Note on star-autonomous comonads

Craig Pastro

October 27, 2010

Abstract

We develop an alternative approach to star-autonomous comonads via linearly distributive categories. It is shown that in the autonomous case the notions of star-autonomous comonad and Hopf comonad coincide.

1 Introduction

Given a linearly distributive category \mathcal{C} , this note determines what structure is required of a comonad G on \mathcal{C} so that \mathcal{C}^G , the category of Eilenberg-Moore coalgebras of G, is again a linearly distributive category. Furthermore, if \mathcal{C} is equipped with negations (and is hence a star-autonomous category), the structure required to lift the negations to \mathcal{C}^G is determined as well. This latter is equivalent to lifting star-autonomy and it is shown that the notion presented is equivalent to a star-autonomous comonad [PS09]. As a consequence of the presentation given here, it may be easily seen that any star-autonomous comonad on an autonomous category is a Hopf monad [BV07].

2 Lifting linear distributivity

Suppose \mathcal{C} is a monoidal category and $G: \mathcal{C} \to \mathcal{C}$ is a comonad on \mathcal{C} . Recall that \mathcal{C}^G , the category of (Eilenberg-Moore) coalgebras of G, is monoidal if and only if G is a monoidal comonad [M02]. In this section we are interested in the structure required to lift linear distributivity to the category of coalgebras.

A linearly distributive category \mathcal{C} is a category equipped with two monoidal structures (\mathcal{C}, \star, I) and $(\mathcal{C}, \diamond, J)$, and two compatibility natural transformations (called "linear distributions")

$$\partial_l : A \star (B \diamond C) \to (A \star B) \diamond C$$

 $\partial_r : (B \diamond C) \star A \to B \diamond (C \star A),$

satisfying a large number of coherence diagrams [CS97].

Suppose $G = (G, \delta, \epsilon)$ is a comonad on a linearly distributive category \mathcal{C} which is a monoidal comonad on \mathcal{C} with respect to both \star and \diamond , with structure

¹ For simplicity we assume that the monoidal structures are strict, although this is not necessary. Furthermore, in their original paper [CS97] the tensor products \star and \diamond are respectively denoted by \otimes and \diamond , and called *tensor* and *par*, emphasizing their connection to linear logic.

maps (G, ϕ, ϕ_0) and (G, ψ, ψ_0) respectively. If, for G-coalgebras A, B, and C, the comonad G satisfies

$$(1) \qquad GA \star (GB \diamond GC) \xrightarrow{1 \star \psi} GA \star G(B \diamond C) \xrightarrow{\phi} G(A \star (B \diamond C))$$

$$\downarrow \partial_{l} \qquad \qquad \downarrow \partial_{l} \qquad$$

it may be seen that the morphism ∂_l becomes a G-coalgebra morphism. If G satisfies a similar axiom for ∂_r , i.e.,

$$(GB \diamond GC) \star GA \xrightarrow{\psi \star 1} G(B \diamond C) \star GA \xrightarrow{\phi} G((B \diamond C) \star A)$$

$$\downarrow \partial_{r} \qquad \qquad \downarrow \partial_{r}$$

$$GB \diamond (GC \star GA) \xrightarrow{1 \diamond \phi} GB \diamond G(C \star A) \xrightarrow{\psi} G(B \diamond (C \star A)),$$

then ∂_r also becomes a G-coalgebra morphism. Thus,

Proposition 2.1. Given a linearly distributive category C and a comonad G: $C \to C$ satisfying axioms (1) and (2), the category C^G is a linearly distributive category.

Example 2.2. Let \mathcal{C} be a symmetric linearly distributive category and $(B, \mu, \eta, \delta, \epsilon)$ a bialgebra in \mathcal{C} with respect to \diamond . That is, the structure morphisms are given as

$$\mu: B \diamond B \to B$$
 $\delta: B \to B \diamond B$ $\eta: J \to B$ $\epsilon: B \to J.$

Then, $G = B \diamond -$ is a comonad and is monoidal with respect to both \star and \diamond . The latter by $I \cong J \diamond I \xrightarrow{\eta \diamond 1} B * I$, and the following,

$$(B \diamond U) \star (B \diamond V) \xrightarrow{\partial_r} B \diamond (U \star (B \diamond V))$$

$$\xrightarrow{1 \diamond (1 \star c)} B \diamond (U \star (V \diamond B))$$

$$\xrightarrow{1 \diamond \partial_l} B \diamond ((U \star V) \diamond B)$$

$$\xrightarrow{1 \diamond c} B \diamond (B \diamond (U \star V))$$

$$\xrightarrow{\cong} (B \diamond B) \diamond (U \star V)$$

$$\xrightarrow{\mu \star 1} B \diamond (U \star V).$$

Rather large diagrams, which we leave to the faith of the reader, prove that $B \diamond -$ satisfies (1) and (2), so that $C^B = \mathbf{Comod}_{\mathcal{C}}(B)$, the category of comodules of B, is a linearly distributive category.

