PROGETTO DI BASE DI DATI ECOMMERCE

Descrizione

Si vuole progettare una base di dati che gestisca le informazioni relative ad un sito ecommerce.

L'obiettivo principale dell'ecommerce è creare un ambiente di shopping online conveniente per i clienti. Ogni cliente è identificato da idCliente. Di un cliente si vogliono conoscere anche tutte le informazioni essenziali come nome, cognome, numero di telefono, username e password. Gli attributi "username" e "password" consentono al cliente di autenticarsi e accedere al proprio account, garantendo la privacy e la sicurezza delle informazioni personali.

Dopo aver effettuato l'accesso, i clienti avranno la possibilità di visualizzare un elenco completo dei prodotti disponibili per l'acquisto, consentendo di effettuare ordini .Ogni prodotto ha come identificatore univoco un idProdotto,inoltre si vuole conoscere anche il nome,una breve descrizione,il prezzo,il peso e la disponibilità.I prodotti appartengono ad una categoria.quest'ultima è identificato attraverso un idCategoria,sono caratterizzati da un nome e da una breve descrizione della categoria stessa. Ogni prodotto può essere fisicamente disponibile in uno o più magazzini.

Ordini sono identificati univocamente da un idOrdine ed interessa conoscere la data .Dopo aver confermato l'ordine si passa al pagamento. Il pagamento viene identificato univocamente da un idPagamento, si vuole conoscere anche la data in cui è stato effettuato il pagamento, e l'importo

conoscere anche la data in cui è stato effettuato il pagamento e l'importo totale dell'ordine .Il pagamento può essere di due tipi:contrassegno e carta di credito.

Specifiche della realtà d'interesse

La realtà che andiamo a rappresentare riguarda la gestione di un ecommerce sul quale è possibile effettuare ordini da parte di clienti iscritti.

All'interno di ecommerce, i clienti avranno accesso a una vasta gamma di prodotti suddivisi in diverse categorie, offrendo una soluzione completa per soddisfare le esigenze di ogni utente. La struttura di categorie agevolerà la ricerca dei prodotti desiderati, semplificando l'esperienza di acquisto per gli utenti. quando un cliente effettua un ordine, i prodotti richiesti devono essere prelevati dal magazzino dell'azienda. Il "magazzino" è il luogo fisico dove vengono archiviati i prodotti mentre il "ritiro in negozio" è un servizio che consente ai clienti di ritirare fisicamente i loro ordini presso un negozio fisico dell'azienda

Ogni entità necessità di un identificativo per l'identificazione univoca.

GLOSSARIO DEI TERMINI

Termine	Significato		
Cliente	Persona che effettua almeno un ordine nel sito.		
Ordine	Insieme di tutte le informazioni relative ad un acquisto da parte di un Cliente.		
RitiroNegozio	rappresenta le informazioni relative al ritiro di un ordine presso un negozio fisico		
Pagamento	Pagamento relativo ad un acquisto.		
Contrassegno	Modalità di pagamento		
Carta di Credito	Modalità di pagamento		
Prodotto	Tutte le informazioni relative ad un prodotto		
Magazzino	Magazzino nel quale sono disponibili i prodotti.		

Categoria

Categoria nella quale sono organizzati prodotti dello stesso tipo.

2. Progettazione concettuale della base di dati Schema EER

Dizionario delle entità

Legenda: sotto-entità, attributo multivalore, attributo ridondante, entità debole, chiave candidata

Entità	Descrizione	Attributi	Identificatore
	20011210110	71001100101	
Cliente	Persona che effettua almeno un ordine nel sito.	idCliente,nome,co gnome,Username, password,telefono	idCliente
Ordine	Insieme di tutte le informazioni relative ad un acquisto da parte di un Cliente.	idOrdine ,data	idOrdine
RitiroNegozio	rappresenta le informazioni relative al ritiro di un ordine presso un negozio fisico	idRitiro ,dataRitro, nomeNegozio	idRitiro
Pagamento	Pagamento relativo ad un acquisto.	idPagamento, dataPagamento, importo	idPagamento
Contrassegno	Modalità di pagamento	/	/
Carta di Credito	Modalità di pagamento	/	/
Prodotto	Tutte le informazioni relative ad un prodotto	idProdotto,nome, descrizione,prezzo ,peso	idProdotto
Magazzino	Magazzino nel quale sono disponibili i prodotti venduti.	idMagazzino,nome Magazzino	idMagazzino

