Invariants of categorical dynamical systems

Yu-Wei Fan (YMSC, Tsinghua)

at Shanghai, ICCM January 3, 2024

A (discrete) dynamical system is a pair (X, ϕ) where

• $\phi: X \to X$ preserves certain mathematical structures on X.

We would like to study the long-term behavior of ϕ^n under large iterations

- A linear self-map $T \colon V \to V$ of a vector space V.
- A continuous self-map $f: X \to X$ of a compact metric space X.
- A holomorphic self-map $f: X \to X$ of a compact Kähler manifold X.
- An endofunctor $F : \mathcal{D} \to \mathcal{D}$ of a triangulated category \mathcal{D} .

A (discrete) dynamical system is a pair (X, ϕ) where

• $\phi: X \to X$ preserves certain mathematical structures on X.

We would like to study the long-term behavior of ϕ^n under large iterations

- ullet A linear self-map $T\colon V o V$ of a vector space V.
- A continuous self-map $f: X \to X$ of a compact metric space X.
- A holomorphic self-map $f: X \to X$ of a compact Kähler manifold X.
- An endofunctor $F : \mathcal{D} \to \mathcal{D}$ of a triangulated category \mathcal{D} .

A (discrete) dynamical system is a pair (X, ϕ) where

• $\phi: X \to X$ preserves certain mathematical structures on X.

We would like to study the long-term behavior of ϕ^n under large iterations.

- A linear self-map $T \colon V \to V$ of a vector space V.
- A continuous self-map $f: X \to X$ of a compact metric space X.
- A holomorphic self-map $f: X \to X$ of a compact Kähler manifold X.
- An endofunctor $F: \mathcal{D} \to \mathcal{D}$ of a triangulated category \mathcal{D} .

A (discrete) dynamical system is a pair (X, ϕ) where

• $\phi: X \to X$ preserves certain mathematical structures on X.

We would like to study the long-term behavior of $\phi^{\it n}$ under large iterations.

- A linear self-map $T: V \to V$ of a vector space V.
- A continuous self-map $f: X \to X$ of a compact metric space X.
- A holomorphic self-map $f: X \to X$ of a compact Kähler manifold X.
- An endofunctor $F : \mathcal{D} \to \mathcal{D}$ of a triangulated category \mathcal{D} .

A (discrete) dynamical system is a pair (X, ϕ) where

• $\phi: X \to X$ preserves certain mathematical structures on X.

We would like to study the long-term behavior of ϕ^{n} under large iterations.

- A linear self-map $T: V \to V$ of a vector space V.
- A continuous self-map $f: X \to X$ of a compact metric space X.
- A holomorphic self-map $f: X \to X$ of a compact Kähler manifold X.
- An endofunctor $F : \mathcal{D} \to \mathcal{D}$ of a triangulated category \mathcal{D} .

A (discrete) dynamical system is a pair (X, ϕ) where

• $\phi: X \to X$ preserves certain mathematical structures on X.

We would like to study the long-term behavior of ϕ^{n} under large iterations.

- A linear self-map $T: V \to V$ of a vector space V.
- A continuous self-map $f: X \to X$ of a compact metric space X.
- A holomorphic self-map $f: X \to X$ of a compact Kähler manifold X.
- An endofunctor $F : \mathcal{D} \to \mathcal{D}$ of a triangulated category \mathcal{D} .

A (discrete) dynamical system is a pair (X, ϕ) where

• $\phi: X \to X$ preserves certain mathematical structures on X.

We would like to study the long-term behavior of ϕ^n under large iterations.

- A linear self-map $T: V \to V$ of a vector space V.
- A continuous self-map $f: X \to X$ of a compact metric space X.
- A holomorphic self-map $f: X \to X$ of a compact Kähler manifold X.
- An endofunctor $F \colon \mathcal{D} \to \mathcal{D}$ of a triangulated category \mathcal{D} .

A (discrete) dynamical system is a pair (X, ϕ) where

• $\phi: X \to X$ preserves certain mathematical structures on X.

We would like to study the long-term behavior of ϕ^n under large iterations.

- A linear self-map $T: V \to V$ of a vector space V.
- A continuous self-map $f: X \to X$ of a compact metric space X.
- A holomorphic self-map $f: X \to X$ of a compact Kähler manifold X.
- An endofunctor $F \colon \mathcal{D} \to \mathcal{D}$ of a triangulated category \mathcal{D} .

Recall that a triangulated category is an additive category with a shift functor [1] and a collection of exact triangles

$$\cdots \to A \to B \to C \to A[1] \to \cdots$$

that satisfy a set of axioms.

(Analogy: Exact sequences $0 \to A \to B \to C \to 0$ in abelian categories.) (C is the "mapping cone" of $A \to B$.)

- $\mathcal{D}^b\mathrm{Coh}(X)$, where X is a smooth complex projective variety (objects: (complex of) holomorphic vector bundles on X)
- $\mathcal{D}^{\pi}\mathrm{Fuk}(Y)$, where Y is a symplectic manifold (objects: Lagrangian submanifolds in Y, morphisms: $L_1 \cap L_2$)

Recall that a triangulated category is an additive category with a shift functor [1] and a collection of exact triangles

$$\cdots \to A \to B \to C \to A[1] \to \cdots$$

that satisfy a set of axioms.

(Analogy: Exact sequences $0 \to A \to B \to C \to 0$ in abelian categories.) (C is the "mapping cone" of $A \to B$.)

