MAS242 해석학 II Notes

한승우

September 19, 2023

CONTENTS

CHAPTER		DIFFERENTIATION	PAGE 2	-
	1.1	Higher order partial derivatives	2	
	1.2	Extreme Values of differentiable Functions	3	
CHAPTER		Inverse Function Theorem	Page 5	_
	2.1	Jacobian	5	
	2.2	The Inverse Function Theorem	5	

Chapter 1

Differentiation

1.1 Higher order partial derivatives

Definition 1.1.1

Given $f: U \to \mathbb{R}$ where U is an open set in \mathbb{R}^m , define $\partial_{ij} \triangleq \partial_i(\partial_j f)(x)$ for each $i, j \in [m]$ to be *2nd order partial derivatives*. Any higher order partial derivatives can be defined inductively.

Definition 1.1.2: C^k -regularity

 $f: U \to \mathbb{R}$ is C^k -regular if all partial derivatives up to order k and they are continuous.

Theorem 1.1.1

 $f: U(\subseteq \mathbb{R}^2) \to \mathbb{R}$ is C^2 at a point $c \in U$, i.e., $\exists \delta > 0$, f is C^2 in $B_{\delta}(c)$. Then, $\partial_{12} f(c) = \partial_{21} f(c)$.

Proof. Let $|h| < \delta$. Define $A(h) \triangleq f(c_1 + h_1, c_2 + h_2) - f(c_1 + h_1, c_2) - f(c_1, c_2 + h_2) + f(c_1, c_2)$. Define $u(x_1) \triangleq f(x_1, c_2 + h_2) - f(x_1, c_2)$ and $v(x_2) \triangleq f(c_1 + h_1, x_2) - f(c_1, x_2)$. Note that u and v are differentiable.

Then, $A(h) = u(c_1 + h_1) - u(c_1)$ and $A(h) = v(c_2 + h) - v(c_2)$. By MVT, $\exists c_1^* \in (c_1, c_1 + h_1)$ and $c_2^* \in (c_2, c_2 + h_2)$ s.t. $A(h) = u'(c_1^*)h_1 = h_1(\partial_1 f(c_1^*, c_2 + h) - \partial_1 f(c_1^*, c_2)) = h_1 h_2 \partial_{21} f(c_1^*, c_2^*)$ Similarly, $\exists c_1^{**}, c_2^{**}$ such that $A(h) = h_1 h_2 \partial_{12} f(c_1^{**}, c_2^{**})$. $\partial_{21} f(c_1^*, c_2^*) = \partial_{12} f(c_1^{**}, c_2^{**})$. Hence, as $|h| \to 0$, due to the continuity, $\partial_{21}(c) = \partial_{12}(c)$.

Corollary 1.1.1

Suppose $f: U(\subseteq \mathbb{R}^m) \to \mathbb{R}$ is C^k at $c \in U$. Then $\partial_{j_1 j_2 \cdots j_k} f(c) = \partial_{j'_1 j'_2 \cdots j'_k}$ where $j'_1 \cdots$ are a permutation of $j_1 \cdots$.

1.2 Extreme Values of differentiable Functions

Definition 1.2.1: Hessian

Let $f: U(\subseteq \mathbb{R}^m) \to \mathbb{R}$ be C_2 in U. Suppose $p \in U$ is a critical point of f, i.e., $\nabla f(p) = 0$. Define

$$\mathcal{H}f(x) \triangleq \begin{pmatrix} \partial_{11}f(x) & \partial_{21}f(x) & \cdots & \partial_{m1}f(x) \\ \partial_{12}f(x) & \partial_{22}f(x) & \cdots & \partial_{m2}f(x) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{1m}f(x) & \partial_{2m}f(x) & \cdots & \partial_{mm}f(x) \end{pmatrix}.$$

(Sometimes $\mathcal{H}f(x) = D^2f(x)$.)

Define $D(x) = \det \mathcal{H}f(x)$. (Note that $\mathcal{H}f(x)$ is symmetric when f is C^2 by the theorem above.)

Theorem 1.2.1 2nd-order derivative test for two variable functions.

When m = 2 and f is C^2 , a critical point p is

- a local maximum if D(p) > 0 and $\partial_{11} f(p) > 0$ (or $\partial_{22} f(p) > 0$).
- a local minimum if D(p) > 0 and $\partial_{11} f(p) < 0$ (or $\partial_{22} f(p) < 0$).
- a saddle point if D(p) < 0.

The test fails when D(p) = 0.

Proof. Given a unit vector $\mathbf{u} = (u_1, u_2) \in \mathbb{R}^2$, $D_{\mathbf{u}} f = \nabla f \cdot \mathbf{u} = u_1 \partial_1 f + u_2 \partial_2 f$, and thus

$$D_{\mathbf{u}}^{2}f = (u_{1}\partial_{1} + u_{2}\partial_{2})(u_{1}\partial_{1}f + u_{2}\partial_{2}f) = u_{1}^{2}\partial_{11}f + u_{1}u_{2}(2\partial_{12}f) + u_{2}^{2}\partial_{22}f.$$

WLOG, $u_1 \neq 0$. Set $z = u_2/u_1$. Then,

$$D_{\mathbf{u}}^{2}f(p) = u_{1}^{2}(\partial_{11}f(p) + 2\partial_{12}f(p)z + \partial_{22}f(p)z^{2}).$$

Note that, if D(p) > 0, $D_{\mathbf{n}}^2 f(p)$ has no real root.

