Numerical exploration of L-functions: Dirichlet (abelian) and modular (GL(2))

Critical zeros, completed function, and coherence/confinement criteria

Adil HAJADI

September 10, 2025

Abstract

We present a numerical exploration of abelian L-functions (quadratic Dirichlet characters) and non-abelian ones (holomorphic weight-2 modular forms, GL(2)), with two goals: (i) to verify the alignment of zeros on the critical line $\Re(s) = \frac{1}{2}$ (zeta-confinement); and (ii) to analyze the phase/amplitude regularity of the completed function $\Lambda(s)$ (zeta-coherence). We describe the completion (conductor, gamma factors), the use of an approximate functional equation (AFE), the detection of zeros via a Hardy-type reading (for example Im $\Lambda(1/2+it)$) when the functional sign is -1), as well as numerical stability (truncation, precision, adaptive grid). In the end we compare these classical readings with internal model objects ($\mathscr{Z}_{\text{coh}}()$, $\mathscr{Z}_{\text{conf}}()$) only as qualitative controls, in order to keep the main anchoring in math.NT. Plan: context and aims; recalls on L-functions and completion; tested families (Dirichlet, GL(2)); methodology; numerical results and interpretation.

Contents

1	Cor	ntext and aims				
2	Bac	Background: L-functions and completion				
	2.1	Dirichlet case (degree 1)				
	2.2	Holomorphic modular case (degree 2, $GL(2)$)				
	2.3	Notes on numerical reading				
3	Tested families and numerical protocol					
	3.1	Families under test				
	3.2	Approximate functional equation and truncation				
	3.3	Numerical policy (grids, precision, stability)				
	3.4	Figure list and file names				
4	Results: Dirichlet characters (mod 7)					
	4.1	Data and setup				
	4.2	Profiles and candidate zeros				
	4.3	Hardy reading and local zoom				
	4.4	Argument principle and counting				
	4.5	Stability checks				
5	Res	sults: modular forms $(GL(2))$, level 11				
0	5.1	Data and setup				
	5.1 - 5.2					
		Profiles and candidate zeros				
	5.3	Hardy-type reading and local refinement				
	5.4	Argument principle and counting				

	5.5	Stability checks	8
6	Con	mparison and synthesis: Dirichlet vs GL(2)	9
	6.1	Common patterns and differences	9
	6.2	Operational criteria	9
	6.3	Quantitative indicators (templates)	10
	6.4	Overlay (visual comparison)	10
	6.5	Limits and numerical biases	10
_	~		
7	Con	aclusion and perspectives	11

1 Context and aims

The aim is twofold: on the one hand to **verify numerically**, on prescribed height windows t, the alignment of zeros on the critical line $\Re(s) = \frac{1}{2}$ (GRH spirit), which we call zeta-confinement; on the other hand to **observe the regularity** of the oscillations of the completed function $\Lambda(s)$, interpreted as zeta-coherence (clean zeros, clear sign alternation, oscillations without unexpected singularities). These two criteria structure the experimental protocol and the visualizations (profiles |L(1/2+it)|, Hardy-type reading, cumulative counting N(T), local maps).

[11pt,a4paper]article

[utf8]inputenc [T1]fontenc [english]babel

amsmath, amssymb, amsthm, mathtools mathrsfs geometry microtype graphicx x color booktabs enumitem hyperref margin= $2.7 \mathrm{cm}$

 $\label{lem:condition} Theorem \cite{Condition} Proposition \cite{Condition} Theorem \cite{Condition} Theorem \cite{Condition} Proposition \cite{Condition} Theorem \cite{Condition$

Towards a Coherence Zeta

From Decimal Recurrences to Analytic Structures Adil HAJADI September 10, 2025

Abstract

We introduce and study a weighted variant of the classical Euler product, the *Coherence Zeta*, where each prime p is assigned an arithmetic weight derived from the period of the expansion of 1/p in base b. Writing $\operatorname{ord}_p(b)$ for the multiplicative order of b modulo p, we consider

$$\mathscr{Z}_{coh}(s) = \sum_{p} \frac{1}{\operatorname{ord}_{p}(b)} p^{-s},$$

and discuss its links with Dirichlet series, the "wave" reading via $\sum_{p} \cos(t \log p) / \sqrt{p}$, as well as completions $\Xi_{\rm coh}$ satisfying a conjectural symmetry $s \leftrightarrow 1-s$. We present the arithmetic framework (decimal periods \leftrightarrow multiplicative orders), set the definitions and goals, and sketch numerical tests together with comparisons to ζ and classical L-functions.

