

# 1.2 机器学习任务类型

CSDN学院 2017年11月



#### ▶机器学习



http://en.wikipedia.org/wiki/Machine\_learning:



机器学习是人工智能的一个分支,主要关于构造和研究可以从数据中学习的系统。



#### 数据



R ISTAT MFDV

• 数据通常以二维数据表形式给出

- 每一行:一个样本

- 每一列:一个属性/特征

• 例:Boston房价预测数据,根据某地区房屋属性,预测该地区预测房价

**AGE** 

- 共506行,表示有506个样本

CRIM 7N INDUS CHAS NOX

- 共14列

• 13列为该地区房屋的属性 (CRIM、...、LSTAT)

RM

• 1列为该地区房价中位数 MEDV

|   | OITHIVI | <b>Z</b> 1 <b>V</b> | 1140000 | 1 17 10 | 140/  | IXIVI | / (OL   | ו טוט | (/ (D | 17 77 1 |    |        | LOTAT | IVILDV |
|---|---------|---------------------|---------|---------|-------|-------|---------|-------|-------|---------|----|--------|-------|--------|
|   | 0.00632 | 18                  | 2.31    | 0       | 0.538 | 6.575 | 65.2    | 4.09  | 1     | 296     | 15 | 396.9  | 4.98  | 24     |
|   | 0.02731 | 0                   | 7.07    | 0       | 0.469 | 6.421 | 78.9 4. | 9671  | 2     | 242     | 17 | 396.9  | 9.14  | 21.6   |
|   | 0.02729 | 0                   | 7.07    | 0       | 0.469 | 7.185 | 61.1 4. | 9671  | 2     | 242     | 17 | 392.83 | 4.03  | 34.7   |
| 7 | 0.03237 | 0                   | 2.18    | 0       | 0.458 | 6.998 | 45.8 6. | 0622  | 3     | 222     | 18 | 394.63 | 2.94  | 3,3.4  |
| 5 | 0.06905 | 0                   | 2.18    | 0       | 0.458 | 7.147 | 54.2 6. | 0622  | 3     | 222     | 18 | 396.9  | 5.33  | 36.2   |

DIS RAD TAX PTRATIO

#### ▶机器学习任务类型



- 监督学习(Supervised Learning)
  - 分类 (Classification)
  - 回归 (Regression)
  - 排序 (Ranking)
- 非监督学习 (Unsupervised Learning)
  - 聚类 (Clustering)
  - 降维 (Dimensionality Reduction)
  - 概率密度估计 (density estimation)
- 增强学习 (Reinforcement Learning)
- 半监督学习 (Semi-supervised Learning)
- 迁移学习 (Transfer Learning )
- ...



#### ▶监督学习



- 监督学习:学习到一个 $x \rightarrow y$ 的映射 f , 从而对新输入的x进行预测 f(x)
  - 训练数据包含要预测的标签y(标签在训练数据中是可见变量)





## 例:波士顿房价预测



• 房价预测是一个监督学习任务:根据训练数据  $\mathcal{D} = \{\mathbf{x}_i, y_i\}_{i=1}^N$  对房屋属性和房屋价格之间的关系进行建模,再用学习好的模型预测新房屋的价格

- 训练样本数目N:506个样本

- 输入房屋属性x:13个特征(CRIM、...、LSTAT)

- 输出房价 *y* : MEDV

| CRIM    | ZN | INDUS | CHAS | NOX   | RM    | AGE    | DIS    | RAD | TAX | PTRATIO | В      | LSTAT | MEDV |
|---------|----|-------|------|-------|-------|--------|--------|-----|-----|---------|--------|-------|------|
| 0.00632 | 18 | 2.31  | 0    | 0.538 | 6.575 | 65.2   | 4.09   | 1   | 296 | 15      | 396.9  | 4.98  | 24   |
| 0.02731 | 0  | 7.07  | 0    | 0.469 | 6.421 | 78.9 4 | 4.9671 | 2   | 242 | 17      | 396.9  | 9.14  | 21.6 |
| 0.02729 | 0  | 7.07  | 0    | 0.469 | 7.185 | 61.1   | 4.9671 | 2   | 242 | 17      | 392.83 | 4.03  | 34.7 |
| 0.03237 | 0  | 2.18  | 0    | 0.458 | 6.998 | 45.8 ( | 6.0622 | 3   | 222 | 18      | 394.63 | 2.94  | 33.4 |
| 0.06905 | 0  | 2.18  | 0    | 0.458 | 7.147 | 54.2 ( | 6.0622 | 3   | 222 | 18      | 396.9  | 5.33  | 36.2 |



#### ▶回归



- 在监督学习任务中,若输出 $y \in \mathbb{R}$ 为连续值,则我们称之为一个回归(Regression)任务。
  - 房价预测
- 例:预测二手车的价格
  - 输入/协变量(covariate) x : 车辆属性
  - 输出 y:车辆价格



#### 



- 假设回归模型为  $y = f(\mathbf{x} | \theta)$ 
  - 如在线性回归中  $f(\mathbf{x}|\mathbf{w}) = \mathbf{w}^T\mathbf{x}$  , 模型参数为w (线性组合权重)
- 训练:根据训练数据  $\mathcal{D} = \{\mathbf{x}_i, y_i\}_{i=1}^N$  学习映射 f (模型参数)
- 预测:对新的测试数据x进行预测: $\hat{y} = f(x)$  (带帽表示预测)
- 学习的目标:训练集上预测值与真值之间的差异最小
  - 损失函数:度量模型预测值与真值之间的差异,如

$$L(f(\mathbf{x}), y) = \frac{1}{2}(f(\mathbf{x}) - y)^2$$



 $- 则目标函数为 J(\mathbf{\theta}) = \frac{1}{N} \sum_{i=1}^{N} L(f(\mathbf{x}_i|\mathbf{\theta}), y_i)$ 

