[2018–2019] группа: 9-2 27 сентября 2018 г.

Серия 4. Введение в теорию вероятностей

Дискретным вероятностным пространством называется конечное (или счётное) множество $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$, каждому элементу ω_i которого сопоставлен вещественный вес p_i с условиями $p_i \geqslant 0$, $\sum_{i=1}^n p_i = 1$. Подмножества вероятностного пространства Ω называются событиями, элементы ω_i — элементарными исходами. Для каждого события $A \subset \Omega$ определена его вероятность P(A) посредством формулы $P(A) = \sum_{\omega_i \in A} p_i$. В частности,

 $P(\emptyset) = 0, P(\Omega) = 1.$

Функция $f:\Omega\to\mathbb{R}$ называется случайной величиной. Для каждой случайной величины $f(\omega)$ определено её математическое ожидание: $\mathbb{E} f=\sum_{i=1}^n p_i f(\omega_i)$. Легко проверить, что математическое ожидание обладает свойством линейности: для любых случайных величин f и g и для любого $\lambda\in\mathbb{R}$ выполнены соотношения $\mathbb{E}(f+g)=\mathbb{E} f+\mathbb{E} g$, $\mathbb{E}(\lambda\cdot f)=\lambda\cdot\mathbb{E}(f)$.

- **0.** Есть два ожерелья, в каждом ожерелье по 100 чёрных и 100 белых бусинок. Аня хочет приложить второе ожерелье к первому (разрешается поворачивать и переворачивать) так, чтобы как можно больше бусинок совпало по цвету. Какое число совпадающих бусинок Оксана может гарантированно получить?
- 1. У каждого из двух равных правильных додекаэдров отметили по 9 вершин. Докажите, что первый додекаэдр можно так совместить со вторым, чтобы по крайней мере пять его отмеченных вершин совпали с отмеченными вершинами второго. (\mathcal{L} одека- \mathcal{L}) правильный многогранник, у которого 12 пятиугольных граней, 30 рёбер и 20 вершин, в которых сходится по три ребра.)
- **2.** На компьютере хранятся n различных фотографий. Из них составили k альбомов, по m фотографий в каждом (одна и та же фотография может находиться в нескольких альбомах), причём $k < 2^{m-1}$. Докажите, что можно удалить несколько фотографий так, чтобы каждый альбом стал меньше, но при этом не пустым.
- **3.** Докажите, что из любого графа можно выкинуть не более чем 1/d его рёбер так, чтобы стало возможным раскрасить его вершины в d цветов правильным образом.
- **4.** Дано четное число n>2. Клетки доски $n\times n$ раскрашены в $n^2/2$ цветов, каждого цвета ровно по две клетки. Докажите, что можно расставить на доске n не бьющих друг друга ладей так, чтобы они все стояли на клетках разного цвета.
- **5.** На столе лежит 2n визуально неразличимых батареек, из них ровно n хороших, а остальные n плохие. За одну попытку разрешается вставить в фонарик две батарейки; при этом он светит, только если обе хорошие. За какое наименьшее число попыток удастся включить фонарик?
- **6.** В ориентированном ациклическом графе самая длинная цепь содержит n вершин. Докажите, что вершины графа можно разбить на n непересекающихся антицепей.
- 7. На плоскости отметили все $(n+1)^2$ точек с целыми координатами от 0 до n. Требуется провести несколько прямых так, чтобы все точки, кроме (0,0), лежали хотя бы на одной из проведенных прямых и чтобы ни одна прямая не проходила через (0,0). Каким наименьшим числом прямых можно обойтись?