COL352 HOMEWORK 1

DHANANJAY((2019CS10345) KLAXMAN(2018CS50408) SACHIN (2018CS50418)

3)To show that:-

Show that regular languages are closed under the repeat operation, where repeat operation on a language L is given by

repeat(L) =
$$\{11111112...l_k\}$$
 s \in L $\}$

Sol:

Let A1 => $(Q1, \Sigma, q_0^1, F1, \delta 1)$ be the automata accepting 1.

Let A be a finite state automata then (Q, Σ ,q₀,F, δ) such that

$$q_0 => q_0^1$$

$$F \Rightarrow F1$$

$$\delta$$
 (q,a) => { q, δ ,(q,a)} where a \in W.

4) Design an algorithm that takes as input the descriptions of two DFAs, D1 and D2, and determines whether they recognize the same language.

Sol:
$$L1 => L(D1)$$
 , $L2 => L(D2)$

Lets say L3 => L2 dash => L(D2 dash)

$$L4 => L1 \cap L3$$
.

If L4 => { \varnothing } then D1 and D2 recognize the same language .

$$L4 \Rightarrow L(D) \Rightarrow \{\emptyset\}$$

if D has no path from starting state to final state

5)To prove that :-

Show that if A is regular, then so is A^R. In other

words, regular languages are closed under the reverse operation

sol: Let B => $(Q_1, \Sigma, q_0^1, F_1, \delta_1)$ be the automata accepting A.

Let
$$B^R => (Q_2, \Sigma, q_0^1, F1, \delta 2)$$
 Such that

$$Q_2 \Rightarrow Q_1$$

$$Q_0^2 \Rightarrow q \mid q \in \mathbf{F}_1$$

$$F_2 => q_0^1$$

$$\delta_2 (q,a) => \delta_1^{-1}(q,a)$$

correctness of proof:

 $w \in \Sigma^*$, w is accepted by B^R if w^R is accepted by B.

2)To prove:

All NFAs recognize the class of regular languages

Sol: All NFA M (Q, Σ ,q₀,F, δ) that accepts x belongs to sigma*, and every possible state M could be taking input x is a state from F.

There are 2 steps to prove that –NFAs recognize of regular languages.

- 1)every regular language is recognized by some /all NFA
- 2) every all/NFA recognizes a regular language

Step1)

Let L be the any regular language and M be the DFA that recognizes L .for every input string there is exactly one possible state q belong Q that M could be after reading x.

So, if M is shown as all NFA then it accept x iff(if and only if) q belongs F, which happens iff x belongs to L. from the above every regular language is recognized by some/all NFA

Step2)

Let A be the language recognized by N, then proof is accordingly given below to prove A is regular.

• Constructing a DFA that recognizes M =(Q, Σ ,q₀,F, δ) that recognizes A.

For any subset S(Q,E(S) is the set of all states q belongs Q that can reach from S .

There fore every all NFA recognizes a regular language from step1 and step2 all NFA recognizes the class of regular language

1)construct an NFA that accepts strings that don't have all the characters from \mid .Below I have explained the NFA and drawn the construction of NFA of $I_1,I_2,...,I_k$

