Προβλήματα Ικανοποίησης Περιορισμών (CSPs)

1ο Φροντιστήριο

Χαρακτηριστικά

- Μεταβλητές: V₁,...,V_N
- Πεδία τιμών: D₁,...,D_n
- Περιορισμοί: $C_1,...,C_m$

Παραδείγματα

- Ν-Βασίλισσες
- Χρωματισμός χάρτη
- Χρονοπρογραμματισμός εργασιών
- Sudoku
- Zebra
- ..

Αλγόριθμοι Υπαναχώρησης & Ευριστικοί Αλγόριθμοι

- Backtracking (BT)
- Forward Checking (FC)
- Maintaining Arc Consistency (MAC)
- Backjumping (BJ)

- Minimum Remaining Values (MRV)
- Least Constraining Value (LCV)

4-Queens and BT

4-Queens and BT (cont.)

. . .

4-Queens and FC

	*			
→	X	X	*	譽
	X		X	X
	X	X		X

	墨			
	X	X	*	*
→	X	譽	X	X
	X	X	X	X

	豪	景		
	X	X	X	
		X		X
		X		

4-Queens and FC(cont.)

Συμπέρασμα: Μικρότερος αριθμός αναθέσεων!

Περιορισμοί

- $\bullet \quad C_{j} = (Sj, Tj)$
- $S_i = \{V_1, V_2, ..., V_K\}$
- $\bullet \quad \mathsf{T}_{\mathsf{j}} \subseteq \mathsf{D}_{\mathsf{1}} \times \mathsf{D}_{\mathsf{2}} \times \ldots \times \mathsf{D}_{\mathsf{K}}$

Παράδειγμα

- Μεταβλητές: V₁, V₂
 - $O D_{1,2} = \{0,1,2\}$
 - Περιορισμός: V1 ≠ V2
- $C_1 = (S_1, T_1)$
 - \circ S₁ = {V1, V2}

Περιγραφή:

- Τρεις υπάλληλοι: Jim, Jane and John.
- ο Δύο βάρδιες: πρωϊνή (Μ) και απογευματινή (Α).
- Οι υπάλληλοι δικαιούνται ρεπό (DO).

Περιορισμοί:

- ο Οι υπάλληλοι δεν κάνουν διπλή βάρδια.
- Ένας υπάλληλος ανά βάρδια.
- Αν ένας υπάλληλος δουλεύει σε απογευματινή βάρδια, τότε δεν πρέπει να δουλέψει την επόμενη μέρα στην πρωϊνή βάρδια.
- Κάθε υπάλληλος πρέπει να έχει ρεπό τουλάχιστον δύο συνεχόμενες μέρες.
- Ο Jim προτιμά να δουλεύει Σάββατο πρωί και να έχει την Τετάρτη ελεύθερη.
- Η Jane προτιμά να δουλεύει Τετάρτη πρωί και να έχει την Παρασκεύη ελεύθερη.
- Ο John προτιμά να δουλεύει Πέμπτη απόγευμα και να έχει την Τρίτη ελεύθερη.
- Να φτιαχτεί το πρόγραμμα μίας εβδομάδας.

• Μεταβλητές:

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Jim	X1	X2	X3	X4	X5	X6	X7
Jane	X8	X9	X10	X11	X12	X13	X14
John	X15	X16	X17	X18	X19	X20	X21

Πεδία τιμών: D_i = {M, A, DO}, i = 1,2,...,21

• Περιορισμοί:

- Ένας υπάλληλος ανά βάρδια(C1): S1 = {X1, X8, X15}, T1 = {(M, A, DO), (M, DO, A), (A,M,DO), ...}
- Όχι Μ μετά από A(C2): S2 = {X1, X2}, T2 = {(M,A), (M,M), (A,A), (M,DO), (DO,M), (A,DO),
 (DO,A), (DO,DO)}
- Τουλάχιστον δύο συνεχόμενες ελεύθερες μέρες(C3): S3 = {X15,X16,X17,X18,X19,X20,X21},T3 = {(M,M,M,M,DO,DO),}
- 0 ...

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Jim							
Jane							
John							

$$x_{11} = \{M, A, DO\}, x_{12} = \{M, A, DO\}, x_{13} = \{M, A, DO\}, x_{14} = \{M, A, DO\}, x_{15} = \{M, A, DO\}, x_{16} = \{M, A, DO\}, x_{17} = \{M, A, DO\}, x_{19} = \{M, A, DO\}, x_{19}$$

Μοναδική λύση:

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Jim	А	Α	Α	DO	DO	M	M
Jane	М	M	M	M	M	DO	DO
John	DO	DO	DO	Α	А	Α	Α