Digital Image Processing

Image Restoration:
Noise Removal

Contents

In this lecture we will look at image restoration techniques used for noise removal

- What is image restoration?
- Noise and images
- Noise models
- Noise removal using spatial domain filtering
- Periodic noise
- Noise removal using frequency domain filtering

Image restoration

 Image restoration is the process of recovering the original scene from the observed scene which is degraded.

 Different form enhancement- aim of enhancement techniques make images visually appealing, whereas restoration essentially inverts the degradation- more objective.

Image restoration

 Has intersections with signal processing, estimation theory, inverse problems, linear algebra.

 As with most of the topics in Image Processing, restoration was developed to be used in astronomy, and is also used for restoring old films and pictures

What is Image Restoration?

- Image restoration attempts to restore images that have been degraded
- Identify the degradation process and attempt to reverse it
 - Similar to image enhancement, but more objective

Noise and Images

The sources of noise in digital images arise during image acquisition (digitization) and transmission

- Imaging sensors can be affected by ambient conditions
- Interference can be added to an image during transmission

Noise Model

We can consider a noisy image to be modelled as follows:

$$g(x, y) = f(x, y) + \eta(x, y)$$

where f(x, y) is the original image pixel, $\eta(x, y)$ is the noise term and g(x, y) is the resulting noisy pixel

- If we can estimate the model of the noise in an image, this will help us to figure out how to restore the image
- Noise is assumed to be uncorrelated with pixel values and does not depend on spatial coordinates

Noise Corruption Example

Noise Models

There are many different models for the image noise term $\eta(x, y)$:

- Gaussian
 - Most common model
- Rayleigh
- Erlang
- Exponential
- Uniform
- Impulse
 - Salt and pepper noise

Noise models

- Noise is characterized by its probability density function. Some of which are:
- Gaussian, Rayleigh, Uniform, Exponential, etc.
- By far Gaussian is the most popular model, because:
 - It is present widely in practice
 - Mathematical ease

Noise Example

 The test pattern to the right is ideal for demonstrating the addition of noise

 The following slides will show the result of adding noise based on various models to this image

Noise Example (cont...)

Identifying noise model

 If the imaging system is available we can capture images of a uniform gray value object, example a black board uniformly illuminated.

 If images from the system are given, look for part of images which are uniform.

a b c

Identifying noise

 Observing the histogram we can figure out which model the noise comes from.

FIGURE 5.6 Histograms computed using small strips (shown as inserts) from (a) the Gaussian, (b) the Rayleigh, and (c) the uniform noisy images in Fig. 5.4.

Noise Example (cont...)

Estimation of noise parameters

- Noise is characterized by the pdf, which in turn depends on certain parameters.
- For example the Gaussian model depends only on the mean and variance and can easily be computed from the histogram.

$$\mu = \sum_{z_i \in S} z_i p(z_i)$$

$$\sigma^2 = \sum_{z_i \in S} (z_i - \mu)^2 p(z_i)$$

where p(zi) is the normalized histogram values.

Restoration in presence of noise

Degradation model: g = f + n

- Restoration = Enhancement
 - Mean filtering, Median filtering, Notch filters.

- Some new ones:
 - Geometric mean filter, Harmonic mean filters, Midpoint filter, etc.

Filtering to Remove Noise

We can use spatial filters of different kinds to remove different kinds of noise

The arithmetic mean filter is a very simple one and is calculated as follows:

$$\hat{f}(x,y) = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} g(s,t)$$

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

This is implemented as the simple smoothing filter

Blurs the image to remove noise

Noise Removal Example

Original Image x									
54	52	57	55	56	52	51			
50	49	51	50	52	53	58			
51	204	52	52	0	57	60			
48	50	51	49	53	59	63			
49	51	52	55	58	64	67			
148	154	157	160	163	167	170			
151	155	159	162	165	169	172			
Image f(x, y)									

Other Means

There are different kinds of mean filters all of which exhibit slightly different behaviour:

- Geometric Mean
- Harmonic Mean
- Contraharmonic Mean

There are other variants on the mean which can give different performance

Geometric Mean:

$$\hat{f}(x,y) = \left[\prod_{(s,t)\in S_{xy}} g(s,t)\right]^{\frac{1}{mn}}$$

Achieves similar smoothing to the arithmetic mean, but tends to lose less image detail

Noise Removal Example

Original Image									
54	52	57	55	56	52	51			
50	49	51	50	52	53	58			
51	204	52	52	0	57	60			
48	50	51	49	53	59	63			
49	51	52	55	58	64	67			
148	154	157	160	163	167	170			
151	155	159	162	165	169	172			
Image f(x, y)									

Harmonic Mean:

$$\hat{f}(x, y) = \frac{mn}{\sum_{(s,t)\in S_{xy}} \frac{1}{g(s,t)}}$$

Works well for salt noise, but fails for pepper noise

Also does well for other kinds of noise such as Gaussian noise

Noise Corruption Example

Original Image									
54	52	57	55	56	52	51			
50	49	51	50	52	53	58			
51	204	52	52	0	57	60			
48	50	51	49	53	59	63			
49	51	52	55	58	64	67			
50	54	57	60	63	67	70			
51	55	59	62	65	69	72			
Image f(x, y)									

