Agent-Based Modelling

Assets in ABM
Lead to
Emergent
Specialization

Group 16

Nitai Nijholt Calvin Law
Dan Dong Jasper Timmer Zijian Zhang

Motivation

Preventing Income Inequality: Can wealth inequality be prevented in the presence of initial wealth heterogeneity?

Effects of Asset Introduction: What is the effect of introducing assets on the emergent behavior and income of rational agents?

Reproducing Emergent

Behavior: Zheng et al.'s (2022) paper uses an unrealistic asset model and directly programs in "emergent" specialization behavior. Can we reproduce this behavior without direct programming it into the model?

Motivation

What we add compared to Zhang et. al 2022

Remove skills heterogeneity, introduce only initial wealth heterogeneity

Introduce assets (houses, which give agents income over time)

Introduce cities (houses close together, produce more income)

Static vs. dynamic tax policy

2 agent types: expectation maximizing and neurevolution

Problem Definition

RQ1: How does introducing an asset, influence the emergent behavior classes?

RQ2: What is the effect of static, vs. dynamic tax policy on wealth distribution?

Heterogeneity

Agent States (wealth, inventory) Asset Income (increases if other assets (houses) are nearby)

Why ABM?

Spatial/Local Interactions (Gathering, Building, Cities)

Emergence (Classification of Agent Behavior)

Overview

Tax Policy

Market Order Book

Decision Making EV

Decision Making Neuroevolution

Model Description

Model Overview

- Objects: Agent, Tax policy Planner, Market, Assets (houses)
- **Environment:** 2d grid with stochastic spawning resources
- Agent Actions: move, gather, build houses, buy or sell resources
- Agent Decision Making: choose an action based on the logit model
- Market: dynamic, agents place bid or ask in order book pricing resources at expected value
- Assets: Houses grant the agent +1 income per timestep, or more if adjacent to other houses
- **Tax policy:** Collect and redistribute income tax every timestep

Source: Zheng, S., Trott, A., Srinivasa, S., Parkes, D. C., & Socher, R. (2022). The AI Economist: Taxation policy design via two-level deep multiagent reinforcement learning. Science advances, 8(18), eabk2607.

Tax Policy

Tax Collection and Redistribution: Dynamic and Static Strategy

- Define Income Brackets and Tax Rates: Based on the Dutch Income Data, Over-progressive Tax System
- Set Standard Deviation of Income (Only for Dynamic Policy)
- Set Adjustment Factor (Only for Dynamic Policy)
- Redistribute Collected Tax Evenly
- **Update Wealth**
- **Progressive Tax System**

Tax Redistribution

$$\Delta C_i = -T(z_i) + rac{1}{N} \sum_{j=1}^N T(z_j)$$

Wealth Change

Tax Policy

Social Equality

$$egin{aligned} \operatorname{eq}(oldsymbol{C}_t) &= 1 - rac{N}{N-1} \mathrm{gini}(oldsymbol{C}_t), \ 0 \leq \operatorname{eq}(oldsymbol{C}_t) \leq 1 \ & \operatorname{gini}(oldsymbol{C}_t) = rac{\sum_{i=1}^{N} \sum_{j=1}^{N} |C_{i,t} - C_{j,t}|}{2N \sum_{i=1}^{N} C_{i,t}}, \ 0 \leq \operatorname{gini}(oldsymbol{C}_t) \leq rac{N-1}{N} \end{aligned}$$

Social Productivity

$$\operatorname{prod}(oldsymbol{C}_t) = \sum_i C_{i,t}$$

Total Wealth at Time t Wealth of Agent i in Time

Social Welfare

$$\max_{\pi_p} \mathbb{E}_{ au\sim\pi_p,a\sim\pi} \left[\sum_{t=1}^H \gamma^t r_{p,t} + \operatorname{swf}_0
ight], \quad r_{p,t} = \operatorname{swf}_t - \operatorname{swf}_{t-1}$$
 Discounted Factor Initial Welfare Social Welfare at Time t

Social Benefits or Costs

 $\operatorname{swf}_t = \operatorname{eq}(\boldsymbol{C}_t) \cdot \operatorname{prod}(\boldsymbol{C}_t)$

Source: Zheng, S., Trott, A., Srinivasa, S., Parkes, D. C., & Socher, R. (2022). The AI Economist: Taxation policy design via two-level deep multiagent reinforcement learning. Science advances, 8(18), eabk2607.

