Notations

- $\bullet\,$ Si z est un nombre complexe on note |z| son module.
- Si ℓ est un entier strictement positif, on munit l'espace vectoriel \mathbb{C}^{ℓ} de la norme définie par

$$||x|| = \sqrt{\sum_{j=1}^{\ell} |x_j|^2}$$

pour $x = (x_1, ..., x_{\ell}).$

- On note $M_{\ell}(\mathbb{C})$ l'ensemble des matrices de taille $\underline{\ell} \times \ell$ à coefficients complexes.
- Si $A \in \widetilde{\mathbf{M}_{\ell}}(\mathbb{C})$, on désigne par $\sigma(A)$ (le spectre de A) l'ensemble des valeurs propres complexes de A, et $\rho(A) = \max\{|\lambda| \; ; \; \lambda \in \sigma(A)\} \qquad \overline{\sigma(A)} = \overline{\sigma(A)},$

le rayon spectral de A.

• Étant donné un ensemble E, un point fixe d'une application $\phi: E \to E$ est un élément x de E tel que $\phi(x) = x$.

Les trois premières parties sont mutuellement indépendantes. La quatrième partie utilise des résultats établis dans la troisième.

Première Partie. Points fixes

- 1. Soit [a, b] un intervalle fermé borné de \mathbb{R} . Si $\phi : [a, b] \to [a, b]$ est continue, montrer que ϕ possède au moins un point fixe.
- 2. Si $\phi : \mathbb{R} \to \mathbb{R}$ est de classe \mathcal{C}^1 et vérifie

(1)
$$\sup\{|\phi'(x)| : x \in \mathbb{R}\} < 1,$$

montrer que ϕ possède au moins un point fixe (on pourra étudier le signe de $x - \phi(x)$ pour |x| assez grand). Montrer que ce point fixe est unique.

3. Au moyen de la fonction $\psi(x)=\sqrt{1+x^2}$, montrer que dans la question précédente l'hypothèse (1) ne peut pas être remplacée par

$$\forall x \in \mathbb{R} \,, \ |\phi'(x)| < 1.$$

- 4. Soit ℓ un entier strictement positif. On se donne une suite $(v_n)_{n\geqslant 0}$ de vecteurs dans \mathbb{R}^{ℓ} telle que la série $\sum_n \|v_{n+1} v_n\|$ converge.
 - (a) Montrer que la suite (v_n)_{n≥0} est convergente.
 - (b) Notons v^* la limite de cette suite. Majorer $||v_n v^*||$ au moyen d'un reste de la somme de la série $\sum_n ||v_{n+1} v_n||$.
- 5. Soit ℓ un entier strictement positif. Soit F une partie fermée de \mathbb{R}^{ℓ} et soit $\phi: F \to F$ une application. On suppose qu'il existe $k \in [0,1[$ tel que

$$\forall x \in F, \forall y \in F, \quad \|\phi(y) - \phi(x)\| \le k\|y - x\|.$$

- (a) On choisit un point $x_0 \in F$. Montrer que la formule $x_{n+1} = \phi(x_n)$ définit une suite $(x_n)_{n\geqslant 0}$ d'éléments de F, et que cette suite est convergente dans F.
- (b) En déduire que ϕ possède un unique point fixe dans F.
- (c) Ce point fixe étant noté x^* , majorer $||x_n x^*||$ en fonction de $||x_0 x^*||$.
- (d) Dans ce qui précède, on suppose que

$$\phi = \underbrace{\theta \circ \cdots \circ \theta}_{m \text{ fois}},$$

où $\theta: F \to F$ est une application et $m \ge 2$ est un entier. Montrer que θ possède un point fixe, et un seul, dans F.

6. Soit $g:[0,1] \to [0,1]$ une fonction croissante (mais pas nécessairement continue). Montrer que g possède au moins un point fixe. Indication: on pourra considérer l'ensemble

$$E = \{x \in [0,1] \, ; \, x \leqslant g(x)\}.$$

Deuxième Partie. Matrices contractantes

- 1. Pour une matrice triangulaire $T = \begin{pmatrix} \lambda & a \\ 0 & \mu \end{pmatrix} \in \mathbf{M}_2(\mathbb{C})$, calculer explicitement les puissances successives T^n pour n entier strictement positif.
- 2. Soit $A \in \mathbf{M}_2(\mathbb{C})$ une matrice et soit $\epsilon > 0$ un nombre réel.
 - (a) Montrer l'existence d'un nombre réel $\alpha > 0$ tel que pour tout entier positif n les valeurs absolues des coefficients de A^n soient majorées par $\alpha(\rho(A) + \epsilon)^n$.
 - (b) En déduire l'existence d'un nombre réel $\beta > 0$ tel que pour tout entier positif n et tout $x \in \mathbb{C}^2$ on ait

$$||A^n x|| \le \beta(\rho(A) + \epsilon)^n ||x||.$$

- 3. Soit $A \in \mathbf{M}_2(\mathbb{C})$ une matrice et soit η un nombre réel strictement positif.
 - (a) Pour $x \in \mathbb{C}^2$, montrer que la série

$$\sum_{n} (\rho(A) + \eta)^{-n} ||A^{n}x||$$

est convergente.

