# Relaciones

Clase 10

IIC 1253

Prof. Pedro Bahamondes

# Outline

### Teoría de conjuntos

Producto cartesiano

Relaciones

Propiedades de las relaciones

Epílogo

## Conjuntos

#### Definición

Un conjunto es una colección *bien definida* de objetos. Estos objetos se llaman elementos del conjunto, y diremos que pertenecen a él.

Vimos axiomas que permitían formalizar esta idea y sus propiedades básicas

## Operaciones

Sean A y B conjuntos.

Definición

La unión de A y B se define por

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

El conjunto de los elementos que están en A o en B.

Definición

La intersección de A y B se define por

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

El conjunto de los elementos que están en A y en B.

## Operaciones

#### Diferencia

La diferencia de A y B se define por

$$A \setminus B = \{ x \mid x \in A \land x \notin B \}$$

El conjunto de los elementos que están en A pero no en B.

#### Definición

El conjunto potencia de A se define por

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

El conjunto de todos los subconjuntos de A.

Consideraremos un conjunto universal  ${\mathcal U}$  fijo (por ejemplo, como ya lo definimos,  ${\mathbb N}).$ 

#### Definición

Sea  $A \subseteq \mathcal{U}$  un conjunto cualquiera. El complemento de A (relativo a  $\mathcal{U}$ ) es el conjunto

$$A^{c} = \mathcal{U} \backslash A = \{ x \mid x \in \mathcal{U} \land x \notin A \}.$$

#### Teorema

Si A, B y C son conjuntos cualquiera (subconjuntos de  $\mathcal{U}$ ), entonces se cumplen las leyes siguientes:

Asociatividad

$$A \cup (B \cup C) = (A \cup B) \cup C$$
  
 $A \cap (B \cap C) = (A \cap B) \cap C$ 

Conmutatividad

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

Idempotencia

$$A \cup A = A$$
  
 $A \cap A = A$ 

#### Absorción

$$A \cup (A \cap B) = A$$
  
 $A \cap (A \cup B) = A$ 

#### Elemento neutro

$$A \cup \emptyset = A$$
  
 $A \cap \mathcal{U} = A$ 

#### Distributividad

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

### Leyes de De Morgan

$$(A \cup B)^{c} = A^{c} \cap B^{c}$$
$$(A \cap B)^{c} = A^{c} \cup B^{c}$$

#### Elemento inverso

$$A \cup A^c = \mathcal{U}$$
$$A \cap A^c = \emptyset$$

#### Dominación

$$A \cup \mathcal{U} = \mathcal{U}$$
  
 $A \cap \emptyset = \emptyset$ 

Sea  $\mathcal S$  un conjunto de conjuntos.

Definición

Unión generalizada:  $\bigcup S = \{x \mid \exists A \in S \text{ tal que } x \in A\}.$ 

Representa a la unión de todos los conjuntos componentes de S; es decir, contiene a todos los elementos que pertenecen a algún conjunto de S.

Sea S un conjunto de conjuntos.

#### Definición

**Intersección generalizada:**  $\cap S = \{x \mid \forall A \in S \text{ se cumple que } x \in A\}.$ 

Representa a la intersección de todos los conjuntos componentes de  $\mathcal{S}$ ; es decir, contiene a todos los elementos que pertenecen a todos los conjuntos de  $\mathcal{S}$ .

Sea  ${\mathcal S}$  un conjunto de conjuntos.

Notación alternativa

$$\bigcup \mathcal{S} = \bigcup_{A \in \mathcal{S}} A$$

$$\bigcap \mathcal{S} = \bigcap_{A \in \mathcal{S}} A$$

Si  $S = \{A_0, A_1, \dots, A_{n-1}\}$  (una colección indexada de conjuntos), usaremos:

$$\bigcup S = A_0 \cup A_1 \cup \ldots \cup A_{n-1} = \bigcup_{i=0}^{n-1} A_i$$

$$\bigcap S = A_0 \cap A_1 \cap \ldots \cap A_{n-1} = \bigcap_{i=0}^{n-1} A_i$$

Es decir:

$$x \in \bigcup \mathcal{S} \leftrightarrow \exists i, 0 \le i < n \text{ tal que } x \in A_i$$
  
 $x \in \bigcap \mathcal{S} \leftrightarrow \forall i, 0 \le i < n \text{ se tiene que } x \in A_i$ 

Podemos extender lo anterior al caso infinito.

