PRI SISI

厦门大学《数学分析三》课程试卷

主考教师: 庄平辉 试卷类型: (A卷) 2019.1.15

- 一、(8 分) 计算曲线积分 $I = \int_L (x^2 + y^2) ds$ 分,其中为曲线 $x = a(\cos t + t \sin t)$, $y = a(\sin t t \cos t)$ (0 $\leq t \leq 2\pi$).
- 二、(8分) 计算二次积分 $I = \int_0^1 x^2 dx \int_x^1 e^{-y^2} dy$.
- 三、(8分) 设S是上半球面 $x^2 + y^2 + z^2 = 9$ $(z \ge 0)$,取上侧,计算 $I = \bigoplus_{s} z dx dy$.
- 四、(8分) 计算曲线积分 $\oint_L \frac{(x+y)\mathrm{d}x+(y-x)\mathrm{d}y}{x^2+y^2}$, 其中 L 为圆周 $x^2+y^2=4$,方向为逆时针方向.
- 五、(8分) 计算第一型曲面积分: $\iint_S (x^2+y^2-z) dS$, 其中S为立体 $\sqrt{x^2+y^2} \le z \le 1$ 的边界曲面.
- 六、(10分) 计算二重积分 $\iint_D \sqrt{|y-x^2|} dxdy$, 其中 $D: -1 \le x \le 1, 0 \le y \le 1$.
- 七、(10 分) 计算三重积分 $I = \iiint_V [(x+y)^2 + (y+z)^2] dx dy dz$, 其中 $V = \{(x,y,z) \big| x^2 + y^2 + z^2 \le 1\}$.

八、(10 分) 计算曲面积分 $I=\iint_S xz\mathrm{d}y\mathrm{d}z+yz\mathrm{d}z\mathrm{d}x+z^2\mathrm{d}x\mathrm{d}y$,其中 S 为椭球面 $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$ 的上半部分的下侧.

九、 $(10\, \mathcal{H})$ 若(1) 对任意 A>a,含参变量正常积分 $\int_a^A f(x,y) \mathrm{d}y$ 对参变量 x 在I 上一致有界,即存在正数 M ,对一切 A>a 及一切 $x\in I$,都有 $\left|\int_a^A f(x,y) \mathrm{d}y\right| \leq M$; (2) 对每一个 $x\in I$, g(x,y) 为 y 的 单调函数,且当 $y\to +\infty$ 时,对参变量 x , g(x,y) 一致地收敛于 0.

证明: 含参变量反常积分 $\int_a^{+\infty} f(x,y)g(x,y)\mathrm{d}y$ 在 I 上一致收敛.

十、(10 分)证明: (1) 含参变量反常积分 $\int_0^{+\infty} \frac{1}{(1+\alpha^2x^2)(1+x^2)} dx$ 关于 α 在 $[0,+\infty)$ 上一致收敛; (2)

十一、(10 分)计算第二型曲面积分 $\iint_S xz dy dz + 4 dx dy$,其中 S 是抛物面 $z=4-x^2-y^2$ 在 $z\geq 0$ 部分,方向取下侧.