Deep Learning

For POS

前导知识

- 参考http://neuralnetworksanddeeplearning.com/ 前三章
- 如果使用pytorch或其他框架,无需关注如何计算梯度
- Pytorch教程及安装方法见官网:https://pytorch.org/(安装命令需要翻墙才能看到)

目录

- Word embedding
- Feedforword neural network
- Feedforword neural network + CRF
- LSTM

词嵌入(word embedding)

- 如何表示一个图片?
 - 在手写数字识别的例子中,图片本身由0和1的像素组成。
 - 例如28*28的图片就可以用长度784的向量表示,输给神经网络计算。
- 词是一个字符串,那么如何表示一个词?
 - 假定我们有一个词典D, 包含了N个词, 每个词对应一个index
- One-hot vector(独热向量)
 - 长度为N,对应index的位置为1,例如:

母亲 [1 0 0 0 ... 0 0 0] 妈妈 [0 0 1 0 ... 0 0 0]

• 缺点: 高维、稀疏, 词与词之间没有关联

词嵌入(word embedding)

- 词嵌入
 - 这种表示词的向量通常是低维、稠密的,所有的词向量的维度都一样,每一维都可以认为在表达某种语义。例如:

母亲 [0.13 -0.52 ... 0.93 0.44] 妈妈 [0.11 -0.49 ... 0.80 0.46]

• 可以看出, "母亲"和"妈妈"这种含义相近的词,其向量在数值上非常接近。使用这种表示方式,便建立了一个语义向量空间,每个词都被嵌在语义空间中的一个点上,这也是其被称为词嵌入的原因。含义相近的词在语义空间中的位置也会非常接近。

词嵌入与神经网络

- 所有的词向量可以用一张二维表来存储,每一行对应一个词的词向量
- 有了一个词的index,就可以在表中查到该词的向量(look up)
- 该二维表会在训练过程中不断调整。为什么?
 - 事实上,表中的词向量就可以看成是一层全连接网络的权重。查找表的操作可以看成是通过神经网络的一层,是神经网络的一部分。
 - 示意图

词嵌入与神经网络

- 在backpropagation的时候,每次更新的只有嵌入矩阵中的一行,即与输入为1的神经元相连的权重,也就是该词对应的词向量。
 - 为什么?(直观来讲,因为其他神经元的输入都是0所以与其相连的weight的梯度都是0)
- 如何训练出一个embedding?
 - http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
 - 只需要了解,不需要自己训练。实际做的时候可以先随机初始化。
 - 两个预训练词向量下载地址 https://pan.baidu.com/s/1tU3mZjLWCJCrFyknCxtLBQ

Feedforword neural network

- 最简单的前向全连接的神经网络,那么如何实现POS呢?
- 看做一个简单的分类问题:
 - 手写数字图片识别:给定一张图片,预测该图是0-9(类别)中的哪个
 - POS: 给定一个词, 预测该词属于哪个词性(类别)
- 但是词的词性是离不开句子的,单单只看一个词(其词向量)根本无法预测。因此我们要把该词放在句子中,同时看它前后的词。
- 所以输入为一个词及其前后两个词,转换为词向量后拼接起来(作为该词的特征),输入到隐藏层,最后输出的是对应每个词性的概率(分值)。
- 示意图

- 假设每个词用150维向量表示, 共有35个可能的词性
- 隐藏层此处示例为2层,各300,实际用一层可能效果好
- 输出层可以用softmax函数得到对应标签的概率。直接取最大值作为预测的结果。
- 实际上还是以一个一个词为单位来预测的。

Feedforword neural network + CRF

- 以句子为单位
 - 给定一个词序列,输出一个词性序列
- 需要一个bigram score矩阵(转移分值矩阵)
 - 随机初始化,作为模型的一部分,会随着训练调整
- 结果用viterbi算法预测
- ·如何计算loss?

