

Консультант

Оценка

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет	Радиоэлектронные систем	ы и комплексы
Кафедра	Технологии приборострое	ния (РЛ-6)
ОТЧ Студент	ЁТ ПО ПРОЕК Т Филимонов Степан Владисла	
-		
	фамилия,	имя, отчество
Группа	РЛ 6- 91	
-		
Студент		Филимонов С.В.
	подпись, дата	фамилия, и.о.
Руководитель		Доцент, Семеренко Д.А.
	подпись, дата	должность, фамилия, и.о.

подпись, дата

Доцент, Мешков С.А.

должность, фамилия, и.о.

Оглавление

ТЕХНИЧЕСКОЕ ЗАДАНИЕ	3
ВВЕДЕНИЕ	5
1. Архитектура	6
2. Устройство платы нагрузки	8
3. Устройство платы управления	10
4. Разработка программного обеспечения	12
4.1. Разработка программного обеспечения для платы нагрузки	12
4.2. Разработка программного обеспечения для платы управления	12
ЗАКЛЮЧЕНИЕ	14
СПИСОК ЛИТЕРАТУРЫ	15
Приложение А	16

ТЕХНИЧЕСКОЕ ЗАДАНИЕ

Техническое задание на разработку системы для проведения температурных испытаний платы питания.

1. Общая информация		
1.1. Название разработки:	система для проведении температурных испытаний платы питания(ПП).	
1.2. Заказчик:	-	
1.3. Исполнитель:	Филимонов С.В.	
1.4. Дата разработки:	01.09.2024	
1.5. Сроки выполнения работ:	27.12.2024	
1.6. Основание для разработки:	необходимость проведения тестирования плат питания	
2. Назначение системы		
2.1 Описание:	система предназначена для проведения температурных испытаний плат питания и регистрации входных напряжений.	
3. Цели и задачи разработки		
3.1. Основная цель:	разработать систему для регистрации температуры и входных напряжений с платы питания	
3.2. Задачи:	- разработка схемы включения датчиков температуры и напряжения;	
	- разработать специальное программное обеспечение для сбора и обработки данных;	
	- провести испытания.	
4. Описание функциональности системы		
4.1. Система должна обеспечивать:	- измерение внешней температуры с использованием температурных датчиков; - измерение входных напряжений, получаемых с платы питания, с использованием АЦП;	
	- регистрацию данных в реальном времени.	

5. Требования к системе			
5.1. Общие требования:	- система должна обеспечивать стабильную работу в диапазоне температур -80 до +160.		
5.2. Требования к оборудованию:	- датчик температуры: TMP-100; - микроконтроллер: STM32F334C8T6; - операционные усилитель: OP284.		
6. Этапы разработки			
6.1. Этап 1:	Исследование и выбор оборудования.		
6.2. Этап 2:	Разработка схемы подключения и программного обеспечения.		
6.3. Этап 3:	Проведение тестирования системы.		
6.4. Этап 4:	Подготовка отчета по результатам испытаний.		
7. Данные по финансам			
7.1. Ориентировочная стоимость разработанного изделия:	10 000 рублей, без учёта аренды помещения и работы обслуживающего персонала		
7.2. Источники финансирования:	-		

ВВЕДЕНИЕ

С сентября этого года проходил практику в -. В ходе работы я разработал и запрограммировал две печатные платы. Задача разработать стенд для температурных испытаний плат питания радиоэлектронной аппаратуры, в дальнейшем просто ПП. На вход ПП поступает +27 В на выходе +15В, -15В и +5В.

Решение, которое существовало до моей разработки позволяло проводить только нагрузочные испытания ПП, а то насколько сильно изменяются их параметры от температуры не проверялось. Мое решение так же позволяет проводить температурные испытания.

