Knowledge Tracing

JDPLS – Theory Course March 6, 2024

Tracing Student Knowledge

- Is the student learning?
 - Measure what the student knows at a specific time t
 - More specifically: knowledge of the student about relevant knowledge components (skills)

Task:

$$50 - 23 = ?$$

$$50 - 23 = ?$$
 $75 - 12 = ?$

$$38 - 14 = ?$$

Answer:

27

61

24

Tracing Knowledge – why is it useful?

- Is the student learning?
 - Measure what the student knows at a specific time t
 - More specifically: knowledge of the student about relevant knowledge components (skills)

- Choose the next appropriate activity
- Know which activities support learning

Tracing Knowledge – why is it useful?

- Is the student learning?
 - Measure what the student knows at a specific time t
 - More specifically: knowledge of the student about relevant knowledge components (skills)

- Choose the next appropriate activity
- Know which activities support learning

Is the student learning?

Task:

$$50 - 23 = ?$$

$$75 - 12 = ?$$

$$50 - 23 = ?$$
 $75 - 12 = ?$ $38 - 14 = ?$

Answer:

What are we measuring?

Task:

$$50 - 23 = ?$$

$$50 - 23 = ?$$
 $75 - 12 = ?$ $38 - 14 = ?$

$$38 - 14 = 3$$

Answer:

Binary observations of student answers

Subtraction 0-100

1 2 ••• r

Predicting future performance

Subtraction 0-100

1 2 ··· n n+1
0 0 1 0 1 ?

Bayesian Knowledge Tracing (BKT)

Latent variable Observed variable

BKT parameters are interpretable

BKT parameters are interpretable

BKT parameters are interpretable

Two tasks need to be solved in practice

• Given a model with parameters $\theta = \{p_0, p_L, p_F, p_S, p_G\}$ and a sequence of observations $\mathbf{o} = [o_0, \dots, o_t]$ from a student s, predict o_{t+1}

 $p_0 = 0.5$

 $p_S = 0.2$

 $p_G = 0.3$

 $p_L = 0.4$

 $p_F = 0.0$

$$p(o_1 = 1 | \mathbf{o_0}) = (1 - p_S) \cdot p_{s_1 | \mathbf{o_0}} + p_G \cdot (1 - p_{s_1 | \mathbf{o_0}})$$
$$= 0.8 \cdot 0.53 + 0.3 \cdot 0.47 = 0.57$$

Inference in BKT models $o_{t-1} = [o_0, ..., o_{t-1}]$

$$o_{t-1} = [o_0, \dots, o_{t-1}]$$

Equations for time t=0:

Equations for time steps t = 1, ..., T:

Belief about latent state before observation

$$p(s_0 = 1) = p_0$$

$$p_{s_t|o_{t-1}} = (1 - p_F) \cdot p_{s_{t-1}|o_{t-1}} + p_L \cdot (1 - p_{s_{t-1}|o_{t-1}})$$

Predicted observation at time t

$$p(o_0 = 1) = (1 - p_s) \cdot p_0 + p_G \cdot (1 - p_0)$$

$$p(o_0 = 0) = p_S \cdot p_0 + (1 - p_G) \cdot (1 - p_0)$$

$$p(o_t = 1 | \mathbf{o}_{t-1}) = (1 - p_S) \cdot p_{s_t | \mathbf{o}_{t-1}} + p_G \cdot (1 - p_{s_t | \mathbf{o}_{t-1}})$$

$$p(o_t = 0 | \mathbf{o}_{t-1}) = p_S \cdot p_{s_t | \mathbf{o}_{t-1}} + (1 - p_G) \cdot (1 - p_{s_t | \mathbf{o}_{t-1}})$$

Posterior: belief about latent state after observation

$$p_{s_0|1} = \frac{(1 - p_S) \cdot p_0}{(1 - p_S) \cdot p_0 + p_G \cdot (1 - p_0)}$$

$$p_{s_0|0} = \frac{p_S \cdot p_0}{p_S \cdot p_0 + (1 - p_G) \cdot (1 - p_0)}$$

$$p_{s_{t}|1,o_{t-1}} = \frac{(1 - p_{s}) \cdot p_{s_{t}|o_{t-1}}}{(1 - p_{s}) \cdot p_{s_{t}|o_{t-1}} + p_{G} \cdot (1 - p_{s_{t}|o_{t-1}})}$$

$$p_{s_{t}|0,o_{t-1}} = \frac{p_{s} \cdot p_{s_{t}|o_{t-1}}}{p_{s} \cdot p_{s_{t}|o_{t-1}} + (1 - p_{G}) \cdot (1 - p_{s_{t}|o_{t-1}})}$$

Two tasks need to be solved in practice

• Given a model with parameters $\theta = \{p_0, p_L, p_F, p_S, p_G\}$ and a sequence of observations $\mathbf{o} = [o_0, \dots, o_t]$ from a student s, predict o_{t+1}

• Given sequences of observations $\mathbf{o}=[o_0,\dots,o_T]$ of N students, learn the parameters $\theta=\{p_0,p_L,p_F,p_S,p_G\}$ that maximize the likelihood of the observed data

Parameter Learning

Tracing Knowledge – why is it useful?

- Is the student learning?
 - Measure what the student knows at a specific time t
 - More specifically: knowledge of the student about relevant knowledge components (skills)

- Choose the next appropriate activity
- Know which activities support learning

Building a learning curve for skill s

Student	Opportunity	y_true	y_pred
0	0	0	0.3
0	1	0	0.5
0	2	1	0.7
0	3	1	0.9
1	0	0	0.3
1	1	1	0.5
2	0	0	0.3
2	1	1	0.5
2	2	1	0.7
3	0	1	0.3
3	1	0	0.7
3	2	1	0.5
3	3	1	0.9

What could this curve indicate?

Your Turn

- In the student notebook, you have:
 - A trained BKT model for six selected skills
 - A data frame containing the predictions of the BKT model for each observation in the test set
- Your task:
 - Compute the RMSE or AUC separately for the two specified skills
 - Generate and interpret the learning curves for specific skills

Summary – Knowledge Tracing

- Bayesian Knowledge Tracing and Learning Curves
- There are lots of other modeling approaches
 - Factor-based models (AFM & PFA)
 - Deep learning models (DKT)
- → We will provide links to lecture recordings, notebooks, and exercises on our GitHub