- Ex.2: A source has 9 symbols and each occur with a probability of 1/9. Construct a binary Huffman code.
 Find efficiency and redundancy of coding.
- Solution:
- $\bullet \quad q = r + \alpha(r-1)$
- $9=2+\alpha(1) => \alpha=7 \in Z$

Symbols	Codes	Probabilities	Length
S_1	001	1/9	3
S_2	0000	1/9	4
S_3	0001	1/9	4
S_4	110	1/9	3
S ₅	111	1/9	3
S ₆	100	1/9	3
S ₇	101	1/9	3
Sg	010	1/9	3
S_9	011	1/9	3

•
$$H(S) = \frac{9}{9} log_2^{\bullet} 9$$

•
$$H(S) = 3.17 \ bits/symbol$$

•
$$H(S) = \frac{9}{9}log_29$$

•
$$H(S) = 3.17 \ bits/symbol$$

•
$$L = 3.22 \ bits/symbol$$

•
$$\%\eta = \frac{H(S)}{I} * 100 = 98.45\%$$

• Redundancy=100-\%
$$\eta$$
=1.55\%

- Ex. 3: Given the messages x₁, x₂, x₃, x₄, x₅ &x₆ with probabilities 0.4, 0.2, 0.2, 0.1, 0.07, 0.03. Construct binary and trinary code by applying Huffman encoding procedure. Also find efficiency and redundancy.
- Solution:
- Binary-Homework
- Trinary: $q = r + \alpha(r 1)$
- $6=3+\alpha(2)$ => $\alpha=3/2$;