This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (000)

ROYAUME DE BELGIQUE

BREVET D'INVENTION

N°

Classif. Internat.: Co7c/A61K

Mis en lecture le:

19 -03- 1981

Le Ministre des Affaires Economiques,

Vu la loi du 24 mai 1854 sur les brevets d'invention;

19 septembre *197*X80 15 h. 00 Vu le procès-verbal dressé le Service de la Propriété industrielle; au

ARRÊTE:

Article 1. — Il est délivré à la Sté dite : CONTINENTAL PHARMA, 135 avenue Louise, Bruxelles,

repr. par le Bureau Gevers S.A. à Bruxelles,

un brevet d'invention pour: Glycinamides,

(Inv. : R. Roncucci, C. Gillet, A. Cordi, M. Martens,

J. Roba, P. Niebes, G. Lambelin en W. van Dorsser)

Article 2. — Ce brevet lui est délivré sans examen préalable, à ses risques et périls, sans garantie soit de la réalité, de la nouveauté ou du mérite de l'invention, soit de l'exactitude de la description, et sans préjudice du droit des tiers.

Au présent arrêté demeurera joint un des doubles de la spécification de l'invention (mémoire descriptif et éventuellement dessins) signés par l'intéressé et déposés à l'appui de sa demande de brevet.

> Bruxelles, le 19 mars *19*381 PAR DELEGATION SPECIALE:

> > C. SALPETEUR Directaur

Applicants: Mitchell Shirvan et al. Serial No.:09/932,370 Filed: August 17, 2001

Exhibit 7

MEMOIRE DESCRIPTIF

déposé à l'appui d'une demande de

BREVET D'INVENTION

au nom de :

CONTINENTAL PHARMA

pour :

"Glycinamides"

Inventeurs : Romeo RONCUCCI, Claude GILLET, Alexis CORDI, Mark MARTENS, Joseph ROBA, Paul NIEBES, Georges LAMBELIN et William van DORSSER.

.-7

La présente invention a pour objet des dérivés du 2-aminoacétamide appelé communément glycinamide, ainsi que les sels de ces composés, leurs procédés de préparation, des compositions pharmaceutiques contenant, au moins, un de ces dérivés ainsi que leur méthode d'utilisation.

Certains glycinamides sont déjà connus dans des réactions chimiques, tels que les composés de formule : $\text{CH}_3\text{NHCH}_2\text{CONH}_2$, $\text{C}_2\text{H}_5\text{NHCH}_2\text{CONH}_2$, $\text{iC}_3\text{H}_7\text{NHCH}_2\text{CONH}_2$, $\text{C}_4\text{H}_9\text{NHCH}_2\text{CONH}_2$, $\text{C}_6\text{H}_1\text{NHCH}_2\text{CONH}_2$, $\text{C}_7\text{H}_{15}\text{NHCH}_2\text{CONH}_2$, $\text{C}_6\text{H}_5\text{NHCH}_2\text{CONH}_2$, $\text{C}_6\text{H}_5\text{CH}_2\text{NHCH}_2\text{CONH}_2$, $\text{PCIC}_6\text{H}_5\text{CH}_2\text{NHCH}_2\text{CONH}_2$.

D'autres glycinamides sont connus comme fongicides par le DOS 2.511.311.

Encore d'autres glycinamides sont connus comme présentant certaines propriétés pharmaceutiques, comme le composé de formule

 $C_2H_2O-CO-(CH_2)_3NH-CH_2-CONH_2$, et ceux décrits dans le brevet belge 636.245.

Un des buts essentiels de la présente invention est de proposer une classe de dérivés de 2-amino-acétamide qui présentent un intérêt particulier en tant que médicaments.

Les dérivés suivant l'invention répondent à la formule générale I:

dans laquelle:

5

10

20

25

30

35

R représente un groupe alkyle linéaire ou ramifié C_5 - C_{18} , un groupe alkényle linéaire ou ramifié C_5 - C_{18} , un groupe alkynyle linéaire ou ramifié C_4 - C_{10} , un groupe acyle linéaire ou ramifié C_4 - C_{18} , un groupe alkyle linéaire ou ramifié C_1 - C_{10} substitué par un groupe phénoxy, par un groupe hydroxyle, par un groupe acétoxy, par un groupe carboxyle, par un groupe alkoxycarbonyle linéaire ou ramifié C_1 - C_4 , par un groupe carbonyle, par un groupe carboxaldéhyde, par un groupe acétal ou cétal, par un ou plusieurs phényles, par un ou plusieurs phényles substitués par un atome d'halogène comme le fluor, le chiore ou le brome,

R₁ représente de l'hydrogène, un groupe alkyle linéaire ou ramifié

 $^{\rm C}_{1}^{-\rm C}_{10}$, un groupe acyle linéaire ou ramifié $^{\rm C}_{1}^{-\rm C}_{5}$, un groupe benzoyle, un groupe alkoxycarbonyle linéaire ou ramifié $^{\rm C}_{1}^{-\rm C}_{8}$, un groupe carboxamidométhyle,

 R_2 représente de l'hydrogène, un groupe alkyle linéaire ou ramifié C_1 - C_3 , un groupe phényle,

 R_3 représente de l'hydrogène, un groupe alkyle linéaire ou ramifié $C_1^{-C}_3$, un groupe phényle, éventuellement substitué par un atome d'halogène comme le fluor, le chlore ou le brome,

 R_4 représente de l'hydrogène, un groupe alkyle linéaire ou ramifié $C_1^{-C}8$.

10

15

20

25

Suivant une forme de réalisation préférée, l'invention a pour objet les composés de formule I dans laquelle R représente un groupe alkyle linéaire ou ramifié C_5 , C_6 , C_7 , C_8 , C_9 , C_{10} , C_{11} , C_{12} , un groupe alkényle linéaire ou ramifié C_5 - C_{18} , un groupe alkynyle linéaire ou ramifié C_4 - C_6 , un groupe acyle linéaire ou ramifié C_4 - C_{12} , un groupe alkyle linéaire ou ramifié C_1 , C_2 , C_3 , C_4 , C_5 , C_6 , C_7 , C_8 substitué par un ou plusieurs groupes phényles, par un ou plusieurs groupes phényles substitués par un atome d'halogène, comme le fluor, le chlore ou le brome, par un groupe phénoxy, par un groupe hydroxyle, par un groupe acétoxy, par un groupe carboxyle, par un groupe alkoxycarbonyle linéaire ou ramifié C_1 - C_4 , par un groupe carbonyle, par un groupe carboxaldéhyde,

 R_1 représente de l'hydrogène, un groupe alkyle linéaire ou ramifié $C_1^{-C_4}$, un groupe acyle linéaire ou ramifié $C_1^{-C_4}$, un groupe benzoyle, un groupe alkoxycarbonyle linéaire ou ramifié $C_1^{-C_3}$, un groupe carboxamidométhyle,

 R_2 représente de l'hydrogène, un groupe alkyle linéaire ou ramifié C_1 - C_3 , un groupe phényle,

 R_3 représente de l'hydrogène, un groupe alkyle linéaire ou ramifié C_1 - C_8 , un groupe phényle éventuellement substitué par un halogène comme le fluor, le chlore ou le brome, R_{Λ} représente de l'hydrogène.

Une classe préférée de produits de l'invention est constituée des produits de formule I dans lesquels:

R représente un groupe alkyle linéaire ou ramifié C_5 , C_6 , C_7 , C_8 , C_9 , un groupe alkényle linéaire ou ramifié C_5 - C_{10} , un groupe alkynyle linéaire ou ramifié C_4 - C_6 , un groupe acyle linéaire ou ramifié

 C_4 - C_8 , un groupe alkyle linéaire ou ramifié C_1 , C_2 , C_3 , C_4 , substitué par un ou plusieurs groupes phényles, par un ou plusieurs groupes phényles substitués par un atome d'halogène, comme le fluor, le chlore ou le brome, par un groupe acétoxy, par un groupe carboxyle, par un groupe alkoxycarbonyle linéaire ou ramifié C_1 - C_4 , par un groupe carboxaldéhyde,

 R_1 représente de l'hydrogène, un groupe alkyle linéaire ou ramifié C_1 - C_4 , un groupe acyle linéaire ou ramifié C_1 - C_4 , un groupe carbo-xamidométhyle, un groupe alkoxycarbonyle C_1 - C_8 ,

R₂ représente de l'hydrogène, un groupe méthyle, un groupe phényle,
R₃ représente de l'hydrogène, un groupe alkyle linéaire ou ramifié
C₁-C₄, un groupe phényle éventuellement substitué par un halogène
comme le fluor, le chlore ou le brome,
R₂ représente de l'hydrogène,

Une classe particulière de produits de l'invention est constituée des produits de formule I dans lesquels R représente un groupe alkyle linéaire ou ramifié C_5 , C_6 , C_7 , C_8 , C_9 , un groupe alkényle linéaire ou ramifié C_5 - C_8 , un groupe acyle linéaire ou ramifié C_4 - C_6 , un groupe alkyle linéaire ou ramifié C_1 , C_2 , C_3 , C_4 substitué par un groupe phényle, par un groupe acétoxy, par un groupe carboxyle, par un groupe alkoxycarbonyle C_1 - C_2 , par un groupe carboxaldéhyde,

 R_1 représente de l'hydrogène, un groupe acyle linéaire ou ramifié $C_1^-C_4$, un groupe alkoxycarbonyle $C_1^-C_8$, un groupe carboxamidométhyle.

 \mathbf{R}_2 représente de l'hydrogène, un groupe alkyle $\mathbf{C}_1\mathbf{-C}_2$, un groupe phényle,

 $\rm R^{}_3$ représente de l'hydrogène, un groupe alkyle linéaire ou ramifié $\rm C^{}_1\text{-}C^{}_4$,

30 R₄ représente de l'hydrogène.

25

Une autre classe préférée de produits de l'invention comprend les produits de formule I dans lesquels:

R représente un groupe alkyle linéaire ou ramifié C_5 , C_6 , C_7 , C_8 , un groupe alkényle linéaire ou ramifié C_5 , C_6 , C_7 , C_8 , un groupe 35 alkynyle linéaire ou ramifié C_5 , C_6 , C_7 , C_8 , un groupe alkyle linéaire ou ramifié C_1 , C_2 , C_3 , C_4 substitué par un groupe phényle, par un groupe carboxyle, par un groupe alkoxycarbonyle C_1 - C_2 , par un

groupe carboxaldéhyde,

 \mathbf{R}_{1} représente de l'hydrogène, un groupe benzoyle, un groupe carbo-xamidométhyle,

 R_2 représente de l'hydrogène, un groupe alkyle C_1 - C_2 , un groupe phényle,

 R_3 représente de l'hydrogène, un groupe alkyle linéaire ou ramifié C_1 - C_4 ,

R_A représente de l'hydrogène.

Avantageusement, les produits de l'invention répon-

dent à la formule I dans laquelle:

R représente un groupe alkyle linéaire ou ramifié $\rm C_5$, $\rm C_6$, $\rm C_7$ substitué par un groupe carboxyle, par un groupe alkoxycarbonyle linéaire ou ramifié $\rm C_1$, $\rm C_2$, $\rm C_3$, $\rm C_4$,

R, représente de l'hydrogène, un groupe carboxamidométhyle,

R₂ représente de l'hydrogène, un groupe méthyle, un groupe phényle, R_3 et R_4 représentent de l'hydrogène.

Présentent un intérêt tout particulier, les dérivés de formule I dans lesquels:

R représente un groupe alkyle C₂, C₃, C₄ substitué par un groupe 20 phényle éventuellement substitué par un atome d'halogène comme le fluor, le chlore ou le brome,

R, représente de l'hydrogène,

 $\rm R_2$ représente de l'hydrogène, un groupe méthyle, un groupe phényle, $\rm R_3$ et $\rm R_4$ représentent de l'hydrogène.

25 Sont particulièrement intéressants, les produits de formule I dans lequels:

R représente un groupe alkyle linéaire ou ramifié C_5 , C_6 , C_8 , C_9 , C_8 , C_9 , C_8 , représente de l'hydrogène, un groupe carboximidométhyle, un groupe alkoxycarbonyle C_1 - C_8 ,

R₂ représente de l'hydrogène, un groupe méthyle, un groupe phényle, R_3 et R_4 représentent de l'hydrogène.

Une sous-classe préférée est composée des produits qui répondent à la formule I dans laquelle:

R représente un groupe alkyle linéaire ou ramifié C_5 , C_6 , C_8 , C_9 et

35 R_1 , R_2 , R_3 et R_4 représentent de l'hydrogène.

177

Si le dérivé de formule I se présente sous forme de sels d'addition avec des acides, on peut le transformer, selon des

procédés usuels, en base libre ou en sels avec d'autres acides.

