, preferably all Haemophilus influenzae strains in a biological sample, with said kit containing: either

- at least one probe selected among any of those according to claim 24,
- the buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the DNAs and/or RNAs of a large number, preferably all strains of Haemophilus influenzae to be carried out,
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate,

or

- at least two probes, targeting the same nucleic acid molecule, and of which at least one is specific for Haemophilus influenzae and which is selected from any one of the probes of claim 24,
- the buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the DNAs and/or RNAs of a strain of Haemophilus influenzae to be carried out,
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate,

- at least one probe selected among any of those according to claim 24, which is fixed to a solid support,
- the primers needed for performing enzymatical amplification of the DNA and/or RNA containing the target sequence of the above-mentioned probe, when appropriate,

- the buffer or components necessary for producing the buffers enabling enzymatical amplification and/or enabling hybridization reaction between these probes and the DNAs and/or RNAs of a strain of Haemophilus influenzae to be carried out,
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate.
- 28. Probe for detecting one or more Streptococcus pneumoniae strains, containing:
- either a sequence belonging to a nucleic acid selected from the following groups of nucleic acids and which includes from 15 to the maximum number of nucleotides of the selected nucleic acid:

Group SPI1:

GTGAGAGATC ACCAAGTAAT	GCA	SPII
TGCATTACTT GGTGATCTCT		SPILIC
		SPILICR
UGCAUUACUU GGUGAUCUCU		SPI1R
GUGAGAGAUC ACCAAGUAAU	GCA	SPIIK
	·	
Group SPI2		CDTO
AGGAACTGCG CATTGGTCTT		SPI2
AND CONTROL COCAGTTCCT	_	SPIZIC

AGGAACTGCG CATTGGTCTT	SPI2.
AAGACCAATG CGCAGTTCCT	SPI2IC
-	SPI2ICR
AAGACCAAUG CGCAGUUCCU	
AGGAACUGCG CAUUGGUCUU	SPI2R
Modification	

Group SPI3

Groap prin			CDTO
GAGTTTATGA	CTGAAAGGTC	AGAA	SPI3
			SPI3IC
TTCTGACCTT	TCAGTCATAA	ACIC	
UUCUGACCUU	TICAGUCAUAA	ACUC	SPI3ICR
- - :			SPI3R
GAGUUUAUGA	CUGAAAGGUC	AGAA	SETSI

or a variant sequence which distinguishes of any of the preceding sequences:

SPI1

- * either by addition to or removal from any of their respective extremities of one or several nucleotides;
- * or changing within any of said sequences of one or more nucleotides;
- * or both;

yet provided that in any of the above circumstances said probe still hybridizes with the same RNA or DNA target as the corresponding unmodified sequence.

- 29. Process for detecting Streptococcus pneumoniae strains in a biological sample, wherein said process comprises contacting said biological sample - in which the nucleic acids (DNAs and/or RNAs) of the strains have been made accessible to hybridization, if need be, with under suitable denaturation conditions, nucleic acid to be detected being possibly amplified using the polymerase chain reaction, with two primers, more preferably two more evolutionarily conserved primers, flanking the target sequence of the probe with a probe according to anyone of claim 28 under conditions enabling hybridization between the probe and complementary nucleic acids of the Streptococcus pneumoniae strains, which may be present in the sample, and detecting the hybrids possibly formed, particularly with a probe hybridizing to both DNA and RNA of a Streptococcus pneumoniae strain which may be present in the biological sample.
- pneumoniae, in a biological sample, according to claim 29, wherein: the hybridization medium contains about 3 x SSC, (SSC = 0.15 M NaCl, 0.015 M sodium citrate, pH 7.0) about 25 mM of phosphate buffer pH 7.1, 20% deionized formamide, 0.02% Ficoll, 0.02% bovine serum albumin, 0.02% polyvinylpyrrolidone, and about 0.1 mg/ml sheared, denatured salmon sperm DNA, and/or

the wash medium contains about 3 x SSC, 25 mM phosphate buffer pH 7.1, and 20% deionized formamide and wherein the probe used is anyone of the probes of claim 28, the hybridization temperature being suitable adjusted to the range of about 45°C and/or the wash temperature to the range of about 45°C, and particularly wherein said target sequence and the corresponding relevant hybridization temperature (HT) and wash temperature (WT), respectively, are as follows:

TGCATTACTT GGTGATCTCT CAC

HT and/or WT: 45°C

AAGACCAATG CGCAGTTCCT

HT and/or WT: 45°C

TTCTGACCTT TCAGTCATAA ACTC

HT and/or WT: 45°C

- 31. Kit for the detection in vitro of a large number, preferably all Streptococcus pneumoniae strains in a biological sample, with said kit containing: either
- at least one probe selected among any of those according to claim 28;
- the buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the DNAs and/or RNAs of a large number, preferably all strains of Streptococcus pneumoniae to be carried out;
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate,

