Synthesizing Extraction Rules from User Examples with SEER

Maeda F. Hanafi (maeda.hanafi@nyu.edu), Azza Abouzied (azza@nyu.edu), Laura Chiticariu (chiti@us.ibm.com), Yunyao Li (yunyaoli@us.ibm.com)

Challenges in Information Extraction (IE)

• IE is a key technology for understanding text

- Companies extract data to build knowledge-bases.
- Journalists extract crime rates from FBI datasets to analyze changes.
- Business analysts extract people and corporations from SEC filings to analyze relationships.

Two approaches to IE:

- 1. Machine learning:
 - Cons: Requires large training datasets.
 - Cons: Produces hard-to-interpret statistical models.
 - Pros: Once training data is given, quick to generate results.
- 2. Programming:
 - Cons: Requires learning the language.
 - Cons: Labor-intensive and time-consuming.
 - Pros: Transparency

1. Highlight and Process Examples

• The user highlights examples of text to extract.

• SEER enumerates primitives for each positive token.

Tokens:	Primitives:	Tokens:	Primitives:
rose	L: 'rose'	decreased	L: 'decreased'
	R: [A-Za-z]+		R: [A-Za-z]+
11	P: Number	5	P: Number
	P: Integer		P: Integer
	L: '11'		L: `5′
	R: [0-9]+		R: [0-9]+
	T: 0-1		T: 0-1
percent	L: 'percent'	percent	L: 'percent'
	R: [A-Za-z]+		R: [A-Za-z]+
11 percent	P: Percentage	5 percent	P: Percentage

Assign scores to the primitives to guide the search.

- Intuition: Rule developers prefer certain primitives for certain tokens.
- If the primitive's tokens have inherent semantics:

Semantic Token: Dubai

Primitive types:	Score:	Primitives:
Prebuilt	1.0 to 0.6	P: City = 1.0
Dictionary, Literal	0.4	L: 'Dubai' = 0.4
Regex, Token Gap	0.2	R: $[A-Za-z]+ = 0.2$

If the primitive's tokens are syntactic:

Syntactic Token: of

Primitive types:	Score:	Primitives:
Regex, Token Gap	1.0	R: $[A-Za-z]+ = 1.0$
Dictionary, Literal	0.8	L: 'of'= 0.8

Solution: SEER

- SEER: Combines the best of both approaches.
- Learning high-quality extraction rules from handful of examples.

• SEER synthesizes and suggests visual rules to the user.

- Quick to get high-quality extraction rules and results.
- Reduced manual development effort.
- Extraction Rules = sequences of primitives
 Primitives capture certain tokens.

Pre-builts extract entities: P: City

Literals extract exact strings: L: `Dubai'

Dictionaries extract sets of exact strings: D: {Dubai, London}

Regexes extract from a library of regexes: R: [A-Za-z]+

Token gaps extract any token: T: 0-1

2. Synthesize Rules

- For each positive example, generate a tree of rules.
 - Extraction Rule = path of primitives from root to leaf
 - Rules capturing negative examples are removed.

- Capture all user examples by intersecting trees.
 - Generalize the rules to capture all user examples.

4. Evaluations

- Baseline:VINERy Visual Programming IDE for IE (VLDB '15)
- User Study: Each user used both tools on two datasets in random order to minimize learning effects.
- Black bars = mean duration.

 Gray bars = 95% mean confidence interval.

3. Prune and Suggest Rules

- Group similar rules to ensure rule diversity.
 - Similar rules have the same primitive types.
 - Pick the top rule of each group.
 Rule score = AVG(Primitve Scores)

Show the top ten rules to the user.

