Qusage: Speeding in Parallel

Timothy J. Triche, Jr, Anthony R. Colombo 10 February, 2016

Contents

1	SpeedSage Intro	1
	1.1 changes calcIndividualExpressionsC	1
2	Individual Expression Function	1
3	Issue with smaller sets	7
4	Paired revised	7
5	for non-paired end the eset.1, eset.2 is split	9

1 SpeedSage Intro

quasge is published software that is slow for large runs, SpeedSage corrects for speed and efficiency at large orders #Bottlenecking of Functions Quasge can improve the speed of its algorithm by minimizing the cost of computation.

1.1 changes calcIndividualExpressionsC

trading NA flexibility slows down qu
sage runs, but having the user input no NAs enforcing good input, this speeds up calc
Individual
Expressions
C $2{\rm X}$

2 Individual Expression Function

This test the local version which enforces no NA in Baseline or PostTreatment object, this reduces the flexibility.

```
library(Rcpp)
library(parallel)
library(speedSage)

## Loading required package: limma
library(qusage)
```

Attaching package: 'qusage'

```
## The following objects are masked from 'package:speedSage':
##
       aggregateGeneSet, calcBayesCI, calcVIF, getXcoords,
##
       makeComparison, read.gmt
##
eset<-system.file("extdata","eset.RData",package="speedSage")</pre>
load(eset)
labels<-c(rep("t0",134),rep("t1",134))
contrast<-"t1-t0"
colnames(eset)<-c(rep("t0",134),rep("t1",134))</pre>
fileISG<-system.file("extdata","c2.cgp.v5.1.symbols.gmt",package="speedSage")
ISG.geneSet<-read.gmt(fileISG)</pre>
ISG.geneSet<-ISG.geneSet[grep1("DER_IFN_GAMMA_RESPONSE_UP",names(ISG.geneSet))]</pre>
Baseline<-eset
PostTreatment<-eset+20.4
#non-paired
sourceCpp(file="/home/anthonycolombo/Documents/qusage_qusage_repos/qusage_speed/R/sigmasCpp.cpp")
test1<-calcIndividualExpressions(Baseline,PostTreatment,paired=FALSE,min.variance.factor=10^-6,na.rm=TR
## Found more than one class "QSarray" in cache; using the first, from namespace 'speedSage'
test2<-calcIndividualExpressionsC(Baseline, PostTreatment, paired=FALSE, min.variance.factor=10^-6)
identical(test2,test1)
## [1] FALSE
library(microbenchmark)
mb<-microbenchmark(
test1<-calcIndividualExpressions(Baseline,PostTreatment,paired=FALSE,min.variance.factor=10^-6,na.rm=TR
test2<-calcIndividualExpressionsC(Baseline,PostTreatment,paired=FALSE,min.variance.factor=10^-6))
#on average 1.49X faster
mb
## Unit: milliseconds
##
##
    test1 <- calcIndividualExpressions(Baseline, PostTreatment, paired = FALSE,</pre>
                                                                                        min.variance.facto
##
                 test2 <- calcIndividualExpressionsC(Baseline, PostTreatment,</pre>
                                                                                     paired = FALSE, min.
##
                          mean
                                  median
         min
                   lq
                                               uq
   169.6035 172.4646 187.9819 176.0636 222.4185 231.5290
##
                                                              100
   167.3527 170.0432 180.7431 173.3693 176.5717 230.4256
require(profr)
## Loading required package: profr
require(ggplot2)
## Loading required package: ggplot2
```

x1<-profr(calcIndividualExpressions(Baseline,PostTreatment,paired=FALSE,min.variance.factor=10^-6,na.rmggplot(x1)+labs(title="Qusage SE Default")

x2<-profr(calcIndividualExpressionsC(Baseline,PostTreatment,paired=FALSE,min.variance.factor=10^-6))
ggplot(x2)+labs(title="Qusage SE Parallel")</pre>


```
#paired end testing
test PE1 < -calcIndividual Expressions (Baseline, Post Treatment, paired = \frac{TRUE}{min.variance.factor} = 10^{-6}, na.rm = \frac{TRUE}{min.variance} = \frac{10^{-6}}{min.variance} = \frac{10^{-
testPE2<-calcIndividualExpressionsC(Baseline,PostTreatment,paired=TRUE,min.variance.factor=10^-6)
for(i in 1:length(test1)){
message(paste0(identical(testPE1[[i]],testPE2[[i]])," ",i))
}
## TRUE 1
## FALSE 2
## FALSE 3
## FALSE 4
## TRUE 5
require(profr)
require(ggplot2)
y1<-profr(calcIndividualExpressions(Baseline, PostTreatment, paired=TRUE, min.variance.factor=10^-6, na.rm=
y2<-profr(calcIndividualExpressionsC(Baseline,PostTreatment,paired=TRUE,min.variance.factor=10^-6))
ggplot(y1)+labs(title="Qusage PE Default")
```


ggplot(y2)+labs(title="Qusage PE Parallel")

