Techniki eksploracji danych

Krzysztof Gajowniczek

Rok akademicki: 2020/2021

- Wykorzystywana notacja matematyczna
- 2 Miary jakości modeli
- Sprawdzian krzyżowy
- Optymalizacja parametrów
- 5 Literatura

Section 1

Wykorzystywana notacja matematyczna

Wyjaśnienie symboli

- n liczba obserwacji.
- i iterator obserwacji, $i \in \{1, ..., n\}$.
- y zmienna celu.
 - dla problemu regresji: $y \in \mathbb{R}$.
 - dla problemu klasyfikacji: $y \in \{1, ..., l, ..., k\}$.
 - y_i i-ta wartość zmiennej celu.
- ŷ wartość teoretyczna zmiennej celu.
 - dla problemu regresji: $\hat{y} \in \mathbb{R}$.
 - dla problemu klasyfikacji: $\forall l, \hat{y} \in [0, 1], \sum_{l=1}^{k} \hat{y}^{(l)} = 1$.
- x attrybut, $x \in X$.
- j iterator attrybutu, $j \in \{1, ..., p\}$.
 - $x^T \in X^{(p)}$.

Miary dla problemów regresyjnych Miary dla problemów klasyfikacyjnych

Section 2

Miary jakości modeli

Miary dla problemów regresyjnych Miary dla problemów klasyfikacyjnych

Subsection 1

Miary dla problemów regresyjnych

Mean absolute error

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Mean squared error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Mean absolute percentage error

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$$

Miary dla problemów regresyjnych Miary dla problemów klasyfikacyjnych

Subsection 2

Miary dla problemów klasyfikacyjnych

 W zależności o wykorzystanej miary, pracować będziemy albo na wektorach prawdopodobieństa:

$$\hat{\boldsymbol{y}}^T = \{\hat{y}^{(1)}, \hat{y}^{(2)}\} = \{0.35, 0.65\}$$

albo na finalnych etykietach klas, wyznaczanych jako:

$$\hat{y} = \arg\max_{l} \hat{y}^{(l)} = \{2\}$$

 w niektórych jednak przypadkach dla klasyfikacji binarnej finalna etykieta wyznaczana jest jako:

$$\hat{y} = \arg_{l>t} \hat{y}^{(l)} = \{2\}$$

• etykieta, której prawdopodobieństwo jest większe od pewnego progu *t*, najczęściej ustawionego na wartość 0.5.

Klasyfikacja binarna

- Klasa pozytywna (P) jest to ta klasa, która nas najbardziej interesuje.
- Najczęściej jest niedoreprezentowana, tj. 5%-95%.

		Przewidywane	
		P (2)	N (1)
Prawdziwe	P (2)	TP	FN
	_	_	_
	N (1)	FP	TN

$$Czu$$
łość = $\frac{TP}{TP + FN}$
 $Specyficzność = $\frac{TN}{TN + FP}$
 $Jakość = \frac{TN + TF}{TN + TF + FP + FN}$$

Klasyfikacja binarna

 Krzywa ROC (ang. Receiver Operating Characteristic): graficzna reprezentacja efektywności modelu poprzez wykreślenie miar Czułości i Specyficzności powstałych z modelu przy zastosowaniu wielu różnych punktów odcięcia t.

Pole pod krzywą ROC

AUC (ang. Area Under Curve) - wielkość pola pod krzywą
 ROC mieści się w przedziale [0; 1].

Interpretacja jak pole

$$AUC = \int_0^1 ROC(t)dt$$

Interpretacja jako prawdopodobieństwo

$$AUC = P(\hat{y}^{(2)} > \hat{y}^{(1)})$$

Metody estymacji AUC

- Istnieje kilka różnych sposobów oszacowania tej miary.
- Obserwacje muszą być posortowane nierosnąco względem $\hat{y}^{(2)}$.

Interpretacja jak pole

$$AUC = -\frac{1}{2} \sum_{i=2}^{n} (Czułość_{i-1}Specyficzność_{i} - Czułość_{i}Specyficzność_{i-1})$$

Interpretacja jako prawdopodobieństwo

$$AUC = \frac{R_2 - \frac{n_2(n_2 - 1)}{2}}{n_2 n_1}$$

gdzie: n_2 - liczba obserwacji z klasy 2, n_1 - liczba obserwacji z klasy 1, R_2 - suma rang obserwacji z klasy 2.

