# Carom API 문서

22.07.14 - 22.08.29

소속 | 광운대학교 작성 | 김민지, 이종윤, 이탁균

# 목차

| I. 개요                | 3  |
|----------------------|----|
| II. Detect 파트        | 4  |
| 1. DetectObjectPipe  | 4  |
| 2. FindEdgePipe      | 5  |
| 3. CheckDetectPipe   | 6  |
| 4. ConvertToxywhPipe | 7  |
| 5. DetectIndexPipe   | 8  |
| III. Tracking 파트     | 9  |
| 1. 클래스 설명            | 9  |
| 2. bagreader.py      | 11 |
| 3. balltracker.py    | 12 |
| 4. curve.py          | 14 |
| 5. cvtCoord.py       | 16 |
| 6. pointmodify.py    | 17 |
| 7. predict.py        | 22 |
| 8. ballpredictor.py  | 24 |

## I.개요

Carom(가명)은 탑 뷰의 당구 영상을 입력 받아 공의 이동 경로와 충돌 이벤트를 출력하는 Detect파트와 Tracking 파트로 분리되어 있다.

Detect 파트에서 각 프레임 별 당구공(이하 공) 3개와 테이블 아스트로 안쪽 코너(이하 모서리) 4개를 탐지하고 Track 파트에서 누락된 경로와 충돌 이벤트를 추론한다.

## II.Detect 파트

## 1. DetectObjectPipe

#### 기능

yolov5 를 통해 4개의 모서리와 3개의 공을 탐지하는 파이프 클래스이다. 4개의 모서리는 서로 구분되지 않고 3개의 공도 서로 구분되지 않는다.

### 입력

| 변수명 | 타입  | 설명                                                                                          | 예시 |
|-----|-----|---------------------------------------------------------------------------------------------|----|
| im  | 이미지 | 영상을 프레임 단위로 나눈 이미지를<br>yolo에서 detect를 위해 규격을<br>조정한 버전<br>사이즈를 32의 배수로 하기 위해<br>패딩값이 더해져 있음 |    |

| 변수명  | 타입  | 설명                                                                                                           | 예시                                                                                                                                          |
|------|-----|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| dets | 리스트 | 객체의 정보를 담고 있는 딕셔너리에<br>대한 리스트<br>(해당 딕셔너리는 프레임번호,<br>바운딩박스 좌상단의 x, y,<br>바운딩박스 우하단의 x, y, 신뢰도,<br>객체종류로 구성됨) | [{"frame": 1, "x": 0, "y":0, "w":10, "h":10, "conf": 0.9, "cls": 0 }, {"frame": 1, "x": 10, "y":10, "w":20, "h":20, "conf": 0.9, "cls": 0}] |

## 2. FindEdgePipe

## 기능

프레임 별로 탐지된 모서리의 좌표를 한 영상에 대한 모서리로 결정하는 클래스이다.

### 입력

| 변수명  | 타입  | 설명                                                                                                                   | 예시                                                                                                                                          |
|------|-----|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| im0  | 이미지 | 영상을 프레임 단위로 자른 이미지                                                                                                   |                                                                                                                                             |
| dets | 리스트 | 탐지된 모서리 객체의 정보를 담고<br>있는 딕셔너리에 대한 리스트<br>(해당 딕셔너리는 프레임번호,<br>바운딩박스 좌상단의 x, y,<br>바운딩박스 우하단의 x, y, 신뢰도,<br>객체종류로 구성됨) | [{"frame": 1, "x": 0, "y":0, "w":10, "h":10, "conf": 0.9, "cls": 0 }, {"frame": 1, "x": 10, "y":10, "w":20, "h":20, "conf": 0.9, "cls": 0}] |

| 변수명    | 타입   | 설명                                                                                                             | 예시                                                           |
|--------|------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| result | 딕셔너리 | 당구대 모서리 4개의 좌표<br>TL - 좌상단(Top Left)<br>TR - 우상단(Top Right)<br>BL - 좌하단(Bottom Left)<br>BR - 우하단(Bottom Right) | {"TL": (0,0), "TR": (800,0), "BL": (0,400), "BR": (800,400)} |

## 3. CheckDetectPipe

#### 기능

공에 대한 탐지를 정상적으로 진행했는지 확인하는 클래스이다. 한 영상에서 3개 미만이나 3개를 초과하여 공을 탐지한 프레임이 10개 이상이면 비정상적인 영상의 삽입으로 판단한다.

