Simulação de Evacuação de Ambientes com Quantidade Massiva de Pedestres

Eduardo Gabriel Reis Miranda

Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais Campus Formiga – IFMG

29 de novembro de 2019

Conteúdo

- Introdução
- 2 Fundamentação Teórica
- Materiais e Métodos
- Projeto e Desenvolvimento
- Experimentos
- 6 Considerações Finais

Conteúdo

- Introdução
- 2 Fundamentação Teórica
- Materiais e Métodos
- Projeto e Desenvolvimento
- 5 Experimentos
- 6 Considerações Finais

Introdução

Planejar e executar experimentos de evacuação em ambientes reais ocupados por multidões de seres humanos envolve uma série de dificuldades que tornam esse tipo de estudo impraticável.

Por exemplo:

- Os custos de executar experimentos práticos
- Dificuldade de captar os dados
- Questões éticas e até mesmo legais envolvendo experimentos com seres humanos

Justificativa

Visando evitar casos trágicos como caso da boate *The Station* nos Estados Unidos, o caso da Boate Kiss ou possíveis incidentes em ambientes com grande quantidade de pessoas. Foi utilizada a simulação para tentar prever como as pessoas comportariam em uma situação de evacuação.

Figura 1: Memorial Montado no Local da Boate The Station em Rhode Island

Objetivos

Estudar o comportamento de multidões sob diferentes situações, em cenários da literatura e que representam ambientes de larga escala tais como igrejas, cinemas, estádios de futebol, clubes, catedrais e outros.

- Estudar o modelo de autômato celular;
- Modelar ambientes de larga escala;
- Implementar modelo de simulação e KPIs;
- Ajustar parâmetros do modelo;
- Experimentar o modelo em diferentes situações;
- Discutir os resultados encontrados.

Conteúdo

- Introdução
- 2 Fundamentação Teórica
- Materiais e Métodos
- Projeto e Desenvolvimento
- Experimentos
- 6 Considerações Finais

Equação da Movimentação dos Indivíduos

O movimento de cada individuo da simulação é realizado a partir da equação:

$$p_{ij} = N * \exp(-K_sS_{ij}) * \exp(K_DD_{ij}) * p_l * P_w * (n_{ij} - 1)$$

Figura 2: Vizinhança de Moore com 8 Movimentos Possíveis

Autômatos Celulares com Floor Field

Do campo estático apresentado por Varas [1], retiramos a primeira parte da equação do modelo que é $exp(-K_sS_{ij})$.

Figura 3: Campo estático

Autômatos Celulares com Dinamic Field

Do campo dinâmico apresentado por Nishinari [2], retiramos a segunda parte da equação do modelo que é $exp(K_DD_{ij})$.

Figura 4: Campo dinâmico

Autômatos Celulares com Potencial Inercial

Do potencial inercial apresentado por Nishinari [2], retiramos a terceira parte da equação do modelo que é $PI = exp(P_i(i,j))$.

Tabela 1: Valores do campo inercial com a direção anterior sendo direita.

1	1	1
1	\Rightarrow	$exp(K_i)$
1	1	1

Autômatos Celulares com Potencial Repulsivo de Paredes

Do potencial repulsivos de paredes proposto por Nishinari [2] retiramos a última da equação do modelo que é $PW = \exp(K_W * min(D_{max}, d))$

Figura 5: Efeito Repulsivo das Paredes

Conteúdo

- Introdução
- 2 Fundamentação Teórica
- Materiais e Métodos
- Projeto e Desenvolvimento
- Experimentos
- 6 Considerações Finais

Materiais

O projeto foi desenvolvido com as seguintes configurações:

Hardware

• Intel Core I5 6500U

RAM: 8GB DDR4 2400 MHz

HDD: 500 GB 5400 RPM

• SSD: WD Green 120 GB

Software

SO: Linux Mint 18.3

SO: Windows 10

Python: 3.7

Métodos

As fases do projeto foram:

- Estudo sobre os autômatos celulares;
- Aquisição das plantas baixas e modelagem das mesmas;
- Desenvolvimento do conversor de mapas;
- Caracterização dos indivíduos;
- Experimentação;
- Análise.