Les sels les plus couramment utilisés sont des sels d'addition d'acides, en particulier des sels d'addition d'acides non toxiques, pharmaceutiquement utilisables, formés avec des acides inorganiques appropriés, par exemple l'acide chlorhydrique, l'acide sulfurique ou l'acide phosphorique, ou avec des acides organiques appropriés, comme des acides aliphatiques, cycloaliphatiques, aromatiques, araliphatiques ou hétérocycliques, carboxyliques ou sulfoniques, par exemple les acides formique, acétique, 10 dialkylacétique, comme l'acide dipropylacétique, propionique, succinique, glycolique, gluconique, lactique, malique, tartrique, citrique, ascorbique, glucuronique, maléique, fumarique, pyruvique, aspartique, glutamique, benzoïque, anthranilique, hydroxybenzoïque, salicylique, phénylacétique, mandélique, embonique, méthanesulfo-15 nique, éthanesulfonique, panthoténique, toluènesulfonique, sulfanilique, cyclohexylaminosulfonique, stéarique, alginique, β-hydroxypropionique, β-hydroxybutyrique, oxalique, malonique, galactarique, galacturonique. Ces sels peuvent également dériver d'acides aminés naturels ou non, comme la lysine, la glycine, l'arginine, l'orni-20 thine, l'asparagine, la glutamine, l'alanine, la valine, la thréonine, la sérine, la leucine, la cystéine, etc...

Des exemples de dérivés suivant l'inventin sont:

2-n.pentylaminoacétamide,

2-n.octylaminoacétamide,

25 6-(dicarboxamidométhyl)aminohexanoate de méthyle,

2-n.décylaminoacétamide,

8-(dicarboxamidométhyl)aminooctanoate de méthyle,

2-n.hexylaminoacétamide,

2-(2-phényléthyl)aminoacétamide,

30 2-n.octadécén-9-ylaminoacétamide,

2-(N-carboxamidométhyl-N,n.hexyl)aminoacétamide,

2-(1,1-diméthylpropyn-2-yl)aminoacétamide,

N-n.hexyl-N-carboxamidométhylcarbamate d'éthyle,

2-n.pentylaminobutyramide,

35 2-(3-phénylpropyl)aminoacétamide,

2-octén-7-ylaminoacétamide,

acide 8-carboxamidométhylaminooctanoïque,

2-(4-phénylbutyl)aminoacétamide,

5

10

15

20

25

30

35

 $N-n-butyl-2-[N-ac\acute{e}tyl-N-(4-ph\acute{e}noxybutyl)] a minoisoval \acute{e}ramide.$

Les produits de l'invention peuvent comporte un ou plusieurs centres d'asymétrie.

Les produits qui possèdent un centre d'asymétrie peuvent se présenter sous forme d'antipodes optiques ou sous forme de mélange, racémique ou non. Leur séparation en énantiomères peut être effectuée par formation de sels diastéréoisomères. Pour les produits de l'invention ayant deux centres d'asymétrie, on peut obtenir deux racémates correspondant respectivement aux configurations erythro et thréo; ces deux racémates peuvent être résolus par des procédés classiques, par exemple par formation de sels diastéréoisomères par l'action d'acides optiquement actifs, comme les acides tartriques, diacétyltartrique, tartranilique, dibenzoyltartrique, ditoluyltartrique et séparation du mélange de diastéréoisoèmres par cristallisation, distillation, chromatographie, puis libération des bases optiquement actives au départ de ces sels.

Les dérivés de l'invention peuvent donc être utilisés soit sous forme de mélanges contenant plusieurs diastéréoisomères quelles qu'en soient les proportions relatives, soit sous forme de couples d'énantiomères en proportions égales (mélange racémique) ou non, soit encore sous forme de composés optiquement purs.

Les produits de l'invention peuvent être utilisés dans le traitement des diverses formes de l'épilepsie, dans le traitement des dyskinésies comme la maladie de Parkinson et dans le traitement des troubles de la mémoire. On peut encore envisager l'utilisation de certains produits de l'invention dans le traitement de troubles psychiques comme la dépression.

La présente invention couvre également des compositions pharmaceutiques contenant, comme ingrédient actif, au moins un composé de la formule générale (I) et/ou un sel avec un excipient pharmaceutique. Ces compositions sont présentées de façon à pouvoir être administrées par voie orale, rectale ou parentérale.

Ainsi, par exemple, les compositions pour l'administration par voie orale peuvent être liquides ou solides et présentées sous forme de comprimés, dragées, comprimés enrobés, capsules, granulés, poudres, sirops ou suspensions. Les formes sèches orales comprennent les

additifs et excipients généralement utilisés en pharmacie galénique, des diluants inertes, des agents de désintégration, des agents liants et des agents lubrifiants, tels que lactose, amidon, talc, gélatine, acide stéarique, cellulose et dérivés, acide silicique, stéarate de magnésium, polyvinylpyrrolidone, phosphate de calcium, carbonate de calcium, etc...

De telles préparations peuvent être effectuées de façon à prolonger la désintégration et, par conséquent, la durée d'action du principe actif.

Les suspensions aqueuses, les émulsions et les solutions huileuses sont faites en présence d'agents adoucissants, comme dextrose ou glycérol, d'agents parfumants, comme la vanilline par exemple, et peuvent aussi contenir des agents épaississants, des agents mouillants, des agents de préservation.

Les émulsions et solutions huileuses sont faites dans une huile d'origine végétale ou animale et peuvent contenir des agents émulsifiants parfumants, dispersants, adoucissants et antioxydants. Pour l'administration parentérale, on utilise comme véhicule, de l'eau stérile, une solution aqueuse de polyvinylpyrro-lidinone, de l'huile d'arachide, de l'oléate d'éthyle, etc... Ces solutions injectables aqueuses ou huileuses peuvent contenir des agents épaississants, mouillants, dispersants et gélifiants;

Les produits de l'invention peuvent être préparés par divers procédés tels que, par exemple, ceux décrits ci-après :

25 Procédé A.

35

5

10

D'après cette manière de procéder, l'amine II est convertie en glycinamide de formule I.

R, R_1 , R_2 , R_3 , et R_4 sont tels que définis ci-dessus et Z représente une fonction qui, par l'action d'un réactif approprié peut être transformée en fonction amide: par exemple la fonction acide carbo-xylique (-COOH), la fonction nitrile (-CN), la fonction ester -COOR $_5$, dans laquelle R_5 représente un radical alkyle inférieur

(C₁-C₃) ou un radical phényle substitué de telle manière qu'il active l'ester vis-à-vis de l'attaque d'un nucléophile une fonction

amidine (-C $\frac{NH}{N}$ R₃) une fonction halogénure d'acide (C $\frac{N}{N}$ X

où X représente un halogène comme le chlore ou le brome) ou encore une fonction anhydride. Z peut également représenter un groupe précurseur d'acide carboxylique comme, par exemple, le groupement

trichlorométhyle ou une oxazoline ($\stackrel{N}{\smile}$).

5

Le passage du produit II au produit I, c'est-à-dire la conversion d'un précurseur d'amide en amide se fait par des réactions classiques très bien documentées en chimie comme par exemple:

a)- conversion d'un acide carboxylique en amide.

Plusieurs procédés permettent d'effectuer cette transformation chimique.

20 Par exemple, l'acide carboxylique peut être mis en présence de l'amine, la pyrolyse du sel ainsi formé conduit à l'amide de même que l'action d'un agent de déshydratation tel que le P_2^0 5.

Une autre façon de procéder consiste à transformer l'acide carboxylique en halogénure d'acide puis en amide par action d'une amine.

La conversion de l'acide en halogénure d'acide se fait souvent sans solvant avec du chlorure de thionyle, du pentachlorure de phosphore ou de l'oxychlorure de phosphore. Les bromures correspondants peuvent également être utilisés. Pour que la réaction soit complète, il est souvent utile de chauffer le mélange réactionnel à une température comprise entre 50 et 150°C. Si un solvant est utile pour le déroulement de la réaction, ce sera un solvant organique inerte tel que les hydrocarbures comme le benzène, le toluène ou l'éther de pétrole ou les éthers comme l'éther diéthylique.

La réaction entre l'halogénure d'acide et l'amine se fait en refroidissant le mélange réactionnel à une température comprise entre 0°C et -50°C, en introduisant un excès d'amine (au moins 2 équivalents ou au moins 1 équivalent d'amine et au moins 1

équivalent d'une base organique tertiaire comme, par exemple, la triéthylamine). Classiquement, le chlorure d'acide est ajouté à l'amine en solution dans un solvant organique inerte tel que ceux définis ci-dessus ou encore en solution dans l'eau.

Encore une autre façon de procéder consiste à mettre en réaction un acide carboxylique et une amine en présence d'un réactif de couplage tel qu'utilisé, par exemple, en synthèse peptidique. Il existe actuellement énormément de réactifs de couplage comme, par exemple, le dicyclohexylcarbodiimide, le N-éthyl-N',3-diméthylaminopropylcarbodiimide, des phosphines, des phosphites, le tétrachlorure de silicium ou de titane.

b)- conversion d'un nitrile en amide.

5

10

Les nitriles peuvent être hydrolysés en amides soit en milieu acide, soit en milieu basique.

- Si l'hydrolyse se fait dans des conditions acides, on peut utiliser l'acide sulfurique concentré, l'acide chlorhydrique concentré aqueux, l'acide formique en absence de solvant, l'acide acétique en présence de trifluorure de bore. Dans la plupart des cas, il est avangateux de chauffer le mélange réactionnel à des températures pouvant atteindre 200°C. Une autre façon de convertir un nitrile en amide, en milieu acide, consiste à traiter ledit nitrile par de l'acide chlorhydrique dans un alcool comme l'éthanol. Il se forme ainsi un iminoéther intermédiaire qui se transforme thermiquement en amide.
- Si l'hydrolyse s'effectue sous conditions basiques, on utilise dans ce cas, une solution aqueuse d'un hydroxyde de métal alcalin ou alcalino-terreux. Avantageusement, la présence d'eau oxygénée facilite la réaction d'hydrolyse. La demanderesse a mis au point un procédé original d'hydrolyse de nitrile qui consiste à ajouter à l'équivalent de nitrile, l'équivalent de chlorure cuivrique et à effectuer la réaction dans une solution aqueuse d'hydroxyde de métal alcalin à pH = 10 et ce, de préférence, à température ambiante. A nouveau, il est souvent avantageux d'effectuer la réaction d'hydrolyse à une température comprise entre la température normale et la température de reflux du mélange réactionnel.
 - Une autre méthode d'hydrolyse basique très classique de nitriles se déroule en utilisant de l'hydroxyde de métal alcalin, de préférence

de l'hydroxyde de potassium, dans le t-butanol.

c) - conversion d'un ester en amide.

L'aminolyse d'un ester se fait classiquement soit dans l'eau, soit dans un solvant organique inerte. Comme exemple de solvant utilisable, on peut citer un hydrocarbure aromatique comme le benzène ou le toluène; un hydrocarbure aliphatique comme l'hexane ou l'éther de pétrole, un hydrocarbure halogéné comme le dichlorométhane ou le chloroforme.

La présence de base forte peut être indispensable dans le cas de réaction avec des amines peu basiques ou stériquement encombrées. La réaction ci-dessus peut être conduite à une température comprise entre la température ambiante et la température de reflux du solvant.

d) - conversion d'une amidine en amide.

25

Cette réaction se fait principalement par hydrolyse acide en milieu aqueux ou alcoolique. L'acide peut être inorganique comme l'acide chlorhydrique ou l'acide sulfurique ou organique comme l'acide acétique. Cette réaction se produit à une température comprise entre la température ambiante et la température de reflux du mélange réactionnel.

Lorsque le groupe Z de la formule générale représente un précurseur d'acide carboxylique, Ia transformation en acide carboxylique est conduite soit dans l'eau, soit dans un solvant organique inerte en présence d'acide. Par un solvant organique inerte, on entend un solvant comme un hydrocarbure aromatique ou aliphatique, chloré ou non comme, par exemple, le benzène, le toluène, le chloroforme, le dichlorométhane ou un éther comme l'éther diéthylique, le tétrahydrofuranne ou le dioxanne.

Comme acide, on utilise généralement un acide minéral comme les hydracides halogénés, l'acide sulfurique, concentré ou dilué, l'acide nitrique, concentré ou dilué, l'acide phosphorique ou un acide organique comme l'acide acétique. La température de la réaction est comprise entre 0°C et 150°C et, de préférence, entre 50 et 100°C.

35 Dans certains cas, il peut être avantageux de ne pas effectuer la

transformation directe de Z en amide (-C $\begin{array}{c} 0 \\ \\ N \end{array}$) mais de trans-

- former une valeur de Z en une autre avant d'engendrer la fonction amide. Les procédés permettant ces transformations sont bien connus de la littérature et nous les passerons rapidement en revue.
 - transformation d'un acide en ester et vice versa.
- L'estérification d'un acide est une réaction très générale qui 10 peut se produire de multiples façons. Classiquement, l'acide et l'alcool sont mis en réaction en présence d'un catalyseur acide comme de l'acide chlorhydrique ou de l'acide sulfurique ou de l'acide p-toluènesulfonique. Cette réaction se fait avantageusement dans des conditions anhydres et l'un des réactifs est 15 engagé en large excès. Le solvant peut être soit un des réactifs, soit un solvant organique inerte comme les hydrocarbures chlorés tels que le chloroforme ou le tétrachlorure de carbone ou un hydrocarbure aromatique ou aliphatique comme le benzène, le toluène ou l'éther de pétrole. La température est comprise 20 entre la température normale et la température de reflux du mélange réactionnel.

