

Report No.: SHEM100500070310 Issue Date: 06-03, 2011

Page 1 of 108

Full SAR Test Report

Applicant Name: Bullitt Group

Applicant Address: No4, The Aquarium, King Street, Reading, RG1 2AN UK

The following samples were submitted and identified on behalf of the client as:

Sample Description	Mobile Phone
Brand Name	Bullitt
Model Number	TP851
Final Hardware Version	PW_LM851_V3.2
Tested	
Final Software Version	LM851_ZHONGXIN_ENGLISH_12_V3_2_NOR_V1_4_20110420
Tested	
Date Initial Sample	05-19,2011
Received	
Testing Start Date	05-28,2011
Testing End Date	06-02,2011

According to:

FCC 47CFR § 2.1093, IEEE Std C95.1-2005

IEEE1528-2003, OET Bulletin 65 Supplement C

Comments/ Conclusion:

The configuration tested complied to the certification requirements specified in this report.

Signed for on behalf of SGS

Prepared

avid le

approved

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/terms_and_conditions.htm. and, for electronic format documents to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained heron reflects the company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligation under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorised alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Table of Contents

Cha	ınge H	istory	3
1.	Repo	ort Overview	4
2.	Test	Lab Declaration or Comments	4
3.	Appl	cant Declaration or Comments	4
4.	Full 7	Test Report	4
5.	Parti	al Test Report	4
6.	Meas	surement Uncertainty	4
7.	Testi	ng Environment	6
8.	Prima	ary Test Laboratory	6
9.	Detai	Is of Applicant	6
10.	Detai	Is of Manufacturer	6
11.		r testing Locations	
12.		renced Documents	
13.		ary Laboratory Accreditation Details	
14.	SGS	Shanghai EMC lab, Personnel	9
15.	Test	Equipment Information	10
	15.1	SPEAG DASY4	10
	15.2	The SAR Measurement System	11
	15.3	Isotropic E-field Probe ES3DV3	13
	15.4	SAM Twin Phantom	14
	15.5	Device Holder for Transmitters	15
16.	Detai	led Test Results	16
	16.1	Summary of Results	16
	16.2	Maximum Results	18
	16.3	Operation Configurations	19
	16.4	Measurement procedure	20
	16.5	Detailed Test Results	21
17.	ldent	ification of Samples	57
18.	Phot	ographs of EUT	58
Anr	ex A	Photographs of Test Setup	59
Anr	ex B	Tissue Simulant Liquid	63
Ann	ex C	SAR System Validation	65
Ann	ex D	Description of Test Position	71
Ann	ex E	Calibration certificate	74
	Anna	x F 1 Dinole Calibration certification	90

Issue Date: 06-03, 2011

Page 3 of 108

Change History

Version	Change Contents	Author	Date
V1.0	First edition	Willam Wang	06-03, 2011

Issue Date: 06-03, 2011

Page 4 of 108

Report Overview

This report details the results of testing carried out on the samples listed in section 17, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this test report is used in any configuration other than that detailed in the test report, the manufacturer must ensure the new configuration complies with all relevant standards and certification requirements. Any mention of SGS Shanghai EMC lab or testing done by SGS Shanghai EMC lab made in connection with the distribution or use of the tested product must be approved in writing by SGS Shanghai EMC lab.

Test Lab Declaration or Comments

None

3. **Applicant Declaration or Comments**

None

Full Test Report

A full test report contains, within the results section, all the applicable test cases from the certification requirements of the permanent reference documents of the listed certification bodies.

5. Partial Test Report

A partial test report contains within the results section a sub-set of all the applicable test cases from the certification requirements of the permanent reference documents of the listed certification bodies.

Measurement Uncertainty 6.

Measurements and results are all in compliance with the standards listed in section 12 of this report. All measurements and results are recorded and maintained at the laboratory performing the tests and measurement uncertainties are taken into account when comparing measurements to pass/fail criteria.

Page 5 of 108

A	b1	С	d	e = f(d,k)	g	i = cxg/e	k
Uncertainty Component	Section	Tol	Prob .	Div.	Ci	1g	Vi
Uncertainty Component	in P1528	(%)	Dist.		(1g)	ui (%)	(Veff)
Probe calibration	E.2.1	6.3	N	1	1	6.3	∞
Axial isotropy	E.2.2	0.5	R	$\sqrt{3}$	$(1-C_p)^{1/2}$	0.20	8
hemispherical isotropy	E.2.2	2.6	R	$\sqrt{3}$	$\sqrt{c_p}$	1.06	∞
Boundary effect	E.2.3	0.8	R	$\sqrt{3}$	1	0.46	∞
Linearity	E.2.4	0.6	R	$\sqrt{3}$	1	0.35	∞
System detection limit	E.2.5	0.25	R	$\sqrt{3}$	1	0.15	∞
Readout electronics	E.2.6	0.3	N	1	1	0.3	∞
Response time	E.2.7	0	R	$\sqrt{3}$	1	0	∞
Integration time	E.2.8	2.6	R	$\sqrt{3}$	1	1.5	∞
RF ambient Condition –Noise	E.6.1	3	R	$\sqrt{3}$	1	1.73	∞
RF ambient Condition - reflections	E.6.1	3	R	$\sqrt{3}$	1	1.73	∞
Probe positioning- mechanical tolerance	E.6.2	1.5	R	$\sqrt{3}$	1	0.87	∞
Probe positioning- with respect to phantom	E.6.3	2.9	R	$\sqrt{3}$	1	1.67	∞
Max. SAR evaluation	E.5.2	1	R	$\sqrt{3}$	1	0.58	∞
Test sample positioning	E.4.2	4	N	1	1	3.7	9
Device holder uncertainty	E.4.1	3.6	N	1	1	3.6	∞
Output power variation –SAR drift measurement	6.62	5	R	$\sqrt{3}$	1	2.89	∞
Phantom uncertainty (shape and thickness tolerances)	E.3.1	4	R	$\sqrt{3}$	1	2.31	∞
Liquid conductivity - deviation from target values	E.3.2	5	R	$\sqrt{3}$	0.64	1.85	∞
Liquid conductivity - measurement uncertainty	E.3.2	4	N	1	0.64	2.56	5
Liquid permittivity - deviation from target values	E.3.3	5	R	$\sqrt{3}$	0.6	1.73	8
Liquid permittivity - measurement uncertainty	E.3.3	4	N	1	0.6	2.40	5
Combined standard uncertainty				RSS		10.71	430
Expanded uncertainty (95% CONFIDENCE INTERVAL)				K=2		21.43	

Report No.: SHEM100500070310 Issue Date: 06-03, 2011

Page 6 of 108

7. Testing Environment

Normal Temperature	+20 to +24 °C
Relative Humidity	35 to 60 %

8. Primary Test Laboratory

Name:	EMC Laboratory	
	SGS-CSTC Standards Technical Services(Shanghai) Co., Ltd	
Address:	9F, 3 rd Building, No.889, Yishan Rd, Xuhui District, Shanghai,	
	China 200233	
Telephone:	+86 (0) 21 6107 2777	
Fax:	+86 (0) 21 5450 0149	
Internet:	http://www.cn.sgs.com	
Contact:	Mr. David Lee	
Email:	david-jc.lee@sgs.com	

9. Details of Applicant

Name:	Bullitt Group
Address:	No4, The Aquarium, King Street, Reading , RG1 2AN UK
Telephone:	44 (0) 7818 413 871
Fax	44 (0) 7818 413 871
Contact Person:	Richard Wharton
Email:	rwharton@bullitt-group.com

10. Details of Manufacturer

Name:	Bullitt Group	
Address:	No4, The Aquarium, King Street, Reading , RG1 2AN UK	
Telephone:	44 (0) 7818 413 871	
Fax	44 (0) 7818 413 871	
Contact Person:	Richard Wharton	
Email:	rwharton@bullitt-group.com	

11. Other testing Locations

Name:	Not Required
Address:	
Telephone:	
Contact:	
Fax	
Email:	

Report No.: SHEM100500070310 Issue Date: 06-03, 2011

Page 7 of 108

12. Referenced Documents

The Equipment under Test (EUT) has been tested at SGS's (own or subcontracted) laboratories according to FCC 47CFR § 2.1093, IEEE Std C95.1-2005, IEEE1528-2003, OET Bulletin 65 Supplement C,

The following table summarizes the specific reference documents such as harmonized standards or test specifications which were used for testing as SGS's (own or subcontracted) laboratories.

Identity	Document Title	
FCC 47CFR § 2.1093	Radiofrequency radiation exposure evaluation: portable devices	2001
IEEE Std C95.1-2005	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.	2005
IEEE1528-2003	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques	2003
OET Bulletin 65 Supplement C	Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions	2001

Human Exposure	Uncontrolled Environment General Population	
Spatial Peak SAR	1.60 W/kg (averaged over a mass of 1g)	

Table 12-1 RF Exposure Limits

Notes:

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

13. Primary Laboratory Accreditation Details

Issue Date: 06-03, 2011

Page 9 of 108

14. SGS Shanghai EMC lab, Personnel

SGS EMC Shanghai Project Management Team and list of approved Testers for SGS EMC Shanghai.

