2006 24 TRIAL.

QUESTION 1

a) $x^2 + 6x + 14$ = x+6x+9+5.

 $=(x+3)^2+5$

 $\equiv (x+a)^2 + b.$

9=3 8 b=5.

b) e2.5 = 12.18 (2dp)

c) cos 亚=-cos 亚

= - [3]

a) 14-201=7

4-x=7 or 4-x=-7

x=-3 or +x=11

e) 4 × 15+13

= 4(15+13)

5-3

= 2(15 + 13)

 $f) a^2 = 12a$.

a(a-12)=0

a=12 or a=0

QUESTION 2.

942+3y-12=0

when x=0 y=4 A(3,0) & B(0,4) when y=0 x=3

1)tan (180-8) = 43

180-0= tan-1(当)

180-0=53°81

B= 127° nearest degree.

11) d= | ax1+by1+c |

C=(x,y) =(4,2)

 $= \frac{|16 + 6 - 12|}{5}$

= 2 units

IV) A=支bxh.

= 2× 142+32×2.

=5 units²

B) 3x-y=16 - 0 => x=1=4y x+4y=1

Subs 3 utol

3(1-44)-4=16

subs y=-1 into 1

x-4=1 of x=5

c) $y = x^2 - 4x + 8$.

 $y=(x-2)^2+4$.

 $(x-2)^2=4(4)(y-4)$

vertex= (2,4).

focal length = 4

0 focus = (2,44)

$$+B$$
) = $12 + 20 - 2.12.20 \cos 120^{\circ}$

$$\frac{(u')}{20} = \frac{ABSIn 120^{\circ}}{AB}$$

(b) (i)
$$y = 2x^{-4} \Rightarrow y' = -8x^{-5}1$$

(ii)
$$y = \sin(x^3) \implies y' = 3x^2 \cos x^3 1$$

'Triangles ABC and ADE ONE equiangular => Similar

$$\frac{16-x}{16} = \frac{18}{24}$$

$$4x = 16$$

(a)
$$\left[\log_{e}(i+x)\right]_{o}^{i} = \log_{e} 2 - \log_{e} 1$$

$$= \log_{e} 2 + \log_{e} 2$$

$$\Rightarrow$$
 tanx = $\frac{1}{\sqrt{3}}$

(c)
$$\sqrt{\frac{1-\cos^2 A}{1+\tan^2 A}} = \sqrt{\frac{\sin^2 A}{\sec^2 A}}$$
 2
= $\sqrt{\sin^2 A \cos^2 A}$

(d)
$$y = cos(x + \frac{\pi}{3})$$

 $y' = -sin(x + \frac{\pi}{3})$

Sin A cos A

(e) (i)
$$\int \cos 2x \, dx = \frac{1}{2} \sin 2x + c$$

(ii)
$$\int \frac{4}{e^{3x}} dx = 4 \int e^{-3x} dx$$

$$= -\frac{4}{3} e^{-3x} + c$$

(f)
$$\chi^2 + (c-2)x + 4 = 0$$

for real roots \$\rightarrow \rightarrow 0\\ $\Delta = (c-2)^2 - 4(c)4)$

(1)

(ii)

(ini)

(i)

(*İİ*)

(a)
$$\chi^{2} - (x + \beta)\chi + \alpha\beta = 0$$

 $\chi^{2} - \chi(1 - \sqrt{3} + 1 + \sqrt{3}) + (1 + \sqrt{3})(1 - \sqrt{3})$
 $\chi^{2} - 2\chi - 2 = 0$

(C)
$$7+7(n-1) < 1200$$

(II) $7+7n-1 < 1200$
 $n < 171.4$
 $N = 171$

multiple = 1197

(ii)
$$\frac{171}{2} \left(7 + 1197\right)$$

 $\frac{3}{9}$

(d)
$$V = \pi \int_{0}^{9} (45\pi)^{2} dx$$

 $= \pi \int_{0}^{9} 16\pi dx$
 $= \pi \int_{0}^{8} 8x^{2} \int_{0}^{9} dx$
 $= 648 \pi \int_{0}^{3} u^{3} dx$

6)

$$f'(x) = 3x^{2} + 2x + c$$

$$f(x) = x^{3} + 2x + c$$

$$(2.5) 5 = 8 + 4 + c, c = -7$$

$$f(x) = x^{3} + 2x - 7$$

$$y = x^{3} - 3x^{2} - 9x + 2$$

$$\frac{dy}{dx} = 3x^{2} - 6x - 9$$

stat pts
$$3x^2-6x-9=0$$

 $(x-3)(x+1)=0$
 $p(x)(3,-25)+(-1,7)$

$$\chi = 3 \frac{d^2y}{dx^2} > 0 -', min$$

$$\chi = -1 \frac{d^2y}{dx^2} < 0 -', max$$

(IV)
$$\max = 7$$
 at $x = -1, 5$
(b) $\frac{x}{1} = \frac{1}{2} = \frac{3}{3} = \frac{1}{3} = \frac{7}{3} = \frac{7}{3} = \frac{7}{3} = \frac{1}{3} = \frac{7}{3} = \frac{1}{3} = \frac$

$$15000 = 30000e$$

$$\frac{1}{2} = e^{-0.08t}$$

$$\ln(\frac{1}{2}) = -0.08t$$

$$t = -\frac{\ln \frac{1}{2}}{0.08} = 8.66 \Rightarrow 9$$

$$2 = 8.66 \Rightarrow 9$$

$$\frac{0.08}{30000} = \frac{0.08 \times 8}{60.08 \times 9} = \frac{0.08 \times 9}{60.08 \times 9}$$

$$= 1216$$
decline 1216 people

1111/115 (24) THSC 2006

Question 7

(c)
$$\int_{0}^{4} f(x) dx = \frac{1}{2} \times 3 \times 4 - \frac{1}{2} \times 1 \times 2$$

$$= 6 - 1$$

$$= 6 - 1$$

$$= 6 - 1$$

Q = annual vistalment.

