Zee Recommender System

```
In [90]: import pandas as pd
           import numpy as np
           from matplotlib import pyplot as plt
           import seaborn as sns
           from sklearn.metrics.pairwise import cosine similarity
           from scipy.sparse import csr matrix
In [91]: | m = pd.read fwf('data/zee-movies.dat')
           r = pd.read_fwf('data/zee-ratings.dat')
          u = pd.read_fwf('data/zee-users.dat')
In [92]: m.head()
Out[92]:
                                   Movie ID::Title::Genres Unnamed: 1 Unnamed: 2
           0 1::Toy Story (1995)::Animation|Children's|Comedy
                                                               NaN
                                                                           NaN
                2::Jumanji (1995)::Adventure|Children's|Fantasy
                                                               NaN
                                                                           NaN
           2
                3::Grumpier Old Men (1995)::Comedy|Romance
                                                               NaN
                                                                           NaN
            3
                   4::Waiting to Exhale (1995)::Comedy|Drama
                                                               NaN
                                                                           NaN
                   5::Father of the Bride Part II (1995)::Comedy
                                                               NaN
                                                                           NaN
In [93]: movies=m.drop(columns=['Unnamed: 1','Unnamed: 2'])
In [94]: movies.head()
Out[94]:
                                   Movie ID::Title::Genres
           0 1::Toy Story (1995)::Animation|Children's|Comedy
                2::Jumanji (1995)::Adventure|Children's|Fantasy
           2
                3::Grumpier Old Men (1995)::Comedy|Romance
            3
                   4::Waiting to Exhale (1995)::Comedy|Drama
                   5::Father of the Bride Part II (1995)::Comedy
In [95]: |movies=movies['Movie ID::Title::Genres'].str.split('::',expand=True)
          movies.columns=['MovieID','Title','Genres']
```

```
In [96]: movies.head()
```

Out[96]:

Genres	Title	MovielD	
Animation Children's Comedy	Toy Story (1995)	1	0
Adventure Children's Fantasy	Jumanji (1995)	2	1
Comedy Romance	Grumpier Old Men (1995)	3	2
Comedy Drama	Waiting to Exhale (1995)	4	3
Comedy	Father of the Bride Part II (1995)	5	4

```
In [97]: def findYear(x):
    if('19' in x):
        a=x.index('19')
        return int(x[a:a+4])
    elif('20' in x):
        a=x.index('20')
        return int(x[a:a+4])
    else:
        return 0
```

```
In [98]: def Title(x):
    if('19' in x or '20' in x):
        return x[:-7]
    else:
        return x
```

```
In [99]: movies['Year'] = movies['Title'].apply(lambda x:findYear(x))
movies['Title'] = movies['Title'].apply(lambda x:Title(x))
```

In [100]: movies.head(5)

Out[100]:

