- 1. Aşağıdaki floating-point formatında tanımlanmış bit desenlerini çözünüz
 - a. 001001010 b. 01101101 c. 00111001 d. 11011100 e. 10101011
- 2. Aşağıdaki ondalık sayıları floating-point formatına dönüştürün.
 - **a.** 1+2/4
- **b.** 5+3/4
- **c.** 5/4
- **d.** -2-1/2
- e. (7+3/8)
- 3. Floating-point formatındaki sayıları düşündüğümüzde 01001001 mi yok sa 00111101 daha büyüktür? İki floating point formatındaki 8 bitlik desenlerden büyük olanını bulmak için bir sözde kod (pseudocode) yazınız.
- 4. Kitabımız Şekil 1.27 'de verilen error correction code'unu kullanarak aşağıdaki mesajları çözünüz.
- a.001111 100100 001100
- **b.** 010001 000000 001011 **c.** 011010 110110 100000 01110
- 5. Aşağıda bir ASCII mesajı bulunuyor. Bu ASCII mesajı neyi ifade ediyor?

01000011 01101111 01101101 01110000 01110101 01110100 01100101 01110010 00100000 01010011 01100011 01101001 01100101 01101110 01100011 01100101 00100001

- 6. Aşağıdaki toplama işlemlerini gerçekleştiriniz (2ye tümleyen) Toplam işlemlerinin overflow(taşma) yüzünden yanlış gerçekleştiği kısımları belirtiniz.
- a. 00101+01000 b. 11111+00001 c. 01111 + 00001 d. 10111+11010
- e. 11111+11111 f. 00111+01100
- 7. Aşağıdaki excess 32 notasyonlarını 10 tabanına dönüştürün.

- a. 011111 b.100110 c. 111000 d. 000101 e.010101

8. Aşağıdaki programın kitabın Appendix C'sinde verilen makina diliyle yazıldığını düşünelim. Bu program main memory de 30 (hexadecimal) adresinden başlayarak yerleşmiştir. Program çalıştığında hangi işlemi gerçekleştirir.
2003 2101