# Thurston critically periodic polynomial-like maps

Eduardo Ventilari Sodré

December 19, 2024

#### 1 Introduction

Let  $f: S^2 \to S^2$  be a degree d branched covering map of a topological 2-sphere, and  $P_f$  be its postcritical set. We assume  $P_f$  is finite. An important question is whether such a map is  $Thurston\ equivalent$  to a postcritically finite rational map  $g: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ , that is, there exists homeomorphisms  $\theta, \theta': S^2 \to \hat{\mathbb{C}}$  such that the diagram below commutes:

$$(S^{2}, P_{f}) \xrightarrow{\theta} (\hat{\mathbb{C}}, P_{g})$$

$$\downarrow^{g}$$

$$(S^{2}, P_{f}) \xrightarrow{\theta'} (\hat{\mathbb{C}}, P_{g})$$

and  $\theta$  is isotopic to  $\theta'$  relative to  $P_f$ . Thurston gave a necessary and sufficient topological condition on whether such an equivalence exists. Let  $\Gamma$  be a set of disjoint, non-trivial (non-nullhomotopic and non-peripheral) simple closed curves on  $S^2 \setminus P_f$ , no two homotopic to each other. We also say that  $\Gamma$  is a multicurve. For each  $\gamma \in \Gamma$ , the pullback  $f^{-1}(\gamma)$  is a set of disjoint simple closed curves, mapping to  $\gamma$  with some degree. We say that  $\Gamma$  is f-stable if for all  $\gamma \in \Gamma$ , every component of  $f^{-1}(\gamma)$  is homotopic rel  $P_f$  to some curve in  $\Gamma$ . If  $\Gamma = \{\gamma_j\}_j$ , by considering the vector space  $\mathbb{R}^{\Gamma}$ , we have an induced linear pullback map  $f_{\Gamma} : \mathbb{R}^{\Gamma} \to \mathbb{R}^{\Gamma}$  given on each basis element  $\gamma_j$  by

$$f_{\Gamma}(\gamma_j) = \sum_{j} \sum_{\alpha} \frac{1}{d_{\alpha,i,j}} \gamma_i,$$

where  $\alpha$  ranges over all components  $\gamma_{\alpha}$  of  $f^{-1}(\gamma_j)$  which are homotopic to  $\gamma_i$  rel  $P_f$ , and  $d_{\alpha,i,j}$  is the mapping degree of  $\gamma_{\alpha}$  onto  $\gamma_j$ . Note that in

this calculation we disconsider those components of the pullback which are peripheral. Moreover, being a matrix with all entries non-negative, there exists a real eigenvalue  $\lambda(f,\Gamma)$  of  $f_{\Gamma}$  of largest absolute value. We also remark that this pullback map may also be defined for multicurves which are not necessarily f-stable, but as expected, information of non-trivial pullbacks outside of  $\Gamma$  is not recorded in  $f_{\Gamma}$ .

If f has hyperbolic orbifold (a condition visible from the portrait of f, that is, the information about  $\Omega_f \cup P_f$  and the local degrees of the critical points), then f is Thurston-equivalent to a rational map if and only if  $\lambda(f,\Gamma) < 1$ . An f-stable multicurve with  $\lambda(f,\Gamma) \geq 1$  is said to be an obstruction.

We restrict ourselves to polynomial-like mappings, that is, those for which there exists a fixed critical point of local degree d, so that f induces a proper degree d branched cover of the plane  $\mathbb{R}^2$  onto itself. Moreover, we consider the additional hypothesis that all critical points of f are periodic, and we wish to prove the following:

**Theorem 1.1.** Polynomial-like, critically periodic Thurston maps are unobstructed.

#### 2 Topology of branched covers and curves

Given two disjoint simple closed curves  $\gamma$  and  $\eta$  in  $\mathbb{R}^2$ , they are either separated or nested, as a consequence of the Jordan curve theorem. Equivalently, if  $D_{\gamma}$  denotes the open disk in  $\mathbb{R}^2$  having  $\gamma$  as its boundary, we either have  $D_{\gamma} \cap D_{\eta} = \emptyset$  or  $D_{\gamma} \subset \subset D_{\eta}$  compactly contained (or the opposite inclusion). Given  $\gamma$ , we want to understand the compact set  $f^{-1}(\overline{D_{\gamma}})$ . It is the disjoint union

