Причинно-следственные связи в данных

Георгий Калашнов, Ольга Сучкова

16 марта 2020 г.

План на сегодня

Тестирование гипотез

Снижение дисперсии с помощью контрольных переменных Пример Ковариаты

Table of Contents

Тестирование гипотез

Снижение дисперсии с помощью контрольных переменных Пример Ковариаты

Оценки школьников в Мумбаи: ATE^ = 6. Можно ли доверять результату?

Здесь и далее графики – см из п.2 списка литературы на последнем слайде

Точечная и интервальная оценка. Доверительный интервал

«Презумпция нуля»

- «Бремя доказательства» лежит на исследователе: важно доказать, что эффект значим.
- Аналогично именно на исследователе лежит бремя доказательства, что оценка показывает именно заявленный эффект, что отсутствует «влияние третьих факторов» и т.д.

Ошибки первого и второго рода

	Тритмент-эффект есть	Тритмент-эффекта нет
Тест в пользу Н1 Оценка тритмент- эффекта значимая	Ок	Ошибка 1 рода (вероятность = альфа)
Тест в пользу Н0 Оценка тритмент- эффекта незначимая	Ошибка 2 рода (вероятность = k)	Ок

Уровень значимости

• Уровень значимости 5% означает, вероятность случайно получить отличный от нуля результат составляет 5%

Мощность

- Это вероятность того, что если истинный эффект - размера b, то наш эксперимент будет в состоянии разграничить оценку этого эффекта и ноль.
- Это вероятность избежать ошибки 2 рода (= 1 k).

Связь: мощность и...

- предполагаемый размер эффекта
- вариативность показателя
- размер выборки
- пропорция между тритмент- и контрольной группой

MDE (minimum detectable effect) size

Источник: Glennerster, Takavarasha "Running randomized evaluations. A practical Guide", ch 6.

Пример: проект NERICA

- L. Casaburi, R. Glennerster, S. Kamara, T. Suri (2014) "Providing collateral and improving product market access for smallholder farmers in Sierra Leone"
- Части фермеров в Сьерра Леоне раздали новый сорт риса на посев.
- Выросла ли урожайность и выручка фермеров? Опрос фермеров, но затраты на дорогу!
- Размер эффекта по результатам «лабораторных испытаний» как должна отличаться урожайность (97 кг с гектара)
- Уровень значимости и мощность заданы
- Расчёт необходимого количества наблюдений

MDE: аналогия

EffectSize =
$$(t_{(1-\kappa)} + t_{\alpha}) * \sqrt{\frac{1}{P(1-P)} * \sqrt{\frac{\sigma^2}{N}}}$$

Стандартная ошибка оценки коэффициента

 Аналогия: расчётная t-статистика в тесте на значимость коэффициента показывает, на сколько стандартных ошибок оценка отличается от нуля.

Minimum detectable effect: аналогия

=>

Чтобы быть значимым на 5% уровне, коэффициент должен быть как минимум в "t_табличное" раз больше, чем его стандартная ошибка

=>

Минимально отличимый от нуля на alpha %-ном уровне коэффициент должен быть = t_alpha/2 * s.e(b^)

Minimum detectable effect: наш случай

 Чтобы быть отличным от нуля при заданной мощности (1-k) и уровне значимости (alpha), коэффициент должен быть как минимум в t_(1-k)+t_alpha раз больше, чем s.e.

$$EffectSize = \left(t_{(1-\kappa)} + t_{\alpha}\right) * \sqrt{\frac{1}{P(1-P)}} * \sqrt{\frac{\sigma^{2}}{N}}$$

MDE графически

Glennerster, Takavarasha "Running randomized evaluations. A practical Guide", ch. 6

Что почитать

- Gerber, Green "Field experiments", ch.4, 10
- Glennerster, Takavarasha "Running randomized evaluations. A practical Guide", ch. 6
- Owen Ozier, лекция + выкладки + примеры <u>http://economics.ozier.com/owen/slides/ozier_powercalc_talk_20100914a.pdf</u>
- Кратко + код: https://egap.org/methods-guides/10-things-you-need-know-about-statistical-power

