

Unidade Curricular: Mecânica e Campo Eletromagnético (MCE)

Ano Letivo 2022/23

Trabalho – Bobinas Helmholtz Relatório

Guilherme Santos, João Gaspar

107961, 107708

Grupo: 4

Turma: PL6

15/12/2022

Sumário

Este relatório tem como objetivo aprofundar o nosso conhecimento sobre o funcionamento de uma sonda de efeito de Hall, das bobinas de Helmhotz e como o campo magnético atua nelas. Para isto foram realizadas duas atividades experimentais que tiveram como resultado: a constante de calibração, a verificação do princípio da sobreposição e o número de espiras.

1. Introdução Teórica

O conteúdo usado enquadra-se, relativamente, às aulas TP no Eletromagnetismo. Aqui estudámos a produção de campo magnético a partir de correntes elétricas e, para tal, calcula-se através da Lei de Biot-Savart e de Ampère, no entanto, neste caso, em que o solenóide tem comprimento infinito é preferencial recorrermos à Lei de Ampère.

$$\oint B^{\rightarrow} \times dl^{\rightarrow} = \mu_0 \times I_{int} \implies B \times l = \frac{\mu_0 \times N \times l}{L} I \iff B_{sol} = \mu_0 \frac{N}{L} I_s$$

Sendo $\frac{N}{L}$ o número de espiras por unidade de comprimento do solenóide, I_{S} corrente que percorre o solenóide e a constante de permeabilidade magnética do vácuo $\mu_{0}=4\pi\times10^{-7}(T.\,m/A)$.

Considera-se assim, esta expressão válida, pois o comprimento é muito superior ao do raio da bobina. Este enrolamento designa-se por Solenóide Padrão.

Contrariamente, as Bobinas de Helmholtz são constituídas por dois enrolamentos de raio muito superior ao comprimento, dando a entender que parecem mais anéis do que solenóide e desta forma no espaço entre as espiras é possível criar um campo magnético muito mais uniforme do que sem espaço entre eles.

Para o caso de duas bobinas apresentarem o mesmo raio e número de espiras, de estarem coaxiais (coligadas), de terem a distância entre si igual à dos raios e, ainda, de serem percorridas por iguais correntes com o mesmo sentido. Definindo os eixos x e y com a origem no ponto médio entre as 2 bobinas e alinhado com o centro das espiras, permite-nos calcular o campo magnético centrado em x = 0, criado por bobinas a partir da expressão do campo magnético no eixo de um anel de corrente.

$$B(x) = \frac{\mu_0}{2} \frac{IR^2}{(R^2 + x^2)^{\frac{3}{2}}}$$

Prevê-se que o campo magnético atinja o seu valor máximo, $B_{HM\acute{a}x}$, na origem dos eixos definidos pelas bobinas, considerando o campo total resultante da soma dos campos de cada bobina (B1 + B2).

Analisando a variação do valor de BH ao longo da seção, pode, ainda, concluir-se que o valor de B_H não é inferior a 95% de $B_{HM\acute{a}x}$, sendo, em 60% dessa mesma seção, superior a 99% de $B_{HM\acute{a}x}$.

Considerando um bloco de um semi condutor percorrido por uma corrente I_H , e colocado num campo magnético, os portadores de carga vão necessariamente sentir o efeito da força magnética dada pela expressão da Força de Lorentz: $F_m^{\rightarrow} = q v^{\rightarrow} \times B^{\rightarrow} \cdot \hat{z}$, os portadores acumulam-se na face inferior do semicondutor, originando campo elétrico, E^{\rightarrow} , estes ficam então sujeitos a uma força, $F_E^{\rightarrow} = -q E^{\rightarrow} \cdot \hat{z}$.

Na situação de equilíbrio as forças igualam-se, qE=qvB, o que permite calcular a diferença de potencial que se originou entre as 2 faces do semicondutor, designa-se assim por Tensão de Hall.

A Tensão de Hall mede-se segundo:

$$qE = q \frac{V_H}{h} = qvB \Rightarrow V_H = vhB$$

A tensão de Hall é proporcional à corrente de Hall que percorre o material e à intensidade do campo magnético.

