Towards Multi-Facet Snippets for Dataset Search

Xiaxia Wang¹, Gong Cheng¹, Evgeny Kharlamov²

National Key Laboratory for Novel Software Technology, Nanjing University, China
 Bosch Center for Artificial Intelligence, Renningen, Germany

BOSCHInvented for life

Dataset search systems: Conveniently find relevant datasets.

Google Dataset Search

European Data portal

LODAtlas

Dataset search systems: Conveniently find relevant datasets.

Google Dataset Search

European Data portal

LODAtlas

Existing systems provide only metadata for users.

Metadata:

- No detailed information of dataset content
- Limited utility for users to judge the relevance.

Google Dataset Search system

Dataset Snippet: Complementary to metadata

- a size-limited subset of triples
- exemplify dataset content
- illustrate the relevance to the query

Dataset Snippet: Complementary to metadata

- a size-limited subset of triples
- exemplify dataset content
- illustrate the relevance to the query

```
〈Augsburg-TYPE-City〉
〈Berlin-capitalOf-Germany〉
〈Berlin-locatedIn-Germany〉
〈Berlin-neighboringCity-Dresden〉
〈Berlin-TYPE-Capital〉
〈Berlin-TYPE-City〉
〈Germany-isPartOf-CentralEurope〉
〈Germany-TYPE-Country〉
〈Munich-locatedIn-Germany〉
〈Munich-TYPE-City〉
〈Munich-neighboringCity-Augsburg〉
```

Query: Munich Europe

Snippet Generation ⟨Germany-isPartOf-CentralEurope⟩ ⟨Munich-locatedIn-Germany⟩

An example snippet

Dataset Snippet: Complementary to metadata

- a size-limited subset of triples
 - -- Size limit k

exemplify dataset content

- Contain central elements of Schema and Instance
- illustrate the relevance to the query
- Contain query keywords

```
〈Augsburg-TYPE-City〉
〈Berlin-capitalOf-Germany〉
〈Berlin-locatedIn-Germany〉
〈Berlin-neighboringCity-Dresden〉
〈Berlin-TYPE-Capital〉
〈Berlin-TYPE-City〉
〈Germany-isPartOf-CentralEurope〉
〈Germany-TYPE-Country〉
〈Munich-locatedIn-Germany〉
〈Munich-TYPE-City〉
〈Munich-neighboringCity-Augsburg〉
```

Query: Munich Europe

Snippet Generation ⟨Germany-isPartOf-CentralEurope⟩ ⟨Munich-locatedIn-Germany⟩

An example snippet

Problem Formulation: A Weighted Maximum Coverage Problem

- Input: a collection of sets
- Select at most k sets to maximize the total weight of covered elements
- Consider keywords, classes, properties, entities as elements

Problem Formulation: A Weighted Maximum Coverage Problem

Optimize the coverage of Keywords, Classes, Properties, and Entities.

Experiment

Datasets: 311 real datasets from *Datahub*

Queries:

- Real queries from data.gov.uk
- Artificial queries selected from DMOZ

Evaluation Metrics:

- Coverage of keywords
- Coverage of Paths between keywords
- Coverage of Dataset Schema
- Coverage of Data instance

Details about our Evaluation Metrics & Baselines Tomorrow 12:00, Session 1B, FPAA level 0.

Result

Our approach achieved a Balance among four evaluation metrics

	соКуw	coCnx	coSkm	coDat	Average
IlluSnip	0.1000	0.0540	0.6820	0.3850	0.3053
TA+C	0.9590	0.4703	0.0425	0.0915	0.3908
PrunedDP++	1	1	0.0898	0.2133	0.5758
CES	0.9006	0.3926	0.3668	0.2684	0.4821
coKSD	0.8352	0.3595	0.8651	0.4247	0.6211

Our approach got consistent scores on different query groups

	соКуw	coCnx	coSkm	coDat	Average
data.gov.uk	0.7643	0.2882	0.8249	0.3870	0.5661
DMOZ-1	0.8977	0.7955	0.8873	0.4726	0.7633
DMOZ-2	0.8433	0.2444	0.8710	0.4569	0.6039
DMOZ-3	0.8395	0.2337	0.8693	0.4145	0.5893
DMOZ-4	0.7936	0.1877	0.8521	0.3731	0.5516

Conclusion

 Our approach (coKSD) achieved a Balance between evaluation metrics, can be used as a better dataset snippet than existing baselines.

