Machine Learning Analysis of Pulmonary Artery Metafeatures

Roshan Lodha

18 February, 2023

Introduction

Loading Demographic Data

```
ct$scan <- "CT"
mri$scan <- "MRI"

ct <- ct %>% dplyr::select(colnames(mri))
dem <- rbind(ct, mri)
dem</pre>
```

```
dictionary <- read_csv("./data/vanderbilt/radiogenomics_data_dictionary.csv")
dictionary</pre>
```

Table 1

```
dem$gender <-
  factor(dem$gender,
         levels = c(0, 1, 2),
         labels = c("Female",
                    "Male",
                     "Unknown"))
dem$race <-
  factor(dem$race,
         levels = c(0, 1, 2, 3, 4, 5, 6),
         labels = c("American Indian/Alaska Native",
                     "Asian",
                     "Black or African American",
                    "Native Hawaiian or Other Pacific Islander",
                     "White",
                     "Other",
                    "Declined/Prefer not to answer"))
dem$ethnicity <-</pre>
  factor(dem$ethnicity,
         levels = c(0, 1, 2),
         labels = c("Hispanic",
                    "Not Hispanic",
                     "Declined/Prefer not to answer"))
```

```
dem$htn <-
  factor(dem$htn,
         levels = c(0, 1),
         labels = c("No Hx of Hypertension",
                    "Hx of Hypertension"))
dem$diabetes <-
 factor(dem$diabetes,
        levels = c(0, 1),
         labels = c("No Hx of Diabetes",
                    "Hx of Diabetes"))
dem$chf <-
 factor(dem$chf,
         levels = c(0, 1),
         labels = c("No Hx of CHF",
                    "Hx of CHF"))
dem$cad <-
  factor(dem$cad,
        levels = c(0, 1),
         labels = c("No Hx of CAD",
```

```
"Hx of CAD"))
#dem$pad <-
# factor(dem$pad,
         levels = c(0, 1),
#
          labels = c("No Hx of PAD",
#
                      "Hx of PAD"))
#dem$mi <-
# factor(dem$mi,
          levels = c(0, 1),
#
          labels = c("No Hx of MI",
#
                     "Hx of MI"))
dem$stroke_tia <-</pre>
  factor(dem$stroke_tia,
         levels = c(0, 1),
         labels = c("No Hx of Stroke or TIA",
                    "Hx of Stroke or TIA"))
dem$osa <-
  factor(dem$osa,
         levels = c(0, 1),
         labels = c("No Hx of OSA",
                    "Hx of OSA"))
```

```
label(dem$scan) <- "Imaging Modality"
label(dem$gender) <- "Gender"
label(dem$race) <- "Race"
label(dem$ethnicity) <- "Ethnicity"
label(dem$age_ablation) <- "Age at Ablation"
label(dem$pt_height) <- "Height"
label(dem$weight) <- "Weight"
label(dem$weight) <- "History of Hypertension"
label(dem$fiabetes) <- "History of Diabetes"
label(dem$chf) <- "History of Congestive Heart Failure"

table1 <- table1(~ gender + race + ethnicity + age_ablation + pt_height + weight + htn + diabetes + chf
table1</pre>
```

	CT	MRI	Overall
	(N=725)	(N=618)	(N=1343)
Gender			
Female	262 (36.1%)	221 (35.8%)	483 (36.0%)
Male	463 (63.9%)	397 (64.2%)	860 (64.0%)
Unknown	0 (0%)	0 (0%)	0 (0%)
Race	, ,	, ,	, ,
American Indian/Alaska Native	1 (0.1%)	1(0.2%)	2(0.1%)
Asian	2(0.3%)	6 (1.0%)	8(0.6%)
Black or African American	16(2.2%)	9(1.5%)	25(1.9%)
Native Hawaiian or Other Pacific Islander	0 (0%)	1(0.2%)	1 (0.1%)
White	697 (96.1%)	591 (95.6%)	1288 (95.9%)

