

12V/4A Standalone Switching Li⁺ Battery Charger

DESCRIPTION

The ETA6911 is a new generation of highly integrated synchronous switch-mode charger, featuring integrated synchronous FETs, high switching frequency and high charging efficiency. With ETA's proprietary current sense technology, by eliminating external sense resistor, it is capable of delivering charge current up to 4A. Furthermore, it has a very small footprint of 1.7mmx2mm and only requires small external components; therefore, it is ideal for extremely space-limited portable applications powered by 1-cell Li-ion or Li-polymer batteries.

ETA6911 also has a feature that in high impedance mode, the IC stops charging and consumes very low current from VBUS, thereby effectively reducing the standby power consumption of upstream power source.

The ETA6911's charge current and termination current can also be programmed by two separated external resistors. A NTC function is also provided to allow flexible thermal charging profiles. A STAT pin provides charging status indications.

ETA6911 is available in a small QFNFC1.7x2-20 and QFN4x4-24 package.

FEATURES

- Up to 4A Max Charging Current Switching Charger
- 93% Charging Efficiency at 5V Input 2A CC Current
- 12V Input Operating Voltage
- 20V Input Standoff Voltage
- 12V Battery Output Standoff Voltage
- No External Sense Resistor
- Integrate Linear Charger for Accurate Iterm Control
- Input DPPM
- Input Current Limiting
- Bad Adaptor Detection
- No-Battery Detection
- Status Output for Charging and Faults
- Input OVF
- Reverse Leakage Protection for Battery
- RoHS Compliant

APPLICATIONS

- Smart Phone
- Tablet, MID
- E-cigarette

TYPICAL APPLICATION

ORDERING INFORMATION	PART No. ETA6911FQHU ETA6911V435FQHU	PACKAGE QFNFC1.7x2-20 QFNFC1.7x2-20	TOP MARK BL <u>YW</u> BVYW	Pcs/Reel 3000 3000
	ETA6911Q4Y	QFN4x4-24	ETA6911 420 YWW2L	5000
	ETA6911V435Q4Y	QFN4x4-24	ETA6911 435	5000

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

YWW2L

VBUS, PMID, STAT to GND Voltage	–0.3V to 20V								
SW to GND Voltage	0.3V to 20V								
VBAT, VBATS to GND Voltage	0.3V to 13V								
BOOT to SW Voltage									
All Other Pin to GND Voltage	0.3V to 6V								
SW, VBUS, VBAT, VBATS to GND curre	ent Internally limited								
Operating Temperature Range	40°C to 85°C								
Storage Temperature Range	–55°C to 150°C								
Thermal Resistance θ_{JA}									
QFNFC1.7X2-2035	°C/W								
QFN4x4-2435	°C/W								
Lead Temperature (Soldering, 10sec)	ead Temperature (Soldering,10sec)260°C								

ELECTRICAL CHARACTERISTICS

PARAMETERS	TEST CONDITION	MIN	TYP	MAX	UNIT
INPUT CURRENTS					
VBUS Supply Current Control	V _{BUS} > V _{BUS_MIN} , PWM switching		10		mA
	V _{BUS} > V _{BUS_MIN} , PWM NOT switching			5	mA
	0°C < T _J <85°C, CD = 1		25		μA
	V _{BUS} > V _{BUS_MIN} , EOC Stage		200		μA
Battery Leakage Current in EOC	V _{BUS} > V _{BUS_MIN} , EOC Stage			5	μΑ
Battery Leakage Current when no VBUS	0°C < T _J < 85°C, V _{BAT} = 4.2V, High		12		
	Impedance mode, V _{BUS} =0V	13			μΑ

