

公 公 公 AARRIN INSTITUTE OF TECHNOLOGY

《视听觉信号处理》大纲

二. 课程目标与课程内容对应关系 (I)

序号	教学内容	教学要求	推荐学时	推荐教学 方式	对应的课 程目标
1	1.信号与系统 (1)信号和系统的定义 (2)信号的采集(包括语音、 图像、视频) (3)信号的表示与编码(包括 语音、图像、视频)	1.掌握信号与系统的定义、关系 2.掌握信号种类、采集方式 3.理解信号表达与编码方法及其应用	4	课堂讲授	课程目标
2	2.信号处理方法 (1)傅里叶变换 (2)卷积运算	1.掌握傅里叶变换的概念和特性 2.掌握傅卷积运算的概念和特性	2	课堂讲授	课程目标 2
3	3.信号分析 (1) 正交空间 (2) 正交函数集与信号的分解 (3) 信号的稀疏表示	1.能够理解和运用正交概念 2.正确理解信号分解	4	课堂讲授	课程目标

HIT-Visual Intelligence Lab

○ 公爾濱∠索大學

《视听觉信号处理》大纲

二. 课程目标与课程内容对应关系(II)

序号	数学内容	教学要求	推荐学时	推荐教学 方式	对应的课 程目标
4	4.语音学概要 (1) 语音的声学特性及听感特性 (2) 语音的声生机理和产生模型 (3) 声音的听觉感知模型 (4) 相关的语言学》。韵律学和语言学知 识 (5) 语音处理研究的历史和现状 (6) 应用单量	1.理解语音和其表示 2.从生型学、心理学、声学、语音学、前律学和语言学等多 个学科理解语言学生、传输、透加、认如等各方面的特性 3.理解在冷却的学科知识所建立各个的真数学模型 4.理解语音处理研究的发展轨迹	4	课堂讲授	課程目标1 課程目标2
5	5.销省的时域模域分析 (1) 预处理和短时分析。 (2) 销省的时域分析方法。短时整量分 标、短时程学分析、提对组天分析、研 有效点位据,语信查台周期估计。 (3) 销省的规模分析方法。或该器组、 编档和间插铁、对各位分类型、倒谱和 发错道。 及性致测分析、Man模域滤波 器组。	1. 如鄉鄉在公內有公司合政的大學和內里的原因的是 如鄉海 英國特殊在,其他的同樣的 2. 如果 在	6+6	设堂讲授/以练代讲翻转 设练代讲翻转 课堂 实验1	课程目标2 课程目标3 课程目标4

公司 安司 演工業大學 HARBIN INSTITUTE OF TECHNOLOGY

《视听觉信号处理》大纲

二. 课程目标与课程内容对应关系(III)

序号	教学内容	教学要求	推荐学时	推荐教学方式	对应的课 程目标
6	6.语音编时技术 (1)语音编码技术框架 (2) 波形编码; PCM、压扩PCM、DPCM、DPCM、极处的DPCM、ADPCM、G.7.56编目标准 (3)参数编码; LPC编码。 S 除冲激励线性预测 中码器、规则标准励线性预测 中码器、从可测滤波器。 感觉加权滤 滤器、切环搜索。 四微励转性预测声码 器、多带激励声码器	1.丁解拍音编码的概念和皮肤轨迹 卫继解拍音编码技术的基本框果 3.理解主要的语音编码算法 4.了解显频而分功态 5.能够设计和实现典型的语音编码算法 实施2.指于编码实验 1.实现基于DCM的语音编码算法 2.实现基于DCM的语音编码算法 3.掌握目音编码表效实施0.一规程果	6+2	课堂讲授/ 翻转课堂 实验2	课程目标1 课程目标3
7	7.语音识别技术概述	1.了解语音识别任务和其对应的不同解决 方案 2.了解说话人识别任务和其多种解决方案 实验3.命令词识别实验 1.实现基于DTW的语音识别算法 2.了解基于PDM的语音识别方法	4+4	课堂讲授/ 以练代讲/翻 转课堂 实验3	课程目标1课程目标4

HIT-Visual Intelligence Lab

公司 哈爾濱二葉大學

《视听觉信号处理》大纲

二. 课程目标与课程内容对应关系(IV)