Contents

2 Background: L-functions and completion

2.1 Dirichlet case (degree 1)

Let $\chi \pmod{q}$ be a primitive Dirichlet character. Define

$$L(s,\chi) = \sum_{n>1} \frac{\chi(n)}{n^s}, \quad \Re s > 1.$$

Let $a \in \{0,1\}$ be the parity determined by $\chi(-1) = (-1)^a$. The completed function is

$$\Lambda(s,\chi) = \left(\frac{q}{\pi}\right)^{\frac{s+a}{2}} \Gamma\left(\frac{s+a}{2}\right) L(s,\chi),$$

and it satisfies the functional equation

$$\Lambda(s,\chi) = \varepsilon_{\chi} \Lambda(1-s,\overline{\chi}), \qquad \varepsilon_{\chi} = \frac{\tau(\chi)}{i^{a} \sqrt{q}} = e^{i\phi_{\chi}}, \quad |\varepsilon_{\chi}| = 1,$$

where $\tau(\chi)$ is the Gauss sum and $\phi_{\chi} = \arg \varepsilon_{\chi}$. A Hardy-type real reading on the critical line uses

$$\theta_{\chi}(t) = \frac{1}{2} \arg \Gamma\left(\frac{\frac{1}{2} + it + a}{2}\right) - \frac{t}{2} \log\left(\frac{\pi}{q}\right) + \frac{1}{2} \phi_{\chi}, \qquad Z_{\chi}(t) := e^{-i\theta_{\chi}(t)} \Lambda\left(\frac{1}{2} + it, \chi\right) \in \mathbb{R}.$$

Then the real zeros of $Z_{\chi}(t)$ coincide with the zeros of $L(s,\chi)$ on $\Re s = \frac{1}{2}$.

For computations we use a symmetric approximate functional equation (AFE):

$$L(s,\chi) = \sum_{n \le M} \frac{\chi(n)}{n^s} + X_{\chi}(s) \sum_{n \le M} \frac{\overline{\chi}(n)}{n^{1-s}} + \operatorname{Err}_{\chi}(s;M),$$

with

$$X_{\chi}(s) \; = \; \varepsilon_{\chi}\Big(\frac{q}{\pi}\Big)^{\frac{1}{2}-s} \, \frac{\Gamma\!\big(\frac{1-s+a}{2}\big)}{\Gamma\!\big(\frac{s+a}{2}\big)}, \qquad M \asymp C \, \sqrt{\frac{q(|t|+1)}{2\pi}},$$

and $s = \frac{1}{2} + it$; the constant C > 0 controls the truncation (chosen empirically for stability).

2.2 Holomorphic modular case (degree 2, GL(2))

Let $f = \sum_{n \geq 1} a_n n^{(k-1)/2} q^n$ be a holomorphic newform of weight k = 2, level N, trivial nebentypus (for simplicity). The normalized Dirichlet series is

$$L(s,f) = \sum_{n>1} \frac{a_n}{n^s}, \quad \Re s > 1.$$

The completed function is

$$\Lambda(s,f) \; = \; N^{\,s/2} \, (2\pi)^{-s} \, \Gamma\!\!\left(s + \tfrac{k-1}{2}\right) L(s,f) \; = \; N^{\,s/2} \, (2\pi)^{-s} \, \Gamma\!\!\left(s + \tfrac{1}{2}\right) L(s,f),$$

and it satisfies

$$\Lambda(s, f) = \varepsilon_f \Lambda(1 - s, f), \qquad \varepsilon_f \in \{\pm 1\}.$$

On the critical line we read zeros via

if
$$\varepsilon_f = -1$$
: Im $\Lambda(\frac{1}{2} + it, f) = 0$, if $\varepsilon_f = +1$: Re $\Lambda(\frac{1}{2} + it, f) = 0$.