- $\mathcal{D}^b\mathrm{Coh}(X)$, where X is a smooth complex projective variety (objects: (complex of) holomorphic vector bundles on X)
- $\mathcal{D}^{\pi}\mathrm{Fuk}(Y)$, where Y is a symplectic manifold (objects: Lagrangian submanifolds in Y, morphisms: $L_1 \cap L_2$)

Recall that a triangulated category is an additive category with a shift functor [1] and a collection of exact triangles

$$\cdots \rightarrow A \rightarrow B \rightarrow C \rightarrow A[1] \rightarrow \cdots$$

that satisfy a set of axioms.

```
(Analogy: Exact sequences 0 \to A \to B \to C \to 0 in abelian categories.) (C is the "mapping cone" of A \to B.)
```

- $\mathcal{D}^b\mathrm{Coh}(X)$, where X is a smooth complex projective variety (objects: (complex of) holomorphic vector bundles on X)
- $\mathcal{D}^{\pi}\mathrm{Fuk}(Y)$, where Y is a symplectic manifold (objects: Lagrangian submanifolds in Y, morphisms: $L_1 \cap L_2$)

Recall that a triangulated category is an additive category with a shift functor [1] and a collection of exact triangles

$$\cdots \rightarrow A \rightarrow B \rightarrow C \rightarrow A[1] \rightarrow \cdots$$

that satisfy a set of axioms.

```
(Analogy: Exact sequences 0 \to A \to B \to C \to 0 in abelian categories.) (C is the "mapping cone" of A \to B.)
```

- $\mathcal{D}^b\mathrm{Coh}(X)$, where X is a smooth complex projective variety (objects: (complex of) holomorphic vector bundles on X)
- $\mathcal{D}^{\pi}\mathrm{Fuk}(Y)$, where Y is a symplectic manifold (objects: Lagrangian submanifolds in Y, morphisms: $L_1 \cap L_2$)

Both holomorphic dynamics and symplectic dynamics can be discussed in the categorical settings.

• A holomorphic self-map $f: X \to X$ induces an endofunctor

$$\mathbb{L}f^* \colon \mathcal{D}^b \mathrm{Coh}(X) \to \mathcal{D}^b \mathrm{Coh}(X).$$

• A symplectomorphism $f: Y \to Y$ induces an autoequivalence

$$f_* \colon \mathcal{D}^{\pi} \mathrm{Fuk}(Y) \to \mathcal{D}^{\pi} \mathrm{Fuk}(Y).$$

$$\mathcal{D}^b\mathrm{Coh}(X)\cong\mathcal{D}^\pi\mathrm{Fuk}(Y).$$

Both holomorphic dynamics and symplectic dynamics can be discussed in the categorical settings.

• A holomorphic self-map $f: X \to X$ induces an endofunctor

$$\mathbb{L}f^* \colon \mathcal{D}^b \mathrm{Coh}(X) \to \mathcal{D}^b \mathrm{Coh}(X).$$

ullet A symplectomorphism $f: Y \to Y$ induces an autoequivalence

$$f_* : \mathcal{D}^{\pi} \operatorname{Fuk}(Y) \to \mathcal{D}^{\pi} \operatorname{Fuk}(Y).$$

$$\mathcal{D}^b\mathrm{Coh}(X)\cong\mathcal{D}^\pi\mathrm{Fuk}(Y).$$

Both holomorphic dynamics and symplectic dynamics can be discussed in the categorical settings.

• A holomorphic self-map $f: X \to X$ induces an endofunctor

$$\mathbb{L}f^* \colon \mathcal{D}^b \mathrm{Coh}(X) \to \mathcal{D}^b \mathrm{Coh}(X).$$

• A symplectomorphism $f: Y \to Y$ induces an autoequivalence

$$f_* \colon \mathcal{D}^{\pi} \mathrm{Fuk}(Y) \to \mathcal{D}^{\pi} \mathrm{Fuk}(Y).$$

$$\mathcal{D}^b\mathrm{Coh}(X)\cong\mathcal{D}^\pi\mathrm{Fuk}(Y).$$

Both holomorphic dynamics and symplectic dynamics can be discussed in the categorical settings.

• A holomorphic self-map $f: X \to X$ induces an endofunctor

$$\mathbb{L}f^* \colon \mathcal{D}^b \mathrm{Coh}(X) \to \mathcal{D}^b \mathrm{Coh}(X).$$

ullet A symplectomorphism $f\colon Y o Y$ induces an autoequivalence

$$f_* : \mathcal{D}^{\pi} \operatorname{Fuk}(Y) \to \mathcal{D}^{\pi} \operatorname{Fuk}(Y).$$

$$\mathcal{D}^b\mathrm{Coh}(X)\cong\mathcal{D}^\pi\mathrm{Fuk}(Y).$$

There is a parallel between Teichmüller theory and the theory of stability conditions on triangulated categories, developed by Bridgeland, Smith, Dimitrov, Haiden, Katzarkov, Kontsevich, etc.

Riemann surfaces	Triangulated categories
curve C	object <i>E</i>
$C_1 \cap C_2$	$\operatorname{Hom}(E_1, E_2)$
metric g	stability condition σ
	stable objects
length $\ell_g(C)$	mass $m_{\sigma}(E)$
slope of C	phase $\phi_{\sigma}(E)$
diffeomorphisms	autoequivalences

One can therefore consider categorical analogues of results in Teichmüller dynamics.

There is a parallel between Teichmüller theory and the theory of stability conditions on triangulated categories, developed by Bridgeland, Smith, Dimitrov, Haiden, Katzarkov, Kontsevich, etc.

