Теория вероятности и математическая статистика, 2 курс, 2 семестр

@defunator

5 мая 2020 г.

Содержание

1	Сходимости случайных величин	2
2	Характеристические функции	6
3	Неравенство типа Хефдинга-Чернова	9
4	Теоремы непрерывности	11
5	Многомерная характеристическая функция и ЦПТ	14
6	Многомерное нормальное распределение	17
7	Условные математические ожидания: дискретный случай	2 0
8	Условные математические ожидания: общий случай	2 3
9	Оценки параметров и их свойства	2 6
10	Метод моментов	2 8
11	Информация Фишера и неравенство Рао-Крамера	2 9
12	Метод максимального правдоподобия	32
13	Доверительные интервалы	36

1 Сходимости случайных величин

Определение 1. Последовательность случайных величин ξ_n сходится к случайной величине ξ :

1. Почти наверное $(\xi_n \xrightarrow{\text{п.н.}} \xi)$, если

$$P\left(\lim_{n\to\infty}\xi_n=\xi\right)=1$$

2. По вероятности $(\xi_n \xrightarrow{p} \xi)$, если

$$\forall \varepsilon > 0 \lim_{n \to \infty} P(|\xi_n - \xi| \ge \varepsilon) = 0$$

3. По распределению $(\xi_n \xrightarrow{d} \xi)$, если

$$\lim_{n \to \infty} F_{\xi_n}(x) = F_{\xi}(x)$$

для любых x, в которых непрерывна F_{ε}

Теорема 1. (Эквивалетное определение сходимости по распределению) $\xi_n \xrightarrow{d} \xi \Leftrightarrow \forall g$ — непрерывна и ограничена на \mathbb{R} верно $\lim_{n\to\infty} \mathbb{E}g\left(\xi_n\right) = \mathbb{E}g\left(\xi\right)$

 $Доказательство. \Rightarrow$

Пусть t — точка непрерывности $F_{\xi}(t)$. Заметим, что $F_{\xi}(t) = P(\xi \in (-\infty, t]) = \mathbb{E}\operatorname{Ind}_{(-\infty, t]}(\xi)$.

В силу:

- (1) $\mathbb{E}\operatorname{Ind}_{(a_i,b_i]}(\xi_n) = F_{\xi_n}(b_i) F_{\xi_n}(a_i) \xrightarrow{n \to \infty} F_{\xi}(b_i) F_{\xi}(a_i) = \mathbb{E}\operatorname{Ind}_{(a_i,b_i]}(\xi)$
- (2) Линейность предела (с какими-то коэффициентами c_i)

Верна следующая сходимость:

$$\mathbb{E}\sum_{i=1}^{N} c_i \cdot \operatorname{Ind}_{(a_i,b_i]}(\xi_n) \to \mathbb{E}\sum_{i=1}^{N} c_i \cdot \operatorname{Ind}_{(a_i,b_i]}(\xi)$$

Теперь нам бы хотелось от непрерывной ограниченной функции на прямой перейти к функции на отрезке, а там мы уже сможем ее приблизить ступенчатой и воспользоваться предыдудщим утверждением и все доказать. Мы знаем, что

 $\forall \varepsilon>0$ $\exists A$: $P\left(-A<\xi\leq A\right)>1-\varepsilon$ (потому что $P\left(\xi\in\mathbb{R}\right)=1$). Тогда получаем:

$$F_{\xi_n}(A) - F_{\xi_n}(-A) \xrightarrow{n \to \infty} F_{\xi}(A) - F_{\xi}(-A) = P(-A < \xi \le A) > 1 - \varepsilon$$

To есть для $\forall \varepsilon > 0 \; \exists N \; \forall n > N \; \text{верно}$:

$$\left| \left(F_{\xi_n} \left(A \right) - F_{\xi_n} \left(-A \right) \right) - \left(F_{\xi} \left(A \right) - F_{\xi} \left(-A \right) \right) \right| < \varepsilon$$

Комбинируя последние два утверждения, получаем для $\forall \varepsilon > 0 \; \exists A \; \exists N \; \forall n > N$:

$$F_{\xi_n}(A) - F_{\xi_n}(-A) > F_{\xi}(A) - F_{\xi}(-A) - \varepsilon > 1 - 2\varepsilon$$

Из чего следует $\forall \varepsilon > 0 \; \exists A \; \exists N \; \forall n > N$:

$$P(-A \le \xi_n \le A) \ge F_{\xi_n}(A) - F_{\xi_n}(-A) > 1 - \varepsilon$$

Теперь возьмем любую непрерывную ограниченную функцию g, приблизим ее на отрезке [-A,A] ступенчатой функцией g_{ε} , что $|g(x)-g_{\varepsilon}(x)|<\varepsilon$, а вне отрезка положим $g_{\varepsilon}=0$. Имеем $\forall \varepsilon>0$ $\exists A \ \forall n$:

$$\left|\mathbb{E}g\left(\xi_{n}\right)-\mathbb{E}g\left(\xi\right)\right|\leq\left|\mathbb{E}\left(1-\operatorname{Ind}_{\left[-A,A\right]}\left(\xi_{n}\right)\right)\cdot g\left(\xi_{n}\right)-\mathbb{E}\left(1-\operatorname{Ind}_{\left[-A,A\right]}\left(\xi\right)\right)g\left(\xi\right)\right|+$$

$$+\left|\mathbb{E}\operatorname{Ind}_{[-A,A]}\left(\xi_{n}\right)\cdot g\left(\xi_{n}\right)-\mathbb{E}\operatorname{Ind}_{[-A,A]}\left(\xi\right)\cdot g\left(\xi\right)\right|$$

Ясно, что первый модуль $< C \cdot 2\varepsilon$ (из ограниченности $g \ \forall x_1, \ x_2$: $|g(x_1) - g(x_2)| < C$ и так как $P(|\xi| > A)$, $P(|\xi_n| > A) < \varepsilon$). А во втором модуле g заменим на g_ε с погрешностью ε , то есть он $< 2\varepsilon + \left| \mathbb{E} \operatorname{Ind}_{[-A,A]}(\xi_n) \cdot g_\varepsilon(\xi_n) - \mathbb{E} \operatorname{Ind}_{[-A,A]}(\xi) \cdot g_\varepsilon(\xi) \right|$. А про оставшийся модуль мы уже знаем, что он сходится к 0, так как ступенчатая функция(то есть $< \varepsilon$ для $\forall n > N$). В итоге имеем: $|\mathbb{E}g(\xi_n) - \mathbb{E}g(\xi)| < \varepsilon$. То есть $\lim_{n \to \infty} \mathbb{E}g(\xi_n) = \mathbb{E}g(\xi)$

Пусть t — точка непрерывности $F_{\xi}(t)$. Мы знаем, что $F_{\xi}(t) = \mathbb{E}\operatorname{Ind}_{(-\infty,t]}(\xi)$. Для $\forall \delta > 0$ определим функции:

$$g_{-\delta}(x) = \begin{cases} 1 & x < t - \delta \\ \frac{1}{\delta} \cdot (t - x) & t - \delta \le x \le t \\ 0 & t < x \end{cases}$$

$$g_{+\delta}(x) = \begin{cases} 1 & x < t \\ \frac{1}{\delta} \cdot (t - x) & t \le x \le t + \delta \\ 0 & t + \delta < x \end{cases}$$

Заметим, что $\forall x$:

$$\operatorname{Ind}_{(-\infty,t-\delta]}(x) \leq g_{-\delta}(x) \leq \operatorname{Ind}_{(-\infty,t]}(x) \leq g_{+\delta}(x) \leq \operatorname{Ind}_{(\infty,t+\delta]}(x)$$

Взяв матожидания $(x = \xi_n)$ от второго и третьего неравенств, получим:

$$\mathbb{E}g_{-\delta}\left(\xi_{n}\right) \leq F_{\xi_{n}}\left(t\right) \leq \mathbb{E}g_{+\delta}\left(\xi_{n}\right)$$

Теперь устремим $n \to \infty$:

$$\mathbb{E}g_{-\delta}\left(\xi\right) \leq \inf \lim_{n \to \infty} F_{\xi_n}\left(x\right) \leq \sup \lim_{n \to \infty} F_{\xi_n}\left(x\right) \leq \mathbb{E}g_{+\delta}\left(\xi\right)$$

Рассмотрим первое и последнее неравенство той цепочки $(x=\xi)$ и возьмем то него матожидание), получим:

$$F_{\xi}(t - \delta) \le \mathbb{E}g_{-\delta}(\xi) \le \mathbb{E}g_{+\delta}(\xi) \le F_{\xi}(t + \delta)$$

Теперь $\delta \to 0$:

$$F_{\xi}\left(t\right) = \mathbb{E}g_{-\delta}\left(\xi\right) = \inf\lim_{n \to \infty} F_{\xi_n}\left(t\right) = \sup\lim_{n \to \infty} F_{\xi_n}\left(t\right) = \mathbb{E}g_{+\delta}\left(\xi\right)$$

Получаем: $F_{\xi}(t) = \lim_{n \to \infty} F_{\xi_n}(t)$

Теорема 2. $\xi_n \xrightarrow{n.н.} \xi \Rightarrow \xi_n \xrightarrow{p} \xi$

Доказательство. Знаем $P\left(\lim_{n\to\infty}\xi_n=\xi\right)=1$. Заметим вложенность следующих событий для $\forall \varepsilon>0$: $\left\{\lim_{n\to\infty}\xi_n=\xi\right\}\Rightarrow\bigcup_{N=1}^{\infty}\bigcap_{n=N}^{\infty}\left\{|\xi_n-\xi|<\varepsilon\right\}$ (это по сути и есть определение предела, что для $\forall \varepsilon$, начиная с некоторого N выполнятется условие). То есть:

$$1 = P\left(\lim_{n \to \infty} \xi_n = \xi\right) \le P\left(\bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \{|\xi_n - \xi| < \varepsilon\}\right) = 1$$

Так как последовательность множеств $A_N = \bigcap_{n=N}^{\infty} \{ |\xi_n - \xi| < \varepsilon \}$ расширяющаяся $(A_N \subseteq A_{N+1})$, в объединении они дают событие вероятности 1, значит по теореме непрерывности $\lim_{N \to \infty} P(A_N) = 1$.

Теперь заметим: $P(A_N) \leq P(|\xi_N - \xi| < \varepsilon)$. То есть: $\lim_{N \to \infty} P(|\xi_N - \xi| < \varepsilon) = 1$. Или что то же самое: $\lim_{N \to \infty} (1 - P(|\xi_N - \xi| < \varepsilon)) = \lim_{N \to \infty} P(|\xi_N - \xi| \ge \varepsilon) = 0$ — определение сходимости по вероятности.

Теорема 3. (Теорема Лебега о мажорируемой сходимости) $\xi_n \stackrel{p}{\to} \xi$ и $|\xi_n|, |\xi| \le \eta$ п. н. (где η – случайная величина, что $\mathbb{E}\eta < \infty$), то $\mathbb{E}\xi_n \to \mathbb{E}\xi$

 \mathcal{A} оказательство. Докажем теорему в частном случае, когда $\eta \equiv C$. $\forall \varepsilon > 0 \forall n \mid \mathbb{E}\xi_n - \mathbb{E}\xi \mid \leq \mathbb{E}|\xi_n - \xi| = \mathbb{E}|\xi_n - \xi| \cdot \operatorname{Ind}_{|\xi_n - \xi| \geq \varepsilon} + \mathbb{E}|\xi_n - \xi| \cdot \operatorname{Ind}_{|\xi_n - \xi| < \varepsilon} \leq 2C \cdot P\left(|\xi_n - \xi| \geq \varepsilon\right) + \varepsilon \cdot 1$. Так как $\xi_n \stackrel{\mathrm{P}}{\to} \xi$, то $\exists N \forall n > N$: $P\left(|\xi_n - \xi| \geq \varepsilon\right) < \varepsilon$. Тогда получаем: $|\mathbb{E}\xi_n - \mathbb{E}\xi| < 2C \cdot \varepsilon + \varepsilon$. То есть $\mathbb{E}\xi_n \to \mathbb{E}\xi$.

Предложение 1. $\xi_n \xrightarrow{p} \xi \Rightarrow \partial \mathcal{M} \forall g - \text{непрерывная, } g(\xi_n) \xrightarrow{p} g(\xi)$

Доказательство. Знаем для любой случайной величины $\forall \varepsilon > 0 \exists A \colon P\left(|\xi| > \frac{A}{2}\right) < \varepsilon. \ \exists N \forall n > N \colon$

$$P\left(\left|\xi_{n}\right|>A\right)\leq P\left(\left|\xi-\xi_{n}\right|+\left|\xi\right|>A\right)\leq P\left(\left|\xi-\xi_{n}\right|>\frac{A}{2}\vee\left|\xi\right|>\frac{A}{2}\right)\leq P\left(\left|\xi-\xi_{n}\right|>\frac{A}{2}\right)+P\left(\left|\xi\right|>\frac{A}{2}\right)<\varepsilon$$

. Теперь возьмем g, она равномерно непрерывна на [-A, A]:

$$\forall \varepsilon > 0 \exists \delta > 0: |x - y| < \delta \Rightarrow |g(x) - g(y)| < \varepsilon \ \forall x, y \in [-A, A]$$

Докажем $g(\xi_n) \xrightarrow{p} g(\xi)$:

$$P(|g(\xi_n) - g(\xi)| \ge \varepsilon) = P(|g(\xi_n) - g(\xi)| \ge \varepsilon \mid \xi_n, \xi \in [-A, A]) \cdot P(\xi_n, \xi \in [-A, A]) + P(|g(\xi_n) - g(\xi)| \ge \varepsilon \mid \xi_n, \xi \notin [-A, A]) \cdot P(\xi_n, \xi \notin [-A, A])$$

Посмотрев на определение равномерное непрерывности, заметим, что:

$$P(|g(\xi_n) - g(\xi)| \ge \varepsilon \mid \xi_n, \xi \in [-A, A]) \le P(|\xi_n - \xi| \ge \delta)$$

А это уже, так как у нас есть сходимость по вероятности $\to 0$. И заметим, что

$$P(\xi_n, \xi \notin [-A, A]) \le P(|\xi_n| > A) + P(|\xi| > A) < 2\varepsilon$$

То есть $\to 0$ при $n, A \to \infty$ Все, получили, что $P(|g(\xi_n) - g(\xi)| \ge \varepsilon) \to 0$ при $n, A \to \infty$.

Следствие 1. $\xi_n \stackrel{p}{\to} \xi \Rightarrow \xi_n \stackrel{d}{\to} \xi$

Доказательство. Берем предыдущее предложение. Потом используем теорему Лебега для произвольной непрерывной ограниченной g и вспоминаем эквивалентное опеределение сходимости по распределению.