	СТ	MRI	Overall
Other	0 (0%)	2 (0.3%)	2 (0.1%)
Declined/Prefer not to answer	9(1.2%)	8 (1.3%)	17(1.3%)
Ethnicity	, ,	, ,	, ,
Hispanic	4~(0.6%)	5(0.8%)	9~(0.7%)
Not Hispanic	709 (97.8%)	605 (97.9%)	1314 (97.8%)
Declined/Prefer not to answer	$12\ (1.7\%)$	8 (1.3%)	$20 \ (1.5\%)$
Age at Ablation			
Mean (SD)	$66.3\ (10.6)$	63.8 (10.9)	65.2 (10.8)
Median [Min, Max]	67.4 [25.7, 87.4]	64.9 [22.9, 87.1]	66.2 [22.9, 87.4]
Height			
Mean (SD)	175 (10.6)	176 (10.5)	176 (10.5)
Median [Min, Max]	178 [147, 206]	177 [145, 201]	177 [145, 206]
Weight			
Mean (SD)	$98.1\ (24.5)$	$95.1\ (20.6)$	96.7(22.8)
Median [Min, Max]	95.3 [42.4, 199]	93.0 [43.0, 180]	95.0 [42.4, 199]
History of Hypertension			
No Hx of Hypertension	189~(26.1%)	201 (32.5%)	390 (29.0%)
Hx of Hypertension	$536 \ (73.9\%)$	417~(67.5%)	953~(71.0%)
History of Diabetes			
No Hx of Diabetes	572 (78.9%)	517~(83.7%)	1089~(81.1%)
Hx of Diabetes	153~(21.1%)	101~(16.3%)	254~(18.9%)
History of Congestive Heart Failure			
No Hx of CHF	594~(81.9%)	524~(84.8%)	$1118 \ (83.2\%)$
Hx of CHF	$131\ (18.1\%)$	$94\ (15.2\%)$	$225\ (16.8\%)$

Metafeatures Analysis

Loading Metafeatures

Dimensionality Analysis

```
vandy <- vandy[, which(apply(vandy, 2, var) != 0)]
vandy <- as.matrix(vandy)
vandy[!is.finite(vandy)] <- NA

vandy <- scale(vandy, center = TRUE, scale = colSums(vandy))</pre>
```

UMAP Plot

```
vandy.umap <- umap(na.omit(vandy))
vandy.umap.df <- merge(as.data.frame(dem), as.data.frame(vandy.umap$layout), by = 0)

vandy.umap.plot <- ggplot(data = vandy.umap.df, aes(x = V1, y = V2, color = factor(scan))) +
    geom_point(size = 2) +
    ggtitle("UMAP vs Dataset") +
    theme_prism()

#ggsave("./plots/LA.umap.png", plot = LA.umap.plot, height = 6, width = 6)
vandy.umap.plot</pre>
```

UMAP vs Dataset

PCA Analysis

```
vandy.pca <- prcomp(na.omit(vandy))
pca.var.explained <- cumsum(vandy.pca$sdev^2 / sum(vandy.pca$sdev^2))

scree.plot <- qplot(c(0:length(pca.var.explained)), c(0, pca.var.explained)) +
    geom_line() +
    xlab("Principal Component") +
    ylab("Variance Explained") +
    ggtitle("Scree Plot") +
    geom_hline(yintercept = 0.8) +
    ylim(0, 1) +</pre>
```

```
theme_prism()
#ggsave("./plots/LA.scree.png", plot = scree.plot, height = 6, width = 6) #12
scree.plot
```

0.75-0.25-0.00-0.75-0.00-0.10 20 30 40 Principal Component

```
vandy.pca.df <- merge(as.data.frame(dem), as.data.frame(vandy.pca$x[,1:44]), by = 0)
vandy.pca.plot <- ggplot(data = vandy.pca.df, aes(x = PC1, y = PC2, color = factor(scan))) +
   geom_point(size = 2) +
   ggtitle("PCA vs Dataset") +
   theme_prism()
#ggsave("./plots/LA.pca.png", plot = LA.pca.plot, height = 6, width = 6)
vandy.pca.plot</pre>
```


Correlation Between Metafeatures

```
vandy.corr <- cor(vandy)
#corrplot.mixed(vandy.corr, lower = "number", upper = "circle", order = "hclust", type = "full")
corrplot(vandy.corr, method = "square", order = "hclust", type = "upper")</pre>
```

PC1

