

PATENT
Attorney Docket No. 3495.0010-01

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:)
Marc Alizon, et al.)
Serial No.: 07/158,652) Group Art Unit: 1805
Filed: February 22, 1988) Examiner: J. Railey
For: CLONED DNA SEQUENCES RELATED))
TO THE GENOMIC RNA OF))
LYMPHADENOPATHY ASSOCIATED))
VIRUS (LAV) AND PROTEINS))
ENCODED BY SAID LAV GENOMIC))
RNA)

Honorable Commissioner of Patents
and Trademarks
Washington, D.C. 20231

Sir:

CLAIM FOR PRIORITY

Under the provisions of Section 119 of 35 U.S.C.,
applicants hereby claim the benefit of the filing date of Great
Britain Application No. 84 29099, filed November 16, 1984, for
the above identified United States Patent Application.

In support of applicants' claim for priority, filed
herewith is one certified copy of GB 84 29099.

If there are any fees due in connection with the filing of
this Paper, please charge such fees to our Deposit Account
No. 06-0916.

Respectfully submitted,

FINNEGAN, HENDERSON, FARABOW,
GARRETT & DUNNER

By: Michele M. Schafer
Michele M. Schafer
Reg. No. 34,717

Date: October 21, 1993

LAW OFFICES
FINNEGAN, HENDERSON
FARABOW, GARRETT
& DUNNER
1300 I STREET, N.W.
WASHINGTON, DC 20005
I-202-408-4000

THE PATENT OFFICE,
25 SOUTHAMPTON BUILDINGS,
LONDON.

I, the undersigned, being an officer duly authorised in accordance with Section 62(3) of the Patents and Designs Act 1907, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents, has registered under the Companies Act 1980 with the same name as that with which was registered immediately before re-registration save for the substitution as, or the inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Please turn over

Re-registration under the Companies Act does not constitute a new legal entity
but merely subjects the company to certain additional company law rules

Witness my hand this
21st day of OCTOBER 19 85

COC.1

W. Lewis

PATENTS ACT 1977

16 NOV 1984

PATENTS FORM No. 1/77 (Revised 1982)
(Rules 18, 19)

The Comptroller
The Patent Office
25 Southampton Buildings
London, WC2A 1AY

19/11/84 B3662 PAT*** 10.0

Fee: £10.00

1984
29099

REQUEST FOR GRANT OF A PATENT

8429099

THE GRANT OF A PATENT IS REQUESTED BY THE UNDERSIGNED ON THE BASIS OF THE PRESENT APPLICATION

I	Agent's Reference	JJD/EAF/26804
II	Title of Invention	CLONED DNA SEQUENCES RELATED TO THE GENOMIC RNA OF LYMPHADENOPATHY-ASSOCIATED VIRUS (LAV) AND PROTEINS ENCODED BY SAID LAV GENOMIC RNA
III	Applicant or Applicants (See note 2)	INSTITUT PASTEUR
	Name (First or only applicant)
	Country FRANCE	State ADP Code No.
	Address 25-28 Rue du Dr. Roux,
 75724 Paris Cedex 15, France.
	Name (of second applicant, if more than one) Centre National
	de la Recherche Scientifique	Country FRANCE
	Address 15 Quay Anatole France	State
 75007 Paris, France.
IV	Inventor (see note 3) or (b) A statement on Patents Form No. 7/77 is/will be furnished
V	Name of Agent (if any) (See note 4)	Reddie & Grose
		ADP CODE NO
VI	Address for Service (See note 5)	16 Theobalds Road London WC1X 8PL
VII	Declaration of Priority (See note 6)	
	Country	Filing date
	File number

VIII	The Application claims an earlier date under Section 8(3), 12(6), 15(4) or 37(4) (See note 7)	
	Section No.
	Earlier application or patent number and filing date

IX Check List (To be filled in by applicant or agent)

A The application contains the following number of sheet(s)	B The application as filed is accompanied by:-
1 Request 1 Sheet(s)	1 Priority document No
2 Description 17 Sheet(s)	2 Translation of priority document No
3 Claim(s) 2 Sheet(s)	3 Request for Search No
4 Drawing(s) 26 Sheet(s)	4 Statement of Inventorship and Right to Apply No
5 Abstract 0 Sheet(s)	5

- X** It is suggested that Figure No 1 of the drawings (if any) should accompany the abstract when published.