Conteúdo

- Introdução
- 2 Fundamentação Teórica
- Materiais e Métodos
- Projeto e Desenvolvimento
- 5 Experimentos
- 6 Considerações Finais

Simulador

Algorithm 1 Simulação Multidão Autômato Celular Carrega o mapa em forma de grid Calcula o floor field estático do grid 3: Gera indivíduos aleatoriamente, distribuído entre o grid 4: while ∃ indivíduos não evacuados do 5: Ordena os indivíduos de cada grid por distância da saída segundo o floor field estático for all indivíduos que ainda não evacuaram do grid do 6: for all célula na vizinhança deste indivíduo do 7: Calcula $p_{ij} = N * exp(-K_sS_{ij}) * exp(K_DD_{ij}) * p_I * p_W * (n_{ij} - 1)$ 8: 9: end for Move indivíduo para célula da vizinhança não ocupada com probabilidade p_{ij} 10: 11: Incrementa o floor field dinâmico da célula antes ocupada em 1 unidade 12: if célula escolhida corresponde à uma porta then 13: Transfere o indivíduo para a saída end if 14: end for 15: for all célula do grid do 16: 17: Atualiza floor field dinâmico D_{ij} em termos de difusão e decaimento

Figura 6: Pseudo-código do Simulador

end for 19: end while

18:

Calibragem dos Parâmetros

- K_s , K_d , K_w , $K_i \in \{0.5, 1.0, 1.5\}$
- Humano 'médio' inicial: Kd=0.5, Ks=1, Kw=1, Ki=1
- Humano 'médio' pós ajuste: Kd=1, Ks=2, Kw=0.3, Ki=1
- O que afeta o comportamento segundo Matheus Cunha [3]: Sexo, idade, grau de escolaridade, velocidade de deslocamento.

Conteúdo

- Introdução
- 2 Fundamentação Teórica
- Materiais e Métodos
- Projeto e Desenvolvimento
- 5 Experimentos
- 6 Considerações Finais

Experimentos

Tabela 2: Experimentos Realizados

Experimento	Local					
1	Escola Secundária					
II	Igreja da Nossa Senhora da Expectação (Icó/CE)					
III	Centro de Convivência (Vargem Bonita/MG) Ambiente de Culto					
IV	Centro de Convivência (Vargem Bonita/MG) Ambiente de Formatura					
V	Cinema Hipotético					
VI	Experimento da Literatura: Nishinari					

Planta Baixa da Escola Secundária

Figura 7: Planta Baixa da Escola Secundária

Modelagem da Escola Secundária

Figura 8: Modelagem da Escola Secundária

Campo Estático da Escola Secundária

Figura 9: Campo Estático da Escola Secundaria

Caracterização dos Indivíduos da Escola Secundária

Tabela 3: Caracterização dos Indivíduos da Escola Secundária

Categorias	Qtd	K_d	Ks	K_w	K_i	Turnos	Hexadecimal
Alunos	300	1.2	1.7	0.3	1.5	1	90EE90
Professores	13	1	2.1	0.3	1	1	ADD8E6
Servidores	14	1	2.2	0.3	1	1	006400

Resultados do Experimento da Escola Secundária

Tabela 4: Resultados do Experimento da Escola Secundária

	Min	Média	Med	Max	Var	DP	CV
Runtime	47.28	61.64	61.57	80.48	45.15	6.72	10.9
Iterações	150.0	197.55	198.0	252.0	451.5	21.25	10.76
Movimentos	21.0	23.26	23.0	25.0	0.71	0.84	3.63
Espera	2.0	2.52	3.0	3.0	0.25	0.5	19.93

Gráficos da Experimentação Número 19

Figura 10: Gráficos da Experimentação Número 19

Utilizando-se a fórmula $\frac{\Delta y}{\Delta x}$ para calculou-se que, até a iteração 75 a vazão encontrada é de 3,02 indivíduos, já da iteração 76 até o fim da evacuação a vazão de indivíduos é de 0,82 indivíduos por iteração.

29 de novembro de 2019

Gráficos da Experimentação Número 19 por Classe

Figura 11: Gráficos da Experimentação Número 19 por Classes

Devido a grande diferença da quantidade de indivíduos as 3 classes evacuaram quase no mesmo tempo.

Planta Baixa da Igreja

Figura 12: Planta Baixa da Igreja

Modelagem da Igreja

Figura 13: Modelagem da Igreja

Campo Estático da Igreja

Figura 14: Campo Estático da Igreja

Caracterização dos Indivíduos da Igreja

Tabela 5: Caracterização dos Indivíduos do Igreja

Categorias	Qtd	K _d	Ks	K _w	Ki	Turnos	Hexadecimal
Crianças	16	1.5	1.5	0.3	1.5	1	6A5ACD
Jovens	24	1.2	1.6	0.3	1.5	1	87CEEB
Adultos	32	1	1.8	0.3	1.1	1	006400
Idosos	87	1	2.1	0.3	1	3	ADFF2F
Padre	1	0.9	2.2	0.3	0.9	4	ADD8E6
Sacerdotisa	4	0.9	2.5	0.3	0.9	3	DAA520
Coral	8	0.9	2.3	0.3	0.9	2	4B0082

