Data Analytics

Lecture 2

Be AGILE

- Lecture 01 slides are updated
 - thanks Jason for providing a legit link to reference book!)
- Installed Alteryx/Power BI(Power Query)/SQL env?
- Markdown?
- Slack!

(works great with Bots and push reports (Alteryx, Tableau 3rd party tool)

Progress

Introduction, Methodology, Quiz to understand your SQL/ basic data handling proficiency

What we are dealing with:

Evolving production data

Meta data Big data

Ad-hoc, external data

<u>fecycle management</u> <u>reference data</u>

<u> [actics: (Agile, Github)</u>

<u>Classifications</u>

Type of data (categorical, nominal, ordinal)

Data Universe quadrant Capability quadran

Killer tools Future tools (D3, GraphQL)

Methodology

CRoss-Industry Process for Data Mining (CRISP-DM)

Other alternatives

Case: Aircraft incident

Objective: what we want to do?

Data Understanding

Data Cleansing

Data Enhancing

Modeling/Analysis

Evaluation

Deployment vith Jiangren

Lecture 3

Deliver Value to Business - communication

<u>Goal</u>

What's the right goal?

<u>Project governance applies</u>

<u>Story telling</u>

<u> Case: multinational manufacturer</u>

<u> Case: Hanse Rosling</u>

Visualisation

<u>Principle</u>

Examples

Pitfalls (pie chart, 3D, redundant elements)

Common pitfal

correlation not causation

Too good to be true predictor

What users are thinking

<u>Trade off of modeling accuracy/complexity(can the rules be interpreted?)</u>

Manage cost of deployment

Lecture 4/5

<u>Data modeling and manipulation</u>

<u> Machine Learning Model Quadrant</u>

generative model/discriminative model

Feature:

<u> Dataset Split: Training/Test/Validation</u>

Hyperparameters

80:20 rule(spend more time in feature engineering)

How to find them - # of clusters

Learning rate - NN

<u> Pruning- single decision tree - Level of depth - random forest</u>

Measuring Model accuracy and effectiveness

Regression: R2, MSE

Classification - Measuring ROC, Gain, precision/recall

Confusion matrix. Type 1 /2 Error

Ensemble Learning

Lecture 4/5

Feature selection

<u>Supervised learning- which model to choose?</u>

<u>Model evaluation and setup A/B test</u>

Case 2: segmentation

Clustering

Interpret result to users

Regression

Time Series

Outlier/purification

Tool: FB

Association Rules

NN

Text Mining

<u>Tools</u>

Case3: Link Analysis on blockchair

Bus Matrix

Tool	Dataset		
Python	Flight Accident		Donation
SQL		BITDB	
Alteryx	Flight Accident		
Power Query/Excel/Power Bl			

Ready to fly - flight incident data exploration

Did you make a backup?

Git remote -v

git remote add upstream

https://github.com/cnukaus/learner.git

Git checkout master

Git fetch upstream

Git merge upstream/master

df. **mean**()

inplace=True

Duplicate?

S# = 227 and S# = 228 are the same incident, also 301 and 302, plus many others. However duplicates can have different values for the same fields.

S# 176 and 177 are duplicates - conflict killed #12, injured #8, whereas for S# = 177 the numbers are 13, 3 and 15.

https://www.kaggle.com/edhirif/data-analysis-with-data-quality-analysis

Power BI Python setting

Set all privacy to "Public"

Data Cleanse method

Regex (manual)
Library default: fillna
Model Prediction
Rule based model
Link to external data


```
else:
    # Setting number of engines at the mean number of engines for the producer
    r = np.round(df['Number.of.Engines'][df['Make']==m].mean())
    return r

# Setting 0 engines for balloons
df['Number.of.Engines'][df['Number.of.Engines'].isnull() & (df['Make'].str.contains('balloon', case=False))]
# Correcting number of engines
num_engines = df.apply(lambda x: fix_number_of_engines(x['Number.of.Engines'], x['Make']), axis=1)
```

def fix_number_of_engines(noe, m):

df = df.assign(NumberofEngines = num engines, index=df.index)

Still some null after number of engines correction

df['NumberofEngines'].fillna(1, inplace=True)

if noe >= 0:

return noe

Exercise 2: Use Excel/Power Query if you have Excel, otherwise Power BI

(in case you run Linux/mac, there is a life saver - remote machine)

Requirement behind their statement

I need a better (horse, CSV file)

I want to reach more customers (so should stream to advertising/third party directly)

Note the difference between DB backup file

And table content export file

Garbage in, Garbage out

There are as many valid coding convention as developers,

only important thingkeep the same coding convention in a project.

Cédric Julien

Big data - about correlation, can be misleading

Stat: those have 10 min breaks between work, after 5 years 40% more likely to have cancer

https://www.kaggle.com/kanncaa1/why-gun-violance-increase-in-texa

论点-论据 - 还是从现象中找结论?

达尔文, 假说 毛泽东-农村 林彪-应用大数据

用IV WOE来量化RFM Model

达尔文, 假说 毛泽东-农村 林彪-应用大数据

Correlation not Causation

- alter table Customers add Age int;

 Which month are most of our customers born?
- Highest value woolies EDR member?

When you f*** ed up

Lessons learned