Qusage PE Parallel


```
#this shows that the only difference is the vector of Non-NA columns per each row; which is the same as peMB<-microbenchmark(
testPE1<-calcIndividualExpressions(Baseline,PostTreatment,paired=TRUE,min.variance.factor=10^-6,na.rm=Treatment)
testPE2<-calcIndividualExpressionsC(Baseline,PostTreatment,paired=TRUE,min.variance.factor=10^-6)
) #for paired end 1.2X faster
peMB
```

```
## Unit: milliseconds
##
##
    testPE1 <- calcIndividualExpressions(Baseline, PostTreatment,</pre>
                                                                             paired = TRUE, min.variance.fact
                  testPE2 <- calcIndividualExpressionsC(Baseline, PostTreatment,</pre>
##
                                                                                            paired = TRUE, min
                                                          max neval cld
##
                            mean
                                    median
                                                  uq
         min
    139.8126 141.9204 153.3843 143.6768 146.3989 205.5734
##
                                                                 100
    122.8728 125.2726 131.7081 127.0918 129.2121 189.2620
#add NAs and test
testPT<-PostTreatment[1:20,]</pre>
testPT<-cbind(rbind(testPT, NaN), NA)</pre>
rownames(testPT)[nrow(testPT)]<-"NA"</pre>
testB<-Baseline[1:20,]
testB<-cbind(rbind(testB, NaN), NA)</pre>
rownames(testB)[nrow(testB)]<-"NA"</pre>
\#calcIndividualExpressionsC(testB, testPT)) will produce error and stop if NA
```

3 Issue with smaller sets

there is an issue when calling make Comparisons on eset.1 and eset.2 test object, the mclapply is dispatching twice which causes slowness, also I wish to compile R computations for certain functions to speed up before run-time

4 Paired revised

```
library(Rcpp)
library(parallel)
library(speedSage)
library(qusage)
eset<-system.file("extdata","eset.RData",package="speedSage")</pre>
load(eset)
labels<-c(rep("t0",134),rep("t1",134))
contrast<-"t1-t0"
colnames(eset)<-c(rep("t0",134),rep("t1",134))</pre>
fileISG<-system.file("extdata","c2.cgp.v5.1.symbols.gmt",package="speedSage")
ISG.geneSet<-read.gmt(fileISG)</pre>
ISG.geneSet<-ISG.geneSet[grep1("DER_IFN_GAMMA_RESPONSE_UP",names(ISG.geneSet))]</pre>
sourceCpp(file="/home/anthonycolombo/Documents/qusage/qusage_repos/qusage_speed/R/sigmasCpp.cpp")
eset.1<-eset-40.3
eset.2<-eset+100.5
original <- calcIndividual Expressions (eset.1, eset.2, paired = TRUE)
cpp<-calcIndividualExpressionsC(eset.1,eset.2,paired=TRUE)</pre>
summary(abs(original$mean-cpp$mean)) #identical results
##
      Min. 1st Qu. Median
                               Mean 3rd Qu.
                                                Max.
##
         0
microbenchmark(
 original<-calcIndividualExpressions(eset.1,eset.2,paired=TRUE),</pre>
 cpp<-calcIndividualExpressionsC(eset.1,eset.2,paired=TRUE))</pre>
## Unit: milliseconds
##
                                                                        expr
    original <- calcIndividualExpressions(eset.1, eset.2, paired = TRUE)
##
##
        cpp <- calcIndividualExpressionsC(eset.1, eset.2, paired = TRUE)</pre>
##
                           mean
                                   median
                                                         max neval cld
                                                uq
   139.5709 142.1453 151.2096 144.1039 146.1386 204.9111
##
                                                               100
    122.7501 124.8442 137.9403 127.0056 132.2607 188.3307
                                                               100 a
#showing profiles
library(profr)
library(ggplot2)
yy<-profr(calcIndividualExpressions(eset.1,eset.2,paired=TRUE))</pre>
ggplot(yy) + labs(title="Qusage PE Default")
```


tt<-profr(calcIndividualExpressionsC(eset.1,eset.2,paired=TRUE))
ggplot(tt)+ labs(title="Qusage PE in Cpp")</pre>

5 for non-paired end the eset.1, eset.2 is split

```
library(Rcpp)
eset.1<-system.file("extdata","eset.1.RData",package="speedSage")
eset.2<-system.file("extdata","eset.2.RData",package="speedSage")
load(eset.1)
load(eset.2)
sourceCpp(file="/home/anthonycolombo/Documents/qusage/qusage_repos/qusage_speed/R/sigmasCpp.cpp")
original<-calcIndividualExpressions(eset.1,eset.2)
cpp<-calcIndividualExpressionsC(eset.1,eset.2)</pre>
```