Linear Regression Case Study

Najib Mozahem

May 1, 2019

The Dataset

- gpa: overall GPA of the student (this is the dependent variable)
- english: the average grade on all English courses taken by the student (data is taken from a non-English speaking country where the language of instruction in university is English)
- college: whether the student is in the engineering school or the business school (zero means business, one means engineering)
- credits: the total number of credits completed so far by the student
- gender: whether the student is a male or a female (zero means female, one means male)
- attendance: attendance and participation grade last semester
- siblings: Number of brothers and sisters that the student has
- income: family income per year (\$)
- work: records whether the student works full time, part time, or whether the student doesnt work at all.

Continuous Variables

There are two types of independent variables in our dataset, continuous and binary. We start by looking at the continuous variables.

Continuous Variables - Attendance (Scatter plot)

Figure: Scatter plot of GPA and attendance.

Continuous Variables - Attendance (Regression)

Source	SS	df	MS	Number	of obs	=	666
				- F(1, 6	64)	=	2305.64
Model	18376.0567	1	18376.056	7 Prob >	F	=	0.0000
Residual	5292.10793	664	7.9700420	7 R-squa	red	=	0.7764
				- Adj R-	squared	=	0.7761
Total	23668.1646	665	35.59122	5 Root M	ISE	=	2.8231
gpa	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
attendance _cons	.7406767 20.27157	.0154253 1.246345	48.02 16.26	0.000 0.000	.71038 17.824		.7709649 22.71882

Continuous Variables - English (Scatter plot)

Figure: Scatter plot of GPA and english.

Continuous Variables - English (Checking for nonlinearity)

Figure: Scatter plot of GPA and english.

Continuous Variables - English (Regression)

Source	SS	df	MS	Numb	er of obs	s =	677
				- F(2,	674)	=	809.55
Model	17101.4609	2	8550.7304	5 Prob	> F	=	0.0000
Residual	7119.02181	674	10.562346	9 R-sq	uared	=	0.7061
				- Adj	R-squared	= £	0.7052
Total	24220.4827	676	35.829116	4 Root	MSE	=	3.25
	·						
gpa	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
english	2.674998	.1910748	14.00	0.000	2.2998	324	3.050171
english2	0144694	.0012971	-11.16	0.000	01701	162	0119227
_cons	-33.79013	6.925419	-4.88	0.000	-47.388	312	-20.19214
	L						

Continuous Variables - Income (Scatter plot)

Figure: Scatter plot of GPA and income.

Continuous Variables - Income (Regression)

Source	SS	df	MS	Numb	er of obs	; =	677
				- F(2,	674)	=	214.15
Model	9410.93931	2	4705.4696	66 Prob	> F	=	0.0000
Residual	14809.5434	674	21.972616	33 R-sq	uared	=	0.3886
				— Adj	R-squared	1 =	0.3867
Total	24220.4827	676	35.829116	34 Root	MSE	=	4.6875
gpa	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
income	.0021508	.0001057	20.35	0.000	.00194	133	.0023584
income2	-2.74e-08	1.32e-09	-20.69	0.000	-3.00e-	-08	-2.48e-08
_cons	40.61942	2.032082	19.99	0.000	36.629	944	44.60939

Continuous Variables - Credits (Scatter plot)

Figure: Scatter plot of GPA and credits.

Continuous Variables - Credits (Regression)

Source	SS	df	MS	Numb	er of obs	3 =	571
				- F(1,	569)	=	0.00
Model	.02126165	1	.0212616	5 Prob	> F	=	0.9793
Residual	17994.8615	569	31.625415	7 R-sq	uared	=	0.0000
				- Adj	R-squared	= £	-0.0018
Total	17994.8828	570	31.569969	8 Root	MSE	=	5.6236
gpa	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
credits	.0001823	.0070315	0.03	0.979	01362	285	.0139931
_cons	81.13538	.5316944	152.60	0.000	80.091	106	82.1797

Continuous Variables - Siblings (Scatter plot)

Figure: Scatter plot of GPA and siblings.

