

- 1. Entre cinco ciudades A, B, C, D y E existen las siguientes líneas telefónicas: dos entre A y B, una entre A y D, una entre A y C, una entre B y C, una entre D y E, una entre C y D y una entre C y E.
 - a) Represente la situación mediante un grafo.
 - b) ¿Podría suprimirse alguna línea manteniéndose todas las ciudades intercomunicadas? ¿Qué líneas podrían suprimirse?
- **2.** Hay cuatro tipos de sangre: A, B, AB, O. El tipo O puede donar a cualquiera de los cuatro tipos, A y B pueden donar a AB y a su propio tipo, pero el tipo AB sólo puede donar al tipo AB. Represente la situación mediante un grafo dirigido o digrafo.
- 3. Dibuje grafos correspondientes a la información dada en cada caso:
 - a) Conjunto de vértices: $V = \{v_1, v_2, v_3, v_4\}$; conjunto de lados o aristas: $A = \{a_1, a_2, a_3, a_4, a_5\}$; $a_1 \ y \ a_3$ son lazos con extremos en $v_3 \ y \ v_4$ respectivamente; los puntos extremos de a_4 son $v_1 \ y \ v_4$; $v_2 \ y \ v_4$ son vértices adyacentes.
 - b) Conjunto de vértices: $V = \{v_1, v_2, v_3, v_4, v_5\}$; conjunto de lados o aristas: $A = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7\}$; a_1 es incidente con v_1 y v_2 ; a_2, a_3 y a_4 son lados paralelos; los puntos extremos de a_5 son v_3 y v_4 ; un punto extremo de a_4 es v_4 ; a_7 es lazo incidente con v_5 ; no hay vértices aislados.
- **4.** Para cada uno de los siguientes grafos indique: conjunto de vértices, conjunto de aristas, grado de cada vértice, matriz de adyacencia, matriz de incidencia. ¿Son conexos?

a)

5. Para cada uno de los siguientes digrafos indique: conjunto de vértices, conjunto de aristas, grado de entrada y de salida de cada vértice, matriz de adyacencia. ¿Son conexos?

a)

b)

6. Trace el grafo representado por cada una de las siguientes matrices de adyacencia. Indique el grado de cada vértice.

a)
$$\begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \end{pmatrix}$$

$$b) \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

- 7. Trace, en caso de ser posible (si no es posible, justificar por qué), un grafo tal que:
 - a) tenga exactamente 6 vértices y cada uno de grado 3
 - b) tenga exactamente 5 vértices y cada uno de grado 3
 - c) tenga exactamente 4 vértices de grados 1, 2, 3 y 4, respectivamente
 - d) tenga exactamente 6 vértices de grados 1, 2, 3, 4, 5 y 5, respectivamente, y sea simple.
- 8. En un edificio de departamentos donde reina la discordia habitan 25 personas, ¿es posible que cada persona se lleve bien exactamente con 5 de las restantes?
- **9.** Sea G = (V, E) un grafo no dirigido. Dados $a,b \in V$, se define la relación R en V como a R b si y sólo si: a = b o si existe un camino en G de a a b. Demuestre que R es una relación de equivalencia en V.
- 10. Indique cuáles de las sucesiones de vértices definen caminos, analizar si son simples o no y determine cuáles de ellos son ciclos en el grafo representado por el siguiente diagrama:

a)
$$(V_1, V_2, V_3, V_4, V_5, V_6)$$

b)
$$(v_4, v_5, v_6, v_7, v_5, v_4)$$

d) $(v_3, v_2, v_4, v_7, v_5, v_6)$

c)
$$(V_1, V_2, V_3, V_1)$$

d)
$$(v_3, v_2, v_4, v_7, v_5, v_6)$$

- 11. Para cada digrafo del ejercicio 5, indique dos caminos simples y analizar si hay ciclos.
- **12.** Trace un grafo tal que:
 - a) tenga 7 vértices y 3 componentes conexas
 - b) tenga 4 vértices y sea conexo
 - c) sea dirigido, conexo y sin circuitos.
- 13. Sea V el conjunto de vértices de un grafo G. Se define en V la siguiente relación R:

$$\forall u, v \in V: u R v \Leftrightarrow gr(u) = gr(v)$$

- a) Demuestre que R es una relación de equivalencia en V.
- b) Muestre un grafo conexo en el cual la relación R induzca exactamente tres clases de equivalencia.
- 14. ¿Cuáles de los siguientes pares de grafos son isomorfos? En caso afirmativo, escriba el isomorfismo correspondiente.

a)

b)

