BLOCK CIPHERS AND THE DATA ENCRYPTION STANDARD

Traditional Block Cipher Structure

Stream Ciphers and Block Ciphers Motivation for the Feistel Cipher Structure The Feistel Cipher

The Data Encryption Standard

DES Encryption DES Decryption

A DES Example

Results
The Avalanche Effect

The Strength of DES

The Use of 56-Bit Keys
The Nature of the DES Algorithm
Timing Attacks

Block Cipher Design Principles

Number of Rounds Design of Function F Key Schedule Algorithm

Recommended Reading

Key Terms, Review Questions, and Problems

"But what is the use of the cipher message without the cipher?"

− *The Valley of Fear*, Sir Arthur Conan Doyle

LEARNING OBJECTIVES

After studying this chapter, you should be able to

- Understand the distinction between stream ciphers and block ciphers.
- Present an overview of the Feistel cipher and explain how decryption is the inverse of encryption.
- Present an overview of Data Encryption Standard (DES).
- Explain the concept of the avalanche effect.
- Discuss the cryptographic strength of DES.
- Summarize the principal block cipher design principles.

The objective of this chapter is to illustrate the principles of modern symmetric ciphers. For this purpose, we focus on the most widely used symmetric cipher: the Data Encryption Standard (DES). Although numerous symmetric ciphers have been developed since the introduction of DES, and although it is destined to be replaced by the Advanced Encryption Standard (AES), DES remains the most important such algorithm. Furthermore, a detailed study of DES provides an understanding of the principles used in other symmetric ciphers.

This chapter begins with a discussion of the general principles of symmetric block ciphers, which are the type of symmetric ciphers studied in this book (with the exception of the stream cipher RC4). Next, we cover full DES. Following this look at a specific algorithm, we return to a more general discussion of block cipher design.

Compared to public-key ciphers, such as RSA, the structure of DES and most symmetric ciphers is very complex and cannot be explained as easily as RSA and similar algorithms. Accordingly, the reader may wish to begin with a simplified version of DES, which is described in Appendix G. This version allows the reader to perform encryption and decryption by hand and gain a good understanding of the working of the algorithm details. Classroom experience indicates that a study of this simplified version enhances understanding of DES.¹

¹However, you may safely skip Appendix G, at least on a first reading. If you get lost or bogged down in the details of DES, then you can go back and start with simplified DES.

TRADITIONAL BLOCK CIPHER STRUCTURE

Many symmetric block encryption algorithms in current use are based on a structure referred to as a Feistel block cipher [FEIS73]. For that reason, it is important to examine the design principles of the Feistel cipher. We begin with a comparison of stream ciphers and block ciphers. Then we discuss the motivation for the Feistel block cipher structure. Finally, we discuss some of its implications.

Stream Ciphers and Block Ciphers

A **stream cipher** is one that encrypts a digital data stream one bit or one byte at a time. Examples of classical stream ciphers are the autokeyed Vigenère cipher and the Vernam cipher. In the ideal case, a one-time pad version of the Vernam cipher would be used, in which the keystream (k_i) is as long as the plaintext bit stream (p_i) . If the cryptographic keystream is random, then this cipher is unbreakable by any means other than acquiring the keystream. However, the keystream must be provided to both users in advance via some independent and secure channel. This introduces insurmountable logistical problems if the intended data traffic is very large.

Accordingly, for practical reasons, the bit-stream generator must be implemented as an algorithmic procedure, so that the cryptographic bit stream can be produced by both users. In this approach (Figure 1a), the bit-stream generator is a key-controlled algorithm and must produce a bit stream that is cryptographically strong. That is, it must be computationally impractical to predict future portions of the bit stream based on previous portions of the bit stream. The two users need only share the generating key, and each can produce the keystream.

A **block cipher** is one in which a block of plaintext is treated as a whole and used to produce a ciphertext block of equal length. Typically, a block size of 64 or 128 bits is used. As with a stream cipher, the two users share a symmetric encryption key (Figure 1b). Using some of the modes of operation explained in Chapter 6, a block cipher can be used to achieve the same effect as a stream cipher.

Far more effort has gone into analyzing block ciphers. In general, they seem applicable to a broader range of applications than stream ciphers. The vast majority of network-based symmetric cryptographic applications make use of block ciphers. Accordingly, the concern in this chapter, and in our discussions throughout the book of symmetric encryption, will primarily focus on block ciphers.

Motivation for the Feistel Cipher Structure

A block cipher operates on a plaintext block of n bits to produce a ciphertext block of n bits. There are 2^n possible different plaintext blocks and, for the encryption to be reversible (i.e., for decryption to be possible), each must produce a unique ciphertext block. Such a transformation is called reversible, or

(a) Stream cipher using algorithmic bit-stream generator

(b) Block cipher

Figure 1. Stream Cipher and Block Cipher

nonsingular. The following examples illustrate nonsingular and singular transformations for n = 2.

Reversible Mapping		Irreversible Mapping	
Plaintext	Ciphertext	Plaintext	Ciphertext
00	11	00	11
01	10	01	10
10	00	10	01
11	01	11	01

In the latter case, a ciphertext of 01 could have been produced by one of two plaintext blocks. So if we limit ourselves to reversible mappings, the number of different transformations is $2^{n}!$.