Riemann surfaces	Triangulated categories
curve C	object <i>E</i>
$C_1 \cap C_2$	$\operatorname{Hom}(E_1, E_2)$
metric g	stability condition σ
geodesic	stable objects
length $\ell_g(C)$	mass $m_{\sigma}(E)$
slope of C	phase $\phi_{\sigma}(E)$
diffeomorphisms	autoequivalences
	• • • •

One can therefore consider categorical analogues of results in Teichmüller dynamics.

There is a parallel between Teichmüller theory and the theory of stability conditions on triangulated categories, developed by Bridgeland, Smith, Dimitrov, Haiden, Katzarkov, Kontsevich, etc.

Riemann surfaces	Triangulated categories
curve C	object <i>E</i>
$C_1 \cap C_2$	$\operatorname{Hom}(E_1, E_2)$
metric g	stability condition σ
geodesic	stable objects
length $\ell_g(C)$	mass $m_{\sigma}(E)$
slope of C	phase $\phi_{\sigma}(E)$
diffeomorphisms	autoequivalences

One can therefore consider categorical analogues of results in Teichmüller dynamics.

Analogy with symbolic dynamics:

Subshifts	Triangulated categories
finite alpahbet ${\cal A}$	bounded <i>t</i> -structure
shift-invariant subset $X \subseteq \mathcal{A}^{\mathbb{Z}}$	triangulated categories
shift map $\sigma \colon X \to X$	shift functor [1]
automorphism $\operatorname{Aut}(X,\sigma)$	autoequivalences

One can also consider categorical analogues of results in symbolic dynamics.

Analogy with symbolic dynamics:

Subshifts	Triangulated categories
finite alpahbet ${\cal A}$	bounded <i>t</i> -structure
shift-invariant subset $X\subseteq \mathcal{A}^{\mathbb{Z}}$	triangulated categories
shift map $\sigma \colon X \to X$	shift functor [1]
automorphism $\operatorname{Aut}(X,\sigma)$	autoequivalences

One can also consider categorical analogues of results in symbolic dynamics.

Analogy with symbolic dynamics:

Subshifts	Triangulated categories
finite alpahbet ${\cal A}$	bounded <i>t</i> -structure
shift-invariant subset $X\subseteq \mathcal{A}^{\mathbb{Z}}$	triangulated categories
shift map $\sigma \colon X \to X$	shift functor [1]
automorphism $\operatorname{Aut}(X,\sigma)$	autoequivalences

One can also consider categorical analogues of results in symbolic dynamics.

Outline

- (I). Entropy of holomorphic and symplectic dynamical systems, and mixings of them.
- (II). Finite subgroups of $Aut(\mathcal{D})$ acting on $Stab(\mathcal{D})$.
- (III). Shifting numbers and quasimorphisms on $Aut(\mathcal{D})$.

... is hard to compute in general.

Let (X, d) compact metric space and $f: X \to X$ continuous. Consider

$$N(n,\epsilon) := \max \left\{ \ell \colon \exists x_1, \dots, x_\ell \text{ s.t. } \max_{0 \le k \le n} \{ d(f^k(x_i), f^k(x_j)) \} \ge \epsilon \ \forall x_i, x_j \right\}$$

The topological entropy of f is defined to be

$$h_{\text{top}}(f) := \lim_{\epsilon \to 0} \left(\limsup_{n \to \infty} \frac{1}{n} \log N(n, \epsilon) \right) \in [0, \infty]$$

Basic properties

- ullet It's a topological invariant measuring the "complexity" of f.
- $f^n = \mathrm{id}_X \implies h_{\mathrm{top}}(f) = 0.$

... is hard to compute in general.

Let (X, d) compact metric space and $f: X \to X$ continuous. Consider

$$N(n,\epsilon) := \max \left\{ \ell \colon \exists x_1, \dots, x_\ell \text{ s.t. } \max_{0 \le k \le n} \{ d(f^k(x_i), f^k(x_j)) \} \ge \epsilon \ \forall x_i, x_j \right\}$$

The topological entropy of f is defined to be

$$h_{\mathrm{top}}(f) \coloneqq \lim_{\epsilon \to 0} \left(\limsup_{n \to \infty} \frac{1}{n} \log N(n, \epsilon) \right) \in [0, \infty].$$

Basic properties

- It's a topological invariant measuring the "complexity" of f.
- $f^n = id_X \implies h_{top}(f) = 0.$

... is hard to compute in general.

Let (X, d) compact metric space and $f: X \to X$ continuous. Consider

$$N(n,\epsilon) := \max \left\{ \ell \colon \exists x_1, \dots, x_\ell \text{ s.t. } \max_{0 \le k \le n} \{ d(f^k(x_i), f^k(x_j)) \} \ge \epsilon \ \forall x_i, x_j \right\}$$

The topological entropy of f is defined to be

$$h_{\mathrm{top}}(f) \coloneqq \lim_{\epsilon \to 0} \left(\limsup_{n \to \infty} \frac{1}{n} \log N(n, \epsilon) \right) \in [0, \infty].$$

Basic properties:

- It's a topological invariant measuring the "complexity" of f.
- $f^n = id_X \implies h_{top}(f) = 0.$

... is hard to compute in general.

Let (X, d) compact metric space and $f: X \to X$ continuous. Consider

$$N(n,\epsilon) := \max \left\{ \ell \colon \exists x_1, \dots, x_\ell \text{ s.t. } \max_{0 \le k \le n} \{ d(f^k(x_i), f^k(x_j)) \} \ge \epsilon \ \forall x_i, x_j \right\}$$

The topological entropy of f is defined to be

$$h_{\text{top}}(f) := \lim_{\epsilon \to 0} \left(\limsup_{n \to \infty} \frac{1}{n} \log N(n, \epsilon) \right) \in [0, \infty].$$

Basic properties:

- It's a topological invariant measuring the "complexity" of f.
- $f^n = \mathrm{id}_X \implies h_{\mathrm{top}}(f) = 0.$

... is hard to compute in general.

