Chap 28: Fonctions de plusieurs variables

Quand E sera un espace vectoriel, ce sera un \mathbb{R} – espace vectoriel

I. Introduction à la topologie

E un ensemble. Une distance sur E est une application $d \in \mathfrak{F}(E \times E, \mathbb{R}_+)$ vérifiant :

- $\forall (x, y) \in E^2$ d(x, y) = d(y, x)
- (symétrie)
- $-\forall (x,y) \in E^2$ $d(x,y) = 0 \Leftrightarrow y = x$ (séparation des points)

- $-\forall (x, y, z) \in E^3$ $d(x, z) \le d(x, y) + d(y, z)$ (inégalité triangulaire)

(E,d) est alors un espace métrique

(E,N) espace vectoriel normé. $d \begin{cases} E \times E \to \mathbb{R} \\ (x,y) \mapsto N(x-y) \end{cases}$ est une distance

$$E = \mathbb{R}^{n} \quad \forall p \geq 1 \quad N_{p} \begin{cases} \mathbb{R}^{n} & \to \mathbb{R}_{+} \\ x = \begin{bmatrix} x_{1} \\ x_{n} \end{bmatrix} \mapsto \left(\sum_{j=1}^{n} |x_{j}|^{p} \right)^{\frac{1}{p}} & N_{\infty} \begin{cases} \mathbb{R}^{n} & \to \mathbb{R}_{+} \\ x = \begin{bmatrix} x_{1} \\ x_{n} \end{bmatrix} \mapsto \max_{j \in \mathbb{N}_{n}} |x_{j}| \end{cases} \text{ sont des normes}$$

$$E = \mathcal{C}^{0}([a,b],\mathbb{R}) \quad \forall p \geq 1 \quad N_{p} \begin{cases} E \to \mathbb{R}_{+} \\ f \mapsto \left(\int_{a}^{b} |f(t)|^{p} dt \right)^{\frac{1}{p}} & N_{\infty} \begin{cases} E \to \mathbb{R}_{+} \\ f \mapsto \sup_{t \in [a,b]} |f(t)| \end{cases} \text{ sont des normes}$$

$$E = \mathcal{C}^{0}([a,b],\mathbb{R}) \quad \forall p \ge 1 \quad N_{p} \begin{cases} E \to \mathbb{R}_{+} \\ f \mapsto \left(\int_{a}^{b} |f(t)|^{p} \ dt \right)^{\frac{1}{p}} \end{cases} \qquad N_{\infty} \begin{cases} E \to \mathbb{R}_{+} \\ f \mapsto \sup_{t \in [a,b]} |f(t)| \text{ sont des normes} \end{cases}$$

(E,d) espace métrique $a \in E, r > 0$

La boule ouverte de centre a et de rayon r est $\Re(a,r) = \{y \in E / d(y,a) < r\}$

La boule fermée de centre a et de rayon r est $\Re(a,r) = \{ y \in E / d(y,a) \le r \}$

 $\Omega \in E$ On dit que Ω est ouvert dans E si $\forall a \in \Omega, \exists r > 0 \text{ tq } \Re(a, r) \subset \Omega$

 $\forall a \in E, \forall r > 0$, la boule $\mathfrak{G}(a,r)$ est ouverte

Une union quelconque d'ouverts est un ouvert

Une intersection finie d'ouverts est un ouvert

 \emptyset est un ouvert et E est un ouvert

(E,T) où $T = \{\Omega \subset E, \Omega \text{ ouvert de } E\}$ avec les propriétés ci-dessus définit une topologie

Preuve: pour l'intersection, on prend le min des rayons possibles pour avoir une boule dans chaque ouvert

Une intersection quelconque d'ouverts n'est pas toujours un ouvert : $\bigcap_{n} \left| -\frac{1}{n}; \frac{1}{n} \right| = \{0\}$

 $F \subset E$ (E espace métrique) F est fermé $si \ E \setminus F$ est ouvert

 $\forall a \in E, \forall r > 0, \overline{\mathfrak{B}}(a,r)$ est fermée

 \emptyset est fermé, E est fermé

Une union finie de fermés est un fermé

Une intersection quelconque de fermés est un fermé

$$\begin{split} (E,d) \text{ espace m\'etrique} & \quad (u_n)_{n\in\mathbb{N}} \in E^{\mathbb{N}} \quad l \in E \quad \text{ On dit que la suite admet comme limite l si} \\ \forall \, \varepsilon > 0, \exists N_0 \in \mathbb{N}, \forall n \geq N_0, \qquad d(u_n,l) \leq \varepsilon \qquad (c\`{a}d \quad u_n \in \mathfrak{B}(l,\varepsilon)) \end{split}$$

 $(u_n)_n \in E^{\mathbb{N}}$ Si $(u_n)_n$ admet une limite, alors celle ci est unique On dit que $(u_n)_n$ converge vers l

 N_1 et N_2 deux normes sur E On dit que N_1 est équivalente à N_2 s'il existe $(\alpha,\beta) \in \mathbb{R}^2$ tq $\forall v \in E, \alpha N_2(v) \leq N_1(v) \leq \beta N_2(v)$ C'est une relation d'équivalence

