

ECEN 758 Data Mining and Analysis: Lecture 12, Bayesian and Nearest Neighbor Classification

Joshua Peeples, Ph.D.

Assistant Professor

Department of Electrical and Computer Engineering

Announcements

- Assignment #3 will be released next Wednesday (10/09)
- No class next Monday (10/07): Fall Break
- Guest lecture next Wednesday (10/09)
 - +1 on Midterm exam for attendance (must sign-in to attendance sheet)
 - +3 for one paragraph (5 7 sentences) summary of presentation (must attend lecture)
 - Section 700: Watch recording and submit 1 paragraph (+1) or 2 paragraphs (+3)
- Exam I in two weeks on Monday, 10/14

Last Lecture

Density-based Clustering

Gif from: D. Sheehan , Clustering with Scikit with GIFs

Today

4

- Introduction to Classification I
 - Definition
 - Model types
 - Hyperparameters vs Parameters
- Bayesian and Nearest Neighbor Classification
- Reading: ZM Chapter 18

Machine Learning Model

- In machine learning the model is derived from the data (observations)
- As a <u>learning machine</u>, the model can be modified over time, with additional data (observations), with the goal of improving outcomes

Many Sub-areas in Machine Learning

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning
- Semi-supervised Learning
- Self-supervised Learning
- Multiple Instance Learning
- Active Learning
- Transfer Learning

•

Types of Learning

- Supervised learning
 - We "coach" the computer
 - Uses knowledge already learned
- Unsupervised learning
 - "We're free!!"

Supervised Learning: Classification

Supervised Learning

Learning from experience

0: Macaw 1: Conure

Classification Example

- Given a set of labeled (training) instances, learn a model
 - E.g., Find parameters for linear classifier
- Accurately predict new (test) samples

Classification Example

- Given a set of labeled (training) instances, learn a model
 - E.g., Find parameters for linear classifier
- Accurately predict new (test) samples

Classification Example

- Given a set of labeled (training) instances, learn a model
 - E.g., Find parameters for linear classifier
- Accurately predict new (test) samples

Classification Overview

Classification Tasks

- Classification: given features X, predict label (class) y
- Examples:
 - Communication symbol recognition (input signal w/source & channel induced noise, classes: valid communication symbols)
 - Medical diagnosis (input: symptoms, classes: diseases)
 - Character recognition (input: handwritten characters, classes: {a..z})
 - Fraud detection (input: account activity, classes: fraud / no fraud)
 - ... many more

3D Reconstruction

Angiography

Fluorescence microscopy

Magnetic Resonance

Src: Nowka 2015, IBM CLEF 2013

Image from: Madhu Ramiah- Medium

Decision Boundaries

- Distinguish between classes
- In higher dimensions (>2), learning hyperplanes

Types of Classification

- Binary
- Multi-class
- Multi-label (binary)
- Multi-class, multi-output

Model Types

Model Types

Parameters and Hyperparameters

- Parameters (θ) (e.g. weights, means, covariances) are derived/modified (learned!) in the process of training the model
- Hyperparameters (e.g. k in K-means) are set outside of the training/fit cycle and are used to direct characteristics of the resulting model

Discriminative vs Generative

- Discriminative
 - Focus on the decision boundary between classes
- Generative
 - Focus on distribution of classes

Parametric vs Non-parametric

- Parametric
 - Use known functional form
 - Makes assumptions of data
- Non-parametric
 - Free to learn any functional form
 - No strong assumptions of mapping function

Parametric

- ✓ Fast
- ✓ Simple
- ✓ Less data
- Limited complexity
- Strong assumptions
- Poor fit (if assumptions are not correct)

Nonparametric

- ✓ Flexible
- V Powerful
- ✓ Effective
- More data
- Computationally expensive
- Hard to interpret if models are too complex

Bayes Classifier

Bayes' Theorem

"Posterior" "Likelihood" "Prior"
$$P(y|x) = \frac{P(x|y)}{P(x)} P(y)$$
 "Evidence"