Section Pattern Standorf Voltage ETA6911 4.179 4.2 4.221 V	PARAMETERS	TEST CONDITION	MIN	TYP	MAX	UNIT
Battery Termination Voltage ETA6911	VOLTAGE REGULATION					
ETA6911V435 4.329 4.35 4.371 V CURRENT REGULATION Fast Charge Current Variable Variabl	Battery Standoff Voltage				12	V
E IA6911V435 4.371 V CURRENT REGULATION Fast Charge Current VPRECOND ≤ VBAT< VOREG, VBUS>VSLP, RICHARGE = 50K VBAT< VOREG VBUS>VSLP, RICHARGE = 50K VBAT< VOREG VBUS>VSLP, STAT VOREG, VBUS>VSLP, STAT VOREG VBUS>VSLP, STAT VBAT	Datter, Termination Valtage	ETA6911	4.179	4.2	4.221	V
Fast Charge Current V_{PRECOND ≤ V_BAT^< V_{OREG, V_BUS^>V_SLP, R_{ICHARGE} = 50K} Precondition Charge Current V_{SHORT ≤ V_BAT^< V_{PRECOND, V_BUS^>V_SLP} 150 mA Battery Short Charge Current V_{SHORT ≤ V_BAT^< V_{PRECOND, V_BUS^>V_SLP} 50 mA LOGIC INPUT THRESHOLD (CD) Input Low Level Threshold Falling 0.4 V Input High Level Threshold Rising 1.2 V Input Bias Current Voltage on control pin is 5V 1 µA CHARGE TERMINATION DETECTION Termination Charge Current Programmable V_BAT^> V_{OREG^−V_{RECH}}, V_BUS^> V_{SLP}, V_{DEGE^−V_{RECH}}, V_BUS^> V_{DEGE^−V_{RECH}}, V_BUS^> V_{SLP}, V_{DEGE^−V_{RECH}}, V_BUS^> V_{SLP}, V_{DEGE^−V_{RECH}}, V_BUS^> V_{SLP}, V_{DEGE^−V_{RECH}}, V_{BUS^−V_{RECH}}, V_{BUS^−V_{REGE}}, V_{BUS^−V_{RECH}}, V_{BUS^−V_{R	Battery Termination Voltage	ETA6911V435	4.329	4.35	4.371	V
Prescondition Charge Current Richarge = 50K 1500 mA	CURRENT REGULATION					
Precondition Charge Current V _{SHORT} ≤ V _{BAT} < V _{PRECOND} , V _{BUS} >V _{SLP} 150 mA Battery Short Charge Current V _{SHORT} , V _{BUS} >V _{SLP} 50 mA LOGIC INPUT THRESHOLD (CD) Input Low Level Threshold Falling 0.4 V Input Bias Current Voltage on control pin is 5V 1 μA CHARGE TERMINATION DETECTION Termination Charge Current Programmable V _{BAT} > V _{OREG} -V _{RECH} , V _{BUS} > V _{SLP} , Range Programmable Both rising and falling, 2mV overdrive, Raise, t _{FALL} = 100ns BAD ADAPTOR DETECTION Input Voltage Lower Limit Bad Adaptor Detection 3.8 V Hysteresis for V _{IN,LMIN} Input Voltage Rising 150 mV Deglitch Time for VBUS Rising above V _{IN,LMIN} Rising Voltage, 2mV overdrive, Rising Vo	Fact Charge Current	$V_{PRECOND} \le V_{BAT} < V_{OREG}, V_{BUS} > V_{SLP},$		1500		mΛ
Battery Short Charge Current V _{BAT} < V _{SHORT} , V _{BUS} >V _{SLP} 50 mA LOGIC INPUT THRESHOLD (CD) Input Low Level Threshold Falling 0.4 V Input High Level Threshold Rising 1.2 V Input Bias Current Voltage on control pin is 5V 1 μA CHARGE TERMINATION DETECTION Termination Charge Current Programmable V _{BAT} > V _{OREG} -V _{RECH} , V _{BUS} > V _{SLP} , Programmable Both rising and falling, 2mV overdrive, 30 ms BAD ADAPTOR DETECTION Input Voltage Lower Limit Bad Adaptor Detection 3.8 V Hysteresis for V _{N_MIN} Input Voltage Rising 150 mV Deglitch Time for VBUS Rising above V _{N_MIN} Rising Voltage, 2mV overdrive, 150 mV Deglitch Time for VBUS Rising above V _{N_MIN} Rising Voltage, 2mV overdrive, 150 mS Detect Current to GND During bad adaptor detection 30 mA Detection Interval Input power source detection 2 S INPUT BASED DYNAMIC POWER MANAGEMENT V _{NDDM} Threshold 4.52 V INPUT CURRENT Limiting Input Current Limiting 5000 mA VLDO REGULATOR Internal Bias Regulator Voltage V _{PMID} > 5.1V, I _{MDD} = 1mA, C _{LDO} =1μF 4.9 V V _{LDO} Output Short Current Limit V _{NLDO} = 90% regulation 50 mA BATTERY RECHARGE THRESHOLD Recharge Voltage Threshold Below V _{OREG} 120 mV Deglitch Time V _{PALC} = 100ns, 10mV overdrive 30 ms STAT OUTPUTS Low-level Output Saturation voltage for STAT I _{STAT} = 10mA, sink current 0.55 V	- ast Charge Current	Richarge = 50K		1300		ША
LOGIC INPUT THRESHOLD (CD) Input Low Level Threshold Falling 0.4 V Input High Level Threshold Rising 1.2 V Input Bias Current Voltage on control pin is 5V 1 µA CHARGE TERMINATION DETECTION Termination Charge Current Programmable Programmable Programmable Programmable Both rising and falling, 25 400 mA BAD ADAPTOR DETECTION Input Voltage Lower Limit Bad Adaptor Detection 3.8 V Hysteresis for V _{IN_MIN} Input Voltage Rising 150 mV Deglitch Time for VBUS Rising above V _{IN_MIN} Rising Voltage, 2mV overdrive, Rising V	Precondition Charge Current	$V_{SHORT} \le V_{BAT} < V_{PRECOND}, V_{BUS} > V_{SLP}$		150		mA
Input Low Level Threshold Falling 0.4 V Input High Level Threshold Rising 1.2 V Input High Level Threshold Rising 1.2 V Input Bias Current Voltage on control pin is 5V 1 μA CHARGE TERMINATION DETECTION Termination Charge Current Programmable Range Programmable Programmable Range Programmable Programmable Range Programmable Programmable Range Programmable Range Programmable Range Range Programmable Range Range Programmable Range	Battery Short Charge Current	V _{BAT} < V _{SHORT} , V _{BUS} >V _{SLP}		50		mA
Input High Level Threshold Rising 1.2 V Input Bias Current Voltage on control pin is 5V 1 μA	LOGIC INPUT THRESHOLD (CD)					
Input Bias Current Voltage on control pin is 5V	Input Low Level Threshold	Falling			0.4	V
