Lecture 16 — PCA and SVD.

Alex Schwing and Matus Telgarsky

(Some slide content from Daniel Hsu (Columbia)!)

Announcements.

- Midterm not yet graded!
- ► Homeworks after spring break **pushed back 1 week!**

Schedule for today.

- Overview.
- PCA basics.
- PCA and SVD.
- ▶ PCA applications.
- ► Algorithms.

Reading: Murphy book, parts of chapter 12.

Overview.

So far we have focused on **supervised learning**: constructing a mapping $f: \mathcal{X} \to \mathcal{Y}$ given pairs $((x_i, y_i))_{i=1}^n$.

Overview.

So far we have focused on **supervised learning**: constructing a mapping $f: \mathcal{X} \to \mathcal{Y}$ given pairs $((x_i, y_i))_{i=1}^n$. Examples:

- ► *k*-nn
- Least squares.
- Logistic regression.
- SVM.
- Neural networks.
- Structured prediction.

Next we will study **unsupervised learning**: finding structure in **unlabeled** data $(x_i)_{i=1}^n$.

Next we will study **unsupervised learning**: finding structure in **unlabeled** data $(x_i)_{i=1}^n$. Examples:

- ▶ PCA.
- ▶ k-means.
- Gaussian Mixture Models.
- Hidden Markov Models.
- Generative Adversarian Networks.

What is the **goal** in unsupervised learning?

- Recover "hidden structure" (e.g., cliques in noisy graphs).
- Data compression / dimension reduction.
- Interpret / explain data and models.
- Features for supervised learning (e.g., word embeddings).

What is the **goal** in unsupervised learning?

- Recover "hidden structure" (e.g., cliques in noisy graphs).
- Data compression / dimension reduction.
- ▶ Interpret / explain data and models.
- ► Features for supervised learning (e.g., word embeddings).

The task in unsupervised learning is less clear-cut.

PCA (Principle Component Analysis).

PCA (Principle Component Analysis).

Task (informal):

find best-fitting low-dimensional subspace to $(x_i)_{i=1}^n$.

PCA (Principle Component Analysis).

Task (informal):

find best-fitting low-dimensional subspace to $(x_i)_{i=1}^n$.

Task: Given $(x_i)_{i=1}^n$, find linear subspace L (with projection operator Π_L) which minimizes variance:

$$\underset{\substack{\text{subspaces } L \subseteq \mathbb{R}^d \\ \dim(L) = k}}{\arg \min} \frac{1}{n} \sum_{i=1}^n ||x_i - \Pi_L x_i||^2.$$

PCA – matrix form (part 1).

Original form:

```
\underset{\substack{\text{subspaces } L \subseteq \mathbb{R}^d \\ \dim(L) = k}}{\arg\min} \frac{1}{n} \sum_{i=1}^n ||x_i - \Pi_L x_i||^2.
```

PCA - matrix form (part 1).

Original form:

$$\underset{\substack{\text{subspaces } L \subseteq \mathbb{R}^d \\ \dim(L) = k}}{\arg \min} \frac{1}{n} \sum_{i=1}^n ||x_i - \Pi_L x_i||^2.$$

To derive a simpler matrix form:

- ▶ Collect $(x_i)_{i=1}^n$ as rows of matrix $X \in \mathbb{R}^{n \times d}$.
- ▶ L is k-dimensional \iff has basis (v_1, \ldots, v_k) . Collect $(v_i)_{i=1}^k$ into $V \in \mathbb{R}^{d \times k}$. Note VV^\top denotes orthogonal projection onto columns of V.
- ▶ For matrix M, define **Frobenius norm** $\|M\|_{\mathsf{F}}^2 = \sum_{i,j} M_{ij}^2$.

PCA - matrix form (part 1).

Original form:

$$\underset{\substack{\text{subspaces } L \subseteq \mathbb{R}^d \\ \dim(L) = k}}{\arg \min} \frac{1}{n} \sum_{i=1}^n ||x_i - \Pi_L x_i||^2.$$

To derive a simpler matrix form:

- ▶ Collect $(x_i)_{i=1}^n$ as rows of matrix $X \in \mathbb{R}^{n \times d}$.
- ▶ L is k-dimensional \iff has basis (v_1, \ldots, v_k) . Collect $(v_i)_{i=1}^k$ into $V \in \mathbb{R}^{d \times k}$. Note VV^\top denotes orthogonal projection onto columns of V.
- ▶ For matrix M, define **Frobenius norm** $\|M\|_{\mathsf{F}}^2 = \sum_{i,j} M_{ij}^2$.