²The reasoning is as follows: For the first plaintext, we can choose any of 2^n ciphertext blocks. For the second plaintext, we choose from among $2^n - 1$ remaining ciphertext blocks, and so on.

Figure 2. General *n*-bit-*n*-bit Block Substitution (shown with n = 4)

Figure 2 illustrates the logic of a general substitution cipher for n=4. A 4-bit input produces one of 16 possible input states, which is mapped by the substitution cipher into a unique one of 16 possible output states, each of which is represented by 4 ciphertext bits. The encryption and decryption mappings can be defined by a tabulation, as shown in Table 1. This is the most general form of block cipher and can be used to define any reversible mapping between plaintext and ciphertext.

Table 1. Encryption and Decryption Tables for Substitution Cipher of Figure 2

Plaintext	Ciphertext
0000	1110
0001	0100
0010	1101
0011	0001
0100	0010
0101	1111
0110	1011
0111	1000
1000	0011
1001	1010
1010	0110
1011	1100
1100	0101
1101	1001
1110	0000
1111	0111

Ciphertext	Plaintext
0000	1110
0001	0011
0010	0100
0011	1000
0100	0001
0101	1100
0110	1010
0111	1111
1000	0111
1001	1101
1010	1001
1011	0110
1100	1011
1101	0010
1110	0000
1111	0101

Feistel refers to this as the *ideal block cipher*, because it allows for the maximum number of possible encryption mappings from the plaintext block [FEIS75].

But there is a practical problem with the ideal block cipher. If a small block size, such as n=4, is used, then the system is equivalent to a classical substitution cipher. Such systems, as we have seen, are vulnerable to a statistical analysis of the plaintext. This weakness is not inherent in the use of a substitution cipher but rather results from the use of a small block size. If n is sufficiently large and an arbitrary reversible substitution between plaintext and ciphertext is allowed, then the statistical characteristics of the source plaintext are masked to such an extent that this type of cryptanalysis is infeasible.

An arbitrary reversible substitution cipher (the ideal block cipher) for a large block size is not practical, however, from an implementation and performance point of view. For such a transformation, the mapping itself constitutes the key. Consider again Table 1, which defines one particular reversible mapping from plaintext to ciphertext for n=4. The mapping can be defined by the entries in the second column, which show the value of the ciphertext for each plaintext block. This, in essence, is the key that determines the specific mapping from among all possible mappings. In this case, using this straightforward method of defining the key, the required key length is $(4 \text{ bits}) \times (16 \text{ rows}) = 64 \text{ bits}$. In general, for an n-bit ideal block cipher, the length of the key defined in this fashion is $n \times 2^n$ bits. For a 64-bit block, which is a desirable length to thwart statistical attacks, the required key length is $64 \times 2^{64} = 2^{70} \approx 10^{21}$ bits.

In considering these difficulties, Feistel points out that what is needed is an approximation to the ideal block cipher system for large n, built up out of components that are easily realizable [FEIS75]. But before turning to Feistel's approach, let us make one other observation. We could use the general block substitution cipher but, to make its implementation tractable, confine ourselves to a subset of the $2^{n}!$ possible reversible mappings. For example, suppose we define the mapping in terms of a set of linear equations. In the case of n = 4, we have

$$y_1 = k_{11}x_1 + k_{12}x_2 + k_{13}x_3 + k_{14}x_4$$

$$y_2 = k_{21}x_1 + k_{22}x_2 + k_{23}x_3 + k_{24}x_4$$

$$y_3 = k_{31}x_1 + k_{32}x_2 + k_{33}x_3 + k_{34}x_4$$

$$y_4 = k_{41}x_1 + k_{42}x_2 + k_{43}x_3 + k_{44}x_4$$

where the x_i are the four binary digits of the plaintext block, the y_i are the four binary digits of the ciphertext block, the k_{ij} are the binary coefficients, and arithmetic is mod 2. The key size is just n^2 , in this case 16 bits. The danger with this kind of formulation is that it may be vulnerable to cryptanalysis by an attacker that is aware of the structure of the algorithm. In this example, what we have is essentially the Hill cipher discussed in Chapter 2, applied to binary data rather than characters. As we saw in Chapter 2, a simple linear system such as this is quite vulnerable.

The Feistel Cipher

Feistel proposed [FEIS73] that we can approximate the ideal block cipher by utilizing the concept of a product cipher, which is the execution of two or more simple ciphers in sequence in such a way that the final result or product is cryptographically stronger than any of the component ciphers. The essence of the approach is to develop a block cipher with a key length of k bits and a block length of n bits, allowing a total of 2^k possible transformations, rather than the $2^n!$ transformations available with the ideal block cipher.

In particular, Feistel proposed the use of a cipher that alternates substitutions and permutations, where these terms are defined as follows:

- **Substitution:** Each plaintext element or group of elements is uniquely replaced by a corresponding ciphertext element or group of elements.
- **Permutation:** A sequence of plaintext elements is replaced by a permutation of that sequence. That is, no elements are added or deleted or replaced in the sequence, rather the order in which the elements appear in the sequence is changed.

