Projektstudium Modellierungsseminar Landshuter Hochzeit: Simulation und 3D-Visualisierung

WS2016/17 Teamvorträge Sprint 1: Personenstromsimulation mit Pferd

D. Jadanec, A. Knoll, H. Hager, A. Yauseyenka, A. Gerum

Department of Computer Science and Mathematics

10 November 2016

Unsere Aufgabe

Simulation des Festzuges in der Landshuter Innenstadt. Dabei sollen Menschen, Pferde und Kutschen in die Simulation eingebunden werden. Die Ergebnisse sollen schlußendlich für visuelle Darstellungen weiter gegeben werden.

Simulations Tool:

OpenVadere (open source projekt)

Sprint Ziele

4. Einbauen eines Pferde Buttons in die VadereGUI Projektstudium Modellierungsseminar WS16/17, Teamvortrage Sprint I: Simulation Pferd

3. Erste Implementierung eines neuen Agenten (Pferd).

Dazu gehört dass der Agent Typ eine gesonderte Form besitzt.

Schwierigkeiten und Lösungen

- Verstreutes TeamTrello und Skype Calls
- ► Großes Projekt & Wo anfangen?

 Aufteilen des Teams auf die einzelnen Bereiche
 Einarbeiten im Kontext eines neuen Agenten (Pferd)

Ausblick

- Bewegungsmodel für Pferde einbinden.
- ▶ Schnittstelle zu den anderen Teams erweitern.
- Weitere Agententypes.
- Gui fertigstellen.
- ► Team:
 - Code dojo
 - Pair programming

Übersicht GUI

Darstellung der Oberfläche

Verwaltung der Actions

Verwaltung der Scenarios

Zeichnen des Scenarios

Animation der Simulation

Zeichnen der Grafiken

Button zu Horse

Einbinden der Klasse Horse in GUI

Einfügen in Builder

Einfügen in update - Funktionen

Eintragen in Konfiguration

Mein Aufgabenbereich

- ▶ Implementierung des Agenten Horse und seiner Attribute
- ► Serialisierung/Deserialisierung Horse/AttributesHorse

Bisheriger Stand

- Zwei dynamische Szenario Elemente "Pedestrian" und "Car"
- ► Ersteres für die Personenstromsimulation
- ► Letzeres für die Simulation des Kraftfahrzeugverkehrs (Peter Zarnitz) [1]

Anforderung

- 1. Neuer Agent läuft im Backend (Simulator)
- 2. Der Agent kann in die GUI aufgenommen werden
- 3. Attribute des Agenten in der GUI editierbar

Umsetzung: UML Szenario Elemente

Umsetzung: UML Attribute

Ergebnisse

- ► Das Pferd kann in der Simulation, sowie in der GUI wie ein Fußgänger einbezogen werden
- Die Eigenschaften der Klassen Horse und AttributesHorse können serialisiert werden
- Das Pferd trägt zur Zeit die selben Eigenschaften wie ein Auto/Fußgänger

- Der Vorgang zum Einbetten eines neuen Agenten ist klar geworden
- Das derzeitige Fehlverhalten des Pferdes ist beabsichtigt
- ► Tatsächliche Maße und Eigenschaften des Pferdes können angepasst werden

Anforderung

- ▶ Implementierung der Form für Einen neuen Agenten
- ► Ein Lauffähiges Modell für die Simulation eines Pferdes

Meine Aufgaben

- Einarbeiten in VadereState
- Einarbeiten in VadereUtils
- Einführung einer neuen Form VEllipse
- Bugfix "Nur ein Horse Modell wird im Simulator gezeichnet"

Topography

- ▶ Das Pferd benutzt die Form Ellipse
- ▶ Mehrere Pferde können das Ziel erreichen
- Serialisierung der neuen Form

Retrospektive

- ► Fand ich gut:
 - Erreichbarkeit des Teams
 - Arbeiten mit neuen Tools
 - ► Hilfebereitschaft des Teams
- Könnte besser sein:
 - Pünktlichkeit
 - Kürzere Dailies
- ► Mein Anteil: 23%

Meine Tätigkeiten

- Scrum Master Koordination Ansprechpartner
- Einarbeiten in den Simulator
 - Verstehen wie Simulationen ablaufen
 - ▶ Was muss angepasst werden für neue Agenten
- Erweitern des Simulators um Horse

Ablauf der Simulation

- ► Fand ich gut:
 - ▶ Gelegenheit an einem größeren Projekt zu arbeiten
 - ► Gute Zusammenarbeit (skype und trello)
- Kann besser sein:
 - ► Einbezug in aktuelle Änderungen des Codes
 - Regelmäßiger Treffen
- ► Anteil Schätzung: 19%

Meine Aufgaben

- ► Einarbeiten in das Optimal Steps Model
- ► Einbinden der Horse Klasse ins OSM
- Erstellen eines Testszenarios

Optimal Steps Model

- Nutzenfunktion
- Optimization
- Update Schemes

Implementierung OSM

Implementierung HorseOSM

Ein Schritt im OSM

Schwierigkeiten:

Meine Arbeitszeiten

Fand ich gut:

- ► Organisation durch Trello, Skype
- Arbeitsaufteilung
- gutes Klima
- ► Anteil 19%

Quellen I

[1] Johannes Peter Zarnitz. Kombinierte Modellierung von Fußgänger - und Kraftfahrzeugverkehr in vereinfachten Situationen. Master's thesis, Technische Universität München, 2015.