序号	數学内容	数学要求	推荐	推荐教学方式	对应的课 程目标
8	8.数字成像、光度学 与色度学	1.李操教学成像 包括由繼波成像、产波成像) 符 頁 至 2.了解图像地理历史发展状况 3.李操光度步、色度学及被动性 4.理解彩色空间、形状、纹理、尺度关系 实验4: 完成图像读写、彩色空间转换及图像运算变换实 验	4+4	课堂讲授 实验4	课程目标1 课程目标2
9	9空域图像增强方法 (1)各类空域图像平 滑算子 (2)各类空域图像锐 化算子 比较各种算法优务及 适用情景	1.理解開催处理中冬英年7的作用 2.理解各类键型和较被工具的运用技巧 3.準格各种假整处理算了方法 4.具有特研动平能力,能够设计实现针对问题的图像 转位规模系统 完成图像哪是算子实验,并可多选图像增强算子 实验,或可选择完全一个具备茶干图像吸消音后号 增强处理量子的基本系统。	6+8	课堂讲授 实验5	课程目标1 课程目标3 课程目标4

HIT-Visual Intellinence Lab

《视听觉信号处理》大纲

二. 课程目标与课程内容对应关系(V)

序号	教学内容	教学要求	推荐 学时	推荐教学 方式	对应的课 程目标
10	10.频域图像增强方法 (1)各类频域图像平滑算子 (2)各类频域图像锐化算子 比较各种算法优劣及适用情景	1.理解频域图像处理中各类算子的作用 2.理解各类模型和数据工具的运用技巧 3.掌握各种图像处理算子方法 4.具有科研动手能力,能够设计实现针对 问题的图像特征提取系统	4	课堂讲授/ 翻转课堂	课程目标1 课程目标3 课程目标4
11	11.图像复原 图像恢复原理、图像退 化模型及图像复原法	1.掌握图像退化模型 2.掌握图像恢复原理及图像复原法	4	课堂讲授/ 翻转课堂	课程目标1 课程目标2

HIT-Visual Intelligence Lab

1. 部分

教学要求

- 1. 掌握信号与系统的定义、关系
- 2. 掌握信号种类、采集方式(自补)
- 3. 理解信号表达与编码方法及其应用

1. 部分

内容提要

- •信号的概念、描述、分类
- 典型信号介绍
- 信号的基本运算
- •信号处理的目的、步骤
- •信号的分解

〈ভ̇〉 HIT-Visual Intelligence Lab

哈爾濱工業大學

信号的概念

信号是反映(或载有)信息的各种物理量,是 【系统】可以进行加工、变换的对象。

信号是信息的表现形式, 信息则是信号的具体内容。

- 自然和物理信号
 - 例如:语音、图像、地震信号、生理信号等
- 人工产生的信号
 - 例如: 雷达信号、通讯信号、医用超声信号、机械 探伤信号等

<ඔ> HIT-Visual Intelligence Lab

哈爾濱二葉大學

信号描述方法

数学描述:

• 使用具体的数学表达式,把信号描述 为一个或若干个自变量的函数或序列 的形式。

$$f(t) = \sin(t)$$

因此,常可将"信号"与"函数" 和"序列"等同起来

$$x(n) = a^n u(n)$$

$$f(t) = \frac{\sin(t)}{t}$$

⟨@:> HIT-Visual Intelligence Lab

公路爾濱二葉大學

哈爾濱工業大學

信号描述方法

可根据自变量个数多少分-

一维: 语音 f(t) 二维: 图像 f(x, y) 多维 **三维:视频** f(x, y, t) 四维: 电磁波 f(x, y, z, t)....

信号描述方法

• 波形描述

• 按照函数随自变量的变化关系,把信号 的波形画出来。

〈ভ்〉 HIT-Visual Intelligence Lab

〗 蛤爾濱二葉大學

信号描述方法

•信号的特征

•时间特性

• 信号表现出一定波形的时间特性, 如出现时间的先后、 持续时间的长短、重复周期的大小及随时间变化的快慢 等。

•频率特性

• 任意信号在一定条件下总可以分解为许多不同频率的正 弦分量,即具有一定的频率成分。信号的频谱分析就是 研究信号的频率特性。

<ඔ> HIT-Visual Intelligence Lab

🕮 蛤爾濱二葉大學

信号的分类

给定的自变量的值,是否可以唯一确定信号的取值。

区分方法: 任意给定一个自变量的值, 如果可以唯一确定其信号 和取值,则该信号是确定信号,否则,如果取值是不 确定的随机值,则是随机信号。

周期信号与非周期信号--@周期性

关系式是否成立?