 $N_1 \text{ et } N_2 \text{ deux normes sur } E \text{ Si } \exists \alpha > 0 \text{ tq } \forall v \in E, \quad N_1(v) \leq \alpha N_2(v) \Rightarrow \forall a \in E, \forall r > 0, \underbrace{\mathfrak{G}_2(a,r)}_{\text{pour } N_1} \subset \underbrace{\mathfrak{G}_1(a,\alpha r)}_{\text{pour } N_1}$

 N_1 et N_2 deux normes équivalentes sur E définissent les mêmes ouverts (donc la même topologie)

 N_1 et N_2 deux normes équivalentes définissent les mêmes suites convergentes :

 $\forall (u_n) \in E^n, \forall l \in E, \quad (u_n)_n \text{ converge pour } N_1 \text{ ssi } (u_n) \text{ converge pour } N_2$

 $a \in E$ Un voisinage de a est un ouvert de E contenant a

 $(u_n)_{n\in\mathbb{N}}\in E^\mathbb{N}$ converge vers $l\in E$ ssi $\forall V$ voisinage de l, il existe $n_0\in\mathbb{N}$ tq $\forall n\geq N_0, u_n\in V$ Ω est un ouvert ssi Ω est un voisinage de chacun de ses points

 $A \subset E$ Il existe un unique plus grand ouvert inclus dans A: c'est l'intérieur de A, noté $\overset{.}{A}$ Il existe un unique plus petit fermé contenant A: c'est l'adhérence de A, noté $\overset{.}{A}$

(E,d) espace métrique $A \subset E$ On a équivalence entre :

- $(i) x \in \overline{A}$
- $(ii) \ \forall r > 0, \exists a \in A \cap \mathfrak{B}(x,r)$
- (iii) ∀V voisinage de x, $\exists a \in A \cap V$
- $(iv) \exists (a_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}} \text{ tq } \lim_{n \to +\infty} a_n = x$

 $\begin{aligned} & \textbf{Preuve}: (ii) \Rightarrow (iv) \ r_n = \frac{1}{n}, a_n \in \mathfrak{B}\bigg(x, \frac{1}{n}\bigg) \quad (i) \Rightarrow (ii) \ \text{contr.}: \ \exists r > 0, \forall a \in A, a \notin \mathfrak{B}(x, r) \\ & \Rightarrow A \subset F_0 = E \setminus \mathfrak{B}(x, r) \ \text{ferm\'e} \supset \overline{A} \quad (ii) \Rightarrow (i) \ \text{contr}: \ x \notin \overline{A} \Rightarrow x \in E \setminus \overline{A} \ \text{ouvert} \Rightarrow \exists r > 0, \mathfrak{B}(x, r) \cap \overline{A} = \varnothing \end{aligned}$

(E,d) espace métrique $A \subset E$ $\forall x \in E$, on a équivalence entre :

- $(i) x \in \dot{A}$
- $(ii) \exists r > 0, \mathfrak{B}(x,r) \subset A$
- $(iii) \exists V$ voisinage de $x, V \subset A$

 $\forall (A,B) \subset E \quad \dot{A} \subset A \subset \overline{A} \qquad A \subset B \Rightarrow \begin{cases} \dot{A} \subset \dot{B} \\ \overline{A} \subset \overline{B} \end{cases} \qquad \begin{cases} A = \dot{A} \text{ ssi } A \text{ ouvert} \\ A = \overline{A} \text{ ssi } A \text{ ferm\'e} \end{cases} \begin{cases} \overline{\overline{A}} = \overline{A} \\ \dot{A} = \dot{A} \end{cases} \qquad \begin{cases} \dot{A} \cup \dot{B} \subset \overline{A} \cup \overline{B} \\ \overline{A} \cap \overline{B} \subset \overline{A} \cap \overline{B} \end{cases}$

La frontière de $A \subset E$ est $Fr(A) = \partial A = \overline{A} \setminus \dot{A}$

 $A \subset E$ est dense dans E si $\overline{A} = E$

On a équivalence entre : -A est dense dans E

 $-\forall x_0 \in E, \forall r > 0, \Re(x,r) \cap A \neq \emptyset$

- $\forall x_0 \in E$, $\exists (a_n)_{n \in \mathbb{N}} \in A^n$ telle que $\lim_{n \to +\infty} a_n = x_0$

 $K \subset E$ est compact si on peut extraire de toute suite $(u_n)_n \in K^{\mathbb{N}}$ une sous-suite convergente dans K

Un compact K est nécessairement fermé

 $\textbf{Preuve}: \text{On prend } (u_n) \in K^{\mathbb{N}} \text{ CV vers } x_0 \in \overline{K} \text{, } K \text{ compact} \Longrightarrow \text{ss-suite } CV \text{ dans } K \text{ + unicit\'e limite}$

(E,N) ev normé. On dit que $A\subset E$ est borné si $\exists R>0$ tel que $A\subset \mathfrak{B}(0_{_E},\mathbb{R})$

(E,N) ev normé. Si $K \subset E$ est compact, alors K est borné

$$x_n \xrightarrow[n \to \infty]{} l \Rightarrow d(x_n, l) \xrightarrow[n \to \infty]{} 0$$
 $x_n \xrightarrow[n \to \infty]{} l \Rightarrow N(x_n) \xrightarrow[n \to \infty]{} N(l)$

