Solution slides Introduction to R & Data for Humanities

Afternoon session

Text-mining with Tidyverse

Exercise 7

7a.

7b.

line text <int> <chr>

- 1 Because I could not stop for Death -
- 2 He kindly stopped for me -
- 3 The Carriage held but just Ourselves -
- 4 and Immortality

4 rows

```
```{r}
Excercise 7c. We will now break the text into individual tokens (tokenization) and transform it to a tidy data structure. To do this, call on
the unnest_tokens() function:
library(tidytext)
text_df %>%
unnest_tokens(word, text)
 tbl_df
 R Console
 20 x 2
 line word
 1 because
 1 could
 1 not
 1 stop
 1 for
 1 death
 2 he
 2 kindly
 2 stopped
 1-10 of 20 rows
 Previous 1 2 Next
```

# 8a.

```
Excercise 8a. Based on the previous exercises with Dickenson's poem, are you now able to call on the janeaustenr package, as well as the dplyr and stringr packages needed for your analysis?

library(janeaustenr)|
library(dplyr)
library(stringr)

package *janeaustenr* was built under R version 4.0.5package *stringr* was built under R version 4.0.5
```

← Don't worry about the warnings, the packages should work just fine!

```
8b.
```

```
Excercise 8b. Run the following code... and then challenge yourself with exercise 8c!
original_books <- austen_books() %>%
 group_by(book) %>%
 mutate(linenumber = row_number(),
 chapter = cumsum(str_detect(text,
 regex("^chapter [\\divxlc]",
 ignore_case = TRUE)))) %>%
 ungroup()
original_books
 linenumber
 text
 book
 <chr>
 Sense & Sensibility
 31
 By a former marriage, Mr. Henry Dashwood had one son: by his present
 Sense & Sensibility
 32
 lady, three daughters. The son, a steady respectable young man, was
 Sense & Sensibility
 33
 amply provided for by the fortune of his mother, which had been large,
 Sense & Sensibility
 and half of which devolved on him on his coming of age. By his own
 Sense & Sensibility
 35
 marriage, likewise, which happened soon afterwards, he added to his
 Sense & Sensibility
 wealth. To him therefore the succession to the Norland estate was not
 Sense & Sensibility
 37
 so really important as to his sisters; for their fortune, independent
 Sense & Sensibility
 of what might arise to them from their father's inheriting that
 Sense & Sensibility
 property, could be but small. Their mother had nothing, and their
 Sense & Sensibility
 31-40 of 73,422 rows | 1-3 of 4 columns
 6 ... 100 Next
```

When you see the output at first, you see a lot of blank lines in the 'text' column. This is because the title page is also taken into account. When you browse through the table, you will soon encounter actual lines of text.

If you press the arrow next to the 'linenumber' column, you see the number of the chapter the line is in.

```
```{r}
                                                                                                                               ∰ ≚ ▶
# Excercise 8c
library(tidytext)
tidy_books <- original_books %>%
  unnest_tokens(word, text)
tidy_books
                                                                                                                               chapter word
  book
<fctr>
                                                      linenumber
  Sense & Sensibility
                                                                                0 sense
  Sense & Sensibility
                                                                                0 and
  Sense & Sensibility
                                                                                0 sensibility
  Sense & Sensibility
                                                                                0 by
  Sense & Sensibility
                                                                                0 jane
  Sense & Sensibility
                                                                                0 austen
  Sense & Sensibility
                                                                                0 1811
  Sense & Sensibility
                                                              10
                                                                                1 chapter
  Sense & Sensibility
                                                              10
  Sense & Sensibility
                                                              13
                                                                                1 the
  1-10 of 725,055 rows
                                                                                           Previous 1 2 3 4 5 6 ... 100 Next
```

emma

sister

house

```
```{r}
Excercise 8d. This is the first time you call on a dataset from a package. Can you call on the anti_join() function by
completing the code below?
data(stop_words)
tidy_books <- tidy_books %>%
 anti_join(stop_words)
We can also use dplyr's count() to find the most common words in all the books as a whole.
tidy_books %>%
 count(word, sort = TRUE)
. . .
 tbl_df
 R Console
 13914 x 2
 word
 n
 <chr>
 <int>
 1855
 miss
 1337
 time
 862
 fanny
 822
 dear
 817
 lady
 806
 sir
 day
 797
 787
```

1-10 of 13,914 rows Previous 1 2 3 4 5 6 ... 100 Next

727

699

```
8e.
```

```
Excercise 8e. Let's build ourselves a pipeline! Run this code and see what happens...