Contraharmonic Mean:

$$\hat{f}(x,y) = \frac{\sum_{(s,t)\in S_{xy}} g(s,t)^{Q+1}}{\sum_{(s,t)\in S_{xy}} g(s,t)^{Q}}$$

Q is the *order* of the filter and adjusting its value changes the filter's behaviour Positive values of Q eliminate pepper noise Negative values of Q eliminate salt noise

Noise Corruption Example

	Original Image									
	54	52	57	55	56	52	51			
	50	49	51	50	52	53	58			
•	51	204	52	52	0	57	60			
	48	50	51	49	53	59	63			
	49	51	52	55	58	64	67			
	50	54	57	60	63	67	70			
	51	55	59	62	65	69	72			
					Imo	ige f	(x, y)			

Noise Removal Examples

Original Image

Image Corrupted By Gaussian Noise

After A 3*3 Arithmetic Mean Filter

After A 3*3 Geometric Mean Filter

Noise Removal Examples (cont...)

Image Corrupted By Pepper Noise

Result of Filtering Above With 3*3 Contraharmonic Q=1.5

Noise Removal Examples (cont...)

Image Corrupted By Salt Noise

Result of
Filtering Above
With 3*3
Contraharmonic
Q=-1.5

Contraharmonic Filter: Here Be Dragons

Choosing the wrong value for Q when using the contraharmonic filter can have drastic results

Order Statistics Filters

Spatial filters that are based on ordering the pixel values that make up the neighbourhood operated on by the filter Useful spatial filters include

- Median filter
- Max and min filter
- Midpoint filter
- Alpha trimmed mean filter

Median Filter

Median Filter:

$$\hat{f}(x, y) = \underset{(s,t) \in S_{xy}}{median} \{g(s,t)\}$$

Excellent at noise removal, without the smoothing effects that can occur with other smoothing filters

Particularly good when salt and pepper noise is present

Noise Corruption Example

Original Image									
54	52	57	55	56	52	51			
50	49	51	50	52	53	58			
51	204	52	52	0	57	60			
48	50	51	49	53	59	63			
49	51	52	55	58	64	67			
50	54	57	60	63	67	70			
51	55	59	62	65	69	72			
Image f(x, y)									

Max and Min Filter

Max Filter:

$$\hat{f}(x,y) = \max_{(s,t)\in S_{xy}} \{g(s,t)\}$$

Min Filter:

$$\hat{f}(x, y) = \min_{(s,t) \in S_{xv}} \{g(s,t)\}$$

Max filter is good for pepper noise and min is good for salt noise

Noise Corruption Example

Original Image									
54	52	57	55	56	52	51			
50	49	51	50	52	53	58			
51	204	52	52	0	57	60			
48	50	51	49	53	59	63			
49	51	52	55	58	64	67			
50	54	57	60	63	67	70			
51	55	59	62	65	69	72			
Image $f(x, y)$									

Midpoint Filter

Midpoint Filter:

$$\hat{f}(x,y) = \frac{1}{2} \left[\max_{(s,t) \in S_{xy}} \{ g(s,t) \} + \min_{(s,t) \in S_{xy}} \{ g(s,t) \} \right]$$

Good for random Gaussian and uniform noise

Noise Corruption Example

Original Image										
54	52	57	55	56	52	51				
50	49	51	50	52	53	58				
51	204	52	52	0	57	60				
48	50	51	49	53	59	63				
49	51	52	55	58	64	67				
50	54	57	60	63	67	70				
51	55	59	62	65	69	72				
Image $f(x, y)$										

Alpha-Trimmed Mean Filter

Alpha-Trimmed Mean Filter:

$$\hat{f}(x,y) = \frac{1}{mn - d} \sum_{(s,t) \in S_{xy}} g_r(s,t)$$

We can delete the d/2 lowest and d/2 highest grey levels

So $g_r(s, t)$ represents the remaining mn - d pixels

Noise Corruption Example

Original Image											
54	52	57	55	56	52	51					
50	49	51	50	52	53	58					
51	204	52	52	0	57	60					
48	50	51	49	53	59	63					
49	51	52	55	58	64	67					
50	54	57	60	63	67	70					
51	55	59	62	65	69	72					
Image f(x, y)											

Noise Removal Examples

Image Corrupted By Salt And Pepper Noise

Result of 1
Pass With A
3*3 Median
Filter

Result of 2 Passes With A 3*3 Median Filter

Result of 3
Passes With
A 3*3 Median
Filter

Noise Removal Examples (cont...)

Image Corrupted By Pepper Noise

Image Corrupted By Salt Noise

Result Of Filtering Above With A 3*3 Max Filter

Result Of Filtering Above With A 3*3 Min Filter

Noise Removal Examples (cont...)

