Project Design Phase

Proposed Solution Template

Date	28 JUNE 2025	
Team ID	LTVIP2025TMID43759	
Project Name	HematoVision: Advanced Blood Cell	
	Classification Using Transfer Learning	
Maximum Marks	4 Marks	

Proposed Solution Template:

S.No.	Parameter	Description
1.	Problem Statement	Manual classification of
	(Problem to be solved)	blood cells under the
		microscope is time-
		consuming and prone to
		errors, particularly in busy
		pathology labs. Accurate
		cell identification is crucial
		for diagnosing diseases like
		leukemia, infections, or
		allergies. Faster, automated
		solutions are needed for
		better patient outcomes.
2.	Idea / Solution description	We propose HematoVision,
		an AI-based blood cell
		classification system using
		transfer learning models
		(e.g., ResNet, EfficientNet).
		Medical staff can upload cell
		images via a web app, and
		the system will predict the
		cell type (Neutrophil,
		Lymphocyte, Monocyte,
		Eosinophil) with confidence
2	No. 11 / H. Carres	scores to assist diagnostics.
3.	Novelty / Uniqueness	Uses advanced deep
		learning for high accuracy.
		Reduces dependence on
		manual microscopy.
		Trained on a specific
		dataset of blood cell images.
		Designed for easy adoption
		by labs without complex
		hardware.

		Potential to expand to detect abnormal/malignant cells in future versions.
4.	Social Impact / Customer Satisfaction	Improves speed and accuracy of diagnoses. Reduces workload of lab technicians. Helps early detection of blood-related disorders. Improves healthcare quality. Empowers healthcare facilities with advanced diagnostic tools.
5.	Business Model (Revenue Model)	Freemium model: free basic predictions, paid advanced reports. Licensing to hospitals, diagnostic labs, or healthtech firms. Subscription-based access for larger institutions. Potential partnerships with medical device companies. API services for integration into existing lab systems.
6.	Scalability of the Solution	Easily deployable on local hospital systems or cloud. Expandable to classify more cell types (e.g., blasts in leukemia). Scalable to integrate into Electronic Health Record systems. Adaptable to multiple languages and regions. Suitable for small labs or large hospitals.