การทดลองที่ 3 เรื่อง เซลแสงอาทิตย์

วัตถุประสงค์

เพื่อศึกษาและหาค่าตัวแปรหลักของเซลแสงอาทิตย์

ทฤษฎี

เซลแสงอาทิตย์เป็นสิ่งประดิษฐ์ที่ผลิตขึ้นจากสารกึ่งตัวนำ โดยสามารถ แปลงพลังงานแสงที่ส่องลงบน เซลให้เป็นพลังงานไฟฟ้าได้ ซึ่งการผลิตนั้นสารกึ่งตัวนำที่ใช้กันได้แก่ ซิลิกอน (silicon) เจอร์มาเนียม (germanium) แกลเลียมอาเซไนด์ (gallium arsenide) คังโครงสร้างของเซลแสงอาทิตย์แสดงคังรูปที่ 1.1 ซึ่ง ประกอบด้วยฐาน(base)ที่ผลิตขึ้นจากแว่นผลึกของสารกึ่งตัวนำชนิดอื่นๆ แล้วแต่กรณี ความหนาของฐานอยู่ ระหว่าง 200 ถึง 300 ไมครอน(um) ผิวหน้าชั้นบนผ่านกระบวนการแพร่ซึมสารเจือปนเพื่อให้เกิดรอยต่อพี-เอ็น (p-n junction) และขั้วไฟฟ้า(ohmic contact) สำหรับต่อสายไฟ ในเซลแต่ละเซลจะประกอบด้วยขั้วไฟฟ้าที่ ค้านล่างและค้านบน และค้านบนจะมีชั้นลดการสะท้อนแสง(antireflection layer) ซึ่งเป็นชั้นที่เคลือบด้วยสาร ใดอิเล็กตริกช่วยทำให้ลดการสะท้อนของแสง ซึ่งจะเป็นผลทำให้เซลแสงอาทิตย์คูดกลืนแสงไว้ใด้มากขึ้น

รูปที่ 1.1 โครงสร้างแบบง่าย ๆ ของเซลแสงอาทิตย์

ตัวแปรหลักที่เกี่ยวข้องกับเซลแสงอาทิตย์ที่ควรทราบและสามารถศึกษาได้จากการทดลองมี3ชนิด คือ

- 1. แรงคันวงจรเปิด (open circuit voltage, $V_{\rm oc}$) หมายถึง แรงคันไฟฟ้าขาออกเมื่อความต้านทาน ของโหลดมีค่าสูงมากเมื่อเปรียบเทียบกับความต้านทานของเซลแสงอาทิตย์
- 2. กระแสลัดวงจร (short circuit current , I_{sc}) หมายถึงปริมาณกระแสไฟฟ้าขาออกที่ได้จากเซล แสงอาทิตย์ เมื่อความต้านทานของโหลดมีค่าน้อยมากเมื่อเปรียบเทียบกับค่าความต้านทานของเซลแสงอาทิตย์
- 3. ฟิลล์แฟคเตอร์ (fill factor, FF) หมายถึง อัตราส่วนของกำลังขาออกสูงสุดกับผลคูณระหว่าง V_{oc} กับ I_{sc} โดยที่กำลังขาออกสูงสุดหาได้จากผลคูณของค่าแรงดันสูงสุด V_{m} กับกระแสขาออกสูงสุด I_{m} ซึ่ง พิจารณาได้จากรูปที่ 1.2 ว่า

รูปที่ 1.2 แสดงกราฟของฟิลล์แฟคเตอร์ FF

ฟิลล์แฟคเตอร์ (FF) =
$$\frac{(I_m \cdot V_m)}{(Isc \cdot V_{oc})}$$
 (1.1)

การกำหนดคุณภาพของเซลแสงอาทิตย์เรากำหนดด้วยประสิทธิภาพของเซลซึ่งหาได้จากค่าแรงดัน วงจรเปิด, ฟิลล์แฟคเตอร์ และกำลังของแสงที่ตกกระทบแผ่นเซลดังนี้

ประสิทธิภาพ (e) ของเซล กำหนดด้วยอัตราส่วนของพลังงานไฟฟ้าขาออกกับพลังงานแสงที่ตกกระทบ แผ่นเซล นั่นคือ

$$e = \frac{(P_{\text{output}})}{(P_{\text{input}} \cdot a)} \cdot 100\%$$
 (1.2)

$$= \frac{(I_{m} \cdot V_{m})}{(P_{input} \cdot a)} \cdot 100\%$$

$$= \frac{(FF \cdot I_{sc} \cdot V_{oc})}{(P_{input} \cdot a)} \cdot 100\%$$
 (1.3)

เมื่อ a หมายถึง พื้นที่ของเซลแสงอาทิตย์ ในกรณีของการทคลองนี้ กำลังของแสงที่ตกกระทบแผ่นเซล แสงอาทิตย์ กำหนดไว้ในห้องปฏิบัติการ

