

PENGEMBANGAN MODEL SISTEM INFORMASI GEOGRAFIS UNTUK DATA SPASIAL KESEHATAN MASYARAKAT MENGGUNAKAN SEMANTIK AI

DIAH TRIBUDI LESTARI NPM: 99218019

PROGRAM DOKTOR TEKNOLOGI INFORMASI UNIVERSITAS GUNADARMA 2021

Daftar Isi

Ał	strak		iii
Ał	strac	rt	iv
Ka	ıta Pe	engantar	v
1	Pen	dahuluan	1
	1.1	Latar Belakang	1
	1.2	Rumusan Masalah	6
	1.3	Batasan Masalah	6
	1.4	Tujuan Penelitian	6
	1.5	Kontribusi Penelitian	7
2	Tela	ah Pustaka	8
	2.1	Informasi Geospasial	8
		2.1.1 Data Spasial	9
	2.2	Sistem Informasi Geografis (SIG)	10
		2.2.1 Geografi di Bidang Kesehatan	14
		2.2.2 Kesalahan yang mudah diketahui pada GIS	15
	2.3	Semantic Geospasial	18
	2.4	Artificial Intelligence (AI)	21
	2.5	Program Indonesia Sehat dengan Pendekatan Keluarga (PIS-PK)	22
		2.5.1 Indeks Keluarga Sehat (IKS)	24
	2.6	Machine Learning	25
	2.7	Klasifikasi Teks	27
	2.8	Metode Klasifikasi	28
		2.8.1 K-nearest neighbors (KNN)	28
		2.8.2 Naïve bayes (NB)	28

Daftar Isi x

	2.9	Rangkuman Hasil Penelitian Terkait	29		
3	3 Metode Penelitian				
	3.1	Tahapan Penelitian	33		
	3.2	Memahami Indikator IKS	34		
	3.3	Memahami Indikator IKS yang Berhubungan dengan Teknik			
		Sipil	35		
	3.4	Pengembangan Model	43		
		3.4.1 Akuisisi Data	44		
		3.4.2 Preprocescing Data	44		
		3.4.3 Klasifikasi Machine Learning	45		
		3.4.4 Sistem Informasi Geografis	45		
		3.4.5 Sistem Informasi Geospasial	45		
		3.4.6 Semantik Geospasial	46		
	3.5	Rencana Kerja	46		
4	Hasi	il dan Pembahasan	47		
	4.1	Akuisisi Data	47		
	4.2	Preprocessing	51		
		4.2.1 Tahap pemeriksaan data	52		
		4.2.2 Penghapusan data	52		
		4.2.3 Pelabelan data	52		
5	Koci	mpulan dan Saran	53		
3	5.1	-	53		
		Saran	53		
	J.Z	Jaran	33		
Da	ftar 1	Pustaka	53		
LA	MPIF	RAN	55		
RI	WAYA	AT HIDUP	56		

Daftar Tabel

2.1	Rangkuman Hasil Penelitian Terkait	29
3.1	Indikator Keluarga Sehat	35
3.2	Indikator IKS Teknik Sipil	36
3.3	Rencana Kerja	46
11	Data Laporan IKS Januari 2020	45
4.1	Data Laporan iks Januari 2020	4/
4.2	Label Data	52

Daftar Gambar

Model Manajemen Data Spasial	10
Komponen SIG	11
Organisasi SIG	12
SIG Description (De Mers, 1997)	14
Contoh Analisis Spasial Kasus Malaria Subang (SIMKES,2009)	15
(a) Fragmen Ontology Proyek NSF GeoLink (Adila Krisna-	
dhi,et al., 2015); (b) Bagian dari Gazetteer	20
Indiktor Keluarga Sehat (IKS)	23
Penjabaran Visi & Misi Presiden Menjadi Program Indonesia	
Sehat	24
Hasil Indeks Keluarga Sehat Kab. Ngawi	25
Skema Artifical Intelligence dan Machine Learning	27
Tahapan Penelitan	34
Tahap Pengembangan Model	44
Data IKS Setiap Wilayah (a)	49
Data IKS Setiap Wilayah (b)	49
Data IKS Setiap Wilayah (c)	50
Data IKS Setiap Wilayah (d)	51
	Organisasi SIG SIG Description (De Mers, 1997)

Bab 1

Pendahuluan

1.1 Latar Belakang

Indonesia merupakan Negara yang terletak di daerah tropis dengan jumlah penduduk hampir mencapai 220 juta jiwa. Kondisi lingkungan yang kurang baik, faktor ekonomi dan perilaku kesehatan masyarakat yang masih buruk, sehingga angka kasus penyakit tropis masih tinggi [Putu Kurniawan,2014]. Kementrian Kesehatan berusaha membuat program yang dinamakan Indeks Keluarga Sehat (IKS). IKS dilakukan dengan strategi pendekatan keluarga, keluarga yang sehat akan diukur dengan 12 indikator keluarga sehat.

Perhitungan kedua belas indikator keluarga sehat dari setiap keluarga yang besarnya berkisar antara 0 sampai dengan 1. Keluarga yang tergolong dalam keluarga sehat adalah dengan IKS > 0,8 [Kementrian Kesehatan RI,2016]. Capaian IKS masih tergolong rendah untuk beberapa daerah di Indonesia, hasil perhitungan IKS dari 9 provinsi sasaran awal yaitu Sumatera Utara, Sumatera Selatan, Lampung, DKI Jakarta, Jawa Barat, Jawa Tengah, Jawa Timur, Banten dan Sulawesi Selatan per 8 Juni 2017 didapatkan keluarga yang memiliki IKS di atas 0,8 sebesar 0,163 dari 570.326 keluarga [Pusdatin,2016].

Program Indonesia Sehat dengan pendekatan keluarga merupakan salah satu dari Agenda ke-5 Nawa Cita, yaitu Meningkatkan Kualitas Hidup Manusia Indonesia. Program Indonesia Sehat dengan pendekatan keluarga ini selanjutnya sudah dituangkan ke dalam bentuk rencana jangka menengah yang merupakan penjabaran dari Rencana Pembangunan Jangka Menengah Nasional 2015-2019, melalui Keputusan Menteri Kesehatan R.I. No-

2

mor HK.02.02/Menkes/52/2015 tentang Rencana Strategis Kementerian Kesehatan Tahun 2015-2019.

Puskesmas sebagai fasilitas pelayanan kesehatan pertama merupakan kunci dalam pelaksanaan pembangunan kesehatan menuju Indonesia Sehat melalui pendekatan keluarga. Pendekatan keluarga adalah pendekatan pelayanan kesehatan yang dilakukan oleh Puskesmas yang mengintegrasikan Upaya Kesehatan Perseorangan (UKP) dan Usaha Kesehatan Masyarakat (UKM) secara berkesinambungan kepada keluarga berdasarkan siklus hidup dari pelayanan kesehatan pada ibu hamil sampai lansia. Pelaksanaan pembangunan kesehatan menuju Indonesia Sehat melalui pendekatan keluarga melibatkan peran serta jaringan, jejaring Puskesmas dan masyarakat. Upaya yang dilakukan dengan memanfaatkan sumber daya yang ada di masyarakat salah satunya ialah Upaya Kesehatan Bersumberdaya Masyarakat (UKBM). Pengembangan dan pembinaan UKBM yang ada di desa dilakukan dalam rangka pemberdayaan kemandirian masyarakat. Puskesmas memiliki peranan dalam membina UKBM untuk menyelaraskan pelaksanaan pembangunan.

Kementrian Kesehatan di dalam melakukan pencegahan dan pemberantasan penyakit akan sangat efektif bilamana mendapat dukungan dari sebuah sistem informasi untuk meninjau penyebaran penyakit, karena sistem informasi dapat menyediakan informasi epidemiologi yang peka terhadap perubahan yang terjadi dalam kasus penyebaran penyakit. Surveilans epidomiologi adalah suatu proses pengamatan yang dilakukan secara berkesinambungan dan sistematik terhadap penyebaran penyakit yang akan kemudian disebarluaskan kepada pihak-pihak yang bertanggung jawab dalam pencegahan penyakit dan masalah kesehatan lainnya. Sistem informasi geografis merupakan rekaman fenomena atau obyek-obyek keruangan yang selanjutnya diolah menjadi Informasi Geospasial (IG). IG merupakan suatu sistem yang dapat digunakan untuk pemasukan, penyimpanan, menampilkan, dan keluaran informasi geografis berikut atribut-atributnya IG memiliki kemampuan yang sangat baik dalam memvisualisasikan data spasial berikut, memodifikasi bentuk, warna, ukuran, symbol. Sistem informasi geografis dapat digunakan oleh berbagai bidang ilmu, pekerjaan dan peristiwa. Banyak sekali masalah yang dapat ditangani oleh sistem informasi geografis [Guruh Sapto N,2013].

Sistem Informasi Geografis berperan penting dalam sektor kesehatan masyarakat, IG menggabungkan algoritma, analisisi spasial, geo-statistik

3

dan pemodelan, menjadikan teknologi sistem informasi geografis alat untuk memprediksi pola penyakit dan parasite asosiasi ekologi [higgs,2004; Guo dkk 2005; Garcia- Rangel dan Pettorelii,2013]. Munculnya dengan metode Sistem informasi geospasial (SIG) baru-baru ini telah meningkatkan pemahaman tentang hubungan spasial antara kesehatan dan tempat, sehingga SIG ini dapat dijadikan alat yang efektif untuk menangani masalah perencanaan kesehatan masyarakat.

Perkembangan teknologi Informasi Geospasial (IG) ini juga telah memicu tumbuhnya industri IG dunia beberapa dekade terakhir ini di berbagai bidang layanan, namun terkait dengan Industri IG di Indonesia masih terdapat kendala untuk dapat tumbuh sebagai industri mandiri, di antaranya disebabkan lemahnya daya saing industri IG. UU No.4 tahun 2011 tentang infromasi geospasial telah disahkan pada tanggal 21 april 2011. Lahirnya undang-undang ini menjamin ketersediaan dan akses terhadap informasi geospasial yang dapat dipertanggung jawabkan. IG merupakan bagian penting dalam mewujudkan sistem informasi yang dapat dimanfaatkan untuk mendukung proses perencanaan, pelaksanaan, dan evaluasi [Nurhayati Immas,2017]

Fenomena yang terjadi saat ini dengan kondisi masyarakat yang kurang memahami peran penting dari IKS seperti di daerah Desa Payaman, 2016 memiliki 196 KK atau 79% yang tidak memiliki sarana pembuangan air limbah yang susuai dengan persyaratan kesehatan, dengan menyalurkan limbah cair pada kawasan rumah tangga diperlulan seran berupa saluran pembuangan air limpah maupun resapan, sehingga tidak mencemari air tanah, tidak menimbulkan sarang nyamuk, dan sakit diare.

