Modélisation et détection de délit d'initié Soutenance mi-parcours P3A

Heang Kitiyavirayuth, Lucas Broux

14 février 2018

- Sujet choisi, problématique générale
- Objectifs du projet
- 2 Compréhension actuelle du problème
 - Modélisation mathématique
- 3 Simulations
 - Modèle et hypothèses
 - Résultats obtenus
- 4 Conclusion

Sujet choisi

Modélisation et détection de délit d'initié.

Sujet choisi

- Modélisation et détection de délit d'initié.
- Problématique concrète mais actuellement assez mal résolue.

■ Comprendre et analyser des articles sur le sujet :

- Comprendre et analyser des articles sur le sujet :
 - 1 A. Grorud, M. Pontier, Insider trading in a continuous time market model, International Journal of Theoretical and Applied Finance, 1, p. 331-347, 1998.

- Comprendre et analyser des articles sur le sujet :
 - 1 A. Grorud, M. Pontier, Insider trading in a continuous time market model, International Journal of Theoretical and Applied Finance, 1, p. 331-347, 1998.
 - 2 H. Föllmer, P. Imkeller, Anticipation cancelled by a Girsanov transformation: a paradox on Wiener space, Ann. Inst. H. Poincaré Probab. Statist 29.4, 569-586, 1993.

- Comprendre et analyser des articles sur le sujet :
 - 1 A. Grorud, M. Pontier, Insider trading in a continuous time market model, International Journal of Theoretical and Applied Finance, 1, p. 331-347, 1998.
 - 2 H. Föllmer, P. Imkeller, Anticipation cancelled by a Girsanov transformation: a paradox on Wiener space, Ann. Inst. H. Poincaré Probab. Statist 29.4, 569-586, 1993.
- Pour la suite du projet ? A préciser...

Compréhension actuelle du problème

Modèle de marché financier

On considère un modèle de marché financier sur l'espace de probabilité $(\Omega, (\mathcal{F}_t, t \in [0, T]), \mathbb{P})$. Les prix des actions (ici d actions) évoluent selon l'équation différentielle stochastique linéaire :

$$S_t^i = S_0^i + \int_0^t S_s^i b_s^i ds + \int_0^t S_s^i \sigma_s^i dW_s, \ 0 \le t \le T, S_0 \in \mathbb{R}^d, i = 1, ..., d$$

Modèle de marché financier

où :

Outline

- W est un mouvement brownien de d-dimension.
- Les paramètres b, σ et r sont dans $\mathbb{R}^d, \mathbb{R}^{d \times d}, \mathbb{R}$ respectivement et sont supposés bornés sur [0, T] et \mathcal{F} -adaptés.
- La matrice σ_t est inversible.
- S^0 évolue d'après l'équation $S^0_t = 1 + \int_0^t S^0_s r_s ds$.

H1: La matrice σ est inversible, $dt \otimes d\mathbb{P}$ -presque sûrement, $\eta_t = \sigma_t^{-1}(b_t - r_t \mathbf{1})$ vérifie $\exists A \in]0, T[, \exists C, \exists k > 0, \forall s \in [0, A], \mathbb{E}_{\mathbb{P}}[\exp(k||\eta_s||^2)] \leq C$.

Informations sur l'initié

Un des investisseurs sur le marché connait l'information \mathcal{F}_t qui est l'information normalement disponible au temps t, et il connait aussi une variable aléatoire $L \in L^1(\mathcal{F}_T)$. L'information totale dont il dispose est donc $\mathcal{F}_t \vee \sigma(L)$ (que l'on note \mathcal{Y}_t), qui est à priori plus grande que \mathcal{F}_t .

Avec cette information \mathcal{Y}_t , l'initié cherche à optimiser sa stratégie de consommation et de placement sur le marché.