Let (X, d) compact metric space and $f: X \to X$ continuous. Consider

$$N(n,\epsilon) := \max \left\{ \ell \colon \exists x_1, \dots, x_\ell \text{ s.t. } \max_{0 \le k \le n} \{ d(f^k(x_i), f^k(x_j)) \} \ge \epsilon \ \forall x_i, x_j \right\}$$

The topological entropy of f is defined to be

$$h_{\text{top}}(f) := \lim_{\epsilon \to 0} \left(\limsup_{n \to \infty} \frac{1}{n} \log N(n, \epsilon) \right) \in [0, \infty].$$

Basic properties:

- It's a topological invariant measuring the "complexity" of f.
- $f^n = id_X \implies h_{top}(f) = 0$.

Example: Holomorphic maps on compact Kähler manifolds

One of the most fundamental results in (higher dimensional) complex dynamics is the following result of Gromov and Yomdin.

Theorem (Gromov, Yomdin)

If $f: X \to X$ is a surjective holomorphic map of a compact Kähler manifold, then

$$h_{\mathrm{top}}(f) = \log \rho(f^*)$$

where ρ is the spectral radius of f^* : $H^*(X,\mathbb{C}) o H^*(X,\mathbb{C})$.

Here is a geometric application of the topological entropy.

Theorem (Cantat)

If a compact complex surface X admits an automorphism of positive topological entropy, then X is either a torus, a K3 surface, an Enriques surface, or a rational surface.

Example: Holomorphic maps on compact Kähler manifolds

One of the most fundamental results in (higher dimensional) complex dynamics is the following result of Gromov and Yomdin.

Theorem (Gromov, Yomdin)

If $f: X \to X$ is a surjective holomorphic map of a compact Kähler manifold, then

$$h_{\mathrm{top}}(f) = \log \rho(f^*)$$

where ρ is the spectral radius of $f^*: H^*(X, \mathbb{C}) \to H^*(X, \mathbb{C})$.

Here is a geometric application of the topological entropy.

Theorem (Cantat)

If a compact complex surface X admits an automorphism of positive topological entropy, then X is either a torus, a K3 surface, an Enriques surface, or a rational surface.

Example: Holomorphic maps on compact Kähler manifolds

One of the most fundamental results in (higher dimensional) complex dynamics is the following result of Gromov and Yomdin.

Theorem (Gromov, Yomdin)

If $f: X \to X$ is a surjective holomorphic map of a compact Kähler manifold, then

$$h_{\mathrm{top}}(f) = \log \rho(f^*)$$

where ρ is the spectral radius of f^* : $H^*(X,\mathbb{C}) \to H^*(X,\mathbb{C})$.

Here is a geometric application of the topological entropy.

Theorem (Cantat)

If a compact complex surface X admits an automorphism of positive topological entropy, then X is either a torus, a K3 surface, an Enriques surface, or a rational surface.

Let $F \colon \mathcal{D} \to \mathcal{D}$ be as before, and $G, G' \in \mathcal{D}$ be split generators.

Dimitrov, Haiden, Katzarkov, and Kontsevich defined:

$$h_{\mathrm{cat}}(F) := \lim_{n \to \infty} \frac{1}{n} \log \Big(\sum_{k \in \mathbb{Z}} \dim \mathrm{Hom}(G, F^n G'[k]) \Big).$$

Basic properties

- The limit exists, and is independent of the choice of G, G'.
- $F^n = [m] \implies h_{cat}(F) = 0.$

Example: When $\mathcal{D} = \mathcal{D}^b \text{Coh}(X)$

- Kikuta–Takahashi: $h_{\text{cat}}(\mathbb{L}f^*) = h_{\text{top}}(f) = \log \rho(f^*) = \log \rho([\mathbb{L}f^*]_{H^*}).$
- $h_{\text{cat}}(-\otimes L)=0$.

Let $F: \mathcal{D} \to \mathcal{D}$ be as before, and $G, G' \in \mathcal{D}$ be split generators. Dimitrov, Haiden, Katzarkov, and Kontsevich defined:

$$h_{\mathrm{cat}}(F) := \lim_{n \to \infty} \frac{1}{n} \log \Big(\sum_{k \in \mathbb{Z}} \dim \mathrm{Hom}(G, F^n G'[k]) \Big).$$

Basic properties

- The limit exists, and is independent of the choice of G, G'.
- $F^n = [m] \implies h_{\text{cat}}(F) = 0.$

Example: When $\mathcal{D} = \mathcal{D}^b \text{Coh}(X)$

- Kikuta–Takahashi: $h_{\text{cat}}(\mathbb{L}f^*) = h_{\text{top}}(f) = \log \rho(f^*) = \log \rho([\mathbb{L}f^*]_{H^*}).$
- $\bullet \ h_{\rm cat}(-\otimes L)=0.$

Let $F: \mathcal{D} \to \mathcal{D}$ be as before, and $G, G' \in \mathcal{D}$ be split generators. Dimitrov, Haiden, Katzarkov, and Kontsevich defined:

$$h_{\mathrm{cat}}(F) := \lim_{n \to \infty} \frac{1}{n} \log \Big(\sum_{k \in \mathbb{Z}} \dim \mathrm{Hom}(G, F^n G'[k]) \Big).$$

Basic properties:

- The limit exists, and is independent of the choice of G, G'.
- $F^n = [m] \implies h_{cat}(F) = 0$.