Теорема 4. (Эквивалетное опеределение сходимости почти наверное)

$$\xi_n \xrightarrow{n.n.} \xi \Leftrightarrow \forall \varepsilon > 0 : \lim_{n \to \infty} P\left(\sup_{k \ge n} |\xi_k - \xi| > \varepsilon\right) = 0$$

Доказательство. Рассмотрим следующие события:

$$A_k^{\varepsilon} = \{ |\xi_k - \xi| > \varepsilon \}$$

$$A^{\varepsilon} = \bigcap_{n=1}^{\infty} \bigcup_{k > n} A_k^{\varepsilon}$$

Заметим, что:

$$\left\{ \sup_{k \ge n} |\xi_k - \xi| > \varepsilon \right\} = \left\{ \exists k \ge n : |\xi_k - \xi| > \varepsilon \right\} = \bigcup_{k \ge n} A_k^{\varepsilon}$$

$$\left\{\lim_{n\to\infty}\xi_n\neq\xi\right\}=\left\{\exists\varepsilon>0\forall n\exists k\geq n:\;|\xi_k-\xi|\geq\varepsilon\right\}=\bigcup_{m=1}^\infty\bigcap_{n=1}^\infty\bigcup_{k\geq n}A_k^{\varepsilon=\frac{1}{m}}=\bigcup_{m=1}^\infty A^{\frac{1}{m}}$$

Тогда имеем:

$$\xi_n \xrightarrow{\text{\tiny II.H.}} \xi \Leftrightarrow P\left(\lim_{n \to \infty} \xi_n \neq \xi\right) = 0 \Leftrightarrow P\left(\bigcup_{m=1}^{\infty} A^{\frac{1}{m}}\right) = 0 \Leftrightarrow \forall m \ P\left(A^{\frac{1}{m}}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left(A^{\varepsilon}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 \ P\left$$

Теперь заметим вложенность последовательности событий $B_n^{\varepsilon} = \bigcup_{k > n} A_k^{\varepsilon}$ и, взглянув на определение

 A^{ε} , по теореме о непрерывности вероятностной меры продолжаем цепочку:

$$\Leftrightarrow \lim_{n \to \infty} P\left(\bigcup_{k > n} A_k^{\varepsilon}\right) = 0 \Leftrightarrow \lim_{n \to \infty} P\left(\sup_{k \ge n} |\xi_k - \xi| > \varepsilon\right) = 0$$

Теперь приведем некоторые примеры, опровергающие остальные следствия сходимостей

Пример 1.

$$\xi_n \xrightarrow{\mathrm{d}} \xi \not\Rightarrow \xi_n \xrightarrow{\mathrm{P}} \xi$$

Пусть $\Omega = \{\omega_1, \omega_2\}, \ P(\{\omega_i\}) = \frac{1}{2}$. Определим $\forall n \ \xi_n(\omega_i) = (-1)^i$. Положим $\xi = -\xi_n$. Тогда $\forall f$ непрерыной и ограниченной:

$$\mathbb{E}f\left(\xi_{n}\right) = \frac{f\left(1\right) + f\left(-1\right)}{2} = \mathbb{E}f\left(\xi\right)$$

То есть $\xi_n \xrightarrow{d} \xi$. Однако $\forall n \mid \xi_n - \xi \mid = 2$, то есть $\xi_n \xrightarrow{P} \xi$

Π ример 2.

$$\xi_n \xrightarrow{P} \xi \not\Rightarrow \xi_n \xrightarrow{\text{\tiny II.H.}} \xi$$

Возьмем $\Omega=[0,1],\,\xi_{2^n+p}=\mathrm{Ind}_{\left[\frac{p}{2^n},\frac{p+1}{2^n}\right]},\,0\leq p<2^n.$ Ясно, что $\xi_n\xrightarrow{\mathrm{P}}\xi$, так как

$$\lim_{n \to \infty} P\left(\xi_n > 0\right) = \lim_{n \to \infty} \frac{1}{2^{\lfloor \log n \rfloor}} = 0$$

, но $\xi_n \xrightarrow{\eta_{\text{-H}}} 0$, так как для любого исхода ω существует бесконечно много n, что $\xi_n(\omega) = 1$. Теперь осталось посмотреть на теорему 4 и все станет ясно.

Пример 3.

$$\xi_n \xrightarrow{\mathrm{d}} \xi \not\Rightarrow \xi_n \xrightarrow{\mathrm{\Pi.H.}} \xi$$

Если бы следствие имело место, то отсюда вытекало бы, что:

$$\xi_n \xrightarrow{\mathrm{d}} \xi \not\Rightarrow \xi_n \xrightarrow{\mathrm{P}} \xi$$

противоречие

2 Характеристические функции

Определение 2. *Характеристической функцией* случайной величины ξ называется функция:

$$\varphi_{\xi}(t) = \mathbb{E}e^{it\xi} = \mathbb{E}\left(\cos\left(t\xi\right) + i\sin\left(t\xi\right)\right)$$

Предложение 2. (Свойства характеристических функций)

- 1. $\varphi_{\xi}(0) = 1$, $|\varphi_{\xi}(t)| \leq 1 \ \forall t \in \mathbb{R}$
- 2. $\varphi_{a\xi+b}(t) = e^{itb}\varphi_{\xi}(at)$
- 3. если $\xi_1, \dots \xi_n$ независимые случайные величины и $S=\xi_1+\dots+\xi_n$, то

$$\varphi_S(t) = \varphi_{\xi_1}(t) \cdots \varphi_{\xi_n}(t)$$

Доказательство. .

- 1. Понятно, так как в матожидании могут быть только комплексные числа с модулем ≤ 1.
- 2. $\varphi_{a\xi+b}(t) = \mathbb{E}e^{it(a\xi+b)} = e^{itb}\mathbb{E}e^{i(at)\xi} = e^{itb}\varphi_{\xi}(at)$
- 3. $\varphi_S(t) = \mathbb{E}\left(e^{it\xi_1}\cdots e^{it\xi_n}\right) = \mathbb{E}e^{it\xi_1}\cdots \mathbb{E}e^{it\xi_n} = \varphi_{\xi_1}(t)\cdots \varphi_{\xi_n}(t)$

Пример 4. Вычислим $\varphi_{\xi}(t)$, где $\xi \sim N(0,1)$:

$$\varphi_{\xi}(t) = \mathbb{E}e^{it\xi} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \cos(tx) \, e^{-\frac{x^2}{2}} dx + \frac{i}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \sin(tx) \, e^{-\frac{x^2}{2}} dx$$

Заметим, что $\int_{-\infty}^{+\infty} \sin(tx) e^{-\frac{x^2}{2}} dx = 0$, так как это интеграл от нечетной функции по симметричному промежутку. Тогда имеем:

$$\varphi_{\xi}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \cos(tx) e^{-\frac{x^2}{2}} dx$$

Возьмем производную по t:

$$\varphi'_{\xi}(t) = -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x \sin(tx) \, e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \sin(tx) \, d\left(e^{-\frac{x^2}{2}}\right) =$$

$$= \frac{1}{\sqrt{2\pi}} \sin(tx) \, e^{-\frac{x^2}{2}} \Big|_{-\infty}^{+\infty} - \frac{t}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \cos(tx) \, e^{-\frac{x^2}{2}} dx = 0 - \frac{t}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \cos(tx) \, e^{-\frac{x^2}{2}} dx = -t\varphi_{\xi}(t)$$

Теперь надо решить дифференциальное уравнение:

$$\varphi_{\xi}'(t) = -t\varphi_{\xi}(t)$$

$$\frac{\varphi_{\xi}'(t)}{\varphi_{\xi}(t)} = -t$$

Интегрируем обе части:

$$\int \frac{d(\varphi_{\xi}(t))}{\varphi_{\xi}(t)} = \ln|\varphi_{\xi}(t)| + C = \int -tdt = -\frac{t^{2}}{2}$$
$$\varphi_{\xi}(t) = C'e^{-\frac{t^{2}}{2}}$$
$$\varphi_{\xi}(0) = 1 = C' \Rightarrow C' = 1$$

(Ответ никак нулевым быть не может, поэтому, когда мы поделили на хар функцию ничего плохого не произошло)

Предложение 3. Пусть случайная величина ξ обладает конечным k-тым моментом, то есть $\mathbb{E}|\xi|^k < \infty$. Тогда φ имеет непрерывную k-тую производную и $\varphi^{(k)}(0) = i^k \mathbb{E} \xi^k$

Доказательство. Заметим, что:

$$\left|\frac{e^{i\Delta t\xi}-1}{\Delta t}\right| \leq \frac{\sqrt{\left(\cos\left(\Delta t\xi\right)-1\right)^2+\sin^2\left(\Delta t\xi\right)}}{|\Delta t|} = \frac{\sqrt{2-2\cos\left(\Delta t\xi\right)}}{|\Delta t|} = \frac{2\left|\sin\left(\frac{\Delta t\xi}{2}\right)\right|}{\Delta t} \leq \frac{2\cdot\frac{|\Delta t\xi|}{2}}{|\Delta t|} = |\xi|$$

Возьмем вместо Δt последовательность $a_n \to 0$, Получим, что последовательность случайных величин, сходящихся почти наверное и ее предел $(i\xi)$ ограничены случайной величиной (ξ) с конечным ожиданием, получаем по теорема Лебега:

$$\mathbb{E}\frac{e^{ia_n\xi}-1}{a_n}\to \mathbb{E}i\xi$$

Теперь посчитаем производную хар фукнции:

$$\varphi'(t) = \lim_{\Delta t \to 0} \frac{\varphi(t + \Delta t) - \varphi(t)}{\Delta t} = \lim_{\Delta t \to 0} \mathbb{E}e^{it\xi} \cdot \frac{e^{i\Delta t\xi} - 1}{\Delta t} = i\mathbb{E}e^{it\xi}\xi$$

Теперь очевидна непрерывность первой производной и $\varphi'(0) = i\mathbb{E}\xi$, для производных высших порядков аналогично

Теорема 5.

$$\xi_n \xrightarrow{d} \xi \Leftrightarrow \forall t \lim_{n \to \infty} \varphi_{\xi_n}(t) = \varphi_{\xi}(t)$$

Доказательство. \Rightarrow

Очевидно по Теореме 1

 \Leftarrow

Докажем при условиии $\sup_{n} \mathbb{E} \xi_n^2 \leq C < \infty$. По неравенству Чебышева:

$$P(|\xi_n \ge A|) \le \frac{\mathbb{E}\xi^2}{A} \le \frac{C}{A}$$

Пусть f — ограниченная непрерывная функция и $M=\sup |f|$. Из записанного неравенства Чебышева следует, что $\forall \varepsilon>0 \exists A$:

$$P(|\xi_n| \ge A) \le \varepsilon, \ P(|\xi| \ge A) \le \varepsilon$$

Пусть непрерывная ограниченная f_{ε} совпадает с f на [-A,A], потом от -A-1 до -A и от A+1 до A она будет прямой из 0 в f(-A) и f(A) соответственно, а дальше будет повторять этот шаблон (периодическая). Заметим, что:

$$|\mathbb{E}f_{\varepsilon}(\xi_n) - \mathbb{E}f(\xi_n)| < 2M\varepsilon, \ |\mathbb{E}f_{\varepsilon}(\xi) - \mathbb{E}f(\xi)| < 2M\varepsilon$$

Теперь равномерно приблизим f_{ε} комбинацией sin, cos (знаем с матана, что периодическую можно так приблизить). А из сходимости хар функции мы знаем, что:

$$\lim_{n\to\infty} \mathbb{E}\sin\left(\xi_n\right) = \mathbb{E}\sin\left(\xi\right)$$

$$\lim_{n \to \infty} \mathbb{E} \cos (\xi_n) = \mathbb{E} \cos (\xi)$$

То есть получаем $\lim_{n\to\infty} \mathbb{E} f_{\varepsilon}(\xi_n) = \mathbb{E} f_{\varepsilon}(\xi)$. В итоге, вспоминая те неравенства с $2M\varepsilon$ и устремляя $n\to\infty$:

$$\mathbb{E}f\left(\xi\right) - 4M\varepsilon \le \inf \lim_{n \to \infty} \mathbb{E}f\left(\xi_n\right) \le \sup \lim_{n \to \infty} \mathbb{E}f\left(\xi_n\right) \le \mathbb{E}f\left(\xi\right) + 4M\varepsilon$$

Устремляя $\varepsilon \to 0$, получаем $\lim_{n \to \infty} \mathbb{E} f(\xi_n) = \mathbb{E} f(\xi)$, что доказывает сходимость по распределению.

Следствие 2. $\varphi_{\xi} \equiv \varphi_{\eta} \Rightarrow F_{\xi} \equiv F_{\eta}$

Доказательство. Предыдущая теорема + Теорема 1.

Теорема 6. (Центральная предельная теорема)

Пусть ξ_n — последовательность независимых одинаково распределенных случайных величин, причем $\mathbb{E}\xi_1 = \mu$, $\mathbb{D}\xi_1 = \sigma^2$. Тогда $\forall x$:

$$\lim_{n \to \infty} P\left(\frac{\xi_1 + \dots + \xi_n - n\mu}{\sigma\sqrt{n}} \le t\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^t e^{-\frac{x^2}{2}} dx$$

 $(cnpaва \ записана \ F(t) - функция \ pacnpedeления случайной величины <math>c \ pacnpedeлением \ N(0,1))$

Доказательство. Переходя к случайным величинам $\xi_i = \frac{\xi_i - \mu}{\sigma}$ дальше будем считать, что $\mathbb{E}\xi_i = 0$ и $\mathbb{D}\xi_i = 1$. Пусть φ — хар функция случаной величины ξ_1 . Тогда хар функция случаной величины

$$\frac{\xi_1 + \dots + \xi_n}{\sqrt{n}}$$

равна

$$\varphi_n(t) = \left(\varphi\left(\frac{t}{\sqrt{n}}\right)\right)^n$$

Разложим $\varphi\left(\frac{t}{\sqrt{n}}\right)$ в ряд Тейлора в 0 (при $n\to\infty$), помним предложение 3:

$$\varphi\left(\frac{t}{\sqrt{n}}\right) = \varphi\left(0\right) + x\varphi'\left(0\right) + \dots = 1 + 0 - \frac{t^2}{2n} + o\left(\frac{1}{n}\right)$$

Следовательно получаем:

$$\varphi_n\left(t\right) = \left(1 - \frac{t^2}{2n} + o\left(\frac{1}{n}\right)\right)^n = \left(1 - \frac{t^2}{2n} + o\left(\frac{1}{n}\right)\right)^{-\frac{2n}{t^2}\cdot\left(-\frac{t^2}{2}\right)} \xrightarrow{n\to\infty} e^{-\frac{t^2}{2}}$$

Получили характеристическую функцию нормального распределения, то есть и функции распределения должны совпадать.

3 Неравенство типа Хефдинга-Чернова

Теорема 7. (Неравенство Хефдинга-Чернова)

Пусть случайные величины $\xi_1, \dots \xi_n$ независимы и $a_i \le \xi_i \le b_i$. Тогда для случайной величины $S_n = \xi_1 + \dots + \xi_n$ и для каждого t > 0 выполнено

$$P(|S_n - \mathbb{E}S_n| \ge t) \le 2 \exp\left(-\frac{t^2}{4\sum_{i=1}^n (b_i - a_i)^2}\right)$$

Доказательство. Пусть $\eta_i = \xi_i - \mathbb{E}\xi_i$, тогда $|\eta_i| \le b_i - a_i$. Заметим, что для каждого $\lambda > 0$ (просто домножили и взяли экспоненту):

$$P(S_n - \mathbb{E}S_n \ge t) = P\left(\sum_{i=1}^n \eta_i \ge t\right) = P\left(e^{\lambda \sum \eta_i} \ge e^{\lambda t}\right)$$

Теперь применим неравенство Маркова:

$$P\left(e^{\lambda \sum \eta_i} \ge e^{\lambda t}\right) \le e^{-\lambda t} \mathbb{E} e^{\lambda \sum \eta_i}$$

Вспомним, что η_1, \dots, η_n независимы:

$$e^{-\lambda t} \mathbb{E} e^{\lambda \sum \eta_i} = e^{-\lambda t} \prod \mathbb{E} e^{\lambda \eta_i}$$

Оценим каждый множитель $\mathbb{E}e^{\lambda\eta_i}$ отдельно. Разложим его в ряд Тейлора:

$$\mathbb{E}e^{\lambda\eta_{i}} = 1 + \lambda \mathbb{E}\eta_{i} + \lambda^{2}\mathbb{E}\eta_{i}^{2} + \sum_{k=3}^{\infty} \frac{1}{k!} \lambda^{k} \eta^{k} \leq 1 + \lambda^{2} (b_{i} - a_{i})^{2} + \sum_{k=3}^{\infty} \frac{1}{k!} \lambda^{k} (b_{i} - a_{i})^{k}$$

Докажем, что при R > 0:

$$1 + \frac{1}{2}R^2 + \sum_{k=3}^{\infty} \frac{1}{k!}R^k \le e^{R^2}$$

Если R > 1:

$$1 + \frac{1}{2}R^2 + \sum_{k=3}^{\infty} \frac{1}{k!}R^k = 1 + \frac{1}{2}R^2 + \sum_{k=2}^{\infty} \frac{1}{k!}R^{2k} \left(\frac{k!}{(2k-1)!}R^{-1} + \frac{n!}{(2n)!}\right) \le 1 + \frac{1}{2}R^2 + \sum_{k=2}^{\infty} \frac{1}{k!}R^{2k} = e^{R^2}$$

Если же R < 1:

$$1 + \frac{1}{2}R^2 + \sum_{k=3}^{\infty} \frac{1}{k!}R^k \le 1 + \frac{1}{2}R^2 + \sum_{k=3}^{\infty} \frac{1}{2^{k-1}}R^2 = 1 + R^2 \le e^{R^2}$$

Таким образом:

$$P(S_n - \mathbb{E}S_n \ge t) \le \exp\left(-\lambda t + \lambda^2 \sum_{i=1}^n (b_i - a_i)^2\right)$$

Взяв $\lambda = \frac{t}{2\sum (a_i - b_i)^2}$ получим желаемое неравенство. Для $P(S_n - \mathbb{E}S_n \ge t)$ получим такую же оценку, и, объединяя их, получим оценку на модуль, только придется домножить оценку на 2.