$$f^{-1}(\overline{D_{\gamma}}) = f^{-1}(\gamma) \sqcup f^{-1}(D_{\gamma}),$$

where  $f^{-1}(D_{\gamma})$  is open. Because f is open, we also have  $f^{-1}(\overline{D_{\gamma}}) = \overline{f^{-1}(D_{\gamma})}$ , and as f is proper, both restricted maps

$$f|_{f^{-1}(\overline{D_{\gamma}})}: f^{-1}(\overline{D_{\gamma}}) \to \overline{D_{\gamma}}, \qquad f|_{f^{-1}(D_{\gamma})}: f^{-1}(D_{\gamma}) \to D_{\gamma}$$

are also proper. Moreover, since f is a branched cover,  $f^{-1}(D_{\gamma})$  has finitely many open components. If U is one of these components, then  $f|_{U}:U\to D_{\gamma}$  is also proper, which can be checked readily from the above facts. In particular,  $\partial U \subseteq \partial f^{-1}(D_{\gamma}) = f^{-1}(\gamma)$ , and from a general converse we obtain

$$f^{-1}(\gamma) = \bigcup_{i=1}^{m} \partial U_i.$$

Note that, in principle,  $\partial U_i$  could be disconnected. Suppose that for some  $i \neq j$  we had  $x \in \partial U_i \cap \partial U_j$ . We may take small neighborhoods V of f(x) and W of x such that W maps to V homeomorphically, since  $f(x) \notin P_f$ . If we assume the curve  $\gamma$  to be  $C^1$  in  $\mathbb{R}$  so that, by taking a small enough V, the intersection  $D_{\gamma} \cap V$  is connected, the corresponding intersection in W is also connected, so that there is a unique component  $U_i$  of  $f^{-1}(D_{\gamma})$  intersecting W and for which  $x \in \partial U_i$ . This shows that boundaries of distinct components cannot intersect, and due to connectedness of each curve in  $f^{-1}(\gamma)$ , each one is contained in some  $\partial U_i$ .

Suppose U is some component of  $f^{-1}(D_{\gamma})$ , whose boundary curves are organized by their nesting depth. Curves in a multicurve  $\Gamma$  which are not nested inside of another one have depth 0; we inductively define the depth of nesting for the other curves. Naturally curves having the same depth within  $\Gamma$  are separated. If there were more than one curve in  $\partial U = \Gamma$  of depth 0, either U would be unbounded in  $\mathbb{R}^2$  or disconnected, a contradiction. Hence  $\partial U$  consists of a  $\gamma'$  of depth 0 nesting some curves  $\gamma'_1, \ldots, \gamma'_k$  of depth 1; topologically this corresponds to a disk with k holes. Since  $f|_{f^{-1}(S^2\setminus\overline{D_{\gamma}})}: f^{-1}(S^2\setminus\overline{D_{\gamma}}) \to S^2\setminus\overline{D_{\gamma}}$  is also proper, each disk  $D_{\gamma'_j}$  would contain a component of  $f^{-1}(S^2\setminus\overline{D_{\gamma}})$ , and hence contain a point in the preimage of  $f^{-1}(\infty)$ , a contradiction with the map being polynomial-like. This implies that  $D_{\gamma'} = U_i$ , and  $\partial U_i$  is a single component of  $f^{-1}(\gamma)$ . We conclude:

**Lemma 2.1.** The components of  $f^{-1}(\gamma)$  are all separated, and each component  $\gamma' \subseteq f^{-1}(\gamma)$  bounds a disk  $D_{\gamma'}$  such that  $f|_{D_{\gamma'}} : D|_{\gamma'} \to D|_{\gamma}$  is a proper map of the same degree as  $f : \gamma' \to \gamma$ .

We also obtain the following results:

**Lemma 2.2.** If  $\gamma$  and  $\eta$  are two separated curves, and  $\gamma'$  and  $\eta'$  are components of  $f^{-1}(\gamma)$  and  $f^{-1}(\eta)$  respectively, then  $\gamma'$  and  $\eta'$  are separated.

*Proof.* Suppose on the contrary that  $D_{\gamma'} \subset D_{\eta'}$ . Since f maps  $D_{\gamma'}$  onto  $D_{\gamma}$  and  $D_{\eta'}$  onto  $D_{\eta}$ , this would imply that there  $D_{\gamma} \subset D_{\eta}$ , a contradiction.  $\square$ 

**Lemma 2.3.** Suppose that  $\gamma$  and  $\eta$  are two nested curves, with  $D_{\gamma} \subset D_{\eta}$ . Then for each component  $\gamma$  of  $f^{-1}(\gamma)$ , there is some component  $\eta'$  of  $f^{-1}(\eta)$  such that  $\gamma'$  is nested inside of  $\eta'$ .

