MA3238 (Stochastic Processes 1)

Jia Cheng

Jan 2022

Reference: Introduction to Probability Models (9th edition)

1 Revision

Limit of the binomial distribution is the poisson distribution Let $X_n \sim (n, p = \frac{\lambda}{n})$ and consider the distribution of X_n as $n \to \infty$. Note that as we increase n, we also shrink p since that $p = \frac{\lambda}{n}$.

Observe that

$$\binom{n}{k} p^k (1-p)^{n-k} = \frac{n^k}{k!} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$$
$$= \frac{\lambda^k}{k!} \cdot \frac{n^k}{n^k} \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

Since $\frac{\lambda^k}{k!}$ is independent of n, it suffices to take the limit of the latter expression. We have

$$\lim_{n \to \infty} \frac{n^{\underline{k}}}{n^{k}} \left(1 - \frac{\lambda}{n} \right)^{n-k} = \lim_{n \to \infty} \frac{n^{\underline{k}}}{n^{k}} \left(1 - \frac{\lambda}{n} \right)^{n} \left(1 - \frac{\lambda}{n} \right)^{-k}$$

$$= \lim_{n \to \infty} \frac{n^{\underline{k}}}{n^{k}} \lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^{n} \lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^{-k}$$

$$= 1 \cdot e^{-\lambda} \cdot 1 = e^{-\lambda}$$

A r.v. cannot be both continuous (not necessarily absolutely continuous) and discrete.

- A discrete r.v. takes probability 1 on a countable set C. Equivalently, there is a countable set C such that $\sum_{c \in C} p(c) = 1$ for some function p, such that P(X = c) := p(c).
- A continuous r.v. has a continuous cdf.

Suppose X is discrete. Let C be a countable set for which $P(X \in C) = \sum_{c \in C} p(c) = 1$. Clearly, it is not possible for all p(c) = 0, so $\exists c \in C, p(c) > 0$. Let F be the cdf of X. Then we claim that F is left-discontinuous at c. Because $\forall \epsilon, F(c - \epsilon) < P(X < c) = F(c) - p(c)$.

Non-independent but covariance 0. Consider Y = 1, -1 with probability 1/2 each. Then,

- Given Y = 1, X = 1 with probability 1/2 and 0 otherwise
- Given Y = -1, X = 2 with probability 1/4 and 0 otherwise

The idea of Y is clear, the positive half and negative half cancel out. The idea of X is to vary its behavior given differing value of Y, but not too much, so that the positive part of XY cancels out the negative parts, with their respective probability weights.

Note: The paragraphs in this document correspond to subsections in the textbook. For e.g. **4.2** corresponds to Chapman-Kolmogorov Equations.

4.1

We have $P_{i,j} = P(X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0)$ for all i_0, \dots, i_{n-1} in the state space. Hence, $P(X_{n+1} = j | X_n = i) = \sum P(X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0) P(X_{n-1} = i_{n-1}, \dots, X_0 = i_0) = P_{i,j}$.

Hence, conditioning on $X_n = i$, the events $\{X_{n+1} = j\}$ and $\{X_{n-1} = i_{n-1}, \dots, X_0 = i_0\}$ are independent.

4.2

Claim: Consider the case of a state space with absorbing states A. Suppose states $i, j \notin A, k \in A$. Then $P(X_{n+m} = j \cap X_n = k | X_0 = i) = 0$. i.e. once state k is reached, the probability of reaching any other state distinct from k is 0.

Since $P(X_{n+m} = j \cap X_n = k | X_0 = i) = P(X_{n+m} = j | X_n = k \wedge X_0 = i) P(X_n = k | X_0 = i) = P(X_m = j | X_0 = k) P(X_n = k | X_0 = i)$, it suffices to show that $P_{k,j}^m = 0$.

This can be verified inductively. We shall only show the inductive step. Suppose $P_{k,j}^{\lambda} = 0$ (in fact we need to assume the same for all j distinct from k). Then $P_{k,j}^{\lambda+1} = \sum_{l} P_{k,l}^{\lambda} \cdot P_{l,j} = P_{k,k}^{\lambda} \cdot P_{k,j} = 1 \cdot 0 = 0$.

4.3

Another way to interpret $P_{i,j}^n$ is the following. $P_{i,j}^n>0$ iff there is a sequence l_1,\ldots,l_{n-1} such that $P_{i,l_1},P_{l_1,l_2},\ldots,P_{l_{n-1},j}\neq 0$. This is equivalent to saying $i\to l_1\to l_2\to\cdots\to l_{n-1}\to j$. We can also let $l_0:=i,l_n:=j$ and obtain a sequence l_0,\ldots,l_n .

To take example 4.12 in this section as an example: Suppose we want to show that states 0,1 cannot access state 2. One possible argument to make is to consider the candidates for states $l := l_{n-1}$ (for any n) such that $l_{n-1} \to 2$, or equivalently, $P_{l,2} > 0$. But looking at the 3rd column of the Markov matrix, we see that the only candidate for l is 2 itself. So it is impossible to have a series of state transition from 0 or 1 that ends up in 2. (A formal proof can involve induction on the number of state transitions.)

Characterization of recurrent and transient states For a state i, let f_i be the probability that state i is revisited, given that the current state is i.

Let $Y_i \sim Geom(p = (1 - f_i))$ be a r.v. counting the number of times state i was entered, given that the starting state is i. Transient states:

- Have a f_i value < 1
- Have a finite expectation $E[Y_i]$

Recurrent states:

- Have $f_i = 1$
- Have an infinite expectation $E[Y_i]$

Hence to argue that in a finite state space, there must be at least 1 recurrent state, we argue that the sum of expectation of all Y_i must be infinite, so there must be some i for which $E[Y_i] > 0$.

Corollary 4.2 We provide a more succint derivation of this result.

- State *i* recurrent implies $\sum_{n} p_{i,i}^{n} = \infty$
- $i \leftrightarrow j$ implies $\exists m_1, m_2, p_{i,j}^{m_1} > 0 \land p_{j,i}^{m_2} > 0$

Hence,

$$\sum_{n} p_{j,j}^{n} \ge \sum_{n \ge m_1 + m_2} p_{j,j}^{n} \ge \sum_{n \ge m_1 + m_2} p_{j,i}^{m_2} p_{i,i}^{n - m_1 - m_2} p_{i,j}^{m_1} = p_{j_i}^{m_2} p_{i,j}^{m_1} \sum_{n} p_{i,i}^{n}$$

The last sum is unbounded and we are done.