 $E \text{ ev de dim finie, de base } \mathfrak{B}_0 = (e_1...e_n) \text{, muni de la norme } N_{\scriptscriptstyle{\infty}} : \sum_{i=1}^n x_j e_j \mapsto \max_{j \in \mathbb{N}_n} |\, x_j\,|$

Pour cette norme, toute partie fermée bornée de *E* est compacte

(FAUX en dimension infinie)

Preuve: $n=1 \Rightarrow Bolzano-Weierstrass \quad n \in \mathbb{N}$: On construit des ss-suites CV pour chaque $e_i + K = \overline{K}$

II. Fonctions continues

Dans le reste du chapitre, (E,d_1) et (F,d_2) sont deux espaces métriques

 $f \in \mathcal{F}(E,F)$ est continue en $a \in E$ si : $\forall \varepsilon > 0$, $\exists \delta > 0$ tel que $f(\mathfrak{F}_1(a,\delta)) \subset \mathfrak{F}_2(f(a),\varepsilon)$

 $\Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0 \text{ tel que } \forall x \in E, d_1(x, a) < \delta \Rightarrow d_2(f(x), f(a)) < \varepsilon$

 $\Leftrightarrow \quad \forall V \text{ voisinage de } f(a) \text{ dans } F, \exists W \text{ voisinage de } a \text{ dans } E \text{ tel que } f(W) \subset V$

Critère séquentiel : $f \in \mathcal{F}(E, F), a \in E$

-f continue en $a \Rightarrow \qquad \forall (x_n)_n \in E^{\mathbb{N}}, \lim_{n \to +\infty} x_n = a \Rightarrow \lim_{n \to +\infty} f(x_n) = f(a)$

-f est continue en a ssi $\forall (x_n)_n \in E^{\mathbb{N}}$ tel que $\lim_{n \to +\infty} x_n = a$, $(f(x_n))_{n \in \mathbb{N}}$ CV

 $\mathbf{Preuve}: \Leftarrow \mathsf{contr.}: f \ \mathsf{non} \ \mathcal{C}^0 \ \mathsf{en} \ a, \exists x_n \in \mathfrak{B}\!\left(a, \frac{1}{n}\right) \mathsf{tq} \ d(f(x_n), a) > \varepsilon \Rightarrow \begin{cases} y_{2n} = a \\ y_{2n+1} = x_n \end{cases} \to a, \ (f(y_n))_n \ \mathsf{non} \ \mathsf{CV}$

 $f \in \mathfrak{F}(E,F)$ est continue sur E si elle est continue en tout point de E. On a équivalence entre :

(i) f continue sur E

 $(ii)\ orall\Omega$ ouvert de F , $f^{-1}(\Omega)$ est ouvert dans E

(iii) orall G fermé de F , $f^{-1}(G)$ est fermé dans E

Preuve: $(i) \Rightarrow (ii) \Omega$ ouvert de $F \Rightarrow \mathfrak{B}(f(a), \rho) \subset \Omega$, $\mathfrak{C}^0 \Rightarrow \delta > 0$, $\mathfrak{B}(a, \delta) \subset f^{-1}(\mathfrak{B}(f(a), \rho) \subset f^{-1}(\Omega))$

 $(ii) \Rightarrow (i)a \in E, \ \varepsilon > 0, a \in V_0 = f^{-1}(\Re(f(a), E)) \text{ouvert} \Rightarrow \delta > 0 \ / \ \Re(a, \delta) \subset V_0 \Rightarrow f(\Re(a, \delta)) \subset \Re(f(a), \varepsilon)$

 (E, N_{∞}) evn de dim FINIE, $f \in \mathcal{L}(E, F)$ est nécessairement continue de E dans F (et même lipschitzienne)

(E,d) métrique, $\mathcal{C}^0(E,\mathbb{R}) = \{ f \in \mathcal{F}(E,\mathbb{R}) \text{ continue} \}$ est une sous-algèbre de $\mathcal{F}(E,\mathbb{R})$

$$\varphi_j : \begin{cases} E & \to \mathbb{R} \\ \sum_{j=1}^n x_j e_j & \mapsto x_j \end{cases} \text{ est continue} \Rightarrow \det \begin{cases} \mathfrak{N}_n(\mathbb{R}) & \to \mathbb{R} \\ A = (a_{ij})_{i,j} & \mapsto \det(A) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{j=1}^n a_{j \, \sigma(j)} \end{cases} \text{ est continue}$$

$$Gl_n(\mathbb{R}) = \text{d} \ \ \text{te}^1(\mathbb{R}^*) \text{ est ouvert dans } \mathfrak{N}_n(\mathbb{R})$$

L'image d'un compact par une application continue est un compact

On dit que (E,d) est complet si toute suite de Cauchy $(x_n)_n \in E^n$ est convergente (dans E)

III. Cas de la dimension finie

Dans cette partie, E est un $\mathbb{R} - ev$ de dimension finie

$$\mathfrak{B}_0 = (e_1...e_n)$$
 base de E, N_∞ la norme associée $\forall a \in E, \forall r > 0, \overline{B}(a,r)$ est compacte