library(ggplot2)

tidy_books %>%
 count(word, sort = TRUE) %>%
 filter(n > 600) %>%
 mutate(word = reorder(word, n)) %>%
 ggplot(aes(n, word)) +
 geom_col() +
 labs(y = NULL)
```



# Exercise 9

1-10 of 13,901 rows

# 9a.

See next slide for a characterization of how these lexicons score sentiment



Previous 1 2 3 4 5 6 ... 100 Next

# 9a. (resumed)

All three of these lexicons are based on unigrams, i.e., single words. These lexicons contain many English words and the words are assigned scores for positive/negative sentiment, and also possibly emotions like joy, anger, sadness, and so forth. The nrc lexicon categorizes words in a binary fashion ("yes"/"no") into categories of positive, negative, anger, anticipation, disgust, fear, joy, sadness, surprise, and trust. The bing lexicon categorizes words in a binary fashion into positive and negative categories. The AFINN lexicon assigns words with a score that runs between -5 and 5, with negative scores indicating negative sentiment and positive scores indicating positive sentiment.

9b.

```
153
 154 → # Sentiment analysis of Emma I
 155 + ```{r}
 156
 # Exercise 9b.Let's ask ourselves: What are the most common joy words in Austen's novel Emma? Run this code in order to make
 your data tidy first and do some real code work in the next exercise!
 158
 library(janeaustenr)
 library(dplyr)
 library(stringr)
 162
 tidy_books <- austen_books() %>%
 163
 group_by(book) %>%
 164
 165
 mutate(
 linenumber = row_number(),
 166
 167
 chapter = cumsum(str_detect(text,
 regex("^chapter [\\divxlc]",
 168
 169
 ignore_case = TRUE)))) %>%
 170
 ungroup() %>%
 unnest_tokens(word, text)
 171
 172 -
 170
 170:16 Chunk 12 $
 R Markdown :
Console Terminal × Jobs ×
 C:/WINDOWS/system32/ A
> library(janeaustenr)
> library(dplyr)
> library(stringr)
> tidy_books <- austen_books() %>%
 group_by(book) %>%
 mutate(
 linenumber = row_number(),
 chapter = cumsum(str_detect(text,
 regex("^chapter [\\divxlc]",
 ignore_case = TRUE)))) %>%
 ungroup() %>%
 unnest_tokens(word, text)
>
```

We only run this code to make sure that our data is tidy; there is no visible output you need to take into account.

```
Exercise 9c.We want to know what the most common joy words in Emma are. Can you complete the code and run the script based on
the pointers on the slide?
nrc_joy <- get_sentiments("nrc") %>%
 filter(sentiment == "joy")
tidy_books %>%
 filter(book == "Emma") %>%
 inner_join(nrc_joy) %>%
 count(word, sort = TRUE)
 tbl_df
 R Console
 303 x 2
 n
<int>
 word
 <chr>
 good
 359
 192
 young
 friend
 166
 hope
 143
 125
 happy
 love
 117
 deal
 92
 92
 found
 89
 present
 kind
 82
 1-10 of 303 rows
 Previous 1 2 3 4 5 6 ... 31 Next
```

# 9d.

```
Exercise 9d. We can also examine how sentiment changes throughout each of Austen's novels. We can do this with just a handful of lines that are mostly dplyr functions. Can you complete the code and run the script based on the pointers on the slide?

library(tidyr)

jane_austen_sentiment <- tidy_books %>%
 inner_join(get_sentiments("bing")) %>%|
 count(book, index = linenumber %/% 80, sentiment) %>%
 pivot_wider(names_from = sentiment, values_from = n, values_fill = 0) %>%
 mutate(sentiment = positive - negative)

package ∞ tidyr ∞ was built under R version 4.0.5Joining, by = "word"
```

We run this code as a precursor to visualizing how sentiment changes throughout each of Austen's novels, so there is no visible output you need to take into account right now.

If you see the warning in red, you can safely ignore it.

#### 9e.

```
library(ggplot2)|
ggplot(jane_austen_sentiment, aes(index, sentiment, fill = book)) +
geom_col(show.legend = FALSE) +
facet_wrap(~book, ncol = 2, scales = "free_x")
```

and then run the following code:



# 9e. (resumed)

Based on these graphs, we can begin to explore trends or differences in the novels' sentiment structures. For example, how the plot of each novel changes toward more positive or negative sentiment over the trajectory of the story. Based on your observations of the visualization you might want to start close reading certain passages of the novels, in order to analyze the specific language used in specific sections. You could also use these graphs as a starting point to look into how Austen's writing changes over time when it comes to the sentiment character of her novels.

# Exercise 10 10a.

Note that the usual suspects are here with the highest n, "the", "and", "to", and so forth.