MovielD		Title	Genres	Year
0	1	Toy Story	Animation Children's Comedy	1995
1	2	Jumanji	Adventure Children's Fantasy	1995
2	3	Grumpier Old Men	Comedy Romance	1995
3	4	Waiting to Exhale	Comedy Drama	1995
4	5	Father of the Bride Part II	Comedy	1995

```
In [101]: movies['Title']
Out[101]: 0
                                     Toy Story
                                       Jumanji
          1
          2
                              Grumpier Old Men
          3
                             Waiting to Exhale
          4
                   Father of the Bride Part II
          3878
                              Meet the Parents
          3879
                           Requiem for a Dream
          3880
                                     Tigerland
                              Two Family House
          3881
          3882
                                Contender, The
          Name: Title, Length: 3883, dtype: object
In [102]: movies.loc[movies['Title'].str.contains('Outlaw, The')]
Out[102]:
                MovielD
                             Title
                                  Genres
                                         Year
           955
                   967 Outlaw, The
                                  Western 1943
In [103]: movies.shape
Out[103]: (3883, 4)
          There are 3883 movies in the dataset
In [104]: movies['Year'].unique()
Out[104]: array([1995, 1994, 1996,
                                       0, 1976, 1993, 1992, 1988, 1967, 1964, 1977,
                  1965, 1982, 1962, 1990, 1991, 1989, 1937, 1940, 1969, 1981, 1973,
                  1970, 1960, 1955, 1956, 1959, 1968, 1980, 1975, 1986, 1948, 1943,
                  1950, 1946, 1987, 1997, 1974, 1958, 1949, 1972, 1998, 1933, 1952,
                  1951, 1957, 1961, 1954, 1934, 1944, 1963, 1942, 1941, 1953, 1939,
                  1947, 1945, 1938, 1935, 1936, 1926, 1932, 1930, 1971, 1979, 1966,
                  1978, 1985, 1983, 1984, 1931, 1922,
                                                         19, 1927, 1929, 195, 1928,
                  1925, 1923, 1999, 1900, 1919, 2000, 1920, 1921], dtype=int64)
In [105]: mode year=movies['Year'].mode()
          movies.replace({'Year':{
              0 : mode_year,
              19: mode year,
              195 : mode year
          }},
               inplace=True
                                     )
```

```
In [106]: movies['Year'].unique()
Out[106]: array([1995, 1994, 1996, 1976, 1993, 1992, 1988, 1967, 1964, 1977, 1965,
                   1982, 1962, 1990, 1991, 1989, 1937, 1940, 1969, 1981, 1973, 1970,
                   1960, 1955, 1956, 1959, 1968, 1980, 1975, 1986, 1948, 1943, 1950,
                   1946, 1987, 1997, 1974, 1958, 1949, 1972, 1998, 1933, 1952, 1951,
                   1957, 1961, 1954, 1934, 1944, 1963, 1942, 1941, 1953, 1939, 1947,
                   1945, 1938, 1935, 1936, 1926, 1932, 1930, 1971, 1979, 1966, 1978,
                   1985, 1983, 1984, 1931, 1922, 1927, 1929, 1928, 1925, 1923, 1999,
                   1900, 1919, 2000, 1920, 1921], dtype=int64)
In [107]: max(movies['Year']) - min(movies['Year'])
Out[107]: 100
           These movies belongs to 19th Century
In [108]: r.head()
Out[108]:
               UserID::MovieID::Rating::Timestamp
            0
                            1::1193::5::978300760
            1
                            1::661::3::978302109
            2
                            1::914::3::978301968
                            1::3408::4::978300275
                            1::2355::5::978824291
In [109]:
           ratings=r
           ratings.head()
Out[109]:
               UserID::MovieID::Rating::Timestamp
            0
                            1::1193::5::978300760
                            1::661::3::978302109
            1
            2
                            1::914::3::978301968
            3
                            1::3408::4::978300275
                           1::2355::5::978824291
```

```
In [110]: ratings=ratings['UserID::MovieID::Rating::Timestamp'].str.split('::',expand=True)
ratings.columns=['UserID','MovieID','Rating','Timestamp']
ratings.sample(5)
```

Out[110]:

	UserID	MovieID	Rating	Timestamp
518422	3200	1653	4	968629872
494263	3032	2355	5	970345633
34568	235	1500	5	976770421
324177	1921	455	3	974693607
435841	2664	2145	3	973455388

```
In [111]: ratings.shape
Out[111]: (1000209, 4)
```

The data has total 1000209 reatings

Basic EDA on data

```
In [112]: sns.countplot('Rating',data=ratings)
plt.title('Distribution of movies by Rating')
```

C:\Users\user\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarn ing: Pass the following variable as a keyword arg: x. From version 0.12, the on ly valid positional argument will be `data`, and passing other arguments withou t an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[112]: Text(0.5, 1.0, 'Distribution of movies by Rating')

Most of the times users has rated the movies as '4'

```
In [113]: def decade(x):
    if(x<2000):
        return str((((x)%1900)//10)*10)+'s'
    else:
        return "2000s"
    movies['Decade'] = movies['Year'].apply(lambda x:decade(x))</pre>
```

In [114]: movies.head()

Out[114]:

	MovielD	Title	Genres	Year	Decade
0	1	Toy Story	Animation Children's Comedy	1995	90s
1	2	Jumanji	Adventure Children's Fantasy	1995	90s
2	3	Grumpier Old Men	Comedy Romance	1995	90s
3	4	Waiting to Exhale	Comedy Drama	1995	90s
4	5	Father of the Bride Part II	Comedy	1995	90s

```
In [115]: sns.countplot('Decade',data=movies)
plt.title('Distribution of movies by Release Year/ Decade')
```