CHARGE TERMINATION DETECTION Termination Charge Current Programmable VBAT > VOREG - VRECH, VBUS > VSLP, Programmable VBAT > VOREG - VRECH, VBUS > VSLP, Programmable VBAT > VOREG - VRECH, VBUS > VSLP, Programmable VBAT > VOREG - VRECH, VBUS > VSLP, Programmable VBAT > VOREG - VRECH, VBUS > VSLP, Programmable VBAT > VSLP, Programmable VSLP, VSLP, Programmable VSLP, VSLP, Programmable VSLP, VSLP	Input High Level Threshold	Rising	1.2			V
Termination Charge Current Programmable Range Programmable Programmable Programmable Programmable Programmable Programmable Programmable Programmable Both rising and falling, 2mV overdrive, 30 ms EAD ADAPTOR DETECTION Input Voltage Lower Limit Bad Adaptor Detection 3.8 V Hysteresis for V _{IN_MIN} Input Voltage Rising 150 mV Deglitch Time for VBUS Rising above V _{IN_MIN} Rising Voltage, 2mV overdrive, 30 ms Exist Programmable Rising Voltage Programmable Rising Voltage Programmable Rising Voltage Programmable Rising Voltage Rising Voltage Programmable Rising Voltage Rising Voltage Programmable Rising Voltage Rising Voltage Rising Voltage Programmable Rising Voltage Rising Voltage Rising Rising Rising Voltage Rising	Input Bias Current	Voltage on control pin is 5V			1	μΑ
Range Programmable 25 400 mA Both rising and falling, 2mV overdrive, t _{RISE} , t _{FALL} = 100ns 30 ms BAD ADAPTOR DETECTION Input Voltage Lower Limit Bad Adaptor Detection 3.8 V Hysteresis for V _{IN_MIN} Input Voltage Rising 150 mV Deglitch Time for VBUS Rising above V _{IN_MIN} Rising Voltage, 2mV overdrive, t _{RISE} =100ns 30 ms Detect Current to GND During bad adaptor detection 30 mA Detection Interval Input power source detection 2 S INPUT BASED DYNAMIC POWER MANAGEMENT VINDEM Threshold 4.52 V VINDEM Threshold 4.52 V Input Current Limiting 5000 mA VLDO REGULATOR Internal Bias Regulator Voltage V _{PMID} > 5.1V, I _{VLDO} = 1mA, C _{LDO} =1μF 4.9 V V _{LDO} Output Short Current Limit V _{VLDO} = 90% regulation 50 mA BATTERY RECHARGE THRESHOLD Recharge Voltage Threshold Below V _{OREG} 120 mV Deglitch Time V _{BAT} decreasing below threshold, t _{FALL} =100ns, 10mV overdrive 30 ms	CHARGE TERMINATION DETECTION					
Both rising and falling, 2mV overdrive, 30 ms	Termination Charge Current Programmable	$V_{BAT} > V_{OREG} - V_{RECH}, V_{BUS} > V_{SLP},$	25		400	mΛ
Deglitch Time for Charge Termination 2mV overdrive, t _{RISE} , t _{FALL} = 100ns 30 ms BAD ADAPTOR DETECTION Input Voltage Lower Limit Bad Adaptor Detection 3.8 V Hysteresis for V _{IN_MIN} Input Voltage Rising 150 mV Deglitch Time for VBUS Rising above V _{IN_MIN} Rising Voltage, 2mV overdrive, Rising Voltage, 2mV overdrive, 30 ms Detect Current to GND During bad adaptor detection 30 mA Detection Interval Input power source detection 2 S INPUT BASED DYNAMIC POWER MANAGEMENT VINDEM Threshold 4.52 V INPUT CURRENT LIMITING 4.52 V Input Current Limiting 5000 mA VLDO REGULATOR Internal Bias Regulator Voltage V _{PMID} > 5.1V, I _{VLDO} = 1mA, C _{LDO} =1μF 4.9 V V _{LDO} Output Short Current Limit V _{VLDO} = 90% regulation 50 mA BATTERY RECHARGE THRESHOLD Recharge Voltage Threshold Below V _{OREG} 120 mV Deglitch Time V _{BAT} decreasing below threshold, t _{FALL} =100ns, 10mV overdrive 30 ms STAT OUTPUTS	Range	Programmable	23		400	ША
BAD ADAPTOR DETECTION		Both rising and falling,				
BAD ADAPTOR DETECTION Input Voltage Lower Limit Bad Adaptor Detection 3.8 V Hysteresis for V _{IN_MIN} Input Voltage Rising 150 mV Deglitch Time for VBUS Rising above V _{IN_MIN} t _{RISE} =100ns 30 ms Detect Current to GND During bad adaptor detection 30 mA Detection Interval Input power source detection 2 S INPUT BASED DYNAMIC POWER MANAGEMENT VINDEM Threshold 4.52 V Input Current Limiting 5000 mA VLDO REGULATOR Internal Bias Regulator Voltage VPMID> 5.1V, IVLDO = 1mA, CLDO=1μF 4.9 V VLDO Output Short Current Limit VVLDO = 90% regulation 50 mA BATTERY RECHARGE THRESHOLD Below VOREG 120 mV Deglitch Time VBAT decreasing below threshold, tFALL=100ns, 10mV overdrive 30 ms STAT OUTPUTS Low-level Output Saturation voltage for STAT ISTAT = 10mA, sink current 0.55 V	Deglitch Time for Charge Termination	2mV overdrive,		30		ms
Input Voltage Lower Limit		t _{RISE} , t _{FALL} = 100ns				
Hysteresis for V _{IN_MIN} Input Voltage Rising 150 mV Deglitch Time for VBUS Rising above V _{IN_MIN} Rising Voltage, 2mV overdrive, 130 ms Detect Current to GND During bad adaptor detection 30 mA Detection Interval Input power source detection 2 S INPUT BASED DYNAMIC POWER MANAGEMENT V _{INDPM} Threshold 4.52 V INPUT CURRENT LIMITING Input Current Limiting 5000 mA VLDO REGULATOR Internal Bias Regulator Voltage V _{PMID} > 5.1V, I _{VLDO} = 1mA, C _{LDO} =1μF 4.9 V V _{LDO} Output Short Current Limit V _{VLDO} = 90% regulation 50 mA BATTERY RECHARGE THRESHOLD Recharge Voltage Threshold Below V _{OREG} 120 mV Deglitch Time V _{BAT} decreasing below threshold, 150 ms STAT OUTPUTS Low-level Output Saturation voltage for STAT l _{STAT} = 10mA, sink current 0.55 V	BAD ADAPTOR DETECTION					T