XI Signature (See note 8)

Reddie & Grose, Agents for the Applicant(s)

NOTES:

1. This form, when completed, should be brought or sent to the Patent Office together with the prescribed fee and two copies of the description of the invention, and of any drawings.
2. Enter the name and address of each applicant. Names of individuals should be indicated in full and the surname or family name should be underlined. The names of all partners in a firm must be given in full. Bodies corporate should be designated by their corporate name and the country of incorporation and, where appropriate, the state of incorporation within that country should be entered where provided. Full corporate details, eg "a corporation organised and existing under the laws of the State of Delaware, United States of America," trading styles, eg "trading as xyz company", nationality, and former names, eg "formerly [known as] ABC Ltd." are not required and should not be given. Also enter applicant(s) ADP Code No. (if known).
3. Where the applicant or applicants is/are the sole inventor or the joint inventors, the declaration (a) to that effect at IV should be completed, and the alternative statement (b) deleted. If, however, this is not the case the declaration (a) should be struck out and a statement will then be required to be filed upon Patent Form No 7/77.
4. If the applicant has appointed an agent to act on his behalf, the agent's name and the address of his place of business should be indicated in the spaces available at V and VI. Also insert agent's ADP Code No. (if known) in the box provided.
5. An address for service in the United Kingdom to which all documents may be sent must be stated at VI. It is recommended that a telephone number be provided if an agent is not appointed.
6. The declaration of priority at VII should state the date of the previous filing and the country in which it was made and indicate the file number, if available.
7. When an application is made by virtue of section 8(3), 12(6), 15(4), or 37(4) the appropriate section should be identified at VIII and the number of the earlier application or any patent granted thereon identified.
8. Attention is directed to rules 90 and 106 of the Patent Rules 1982.
9. Attention of applicants is drawn to the desirability of avoiding publication of inventions relating to any article, material or device intended or adapted for use in war (Official Secrets Acts, 1911 and 1920). In addition after an application for a patent has been filed at the Patent Office the comptroller will consider whether publication or communication of the invention should be prohibited or restricted under section 22 of the Act and will inform the applicant if such prohibition is necessary.
10. Applicants resident in the United Kingdom are also reminded that, under the provisions of section 23 applications may not be filed abroad without written permission or unless an application has been filed not less than six weeks previously in the United Kingdom for a patent for the same invention and no direction prohibiting publication or communication has been given or any such direction has been received.

1

Cloned DNA sequences related to the genomic RNA of lymphadenopathy-associated-virus (LAV) and proteins encoded by said LAV genomic RNA

The invention relates to cloned DNA sequences
5 indistinguishable from genomic RNA and DNA of lymphadenopathy-associated virus (LAV), a process for their preparation and their uses. It relates more particularly to stable probes including a DNA sequence which can be used for the detection of the LAV virus or related viruses
10 or DNA proviruses in any medium, particularly biological samples containing any of them. The invention also relates to polypeptides, whether glycosylated or not, encoded by said DNA sequences.

Lymphadenopathy-associated virus (LAV) is a human
15 retrovirus first isolated from the lymph node of a homosexual patient with lymphadenopathy syndrome, frequently a prodrome or a benign form of acquired immune deficiency syndrome (AIDS). Subsequently other LAV isolates have been recovered from patients with AIDS or pre-AIDS. All available data are consistent with the virus being the causative
20 agent of AIDS.

A method for cloning such DNA sequences has already been disclosed in British Patent Application No.

25 84 23658 filed on September 19, 1984. Reference is hereafter made to that application as concerns subject matter in common with the further improvements to the invention disclosed herein.

The present invention aims at providing additional new means which should not only also be useful for the
30 detection of LAV or related viruses (hereafter more generally referred to as "LAV viruses"), but also have more versatility, particularly in detecting specific parts of the genomic DNA of said viruses whose expression products are not always directly detectable by immunological methods.

35 The present invention further aims at providing

polypeptides containing sequences in common with polypeptides encoded by the LAV genomic RNA. It relates even more particularly to polypeptides comprising antigenic determinants included in the proteins encoded and expressed by the LAV genome occurring in nature. An additional object of the invention is to further provide means for the detection of proteins related to LAV virus, particularly for the diagnosis of AIDS or pre-AIDS or, to the contrary, for the detection of antibodies against the LAV virus or proteins related therewith, particularly in patients afflicted with AIDS or pre-AIDS or more generally in asymptomatic carriers and in blood-related products. Finally the invention also aims at providing immunogenic polypeptides, and more particularly protective polypeptides for use in the preparation of vaccine compositions against AIDS or related syndromes.