เซลแสงอาทิตย์ที่ผลิตขึ้นจะมีขีดจำกัดในการใช้งานไม่เหมือนกัน การตรวจสอบหาจุดใช้งาน (operating point) ซึ่งหมายถึงจุดที่เซลสามารถให้กำลังไฟฟ้าสูงสุดออกมาเป็นสิ่งจำเป็น จุดนี้เรียกว่า จุดกำลังสูงสุด (maximum power point) $P_{\rm m}$ ดังแสดงในรูปที่ 1.2 การตรวจสอบหาจุด $P_{\rm m}$ จะทำได้โดยเลือกพิจารณาจุดที่ ให้ผลคูณของ $I_{\rm SC}$ กับ $V_{\rm oc}$ มีค่าสูงสุด ทั้งนี้ให้เลือกใช้จุดที่อยู่ในช่วงของกราฟที่กำลังโค้งลง

รูปที่ 1.3 แสดงการต่อวงจรสำหรับการทคลองเรื่องเซลแสงอาทิตย์

รูปที่ 1.4 แสคงรูปเครื่องมือการทคลองเซลแสงอาทิตย์

รูปที่ 1.5 แสดงรูปการวางเครื่องมือสำหรับการวัดค่า ${
m I}_{
m sc}$ และ ${
m V}_{
m oc}$

อุปกรณ์

1.	เซลแสงอาทิตย์	1	อัน
2.	ดิจิตอลมัลติมิเตอร์ (ใช้วัดกระแสและแรงคัน)	2	ตัว
3.	ตัวต้านทานปรับค่าได้	1	ตัว
4.	หลอดไฟ	1	ชุด
5.	สายไฟ	5	เส้น

วิธีทำการทดลอง

- 1. วางหลอดไฟไว้ที่ตำแหน่งP_{input}ตามที่กำหนดให้ในตารางการทดลอง แล้วจัดให้หลอดไฟตรงกับแผ่น โซลาร์เซล
- 2. วัดกระแสลัดวงจร (\mathbf{I}_{SC}) โดยต่อแอมมิเตอร์แบบอนุกรมกับแผ่นเซลแสงอาทิตย์
- 3. วัดค่าแรงคันวงจรเปิด (V_{oc}) โดยต่อโวลต์มิเตอร์แบบขนานกับแผ่นเซลแสงอาทิตย์
- 4. ต่อวงจรดังรูปที่ 1.3
- 5. ปรับค่าตัวต้านทาน R ตามที่กำหนดให้ในตารางการทดลอง
- 6. บันทึกแรงคันและกระแสเมื่อเปลี่ยนค่าตัวต้านทานตามตารางการทคลอง
- 7. เขียนกราฟแสดงความสัมพันธ์ระหว่างแรงคันกับกระแส โดยให้แรงคันอยู่แกนx กระแสอยู่แกนyแล้ว หาค่า V_{max} และ I_{max} ที่ทำให้ได้ค่ากำลังสูงสุด P_{max} แล้วนำผลที่ได้ไปคำนวณหาประสิทธิภาพและฟิลล์ แฟกเตอร์

หนังสืออ้างอิง

- 1. Hovel, H. J., Semi-metals and Semiconductors vol. 11, (Solar Cell), A.P., N.Y., 1978
- 2. Backus, C., Solar Cells, IEEE Press, N. Y., 1973
- 3. อรุณ รัตนชาตรี , เทอคศักดิ์ เจริญนวรัตน์ , ปริญญานิพนธ์ , ปีการศึกษา 2524 , พระจอมเกล้า ลาคกระบัง เรื่อง SOLAR CELLS.

บันทึกผลการทดลองที่ 3

เซลแสงอาทิตย์

A: 150 cm2

	Power (input) =		
R	I _{sc} = .20.7(.m4)	V _{oc} =.516(V)	
(Ω)	I (mA)	V (V)	P(mW)
0	20.7	0.025	0.5175
10	20.7	0.234	4.8438
20	20.7	0.440	9.1080
30	20.7	0.648	13.4136
40	20.7	0 859	17.6778
50	20.6	1.058	21.7948
60	20.6	1.267	26.1002
70	20.6	1.475	30.3850
80	20.6	1.682	34.6992
90	20.6	1.887	38.8722
100	20.6	2.070	42.6420
200	19.5	3.690	75.8550
300	15.3	4.580	70.0740
400	12.0	4.780	57.3600
500	9.7	4.870	47.2390
600	8.2	4.910	40.2620
700	7.1	9.950	35. 1450
800	6.2	4.970	30.8140
900	5.5	4.980	27.3900
1000	5.0	5-000	25.0000
จากกราฟ	e =	FF =	

วิธีการคำนวณ

สรุปและวิจารณ์ผลการทดลอง