3 Lifting negations

Suppose now that C is a linearly distributive category equipped with negations S and S' (corresponding to $^{\perp}(-)$ and $(-)^{\perp}$ in [CS97]). That is, functors S, S':

 $\mathcal{C}^{\mathrm{op}} \to \mathcal{C}$ together with the following (dinatural) evaluation and coevaluation morphisms

(3)
$$SA \star A \xrightarrow{e_A} J \qquad A \star S'A \xrightarrow{e'_A} J$$
$$I \xrightarrow{n_A} A \diamond SA \qquad I \xrightarrow{n'_A} S'A \diamond A,$$

satisfying the four evident "triangle identities". One such is

$$\left(A \cong I \star A \xrightarrow{n \star 1} (A \diamond SA) \star A \xrightarrow{\partial_r} A \diamond (SA \star A) \xrightarrow{1 \diamond e} A \diamond J \cong A\right) = 1_A.$$

If C is equipped with such negations we say simply that C is a *linearly distributive* category with negations.

We are interested to lift negations to \mathcal{C}^G . This means we must ensure that the "negation" functors $S, S' : \mathcal{C}^{\text{op}} \to \mathcal{C}$ lift to functors $(\mathcal{C}^G)^{\text{op}} \to \mathcal{C}^G$, and the evaluation and coevaluation morphisms are in \mathcal{C}^G , i.e., are G-coalgebra morphisms.

The following is essentially known from [S72].

Lemma 3.1. A (contravariant) functor $S: \mathcal{C}^{op} \to \mathcal{C}$ may be lifted to a functor $\widetilde{S}: (\mathcal{C}^G)^{op} \to \mathcal{C}^G$ such that the diagram

$$(\mathcal{C}^G)^{\mathrm{op}} \xrightarrow{\widetilde{S}} \mathcal{C}^G$$

$$\downarrow U \qquad \qquad \downarrow U$$

$$\mathcal{C}^{\mathrm{op}} \xrightarrow{S} \mathcal{C},$$

commutes, if and only if there is a natural transformation

$$\nu: S \to GSG$$

satisfying the following two axioms

$$(4) \qquad S \xrightarrow{\nu} GSG \qquad S \xrightarrow{\nu} GSG \xrightarrow{\delta_{SG}} G^2SG \qquad \downarrow G^2SG \qquad \downarrow GSG \xrightarrow{G\nu_G} G^2SG^2.$$

This may be viewed as a distributive law of a contravariant functor over a comonad [S72]. In this case, we say that S may be lifted to C^G , and a functor $\widetilde{S}: (C^G)^{\mathrm{op}} \to C^G$ is defined as

$$\widetilde{S}(A,\gamma) = \left(SA, \, SA \xrightarrow{\nu} GSGA \xrightarrow{GS\gamma} GA\right) \qquad \quad \widetilde{S}(f) = Sf.$$

(To see the reverse direction, suppose (A, γ) is a coalgebra and \widetilde{S} is a functor $\mathcal{C}^G \to \mathcal{C}^G$, so that $\widetilde{S}A = (SA, \widetilde{\gamma})$ is again a coalgebra. Define

$$\nu := SA \xrightarrow{\widetilde{\gamma}} GSA \xrightarrow{GS\epsilon_A} GSGA,$$

which may be seen to satisfy the axioms in (4).) We will usually let the context differentiate between S and \widetilde{S} and simply write S in both cases.

Now, suppose S and S' are equipped with natural transformations

$$\nu: S \to GSG$$
 and $\nu': S' \to GS'G$.

such that they can be lifted to C^G . It remains to lift the evaluation and coevaluation morphisms (3). Consider the following axioms.