C:\Users\user\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarn ing: Pass the following variable as a keyword arg: x. From version 0.12, the on ly valid positional argument will be `data`, and passing other arguments withou t an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[115]: Text(0.5, 1.0, 'Distribution of movies by Release Year/ Decade')

Most of the movies are from 90's

```
In [116]: users=u
u.sample(5)
```

Out[116]:

	OseribGeriderAgeOccupationZip-code
1014	1015::M::35::3::11220
5682	5683::F::18::9::94538
2926	2927::M::25::12::24060
5144	5145::M::35::7::77565-2332
1270	1271::F::45::6::54401

Out[117]:

	UserID	Gender	Age	Occupation	ZipCode
1950	1951	F	18	4	90630
3445	3446	М	25	7	30620
423	424	М	25	17	55112
623	624	М	25	1	75207
4219	4220	М	35	0	97225

```
In [118]: users['Age'].unique()
```

```
Out[118]: array(['1', '56', '25', '45', '50', '35', '18'], dtype=object)
```

```
In [120]: | users.replace({'Occupation' : {'0': "other",
           '1': "academic/educator",
           '2': "artist",
           '3': "clerical/admin",
           '4': "college/grad student",
           '5': "customer service",
          '6': "doctor/health care",
           '7': "executive/managerial",
           '8': "farmer",
           '9': "homemaker",
           '10': "K-12 student",
           '11': "lawyer",
           '12': "programmer",
           '13': "retired",
           '14': "sales/marketing",
           '15': "scientist",
           '16': "self-employed",
           '17': "technician/engineer",
           '18': "tradesman/craftsman",
           '19': "unemployed",
          '20': "writer"}},inplace=True)
```

```
In [121]: users.sample(10)
```

Out[121]:

	UserID	Gender	Age	Occupation	ZipCode
3068	3069	М	18-24	college/grad student	97470
3616	3617	М	35-44	executive/managerial	49034
5442	5443	М	25-34	programmer	01915
3263	3264	F	25-34	academic/educator	94536
1148	1149	М	25-34	programmer	98103
5877	5878	F	25-34	other	60640
90	91	М	35-44	executive/managerial	07650
1747	1748	М	50-55	academic/educator	04240
5346	5347	М	25-34	doctor/health care	53705
839	840	F	25-34	clerical/admin	02828

```
In [122]: sns.countplot('Gender',data=users)
plt.title('Distribution of users by Gender')
```

C:\Users\user\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarn
ing: Pass the following variable as a keyword arg: x. From version 0.12, the on
ly valid positional argument will be `data`, and passing other arguments withou
t an explicit keyword will result in an error or misinterpretation.
warnings.warn(

Out[122]: Text(0.5, 1.0, 'Distribution of users by Gender')

most users are male

```
In [123]: sns.countplot('Age',data=users)
plt.title('Distribution of users by Age')
```

C:\Users\user\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarn ing: Pass the following variable as a keyword arg: x. From version 0.12, the on ly valid positional argument will be `data`, and passing other arguments withou t an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[123]: Text(0.5, 1.0, 'Distribution of users by Age')

Most users belongs to age group of 25-34

```
In [124]: sns.countplot(y='Occupation',data=users,orient="h")
plt.title('Distribution of users by Occupation')
```

Out[124]: Text(0.5, 1.0, 'Distribution of users by Occupation')

Merging the datasets

```
In [125]: df1= pd.merge(movies,ratings,how='inner',on='MovieID')
    df1.head(10)
```

Out[125]:

	MovielD	Title	Genres	Year	Decade	UserID	Rating	Timestamp
0	1	Toy Story	Animation Children's Comedy	1995	90s	1	5	978824268
1	1	Toy Story	Animation Children's Comedy	1995	90s	6	4	978237008
2	1	Toy Story	Animation Children's Comedy	1995	90s	8	4	978233496
3	1	Toy Story	Animation Children's Comedy	1995	90s	9	5	978225952
4	1	Toy Story	Animation Children's Comedy	1995	90s	10	5	978226474
5	1	Toy Story	Animation Children's Comedy	1995	90s	18	4	978154768
6	1	Toy Story	Animation Children's Comedy	1995	90s	19	5	978555994
7	1	Toy Story	Animation Children's Comedy	1995	90s	21	3	978139347
8	1	Toy Story	Animation Children's Comedy	1995	90s	23	4	978463614
9	1	Toy Story	Animation Children's Comedy	1995	90s	26	3	978130703