#### 입력

| 변수명  | 타입  | 설명                                                                                                                 | 예시                                                                                                                                                       |
|------|-----|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| dets | 리스트 | 탐지된 공 객체의 정보를 담고 있는<br>딕셔너리에 대한 리스트<br>(해당 딕셔너리는 프레임번호,<br>바운딩박스 좌상단의 x, y,<br>바운딩박스 우하단의 x, y, 신뢰도,<br>객체종류로 구성됨) | [{"frame": 1, "x": 0, "y":0, "w":10,<br>"h":10, "conf": 0.9, "cls": 0 },<br>{"frame": 1, "x": 10, "y":10, "w":20,<br>"h":20, "conf": 0.9, "cls": 0}<br>] |

#### 출력

정상적인 영상으로 판단 되면 입력을 그대로 출력하고, 비정상적인 영상으로 판단 되면 NotEnoughDetectError 를 발생시킴

## 4. ConvertToxywhPipe

## 기능

DetectObjectPipe에서 xyxy로 넘겨준 좌표에 대해서 xywh로 변경해 주는 클레스 이다.

#### 입력

| 변수명  | 타입  | 설명                                                                                                                 | 예시                                                                                                                                         |
|------|-----|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| dets | 리스트 | 탐지된 공 객체의 정보를 담고 있는<br>딕셔너리에 대한 리스트<br>(해당 딕셔너리는 프레임번호,<br>바운딩박스 좌상단의 x, y,<br>바운딩박스 우하단의 x, y, 신뢰도,<br>객체종류로 구성됨) | [{"frame": 1, "x": 0, "y":0, "w":10, "h":10, "conf": 0.9, "cls": 0 }, {"frame": 1, "x": 10, "y":10, "w":20, "h":20, "conf": 0.9, "cls": 0} |

| 변수명    | 타입   | 설명                                                                                                                        | 예시                                                                                                                                                |
|--------|------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| result | 딕셔너리 | 탐지된 공 객체의 정보를 담고 있는<br>딕셔너리에 대한 리스트<br>(해당 딕셔너리는 프레임번호,<br>바운딩박스_center-x, center-y,<br>width, height, 신뢰도, 객체종류로<br>구성됨) | [{"frame": 1, "x": 5, "y"5, "w":10,<br>"h":10, "conf": 0.9, "cls": 0 },<br>{"frame": 1, "x": 15, "y":15, "w"10,<br>"h":10, "conf": 0.9, "cls": 0} |

## 5. DetectIndexPipe

### 기능

DetectObjectPipe에서 구분하지 않았던 공을 같은 공에 대해 같은 id를 부여하여 구분짓는 클래스이다. StrongSort를 사용했다.

#### 입력

| 변수명  | 타입  | 설명                                                                                                                        | 예시                                                                                                                                                 |
|------|-----|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| im0  | 이미지 | 영상을 프레임 단위로 자른 원본<br>이미지                                                                                                  |                                                                                                                                                    |
| dets | 리스트 | 탐지된 공 객체의 정보를 담고 있는<br>딕셔너리에 대한 리스트<br>(해당 딕셔너리는 프레임번호,<br>바운딩박스 center-x, center-y,<br>width, height, 신뢰도, 객체종류로<br>구성됨) | [{"frame": 1, "x": 5, "y"5, "w":10,<br>"h":10, "conf": 0.9, "cls": 0 },<br>{"frame": 1, "x": 15, "y":15, "w"10,<br>"h":10, "conf": 0.9, "cls": 0}] |