The present invention relates to additional DNA fragments, hybridizable with the genomic RNA of LAV as they will be disclosed hereafter, as well as with additional cDNA variants corresponding to the whole genomes of LAV viruses. It further relates to DNA recombinants containing said DNAs or cDNA fragments.

The invention relates more particularly to a cDNA variant corresponding to the whole of LAV retroviral genomes, which is characterized by a series of restriction sites in the order hereafter (from the 5' end to the 3' end).

The coordinates of the successive sites of the whole LAV genome (restriction map) are indicated hereafter too, with respect to the Hind III site (selected as of coordinate 1) which is located in the R region. The coordinates are estimated with an accuracy of ± 200 bp :

	Hind III	0
	Sac I	50
35	Hind III	520
	Pst I	800
	Hind III	1 100

	Bgl II	1 500
	Kpn I	3 500
	Kpn I	3 900
	Eco RI	4 100
5	Eco RI	5 300
	Sai I	5 500
	Kpn I	6 100
	Bgl II	6 500
	Bgl II	7 800
10	Hind III	7 850
	Bam HI	8 150
	Xba I	8 800
	Kpn I	8 700
	Bgl II	8 750
15	Bgl II	9 150
	Sac I	9 200
	Hind III	9 250

Another DNA variant according to this invention optionally contains an additional Hind III approximately 20 at the 5 550 coordinate.

Reference is further made to fig. 1 which shows a more detailed restriction map of said whole-DNA (AJ19).

An even more detailed nucleotide sequence of a preferred DNA according to the invention is shown in fig. 25 4-12 hereafter.

The invention further relates to other preferred DNA fragments which will be referred to hereafter.

Additional features of the invention will appear in the course of the non-limitative disclosure of additional features of preferred DNAs of the invention, as well 30 as of preferred polypeptides according to the invention. Reference will further be had to the drawings in which :

- fig. 1 is the restriction map of a complete LAV genome (clone AJ19) ;

35 - figs. 2 and 3 show diagrammatically parts of the three

possible reading phases of LAV genomic RNA, including the open reading frames (ORF) apparent in each of said reading phases;

- figs. 4-12 show the successive nucleotidic sequences of 5 a complete LAV genome. The possible peptidic sequences in relation to the three possible reading phases related to the nucleotidic sequences shown are also indicated;

- figs. 13-18 reiterate the sequence of part of the LAV genome containing the genes coding for the enveloppe proteins, with particular boxed peptidic sequences which corresponds to groups which normally carry glycosyl groups.

The sequencing and determination of sites of particular interest was carried out on a phage recombinant corresponding to AJ19 disclosed in the above-mentioned British 15 Patent application Nr. 84 23859. A method for preparing it is disclosed in that application.

The whole recombinant phage DNA of clone AJ19 (disclosed in the earlier application) was sonicated according to the protocol of DEININGER (1983), Analytical Biochem. 129, 218. the DNA was repaired by a Klenow reaction for 12 hours at 16°C. The DNA was electrophoresed through 0.8 % agarose gel and DNA in the size range of 300-600 bp was cut out and electroeluted and precipitated. Resuspended DNA (in 10 mM Tris, pH 8 ; 0,1 mM EDTA) was 25 ligated into M13mp8 RF DNA (cut by the restriction enzyme SmaI and subsequently alkaline phosphated), using T4 DNA- and RNA-ligases (Maniatis T et al (1982) - Molecular cloning - Cold Spring Harbor Laboratory). An E. coli strain designated as TGI was used for further study. This 30 strain has the following genotype :

Alac pro, supE, thi.F' traD38, proAB, lacI^q, ZAM15,r^r

This E. coli TGI strain has the peculiarity of enabling recombinants to be recognized easily. The blue colour of the cells transfected with plasmids which did

not recombine with a fragment of LAV DNA is not modified. To the contrary cells transfected by a recombinant plasmid containing a LAV DNA fragment yield white colonies. The technique which was used is disclosed in Gene (1983), 28.

5 101.