Deglitch Time for VBUS Rising above V _{IN_MIN} Rising Voltage, 2mV overdrive, t _{RISE} =100ns Detect Current to GND During bad adaptor detection 30 mA Detect Current to GND During bad adaptor detection 30 mA Detect Current to GND Unput Dassed Dynamic Power Management VINDEW MANAGEMENT VINDEW Threshold Input Current Limiting VALSQ VALDO REGULATOR Internal Bias Regulator Voltage V _{PMID} > 5.1V, I _{VLDO} = 1mA, C _{LDO} =1μF 4.9 V V _{LDO} Output Short Current Limit V _{VLDO} = 90% regulation 50 mA BATTERY RECHARGE THRESHOLD Recharge Voltage Threshold Below V _{OREG} 120 mV Deglitch Time V _{BAT} decreasing below threshold, t _{FALL} =100ns, 10mV overdrive 30 ms STAT OUTPUTS Low-level Output Saturation voltage for STAT Instant = 10mA, sink current 0.55	Input Voltage Lower Limit	Bad Adaptor Detection		3.8		V
Deglitch Time for VBUS Rising above $V_{\text{IN_MIN}}$ $I_{\text{RRISE}} = 100 \text{ns}$ 30 ms Detect Current to GND During bad adaptor detection 30 mA Detection Interval Input power source detection 2 S INPUT BASED DYNAMIC POWER MANAGEMENT VINDPM Threshold 4.52 V INPUT CURRENT LIMITING Input Current Limiting 5000 mA VLDO REGULATOR Internal Bias Regulator Voltage $V_{\text{PMID}} > 5.1 \text{V}$, $I_{\text{VLDO}} = 1 \text{mA}$, $C_{\text{LDO}} = 1 \mu\text{F}$ 4.9 V VLDO Output Short Current Limit $V_{\text{VLDO}} = 90\%$ regulation 50 mA BATTERY RECHARGE THRESHOLD Recharge Voltage Threshold Below V_{OREG} 120 mV Deglitch Time V_{BAT} decreasing below threshold, $V_{\text{EALL}} = 100 \text{ns}$, V_{DON} overdrive $V_{\text{CDO}} = 10 \text{m}$ V STAT OUTPUTS Low-level Output Saturation voltage for STAT $V_{\text{STAT}} = 10 \text{mA}$, sink current 0.55 V	Hysteresis for V _{IN_MIN}	Input Voltage Rising		150		mV
$ \begin{array}{ c c c c c } \hline Detect Current to GND & During bad adaptor detection & 30 & mA \\ \hline Detection Interval & Input power source detection & 2 & S \\ \hline \textbf{INPUT BASED DYNAMIC POWER MANAGEMENT} \\ \hline \hline V_{INDPM} Threshold & 4.52 & V \\ \hline \textbf{INPUT CURRENT LIMITING} & 5000 & mA \\ \hline \hline Under Current Limiting & 5000 & mA \\ \hline \textbf{VLDO REGULATOR} & & & & & & \\ \hline Internal Bias Regulator Voltage & V_{PMID}>5.1V, I_{VLDO}=1mA, C_{LDO}=1\mu F & 4.9 & V \\ \hline V_{LDO} Output Short Current Limit & V_{VLDO}=90\% regulation & 50 & mA \\ \hline \textbf{BATTERY RECHARGE THRESHOLD} & & & & & & \\ \hline Recharge Voltage Threshold & Below V_{OREG} & 120 & mV \\ \hline Deglitch Time & V_{BAT} decreasing below threshold, t_{FALL}=100ns, 10mV overdrive & & & & \\ \hline \textbf{STAT OUTPUTS} & & & & & & \\ \hline Low-level Output Saturation voltage for STAT I_{STAT}=10mA, sink current & 0.55 & V \\ \hline \end{array}$	Dealitch Time for VRUS Rising above Vivi Min	Rising Voltage, 2mV overdrive,	TA	30		ms
Detection Interval Input power source detection 2 S		t _{RISE} =100ns		μ		1110
	Detect Current to GND	During bad adaptor detection	T	30	<u> </u>	mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, ' '		2		S
	INPUT BASED DYNAMIC POWER MANAG	GEMENT	1			T
				4.52		V
	INPUT CURRENT LIMITING		1			T
	Input Current Limiting			5000		mA
$V_{LDO} \ \text{Output Short Current Limit} \qquad V_{VLDO} = 90\% \ \text{regulation} \qquad 50 \qquad \text{mA}$ $ \frac{\text{BATTERY RECHARGE THRESHOLD}}{\text{Recharge Voltage Threshold}} \qquad \qquad \text{Below V}_{OREG} \qquad 120 \qquad \text{mV}$ $ \frac{\text{Deglitch Time}}{\text{Deglitch Time}} \qquad V_{BAT} \ \text{decreasing below threshold,} \\ \frac{t_{FALL}}{t_{FALL}} = 100 \text{ns, } 10 \text{mV overdrive} \qquad 30 \qquad \text{ms} $ $ \frac{\text{STAT OUTPUTS}}{\text{Low-level Output Saturation voltage for STAT }} \frac{t_{STAT}}{t_{STAT}} = 10 \text{mA, sink current} \qquad 0.55 \qquad \text{V} $	VLDO REGULATOR					
BATTERY RECHARGE THRESHOLD Recharge Voltage Threshold Below V_{OREG} 120 mV Deglitch Time V_{BAT} decreasing below threshold, $V_{EALL} = 100$ ms 30 ms STAT OUTPUTS Low-level Output Saturation voltage for STAT $V_{STAT} = 10$ mA, sink current 0.55 V	Internal Bias Regulator Voltage	V_{PMID} > 5.1V, I_{VLDO} = 1mA, C_{LDO} =1 μ F		4.9		V
	V _{LDO} Output Short Current Limit	V _{VLDO} = 90% regulation		50		mA
	BATTERY RECHARGE THRESHOLD					
Deglitch Time t _{FALL} =100ns, 10mV overdrive 30 ms STAT OUTPUTS Low-level Output Saturation voltage for STAT I _{STAT} = 10mA, sink current 0.55 V	Recharge Voltage Threshold	Below V _{OREG}		120		mV
STAT OUTPUTS Low-level Output Saturation voltage for STAT STAT = 10mA, sink current 0.55 V	Doglitah Timo	V _{BAT} decreasing below threshold,		20		ma
Low-level Output Saturation voltage for STAT I _{STAT} = 10mA, sink current 0.55 V	Degition filme	t _{FALL} =100ns, 10mV overdrive		30		1115
	STAT OUTPUTS					
High-level Leakage Current for STAT $V_{STAT} = 16V$ 1 μ A	Low-level Output Saturation voltage for STAT	I _{STAT} = 10mA, sink current			0.55	V
	High-level Leakage Current for STAT	$V_{STAT} = 16V$			1	μΑ

