Problems for Exam 3

Name:	StuID:
1 (dillo)	Starb.

- 1. For each of the following statements, mark "O" if it is true and mark " \times " if it is false.
- ()(a) There exists a unique $x_0 \in [0,1]$ such that $sin(x_0) 2x_0 = 0$.
- ()(b) A cubic spline interpolant S for a given set of points $[x_i, y_i]^t$, $0 \le i \le n$, with $x_0 < x_1 < \cdots < x_n$, can be regarded as a continuous function defined on $[x_0, x_n]$ whose derivative exists everywhere on (x_0, x_n) .
- ()(c) Let $A \in \mathbb{R}^{n \times n}$, if A is nonsingular and A = LDU, where L is unit lower- Δ , U is unit upper- Δ , and D is diagonal, then $\lambda(A) = \lambda(D)$.
- ()(d) Let $A \in \mathbb{R}^{n \times n}$, and $\mathbf{b} \in \mathbb{R}^n$, then $A\mathbf{x} = \mathbf{b}$ can always be solved by the Gauss-Seidel iterative procedure if A is positive definite.
- ()(e) Let $A \in \mathbb{R}^{n \times n}$ be an orthogonal matrix, if λ is the eigenvalue of A, then $\lambda = 1$ or -1.
- ()(f) Every nonsingular matrix can be decomposed into LU, where L is unit lower- Δ and U is upper- Δ .
- ()(g) Let $Q \in \mathbb{R}^{n \times n}$ be orthogonal, then $||Q||_2 = 1$ and det(Q) = -1.
- ()(h) Every positive definite matrix can be diagonalized so it must have distinct eigenvalues.
- ()(i) Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix, then A can be diagonalized by applying n(n-1)/2 Givens' rotations.
- ()(j) A singular value for a real symmetric matrix must be an eigenvalue.

- **2.** Let $f(x) = ln(1+x), x \in [0,1].$
 - (a) Show that $f^{(k)}(x) = \frac{(-1)^{k-1}(k-1)!}{(1+x)^k}$ for $k = 1, 2, \cdots$.
 - (b) Show that the Taylor polynomial of degree n for f(x) = ln(1+x) about x = 0 is

$$P_n(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{(-1)^{n-1}x^n}{n}$$

(c) Show that the error term $f(x) - P_n(x)$ is

$$E_n(x) = \frac{(-1)^n x^{n+1}}{(n+1)(1+c)^{n+1}}, \quad c \in [0,1]$$

- (d) Evaluate $P_3(0.5)$ with the precision upto 10^{-4} .
- **3.** Using the nodes $x_0 = 2$, $x_1 = 2.5$, and $x_2 = 4$ to find a quadratic interpolating polynomial $P_2(x)$ for $f(x) = \frac{1}{x}$.
 - (a) Write $P_2(x)$ in Lagrange form
 - (b) Write $P_2(x)$ in Newton form
 - (c) If $P_2(x) = \alpha_2 x^2 + \alpha_1 x + \alpha_0$, what are $\alpha_2, \alpha_1, \alpha_0$, respectively?
- **4.** Let $f(x) = \sqrt{x}$ for $x \ge 0$. Do numerical integration for $\int_0^4 f(x) dx$, based on the five nodes x = 0, 1, 2, 3, 4, to the precision within 10^{-4} by using
 - (a) trapezoidal rule
 - (b) Simpson's $\frac{1}{3}$ rule
 - Use $\sqrt{2} = 1.4142$, $\sqrt{3} = 1.7321$, $\sqrt{5} = 2.2361$.

5. For $x \in [-1,1]$, define the Chebyshev polynomial of degree n by

$$T_n(x) = \cos(n\cos^{-1}x) \ \forall \ n \ge 0$$

Denote the inner product by $\langle T_n, T_m \rangle = \int_{-1}^1 T_n(x) T_m(x) \frac{1}{\sqrt{1-x^2}} dx$

- (a) Write down $T_n(x)$ in the polynomial format for $0 \le n \le 4$.
- **(b)** Show that $\langle T_n, T_m \rangle = 0$ if $n \neq m$.
- (c) Compute $\langle T_0, T_0 \rangle$.
- (d) Compute $\langle T_n, T_n \rangle$ for $n \geq 1$.
- (e) Find all of the roots of $T_n(x) = 0$.
- **6.** Define $\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$ for x > 0.
 - (a) Find $\Gamma(5)$.
 - **(b)** Find $\Gamma(\frac{1}{2})$.
 - (c) Find $\Gamma(n)$, where n is a positive integer.
 - (d) Find $\Gamma(\frac{2n+1}{2})$, where n is a positive integer.
- 7. Define $f(x) = \sqrt{x+6}$ for $x \in [0,4]$.
 - (a) Show that f is contractive.
 - (b) What is the fixed point for f?
- **8.** Let $f:[a,b] \to [a,b]$ and given n+1 distinct points $a=x_0 < x_1 < \cdots < x_n = b$. In no more than **50** words, discribe the difference among a cubic spline interpolation, Bezier curve fit, and a cubic B-spline fit to the above data.