```
Exercise 10a.Let's start by looking at the novels of Austen and examine first term frequency, then tf-idf. We can start just
by using dplyr verbs such as group_by() and join(). Can you fill in the blanks in the code below based on what you have learned
so far and determine the most commonly used words in the novels? (Let's also calculate the total words in each novel here, for
later use)
library(dplyr)
library(janeaustenr)
library(tidytext)
book_words <- austen_books() %>%
 unnest_tokens(word, text) %>%
 count(book, word, sort = TRUE)
total_words <- book_words %>%
 group_by(book) %>%
 summarize(total = sum(n))
book_words <- left_join(book_words, total_words)</pre>
book_words
 ∅
```





book <fctr></fctr>	word <chr></chr>	<b>n</b> <int></int>	total <int></int>	
Mansfield Park	the	6206	160460	
Mansfield Park	to	5475	160460	
Mansfield Park	and	5438	160460	
Emma	to	5239	160996	
Emma	the	5201	160996	
Emma	and	4896	160996	
Mansfield Park	of	4778	160460	
Pride & Prejudice	the	4331	122204	
Emma	of	4291	160996	
Pride & Prejudice	to	4162	122204	

1-10 of 40,379 rows

Previous 1 2 3 4 5 6 ... 100 Next

# 10b.

```
Exercise 10b.Now let's plot the distribution of n/total = the number of times a word is used in a book/the total words in that book. Do you remember what package to call on to plot this distribution?

library(ggplot2)|

ggplot(book_words, aes(n/total, fill = book)) +
 geom_histogram(show.legend = FALSE) +
 xlim(NA, 0.0009) +
 facet_wrap(~book, ncol = 2, scales = "free_y")
```

1 stat\_bin() using bins = 30. Pick better value with binwidth.

Removed 896 rows containing non-finite values (stat\_bin). Removed 6 rows containing missing values (geom\_bar).



← These plots exhibit similar distributions for all the novels, with many words that occur rarely and fewer words that occur frequently.

1-10 of 40,379 rows

```
Exercise 10c.Based on the column headers on the slide, can you fill in the code below and calculate tf-idf?

book_tf_idf <- book_words %>%
 bind_tf_idf(word, book, n)

book_tf_idf %>%
 select(-total) %>%
 arrange(desc(tf_idf))
```

book <fctr></fctr>	word <chr></chr>	n <int></int>	tf <dbl></dbl>	i <b>df</b> <dbl></dbl>	<b>tf_idf</b> <dbl></dbl>
Sense & Sensibility	elinor	623	5.193528e-03	1.7917595	9.305552e-03
Sense & Sensibility	marianne	492	4.101470e-03	1.7917595	7.348847e-03
Mansfield Park	crawford	493	3.072417e-03	1.7917595	5.505032e-03
Pride & Prejudice	darcy	373	3.052273e-03	1.7917595	5.468939e-03
Persuasion	elliot	254	3.036171e-03	1.7917595	5.440088e-03
Emma	emma	786	4.882109e-03	1.0986123	5.363545e-03
Northanger Abbey	tilney	196	2.519928e-03	1.7917595	4.515105e-03
Emma	weston	389	2.416209e-03	1.7917595	4.329266e-03
Pride & Prejudice	bennet	294	2.405813e-03	1.7917595	4.310639e-03
Persuasion	wentworth	191	2.283105e-03	1.7917595	4.090775e-03

Previous 1 2 3 4 5 6 ... 100 Next

Here we see all proper nouns, names that are in fact important in these novels. None of them occur in all of the novels, and they are important, characteristic words for each text within the corpus of Jane Austen's novels.

### 10d.

```
Excercise 10d.Run the code below to plot the highest tf-idf words in each of Austen's novels. Can you make it so that you plot the scores per novel? And can you make sure that we see tf-idf for the tokens/terms we have been analyzing?

library(forcats)

book_tf_idf %>%

group_by(book) %>%

slice_max(tf_idf, n = 8) %>%

ungroup() %>%|
ggplot(aes(tf_idf, fct_reorder(word, tf_idf), fill = book)) +

geom_col(show.legend = FALSE) +

facet_wrap(-book, ncol = 2, scales = "free") +

labs(x = "tf-idf", y = NULL)
```



# Exercise 11

#### 11a.

Notice that these bigrams overlap: "norland park" is one token, while "park in" is another.

