First network example: Braess network

- ► Traffic flows from O to D via two junctions (North and South).
- ► <u>Note</u>: extreme choices for link costs link 5 is a kind of perfect short cut!!!!
- Note: symmetry in the network: $\lim 1 \equiv \lim 4$ and $\lim 2 \equiv \lim 3$

- ► Three distinct routes, North, South and Midtown.
- ▶ Link flows x can be expressed in terms of route flows y.
- ► Low demand: all traffic takes the short-cut midtown route.

Braess network: UE solution

► Route costs (per user) are:

$$c_{N} = 1 + y_{N} + y_{M}$$

 $c_{S} = 1 + y_{S} + y_{M}$
 $c_{M} = y_{N} + y_{S} + 2y_{M}$

▶ Suppose demand d = 1.

▶ UE solution is

$$y_{
m M}=1$$
 and $y_{
m N}=y_{
m S}=0.$

► Check route costs (per user):

$$c_{
m M}=2\leq$$
 (actually equals) $c_{
m N},c_{
m S}$

▶ UE System cost f = 2 (remember this).

Braess network: SO solution and the paradox

- ▶ Recall: for d = 1, the UE solution has all traffic using the midtown route $(y_M = 1)$ with system cost f = 2.
- ▶ If instead $y_{\rm N}=y_{\rm S}=1/2$ and $y_{\rm M}=0$, we get f=3/2, and this is the System Optimal (SO) assignment with $c_{\rm N}=c_{\rm S}=3/2$ and $c_{\rm M}=1$.

- ▶ But $y_N = y_S = 1/2$ is the solution of the UE problem with the midtown link deleted.
- ► <u>Upshot:</u> closing the midtown link improves the traffic!!! (reduces system cost of UE solution)