Esercitazione 18 Marzo 2020-Parte 2

Variabile aleatoria

pato unospetio misurabile (E,E) una voriabile pleatoria (v.e.) su (Ω, b, p) a voesi in E i una funtione $X: \Omega \to E$ b tribulabile, tale cioè che $X^{-1}(A) \in \mathcal{Y} + A \in \mathcal{E}$.

OSPERNASIONE:

te X: I → IR è una funtione qualsias; H⊆IR e (Hi); Et é una

$$X^{-1}(H^c) = (X^{-1}(H))^c \times (X^{-1}(H_{\lambda'}) = \bigcup_{\lambda' \in \mathcal{I}} X^{-1}(H_{\lambda'})$$

come consequenta, si ha cre

€ una 6-algebra chiamata 6-algebra generata da X.

NOTA: X e & misurdoile se esolo se 5(x) = b.

Legge, funzione di ripartizione e densità di una v.a.

Date une v.a. X: SL > IR m (SL, F,P), la legge (3 distri= burione) di X ei una misura di probabilitation (IR BCIR)) definita de

&ove (X ∈ H) = X-1(H) = {W ∈ IL | X(W) ∈ H}

Per indicera cre x he distribuzione jux si svive X~Mx. La funzione definita de:

$$F_{X}(t) = \mu_{X}((-\alpha, \epsilon)) = \mathbb{P}(X \leq \epsilon), \quad t \in \mathbb{R}$$

edette funcione di riportizione di X.

Mx à una distributione ansentamente continua (AC) rispetto elle misure di sebesque (E) Fx re una funcione recele asso lutamente continue.

Allow f_{x} gooddista in testerna fondamentalle del calcolo: $f_{x}(t) = \int_{H} f_{x}(x) dx$. In tal caso μ_{x} has densited f_{x} e value $P(x \in H) = \int_{H} f_{x}(x) dx$, $H \in B(R)$.

de μ_X eac can densité f_X ditemp the X-é una v.a. (assoc.) catanua can densité f_X .

tore per esercitio

Sie dato uno spezio di probabilità (r,d,P). Sia A e d Definiamo X=1/4: SI -> R. (1/4 fonzione indicatrice) Mostrare cre X e una variabile aleatoria.

Esercizio I

Si Ω =[0,1) munito della σ -algebra σ = $B(\Omega)$ dei Boreliani di [0,1) e delea mirura P= λ di λ ebesque. gli eventi A=[0, $\frac{2}{3}$] e B=[$\frac{1}{2}$, $\frac{3}{4}$] Ano majorhalent.?

Sower ont!

$$P(A) = \int_{\Lambda} A_{A}(x) \lambda(dx) = \int_{3}^{3} \lambda(dx) = \frac{2}{3},$$

$$P(B) = \int_{\Lambda} A_{B}(x) \lambda(dx) = \int_{4}^{3} \lambda(dx) = \frac{1}{4},$$

$$P(A) = \int_{\Lambda} A_{B}(x) \lambda(dx) = \frac{1}{4},$$

$$P(A) = \int_{4}^{3} \lambda(dx) = \frac{1}{4},$$

$$P(A) = \left[\frac{1}{2}, \frac{2}{3}\right], \quad P(A) = \frac{1}{6}$$

=D $P(A\cap B) = P(A) P(B) : i due eventi sho indipendenti$

Esercizio 2

Un amico lancia (una moneta di parità p) per due volte. Qual è la probabilità che al primo lancio fosse uscita Testa sapendo che Testa è uscita almeno una volta?

SOUTIONE

parité p: probabilité de esce terre

X: variable aleatorie che conte le numero delle terte nei due lanci

T1: events che sia uscita testa al 1º lancio

Albro

$$P(T_1|X>1) \stackrel{\text{BAYEJ}}{=} P(X>1|T_1)P(T_1) = P = 1$$

$$P(X>1) \stackrel{\text{P}(X>1)}{=} P^2 + 2p(1-p) = 1$$

(X>1) esprime el evento {(T,T), (T,C), (C,T)}

Esercizio 3

Sia X la variabile aleatoria che conta il numero di lanci di una moneta di parità p necessari per ottenere per la prima volta Testa (compreso il lancio in cui è uscita la prima volta). Qual è la probabilità che X sia pari?

Solveiont
$$P(x=h) = (1-p)^{n-1}p$$
 $\forall h \in \mathbb{N}$ $\times \sim geom(p)$

La probabilità di torminare in un lancio pari e quindi

$$P(x pour) = \int_{h=1}^{2} P(x=2h) = \int_{h=1}^{2} \rho(1-\rho)^{2h-2} = \frac{1-\rho}{h}$$

$$= \rho(1-\rho) \int_{h=1}^{2} (1-\rho)^{2h-2} = \rho(1-\rho) \int_{h=1}^{2} (1-\rho)^{2} \int_{h=1}^{2} ($$

Esercizio 4

Jie $\Omega = L_{9}(1)$ munito delle σ - algebra $\mathcal{A} = \mathcal{B}(\Omega)$ dei borg eiomi di $L_{9}(1)$ e delle misure $P = \lambda$ di Lebesque. Si consideri la volciatoire aleatoria $X(\omega) = \omega$. Si a $g: \mathbb{R} \to \mathbb{R}$ definite da g(x) = -log(1-x). Si definisce la V.Q.Y = g(X). Detorminare la funcione di riportizione di Y e mostrore che Y è una V.Q.Y e detorminare infine la funcione di densite di Y.

SOUTIONE

Riconosciamo de X(W)=W = una v.a continua uniforme a valori in [0,1).

Teorema!

Sie X: St + R une v.e. e sie

g: R + R une funtione

misuratione. Allore

Y= g(x): St + R e une v.e.

Funcione di riportizione di Y:

11a +20

 $F_{y}(t) = P(y \le t) = \lambda (\{\omega : 0 \le y(\omega) \le t\}) = \lambda (\{\omega : 0 \le -log(1 - \omega) \le t\}) = \lambda (\{\omega : 1 \ge 1 - \omega\}) = \lambda (\{\omega : 0 \le \omega \le 1 - e\}^{t}) = 1 - e^{-t}$

tuntione di donnita:

$$F_{\gamma}(t) = f_{\gamma}(t) = \begin{cases} e^{-t} & t > 0 \\ 0 & t < 0 \end{cases}$$