Electric Charge, Force, and Field

Department of Computer Science & Information Engineering
Tzu-Cheng Chao

Electric Charge

- 2 kinds of charges: + & -., Scalar Quantity
- Total charge = algebraic sum of all charges.

$$Q = \sum_{i} q_{i} = \int d^{3}x \, \rho(\mathbf{r})$$

Conservation of charge: total charge in a closed region is always the same.

Opposite charges attract. Like charges repel.

Electric Charge

- All electrons have charge –e.
- All protons have charge +e.

$$e = 1.60 \times 10^{-19} C$$
 = elementary charge
1st measured by Millikan on oil drops.

Theory (standard model): basic unit of charge (carried by quark) = 1/3 e. Quark confinement \rightarrow no free quark can be observed.

:. Smallest observable charge is e.

Electric Charge: Charging (Classical)

"Insulators" can be charged by rubbing.

Examples

Rubbed balloon sticks to clothing.

2 rubbed balloons repel each other.

Socks from dryer cling to clothings.

Bits of styrofoam cling to hand.

Walk across carpet & feel shock touching doorknob.

Ground or low energy state of matter tends to be charge neutral.

Coulomb's Law and the Electric Force

 In 1785, Charles Augustin de Coulomb.

Coulomb's Law and the Electric Force

- In 1785, Charles Augustin de Coulomb.
- Electric Force is dependent on
 - The product of the two charges
 - The inverse square of the distance between them

$$F = k \frac{q_1 q_2}{r^2}$$

$$k = \frac{1}{4\pi\epsilon_0} = 9.0 \times 10^9 \,\text{N} \,\text{m}^2/\text{C}^2$$

Coulomb's Law and the Electric Force

Example: Force Between Two Charges

A 1.0 μ C charge is at x = 1.0 cm, & a -1.5 μ C charge is at x = 3.0 cm.

What force does the positive charge exert on the negative one?

How would the force change if the distance between the charges tripled?

Example: Force Between Two Charges

A 1.0 μ C charge is at x = 1.0 cm, & a -1.5 μ C charge is at x = 3.0 cm.

What force does the positive charge exert on the negative one?

How would the force change if the distance between the charges tripled?

$$\mathbf{F}_{12} = \frac{k \ q_1 \ q_2}{r^2} \,\hat{\mathbf{r}} = \frac{\left(9.0 \times 10^9 \ Nm^2 \ / \ C^2\right) \left(1.0 \times 10^{-6} \ C\right) \left(-1.5 \times 10^{-6} \ C\right)}{\left(0.020 \ m\right)^2} \,\hat{\mathbf{i}} = -34 \,\hat{\mathbf{i}} \ N$$

Distance tripled \rightarrow force drops by 1/3². $\mathbf{F}_{12} = -\frac{34}{9} \hat{\mathbf{i}} N = -3.8 \hat{\mathbf{i}} N$

$$\mathbf{F}_{12} = -\frac{34}{9}\,\hat{\mathbf{i}}\,N = -3.8\,\hat{\mathbf{i}}\,N$$

The Superposition Principle

- The electric force obeys the superposition principle.
 - That means the force two charges exert on a third force is just the vector sum of the forces from the two charges, each treated without regard to the other charge.
 - The superposition principle makes it mathematically straightforward to calculate the electric forces exerted by distributions of electric charge.
 - The net electric force is the sum of the individual forces.

$$q_2$$

Example

Find the net force acting on q1. $q_1=-5.0\mu C$, $q_2=-8.0\mu C$, $q_3=15\mu C$, and $q_4=-16\mu C$

The Electric Field

Electric field \mathbf{E} at \mathbf{r} = Electric force on unit point charge at \mathbf{r} .

 \mathbf{F} = electric force on point charge q.

$$[E] = N/C$$

= V/m

Implicit assumption: *q* doesn't disturb **E**.