Analisis spasial menggunakan Sistem Informasi Geografis dimaksudkan untuk mendukung pengambilan keputusan surveilans dan penanggulangan penyakit. Proses pengambilan keputusan harus benar-benar mengetahui informasi terakhir mengenai situasi penyakit, populasi berisiko dan trend terjadinya kasus di masa datang di wilayahnya. Kebutuhan khusus bagi layanan penanggulangan penyakit berbasis lingkungan bervariasi sesuai dengan perbedaan situasi lingkungan dan epidemiologi. Dibutuhkan pemahaman secara cepat berdasarkan informasi yang ada dan penyediaan informasi terbaru yang berguna untuk memandu kegiatan di lapangan. Misalnya kapan dan di mana harus mengintervensi dan intervensi apa yang paling efektif, bagaimana suatu intervensi menjadi layak walau dengan sumber daya yang

terbatas. Guna pengambilan keputusan penting, maka sudah selayaknya para pengambil keputusan memperoleh informasi yang mudah dipahami dan dapat dipercaya [sunaryo,2015]. Sesuai dengan upaya Kementrian Kesehatan menyelenggarakan program IKS sebagai upaya mewujudkan masyarakat indonesia yang berperilaku sehat, hidup dalam lingkungan sehat, serta mampu menjangkau pelayanan kesehatan yang bermutu untuk mencapai derajat kesehatan yang setinggi-tingginya, sehingga dalam rangka penyelenggara program IKS dengan pendekatan keluarga, ditetapkan 12 indikator utama sebagai penanda status kesehatan sebuah keluarga [Pusdatin,2016]

Semantic Network pertama kali dikembangkan untuk Artificial Intelligence (AI) sebagai cara untuk merepresentasikan memori dan pemahaman bahasa manusia. Struktur semantic net berupa grafik dengan node (simpul) dan arc (ruas) yang menghubungkannya. Semantik network sering disebut dengan semantik AI. [Nava'atul Fadillah, Novrido Charibaldi, Herlina Jayadianti, 2010]. Artificial Intelligence (AI) merupakan representasi dari pengetahuan yang berhubungan erat dengan teknologi berbasis komputer dan menekankan pada kemampuan komputer untuk meniru manusia dalam melakukan pembelajaran dan mengatasi masalah [Heryadi and Irwansyah, 2020].

Semantik geospasial adalah bidang yang mengadopsi perspektif penelitian yang unik terhadap masalah geospasial. Sampai batas tertentu, semantik geospasial dapat dibandingkan dengan statistik geospasial: keduanya bisa diterapkan ke berbagai masalah di seluruh domain dan keduanya memiliki kumpulan metode uniknya sendiri (mis., pemodelan ontologis dan *natural language processing* (NLP) untuk semantik geospasial). Dalam beberapa tahun terakhir, banyak sekali penelitian tentang semantik geospasial yang telah dilakukan, tujuannya adalah untuk menggambarkan peta yang memberikan gambaran umum tentang enam utama area penelitian pada semantik geospasial [Yingjie Hu,2017].

Semantik geospasial menambahkan kata sifat geospasial dan penambahan ini membatasi dan memperluas area awal semantik yang berlaku. Di satu sisi, semantik geospasial berfokus pada ekspresi yang lebih terkait dengan geografi daripada ekspresi umum apa pun; di sisi lain, semantik geospasial memungkinkan studi tidak hanya ekspresi linguistik tetapi juga arti dari tempat-tempat geografis, data geospasial, dan GeoWeb [Yingjie Hu,2017]

Penelitian [Guruh Sabdo N, 2013] tentang SIG kesehatan bahwa sistem

5

penyampaian informasi yang ada saat ini kurang efektif dan belum menampilkan kenampakan sebaran DBD secara geografis, sehingga tidak diketahui daerah mana saja yang terkena dampak DBD terendah hingga tertinggi. Oleh karena itu diperlukan metode dalam penyelesainnya dimana data yang ditampilkan juga diikuti data geografis wilayah terdampak. SIG salah satunya dimana sebaran DBD di Wilayah Kota Solo diolah dengan menggabungkan data spasial dengan data non spasial yang berupa attribute data lalu diimplementasikan dengan mengkonvert kedalam database menggunakan opensygmapserver. Data spasial pada penyakit DBD dikumpulkan dan dimasukkan di tingkat desa dimana surveilans epidemiologi dikumpulkan secara rutin, data lingkungan dan fasilitas surveilans penyakit akan diintegrasikan ke dalam SIG untuk memudahkan pengguna dalam mempelajari penyebaran spasial penyakit DBD.

Selain di bidang kesehatan, SIG pun dapat membantu permasalahan penanganan banjir dengan cara memberi informasi mengenai kondisi fisik suatu daerah meliputi kemiringan lereng, jenis tanah, penggunaan lahan, tingkat kerentanan banjir dan jumlah rumah yang harus dievakuasi apabila wilayah tersebut terjadi banjir. Selain itu dapat membantu pemerintah maupun donator dalam penyaluran bantuan agar lebih efektif [Agus Anggoro, 2011]. Dibangun SIG yang dapat meningkatkan kreativitas dan inovasi juga mengacu pengembangan perangkat lunak nasional melalui pengembangan SIG berbasis web, sehingga dapat membantu program pemerintah terutama untuk penanganan bencana.

Baru-baru ini, beberapa desain Building Information Model (BIM) untuk menyimpan informasi semantic tentang gedung dan 3D model informasi geospasial untuk merepresentasikan objek dunia nyata yang telah dilaporkan. Tujuan dari model ini adalah untuk menawarkan sarana mendefinisikan objek spasial dengan geometri dan semantik. *Industry Foundation Classes* (IFC) dan *City Geofraphy Markup Language* (CityGML) saat ini dianggap sebagai dua model semantic yang paling menonjol dalam desain dan objek dunia nyata [ilmu geo-informasi 3D, LNG & C, springer Verlag, hlm, 2009]. Berdasarkan latar belakang diatas maka dalam penelitian ini akan dibangun model sistem informasi geospasial dari data IKS dengan menggunakan pendekatan semantik geospasial. Data SIG ini dapat dimanfaatkan untuk membantu pemerintah dari segi kesehatan maupun infrastruktur bangunan.

1.2 Rumusan Masalah

Berdasarkan latar belakang di atas, maka perlu dirumuskan masalahmasalah penelitian yang harus dicari solusinya, yaitu:

- 1. Bagaimana mengembangkan model semantik sistem informasi geospasial berdasarkan indikator nilai IKS pada wilayah Indonesia.
- 2. Bagaimana mengekstraksi data IKS untuk mengembangkan model sistem informasi geospasial tentang kesehatan masyarakat.
- Bagaimana mengidentifikasi resiko kesehatan masayarakat terhadap infrastruktur pada wilayah Indonesia.

1.3 Batasan Masalah

Batasan masalah pada penelitian ini adalah:

- Data yang digunakan dalam sistem informasi geospasial berdasarkan indikator nilai IKS
- 2. Pendekatan metode semantik geospasial yang digunakan adalah *semantic network*.

1.4 Tujuan Penelitian

Tujuan penelitan ini adalah mengembangkan model semantik informasi geospasial kesehatan masyarakat, bertujuan khusus:

- 1. Mengembangkan model semantic sistem informasi geospasial berdasarkan indikator nilai IKS pada wilayah Indonesia.
- 2. Melakukan ektrasi data IKS untuk mengembangkan model sistem informasi geospasial tentang kesehatan masyarakat.
- Mengindentifikasi resiko kesehatan masyarakat terhadap infrastruktur pada wilayah Indonesia.

1.5 Kontribusi Penelitian

Penelitian ini diharapkan dapat memberikan kontribusi, sebagai berikut:

- 1. Menghasilkan sebuah model sistem informasi geografis tentang kesehatan masyarakat pada suatu wilayah
- 2. Menghasilkan semantik geospasial dari sistem informasi geografis kesehatan masyarakat sebagai penunjang keputusan
- 3. Hasil dari analisis semantik geospasial dapat membantu pemerintah dalam hal ini Kementrian Kesehatan atau Kementrian Pekerjaan Umum dalam penangan masalah Kesehatan dan infrastruktur pada suatu wilayah

Bab 2

Telaah Pustaka

2.1 Informasi Geospasial

Informasi Geospasial atau ruang kebumian adalah aspek keruangan yang menunjukkan lokasi, letak, dan posisi suatu objek atau kejadian yang berada di bawah, pada, atau di atas permukaan bumi yang dinyatakan dalam sistem koordinat tertentu. Data Geospasial yang selanjutnya disingkat DG adalah data tentang lokasi geografis, dimensi atau ukuran, dan/atau karakteristik objek alam dan/atau buatan manusia yang berada di bawah, pada, atau di atas permukaan bumi. Informasi Geospasial yang selanjutnya disingkat IG adalah DG yang sudah diolah sehingga dapat digunakan sebagai alat bantu dalam perumusan kebijakan, pengambilan keputusan, dan/atau pelaksanaan kegiatan yang berhubungan dengan ruang kebumian.

Beberapa perkembangan di bidang geodesi dan geomatika setelah adanya UU no 4 tahun 2011 yaitu: menjamin ketersediaan dan akses terhadap Informasi Geospasial yang dapat dipertanggung jawabkan. Undang-undang tentang Informasi Geospasial ini menjadi aturan yang mengikat bagi seluruh pemangku kepentingan, sehingga dapat dimanfaatkan untuk menjaga keutuhan Negara Kesatuan Republik Indonesia (NKRI) dan meningkatkan kesejahteraan masyarakat. Sebagai pendukung pengelolaan sumber daya alam dan sumber daya lainnya di negeri ini bagi kemakmuran seluruh rakyat Indonesia, di masa kini dan masa yang akan datang. Dengan disebarluaskannya Informasi Geospasial akhirnya pengetahuan kalangan umum akan berbagai sumber daya yang ada di Indonesia meningkat. Berdasarkan rangkuman UU geospasial itu untuk mendukungnya secara menyeluruh, dibutuhkan banyak

tenaga geomatika di seluruh wilayah Indonesia.

Dari pegetahuan yang berkaitan dengan keruangan geospasial tersebut, kemudian untuk membuat peta dan melakukan analisa, dibutuhkan penggunaan software Sistem Informasi Geografi (SIG).

2.1.1 Data Spasial

Data spasial mempunyai pengertian sebagai suatu data yang mengacu pada posisi, objek, dan hubungan diantaranya dalam ruang bumi. Data spasial merupakan salah satu item dari informasi, di mana di dalammya terdapat informasi mengenai bumi, termasuk permukaan bumi, perairan, kelautan, dan bawah otmosfir [Rajabidfard dan Williamson,2000]. Data spasial dan informasi turunannya digunakan untuk menentukan posisi dari identifikasi suatu elemen dipermukaan bumi [Radjabidfard,2001]. Lebih lanjut lagi Mapping Science Committee (1995) dalam [Rajabidfard,2001] menerangkan mengenai pentingnya peranan posisi lokasi, yaitu (1) pengetahuan mengenai lokasi yang berdekatan dan (2) lokasi memungkinkan diperhitungkannya jarak, pembuatan peta dan memberikan arahan dalam membuat keputusan spasial yang bersifat kompleks.

Karakteristik utama dari data spasial adalah bagaimana mengumpulkannya dan memeliharanya untuk berbagai kepentingan. Selain itu juga ditujukan sebagai salah satu elemen yang kritis dalam melaksanakan pembangunan social ekonomi secara berkelanjutan dan pengelolaan lingkungan. Berdasarkan perkiraan, hamper lebih daari 80% informasi mengenai bumi berhubungan dengan informasi spasial [Wulan,2002].