Bayes Classifier

- Given training dataset D
 - n points \mathbf{x}_i in d-dimensions
 - Each point has class label y_i
- Estimate posterior probability for each class c_i
- Predicted class has highest probability (\hat{y})

$$\mathbf{D} = \begin{pmatrix} X_1 & X_2 & \cdots & X_d \\ x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nd} \end{pmatrix} y_i \in \{c_1, c_2, \dots, c_k\}$$

$$\hat{y} = \arg\max_{c_i} \{ P(c_i | \boldsymbol{x}) \}$$

$$P(c_i|\mathbf{x}) = \frac{P(\mathbf{x}|c_i) \cdot P(c_i)}{P(\mathbf{x})}$$

Bayes Classifier

- Given training dataset D
 - n points x_i in d-dimensions
 - Each point has class label y_i
- P(x) is fixed for given point

$$P(c_i|\mathbf{x}) = \frac{P(\mathbf{x}|c_i) \cdot P(c_i)}{P(\mathbf{x})}$$

$$P(\mathbf{x}) = \sum_{j=1}^{k} P(\mathbf{x}|c_j) \cdot P(c_j)$$

$$\arg\max_{c_i} \left\{ P(\boldsymbol{x}|c_i) P(c_i) \right\}$$

Bayes Classifier: Parameter Estimation

Bayes Classifier: Prior

- Can be given prior
 - E.g., (fair) coin toss
- Can find by counting observations
 - Number point data points in class (n_i) divided by total number of data points (n)

$$\mathbf{D}_i = \{ \mathbf{x}_j \in \mathbf{D} \mid \mathbf{x}_j \text{ has class } y_j = c_i \}$$

$$\hat{P}(c_i) = \frac{n_i}{n}$$

Bayes Classifier: Likelihood

- Need to estimate joint probability of x across all dimensions
- Assume each class is normally distributed

$$P(\mathbf{x}|c_i) = P(\mathbf{x} = (x_1, x_2, \dots, x_d)|c_i)$$

$$\hat{f}_i(\mathbf{x}) = \hat{f}(\mathbf{x}|\hat{\boldsymbol{\mu}}_i, \widehat{\boldsymbol{\Sigma}}_i) = \frac{1}{(\sqrt{2\pi})^d \sqrt{|\widehat{\boldsymbol{\Sigma}}_i|}} \exp\left\{-\frac{(\mathbf{x} - \hat{\boldsymbol{\mu}}_i)^T \widehat{\boldsymbol{\Sigma}}_i^{-1} (\mathbf{x} - \hat{\boldsymbol{\mu}}_i)}{2}\right\}$$

Bayes Classifier: Likelihood

- Find posterior probability,
 P(c_i|x)
- Predict class using highest posterior probability

$$P(c_i|\mathbf{x}) = \frac{\hat{f}_i(\mathbf{x})P(c_i)}{\sum_{j=1}^k \hat{f}_j(\mathbf{x})P(c_j)}$$

$$\hat{y} = \arg\max_{c_i} \left\{ \hat{f}_i(\mathbf{x}) P(c_i) \right\}$$

$$\hat{f}_{i}(\mathbf{x}) = \hat{f}(\mathbf{x}|\hat{\boldsymbol{\mu}}_{i}, \widehat{\boldsymbol{\Sigma}}_{i}) = \frac{1}{(\sqrt{2\pi})^{d} \sqrt{|\widehat{\boldsymbol{\Sigma}}_{i}|}} \exp\left\{-\frac{(\mathbf{x} - \hat{\boldsymbol{\mu}}_{i})^{T} \widehat{\boldsymbol{\Sigma}}_{i}^{-1} (\mathbf{x} - \hat{\boldsymbol{\mu}}_{i})}{2}\right\}$$

Bayes Classifier Pseudocode


```
BayesClassifier (D = \{(x_i, y_i)\}_{i=1}^n):
 1 for i = 1, ..., k do
 2 | D_i \leftarrow \{x_j \mid y_j = c_i, j = 1, ..., n\} // class-specific subsets
 n_i \leftarrow |\boldsymbol{D}_i| // \text{ cardinality}
 4 \hat{P}(c_i) \leftarrow n_i/n // prior probability
 5 \hat{\mu}_i \leftarrow \frac{1}{n_i} \sum_{\mathbf{x}_i \in \mathbf{D}_i} \mathbf{x}_j // \text{ mean}
 6 \boldsymbol{Z}_i \leftarrow \boldsymbol{D}_i - \boldsymbol{1}_{n_i} \hat{\boldsymbol{\mu}}_i^T // centered data
 \widehat{\Sigma}_i \leftarrow \frac{1}{n_i} \mathbf{Z}_i^T \mathbf{Z}_i // \text{ covariance matrix}
 8 return \hat{P}(c_i), \hat{\mu}_i, \hat{\Sigma}_i for all i = 1, ..., k
     Testing (x and \hat{P}(c_i), \hat{\mu}_i, \hat{\Sigma}_i, for all i \in [1, k]):
 9 \hat{y} \leftarrow \arg\max_{C} \{ f(\boldsymbol{x} | \hat{\boldsymbol{\mu}}_i, \widehat{\boldsymbol{\Sigma}}_i) \cdot P(c_i) \}
10 return \hat{y}
```

