Neural Bloom Filter with Few Shot Learning

THE CHIMOLOGY CANOLING THE CHIMOLOGY CANOLING

CS328 - Data Science

TEAM - 27

Bhavik Patel (22110047)

Jinil Patel (22110184)

Pranav Patil (22110199)

Indian Institue of Technology Gandhinagar Palaj, Gujarat - 382355

Source Code: https://github.com/Zeenu03/CS-328-Neural-Bloom-Filter

Set Membership Query

- Task: "Is element x in set S?"
- Known Methods
 - Sorted List + Binary Search
 - Hash Table
 - Bloom Filter

Background and Related Work

Classical Bloom Filters:

- o Probabilistic data structures with no false negatives.
- Trade-off between false positive rate and memory size.

 \bigcirc

Memory-Augmented Neural Networks (MANNs):

 Networks like DNC, Memory Networks that enhance traditional RNNs with external memory.

0

Meta-Learning:

- Learning to learn across tasks rather than a single dataset.
- NBFs integrate ideas from Bloom Filters, MANNs, and Meta-Learning.

Classical Bloom Filter

• A Bloom Filter is a space-efficient data structure that helps us check if an element might be in a set, with:

- ✓ No false negatives
- X Possible false positives

Why Neural Bloom Filter?

- Classical Bloom Filters are lightweight and fast but **non-adaptive**.
- Fixed hash functions in traditional Bloom Filters cannot generalize.
- Need for flexible, trainable structures that adapt to datasets.
- Neural Bloom Filters (NBFs) combine neural networks with Bloom Filter principles for better memory compression and task-specific learning.

Neural Bloom Filter Formulation

Main Idea:

Replace hand-crafted hashing with learned addressing and distributed memory updates.

Key Components:

• Encoder:

Maps input (e.g., image) to a dense embedding.

Write Network:

Encodes input into write vector and query vector.

Addressing Matrix (A):

Learns how to softly address memory slots (like learned hash functions).

Memory Matrix (M):

Stores distributed representations of inserted items.

MLP Decoder:

Predicts membership from read vector.

Model Architecture

Writer Network

Read Network

Reader Flow

Reader Flow

Reader Flow

Model Workflow

Algorithm 1 Neural Bloom Filter

```
1: def controller(x):
                                                          ▶ Input embedding
       z \leftarrow f_{enc}(x)
                                                                 ▶ Query word
     q \leftarrow f_q(z)
                                           ▶ Memory address via softmax
     a \leftarrow \sigma(q^{\mathsf{T}}A)
       w \leftarrow f_w(z)
                                                                 ▶ Write word
 6: def write(x):
       a, w \leftarrow \text{controller}(x)
       M_{t+1} \leftarrow M_t + wa^{\top}
                                                              ▶ Additive write
 9: def read(x):
        a, w, z \leftarrow \text{controller}(x)
10:
       r \leftarrow \text{flatten}(Ma)
                                                              ▶ Read memory
11:
       o \leftarrow f_{out}([r, w, z])
                                                                ▶ Output logit
12:
```

Classical Bloom Filter Vs Neural Bloom Filter

Classical Bloom Filter	Neural Bloom Filter	
Fixed Hashing Functions	Learned Addressing Matrix	
Fixed Bit Array	Learned Memory Matrix	

Training using Meta-Learning

Meta-learning trains the model across many tasks to quickly adapt to new ones with minimal data, improving the ability to learn new storage sets efficiently.

Algorithm 2 Training

```
1: Let S_{\text{train}} denote the distribution over storage sets
```

- 2: Let Q_{train} denote the distribution over query items
- 3: **for** i = 1 to max training steps **do**
- 4: Sample task:
- 5: Sample set to store: $S \sim S_{\text{train}}$
- 6: Sample t queries: $x_1, \ldots, x_t \sim Q_{\text{train}}$
- 7: Define targets: $y_j = 1$ if $x_j \in S$ else 0, for j = 1, ..., t
- 8: Write entries to memory: $M \leftarrow f_{\theta}^{\text{write}}(S)$
- 9: Calculate logits: $o_j = f_{\theta}^{\text{read}}(M, x_j)$ for j = 1, ..., t
- 10: Compute cross-entropy loss:

$$\mathcal{L} = \sum_{j=1}^{t} y_j \log o_j + (1 - y_j)(1 - \log o_j)$$

- 11: Backpropagate loss: $\nabla_{\theta} \mathcal{L}$
- 12: Update parameters: $\theta_{i+1} \leftarrow \text{Optimizer}(\theta_i, \nabla_{\theta} \mathcal{L})$
- 13: end for