Example: When $\mathcal{D} = \mathcal{D}^b \mathrm{Coh}(X)$:

- Kikuta–Takahashi: $h_{\text{cat}}(\mathbb{L}f^*) = h_{\text{top}}(f) = \log \rho(f^*) = \log \rho([\mathbb{L}f^*]_{H^*}).$
- $\bullet \ h_{\rm cat}(-\otimes L)=0.$

Let $F: \mathcal{D} \to \mathcal{D}$ be as before, and $G, G' \in \mathcal{D}$ be split generators. Dimitrov, Haiden, Katzarkov, and Kontsevich defined:

$$h_{\mathrm{cat}}(F) := \lim_{n \to \infty} \frac{1}{n} \log \Big(\sum_{k \in \mathbb{Z}} \dim \mathrm{Hom}(G, F^n G'[k]) \Big).$$

Basic properties:

- The limit exists, and is independent of the choice of G, G'.
- $F^n = [m] \implies h_{cat}(F) = 0$.

Example: When $\mathcal{D} = \mathcal{D}^b \text{Coh}(X)$:

- Kikuta–Takahashi: $h_{\mathrm{cat}}(\mathbb{L}f^*) = h_{\mathrm{top}}(f) = \log \rho(f^*) = \log \rho([\mathbb{L}f^*]_{H^*}).$
- $\bullet \ h_{\rm cat}(-\otimes L)=0.$

Categorical entropy

Let $F:\mathcal{D}\to\mathcal{D}$ be as before, and $G,G'\in\mathcal{D}$ be split generators. Dimitrov, Haiden, Katzarkov, and Kontsevich defined:

$$h_{\mathrm{cat}}(F) := \lim_{n \to \infty} \frac{1}{n} \log \Big(\sum_{k \in \mathbb{Z}} \dim \mathrm{Hom}(G, F^n G'[k]) \Big).$$

Basic properties:

- The limit exists, and is independent of the choice of G, G'.
- $F^n = [m] \implies h_{cat}(F) = 0.$

Example: When $\mathcal{D} = \mathcal{D}^b \text{Coh}(X)$:

- Kikuta–Takahashi: $h_{\mathrm{cat}}(\mathbb{L}f^*) = h_{\mathrm{top}}(f) = \log \rho(f^*) = \log \rho([\mathbb{L}f^*]_{H^*}).$
- $h_{\text{cat}}(-\otimes L)=0$.

However, there exist a Calabi–Yau manifold X and $F = T \circ (- \otimes L)$ with $h_{\text{cat}}(F) > \log \rho([F])$, where T is mirror to certain Dehn twist.

Categorical entropy

Let $F: \mathcal{D} \to \mathcal{D}$ be as before, and $G, G' \in \mathcal{D}$ be split generators. Dimitrov, Haiden, Katzarkov, and Kontsevich defined:

$$h_{\mathrm{cat}}(F) := \lim_{n \to \infty} \frac{1}{n} \log \Big(\sum_{k \in \mathbb{Z}} \dim \mathrm{Hom}(G, F^n G'[k]) \Big).$$

Basic properties:

- The limit exists, and is independent of the choice of G, G'.
- $F^n = [m] \implies h_{cat}(F) = 0.$

Example: When $\mathcal{D} = \mathcal{D}^b \text{Coh}(X)$:

- Kikuta–Takahashi: $h_{\text{cat}}(\mathbb{L}f^*) = h_{\text{top}}(f) = \log \rho(f^*) = \log \rho([\mathbb{L}f^*]_{H^*}).$
- $h_{\text{cat}}(-\otimes L)=0$.

However, there exist a Calabi–Yau manifold X and $F = T \circ (- \otimes L)$ with $h_{\text{cat}}(F) > \log \rho([F])$, where T is mirror to certain Dehn twist.

Σ: Riemann surface

- $MCG(\Sigma) = Diff(\Sigma)/isotopy$: mapping class group
- each mapping class is either:
 - ▶ finite orde
 - reducible
 - pseudo-Anosov

For instance –

- elements of $MCG(T^2) = SL(2, \mathbb{Z})$ are either:
 - elliptic (finite order)
 - parabolic (Dehn twist)
 - hyperbolic (two transverse foliations: stretch one by $\lambda > 1$, compress the other by $1/\lambda$)

- Σ: Riemann surface
- $MCG(\Sigma) = Diff(\Sigma)/isotopy$: mapping class group
- each mapping class is either:
 - ▶ finite order
 - reducible
 - pseudo-Anosov

For instance –

- elements of $MCG(T^2) = SL(2, \mathbb{Z})$ are either:
 - elliptic (finite order
 - parabolic (Dehn twist)
 - hyperbolic (two transverse foliations: stretch one by $\lambda > 1$, compress the other by $1/\lambda$)

- Σ: Riemann surface
- $MCG(\Sigma) = Diff(\Sigma)/isotopy$: mapping class group
- each mapping class is either:
 - finite order
 - reducible
 - pseudo-Anosov

For instance -

- elements of $MCG(T^2) = SL(2, \mathbb{Z})$ are either:
 - ► elliptic (finite order
 - parabolic (Dehn twist)
 - hyperbolic (two transverse foliations: stretch one by $\lambda>1$, compress the other by $1/\lambda$)

- Σ: Riemann surface
- $MCG(\Sigma) = Diff(\Sigma)/isotopy$: mapping class group
- each mapping class is either:
 - finite order
 - reducible
 - pseudo-Anosov

For instance -

- elements of $MCG(T^2) = SL(2, \mathbb{Z})$ are either:
 - ► elliptic (finite order)
 - parabolic (Dehn twist)
 - hyperbolic (two transverse foliations: stretch one by $\lambda>1$, compress the other by $1/\lambda$)