BATTERY DETECTION Battery Detection Current before Charge Begins after termination detected, Done, (sink current) -0.5 Battery Detection Time 262 SLEEP COMPARATOR Sleep-mode Entry Threshold, V _{BUS} - V _{BAT} 2.3V ≤ V _{BAT} ≤ V _{OREG} , V _{BUS} falling 60 Sleep-mode Exit Hysteresis 2.3V ≤ V _{BAT} ≤ V _{OREG} , V _{BUS} falling 200 Deglitch Time for VBUS Rising above V _{BUS} rising voltage, 2mV overdrive, t _{RISE} =100ns 30 UNDER VOLTAGE LOCKOUT (UVLO) IC Active Threshold voltage VBUS rising - Exits UVLO 3.3 IC Active Hysteresis VBUS falling below UVLO - Enters UVLO 150 PWM Voltage from BOOT pin to SW pin During charge operation 4 Internal Top Reverse Blocking MOSFET Onlations 55 Internal Top N-channel Switching MOSFET Measured from PMID to SW, V _{BOOT} - 60	mA ms mV mV ms
Done, (sink current) $V_{BAT} \le V_{OREG}$ -0.5 Battery Detection Time 262 SLEEP COMPARATOR Sleep-mode Entry Threshold, $V_{BUS} - V_{BAT}$ 2.3V ≤ $V_{BAT} \le V_{OREG}$, V_{BUS} falling 60 Sleep-mode Exit Hysteresis 2.3V ≤ $V_{BAT} \le V_{OREG}$ 200 Deglitch Time for VBUS Rising above Rising voltage, 2mV overdrive, 30 $V_{SLP} + V_{SLP} = XIT$ $t_{RISE} = 100 ns$ 30 UNDER VOLTAGE LOCKOUT (UVLO) VBUS rising - Exits UVLO 3.3 IC Active Threshold voltage VBUS falling below UVLO - Enters 150 VBWM VOltage from BOOT pin to SW pin During charge operation 4 Internal Top Reverse Blocking MOSFET On-resistance VBUS to PMID 55 Internal Top N-channel Switching MOSFET Measured from PMID to SW, V_{BOOT} — 60	ms mV mV ms
Done, (sink current) $V_{BAT} \le V_{OREG}$ Battery Detection Time 262 SLEEP COMPARATOR 2.3V ≤ $V_{BAT} \le V_{OREG}$, V_{BUS} falling 60 Sleep-mode Entry Threshold, $V_{BUS} - V_{BAT}$ 2.3V ≤ $V_{BAT} \le V_{OREG}$, V_{BUS} falling 200 Deglitch Time for VBUS Rising above $V_{SLP} = V_{OREG}$ 200 UNDER VOLTAGE LOCKOUT (UVLO) $V_{RISE} = 100$ ns 30 UNDER VOLTAGE LOCKOUT (UVLO) VBUS rising - Exits UVLO 3.3 IC Active Threshold voltage VBUS falling below UVLO - Enters UVLO - Enters UVLO 150 PWM Voltage from BOOT pin to SW pin During charge operation 4 Internal Top Reverse Blocking MOSFET On-INLUMIT = 500mA, Measured from VBUS to PMID 55 Internal Top N-channel Switching MOSFET Measured from PMID to SW, V_{BOOT} —60	ms mV mV ms
SLEEP COMPARATORSleep-mode Entry Threshold, $V_{BUS} - V_{BAT}$ $2.3V \le V_{BAT} \le V_{OREG}$, V_{BUS} falling60Sleep-mode Exit Hysteresis $2.3V \le V_{BAT} \le V_{OREG}$ 200Deglitch Time for VBUS Rising above $V_{SLP} + V_{SLP_EXIT}$ Rising voltage, $2mV$ overdrive, V_{SLP_EXIT} 30UNDER VOLTAGE LOCKOUT (UVLO)IC Active Threshold voltageVBUS rising - Exits UVLO3.3IC Active HysteresisVBUS falling below UVLO - Enters UVLO150PWMVoltage from BOOT pin to SW pinDuring charge operation4Internal Top Reverse Blocking MOSFET Onland Top Reverse Blocking MOSFET Onland Top N-channel Switching MOSFET Measured from PMID to SW, V_{BOOT} 55Internal Top N-channel Switching MOSFET Measured from PMID to SW, V_{BOOT} 60	mV mV ms
Sleep-mode Entry Threshold, $V_{BUS} - V_{BAT}$ 2.3V ≤ V_{BAT} ≤ V_{OREG} , V_{BUS} falling 60 Sleep-mode Exit Hysteresis 2.3V ≤ V_{BAT} ≤ V_{OREG} 200 Deglitch Time for VBUS Rising above $V_{SLP} + V_{SLP} = 100$ me for VBUS Rising above $V_{SLP} + V_{SLP} = 100$ me for VBUS Rising above $V_{SLP} + V_{SLP} = 100$ me for VBUS rising voltage, 2mV overdrive, $V_{SLP} + V_{SLP} = 100$ me for VBUS rising - Exits UVLO 30 UNDER VOLTAGE LOCKOUT (UVLO) VBUS rising - Exits UVLO 3.3 IC Active Threshold voltage VBUS falling below UVLO - Enters UVLO 150 PWM Voltage from BOOT pin to SW pin During charge operation 4 Internal Top Reverse Blocking MOSFET On- $V_{SUS} = 100$ me for PMID to SW, $V_{SOOT} = 100$ me for PMID to SW,	mV ms
Sleep-mode Exit Hysteresis 2.3V ≤ V_{BAT} ≤ V_{OREG} 200 Deglitch Time for VBUS Rising above Rising voltage, 2mV overdrive, 30 V _{SLP} +V _{SLP_EXIT} t_{RISE} =100ns 30 UNDER VOLTAGE LOCKOUT (UVLO) IC Active Threshold voltage VBUS rising - Exits UVLO 3.3 IC Active Hysteresis VBUS falling below UVLO - Enters UVLO 150 PWM Voltage from BOOT pin to SW pin During charge operation 4 Internal Top Reverse Blocking MOSFET Onlesistance VBUS to PMID 55 Internal Top N-channel Switching MOSFET Measured from PMID to SW, V _{BOOT} — 60	mV ms
