Math 120A (Differential Geometry) University of California, Los Angeles

Aaron Chao

Winter 2022

These are my lecture notes for Math 120A (Differential Geometry), which is taught by Fumiaki Suzuki. The textbook for this class is *Differential Geometry of Curves and Surfaces*, by Kristopher Tapp. Many of the figures I include in these notes are taken from Tapp's book.

Contents					
1	Jan 3, 20221.1 What is Differential Geometry?1.2 Parametrized Curves				
2	Jan 5, 2022 2.1 Proof of Proposition 1.12 2.2 Reparametrization	5 5 5			

1 Jan 3, 2022

1.1 What is Differential Geometry?

Differential geometry studies geometry via analysis and linear algebra.

Geometry	Analysis	Linear Algebra
Intuitive	Rigorous	Computable
Curved	$\xrightarrow{\operatorname{tangent space}}$	Linear
Global	Local	

1.2 Parametrized Curves

Example 1.1

A unit circle $S' = \{\vec{x} \text{ in } \mathbb{R}^2 \mid |\vec{x}| = 1\}$

$$\vec{\gamma}: [0, 2\pi) \to \mathbb{R}^2$$

 $t \mapsto (\cos t, \sin t)$

 $\vec{\gamma}[0,2\pi) = S'$

Definition 1.2 (Parametrized curve and Trace)

A (parametrized) curve is a smooth function $\vec{\gamma} \colon I \to \mathbb{R}^n$, where I is an interval in \mathbb{R} . The image

$$\vec{\gamma}(I) = \{\vec{\gamma}(t) \mid t \in I\}$$

is called the <u>trace</u> of $\vec{\gamma}$.

Recall 1.3 An interval is a subset of $\mathbb R$ that has one of the following forms:

$$(a,b),[a,b],(a,b],(a,b),(-\infty,b),(-\infty,b],(a,\infty),[a,\infty),(-\infty,\infty)=\mathbb{R}.$$

A function $\vec{\gamma} \colon I \to \mathbb{R}^n$ is called <u>smooth</u> if $\vec{\gamma}$ is infinitely differentiable, or equivalently, each of the component functions $x_i \colon I \to \mathbb{R}$ is infinitely differentiable.

Example 1.4

 $\vec{\gamma}(t) = (\cos t, \sin t, t), t \in (-\infty, \infty)$ is a curve, called a helix.

Definition 1.5 (Derivative)

Let $\vec{\gamma} : I \to \mathbb{R}^n$ be a curve. The <u>derivative</u> of $\vec{\gamma}$ at t is defined as

$$\vec{\gamma}'(t) = \lim_{h \to 0} \frac{\vec{\gamma}(t+h) - \vec{\gamma}(t)}{h}$$

If t is on the boundaries of I, then use the left- or right-hand limit.

Remarks 1.6

- i. If $\vec{\gamma}(t) = (x_1(t), x_2(t), \dots, x_n(t))$, then $\vec{\gamma}'(t) = (x_1'(t), x_2'(t), \dots, x_n'(t))$.
- ii. The tangent line to the curve at $\vec{\gamma}'(t_0)$ is defined as

$$\vec{L}(t) = \vec{\gamma}(t_0) + t\vec{\gamma}'(t_0), \quad t \in (-\infty, \infty),$$

as soon as $\vec{\gamma}'(t) \neq \vec{0}$.

Definition 1.7 (Regular)

A curve $\vec{\gamma}: I \to \mathbb{R}^n$ is called regular if $\forall t \in I, \vec{\gamma}'(t) \neq \vec{0}$.

Remark 1.8 regular = the tangent line is defined everywhere = the trace is "smooth".

Example 1.9

$$\vec{\gamma}(t) = (t^2, t^3), \quad t \in (-\infty, \infty)$$

Then $\vec{\gamma}$ is a curve that is not regular.

Indeed, $\vec{\gamma}'(t) = (2t, 3t^2)$, so $\vec{\gamma}'(0) = \vec{0}$.

Notice, $x(t) = t^2$, $y(t) = t^3$, so $x(t) = y(t)^{2/3}$. Hence, the trace is given by $x = y^{2/3}$ in \mathbb{R}^2 .