Surname	Forename	Initials
CAI	CAI	CAICAI
Xu	Jim	JimXu
Pan	Tino	Tino
Hailiang	Cai	HAILIANG
Nie	Neo	Neo
Xu	Jesse	Jesse
Wang	Willam	Willam
Lee	David	David
Liu	Magi	Magi

Version 2011-01-01

Page 10 of 108

15. Test Equipment Information

SPEAG DASY4 15.1

Test Platform	SPEAG DASY4 Pr	ofessional		
Location	SGS SH Lab #8			
Manufacture	SPEAG			
	•	Frequency range 300N	•	
Description		00, 2000, 2450 freque	ncy band	
	HAC Extension			
Software Reference	DASY4: V4.7 Build			
	SEMCAD: V1.8 Bu	iild 186		
Hardware Reference	1			Due data at
Equipment	Model	Serial Number	Calibration Date	Due date of calibration
			,	
Robot	RX90L	F03/5V32A1/A01	n/a	n/a
Phantom	SAM 12	TP-1283	n/a	n/a
DAE	DAE3	569	2010-11-22	2011-11-21
E-Field Probe	ES3DV3	3088	2010-11-23	2011-11-22
Validation Kits	D835V2	4d070	2010-11-19	2011-11-18
Validation Kits	D1900V2	5d028	2010-11-25	2011-11-24
Validation Kits	D2450V2	733	2010-11-25	2011-11-24
Agilent Network Analyzer	E5071B	MY42100549	2010-11-24	2011-11-23
RF Bi-Directional Coupler	ZABDC20-252H	n/a	2011-05-21	2012-05-20
Agilent Signal Generator	E4438C	14438CATO-19719	2010-11-01	2011-10-31
Mini-Circuits Preamplifier	ZHL-42	D041905	2010-11-01	2011-10-31
Agilent Power Meter	E4416A	GB41292095	2010-11-01	2011-10-31
Agilent Power Sensor	8481H	MY41091234	2010-11-01	2011-10-31
R&S Power Sensor	NRP-Z92	100025	2011-04-12	2012-04-11
R&S Universal Radio Communication Tester	CMU200	103633	2010-11-01	2011-10-31

15.2 The SAR Measurement System

A photograph of the SAR measurement System is given in Fig. 15-1.

This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (Speag Dasy 4 professional system). A Model ES3DV3 3088 E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant.

The DASY4 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software. An arm extension is for accommodation the data acquisition electronics (DAE).

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

Data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

Fig. 15-1 SAR System Configuration

- Ϋ The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- Ϋ A computer operating Windows 2000.

Report No.: SHEM100500070310 Issue Date: 06-03, 2011

Page 12 of 108

- Ϋ DASY4 software.
- Ÿ Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- Ÿ The SAM twin phantom enabling testing left-hand, right-hand and BodyWorn usage.
- Ϋ The device holder for handheld mobile phones.
- Ÿ Tissue simulating liquid mixed according to the given recipes.
- Ϋ Validation dipole kits allowing to validating the proper functioning of the system

15.3 Isotropic E-field Probe ES3DV3

Fig. 15-2 E-field Probe

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration Basic Broad Band Calibration in air

Conversion Factors (CF) for HSL 900 and HSL 1810

Additional CF for other liquids and frequencies upon request

Frequency 10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)

Directivity ± 0.2 dB in HSL (rotation around probe axis)

± 0.3 dB in tissue material (rotation normal to probe axis)

Dynamic Range $5 \mu W/g \text{ to} > 100 \text{ mW/g}$; Linearity: $\pm 0.2 \text{ dB}$

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz

> Dosimetry in strong gradient fields Compliance tests of mobile phones

15.4 **SAM Twin Phantom**

Fig. 15-3 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left hand
- · Right hand
- Flat phantom

Description

A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Phantom specification:

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-2003, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Shell Thickness 2+0.2mm, Center ear point: 6+0.2mm

Filling Volume Approx.25 liters

Dimensions Length: 1000mm, Width: 500mm, Height: 850mm

Page 15 of 108

15.5 **Device Holder for Transmitters**

Fig. 15-4 Device Holder for Transmitters

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5mm distance, a positioning uncertainty of ±0.5mm would produce a SAR uncertainty of ±20%. An accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions, in which the devices must be measured, are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity "=3 and loss tangent _=0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

16. Detailed Test Results

16.1 Summary of Results

16.1.1 Measurement of RF conducted Power

Unit:dBm

IV	lode				(GPRS			
Slot	(Uplink)	1		2	2	3			4
	1	Max burst	averag ed	Max burst	average d	Max burst	average d	Max burst	averaged
Band	Channel				(SMSK			
	128	33.15	23.96	32.93	26.75	32.87	28.45	32.82	29.65
850	190	33.04	23.85	32.88	26.7	32.83	28.41	32.77	29.6
	251	32.85	23.66	32.87	26.69	32.79	28.37	32.75	29.58
	512	29.78	20.59	29.76	23.58	29.76	25.34	29.73	26.56
1900	661	29.68	20.49	29.66	23.48	29.66	25.24	29.65	26.48
	810	29.16	19.97	29.21	23.03	29.21	24.79	29.17	26

N	lode	G	SM
Slot	(Uplink)	GN	ISK
	1	Max burst	averaged
Band	Channel	GN	ISK
	128	32.95	23.76
850	190	32.92	23.73
	251	32.88	23.69
	512	29.69	20.5
1900	661	29.66	20.47
	810	29.19	20

Issue Date: 06-03, 2011

Page 17 of 108

16.1.2 Measurement of SAR average value

GSM 850

				Average	d SAR over 1	g (W/kg)	SAR	
Band	EUT Position	Mode	Test Configuration	CH128	CH190	CH251	limit 1g (W/kg))	Verdict
				824.2MHz	836.6MHz	848.8MHz	(vv/kg))	
	1.6		Cheek	0.233	0.312	0.352	1.6	Passed
	Left		Tilt		0.202		1.6	Passed
		GSM	Cheek		0.286		1.6	Passed
	Right		Tilt		0.179		1.6	Passed
	Left		Cheek (SIM 2)	-		0.348	1.6	Passed
			Front of EUT facing phantom		0.302		1.6	Passed
GSM850			Rear of EUT facing phantom	0.392	0.392	0.380	1.6	Passed
		GSM	Rear of EUT facing phantom(SIM 2)	0.385			1.6	Passed
	Body		Worst case With earphone	0.377			1.6	Passed
	Worn	Worst	case With GPRS 1TS	0.390			1.6	Passed
		Worst	case With GPRS 2TS	0.765			1.6	Passed
		Worst	case With GPRS 3TS	1.11			1.6	Passed
		Worst	case With GPRS 4TS	1.4		-	1.6	Passed

Issue Date: 06-03, 2011

Page 18 of 108

GSM 1900

				Average	d SAR over 1	g (W/kg)	SAR	
Band	EUT Position	Mode	Test Configuration	CH512	CH661	CH810	limit 1g	Verdict
				1850.2MHz	1880MHz	1909.8MHz	(W/kg))	
	Left		Cheek	0.198	0.180	0.148	1.6	Passed
	Leit	GSM	Tilt	1	0.076	1	1.6	Passed
		COM	Cheek	1	0.153	-	1.6	Passed
	Right		Tilt	-	0.083		1.6	Passed
	Left		Cheek(SIM 2)	0.200		ı	1.6	Passed
			Front of EUT facing phantom		0.105		1.6	Passed
GSM1900		GSM	Rear of EUT facing phantom	0.201	0.208	0.242	1.6	Passed
		GSW	Rear of EUT facing phantom(SIM 2)	-		0.233	1.6	Passed
	Body		Worst case With earphone	-		0.232	1.6	Passed
	Worn	Worst	case With GPRS 1TS			0.236	1.6	Passed
		Worst	case With GPRS 2TS			0.466	1.6	Passed
		Worst	case With GPRS 3TS			0.693	1.6	Passed
		Worst	case With GPRS 4TS			0.917	1.6	Passed

16.2 **Maximum Results**

The maximum measured SAR values for Head configuration and BodyWorn configuration are given in section 16.2.1and 16.2.2.

16.2.1 Head Configuration

Frequency Band	EUT Position	Conducted Power (dBm)	SAR, Averaged over 1g (W/kg)	Power Drift (dB)	SAR limit (W/kg)	Verdict
GSM 850	Left Cheek High	23.69	0.352	0.001	1.6	Passed
GSM 1900	Left Cheek Low SIM 2	20.5	0.200	-0.041	1.6	Passed

Issue Date: 06-03, 2011

Page 19 of 108

16.2.2 BodyWorn Configuration

Frequency Band	EUT Position	Conduc ted Power (dBm)	SAR, Averaged over 1g (W/kg)	Power Drift (dB)	SAR limit (W/kg)	Verdict
GSM 850	Back of EUT facing phantom/GPRS4TS/Low	29.65	1.4	0.092	1.6	Passed
GSM 1900	Back of EUT facing phantom/GPRS4TS/High	26	0.917	-0.059	1.6	Passed

16.2.3 Maximum Drift

Maximum Drift during measurement	0.311
----------------------------------	-------

16.2.4 Measurement Uncertainty

Extended Uncertainty (k=2) 95% 21.43%

16.3 **Operation Configurations**

16.3.1

The EUT is controlled by using a radio communication tester (CMU200) with air link, and the EUT is set to maximum output power by CMU200 during GSM Mode tests.

- 1. Testing Head SAR at GSM mode for all bands with Left Cheek/Tilt and Right Cheek/Tilt conditions.
- 2. Testing Body SAR at GSM mode for all bands by separating 1.5 cm from the EUT (both front and rear) to flat phantom.
- 3. Head and Body SAR with accessories should be done at worstcase to identify maximum SAR value.
- 4. According to IEEE 1528/KDB 941225 D03, test reduction has been adopted according to conducted output power and produced SAR level:

Low and High channel SAR are optional if SAR value produced in the middle channel is 3dB lower than the applicable SAR limit;

In GPRS mode, the multislot configuration which produces highest SAR value is regard as the worst case to be measured, other multislot configurations are selectively confirmed;

- 5. The (max.cube) labeling indicates that during the grid scanning an additional peak was found which within 2dB of the highest peak
- Head SAR for GSM should be tested in GPRS modes, if EUT support DTM.