In fact, Feistel's is a practical application of a proposal by Claude Shannon to develop a product cipher that alternates *confusion* and *diffusion* functions [SHAN49].³ We look next at these concepts of diffusion and confusion and then present the Feistel cipher. But first, it is worth commenting on this remarkable fact: The Feistel cipher structure, which dates back over a quarter century and which, in turn, is based on Shannon's proposal of 1945, is the structure used by many significant symmetric block ciphers currently in use.

DIFFUSION AND CONFUSION The terms diffusion and confusion were introduced by Claude Shannon to capture the two basic building blocks for any cryptographic system [SHAN49]. Shannon's concern was to thwart cryptanalysis based on statistical analysis. The reasoning is as follows. Assume the attacker has some knowledge of the statistical characteristics of the plaintext. For example, in a human-readable message in some language, the frequency distribution of the various letters may be known. Or there may be words or phrases likely to appear in the message (probable words). If these statistics are in any way reflected in the ciphertext, the cryptanalyst may be able to deduce the encryption key, part of the key, or at least a set of keys likely to contain the exact key. In what Shannon refers to as a strongly ideal cipher, all statistics of the ciphertext are independent of the particular key used. The arbitrary substitution cipher that we discussed previously (Figure 2) is such a cipher, but as we have seen, it is impractical.⁴

Other than recourse to ideal systems, Shannon suggests two methods for frustrating statistical cryptanalysis: diffusion and confusion. In **diffusion**, the statistical structure of the plaintext is dissipated into long-range statistics of the ciphertext. This is achieved by having each plaintext digit affect the value of many

³The paper is available at this book's Premium Content Web site. Shannon's 1949 paper appeared originally as a classified report in 1945. Shannon enjoys an amazing and unique position in the history of computer and information science. He not only developed the seminal ideas of modern cryptography but is also responsible for inventing the discipline of information theory. Based on his work in information theory, he developed a formula for the capacity of a data communications channel, which is still used today. In addition, he founded another discipline, the application of Boolean algebra to the study of digital circuits; this last he managed to toss off as a master's thesis.

⁴Appendix F expands on Shannon's concepts concerning measures of secrecy and the security of cryptographic algorithms.

ciphertext digits; generally, this is equivalent to having each ciphertext digit be affected by many plaintext digits. An example of diffusion is to encrypt a message $M = m_1, m_2, m_3, \dots$ of characters with an averaging operation:

$$y_n = \left(\sum_{i=1}^k m_{n+i}\right) \bmod 26$$

adding k successive letters to get a ciphertext letter y_n . One can show that the statistical structure of the plaintext has been dissipated. Thus, the letter frequencies in the ciphertext will be more nearly equal than in the plaintext; the digram frequencies will also be more nearly equal, and so on. In a binary block cipher, diffusion can be achieved by repeatedly performing some permutation on the data followed by applying a function to that permutation; the effect is that bits from different positions in the original plaintext contribute to a single bit of ciphertext.⁵

Every block cipher involves a transformation of a block of plaintext into a block of ciphertext, where the transformation depends on the key. The mechanism of diffusion seeks to make the statistical relationship between the plaintext and ciphertext as complex as possible in order to thwart attempts to deduce the key. On the other hand, **confusion** seeks to make the relationship between the statistics of the ciphertext and the value of the encryption key as complex as possible, again to thwart attempts to discover the key. Thus, even if the attacker can get some handle on the statistics of the ciphertext, the way in which the key was used to produce that ciphertext is so complex as to make it difficult to deduce the key. This is achieved by the use of a complex substitution algorithm. In contrast, a simple linear substitution function would add little confusion.

As [ROBS95b] points out, so successful are diffusion and confusion in capturing the essence of the desired attributes of a block cipher that they have become the cornerstone of modern block cipher design.

FEISTEL CIPHER STRUCTURE The left-hand side of Figure 3 depicts the structure proposed by Feistel. The inputs to the encryption algorithm are a plaintext block of length 2w bits and a key K. The plaintext block is divided into two halves, L_0 and R_0 . The two halves of the data pass through n rounds of processing and then combine to produce the ciphertext block. Each round i has as inputs L_{i-1} and R_{i-1} derived from the previous round, as well as a subkey K_i derived from the overall K. In general, the subkeys K_i are different from K and from each other. In Figure 3.3, 16 rounds are used, although any number of rounds could be implemented.

All rounds have the same structure. A **substitution** is performed on the left half of the data. This is done by applying a *round function* F to the right half of the data and then taking the exclusive-OR of the output of that function and the left half of the data. The round function has the same general structure for each round but is parameterized by the round subkey K_i . Another way to express this is to say that F is a function of right-half block of w bits and a subkey of y bits, which produces an output value

⁵Some books on cryptography equate permutation with diffusion. This is incorrect. Permutation, *by itself*, does not change the statistics of the plaintext at the level of individual letters or permuted blocks. For example, in DES, the permutation swaps two 32-bit blocks, so statistics of strings of 32 bits or less are preserved.

Figure 3. Feistel Encryption and Decryption (16 rounds)

of length w bits: $F(RE_i, K_{i+1})$. Following this substitution, a **permutation** is performed that consists of the interchange of the two halves of the data.⁶ This structure is a particular form of the substitution-permutation network (SPN) proposed by Shannon.

⁶The final round is followed by an interchange that undoes the interchange that is part of the final round. One could simply leave both interchanges out of the diagram, at the sacrifice of some consistency of presentation. In any case, the effective lack of a swap in the final round is done to simplify the implementation of the decryption process, as we shall see.

