

REVISIONS TO CLAIMS

1-25. (cancelled)

1 26. (new) An automated method for preventing mechanical stress to a discharge vessel of a
2 discharge lamp, the method comprising using a control device to effectuate operations in a lamp,
3 the operations comprising:

- 4 - receiving an actuation indication for switching on or switching off of the lamp; and
5 - responsive to the actuation indication, providing control signals to coordinate cooling and
6 power to the lamp, the control signals specifying:
7 ○ at least one intermediate value for the cooling or the power to the lamp or both, which
8 intermediate value is between full on and full off;
9 ○ at least one timing relative to the actuation indication and associated with the
10 intermediate value; and
11 ○ parameters for turning the cooling and power to the lamp full on or full off, in accordance
12 with whether the lamp is to be switched on or off, respectively.

1 27. (new) The method of claim 26, wherein during a time interval subsequent to the actuation
2 indication , the control signals specify
3 - a first plurality of stepwise intermediate values for cooling between full on and full off; and
4 - a second plurality of stepwise intermediate values for lamp driver power between full on and
5 full off.

REVISIONS TO CLAIMS

1 28. (new) The method of claim 27, wherein the control signals further specify a plurality of
2 timings relative to the actuation indication, each timing being associated with at least one of the
3 first and second plurality of stepwise intermediate values.

1 29. (new) A control unit for controlling a lamp driver and a cooling device for a discharge lamp,
2 the control unit effectuating operations comprising:
3 - receiving an actuation indication for switching on or switching off of the lamp; and
4 - responsive to the actuation indication, providing control signals to coordinate cooling and
5 power to the lamp, the control signals specifying:
6 ○ at least one intermediate value for the cooling or the power to the lamp or both, which
7 intermediate value is between full on and full off;
8 ○ at least one timing relative to the actuation indication and associated with the
9 intermediate value; and
10 ○ parameters for turning the cooling and power to the lamp full on or full off, in accordance
11 with whether the lamp is to be switched on or off, respectively.

1 30. (new) A control unit as claimed in claim 29, comprising a microprocessor unit and a memory
2 for storing at least one switching schedule according to which the power to a lamp and power to
3 a cooling device are alternately and/or stepwise increased or decreased, in accordance with
4 whether the lamp is to be switched on or off, respectively .

1 31. (new) A control unit as claimed in claim 29, which is provided for
2 - adjusting power of a cooling device as a function of the current supplied instantaneously to

REVISIONS TO CLAIMS

3 the lamp or as a function of power of a lamp driver, and/or
4 - adjusting lamp control parameters as a function of the instantaneous power of the cooling
5 device.

1 32. (new) A control unit as claimed in claim 29, wherein the operations comprise reducing power
2 of the lamp and power of a cooling device stepwise, until the lamp is switching off responsive to
3 controlled power reduction without cooling.

1 33. (new) A control unit as claimed in claim 29,
2 comprising
3 - a first input for detecting a parameter of a cooling device, which cooling device acts on the
4 lamp, and
5 - a second input for detecting a lamp driver control parameter, and
6 wherein the control signals are to the cooling device and a lamp driver and are adjusted
7 responsive to signals detected at the first and second inputs in such a way that there is no
8 excursion from a predetermined range of the lamp temperature during a time interval after the
9 actuation indication.

1 34. (new) The control unit of claim 29, wherein a lamp driver is incorporated in the control unit.

1 35. (new) A lamp driver for driving a discharge lamp and a cooling device for the discharge
2 lamp, which lamp driver comprises a control unit according to claim 29.

REVISIONS TO CLAIMS

1 36. (new) An assembly comprising the control unit of claim 29 and a lamp driver, the lamp
2 driver being internal or external to the control unit and comprising a trigger circuit for operating
3 the discharge lamp, wherein the control unit controls the trigger circuit and a cooling device via a
4 first and a second output, respectively.

1 37. (New) An assembly as claimed in claim 36, wherein the control unit detects the lamp current
2 and/or the lamp voltage and/or the lamp power via the trigger circuit, which is connected with
3 the second input of the control unit.

1 38. (new) A lighting unit comprising a discharge lamp, the assembly of claim 36; and the cooling
2 device.

1 39. (new) A lighting unit as claimed in claim 38, comprising a first sensor for detecting a cooling
2 power of the cooling device, which cooling power acts on the lamp, and/or a second sensor for
3 detecting a lamp temperature, wherein the control unit is provided for controlling the lamp driver
4 and the cooling device by means of a signal of the first and/or the second sensor in such a way
5 that there is no excursion from a predetermined range of the lamp temperature during a timing
6 interval subsequent to the actuation indication.

1 40. (new) A lighting unit as claimed in claim 39, wherein the first sensor is provided for
2 detecting a property of a gas stream leaving a nozzle of the cooling device and being directed
3 onto the discharge lamp.

REVISIONS TO CLAIMS

41. (new) The lighting unit of claim 40, wherein the property is pressure, volume or velocity.

1 42. (new) A lighting unit as claimed in claim 39, wherein the second sensor is arranged on the
2 discharge vessel of the lamp for detecting the temperature of the wall of the discharge vessel.

1 43. (new) A projection system comprising a lighting unit according to claim 38.