Categoria	Categoria nella quale sono organizzati prodotti dello stesso tipo.	idCategoria, nomeCategor ia, descrizione	idCategoria
-----------	--	---	-------------

Dizionario delle relazioni

Relazione	Descrizione	Entità Coinvolte	Attributi
Associa	Ogni dettaglio di ritiro in negozio è associato a un ordine specifico	Ordine(1,N) RitiroNegozio(1,1)	/
Acquista	l'immissione di un ordine da parte di un cliente	Cliente(0,N) Ordine(1,1)	/
Fattura	definisce il pagamento dell'ordine	Ordine(1,1) Pagamento(1,1)	/
Contiene	la presenza di determinati prodotti all'interno di un ordine	Ordine(1,N) Prodotto(0,N)	quantità
Appartiene	un prodotto appartiene ad una categoria	Prodotto(1,1) Categoria(1,N)	/
locazione	la posizione presso la quale sono presenti i prodotti	Prodotto(0,N) Magazzino(0,N)	/

Vincoli non esprimibili nello schema

Come sappiamo lo schema concettuale ER è sufficientemente espressivo per rappresentare i dati, ma non lo è altrettanto per la rappresentazioni di vincoli di integrità o di derivazione, di seguito elencati.

 L'attributo "descrizione" deve avere numero di caratteri minore o uguale a 250.

Definizione delle procedure per la gestione della base di dati

Tavola dei volumi

Definiamo di seguito la tavola dei volumi della base di dati.

Concetto	Tipo	Carico Applicativo
Cliente	E	50
RitiroNegozio	Е	350
Ordine	Ш	250
Pagamento	E	250
Prodotto	Е	400
Magazzino	E	2
Categoria	E	10
Acquista	R	250
Associa	R	350

Contiene	R	500
Fattura	R	250
Appartiene	R	40
locazione	R	500
Contrassegno	E	100
Carta di Credito	E	150

Tavola delle operazioni

Definiamo di seguito la tavola delle operazioni per la gestione dei dati memorizzati nella base di dati.

Operazione	Tipo	Frequenza
Op1: Aggiungere un nuovo cliente	I	20/mm
Op2: Aggiungere un nuovo prodotto	I	20/aa
Op3: Visualizzare tutti i prodotti	I	15/mm
Op4: Trovare i prodotti più venduti	В	4/aa
Op5: Trovare i prodotti meno venduti	В	4/aa
Op6: Trovare il prodotto più costoso	В	4/aa
Op7 :Trovare i clienti che hanno effettuato più di 1 ordine	I	3/aa
Op 8:Elencare i prodotti in ordine di prezzo dal più basso al più alto.	I	4/mm
Op9: Selezionare gli importi effettuati da un dato cliente	I	5/mm
Op10 : Trovare i prodotti con prezzo maggiore di 50 euro.	В	3/aa

Op11: Trovare i prodotti che non sono mai stati venduti.	В	4/aa
Op12: Trovare la data dell'ultimo ordine effettuato da ciascun cliente.	В	2/mm
Op13:Trovare le categorie con la maggior varietà di prodotti distinti.	В	5/aa
Op14:Selezionare tutti gli ordini pagati con Carta di credito.	В	2/mm
Op15: Visualizzare tutti gli ordini eseguiti in un anno.	I	2/aa
Op16:Seleziona i ritiri nei negozi e il cliente associato con il maggior numero totale di ritiri	В	5/aa

Progettazione logica

Analisi delle ridondanze

Il dato ridondante è l'attributo "importo" e ci la quantità di denaro che il cliente deve spendere per effettuare l'acquisto. Questo è un dato ridondante perchè tramite dei calcoli è possibile risalire al valore del dato ma è da verificare se effettivamente, conviene eliminarlo.