Bayes Classifier Example: Iris Data

- Class 1: Iris-setosa
- Class 2: Other classes

$$\hat{P}(c_1) = \frac{n_1}{n} = \frac{50}{150} = 0.33$$

$$\hat{P}(c_2) = \frac{n_2}{n} = \frac{100}{150} = 0.67$$

- Steps:
 - Compute priors
 - Estimate parameters
 - Compute posterior for new test points

$$\hat{\boldsymbol{\mu}}_1 = \begin{pmatrix} 5.006 \\ 3.418 \end{pmatrix}$$

$$\widehat{\Sigma}_1 = egin{pmatrix} 0.1218 & 0.0983 \ 0.0983 & 0.1423 \end{pmatrix}$$

$$\hat{\boldsymbol{\mu}}_2 = \begin{pmatrix} 6.262 \\ 2.872 \end{pmatrix}$$

$$\widehat{\Sigma}_2 = \begin{pmatrix} 0.435 & 0.1209 \\ 0.1209 & 0.1096 \end{pmatrix}$$

Bayes Classifier Example: Iris Data

Bayes Classifier Example: Iris Data

 $\hat{P}(c_2|\mathbf{x}) > \hat{P}(c_1|\mathbf{x})$

- Class 1: Iris-setosa
- Class 2: Other classes
- Steps:
 - Compute priors
 - Estimate parameters
 - Compute posterior for new test points

$$\hat{P}(c_1|\mathbf{x}) \propto \hat{f}(\mathbf{x}|\hat{\mu}_1, \hat{\Sigma}_1)\hat{P}(c_1) = (4.951 \times 10^{-7}) \times 0.33 = 1.634 \times 10^{-7}$$

 $\hat{P}(c_2|\mathbf{x}) \propto \hat{f}(\mathbf{x}|\hat{\mu}_2, \hat{\Sigma}_2)\hat{P}(c_2) = (2.589 \times 10^{-5}) \times 0.67 = 1.735 \times 10^{-5}$

 $\hat{P}(c_2|\mathbf{x}) \propto \hat{f}(\mathbf{x}|\hat{\mu}_2, \widehat{\Sigma}_2)\hat{P}(c_2) = (2.589 \times 10^{-5}) \times 0.67 = 1.735 \times 10^{-5}$

Bayes Classifier: Categorical

Bayes Classifier: Categorical

- Compute joint probability mass function (PMF) from X
- Compute joint PMF for each class by counting the number of times an attribute occurs

$$dom(X_j) = \{a_{j1}, a_{j2}, \dots, a_{jm_j}\}$$

$$P(\mathbf{x}|c_i) = f(\mathbf{v}|c_i) = f(\mathbf{X}_1 = \mathbf{e}_{1r_1}, \dots, \mathbf{X}_d = \mathbf{e}_{dr_d}|c_i)$$

$$\hat{f}(\mathbf{v}|c_i) = \frac{n_i(\mathbf{v})}{n_i}$$

Bayes Classifier: Unforeseen Events

- Avoid zero probabilities
- Use Laplace Smoothing
- Introduce smoothing parameter: α
- Larger values of α move data likelihood to uniform distribution
- m_j is domain for each attribute

$$\hat{f}(\mathbf{v}|c_i) = \frac{n_i(\mathbf{v}) + 1}{n_i + \prod_{j=1}^d m_j}$$

$$\hat{f}(\mathbf{v}_j|c_i) = \frac{n_i(\mathbf{v}) + \alpha}{n_i + \alpha * \prod_{j=1}^d m_j}$$

Bayes Classifier Example: Iris Data

Assume that the sepal length and sepal width attributes in the Iris dataset have been discretized as shown below.

