Bases formelles du TAL Partiel

Pierre-Léo Bégay

13 mars 2020

Dans tout ce partiel, on utilise l'alphabet $\Sigma = \{a,b\}$. Vous devrez justifier vos réponses, à moins qu'on puisse reconnaître les algorithmes utilisés (via par exemple le nom des états de vos automates).

Exercice 1 [6 points]

Soient $L_1 = \{ w \in \Sigma^* \mid |w|_a > 0 \text{ et } |w|_b > 1 \}$ et $L_2 = \{ w \in \Sigma^* \mid |w|_a > 1 \text{ et } |w|_b > 0 \}.$

Question 1 [1] Donnez un automate fini reconnaissant L_1 .

Question 2 [0,5] Donnez un automate fini reconnaissant L_2 .

Question 3 [0,5] Donnez un automate fini reconnaissant $\overline{L_1}$.

Question 4 [2] Donnez un automate fini reconnaissant $L_1 \cap L_2$.

Soient $L_3 = \{ w \in \Sigma^* \mid |w|_a > 0 \text{ ou } |w|_b > 1 \}$ et $L_4 = \{ w \in \Sigma^* \mid |w|_a > 1 \text{ ou } |w|_b > 0 \}$.

Question 5 [2] Donnez un automate fini, complet, déterministe et minimal reconnaissant $\overline{L_3 \cup L_4}$.

Exercice 2 [3 points]

Déterminisez l'automate suivant :

Exercice 3 [3 points]

Minimisez l'automate ci-dessous. Si vous présentez votre réponse sous forme d'arbre, indiquez l'ordre dans lequel vous avez traité les classes.

Exercice 4 [3 points]

Donnez un automate fini reconnaissant le langage dénoté par l'expression $((aa)^*b(ab)^*)^*ab$.

Exercice 5 [5 points]

Question 1 [1,5] Comment s'assurer qu'un automate représente le langage vide ? Dit autrement, proposez un critère simple, et si possible visuel, permettant de vérifier qu'un automate ne reconnaît aucun mot.

Question 2 [2,5] Soient L_1 et L_2 deux langages reconnus, respectivement, par les automates A_1 et A_2 . Comment construire un automate reconnaissant le langage $L_1 \setminus L_2$? Vous pourrez illustrer votre réponse avec des schémas et / ou vous appuyer sur le cours.

Question 3 [1] Soient e_1 et e_2 deux expressions rationnelles quelconques. Proposez une méthode pour vérifier que e_1 représente un sous-ensemble d' e_2 , cad. que tout mot appartenant au langage dénoté par e_1 appartient également à celui dénoté par e_2 .