EV Based Decision Making

$$ext{Net extra income} = \left[z_0 + ext{EV} - T(z_0 + ext{EV})\right] - \left[z_0 - T(z_0)\right]$$

For impossible actions: $EV = -\infty$

EV Based Decision Making

EV of Building:

Earning Rate

$$r(i,j) = n_v + 1$$
 Earning Rate of a House Number of Houses in its Von Neumann Neighbors

Expected Value of Building

Building Position Earning Rate Life Expectancy Agent Age Time of Building a House
$$ext{EV}_{ ext{building}}(i,j) = rac{ ilde{r}_{ ext{building}}(i,j) \cdot ilde{(t_{ ext{life}} - a - t_{ ext{building}})}}{t_{ ext{building}}}$$

EV Based Decision Making

EV of Buying:

$$ext{EV}_{ ext{buying}}(i,j) = rac{r_{building}(i,j) \cdot (ilde{t}_{ ext{life}} - a - (t_{ ext{building}} + 1)) - ext{cost}}{t_{ ext{building}} + 1}$$
Cost of Buying Resources

EV of Selling:

Wood Price Amount of Wood Owned Stone Price Amount of Stone Owned $\mathrm{EV}_{\mathrm{selling}}(i,j) = r_{\mathrm{wood}} \cdot n_W + r_{\mathrm{stone}} \cdot n_S$

EV of Gathering:

Amount of Wood at Position (i, j) Amount of Stone at Position (i, j) $ext{EV}_{ ext{gathering}}(i,j) = r_{ ext{wood}} \cdot \min(1,n_{W_{ij}}) + r_{ ext{stone}} \cdot \min(1,n_{S_{ij}})$

EV of Moving:

$$\mathrm{EV}_{\mathrm{moving,\,gather}}(i,j) = rac{r_{\mathrm{wood}} \cdot n_{W_{ij}} + r_{\mathrm{stone}} \cdot n_{S_{ij}}}{\min(n_{W_{ij}}, n_{S_{ij}}) + 1}$$

$$ext{EV}_{ ext{moving, build}}(i,j) = rac{r(i,j) \cdot (ilde{t}_{ ext{life}} - a - t_{ ext{building}} - 1)}{t_{ ext{building}} + 1}$$

Decision Making Neuroevolution

Expected value calculations replaced by a neural network

Same input values as EV calculation

Choose action with highest output value

Networks are not trained, but evolved

Parameters of Neural Net	Value
Input Size	34
Output Size	9
Hidden Size	40
Number of Hidden Layers	2
Total Parameters	3409

Decision Making Neuroevolution

1

Initial agents receive neural networks with random weights and biases

2

Birth and death is synchronized

3

Calculate fitness of agent as

$$F = W_t - W_0$$

With W_t as wealth of agent at time t

After each generation:

1. Parent Selection:

'Tournament selection': Fittest agents reproduce 2. **Recombination:**

'Line recombination': merging the parents' networks 3. **Mutation:** Pick new values for small portion of network parameters

4. Survivor
Selection: Replace
all agents with new
generation

Over time, agents will evolve strategies!

Market Order Book

- Buy Orders (Bids)
- Sell Orders (Asks)