Deglitch Time for VBUS Rising above V _{SLP} +V _{SLP_EXIT} Rising voltage, 2mV overdrive, t _{RISE} =100ns UNDER VOLTAGE LOCKOUT (UVLO) IC Active Threshold voltage VBUS rising - Exits UVLO 3.3 IC Active Hysteresis VBUS falling below UVLO - Enters UVLO PWM Voltage from BOOT pin to SW pin During charge operation 4 Internal Top Reverse Blocking MOSFET On-I _{IN_LIMIT} = 500mA, Measured from VBUS to PMID Internal Top N-channel Switching MOSFET Measured from PMID to SW, V _{BOOT} — 60	ms V
V _{SLP+V_{SLP_EXIT} UNDER VOLTAGE LOCKOUT (UVLO) IC Active Threshold voltage VBUS rising - Exits UVLO 3.3 IC Active Hysteresis VBUS falling below UVLO - Enters UVLO PWM Voltage from BOOT pin to SW pin Internal Top Reverse Blocking MOSFET On-IN_LIMIT = 500mA, Measured from vBUS to PMID Internal Top N-channel Switching MOSFET Measured from PMID to SW, VBOOT- Internal Top N-channel Switching MOSFET Measured from PMID to SW, VBOOT- 60}	V
UNDER VOLTAGE LOCKOUT (UVLO) IC Active Threshold voltage VBUS rising - Exits UVLO 3.3 IC Active Hysteresis VBUS falling below UVLO - Enters UVLO PWM Voltage from BOOT pin to SW pin During charge operation 4 Internal Top Reverse Blocking MOSFET On-IN_LIMIT = 500mA, Measured from VBUS to PMID Internal Top N-channel Switching MOSFET Measured from PMID to SW, VBOOT- 60	V
IC Active Threshold voltage VBUS rising - Exits UVLO 3.3 IC Active Hysteresis VBUS falling below UVLO - Enters UVLO PWM Voltage from BOOT pin to SW pin During charge operation 4 Internal Top Reverse Blocking MOSFET On-IN_LIMIT = 500mA, Measured from VBUS to PMID Internal Top N-channel Switching MOSFET Measured from PMID to SW, VBOOT- 60	
IC Active Hysteresis VBUS falling below UVLO – Enters UVLO PWM Voltage from BOOT pin to SW pin During charge operation 4 Internal Top Reverse Blocking MOSFET On-IIN_LIMIT = 500mA, Measured from VBUS to PMID Internal Top N-channel Switching MOSFET Measured from PMID to SW, VBOOT— 60	
PWM Voltage from BOOT pin to SW pin During charge operation 4 Internal Top Reverse Blocking MOSFET On-IIN_LIMIT = 500mA, Measured from resistance VBUS to PMID Internal Top N-channel Switching MOSFET Measured from PMID to SW, VBOOT—60	mV
PWM Voltage from BOOT pin to SW pin During charge operation 4 Internal Top Reverse Blocking MOSFET On-IN_LIMIT = 500mA, Measured from VBUS to PMID Internal Top N-channel Switching MOSFET Measured from PMID to SW, VBOOT— 60	mv
Voltage from BOOT pin to SW pin Internal Top Reverse Blocking MOSFET On-I _{IN_LIMIT} = 500mA, Measured from VBUS to PMID Internal Top N-channel Switching MOSFET Measured from PMID to SW, VBOOT-	
Internal Top Reverse Blocking MOSFET On-I _{IN_LIMIT} = 500mA, Measured from VBUS to PMID Internal Top N-channel Switching MOSFET Measured from PMID to SW, V _{BOOT} — 60	
resistance VBUS to PMID Internal Top N-channel Switching MOSFET Measured from PMID to SW, VBOOT— 60	V
Internal Top N-channel Switching MOSFET Measured from PMID to SW, V _{BOOT} —	10
. 60	mΩ
On registering	0
On-resistance $V_{SW} = 4V$	mΩ
Maximum Duty Cycle 99	%
CHARGE MODE PROTECTION	
VBUS threshold to turn off converter	
Input OVP Voltage Threshold during charge	V
OVP Threshold Hysteresis VBUS falling 1	V
Output OV/D Voltage Threehold VBAT threshold over VoREG to turn off	0/ \ /
Output OVP Voltage Threshold charger during charge	%V _{OREG}
Lower limit for V _{BAT} falling from above	0/ \/
V _{BAT_OVP} Hysteresis V _{BAT_OVP} 11	%V _{OREG}
Precond to Fast Charge Threshold V _{BAT} rising, typical application 3	V
V _{BAT} falling below V _{PRECOND} , typical	\/
V _{PRECOND} Hysteresis 100 application	mV
Trickle to Precond Charge Threshold V _{BAT} rising, typical application 2.1	V
V _{BAT} falling below V _{SHORT} , typical	\/
V _{SHORT} hysteresis application	mV
THERMAL CHARACTERISTICS	
Thermal Trip 165	°C
Thermal Hysteresis 30	°C
Thermal Regulation Threshold Charge current begins to reduce 120	
VNTC Rising,	°C
NTC Cold Temperature Threshold As percentage of VLDO 63 65 67	°C %

