(19) 日本国特許庁 (JP)

①特許出願公開

⑫ 公開特許公報 (A)

昭59-132104

①Int. Cl.³ H 01 F 1/04 C 22 C 38/10 識別記号

3

庁内整理番号 7354-5E 7147-4K ❸公開 昭和59年(1984) 7月30日

発明の数 1 審査請求 未請求

(全 13 頁)

匈永久磁石

②特 願 昭58-5813

②出 願昭58(1983)1月19日

⑩発 明 者 佐川眞人

大阪府三島郡島本町江川 2 丁目 一15—17住友特殊金属株式会社

山崎製作所内

⑫発 明 者 藤村節夫

大阪府三島郡島本町江川2丁目

一15—17住友特殊金属株式会社 山崎製作所内

⑫発 明 者 松浦裕

大阪府三島郡島本町江川 2 丁目 一15—17住友特殊金属株式会社 山崎製作所内

⑪出 願 人 住友特殊金属株式会社

大阪市東区北浜5丁目22番地

四代 理 人 弁理士 加藤朝道

明 細 4

L. 発明の名称

永久磁石

2. 特許請求の範囲

原子百分比で8~30 のR(但しRはYを包含する希土類元素の少くとも一種)、2~28 のB、50 年以下のCo(但しCo 0 多を除く)、下記の所定百分比の添加元素 Mの1 種又は2 種以上(但し、M0 多を除き、2 種以上のMを含む場合M合量は当該添加元素のうち最大値を有するものの原子百分比以下)、及び機部Fe 及び製造上不可避の不純物から成る永久磁石:

Al 9.5 %以下, Ti 4.5 %以下。 V 9.5 多以下 Cr 8.5 %以下。 Μn 8 %以下, Zr 5.5%以下 Hf 5.5 %以下, No 12.5 %以下, Ta 10.5.多以下 Mo 9.5 %以下, Ge 7 多以下。 Sb 2.5 %以下 Sn 3.5 %以下, Bi 5 多以下, NI 8.0 %以下 及び W 9.5 多以下。

3. 発明の詳細な説明

本発明は新規な希土類磁石に係り、特に Sm な

どの希少希土類金属を必ずしも必要とせず、資源的に豊富で、かつ用途が少ない Nd や Pr を中心とする経希土類と Fe を主成分とする高性能な永久磁石(材料)に関する。

永久磁石はエレクトロニクス装置の手足や口(発声)にあたるところには必ず使用される重要な 機能材料である。

現在使用されている永久磁石は主として、アルニコ磁石、フェライト磁石、および希土類コパルト磁石の3種類である。最近の半導体機器の著しい進展にともなつて、手足や口にあたる部品も小型化、為性能化が求められるようになり、これらに使用する永久磁石も高い特性が要求されるようになった。この要求を満たす材料として、第3の磁石、希土類コパルト磁石が注目されるようになった。

感的に希少な Sm を必要とし、供給が不安定な Co を多量に使うため大変高価である。

本発明は、これらの従来の永久磁石材料に代る 新規な永久磁石材料を提供することを基本的な目 的とし、特に、Rとして希少なSm等を必ずしも 必要とせず、 Co を多量に使用する必要が 必ずし もなく、従来のフェライトと同等以上の磁気特性 を有する永久磁石材料を提供すると共に、さらに、 突用上十分に高いキュリー点(温度特性)を有す るものを提供せんとするものである。この目的に 従つた一連の研究の成果として、本発明者等は、 さきに、資源的に豊富で、かつ、現在までほとん ど用途の知られていないNdなど軽希土類元紮と、 Fe を主成分とする Fe·B·R (本願において Rは v を含む希土類元素を示す)系化合物永久磁石を開 発し、本類と同一出願人により出願した(特願昭 57-145072)。Fe-B-R 3元系磁石(Rは1 元素と敬える)は、従来知られている RCos や. R. Co., 化合物とは異なる新しい化合物を基礎と する焼結永久磁石であり、Coを全く使用せずに

分添加元紫Mの1 植又は2 種以上(但し、M0 を除き、2 種以上のMを含む場合M合量は当該添加元紫のうち最大値を有するものの原子百分比以下)、及び残部Fe 及び製造上不可避 の不 純物から成る組成を有する:

Ad 9.5 %以下, Ti 4.5 %以下, V 9.5 %以下, Cr 8.5 %以下, Mn 8 %以下, Zr 5.5 %以下, H₁ 5.5 %以下, Nb 12.5 %以下, Ta 10.5 %以下, Mo 9.5 %以下, Ge 7 %以下, Sb 2.5 %以下, Sn. 3.5 %以下, Bi 5 %以下, Ni 8.0 %以下, 及 V W 9.5 %以下

上記組成のうち、Co-B-Rの部分の組成は、本出類人による先の出類(特額昭 5 7 - 1 6 6 6 6 3)に開示の Fe-Co-B-R 系永久磁石における Co,B,R 各成分の組成と基本的に同じである。本発明の永久磁石における Co の役割は基本的に前記 Fe-Co-B-R 系永久磁石の場合と同様であり、 Fe-B-R 基本系に対してキュリー点の増大による磁気特性の温度依存性の改善に費する。

先仁出頭した Fe·B·R·M 采及び Fe·Co

25 MGOe 以上の高いエネルギ旗を示す。

その後、Fe-B-R 3 元系磁石の温度特性を改善した Fe-Co-B-R 系磁石(特顧昭 5 7-1 6 6 6 6 3) およひ、保磁力を改善した Fe-B-R-M 系磁石(但し、Mは Ad, Ti, V, Cr, Mn, Zr, Hf, Nb, Ta, Mo, Ge, Sb, Sn, Bi, Ni, W) を見い出し、 本顧と同一出顧人により出願した(特顯昭 57-200204)。これら Fe-B-R ベースの焼結磁石は、従来のアルニコや希土類磁石に置き換わりうる新しい実用材料である。

本発明では、本発明者等の開発したこれらの新規な永久磁石(又は永久磁石材料)に加え、Fe-B-R-系をベースとしたさらに新規な永久磁石 (材料)であつて、フェライトと同等以上から33 MGOe 以上に亘る高い最大エネルギ機 を有するものを提供する。

即ち、本発明の永久磁石は、原子百分比で8~30%のR(但しRはYを包含する希土類元素の少くとも一種)、2~28%のB,50%以下のCo(但しCo0%を除く)、下記の所定百分比の

·B·R 采永久磁石は、磁気異方性焼結体として 得られるが、本発明の Fe·Co·B·R·M 系永久磁石も同様な焼結体として 得られる。即ち、合金を溶解、 鋳造し、 鉄造合金を 粉末化した 後磁界中にて 成形し焼結することにより永久磁石が得られる。

Pe·B·R 系永久磁石は、原子百分比においてR 8 ~ 3 0 多,B 2 ~ 2 8 多,残部 Fe 及び不可避の不納物から成り、磁気異方性焼結体(永久磁石体)として得られる新規な合金系であるが、そのキュリー点は特額昭 5 7-1 4 5 0 7 2 に開示の通り一般に3 0 0 ℃的後、最高 3 7 0 ℃である。この点において、温度依存性を少くなくすることが望まれる。Fe の一部を Co により置換することにより、生成合金のキュリー点が上昇し、その温度依存性が経放されることが本発明者等により明らかとなっており(特額昭 5 7-1 6 6 6 6 6 3)、本発明では、Fe·Co·B·R のベース系として Co を含有するが、R.B の組成範囲は、Fe·B·R 系の場合と同様に定まり、Co は 5 0 原子多以下となる(但し Co 0 多は除く)。

本発明では、上記 Fe·Co·B·R 4 元系にさらに蘇

えをMを添加 加することにより原則として保磁力 Hcの改善を図 る。 Mとしては、 Ad, Ti, V, Cr, Mn, Zr, H_f.

...

40.5%

27.1

ものではない。

なおMとして2種以上用いる場合、M合盤は、 当該添加元素のうち最大値を有するものの多以下 とし、失々は前記の所定値以下とする。また、こ のMの添加は、失々の態様において(後述参照)、

種々の終加元素を含むFe-Co-B·R·M合金(但しMとしては1種又は2種以上)の永久磁石試料をつぎの方法で作製した。

(1) 合金を高周故溶解し、水冷翔鋳型に鋳造、出発原料はFeとして純度9998の電解鉄、Bとしてフェロボロン合金および998の純度のボロンを用い、Rとして純度9978以上(不純物は主として他の希土類金属)を使用した。 症加元実Mとして、純度998のTi, Mo, Bi, Mn, Sb, Ni, Ta, 988のW, 9998の A8, 958のHf, また V として81.2 多の V を含むフェロニオブ, Crとして61.9 多の Cr を含むフェロクロムおよびZr

送留低化 Br の断次の低下を招くので、 M の含有 量は、少くとも残留低化 Br が従来のハードフェラ イトの Br 値と同等以上の範囲としかつ 従来品と 同等以上の髙保磁力を示すものが本発明の対象と して把掴される。かくて本発明品は従来のフェラ イトと同等以上の磁気特性(エネルギ預約 4 MGOc 以上)を示すものである。

本発明のFe・Co・B・R・M五元系合金において、R
Bの組成範囲は、Fe・B・R三元系合金或いはFe・Co・R・B四元系合金の場合と基本的に同様にして定められる。即ち、保確力 iHc > 1 KOe を満たすためられる。即ち、保確力 iHc > 1 KOe を満たすためBは2 を以上(原子比,以下特記なき場合同じ)とし、ハードフェライトの残留磁束密度 Br(約4 KG)以上とするためにBは2 8 を以下とする。Rは、保確力を1 KOe 以上とするため8 を以上必要であり、また燃え易く工業的取扱、製造上の困難のため(かつまた高価であるため)、3 0 を以下とする。このB、R範囲において最大エネルギー検(BH) mx はハードフェライトと同等以上となる。本発明の永久砥石は、そのペースとなる Fe-BR

として 7 5.5 × の Zr を含むフエロジルコニウムを

使用した。

(2) 粉砕: スタンプミルにより35メツシュスルーまでに粗粉砕し、次いでポールミルにより3時間散粉砕(3~10 μm)、(但し、上記金属の純度は重量まで示す)

