Assignment 8: Time Series Analysis

Qianyi Xia

OVERVIEW

This exercise accompanies the lessons in Environmental Data Analytics (ENV872L) on time series analysis.

Directions

- 1. Change "Student Name" on line 3 (above) with your name.
- 2. Use the lesson as a guide. It contains code that can be modified to complete the assignment.
- 3. Work through the steps, **creating code and output** that fulfill each instruction.
- 4. Be sure to **answer the questions** in this assignment document. Space for your answers is provided in this document and is indicated by the ">" character. If you need a second paragraph be sure to start the first line with ">". You should notice that the answer is highlighted in green by RStudio.
- 5. When you have completed the assignment, **Knit** the text and code into a single PDF file. You will need to have the correct software installed to do this (see Software Installation Guide) Press the **Knit** button in the RStudio scripting panel. This will save the PDF output in your Assignments folder.
- 6. After Knitting, please submit the completed exercise (PDF file) to the dropbox in Sakai. Please add your last name into the file name (e.g., "Salk_A08_TimeSeries.pdf") prior to submission.

The completed exercise is due on Tuesday, 19 March, 2019 before class begins.

Brainstorm a project topic

1. Spend 15 minutes brainstorming ideas for a project topic, and look for a dataset if you are choosing your own rather than using a class dataset. Remember your topic choices are due by the end of March, and you should post your choice ASAP to the forum on Sakai.

Question: Did you do this?

ANSWER: I am meeting professor to talk about the topic next week after spring break.

Set up your session

2. Set up your session. Upload the EPA air quality raw dataset for PM2.5 in 2018, and the processed NTL-LTER dataset for nutrients in Peter and Paul lakes. Build a ggplot theme and set it as your default theme. Make sure date variables are set to a date format.

Run a hierarchical (mixed-effects) model

Research question: Do PM2.5 concentrations have a significant trend in 2018?

3. Run a repeated measures ANOVA, with PM2.5 concentrations as the response, Date as a fixed effect, and Site.Name as a random effect. This will allow us to extrapolate PM2.5 concentrations across North Carolina.

3a. Illustrate PM2.5 concentrations by date. Do not split aesthetics by site.

```
#3 Repeated Measures ANOVA

#3a
ggplot(PM2.5, aes(x=Date, y=Daily.Mean.PM2.5.Concentration))+
   geom_point()+
   labs(y= expression(paste('PM 2.5 Concentration (µg/', m^3, ')')))
```


- 3b. Insert the following line of code into your R chunk. This will eliminate duplicate measurements on single dates for each site. PM2.5 = PM2.5[order(PM2.5[,'Date'],-PM2.5[,'Site.ID']),] PM2.5 = PM2.5[!duplicated(PM2.5\$Date),]
- 3c. Determine the temporal autocorrelation in your model.
- 3d. Run a mixed effects model.

```
random = ~1|Site.Name )
ConcText.auto
## Linear mixed-effects model fit by REML
    Data: PM2.5
##
##
    Log-restricted-likelihood: -928.6076
    Fixed: Daily.Mean.PM2.5.Concentration ~ Date
##
    (Intercept)
                       Date
## 90.465022634 -0.004727976
##
## Random effects:
## Formula: ~1 | Site.Name
          (Intercept) Residual
## StdDev:
             1.650184 3.559209
##
## Number of Observations: 343
## Number of Groups: 3
ACF(ConcText.auto)
      lag
## 1
       0 1.000000000
## 2
       1 0.513829909
## 3
       2 0.194512680
## 4
       3 0.117925187
## 5
       4 0.126462863
## 6
       5 0.100699787
## 7
       6 0.058215891
## 8
       7 -0.053090104
       8 0.017671857
## 9
## 10
      9 0.012177847
## 11 10 -0.003699721
## 12 11 -0.020305291
## 13 12 -0.044621086
## 14 13 -0.055602646
## 15 14 -0.065787345
## 16 15 -0.123987593
## 17 16 -0.055414056
## 18 17 0.002911218
## 19 18 0.025133456
## 20 19 -0.015306468
## 21 20 -0.143472007
## 22 21 -0.155495492
## 23 22 -0.060369985
## 24 23 0.003954231
## 25
      24 0.042295682
## 26 25 0.001320007
print(0.513829909)
## [1] 0.5138299
#Mixed Effect Model
PM2.5.mixed <- lme(data= PM2.5,
                 Daily.Mean.PM2.5.Concentration~ Date,
                 random = ~1|Site.Name,
```

```
method = "REML")
summary(PM2.5.mixed)
## Linear mixed-effects model fit by REML
    Data: PM2.5
##
          AIC
                    BIC
                          logLik
     1756.622 1775.781 -873.311
##
##
## Random effects:
##
    Formula: ~1 | Site.Name
            (Intercept) Residual
## StdDev: 0.00103013 3.597269
##
## Correlation Structure: ARMA(1,0)
  Formula: ~Date | Site.Name
##
  Parameter estimate(s):
        Phi1
##
## 0.5384349
## Fixed effects: Daily.Mean.PM2.5.Concentration ~ Date
##
                   Value Std.Error DF
                                          t-value p-value
## (Intercept) 83.14801 60.63585 339 1.371268 0.1712
## Date
               -0.00426
                           0.00342 339 -1.244145 0.2143
    Correlation:
##
        (Intr)
## Date -1
##
## Standardized Within-Group Residuals:
##
                                                          Max
## -2.3220745 -0.6187194 -0.1116751 0.6164257 3.4192603
##
## Number of Observations: 343
## Number of Groups: 3
Is there a significant increasing or decreasing trend in PM2.5 concentrations in 2018?
     ANSWER: NO. P-value is larger than 0.05, therefore we fail to reject null hypothesis. There is
     not a significant increasing or decreasing trend in PM2.5 concentrations in 2018.
3e. Run a fixed effects model with Date as the only explanatory variable. Then test whether the mixed effects
model is a better fit than the fixed effect model.
#fixed effects model
PM2.5.fixed <- gls(data=PM2.5,
                    Daily.Mean.PM2.5.Concentration~ Date,
                    method = "REML")
summary(PM2.5.fixed)
## Generalized least squares fit by REML
     Model: Daily.Mean.PM2.5.Concentration ~ Date
##
```