- Σ: Riemann surface
- $MCG(\Sigma) = Diff(\Sigma)/isotopy$: mapping class group
- each mapping class is either:
 - finite order
 - reducible
 - pseudo-Anosov

For instance -

- elements of $MCG(T^2) = SL(2, \mathbb{Z})$ are either:
 - elliptic (finite order)
 - parabolic (Dehn twist)
 - hyperbolic (two transverse foliations: stretch one by $\lambda>1$, compress the other by $1/\lambda$)

- Nielsen asked (1923): Let $G \subseteq MCG(\Sigma)$ be a finite subgroup. Does there always exist a lifting $G \subseteq Diff(\Sigma)$?
- Kerckhoff (1983): Yes! Moreover, there exists a metric g such that $G \subseteq \text{Isom}(\Sigma, g)$. Or equivalently, G fixes a point in $\text{Teich}(\Sigma)$. (e.g. $\text{MCG}(T^2) = \text{SL}(2, \mathbb{Z})$ acts on $\text{Teich}(T^2) = \mathbb{H}$.)
- Farb-Looijenga (2021) also proved similar statements for K3 surfaces (under certain conditions), where g is replaced by complex structure or Ricci-flat metric on the K3 surface.
- F.-Lai (2023): Let $\mathcal{D} = \mathcal{D}^b(X)$ be the derived category of a general K3 surface X. Then any finite subgroup $G \subseteq \operatorname{Aut}(\mathcal{D})$ fixes a point in $\operatorname{Stab}(\mathcal{D})$. Using this, we provide a full classification of finite subgroups of $\operatorname{Aut}(\mathcal{D})$.

- Nielsen asked (1923): Let $G \subseteq MCG(\Sigma)$ be a finite subgroup. Does there always exist a lifting $G \subseteq Diff(\Sigma)$?
- Kerckhoff (1983): Yes! Moreover, there exists a metric g such that $G \subseteq \text{Isom}(\Sigma, g)$. Or equivalently, G fixes a point in $\text{Teich}(\Sigma)$. (e.g. $\text{MCG}(T^2) = \text{SL}(2, \mathbb{Z})$ acts on $\text{Teich}(T^2) = \mathbb{H}$.)
- Farb-Looijenga (2021) also proved similar statements for K3 surfaces (under certain conditions), where g is replaced by complex structure or Ricci-flat metric on the K3 surface.
- F.-Lai (2023): Let $\mathcal{D} = \mathcal{D}^b(X)$ be the derived category of a general K3 surface X. Then any finite subgroup $G \subseteq \operatorname{Aut}(\mathcal{D})$ fixes a point in $\operatorname{Stab}(\mathcal{D})$. Using this, we provide a full classification of finite subgroups of $\operatorname{Aut}(\mathcal{D})$.

- Nielsen asked (1923): Let $G \subseteq MCG(\Sigma)$ be a finite subgroup. Does there always exist a lifting $G \subseteq Diff(\Sigma)$?
- Kerckhoff (1983): Yes! Moreover, there exists a metric g such that $G \subseteq \mathsf{Isom}(\Sigma, g)$. Or equivalently, G fixes a point in $\mathsf{Teich}(\Sigma)$.
 - (e.g. $MCG(T^2) = SL(2, \mathbb{Z})$ acts on $Teich(T^2) = \mathbb{H}$.)
- Farb-Looijenga (2021) also proved similar statements for K3 surfaces (under certain conditions), where g is replaced by complex structure or Ricci-flat metric on the K3 surface.
- F.-Lai (2023): Let $\mathcal{D} = \mathcal{D}^b(X)$ be the derived category of a general K3 surface X. Then any finite subgroup $G \subseteq \operatorname{Aut}(\mathcal{D})$ fixes a point in $\operatorname{Stab}(\mathcal{D})$. Using this, we provide a full classification of finite subgroups of $\operatorname{Aut}(\mathcal{D})$.

- Nielsen asked (1923): Let $G \subseteq MCG(\Sigma)$ be a finite subgroup. Does there always exist a lifting $G \subseteq Diff(\Sigma)$?
- Kerckhoff (1983): Yes! Moreover, there exists a metric g such that $G \subseteq \text{Isom}(\Sigma, g)$. Or equivalently, G fixes a point in $\text{Teich}(\Sigma)$. (e.g. $\text{MCG}(T^2) = \text{SL}(2, \mathbb{Z})$ acts on $\text{Teich}(T^2) = \mathbb{H}$.)
- Farb-Looijenga (2021) also proved similar statements for K3 surfaces (under certain conditions), where g is replaced by complex structure or Ricci-flat metric on the K3 surface.
- F.-Lai (2023): Let $\mathcal{D} = \mathcal{D}^b(X)$ be the derived category of a general K3 surface X. Then any finite subgroup $G \subseteq \operatorname{Aut}(\mathcal{D})$ fixes a point in $\operatorname{Stab}(\mathcal{D})$. Using this, we provide a full classification of finite subgroups of $\operatorname{Aut}(\mathcal{D})$.