 $\mathfrak{B}_0=(e_1...e_n)$ base de E, N_{∞} la norme associée. Soit N une autre norme sur E. Alors N et N_{∞} sont équivalentes

$$\begin{aligned} & \textbf{Preuve}: *N(v) \leq \sum_{j=1}^{n} N(x_{j}e_{j}) = \sum_{j=1}^{n} \mid x_{j} \mid N(e_{j}) \leq \left(\sum_{j=1}^{n} N(e_{j})\right) \sup_{j \in \mathbb{N}_{n}} \mid p_{j} \mid = KN_{\infty}(v) \end{aligned} \\ & *\varphi \begin{cases} (E, N_{\infty}) \to (E, N) \\ v & \mapsto v \end{cases} \\ & S = \mathbb{S}_{\infty}^{n}(0,1) = \{v \in E, N_{\infty}(v) = 1\} \text{ borné, fermé } (mq \text{ suite } cv \in S^{\mathbb{N}}...) \to \text{Compact } \varphi \in \mathcal{C}^{0} \Rightarrow \varphi(S) \text{ compact } Mq \; \exists k > 0, \forall v \in \varphi(S), N(v) \geq k \; \text{ p.abs } (k_{n} = \frac{1}{n} \Rightarrow 0_{E} \in \varphi(S), \text{ imp)} \end{aligned} \\ & \Rightarrow \frac{u}{N_{\infty}(u)} \in S \Rightarrow \frac{N(u)}{N_{\infty}(u)} \geq k \end{aligned}$$

Toutes les normes sur un \mathbb{R} – ev de dimension finie sont équivalentes

 $(E,N),(F,N_0)$ ev normés de dimension finie, N_2 une autre norme sur E:

- les compacts de E sont les parties fermées normées
- $-(x_n)_n \in E^n$ $(x_n)_n \xrightarrow{n \to \infty} l \in E \text{ pour } N \text{ ssi } (x_n)_n \xrightarrow{n \to \infty} l \in E \text{ pour } N_2$
- $-f \in \mathfrak{F}(E,F)$ f continue sur (E,N) ssif continue sur (E,N_2)
- toute application linéaire $\varphi:(E,N) \to (F,N_0)$ est continue
- − tout sev F de dimension finie est fermé dans E
- tout (E,N) ev normé de dimension finie est complet

$$N_1,N_2$$
 deux normes. On a équivalence entre :
$$(i) \ \varphi = Id_E : \begin{cases} (E,N_1) \to (E,N_2) \\ v & \mapsto v \end{cases} \text{ continue}$$

$$(ii) \ \exists k > 0, \forall v \in E, N_2(v) \leq kN_1(v)$$

$$\begin{aligned} & \textbf{Preuve}: (ii) \Rightarrow (i) \ N_2(\varphi(u) - \varphi(v)) = N_2(u - v) \leq k N_1(u - v) \Rightarrow k - lips. \qquad (i) \Rightarrow (ii) \ \varphi \ \mathcal{C}^0, \Omega = B_{N_2}(0, 1) \\ & \Rightarrow \varphi^{-1}(\Omega) \ \text{ouvert ds} \ (E, N_1) \Rightarrow r \ / \ B_{N_1}(0, r) \subset \varphi^{-1}(\Omega) \Rightarrow \forall v \neq 0_E, u = \frac{r}{2} \frac{v}{N_1(v)} \subset B_{N_1}(0, r) \Rightarrow N_2(u) \leq 1... \end{aligned}$$

 $(E,d_1),(F,d_2),(G,d_3)$ esp. métriques, $f\in \mathfrak{F}(E,F),g\in \mathfrak{F}(F,G),f$ \mathcal{C}^0 en a et g \mathcal{C}^0 en $f(a)\Rightarrow g\circ f$ \mathcal{C}^0 en a

IV. Continuité de fonctions de plusieurs variables

 $E = \mathbb{R}^n$ muni d'une norme quelconque, Ω sera un ouvert de E

$$\Omega \subset \mathbb{R}^n$$
, $f \in \mathfrak{F}(\Omega, \mathbb{R})$, $a = (a_1 ... a_n) \in \Omega$, $r > 0$ tq $\mathfrak{B}_{\infty}(a, r) \subset \Omega$

On appelle $i^{\grave{e}me}$ application partielle de f en a l'application $f^i \begin{cases}]a-r; a+r[\to \mathbb{R} \\ x \mapsto f(a_1...a_{i-1}, x, a_{i+1}...a_n) \end{cases}$

 $f \in \mathcal{F}(\Omega, \mathbb{R})$ est continue en $a = (a_1 ... a_n) \in \Omega \Rightarrow \forall i \in \mathbb{N}_n, f^i$ est continue en a_i

/!\ La réciproque est fausse /!\

Méthodes pour montrer la (dis)continuité : prendre soit une suite $\left(p.ex.\left(\frac{1}{n};\frac{1}{n}\right)_{n\in\mathbb{N}}\right)$, soit $\left(r\cos\theta\right)$