(5)
$$SA \star GA \xrightarrow{1 \star \epsilon} SA \star A \xrightarrow{e_A} J$$

$$\downarrow^{\psi_0}$$

$$GSGA \star G^2A \xrightarrow{\phi} G(SGA \star GA) \xrightarrow{Ge_{GA}} GJ$$

$$(6) \qquad I \xrightarrow{\phi_0} GI \xrightarrow{Gn} G(A \diamond SA) \xrightarrow{G(1 \diamond S\epsilon)} G(A \diamond SGA)$$

$$\uparrow G(1 \diamond S\delta)$$

$$GA \diamond SGA \xrightarrow{1 \diamond \nu} GA \diamond GSG^2A \xrightarrow{\phi} G(A \diamond SG^2A)$$

(7)
$$GA \star S'A \xrightarrow{\epsilon \star 1} A \star S'A \xrightarrow{e'_A} J$$

$$\delta \star \nu' \downarrow \qquad \qquad \downarrow \psi_0$$

$$G^2A \star GS'GA \xrightarrow{\phi} G(GA \star S'GA) \xrightarrow{Ge'_{GA}} GJ$$

$$(8) \qquad I \xrightarrow{\phi_0} GI \xrightarrow{Gn'} G(S'A \diamond A) \xrightarrow{G(S'\epsilon \diamond 1)} G(S'GA \diamond A) \\ \downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

Proposition 3.2. Suppose C is a linearly distributive category with negation, G is a monoidal comonad satisfying axioms (1) and (2) (so that C^G is linearly distributive), and that S and S' may be lifted to C^G . Then, G satisfies axioms (5), (6), (7), and (8) if and only if C^G is a linearly distributive category with negation.

Proof. Suppose (A, γ) is a G-coalgebra. We start by proving that axiom (5) holds if and only if $e: SA \star A \to J$ is a G-coalgebra morphism. The following diagram proves the "only if" direction,

$$SA \star A \xrightarrow{\nu \star \gamma} GSGA \star GA \xrightarrow{\phi} G(SGA \star A)$$

$$\downarrow 1 \star \gamma \qquad 1 \star G\gamma \downarrow \qquad G(1 \star \gamma) \downarrow \qquad G(S\gamma \star 1)$$

$$\downarrow SA \star GA \xrightarrow{\nu \star \delta} GSGA \star G^2A \xrightarrow{\phi} G(SGA \star GA) \qquad G(SA \star A)$$

$$\downarrow 1 \star \epsilon \qquad (5) \qquad Ge \qquad Ge$$

$$SA \star A \xrightarrow{e} J \xrightarrow{\psi_0} J \xrightarrow{\psi_0} GJ,$$

and this next diagram the "if" direction

where the bottom square commutes as e_{GA} is a G-coalgebra morphism.

Next we prove that axiom (6) holds if and only if $n: I \to A \diamond SA$ is a G-coalgebra morphism. The "only if" direction is given by

$$I \xrightarrow{\phi_0} GI \xrightarrow{Gn} G(A \diamond SA)$$

$$A \diamond SA \xrightarrow{GA} \diamond SGA \xrightarrow{1 \diamond \nu} GA \diamond GSG^2A \xrightarrow{\phi} G(A \diamond SG^2A) \xrightarrow{G(1 \diamond S\delta)} G(A \diamond SGA)$$

$$\downarrow 1 \diamond S\gamma \xrightarrow{1 \diamond GSG\gamma} \downarrow G(1 \diamond SG\gamma) \downarrow G(1 \diamond S\gamma) \downarrow GA \diamond SA \xrightarrow{1 \diamond \nu} GA \diamond GSGA \xrightarrow{\phi} G(A \diamond SGA) \xrightarrow{G(1 \diamond S\gamma)} G(A \diamond SA),$$

and the "if" direction by

$$I \xrightarrow{\phi_0} GI \xrightarrow{G} GI$$

$$GA \diamond SGA \xrightarrow{\delta \diamond \nu} G^2A \diamond GSG^2A \xrightarrow{\psi} G(GA \diamond SG^2A) \xrightarrow{G(1 \diamond S\delta)} G(GA \diamond SGA) \xrightarrow{G(A \diamond SA)} G(A \diamond SA)$$

$$GA \diamond GSG^2A \xrightarrow{\psi} G(A \diamond SG^2A) \xrightarrow{G(1 \diamond S\delta)} G(A \diamond SGA),$$

where the top square commutes as n_{GA} is a G-coalgebra morphism.

The remaining two axioms are proved similarly.