14.98	32,204.37
12.68	32,189.39
83.65	32,176.71
0.72	32,093.06
0.57	32,092.34
4.13	32,091.77
4,645.18	32,087.64
2.28	27,442.46
4,503.87	27,440.18
22,936.31	22,936.31
637.12	637.12
	637.12 4,010.80
637.12	
637.12 3,373.68	4,010.80
637.12 3,373.68 2.28	4,010.80 4,013.08
637.12 3,373.68 2.28 2,829.52	4,010.80 4,013.08 6,842.60
637.12 3,373.68 2.28 2,829.52 241.80	4,010.80 4,013.08 6,842.60 7,084.40
637.12 3,373.68 2.28 2,829.52 241.80 266.83	4,010.80 4,013.08 6,842.60 7,084.40 7,351.28
637.12 3,373.68 2.28 2,829.52 241.80 266.88 244.22	4.010.80 4.013.08 6.842.60 7.084.40 7.351.28 7.595.50
637.12 3,373.68 2.28 2,829.52 241.80 266.88 244.22 401.55	4.010.80 4.013.08 6.842.60 7.084.40 7.351.28 7.595.50 7.997.05
	12.68 83.65 0.72 0.57 4.13 4.645.18 2.28 4,503.87

Example of an orderbook Source: ByBit

Experiments and Results

Experiments: EDA

	Parameter	Value
1	Grid Size	40 x 40
2	Number of Agents	30
3	Number of Timesteps	1000
4	Number of Resources	500
5	Resource Respawn Rate	0.5
6	Lifetime Mean	80
7	Lifetime Std Dev	10
8	Order Expiry Time	5
9	Tax Period	1
10	House Income per Timestep	1
11	House cost	(2,2)
12	lamba	1

Experiments: EDA

	Parameter	Value
1	Grid Size	40 x 40
2	Number of Agents	30
3	Number of Timesteps	1000
4	Number of Resources	500
5	Resource Respawn Rate	0.5
6	Lifetime Mean	80
7	Lifetime Std Dev	10
8	Order Expiry Time	5
9	Tax Period	1
10	House Income per Timestep	1
11	House cost	(2,2)
12	lamba	1

RQ1: How does introducing an asset, influence the emergent behavior classes?

H0a: We do get clusters with significantly different characteristics in buying and selling, gathering and selling and buying and building behaviors.

Use ANOVA on cluster feature importances.

Agglomerative clustering on action space with n_clusters = 3

Agglomerative Clustering

Initialize Clusters:

Start with each data point as its own cluster.

2. Find and merge the closest pair of clusters.

Update distances based on WARD linkage criterion (minimum variance within clusters)

3. Repeat Until Stopping Criterion:

Repeat until n_clusters = 3

Neuroevolution agents: Agglomerative clustering feature importances & ANOVA Results (10 runs)

Features

Wealthy Builder Class (Cluster 0)

Shows significantly higher mean build and income rates compared to cluster 1, but not to 2. Significant at alpha = 0.05 level using ANOVA with Tukey Post-hoc

Low Activity 'Poor' Class (Cluster 1)

Significantly lower mean buy count, sell count, build time, wealth differential, and income compared to Clusters 0 and 2. Significant at alpha = 0.05 level using ANOVA with Tukey Post-hoc

Trader Class (Cluster 2)

Significantly higher mean sell rate compared to Clusters 0 and 1 and higher buying, but not significant. Significant at alpha = 0.05 level using ANOVA with Tukey Post-hoc

EV agents: Agglomerative clustering feature importances & ANOVA Results (10 runs)

Features

RQ2: What is the effect of static, vs. dynamic tax policy on wealth distribution?

H0b: There is no significant difference in total welfare between simulation runs with dynamic tax policy and those with static tax policy.

H0c: There is no significant difference in the Gini coefficient of wealth distribution between simulation runs with dynamic tax policy and those with static tax policy.

Experiments: RQ3 Tax effect on Wealth

EV agents: Wealth distribution across 5 runs

Metric	Static Policy Mean \pm 1SD	Dynamic Policy Mean ± 1SD	KS Statistic	P-Value
Welfare	22.43 ± 4.00	36.87 ± 5.86	0.8000	0.0193
Gini	0.7389 ± 0.0203	0.4858 ± 0.0284	1.0000	0.0007
Productivity	22.43 ± 4.00	36.87 ± 5.86	0.8000	0.0193
Equality	0.2592 ± 0.0203	0.5130 ± 0.0285	1.0000	0.0007
Social Welfare	5.83 ± 1.23	18.99 ± 3.52	1.0000	0.0007

