Software development of a Vector controller for Permanent-Magnet Synchronous Motors using Matlab/Simulink

Taweesap Sripairoj ID: 5730204721

Advisor: Assist. Prof. Somboon Sangwongwanich

Department of Electrical Engineering Chulalongkorn University

🔊 Outline

- Introduction
- Project Overview
- Theory
- Procedure
- Result
 - Simulation
 - Implementation

Introduction

Fig.1 Development & Design Motor control system

Project Overview

Objective

To develop software of a vector controller for Permanent-Magnet Synchronous Motors using Embedded Coder of Matlab/Simulink.

\bigcirc

Overview structure in project

Fig.2 overview structure used in this project

C External Hardware

Fig.3 External hardware structure

Permanent-magnet Synchronous Motor (PMSM)

Fig.4 Permanent-magnet synchronous motor

PMSM Dynamic Model

Fig.5 PMSM model on rotor reference frame [2]

Rotor reference frame

$$\frac{v_{sd}}{v_{sd}} = Ri_{sd} + L_s \frac{di_{sd}}{dt} - \omega L_s i_{sq}$$

$$\frac{v_{sq}}{v_{sq}} = Ri_{sq} + L_s \frac{di_{sq}}{dt} + \omega L_s i_{sd} + \omega \lambda$$

where

 v_{sd} and v_{sq} are stator voltage on rotor ref. frame d and q axis.

 $oldsymbol{i}_{sd}$ and $oldsymbol{i}_{sq}$ are stator current on rotor ref. frame d and q axis.

R is stator resistance.

 $L_{\rm s}$ is stator inductance.

 λ is permanent-magnet flux linkage.

 θ and ω are rotor angle and rotor speed (electical).

Vector Controller

Motor torque equation

$$T_e = \frac{3}{2} \left(\frac{p}{2} \right) \lambda i_{\underline{sq}}$$

where

 T_{e} is torque motor.

p is number of poles.

Mechanical torque equation

$$T_e - T_L = J \frac{d\omega_m}{dt}$$

where

 T_L is torque load

I is inertia

 ω_m is rotor speed (mechanical)

Fig.6 Space vector representation [2]

Controller block diagram

Fig.7 Block diagram of speed control system with vector controller [3]

ADC (Analog-to-Digital converter)

PWM (Pulse width modulation)

Simulation system block diagram (Procedure 1)

Fig.8 Simulation system of vector controller

\bigcirc

Block diagram for C code generation (Procedure 2)

Fig.9 Block diagram for C Code generation

Result: Simulation of speed control system with vector controller (1)

Fig.10 Simulink block diagram of speed control system with vector controller

Result: Simulation of speed control system with vector controller (2)

Fig.11 Time response when change speed from 0 to 750 RPM

Result: Simulation of speed control system with vector controller (3)

Fig.12 Time response when change speed between 500 and 600 RPM

Result: Simulation of speed control system with vector controller (4)

Fig.13 Time response when change speed from 500 to -500 RPM

Result: Simulation of speed control system with vector controller (5)

Fig.14 Time response when change speed from -500 to 500 RPM

Result: Implementation of vector controller software (1)

Fig.15 Simulink block diagram of speed control system with vector controller

Result: Implementation of vector controller software (2)

Fig.16 Simulink block diagram of speed control system with vector controller (Subsystem DSP)

Result: Implementation of vector controller software (3)

Time: 50 ms/div

Fig.17 Time response when change speed from 0 to 750 RPM

Result: Implementation of vector controller software (4)

Fig.18 Time response when change speed from 500 to 600 to 500 RPM

Result: Implementation of vector controller software (5)

Time: 100 ms/div

Fig.19 Time response when change speed from 500 to -500 RPM

Result: Implementation of vector controller software (6)

Time: 100 ms/div

Fig.20 Time response when change speed from 500 to -500 RPM

Summary :

Thank You!