4 Star-autonomous comonads

Suppose $\mathcal{C} = (\mathcal{C}, \otimes, I)$ is a star-autonomous category. A star-autonomous comonad $G: \mathcal{C} \to \mathcal{C}$ is a comonad satisfying axioms (described below) so that \mathcal{C}^G becomes a star-autonomous category [PS09]. In this section we show that comonads as in Proposition 3.2 and star-autonomous comonads coincide.

We recall the definition of star-autonomous comonad [PS09], but, as it suits our needs better here, we present a more symmetric version. First recall that a star-autonomous category may be defined as a monoidal category $\mathcal{C} = (\mathcal{C}, \otimes, I)$ equipped with an equivalence

$$S \dashv S' : \mathcal{C}^{\mathrm{op}} \to \mathcal{C}$$

such that

(9)
$$\mathcal{C}(A \otimes B, SC) \cong \mathcal{C}(A, S(B \otimes C)),$$

natural in $A, B, C \in \mathcal{C}$. The functor S is called the *left star operation* and S' the right star operation.

By the Yoneda lemma, the isomorphism in (9) determines, and is determined by, the two following "evaluation" morphisms:

$$e = e_{A,B} : S(A \otimes B) \otimes A \to SB$$
 and $e' = e'_{B,A} : B \otimes S'(A \otimes B) \to S'A$.

Definition 4.1. A star-autonomous comonad on a star-autonomous category C is a monoidal comonad $G: C \to C$ equipped with

$$\nu: S \to GSG$$
 and $\nu': S' \to GS'G$,

satisfying (4) (i.e., S, S' may be lifted to C^G), and this data must be such that the following four diagrams commute.

$$SS'G \xrightarrow{\cong} G \qquad S'SG \xrightarrow{\cong} G \qquad G$$

$$\downarrow \downarrow \qquad \downarrow \qquad \downarrow \cong \qquad \downarrow \downarrow \qquad \downarrow \cong \qquad \downarrow \cong$$

The first two diagrams above ensure that the equivalence $S \simeq S'$ lifts to \mathcal{C}^G , while the latter two diagrams above respectively ensure that e and e' are G-coalgebra morphisms, so that the isomorphism (9) also lifts to \mathcal{C}^G .

We wish to show that star-autonomous comonads and comonads as in Proposition 3.2 coincide. It should not be surprising given the following theorem.

Theorem 4.2 ([CS97, Theorem 4.5]). The notions of linearly distributive categories with negation and star-autonomous categories coincide.

Given a star-autonomous category, identifying $\star := \otimes$ (and the units $I := I_{\star} = I_{\otimes}$) and defining

(10)
$$A \diamond B := S'(SB \star SA) \cong S(S'B \star S'A) \qquad J := SI \cong S'I$$

gives a linearly distributive category [CS97]. The negations of course come from S and S'. In [CS97], they consider the symmetric case, but the correspondence between linearly distributive categories with negation and star-autonomous categories holds in the noncommutative case as well.

Now, given Theorem 4.2, Proposition 3.2 says that if \mathcal{C} is star-autonomous, and G is such a comonad, then \mathcal{C}^G is star-autonomous. We now compare the two definitions.

Suppose now that G is a comonad on a linear distributive category $\mathcal C$ as in Proposition 3.2. We wish to show that it is a star-autonomous comonad. Rather than proving the axioms, it is simpler to show directly that the morphisms under consideration are G-coalgebra morphisms. To this end, the equivalence $S \simeq S'$ is given by the equations

$$A \cong I \star A \xrightarrow{n'_{SA} \star 1} (S'SA \diamond SA) \star A \xrightarrow{\partial_r} S'SA \diamond (SA \star A) \xrightarrow{1 \diamond n} S'SA \diamond J \cong S'SA$$
 and

 $S'SA \cong I \star S'SA \xrightarrow{n_A \star 1} (A \diamond SA) \star S'SA \xrightarrow{\partial_r} A \diamond (SA \star S'SA) \xrightarrow{1 \diamond e'_{SA}} A \diamond J \cong A,$ and $e_{A,B}$ and $e'_{B,A}$ are respectively defined as

In the situation of Proposition 3.2, we see that all four of these morphisms are given as composites of G-coalgebra morphisms, and thus, are G-coalgebra morphisms themselves. Therefore, G is a star-autonomous comonad.

