

4ème Math Classe: (Gr Standard)

Série 26 PH d'une solution aqueuse (2)

Prof: Karmous Med

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

(5)

 $\underline{\mathcal{L}}$ 'aspirine est formée essentiellement par l'acide acétylsalicylique R-COOH dont on se propose de déterminer le pKa.

L'équation de sa réaction de dissolution dans l'eau est : $R - COOH + H_2O \rightleftharpoons R - COO^- + H_3O^+$ On prépare une solution (S) d'aspirine de concentration $C = 10^{-1} mol. L^{-1}$

- 1°) Montrer que le pH d'une solution aqueuse (S), de concentration C, d'un acide faiblement ionisé AH, vérifie la relation suivante : $pH = \frac{1}{2}(pKa log C)$ où $pKa = pKa_{(AH/A^-)}$.
- **2°**)A partir de la solution (S), on prépare différentes solutions (S_i) de concentration molaire C_i , on note le pH de chaque solution et on trace la courbe pH = f(-logC) donnée par la figure ci-contre :

 En exploitant la courbe déterminer :

a-le pKa du couple acide-base de l'aspirine $RCOOH/RCOO^-$. b-le pH de la solution (S).

b-Calculer le taux d'avancement final de la réaction de dissolution de l'acide acétylsalicylique dans l'eau.etVérifier que l'acide est faiblement ionisé.

4°)On dispose du matériel suivant :

- Une fiole jaugée de 100mL.
- Des béchers.
- Des pipettes jaugées de 2mL, 10mL et 20mL.
- On se propose de préparer, à partir de (S), une solution (S_1) de concentration molaire $C_1 = 2.10^{-2} mol. L^{-1}$ et de volume 100mL.
 - a- Déterminer la valeur du prélèvement V à effectuer à partir de (S) pour préparer la solution (S_1) .
 - **b** Décrire le mode opératoire permettant d'effectuer cette préparation en choisissant la verrerie la plus adéquate et qui nécessite le minimum d'opérations.

Exercice 2

Une monobase est considérée comme faiblement ionisée dans l'eau si le taux d'avancement final de sa réaction avec l'eau est inférieur à 5.10⁻².

On dispose de trois solutions aqueuses (S_1) , (S_2) et (S_3) respectivement de monobases B_1 , B_2 et B_3 de même concentration molaire $C_0 = 10^{-1}$ moll ℓ^{-1} . La mesure, dans un ordre quelconque, du pH de ces solutions a donné les valeurs : 13,0 ; 10,8 et 11,1.

Sachant que les trois bases sont classées par ordre croissant de basicité comme indiqué ci-dessous :

- 1) a- En justifiant la réponse, attribuer à chaque solution le pH correspondant.
 - **b-** Montrer que les bases B_1 et B_2 sont faibles alors que la base B_3 est forte.
 - c- Justifier que les bases B1 et B2 sont faiblement ionisées dans l'eau.

- 2) Etablir l'expression du **pH** d'une solution aqueuse d'une monobase **B** faible et faiblement ionisée en fonction du **pK**_b du couple **BH** $^+$ /**B** correspondant, du **pK**_e et de la concentration molaire initiale **C** de la base étudiée.
- Pour différentes valeurs de la concentration molaire C (variant de 10^{-2} à 10^{-1} mo $\ell.\ell^{-1}$) des solutions relatives aux trois monobases précédentes B_1 , B_2 et B_3 , on mesure séparément le pH correspondant, puis on représente à chaque fois la courbe pH en fonction de (- ℓogC). On obtient alors les courbes (C), (C') et (C'') de la figure ci contre.
- **a** En justifiant la réponse, attribuer chaque courbe à la base correspondante.
- **b-** En exploitant les courbes de cette figure, déterminer :
- Les valeurs des constantes pK_{b1} et pK_{b2} respectivement des couples B_1H^+/B_1 et B_2H^+/B_2 .
- Les valeurs des concentrations molaires C'₁ et C'₂ respectivement des solutions (S'₁) et (S'₂) correspondant aux bases B₁ et B₂, ayant le même pH de valeur 10,6.

Exercice 3

I-On prépare quatre solutions aqueuses acides (S₁); (S₂); (S₃) et (S₄) de même concentration C₀ correspondant respectivement à: l'acide carboniqueH₂CO₃; l'acide méthanoïque HCOOH; l'acide chlorhydrique HCl et l'acide nitreux HNO₂. Les valeurs des pH de ces solutions sont consignées dans le tableau ci-contre :

acide	H ₂ CO ₃	НСООН	HCl	HNO ₂
pН	4,3	3,1	2,3	2,8

- 1°) a- Dresser le tableau d'avancement volumique de la réaction d'ionisation de HCOOH dans l'eau.
 - b- Etablir l'expression du taux d'avancement final de la réaction en fonction [HO+], et de Co

Déduire son expression en fonction de C_0 et du pH .

- 2°) a- L'un des acides est fort : Indiquer lequel. Calculer alors la valeur commune de la concentration C_0 de ces solutions.
 - b-Comparer la force des acides faibles.

