Class 14: RNASeq mini-project

Anyoleth Alarcon A17347293

Table of contents

Required packages	2
Data import	2
Tidy counts	3
Remove zero count genes	4
Setup DESeq object for analysis	4
Run DESeq analysis	5
Extract the results	5
Add Gene annotation	6
Save my results to a CSV file	8
Result Visualization	8
Section 3 Ontology	13
Section 4: Reactome Analysis	15

Here we will perform a complete RNASeq analysis from counts to pathways and biological interpretation.

The data for for hands-on session comes from GEO entry: GSE37704, which is associated with the following publication:

Trapnell C, Hendrickson DG, Sauvageau M, Goff L et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq". Nat Biotechnol 2013 Jan;31(1):46-53. PMID: 23222703

The authors report on differential analysis of lung fibroblasts in response to loss of the developmental transcription factor HOXA1.

Required packages

```
library(DESeq2)
library(AnnotationDbi)
library(org.Hs.eg.db)
library(pathview)
library(gage)
library(gageData)
```

Data import

```
colData <- read.csv("GSE37704_metadata.csv", row.names = 1)
countData <- read.csv("GSE37704_featurecounts.csv", row.names = 1)
head(colData)</pre>
```

```
condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd
SRR493371 hoxa1_kd
```

```
head(countData)
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212

SRR493371 ENSG00000186092 0 ENSG00000279928 0 ENSG00000279457 46 ENSG00000278566 0 ENSG00000273547 0 ENSG00000187634 258

Tidy counts

Check the correspondance of colData rows and countData columns.

rownames(colData)

[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"

colnames(countData)

```
[1] "length" "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" [7] "SRR493371"
```

Remove the troublesome first column so we march the metadata

```
counts <- countData[,-1]</pre>
```

head(counts)

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

```
rownames(colData) == colnames(counts)
```

[1] TRUE TRUE TRUE TRUE TRUE TRUE

```
all(rownames(colData) == colnames(counts))
```

[1] TRUE

Remove zero count genes

We will have rows in **counts** for genes that we can not say anything about because they have zero expression in the particular tissue we are looking at.

head(counts)		
nead (Country)		

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

If the rowSums() is zero then give a name (i.e. row) has no count data and we should exclude these genes from further consideration.

```
to.keep <- rowSums(counts) != 0
cleancounts <- counts[to.keep,]</pre>
```

Q. How many genes do we have left?

```
nrow(cleancounts)
```

[1] 15975

Setup DESeq object for analysis

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

Run DESeq analysis

```
dds <- DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing</pre>
```

Extract the results

```
res <- results(dds)
head(res)</pre>
```

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns

		0 00 = 0			
baseMean		${\tt log2FoldChange}$	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215598	1.040744	2.97994e-01
	pac	dj			
	<numerio< td=""><td>c></td><td></td><td></td><td></td></numerio<>	c>			

ENSG00000279457 6.86555e-01 ENSG00000187634 5.15718e-03

```
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
ENSG00000187642 4.03379e-01
```

Add Gene annotation

```
columns(org.Hs.eg.db)
 [1] "ACCNUM"
                    "ALIAS"
                                    "ENSEMBL"
                                                    "ENSEMBLPROT"
                                                                   "ENSEMBLTRANS"
 [6] "ENTREZID"
                    "ENZYME"
                                    "EVIDENCE"
                                                    "EVIDENCEALL"
                                                                   "GENENAME"
[11] "GENETYPE"
                    "GO"
                                    "GOALL"
                                                    "IPI"
                                                                   "MAP"
[16] "OMIM"
                    "ONTOLOGY"
                                    "ONTOLOGYALL"
                                                    "PATH"
                                                                   "PFAM"
[21] "PMID"
                    "PROSITE"
                                    "REFSEQ"
                                                    "SYMBOL"
                                                                   "UCSCKG"
[26] "UNIPROT"
res$symbol <- mapIds(x = org.Hs.eg.db,
                     keys = rownames(res),
                     keytype = "ENSEMBL",
                     column = "SYMBOL")
```

'select()' returned 1:many mapping between keys and columns

```
head(res)
```

```
\log 2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 7 columns
```

```
baseMean log2FoldChange
                                            lfcSE
                                                                 pvalue
                                                       stat
               <numeric>
                              <numeric> <numeric> <numeric>
                                                              <numeric>
ENSG00000279457
                 29.9136
                              0.1792571 0.3248216
                                                   0.551863 5.81042e-01
ENSG00000187634 183.2296
                              0.4264571 0.1402658
                                                   3.040350 2.36304e-03
ENSG00000188976 1651.1881
                             -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000187961 209.6379
                              0.7297556 0.1318599 5.534326 3.12428e-08
                              0.0405765 0.2718928 0.149237 8.81366e-01
                 47.2551
ENSG00000187583
ENSG00000187642
                 11.9798
                              0.5428105 0.5215598 1.040744 2.97994e-01
                                symbol
                      padj
                 <numeric> <character>
```