In the other direction suppose G is a star-autonomous comonad on a star-autonomous category \mathcal{C} . It is similar to show that it is a comonad satisfying the requirements of Proposition 3.2. Using the identifications in (10), the two linear distributions are defined as follows.

$$A\star(B\diamond C) \xrightarrow{\partial_{l}} (A\star B) \diamond C \qquad (B\diamond C)\star A \xrightarrow{\partial_{r}} B\diamond (C\star A)$$

$$\cong \downarrow \qquad \qquad \uparrow \cong \qquad \qquad \downarrow \qquad \uparrow \cong$$

$$A\otimes S'(SC\otimes SB) \qquad S'(SC\otimes S(A\otimes B)) \qquad S(S'C\otimes S'B)\otimes A \qquad S(S'(C\otimes A)\otimes S'B)$$

$$1\otimes S'(1\otimes e) \qquad \qquad e' \qquad \qquad S(e'\otimes 1)\otimes 1 \qquad \qquad e$$

$$A\otimes S'(SC\otimes S(A\otimes B)\otimes A) \qquad \qquad S(A\otimes S'(C\otimes A)\otimes S'B)\otimes A)$$

The evaluation maps e_A and e_A' are defined as $e_{A,I}$ and $e_{A,I}'$, and the coevaluation maps n_A and n_A' as

$$n_A = \left(I \cong SS'I \xrightarrow{Se'_{A,I}} S(A \otimes S'A) = A \diamond SA\right)$$

$$n'_A = \left(I \cong S'SI \xrightarrow{S'e_{A,I}} S'(SA \otimes A) = S'A \diamond A\right)$$

Again, each morphism is a G-coalgebra morphism, or composite thereof, and therefore is itself a G-coalgebra morphism.

Thus, both notions coincide, and we will simply call either notion a *star-autonomous comonad*, and let context differentiate the axiomatization.

Example 4.3. Any Hopf algebra H in a star-autonomous category \mathcal{C} gives rise to a star-autonomous comonad $H \otimes -: \mathcal{C} \to \mathcal{C}$. See [PS09, pg. 3515] for details.

Example 4.4. If \mathcal{C} is a symmetric closed monoidal category with finite products, then we may apply the Chu construction [B79] to produce a star-autonomous category Chu(\mathcal{C}). \mathcal{C} fully faithfully embeds into Chu(\mathcal{C}),

$$\mathcal{C} \hookrightarrow \mathrm{Chu}(\mathcal{C})$$

and this functor is strong symmetric monoidal. Thus, any Hopf algebra in \mathcal{C} becomes a Hopf algebra in $\mathrm{Chu}(\mathcal{C})$, and thus, an example of a star-autonomous comonad.

5 The compact case $\star = \diamond$

If \mathcal{C} is a linearly distributive category with negation for which $\star = \diamond$ (and thus, I = J), then \mathcal{C} is an autonomous (= rigid) category. The functor S provides left duals, while S' provides right duals. It is not hard to see that in this case, any star-autonomous monad G (after dualizing) is a Hopf monad [BV07]. Set $\star = \diamond$ and I = J and dualize axioms (5), (6), (7), and (8). They correspond in [BV07] to axioms (23), (22), (21), and (20) respectively. (In their notation $^{\vee}(-) = S$ and $(-)^{\vee} = S'$.) Therefore, we have:

Proposition 5.1. Star-autonomous monads on autonomous categories are Hopf monads.

Acknowledgements

I would like to thank Robin Cockett and Masahito Hasegawa for their valuable suggestions.

References

[B79] Michael Barr. *-Autonomous categories, Volume 752 of Lecture Notes in Mathematics. Springer, Berlin, 1979. With an appendix by Po Hsiang Chu.

[BV07] Alain Bruguières and Alexis Virelizier. Hopf monads, Advances in Mathematics 215 no. 2 (2007) 679–733.

- [CS97] J.R.B. Cockett and R.A.G. Seely. Weakly distributive categories, Journal of Pure and Applied Algebra 114 (1997) 133–173. Corrected version available from the second authors webpage.
- [M02] I. Moerdijk. Monads on tensor categories, Journal of Pure and Applied Algebra 168 (2002) 189–208.
- [PS09] Craig Pastro and Ross Street. Closed categories, star-autonomy, and monoidal comonads, Journal of Algebra 321 no. 11 (2009) 3494–3520.
- [S72] Ross Street. The formal theory of monads, Journal of Pure and Applied Algebra 2 no. 2 (1972) 149–168.

Department of Mathematics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

craig@math.kyushu-u.ac.jp