- If D(p) > 0 and $\partial_{11} f(p) < 0$, Then, $D^2 \mathbf{u} < 0$ for all unit vector \mathbf{u} .
- If D(p) > 0 and $\partial_{11}f(p) > 0$, Then, $D^2\mathbf{u} > 0$ for all unit vector \mathbf{u} .
- If D(p) < 0, D_u²f(p) has different signs depending on u.
 For general m?

$$D_{\mathbf{u}}(D_{\mathbf{u}}f) = D_{\mathbf{u}} \sum_{j=1}^{m} \partial_{j} f u_{j} = \sum_{j=1}^{m} ((\nabla \partial_{j} f) \cdot \mathbf{u}) u_{j} = \sum_{j=1}^{m} \sum_{k=1}^{m} u_{k} u_{j} \partial_{kj} f.$$

Hence,

$$D_{\mathbf{u}}^{2}f(p) = \mathbf{u}^{\mathrm{T}} \cdot D^{2}f(p) \cdot \mathbf{u}$$

Since $D^2f(p)$ is symmetric, its eigenvalues $\lambda_1, \dots, \lambda_m$ exists and they are real numbers. Also, there exists an $m \times m$ orthogonal matrix \mathcal{O} such that $D^2f(p) = \mathcal{O}\Lambda(p)\mathcal{O}^T$ where $\Lambda(p)$ is the diagonal matrix with entries are the eigenvalues.

Then, we can write $D_{\mathbf{u}}^2 f(p) = \mathbf{u} \mathcal{O} \Lambda(p) \mathcal{O}^{\mathsf{T}} \mathbf{u}^{\mathsf{T}} = (\mathbf{u} \mathcal{O}) \Lambda(p) = (\mathbf{u} \mathcal{O})^{\mathsf{T}}$. Since \mathcal{O} is orthogonal, $\mathbf{u} \mathcal{O}$ is another arbitrary unit vector.

Theorem 1.2.2 Generalized 2nd order partial derivatives test

When f is C^2 , a critical point p is

• a local maximum if all eigenvalues of $D^2 f(p)$ are negative.

- a local minimum if all eigenvalues of D²f(p) are positive.
 a saddle point if there are both negative eigenvalues and positive eigenvalues.
 The test fails when there are zero eigenvalues.

Chapter 2

Inverse Function Theorem

Jacobian 2.1

Definition 2.1.1: Jacobian

Let $f: U(\subseteq \mathbb{R}^m) \to \mathbb{R}^n$ be differentiable. The function $J_f: U \to \mathbb{R}$ defined by

$$J_{\mathbf{f}}(\mathbf{x}) = \det \begin{bmatrix} \partial_1 f_1(\mathbf{x}) & \cdots & \partial_n f_1(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \partial_1 f_n(\mathbf{x}) & \cdots & \partial_n f_n(\mathbf{x}) \end{bmatrix}$$

is called the *Jacobian* of f at x.

Lemma 2.1.1

If $f: V(\subseteq \mathbb{R}^n) - \mathbb{R}$ and $g: U \to V$ are differentiable, then

$$J_{f \circ g}(\mathbf{x}) = J_f(\mathbf{g}(\mathbf{x})) \cdot J_{\mathbf{g}}(\mathbf{x}).$$

Note:-

The linear mapping df(c) is invertible if and only if $J_f(c)$ is nonzero.

2.2 The Inverse Function Theorem

Lemma 2.2.1 Contraction Mapping Principle

Let (X,d) be a complete metric space. Let $\varphi: X \to X$. Suppose that there exists $M \in$ [0,1) such that $d(\varphi(x_1),\varphi(x_2)) \leq Md(x_1,x_2)$. (We call it a contraction mapping.) Then, there uniquely exists $x_* \in X$ such that $\varphi(x_*) = x_*$.

Proof. Fix any $x_0 \in X$. Since $\{x_j\}_{j \in \mathbb{Z}_+}$, where $x_j = \varphi(x_{j-1})$ for each $j \in \mathbb{Z}_+$, is continuous. It converges to some x_* . As φ is continuous, we have $\varphi(x_*) = x_*$. The uniqueness follows trivially.

🛉 Note:- 🛉

- For each $v \in \mathbb{R}^n \setminus \{0\}$, $|Av| = |v| \cdot |A\frac{v}{|v|}| \le ||A||_L \cdot |v|$. The result is trivial when v = 0. For each $u \in \mathbb{R}^n$ with |u| = 1, $|ABu| \le ||A||_L ||Bu| \le ||A||_L ||B||_L$. Hence, $||AB||_L = ||A|| ||B||$.
- Given invertible $A \in L(\mathbb{R}^n.\mathbb{R}^n)$, $A^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ is linear. Moreover, $||A||_L > 0$.

