$\mathbf{Q3}$

For the first direction, suppose range $T^m = \operatorname{range} T^{m+1}$. Now, suppose $v \in \operatorname{null} T^m$. Then, $T^m v = 0$, so $T^{m+1}v = 0$. Therefore, $\operatorname{null} T^m \subset \operatorname{null} T^{m+1}$. By the rank-nullity theorem, dim range $T^m + \operatorname{dim} \operatorname{null} T^m = \operatorname{dim} \operatorname{range} T^{m+1} + \operatorname{dim} \operatorname{null} T^{m+1}$, and from our assumption range $T^m = \operatorname{range} T^{m+1}$, so dim $\operatorname{null} T^m = \operatorname{dim} \operatorname{null} T^{m+1} = k$. Let $\beta = \{e_1, ...e_k\}$ be a basis for range T^m . Since $\operatorname{null} T^m \subset \operatorname{null} T^{m+1}$, $\{e_1, ...e_k\} \in \operatorname{range} T^{m+1}$. But, since $\operatorname{dim} \operatorname{null} T^{m+1} = m$, β is also a basis for $\operatorname{null} T^{m+1}$, so $\operatorname{null} T^m = \operatorname{null} T^{m+1}$, completing the proof in one direction.

Now, for the other direction, suppose null $T^m = \text{null } T^{m+1}$. We know from the rank-nullity theorem that dim range $T^m = \text{dim range } T^{m+1} = k$. So, it only remains to prove that either range $T^m \subset \text{range } T^{m+1}$, or vise-verse, since the same argument as above will apply. We will prove the latter (range $T^{m+1} \subset \text{range } T^m$): Consider a nonzero $v \in \text{range } T^{m+1}$ (because it's trivially true that both ranges contain 0) Then, $\exists k \in V : T^{m+1}k = v$. So, $T^{m+1}k = TT^mk = v$, so $v \in \text{range } T^m$, meaning range $T^{m+1} \subset \text{range } T^m$, and the rest follows from the same argument as above.