Tavola degli accessi

Operazione 9

Calcolo con ridondanza				
Tabella	Tipo	Accessi	Tipo accessi	
Cliente	E	1	L	
Acquista	R	5	L	
Ordine	E	5	L	
Fattura	R	5	L	
Pagamento	E	5	L	
Totale		(21L)=21*5/m	m=105 a/mm	

Calcolo senza ridondanza				
Tabella Tipo Accessi Tipo accessi				
Cliente	E	1	L	
Acquista R 5 L				

Ordine	E	5	L
Contiene	R	5*2=10	L
Prodotto	R	5*2=10	L
Totale		(31L)=31*5/m	m=155 a/mm

Totale accessi con ridondanza: 105a/mm +1000 byte

Totale accessi senza ridondanza: 155 a/mm

Considerati i dati precedenti sugli accessi: 105 accessi con attributo ridondante e 155 accessi senza attributo ridondante, ho scelto di non eliminare la ridondanza.

Eliminazione delle gerarchie

Nello schema inizialmente elaborato, è presente la seguente specializzazione dell'entità "Pagamento":

La gerarchia "Pagamento" viene risolta mantenendo l'entità padre "Pagamento" e accorpando le entità figlie in una nuova entità "MetodoPagamento"

Eliminazione dell'attributo multivalore

Nello schema inizialmente elaborato, compare un attributo multivalore:

Tale forma di attributo va risolto in maniera differente in fase di progettazione logica.

Si sceglie quindi di definire una nuova entità debole "Telefono", in relazione con l'entità "Cliente":

Schema EER ristrutturato

Al termine della fase di ristrutturazione, lo schema EER completo che ne deriva è il seguente:

Schema relazionale

Si procede al mapping della base di dati:

- Cliente(idCliente,nome,cognome,username,password)
- Ordine(idOrdine,data,Cliente.idCliente↑)
- RitiroNegozio(idRitiro,Ordine.idOrdine↑,nomeNegozio,dataRitiro)
- MetodoPagamento(idMetodoPagamento,tipo)
- Pagamento(idPagamento, dataPagamento, importo, O rdine.idOrdine+, MetodoPagamento.idMetodoPagam ento+)
- Telefono(<u>numero,Cliente.idCliente↑</u>)
- Categoria (idCategoria, nome, descrizione)
- Prodotto(<u>idProdotto</u>,nome,descrizione,prezzo,peso, Categoria.idCategoria[↑])
- Contiene(Ordine.idOrdine↑,Prodotto.idProdotto↑,qu antità)
- Magazzino(idMagazzino,nome)
- Locazione(Magazzino.idMagazzino↑,Prodotto.idProd otto↑)

Normalizzazione

Il database si presenta già normalizzato.

È infatti **in prima forma normale** in quanto tutti gli attributi sono atomici dopo la ristrutturazione (è stato infatti eliminato l'attributo multivalore 'telefono' nell'entità Cliente).

È in seconda forma normale perché, oltre ad essere già in 1NF, quando è presente una chiave primaria composta da più attributi tutte le dipendenze funzionali che la riguardano sono piene e non parziali.

È **in terza forma normale** perché, oltre ad essere già in 2NF, in tutte le tabelle non sono presenti dipendenze transitive fra attributi non chiave e la chiave primaria

