Espacio dual. Espacios con producto interno.

Jueves 10 de noviembre

Ejercicio 1. Sean $B = \{v_1, v_2, v_3\}$, donde $v_1 = (1, 0, 1), v_2 = (0, 1, -2), v_3 = (-1, -1, 0)$ en \mathbb{R}^3 .

- (a) Probar que B es una base y dar la base dual de B.
- (b) Sea $f \in (\mathbb{R}^3)^*$ tal que $f(v_1) = f(v_2) = 0$, $f(v_3) = 1$. Hallar f(x, y, z) y dar sus coordenadas en la base dual de B.
- (c) Sea $g \in (\mathbb{R}^3)^*$ tal que $g(v_1) = -1$, $g(v_2) = 2$, $g(v_3) = -4$. Hallar g(x, y, z) y dar sus coordenadas en la base dual de B.

Ejercicio 2. Sea V un espacio vectorial de dimensión finita.

- (a) Sea $v \in V$. Probar que si f(v) = 0 para toda $f \in V^*$, entonces v = 0.
- (b) Sean $v_1, v_2 \in V$. Probar que $v_1 = v_2$ si y sólo si $f(v_1) = f(v_2)$ para toda $f \in V^*$.
- (c) Sea W un subespacio de V. Probar que para toda $g \in W^*$ existe una $f \in V^*$ tal que $f|_W = g$.

Ejercicio 3. Repetir el **Ejercicio 1** para los vectores de \mathbb{R}^3 : $v_1 = (1, 0, -1), v_2 = (1, 1, 1), v_3 = (2, 2, 0).$

Ejercicio 4. Sea $V = \mathbb{R}[t]_2$. Para cada $a \in \mathbb{R}$ sea $f_a : V \to \mathbb{R}$ la función $f_a(p) = \int_0^a p(x) dx$.

- (a) Probar que $f_a \in V^*$ para todo $a \in \mathbb{R}$ (es decir, cada f_a es lineal).
- (b) Probar que $\{f_1, f_2, f_{-1}\}$ es una base de V^* .

Ejercicio 5. Sean V y W dos espacios vectoriales, y sea $T:V\to W$ una transformación lineal. Definimos una función $T^*:W^*\to V^*$ por la fórmula

$$T^*(f)(v) = f(T(v))$$
 para todo $v \in V$.

- (a) Probar que T^* es una transformación lineal.
- (b) Probar que T es un monomorfismo si y sólo si T^* es un epimorfismo.
- (c) Probar que T es un epimorfismo si y sólo si T^* es un monomorfismo.
- (d) Probar que T es un isomorfismo si y sólo si T^* es un isomorfismo.

Ejercicio 6. Sea (V, \langle , \rangle) un \mathbb{R} -espacio vectorial con producto interno, y sea $W \subset V$ un subespacio. Definimos una función $\langle , \rangle_W : W \times W \to \mathbb{R}$ restringiendo el producto interno de V, o sea:

$$\langle w_1, w_2 \rangle_W = \langle w_1, w_2 \rangle.$$

Probar que (W, \langle, \rangle_W) es un espacio con producto interno.

Ejercicio 7. Hallar los posibles valores de $\alpha \in \mathbb{R}$ tales que la función $\langle \cdot, \cdot \rangle : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$

$$\langle (x_1, x_2), (y_1, y_2) \rangle = x_1 y_1 - x_1 y_2 - x_2 y_1 + \alpha x_2 y_2$$

es un producto interno en \mathbb{R}^2 .

Martes 15 de noviembre

Ejercicio 8. En este ejercicio los productos internos son los canónicos.

- (a) Aplicar el proceso de Gram-Schmidt a la base ordenada $\{(1,1,0),(0,1,1),(1,0,1)\}$ para obtener una base ortenormal de \mathbb{R}^3 .
- (b) Usando el procedimiento de Gram-Schmidt, construir una base ortonormal de \mathbb{R}^4 a partir de la base

$$\{(1,1,1,1),(0,1,0,1),(-1,-1,1,2),(1,0,0,0)\}.$$

- (c) Obtener las coordenadas de los vectores (2, -1, 3) y (-1, 2, -3, 4) respecto de la bases obtenidas en los incisos anteriores.
- (d) Hallar una base ortonormal del subespacio $W = \{(x, y, z) \in \mathbb{R}^3 : 2x y + 3z = 0\}.$
- (e) Hallar una base ortonormal del subespacio $W = \{(x, y, z, w) \in \mathbb{R}^4 : x = 2y 3z + 4w\}.$

Ejercicio 9. Nuevamente consideramos los productos internos canónicos de \mathbb{R}^n . Caracterizar W^{\perp} , dar una base y su dimensión en cada uno de los siguientes casos:

- (a) W el subespacio de \mathbb{R}^3 generado por $\{(1,1,1),(1,-1,0)\}$.
- (b) W el subespacio de \mathbb{R}^3 generado por $\{(1,1,2),(1,2,3)\}.$
- (c) W el subespacio de \mathbb{R}^4 generado por $\{(1, -1, 2, 1)\}$.
- (d) W el subespacio de \mathbb{R}^4 generado por $\{(1,1,1,1),(1,1,3,1)\}.$
- (e) W el subespacio de \mathbb{R}^4 generado por $\{(1,0,-2,1),(1,1,3,1),(1,-1,1,1)\}.$
- (f) W el subespacio de \mathbb{R}^5 generado por $\{(1,1,1,1,1),(0,0,1,2,3)\}.$

Ejercicio 10. Sea $V = \mathbb{R}[t]_n$.

