

## Eletrônica Digital I

Capítulo II Funções e Portas Lógicas

Aula C – Funções e Portas Lógicas E, OU, Não, Não E, Não OU, XOR, XNOR

Prof. MSc. Bruno de Oliveira Monteiro Engenheiro de Telecomunicações



# Assista essa aula no Youtube. Acesse:

### Bruno de Oliveira Monteiro - Youtube



Obs: Utilize os vídeos para complementar os seus estudos. A participação em sala de aula é fundamental para o seu aprendizado.

### Funções e Portas Lógicas

- George Boole (1815 1864): Matemático inglês que desenvolveu um sistema matemático de análise lógica conhecido como álgebra de Boole.
- As funções lógicas derivam dos postulados da álgebra de Boole. Cada variável booleana de uma função lógica pode assumir apenas duas situações distintas, "0" ou "1". Se uma determinada situação é representada por "0", então "1" representará a situação inversa.

### Podemos associar o estado:

- "0" "portão fechado, desligado, chave aberta"
- "1" "portão aberto, ligado, chave fechada"

### Blocos Lógicos Básicos

Função Lógica E

$$S = A.B$$

Função Lógica OU

 Função Lógica Inversora (Não)

$$A - \overline{A} \qquad S = \overline{A}$$

Função Lógica
 Não E (NE)



Função Lógica
 Não OU (NOU)

$$S = \overline{A + B}$$

### Funções e Portas Lógicas

• Função "E" ou "AND": Realiza a multiplicação de duas ou mais varáveis booleanas.





$$S = A.B$$

A lâmpada "S" só irá acender se as chaves "A" e "B" estiverem fechadas.

## Funções e Portas Lógicas

Tabela da Verdade de uma Função Lógica

**Tabela da Verdade:** representa todas as possíveis situações com seus respectivos resultados

 $N^{o}$  de situações possíveis =  $2^{N}$ , onde N é o  $n^{o}$  de variáveis de entrada

Exemplo: Uma função com **3 variáveis** de entrada terá **8** possíveis combinações;

Ao montar a tabela da verdade coloque de um lado todas as possíveis combinações entre as variáveis de entrada. Para evitar possíveis combinações repetidas, monte a tabela em ordem crescente!

| Α | В | С | S |
|---|---|---|---|
| 0 | 0 | 0 |   |
| 0 | 0 | 1 |   |
| 0 | 1 | 0 |   |
| 0 | 1 | 1 |   |
| 1 | 0 | 0 |   |
| 1 | 0 | 1 |   |
| 1 | 1 | 0 |   |
| 1 | 1 | 1 |   |

Saída (Resultado da função)



### Funções e Portas Lógicas

Tabela da Verdade de uma Função Lógica E.



S = A.B

| А В | S |
|-----|---|
| 0 0 | 0 |
| 0 1 | 0 |
| 1 0 | 0 |
| 1 1 | 1 |

**Duas Entradas** 

2<sup>2</sup>= 4 (combinações)



S = A.B.C

Três Entradas

23= 8 (combinações)

| Α | В | С | S |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |

## Funções e Portas Lógicas

• Função "OU" ou "OR": A saída será igual a "1" quando uma ou mais variáveis de entrada forem iguais a "1" e será "0" quando todas as variáveis de entrada forem iguais a "0".

$$S = A + B$$

Lê-se: S = A ou B



## Funções e Portas Lógicas

 Tabela da Verdade de uma Função OU e Porta Lógica OU.

| Α | В | S |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |



Porta Lógica

S = A + B

**Duas Entradas** 

| ABCD    | S |
|---------|---|
| 0000    | 0 |
| 0001    | 1 |
| 0010    | 1 |
| 0011    | 1 |
| 0 1 0 0 | 1 |
| 0 1 0 1 | 1 |
| 0 1 1 0 | 1 |
| 0 1 11  | 1 |

| ABCD    | S |
|---------|---|
| 1000    | 1 |
| 1001    | 1 |
| 1010    | 1 |
| 1011    | 1 |
| 1 1 0 0 | 1 |
| 1 1 0 1 | 1 |
| 1 1 1 0 | 1 |
| 1111    | 1 |



Porta Lógica

S = A+B+C+D

**Quatro Entradas** 

### Funções e Portas Lógicas

 Função e Porta Lógica "NÃO" ou "NOT": Inverte o estado da variável. A saída será igual a "1" quando a variável estiver em "0" e será "0" quando a variável estiver em "1".