Informations sur l'initié

- L'initié dispose d'un capital X_0 à l'instant t=0.
- Il consomme à une vitesse c qui est un processus positif et \mathcal{Y} -adapté, vérifiant $\int_0^T c_s ds < \infty$ p.s.
- Il place sur l'actif i la quantite θ^i et on note $\pi^i_t = \theta^i_t S^i_t$ la somme investie sur la i-ième action pour i = 1, ..., d.
- Sa richesse au temps t s'exprime donc par :

$$X_t = \sum_{i=0}^d \theta_t^i S_t^i - \int_0^t c_s ds.$$

Informations sur l'initié

Son portefeuille est considéré autofinançant, c'est-à-dire :

$$\mathbf{H2}: dX_t = \sum_{i=0}^d \theta_t^i dS_t^i - c_t dt.$$

■ En notant $R_t = (S_t^0)^{-1}$ le facteur d'actualisation, sous la probabilité \mathbb{P} , la richesse X actualisée vérifie l'équation :

$$X_t R_t + \int_0^t R_s c_s ds = X_0 + \int_0^t \langle R_s \pi_s, b_s - r_s \mathbf{1} \rangle ds + \int_0^t \langle R_s \pi_s, \sigma_s dW_s \rangle$$

Méthode du grossissement de la filtration brownienne

HC: $L \in \mathbb{D}^{2,1}$ est tel que $\int_t^T ||D_u L||^2 du > 0$, $\mathbb{P} - p.s. \forall t \in [0, T[$, ou D est le gradient stochastique usuel associé à W et $\mathbb{D}^{p,q}$ est l'espace de Sobolev construit à l'aide de D.

Sous **HC**, on a :

La loi conditionnelle de L sachant \mathcal{F}_t est absolument continue et il existe une version mesurable de la densité conditionnelle $(\omega,t,x)\longmapsto p(\omega,t,x)=p(0,x)+\int_0^t\alpha(\omega,t,x)dW_s$, qui est une (\mathcal{F},\mathbb{P}) -martingale.

Méthode du grossissement de la filtration brownienne

- Si $M=M_0+\int_0^t \beta_s dW_s$ est une (\mathcal{F},\mathbb{P}) -martingale locale continue, alors le crochet $d\langle M,P\rangle_t=\langle \alpha,\beta\rangle_t dt$ et le processus $\tilde{M}_t=M_t-\int_0^t \frac{\langle \alpha(.,x),\beta\rangle_{u|x=L}}{\rho(u,L)}du$ est une (\mathcal{Y},\mathbb{P}) -martingale locale.
- En corollaire, on obtient que le processus vectoriel $(B_t = W_t \int_0^t I_u du, t \in [0, T[)$ est un mouvement brownien sur l'espace de probabilité filtré $(\Omega, (\mathcal{Y}_t, t \in [0, T[), \mathbb{P}), \text{ où } I_u = \frac{\alpha(u, L)}{p(u, L)}$.

Changement de probabilité

On effectue un changement de probabilitée pour se ramener à une mesure neutre au risque.

Pour ce faire, il faut définir $\xi_t = -I_t - \eta_t$.

 $\mathsf{HN}: \mathbb{E}_{\mathbb{P}}[exp_{\frac{1}{2}}\int_0^A ||\xi_s||^2 ds] < \infty.$

 $\mathsf{HP}: \exists C, \exists k > 0, \forall s \in [0, A], \mathbb{E}_{\mathbb{P}}[expk||\xi_s||^2] \leq C.$

Posons $M_t = exp[\int_0^t \xi_s dB_s - \frac{1}{2} \int_0^t ||\xi_s||^2 ds], t \in [0, A]$. Alors M_t est une $(\mathcal{Y}, \mathbb{P})$ -martingale uniformément intégrable.

Changement de probabilité

- Sous $\mathbb{Q} = M.\mathbb{P}$, le processus $(\tilde{B}_t = B_t \int_0^t \xi_s ds, t \in [0, A])$ est un mouvement brownien sur l'espace de probabilité filtré $(\Omega, (\mathcal{Y}_t, t \in [0, A]), \mathbb{Q})$.
- La richesse X actualisée de l'initié vérifie alors, sous la probabilité Q, l'équation :

$$X_t R_t + \int_0^t R_s c_s ds = X_0 + \int_0^t \langle R_s \pi_s, \sigma_s d\tilde{B}_s \rangle$$

Stratégie de consommation-placement ${\mathcal Y}$ -admissible

Une stratégie de consommation-placement (π,c) \mathcal{Y} -admissible est un couple de processus \mathcal{Y} -adaptés tels que $c \geq 0$, $\int_0^T c_s ds < \infty$ p.s., $\sigma^*\pi$ appartient presque sûrement à $L^2[0,T]$, et la richesse $X^{\pi,c}$ obtenue par cette stratégie est à valeurs positives ou nulles $dt \otimes d\mathbb{P}$ -presque sûrement.

