МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

ІНСТИТУТ КОМП'ЮТЕРНИХ НАУК ТА ІНОРМАЦІЙНИХ ТЕХНОЛОГІЙ

Кафедра систем штучного інтелекту

3BIT

Про виконання лабораторної роботи № 1

З дисципліни

«Дискретна математика»

Студентки групи ІТ-11

Проців Роксолани Василівни

Прийняв викладач Юринець Р.В.

Моделювання основних логічних операцій

Мета роботи: Ознайомитись на практиці із основними поняттями математичної логіки, навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинностні значення таблицями істинності, використовувати закони алгебри логіки, освоїти методи доведень.

Хід роботи:

Варіант №4

- 1. Формалізувати речення. Якщо 2 просте число, то це найменше просте число, якщо 2 найменше просте число, то 1 не ε простим числом; число 1 не ε простим числом, отже 2 просте число.
- р 2 є простим числом
- q 2 є найменшим простим числом
- r-1 \in простим числом

a)
$$(p \rightarrow q) \land (q \rightarrow \neg r) \sim \neg r \rightarrow p$$

2. Побудувати таблицю істинності для висловлювань:

$$x \Rightarrow ((x \lor y) \lor z);$$

Х	У	Z	x ∨ y	$(x \lor y) \lor z$	$x \rightarrow (x \lor y) \lor z$
Т	T	Т	Т	Т	Т
Т	T	F	Т	Т	Т
Т	F	Т	Т	Т	Т
Т	F	F	Т	Т	Т
F	T	Т	Т	Т	Т
F	T	F	Т	Т	Т
F	F	Т	F	Т	Т
F	F	F	F	F	Т

3. Побудовою таблиць істинності вияснити, чи висловлювання є тавтологією або протиріччям:

$$\left((p \to q) \land (\bar{q} \to r)\right) \lor (p \to \bar{r})$$

р	q	r	¬q	¬r	p →q	¬q →r	p →¬r	$(p \rightarrow q) \land (\neg q \rightarrow r)$	
									$((p \rightarrow q) \land (\neg q \rightarrow r)) \lor (p \rightarrow \neg r)$
Т	Т	Т	F	F	Т	Т	F	Т	Т
Т	Т	F	F	Т	Т	F	Т	F	Т
Т	F	Т	Т	F	F	Т	F	F	F
Т	F	F	Т	Т	F	F	Т	F	Т
F	Т	Т	F	F	Т	Т	F	Т	Т
F	Т	F	F	Т	Т	F	Т	F	Т
F	F	Т	Т	F	F	Т	F	F	F
F	F	F	Т	Т	F	F	Т	F	Т

Відповідь: висловлювання є ні тавтологією, ні протиріччям.

4. За означенням без побудови таблиць істинності з виконанням еквівалентних перетворень перевірити, чи є тавтологією висловлювання:

$$\begin{split} &((\ \mathsf{p} \lor \mathsf{q}) \land (\ \mathsf{p} \to \mathsf{r}) \land (\mathsf{q} \to \mathsf{s})) \to (\mathsf{r} \lor \mathsf{s}) = \left(\overline{(p \lor q) \land (\bar{p} \lor r) \land (\bar{q} \lor s)}\right) \lor (r \lor s) = (\bar{p} \land \bar{q}) \lor (p \land \bar{r}) \lor (q \land \bar{r}) \lor (q \land \bar{r}) \lor (p \lor r) \land (r \lor \bar{r}) \lor (q \lor s) \lor (s \land \bar{s}) = (\bar{p} \land \bar{q}) \lor (p \lor r) \land T \lor (q \lor s) \lor F = (\bar{p} \land \bar{q}) \lor (p \lor r) \lor (q \lor s) = (\bar{p} \land \bar{q}) \lor p \lor r \lor q \lor s = (\rho \lor \bar{p}) \land (p \lor \bar{q}) \lor r \lor q \lor s = T \land (p \lor \bar{q}) \lor r \lor q \lor s = (p \lor \bar{q}) \lor r \lor q \lor s = p \lor \bar{q} \lor r \lor q \lor s = p \lor T \lor r \lor s = T \lor r \lor s = T \lor s = T \end{split}$$

Відповідь: висловлювання є тавтологією

5. Довести, що формули еквівалентні:

$$p \oplus (q \wedge r)$$
 Ta $(p \oplus q) \wedge (p \oplus q)$

$$p \oplus (q \wedge r)$$

Т	Т	Т	Т	F
Т	Т	F	F	Т
Т	F	Т	F	Т
Т	F	F	F	Т
F	Т	Т	Т	Т
F	Т	F	F	F

 $q \wedge r \mid p \oplus (q \wedge r)$

($p \oplus$	q) ^ (p	\oplus	q)

			_	(-) (-)
p	q	r	$p\oplus q$	$(p \oplus q) \land (p \oplus q)$
Т	Т	Т	F	F
Т	Т	F	F	F
Т	F	Т	Т	Т
Т	F	F	Т	Т
F	Т	Т	Т	Т
F	Т	F	Т	Т
F	F	Т	F	F
F	F	F	F	F

Відповідь: формули не еквівалентні

6. Написати на будь-якій відомій студентові мові програмування програму для реалізації програмного визначення значень таблиці істинності логічних висловлювань при різних інтерпретаціях, для наступних формул: $x \Rightarrow ((x \lor y) \lor z)$

```
#include <iostream>
#include <Windows.h>
using namespace std;
bool bOr(bool const b1, bool const b2)
{
    if (b1 == false && b2 == false ) return false;
    else return true;
}
bool bImpl(bool const b1, bool const b2)
    if (b1 == true && b2 == false) return false;
    else return true;
}
const char* GetBoolString(bool const b)
{
    return b ? "T" : "F";
}
int main()
    SetConsoleCP(1251);
    SetConsoleOutputCP(1251);
    string expression;
    expression = "x \rightarrow ((x||y)||z)";
    cout << "Expression: " << expression << endl;</pre>
    cout << "Steps: " << endl;</pre>
    bool v1;
    bool v2;
    bool v3;
    bool v4;
    bool v5;
    bool v6;
    bool v7;
    cout << "1| x||y" << endl;</pre>
    cout << "2| (x||y)||z" << endl;
    cout << "3| x \rightarrow ((x||y)||z)" << endl;
    for (size_t x = 0; x < 2; x++)
        for (size_t y = 0; y < 2; y++)
             for (size_t z = 0; z < 2; z++)
                 cout << x << " ";
                 cout << y << " ";
cout << z << " ";
                 cout << "|";
```

Результат виконання програми:

Висновок: при виконанні лабораторної роботи я ознайомилась на практиці із основними поняттями математичної логіки, навчилась будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинностні значення таблицями істинності, використовувати закони алгебри логіки, освоїла методи доведень.