With this notation, obtain alternate matrix form:

$$\underset{\substack{V \in \mathbb{R}^{d \times k} \\ V^{\top}V = I}}{\arg\min} \frac{1}{n} \left\| X^{\top} - VV^{\top}X^{\top} \right\|_{\mathsf{F}}^{2}.$$

PCA – matrix form (part 2).

Given $X \in \mathbb{R}^{n \times d}$ and $V \in \mathbb{R}^{d \times k}$ with $V^{\top}V = I$, since $||M||_{\mathsf{F}}^2 = \mathsf{trace}(M^{\top}M)$,

$$\begin{aligned} \left\| \boldsymbol{X}^{\top} - \boldsymbol{V} \boldsymbol{V}^{\top} \boldsymbol{X}^{T} \right\|_{\mathsf{F}}^{2} &= \left\| \boldsymbol{X}^{T} \right\|_{\mathsf{F}}^{2} - 2 \mathsf{trace} (\boldsymbol{X} \boldsymbol{V} \boldsymbol{V}^{\top} \boldsymbol{X}^{T}) + \mathsf{trace} (\boldsymbol{X} \boldsymbol{V} \boldsymbol{V}^{\top} \boldsymbol{V} \boldsymbol{V}^{\top} \boldsymbol{X}^{T}) \\ &= \left\| \boldsymbol{X} \right\|_{\mathsf{F}}^{2} - \mathsf{trace} (\boldsymbol{V}^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{V}) = \left\| \boldsymbol{X} \right\|_{\mathsf{F}}^{2} - \left\| \boldsymbol{X} \boldsymbol{V} \right\|_{\mathsf{F}}^{2}. \end{aligned}$$

PCA – matrix form (part 2).

Given $X \in \mathbb{R}^{n \times d}$ and $V \in \mathbb{R}^{d \times k}$ with $V^{\top}V = I$, since $||M||_{\mathsf{F}}^2 = \operatorname{trace}(M^{\top}M)$,

$$||X^{\top} - VV^{\top}X^{T}||_{\mathsf{F}}^{2} = ||X^{T}||_{\mathsf{F}}^{2} - 2\operatorname{trace}(XVV^{\top}X^{T}) + \operatorname{trace}(XVV^{\top}VV^{\top}X^{T})$$
$$= ||X||_{\mathsf{F}}^{2} - \operatorname{trace}(V^{\top}X^{\top}XV) = ||X||_{\mathsf{F}}^{2} - ||XV||_{\mathsf{F}}^{2}.$$

PCA can thus be rewritten

$$\underset{V^{\top}V=I}{\arg\min} \frac{1}{n} \left\| X^{\top} - VV^{\top}X^{\top} \right\|_{\mathsf{F}}^{2} = \underset{V \in \mathbb{R}^{d \times k}}{\arg\max} \|XV\|_{\mathsf{F}}^{2}.$$

Aside: eigendecompositions.

Recall: given a matrix M, then (Q, Λ) are an **eigendecomposition** when:

- Q is orthonormal $(Q^{\top}Q = I)$.
- Λ is diagonal.

$$M = Q \Lambda Q^{\top} = \sum_{i=1}^{d} \lambda_i q_i q_i^{\top}.$$

Aside: eigendecompositions.

Recall: given a matrix M, then (Q, Λ) are an **eigendecomposition** when:

- Q is orthonormal $(Q^{\top}Q = I)$.
- Λ is diagonal.

$$M = Q \Lambda Q^{\top} = \sum_{i=1}^{d} \lambda_i q_i q_i^{\top}.$$

Moreover:

- (q_1, \ldots, q_d) are eigenvectors, $(\lambda_1, \ldots, \lambda_d)$ are eigenvalues.
- ▶ When M is symmetric, eigendecomposition **exists** and is **real**. Convention: $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$.
- Eigendecomposition not in general unique! (E.g., zero matrix...)

PCA via eigenvalues.

We've boiled PCA down to

$$\underset{\substack{V \in \mathbb{R}^{d \times k} \\ V^\top V = I}}{\arg\min} \frac{1}{n} \left\| X^\top - V V^\top X^\top \right\|_{\mathsf{F}}^2 = \underset{\substack{V \in \mathbb{R}^{d \times k} \\ V^\top V = I}}{\arg\max} \operatorname{trace}(V^\top X^\top X V).$$

PCA via eigenvalues.