Proposition (Contrainte)

■ Sous **HC** et **HN** ou **HP**, soit X_0 une variable \mathcal{Y}_0 -mesurable positive. Alors pour (π, c) un couple admissible, et $X_A^{\pi, c}$ la richesse finale associée, on a :

$$\mathbb{E}_{Q}[X_A^{\pi,c}R_A+\int_0^A R_tc_tdt|\mathcal{Y}_0]\leq X_0.$$

Proposition (Contrainte)

Réciproquement, pour une richesse initiale strictement positive $X_0 \in L^1(\mathcal{Y}_0)$ donnée, une consommation c, un processus \mathcal{Y} -adapté positif tel que $\int_0^A c_s ds < \infty$ \mathbb{Q} -p.s., et une variable aléatoire $Z \in L^1(\mathcal{Y}_A, \mathbb{Q})$ telle que $\mathbb{E}_Q[X_A^{\pi,c}R_A + \int_0^A R_t c_t dt | \mathbb{Y}_0] = X_0$, alors il existe un portefeuille π \mathcal{Y} -prévisible tel que (π,c) est admissible et $X_A^{\pi,c} = Z$.

Cette proposition sera notre contrainte du problème d'optimisation.

Problème d'optimisation

- L'initié essaie d'optimiser sa stratégie pour maximiser sa richesse et sa consommation.
- On choisit comme critère d'optimisation de la stratégie un couple de fonctions d'utilité (U_1, U_2) croissantes, concaves et positives.
- Il s'agit donc de réaliser :

$$\max_{(\pi,c)}\{J(\pi,c)=\mathbb{E}_{\mathbb{P}}[\int_0^A U_1(c_t)dt+U_2(X_A^{\pi,c})|\mathcal{Y}_0]\}$$
 sous contrainte $\mathbb{E}_Q[X_A^{\pi,c}R_A+\int_0^A R_tc_tdt|\mathcal{Y}_0]\leq X_0$.

Résolution du problème d'optimisation

Sous H1, H2, HC et HN ou HP, en utilisant la méthode des multiplicateurs de Lagrange, il existe une stratégie optimale $(\pi*,c*)$ telle que

$$J(\pi^*, c^*) = \max\{J(\pi, c), (\pi, c) \text{ admissibles }\}$$

de la forme :

$$c_t^* = I_1(\lambda^* M_t R_t)$$

$$X_A^{\pi^*,c^*} = I_2(\lambda^* M_A R_A)$$

Résolution du problème d'optimisation

où
$$I_i = (U_i')^{-1}$$
 $\chi(y) = \mathbb{E}_p[\int_0^A R_t M_t I_1(yR_t M_t) dt + R_A M_A I_2(yR_A M_A) | \mathcal{Y}_0]$

La valeur optimale du problème est donc :

$$\mathbb{E}_{\mathbb{P}}[U_2 \circ I_2(\lambda^* M_A R_A) + \int_0^A U_1 \circ I_1(\lambda^* M_t R_t) dt | \mathcal{Y}_0].$$

Test statistique

On veut proposer un test statistique dans le cas :

$$U_i(x) = log(x), i = 1, 2, donc I_i(x) = (U_i')^{-1}(x) = \frac{1}{x}.$$

■
$$L = \ln(S_1(T)) - \ln(S_2(T))$$

L'optimisation s'explicite :

$$c_t^* R_t = \frac{X_0}{A+1} (M_t)^{-1}$$
.

$$X_A^* R_A = \frac{X_0}{A+1} (M_A)^{-1}$$
.

