EE 235, Winter 2018

Homework 1: Math Review SOLUTIONS

Due Saturday January 6, 2018 by 11:59pm via ONLINE SUBMISSION

- HW1 Topics: Complex Numbers, Functions, and Integration
- HW1 References: OWN Sections 1.2, 1.2.1, HW1 Supplementary Notes
- HW1 Problems (Total = 64 pts):
 - 1. Complex Numbers Magnitude and Phase Components, Real and Imaginary Parts.
 - (a) (5 pts) Identify the magnitude component |z| and the phase component $\angle z$ for the following complex numbers:
 - i. $z = 4e^{-j}$. By inspection, |z| = 4 and $\angle z = -1$
 - ii. $z=e^{j\frac{\pi}{6}}.$ By inspection, |z|=1 and $\angle z=\frac{\pi}{6}$
 - (b) (5 pts) Identify the real part $Re\{z\}$ and the imaginary part $Im\{z\}$ for the following complex numbers:
 - i. z=2-j3. By inspection, $\boxed{Re\{z\}=2}$ and $\boxed{Im\{z\}=-3}$
 - ii. z=j2. We can rewrite z as z=0+j4. Therefore, by inspection, $\boxed{Re\{z\}=0}$ and $\boxed{Im\{z\}=2}$
 - iii. z=3. We can rewrite z as z=3+j0. Therefore, by inspection, $Re\{z\}=3$ and $Im\{z\}=0$
 - 2. Complex Numbers Polar Form and Rectangular Form.
 - (a) (5 pts) Using the unit circle or formulas for r and θ , convert the following complex numbers in to polar form, $z = re^{j\theta}$. Make sure r > 0 and $-\pi < \theta \le \pi$:
 - $$\begin{split} \text{i. } & z = \frac{\sqrt{3}}{2} + j\frac{1}{2}. \\ & r = |z| = \sqrt{x^2 + y^2} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2} = \sqrt{\frac{3}{4} + \frac{1}{4}} = 1 \\ & \theta = \angle z = \arctan(\frac{y}{x}) = \arctan(\frac{1/2}{\sqrt{3}/2}) = \arctan(\frac{1}{\sqrt{3}}) = \frac{\pi}{6} \end{split}$$
 Therefore, $z = e^{j\frac{\pi}{6}}$
 - ii. z = -2 $r = |z| = \sqrt{x^2 + y^2} = \sqrt{(-2)^2 + (0)^2} = \sqrt{4 + 0} = 2$ $\theta = \angle z = \arctan(\frac{y}{x}) = \arctan(\frac{0}{-2}) = \pi + \arctan(\frac{0}{2}) = \pi + 0 = \pi$ Therefore, $z = 2e^{j\pi}$
 - (b) (5 pts) Using the complex plane or Euler's formula, convert the following complex numbers in to rectangular form, z = x + jy:

1

i. $z=3e^{-j\pi}$ $z=3[\cos(\pi)-j\sin(\pi)]=3[(-1)-j(0)]=\boxed{-3}$

ii.
$$z = 2e^{j\frac{\pi}{2}}$$

 $z = 2[\cos(\frac{\pi}{2}) + j\sin(\frac{\pi}{2})] = 2[(0) + j(1)] = \boxed{j2}$

- 3. Complex Conjugation
 - (a) Using the method of complex conjugation for dividing complex numbers, simplify the expression for each of the following complex numbers so that your answer is in rectangular form, z = x + y:

i. (2 pts)
$$z = \frac{1}{1-j2}$$
. Show that $z = \frac{1}{5} + j\frac{2}{5}$.

$$z = \frac{1}{1-j2} \cdot \frac{1+j2}{1+j2} = \frac{1+j2}{1-j2+j2-4j^2} = \frac{1+j2}{5} = \boxed{\frac{1}{5} + j\frac{2}{5}}$$

ii. (5 pts)
$$z = -\frac{1+j2}{1-j2}$$
. $z = -\frac{1+j2}{1-j2} \cdot \frac{1+j2}{1+j2} = -\frac{1+j2+j2+4j^2}{1-j2+j2-4j^2} = -\frac{-3+j4}{5} = \boxed{\frac{3}{5} - j\frac{4}{5}}$

(b) Using the method of complex conjugation for finding magnitude, find the magnitude squared component $|z|^2$ for:

i. (2 pts)
$$z = 1 + j3$$
.
Show that $|z|^2 = 10$.
 $|z|^2 = zz^* = (1 + j3)(1 - j3) = 1 + 9 = 10$

ii. (2 pts)
$$z = 2e^{j3}$$
.
Show that $|z|^2 = 4$.
 $|z|^2 = zz^* = (2e^{j3})(2e^j - j3) = 4e^{j0} = \boxed{4}$

4. Function Evaluation.

(a) (5 pts) Let
$$y(t) = tx(t+3)$$

i. What is the expression for
$$y(t-3)$$
?
For $y(t-3)$, replace t with t-3: $y(t-3)=(t-3)x(t-3+3)=y(t-3)=(t-3)x(t)$

ii. What is the expression for
$$y(2t)$$
? For $y(2t)$, replace t with 2t: $y(2t) = 2tx(2t+3)$

(b) (5 pts) Let
$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

i. What is the expression for
$$y(3)$$
?