(3) 磁界中(10 KOe)配向、成形(1.5 t/ad にて加圧)。

(4) 焼結 1 0 0 0 ~ 1 2 0 0 C 1 時間 Ar 中。焼結 後放冷。

多種多様な組成の上記試料について iHc, Br, (BH) m 等の測定により詳細な磁石特性の検討を行つた結果、Mを1種あるいは2種以上含むFe-Co-B-R-M 5 元系以上の多元系合金において、高い永久磁石特性を示す領域が存在することが判明した。第1表に代表的な試料について、永久磁石特性として増も重要な境大エネルギ液(BH) car を示す。なお、第1表中、Fe は残部である。

第1 扱から、 Fe・Co・B・R・M 系 磁石は広い 組成 範囲にわたつて 10 MGOe 以上の高いエネルギ機を有

していることが分る。この裂には主として Nd と Pr を含む合金の例を掲載したが、希土類金属 1 5 種類 (Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu)は性質が類似しているのでどの希土類元素によつても、高いエネルギ積が得られる。しかし、既述の通り、 Nd や Pr は、希土 類鉱石中に比較的多量に含まれており、ことに、 Nd は大掛に使用される用途がまだ知られていないので、他の希小な希土類 (Sm, Y, 重希土類) を主原料とする合金よりはるかに有利である。

たR(Feo.s Coo.s)。付近で極大に達しその後低下 してしまう。また Fe₂B 合金の場合には、Fe の Co による世換により Tc は単調に低下する。

本発明による、Fe·B·R·M基本系におけるFeのCoによる遊換においては、第1図に示す通りたCo 置換量の増大に併いTc は徐々に増大する。このFe·B·R·M基本系合金においては、Rの程類によらず同様な傾向が確認される。Coの置換量はわずかでもTc 増大に有効であり、第1図として例示する系(77-x)Fe·xCo·8B·15Ndにおいて明らかな通り、xの調整により350~約750℃の任意のTc をもつ合金が得られる。

なお、本発明のFe·Co·B·R·M 系永久磁石の(Fe +Co) 合盘の組成は、 基本的に Fe·B·R 系合金(Co. M を含まない系)の場合と同様である。

本発明のFe·Co·B·R·M系磁石はCoを含有しないFe·B·R三元系磁石と比較して良好な温度特性を示し、Br はほぼ同程度、iHc は同等或いは少し低いが、Co 添加により角形性が改善されるため、(BH) mx は同等か或いはそれ以上である。

百分比)の関係を示す。この図から、キュリー点は、Co含有量の増大にどもなつて大きく 上昇 していくことが分るが、しかし、器加元素Mによつてはあまり変化しない。

Co 含有量が 2 5 名を越えると (BH) mx は徐々に低下していき、 3 5 多を越えると急酸な低下が起こる。これは、主として磁石の Hc の低下による。Co 量が 5 0 多になると (BH) mx は 4 MGOe 程度 (ハードフェライトのレベル)にまで低下する。したがつて、 Co 量は 5 0 多が限度である。 さらにCo 量が 3 5 多以下の方が (BH) mx も、最高級アルニコの 10 MGOe を越え、原料価格も低くなるので、窒ましい。

一般に、Fe 合金への、Co の添加の際 Co 添加量の増大に従いキュリー点(Tc)が上昇するものと下降するものと両方が認められている。そのためFe を Co で置換することは、一般的には複雑な結果を生来しその結果の予測は困難である。例えばRFe, 化合物の Fe を Co で置換して行くと Co 員の増大に供い Tc はまず上昇するが Fe を 1/2 置換し

本発明の Fe・Co・B・R・M 系磁石は、 Co を含有しない Fe・B・R・M 系磁石に比してキュリー点が高くなっている。また、 Co は Fe に比べて耐食性を有するので、 Co を含有することにより耐食性を付与することも可能となる。

Fe・Co・B・R・M 磁石において、大部分のMは比を 増大させる効果をもつている。第2図に、Fe・Co・B・R・M 磁石の代系例および比較のためにMを含ま ない Fe・Co・B・R 磁石の代表例の放磁曲線を示す。 図中1 は添加元素Mを含まない磁石、2 は Nb 添加(第1 表No. 5 3) 磁石、3 は W 添加 (第1 表 No. 8 3) 磁石の波磁曲線である。

M添加による Hc の増大は、磁石の安定性を増し、その用途が拡大される。しかし、Mは非磁性の元素であるため (Ni を除く), 添加量の増大によつて、Br が低下していき、そのため (BH) mx が減少する。 (BH) mx は少し低くなつても、 高いHc が必要とされる用途は最近ことに多くなつてきたため、M を含む合金は大変有用であるが、但し (BH) mx は 4 MGOe 以上の範囲が有用である。

待開昭59-132104(5)

次に森加元梁Mの夫々の添加のBrに及程丁効果を明らかに丁るためその旅加量を変化させて実験によりBrの変化を測定し、その結果を第3図~第5図に示す。Bi, Mn, Niを除く、他の森加元 森M(Ti, Zr, Hf, V, Ta, Nb, Cr, W, Mo, Sb, Sn, Ge, Ad)の添加量の上限は、第3図~第5図に示す通り、ハードフェライトのBr 約4 KGと同等以上の範囲として定められる。さらに、Brの 磯点からの好ましい範囲は、Br を6.5、8、10 KG 等の段階をもつて区画することにより 夫々第3図~第5図から明らかに続むことができる。これらの図からハードフェライトのレベルのエネルギ税(BH) 解析 4 MGOe と同等以上の範囲として添加元器Mの添加量の上限がつぎのようになる。

A.6 9.	5 %,	Ti	4. 5	ø.	v	9.5%.
Cr 8.	5 %,	Mn	8	% .	Zr	5. 5 ≸ ,
Hf 5.	5 % ,	Nь	1 2. 5	% .	Ta	10.5%.
Mo 9.	5 %,	Ge	7	\$.	Sb	2.5 %,
Sn 3.	5 %,	Bi	5	ø.	Ni	8.0 %,
及び W	9.5%					

対する上限値の最大値以下のとき、添加元素Mの・ 望ましい範囲となる。

さらに、Fe・Co・B・R 系を望ましい概囲として B 4~24 %、R として Nd、Pr を中心とする 経希土 類 11~24 % の範囲の B。 R とし残部を所定量の Co 及び Fe とした場合に、上記添加元案 M の望ま しい顧囲では (BH) ma 10 MGOe 以上となり、また、 上記添加元素 M の上限値以下の範囲において (BH) ma は ハートフェライトのレベル以上となる。

即ち、Fe-Co·B·R 系の組成を上記望ましい範囲をこえて上限値以下に拡げたとき、添加元素Mの範囲は上記望ましい範囲内とすることにより、ハードフェライトのレベル以上の (BH) m を提供する。より好ましい態像において、本発明の永久破石は (BH) m 15, 20, 25, 30, さらに33 MCOe 以上の各特性を示すものを包含する。

添加元素Mはその添加量の増大と共に、一般にBrが減少しているが、他面で大部分のMinoseについて Hc の増大があるので、 (BH) max は Mの添加により、M 無磁血の場合と同答程度の値となり、最高

上記元素を2種以上含有する場合には、第3~5図に示す各が加元素の特性曲線の中間の値を一般に示し、それぞれの元素の含有低は上記多の範囲内で、かつ、その含量が、各元素に対する上記多の最大値以下となる。

第 3 ~ 5 図から Br が 6.5 KCとなる M 添加 量の 上限がつぎのように 望ましい範囲として 決定される。

As 7.5 %,	Ti 4 %,	V 85,
Cr 6.5 %.	Ma 65.	Zr 4.5 %,
Hf 4.5 %,	Nb 1 0. 5 %,	Та 9.5%,
Mo 7.5 %.	Ge 5.5 %.	Sb 1.5%,
Sn 2.5 %,	Bi 5%,	Ni 3.5 ≸,
T- 1 W 7 5 06		

上記添加元素Mを2種以上含有する場合、夫々の元素の上記上限以下でかつその合量が各元素に

33 MGOe 以上にも達する。保磁力の増大は、既述の通り、その磁気特性の安定化に受するので、Coによるキュリー点の上昇と相俟つて、Mの旅加により、実用的に極めて安定なかつ高エネルギ 稜の永久磁石が得られる。

Mn, Ni は多量に添加すると、 iHc が減少するが Ni は強磁性元素であるため、 Br は余り低下しない(第4 図参照)。そのため、 Ni の上限は Br 、 の観点から 8 多とし、 Hc の観点からは Ni は 4.5 多以下が好ましい。

Mn 添加は Br 減少に与える影響は Ni よりは大であるが急敵ではない。かくて、 Mn の上限は Br の 観点から 8 多とし Hc の観点からは Mn 3.5 多以下 が好ましい。

Biについては、その蒸気圧が極めて高く Bi 5 多を超える合金の製造が、事実上不可能であり 5 多以下とする。 2 種以上の添加元素を含む合金の場合、 Br が 4 KG 以上の条件を満たすためには、上述の各元素の添加量の上限のうち、最大の値) 以下であることが必要である。

次に、本発明の永久磁石は工業的に入手可能な 材料を用いて製造可能であり、その出発原料とし て次の如き金属を用いることができる。

Nd は資源的に Sm などに比べて豊富であり、 しかも一般に用途が余りないため、余剰気味であ り、このような軽希土頬元業を、本発明の磁石材 料(ないし合金)の中心的元素とすることは、値 めて有利である。

RとしてはNdの他に、Pr, La, Ce, Tb, Dy, Hc, Er, Eu, Sm, Gd, Pm, Tm, Yb, Lu 及び Yが包含され、そのうち、軽希土類をもつて足り、特にNd, Prが好ましい。 なお重希土類は資源的に希小でかつ高価であり、一般的に工業的利用価値は少ないが、しかし、重希土類単独又は重,軽希土類混合でも用いることができる。また逸例 Rのうち一種をもつて足りるが、実用上は二種以上の便宜等の理由により用いることができる。な業上の便宜等の理由により用いることができる。な業上入手可能な確梱で製造上不可難な不純物を含有