Report No.: SHEM100500070310 Issue Date: 06-03, 2011

Page 20 of 108

16.4 Measurement procedure

Step 1: Power reference measurement

The SAR measurement was taken at a selected spatial reference point to monitor power variations during testing. This fixed location point was measured and used as a reference value.

Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm*15mm or 10mm*10mm.Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Zoom scan

Around this point, a volume of 30mm*30mm*30mm (fine resolution volume scan, zoom scan) was assessed by measuring 7*7*7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the center of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification) the extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The volume was integrated with the trapezoidal algorithm. One thousand points (10*10*10) were interpolated to calculate the average. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Power reference measurement (drift)

The SAR value at the same location as in step 1 was again measured. (If the value changed by more than 5%, the evaluation should be done repeatedly)

16.5 **Detailed Test Results**

16.5.1 GSM 850 Left Cheek Middle

Date/Time: 2011-6-2 19:13:44

Test Laboratory: SGS-GSM

TP851 GSM 850 Left Cheek Middle

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: GSM850-GSM Mode; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: HSL900_Head Medium parameters used: f = 836.6 MHz; σ = 0.912 mho/m; ϵ_r = 43.2; ρ = 1000

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(6.07, 6.07, 6.07); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.332 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.32 V/m; Power Drift = -0.213 dB

Peak SAR (extrapolated) = 0.402 W/kg

SAR(1 g) = 0.312 mW/g; SAR(10 g) = 0.228 mW/g

Maximum value of SAR (measured) = 0.332 mW/g

0 dB = 0.332 mW/g

16.5.2 **GSM 850 Left Tilt Middle**

Date/Time: 2011-6-2 19:41:37

Test Laboratory: SGS-GSM TP851 GSM 850 Left Tilt Middle

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: GSM850-GSM Mode; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: HSL900_Head Medium parameters used: f = 836.6 MHz; $\sigma = 0.912$ mho/m; $\epsilon_r = 43.2$; $\rho = 1000$

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(6.07, 6.07, 6.07); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.217 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 10.4 V/m; Power Drift = -0.048 dB

Peak SAR (extrapolated) = 0.261 W/kg

SAR(1 g) = 0.202 mW/g; SAR(10 g) = 0.149 mW/gMaximum value of SAR (measured) = 0.215 mW/g

16.5.3 GSM 850 Right Cheek Middle

Date/Time: 2011-6-2 20:09:44

Test Laboratory: SGS-GSM

TP851 GSM 850 Right Cheek Middle

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: GSM850-GSM Mode; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: HSL900_Head Medium parameters used: f = 836.6 MHz; σ = 0.912 mho/m; ϵ_r = 43.2; ρ = 1000

kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(6.07, 6.07, 6.07); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.301 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.71 V/m; Power Drift = -0.084 dB

Peak SAR (extrapolated) = 0.379 W/kg

SAR(1 g) = 0.286 mW/g; SAR(10 g) = 0.208 mW/gMaximum value of SAR (measured) = 0.305 mW/g

0 dB = 0.305 mW/g

16.5.4 GSM 850 Right Tilt Middle

Date/Time: 2011-6-2 20:37:30

Test Laboratory: SGS-GSM TP851 GSM 850 Right Tilt Middle

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: GSM850-GSM Mode; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: HSL900_Head Medium parameters used: f = 836.6 MHz; σ = 0.912 mho/m; ϵ_r = 43.2; ρ = 1000

kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(6.07, 6.07, 6.07); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.191 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 10.3 V/m; Power Drift = 0.023 dB

Peak SAR (extrapolated) = 0.231 W/kg

SAR(1 g) = 0.179 mW/g; SAR(10 g) = 0.132 mW/gMaximum value of SAR (measured) = 0.191 mW/g

0 dB = 0.191 mW/g

16.5.5 GSM 850 Left Cheek High

Date/Time: 2011-6-2 21:03:52

Test Laboratory: SGS-GSM TP851 GSM 850 Left Cheek High

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: GSM850-GSM Mode; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: HSL900_Head Medium parameters used: f = 848.8 MHz; $\sigma = 0.924 \text{ mho/m}$; $\epsilon_r = 43$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(6.07, 6.07, 6.07); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.376 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.73 V/m; Power Drift = 0.001 dB

Peak SAR (extrapolated) = 0.461 W/kg

SAR(1 g) = 0.352 mW/g; SAR(10 g) = 0.257 mW/gMaximum value of SAR (measured) = 0.377 mW/g

0 dB = 0.377 mW/g

16.5.6 **GSM 850 Left Cheek Low**

Date/Time: 2011-6-2 21:30:01

Test Laboratory: SGS-GSM TP851 GSM 850 Left Cheek Low

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: GSM850-GSM Mode; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL900_Head Medium parameters used: f = 824.2 MHz; $\sigma = 0.9 \text{ mho/m}$; $\epsilon_r = 43.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(6.07, 6.07, 6.07); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.249 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.13 V/m; Power Drift = 0.060 dB

Peak SAR (extrapolated) = 0.304 W/kg

SAR(1 g) = 0.233 mW/g; SAR(10 g) = 0.170 mW/gMaximum value of SAR (measured) = 0.246 mW/g

0 dB = 0.246 mW/g

16.5.7 GSM 850 Left Cheek High SIM 2

Date/Time: 2011-6-2 22:00:08

Test Laboratory: SGS-GSM

TP851 GSM 850 Left Cheek High SIM 2

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: GSM850-GSM Mode; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: HSL900_Head Medium parameters used: f = 848.8 MHz; $\sigma = 0.924 \text{ mho/m}$; $\epsilon_r = 43$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(6.07, 6.07, 6.07); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek High SIM2/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.370 mW/g

Cheek High SIM2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.56 V/m; Power Drift = 0.119 dB

Peak SAR (extrapolated) = 0.461 W/kg

SAR(1 g) = 0.348 mW/g; SAR(10 g) = 0.254 mW/gMaximum value of SAR (measured) = 0.373 mW/g

0 dB = 0.373 mW/g

16.5.8 GSM 850 BodyWron Front Middle

Date/Time: 2011-6-1 18:18:50

Test Laboratory: SGS-GSM

TP851 GSM 850 Bodyworn 15mm Front Middle DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: GSM850-GSM Mode; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: HSL835 Body Medium parameters used: f = 836.6 MHz; σ = 0.953 mho/m; ϵ_r = 55.1; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.98, 5.98, 5.98); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Front Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.315 mW/g

Front Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.59 V/m; Power Drift = 0.104 dB

Peak SAR (extrapolated) = 0.384 W/kg

SAR(1 g) = 0.302 mW/g; SAR(10 g) = 0.225 mW/gMaximum value of SAR (measured) = 0.319 mW/g

0 dB = 0.319 mW/g

16.5.9 GSM 850 BodyWron Back Middle

Date/Time: 2011-6-1 18:41:43

Test Laboratory: SGS-GSM

TP851 GSM 850 Bodyworn 15mm Back Middle DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: GSM850-GSM Mode; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: HSL835 Body Medium parameters used: f = 836.6 MHz; σ = 0.953 mho/m; ϵ_r = 55.1; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.98, 5.98, 5.98); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Rear Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.415 mW/g

Rear Middle/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 11.7 V/m; Power Drift = 0.140 dB

Peak SAR (extrapolated) = 0.512 W/kg

SAR(1 g) = 0.392 mW/g; SAR(10 g) = 0.288 mW/gMaximum value of SAR (measured) = 0.413 mW/g

0 dB = 0.413 mW/g

16.5.10 GSM 850 BodyWron Back High

Date/Time: 2011-6-1 19:03:54

Test Laboratory: SGS-GSM

TP851 GSM 850 Bodyworn 15mm Back High

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: GSM850-GSM Mode; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: HSL835 Body Medium parameters used: f = 848.8 MHz; σ = 0.966 mho/m; ϵ_r = 55; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.98, 5.98, 5.98); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Rear High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.400 mW/g

Rear High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.8 V/m; Power Drift = -0.032 dB

Peak SAR (extrapolated) = 0.500 W/kg

SAR(1 g) = 0.380 mW/g; SAR(10 g) = 0.278 mW/gMaximum value of SAR (measured) = 0.402 mW/g

0 dB = 0.402 mW/g

16.5.11 GSM 850 BodyWron Back Low

Date/Time: 2011-6-1 19:26:14

Test Laboratory: SGS-GSM

TP851 GSM 850 Bodyworn 15mm Back Low

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: GSM850-GSM Mode; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL835 Body Medium parameters used: f = 824.2 MHz; σ = 0.941 mho/m; ϵ_r = 55.3; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.98, 5.98, 5.98); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Rear Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.414 mW/g

Rear Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.7 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 0.509 W/kg

SAR(1 g) = 0.392 mW/g; SAR(10 g) = 0.288 mW/gMaximum value of SAR (measured) = 0.413 mW/g

0 dB = 0.413 mW/g

16.5.12 GSM 850 BodyWron Back Low SIM 2

Date/Time: 2011-6-1 19:49:12

Test Laboratory: SGS-GSM

TP851 GSM 850 Bodyworn 15mm Back Low SIM 2 DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: GSM850-GSM Mode; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL835 Body Medium parameters used: f = 824.2 MHz; σ = 0.941 mho/m; ϵ_r = 55.3; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.98, 5.98, 5.98); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Rear Low SIM 2/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.409 mW/g