| 변수명    | 타입   | 설명                                                                                                                            | 예시                                                                                                                                                        |
|--------|------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| result | 딕셔너리 | 탐지된 공 객체의 정보를 담고 있는<br>딕셔너리에 대한 리스트<br>(해당 딕셔너리는 프레임번호,<br>바운딩박스 center-x, center-y,<br>width, height, 신뢰도, 객체종류,<br>id로 구성됨) | [{"frame": 1, "x": 5, "y"5, "w":10, "h":10, "conf": 0.9, "cls": 0, "id":1 }, {"frame": 1, "x": 15, "y":15, "w"10, "h":10, "conf": 0.9, "cls": 0, "id":0}] |

# III.Tracking 파트

## 1. 클래스 설명

| Ball Class                  |                      |                                                                                                                                                                             |  |
|-----------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 공 하나에 대                     | 공 하나에 대한 정보들을 담은 클래스 |                                                                                                                                                                             |  |
| 멤버 변수                       |                      |                                                                                                                                                                             |  |
| 변수명                         | 타입                   | 설명                                                                                                                                                                          |  |
| ball_list                   | list                 | detector에서 전달된 공의 좌표 정보들이 저장된 리스트, 프레임 순서대로<br>Binfo 객체들이 저장됨                                                                                                               |  |
| modified_<br>ball_<br>list  | list                 | modify_soft를 통해 검출이 안된 프레임의 좌표를 추론하여 생성하고<br>modify_hard를 통해 생성된 공의 좌표 정보들이 저장된 리스트, 프레임<br>순서대로 Binfo 객체들이 저장됨                                                             |  |
| id                          | int                  | 객체를 구분하는 id, 1~4는 각각 위/왼쪽/아래/오른쪽 쿠션, 5는 큐볼, 6은 제<br>1목적구, 7은 제 2목적구                                                                                                         |  |
| lalst_<br>event_<br>obj     | int                  | 마지막으로 충돌한 객체의 id                                                                                                                                                            |  |
| event_<br>frame             | list                 | 충돌이 발생했던 프레임 번호를 저장한 리스트                                                                                                                                                    |  |
| last_<br>csh_<br>dist       | float                | 마지막으로 쿠션과 충돌했을 때 해당 쿠션까지의 거리                                                                                                                                                |  |
| 멤버 함수                       |                      |                                                                                                                                                                             |  |
| 함수명                         |                      | 설명                                                                                                                                                                          |  |
| insert_obj(s                | self, obj)           | ball_list에 Binfo 객체인 obj를 저장하는 메소드                                                                                                                                          |  |
| check_move(self, index)     |                      | 해당 인덱스의 프레임에서 공의 이동 여부를 판단하는 메소드. 두 프레임 전의<br>좌표와 비교하여 2.24(≒√5)픽셀 이상 차이가 나면 이동으로 판단<br>이동 판단의 기준 값인 2.24를 고정값으로 사용하고 있어 영상의 크기나<br>영상을 촬영한 카메라와 당구대의 거리 등에 따라 결과가 달라질 수 있음 |  |
| add_move(                   | self)                | detector에서 입력으로 받은 공의 좌표 정보들에 각 프레임에서 공의 이동<br>여부를 추가하는 메소드                                                                                                                 |  |
| insert_pred<br>x, y, index) | ict(self, fr,        | 입력으로 받은 정보들을 보정된 리스트의 특정 인덱스에 저장하는 메소드                                                                                                                                      |  |

| find_index(self, tar_frame)                                | 보정된 리스트에서 입력 받은 프레임이 몇 번째 인덱스에 있는지 리턴하는<br>메소드                                                                |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| add_event(self,<br>obj1_id, obj2_id,<br>event_frame, dist) | 입력 받은 객체 1의 id가 해당 객체와 일치하는 정보라면 마지막으로 충돌한<br>객체, 이벤트가 발생한 프레임, 쿠션과의 충돌이었다면 마지막으로 쿠션과<br>충돌했을 때의 거리를 갱신하는 메소드 |
| update_csh_event(self<br>, fr_old, fr_new)                 | 기존의 쿠션과 충돌했던 프레임 번호를 보정된 프레임 번호로 갱신하는<br>메소드                                                                  |
| delete_event(self, obj1_id)                                | 마지막으로 충돌했던 프레임 번호를 지우는 메소드                                                                                    |
| print(self)                                                | 보정된 리스트의 프레임, 좌표, 이동 여부를 출력하는 디버깅용 메소드                                                                        |