- Nielsen asked (1923): Let $G \subseteq MCG(\Sigma)$ be a finite subgroup. Does there always exist a lifting $G \subseteq Diff(\Sigma)$?
- Kerckhoff (1983): Yes! Moreover, there exists a metric g such that $G \subseteq \text{Isom}(\Sigma, g)$. Or equivalently, G fixes a point in $\text{Teich}(\Sigma)$. (e.g. $\text{MCG}(T^2) = \text{SL}(2, \mathbb{Z})$ acts on $\text{Teich}(T^2) = \mathbb{H}$.)
- Farb-Looijenga (2021) also proved similar statements for K3 surfaces (under certain conditions), where g is replaced by complex structure or Ricci-flat metric on the K3 surface.
- F.-Lai (2023): Let $\mathcal{D} = \mathcal{D}^b(X)$ be the derived category of a general K3 surface X. Then any finite subgroup $G \subseteq \operatorname{Aut}(\mathcal{D})$ fixes a point in $\operatorname{Stab}(\mathcal{D})$. Using this, we provide a full classification of finite subgroups of $\operatorname{Aut}(\mathcal{D})$.

- Nielsen asked (1923): Let $G \subseteq MCG(\Sigma)$ be a finite subgroup. Does there always exist a lifting $G \subseteq Diff(\Sigma)$?
- Kerckhoff (1983): Yes! Moreover, there exists a metric g such that $G \subseteq \text{Isom}(\Sigma, g)$. Or equivalently, G fixes a point in $\text{Teich}(\Sigma)$. (e.g. $\text{MCG}(T^2) = \text{SL}(2, \mathbb{Z})$ acts on $\text{Teich}(T^2) = \mathbb{H}$.)
- Farb-Looijenga (2021) also proved similar statements for K3 surfaces (under certain conditions), where g is replaced by complex structure or Ricci-flat metric on the K3 surface.
- F.-Lai (2023): Let $\mathcal{D} = \mathcal{D}^b(X)$ be the derived category of a general K3 surface X. Then any finite subgroup $G \subseteq \operatorname{Aut}(\mathcal{D})$ fixes a point in $\operatorname{Stab}(\mathcal{D})$. Using this, we provide a full classification of finite subgroups of $\operatorname{Aut}(\mathcal{D})$.

$$0 \to \mathbb{Z} \to \operatorname{Homeo}^+_\mathbb{Z}(\mathbb{R}) \to \operatorname{Homeo}^+(S^1) \to 1.$$

Poincaré translation number:
$$\rho(f) := \lim_{n \to \infty} \frac{f^{(n)}(\mathbf{x}_0) - \mathbf{x}_0}{n}$$

$$0 \to \mathbb{Z} \to \operatorname{Aut}(\mathcal{D}) \to \operatorname{Aut}(\mathcal{D})/[1] \to 1.$$

Translation numbers	Shifting numbers
$f \in \mathrm{Homeo}_{\mathbb{Z}}^+(\mathbb{R})$	$F \in \operatorname{Aut}(\mathcal{D})$
$x_0 \in \mathbb{R}$	$G\in\mathcal{D}$
amount of translation	phases $\phi^\pm_\sigma\colon \mathrm{Ob}(\mathcal{D}) o \mathbb{R}$
$f^{(n)}(x_0)-x_0$	$\phi_{\sigma}^{\pm}(F^nG)-\phi_{\sigma}^{\pm}(G)$
translation number	upper/lower shifting numbers

$$0 \to \mathbb{Z} \to \operatorname{Homeo}^+_\mathbb{Z}(\mathbb{R}) \to \operatorname{Homeo}^+(S^1) \to 1.$$

Poincaré translation number:
$$\rho(f) := \lim_{n \to \infty} \frac{f^{(n)}(x_0) - x_0}{n}$$
.

$$0 \to \mathbb{Z} \to \operatorname{Aut}(\mathcal{D}) \to \operatorname{Aut}(\mathcal{D})/[1] \to 1.$$

Translation numbers	Shifting numbers
$f \in \mathrm{Homeo}_{\mathbb{Z}}^+(\mathbb{R})$	$F \in \operatorname{Aut}(\mathcal{D})$
$x_0 \in \mathbb{R}$	$G\in\mathcal{D}$
amount of translation	phases $\phi^\pm_\sigma\colon \mathrm{Ob}(\mathcal{D}) o \mathbb{R}$
$f^{(n)}(x_0)-x_0$	$\phi_{\sigma}^{\pm}(F^nG)-\phi_{\sigma}^{\pm}(G)$
translation number	upper/lower shifting numbers

$$0 \to \mathbb{Z} \to \operatorname{Homeo}^+_\mathbb{Z}(\mathbb{R}) \to \operatorname{Homeo}^+(S^1) \to 1.$$

Poincaré translation number:
$$\rho(f) := \lim_{n \to \infty} \frac{f^{(n)}(x_0) - x_0}{n}$$
.

$$0 \to \mathbb{Z} \to \operatorname{Aut}(\mathcal{D}) \to \operatorname{Aut}(\mathcal{D})/[1] \to 1.$$

Translation numbers	Shifting numbers
$f \in \mathrm{Homeo}_{\mathbb{Z}}^{+}(\mathbb{R})$	$F \in \operatorname{Aut}(\mathcal{D})$
$x_0 \in \mathbb{R}$	$G\in\mathcal{D}$
amount of translation	phases $\phi^\pm_\sigma\colon \mathrm{Ob}(\mathcal{D}) o \mathbb{R}$
$f^{(n)}(x_0)-x_0$	$\phi_{\sigma}^{\pm}(F^nG)-\phi_{\sigma}^{\pm}(G)$
translation number	upper/lower shifting numbers

$$0 \to \mathbb{Z} \to \operatorname{Homeo}^+_{\mathbb{Z}}(\mathbb{R}) \to \operatorname{Homeo}^+(S^1) \to 1.$$

Poincaré translation number:
$$\rho(f) := \lim_{n \to \infty} \frac{f^{(n)}(x_0) - x_0}{n}$$
.