Rear Low SIM 2/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 11.6 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 0.503 W/kg

SAR(1 g) = 0.385 mW/g; SAR(10 g) = 0.283 mW/gMaximum value of SAR (measured) = 0.407 mW/g

0 dB = 0.407 mW/g

Date/Time: 2011-6-1 20:14:23

Test Laboratory: SGS-GSM

TP851 GSM 850 Bodyworn 15mm Back Low with Earphone

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: GSM850-GSM Mode; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL835 Body Medium parameters used: f = 824.2 MHz; σ = 0.941 mho/m; ϵ_r = 55.3; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.98, 5.98, 5.98); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Rear Low EARPHONE/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.400 mW/g

Rear Low EARPHONE/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.5 V/m; Power Drift = 0.020 dB

Peak SAR (extrapolated) = 0.492 W/kg

SAR(1 g) = 0.377 mW/g; SAR(10 g) = 0.277 mW/gMaximum value of SAR (measured) = 0.400 mW/g

0 dB = 0.400 mW/g

16.5.14 GSM 850+GPRS 1TS Back Low

Date/Time: 2011-6-1 21:05:36

Test Laboratory: SGS-GSM

TP851 GPRS 850 1TS Bodyworn 15mm Back Low DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: GSM850-GPRS Mode(1up); Frequency: 824.2 MHz;Duty Cycle: 1:8.3

Medium: HSL835 Body Medium parameters used: f = 824.2 MHz; σ = 0.941 mho/m; ϵ_r = 55.3; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.98, 5.98, 5.98); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Rear Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.409 mW/g

Rear Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.4 V/m; Power Drift = -0.025 dB

Peak SAR (extrapolated) = 0.512 W/kg

SAR(1 g) = 0.390 mW/g; SAR(10 g) = 0.286 mW/gMaximum value of SAR (measured) = 0.414 mW/g

0 dB = 0.414 mW/g

16.5.15 GSM 850+GPRS 2TS Back Low

Date/Time: 2011-6-1 21:27:56

Test Laboratory: SGS-GSM

TP851 GPRS 850 2TS Bodyworn 15mm Back Low DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: GSM850-GPRS Mode(2up); Frequency: 824.2 MHz;Duty Cycle: 1:4.15

Medium: HSL835 Body Medium parameters used: f = 824.2 MHz; σ = 0.941 mho/m; ϵ_r = 55.3; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.98, 5.98, 5.98); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Rear Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.812 mW/g

Rear Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.2 V/m; Power Drift = -0.126 dB

Peak SAR (extrapolated) = 1.00 W/kg

SAR(1 g) = 0.765 mW/g; SAR(10 g) = 0.561 mW/gMaximum value of SAR (measured) = 0.809 mW/g

0 dB = 0.809 mW/g

GSM 850+GPRS 3TS Back Low

Date/Time: 2011-6-1 21:52:10

Test Laboratory: SGS-GSM

TP851 GPRS 850 3TS Bodyworn 15mm Back Low DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: GSM850-GPRS Mode(3up); Frequency: 824.2 MHz; Duty Cycle: 1:2.77

Medium: HSL835 Body Medium parameters used: f = 824.2 MHz; $\sigma = 0.941$ mho/m; $\epsilon_r = 55.3$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.98, 5.98, 5.98); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Rear Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.18 mW/g

Rear Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.5 V/m; Power Drift = -0.110 dB

Peak SAR (extrapolated) = 1.46 W/kg

SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.817 mW/gMaximum value of SAR (measured) = 1.17 mW/g

0 dB = 1.17 mW/g

16.5.17 GSM 850+GPRS 4TS Back Low

Date/Time: 2011-6-2 14:49:49

Test Laboratory: SGS-GSM

TP851 GPRS 850 4TS Bodyworn 15mm Back Low DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: GSM850-GPRS Mode(4UP); Frequency: 824.2 MHz;Duty Cycle: 1:2.075 Medium: HSL835 Body Medium parameters used: f = 824.2 MHz; σ = 0.941 mho/m; ϵ_r = 55.3; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.98, 5.98, 5.98); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Rear Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.51 mW/g

Rear Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.3 V/m; Power Drift = -0.092 dB

Peak SAR (extrapolated) = 1.85 W/kg

SAR(1 g) = 1.4 mW/g; SAR(10 g) = 1.03 mW/g

Maximum value of SAR (measured) = 1.49 mW/g

Page 38 of 108

16.5.18 GSM 1900 Left Cheek Middle

Date/Time: 2011-6-7 10:30:13

Test Laboratory: SGS-GSM

TP851 GSM 1900 Left Cheek Middle

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1880 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon_r = 39.7$; $\rho = 1000$

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.14, 5.14, 5.14); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.202 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.55 V/m; Power Drift = -0.110 dB

Peak SAR (extrapolated) = 0.282 W/kg

SAR(1 g) = 0.180 mW/g; SAR(10 g) = 0.110 mW/gMaximum value of SAR (measured) = 0.196 mW/g

0 dB = 0.196 mW/g

16.5.19 GSM 1900 Left Tilt Middle

Date/Time: 2011-6-7 12:34:05

Test Laboratory: SGS-GSM TP851 GSM 1900 Left Tilt Middle

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1880 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon_r = 39.7$; $\rho = 1000$

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.14, 5.14, 5.14); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.090 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 5.56 V/m; Power Drift = -0.035 dB

Peak SAR (extrapolated) = 0.115 W/kg

SAR(1 g) = 0.076 mW/g; SAR(10 g) = 0.048 mW/gMaximum value of SAR (measured) = 0.082 mW/g

0 dB = 0.082 mW/g

16.5.20 GSM 1900 Right Cheek Middle

Date/Time: 2011-6-7 9:14:26

Test Laboratory: SGS-GSM

TP851 GSM 1900 Right Cheek Middle

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1880 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon_r = 39.7$; $\rho = 1000$

kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.14, 5.14, 5.14); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.182 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.91 V/m; Power Drift = 0.121 dB

Peak SAR (extrapolated) = 0.228 W/kg

SAR(1 g) = 0.153 mW/g; SAR(10 g) = 0.093 mW/gMaximum value of SAR (measured) = 0.167 mW/g

0 dB = 0.167 mW/g

16.5.21 GSM 1900 Right Tilt Middle

Date/Time: 2011-6-7 9:48:57

Test Laboratory: SGS-GSM

TP851 GSM 1900 Right Tilt Middle

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1880 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon_r = 39.7$; $\rho = 1000$

kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.14, 5.14, 5.14); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.102 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 6.70 V/m; Power Drift = 0.026 dB

Peak SAR (extrapolated) = 0.131 W/kg

SAR(1 g) = 0.083 mW/g; SAR(10 g) = 0.051 mW/gMaximum value of SAR (measured) = 0.090 mW/g

0 dB = 0.090 mW/g

16.5.22 GSM 1900 Left Cheek High

Date/Time: 2011-6-7 11:08:52

Test Laboratory: SGS-GSM

TP851 GSM 1900 Left Cheek High

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: PCS1900-GSM Mode; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1909.8 MHz; σ = 1.41 mho/m; ϵ_r = 39.6; ρ = 1000

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.14, 5.14, 5.14); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.166 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.39 V/m; Power Drift = 0.210 dB

Peak SAR (extrapolated) = 0.237 W/kg

SAR(1 g) = 0.148 mW/g; SAR(10 g) = 0.089 mW/gMaximum value of SAR (measured) = 0.161 mW/g

0 dB = 0.161 mW/g

16.5.23 GSM 1900 Left Cheek Low

Date/Time: 2011-6-7 11:59:57

Test Laboratory: SGS-GSM

TP851 GSM 1900 Left Cheek Low

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: PCS1900-GSM Mode; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1850.2 MHz; σ = 1.36 mho/m; ϵ_r = 39.9; ρ = 1000

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.14, 5.14, 5.14); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.222 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.70 V/m; Power Drift = 0.005 dB

Peak SAR (extrapolated) = 0.307 W/kg

SAR(1 g) = 0.198 mW/g; SAR(10 g) = 0.122 mW/gMaximum value of SAR (measured) = 0.215 mW/g

0 dB = 0.215 mW/g

16.5.24 GSM 1900 Left Cheek Low SIM 2

Date/Time: 2011-6-7 13:07:24

Test Laboratory: SGS-GSM

TP851 GSM 1900 Left Cheek Low SIM 2

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: PCS1900-GSM Mode; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1850.2 MHz; σ = 1.36 mho/m; ϵ_r = 39.9; ρ = 1000

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.14, 5.14, 5.14); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Low SIM2/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.224 mW/g

Cheek Low SIM2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.77 V/m; Power Drift = -0.041 dB

Peak SAR (extrapolated) = 0.311 W/kg

SAR(1 g) = 0.200 mW/g; SAR(10 g) = 0.122 mW/g

Maximum value of SAR (measured) = 0.218 mW/g

0 dB = 0.218 mW/g

GSM 1900 BodyWron Front Middle

Date/Time: 2011-6-4 11:28:17

Test Laboratory: SGS-GSM

TP851 GSM 1900 Bodyworn 15mm Front Middle DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900-Body Medium parameters used: f = 1880 MHz; σ = 1.52 mho/m; ϵ_r = 53.6; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.6, 4.6, 4.6); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Front Middle/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm** Maximum value of SAR (interpolated) = 0.116 mW/g

Front Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.52 V/m; Power Drift = 0.084 dB

Peak SAR (extrapolated) = 0.160 W/kg

SAR(1 g) = 0.105 mW/g; SAR(10 g) = 0.064 mW/gMaximum value of SAR (measured) = 0.114 mW/g