This strain was transformed with the ligation mix using the Hanahan method (Hanahan D (1983) J. Mol. Biol. 168, 557). Cells were plated out on tryptone-agarose plate with IPTG and X-gal in soft agarose. White plaques were 10 either picked and screened or screened directly *in situ* using nitrocellulose filters. Their DNAs were hybridized with nick-translated DNA inserts of pUC18 Hind III subclones of λJ18. This permitted the isolation of the plasmids or subclones of A which are identified in the 15 table hereafter. In relation to this table it should also be noted that the designation of each plasmid is followed by the deposition number of a cell culture of *E. coli* TGI containing the corresponding plasmid at the "Collection Nationale des Cultures de Micro-organismes" (C.N.C.M.) of 20 the Pasteur Institute in Paris, France. A non-transformed TGI cell line was also deposited at the C.N.C.M. under Nr. I-364. All these deposits took place on November 19, 1984. The sizes of the corresponding inserts derived from the LAV genome have also been indicated.

25

TABLE
Essential features of the recombinant plasmids

5 - pJ19 - 1 plasmid (I-365) 0.8 kb

Hind III - Sac I - Hind III

- pJ19 - 17 plasmid (I-367) 0.8 kb

10

Hind III - Pst I - Hind III

- pJ19 - 6 plasmid (I-366) 1.5 kb

15

Hind III (5')

Bam HI

Xba I

Kpn I

Bgl II

20

Sac I (3')

Hind III

- pJ19-13 plasmid (I-368) 6.7 kb

25

Hind III (5')

Bgl II

Kpn I

Kpn I

Eco RI

30

Eco RI

Sal I

Kpn I

Bgl II

Bgl II

35

Hind III (3')

8

M : méthionine
W : tryptophan
F : phénylalanine
Y : tyrosine
5 L : leucine
V : valine
I : isoleucine
G : glycine
T : thréonine
10 S : serine
E : glutamic acid
D : Aspartic acid
N : asparagine
Q : glutamine
15 P : proline.

The asterik signs "*" correspond to stop codons (i.e. TAA, TAG and TGA).

Starting above the first line of the DNA nucleotidic sequence of fig. 4 the three reading phases 20 are respectively marked "1", "2", "3", on the left handside of the drawing. The same relative presentation of the three theoretical reading phases is then used all over the successives lines of the LAV nucleotidic sequence.

Figs. 2 and 3 provide a diagrammatized representation of the lengths of the successive open reading frames corresponding to the successive reading phases 25 (also referred to by numbers "1", "2" and "3" appearing in the left handside part of fig. 2). The relative positions of these open reading frames (ORF) with respect to the nucleotidic structure of the LAV genome is referred to by the scale of numbers representative of the respective 30 positions of the corresponding nucleotides in the DNA sequence. The vertical bars correspond to the positions of the corresponding stop codons.

35 1) The "gag gene" (or ORF-gag)

The "gag gene" codes for core proteins.

Particularly it appears that a genomic fragment (ORF-gag) thought to code for the core antigens including the p25, p18 and p13 proteins is located between nucleotidic position 238 (starting with 5' CTA GCG GAG 3') and 5 nucleotidic position 1759 (ending by CTCG TCA CAA 3'). The structure of the peptides or proteins encoded by parts of said ORF is deemed to be that corresponding to phase 2.

The methionine aminoacid "M" coded by the ATG at position 260-262 is the probable initiation methionine of 10 the gag protein precursor. The end of ORF-gag and accordingly of gag protein appears to be located at position 1759.

15 The beginning of p25 protein, thought to start by a P-I-V-Q-N-I-Q-G-Q-M-V-H aminoacid sequence is thought to be coded for by the nucleotidic sequence CCTATA..., starting at position 658.

Hydrophilic peptides in the gag open reading frame are identified hereafter. They are defined starting from 20 aminoacid 1 = Met (M) coded by the ATG starting from 260-2 in the LAV DNA sequence.

Those hydrophilic peptides are

12-32 aminoacids inclusive

	37-46	-	-
	49-79	-	-
25	88-153	-	-
	158-188	-	-
	178-188	-	-
	200-220	-	-
	228-234	-	-
30	239-264	-	-
	288-331	-	-
	352-381	-	-
	377-390	-	-
	399-432	-	-
35	437-484	-	-
	492-498	-	-

The invention also relates to any combination of these peptides.

2) The "pol gene" (or ORF-pol)

Figs. 6-12 also show that the DNA fragments extending from nucleotidic position 1555 (starting with 5' TTT TTT3') to nucleotidic position 5086 is thought to correspond to the pol gene. The polypeptidic structure of the corresponding polypeptides is deemed to be that corresponding to phase 1. It stops at position 4583 (and by 5' G GAT GAG GAT 3').

These genes are thought to code for the virus polymerase or reverse transcriptase.