Bins	Domain	
[4.3, 5.2]	Very Short (a ₁₁)	
(5.2, 6.1]	Short (a ₁₂)	
(6.1, 7.0]	Long (<i>a</i> ₁₃)	
(7.0, 7.9]	Very Long (a_{14})	

(a) Discretized	sepal	length
-----------------	-------	--------

Bins	Domain	
[2.0, 2.8]	Short (a ₂₁)	
(2.8, 3.6]	Medium (a ₂₂)	
(3.6, 4.4]	Long (<i>a</i> ₂₃)	

(b) Discretized sepal width

We have $|dom(X_1)| = m_1 = 4$ and $|dom(X_2)| = m_2 = 3$.

Bayes Classifier Example: Iris Data

Class: c ₁		X_2			\hat{f}_{X_1}
		Short (e_{21})	Medium $(oldsymbol{e}_{22})$	Long (e_{23})	\ \frac{1}{X_1}
	Very Short (e_{11})	1/50	33/50	5/50	39/50
V.	Short (e ₁₂)	0	3/50	8/50	13/50
X_1	Long (e 13)	0	0	0	0
	Very Long (e_{14})	0	0	0	0
	\hat{f}_{X_2}	1/50	36/50	13/50	

Class: c ₂		X_2			\hat{f}_{X_1}
		Short (e_{21})	Medium $(oldsymbol{e}_{22})$	Long (e_{23})	'X ₁
	Very Short (e_{11})	6/100	0	0	6/100
_v	Short (e ₁₂)	24/100	15/100	0	39/100
X_1	Long (e 13)	13/100	30/100	0	43/100
	Very Long (<i>e</i> ₁₄)	3/100	7/100	2/100	12/100
	\hat{f}_{X_2}	46/100	52/100	2/100	

Bayes Classifier Example: Iris Data

Consider a test point $\mathbf{x} = (5.3, 3.0)^T$ corresponding to the categorical point (Short, Medium), which is represented as $\mathbf{v} = \begin{pmatrix} \mathbf{e}_{12}^T & \mathbf{e}_{22}^T \end{pmatrix}^T$.

The prior probabilities of the classes are $\hat{P}(c_1) = 0.33$ and $\hat{P}(c_2) = 0.67$. The likelihood and posterior probability for each class is given as

$$\hat{P}(\mathbf{x}|c_1) = \hat{f}(\mathbf{v}|c_1) = 3/50 = 0.06$$

 $\hat{P}(\mathbf{x}|c_2) = \hat{f}(\mathbf{v}|c_2) = 15/100 = 0.15$
 $\hat{P}(c_1|\mathbf{x}) \propto 0.06 \times 0.33 = 0.0198$
 $\hat{P}(c_2|\mathbf{x}) \propto 0.15 \times 0.67 = 0.1005$

In this case the predicted class is $\hat{y} = c_2$.

Bayes Classifier

- May lack enough data to estimate joint pdf or pmf
 - Especially with many features
- Numeric attributes need to estimate covariances (d²)
- Categorical attributes need to estimate all possible values
 - If attribute is binary, 2^d possibilities

Assume attributes are independent

$$P(\mathbf{x}|c_i) = P(x_1, x_2, \dots, x_d|c_i) = \prod_{j=1}^d P(x_j|c_i)$$

Likelihood for class c_i for dimension x_j

$$P(x_j|c_i) \propto f(x_j|\hat{\mu}_{ij}, \hat{\sigma}_{ij}^2) = \frac{1}{\sqrt{2\pi}\hat{\sigma}_{ij}} \exp\left\{-\frac{(x_j - \hat{\mu}_{ij})^2}{2\hat{\sigma}_{ij}^2}\right\}$$

- Assumption leads to diagonal covariance
- Each class has mean vector and covariance matrix
 - 2d parameters to estimate per dimension x_i

$$\Sigma_{i} = \begin{pmatrix} \sigma_{i1}^{2} & 0 & \dots & 0 \\ 0 & \sigma_{i2}^{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_{id}^{2} \end{pmatrix}$$