Table of Contents

Тестирование гипотез

Снижение дисперсии с помощью контрольных переменных Пример Ковариаты

Президентские выборы во Франции 2012 (Pons 2018)

Франсуа Олланд

51,64%

48,36%

Президентские выборы во Франции 2012 (Pons 2018)

Франсуа Олланд

51,64%

Николя Саркози

48,36%

Эффект от агитации в 0.5 процентных пункта.

Как суметь поймать такой эффект?

- 2 метода снижения дисперсии:
 - 1. Контрольные переменные (covariates)
 - 2. Грамотное планирование эксперимента и престратификация (в другой раз)

Ковариаты¹

- \triangleright Y_1 , Y_0 потенциальные исходы (potential outcomes)
- ightharpoonup T-1, если наблюдение в эксперименте и 0 иначе (treatment variable)
- \triangleright X Независимые переменные (covariates)

Ковариаты X меняются вместе с Y_1 и Y_0 (ковариируют или (мульти) коррелируют)

$$\mathbb{C}$$
ov $(X, Y_1) > 0$, \mathbb{C} ov $(X, Y_0) > 0$

 $^{^{1}}$ Angrist и Pischke 2008, Раздел 3.1.1, Imbens и Rubin 2015, Глава 7.5-7.8

Маленький пример

	Y_1	<i>Y</i> ₀	X
Пациент 1	-	36.6	Из Европы
Пациент 2	36.6	-	Из Европы
Пациент 3	35	-	Из Европы
Пациент 4	_	36	Из Европы
Пациент 5	37.3	-	Из Азии
Пациент б	_	39.3	Из Азии
Пациент 7	37.2	-	Из Азии
Пациент 8	-	39.2	Из Азии

- ▶ *Повторение*. На глаз. Выполнена ли предпосылка экзогенности? $(Y_1, Y_0, X)_i \perp T_i$
- ▶ Высока ли дисперсия с одним и тем же X: V(Y|X)?
- ▶ У кого в среднем выше температура? $\mathbb{C}ov(X, Y_0)$?
- ▶ Высока ли общая дисперсия: $\mathbb{V}(Y)$?

То же, но на картинке

Контроль, снижающий дисперсию

$$\mathbb{V}(Y) = \mathbb{E}\left((Y - \mathbb{E}Y)^{2}\right) =$$

$$\mathbb{E}\left((Y - \mathbb{E}(Y|X) + \mathbb{E}(Y|X) - \mathbb{E}Y)^{2}\right) =$$

$$\mathbb{E}\left((Y - \mathbb{E}(Y|X))^{2}\right) + \mathbb{E}\left((\mathbb{E}(Y|X) - \mathbb{E}Y)^{2}\right) +$$

$$2\mathbb{E}\left((\mathbb{E}(Y|X) - \mathbb{E}Y)\left(Y - \mathbb{E}(Y|X)\right)\right) =$$

