3.1 Abstract groups

In Chapter 1, we considered the set $\mathbb{Z}_n = \{0, 1, \dots, n_0 1\}$ of **remainders modulo** n and saw that it was possible to define the operator $+_n$ on it.

☐ Definition 3.1.1: Abstract group (p69)

A pair (G,\cdot) consisting of

- a set *G*,
- a group operation $\cdot: G imes G o G$ (law of composition)

is called a group if the following axioms are satisfied:

1. **Associativity**: For all $a, b, c \in G$,

$$(a \cdot b) \cdot c = a \cdot (b \cdot c).$$

2. Identity element:

$$\exists e \in G : \forall f \in G, e \cdot f = f \cdot e = f$$

3. Inverse element:

$$\forall f \in G: \exists g \in G: f \cdot g = e = g \cdot f$$

The element g is called the **inverse** of f and is denoted by f^{-1} .

Abelian group

A group (G, \cdot) is called **abelian** (or **commutative**) if the LOC satisfies **commutativity**:

$$\forall a,b \in G: a \cdot b = b \cdot a.$$

Examples of groups

- $(\mathbb{Z},+)$
 - infinitely many elements (infinite order)
 - abelian
- $(\mathbb{Q} \setminus \{0\}, \cdot)$
- $(\mathbb{Z}_n, +_n)$
 - See

Non-examples of groups

- (\mathbb{Z}, \cdot) (not every element has an inverse)
- $(\mathbb{N}, +)$ (not every element has an inverse)

Order of a group (p71)

The **order** of a group (G, \cdot) is the number of elements in G, that is |G|.

• If $|G| = n < \infty$ the group is called a **finite group of order** n.

$$ord(G) = n$$

• If $|G| = \infty$ the group is of **infinite order**.

$$\operatorname{ord}(G) = \infty$$

(\mathbb{Z}_n,\cdot_n) is not a group

 (\mathbb{Z}_n, \cdot_n) comes close to being a group:

- 1. It is associative (Theorem 1.4.2).
- 2. The identity element is 1.
- 3. However, not every element has an inverse.
 - (\mathbb{Z}, \times) , 2 has no inverse since there is no $x \in \mathbb{Z}$ such that

$$2\cdot x\equiv 1\pmod{\mathfrak{m}} \quad\Longleftrightarrow\quad 2x=1+k ext{ for some } k\in\mathbb{Z}.$$

When does an element $a \in \mathbb{Z}_n$ have an inverse in (\mathbb{Z}_n, \cdot_n) ?

\square Invertibility in (\mathbb{Z}_n, \cdot_n) (p71)

$$a \in \mathbb{Z}_n ext{ has an inverse in } (\mathbb{Z}_n, \cdot_n) \iff \gcd(a,n) = 1.$$

Proof

Take $f \in \mathbb{Z}_n$ and assume $\gcd(f,n)=1$. We want to find g such that

$$f \cdot_n g = 1$$

Using the Extended Euclidean Algorithm, we can find $r,s\in\mathbb{Z}$ such that

$$r \cdot f + s \cdot n = \gcd(f, n) = 1.$$

We can assume $0 \le s < n$. Otherwise, replace r by r + kn and s by s - kf for some $k \in \mathbb{Z}$:

$$(r+kn)\cdot f+(s-kf)\cdot n=r\cdot f+s\cdot n= ext{the above}=\gcd(f,n)=1.$$

Using Definition 1.2.1 of congruence modulo an integer, we have that

$$r \cdot f \equiv 1 \pmod{n}$$
,

which means that $r \cdot_n f = 1$. We can thus **choose** $g = r = f^{-1}$.

Conversely, assume that f has an inverse $f^{-1} = g \in \mathbb{Z}_n$. Then

$$egin{aligned} f \cdot_n g &= 1 &\iff (f \cdot g) \operatorname{mod} n = 1 \ &\iff f \cdot g = 1 + k \cdot n ext{ for some } k \in \mathbb{Z} \ &\iff fg - kn = 1 \end{aligned}$$

By **Bézout's identity** (p29), this implies that gcd(f, n) = 1.

\square Definition: \mathbb{Z}_{*n}

A slightly modified version of (\mathbb{Z}_n, \cdot_n) is the set \mathbb{Z}_{*n} :

$$\mathbb{Z}_{*n} = \{a \in \mathbb{Z}_n \mid \gcd(a,n) = 1\}.$$

This group has order (n), where is the **Euler's totient function** (see below).