$$0 \to \mathbb{Z} \to \operatorname{Aut}(\mathcal{D}) \to \operatorname{Aut}(\mathcal{D})/[1] \to 1.$$

Translation numbers	Shifting numbers
$f \in \operatorname{Homeo}_{\mathbb{Z}}^{+}(\mathbb{R})$	$F \in \operatorname{Aut}(\mathcal{D})$
$x_0 \in \mathbb{R}$	$G\in\mathcal{D}$
amount of translation	phases $\phi^\pm_\sigma\colon \mathrm{Ob}(\mathcal{D}) o \mathbb{R}$
$f^{(n)}(x_0)-x_0$	$\phi_{\sigma}^{\pm}(F^nG) - \phi_{\sigma}^{\pm}(G)$
translation number	upper/lower shifting numbers

Theorem (F.-Filip, 2023)

• The limit

$$\tau^{\pm}(F) := \lim_{n \to \infty} \frac{\phi_{\sigma}^{\pm}(F^n G) - \phi_{\sigma}^{\pm}(G)}{n}$$

always exists, and is independent of the choices of G and σ .

The function

$$h_t(F) := \lim_{n \to \infty} \frac{1}{n} \log \left(\sum_{k \in \mathbb{Z}} \dim \operatorname{Hom}(G, F^n G[k]) e^{-kt} \right),$$

is a convex function in t satisfying:

- $t \cdot \tau^{+}(F) < h_{t}(F) < h_{0}(F) + t \cdot \tau^{+}(F)$ for t > 0, and
 - $t \cdot \tau^{-}(F) \le h_t(F) \le h_0(F) + t \cdot \tau^{-}(F)$ for $t \le 0$.

Theorem (F., 2023)

Let X be an abelian variety. Then $au= au^\pm\colon \operatorname{Aut}(\mathcal{D}^b(X)) o\mathbb{R}$ is a quasimorphism.

Theorem (F.-Filip, 2023)

• The limit

$$\tau^{\pm}(F) := \lim_{n \to \infty} \frac{\phi_{\sigma}^{\pm}(F^n G) - \phi_{\sigma}^{\pm}(G)}{n}$$

always exists, and is independent of the choices of G and σ .

The function

$$h_t(F) := \lim_{n \to \infty} \frac{1}{n} \log \Big(\sum_{k \in \mathbb{Z}} \dim \operatorname{Hom}(G, F^n G[k]) e^{-kt} \Big),$$

is a convex function in t satisfying

$$t\cdot au^+(F) \leq h_t(F) \leq h_0(F) + t\cdot au^+(F)$$
 for $t\geq 0$, and

$$t \cdot \tau^{-}(F) \le h_t(F) \le h_0(F) + t \cdot \tau^{-}(F)$$
 for $t \le 0$.

Theorem (F., 2023)

Let X be an abelian variety. Then $au= au^\pm\colon {
m Aut}(\mathcal{D}^b(X)) o\mathbb{R}$ is a quasimorphism.

Theorem (F.-Filip, 2023)

• The limit

$$\tau^{\pm}(F) := \lim_{n \to \infty} \frac{\phi_{\sigma}^{\pm}(F^n G) - \phi_{\sigma}^{\pm}(G)}{n}$$

always exists, and is independent of the choices of G and σ .

The function

$$h_t(F) := \lim_{n \to \infty} \frac{1}{n} \log \Big(\sum_{k \in \mathbb{Z}} \dim \operatorname{Hom}(G, F^n G[k]) e^{-kt} \Big),$$

is a convex function in t satisfying:

- $t \cdot \tau^+(F) \le h_t(F) \le h_0(F) + t \cdot \tau^+(F)$ for $t \ge 0$, and
- $t \cdot \tau^{-}(F) \le h_t(F) \le h_0(F) + t \cdot \tau^{-}(F)$ for t ≤ 0.

Theorem (F., 2023)

Let X be an abelian variety. Then $au= au^\pm\colon {
m Aut}(\mathcal{D}^b(X)) o \mathbb{R}$ is a quasimorphism.

Theorem (F.-Filip, 2023)

The limit

$$au^\pm(F) \coloneqq \lim_{n o \infty} rac{\phi_\sigma^\pm(F^nG) - \phi_\sigma^\pm(G)}{n}$$

always exists, and is independent of the choices of G and σ .

The function

$$h_t(F) := \lim_{n \to \infty} \frac{1}{n} \log \Big(\sum_{k \in \mathbb{Z}} \dim \operatorname{Hom}(G, F^n G[k]) e^{-kt} \Big),$$

is a convex function in t satisfying:

- $t\cdot au^+(F)\leq h_t(F)\leq h_0(F)+t\cdot au^+(F)$ for $t\geq 0$, and
 - $t \cdot \tau^{-}(F) < h_t(F) < h_0(F) + t \cdot \tau^{-}(F)$ for t < 0.

Theorem (F., 2023)

Let X be an abelian variety. Then $\tau = \tau^{\pm} : \operatorname{Aut}(\mathcal{D}^b(X)) \to \mathbb{R}$ is a quasimorphism.

Thank you for your attention!

Reference:

- Dimitrov-Haiden-Katzarkov-Kontsevich. Dynamical systems and categories. arXiv:1307.8418.
- F.. Entropy of an autoequivalence on Calabi-Yau manifolds. MRL 2018.
- F.-Lai. Nielsen realization problem for Bridgeland stability conditions on generic K3 surfaces. arXiv:2302.12663.
- F.-Filip. Asymptotic shifting numbers in triangulated categories. Adv. Math 2023.
- F.. Shifting numbers of abelian varieties via bounded t-structures. arXiv:2306.13330.