```
Excercise 11a. Can you set the number of words in each n-gram to 2 in the code consecutive words, called 'bigrams' in Austen's novels

library(dplyr)
library(janeaustenr)

austen_bigrams <- austen_books() %>%
 unnest_tokens(bigram, text, token = "ngrams", n = 2)

austen_bigrams

...
```

book <fctr></fctr>	bigram <chr></chr>	
Sense & Sensibility	was at	
Sense & Sensibility	at norland	
Sense & Sensibility	norland park	
Sense & Sensibility	park in	
Sense & Sensibility	in the	
Sense & Sensibility	the centre	
Sense & Sensibility	centre of	
Sense & Sensibility	their property	
Sense & Sensibility	property where	
Sense & Sensibility	where for	
31-40 of 675,025 rows		Previous 1 2 3 4 5 6 100 Ne

A < X</p>

# 11b.

The output here is based on running the piece of code in blue.

```
```{r}
                                                                                                                      ⊕ ¥ ▶
# Exercise 11b. When we count our bigrams using dlpyr's count(), we see that a lot of the most common bigrams are pairs of
common words, like stop words. Run this code and you'll see...
austen_bigrams %>%
 count(bigram, sort = TRUE)
# We are of course not only interested in the stop word bigrams. So let's filter our n-grams with tidyr's separate() and remove
cases where either word is a stop word. Run it!
library(tidyr)
bigrams_separated <- austen_bigrams %>%
 separate(bigram, c("word1", "word2"), sep = " ")
bigrams_filtered <- bigrams_separated %>%
 filter(!word1 %in% stop_words$word) %>%
 filter(!word2 %in% stop_words$word)
# new bigram counts:
bigram_counts <- bigrams_filtered %>%
 count(word1, word2, sort = TRUE)
bigram_counts
```

bigram <chr></chr>	n <int></int>	
NA	12242	
of the	2853	
to be	2670	
in the	2221	
it was	1691	
i am	1485	
she had	1405	
of her	1363	
to the	1315	
she was	1309	
1-10 of 193,210 rows		Previous 1 2 3 4 5 6 100 Next

11b. (resumed)

We are of course not only interested in the stop word bigrams. So let's filter
cases where either word is a stop word. Run it!

library(tidyr)

bigrams_separated <- austen_bigrams %>%
 separate(bigram, c("word1", "word2"), sep = " ")

bigrams_filtered <- bigrams_separated %>%
 filter(!word1 %in% stop_words\$word) %>%
 filter(!word2 %in% stop_words\$word)

new bigram counts:
bigram_counts <- bigrams_filtered %>%
 count(word1, word2, sort = TRUE)

bigram_counts

Looks familiar? Again with the proper nouns, that is: names!

word1 <chr></chr>	word2 <chr></chr>	n <int></int>					
NA	NA	12242					
sir	thomas	266					
miss	crawford	196					
captain	wentworth	143					
miss	woodhouse	143					
frank	churchill	114					
lady	russell	110					
sir	walter	108					
lady	bertram	101					
miss	fairfax	98					
1-10 of 28,975 rows			Previous 1 2	3 4	5	6 100) Ne

```
# Exercise 11c. We will now use tidyr's unite() function to recombine the columns into one. Using the
"separate/filter/count/unite" combination lets us find the most common bigrams not containing stop-words. Run the code below.
bigrams_united <- bigrams_filtered %>%
  unite(bigram, word1, word2, sep = " ")
bigrams_united
```

book <fctr></fctr>	bigram <chr></chr>				
Sense & Sensibility	fortune independent				
Sense & Sensibility	father's inheriting				
Sense & Sensibility	thousand pounds				
Sense & Sensibility	remaining moiety				
Sense & Sensibility	wife's fortune				
Sense & Sensibility	NA NA				
Sense & Sensibility	gentleman died				
Sense & Sensibility	destroyed half				
Sense & Sensibility	son's son				
Sense & Sensibility	valuable woods				
31-40 of 51,155 rows		Previous 1	2 3	3 4 5	6 100 Next

∅

11d.

```
# Exercise 11d. We can look at the tf-idf of bigrams across Austen's novels. These tf-idf values can be visualized within each
book, just as we did for words. Can you complete the code below and produce a tibble and visualization of your results all at
once?
bigram_tf_idf <- bigrams_united %>%
    count(book, bigram) %>%
    bind_tf_idf(bigram, book, n) %>%
    arrange(desc(tf_idf))
bigram_tf_idf
```

book <fctr></fctr>	bigram <chr></chr>	n <int></int>	tf <dbl></dbl>	i df <dbl></dbl>	tf_idf <dbl></dbl>
Mansfield Park	sir thomas	266	0.0244238362	1.7917595	0.0437616398
Persuasion	captain wentworth	143	0.0232142857	1.7917595	0.0415944162
Mansfield Park	miss crawford	196	0.0179965109	1.7917595	0.0322454188
Persuasion	lady russell	110	0.0178571429	1.7917595	0.0319957048
Persuasion	sir walter	108	0.0175324675	1.7917595	0.0314139647
Emma	miss woodhouse	143	0.0128817224	1.7917595	0.0230809480
Northanger Abbey	miss tilney	74	0.0127828641	1.7917595	0.0229038177
Sense & Sensibility	colonel brandon	96	0.0114572145	1.7917595	0.0205285725
Sense & Sensibility	sir john	94	0.0112185225	1.7917595	0.0201008939
Emma	frank churchill	114	0.0102693451	1.7917595	0.0184001963