Une autre façon de procéder consiste à distiller l'eau dès sa formation en utilisant un appareil approprié. Les conditions de réaction sont identiques à celles décrites ci-dessus à l'exception du fait qu'un des réactifs ne doit pas être engagé en large excès.

L'hydrolyse de l'ester se fait dans des conditions similaires à la réaction d'estérification mais, dans ce cas, l'un des réactifs, en l'occurence l'eau, est engagé en très large excès. Les conditions de catalyse et de température sont les mêmes que pour l'estérification.

- transformation d'un nitrile en ester.

25

30

La transformation d'un nitrile en ester se fait en opposant le nitrile à un alcool en milieu acide. Beaucoup de catalyseurs ont été décrits comme l'acide chlorhydrique, l'acide bromhydrique l'acide iodhydrique, l'acide sulfurique, l'acide p-toluènesulfonique ou l'acide naphtalènesulfonique. L'alcool peut être utili-

sé comme solvant ou tout autre solvant organique inerte comme les hydrocarbures chlorés ou les hydrocarbures aliphatiques ou arcmatiques. La réaction se déroule à une température comprise entre la température normale et la température de reflux du

Il se forme ainsi un iminoéther intermédiaire qui est converti en ester par hydrolyse.

- transformation d'un nitrile en acide.

solvant.

- L'hydrolyse d'un nitrile en acide carboxylique se fait en milieu acide ou en milieu basique. Comme acide, on utilise généralement un hydracide halogéné comme l'acide chlorhydrique ou l'acide bromhydrique ou un oxacide comme l'acide sulfurique ou l'acide nitrique. Comme base, on emploie un hydroxyde de métal alcalin comme l'hydroxyde de sodium ou l'hydroxyde de potassium. Cette hydrolyse se produit dans l'eau et à reflux durant plusieurs heures.
 - transformation d'un nitrile en amidine.

La conversion d'un nitrile en amidine se fait en mettant en réaction le nitrile avec une amine. Il est souvent avantageux d'activer un des réactifs de façon à obtenir l'amidine avec un meilleur rendement. Une forme activée de nitrile peut être un iminoéther ou encore un iminohalogénure. L'amine peut être activée sous forme de sel avec un métal alcalin ou alcalino-terreux. Dans ces conditions, les amidines sont obtenues avec de bons rendements.

Pour une meilleure compréhension du procédé, les principales voies d'accès aux dérivés II seront décrites ci-après.

I. SYNTHESE DU COMPOSE II.

35

Le dérivé II peut être obtenu aux dépens du produit III par
 alkylation ou acylation.

$$R - NH - CH - Z \xrightarrow{R_1X} \qquad \qquad R \\ N - CH - Z \\ R_1 \\ R_2$$

III

ΙI

R, R $_1$ et R $_2$ ont été définis précédemment cependant, dans ce cas, R $_1$

ne représente pas de l'hydrogène. X représente un bon nucléofuge comme un halogène, tel que le chlore, le brome ou l'iode, un groupement tosyle ou mésyle ou un groupement acyloxy.

La réaction peut être effectuée dans un solvant organique tel que le chloroforme, le dichlorométhane, dans un alcool tel que le méthanol ou l'éthanol, dans un hydrocarbure saturé ou aromatique tel que l'éther de pétrole, le benzène, le toluène.

La réaction se déroule soit à température ambiante ou à une température comprise entre 0°C et la température de reflux du solvant.

Avantageusement, la réaction peut être effectuée en présence de base organique telle que la triéthylamine, la pyridine ou la N-diméthylaniline ou de base minérale telle que les hydroxydes, les carbonates et les bicarbonates de métaux alcalins ou alcalino-terreux ou de chaux finément pulvérisée.

Une variante de ce procédé est illustrée ci-dessous:

$$\begin{array}{c} R \\ N-H+X-CH-Z \\ R_1 \\ R_2 \end{array} \longrightarrow \begin{array}{c} R \\ N-CH-Z \\ R_1 \\ R_2 \end{array}$$

15

20

On constatera que la réaction ci-dessus et la réaction précédente sont 2 réactions d'alkylation ou d'acylation d'une amine secondaire en amine tertiaire. Il va de soi que les conditions opératoires pour ces 2 réactions sont tout à fait comparables.

25 représentent un radical alkyle et si le substituant R₁ a été introduit par acylation de l'amine, il faut réduire l'amide formée en amine. De nombreux procédés sont décrits pour effectuer une telle réduction; mentionnons, à titre d'exemple, l'hydrogénation en présence de nickel de Raney ou de chromite cuivrique dans des solvants inertes comme les alcools inférieurs tels que le méthanol ou l'éthanol ou encore l'acide acétique; la réduction par l'hydrure de lithium et d'aluminium dans des éthers comme l'éther diéthylique, le tetrahydrofuranne ou le dioxanne.

Il est évident que dans le choix des conditions de 35 réduction, il faut tenir compte qu'il faut préserver la fonctionnalité du groupe Z.

2. Une variante valable uniquement lorsque Z représente un groupe

nitrile (-CN) peut être schématisée comme suit:

10

25

35

5
$$R_2$$
CHO + YCN $\longrightarrow \begin{bmatrix} HO-CH-CN\\ R_2 \end{bmatrix}$ R_1 R_1 R_2 $N-CH-CN$ R_1 R_2 R_2 R_1 R_2

R, R_1 et R_2 sont tels que définis ci-dessus et Y représente un cation et est défini plus particulièrement ci-dessous.

La cyanhydrine IV utilisée comme coréactif peut être synthétisée préalablement ou formée in situ au départ d'un aldéhyde (R₂-CHO) et d'un cyanure minéral ou organique comme le cyanure de sodium ou de potassium ou le cyanure de triméthylsilyle ou encore un cyanure d'alkylaluminium ou d'alkylammonium.

La condensation de l'amine sur la cyanhydrine se déroule dans un solvant organique inerte tel que les hydrocarbures chlorés comme le chloroforme ou le dichlorométhane ou un hydrocarbure aromatique ou aliphatique tel que le benzène, le toluène ou l'éther de pétrole ou encore un éther comme l'éther diéthylique ou le dioxanne. Pour obtenir un bon rendement, il est parfois avantageux de travailler à une température comprise entre 20°C et 120°C.

Un acide catalyse la réaction: on choisira par exemple un hydracide halogéné, comme l'acide chlorhydrique ou un oxacide comme l'acide sulfurique ou un acide organique comme l'acide p-toluènesulfonique.

La réaction entre un sel d'iminium V et un cyanure VI procède de la même façon.

R, R_1 , R_2 et Z sont tels que définis précédemment. L'addition de cyanure VI sur le sel d'iminium V se déroule dans un solvant organique inerte tel que les hydrocarbures chlorés comme le chloroforme ou le dichloromethane ou un hydrocarbure aromatique ou aliphatique comme le benzène, le toluène ou l'éther de pétrole. Il est avantageux de travailler à une température comprise entre 0°C

et la température de reflux du solvant.

Selon les conditions d'hydrolyse, Z sera un acide carboxylique, un amide, un ester ou une amidine.

 Une troisième variante qui permet d'accéder au dérivé II est représentée par le schéma qui suit:

10

15

30

$$R_{2}CH_{2}Z \xrightarrow{Base} R_{2}CHZ \xrightarrow{R} R_{1} \xrightarrow{R_{2}} N-CH-Z$$

$$R \xrightarrow{N-OA1k} II$$

$$VII \qquad VIII \qquad R_{1}$$

R, R₁, R₂ et Z sont tels que définis dans la formule générale et dans les procédés ci-dessus tandis que Alk représente un radical alkyle inférieur C_1 - C_4 .

Le dérivé VII est transformé en anion VIII par une base forte dans un solvant organique inerte. La base utilisée peut être un alconlate, comme le t-butylate de potassium, ou un amidure comme l'amidure de sodium ou de lithium, ou encore une base complexe, appelée communément "base de Caubère" et qui est un mélange d'amidure et d'alcoolate. Le solvant organique est un hydrocarbure aromatique ou aliphatique, comme le benzène, le toluène ou de l'éther de pétrole. La température de la réaction peut être comprise entre -20°C et la température de reflux du solvant selon la réactivité du substrat.

L'anion du dérivé VII est alors mis en présence d'un dérivé O-alkylé de l'hydroxylamine IX de façon à former le produit II. Cette réaction de substitution se fait dans un solvant organique inerte et à une température comprise entre -20°C et la température de reflux du solvant.

4. Selon cette façon de procéder, valable uniquement dans le cas où 35 Z représente le groupe nitrile (-CN), le dérivé II est obtenu aux dépens d'une énamine X par addition d'acide cyanhydrique.

R, R_1 et R_2 ont les valeurs définies précédemment tandis que R_9 CH représente le substituant R_2 .

10

15

20

30

35

L'acide cyanhydrique peut être additionné comme tel ou synthétisé in situ. Cette réaction d'addition se fait dans un solvant organique inerte, de préférence légèrement polaire tel que les hydrocarbures chlorés comme le chloroforme ou le dichlorométhane ou encore dans l'acétonitrile et à une température comprise entre la température ambiante et la température de reflux du solvant.

5. Ce procédé consiste en la réduction de la double liaison carbone-carbone d'une α -cyanoénamine XI.

$$R_{10} = C \times R_{10} \times R_{100} \times R_{$$

R, R, et R, sont tels que définis dans la formule générale et

25 R₉ CH représente le substituant R₂

La réduction de la double liaison carbone-carbone se fait classiquement par hydrogénation en présence d'un catalyseur appartenant à la classe des métaux de transition, de leurs oxydes ou de leurs sulfures et sur un support inerte. On peut citer comme catalyseurs le nickel de Raney, le platine, l'oxyde de platine, ou encore le palladium sur carbone. La présence de solvant est souhaitée et il est choisi parmi les alcools inférieurs comme le méthanol et l'éthanol ou encore dans le groupe formé par l'acide acétique glacial et ses esters simples. Cette réduction se fait à la pression ordinaire ou à une pression supérieure à celle-ci. La réduction peut

encore se faire par des hydrures comme le borohydrure de sodium, avantageusement en présence d'un acide de Lewis ou par du diborane dans des solvants tels que le méthanol, l'éthanol, la diglyme, le tétrahydrofuranne ou le dioxanne.

Les conditions de réduction doivent être choisies judicieusement de façon à préserver le groupement nitrile.

Notons enfins que la littérature récente décrit des voies d'accès très générales aux α -cyanoénamines XI.

II. SYNTHESE DU COMPOSE III.

15

20

25

Le réactif II qui sert de point de départ au premier procédé de synthèse des glycinamides de l'invention peut être obtenu selon diverses voies.

1. Une première voie de synthèse et sa variante sont à rapprocher de l'alkylation ou de l'acylation de l'amine secondaire en amine tertiaire décrite dans le paragraphe I.1.

$$RX + H_2N-CH - Z \longrightarrow R - NH - CH - Z$$
 R_2

R, R_2 et Z sont définis précédemment tandis que la nature de X a été précisée dans le procédé I.1.

L'alkylation ou l'acylation d'une amine primaire en amine secondaire se produisent de la même façon et sensiblement dans les mêmes conditions que l'alkylation et l'acylation d'une amine secondaire en amine tertiaire; les conditions expérimentales décrites dans le paragraphe I.l, peuvent aisément s'appliquer, avec succès, à la réaction présentement décrite.

2. Une variante valable uniquement lorsque Z représente un groupe 30 nitrile (-CN) est illustrée par le schéma suivant :

$$R_2$$
CHO ÷ YCN — $\left[\begin{array}{ccc} HO-CH-CN \\ R_2 \end{array}\right]$ $\xrightarrow{RNH_2}$ RNH-CH-CN $\left[\begin{array}{ccc} R_2 \\ R_2 \end{array}\right]$

R et R_2 sont tels que définis ci-dessus et Y a la même signification que dans le paragraphe I.2. Ce procédé est très semblable au procédé décrit sous le paragraphe I.2. à la seule différence que

l'amine engagée est ici une amine primaire au lieu d'une amine secondaire. Cette seule différence n'est pas critique pour la définition des conditions opératoires de sorte que les conditions décrites dans le paragraphe I.2. peuvent être appliquées avec succès pour la réalisation du présent procédé.