もので差支えない。

B(ホウ菜)としては、純ポロン又はフェロボロンを用いることができ、不純物として A&, Si, C等を含むものを用いることができる。

Coとしては、市販の工業的グレードのCoを用いることができる。

上述の通り、本発明の永久磁石は、工業的製造上不可避な不納物の存在を許容できる。またBの一部をC、N、Si等により位換することも可能であり、製造性改善、低価格化が可能となる。

(以下余白)

郑 1 表

(1)

試料NG	組 成 (原子多)	(BH) max (MGO ₂)
1	Fe- 2Co- 8B-15Nd- 2A&	2 9.5
2	Fe- 5Co- 8B-15Nd-0.5A8	33.6
3	Fe- 5Co-17B-15Nd- 4A&	1 1.5
4	Fe-10Co-17B-17Nd-0.5A&	12.7
5	Fe-10Co- 8B-15Nd- 1A&	3 1.6
6	Fe-20Co- 8B-12Nd-05A&	230
7	Fe-35Co- 6B-24Nd- 5A8	1 0.5
8	Fe- 5Co-17B-15Nd-2.5Ti	1 1.0
9	Fe-10Co-13B-14Nd- 2Ti	1 8.1
10	Fe-20Co-12B-16Nd- 1Ti	2 2.1
11	Fe-35Co- 8B-15Nd-0.5Ti	20.5
12	Fe-35Co- 6B-25Nd-0.3Ti	1 2.4
13	Fe- 2Co- 8B-16Nd- 2V	24.0
14	Fe- 5Co- 6B-15Nd-0.3V	31.1
15	Fe- 5Co- 8B-14Nd- GV	1 6.3
16	Fe-10Co-17B-15Nd- 1V	1 4.8
17	Fe-20Co- 8B-12Nd-0.5V	21.6
18	Fe-20Co-15B-17Nd- 1V	1 7.2
19	Fe-35Co- 6B-25Nd- 1V	15.2
20	Fe- 2Co- 8B-16Nd- 2Cr	224

(9

	(2)	
試料ND	組 成(原子多)	(BH) max (MGO ₂)
2 1	Fe- 5Co-20B-15Nd-0.5Cr	120
2 2	Fe- 5Co- 7B-14Nd- 4Cr	1 8.1
23	Fe-10Co- 8B-15Nd-05Cr	3 2.7
24	Fe-10Co-17B-12Nd-02Cr	1 7.2
25	Fe-20Co- 8B-15Nd-0.5Cr	3 1.7
26	Fe-20Co- 8B-15Nd- 1Cr	3 0.5
27	Fe-35Co- 6B-25Nd- 1Cr	1 4.7
28	Fe- 2Co- 8B-13Nd-0.5Mn	3 0.1
29	Fe- 5Co- 7B-14Nd- 1Mn	2 5.1
30	Fe-10Co- 9B-15Nd- 1Mn	- 21.0
3 1	Fe-20Co- 8B-16Nd- 1Mn	24.9
3 2∙	Fe-20Co-16B-14Nd-0.2Mn	1 7.1
33	Fe-20Co- 7B-14Nd- 4Mn	1 4.5
3,4	Fe-35Co- 9B-20Nd- 1Mn	1 4.2
35	Fe- 5Co- 8B-15Nd- 1Zr	3 2.3
36	Fe-10Co- 9B-14Nd- 1Zr	3 2.2
37	Fe-10Co-17B-16Nd- 62r	1 2.9
38	Fe-10Co- 6B-20Nd-0.5Zr	1 8.1
39	Fe-20Co- 8B-12Nd-0.5Zr	2 5.6
40	Fe-20Co-20B-14Nd-03Zr	1 3.2

(4)

. (3)

試料No	組 成(原子多)	(BH) mm (MGOe)	試料加	組 成 (原子多)	(BH) mx (MGOe)
41	Fe-35Co- 6B-20Nd- 1Zr	1 6.0	. 61	Fe-10Co- 7B-14Nd- 1Ta	3 1.2
4 2	Fe- 5Co- 8B-15Nd- 1Hf	3 2.2	6 2	Fe-20Co- 9B-14Nd-0.5Ta	3 1.5
43	Fe-10Co- 9B-14Nd- 1Hf	3 2.0	6 3	Fe-20Co- 7B-16Nd- 1Ta	3 0.3
44	Fe-10Co-17B-16Nd- 6Hf	1 3.1	6 4	Fe-20Co-15B-13Nd- 6Ta	1 0.5
45	Fe-20Co- 8B-12Nd-0.5Hf	1 7.9	6 5	Fe-20Co- BB-15Nd- 8Ta	1 1.6
.46	Fe-20Co-20B-14Nd-0.3Hf	2 5.2	66	Fe-20Co6B-25Nd- 1Ta	1 5.6
47	Fe-35Co- 6B-20Nd- 1Hf	1 5.7	67	Fe-35Co- 7B-15Nd- 3Ta	2 0.0
48	Fe- 1Co- 8B-16Nd-0.5Nb	3 3.3	68	Pe- 1Co- 8B-15Nd-0.5Mo	3 3.5
49	Fe- 2Co- 8B-14Nd- 1Nb	3 3.0	6 9.	Fe- 2Co- 8B-15Nd- 1Mo	3 3.0
50	Fe-10Co- 8B-15Nd-0.5Nb	3 3.4	70.	Fe-10Co- BB-16Nd-0.5Mo	3 3.0
51	Fe-10Co- 7B-14Nd- 1Nb	3 3.1	71	Fe-10Co- 7B-14Nd- 1Mo	3 1.0
52	Fe-20Co- 9B-14Nd-0.5Nb	3 3.i	72	Fe-20Co- 9B-14Nd-0.5Mo	3 1.0
53	Fe-20Co- 8B-15Nd- 1Nb	3 1.3.	73	Fe-20Co- 6B-16Nd- 1Mo	3 2.2
54	Fe-20Co-17B-13Nd- 6Nb	1 0.7	74	Fe-20Co-17B-13Nd- 2Mo	1 4.6
5 5	Fe-20Co- BB-15Nd- 8Nb	1 4.8	7,5	Fe-20Co- 8B-13Nd- 6Mo	1 4.3
56	Fe-20Co- 6B-25Nd- 1Nb	16.8	76	Fe-20Co- 6B-25Nd- 1Mo	1,6.4
57	Fe-35Co- 7B-15Nd- 3Nb	2 1.6	77	Fe-35Co- 7B-15Nd- 3Mo	1 8.8
58	Fe- 1Co- 8B-16Nd-0.5Ta	. 3 2.5	78	Fe- 1Co- 8B-15Nd-0.5W	3 3.6
59	Fe- 2Co- 8B-14Nd- 1Ta	3 1.5	79	Fe- 2Co- 8B-16Nd- 1W	3 3.2
60	Fe-10Co- 8B-15Nd-0.5Ta	3 2.3	8.0	Pe-10Co- 8B-16Nd-0.5W	3 3.7

(5)

(6)

	(5)			. (0)		
試料NL	組 成 (原子多)	(BH) inst (MGOe)	試料M	組 成 (原子多)	(BH) rest (MGOe)	
8 1	Fe-10Co- 7B-14Nd- 1W	3 3.3	101	Fe-35Co+ 6B-20Nd-0.5Sb	1 0.2	
8 2	Fe-20Co- 9B-14Nd-0.5W	3 2.5	102	Fe- 5Co- 8B-15Nd- 1Sn	2 0.2	
8 3.	Fe-20Co- 8B-15Nd- 1W	3 2.4	103	Fe-10Co- 9B-14Nd-0.5Sn	2 6.1	
8 4	Fe-20Co-17B-13Nd- 2W	1 4.5	104	Fe-10Co-17B-16Nd-0.5Sn	1 1.2	
8 5	Fe-20Co- 8B-13Nd- 6W	1 6.2	105	Fe-20Co- 6B-20Nd-0.5Sn	1 5.1	
8 6	Fe-20Co- 6B-25Nd- 1W	1 6.0	106	Fe-20Co- 8B-12Nd- 1Sn	1 5.0	
87	Fe-35Co- 7B-15Nd- 3W	1 8.4	107	Fe-20Co-20B-14Nd-0.5Sn	1 0.4	
88	Fe- 5Co- 8B-15Nd- 1Ge	2 2.2	1.08	Fe-35Co- 6B-20Nd-0.5Sn	1 0.9	
89	Fe-10Co- 9B-14Nd- 2Ge	1 1.4	109	Fe- 5Co- 8B-15Nd-0.2B	3 1.5	
90	Fe-10Co-17B-16Nd-0.5Ge	1 4.2	110	Fe-10Co- 9B-14Nd-0.5Bi	2 9.6	
91	Fe-20Co- 6B-20Nd-0.5Ge	1 7.2	111	Fe-10Co-17B-16Nd- 1Bi	1 6.0	
92	Fe-20Co- 8B-12Nd-0.3Ge	2 5.3	112	Pe-20Co- 6B-20Nd- 3Bi	1 5.8	
93	Fe-20Co-20B-14Nd-0.5Ge	10.5	113	Fe-20Co- 8B-12Nd-1.5Bi	2 1.9	
94	Fe-35Co- 6B-20Nd- 1Ge	1 0.1	114	Fe-20Co-20B-14Nd- 1Bi	1 0.9	
95	Fe- 5Co- 8B-15Nd- 1Sb	1 3.2	115	Pe-35Co- 6B-20Nd-0.5Bi	1 8.2	
96	Fe-10Co- 9B-14Nd-0.5Sb	1 5.4	116	Fe- 5Co- 8B-15Nd- 1Ni	2 4.3	
97	Fe-10Co-17B-16Nd- 1Sb	1 1.1	117	Fe-10Co- 9B-14Nd- 4Ni	17.1	
98	Fe-20Co- 6B-20Nd-0.1Sb	21.2	118	Fe-10Co-17B-16Nd-0.2Ni	1 6.2	
99	Fe-20Co- 8B-12Nd-1.2Sb	1 2.0	119	Pe-20Co- 6B-20Nd- 5Ni	1 5.8	
100	Fe-20Co-20B-14Nd-05Sb	1 0.5	120	Pe-20Co- 8B-12Nd-0.5Ni	2-5.3	