0 dB = 0.114 mW/g

16.5.26 GSM 1900 BodyWron Back Middle

Date/Time: 2011-6-4 11:58:42

Test Laboratory: SGS-GSM

TP851 GSM 1900 Bodyworn 15mm Back Middle DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900-Body Medium parameters used: f = 1880 MHz; σ = 1.52 mho/m; ϵ_r = 53.6; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.6, 4.6, 4.6); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Rear Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.270 mW/g

Rear Middle/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 5.71 V/m; Power Drift = 0.288 dB

Peak SAR (extrapolated) = 0.326 W/kg

SAR(1 g) = 0.208 mW/g; SAR(10 g) = 0.132 mW/gMaximum value of SAR (measured) = 0.236 mW/g

0 dB = 0.236 mW/g

16.5.27 GSM 1900 BodyWron Back High

Date/Time: 2011-6-4 12:19:30

Test Laboratory: SGS-GSM

TP851 GSM 1900 Bodyworn 15mm Back High DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: PCS1900-GSM Mode; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3

Medium: HSL1900-Body Medium parameters used: f = 1909.8 MHz; $\sigma = 1.55 \text{ mho/m}$; $\epsilon_r = 53.5$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.6, 4.6, 4.6); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Rear High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.270 mW/g

Rear High/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 5.64 V/m; Power Drift = 0.311 dB

Peak SAR (extrapolated) = 0.383 W/kg

SAR(1 g) = 0.242 mW/g; SAR(10 g) = 0.143 mW/gMaximum value of SAR (measured) = 0.262 mW/g

0 dB = 0.262 mW/g

16.5.28 GSM 1900 BodyWron Back Low

Date/Time: 2011-6-4 12:42:25

Test Laboratory: SGS-GSM

TP851 GSM 1900 Bodyworn 15mm Back Low

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: PCS1900-GSM Mode; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3

Medium: HSL1900-Body Medium parameters used: f = 1850.2 MHz; $\sigma = 1.49 \text{ mho/m}$; $\epsilon_r = 53.8$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.6, 4.6, 4.6); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Rear Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.223 mW/g

Rear Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.15 V/m; Power Drift = 0.014 dB

Peak SAR (extrapolated) = 0.310 W/kg

SAR(1 g) = 0.201 mW/g; SAR(10 g) = 0.121 mW/gMaximum value of SAR (measured) = 0.220 mW/g

0 dB = 0.220 mW/g

16.5.29 GSM 1900 BodyWron Back High SIM 2

Date/Time: 2011-6-4 13:04:52

Test Laboratory: SGS-GSM

TP851 GSM 1900 Bodyworn 15mm Back High SIM 2 DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: PCS1900-GSM Mode; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3

Medium: HSL1900-Body Medium parameters used: f = 1909.8 MHz; $\sigma = 1.55 \text{ mho/m}$; $\epsilon_r = 53.5$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.6, 4.6, 4.6); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Rear High SIM 2/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.259 mW/g

Rear High SIM 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.35 V/m; Power Drift = -0.039 dB

Peak SAR (extrapolated) = 0.364 W/kg

SAR(1 g) = 0.233 mW/g; SAR(10 g) = 0.138 mW/gMaximum value of SAR (measured) = 0.253 mW/g

0 dB = 0.253 mW/g

16.5.30 GSM 1900 BodyWron Back High with Earphone

Date/Time: 2011-6-4 13:28:31

Test Laboratory: SGS-GSM

TP851 GSM 1900 Bodyworn 15mm Back High with Earphone

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: PCS1900-GSM Mode; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3

Medium: HSL1900-Body Medium parameters used: f = 1909.8 MHz; σ = 1.55 mho/m; ϵ_r = 53.5; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.6, 4.6, 4.6); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Rear High earphone/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.249 mW/g

Rear High earphone/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.26 V/m; Power Drift = 0.111 dB

Peak SAR (extrapolated) = 0.368 W/kg

SAR(1 g) = 0.232 mW/g; SAR(10 g) = 0.137 mW/gMaximum value of SAR (measured) = 0.251 mW/g

0 dB = 0.251 mW/g

16.5.31 GSM 1900+GPRS 1TS Back High

Date/Time: 2011-6-4 13:51:02

Test Laboratory: SGS-GSM

TP851 GSM 1900+GPRS 1TS Bodyworn 15mm Back High

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: PCS1900-GPRS Mode; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3

Medium: HSL1900-Body Medium parameters used: f = 1909.8 MHz; σ = 1.55 mho/m; ϵ_r = 53.5; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.6, 4.6, 4.6); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Rear High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.259 mW/g

Rear High/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 6.10 V/m; Power Drift = 0.093 dB

Peak SAR (extrapolated) = 0.370 W/kg

SAR(1 g) = 0.236 mW/g; SAR(10 g) = 0.139 mW/gMaximum value of SAR (measured) = 0.257 mW/g

0 dB = 0.257 mW/g

16.5.32 GSM 1900+GPRS 2TS Back High

Date/Time: 2011-6-4 14:19:22

Test Laboratory: SGS-GSM

TP851 GSM 1900+GPRS 2TS Bodyworn 15mm Back High

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: PCS1900-GPRS Mode(2 ts); Frequency: 1909.8 MHz;Duty Cycle: 1:4.15

Medium: HSL1900-Body Medium parameters used: f = 1909.8 MHz; $\sigma = 1.55 \text{ mho/m}$; $\epsilon_r = 53.5$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.6, 4.6, 4.6); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Rear High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.517 mW/g

Rear High/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 8.61 V/m; Power Drift = 0.077 dB

Peak SAR (extrapolated) = 0.727 W/kg

SAR(1 g) = 0.466 mW/g; SAR(10 g) = 0.277 mW/gMaximum value of SAR (measured) = 0.503 mW/g

0 dB = 0.503 mW/g

GSM 1900+GPRS 3TS Back High

Date/Time: 2011-6-4 14:42:46

Test Laboratory: SGS-GSM

TP851 GSM 1900+GPRS 3TS Bodyworn 15mm Back High

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: PCS1900-GPRS Mode; Frequency: 1909.8 MHz;Duty Cycle: 1:2.77

Medium: HSL1900-Body Medium parameters used: f = 1909.8 MHz; σ = 1.55 mho/m; ϵ_r = 53.5; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.6, 4.6, 4.6); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Rear High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.772 mW/g

Rear High/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 10.5 V/m; Power Drift = 0.004 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.693 mW/g; SAR(10 g) = 0.411 mW/g

Maximum value of SAR (measured) = 0.759 mW/g

0 dB = 0.759 mW/g

16.5.34 GSM 1900+GPRS 4TS Back High

Date/Time: 2011-6-5 16:16:12

Test Laboratory: SGS-GSM

TP851 GSM 1900+GPRS 4TS Bodyworn 15mm Back High

DUT: TP851; Type: GSM; Serial: 352580048194489

Communication System: PCS1900-GPRS Mode(4 ts); Frequency: 1909.8 MHz;Duty Cycle: 1:2.075

Medium: HSL1900-Body Medium parameters used: f = 1909.8 MHz; $\sigma = 1.55 \text{ mho/m}$; $\epsilon_r = 53.5$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.6, 4.6, 4.6); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Rear High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.03 mW/g

Rear High/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 12.2 V/m; Power Drift = -0.059 dB

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 0.917 mW/g; SAR(10 g) = 0.544 mW/gMaximum value of SAR (measured) = 0.995 mW/g

Page 56 of 108

Issue Date: 06-03, 2011

17. Identification of Samples

Product Name	Mobile Phone	Mobile Phone			
Mode Name	TP851	TP851			
Brand Name	Bullitt	Bullitt			
Final Hardware Version	PW_LM851_V3.2	PW_LM851_V3.2			
Final Software Version	LM851_ZHONGXIN_	LM851_ZHONGXIN_ENGLISH_12_V3_2_NOR_V1_4_20110420			
Product Definition	Production Unit	Production Unit			
Antenna Type	Inner antenna	Inner antenna			
Device Type	Portable	Portable			
Limit Type	General Population/U	General Population/Uncontrolled			
GSM Frequency Bands		Tx: 824~849MHz			
	GSM850	Rx: 869~894MHz			
	PCS1900	Tx:1850~1910MHz			
	PC31900	Rx:1930~1990MHz			
Modulation Mode	GMSK				
0044/0000	GSM850	4			
GSM / GPRS Power Class	PCS1900	1			
GPRS Multislot class	12	12			
IMEI	352580048194489	352580048194489			
Date of receipt	05-19,2011	05-19,2011			
Date of Testing Start	05-28,2011	05-28,2011			
Date of Testing End	06-02,2011	06-02,2011			

Fig.18-1 Front View of EUT

Fig.18-2 Back View of EUT

Fig.18-3 Front View of Battery

Page 59 of 108

Fig.18-4 earphone

Photographs of Test Setup Annex A

Fig.A-1 Photograph of the SAR measurement System

Fig.A-2a Photograph of the Tissue Simulant Liquid depth 15cm for Head

Fig.A-2b Photograph of the Tissue Simulant Liquid depth 15cm for Head

Fig.A-2a Photograph of the Tissue Simulant Liquid depth 15cm for Body Worn

Photograph of the Tissue Simulant Fig.A-2b Liquid depth 15cm for Body Worn

Fig.A-3a Photograph of the Left Hand Side Cheek status

Page 61 of 108

Fig.A-3b Photograph of the Left Hand Side Tilted status

Fig.A-3c Photograph of the Right Hand Side Cheek status

Fig.A-3d Photograph of the Right Hand Side Tilted status

Fig.A-3e Photograph of the Body Worn status-front

Fig.A-3f Photograph of the Body Worn status-rear

Fig.A-3g Photograph of the Body Worn status-rear with earphone

Report No.: SHEM100500070310

Issue Date: 06-03, 2011

Page 63 of 108

Tissue Simulant Liquid

Annex B.1 Recipes for Tissue Simulant Liquid

The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands.