Rajabidfard dan wiliamson [2000], menernagkan bahwa terdapat dua pendorong utama dalam pembangunan data spasial. Pertama adalah pertumbuhan kebutuhan suatu pemerintah dan dunia bisnis dalam memperbaiki keputusan yang berhubungan dengan keruangan dan meningkatkan efiesnsi dengan bantuan data spasial. Faktor pendorong kedua adalah mengoptimalkan anggaran yang ada dengan meningkatkan informasi dan sistem komunikasi secara nyata dengan membangun teknologi informasi soasial. Didorong oleh faktor-faktor tersebut, banyak negara, pemerintahan, dan organisasi memandang pentingnya data spasial, terutama dalam pengembangan informasi spasial, atau yang lebih dikenal dengan Sistem Infromasi Geografis (SIG). tujuannya adalah membantu mengambil keputusan berdasarkan ke-

pentingan dan tujuannya masing-masing, terutama yang berkaitan dengan aspek keruangan.

SIG menyimpan data dalam bentuk 'peta' berupa bentuk untuk geometri atau spasial (titik, garis, dan / tau area/ polygon) dam informasi disimpan dalam bentuk atribut. Saat ini SIG dikembangakn dengan menggunakan sistem-sistem manajemen basis data (DBMS) yang telah ada sebelumnya seperti pada Gambar 2.1.

Gambar 2.1: Model Manajemen Data Spasial

2.2 Sistem Informasi Geografis (SIG)

Sistem Informasi Geografi adalah sistem basis data dengan kemampuan analisis untuk data yang tereferensi secara spasial. SIG mempunyai kemampuan untuk mengintegrasikan data spasial dan data atribut sehingga dalam analisisnya mampu menghasilkan informasi yang diinginkan [Murai, 1999 dalam Anggoro, TI. dkk, 2019].

SIG mempunyai kemampuan untuk menghubungkan berbagai data pada satu titik tertentu di bumi, menghubungkannya, lalu menganalisa dan akhirnya memetakan hasilnya. Data yang diolah pada SIG merupakan data spasial yaitu sebuah data yang berorientasi geografis dan merupakan lokasi yang memiliki system koordinat tertentu sebagai referensinya. Sehingga aplikasi SIG dapat menjawab beberapa pertanyaan seperti; kondisi, lokasi, trend, pola dan permodelan [Aronaff, 1989 dalam Anggoro, TI. dkk, 2019]

Istilah "informasi geografis" mengandung pengertian informasi mengenai tempat-tempat yang terletak di permukaan bumi, pengetahuan mengenai posisi dimana suatu objek terletak di permukaan bumi, dan informasi mengenai keterangan-keterangan (atribut) yang terdapat di permukaan bumi yang posisinya diberikan atau diketahui.

Dengan memperhatikan pengertian sistem informasi, maka SIG adalah suatu kesatuan formal yang terdiri dari berbagai sumberdaya fisik dan logika yang berkenaan dengan objek-objek yang terdapat di permukaan bumi. Jadi SIG juga merupakan sejenis perangkat lunak yang dapat digunakan untuk pemasukan, penyimpanan, manipulasi, menampilkan, dan keluaran infromasi geografis berikut atribut-atributnya.

Gambar 2.2: Komponen SIG

Selain kelima komponen pada Gambar 2.2, ada suatu komponen yang sebenarnya tidak kalah penting, yaitu metode. Sebuah SIG yang baik adalah apabila didukung dengan metode perencanaan desain sistem yang baik se-

suai dengan business rules organisasi yang mengunakan SIG tersebut seperti pada Gambar 2.3.

Gambar 2.3: Organisasi SIG

Perkembangan SIG kesehatan di Indonesia dimulai tahun 1990an, pada saat itu kita kenal dengan SIG PPM (Sistem Informasi Geografis-Pemberantasan Penyakit Menular). Kemudian pada awal tahun 2000an Dapeng Luo, konsultan dari Proyek IPPM (Intensifikasi Pemberantasan Penyakit Menular) mengembangkan SIG (ArcView) kesehatan masyarakat (Malaria, TB, Imunisasi). Khusus untuk lokasi pilot proyek penelitian malaria dilakukan di Kecamatan Banjarmangu Kabupaten Banjarnegara, yang selanjutnya sebagai acuan secara Nasional. Sejak saat itu SIG kesehatan masyarakat banyak dimanfaatkan di Institusi kesehatan dari tingkat puskesmas sampai tingkat pusat. Lingkup kerja SIG kesehatan masyarakat juga telah meluas, tidak hanya pada program pengendalian penyakit, akan tetapi meliputi promosi program kesehatan masyarakat.

Sistem Informasi Geografis (GIS) berperan penting dalam sektor kesehatan masyarakat, GIS menggabungkan algoritma, analisisi spasial, geo-statistik dan pemodelan, menjadikan teknologi SIG alat untuk memprediksi pola penyakit dan parasite asosiasi ekologi [higgs,2004; Guo dkk 2005; Garcia- Rangel dan Pettorelii,2013]. Munculnya dengan metode GIS baru-baru ini telah meningkatkan pemahaman tentang hubungan spasial antara kesehatan dan tempat, sehingga GIS ini dapat dijadikan alat yang efektif untuk menangani masalah perencanaan kesehatan masyarakat.

Teknologi ini juga memungkinkan analisis hubungan spasial anatara dimensi yang berbeda. Pada kesehatan masyarakat SIG dapat digunakan untuk menggambarkan besar masalah kesehatan dan indentifikasi determinan kesehatan dengan spesifik, sebagai masukan proses pengambilan keputusan, surveilans, intervensi kesehatan dan strategi pencegahan penyakit, serta untuk analisis epidemiologi dan manajemen kesehatan masyarakat.

Pemetaan masalah kesehatan masyarakat secara manual sudah mulai ditinggalkan, sejak perkembangan teknologi pemetaan secara digital banyak digunakan pada institusi kesehatan. Indonesia, pada saat ini SIG dibidang kesehatan telah dikenal luas sebagai alat bantu surveilans, bahkan pada tingkat lanjut SIG dapat digunakan memprediksi suatu kejadian penyakit berdasarkan faktor resiko.

Pada Gambar 2.4, De Mers [1997] SIG adalah suatu alat dengan sistem komputer yang digunakan untuk memasukan (capturing), menyimpan, memeriksa, mengintegrasikan, memanipulasi, menganalisa dan menampilkan data-data yang berhubungan dengan posisi-posisi permukaan bumi.

Gambar 2.4: SIG Description (De Mers, 1997)

2.2.1 Geografi di Bidang Kesehatan

Geografis merupakan "a science concern with rational development and testing of theories that explain and predict the spatial distribution and location of various characteristics on the surface of the earth" [yates, dalam alfandi, 2001]. Istilah geografi di bidang kesehatan di Indonesia masih terdengar asing. Banyak sekali yang bertanya "apa hubungannya antara geografis dengan kesehatan?". Pertanyaan tersebut adalah mengenai konsep dan defines 'medical geografis' sudah dicatat oleh May[1970], [Learmonth,1975,1978; Boleh, 1983; Philips, 1981]. Dari pertanyaan-pertanyaan yang muncul istilah geografis pelayanan kesehatan, geografi perawatan medik, geografi gizi, geografi epidemiologi, dan lainya.

Meskipun dalam geografi kesehatan terdapat macam-macam istilah geografi dapat digabungkan menjadi 2 kelompok, yaitu Geografi medis, dan sistem pelayanan masyarakat. Geografi medis diutarakan mengenail eksplorasi, deskripsi dan pemodelan ruang waktu, berkaitan dengan persoalan lingkungan, deteksi dan analisis cluster dan pola penyebran penyakit. Se-

dangkan dengan geografi sistem pelayan masyarakat berkaitan dengan perencanaan, manajemen dan jaminan pelayanan agar sesuai kebutuhan, merumuskan kebutuhan kesehatan masyarakat yang dilayani dan pola wilayah yang dilayani service catcmet zones [Boulos,2000]. Penyajian informasi kesehatan dengan menggabungkan antara data dan peta bukanlah hal baru dalam bidang kesehatan. Pada tahun 1854, John Snow secara manual menampilkan informasi wabah kolera dalam bentuk peta sehingga dapat menentukan sumber penularan penyakit, tanpa mengetahui jenis bakteri dan cara penularan wabah [Riner et al., 2004]. Sejak saat itu, penggunaan SIG berkembang lebih luas, tidak hanya terbatas untuk memetakan distribusi penyakit tetapi juga distribusi tenaga dan fasilitas kesehatan, seperti yang ditunjukan pada Gambar 2.5.

Gambar 2.5: Contoh Analisis Spasial Kasus Malaria Subang (SIMKES,2009)

2.2.2 Kesalahan yang mudah diketahui pada GIS

• Umur Data

Umur data berbagai data bervariasi, karena tidak mungkin data peta dikumpulkan pada waktu yang sama. Kebanyakan institusi yang berkecimpung dalam bidang lingkungan dan perencanaan cenderung memakai data yang mudah dipublikasi, baik dalam bentuk peta maupun laporan dan dilengkapi denga citra pengindraan jauh studi lapangan. berbagai obyek yang mempunyai sifat dinamik maka pendekatan ini tidak tepat, tetapi untuk berbagai data dasar maka hal ini tidak menjadi persoalan. Data spasial yang bersifat dinamik antara lain penggunaan lahan, sedangkan data spasial yang tidak bersifat dinamit antara lain data topografi, data tanah atau yang paling lama dalam bidang ilmu kebumian adalah data geologi. Dalam pengertian yang luas sifat geologi berubah lebih lambat dibanding tanah, rejim air, vegetasi atau penggunaan lahan. Tetapi ada juga kemungkinan bahwa data yang tua tidak sesuai karena pada waktu pembuatannya tergantung ke sistem standar yang tidak sesuai lagi dengan keadaan sekarang.

• Cakupan Areal Studi

Idealnya untuk seluruh daerah studi kualitas informasi seragam. Secara umum data yang tersedia di suatu daerah baik untuk informasi individu maupun untuk berbagai tingkat informasi, di negara-negara yang sudah berkembang sekalipun, dapat dikatakan bahwa tidak ada cakupan informasi sumberdaya lahan yang lengkap pada seluruh daerah studi, kecuali untuk wilayah yang kecil yang tidak sesuai untuk tujuan tertentu. Dalam hal peta tanah misalnya, banyak Negara yang cakupan peta tanahnya terpecah-pecah pada skala antara 1:25,000 – 1:50,000. selain itu selama 30–40 tahun berjalannya fungsi survei tanah, konsep-konsep dan definisi-definisi tanah, serta cara- cara tanah dipetakan, bahkan termasuk surveyornya juga telah berganti. Sistem administrasi peta untuk berbagai instansi juga dapat berbeda sehingga penyambungan antara lembar peta tidak dapat dilakukan. Jika peta cakupannya tidak lengkap, maka keputusan memperbaiki harus dibuat sehingga keseragaman yang diinginkan dapat tercapai. Pilihan dapat dibuat dengan menambah data lebih banyak pada bagian yang kurang, atau menggeneralisasikan data yang lebih detil disesuaikan dengan data yang kurang detil. Perlu dicatat bahwa tidak diijinkan memperbesar skala peta yang lebih kecil untuk memenuhi cakupan wilayah, karean selain kedetilannya tidak bertambah penyajian skala baru tersebut melanggar kode etik kartografi.