Si 
$$S = \{A_0, A_1, \dots, A_{n-1}, A_n, \dots\}$$
:
$$\bigcup S = A_0 \cup A_1 \cup \dots \cup A_{n-1} \cup A_n \cup \dots = \bigcup_{i=0}^{\infty} A_i$$

$$\bigcap S = A_0 \cap A_1 \cap \dots \cap A_{n-1} \cap A_n \cap \dots = \bigcap_{i=0}^{\infty} A_i$$

Es decir:

$$x \in \bigcup \mathcal{S} \leftrightarrow \exists i \in \mathbb{N} \text{ tal que } x \in A_i$$
  
 $x \in \bigcap \mathcal{S} \leftrightarrow \forall i \in \mathbb{N} \text{ se tiene que } x \in A_i$ 

## Objetivos de la clase

- □ Comprender el concepto de conjunto y sus operaciones elementales
- □ Conocer axiomas básicos de conjuntos
- Comprender operaciones de conjuntos
- □ Demostrar propiedades a partir de las definiciones de conjuntos



# Outline

Teoría de conjuntos

Producto cartesiano

Relaciones

Propiedades de las relaciones

Epílogo

### Introducción

Las relaciones son un concepto muy usado en computación.

- Principalmente en Bases de Datos.
- ¿Bases de datos relacionales?

Intuitivamente, una relación matemática puede verse como una correspondencia entre elementos de dominios posiblemente distintos.

■ En una base de datos, esta correspondencia está dada por una tabla.

## Introducción

| id  | Nombre          | Apellido   | Ocupación | MBTI |  |
|-----|-----------------|------------|-----------|------|--|
| 154 | Angela          | Merkel     | Política  | ISTJ |  |
| 339 | Johann Wolfgang | Von Goethe | Escritor  | INFJ |  |
| 271 | Luke            | Skywalker  | Jedi      | INFP |  |
| 404 | Ada             | Lovelace   | Metmática | ENTP |  |

¿Qué le falta a los conjuntos para poder definir tablas?

#### Definición

Sean  $a, b \in \mathcal{U}$  (donde  $\mathcal{U}$  es un conjunto universal). Definimos el par ordenado (a, b) como

$$(a,b) = \{\{a\},\{a,b\}\}$$

¿Por qué lo definimos así?

Para establecer la igualdad entre dos pares ordenados.

## Propiedad

$$(a,b) = (c,d)$$
 si y sólo si  $a = c \wedge b = d$ .

### Ejercicio

Demuestre la propiedad anterior.

#### Demostración

- ( $\Rightarrow$ ) Debemos demostrar que si (a,b)=(c,d), entonces  $a=c \land b=d$ . Por definición de par ordenado, tenemos que  $\{\{a\},\{a,b\}\}=\{\{c\},\{c,d\}\}$ . Para facilitar la demostración veremos dos casos:
  - 1. a=b: En este caso  $\big\{\{a\},\{a,b\}\big\}=\big\{\{a\},\{a,a\}\big\}$ , y por axioma de extensión esto es igual a  $\big\{\{a\},\{a\}\big\}$ . Nuevamente por axioma de extensión, obtenemos  $\big\{\{a\}\big\}$ . Luego, tenemos que  $\big\{\{a\}\big\}=\big\{\{c\},\{c,d\}\big\}$ . Por axioma de extensión, tenemos que  $\big\{a\}=\{c\}$  y  $\big\{a\}=\{c,d\}$ . De lo primero, por axioma de extensión obtenemos que a=c, y aplicando esto último en lo segundo tenemos que  $\{c\}=\{c,d\}$ , y por lo tanto por axioma de extensión c=d. Como a=b, a=c y c=d, se deduce también que b=d, y queda demostrado lo que queríamos.

#### Demostración

 $(\Rightarrow)$ 

2.  $a \neq b$ : Como  $\{\{a\}, \{a,b\}\} = \{\{c\}, \{c,d\}\}$ , por axioma de extensión se debe cumplir que  $\{a\} = \{c\}$  o  $\{a,b\} = \{c\}$ . Como  $a \neq b$ , por axioma de extensión no puede ser posible la segunda opción (pues los conjuntos tienen distinta cantidad de elementos), y entonces necesariamente  $\{a\} = \{c\}$ . Aplicando nuevamente el axioma de extensión, concluimos que a = c. Aplicando este resultado a la igualdad inicial obtenemos que  $\{\{a\}, \{a,b\}\} = \{\{a\}, \{a,d\}\}$ , y luego por axioma de extensión  $\{a,b\} = \{a,d\}$ . Finalmente, aplicando nuevamente el axioma de extensión, se deduce que b = d, quedando demostrado lo deseado.