Lemma 2.2.2

Given two linear mappings $A, B : \mathbb{R}^n \to \mathbb{R}^n$ with invertibility of A,

$$||A-B||_L ||A^{-1}||_L < 1 \implies B$$
 is invertible.

Proof. (Hint: show that Bx = 0 has only the trivial solution, i.e., if $x \neq 0$, then $Bx \neq 0$.)

Theorem 2.2.1 Inverse Function Theorem

Let $\mathbf{f}: U(\subseteq \mathbb{R}^n) \to \mathbb{R}^n$ be C^1 in U, $\mathbf{a} \in U$, and $\mathbf{b} = f(a)$. Suppose that $J_{\mathbf{f}}(a) \neq 0$. Then,

$$\exists \delta \in \mathbb{R}_+, \ \mathbf{f}|_{B_{\delta}(a)} : B_{\delta}(a) \to \mathbf{f}(B_{\delta}(a)) \text{ is invertible.}$$

 $\exists \delta \in \mathbb{R}_+, \ \mathbf{f}\big|_{B_{\delta}(a)} \colon B_{\delta}(a) \to \mathbf{f}\big(B_{\delta}(a)\big) \text{ is invertible.}$ Moreover, $\mathbf{f}\big(B_{\delta}(a)\big)$ is an open set, and $\big(\mathbf{f}\big|_{B_{\delta}(a)}\big)^{-1}$ is C^1 .

Proof. Let $A \triangleq d\mathbf{f}(\mathbf{c})$. Define λ by $\lambda \triangleq \frac{1}{2\|A^{-1}\|_L} > 0$ so $2\lambda \|A^{-1}\|_L = 1$. Since df is continuous, there exists $\delta \in \mathbb{R}_+$ such that $\| d\mathbf{f}(\mathbf{x}) - d\mathbf{f}(\mathbf{c}) \|_L^2 < \lambda$ for each $B_{\delta}(\mathbf{c})$.

Given a point $\mathbf{y} \in \mathbb{R}^n$, we define $\varphi(\cdot; \mathbf{y})$ by

$$\varphi(\cdot; \mathbf{y}) : B_{\delta}(\mathbf{c}) \longrightarrow \mathbb{R}^{n}$$
$$\mathbf{x} \longmapsto \varphi(\mathbf{x}; \mathbf{y}) = \mathbf{x} + A^{-1}(\mathbf{y} - \mathbf{f}(\mathbf{x}))$$

Note that **x** is a fixed point of $\varphi(\cdot; \mathbf{y})$ if and only if $A^{-1}(\mathbf{y} - \mathbf{f}(\mathbf{x})) = 0$, i.e., $\mathbf{y} = \mathbf{f}(\mathbf{x})$. Note also that φ is differentiable and $d\varphi(\mathbf{x}; \mathbf{y}) = \mathrm{Id} - A^{-1} d\mathbf{f}(\mathbf{x}) = A^{-1} (A - d\mathbf{f}(\mathbf{x}))$ for each $x \in B_{\delta}(\mathbf{c})$. Hence, for all $x \in B_{\delta}(\mathbf{c})$,

$$\| d\varphi(\mathbf{x}; \mathbf{y}) \|_{L} = \| A^{-1} (A - d\mathbf{f}(\mathbf{x})) \|_{L} \le \| A^{-1} \|_{L} \cdot \| A - d\mathbf{f}(\mathbf{x}) \|_{L} < 1/(2\lambda) \cdot \lambda = 1/2.$$

Now, fix any $\mathbf{y} \in \mathbb{R}^n$. Fix $\mathbf{x}_1, \mathbf{x}_2 \in B_{\delta}(\mathbf{c})$. Define $\Psi \colon [0,1] \to \mathbb{R}$ by $t \mapsto \varphi(t\mathbf{x}_1 + (1-t)\mathbf{x}_2; \mathbf{y})$. $\Psi(0) = \varphi(\mathbf{x}_2; \mathbf{y})$ and $\Psi(1) = \varphi(\mathbf{x}_1; \mathbf{y})$. Note that Ψ is differentiable on (0, 1). By MVT, there exists $t_* \in (0,1)$ such that $\Psi(1) - \Psi(0) = \Psi'(t_*)$. The chain rule gives

$$\Psi'(t_*) = d\varphi(t_*\mathbf{x}_1 + (1 - t_*)\mathbf{x}_2)(\mathbf{x}_1 - \mathbf{x}_2)$$

. Hence,

$$|\varphi(\mathbf{x}_1) - \varphi(\mathbf{x}_2)| = |\,\mathrm{d}\Psi(t_*\mathbf{x}_1 + (1 - t_*)\mathbf{x}_2)| \cdot |(\mathbf{x}_1 - \mathbf{x}_2)| < |\mathbf{x}_1 - \mathbf{x}_2|/2.$$