The exact realization of a Feistel network depends on the choice of the following parameters and design features:

- **Block size:** Larger block sizes mean greater security (all other things being equal) but reduced encryption/decryption speed for a given algorithm. The greater security is achieved by greater diffusion. Traditionally, a block size of 64 bits has been considered a reasonable tradeoff and was nearly universal in block cipher design. However, the new AES uses a 128-bit block size.
- **Key size:** Larger key size means greater security but may decrease encryption/decryption speed. The greater security is achieved by greater resistance to brute-force attacks and greater confusion. Key sizes of 64 bits or less are now widely considered to be inadequate, and 128 bits has become a common size.
- **Number of rounds:** The essence of the Feistel cipher is that a single round offers inadequate security but that multiple rounds offer increasing security. A typical size is 16 rounds.
- **Subkey generation algorithm:** Greater complexity in this algorithm should lead to greater difficulty of cryptanalysis.
- **Round function F:** Again, greater complexity generally means greater resistance to cryptanalysis.

There are two other considerations in the design of a Feistel cipher:

- Fast software encryption/decryption: In many cases, encryption is embedded in applications or utility functions in such a way as to preclude a hardware implementation. Accordingly, the speed of execution of the algorithm becomes a concern.
- Ease of analysis: Although we would like to make our algorithm as difficult as possible to cryptanalyze, there is great benefit in making the algorithm easy to analyze. That is, if the algorithm can be concisely and clearly explained, it is easier to analyze that algorithm for cryptanalytic vulnerabilities and therefore develop a higher level of assurance as to its strength. DES, for example, does not have an easily analyzed functionality.

FEISTEL DECRYPTION ALGORITHM The process of decryption with a Feistel cipher is essentially the same as the encryption process. The rule is as follows: Use the ciphertext as input to the algorithm, but use the subkeys K_i in reverse order. That is, use K_n in the first round, K_{n-1} in the second round, and so on, until K_1 is used in the last round. This is a nice feature, because it means we need not implement two different algorithms; one for encryption and one for decryption.

To see that the same algorithm with a reversed key order produces the correct result, Figure 3.3 shows the encryption process going down the left-hand side and the decryption process going up the right-hand side for a 16-round algorithm. For clarity, we use the notation LE_i and RE_i for data traveling through the encryption algorithm and LD_i and RD_i for data traveling through the decryption algorithm. The diagram indicates that, at every round, the intermediate value of the decryption process is equal to the corresponding value of the encryption process with the two halves of the value swapped. To put this another way, let the output of the ith encryption round be

 $LE_i || RE_i (LE_i \text{ concatenated with } RE_i)$. Then the corresponding output of the (16-i) th decryption round is $RE_i || LE_i \text{ or, equivalently, } LD_{16-i} || RD_{16-i}$.

Let us walk through Figure 3.3 to demonstrate the validity of the preceding assertions. After the last iteration of the encryption process, the two halves of the output are swapped, so that the ciphertext is $RE_{16}\|LE_{16}$. The output of that round is the ciphertext. Now take that ciphertext and use it as input to the same algorithm. The input to the first round is $RE_{16}\|LE_{16}$, which is equal to the 32-bit swap of the output of the sixteenth round of the encryption process.

Now we would like to show that the output of the first round of the decryption process is equal to a 32-bit swap of the input to the sixteenth round of the encryption process. First, consider the encryption process. We see that

$$LE_{16} = RE_{15}$$

 $RE_{16} = LE_{15} \oplus F(RE_{15}, K_{16})$

On the decryption side,

$$LD_{1} = RD_{0} = LE_{16} = RE_{15}$$

$$RD_{1} = LD_{0} \oplus F(RD_{0}, K_{16})$$

$$= RE_{16} \oplus F(RE_{15}, K_{16})$$

$$= [LE_{15} \oplus F(RE_{15}, K_{16})] \oplus F(RE_{15}, K_{16})$$

The XOR has the following properties:

$$[A \oplus B] \oplus C = A \oplus [B \oplus C]$$
$$D \oplus D = 0$$
$$E \oplus 0 = E$$

Thus, we have $LD_1 = RE_{15}$ and $RD_1 = LE_{15}$. Therefore, the output of the first round of the decryption process is $RE_{15}||LE_{15}$, which is the 32-bit swap of the input to the sixteenth round of the encryption. This correspondence holds all the way through the 16 iterations, as is easily shown. We can cast this process in general terms. For the *i*th iteration of the encryption algorithm,

$$LE_i = RE_{i-1}$$

$$RE_i = LE_{i-1} \oplus F(RE_{i-1}, K_i)$$

Rearranging terms:

$$RE_{i-1} = LE_i$$

 $LE_{i-1} = RE_i \oplus F(RE_{i-1}, K_i) = RE_i \oplus F(LE_i, K_i)$

Thus, we have described the inputs to the *i*th iteration as a function of the outputs, and these equations confirm the assignments shown in the right-hand side of Figure 3.3.

Finally, we see that the output of the last round of the decryption process is $RE_0 \parallel LE_0$. A 32-bit swap recovers the original plaintext, demonstrating the validity of the Feistel decryption process.

Note that the derivation does not require that F be a reversible function. To see this, take a limiting case in which F produces a constant output (e.g., all ones) regardless of the values of its two arguments. The equations still hold.

