< VOLTAR



# Escalonamento de CPU

Neste tópico, iremos estudar as formas como o sistema operacional escolhe (ou é configurado para executar) os processos para serem executados.

NESTE TÓPICO

- > Introdução
- > Escalonamento
- > Referências

Marcar tópico





# Introdução

Atualmente os SO são multitarefa / multiprogramação, porém, apenas uma instrução de processo é executado por vez nos computadores, ou seja, o processador divide "sua atenção" a espaços de tempo dedicados a cada processo, atendendo todos, porém, uma instrução de cada um por vez.

## Escalonamento

Desde a criação dos computadores, houve a preocupação com a otimização de recursos. Executar as tarefas nos computadores sempre no menor tempo possível, foi sempre uma prioridade. Segundo Machado (2007), a política de escalonamento de um sistema operacional tem diversas funções básicas:

- Manter o processador ocupado a maior parte do tempo
- Balancear o uso de CPU entre processos;
- Privilegiar a execução de aplicações críticas;
- Maximizar o throughput do Sistema;
- Oferecer tempo de respostas variáveis para os usuários interativos.

A principal função do SO é implementar os critérios da política de escalonamento, denominada escalonador (scheduler). Escalonamento é a priorização de processamentos.

Em um sistema multiprogramável, o escalonador é fundamental, porque sem ele não é possível o compartilhamento do processador, pois é por meio desse algoritmo que o sistema operacional consegue gerenciar os processos que fazem uso do processador.

Há duas rotinas importantes para a gerência do processador, são elas:

- **Dispatcher**: responsável pela troca de contexto dos processos após o escalonador determinar qual processo deve fazer uso do processador;
- Latência de Dispatcher: tempo gasto na substituição de um processo em execução por outro.



Escalonamento.

Fonte: MACHADO, F. B.; MAIA, L. P. Arquitetura de Sistemas Operacionais. 2. ed. LTC, 2002.

#### Critérios de Escalonamento

De acordo com as características do sistema operacional, determinam-se quais são os atributos para a implementação de um escalonamento adequado. Segundo Machado (2007), os critérios são:

- Utilização do processador: é desejável que o processador permaneça a maior parte do seu tempo ocupado. Uma utilização na faixa de 30% indica um sistema com uma carga de processamento baixa, enquanto na faixa de 90% indica um sistema bastante carregado, próximo da capacidade máxima;
- Throughput: representa o número de processos executados em um determinado intervalo de tempo. Quanto maior o throughput, maior o

número de tarefas executadas em função do tempo. A maximização do throughput é desejada na maioria dos sistemas operacionais;

- Tempo de processador / tempo de CPU: é o tempo que um processo leva no
  estado de execução durante seu processamento. As políticas
  de escalonamento não influenciam o tempo de processador de um
  processo, sendo este tempo função apenas do código da aplicação e da
  entrada de dados;
- Tempo de espera: é o tempo total que um processo permanece na fila de pronto durante seu processamento aguardando para ser executado. A redução do tempo de espera dos processos é desejada pela maioria das políticas de escalonamento;
- Tempo de turnaround: é o tempo que um processo leva desde a sua criação até seu término, levando em consideração todo o tempo gasto na espera para alocação de memória, espera na fila de pronto, processamento de CPU e na fila de espera, como nas operações de E/S. as políticas de escalonamento buscam minimizar o tempo de turnaround;
- Tempo de resposta: é o tempo decorrido entre uma requisição ao sistema ou à aplicação e o instante em que a resposta é exibida. Em sistemas interativos, pode-se entender como o tempo decorrido entre a última tecla digitada pelo usuário e o início da execução do resultado no monitor.

#### Escalonamentos não preemptivos e preemptivos

Podemos classificar os escalonamentos de acordo com a possibilidade ou não da interrupção de um processo.

Se o sistema operacional consegue interromper um processo em execução e substituí-lo por outro, trata-se de um escalonamento do **Tipo Preempção**. Esses sistemas são mais complexos, porém possibilitam políticas de escalonamentos mais flexíveis.