```
ENSG00000279457 6.86555e-01 NA
ENSG00000187634 5.15718e-03 SAMD11
ENSG00000188976 1.76549e-35 NOC2L
ENSG00000187961 1.13413e-07 KLHL17
ENSG00000187583 9.19031e-01 PLEKHN1
ENSG00000187642 4.03379e-01 PERM1
```

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

head(res)

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 9 columns

```
baseMean log2FoldChange
                                            lfcSE
                                                         stat
                                                                  pvalue
                <numeric>
                               <numeric> <numeric> <numeric>
                                                                <numeric>
ENSG00000279457
                  29.9136
                               0.1792571 0.3248216 0.551863 5.81042e-01
ENSG00000187634 183.2296
                               0.4264571 0.1402658
                                                    3.040350 2.36304e-03
                              -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000188976 1651.1881
ENSG00000187961 209.6379
                               0.7297556 0.1318599
                                                    5.534326 3.12428e-08
ENSG00000187583
                 47.2551
                               0.0405765 0.2718928 0.149237 8.81366e-01
ENSG00000187642
                  11.9798
                               0.5428105 0.5215598 1.040744 2.97994e-01
                       padj
                                 symbol
                                                         name
                                                                    entrez
                  <numeric> <character>
                                                   <character> <character>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
                                 SAMD11 sterile alpha motif ..
                                                                    148398
                                 NOC2L NOC2 like nucleolar ..
ENSG00000188976 1.76549e-35
                                                                    26155
ENSG00000187961 1.13413e-07
                                 KLHL17 kelch like family me..
                                                                   339451
ENSG00000187583 9.19031e-01
                               PLEKHN1 pleckstrin homology ..
                                                                    84069
ENSG00000187642 4.03379e-01
                                  PERM1 PPARGC1 and ESRR ind..
                                                                    84808
```

Save my results to a CSV file

```
write.csv(res, file = "results.csv")
```

Result Visualization

```
mycols <- rep("gray", nrow(res))
mycols[ res$log2FoldChange <= -2 ] <- "blue"
mycols[ res$log2FoldChange >= 2 ] <- "blue"
mycols[ res$padj >= 0.5 ] <- "gray"

plot(res$log2FoldChange, -log(res$padj), col= mycols) +
   abline(v=-2, col="red")</pre>
```

integer(0)