Por fim, para medir campos magnéticos com a sonda de Hall, é preciso calibrá-la para determinar a constante de proporcionalidade entre V_H e B, isto é, CC (Constante de Calibração).

2. Procedimento experimental

2.1. Parte A

Um dos erros experimentais implícitos nesta parte é o erro de paralaxe, isto é, quando fizemos as nossas medidas colocamo-nos sempre perpendicularmente ao ponto que se encontrava a ser medido.

Estrutura do circuito:

- Inicialmente teve-se de ligar os terminais da sonda e o voltímetro, à entrada e à saída do amplificador, respetivamente, fechando assim o circuito, fazendo passar corrente elétrica na sonda;
- 2. Registou-se o comprimento do solenóide, 23±0,05 centímetros;
- 3. Seguidamente registámos também o valor de $\frac{N}{L}$ do solenóide que nos foi dado com o valor de 3467±60 espiras por metro;
- 4. Verificou-se se o na ausência do campo magnético, o V_H não permanecia nulo, posto isto ajustamos a tensão residual atuando no potenciómetro;
- 5. Inseriu-se a sonda no solenóide de modo a que esta se encontre num ponto do eixo que minimize a aproximação de solenóide infinito;
- 6. Variou-se a corrente I_s , registou-se a tensão V_H e registramos todos os valores obtidos.

Apresentação de Resultados:

Tensão, $V_H(V)$	Intensidade do Solenóide, I _s (A)
0,000	0,000
0,013	0,060
0,0254	0,120
0,0379	0,180
0,0525	0,250
0,0625	0,298
0,0769	0,367
0,0879	0,421
0,1003	0,480
0,1095	0,525
0,1277	0,612

Após a representação gráfica da tensão de Hall em função da intensidade, tivemos de calcular o declive da função para sermos capazes de obter a Constante de Calibração.

Análise de Resultados:

Tal como já sabido e estudado em anos anteriores, a equação da reta é y=mx+b. Para calcular o declive fazemos $m=\frac{V_H}{I_S}=0,2082\,V/A$. Porém, com o uso de funções disponíveis no EXCEL fomos capazes de obter a equação da reta.

$$y = 0.2082x + 0.0004$$
.

Conhecendo o declive da reta determinamos a constante de calibração (CC),

$$cc = \frac{\mu_0 \times \frac{N}{L}}{m} = \frac{4\pi \times 10^{-7} \times 3467}{0,2082} = 0,0209 \, V/A$$

Para calcular o erro da constante de calibração, fizemos:

$$\frac{\Delta cc}{cc} = \left| \frac{\Delta m}{m} \right| + \left| \frac{\Delta (\frac{N}{L})}{\frac{N}{L}} \right|$$

$$\Delta m = \sqrt{\frac{\frac{1}{R^2} - 1}{n - 2}} = \sqrt{\frac{\frac{1}{1} - 1}{9 - 2}} = 0$$

Com estes dados resolve-se o erro relativo:

$$\frac{\Delta cc}{cc} = \left| \frac{\Delta(\frac{N}{L})}{\frac{N}{L}} \right| \Leftrightarrow \frac{\Delta cc}{cc} = \left| \frac{60}{3467} \right| \Leftrightarrow \frac{\Delta cc}{cc} = 0.0173 \Leftrightarrow \frac{\Delta cc}{cc} = 1.73\%$$

2.2. Parte B

Estrutura do circuito:

- Mediu-se o raio das bobinas e de seguida ajustamos as mesmas a uma distância igual à do raio adquirido;
- 2. Mudou-se os multímetros para medirem intensidade e tensão;
- 3. Ajustou-se a resistência de modo a que a intensidade fosse igual a 0,5A:
- Colocou-se a sonda no interior das bobinas efetuando diversas medições para a bobina 1, o mesmo raciocínio para a bobina 2 e por fim para as duas bobinas em série;
- 5. Mediu-se e registou-se os vários valores de tensão para as diferentes posições da sonda nos três circuitos respetivos;
- 6. Por fim efetuamos os cálculos necessários com os valores adquiridos para comprovar o princípio da sobreposição.