Resultados do Experimento da Igreja

Tabela 6: Resultados do Experimento da Igreja

	Min	Média	Med	Max	Var	DP	CV
Runtime	65.88	120.94	127.58	148.33	401.75	20.04	16.57
Iterações	81.0	93.78	93.0	128.0	61.75	7.86	8.38
Movimentos	12.0	13.61	14.0	16.0	0.72	0.85	6.24
Espera	0.0	0.46	0.0	1.0	0.24	0.49	105.44

Gráficos da Experimentação Número 7

Figura 15: Gráficos da Experimentação Número 7

Utilizando-se a fórmula $\frac{\Delta y}{\Delta x}$ para calculou-se que, até a iteração 54 a vazão encontrada é de 2,83 indivíduos, já da iteração 54 até o fim da evacuação a vazão de indivíduos é de 0,5 indivíduos por iteração.

29 de novembro de 2019

Gráficos da Experimentação Número 7 por Classe

Figura 16: Gráficos da Experimentação Número 7 por Classe

A classe Idosos que são mais lentos levaram cerca de 135% de tempo a mais para sair do mesmo ambiente que os mais velozes que são da classe Crianças.

Planta Baixa do Centro de Convivência

Figura 17: Planta Baixa do Centro de Convivência

Modelagem do Centro em Ambiente de Formatura

Figura 18: Modelagem do Centro de Convivência em Ambiente de Formatura

Campo Estático do Centro em Ambiente de Formatura

Figura 19: Campo Estático do Centro de Convivência em Ambiente de Formatura

Caracterização dos Indivíduos do Centro em Ambiente de Formatura

Tabela 7: Caracterização dos Indivíduos do Centro de Convivência em Formatura

Categorias	Qtd	K_d	Ks	K_w	Ki	Turnos	Hexadecimal
Crianças	32	1.5	1.5	0.3	1.5	1	6A5ACD
Jovens	128	1.2	2.2	0.3	1	1	87CEEB
Adultos	112	1	2	0.3	1	1	006400
Idosos	48	1	1.8	0.3	1.2	2	ADFF2F
Orador	1	1	2	0.3	1	1	ADD8E6
Organização	10	1	2.5	0.3	1	1	DAA520
Atendentes	5	1	2.5	0.3	1	1	4B0082

Resultados do Experimento do Centro em Ambiente de Formatura

Tabela 8: Resultados do Experimento do Centro em Ambiente de Formatura

	Min	Média	Med	Max	Var	DP	CV
Runtime	87.33	154.41	171.23	201.29	1298.9	36.04	23.34
Iterações	108.0	137.6	136.0	204.0	312.2	17.67	12.84
Movimentos	18.0	20.25	20.0	22.0	0.91	0.96	4.72
Espera	1.0	1.0	1.0	1.0	0.0	0.0	0.0

Gráficos da Experimentação Número 79

Figura 20: Gráficos da Experimentação Número 79

Utilizando-se a fórmula $\frac{\Delta y}{\Delta x}$ para calculou-se que, até a iteração 47 a vazão encontrada é de 5,72 indivíduos, já da iteração 48 até fim da evacuação a vazão de indivíduos é de 0,77 indivíduos por iteração.

29 de novembro de 2019

Gráficos da Experimentação Número 79 por Classe

Figura 21: Gráficos da Experimentação Número 79 por Classe

A classe Idosos que são mais lentos levaram cerca de 16% a mais de tempo para evacuar comparado a classe Jovens.

Resultados Gerais

Tabela 9: Resultados da Quantidade de Iterações de Cada Ambiente

Experimento	Min	Média	Med	Max	Var	DP	CV
	150.0	197.55	198.0	252.0	451.5	21.25	10.76
II	81.0	93.78	93.0	128.0	61.75	7.86	8.38
III	92.0	136.24	139.0	170.0	393.32	19.83	14.56
IV	108.0	137.6	136.0	204.0	312.2	17.67	12.84
V	273.0	330.81	331.5	393.0	696.01	26.38	7.97

Conteúdo

- Introdução
- 2 Fundamentação Teórica
- Materiais e Métodos
- Projeto e Desenvolvimento
- 5 Experimentos
- 6 Considerações Finais

Considerações Finais

As plantas que obtiveram os melhores resultados foram aquelas com as maiores quantidade de portas. Mesmo se os indivíduos destes ambientes estivessem com o deslocamento baixo ou uma má caracterização, a quantidade de portas distribuía bem os indivíduos de forma que não havia formação de gargalos e a evacuação era feita de forma mais eficiente.