Kerapatan Pengamatan

Kerapatan pengamatan merupakan ukuran keakuratan suatu peta, akan tetapi sering tidak dicantumkan dalam berbagai peta tematik khususnya pada peta tanah. Di Indonesia pada berbagai proyek tertentu seperti Land Resources Evaluation and Planning Project II, titik lokasi sampel pengamatan harus diletakkan pada peta khusus. Pada masa lalu hal ini telah dilakukan pada beberapa macam survei, tetapi tidak semua peta tanah mempunyai titik pengamatan ini. Juga dalam proyek pengembangan wilayah transmigrasi, sampel pengamatan ini wajib dicantumkan baik untuk pemetaan tanah ataupun untuk lokasi pengamatan air bersih atau hidrologi. Data mengetahui kerapatan ini dapat digunakan untuk menilai keakuratan data peta tematik yang dianalisis. Dengan adanya data ini maka berbagai sistem perhitungan secara statistic dapat dilakukan. Untuk kepentingan pengujian keakuratan data, pemanfaatan statistika spasial akhit-akhir ini berkembang sangat pesat. Umumnya peta tematik baik di Indonesia maupun dunia, tidak menyajikan data lokasi maupun data mental pada peta, yang umum adalah informasi hasil generalisasinya. Padahal dari sudut pengembangan bank data, hal ini sangat diperlukan. Mungkin masih dibutuhkan waktu sampai hal ini terlaksana.

· Relevansi Data

Tidak semua data yang dipakai untuk pengolahan data geografis relevan dengan tujuan yang ingin dicapai, tetapi sering dipilih sebagai pengganti. Data yang diturunkan melalui pengindraan jauh dapat dipakai untuk menduga penggunaan lahan, biomassa, kelembaban atau pengamatan landform yang selanjutnya dipergunakan untuk menduga jenis tanah yang diikuti dengan pengamatan lapangan. Jika hubungan data penganti dengan variable yang diinginkan telah diketahui dengan baik maka pengganti ini juga menjadi sumber informasi yang baik. Peta-peta yang diinginkan adakalanya dapat dikembangkan dari data lain dengan cara korelasi secara statistik yang lebih murah untuk mendeteksi sifat-sifat yang ada. Misalnya menggunakan analisis regresi, analisis co-spektral atau co-kriging. Dalam semua kasus data yang memakai cara pendugaan biasanya berkualitas lebih rendah dari data yang diinginkan. Pemakai harus waspada terhadap tampilan data yang indah. Bagaimanapun juga, adakalanya lebih efisien memakai data pengganti, karena biaya dan kesulitan mengukur sifat-sifat asli.

Format

Menurut Burrough [2010] ada 2 macam bentuk data yang penting dalam SIG, yang pertama, kemudahan data disajikan dalam media magnetic dan ditransfer ke suatu sistem computer ke sistem lain. Dalam hal ini termasuk berbagai pertimbangan seperti: media magnetik (disket, data-liune), kenampakan informasi ditulis panjang balok perekam, jumlah jalur (biasanya 9), kecepatan bit per inci (biasanya 800, 1600 atau 6250 BPI), tipe karakter (ASCII, Binary) dan panjang rekaman. Pertimbangan kedua adalah cara data disusun atau struktur data tersebut apakah dinyatakan dengan kode titiktitk, vektor atau raster? Jika daerah pengamatan tersebut dubuat dalam format raster, berapa ukuran selnya? Apakah format data yang ada terikat ke sistem data tertentu dan dapat dikonversi?. banyak sistem SIG sekarang, datanya dapat dikonversi dari suatu format ke format yang lain. Pemahaman format data yang tersedia akan memudahkan pemahaman kemungkinan hasil yang dapat diperoleh

2.3 Semantic Geospasial

Semantic geospasial adalah subbidang yang diakui dalam GIScience [Agarwal (2005); D.Mark, Egenhofer, Hirle,& Smith 2000], juga melibatkan berbagai bidang penelitian terkait. Kuhn [2005] mendefinisikan geospasial semantic sebagai "memahami GIS, dan menagkap pemahaman ini dalam teori formal". Kemajuan teknologi komputer dan informasi, terutama Web, telah sangat memudahkan penelitian semantic geospasial, dengan semantic web awalnya diusulkan oleh Berners-Lee, Hendler, dan Lassila [2001], Egenhofer [2002] membayangkan web semantic geospasial yang nampu memahami semantic permintaan geospasial pengguna dan secara otomatis mendapatkan hasil yang relevan.

Interoperabilitas antara Building Information Model (BIM) dan Sistem Informasi Geografis (SIG) adalah salah satunya masalah utama yang dihadapi membangun sistem informasi dan praktisi saat ini. Integrasi ini bertujuan untuk memenuhi peningkatan permintaan untuk analisis konstruksi, aplikasi perencanaan kota, manajemen bencana, kadaster dan tanah air keamanan dan aplikasi lainnya [Bonn,2005]. Aplikasi ini tidak hanya membutuhkan geometri 3D dan informasi tampilan. Sebaliknya, mereka membutuhkan informasi semantik yang kompleks. Model konseptual telah dikembangkan di

19

dua dunia, BIM dan GIS, berupa model geometris dan semantik. Untuk tujuan visualisasi saja, geometris bersama dengan tampilan dan informasi tekstur cukup untuk merepresentasikan objek spasial 3D. Namun, dibutuhkan model semantik yang berbeda teknik dan aplikasi perencanaan yang membutuhkan query dan analisis yang kompleks [Stadler A dan Kolbe TH,2007]

Semua bahasa di domain berbeda dicirikan oleh sintaksis dan semantiknya. Bagian sintaks, di satu sisi, menjelaskan bagaimana simbol dan kata dikenali dalam bahasa. Ini juga berisi aturan bagaimana bentuk dirumuskan dengan baik kalimat menggunakan simbol yang dikenali. Tidak hanya simbol yang harus disepakati saat berkomunikasi. Namun, aturan sintaks harus didefinisikan dan dipahami dengan baik [Clarendon Press,Oxford,1975). Dalam hal informasi spasial, kesepakatan antara IFC dan CityGML berarti bahwa masing-masing dari mereka menggunakan bahasa alami yang benar secara tata bahasa dalam arah dan pemetaan spasial verbal yang sesuai dengan prosedur yang diterima geometris di tempat lain. Bagian semantik, di sisi lain, menyangkut tentang makna ekspresi bahasa yang mencerminkan interpretasi objek dan bagian dalam bahasa spasial

Pendekatan utama untuk memungkinkan interopreabilitas semantic adalah mengembangkan ontology, saat belajar di bidang filsafat sebagai hakikat makhluk, ontology dalam semantic geospasial lebih dekat dengan yang ada di ilmu kompuer dan bioinformatika, yang berfungsi memformalkan makna konsep dalam cara yang dapat dimengerti mesin [Bittner, Donnelly, & Winter, 2005; Couclelis, 2009; Gruber, 1993;Guarino, 1998; Stevens, Goble, & Bechhofer, 2000]. Dari perspektif struktur data, seorang ontology bisa dianggap grafik dengan konsep senagai node dan relasi tepi seperti paada Gambar 2.6.

Gambar 2.6: (a) Fragmen Ontology Proyek NSF GeoLink (Adila Krisnadhi, et al., 2015); (b) Bagian dari Gazetteer

Ontologi adalah alat yang sangat penting dalam domain interoperabilitas. Mereka digukanan untuk mendefinisikan dan semantic ambigu dari sistem terminology [Gruber T,1993; Guarino N,1998]. Ontologi terutama digunakan untuk Bahasa komunikas antara manusia atau komputer.baru-baru ini digunakan untuk informasi spasial dengan menentukan semantic objek spasial dan keterkaitannya.

Di satu sisi, ontology berbasi logika didasarkan pada teori logis yang dikemukakan oleh Copi [1979]. Jenis ontology ini, dari Namanya, ditentukan oleh aksioma logis dan definisi untuk mengungkapkan hubungan antara entitas dan kelas.

Ontologi harus dikembangkan sebelum dapat digunakan dalam GIS. Tiga jenis onotologi bisa jadi diidentifikasi dari literatur: ontology tingkat atas, ontology domain, dan ontology design pattern (ODP). Ontology tingkat atas berisi istilah umum (misalnya, isPartOf, edurant,dan perdurant) yang dapat digunakan di seluruh domain, sementara ontologi domain memformalkan konsep untuk disiplin tertentu [Ashburner,et al.,2000;Guarino,1997; Rogers & Rektor, 1996]. Ontologi yang digunakan dalan GIScience umumnya dianggap sebagai ontology domain, dan sering disebut onotlogi geografis atau geo-ontologi [F.Fonseca,Camara,& Miguel Monteiro, 2006; Tonai & Kavouras,2004] pola desain ontology dikembangakn berdasarkan aplikasi. Alihalih mencari kesepakatan di dalam atau di seluruh domain, mereka menganggap kebutuhan umum digunakan Bersama oleh beberapa aplikasi [Gangemi, 2005; Gangemi&Presutti, 2009].

2.4 Artificial Intelligence (AI)

Artificial Intelligence (AI) teknologi dasar untuk membangun sistem pakar. Dalam kecerdasan buatan, para ilmuwan mempelajari penalaran dan mesin, dan pertimbangankan pertanyaan-pertanyaan seperti apakah sebuah mesin dapat dengan tepat dianggapan berasalan atau berpikir, dan apa yang akan dihitung sebagai ujian untuk penalaran.

AI memiliki banyak sub-bidang dan teknologi canggih, untuk contoh teknologi baru sedang dikembangkan secara konstan:

- 1. Jaringan saraf tiruan: mensimulasikan cara kerja neuron di otak,
- Pemrosesan Bahasa alami: untuk menghasilakan komputer sistam yang dapat memahami, menerjemahkan, dan berkomunikasi dengan manusia
- 3. Algoritma genetik: memecahkan masalah dengan analogi dengan evolusi biologis melalu seleksi alam, dll.

Kecerdasan adalah kemampuan untuk memperoleh dan menerapkan pengetahuan, berasalan secara deduktif dan menunjukan kreativitas dan AI didefinisikan sebagai kemampuan untuk melakukan fungsi yang biasanya terkait dengan kecerdasan manusia.

Saat ini, AI diterima secara luas sebagai kumpulan dari Teknik pemrograman canggih mempelajari sifat kecerdasan dengan membangun sistem komputer, dan aplikas dari wawasan ini dalam memecahkan masalah dunia nyata. Dari ini perspektif, AI berusaha untuk mengembangkan sistem yang mencoba meniru kecerdasan manusia tanpa mengklaim pemahaman tentang proses yang mendasari terlibat.

Kecerdasan buatan (AI) adalah cabang ilmu komputer yang bertujuan untuk mensimulasikan pemikiran proses otak manusia, biasanya melalui penggunaan perangkat lunak [LM Cowardin, PM Arnold, TL Shaffer,1988]. AI adalah teknologi dasar untuk membangun sistem pakar. Dalam kecerdasan buatan, para ilmuwan mempelajari penalaran dan mesin, dan pertimbangkan pertanyaan-pertanyaan seperti apakah sebuah mesin dapat dengan tepat dianggap beralasan atau berpikir, dan apa yang akan dihitung sebagai ujian untuk penalaran.