Следствие 3. Пусть $\xi_i \sim Bern(p) - набор n$ независимых случайных величин, $S_n = \xi_1 + \dots + \xi_n$, тогда

$$P\left(\left|\frac{S_n}{n} - p\right| \ge t\right) \le 2e^{-\frac{nt^2}{4}}$$

Доказательство. Разделим каждую случайную величину на n, тогда $\mathbb{E} \frac{S_n}{n} = p$, а $\sum_{i=1}^n (a_i - b_i)^2 = 1$

$$n \cdot \frac{1}{n^2} = \frac{1}{n}$$
. Подставляем и получаем, нужное неравенство

Пример 5. Пусть в ящике какое-то количество черных и белых шаров. Каким должен быть размер выборки, чтобы оценить долю белых шаров с малой погрешностью? Пусть ξ_i — бернуллевская случайная величина, равная 1, если шар белого цвета и 0, если цвет черный. Мы хотим оценить вероятность успеха p. По неравенству выше:

$$P\left(\left|\frac{S_n}{n} - p\right| \ge t\right) \le 2e^{-\frac{nt^2}{4}} \le \varepsilon$$

Тогда при размере выборки $n=O\left(\frac{\ln\frac{1}{\varepsilon}}{t^2}\right)$ выборочное среднее приближает реальную долю белых шаров с точностью t с вероятностью более $1-\varepsilon$ (то есть вероятность, что наша оценка верна $\geq 1-\varepsilon$)

4 Теоремы непрерывности

Для применения ЦПТ на практике важную роль играют так называемые теоремы о непрерывности.

Предложение 4. Если последовательность случайных величин $\xi_n \stackrel{d}{\to} \xi$, то для всякой непрерывной $g(\xi_n) \stackrel{d}{\to} g(\xi)$

Доказательство. Следует из Теоремы 1(эквивалентное определение сходимости по распределению). ■

Лемма 1. Пусть X, Y, Z - cлучайные величины. Тогда

$$P(X + Y \le t) \le P(X + Z \le t + \varepsilon) + P(|Y - Z| \ge \varepsilon), \ \forall t \in \mathbb{R}, \forall \varepsilon > 0$$

Доказательство. Заметим, что

$$P(X + Y \le t) \le P(X + Y \le t, |Y - Z| \le \varepsilon) + P(X + Y \le t, |Y - Z| \ge \varepsilon) \le$$

 $\le P(X + Z - \varepsilon \le t) + P(|Y - Z| \ge \varepsilon)$

Предложение 5. Если $\xi_n \stackrel{P}{\to} a = const \ u \ \eta_n \stackrel{d}{\to} \eta, \ mo \ \xi_n \eta_n \stackrel{d}{\to} a\eta, \ \xi_n + \eta_n \stackrel{d}{\to} a + \eta$

Доказательство. Докажем утверждение для суммы. Пусть $\varepsilon > 0$, тогда по лемме имеем:

$$P(\xi_n + \eta_n \le t) \le F_{\eta_n}(t - a + \varepsilon) + P(|\xi_n - a| \ge \varepsilon)$$

И

$$P(\xi_n + \eta_n \le t) \ge F_{\eta_n}(t - a - \varepsilon) - P(|\xi_n - a| \ge \varepsilon)$$

Устремляя сначала $n \to \infty$, а затем $\varepsilon \to 0$. Из сходимости по вероятности получаем, что $P(|\xi_n - a| \ge \varepsilon) \to 0$. Тогда в итоге имеем:

$$\lim \left(F_{\eta_n} \left(t - a - \varepsilon \right) - P \left(\left| \xi_n - a \right| \ge \varepsilon \right) \right) \le \lim F_{\xi_n + \eta_n} \left(t \right) \le \lim \left(F_{\eta_n} \left(t - a + \varepsilon \right) + P \left(\left| \xi_n - a \right| \ge \varepsilon \right) \right)$$

$$\lim F_{\xi_n + \eta_n} \left(t \right) = F_n \left(t - a \right) = F_{a + n} \left(t \right)$$

Теперь докажем утверждение для произведения. Пусть a=0 (случай, когда $a\neq 0$ выводится из суммы $(\xi_n-a)\,\eta_n$ и $a\eta_n$). Теперь заметим, что $\forall \varepsilon>0 \forall C>0$ верно включение:

$$\{|\xi_n \eta_n| > \varepsilon\} \subseteq \{|\eta_n| > C\} \bigcup \{|\xi_n| > \frac{\varepsilon}{C}\}$$

(Пояснение: это верно, так как пересечение отрицания обоих событий точно приводит к противоречию). Тогда, переходя к вероятностям, получаем:

$$P(|\xi_n \eta_n| > \varepsilon) \le 1 - F_{\eta_n}(C) + F_{\eta_n}(-C) + P(|\xi_n| > \frac{\varepsilon}{C})$$

Устремляя сначала $n \to 0$, а затем $C \to \infty$, получаем, что $\xi_n \eta_n \xrightarrow{\mathrm{P}} 0 \Rightarrow \xi_n \eta_n \xrightarrow{\mathrm{d}} 0$.

Пример 6. (Выборочная дисперсия)

Пусть задана последовательность независимых и одинаково распределенных случайных величин ξ_i , причем $\mathbb{E}\xi_i = \mu$ и $\mathbb{D}\xi_i = \sigma^2$. Тогда последовательность случайных величин

$$s_n^2 = \frac{1}{n-1} \sum_{i=1}^{\infty} \left(\xi_i - \overline{\xi_n} \right)^2 \xrightarrow{P} \sigma^2$$

где $\overline{\xi_n}=\frac{\xi_1+\dots+\xi_n}{n}$ (умножаем на $\frac{1}{n-1}$, а не на $\frac{1}{n}$, чтобы $\mathbb{E}s_n^2=\sigma^2$, то есть таким образом посчитанная диспресия по вероятности сходится к именно тому, чему и надо, в другом случае будет небольшое смещение в $\frac{n-1}{n}$ раз, но с увеличение n разница в любом случае будет стрираться). Действительно:

$$s_n^2 = \frac{1}{n-1} \left(\sum_{i=1}^{\infty} \xi_i^2 - 2n\overline{\xi_n} \cdot \frac{1}{n} \sum_{i=1}^{\infty} + n\overline{\xi_n}^2 \right) = \frac{1}{n-1} \left(\sum_{i=1}^{\infty} \xi_i^2 - n\overline{\xi_n}^2 \right) = \frac{n}{n-1} \cdot \frac{1}{n} \sum_{i=1}^{\infty} \xi_i^2 - \frac{n}{n-1} \overline{\xi_n}^2$$

Теперь заметим, что по ЗБЧ:

$$\frac{1}{n} \sum_{i=1}^{\infty} \xi_i^2 \xrightarrow{P} \sigma^2 + \mu, \ \overline{\xi_n} \xrightarrow{P} \mu$$

Получили искомую сходимость

Пример 7. Пусть задана последовательность независимых и одинаково распределенных случайных величин ξ_i , причем $\mathbb{E}\xi_i = \mu$ и $\mathbb{D}\xi_i = \sigma^2 > 0$. Тогда из ЦПТ следует, что:

$$\frac{\xi_1 + \dots + \xi_n - n\mu}{\sigma \sqrt{n}} = \frac{\sqrt{n} \left(\overline{\xi_n} - \mu\right)}{\sigma} \xrightarrow{d} \xi \sim N(0, 1)$$

Более того, так как $s_n^2 \xrightarrow{P} \sigma^2 > 0$, то имеет место сходимость по распределению величин:

$$\frac{\sqrt{n}\left(\overline{\xi_n} - \mu\right)}{s_n^2} \xrightarrow{d} \xi \sim N(0, 1)$$

Предложение 6. Пусть $a, h_n \in \mathbb{R}$, $\lim_{n \to \infty} h_n = 0$ и f — непрерывно дифференцируемая функция на \mathbb{R} . Если последовательность случайных величин ξ_n сходится по распределению κ ξ , то:

$$\frac{f\left(a+h_n\xi_n\right)-f\left(a\right)}{h_n} \xrightarrow{d} f'\left(a\right)\xi$$

Доказательство. Имеет место равенство:

$$\frac{f(a+h_n\xi_n) - f(a)}{h_n} = \frac{f(a+1 \cdot h_n\xi_n) - f(a+0 \cdot h_n\xi_n)}{h_n} = \frac{1}{h_n} \int_0^1 f(a+th_n\xi_n) d(a+th_n\xi_n) = \xi_n \int_0^1 f(a+th_n\xi_n) dt$$

Из предложения 5(самый конец) получаем, что $h_n \xi_n \xrightarrow{P} 0$. Также заметим, что функция

$$g(y) = \int_0^1 f(a+ty)dt$$

непрерывна. Следовательно по предложению 4:

$$g(h_n\xi_n) = \int_0^1 f(a + th_n\xi_n) dt \xrightarrow{P} g(0) = f'(a)$$

Теперь снова используя предложение 5, получаем нужную сходимость.

Пример 8. Пусть задана последоватеность независисмых и одинаково распределенных случайных величин ξ_i , причем $\mathbb{E}\xi_i = \mu$ и $\mathbb{D}\xi_i = \sigma^2 > 0$. Если h — непрерывно дифференцируемая функция, то

$$\sqrt{n}\left(h\left(\overline{\xi_n}\right) - h\left(\mu\right)\right) \xrightarrow{d} \xi \sim N\left(0, q^2\right), \ q = \sigma h'\left(\mu\right)$$

Действительно, имеем равенство

$$\sqrt{n}\frac{\left(h\left(\overline{\xi_{n}}\right)-h\left(\mu\right)\right)}{\sigma}=\frac{1}{\sigma}\cdot\frac{h\left(\mu+n^{-\frac{1}{2}}\sigma\zeta_{n}\right)-h\left(\mu\right)}{n^{-\frac{1}{2}}}$$

где(сходимость по ЦПТ)

$$\zeta_{n} = \frac{\sqrt{n}(\overline{\xi_{n}} - \mu)}{\sigma} \xrightarrow{d} \xi \sim N(0, 1)$$

Используем предложение 6 и получаем требуемое.

Пример 9. Пусть $\xi_1, \dots \xi_n$ положительные независимые одинаково распределенные случайные величины, $\mathbb{E}\xi_1 = \mu, \ 0 < \mathbb{D}\xi_1 = \sigma^2 < \infty$. Рассмотрим случайную величину $S_n = \xi_1 + \dots + \xi_n$ и найдем предел в смысле сходимости по распределению у последовательности случайных величин $\sqrt{n}\left(\frac{n}{S_n} - \frac{1}{\mu}\right)$.

Первый способ:

$$\sqrt{n}\left(\frac{n}{S_n} - \frac{1}{\mu}\right) = -\frac{1}{\mu} \frac{n}{S_n} \sqrt{n} \left(\frac{S_n}{n} - \mu\right)$$

По ЦПТ

$$\sqrt{n}\left(\frac{S_n}{n} - \mu\right) \xrightarrow{d} \xi \sim N\left(0, \sigma^2\right)$$

По ЗБЧ

$$\frac{n}{S_n} \xrightarrow{P} \frac{1}{\mu}$$

Таким образом имеем:

$$\sqrt{n}\left(\frac{n}{S_n} - \frac{1}{\mu}\right) \xrightarrow{d} -\frac{1}{\mu}^2 \xi \sim N\left(0, \frac{\sigma^2}{\mu^4}\right)$$

Второй способ:

Пусть $h(x) = \frac{1}{x}$, тогда

$$\sqrt{n}\left(\frac{n}{S_{n}}-\frac{1}{\mu}\right)=\sqrt{n}\left(h\left(\frac{S_{n}}{n}\right)-h\left(m\right)\right)\xrightarrow{d}\xi\sim N\left(0,\sigma^{2}\left(h'\left(\mu\right)\right)^{2}\right)=N\left(0,\frac{\sigma^{2}}{\mu^{4}}\right)$$

5 Многомерная характеристическая функция и ЦПТ

Определение 3. Характеристическая функция случайного вектора $\xi = (\xi_1, \cdots, \xi_m)^T$ определяется равенством

$$\varphi_{\xi}(x) = \mathbb{E}e^{ix\xi} = \mathbb{E}e^{i\sum_{i=1}^{m}x_{i}\xi_{i}}$$

Предложение 7. $\varphi_{\xi} \equiv \varphi_{\eta} \Leftrightarrow \xi \ u \ \eta \ u$ меют одинаковые распределения

Доказательство. Заметим, что

$$F_{\xi}(x_1, \cdots, x_m) = \mathbb{E}I_{\leq x_1}(\xi_1) \cdots I_{\leq x_m}(\xi_m)$$

По аналогии с одномерным случаем, нам достаточно доказать, что

$$\mathbb{E}g_1(\xi_1)\cdots g_m(\xi_m) = \mathbb{E}g_1(\eta_1)\cdots g_m(\eta_m)$$

для непрерывных периодических функций $g_k(u)$. Такие функции приближаются линейными комбинациями функций вида $e^{i\mu_k u}$. Значит, достаточно проверять совпадение выражений вида

$$\mathbb{E} \exp (i\mu_1 \xi_1 + \dots + i\mu_m \xi_m) = \mathbb{E} \exp (i\mu_1 \eta_1 + \dots + i\mu_m \eta_m)$$

А это у нас есть(это хар функции).

Следствие 4. Случайные величины ξ_1, \dots, ξ_m независимы тогда и только тогда, когда

$$\varphi_{\xi}(y_1, \cdots, y_m) = \varphi_{\xi_1}(y_1) \cdots \varphi_{\xi_m}(y_m)$$

 $Доказательство. \Rightarrow$

$$\varphi_{\xi}(y_1, \cdots, y_m) = \mathbb{E}e^{i(\xi_1y_1 + \cdots + \xi_my_m)} = \mathbb{E}e^{i\xi_1y_1} \cdots e^{i\xi_my_m} =$$

В силу независимости ξ_i

$$= \mathbb{E}e^{i\xi_1 y_1} \cdots \mathbb{E}e^{i\xi_m y_m} = \varphi_{\xi_1}(y_1) \cdots \varphi_{\xi_m}(y_m)$$

 \Leftarrow

Сделаем новый вектор (η_1, \dots, η_m) , так что:

- 1. Распр $\eta_i = \text{распр } \xi_i \ \forall i \in \{1, \cdots, m\}$
- 2. η_1, \cdots, η_m независимы

Определим $F(y) = F_{\eta_1}(y_1) \cdots F_{\eta_m}(y_m)$. Тогда мы знаем, что существует вектор, у которого такая функция распределения, из чего непременно следует независимость η_1, \cdots, η_m Посчитаем хар. функцию $\eta = (\eta_1, \cdots, \eta_m)$

$$\varphi_{\eta}(y) = \begin{bmatrix} \text{в силу} \\ \text{нез - сти } \eta_i \end{bmatrix} = \varphi_{\eta_1}(y_1) \cdots \varphi_{\eta_m}(y_m) = \varphi_{\xi_1}(y_1) \cdots \varphi_{\xi_m}(y_m) = \varphi_{\xi}(y)$$

По предыдущему предложению и независимости $\eta_1, \dots, \eta_m \Rightarrow \xi_1, \dots, \xi_m$ независимы.