Considerações Finais

Trabalhos Futuros:

- Adaptar o conversor de mapas para aceitar também plantas feitas no AutoCAD;
- O adicionar de objetos inocupáveis, porém que podem ser movidos pelos pedestres;
- Melhorar a forma de posicionar os indivíduos iniciais;
- Adaptar a fórmula de mudança de cada indivíduo para ter um viés maior para células inocupadas;
- Colocar para cada saída um incremento diferente a ser considerado no campo estático.

Referências I

A Varas, MD Cornejo, D Mainemer, B Toledo, José Rogan, V Munoz, and JA Valdivia.

Cellular automaton model for evacuation process with obstacles.

Physica A: Statistical Mechanics and its Applications, 382(2):631–642, 2007.

Katsuhiro Nishinari, Ansgar Kirchner, Alireza Namazi, and Andreas Schadschneider.

Extended floor field ca model for evacuation dynamics.

IEICE Transactions on information and systems, 87(3):726–732, 2004.

Referências II

Mateus Cunha.

Ciência e tecnologia em prevenção em incêndios e perícia anÁlise do comportamento individual e coletivo em situaÇÕes de pÂnico analysis of the behavior individually and collectively in panic situations.

Ignis: Revista Técnico Científica do Corpo de Bombeiros Militar de Santa Catarina, Vol. 1 n. 2:109–119, 11 2016.

Lílian de Oliveira CARNEIRO.

Simulação de evacuação de multidão por autômato celular estudo de caso em um estádio de futebol, 2012, 73 p.

Mestrado-Universidade Federal do Ceará). Disponível em; http://www.repositorio.ufc.br/handle/riufc/18459; Acesso em, 21, 2012.

Simulação de Evacuação de Ambientes com Quantidade Massiva de Pedestres

Eduardo Gabriel Reis Miranda

Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais Campus Formiga – IFMG

29 de novembro de 2019

Objetivos Específicos

- Estudar o modelo de autômato celular com floor field estático e variantes, mais especificamente, com uso de floor field dinâmico, potencial inercial e potencial de paredes;
- Modelar ambientes de larga escala de trabalhos da literatura, e outros propostos pelo autor deste trabalho;
- Implementar modelo de simulação e KPIs (key performance indicators) para medir desempenho da evacuação;
- Ajustar parâmetros do modelo de simulação, em especial aqueles que constituem parâmetros de sensibilidade dos campos de piso o potenciais mencionados;
- Experimentar o modelo em diferentes situações, reproduzindo algumas situações descritas na literatura e novas situações modeladas considerando ambientes de larga escala com quantidade massiva de pedestres. E discutir os resultados encontrados para cada modelagem.

Conversor de Mapas

Algorithm 1 Conversor de Mapas

```
Ensure: conversorMapa(arquivoEntrada.png, arquivoSaida)
 1: imagem ← arquivoEntrada.png
 2: for all pixel in imagem do
      if pixel = (0,0,0) then
 3:
        escreva CONST-PAREDE no arquivoSaida
 4:
      else if pixel = (255,255,255) then
 5:
        escreva CONST-VAZIO no arquivoSaida
 6:
     else if pixel = (255,165,0) then
 7:
        escreva CONST-DESENHO no arquivoSaida
 8.
      else
 9:
        escreva CONST-INOCUPAVEL no arquivoSaida
10:
      end if
11.
12: end for
```

Exemplo do Conversor

Modelagem do Centro em Ambiente de Culto

Figura 22: Modelagem do Centro de Convivência em Ambiente de Culto

Campo Estático do Centro em Ambiente de Culto

Figura 23: Campo Estático do Centro de Convivência em Ambiente de Culto

Caracterização dos Indivíduos do Centro em Ambiente de Culto

Tabela 10: Caracterização dos Indivíduos do Centro de Convivência em Culto

Categorias	Qtd	K_d	Ks	K_w	Ki	Turnos	Hexadecimal
Crianças	13	1.5	1.5	0.3	1.5	1	6A5ACD
Jovens	20	1.2	1.6	0.3	1.5	1	87CEEB
Adultos	26	1	1.8	0.3	1	1	006400
Idosos	73	1	1.8	0.3	1	2	ADFF2F
Pastor	1	1	1.8	0.3	1	2	ADD8E6
Eclesiásticos	4	1	1.8	0.3	1	1	DAA520
Coral	8	1	1.8	0.3	1	1	4B0082