| Binfo Class | Binfo Class       |                                                   |  |
|-------------|-------------------|---------------------------------------------------|--|
| 공의 좌표 정     | 공의 좌표 정보를 저장한 클래스 |                                                   |  |
| 멤버 변수       | 멤버 변수             |                                                   |  |
| 변수명         | 타입                | 설명                                                |  |
| frame       | int               | 프레임 번호                                            |  |
| х           | float             | x좌표                                               |  |
| у           | float             | y좌표                                               |  |
| move        | bool              | 해당 프레임에 공이 움직이고 있었는지 여부. 움직였다면 참, 움직이지<br>않았다면 거짓 |  |

## 2. bagreader.py

#### 기능

- 1. detector에서 전달 받은 ball\_bags에서 정보를 읽어와 큐볼, 제 1목적구, 제 2목적구로 구분하여 저장
- 2. detector에서 전달 받은 edges에서 정보를 읽어와 당구대 모서리의 좌표에서 각 쿠션에 해당하는 두 모서리의 좌표들로 저장
- 3. Ball클래스에서 각각의 공을 id에 맞게 분류한 후 find\_cue()를 통해 큐볼과 목적구로 구분
- 4. 우상단, 좌상단, 좌하단, 우하단의 모서리 좌표를 [(우상단, 좌상단), (좌상단, 좌하단), (좌하단, 우하단), (우하단, 우상단)]으로 이루어진 cshline 리스트로 변환

#### 입력

| 함수명       | 타입   | 설명                                                                                                                                                                               |
|-----------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ball_bags | 리스트  | Detect 모듈로부터 전달 받은 ball_bag 리스트들이 저장된 리스트  ball_bags는 ball_bag 리스트들이 저장된 리스트 ball_bag 리스트는 ball 딕셔너리가 저장된 리스트 ball 딕셔너리는 frame, x, y, w, h, id, conf 값을 키값으로 가지는 공의 정보가 저장된 딕셔너리 |
| edges     | 딕셔너리 | FindEdgePipe로부터 전달받은 Edge값이 저장된 딕셔너리                                                                                                                                             |

| 변수명     | 타입         | 설명                                                                                      |
|---------|------------|-----------------------------------------------------------------------------------------|
| cue     | Ball Class | 큐 볼에 대한 Ball Class                                                                      |
| tar1    | Ball Class | 제1적구에 대한 Ball Class                                                                     |
| tar2    | Ball Class | 제2적구에 대한 Ball Class                                                                     |
| cshline | 리스트        | 우상단, 좌상단, 좌하단, 우하단의 모서리 좌표를 [(우상단, 좌상단), (좌상단,<br>좌하단), (좌하단, 우하단), (우하단, 우상단)]으로 변환한 것 |

## 3. balltracker.py

## 기능

tracking 관련 연산 함수를 정의한 파일이다.