- (a) Probar que $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}, \ \langle f, g \rangle = \int_0^1 f(x)g(x) \, dx$, define un producto interno en V.
- (b) Describir el complemento ortogonal de los subespacios generados por los siguientes subconjuntos:

$$\{1\},$$
 $\{1, x+2\},$ $\{1, x+1, x^2-1\}.$

(c) Aplicar Gram-Schmidt a la base $B = \{1, x, \dots, x^n\}$ para hallar una base ortogonal de V.

Ejercicio 11. Consideramos $\langle \cdot, \cdot \rangle \colon \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \to \mathbb{R}$ dada por $\langle A, B \rangle = \operatorname{tr}(A^t B)$.

- (a) Probar que $\langle \cdot, \cdot \rangle$ es bilineal y simétrica.
- (b) Sea $\{e_1, \ldots, e_n\}$ la base canónica de \mathbb{R}^n . Probar que $(A^tA)_{ii} = e_i^t A^t A e_i = \langle Ae_i, Ae_i \rangle$,
- (c) Deducir del punto anterior que $\langle A, A \rangle \geq 0$ para toda $A \in \mathbb{R}^{n \times n}$.
- (d) Deducir del punto (b) que $\langle A,A\rangle=0$ si y sólo si A=0. Por lo tanto, $\langle\cdot,\cdot\rangle$ es un producto interno.
- (e) Encontrar el espacio ortogonal al subespacio de matrices diagonales.

Ejercicio 12. Sean V, W dos subespacios de un \mathbb{R} -espacio vectorial con producto interno. Probar que

$$(V+W)^\perp = V^\perp \cap W^\perp, \qquad \qquad (V\cap W)^\perp = V^\perp + W^\perp.$$

Práctico 9

Ejercicio 13. Sean V y W dos \mathbb{R} -espacios vectoriales tales que dim $V = \dim W < \infty$, y sean

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}, \qquad \qquad \{ \cdot, \cdot \} : W \times W \to \mathbb{R}$$

productos internos en V y W respectivamente. Sea $T:V\to W$ una transformación lineal tal que $\{Tx,Ty\}=\langle x,y\rangle$ para todo par de elementos $x,y\in V$. Probar que T es un isomorfismo.

★ Ejercicio 14. Unicidad de la traza.

Sea V un espacio vectorial de dimensión finita. Sabemos que la traza es una funcional lineal $\mathrm{tr} \in \mathrm{Hom}(V,V)^*$ que satisface $\mathrm{tr}(TS) = \mathrm{tr}(ST)$ para todas $T,S \in \mathrm{Hom}(V,V)$. Supongamos que $\tau \in \mathrm{Hom}(V,V)^*$ satisface $\tau(TS) = \tau(ST)$ para todas $T,S \in \mathrm{Hom}(V,V)$. Probar que τ es un múltiplo escalar de tr . Sugerencia: demostrarlo para matrices 2×2 usando matrices elementales.

★ Ejercicio 15. Tomar doble dual es como no hacer nada.

- Sabemos que si V es un espacio vectorial de dimensión finita, entonces V^* es isomorfo a V. Una forma de probar esto es fijar una base $\mathbb B$ de V y construir una base de V^* (la base dual) con la misma cantidad de elementos que $\mathbb B$.
- Como V^* es un espacio vectorial, podemos considerar su dual $(V^*)^*$. Este se llama el doble dual de V, y lo denotaremos por V^{**} . Ya sabemos que dim $V^{**} = \dim V^* = \dim V$, y por lo tanto V^{**} es isomorfo a V.

En este ejercicio vamos a construir un isomorfismo $V \simeq V^{**}$ que no requiere elegir bases (y por lo tanto es mucho mejor).

- (a) Para cada $\alpha \in V$ definimos la función $\operatorname{ev}_V(\alpha) \colon V^* \to \mathbb{k}$ dada por $\operatorname{ev}_V(\alpha)(f) := f(\alpha)$. Probar que $\operatorname{ev}_V(\alpha) \colon V^* \to \mathbb{k}$ es una transformación lineal (esto es, $\operatorname{ev}_V(\alpha) \in V^{**}$).
- (b) Probar que la función $ev_V: V \to V^{**}$ dada en el ítem anterior es una transformación lineal.
- (c) Probar que $\operatorname{ev}_V : V \to V^{**}$ es un monomorfismo. Deducir que es un isomorfismo.
- (d) Sea W otro espacio vectorial. Sea $T \in \text{Hom}(V, W)$. Gracias al **Ejercicio 5** tenemos una $T^* \in \text{Hom}(W^*, V^*)$. Aplicando de nuevo el **Ejercicio 5** tenemos $T^{**} \in \text{Hom}(V^{**}, W^{**})$. Probar que

$$T^{**}(\phi)(g) = \phi(g \circ T)$$
 para todas $\phi \in V^{**}, g \in W^{*}$.

(e) Probar que $T^{**} \circ \text{ev}_V = \text{ev}_W \circ T$. Es decir, el siguiente diagrama conmuta:

$$V \xrightarrow{\text{ev}_{V}} V^{**}$$

$$\downarrow^{T} \qquad \downarrow^{T^{**}}$$

$$W \xrightarrow{\text{ev}_{W}} W^{**}$$