Dari beberapa metode AI yang terutama digunakan pada GIS tergolong jaringan saraf tiruan (JST) dan logika fuzzy. Jaringan saraf tiruan adalah program komputer yang dirancang untuk memodelkan otak manusia dan kemampuannya untuk mempelajari tugas-tugas penggunaan model matematika.

AI menyediakan Teknik yang cukup canggih untuk GIS sedangkan GIS adalah teknologi yang kuat dengan kumpulan data yang luas dan cakupan yang luas untuk AI. Misalnya logika fuzzy telah berhasil diterapkan untuk masalah spasial yang tidak dapat seperti data pengumpulan, representasi, dan analisis serta klasifikasi tanah, dan citra pengideraan jauh.

2.5 Program Indonesia Sehat dengan Pendekatan Keluarga (PIS-PK)

Pengembagan Program Indonesia Sehat merupakan salah satu program unggulan Pemerintah Indonesia dalam bidang Kesehatan. Salah satu terobosan dari Kementerian untuk mewujudkan Indonesia Sehat adalah Program Indonesia Sehat melalui Pendekatan Keluarga yang dikenal dengan PIS-PK. Saat ini program PIS-PK telah berjalan diseluruh wilayah Indonesia melalui pendataan yang dilakukan oleh setiap Puskemas di seluruh wilayah Indonesia melalui orientasi keluarga.

Salah satu sarana pendukung PIS-PK adalah system informasi yang berkualita sehingga proses pendataan maupun intervensi terkait pelaksanaan program menjadi terorganisir dengan baik. Aplikasi PIS-PK telah dikembangkan sejak tahun 2016 dengan berpusat kepada pendataan 12 Indikator PIS-PK di seluruh Indonesia yang diuraikan pada Gambar 2.7.

	Indikator Keluarga Sehat						
1	Keluarga mengikuti program KB (keluarga berencana)						
2	Ibu hamil memeriksakan kehamilannya (ANC) sesuai standar						
3	Bayi mendapatkan Imunisasi lengkap						
4	Pemberian ASI eksklusif bayi 0-6 bulan						
5	Pemantuan pertumbuhan balita						
6	Penderita TB Paru yang berobat sesuai standar						
7	7 Penderita hipertensi yang berobat teratur						
8	Penderita gangguan jiwa berat yang diobati						
9	Tidak ada anggota keluarga yang merokok						
10	Sekeluarga sudah menjadi anggota JKN						
11	Mempunyai sarana air bersih						
12	Menggunakan jamban keluarga						

Gambar 2.7: Indiktor Keluarga Sehat (IKS)

Namun saat ini aplikasi PIS-PK dinilai kurang dapat memenuhi seluruh kebutuhan baik dari sisi internal Kementerian Kesehatan maupun Ekternal seperti Pemerintah Daerah. Salah satu yang menjadi kendala dalam aplikasi PIS-PK adalah kesulitan untuk melakukan pengunduhan data laporan terkait 12 indikator secara realtime; maupun proses integrasi dengan layanan aplikasi lain; serta kesulitan dalam melakukan manajemen data dan anlisis indikator terutama bila terjadi perubahan seperti pergantian tahun survey maupun perubahan dan penambahan indikator lain seperti pada Gambar 2.8.

Gambar 2.8: Penjabaran Visi & Misi Presiden Menjadi Program Indonesia Sehat

2.5.1 Indeks Keluarga Sehat (IKS)

IKS adalah perhitungan kedua belas indikator keluarga sehat yang perhitungannya diambil dari rekapitulasi data dari 12 indikator yang diambil datanya dan hasilnya dibagi menjadi 3, yaitu: 1) Keluarga sehat bila IKS > 0,800; 2) Keluarga Pra Sehat, bila IKS = 0,500 - 0,800 3) Keluarga Tidak Sehat, bila IKS < 0,500. Pendataan keluarga dilakukan terhadap seluruh keluarga dalam wilayah kerja Puskesmas dengan menggunakan formulis pengumpulan data untuk Prokesga. Prokesga berisi data tingkat keluarga dan data dari semua individu anggota keluarga tersebut (sebagaimana tercantum dalam Kartu Keluarga). Data yang dicatat minimal data 12 indikator tersebut. Sesuai kondisi daerah, Prokesga dapat dikembangkan sehingga mencakup indikator-indikator lain yang dianggap penting di daerah tersebut [Dinas Kesehatan,2021]. Gambar 2.9 merupakan contoh hasil indeks keluarga sehat pada Kabupaten Ngawi.

Gambar 2.9: Hasil Indeks Keluarga Sehat Kab. Ngawi

2.6 Machine Learning

Menurut [Samuel1959], *Machine learning* atau disebut pembelajaran mesin merupakan bidang studi komputer yang memberikan kemampuan kepada mesin komputer untuk belajar tanpa harus secara eksplisit. Terdapat beberapa kategori dari Machine learning, yaitu:

- Berdasarkan bagaimana cara pelatihan dengan menggunakan supervisi (pelabelan) dari manusia atau tanpa supervisi manusia. Terdiri dari empat kategori yaitu supervised, unsupervised, semisupervied, dan reinforecement learning.
- Berdasarkan bagaimana cara metode pembelajaran. Terdiri dari dua kategori , yaitu: *online learning* dan *batch learning*.
- Berdasarkan bagaimana cara perbandingan data. Terdiri dari dua kategori, yaitu: *instance based* dan *model-based learning*.

Umumnya machine learning dikategorikan berdasarkan jenis pelatihan yaitu berdasarkan pelabelan supervisi manusia atau tanpa supervisi manusia.

1. *Supervised Learning*, pada metode ini data yang di input ke dalam suatu algoritma mencakup kategori yang diinginkan atau sering disebut diberikan pelabelan. Metode klasifikasi umumnya menggunakan

jenis pelatihan supervisi atau memprediksi nilai dari sebuah angka. Sebagai contoh adalah penentuan harga mobil berdasarkan fitur dari mobil tersebut misalnya jarak tempuh, umur, merk, dan lainnya yang dikenal dengan predictors. Beberapa algoritma yang menggunakan supervised learning adalah K-Nearest Neighbors, Linear Regression, Logistic Regression, Support Vector Machines (SVMs), Decision Trees and Random Forests, dan Neural networks.

- 2. *Unsupervised Learning*, pada metode ini data yang akan diinput ke dalam suatu algoritma tidak melalui kategorisasi atau pelabelan dari manusia, karena seluruh kategorisasi akan dilakukan berdasarkan data yang dimasukan dan akan terbentuk berdasarkan ciri yang bersesuaian. Terdapat beberapa algoritma unsupervised learning di antaranya:
 - (a) Clustering, seperti: k-Means, Hierarchical Cluster Analysis (HCA), dan Expectation Maximization
 - (b) Association rule learning, seperti: Apriori, dan Eclat
 - (c) Reduksi Dimensi dan Visualisasi, seperti: Principal Component Analysis (PCA), Kernel PCA, Locally-Linear Embedding (LLE), dan t-distributed Stochastic Neighbor Embedding (t-SNE).
- 3. Semisupervised Learning, pada metode ini jenis pelatihan yang digunakan adalah gabungan metode supervised dan unsupervised learning, sehingga terdapat data yang telah diketahui kategorisasi atau dilabelkan, dan data yang belum dilabelkan. Salah satu algoritma yang menggunakan metode ini adalah Deef Belief Networks (DBNs) dengan komponen yang dikenal dengan Restricted Boltzmann Machines (RBMs). Metode RBM akan dilatih menggunakan data unsupervised, kemudian sistem tersebut akan dioptimalisasi menggunakan teknik supervised.
- 4. *Reinforcement Learning*, pada metode ini dikenal isilah agent yang harus mempertimbangkan lingkungan dalam sistem pembelajaran. Sistem akan memilih, melakukan tindakan dan mengukur akibat (rewards) agar terhindar akibat yang negatif (penalties), sehingga diperlukan suatu strategi yang dikenal dengan policy untuk mendapatkan dampak yang positif.

Berdasarkan penjelasan diatas bahwa *machine learning* terbagi menjadi tiga kategori; Supervised Learning, Unsupervised Learning, Reinforcement Learning berkaitan dengan artificial intelligence, berikut dijelaskan dalam Gambar 2.10

Gambar 2.10: Skema Artifical Intelligence dan Machine Learning

2.7 Klasifikasi Teks

Proses klasifikasi teks merupakan suatu cara dalam menemukan sebuah model yang menjelaskan atau membedakan konsep atau kelas data dengan tujuan untuk memperkirakan kelas yang tidak diketahui sebelumnya dari suatu objek. Dua proses yang dilakukan pada pengklasifikasian data, yaitu:

- **Proses** *training*. Training set yang digunakan pada proses ini merupakan data training yang telah memiliki label untuk membangun sebuah mode.
- Proses testing. Testing set digunakan untuk melakukan prediksi label dan melihat keakuratan model atau fungsi yang akan dibangun pada proses training.

Klasifikasi dokumen adalah pemberian kategori yang telah didefinisikan kepada dokumen yang belum memiliki kategori (Goller, Loning, Will, dan Wolff, 2000). Mengklasifikasi dokumen merupakan salah satu cara untuk mengorganisasikan dokumen. Pengelompokan dengan kategori yang sama dilakukan pada dokumen-dokumen yang memiliki isi yang sama. Hal ini mennja-

dikan sebuah kemudahan bagi orang yang akan melakukan pencarian informasi, karena kategori yang dianggap tidak relevan akan dilewati.

Metode klasifikasi secara otomatis berkembang seiring dengan adanya jumlah dokumen yang meningkat dengan pesat. Dokumen-dokumen yang telah dilakukan klasifikasi sebelumnya dijadikan acuan dalam proses *learning* pada implementasi metode klasifikasi. Kondisi ini memberikan manfaat dalam hal perolehan hasil yang lebih baik dan peghematan waktu kerja (Hadiyono, 2018).

2.8 Metode Klasifikasi

Klasifikasi bisa dikatakan sebagai pembelajaran mesin karena memiliki kemampuan untuk menggunakan pengetahuan yang telah ada sebelumnya untuk menghasilkan penentuan objek baru, keseluruhan klasifikasi terletak pada kemampuan sistem untuk memberi label tergadap objek sesuai dengan kasus yang telah ada tanpa mengubah sistem jika dihadapkan objek baru.

2.8.1 K-nearest neighbors (KNN)

K-Nearest Neighbors Algorithm (KNN): merupakan sebuah metode yang digunakan dalam penyelesaian masalah klasifikasi sebuah objek dengan melakukan implementasi feature space dimana sebuah objek yang menjadi data training dan dijadikan sebuah model data diberikan pembobotan nilai dan direpresentasikan ke dalam n-dimensional vektor. Kemudian penyelesaian masalah dilakukan dengan mengukur jarak terdekat objek baru dengan model data yang ada di dalam n-dimensional vektor lalu dilakukan proses pemberian sebuah kategori pada objek baru tersebut.

