Notes for James R. Munkres' Topology (2E)

Shou

January 21, 2016

Contents

0	Structure and reading plans	2
1	Set theory and logic	•

Chapter 0

Structure and reading plans

Ch 1-8 is the part I, mainly for common topology. The part II includes ch 9-14, that depends on ch 1-4, is about algebraic topology.

My plan is to read through ch 1-4 very quickly, within a weekend, and then I will start reading ch 9+ simultaneously with W.S.Massey's Agelbraic topology: An induction

Finally I wish I could finish all ch 1-8 and also some parts after ch 9.

Chapter 1

Set theory and logic

Definition 1.1. Order relation rel C on set A is called *order relation* if

- 1. comparability, i.e. $\forall x, y \in A, x \neq y \Rightarrow xCy \vee yCx$
- 2. non-refl, i.e. $\forall x, \neg(xCx)$
- 3. trans, i.e. $\forall xCy \land yCz, xCz$

(a.k.a. linear order)

Definition 1.2. Open interval if X is a set and < is an order rel, and if a < b we use notation (a, b) to denote $\{x \in X \mid a < x < b\}$, called *open interval*.

If $(a, b) = \emptyset$, then a is called *immediate precessor* of b and b called *immediate successor* of a.

Remark. It makes more sense on X is a discrete set. Since if (a,b) is an open interval in \mathbb{R} , $(a,b) = \emptyset \Rightarrow a = b$ which makes no sense on a as an immediate precessor of b.

Definition 1.3. Order Type if A and B are two sets with A and B are two sets with A and B have same order type if $\exists f : A \to B$ that preserves order, i.e.

$$a_1 <_A b_1 \Rightarrow f(a_1) <_B f(b_1)$$

Remark. It's just a generalization of monotone function.

Definition 1.4. Dictionary order relation if A,B are two sets with $(<_A,<_B)$, defin an order for $A \times B$ by defining

$$a_1 \times b_1 < a_2 \times b_2$$

if $a_1 <_A a_2$, or if $a_1 = a_2 \land b_1 <_B b_2$.

Definition 1.5. LUB property/GLB property For A and $<_A$, we say A has LUB property if

$$\forall A_0 \subset A, A \neq \emptyset \land \exists upper bound for A_0 \Rightarrow \exists lub\{A_0\} \in A$$

Example 1.5.1. A = (-1,1). *e.g.* $X = \{1 - \frac{1}{n} \mid n \in \mathbb{Z}^+\}$ does not have an upper bound, thus vacuously true. $\{-\frac{1}{n} \mid n \in \mathbb{Z}^+\}$ has upper bound of any number in $[0,1) \subset A$, and $\text{lub}(X) = 0 \in (-1,1)$.

Example 1.5.2. Counterexample. $A = (-1,0) \cup (0,1)$. $\{-\frac{1}{n} \mid n \in \mathbb{Z}^+\}$ has upper bound of any $(0,1) \subset A$, while $\text{lub}(X) = 0 \notin A$.

Remark. The completeness property of \mathbb{R} as an axiom derives this property.

Property 1.1. \mathbb{R} field

Algebraic properties

- 1. assoc: (x + y) + z = x + (y + z); (xy)z = x(yz)
- 2. comm: x + y = y + x; xy = yx
- 3. id: $\exists !0, x + 0 = x; \exists !1, x \neq 0 \Rightarrow x1 = x$
- 4. inv: $\forall x, \exists ! y, x + y = 0; \forall x \neq 0, \exists ! y, xy = 1$
- 5. distr: x(y+z) = xy + xz

Mixed algebraic and order property

6.
$$x > y \Rightarrow x + z > y + z$$
; $x > y \land z > 0 \Rightarrow xz > yz$

Order properties

- 7. < has LUB property
- 8. $\forall x < y, \exists z, x < z \land z < y$

1-6 make \mathbb{R} a field. 1-6 + 7 make \mathbb{R} an ordered field. 7-8 makes \mathbb{R} , called by topologists, a **linear continuum**.