3. Une troisième voie d'accès au dérivé III est analogue à celle qui a été décrite dans le paragraphe I.3. et peut être libelée de la façon suivante:

10
$$R_2CH_2Z \xrightarrow{Base} R_2CHZ \xrightarrow{RNHOA1k} RNH - CH - Z$$

20

35

R, R_2 et Z sont tels que définis précédemment tandis que Alk a été défini dans le procédé I.3. comme étant un radical alkyle inférieur $C_1^{-C}_4$.

Les exigences tant en solvant qu'en base et qu'en température pour cette réaction ont été définies dans le paragraphe I.3.

4. Une autre voie d'accès au dérivé III est caractérisée par la formation d'une imine intermédiaire XII obtenue au départ d'une amine et d'un composé carbonylé XIII. La réduction de l'imine conduit au dérivé III.

$$RNH_{2} + O = C \xrightarrow{Z \qquad H^{+}} \qquad R - N = C \xrightarrow{R_{2}} \qquad \frac{r \neq duction}{R_{2}} \Rightarrow RNH-CH-Z$$

$$RIII \qquad XIII \qquad XIII \qquad IIII$$

La condensation entre l'amine et le dérivé carbonylé XIII se fait classiquement dans un solvant organique inerte, de préférence non miscible à l'eau tel que le benzène ou le toluène. Avantageusement, la réaction est catalysée par un acide organique ou minéral:

L'acide p-toluènesulfonique est très couramment utilisé pour jouer 30 ce rôle catalytique. L'imine ainsi obtenue est réduite classiquement en amine.

La réduction se fait en présence d'hydrogène et d'un catalyseur d'hydrogénation, comme le platine, l'oxyde de platine ou le palla-dium sur carbone dans un solvant comme le méthanol, l'éthanol, l'acétate d'éthyle ou l'acide acétique glacial et cela, à la pres-

sion ordinaire et plus avantageusement à pression plus élevée soit encore par un hydrure de métal alcalin comme le borohydrure de

sodium dans un solvant comme le méthanol ou l'hydrure d'aluminium et de lithium dans un solvant comme l'éther ou le tétrahydrofuranne.

Il va de soi que la méthode de réduction de l'imine sera choisie de façon à garder intacte la fonctionnalité du groupe Z. En choisis-sant différemment les réactifs, on peut écrire une variante de ce procédé qui permet d'arriver au produit III en passant par des intermédiaires porteurs des mêmes fonctions chimiques que ci-des-sus.

10
$$R_{6}$$
 $C = 0 + H_{2}N - CH - Z$ H^{+} R_{6} $C = N - CH - Z$ R_{7} R_{2} R_{2} R_{2} R_{3} R_{4} R_{5} R_{7} R_{2} R_{4} R_{5} R_{5} R_{7} R_{8} R_{1} R_{2} R_{3} R_{4} R_{5} R_{5} R_{7} R_{8} R_{1} R_{2} R_{3} R_{4} R_{5} R_{5} R_{7} R_{8} R_{1} R_{2} R_{3} R_{4} R_{5} R_{5}

 R_2 et Z possèdent les significations données précédenment tandis que les groupements R_6 et R_7 possèdent des valeurs telles que

$$R_{6}$$
 CH est équivalent à R .

La condensation du dérivé carbonyle XIV sur l'amine XV et la réduction de l'imine XVI se font dans les conditions décrites ci-des-

5. Selon cette voie de synthèse, valable uniquement lorsque Z représente un groupe carboxylique (-CCOH), un dérivé de la créatinine XVII est mis en présence d'un aldéhyde XVIII, le produit XIX ainsi obtenu est ensuite réduit et hydrolysé en dérivé III

35

25

Dans ce schéma, R, R_2 et Z possèdent les valeurs définies précèdemment tandis que le substituant $R_8^{\rm CH}_2$ possède les valeurs du radical R_2 .

La condensation de l'aldéhyde XVIII sur le composé hétérocyclique XVII se fait dans un solvant organique inerte tel que les hydrocarbures chlorés comme le chloroforme ou le dichlorométhane, les alcools inférieurs comme le méthanol ou l'éthanol; les hydrocarbures aromatiques ou aliphatiques comme le benzène, le toluène ou l'éther de pétrole, les éthers aliphatiques ou cycliques ou encore le diméthylformamide.

25

30

35

La température de la réaction peut être choisie dans une large gamme de températures mais on conduit normalement cette réaction à une température comprise entre la température ordinaire et 100°C.

La présence de base est indispensable au déroulement de la réaction. La base peut être une base minérale comme les hydroxydes de métaux alcalins ou alcalino-terreux ou organique comme la pyrridine, la triéthylamine ou le sel d'un acide carboxylique comme l'acétate de sodium.

La réduction de la double liaison carbone-carbone du composé XIX se

fait classiquement par hydrogénation en présence d'un catalyseur appartenant à la classe des métaux de transition, de leurs oxydes ou de leurs sulfures et sur un support inerte. On peut citer comme catalyseurs le nickel de Raney, le platine, l'oxyde de platine, ou encore le palladium sur carbone. La présence de solvant est souhaitée et il est choisi parmi les alcools inférieurs comme le méthanol ou l'éthanol ou encore dans le groupe formé par l'acide acétique glacial et ses esters simples. Cette réduction se fait à la pression ordinaire ou à une pression supérieure. La réduction peut encore se faire par des hydrures comme le borohydrure de sodium, avantageusement en présence d'un acide de Lewis ou par du diborane dans des solvants tels que le méthanol, l'éthanol, le diglyme, le tétrahydrofuranne ou le dioxanne.

10

15

20

L'hydrolyse du dérivé XX se produit en milieu aqueux ou dans un solvant organique inerte. La présence d'acide est indispensable pour mener à bien cette réaction. L'acide peut être minéral comme l'acide chlorhydrique ou l'acide sulfurique ou organique comme l'acide acétique ou l'acide p-toluènesulfonique.

En changeant l'hétérocycle de départ, on peut arriver au dérivé III en gardant la séquence de réaction et les conditions expérimentales. On peut ainsi partir d'une hydantoïne XXI, d'une thiohydantoïne XXII, d'une dioxopipérazine XXIII ou d'une 2-thiono-5-oxo-thia-zolidine XXIV.

6. Une autre voie d'accès au produit III, également valable uniquement lorsque Z représente un groupe carboxylique (-CCOH) met en oeuvre une amine et un aldéhyde α -carbonylé XXV selon le schéma:

35
$$RNH_2 + R_2^{C-C-H} \xrightarrow{R'SH} > R-NH-CH-COOH$$

$$R_2$$

$$XXV$$
III

L'amination oxydo-réductrice du composé glyoxalique XXV se fait soit en solution aqueuse, soit dans un solvant organique inerte choisi, par exemple, parmi les hydrocarbures chlorés comme le chloroforme ou le dichlorométhane ou parmi les alcools inférieurs comme le méthanol ou l'éthanol ou encore parmi les hydrocarbures aromatiques ou aliphatiques comme le benzène, le toluène ou l'éther de pétrole. La réaction s'effectue généralement à une température comprise entre la température normale et la température de reflux du solvant.

Avantageusement, un thiol (R'SH) sera introduit dans le mélange réactionnel comme catalyseur (R' représente un radical alkyle inférieur C₁-C₄ ou un noyau phényle).

Procédé B.

Ce procédé consiste en l'hydrogénolyse d'une sydnonimine XXVI selon 15 le schéma de réaction décrit ci-dessous:

25

30

: .

leurs sulfures.

R possède la signification donnée précédemment et W^{Θ} représente un anion tel qu'un halogénure, un sulfate, un nitrate, un phosphate ou un anion dérivé d'un radical organique tel qu'un acétate.

La sydnonimine est synthétisée selon les procédés bien documentés dans la littérature: son hydrogénolyse mène à un 2-aminoacétamide. Le catalyseur utilisé peut être du palladium sur charbon actif, du nicel, de l'oxyde de platine. D'une façon générale, le catalyseur appartient au groupe des métaux de transition, à leurs oxydes ou à

Le solvant de la réaction peut être avantageusement le méthanol, l'éthanol, l'éther de pétrole ou un solvant organique quelconque qui soit inerte dans les conditions de la réaction. La réaction se déroule habituellement à température ambiante mais-la température peut être adaptée à la réactivité de la molécule soit en l'élevant, soit en la diminuant.

Procédé C.

10

Selon ce procédé, un aldéhyde et une amine sont opposés à un isonitrile XXVII en présence d'un acide carboxylique.

$$R_2$$
CHO + R_1 N - H R_3 N = C R_1 N - CH - C - NHR R_3

R, R_1 , R_2 et R_3 sont tels que définis précédemment.

La condensation de l'amine sur l'aldényde se fait dans les mêmes conditions générales que pour la synthèse des imines. Ces conditions ont été décrites dans le paragraphe II.4.

- L'addition de l'isonitrile se fait dans un solvant organique inerte comme les hydrocarbures aromatiques ou aliphatiques comme le benzène, le toluène ou l'éther de pétrole ou comme les hydrocarbures chlorés comme le chloroforme ou le dichlorométhane ou comme les éthers, cycliques ou non.
- La température à laquelle se déroule la réaction est adaptée à la réactivité des réactifs: si la réaction est fortement exothermique, il peut être utile de refroidir le mélange réactionnel dans un bain de glace ou dans un bain réfrigérant à base, par exemple, de carboglace; si, par contre, la réaction est très lente, il peut être nécessaire d'augmenter la température jusqu'au reflux.

Une variante de ce procédé consiste à mettre d'abord en réaction l'aldéhyde et l'isonitrile XXVII puis à ouvrir l'iminooxiranne intermédiaire XXVIII par l'amine:

30
$$R_2$$
CHO + R_3 N = C \longrightarrow $\begin{bmatrix} R_2 & N-R_3 \\ H & XXVIII \end{bmatrix}$ $\begin{bmatrix} R_1 & N-H_3 \\ R_1 & N-H_3 \end{bmatrix}$

La réaction entre l'aldéhyde et l'isonitrile se déroule de préférence à très basse température (entre -30°C et -100°C) et est avantageusement catalysée par un acide de Lewis comme, par exemple, l'éthérate de BF₃. Un éther, comme l'éther diéthylique, répond bien aux exigences de la réaction. Pour éviter toute trace d'humidité, la réaction s'effectue sous atmosphère d'azote ou d'argon.

L'ouverture de l'immino-oxiranne XXVIII se fait par addition d'amine au mélange réactionnel à basse température puis en élevant progressivement la température jusqu'à la température ambiante.

En utilisant une amine optiquement active pour ouvrir l'iminooxiranne, il est possible d'obtenir préférentiellement un des énantionères de glycinamide avec un rendement optique non négligeable.

Notons encore que l'iminooxiranne XXVIII peut être synthétisé par oxydation de la cétènimine XXIX. L'agent oxydant couramment utilisé est l'acide m-chloroperbenzoïque (mCPSA).

$$R_2CH = C = N - R_3$$
 $M.CPBA$
 R_2
 H
 O
 $XXIX$
 $XXVIII$

20 Procédé D.

30

35

Selon cette façon de procéder, une amine secondaire RR₁NH est mise en réaction avec du glyoxal XXX pour former un glycinamide:

$$RR_{1}NH + H-C-C-H \longrightarrow R_{1}N-CH_{2}C \nearrow R_{3}$$

$$XXX$$

dans lequel R et R_1 sont tels que définis précédemment tandis que R_2 et R_Δ ont les mêmes valeurs que R et R_1 .

Cette réaction procède en 2 temps. Il se produit d'abord une réaction exothermique lors de la mise en contact des réactifs. Par la suite, pour obtenir la glycinamide désirée, il faut élever la température du mélange réactionnel ou du solide résultant jusque, environ 150°C, avantageusement, jusqu'à la température de reflux. Cette réaction se déroule sans solvant ou dans un solvant organique inerte comme les hydrocarbures aromatiques ou aliphatiques comme le benzène, le toluène, ou l'éther de pétrole, ou encore dans des solvants chlorés comme le chloroforme ou le tétrachlorure de carbo-

ne. Si l'emploi d'une base s'impose, une base minérale sera de préférence utilisée comme les hydroxydes ou les oxydes de métaux alcalins ou alcalino-terreux comme la chaux vive ou l'hydroxyde de sodium, ou encore un carbonate comme le carbonate de potassium.

5 Ci-après sont donnés des exemples détaillés de préparation de quelques dérivés de glycinamide suivant l'invention.

Ces exemples ont surtout pour but d'illustrer davantage les caractéristiques particulières des procédés suivant l'invention.

Exemple 1.

20

25

10 Synthèse de 2-n.octadécylaminoacétamide.

$$CH_3 - (CH_2)_{17} - NH_2 + C1CH_2 - C \xrightarrow{O} \frac{NaHCO_3}{NH_2} > CH_3 - (CH_2)_{17} - NH - CH_2 - C \xrightarrow{O} O$$

Dans un erlenmeyer de 500 ml muni d'un réfrigérant et d'un agitateur magnétique, on mélange à température de chambre 21,6 g d'octadécylamine (0,08 mole), 7,48 g de chloroacétamide (0,08 mole) et 7,4 g de bicarbonate de sodium dans 350 ml d'éthanol. Ce mélange est porté au reflux pendant 16 heures. Après refroidissement de la solution, on filtre le solide et on évapore la solution. Le résidu de l'évaporation ainsi que le solide filtré précédemment sont réunis et recristallisés dans le cyclohexane. Une sublimation à 120-140° sous 5.10 mmHg suivie d'une nouvelle recristallisation dans le cyclohexane permet d'obtenir un produit analytiquement pur.

