

Funções escalares de várias variáveis

Aproximação linear de funções

Objetivos:

- diferencial total; estimação da variação de uma função; cálculo de erro absoluto e relativo;
- aproximação linear de uma função; estimação de valores da função em um ponto;

Seja $f:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ definida no aberto $D\subset\mathbb{R}^2$, diferenciável em $(a,b)\in D$. Então

$$\lim_{(h,k)\to(0,0)}\frac{\varepsilon(h,k)}{\|(h,k)\|}=0$$

Onde
$$\varepsilon(h,k) = f(a+h,b+k) - f(a,b) - \frac{\partial f}{\partial x}(a,b)h - \frac{\partial f}{\partial y}(a,b)k$$
.

Diferencial: Se define diferencial de f no ponto (a,b) relativa aos acréscimos h e k como a função

$$df = \frac{\partial f}{\partial x}(a,b)h + \frac{\partial f}{\partial y}(a,b)k = \text{ diferencial de } f \text{ em } (a,b)$$

que depende de h e k.

Se f é diferenciável em (a,b), temos

$$\lim_{(h,k)\to(0,0)}\varepsilon(h,k) = \lim_{(h,k)\to(0,0)}\frac{\varepsilon(h,k)}{||(h,k)||}\cdot||(h,k)||$$

$$-\lim_{(h,k)\to(0,0)}\frac{\varepsilon(h,k)}{||(h,k)||}\cdot\lim_{(h,k)\to(0,0)}\frac{\varepsilon(h,k)}{||(h,k)||}\cdot\lim_{(h,k)\to(0,0)}\frac{\varepsilon(h,k)}{||(h,k)||}$$

$$= \underbrace{\lim_{(h,k)\to(0,0)}\frac{\varepsilon(h,k)}{||(h,k)||}}_{=0} \cdot \underbrace{\lim_{(h,k)\to(0,0)}||(h,k)||}_{=0} = 0.$$

Logo,

$$f(a+h,b+k) - f(a,b) \simeq \frac{\partial f}{\partial x}(a,b)h + \frac{\partial f}{\partial y}(a,b)k$$
, se $(h,k) \simeq (0,0)$.

Pondo $\Delta f=f(a+h,b+k)-f(a,b)=$ varação de f quando se passa de (a,b) para (a+h,b+k), obtemos:

$$\Delta f \simeq df$$
, se $(h,k) \simeq (0,0)$

O valor df também pode ser interpretado como o <u>erro total</u> nos valores de f(x,y) se os incrementos h e k medem o erro na medição dos valores x e y respectivamente. O <u>erro relativo</u> é o quociente $|\frac{df}{f(a,b)}|$ e a percentagem de variação é $|\frac{df}{f(a,b)}|*100\%$.

Observe-se que na notação de $h=\Delta x$, $k=\Delta y$, a diferencial é

$$df = \frac{\partial f}{\partial x}(a, b)\Delta x + \frac{\partial f}{\partial y}(a, b)\Delta x$$

Analogamente, seja $f:D\subset\mathbb{R}^3\longrightarrow\mathbb{R}$, D aberto em \mathbb{R}^3 , é uma função de três variáveis com derivadas parciais contínuas em D (logo diferenciável). Para cada $(a,b,c)\in D$, definimos a diferencial de f en (a,b,c) relativa aos acréscimos Δx , Δy , Δz por:

$$df = \frac{\partial f}{\partial x}(a, b, c)\Delta x + \frac{\partial f}{\partial y}(a, b, c)\Delta y + \frac{\partial f}{\partial z}(a, b, c)\Delta z$$

 $\text{Mostra-se que } \Delta f \simeq df \quad \text{ se } (\Delta x, \Delta y, \Delta z) \simeq (0,0,0).$

Observação:

1. Notação clássica de diferencial

$$df = \frac{\partial f}{\partial x}(x, y)dx + \frac{\partial f}{\partial y}(x, y)dy$$

- 2. Em funções de uma variável y = f(x), a diferencial é definida como dy = f'(x)dx, sendo dx a variável independente.
- 3. Como $\Delta f \simeq df$, temos que se df>0 (respectivamente df<0), a função aumenta (diminui) quando se passa de (a,b) para (a+h,b+k).
- 4. Se df=0, então a função não varia quando se passa de (a,b) para (a+h,b+k).

