Solution for PS4-1.

Number	Positive divisors	Prime?
12	1, 2, 3, 4, 6, 12	No
15	1,3,5,15	No
29	1,29	Yes
64	1, 2, 4, 8, 16, 32, 64	No
72	1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72	No
73	1,73	Yes
75	1, 3, 5, 15, 25, 75	No

Solution for PS4-2. We claim that $n \in \mathbb{N}^+$ has an odd number of positive divisors iff n is a perfect square. Informally, this is because the positive divisors of n can be grouped into pairs of the form $\{d, n/d\}$, so there must be an even number of such divisors in total *except* when one of these "pairs" is in fact a singleton set, which happens when d = n/d for some d, i.e., $n = d^2$.

Here is the formal proof. Let

$$A = \{ d \in \mathbb{N}^+ : d \mid n \text{ and } d < \sqrt{n} \},$$

$$B = \{ d \in \mathbb{N}^+ : d \mid n \text{ and } d > \sqrt{n} \},$$

$$D = \{ d \in \mathbb{N}^+ : d \mid n \}.$$

The function $f: A \to B$ given by f(a) = n/a is a bijection from A to B, because its inverse is the function $g: B \to A$ given by g(b) = n/b. Therefore, |A| = |B|. If \sqrt{n} is not an integer, then $D = A \cup B$, so |D| = |A| + |B| = 2|A|, which is even. If \sqrt{n} is an integer, then $D = A \cup B \cup \{\sqrt{n}\}$, so |D| = |A| + |B| + 1 = 2|A| + 1, which is odd. This completes the proof of our claim.

Using our claim, the desired set of integers is {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}.

Solution for PS4-3. For \mathbb{Z}_{11} :

\otimes	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10
2	0	2	4	6	8	10	1	3	5	7	9
3	0	3	6	9	1	4	7	10	2	5	8
4	0	4	8	1	5	9	2	6	10	3	7
5	0	5	10	4	9	3	8	2	7	1	6
6	0	6	1	7	2	8	3	9	4	10	5
7	0	7	3	10	6	2	9	5	1	8	4
8	0	8	5	2	10	7	4	1	9	6	3
9	0	9	7	5	3	1	10	8	6	4	2
10	0	10	9	8	7	6	5	4	3	2	1

For \mathbb{Z}_{12} :

\otimes	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11
2	0	2	4	6	8	10	0	2	4	6	8	10
3	0	3	6	9	0	3	6	9	0	3	6	9
4	0	4	8	0	4	8	0	4	8	0	4	8
5	0	5	10	3	8	1	6	11	4	9	2	7
6	0	6	0	6	0	6	0	6	0	6	0	6
7	0	7	2	9	4	11	6	1	8	3	10	5
8	0	8	4	0	8	4	0	8	4	0	8	4
9	0	9	6	3	0	9	6	3	0	9	6	3
10	0	10	8	6	4	2	0	10	8	6	4	2
11	0	11	10	9	8	7	6	5	4	3	2	1

Observe that in the table for \mathbb{Z}_{11} , the zero entries are confined to the zero row and the zero column, whereas in the table for \mathbb{Z}_{12} , there are some zero entries in addition to these "obvious" ones. In fact, for each $x \in \mathbb{Z}_{12}$ that is not relatively prime to 12, there is at least one zero entry in the row/column for x.

Solution for PS4-4. Using the definition of congruence, $d \mid a - b$ and $d \mid x - y$.

Therefore, $d \mid (a - b) + (x - y) = (a + x) - (b + y)$, i.e., $a + x \equiv b + y \pmod{d}$.

Further, $d \mid (a-b)x$ and $d \mid b(x-y)$. Therefore, $d \mid (a-b)x + b(x-y) = ax - by$, i.e., $ax \equiv by \pmod{d}$.

Solution for PS4-5. Using the result of **PS4-4**, if $a \equiv b \pmod{d}$, then $a^2 \equiv b^2 \pmod{d}$. Using the same result again, $a^3 \equiv b^3 \pmod{d}$. Proceeding in this way, $a^n \equiv b^n \pmod{d}$ for all $n \in \mathbb{N}^+$.

