Второе правило. Если функция $\xi(x)$ имеет вторую производную $\xi''(x)$ и в некоторой точке x_0 выполнены условия

$$f'(x_0) = 0 \text{ H } f''(x_0) \neq 0,$$

то в этой точке функция f(x) нмеет экстремум, а именно: макснмум, когда $f''(x_0) < 0$, и минемум, когда $f''(x_0) > 0$.

Третье правило. Пусть функция f(x) имеет в некотором интервале $|x-x_0| < \delta$ производные $f'(x), \ldots, f^{n-1}(x)$ и

в точке x_0 производиую $f^{(n)}(x_0)$, причем

$$f^{(k)}(x_0) = 0 \quad (k = 1, \ldots, n-1), \quad f^{(n)}(x_0) \neq 0.$$

В таком случае: 1) еслн n — число четное, то в точке x_0 функция f(x) имеет экстремум, а именно: максимум при $f^{(n)}(x_0) < 0$ ими и и мум при $f^{(n)}(x_0) > 0$; 2) если n — число нечетное, то в точке x_0 функция f(x) экстремума и е и меет.

 3° . А б с о л ю т н ы й э к с т р е м у м. Наибольшее (наименьшее) значение на сегменте $\{a, b\}$ непрерывной функции f(x) достигается или в критической точке этой функции (т. е. там, где производная f'(x) или равиа нулю, или не существует),

нян в граинчных точках а и b данного сегмента.

Исследовать на экстремум следующие функции:

1414.
$$y = 2 + x - x^3$$
. 1415. $y = (x-1)^3$.

1416.
$$y = (x-1)^4$$
.

1417. $y = x^m (1-x)^n$ (*m* и n — целые положительные числа).

1418.
$$y = \cos x + \cosh x$$
. 1419. $y = (x + 1)^{10} e^{-x}$.

1420.
$$y = \left(1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}\right)e^{-x}$$
 (*n* — натуральное число).

1421.
$$y = |x|$$
. 1422. $y = x^{1/3} (1-x)^{2/3}$.

1423. Исследовать на экстремум в точке $x = x_0$ функцию

$$f(x) = (x - x_0)^n \varphi(x)$$

(n - натуральное число), где функция $\phi(x)$ непрерывна при $x = x_0$ и $\phi(x_0) \neq 0$.

1424. Пусть $f(x) = \frac{P(x)}{Q(x)}$, $f'(x) = \frac{P_1(x)}{Q^2(x)}$ н x_0 —стационарная точка функции f(x), т. е. $P_1(x_0) = 0$, $Q(x_0) \neq 0$.

Доказать, что sgn $f''(x_0) = \operatorname{sgn} P_1(x_0)$.