**Bloco Lógico** 

| S | = | Δ |
|---|---|---|

| А | S |
|---|---|
| 0 | 1 |
| 1 | 0 |

Tabela da Verdade



### Funções e Portas Lógicas

Funções e Portas Lógicas "NÃO E", "NE" ou "NAND" e "NÃO OU", "NOU" ou "NOR": Correspondem as funções "E" e "OU" invertidas, ou seja, são a composição da função "E" ou uma função "OU" com a função "NÃO".

### NÃO E, NE ou NAND

$$S = (\overline{A.B})$$

| A B | S |
|-----|---|
| 0 0 | 1 |
| 0 1 | 1 |
| 1 0 | 1 |
| 1 1 | 0 |



Tabela da Verdade

**Bloco Lógico** 

### NÃO OU, NOU ou NOR

$$S = (\overline{A + B})$$

| Α | В | S |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |





**Bloco Lógico** 

### Funções e Portas Lógicas

 Função e Porta Lógica "OU Exclusivo" ou "XOR": A saída será igual a "1" quando somente uma das entradas forem "1".

### "OU EXCLUSIVO" ou "EXCLUSIVE OR (XOR)"

#### **Tabela Verdade**

| Α | В | S |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

#### Expressão Booleana

$$S = \overline{A} \cdot B + A \cdot \overline{B}$$

$$S = A \oplus B$$

#### Circuito Lógico



**Bloco Lógico** 



### Funções e Portas Lógicas

• Função e Porta Lógica "Coincidência" ou "XNOR": A saída será igual a "1" quando todas as entradas forem iguais.

### "NOU EXCLUSIVO" ou "EXCLUSIVE NOR (XNOR)"

#### **Tabela Verdade**

| Α | В | S |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

#### Expressão Booleana

$$S = \overline{A} \cdot \overline{B} + A \cdot B$$

$$S = A \odot B$$

#### Circuito Lógico



#### **Bloco Lógico**



Todo Circuito Lógico é formado a partir da interconexão das portas lógicas básicas.

É possível representar um Circuito Lógico de forma algébrica através das expressões Booleanas



### Exemplo:



### Exercícios:





c) 
$$A = [\overline{A} \cdot B \cdot (\overline{B} \cdot C) \cdot (\overline{B} + \overline{D})]$$

Circuitos Lógicos obtidos de Expressões Booleanas :

De maneira análoga ao que utilizamos para obter a expressão booleana que um circuito lógico executa, podemos desenhar um circuito lógico que executa a expressão booleana.

Exemplo: O circuito que representa a expressão booleana S=((A+B).C.(B+D)

$$\begin{array}{c} A \longrightarrow \\ B \longrightarrow \\ S_1 \end{array} S1 = (A+B)$$

$$S = S_1.C.S_2$$

$$S_1 \longrightarrow S_1.C.S_2$$

$$S_2 \longrightarrow S_1.C.S_2$$



Exemplo: O circuito que representa a expressão booleana





Exemplo: O circuito que representa a expressão booleana





Exercício: Desenhe o circuito Lógico que representa cada expressão booleana abaixo:

a) 
$$S = \overline{(\overline{A} \cdot B)} + \overline{(C \cdot \overline{D})} \cdot E + \overline{A} \cdot (A \cdot \overline{D} \cdot \overline{E} + C \cdot D \cdot E)$$

b) 
$$S = A \cdot \overline{B} \cdot C + A \cdot \overline{D} + \overline{A} \cdot B \cdot D$$

c) 
$$S = \overline{[(A+B).C]} + \overline{[D.(B+C)]}$$

d) 
$$S = \overline{(A \oplus B + \overline{B} \cdot C \cdot \overline{D})} \cdot (\overline{\overline{A} + B}) \cdot D + \overline{B} \cdot C + \overline{D}] + \overline{A} \cdot \overline{D}$$



## Bons Estudos

Prof. MSc. Bruno de Oliveira Monteiro Engenheiro de Telecomunicações