Rigorous definition:

$$\mathbf{E} = \lim_{q \to 0} \frac{1}{q} \mathbf{F}$$

The Electric Field

 \overrightarrow{F}_{10}

 \overrightarrow{r}_0

 \overrightarrow{r}_1

Let us consider the simplest case:

- (1) a single, point charge q1 at rest in the position r1 as the source of the field.
- (2) Its field is a mean for describing its action on other charges.Let q0 be such a charge,r0 its position

$$\mathbf{F}_{10} = q_0 \frac{1}{4\pi\varepsilon_0} \frac{q_1}{r_{10}^2} \mathbf{u}_{10} \qquad \qquad \mathbf{E}(\mathbf{r}_0) = \frac{1}{4\pi\varepsilon_0} \frac{q_1}{r_{10}^2} \mathbf{u}_{10}$$

$$\mathbf{F}_{10} = q_0 \mathbf{E}(\mathbf{r}_0)$$

Fields of Point Charges and Charge Distributions

• The field of a point charge is radial, outward for a positive charge and inward for a negative charge.

Fields of Point Charges and Charge Distributions

- Superposition principle
 - the field due to a charge distribution is the vector sum of the fields of the individual charges.

$$\mathbf{E}(\mathbf{r}_0) = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^n \frac{q_i}{r_{i0}^2} \mathbf{u}_{i0}$$

$$E_x(x_0, y_0, z_0) = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^n \frac{q_i(x_0 - x_i)}{\left[(x_0 - x_i)^2 + (y_0 - y_i)^2 + (z_0 - z_i)^2 \right]^{3/2}}$$

Example

There is an electric field of approximate 100N/C directed vertically down at earth's surface. Compare the electrical and gravitational forces on an electron.

Gravity & Electric Force

The electric force is far stronger than the gravitational force,

yet gravity is much more obvious in everyday life.

Why?

Only 1 kind of gravitational "charge"

- → forces from different parts of a source tend to reinforce.
- 2 kinds of electric charges
- → forces from different parts of a neutral source tend to cancel out.

Example

Let Q1 = 20 μC , Q2 = $-10 \mu C$ and d = 1.0 m.

Find the field strength at P.

Example: Linear Charged Distribution

A long electric power line running along the *x*-axis carries a uniform charge density λ [C/m].

Find **E** on the *y*-axis, assuming the wire to be infinitely long.

Example: Linear Charged Distribution

A long electric power line running along the *x*-axis carries a uniform charge density λ [C/m].

Find **E** on the *y*-axis, assuming the wire to be infinitely long.

By symmetry, **E** has only *y*- component.

Example: Linear Charged Distribution

A long electric power line running along the x-axis carries a uniform charge density λ [C/m].

Find **E** on the *y*-axis, assuming the wire to be infinitely long.

By symmetry, **E** has only *y*- component.

$$E_{y} = \int_{Line} dE_{y} = \int_{Line} \frac{k \, dq}{r^{2}} \left(\frac{y}{r} \right) = \int_{Line} \frac{k \, \lambda \, dx}{r^{2}} \left(\frac{y}{r} \right)$$

$$= k y \lambda \int_{-\infty}^{\infty} \frac{dx}{\left(y^2 + x^2\right)^{3/2}} = k y \lambda \left[\frac{x}{y^2 \sqrt{y^2 + x^2}}\right]_{-\infty}^{\infty}$$

$$= k y \lambda \left[\frac{1}{y^2} - \left(-\frac{1}{y^2} \right) \right] = \frac{2 k \lambda}{y}$$

$$\mathbf{E} = \frac{2 k \lambda}{\rho} \hat{\mathbf{\rho}}$$

 $\mathbf{E} = \frac{2 k \lambda}{\hat{\mathbf{p}}} \hat{\mathbf{p}}$ Perpendicular to an infinite wire

Example: Charged Ring

A ring of radius a carries a uniformly distributed charge Q.

Find **E** at any point on the axis of the ring.

Example: Charged Ring

A ring of radius a carries a uniformly distributed charge Q.

Find **E** at any point on the axis of the ring.