1-10 of 31,397 rows Previous 1 2 3 4 5 6 ... 100 Next

Exercise 12

```
12a.
```

```
# Exercise 12a. We want to find out what words tend to appear within each 10-line section of Austen's Pride and Prejudice.

Let's first find the Most Common Words, filtering out stop words. Can you complete the code?

austen_section_words <- austen_books() %>%
    filter(book == "Pride & Prejudice") %>%
    mutate(section = row_number() %/% 10) %>%
    filter(section > 0) %>%
    unnest_tokens(word, text) %>%
    filter(!word %in% stop_words$word)

austen_section_words
```

A < X</p>

book <fctr></fctr>	section <dbl></dbl>	word <chr></chr>	
Pride & Prejudice	1	truth	
Pride & Prejudice	1	universally	
Pride & Prejudice	1	acknowledged	
Pride & Prejudice	1	single	
Pride & Prejudice	1	possession	
Pride & Prejudice	1	fortune	
Pride & Prejudice	1	wife	
Pride & Prejudice	1	feelings	
Pride & Prejudice	1	views	
Pride & Prejudice	1	entering	
1-10 of 37,240 rows		Previous 1 2 3 4 5 6 10	00 Next

12b.

1-10 of 796,008 rows

```
```{r}
 ∰ ¥ ▶
Exercise 12b.Can you complete the count by using the function mentioned above and providing it with the information on what
to count?
library(widyr)
count words co-occuring within sections
word_pairs <- austen_section_words %>%
 pairwise_count(word, section, sort = TRUE)
word_pairs
 000
0000
0000
0000
0000
0000
0000
0000
 tb1_df
 R Console
 796008 x 3
 item1
<chr>
 item2
 n
<dbl>
 <chr>
 darcy
 elizabeth
 144
 elizabeth
 darcy
 144
 miss
 elizabeth
 110
 elizabeth
 110
 miss
 elizabeth
 106
 jane
 elizabeth
 106
 jane
 92
 miss
 darcy
 92
 darcy
 miss
 elizabeth
 bingley
 91
 bingley
 elizabeth
 91
```

Previous 1 2 3 4 5 6 ... 100 Next

```
```{r}
                                                                                                                          - ∰ ≥ ▶
# Excercise 12c. The syntax of the pairwise_corr() function is similar to that of pairwise_count(). Just run it!
# we need to filter for at least relatively common words first
word_cors <- austen_section_words %>%
  group_by(word) %>%
 filter(n() >= 20) %>%
  pairwise_cor(word, section, sort = TRUE)
word_cors
                                                                                                                          correlation
  item 1
                            item2
  <chr>
                            <chr>
  bourgh
                            de
                                                                    0.9508501
  de
                            bourgh
                                                                    0.9508501
                            thousand
  pounds
                                                                    0.7005808
  thousand
                            pounds
                                                                    0.7005808
  william
                                                                    0.6644719
                            sir
                            william
                                                                    0.6644719
  sir
  catherine
                            lady
                                                                    0.6633048
  lady
                            catherine
                                                                    0.6633048
  forster
                            colonel
                                                                    0.6220950
  colonel
                            forster
                                                                    0.6220950
  1-10 of 154,842 rows
                                                                                       Previous 1 2 3 4 5 6 ... 100 Next
```

12d.

One of the word correlations that stand out (both in the tibble in exercise 12c and in this visualization, is the one between "marry" and "money". This could be a semantic relationship to explore in further analyses.

```
# Exercise 12d.Let's pick some interesting words and find the other words most associated with them! You can pick your own and add them to the code below. And do you remember the function we have used a few times to plot your results? Fill it in as well!

word_cors %>%
filter(item1 %in% c("lady", "colonel", "carriage", "marry")) %>%
group_by(item1) %>%
slice_max(correlation, n = 6) %>%
ungroup() %>%
mutate(item2 = reorder(item2, correlation)) +
geom_bar(stat = "identity") +
facet_wrap(~ item1, scales = "free") +
coord_flip()|
```