Теорема 8. Пусть последовательность независимых одинаково распределенных случайных векторов $\xi^n = (\xi_1^n, \cdots, \xi_m^n) \in \mathbb{E}$ имеют конечные

$$\mathbb{E}\xi_i^1 = \mu_i, \ r_{ij} = cov\left(\xi_i^1, \xi_i^1\right)$$

Тогда величины

$$\eta_i^n = \frac{\xi_i^1 + \dots + \xi_i^n - n\mu_i}{\sqrt{n}}$$

таковы, что последовательность векторов $\eta^n = (\eta_1^n, \cdots, \eta_m^n) \xrightarrow{d} \eta$, характеристическая функция которого имеет вид

$$\varphi_{\eta}(y) = \exp\left(-\frac{\langle yR, y\rangle}{2}\right), \ R = (r_{ij})$$

Доказательство. В векторной форме:

$$\eta^n = \frac{\sum_{s=1}^n \xi^s - \mu n}{\sqrt{n}}$$

Запишем хар. функцию:

$$\varphi_{\eta^n}(t) = \varphi_{(\xi^1 - \mu + \dots + \xi^n - \mu)/\sqrt{n}}(t) = \varphi_{\xi^1 - \mu + \dots + \xi^n - \mu}\left(\frac{t}{\sqrt{n}}\right) =$$

В силу независимости ξ_i и их одинаковой распределенности

$$= \left(\varphi_{\xi^1 - \mu} \left(\frac{t}{\sqrt{n}}\right)\right)^n$$

Напоминание. Пусть $F: \mathbb{R}^n \to \mathbb{R}^m$

 $x=(x_1,x_2,\cdots x_n)\stackrel{\circ}{\in}\mathbb{R}^n$ и $a=(a_1,a_2,\cdots a_n)\in\mathbb{R}^n$. Тогда ряд Тейлора функции F в точке a это

$$F(x) = F(a) + \sum_{i=1}^{n} \frac{dF(a)}{dx_i} (x_i - a_i) + \frac{1}{2} \sum_{i,j=1}^{n} \frac{d^2 F(a)}{dx_i dx_j} (x_i - a_i) (x_j - a_j)$$

$$+ \cdots + \frac{1}{k!} \sum_{i_1, \dots, i_k = 1}^n \frac{d^k F(a)}{dx_{i_1} \cdots dx_{i_k}} (x_{i_1} - a_{i_1}) \cdots (x_{i_k} - a_{i_k}) + R_k (x - a, a)$$

Разложим в ряд Тейлора:

$$\left(\varphi_{\xi^1-\mu}\left(\frac{t}{\sqrt{n}}\right)\right)^n = \left(1 + \left\langle \nabla\varphi_{\xi^1-\mu}(0), \frac{t}{\sqrt{n}} \right\rangle + \frac{1}{2} \cdot D^2\varphi_{\xi^1-\mu}(0) \left\langle \frac{t}{\sqrt{n}}, \frac{t}{\sqrt{n}} \right\rangle + o\left(\frac{1}{n}\right)\right)^n$$

Рассмотрим на 2-мерном случае (на других аналогично):

$$\varphi_{\xi}(t_1, t_2) = \mathbb{E}e^{it_1\xi_1 + it_2\xi_2}$$

Первая производная:

$$\frac{d}{dt_{i}}\varphi_{\xi}(t) = i\mathbb{E}\xi_{j}e^{it_{1}\xi_{1} + it_{2}\xi_{2}}; \ \frac{d}{dt_{i}}\varphi_{\xi}(0) = i\mathbb{E}\xi_{j}$$

В нашем случае нетрудно понять, что $\nabla \varphi_{\xi^1-\mu}(0)=0$, так как у нас ξ это $\xi^1-\mu$, а $i\mathbb{E}(\xi_i^1-\mu_i)=0$ Вторая производная:

$$\frac{d^2}{dt_j t_s} \varphi_{\xi}(t) = -\mathbb{E}\xi_j \xi_s e^{it_1 \xi_1 + it_2 \xi_2}; \ \frac{d^2}{dt_j t_s} \varphi_{\xi}(0) = -\mathbb{E}\xi_j \xi_s$$

В нашем случае $-\mathbb{E}(\xi_j^1 - \mu_j)(\xi_s^1 - \mu_s) = -r_{js}$ Получаем:

$$\left(1 - \frac{1}{2} \langle Rt, t \rangle \frac{1}{n} + o\left(\frac{1}{n}\right)\right)^n \xrightarrow{n \to \infty} e^{-\frac{1}{2} \langle Rt, t \rangle}$$

6 Многомерное нормальное распределение

Определение 4. Случайный вектор $\xi \in \operatorname{Mat}_{m \times 1}$ имеет нормальное распределение или является гауссовским, если $\forall x \in \mathbb{R}^m$

$$\varphi_{\xi}(x) = \mathbb{E}e^{ix\xi} = e^{ix\mu - \frac{1}{2}xRx^T}$$

где $\mu = (\mu_1, \cdots, \mu_m)^T$, $R \in \text{Mat}_{m \times m}$ — симметричная неотрицательно определенная. Далее кратко пишем

$$\xi \sim N(\mu, R)$$

Определение 5. Пусть $\xi \in \text{Mat}_{m \times 1}$ случайный вектор. Матрица $R \in \text{Mat}_{m \times m}$ с компонентами $r_{ij} = \text{cov}(\xi_i, \xi_j)$ называется ковариационной матрицей вектора ξ . Можно еще написать, что

$$R = \operatorname{cov}(\xi, \xi) = \mathbb{E}(\xi - \mathbb{E}\xi)(\xi - \mathbb{E}\xi)^{T}$$

Лемма 2. Симметричная неотрицательно определенная матрица $R \in Mat_{m \times m}$ является ковариционной матрицей случайного вектора-столбца $\xi \in Mat_{m \times 1}$ тогда и только тогда, когда $\forall x, y \in \mathbb{R}^m$

$$cov(x\xi, y\xi) = xcov(\xi, \xi)y^T = xRy^T$$

Распишем по определению ковариации двух случайных величин (у нас именно они):

$$cov(x\xi, y\xi) = \mathbb{E}\left[\left(x\xi - \mathbb{E}x\xi\right)\left(y\xi - \mathbb{E}y\xi\right)\right] = \mathbb{E}\left[x\left(\xi - \mathbb{E}\xi\right)y\left(\xi - \mathbb{E}\xi\right)\right] =$$

Транспонируя скаляр, получаем тот же скаляр:

$$= \mathbb{E}\left[x\left(\xi - \mathbb{E}\xi\right)\left(y\left(\xi - \mathbb{E}\xi\right)\right)^{T}\right] = \mathbb{E}\left[x\left(\xi - \mathbb{E}\xi\right)\left(\xi - \mathbb{E}\xi\right)^{T}y^{T}\right] = x\mathbb{E}\left[\left(\xi - \mathbb{E}\xi\right)\left(\xi - \mathbb{E}\xi\right)^{T}\right]y^{T} = x\text{cov}\left(\xi,\xi\right)y^{T}$$

Возьмем $x = e_i$, $y = e_j$ (базисные единичные вектора). Тогда из данного равенства получим:

$$cov(e_i\xi, e_j\xi) = cov(\xi_i, \xi_j) = e_iRe_j = r_{ij}$$

Следовательно $R = \text{cov}(\xi, \xi)$ по определению.

Предложение 8. $\forall A \in Mat_{m \times m} \ \forall b \in Mat_{m \times 1} \ u \ \xi \in Mat_{m \times 1} - c$ лучайного вектора, верно:

$$cov(A\xi + b, A\xi + b) = AR_{\xi}A^{T}$$

Доказательство. Распишем по определению:

$$\operatorname{cov}(A\xi + b, A\xi + b) = \mathbb{E}\left[\left(A\xi + b - \mathbb{E}\left(A\xi + b\right)\right)\left(A\xi + b - \mathbb{E}\left(A\xi + b\right)\right)^{T}\right] =$$

$$= \mathbb{E}\left[\left(A\xi + b - b - \mathbb{E}A\xi\right)\left(A\xi + b - b - \mathbb{E}A\xi\right)^{T}\right] = \mathbb{E}\left[\left(A\xi - \mathbb{E}A\xi\right)\left(A\xi - \mathbb{E}A\xi\right)^{T}\right] =$$

$$= A\mathbb{E}\left[\left(\xi - \mathbb{E}\xi\right)\left(\xi - \mathbb{E}\xi\right)^{T}\right]A^{T} = AR_{\xi}A^{T}$$

Следствие 5. Если вектор $\xi \sim N(\mu, R)$, то вектор $A\xi + b \sim N(A\mu + b, AR_{\xi}A^{T})$

Теорема 9. Вектор $\xi \in Mat_{m \times 1}$ имеет нормальное распределение тогда и только тогда, когда $\forall x \in \mathbb{R}^m$ случайная величина $x\xi$ имеет нормальное распределение

 $Доказательство. \Rightarrow$

Если ξ нормальный вектор, то

$$\varphi_{x\xi}(t) = \mathbb{E}e^{itx\xi} = \varphi_{\xi}(tx) = \exp\left(-\frac{1}{2}txR(tx)^{T} + itx\mu\right) =$$
$$= \exp\left(-\frac{1}{2}t^{2}xRx^{T} + itx\mu\right)$$

Получили хар функцию нормального распределения $x\xi \sim N\left(x\mu, xRx^T\right)$.

В обратную сторону:

$$\varphi_{\xi}(x) = \mathbb{E}e^{ix\xi} = \varphi_{x\xi}(1) = \exp\left(-\frac{1}{2}\mathbb{D}x\xi + i\mathbb{E}x\xi\right) = \exp\left(-\frac{1}{2}\operatorname{cov}(x\xi, x\xi) + ix\mu\right) = \exp\left(-\frac{1}{2}xRx^{T} + ix\mu\right)$$

, где $R = \text{cov}(\xi, \xi), \, \mu = \mathbb{E}\xi$. Последний переход вытекает из леммы2.

Следствие 6. Если $\xi \sim N(\mu, R)$, то $R = cov(\xi, \xi)$, $\mu = \mathbb{E}\xi$.

Следствие 7. Если вектор $\xi = (\xi_1, \xi_2)$ имеет нормальное распределение и $cov(\xi_1, \xi_2) = 0$, то случайные величины ξ_1 и ξ_2 независимы.

Доказательство. Пусть

$$\mu = \mathbb{E}\xi = (\mu_1, \mu_2)$$

Заметим, что

$$R = \operatorname{cov}(\xi, \xi) = \begin{pmatrix} \operatorname{cov}(\xi_1, \xi_1) & 0\\ 0 & \operatorname{cov}(\xi_2, \xi_2) \end{pmatrix}$$

Теперь запишем харфункцию ξ :

$$\varphi_{\xi}(x_{1}, x_{2}) = \exp\left(-\frac{1}{2}\left(x_{1}^{2}\mathbb{D}\xi_{1} + x_{2}^{2}\mathbb{D}\xi_{2}\right) + i\left(x_{1}\mu_{1} + x_{2}\mu_{2}\right)\right) =$$

$$= \exp\left(-\frac{1}{2}x_{1}^{2}\mathbb{D}\xi_{1} + ix_{1}\mu_{1}\right) \cdot \exp\left(-\frac{1}{2}x_{2}^{2}\mathbb{D}\xi_{2} + ix_{2}\mu_{2}\right) = \varphi_{\xi_{1}}(x_{1})\varphi_{\xi_{2}}(x_{2})$$

Теперь из следствия4 вытекает независимость ξ_1 и ξ_2

Следствие 8. Если $\xi \sim N(\mu, R) (\in Mat_{m \times 1})$, то $\exists A \in Mat_{m \times k}$, что $\xi = A\eta + \mu$, где $\eta = (\eta_1, \cdots, \eta_k)^T$, η_i — независимые N(0, 1) случайные величины. Причем $AA^T = R$

Доказательство. Пусть

$$\xi' = \xi - \mu = (\xi'_1, \cdots, \xi'_m)^T$$

Свели задачу к задачи нахождения ортонормированного базиса $\eta = (\eta_1, \cdots, \eta_k)^T$ в подпространстве $\langle \xi_1', \cdots, \xi_m' \rangle$ со скалярным произведением $(X,Y) = \mathbb{E} XY$. Эта задача решается методом Грама-Шмидта. Получили матрицу перехода A, что

$$\xi - \mu = \xi' = A\eta$$

То есть

$$\xi = A\eta + \mu$$

Осталось пояснить $AA^T = R$:

$$R = \operatorname{cov}(\xi, \xi) = \operatorname{cov}(\xi - \mu, \xi - \mu) = \operatorname{cov}(A\eta, A\eta) = A\operatorname{cov}(\eta, \eta) A^{T} = AEA^{T} = AA^{T}$$

 $cov(\eta, \eta) = E$, так как это ортонормированный базис.

Теорема 10. Если $\xi \sim N(\mu, R)$ (в этой теореме сделаем $\mu := \mu^T \in R^m$) и $detR \neq 0$, случайный вектор ξ имеет плотность

$$\rho(x) = \frac{1}{(2\pi)^{\frac{m}{2}} \sqrt{\det R}} e^{-2^{-1}(x-\mu)R^{-1}(x-\mu)^{T}}$$

Доказательство. Так как $\xi = A\eta + \mu$, причем $\exists A^{-1}$, то

$$P\left(\xi \in B\right) = P\left(A\eta + \mu \in B\right) = \frac{1}{\left(\sqrt{2\pi}\right)^m} \int_{A\eta + \mu \in B} e^{-2^{-1}xx^T} dx =$$

$$= \frac{1}{\left(2\pi\right)^{\frac{m}{2}}} \int_{B} e^{-2^{-1}\left(A^{-1}(x-\mu)\right)\left(A^{-1}(x-\mu)\right)^T} d\left(A^{-1}\left(x-\mu\right)\right) = \frac{1}{\left(2\pi\right)^{\frac{m}{2}} \det A} \int_{B} e^{-2^{-1}\left(A^{-1}(x-\mu)\right)\left(A^{-1}(x-\mu)\right)^T} dx$$

Остается заметить, что

$$\det AA^T = (\det A)^2 = \det R$$

оти и

$$A^{-1}(x-\mu) (A^{-1}(x-\mu))^{T} = (x-\mu) A^{-1} (A^{-1})^{T} (x-\mu)^{T} =$$

$$= (x-\mu) (AA^{T})^{-1} (x-\mu)^{T} = (x-\mu) R^{-1} (x-\mu)^{T}$$

Пример 10. Пусть $\xi = (\xi_1, \dots, \xi_n)^T$, где $\xi_i \sim N(0, \sigma^2)$ и независимы между собой (или, что то же самое $\xi \sim N(0, \sigma^2 E)$). Положим

$$\overline{\xi} = \frac{\xi_1 + \dots + \xi_n}{n}, \ \zeta = (\xi_1 - \overline{\xi})^2 + \dots + (\xi_n - \overline{\xi})^2$$

 $(\zeta$ — выборочная диспресия). Покажем, что $\overline{\xi}$ и ζ независимы.

Пусть $U \in \operatorname{Mat}_{n \times n}$ — ортогональная матрица $(UU^T = E)$, первая строка которой имеет вид $\left(n^{-\frac{1}{2}}, \cdots, n^{-\frac{1}{2}}\right)$. Тогда координаты вектора $u = U\xi \sim N\left(0, U\sigma^2 E U^T\right) = N\left(0, \sigma^2 E\right)$ являются независимыми. Заметим, что $u_n = \overline{\xi}\sqrt{n}$ и что

$$u^{T}u = u_{1}^{2} + \dots + u_{n}^{2} = n\overline{\xi^{2}} + u_{2}^{2} + \dots + u_{n}^{2} = \xi^{T}U^{T}U\xi = \xi^{T}\xi = \xi_{1}^{2} + \dots + \xi_{n}^{2}$$

Иначе говоря

$$u_2^2 + \dots + u_n^2 = \xi_1^2 + \dots + \xi_n^2 - n\overline{\xi^2}$$

Теперь заметим

$$\zeta = \xi_1^2 + \dots + \xi_n^2 - 2\sum_{i=1}^n \xi_i \overline{\xi} + n\overline{\xi}^2 = \xi_1^2 + \dots + \xi_n^2 - n\overline{\xi}^2 = u_2^2 + \dots + u_n^2$$

Так как u_1, \cdots, u_n — независимы, то и $\frac{u_1}{\sqrt{n}} = \overline{\xi}$ и $u_2^2 + \cdots + u_n^2 = \zeta$ тоже независимы.

Распределение величины $\chi = \eta_1^2 + \dots + \eta_n^2$, где η_i независимые с распределением N(0,1), называют распределением хи-квадрат с n степенями свободы и обозначают через χ_n^2 . Найдем плотсноть распределения χ_n^2 :

$$P(\chi \le t) = (2\pi)^{-\frac{n}{2}} \int_{\eta_1^2 + \dots + \eta_n^2 \le t} e^{-\frac{x_1^2 + \dots + x_n^2}{2}} dx =$$

Делаем сферическую замену (w_n — площадь n-мерной единичной сферы):

$$= (2\pi)^{-\frac{n}{2}} w_n \int_0^{\sqrt{t}} r^{n-1} e^{-\frac{r^2}{2}} dr$$

Тогда

$$\rho(t) = (2\pi)^{-\frac{n}{2}} w_n \cdot \frac{1}{2} t^{-\frac{1}{2}} t^{\frac{n-1}{2}} e^{-\frac{t}{2}} = \frac{1}{2} (2\pi)^{-\frac{n}{2}} w_n t^{\frac{n-2}{2}} e^{-\frac{t}{2}} \operatorname{Ind}_{t>0}$$

7 Условные математические ожидания: дискретный случай

Предположим, что задана дискретная случайная величина

$$\xi\left(w\right) = \sum_{i=1}^{n} x_{i} \operatorname{Ind}_{A_{i}}\left(w\right)$$

Рассмотрим следующую задачу: найти математическое ожидание ξ , если достоверно известно, что произошло событие B, P(B) > 0. Поскольку мы знаем, что событие B произошло, то надо пересчитать вероятности A_k с учетом новой информации, а именно, заменить $P(A_k)$ на $P(A_k|B)$. Таким образом, надо вычислить математическое ожидание не относительно исходной вероятностной меры P, а относительно условной вероятности $P(\cdot|B)$.