<u> </u>		
試料Na	超 成 (原子多)	(BH) NE (MGOe)
121	Fe-20Co-20B-14Nd- 1Ni	1 5.3
122	Fe-35Co- 6B-20Nd- 3Ni	15.3
123	Fe- 5Co- 8B-15Pr- 1A8	2 4.8
124	Fe-10Co- 9B-14Pr- 1W	2.6.5
1 2 5	Fe- 5Co-17B-14Pr- 2V	. 10.7
126	Fe-10Co- 8B-16Pr-0.5Cr	2 3.2
1 2 7	Fe-20Co- 8B-17Pr-0.5Mn	2 1.3
128	Fe-20Co- 8B-15Pr- 1Zr	2 5.4
129	Fe-10Co- 7B-14Pr- 1Mo-1	Zr 20.3
130	Fe-10Co- 7B-14Nd-0.5A&-1	V 29.1
131	Fe-10Co- 98-15Nd- 2Nb-0	5Sn 2 2.8
132	Fe-20Co-8B-16Nd-1Cr-1Ta-0.	5A 6 2 2.5
133	Fe-20Co-8B-14Nd-1Nb-05W-01	5Ge 2 2.1
134	Fe-20Co-15B-15Pr-05Zr-05Tr -05N	
135	Fe-10Co-17B-10Nd-5Pr-05W	1 6.2
136	Fe-10Co-8B-8Nd-7Ho-1A&	1 9.9
137	Fe-10Co-7B-9Nd-5Er-1Mn	20.1
138	Fe- 5Co-8B-10Nd-5Gd-1Cr	21.5
139	Fe-10Co-9B-10Nd-5La-1Nb	1 9.3
140	Fe-20Co-10B-10Nd-5Ce-0.5Ta	20.1
141	Fe-20Co-7B-11Nd-4Dy-1Mn	1 9.5

以上評述の通り、本発明は、新規なFe-Co-B-R-M系合金の無気異方性焼結体から成る永久健石を提供し、従来レベル以上の磁気特性を Co, Sm 等の高価な材料を用いることなく実現したものであり、さらに従来品よりも優れた高保磁力、高エネルギ積を備えると共に実質的に従来のアルニコ、R・Co 系磁石に匹敵する温度特性を備えた永久磁石を提供する。加えて、Rとして Nd, Pr 等の軽希土類を用いることにより、資源的な, 価格的, 低気特性的いずれの点においても優れた永久磁石であり、工業的利用性の高いものである。

4. 図面の簡単な説明

第1 図は、Co 含有量(機動)と太発明の永久 磁石実施例のキュリー点(擬軸)との関係を示す グラフ、第2 図は、本発明の実施例の減磁曲線〔 横軸磁界 H²(KOe), 解軸磁化 4 元 I(KG)〕を示すグ ラフ、及び第3~5 図は、添加元素Mの添加量(横軸)と残留磁化 Br(KG)との関係を示すグラフ、 を失々示す。

第3図

第 5 図

特開昭59-132104(11)

手統補正舊(自免)

昭和59年1月25日

特許庁長官 若 杉 和 夫 段

1 事件の表示

・ 昭和58年特許顯第5813号 (昭和58年1月19日出順)

2 発明の名称

永久磁石 ~

3 補正をする者

事件との関係 ・出頭人

住友特殊金属株式会社

自器

4 代理人

· 住所

〒105 東京部港区 西新橋1丁 自12 86 号 第七アネックスピル4階電路(03)508-0295

~ a

(8081) 弁理士加 藤 朝

- 5 補正命令の日付
- 6 補正により増加する発明の数

なし

7 補正の対象

明細書の発明の詳細な説明、図面の簡単な説明の標。 図面の第1図、及び第6~8図の追加

8 補正の内容

別紙の通り

Br、iHcに対する基本的傾向は、第6、7図 と基本的に同様である。」

- (6) 11頁9行「小」を「少」に訂正する。
- (7) 13頁10行「77」を「76」に訂正 し、「Nd」の後に「・1M」を挿入する。
- (8) 同頁11行「350」を「約310」に訂正する。
 - (9) 14頁5行宋尾に次文を抑入する。

「また本発明のFe-Cο-B-R-M合金は Cο 5 %以上で残留磁東密度(Br)の温度係数 (α) は約 0 . 1 %/で以下となり、温度特性が 良好となり、Cοを含有しないFe-B-R合金 に比較して良好な温度特性を有する。Cο 2 5 % 以下では他の特性を害うことなく、Tcの増大に 宏与する。」

(10)17頁1行「上限」を「上記」とす。

(11) 阿貝2行末尾に次文を追加する。

「Mとして2額以上含む場合には、夫々の怒加元素の特性曲線を合成したものとほぼ同様なBェ曲

I.明細音の発明の詳細な説明の概を次の通り施 正する。

- (1) 5頁5行「成る」の前に「木奴上」を加入する。
- (2) 6 頁 3 ~ 4 行 [鋳造し、鋳造」を「為却、 例えば鋳造し、生成」に訂正する。
 - (3) 8頁11行「>」を「≥」に訂正する.
 - (4) 9頁 1 5 行、「を使用」の前に、「、 C o と して純度 9 9 . 9 % の 電解 C o 」を 輝入す・
 - (5) 10頁16行「た。」の次に次文を挿入す る。

「前述の工程と同様にして製造した試料により、Fe-10Co-8B-xNdの系においてxを0~40に変化させてNd量とBr、iHcとの関係を調べた。その結果を第B図に示す。さらに、Fe-10Co-xB-15Ndの系においてxを0~35に変化させてB量とBr、fHcとの関係を調べ、その結果を第7図に示す。Fe、Co、B、R、M系におけるB、Rの

級を示す。」

(12) 18頁8~9行及び12~13行「Brの視点」を「iHcを1kOe以上とするため」と訂正する。

(13) 同頁 9 行及び 13 行「H c の」の次に 「増大の」を夫々挿入する:

(14) 18 **日**14 行末尾に次文を挿入する。 「なおMの添加量は、I H c の増大効果、B r 減 少傾向、(B H) m a x への影響を考慮すると、 0、1~3%が最も望ましく、M としては Y 、 N b、T a、M o、W、G e、A l が好ましく特 にA J が有効である。J

(15)19頁11行「をもって足り」を「が好ましく」と訂正する。

(16) 同貨18 行、「できる。」を「でき、 Sm. Y、 La、 Ce、 Gd等は他のR、特に Nd、 Pr等との混合物として用いることができる。」に訂正する。

(17) 阿真末行「不純物」の次に「(他の希土 類元素、Ca、Mg、Fe、Ti、C、O等)」

特開昭59-132104 (12)

を挿入する。

: . : .

(18)20頁8行末尾に次文を挿入する。

「また、これら構成元素の2以上から成る合金も 用いることができる。」

(19) 何頁 7 行、「工衆的」を「Cu、C、 S、P、Ca、Mg、O、S i 等工衆的」に訂正 する。

(20)周頁B行、「できる。」の次に次文を細 入する。

「これらの不能物は、原料或いは製造工程から混入することが多く、Cu、P各3.5%以下、C、Ca、Mg各4%以下、S2.0%以下、O2%以下、S15%以下合計5%以下は許容される。」

(21)何頁8行~10行「また...可能となる。」の一文を削除する。

17 . 明細度の図面の簡単な説明の欄を次の通り補 正する。

(1) 明細書第28頁末尾に次文を挿入する。 「羽6 図は Fe-10 Co-6 B-x Nd0.5 A I 系において、N d 是 (機軸原子 %) と し i H c、B r の関係を示すグラフ、第7 図は、 F e - 1 0 C o - x B - 1 5 N d - 0 . 5 A l 系 において、B 量 (機軸原子 %) と i H c、B r の 関係を示すグラフ、第8 図は、F e - 5 C o - B - N d - 0 . 5 A l 系におけるF e - B - N d 三 成分に対する (B H) m a x 等高線図を失っに示す。」

四、図節を次の通り補近する。

(1) 第1 図を別版(訂正) 第1 図と差替える。

(2) 別添 (新) 第8図~8図を追加する。

以上

第 1 図

第6図

Fe - 10Co - 8.B - xNd - 0.5A&

第8図

特許法第17条の2の規定による補正の掲載

昭和 58 年特許顯第 \$813 号 (特開 昭 59-132104 号, 昭和 59 年 7月 30 日 発行 公開特許公報 51-1122 号掲載)につ いては特許法第17条の2の規定による補正があっ たので下記のとおり掲載する。 7 (2)

Int.Cl.	識別記号	庁内整理番号	
H01F 1/04 C22C 38/10		7 3 5 4 - 5 E 7 1 4 7 - 4 K	
	ļ		

知 谷 (全文訂正) oЛ

1. 発明の名称

永久磁石

2. 特許請求の範囲

(1) 原子百分比で、 沿土類元素 (R) として Nd, Pr. Dy, Ho, Tbのうち少なくとも - 408~30%, B2~28%, 下記所定%以下(0 %を除く)の添加元素Mの一種又は二種以上(但 し添加元常Mが二種以上のときは、M合量は当該 添加元素のうち最大所定%を有するものの当該所 定%以下)。 及び残部実質的にFeから成る世気 以方性雄精体であり、 前記Feの一部を全組成に 対して50%以下(0%を除く)のCoで置換した ことを物徴とする永久磁石;

> T 1 4.5%. A & 9.5%. Cr 8.5%. 9.5%, Zr 5.5%, Mn 8 %. H f 5.5%. N b 12.5%. T a 10.5%, M o 9.5%,

郭崧湖正芒

昭和62年12月28日

特許庁長官 小川 邦夫 致

1 事件の表示

昭和58年特許願第5813号 (昭和58年1月19日出版)

2 発明の名称

永久赶石

3 純正をする省

単件との関係 符許出別人

名称

住女特殊金属株式会社

4 代理人

〒105 東京都港区西新橋1丁目12番8号 住所 西新橋中ピル 5階

-:

電話(03)508-0295

氏名 (8081) 弁理士 加 勝 朝 遊

5 補正により増加する発明の数

6 額正の対象

(1) 明细哲全文

(2) 空面 (351~882)

1

7 補正の内容

(1) 明和書全文を添付の全文訂正明細書に補正す

(2) 第1~8図を、夫々、透附の打正図面に被正する (各試料の組成を明確にしたものであり、実体に 変更はない)。

Ge 7 %. S b 2.5%.