On note

$$N(x) = \sum_{n=0}^{\infty} (\rho(A) + \eta)^{-n} ||A^n x||$$

la somme de cette série.

(b) Montrer que $x\mapsto N(x)$ est une norme sur $\mathbb{C}^2,$ qui satisfait l'inégalité suivante

$$\forall x \in \mathbb{C}^2, \quad N(Ax) \leqslant (\rho(A) + \eta)N(x).$$

(c) Montrer qu'il existe un réel C > 0 tel que pour tout $x \in \mathbb{C}^2$ on ait

$$||x|| \leqslant N(x) \leqslant C ||x||.$$

- 4. (a) Si $B \in \mathbf{M}_{\ell}(\mathbb{C})$ est diagonalisable, montrer qu'il existe une norme $||\cdot||_B$ sur \mathbb{C}^{ℓ} telle que $||Bx||_B \leqslant \rho(B)||x||_B$ pour tout $x \in \mathbb{C}^{\ell}$. Indication: on pourra vérifier que si $P \in \mathbf{GL}_{\ell}(\mathbb{C})$, alors $x \mapsto ||Px||$ est une norme sur \mathbb{C}^{ℓ} .
 - (b) Montrer qu'il existe une matrice C ∈ M₂(C) telle que, pour toute norme N sur C² il existe y ∈ C² tel que N(Cy) > ρ(C)N(y).
- 5. Soit $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ une application et soit x^* un point fixe de ϕ . Soit $A \in \mathbf{M}_2(\mathbb{R})$ une matrice vérifiant $\rho(A) < 1$, et soit M > 0 un nombre réel. On suppose que ϕ satisfait

$$\forall x \in \mathbb{R}^2$$
, $\|\phi(x) - \phi(x^*) - A(x - x^*)\| \le M\|x - x^*\|^2$.

Montrer qu'il existe $\varepsilon > 0$ tel que pour tout $x_0 \in \mathbb{R}^2$ satisfaisant $||x_0 - x^*|| < \varepsilon$, la suite $(x_n)_{n \geqslant 0}$ définie par $x_{n+1} = \phi(x_n)$ (pour $n \geqslant 0$) converge vers x^* quand $n \to +\infty$.

Troisième Partie. Fonctions de deux variables réelles

- 1. Soient a,b,c,d quatre nombres réels tels que $a \leq b$ et $c \leq d$. Soit U un ouvert de \mathbb{R}^2 contenant $[a,b] \times [c,d]$. Soit $h:U \to \mathbb{R}$ une fonction de classe \mathcal{C}^2 .
 - (a) Montrer l'identité

$$h(b,d) - h(a,d) - h(b,c) + h(a,c) = \int_a^b \hat{h}(s_1) ds_1,$$

où \hat{h} est définie par

$$\hat{h}(s_1) = \int_{c}^{d} \frac{\partial^2 h}{\partial s_1 \partial s_2}(s_1, s_2) \, ds_2.$$

(b) En déduire qu'il existe un point (\bar{s}_1, \bar{s}_2) de $[a, b] \times [c, d]$ tel qu'on ait les deux égalités

$$h(b,d) - h(a,d) - h(b,c) + h(a,c) = (b-a)\hat{h}(\bar{s}_1) = (b-a)(d-c)\frac{\partial^2 h}{\partial s_1 \partial s_2}(\bar{s}_1, \bar{s}_2).$$

2. Soit I un intervalle ouvert de \mathbb{R} . On se donne une fonction $f: I \to \mathbb{R}$ de classe \mathcal{C}^3 , telle que f'(x) > 0 pour tout $x \in I$. Montrer que f est bijective de I sur l'intervalle ouvert f(I).

On note $g: f(I) \to I$ sa fonction réciproque. Rappeler la valeur de g'(f(x)). Exprimer g''(f(x)) en fonction des dérivées successives de f en x.