Remark 1.10 The analogy with the physics is useful. If $\vec{\gamma}: I \to \mathbb{R}^n$ is a curve, then $\vec{\gamma}(t)$ is the position of a moving particle at time t in \mathbb{R}^2 .

• $\vec{\gamma}'(t)$ velocity

- $\vec{\gamma}''(t)$ acceleration
- $|\vec{\gamma}'(t)|$ speed

In this analogy, regular = the speed is always nonzero = the particle never stops (hence no "corners" on the trace)

Definition 1.11 (Arc length)

Let $\vec{\gamma}(t): I \to \mathbb{R}^n$ be a regular curve. Then the <u>arc length</u> between times t_1, t_2 is defined as

$$\int_{t_1}^{t_2} |\vec{\gamma}'(t)| \, dt$$

Proposition 1.12

Let $\vec{\gamma} \colon [a,b] \to \mathbb{R}^n$ be a regular curve with the arc length $L, \vec{p} = \vec{\gamma}(a), \vec{q} = \vec{\gamma}(b)$. Then $L \ge |\vec{q} - \vec{p}|$.

Moreover, the equality holds if and only if $\vec{\gamma}$ parametrizes the line segment between \vec{p}, \vec{q} .

For the proof, we use the inner-product:

for
$$\vec{x} = (x_1, x_2, \dots, x_n), \vec{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n,$$

 $\langle x, y \rangle := x_1 y_1 + x_2 y_2 + \dots + x_n y_n$

Basic properties:

- i. The inner product $\langle -, \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is symmetric and bilinear.
- ii. $\langle \vec{x}, \vec{y} \rangle = |\vec{x}||\vec{y}|\cos\theta$, where θ is the angle between \vec{x}, \vec{y} . $(\theta \in [0, 2\pi])$
- iii. $\langle \vec{x}, \vec{y} \rangle = 0 \Leftrightarrow \vec{x}, \vec{y}$ are orthogonal to each other.
- iv. $\langle \vec{x}, \vec{x} \rangle = |\vec{x}|^2$
- v. $\langle \vec{x}, \vec{y} \rangle \leq |\vec{x}||\vec{y}|$ (Schwartz Inequality) and the equality holds if and only if $\theta = 0$.

2 Jan 5, 2022

2.1 Proof of Proposition 1.12

Proof. <u>Idea:</u> Compare $\vec{\gamma}'(t)$ and its projection onto $\vec{q} - \vec{p}$. Set $\vec{n} = \frac{\vec{q} - \vec{p}}{|\vec{q} - \vec{p}|}$; \vec{n} is unit.

Tapp Pg.15

Then $|\vec{\gamma}'(t)| \ge \langle \vec{\gamma}'(t), \vec{n} \rangle$ by Schwartz inequality. Now,

$$\begin{split} L &= \int_a^b |\vec{\gamma}'(t)| \, dt \geq \int_a^b \langle \vec{\gamma}'(t), \vec{n} \rangle \, dt \\ &= [\langle \vec{\gamma}(t), \vec{n} \rangle]_a^b = \langle \vec{\gamma}(b), \vec{n} \rangle - \langle \vec{\gamma}(a), \vec{h} \rangle \\ &= \langle \vec{q} - \vec{p}, \frac{\vec{q} - \vec{p}}{|\vec{q} - \vec{p}|} \rangle = |\vec{q} - \vec{p}| \end{split}$$

If the equality holds, then $\forall t \in [a, b], \vec{\gamma}'(t), \vec{n}$ are in the same direction. So,

$$\vec{\gamma}'(t) = \langle \vec{\gamma}'(t), \vec{n} \rangle \vec{n}.$$

$$\vec{\gamma}(t) = \vec{\gamma}(a) + \int_{a}^{t} \vec{\gamma}'(u) du$$

$$= \vec{p} + \left(\int_{a}^{t} \langle \vec{\gamma}'(u), \vec{n} \rangle dt \right) \vec{n}$$

parametrizes the line segment between \vec{p}, \vec{q} .

2.2 Reparametrization

There are regular curves that share common properties. Which regular curves should we identify?