*Proof.* Since  $D_{\gamma} \subset D_{\eta}$ ,  $f^{-1}(D_{\eta})$  must intersect  $D_{\gamma'}$ , And by connectedness of  $D_{\gamma'}$  it must be contained in some component of  $f^{-1}(D_{\eta})$ .

We may generalize the ideas above in the following form. Let  $f: S^2 \to S^2$  be a topological branched cover, not necessarily post-critically finite,  $\gamma \subset S^2 \setminus V_f$  a simple closed curve on the complement of the critical values of f, and D one of the two open disks that it bounds. We pick a point on  $S^2 \setminus \overline{D}$  and label it  $\infty$ , and also pick a point  $\infty' \in f^{-1}(\infty)$ . Given any component U of  $f^{-1}(D) \subset S^2 \setminus \infty' \cong \mathbb{R}^2$ , we may again order  $\partial U$  by depth of nesting. We conclude that U will be the region bounded between one curve  $\gamma'$  of depth 0 (with respect to  $\partial U$ , **not**  $f^{-1}(\gamma)$ ) and k separated curves  $\gamma'_1, \ldots, \gamma'_k$  of depth 1.

We now consider the full multicurve  $f^{-1}(\gamma) \subset \mathbb{R}^2 \setminus \infty' \cong \mathbb{R}^2$ , but still stipulate that  $\gamma'$  has depth 0, and we allow for negative nesting depth. This essentially just corresponds to translating the depth to normalize it with respect to  $\gamma'$ . For any  $j=1,\ldots,k$ , we can similarly show that the region between  $\gamma'_j$  and the curves of depth 2 that it nests corresponds exactly to a component of  $f^{-1}(S^2 \setminus \overline{D})$ . Continuing for all depths, positive and negative, we can completely picture all components of  $f^{-1}(D)$  and  $f^{-1}(S^2 \setminus \overline{D})$ .



Moreover, by Riemann-Hurwitz, if we know the degrees of the map f restricted to each region, we may also recover the number of critical points in each of them counting multiplicity. If U is a component of  $f^{-1}(D)$ , then  $\chi(U) = 1 - k$ , where k is again the number of "holes" in U. If b denotes the number of branch points in U counting multiplicity and d' the degree of  $f|_{U}$ , then

$$b = d'\chi(D) - \chi(U) = d' - k + 1.$$

(Here we remark that, for example, 0 is a critical point of multiplicity 1 for  $z \mapsto z^2$ , being a simple critical point, even though it's ramification index is 2.) To illustrate, if d' = 1, then  $f|_U$  must be a homeomorphism and k = 0. If  $d_j$  is the degree of  $f|_{\gamma'_j}: \gamma'_j \to \gamma$ , where  $\gamma'_0 = \gamma'$ , then  $d' = \sum_{j=0}^k d_j \ge k+1$ , which implies that  $b \ge 2k$ . There are other inequalities possible, coming from the fact that there are exactly 2d - 2 critical points counting multiplicity, and that  $k + 1 \le d' \le d$ , also because each of the k holes and the outside region of U must contain a preimage of  $\infty$ .

### 3 Dynamics

Let  $p_{\gamma}$  be the number of postcritical points inside of  $D_{\gamma}$ , and  $q_{\gamma}$  to be number of postcritical points outside of  $\gamma$  (Here  $p_{\gamma} + q_{\gamma} = p - 1$ , where we are not considering the point at infinity). Note that this number is a homotopy invariant in  $\mathbb{R}^2 \setminus P_f$ , and in order for  $\gamma$  to be non-peripheral, we must have  $p_{\gamma} \geq 2$ ,  $q_{\gamma} \geq 1$ . Recall our assumption that f is critically periodic; this implies that  $\Omega_f \subseteq P_f$  and that  $f|_{P_f}: P_f \to P_f$  is injective, since  $P_f$  is distributed into the cyclic orbits of the critical points.

If  $\gamma'$  is a component of  $f^{-1}(\gamma)$ , then

$$p_{\gamma'} \leq p_{\gamma}$$

since each point in  $P_f \cap D_{\gamma'}$  has to map injectively to a point in  $P_f \cap D_{\gamma}$ . In other words, the number of postcritical points inside a curve is non-increasing under pullback. Furthermore, since the components of the pullback  $f^{-1}(\gamma)$  must be separated, in particular they cannot be homotopic in  $\mathbb{R}^2 \setminus P_f$  unless they are peripheral.

