Chapter 4

Exercise 1. Use graphical analysis to describe the fate of all orbits for each of the following functions. Use different colors for orbits that behave differently

f.
$$F(x) = x^2 - x$$
 (fixed points at $x_0 = 0$ and $x_0 = 2$)

If $x_0 < -1$, F(x) goes to infinity. If $x_0 = -1$, F(x) is eventually fixed. If $-1 < x_0 < 0$, F(x) converges to 0. If 0 < x < 2, then F(x) converges to 0, and if x > 2, F(x) goes to infinity.

g. $F(x) = \sin x$ (fixed point at $x_0 = 0$)

If $x_0 < 0$, then F(x) converges to 0, and if $x_0 > 0$, F(x) also converges to 0.

Exercise 2. Use graphical analysis to find $\{x_0 \mid F^n(x_0) \to \infty\}$ for each of the following functions

a.
$$F(x) = 2x(1-x)$$

When $x_0 > 1$ or $x_0 > 1$, then $F^n(x_0) \to -\infty$. There is no x_0 s.t. $F^n(x_0) \to +\infty$.

Exercise 3. Sketch the phase portraits for each of the functions in exercise 1.

f.
$$F(x) = x^2 - x$$

g.
$$F(x) = \sin x$$

Chapter 5

Experiment: Rates of Convergence

For each function listed below, find the fixed poit p, |F'(p)|, whether or not p is attracting or neutral, The number of iterations necessary for the orbit of 0.2 to "reach" p, (within 10^{-5})

a.
$$F(x) = x^2 + 0.25$$

 $p = 1/2, |F'(p)| = 1, p \text{ is neutral, } 99987 \text{ iterations.}$

b.
$$F(x) = x^2$$

 $p = 0, |F'(p)| = 0, p \text{ is attracting, 3 iterations.}$

c.
$$F(x) = x^2 - 0.24$$

 $p = -1/5, |F'(p)| = 0.4, p$ is attracting, 1 iteration.

d.
$$F(x) = x^2 - 0.75$$

 $p = -1/2, |F'(p)| = 1, p \text{ is neutral}, > 500000 \text{ iterations}.$

When |F'(p)| = 1, there is a really slow rate of convergence, and when |F'(p)| is close to 0, there is a much faster convergence. (c) had the fastest convergence, even though it didn't have the smallest |F'(p)|. (d) had the slowest convergence by far, and p was a neutral point in that case.

Exercise 1. For each of the following functions, find all the fixed points and classify them as attracting, repelling, or neutral.

a.
$$F(x) = x^2 - x/2$$

$$x^2 - x/2 = x$$

$$x^2 - 3x/2 = 0$$

$$x(x-3/2) = 0$$

Fixed points occur at x = 0 and x = 3/2.

$$|F'(0)| = |2(0) - 1/2|$$
 $|F'(3/2)| = |2(3/2) - 1/2|$
= $|-1/2|$ = $|3 - 1/2|$
= $1/2$ = $5/2$

The fixed point x = 0 is attracting and the fixed point x = 5/2 is repelling.

c.
$$F(x) = 3x(1-x)$$

$$3x - 3x^2 = x$$
$$-3x^2 + 2x = 0$$
$$x(-3x + 2) = 0$$

Fixed points occur at x = 0 and x = 2/3.

$$|F'(0)| = |3 - 6(0)|$$
 $|F'(2/3)| = |3 - 6(2/3)|$
= $|3 - 4|$
= 1

The fixed point x = 0 is repelling and the fixed point x = 2/3 is neutral.

Exercise 2. For each of the following functions, zero lies on a periodic orbit. Classify this orbit as attracting, repelling, or neutral.

d.
$$F(x) = |x - 2| - 1$$
 {0, 1, 0, 1, ...}

0 lies on period 2 orbit.

$$|(F^2)'(0)| = |F'(1)| \cdot |F'(0)|$$

= 1

This orbit is neutral.

Exercise 3. Suppose x_0 lies on a cycle of prime period n for the doubling function D. Evaluate $(D^n)'(x_0)$. Is this cycle attracting or repelling?

Let $\{x_0, x_1, \ldots, x_{n-1}\}$ be the cycle containing x_0 .

$$(D^n)'(x_0) = D'(x_{n-1}) \cdot D'(x_{n-2}) \cdot \dots \cdot D'(x_0)$$

= 2^n

This cycle is repelling.

Exercise 4. Each of the following functions has a neutral fixed point. Find this fixed point and, using graphical analysis with an accurate graph, determine if it is weakly attracting, weakly repelling, or neither.

a.
$$F(x) = x + x^2$$

$$x + x^2 = x$$

$$x^2 = 0$$

$$x = 0$$

x = 0 is our neutral fixed point.

 $x_0 = 0$ is weakly attracting on the interval -1 < x < 0, and weakly repelling everywher else besides the fixed point x = 0 and x = -1 which is eventually fixed.