| 변수명                               | 설명                                                                                                         |
|-----------------------------------|------------------------------------------------------------------------------------------------------------|
| get_vector(b_curr,<br>b_prev)     | Binfo 객체를 입력받아 방향 벡터를 반환                                                                                   |
| norm(vector)                      | 벡터를 입력받아 단위 벡터를 반환                                                                                         |
| get_degree(vector_in, vector_out) | 두 벡터가 이루는 사이 각을 반환                                                                                         |
| find_ini(ball_list)               | ball_list에서 공이 최초로 움직이기 시작하는 인덱스를 반환                                                                       |
| point_dist(obj1, obj2)            | Binfo 객체를 입력받아 두 객체 사이의 거리를 반환                                                                             |
| get_dist(p1, p2)                  | 두 좌표를 입력받아 좌표 사이의 거리를 반환                                                                                   |
| line_dist(b, line)                | Binfo 객체 b와 선분을 이루는 두 좌표 line을 입력받아 b에서 line까지의<br>최단거리를 반환                                                |
| line_dist_point(b, line)          | 좌표 b와 선분을 이루는 두 좌표 line를 입력받아 b에서 line까지의<br>최단거리를 반환                                                      |
| find_cue(b1, b2, b3)              | Ball 객체 세 개를 입력받아 최초로 움직인 프레임을 비교하여 큐볼, 제<br>1목적구, 제 2목적구 순으로 정렬하여 반환                                      |
| is_cue(b1, b2)                    | b1이 b2보다 최초로 움직인 프레임이 빠른 경우 참을 반환     최초로 움직인 프레임이 같은 경우 두 공의 중심을 이은 방향으로 튕겨나간 공을 목적구로 판단                  |
| make_line(ball)                   | <ul> <li>공의 좌표들을 통해 전체 이동경로를 그린 ball_line을 반환</li> <li>공의 좌표들을 event_frame을 기준으로 구간을 나누고 각 구간별로</li> </ul> |

| make_curve로 곡선을 이루는 연속된 점의 좌표들을 구하여 전체<br>이동경로에 대한 경로를 구함 |
|-----------------------------------------------------------|

## 4. curve.py

### 기능

이동 경로가 표시된 점들을 하나의 선으로 바꾸기 위한 함수들을 정의하는 파일이다.

| 함수명                                 | 설명                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| make_curve(ball_list)               | <ul> <li>충돌 지점을 기준으로 나뉘어진 구간을 입력으로 받고 해당 구간의 좌표들을 근접하게 지나는 연속된 점들의 집합을 반환</li> <li>구간의 시작점에서 끝점 방향으로의 방향벡터를 계산</li> <li>T_R_origin()을 통해 시작점이 원점에 위치하도록 구간 전체를 이동시키고 방향 벡터가 x축의 양의 방향과 일치하도록 회전된 좌표의 리스트를 받음</li> <li>변환된 좌표에서 curve_fit2() 함수로 2차함수를 근사하고 구간 내의 각 x좌표에 대해서 2차함수로 근사된 y좌표를 구해 리스트로 저장</li> <li>곡선을 이루는 점들의 좌표를 R_T_reverse() 함수를 통해 다시 원래의 위치로 회전 및 이동시킨 좌표로 변환하여 반환</li> <li>곡선의 저장된 좌표들은 x좌표 값에 따라 오름차순으로 저장되며 구간에서의 공이 이동한 순서와는 일치하지 않음</li> </ul> |
| curve_fit(xs, ys)                   | 동일한 인덱스끼리 매칭되는 x 좌표 리스트와 y 좌표 리스트를 입력으로 받고<br>해당 좌표들을 근접하게 지나는 2차 함수를 근사하여 계수들을 리턴                                                                                                                                                                                                                                                                                                                                                                                    |
| curve_fit2(xs, ys)                  | <ul> <li>curve_fit() 함수에서 x, y 좌표 리스트를 입력으로 받아 근사한 2차함수는 시작점과 끝점을 지나지 않을 수 있기 때문에 양 끝점과 구간 안의 특정한 점을 잡아 세 점을 지나는 2차함수를 다시 근사</li> <li>구간 안의 특정한 점은 2차함수 곡선에서 시작점과 끝점에서의 기울기의 평균에 해당하는 기울기를 가지는 지점</li> </ul>                                                                                                                                                                                                                                                          |
| calc_y(x, coefficients)             | x좌표와 근사로 얻은 2차함수의 계수를 입력으로 받아 x 좌표에 해당하는 y<br>좌표를 반환                                                                                                                                                                                                                                                                                                                                                                                                                  |
| calc_y_prime(x, coefficients)       | x 좌표와 근사로 얻은 2차함수의 계수를 입력으로 받아 x 좌표에 해당하는<br>2차함수 위의 점에서의 기울기를 반환                                                                                                                                                                                                                                                                                                                                                                                                     |
| get_middle_point(xs, coefficients)  | 구간의 x 좌표들과 근사로 얻은 2차함수의 계수를 입력으로 받아 시작점과<br>끝점에서의 기울기를 계산하고 2차함수 위에서 그 기울기들의 평균에<br>해당하는 기울기를 가지는 점의 x좌표를 반환                                                                                                                                                                                                                                                                                                                                                          |
| T_R_origin(ball_list, start, theta) | 구간의 좌표들을 시작점이 원점에 위치하고 시작점에서 끝점으로의 방향벡터가 x좌표의 양의 방향과 일치하도록 이동 후 회전 시킨 좌표들로 변환                                                                                                                                                                                                                                                                                                                                                                                         |