F(°C) 102,5 - 103,5°

	Analyse	С	Н	И
30	% calcule	73,56	12,96	8,57
	% trouvé	73,4	12,7	8,55

Exemple 2.

Synthèse de 2-n.hexylaminoacétamide.

35
$$CH_3 - (CH_2)_5 - NH_2 + C1 - CH_2C / NH_2 \rightarrow CH_3 - (CH_2)_5 - NH - CH_2 - C / NH_2$$

Dans un erlenmeyer de 500 ml muni d'un réfrigérant

et d'un agitateur magnétique, on mélange, à température de chambre, 11 g d'hexylamine (0,11 mole), 10 g de chloroacétamide (0,107 mole) et 9,9 g de bicarbonate de sodium (0,118 mole) dans 200 ml d'éthanol. Ce mélange est porté au reflux pendant 24 heures. Après refroidissement, on filtre le chlorure de sodium et on le lave avec 50 ml d'éthanol.

Les filtrats réunis sont évaporés et le solide blanc obtenu est recristallisé une fois dans 140 ml de cyclohexane, une fois dans 120 ml d'acétone, enfin dans un minimum d'acétate d'éthyle. Le produit ainsi obtenu est sublimé à 120° sous 3.10 mmHg et recristallisé une nouvelle fois dans 110 ml de cyclohexane.

Analyse C H N % calculé 60,72 11,46 17,71 % trouvé 60,60 11,2 17,4

Exemple 3.

 $F(^{\circ}C) : 62-63.$

5

10

15

20

25

30

35

Synthèse de 5-(carboxamidométhyl)amino-hexanoate de méthyle.

Dans un erlenmeyer de 250 ml muni d'un réfrigérant et d'un agitateur magnétique, on mélange 22 g du chlorhydrate de l'ester méthylique de l'acide 6-amino caproïque (0,121 mole) avec 21 g de bicarbonate de sodium (0,250 mole) dans 200 ml d'isopropanol. On porte ce mélange au reflux pendant 1 heure et on y ajoute alors 11,22 g de chloroacétamide (0,120 mole) à température de chambre. On agite la suspension pendant 4 jours à température normale, on filtre le précipité obtenu, on le lave avec 50 ml d'éthanol bouillant et on évapore les filtrats réunis. Le résidu est chromatographié sur 1000 g de silice en éluant avec un mélange méthanol-éther (4/6). Le produit est collecté entre la 25ème et la 58ème fraction de 50 ml. Il est finalement purifié par dissolution dans l'isopropanol et saturation de la solution ainsi obtenue par l'HCl. Une recristallisation supplémentaire dans l'isopropanol

donne un produit analytiquement pur.

F (°C): 160.

Analyse C II N % calculé 45,28 8,02 11,73 % trouvé 45,00 8,05 11,73

Exemple 4.

5

10

15

20

25

a) Synthèse du docécylaminoacétonitrile.

F (°C): 28-29.

b) Synthèse de 2-n.dodécylaminoacétamide.

$$c_{12}H_{25}-NH-CH_{2}-CN \xrightarrow{H_{2}SO_{4}} c_{12}H_{25}NH-CH_{2}-C$$

15,2 g de dodécylamino cétonitrile (0,068 mole), dissous dans 20 ml d'éthanol, sont ajoutés goutte à goutte à 2,5 ml d'H₂SO₄ dans 25 ml d'éthanol refroidis dans la glace. Le précipité blanc qui se forme est filtré et séché (19 g d'hydrogénosulfate de dodécylamino acétonitrile). Ce produit est ajouté petit à petit dans un ballon de 250 ml à 60 cc d'H₂SO₄. Cette solution est portée à 100° pendant 1,30 h. Après refroidissement, elle est ajoutée goutte à goutte à 400 ml d'éthanol refroidis dans la glace. Le précipité blanc qui se forme est filtré et recristallisé dans l'éthanol.

30 F (°C): 190° (Déc.).

Exemple 5.

35 a) Synthèse de l'hexylaminoacétonitrile. $C_6H_{13}NH_2$ + $HO-CH_2-CN$ \longrightarrow $C_6H_{13}NH-CH_2-CH_2$ + H_2O /4/43 D

On mélange, dans un ballon de 100 ml, 5,7 g d'hy-

droxyacétonitrile (0,1 mole) avec 11 g d'hexylamine (0,11 mole) dissous dans 10 ml de NeOH. La température s'élève rapidement pendant le mélange. On laisse reposer la solution pendant 24 heures. On évapore le NeOH et le liquide obtenu est distillé à 72° sous 0.8 mm Hg.

b) Synthèse de 2.-n.hexylaminoacétamide.

11,2 g d'hexylaminoacétonitrile (0,081 mole) sont ajoutés goutte à goutte à 30 ml d'H₂SO₄ cc dilué dans 30 ml d'éthanol refroidi dans la glace. Dès la fin de l'addition, l'éthanol est évaporé et 40 ml d'H₂SO₄ sont ajoutés au solide blanc obtenu. Cette solution est chauffée pendant 1 heure à 100°C, elle est ensuite refroidie et ajoutée goutte à goutte à 200 ml d'éthanol filtré et lavé avec 50 ml d'éthanol.

F (°C): 151-152.

15	Analyse		С	н	N
		% calculé	37,49	7,87	10,93
		% trouvé	37,80	7,80	10,90

Exemple 6.

5

10

a) Synthèse du 2-(n.pentylamino)-butyronitrile.

20 $c_{5}H_{11}-NH_{2}$ + KCN + $c_{2}H_{5}$ CHO -----> $c_{5}H_{11}NH-CH-CN$ Dans un-ballon de 250 ml muni d'un barreau magnétique, on dissout 35 g de $Na_2S_2O_5$ dans 95 ml d'eau. Cette solution refroidie dans la glace est additionnée de 14,9 ml de propionaldé-25 hyde (0,2 mole) et l'on agite à 0°C cette nouvelle solution pendant 2 heures. Il se forme un très léger précipité. On laisse revenir la solution à température de chambre avant d'ajouter goutte à goutte 23,9 ml d'amylamine (0,2 mole). On laisse réagir pendant 2 heures et l'on additionne en une fois 13 g de KCN (0,2 mole). Après 24 30 heures de réaction, à température de chambre, on sature la solution avec du NaCl et on extrait à l'éther. La phase éthérée est séchée sur MgSO, et additionnée d'une solution d'HCl dans l'éther. Le précipité qui se forme est filtré et séché. F (°C): 104-105.

b) Synthèse de 2-(n.pentylamino)-butyramide.

$$c_{5}^{H_{11}}$$
 HC1 $c_{5}^{H_{11}}$ HC1 $c_{5}^{H_{11}}$ HC1 $c_{5}^{H_{11}}$ HC1 $c_{5}^{H_{11}}$ HC1 $c_{5}^{H_{11}}$

Dans un ballon de 50 ml, muni d'un barreau magnétique et refroidi dans la glace, on ajoute 1,9 g (0,01 mole) de 2-(n.pentylamino)-valéronitrile à 17 ml d'HCl concentré. Lorsque le solide est complètement dissous, la solution est sotckée au frigo pendant 24 heures. L'acide chlorhydrique est alors évaporé au moyen d'un évaporateur rotatif et la solution est neutralisée au moyen 10 d'une solution de NaOH 1 N. A pH = 6, on lave plusieurs fois la solution par du benzène. A pH = 11-12, on extrait la solution par de l'éther; les extraits éthérés sont réunis, séchés sur MgSO, et évaporés. Le résidu obtenu est sublimé à 70°C sous 2.10 mm Hg.

15 $F(^{\circ}C) = 58-59.$

Analyse		С	H	N
	% calculé	62,75	11,70	16,26
	% trouvé	62 7	11.65	16.05

Exemple 7.

25

20 Synthèse de 2-(N-n.hexyl-N-méthylamino)acétamide.

$$c_{6}H_{13}NH-CH_{2}-C \nearrow O$$
 +- $CH_{3}I$ --> $c_{6}H_{13}^{N-CH_{2}-C} \nearrow O$ NH_{2}

Dans un ballon de 100 ml, on mélange 7,9 g (0,05 mole) de 2-n.hexylamino)acétamide et 7,8 g (0,055 mole) d'iodure de méthyle dans 50 ml de méthanol. Cette solution est abandonnée pendant 1 mois à température de chambre, elle est alors évaporée. Le résidu est dissous dans une solution de NaOH 1N jusqu'à pH basique et extrait à l'éther. La phase éthérée est séchée sur ${
m MgSO}_{\Lambda}$ et évaporée. Le solide obtenu est chromatographié sur une colonne de SiO, en éluant 30 avec un mélange benzène-méthanol (7:3). On obtient ainsi le produit désiré.

 $F(^{\circ}C) = 64-65$

	Analyse		С	H	N
35	o,	calculé	62,75	11,70	16,26
	- 0/	trouvé	63,10	11,32	16,12
	~ 1 - C				

Exemple S.

Synthèse de 2-(N-benzoyl-N-n.hexyl)aminoacétamide.

$$c_{6}^{H_{13}^{NH-CH_2-C}}$$
 + $c_{6}^{H_{13}^{N-CH_2-C-NH_2}}$

Dans un ballon de 250 ml à 3 cols munis d'un barreau magnétique, d'un thermomètre, d'une ampoule à brome et d'un
réfrigérant surmonté d'un tube à chlorure de calcium, on mélange
100 ml de chloroforme, 6,23 g (0,04 mole) de 2-(n.hexylamino)acétamide et 8 ml (0,055 mole) de triéthylamine.

A cette solution refroidie à 10°, on ajoute, goutte à goutte, 5,1 ml (0,044 mole) de chlorure de benzoyle dissous dans 10 ml de chloroforme. Le mélange réactionnel est porté au reflux pendant 20 heures, refroidi et lavé 3fois par HCl 1 N, une fois par de l'eau, 2 fois par NaOH 1 N et 2 fois par de l'eau. La solution chloroformique est séchée sur NgSO₄ et évaporée, le résidu est recristallisé dans un mélange éther-pentane puis dans le cyclohexane. F (°C): 97-98.

Analyse C H N 20 % calculé 68,67 8,45 10,67 % trouvé 68,7 8,25 10,60

Exemple 9.

10

15

30

: .

Synthèse de N-n.hexyl-2(n.hexylamino)acétamide.

$$c_{6}^{H_{13}NH-CH_{2}-C}$$
 + $c_{6}^{H_{13}NH_{2}}$ - $c_{6}^{H_{13}}$ - $c_{6}^{H_{13}}$ - $c_{6}^{H_{13}}$

On introduit dans un autoclave, 5,6 g (0,03 mole) de l'ester éthylique de l'acide 2-(n.hexylamino)acétique, 15 ml (0,1125 mole) de n. hexylamine et 100 ml d'éthanol. Le mélange est chauffé à 120° pendant 40 heures. On évapore alors le solvant et l'excès d'amine. Le résidu est solidifié dans le pentane à basse température (-80°C), il est recristallisé 3 fois dans l'hexane puis dissous dans de l'éther et additionné d'une solution saturée d'NC1 dans l'éther jusqu'à pfi acide.

35 Le chlorhydrate est recristallisé dans l'isopropanol. F (°C) 153-159

Analyse		С	н -	N
	% calculé	60,29	11,2	10,04
	% trouvé	60,44	11,03	9,92

Exemple 10.

Synthèse de la 2-(n.hexylamino)-acétamide.

 $c_6 H_{13} NHCH_2 CN + H_2 O \xrightarrow{CuCl_2} c_6 H_{13} NH-CH_2 - C-NH_2$

Dans un erlenmeyer de 250 ml, on introduit 1 g (0,072 mole) de n.hexylamino acétonitrile, 1,22 g (0,072 mole) de chlorure cuivrique déshydraté et 100 ml d' H_2O . On ajoute alors de l'éthanol jusqu'à l'obtention d'une phase homogène. Le pH de la solution est ajusté à 10 au moyen de NaOH 1 N et on agite le milieu réactionnel pendant, 4 heures à température de chambre; un solide mauve s'est formé qui est filtré, remis en suspension dans l'ammoniaque et extrait au dichlorométhane. La phase organique est lavée trois fois à l'eau, séché sur K_2CO_3 et évaporée. Le résidu est recristallisé dans le cyclohexane.

F (°C): 62-63.

Exemple 11.