Naive Bayes Classifier Pseudocode


```
NaiveBayes (D = \{(x_i, y_i)\}_{i=1}^n):
   1 for i = 1, ..., k do
   2 | D_i \leftarrow \{x_i^T \mid y_i = c_i, j = 1, ..., n\} // class-specific subsets
   3 \mid n_i \leftarrow |\mathbf{D}_i| // \text{ cardinality}
   4 \hat{P}(c_i) \leftarrow n_i/n // prior probability
  5 \hat{\mu}_i \leftarrow \frac{1}{n_i} \sum_{\mathbf{x}_i \in \mathbf{D}_i} \mathbf{x}_j // \text{ mean}
   6 \bar{\boldsymbol{D}}_i = \boldsymbol{D}_i - 1 \cdot \hat{\boldsymbol{\mu}}_i^T / / centered data for class c_i
   7 | for j = 1,...,d do // class-specific var for jth attribute
  8 \hat{\sigma}_{ij}^2 \leftarrow \frac{1}{n_i} (\bar{X}_j^i)^T (\bar{X}_j^i) // variance
  9 \hat{\sigma}_i \leftarrow (\hat{\sigma}_{i1}^2, \dots, \hat{\sigma}_{id}^2)^T // class-specific attribute variances
 10 return \hat{P}(c_i), \hat{\mu}_i, \hat{\sigma}_i for all i = 1, ..., k
      Testing (x and \hat{P}(c_i), \hat{\mu}_i, \hat{\sigma}_i, for all i \in [1, k]):
11 \hat{y} \leftarrow \arg\max_{c_i} \left\{ \hat{P}(c_i) \prod_{i=1}^d f(x_j | \hat{\mu}_{ij}, \hat{\sigma}_{ij}^2) \right\}
 12 return \hat{y}
```

Naive Bayes vs Full Bayes

Naive Bayes Classifier: Categorical

Bayes Classifier: Categorical

- Compute joint probability mass function (PMF) from X
- Compute joint PMF for each class by counting the number of times an attribute occurs

$$P(\mathbf{x}|c_i) = \prod_{j=1}^d P(x_j|c_i) = \prod_{j=1}^d f(\mathbf{X}_j = \mathbf{e}_{jr_j}|c_i)$$

$$\hat{f}(\mathbf{v}_j|c_i) = \frac{n_i(\mathbf{v}_j)}{n_i}$$

Naive Bayes Classifier: Unforeseen Events Am Engineering

- Avoid zero probabilities
- Use Laplace Smoothing
- Introduce smoothing parameter: α
- Larger values of α
 move data likelihood to
 uniform distribution
- m_j is dimensionality

$$\hat{f}(\mathbf{v}_j|c_i) = \frac{n_i(\mathbf{v}_j) + 1}{n_i + m_j}$$

$$\hat{f}(\mathbf{v}_j|c_i) = \frac{n_i(\mathbf{v}_j) + \alpha}{n_i + \alpha * m_j}$$

Naive Bayes Classifier: Parameter Estimation

- Estimate posterior probability for each class c_i
- Predicted class has highest probability (\hat{y})
- Two approaches:
 - Maximum Likelihood Estimation (MLE)
 - Maximum a posteriori (MAP)

$$P(c_i|\mathbf{x}) = \frac{P(\mathbf{x}|c_i) \cdot P(c_i)}{P(\mathbf{x})}$$

$$\arg\max_{c_i} \left\{ P(\boldsymbol{x}|c_i) P(c_i) \right\}$$

Maximum Likelihood Estimation (MLE)

- Maximize posterior by maximizing data likelihood, P(x|c_i)
- Similar to EM for GMM
 - Not "weighted" but only use samples from class to compute mean and variance for each feature and class

$$P(\mathbf{x}|c_i) = P(x_1, x_2, \dots, x_d|c_i) = \prod_{j=1}^d P(x_j|c_i)$$

$$P(x_j|c_i) \propto f(x_j|\hat{\mu}_{ij}, \hat{\sigma}_{ij}^2) = \frac{1}{\sqrt{2\pi}\hat{\sigma}_{ij}} \exp\left\{-\frac{(x_j - \hat{\mu}_{ij})^2}{2\hat{\sigma}_{ij}^2}\right\}$$

Maximum a Posteriori (MAP)