A symmetric AFE is used as in the Dirichlet case:

$$L(s,f) = \sum_{n \le M} \frac{a_n}{n^s} + X_f(s) \sum_{n \le M} \frac{a_n}{n^{1-s}} + \text{Err}_f(s; M),$$

with

$$X_f(s) \; = \; \varepsilon_f \, N^{\, \frac{1}{2} - s} \, (2\pi)^{2s - 2} \, \frac{\Gamma(2 - s)}{\Gamma(s)}, \qquad M \asymp C \, \sqrt{N(|t| + 1)}.$$

(Here we use the Hecke normalization so that $|a_p| \leq 2$ for primes $p \nmid N$.)

2.3 Notes on numerical reading

Throughout, we:

- evaluate |L(1/2+it)| on adaptive grids to reveal deep minima;
- detect zeros by sign changes of Hardy-type readings $(Z_{\chi}(t))$ or Im Λ);
- control stability via M = M(t), working precision, and comparison of forward/backward AFE sums.

Figures referenced later include: dirichlet_profile_q7.png, arg_principle_q7.png, and g12_profile_level11.png.

3 Tested families and numerical protocol

3.1 Families under test

Dirichlet, quadratic mod 7. We take the primitive quadratic character χ mod 7 given by the Legendre symbol

$$\chi(n) = \left(\frac{n}{7}\right) = \begin{cases} 0, & 7 \mid n, \\ +1, & n \not\equiv 0 \bmod 7 \text{ and } n \text{ is a square mod } 7, \\ -1, & \text{otherwise.} \end{cases}$$

It has parity $a \in \{0,1\}$ with $\chi(-1) = (-1)^a$, Gauss sum $\tau(\chi)$ and functional sign $\varepsilon_{\chi} = \tau(\chi)/(i^a\sqrt{7})$. Zeros on $\Re s = \frac{1}{2}$ are read through a Hardy-type real quantity $Z_{\chi}(t) = e^{-i\theta_{\chi}(t)}\Lambda(\frac{1}{2}+it,\chi)$ (see Window 2).

Modular, holomorphic GL(2) of level 11. We use the weight-2 newform of level N=11 (elliptic curve isogeny class 11a). Let $(a_p)_p$ be its Hecke eigenvalues and extend multiplicatively via $a_{p^m}=a_pa_{p^{m-1}}-p\,a_{p^{m-2}}$ for $p\nmid N$. The completed form $\Lambda(s,f)=N^{s/2}(2\pi)^{-s}\Gamma(s+\frac{1}{2})\,L(s,f)$ satisfies $\Lambda(s,f)=\varepsilon_f\Lambda(1-s,f)$ with $\varepsilon_f\in\{\pm 1\}$, and zeros on $\Re s=\frac{1}{2}$ are detected by $\operatorname{Im}\Lambda(\frac{1}{2}+it,f)$ if $\varepsilon_f=-1$ (or by $\operatorname{Re}\Lambda$ if $\varepsilon_f=+1$).

3.2 Approximate functional equation and truncation

On the critical line $s = \frac{1}{2} + it$ we use a symmetric AFE

$$L(s,\star) = \sum_{n \le M(t)} \frac{a_n}{n^s} + X_{\star}(s) \sum_{n \le M(t)} \frac{\widetilde{a}_n}{n^{1-s}} + \operatorname{Err}_{\star}(s; M),$$

where $\star \in \{\chi, f\}$, $\tilde{a}_n = \overline{\chi}(n)$ in the Dirichlet case and $\tilde{a}_n = a_n$ in the modular case, and $X_{\star}(s)$ is the usual gamma/conductor factor (Window 2). We choose

$$M_\chi(t)symp C_\chi\,\sqrt{rac{7(|t|+1)}{2\pi}}, \qquad M_f(t)symp C_f\,\sqrt{11(|t|+1)}\,,$$

with empirical constants C_χ, C_f tuned for numerical stability (typical values $C_\chi \approx 5-8$, $C_f \approx 5-7$).

3.3 Numerical policy (grids, precision, stability)

- Grids in t. Uniform step on [0,T] (typ. T=50-60), then local refinement around sign changes of Hardy-type readings to pin down zeros by bisection.
- **Precision.** Floating precision 50–60 decimal digits; cross-checks by increasing M(t) and the precision. We compare forward/backward AFE sums for consistency.
- **Zero detection.** Zeros are first *candidates* obtained from sign changes of $Z_{\chi}(t)$ or Im $\Lambda(\frac{1}{2} + it, f)$; they are then refined by bisection to machine tolerance on the working precision.
- **Deep minima.** Plots of |L(1/2+it)| display deep local minima (filled dots) which correlate with candidate zeros (crosses).