#### Demostración

( $\Leftarrow$ ) Debemos demostrar que si  $a = c \land b = d$ , entonces (a, b) = (c, d). Si se cumplen tales igualdades, entonces la siguiente igualdad también se cumple:  $\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}$ . Aplicando la definición de par ordenado, obtenemos entonces que (a, b) = (c, d).

## Observación (propuesta \*\*)

Considere la siguiente definición alternativa de un par ordenado:

$$(a,b) = \{a,\{b\}\}$$

Esta no es una buena definición. Tomemos por ejemplo los siguientes elementos:

$$a = \{x\}, b = y, c = \{y\}, d = x, \text{ con } x \neq y.$$

Es claro que  $a \neq c$  y  $b \neq d$ . Sin embargo, si construimos los pares ordenados con esta definición alternativa:

$$(a,b) = (\{x\},y) = \{\{x\},\{y\}\}\}$$
  
 $(c,d) = (\{y\},x) = \{\{y\},\{x\}\}\}$ 

Estos conjuntos son iguales por axioma de extensión, y luego la propiedad de igualdad de pares ordenados no se cumple con esta definición.

Podemos extender el concepto a tríos ordenados:

$$(a,b,c) = ((a,b),c)$$

o a cuadruplas ordenadas:

$$(a, b, c, d) = ((a, b, c), d) = (((a, b), c), d)$$

En general:

Definición

Sean  $a_1, \ldots, a_n \in \mathcal{U}$ . Definimos una *n*-tupla como:

$$(a_1,\ldots,a_n)=((a_1,\ldots,a_{n-1}),a_n).$$

#### Definición

Dados dos conjuntos A y B, definimos el **producto cartesiano** entre A y B como

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

## Ejemplo

Si 
$$A = \{1,2\}$$
 y  $B = \{3,4\}$ , entonces  $A \times B = \{(1,3),(1,4),(2,3),(2,4)\}$ .

También podemos extender esta noción.

#### Definición

Dados conjuntos  $A_1, \ldots, A_n$ , definimos el producto cartesiano entre los  $A_i$  como

$$A_1 \times \ldots \times A_n = \{(a_1, \ldots, a_n) \mid a_1 \in A_1 \wedge \ldots \wedge a_n \in A_n\}$$

### Ejemplo

Podemos definir producto cartesiano de dimensión *n* usando la definición de producto cartesiano entre dos conjuntos.

$$A_1 \times \ldots \times A_n = (A_1 \times \ldots \times A_{n-1}) \times A_n$$

Note que esta definición es recursiva: para calcular  $A_1 \times \ldots \times A_{n-1}$  se debe aplicar de nuevo la definición hasta llegar a un producto cartesiano entre dos conjuntos.

# Outline

Teoría de conjuntos

Producto cartesiano

Relaciones

Propiedades de las relaciones

Epílogo

#### Definición

Dados conjuntos  $A_1, \ldots, A_n$ , diremos que R es una relación sobre tales conjuntos si  $R \subseteq A_1 \times \ldots \times A_n$ .

#### Ejercicio

Defina la suma sobre los naturales como una relación sobre  $\mathbb{N}, \mathbb{N}, \mathbb{N}$ .

$$+_{\mathbb{N}} = \{ (n_1, n_2, n_3) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} \mid sum(n_1, n_2) = n_3 \}$$

$$(3, 4, 7) \in +_{\mathbb{N}} \qquad (0, 0, 1) \notin +_{\mathbb{N}}$$

Recuerde que *sum* es la suma que definimos en el capítulo de teoría de conjuntos.

La aridad de una relación R es el tamaño de las tuplas que la componen.

■ Equivalentemente, diremos que *R* es una relación *n*-aria.

### Ejemplo

La tabla que vimos al inicio:

|                                 | id  | Nombre | Apellido     | Ocupación           | MBTI |  |  |  |
|---------------------------------|-----|--------|--------------|---------------------|------|--|--|--|
|                                 | 154 | Dana   | Scully       | Agente del FBI      | ISTJ |  |  |  |
|                                 | 339 | Ludwig | Wittgenstein | Filósofo            | INFJ |  |  |  |
|                                 | 271 | Luke   | Skywalker    | Jedi                | INFP |  |  |  |
|                                 | 404 | Ellen  | Ripley       | Suboficial de vuelo | INTJ |  |  |  |
| representa una relación 5-aria. |     |        |              |                     |      |  |  |  |

26 / 43

Un caso particular de suma importancia:

#### Definición

Dados conjuntos A y B, diremos que R es una relación binaria de A en B si  $R \subseteq A \times B$ .

