Data Analysis & Machine Learning: Lecture 10

Dr. Conor D. Rankine

Learning Objectives

At the end of this lecture, you'll be able to answer questions like:

- Why are fully-connected neural networks not equipped to handle image data for object classification/recognition tasks?
- What is a convolutional neural network?
- What are convolution and pooling operations, and how are they applied?
- What are detection and (semantic /instance) segmentation tasks?

Working With Image Data

Greyscale:

o $N \times M$ -dimensional arrays X_i of pixel intensities $x^{(p,q)}$

$$\mathbf{X}_i = egin{bmatrix} x^{(1,1)} & x^{(1,2)} & \cdots & x^{(1,M)} \ x^{(2,1)} & x^{(2,2)} & \cdots & x^{(2,M)} \ dots & dots & \ddots & dots \ x^{(N,1)} & x^{(N,2)} & \cdots & x^{(N,M)} \end{bmatrix}$$

Working With Image Data

Color (RGB):

o $N \times M$ -dimensional arrays \mathbf{X}_i of red, green, and blue (RGB) pixel intensities $\mathbf{x}^{(p,q)}$

$$\mathbf{X}_i = egin{bmatrix} \mathbf{x}^{(1,1)} & \mathbf{x}^{(1,2)} & \cdots & \mathbf{x}^{(1,M)} \ \mathbf{x}^{(2,1)} & \mathbf{x}^{(2.2)} & \cdots & \mathbf{x}^{(2,M)} \ dots & dots & \ddots & dots \ \mathbf{x}^{(N,1)} & \mathbf{x}^{(N,2)} & \cdots & \mathbf{x}^{(N,M)} \end{bmatrix}$$

$$\mathbf{x}^{(p,q)} = \left\{ x_R^{(p,q)}, x_G^{(p,q)}, x_B^{(p,q)}
ight\}$$

Working With Image Data

Preprocessing:

- fully-connected MLPs do not accept
 N-dimensional (N-D; N>1) array inputs
- N-D array inputs have to be flattened to
 1-D arrays

```
>>> xi.shape
(128, 128)
>>> xi = xi.flatten()
>>> xi.shape
(16384)
```


$$\mathbf{X}_i = egin{bmatrix} x^{(1,1)} & \cdots & x^{(1,M)} \ dots & \ddots & dots \ x^{(N,1)} & \cdots & x^{(N,M)} \end{bmatrix} \Rightarrow \left\{ x^{(1,1)}, x^{(1,2)}, \dots, x^{(N,M)}
ight\}$$

Image Data and Neural Networks

A fully-connected MLP is not equipped to handle image data for **object classification/recognition**.

Limitations:

- handcoded features are brittle and inextensible to new problem domains;
- parameter scaling with image/layer dimensions is extreme and unfavourable;
- spatial information is destroyed when image data are flattened for input.

Image Data and Neural Networks

There is no concept of spatial information or correlation in a fully-connected MLP.

Swapping two inputs, $x^{(1)}$ and $x^{(2)}$, is equivalent to swapping two rows in the weight matrix, \mathbf{W}_1 .

$$\mathbf{W}_1 = egin{bmatrix} w^{(2,1)} & w^{(2,2)} & \cdots & w^{(2,m)} \ w^{(1,1)} & w^{(1,2)} & \cdots & w^{(1,m)} \ dots & dots & \ddots & dots \ w^{(n,1)} & w^{(n,2)} & \cdots & w^{(n,m)} \end{bmatrix}$$

A **convolutional neural network** (**CNN**) is the base architecture of choice for object classification/recognition.

A CNN (usually) comprises a:

- feature extraction module;
 - convolutional layers;
 - pooling/downsampling layers;
- classification/regression head;
 - fully-connected/dense layers.

Recall the limitations of an MLP for tasks in the object classification/recognition domain:

- handcoded features are brittle and inextensible to new problem domains;
- parameter scaling with image/layer dimensions is extreme and unfavourable;
- spatial information is destroyed when image data are flattened for input.