Frequency (MHz)	cy (MHz) 835		900		1800-2000		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body
Ingredient (% by weight)								
Water	40.30	50.75	40.30	50.75	55.24	70.17	62.7	73.26
Salt (NaCl)	1.38	0.94	1.38	0.94	0.31	0.39	0.5	0.04
Sucrose	57.90	48.21	57.90	48.21	0	0	0	0
HEC	0.24	0	0.24	0	0	0	0	0
Bactericide	0.18	0.10	0.10	0.10	0	0	0	0
DGBE	0	0	0	0	44.45	29.44	36.8	26.7
Measurement dielectric parameters								
Dielectric Constant	41.9	55.0	41.1	54.5	39.2	53.2	39.8	52.5
Conductivity (S/m)	0.93	0.97	1.04	1.06	1.45	1.59	1.88	1.78
Target values								
Dielectric Constant	41.5	55.2	41.5	55.0	40.0	53.3	39.2	52.7
Conductivity (S/m)	0.90	0.97	0.97	1.05	1.40	1.52	1.80	1.95

Salt: 99⁺% Pure Sodium Chloride Sucrose: 98⁺% Pure Sucrose Water: De-ionized, 16 MW⁺ resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99⁺% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Table B-1 Recipe of Tissue Simulat Liquid

Report No.: SHEM100500070310

Issue Date: 06-03, 2011

Page 64 of 108

Annex B.2 Measurement for Tissue Simulant Liquid

The dielectric properties for this Tissue Simulant Liquids were measured by using the Agilent Model 85070D Dielectric Probe (rates frequency band 200 MHz to 20 GHz) in conjunction with Agilent E5071B Network Analyzer (300 KHz-8500 MHz). The Conductivity (σ) and Permittivity (ρ) are listed in Table 1. For the SAR measurement given in this report. The temperature variation of the Tissue Simulant Liquids was 22±2°C.

Frequency (MHz)	Tissue Type	Limit/Measured	Permittivity (ρ)	Conductivity (σ)	Temp (°C)
835	Head	Recommended Limit	41.5±5%	0.90±5%	22±2
			(39.43~43.58)	(0.855~0.945)	
		Measured, 06-02,2011	43.2	0.91	21.4
835	Body	Recommended Limit	55.2±5%	0.97±5%	22±2
		Recommended Limit	(52.44~57.96)	(0.922~1.02)	
		Measured, 06-01,2011	55.1	0.95	21.5
1900	Head	Recommended Limit	40.0±5%	1.40±5%	22±2
		Recommended Limit	(38.0~42.0)	(1.33~1.47)	
		Measured, 06-07,2011	39.6	1.40	21.3
1900	Body	Recommended Limit	53.3±5%	1.52±5%	22±2
		Necommended Limit	(50.64~55.97)	(1.44~1.60)	
		Measured, 06-04,2011	53.6	1.54	21.6

Table B-2 Measurement result of Tissue electric parameters

SAR System Validation

The microwave circuit arrangement for system verification is sketched in Fig. C-1. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. These tests were done at 835&1900MHz. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the table C-1 (A power level of 250mw was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range 22°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

Fig. C-1 the microwave circuit arrangement used for SAR system verification

- A. Agilent E4438C Signal Generator
- B. Mini-Circuit ZHL-42 Preamplifier
- C. Mini-Circuit VLF-2500+ Low Pass Filter
- D. Mini-Circuits ZABDC20-252H-N+ Bi-DIR Coupling
- PM1. Power Sensor NRP-Z92
- PM2. Agilent Model E4416A Power Meter
- PM3. Power Sensor NRP-Z92

Page 66 of 108

Validation	Frequency	Tissue	Limit/Measurement				
Kit	(MHz)	Type	Condition	Recommended/Measured	1g		
			Nomalized to 1mW(for nominal Head TSL parameters)	Recommended Limit	9.48±10% (8.53~10.43)		
D835V2 83	835	Head	Nomalized to 1W(for nominal Head TSL parameters)	-	9.52		
			250mW input power	Measured, 06-02, 2011	2.38		
D835V2 835		Nomalized to 1mW(for nominal Head TSL parameters)	Recommended Limit	10.12±10% (9.11~11.13)			
	835	835 Body	Nomalized to 1W(for nominal Head TSL parameters)	-	9.64		
			250mW input power	Measured, 06-01, 2011	2.41		
D1900V2 1900		Nomalized to 1mW(for nominal Head TSL parameters)	Recommended Limit	40.4±10% (36.36-44.44)			
	1900	1900 Head	Nomalized to 1W(for nominal Head TSL parameters)	-	41.6		
			250mW input power	Measured, 06-07, 2011	10.4		
D1900V2	1900	Body	Nomalized to 1mW(for nominal Head TSL parameters)	Recommended Limit	40.4±10% (36.36-44.44)		
			Nomalized to 1W(for nominal Head TSL parameters)	-	40.8		
			250mW input power	Measured, 06-04, 2011	10.2		

Table C-1 SAR System Validation Result

System Validation for 835MHz-Head

Date/Time: 2011-6-2 18:19:11

Test Laboratory: SGS-GSM

System Performance Check at 835MHz Head

DUT: Dipole 835MHz; Type: D835V2; Serial: D835V2 - SN:4d070 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835_Head Medium parameters used: f = 835 MHz; $\sigma = 0.91 \text{ mho/m}$; $\epsilon_r = 43.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(6.07, 6.07, 6.07); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.74 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.5 V/m; Power Drift = -0.113 dB

Peak SAR (extrapolated) = 3.85 W/kg

SAR(1 g) = 2.38 mW/g; SAR(10 g) = 1.49 mW/gMaximum value of SAR (measured) = 2.78 mW/g

0 dB = 2.78 mW/g

System Validation for 835MHz-Body

Date/Time: 2011-6-1 17:11:53

Test Laboratory: SGS-GSM

System Performance Check at 835MHz

DUT: Dipole 835MHz; Type: D835V2; Serial: D835V2 - SN:4d070 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835_Body Medium parameters used: f = 835 MHz; $\sigma = 0.95 \text{ mho/m}$; $\epsilon_r = 55.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.98, 5.98, 5.98); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.87 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.1 V/m; Power Drift = -0.152 dB

Peak SAR (extrapolated) = 3.71 W/kg

SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.53 mW/gMaximum value of SAR (measured) = 2.77 mW/g

0 dB = 2.77 mW/g

System Validation for 1900MHz-Head

Date/Time: 2011-6-7 8:11:56

Test Laboratory: SGS-GSM

System Performance Check at 1900 MHz

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d028 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900_Head Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ mho/m}$; $\epsilon_r = 39.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.14, 5.14, 5.14); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.9 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 63.2 V/m; Power Drift = 0.021 dB

Peak SAR (extrapolated) = 19.7 W/kg

SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.19 mW/gMaximum value of SAR (measured) = 11.5 mW/g

0 dB = 11.5 mW/g

System Validation for 1900MHz-Body

Date/Time: 2011-6-4 10:31:35

Test Laboratory: SGS-GSM

System Performance Check at 1900 MHz

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d028 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900-Body Medium parameters used: f = 1900 MHz; $\sigma = 1.54 \text{ mho/m}$; $\epsilon_r = 53.6$; $\rho = 1000 \text{ mHz}$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.6, 4.6, 4.6); Calibrated: 2010-11-23

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2010-11-22

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.9 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.7 V/m; Power Drift = -0.101 dB

Peak SAR (extrapolated) = 18.6 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.22 mW/g

Maximum value of SAR (measured) = 11.8 mW/g

Description of Test Position

Annex D.1 **SAM Phantom Shape**

Figure D-1 front, back, and side views of SAM (model for the phantom shell). Full-head model is for illustration purposes only-procedures in this recommended practice are intended primarily for the phantom setup of Figure D-2. Note: The center strip including the nose region has a different thickness tolerance.

Figure D-2 Sagittally bisected phantom with extended perimeter (shown placed on its side as used for SAR measurements)

Figure D-3 Close-up side view of phantom showing the ear region, N-F and B-M lines, and seven cross-sectional plane locations

Figure D-4 Side view of the phantom showing relevant markings and seven cross-sectional plane locations

Issue Date: 06-03, 2011

Page 72 of 108

Annex D.2 **EUT constructions**

Figure D-5a Handset vertical and horizontal reference lines-"fixed case"

Figure D-5b Handset vertical and horizontal reference lines-"clam-shell case"

Annex D.3 Definition of the "cheek" position

- a) Position the device with the vertical centre line of the body of the device and the horizontal line crossing the centre of the ear piece in a plane parallel to the sagittal plane of the phantom ("initial position" see Figure 1-7). While maintaining the device in this plane, align the vertical centre line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the centre of the ear piece with the line RE-LE;
- b) Translate the mobile phone box towards the phantom with the ear piece aligned with the line LE-RE until the phone touches the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

Annex D.4 Definition of the "tilted" position

- a) Position the device in the "cheek" position described above;
- b) While maintaining the device in the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.