Decryption round

Figure 4. Feistel Example

To help clarify the preceding concepts, let us look at a specific example (Figure 4 and focus on the fifteenth round of encryption, corresponding to the second round of decryption. Suppose that the blocks at each stage are 32 bits (two 16-bit halves) and that the key size is 24 bits. Suppose that at the end of encryption round fourteen, the value of the intermediate block (in hexadecimal) is DE7F03A6. Then $LE_{14} = DE7F$ and $RE_{14} = 03A6$. Also assume that the value of K_{15} is 12DE52. After round 15, we have $LE_{15} = 03A6$ and $RE_{15} = F(03A6, 12DE52) \oplus DE7F$.

Now let's look at the decryption. We assume that $LD_1=RE_{15}$ and $RD_1=LE_{15}$, as shown in Figure 3.3, and we want to demonstrate that $LD_2=RE_{14}$ and $RD_2=LE_{14}$. So, we start with $LD_1=\mathrm{F}(03\mathrm{A6},12\mathrm{DE52})\oplus\mathrm{DE7F}$ and $RD_1=03\mathrm{A6}$. Then, from Figure 3.3, $LD_2=03\mathrm{A6}=RE_{14}$ and $RD_2=\mathrm{F}(03\mathrm{A6},12\mathrm{DE52})\oplus\mathrm{[F}(03\mathrm{A6},12\mathrm{DE52})\oplus\mathrm{[E}(03\mathrm{A6},12\mathrm{DE52})]$

3.2 THE DATA ENCRYPTION STANDARD

Until the introduction of the Advanced Encryption Standard (AES) in 2001, the Data Encryption Standard (DES) was the most widely used encryption scheme. DES was issued in 1977 by the National Bureau of Standards, now the National Institute of Standards and Technology (NIST), as Federal Information Processing Standard 46 (FIPS PUB 46). The algorithm itself is referred to as the Data Encryption Algorithm (DEA). For DEA, data are encrypted in 64-bit blocks using a 56-bit key. The algorithm transforms 64-bit input in a series of steps into a 64-bit output. The same steps, with the same key, are used to reverse the encryption.

Over the years, DES became the dominant symmetric encryption algorithm, especially in financial applications. In 1994, NIST reaffirmed DES for federal use for another five years; NIST recommended the use of DES for applications other

⁷The terminology is a bit confusing. Until recently, the terms *DES* and *DEA* could be used interchangeably. However, the most recent edition of the DES document includes a specification of the DEA described here plus the triple DEA (TDEA) described in Chapter 6. Both DEA and TDEA are part of the Data Encryption Standard. Further, until the recent adoption of the official term *TDEA*, the triple DEA algorithm was typically referred to as *triple DES* and written as 3DES. For the sake of convenience, we will use the term *3DES*.

than the protection of classified information. In 1999, NIST issued a new version of its standard (FIPS PUB 46-3) that indicated that DES should be used only for legacy systems and that triple DES (which in essence involves repeating the DES algorithm three times on the plaintext using two or three different keys to produce the ciphertext) be used. We study triple DES in Chapter 6. Because the underlying encryption and decryption algorithms are the same for DES and triple DES, it remains important to understand the DES cipher. This section provides an overview. For the interested reader, Appendix S provides further detail.

DES Encryption

The overall scheme for DES encryption is illustrated in Figure 5. As with any encryption scheme, there are two inputs to the encryption function: the plaintext to be

Figure 5. General Depiction of DES Encryption Algorithm

encrypted and the key. In this case, the plaintext must be 64 bits in length and the key is 56 bits in length.⁸

Looking at the left-hand side of the figure, we can see that the processing of the plaintext proceeds in three phases. First, the 64-bit plaintext passes through an initial permutation (IP) that rearranges the bits to produce the *permuted input*. This is followed by a phase consisting of sixteen rounds of the same function, which involves both permutation and substitution functions. The output of the last (sixteenth) round consists of 64 bits that are a function of the input plaintext and the key. The left and right halves of the output are swapped to produce the **preoutput**. Finally, the preoutput is passed through a permutation [IP⁻¹] that is the inverse of the initial permutation function, to produce the 64-bit ciphertext. With the exception of the initial and final permutations, DES has the exact structure of a Feistel cipher, as shown in Figure 3.

The right-hand portion of Figure 5 shows the way in which the 56-bit key is used. Initially, the key is passed through a permutation function. Then, for each of the sixteen rounds, a *subkey* (K_i) is produced by the combination of a left circular shift and a permutation. The permutation function is the same for each round, but a different subkey is produced because of the repeated shifts of the key bits.

DES Decryption

As with any Feistel cipher, decryption uses the same algorithm as encryption, except that the application of the subkeys is reversed. Additionally, the initial and final permutations are reversed.

A DES EXAMPLE

We now work through an example and consider some of its implications. Although you are not expected to duplicate the example by hand, you will find it informative to study the hex patterns that occur from one step to the next.