Resultados do Experimento do Centro em Ambiente de Culto

Tabela 11: Resultados do Experimento do Centro em Ambiente de Culto

	Min	Média	Med	Max	Var	DP	CV
Runtime	83.99	167.93	183.93	203.0	1358.53	36.86	21.95
Iterações	92.0	136.24	139.0	170.0	393.32	19.83	14.56
Movimentos	20.0	24.12	24.0	28.0	2.13	1.46	6.05
Espera	1.0	1.02	1.0	2.0	0.02	0.14	13.79

Gráficos da Experimentação Número 54

Figura 24: Gráficos da Experimentação Número 54

Utilizando-se a fórmula $\frac{\Delta y}{\Delta x}$ para calculou-se que, até a iteração 68 a vazão encontrada é de 1,80 indivíduos, já da iteração 68 até a iteração 89 a vazão é de 0,42 indivíduos e da iteração 89 até fim da evacuação a vazão de indivíduos é de 0,16 indivíduos por iteração.

Gráficos da Experimentação Número 54 por Classe

Figura 25: Gráficos da Experimentação Número 54 por Classe

A classe Idosos que são mais lentos levaram cerca de 101% de tempo a mais para evacuar do ambiente que os Jovens.

Planta Baixa do Cinema

Figura 26: Planta Baixa do Cinema

Modelagem do Cinema

Figura 27: Modelagem do Cinema

Campo Estático do Cinema

Figura 28: Campo Estático do Cinema

Caracterização dos Indivíduos do Cinema

Tabela 12: Caracterização dos Indivíduos do Cinema

Categorias	Qtd	K_d	Ks	K_w	Ki	Turnos	Hexadecimal
Crianças	28	1	1.5	0.3	1.5	2	6A5ACD
Jovens	70	1	2.5	0.3	1.5	1	006400
Adultos	28	1.2	1.7	0.3	1	1	DAA520
Idosos	14	1.2	1.4	0.3	1	3	800080

Resultados do Experimento do Cinema Hipotético

Tabela 13: Resultados do Experimento do Cinema Hipotético

	Min	Média	Med	Max	Var	DP	CV
Runtime	83.99	167.93	183.93	203.0	1358.53	36.86	21.95
Iterações	92.0	136.24	139.0	170.0	393.32	19.83	14.56
Movimentos	20.0	24.12	24.0	28.0	2.13	1.46	6.05
Espera	1.0	1.02	1.0	2.0	0.02	0.14	13.79

Gráficos da Experimentação Número 33

Figura 29: Gráficos da Experimentação Número 33

Utilizando-se a fórmula $\frac{\Delta y}{\Delta x}$ para calculou-se que, até a iteração 193 a taxa de vazão de indivíduos é de 0,61 indivíduos por iteração, após isto esta taxa decai para 0,15 indivíduos por iteração.

Gráficos da Experimentação Número 33 por Classe

Figura 30: Gráficos da Experimentação Número 33 por Classe

A classe Idosos que são mais lentos levaram cerca de 56% mais lenta que a classe dos Adultos, que foi a mais rápida nesta experimentação.

Modelagem Feita por Nishinari

Figura 31: Modelagem Feita por NIshinari

Modelagem Baseada no Experimento do Nishinari

Figura 32: Modelagem Baseada no Experimento do Nishinari

Campo Estático do Experimento do Nishinari

Figura 33: Campo Estático do Experimento do Nishinari

Caracterização dos Indivíduos do Experimento do Nishinari

Tabela 14: Caracterização dos Indivíduos do Experimento de Nishinari

Categorias	Qtd	K_d	Ks	K_w	Ki	Turnos	Hexadecimal
Individuo 1	300	1	2	0	1	1	0000FF
Individuo 2	300	1	2	0.1	1	1	0000FF
Individuo 3	300	1	2	0.2	1	1	0000FF
Individuo 4	300	1	2	0.3	1	1	0000FF
Individuo 5	300	1	2	0.4	1	1	0000FF
Individuo 6	300	1	2	0.5	1	1	0000FF

Resultados Boxplot Nishinari

Figura 34: Boxplot da Quantidade de Iterações Gastas para Evacuar o Ambiente do Experimento do Nishinari para Cada KW Experimentado

Boxplots Escola

Figura 35: Boxplots Resultados da Escola

Boxplots Igreja

Figura 36: Boxplots Resultados da Igreja

Boxplots Centro em Ambiente de Culto

Figura 37: Boxplots Resultados do Centro em Ambiente de Culto

Boxplots Centro em Ambiente de Formatura

Figura 38: Boxplots Resultados do Centro em Ambiente de Formatura

Boxplots Cinema

Figura 39: Boxplots Resultados do Cinema