Klausur "Robot Vision"

Name	Matrikel-Nummer

Hinweise:

- 1.) Tragen Sie in obige Felder Ihren Namen und Ihre Matrikelnummer ein.
- 2.) Zusätzliche Lösungsblätter versehen Sie bitte mit **Namen und Matrikelnummer**.

Nehmen Sie zur Bearbeitung einer Aufgabe jeweils ein neues Blatt.

- 3.) Vermerken Sie in den vorgesehenen Lösungsfeldern der Aufgabenblätter, falls ein Zusatzblatt existiert.
- 4.) Zur Bearbeitung stehen **120 Minuten** zur Verfügung.
- 5.) Erlaubte Hilfsmittel:

Bücher, Vorlesungsskript und eigene Aufzeichnungen, Taschenrechner, Lineal, Geodreieck.

Sonst keine weiteren Hilfsmittel (keine Notebooks, Handy's,).

		bersicht zur Bewertung der Aufgaben.
Aufgabe	Punkte	
01	15	
02	8	
03	8	
04	6	
05	12	
06	4	
07	6	
08	6	
09	10	
Punkt	te ≅ 75	

<u>Aufgabe 1</u> (Bildvorverarbeitung, Bildeigenschaften)

[15 Punkte]

a) Geben Sie für das helle Feld den Gradienten G und die Kantenrichtung (in °) mit Hilfe des angegebenen 3x3-Sobel-Operators an (ohne Normierung).

7	6	5	2
6	4	3	1
3	3	2	0
0	0	0	0

Quellbild

Gradient $G \in R$

Richtung $G \in [0^{\circ}...360^{\circ})$

Faltungsmasken:

-1 -2 -1 0 0 0 1 2 1 **G**_y

b) Gegeben ist das Histogramm eines 5x3-Bildausschnitts:

- c1) Wie groß ist der Mittelwert m?
- c2) Wie groß ist der Median d?
- c3) Geben Sie das Histogramm an, nachdem der Bildausschnitt mit 0xFC bitweise XOR-verknüpft wurde.

c) Welche Faltungskerne sind separierbar und wie sehen in diesem Fall die separierten Kerne aus?

1	2	3
-2	-4	-6
1	2	3

1	1	1
1	-8	1
1	1	1

1	2	4	2	1
0	0	0	0	0
1	2	4	2	1

- d) Geben Sie für die Parameter [Precision = 1.5, σ = 1] den 1D-Gauss-Faltungskern an
 - d1) als normierter Floatingpointkern
 - d2) als Ganzzahlkern und Normierungsfaktor

Gegeben ist die folgende affine Vorwärtstransformation (Source-to-target):

$$x_z = 3x_q + 4y_q + 2$$

$$y_z = x_q - 2y_q + 1$$

Der Grauwert des Zielbild-Punktes $(x_z, y_z) = (5, 10)$ soll bestimmt werden. Von welcher Quellbild-Koordinate (x_q, y_q) ist der Grauwert zu holen? Verwenden Sie zur Lösung die Determinantenmethode.

<u>Aufgabe 3</u> (Funktionsapprox. mit radialen Basisfunktionen)

[8 Punkte]

Mit Hilfe von radialen Basisfunktionen soll ein Bildwarping realisiert werden. Der Funktionsapproximator soll für jede Bildposition (x_z, y_z) des Zielbildes einen Korrekturwert $(\Delta x, \Delta y)$ ausgeben (Target-to-source-Transformation).

Die Eckpunkte des Bildes (100x100) sollen unverändert bleiben. Die Bildmitte (50, 50) des Quellbildes soll im Zielbild um 20 Pixel nach rechts verschoben sein. Geben Sie die Teil-Approximationsfunktion $\Delta x = f_1(x_z, y_z)$ an $(\sigma=1)$.

<u>Aufgabe 4</u> (Geraden, Bildmesstechnik)

[6 Punkte]

Ein Gerade y = 2.5x + 25 verläuft durch ein Bild der Größe 200x200.

- a) Wo schneidet die Gerade die Bildränder (Koordinatenwerte angeben)?
- b) Geben Sie die Hessesche Normalform der Gerade an (r, θ) .
- c) Angenommen die Parameter der Hesseschen Normalform sind $(r, \theta) = (10, 150^{\circ})$. Wie weit ist der Bildeckpunkt (199, 0) von der Gerade entfernt (senkrechter Abstand).