Out[126]:

	MovieID	Title	Genres	Year	Decade	UserID	Rating	Timesta
792179	2243	Broadcast News	Comedy Drama Romance	1987	80s	3981	3	965628
625768	1676	Starship Troopers	Action Adventure Sci-Fi War	1997	90s	5443	3	9599804
71197	2283	Sheltering Sky, The	Drama	1990	90s	795	2	10386932
192639	2901	Phantasm	Horror Sci-Fi	1979	70s	1922	2	974694
183114	491	Man Without a Face, The	Drama	1993	90s	1861	3	974705
704093	2757	Frances	Drama	1982	80s	2129	5	983416
337541	1597	Conspiracy Theory	Action Mystery Romance Thriller	1997	90s	3562	3	966792 ⁻
162918	2407	Cocoon	Comedy Sci-Fi	1985	80s	1671	4	10182250
939842	2133	Adventures in Babysitting	Adventure Comedy	1987	80s	4688	4	9636194
345264	555	True Romance	Action Crime Romance	1993	90s	3626	3	9666084
86527	2872	Excalibur	Action Drama Fantasy Romance	1981	80s	963	4	9751204
550776	3219	Pacific Heights	Thriller	1990	90s	5749	2	962844;
610525	590	Dances with Wolves	Adventure Drama Western	1990	90s	4131	3	965350 [°]
218538	1257	Better Off Dead	Comedy	1985	80s	2109	3	974656
981853	1230	Annie Hall	Comedy Romance	1977	70s	3241	4	968346
27166	2136	Nutty Professor, The	Comedy	1963	60s	333	2	9963574
103366	159	Clockers	Drama	1995	90s	1124	3	974910
851717	527	Schindler's List	Drama War	1993	90s	3069	5	970358
189800	2193	Willow	Action Adventure Fantasy	1988	80s	1904	3	974759
772408	1625	Game, The	Mystery Thriller	1997	90s	4783	3	9630054

In [127]: dff.tail(50)

Out[127]:

	MovielD	Title	Genres	Year	Decade	UserID	Rating	
1000159	2028	Saving Private Ryan	Action Drama War	1998	90s	5727	4	
1000160	2306	Holy Man	Comedy	1998	90s	5727	2	
1000161	2335	Waterboy, The	Comedy	1998	90s	5727	1	
1000162	2355	Bug's Life, A	Animation Children's Comedy	1998	90s	5727	4	
1000163	2394	Prince of Egypt, The	Animation Musical	1998	90s	5727	3	
1000164	2605	Entrapment	Crime Thriller	1999	90s	5727	4	
1000165	2634	Mummy, The	Horror	1959	50s	5727	2	•

```
In [128]: dff.dtypes
Out[128]: MovieID
                         object
          Title
                         object
          Genres
                         object
          Year
                          int64
          Decade
                         object
          UserID
                         object
          Rating
                         object
                         object
          Timestamp
                         object
          Gender
          Age
                         object
          Occupation
                         object
          ZipCode
                         object
          dtype: object
In [129]: dff["Rating"] = dff["Rating"].astype(str).astype(int)
```

```
In [130]: dff['Timestamp'] = pd.to_datetime(dff['Timestamp'],unit='s')
```

```
In [131]: dff.dtypes
Out[131]: MovieID
                                  object
                                  object
           Title
           Genres
                                  object
           Year
                                   int64
           Decade
                                  object
           UserID
                                  object
                                   int32
           Rating
                         datetime64[ns]
           Timestamp
           Gender
                                  object
           Age
                                  object
           Occupation
                                  object
           ZipCode
                                  object
           dtype: object
In [132]: |dff['Rating'].unique()
```

```
In [132]: dff['Rating'].unique()
Out[132]: array([5, 4, 3, 2, 1])
```