We've boiled PCA down to

$$\underset{\substack{V \in \mathbb{R}^{d \times k} \\ V^\top V = I}}{\arg\min} \frac{1}{n} \Big\| X^\top - V V^\top X^\top \Big\|_{\mathsf{F}}^2 = \underset{\substack{V \in \mathbb{R}^{d \times k} \\ V^\top V = I}}{\arg\max} \operatorname{trace}(V^\top X^\top X V).$$

 $X^{\top}X$ is symmetric, with eigendecomposition $X^{\top}X = Q\Lambda Q^{\top}$. We can also rewrite V in the basis Q, thus

$$\max_{\substack{V \in \mathbb{R}^{d \times k} \\ V^{\top}V = I}} \operatorname{trace}(V^{\top}X^{\top}XV) = \max_{\substack{QV \in \mathbb{R}^{d \times k} \\ V^{\top}V = I}} \operatorname{trace}\left((QV)^{\top}Q\Lambda Q^{\top}(QV)\right)$$

$$= \max_{\substack{QV \in \mathbb{R}^{d \times k} \\ V^{\top}V = I}} \operatorname{trace}\left(V^{\top}\Lambda V\right) = \lambda_1 + \dots + \lambda_k.$$

PCA via eigenvalues.

We've boiled PCA down to

$$\underset{\substack{V \in \mathbb{R}^{d \times k} \\ V^\top V = I}}{\arg\min} \frac{1}{n} \Big\| X^\top - V V^\top X^\top \Big\|_{\mathsf{F}}^2 = \underset{\substack{V \in \mathbb{R}^{d \times k} \\ V^\top V = I}}{\arg\max} \operatorname{trace}(V^\top X^\top X V).$$

 $X^{\top}X$ is symmetric, with eigendecomposition $X^{\top}X = Q\Lambda Q^{\top}$. We can also rewrite V in the basis Q, thus

$$\max_{\substack{V \in \mathbb{R}^{d \times k} \\ V^{\top}V = I}} \operatorname{trace}(V^{\top}X^{\top}XV) = \max_{\substack{QV \in \mathbb{R}^{d \times k} \\ V^{\top}V = I}} \operatorname{trace}\left((QV)^{\top}Q\Lambda Q^{\top}(QV)\right)$$

$$= \max_{\substack{QV \in \mathbb{R}^{d \times k} \\ V^{\top}V = I}} \operatorname{trace}\left(V^{\top}\Lambda V\right) = \lambda_1 + \dots + \lambda_k.$$

Therefore:

- ▶ The solution to PCA is the top k eigenvectors of X^TX .
- ▶ The eigenvalues give the maximum value.

PCA summary.

We are given data $(x_i)_{i=1}^n$; We want subspace L, $\dim(L) = k$, minimizing $\sum_{i=1}^n \|x_i - \Pi_L x_i\|^2$.

PCA summary.

We are given data $(x_i)_{i=1}^n$;

We want subspace L, dim(L) = k, minimizing $\sum_{i=1}^{n} ||x_i - \Pi_L x_i||^2$.

- ▶ Form matrix $X \in \mathbb{R}^{n \times d}$ with x_i as row i.
- ▶ Compute top eigenvectors $(v_1, ..., v_k)$ of $X^\top X$.
- ▶ Collect $(v_1, ..., v_l)$ as columns of $V \in \mathbb{R}^{d \times k}$.
- Output V; note $\Pi_L = VV^{\top}$.

PCA summary.

We are given data $(x_i)_{i=1}^n$; We want subspace L, $\dim(L) = k$, minimizing $\sum_{i=1}^n \|x_i - \Pi_L x_i\|^2$.

- ▶ Form matrix $X \in \mathbb{R}^{n \times d}$ with x_i as row i.
- ▶ Compute top eigenvectors $(v_1, ..., v_k)$ of $X^\top X$.
- ▶ Collect $(v_1, ..., v_l)$ as columns of $V \in \mathbb{R}^{d \times k}$.
- Output V; note $\Pi_L = VV^{\top}$.

Remark. Often we want PCA with centering:

Find the mean $\mu = n^{-1} \sum_{i=1}^{n} x_i$, Form $X \in \mathbb{R}^{n \times d}$ where row i has $x_i - \mu$. Associate x_i with $\mu + \Pi_I(x_i - \mu)$.

PCA and SVD.

PCA and SVD.

Any questions so far?

SVD (Singular Value Decomposition).

Every matrix $M \in \mathbb{R}^{n \times d}$ has an SVD (U, S, V^{\top}) .