 $f \begin{cases} \Omega \to \mathbb{R}^p \\ v \mapsto f(v) = (f_1(v)...f_p(v)) \end{cases} \in \mathcal{F}(\Omega, \mathbb{R}^p) \text{ est continue en } a \in \Omega \text{ } ssif_1...f_p \in \mathcal{F}(\Omega, \mathbb{R}) \text{ sont } \mathcal{C}^0 \text{ en } a \text{ } (prendre N_{\infty}) \end{cases}$

 $f_1...f_p$ sont les applications coordonnées de f

 $\Omega \subset \mathbb{R}^n$, $\mathcal{C}^0(\Omega, \mathbb{R}^p)$ est un sev de $\mathfrak{F}(\Omega, \mathbb{R}^p)$

 $\mathcal{C}^0(\Omega,\mathbb{R})$ est une ss-algèbre de $\mathfrak{F}(\Omega,\mathbb{R})$

V. Dérivées partielles, différentiabilité

 $\Omega \subset \mathbb{R}^n$ ouvert, norme $\|.\| \operatorname{sur} \mathbb{R}^n, f \in \mathfrak{F}(\Omega, \mathbb{R})$

 $f \in \mathcal{F}(\Omega, \mathbb{R}), \, a \in \Omega, \, r > 0 \, \operatorname{tq} \, \mathfrak{B}(a, r) \subset \Omega, \, h \in \mathbb{R}^n \{ 0_{\mathbb{R}^n} \} \qquad \qquad \delta = \frac{r}{\|h\|} \qquad \qquad \varphi_h \begin{cases}] - \delta, \delta [\to \mathbb{R} \\ t & \mapsto f(a + th) \end{cases}$

On dit que f est dérivable en a selon le vecteur h si $\varphi_{\!\scriptscriptstyle h}$ est dérivable en 0.

On note $D_h f(a) = \varphi_h'(0)$ la dérivée de f en a selon h

 $\mathfrak{B}=(e_1...e_n)$ base canonique de \mathbb{R}^n , $(x_1...x_n)$ coordonnées d'un vecteur dans \mathfrak{B} . $f\in\mathfrak{F}(\Omega,\mathbb{R}),a\in\Omega$

On dit que f admet une j^e dérivée partielle en a si $\frac{\partial f}{\partial x_i}(a) = D_{e_j}f(a) = \varphi_{e_j}'(0)$ est défini

f admet une j^e dérivée partielle en a ssi l'application partielle f^i est dérivable en a : $\frac{\partial f}{\partial x_j}(a) = (f^i)'(a)$

f peut admettre des dérivées partielles en a et ne pas être continue en a

f est de classe \mathcal{C}^1 sur Ω si f admet des dérivées partielles en tout point de Ω et que celles ci sont continues $f \in \mathcal{C}^1(\Omega,\mathbb{R})$, $a = (a_1...a_n) \subset \Omega$, r > 0 tq $\mathfrak{G}_{\infty}(a,r) \subset \Omega$,

$$\forall h = (h_1 ... h_n) \in \mathfrak{B}_{\infty}(0, r) \qquad f(a+h) = f(a) + \sum_{j=1}^n \frac{\partial f}{\partial x_j}(a) \times h_j + \|h\| \times \varepsilon(h) \text{ où } \lim_{h \to 0_{\mathbb{R}^n}} \varepsilon(h) = 0$$

Preuve: $(\dim 2:) f(a+h) - f(a) \rightarrow \text{"palier"} f(a_1 + h_1, a_2), f^2: t \mapsto f(a_1 + h_1, t) \in \mathfrak{D}^1(]a_2 - r, a_2 + r[, \mathbb{R})$

 $TAF: c_2 \ \text{tq} \ d(a_2, c_2) < h_2 \ / \ A_2 = f(a_1 + h_1, a_2) - f(a) = \frac{\partial f}{\partial v}(a_1 + h_1, c_2) \times h_2, \ \text{Idem,} \ c_1 \ \text{tq} \ A_1 = \frac{\partial f}{\partial x}(c_1, a_2) h_1$

$$\left| f(a+h) - f(a) - \frac{\partial f}{\partial x}(a) \times h_1 - \frac{\partial f}{\partial y}(a) \times h_2 \right| \leq N_{\infty}(h) \left(\left| \frac{\partial f}{\partial y}(a_1 + h_1, c_2) - \frac{\partial f}{\partial y}(a) \right| + \left| \frac{\partial f}{\partial x}(c_1, a_2) - \frac{\partial f}{\partial x}(a) \right| \right) \xrightarrow{h \to 0} 0$$

$$a\in\Omega, r>0$$
 tq $\mathfrak{B}(a,r)\subset\Omega$ f est différentiable en a si $\exists\,\varphi\in\mathfrak{L}(\mathbb{R}^n,\mathbb{R})$ tel que $\forall\,h\in\mathfrak{B}(0,r), f\,(a+h)=f\,(a)+\varphi(h)+\left\|h\right\|\varepsilon(h)$ où $\lim_{h\to 0}\varepsilon(h)=0$ φ est appelée différentielle de f en a et notée $df\,(a)$ ou $df_{/a}$