- Another option is to consider the most likely parameter value given the data, "maximum a posteriori" or MAP
- Now include prior with estimation

 $\underset{\theta}{\operatorname{arg\,max}} P(\mathbf{X}|\theta)P(\theta)$

Distributions Used with Naive Bayes

- Normal/Gaussian
- Bernoulli
- Multinomial

Distributions Used with Naive Bayes

Features

	Features are discrete Binary/Boolean functions	Features are discrete occurrence counts	Features are numerical values sampled from a continuous function with a Gaussian distribution
Binary Labels {T,F}, {Pass,Fail}; {0,1}, {-1,1)	sklearn.naive_bayes. BernoulliNB() with 2 classes	sklearn.naive_bayes. MultinomialNB() with 2 classes	sklearn.naive_bayes. GaussianNB() with 2 classes
Multinomial Labels (3 or more classes) {0-6}, {airplane, bicycle, car}, {pass, fail type1, fail type 2, fail type 3}	sklearn.naive_bayes. BernoulliNB()	sklearn.naive_bayes. MultinomialNB()	sklearn.naive_bayes. GaussianNB()

^{*} Use variant ComplimentNB if unbalanced distribution and CategoricalNB if data is categorical {Monday, Tuesday, Wed....} rather than occurrences

Practical Applications of Naive Bayes

Naive Bayes Application: Spam Filter

Jupyter Notebook

Naive Bayes Application: Predicting Football Games AM

Naive Bayes Application: Predicting Football Games AM

$$Likelihood = p^X * (1-p)^{1-X}$$

X= W, L, W, W, L
$$\text{MLE:} \quad \theta_{ML} = \frac{argmax}{\theta} L(x,\theta) \quad \theta_{MLE} : \ \hat{p} = \sum_{i=1}^{D} X_i / \text{n} = 0.6$$
 Likelihood = $p^X * (1-p)^{1-X}$ MAP: $\theta_{MAP} = \frac{argmax}{\theta} L(x,\theta) * P(\theta) \theta_{MAP} : \ \hat{p} = 0.615$

Naive Bayes Application: Predicting Football Games AM

X= W, L, W, W, L MLE: $\theta_{ML} = \frac{argmax}{\theta} L(x,\theta) \qquad \theta_{MLE} : \hat{p} = \sum_{i=1}^{D} X_i / n = 0.6$ Likelihood = $p^X * (1-p)^{1-X}$ MAP: $\theta_{MAP} = \frac{argmax}{\theta} L(x,\theta) * P(\theta) \theta_{MAP} : \hat{p} = 0.615$

\hat{p}	prior	likelihood	posterior
0.538	0.181818	0.372044	0.067644
0.615	0.363636	0.380833	0.138485
0.666	0.090909	0.406964	0.036997
0.692	0.181818	0.426238	0.077498
0.844	0.090909	0.625548	0.056868
0.9	0.090909	0.739	0.067182

k-Nearest Neighbors Classifier

- Non-parametric and discriminative classifier
- Assign class based on the majority vote of the k-closest neighbors

- Very simple nonparametric model
 - Select a distance function L(x, x') (e.g., Euclidean)
 - Choose a hyperparameter K (usually odd)

Euclidean distance $(a, b) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2}$

- For each instance in the test set (new, unobserved) x,
- Select in D the k examples that are nearest to x according to
 L(x, xⁱ) and keep their index in set {s₁, . . . , s_K}, find:
- For classification: $\hat{y} = \underset{c_i}{\operatorname{argmax}} K_i$
- In scikit-learn we use KNeighborsClassifier()

- Classification from similarity
 - Case-based reasoning
 - Predict an instance's label using similar instances
- Nearest-neighbor classification
 - 1-NN: copy the label of the most similar data point
 - K-NN: vote the k nearest neighbors
 - Key issue: how to define similarity and number of k

http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html

Decision Boundaries for Varying Number Training Samples

http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html

Practical Application of k-NN

Sonar Image Segmentation

Next class

- Introduction to Classification II
 - Methodology
 - Metrics
 - Overfitting and underfitting
- Decision tree classification

Supplemental Slides

Useful Links

- StatQuest: Bayes' Theorem
- StatQuest: Naive Bayes
- StatQuest: Gaussian Naive Bayes