 $f(t) = f(t+T), \quad \forall t \in R$

周期信号的周期(正值):

非周期信号可以视为是周期无穷大的周期信号。

(@) HIT-Visual Intelligence Lab

哈爾濱二葉大學

信号的分类

时间连续信号与时间离散信号——®时间函数取值连续性

(@> HIT-Visual Intelligence Lab

蛤爾濱工業大學

信号的分类

时间连续信号与时间离散信号——®时间函数取值连续性 信号的自变量是否在所讨论的整个连续区间内都有定义?

模拟信号、抽样信号与数字信号

模拟信号的定义域和值域都有是连续的;

抽样信号的定义域离散而值域连续;

数字信号在定义域和值域都是离散的。

--计算机特别适合于处理数字信号

<ඔ> HIT-Visual Intelligence Lab

哈爾濱二葉大學

信号的分类

时间连续信号与时间离散信号——®时间函数取值连续性

哈爾濱二葉大學

信号的分类

时间连续信号与时间离散信号——®时间函数取值连续性

连续时间信号 模拟信号

连续时间离散幅度信号

哈爾濱二葉大學

信号的分类

时间连续信号与时间离散信号--®时间函数取值连续性

[例1]: 信号类型

蛤爾濱工業大學

信号的分类

时间连续信号与时间离散信号--®时间函数取值连续性

[例1]: 信号类型

(@:> HIT-Visual Intelligence Lab

•模拟信号:时间和幅值均为连续 的信号。

•抽样信号:时间离散的,幅值 连续的信号.

•数字信号:时间和幅值均为离散 的信号。

信号的分类

蛤爾濱工業大學

信号的分类

因果信号与非因果信号--@

如果信号在时间零点之前,取值为零,则称为因果信号。

表示信号在过去时间内不可能发生(取值为零)!

若信号仅在过去(时间零点之前)有非零值,则称为反因果信号。 **不是**因果信号,就是**非**因果信号,信号在时间零点之前有非零值。

实值信号与复值信号---®

如果信号的取值是实数,则称为实值信号,简称实信号。 如果信号的取值是复数,则称为复值信号,简称复信号。

复信号是为了研究方便而引入的

蛤爾濱工業大學

信号的分类

能量信号与功率信号 --® 定义信号的能量为:

连续时间信号 $E[f(t)] = \int_{-\infty}^{\infty} ||f(t)||^2 dt$

离散时间信号 $E[f(n)] = \sum_{n=0}^{\infty} ||f(n)||^2$

定义信号的功率为:

连续时间信号 $P[f(t)] = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} ||f(t)||^2 dt$

离散时间信号 $P[f(n)] = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=1}^{N} ||f(n)||^2$

如果信号的能量是有限的,则称为能量有限信号,简称能量信号。 如果信号的功率是有限的,则称为功率有限信号,简称功率信号。

〈ⓒ〉 HIT-Visual Intelligence Lab

哈爾濱二葉大學

信号的表示

• 常见音视频数据文件格式

语音格式文件有wmv,mp3,mp4,dat,rm,avi等。

图像格式最常见的有,JPG格式,也可能是JPEG格式,还有PNG、GIF等格式, 甚至BMP格式。

相对于PNG等格式来说,JPG格式的体积相对较小。

JPEG,全称为"Joint Photographic Experts Group",翻译成中文,则是"联 合图像专家小组",这是一个成立于1986年的组织,1992年,该组织发布了 "JPEG标准",这是一种针对图像的压缩而制定的标准。

使用JPEG标准压缩的图片文件,被称为"JPEG文件",这种文件的扩展名 通常是JPG、JPEG、JPE、JFIF以及JIF,在这些文件格式中,以JPG的使用最为广

JPEG,采用YCbCr模型。取样的比例可以是4:4:4(无缩减取样)、4:2:2 (在水平方向2的倍数中取样)和4:2:0(在水平方向和垂直方向的2的倍数中取 样),其中,以4:2:0最为常见。

信号的表示

•二维信号表示

- picture size \Rightarrow picture resolution ; 256×256, 512×512
- $0 \le f(x,y) \le L(=255)$; gray level, 8bit/pixel
- (x,y) ;spatial coordinate
- t ;temporal coordinate