Une fonction \mathcal{C}^1 est différentiable en tout point de Ω , et $\forall a \in \Omega$, $df(a): h \mapsto \sum_{j=1}^n \frac{\partial f}{\partial x_j}(a)h_j \in \mathcal{L}(\mathbb{R}^n, \mathbb{R})$

$$df$$
 a un sens : df $\begin{cases} \Omega \mapsto \mathcal{Z}(\mathbb{R}^n, \mathbb{R}) \\ a \mapsto df(a) = df_{/a} \end{cases}$, mais ∂f seul n'a AUCUN SENS

 $f \in \mathcal{F}(\Omega, \mathbb{R})$ diff. en $a \in \Omega \Rightarrow f$ admet des dérivées selon tout vecteur en a, et $\forall h \in \mathbb{R}^n, D_h f(a) = df_{/a}(h)$

$$f \ \text{diff. en } a \Rightarrow f \ \text{admet } n \ \text{dériv. part. en } a \ \frac{\partial f}{\partial x_j}(a) = df_{/a}(e_j) \ df_{/a} : h \mapsto D_h f(a) = \sum_{j=1}^n \frac{\partial f}{\partial x_j}(a) \times h_j$$

 $f \in \mathfrak{F}(\Omega,\mathbb{R}^p)$ est de classe \mathfrak{C}^1 si chacune des $f_j \in \mathfrak{F}(\Omega,\mathbb{R})$ app. coordonées l'est

Chaque f_j admet lui-même n dérivées partielles, et $\frac{\partial f}{\partial x_{\iota}}(a) \in \mathbb{R}^p$

$$f \in \mathcal{F}(\Omega, \mathbb{R}^p)$$
 de classe $\mathcal{C}^1, a \in \Omega, r > 0 / \mathcal{B}(a, r) \subset \Omega$. $\forall h \in \mathcal{B}(0, r), f(a + h) = f(a) + \sum_{k=1}^n h_k \frac{\partial f}{\partial x_k}(a) + \|h\|\underbrace{\mathcal{E}(h)}_{\underset{k \neq 0}{\longrightarrow} 0}$

$$\text{La jacobienne de } f \text{ en } a : Jac(f)(a) = \mathfrak{Mat}_{Can}(df_{/a}) = \left(\frac{\partial f_i}{\partial x_j}(a)\right)_{i \in \mathbb{N}_p, j \in \mathbb{N}_n} \in \mathfrak{M}_{pn}(\mathbb{R}) \quad \Rightarrow df_{/a}(h) = J \times \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix}$$

$$f \in \mathcal{C}^1(\Omega,\mathbb{R}), \ \gamma \in \mathcal{C}^1(I,\mathbb{R}) \Rightarrow g \begin{cases} I \to \mathbb{R} \\ t \mapsto f(\gamma(t)) \end{cases} \text{ dér. sur } I \text{ et } \forall t_0 \in I : g'(t_0) = df_{/\gamma(t_0)}(\gamma'(t_0)) = \sum_{j=1}^n \frac{\partial f}{\partial x_j}(\gamma(t_0)) \times \gamma_j'(t_0) \end{cases}$$

La condition f différentiable en $a=\gamma(t_0)$ et γ dérivable en t_0 est suffisante pour ce théorème

$$\begin{split} U \subset \mathbb{R}^q, \Omega \subset \mathbb{R}^n. f &\in \mathcal{C}^1(\Omega, \mathbb{R}^p), \varphi \in \mathcal{C}^1(U, \Omega), \ (y_1...y_q) \ \text{et} \ (x_1...x_n) \ \text{les coordonnées dans} \ \mathbb{R}^q \ \text{et} \ \mathbb{R}^n \\ &\Rightarrow f \circ \varphi \in \mathcal{C}^1(U, \mathbb{R}^p), \ \text{et} \ \forall j \in \mathbb{N}_q, \forall b \in U \ \frac{d(f \circ \varphi)}{dy_j}(b) = \sum_{k=1}^n \frac{\partial f}{\partial x_k}(\varphi(b)) \times \frac{\partial \varphi_k}{\partial y_j}(b) = df_{/\varphi(b)}(d\varphi_{/b}(f_j)) \end{split}$$
 C'est à dire, $\forall b \in U, \forall v \in \mathbb{R}^q, \ d(f \circ \varphi)_{/b} = df_{/\varphi(b)} \circ d\varphi_{/b}$

On a la même propriété en remplaçant tous les " \mathcal{C}^{1} " par des "différentiable"

$$f \in \mathfrak{L}(\mathbb{R}^n, \mathbb{R}) \Rightarrow f \text{ est } \mathcal{C}^1 \text{ et } \forall a \in \mathbb{R}^n$$
 , $df_{/a} = f$

On note
$$dx_j = \varphi_j \begin{cases} \mathbb{R}^n \to \mathbb{R} \\ \binom{x_1}{x_n} \to x_j \end{cases}$$
 $f \in \mathcal{F}(\Omega, \mathbb{R}) \text{ diff en } a \in \Omega \Rightarrow df_{/a} = \sum_{j=1}^n \frac{\partial f}{\partial x_j}(a) dx_j$

