algebraic topology exercises

Contents

some definitions	1
exercise on mapping cylinder and Hurewicz cofibrations	3
exercise on model categories	4
Hatcher's exercise on Whitehead's theorem	6
References	6

some definitions

definition.

- An *initial object* in a category C is an object \varnothing such that for any object $x \in C$ there is a unique morphism $\varnothing \to x$ with source \varnothing and target x.
- A *pullback* of the morphisms f and g consists of an object P and two morphisms $p_1: P \to X$ and $p_2: P \to Y$ satisfying the following universal property:

• A *pushout* of the morphisms f and g consists of an object P and two morphisms $i_1 : P \to X$ and $i_2 : P \to Y$ satisfying the following universal property:

• A *product* of X and Y is an object $X \sqcup Y$ and a pair of morphisms $p_1 : X \sqcap Y \to X$,

 $p_2: X \sqcap Y \to Y$ satisfying the following universal property:

A *coproduct* of X and Y is an object X ⊔ Y and a pair of morphisms i₁ : X → X ⊔ Y,
 i₂ : Y → X ⊔ Y satisfying the following universal property:

remark. More generally, for S any set and $F: S \to C$ a collection of objects in the category C indexed by S, their *coproduct* is an object $\coprod_{s \in S} F(s)$ equipped with maps

$$F(s) \to \coprod_{s \in S} F(s)$$

such that this is universal among objects with maps from F(s).

• A morphism i has the *left lifting property with respect to a morphism* p and p has the *right lifting property with respect to* i if for each morphisms f and g, if the outer square in the following diagram commutes, there exists φ (I think not necessarily unique) completing the diagram:

- For *C* any category, its *arrow category* Arr(*C*) is the category such that
 - an object a of Arr(C) is a morphism $a: a_0 \to a_1$ of C,

– a morphism $f : a \rightarrow b$ of Arr(C) is a commutative square

$$\begin{array}{ccc}
a_0 & \xrightarrow{f_0} & b_0 \\
a\downarrow & & \downarrow b \\
a_1 & \xrightarrow{f_1} & b_1
\end{array}$$

in \mathcal{C} ,

– composition in Arr(C) is given simply by placing commutative squares side by side to get a commutative oblong.

This is osomorphic to the functor category

$$Arr(C) := Funct(I, C) = [I, C] = C^{I}$$

for I the interval category $\{0 \to 1\}$.

exercise on mapping cylinder and Hurewicz cofibrations

exercise. Let $f: X \to Y$ be a map. Let $M_f = X \times [0,1] \cup_f Y$ be the *mapping cylinder of* f, i.e. the pushout of $X \stackrel{\cong}{\to} X \times \{0\} \hookrightarrow X \times [0,1]$ and of $f: X \times Y$. Let $g: X \to M_f$ be the map $X \stackrel{\cong}{\to} X \times \{1\} \to M_f$. Let $h: M_f \to Y$ be the map that is induced by $X \times [0,1] \to Y: (x,t) \mapsto f(x)$ and $id_Y: Y \to Y$. Observe that f is the composition of g and h.

In both exercises below you might have to use the fact that pushouts are colimits and that colimits commute with products in CGWH, i.e. $(\operatorname{colim} A_i) \times B$ is canonically homeomorphic with $\operatorname{colim}(A_i \times B)$.

- 1. Show that h is a deformation retract, and in particular is a homotopy equivalence.
- 2. Show that $g: X \to M_f$ is a cofibration. You may use exercise (a), but the direct proof might be simpler.

Solution.

1. We have that

We must show that there is a homotopy between the identity map on M_f and a retraction from M_f to Y. So we want $h: M_f \times [0,1] \to M_f$ such that

$$h(-,0) = id_X$$
, $img h(-,1) \subset Y$ and $h(-,1)|_Y = id_Y$

The fact that h is a deformation retract is consequence of this diagram. But I still can't see why it must be a homotopy equivalence...

2. Consider the following lifting problem:

$$\begin{matrix} X & \stackrel{H}{\longrightarrow} Z^I \\ g \downarrow & & \downarrow^{\pi_0} \\ M_f & \stackrel{h}{\longrightarrow} Z \end{matrix}$$

Looks OK but why should the dashed arrow exist...?

exercise on model categories

exercise (3.1.8 from Riehl). Verify that the class of morphisms $\mathcal L$ characterized by the left lifting property against a fixed class of morphisms $\mathcal R$ is closed under coproducts, closed under retracts, and contains the isomorphisms.