Member of the SGS Group (Société Générale de Surveillance)

Figure D-6 Definition of the reference lines and points, on the phone and on the phantom and initial position

Figure D-7 "Cheek" and "tilt" positions of the mobile phone on the left side

Calibration certificate

Issue Date: 06-03, 2011

Page 75 of 108

Calibration Laboratory of Schmid & Partner Engineering AG sughussistrasse 43,8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servicie svizzero di laratura C Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration pertilicates Accreditation No.: SCS 108

Glossary:

NORMx,y,z ConvF DCP

CF A.B.C

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization of o rotation around probe axis Polarization 9

rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

il EEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
 il EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close.

proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z. Assessed for E-field polarization $\beta = 0$ ($f \le 900$ MHz in TEM-cell; $f \ge 1800$ MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax.y.z; Bx.y.z; Cx.y.z, VRx.y.z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORNb, y, z * CorwF whereby the uncertainty corresponds to that given for CorwF. A frequency dependent CorwF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3088, Nov10

Page 2 of 11

Issue Date: 06-03, 2011

Page 76 of 108

ES3DV3 SN:3088

November 23, 2010

Probe ES3DV3

SN:3088

Manufactured:

July 20, 2005

Last calibrated: Recalibrated:

November 19, 2009 November 23, 2010

Calibrated for DASY/EASY Systems

(Note: rion-compatible with DASY2 system/)

Certificate No: ES3-3088_Nov19

Page 3 of 11

Issue Date: 06-03, 2011

Page 77 of 108

ES3DV3 SN:3088

November 23, 2010

DASY/EASY - Parameters of Probe: ES3DV3 SN:3088

Basic Calibration Parameters

2000	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.32	1.27	1.26	± 10.1%
DCP (mV) ⁸	100.0	99.9	100.2	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc* (k=2)
10000	cw	0.00	X	0.00	0.00	1.00	156.3	±3.4%
			Y	0.00	0.00	1.00	152.0	
			Z	0.00	0.00	1.00	147.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3088_Nov10

Page 4 of 11

t uncertainties of NormX,Y,Z do not affect the Ef-field uncertainty inside TSL (see Pages 5 and 6).

⁶ Numerical linearization pareneter: proestainty not required

Unconsists is determined using the maximum deviation from linear response applying recelangular distribution and is expressed for the square of the field value

Issue Date: 06-03, 2011

Page 78 of 108

ES3DV3 SN:3088

November 23, 2010

DASY/EASY - Parameters of Probe: ES3DV3 SN:3088

Calibration Parameter Determined in Head Tissue Simulating Media

(sHM)	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY Co	onvF Z	Alpha	Depth Unc (k=2)
836	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	6.07	6.07	6.07	0.99	1.03 ± 11.0%
00	±50/±100	$41.5 \pm 5\%$	$0.97 \pm 5\%$	5.97	5.97	5.97	0.99	1.02 ± 11.0%
810	±50/±100	40.0 ± 5%	$1.40\pm5\%$	5.23	5.23	5.23	0.59	1.38 ±11.0%
900	±50/±100	40.0 ± 5%	$1.40 \pm 5\%$	5.14	5.14	5.14	0.51	1.51 ±11.0%
2000	±50/±100	$40.0 \pm 5\%$	$1.40 \pm 5\%$	5.07	5.07	5.07	0.51	1.54 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.56	4.58	4.56	0.45	1.70 ±11,0%

The validity of a 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty of calibration hosp and the uncertainty for the indicated frequency band.

Certificate No: ES3-3888_Nov10

Page 5 of 11

Report No.: SHEM100500070310 Issue Date: 06-03, 2011

Page 79 of 108

ES3DV3 SN:3088

November 23, 2010

DASY/EASY - Parameters of Probe: ES3DV3 SN:3088

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^G	Purmittivity	Conductivity	ConvF X Co	onvFY Co	nvF Z	Alpha	Depth Unc (k=2)
835	±50/±100	55.2 ± 5%	0.97 ± 5%	5.98	5.98	5.98	0.88	1.13 ± 11.0%
900	±50/±100	$55.0 \pm 5\%$	1.05 ± 5%	5.85	5.85	5.85	0.76	1.19 ± 11.0%
1810	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.92	4.92	4.92	0.26	3.77 ± 11.0%
1900	± 50 / ± 100	53.3 ± 5%	$1.52 \pm 5\%$	4.60	4.60	4.60	0.28	2.78 ±11.0%
5000	±50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.78	4.76	4.76	0.26	4.52 ±11.0%
2450	±50/±100	52.7 ± 5%	1.95 ± 5%	4.34	4.34	4.34	0.44	1.96 ±11.0%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the Cornel uncertainty store.

Certificate No: ES3-3088_Nov10

Page 6 of 11

Issue Date: 06-03, 2011

Page 80 of 108

November 23, 2010

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ES3-3088_Nov10

Page 7 of 11

Page 82 of 108

Issue Date: 06-03, 2011

Page 84 of 108

ES3DV3 SN:3088

November 23, 2010

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3.mm

Certificate No. ES3-3088_Nov10

Page 11 of 11

Annex E.2 DAE Calibration certification

Issue Date: 06-03, 2011

Page 86 of 108

Calibration Laboratory of

Schmid & Partne Engineering AG isstrasse 43, 8004 Zurich, Switzerla

S Service suisse d'étalonnage C Servizio evizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle data acquisition electronics

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- · The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement,
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - · Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-569 Nov10

Page 2 of 5

Issue Date: 06-03, 2011

Page 87 of 108

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1

Low Range: 1LSB = 61nV, full range = -10...+300 mV

DASY measurement perameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	Z
High Range	402.938 ± 0.1% (k=2)	403.345 ± 0.1% (k=2)	403.529 ± 0.1% (k=2)
Low Range	3.92800 ± 0.7% (k=2)	3.95637 ± 0.7% (k=2)	3.94644 ± 0.7% (k=2)

Connector Angle

	0.0000000000000000000000000000000000000
Connector Angle to be used in DASY system	263.0 °±1 *

Certificate No: DAE3-569_Nov10

Page 3 of 5

Issue Date: 06-03, 2011

Page 88 of 108

Appendix

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199997.6	0.39	0.00
Channel X + Input	19998.27	-1.73	-0.01
Channel X - Input	-20000.54	-0.84	0.00
Channel Y + Input	199999.9	2.71	0.00
Channel Y + Input	20000.26	0.06	0.00
Channel Y - Input	-19999.11	0.59	-0.00
Channel Z + Input	199999.2	3.34	0,00
Channel Z + Input	19994.29	-5.81	-0.03
Channel Z - Input	-20000.54	-0.74	0.00

Low Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	2000.6	0.76	0.04
Channel X	+ Input	199.37	-0.23	-0.11
Channel X	- Input	-200.61	-0.71	0.35
Channel Y	+ Input	2000.0	-0.01	-0.00
Channel Y	+ Input	198.53	-1.37	-0.69
Channel Y	- Input	-202.14	-1.84	0.92
Channel Z	+ Input	2000.6	0.24	0.01
Channel Z	+ Input	196.39	-1.51	-0.76
Channel Z	- Input	-201.69	-1.99	0.99

2. Common mode sensitivity
2. Common mode sensitivity
2. Common mode sensitivity
3 sec; Mes

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (μV)
Channel X	200	-0.51	-2.10
	- 200	2.92	2.01
Channel Y	200	4.53	4.19
	- 200	-6.17	-6.12
Channel Z	200	-14.00	-14.37
	- 200	12.62	12.51

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		2.31	-2.14
Channel Y	200	2,21		3,30
Channel Z	200	0.63	-0.46	

Certificate No: DAE3-569_Nov10

Page 4 of 5

Report No.: SHEM100500070310 Issue Date: 06-03, 2011

Page 89 of 108

4. AD-Converter Values with inputs shorted

	High Range (LSB)	Low Range (LSB)
Channel X	16227	16350
Channel Y	16585	16231
Channel 7	15827	18157

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec input 10MO

	Average (µV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.17	-1.94	1.97	0.67
Channel Y	-0.86	-2.25	1.36	0.69
Channel Z	-1.20	-2.36	0.46	0.57

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE3-569_Nov10

Page 5 of 5

Annex E.1 Dipole Calibration certification

D835V2

Issue Date: 06-03, 2011 Page 91 of 108

Calibration Laboratory of

Schmid & Partner Engineering AG

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signaturies to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF N/A

tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)*, February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power, No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required,
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d070 Nov10

Page 2 of 9

Report No.: SHEM100500070310 Issue Date: 06-03, 2011

Page 92 of 108

Measurement Conditions

DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.5 ± 5 %	0.89 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	4141	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.37 mW / g
SAR normalized	normalized to 1W	9.48 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.56 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1,54 mW / g
SAR normalized	normalized to 1W	6.16 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.20 mW/g ± 16.5 % (k=2)

Certificate No: D835V2-4d070_Nov10

Page 3 of 9

Issue Date: 06-03, 2011

Page 93 of 108

Body TSL parameters

100 PM 14 CHICAGO AND RANGO AND RESIDENCE OF THE STATE OF	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.2 ± 6 %	0.99 mha/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ² (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.53 mW / g
SAR normalized	normalized to 1W	10.1 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.92 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.65 mW / g
SAR normalized	normalized to 1W	6.80 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.51 mW/g ± 16.5 % (k=2)

Certificate No: D835V2-4d070_Nov10

Page 4 of 9

SHEMC

Test 1 Book

Issue Date: 06-03, 2011

Page 94 of 108

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.4 Ω - 2.7 jΩ	
Return Loss	- 29.0 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.0 Ω - 3.9 jΩ	
Return Loss	- 27.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.394 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	November 09, 2007	

Certificate No: D835V2-4d070_Nov10

Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Fime: 18.11.2010 11:02:35

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d070

Communication System; CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 41.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.03, 6.03, 6.03); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.2 V/m; Power Drift = 0.025 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 2.37 mW/g; SAR(10 g) = 1.54 mW/g