Future Work

- Better snippet for dataset search
- Faster generation process

Thanks for your time! Q&A

Contact: xxwang@smail.nju.edu.cn

Keywords

To match user's data needs as much as possible

maximizes
$$q(S) = \sum_{x \in \bigcup_{t_i \in S} \text{cov}(t_i)} w(x)$$
, subject to $|S| \le k$

$$w(x) = \begin{cases} \alpha \cdot \frac{1}{|Q|}, & x \in Q \\ \beta \cdot \operatorname{frqCls}(x), & x \in \operatorname{Cls}(T) \\ \beta \cdot \operatorname{frqPrp}(x), & x \in \operatorname{Prp}(T) \\ \gamma \cdot \left(\frac{\log(d^+(x)+1)}{\sum_{e \in \operatorname{Ent}(T)} \log(d^+(e)+1)} + \frac{\log(d^-(x)+1)}{\sum_{e \in \operatorname{Ent}(T)} \log(d^-(e)+1)} \right), & x \in \operatorname{Ent}(T) \end{cases}$$

$$\langle \operatorname{Augsburg-TYPE-City} \rangle$$

$$\langle \operatorname{Berlin-capitalOf-Germany} \rangle$$

Query: Munich Europe

```
\langle Berlin-capitalOf-Germany \\
\langle Berlin-locatedIn-Germany \\
\langle Berlin-neighboringCity-Dresden \\
\langle Berlin-TYPE-Capital \\
\langle Berlin-TYPE-City \\
\langle Germany-isPartOf-CentralEurope \\
\langle Germany-TYPE-Country \\
\langle Munich-locatedIn-Germany \\
\langle Munich-TYPE-City \\
\langle Munich-neighboringCity-Augsburg \\
\langle Munich-
```


Classes and properties

To exemplify central schema elements

$$\text{maximizes } q(S) = \sum_{x \in \bigcup_{t_i \in S} \text{cov}(t_i)} w(x), \quad \text{subject to } |S| \le k$$

$$w(x) = \begin{cases} \alpha \cdot \frac{1}{|Q|}, & x \in Q \\ \beta \cdot \operatorname{frqCls}(x), & x \in \operatorname{Cls}(T) \\ \beta \cdot \operatorname{frqPrp}(x), & x \in \operatorname{Prp}(T) \end{cases}$$
$$\gamma \cdot \left(\frac{\log(d^{+}(x) + 1)}{\sum_{e \in \operatorname{Ent}(T)} \log(d^{+}(e) + 1)} + \frac{\log(d^{-}(x) + 1)}{\sum_{e \in \operatorname{Ent}(T)} \log(d^{-}(e) + 1)} \right), \quad x \in \operatorname{Ent}(T)$$

```
〈Augsburg-TYPE-City〉
〈Berlin-capitalOf-Germany〉
〈Berlin-locatedIn-Germany〉
〈Berlin-neighboringCity-Dresden〉
〈Berlin-TYPE-Capital〉
〈Berlin-TYPE-City〉
〈Germany-isPartOf-CentralEurope〉
〈Germany-TYPE-Country〉
〈Munich-locatedIn-Germany〉
〈Munich-rype-City〉
〈Munich-neighboringCity-Augsburg〉
```

Central schema elements:

- Frequent classes & properties
 - e.g., City: 3 times

locatedIn: 2 times

neighboringCity: 2 times

Entities

To show central elements at data level

maximizes
$$q(S) = \sum_{x \in \bigcup_{t_i \in S} \text{cov}(t_i)} w(x)$$
, subject to $|S| \le k$

$$w(x) = \begin{cases} \alpha \cdot \frac{1}{|Q|}, & x \in Q \\ \beta \cdot \operatorname{frqCls}(x), & x \in \operatorname{Cls}(T) \\ \beta \cdot \operatorname{frqPrp}(x), & x \in \operatorname{Prp}(T) \end{cases}$$

$$\gamma \cdot \left(\frac{\log(d^{+}(x) + 1)}{\sum_{e \in \operatorname{Ent}(T)} \log(d^{+}(e) + 1)} + \frac{\log(d^{-}(x) + 1)}{\sum_{e \in \operatorname{Ent}(T)} \log(d^{-}(e) + 1)} \right), \quad x \in \operatorname{Ent}(T)$$

$$\sum_{e \in \operatorname{Ent}(T)} \operatorname{Dresden} \xrightarrow{\text{type}} \operatorname{City} \leftarrow \operatorname{Central entity:}$$

RDF dataset

Central entity:

High in-degree and out-degree

Approach

```
/*Greedy Algorithm: coKSD*/
```

Input: A dataset T, a keyword query Q, a size bound k

Output: An optimum dataset snippet $S \subseteq T$

- 1. $S \leftarrow \emptyset$;
- 2. while |S| < k do

3.
$$t^* \leftarrow argmax_{t \in (T \setminus S)} (q(S \cup \{t\}) - q(S));$$

- 4. $S \leftarrow S \cup \{t^*\}$; //select an optimal triple in each step
- 5. end while
- 6. return *S*;

Approximation ratio:
$$1 - \frac{1}{e}$$