Solution. (*Coproducts.*) Comment from Sergey: Coproduct of morphisms $A_i \to B_i$ in a category \mathcal{C} is the obvious morphism $\sqcup A_i \to \sqcup B_i$. (Because in this construction morphisms $A_i \to B_i$ are seen as objects of what's called the arrow category of the category \mathcal{C})

Suppose the maps $\ell_i:A_i\to B_i$ are in $\mathcal L.$ Then their coproduct in the arrow category is the obvious map $\coprod A_i\to\coprod B_i.$

Explicitly, their coproduct is an arrow $\coprod \ell_i$ and a collection of maps $f_i : \ell_i \to \coprod \ell_i$ such that for any other object $m : A \to B$ in the arrow category and a map $g : \ell \to m$, the following diagram is completed uniquely:

$$\ell_i \xrightarrow{f_i} \coprod \ell_i \xrightarrow{\exists !} m \quad \forall i$$

So we conclude that the source of $\coprod \ell_i$ is $\coprod A_i$ and its target $\coprod B_i$. Indeed, we really looking at

$$\begin{array}{ccc} A_{i} & \stackrel{\ell_{i}}{\longrightarrow} & B_{i} \\ f_{i}^{1} \downarrow & & \downarrow f_{i}^{2} \\ \coprod A_{i} & \stackrel{\coprod \ell_{i}}{\longrightarrow} & \coprod B_{i} \\ \exists ! \downarrow & & \downarrow \exists ! \\ A & \stackrel{}{\longrightarrow} & B \end{array}$$

Now consider the following lifting problem with respect to a morphism $r \in \mathcal{R}$:

$$\coprod A_{i} \longrightarrow \bullet$$

$$\coprod \ell_{i} \qquad \qquad \downarrow r \in \mathcal{R}$$

$$\coprod B_{i} \longrightarrow \bullet$$

Since $\ell_i \in \mathcal{L}$, we have maps

which in turn means we have a unique map

by the universal property of the coproduct $\coprod B_i$.

To conclude we need to check that the triangles below and above the dashed arrow in the former diagram commute. This follows from the universal property of the coproducts $\coprod A_i$ and $\coprod B_i$ since, in general,

$$\operatorname{Hom}\left(\coprod X_{i}, Y\right) \cong \prod \operatorname{Hom}(X_{i}, Y).$$

More explicitly, we now that the paths in red in the following diagrams are the same:

and also

so the conclusion follows from the former comment.

Hatcher's exercise on Whitehead's theorem

Theorem 1 (Whitehead, May). If X is a CW complex and $e: Y \to Z$ is an n-equivalence, then $e_*: [X, Y] \to [X, Z]$ is a bijection if dim X < n and surjection if dim X = n.

Theorem 2 (Whitehead, May). An n-equivalence between CW complexes of dimension less than n is a homotopy equivalence. A weak equivalence between CW complexes is a homotopy equivalence.

Theorem 3 (Whitehead (4.5), Hatcher). If a map $f: X \to Y$ between connected CW complexes induces isomorphisms $f_*: \pi_n(X) \to \pi_n(Y)$ for all n, then f is a homotopy equivalence. In case f is the inclusion of a subcomplex $X \hookrightarrow Y$, the conclusion is stronger: X is a deformation retract of Y.

exercise (Hatcher 4.1.12). Show that an n-connected, n-dimensional CW complex is contractible.

Solution. Just recall that n-connectedness means that $\pi_i(X) = 0$ for all $i \leq n$, which means that X is contractible by theorem 2.

References

- [1] A. Hatcher. *Algebraic topology*. Cambridge: Cambridge Univ. Press, 2000 (cit. on p. 6).
- [2] J.P. May. *A Concise Course in Algebraic Topology*. Chicago Lectures in Mathematics. University of Chicago Press, 1999. ISBN: 9780226511832 (cit. on p. 6).
- [3] Emily Riehl. *Homotopical categories: from model categories to* $(\infty, 1)$ *-categories.* 2020. arXiv: 1904.00886 [math.AT] (cit. on p. 4).