| R_T_reverse(ball_list, | T_R_origin에서의 과정을 역순으로 행하여 구간의 좌표들을 다시 원래의 |
|------------------------|--------------------------------------------|
| start, theta)          | 위치로 변환                                     |

## cvtCoord.py

### 기능

- 1. 영상을 당구대 나사 안쪽 부분만 보이도록 변환한다
- 2. 모든 좌표들을 800x400으로 정규화 한다

| 함수명                   | 설명                                                                                                                                                                                                             |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| make_pers(cshline)    | <ul> <li>cshline을 입력받아 cshline 좌표 내부의 영역을 800x400 크기의<br/>영역으로 변환하는 변환행렬을 계산하여 반환</li> <li>cshline에서 네 모서리이 좌표를 얻고 모서리 내부의 영역을<br/>cv2.getPerspectiveTransform()을 이용해 800x400 크기로 변환하는<br/>변환행렬을 계산</li> </ul> |
| cvtCoord(x, y, pers)  | x, y 좌표를 입력받아 800x400 크기로 변환한 영역에서 해당 좌표에<br>대응하는 변환된 좌표를 반환                                                                                                                                                   |
| cvtball(ball, pers)   | Ball 클래스를 입력받아 modified_ball_list의 좌표들을 모두 800x400으로<br>변환된 영역의 좌표로 변환                                                                                                                                         |
| cvtline(line, pers)   | make_curve()를 통해 만들어진 곡선의 리스트를 800x400으로 변환된<br>영역의 좌표로 변환                                                                                                                                                     |
| cvtimgs(imgs, pers)   | 이미지에서 당구대 내부에 해당하는 영역만 분리하여 800x400 크기로 변환                                                                                                                                                                     |
| cvtcsh(cshList, pers) | 쿠션의 좌표들을 800x400으로 변환된 영역의 좌표로 변환                                                                                                                                                                              |

## 6. pointmodify.py

## 기능

각 점들을 보정하기 위한 함수들을 정의하는 파일이다.

| 함수명                                 | 설명                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| modify_soft(ball_list)              | <ul> <li>detector에서 전달받은 좌표들 중 공을 검출하지 못한 프레임에서의 좌표를 추정하여 생성</li> <li>find_collision_soft()를 통해 충돌이 발생할 가능성이 있는 모든 지점을 구함</li> <li>find_collision_soft()에서 구한 지점들을 기준으로 구간을 나누고 각 구간에서 프레임 번호를 비교해 공이 검출되지 않은 프레임이 있는지 검사</li> <li>modify_miss()를 통해 검출하지 못한 프레임에서의 좌표들을 생성</li> <li>각각의 구간들을 합쳐 누락이 보정된 전체 구간을 반환</li> </ul>                                                                                                                                                                  |
| modify_miss(fixed, index, miss_len) | <ul> <li>구간의 좌표와 구간에서 누락이 발생한 지점의 인덱스 번호, 누락된 프레임의 개수를 입력으로 받고 누락된 프레임에서의 좌표를 추정하여 생성</li> <li>start_point는 누락이 발생하기 직전 프레임의 좌표</li> <li>end_point는 누락이 발생한 직후 프레임의 좌표</li> <li>curve_fit2() 함수로 구간의 경로를 2차함수로 근사</li> <li>start_point의 x좌표와 end_point의 x좌표 사이에서 누락된 프레임의 개수만큼 n개의 x 좌표들을 구하고 2차함수에 대입해 누락된 프레임에서의 x, y 좌표를 생성</li> <li>n개의 x좌표는 start_point의 x좌표에서부터 start_point 직전 프레임에서 start_point으로의 x의 변화량만큼 일정하게 x를 변화시킨 지점들</li> <li>새로 생성된 좌표들에서 이동 중인지 여부를 판단하여 move 값 지정</li> </ul> |





