MAT 137Y - Practice problems Unit 4: Transcendental functions

- 1. Your location is a function of time. What are the domain, the codomain, and the range of this function?
- 2. Let $f(x) = \frac{x+2}{x+1}$.
 - (a) What are the domain and range of f?
 - (b) Write an explicit equation for $f^{-1}(y)$.
 - (c) What are the domain and range of f^{-1} ?
 - (d) Verify explicitly that $f^{-1}(f(x)) = x$ for every x in the domain of f.
 - (e) Verify explicity that $f(f^{-1}(y)) = y$ for every y in the range of f.
- 3. Let $a \in \mathbb{R}$. Let f be a differentiable function at a. Assume $f'(a) \neq 0$. Let b = f(a). Then you know that f^{-1} is differentiable at b and

$$(f^{-1})'(b) = \frac{1}{f'(a)}.$$
 (1)

Now assume f has all its derivatives. It follows that $f^{(-1)}$ also has all its derivatives (you do not need to prove this).

Find equations similar to (1) for $(f^{-1})''(b)$ and $(f^{-1})'''(b)$ in terms of the derivatives of f evaluated at a. You can do this in at least two ways. Either take derivatives (carefully!) from Equation (1) or differentiate the equation $f(f^{-1}(x)) = x$ multiple times.

4. Compute the derivatives of the following functions:

(a)
$$f(x) = e^{3x+1}$$

(c)
$$f(x) = e^{\tan e^x}$$

(e)
$$f(x) = x^{x^x}$$

(b)
$$f(x) = \ln(\cos x)$$

(a)
$$f(x) = e^{3x+1}$$
 (c) $f(x) = e^{\tan e^x}$ (e) $f(x) = x^{x^x}$ (b) $f(x) = \ln(\cos x)$ (d) $f(x) = x^{\sin x} + x^{\cos x}$ (f) $f(x) = \log_x 3$

$$(f) f(x) = \log_x 3$$

(g)
$$f(x) = \sqrt{1-x^2} + x \arcsin x$$

- 5. In Video 4.14 we left it for you to complete the definition of arccos.
 - (a) Give a full definition of arccos
 - (b) What are the domain and the range of arccos?
 - (c) Sketch its graph
 - (d) Complete the statement at time 4:01 in Video 4.14.
- 6. Imitate the derivation in Video 4.13 to prove that

$$\frac{d}{dt}\left[\arctan t\right] = \frac{1}{1+t^2}$$

7. Compute

- (a) $\arcsin 3$
- (b) $\arccos \cos 3$
- (c) arctan tan 3

8. Sketch the graphs of the following functions

(a) $f(x) = \sin \arcsin x$

(c) $f(x) = \arcsin x$

(b) $f(x) = \tan \arctan x$

(d) $f(x) = \arctan x$

9. Let f and g be functions. For simplicity, assume they both have domain \mathbb{R} . Two of the following statements are true, and one is false:

- (a) IF f and g are one-to-one, THEN $g \circ f$ is one-to-one.
- (b) IF $g \circ f$ is one-to-one, THEN g is one-to-one.
- (c) IF $g \circ f$ is one-to-one, THEN f is one-to-one.

Which one is false? Show it with a counterexample. Which ones are true? Prove them.

- 10. For each $k \in \mathbb{Z}$, let I_k be the largest interval containing k such that the restriction of sin to I_k is one-to-one, and let α_k be the inverse of that restriction. For example, $\alpha_0 = \alpha_1 = \arcsin$, but α_2 is a different function.
 - (a) Sketch the graphs of α_2 and α_6 .
 - (b) Calculate $\alpha_2(\sin 1)$ and $\alpha_6(\sin 1)$.
 - (c) Obtain an equation for the derivatives of α_2 and α_6 .

Note: You should get two different answers.