### Ejemplo

Si  $A = \{1,2\}$  y  $B = \{3,4\}$ , entonces  $R = \{(1,3),(2,4)\}$  es una relación binaria de A en B.

¿Cuántas posibles relaciones binarias hay sobre dos conjuntos A y B?

Podemos tener una relación sobre un solo conjunto:

#### Definición

Dado un conjunto A, diremos que R es una relación binaria sobre A si  $R \subseteq A \times A = A^2$ .

**Notación:** cuando tengamos productos cartesianos entre un mismo conjunto, usaremos una notación de "potencia":

$$A \times \stackrel{(n-2 \text{ veces})}{\dots} \times A = A^n$$

## Ejemplo

La relación binaria menor que :

$$\leq \mathbb{N}^2$$
,

definida como sigue: dados  $m, n \in \mathbb{N}$ :

$$(m, n) \in < \text{si y sólo si } m \in n.$$

$$(1,3) \in \langle (10,4) \notin \langle (7,7) \notin \langle (7,7) \rangle$$

La notación de conjuntos es un poco incómoda:  $\xi(3,17) \in <?$ 

Dados  $a, b \in A$ , para indicar que están relacionados a través de R usamos cualquiera de las siguientes notaciones:

- $(a,b) \in R$
- R(a,b)
- aRb
  - Si no están relacionados, podemos escribir aRb.

Nuestra elección dependerá del contexto.

### Ejemplo

Ahora podríamos escribir:

Paréntesis: notación infija

La última forma de escribir relaciones se llama notación infija.

Podemos extender tal notación a relaciones de mayor aridad. Por ejemplo, podríamos escribir  $n_1 + n_2 = n_3$  si  $(n_1, n_2, n_3) \in +_{\mathbb{N}}$ :

$$3 + 4 = 7$$

y por lo tanto  $n_1 + n_2 = n_3$  si y sólo si  $sum(n_1, n_2) = n_3$ .

¡Cuidado! El símbolo = ocupado en la primera parte es sólo un símbolo que forma parte de nuestra notación, y no debe ser confundido con el símbolo = usado en la segunda parte, que representa la igualdad de conjuntos definida en el capítulo anterior.

### Ejemplo

La relación divide a, denotada por |, sobre los naturales sin el 0, es una relación tal que a está relacionado con b si y sólo si b es múltiplo de a:

$$a|b$$
 si y sólo si  $\exists k \in \mathbb{N}$  tal que  $b = ka$ .

### Relaciones binarias

### Ejemplo

La relación equivalencia módulo n, denotada por  $\equiv_n$ , sobre los naturales, es una relación tal que a está relacionado con b si y sólo si |a-b| es múltiplo de n:

$$a \equiv_n b$$
 si y sólo si  $\exists k \in \mathbb{N}$  tal que  $|a - b| = kn$ .

Por ejemplo, dado n = 7:

$$2 \equiv_7 23$$
  $8 \equiv_7 1$   $19 \not\equiv_7 4$ 

De ahora en adelante trabajaremos con relaciones binarias sobre un conjunto, a las que nos referiremos simplemente como relaciones.

# Outline

Teoría de conjuntos

Producto cartesiano

Relaciones

Propiedades de las relaciones

Epílogo

#### Definición

Una relación R sobre un conjunto A es:

- Refleja si para cada  $a \in A$  se tiene que R(a, a).
- Irrefleja si para cada  $a \in A$  no se tiene que R(a, a).

#### Ejercicio

Dé ejemplos de relaciones reflejas e irreflejas sobre  $\mathbb{N}.$ 

#### Definición

Una relación R sobre un conjunto A es:

- Simétrica si para cada  $a, b \in A$ , si R(a, b) entonces R(b, a).
- Asimétrica si para cada  $a, b \in A$ , si R(a, b) entonces no es cierto que R(b, a).
- Antisimétrica si para cada  $a, b \in A$ , si R(a, b) y R(b, a), entonces a = b.

### **Ejercicio**

Dé ejemplos de relaciones simétricas, asimétricas y antisimétricas sobre  $\,\mathbb{N}.\,$ 

#### Definición

Una relación R sobre un conjunto A es:

- Transitiva si para cada  $a, b, c \in A$ , si R(a, b) y R(b, c), entonces R(a, c).
- **Conexa** si para cada  $a, b \in A$ , se tiene que R(a, b) o R(b, a).