(11)
$$A_{12} = PR^{12}$$

= $$20000 \times 1.01^{12}$
= $$22.536.50$ [1]

(iii)
$$A_{13} = (PR^{12} - Q)R$$

 $A_{36} = PR^{36} - QR^{24} - QR^{12}$
 $A_{48} = PR^{48} - QR^{36} - QR^{24} - QR^{12}$
 $= PR^{48} - Q(R^{44} - 1)$
 $= R^{12} - 1$

$$= \$20000(1.01)^{48}(1.01)^{2}$$

$$= \$6679.59 [2]$$

(e) GS:
$$4-2\sqrt{2}+2-...$$

 $\alpha = 4$ $r = -2\sqrt{2}$
 $= -\frac{1}{\sqrt{2}}$

$$5_{00} = \frac{\alpha}{1-r}$$

$$= \frac{4}{1+\frac{1}{2}}$$

$$= \frac{4\sqrt{2}}{\sqrt{2}+1}$$

$$= 8-4\sqrt{2}$$

$$(= 2.34)$$

$$\left(=\frac{8}{2+\sqrt{2}}\right)$$

MATHS (24) THSC 2006

Question 8

(a)
$$f(x) = 2-x^2$$
 $f'(x) = \lim_{h \to 0} \frac{f(n+h) - f(x)}{h}$
 $= \lim_{h \to 0} \frac{2 - (n+h)^2 - (2-n^2)}{h}$
 $= \lim_{h \to 0} \frac{1 - 2nh - h^2 - 2nh - h^2 - 2nh}{h}$
 $= \lim_{h \to 0} \frac{h(-2x - h)}{h}$
 $= -2x$

When $x = 1$
 $f'(x) = -2$

[2]

(b) Area = $\int_{0}^{\infty} \frac{h(1+\cos x) - \sin x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\sin x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\sin x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} - \frac{\cos x}{h} - \frac{\cos x}{h} dx$
 $+ \int_{0}^{\infty} \frac{\cos x}{h} -$

[3]

(C) F= t(t-12)2 $F' = t \cdot 2(t-12) + (t-12)^{2}$ =(3t-12)(t-12)F=0 tw t=40012 (1) F=0 when t=0,12,12 :. Flows for 12 hours [2] (11) Stateway points at t=4 or 12 F"=6t-48 F''(4) = -24 F''(12) = 24! Rel Max ! Rel Min 1. Max flow when t=4 F(4) = 256 ML/W [2] (M) Total flow = (t3-24t3+144t) dt = [+4-24t3+144t2]12 $= \left[\begin{array}{c} t^4 - 8t^3 + 72t^2 \end{array} \right]_0^{12}$ 3 = 1728 ML

Qq(a)
$$x = \frac{1}{3}t^3 - 6t^2 + 27t - 18$$

i) $x = t^2 - 12t + 27$
 $x = 2t - 12$

(ii) $x = 0$ when $t = 6$ s

(iii) When $t = 6$, $x = 0$ m

 $x = -q m/s$ [2]

(b) (i) $f(wwa) = \frac{1}{3} \times \frac{1}{3} \times \frac{1}{2}$
 $= \frac{1}{18}$

(iii) $P(q) + P(wa) + P(wwa)$
 $= \frac{1}{2} + \frac{1}{3} \times \frac{1}{2} + \frac{1}{18}$
 $= \frac{13}{18}$

(iii) $P(wra) = P(q) + P(wa) + P(wwa)$
 $+ P(wwwa) + \dots$
 $= \frac{1}{2} + \frac{1}{6} + \frac{1}{18} + \dots$
 $= \frac{1}{2} \times \frac{3}{2}$
 $= \frac{1}{2} \times \frac{3}{2} \times \frac{3}{2}$
 $= \frac{1}{2} \times \frac{3}{2} \times \frac{3}{2}$
 $= \frac{1}{2} \times \frac{3}{2} \times \frac{3}{2} \times \frac{3}{2}$

(b) (i) (x) A recover $= \frac{1}{2} \times \frac{2}{2} \times \frac{3}{2} \times \frac{3}{2}$
 $= \frac{1}{2} \times \frac{2}{2} \times \frac{3}{2} \times \frac$

(B)
$$1 = 3x + x + x + 0$$

 $= x (3+8)$

(iii) $12 - 2\sqrt{3} = x (3+8)$
 $3+0 = \frac{12-2\sqrt{3}}{3x} - 3$
 $A = \frac{x^2}{4} (28+\sqrt{3})$
 $= \frac{x^2}{4} (2x(\frac{12-2\sqrt{3}}{2x}-3)+\sqrt{3})$
 $= \frac{x^2}{4} (2x(\frac{12-2\sqrt{3}}{2x}-3)+\sqrt{3})$
 $= \frac{x^2}{4} (2x-4\sqrt{3}-6+\sqrt{3})$
 $= (6-\sqrt{3})x - (6-\sqrt{3})\frac{x^2}{4}$
 $= (6-\sqrt{3})(x-\frac{x^2}{4})$
 $A' = (6-\sqrt{3})(1-\frac{x}{2})$
 $A'' = (6-\sqrt{3})(1-\frac{x}{2})$

A'' = $(6-\sqrt{3})(1-\frac{x}{2})$

A'' = $(6-\sqrt{3})(1-\frac{x}{2})$