Função linearizada: Seja $f:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$, definida no aberto $D\subset\mathbb{R}^2$, e $(a,b)\in D$. Se existem as parciais $\frac{\partial f}{\partial x}(a,b)$ e $\frac{\partial f}{\partial y}(a,b)$, a função

$$L(x,y) = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b)$$

é bem definida e é chamada de função linearizada de f perto de (a,b).

Se f é diferenciável em (a,b), temos

$$\lim_{(x,y)\to(a,b)}\frac{f(x,y)-f(a,b)-\frac{\partial f}{\partial x}(a,b)(x-a)-\frac{\partial f}{\partial y}(a,b)(y-b)}{\sqrt{(x-a)^2+(y-b)^2}}=0$$

e podemos garantir que $f(x,y) \simeq L(x,y)$ para todo (x,y) suficientemente próximo de (a,b).

Observação:

- 1. A função L(x,y) é usada para estimar valores de f(x,y) quando os mesmos forem complicados de calcular e também quando não se tem uma expressão explícita de f. Por exemplo quando temos apenas dados experimentais numa tabela e desconhecemos a lei ou modelo.
- 2. A superfície z = L(x, y) é o plano tangente ao gráfico de f no ponto (a, b, f(a, b)).
- 3. df = L(x,y) f(a,b)

Interpretação geométrica da diferencial: Se $f:I\subset\mathbb{R}\longrightarrow\mathbb{R}$, então dy=f'(a)dx, e geometricamente se corresponde com a distancia entre os pontos R e Q da figura abaixo. Em quanto Δy se corresponde com a distancia entre os pontos R e P.

Figure 1: Diferencial de uma função de uma variável

Observe que Δy representa a variação da função f(x) e dy representa a variação da função linearizada de f, L(x) perto do ponto (a,f(a)), cujo gráfico é a reta tangente a y=f(x) no ponto (a,f(a)).

Ora, se $f:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$, z=f(x,y), então $dz=\frac{\partial f}{\partial x}(a,b)dx+\frac{\partial f}{\partial y}(a,b)dy$, e geometricamente corresponde à distancia do ponto $(a+\Delta x,b+\Delta y,f(a,b))$ ao ponto do plano tangente $(a+\Delta x,b+\Delta y,c)$. Ora, o valor Δz se corresponde com a distancia entre os pontos $(a+\Delta x,b+\Delta y,f(a,b))$ e o ponto $(a+\Delta x,b+\Delta y,f(a+\Delta x,b+\Delta y))$ do gráfico z=f(x,y).

Figure 2: Diferencial de uma função de duas variáveis

Observe que Δz representa a variação da função f(x,y) e dz representa a variação da função linearizada de f, L(x,y) perto do ponto (a,b,f(a,b)). Daí $c=L(a+\Delta x,b+\Delta y)$ no ponto de variação no plano tangente $(a+\Delta x,b+\Delta y,c)$.

Exemplos

1. Calcule a differencial de $z = \ln(x^2 + y^2)$.

Solução

Temos

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = \frac{2x}{x^2 + y^2}dx + \frac{2y}{x^2 + y^2}dy$$

2. Seja $z=xe^{x^2-y^2}$. Calcule um valor aproximado para z, correspondente a x=1,01 e y=1,002.

Solução

A função $z=xe^{x^2-y^2}$ é diferenciável em \mathbb{R}^2 , por $\frac{\partial z}{\partial x}(x,y)$ e $\frac{\partial z}{\partial y}(x,y)$ serem contínuas em \mathbb{R}^2 .

Sejam (a,b)=(1,1), h=0,01 e k=0,002. Como $(h,k)\simeq (0,0)$, Então

$$\Delta z \simeq dz$$

Onde
$$\Delta z = z(1.01, 1.002) - z(1, 1) = z(1.01; 1.002) - 1$$
,

$$dz = \frac{\partial z}{\partial x}(1,1)h + \frac{\partial z}{\partial y}(1,1)k =$$

$$= [e^{x^2 - y^2} + x \cdot 2xe^{x^2 - y^2}]_{(1,1)} \cdot (0.01) + [x \cdot (-2y)e^{x^2 - y^2}]_{(1,0)} \cdot (0.002) =$$

$$= (1+2) \cdot (0,01) + (-2) \cdot (0,002) = 0,03 - 0,004 = 0,026$$

Então, $z(1.01, 1.002) - 1 \simeq 0,026$, ou seja $z(1.01, 1.002) \simeq 1,026$

3. A altura de um cone é h=20~cm e o raio da base é r=12~mm. Calcule um valor aproximado para a variação, Δv no volume quando h aumenta de 2~mm e r decresce 1~mm. Estime o erro relativo e a percentagem de variação do volume.

