CS669 - Pattern Recognition

Bayes Classifier

Assignment 1

Group 14

Team:

Aashish Kumar (B16001)

Priyanshu Khandelwal (B16027)

Vishal Anand (B16040)

Bayes Classifier	
1. Objective	4
2. Procedure	4
3. Observations	5
3.1 Case 1: $\Sigma = \sigma^2 I$	5
3.1.1 Linear Separable Data	5
3.1.2 Non-Linear Data	7
3.1.3 Real World Data	9
3.2 Case 2: $\Sigma_i = \Sigma$	11
3.2.1 Linear Separable Data	11
3.2.2 Non-Linear Data	13
3.2.3 Real World Data	15
3.3 Case 3: Σ_i is a diagonal matrix	17
3.3.1 Linear Separable Data	17
3.3.2 Non-Linear Data	19
3.3.3 Real World Data	21
3.4 Case 4: Σ_i is unique	23
3.4.1 Linear Separable Data	23
3.4.2 Non-Linear Data	25
3.4.3 Real World Data	27
4. Conclusion	29

1. Objective

- 1. To build Bayes Classifier and classify the following datasets
 - a. 2D Dataset 1 (Artificial)
 - i. Linearly Separable Dataset
 - i. Non Linearly Separable Dataset
 - b. 2D Dataset 2 (Real World)
- 2. Plot Decision Region for all pairs of classes.
- 3. Contour Region Plots for all pairs of classes.
- 4. Calculate Accuracy, Precision, mean Recall, F Measure and Confusion Matrix.

2. Procedure

- 1. For each class, 75% of data is used for for training and 25% of data is used for testing.
- 2. It is assumed that the data for each class is obtained from Gaussian distribution.
- 3. In case 1 ($\Sigma = \sigma^2$ I), the diagonal terms are all taken to be equal of the covariance matrix and was the mean for each class and it's off diagonal terms were assumed to be zero for simplicity in calculations.
- 4. In case 2 ($\Sigma_i = \Sigma$ for every class), mean of covariance matrix for each class was calculated for further calculations.
- 5. In case 3 (Σ_i is diagonal matrix), covariance matrix for each class was different and it's off diagonal terms were assumed to be 0 for further calculations.
- 6. In case 4 (Σ_i is unique), all individual covariance matrices were taken without any assumptions.
- 7. On the basis of assumptions taken, the discriminant function $g_i(x)$ was calculated for each class and decision region and Contour was plotted.
- 8. The remaining 25% data was tested for each case and analysis table were filled for each case.

3. Observations

3.1 Case 1: $\Sigma = \sigma^2 I$

3.1.1 Linear Separable Data

Fig1. Decision boundary for Case 1 Linear Separable data depicting between : a) Class 2 and Class 3 b) Class 1 and Class 2 c) Class 1 and Class 3 d) Class 1,2 and 3

	Class 1	Class 2
Class 1	125	0
Class 2	0	125

Analysis:

Tillacy 515.		
	Class 1	Class 2
Precision	1.0	1.0
Recall	1.0	1.0

Accuracy: 1.0 F Measure: 1.0

Confusion Matrix:

Confusion Matrix.		
	Class 2	Class 3
Class 2	125	0
Class 3	0	125

Analysis:

	Class 2	Class 3
Precision	1.0	1.0
Recall	1.0	1.0

Accuracy: 1.0 F Measure: 1.0

Confusion Matrix:

	Class 1	Class 3
Class 1	125	0
Class 3	0	125

Analysis:

7 ii aty 5151		
	Class 1	Class 3
Precision	1.0	1.0
Recall	1.0	1.0

Accuracy: 1.0 F Measure: 1.0

Confusion Matrix:

Comusion matrix.			
	Class 1	Class 2	Class 3
Class 1	125	0	0
Class 2	0	125	0
Class 3	0	0	125

Analysis:

	Class 1	Class 2	Class 3
Precision	1.0	1.0	1.0
Recall	1.0	1.0	1.0

Accuracy: 1.0 F Measure: 1.0

Table 1. Confusion Matrix and Analysis for Case 1, Linear Separable Data

3.1.2 Non-Linear Data

Fig2. Decision boundary for Case 1 Non-Linear Separable data depicting between : a) Class 1 and Class 2 b) Class 2 and Class 3 c) Class 1 and Class 3 d) Class 1,2 and 3

	Class 1	Class 2
Class 1	110	15
Class 2	20	105

Analysis:

Allaty 515.		
	Class 1	Class 2
Precision	0.8461	0.8750
Recall	0.8800	0.8400

Accuracy: 0.8600 F Measure: 0.8603

Confusion Matrix:

Comusion Matrix:		
	Class 2	Class 3
Class 2	106	19
Class 3	15	110

Analysis:

Allatysis.			
	Class 2	Class 3	
Precision	0.8760	0.8520	
Recall	0.8480	0.8800	

Accuracy: 0.8640 F Measure: 0.8642

Confusion Matrix:

	Class 1	Class 3	
Class 1	125	0	
Class 3	0	125	

Analysis:

7 illuty 5151			
	Class 1	Class 3	
Precision	1.0	1.0	
Recall	1.0	1.0	

Accuracy: 1.0 F Measure: 1.0

Confusion Matrix:

COIII asioii mac	Confusion Matrix.			
	Class 1	Class 2	Class 3	
Class 1	110	15	0	
Class 2	20	86	19	
Class 3	0	15	110	

Analysis:

	Class 1	Class 2	Class 3
Precision	0.8460	0.7410	0.8530
Recall	0.8800	0.6880	0.8800

Accuracy: 0.8160 F Measure: 0.8147

Table 2. Confusion Matrix and Analysis for Case 1, Non-Linear Separable Data

3.1.3 Real World Data

Fig3. Decision boundary for Case 1 Real World data depicting between: a) Class 1 and Class 2 b) Class 2 and Class 3 c) Class 1 and Class 3 d) Class 1,2 and 3

	Class 1	Class 2	
Class 1	224	348	
Class 2	27	570	

Analysis:

Allatysis.			
	Class 1	Class 2	
Precision	0.8924	0.6210	
Recall	0.3920	0.9540	

Accuracy: 0.6790 F Measure: 0.7120

Confusion Matrix:

	Class 2	Class 3	
Class 1	593	4	
Class 2	0	613	

Analysis:

7.11.41, 0.101			
	Class 2	Class 3	
Precision	1.0	0.9930	
Recall	0.9930	1.0	

Accuracy: 0.9967 F Measure: 0.9967

Confusion Matrix:

Comusion Matrix.			
	Class 1	Class 3	
Class 1	554	18	
Class 3	0	613	

Analysis:

Alluty 515.			
	Class 1	Class 3	
Precision	1.0	0.9714	
Recall	0.9685	1.0	

Accuracy: 0.9850 F Measure: 0.9850

Confusion Matrix:

Contrasion Matrix:			
	Class 1	Class 2	Class 3
Class 1	206	348	18
Class 2	24	570	3
Class 3	0	0	613

Analysis:

Talaty 515.			
	Class 1	Class 2	Class 3
Precision	0.8956	0.6209	0.9668
Recall	0.3601	0.9547	1.0

Accuracy: 0.7794 F Measure: 0.7042

Table 3. Confusion Matrix and Analysis for Case 1, Real World Data

3.2 Case 2: $\Sigma_i = \Sigma$

3.2.1 Linear Separable Data

Fig4. Decision boundary for Case 2 Linear Separable Data depicting between : a) Class 1 and Class 2 b) Class 2 and Class 3 c) Class 1 and Class 3 d) Class 1,2 and 3

	Class 1	Class 2
Class 1	125	0
Class 2	0	125

Analysis:

7 at y 5151		
	Class 1	Class 2
Precision	1.0	1.0
Recall	1.0	1.0

Accuracy: 1.0 F Measure: 1.0

Confusion Matrix:

Confusion Matrix.		
	Class 2	Class 3
Class 2	125	0
Class 3	0	125

Analysis:

7.11.41, 5.50		
	Class 1	Class 2
Precision	1.0	1.0
Recall	1.0	1.0

Accuracy: 1.0 F Measure: 1.0

Confusion Matrix:

	Class 1	Class 3
Class 1	125	0
Class 3	0	125

Analysis:

Talaty 515.		
	Class 1	Class 2
Precision	1.0	1.0
Recall	1.0	1.0

Accuracy: 1.0 F Measure: 1.0

Confusion Matrix:

	Class 1	Class 2	Class 3
Class 1	125	0	0
Class 2	0	125	0
Class 3	0	0	125

Analysis:

, mary 515.			
	Class 1	Class 2	Class 3
Precision	1.0	1.0	1.0
Recall	1.0	1.0	1.0
F Measure	1.0	1.0	1.0

