Experimental Physik III

Andréz Gockel Patrick Munnich Daniil Akthonka

25. Januar 2019

Kapitel 1

Aufgaben

1.1

1.1.1

Rotationsmatrix:

$$R = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

1.1.2

Galilei Transformation

$$\begin{pmatrix} x' \\ t' \end{pmatrix} = \begin{pmatrix} 1 & -v \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix}$$

1.1.3

Geschwindigkeitsaddition:

$$u_{x} = \frac{u'_{x} + v}{1 + \frac{v}{c^{2}}u'_{x}}, \qquad u'_{x} = \frac{u_{x} - v}{1 - \frac{v}{c^{2}}u_{x}}$$

$$u_{y} = \frac{\sqrt{1 - \frac{v^{2}}{c^{2}}}u'_{y}}{1 + \frac{v}{c^{2}}u'_{x}}, \qquad u'_{y} = \frac{\sqrt{1 - \frac{v^{2}}{c^{2}}}u_{y}}{1 - \frac{v}{c^{2}}u_{x}}$$

$$u_{z} = \frac{\sqrt{1 - \frac{v^{2}}{c^{2}}}u'_{z}}{1 + \frac{v}{c^{2}}u'_{x}}, \qquad u'_{z} = \frac{\sqrt{1 - \frac{v^{2}}{c^{2}}}u_{z}}{1 - \frac{v}{c^{2}}u_{x}}$$

1.1.4

Math.

1.2

1.2.1

1.2.2

Minkowsky Diagram (x, ct). Oben Zukunft, unten Vergangheit, rest "woanders". Bewegte Beobachter haben andere x und ct Achsen. Alles parallel zu x bzw x' wird gleichzeitig beobachtet.

Winkel zwischen x und x' bzw ct und (ct)':

$$\tan \alpha = \frac{v}{c} = \beta$$

Längeneinheit U:

$$U' = U\sqrt{\frac{1+\beta^2}{1-\beta^2}}$$

1.2.3

Längenkontraktion:

$$L = L_0 \sqrt{1 - \frac{v^2}{c^2}}$$

Zeitdilataion:

$$\Delta t' = \frac{\Delta t}{\sqrt{1 - \frac{v^2}{c^2}}}$$

 ${\it Ma\&elos} \Rightarrow {\it Zeitdilatation/L\"{a}ngenkontraktion} \ {\it findet} \ {\it nicht} \ {\it statt}.$

1.3

1.3.1

Newton mechanics LUL

1.3.2

$$p = \frac{E}{c}$$

1.3.3

???

1.3.4

triggereddaniil.jpeg

1.3.5

Harmonic oscillator solution:

$$x(t) = \frac{F_0}{\omega^2 - i\gamma\omega + \omega_0^2} e^{-i\omega t}$$

$$a + ib \times \frac{a - ib}{a - ib} = \frac{a + b}{a^2 + b^2}$$

b) and c) ???

1.4

1.4.1

Fermat:

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$
$$n = \frac{c}{v}$$

1.4.2

You can unfold boxes.

1.4.3

Common exam question

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$$

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \sin \left(\frac{2}{\pi} - \theta\right)$$

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$$

1.4.4

???

1.4.5

$$\sin\theta + \varphi = \sin\theta\sin\varphi - \cos\theta\sin\varphi$$

1.5

1.5.1

$$F(\omega) = FT[f(t)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\omega t} f(t) dt$$
$$f(t) = FT^{-1}[F(\omega)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-i\omega t} F(\omega) d\omega$$

1.5.2

$$I_T = I_0 \frac{1}{1 + f \sin^2\left(\frac{\Delta\varphi}{2}\right)}$$
$$f = \frac{4R}{(1 - R)^2}$$

I'd suggest reading through the problem, since context is important here. It's the Fabry-Perot experiment.

$$\frac{\Delta\varphi}{2} = 2\pi \frac{d}{\lambda} \sqrt{n^2 - \sin^2\alpha}$$

1.5.3

???