S n 3.596.

B i 5 %,

Ni B %. 及びW 9.5%

(2) 原子百分比で、前紀希土類元末 (R) (但し 南記希土斯元素 (R)の50%以上はNd. Prの 一種又は二組) 11~20%, B 4~24%, 下記所定 %以下(0%を除く)の添加元素Mの一種又は二 預以上(但し添加元素Mが二級以上のときは、M 合量は当該添加元素のうち最大所定%を育するも のの当該所定%以下)、及び残邸実質的にFeか ら成り、前記Feの一部を全組成に対して35%以 下(0%を除く)のCoで盆換したことを特徴と する特許請求の範囲第1項記載の永久礁石;

> A L 7.5%. Ti 4 %. 8%. Cr 6.5%, V Mn 3.5%. Zr 4.5%. H f 4.5%. N b 10.596. Ta 9.5%. M o 1.5%, S b 1.5%. G e 5.5%. S n 2.5%. B i 5 %.

NI 4.596、及びW 7.5%。

(3) 原子百分比で、松土類元常(R)としてNd、Pr、Dy、Ho、Tbのうち少なくとも一種としゅ、Ce、Pm、Sm、Eu、Gd、Er、Tm、Yb、Lu、Yのうち少なくとも一種の合計8~30%、B2~28%、下記所定%以下(0%を除く)の添加元素Mの一種又は二種以上(但し添加元素Mが二種以上のときは、M合量は当該添加元素のうち最大所定%を有するものの当該が定%以下)、及び残郡実質的にFeから成る磁気異力性旋結体であり、前記Feの一部を全組成に対して50%以下(0%を除く)のCoで置換したことを複数とする永久进

A & 9.5%. T i 4.5%.

V 9.5%. C r 8.5%.

M n 8 96. Z r 5.5%.

H f 5.5%, N b 12.5%.

T a 10.5%, M o 9.5%.

G e 7 %. S b 2.5%.

S n 3.5%, B 1 5 96.

本発明は、一般家庭の各種電気製品から、大型コンピュータの周辺端末機まで、幅広い分野で使われるきわめて重要な電気・電子材料の一つである永久磁石の改良に係り、特に新規なCo添加Fe-B-R系永久磁石に関する。

近年の電気、電子機器の小型化、高効率化の要求にともない、永久磁石はますます高性能化が求められるようになった。

現在の代表的な永久胜石はアルニコ、ハードフェライト及び希土都コパルト磁石である。 最近のコパルトの原料事情の不安定化にともない。コパルトを20~30重量%含むアルニコ磁石の需要は減り、鉄の酸化物を主成分とする安価なハーなった。一方、添土類コパルト磁石はコパルトを50~85重量%も含むうえ、添土類鉱石中にあるまった。の磁石に比べて、磁気特性が格及に高いため、生として小型で、付加価値の高い磁気回路に多く使われるようになった。

NI 8 %, 及びW 9.5%。

(4) 原子百分比で、前記希土類元素(R)(但し前記希土類元素の50%以上はNd,Prの一種又は二種)11~20%,B4~24%,下記所定%以下(0%を除く)の添加元素Mの一種又は二種以上(但し添加元者Mが二種以上のときは,M合量は当該添加元素のうち最大所定%を育するものの当該所定%以下),及び幾郎災質的にFeから成り、前記Feの一部を全租成に対して35%以下(0%を除く)のCoで関係したことを特徴とする特許款の範囲第3項記載の永久租石;

 A & 7.5%
 T 1 4 %

 V 8 %
 C r 8.5%

 M n 3.5%
 Z r 4.5%

 H f 4.5%
 N b 10.5%

 T a 9.5%
 M o 7.5%

 G e 5.5%
 S b 1.5%

 S n 2.5%
 B i 5 %

 N 1 4.5%
 W 7.5%

3. 発明の詳細な説明

が土 類 コ バルト 避石 は R C o 5 、 R 2 C o 17 (R は S m 、 C e を中心とするが土 類元素) に て 示される 2 元 系 化 合物 を ベースとする 永久 磁 石 で あ り 、 C o の 一 部 を 少 量の C u 、 F e の 他 Z r 、 T i 、 V 、 H f 等 の 遷 移 金 國 元 常 に て 置 換 す る こ とに よって 磁 気 特 性 の 向 上 が 図 られて き た も の で あ る 。

 クーンでによる(Fe 0.82 B 0.18) 0.9 T b 0.05 L B 0.05合金 (N. C. Koon 他: Appl. Phys. Lott. 39 (10), 15 Novosbar 1981, 840~ 842 頁), カバコフ等による(Fe 0.8 B 0.2) 1-x P r x (x = 0 ~ 0.3原子比)合金(L. Kabakoff 他: J. Appl. Phys. 53 (3), March 1982, 2255~2257以) 等が報告されている。さらに前記クロートは怪新土類飲合金は低コスト永久砥石の魅力的な候補として長い間考えられてきたが、これら合金を扮宋冶金法によって磁気的に硬化する試みは成功しなかったことを報告するとともに、P r - F e 及びNd - F e 合金が溶験紡糸(知意治)によって磁気的に硬化され得ることを見い出したと報告している(J. J. Croat: J. Appl. Phys. 53 (4). April 1982, 3181頁)。

布土 類を用いた 破石がもっと広い分野で安価に、かつ多量に使われるようになるためには、 高価なコパルトを含まず、かつ希土類会民として、 鉱石中に多量に含まれている軽希土類を主成分と することが必要とされよう。

FeとBとを特定比をもって必須とし、かつ 磁気 刄 方性 旋 粒 体 で ある。 全く 新 し い 超 類 の 実 用 古性能永久磁石を開発し、本願と同一出願人に より出願した(特願昭57-145072)。このFe-B-R3元系破石は、従来知られているRCos や R , C o 17化合物とは異なる新しい化合物を基 礎とし、粉末冶金法にて通当なミクロ組織を 形成することによって得られる焼粕永久磁石であ り、Coを全く使用せずに30MGOo以上の高いエネ ルギー般をも示す。尚、このFe-B-R3元系 磁石においてポロン (B) は、従来の、例えば非 晶質合金作成時の非晶質促進元素又は粉末冶金法 における挽結促進元累として添加されるものでは なく、 Pe-B-R系永久磁石を開成する磁気的 に安定で高い磁気異方性定数を有するRーFeー B三元化合物の必須構成元常である。

上述のFe-B-R系磁気異方性機精永久磁石は必ずしもCoを含む必要がなく、またRとしては好適な実施機構として登級的に豊富なNd、Prを主体とする経衛土類を用いることができ、

一方既述のようにRーFeないしRーFeー B合金を磁性材料として有用化するためには、スパッタ薄膜化又は超急冷ないしアモルファス化が 不可欠であるとされている。

しかし、これらのスパッタ薄膜又は斑急冷りボンからは任意の形状・寸法を育するパルク状の変用水久磁石を得ることができなかった。これまでに報告されたFe-B-R系リボンの磁化曲線は角形性が悪く、従来慣用の磁石に対抗できる実用水久磁石とはみなされえない。また、上記スパッタ薄膜及び超急冷りボンは、いずれも本質上であり、これらから磁気異方性の実用永久磁石を得ることは、単次上不可能であった。

本発明は、このような要請に応えるべき新規な 実用高性能永久進石を提供することを基本目的と し、特に、Rとして精少なSm等を必須とせず、 従来のフェライト雖石と同等以上の雖気特性を有 する永久雖石を提供することを目的とする。

このような永久磁石として、本発明者は、先に、Nd、Prを中心とする特定の新土類元素と

必ずしもSmを必要とせず或いはSmを主体とする必要とせず或いはSmを主体とする。しかも、強気特性はハードフェライト健石以上の特性を有し、保健力 IHc≥ 1 kOe、残留磁束密度Br≥ 4kG、 最大エネルギー和 (BH) aax ≥ 4 kGOa) 特に好きは新土 知コバルト 融石とが明しいは新土 知コバルト 融石とができる。即ち、このFe-B-R系永久 磁石はできる。即ち、このFe-B-R系永及磁子石は強気的に高いますくないは、できるのができる。 ない はい コストパフォーマンスを有し、R-Co系のである。にも代わり得る工業上極めて

以上の通りこのFe-B-R系永久磁石は従来のアルニコや布土類コバルト磁石に置き変わり得る新しい爽用高性能永久磁石であるが、一方、このFe-B-R三元系強磁性合金のキュリー点に300で前後、最高 370℃である。このキュリー点は、従来のアルニコ系ないしR-Co系の永久磁石材料の約 800℃のキュリー点と比べてかなり

低いものである。従って、Fe-B-R系永久組石(材料)は、従来のアルニコ系やR-Co系組石(材料)に比して磁気特性の温度依存性が大であり、高温においては磁気特性の低下が生ずる。水弛明者の研究の結果によれば、Fe-B-R系統結磁石(材料)は約 100℃以上の温度で使用するとその混度特性が劣化するため、約70℃以下の通常の温度範囲で使用することが適当であることが判明した。

この様に永久磁石材料にとって磁気特性の温度 依化性が大きい、即ちキュリー点が低いことはそ の使用範囲が決められることとなり、Fe-B-R系永久磁石を広範囲の用途に使用するためには キュリー点を上外せしめ、温度特性を改善するこ とが必要であった。

本発明は、かかるFe-B-R系永久磁石において、その温度特性を改良することを併せて目的とする。

本苑明はFe-B-R系永久磁石においてキュリー温度を改良するねに、Feの一部をCoで置

C r 8.5%.

M n 8 %, Z r 5.5%.

H f 5.5%, N b 12.5%,

T a 10.5%, M o 9.5%,

G e 7 %, S b 2.5%,

V 9.5%.

S n 3,5%, B i 5 %,

N i 8 %, & U W 9.5%.