Apresentação de Resultados:

Posição(m)	Tensão Bobina 1 (V)	Tensão Bobina 2 (V)	Tensão Bobina 1 + 2 (V)
0,24	0,0119	0,0027	0,0142
0,25	0,0166	0,0034	0,0204
0,26	0,0245	0,0043	0,0287
0,27	0,0339	0,0058	0,0390
0,28	0,0447	0,0078	0,0519
0,29	0,0521	0,0110	0,0618
0,30	0,0526	0,0155	0,0655
0,31	0,0458	0,0220	0,0642
0,32	0,0351	0,0315	0,0629
0,33	0,0248	0,0415	0,0641
0,34	0,0176	0,0509	0,0653
0,35	0,0123	0,0529	0,0620
0,36	0,0086	0,0467	0,0521
0,37	0,0065	0,0255	0,0398
0,38	0,0044	0,0267	0,0283

0,39	0,0033	0,0179	0,0196
0,40	0,0024	0,0123	0,0139
0,41	0,0017	0,0088	0,0099

Tendo sido a constante de calibração calculada anteriormente (Parte A), agora somos capazes de calcular o campo magnético usando a seguinte

$$\mathsf{f\'ormula} : B = cc \times V_H \Leftrightarrow \tfrac{B}{V_H} = cc \Leftrightarrow cc = \tfrac{\mu_0 \times \tfrac{N}{L} \times I}{V_H} \Leftrightarrow cc = \tfrac{\mu_0 \times \tfrac{N}{L}}{m} \Leftrightarrow B = \tfrac{\mu_0 \times \tfrac{N}{L}}{m} V_H$$

Posição(m)	Campo Magnético Bobina 1 (T)	Campo Magnético Bobina 2 (T)	Campo Magnético Bobina 1 + 2 (T)
0,24	0,00024871	0,00005643	0,00029678
0,25	0,00034694	0,00007106	0,00042636
0,26	0,00051205	0,00008987	0,00059983
0,27	0,00070851	0,00012122	0,00081510
0,28	0,00093423	0,00016302	0,00108471
0,29	0,00108889	0,00022990	0,00129162
0,30	0,00109934	0,0003295	0,00136895
0,31	0,00095722	0,0045980	0,00134178
0,32	0,00073359	0,00065835	0,00131461
0,33	0,00051832	0,00086735	0,00133969
0,34	0,00036784	0,00106381	0,00136477
0,35	0,00025707	0,00110561	0,0012958

0,36	0,00017974	0,0097603	0,00108889
0,37	0,00013585	0,00074195	0,00083182
0,38	0,00009196	0,00055803	0,00059147
0,39	0,00006897	0,00037411	0,00040964
0,40	0,00005016	0,00025707	0,00029051
0,41	0,00003553	0,00018392	0,00020691

Através destes gráficos, conseguimos confirmar a existência do princípio da sobreposição, onde o campo magnético total produzido por várias cargas é a soma dos campos magnéticos produzidos individualmente.

Após a realização da experiência, temos todos os dados para podermos calcular o número de espiras visto que conhecemos o valor do campo magnético teórico e prático.

O valor do campo magnético prático, B_p , é obtido através do cálculo da média dos valores do campo magnético já registados:

$$B_t = \frac{4\pi \times 10^{-7}}{2} \frac{0.5 \times 0.03^2}{(0.03^2 + 0^2)^{\frac{3}{2}}} = 1.0472 \times 10^{-7} T$$

Este valor representa o campo magnético para uma espira.

$$B_p = N \times B_t \Leftrightarrow N = \frac{B_p}{B_t} \Leftrightarrow N = \frac{0,00089}{1.0472 \times 10^{-7}} = 85 \text{ espiras}$$

3. Conclusão

Os objetivos foram quase todos concluídos com sucesso, ou seja, na parte A encontrámos o valor da constante de calibração, com um erro correspondente a 1,73%, ou seja, foi um sucesso tendo sido abaixo de 10%. Na parte B demonstramos o princípio da sobreposição do campo magnético e calculamos o número de espiras, chegando a um valores de 85 espiras aproximadamente (84,98854). As contribuições foram 50% para cada elemento do grupo.

4. Bibliografia

- [1] Serway, R. A., Physics for Scientist and Engineers with modern Physics, 2000, Saunder College Publishing.
 - [2] MCE_BobinasHelmholtz_2022-2023.pdf , Departamento de Física.