<u>Aufgabe 5</u> (Bildtransformation, Ausgleichsrechnung)

[12 Punkte]

Ein 3D-Sensor (z.B. Kinect) liefert einige (fehlerbehaftete) Raumpunkte, von denen bekannt ist, dass sie auf einer Ebene im Raum liegen. Ebenen im Raum werden durch folgende Gleichung beschrieben:

$$Ax + By + Cz = 1$$

Die folgenden Raumpunkte sind gegeben

X	y	Z
0	0	2
0	1	2
1	0	3
1	1	5

- a) Stellen Sie das Gleichungssystem für die Ausgleichung der Ebenenparameter A, B und C auf (Anm.: Ausmultiplizieren, aber nicht lösen).
- b) Angenommen die Parameter sollen nicht wie unter a) angegeben geschlossen gelöst werden, sondern iterativ, indem nacheinander die Messpunkte in die Messung eingehen. Wie sieht die Iterationsgleichung aus (<u>Hinweis</u>: Gradientenabstieg)?

Mit Hilfe der dynamischen Programmierung sollen im angegebenen Graphen alle Wege mit der maximalen **und** der minimalen Gewichtssumme gefunden werden.

Zeichnen Sie hierzu in den abgebildeten Graphen ein:

- die max. bzw. min. Gewichtssumme der Einzelknoten
- die Richtung des Rückwegs
- den optimalen Gesamtweg (dick zeichnen).

Beispiel:

max. Wegesumme

min. Wegesumme

zur Reserve, falls verzeichnet

<u>Aufgabe 7</u> (Momentenmethode)

[6 Punkte]

Die sog. Hauptachse eines Bildobjektes (salopp: die Richtung der größten Ausdehnung) wird mit folgender Formel berechnet:

Anm.: Schwerpunkt durch scharfes Hinsehen bestimmen

$$\Theta = \frac{1}{2}\arctan\left(\frac{2\mu_{11}}{\mu_{20} - \mu_{02}}\right)$$

Berechnen Sie die Hauptachse des dargestellten Bildobjektes (in °).

<u>Aufgabe 8</u> (Connected components labeling)

[6 Punkte]

Ein Bild wurde initial gelabelt. Dabei haben sich folgende Äquivalenzen gezeigt:

Lab 1 = Lab 8

Lab 2 = Lab 5

Lab 3 = Lab 4

Lab 6 = Lab 7

Lab 8 = Lab 5

Lab 7 = Lab 3

- a) Tragen Sie die Label-Äquivalenzen in die Matrix ein (mit ,X' markieren).
- b) Wenden Sie jetzt den Floyd-Warshall-Algorithmus an und markieren Sie die dadurch gesetzten Felder mit ,oʻ.

	1	2	3	4	5	6	7	8
1								
2								
3								
4								
5								
6								
7								
8								

	1	2	3	4	5	6	7	8
1								
2								
3								
4								
5								
6								
7								
8								

<u>Aufgabe 9</u> (Houghtransformation)

[10 Punkte]

Ein kantengefiltertes Bild wurde Hough-transformiert. Danach befinden sich im Houghraum die eingezeichneten Maxima (= Mehrfachschnittpunkte) an den Stellen :

$$r_1 = 50, \, \theta_1 = 90^{\circ}$$
 / $r_2 = 99, \, \theta_2 = 45^{\circ}$ / $r_3 = 14, \, \theta_3 = 135^{\circ}$

a) Zeichnen Sie in das Bild ein Polygon, welches dieses Ergebnis liefern würde.

b) Geben Sie für das Ergebnis bei a) die Höhe der Maxima an (<u>Anm.:</u> ein Kästchen im Bild sind 10x10 Bildpunkte).

$$Max. 1 =$$

$$Max. 2 =$$

$$Max.3 =$$

- c) Zeichnen Sie ein beliebiges anderes Bild (kein Polygon), welches das gleiche Ergebnis im Houghraum erzeugt.
- d) Geben Sie für die Maxima bei r_1 =50, θ_1 =90° und r_2 =99, θ_2 =45° ein Gleichungssystem in Matrixform an, mit dem der Schnittpunkt der Geraden berechnet werden kann.