Определение 6. Имеем:

$$\mathbb{E}\left(\xi|B\right) = \sum_{i=1}^{n} x_i P\left(A_i|B\right) = \sum_{i=1}^{n} x_i \frac{\mathbb{E}\left(\operatorname{Ind}_{A_i}\operatorname{Ind}_{B}\right)}{P\left(B\right)} = \frac{\mathbb{E}\left(\xi\operatorname{Ind}_{B}\right)}{P\left(B\right)}$$

Это выражение будем называть условным математическим ожиданием относительно события В.

Пусть теперь имеется разбиение

$$\Omega = \bigcup_{k=1}^{N} B_k, \ B_k \cap B_m = \emptyset, \ P(B_k) > 0$$

Обозначим это разбиение $\{B_k\}$ через \mathcal{B} . Удобно собрать вместе значения условных математических ожиданий $\mathbb{E}\left(\xi|B_k\right)$.

Определение 7. Рассмотрим случайную величину:

$$\Lambda(w) = \sum_{i=1}^{N} \operatorname{Ind}_{B_i}(w) \mathbb{E}(\xi|B_i)$$

Если $w \in B_i$, то эта случайная величина выдает среднее значение ξ при условии, что произошло событие B_i . Величину $\Lambda(w)$ называют условным математическим ожиданием относительно разбиения \mathcal{B} и обозначают через $\mathbb{E}(\xi|\mathcal{B})$.

Случайную величину

$$P(A|\mathcal{B}) = \mathbb{E}\left(\operatorname{Ind}_A|\mathcal{B}\right)$$

называют условной вероятностью события A относительно разбиения \mathcal{B} . Ясно, что

$$\mathbb{E}\left(\xi|\mathcal{B}\right) = \sum_{i=1}^{N} \operatorname{Ind}_{B_{i}}\left(w\right) \mathbb{E}\left(\xi|B_{i}\right) = \sum_{i=1}^{N} \operatorname{Ind}_{B_{i}}\left(w\right) \sum_{j=1}^{n} x_{j} P\left(A_{j}|B_{i}\right) = \sum_{j=1}^{n} \sum_{i=1}^{N} \operatorname{Ind}_{B_{i}}\left(w\right) x_{j} P\left(A_{j}|B_{i}\right) =$$

$$= \sum_{j=1}^{n} x_{j} \sum_{i=1}^{N} \operatorname{Ind}_{B_{i}}\left(w\right) P\left(A_{j}|B_{i}\right) = \sum_{j=1}^{n} x_{j} \sum_{i=1}^{n} \operatorname{Ind}_{B_{i}}\left(w\right) \mathbb{E}\left(\operatorname{Ind}_{A_{j}}|B_{i}\right) = \sum_{j=1}^{n} x_{j} \mathbb{E}\left(\operatorname{Ind}_{A_{j}}|\mathcal{B}\right) =$$

$$= \sum_{i=1}^{n} x_{j} P\left(A_{j}|\mathcal{B}\right)$$

Пример 11. Рассмотрим важный пример, когда $\mathcal{B} = \{B, \overline{B}\}$. Тогда

$$P(A|\mathcal{B}) = \operatorname{Ind}_{B}(w) P(A|B) + \operatorname{Ind}_{\overline{B}}(w) P(A|\overline{B})$$

Если $w \in B$, то $P(A|\mathcal{B})(w) = P(A|B)$

Теорема 11. Имеют место следующие свойства условного математического ожидания:

- (1) (линейность) $\mathbb{E}(\alpha\xi + \beta\eta|\mathcal{B}) = \alpha\mathbb{E}(\xi|\mathcal{B}) + \beta\mathbb{E}(\eta|\mathcal{B})$
- (2) (монотонность) из $\xi \leq \eta$ следует $\mathbb{E}(\xi|\mathcal{B}) \leq \mathbb{E}(\eta|\mathcal{B})$
- (3) (аналог формулы полной вероятности) $\mathbb{E}\left(\mathbb{E}\left(\xi|\mathcal{B}\right)\right)=\mathbb{E}\xi$
- (4) (независимость) если случаная величина ξ не зависит от разбиения \mathcal{B} , т.е. случайные величины ξ и Ind_{B_k} независимы, то $\mathbb{E}(\xi|\mathcal{B}) = \mathbb{E}\xi$
- (5) для всякой случайной величины $\eta = \sum_{k=1}^{N} c_k Ind_{B_k}$ верно равенство $\mathbb{E}\left(\eta\xi|\mathcal{B}\right) = \eta\mathbb{E}\left(\xi|\mathcal{B}\right)$

Доказательство. Свойства (1) и (2) следуют из того, что они верны отдельно для каждого B_k . Свойство (3) проверяется непосредственной подстановкой:

$$\mathbb{E}\left(\mathbb{E}\left(\xi|\mathcal{B}\right)\right) = \mathbb{E}\left(\sum_{i=1}^{N} \operatorname{Ind}_{B_{i}} \mathbb{E}\left(\xi|B_{i}\right)\right) = \mathbb{E}\left(\sum_{i=1}^{N} \operatorname{Ind}_{B_{i}} \frac{\mathbb{E}\left(\xi\operatorname{Ind}_{B_{i}}\right)}{P\left(B\right)}\right) = \sum_{i=1}^{N} \mathbb{E}\left(\operatorname{Ind}_{B_{i}}\right) \frac{\mathbb{E}\left(\xi\operatorname{Ind}_{B_{i}}\right)}{P\left(B_{i}\right)} = \sum_{i=1}^{N} \mathbb{E}\left(\xi\operatorname{Ind}_{B_{i}}\right) = \mathbb{E}\xi$$

Обоснуем пункт (4). Так как ξ и Ind_{B_k} независимы, то

$$\mathbb{E}\left(\xi|B_{k}\right) = \frac{\mathbb{E}\left(\xi\operatorname{Ind}_{B_{k}}\right)}{P\left(B_{k}\right)} = \frac{\mathbb{E}\xi\mathbb{E}\operatorname{Ind}_{B_{k}}}{P\left(B_{k}\right)} = \mathbb{E}\xi$$

Следовательно,

$$\mathbb{E}\left(\xi|\mathcal{B}\right) = \sum_{k=1}^{N} \operatorname{Ind}_{B_{k}}\left(w\right) \mathbb{E}\left(\xi|B_{k}\right) = \sum_{k=1}^{N} \operatorname{Ind}_{B_{k}}\left(w\right) \mathbb{E}\xi = \mathbb{E}\xi$$

Для обоснования (5) достаточно заметить, что

$$\mathbb{E}\left(\eta\xi|B_k\right) = c_k \mathbb{E}\left(\xi|B_k\right)$$

Наиболее типична ситуация, когда разбиение ${\cal B}$ появляется посредством некоторой случайной величины

$$\eta = \sum_{i=1}^{N} y_i \operatorname{Ind}_{B_i},$$

где y_i — разлиные числа и $P(B_i) > 0$.

Определение 8. В этом случае $B_i = \{w : \eta(w) = y_i\}$ и условное математическое ожидание $\mathbb{E}(\xi|\mathcal{B})$ обозначают через $\mathbb{E}(\xi|\eta)$ и называют *условным математическим ожиданием относительно* η .

Несложно предъявить функцию F (это можно сделать несколькими способами), что

$$\mathbb{E}\left(\xi|\eta\right)(w) = F\left(\eta\left(w\right)\right)$$

Легко видеть, что $F(y_i) = \mathbb{E}(\xi|B_i)$.

Можно воспринимать $\mathbb{E}(\xi|\eta)$ как проекцию ξ на η , а $\mathbb{E}\xi\eta$ как их скаляное произведение.

Лемма 3. Для условного математического ожидания выполнено

$$\mathbb{E}\left(\xi f\left(\eta\right)\right) = \mathbb{E}\left[f\left(\eta\right)\mathbb{E}\left(\xi|\eta\right)\right]$$

для произвольной функции f. Кроме того, если для какой-то случайной величины $\zeta = g\left(\eta\right)$ выполнено

$$\mathbb{E}\left(\xi f\left(\eta\right)\right) = \mathbb{E}\left(f\left(\eta\right)\zeta\right),\,$$

 $mo \zeta = \mathbb{E}\left(\xi | \eta\right) \ n$.н.

Доказательство. По (5) и (3) из теоремы 11:

$$\mathbb{E}\left[f\left(\eta\right)\mathbb{E}\left(\xi|\eta\right)\right] = \mathbb{E}\left[\mathbb{E}\left(f\left(\eta\right)\xi|\eta\right)\right] = \mathbb{E}\left(f\left(\eta\right)\xi\right)$$

Докажем вторую часть:

$$\mathbb{E}(f(\eta)\zeta) = \mathbb{E}(\xi f(\eta)) = \mathbb{E}[f(\eta)\mathbb{E}(\xi|\eta)]$$
$$\mathbb{E}[f(\eta)(\zeta - \mathbb{E}(\xi|\eta))] = 0$$

Так как ζ и $\mathbb{E}(\xi|\eta)$ — функции от η , то возьмем $f(\eta) = \zeta - \mathbb{E}(\xi|\eta)$ и получим:

$$\mathbb{E}\left(\zeta - \mathbb{E}\left(\xi|\eta\right)\right)^2 = 0,$$

то есть $\zeta = \mathbb{E}(\xi|\eta)$ п.н.

Теперь докажем, что $\mathbb{E}\left(\xi|\eta\right)$ и правда является проекцией ξ на η .

Предложение 9. Пусть $\mathbb{E}\xi^2 < \infty$. Условное матетическое ожидание $\mathbb{E}(\xi|\eta)$ среди всех случайных величин вида $f(\eta)$ является лучшим среднеквадратическим приближением для ξ , m.e.

$$\min_{\zeta:\zeta=f(\eta)} \mathbb{E}\left(\xi-\zeta\right)^{2} = \mathbb{E}\left[\xi-\mathbb{E}\left(\xi|\eta\right)\right]^{2}$$

Доказательство. Пусть $\zeta = f(\eta)$. Так как $(\mathbb{E}(\xi|\eta) - \zeta - \varphi$ ункция от $\eta)$

$$\mathbb{E}\left[\left(\xi - \mathbb{E}\left(\xi|\eta\right)\right)\left(\mathbb{E}\left(\xi|\eta\right) - \zeta\right)\right] = 0,$$

то

$$\mathbb{E}\left(\xi - \zeta\right)^{2} = \mathbb{E}\left[\left(\xi - \mathbb{E}\left(\xi|\eta\right)\right) + \left(\mathbb{E}\left(\xi|\eta\right) - \zeta\right)\right]^{2} = \mathbb{E}\left[\xi - \mathbb{E}\left(\xi|\eta\right)\right]^{2} + 2\underbrace{\mathbb{E}\left[\left(\xi - \mathbb{E}\left(\xi|\eta\right)\right)\left(\mathbb{E}\left(\xi|\eta\right) - \zeta\right)\right]}_{=0} + \mathbb{E}\left[\mathbb{E}\left(\xi|\eta\right) - \zeta\right]^{2} \ge \mathbb{E}\left[\xi - \mathbb{E}\left(\xi|\eta\right)\right]^{2}$$

Последнее неравенство достигается взятием $\zeta = \mathbb{E}\left(\xi | \eta\right)$

8 Условные математические ожидания: общий случай

Определение 9. ξ, η — случаные величины. $\mathbb{E}|\xi| < \infty$. Тогда случайная величина вида $F(\eta)$ называется условным математическим ожиданием $\mathbb{E}(\xi|\eta)$, если

$$\mathbb{E}\left[\xi f\left(\eta\right)\right] = \mathbb{E}\left[\mathbb{E}\left(\xi|\eta\right) f\left(\eta\right)\right]$$

для любой ограниченной f. Любые две случаные величины, удовлетворяющие этому условию почти наверное совпадают (лемма 3).

Из этого определения следует, что $\mathbb{E}(\xi|\eta)$ есть наименее отличающаяся от ξ случайная величина вида $F(\eta)$, то есть проекция ξ на η .

Предложение 10. Предположим, что распределение случайной величины (ξ, η) задано совместной плотностью $\rho_{\xi\eta}(x,y)$. Тогда

$$\mathbb{E}\left[g\left(\xi,\eta\right)|\eta=y\right] = \int_{-\infty}^{+\infty} g\left(x,y\right) \frac{\rho_{\xi\eta}\left(x,y\right)}{\rho_{\eta}\left(y\right)} dx$$

Доказательство. Имеет место цепочка равенств:

$$\mathbb{E}\left[g\left(\xi,\eta\right)f\left(\eta\right)\right] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g\left(x,y\right)f\left(y\right)\rho_{\xi\eta}\left(x,y\right)dxdy =$$

$$= \int_{-\infty}^{+\infty} f\left(y\right)\underbrace{\int_{-\infty}^{+\infty} g\left(x,y\right)\frac{\rho_{\xi\eta}\left(x,y\right)}{\rho_{\eta}\left(y\right)}}\rho_{\eta}\left(y\right)dy = \mathbb{E}\left[F\left(\eta\right)f\left(\eta\right)\right]$$

Следовательно $F\left(\eta\right)=\mathbb{E}\left(\xi|\eta\right)$ по определению.

Определение 10. *Условной плотностью* случайной величины ξ при условии $\eta=y_0$ называется следующая величина

$$\rho_{\xi|\eta}(x|y_0) = \frac{\rho_{\xi,\eta}(x,y_0)}{\rho_{\eta}(y_0)}$$

Теперь докажем теорему 11, только для непрерывного случая

Теорема 12. Имеют место следующие своиства условного математического ожидания:

- (1) (линейность) $\mathbb{E}(\alpha\xi + \beta\eta|\zeta) = \alpha\mathbb{E}(\xi|\zeta) + \beta\mathbb{E}(\eta|\zeta)$
- (2) (монотонность) из $\xi \leq \eta$ следует $\mathbb{E}(\xi|\zeta) \leq \mathbb{E}(\eta|\zeta)$
- (3) (аналог формулы полной вероятности) $\mathbb{E}\left(\mathbb{E}\left(\xi|\eta\right)\right)=\mathbb{E}\xi$
- (4) (независимость) если случаные величины ξ и η , то $\mathbb{E}(\xi|\eta) = \mathbb{E}\xi$
- (5) для всякой случайной величины $\zeta=g\left(\eta\right)$ верно равенство $\mathbb{E}\left(\zeta\xi|\eta\right)=\zeta\mathbb{E}\left(\xi|\eta\right)$

Доказательство. Докажем (1). По определению для любой ограниченной f имеем:

$$\mathbb{E}\left[f\left(\zeta\right)\mathbb{E}(\alpha\xi + \beta\eta|\zeta)\right] = \mathbb{E}\left[f\left(\zeta\right)\left(\alpha\xi + \beta\eta\right)\right] = \alpha\mathbb{E}\left[f\left(\zeta\right)\xi\right] + \beta\mathbb{E}\left[f\left(\zeta\right)\eta\right] =$$
$$= \mathbb{E}\left[f\left(\zeta\right)\left(\alpha\mathbb{E}\left(\xi|\zeta\right) + \beta\mathbb{E}\left(\eta|\zeta\right)\right)\right]$$

Теперь взяв $f(\zeta) = \mathbb{E}(\alpha \xi + \beta \eta | \zeta) - (\alpha \mathbb{E}(\xi | \zeta) + \beta \mathbb{E}(\eta | \zeta))$, получим нужное равенство почти наверное.

Во втором, если перенести все вправо, то по сути надо доказать

$$\xi \ge 0 \Rightarrow \mathbb{E}\left(\xi|\eta\right) \ge 0$$

Возьмем функцию

$$f(\eta) = 1 - \operatorname{sgn}(\mathbb{E}(\xi|\eta)) \ge 0$$

Тогда по определению

$$\mathbb{E}\left[f\left(\eta\right)\mathbb{E}\left(\xi|\eta\right)\right] = \mathbb{E}\left[f\left(\eta\right)\xi\right] \ge 0$$

В то же время

$$\mathbb{E}\left[f\left(\eta\right)\mathbb{E}\left(\xi|\eta\right)\right] = \mathbb{E}\left[\mathbb{E}\left(\xi|\eta\right) - |\mathbb{E}\left(\xi|\eta\right)|\right] \le 0$$

Следовательно

$$\mathbb{E}\left(\xi|\eta\right) = \left|\mathbb{E}\left(\xi|\eta\right)\right|$$

почти наверное, следовательно она почти наверное ≥ 0 .

В (3) возьмем $f(\eta) \equiv 1$ и запишем определение.