1.6

1.6.1

 ${\bf Einzel spalt:}$

$$E(kx) = E_0 \int_{-d/2}^{d/2} e^{ik_x x} dx = E_0 \frac{1}{\sqrt{2\pi}} d \frac{\sin\left(\frac{k_x d}{2}\right)}{k_x \frac{d}{2}}$$

1.6.2

1.6.3

Rayleigh:

$$\delta_{\min} = 1.22 \frac{\lambda}{D}$$
$$2NA = 2\sin\alpha = \frac{D}{f}$$

- 1.6.4
- 1.7
- 1.7.1
- 1.7.2

Muh polarisation

1.7.3

$$\frac{1}{2}n_1c\varepsilon_0E_i + \frac{1}{2}n_1\varepsilon_0E_r = \frac{1}{2}n_2\varepsilon_0E_t$$
$$E_i = E_r + E_t$$

- 1.7.4
- 1.8
- 1.8.1

"Literally nothing"

1.8.2

Homo Ansatz:

$$x = A\sin\omega t$$

1.8.3

Spontane Emission:

$$\dot{n}_1 = -A_{1\to 0}n_1$$

 $\dot{n}_0 = +A_{1\to 0}n_1$

Photon Absorption

$$\dot{n}_0 = -B_{1\to 0}\rho(\nu)n_0$$

$$\dot{n}_1 = +B_{1\to 0}\rho(\nu)n_0$$

Stimulierte Emission

$$\dot{n}_0 = +B_{1\to 0}\rho(\nu)n_1$$

$$\dot{n}_1 = -B_{1\to 0}\rho(\nu)n_1$$

Gleichgewicht n_1 :

$$A_{1\to 0}n_1 - B_{0\to 1}\rho(\nu)n_0 + B_{1\to 0}\rho(\nu)n_1 = 0$$

1.9

1.9.1

$$E_{\rm kin} = \frac{1}{2} m v^2$$

$$E = q U$$

$$F_{\rm El} = q E$$

$$F_{\rm M} = q v B$$

1.9.2

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

$$\int |\vec{E}| \mathrm{d}x = \Delta U$$
 Gaußscher Satz $|\vec{E}| 2\pi r = \frac{Q}{\varepsilon_0}$

1.9.3

$$|\vec{k}|^2 = \frac{\omega^2}{c^2}$$
 Sphere $V = \frac{4}{3}\pi r^3$

1.9.4

$$F_{\text{Auftrieb}} = -\rho V \vec{g}$$

1.10

1.10.1

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

1.10.2

"Literally nothing"

1.10.3

"meth math"

1.10.4

Homework 9

1.11

1.11.1

$$qU = hf - W_{\rm A}$$

1.11.2

Same as 1 from homework 10.

1.11.3

Bragg:

$$2d\sin\theta = n\lambda$$

Maxima Einzelspalt:

$$d\sin\theta=n\lambda$$

1.11.4

$$\vec{p}=\hbar\vec{k}$$

1.11.5

$$\int \psi^* \psi dx = 1$$
$$\int x p(x) dx = \text{Erwartungswert}$$

1.12

1.12.1

Same as 11's number 5.

1.12.2

Erwartungswert:

$$\langle \psi | \hat{S}_z | \psi \rangle$$
, mit $\hat{S}_z | \uparrow / \downarrow \rangle = \pm 1/2 | \uparrow / \downarrow \rangle$

Übergangswahrscheinlichkait

$$W = |\psi_{\text{final}}^* \psi_{\text{initial}}|^2 = \int \psi_{\text{final}}^* \psi_{\text{initial}} dV = |\langle \psi_{\text{final}} | \psi_{\text{initial}} \rangle|^2$$

1.12.3

zeitabh. Schrödingergleichung

$$i\hbar \frac{\partial}{\partial t} |\psi, t\rangle = \hat{H} |\psi, t\rangle$$

zeitunabh. Schrödingergleichung

$$\hat{H}|\psi\rangle = E|\psi\rangle$$

1.12.4

Zeitentwicklung

$$U_t \psi = e^{-i\frac{|E_n|}{\hbar}t} \psi$$

Kapitel 2

Themen

2.1 Relativitäts Theorie

2.1.1 Experimente

Fizeau-Experiment In den beiden Rohren der Länge I fließt eine Flußigkeit mit dem Brechungsindex n mit einer Geschwindigkeit v. Licht der Wellenlänge λ wird durch einen Strahlteiler (BS) aufgeteilt, und die beiden Strahlen werden von den Spiegeln M2, M3, M4 so reflektiert, dass sie vor dem Auftreffen auf die Kamera die gleiche Strecke zurücklegen; der eine Strahl im Uhrzeigersinn (BS \rightarrow M2 \rightarrow M3 \rightarrow M4 \rightarrow BS) und der Andere gegen den Uhrzeigersinn (BS \rightarrow M4 \rightarrow M3 \rightarrow M2 \rightarrow BS).

