

Optimal Transport Barycenter via Nonconvex-Concave Minimax Optimization

Kaheon Kim¹ Rentian Yao² Changbo Zhu¹ Xiaohui Chen³

June 15, 2025

¹Department of ACMS, University of Notre Dame

 $^{^{2}\}mathrm{Deparment}$ of Mathematics, University of British Columbia

³Deparment of Mathematics, University of Southern California

Introduction

Optimal Transport (Wasserstein) Barycenter : Average of probability distributions.

Wasserstein Barycenter for $\mu_1,\cdots,\mu_n\in\mathcal{P}(\Omega)$ is formulated as

$$\bar{\mu} = \arg\min_{\mu \in \mathcal{P}(\Omega)} \frac{1}{n} \sum_{i=1}^n W_2^2(\mu, \mu_i)$$

- For 1D distributions, the barycenter $\bar{\mu}$ satisfies $Q_{\bar{\mu}} = \frac{1}{n} \sum_{i=1}^{n} Q_{\mu_i}$.
- No closed-form solution for multivariate distributions

Contributions

Existing Methodologies (available through POT package)

- Convolutional Wasserstein Barycenter(Cuturi et al 2014)
- Debiased Sinkhorn Barycenter(Janati et al 2020)

Those methods have disadvantage under high resolution settings

- Blurriness Issue due to the regularization
- High Computational complexity of O(m²) (m: # grids)

Our main contribution lies in

- Resolve Blurriness Issue by targeting exact barycenter
- Efficient Computation with $O(m \log m)$ (m : # grids)

Our formulation : Substituting Wasserstein metric with Kantorovich dual formulation

$$\begin{split} \bar{\mu} &= \arg\min_{\nu \in \mathcal{P}(\Omega)} \frac{1}{n} \sum_{i=1}^{n} W_2^2(\nu, \mu_i) \\ &= \arg\min_{\nu \in \mathcal{P}(\Omega)} \frac{1}{n} \sum_{i=1}^{n} \max_{\varphi_i: \mathsf{convex}} \underbrace{\int \left(\frac{\|x\|_2^2}{2} - \varphi_i(x)\right) d\nu(x) + \int \left(\frac{\|y\|_2^2}{2} - \varphi_i^*(y)\right) d\mu_i(y)}_{\mathcal{I}_{\nu}^{\mu_i}(\varphi_i)} \end{split}$$

Nonconvex-concave Minimax problem

$$\min_{\nu \in \mathcal{P}_2^r(\Omega)} \max_{\varphi_i \in \mathbb{F}_{\alpha,\beta}} \mathcal{J}(\nu,\varphi) := \frac{1}{n} \sum_{i=1}^n \mathcal{I}_{\nu}^{\mu_i}(\varphi_i)$$

- \(\mathcal{P}_2^r \): set of absolutely continuous probability measures whose second order moment is finite
- $\mathbb{F}_{\alpha,\beta}$: a set of $\alpha-$ strongly convex and $\beta-$ smooth functions
 - $\mathbb{F}_{0,\infty}$: Set of convex functions

Wasserstein Descent H1-Ascent

<u>Our Approach</u>: Applying Gradient Descent Acent(Lin et al, 2020)-like algorithm for our Nonconvex-concave Minimax problem

$$\min_{\nu \in \mathcal{P}_2^r(\Omega)} \max_{\varphi_i \in \mathbb{F}_{\alpha,\beta}} \mathcal{J}(\nu,\varphi) := \frac{1}{n} \sum_{i=1}^n \mathcal{I}_{\nu}^{\mu_i}(\varphi_i)$$

Gradients in two different geometric spaces

• (Descent) Wasserstein Gradient (Zemel et al 2019)

$$abla \mathcal{J}(
u, oldsymbol{arphi}) = \operatorname{id} -
abla ar{arphi}, \ \ \operatorname{where} \ ar{arphi} = rac{1}{n} \sum_{i=1}^n arphi_i$$

• (Ascent) $\dot{\mathbb{H}}^1$ gradient (Jacobs et al 2020)

- $(-\Delta)^{-1}$: Inverse Laplacian Operator
- Solved by Fast Fourier Transform(FFT) : $O(m \log m)$ (m: # grids)

Wasserstein Descent H1-Ascent

Wasserstein Descent ℍ¹-Ascent(WDHA)

Alternating Wasserstein gradient(descent)/ $\dot{\mathbb{H}}^1$ -gradient(ascent)

Algorithm 3: Wasserstein-Descent $\dot{\mathbb{H}}^1$ -Ascent Algorithm

$$\begin{split} \text{Initialize } \nu^1, \boldsymbol{\varphi}^1; \\ \textbf{for } t &= 1, 2, \cdots, T-1 \ \textbf{do} \\ & \left[\begin{array}{c} \textbf{for } i &= 1, 2, \ldots, n \ \textbf{do} \\ & \left[\begin{array}{c} \widehat{\varphi}_i^{t+1} &= \varphi_i^t + \eta \boldsymbol{\nabla}_{\varphi_i} \mathcal{J}(\nu^t, \boldsymbol{\varphi}^t); \\ & \left[\begin{array}{c} \varphi_i^{t+1} &= \mathcal{F}_{\mathbb{F}_{\alpha,\beta}}(\widehat{\varphi}_i^{t+1}); \\ \nu^{t+1} &= (\operatorname{id} - \tau \boldsymbol{\nabla} \mathcal{J}(\nu^t, \boldsymbol{\varphi}^t))_{\#} \nu^t; \end{array} \right. \\ & \mathbf{return } \left\{ (\nu^t, \boldsymbol{\varphi}^t) \right\}_{t=1}^T; \end{split}$$