Solução

O volume do cone de altura h e raio da base r é dado por $V=\frac{1}{3}\pi r^2 h$, que é uma função diferenciável em \mathbb{R}^2 . Sejam $r_0=12, h_0=20$.

Como h aumenta de 2 mm, então $\Delta h=92$ e como r decresce de 1 mm, então $\Delta r=-0,1.$ Como $|\Delta r|\simeq 0$ e $|\Delta h|\simeq 0$, então $\Delta V\simeq dV$, onde

$$dV = \frac{\partial V}{\partial r} \Delta r + \frac{\partial V}{\partial h} \Delta h = \frac{2}{3} \pi r h \Big|_{(12,20)} \cdot \Delta r + \frac{1}{3} \pi r^2 \Big|_{(12,20)} \cdot \Delta h$$
$$= \frac{2}{3} \pi \cdot 12 \cdot 20 \cdot (-0,1) + \frac{1}{3} \pi (12)^2 \cdot (0,2)$$
$$= -16\pi + 9, 6\pi = -6, 4\pi$$

Assim,

$$\Delta V \simeq -6.4\pi$$

ou seja, a variação ΔV no volume decresce aproximadamente de $6,4\pi {
m cm}^3.$

O erro relativo é, portanto,

$$\frac{dV}{V(12,20)} = \frac{6,4\pi}{1/3\pi \cdot 144 \cdot 20} = 0,007$$

e a percentagem de variação do volume é de 0,7%.

4. A altura h de ondas em mar aberto depende da velocidade do vento v e do tempo t durante o qual o vento se manteve naquela intensidade. Os valores da função h=f(v,t) são apresentados na seguinte tabela.

(km/h)	<br ^	5	10	15	20	30	40	50
	40	1,5	2,2	2,4	2,5	2,7	2,8	2,8
vento	60	2,8	4,0	4,9	5,2	5,5	5,8	5,9
de do	80	4,3	6,4	7,7	8,6	9,5	10,1	10,2
Velocidade do vento	100	5,8	8,9	11,0	12,2	13,8	14,7	15,3
Š	400		44.0	14.4	1//	10.0	00 г	01.1

Duração (horas)

Use a tabela para

120

7.4

11.3

(a) determinar uma aproximação linear da função altura da onda quando v está próximo de 80 km/h e t está próximo de 20 horas;

19,0

16,6

21,1

20,5

Solução

Supondo que a função f é diferenciável, uma aproximação linear da função altura para pontos suficientemente próximos de (80,20) seria a função

$$L(v,t) = f(80,20) + \frac{\partial f}{\partial v}(80,20)(v-80) + \frac{\partial f}{\partial t}(80,20)(t-20)$$

Ora.

$$\frac{\partial f}{\partial v}(80,20) = \lim_{h \to 0} \frac{f(80+h,20) - f(80,20)}{h}$$

E podemos estimar esse valor considerando a média das taxas de variação média com, por exemplo, $h_1=20$ e $h_2=-20$. Com efeito,

$$\frac{\partial f}{\partial v}(80, 20) \approx \frac{1}{2} \left(\frac{f(80 + 20, 20) - f(80, 20)}{20} + \frac{f(80 - 20, 20) - f(80, 20)}{-20} \right) = \frac{1}{2} \left(\frac{12.2 - 8.6}{20} + \frac{5.2 - 8.6}{-20} \right) = \frac{1}{2} (0.17 + 0.18) = 0.175.$$

Analogamente,

$$\frac{\partial f}{\partial t}(80, 20) \approx \frac{1}{2} \left(\frac{f(80, 20 + 10) - f(80, 20)}{10} + \frac{f(80, 20 - 5) - f(80, 20)}{-5} \right) =$$

$$= \frac{1}{2} \left(\frac{9.5 - 8.6}{10} + \frac{7.7 - 8.6}{-5} \right) = \frac{1}{2} (0.09 + 0.18) = 0.135.$$

Assim, a aproximação linear esperada seria

$$L(v,t) = 8.6 + 0.175(v - 80) + 0.135(t - 20)$$

Observação: A estimativa das duas parciais vale 1,5 ponto, se o aluno coloca = em vez de \approx vale até 1. A expressão de L(v,t) vale 2 pontos (incluindo a justificação e a correta formulação da linearizada), se o aluno coloca = em vez de \approx vale 1 pontos.