Neural Bloom Filter Implementation

Meta Training Implementation

```
def meta_train(model, dataset, labels, optimizer, criterion, device, meta_epochs=10, storage_set_size=60, num_queries=10, classes=[0,8,9,6]):
   model.train()
   for epoch in range(meta_epochs):
       class_num = random.choice(classes)
storage_indices, query_indices, targets= sample_task(labels, storage_set_size, num_queries, class_num)
       storage_images = dataset[storage_indices]
       storage_images = torch.tensor(storage_images, dtype=torch.float32).unsqueeze(1)
       query_images = dataset[query_indices]
       query_images = torch.tensor(query_images, dtype=torch.float32).unsqueeze(1)
       model.M.zero ()
         model.write(storage_images) # Expected shape: (storage_set_size, word_size)
       logits, = model.read(query_images) # Expected shape: (num_queries, class_num)
       probs = torch.sigmoid(logits)
       predictions = (probs > 0.5).float()
       for i in range(len(predictions)):
           if predictions[i] == 0 and targets[i] == 1:
           elif predictions[i] == 1 and targets[i] == 0:
       loss = criterion(logits, targets)
       optimizer.zero_grad()
       loss.backward()
       optimizer.step()
       total loss += loss.item()
       if (epoch + 1) % 100 == 0:
          avg_loss = total_loss / (epoch + 1)
           print(f*Epoch [{epoch+1}/{meta_epochs}], Loss: {loss.item():.4f}, False Positive Rate: {fpr}, False Negative Rate: {fnr}*)
    return total_loss / meta epochs
```

```
def sample_task(labels, storage_set_size, num_queries, class_num):
    class_to_indices = {}
    for idx, label in enumerate(labels):
          class_to_indices[label] = []
        class to indices[label].append(idx)
    storage_indices = random.sample(class_to_indices[class_num], storage_set_size)
    num_in = num_queries // 2
    num_out = num_queries - num_in
    query_in_indices = random.sample(class_to_indices[class_num], num_in)
other_classes = [c for c in class_to_indices if c != class_num]
    query_out_indices = []
        query out indices.append(random.choice(class to indices[other class]))
    targets = []
     targets.append(1)
    for i in range(num_out):
     targets.append(0)
    targets = torch.tensor(targets, dtype=torch.float32).unsqueeze(1)
```

Mode Hyperparameters used for training

Parameter	Value
Encoder output dimension	128
Memory slots (m)	{1024, 512, 256, 128, 64, 32, 16}
Word size (w)	64
Class count per task	1
Meta-training steps (T)	500
Storage set size (S)	{512, 256, 128, 64, 32, 16, 8}
Queries per task (Q)	S/2
Optimizer	Adam
Learning rate	1×10^{-5}
Loss function	Binary Cross-Entropy with Logits

Model Size	FPR (%)	Classical BF Size (KB)	NBF Size (KB)
1024	4	14.02	256.00
512	5.6	13.17	128.0
256	7.2	12.53	64.0
128	7.6	12.39	32.0
64	17.7	10.24	16.0
32	25.9	9.28	8.0
16	35.9	8.45	4.0

Advantages of NBF

Data-Adaptive Memory:

- Learns dataset structure (e.g., spatial patterns)
- Compact and efficient storage
- Performs well on image-like datasets

Improved Task-Specific Performance

- End-to-end training with downstream signals (e.g., classification loss)
- Optimizes both memory writes and reads.
- Outperforms heuristic hash functions.

Disadvantages of NBF

Nonzero False Negatives

- Unlike classical Bloom filters (zero FNR)
- Risk of missing true positives if memory underfits or overwrites

Dependence on Meta-Learning

- Requires structured task sampling
- Random batch training → poor address learning
- Leads to degraded accuracy

Conclusion

Neural Bloom Filter (NBF) Summary

Extends classical Bloom Filters with neural network concepts Trained and evaluated on MNIST dataset

Key Achievements

- Lower false positive rate under memory constraints
- Data-adaptive addressing through learned mechanisms
- Soft memory updates for flexible set membership

Challenges

A Introduction of false negatives

A Supervised training requirement

Future Works

Backup Bloom Filters

• Integrate classical backup to reduce false negatives

Quantization & Compression

Minimize memory requirements (floating-point optimization)

Training on Diverse Datasets

- Move beyond MNIST:
 - URL datasets
 - Genomic sequences

End-to-End Learned Hashing

• Joint optimization of hashing and addressing matrices

References

- Hojjat Khodabakhsh. 2017. MNIST Dataset. https://www.kaggle.com/datasets/hojjatk/mnist-dataset. Accessed: 2025-04-22.
- [2] Yi Lu, Balaji Prabhakar, and Flavio Bonomi. 2004. Bloom Filters: Design Innovations and Novel Applications. Technical Report. Stanford University. https://web. stanford.edu/~balaji/papers/bloom.pdf
- [3] Jack W. Rae, Sergey Bartunov, and Timothy P. Lillicrap. 2019. Meta-Learning Neural Bloom Filters. In Proceedings of the 36th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 97). PMLR, 5282–5291. https://arxiv.org/pdf/1906.04304
- [4] Y. Zhang, X. Wang, and M. Li. 2024. Meta-learning Approaches for Few-Shot Learning: A Survey of Recent Advances. Comput. Surveys 57, 1 (2024), 1–36. https://doi.org/10.1145/3659943

THANK YOU

TEAM - 27

Bhavik Patel (bhavik.patel@iitgn.ac.in)

Jinil Patel (jinil.patel@iitgn.ac.in)

Pranav Patil (pranav.patil@iitgn.ac.in)

Indian Institue of Technology Gandhinagar Palaj, Gujarat - 382355