UNIDAD 1 Solución de Problemas y Pensamiento Computacional

Tema: Pilares del Pensamiento Computacional

VOCABULARIO:

- Algoritmo Una lista de pasos que permiten ejecutar una tarea
- Ambiguo Tener más de un significado
- Eficiencia Obtener el mayor resultado con el menor esfuerzo

¿Que está mal en la próxima ilustración?

¿Qué es el Pensamiento Computacional?

- Cómo el método científico (¿Te acuerdas?)
- Es un método de solución de problemas.

¿Qué es el Pensamiento Computacional?

Descomponer

Estamos hablando de partir un gran problema en algo mucho más simple.

Muchas veces, los grandes problemas consisten en muchos problemas pequeños. Al descomponer buscamos aumentar la **eficiencia** del proceso.

¿Qué es el Pensamiento Computacional?

Patrones

A veces, cuando un problema tiene muchas partes pequeñas, notarás que esas partes tienen algo en común.

Si no encontramos las similitudes tal vez se parezcan a algo que ya fue resuelto con anterioridad. Los patrones hacen más simple entender las distintas piezas que forman el problema.

¿Que es el pensamiento computacional?

Abstracción

Una vez que reconociste un patrón, puedes abstraer (ignorar) los detalles en los que difieren varias cosas, y usar esto como algo general para obtener una solución que funcione para varios problemas a la vez.

¿Qué es el pensamiento computacional?

Algoritmos

Cuando una solución está completa, puedes realizar una descripción que permita procesarla paso a paso, para que el resultado sea fácil de obtener. Los algoritmos NO deben ser **ambiguos**.

Problema: iTapón de Juana Díaz a Ponce!

Enfásis en Descomponer

- Identificar los principales puntos de congestión (intersecciones, salida a avenidas principales, posibles construcciones etc.).
- Analizar el flujo de tráfico en diferentes horarios del día.
- Evaluar la infraestructura actual de las salidas (número de carriles, semáforos, etc.).

Enfásis en reconocer Patrones

- Observar tendencias en los datos: ¿Cuáles son las horas de mayor congestión? ¿Qué tipos de vehículos predominan en esas horas?
- Identificar comportamientos recurrentes: por ejemplo, atascos que ocurren debido a la sincronización deficiente de semáforos en las salidas de la autopista. Quizás los horarios de labor de construcción

Enfásis en Abstración

 Resumir el problema a un modelo: entradas (volumen de tráfico) y salidas (flujo óptimo).

Enfásis en Diseño de Algoritmos

- Crear un algoritmo para sincronizar los semáforos de acuerdo con el flujo de tráfico en tiempo real utilizando sensores de tráfico.
- Diseñar rutas alternativas basadas en el tiempo estimado de llegada, calculado por GPS.
- Simular escenarios utilizando modelos matemáticos para prever los efectos de las nuevas políticas.

¿Preguntas?