Experiments: RQ3 Tax effect on Wealth

Neuroevolution agents Wealth distribution across 5 runs

Metric	Static Policy Mean ± 1SD	Dynamic Policy Mean ± 1SD	KS Statistic	P-Value
Welfare	10.59 ± 3.43	11.14 ± 2.62	0.2500	0.7838
Gini	0.3794 ± 0.1175	0.3938 ± 0.0798	0.2500	0.7838
Productivity	10.59 ± 3.43	11.14 ± 2.62	0.2500	0.7838
Equality	0.6075 ± 0.1216	0.5926 ± 0.0825	0.2500	0.7838
Social Welfare	6.77 ± 3.11	6.76 ± 2.39	0.2000	0.9491

Experiments: Validation

Validation: is simulated income distribution similar to Netherlands?

H0d: There is no significant difference on income distribution in the model and in the Netherlands.

- Use Kolmogrov Smirnov test on distribution.

Experiments: Validation

H0d: The 2 samples come from the same distribution, tested using KS test obtained p-value: 0.0 (10/10 times)-> H0a Rejected

Conclusion

Conclusion

RQ1: How does introducing an asset, influence the emergent behavior classes?

RQ2: What is the effect of static, vs. dynamic tax policy on wealth distribution?

Validation: Income distribution found significantly different from Netherlands for both EV and Neuro evolution agents.

Buyer and Builder Class & low activity poor class emerges using EV and Neuroagents, Traders emerge in some simulations.

Significantly higher Gini coefficient and total welfare for EV agents, not for Neuro agents Wealth distribution GINI coeff is similar (0.73 simulated vs. 0.71 empirical) for EV agents using static tax policy

Limitations

Limitations & Future work

Limitations

- Income from labour and from wealth is taxed (not the case in Netherland tax code)
- Burn in time Neuroevolution agents
- Only explored 1 set of parameters
- Limited amount of runs

Contributions & Future work

- Include assets and wealth heterogeneity instead of hard coding skill difference to produce emergent behavior
- Use dynamic tax policy to lower inequality in model
- Relevant for policy makers (as wealth is easier to measure than skill) and researchers (Including assets leads to emergent classes)

References

- Zheng, S., Trott, A., Srinivasa, S., Parkes, D. C., & Socher, R. (2022). The AI Economist: Taxation policy design via two-level deep multiagent reinforcement learning. *Science Advances*, 8(18), eabk2607. https://doi.org/10.1126/sciadv.abk2607Epstein, J. M. (2006). *Generative social science: Studies in agent-based computational modeling*. Princeton University Press.
- Eiben, A. E., & Smith, J. E. (2015). *Introduction to evolutionary computing* (2nd ed.). Springer. https://doi.org/10.1007/978-3-662-44874-8
- Statistics Netherlands (CBS). (2022). Income distribution (standardised income). Retrieved June 7, 2024, from https://www.cbs.nl/en-gb/visualisations/income-distribution
- Ministerie van Financiën. (2023). Vermogensverdeling in beeld. Retrieved from https://www.rijksoverheid.nl/documenten/begrotingen/2023/04/28/voorjaarsnota-2023

Thank You

Agglomerative clustering feature importances & ANOVA Results

Wealthy builder Class

Significantly higher mean build count, build time, wealth differential, and income compared to other groups.p-adj values (vs. cluster 1, 2) Buy: 0.001, 0.9831

Build: 0.000, 0.000

Wealth differential: 0.0389, 0.0028 Income p-adj values: 0.0016, 0.0002

Trader Class

Significantly higher buy and sell rates. Buy p-adj values (vs. cluster 1, 2): 0.001, 0.0007
Sell p-adj values (vs. cluster 1, 2): 0.0006, 0.0006

'Poor' looking Class

Lower wealth and higher gathering variability, although not significant Gather p-adj values (vs. cluster 1, 2): 0.161, 0.7237

Wealth differential p-adj values (vs. cluster 1, 2): 0.4768, 0.3311

Income p-adj values (vs. cluster 1, 2): 0.3864, 0.5197