Realizzazione della base di dati con MySQL

```
create schema ecommerce;
 2 •
       use ecommerce;
 3
       create table Cliente
           idCliente INT NOT NULL AUTO INCREMENT PRIMARY KEY,
 6
 7
           nome varchar(50) NOT NULL,
           cognome varchar(50) NOT NULL,
 8
 9
           username varchar(50) NOT NULL,
           password varchar(50) NOT NULL
10
       );
11
12
13
       create table Ordine
14 •
    ⊖ (
15
            idOrdine INT NOT NULL AUTO INCREMENT,
16
           data DATE NOT NULL,
17
            idCliente INT NOT NULL,
18
            PRIMARY KEY(idOrdine),
19
            FOREIGN KEY(idCliente) REFERENCES Cliente(idCliente)
20
       );
21
22
```

```
create table RitiroNegozio
24
             idRitiro INT NOT NULL AUTO INCREMENT,
25
             nomeNegozio VARCHAR(30) NOT NULL,
26
             dataRitiro DATE NOT NULL,
27
             idOrdine INT NOT NULL,
28
             PRIMARY KEY(idRitiro,idOrdine),
29
             FOREIGN KEY(idOrdine) REFERENCES Ordine(idOrdine)
30
        );
31
32
        create table MetodoPagamento
     ⊖ (
34
             idMetodoPagamento INT NOT NULL AUTO INCREMENT,
35
             tipo VARCHAR(30) NOT NULL,
36
             PRIMARY KEY(idMetodoPagamento)
37
        );
38
39
       create table Pagamento
40 •
     ⊖ (
41
           idPagamento INT NOT NULL AUTO_INCREMENT,
42
43
           dataPagamento DATE NOT NULL,
           importo INT NOT NULL,
44
           idOrdine INT NOT NULL,
45
           idMetodoPagamento INT NOT NULL,
46
           PRIMARY KEY(idPagamento),
47
           FOREIGN KEY(idOrdine) REFERENCES Ordine(idOrdine),
48
           FOREIGN KEY(idMetodoPagamento) REFERENCES MetodoPagamento(idMetodoPagamento)
49
50
       );
51
       create table Telefono
52 •
     ⊖ (
53
           numero VARCHAR(20) NOT NULL,
54
           idCliente INT NOT NULL AUTO INCREMENT,
55
           PRIMARY KEY(numero, idCliente),
56
57
           FOREIGN KEY(idCliente) REFERENCES Cliente(idCliente)
       );
58
59
60
       create table Categoria
61 •
     ⊖ (
62
           idCategoria INT NOT NULL AUTO_INCREMENT,
63
           descrizione VARCHAR(250) NOT NULL,
64
           nome VARCHAR(30) NOT NULL,
65
           PRIMARY KEY(idCategoria)
66
       );
67
68
```

```
create table Prodotto
69 •
70
     \ominus (
            idProdotto INT NOT NULL AUTO INCREMENT,
71
            nome VARCHAR(30) NOT NULL,
72
            descrizione VARCHAR(250) NOT NULL,
73
74
            prezzo INT NOT NULL,
            peso FLOAT NOT NULL,
75
76
            idCategoria INT NOT NULL,
            PRIMARY KEY(idProdotto),
77
78
            FOREIGN KEY(idCategoria) REFERENCES Categoria(idCategoria)
79
        );
80
        create table contiene
81 •
82
     \ominus (
            idOrdine INT NOT NULL,
83
            idProdotto INT NOT NULL,
84
            quantità INT NOT NULL,
85
             PRIMARY KEY(idOrdine,idProdotto),
 86
             FOREIGN KEY(idOrdine) REFERENCES Ordine(idOrdine),
 87
            FOREIGN KEY(idProdotto) REFERENCES Prodotto(idProdotto)
 88
        );
 89
 90
        create table Magazzino
 91 •
 92
     \ominus (
             idMagazzino INT NOT NULL AUTO INCREMENT,
 93
            nome VARCHAR(30) NOT NULL,
 94
            PRIMARY KEY(idMagazzino)
 95
 96
        );
 97
        create table Locazione
98 •
     \ominus (
99
             idMagazzino INT NOT NULL,
100
            idProdotto INT NOT NULL,
101
            PRIMARY KEY(idMagazzino,idProdotto),
102
             FOREIGN KEY(idMagazzino) REFERENCES Magazzino(idMagazzino),
103
             FOREIGN KEY(idProdotto) REFERENCES Prodotto(idProdotto)
104
105
        );
106
```

Implementazione query SQL

Operazione 1:

INSERT INTO cliente(idCliente,nome,cognome,username,password) VALUES(?,?,?,?);

Operazione 2:

INSERT INTO prodotto(idProdotto,nome,descrizione,prezzo,peso,idCategoria) VALUES(?,?,?,?,?);

Operazione 3:

SELECT * FROM prodotto;

Operazione 4:

SELECT p.idProdotto, p.nome AS nomeProdotto, SUM(c.quantità) AS quantità_venduta

FROM Prodotto as p
JOIN Contiene as c ON p.idProdotto = c.idProdotto
JOIN Ordine as o ON c.idOrdine = o.idOrdine
WHERE o.data BETWEEN '2021-04-21' AND '2023-09-01'
GROUP BY p.idProdotto, p.nome
ORDER BY quantità_venduta DESC

Operazione 5:

SELECT p.idProdotto, p.nome AS nomeProdotto,
COALESCE(SUM(c.quantità), 0) AS quantità_venduta
FROM Prodotto as p
LEFT JOIN Contiene as c ON p.idProdotto = c.idProdotto
LEFT JOIN Ordine as o ON c.idOrdine = o.idOrdine AND o.data BETWEEN
'2021-04-21' AND '2023-09-01'
GROUP BY p.idProdotto, p.nome
ORDER BY quantità_venduta ASC;

Operazione 6:

SELECT idProdotto, nome, prezzo FROM Prodotto ORDER BY prezzo DESC LIMIT 1;

Operazione 7:

SELECT c.idCliente, c.nome
FROM Cliente c
JOIN Ordine o ON c.idCliente = o.idCliente
GROUP BY c.idCliente, c.nome
HAVING COUNT(o.idOrdine) > 1;

Operazione 8:

SELECT idProdotto, nome, prezzo FROM Prodotto ORDER BY prezzo ASC;

Operazione 9:

SELECT c.nome, c.cognome, COALESCE(SUM(p.importo), 0) AS importo_totale
FROM Cliente c
JOIN Ordine o ON c.idCliente = o.idCliente
JOIN Pagamento p ON o.idOrdine = p.idOrdine
WHERE c.idCliente = ?
GROUP BY c.nome, c.cognome;

Operazione 10:

SELECT idProdotto, nome, prezzo FROM Prodotto WHERE prezzo > 50

Operazione 11:

SELECT p.idProdotto, p.nome
FROM Prodotto p
LEFT JOIN Contiene c ON p.idProdotto = c.idProdotto
WHERE c.idProdotto IS NULL;

Operazione 12:

SELECT c.nome, MAX(o.data) AS ultima_data_ordine FROM Cliente c JOIN Ordine o ON c.idCliente = o.idCliente GROUP BY c.nome;

Operazione 13:

SELECT cat.idCategoria, cat.nome, COUNT(DISTINCT p.idProdotto) AS varietà_prodotti
FROM Categoria cat
JOIN Prodotto p ON cat.idCategoria = p.idCategoria
GROUP BY cat.idCategoria, cat.nome
ORDER BY varietà_prodotti DESC;

Operazione 14:

SELECT o.idOrdine, o.data
FROM Ordine o
JOIN Pagamento p ON o.idOrdine = p.idOrdine
JOIN MetodoPagamento mp ON p.idMetodoPagamento = mp.idMetodoPagamento
WHERE mp.tipo = 'Carta di credito';

Operazione 15:

SELECT idOrdine, data FROM Ordine WHERE YEAR(data) = ?;

Operazione 16:

SELECT rn.nomeNegozio, c.idCliente, c.nome, c.cognome, COUNT(*) AS NumeroRitiri
FROM RitiroNegozio rn
JOIN Ordine o ON rn.idOrdine = o.idOrdine
JOIN Cliente c ON o.idCliente = c.idCliente
GROUP BY rn.nomeNegozio, c.idCliente, c.nome, c.cognome
ORDER BY NumeroRitiri DESC
LIMIT 1;

Test dell'applicazione Java

Operazione 13

Operazione 15

Operazione 14

Operazione 16