3.4 Figure list and file names

The figures used in the sequel are exported as PNG for arXiv:

- dirichlet_profile_q7.png Dirichlet profile $|L(1/2+it,\chi)|$ (deep minima •, candidate zeros ×).
- arg_principle_q7.png Unwrapped phase of $\Lambda(s,\chi)$ along a rectangle (argument principle).
- gl2_profile_level11.png Modular profile |L(1/2+it,f)| for the level-11 newform.

Figure 1: Dirichlet (mod 7): profile of $|L(1/2 + it, \chi)|$. Deep minima (dots) and candidate zeros (crosses).

4 Results: Dirichlet characters (mod 7)

4.1 Data and setup

We work with the primitive quadratic character χ mod 7. On the critical line $s = \frac{1}{2} + it$ we evaluate $|L(1/2+it,\chi)|$ on a uniform grid $t \in [0,T]$ $(T \in \{50,60\})$, followed by local refinement near sign changes of the Hardy-type reading

$$Z_{\chi}(t) = e^{-i\theta_{\chi}(t)} \Lambda(\frac{1}{2} + it, \chi) \in \mathbb{R}.$$

The AFE is used in symmetric form with a truncation $M(t) \approx C\sqrt{7(|t|+1)/(2\pi)}$ (C fixed empirically for stability).

Figure 2: Dirichlet (mod 7): argument principle for $\Lambda(s,\chi)$ on a narrow rectangle around the critical line.

Figure 3: GL(2), level 11: profile of |L(1/2+it, f)| for the weight-2 newform.

4.2 Profiles and candidate zeros

Figure 4 shows $\log |L(1/2+it,\chi)|$ on [0,T]. Deep local minima correlate with sign changes of $Z_{\chi}(t)$ and thus with candidate zeros.

4.3 Hardy reading and local zoom

We refine each sign change of Z_{χ} by bisection to machine tolerance at the working precision. A typical zero is illustrated in Figure 5; a local (σ, t) heatmap of $\log |\Lambda(\sigma + it, \chi)|$ is given in Figure 6.

4.4 Argument principle and counting

To cross-check, we unwrap $\operatorname{arg} \Lambda(s,\chi)$ along the boundary of a thin rectangle $[\frac{1}{2} - \delta, \frac{1}{2} + \delta] \times [0,T]$ and compare the argument-variation count $N_{\rm AP}(T)$ with the number $N_{\rm H}(T)$ of sign changes of Z_{χ} on [0,T]. Figure 7 displays the unwrapped phase. We observe $N_{\rm AP}(T) \approx N_{\rm H}(T)$ within tolerance.

4.5 Stability checks

Increasing the truncation $M(t) \mapsto M(t) + \Delta M$ and/or the working precision does not change the counts $(N_{\rm AP}, N_{\rm H})$ nor the zero locations (within the predefined tolerance). A local mesh refinement in t around minima does not create spurious zeros and improves localization.

Figure 4: Dirichlet (mod 7): profile of $|L(1/2 + it, \chi)|$ on [0, T]. Deep minima (dots) and candidate zeros (crosses).

Figure 5: Dirichlet (mod 7): Hardy-type reading $Z_{\chi}(t)$ with a zero located by sign change and refined by bisection.

5 Results: modular forms (GL(2)), level 11

5.1 Data and setup

Let f be the weight-2 newform of level N=11 (elliptic curve class 11a), normalized so that $L(s,f)=\sum_{n\geq 1}a_n\,n^{-s}$ with $|a_p|\leq 2$ for $p\nmid N$ (Hecke normalization). The completed function

$$\Lambda(s,f) \; = \; N^{\,s/2} \, (2\pi)^{-s} \, \Gamma\!\!\left(s+\tfrac{1}{2}\right) L(s,f)$$

satisfies $\Lambda(s,f) = \varepsilon_f \Lambda(1-s,f)$ with $\varepsilon_f \in \{\pm 1\}$. On the critical line $s = \frac{1}{2} + it$ we use a symmetric AFE with truncation $M_f(t) \approx C_f \sqrt{N(|t|+1)}$ (constant C_f fixed empirically), and we read zeros by

if
$$\varepsilon_f = -1$$
: $\operatorname{Im} \Lambda(\frac{1}{2} + it, f) = 0$, if $\varepsilon_f = +1$: $\operatorname{Re} \Lambda(\frac{1}{2} + it, f) = 0$.