第2発明:原子百分比で、希土類元素(R)としてNd、Pr、Dy、Ho、Tbのうち少なくとも一種としる。Ce、Pm、Sm、Eu、Gd、Er、Tm、Yb、Lu、Yのうち少なくとも一種の合計8~30%。B2~28%。下記所定%以下(0%を除く)の添加元素Mの一種又は二種以上(但し添加元素Mが二種以上のときは、M合型は当該添加元素のうち最大所定%を有するものの当該所定%以下)、及び幾部実質的に下eから成る世気以方性原結体であり、前記下eの一部を全組成に対して50%以下(0%を除く)のCoで関係したことを特徴とする永久磁石(添加元素Mの所定%は第1発明におけるものと同じ)。

換することが効果的であることを知見するとともに、Al, Ti, V. Cr, Mn, Zr, Hf, Nb, Ta, Mo, Ge, Sb, Sn, Bl, N1及びWよりなる群から選択された特定の添加元常Mを所定%をもって加えることにより、先願(特願昭57-145072)に係るFe-B-R三元系永久磁石と同様に、前述した目的を遊成するものである。即ち、本発明の永久磁石は次の過りである。

第1発明:原子百分比で、希土類元紫(R)としてNd.Pr.Dy,Ho.Tbのうち少なくとも一種8~30%。B2~28%。下記所定%以下(0%を除く)の添加元素Mの一種又は二種以上(但し添加元紫Mが二種以上のときは、M合量は当該添加元素のうち最大所定%を育するものの出致所定%以下)。及び發酵素質的にFeから成出致所定%以下)。及び發酵素質的にFeから及此成に対して50%以下(0%を除く)のCoで置換したことを特徴とする永久进行;

A & 9.5%, T i 4.5%...

本出願人の光順に係るPe-B-R系永久雖石は、雖気異方性旋耕体として得られるが、本発明のFe-Co-B-R-M系永久雖石も同様な旋钴体として得られる。例えば、合金を溶解、冷却、例えば遊遊し、生成合金を粉末化した後雖界中にて成形し焼焼することにより実用高性能永久雖石を得ることができる。

本発明においては、Feの一部を金組成に対して50%以下のCoで置換することによって(Fe、Co)-B-R化合物を基礎とした新規なFe-Co-B-R-M系永久磁石を提供するものである。

このCoの含育によって、Fee-B-R系をベースとして実用上充分に高いキュリー点を鍛え温度依存性を軽減させることができる。さらに所定のMを含有することによってFe-B-R三元系と同様に従来のハードフェライトと同等以上の磁気特性(保健力等)を超えた全く新規な永久磁石を促供できる。Mとしては、前記の如くA2、T1、V, Cr. Mn. N1、Ge. Nb.

Mo、Sb、Sn、2r、Hf、Ta、W、BI
があり、その一種又は二種以上を用いる。加えて、IIIcは一般に設皮上外と共に低下するが上記
MのうちV、Ta、Nb、Cr、W、Mo、Al
特の含有によって常温時の iIIcを高めることにより、高温度に吸されても繊維が実質的に生じないようにすることができる。従って、司籍な煩境、 の大ば砥石の海虫化に併う強い反磁界、コイルや他の磁石によって加えられる強い、逆磁界、コイルやに加えて機器の高速化、高負荷化による高温環境でにさらされてもこれらの用途に適合しうる水外磁石が、水発明により提供される。

なおMとして2種以上用いる場合、M合益は、当該添加元素のうち最大所定額を有するものの所定%以下とし、夫々は前記の所定値以下とする。また、このMの添加は、夫々の態様において發留姓化Brの新次の低下を招くので、Mの含有量は、少くとも残留遊化Brが従来のハードフェライトのBr並と同等以上の高保磁力を示すものが本発明の対象として把握

川いて製造可能であり、その出発原料として次の 如き金銭を川いることができる。

指土類元以Rとしては、軽着土類及び重荷土類 型にはYを包含する希土類元米があり、そのうち 所定の一種以上を用いる。即ちこのRとしては、 Nd, Pr, La, Ce, Tb, Dy, Ho, Er, Eu, Sm, Gd, Pm, Tm, Yb, Lu及びYが包含される。 R としては、 N d、 Prを主体とする軽鉛土類(特にNd、Pr)が 好ましい。 N d , P r は資源的に S m などに比べ て豊富であり、しかも一般に用途が余りないた め、余剛気味であり、このような軽裕土類元素 を、本発明の永久磁石の中心的元素とすること は、極めて有利である。通例Rのうち特定のもの 一種をもって足りる (Nd. Pr. Dy. Ho. T b 等)が、La、Ce、Pm、Sm、Eu、 Gd, Er, Tm. Yb, Lu, Y符は他のR. 特にNd、Pr, Dy, Ho, Tb (一粒以上) との混合物として用いることができる。実用上は 二種以上の混合物(ミッシュメクル、ジジム等)

Mo、Sb、Sn、2r、Hf、Ta、W、Bi される。かくて水弛明磁石は従来のフェライト磁があり、その一種又は二種以上を用いる。加え 石と間帯以上の磁気特性(エネルギ粒約 4 MGO e以て、Illicは一般に温度上昇と非に低下するが上記 上)を示すものである。

本免別のFe-Co-B-R-M系磁石において、R、Bの組成範囲は、本出願人の先顧に係るFe-B-R系水久磁石の場合と基本的に同様をにはなっためられる。即ち、保磁力 ilic≥ 1 k0g を結けためBは2%以上(原子比、以下特配な東部は10)とし、ハードフェライトの發留磁束であり、以上とするためにBは28%以下を100 以上とするためのBは200 によいのBは200 により、スードフェライトと間等以上となる。

本発明の永久磁石は、概述の 8 ~ 30 % R. 2 ~ 28 % B. 疑部 F e の全転倒において、C o 及び添加元素 M の含有の有効性が認められており、このF e - B - R の転倒外では、存効ではない。

本范明の永久避石は工築的に人手可能な材料を

を人手上の便宜等の理由により用いることができる。 S m, L a, E r, T m, C e, G d, Y は 単独では illcが低いため好ましくなく, E u. P m, Y b. L u は微量にしか存在せず高価である。従ってこれらの精土類元素は、前途の通り、N d. P r 等の他の R との混合物として用いることができる。なお、この R は純清土類元素でなくともよく、工業上入手可能な範囲で製造上不可能な不能物(他の新土類元素、C a, M g, F e, T i, C, O等)を含有するもので変支えない。

B (ホウ紫) としては、純ポロン又はフェロボロンを用いることができ、不純物として A 2.Si. C 等を含むものも用いることができる。

C o としては、市販の工業用グレードの C o を 用いることができる。また、これら構成元然の 2 以上から成る合金も用いることができる。

尚、本党明の永久破石はC.S.P.Ca、Mg、O.S.S.Y工業的製造上不可避な不鈍物の存在を許容である。これらの不純物は、原料或いは製造工程から准入することが多く、合計5%以

下が好ましい。またBの一部をC,P,SI等により買換することも可能である。

く実施例)

以下本苑明について、実験附及び契施例を引照 しつつ詳述するが、本類明はこれらに限定される ものではない。

和々の認加元素Mを含むFe-Co-B-R-M合金(但しMは1種又は2種以上)の永久磁石 は料を次の方法で作成した。

(1) 合金を高周波溶解し、水冷絹鈎型に幼造、

出免原料はFeとして純皮 9 9.9%の 地解鉄、 Bとしてフェロボロン合金及び 9 9%の 純皮のボロンを用い、 Rとして純皮 9 9.7%以上のもの (不純物は主として他の 希土 額金属)、 C o として純皮 9 9.9%の 電解 C o を使用した。 添加 元素 M として、 純皮 9 9%の T l, M o, B i, M n, S b, N i, T a, 9 8 %の W, 9 9.9%の A 2, 9 5 %の H f, 9 9 .9%の G e, S n, また V として 81.2% の V を含むフェロバナジウム、 N b として 67.6% の N b を含むフェロニオブ、 C r として 81.9%の

結果を第6図に示す。さらに、(74.5-x)Feー10Co-xB-15Nd-0.5A & の系においてxを0~35に変化させてB 量とBr、illcとの関係を調べ、その結果を第7図に示す。Fe-Co-B-R-M系におけるB、RのBr、illcに対する基本的傾向は、Nd以外の称土類元業、A & 以外のMの場合でも基本的に第6、7図と同様である。第1表に代表的な試料について、永久磁石特性として最も重要な最大エネルギ殺(BH)aaxを示す。なお、第1表中、Fe は 数 都 である。

第1表から、Fe-Co-B-R-M系磁石は 広い組成範囲にわたって10MGOe以上の高いエネル ギ役を有していることが分る。この表には主として でNd、Prを含む合金の例を掲載したが、箱土 類元素5種類(Nd、Pr、Tb、Dy、Ho) は単独でも高いエネルギ被が得られその他はこれ らとの併用ができる。しかし、既述の通り、Nd やPrは、希土類鉱石中に比較的多量に含まれて おり、ことにNdは大量に使用される用途がまだ 知られていないので、これらを主体として使用 C rを含むフェロクロム及び Z r として 15.5%の Z rを含むフェロジルコニウムを使用した (なお 純度は重量%);

- (3) 磁界中 (10k0a)配向,成形(1.5t/cm² にて加圧);

多領多用な組成の上記試料について iHc. Br. (BH) max 等の測定により詳細な磁石特性の検討を行った結果、CoとともにMを1 組あるいは 2 位以上含む Fe - Co - B - R - M 系合金において、高い永久磁石特性を示す領域が存在することが判明した。前述の工程と同様にして製造した試料により、(81.5-x) Fe - 10 Co - 8 B - x N d - 0.5 A Lの系においてxを0~40に変化させてN d 益と Br. ilicとの関係を測べた。その

きることは他の希少な希土類(Sm. Y, 等)を 主原料としなければならない永久磁石と比較する とはるかに有利である。

Fe-Co-B-R-M系永久磁石において、Coは含有量が25%以下のとき(BH) max にあまり大きい役割を果たさない。例えば、試料加48とM50、 放び加68と加70等を失り比較すると、これらの合金の組成整はほとんどCo量の発だけ(1 Coと10Co)で、この登によって、(BH) max は 1.5%程度しか迫わない。Coの役割は、これらの合金のキュリー点を上げることである。

一般にFe合金へのCoの添加の際、Co添加量の増大に従いキュリー点(Tc)が上昇するものと下降するものと両方が認められている。そのためFeをCoで配換することは、一般的には複雑な粒果を生来し、その粒果の予測は困難である。例えばRFea 化合物のFeをCoで置換して行くと、Co母の地大に併いTcはまず上昇するが