 $Jac(f \circ \varphi)(b) = Jac(f)(\varphi(b)) \times Jac(\varphi)(b)$

$$U,\Omega \subset \mathbb{R}^n \text{ deux ouverts.} \ f \in \mathcal{C}^1(\Omega,\mathbb{R}^n). f \text{ est un } \mathcal{C}^1 - \text{diff\'eomorphisme de } \Omega \text{ sur } U \text{ si}$$

$$f \text{ est bijective de } \Omega \text{ sur } U \text{ et } f^{-1} \text{ est } \mathcal{C}^1 \text{ de } U \text{ sur } \Omega \Rightarrow df_{/a} \in Gl(\mathbb{R}^n), \text{ et } (df_{/a})^{-1} = d(f^{-1})_{/f(a)}$$

$$\varphi\begin{cases} \mathbb{R}_{+}^{*}\times]-\pi,\pi[& \to \mathbb{R}^{2}\setminus\{(x,0),x\in\mathbb{R}_{-}\}\\ (r,\theta) & \mapsto (r\cos\theta,r\sin\theta) \end{cases} \quad \text{est un } \mathcal{C}^{1}-\text{diff\'eomorphisme,}$$

$$\varphi^{-1}(x,y)\mapsto \left(\sqrt{x^{2}+y^{2}},2\arctan\left(\frac{y}{x+\sqrt{x^{2}+y^{2}}}\right)\right)$$

$$Jac(\varphi)(r,\theta)=\begin{pmatrix} \cos\theta & -r\sin\theta\\ \sin\theta & r\cos\theta \end{pmatrix} \quad Jac(\varphi^{-1})(r,\theta)=\begin{pmatrix} \cos\theta & \sin\theta\\ -\frac{\sin\theta}{r} & \frac{\cos\theta}{r} \end{pmatrix} \quad Jac(\varphi^{-1})(x,y)=\begin{pmatrix} \frac{x}{\sqrt{x^{2}+y^{2}}} & \frac{y}{\sqrt{x^{2}+y^{2}}}\\ \frac{-y}{x^{2}+y^{2}} & \frac{x}{x^{2}+y^{2}} \end{pmatrix}$$

$$f\in\mathcal{C}^{1}(\Omega,\mathbb{R}) \quad \tilde{f}=f\circ\varphi \quad \begin{cases} \frac{\partial \tilde{f}}{\partial r}(r,\theta)=\cos\theta & \frac{\partial f}{\partial x}(r\cos\theta,r\sin\theta)+\sin\theta & \frac{\partial f}{\partial y}(r\cos\theta,r\sin\theta)\\ \frac{\partial \tilde{f}}{\partial \theta}(r,\theta)=-r\sin\theta & \frac{\partial f}{\partial x}(r\cos\theta,r\sin\theta)+r\cos\theta & \frac{\partial f}{\partial y}(r\cos\theta,r\sin\theta) \end{cases}$$

VI. Dérivées d'ordre supérieur

On note
$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) = \frac{\partial^2 f}{\partial x_j \partial x_i} \text{ la } j^e \text{ dérivée partielle de } \frac{\partial f}{\partial x_i} \text{ (si elle existe), et } \frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i^2} \text{ Si } df : a \mapsto df_{/a} \text{ est différentiable } : d^2 f_{/a} = d(df)_{/a} \in \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \mathbb{R})) = \{f \text{ bilin de } \mathbb{R}^n\}$$

 $f\in\mathcal{C}^1(\Omega,\mathbb{R})$ avec $\Omega\subset\mathbb{R}^n$ est de classe \mathcal{C}^2 si elle admet n^2 dérivées partielles d'ordre 2 en tout point, et que ces n^2 fonctions sont toutes \mathcal{C}^0 sur Ω

$$f \in \mathcal{C}^2(\Omega, \mathbb{R}) \Rightarrow \forall (i, j) \in [[1, n]]^2, \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

$$\begin{aligned} & \textbf{Preuve}: \Delta_{h,k} = f(a+h,b+k) - f(a+h,b) - f(a,b+k) + f(a,b) & \varphi_h: y \mapsto f(a+h,y) - f(a,y) \\ & f \ \mathcal{C}^1 \Rightarrow \textit{EAF}: c_{h,k} \ / \ \Delta_{h,k} = \varphi'_h(c_{h,k}) \times k = \left(\frac{\partial f}{\partial y}(a+h,c_{h,k}) - \frac{\partial f}{\partial y}(a,c_{h,k})\right) k & \frac{\partial f}{\partial y} \ \mathcal{C}^1 \Rightarrow \textit{EAF}: \alpha_{h,k} \ \mathsf{tq} \\ & \Delta_{h,k} = \left(\frac{\partial^2 f}{\partial x \partial y}(a_{h,k},c_{h,k}) \times h\right) \times k, f \ \mathcal{C}^2 \Rightarrow \lim_{x \to 0} \frac{\Delta_{h,k}}{h} = \frac{\partial^2 f}{\partial x \partial y}(a,b) \ \mathsf{Idem} \ \mathsf{avec} \ \psi_k: x \mapsto f(x,b+k) - f(x,h) \end{aligned}$$

