Preparado para:

REFORM/SC2022/126 **DELIVERABLE 4 MÓDULO 5 O MODELO**

DESIGNING A NEW VALUATION MODEL FOR RURAL PROPERTIES IN PORTUGAL

Parte II

Formador: Luís Teles Morais | Nova SBE Lisboa, 27 julho 2023

This project is carried out with funding by the European Union via the Structural Reform Support Programme and in cooperation with the Directorate General

for Structural Reform Support of the European Commission

Programa

Módulos	Duração
 Módulo 1 - Introdução ao R: O que é o R? Como instalar e configurar o R. Sintaxe básica e comandos. Tipos de dados, objetos e classes. 	4 Horas
 Módulo 2 - Gestão e tratamento de dados em R: Carregar dados no R. Perceber as estruturas de dados e subsetting. Limpeza de dados: missing values, outliers e transformações Juntar bases de dados 	8 Horas
 Módulo 3 - Estatística básica em R: Estatísticas descritivas: medidas de dispersão central e variação. Distribuições probabilísticas: variáveis discretas e contínuas. Testes de hipóteses. 	8 Horas

Módulos	Duração
 Módulo 4 - Regressão Linear: O modelo classico linear. Estimação de parametros segundo o MN Testes de hipóteses: significância estatís ajuste do modelo. Modelo de regressão múltipla. Testar as premissas: multicolinearidade, heteroscedasticidade e normalidade dos resíduos. Critérios de seleção dos modelos. 	tica e 12 Horas
Módulo 5 – O modelo: - Estrutura do modelo e premissas – Perce modelo (4 Hours). Lisa e tratamento dos dados (4 Hours)	eber o
Uso e tratamento dos dados (4 Hours).Descrição do modelo (4 Hours).	32 Horas
 Aplicação do modelo a cada piloto (12 Ho Aplicação autónoma do modelo a uma ro (8 Hours). 	

across()

Operações em várias colunas ao mesmo tempo, permite repetir **mutate** e **summarize** de forma eficiente:

```
Coluna(s) a alterar

Função a aplicar: nome de função f ou ~ f(.)

mutate(across(.cols, .fns, .names = "{.col}"))
```

chamar across dentro de mutate/summarize

Exercício II

- 1. Transforme os dados das classes para considerar apenas as classes de aptidão 1-6, seguindo a fórmula:
 - Valor de classe novo = Valor de classe antigo / (1 A0)
- 2. Corra o modelo com estas novas variáveis e compare os resultados com o anterior.
- 3. Corra o modelo em versão log-linear e compare os resultados com o anterior.

Flowchart

A regressão base

 Estimar, para a amostra composta pelas freguesias i no último ano disponível:

Rendibilidade média (€/ha) - var. dep.

Majorantes e minorantes

$$Profitability_i = \alpha + \beta_1 A 1 B + \beta_2 A 2 B + \beta_3 A 3 B + \beta_4 F 1 B + \beta_5 F 2 B + \beta_6 M a j s_i + \beta_7 M i n s_i + \varepsilon_i$$

Classes de aptidão

- Para cada freguesia, a % do território atribuída a cada uma de entre 6 categorias/classes de aptidão para a atividade agrícola
- Em princípio, A1B + A2B + A3B + F1B + F2B + F3B = 100%

Modelo proposto

Rendibilidade média (€/ha) - var. dep.

Classes de aptidão

$$Profitability_{i} = \alpha + \beta_{1}A1B + \beta_{2}A2B + \beta_{3}A3B + \beta_{4}F1B + \beta_{5}F2B + \beta_{6}DIST_CONC_KM + \beta_{6}Majs_{i} + \beta_{7}Mins_{i} + \varepsilon_{i}$$

Distância ao centro do município

 Impacto na rendibilidade do terreno face a custos de distribuição etc.

Selecção de variáveis

Critérios

- Aumentar R2 do modelo
- Coeficiente estatisticamente significativo

VARIABLE CODE	CODE VARIABLE NAME STATISTICAL SIGNIFICANCE		ADJUSTED R ²
CAALL	All conservation areas SIGNIFICANT AT 1%		↑
TI_M	Thermicity index	SIGNIFICANT AT 1%	1
OI_M	Annual ombrothermic index	SIGNIFICANT AT 1%	1
ELE_M	Elevation	SIGNIFICANT AT 1%	1
TRI5_M	TRI5_M Terrain ruggedness index (5-cell window) SIGNIFICANT AT 1%		1
SRR25_M	SRR25_M Surface relief ratio (25-cell window) NOT SIGNIFICANT		1
TPI5_M	Topographic position index (5-cell window)	NOT SIGNIFICANT	1
TPI15_M	TPI15_M Topographic position index (15-cell window) NO		+
TPI25_M	TPI25_M Topographic position index (25-cell window) NOT SIGNIFICANT		+
GPIN_M	Grassland Productivity Index	SIGNIFICANT AT 10%	→
CPIN_M	Cropland Productivity Index	SIGNIFICANT AT 10%	1
N2ALL	N2ALL All Natura 2000 NOT SIGNIFICANT		1
NAR	NAR National Agricultural Reserve SIGNIFICANT AT 1%		1
PNF	Primary Network of <u>Fuelbreaks</u>	SIGNIFICANT AT 1%	
НАА	HAA Hydro-Agricultural Areas NOT SIGNIFICANT		=