2.8.2 Naïve bayes (NB)

Naïve Bayes merupakan salah metode dari Machine Learning yang memanfaatkan konsep probabilitas dan konsep statistika untuk menghasilkan sebuah prediksi atau variabel baru dalam suatu permasalahan. Algoritma Naïve Bayes pertama kali dikemukakan oleh Thomas Bayes pada tahun yang memiliki tujuan agar bisa memberikan suatu prediksi probabilitas di masa depan berdasarkan pola-pola serta pengalaman yang terbentuk sebelumnya. Naïve Bayes juga merupakan sebuah algoritma klasifikasi yang berakar pada Teorema Bayes.

2.9 Rangkuman Hasil Penelitian Terkait

Penelitian-penelitian terkait yang berhubungan dengan pengembangan SIG akan disajikan pada Tabel 2.1

Tabel 2.1: Rangkuman Hasil Penelitian Terkait

No	Nama Peneliti,	Topik	Kelebihan	Keterbatasan
	Tahun			
1	V. Voženílek,	Konvergensi antara	Jaringan saraf	Klasifikasi GIS
	2009	Ai dan GIS	tiruan telah	dalam dunia
			terbukti	nyata itu tidak
			bermanfaat dalam	realistis
			interpretasi	mengharapkan
			informasi sumber	akurasi
			daya spasial	klasifikasi 100%
				pada semua
				kumpulan data
2	Royal institue of	Building	CityGML (3D	Salah satu
	technlogy	information mdels	objekperkotaan)	masalah utama
	(KTH), 2010	(BIM)	dan IFC (mewakili	yang dihadapi
			model semantik	aplikasi
			yang sangat detail	pemodelan kota
			untuk bangunan)	3D adalah
			dianggap semantik	kurangnya inte-
			yang paling	roperabilitas
			menonjol model	diantara
			diGIS dan BIM	berbagian BIM
				dan model GIS.
3	Anggoro Sigitt,	Mengembangkan	SIG web dapat	Pengumpulan
	A, 2011	SIG berbasis web	memberika	data spasial
		untk monitoring	informasi tentang	yang cukup
		banjir	kerawanan banjir	sulit untuk
			di wilayah DAS	mengolahnya.
			Bengawan Solo	
			Hulu.	

No	Nama Peneliti, Tahun	Topik	Kelebihan	Keterbatasan
4	Elelna Cerutti, Francesca Noardo, dan Antonia Spano,2015	GIS dapat menjadi instrumen yang efektif untuk mengelola data architectural heritage, untuk meminta data,bertujuan pelestarian.	Dalam karya ini, beberapa struktur memunginkan penggunaan informasi semantik CH (seperti ontologi dan bahsa formal) telah digunakan bersama alat yang interoperabilitas data.	Seluruh alur kerja memiliki batasan karena tidakadanya model data standar terintegrasi resmi, khususnya kurangnya standar di akusisi dan plot fase sejarah dokumentasi architectural heritage
5	Stephanie M. Flectcher- Lartey, 2015	Teknoligi GIS di sektor kesehatan masyarakat, dengan aplikasi yang berakaitan dengan pemetaan dan pemahaman penyakit parasit	Teknologi GIS berkonstrinbusi signifikan terhadap pemahaman tresebut ekologi parasit dan asosiasinya dengan penyebaran penyakit, dan intervensi pencegahan, terutama di daerah berkembangan	GIS kurang dimanfaatkan beberapa negara di bidang kesehatan masyarakat, sementara keterbatasan sistemik (kurangnya infrastruktur, pelatih- an,pemeliharaan databasejangka panjang), dan biayanya terlalu tinggi

No	Nama	Topik	Kelebihan	Keterbatasan
	Peneliti,			
	Tahun			
6	Yingjie HU,	Semantik	Dapat membangun	Data geografi
	2017	Geospasial dapat	ontologi, gazetteer,	yang besar, teks
		memfasilitasi	dan data tertaut	tidak
		perencangan	dapat membantu	terstruktur
		sistem informasi	mesin memproses	dalam jumlah
		geografis (GIS)	geografs informasi	besar di web,
			lebih efektif secara	dan cepat
			otomatis	pengembangan
			mengekstrak	metode
			pengetahuan	pemrosesan
			dengan lebih	bahasa alami
			efisien, sehingga	menungkinkan
			gazeteers banyak	arah penelitain
			digunakan di GIR	baru di
			dan semantik tepat	geospasial
			untuk mengekstrak	semantik
			dan membedakan	
			nama tempat	
			(geograp infom	
			retrieval)	
7	Kamel	Artificial	Aplikasi GeoAI ini	Kurangnya label
	Boulos,	intelligence (AI)	mempunyai	data penelitian
	2019	dan geografic	potensi dalam	untuk algoritma
		information system	beberapa ilmu	AI, secara
		(GIS), berperan	dalam kesehatan	khusus diawasi
		dalam kesehatan	masyarakat,	pembelajaran
		dan perawatan	pengobatan	melibatkn
		kesehatan, karena	presisi,dan menjadi	memprediksi
		suatu daerah	kota sehat pintar	label atau
		merupakan bagian	yang didukung	respon
		integral dari	oleh <i>Internet of</i>	masing-masing
		populasi maupun	Things	titik data
		kesehatan individu.		

No	Nama	Topik	Kelebihan	Keterbatasan
	Peneliti,			
	Tahun			
8	Nasim	Aplikasi algoritma	Teknologi ML dan	Konsep tidak
	Tohidi dan	ML untuk proses	GI berhasil	tepat yang
	Rustam B.	citra satelit atau	diterapkan untuk	digunakan
	Rustamov,	GIS	pemantauan dan	dengan besar
	2020		observsi	volume data
			konsekuensi	geofafis, harg
			pembangunan	nya mahal
			megacity.	
			Penggabungan ML	
			dan GIS	
			menawarkan	
			mekanisme	
			potensial untuk	
			mengurangi biaya	
			analisis informasi	
			spasial dengan	
			mengurangi	
			jumlah waktu yang	
			dihabiskan untuk	
			interpretasi data	
9	Issues of	Menggidentifikasi	GIS alat yang tepat	Data sensus
	Healthcare	terkait geomatika	untuk	yang digunakan
	Planning	kesehatan	pengembikan	untuk
	and GIS: A	berdasarkan	keputusan spasial	pemodelan
	Review,	pemahaman	dalam kesehatan	epidemi harus
	2020	hubungan spasial	masyarakat	berupa kualitas
				dan akurasi
				tinggi agar
				sejalan denga
				persyaratan
				teknik GIS

Bab 3

Metode Penelitian

3.1 Tahapan Penelitian

Penelitian ini berusaha mengembangkan model SIG tentang data spasial kesehatan masyarakat menggunakan semantik AI. Pada gambar 3.1 terlihat tahapan penelitian untuk mengembangan SIG data spasial kesehatan masyarakat terdiri dari 3 tahapan, yaitu:

- 1. Memahami Indikator IKS
- 2. Memahami Indikator IKS yang berhubungan dengan Teknik Sipil
- 3. Pengembangan Model, yang terdiri dari tahapan:
 - (a) Akuisisi Data
 - (b) Preprocessing
 - (c) Klasifikasi Machine Learning
 - (d) Sistem Informasi Geografis
 - (e) Sistem Informasi Geospasial
 - (f) Semantik Geospasial

Gambar 3.1: Tahapan Penelitan

3.2 Memahami Indikator IKS

Penelitian ini melakukan analisis pada 12 indikator IKS seperti diuraikan pada Tabel 3.1.

Tabel 3.1: Indikator Keluarga Sehat

No	Indikator
1	Keluarga mengikuti program KB (keluarga berencana)
2	Ibu hamil memeriksakan kehamilannya (ANC) sesuai standar
3	Bayi mendapatkan imunisasi lengkap
4	Pemberian ASI eksklusif lengkap
5	Pemantauan pertumbuhan balita
6	Penderita TB paru yang berobat sesuai standar
7	Penderita hipertensi yang berobat teratur
8	Penderita gangguan jiwa berat yang diobati
9	Tidak ada anggota keluarga yang merokok
10	Sekeluarga sudah menkadi anggota KJKN
11	Mempunyai sarana air bersih
12	Menggunakn jambamn keluarg

3.3 Memahami Indikator IKS yang Berhubungan dengan Teknik Sipil

Penelitian ini melakukan analisis pada 12 indikator IKS yang berkaitan dengan ilmu Teknik sipil, diperoleh terdapat 2 indikator yang berkaitan dengan teknik sipil yaitu mempunyai sarana air bersih dan menggunakan jamban keluarga. Berikut adalah Tabel 3.2 pada beberapa wilayah berkatagorikan keluarga prasehat dan keluarga tidak sehat.

Tabel 3.2: Indikator IKS Teknik Sipil

Indikator	Hidrologi	Geotek	Transportasi	Struktur
Mempunya	i x	х		X
sarana				
air bersih				
Mempunya	i Desa Payaman,2016. 79%	Daerah		Permukiman
sarana	atau 196 KK yang tidak	Cipanas,		kumuh di
air bersih	memiliki sarana	tidak		bantaran
	pembuangan air limbah	memiliki		sungai Deli
	yang sesuai dengan	jamban		dan faktor
	persyaratan kesehatan.	dikarenakn		manusia
	Menyalurkan limbah cair	daerahnya		yang meng-
	pada kawasan ruamh	dikelilingi		gunakan
	tangga diperlukan sarana	sungai besar,		bantaran
	berupa saluran	dan letak		sungai untuk
	pembuangan air limbah	geografis		mendirikan
	ataupun sumur resapan.	yang kurang		rumah
	sehingga tidak	yang me-		tinggal dan
	mencemari air tanah,	mungkinkan		tempat
	tidak menimbulkan			pembuangan
	sarang nyamuk dan tikus,			sampah
	tidak menimbulkan bau			telah me-
				nyempitan
				sungai

Indikator	Hidrologi	Geotek	Transportasi	Struktur
Mempunya	i Berdasarkan data dari			
sarana	Puskesmas Kampung			
air bersih	Baru Kec. Medan			
	Maimun,2011 diare			
	merupakan penyakit			
	terbesar (879 kasus),			
	berdasarkan survei sungai			
	Deli di kelurahan			
	Sukaraja terlihat keruh,			
	berwarna coklat			
	kekuningan dan terlihat			
	adanya bangan limbah			
	industri domestik,			
	sementara di hilir sungai			
	sebagaian besar			
	masyarakat			
	menggunakan air sungai			
	deli utk MCK			
Mempunya	i Kab Purwantoro, tidak			
sarana	memiliki sumber air yang			
air bersih	bersih, sehingga nilai yg			
	memiliki air besih 44,8%			
	dan yang tidak			
	memilikisebanyak 55,2%.			
	Sumur milik salah satu			
	desa diKecamatan			
	Purwantoro digunakan			
	dibandingkan dengan 1			
	sumur digunakan atau			
	diambil oleh air pada 10			
	rumah tangga. Akses ke			
	PDAMbelum masuk ke			
	wilayah tersebut.			