Now take d = a - b. Trivially, $d \mid a - b$, so $a \equiv b \pmod{d}$. Therefore, $a^n \equiv b^n \pmod{d}$, which means $d \mid a^n - b^n$.

Solution for PS4-6. Take d = a + b. Then $a \equiv -b \pmod{d}$.

As in **PS4-5**, $a^n \equiv (-b)^n \pmod{d}$. Since n is odd, $(-1)^n = -1$. Therefore, $(-b)^n = (-1)^n b^n = -b^n$. We conclude that $a^n \equiv -b^n \pmod{d}$, so $d \mid a^n + b^n$.

Solution for PS4-7. Start by observing that $2^4 = 16 \equiv -1 \pmod{17}$. Therefore, powers of 2^4 are going to be easy to figure out. We use this to simplify:

$$2^{2019} = 2^{4 \times 504 + 3} = 16^{504} \times 2^3 \equiv (-1)^{504} \times 8 = 8 \pmod{17}$$
.

Solution for PS4-8. Let n^2 be a perfect square. To reason about the last digit of n^2 , we consider arithmetic modulo 10. To reduce the number of cases to consider, we further use $9 \equiv -1 \pmod{10}$ and so on.

- If $n \equiv 0 \pmod{10}$, then $n^2 \equiv 0 \pmod{10}$.
- If $n \equiv \pm 1 \pmod{10}$, then $n^2 \equiv 1 \pmod{10}$.
- If $n \equiv \pm 2 \pmod{10}$, then $n^2 \equiv 4 \pmod{10}$.
- If $n \equiv \pm 3 \pmod{10}$, then $n^2 \equiv 9 \pmod{10}$.
- If $n \equiv \pm 4 \pmod{10}$, then $n^2 \equiv 16 \equiv 6 \pmod{10}$.
- If $n \equiv 5 \pmod{10}$, then $n^2 \equiv 25 \equiv 5 \pmod{10}$.

It follows that $n^2 \not\equiv 7 \pmod{10}$.

Alternate Solution for PS4-8. Let n^2 be a perfect square. If the last digit of n^2 is 7, then $n^2 \equiv 2 \pmod{5}$. However, the following exhaustive list of cases shows that this is not possible.

- If $n \equiv 0 \pmod{5}$, then $n^2 \equiv 0 \pmod{5}$.
- If $n \equiv \pm 1 \pmod{5}$, then $n^2 \equiv 1 \pmod{5}$.
- If $n \equiv \pm 2 \pmod{5}$, then $n^2 \equiv 4 \pmod{5}$.

Solution for PS4-9. Given that decimal representation, the value of *n* is given by

$$n = 10^k a_k + 10^{k-1} a_{k-1} + \dots + 10^2 a_2 + 10 a_1 + a_0 = \sum_{i=0}^k 10^i a_i$$
.

Now $10 \equiv 1 \pmod{3}$, therefore $10^j \equiv 1^j = 1 \pmod{3}$ for each j. Using this in the above equation, we obtain $n \equiv \sum_{i=0}^k a_i \pmod{3}$, as desired.

Solution for PS4-10. Let n = m(m+1)(m+2) be the product of three consecutive integers. Then, modulo 3, the integers m, m+1, and m+1 are congruent to 0, 1, and 2 in some order. Therefore $n \equiv 0 \times 1 \times 2 = 0 \pmod{3}$, i.e., n = 3k for some integer k.

At least one of m, m+1, and m+2 is even. Therefore, n is even. If k were odd, then n=3k would have been odd. Therefore, k is even. Let $k=2\ell$ for some integer ℓ . Then $n=3\cdot 2\ell=6\ell$, which is divisible by 6.

Note: It's not enough to say that *n* is divisible by 2 and by 3, *therefore* it is divisible by 6. That "therefore" needs to be justified.