```
abline(v=+2, col="red")
abline(h=-log(0.05), col="red")
```



```
data(sigmet.idx.hs)
kegg.sets.hs <- kegg.sets.hs[sigmet.idx.hs]</pre>
# Examine the first 3 pathways
head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
            "1544" "1548" "1549" "1553" "7498" "9"
[1] "10"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
               "1066"
                         "10720"
                                            "151531" "1548"
                                                                "1549"
                                                                          "1551"
                                  "10941"
 [9] "1553"
               "1576"
                         "1577"
                                            "1807"
                                                                "221223" "2990"
                                   "1806"
                                                      "1890"
[17] "3251"
               "3614"
                         "3615"
                                   "3704"
                                            "51733"
                                                      "54490"
                                                                "54575"
                                                                          "54576"
[25] "54577"
               "54578"
                         "54579"
                                  "54600"
                                            "54657"
                                                      "54658"
                                                                "54659"
                                                                          "54963"
                                            "7172"
[33] "574537" "64816"
                         "7083"
                                   "7084"
                                                      "7363"
                                                                "7364"
                                                                          "7365"
[41] "7366"
               "7367"
                         "7371"
                                  "7372"
                                            "7378"
                                                      "7498"
                                                                "79799"
                                                                          "83549"
[49] "8824"
                         "9"
                                   "978"
               "8833"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                          "10606"
                                    "10621"
                                             "10622"
                                                       "10623"
                                                                 "107"
                                                                           "10714"
  [9] "108"
                "10846"
                          "109"
                                    "111"
                                              "11128"
                                                       "11164"
                                                                 "112"
                                                                           "113"
 [17] "114"
                "115"
                          "122481" "122622" "124583" "132"
                                                                 "158"
                                                                           "159"
 [25] "1633"
                "171568" "1716"
                                    "196883" "203"
                                                       "204"
                                                                 "205"
                                                                           "221823"
 [33] "2272"
                "22978"
                          "23649"
                                    "246721"
                                             "25885"
                                                       "2618"
                                                                 "26289"
                                                                           "270"
 [41] "271"
                "27115"
                          "272"
                                    "2766"
                                             "2977"
                                                       "2982"
                                                                 "2983"
                                                                           "2984"
                "2987"
                                                                 "318"
                                                                           "3251"
 [49] "2986"
                          "29922"
                                    "3000"
                                             "30833"
                                                       "30834"
 [57] "353"
                "3614"
                          "3615"
                                    "3704"
                                             "377841"
                                                       "471"
                                                                 "4830"
                                                                           "4831"
 [65] "4832"
                "4833"
                          "4860"
                                    "4881"
                                             "4882"
                                                       "4907"
                                                                 "50484"
                                                                           "50940"
                                                                 "5139"
 [73] "51082"
                "51251"
                          "51292"
                                    "5136"
                                             "5137"
                                                       "5138"
                                                                           "5140"
                          "5143"
                                    "5144"
                                                       "5146"
                                                                 "5147"
 [81] "5141"
                "5142"
                                             "5145"
                                                                           "5148"
 [89] "5149"
                "5150"
                          "5151"
                                    "5152"
                                             "5153"
                                                       "5158"
                                                                 "5167"
                                                                           "5169"
 [97] "51728"
                "5198"
                          "5236"
                                    "5313"
                                             "5315"
                                                       "53343"
                                                                 "54107"
                                                                           "5422"
[105] "5424"
                                    "5427"
                                                                 "5432"
                "5425"
                          "5426"
                                             "5430"
                                                       "5431"
                                                                           "5433"
[113] "5434"
                "5435"
                          "5436"
                                    "5437"
                                             "5438"
                                                       "5439"
                                                                 "5440"
                                                                           "5441"
[121] "5471"
                "548644" "55276"
                                    "5557"
                                             "5558"
                                                       "55703"
                                                                 "55811"
                                                                           "55821"
[129] "5631"
                "5634"
                          "56655"
                                    "56953"
                                             "56985"
                                                       "57804"
                                                                 "58497"
                                                                           "6240"
[137] "6241"
                "64425"
                          "646625" "654364"
                                             "661"
                                                       "7498"
                                                                 "8382"
                                                                           "84172"
[145] "84265"
                "84284"
                          "84618"
                                    "8622"
                                              "8654"
                                                       "87178"
                                                                 "8833"
                                                                           "9060"
                                    "9533"
[153] "9061"
                "93034"
                          "953"
                                             "954"
                                                       "955"
                                                                 "956"
                                                                           "957"
```

data(kegg.sets.hs)

[161] "9583"

"9615"

```
foldchanges <- res$log2FoldChange
names(foldchanges) <- res$entrez
head(foldchanges)</pre>
```

<NA> 148398 26155 339451 84069 84808
0.17925708 0.42645712 -0.69272046 0.72975561 0.04057653 0.54281049

```
keggres <- gage(foldchanges, gsets=kegg.sets.hs)
attributes(keggres)</pre>
```

\$names

[1] "greater" "less" "stats"

head(keggres\$less)

		p.geomean	stat.mean	p.val
hsa04110	Cell cycle	8.995727e-06	-4.378644	8.995727e-06
hsa03030	DNA replication	9.424076e-05	-3.951803	9.424076e-05
hsa03013	RNA transport	1.246882e-03	-3.059466	1.246882e-03
hsa03440	Homologous recombination	3.066756e-03	-2.852899	3.066756e-03
hsa04114	Oocyte meiosis	3.784520e-03	-2.698128	3.784520e-03
hsa00010	Glycolysis / Gluconeogenesis	8.961413e-03	-2.405398	8.961413e-03
		q.val s	set.size	exp1
hsa04110	Cell cycle	0.001448312	121 8	.995727e-06
hsa03030	DNA replication	0.007586381	36 9	.424076e-05
hsa03013	RNA transport	0.066915974	144 1	.246882e-03
hsa03440	Homologous recombination	0.121861535	28 3	.066756e-03
hsa04114	Oocyte meiosis	0.121861535	102 3	.784520e-03
hsa00010	Glycolysis / Gluconeogenesis	0.212222694	53 8	.961413e-03

pathview(gene.data=foldchanges, pathway.id="hsa04110")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/anyol/OneDrive/bimm143/Class14

Info: Writing image file hsa04110.pathview.png

