5 Adjunctions via units and counits

Exercise 5.1. Let $A \xleftarrow{f}{g} B$ be order-preserving maps between ordered sets. Prove directly that the following conditions are equivalent:

a) for all $a \in A$ and $b \in B$,

$$f(a) \le b \iff a \le g(b)$$

b) $a \leq g(f(a))$ for all $a \in A$ and $f(g(b)) \leq b$ for all $b \in B$.

Proof. a) \Longrightarrow b). To see $a \le g(f(a))$ by a) it suffices to prove $f(a) \le f(a)$. That is clearly true and in the same manner one varifies that $f(g(b)) \le b$ for all $b \in B$.

 $b) \implies a$). Assume $f(a) \le b$. Then we can apply g (which is order-preserving) and get $g(f(a)) \le g(b)$. By b) we know that $a \le g(f(a))$ and are done (as \le is transitive). The same argument works in the other direction.

Exercise 5.2. a) Let $\mathscr{A} \xrightarrow{F} \mathscr{B}$ be an adjunction with unit η and counit ε . Write

 $\mathbf{Fix}(GF)$ for the full subcategory of \mathscr{A} whose objects are those A such that η_A is an isomorphism and dually $\mathbf{Fix}(FG) \subset \mathscr{B}$. Prove that the adjunction restricts to an equivalence between $\mathbf{Fix}(GF)$ and $\mathbf{Fix}(FG)$

b) Give some examples of what happens in part a)

Proof. a) It suffices to prove that the restriction is well defined. So we have to prove that if η_A is an isomorphism than so is $\varepsilon_F(A)$ and if ε_B is an iso then so is $\eta_G(B)$. So let A be given such that η_A is an isomorphism. That means that $\eta_A: A \to G \circ F(A)$ is an isomorphism. We want to show that $\varepsilon_F(A): F(A) \to (F \circ G)(F(A))$ is an isomorphism. But looking at the triangle identity

$$A \xrightarrow{F(\eta_A)} FGF(A)$$

$$\downarrow^{\varepsilon_{F(A)}} \downarrow^{\varepsilon_{F(A)}}$$

$$F(A)$$

As functors respect isomorphisms we see that $F(\eta_A)$ and $\mathrm{id}_{F(A)}$ are isomorphisms. But than $\varepsilon_{F(A)}$ has to be an iso as well.

1

The argument works exactly the same for the other direction. (one probably could say something about duality here...)

b) Let us give one example. Recall that given the forgetful functor $U : \mathbf{Top} \to \mathbf{Set}$ we have a left adjoint given by $I : \mathbf{Set} \to \mathbf{Top}$ that equipts a set with the discrete topologie.

That is Top
$$\underbrace{\perp}_{I}^{U}$$
 Set

In this case the map $U \circ I$ is the identity so $\mathbf{Fix}(UI) = \mathbf{Sets}$ is just everything. However the map $I \circ U$ has a problem if the topological space we start with is not discrete. It is easy to see that $\mathbf{Fix}(IU)$ is exactly the full subcategory given by the topological spaces with discrete topology. It is easy to see that both categories are equivalent.

Exercise 5.3. Let $f: K \to L$ be a map of sets, and denote by $f^*: \mathcal{P}(L) \to \mathcal{P}(K)$ the map sending a subset S of L to its inverse image $f^{-1}S \subseteq K$. Then f^* is order-preserving with respect to the inclusion orderings on $\mathcal{P}(K)$ and $\mathcal{P}(L)$, and so can be seen as a functor. Find left and right adjoints to f^* .

Solution. Denote by $f_!: \mathcal{P}(K) \to \mathcal{P}(L)$ the map sending a subset T of K to its image $fT \subseteq L$. $f_!$ is order-preserving, hence can be seen as a functor. In the literature, this functor is often called "the exceptional image functor".

Denote by $f_*: \mathcal{P}(K) \to \mathcal{P}(L)$ the map sending a subset T of K to $L \setminus f(K \setminus T)$, i.e. to the complement of the image of the complement. In the literature, this functor is often called "the direct image functor"

We will show that $f_! \vdash f^* \vdash f_*$.

We start with $f_! \vdash f^*$. It suffices to show that for all $T \subseteq K$ we have $T \subseteq f^*(f_!(T))$ and for all $S \subseteq L$ we have $f_!(f^*(S)) \subseteq S$.

For the first inclusion, let $x \in T$. Then $f(x) = f(x) \in f(T) = f_!(T)$, hence $x \in f^{-1}(f_!(T)) = f^*(f_!(T))$.

For the second inclusion, let $y \in f_!(f^*(S))$. Than there exists $x \in f^*(S)$ such that y = f(x). Since $x \in f^*(S) = f^{-1}(S)$, we get that $y \in S$.

This proves $f_! \vdash f^*$.

We now prove $f^* \vdash f_*$. It suffices to show that for all $S \subseteq L$ we have $S \subseteq f_*(f^*(S))$ and for all $T \subseteq K$ we have $f^*(f_*(T)) \subseteq T$.

For the first inclusion, let $x \in S$. We have $f_*(f^*(S)) = L \setminus f(K \setminus f^*(S))$. So it suffices to show that $x \notin f(K \setminus f^*(S))$. But it is clear that $S \cap f(K \setminus f^*(S)) = \emptyset$.

For the second inclusion, let $y \in f^*(f_*(T))$. This means that $f(y) \in f_*(T) = L \setminus f(K \setminus T)$. This implies, that $y \notin K \setminus T$, hence $y \in T$.