For this example, the plaintext is a hexadecimal palindrome. The plaintext, key, and resulting ciphertext are as follows:

Plaintext:	02468aceeca86420
Key:	0f1571c947d9e859
Ciphertext:	da02ce3a89ecac3b

Results

Table 2 shows the progression of the algorithm. The first row shows the 32-bit values of the left and right halves of data after the initial permutation. The next 16 rows show the results after each round. Also shown is the value of the 48-bit subkey

⁸Actually, the function expects a 64-bit key as input. However, only 56 of these bits are ever used; the other 8 bits can be used as parity bits or simply set arbitrarily.

Table 2.	DES Example
----------	-------------

Round	K _i	L_i	R_i
IP		5a005a00	3cf03c0f
1	1e030f03080d2930	3cf03c0f	bad22845
2	0a31293432242318	bad22845	99e9b723
3	23072318201d0c1d	99e9b723	0bae3b9e
4	05261d3824311a20	0bae3b9e	42415649
5	3325340136002c25	42415649	18b3fa41
6	123a2d0d04262a1c	18b3fa41	9616fe23
7	021f120b1c130611	9616fe23	67117cf2
8	1c10372a2832002b	67117cf2	c11bfc09
9	04292a380c341f03	c11bfc09	887fbc6c
10	2703212607280403	887fbc6c	600f7e8b
11	2826390c31261504	600f7e8b	f596506e
12	12071c241a0a0f08	f596506e	738538b8
13	300935393c0d100b	738538b8	c6a62c4e
14	311e09231321182a	c6a62c4e	56b0bd75
15	283d3e0227072528	56b0bd75	75e8fd8f
16	2921080b13143025	75e8fd8f	25896490
IP ⁻¹		da02ce3a	89ecac3b

Note: DES subkeys are shown as eight 6-bit values in hex format

generated for each round. Note that $L_i = R_{i-1}$. The final row shows the left- and right-hand values after the inverse initial permutation. These two values combined form the ciphertext.

The Avalanche Effect

A desirable property of any encryption algorithm is that a small change in either the plaintext or the key should produce a significant change in the ciphertext. In particular, a change in one bit of the plaintext or one bit of the key should produce a change in many bits of the ciphertext. This is referred to as the avalanche effect. If the change were small, this might provide a way to reduce the size of the plaintext or key space to be searched.

Using the example from Table 2, Table 3.3 shows the result when the fourth bit of the plaintext is changed, so that the plaintext is 12468aceeca86420. The second column of the table shows the intermediate 64-bit values at the end of each round for the two plaintexts. The third column shows the number of bits that differ between the two intermediate values. The table shows that, after just three rounds, 18 bits differ between the two blocks. On completion, the two ciphertexts differ in 32 bit positions.

Table 4 shows a similar test using the original plaintext of with two keys that differ in only the fourth bit position: the original key, 0f1571c947d9e859, and the altered key, 1f1571c947d9e859. Again, the results show that about half of the bits in the ciphertext differ and that the avalanche effect is pronounced after just a few rounds.

 Table 3. Avalanche Effect in DES: Change in Plaintext

Round		δ
	02468aceeca86420	1
	12468aceeca86420	
1	3cf03c0fbad22845	1
	3cf03c0fbad32845	
2	bad2284599e9b723	5
	bad3284539a9b7a3	
3	99e9b7230bae3b9e	18
	39a9b7a3171cb8b3	
4	0bae3b9e42415649	34
	171cb8b3ccaca55e	
5	4241564918b3fa41	37
	ccaca55ed16c3653	
6	18b3fa419616fe23	33
	d16c3653cf402c68	
7	9616fe2367117cf2	32
	cf402c682b2cefbc	
8	67117cf2c11bfc09	33
	2b2cefbc99f91153	

Round		δ
9	c11bfc09887fbc6c	32
	99f911532eed7d94	
10	887fbc6c600f7e8b	34
	2eed7d94d0f23094	
11	600f7e8bf596506e	37
	d0f23094455da9c4	
12	f596506e738538b8	31
	455da9c47f6e3cf3	
13	738538b8c6a62c4e	29
	7f6e3cf34bc1a8d9	
14	c6a62c4e56b0bd75	33
	4bc1a8d91e07d409	
15	56b0bd7575e8fd8f	31
	1e07d4091ce2e6dc	
16	75e8fd8f25896490	32
	1ce2e6dc365e5f59	
IP ⁻¹	da02ce3a89ecac3b	32
	057cde97d7683f2a	

 Table 4.
 Avalanche Effect in DES: Change in Key

Round		δ
	02468aceeca86420	0
	02468aceeca86420	
1	3cf03c0fbad22845	3
	3cf03c0f9ad628c5	
2	bad2284599e9b723	11
	9ad628c59939136b	
3	99e9b7230bae3b9e	25
	9939136b768067b7	
4	0bae3b9e42415649	29
	768067b75a8807c5	
5	4241564918b3fa41	26
	5a8807c5488dbe94	
6	18b3fa419616fe23	26
	488dbe94aba7fe53	
7	9616fe2367117cf2	27
	aba7fe53177d21e4	
8	67117cf2c11bfc09	32
	177d21e4548f1de4	

Round		δ
9	c11bfc09887fbc6c	34
	548f1de471f64dfd	
10	887fbc6c600f7e8b	36
	71f64dfd4279876c	
11	600f7e8bf596506e	32
	4279876c399fdc0d	
12	f596506e738538b8	28
	399fdc0d6d208dbb	
13	738538b8c6a62c4e	33
	6d208dbbb9bdeeaa	
14	c6a62c4e56b0bd75	30
	b9bdeeaad2c3a56f	
15	56b0bd7575e8fd8f	33
	d2c3a56f2765c1fb	
16	75e8fd8f25896490	30
	2765c1fb01263dc4	
IP ⁻¹	da02ce3a89ecac3b	30
	ee92b50606b62b0b	

THE STRENGTH OF DES

Since its adoption as a federal standard, there have been lingering concerns about the level of security provided by DES. These concerns, by and large, fall into two areas: key size and the nature of the algorithm.