- at least two probes, targeting the same nucleic acid molecule, and of which at least one is specific for <u>Streptococcus pneumoniae</u> and which is selected from any one of the probes of claim 28,
- the buffer or components necessary for producing the buffer enabling hybridization reaction between

these probes and the DNAs and/or RNAs of a strain of Streptococcus pn umoniae to be carried out,

the means for detecting the hybrids resulting from the preceding hybridization, when appropriate,

OF

- at least one probe selected among any of thos according to claim 28, which is fixed to a solid support,
- the primers needed for performing enzymatical amplification of the DNA and/or RNA containing the target sequence of the above-mentioned probe, when appropriate,
- the buffers or components necessary for producing the buffers enabling enzymatical amplification and/or enabling hybridization reaction between these probes and the DNAs and/or RNAs of a strain of Streptococcus pneumoniae to be carried out,
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate.
- 32. Probe for detecting one or more Streptococcus agalactiae strains, containing:
- either a sequence belonging to a nucleic acid selected from the following groups of nucleic acids and which includes from 15 to the maximum number of nucleotides of the selected nucleic acid:

Group SAI1:

AATCGAAAGG TTCAAATTGT	T	SAI1
AACAATTTGA ACCTTTCGAT		SAILIC
AACAAUUUGA ACCUUUCGAU		SAIIICR
AAUCGAAAGG UUCAAAUUGU		SAIIR
Wooding.		

Group SAI2:

GGAAACCTGC	CATTTGCGTC	TT	SAI2
AAGACGCAAA			SAIZIC

AAGACGCAAA UGGCAGGUUU CC SAI2ICR GGAAACCUGC CAUUUGCGUC UU SAI2R

Group SAI3:

TCCACGATCT AGAAATAGAT TGTAGAA

TTCTACAATC TATTTCTAGA TCGTGGA

UUCUACAAUC UAUUUCUAGA UCGUGGA

UCCACGAUCU AGAAAUAGAU UGUAGAA

SAI3

SAI3ICR

SAI3ICR

Group SAI4:

TCTAGTTTA AAGAAACTAG GTT

AACCTAGTTT CTTTAAAACT AGA

AACCUAGUUU CUUUAAAACU AGA

UCUAGUUUUA AAGAAACUAG GUU

SAI4ICR

SAI4ICR

SAI4ICR

- or a variant sequence which distinguishes of any of the preceding sequences:
 - either by addition to or removal from any of their respective extremities of one or several nucleotides;
 - * or changing within any of said sequences of one or more nucleotides;
 - * or both;

yet provided that in any of the above circumstances said probe still hybridizes with the same RNA or DNA target as the corresponding unmodified sequence.

strains in a biological sample, wherein said process comprises contacting said biological sample - in which the nucleic acids (DNAs and/or RNAs) of the strains have been made accessible to hybridization, if need be, under suitable denaturation conditions, with said nucleic acid to be detected being possibly amplified using the polymerase chain reaction, with two primers, more preferably two more evolutionarily conserved primers, flanking the target sequence of the probe - with a probe according to anyone f claim 32 under

conditions enabling hybridization between the probe and streptococcus nucleic acids the of complementary agalactiae strains, which may be present in the sample, and detecting the hybrids possibly formed, particularly with a probe hybridizing to both DNA and RNA of a Streptococcus agalactiae strain which may be present in the biological sample.

Streptococcus detecting for 34. **Process** agalactiae, in a biological sample, according to claim 33, wherein:

the hybridization medium contains about 3 x SSC, (SSC = 0.15 M NaCl, 0.015 M sodium citrate, pH 7.0) about 25 mM of phosphate buffer pH 7.1, 20% deionized formamide, albumin. serum bovine 0.02% Ficoll, 0.02% and about 0.1 mg/ml sheared, polyvinylpyrrolidone, denatured salmon sperm DNA,

and/or

the wash medium contains about 3 x SSC, 25 mM phosphate buffer pH 7.1, and 20% deionized formamide and wherein the probe used is anyone of the probes of claim 32, the hybridization temperature being suitable adjusted to range of about 35°C to 45°C and/or the wash temperature to the range of about 35°C to 45°C, and particularly wherein said target sequence and corresponding relevant hybridization temperature (HT) (WT), respectively, temperature wash and follows:

AACAATTTGA ACCTTTCGAT T.