Feを1/2 関掛したR(Fe_{0.5} Co_{0.5})₃付 近で極大に違し、その後低下してしまう。また Fe₂ B合金の場合には、FeのCoによる最換 によりTcは単級に低下する。

本発明によるFe-Co-B-R-M系永久 破石においては、第1図として例示する系(76x)Fe-xCo-8B-15Nd-1Mにおいて 明らかな通り、Co置換量(x)の増大に併い Tcは当初急速に増大し、以後徐々に増大が確認さ れる。又Coの置換量はわずか(例えば 0.1~1 %)でもTc増大に有効でありCoの置換量により 約310~約760℃の任意のTcをもつ永久破石が得 られる。又節1図よりキュリー点はCo合質の 労力ないことが確認される。

C o 含有数が 25%を超えると (BH) max は徐々に低下していき、 35%を超えるとやや急な低下が起こる。これは、主として磁石の 1 Ncの低下によ

処、本発明に係る試料(M 5)はC o を含まない 試料(F e - 8 B - 15 N d)に比べて重量増加の 割合が若しく低く、又 C o の添加量に応じてその 効果が顕著に認められた。又 C o は 5 %未満でも Tc 増大に寄与し、特に 5 %以上でBrの温度係数約 0.1%/で以下を示し、25%以下では他の特性を 扱うことなく、Tcの増大に寄与する。

第2図に、Fe-Co-B-R-M系磁石の代表例及び比較のためにMを含まないFe-Co-B-R系磁石の代表例の延離曲線を示す。図中1は添加元架Mを含まない磁石、2はNb添加(試料M53)磁石の设磁曲線である。

これら以外のV、Ta、Cr、Mo、Aeにおいても同様に INc向上効果が認められた。これらのM添加による INcの向上は、磁石の安定性を増し、その川途が拡大される。しかし、これらのMは非磁性の元素であるため、添加量の増大によって、Brが低下していき、そのため(BII)aax が減少する。(BII)aax は少し低くなっても、高い INcが

る。 C o 量が 50% になると (Bil) max は 4 NGOe程度 (ハードフェライトのレベル) にまで低下する。 したがって、 C o 量は 50% が限度である。 さらに C o 量が 35% 以下の方が所定量の添加元素 M を含む場合にも (Bil) max か 最高級 アルニコの 10 NGO a を超え、 原料価格も低くなるので、 望ましい。 なお好ましい添加元 常M の 場合、 C o 35% でなお 20 NGO e 近く出る (試料 Na 57、67等) 。

本発明のFe-Co-B-R-M系磁石はCoを含有しないFe-B-R三元系磁石と比較してキュリー点が高く良好な湿度特性を示し、Brはほぼ同程度、 LHcは同等以上或いは少し低いが、Co添加により角形性が改善されるため、(Co 社の多い場合を除き)(BH)max は同等か或いはそれ以上である。

また C o は F e に比べて耐食性を有するので、C o を含有することにより耐食性を付与することも可能となる。即ち、更に得られた焼結体(第 1 表 M 5)を 80℃、 相対 湿度 90% の 恒温 恒温 槽に 200時間 置き、 酸化による 重量変化を測定した

必要とされる用途は最近ことに多くなってきたため、これらのMを含む合金は大変有用であるが、 但し(BII) max は 4 MGOe以上の範囲が有用である。

次に添加元素Mの夫々の認加のBrに及ぼすサ効果要を明らかにするため、その添加量を変化を第3図~第5図に示す。Bi、Mn、Nlを除くる添加元素M(Ti、Zr、Ht、V、Ta、Nb、Cr、W、Mo、Sb、Sn、Ge、Al)の必然のよいのより、のBr約4kGと同等以上のの好ましい。のように、BrをB.5、8、10kG等の段階をもって区間する。これらの図からの好まして区間する。これらの図からの好まして区間する。これらの図からの方とのではることができる。これもの図から、HCOeと同次の上とができる。これをWの添加量の上限は次のになる。

A & 9.5%, T 1 4.5%,

V 9.5%, Cr 8.5%,

- 7-

M n 8%. Z r 5.5%. H f 5.5%. N b 12.5%. T a 10.5%. M o 9.5%. G e 7 %, S b 2.5%. S n 3.5%. B f 5 %.

N I 896, 及びW 9.596。

Mn. Niは多量に添加すると、 1Hcが減少するがNiは強磁性元素であるため、Brは余り低下しない(第4回を照)。そのため、Niの上限は 1Hcを1k0c 以上とするため 8 %とし、 1Hcの減少の 観点からはNiは 4.5%以下が好ましい。Mn添加はBr減少に好える影響はNiよりは大であるが急激ではない。かくて、Mnの上限は 1Hc を1k0c 以上とするため 8 %とし、 1Hcの減少の 観点からはMn 3.5%以下が好ましい。

Biについては、その蒸気圧が極めて高くBI 5%を超える合金の製造が、事実上不可能であり 5%以下とする。

上記元素を2部以上含有する場合には、第3~ 5 図に示す各添加元素の特性曲線を合成したもの

上はNdとPrの1種又は2種)、Bの範囲を4~24%、Coの置換量を35%以下、疑部Feとすることで(Bil) aax 10 MGOe以上以上の永久磁石を得ることができる。より好ましい燃様において、本発明の永久磁石は(Bil) aax 15, 20, 25, 30 きらに33 MGOe以上の各符性を示すものを包含する。

認加元素Mはその添加量の増大と共に,一般にBrが減少しているが、好ましい範囲内では(Bll) max はM無添加の場合と同等程度の値となり、故高33MCOo以上にも達する。又特定のMの添加による保証力の増大は、既述の通り、その磁気特性の安定化に受するのでCoによるキュリー点の上昇と相俟って、実用的に概めて安定なかつ高エネルギ散の永久磁石が得られる。

なお M の 添加 配は、 B r 減少 傾向、 (B II) max への 影響を考慮すると、 0.1~3% が 最も 限ましい。 又 M として は 第3図~第5図 より 明らか な 様に V. Ta. N b. Cr. W. Mo. Mn. Ni. A & は比較 的 多 量 に 添加 しても B r た 者 しく 低下 さ せること なく (例えば8% 添加 しても B r は4kG とほぼ同様なBr曲線を示す。それぞれの元素の含 有量は上記%以下で、かつ、その合量が各元業に 対する上記%の最大値以下となるようにする。

M添加量のさらに望ましい範囲は、(BII) bax が 最高級アルニコの10MCOeを越える範囲から決めら れる。(BiI) bax が10MGOe以上であるためには、Br は 6.5kG以上とすることが好ましい。

第3図~第5図からBrが 6.5kGとなるM添加益の上限が次のように型ましい箱団として決定される(但しMn, Nlは lHcの観点から定められる)。

A 2 7.5%, T 1 4 %.

V 8 96. C r 6.5%.

M n 3.5%. Z r 4.5%.

H (4.5%, N b 10.5%,

T a 8.5%. M o 7.5%.

G e 5.5%. S b 1.5%.

S n 2.5%. B i 5 %.

N i 4.5%,及びW 7.5%。

さらにRの範囲を11~24%(ただしRの50%以

以上)、特にNi、Mnを除くV、Ta、Nb、 Cr、W、Mo、A飠は広い範囲において illc向 上に寄与する。

(以下糸白)

ELH Ka	机成 (属子%)	(BB) nax (HCOs)
1	Fe-2Co-8B-15Nd-2AL	29.5
2	Fe-5Ca-8B-15Nd-0.5A &	35.2
3	Fe-5Co-17B-15Nd-4Al	11.5
4	Fè-10C o -17B-17Nd - 0.5A &	12.7
. 5	Fe-10Co-8B-15Nd-1A2	31.6
6	Fe-20Co-8B-12Nd-0.6AL	23.0
1	Fe-35Co-6B-24Nd-5Al	L0.5
8	Fe-5Co-17B-15Nd-2.5T1	11.0
9	Fe-10Co-13B-14Nd-2Tl	18.1
10	Fe-20Co-12B-18Nd-1Ti	22.1
12	Fe-35Co-88-15Nd-0.5Tl	20.5
12	Fe-35Co-6B-25Nd-0.8Ti	12.4
13	Fe-2Co-8B-10Nd-2V	24.0
14	Fe-5Co-6B-15Nd-0.3V	31.1
15	Fe-5Co-8B-14Nd-6V	16.8
16	Fe-10Co-17B-15Nd-1V	14.8
17	Fe-20Co-8B-12Nd-0.5V	21.6
18	Fe-20Co-15B-17Nd-1V	17.2
19	Fe-35Co-6B-25Nd-1V	15.2
20	Fe-2Co-3B-16Nd-2Cr	22.4

SCET No.	期底 (Gi 子 96)	(BII) sax (MCOc)	
21	Fe-5Co-20B-15Nd-0.5Cr	12.0	
22	Fe-5Co-7B-14Nd-4Cr	[8.1	
23	Fe-10Co-8B-15Nd-0.5Cr	32.7	
24	Fe-10Co-17B-12Nd-0.2Cr	17.2	
25	Fe-20Co-8B-15Nd-0.5Cr	31.7	
26	Fe-20Co-8B-15Nd-1Cr	38.5	
27	Fe-15Co-6B-25Nd-1Cr	14.7	
28	Fe-2Co-8B-13Nd-0.5Mn	30.1	
29	Fe-5Co-78-14Nd-1Mn	25.1	
30	Fe-10Co-9B-15Nd-1Mn	21.0	1
18	Fe-20Co-8B-16Nd-1Mn	24.9	ĺ
32	Fe-20Co-16B-14Nd-0.2Mn	17.1	1
23	Fe-20Co-7B-14Nd-4Mn	14.5	
34	Fe-35Ca-9B-20Nd-1Mn	14.2	
35	Fe-5Co-8B-15Nd-1Zr	32.3	ĺ
36	Fe-10Co-9B-14Nd-1Zr	32.2	
37	Fe-10Co-17B-18Nd-6Zr	12.9	
28	Fe-10Co-6B-20Nd-0.5Zr	58.1	
39	Fe-20Co-8.B-12Nd-0.5Zr	25.8	
40	Fe-20Co-20B-14Nd-0.8Zr	13.2	

