

Classe: TOP 1

Date: Décembre 2019

BTS Blanc Mathématiques

Durée: 2 H

Présentation et orthographe seront pris en compte dans le barème de notation. Les calculatrices graphiques sont autorisées pour ce sujet.

EXERCICE 1: (10 points)

La fonction f est définie sur $\mathbb{R} \setminus \{1\}$ par $f(x) = \frac{2x^2 - x - 6}{x - 1}$ et on note C_f sa courbe représentative dans un repère orthogonal.

20

20

3. Déterminer les images de 0 et de -2. f(0) = 6 $f(-2) = -\frac{1}{2}$ 10

4. Déterminer les antécédents (s'ils existent ...) de 6. $x_1 = 0$ $x_2 = \frac{1}{2}$ 20

5. Déterminer les points d'intersection de C_f avec la droite d'équation y=7x+4. Pas d'intersection

6. Étudier le signe de f(x).

EXERCICE 2: (4 points)

La courbe C de la figure ci-dessous est la représentation graphique d'une fonction f définie sur R dans un repère orthogonal.

1. Déterminer graphiquement :

a)
$$f(0) = 1$$

b)
$$f(1) = -1$$

c)
$$f(2) = 3$$

1,25p

- 2. Déterminer l'équation de la tangente T1 au point d'abscisse 1 et celle de la tangente T0 au point d'abscisse 0. To = Y=-3x+1 Y=-1
- 3. La droite T tangente à la courbe C au point d'abscisse -2 et d'ordonnée -1 passe par le 20 point A de coordonnées (1 ; 26). Déterminer par le calcul une équation de T.

T:
$$y = 9x + 17$$

Classe: TOP 1

Date: Décembre 2019

EXERCICE 3: (& points)

La responsable d'un magasin de petit matériel pour les laboratoires a relevé pendant une semaine, le montant en euros des achats de 200 clients. Les résultats figurent dans le tableau suivant.

Montant des achats x_i	Nombre de clients n_i		
/ [5;15[10		
/ [15;25[/	22		
/ [25;35[/	52		
[35;45[62		
/ [45;55[/	36		
/ [55;65[/	14		
/ [55;65[/ / [65;75[/	4		

1. Calculer la moyenne \bar{x} et l'écart type σ de la série statistique. $\bar{x}=37,5$ $\sigma=63,1434$

2. Déterminer graphiquement une valeur approchée de la médiane à 10⁻¹ près après avoir représenté les polygones des effectifs cumulés. (*Unités : 1 cm pour 5 euros en abscisses et 1 cm pour 20 clients en ordonnées*).

3. Déterminer, par le calcul, une valeur approchée, arrondie à 10-2 près, de la médiane. Le détail du raisonnement est demandé. 10-2 près, de la

4. Par lecture du graphique précédent, estimer le pourcentage de clients dont le montant d'achat est compris entre $\bar{x} - \sigma$ et $\bar{x} + \sigma$.

Correction BTS blance Maths TOPI Dec 2019

Exercice 1:

1.
$$\begin{cases}
y = \frac{2x^{2} - x - 6}{x - 1} \\
y = 0
\end{cases}$$

$$\begin{cases}
2x^{2} - x - 6 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

$$\begin{cases}
x - 1 = 0 \\
x = 4
\end{cases}$$

3.
$$f(0) = 6$$
 $f(-2) = \frac{2 \times (-2)^2 - (-2) - 6}{-2 - 4} = \frac{8 + 2 - 6}{-3} = -\frac{4}{3}$

4.
$$\frac{2x^{2}-x-6}{x-1} = 6$$

$$\frac{2x^{2}-x-6}{x-1} = 6 = 0$$

$$(2x^2-x-6)\times 1-6(x-1)=0$$
 $x=1$ V.I.

$$9x^2 - 7x = 0$$

$$x(2x-7)=0$$

$$x_1 = 0$$
 $x_2 = \frac{7}{2}$

5.
$$y = \frac{2x^2 - x - 6}{x - 1}$$

$$y = 7x + 4$$

$$\frac{2x^2-x-6}{x-4} = 7x+4$$

$$\frac{2x^{2}-x-6-(7x+4)(x-1)}{x-1}=0 \qquad \boxed{x=1 \ \text{V. I.}}$$

$$2x^{2}-x-6-7x^{2}+7x-4x+4=0$$

$$-5x^{2}+2x-2=0$$

6.
$$2x^{2}-x-6$$
 $x-1>0$ $x>1$ $y.I.$

Exercice 2:

1.
$$f(c) = 1$$
 $f(1) = -1$ $f(2) = 3$

2.
$$T_4: y=-4$$
 $T_0: y=-3x+4$

$$T: y=ax+b$$

$$a = \frac{26 - (-1)}{4 - (-2)} = \frac{27}{3} = 9$$

$$26 = 9 \times 1 + b$$

$$26 = 9 + b$$

$$b = 26 - 9 = 17$$

Exercice 3:

Montant X;	Numbre clients Ni	Centre de classe	ECC	ECD
[5:15[10	10	10	200
[15; 25]	22	20	32	130
[15:35[52	30	84	168
[35; 45[62	40	146	116
[45:55]	36	50	182	54
[55,65[14	60	136	13
[65,75[4	70	200	4

Me = 37,5

ヌーグ

=7
$$\frac{\text{He-35}}{16} = \frac{10}{62}$$
 =7 $\frac{10}{62} \times 16 + 35 = 37,58$

4.
$$\bar{\chi} - \tau = 24,5$$
 $\bar{\chi} + \sigma = 50,5$ $ECC = 30$ $ECC = 164$