Bonus question: hyperbolic functions

11. The "hyperbolic sine" (sinh) and the "hyperbolic cosine" (cosh) functions are defined by the equations:

$$cosh(x) = \frac{e^x + e^{-x}}{2}, \quad sinh(x) = \frac{e^x - e^{-x}}{2}.$$

- (a) Compute $\cosh'(x)$ and $\sinh'(x)$.
- (b) Prove that for all $x \in \mathbb{R}$, $\cosh^2(x) \sinh^2(x) = 1$.
- (c) The function sinh is one-to-one. (You may assume so). Its inverse function is called "hyperbolic arc sine" (arcsinh). Use a theorem from Video 4.4 to prove that arcsinh is differentiable without doing any calculations.
- (d) Find an explicit formula for $\operatorname{arcsinh}(y)$ by solving for x in the equation $\sinh(x) = y$. Note: If you are having trouble finding an expression for the inverse, consider the following easier questions first:
 - Solve for t: $t^2 6t + 4 = 0$.
 - Solve for t: $t^2 6at + 4 = 0$.
 - Solve for $u: (e^u)^2 6(e^u) + 4 = 0.$
 - Solve for $u: (e^u)^2 6a(e^u) + 4 = 0.$
- (e) Use your answer to Question 11d to obtain a formula for $\arcsin'(y)$.
- (f) There is a faster way to obtain a formula for $\arcsin'(y)$ without having to obtain an explicit formula for $\arcsin(y)$ first! Start with the identity

$$\sinh(\operatorname{arcsinh}(y)) = y,$$

take the derivative with respect to y on both sides, and use Questions 11b and 11a to obtain a formula for $\arcsin'(y)$. This should agree with your result to Question 11e.

Some answers and hints

- 2. (a) The domain of f is $(-\infty, -1) \cup (-1, \infty)$. The range of f is $(-\infty, 1) \cup (1, \infty)$.
 - (b) $f^{-1}(y) = (2-y)/(y-1)$

3.

$$\left(f^{-1} \right)''(b) = \frac{-f''(a)}{\left(f'(a) \right)^3} \; , \qquad \quad \left(f^{-1} \right)'''(b) = \frac{-f'''(a)f'(a) + 3 \left(f''(a) \right)^2}{\left(f'(a) \right)^5} \; .$$

- 4. (a) $f'(x) = 3e^{3x+1}$
 - (b) $f'(x) = -\tan x$
 - (c) $f'(x) = e^{x + \tan(e^x)} \sec^2(e^x)$
 - (d) $f'(x) = x^{\sin x} \left[\frac{\sin x}{x} + \cos x \ln x \right] + x^{\cos x} \left[\frac{\cos x}{x} \sin x \ln x \right]$
 - (e) $f'(x) = x^{x^x + x} \left[(\ln x)^2 + \ln x + \frac{1}{x} \right]$
 - (f) $f'(x) = \frac{-\ln 3}{x(\ln x)^2} = \frac{-\log_x 3}{x\ln x}$
 - (g) $f'(x) = \arcsin x$
- 5. (a) arccos is the inverse function of the restriction of cos to $[0, \pi]$.
 - (b) The domain of arccos is [-1,1]. The range is $[0,\pi]$.
 - (c) Use desmos to verify your answer.
 - (d) For all $0 \le x \le \pi$ and for all $-1 \le y \le 1$, $x = \arccos y \iff y = \cos x$.
- 7. (a) $\pi 3$

(b) 3

(c) $3 - \pi$

- 8. All four graphs should be different.
 - (a) Analyze the function first when $-\pi/2 \le x \le \pi/2$. Then analyze it for all other values.
 - (c) Sketch the graph first when $-\pi/2 \le x \le \pi/2$. Then when $\pi/2 \le x \le 3\pi/2$. Then when $3\pi/2 \le x \le 5\pi/2$. Then think of the full graph.
- 9. (b) is false.
- 10. (b) $\alpha_2(\sin 1) = \pi 1$, $\alpha_6(\sin 1) = 1 + 2\pi$.
 - (c) $\alpha_2'(x) = \frac{-1}{\sqrt{1-x^2}}, \quad \alpha_6'(x) = \frac{1}{\sqrt{1-x^2}}.$
- 11. (a) $\cosh'(x) = \sinh(x)$, $\sinh'(x) = \cosh(x)$.
 - (d) $\operatorname{arcsinh}(y) = \ln\left(y + \sqrt{1 + y^2}\right)$
 - (e) $\operatorname{arcsinh}'(y) = \frac{1}{\sqrt{1+y^2}}$