PARAMETERS	TEST CONDITION	MIN	TYP	MAX	UNIT
NTC Cold Temperature Hysteresis	VNTC Falling		30		mV
NTO Het Terror end one Thomas held	VNTC Falling,	24	33	0.5	0/
NTC Hot Temperature Threshold	As percentage of VLDO	31		35	%
NTC Hot Temperature Hysteresis	VNTC Rising		70		mV
NTC Hot Temperature Threshold for PCB	VNTC Falling,	00	32	0.4	0/
ОТР	As percentage of VLDO	30		34	%
NTC Hot Temperature Hysteresis for PCB	VNTC Diging		0.5		
ОТР	VNTC Rising		85		mV

PIN DESCRIPTION

QFNFC1.7x2-20 PIN#	QFN4x4-24 PIN#	NAME	DESCRIPTION
A1, A2	19	VBUS	Charger input voltage. Bypass it with a 4.7µF ceramic capacitor from VBUS to GND.
A3	21	воот	Bootstrap capacitor connection for the high-side FET gate driver. Connect a 10nF ceramic capacitor (voltage rating ≥ 10 V) from BOOT pin to SW pin.
A4	23	IEOC	Termination charge current setting pin. Connect a resistor between this pin and GND to set the charge current value during EOC stage.
B1, B2, B3	17	PMID	Connection point between reverse blocking FET and high-side switching FET. Bypass it with a minimum of 4.7µF capacitor from PMID to GND.
В4	1	ICHRG	Fast charge current setting pin. Connect a resistor between this pin and GND to set the charge current value during CC stage.
C1, C2, C3	16	SW	Internal switch to output inductor connection.
C4	3	STAT	Charge status pin. Pull low when charge in progress. Open drain for other conditions.
D1, D2, D3	15	GND	Ground
D4	5	NTC	Battery temperature monitoring input pin. It sets the valid temperature operating range for the battery charging.
E1	13	VBATS	VBATS pin is always shorted to VBAT pin.
E2	11	CD	Charge disable control pin. CD=0, charge is enabled. CD=1, charge is disabled and VBUS pin is high impedance to GND.
E3	9	VLDO	LDO output voltage. Bypass it with 1µF capacitor from VLDO to GND.
E4	7	VBAT	Positive battery terminal.
	2,4,6,8,10,12, 14,18,20,22,24	NC	None connection.

TYPICAL CHARACTERISTICS

(Typical values are at T_A = 25°C unless otherwise specified.)

APPLICATION INFORMATION

BATTERY TERMINATION CURRENT

ETA6911 is allowed to program termination current by an external resistor RIEOC. Follow the below table to select a suitable resistor.

RIEOC(KOhm)	IEOC(mA)
25	25
50	50
100	100
200	200
400	400

BATTERY CHARGE CURRENT

ETA6911 can program charge current by an external resistor RICHRG. Follow the below table to select a suitable resistor.

VBUS =	VBUS = 5V		= 9V	VBUS =	12V
RICHRG (KOhm)	ICHRG (mA)	RICHRG (KOhm)	ICHRG (mA)	RICHRG (KOhm)	ICHRG (mA)
200	540	200	680	200	779
150	645	150	778	150	882
100	870	100	988	100	1094
82	1016	82	1118	82	1222
62	1263	62	1356	62	1459
51	1477	51	1559	51	1662
39	1839	39	1908	39	2012
27	2525	27	2577	27	2683
20	3256	20	3302	20	3392
15	3977	15	3817	15	3915

BAD ADAPTOR DETECTION

IC performs the bad adaptor detection by applying a current sink to VBUS. If the VBUS is higher than V_{IN_MIN} for 30ms, the adaptor is good and the charge process begins. Otherwise, if the VBUS drops below V_{IN_MIN} , a bad adaptor is detected. After a holding time in 2s, the IC repeats adaptor detection process. IC repeats this process until the VBUS passes the condition that VBUS is higher than V_{IN_MIN} .