CNNs address these limitations:

- learned features are extracted from image data directly without handcoded heuristics;
- layers are not dense/fully connected; parameter scaling is favourable as neurons only have patched connections;
- spatial information is preserved as convolution can be carried out over arbitrarily-dimensioned (e.g. 2D, 3D) arrays.

- o a neuron in the k+1th layer of the CNN is only connected to a defined **patch** of neurons in the kth layer of the CNN;
- \circ a patch has a defined size $(n \times m)$;
 - 3×3 is a common choice;
- the k+1th layer is obtained by **rastering** the patch over the kth layer.

- o a neuron in the k+1th layer of the CNN is only connected to a defined **patch** of neurons in the kth layer of the CNN;
- \circ a patch has a defined size $(n \times m)$;
 - 3×3 is a common choice;
- the k+1th layer is obtained by **rastering** the patch over the kth layer.

- o a neuron in the k+1th layer of the CNN is only connected to a defined **patch** of neurons in the kth layer of the CNN;
- a patch has a defined size (n×m);
 - o 3×3 is a common choice;
- the k+1th layer is obtained by **rastering** the patch over the kth layer.

- o a neuron in the k+1th layer of the CNN is only connected to a defined **patch** of neurons in the kth layer of the CNN;
- a patch has a defined size (n×m);
 - o 3×3 is a common choice;
- the k+1th layer is obtained by **rastering** the patch over the kth layer.

An $n \times m$ filter, or convolutional kernel, is applied to each sliding patch to produce the output for the k+1th layer.

This process is called **convolution**.

Filters can be designed for, e.g.:

- sharpening images;
- detecting edges in images;
- ...and many more applications!

Let's imagine we're counting votes: can we classify whether or not an image contains an ' \times '?

Assumptions:

- the images are binary black (-1) and white (1), i.e. not grayscale;
- \circ $\,\,\,\,$ the 'imes' can appear: $\,\,\,$
 - anywhere (translation);
 - in any orientation (rotation);
 - o in any size; or misshapen.

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	1	-1	-1	-1
-1	-1	1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	1	-1	-1
-1	-1	-1	1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

Strategy:

- The common motifs can be used as detection filters.
- It is reasonable to assume that these motifs will occur in any image of an 'X'.
- Detection (or absence) of the common motifs in an image is a feature that is informative for classifying that image.

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	1	-1	-1	-1
-1	-1	1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	1	-1	-1
-1	-1	-1	1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

Convolution:

- 1) slide/raster the filter over the image;
- 2) compute the element-wise multiplication of the patch and the filter;
- 3) sum the result.

$$\sum_{\substack{1 \ 1 \ 1 \ 1}} \frac{1}{1} \frac{1}{1} \frac{1}{1} = 9$$

Convolution:

- slide/raster the filter over the image;
- 2) compute the element-wise multiplication of the patch and the filter;
- 3) sum the result.

$$z_{k+1}^{(p,q)} = \sum_{i=1}^n \sum_{j=1}^m \mathbf{F}^{(i,j)} x_k^{(p+i,q+j)}$$

$$z_{k+1}^{(p,q)} = \sum_{i=1}^n \sum_{j=1}^m \mathbf{F}^{(i,j)} x_k^{(p+i,q+j)}$$

$$z_{k+1}^{(p,q)} = \sum_{i=1}^n \sum_{j=1}^m \mathbf{F}^{(i,j)} x_k^{(p+i,q+j)}$$

$$z_{k+1}^{(p,q)} = \sum_{i=1}^n \sum_{j=1}^m \mathbf{F}^{(i,j)} x_k^{(p+i,q+j)}$$

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

7	-1	1	3	5	-1	3
	· `	-1			1	-1
		9				5
3	3	-3	5	-3	3	3
		1				
-1	1	-1	3	-1	9	-1
3	-1	5	3	1	-1	7

Number of Filters:

- multiple filters are used to extract multiple features (e.g. eyes, noses, mouths, etc.);
- each filter constructs a feature map.

Stride:

 the 'step size' with which the filter slides /rasters over the image.

