Complexidade Parametrizada

Matheus Souza D'Andrea Alves

2018.2

Contents

1	Intr	rodução	1
	1.1		1
	1.2	Complexidade Parametrizada	2
		1.2.1 O que traz de diferente?	2
2	Téc	enicas de FPT	2
	2.1	Bound search Tree	2
	2.2	Kernelização	2
			2
			3
	2.3		3
		2.3.1 Como encontrar decomposição em coroa em grafos quaisquer	4
3	Cla	sses de parametrização	5
	3.1		5
	3.2	Subestrutura	5
		3.2.1 Vertex cover	5
		3 2 2 Treewidth	5

1 Introdução

1.1 Complexidade clássica

Suponha um problema Π , se Π possui um algoritmo que o resolve em tempo polinomial dizemos que $\Pi \in P$.

Se dado um certificado de resposta sim para Π se posso validar tal resposta em tempo polinomial então $\Pi \in NP$.

Chamamos de NP-Completo a classe de problemas Π' no qual dado o problema 3-SAT 3S $3s \propto \Pi'$.

1.2 Complexidade Parametrizada

1.2.1 O que traz de diferente?

Une teoria e prática, não ignorando nuances práticas de um problema sabidamente NP-Completo, resolve problemas. Difere de heurísticas e aproximações, pois não perde garantia de tempo ou otimalidade.

O objetivo é desenvolver um algoritmo $\mathcal{O}(f(k).n^{\mathcal{O}(1)})$. Se um problema Π admite uma solução dessa forma, dizemos que $\Pi \in FPT$. Quando isso ocorre, afirmamos que existe um pré-processesamento capaz de reduzir a entrada obtendo uma instância menor, limitado por k, chamamos isso de kernelização; Uma solução para o kernel é uma solução para o problema.

Características - $FPT \subset XP$

2 Técnicas de FPT

2.1 Bound search Tree

2.2 Kernelização

Dizemos que se um problema possui um kernel, então por definição o mesmo é FPT.

2.2.1 Pré processamento

chamamos de pré processamento um conjunto de regras que aplicados a uma instancia do problema, pode ou não retirar composições da entrada de forma a podar a instância.

Suponha um problema Π , que tem entrada I um parametro k e uma questão q.

Uma kernelização é um algoritmo de pré processamento que recebe I como entrada com o paramêtro k, e retorna uma instância do problema e um inteiro representat
ne do paramêtro.

$$f(k) \mapsto |I'|$$

$$g(k) \mapsto k'$$

2.2.2 O quão bom pode ser?

Depende de como se planeja abordar o problema, suponha dois algoritmos de kernelização, A e B; Se A chega a um kernel de tamanho $\theta(k)$ em tempo $\theta(n^2)$, e B chega a um tamanho $\theta(k^2)$ em tempo $\theta(n)$ na literatura, diríamos que A é melhor pois nos dá um kernel menor.

Teorema 1: Se $(\Pi, k) \in FPT$ então (Π, k) admite um kernel.

Demonstração.

Como $(\Pi,k)\in FPT$ logo o mesmo pode ser resolvido por um algoritmo A em tempo $f(k)n^c$ para c constante.

Considere portanto a seguinte kernelização.

- Execute os n^{c+1} passos de A.
- O problema foi resolvido?
 - Sim:
 - Não: logo $f(k)n^c > n.c \implies f(k) > n$ logo a entrada já era um kernel.

2.3 Crown decomposition

Figure 1:

Estratégia para kernelização via decomposição em coroa

- Encontre uma coroa (C, H, R) de V(G)
- Remova $C \cup H$ de G
- k = k |H|

2.3.1 Como encontrar decomposição em coroa em grafos quaisquer

Observe o seguinte lema:

Lema 1: Se G tem mais de 3k vértices então G possui

- um emparelhamento de tamanho k+1, ou
- uma decomposição em coroa.

E ambos podem ser encontrados em tempo polinomial.

Demonstração.

Se possui kernel o mesmo possui um emparelhamento com no máximo 2k vértices.

$$|V(M)| \le 2k$$

Observe que isso gera um vertex cover, e portanto $I = G \backslash M$ é independente.

Como queremos encontrar uma cabeça e coroa estamos interessados apenas na vizinhança entre I e M. Ignorando as arestas pertencentes à cabeça, temos um bipartido formado por $I \cup M$. Em I podemos encontrar um novo emparelhamento M' e um conjunto independente I'. Encontrar o vertex cover em bipartidos é polinomial nos dando então um vertex cover VC, é importante notar que em bipartidos o tamanho do emparelhamento máximo é o tamanho do menor vertex cover, logo:

$$|M'| \leq k \quad \text{já que } |M'| \leq |M|/2$$

$$|VC| \leq k$$

$$|M'| = |VC| \leq k$$

$$VC \cap V(M) = \emptyset$$

Seja M^* as arestas de M' que tem um dos vértices em $M \cap VC$.

 $H = VC \cap V(M^*)$

 $C = V(M^*) \cap I$

 $R = V(G) \backslash (C \cup H) V(G) \backslash V(M*)$

3 Classes de parametrização

- 3.1 Valor de entrada
- 3.2 Subestrutura
- 3.2.1 Vertex cover
- 3.2.2 Treewidth

 ${\cal O}$ que é $\it treewidth?$ Devemos primeiro entender decomposição em árvor.

Uma decomposição em árvore de um grafo G é uma estrutura $\mathcal{T}=(T,\chi)$