#### • 충돌이 있었다면

- 충돌이 없었던 연속된 두 좌표를 지나는 직선을 통해 들어오거나 나가는 방향을 파악
- 해당 방향의 직선에서 쿠션과의 거리가 ball\_radius에 해당하는 지점의 좌표를 보정된 좌표로 충돌 정보를 갱신
- 충돌이 없었던 연속된 두 좌표는 쿠션과 가장 가까웠던 프레임을 포함하지 않는 두 좌표와 들어오는 방향의 두 좌표를 우선함



# modify\_hit\_point(cue, tar, event\_list, cshline)

- 큐볼과 목적구가 충돌하는 지점을 실제 충돌 지점에 가깝도록 보정
- 큐볼이 목적구와 충돌하기 전 목적구를 향해 움직인 방향의 직선과 목적구가 튕겨나간 방향의 직선을 구하고 두 직선의 교점을 구함
- 보정된 충돌 지점이 오차범위 내에 존재하는지 검사하고 기존 충돌 지점보다 더 가까우면 쿠션 충돌 정보를 갱신
- 보정된 충돌 지점 전후로 쿠션과의 충돌이 있을 경우 쿠션 충돌 정보를 갱신



▶ 큐볼이 움직인 직후 목적구와 충돌한 경우 큐볼이 목적구와 맞고 튕긴



## 7. predict.py

## 기능

충돌 지점을 추론하는 함수들을 정의한 파일이다

| 함수명                                                              | 설명                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| find_collision_soft(fixe d_ball_list)                            | 공이 움직이기 시작한 시점부터 collision_check_soft()를 통해 충돌할<br>가능성이 있는 지점으로 판단되는 지점들을 col_list에 저장하여 반환                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| collision_check_soft(b<br>_post, b_curr, b_prev)                 | 이전 프레임과 비교하여 진행방향이 15' 이상 바뀐 경우 충돌할 가능성이 있는<br>것으로 판단하여 True를 반환                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| event_predict(cue, tar1, tar2, cshline, ball_margin, csh_margin) | <ul> <li>modify_soft()를 통해 누락된 프레임에 대해 보정을 거친 공의 좌표들에서 충돌이 있었던 프레임의 충돌 정보를 모아 반환</li> <li>충돌은 큐볼이 움직인 이후부터 발생하므로 last_event_idx를 큐볼이 움직인 시점으로 초기화</li> <li>nearest_csh()와 nearest_b()를 통해 last_event_idx 이후 각 유형의 충돌에 대해 발생할 수 있는 가장 빠른 충돌 정보들을 모아 possible_event_list에 저장</li> <li>possible_event_list를 충돌이 발생한 프레임 기준 오름차순으로 정렬</li> <li>last_event_idx 이후로 가장 먼저 충돌이 발생하는 프레임으로 last_event_idx를 갱신하고 충돌 정보를 event_list에 저장</li> <li>해당 프레임에 여러 번의 충돌이 있었다면 그 충돌 정보들을 모두 저장</li> <li>event_list에 저장한 충돌 정보에 따라 각 공 객체들의 last_event_obj와 last_csh_dist를 갱신</li> <li>다시 nearest_csh()와 nearest_b()로 예상 충돌 정보들을 얻고 가장 빠른 충돌 정보들만 저장하는 과정을 반복</li> </ul> |
| nearest_csh(ball,<br>cshline,<br>last_event_idx,<br>csh_marign)  | <ul> <li>● 공이 last_event_idx 이후로 가장 먼저 쿠션과 충돌하는 프레임의 충돌 정보를 반환</li> <li>● prev_moved 리스트에는 순서대로 이전 프레임에서 위쪽 / 왼쪽 / 아래쪽 / 오른쪽 쿠션까지의 거리변화가 저장됨</li> <li>● last_event_idx 이후의 좌표들을 하나씩 확인하면서 각 쿠션에 대해 이전 프레임과의 거리 변화를 비교</li> <li>● 공이 쿠션과 margin 이내의 거리에서 가까워지다가 멀어지는 지점이 발생하면 해당 지점을 충돌 지점으로 판단하여 충돌 정보를 반환</li> <li>● 공이 마지막으로 충돌한 객체가 동일한 방향의 쿠션인 경우 마지막으로 충돌한 쿠션과의 거리를 비교하여 더 가까웠던 충돌 지점을 저장하도록 예외처리하였음</li> <li>● margin은 csh_margin을 최소값으로 하고 쿠션에 가까워지는 정도에</li> </ul>                                                                                                                                                                             |