It's important to note, however, that homotopy classes in  $\mathbb{R}^2 \setminus P_f$  may collapse together under pullback. More precisely, if  $\gamma$  is nested inside  $\eta$  in  $\mathbb{R}^2 \setminus P_f$ , and  $\gamma'$  is a component of  $f^{-1}(\gamma)$  and  $\eta'$  is the unique component of  $f^{-1}(\eta)$  which nests  $\gamma'$ , it could be the case that  $\gamma'$  and  $\eta'$  are homotopic in  $\mathbb{R}^2 \setminus P_f$  even if  $\gamma$  and  $\eta$  are not homotopic; This is because our actual mapping is  $\mathbb{R}^2 \setminus f^{-1}(P_f) \to \mathbb{R}^2 \setminus P_f$ , so that if x is a postcritical point which is inside  $\eta$  but outside  $\gamma$ , its corresponding preimage x' inside of  $\eta'$  and outside of  $\gamma'$  may not be a postcritical point. Another possible way to view this situation is through the composition of the two maps

$$\iota: \mathbb{R}^2 \setminus f^{-1}(P_f) \to \mathbb{R}^2 \setminus P_f, \qquad f: \mathbb{R}^2 \setminus f^{-1}(P_f) \to \mathbb{R}^2 \setminus P_f$$

which determine the dynamics.

Let  $\Gamma$  be an f-stable multicurve. For  $\gamma_i, \gamma_j \in \Gamma$ , there can be at most one component  $\gamma_\alpha$  of  $f^{-1}(\gamma_j)$  which is homotopic to  $\gamma_i$  in  $\mathbb{R}^2 \setminus P_f$ , given that the

components of the pullback are separated; so the sum in  $f_{\Gamma}(\gamma_j)$  has at most one term coming from the components  $\alpha$  for each j. We define  $d_{ij}$  to be the degree of the mapping  $f: \gamma_{\alpha} \to \gamma_{j}$ , and  $d_{ij} = 0$  if such  $\gamma_{\alpha}$  homotopic to  $\gamma_{i}$  does not exist. Note that  $\sum_{i} d_{ij} \leq d$ , and that the non-zero entries of  $f_{\Gamma}$  are  $1/d_{ij}$ .

Fix some  $\gamma_i \in \Gamma$ , and suppose that  $\gamma_j$  and  $\gamma_k$  are separated curves in  $\Gamma$  such that there are components  $\gamma_{\alpha}$  of  $f^{-1}(\gamma_j)$  and  $\gamma_{\beta}$  of  $f^{-1}(\gamma_k)$  where  $\gamma_{\alpha}$  and  $\gamma_{\beta}$  are homotopic to  $\gamma_i$  (recall that this homotopy is in  $\mathbb{R}^2 \setminus P_f$ , and that these components are unique being homotopic to  $\gamma_i$ ). As  $\gamma_i$  is non-trivial, this implies that  $\gamma_{\alpha}$  and  $\gamma_{\beta}$  are nested, but this is only possible if  $\gamma_j$  and  $\gamma_k$  are nested or homotopic, which is a contradiction; hence either  $d_{ij} = 0$  or  $d_{ik} = 0$ . In other words, among separated curves  $\gamma_{j_1}, \gamma_{j_2}, \ldots, \gamma_{j_m} \in \Gamma$ , at most one can have  $d_{ij} \neq 0$ .

This suggests that we should organize the multicurve  $\Gamma$  into a structure which guarantees that some curves are separated. One way to do so is by the values  $p_{\gamma}$ ; naturally curves in  $\Gamma$  having the same number of postcritical points enclosed inside them must be separated. Moreover, with the hypothesis that the critical orbits are all periodic, the number  $p_{\gamma}$  is non-increasing under pullback, which further dictates how the pullback acts on this structure of  $\Gamma$ .

We consider a different structure of  $\Gamma$ , that of nesting. The depth  $n_{\gamma}$  is non-increasing under pullback, since separated curves stay separated and nested curves stay nested, but possibly collapsing to the same homotopy class in  $\mathbb{R}^2 \setminus P_f$ . Evidently curves having the same depth of nesting are separated.