By symmetry, **E** has only axial (x-) component.

$$E_{x} = \int_{Ring} dE_{x} = \int_{Ring} \frac{k \, dq}{r^{2}} \left(\frac{x}{r}\right)$$

$$= \frac{k x}{\left(a^2 + x^2\right)^{3/2}} \int_{Ring} dq = \frac{k Q x}{\left(a^2 + x^2\right)^{3/2}}$$

$$\mathbf{E} = \frac{k Q x}{\left(a^2 + x^2\right)^{3/2}} \,\hat{\mathbf{i}}$$

On axis of uniformly charged ring

Two Examples

• The electric field on the axis of a charged ring:

$$\vec{E}_{\text{on axis}} = \frac{kQx}{\left(x^2 + a^2\right)^{3/2}} \hat{i}$$

- The electric field of an infinite line of charge:
 - The line carries charge density λ C/m:

$$E = \frac{2k\lambda}{y}$$

direction radially outward for + charge; inward for ? charge

Example 23.8 and 23.9

Matter in Electric Fields

- For a point charge q in an electric field \vec{E}
- Newton's law and the electric force combine to give acceleration:

$$\vec{a} = \frac{q\vec{E}}{m} = \frac{q}{m}\vec{E}$$

... Trajectory determined by charge-to-mass ratio q/m.

Uniform field between charged plates (capacitors).

Example Electrostatic Analyzer

Two curved metal plates establish a field of strength $E = E_0$ (b/r), where E_0 & b are constants.

E points toward the center of curvature, & *r* is the distance to the center.

Find speed *v* with which a proton entering vertically from below will leave the device moving horizontally.

For a uniform circular motion:

$$m\frac{v^2}{r} = e E_0 \frac{b}{r} \qquad \rightarrow \qquad v = \sqrt{\frac{e}{m}E_0 b}$$

Dipole in a uniform electric field

Torque rotates dipole clockwise.

Uniform E:

Total force:
$$\mathbf{F} = q \mathbf{E} + (-q) \mathbf{E} = \mathbf{0}$$

Torque about center of

dipole:

$$\mathbf{\tau} = \frac{d}{2} \hat{\mathbf{p}} \times (q \mathbf{E}) + \left(-\frac{d}{2}\right) \hat{\mathbf{p}} \times (-q \mathbf{E}) = d \ q \ \hat{\mathbf{p}} \times \mathbf{E}$$

$$\tau = \mathbf{p} \times \mathbf{E}$$

$$\mathbf{p} = q \ d \ \hat{\mathbf{p}}$$
 = dipole moment

Work done by E to rotate dipole:

$$W = \int_{\theta_i}^{\theta_f} \mathbf{F} \cdot \hat{\mathbf{t}} \ r \ d\theta \qquad \qquad \mathbf{t} \ /\!\!/ \text{ tangent}$$

$$W = \int_{\theta_i}^{\theta_f} \left(-qE\sin\theta - qE\sin\theta \right) \frac{d}{2}d\theta = -p E \int_{\theta_i}^{\theta_f} \sin\theta d\theta = p E \left(\cos\theta_f - \cos\theta_i \right)$$

dipole in E ($\theta_i = \pi/2$)

Potential energy of
$$U = W = -p E \cos \theta_f = -\mathbf{p} \cdot \mathbf{E}$$
 (U = 0 for p $\perp \mathbf{E}$)

$$(U = 0 \text{ for } p \perp E)$$

Application: Microwave Cooking & Liquid

Microwave oven:

GHz EM field vibrates (dipolar) H₂O molecules in

food

 \rightarrow heats up.

Liquid Crystal Display (LCD)

Exploded view of a TN (Twisted Nematic) liquid crystal cell showing the states in an OFF state (left), and an ON state with voltage applied (right)

Conductors, Insulators, and Dielectrics

- Materials in which charge is free to move are conductors.
- Materials in which charge isn't free to move are insulators.
 - Insulators generally contain molecular dipoles, which experience torques and forces in electric fields.
 - Such materials are called dielectrics.
 - Even if molecules aren't intrinsically dipoles, they acquire induced dipole moments as a result of electric forces stretching the molecule.

Alignment of molecular dipoles reduces an externally applied field.

