Graphs of Polar Equations

Consider each polar graph. Classify the curve; and determine if the graph is symmetric with respect to the origin, polar axis, and line $\theta=\pi/2$.

1)

2)

3)

4)

Consider each polar equation over the given interval. Classify the curve; determine if the graph is symmetric with respect to the origin, polar axis, and line $\theta=\pi/2$; find the values of θ where r is zero; find the maximum |r| value and the values of θ where this occurs; and sketch the graph.

5) $r = 6\sin(3\theta), 0 \le \theta < \pi$

6) $r^2 = 36\cos(2\theta), 0 \le \theta < 2\pi$

Graphs of Polar Equations

Consider each polar graph. Classify the curve; and determine if the graph is symmetric with respect to the origin, polar axis, and line $\theta=\pi/2$.

1)

Rose

Symmetric about the polar axis

2)

Looped limaçon

Symmetric about the line $\theta = \frac{\pi}{2}$

3)

Lemniscate

Symmetric about the origin

4)

Dimpled limaçon

Symmetric about the polar axis

Consider each polar equation over the given interval. Classify the curve; determine if the graph is symmetric with respect to the origin, polar axis, and line $\theta=\pi/2$; find the values of θ where r is zero; find the maximum |r| value and the values of θ where this occurs; and sketch the graph.

5) $r = 6\sin(3\theta), 0 \le \theta < \pi$

Rose

Symmetric about the line $\theta = \frac{\pi}{2}$

$$r = 0$$
 when $\theta = \left\{0, \frac{\pi}{3}, \frac{2\pi}{3}\right\}$

$$|r| = 6$$
 when $\theta = \left\{ \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6} \right\}$

6) $r^2 = 36\cos(2\theta), 0 \le \theta < 2\pi$

Lemniscate

Symmetric about the the origin,

polar axis, and line $\theta = \frac{\pi}{2}$

$$r = 0$$
 when $\theta = \left\{ \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \right\}$

|r| = 6 when $\theta = \{0, \pi\}$