Exercise 12.5

Wang Yue from CS Elite Class

March 30, 2021

18.

Let A(10,3,1), B(5,6,-3), then $\overrightarrow{AB} = (-5,3,-4)$ Suppose P is an arbitrary point in the line segment AB, then

$$\overrightarrow{OP} = \overrightarrow{OA} + t\overrightarrow{AB} = (10 - 5t, 3 + 3t, 1 - 4t)$$

where $0 \le t \le 1$.

: parametric equations for the line segment is

$$x = 10 - 5t$$
 $y = 3 + 3t$ $z = 1 - 4t$ $0 \le t \le 1$

26.

- \therefore the plane is perpendicular to the line x = 3t, y = 2 t, z = 3 + 4t
 - $\vec{n} = (3, -1, 4)$
 - $\therefore a = 3, b = -1, c = 4, x_0 = 2, y_0 = 0, z_0 = 1$
 - \therefore an equation of the plane is 3(x-2)-(y-0)+4(z-1)=0, or

$$3x - y + 4z = 10$$

27.

- : the normal vector of the plane 5x y z = 6 is $\overrightarrow{n} = (5, -1, -1)$.
 - $\therefore a = 5, b = -1, c = -1, x_0 = 1, y_0 = -1, z_0 = -1$
 - \therefore an equation of the plane is 5(x-1)-(y+1)-(z+1)=0, or

$$5x - y - z = 7$$

34.

Let P(3t, 1+t, 2-t), then we know P can be an arbitrary point in the line x=3t, y=1+t, z=2-t.

Let $P_0(1,2,3)$, then $\overrightarrow{P_0P} = (3t-1,t-1,-t-1)$

Suppose the normal vector $\overrightarrow{n} = (a, b, c)$, then

$$\overrightarrow{n} \cdot \overrightarrow{P_0P} = (3t-1)a + (t-1)b - (t+1)c = 0$$

When t = 1, we can get $2a - 2c = 0 \Rightarrow a = c$

When t = -1, we can get $-4a - 2b = 0 \Rightarrow b = -2a$

Suppose a = 1, then we know one of the normal vector is $\overrightarrow{n} = (1, -2, 1)$

$$\therefore a = 1, b = -2, c = 1, x_0 = 1, y_0 = 2, z_0 = 3$$

 \therefore an equation of the plane is (x-1)-2(y-2)+(z-3)=0, or

$$x - 2y + z = 0$$

40.

The plane that passes through the line of intersection of the plane x-z=1 and y + 2z = 3 can be represented as

$$(x - z - 1) + \lambda(y + 2z - 3) = 0$$

which is equivalent to

$$x + \lambda y + (2\lambda - 1)z - 3\lambda - 1 = 0$$

- \therefore the normal vector of the plane is $\overrightarrow{m} = (1, \lambda, 2\lambda 1)$
- \therefore the normal vector of x + y 2z = 1 is $\overrightarrow{n} = (1, 1, -2)$
- : these two planes are perpendicular to each other
- \vec{m} is perpendicular to \vec{n}
- $\vec{m} \cdot \vec{n} = 1 + \lambda 4\lambda + 2 = 0$
- \therefore we can solve that $\lambda = 1$
- \therefore an equation of the plane is x-z-1+y+2z-3=0, or

$$x + y + z = 4$$

49.

Let $P_0(0, -1, 0)$, $\overrightarrow{v} = (1, 0, 1)$ \therefore the direction numbers of $\left\{ \begin{array}{l} x + z = 0 \\ y = -1 \end{array} \right.$ is 1, 0 and 1.

50.

The normal vector of x + y + z = 0 is $\overrightarrow{n} = (1, 1, 1)$

Similarly, the normal vector of x + 2y + 3z = 1 is $\overrightarrow{m} = (1, 2, 3)$

 \therefore if θ is the angle between the planes, then

$$\cos \theta = \frac{\overrightarrow{n} \cdot \overrightarrow{m}}{|\overrightarrow{n}||\overrightarrow{m}|} = \frac{1+2+3}{\sqrt{3}\sqrt{14}} = \frac{2\sqrt{3}}{\sqrt{14}}$$

$$\therefore \theta = \arccos(\frac{2\sqrt{3}}{\sqrt{14}}) \approx 22.2^{\circ}$$

61.

Let A(1,0,-2), B(3,4,0), then we can get their midpoint M(2,2,-1).

Plus, we know $\overrightarrow{AB} = (2, 4, 2)$.

The plane in which every point is equidistant from A and B has normal vector \overrightarrow{AB} and passes the point M. That is 2(x-2)+4(y-2)+2(z+1)=0. That is

$$x + 2y + z = 5$$

75.

Proof. Let $A(x_1, y_1, z_1)$ be an arbitrary point in the plane $ax + by + cz + d_1 = 0$ Then we can compute the distance between A and $ax + by + cz + d_2 = 0$ is

$$D = \frac{|ax_1 + by_1 + cz_1 + d_2|}{\sqrt{a^2 + b^2 + c^2}} = \frac{|-d_1 + d_2|}{\sqrt{a^2 + b^2 + c^2}} = \frac{|d_2 - d_1|}{\sqrt{a^2 + b^2 + c^2}}$$

79.

Let A(2,0,-1), B(1,-1,1), C(4,1,3)

Then L_1 can be represented as

$$t\overrightarrow{OA} = (2t, 0, -t)$$

Then L_2 can be represented as

$$\overrightarrow{OB} + t\overrightarrow{BC} = (1, -1, 1) + (3t, 2t, 2t) = (3t + 1, 2t - 1, 2t + 1)$$

Let
$$\overrightarrow{v_1} = \overrightarrow{OA} = (2, 0, -1), \overrightarrow{v_2} = \overrightarrow{BC} = (3, 2, 2)$$

Let
$$\overrightarrow{v_1} = \overrightarrow{OA} = (2, 0, -1), \overrightarrow{v_2} = \overrightarrow{BC} = (3, 2, 2)$$

Then $\overrightarrow{v_1} \times \overrightarrow{v_2} = \begin{vmatrix} i & j & k \\ 2 & 0 & -1 \\ 3 & 2 & 2 \end{vmatrix} = 2\overrightarrow{i} - 7\overrightarrow{j} + 4\overrightarrow{k}$

Since L_1 and L_2 are skew, they can be viewed as lying on two parallel planes P_1 and P_2 .

An equation of P_1 is 2x - 7y + 4k = 0

An equation of P_2 is 2(x-1)-7(y+1)+4(z-1)=0 or 2x-7y+4z=13

Therefore, the distance of L_1 and L_2 is equal to the distance from O(0,0,0)to 2x - 7y + 4z = 13. That is

$$D = \frac{|0 - 0 + 0 - 13|}{\sqrt{2^2 + (-7)^2 + 4^2}} = \frac{13}{\sqrt{69}} \approx 1.565$$

81.

Proof. : ax + by + cz + d = 0 can be rewritten as

$$a(x + \frac{d}{a}) + b(y - 0) + c(z - 0) = 0$$

which can be expressed as $(a,b,c)\cdot(x+\frac{d}{a},y,z)=0$ Let $\overrightarrow{n}=(a,b,c), \overrightarrow{r'}=(x,y,z), \overrightarrow{r'_0}=(-\frac{d}{a},0,0)$, then $(a,b,c)\cdot(x+\frac{d}{a},y,z)=0$ can be rewritten as

$$\overrightarrow{n} \cdot (\overrightarrow{r} - \overrightarrow{r_0}) = 0$$

which is called the vector equation of the plane.

 $\therefore ax + by + cz + d = 0$ represents a plane and (a, b, c) is normal vector.