Isometry Group of a Vector Norm

Definition: Isometry Group

Given a vector norm $\|\cdot\|$ on \mathbb{C}^n , the *isometry* group associated with the norm, denoted $G_{\|\cdot\|}$, is given by:

$$G_{\|\cdot\|} = \{ A \in M_n \mid \forall \vec{x} \in \mathbb{C}^n, \|A\vec{x}\| = \|\vec{x}\| \}$$

Note that $G_{\|\cdot\|} \neq \emptyset$ because $0 \in G_{\|\cdot\|}$.

Lemma

Let $A \in G_{\|\cdot\|}$ and $\lambda \in \sigma(A)$:

$$|\lambda| = 1$$

Proof

$$||A\vec{x}|| = ||\lambda\vec{x}|| = |\lambda| \, ||\vec{x}||$$

$$|\lambda| = 1$$

Theorem

$$G_{\|\cdot\|} \le GL(n)$$

Proof

Assume $A \in G_{\|\cdot\|}$

$$\lambda \in \sigma(A) \implies |\lambda| = 1$$

So all $\lambda \neq 0$

Thus A is invertible

$$A \in GL(n)$$

$$\therefore G_{\|\cdot\|} \subseteq GL(n)$$

Assume $B \in G_{\|\cdot\|}$

Assume $x \in \mathbb{C}^n$

$$B\vec{x} \in \mathbb{C}^n$$

$$||AB\vec{x}|| = ||A(B\vec{x})|| = ||B\vec{x}|| = ||\vec{x}||$$

Therefore $G_{\|\cdot\|}$ is closed under the operation (composition).

Since A is invertible, A^{-1} exists

$$A^{-1}\vec{x} \in \mathbb{C}^n$$

$$||A^{-1}\vec{x}|| = ||A(A^{-1}\vec{x})|| = ||(AA^{-1})\vec{x}|| = ||I_n\vec{x}|| = ||\vec{x}||$$

$$A^{-1} \in G_{||\cdot||}$$

Therefore $G_{\|\cdot\|}$ is closed under inverses.

$$\therefore G_{\|\cdot\|} \leq GL(n).$$

Theorem

Let $G_{\|\cdot\|}$ be the unitary group. There exists $\alpha\in\mathbb{R}$ such that $\alpha>0$ and:

$$\forall \, \vec{x} \in \mathbb{C}^n, \|\vec{x}\| = \alpha \, \|\vec{x}\|_2$$

In other words, for all $\vec{x} \in \mathbb{C}^n$, the norm is a positive scalar multiple of the ℓ_2 norm.

Proof

Assume $\vec{x} \in \mathbb{C}^n$

Consider the unit vector $\hat{y}_1 = rac{ec{x}}{\|ec{x}\|_2}$

Using G-S, construct n-1 additional orthogonal unit vectors $\{\hat{y}_2, \dots, \hat{y}_n\}$ Form the matrix:

$$U = \begin{bmatrix} \hat{y}_1 & \hat{y}_2 & \dots & \hat{y}_n \end{bmatrix}$$

Since the columns of ${\cal U}$ are orthonormal, ${\cal U}$ is a unitary matrix Now, since the norm is unitary invariant:

$$\|\vec{e}_1\| = \|U\vec{e}_1\| = \|\hat{y}_1\| = \left\|\frac{\vec{x}}{\|\vec{x}\|_2}\right\| = \frac{1}{\|\vec{x}\|_2}\|\vec{x}\|$$

Thus, $\|\vec{x}\| = \|\vec{x}\|_2 \|\vec{e}_1\|$ But $\|\vec{e}_1\| > 0$, so let $\alpha = \|\vec{e}_1\|$

$$\therefore \|\vec{x}\| = \alpha \|\vec{x}\|_2$$