3°) Les valeurs des **pKa** des couples acide/basecorrespondants aux acides faibles sont consignées dans le tableau ci-contre :

Associer chaque valeur de pKa au couple acide-base correspondant tout en justifiant la réponse.

Couple : acide /base	A ₁ /B ₁	A ₂ /B ₂	A ₃ /B ₃
pKa	3,3	3,75	6,3

Λτϝ²(10⁻⁴)

II-

l'acide

 \mathcal{A} -un volume V_0 de (S_1) , on ajoute un volume V_0 d'eau pure pour obtenir une solution (S) de concentration

C. Pour différentes valeurs de V_e , on détermine le taux d'avancement final τ_f de la réaction d'ionisation de l'acide H_2CO_3 dans chaque solution (S') obtenue. Les résultats ont permis de tracer la courbe ci-jointe

traduisant les variations de τ_f ² en fonction de Ve

1°) Etablir l'expression de la concentration C de la solution (S) en

fonction de C_0 , V_0 et Ve.

2°)Montrer, à partir de la courbe, que pour tout volume Ve, compris entre 0 et 100 mL, on peut considérer que l'acide H₂CO₃ est Faiblement ionisé.

3°) Etablir l'expression de la constante d'acidité Ka du couple correspondant à l'acide carbonique en fonction de C et τ_f .

4°) a- Montrer que $\tau_f^2 = \frac{KaVe}{CoVo} + \frac{Ka}{Co}$

b- Retrouver la valeur du pKa du couple correspondant à H_2CO_3 et le volume V_0 .

Exercice 4

On dispose de deux solutions aqueuses de deux bases B_1 et B_2 de même concentration molaire $C=0,1mol.L^{-1}$ et de pH respectifs $pH_1=13$ et $pH_2=11,1$.

1°) Etablir l'expression du taux d'avancement final τ_f d'une base B.

2°) Montrer que B_1 est une base forte et que B_2 est une base faiblement ionisée.

3°) a- Montrer que la constante d'acidité K_a du couple B_2H^+/B_2 s'écrit sous la forme $Ka = \frac{Ke}{c. \tau_f^2}$.

b-Déduire l'expression du pH de B_2 en fonction de C, pKe et pKa.

4°) On prépare différentes solutions de la base B_2 dont les concentrations molaires sont inferieures à 0,1 mol.L⁻¹ et supérieures à $6,3.10^{-3}$ mol.L⁻¹.

On a déterminé le taux d'avancement final τ_f de chaque solution ce qui nous a permis de tracer la courbe cicontre

a-Justifier l'allure de la courbe.

b- En exploitant cette courbe :

*Déterminer le **pKa** du couple B_2H^+/B_2 .

*Montrer que la dilution favorise l'ionisation d'une base faible.

Exercice 5

(5)

On considère une solution (S₁) d'acide éthanoïque CH_3CO_2H de concentration initiale C_1 =0,2 $mol.L^{-1}$ et de $pH = pH_1$. Le taux d'avancement final de la réaction de l'acide éthanoïque avec l'eau dans (S₁) est $\tau_{f_1} = 9.10^{-3}$ et le pK_a ($CH_3CO_2H/CH_3CO_2^-$)= pK_{a1} .

- 1-a- Montrer que ${\bf CH_3\,CO_2\,H}$ est un acide faible . Ecrire l'équation de sa réaction chimique avec l'eau.
- $b-Etablir en fonction de ~\tau_{_{\!f_1}}$ et de C_1 , l'expression de pH_1 et celle de pK_a , en précisant à chaque fois l'approximation nécessaire .
 - c- Calculer pH_1 et pK_{a1} .
- 2-A partir d'un volume V_1 de (S_1) , on réalise une dilution , par l'ajout d'un volume V_{e} d'eau pure de façon que l'acide éthanoïque reste faiblement dissocié .

La solution (S) obtenue est de concentration C et de volume V.

a – Montrer que le taux d'avancement final τf de la réaction de l'acide éthanoïque avec

l'eau dans (S) s'écrit : $\tau_f = \tau_{f_i}$. $\sqrt{\frac{c_1}{c}}$

b – Montrer que le pH de la solution (S) est donné par l'expression :

$$\mathbf{pH_s} = \mathbf{pH_1} + \frac{1}{2} \cdot \log(\frac{c_1}{c}),$$

calculer pHs et $\tau_{_f}$ quand le volume d'eau ajoutée est $\mathbf{V_e} = 3\mathbf{V_1}$.

- c Préciser l'effet de cette dilution sur :
 - c_{-1} : la constante d'acide Ka_1 du couple $CH_3 CO_2 H / CH_3 CO_2^-$.
 - c_{-2} : le pH de la solution.
- 3– On dispose d'une solution aqueuse (S_2) , d'acide méthanoïque HCO_2H faiblement dissocié dans l'eau, de concentration molaire initiale $C_2 = 0,1$ mol. L^{-1} et ayant un $pH_{s2} = pH_2 = 2,37$.
 - a Déterminer le pK_{a2} du couple HCO₂H / HCO₂-.
 - b Comparer les forces de l'ion éthanoate et de l'ion méthanoate