Accuracy: 1.0 F Measure: 1.0

Table 4. Confusion Matrix and Analysis for Case 2, Linear Separable Data

3.2.2 Non-Linear Data

Fig5. Decision boundary for Case 2 Non-Linear Separable depicting between : a) Class 1 and Class 2 b) Class 2 and Class 3 c) Class 3 and Class 1 d) Class 1,2 and 3

	Class 1	Class 2
Class 1	115	10
Class 2	12	113

Analysis:

Allatysis.		
	Class 1	Class 2
Precision	0.9055	0.9190
Recall	0.9200	0.9040

Accuracy: 0.9120 F Measure: 0.9120

Confusion Matrix:

	Class 2	Class 3
Class 2	121	4
Class 3	4	121

Analysis:

·			
	Class 2	Class 3	
Precision	0.9680	0.9680	
Recall	0.9680	0.9680	

Accuracy: 0.9680 F Measure: 0.9680

Confusion Matrix:

Contraction matrix:			
	Class 1	Class 3	
Class 1	125	0	
Class 3	0	125	

Analysis:

7 ii aty 5151			
	Class 1	Class 3	
Precision	1.0	1.0	
Recall	1.0	1.0	

Accuracy: 1.0 F Measure: 1.0

Confusion Matrix:

Comusion matrix:			
	Class 1	Class 2	Class 3
Class 1	115	10	0
Class 2	12	109	4
Class 3	0	4	121

Analysis:

	Class 1	Class 2	Class 3
Precision	0.9055	0.8861	0.9680
Recall	0.9200	0.8720	0.9680

Accuracy: 0.9200 F Measure: 0.9199

Table 5. Confusion Matrix and Analysis for Case 2, Non-Linear Separable Data

3.2.3 Real World Data

Fig6. Decision boundary for Case 2 Real World data depicting between: a) Class 1 and Class 2 b) Class 2 and Class 3 c) Class 3 and Class 1,2 and 3

	Class 1	Class 2	
Class 1	227	345	
Class 2	26	571	

Analysis:

Allatysis.			
	Class 1	Class 2	
Precision	0.8970	0.6233	
Recall	0.3970	0.9560	

Accuracy: 0.6826 F Measure: 0.7160

Confusion Matrix:

Comusion Matrix:			
	Class 2	Class 3	
Class 2	586	11	
Class 3	0	613	

Analysis:

7.11.01.7.01.01			
	Class 2	Class 3	
Precision	1.0	0.9820	
Recall	0.9810	1.0	

Accuracy: 0.9900 F Measure: 0.9900

Confusion Matrix:

	Class 1	Class 3	
Class 1	555	17	
Class 3	0	613	

Analysis:

Alluty 515.			
	Class 1	Class 3	
Precision	1.0	0.9730	
Recall	0.9700	1.0	

Accuracy: 0.9860 F Measure: 0.9860

Confusion Matrix:

	Comusion Matrix.			
	Class 1	Class 2	Class 3	
Class 1	210	345	17	
Class 2	23	571	3	
Class 3	0	0	613	

Analysis:

, u , y o . o .			
	Class 1	Class 2	Class 3
Precision	0.9010	0.6230	1.0
Recall	0.3670	0.9560	1.0

Accuracy: 0.7820 F Measure: 0.8070

Table 6. Confusion Matrix and Analysis for Case 2, Real World Data

3.3 Case 3: Σ_i is a diagonal matrix

3.3.1 Linear Separable Data

Fig7. Decision boundary for Case 3 Linear Separable data depicting between : a) Class 1 and Class 2 b) Class 2 and Class 3 c) Class 1 and Class 3 d) Class 1,2 and 3

	Class 1	Class 2
Class 1	119	6
Class 2	0	125

Analysis:

Tillacy 515.		
	Class 1	Class 2
Precision	1.0	0.9540
Recall	0.9520	1.0

Accuracy: 0.9760 F Measure: 0.9760

Confusion Matrix:

	Class 2	Class 3
Class 2	125	0
Class 3	5	120

Analysis:

7.11.41, 0.101		
	Class 2	Class 3
Precision	0.9610	1.0
Recall	1.0	0.9600

Accuracy: 0.9800 F Measure: 0.9800

Confusion Matrix:

Contraction matrix:		
	Class 1	Class 3
Class 1	125	0
Class 3	0	125

Analysis:

7411414 5151		
	Class 1	Class 3
Precision	1.0	1.0
Recall	1.0	1.0

Accuracy: 1.0 F Measure: 1.0

Confusion Matrix:

	Class 1	Class 2	Class 3
Class 1	119	6	0
Class 2	0	125	0
Class 3	0	5	120

Analysis:

741141 4 5151			
	Class 1	Class 2	Class 3
Precision	1.0	0.9190	0.9600
Recall	0.9520	1.0	0.9600

Accuracy: 0.9700 F Measure: 0.9650

Table 7. Confusion Matrix and Analysis for Case 3, Linear Separable Data

3.3.2 Non-Linear Data

Fig8. Decision boundary for Case 3 Non-Linear Separable data depicting between : a) Class 1 and Class 2 b) Class 2 and Class 3 c) Class 3 and Class 1 d) Class 1,2 and 3

	Class 1	Class 2
Class 1	118	7
Class 2	26	99

Analysis:

Tillacy 515.		
	Class 1	Class 2
Precision	0.8190	0.9330
Recall	0.9440	0.7920

Accuracy: 0.8680 F Measure: 0.8720

Confusion Matrix:

Comusion Matrix.		
	Class 2	Class3
Class 2	103	22
Class 3	7	118

Analysis:

·			
	Class 2	Class 3	
Precision	0.9360	0.8430	
Recall	0.8240	0.9440	

Accuracy: 0.8840 F Measure: 0.8870

Confusion Matrix:

	Class 1	Class 3
Class 1	125	0
Class 3	0	125

Analysis:

Alluty 515.			
	Class 1	Class 3	
Precision	1.0	1.0	
Recall	1.0	1.0	

Accuracy: 1.0 F Measure: 1.0

Confusion Matrix:

Comusion matrix.			
	Class 1	Class 2	Class 3
Class 1	118	7	0
Class 2	26	77	22
Class 3	0	7	118

Analysis:

	Class 1	Class 2	Class 3
Precision	0.8190	0.8460	0.9440
Recall	0.9440	0.6160	0.9440

Accuracy: 0.8350 F Measure: 0.8520

Table 8. Confusion Matrix and Analysis for Case 3, Non-Linear Separable Data

3.3.3 Real World Data

Fig9. Decision boundary for Case 3 Real World data depicting between: a) Class 1 and Class 2 b) Class 2 and Class 3 c) Class 3 and Class 1,2 and 3

	Class 1	Class 2	
Class 1	215	357	
Class 2	19	578	

Analysis:

Allatysis.			
	Class 1	Class 2	
Precision	0.9188	0.6181	
Recall	0.3758	0.9681	

Accuracy: 0.6783 F Measure: 0.7170

Confusion Matrix:

	Class 2	Class 3	
Class 2	594	3	
Class 3	1	612	

Analysis:

7.11.41,7.51.51			
	Class 2	Class 3	
Precision	0.9983	0.9951	
Recall	0.9949	0.9983	

Accuracy: 0.9966 F Measure: 0.9966

Confusion Matrix:

Comusion Matrix.			
	Class 1	Class 3	
Class 1	555	17	
Class 3	0	613	

Analysis:

Allatysis.			
	Class 1	Class 3	
Precision	1.0	0.9730	
Recall	0.9702	1.0	

Accuracy: 0.9856 F Measure: 0.9858

Confusion Matrix:

	Class 1	Class 2	Class 3	
Class 1	205	352	15	
Class 2	17	577	3	
Class 3	1	0	612	

Analysis:

	Class 1	Class 2	Class 3
Precision	0.919	0.621	0.998
Recall	0.358	0.966	0.998

Accuracy: 0.7820 F Measure: 0.8090

Table 9. Confusion Matrix and Analysis for Case 3, Real World Data

3.4 Case 4: Σ_i is unique

3.4.1 Linear Separable Data

Fig10. Decision boundary for Case 4 Linear Separable data depicting between: a) Class 1 and Class 2 b) Class 2 and Class 3 c) Class 1 and Class 3 d) Class 1,2 and 3

	Class 1	Class 2
Class 1	125	0
Class 2	0	125

Analysis:

Allatysis.		
	Class 1	Class 2
Precision	1.0	1.0
Recall	1.0	1.0

Accuracy: 1.0 F Measure: 1.0

Confusion Matrix:

Confusion Matrix.		
	Class 2	Class 3
Class 2	125	0
Class 3	0	125

Analysis:

2		
	Class 2	Class 3
Precision	1.0	1.0
Recall	1.0	1.0

Accuracy: 1.0 F Measure: 1.0

Confusion Matrix:

	Class 1	Class 3
Class 1	125	0
Class 3	0	125

Analysis:

7 illuty 5151		
	Class 1	Class 3
Precision	1.0	1.0
Recall	1.0	1.0

Accuracy: 1.0 F Measure: 1.0

Confusion Matrix:

Comusion matrix:			
	Class 1	Class 2	Class 3
Class 1	125	0	0
Class 2	0	125	0
Class 3	0	0	125

Analysis:

y			
	Class 1	Class 2	Class 3
Precision	1.0	1.0	1.0
Recall	1.0	1.0	1.0

Accuracy: 1.0 F Measure: 1.0

Table 10. Confusion Matrix and Analysis for Case 4, Linear Separable Data

3.4.2 Non-Linear Data

Fig11. Decision boundary for Case 4 Non-Linear Separable data depicting between : a) Class 1 and Class 2 b) Class 2 and Class 3 c) Class 3 and Class 1 d) Class 1,2 and 3

	Class 1	Class 2
Class 1	114	11
Class 2	12	113

Analysis:

7.11.47,5151		
	Class 1	Class 2
Precision	0.9047	0.9112
Recall	0.9120	0.9040

Accuracy: 0.9080 F Measure: 0.9080

Confusion Matrix:

Comusion Matrix.		
	Class 2	Class 3
Class 2	103	22
Class 3	7	118

Analysis:

Allatysis:			
	Class 2	Class 3	
Precision	0.9363	0.8428	
Recall	0.8240	0.9440	

Accuracy: 0.8840 F Measure: 0.8867

Confusion Matrix:

Comusion Matrix.			
	Class 1	Class 3	
Class 1	125	0	
Class 3	0	125	

Analysis:

Alluty 515.			
	Class 1	Class 3	
Precision	1.0	1.0	
Recall	1.0	1.0	

Accuracy: 1.0 F Measure: 1.0

Confusion Matrix:

	Class 1	Class 2	Class 3	
Class 1	114	11	0	
Class 2	12	110	3	
Class 3	0	7	118	

Analysis:

Talaty 515.			
	Class 1	Class 2	Class 3
Precision	0.9047	0.8593	0.9752
Recall	0.9120	0.8800	0.9440

Accuracy: 0.9120 F Measure: 0.8889

Table 11. Confusion Matrix and Analysis for Case 4, Non-Linear Separable Data

3.4.3 Real World Data

Fig12. Decision boundary for Case 4 Real World data depicting between: a) Class 1 and Class 2 b) Class 2 and Class 3 c) Class 3 and Class 1 d) Class 1,2 and 3

	Class 1	Class 2	
Class 1	227	345	
Class 2	26	571	

Analysis:

7.11.41, 51.51			
	Class 1	Class 2	
Precision	0.8972	0.6233	
Recall	0.3968	0.9564	

Accuracy: 0.6826 F Measure: 0.7160

Confusion Matrix:

	Class 2	Class 3	
Class 2	581	16	
Class 3	0	613	

Analysis:

7.11.41, 0.101			
	Class 2	Class 3	
Precision	1.0	0.9745	
Recall	0.9731	1.0	

Accuracy: 0.9839 F Measure: 0.9869

Confusion Matrix:

Confusion Matrix:			
	Class 1	Class 3	
Class 1	553	19	
Class 3	0	613	

Analysis:

Allutysis.			
	Class 1	Class 3	
Precision	1.0	0.9699	
Recall	0.9667	1.0	

Accuracy: 0.9839 F Measure: 0.9841

Confusion Matrix:

	Class 1	Class 2	Class 3
Class 1	208	345	19
Class 2	11	571	15
Class 3	0	0	613

Analysis:

	Class 1	Class 2	Class 3
Precision	0.9497	0.6233	0.9474
Recall	0.3636	0.9564	1.0

Accuracy: 0.7811 F Measure: 0.7177

Table 12. Confusion Matrix and Analysis for Case 4, Real World Data

4. Conclusion

- 1. On the given data, Bayes Classifier works well but only for linearly separable data but was not so good with non-linearly separable data.
- 2. As the data is scattered and randomly distributed in real world data, that's why the accuracies came out to be not very good.
- 3. As from the theory the decision boundary successfully came out to be linear in first two cases whereas in the other two cases it was hyper-quadratic.
- 4. The accuracies came out to be the least for real world data in some of the cases as the data was completely scattered and randomly distributed.