CHARGING PROFILE

Figure 2: Typical Charging Profile. Case of being without Input Current Limit

Figure 3: Typical Charging Profile. Case of being with Input Current Limit

INPUT CURRENT LIMIT REGULATION

During the charging process, if the Q1 current exceeds input current limit, Q1 will be controlled into limit loop, PMID voltage will decrease. Once charge detects PMID voltage drop for more than $I_{IN_LIM} * R_{Q1}$,), the charge current begins to taper down to prevent any further drop of PMID voltage. When the IC enters this mode, the charge current is lower than the set value and the VIN_ILIM bits are set. This feature makes the part be not over power that heat the part much.

DYNAMIC POWER MANAGEMENT

During the charging process, if the input power source is not able to support the programmed or default charging current, the VBUS voltage will decrease. Once the VBUS drops to VIN_DPM (default 4.52V), the charge current begins to taper down to prevent any further drop of VBUS. When the IC enters this mode, the charge current is lower than the set value and the special charger bit is set. This feature makes the IC compatible with adapters having different current capabilities.

THERMAL REGULATION

During the charging process, if the junction temperature is above T_{FB} (120°C), the charge current is reduced. Charge current is reduced to minimum level (550mA) when junction temperature hits 130°C. This feature makes the IC be not over temperature during high charge current at low battery voltage. When battery voltage high enough, power crosses the part is lower, junction temperature is lower, then battery is charged with full set current.

Beside the thermal regulation, part is protected by second temperature protection, thermal shutdown. When junction temperature hit T_{SHUT}, IC will be turn off until part cold down 30°C.

LINEAR CHARGE - PRECONDITION CHARGE

When battery voltage is between V_{BAT SHORT} - V_{BAT PRECOND}, battery will be charged by a linear current I_{PRECOND}.

To prevent battery from explosion when the voltage is too low, under V_{BAT_SHORT} , IC charges battery with a linear current, I_{SHORT} . I_{SHORT} is programmed by level of VBUS.

CHARGE COMPLETE

When Charge Current hits termination threshold and IC still detect valid battery, IC indicates charge complete as release STAT. In this, IC allows to recharge when battery voltage drops below recharge threshold.

PCB GUIDELINES

Please always put PMID capacitor closest to the PMID pins and GND pins. As such PMID capacitor serves as the input capacitor of switching charger, and if the capacitor is connected to the GND pins thru ground plane, 2 serial vias (capacitor to ground plane and ground plane to GND pins) are introduced, which means a serial parasitic inductor is placed between the input capacitor and the real input pins. And thus, the decoupling function of such input capacitor is compromised. So, lots of switching noise may no longer be filtered by the input capacitor, and it leads to instability of the switching charger.

The following illustration shows the correct way to place the input capacitor.

BLOCK DIAGRAM

PACKAGE OUTLINE

Package:QFNFC1.7x2-20

		SYMBOL	MIN	NOM	MAX	
TOTAL THICKNESS		A	0.32	0.37	0.4	
STAND OFF		A1	0	0.02	0.05	
MOLD THICKNESS		A2	0.27			
L/F THICKNESS		A3	0.102 REF			
LEAD WIDTH		b	0.2	0.25	0.3	
LEAD WIDTH		b1	0.15	0.25	0.35	
BODY SIZE	×	D	1.7 BSC			
DOUT SIZE	¥	E	2 BSC			
LEAD PITCH		е		0.4 BSC		
IEAR I DIETI		L	0.2	0.25	0.3	
LEAD LENGTH		L1	0.15	0.25	0.35	
LEAD EDGE TO PACKA	GE EDGE	L2		0.125 REF		
PACKAGE EDGE TOLERANCE		898		0.1		
MOLD FLATNESS		ccc		0.1		
COPLANARITY		cee	0.05			
LEAD OFFSET		bbb	0.07			
				W		

Package:QFN4x4-24

Symbol	Dimensions In Millimeters		Dimensions In Millimeters		Dimension	s In Inches
Syllibol	Min.	Max.	Min.	Max.		
Α	0.700/0.800	0.800/0.900	0.028/0.031	0.031/0.035		
A1	0.000	0.050	0.000	0.002		
A3	0.203REF.		0.008	REF.		
D	3.924	4.076	0.154	0.160		
E	3.924	4.076	0.154	0.160		
D1	2.600	2.800	0.102	0.110		
E1	2.600	2.800	0.102	0.110		
k	0.200	MIN.	0.008	BMIN.		
b	0.200	0.300	0.008	0.012		
е	0.500TYP.		0.020	TYP.		
L	0.324	0.476	0.013	0.019		

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ETA6911FQHU	QFNFC1.7x2-20	20	3000	180	9.5	1.95	2.25	0.43	4	8	Q1
ETA6911V435FQHU	QFNFC1.7x2-20	20	3000	180	9.5	1.95	2.25	0.43	4	8	Q1
ETA6911Q4Y	QFN4x4-24	24	5000	330	12.4	4.3	4.3	1.1	8	12	Q1
ETA6911V435Q4Y	QFN4x4-24	24	5000	330	12.4	4.3	4.3	1.1	8	12	Q1