数学Y問題

(120分)

【必答問題】 $Y1\sim Y4$ は全員全問解答せよ。

- $\mathbf{Y} \mathbf{1}$ $0 \le x \le 3$ とする。関数 $y = 2^{2x-1} 3 \cdot 2^x + 4$ がある。
 - (1) $t=2^x$ とおく。t のとり得る値の範囲を求めよ。また,y を t を用いて表せ。
 - (2) yの最大値,および最小値を求めよ。また、そのときのxの値をそれぞれ求めよ。

(配点 20)

- **Y2** 座標平面上に、x軸と 2 点で交わる円 $K: x^2+y^2-4x-2ay+3=0$ (a は定数)がある。円 Kと x軸との交点を A, B とし、円 Kの中心を C とする。ただし、 (点 A の x 座標) < (点 B の x 座標)である。このとき、 $\triangle ABC$ の重心 G の座標は(2,1)
 - (\Box A O x 座標) < (\Box B O x 座標) である。このとき、 \triangle ABC の重心 G の座標は(2 , 1) である。
 - (1) a の値を求めよ。
 - (2) 直線 AG と円 Kの交点のうち A でない方を D とする。点 D における円 K の接線の方程式を求めよ。 (配点 20)

AND THE RESIDENCE OF THE PARTY OF THE PARTY

Y3 1, 1, 2, 2, 3, 4, 4, 5, 6の9枚のカードが袋の中にある。この袋の中から同時に3枚のカードを取り出し、その3枚のカードに書かれた数の積をXとする。また、次の規則によってYを定める。

〔規則〕

- (ア) 3枚のカードに書かれた数がすべて異なるときは、そのうち最大の数を Yとする。
- (イ) 3枚のカードに書かれた数のうち,2つが同じ数であるときは,もう1つの数をYとする。
- (1) X=3 である確率を求めよ。
- (2) Y=3 である確率を求めよ。
- (3) X が偶数であったとき,Y=5 である条件付き確率を求めよ。 (配点 40)

- $\mathbf{Y4}$ 座標平面上に放物線 $C: y=-x^2+4$ があり、放物線 C上の点 A(-2,0) を通り傾きが $m\ (0 < m < 2)$ である直線を lとする。放物線 Cと x 軸で囲まれた部分を Dとする。
 - (1) D のうち、直線 l の上側で、y 軸の左側にある部分の面積を S_1 とする。 S_1 を m を用いて表せ。
 - (2) Dのうち, 直線lの下側で、y軸の右側にある部分の面積を S_2 とする。 S_2 をmを用いて表せ。
 - (3) (1), (2)のとき, $S = S_1 + S_2$ とする。Sを最大にするmの値とそのときのSの値を求めよ。

(配点 40)

THE PROPERTY OF THE PARTY OF TH

【選択問題】 次の指示に従って解答しなさい。

【数学Ⅲを学習していない場合 (P.8 ~ 9)】	Y5~Y7の3題中2題を解答せよ。
【数学Ⅲの「2次曲線」,「複素数平面」,「数列の極限」のいずれかの学習を終えている場合 (P.10 ~ 11)】	Y7~Y10の4題中2題を解答せよ。

- $\mathbf{Y7}$ OA = 3, OB = 2, \angle AOB = 60° である \triangle OAB がある。辺 AB を t:(1-t) (0 < t<1) に内分する点を C, 辺 OA を 2:1 に内分する点を D とする。また, $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ とする。
 - (1) \overrightarrow{OC} を \overrightarrow{a} , \overrightarrow{b} , t を用いて表せ。また, \overrightarrow{CD} を \overrightarrow{a} , \overrightarrow{b} , t を用いて表せ。
 - (2) OA L CD を満たしているとき, t の値を求めよ。

0

0

(3) (2)のとき, 点 E を $\overrightarrow{CE} = 2\overrightarrow{CD}$ を満たす点とし, 線分 OC と線分 BE の交点を P とする。 \overrightarrow{OP} を \overrightarrow{a} , \overrightarrow{b} を用いて表せ。また, \triangle CPE の面積を求めよ。 (配点 40)

- f Y f 8 〇を原点とする座標平面上に、点 $\left(\sqrt{2}\,,\,\,rac{1}{\sqrt{2}}
 ight)$ を通る楕円 $C:rac{x^2}{a^2}+y^2=1$ (a>1) がある。楕円 C の 2 つの焦点のうち、x 座標の大きい方を F とする。
 - (1) aの値を求めよ。また, 点Fの座標を求めよ。
 - (2) 線分 OF 上(両端を除く)の点 (t, 0) を通り,傾きが 1 である直線を l とする。また, 楕円 C と直線 l の交点を P, Q とし,その x 座標をそれぞれ p, q (p>q) とする。 p-q を t を用いて表せ。
 - (3) (2)のとき, △OPQ の面積を t を用いて表せ。また, 点 (t, 0) が線分 OF 上 (両端を除く) を動くとき, △OPQ の面積の最大値を求めよ。 (配点 40)

- $\mathbf{Y9}$ $\alpha=-1+\sqrt{3}i$, $\beta=\frac{2i}{\alpha}$ とする。ただし,i は虚数単位である。
 - (1) α を $r(\cos\theta+i\sin\theta)$ の形に表すとき,r, θ の値を求めよ。ただし,r>0, $0 \le \theta < 2\pi$ とする。
 - (2) β^n が純虚数となるような最小の自然数n の値を求めよ。
 - (3) n は(2)で求めた値とする。複素数平面上で $A(\alpha)$, $B(\beta^n)$ とし、線分 AB を対角線とする正方形の他の 2 つの頂点を $C(\gamma)$, D(w) とする。ただし、 $(\gamma$ の実部) >(w の実部) とする。 (γ) を求めよ。また、直線 (γ) と応軸との交点を表す複素数を求めよ。 (配点 (γ) 40)

- \mathbf{Y} 10 数列 $\{a_n\}$ は公比が1より大きい等比数列で、 $a_2=6$ 、 $a_1+a_3=15$ を満たしている。また、数列 $\{b_n\}$ は $b_1=4$ 、 $b_{n+1}-b_n=2\cdot 3^{n-1}$ $(n=1,\ 2,\ 3,\ \cdots)$ を満たしている。
 - (1) anをnを用いて表せ。
 - (2) b_nを n を用いて表せ。
 - (3) $S_n = \sum_{k=1}^n a_k$ とし、r は正の実数とする。数列 $\left\{ \frac{r^n}{b_n + S_n} \right\}$ の極限を調べよ。 (配点 40)