1. Архитектура

Плата нагрузки для ПП должна измерять внешнюю температуру и 3 напряжения с ПП. Нагрузочная плата не предусматривала подключения к лабораторному компьютеру. Нагрузочная плата подключается через интерфейс RS-232 к плате управления, с которой будет вестись опрос всех плат нагрузки. А плата управления осуществляет передачу данных на лабораторный компьютер.

Иерархия:

- 1) N единиц нагрузочной платы
- 2) 1 плата управления.

Принципиальная схема их взаимодействия указана на рисунке 1:

Рис. 1 – Принципиальная схема устройства

А так же индивидуальные схемы для платы нагрузки:

Рис. 2 – Принципиальная схема платы нагрузки И для платы управления:

Рис. 3 – Принципиальная схема платы управления Теперь о каждой плате по подробнее.

2. Устройство платы нагрузки

Данное изделие представляет собой нагрузку с АЦП, для измерения напряжения с нагрузки и датчик температуры с измерением окружающей среды. Плата собственной разработки, построенная вокруг микроконтроллера STM32F334C8T6, в дальнейшем МК, температурном датчике TMP-100 и дублирующем внутреннем температурном сенсоре микроконтроллера, понижения напряжения исполнено на операционных усилителях OP284, в дальнейшем просто ОУ. Считанные данные передаются на плату управления через интерфейс RS-232.

Рис. 4 – 3Д модель НПИНиТПП

На плате был сделан специальный выступ для сопряжения с ПП.

На вход схемы, через разъем RS-232 протекает +5V для питания схемы, +16V и -16V для ОУ. Через разъёмы X1-X3 подключается ПП, после резисторы R91, R92, R93 выполняют роль нагрузки, мощности 1.5,1.5,2.5 Вт соответственно. После нагрузки установлена схема понижения напряжения и развязки сигнала, и после пониженный до 2.5 V сигнал приходит на АЦП МК. На МК происходит считывание сигнала с АЦП и температурных датчиков и передача по шине RS232 master устройству. Данная плата позволяет провести температурные испытания ПП в диапазоне от -40 до +50. Данный диапазон

выбран исходя из режимов работы ОУ, из документации в ОУ. Принципиальная схема вынесена в приложение А.

Плата устанавливается через стойки для печатной платы в открытый стенд. Иного корпуса не предусматривается.

Размер платы 90,2x76,5 мм, изготовлена из текстолита FR-4, толщина меди 0.035 мм. Крепится в открытый стенд на винты M2.5

Основные факторы, воздействующие на НПИНиТПП: внешние механические факторы и температурные факторы.

Воздействие перечисленных факторов И методы испытаний восприимчивости и стойкости к ним описываются государственными отраслевыми стандартами ракетостроения. стандартами И Наиболее опасными фактором являются: температурные факторы – температурные условия будут регулярно изменятся и это может привести к его выходу из строя.

3. Устройство платы управления

Данное изделие представляет собой плату для взаимодействия с платой нагрузки, через интерфейс RS-232. Так же на плате размещён датчик температуры. Плата спроектирована вокруг микроконтроллера STM32F334C8T6, в дальнейшем МК, температурном датчике TMP-100 и дублирующем внутреннем температурном сенсоре микроконтроллера. Считанные данные передаются на лабораторный компьютер через интерфейс USB. В плате интерфейс USB изолирован от силовой части. Так же на плате есть отдельный блок с разветвителями на 10 питаний плат питания(+27B).

Рис. 6 – 3Д модель ДНА

Самый правый блок это разъёмы разветвители для питания ПП. Следом на вход поступает -15B, +15B, +5B и GND. Подключённое питание является питанием всей системы. На разъёме USB находится опторазвязка, если возникнет КЗ, скачок напряжения никак не повлияют на лабораторный компьютер. Через разъем RS232 протекает +5V для питания схемы платы нагрузки, и +16V, -16V для питания операционных усилителей. Данная плата позволяет провести температурные испытания ПП в диапазоне от -40 до +50. Данный диапазон выбран исходя из режимов работы операционных усилителей, из документации к операционным усилителям. Принципиальная схема вынесена в приложение А.