correlation = corAR1(form= ~ Date | Site.Name, value = 0.5138),

t-value p-value

##

##

##

##

Data: PM2.5 AIC

Coefficients:

BIC

1865.202 1876.698 -929.6011

logLik

Value Std.Error

```
## (Intercept) 98.57796 34.60285 2.848840 0.0047
## Date
               -0.00513
                          0.00195 -2.624999 0.0091
##
##
   Correlation:
##
        (Intr)
## Date -1
##
## Standardized residuals:
##
          Min
                      Q1
                                Med
                                            QЗ
                                                       Max
## -2.3531000 -0.6348100 -0.1153454
                                     0.6383004
                                                3.4063068
## Residual standard error: 3.584321
## Degrees of freedom: 343 total; 341 residual
anova(PM2.5.mixed, PM2.5.fixed)
               Model df
                                                       Test L.Ratio p-value
##
                             AIC
                                      BIC
                                             logLik
## PM2.5.mixed
                   1
                      5 1756.622 1775.781 -873.3110
## PM2.5.fixed
                      3 1865.202 1876.698 -929.6011 1 vs 2 112.5802 <.0001
```

Which model is better?

ANSWER: The mixed effect model is better, it has a lower AIC score.

Run a Mann-Kendall test

Research question: Is there a trend in total N surface concentrations in Peter and Paul lakes?

4. Duplicate the Mann-Kendall test we ran for total P in class, this time with total N for both lakes. Make sure to run a test for changepoints in the datasets (and run a second one if a second change point is likely).

```
#Wrangle
PeterPaul.surface <-
    PeterPaul %>%
select(-lakeid, -depth_id, -comments) %>%
    filter(depth == 0) %>%
    filter(!is.na(tn_ug))
# Initial visualization of data
ggplot(PeterPaul.surface, aes(x = sampledate, y = tn_ug, color = lakename)) +
    geom_point() +
scale_color_manual(values = c("dodgerblue2", "gold3"))+
    labs(y= expression(paste('Total N (µg)')), x= "Sample Date",color='Lake Name')
```