- ▶ $U \in \mathbb{R}^{n \times r}$ with $U^{\top}U = I$ and r := rank(M). Columns of U are **left singular vectors** (u_1, \dots, u_r) .
- ► $S = \operatorname{diag}(s_1, \ldots, s_r)$; these are the **singular values** $s_1 \ge \cdots \ge s_r$.
- ▶ $V \in \mathbb{R}^{d \times r}$ with $V^{\top}V = I$. Columns of V are **right singular vectors** (v_1, \dots, v_r) .
- $M = USV^{\top} = \sum_{i=1}^{r} s_i u_i v_i^{\top}.$

SVD (Singular Value Decomposition).

Every matrix $M \in \mathbb{R}^{n \times d}$ has an SVD (U, S, V^{\top}) .

- ▶ $U \in \mathbb{R}^{n \times r}$ with $U^{\top}U = I$ and r := rank(M). Columns of U are **left singular vectors** (u_1, \dots, u_r) .
- ▶ $S = \operatorname{diag}(s_1, \dots, s_r)$; these are the **singular values** $s_1 \ge \dots \ge s_r$.
- ▶ $V \in \mathbb{R}^{d \times r}$ with $V^{\top}V = I$. Columns of V are **right singular vectors** (v_1, \dots, v_r) .
- $M = USV^{\top} = \sum_{i=1}^{r} s_i u_i v_i^{\top}.$

Remarks.

- ► Some call this the **thin SVD** or **truncated SVD** (E.g., Murphy book).
- $ightharpoonup \sum_{i} s_i u_i v_i^{\top}$ is very convenient (consider r = 0).
- ▶ Again not in general unique (consider $s_1 = s_2$).

More on the SVD.

Every matrix $M \in \mathbb{R}^{n \times d}$ has SVD $M = USV^{\top}$ with $U^{\top}U = I \in R^{r \times r}$, $V^{\top}V \in \mathbb{R}^{r \times r}$, $S = \text{diag}(s_1, \dots, s_r)$.

- ▶ $M^{\top}M$ is symmetric and positive semi-definite (latter since $x^{\top}M^{\top}Mx = |Mx|^2 \ge 0$.) Note $M^{\top}M = VS^2V^{\top}$.
- ▶ Same with MM^{\top} ; also $MM^{\top} = US^2U^{\top}$.
- ► Eigenvalues of MM^{\top} and $M^{\top}M$ coincide; agree with $(s_1^2, \dots, s_r^2, 0, \dots 0)$.
- ► Eigenvectors of $M^{\top}M$ are **right singular vectors**; Eigenvectors of MM^{\top} are **left singular vectors**.

SVD and PCA.

Given data $(x_i)_{i=1}^n$ collected as rows of $X \in \mathbb{R}^{n \times d}$, PCA solution was top k eigenvectors of $X^\top X$, the projected points are $VV^\top X$ where V collects eigenvectors.

SVD and PCA.

Given data $(x_i)_{i=1}^n$ collected as rows of $X \in \mathbb{R}^{n \times d}$, PCA solution was top k eigenvectors of $X^\top X$, the projected points are $VV^\top X$ where V collects eigenvectors.

- ▶ Eigenvectors of X^TX are right singular vectors V in $X = USV^T$.
- ▶ PCA solution is V_k (first k columns of V).
- ▶ Projected data is $V_k V_k^\top X^\top = V_k V_k^\top V S U^\top = V_k S_k U_k^\top$. Reduced dimension description is $S_k U_k^\top$.

PCA summary so far.

- ▶ Goal in PCA: find linear subspace L close to data, dim(L) = k.
- Objective function:

$$\underset{\substack{\text{subspaces } L \subseteq \mathbb{R}^d \\ \dim(L) = k}}{\arg\min} \sum_{i=1}^n \lVert x_i - \Pi_L x_i \rVert^2.$$

- ▶ Solution 1: top k eigenvectors of X^TX .
- ► Solution 2: top *k* right singular vectors of *X*.

Questions so far?

PCA applications.

(Slides from Daniel Hsu!)

PCA applications.

(Slides from Daniel Hsu!)

Application 1: digit data.

Data $(x_i)_{i=1}^n$ with $x_i \in \mathbb{R}^{784}$.

▶ Residual variance left by rank-*k* PCA projection:

$$1 - \frac{\sum_{j=1}^{k} \text{variance in direction } v_j}{\text{total variance}}$$

Residual variance left by best k coordinate projections:

Application 1: digit data.