Abbildung 2.1: Fizeau-Experiment

Kapitel 3

Skript

3.1 Spezielle Relativitätstheorie

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Lorenz-Trafo:

$$x' = \gamma(x - ut), \ y' = y, \ z' = z, \ t' = \gamma\left(t - \frac{ux}{c^2}\right)$$

$$v'_{x} = \frac{v_{x} - u}{1 - \frac{uv_{x}}{c^{2}}}$$

$$v'_{y} = \frac{1}{\gamma} \frac{v_{y}}{1 - \frac{uv_{z}}{c^{2}}}$$

$$v'_{z} = \frac{1}{\gamma} \frac{v_{z}}{1 - \frac{uv_{x}}{c^{2}}}$$

Zeitdilatation:

$$t' = \frac{1}{\gamma}t$$

Längenkontraktion:

$$l' = \gamma l$$

Doppler: Klassisch:

$$f_B = f_s \frac{c + v_B}{c - v_S}$$

Relativistisch:

$$f_B = f_S \frac{\sqrt{1 - \frac{v^2}{c^2}}}{1 - \cos \alpha \frac{u}{c}}$$

Relativistischer Impuls:

$$\vec{p} = m(v)\vec{v} = \gamma(v)m_0\vec{v}$$

Relativistische Energie-Impuls-Beziehung und Viererimpuls

$$E^2 = (m_0 c^2)^2 + c^2 \vec{p}^2$$

3.2 Geometrische Optik

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Lieblingsprüfungsfrage: Parallel einfallendes Licht, das nicht parallel zur optischen Achse verläuft, in eine Sammellinse. Strahlen werden immer noch fokussiert aber Brennpunkt verschoben. Konstruktion mit Zentralstrahlengang!

Berechnung Brennpunkt bzw Brennweite

$$\frac{1}{f} = \frac{n_2 - n_1}{n_1} \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

Brechkraft:

$$D = \frac{n}{f}$$

Abbildung

$$\frac{1}{f} = \frac{1}{a} + \frac{1}{b}$$

$$\tan\alpha = \frac{\text{Gr\"{o}edesObjkets}}{\text{EntfernungdesObjekts}}$$

$$V = \frac{\text{SehwinkelmitInstrment}}{\text{SehwinkelohneInstrument}}$$

$$L = \frac{\text{Bildgr\"{o}e}}{\text{Gegenstandsgr\"{o}e}}$$

Zwei Linsen:

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$$
$$D_{\text{ges}} = D_1 + D_2$$

Elektronenoptik:

Brechindex

$$\frac{n_2}{n_1} = \sqrt{1 + \frac{U}{U_0}}$$

3.3 Wellenoptik

Harmonische Ebene 1D Welle:

$$A(x,t) = A_0 \cos(\omega t - kx + \varphi)$$

FOURIER TRANSFORMATION

Kohärenz = Wellen dessen Zeitabhängigkeiten bis auf Phasendifferenz gleich sind. Doppelspalt

Maxima:

$$\sin \alpha = n \frac{\lambda}{d}$$

Minima:

$$\sin \alpha = \left(n + \frac{1}{2}\right) \frac{\lambda}{d}$$

Einzelspalt:

Intensität:

$$I(\alpha) = I_0 \frac{\sin^2(x)}{x^2}$$

Minima:

$$\sin \alpha = n \frac{\lambda}{h}$$

Nebenmaxima:

$$\sin \alpha = \left(n + \frac{1}{2}\right) \frac{lambda}{b}$$

Gitter:

Intensität:

$$I(\alpha) = A^2$$

Hauptmaxima:

$$\sin \alpha = m \frac{\lambda}{d}$$

Nebenmaxima:

$$\sin \alpha = m \frac{\lambda}{Nd}$$

Breite Hauptmaxima:

$$B = \frac{2\lambda}{Nd}$$

 \Rightarrow scharfe Linien

Bragg:

Kristall kann als regelmäßige Anordnung von Atomen als Raumgitter betrachtet werden:

$$2d\sin\alpha = m\lambda$$

Interferenz an planparallelen Glasplatten: Just look at the script. Airy-Formeln:

$$I_R = I_0 \frac{F \sin^2\left(\frac{\Delta\varphi}{2}\right)}{1 + F \sin^2\left(\frac{\Delta\varphi}{2}\right)}$$

$$I_T = I_0 \frac{1}{1 + F \sin^2\left(\frac{\Delta\varphi}{2}\right)} F$$

$$= \frac{4R}{(1 - R)^2}$$

$$\frac{\Delta\varphi}{2} = 2\pi \frac{d}{\lambda} \sqrt{n^2 - \sin^2\alpha}$$

Kirchhoffsches Beugungsintegral

$$\vec{E}(\vec{x}') = \frac{ik}{2\pi} \int Q\tau(x, y) \vec{E}_{ein}(\vec{x}) \frac{e^{-ikr}}{r} d\sigma$$

QNeigungsfaktor, τ Transmissionsfunktion (0 oder 1), rAbstand $|\vec{x}-\vec{x}'|$ Beugungsintegral Frauenhofer Beugung:

$$\vec{E}(\vec{x}') = A(\vec{x}')\vec{F}\left(k\frac{x'}{z'}, k\frac{y'}{z'}\right)$$

Auflösung Lochblende/Linse:

$$\sin \alpha_{\min} = 1.22 \frac{\lambda}{D}$$

Auflösung Mikroskop:

$$\delta_x \approx 0.61 \frac{\lambda}{n \sin \varphi}$$

3.4 Licht-Materie Wechselwirkung

Transversale welle:

$$\vec{E} \cdot \vec{k} = 0$$

Longitudinale Welle:

$$\vec{E} \times \vec{k} = 0$$

Lineare Polarisation:

$$\vec{E} = E_0 \begin{pmatrix} \cos \tilde{\varphi} \\ \sin \tilde{\varphi} \\ 0 \end{pmatrix} \cos(\omega t - kz + \varphi)$$

Zirkulare Polarisation:

$$\vec{E} = E_0 \begin{pmatrix} \cos(\omega t - kz + \varphi) \\ \pm \sin(\omega t - kz + \varphi) \\ 0 \end{pmatrix}$$

Jede linear polarisierte Welle kann in zwei entgegengesetzte zirkular polarisierte Wellen mit halber Amplitude zerlegt werden und umgekehrt.

Elliptische Polarisation:

$$\vec{E} = \begin{pmatrix} E_x \cos(\omega t - kz + \varphi) \\ E_y \cos(\omega t - kz + \varphi \pm \frac{\pi}{2}) \\ 0 \end{pmatrix}$$

Brechung durch Materie:

$$k_x \neq k_y$$

Stetigkeitsbedingungen:

Polarisation eines Dielektrikums:

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P} = \varepsilon_0 \varepsilon \vec{E}$$

mikroskopisch (d induziertes Dipolmoment, α Polarisierbarkeit:

$$\vec{d} = \alpha \vec{E}$$

$$\vec{P} = \frac{1}{V} \sum_{i} \vec{d_i}$$

Wellengleichung in Materie:

$$\Delta \vec{E} - \frac{1}{c_0^2} \frac{\partial^2}{\partial t^2} \frac{\vec{D}}{\varepsilon_0} - \operatorname{grad} \operatorname{div} \vec{E} = 0$$

Komplex:

$$-(k^2)\hat{\vec{E}}_0 + \frac{\omega^2}{c_0^2}\hat{\varepsilon}\hat{\vec{E}}_0 + (\hat{\vec{k}}\cdot\hat{\vec{E}}_0)\hat{\vec{k}} = 0$$

mit:

$$\hat{\vec{k}}^2 = \vec{k}'^2 - \vec{k}''^2 + 2i\vec{k}' \cdot \vec{k}''$$

Transversal $(\vec{k} \propto \vec{E}_0)$:

$$\hat{\vec{k}}^2 = \frac{\omega^2}{c_0^2} \hat{\varepsilon}$$

$$\omega(\hat{\vec{k}}) = c_0 \sqrt{\frac{\hat{\vec{k}}^2}{\hat{\varepsilon}}}$$