词性1	我 3.1	是 6.2	中国人 7.1			
词性2	2.2	-2.2	10			
词性3	1.3	2.9	0.1	Forword算法		
词性T	5.9	2.1	7.9	TOTWOTA #12	$Z = \sum_{Y \in T^n} e^{score(S,Y)}$	
	unigrar	n scores(发	z射分值)	ŕ		$loss = -\log(e^{score(S,Y^j)}/Z)$
	词性1	词性2	词性3	根据正确的词		
词性1	3.1	6.2	7.1	性序列	$e^{score(S,Y^j)}$	
词性2	2.2	-2.2	10		-	
词性3	1.3	2.9	0.1			
词性T	5.9	2.1	7.9			
	bigram scores(转移分值)					

Feedforword neural network + CRF

- 训练完后,根据bigram score和unigram score用viterbi算法预测最优词性序列。
- Bigram score 矩阵会随着训练而调整。

结果

数据集为conll格式,来自CTB7。

训练集: train.conll,共46,572个句子,共1,057,943个词。 开发集: dev.conll,共2,097个句子,共59,955个词。 测试集: test.conll,共2,796个句子,共81,578个词。

预训练词向量: base_embeddings.txt

model	dev准确率	test准确率	迭代	时间/迭代
FFNN	92.87%	92.61%	24/34	~3min
FFNN+CRF	93.14%	92.77%	25/35	~9min

LSTM

- 参考资料
- http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2018/Lecture/Se q%20(v2).pdf
- (NAACL2016)Neural Architectures for Named Entity Recognition

Bi-LSTM

- 双向LSTM网络由一个正向LSTM网络和一个反向LSTM网络组成
- 它们的结构一致, 只是一个正向传播信息, 另一个反向传播信息。

Bi-LSTM简易图

Bi-LSTM+CRF

Main architecture of the network. Word embeddings are given to a bidirectional LSTM. Ii represents the word i and its left context, ri represents the word i and its right context. Concatenating these two vectors yields a representation of the word i in its context, ci.

优化

- Dropout
- 加入字符级特征
 - 1.词向量拼上该词第一个字或者最后一个字的字向量
 - 2.aver-pooling:词向量拼上该词所有字的字向量之和的平均
 - 3.利用一层char lstm获取字符级特征,再拼上词向量输入到下一层lstm
 -

Char Level LSTM

- 一个词首先拆成字符通过一层BiLSTM
- 把最后一个时间点的output拿出来拼在词的word embedding上
- 把拼接起来的特征输入到下一层BiLSTM

The character embeddings of the word "Mars" are given to a bidirectional LSTMs. We concatenate their last outputs to an embedding from a lookup table to obtain a representation for this word.

LSTM in Pytorch

- 需要对句子做padding才能实现minibatch方法
 - 最佳方法是只对一个batch里的句子padding。
 - 对整个训练集做padding也没问题(此处问题不大)虽然省事但是会浪费内存。
- 实现char Istm的时候也要对词做padding
 - char embedding矩阵随机初始化
 - 此处如果padding成训练集里最长的词内存会浪费极多。因为词的数量多,其中长的词非常少。
 - 直接把长的词后面部分截掉
- 双向LSTM只需改一下参数和维度
- 在词向量与字符特征拼接的地方加上dropout

结果

数据集为conll格式,来自CTB5。

训练集: train.conll,共16,091个句子,共437,991个词。 开发集: dev.conll,共803个句子,共20,454个词。 测试集: test.conll,共1,910个句子,共50,319个词。

预训练词向量: giga.100.txt

model	dev准确率	test准确率	迭代	时间/迭代
Bilstm(2层)+crf	94.82%	94.30%	21/31	9min
first char embedding+bilstm(2 层)+crf	95.05%	94.57%	20/30	9min
aver-pooling+bilstm(2 层)+crf	95.35%	94.93%	28/38	10min
charlstm+wordlstm+crf	95.69%	95.29%	20/30	6min(优化的CRF)

结果

数据集为conll格式,来自CTB7。 训练集: train.conll,共46,572个句子,共1,057,943个词。 开发集: dev.conll,共2,097个句子,共59,955个词。 测试集: test.conll,共2,796个句子,共81,578个词。

预训练词向量: giga.100.txt

model	dev准确率	test准确率	迭代	时间/迭代
BiLstm(2层)+crf	94.95%	94.75%	17/27	23min
first char embedding+BiLstm(2 层)+crf	95.28%	95.06%	32/42	23min
aver-pooling+BiLstm(2 层)+crf	95.57%	95.25%	16/26	24min
charlstm+wordlstm+crf	95.66%	95.39%	18/28	19min(优化过了CRF)