For
$$y(3)$$
, simply evaluate $y(t)$ at $t = 3$:
$$y(3) = \int_{-\infty}^{\infty} x(\tau)h(3-\tau)d\tau$$

ii. What is the expression for
$$y(-t)$$
?

For
$$y(-t)$$
, simply evaluate $y(t)$ at -t: $y(-t) = \int_{-\infty}^{\infty} x(\tau)h(-t-\tau)d\tau$

- 5. Integration.
 - (a) (2 pts) Evaluate the following integral: $\int_3^\infty e^{-6t} dt + \int_{-\infty}^0 e^{6t} dt$.

Show that the answer is
$$\frac{1}{6}(e^{-18}+1)$$
.
$$\int_{3}^{\infty} e^{-6t} dt = -\frac{1}{6}e^{-6t}|_{t=3}^{t=\infty} = -\frac{1}{6}(e^{-6(\infty)} - e^{-6(3)}) = -\frac{1}{6}(0 - e^{-18}) = \frac{1}{6}e^{-18}$$

$$\int_{-\infty}^{0} e^{6t} dt = \frac{1}{6}e^{6t}|_{t=-\infty}^{t=\infty} = \frac{1}{6}(e^{6(0)} - e^{6(-\infty)}) = \frac{1}{6}(1 - 0) = \frac{1}{6}$$
Therefore, $\int_{3}^{\infty} e^{-6t} dt + \int_{-\infty}^{0} e^{6t} dt = \frac{1}{6}e^{-18} + \frac{1}{6} = \frac{1}{6}(e^{-18} + 1)$

Therefore,
$$\int_3^\infty e^{-6t} dt + \int_{-\infty}^0 e^{6t} dt = \frac{1}{6} e^{-18} + \frac{1}{6} = \boxed{\frac{1}{6} (e^{-18} + 1)}$$

(b) (2 pts) Evaluate the integral $\int_{t-2}^{5} d\tau$. Note: τ is the variable of integration and t can be treated as a constant.

Show that the answer is -t+7. $\int_{t-2}^5 d\tau = \int_{t-2}^5 1d\tau = \tau|_{\tau=t-2}^{\tau=5} = 5 - (t-2) = 5 - t + 2 = \boxed{-t+7}$

(c) (2 pts) Suppose $\int_{-\infty}^{\infty} x(t)dt = 3$. Using this known integral and u-substitution, evaluate $\int_{-\infty}^{\infty} x(2t)dt$.

Show that the answer is $\frac{3}{2}.$ First, we can rewrite $\int_{-\infty}^{\infty}x(2t)dt$ using a u-substitution.

Let u = 2t, so $t = \frac{u}{2}$ and $dt = \frac{1}{2}du$.

Using u=2t, the bound $t=-\infty$ becomes $u=2(-\infty)=-\infty$ and the bound $t=\infty$ becomes $u=2(\infty)=-\infty$

Therefore, $\int_{-\infty}^{\infty} x(2t)dt = \int_{-\infty}^{\infty} x(u)\frac{1}{2}du = \frac{1}{2}\int_{-\infty}^{\infty} x(u)du$

Using the given integral above, $\frac{1}{2} \int_{-\infty}^{\infty} x(u) du = \frac{1}{2}(3) = \boxed{\frac{3}{2}}$

(d) (5 pts) Suppose $\int_{-\infty}^{x} x(t)dt = 2$, where x(t) is a function of t, t is the variable of integration, and x can be treated as a constant. Using u-substitution, evaluate $\int_{-\infty}^{x-1} 2x(t+1)dt$.

First, we can rewrite $\int_{-\infty}^{x-1} 2x(t+1)dt$ using a u-substitution. Let u=t+1, so t=u-1 and dt=du.

Using u = t + 1, the bound $t = -\infty$ becomes $u = -\infty + 1 = -\infty$ and the bound t = x - 1 becomes

u = x - 1 + 1 = x. Therefore, $\int_{-\infty}^{x-1} 2x(t+1)dt = \int_{-\infty}^{x} 2x(u)du = 2 \int_{-\infty}^{x} x(u)du$

Using the given integral above, $2\int_{-\infty}^{x} x(u)du = 2(2) = \boxed{4}$

(e) (2 pts) Consider $\int_{-\infty}^{t+2} x(\tau - t_o) d\tau$, where τ is the variable of integration and t and t_o can be treated as constants. Using u-substitution, we can rewrite this integral as $\int_{-\infty}^{a} x(u)du$. What is a in terms of t and t_o ?

Show that $a = t + 2 - t_o$.

We can use the substitution $u = \tau - t_o$, so $\tau = u + t_o$ and $d\tau = du$.

Using $u = \tau - t_o$, the bound $\tau = -\infty$ becomes $u = -\infty - t_o = -\infty$ and the bound $\tau = t + 2$ becomes

 $u = t + 2 - t_o.$ Therefore, $\int_{-\infty}^{t+2} x(\tau - t_o) d\tau = \int_{-\infty}^{t+2-t_o} x(u) du$ Comparing the two final integrals, $a = t + 2 - t_o$

6. Homework Self-Reflection

(10 pts) After completing your homework, go to the following link to rate your skill or concept understanding level for each item listed. Your self-reflection must be completed by the due date. All submissions are timestamped, so please give yourself plenty of time to complete and submit your self-reflection.

http://bit.ly/2qfmaEQ