PROBLEME REZOLVATE

1. Aerul aflat într-un vas de volum $V = 0.2 \text{ m}^3$ la presiunea $p_1 = 2 \cdot 10^5 \text{ N/m}^2$ este răcit izocor, pierzând prin răcire căldura Q = 50 kJ. Să se afle: a) presiunea finală; b) lucrul mecanic efectuat; c) variația energiei interne. Căldura molară izocoră a aerului $C_v = \frac{5}{2} R (R - \text{constanta universală a gazelor})$.

Rezolvare

a) Căldura cedată de aer este:

$$|Q| = VC_{\nu}(T_1 - T_2), \tag{1}$$

unde V este numărul de kmoli de aer, iar T_1 și T_2 temperaturile inițială, respectiv finală. Datorită răcirii, $T_1 > T_2$. Din ecuațiile de stare avem: $T_1 = \frac{p_1 V}{vR}$ și $T_2 = \frac{p_2 V}{vR}$. Înlocuind în (1) pe T_1 , T_2 și C_v , rezultă: $Q = 5/2 \cdot V(p_1 - p_2)$,

de unde:

$$p_2 = p_1 - \frac{2}{5} \frac{Q}{V} = 2 \cdot 10^5 \text{N/m}^2 - \frac{2}{5} \cdot \frac{5 \cdot 10^4 \text{J}}{0.2 \text{ m}^3} = 10^5 \text{ N/m}^2$$
.

- b) Transformarea fiind izocoră L = 0.
- c) Din primul principiu al termodinamicii rezultă

$$\Delta U = Q = 50 \text{ kJ}.$$

2. O masă m=10 g de oxigen ($\mu=32$ kg/kmol) se află la presiunea $p=3\cdot10^5$ N/m² și la temperatura $t=10^\circ$ C. După încălzirea izobară, gazul ocupă volumul $V_2=10$ l. Să se afle: a) căldura absorbită de gaz; b) lucrul mecanic efectuat de gaz prin destindere; c) variația energiei interne. Se cunoaște căldura molară izobară $C_p=(7/2)R$.

Rezolvare: a) Căldura absorbită de gaz va fi:

$$Q_p = \nu C_p (T_2 - T_1) = \frac{m}{\mu} C_p (T_2 - T_1).$$
 (1)

Temperatura T_2 o exprimăm din ecuația de stare $T_2 = \frac{\mu p_2 V_2}{mR}$.

Înlocuim pe T_2 în (1) și obținem:

$$Q_p = \frac{m}{\mu} C_p \left(\frac{\mu p V_2}{mR} - T_1 \right) = 7,92 \cdot 10^3 \text{J}.$$

b) Transformarea fiind izobară, lucrul mecanic va fi $L = p(V_2 - V_1)$. Folosind ecuația de stare $pV_1 = vRT_1$, avem:

$$L = pV_2 - \frac{m}{\mu}RT_1 = 2,265 \cdot 10^3 \text{J}.$$

c) Din primul principiu, avem:

$$\Delta U = Q - L = 5,655 \cdot 10^3 \,\mathrm{J}.$$

3. O masă m=2 kg de oxigen ocupă volumul $V_1=1$ m³ la presiunea $p_1=2\cdot 10^5$ N/m². Gazul este încălzit izobar și se destinde până la volumul $V_2=3$ m³, apoi izocor până presiunea devine $p_3=5\cdot 10^5$ N/m². Să se afle: a) variația energiei interne; b) lucrul mecanic efectuat de gaz; c) căldura absorbită le gaz. Se cunoaște $C_V=(5/2)R$.

Rezolvare

a) Variația energiei interne a gazului la trecerea din starea inițială în cea finală este

Temperaturile T_1 și T_2 le obținem din ecuațiile de stare:

 $T_1 = \frac{\mu}{m} \frac{p_1 V_1}{R}$, $T_2 = \frac{\mu}{m} \frac{p_3 V_2}{R}$.

