Tutorial 2

Formal Language and Automata Theory

January 12, 2023

Compute the product of DFA 1 and DFA 2.

Compute the product of DFA 1 and DFA 2.

Hint 1: Start with combining states by combining the transition

Compute the product of DFA 1 and DFA 2.

Hint 2: For example, combine E and H states. See what happens when there is transition 'a' from E and H state. Similarly see for 'b'. Continue for all other states and transition.

Solution:

Let A be the set of all strings that end with two consecutive a's or two consecutive b's. This is the NFA of the language A.

Convert the NFA into a DFA.

Convert the NFA into a DFA.

Hint 1: Remember that DFA cannot have multiple states with the same input.

Convert the NFA into a DFA.

Hint 2: Draw the state transition table and combine the states when there are multiple states.

Convert the NFA into a DFA.

Solution:

Construct DFA for the following languages:
(a) *L* is the set of all strings containing *bbab* as a substring

Construct DFA for the following languages:

(a) *L* is the set of all strings containing *bbab* as a substring **Hint 1**: Start with forming the part of the DFA corresponding to the substring.

Construct DFA for the following languages. In all parts $\Sigma = \{a, b\}$.

(a) L is the set of all strings containing bbab as a substring

Hint 2: What can be the remaining part of the strings containing *bbab* as substring?

(a) *L* is the set of all strings containing *bbab* as a substring **Solution**:

(b)
$$L = \{a^n \mid n \ge 0, n \ne 4\}$$

(b)
$$L = \{a^n \mid n \ge 0, n \ne 4\}$$

Hint 1: Start with forming the part of the DFA corresponding to the less than 3 consecutive *a*'s.

(b)
$$L = \{a^n \mid n \ge 0, n \ne 4\}$$

Hint 2: Do the strings of the given language contain b?

(b)
$$L = \{a^n \mid n \ge 0, n \ne 4\}$$

Solution:

(c)
$$L = \{ab^5wb^4 : w \in \{a, b\}^*\}$$

(c)
$$L = \{ab^5wb^4 : w \in \{a, b\}^*\}$$

Hint 1: Start with forming the substring at the beginning and the end.

(c)
$$L = \{ab^5wb^4 : w \in \{a, b\}^*\}$$

Hint 2: What would happen if an input symbol causes violation to the prefix substring ab^5 or b^4 at the end?

(c)
$$L = \{ab^5wb^4 : w \in \{a, b\}^*\}$$

Solution:

Let $\Sigma = \{a, b\}$. Find a grammar that generates the language $L = \{w | n_a(w) = 2n_b(w)\}$.

Let $\Sigma = \{a, b\}$. Find a grammar that generates the language $L = \{w | n_a(w) = 2n_b(w)\}$.

Hint 1: Think of possible ways 'a' can occur twice the number of times 'b' occurs in a string.

Let $\Sigma = \{a, b\}$. Find a grammar that generates the language $L = \{w | n_a(w) = 2n_b(w)\}$.

Hint 2: Use two non-terminals to represent the grammar.

Let $\Sigma = \{a, b\}$. Find a grammar that generates the language $L = \{w | n_a(w) = 2n_b(w)\}$.

Solution:

The production rules for the grammar would be:

$$S
ightarrow AaAaAbA|AaAbAaA|AbAaAaA|$$

 $A
ightarrow AaAaAbA|AaAbAaA|AbAaAaA|\lambda$

where the set of non-terminals is $V = \{S, A\}$ and S is the usual start symbol.

Show that the grammars $S \to SS|aSb|bSa|a$ and $S \to aSb|bSa|\lambda$ are not equivalent.

Show that the grammars $S \to SS|aSb|bSa|a$ and $S \to aSb|bSa|\lambda$ are not equivalent.

Hint 1: Generate sample strings from the given grammars and try to find the difference.

Show that the grammars $S \to SS|aSb|bSa|a$ and $S \to aSb|bSa|\lambda$ are not equivalent.

Hint 2: What about the lengths of the strings generated by the grammars?

Show that the grammars $S \to SS|aSb|bSa|a$ and $S \to aSb|bSa|\lambda$ are not equivalent.

Solution:

Let us call the grammars G_1 and G_2 . Note that every string $\sigma \in L(G_2)$ is of length 2n for some n, i.e. all strings in $L(G_2)$ are of even length. However, G_1 can generate odd length strings, e.g. $S \to aSb \to aab$.