 16×16 pixel images of handwritten 3s (as vectors in \mathbb{R}^{256})

Mean μ and eigenvectors v_1, v_2, v_3, v_4

Reconstructions:

Only have to store k numbers per image, along with the mean μ and k eigenvectors (256(k+1) numbers).

Application 2: eigenfaces.

 92×112 pixel images of faces (as vectors in $\mathbb{R}^{10304})$

100 example images

top k = 48 eigenvectors

Application 3: topic modeling.

- Let $(x_i)_{i=1}^n$ denote *text documents*: each $x_i \in \mathbb{R}^d$ contains normalized word counts (d possible words).
- ▶ With SVD/PCA, replace x_i with $VV^\top x = Vy$; now $y \in \mathbb{R}^k$ (e.g., $k = 100 \ll 30,000 = d$).
- Problem (here and before): negative values! (NMF?)
- ► Further reading: look up LSA (latent semantic analysis) and LSI (latent semantic indexing).

Algorithms.

Algorithms.

- ▶ We reduced PCA to eigenvectors of X^TX .
- ▶ An easy solver here is the **power method**.

Algorithms.

- ▶ We reduced PCA to eigenvectors of X^TX .
- An easy solver here is the **power method**.
- ▶ Basic observation: given $M = Q\Lambda Q^{\top}$, then

$$M^t = Q\Lambda^t Q^{\top} = \sum_{i=1}^d \lambda_i^t q_i q_i^{\top}.$$

► I.e., M^t has clearer "eigenvalue structure" then M. How to leverage this algorithmically?

Power method background.

- ▶ From $M = Q\Lambda Q^{\top}$, have $M^t = Q\Lambda^t Q^{\top} = \sum_i \lambda_i^t q_i q_i^{\top}$.
- ▶ Pick any unit vector *x*; write it as *Qy* for unit vector *y*.
- ► Therefore $M^t x = \sum_i \lambda_i^t q_i q_i^\top x = \sum_i \lambda_i^t y_i q_i$. Seems to "amplify" top eigenvalue!
- ▶ Indeed, setting $\Delta := \max_{j \geq 1} \frac{\lambda_j y_j}{\lambda_1 y_1}$,

$$\begin{split} \frac{(q_1^\top M^t x)^2}{\|M^t x\|^2} &= \frac{\lambda_1^{2t} y_1^{2t}}{\sum_i \lambda_i^{2t} y_i^{2t}} = \frac{1}{1 + \sum_{i \ge 2} \left(\frac{\lambda_i}{\lambda_1}\right)^{2t} \left(\frac{y_i}{y_1}\right)^{2t}} \ge \frac{1}{1 + k\Delta^{2t}} \\ &= 1 - \frac{k\Delta^{2t}}{1 + k\Delta^{2t}} \ge 1 - k\Delta^{2t}. \end{split}$$

▶ **Thus:** if gap λ_1/λ_2 large and y_1 not too small, then $M^tx/\|M^tx\| \approx q_1$.

Power method.

Since $M^t \times / \|M^t \times \| \approx q_1$, iterate as follows.

- ▶ Randomly initialize x_0 with $||x_0|| = 1$.
- ▶ Iterate $x_{t+1} := \frac{Mx_t}{\|Mx_t\|}$.

Power method.

Since $M^t x / \|M^t x\| \approx q_1$, iterate as follows.

- ▶ Randomly initialize x_0 with $||x_0|| = 1$.
- $\blacktriangleright \text{ Iterate } x_{t+1} := \frac{Mx_t}{\|Mx_t\|}.$

Remarks.

- ▶ Previous slide shows: $ln(1/\epsilon)$ steps for ϵ -apx solution!
- ► For left and right singular vectors: replace M with MM^{\top} and $M^{\top}M$.

Power method code.

```
norm = numpy.linalg.norm
M = numpy.random.randn(5, 5)
M = M.T \otimes M
x = numpy.random.randn(5)
x /= norm(x)
xs = \Pi
for i in range(10):
    x = M @ x
    x /= norm(x)
    xs.append(x)
(Lambda, Q) = numpy.linalg.eigh(M)
v = 0[:, -1]
print([min(norm(v - x), norm(-v - x)) for x in xs])
```

Output:

```
[0.2879, 0.0825, 0.02375, 0.006839, 0.001969, 0.0005670, 0.0001632, 4.701e-05, 1.353e-05, 3.898e-06]
```

Schedule for today.

- Overview.
- ► PCA basics.
- ▶ PCA and SVD.
- PCA applications.
- Algorithms.

Any questions?