The Use of 56-Bit Keys

With a key length of 56 bits, there are 2^{56} possible keys, which is approximately 7.2×10^{16} keys. Thus, on the face of it, a brute-force attack appears impractical. Assuming that, on average, half the key space has to be searched, a single machine performing one DES encryption per microsecond would take more than a thousand years to break the cipher.

However, the assumption of one encryption per microsecond is overly conservative. As far back as 1977, Diffie and Hellman postulated that the technology existed to build a parallel machine with 1 million encryption devices, each of which could perform one encryption per microsecond [DIFF77]. This would bring the average search time down to about 10 hours. The authors estimated that the cost would be about \$20 million in 1977 dollars.

With current technology, it is not even necessary to use special, purpose-built hardware. Rather, the speed of commercial, off-the-shelf processors threaten the security of DES. A recent paper from Seagate Technology [SEAG08] suggests that a rate of 1 billion (10⁹) key combinations per second is reasonable for today's multicore computers. Recent offerings confirm this. Both Intel and AMD now offer hardware-based instructions to accelerate the use of AES. Tests run on a contemporary multicore Intel machine resulted in an encryption rate of about half a billion encryptions per second [BASU12]. Another recent analysis suggests that with contemporary supercomputer technology, a rate of 10¹³ encryptions per second is reasonable [AROR12].

With these results in mind, Table 3.5 shows how much time is required for a brute-force attack for various key sizes. As can be seen, a single PC can break DES in about a year; if multiple PCs work in parallel, the time is drastically shortened. And today's supercomputers should be able to find a key in about an hour. Key sizes of 128 bits or greater are effectively unbreakable using simply a brute-force approach. Even if we managed to speed up the attacking system by a factor of 1 trillion (10¹²), it would still take over 100,000 years to break a code using a 128-bit key.

Fortunately, there are a number of alternatives to DES, the most important of which are AES and triple DES, discussed in Chapters 5 and 6, respectively.

The Nature of the DES Algorithm

Another concern is the possibility that cryptanalysis is possible by exploiting the characteristics of the DES algorithm. The focus of concern has been on the eight substitution tables, or S-boxes, that are used in each iteration (described in Appendix S). Because the design criteria for these boxes, and indeed for the entire algorithm, were not made public, there is a suspicion that the boxes were

Key Size (bits)	Cipher	Number of Alternative Keys	Time Required at 10 ⁹ Decryptions/s	Time Required at 10 ¹³ Decryptions/s
56	DES	$2^{56} \approx 7.2 \times 10^{16}$	2^{55} ns = 1.125 years	1 hour
128	AES	$2^{128} \approx 3.4 \times 10^{38}$	2^{127} ns = 5.3×10^{21} years	5.3×10^{17} years
168	Triple DES	$2^{168} \approx 3.7 \times 10^{50}$	2^{167} ns = 5.8×10^{33} years	$5.8 \times 10^{29} \text{ years}$

 $2^{192} \approx 6.3 \times 10^{57}$

 $2^{256} \approx 1.2 \times 10^{77}$

 $2! = 4 \times 10^{26}$

Table 5 Average Time Required for Exhaustive Key Search

AES

AES

Monoalphabetic

constructed in such a way that cryptanalysis is possible for an opponent who knows the weaknesses in the S-boxes. This assertion is tantalizing, and over the years a number of regularities and unexpected behaviors of the S-boxes have been discovered. Despite this, no one has so far succeeded in discovering the supposed fatal weaknesses in the S-boxes.⁹

 2^{191} ns = 9.8×10^{40} years

 2^{255} ns = 1.8×10^{60} years

 $2 \times 10^{26} \text{ ns} = 6.3 \times 10^9 \text{ years}$

 9.8×10^{36} years

 1.8×10^{56} years

 6.3×10^6 years

Timing Attacks

192

256

26 characters (permutation)

We discuss timing attacks in more detail in Part Two, as they relate to public-key algorithms. However, the issue may also be relevant for symmetric ciphers. In essence, a timing attack is one in which information about the key or the plaintext is obtained by observing how long it takes a given implementation to perform decryptions on various ciphertexts. A timing attack exploits the fact that an encryption or decryption algorithm often takes slightly different amounts of time on different inputs. [HEVI99] reports on an approach that yields the Hamming weight (number of bits equal to one) of the secret key. This is a long way from knowing the actual key, but it is an intriguing first step. The authors conclude that DES appears to be fairly resistant to a successful timing attack but suggest some avenues to explore. Although this is an interesting line of attack, it so far appears unlikely that this technique will ever be successful against DES or more powerful symmetric ciphers such as triple DES and AES.