Lake Name • Paul Lake • Peter Lake 2000 1500 Total N (µg) 1000 500 0 1996 1992 1994 1998 2000 Sample Date #Split dataset by lake Peter.surface <- filter(PeterPaul.surface, lakename == "Peter Lake") Paul.surface <- filter(PeterPaul.surface, lakename == "Paul Lake")</pre> #Run a Mann-Kendall test HO: there is no trend overtime mk.test(Peter.surface\$tn_ug) #Positive Trend ## ## Mann-Kendall trend test ## ## data: Peter.surface\$tn_ug ## z = 7.2927, n = 98, p-value = 3.039e-13 $\mbox{\tt \#\#}$ alternative hypothesis: true S is not equal to 0 ## sample estimates: ## S varS ## 2.377000e+03 1.061503e+05 5.001052e-01 mk.test(Paul.surface\$tn_ug) #not significant trend ## ## Mann-Kendall trend test ## data: Paul.surface\$tn_ug ## z = -0.35068, n = 99, p-value = 0.7258

alternative hypothesis: true S is not equal to 0

-1.170000e+02 1.094170e+05 -2.411874e-02

varS

sample estimates:

```
#Test for Change point
pettitt.test(Peter.surface$tn_ug) #significant change point at 36, 1993-06-02
##
  Pettitt's test for single change-point detection
##
## data: Peter.surface$tn_ug
## U* = 1884, p-value = 3.744e-10
## alternative hypothesis: two.sided
## sample estimates:
## probable change point at time K
##
                                36
# Seperate Mann-Kendall for each change point
mk.test(Peter.surface$tn_ug[1:35]) #non-significant trend
##
##
   Mann-Kendall trend test
##
## data: Peter.surface$tn ug[1:35]
## z = -0.22722, n = 35, p-value = 0.8203
## alternative hypothesis: true S is not equal to 0
## sample estimates:
##
                          varS
                                         tan
   -17.00000000 4958.33333333
                                 -0.02857143
mk.test(Peter.surface$tn_ug[36:98]) #significant positive trend
##
   Mann-Kendall trend test
##
## data: Peter.surface$tn_ug[36:98]
## z = 3.1909, n = 63, p-value = 0.001418
## alternative hypothesis: true S is not equal to 0
## sample estimates:
                        varS
## 5.390000e+02 2.842700e+04 2.759857e-01
# Second Change point?
pettitt.test(Peter.surface$tn_ug[36:98]) #Another change point at 57, 1994-06-29
## Pettitt's test for single change-point detection
##
## data: Peter.surface$tn_ug[36:98]
## U* = 560, p-value = 0.001213
## alternative hypothesis: two.sided
## sample estimates:
## probable change point at time K
##
                                21
# Run another Mann-Kendall for the second change point
mk.test(Peter.surface$tn_ug[36:56]) #non-significant trend
##
   Mann-Kendall trend test
##
```

```
## data: Peter.surface$tn_ug[36:56]
## z = -1.0569, n = 21, p-value = 0.2906
## alternative hypothesis: true S is not equal to 0
## sample estimates:
                        varS
                                      tan
   -36.0000000 1096.6666667
                               -0.1714286
##
mk.test(Peter.surface$tn_ug[57:98]) #non-significant trend
##
##
   Mann-Kendall trend test
##
## data: Peter.surface$tn_ug[57:98]
## z = 0.15172, n = 42, p-value = 0.8794
## alternative hypothesis: true S is not equal to 0
## sample estimates:
##
              S
                        varS
                                      tau
##
     15.0000000 8514.3333333
                                0.0174216
#third change point?
pettitt.test(Peter.surface$tn_ug[57:98]) #no
##
   Pettitt's test for single change-point detection
##
##
## data: Peter.surface$tn ug[57:98]
## U* = 127, p-value = 0.5584
## alternative hypothesis: two.sided
## sample estimates:
## probable change point at time K
##
#Paul Lake
pettitt.test(Paul.surface$tn_ug) #no significant change point
##
##
   Pettitt's test for single change-point detection
##
## data: Paul.surface$tn_ug
## U* = 704, p-value = 0.09624
## alternative hypothesis: two.sided
## sample estimates:
## probable change point at time K
##
                                16
```

What are the results of this test?

ANSWER: There is no significant trend or significant change point for total N in Paul lake. While in Peter lake, there is a significant increase trend in total N, and there are two change points at date 1993-06-02 and 1994-06-29.

5. Generate a graph that illustrates the TN concentrations over time, coloring by lake and adding vertical line(s) representing changepoint(s).

```
ggplot(PeterPaul.surface, aes(x = sampledate, y = tn_ug, color = lakename)) +
  geom_point() +
  scale_color_manual(values = c("dodgerblue2", "gold3"))+
  geom_vline(xintercept = as.Date('1993-06-02'),
```

