Estatística não paramétrica

Aula 6

Manoel Santos-Neto Atualização: 31 de agosto de 2023

O que você irá aprender nesta aula?

1. Teste de Kolmogorov.

Introdução

O teste de Kolmogorov é um teste de "qualidade de ajuste" proposto por Kolmogorov (1933) e consiste em testar se uma determinada amostra provêm de uma distribuição conhecida, X, com função de distribuição $F_0(x)$.

Teste de Kolmogorov versus teste χ^2

- Pode ser utilizado para dados ordinais em tabelas de contigência, ao contrário do teste χ^2 ;
- Trata os valores individualmente, sem a necessidade de agrupamento;
- É possível criar "faixas de confiança";
- Em geral, é mais poderoso, principalmente em pequenas amostras (Slakter, 1965);
- Teste pode ser aplicado, sem restrição, para pequenas amostras, ao contrário do teste χ^2 .

Suposição:

$$X_1,\ldots,X_n\stackrel{\mathrm{iid}}{\sim} F_X(x).$$

Introdução

Interesse:

Testar se $F_X(x) = F_0(x) \, orall x \in \mathbb{R}$, $F_0(x)$ completamente especificada.

Idéia:

Comparar $\widehat{F}_n(x)$ (estimador consistente de $F_X(x)$) com $F_0(x)$.

Introdução

Podemos comparar $\widehat{F}_n(x)$ e $F_0(x)$ através de alguma distância $d(\widehat{F}_n(x),F_0(x))$.

Teste bilateral:

$$\mathcal{H}_0: F_x(x) = F_0(x); orall x \in \mathbb{R}$$

$$\mathcal{H}_1:\exists x\in\mathbb{R}\; F_x(x)=F_0(x)$$

A estatística de teste utilizada, denotada por T_n é definida como sendo a maior distância vertical entre $\widehat{F}_n(x)$ e $F_0(x)$, isto é,

$$T_n:=\sup_x\left|\widehat{F}_n(x)-F_0(x)
ight|.$$

Observação: Se $\widehat{F}_n(x) \equiv F_0(x)$, então pelo Teorema de Glivenko-Cantelli, temos que $T_n \stackrel{\mathrm{q.c}}{\to} 0$.

Para um teste de nível α , rejeitamos \mathcal{H}_0 se $T_n \geq t$, em que

$$\Pr_{\mathcal{H}_0}(T_n \geq t) = lpha.$$

Teste bilateral

Como a função de distribuição empírica $\widehat{F}_n(x)$ é descontínua e a função de distribuição hipotética pode ser contínua, uma alternativa é considerar:

$$T_n^1 = \sup_x \left|\widehat{F}_n(x_{(i)}) - F_0(x_{(i)})
ight| \quad \mathrm{e} \quad T_n^2 = \sup_x \left|\widehat{F}_n(x_{(i-1)}) - F_0(x_{(i)})
ight|.$$

Essas estatísticas medem as distâncias verticais entre os gráficos das duas funções, teóricas e empírica, nos pontos $x_{(i-1)}$ e $x_{(i)}$. Com isso, podemos utilizar como estatística de teste:

$$T_n = \max\{T_n^1, T_n^2\}.$$

No R

Teste Unilateral

Teste unilateral:

$$\mathcal{H}_0: F_x(x) \leq F_0(x); orall x \in \mathbb{R} \quad ext{vs} \quad \mathcal{H}_1: \exists x \in \mathbb{R} \; F_x(x) > F_0(x)$$

A estatística de teste é dada por

$$T_n^+:=\sup_x\left\{\widehat{F}_n(x)-F_0(x)
ight\}.$$

Rejeitamos \mathcal{H}_0 ao nível lpha se $T_n^+ \geq t_1$, em que

$$\Pr_{\mathcal{H}_0}(T_n^+>t_1)=lpha.$$

Teste Unilateral

Teste unilateral:

$$\mathcal{H}_0: F_x(x) \geq F_0(x); orall x \in \mathbb{R} \quad ext{vs} \quad \mathcal{H}_1: \exists x \in \mathbb{R} \; F_x(x) < F_0(x)$$

A estatística de teste é dada por

$$T_n^-:=\sup_x\left\{F_0(x)-\widehat{F}_n(x)
ight\}.$$

Rejeitamos \mathcal{H}_0 ao nível lpha se $T_n^- \geq t_2$, em que

$$\Pr_{\mathcal{H}_0}(T_n^->t_2)=lpha.$$

Distribuição da estatística de teste

Para calcular o valor-p, devemos saber a distribuição EXATA de T_n, T_n^+ e T_n^- .

ullet Quando $F_0(x)$ é contínua, então sob \mathcal{H}_0 , a função de distribuição EXATA de T_n^+ e T_n^- é dada por

$$G_{T_n^+} := \Pr(T_n^+ \leq x) = 1 - x \sum_{j=0}^{[nx(1-x)]} inom{n}{j} igg(1 - x - rac{j}{n}igg)^{n-j} igg(x + rac{j}{n}igg)^j,$$

em que [b] é o maior número inteiro menor ou igual a b.

Quando $n o \infty$, mostra-se que $\sqrt{n}T_n^+$ e $\sqrt{n}T_n^-$ tem função de distribuição aproximadamente igual a

$$\Pr\left(rac{T_n^+}{\sqrt{n}} \leq x
ight) \cong \lim_{n o\infty} G_{T_n^+}\left(rac{x}{\sqrt{n}}
ight) = 1 - \exp\{-2x^2\}.$$

Já T_n tem função de distribuição aproximadamente igual (sob \mathcal{H}_0) a

$$\Pr(T_n \leq x) = G(x)^2,$$

 $\mathsf{dado}\ \mathsf{que}\ \{\omega\in\Omega: T_n^+\leq x\} \leftrightarrow \{\omega\in\Omega: T_n^+\leq x\quad \mathrm{e}\quad T_n^-\leq x\}.$

Exemplo

Verifique se os dados abaixo podem ser ajustados por uma distribuição de Poisson com média igual a 1.2. Considere $\alpha=0.05$.

Exemplo							
X_i	f_{i}	f_0	$F_0(x)$	$F_n(x)$	$ F_n(x)-$	$F_0(x)$	$ F_n(x_{(i-1)}) - F_0(x_{(i)}) $
0	15	18	0.25	0.30			
1	25						
2	10						
3	5						
4	4						
5	1						

Exercício

Considere uma amostra de 5 elementos com os seguinte valores ordenados: 0.28, 0.47, 0.54, 0.63, 0.68. Teste ao nível de significâcnia de 5% se esta amostra é oriunda de uma distribuição uniforme no intervalor (0,1).