Even though we have found what is the age group of most number of users, but we are not sure whether the same age group has rated more number of movies. Hence doing this plot on merged Dataset

```
In [192]: sns.countplot('Age',data=dff)
plt.title('Distribution of users by Age')
```

C:\Users\user\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarn
ing: Pass the following variable as a keyword arg: x. From version 0.12, the on
ly valid positional argument will be `data`, and passing other arguments withou
t an explicit keyword will result in an error or misinterpretation.
warnings.warn(

users dataset, but we are not sure whether the people of same occupation has rated more number of movies. Hence doing this plot on merged Dataset

```
In [193]: sns.countplot(y='Occupation',data=dff,orient="h")
plt.title('Distribution of users by Occupation')
```

Out[193]: Text(0.5, 1.0, 'Distribution of users by Occupation')

Grouping the data with respect to Movies to find high rated movies

In [134]: temp1.loc[temp1['no_of_ratings']>100]

Out[134]:

	MovieID	Title	no_of_ratings	Avg_Rating
14	2019	Seven Samurai (The Magnificent Seven) (Shichin	628	4.560510
15	318	Shawshank Redemption, The	2227	4.554558
16	858	Godfather, The	2223	4.524966
17	745	Close Shave, A	657	4.520548
18	50	Usual Suspects, The	1783	4.517106
3623	2555	Baby Geniuses	164	1.701220
3641	2383	Police Academy 6: City Under Siege	149	1.657718
3645	2817	Aces: Iron Eagle III	125	1.640000
3648	3593	Battlefield Earth	342	1.611111
3664	810	Kazaam	120	1.466667

2006 rows × 4 columns

Just considering the cutoff that a movie should be rated by atleaset 100 users to be rated as a genuine rated film. Hence **Seven Samurai** is the high rated film in the data

In [135]: temp1.loc[temp1['no_of_ratings'] == max(temp1['no_of_ratings'])]

Out[135]:

MovielD		MovielD	Title	no_of_ratings	Avg_Rating
	75	2858	American Beauty	3428	4.317386

More number of users have given their rating for American Beauty

```
In [136]: temp1.loc[(temp1['no_of_ratings']>100) & (temp1['Avg_Rating']>=4)]
```

Out[136]:

	MovielD	Title	no_of_ratings	Avg_Rating
14	2019	Seven Samurai (The Magnificent Seven) (Shichin	628	4.560510
15	318	Shawshank Redemption, The	2227	4.554558
16	858	Godfather, The	2223	4.524966
17	745	Close Shave, A	657	4.520548
18	50	Usual Suspects, The	1783	4.517106
373	497	Much Ado About Nothing	667	4.000000
374	1827	Big One, The	102	4.000000
382	2670	Run Silent, Run Deep	220	4.000000
415	1238	Local Hero	351	4.000000
419	2575	Dreamlife of Angels, The (La Vie rêvée des anges)	141	4.000000

302 rows × 4 columns

There are around 302 movies where the movies are considered good with rating above 4

In [138]: temp2

Out[138]:

	UserID	no_of_ratings	Avg_Rating
0	283	27	4.962963
1	2339	23	4.956522
2	3324	21	4.904762
3	3902	165	4.890909
4	446	51	4.843137
6035	5850	58	1.844828
6036	4539	119	1.815126
6037	2744	138	1.304348
6038	4486	51	1.058824
6039	3598	65	1.015385

6040 rows × 3 columns

In [139]: temp2.loc[temp2['no_of_ratings']>10]

Out[139]:

	UserID	no_of_ratings	Avg_Rating
0	283	27	4.962963
1	2339	23	4.956522
2	3324	21	4.904762
3	3902	165	4.890909
4	446	51	4.843137
6035	5850	58	1.844828
6036	4539	119	1.815126
6037	2744	138	1.304348
6038	4486	51	1.058824
6039	3598	65	1.015385

6040 rows × 3 columns

The user with ID 283 has given rated movies higher and the user with ID 3598 has rated most of the movies as low

The User with UserID 4169 has given ratings for more number of movies

3.551858

Creating a Pivot Table

2314

4056

4169

In [142]: matrix.head(20)

Out[142]:

Title	\$1,000,000 Duck	'Night Mother	'Til There Was You	'burbs, The	And Justice for All	1- 900	10 Things I Hate About You	101 Dalmatians	12 Angry Men	13th Warrior, The	
UserID											
1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
10	NaN	NaN	NaN	4.0	NaN	NaN	NaN	NaN	3.0	4.0	
100	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	4.0	NaN	NaN	
1001	NaN	NaN	NaN	NaN	NaN	NaN	NaN	3.0	NaN	NaN	
1002	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1003	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1004	NaN	NaN	NaN	NaN	NaN	NaN	NaN	4.0	NaN	NaN	
1005	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1006	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1007	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1008	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1009	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
101	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	4.0	
1010	NaN	NaN	NaN	1.0	NaN	NaN	3.0	1.0	4.0	NaN	
1011	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1012	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1013	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1014	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1015	NaN	3.0	2.0	NaN	3.0	NaN	3.0	4.0	NaN	NaN	

20 rows × 3664 columns

```
In [143]: matrix.fillna(0,inplace=True)
matrix.head(10)
```

Out[143]:

Title	\$1,000,000 Duck	'Night Mother	'Til There Was You	'burbs, The	And Justice for All	1- 900	Things I Hate About You	101 Dalmatians	12 Angry Men	13th Warrior, The	
UserID											
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
10	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	3.0	4.0	
100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	
1001	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	
1002	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1003	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1004	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	
1005	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1006	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

4٨

10 rows × 3664 columns

Item Based Approach : Pearson Correlation

```
In [194]: input_movie = input('Enter a Movie name:')
    rating_movie = matrix[input_movie]
    similar_rated_movies = matrix.corrwith(rating_movie)
```

Enter a Movie name:Liar Liar

```
In [195]: similar_rated_movies
Out[195]: Title
           $1,000,000 Duck
                                                   0.063723
           'Night Mother
                                                   0.048226
           'Til There Was You
                                                   0.073924
           'burbs, The
                                                   0.225559
           ...And Justice for All
                                                   0.074494
                                                     . . .
           Zed & Two Noughts, A
                                                   0.014045
           Zero Effect
                                                   0.174860
           Zero Kelvin (Kjærlighetens kjøtere)
                                                  -0.006114
           Zeus and Roxanne
                                                   0.067541
           eXistenZ
                                                   0.085360
           Length: 3664, dtype: float64
In [196]: | df_similar = pd.DataFrame(similar_rated_movies,columns=['Correlation Value'])
          df_similar.sort_values('Correlation Value',ascending=False,inplace=True)
          df_similar.iloc[1:].head()
Out[196]:
                                  Correlation Value
                             T:41.
```

litie	
Mrs. Doubtfire	0.499927
Dumb & Dumber	0.459601
Ace Ventura: Pet Detective	0.458654
Home Alone	0.455967
Wedding Singer, The	0.429222

Item Based Approach: Cosine Similarity

Item Similarity Matrix

```
In [197]: item_sim_matrix = cosine_similarity(matrix.T)
    item_sim_matrix = pd.DataFrame(item_sim_matrix,index=matrix.columns,columns=matri
    item_sim_matrix.head()
```

Out[197]:

Title	\$1,000,000 Duck	'Night Mother	'Til There Was You	'burbs, The	And Justice for All	1-900	Things I Hate About You	101 Dalmatians	,
Title									
\$1,000,000 Duck	1.000000	0.072357	0.037011	0.079291	0.060838	0.00000	0.058619	0.189843	0.09
'Night Mother	0.072357	1.000000	0.115290	0.115545	0.159526	0.00000	0.076798	0.137135	0.1
'Til There Was You	0.037011	0.115290	1.000000	0.098756	0.066301	0.08025	0.127895	0.128523	0.0
'burbs, The	0.079291	0.115545	0.098756	1.000000	0.143620	0.00000	0.192191	0.250140	0.17
And Justice for All	0.060838	0.159526	0.066301	0.143620	1.000000	0.00000	0.075093	0.178928	0.20