BLOCK CIPHER DESIGN PRINCIPLES

Although much progress has been made in designing block ciphers that are cryptographically strong, the basic principles have not changed all that much since the work of Feistel and the DES design team in the early 1970s. In this section we look at three critical aspects of block cipher design: the number of rounds, design of the function F, and key scheduling.

⁹At least, no one has publicly acknowledged such a discovery.

Number of Rounds

The cryptographic strength of a Feistel cipher derives from three aspects of the design: the number of rounds, the function F, and the key schedule algorithm. Let us look first at the choice of the number of rounds.

The greater the number of rounds, the more difficult it is to perform cryptanalysis, even for a relatively weak F. In general, the criterion should be that the number of rounds is chosen so that known cryptanalytic efforts require greater effort than a simple brute-force key search attack. This criterion was certainly used in the design of DES. Schneier [SCHN96] observes that for 16-round DES, a differential cryptanalysis attack is slightly less efficient than brute force: The differential cryptanalysis attack requires 2^{55.1} operations, ¹⁰ whereas brute force requires 2⁵⁵. If DES had 15 or fewer rounds, differential cryptanalysis would require less effort than a brute-force key search.

This criterion is attractive, because it makes it easy to judge the strength of an algorithm and to compare different algorithms. In the absence of a cryptanalytic breakthrough, the strength of any algorithm that satisfies the criterion can be judged solely on key length.

Design of Function F

The heart of a Feistel block cipher is the function F, which provides the element of confusion in a Feistel cipher. Thus, it must be difficult to "unscramble" the substitution performed by F. One obvious criterion is that F be nonlinear, as we discussed previously. The more nonlinear F, the more difficult any type of cryptanalysis will be. There are several measures of nonlinearity, which are beyond the scope of this book. In rough terms, the more difficult it is to approximate F by a set of linear equations, the more nonlinear F is.

Several other criteria should be considered in designing F. We would like the algorithm to have good avalanche properties. Recall that, in general, this means that a change in one bit of the input should produce a change in many bits of the output. A more stringent version of this is the **strict avalanche criterion (SAC)** [WEBS86], which states that any output bit j of an S-box (see Appendix S for a discussion of S-boxes) should change with probability 1/2 when any single input bit i is inverted for all i, j. Although SAC is expressed in terms of S-boxes, a similar criterion could be applied to F as a whole. This is important when considering designs that do not include S-boxes.

Another criterion proposed in [WEBS86] is the **bit independence criterion** (**BIC**), which states that output bits j and k should change independently when any single input bit i is inverted for all i, j, and k. The SAC and BIC criteria appear to strengthen the effectiveness of the confusion function.

 $^{^{10}}$ Differential cryptanalysis of DES requires 2^{47} *chosen* plaintext. If all you have to work with is known plaintext, then you must sort through a large quantity of known plaintext–ciphertext pairs looking for the useful ones. This brings the level of effort up to $2^{55.1}$.

Key Schedule Algorithm

With any Feistel block cipher, the key is used to generate one subkey for each round. In general, we would like to select subkeys to maximize the difficulty of deducing individual subkeys and the difficulty of working back to the main key. No general principles for this have yet been promulgated.

Adams suggests [ADAM94] that, at minimum, the key schedule should guarantee key/ciphertext Strict Avalanche Criterion and Bit Independence Criterion.

RECOMMENDED READING

There is a wealth of information on symmetric encryption. Some of the more worthwhile references are listed here. An essential reference work is [SCHN96]. This remarkable work contains descriptions of virtually every cryptographic algorithm and protocol published up to the time of the writing of the book. The author pulls together results from journals, conference proceedings, government publications, and standards documents and organizes these into a comprehensive and comprehensible survey. Another worthwhile and detailed survey is [MENE97]. A rigorous mathematical treatment is [STIN06].

The foregoing references provide coverage of public-key as well as symmetric encryption.

Perhaps the most detailed description of DES is [SIMO95]; the book also contains an extensive discussion of differential and linear cryptanalysis of DES. [BARK91] provides a readable and interesting analysis of the structure of DES and of potential cryptanalytic approaches to DES. [EFF98] details the most effective brute-force attack on DES. [COPP94] looks at the inherent strength of DES and its ability to stand up to cryptanalysis. The reader may also find the following document useful: "The DES Algorithm Illustrated" by J. Orlin Grabbe, which is available at this book's Premium Content Web site.

BARK91 Barker, W. Introduction to the Analysis of the Data Encryption Standard (DES). Laguna Hills, CA: Aegean Park Press, 1991.

COPP94 Coppersmith, D. "The Data Encryption Standard (DES) and Its Strength Against Attacks." *IBM Journal of Research and Development*, May 1994.

EFF98 Electronic Frontier Foundation. *Cracking DES: Secrets of Encryption Research, Wiretap Politics, and Chip Design.* Sebastopol, CA: O'Reilly, 1998.

MENE97 Menezes, A., van Oorschot, P., and Vanstone, S. *Handbook of Applied Cryptography*. Boca Raton, FL: CRC Press, 1997.

SCHN96 Schneier, B. *Applied Cryptography*. New York: Wiley, 1996.

SIMO95 Simovits, M. *The DES: An Extensive Documentation and Evaluation.* Laguna Hills, CA: Aegean Park Press, 1995.

STIN06 Stinson, D. *Cryptography: Theory and Practice*. Boca Raton, FL: Chapman & Hall, 2006.