郊 1 及 (3)

新 1 歩 (4)

5CF3	规成 (原子%)	(BII) max (MCOe)
41	Fe-35Co-6B-20Nd-1Zr	16.0
42	Fe-5Co-8B-15Nd-1Hf	32.2
43	Fe-10Co-9B-14Nd-1H1	32.0
44	Fe-10Co-17B-16Nd-6H1	13.1
45	Fe-20Co-8B-12Nd-0.5Hf	17.9
48	Fe-20Co-20B-14Nd-0.3Hf	25.2
47	F a -35 C o - 6 B -20N d - 1 H f	15.7
48	Fe-1 Co-8 B-10Nd- 0.5Nb	33.3
49	Fe-2Co-8B-14Nd-1Nb	15.5
50	Fe-10Co+8B-15Nd-0.5Nb	13.4
51	Fe-10Co-7B-14Nd-1Nb	33.L
52	Fe -20Co - 9 B - 14Nd - 0.5Nb	33.1
53	Fe-20Co-8B-15Nd-1Nb	81.8
54	Fe-20Co-17B-13Nd-6Nb	10.7
55	Fe-20Co-8B-15Nd-8Nb	14.8
58	Fe-20Co-6B-25Nd-1Nb	18.8
57	Fe-35Co-7B-15Nd-3Nb	21.6
58	Fe-1 Co-8 B-16Nd- 0.5Ta	32.5
59	Fe-2Co-8B-14Nd-1Ta	31.5
60	Fe-10Co-BB-15Nd-0.5Ta	32.8

拟料	制政 (原子96)	(Bil) max (HOOe)
61	Fe-10Co-7B-14Nd-1Ta	31.2
B2	Fe-20Co-9B-14Nd-0.5Ta	31.5
		30.3
63	Fe-20Co-7B-16Nd-1Ta	1 1
84	Fe-20Co-15B-13Nd-5Ta	10.5
G5	Fe-20Co-8B-15Nd-8Ta	11.8
66	F = -20 C o - 6 B - 25 N d - 1 T a	15.6
67	Fe-25Co-7B-15Nd-3Ta	20.0
88	Fe-1 Co-8 B-15Nd- 0.5Mo	35.1
69	Fe-2Co-8B-15Nd-1Mo	34.7
70	Fe-10Co-8B-16Nd-0.5Mo	13.0
71	Fe-10Co-7B-14Nd-1Mo	31.0
72	Fe-20Co-9B-14Nd-0.5Mo	31.0
73	Fe-20Co-6B-16Nd-1Mo	32.2
74	Fe-20Co-178-13Nd-2Mo	14.8
15	Fe-20Co-8B-13Nd-6Mo	14.8
78	Fe-20Co-6B-25Nd-1Mo	18.4
77	Fe-35Co-1B-15Nd-3Mo	18.8
78	Fe-1Co-8B-I5Nd-0.5W	33.8
79	Fe-2Co-8B-18Nd-1W	23.2
80	Fe-10Co-8B-18Nd-0.5W	39.7

143.1 2%	机成 (原子%)	(BH) oax (MCOe)
81	Fe-10Co-7B-14Nd-1W	33.3
82	Fe-20Ca-9B-14Nd-0.5W	32.5
83	F e -20C o - 8 B - 15N d - 1 W	32.4
84	Fe-20Co-17B-13Nd-2W	14.5
85	Fe-20Co-8B-13Nd-8W	18.2
88	Fe-20Co-6B-25Nd-1W	18.0
87	Fe-25Co-7B-15Nd-3W	18.4
88	Fe-5Co-8B-(5Nd-1Ge	22.2
89	F = -10C o - 9 B - 14N d - 2 G e	11.4
90	Fe-10Co-17B-18Nd-0.5Ce	14.2
91	F e - 20 C o - 6 B - 20 N d - 0.5 C e	17.2
92	Fe-20Co-8B-12Nd-0.3Ge	25.3
93	F e - 20 C o - 30 B - 14 N d - 0.5 G e	10.5
94	F e -35C o - 6 B -20N d - 1 G e	10.1
95	Fe-5Co-8B-I5Nd-1Sb	13.2
98	Fe-10Co-9B-14Nd-0.5Sb	15.4
97	Fe-10Co-17B-18Nd-1Sb	11.1
98	Fe-20Co-6B-20Nd-0.1Sb	21.2
99	Fe-20Co-8B-12Nd-1.2Sb	12.0
100	Pe-20Co-20B-14Nd-0,5Sb	10.5

보다 No.	制政 (玩子%)	(HII) max (HCOc)
101	Fe-35Co-6B-20Nd-0.5Sb	10.2
102	Pe-5Co-8B-15Nd-1Sn	20.2
103	Fe10Co-9B-14Nd-0.5Sn	28.1
104	Fe-10Co-17B-18Nd- 0.5Sn	11.2
105	Fe-20Co-6B-20Nd-0.5Sn	15.1
108	Pe-20Co-8B-12Nd-1Sn	15.0
107	Fe-20C o-20B-14Nd- 0.5Sn	10.4
108	Fe-25Co-68-20Nd-0.5Sn	10.9
109	Fe-5Co-8B-15Nd-0.2Bt	31.5
011	Fe-10Co-9B-14Nd-0.5Bi	29.6
111	Fe-10Co-17B-16Nd-1Bi	15.0
112	Fe-20Co-6B-20Nd-3Bi	15.8
113	Fe-20Co-8B-12Nd-1.5Bi	21.9
114	Fe-20Co-20B-14Nd-1Bl	10.9
115	Fe-35Co-8B-20Nd-0.5Bi	L8.2
116	Fe-5Co-8B-15Nd-1Ni	24.3
117	Fe-10Co-9B-14Nd-4N1	17.1
115	Fe-10Co-17B-18Nd-0.2N1	16.2
119	Fe-20Co-6B-20Nd-5N1	15.8
120	Fe-20Ca-8B-12Nd-0.5Ni	25.3

第 1 表 (7)

湖	机成 (原子 96)	(BH) max (HCOo)
121	Fe-20Co-20B-14Nd-1Nl	15.3
122	Fe-35Co-6B-20Nd-3N1	15.3
123	Fe-5Co-8B-15Pr-1A&	24.8
124	Fe-10Co-9B-14Pr-1W	26.5
125	F e - 5 C o - 17 B + 14 P r - 2 V	10.7
126	Fe-10Co-8B-16Pr-0.5Cr	23.2
127	Fe-20Co-8B-17Pr- 0.5Mn	21.3
128	Fe-20Co-8B-15Pr-1Zr	25.4
129	Fe-10Co-7B-14Pr-1Mo-1Zr	20.3
110	Fe-18Co-7B-14Nd-0.5Ag-1V	29.1
131	Fe-10Co-9B-15Nd-2Nb-0.5Sn	22.8
132	Fe-20Co-88-16Nd-1Cr-1Ta-0.5A&	22.5
132	Fe-20Co-8B-14Nd-1Nb-0.5W-0.5Ge	22.1
134	F e -20C o -15B -15P r - 0.5Z r - 0.5T a - 0.5N 1	10.9
185	Fe-10Co-17B-10Nd-5Pr-0.5W	18.2
135	F = -10C o - 8 B - 8 N d - 7 H o - 1 A &	19.9
187	F = -10C o - 7 B - 9 Nd - 5 E r - 1 Mn	20.1
138	Fe-5Co-8B-10Nd-5Gd-1Cr	21.5
139	Fe-10Co-9B-10Nd-5La-1Nb	19.1
140	F e -20C o -10B -10Nd - 5 C e - 0.5T a	20.1
141	Fe-20Co-7B-IINd-4Dy-1Mn	19.5

以上詳述の通り、本発明は、新規なFe-Co - B - R - M 系合企の 異方性 腱精体 から成る 実用 永久磁石を提供し、従来レベル以上の磁気特性を Rとして必ずしもSmを用いることなくまたCo を多量に用いることなく実現したものである。本 発明は、その実施の態限においてさらに従来品よ りも優れた高保磁力、高エネルギ苷を伺えると共 に実質的に従来のアルニコ、R-Co系磁石に匹 敵する温度特性を備えた実用高性能永久磁石を提 **此し、好遊な態様として従來にない最高のエネル** 半般をも実現したものである。加えて、Rとして Nd, Pr等の軽希土類を希土類の中心として 川いることができることにより、 資政、 価格、 雄 気特性いずれの点においても使れた永久磁石であ り、工薬利用性の高いものである。またFe-B - R 系 出石としてみると、 C o の含有により実用 上充分高いキュリー点を備え、さらに特定の添加 元素 M の含有によっては保証力の増大も可能なら しめ、応用範囲を拡げ実用的価値を高めている。 4. 図面の簡単な説明

第 1 図は (76-x) Fe-x C a - 8 B -15N d - 1 M 系において C o 含育量 (協怕) と キュリー点 (報始) との関係を示すグラフ。

郊 2 図は、Mを含有しない試料 (57Fe-20Co-8 B-15Nd), 試料 M 58 (50Fe-20Co-8 B-15Nd-1 Nb) 及び試料 M 83 (56Fe-20Co-8 B-15Nd-1 W) において、被阻曲線 (機物磁界 H (k0e), 凝物磁化 4 π 1 (kG))を示すグラフ、

勿3~5 図は、(82-x)Fe-15 Co-8 B-15 N d-x M において、添加元紫 M の添加豆(切物)と残別磁下 Br (kC) との関係を示すグラフ、

第 6 図は、(81.5-x) Fe - 10 Co - 8 B - x N d - 0.5 A & 系において、N d 点 (債 軸 原子 %) と Ilic. Brとの関係を示すグラフ。

郊7 図は、 (74.5-x) Fe-10 Co-x B-15 N d - 0.5 A & 系において、 B 量 (機能原子 %) と 1Hc. Brとの関係を示すグラフ、及び

第8回は、(94.5-x-y)Fe-5Co-

を失々に示す。

第1図

第3図

第 2 図

第 4 図

第 5 図

12

x (%)

- 12 -(42)

第6図

第7図

第8図

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
DBLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
ZINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.