(4):

$$\mathbb{E}\left[f\left(\eta\right)\xi\right] = \mathbb{E}f\left(\eta\right)\mathbb{E}\xi = \mathbb{E}\left[f\left(\eta\right)\mathbb{E}\xi\right] \Rightarrow \mathbb{E}\left(\xi|\eta\right) = \mathbb{E}\xi$$

(5):

$$\mathbb{E}\left[f\left(\eta\right)\xi\zeta\right] = \mathbb{E}\left[f\left(\eta\right)\mathbb{E}\left(\xi\zeta|\eta\right)\right]$$

С другой стороны:

$$\mathbb{E}\left[f\left(\eta\right)\xi\zeta\right] = \mathbb{E}\left[f\left(\eta\right)g\left(\eta\right)\zeta\right] = \mathbb{E}\left[f\left(\eta\right)g\left(\eta\right)\mathbb{E}\left(\xi|\eta\right)\right]$$
$$\Rightarrow \mathbb{E}\left(g\left(\eta\right)\xi|\eta\right) = g\left(\eta\right)\mathbb{E}\left(\xi|\eta\right)$$

почти наверное

Теорема 13. (Аналог формулы Байеса)

$$\mathbb{E}\left(g\left(\eta\right)|\xi=x\right) = \frac{\mathbb{E}\left[g\left(\eta\right)\rho_{\xi|\eta}\left(x,\eta\right)\right]}{\mathbb{E}\rho_{\xi|\eta}\left(x,\eta\right)}$$

для любой ограниченной д

Доказательство. Для любой ограниченной f:

$$\mathbb{E}\left[f\left(\xi\right)g\left(\eta\right)\right] = \mathbb{E}\left[g\left(\eta\right)\mathbb{E}\left(f\left(\xi\right)|\eta\right)\right] = \mathbb{E}\int_{-\infty}^{+\infty}f\left(x\right)\rho_{\xi|\eta}\left(x,\eta\right)g\left(\eta\right)dx = \int_{-\infty}^{+\infty}f\left(x\right)\mathbb{E}\left[\rho_{\xi|\eta}\left(x,\eta\right)g\left(\eta\right)\right]dx$$

С другой стороны

$$\mathbb{E}\left[f\left(\xi\right)g\left(\eta\right)\right] = \mathbb{E}\left[f\left(\xi\right)\mathbb{E}\left(g\left(\eta\right)|\xi\right)\right] = \int_{-\infty}^{+\infty} f\left(x\right)\rho_{\xi}\left(x\right)\mathbb{E}\left[g\left(\eta\right)|\xi=x\right]dx$$

(опять подставляя вместо f разность этих величин) получаем равенство почти наверное:

$$\mathbb{E}\left[\rho_{\xi\mid\eta}\left(x,\eta\right)g\left(\eta\right)\right]=\rho_{\xi}\left(x\right)\mathbb{E}\left[g\left(\eta\right)|\xi=x\right]$$

Подставим $q \equiv 1$:

$$\mathbb{E}\left[\rho_{\xi|\eta}\left(x,\eta\right)\right] = \rho_{\xi}\left(x\right)$$

В итоге получаем:

$$\mathbb{E}\left[g\left(\eta\right)\rho_{\xi|\eta}\left(x,\eta\right)\right] = \mathbb{E}\left[\rho_{\xi|\eta}\left(x,\eta\right)\right]\mathbb{E}\left[g\left(\eta\right)|\xi = x\right]$$

Пример 12. Пусть (ξ, η) — нормальный вектор. Посчитаем $E[\xi|\eta]$ (помним, что это как проекция ξ на η). Центрируем случайные величны

$$X := \xi - \mathbb{E}\xi$$

$$Y := \eta - \mathbb{E}\eta$$

Найдем ортогональную Z проекцию X на Y (должно быть $X=Z+\mathbb{E}\left[\xi|\eta\right]$):

$$Z = X - \frac{\operatorname{cov}(X, Y)}{\operatorname{cov}(Y, Y)}Y = X - \frac{\operatorname{cov}(\xi, \eta)}{\mathbb{D}\eta}Y$$

Выразим ξ :

$$\xi = \mathbb{E}\xi - \frac{\operatorname{cov}(\xi, \eta)}{\mathbb{D}\eta} (\eta - \mathbb{E}\eta) + Z$$

Теперь будем считать условное матожидание (условно от константы или $f(\eta)$ она сама, условное от независимой — его ожидание):

$$\mathbb{E}\left[\xi|\eta\right] = \mathbb{E}\xi - \frac{\operatorname{cov}\left(\xi,\eta\right)}{\mathbb{D}\eta}\left(\eta - \mathbb{E}\eta\right) + \mathbb{E}Z = \mathbb{E}\xi - \frac{\operatorname{cov}\left(\xi,\eta\right)}{\mathbb{D}\eta}\left(\eta - \mathbb{E}\eta\right)$$

Так как (Y,Z) — нормальный вектор и $\operatorname{cov}(Y,Z)=0$, то Y и Z независимые случайные величины. $Z \sim N\left(0, \frac{\mathbb{D}\xi\mathbb{D}\eta-\left[\operatorname{cov}(\xi,\eta)\right]^2}{\mathbb{D}\eta}\right)$, так как это линейная комбинация случайных величин нормального вектора

Теперь найдем условную плотность:

$$\mathbb{E}\left[f\left(X\right)|Y=y\right] = \mathbb{E}\left[f\left(Z + \frac{\operatorname{cov}\left(\xi,\eta\right)}{\mathbb{D}\eta}Y\right)|Y=y\right] = \int_{-\infty}^{+\infty} f\left(z + \frac{\operatorname{cov}\left(\xi,\eta\right)}{\mathbb{D}\eta}y\right) \frac{\rho_{Z,Y}\left(z,y\right)}{\rho_{Y}\left(y\right)}dz = 0$$

Совместная плотность раскладывается в произведение:

$$= \int_{-\infty}^{+\infty} f\left(z + \frac{\operatorname{cov}(\xi, \eta)}{\mathbb{D}\eta} y\right) \rho_Z(z) dz =$$

Делаем замену $u = z + \frac{\operatorname{cov}(\xi, \eta)}{\mathbb{D}\eta} y$:

$$= \int_{-\infty}^{+\infty} f(u) \rho_Z \left(u - \frac{\operatorname{cov}(\xi, \eta)}{\mathbb{D}\eta} y \right) du$$

В итоге получаем

$$\rho_{X|Y}(x,y) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)}{2\sigma^2}} = \rho_Z(z)$$

, где

$$\mu = \frac{\operatorname{cov}(\xi, \eta)}{\mathbb{D}\eta} y$$
$$\sigma = \frac{\mathbb{D}\xi \mathbb{D}\eta - [\operatorname{cov}(\xi, \eta)]^2}{\mathbb{D}\eta}$$

Статистика

9 Оценки параметров и их свойства

Пусть есть X случайная величина. Мы знаем распределение случайной величины $F_{\theta}(t)$ с точностью до параметра $\theta \in \Theta$. Задача статистики заключается в том, чтобы оценить параметр θ .

Определение 11. Вектор (X_1, \dots, X_n) с независимыми компонентами, где все случайные величины $X_i \sim X$, называется выборкой. В теории вероятности выборка — набор случайных величин, в статистике выборка — величины, полученные в ходе эксперимента над этими случайными величинами (простая выборка, $(x_1, \dots, x_n) = (X_1(w), \dots, X_n(w))$).

Определение 12. Случайные величины вида $T_N(X_1, \dots, X_n)$ называются *статистиками*. Если статистика оценивает θ , то она называется оценкой. Обозначение: $\widehat{\theta}_n(X_1, \dots, X_n)$

Сформулируем свойства хороших оценок:

1. **Несмещенность**. $\mathbb{E}\widehat{\theta}(X_1, \dots, X_n) = \theta$. Заметим, что матожидание здесь мы считаем по распределению F_{θ} , то есть хочется, чтобы оценка в среднем была верна.

Пример 13. Пусть $\mathbb{E}X_i = \mu$, μ — единственный параметр. Возьмем оценку \overline{X} . Она будет несмещенной: $\mathbb{E}\overline{X} = \mu$. А если, например, параметризована дисперсия σ^2 и в качестве оценки берем смещенную выборочную дисперсию, то $\mathbb{E}s_n^2 = \frac{n}{n-1}\sigma^2 \neq \sigma^2$, получили смещенную оценку.

Пример 14. Пусть $X \sim Bern(p)$. Тогда для нахождения несмещенной статистики, надо чтобы выполнялось равенство

$$\mathbb{E}T\left(X_{1},\cdots,X_{n}\right)=\sum_{k=0}^{n}\left[p^{k}\left(1-p\right)^{n-k}\sum_{\substack{k \text{ yCHEXOB}}}T\left(\varepsilon_{1},\cdots,\varepsilon_{n}\right)\right]=\theta.$$

Если мы опеределим $\theta = \frac{1}{p}$, то несмещенных статистик не существует. Несмещенность должна выполняться $\forall \theta$, но, если $p \to 0$, то левая часть будет стремиться к некоторой константе, а правая $\theta \to +\infty$.

Пример 15. Теперь приведем пример бессмыленной несмещенной оценки. Пусть N=1, $X\sim Pois\left(\theta\right),$ где $0<\theta<1.$ Тогда

$$\mathbb{E}T(X_1) = e^{-\theta} \sum_{k=0}^{+\infty} \frac{T(k) \theta^k}{k!} = \theta$$

$$\sum_{k=0}^{+\infty} \frac{T(k) \theta^k}{k!} = \theta e^{\theta} = \sum_{k=0}^{+\infty} \frac{\theta^{k+1}}{k!}$$

Приравнивая соответственные члены, получаем, что T(k) = k, то есть $T(X_1) = X_1$. Наша оценка никак не пересекается с множеством параметров, она бессмысленна.

2. Состоятельность. Оценка называется состоятельной, если $\widehat{\theta}_n(X_1, \cdots, X_n) \xrightarrow{P} \theta$. Это значит, на больших объемах данных мы получаем более точную оценку (ЗБЧ).

Утверждение 1. Если $\widehat{\theta}_n$ — несмещенная оценка θ и $\mathbb{D}\widehat{\theta}_n \to 0$, то $\widehat{\theta}_n$ — состоятельная.

Доказательство. Запишем неравенство Чебышева:

$$P\left(\left|\widehat{\theta} - \theta\right| \ge \varepsilon\right) \le \frac{\mathbb{D}\widehat{\theta}_n}{\varepsilon}$$

Все ясно.

Записанное неравенство наталкивает на мысль, что при маленькой дисперсии, наши оценки будут более вероятно слабо разбросаны вокруг heta.

3. Оптимальность. Несмещенная оценка $\widehat{\theta}_n$ называется оптимальной, если $\mathbb{D}\widehat{\theta}_n \leq \mathbb{D}\theta_n^*, \ \forall$ несмещенных оценок θ_n^*

Утверждение 2. *Не существует в общем случае самой оптимальной оценки в множестве всех оценок.*

Доказательство. Допустим, такая оценка существует, что

$$\mathbb{E}\left[\widehat{\theta}_n - \theta\right] \le \mathbb{E}\left[\theta_n^* - \theta\right]$$

для $\forall \theta \in \Theta$. Но если мы возьмем $\theta_n^* \equiv A$, то получим, что $\widehat{\theta}_n = A$ почти наверное по распределению F_A . Теперь возьмем $\theta_n^* = B \neq A$ и получим, что $\widehat{\theta}_n = B$ почти наверное по распределению F_B . Получили противоречие (противоречие получаем из-за оговорки в общем случае, что $\exists C : P_A(C), P_B(C) > 0$)

- 4. Сильная состоятельность. $\lim_{n\to+\infty} \widehat{\theta}_n\left(X_1,\cdots,X_n\right) = \theta$ почти наверное на распределении F_{θ}
- 5. Асимптотическая нормальность. Оценка называется асимптотически нормальной, если

$$\sqrt{n}\left(\widehat{\theta}_n\left(X_1,\cdots,X_n\right)-\theta\right) \xrightarrow{d} N\left(0,\sigma\left(\theta\right)\right)$$

Это условие влечет состоятельность и позволяет оценивать вероятности событий $\alpha < \widehat{\theta}_n \left(X_1, \cdots, X_n \right) < \beta$ через нормальные распределения.

Предложение 11. Если оценка асимптотически номальная, то она состоятельна.

Доказательство.
$$\widehat{\theta}_n(X_1, \dots, X_n) - \theta \xrightarrow{d} 0, \theta \xrightarrow{P} \theta$$

 $\Rightarrow \widehat{\theta}_n(X_1, \dots, X_n) \xrightarrow{P} \theta$

Предложение 12. Если эффективная оценка существует, то она единственна.

Доказательство. Пусть θ_1^* и θ_2^* две эффективные оценки. Тогда оценка $\frac{\theta_1^* + \theta_2^*}{2}$ также является несмещенной. Кроме того,

$$\mathbb{D}\frac{\theta_1^* + \theta_2^*}{2} = \theta_1^* \mathbb{D}\theta_1^* = \mathbb{D}\theta_1^* = a = \frac{1}{4}a^2 + \frac{1}{2}\mathrm{cov}\left(\theta_1^*, \theta_2^*\right) + \frac{1}{4}a^2 \ge a^2$$

то есть $\operatorname{cov}(\theta_1^*, \theta_2^*) \ge a^2$. Тогда получим

$$\mathbb{D}\left[\theta_1^* - \theta_2^*\right] = 2a^2 - 2\text{cov}\left(\theta_1^*, \theta_2^*\right) \le 0$$

Иначе говоря, $\theta_1^* = \theta_2^*$ п.н.

10 Метод моментов

У нас есть некоторая простая выборка (x_1, \dots, x_n) , взятая из распределения F_{θ} , мы хотим по ней получить состоятельную оценку для θ .

Пусть g — непрерывная функция (методом моментов он называется, потому что обычно в качестве g берется степенная функция), что $\mathbb{E}_{\theta}|g(X)| < \infty$. Тогда введем функцию $f(\theta) := \mathbb{E}_{\theta}g(X)$. Матожидание является функцией от θ , потому что неизвестно нам только распределение, которое зависит от θ . Теперь допустим, что $\exists f^{-1}$ на Θ . Тогда легко найти θ :

$$\theta = f^{-1}(f(\theta)) = f^{-1}(\mathbb{E}_{\theta}g(X))$$

Но так как распределения мы не знаем, у нас есть только простая выборка из него, то поступаем так. Знаем, что по ЗБЧ

$$\frac{g\left(X_{1}\right)+\cdots+g\left(X_{n}\right)}{n} \xrightarrow{p} \mathbb{E}_{\theta} g\left(X\right) = f\left(\theta\right)$$

Тогда по теоремам непрерывности (предложение 1):

$$f^{-1}\left(\frac{g\left(X_{1}\right)+\cdots+g\left(X_{n}\right)}{n}\right) \xrightarrow{p} \theta$$

Тогда

$$\widehat{\theta}_n\left(X_1,\cdots,X_n\right) = f^{-1}\left(\frac{g\left(x_1\right)+\cdots+g\left(x_n\right)}{n}\right)$$

- 1. Оценка получилась состоятельная.
- 2. Покажем асимптотическую нормальность оценки. По ЦПТ знаем, что

$$\xi_{n} = \sqrt{n} \left(\frac{g\left(X_{1}\right) + \dots + g\left(X_{n}\right)}{n} - \mathbb{E}_{\theta} g\left(X\right) \right) \xrightarrow{p} \xi \sim N\left(0, \mathbb{D}_{\theta} g\left(X\right)\right)$$

Обозначим

$$a = \mathbb{E}_{\theta} g(X), \ \sigma^2 = \mathbb{D}_{\theta} g(X)$$

Тогда, предполагая, что g^{-1} непрерывно дифференцируема, по теореме непрерывности (предложение 6), получаем:

$$\sqrt{n}\left(\widehat{\theta}_n\left(X_1,\cdots,X_n\right)-\theta\right)=\sqrt{n}\left(g^{-1}\left(a+\frac{\sigma}{\sqrt{n}}\xi_n\right)-g^{-1}\left(a\right)\right)\xrightarrow{d}\xi\left(h^{-1}\right)'(a)$$

То есть, если $(h^{-1})'(a) \neq 0$, то оценка $\widehat{\theta}_n(X_1, \cdots, X_n)$ асимптотически нормальна с коэффициентом $\sigma(\theta) = (h'(a))^2 \sigma^2$

Пример 16. Возьмем выборку (X_1, \dots, X_n) из равномерного распределения $U_{[0,\theta]}$, где $\theta > 0$. Найдем оценку по методу моментов при f(x) = x:

$$\mathbb{E}_{\theta} f\left(X\right) = \frac{\theta}{2} \Rightarrow \theta = 2\mathbb{E}_{\theta} f\left(X\right)$$

Получаем оценку

$$\widehat{\theta}_n = 2\overline{X}$$

11 Информация Фишера и неравенство Рао-Крамера

Определение 13. *Несмещенной оценкой нуля* называется такая статистика, $U(X_1, \cdots, X_n)$, для которой верно $\mathbb{E}_{\theta}U=0, \forall \theta$ (можно опять провести аналогии со скалярным произведением)

Утверждение 3. $\widehat{\theta}$ — оптимальная (минимальная по дисперсии) $\Leftrightarrow \mathbb{E}\left[\widehat{\theta}U\right] = 0 \ \forall U$ — несмещенных оценок нуля.