Maximum value of SAR (measured) = 2.75 mW/g

0 dB = 2.75 mW/g

Certificate No: D835V2-4d070 Nov10

Page 6 of 9

Page 96 of 108

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-4d070_Nov10

Page 7 of 9

DASY5 Validation Report for Body

Date/Time: 19.11.2010 13:25:58

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d070

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mbs/m; $\epsilon_r = 54.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.86, 5.86, 5.86); Calibrated: 30.04.2010
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics; DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.1 V/m; Power Drift = -0.000422 dB

Peak SAR (extrapolated) = 3.73 W/kg

SAR(1 g) = 2.53 mW/g; SAR(10 g) = 1.65 mW/g Maximum value of SAR (measured) = 2.93 mW/g

0 dB = 2.93 mW/g

Certificate No: D835V2-4d070, Nov10

Page 8 of 9

Page 98 of 108

D1900V2

The Swiss Accreditation Servi Multilateral Agreement for the	tation Service (SAS) ce is one of the signatoric recognition of calibration	s to the EA	on No.: SCS 108
SGS-CH (Aud	1835		No: D1900V2-5d028_Nov10
CALIBRATION	The second		
Object	D1900V2 - SN: 5	0028	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	idure for dipole validation kits	
Calibration date:	November 25, 20	910	
All saktrations have been cond Calibration Equipment used (M	unted in the closed laborato	rebability are given on the following pages ry lackly: environment temperature (22 ± 3 Cell Date (Centificate No.)	Ir'C and humidity < 70%.
All calibrations have been condi- Calibration Equipment used (Mi Primary Standards Power metre EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSDV3	ucted in the closed laborato STE critical for celibration)		64W001807770000-04W00
All calibrations have been send Calibration Equipment used (M Primary Standards Power mate EPM-442A Power sensor HP 8481A Reterance 20 dB Afterwator Type-3 mismatch combination Peterance Probe ES3DV3 DAE4 Secondary Standards	unted in the closed laboration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047 5 / 06327 SN: 3205 SN: 601	Cell Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ESS-3205_Apr10 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in focuse)	Scheduled Calibration Oct-11 Oct-11 Mar-11 Apr-11 Jun-11 Scheduled Check
All calibrations have been condi- Calibration Equipment used (Mi- Primary Standards - Power meter EPM-442A - Power sensor HP 8481A - Reterance 20 dB Afterwator Type-3 mismatch combination Peterance Probe ES3DV3 DAE4 -	unted in the closed laborates ATE detical for calibration) (D # GB37480704 US37292783 SN: 5086 (28g) SN: 5047 2 / 06327 SN: 3205 SN: 601	Cell Date (Certificate No.) 06-Cel-10 (No. 217-01266) 06-Cel-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01158) 30-Apr-10 (No. ES9-3205, Apr10) 10-Jun-10 (No. DAEA-601, Jun10)	Scheduled Calibration Oct-11 Oct-11 Mss-18 Mar-11 Apr-18 Jun-11
All calibrations have been condi- Calibration Equipment used (MI Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Afterwator Type-N mismanch combination Type-N mismanch combination DAE4 Secondary Standards	unted in the closed laborate ETE critical for celibration) (C) # GB37480704 US37292783 SN: 5066 (20g) SN: 5047 2 / 06327 SN: 3205 SN: 601 ID # MY41082317 100005	Cel Date (Gerificate No.) 06-Oct-10 (No. 217-01286) 06-Oct-10 (No. 217-01286) 06-Oct-10 (No. 217-01286) 30-Mar-10 (No. 217-01188) 30-Mar-10 (No. 217-01188) 30-Mar-10 (No. ES9-3205_Apri0] 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in freues) 16-Oct-02 (in house check Oct-08) 4-Aug-98 (in house check Oct-08)	Scheduled Calibration Oct-11 Oct-11 Mer-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
All calibrations have been condi- Calibration Equipment used (Mi- Primary Standards - Power meter EPM-442A - Power sensor HP 8481A - Reterance 20 dB Afterwator Type-3 mismatch combination Peterance Probe ES3DV3 DAE4 -	unted in the closed laborates ATE critical for calibration) ID # QB37480704 US37292783 BN: 5086 (20g) SN: 5047 2 / 06327 SN: 5047 2 / 06327 SN: 801 ID # MY41052317 100005 US37390685 S4208	ry lacitity: environment temperature (32 ± 3 Cell Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01168) 30-Mar-10 (No. 217-01162) 30-Mar-10 (No. 217-01162) 30-Mar-10 (No. 217-01162) 30-Mar-10 (No. 218-01162) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in frouse) 18-Oct-02 (in house check Oct-08) 18-Oct-07 (in house check Oct-08) 18-Oct-07 (in house check Oct-09)	Scheduled Calibration Oct-11 Oct-11 Mer-11 Mar-11 Apr-11 Jun-11 Scheduled Chick In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
All calibrations have been condi- Colibration Equipment used (Mi- Primary Standards - Power meter EPM-442A - Power memor HP 8481A - Reterance 20 dB Afterwator Type-3 minimatch combination Peterance Probe ES3DV3 DAE4 -	unted in the closed laborate ATE critical for celebration) (C) # GB37480704 US37292783 SN: 5066 (20g) SN: 5047 2 / 06327 SN: 3205 SN: 601 ID # MY41082317 100005 US37390585 S4208 Name	Tylacitiy: environment temperature (32 ± 3 Cell Date (Gertificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01162) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES0-3205_Apr-10] 10-Jun-10 (No. DAE4-601_Jun10) Check Date (In Process Check Oct-09) 4-Aug-99 (In Incuse check Oct-09) 18-Oct-01 (In nouse check Oct-09) 18-Oct-01 (In nouse check Oct-10)	Scheduled Calibration Oct-11 Oct-11 Mer-11 Mar-11 Apr-11 Jun-11 Scheduled Chick In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
All calibrations have been condi- Calibration Equipment used (Mi- Primary Standards - Prover mater EPM-442A - Power sensor HP 8481A - Reterance 20 dB Attenuator Type-3 mismatch combination Pelenance Probe ES3DV3 DAE4 - Secondary Standards Power sensor HP 8481A PF generator R&S SMT-06 Network Analyzer HP 8783E Calibratist by:	unted in the closed laborate &TE critical for calibration) (D # GB37480704 US37292783 SN: 5086 (20g) SN: 5047 2 / 06327 SN: 305 SN: 601 (D # MY41082317 100005 US37390585 \$4208 Name Dimod Biev Korja Pokovic	Cell Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01168) 30-Mar-10 (No. 217-01168) 30-Mar-10 (No. 217-01168) 30-Mar-10 (No. ES9-3205 Apr10) 19-Jun-10 (No. DAEA-601 Jun10) Check Date (in frouse) 18-Oct-02 (in house check Oct-08) 18-Oct-07 (in house check Oct-09) 18-Oct-07 (in house check Oct-09) Function Laboratory Technician	Scheduled Calibration Oct-11 Oct-11 Mer-11 Mer-11 Apr-11 Juri-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11 Signature OCC-11 Saudd: November 25, 2010

Calibration Laboratory of

Schmid & Partner Engineering AG rughausstrasse 43, 8004 Zurich, Switzerland

8 Service suisse d'étalonnage C Servizio svizzero di terature Swiss Calibration Service

Accreditation No.: SCS 108

dited by the Swise Accorditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of celibration certificates

TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques*, December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- . Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- · Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d028_Nov10

Page 101 of 108

Measurement Conditions

DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mhoim
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.3 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C	7777	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.3 mW/g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL.	condition	
SAR measured	250 mW input power	5.26 mW / g
SAR normalized	normalized to 1W	21.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.0 mW /g ± 16.5 % (k=2)

Certificate No: D1900V2-5d028 Nov10

Page 3 of 9

Issue Date: 06-03, 2011

Page 102 of 108

Body TSL parameters

he following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	1.52 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C	0000	100

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.30 mW / g
SAR normalized	normalized to 1W	21.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.2 mW / g = 16.5 % (k=2)

Certificate No: D1900V2-5d028_Nov10

Page 4 of 9

Member of the SGS Group (Société Générale de Surveillance)

Issue Date: 06-03, 2011

Page 103 of 108

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.3 \Omega + 5.8 j\Omega$	
Return Loss	- 24.3 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.3 Ω + 6.7 jΩ
Return Loss	-22.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1,200 ns	
---	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the

feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	December 17, 2002	

Certificate No: D1900V2-5d028_Nov10

Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Time: 25.11.2010 12:33:59

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d028

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ mho/m}$; $\epsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 10.06,2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.6 V/m; Power Drift = 0.035 dB Peak SAR (extrapolated) = 18.6 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.26 mW/gMaximum value of SAR (measured) = 12.4 mW/g

Certificate No: D1900V2-5d028_Nov10

Page 6 of 9

Page 105 of 108

DASY5 Validation Report for Body

Date/Time: 24.11.2010 12:05:53

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d028

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U12 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.52$ mho/m; $\epsilon_r = 52.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63,19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW; DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.8 V/m; Power Drift = 0.033 dB

Peak SAR (extrapolated) = 17.2 W/kg.

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.3 mW/g

Maximum value of SAR (measured) = 12.2 mW/g

Certificate No: D1900V2-5d028_Nov10

Page 8 of 9

Issue Date: 06-03, 2011

Page 107 of 108

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d028_Nov10

Page 9 of 9

END OF REPORT

Issue Date: 06-03, 2011

Page 108 of 108