Continuous Variables - Siblings (Smoothing the scatter plot)

Figure: Scatter plot of GPA and siblings.

Continuous Variables - Siblings (Regression)

Source	SS	df	MS	Numb	er of ob	s =	677
				- F(1,	675)	=	225.87
Model	6072.64126	1	6072.6412	6 Prob	> F	=	0.0000
Residual	18147.8415	675	26.88569	1 R-sq	uared	=	0.2507
				— Adj [R-square	d =	0.2496
Total	24220.4827	676	35.829116	4 Root	MSE	=	5.1851
gpa	Coef.	Std. Err.	t	P> t	[95%	Conf.	<pre>Interval]</pre>
siblings	-2.092668	.1392426	-15.03	0.000	-2.366	069	-1.819267
_cons	83.96477	.3324845	252.54	0.000	83.31	195	84.6176

Binary Variables

We now turn our attention towards the binary variables. Our dataset contains two binary variables, and they are college and gender.

Binary Variables - College (Regression)

Source	SS	df	MS	Number of obs	=	677
				F(1, 675)	=	10.23
Model	361.527806	1	361.527806	Prob > F	=	0.0014
Residual	23858.9549	675	35.3465999	R-squared	=	0.0149
				Adj R-squared	=	0.0135
Total	24220.4827	676	35.8291164	Root MSE	=	5.9453
gpa	Coef.	Std. Err.	t	P> t [95% Co	onf.	Interval]
college						
Engineering	1.470097	.4596731	3.20	0.001 .567536	33	2.372658
_cons	79.1506	.3421136	231.36	0.000 78.4788	36	79.82233

Binary Variables - GPA (Regression)

Source	SS	df	MS	Number of	obs =	666
Model Residual	1261.55583 22406.6088	1 664	1261.55583 33.7448927	7 R-squared		37.39 0.0000 0.0533
Total	23668.1646	665	35.591225	Adj R-squ Root MSE	ared = =	0.0519 5.809
gpa	Coef.	Std. Err.	t	P> t [9	5% Conf.	Interval]
gender Female _cons	2.810086 78.76412	.4595897	6.11 271.18		907661 .19381	3.71251 79.33444

Categorical Variables (more than two groups)

The dataset that we are using also contains the variable work. Unlike binary variables, this variable divides the observations into three groups: those that have a full time job, those that have a part time job, and those that have no job at all.

Categorical Variables - Work (Regression)

Source	SS	df	MS	Numbe	er of obs	=	677
				F(2,	674)	=	94.05
Model	5284.63957	2	2642.31979	Prob	> F	=	0.0000
Residual	18935.8431	674	28.0947228	8 R-sqı	ıared	=	0.2182
				- Adj H	R-squared	. =	0.2159
Total	24220.4827	676	35.8291164	Root	MSE	=	5.3004
	~ .						
gpa	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
work							
Part time	4.98294	.4317714	11.54	0.000	4.1351	61	5.830718
Full time	-2.616398	.6943671	-3.77	0.000	-3.9797	81	-1.253016
_cons	78.17105	.2940158	265.87	0.000	77.593	75	78.74834

From the previous section, it seems that we need a model that includes the variables attendance, english, the square of english, income, the square of income, siblings, college, gender, and work. We can now fit a multiple regression model that includes all of these variables.