Test statistique

On oppose les deux hypothèses :

- lacksquare $H_0: L \in \mathcal{F}_0$ (L'agent n'est pas initié)
- \blacksquare $H_1:L\notin\mathcal{F}_0$ (L'agent est initié)

L'idée est de comparer les consommations :

- $log(R_t c_t^*) = log(\frac{X_0}{A+1}) + \int_0^t \eta_s dW_s + \frac{1}{2} \int_0^t ||\eta_s||^2 ds$ sous H_0
- $log(R_t c_t^*) = log(\frac{X_0}{A+1}) + \int_0^t \eta_s dW_s + \frac{1}{2} \int_0^t ||\eta_s||^2 ds + \log q(t, L)$ sous H_1

Test statistique

On partitionne [0; T] en $0 \le t_0 < t_1 < ... < t_n = T$ et on définit pour $0 \le i \le n-1$,

$$Y_i := \log (R_{t_{i+1}} c_{t_{i+1}}) - \log (R_{t_i} c_{t_i})$$

Sous H_0 ,

$$Y_i = \int_{t_i}^{t_{i+1}} \eta_s dW_s + \frac{1}{2} \int_{t_i}^{t_{i+1}} ||\eta_s||^2 ds$$

$$\sim N\left(\frac{1}{2} \int_{t_i}^{t_{i+1}} ||\eta_s||^2 ds, \int_{t_i}^{t_{i+1}} ||\eta_s||^2 ds\right)$$

Sous H_1 , il y a un terme supplémentaire $log \frac{q(t_{i+1}, L)}{q(t_i, L)}$

Test statistique

On teste donc la variable Y_i par un test de région critique au niveau $\alpha=0.05$:

$$RC_i = \left\{ \omega : \|Y_i(\omega) - \frac{1}{2} \int_{t_i}^{t_{i+1}} ||\eta_s||^2 ds| > 1.96 \sqrt{\int_{t_i}^{t_{i+1}} \eta_s ds} \right\}$$

Simulations

Outline

On se place dans la situation simplifiée suivante :

- Le marché consiste en un actif sans risque (r) et deux actifs risqués $(b_i, \sigma_i, i = 1, 2)$, sous un mouvement brownien $W = (W_1, W_2)$
- La variable aléatoire connue par l'initié est $L = \ln(S_1(T)) \ln(S_2(T))$
- lacksquare La fonction d'utilité à optimiser est logarithmique : $U_i = \log$

On note:

- A : temps final considéré
- x : richesse initiale.

000

Outline

Les valeurs de richesse optimales en A sont :

•
$$X_A^* = \left(\frac{xe^{rA}}{A+1}\right) M_A^{-1}$$
 pour le non initié

•
$$X_A^* = \left(\frac{xe^{rA}}{A+1}\right) \tilde{M_A}^{-1}$$
 pour l'initié

où
$$(t \in [0;A])$$
 :

$$\left\{ \begin{array}{ll} \textit{M}_t & := e^{-\eta \cdot W_t - \frac{t \|\eta\|^2}{2}} \\ \textit{\tilde{M}}_t & := e^{-\int_0^t (I_s + \eta, dB_s) - \frac{1}{2} \int_0^t \|I_s + \eta\|^2 ds} \end{array} \right.$$

Simulations

Avec

$$\eta := \sigma^{-1} (b - r \mathbb{1}) = \begin{bmatrix} \frac{b_1 - r}{\sigma_1} \\ \frac{b_2 - r}{\sigma_2} \end{bmatrix}$$

$$I_r := \left(\frac{\gamma \cdot (W_T - W_r)}{T - r}\right) \gamma \quad \text{pour } r \in [0; A]$$

$$lacksquare$$
 $B_t := W_t - \int_0^t I_u du$ pour $t \in [0; A]$

Code: https://github.com/lucas-broux/Projet-3A

Marché

Figure - Marché simulé

000

Richesses

Figure - Richesse optimale des agents en A

Richesses

Relative difference of wealth at time A for different terminal times.

Figure – Écart relatif des richesses

Résumé

- Compréhension générale du raisonnement de l'article.
- Implémentation informatique des formules dans un cas particulier.

Perspectives du projet

Approfondissement théorique :

- Cas plus réaliste : "sauts" de valeur dans le marché.
- Études de cas particuliers.

Compréhension actuelle du problème

Conclusion