Phase 3 SSL-Stripping und Verwandtes

Seminar: Das Internet der Dinge (IoT) - ein Hackerparadies?

9 Dezember 2017

Alexander Korff | Sergej Maul | Yannik Stöcklin | Sebastian Philipp

Daniel Seidinger | Fabian Neumeier | Lukas Stöcklin | Manuel Rickli

Desirée Nusch | Samuel Hugger | Clement Francois | Joel Grossenbacher

Inhalt

- I. Wiederholung
- II. Setup
- III. Philips Hue
- IV. LED-Matrix
- V. Alexa
- VI. Schlussfolgerungen
- VII. Was nun?

I. Wiederholung

III. Philips Hue

- √ Faking the Gateway | ARP spoofing
 - Fritzbox ↔ Hue
 - DNS
 - TCP: Hue \leftrightarrow rackspace.com
 - TLSv1.2
- √ SSL Strip
 - SSDP
 - HTTP: GET Request Handler

Philips Hue cont.

- ✓ Blockieren Port 443, Ausweichen auf Port 80
 - HTTP: Hue ↔ bridge.meethue.com
 - Single Sign On Session

- √ Reverse engineering
 - ARP-spoof: Alexa ↔ Hue
 - Anschaltungsbefehl abfangen

IV. LED-Matrix

- Umbau von Ethernet zu Wifi
- Wifi-Chip ATWINC1500 ermöglicht durch Auslagerung SSL-Verschlüsselung

LED-Matrix cont.

- × blockieren Port 443, Ausweichen auf Port 80
 - Keine Verbindung
- × ARP-Spoof & SSL-Strip
 - nutzlos
- × SSL-Sniff

V. Alexa

• Versucht: Resultate wie bei LED-Matrix

- Certificate Pinning
 - SSL-Sniff
 - ähnlich auch auf ATWINC1500

VI. Schlussfolgerungen

- × Philips Hue
 - Kommunikation mit den Servern ist verschlüsselt ABER
 - Im Netzwerk kann man HTTP Pakete verschicken
- √ LED-Matrix | Alexa
 - Nicht manipulierbar (mit versuchten Mitteln)
 - ⇒ SSL-Strip das falsche Tool
 - ⇒ "Reducing security for the sake of interoperability"

VII. Was nun?

• Philips Hue: HTTP Protokoll

Angriffe auf SSL/TLS

• Downgrade auf ältere Versionen

• Bekannte Bugs ausnutzen (DROWN, POODLE,...)