(b) estimar a altura das ondas quando está ventando por 24 horas a 84 km/h.

Resposta: Considerando a linearização do item (a),

$$f(84, 24) \approx L(84, 24) = 8.6 + 0.175(84 - 80) + 0.135(24 - 20) = 9.84$$

Portanto, as ondas teriam uma altura de aproximadamente 9.84 metros.

Exercícios

- 1. Seja $f(x,y) = 1 + \in (x^2 + y^2)$. Determine:
 - (a) D_f
 - (b) Im_f
 - (c) Curvas de nível
 - (d) G_f
 - (e) o plano tangente e a reta normal ao G_f no ponto (1,0,1)
 - (f) Um valor aproximado para f(0.99, 0.01)
 - (g) O conjunto dos pontos de continuidade da função

$$g(x,y) = \begin{cases} x^2 + y^2 \left[f(x,y) - 1 \right], & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

- 2. Dê um valor aproximado de $\sqrt{(0.01)^2 + (3.98)^2 + (2.99)^2}$
- 3. Determine o erro relativo máximo (aproximado) no cálculo do período T de um pêndulo simples, através da fórmula $T=2\pi\sqrt{\frac{l}{g}}$, sendo o erro relativo em l igual a 1% e em q igual a 3%.
- 4. O ângulo central de um setor circular é 80° e o raio é 20 cm e deseja-se reduzir o ângulo de 1° . Qual deve ser o acréscimo no raio para que a área fique inalterada?
- 5. A sensação térmica W(T,v) depende da velocidade do vento v e da temperatura T. Use os dados da seguinte tabela para

Temperatura T (F°)

Velocidade do vento v

(milhas/h)		10,00	30,00	50,00	70,00
	20,00	10,00	30,00	50,00	70,00
	40,00	5,00	15,00	25,00	35,00
	60,00	3,33	10,00	16,67	23,33
	80,00	2,50	7,50	12,50	17,50

- (a) dar uma equação aproximada da lei W(T,v) que determina a sensação térmica a velocidade do vento próxima a $10~{\rm milhas/h}$ e temperatura próxima a 30^oF ..
- (b) estimar a sensação térmica se a velocidade do vento for de $11 \mathrm{milhas/h}$ e a temperatura for 29^oF .
- 6. Um modelo para a área da superfície do corpo humano é dado por

$$S = 72,09w^{0,425}h^{0,725},$$

onde w é o peso (em quilogramas), h é a altura (em centímetros) e S é a medida em centímetros quadrados. Se os erros nas medidas de uma pessoa, w=80kg e h=175cm, forem no máximo de 2%, utilize as diferenciais para estimar o erro máximo cometido no cálculo da superfície do corpo.

- 7. A temperatura do ponto (x,y) de uma chapa é dada por $T(x,y) = \ln \sqrt{x^2 + y^2 12}$.
 - (a) Determine o domínio de T(x,y) e represente-o no plano xy.
 - (b) Determine a equação, da isoterma que contém o ponto (2,3) e faca o seu esboço.
 - (c) Determine o plano z=ax+by+c que melhor se aproxima do gráfico de T(x,y) no ponto (2,3).
 - (d) Calcule um valor aproximado da temperatura em (1.01, 2.99).

Respostas

1. (a) $\mathbb{R}^2 - \{(0,0)\}$

(c) Circunferência de Centro (0,0) e raio $\sqrt{e^{k-1}}$

- (d)
- (e) $z = 1 + 2(x 1); (x, y, z) = (1, 0, 1) + \lambda(2, 0, -1), \lambda \in \mathbb{R}$
- (f) 0.98
- (g) \mathbb{R}^2

- 2. 4.978
- 3. 2%
- 4. $\Delta r \simeq 0.25 \ cm$
- 5. (a) $W(T,v) \simeq 21+1, 2(T-30)+0, 6(v-10).$
 - (b) $W(29,11) \simeq 19,2$
- 6. 2,3**%**
- 7. (a) $D_f = \{(x,y) \in \mathbb{R}^2; x^2 + y^2 > 12\}$
 - (b) $k = 0 \Rightarrow c_0 : x^2 + y^2 = 13$
 - (c) z = 2x + 3y 13
 - (d) -2.01 0.01