5 rows × 3664 columns

User Similarity Matrix

```
In [198]: | user sim matrix = cosine similarity(matrix)
           user sim matrix = pd.DataFrame(user sim matrix,index=matrix.index,columns= matrix
           user sim matrix.head()
Out[198]:
            UserID
                          1
                                  10
                                          100
                                                  1000
                                                           1001
                                                                    1002
                                                                             1003
                                                                                      1004
                                                                                               1005
            UserID
                 1 1.000000 0.254736 0.123967 0.207800 0.139112 0.110320 0.121384
                                                                                   0.180073 0.103137
                10 0.254736 1.000000 0.259052 0.279838 0.158108 0.112659
                                                                          0.141661
                                                                                   0.431184
                                                                                            0.193049
               100 0.123967 0.259052 1.000000 0.306067 0.075625 0.110450 0.358686
                                                                                   0.237292 0.171609
              1000 0.207800 0.279838 0.306067
                                               1.000000 0.098971
                                                                0.047677 0.201722 0.355619 0.323584
              1001 0.139112 0.158108 0.075625 0.098971
                                                        1.000000 0.164611 0.053807 0.149848 0.137387
           5 rows × 6040 columns
```

CSR matrix and Printing recommendations based on KNN

```
In [199]:
          csrmatrix = csr_matrix(matrix.T.values)
          csrmatrix
Out[199]: <3664x6040 sparse matrix of type '<class 'numpy.float64'>'
                  with 997085 stored elements in Compressed Sparse Row format>
In [200]: | from sklearn.neighbors import NearestNeighbors
In [201]:
          knn = NearestNeighbors(n_neighbors=5,metric='cosine',n_jobs=-1)
          knn.fit(csrmatrix)
Out[201]: NearestNeighbors(metric='cosine', n_jobs=-1)
In [202]: | query_movie = input('Enter a movie name:')
          distances,indices = knn.kneighbors(matrix[query_movie].values.reshape(1,-1),n_nei
          for i in range(0,len(distances.flatten())):
              if(i==0):
                  print('Recommendations for {0}: \n'.format(query movie))
              else:
                  print('{0}. {1}'.format(i,matrix.columns[indices.flatten()[i]]))
          Enter a movie name:Liar Liar
          Recommendations for Liar Liar:
          1. Mrs. Doubtfire
          2. Ace Ventura: Pet Detective
          3. Dumb & Dumber
```

4. Home Alone5. Wayne's World

Matrix Factorization

```
In [154]: #pip install keras
In [155]: #pip install tensorflow
In [156]: from keras.models import load model
          from sklearn.model selection import train test split
          from keras.layers import Input, Embedding, Flatten, Dot, Dense, Concatenate
          from keras.models import Model
In [174]: | u = dff.UserID.unique()
          m = dff.MovieID.unique()
          userid to idx = {o:i for i,o in enumerate(u)}
          movieid_to_idx = {o:i for i,o in enumerate(m)}
In [175]: dff['UserID'] = dff['UserID'].apply(lambda x: userid to idx[x])
          dff['MovieID'] = dff['MovieID'].apply(lambda x: movieid to idx[x])
          split = np.random.rand(len(dff)) < 0.8</pre>
          train_val = dff[split]
          test = dff[~split]
          split1 = np.random.rand(len(train_val)) < 0.75</pre>
          train = train_val[split1]
          validation = train val[~split1]
In [176]: train.shape, validation.shape, test.shape
Out[176]: ((599763, 12), (200276, 12), (200170, 12))
In [177]: no of unique movies = len(dff['MovieID'].unique())
          no of unique users = len(dff['UserID'].unique())
          print(no_of_unique_movies,no_of_unique_users)
          3706 6040
In [178]: latent factors = 64
          user_input = Input(shape=(1,),name='User-input',dtype='int64')
In [179]: user_embedding = Embedding(no_of_unique_users,latent_factors,name='user_embedding
In [180]: | user vec=Flatten(name="Flatten-Users")(user embedding)
In [181]: | movie_input = Input(shape=(1,), name="Movie-Input")
          movie_embedding = Embedding(no_of_unique_movies, latent_factors, name="Movie-Embe
          movie vec = Flatten(name="Flatten-Movies")(movie embedding)
```

```
In [182]: import tensorflow as tf
          import keras
          sim =tf.keras.layers.dot([user_vec,movie_vec],name='Similarity-Dot-Product',axes=
          model = keras.models.Model([user_input,movie_input],sim)
          model.compile(optimizer=tf.keras.optimizers.Adam(lr=1e-4),loss='mse')
```