Source	SS	df	MS		or ore	= 666
					, 000)	= 499.43
Model	20923.9788	10	2092.39788	3 Prob	> F	= 0.0000
Residual	2744.18585	655	4.18959671	l R-sqi	ıared	= 0.8841
				- Adj 1	R-squared	= 0.8823
Total	23668.1646	665	35.591225	5 Root	MSE	= 2.0469
gpa	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
attendance	.4184037	.018439	22.69	0.000	.382197	.4546103
english	.7920346	.1375871	5.76	0.000	.5218697	1.0622
english2	0037094	.0009115	-4.07	0.000	0054992	0019196
income	.0003589	.0000607	5.92	0.000	.0002398	.000478
income2	-4.63e-09	7.61e-10	-6.09	0.000	-6.13e-09	-3.14e-09
siblings	2505416	.0662263	-3.78	0.000	3805832	1205001
college						
Engineering	.5750044	.1653606	3.48	0.001	.2503035	.8997053
gender Female	2993557	.1764917	-1.70	0.090	6459134	.047202
work Part time Full time	.9500899 5795809	.1860619 .2849956	5.11 -2.03	0.000 0.042	.58474 -1.139196	1.31544 0199657
_cons	3.349104	4.754391	0.70	0.481	-5.986581	12.68479

- ▶ If you look at the output, you will notice something interesting, and that is that the variable gender is no longer significant.
- ▶ In our dataset, the average GPA for males is 78.76 and the average GPA for females is 81.57.
- ► The average attendance grade for males is 78.62 and that the average attendance grade for females is 83.29.
- ► Therefore, it seems that the difference in GPAs between males and females is due to females attending more.
- ▶ Given the above, we can go ahead and fit a model that does not include gender.

Source	SS	df	MS	Number of ob	_	666
	00044 0055			F(9, 656)	=	553.02
Model	20911.9257	9	2323.5473		=	0.0000
Residual	2756.23895	656	4.20158377	-	=	0.8835
				Adj R-square	d =	0.8819
Total	23668.1646	665	35.591225	Root MSE	=	2.0498
gpa	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
attendance	.4100926	.0178014	23.04	0.000 .375	138	.4450473
english	.8025509	.1376438	5.83	0.000 .5322	754	1.072826
english2	0037703	.0009121	-4.13	0.0000055	613	0019794
income	.0003616	.0000607	5.95	0.000 .0002	423	.0004808
income2	-4.66e-09	7.62e-10	-6.12	0.000 -6.16e	-09	-3.17e-09
siblings	2452277	.0662468	-3.70	0.000375	309	1151464
college Engineering	.6364283	.1615772	3.94	0.000 .3191	574	.9536991
work						
Part time	.9510869	.186327	5.10	0.000 .5852	176	1.316956
Full time	5791741	.2854029	-2.03	0.043 -1.139	587	0187607
_cons	3.370133	4.761171	0.71	0.479 -5.978	839	12.71911

R-squared

We see that the value of R-squared is 0.88, which is high. This means that the model is explaining around 88% of the observed variability in the dependent variable.

Plotting predicted values against observed values

Figure: Comparing predicted values to observed values.

Normality of the Residuals - Histogram

Figure: Comparing predicted values to observed values.

Normality of the Residuals - Quantile Normal Plots

Figure: Comparing predicted values to observed values.

Normality of the Residuals - Skewness/Kurtosis Test

Skewness/Kurtosis tests for Normality

					joint
Variable	0bs	Pr(Skewness)) Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	666	0.4072	0.0162	6.46	0.0396

