19MIS1018_LAB-4_ML_Multiple Linear Regression

August 18, 2022

Name: B DEVI PRASAD

Reg No: 19MIS1018

Slot: L13+L14

Faculty: Dr. G. Bharadwaja Kumar

1 Multiple Linear Regression

```
[1]: import pandas as pd
     import numpy as np
     import statsmodels.api as sm
     df_adv = pd.read_csv('Advertising.csv', index_col=0)
[2]: X = df adv[['TV', 'Radio']]
     y = df_adv['Sales']
     df adv.head()
[2]:
              Radio
                     Newspaper
                                 Sales
     1 230.1
               37.8
                          69.2
                                  22.1
               39.3
     2
       44.5
                          45.1
                                 10.4
     3
        17.2
               45.9
                          69.3
                                  9.3
     4 151.5
               41.3
                          58.5
                                  18.5
     5 180.8
               10.8
                          58.4
                                  12.9
[3]: X = df_adv[['TV', 'Radio']]
     y = df_adv['Sales']
     ## fit a OLS model with intercept on TV and Radio
     X = sm.add_constant(X)
     est = sm.OLS(y, X).fit()
     est.summary()
```

[3]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable: Sales R-squared: 0.897

Model: OLS Adj. R-squared:

0.896

Method:	Least Squares	F-statistic:	859.6
Date:	Thu, 18 Aug 2022	Prob (F-statistic):	4.83e-98
Time:	18:51:59	Log-Likelihood:	-386.20
No. Observations:	200	AIC:	778.4
Df Residuals:	197	BIC:	788.3
Df Model:	2		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const TV Radio	2.9211 0.0458 0.1880	0.294 0.001 0.008	9.919 32.909 23.382	0.000 0.000 0.000	2.340 0.043 0.172	3.502 0.048 0.204
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	0 -1	.000 Jaro	oin-Watson: que-Bera (JB o(JB): 1. No.):	2.081 148.679 5.19e-33 425.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

2 Handling Categorical Variables(Sales and Newspaper as independent variables)

```
[5]: import statsmodels.formula.api as smf
# formula: response ~ predictor + predictor
est = smf.ols(formula='Sales ~ TV + Radio', data=df_adv).fit()
```

```
[6]: TV Radio Newspaper Sales
1 230.1 37.8 69.2 22.1
2 44.5 39.3 45.1 10.4
3 17.2 45.9 69.3 9.3
4 151.5 41.3 58.5 18.5
5 180.8 10.8 58.4 12.9
```

```
[7]: y.groupby(X.Sales).mean()
 [7]: Sales
     1.6
              8.7
     3.2
              5.7
     4.8
             1.0
     5.3
             17.5
     5.5
             41.4
     24.7
             3.2
     25.4
             33.5
     25.5
             66.2
     26.2
             71.8
             41.8
     27.0
     Name: Newspaper, Length: 121, dtype: float64
 [8]: import statsmodels.formula.api as smf
     # encode df.famhist as a numeric via pd.Factor
     #df['Sales'] = pd.Categorical((df.Sales).labels
     est = smf.ols(formula="Newspaper ~ Sales", data=df_adv).fit()
[13]: # fit OLS on categorical variables children and occupation
     est = smf.ols(formula='Sales ~ Newspaper', data=df).fit()
     #short_summary(est)
[14]:  est = sm.OLS(y, X).fit()
     est.summary()
[14]: <class 'statsmodels.iolib.summary.Summary'>
     11 11 11
                                     OLS Regression Results
     ______
     ======
     Dep. Variable:
                                Newspaper
                                           R-squared (uncentered):
     0.683
     Model:
                                      OLS
                                           Adj. R-squared (uncentered):
     0.678
     Method:
                            Least Squares F-statistic:
     141.4
     Date:
                         Thu, 18 Aug 2022 Prob (F-statistic):
     6.89e-49
     Time:
                                           Log-Likelihood:
                                 18:52:44
     -893.75
     No. Observations:
                                      200
                                           AIC:
     1794.
     Df Residuals:
                                      197
                                           BIC:
     1803.
```