\square Definition: Euler's totient function (n)

The Euler's totient function (n) is defined as the number of elements in \mathbb{Z}_{*n} , that is:

$$= \left\{ \begin{matrix} \mathbb{Z}_{>0} \to \mathbb{Z}_{>0} \\ n \ |\mathbb{Z}_{*n} \end{matrix} \right|$$

So $(n) = \operatorname{ord}(\mathbb{Z}_{*n}, \cdot_n)$.

$\ \ \, \square \ \ \, \mathbb{Z}_{*n}$ is a group

The pair $(\mathbb{Z}_{*n}, \cdot_n)$ is a group of order (n).

This follows directly from the invertibility theorem above and the fact that \cdot_n is associative (Theorem 1.4.2) and has an identity element (1).

Demma 3.1.7: Uniqueness of identity element (p72)

Let (G, \cdot) be a group. Then it has **exactly one** identity element.

Note that if (G, \cdot) is $(\mathbb{Z}, +)$, it would be very confusing to write 3 if what we meant is + +.

 \Rightarrow write nf or $n \cdot f$ instead of f^n when the group operation is addition

☐ Definition 3.1.10: Order of an element (p73)

Let (G, \cdot) be a group and $g \in G$.

- If it exists, smallest positive number i such that $g^i=e$ is called the **order of the element** g and is denoted by $\operatorname{ord}(g)$
- If $orall i \in \mathbb{N}$: $g^i
 eq e$, we say that g is of **infinite order** and write

$$\operatorname{ord}(g) = \infty$$

B Lemma: Order of an element

Let (G, \cdot) be a group and $g \in G$. Then **EITHER**

1.
$$\operatorname{ord}(g) = \infty$$
:

$$\mathbb{Z} o G: i \;\; g^i ext{ is inective}$$

2. ord
$$(g) = i < \infty$$
:

$$\exists k \in \mathbb{Z}_{\geq 0}: g^k = e ext{ and } g^0, g^1, \dots, g^{k-1} ext{ are distinct}$$

☼ Lemma 3.1.12: Order of an element divides ... (p73)

Let (G,\cdot) be a group and $g\in G$ an element. Then

$$\exists i \in \mathbb{Z}_{>0} : g^i = e \qquad ext{ ord}(g) \mid i$$

Conversely, if $i \in \mathbb{Z}_{>0}$ is a multiple of $\operatorname{ord}(g)$, then

$$g^i = e$$

3.2 Cycling groups

2 Counterclockwise rotations of a regular n-gon (p74)

Denote by r the counterclockwise rotation by 2n radians (or 30n degrees) around the center of a regular n -gon with vertices $_0,_1,\ldots,_{n-1}$.

Using the composition operator \circ , we can define $r^0=e, r^1=r, r^2=r\circ r, \ldots, r^{n-1}$.

We can make a group out of the rotations using \circ as the group operation. Let's define

$$C_n := \{e, r, r^2, \dots, r^{n-1}\}.$$

\mathfrak{G} Lemma 3.2.1: identities of (C_n, \circ) (p74)

Let $n \in \mathbb{Z}_{>0}$. Then (C_n, \circ) is a group. The following identities hold:

- 1. $r^n = e$
- 2. $\forall i \in [0, n-1] : (r^i)^{-1} = r^{(-1) \mod n}$
- 3. $orall i, \ \in [0,n-1]: r^i \circ r = r^{(i+\mod n)} = r^{i+_n}$

The group (C_n, \circ) is an example of a cyclic group:

Definition 3.2.2: Cyclic group (p75)

A group (G, \cdot) is called **cyclic** if any element in G can be written as a power of a single element $g \in G$:

$$\exists g \in G : G = \{g^i \mid i \in \mathbb{Z}\}.$$

The element g is called a **generator** of G.

☼ Lemma 3.2.3: Cyclic if order of an element equals order of group (p75)

Let (G,\cdot) be a **finite** group of order n (ord(G)=|G|=n). Then

$$G ext{ is cyclic } \iff \exists g \in G : \operatorname{ord}(g) = n.$$

In this case, $G = \{e, g, g^2, \dots, g^{n-1}\}.$

Now the climax of Week 3.2:

Theorem 3.2.5: The order of power theorem (p76)

Let (G,\cdot) be a group and $g\in G$ an element of **finite** order $n=\operatorname{ord}(g).$ Then

$$orall i \in \mathbb{Z}_{\geq 0}: \quad \operatorname{ord}(g^i) = rac{n}{\gcd(n,i)}$$

For i=0, we have $\operatorname{ord}(g^0)=n\operatorname{gcd}(n,0)=nn=1.$