Há também o E**scalonamento não Preemptivo**, o primeiro implementado nos sistemas operacionais multiprogramáveis. Nesse modelo, quando um processo está em execução, nenhum evento externo irá ocasionar a perda do uso do processador, isso apenas acontecerá se o processo concluir seu processamento ou executar instruções do próprio código que promovam uma mudança de estado de espera.

A vantagem do escalonamento preemptivo é que o sistema operacional pode interromper um processo em execução e passá-lo para o estado de pronto, no intuito de alocar outro processo na CPU. Com a preempção, é possível ao sistema priorizar a execução de processos, como nas aplicações de tempo real, onde o fator tempo é crítico. Outro benefício é a possibilidade de implementar políticas de escalonamento que compartilhem o processador de maneira mais uniforme, distribuindo de forma balanceada o uso da CPU entre os processos, aumentando a produtividade e diminuindo o tempo de turnaround.

## Escalonamento First-Come-First-Served (FCFS)

Conhecido também como FIFO (First-In\_First\_Out: o primeiro a entrar é o primeiro a sair). O conceito desse algoritmo de escalonamento, o processo que chegar primeiro ao estado de pronto é escolhido para execução.

É necessária apenas uma fila (atendidos como uma fila no caixa de um banco), onde os processos que passam para o estado de pronto entram no final e são escolhidos quando chegam ao seu início. Se um processo vai para o estado de espera, o primeiro que estiver na fila de pronto é escalonado.

O grande problema é prever quando um processo terá sua execução iniciada, pois isso depende dos que estão na frente da fila.

Esse escalonamento é do tipo não preemptivo, ou seja, não interrompe, e foi inicialmente desenvolvido e implementado em sistemas monoprogramáveis com processamento batch, sendo inviável aplicar esse conceito em sistemas de compartilhado.

### Escalonamento Shortest Job First (SJF)

Esse escalonamento atende primeiramente os processos menores, aqueles que menos utilizam a CPU. O cálculo de cada tempo médio é feito a partir de uma segunda alocação de CPU, ou seja, o processo que utilizar a CPU por menos tempo será executado primeiro. Foi desenvolvido inicialmente para os sistemas operacionais batch (processamento em lotes). Esse tipo de escalonamento pode ser preemptivo e não preemptivo.

### Escalonamento SJF não Preemptivo

Nesse escalonamento, o processo faz uso do processador até o final da sua execução sem interrupção. Nenhum evento externo influenciará essa execução. Ao concluir o processamento, verifica-se na fila de pronto qual é o próximo "menor processo" a ser executado.

#### **Escalonamento SJF Preemptivo**

Nesse modelo, caso chegue um processo menor que o processo que está sendo executado, o "maior" (que utiliza mais CPU) será interrompido, para atender o "menor" que chegou.

Chegamos ao final deste tópico, esperamos que você tenha gostado e absorvido o conhecimento dos assuntos abordados..

Compreender a como o computador executa os aplicativos (Processos: programas em execução) é muito importante! Esperamos que você tenha entendido bem o que é isso. Caso haja alguma dúvida, não deixe de leva-la ao professor, ok?

Faça os exercícios e verifique seu conhecimento.

Bom estudo!



Escalonamento de CPU

INICIAR >

Quiz

Exercício Final

Escalonamento de CPU

INICIAR >

# Referências

DEITEL, H. M.; DEITEL, P. J.; CHOFFNES, D. R. Sistemas operacionais. 3. ed. São Paulo: Pearson Prentice Hall, 2005.

MACHADO, F. B.; MAIA, L. P. Arquitetura de sistemas operacionais. 2. ed. São Paulo: LTC, 2002.

TANENBAUM, A. S. Sistemas operacionais modernos. 2. ed. São Paulo: Pearson Prentice Hall, 2005.



## Avalie este tópico



ANTERIOR Threads

=

Biblioteca

Índice

(https://www.uninove.br/conheca-

а

uninove/biblioteca/sobre-

a-

biblioteca/apresentacao/)

Portal Uninove

(http://www.uninove.br)

Mapa do Site



® Todos os direitos reservados