Modelo proposto

Especificação

```
Profitability<sub>i</sub> = \alpha + \beta_1 A1B + \beta_2 A2B + \beta_3 A3B + \beta_4 F1B + \beta_5 F2B + \beta_6 DIST\_CONC_{KM}
+ \beta_7 CAAll + \beta_8 Ti\_M + \beta_9 Oi\_M + \beta_{10} ELE\_M + \beta_{11} TRI5\_M + \beta_{12} CPIn\_M + \beta_{13} NAR
+ \beta_{14} PNF + \varepsilon_i
```

VARIABLE CODE	VARIABLE NAME		
CAALL	All conservation areas		
TI_M	Thermicity Index		
OI_M	Annual <u>ombrothermic</u> index		
ELE_M	Elevation		
TRI5_M	Terrain ruggedness index (5-cell window)		
CPIN_MN	Cropland Productivity Index		
NAR National Agricultural Rese			
PNF	Primary Network of Fuelbreaks		

Rendibilidade

Rendibilidade

add_predictions()

Acrescenta uma coluna com valores previstos com base num modelo já estimado, utilizando os dados contidos numa tabela. **Pode ser dados novos, não utilizados na estimação.**

wages %>% add_predictions(mod_h)

4	height <dbl></dbl>	weight <int></int>	age <int></int>	marital <fctr></fctr>	sex <fctr></fctr>	education <int></int>	afqt <dbl></dbl>	pred <dbl></dbl>
	60	155	53	married	female	13	6.841	10.102158
	70	156	51	married	female	10	49.444	10.621947
	65	195	52	married	male	16	99.393	10.362053
	63	197	54	married	female	14	44.022	10.258095
	66	190	49	married	male	14	59.683	10.414032
	68	200	49	divorced	female	18	98.798	10.517989
	64	160	54	divorced	female	12	50.283	10.310074
	69	162	55	divorced	male	12	89.669	10.569968
	69	194	54	divorced	male	13	95.977	10.569968
	64	145	53	married	female	16	67.021	10.310074
1–10 of 5,266 rows 2–9 of 9 columns Pr					Previous 1	2 3 4	5 6	100 Next

spread_predictions()

Semelhante a add_predictions mas para vários modelos. Acrescenta valores previstos para vários modelos, cada um na sua própria coluna.

spread_residuals(data, m1, m2, m3, ...)

Acrescenta valores previstos com bases nestes modelos

A esta tabela, calculados com base nos valores da mesma wages %>%
spread_residuals(mod_h, mod_eh, mod_ehs)

1-10 of 5,266 rows

income <int></int>	height <dbl></dbl>	sex <fctr></fctr>	education <int></int>	mod_h <dbl></dbl>	mod_eh <dbl></dbl>	mod_ehs <dbl></dbl>
19000	60	female	13	-0.2499641042	-0.197967581	-0.2638576582
35000	70	female	10	-0.1588437767	0.345993609	0.7237344726
105000	65	male	16	1.1996628894	0.853872025	0.5063344524
40000	63	female	14	0.3385397443	0.262834114	0.3124199119
75000	66	male	14	0.8112117773	0.746516842	0.4591017275
102000	68	female	18	1.0147387260	0.402532860	0.6229479494
70000	64	female	12	0.8461766568	1.051566955	1.1612752115
60000	69	male	12	0.4321315995	0.655873056	0.5117444599
150000	69	male	13	1.3484223314	1.433450940	1.2800521289
115000	64	female	16	1.3426135431	0.993152447	1.0657798463

Previous 1 2 3 4 5 6 ... 100 Next

Exercício III

- 1. Carregue os dados fake_parcelas.csv (processando corretamente quaisquer NAs).
- 2. Com base no modelo <u>m2</u> já estimado, calcule os valores previstos para a rendibilidade de cada parcela utilizando "add_predictions".
 - Acrescente também uma coluna com o LBV estimado para cada parcela.
 - Componha um gráfico que relacione a distância ao centro urbano com o LBV.
 - Repita os passos para os dados originais (dados_modelo). O que se conclui?

Obrigado e até à próxima!

luis.morais@novasbe.pt