$$\mathbb{E}(\mathbb{V}(Y|X)) + \mathbb{V}(\mathbb{E}(Y|X)) + 0$$

Результаты выборов во Франции

TABLE 5-IMPACT ON HOLLANDE'S VOTE SHARE

	First round			S	Second round			Average of first and second rounds		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Panel A. ITT estimation										
Treatment	0.0063	0.0050	0.0044	0.0048	0.0053	0.0046	0.0056	0.0049	0.0043	
	(0.0023)	(0.0019)	(0.0018)	(0.0028)	(0.0019)	(0.0018)	(0.0024)	(0.0017)	(0.0016)	
Strata fixed effects	X	x	X	X	X	X	X	X	X	
Control for past outcome and PO		X	X		X	X		X	X	
Additional controls			X			X			X	
Observations	3,390	2,660	2,660	3,390	2,660	2,660	3,390	2,660	2,660	
R^2	0.003	0.516	0.528	0.001	0.632	0.645	0.002	0.645	0.655	
Mean in control group	0.3157	0.2994	0.2994	0.5757	0.5597	0.5597	0.4457	0.4295	0.4295	
Panel B. Instrumental var	iable estima	tion: "all	ocated to co	unvassers" ir	istrumentee	l with "trea	tment"			
Allocated to canvassers	0.0112	0.0094	0.0084	0.0084	0.0099	0.0087	0.0098	0.0092	0.0081	
	(0.0041)	(00036)	(0.0035)	(0.0050)	(0.0036)	(0.0035)	(0.0042)	(0.0031)	(0.0030)	
Strata fixed effects	X	x	X	X	X	X	X	X	X	
Control for past outcome and PO		X	X		X	X		X	X	
Additional controls			X			X			X	
Observations	3,390	2,660	2,660	3,390	2,660	2,660	3,390	2,660	2,660	

Повторение. А это зачем?

TABLE 2—SUMMARY STATISTICS

	Control group		Treatment group		p-value	Number
	Mean	SD	Mean	SD	treatment = control	of observations
Panel A. Electoral outcomes						
Randomization at precinct level	0.504	0.500	0.504	0.500	0.992	3,397
Number of registered citizens	1,014.3	1,097.6	1,133.8	1,605.3	0.022	3,397
Potential to win votes, PO	0.089	0.035	0.089	0.033	0.970	3,397
Voter turnout, 2007 pres. election, first round	0.843	0.050	0.840	0.048	0.231	2,665
Voter turnout, 2007 pres. election, second round	0.837	0.045	0.836	0.045	0.675	2,665
PS vote share, 2007 pres. election, first round	0.274	0.081	0.279	0.081	0.172	2,665
PS vote share, 2007 pres. election, second round	0.515	0.103	0.516	0.101	0.743	2,665

Повторение. А это зачем?

	First round			S	Second round			Average of first and second rounds		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Panel A. ITT estimation										
Treatment	0.0050	0.0015	0.0007	0.0009	-0.0013	-0.0014	0.0029	-0.0002	-0.0006	
	(0.0027)	(0.0024)	(0.0023)	(0.0029)	(0.0024)	(0.0023)	(0.0026)	(0.0020)	(0.0020)	
Strata fixed effects	X	X	X	X	X	X	X	X	X	
Control for past outcome		X	X		X	X		X	X	
Additional controls			X			X			X	
Observations	2,660	2,133	2,133	2,660	2,133	2,133	2,660	2,133	2,133	
R^2	0.002	0.371	0.395	0.000	0.495	0.509	0.001	0.525	0.541	
Mean in control group	0.2740	0.2620	0.2620	0.5146	0.5056	0.5056	0.3943	0.3838	0.3838	
Panel B. Instrumental varia	ble estimati	on: "alloc	ated to can	assers" insi	trumented v	with "treatme	ent"			
Allocated to canvassers	0.0093	0.0028	0.0015	0.0016	-0.0025	-0.0028	0.0055	-0.0004	-0.0011	
	(0.0049)	(0.0045)	(0.0045)	(0.0054)	(0.0046)	(0.0046)	(0.0048)	(0.0039)	(0.0039)	
Strata fixed effects	X	X	X	X	X	X	X	X	X	
Control for past outcome		X	X		X	X		X	X	
Additional controls			X			X			X	
Observations	2,660	2,133	2,133	2,660	2,133	2,133	2,660	2,133	2,133	

Литература: книжки

- Angrist, Joshua D и Jörn-Steffen Pischke (2008). Mostly harmless econometrics: An empiricist's companion. Princeton university press.
 - Imbens, Guido W n Donald B Rubin (2015). Causal inference in statistics, social, and biomedical sciences. Cambridge University Press.

Литаратура: статьи