哈爾濱二葉大學

信号的表示

•二维信号表示

FIGURE 2.15 An example of the digital image acquisition process (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

〈ⓒ〉 HIT-Visual Intelligence Lab

信号的表示

•二维信号表示

信号的表示

•二维信号表示

哈爾濱工業大學

•二维信号表示

信号描述方法

FIGURE 2.18
Coordinate
convention used
in this book to
represent digital
images

〈ভ்〉 HIT-Visual Intelligence Lab

> 蛤爾濱二葉大學

信号的表示

•二维信号表示

$$f(x,y) = \begin{bmatrix} f(0,0) & f(0,1) & \cdots & f(0,N-1) \\ f(1,0) & f(1,1) & \cdots & f(1,N-1) \\ \vdots & & & & \\ f(M-1,0) & \cdots & \cdots & f(M-1,N-1) \end{bmatrix} ; M \times N \text{ matrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{00} & a_{01} & \cdots & a_{0,N-1} \\ \vdots & & & \\ \vdots & & & \\ a_{M-1,0} & \cdots & \cdots & a_{M-1,N-1} \end{bmatrix} \\ ; a_{ij} = f(x = i, y = j)$$

信号的表示

•二维信号表示

Spatial resolution

(iii) HIT-Visual Intelligence Lab

信号的表示

•二维信号表示

If EUR 2.00 (a) 1024 \times 1024,8-bit image, (b) 512 \times 512 image resampled into 1024 \times 1024 pixels by row and column displication. (c) through (f) 256 \times 256, 128 \times 128, 64 \times 64, and 32 \times 32 images resampled into 1024 \times 1024 pixels.

〈⊕〉 HIT-Visual Intelligence Lab

△ 公爾廣二葉大學

信号的表示

•二维信号表示 Gray-level resolution

△ 哈爾濱二葉大學

信号的表示

•信号----

<®> HIT-Visual Intelligence Lab

○ 蛤爾濱Z業大學

典型信号

•正余弦信号:

正弦信号 $f(t) = K \sin(\omega t + \theta)$

余弦信号 $f(t) = K\cos(\omega t + \theta)$

说明:

- (1) K为振幅
- (2) ω为角频率
- (3) θ为初相位

⟨⊕⟩ HIT-Visual Intelligence Lab

● 验育廣Z業大學 HARBIN INSTITUTE OF TECHNOLOGY

典型信号

• 指数信号: $f(t) = Ke^{\alpha t}$

微分或积分后还是指数信号

<ඔ⇒ HIT-Visual Intelligence Lab

典型信号

• 复指数信号: $f(t) = Ke^{st} = Ke^{\sigma t}\cos \omega t + jKe^{\sigma t}\sin \omega t$ 一个复指数信号可以分解成为实、虚两部分。其中,实部包含余弦信号,虚部则为正弦信号。

指数因子实部 σ 表征了正弦与余弦函数振幅随时间变化的情况:

若σ>0,正弦、余弦信号是增幅振荡;

若水0,正弦、余弦信号是衰减振荡。

指数因子虚部 ω则表示正弦与余弦信号的角频率。

几个特殊情况:

- ★ 当σ=0, 即s为虚数,则正弦、余弦信号是等幅振荡;
- ★ 当ω=0,即s为实数,则复指数信号成为一般的指数信号:
- ★ 当σ=0且ω=0,即5等于零,则复指数信号的实部与虚部都 与时间无关,成为直流信号。

〈ভ̇〉 HIT-Visual Intelligence Lab

○ **公園 選ュ業大学**HARBIN INSTITUTE OF TECHNOLOGY

典型信号

• Sa函数:

特点:

- (1) Sa函数是偶函数
- (2) 过零区间宽度
- (3) Sa函数过零位置

$$\int_{-\infty}^{\infty} Sa(t)dt = \pi \qquad \longrightarrow \qquad \int_{-\infty}^{0} Sa(t)dt = \int_{0}^{\infty} Sa(t)dt = \frac{\pi}{2}$$

〈◎〉 HIT-Visual Intelligence Lab

公額濱Z業大学 Samura INSTITUTE OF TECHNOLOGY

典型信号

• 高斯信号:

特点:

- (1) 形状象一口钟,故有时也称钟形脉冲信号
- (2) 在随机信号分析中有重要地位

⟨⊕⟩ HIT-Visual Intelligence Lal

SA SA TECHNOLOGY HARBIN INSTITUTE OF TECHNOLOGY

奇异信号

• 单位斜变信号R(t):

● 验育廣乙業大學 HARBIN INSTITUTE OF TECHNOLOGY

奇异信号

• 单位阶跃信号u(t): $u(t) = \begin{cases} 0, \ t < 0 \\ 1, \ t > 0 \end{cases}$

特点:

- (1) 与单位斜变信号是<u>积分/微分</u>关系
- (2) 用于描述分段信号

哈爾濱二葉大學

츪异信号

• 单位矩形脉冲信号 $G_{*}(t)$:

奇异信号

• 符号函数sgn(t): 用以表示自变量的符号特性

 $\operatorname{sgn}(t) + 1 = 2u(t)$

 $\operatorname{sgn}(t) = 2u(t) - 1$

(@:> HIT-Visual Intelligence Lab

蛤爾濱二葉大學

奇异信号

• 单位冲激信号 $\delta(t)$

引入原因:

描述自然界中那些发生后持续时间很短的现象。。

信号定义: ← 非常规的定义方法

设信号有一个总的冲激强度,它在整个时间域上的积分等于 该强度值,而在除冲激点之外的其他点的函数取值为零。

$$\begin{cases} \int_{-\infty}^{\infty} \delta(t) dt = 1\\ \delta(t) = 0 \ (t \neq 0) \end{cases}$$

哈爾濱工業大學

奇异信号

• 单位冲激信号 $\delta(t)$

 $\int_{-\infty}^{\infty} \delta(t) dt = 1$ $\delta(t) = 0 \ (t \neq 0)$

波形表示:

在冲激点处画一条带箭头的线, 线的方向和长度与 冲激强度的符号和大小一致。

冲激点在t₀、强度为E的冲激信号

哈爾濱工業大學

奇异信号

•单位冲激信号 $\delta(t)$ 函数的性质:

1 对称性: 冲激函数是偶函数 $\delta(-t) = \delta(t)$

2 时域压扩性: $\delta(at) = \frac{1}{|a|}\delta(t) \ (a \neq 0)$

3 抽样特性本: $\int_{-\infty}^{\infty} f(t)\delta(t-t_0)dt = f(t_0)$

4 积分:

3 哈爾濱二葉大学

四则运算:四则运算后的信号在任意一点的取值定义为原 信号在同一点处函数值作相同四则运算的结果

券积运算

单位冲激信号搬移特性的应用:

$$f_1(t-t_1) * f_2(t-t_2) = f_1(t) * f_2(t-t_1-t_2)$$

证明:
$$f_1(t-t_1) * f_2(t-t_2)$$

 $= (f_1(t) * \delta(t-t_1)) * (f_2(t) * \delta(t-t_2))$
 $= f_1(t) * f_2(t) * \delta(t-t_1-t_2)$
 $= f_1(t-t_1-t_2) * f_2(t)$
 $= f_1(t) * f_2(t-t_1-t_2)$

卷积运算

卷积的微分:

两个信号卷积的微分等于其中任一信号的微分与另一信号

卷积。

$$\frac{d}{dt} \left[f_1(t) * f_2(t) \right] = f_1(t) * \left[\frac{d}{dt} f_2(t) \right] = \left[\frac{df_1(t)}{dt} \right] * f_2(t)$$

证明:
$$\frac{d}{dt} [f_1(t) * f_2(t)]$$

$$= \frac{d}{dt} \int_{-\infty}^{\infty} f_1(\tau) f_2(t - \tau) d\tau \qquad (定义)$$

$$= \int_{-\infty}^{\infty} f_1(\tau) \left(\frac{d}{dt} f_2(t - \tau)\right) d\tau = \int_{-\infty}^{\infty} f_1(\tau) \left(\frac{df_2}{dt}\right) (t - \tau) d\tau \qquad (交換微分、积分順序)$$

$$= \left(f_1 * \frac{df_2}{dt}\right) (t) \qquad (定义)$$

卷积运算

卷积的积分:

两个信号卷积的积分等于其中任一信号的积分与另一信 号的卷积。

$$\int_{-\infty}^{t} (f_1 * f_2)(\lambda) d\lambda = f_1(t) * \int_{-\infty}^{t} f_2(\lambda) d\lambda = \left(\int_{-\infty}^{t} f_1(\lambda) d\lambda\right) * f_2(t)$$

$$f(t)*u(t) = \int_{-\infty}^{t} f(\lambda)d\lambda$$
 一个函数与单位阶跃函数的卷 积等于该函数的积分。

(@> HIT-Visual Intelligence Lab

卷积运算

应用类似的推演可以导出卷积的高阶导 数或多重积分之运算规律

上式中的m、n及n-m取正整数时为导数的阶次,而 取负整数时为重积分的次数。

3. 蛤爾濱二葉大学

系统的概念

系统是若干相互作用和相互依赖的事物所组成的 具有特定功能的整体。

系统、电路(网络):

e(t)

系统强调功能与特性,关心全局; 电路强调结构与参数,关心局部

广义系统分类:

物理/非物理: 自然/人工

<ඔ> HIT-Visual Intelligence Lab

🙉 蛤爾濱二葉大學

系统的分类

连续时间系统 e(t) \int

y(n) 差分方程 离散时间系统 x(n)

混合系统 e(t)y(n), x(n),

即时系统:输出决定于同时刻输入

R 代数方程

动态系统:输出与历史输入有关 L,C 微分、差分方程

集总参数: 只含集总参数元件 (3)

R,L,C 微分方程

分布参数:含有分布参数元件

传输线、波导 偏微分方程

哈爾濱二葉大學

系统的分类

时变:参数随时间变化

时不变:参数不随时间变化

哈爾濱二葉大學

系统的分类

因果:输出变化出现在输入变化之后 $t = t_0$ 时刻输出只与 $t = t_0$ 及 $t < t_0$ (6) 时刻输入有关,如 r(t) = e(t-1)

非因果: 反之, 如 r(t) = e(t+1)

稳定: 有界输入 二二二 > 有界输出 $|e(t)| \le M \Rightarrow |r(t)| \le K \quad -\infty < t < +\infty$ 不稳定

哈爾濱二葉大學

系统的分类

如 r(t) = 5e(t)如 $r(t) = e^2(t)$

(@> HIT-Visual Intelligence Lab

哈爾濱二葉大學

系统的分类

线性时不变系统(Linear Time Invariant-LTI系统):

① 满足叠加性: $e_1(t) \rightarrow r_1(t)$ $e_2(t) \rightarrow r_2(t) \Rightarrow$ 线性 $e_1(t) + e_2(t) \rightarrow r_1(t) + r_2(t)$

② 满足均匀性: $e(t) \rightarrow r(t) \Rightarrow ae(t) \rightarrow ar(t)$

③ 满足时不变特性: $e(t) \rightarrow r(t) \Rightarrow e(t-t_0) \rightarrow r(t-t_0)$

80

系统的分类

④ 满足微(积)分特性:

$$\begin{split} e(t) &\to r(t) \Rightarrow \frac{de(t)}{dt} \to \frac{dr(t)}{dt} \\ e(t) &\to r(t) \Rightarrow \int_{-\infty}^{t} e(\tau) d\tau \to \int_{-\infty}^{t} r(\tau) d\tau \end{split}$$

⑤ 因果特性:

〈ⓒ〉 HIT-Visual Intelligence Lab

SA 解 演 Z 業 大 學 HARBIN INSTITUTE OF TECHNOLOGY

系统分析

e(t) ✓ $\overbrace{}$ f(t) ?

系统分析: 已知e(t)和系统求响应r(t)

- i) 建立数学模型: 用框图或数学表达式描述
- ii) 求解数学模型: 已知数学模型或输入激励

②方法

- i) 描述方法:输入—输出描述法、状态变量描述法
- ii) 求解方法: 时域(经典、卷积、数值)和 变换域(频域、复频域、**Z**域、FFT)
- iii) 非线性方法(人工神经网、遗传算法、模糊理论)

< € > HIT-Visual Intelligence Lab

85

参考文献

- · Alanv. Oppenheim (刘树棠 译),《信号与系统》, 西安交通大学出版社
- ·王宝祥,《信号与系统》, 电子工业出版社
- ・郑君里《信号与系统》, 高等教育出版社
- ・余成波,陶红艳,《信号与系统》,清华大学 出版社