Klasyfikacja wieloklasowa

		Przewidywane			
		1	2	 j	 k
Prawdziwe	1	Т	F	 F	 F
	2	F	Т	 F	 F
	 j	 F	 F	 T	 F
	 k	 F	 F	 F	 T

$$Jako$$
ść $= rac{1}{n} \sum_{i=1}^{n} I(y_i = rg \max_{l} \hat{y}_i^{(l)})$ $multiAUC = rac{1}{k(k-1)} \sum_{l,k} AUC_{l,k}$

Youden index (J)

• Wyznaczenie optymalnej wartości t wyznacza się na podstawie:

$$J = \arg_t Czułość + Specyficzność - 1$$

Section 3

Sprawdzian krzyżowy

 Sprawdzian krzyżowy (walidacja krzyżowa, kroswalidacja, sprawdzanie krzyżowe) – metoda statystyczna, polegająca na podziale próby statystycznej na podzbiory, a następnie przeprowadzaniu wszelkich analiz na niektórych z nich (zbiór uczący), podczas gdy pozostałe służą do potwierdzenia wiarygodności jej wyników (zbiór testowy, zbiór walidacyjny).

Prosta walidacja

- Najbardziej typowy rodzaj walidacji, w którym próbę dzieli się losowo na rozłączne zbiory:
 - Uczący i testowy najczęsciej w proporacjacj 80%-20% lub 70%-30%.
 - Uczący, walidacyjny i testowy najczęsciej w proporacjach 60%-30%-10%.

k-krotna walidacja

- Oryginalna próba jest dzielona na k podzbiorów, gdzie każdy z nich bierze się jako zbiór testowy, a pozostałe razem jako zbiór uczący. Analiza jest więc wykonywana k razy. K rezultatów jest następnie uśrednianych (lub łączonych w inny sposób) w celu uzyskania jednego wyniku.
 - Proporcja zbiorów wynosi (1-1/k)%-(1/k)%, np. dla k=4, 75%-25%; k=10, 90%-10%.

Kroswalidacja stratyfikowana

- Nie jest to w zasadzie osobna odmiana kroswalidacji, a odnosi się do wszystkich jej rodzajów wymienionych powyżej.
- Kroswalidacja stratyfikowana (ang. stratified cross-validation) polega na takim podziale obiektów pomiędzy zbiór uczący i zbiór testowy, aby zachowane były oryginalne proporcje pomiędzy klasami decyzyjnymi.
- Zastosowanie kroswalidacji stratyfikowanej jest szczególnie ważne w przypadku, gdy w oryginalnym zbiorze danych występują znaczne dysproporcje w liczebności przykładów należących do poszczególnych klas decyzyjnych.

Section 4

Optymalizacja parametrów

- Modele uczenia maszynowego są sparametryzowane, aby ich zachowanie można było dostroić do danego problemu.
- Modele mogą mieć wiele parametrów, a znalezienie najlepszej kombinacji parametrów może być traktowane jako problem wyszukiwania.
- Proces ten nazywany jest optymalizacją hiperparametrów, gdzie parametry algorytmu są określane jako hiperparametry, podczas gdy współczynniki znalezione przez sam algorytm uczenia maszynowego są określane jako parametry.
- Optymalizacja wskazuje na poszukiwawczy charakter problemu.
- Określając ten proces jako problem wyszukiwania, można użyć różnych strategii wyszukiwania, aby znaleźć dobry i niezawodny parametr lub zestaw parametrów dla algorytmu dla danego problemu.

Dostrajanie parametrów poprzez przeszukiwanie siatki (ang. grid search)

 Przeszukiwanie siatki to podejście do strojenia parametrów, które metodycznie buduje i ocenia model dla każdej kombinacji parametrów algorytmu określonych w siatce.

Losowe dostrajanie parametrów (ang. random search)

- Wyszukiwanie losowe to podejście do dostrajania parametrów, które będzie próbkować parametry algorytmu z losowego rozkładu jednostajny) dla ustalonej liczby iteracji.
- Model jest konstruowany i oceniany dla każdej kombinacji wybranych parametrów.

Section 5

Literatura

- Friedman, J., Hastie, T., Tibshirani, R. (2001). The elements of statistical learning (Vol. 1, No. 10). New York: Springer series in statistics.
- David J. Hand and Robert J. Till (2001). A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems. Machine Learning 45(2), 171-186.