

James B. Mertens

Homework 6 – due March 11, 2021

Problem 1: A second-order multi-point method for solving the differential equation

$$\frac{df(x)}{dx} = A(f(x), x)$$

can be derived using center differencing to approximate the derivative instead of using forward differencing, as discussed in class. We will be interested in writing down a formula for $f(x + \Delta x)$ given knowledge of f(x) and $f(x - \Delta x)$, and then analyzing the the stability of this scheme.

- a) Write down an approximation for $f(x + \Delta x)$ using the center differencing formula. You can proceed by writing down the formula you derived on the midterm and solving for $f(x + \Delta x)$ in terms of $f(x \Delta x)$ and A(f(x), x). For this method, we will therefore need information about the function at two points, $f(x \Delta x)$, and f(x) in order to compute A(f(x), x).
- b) Derive an equation for the error $\epsilon(x+\Delta x)$ for the multi-point method. To do so, use the fact that the numerical solution is only an approximation of the true solution, and so includes some error, i.e. $f(x) = f_{\text{true}}(x) + \epsilon(x)$. Write an equation for how the error at one timestep is related to the error at past timesteps. You should taylor expand the function A to linear order in ϵ . You can then assume that $f_{\text{true}}(x)$ obeys the equation you found in part (a) to eliminate several terms.
- c) Determine whether the method is stable or unstable when applied to decaying, growing, and oscillating differential equations. Do so by considering the case where $A(f(x), x) = \lambda f$, with $\lambda < 0$, $\lambda > 0$, and $\lambda = \pm i\omega$. For stability of this method, we would like the conditions $|\epsilon(x + \Delta x)| \leq |\epsilon(x)|$ and $|\epsilon(x)| \leq |\epsilon(x \Delta x)|$ to hold. Is there any (non-zero) Δx which can guarantee this is always true for a given λ ? Hint: To demonstrate a method is unstable for a given λ , it is sufficient to find a counter-example.

Problem 2: Complete the Jupyter notebook assignment.