Image Corrupted By Uniform Noise

Image Further Corrupted By Salt and Pepper Noise

Filtered By 5*5 Arithmetic Mean Filter

Filtered By 5*5 Geometric Mean Filter

Filtered By 5*5 Median Filter

Filtered By 5*5 Alpha-Trimmed Mean Filter

Adaptive Filters

- The filters discussed so far are applied to an entire image without any regard for how image characteristics vary from one point to another
- The behaviour of adaptive filters changes depending on the characteristics of the image inside the filter region

We will take a look at the adaptive median filter

Adaptive filters for handling noise

- Adapts to some statistical measures on a local neighborhood, usually mean and variance:
 - g(i,j): the noisy image gray-level value.
 - : noise variance in the image.

 - $-\frac{\sigma_n^2}{-\frac{m_L}{\sigma_L^2}} : \text{local mean in neighborhood.}$ $-\frac{m_L}{\sigma_L^2} : \text{local variance in neighborhood.}$: local variance in neighborhood.
- σ_n^2 could be estimated from an uniform area in the given image.

Adaptive local noise reduction filter

 If noise variance is zero → Indicates no noise → return the observed image.

 If local variance is high compared to the noise variance → presence of edge or a sharp feature → return a value close to observed grey-value.

 If two variances are equal→ presence of noise→ return the arithmetic mean

Adaptive local noise reduction filter

Filter equation:

$$\hat{f}(x,y) = g(x,y) - \frac{\sigma_{\eta}^2}{\sigma_L^2} [g(x,y) - m_L]$$

- How to handle $\sigma_{\eta}^2 > \sigma_L^2$, what does it mean?
- When $\sigma_{\eta}^2 > \sigma_L^2$, let $\frac{\sigma_{\eta}^2}{\sigma_L^2} = 1$ in the filter equation.

Adaptive filter output

a b c d

FIGURE 5.13

(a) Image corrupted by additive Gaussian noise of zero mean and variance 1000. (b) Result of arithmetic mean filtering. (c) Result of geometric mean filtering.

(d) Result of adaptive noise reduction

filtering. All filters were of size 7×7 .

Adaptive Median Filtering

 The median filter performs relatively well on impulse noise as long as the spatial density of the impulse noise is not large

 The adaptive median filter can handle much more spatially dense impulse noise, and also performs some smoothing for non-impulse noise

 The key insight in the adaptive median filter is that the filter size changes depending on the characteristics of the image

Adaptive Median Filtering (cont...)

- Remember that filtering looks at each original pixel image in turn and generates a new filtered pixel
- First examine the following notation:

```
-z_{min} = minimum grey level in S_{xy}
```

- $-z_{max}$ = maximum grey level in S_{xy}
- $-z_{med}$ = median of grey levels in S_{xy}
- $-z_{xy}$ = grey level at coordinates (x, y)
- $-S_{max}$ =maximum allowed size of S_{xy}

Adaptive Median Filtering (cont...)

Level A:
$$AI = z_{med} - z_{min}$$

 $A2 = z_{med} - z_{max}$
If $AI > 0$ and $A2 < 0$, Go to level B
Else increase the window size
If window size $\leq S_{max}$ repeat level A
Else output z_{xy}

Level B:
$$B1 = z_{xy} - z_{min}$$

 $B2 = z_{xy} - z_{max}$
If $B1 > 0$ and $B2 < 0$, output z_{xy}
Else output z_{med}

Adaptive Median Filtering (cont...)

The key to understanding the algorithm is to remember that the adaptive median filter has three purposes:

- Remove impulse noise
- Provide smoothing of other noise
- Reduce distortion

Adaptive Filtering Example

Image corrupted by salt and pepper noise with probabilities $P_a = P_b = 0.25$

Result of filtering with a 7 * 7 median filter

Result of adaptive median filtering with i = 7

Periodic Noise

- •It arises due to electrical or electromagnetic interference
- Gives rise to regular noise patterns in an image
- Frequency domain techniques in the Fourier domain are most effective at removing periodic noise

Band Reject Filters

- Removing periodic noise form an image involves removing a particular range of frequencies from that image
- *The reject* filters can be used for this purpose An ideal band reject filter is given as follows:

$$H(u,v) = \begin{cases} 1 & \text{if } D(u,v) < D_0 - \frac{W}{2} \\ 0 & \text{if } D_0 - \frac{W}{2} \le D(u,v) \le D_0 + \frac{W}{2} \\ 1 & \text{if } D(u,v) > D_0 + \frac{W}{2} \end{cases}$$

Band Reject Filters (cont...)

The ideal band reject filter is shown below, along with Butterworth and Gaussian versions of the filter

Ideal Band Reject Filter

Butterworth
Band Reject
Filter (of order 1)

Gaussian Band Reject Filter

Band Reject Filter Example

Image corrupted by sinusoidal noise

Fourier spectrum of corrupted image

Butterworth band reject filter

Filtered image

Summary

- In this lecture we will look at image restoration for noise removal
- Restoration is slightly more objective than enhancement
- Spatial domain techniques are particularly useful for removing random noise
- Frequency domain techniques are particularly useful for removing periodic noise