Заметим, что $\forall \lambda$ верно $\mathbb{E}\left(\widehat{\theta} + \lambda U\right) = \widehat{\theta}$ и из оптимальности $\mathbb{D}\widehat{\theta} \leq \mathbb{D}\left(\widehat{\theta} + \lambda U\right)$. Раскрыв дисперсию, получим

$$\mathbb{D}\widehat{\theta} \leq \mathbb{D}\widehat{\theta} + \lambda^2 \mathbb{D}U + 2\lambda \operatorname{cov}\left(\widehat{\theta}, U\right)$$
$$2\lambda \operatorname{cov}\left(\widehat{\theta}, U\right) + \lambda^2 \mathbb{D}U \geq 0$$

Это верно только, когда $\operatorname{cov}\left(\widehat{\theta},U\right)=0$ (потому что иначе есть λ , в которых неравенство не выполняется). Осталось записать

$$\operatorname{cov}\left(\widehat{\theta}, U\right) = \mathbb{E}\left[\left(\widehat{\theta} - \theta\right)U\right] = \mathbb{E}\left[\widehat{\theta}U\right] = 0$$

 \leftarrow

Возьмем другую несмещенную оценку $\tilde{\theta}$. Рассмотрим ее дисперсию:

$$\mathbb{D}\widetilde{\theta} = \mathbb{E}\left(\widetilde{\theta} - \theta\right)^2 = \mathbb{E}\left(\left(\widetilde{\theta} - \widehat{\theta}\right) + \left(\widehat{\theta} - \theta\right)\right)^2 = \mathbb{E}\left(\widetilde{\theta} - \widehat{\theta}\right)^2 + 2\mathbb{E}\left[\left(\widetilde{\theta} - \widehat{\theta}\right)\left(\widehat{\theta} - \theta\right)\right] + \mathbb{E}\left(\widehat{\theta} - \theta\right)^2$$

Заметим, что

$$\mathbb{E}\left[\left(\widetilde{\theta}-\widehat{\theta}\right)\left(\widehat{\theta}-\theta\right)\right] = \mathbb{E}\left[\left(\widetilde{\theta}-\widehat{\theta}\right)\widehat{\theta}\right] = 0$$

Последнее равенство вытекает, из условия, если взять $U = \tilde{\theta} - \hat{\theta}$. Тогда получаем, что

$$\mathbb{D}\widetilde{\theta} = \mathbb{D}\widehat{\theta} + \mathbb{D}\left(\widetilde{\theta} - \widehat{\theta}\right) \geq \mathbb{D}\widehat{\theta}$$

To есть $\widehat{\theta}$ оптимальна.

Пример 17. Пусть $X \sim Bern(\theta)$. Рассмотрим оценку \overline{X} . Она несмещенная и по ЗБЧ состоятельная. Докажем оптимальность. По доказанному утверждению, нужно убедиться, что $\mathbb{E}\overline{X}U = 0$ $\forall U$ — несмещенных оценок нуля. Запишем $\forall \theta$

$$0 = \mathbb{E}U\left(X_1, \cdots, X_n\right) = \sum_{\varepsilon_i \in \{0,1\}} U\left(\varepsilon_1, \cdots, \varepsilon_n\right) \theta^{\sum \varepsilon_i} \left(1 - \theta\right)^{n - \sum \varepsilon_i} =$$

Сгруппируем

$$= \sum_{k=0}^{n} \left[\theta^{k} (1-\theta)^{n-k} \sum_{\varepsilon_{i}: \sum \varepsilon = k} U(\varepsilon_{1}, \cdots, \varepsilon_{n}) \right] = \sum_{k=0}^{n} \theta^{k} (1-\theta)^{n-k} Q_{k} = \frac{1}{\theta^{n}} \sum_{k=0}^{n} \left(\frac{\theta}{1-\theta} \right)^{k} Q_{k} = 0$$

При $\theta \in (0,1), \frac{\theta}{1-\theta} \in (0,+\infty)$ — на этом промежутке многочлен равен нулю, тогда получается, что $Q_k=0$. Теперь можем проверить \overline{X} на оптимальность:

$$\mathbb{E}\overline{X}U = \sum_{k=0}^{n} \left[\frac{k}{n} \sum_{\varepsilon_{i}: \sum \varepsilon = k} U(\varepsilon_{1}, \cdots, \varepsilon_{n}) \theta^{k} (1 - \theta)^{n-k} \right] = \sum_{k=0}^{n} \frac{k}{n} Q_{k} \theta^{k} (1 - \theta)^{n-k} = 0$$

Получили оптимальность \overline{X} .

В методе максимального правдоподобия мы более подробно разберем понятие информации, а пока обойдемся сухими определениями.

Определение 14. Пусть $X = (X_1, \cdots, X_n)$ простая выборка из распределения с плотностью ρ_{θ} , тогда функция $p(x,\theta) = \rho_{\theta}(x_1) \cdots \rho_{\theta}(x_n)$ называется функцией правдоподобия, однако с произведением работать неудобно, поэтому прологарифмируем: $L(x,\theta) = \sum_{j=1}^{n} \ln \rho_{\theta}(x_j)$

Определение 15. Величина $I(\theta) = \mathbb{E}_{\theta} \left[\frac{\partial L}{\partial \theta} \right]^2$ называется информацией Фишера.

В дальнейших рассуждениях предполагается выполнение условий регулярности для функции правдоподобия, что она непрерывна и дифференцируема по θ и что операции дифференцирования и интегрирования перестановочны ($\int f' dx = \left(\int f dx \right)'$)

Предложение 13. (аддитивность информации Фишера) Верно равенство

$$I(\theta) = ni(\theta)$$
,

ide i(heta) — информация Фишера для выборки из одного элемента.

Доказательство. Заметим, что

$$\mathbb{E}\frac{\partial L}{\partial \theta} = \mathbb{E}\left[\sum_{j=1}^{n} \frac{\rho_{\theta}'\left(x_{j}\right)}{\rho_{\theta}\left(x_{j}\right)}\right] = \sum_{j=1}^{n} \int \frac{\rho_{\theta}'\left(x_{j}\right)}{\rho_{\theta}\left(x_{j}\right)} \rho_{\theta}\left(x_{j}\right) dx = \sum_{j=1}^{n} \left(\int_{-\infty}^{+\infty} \rho_{\theta}\left(x_{j}\right) dx\right)' = \sum_{j=1}^{n} \left(1\right)' = 0$$

Поэтому

$$I\left(\theta\right) = \mathbb{E}\left[\frac{\partial L}{\partial \theta}\right]^{2} = \mathbb{D}\left[\frac{\partial L}{\partial \theta}\right] = \mathbb{D}\left[\sum_{j=1}^{n} \frac{\rho_{\theta}'\left(x_{j}\right)}{\rho_{\theta}\left(x_{j}\right)}\right] = \sum_{j=1}^{n} \mathbb{D}\left[\frac{\rho_{\theta}'\left(x_{j}\right)}{\rho_{\theta}\left(x_{j}\right)}\right] = \sum_{j=1}^{n} i\left(\theta\right) = ni\left(\theta\right)$$

Рассмотрим неравенство, позволяющее оценивать оптимальные оценки.

Теорема 14. (неравенство Рао-Крамера) Выполняются условия регулярности и $I(\theta) > 0$ (если = 0, то это значит, что мы от эксперимента не получаем никакой информации и все бессмысленно). Пусть $\theta_n(X)$ — произвольная несмещенная оценка статистика $\tau(\theta)$. Тогда верно

$$\mathbb{D}\theta_{n}\left(X\right) \geq \frac{\left(\tau'\left(\theta\right)\right)^{2}}{I\left(\theta\right)}$$

Доказательство. Из несмещенности знаем

$$\mathbb{E}\theta_n(X) = \int \theta_n(x_1, \dots, x_n) p(x_1, \dots, x_n, \theta) dx_1 \dots dx_n = \tau(\theta) = A$$

Также знаем

$$\int p(x_1, \dots, x_n, \theta) dx_1 \dots dx_n = 1 = B$$

Рассмотрим выражение $A_{\theta}' - \theta B_{\theta}' \ (= \tau'(\theta)$ по понятным причинам):

$$\tau'(\theta) = \int (\theta_n(x) - \theta) p'(x, \theta) dx = \int (\theta_n(x) - \theta) \frac{p'(x, \theta)}{p(x, \theta)} p(x, \theta) dx = \mathbb{E} \left[(\theta_n - \theta) \frac{\partial L}{\partial \theta} \right]$$

Из неравенства Коши-Буняковского получим:

$$\tau'(\theta) = \mathbb{E}\left[\left(\theta_n - \theta\right) \frac{\partial L}{\partial \theta}\right] \le \sqrt{\mathbb{D}\theta_n} \sqrt{\mathbb{E}\left[\frac{\partial L}{\partial \theta}\right]^2}$$
$$\left(\tau'(\theta)\right)^2 \le I(\theta) \mathbb{D}\theta_n$$

Замечание 1. Можно переписать неравенство в виде

$$\mathbb{D}\theta_n \le \frac{\left(\tau'\left(\theta\right)\right)^2}{ni\left(\theta\right)}$$

То есть как бы мы не старались, точность оценки будет порядка $\frac{1}{n}$.

12 Метод максимального правдоподобия

Во-первых рассмотрим пример, объясняющий понятие информации.

Пример 18. Пусть есть монетка M с P(M=0)=q, P(M=1)=p. Подбрасывается монетка, и, в зависимости от исхода, генерируется случайное событие из распределение ρ_0 или ρ_1 . Таким образом, получили случайную величину ξ . Изначально шансы, что случайная величина была взята из первого распределения против нулевого $\frac{p}{q}$. Несложно вычилисть шансы после одной генерации случайного события. Воспользовавшись аналогом формулы Байеса, получим

$$P(M = 1 | \xi = x) = \frac{\rho_1(x) p}{\rho_1(x) p + \rho_0(x) q}, \ P(M = 0 | \xi = x) = \frac{\rho_0(x) q}{\rho_1(x) p + \rho_0(x) q}$$

То есть теперь шансы $\frac{\rho_1(x)p}{\rho_0(x)q}$. Они изменились. Пусть *информация* — это то, как изменились шансы. Как можно измерить информацию, полученную в ходе эксперимента? Например, возьмем разницу ln от шансов:

$$\ln \frac{\rho_1(x) p}{\rho_0(x) q} - \ln \frac{p}{q} = \ln \frac{\rho_1(x)}{\rho_0(x)}$$

Ну и чтобы для каждой величины не вычислять выражение, усредним по распределению ρ_1 (можно было и по ρ_0 усреднять) и будем называть это выражение информацией:

$$\tilde{I} = \int \ln \frac{\rho_1(x)}{\rho_0(x)} \rho_1(x) dx = \int \ln \rho_1(x) \rho_1(x) dx - \int \ln \rho_0(x) \rho_1(x) dx$$

Утверждение 4. (неравенство информации) Пусть ρ_0, ρ_1 — вероятностные плотности. Тогда

$$\int \ln \rho_1(x) \, \rho_1(x) \, dx \ge \int \ln \rho_0(x) \, \rho_1(x) \, dx,$$

то есть $\tilde{I} \geq 0$. Причем равенство выполняется $\Leftrightarrow \rho_0 \equiv \rho_1$

Доказательство. Хотим доказать

$$\int \ln \frac{\rho_0(x)}{\rho_1(x)} \rho_1(x) dx \le 0$$

Знаем, что $\ln x \le x - 1$. Тогда

$$\ln \frac{\rho_0(x)}{\rho_1(x)} \rho_1(x) \le \rho_0(x) - \rho_1(x)$$

Подставляя в интеграл, получим, что

$$\int \ln \frac{\rho_0(x)}{\rho_1(x)} \rho_1(x) \, dx \le 1 - 1 = 0$$

Теперь посмотрим, когда выполняется равенство. Оно выполнятется, когда $\ln x = x - 1$, то есть

$$\int \left(\frac{\rho_0(x)}{\rho_1(x)} - 1 + \ln \frac{\rho_0(x)}{\rho_1(x)}\right) \rho_1(x) dx = 0$$

Тогда

$$\frac{\rho_0(x)}{\rho_1(x)} - 1 + \ln \frac{\rho_0(x)}{\rho_1(x)} = 0$$

почти наверное (так как это выражение ≥ 0), то есть $\rho_0 = \rho_1$ почти наверное.

То есть, если $\tilde{I}=0$, то от новой информации ничего не меняется, она бессмысленна. Также добавим, что \tilde{I} в реальности оценивает расстояние между распределениями, это называется энтропией распределения ρ_1 относительно ρ_0 .

Применим полученные знания для построения оценки. Пусть $X = (X_1, \dots, X_n)$ — выборка из распределения с параметром $\theta = \theta_1$. Рассмотрим функцию $W(\theta) = \mathbb{E}_{\theta_1} \ln \rho_{\theta}(X_1)$, ее называют истинным правдоподобием. Заметим из неравенства информации, что максимум истинного правдоподобия достигается только на $\theta = \theta_1$. Само матожидание вычислять мы не умеем, но по ЗБЧ значем, что

$$\frac{1}{n}L(X,\theta) = \frac{1}{n}\sum \ln \rho_{\theta}(x_j) \xrightarrow{P} W(\theta)$$

Тогда оценкой максимального правдоподобия называется оценка $\widehat{\theta} = \operatorname{argmax}_{\theta} L(X, \theta)$. Если посмотреть, что мы максимизируем функцию L, и вспомнить, что это по сути функция правдоподобия, то выходит, что мы максимизируем вероятность получения выборки X из распределения с параметром $\widehat{\theta}$. Еще заметим, что $W(\theta_1) - W(\theta)$ это величина из примера с монетой, то есть количество информации, которое дало одно наблюдение.

Утверждение 5. (состоятельность оценки методом максимального правдоподобия) Дана выборка $X = (X_1, \cdots, X_n)$. Пусть $\theta \in (\alpha, \beta)$ и на этом промежутеке у функции $L(X_1, \cdots, X_n, \theta)$ $\exists ! \widehat{\theta}_n -$ точка локального максимума, тогда $\widehat{\theta}_n \stackrel{P}{\to} \theta_1$, то есть оценка состоятельна.

Доказательство. По ЗБЧ $\frac{1}{n}L\left(X,\theta\right)\overset{P}{\to}W\left(\theta\right)$. Хотим $\forall \delta>0$: $\lim_{n\to\infty}P\left(\left|\widehat{\theta}_n-\theta\right|\geq\delta\right)=0$. Из информационного неравенства заметим, что $W\left(\theta_1-\delta\right)< W\left(\theta_1\right)>W\left(\theta_1+\delta\right)$. Знаем, что $\frac{1}{n}L\left(X,\theta_1-\delta\right)$, $\frac{1}{n}L\left(X,\theta_1+\delta\right)$ сходятся по вероятности соответственно к $W\left(\theta_1-\delta\right)$, $W\left(\theta_1\right)$, $W\left(\theta_1+\delta\right)$. Докажем, что сохраняются те же знаки неравенства.