3. On conserve, jusqu'à la fin de cette troisième partie, les hypothèses et la notation de la question précédente. Pour $x,y\in I$ tels que $y\neq x$, on pose

$$H_f(x,y) = \frac{xf(y) - yf(x)}{f(y) - f(x)}.$$

(a) Montrer que pour tous $x,y\in I$ tels que $y\neq x$ on a

$$H_f(x,y) = x - f(x) \int_0^1 g'(\lambda f(x) + (1 - \lambda)f(y)) d\lambda.$$

- (b) En déduire que H_f admet un unique prolongement par continuité à $I \times I$ tout entier. On note encore ce prolongement $H_f: I \times I \to \mathbb{R}$.
- (c) Montrer que H_f est de classe \mathcal{C}^2 sur $I \times I$.
- (d) Calculer $H_f(x,x)$.
- 4. On suppose maintenant $0 \in f(I)$ et on note $x^* = g(0)$. Pour $x \in I$ on note I_x l'intervalle fermé d'extrémités x et x^* .
 - (a) Soient $x,y\in I$. Montrer qu'il existe $(\bar{x},\bar{y})\in I_x\times I_y,$ tel que

$$H_f(x,y) - x^* = (x - x^*)(y - x^*) \frac{\partial^2 H_f}{\partial x \partial y}(\bar{x}, \bar{y}).$$

(b) Calculer

$$\frac{\partial^2 H_f}{\partial x \partial y}(x^*, x^*)$$

en fonction des dérivées de f.

Quatrième Partie. Méthode de la sécante

Soit I un intervalle ouvert, borné ou non, de \mathbb{R} . Soit $f: I \to \mathbb{R}$ une fonction de classe \mathcal{C}^3 . On désire calculer une approximation d'une solution de l'équation f(x) = 0. Pour cela on met en œuvre un procédé itératif appelé méthode de la sécante. En voici le principe :

Initialisation. On choisit deux nombres réels $x_0, x_1 \in I$.

- **Itération.** Soit $n \ge 1$. On suppose que les valeurs x_k sont bien définies pour $1 \le k \le n$. On considère la droite L_n passant par les points $(x_{n-1}, f(x_{n-1}))$ et $(x_n, f(x_n))$ du plan \mathbb{R}^2 , avec la convention que L_n est la tangente en $(x_n, f(x_n))$ au graphe de f lorsque $x_n = x_{n-1}$. Si L_n intersecte l'ensemble $\{(x,0) \mid x \in I\}$ en un unique point (x,0) on définit $x_{n+1} = x$ et on poursuit les itérations. Sinon on considère que la méthode a échoué et on arrête l'itération.
 - 1. Illustrer la construction ci-dessus au moyen d'une figure. Lorsque f' > 0 sur I, exprimer x_{n+1} en fonction de x_{n-1}, x_n au moyen de la fonction H_f définie dans la question 3 de la troisième partie.

2. Dans cette question, on examine le cas particulier d'une fonction polynomiale du second degré f définie par la formule $f(x) = (x - \alpha)(x - \beta)$ où α et β sont réels et $\alpha > \beta$. On prend $I =](\alpha + \beta)/2, +\infty[$.

Pour $x \in \mathbb{R}$ on définit $h(x) = \frac{x-\alpha}{x-\beta}$, avec la convention $h(\beta) = \infty$.

- (a) Pour $x \in \mathbb{R}$ montrer qu'on a |h(x)| < 1 si et seulement si $x \in I$.
- (b) Expliciter la relation de récurrence satisfaite par la suite $u_n := h(x_n)$ et en déduire que la suite $(x_n)_{n\geqslant 0}$ est bien définie quels que soient x_0 et x_1 dans I.
- (c) Montrer que la suite $(u_n)_{n\geqslant 0}$ tend vers 0 et en déduire que $(x_n)_{n\geqslant 0}$ tend vers α .
- (d) Soit $\phi = \frac{1+\sqrt{5}}{2}$. Montrer qu'il existe un nombre réel strictement négatif s tel que

$$x_n - \alpha = O(e^{s\phi^n}).$$

- 3. On revient au cas général, f étant une fonction quelconque de classe \mathcal{C}^3 . On suppose que f s'annule en un point $x^* \in I$, pour lequel $f'(x^*) > 0$.
 - (a) Montrer qu'il existe $\epsilon>0$ tel que $[x^*-\epsilon,x^*+\epsilon]\subset I$ et f'>0 sur l'intervalle $[x^*-\epsilon,x^*+\epsilon]$. On fixe un tel ϵ pour la suite et on définit

$$M = \sup_{(x,y) \in [x^{\star} - \epsilon, x^{\star} + \epsilon]^2} \left| \frac{\partial^2 H_f}{\partial x \partial y}(x,y) \right|.$$

(b) On suppose que $x_{n-1}, x_n \in [x^* - \epsilon, x^* + \epsilon]$. Montrer que

$$|x_{n+1} - x^*| \le M |x_{n-1} - x^*| \cdot |x_n - x^*|.$$

(c) On fixe $\epsilon' \in]0, \epsilon]$ tel que $M\epsilon' < 1$. Montrer que si x_0, x_1 appartiennent à $[x^* - \epsilon', x^* + \epsilon']$ alors la suite $(x_n)_{n\geqslant 0}$ est bien définie et converge vers x^* .