20 <u>Synthèse de N-n.butyl-2-[N-acétyl-N(4-phénoxybutyl)</u>] <u>aminoisova-léramide</u>.

$$c_{6}H_{5}-0-(CH_{2})_{4}NH_{2} + nc_{4}H_{9}N=C + CH_{3}COOH + (CH_{3})_{2}CH-C + CH_{3}COO$$

25

10

15

Dans un ballon de 25 ml à trois cols muni d'un barreau magnétique, d'un tube à chlorure de calcium et d'une ampoule à brome, on mélange 1,99 g (0,012 mole) de phénoxybutylamine, 1 g (0,012 mole) de n.butylisonitrile et 0,72 g d'acide acétique dans 5 ml de méthanol. Il se forme un précipité d'acétate de phénoxybutylamine. Cette suspension refroidie dans un bain de glace est additionnée, sous bonne agitation, de 0,87 g (0,012 mole) d'isobutyraldéhyde.

Lorsque le mélange réactionnel est revenu à température de chambre,

le précipité est complètement dissous.

On laisse encore agiter à température de chambre une nuit (disparition complète de l'odeur caractéristique de l'isonitrile). On évapore alors le méthanol et ou reprend l'huile résiduelle dans 20 ml d'un mélange 5/l hexane/benzène. Le solide qui se forme est filtré et le filtrat est évaporé et distillé à 185°C sous 4.10 mm Hg.

A	nalyse	С	Н	N
	% calculé	69,58	9,45	7,73
10	% trouvé	69,15	9,32	7 56

Exemple 12.

20

25

30

Synthèse de N-méthyl-N-n.octyl-2-(N-méthyl-N-n.octyl)aminoacéta-mide.

15
$$2C_8^{H_{17}^{NH}} + H - C - C - H \longrightarrow C_8^{H_{17}^{N}} - CH_2 - C \xrightarrow{CH_3} CH_3$$

Dans un ballon de 25 ml muni d'un barreau magnétique, on mélange 6 g (0,0558 mole) de méthyl-n-octylamine et 1,57 g (0,0186 mole) d'hydrate de glyoxal. Cette solution est agitée pendant 3 heures à température de chambre. On y ajoute alors 3,9 g de carbonate de potassium, on agite cette suspension pendant 10 minutes et on filtre. L'huile obtenue est chauffée une heure à 100°C puis distillée. La fraction qui distille entre 150 et 157°C/0,03 mmHg est dissoute dans 50 ml d'eau acidifiée jusqu'à pH = 1 par de l'acide chlorhydrique dilué, et elle est extraite par 2 fois 20 ml d'éther. La phase aqueuse est neutralisée, extraite au chloroforme. La phase organique est séchée sur K₂CO₃ et évaporée. Le résidu est dissous dans l'éther et acidifié par une solution d'acide chlorhydrique dans l'éther. Après une nuit à -2°C, on obtient un produit blanc fondant à 115 - 116°C.

Analyse	C .	н	У
% calculé	ó6,17	11,94	7,72
% trouvé	65,7	11.32	7.70

35 Les points de fusion et les solvants de recristallisation de dérivés préparés suivant l'invention sont repris dans le tableau I suivant:

				R 1 2 CII - C	O N N		·
					\ R4		
3 Z	~	я I	R ₂	ж 3	R ₄	F(°C)	Solvant de recristal lisation
i			-				
-	11C ₈ 117	=	=	=	=	79	acétone/eyclohexque
7	nC_H_13	=	=	=	=	62-63	cyclohexane
n	nc ₅ H ₁₁	=	=	=	=	917	cyclohexane
7	110(CH ₂) ₆	= c	=	=	=	76-96	AcOllt
2	110(CH ₂)6	CII ₂ C //	=	· =	=	115	isopropanol
·æ	0 CH ₃ 0C- (CH ₂) ₅	CH ₂ -C	=	= .	=	116-117	isopropanol
7	110-(CII ₂) ₄ -		=	=	=	81	Etoli (1)
×) ('IID) - 20'-IID	=	=	=	=	160	MeOII (1)

TABLEAU 1.

			IVELETAL INTERPRETATION	TABLEAU I. (Suite) R R R 0	(i) (o,			
			≥) - HS	× 7			
	•		:		, K			
2	К	R ₁	۳ ₂	≈ ₀	R ₄	F(°C)	Solvant de recristal- lisation	
			-					
2	ոն, 11 լչ	=	=	=	=	69	éther-pentane	
2	116,18137	=	=	=	=	103	éther	
=	HC, II	=	=	=	=	79	cyclohexane	
21	11CH 3	=	=	Ξ	=	152-153	éthanol (2)	
Ξ	nC ₁₂ ¹¹ 25	п.	=	=	=	190(déc)	. éthanol (2)	
7	nC 10 121	11	=	=	H	87	cyclohexane	
5	O CH_OC=(CH_).	=	=		tural para	70-72	Acolit	
	3 2 7 0							
91	c, n _s - oc - (cn _s),	=	=	=	=	139-140	E1011 (2)	
~	$c_{13}(c_{11}, c_{11})$ $-c_{11}$ $-c_{11}$ $-c_{11}$	=	=	11	=	85-87	acétone	
18	18 C ₇ ^H 15 C ₁₁	=	=	=	= .	58-59	pentane	
	c 3							

			TABLEA	TABLEAU 1. (suite)	[e]			
			~ ~ ~ ~ ~	R - C C C C C C C C C C	0, Z			
					× 7	٠.		
0 2	***	R	R ₂	⊼ E	R4	F(°C)	Solvant de recristal- lisation	
			-					
9.	C ₈ II ₁ 7	0 //3- ⁵ 11 ⁹ 3	H	=	=	99	cyclohexane	
20	C ₅ II.1	=	~	<u>-</u>	=	151	éthanol (2)	
7.1	$(\text{CH}_3)_2^{\text{CH}}(\text{CH}_2)_2^{\text{CH}}$	=_	=	=	=	50-51	hexane	
22	6, 11, 1-c.1 6, 11, 1-c.1 c.13	= .	=	=	=	52-53	pentane	
2.3	23 CH ₃ 0C-(CH ₂) ₇	CII ₂ - C	=	=	=	125	ELOII	
24	24 $(cn_3)_2$ $cn(cn_2)_3$ $-cn$ cn_3		=	=	=	63	pentane	

			TABLEA	TABLEAU f. (suite)	(a) (c)		
			- ' - ' - ' - '	,	N N N N N N N N N N N N N N N N N N N		
2		R ₁	R 2	۳. 3	7 7	F(°C)	Solvant de recristal- lisation
25	nC ₀ H ₁₃) 2-5H ⁹ 2	=	=	=	97-98	cyclohexane
26	нС, И.,	=	=	=	=	115-125	éther (3)
27	. 1 . 5 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	Ξ.	=	=	=	207	McOII-Ether (1)
2.8	nC ₆ H ₁₃	່ແ່ວ	=	=	×	120-121	NeOII-Ether (1)
29	1.5 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	H C Z	=	. =	=	127-128	Ethanol-Ether (1)
30	"2"5 "C,II,3	CII.,	=	=	=	9-19	Cyclohexane
Ξ	31 110,113	=	=	=	=	142-147	NeOH/Ether (4)
32	"C" II '3") // 2-2 ^{t.} (*II3)	Ξ	=	=	69-89	pentane
2	, , , , , , , , , , , , , , , , , , ,	, = ,	Ξ	=	=	205-207	McOil (1)
34	34 110,511,11	=	=	=	=	104-105	acétone (3)

TABLEAU f. (suite)	$\frac{R_2}{\frac{1}{12}} = 0$, N
≝	~_ z	
\leq	1	
	≃	

) 2	~		R,	R ₃	R	F(°C)	Solvant de recristal-
		•	ı	1		e.	lisation
			-				
35	nC ₅ II ₁₁	=	=	11	=	149-151	Neoll (4)
36	c 'II' - (CII ₂) 2	=	=	=	=	90-91	Ether-pentane
37	37 nC ₀ 13	=	=	"C ₆ " ₁₃	=	158-159	isopropanol (1)
33	38 nC ₆ H ₃	= 0	=	CII ³	=	183-184	isopropanol (1)
39	39 nC ₆ H ₁₃	CH ₂ C NH ₃	=	=	= .	183	éthanol (1)
70	си ₂ =си(си ₂) ₅	7 11	=		=	51	éther
1 5	ال ال 11 عاد 14 عاد	= ,	CIIS	= .	=	71-72	sublimation
7.5	CH C-C- -1	=	=	=	=	75	éther
6.3	43 nC ₁₀ 11 ₂₁	=	=	=	=	195-210	éthanol (2)

			TABLE. R - 1 - 8	TABLEAU CSUILCE				
					N N N N			
2	×	. R.	R - 2		R ₄	F(°C)	Solvant de recristal- lisation	i
517	44 nC ₈ 11 ₁₇	C ₂ II ₅	=	=	11	47-48	pentane	1
95	45 nC ₈ H ₁₃ 46 nC ₈ H ₁₁	$(c_{13})_{3}c^{-}c_{13}$	11 C ₆ H ₅	= =	= ·=	15	pentanc cyclohexane	
41	47 nC, H ₁₃	C ₂ H ₅ -0-c	=	=	Ħ	52-53	pentane	
87	48 "C ₅ 11	=	C2115	=	=	58-59	cyclohexane	
67	$\left\langle \bigcirc \right\rangle - \left(\text{CH}_2 \right)_3$	н	=	=	=	215-218	МеОН (1)	
50	50 $\text{CH}_2 = \text{CH} - (\text{CH}_2)_6$ 51 $\text{HOOC}(\text{CH}_2)_7$	= =	= =	= =	= =	63 144-145	AcOEL/pentane Acétone/H ₂ O (1)	

TABLEAU 1. (suite)	$ \frac{R_{1}}{1} \frac{R_{2}}{1^{2}} $ $ \frac{R_{3}}{1} = \frac{R_{3}}{1^{2}} $ $ \frac{R_{3}}{1} = \frac{R_{3}}{1^{2}} $	
2	1	
	~	

o Z	2	R ₁	R ₂	R ₃	R4	F(°C)	Solvant de recristal- lisation
52	(C) - (C112)4	П	=	11	11	208-210	éthanol (1)
23 nc	нс ₆ И _{1.3}	= .	=		=	260-265 décomp.	acétone (1)
54 nc ^{6,1} 13	6,113	=	=,	CIII3	CII ₃	115°/4.10 ⁻²	
255	O) -0-(CH ₂)4	CII 3 CIII	(cII ₃) ₂ cII c ₄ II ₉	6,11,9	<u></u>	185°/4.10 ⁻² nmulfg	
)) 98	56 $\left(\left(\bigcirc\right)^{-1}\right)_{2}^{\text{CH-}\left(\text{CH}_{2}\right)_{2}^{-1}}$	=	=	=	=	106	acétone-pentane

TABLEAU 1. (suite)	R - N - CH - C	``` ''

2	=	a.	R ₂	R ₃	¥ ·	¥(°C)	Solvant de recristal- lisation
57 () -0-(()	0-(CII ₂) ₂	=	=	=	= '	209-211	éthanol (1)
8 (C ₂ 11 ₅ 0	58 (c ₂ II ₅ 0) ₂ CII-(CII ₂) ₃	=	=	=	· =	152°/2.10 ⁻²	
	59 (CH ₂) ₂	=		= {	=	290-292(déc)	290-292(déc) méthanol (1)
EH ₁₁ 9 ₂₀₁ 09		П	=		=	258-260(déc)	258-260(déc) méthanol-acétone (1)
61 nC ₈ ft ₁₇ 62 nC ₈ ft ₁₇		nC ₈ II ₁ 7 CII ₃	= =	11 11 11 11 11 11 11 11 11 11 11 11 11	CII 3	47 115-116	hexane éther (1)

(1) = $\frac{101}{100}$ (2) = $\frac{1}{100}$ (3) = $\frac{1}{100}$ (4) = $\frac{1}{100}$

	63	CP CH;	н	н	4	н	92.5	milhanol.	
	64	(CH3) CH - CH	H	н	н	H	138-139	mithy lilky lietone - 14041)	
	65	CH3 (CH2)3 . c = 0	н	н	R	W	154	Ac OG C	
	66	c1-(0-(UL),	н	н	Ħ.	4	126.230	élhanol (1)	
	67	~ (o) - (cre)4	н	н	н	н	75	Lexane Acock	
	63	m. Cs Hii	COLCHS	н	н	н	46	peulane	
	69	m. C H44	(08-1847)	<i>H</i>	#	*	60	herane	
	ī0	(o) (e112)4	co (2 45	н	н	*	53	peurant-éthand	
1] 1	1	1	i		*	

$$(1) = HC1$$

(3) = benzoate

$$(1) = HC1$$

 $(2) = H2SO4$

 $(4) = 11_3 PO_4$

Des résultats pharmacologiques et biochimiques de composés suivant l'invention sont donnés dans le tableau II également annexé. Dans ce tableau, les numeros donnés dans la colonne l correspondent aux numeros de la colonne l du tableau I. Les résultats donnés dans ce tableau doivent s'interpréter de la façon ci-après.