5.2 Profiles and candidate zeros

Figure 8 shows $\log |L(1/2+it, f)|$ on a window $t \in [0, T]$ $(T \in \{50, 60\})$. As in the Dirichlet case, deep local minima indicate candidate zeros on the critical line.

5.3 Hardy-type reading and local refinement

Assuming $\varepsilon_f = -1$ (the common case for this example), we track sign changes of Im $\Lambda(1/2+it, f)$ and refine by bisection to the working precision. A typical zero is illustrated below.

Figure 6: Dirichlet (mod 7): local heatmap of $\log |\Lambda(\sigma + it, \chi)|$ around a zero (window centered near $t = t_0$).

Figure 7: Dirichlet (mod 7): unwrapped argument of $\Lambda(s,\chi)$ along a rectangle around $\Re s = \frac{1}{2}$ (argument principle).

5.4 Argument principle and counting

We unwrap $\operatorname{arg} \Lambda(s, f)$ along the boundary of a thin rectangle $[\frac{1}{2} - \delta, \frac{1}{2} + \delta] \times [0, T]$ and compare the argument-variation count $N_{\rm AP}(T)$ with the number $N_{\rm H}(T)$ of detected sign changes of the Hardy-type reading. We observe agreement within numerical tolerance.

5.5 Stability checks

Increasing $M_f(t)$ and/or the working precision does not alter the zero count nor their locations (within the preset tolerance). Adaptive refinement in t near minima improves localization without creating spurious zeros.

$\overline{\text{Window } [0,T]}$	δ	$N_{\mathrm{AP}}(T)$	$N_{ m H}(T)$
[0, 50]	0.05	•	•
[0, 60]	0.05	•	•

Table 1: Counting zeros: argument principle vs. Hardy reading. Bullets are placeholders to be filled after final runs.

Figure 8: GL(2), level 11: profile of |L(1/2+it,f)| on [0,T]. Deep minima correlate with critical zeros.

6 Comparison and synthesis: Dirichlet vs GL(2)

6.1 Common patterns and differences

On the explored windows $t \in [0, T]$, both families display:

- Regular oscillations of $|L(1/2+it,\cdot)|$ with deep minima aligned with zeros;
- a real Hardy-type reading $(Z_{\chi} \text{ or Im } \Lambda)$ with clean sign changes;
- Agreement between the argument principle count $N_{AP}(T)$ and the Hardy count $N_{H}(T)$ within tolerance;
- Numerical stability under truncation/precision changes and local mesh refinement in t.

Differences include: for **Dirichlet** (degree 1), sensitivity to the parity and modulus; for GL(2) (degree 2), modulation by the level N and the Hecke coefficients a_p , which influences the texture of the oscillations.

6.2 Operational criteria

Definition 1 (Zeta-confinement). We say a family satisfies zeta-confinement over [0,T] if

$$|N_{\rm AP}(T) - N_{\rm H}(T)| \le \delta_T,$$

where $N_{\rm AP}(T)$ is obtained from the argument principle on a rectangle centered at $\Re s = \frac{1}{2}$, $N_{\rm H}(T)$ counts sign changes of the Hardy-type reading on [0,T], and δ_T is a preassigned tolerance.

Definition 2 (Zeta-coherence). We say a family exhibits *zeta-coherence* over [0,T] if, for the completed function Λ , we simultaneously observe:

(C1) Separated deep minima of $|\Lambda(1/2+it)|$ that are stable under truncation/precision changes;

Figure 9: GL(2), level 11: Hardy-type reading via $\operatorname{Im} \Lambda(1/2 + it, f)$. A zero is located by sign change and refined by bisection.

Figure 10: GL(2), level 11: unwrapped argument of $\Lambda(s, f)$ along a rectangle around $\Re s = \frac{1}{2}$ (argument principle).