Si elles existent, on définit de même $\frac{\partial^p f}{\partial x_{i_p}...\partial x_{i_l}}$ (l'ordre est important, sauf si f est de classe \mathcal{C}^p)

$$f \in \mathcal{C}^2(\Omega, \mathbb{R})$$
 où $\Omega \subset \mathbb{R}^n$ $\forall a \in \Omega$, la Hessienne de f en a :
$$Hess(f)(a) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{(i,j) \in \mathbb{N}^{-2}} \qquad f \text{ est } \mathcal{C}^2 \Rightarrow Hess(f)(a) \text{ est symétrique}$$

$$\forall (i,j), \frac{\partial^2 f}{\partial x_i \partial x_j}(a) = \partial^2 f_{/a}(e_j,e_i) \Rightarrow Hess(f)(a) = \mathfrak{Mat}_{Can}(d^2 f_{/a})$$

VII. Etude d'extrema

 $f\in \mathfrak{F}(\Omega,\mathbb{R})$ différentiable sur Ω <u>ouvert</u> de \mathbb{R}^n . Si f a un extremum local en $a\in \Omega, df_{/a}=0$ $_{\mathfrak{L}(\mathbb{R}^n,\mathbb{R}^n)}$

Si on recherche les extrema de f sur A quelconque, cette condition n'est valable que sur A Dans tous les cas, il faudra valider les candidats (max, min, point selle...)

On montrera plus tard : Toute matrice symétrique réelle $M \in \mathfrak{M}_n(\mathbb{R})$ est diagonalisable en BON $c\grave{a}d\ \exists P \in \mathfrak{O}_n(\mathbb{R})$ et D matrice diagonale telle que $M = PDP^{-1} = PD^{T}P$

$$\begin{split} f \in & \mathcal{C}^2(\Omega, \mathbb{R}) \text{ où } \Omega \subset \mathbb{R}^2. \text{ a point critique de } f \text{ } (df_{/a} = 0_{L(\mathbb{R}^2, \mathbb{R})}) \\ H = & Hess(f)(a) \text{ sym} \Rightarrow (w_1, w_2) \text{ BON tq } \mathfrak{M}_{at_{(w_1, w_2)}}(d^2f_{/a}) = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \\ \det(H) < 0 \Rightarrow \text{point selle} & \det(H) = 0 \Rightarrow \text{Inconnu} \\ \det(H) > 0 \Rightarrow \begin{cases} \operatorname{tr}(H) > 0 \text{ ou } \frac{\partial^2 f}{\partial x^2}(a) > 0 \Rightarrow \text{minimum} \\ \operatorname{tr}(H) < 0 \text{ ou } \frac{\partial^2 f}{\partial x^2}(a) < 0 \Rightarrow \text{maximum} \end{cases} \end{split}$$

$$f \in \mathcal{C}^1(\Omega, \mathbb{R}) \text{ avec } \Omega \in \mathbb{R}^n \text{ } Grad(f)(a) = \nabla f(a) = \begin{bmatrix} \frac{\delta f}{\partial x_1}(a) \\ \vdots \\ \frac{\partial f}{\partial x_n}(a) \end{bmatrix}$$
 $df_{/a}(h) = \langle \nabla f(a) \mid h \rangle$

VIII. Equations aux dérivées partielles

$$\Omega \subset \mathbb{R}^n \, / \, \Omega = \prod_{j=1}^n I_j \text{ avec les } I_j \text{ intervalles de } \mathbb{R}.$$

$$\left\{ f \in \mathcal{C}^1(\Omega, \mathbb{R}) \, / \, \frac{\partial f}{\partial x_n} = 0 \right\} = \left\{ f \in \mathcal{C}^1(\Omega, \mathbb{R}) \, / \, \forall (x_1 ... x_n) \in \Omega, f(x_1 ... x_n) = h(x_1 ... x_{n-1}) \text{ avec } h \in \mathcal{C}^1\left(\prod_{j=1}^{n-1} I_j, \mathbb{R}\right) \right\}$$
 Equation des cordes vibrantes :
$$\left\{ f \in \mathcal{C}^2(\mathbb{R}^2, \mathbb{R}) \, / \, \frac{\partial^2 f}{\partial x^2} - \frac{\partial^2 f}{\partial t^2} = 0 \right\} = \left\{ f: (x,y) \mapsto A(x+y) + B(x-y) \, / \, A, B \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}) \right\}$$

Méthodes : passage en coordonnées polaires, changement de variables pour se ramener à prod. croisé...

$$f \in \mathcal{C}^2(\Omega, \mathbb{R}) \text{ avec } \Omega \subset \mathbb{R}^n \quad \text{ Le Laplacien de } f : \Delta f \begin{cases} \Omega \to \mathbb{R} \\ a \mapsto \sum_{j=1}^n \frac{\partial^2 f}{\partial x_j^2}(a) \end{cases}$$
 En coordonées polaires :
$$\Delta f = \frac{\partial^2 \tilde{f}}{\partial r^2}(r,\theta) + \frac{1}{r} \frac{\partial \tilde{f}}{\partial r}(r,\theta) + \frac{1}{r^2} \frac{\partial^2 \tilde{f}}{\partial \theta^2}(r,\theta) \quad \text{(où } \tilde{f} : (r,\theta) \mapsto f(r \text{ co } \theta, r \sin \theta)\text{)}$$