Indikator	Hidrologi	Geotek	Transportasi	Struktur
Mempunya	i Desa Sungai Terap Kec			
sarana	Kumpeh Ulu Kab Muaro			
air bersih	Jambi. Kurangnya			
	ketersediaan air karena 1			
	sumur dapat dipakai 4-8			
	KK ini menyebabkan			
	sumur cepat kering.			
	Makanya solusinya			
	pemerintah setempat			
	dapat menyediakan			
	sarana air bersih berupa			
	PDAM dan			
	memperbanyak sumur			
	gali gratis dengan			
	kedalaman >10m agar			
	musim kemarau tidak ada			
	lagi sumur yang kering			
Mempunya	i Kab. Sampang JaTim.			Infrastrukturny
sarana	Dari hasil survei bahwa			sangat
air bersih	daerah sampang kondisi			minim,
	secara geografis sebgaian			diharapkan
	besar kering sehingga utk			kedepannya
	ketrsediaan air masih			PUPR dapat
	sangat memperihatinkan,			membuatk-
	sehingga masyarakat			an jamban,
	mengandalkan air hujan			PDAM, dan
				jamban

Indikator	Hidrologi	Geotek	Transportasi	Struktur
Mempunya	i Aliran sungai Winogo			
sarana	(jogja). Memiliki			
air bersih	pengaruh yang buruk			
	terhadap sanitasi dimana			
	sungai winogo, dimana di			
	daerah tersebut adanya			
	peternakan babi dan			
	tumpukan sampah yang			
	ada disisi sungai.			
Menggunal	kaxn	X	X	X
jamban				
keluarga				

Indikator	Hidrologi	Geotek	Transportasi	Struktur
Menggunal	kalidesa Sungai Terap Kec			
jamban	Kumpeh Ulu Kab Muaro			
keluarga	Jambi. Masih ada 22			
	responden yang tidak			
	memiliki jamban,			
	dikarenakan			
	pengaruhnya			
	ketersediaan air yang			
	sangat penting, sehingga			
	masyarakt BABS di tepi			
	sungai.			
Menggunal	ka n esa Modelomo memiliki			
jamban	data menggunakan			
keluarga	jamban 6,44%, Rumah			
	Tangga yang belum			
	memakai fasilitas BAB			
	90,30%, BABS 93,36%,			
	dan diare 26,81%.			
	Diharapkan kedpannya			
	perlunya pemahaman			
	tentang pemakaian			
	jamban utk mendukung			
	PIS-PK			

Indikator	Hidrologi	Geotek	Transportasi	Struktur
Menggunal	ka D esa cikunir merupakan			
jamban	desa dengan cakupan			
keluarga	akses sanitasi (jamban			
	sehat) yang rendah.yang			
	tidak memiliki jamban			
	sebesar 17,6% sehingga			
	dapat menyebabkan atau			
	menyebarkn penyakit dan			
	mengotori limgkungan			
	pemukiman			
Menggunal	kaFaktor lingkungan di Desa			
jamban	Cintaraja pada tahun			
keluarga	2018 mengalami			
	kenaikan kasus yaitu			
	penyakit diaere yang			
	disebabkan dari kurang			
	layaknya jamban, saluran			
	limbah umum dan sumur			
	resapan			

Indikator	Hidrologi	Geotek	Transportasi	Struktur
Menggunal	a A ngka diare lebih tinggi			
jamban	sebesar 66% pada			
keluarga	anak-anak dari keluarga			
	yang melakukan buang			
	air besar di sungai atau			
	selokan dibandingkan			
	mereka pada rumah			
	tangga dengan fasilitas			
	toilet pribadi dan septik			
	tank. (Kemenkes RI,			
	2016). Dinas Kesehatan			
	Kabupaten Bantul,			
	penderita diare di			
	Kabupaten Bantul			
	tergolong tinggi. (Dinkes			
	Bantul, 2017			
Menggunal	ka h esa Bandung Kecamatan			
jamban	Kebumen menunjukkan			
keluarga	bahwa indikator akses			
	terhadap jamban sehat			
	masih rendah, karena			
	masih ada warga yang			
	buang air besar di sungai			
	. Kurangnya pen			
	getahuan dan sikap			
	masyarakat yang masih			
	Buang Air Besar (BAB) di			
	sungai.			
Menggunal	ka n esa Pelakar Jaya, tidak			
jamban	menggunakan jamban			
keluarga	ketika BAB dan BAK,			
	karena kondisi tempat			
	tinggal yang kurang layak			

Pada Tabel 3.2 mejelaskan bahwa dalam indikator keluarga sehat dapat

dihubungkan pada ilmu Teknik sipil, yang dimana dilihat dari beberapa kondisi yaitu:

- Kurangnya sarana air bersih, kurangnya sumber air (PDAM)
- Adanya pencemaran aliran sungai, dimana tidak adanya pembuangan air limbah
- Pembangunan jamban yang kurang layak

Sehingga dapat mengakibatkan wilayah tersebut termasuk dalam kriteria keluarga prasehat dan keluarga tidak sehat.

3.4 Pengembangan Model

Pada tahapan pengembangan model, terdiri dari 6 proses di dalamnya, yaitu akuisisi data, *preprocessing*, klasifikasi *Machine Learning*, Sistem Informasi Geografis, Sistem Informasi Geospasial dan Semantik Geospasial seperti pada Gambar 3.2.

Gambar 3.2: Tahap Pengembangan Model

3.4.1 Akuisisi Data

Proses akuisisi data adalah tahap pengumpulan data yang merupakan tahap awal dari penelitian ini. Data yang dibutuhkan yaitu dokumen IKS, dokumen IKS diperoleh dari Kementrian Kesehatan. Proses pengumpulan data IKS oleh Kemenitrian Kesehatan

3.4.2 Preprocescing Data

Tahapan kedua dalam penelitain ini *preprocessing* data tahap melakukan persiapan data sebelum melakukan proses klasifikasi dengan *machine learning*. Tahap *prepocessing* pada penilitian ini adalah:

1. Tahap pemeriksaan data. Pada tahap ini dilakukan pemeriksaan terhadap data yang akan digunakan, data -data yang tidak dibutuhkan

akan dihapus, dan data yang tidak sesuai akan diperbaiki sesuai denga format data.

- 2. Penghapusan data. Data yang tidak digunakan akan dihapus, dan hanya data yang sesuai dengan fitur akan masuk pada proses klasifikasi
- 3. Pelabelan data. Data diberika label berdasarkan jenis klasifikasi,
 - Label 1 menyatakan kategori keluarga sehat,
 - Label 2 menyatakan kategori Keluarga Pra Sehat,
 - Label 3 meyatakan kategori keluarga Tidak Sehat

3.4.3 Klasifikasi Machine Learning

Proses klasifikasi dilakukan untuk meprediksi data IKS menjadi tiga kriteria, yaitu:

- · Keluarga sehat
- Kelauarga Pra Sehat
- Keluarga Tidak Sehat

Metode klasifikasi yang digunakan adalah *support vector machnine* berbasiskan *machine learning*.

3.4.4 Sistem Informasi Geografis

Pada tahap ini akan dilakukuan pembuatan peta sistem informasi geografis berdasarkan klasifikasi tahap sebelumnya. Pada peta ini akan terlihat wilayah-wilayah mana yang masuk kedalam keluarga sehat, keluarga pra sehat, dan keluarga tidak sehat.

3.4.5 Sistem Informasi Geospasial

Pada tahap ini diambil dari indikator yang berhubungan dengan Teknik sipil, dan melihat sistem informasi geografis pada wilayah berkategori, keluarga sehat, keluarga prasehat, keluarga tidak sehat.

46

3.4.6 Semantik Geospasial

Dari hasil sistem informasi geospasial akan diartikan atau diterjemahkan lebih detail dengan semantik geospasial wilayah mana saja yang termasuk kategori keluarga sehat, keluarga prasehat, keluarga tidak sehat sehingga diperoleh hasil yang dapat memberikan solusi agar kedepannya seluruh masyarakat Indonesia memahami pentingnya kesehatan.

3.5 Rencana Kerja

Penelitian ini dilakukan selama dua tahap dengan target penyelesaian di akhir 2021, Tabel 3.3 menggambarkan rencana penelitian yang akan dilakukan dalam meyusu disertasi ini.

Bulan ke-Kegiatan 5 7 1 2 3 4 6 8 9 10 11 12 13 14 15 16 **17** 18 Penyusunan Proposal Pengajuan Proposal Pengerjaan Penelitian Publikasi Ilmiah / Seminar Pengembang an Atas Saran Seminar Penyusunan Desertasi Sidang Desertasi

Tabel 3.3: Rencana Kerja

Bab 4

Hasil dan Pembahasan

4.1 Akuisisi Data

Tahapan pertama pada penelitian ini adalah akusisi data. Akuisisi data adalah proses pengumpulan data-data yang diambil dari Kementrian Kesehatan Republik Indonesia. Data yang diperoleh berupa laporan data IKS sampai dengan Januari tahun 2020.

Tabel 4.1 adalah deskripsi data laporan IKS sampai dengan Januari 2020

Tabel 4.1: Data Laporan IKS Januari 2020

Jumlah Data	81.900
Jumlah Provinsi	34
Jumlah Kecamatan	6.390
Jumlah Kelurahan	55.344

Data IKS yang diperoleh seperti pada Gambar 4.1 terdiri dari field berikut:

- Kode
- Nasional
- nama provinsi
- provinsi
- nama kota

4.1 Akuisisi Data 48

- kota
- nama kecamatan
- kecamatan
- kelurahan
- nama_kelurahan
- jumlah_kk
- jumlah_kk_sehat
- jmlh_pra_sehat
- jmlh_tdk_sehat
- IKS Inti
- Indikator 1 (KB)
- Indikator 2 (Ibu Bersalin di faskes)
- Indikator 3 (Imunisasi)
- Indikator 4 (ASI)
- Indikator 5 (Pertumbuhan Balita)
- Indikator 6 (TB)
- Indikator 7 (Hipertensi)
- Indikator 8 (Gangguan Jiwa)
- Indikator 9 (Tidak ada anggota keluarga yang merokok)
- Indikator 10 (Sekeluarga sudah menjadi anggota JKN)
- Indikator 11 (Mempunyai Sarana air bersih)
- Indikator 12 (menggunakan jamban keluarga)