If we order the curves in  $\Gamma$  by their depth of nesting, the matrix for  $f_{\Gamma}$  becomes block upper triangular, since a curve  $\gamma_i$  may be pulled back only to curves  $\gamma_j$  having depth of nesting  $n_{\gamma_j} \leq n_{\gamma_i}$ . Because the eigenvalues of a block upper triangular matrix are the collection of eigenvalues of each diagonal block, if  $\Gamma$  is an obstruction then for some nesting depth n the curves  $\Gamma_n$  having this depth can be extended to form an obstruction. By this reasoning, we may assume from the outset that our f-stable multicurve  $\Gamma$  which is an obstruction consists of only separated curves.

In this situation, by the previous reasonings, every row of  $f_{\Gamma}$  can have at most one non-zero entry. In other words, if  $\gamma_i$  is the pullback (or more precisely, homotopic to a pullback) of a curve in  $\Gamma$ , it is the pullback of a unique such curve  $\gamma_j$ ; we may represent this as a formal mapping  $\gamma_i \to \gamma_j$ . If  $\gamma_i$  is not the pullback of any curve in  $\Gamma$ , so that the *i*-th row in  $f_{\Gamma}$  is identically zero, then any non-zero eigenvalue of  $f_{\Gamma}$  has to come from the minor matrix obtained from  $f_{\Gamma}$  by excluding the *i*-th row and the *i*-th column. Hence we may assume that no row is identically zero, as  $\Gamma \setminus \{\gamma_i\}$  is still f-stable and constitutes an obstruction.

We therefore have a well-defined formal mapping  $\hat{f}: \Gamma \to \Gamma$  of the curves

as above. In principle, it need not be injective or surjective, as would be the case, for example, if a single curve  $\gamma \in \Gamma$  has pullbacks homotopic to all curves in  $\Gamma$  and all other curves have trivial pullbacks, so that  $f_{\Gamma}$  has a single non-zero column. We want to extract from this dynamics of curves a *Levy cycle*. If f is a postcritically finite topological branched cover, a multicurve  $\{\gamma_1, \ldots, \gamma_m\}$  is a *Levy cycle* if for all  $j = 1, \ldots, m$ , the curve  $\gamma_{j-1}$  is homotopic to a component  $\gamma'_j$  of  $F^{-1}(\gamma_j)$  rel  $P_f$ , and  $F|_{\gamma'_j}: \gamma'_j \to \gamma_j$  is a homeomorphism, that is, is of degree 1. It can be shown readily that any Levy cycle may be completed to a Thurston obstruction ([2]).

In our Thurston obstruction  $\Gamma$ , curves are either periodic under  $\hat{f}$  or preperiodic. We may organize  $f_{\Gamma}$  as a block square matrix according to the periodic cycles, and the preperiodic curves. Moreover, note that  $(f)_{\Gamma}^k = (f_{\Gamma})^k$  and  $\widehat{f^k} = \hat{f}^k$ . By taking a high enough iterate of f, so that all periodic curves under  $\hat{f}$  are fixed by  $f^k$  and all preperiodic curves are mapped into the set of periodic ones, we get that  $f_{\Gamma}^k$  has upper triangular block form

$$\begin{bmatrix} D & 0 \\ A & 0 \end{bmatrix}$$

where D is diagonal. It is sufficient then to consider the eigenvalues of D, that is, its diagonal entries; but each is a product of factors of the form  $1/d_{ij}$  for curves in a cycle under  $\hat{f}$ . Then  $\Gamma$  is an obstruction only if at least one of these cycles under  $\hat{f}$  consists entirely of degree 1 mappings, that is, a Levy cycle. Hence:

**Theorem 3.1.** A polynomial-like postcritically finite topological branched cover  $f: \mathbb{R}^2 \to \mathbb{R}^2$  has a Thurston obstruction if and only if it has a Levy cycle.

Moreover, by the arguments preceding Lemma 2.1, this Levy cycle corresponds to a cycle of disks bounded by these curves and homeomorphisms between them, up to isotopy. In the notation of [2], this corresponds to a degenerate Levy cycle.

Proof of the main theorem. Recall the hypothesis that all critical orbits are periodic. As each  $\gamma_i \in \Gamma$  will enclose at least one critical point in its cycle, the degree of the mapping cannot be one, so that there can be no Levy cycle.  $\square$ 

The proof strategy above in fact works even under the weaker hypothesis that all cycles in  $P_f$  contain a critical point.

## References

- [1] A. Douady and J. Hubbard, A proof of Thurston's topological characterization of rational functions, Acta Math. 171 (1993), 263-297.
- [2] T. Lei, *Matings of quadratic polynomials*, Ergodic Theory & Dynamical Systems **12** (1992), 589–620.