#### Ejercicio

Dé ejemplos de relaciones transitivas y conexas sobre  $\mathbb{N}$ .

### **Ejercicios**

- 1. Demuestre que la relación | es refleja, antisimétrica y transitiva.
- 2. Demuestre que la relación  $\equiv_n$  es refleja, simétrica y transitiva.

#### Ejercicio

Demuestre que la relación | es refleja, antisimétrica y transitiva.

Reflexividad: Propuesto (\*).

Antisimetría: Debemos demostrar que si a|b y b|a, entonces a=b. Si a|b, sabemos que existe  $k_1 \in \mathbb{N}$  tal que  $b=k_1 \cdot a$ . Similarmente, si b|a sabemos que existe  $k_2 \in \mathbb{N}$  tal que  $a=k_2 \cdot b$ . Reemplazando la segunda igualdad en la primera, obtenemos que  $b=k_1 \cdot k_2 \cdot b$ . Como la relación | está definida sobre los naturales sin el 0, podemos dividir por b y obtenemos que  $1=k_1 \cdot k_2$ . Como  $k_1, k_2 \in \mathbb{N}$ , necesariamente se debe cumplir que  $k_1=k_2=1$ , y aplicando esta igualdad en  $b=k_1 \cdot a$ , obtenemos que b=a.

### Ejercicio

Demuestre que la relación | es refleja, antisimétrica y transitiva.

<u>Transitividad</u>: Debemos demostrar que si a|b y b|c, entonces a|c. Aplicando la definición, sabemos que existen  $k_1, k_2 \in \mathbb{N}$  tales que  $b = k_1 \cdot a$  y  $c = k_2 \cdot b$ . Aplicando la primera igualdad en la segunda, obtenemos que  $c = k_2 \cdot k_1 \cdot a$ , y por lo tanto existe  $k_3 = k_1 \cdot k_2 \in \mathbb{N}$  tal que  $c = k_3 \cdot a$ , de donde concluimos que a|c.

Ejercicio (Propuesto ★)

Demuestre que la relación  $\equiv_n$  es refleja, simétrica y transitiva.

#### Demostración

<u>Reflexividad</u>: Debemos demostrar que para todo  $x \in \mathbb{N}$ ,  $x \equiv_n x$ . Por definición, debemos mostrar que existe  $k \in \mathbb{N}$  tal que  $|x - x| = k \cdot n$ . Como x - x = 0 para todo natural, podemos tomar k = 0 y luego se cumple la igualdad anterior, con lo que mostramos que  $x \equiv_n x$ .

<u>Simetría</u>: Debemos demostrar que si  $x \equiv_n y$ , entonces  $y \equiv_n x$ . Por definición, sabemos que existe  $k \in \mathbb{N}$  tal que  $|x-y|=k \cdot n$ . Como |x-y|=|y-x|, tenemos que  $|y-x|=k \cdot n$ , y luego por definición de equivalencia módulo n, se cumple que  $y \equiv_n x$ .

#### Demostración

<u>Transitividad</u>: Dados x, y, z tales que  $x \equiv_n y$  e  $y \equiv_n z$ , debemos demostrar que  $x \equiv_n z$ . Usando la definición, esto es equivalente a demostrar que si  $|x-y|=k_1\cdot n\ y\ |y-z|=k_2\cdot n$ , entonces  $|x-z|=k\cdot n$  para algún  $k\in\mathbb{N}$ . Asumiremos que  $x\neq y\neq z$  (el resultado es trivial de otra manera). Supongamos ahora que x-y>0 e y-z>0 (los demás casos son análogos). Entonces, podemos escribir

$$x - y = k_1 \cdot n$$
$$y - z = k_2 \cdot n$$

y sumando ambas igualdades, obtenemos que  $x-z=k_1\cdot n+k_2\cdot n$ . Notemos que x-z>0 también. Por lo tanto, si tomamos  $k=k_1+k_2$ , tenemos que  $|x-z|=k\cdot n$ , concluyendo entonces que  $x\equiv_n z$ .

# Outline

Teoría de conjuntos

Producto cartesiano

Relaciones

Propiedades de las relaciones

Epílogo

# Objetivos de la clase

- □ Comprender el concepto de conjunto y sus operaciones elementales
- □ Conocer axiomas básicos de conjuntos
- Comprender operaciones de conjuntos
- □ Demostrar propiedades a partir de las definiciones de conjuntos