kode	nasional	nama_provinsi	provinsi	nama_kota	kota	ama_kecamata	kecamatan	kelurahan	nama_kelurahan	jumlah_kk	umlah_kk_seha	mlh_pra_sehatml	h_tdk_sehat	iks_inti
	INDONESIA		91		-	-		-		955482	239598	599920	115964	0.25
	INDONESIA		91	ACEH SELATAN	101	-	-	-		28551		18926	2693	0.24
01	INDONESIA		91	ACEH SELATAN	101		01	-		748		579	65	0.14
01.2001	INDONESIA		71	ACEH SELATAN	01		1 01	2001	KEUDE BAKONGAN	92		66	0	0.28
01.2002	INDONESIA		71	ACEH SELATAN	01		1 01	2002	LUUNG MANGKI	130		107	6	0.13
01.2003	INDONESIA		91	ACEH SELATAN	101	BAKONGAN	1 01	2003	LUUNG PADANG	144	15	89	40	0.1
01.2004	INDONESIA		91	ACEH SELATAN	101	BAKONGAN		2004	KAMPUNG DRIEN	104	16	79	9	0.15
01.2015	INDONESIA	ACEH	91	ACEH SELATAN	01		01	2015	DARUL IKHSAN		1 1	0	0	1
01.2016	INDONESIA		71	ACEH SELATAN	01	BAKONGAN		2016	PADANG BERAHAN	205		179	7	0.09
01.2017	INDONESIA		11	ACEH SELATAN	01	BAKONGAN		2017	GAMPONG BARU	72		59	3	0.14
02	INDONESIA		71	ACEH SELATAN	01	KLUET UTARA		-		2477		1660	271	0.22
02.2001	INDONESIA		91	ACEH SELATAN	101	KLUET UTARA	02	2001	FAJAR HARAPAN	88	19	64	2	0.22
02.2002	INDONESIA		91	ACEH SELATAN	101	KLUET UTARA	02	2002	KRUENG BATEE	14	4	9	1	0.29
02.2003	INDONESIA		91	ACEH SELATAN	01	KLUET UTARA		2003	PASIE ASAHAN	11		7	4	0
02.2004	INDONESIA		11	ACEH SELATAN	01	KLUET UTARA		2004	GUNONG PULO	150	29	92	29	0.19
02.2005	INDONESIA		71	ACEH SELATAN	701	KLUET UTARA	02	2005	PULO IE I	228	60	138	30	0.26
02.2006	INDONESIA		71	ACEH SELATAN	701	KLUET UTARA	02	2006	JAMBO MANYANG	61	18	42	1	0.3
02.2007	INDONESIA		91	ACEH SELATAN	101	KLUET UTARA		2007	SIMPANG EMPAT	101		60	2	0.39
02.2008	INDONESIA	ACEH	91	ACEH SELATAN	701	KLUET UTARA	02	2008	LIMAU PURUT	212	55	146	11	0.26
02.2009	INDONESIA		91	ACEH SELATAN	701	KLUET UTARA	02	2009	PULO KAMBING	118	3 26	87	5	0.22
02.2010	INDONESIA		71	ACEH SELATAN	701	KLUET UTARA	02	2010	KAMPUNG PAYA	216	51	149	16	0.24
02.2012	INDONESIA	ACEH	11	ACEH SELATAN	701	KLUET UTARA	02	2012	KRUENG KLUET	266	30	172	64	0.11
02.2013	INDONESIA	ACEH	11	ACEH SELATAN	701	KLUET UTARA	02	2013	ALUR MAS	176	37	124	15	0.21
02.2016	INDONESIA	ACEH	91	ACEH SELATAN	701	KLUET UTARA	02	2016	SIMPANG LHEE	85	28	49	8	0.33
02.2017	INDONESIA	ACEH	91	ACEH SELATAN	701	KLUET UTARA	702	2017	SUAK GERINGGENG	75	19	53	3	0.25
02.2018	INDONESIA		91	ACEH SELATAN	701	KLUET UTARA		2018	PASIE KUALA BA U	61		34	1	0.48
02.2019	INDONESIA	ACEH	11	ACEH SELATAN	701	KLUET UTARA	02	2019	KEDAI PADANG	124	17	83	24	0.14
02.2020	INDONESIA	ACEH	11	ACEH SELATAN	701	KLUET UTARA	02	2020	KOTAFAJAR	18		17	0	0.06
02.2021	INDONESIA	ACEH	11	ACEH SELATAN	701	KLUET UTARA	02	2021	GUNUNG PUDUNG	146	23	99	24	0.16
02.2022	INDONESIA	ACEH	91	ACEH SELATAN	701	KLUET UTARA	02	2022	KAMPUNG TINGGI	143	33	99	11	0.23
02.2023	INDONESIA	ACEH	91	ACEH SELATAN	701	KLUET UTARA	702	2023	RUAK	181	25	136	20	0.14
03	INDONESIA		91	ACEH SELATAN	701	KLUET SELAT				2676		1751	232	0.26
03.2001	INDONESIA	ACEH	11	ACEH SELATAN	701	KLUET SELAT	03	2001	SUAQ BAKONG	325	101	217	7	0.31
03.2002	INDONESIA	ACEH	11	ACEH SELATAN	701	KLUET SELAT	03	2002	RANTAU BINUANG	181		115	9	0.31
03.2003	INDONESIA	ACEH	91	ACEH SELATAN	701	KLUET SELAT	03	2003	BARAT DAYA	168	43	107	15	0.26
03.2004	INDONESIA	ACEH	91	ACEH SELATAN	701	KLUET SELAT	03	2004	SIALANG	179	45	119	15	0.25
03.2005	INDONESIA		91	ACEH SELATAN	701	KLUET SELAT	03	2005	KAPEH	112	31	77	4	0.28
03.2006	INDONESIA	ACEH !	11	ACEH SELATAN	701	KLUET SELAT	703	2006	PULO IE	143	42	97	4	0.29
03.2007	INDONESIA	ACEH	11	ACEH SELATAN	701	KLUET SELAT	03	2007	KEDAI RUNDING	533	175	321	37	0.33
03.2008	INDONESIA	ACEH	11	ACEH SELATAN	701	KLUET SELAT	03	2008	KEDAI KANDANG	134	23	95	16	0.17
03.2009	INDONESIA	ACEH	91	ACEH SELATAN	701	KLUET SELAT	03	2009	LUAR	40	5	27	8	0.12
03.2010	INDONESIA	ACEH	91	ACEH SELATAN	701	KLUET SELAT	703	2010	WUNG	55	5 8	41	6	0.15
03.2011	INDONESIA	ACEH !	91	ACEH SELATAN	701	KLUET SELAT	703	2011	JUA	17	5	12	0	0.29
03.2012	INDONESIA	ACEH	11	ACEH SELATAN	701	KLUET SELAT	03	2012	PASIE MERAPAT	58	13	38	7	0.22
03.2013	INDONESIA		11	ACEH SELATAN	701	KLUET SELAT		2013	LUUNG PASIR	61		36	15	0.16
03.2014	INDONESIA		11	ACEH SELATAN	701	KLUET SELAT		2014	GEULUMBUK	309		208	36	0.21
03.2015	INDONESIA		91	ACEH SELATAN	701	KLUET SELAT		2015	PASIE LEMBANG	107		62	24	0.2
03.2016	INDONESIA		91	ACEH SELATAN	701	KLUET SELAT		2016	LUUNG PADANG	107		72	14	0.2
03.2017	INDONESIA		91	ACEH SELATAN	701	KLUET SELAT		2017	INDRA DAMAI	150		107	15	0.19
04	INDONESIA		11	ACEH SELATAN	701	LABUHAN HA		-	-	2386		1584	190	0.26
04.2001			11	ACEH SELATAN	701	LABUHAN HA		2001	BAKAU HULU	211		141	24	0.22

Gambar 4.1: Data IKS Setiap Wilayah (a)

Gambar 4.2: Data IKS Setiap Wilayah (b)

Gambar 4.3: Data IKS Setiap Wilayah (c)

		Jamban Sehat)			Indikator		
		sigma_t_id_11					
84.2	804147	150864	471	80.99	772988	181467	102
90.4	25794	2740	17	75.51	21517	6977	5
92.51	692	56	0	89.41	667	79	
100	92	0	0	100	91	0	
97.69	127	3	0	93.08	121	9	(
70.83	102	42	0	69.44	100	44	(
94.23	98	6	0	82.52	85	18	
100	1	0	0	100	1	0	-
98.05	201	4	0	96.59	198	7	
98.61	71	1	0	98.61	71	1	
89.99	2229	248	0	74.31	1840	636	
98.82	84	1	0	88.24	75	10	
100	14	0	0	100	14	0	
100	11	0	0	63.64	7	4	
84	126	24	0	64.67	97	53	
92.98	212	16	0	76.75	175	53	
98.36	60	1	0	96.72	59	2	
100	101	0	0	97.03	98	3	
97.17	206	6	0	88.15	186	25	
87.17	103	15	0	90.68	107	11	
89.35	193	23	0	91.67	198	18	
80.45	214	52	0	37.59	100	166	
95.45	168	8	0	70.45	124	52	
83.53	71	14	0	89.41	76	9	
98.67	74	1	0	98.67	74	1	
100	67	0	0	97.01	65	2	
87.1	108	16	0	98.39	122	2	
94.44	17	1	0	72.22	13	5	
77.4	113	33	0	45.89	67	79	
95.1	136	7	0	60.14	86	57	
83.43	151	30	0	53.59	97	84	
89.01	2381	294	1	89.31	2390	286	
97.23	316	9	0	94.77	308	17	
95.58	173	8	0	96.13	174	7	
76.97	127	38	0	88.48	146	19	
91.06	163	16	0	92.74	166	13	
90.18	101	11	0	95.54	107	5	
86.01	123	20	0	93.01	133	10	
88.56	472	61	0	94.18	502	31	
96.27	129	5	0	80.6	108	26	
80	32	8	0	72.5	29	11	
89.09	49	6	0	87.27	48	7	
94.12	16	1	0	94.12	16	1	
89.47	51	6	1	79.31	46	12	
81.97	50	11	0	65.57	40	21	
84.14	260	49	0	85.76	265	44	
80.37	86	21	0	77.57	83	24	
85.05	91	16	0	85.98	92	15	
94.67	142	8	0		127	23	
				84.67			2
92.82	2211	171	4	85.99	2031	331	2

Gambar 4.4: Data IKS Setiap Wilayah (d)

4.2 Preprocessing

Tahapan selanjutnya setelah pross akuisisi data kedua dalam penelitain ini yaitu *preprocessing* data. Tahap ini melakukan persiapan data sebelum melakukan proses klasifikasi dengan *machine learning*.

52

4.2.1 Tahap pemeriksaan data

Pada tahap ini dilakukan pemeriksaan terhadap data yang akan digunakan, dilakukan kesesuaian fitur data dan filter data yang dibutuhkan.

4.2.2 Penghapusan data

Setelah dilakukan pemeriksaan data, maka diperoleh data-data yang dianggap tidak sesuai dengan fitur dan dilakukan penghapusan data tersebut. Dari hasil filter juga diperoleh data yang dianggap tidak dibutuhkan sehingga data tersebut dihapus.

4.2.3 Pelabelan data

Setelah data yang dihasilkan dari tahap sebelumnya dianggap sudah memenuhi kesesuaian dengan fitur, maka selanjutnya dilakukan pelabelan data. Data diberika label berdasarkan jenis klasifikasi seperti pada Tabel 4.2.

Tabel 4.2: Label Data

Label	Kategori
1	Keluarga sehat
2	Keluarga pra sehat
3	Keluarga tidak sehat

Daftar Pustaka

- Agarwal, P. (2005). Ontological considerations in giscience. *International Journal of Geographical Information Science*, 19(5):501–536.
- Boulos, M. N. K., Peng, G., and VoPham, T. (2019). An overview of geo-ai applications in health and healthcare. *International Journal of Health Geographics*, 18(1):1–9.
- Goller, C., Löning, J., Will, T., and Wolff, W. (2000). Automatic document classification. *Informationskompetenz-Basiskompetenz in der Informationsgesellschaft*, page 145.
- Hadiyono, A. (2018). *Metode Analisis Berbasis NLP dan DBN untuk Pengukuran Dampak Media Online*. PhD thesis, Universitas Gunadarma.
- Sigit, A. A., Priyono, P. P., and Andriyani, A. A. (2011). Applikasi sistem informasi geografis (sig) berbasis web untuk monitoring banjir di wilayah das bengawan solo hulu. *Semantik*, 1(1).