Xuanbin Peng

Contact: 210320502@stu.hit.edu.cn ${
m Website:}\ {
m https://peng-bryant.github.io}$

EDUCATION

Harbin Institute of Technology

Shenzhen, CHN

Second-year Undergraduate in Automation

Sep. 2021 - now

• CGPA: 95.44/100 Ranking: 2/256

Research Experience

Undergraduate Research Assistant

Aug. 2022 – Present

Robotics and Control Lab Supervisor: Prof. Xiaogang Xiong Co-Supervisor: Ms. Tianlin Zhang

Harbin Institute of Technology, Shenzhen School of Mechanical Engineering and Automation School of Mechanical Engineering and Automation

- Developing an quadruped manipulation platform operating in dynamic environments.
- Model Predictive Controller joint torques control for quadruped manipulator to track dynamic targets.
- Robust super-twisting observer for dynamic object velocities estimation without depth information.

Selected Projects

A Vision-Guided UAV for Precision Targeting of Moving Objects

Dec.2021-Feb.2022

HITSZ

* High-speed flight capabilities for fast moving objects targeting.

- * Vision-based automatic aiming and tracking system with high accuracy and robustness against interference.
- * Adaptive control algorithms for improved resilience and adaptability during flight and shooting operations.

A Versatile Mobile Robot With a Visual-aided Suction Gripper Critical HIT Lab

Apr.2022–Aug.2022

HITSZ

- * Three-DOF suction gripper: Enhanced grasping flexibility and precision.
- * Multifunctionality: Versatile robot for various tasks.
- * Vision-based alignment: Improved accuracy and efficiency in positioning.

A Visualizing Pandemic Simulator for Analyzing Epidemic Dynamics Jan. 2022–Feb. 2022 Advisor: Prof. Xiaojun Wu

* Interactive visualization interface.

HITSZ

- * Improved population modeling using a normal distribution model.
- * Optimized simulation performance with quadtree collision detection algorithm.

A Hybrid Legged-Wheeled Robot with Robustness and Efficiency Apr.2022–Aug.2022 HITSZ

- * Hybrid legged-wheeled robot design for improved mobility and terrain adaptability.
- * Integration of LQR and VMC control methods for enhanced control performance.
- * Optimization of robot parameters for optimal efficiency and robustness.

Honors & Awards

National Scholarship.	2022
National First Prize in RoboMaster2022 Robotics Contest.	2022
National Second Prize in RoboMaster2022 Engineering-Mining-Challenge.	2022
Fisrt-Class Undergraduate Acadamic Scholarship. (Ranking 1st)	2022
Pacemaker to Merit Student.	2022
Excellent League Member.	2022
"Mechatronics Orator" Speech Contest, Champion	2021

$S{\scriptstyle KILLS}$

Languages: English (CET-6:604), Mandarin Chinese (native)

Programming: C/C++, Python, HTML, JavaScript

 $\textbf{Tools}\text{: }\operatorname{Git}\text{, MATLAB/Simulink, PyTorch, ROS, VS Code, }\operatorname{\underline{LATEX}}$