Normality of the Residuals - Shapiro/Wilk Test

Shapiro-Wilk W test for normal data

Variable	Obs	W	V	z	Prob>z
residuals	666	0.99441	2.438	2.170	0.01501

Homoscedasticity - Breusch/Pagan Test

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
```

Variables: fitted values of gpa

chi2(1) = 5.75Prob > chi2 = 0.0165

Addressing Assumption Violations

- ► Given that we have rejected the assumptions of normality and homoscedasticity, does this mean that we disregard our regression results?
- ► Fortunately no. As mentioned in the theory part, what we can do in this case is to fit the model while telling the statistical software to use robust standard errors.
- ► This way, the assumptions are relaxed and we can have more faith in the resulting model.

Addressing Assumption Violations - Robust Standard Errors

Linear regression

		Robust				
gpa	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
attendance	.4100926	.0183261	22.38	0.000	.3741078	.4460775
english	.8025509	.1302303	6.16	0.000	.5468324	1.058269
english2	0037703	.0008659	-4.35	0.000	0054707	00207
income	.0003616	.0000638	5.67	0.000	.0002363	.0004868
income2	-4.66e-09	8.15e-10	-5.72	0.000	-6.27e-09	-3.06e-09
siblings	2452277	.0652367	-3.76	0.000	3733256	1171299
college						
Engineering	.6364283	.1615658	3.94	0.000	.3191797	.9536768
work						
Part time	.9510869	.1933017	4.92	0.000	.5715221	1.330652
Full time	5791741	.2641098	-2.19	0.029	-1.097777	0605715
_cons	3.370133	4.477199	0.75	0.452	-5.421235	12.1615

Multicollinearity - VIF

Variable	VIF	1/VIF
attendance	2.53	0.395829
english	228.58	0.004375
english2	217.20	0.004604
income	59.98	0.016674
income2	60.35	0.016570
siblings	1.43	0.699116
1.college	1.02	0.978012
work		
1	1.34	0.748793
2	1.21	0.823429
Mean VIF	63.74	

Diagnostics

The next step is to investigate whether there are outliers and influential observations in the dataset.

Outliers

- In order to identify whether there are outliers, we can plot a scatter plot of two variables.
- ► The problem is that this method works when we just have one independent variable.
- ► However, in our model, there are several independent variables.
- ► Fortunately, there is a tool that allows us to work around this problem, and this tool is the added-variable plot.
- What these plots do is that they produce a scatter plot of the dependent variable against each independent variable while accounting for the presence of the other independent variables.

Outliers - Added Variable Plots

Figure: Added variable plots for each independent variable.

Influential Observations

- ▶ We next investigate whether there are any particularly influential observations in our dataset.
- ▶ We can do this by calculating the DFBETAS, DFFITS, and Cook's D statistic.
- A useful exercise would be to plot the DFFITS and Cook's D on the same plot.

Influential Observations - Plotting DFFITS against Cook's D

Figure: Plotting DFFITS and Cook's D.

Influential Observations

- ▶ Looking at the figure, we see that there is a single point that seems to be problematic since it has a higher than average values of both statistics.
- ▶ We note that this data point is the only one that has a Cook's D that is greater than 0.08.
- ▶ When discussing the outliers, we noted that there seems to be some outliers with respect to the independent variable income.
- It would be interesting to look at this graph again, but this time while we are paying attention to the value of Cook's D.

Influential Observations - Combining Findings

Figure: Added variable plot with Cook's D used as labels.

Influential Observations

- ▶ We now see that the outlier on the left hand side is actually the point that also has a Cook's D that is greater than 0.08.
- ▶ This means that this point is not only an outlier, but it is also influential.
- What do we do with it?
- ► The best thing to do about these points is to fit two models, one that includes all observations, and one that excludes these problematic observations.
- ▶ We can then compare the results.

Influential Observations - Comparing the Models

Table: Comparing estimates of both models

	(1)	(2)
Attendance and participation grade last semester	0.410***	0.406***
English course grade	0.803***	0.784***
english2	-0.00377***	-0.00364***
Family income per year - U.S. dollars	0.000362***	0.000409***
income2	-4.66e-09***	-5.29e-09***
Number of siblings	-0.245***	-0.239***
Business	0	0
Engineering	0.636***	0.617***
No	0	0
Part time	0.951***	0.938***
Full time	-0.579*	-0.571*
Constant	3.370	3.607
Observations	666	665

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Visualizing the Result

Figure: Visualizing how GPA varies with varying levels of the variables attendance and college.

Visualizing the Result

Figure: Visualizing how GPA varies with varying levels of the variables english and work.

Visualizing the Result

Figure: Visualizing how GPA varies with varying numbers of siblings.