HT and/or WT: 35°C

AAGACGCAAA TGGCAGGTTT CC

HT and/or WT: 45°C

TTCTACAATC TATTTCTAGA TCGTGGA

HT and/or WT: 45°C

AACCTAGTTT CTTTAAAACT

HT and/or WT: 37°C

- 35. Kit for the detection <u>in vitro</u> of a large number, preferably all <u>Streptococcus agalactiae</u> strains in a biological sample, with said kit containing: either
- at least one probe selected among any of those according to claim 32;
- the buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the DNAs and/or RNAs of a large number, preferably all strains of Streptococcus agalactiae to be carried out;
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate,

or

- at least two probes, targeting the same nucleic acid molecule, and of which at least one is specific for <u>Streptococcus agalactiae</u> and which is selected from any one of the probes of claim 32,
- the buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the DNAs and/or RNAs of a strain of Streptococcus agalactiae to be carried out,
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate,

- at least one probe selected among any of those according to claim 32, which is fixed to a solid support,
- the primers needed for performing enzymatical amplification of the DNA and/or RNA containing the target sequence of the above-mentioned probe, when appropriate,
- the buffers or components necessary for producing the buffers enabling enzymatical amplification and/or enabling hybridization reaction between

these probes and th DNAs and/or RNAs of a strain of <u>Streptococcus</u> <u>agalactiae</u> to be carried out,

- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate.
- 36. Probe for detecting one or more <u>Campylobacter</u> jejuni and <u>Campylobacter</u> coli strains, containing a sequence from 15 to the maximum number of nucleotides derived from the 16S-23S rRNA spacer sequence shown in Fig. 10 or its complement provided that the probe, at the appropriate conditions, hybridizes exclusively with DNA and/or RNA from <u>Campylobacter</u> jejuni and <u>Campylobacter</u> coli strains and not with DNA and/or RNA from other organisms.
- 37. Process for detecting Campylobacter jejuni and Campylobacter coli strains in a biological sample, comprises contacting said process biological sample - in which the nucleic acids (DNAs and/or RNAs) of the strains have been made accessible if under hybridization, need be. denaturation conditions, with said nucleic acid to be detected being possibly amplified using the polymerase chain reaction, with two primers, more preferably two more evolutionarily conserved primers, flanking the target sequence of the probe - with a probe according under conditions claim 36 anyone of probe and hybridization between the complementary jejuni nucleic acids of the Campylobacter Campylobacter coli strains, which may be present in the sample, and detecting the hybrids possibly formed, particularly with a probe hybridizing to both DNA and RNA of a Campylobacter jejuni or Campylobacter coli strain which may be present in the biological sample.
- 38. Kit for the detection in vitro of a large number, preferably all <u>Campylobacter</u> jejuni and <u>Campylobacter</u> coli strains in a biol gical sample, with said kit containing:

.(·

either

- at least one probe selected among any of those according to claim 36;
- the buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the DNAs and/or RNAs of a large number, preferably all strains of Campylobacter jejuni or Campylobacter coli to be carried out;
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate,

or

- at least two probes, targeting the same nucleic acid molecule, and of which at least one jejuni and Campylobacter for specific Campylobacter coli and which is selected from any one of the probes of claim 36,
- the buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the DNAs and/or RNAs of a strain of Campylobacter jejuni or Campylobacter coli to be carried out,
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate,

OT

- at least one probe selected among any of thos according to claim 36, which is fixed to a solid support,
- the primers needed for performing enzymatical amplification of the DNA and/or RNA containing the target sequence of the above-mentioned probe, when appropriate,
- the buffers or components necessary for producing the buffers enabling enzymatical amplification and/or enabling hybridization reaction between these probes and the DNAs and/or RNAs of a strain

- of <u>Campylobacter</u> <u>jejuni</u> or <u>Campylobacter</u> <u>coli</u> to be carri d out,
- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate.
- 39. Process for the in vitro detection of one microorganism or to the simultaneous in vitro detection of several microorganisms contained in a biological sample using anyone of the probes according to claims 1 to 4, 8, 12, 16, 20, 24, 28, 32 and 36, and specific for the microorganism(s) to be detected wherein the DNA and/or RNA present in the biological sample comprising the target sequence) is labeled, preferably using enzymatic amplification with at least one set of primers flanking the probe region, and wherein said biological sample is contacted with a membrane on which one or more oligonucleotide probes are dot spotted on a known location, in a medium enabling hybridization of the amplified target sequence and the the membrane and wherein the resulting from the hybridizations are detected appropriate means.
- 40. Kit for the <u>in vitro</u> detection of one microorganism or for the simultaneous <u>in vitro</u> detection of several microorganisms contained in a biological sample, with said kit containing:
- at least one of the probes according to claims 1 to 4, 8, 12, 16, 20, 24, 28, 32 and 36, and specific for the microorganism(s) to be detected, which is dot spotted to a membrane,
- the primers needed for performing enzymatical amplification of the DNA and/or RNA containing the target sequence of the above-mentioned probe, when appropriate,
- the buffers or components necessary for producing the buffers enabling enzymatic amplification and/or enabling hybridization reaction between

Figure 1 to the second second

these probes and the DNAs and/or RNAs of a microorganism or microorganisms which are to be detected to to be carried out,

- the means for detecting the hybrids resulting from the preceding hybridization, when appropriate.