Пусть $\varepsilon = W(\theta_1) - W(\theta_1 - \delta) > 0$. Знаем, что

$$P\left(\left|\frac{1}{n}L\left(X,\theta_{1}-\delta\right)-W\left(\theta_{1}-\delta\right)\right| \geq \frac{\varepsilon}{10}\right) \xrightarrow{n\to\infty} 0$$

$$P\left(\left|\frac{1}{n}L\left(X,\theta_{1}\right)-W\left(\theta_{1}\right)\right| \geq \frac{\varepsilon}{10}\right) \xrightarrow{n\to\infty} 0$$

Тогда

$$P\left(\frac{1}{n}L\left(X,\theta_{1}-\delta\right)\geq\frac{1}{n}L\left(X,\theta_{1}\right)\right)\leq$$

$$\leq P\left(\left\{\left|\frac{1}{n}L\left(X,\theta_{1}-\delta\right)-W\left(\theta_{1}-\delta\right)\right|\geq\frac{\varepsilon}{10}\right\}\bigcup\left\{\left|\frac{1}{n}L\left(X,\theta_{1}\right)-W\left(\theta_{1}\right)\right|\geq\frac{\varepsilon}{10}\right\}\right)\leq$$

$$\leq P\left(\left|\frac{1}{n}L\left(X,\theta_{1}-\delta\right)-W\left(\theta_{1}-\delta\right)\right|\geq\frac{\varepsilon}{10}\right)+P\left(\left|\frac{1}{n}L\left(X,\theta_{1}\right)-W\left(\theta_{1}\right)\right|\geq\frac{\varepsilon}{10}\right)\xrightarrow{n\to\infty}0$$

Допустим противное, что в первом неравенстве может стоять $<\frac{\varepsilon}{10}$ в обоих случаях. Тогда выходит

$$\varepsilon = W\left(\theta_{1}\right) - W\left(\theta_{1} - \delta\right) \leq \frac{1}{n}L\left(X, \theta_{1}\right) + \frac{\varepsilon}{10} - W\left(\theta_{1} - \delta\right) \leq \frac{1}{n}L\left(X, \theta_{1}\right) + \frac{\varepsilon}{10} - \frac{1}{n}L\left(X, \theta_{1} - \delta\right) + \frac{\varepsilon}{10} \leq \frac{\varepsilon}{5}$$

Получили противоречие, то есть все ок. То есть вышло, что $\frac{1}{n}L\left(X,\theta_{1}-\delta\right)<\frac{1}{n}L\left(X,\theta_{1}\right)$ почти наверное. Второе неравенство доказывается аналогично.

Получив желаемые неравенства, делаем вывод, что внутри отрезка $[\theta_1 - \delta, \theta_1 + \delta]$ есть локальный максимум, то есть $\left| \widehat{\theta}_n - \theta_1 \right| < \delta$ (строгое неравенство, потому что мы доказывали строгие неравенства для L)

Замечание 2. Теперь обсудим, откуда возникает информация Фишера. У нас есть функция истинного правдоподобия $W(\theta)$. Разложим ее по Тейлору в точке θ_1 (предполагаем, что зависимость он θ позволяет дифференцировать под знаком интеграла). $W'(\theta) = \int \frac{\rho'_{\theta}(x)}{\rho_{\theta}(x)} \rho_{\theta_1}(x) \, dx$, соответственно $W'(\theta_1) = 0$. $W''(\theta) = \int \frac{\rho''_{\theta}(x)}{\rho_{\theta}(x)} \rho_{\theta_1}(x) \, dx - \int \left(\frac{\rho'_{\theta}(x)}{\rho_{\theta}(x)}\right)^2 \rho_{\theta_1}(x) \, dx$, соответственно $W''(\theta_1) = 0 - \int \left(\frac{\partial \ln \rho_{\theta}(x)}{\partial \theta}\right)^2 \rho_{\theta_1}(x) \, dx = -I(\theta_1)$. В итоге получаем:

$$W(\theta) \approx W(\theta_1) - \frac{1}{2}I(\theta_1)(\theta - \theta_1)^2$$

То есть она выражает скорость изменения информации в окрестности максимума θ_1 .

Замечание 3. Теперь вспомним неравенство Рао-Крамера. Равенство в неравенстве Коши-Буняковского выполняется только в случае пропорциональности $\theta_n\left(X\right)-\tau\left(\theta\right)$ и $\frac{\partial L}{\partial \theta}$. То есть, когда

$$\theta_n(X) - \tau(\theta) = C(\theta) \frac{\partial L}{\partial \theta}$$

Это знание в некоторых случаях помогает находить эффективные оценки

Замечание 4. Также отметим, что если существует несмещенная оценка $\theta_n(X)$ параметра θ , на которой достигается равенство в Рао-Крамере, то это обязательно оценка максимального правдоподобия. Действительно, верно равенство

$$\theta_n(X) - \tau(\theta) = C(\theta) \frac{\partial L}{\partial \theta}$$

Подставив вместо θ оценку максимального правдоподобия, получим

$$\theta_n(X) - \widehat{\theta}_n(X) = 0$$

То есть они равны.

Замечание 5. И, наконец, сделаем небольшое замечание о том, откуда берется асимптотическая нормальность оценки максимального правдоподобия. Разложим $\frac{\partial L}{\partial \theta}(X,\theta)$ по Тейлору в θ_1 (примерно, без о малых):

$$\frac{\partial L}{\partial \theta}\left(X,\theta\right) \approx \frac{\partial L}{\partial \theta}\left(X,\theta_{1}\right) + \frac{\partial^{2} L}{\partial \theta^{2}}\left(X,\theta\right)\left(\theta - \theta_{1}\right)$$

Если мы подставим $\theta = \widehat{\theta}_n(X)$ — оценку максимального правдоподобия, то $\frac{\partial L}{\partial \theta}(X, \widehat{\theta}_n(X)) = 0$ просто из определения оценки максимального правдоподобия. Тогда получаем:

$$\widehat{\theta}_n - \theta_1 = -\frac{\frac{\partial L}{\partial \theta}}{\frac{\partial^2 L}{\partial \theta^2}}$$

Домножим на \sqrt{n} , чтобы стало как в ЦПТ. Берем $\frac{\partial L}{\partial \theta} = \frac{1}{n} \sum_{j=1}^{n} \frac{\partial}{\partial \theta} \ln \rho_{\theta_1}(x_j)$. Помним, что $\mathbb{E} \frac{\partial}{\partial \theta} \ln \rho_{\theta_1}(x_j) = 0 = \mu$. Теперь дисперсия:

$$\sigma^{2} = \mathbb{D}\frac{\partial}{\partial\theta}\ln\rho_{\theta_{1}}(x_{j}) = \mathbb{E}\left[\frac{\partial}{\partial\theta}\ln\rho_{\theta_{1}}(x_{j})\right]^{2} = I(\theta_{1})$$

Тогда из ЦПТ получаем

$$\frac{\partial L}{\partial \theta} \xrightarrow{P} N\left(0, I\left(\theta_1\right)\right)$$

Теперь разберемся с

$$\frac{\partial^{2} L}{\partial \theta^{2}} = \frac{1}{n} \sum_{j=1}^{n} \frac{\partial^{2}}{\partial \theta^{2}} \ln \rho_{\theta_{1}}(x_{j}) \xrightarrow{P} -I(\theta_{1})$$

То есть $\mathbb{E}\frac{\partial^{2}L}{\partial\theta^{2}}=-I\left(\theta_{1}\right)$. В итоге получаем, что $\sqrt{n}\left(\widehat{\theta}_{n}-\theta_{1}\right)\xrightarrow{P}N\left(0,\frac{1}{I\left(\theta_{1}\right)}\right)$

13 Доверительные интервалы

Ясно, что информации о состоятельности оценки $\widehat{\theta}_n(X)$ не достаточно для того, чтобы что-то говорить о возможном значении θ . Предположим, что мы знаем "скорость сходимости", то есть для фиксированного $\alpha \in (0,1)$, для фиксированного $\varepsilon > 0$ мы можем подобрать такой номер n, начиная с которого $P_{\theta}\left(\left|\widehat{\theta}_n(X) - \theta\right| < \varepsilon\right) > 1 - \alpha$. Тогда параметр θ с большой вероятностью $\theta \in \left(\widehat{\theta}_n(X) - \varepsilon, \widehat{\theta}_n(X) + \varepsilon\right)$.

Определение 16. Обощая данное наблюдение, приходим к следующей конструкции. Пусть заданы две статистики $\theta_1(X)$ и $\theta_2(X)$. Случайный интервал $(\theta_1(X), \theta_2(X))$ называется доверительным интерес уровнем доверия $1 - \alpha$, если при всех θ верно

$$P(\theta_1(X) < \theta < \theta_2(X)) \ge 1 - \alpha$$

Если же задана последовательность пар статистик $\theta_1^n(X)$ и $\theta_2^n(X)$, для которой

$$\lim_{n \to \infty} \inf P\left(\theta_1^n\left(X\right) < \theta < \theta_2^n\left(X\right)\right) \ge 1 - \alpha$$

то говорят, что задан асимптотический доверительный интервал уровня доверия $1-\alpha$.

Пример 19. Пусть задана выборка X_1, \dots, X_n из распределения $N\left(\theta,1\right)$. Рассмотрим статистику \overline{X}_n , тогда $\sqrt{n}\left(\overline{X}_n - \theta\right) \sim N\left(0,1\right)$. Пусть число z_{γ} выбрано так, что $\Phi\left(z_{\gamma}\right) = \gamma$, — квантиль нормального распределения. Тогда

$$P_{\theta}\left(z_{\alpha/2} < \sqrt{n}\left(\overline{X}_n - \theta\right) < z_{1-\alpha/2}\right) = 1 - \alpha$$

Так как $z_{-\alpha/2} = -z_{1-\alpha/2}$, то перепишем

$$P_{\theta}\left(\overline{X}_n - \frac{z_{1-\alpha/2}}{\sqrt{n}} < \theta < \overline{X}_n + \frac{z_{1-\alpha/2}}{\sqrt{n}}\right) = 1 - \alpha$$

Получили доверительный интервал. Заметим, что так как он симметричный, то он минимальный по длине среди всех доверительных интервалов такого же уровня доверия (надо было найти в стандартном распределении интервал, содержащий вероятнось $1-\alpha$, смотрим на график плотности и все понимаем).

Для постороения доверительных интервалов бывает полезным использовать неравенство Чебышева или Чернова (Хефдинга-Чернова).

Пример 20. Пусть X_1, \cdots, X_n выборка из распределения Бернулли с вероятностью успеха θ . По неравенству Хефдинга-Чернова

$$P(|\overline{X}_n - \theta| \ge t) \le 2e^{-\frac{nt^2}{4}}$$

Взяв t так, чтобы $e^{-\frac{nt^2}{4}} = \frac{\alpha}{2}$, получаем доверительный интервал

$$\left(\overline{X}_n - \frac{2\sqrt{-\ln\left(\alpha/2\right)}}{\sqrt{n}}, \overline{X}_n + \frac{2\sqrt{-\ln\left(\alpha/2\right)}}{\sqrt{n}}\right)$$

Рассмотрим общий метод построения доверительных интервалов с помощью центральных статистик.

Определение 17. Статистика $V(X,\theta)$ называется *центральной*, если ее распределение зависит от θ при фиксированном X и при фиксированном X эта функция монотонна (по θ).

Тогда в силу независимости распределения от параметра θ , подберем такие $v_1, v_2,$ что

$$P_{\theta} \left(v_1 < V \left(X, \theta \right) < v_2 \right) = 1 - \alpha$$

В силу монотонности (берем обратную функцию с сохранением всех неравенств), получаем доверительный интервал

$$P_{\theta}\left(V^{-1}(v_1) < \theta < V^{-1}(v_2)\right) = 1 - \alpha$$

Пример 21. Пусть X_1, \cdots, X_n — выборка из $U[0,\theta]$. Тогда $\theta^{-1}X_j \sim U[0,1]$. Рассмотрим статистику $V(X,\theta)=\theta^{-1}X_{(n)},$ тогда $F_{\theta^{-1}X_{(n)}}(t)=t^n$ при $t\in[0,1]$ и

$$1 - \alpha = P\left(\alpha^{1/n} < V(X, \theta) < 1\right) = P\left(X_{(n)} < \theta < \alpha^{-1/n} X_{(n)}\right)$$

Заметим, что длина доверительного интервала пропорциональна $\alpha^{-1/n} - 1 = O\left(\frac{1}{n}\right)$, то есть с ростом размера выборки, точность интервала также увеличивается.

В качестве V бывает полезным взять $\sum_{j=1}^{n} \ln F_{\theta}(X_{j})$.

Пример 22. Рассмотрим типичный пример посторения асимптотического доверительного интервала. Пусть $\theta_n(X)$ асимптотически нормальная оценка параметра θ с асимптотической дисперсией $\sigma(\theta)$, то есть

$$\sqrt{n} \frac{\theta_n(X) - \theta}{\sigma(\theta)} \xrightarrow{d} N(0, 1)$$

Тогда аналогично 19 примеру, подбираем границы $z_{1-\alpha/2}$ и $z_{\alpha/2}$ (напомню, что $\Phi\left(z_{1-\alpha/2}\right)=1-\alpha/2$)

$$P\left(z_{\alpha/2} < \sqrt{n} \frac{\theta_n(X) - \theta}{\sigma(\theta)} < z_{1-\alpha/2}\right) \xrightarrow{n \to \infty} 1 - \alpha$$

$$P\left(\theta_n(X) - \frac{\sigma(\theta) z_{1-\alpha/2}}{\sqrt{n}} < \theta < \theta_n(X) + \frac{\sigma(\theta) z_{1-\alpha/2}}{\sqrt{n}}\right) \xrightarrow{n \to \infty} 1 - \alpha$$

Для получения доверительного интервала осталось только избавиться от $\sigma(\theta)$. Понятно, что ее можно заменить любой состоятельной оценкой (чтобы оставалась сходимость по распределению к N(0,1)), например, выборочной дисперсией или $\sigma(\theta_n(X))$.

Рассмотрим теперь подробнее построение доверительных интервалов для **параметров** μ **и** σ **нормального распределения** $N(\mu, \sigma)$.

 σ известна, оцениваем μ . σ может быть известна, например, если при замерах мы пользуемся прибором с известной точностью. Пусть X_1, \cdots, X_n — выборка из $N(\mu, \sigma)$. Тогда

$$\frac{\sqrt{n}\left(\overline{X}_{n}-\mu\right)}{\sigma}\sim N\left(0,1\right)$$

Аналогично прошлому примеру, получаем доверительный интервал уровня доверия $1-\alpha$ вида

$$\left(\overline{X}_n - \frac{\sigma z_{1-\alpha/2}}{\sqrt{n}}, \overline{X}_n + \frac{\sigma z_{1-\alpha/2}}{\sqrt{n}}\right)$$

 σ неизвестна, оцениваем μ . Пусть X_1, \dots, X_n — выборка из $N(\mu, \sigma)$. Мы знаем (см. пример 10), что выборочное среднее \overline{X}_n и выборочная дисперсия

$$S_n^2 = \frac{1}{n-1} \sum_{j=1}^n (X_j - \overline{X}_n)^2$$

независимы, причем $(n-1)\,\sigma^2 S_n^2$ имеет хи квадрат распределение с n-1 степенью свободы χ_{n-1}^2 . Напомним, что

$$\rho_{\chi_n^2}(t) = C_n t^{\frac{n-2}{2}} e^{-\frac{t}{2}} \operatorname{Ind}_{t>0}$$

Рассмотрим статистику

$$T_{n-1}(X) = \frac{\sqrt{n}\left(\overline{X}_n - \mu\right)}{\sqrt{S_n^2}} = \frac{\sqrt{n}\frac{\left(\overline{X}_n - \mu\right)}{\sigma}}{\sqrt{\sigma^{-2}S_n^2}} = \frac{Z_n}{\sqrt{R_n}},$$

где $Z_n \sim N\left(0,1\right),\, R_n \sim \frac{1}{n-1}\chi_{n-1}^2$ и Z_n и R_n независимы. Распределение T_{n-1} имеет плотность

$$\rho\left(t\right) = C_n \left(1 + \frac{t^2}{n-1}\right)^{-n/2}$$

и называется распределением Стьюдента с n-1 степенью свободы. Получаем, что доверительный интервал уровня доверия $1-\alpha$ имеет вид

$$\left(\overline{X}_n - \frac{\sqrt{S_n^2} t_{1-\alpha/2}}{\sqrt{n}}, \overline{X}_n + \frac{\sqrt{S_n^2} t_{1-\alpha/2}}{\sqrt{n}}\right), \ F_{T_{n-1}}\left(t_{1-\alpha/2}\right) = 1 - \alpha/2$$

Доверительный интервал для σ строится с помощью центральной статистики

$$\sigma^{-2}(n-1)S_n^2 \sim \chi_{n-1}^2$$

Пусть $F_{\chi^2}\left(x_{\alpha/2}\right)=\alpha/2$ и $F_{\chi^2}\left(x_{1-\alpha/2}\right)=1-\alpha/2$. Тогда

$$P\left(x_{\alpha/2} < \frac{(n-1)S_n^2}{\sigma^2} < x_{1-\alpha/2}\right) = 1 - \alpha$$

Доверительный интервал уровня доверия $1-\alpha$ имеет вид

$$\left(\sqrt{\frac{(n-1)\,S_n^2}{x_{\alpha/2}}},\sqrt{\frac{(n-1)\,S_n^2}{x_{1-\alpha/2}}}\right)$$