In [183]: model.summary()

Model:	"model	2"

Layer (type)	Output Shape	Param #	Connected to
=======================================			
User-input (InputLayer)	[(None, 1)]	0	[]
Movie-Input (InputLayer)	[(None, 1)]	0	[]
<pre>user_embedding (Embedding) [0][0]']</pre>	(None, 1, 64)	386560	['User-input
Movie-Embedding (Embedding) t[0][0]']	(None, 1, 64)	237184	['Movie-Inpu
<pre>Flatten-Users (Flatten) ding[0][0]']</pre>	(None, 64)	0	['user_embed
<pre>Flatten-Movies (Flatten) dding[0][0]']</pre>	(None, 64)	0	['Movie-Embe
<pre>Similarity-Dot-Product (Dot) ers[0][0]',</pre>	(None, 1)	0	['Flatten-Us
vies[0][0]']			'Flatten-Mo
		========	

Total params: 623,744 Trainable params: 623,744

Non-trainable params: 0

```
Epoch 1/20
4686/4686 [============= ] - 59s 12ms/step - loss: 14.0455 -
val loss: 13.9637
Epoch 2/20
4686/4686 [=============== ] - 61s 13ms/step - loss: 12.4078 -
val loss: 9.7863
Epoch 3/20
4686/4686 [============== ] - 58s 12ms/step - loss: 6.4557 - v
al loss: 3.9350
Epoch 4/20
4686/4686 [============== ] - 58s 12ms/step - loss: 2.7675 - v
al loss: 2.0785
Epoch 5/20
4686/4686 [============= ] - 61s 13ms/step - loss: 1.6608 - v
al loss: 1.4246
Epoch 6/20
4686/4686 [============= ] - 69s 15ms/step - loss: 1.2311 - v
al loss: 1.1426
Epoch 7/20
4686/4686 [============= ] - 65s 14ms/step - loss: 1.0378 - v
al loss: 1.0070
Epoch 8/20
4686/4686 [============= ] - 65s 14ms/step - loss: 0.9410 - v
al loss: 0.9358
Epoch 9/20
4686/4686 [============== ] - 77s 16ms/step - loss: 0.8887 - v
al loss: 0.8958
Epoch 10/20
4686/4686 [============= ] - 74s 16ms/step - loss: 0.8584 - v
al loss: 0.8721
Epoch 11/20
4686/4686 [============= ] - 73s 15ms/step - loss: 0.8394 - v
al loss: 0.8575
Epoch 12/20
4686/4686 [============== ] - 71s 15ms/step - loss: 0.8264 - v
al loss: 0.8475
Epoch 13/20
4686/4686 [============= ] - 73s 16ms/step - loss: 0.8168 - v
al loss: 0.8397
Epoch 14/20
4686/4686 [============== ] - 81s 17ms/step - loss: 0.8088 - v
al_loss: 0.8337
Epoch 15/20
4686/4686 [============= ] - 83s 18ms/step - loss: 0.8020 - v
al loss: 0.8287
Epoch 16/20
4686/4686 [============= ] - 70s 15ms/step - loss: 0.7954 - v
al loss: 0.8241
Epoch 17/20
4686/4686 [============= ] - 72s 15ms/step - loss: 0.7894 - v
al loss: 0.8197
```

```
In [185]: y_pred = model.predict([test.UserID,test.MovieID],verbose=0)
```

Calulating RMSE

```
In [189]: from sklearn.metrics import mean_squared_error
    rmse = mean_squared_error(test.Rating,y_pred,squared=False)
    print('Root mean squared error :{:.3f}'.format(rmse))
```

Root mean squared error :0.898

Calculating MAPE

```
In [190]: from sklearn.metrics import mean_absolute_percentage_error
mape = mean_absolute_percentage_error(test.Rating,y_pred)
print('Mean absolute Percentage error :{:.3f}'.format(mape))
```

Mean absolute Percentage error :0.275

```
In [191]: plt.plot(model_hist.history['loss'],'g')
    plt.plot(model_hist.history['val_loss'],'b')
    plt.xlabel('Epochs')
    plt.ylabel('Loss')
    plt.legend(['Train','Test'],loc='upper right')
    plt.grid(True)
    plt.show()
```


In []:		