Плата устанавливается через стойки для печатной платы в открытый стенд. Иного корпуса не предусматривается.

Размер платы 99,5х83,5 мм, изготовлена из текстолита FR-4, толщина меди 0.035 мм. Крепится в открытый стенд на винты M2.5

Основные факторы, воздействующие на ДНА: внешние механические факторы и температурные факторы.

Воздействие перечисленных факторов и методы испытаний восприимчивости и стойкости к ним описываются государственными стандартами и отраслевыми стандартами ракетостроения. Наиболее опасными фактором являются: температурные факторы — так как температурные условия будут регулярно изменятся и это может привести к его выходу из строя.

4. Разработка программного обеспечения

Для плат надо было написать две программы, программа для платы управления и платы нагрузки.

4.1. Разработка программного обеспечения для платы нагрузки

Алгоритм:

- 1. Происходит инициализация периферии. Включается тактирование, выводы GPIO, инициализируется USART1 и I2C1, внутренний температурный датчик, АЦП, для контроля работы микроконтроллера на вывод PA8 подаётся тактирование с MCU. Происходит настройка адреса устройства(зависит от запаянных резисторов адреса).
 - 2. Происходит настройка DMA для USART1 и ADC.
 - 3. Включение прерываний для USART1

В бесконечном цикле:

Если срабатывает прерывание по USART1:

Если считанный адрес с USART1 соответствует устройству:

- 1. Считать значение сигнала
- 2. Считать значение температуры с ТМР-100
- 3. Считать значение температуры с внутреннего датчика
- 4. Вернуть их в посылке по USART1

Иначе:

Ничего не делать

Иначе:

Ничего не делать

4.2. Разработка программного обеспечения для платы управления

Алгоритм:

1. Происходит инициализация периферии. Включается тактирование, выводы GPIO, инициализируется USART1/2 и I2C1, внутренний температурный датчик, для контроля работы микроконтроллера на вывод PA8 подаётся тактирование с MCU, настраивается TIM1.

- 2. Происходит настройка DMA для USART1/2.
- 3. Включение прерываний для USART1/2, по TIM1

В бесконечном цикле:

Если <u>срабатывает прерывание по USART2</u>:

- 1. Перенаправить в USART1
- 2. Запустить ТІМ1 на 100 милисекунд

Иначе:

Ничего не делать

Если <u>срабатывает прерывание по USART1</u>:

- 1. Считать значение с USART1
- 2. Считать значение с ТМР-100
- 3. Сбросить таймер
- 4. Отправить сумму в USART2

Иначе:

Ничего не делать

Если <u>срабатывает прерывание по TIM1</u>:

- 1. Передать в USART2 -1
- 2. Сбросить таймер

Иначе:

Ничего не делать

ЗАКЛЮЧЕНИЕ

В данной работе я разработал плату управления и плату нагрузки для стенда температурных испытаний. Полученные устройства позволяют собрать данный стенд.

В ходе работы трудности с которыми я столкнулся были не значительными. Главной проблемой была долгая закупка компонентов и изготовления печатных плат.

В будущей версии данной системы я планирую оптимизировать схему принципиальную схему, сделав ее более экономичной. Изменить схему понижения напряжения для того, чтобы можно было тестировать разные платы питания.

СПИСОК ЛИТЕРАТУРЫ

- 1.DS9994 Arm®Cortex®-M4 32b MCU+FPU,up to 64KB Flash,16KB SRAM, 2 ADCs,3 DACs,3 comp.,op-amp, 217ps 10-ch (HRTIM1)
 - 2.RM0364 STM32F334xx advanced Arm®-based 32-bit MCUs
- 3.Полупроводниковая схемотехника. Том 1 и 2 авторы У. Титце, К. Шенк
- 4.Практические рекомендации по разработке печатных плат автор С. Тютюков

Приложение А Принципиальная электрическая схема платы нагрузки.

Принципиальная электрическая схема платы управления