L'effet anticonvulsivant est examiné vis-à-vis des convulsions toniques induites par la bicuculline. Les composés de l'invention sont administrés par voie orale aux doses de 10 à 100 mg/kg, chacune à 5 souris, 3 heures avant l'injection intraveineuse de bicuculline, à la dose de 0,6 mg/kg. Le nombre de souris protégées vis-à-vis des convulsions toniques et de la mort est noté. Les résultats sont donnés sous la forme d'un score qui représente la somme des animaux protégés par des doses de 10 et 100 mg/kg des composés.

Les DL_{50} sont calculées selon la méthode de Lichtfield et Wilcoxon (. Pharmacol. Exp. Ther. $\underline{96}$, 99, 1949) et exprimées en mg/kg. Les produits sont administrés par voie orale à des souris.

20 L'effet sur le comportement est étudié en utilisant une méthode dérivée de celle de S. Irwin (Gordon Res. Conf. on Medicinal Chem., 133, -1959). Les substances, suspendues dans un mucilage à 1% de gomme adragante, sont administrées par voie orale au moyen d'une sonde intragastrique à des groupes de 5 souris mâles 25 (souche CD1, Charles River, à jeun depuis 18 heures). Si la quantité disponible de substance le permet, les doses sont 3000, 1000 et 300 mg/kg. Dans le cas où cette dernière dose est active, l'effet de la drogue est examiné à 100, 30, 10 et éventuellement 3 mg/kg. Le comportement est étudié 2, 4, 6 et 24 heures après trai-30 tement. L'observation est prolongée si des symptômes persistent à ce moment. Les mortalités sont enregistrées au cours de l'a jours qui suivent le traitement. Aucun des produits testés n'a induit un comportement anormal chez la souris. Il faut signaler en particulier qu'ils sont dépourvus d'effets sédatifs.

10

TABLEAU II - RESULTATS BIOLOGIQUES

		bicuculline	DL ₅₀ mg/kg		bicuculline	DL ₃₀ mg/kg
5	1	4	2220	29	4	1950
	2	4	780	30	4	570
	3	7	1925	31	6	1650
	4	4	>3000	32	5	>3000
	5	2	>3000	33	6	2880
10	6	6	>3000	34	- 5	>3000
	7	2		35	3	>3000
	8	1	>3000	36	7	
	9	5	1425	37	3	
	10	1	>3000	38	3	
15	11	2	1950	39		
	12	5	2800	40	4	
	13	2	>3000	41	4	
	14	6	2600	42	6	
	15			45	3	
20	16	5	>1000	46	5	
	17	. 2	>3000	47	8	
	18	2	>1000	48	6	
	19	2	3000	49	7	•
	20	1	>1000	. 50	6	
25	21	3	640	51	6	
	22	5	640	52	7	
	23	7	>1000	53	. 4	
	24	· 5	650	54	4	
	25	5	3660	55	6	
30	26	3	1950	56	4	
	27	4	860	57	5	
	28	5	435			

Les substances de l'invention ont la propriété d'inhiber les convulsions induites par la bicuculline chez la souris. Cet effet indique que ces substances ont un potentiel antiépileptique vraisemblablement en agissant sur le système GABA. 5 En effet, la bicuculline est un antagoniste spécifique du GABA. Par ailleurs, l'effet des produits sur l'activité de l'enzyme de synthèse du GABA, la glutamate décarboxylase (GAD), a été étudié. L'activité de la GAD a été déterminée dans des homogénats de cerveau de rat selon la méthode décrite par L. Parker (Methods in 10 Enzymology, Ed. S. Fleischer, 1974, Vol. XXXII, part V., p.779). Les produits testés sont ajoutés à une concentration finale de 10⁻⁴M. Les produits de l'invention, en général, se sont montrés actifs dans ce test. Les produits n° 3,8, 17 et 33 sont particulièrement remarquables à cet égard. En général, les produits de 15 l'invention augmentent l'activité de la GAD sans modifier l'activité de la GABA transaminase (GABA-T), enzyme de catabolisme du GABA, ce qui a comme conséquence, une augmentation des taux de GABA au niveau des neurones GABAergiques.

Parmi les substances de l'invention, le 2-n.pentylaminoacétamide ainsi que son chlorhydrate ont été spécialement
étudiés. Les résultats sont partiellement fournis au tableau III.
Ces produits inhibent les convulsions induites par la bicuculline
chez la souris; les DE₅₀ sont respectivement de 11,2 et 5,74 mg/kg
p.o. Le chlorhydrate a également été administré par voie intra-veineuse. Dans ce cas, le DE₅₀ est de 2,19 mg/kg. Cette valeur n'est
pas significativement inférieure au DE₅₀ après administration
orale, ce qui indique une excellente résorption intestinale. Le
tableau III donne également l'index thérapeutique (DL₅₀/DE₅₀). Pour
les composés de l'invention, cet index thérapeutique est supérieur
à ceux du valproate, de la diphénylhydantoïne et du phénobarbital.

Traitement 3 heures avant l'induction des convulsions

Traitement	DL ₅₀	DE ₅₀	DL ₅₀ /DE ₅₀
2-n.pentylamino-acétamide	1925	11,2	172
Chlorhydrate 2-n.pentylamino-acétamide	2240	5,74	390
Na.Valproate	1250	89,1	14
Na.Diphénylhydantoine	320	2,63	. 122
Na. Phénobarbital	185	2,11	38

Comme le valproate, le 2-n.pentylaminoacétamide est inactif vis-vis-des convulsions à la strychnine. Son action anti-convulsivante ne semble donc pas être medullaire mais centrale.

20

25

D'autre part, le 2-n.pentylaminoscétamide et son chlorhydrate paraissent agir spécifiquement au niveau des récepteurs du GABA. Ceci est indiqué par les résultats suivants:

- son action antagoniste des convulsions à la bicuculline peut être surmontée par l'augmentation des doses de bicuculline;
- le 2-n.pentylaminoacétamide n'inhibe que faiblement les convulsions au leptazol chez la souris;
- 3) le chlorhydrate du 2-n.pentylaminoacétamide n'a pas d'effet sur les convusions à la picrotoxine.

En effet, le leptazol n'agit pas au niveau des récepteurs du GABA et la picrotoxine agit sur un site annexe du récepteur GABA mais pas directement sur celui-ci. De plus, le 2-n.pentylaminoacétamide entre en compétition avec la bicuculline, antagoniste spécifique du GABA. L'interaction du chlorhydrate de 2-n.pentylaminoacétamide avec le système GABA est confirmée par le fait que, adminstré à 200 mg/kg p.o. chez le rat, ce produit potentialise de 26% l'activité de la GAD sans modifier celle de la GABA-T; le taux de GABA de la

substance noire, structure riche en terminaisons GABA ergiques, est augmenté de 28, 33 et 38% respectivement 2, 3 et 4 heures après le traitement.

Le 2-n.heptylaminoacétamide présente la propriété

de protéger des souris vis-à-vis de la mort provoquée par le KCN.

Cette activité s'explique vraisemblablement par un effet sur le métabolisme énergétique cérébral au cours de l'anoxie. Cet effet sur le métabolisme énergétique cérébral a été confirmé pour le chlorhydrate de 2-n.pentylaminoacétamide dans une série d'expériences sur l'anoxie cérébrale provoquée par décapitation chez le rat. Il a été ainsi montré que ce produit prévient pendant les premières secondes d'anoxie l'accumulation de lactate dans le cerveau.

D'autre part, le 2-n.pentylaminoacétamide potentialise les effets du l-tryptophan chez la souris indiquant une facilitation du système sérotoninergique central et donc l'existence de propriétés psychotropes, et en particulier antidépressives.

Par ailleurs, le 2-n.octylaminoacétamide (50 mg/kg i.p.) a été étudié dans une expérience d'évitement passif chez la souris où il a retardé l'extinction du comportement. Ce produit et vraisemblablement d'autres composés de l'invention facilitent donc la rétention amnésique.

20

25

30

35

Certains composés de l'invention inhibent l'agrégation des plaquettes dans le plasma humain. La mesure de l'inhibition de l'agrégation plaquettaire est effectuée selon la méthode turbidimétrique de G.V.R. Born et M.J. Cross (J. Physiol. 168, 173, 1973). Le plasma riche en plaquettes est préincubé pendant 3 minutes avant l'introduction de l'agent inducteur, le Trombofax. L'inhibition de l'amplitude maximale d'agrégation est mesurée au moyen d'une agrégomètre "Upchurch". Dans ce test, les composés 1, 11, 14 et 18 se sont révélés actifs.

Ainsi le 2-n.pentylaminoacétamide et son chlorhydrate agissent sur le système GABAergique en favorisant la transmission GABA comme il est montré par l'antagonisme de l'effet de la bicuculline. Cet effet pourrait résulter d'une activation de la GAD. Ces produits seraient donc spécialement indiqués pour le traitement de l'épilepsie et des dyskinésies telles que la maladie de Parkinson, syndrome résultant vraisemblablement d'une insuffisance du système GABA. L'activité sur le métabolisme énergétique cérébral et l'anoxic permet également d'envisager l'utilisation de ce produit dans les maladies ischémiques cérébrales. De plus, l'effet du 2-n.octylaminoacétamide dans le test de mémoire et l'effet du 2-n.pentylaminoacétamide sur le système sérotoninersique permettent de proposer comme indications supplémentaires pour les composés de l'invention, les troubles mnésiques et certaines affections psychiatriques comme la dépression.

Pour l'administration des nouveaux composés de l'invention, la dose journalière sera de 10 mg à 2 grammes, la dose unitaire sera de 10 à 300 mg. Etant donné la très faible toxicité des produits de l'invention, les doses citées peuvent être augmentées sans danger.

Les produits de l'invention peuvent être utilisés sous diverses formes galéniques. Les exemples qui suivent ne sont pas limitatifs et concernent les formulations galéniques contenant un produit actif désigné par la lettre A.

Ce produit actif est formé par un des composés suivants:

20 2-n.pentylaminoacétamide,

2-n.octylaminoacétamide,

6-(dicarboxamidométhyl)aminohexanoate de méthyle,

2-n.décylaminoacétamide,

8-(dicarboxamidométhyl)aminooctanoate de méthyle,

25 2-n.hexylaminoacétamide,

2-(2-phényléthyl)aminoacétamide,

2-n.octadécén-9-ylaminoacétamide,

2-(N-carboxamidométhyl-N-n.hexyl)aminoacétamide,

2-(1,1-diméthylpropyn-2-yl)aminoacétamide,

30 N-n.hexyl-N-carboxamidométhylcarbamate d'éthyle,

2-n.pentylaminobutyramide,

2-(3-phénylpropyl)aminoacétamide,

2-octén-7-ylaminoacétamide,

acide 3-carboxamidométhylaminooctanolque,

35 2-(4-phénylbutyl)aminoacétamide,

N-n-butyl-2-[N-acétyl-N-(4-phénoxybutyl)]aminoisovaléramide.

: رنوبر. المراتيم

	Comprimés		
	A	300	mg
	amidon Sta-Rx 1500	180	mg
	phosphate calcique		mg
5	aérosil	5	mg
	stéarate de magnésium		mg
	A	100	mg
	amidon de maïs	100	mg
10	lactose	80	mg
	aérosil	5	mg
	talc	5	mg
	stéarate de magnésium	10	mg
	•		
15	Gélules.		
	A	50	mg
	lactose	110	. mg
	amidon de maïs	20	mg
	gélatine	8	mg
20	stéarate de magnésium	12	ıng
	A -	200	mg
	polyvinylpyrrolidone	10	mg
	amidon de maïs	100	mg
25	Cutina HR	10	mg
	Injectable I.M. ou I.V.		
	A	100	mg
	chlorure sodique	20	ıng
30	acétate sodique	6	mg
	eau distillée pour injectables ad	1 5	ml
	Injectable I.M.		
	A	200	mg
35	benzoate de benzyle	1	g
	huile pour injection ad	5	ml

	Siron.		
	A	5	g
	glycyrhizinate d'ammonium	Ο,	5 g
	acide atrique	0,	5 g
5	nipasept	Ο,	l g
	saccharose	70	g
	arôme	Ο,	l g
	eau ad	100	ml.
.0	Soluté.		
	A	2	8
	sorbitol	50	g
	glycérine	10	8
	essence d'anis	0	, 1 g
L5	propylène glycol	10	g
,	eau déminéralisée ad	100	mg
	Suppositoire.		
•	A	250	mg
20	butylhydroxyanisol	10	mg
	olycérides semi-synthétiques ad	3	g

REVENDICATIONS

1. Dérivé de glycinamide de formule générale I:

dans laquelle:

25

R représente un groupe alkyle linéaire ou ramifie C₅-C₁₈, un groupe alkényle linéaire ou ramifié C₅, C₆, C₇, C₈, C₉, C₁₀, C₁₁, C₁₂, C₁₃, C₁₄, C₁₅, C₁₆, C₁₇ ou C₁₈, un groupe alkynyle linéaire ou ramifié C₄-C₁₀, un groupe acyle linéaire ou ramifié C₄-C₁₈, un groupe alkyle linéaire ou ramifié C₁-C₁₀ substitué par un groupe phénoxy, par un groupe hydroxyle, par un groupe acétoxy, par un groupe carboxyle, par un groupe alkoxycarbonyle linéaire ou ramifié C₁, C₂, C₃ ou C₄, par un groupe carbonyle, par un groupe carboxaldéhyde, par un groupe acétal ou cétal, par un ou plusieurs phényles, par un ou plusieurs phényles, par un ou plusieurs phényles comme le fluor, le chlore ou le brome,

R₁ représente de l'hydrogène, un groupe alkyle linéaire ou ramifié C₁, C₂, C₃, C₄, C₅, C₆, C₇, C₈, C₉ ou C₁₀, un groupe acyle linéaire ou ramifié C₁-C₆, un groupe benzoyle, un groupe alkoxycarbonyle linéaire ou ramifié C₁, C₂, C₃, C₄, C₅, C₆; C₇ ou C₈, un groupe carboxamidométhyle,

 R_2 représente de l'hydrogène, un groupe alkyle linéaire ou ramifié C_1 , C_2 ou C_3 , un groupe phényle,

 R_3 représente de l'hydrogène, un groupe alkyle linéaire ou ramifié C_1 , C_2 , C_3 , C_4 , C_5 , C_6 , C_7 ou C_8 , un groupe phényle, éventuellement substitué par un atome d'halogène, tel que le chlore, le fluor ou le brome,

30 R_4 représente de l'hydrogène, un groupe alkyle linéaire ou ramifié C_1 , C_2 , C_3 , C_4 , C_5 , C_6 , C_7 ou C_8 , ainsi que les sels de ce dérivé formés par des acides non toxiques et pharmaceutiquement utilisables.