Înlocuim în (1)

$$\Delta U = \frac{m}{\mu} C \nu \frac{\mu}{m} \frac{1}{R} (p_3 V_2 - p_1 V_1) = \frac{5}{2} (p_3 V_2 - p_1 V_1) = 3.25 \cdot 10^6 \, \text{J}.$$

b) Lucrul mecanic total, la trecerea din starea 1 în starea 3, este

$$L = L_{12} + L_{23}$$
.

Dar, $L_{12} = p_1(V_2 - V_1)$, iar $L_{23} = 0$, deoarece transformarea 2-3 este izocoră. Deci,

$$L = L_{12} = p_1(V_2 - V_1) = 0.4 \cdot 10^6 \,\mathrm{J}.$$

c) Din primul principiu al termodinamicii, rezultă

$$Q = \Delta U + L = 3.25 \cdot 10^6 \,\text{J} + 0.4 \cdot 10^6 \,\text{J} = 3.65 \,\text{MJ}.$$

ÎNTREBĂRI, EXERCIȚII, PROBLEME

1. O masă de azot ($\mu = 28 \text{ kg/kmol}$) m = 70 kg este încălzită cur $\Delta T = 150 \text{ K}$ la volum constant. Să se afle: a) căldura Q_V absorbită; b) variația energiei interne ΔU ; c) lucrul mecanic efectuat de gaz. Pentru azot $C_V = (5/2)R$.

R: a)
$$Q_v = vC_v\Delta T = 7.79 \text{ MJ}$$
; b) $\Delta U = Q_v = 7.79 \text{ MJ}$; c) $L = 0$.

2. Într-o incintă de volum $V_1 = 10 \text{ m}^3$ se află hidrogen la presiunea $p_1 = 10^5 \text{ N/m}^2$. Gazul este încălzit la volum constant până când presiunea sa devine $p_2 = 3 \cdot 10^5 \text{ N/m}^2$. Să se afle: a) variația energiei interne ΔU a gazului; b) lucrul mecanic efectuat de gaz; c) căldura Q_v absorbită de gaz. Pentru hidrogen $C_v = (5/2)R$.

R: a)
$$\Delta U = 5 \text{ MJ}$$
; b) $L = 0$; c) $Q_v = \Delta U = 5 \text{ MJ}$.

3. O cantitate de v = 2 kmoli de dioxid de carbon este încălzită la presiune constantă cu $\Delta I = 50$ K Să se afle: a) variația energiei interne ΔU a gazului; b) lucrul mecanic efectuat de gaz; c) căldura Q_r absorbită. Se cunoaște $C_p = 4$ R.

R: a)
$$\Delta U = 2,493 \text{ MJ}$$
; b) $L = 831 \text{ kJ}$; c) $Q_P = 3324 \text{ kJ}$.

4. Un gaz ocupă volumul $V_1 = 51$ la presiunea $p_1 = 2 \cdot 10^5$ N/m² și temperatura $t_1 = 17^{\circ}$ C. Gazul este încălzit izobar și efectuează un lucru mecanic L = 196 J. Să se afle cu cât s-a încălzit gazul.

R:
$$\Delta T = \frac{LT_1}{p_1 V_1} = 57K$$

5. Într-un cilindru cu piston mobil fără frecări se află o masă m=1 kg de azot ($\mu=28$ kg/kmol). a) Ce căldură absoarbe gazul pentru ca temperatura lui să crească cu $\Delta T=10$ K? b) Să se afle înălțimea Δh cu care se ridică pistonul după încălzirea gazului. Greutatea pistonului G=9.8 N, secțiunea sa S=1m². Presiunea atmosferică deasupra pistonului $P_0=1$ atm. Pentru azot $C_p=(7/2)R$.

R: a)
$$Q_p = vC_p\Delta T = 10.4 \text{ kJ}$$
; b) $\Delta h = \frac{vR\Delta T}{Sp_0 + G} = 2.9 \text{cm}$.

(2