Military College of Signals CS Department

Automata Theory and Formal Languages

Spring 2011 BESE 14

Assignment 02 – NFA to DFA

Due date: 15th Mar, 2011

SOLUTION

Q1: Convert the NFA given in Table 1 to DFA. The start state is q_0 and the final state is q_3 .

Table 1

	0	1	λ
$\mathbf{q_o}$	q_{o}	q_0, q_1	-
q ₁	q_2	-	q_2
q ₂	-	q_3	-
\mathbf{q}_3	q_3	q_3	-

QUESTION 1

	0	1	A
9/0	30	30,31	901
91	9/2	(G: 3)	92
W2	-	9/3	V
Vs	913	9/3	Jan 14
		137	

Accepts

(1) 11 (0+1) 1

(0+1)* (01 (0+1)*

2. Start at gro

Since
$$S(q_1, \lambda) = q_2 \cdots q_1 \times q_2$$
 are some stalf

Here $S(q_1, \lambda) = q_2 \cdot q_1 \cdot q_2$

3. At 90 9, 192 = 8 00 000

$$8((90,90)) = 8(90,0) \cup 8(90,0)$$

$$8((90,90),0) = 8(90,0) \cup 8(90,0)$$

$$8((90,90),1) = 8(90,1) \cup 8(90,1)$$

$$= 900,90,19$$

$$= 900,90,19$$

5. At
$$\frac{\alpha_0, \alpha_1, \alpha_3}{((\alpha_0, \alpha_1, \alpha_3), 0)} = 8(\frac{\alpha_0, 0}{(\alpha_0, \alpha_1, \alpha_3), 0}) = 8(\frac{\alpha_0, 0}{(\alpha_0, \alpha_1, \alpha_3), 0}) = \frac{8(\frac{\alpha_0, 0}{(\alpha_0, \alpha_1, \alpha_3), 0}) \times 8(\frac{\alpha_0, \alpha_1, \alpha_2, \alpha_3}{(\alpha_0, \alpha_1, \alpha_1, \alpha_2, \alpha_3)}) \times 8(\frac{\alpha_0, \alpha_1, \alpha_1, \alpha_2, \alpha_3}{(\alpha_0, \alpha_1, \alpha_1, \alpha_2, \alpha_3)}) \times 8(\frac{\alpha_0, \alpha_1, \alpha_2, \alpha_3}{(\alpha_0, \alpha_1, \alpha_1, \alpha_2, \alpha_3)}) \times 8(\frac{\alpha_0, \alpha_1, \alpha_2, \alpha_3}{(\alpha_0, \alpha_1, \alpha_1, \alpha_2, \alpha_3)}) \times 8(\frac{\alpha_0, \alpha_1, \alpha_2, \alpha_3}{(\alpha_0, \alpha_1, \alpha_2, \alpha_3)}) \times 8(\frac$$

7. At
$$90.91$$
 $8((90.93), 0) = 8(90.0) \cup 8(93.0)$
 $= 90.093 = 90.93$
 $8((90.93), 0) = 8(90.1) \cup 8(93.1)$
 $= 90.91 \cup 91$
 $= 90.91 \cup 91$
 $= 90.91 \cup 8(91.0) \cup 8(91.0) \cup 8(91.0)$
 $= 90.091 \cup 8(91.0) \cup 8(91.0) \cup 8(91.0)$
 $= 90.091 \cup 8(91.0) \cup 8(91.0) \cup 8(91.0)$
 $= 90.91 \cup 8(91.0)$
 $= 90.$

Q2: Convert the NFA given in Table 2 to DFA. The start state is A and the final state is D.

Table 2

	0	1
A	A, C	A, B
В	С	В
C	B, C	D
D	D	D

QUESTION 2

Convat the NFA to DFA.

Ť	1	0	9,4	
-	A	A, C	A,B	
	В	С	В	
)8	u ¿a)	BIC	(D.0134	193
•	D	D S	D	
			A O.A	-

$$S = A$$

 $D \in F$

1. Drawing NFA

Accept (0+1) 101 (0+1) 4

Q3: Convert the NFA given in Figure 1 to DFA.

Figure 1

$$S(1/2/6), \infty) = 8(1/a) \cup 8(1/a) \cup 8(6/a) | 8(1/2/6), b) = 8(1/5) \cup 8(2/6) \cup 8(2/6)$$

4. For
$$3,4,7,8$$

 $8(3,4,7,8), a) = 8(3,a) \cup 8(4,a) \cup (6(3,4,7,8), b) = 8(3,5) \cup 8(4,5) \cup (8(7,5))$
 $= 4040646$
 $= 4050646$
 $= 5,80606$
 $= 5,80606$

Q4: Convert the NFA given in Figure 2 to DFA.

Figure 2

QUESTION 4

- 1. 114 and 314 care same. Also, 412 are same
- 2. The MAN accept A

3. At 1 Sine 114 & Sue 1

: start slate; 1.4

8(114),a): 8(11a) u8(4,a) | 8(114),1)= 8(115) u8(415) = 3,4 u \$ = 4 u 4 = 2,314 Sime 3,4 is some = 4 1,4 ad 412 are some.

6. At 1

8(4,0) = \$\frac{4}{3}\$, 8(415) = \$\frac{4}{3}\$

7. Marking all stables with the stable in force 8. Some NFA accepts it, start stable in force 8.