经验风险最小化

#### ▶分类



• 在监督学习任务中,若输出y为离散值,我们称之为分类,标签空间: $\mathcal{Y} = \{1, 2, ..., C\}$ 

例:信用评分

- 输入x:客户的存款( savings)和收入( income)

- 输出y:客户的风险等级(risk)

• 高风险、低风险



#### ▶分类



• 分类:学习从输入x到输出y的映射f:

$$\hat{y} = f(\mathbf{x}) = \arg\max_{c} p(y = c \mid \mathbf{x}, \mathcal{D})$$

- 学习的目标:训练集上预测值与真值之间的差异最小
  - 损失函数:度量模型预测值与真值之间的差异,如

$$l_{0/1}\left(y,\hat{y}\right) = \begin{cases} 0 & y = \hat{y} & \text{预测的类别与真实类别相同,损失为0} \\ 1 & othereise & \text{否则为1} \end{cases}$$



#### ▶ 例:分类



- 信用评分
  - 给定样本 { (savings, income, risk) }
  - 找到预测 "规则" : risk = f ( savings, income )



#### 决策树:

Rule: IF income  $> \theta_1$  AND savings  $> \theta_2$  THEN low-risk ELSE high-risk



#### ▶例:分类



- 需要预测概率: $f(\mathbf{x},c)=p(y=c|\mathbf{x},\mathcal{D},M)$ 
  - 如靠近分类的边界的样本(蓝色所示样本)有歧义
  - 此时返回概率/可能性  $p(y=c \mid \mathbf{x}, \mathcal{D})$  , 即给定训练数据 $\mathcal{D}$ 和输入 $\mathbf{x}$ 的情况下,输出为c的条件概率
- 预测:最大后验估计(Maximum a Posteriori, MAP)

$$\hat{y} = \underset{c}{\operatorname{arg\,max}} p(y = c \mid \mathbf{x}, \mathcal{D})$$





### ▶排序(Rank)



- 排序学习是推荐、搜索、广告的核心方法。
- 以信息检索为例,训练时我们给定文档集合 $D = \{d_1, d_2, \dots, d_N\}$ 和查询 - 文档对(pair):查询

• 排序学习根据训练学习一个排序模型 f(q,d) ,然后利用该 模型对新的查询 $q_{m+1}$ ,给出每个文档的排序: $f(q_{m+1},d_1)$ 、…、  $f(\overline{q_{m+1},d_{n,m+1}})$ 

$$\int \int f(\overline{q_{m+1}}, \overline{d_{n,m+1}})$$

## ▶排序(Rank)



• 和一般监督学习直接给定训练数据  $\mathcal{D} = \{\mathbf{x}_i, y_i\}_{i=1}^N$  不同,排序 学习中需要首先根据查询q及其文档集合进行标注(data labeling)和提取特征(feature extraction)才能得到  $\mathcal{D} = \{\mathbf{x}_i, y_i\}_{i=1}^N$ 





#### ▶非监督学习



- 非监督学习:发现数据中的"有意义的模式",亦被称为知识发现
  - 训练数据不包含标签
  - 标签在训练数据中为隐含变量

$$\mathcal{D} = \left\{ \mathbf{x}_i \right\}_{i=1}^N$$



#### ▶聚类



• 例:人的"类型"

$$\mathcal{D} = \left\{ \mathbf{x}_i \right\}_{i=1}^N$$







- 分多少类?模型选择  $K^* = \arg \max_K p(K|\mathcal{D})$
- 某个样本属于哪个类? $z_i \in \{1,...,K\}$ 表示第i个数据点所属类别,为隐含变量  $z_i^* = \arg\max_k p\big(z_i = k \,|\, \mathbf{x}_i, \mathcal{D}\big)$



### ▶降维



- · 样本x通常有多维特征,有些特征之间会相关而存在冗余。
  - 如图像中相邻像素的值通常相同或差异很小
- 降维是一种将原高维空间中的数据点映射到低维度空间的技术。其本质是学习一个映射函数 f:x→x',其中x是原始数据点的表达,x'是数据点映射后的低维向量表达。
- 在很多算法中,降维算法为数据预处理的一部分,如主成分分析( Principal Components Analysis, PCA)。

#### ▶半监督学习

#### CSDN 不止于代码

#### (Semisupervised Learning)

- 根据带标签数据 + 不带标签数据进行学习
- 监督学习+非监督学习 的组合
- 当标注数据"昂贵"时有用
  - 如:标注3D姿态、蛋白质功能等等



# ▶半监督学习









### ▶其他类型的学习任务







#### ▶增强学习



- 增强学习:从行为的反馈(奖励或惩罚)中学习
  - 设计一个回报函数(reward function),如果learning agent(如机器人、回棋AI程序)在决定一步后,获得了较好的结果,那么我们给agent一些回报(比如回报函数结果为正),得到较差的结果,那么回报函数为负
  - 增强学习的任务:找到一条回报值最大的路径



### ▶ 小结:机器学习任务类型



- 监督学习(Supervised Learning)
  - 一 分类 (Classification)
  - 回归 (Regression)
  - 排序 (Ranking)
- 非监督学习 (Unsupervised Learning)
  - 聚类 (Clustering)
  - 降维 (Dimensionality Reduction)
  - 概率密度估计 (density estimation)
- 增强学习 (Reinforcement Learning)
- 半监督学习 (Semi-supervised Learning)
- 迁移学习 (Transfer Learning )
- ...