|                                                  | 따라 늘어남                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nearest_b(cue, tar, last_event_idx, ball_margin) | <ul> <li>큐볼이 last_event_idx 이후로 가장 먼저 목적구와 충돌하는 프레임의 충돌 정보를 반환</li> <li>prev_moved는 이전 프레임에서 목적구까지의 거리변화가 저장됨</li> <li>last_event_idx 이후의 좌표들을 하나씩 확인하면서 큐볼과 목적구의 거리 변화를 비교</li> <li>큐볼과 목적구가 margin 이내의 거리에서 가까워지다가 멀어지는 지점이 발생하면 해당 지점을 충돌 지점으로 판단하여 충돌 정보를 반환</li> <li>목적구가 정지상태인 경우 거리 변화에 상관없이 목적구가 움직이기 시작할 때의 큐볼의 위치를 반환</li> <li>큐볼과 목적구 중 정지상태의 공이 있다면 이동 중인 공의 현재 프레임의 좌표와 이전 프레임의 좌표를 이은 선분에서 정지한 공까지의 최단거리로 거리를 비교함</li> <li>목적구가 정지한 상태에서는 margin을 1.4배 크게 계산함</li> </ul> |

### 8. ballpredictor.py

#### 기능

Tracking 모듈의 메인함수 역할을 하는 파일이다.

#### 설명

- detector에서 검출한 공과 모서리, 영상의 가로 길이, 영상 이미지를 입력을 받고 공의 충돌정보와 공의 이동경로가 그려진 영상 이미지를 반환
- ball\_margin은 공끼리 충돌할 때의 margin, csh\_margin은 공과 쿠션이 충돌할 때의 margin, ball\_radius는 쿠션 충돌 지점을 보정하여 생성될 좌표가 쿠션으로부터 떨어진 거리로 공의 반지름을 의미
- bag\_reader()를 통해 큐볼과 목적구를 구분하고 모서리의 좌표를 각 쿠션을 이루는 두 좌표쌍으로 변화
- modify\_soft()를 통해 각 공에 대해서 검출이 안된 프레임의 공의 좌표를 생성
- event\_predict()에서 충돌이 발생한 지점을
- modify\_hard()에서 충돌이 발생한 지점을 실제 충돌 지점에 가깝도록 보정
- make\_line()으로 공의 전체 경로를 선으로 형성
- 영상 이미지와 좌표들을 당구대 내부 영역만 분리하여 800x400 크기로 변환
- 변환된 이미지에 쿠션의 범위와 각 공의 이동경로를 그림
- event\_list에서 출력 형식에 맞는 문자열로 변환
- 충돌 정보를 저장한 event\_str과 각 공의 이동 경로가 그려진 이미지 draw\_imgs를 반환