The output of a convolutional layer is described as a **convolutional volume**:

- the width and height of the convolutional volume are determined by the stride;
 - a larger stride gives a smaller width and height;
- the depth of the convolutional volume is determined by the number of filters;
 - a larger number of filters gives a greater depth.

The dimensions $(h_{k+1}, w_{k+1}, d_{k+1})$ of the k+1th layer can be determined from:

- the number of filters, $N_{\rm F}$;
- the filter stride, s_F ;
- the dimensions, *n*×*m*, of the filters.

$$h_{k+1} = rac{(h_k-n)}{s_{\mathbf{F}}+1} \hspace{1cm} w_{k+1} = rac{(w_k-m)}{s_{\mathbf{F}}+1}$$

Fractional convolutional volumes are not allowed, i.e. h_{k+1} , w_{k+1} , and d_{k+1} have to be integers!

- subsequent convolutional layers operate on the feature maps constructed by previous convolutional layers;
- features are extracted hierarchically.

low-level features (faces) low-level features (cars) high-level features (faces) high-level features (cars)

Nonlinear Activation

After feature extraction by a convolutional layer, a **nonlinear activation function** is applied to the feature maps.

Popular Choices:

rectified linear unit (ReLU):

$$\sigma(z) = \max(0, z)$$

- leaky ReLU
- parametric ReLU

Nonlinear Activation

 σ_{REL}

U

pre-activation feature map

post-activation feature map

Learning Convolutional Filters

Wouldn't it be better if we didn't have to design the filters by hand?

We don't!

 filters are arrays of weights, W; these are the parameters that the CNN learns during the training process.

$$z_{k+1}^{(p,q)} = w_{k+1}^{(0)} + \sum_{i=1}^n \sum_{j=1}^m \mathbf{W}_{k+1}^{(i,j)} x_k^{(p+i,q+j)}$$

 X_{i}

<i>x</i> ^(1,1)	x ^(1,2)	x ^(1,3)	x ^(1,4)	<i>x</i> ^(1,5)
<i>x</i> ^(2,1)	x ^(2,2)	x ^(2,3)	x ^(2,4)	x ^(2,5)
<i>x</i> ^(3,1)	x ^(3,2)	x ^(3,3)	x ^(3,4)	x ^(3,5)
<i>x</i> ^(4,1)	x ^(4,2)	x ^(4,3)	x ^(4,4)	x ^(4,5)
<i>x</i> ^(5,1)	x ^(5,2)	x ^(5,3)	x ^(5,4)	<i>x</i> ^(5,5)

 $+ w^{(0)}$

The Pooling Operation

Pooling is a **downsampling** operation applied after a convolutional layer.

Purpose:

- reducing the dimensionality of feature maps to lower compute requirements;
- enforcing spatial invariance, e.g., to translation/rotation;
- increasing the receptive field of the filters by pooling the feature maps.

The Pooling Operation

Types:

Slide/raster over the patches of an image and output:

- max pooling: the maximum value;
- average pooling: the average value;
- **min pooling:** the minimum value.

A common choice is to use a 2×2 or 3×3 pooling patch with a stride of 2 (if compatible).

Feature Extraction Module:

- comprises:
 - convolutional layers;
 - o pooling/downsampling layers.
- purpose:
 - extracting features from image data directly without handcoded heuristics;
 - expressing non-linearity.

Task-Specific Head:

- comprises:
 - fully-connected/dense layers;
 - other classifiers or regressors, e.g.
 SVMs, logistic regressors, etc.
- purpose:
 - o classification or regression.

Advanced Tasks: Object Detection

An **object detection** task is a mixed classification-regression problem, since we want to identify:

- what the object(s) is/are (classification);
- where the object(s) is/are (regression).

Challenges:

- how do we propose the locations of the object(s)/bounding box(es) in images?
 - (fast/faster) R-CNNs

Advanced Tasks: Segmentation

Segmentation is a pixel-level classification task:

- semantic segmentation: classify pixels into categories without distinguishing between instances of those categories;
- instance segmentation: classify pixels into instances of categories.