```
pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)
'select()' returned 1:1 mapping between keys and columns
Warning: reconcile groups sharing member nodes!
     [,1] [,2]
[1.] "9" "300"
[2,] "9" "306"
Info: Working in directory C:/Users/anyol/OneDrive/bimm143/Class14
Info: Writing image file hsa04110.pathview.pdf
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres$greater)[1:5]</pre>
# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids
[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"
pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/anyol/OneDrive/bimm143/Class14
Info: Writing image file hsa04640.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/anyol/OneDrive/bimm143/Class14
Info: Writing image file hsa04630.pathview.png
```

```
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/anyol/OneDrive/bimm143/Class14
Info: Writing image file hsa00140.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/anyol/OneDrive/bimm143/Class14
Info: Writing image file hsa04142.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/anyol/OneDrive/bimm143/Class14
Info: Writing image file hsa04330.pathview.png
     Q. Can you do the same procedure as above to plot the pathview figures for the
     top 5 down-reguled pathways?
keggrespathways2 <- rownames(keggres$less)[1:5]</pre>
# Extract the 8 character long IDs part of each string
keggresids2 <- substr(keggrespathways2, start=1, stop=8)</pre>
keggresids2
[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"
pathview(gene.data=foldchanges, pathway.id=keggresids2, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/anyol/OneDrive/bimm143/Class14
Info: Writing image file hsa04110.pathview.png
'select()' returned 1:1 mapping between keys and columns
```

```
Info: Working in directory C:/Users/anyol/OneDrive/bimm143/Class14

Info: Writing image file hsa03030.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/anyol/OneDrive/bimm143/Class14

Info: Writing image file hsa03013.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/anyol/OneDrive/bimm143/Class14

Info: Writing image file hsa03440.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/anyol/OneDrive/bimm143/Class14

Info: Working in directory C:/Users/anyol/OneDrive/bimm143/Class14

Info: Writing image file hsa04114.pathview.png
```

Section 3 Ontology

We can also do a similar procedure with gene ontology. Similar to above, go.sets.hs has all GO terms. go.subs.hs is a named list containing indexes for the BP, CC, and MF ontologies. Let's focus on BP (a.k.a Biological Process) here.

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

0	_
	p.geomean stat.mean p.val
GO:0007156 homophilic cell adhesion	8.519724e-05 3.824205 8.519724e-05
GO:0002009 morphogenesis of an epithelium	
GO:0048729 tissue morphogenesis	1.432451e-04 3.643242 1.432451e-04
GO:0007610 behavior	1.925222e-04 3.565432 1.925222e-04
GO:0060562 epithelial tube morphogenesis	5.932837e-04 3.261376 5.932837e-04
GO:0035295 tube development	5.953254e-04 3.253665 5.953254e-04
	q.val set.size exp1
GO:0007156 homophilic cell adhesion	0.1951953 113 8.519724e-05
GO:0002009 morphogenesis of an epithelium	0.1951953 339 1.396681e-04
GO:0048729 tissue morphogenesis	0.1951953 424 1.432451e-04
GO:0007610 behavior	0.1967577 426 1.925222e-04
GO:0060562 epithelial tube morphogenesis	0.3565320 257 5.932837e-04
GO:0035295 tube development	0.3565320 391 5.953254e-04
\$less	
	p.geomean stat.mean p.val
GO:0048285 organelle fission	1.536227e-15 -8.063910 1.536227e-15
_	4.286961e-15 -7.939217 4.286961e-15
GD:0007067 mitosis	4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle	1.169934e-14 -7.797496 1.169934e-14
- •	2.028624e-11 -6.878340 2.028624e-11
	1.729553e-10 -6.695966 1.729553e-10
• •	q.val set.size exp1
GO:0048285 organelle fission	5.841698e-12 376 1.536227e-15
_	5.841698e-12 352 4.286961e-15
GD:0007067 mitosis	5.841698e-12 352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle	1.195672e-11 362 1.169934e-14
-	1.658603e-08 142 2.028624e-11
	1.178402e-07 84 1.729553e-10
1	
\$stats	
******	stat.mean exp1
GO:0007156 homophilic cell adhesion	3.824205 3.824205
G0:0002009 morphogenesis of an epithelium	
G0:0048729 tissue morphogenesis	3.643242 3.643242
GD:0007610 behavior	3.565432 3.565432
G0:0060562 epithelial tube morphogenesis	3.261376 3.261376
G0:0035295 tube development	3.253665 3.253665
do. 0000200 vabo dovotopment	0.20000 0.20000

Section 4: Reactome Analysis

Reactome is database consisting of biological molecules and their relation to pathways and processes.

First, Using R, output the list of significant genes at the 0.05 level as a plain text file:

```
siggenes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(siggenes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
write.table(siggenes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quote=
```

!("images/PathwaysOverview.png")