Df Model: 3
Covariance Type: nonrobust

=======		=======	========	=======	========	
	coef	std err	t	P> t	[0.025	0.975]
TV	-0.0388	0.042	-0.912	0.363	-0.123	0.045
Radio	0.3594	0.192	1.875	0.062	-0.019	0.737
Sales	1.8528	0.736	2.517	0.013	0.401	3.304
Omnibus:		10	.613 Durb	======= oin-Watson:	========	1.952
Prob(Omnib	ous):	0	.005 Jaro	ue-Bera (JB):	12.125
Skew:		0	-	(JB):		0.00233
Kurtosis:		3	.841 Cond	. No.		86.6

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

3 TV and Newspaper as independent variables

```
[27]: import statsmodels.formula.api as smf
     # formula: response ~ predictor + predictor
     est = smf.ols(formula='TV ~ Sales + Radio', data=df_adv).fit()
[28]: import pandas as pd
     df = pd.read_csv('Advertising.csv', index_col=0)# copy data and separate_
      ⇔predictors and response
     X = df.copy()
     y = X.pop('TV')
     df.head()
[28]:
           TV Radio Newspaper Sales
     1 230.1
               37.8
                          69.2
                                 22.1
     2
        44.5
               39.3
                          45.1
                                10.4
     3 17.2 45.9
                          69.3 9.3
     4 151.5 41.3
                          58.5
                                 18.5
     5 180.8 10.8
                          58.4 12.9
```

[29]: Newspaper 0.3 265.6

[29]: y.groupby(X.Newspaper).mean()

```
1.0
               8.6
     1.7
             184.9
     1.8
             293.6
     79.2
             125.7
     84.8
             234.5
     89.4
             16.9
     100.9
             296.4
     114.0
              67.8
     Name: TV, Length: 172, dtype: float64
[30]: import statsmodels.formula.api as smf
     # encode df.famhist as a numeric via pd.Factor
     #df['Sales'] = pd.Categorical((df.Sales).labels
     est = smf.ols(formula="TV ~ Newspaper", data=df_adv).fit()
[31]: est = smf.ols(formula='Newspaper ~ TV', data=df).fit()
[32]:  est = sm.OLS(y, X).fit()
     est.summary()
[32]: <class 'statsmodels.iolib.summary.Summary'>
                                   OLS Regression Results
     ______
     ======
     Dep. Variable:
                                         R-squared (uncentered):
                                     TV
     0.957
     Model:
                                    OLS
                                         Adj. R-squared (uncentered):
     0.956
                          Least Squares F-statistic:
     Method:
     1458.
                        Thu, 18 Aug 2022 Prob (F-statistic):
     Date:
     3.49e-134
     Time:
                               19:05:51
                                         Log-Likelihood:
     -996.73
     No. Observations:
                                    200
                                         AIC:
     1999.
     Df Residuals:
                                         BIC:
                                    197
     2009.
     Df Model:
                                      3
     Covariance Type:
                              nonrobust
                           std err
                                           t
                                                 P>|t|
                                                            [0.025
                    coef
                           0.216 -15.651 0.000
     Radio
                -3.3814
                                                           -3.807
                                                                      -2.955
```

0.9

69.0

Newspaper	-0.1086	0.119	-0.912	0.363	-0.343	0.126
Sales	16.5974	0.410	40.507	0.000	15.789	17.405
========	========	========	=======	========		========
Omnibus:		3.	564 Durb	in-Watson:		2.137
Prob(Omnibu	s):	0.	168 Jarq	ue-Bera (JB):	:	3.153
Skew:		0.	283 Prob	(JB):		0.207
Kurtosis:		3.	240 Cond	. No.		8.14

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

4 Comparing results:

By Seeing the different combinations of the independent variable to detect the Sales as per the advertisment we got a model that uses the Newspaper and TV only as the independent variable and Sales newspaper. Multiple linear regression is a regression model that estimates the relationship between a quantitative dependent variable. 1. Newspaper Vs Sales. Adjusted R-squared: 0.897 Predicted R-squared: 0.683

2. TV vs Newspaper: Adjusted R-squared: 0.897 Predicted R-squared: 0.957