Sl.	Title of the Experiment	Connection
No		Details
1.	Develop an 8051 'C' program to implement MOD-4 (UP/ DOWN) counter on LEDs connected to	Port 2 to
1.	Port 2. Include 1second delay between each count. Generate delay using <i>for loop</i> .	CN11
2.	Develop an 8051 'C' program to implement MOD-4 (UP/ DOWN) counter on LEDs connected to	Port 2 to
۷.	Port 2. Include 0.5 second delay between each count. Generate delay using <i>for loop</i> .	CN11
3.	Develop an 8051 'C' program to implement MOD-4 counter on LEDs connected to Port 2 using	Port 2 to
3.	Hardware delay. Use Timer1 in Mode 1 to generate a delay of ms.	CN11
4.	Develop an 8051 'C' program to implement MOD-4 counter on LEDs connected to Port 2 using	Port 2 to
4.	Hardware delay. Use Timer1 in Mode 2 to generate a delay of ms.	CN11

	Develop an 8051 'C' program to generate the following waveforms using DAC 0800 interface	
5.	i) Square	
	ii) Triangular	
	Develop an 8051 'C' program to generate the following waveforms using DAC 0800 interface	
6.	i) Rectangular wave with 70% duty cycle. Assume T=100ms	
	ii) Positive Ramp	
	Develop an 8051 'C' program to generate the following waveforms using DAC interface	
7.	i) Square	
	ii) Negative Ramp	

	Develop an 8051 'C' program to interface 2x16 LCD display and to display the following two	Port 2 to
8.	strings. (Start displaying from 1st position on both lines)	CN6
٥.	i) KLS GIT	
	ii) ESIoT LAB	
	Develop an 8051 'C' program to interface 2x16 LCD display and to display the following two	Port 2 to
9.	strings. (Start displaying from 6 th position on both lines)	CN6
9.	iii) CSE	
	iv) BRANCH	

10. Develop an Embedded 'C' program to blink the LEDs connected to Arduino SBC upon pressing the push buttons. CN4

11.	Develop an Embedded 'C' program to interface the sensor DHT11 to Arduino SBC and display	RM2 to
11.	the data acquired from sensors on serial monitor.	RM19
	Develop an Embedded 'C' program to interface the sensor DHT11 to Arduino SBC and display	RM2 to
1.5	the data acquired from sensors on serial monitor. Turn ON the relay when temperature is greater	RM19
15.	than 22 degree centigrade.	And RM17
		to RM9

13. Develop an Embedded 'C' program to interface the sensor LDR to Arduino SBC and display the data acquired from sensor on serial monitor.

RM3 to RM20

1.4	Develop a python program for Raspberry Pi to turn "ON" and "OFF" the buzzer.	RM9 to
14.		RM17