Figure 1: Wasserstein Descent H1-Ascent

• $\mathcal{P}_{\mathbb{F}_{\alpha,\beta}}$: Projection onto $\mathbb{F}_{\alpha,\beta}$

Theoretical Result

Definition 1 (Stationary point)

We call $\nu \in \mathcal{P}_2^r(\Omega)$ a stationary point of $\mathcal{F}_{\alpha,\beta}$ if $\int_{\Omega} \|\nabla \mathcal{F}_{\alpha,\beta}(\nu)\|_2^2 d\nu = 0$

Theorem 2 (Convergence of WDHA)

Assume that there are constant a and b, such that the density functions satisfy $0 < a \le \mu_i(x) \le b < \infty$ for all $i = 1, 2 \dots, n$ and $x \in \Omega$. Recall that $A = a\alpha^d/\beta$ and $B = b\beta^d/\alpha$. If $\max_t \|\nu^t\|_\infty \le V < \infty$ for some constant V > 0, by choosing the step sizes (τ, η) satisfying $\eta < 1/B$ and $\tau < \frac{A^2\eta}{A\eta(A\alpha + A + V) + 4V\sqrt{4 - 2A\eta}}$, we have

$$\begin{split} \min_{t=1,...,T} \int_{\Omega} \| \nabla \mathcal{F}_{\alpha,\beta} \|_2^2 \, d\nu^t &\leq \frac{1}{T} \sum_{t=1}^T \int_{\Omega} \left\| \nabla \mathcal{F}_{\alpha,\beta}(\nu^t) \right\|_2^2 d\nu^t \\ &\leq \frac{\frac{4\tau V \delta^1}{A\eta} + \mathcal{F}_{\alpha,\beta}(\nu^1) - \mathcal{F}_{\alpha,\beta}(\nu^{T+1})}{T\tau/2} \end{split}$$

where $\mathcal{F}_{\alpha,\beta}(\nu):=rac{1}{n}\sum_{i=1}^{n}\mathcal{I}_{
u}^{\mu_{i}}$, $\mathcal{L}^{\mu_{i}}(\nu):=\max_{arphi_{i}\in\mathbb{F}_{\alpha,\beta}}\mathcal{I}_{
u}^{\mu_{i}}(arphi_{i})$ and $\bar{\delta}^{1}=\bar{\delta}^{1}(
u^{1},arphi^{1},\mu_{1},\ldots,\mu_{n})>0$ is a constant.

Numerical Studies: Simulation

Experiment 1: Uniform Distributions

- Data: 4 Shape data

- Grid Size: $m = 1024 \times 1024$

Experiment 2: Hand Digit Data

- Data: 100 hand-written 8 digits

- Grid Size: $m = 500 \times 500$

Comparisons

- Convolutional Wasserstein Barycenter(CWB)
- Debiased Sinkhorn Barycenter (DSB)
- (Experiment 1) CWB and DSB with Thresholding
 - Removing intensities smaller than the threshold so that the removed intensities amount to 10% of the mass

Numerical Studies: Algorithm

Experimental Setting

Algorithm 4: Wasserstein-Descent ℍ¹-Ascent Algorithm

Figure 2: Wasserstein Descent $\dot{\mathbb{H}}^1$ -Ascent(Empirical)

- Number of Iteration : T = 300
- Stepsize for *t*-th iteration
 - Wasserstein Descent : $\exp(-t/T)$
 - $\dot{\mathbb{H}}^1$ Ascent : $\eta_i^1 = 1$ and $\eta_{t+1} = 0.99 \eta_t$ if $\mathcal{I}_{i,t}^{\mu_i}(\varphi_i^{t+1}) < \mathcal{I}_{i,t}^{\mu_i}(\varphi_i^t)$
- ullet Convex hull $(\cdot)^{**}$: Computationally efficient compared to $\mathcal{P}_{\mathbb{F}_{\alpha,\beta}}$.

Numerical Studies: Results

Figure 3: Comparison between methodologies

		CWB	CWB _(thresholded)	DSB	DSB(Thresholded)	WDHA
\prod	$\frac{1}{n} \sum_{i=1}^{n} W_2^2(\nu^{\text{est}}, \mu_i)$	75.0689	74.7346	74.5804	74.7346	74.5791
П	Time(s)	3731	3731	7249	7249	676

Table 1: Numerical Comparison between methodologies(Shape Data)

	CWB	DSB	WDHA
Time(s)	10808	11186	3299

Table 2: Numerical Comparison between methodologies(Hand-digit Data)

Thank you!