Example 2.1

$$\begin{split} &\vec{\gamma}(t) = (t,t^2), \quad t \in [-2,2] \\ &\tilde{\vec{\gamma}}(t) = (-2t,(-2t)^2), t \in [-1,1]. \\ &\text{Then } \vec{\gamma}[-2,2] = \tilde{\vec{\gamma}}[-1,1] = \end{split}$$

 $\vec{\gamma},\tilde{\vec{\gamma}}$ are the same, up to change in time:

Let $\phi : [-1, 1] \to [-2, 2], \quad t \mapsto -2t.$

Then $\tilde{\vec{\gamma}} = \vec{\gamma} \circ \phi$

Definition 2.2 (Reparametrization)

Let $\vec{\gamma} \colon I \to \mathbb{R}^n$ be a regular curve. A <u>reparametrization</u> of $\vec{\gamma}$ is a function of the form $\tilde{\vec{\gamma}} = \vec{\gamma} \circ \phi : \tilde{I} \to \mathbb{R}^n$,

where \tilde{I} is an interval, $\phi \colon \tilde{I} \to I$ is a smooth bijection such that $\forall t \in \tilde{I}, \phi'(t) \neq 0$

Figure 1: Kapp pg.19

Proposition 2.3

A reparametrization of a regular curve is a regular curve.

Proof. We use the same notations as the definition.

 $\tilde{\vec{\gamma}} = \vec{\gamma} \circ \phi \colon \tilde{I} \to \mathbb{R}^n$ is the composition of smooth functions, so smooth.

Moreover,
$$\forall t \in \tilde{I}, \tilde{\vec{\gamma}}'(t) = \vec{\gamma}'(\phi(t)) \cdot \phi'(t) \neq 0$$

We will be interested in regular curves up to reparametrizations.

Remarks 2.4

- 1. $\vec{\gamma}$, $\tilde{\vec{\gamma}}$ have the same trace.
- 2. There are regular curves with the same trace that cannot be reparametrized to each other. For instance,

$$\vec{\gamma}_1(t) = (\cos(t), \sin(t)), t \in [0, 2\pi),$$

 $\vec{\gamma}_2(t) = (\cos(t), \sin(t)), t \in [0, 4\pi),$

Question 2.5: Is there a canonical reparametrization of a given regular curve?

Definition 2.6 (Unit-speed)

A regular curve $\vec{\gamma} : I \to \mathbb{R}^n$ is called <u>unit-speed</u> (or parametrized by arc length) if $\forall t \in I$, $|\vec{\gamma}'(t)| = 1$.

Remark 2.7 If $\vec{\gamma} : I \to \mathbb{R}^n$ is unit-speed, then,

Arc length between
$$t_1, t_2 = \int_{t_1}^{t_2} |\vec{\gamma}'(t)| dt = \int_{t_1}^{t_2} dt = t_2 - t_1$$

Proposition 2.8

A regular curve always has a unit-speed reparametrization.

Proof. Let $\vec{\gamma}: I \to \mathbb{R}^n$ be a regular curve. Fix $t_0 \in I$. Define $s: I \to \mathbb{R}$ by $s(t) = \int_{t_0}^t \vec{\gamma}'(u) du$.

Let $\tilde{I} = s(I) \subset \mathbb{R}$. Then \tilde{I} is an interval by IVT.

Since $s'(t) = |\vec{\gamma}'(t)| > 0$ by FTC, regularity, $s: I \to \tilde{I}$ is a smooth bijection. Then, $\phi = s^{-1}: \tilde{I} \to I$ is a smooth bijection,

$$\phi'(t) = \frac{1}{s'(\phi(t))} = \frac{1}{|\vec{\gamma}'(\phi(t))|} \neq 0.$$

Now $\tilde{\vec{\gamma}} = \vec{\gamma} \circ \phi \colon \tilde{I} \to \mathbb{R}^n$ is a reparametrization of $\vec{\gamma}$, that is unit-speed:

$$|\tilde{\gamma}'(t)| = |\vec{\gamma}'(\phi(t)) \cdot \phi'(t)|$$

$$= |\vec{\gamma}'(\phi(t))| \cdot 1/|\vec{\gamma}'(\phi(t))|$$

$$= 1$$

Note:

$$s^{-1} \cdot s(t) = t$$

$$(s^{-1})'(s(t)) \cdot s'(t) = 1$$

 $(s^{-1})'(s(t)) = 1/s'(t)$