2. Dérivé suivant la revendication 1, caractérisé en ce que, dans la formule générale I, R représente un groupe alkyle linéaire ou ramifié C_5 , C_6 , C_7 , C_8 , C_9 , C_{10} , C_{11} ou C_{12} , un groupe alkényle linéaire ou ramifié C_5 - C_{10} , un groupe alkynyle

--,7

linéaire ou ramifié $C_4^{-C}_6$, un groupe acyle linéaire ou ramifié $C_4^{-C}_{12}$, ou un groupe alkyle linéaire ou ramifié $C_1^{-C}_{12}$, $C_2^{-C}_{12}$, ou un groupe alkyle linéaire ou ramifié $C_1^{-C}_{12}$, $C_2^{-C}_{12}$, $C_3^{-C}_{12}$, $C_4^{-C}_{12}$, $C_5^{-C}_{12}$, ou $C_8^{-C}_{12}$, substitué par un ou plusieurs phényles, par un ou plusieurs phényles substitués par un atome de chlore; de fluor ou de brome, par un groupe phénoxy, par un groupe hydroxyle, par un groupe acétoxy, par un groupe carboxyle, par un groupe alkoxycarbonyle linéaire ou ramifié $C_1^{-C}_4$, par un groupe carbonyle, par un groupe carboxaldéhyde, par un groupe acétal ou cétal.

- alkyle linéaire ou ramifié C_5 , C_6 , C_7 , C_8 ou C_9 , un groupe alkényle linéaire ou ramifié C_5 - C_8 , un groupe acyle linéaire ou ramifié C_5 - C_8 , un groupe acyle linéaire ou ramifié C_4 - C_8 ou un groupe alkyle linéaire ou ramifié C_4 - C_8 ou un groupe alkyle linéaire ou ramifié C_1 , C_2 , C_3 , C_4 , C_5 , C_6 , C_7 , C_8 , C_9 ou C_{10} substitué par un ou plusieurs phényles, par un ou plusieurs phényles substitués par un atome de chlore, de fluor ou de brome, par un groupe phénoxy, par un groupe hydroxyle, par un groupe acétoxy, par un groupe carboxyle, par un groupe carboxyle linéaire ou ramifié C_1 - C_4 , par un groupe carbonyle, par un groupe carboxaldéhyde, par un groupe acétal ou cétal.
- 4. Dérivé suivant la revendication 1, caractérisé en ce que, dans la formule générale I, R représente un groupe alkyle linéaire ou ramifié C_5 , C_6 , C_7 ou C_8 ou un groupe alkyle linéaire ou ramifié C_3 - C_7 substitué par un ou plusieurs phényles, par un ou plusieurs phényles substitués par un atome de chlore, de fluor ou de brome, par un groupe phénoxy, par un groupe hydroxyle, par un groupe acétoxy, par un groupe carboxyle, par un groupe alkoxycarbonyle linéaire ou ramifié C_1 - C_4 , par un groupe carbonyle, par un groupe carboxaldéhyde, par un groupe acétal ou cétal.
- 5. Dérivé suivant la revendication 1, caractérisé en ce que, dans la formule générale I, R représente un groupe alkyle linéaire ou ramifié C_8 , C_9 , C_{10} , C_{11} , C_{12} , C_{13} , C_{14} , C_{15} , C_{16} , C_{17} ou C_{18} ou un radical alkényle linéaire ou ramifié C_5 - C_{18} , ou un groupe alkyle C_2 , C_3 , C_4 , C_5 , C_6 , C_7 , C_8 , C_9 ou C_{10} substitué par un ou plusieurs phényles, par un ou plusieurs phényles substitués par un atome de chlore, de fluor ou de brome, par un groupe phénoxy, par un groupe hydroxyle, par un groupe acétoxy, par un groupe carboxyle, par un groupe alkoxycarbonyle linéaire ou ramifié

 C_1-C_4 , par un groupe carbonyle, par un groupe carboxaldéhyde, par un groupe acétal ou cétal.

- 6. Dérivé suivant la revendication 1, caractérisé en ce que, dans la formule I, R représente un groupe alkyle liné-5 aire ou ramifié C₅, C₆, C₃ ou C₉.
 - 7. Dérivé suivant la revendication 6, caractérisé en ce que, dans la formule I, R_1 à R_2 représentent de l'hydrogène.
- 8. Dérivé suivant la revendication 1, caractérisé en ce que, dans la formule I, R représente un groupe alkyle liné10 aire ou ramifié C₁-C₁₀ substitué par un phényle éventuellement substitué lui-même par un atome de fluor, de brome ou de chlore.
 - 9. Dérivé suivant la revendication 1, caractérisé en ce que, dans la formule I, R représente un groupe alkyle linéaire ou ramifié C_1 , C_2 , C_4 à C_{10} substitué par un groupe alkoxycarbonyle C_1 , C_2 , C_3 ou C_4 .
 - 10. Dérivé suivant l'une quelconque des revendications 1 à 6, caractérisé en ce que, dans la formule générale I, R représente un groupe alkyle linéaire ou ramifié substitué par un ou plusieurs groupes phényles, par un ou plusieurs groupes phényles substitués par un atome de chlore ou de fluor, par un groupe alko-xycarbonyle C, ou C₂.
 - 11. Dérivé suivant l'une quelconque des revendications 1 à 10, caractérisé en ce que, dans la formule générale I, R_1 représente un groupe alkyle linéaire ou ramifié C_1 , C_2 , C_3 ou C_4 , un groupe acyle linéaire ou ramifié C_1 - C_4 , un groupe alkoxycarbonyle C_1 , C_2 , C_3 ou C_4 , un groupe carboxamidométhyle.
 - 12. Dérivé suivant l'une quelconque des revendications 1 à 11, caractérisé en ce que, dans la formule générale I, R_2 représente un groupe alkyle C_1 ou C_2 .
 - 13. Dérivé suivant l'une quelconque des revendications 1 à 12, caractérisé en ce que, dans la formule générale I, R_3 représente un groupe alkyle linéaire ou ramifié C_1 - C_4 .
 - 14. Dérivé suivant la revendication 1, caractérisé en ce qu'il est choisi dans le groupe formé par les composés:
- 35 2-n.pentylaminoacétamide,

20

25

- 2-n.octylaminoacétamide,
- 6-(dicarboxamidométhyl)aminohexanoate de méthyle,

2-n.décylaminoacétamide,

8-(dicarboxamidométhyl)aminooctanoate de méthyle,

2-n.hexylaminoacétamide,

2-(2-phényléthyl)aminoacétamide,

2-n.octadécén-9-ylaminoacétamide,

2-(N-carboxamidométhyl-N-n.hexyl)aminoacétamide,

2-(1,1-diméthylpropyn-2-yl)aminoacétamide,

N-n.hexyl-N-carboxamidométhylcarbamate d'éthyle,

2-n.pentylaminobutyramide,

10 2-(3-phénylpropyl)aminoacétamide,

2-octén-7-ylaminoacétamide,

acide 8-carboxamidométhylaminooctanoïque,

2-(4-phénylbutyl)aminoacétamide,

N-butyl-2-[N-acétyl-N-(4-phénoxybutyl)]aminoisovaléramide.

15. Dérivé de glycinamide de formule I tel que décrit ci-dessus et notamment dans les exemples donnés.

16. Procédé de synthèse de dérivé suivant l'une quelconque des revendications l à 15, caractérisé en ce qu'il consiste à convertir une amine tertiaire de formule:

20

25

15

en un composé correspondant de formule I, R à R_2 ayant les significations données ci-dessus, Z représentant une fonction transformable en une fonction amide, tel qu'un groupe carboxylique, nitrile, ester $-\text{COOR}_5$, dans lequel R_5 est un radical alkyle C_1 - C_3 ou un radical phényle substitué de manière telle qu'il active l'ester vis-à-vis de l'attaque d'un nucléophile, une fonction amidine du

30

type -C
$$= R_3$$
, un groupe anhydride, un halogénure d'acide R_4

35 -c x

où X représente un halogène, comme le chlore ou le brome,

ou un groupe précurseur d'acide carboxylique tel qu'un groupe trichlorométhyle ou une oxazoline.

17. Procédé de synthèse de dérivé suivant l'une quelconque des revendications l à 15, caractérisé en ce qu'on procède à l'hydrogénation catalytique d'une sydnonimine selon le schéma de, réaction suivant:

10

20

25

30

35

où R possède la signification donnée précédemment et W représente un anion tel qu'un halogénure, un sulfate, un nitrate, un phosphate ou un anion dérivé d'un radical organique tel qu'un acétate.

18. Procédé de synthèse de dérivé suivant l'une quelconque des revendications 1 à 15, caractérisé en ce qu'on met en réaction un aldéhyde R_2 CHO, un isonitrile $R_3^{N=C}$ et une amine RR_1^{NH} , en présence d'un acide carboxylique, de manière à obtenir le dérivé correspondant de la formule I.

19. Procédé de synthèse de dérivé suivant l'une quelconque des revendications 1 à 15, dans lequel R_2 est de l'hydrogène, caractérisé en ce qu'on met en réaction une amine secondaire RR_1NH avec du glyoxal suivant le schéma:

$$NHRR_1 + H-C-C-H \longrightarrow \underset{R_1}{\overset{O}{\downarrow}} N-CH_2-C \underset{R_4}{\overset{O}{\swarrow}} R_3$$

20. Procédé de synthèse du dérivé suivant l'une quelconque des revendications 1 à 15, tel que décrit ci-dessus.

21. Composition pharmaceutique, caractérisé en ce qu'elle comprend au moins un des dérivés de formule I ou un de ses sels, associé à un ou des excipients pharmaceutiquement appropriés ou éventuellement à d'autres agents thérapeutiques.

22. Composition suivant la revendication 21, caractérisée en ce qu'elle se présente sous forme de dragées, comprimés, gélules, tablettes, granulés, capsules, solutions, sirops, émulsions ou suspensions contenant des additifs ou excipients classiques en pharmacie galénique.

23. Composition suivant la revendication 22, caractérisée en ce qu'elle comprend au moins un des dérivés de formule I en solution notamment dans de l'eau stérile ou dans une huile comme l'huile d'arachide ou l'oléate d'éthyle.

24. Composition pharmaceutique telle que décrite

24. Composition pharmaceutique telle que décrite ci-dessus.

25. Procédé d'utilisation des dérivés de formule I, caractérisé en ce qu'on les administre à des doses journalières de 10 mg à 2000 mg par voie orale et de 10 mg à 200 mg par voie parentérale.

26. Procédé d'utilisation des dérivés suivant la formule I, dans le traitement des diverses formes d'épilepsie, dans le traitement des dyskinésies telles que la maladie de Parkinson, dans le traitement des troubles psychiques tels que la dépression et dans le traitement des troubles de la mémoire.

Bruxelles, le 19 se plembre 1950

y garan kanang gaya sa kanang makepada kemangan na kakang sa kanan kanan kanan kanan makembalan menang biran d

P. Pon de : "Continental Pharma"

20 P. Pon du : Bureau GEVERS S.A.

25

10

15

30