- (C2) Clear sign alternation of the Hardy-type reading between consecutive minima;
- (C3) Unwrapped phase of Λ along ∂R without spurious jumps (away from zeros), yielding a robust Δ arg.

6.3 Quantitative indicators (templates)

Besides (N_{AP}, N_{H}) we track:

- Regularity index \mathcal{R} : mean depth of minima / local variance of $t \mapsto \log |L(1/2+it)|$;
- Roughness S: normalized total variation of $t \mapsto \log |L(1/2+it)|$;
- Cross-correlation ρ : correlation between normalized profiles on a shared window (useful for Dirichlet vs GL(2) comparisons).

6.4 Overlay (visual comparison)

To visualize common structure, we overlay normalized profiles $t \mapsto \log |L(1/2+it,\cdot)|$ for Dirichlet vs GL(2):

6.5 Limits and numerical biases

• AFE truncation: overly aggressive (M, M^*) may slightly shift minima;

$\overline{\text{Window } [0,T]}$	δ	$N_{\mathrm{AP}}(T)$	$N_{ m H}(T)$
[0, 50]	0.05	•	•
[0, 60]	0.05	•	•

Table 2: GL(2), level 11: zeros counted by the argument principle vs. Hardy-type reading. Bullets to be filled after final runs.

Family	Object	T	$N_{ m AP}$	$N_{ m H}$	\mathcal{R}	\mathcal{S}
Dirichlet	$\chi \pmod{7}$	60	•	•	•	•
GL(2)	f (level 11)	60	•	•	•	•

Table 3: Indicators on [0, T] (placeholders to fill after final runs).

- Working precision: too low a precision distorts the phase and biases Δ arg;
- Grid in t: a coarse step may miss a sign change of the Hardy reading, hence the need for adaptive refinement near minima.

7 Conclusion and perspectives

Summary. We implemented a uniform numerical pipeline for two benchmark number-theoretic families: quadratic Dirichlet L-functions (degree 1) and holomorphic weight-2 GL(2) forms (degree 2). For each family we normalized the completed function Λ , evaluated $L(1/2+it,\cdot)$ via a symmetric approximate functional equation (AFE), detected zeros on the critical line through an appropriate Hardy-type reading, and cross-checked counts by the argument principle on thin rectangles around $\Re s = \frac{1}{2}$. Stability tests (truncation, precision, adaptive t-grids) confirm that zero locations and counts are robust on the explored windows.

The proposed operational criteria — zeta-confinement (agreement $N_{\rm AP}(T) \approx N_{\rm H}(T)$ within tolerance) and zeta-coherence (separated deep minima, clean sign alternation of the Hardy-type reading, and regular unwrapped phase) — are satisfied for both families on the windows considered.

Analytical perspectives.

- **AFE error control.** Make the dependence of the remainder Err(s; M) explicit in terms of the conductor and (M, M^*) , and optimize the near-symmetric choice of truncations.
- Zero density and explicit formulas. Compare numerical counts with degree-dependent Riemann–von Mangoldt predictions, and use explicit formulas to connect the local structure of zeros to weighted sums of coefficients (Dirichlet or Hecke).
- **Fine statistics.** Study normalized spacings and low-lying statistics over larger t-ranges and across families, contrasting with standard probabilistic models in analytic number theory.

Numerical perspectives.

- **Higher windows.** Extend to $T \in \{200, 500\}$ with adaptive precision and parallel evaluation.
- Rigorous arithmetic. Incorporate ball arithmetic / interval methods to certify sign changes and bound the phase error in the argument principle.
- Family coverage. Systematically vary moduli q (Dirichlet) and levels N (GL(2)), while logging ($N_{\rm AP}, N_{\rm H}$) and simple indicators (\mathcal{R}, \mathcal{S}).

Figure 11: Overlay of normalized profiles $\log |L(1/2+it,\cdot)|$: Dirichlet (mod 7) vs GL(2) level 11.

Outlook. The completion \to AFE \to Hardy reading \to argument principle \to stability loop provides a portable verification chain for degree 1 and 2 L-functions. It can serve as a neutral template for other math.NT contexts (e.g., Dirichlet twists, Rankin–Selberg convolutions), and as a point of comparison for auxiliary experimental objects (kept outside the main narrative to preserve the math.NT focus).