3) The envelope gene (or ORF-env)

The DNA sequence thought to code for envelope proteins is thought to extend from nucleotidic position 5670 (starting with 5' AAA GAG GAG A....3') up to nucleotidic position 8132 (ending byA ACT AAA GAA 3'). Polypeptidic structures of sequences of the envelope protein correspond to those read according to the "phase 3" reading phase.

The start of env transcription is thought to be at the level of th ATG codon at positions 5681-5693.

Additional feature of the envelope protein coded by the env genes appear on figs. 13-18. These are to be considered as paired figs. 13 and 14 ; 15 and 16 ; 17 and 18 respectively.

It is to be mentioned that because of format difficulties.

Fig. 14 overlaps to some extent with fig. 13.

Fig. 16 overlaps to some extent with fig. 15.

Fig. 18 overlaps to some extent with fig. 17.

Thus for instance figs. 13 and 14 must be considered together. Particularly the sequence shown' on the first line on the top of fig. 13 overlaps with the sequence shown on the first line on the top of fig. 14. In other words the starting of the reading of the successive

sequences of the env gene as represented in figs. 13-18 involves first reading the first line at the top of fig. 13 then proceeding further with the first line of fig. 14. One then returns to the beginning of the second line of fig. 13, then again further proceed with the reading of the second line of page 14, etc... The same observations then apply to the reading of the paired figs. 15 and 18, and paired figs. 17 and 18, respectively.

The locations of neutralizing epitopes are further apparent in figs. 13-18. reference is more particularly made to the boxed groups of three letters included in the aminoacid sequences of the envelope proteins (reading phase 3) which can be designated generally by the formula N-X-S or N-X-T, wherein X is any other possible aminoacid. Thus the initial protein product of the env gene is a glycoprotein of molecular weight in excess of 91,000. These groups are deemed to generally carry glycosylated groups. These N-X-S and N-X-T groups with attached glycosylated groups form together hydrophylic regions of the protein and are deemed to be located at the periphery of and to be exposed outwardly with respect to the normal conformation of the proteins. Consequently they are considered as being epitopes which can efficiently be brought into play in vaccine compositions.

The invention thus concerns with more particularity peptide sequences included in the env-proteins and excizable therefrom (or having the same aminoacid structure), having sizes not exceeding 200 aminoacids.

Preferred peptides of this invention (referred to hereafter as a, b, c, d, e, f) are deemed to correspond to those encoded by the nucleotide sequences which extend respectively between the following positions :

- a) from about 8095 to about 8200
- b) " " 6260 " " 6310
- c) " " 6390 " " 6440
- d) " " 6465 " " 6620

e) " " 6860 " " 6930
 f) " " 7535 " " 7630

Other hydrophilic peptides in the env open reading frame are identified hereafter. they are defined starting from

aminoacid 1 = lysine (K) coded by the AAA at position 5670-2 in the LAV DNA sequence.

These hydrophilic peptides are
8-23 aminoacids inclusive

10	63-78	"	"
	82-90	"	"
	97-123	"	"
	127-163	"	"
	197-201	"	"
15	239-294	"	"
	300-327	"	"
	334-361	"	"
	397-424	"	"
	468-500	"	"
20	510-523	"	"
	551-577	"	"
	594-603	"	"
	621-630	"	"
	657-679	"	"
25	719-758	"	"
	780-803	"	"

The invention also relates to any combination of these peptides.

4) The other ORF

30 The invention further concerns DNA sequences which provide open reading frames defined as ORF-Q, ORF-R and as "1", "2", "3", "4", "5", the relative position of which appears more particularly in figs. 2 and 3.

These ORFs have the following locations :

35	ORF-Q	phase 1	start 4478	stop 5086
	ORF-R	" 2	" 8249	" 8886

ing

13

ing

	ORF-1	"	1	"	5029	"	5316
	ORF-2	"	2	"	5273	"	5515
	ORF-3	"	1	"	5383	"	5616
	ORF-4	"	2	"	5519	"	5773
5	ORF-5	"	1	"	7986	"	8279

The LTR (long terminal repeats) can be defined as lying between position 8560 and position 160 (and extending over position 9097/1). As a matter of fact the end of the genome is at 9097 and, because of the LTR structure of 10 the retrovirus, links up with the beginning of the sequence :

15

The invention concerns more particularly all the DNA fragments which have been more specifically referred to hereabove and which correspond to open reading frames. It will be understood that the man skilled in the art will 20 be able to obtain them all, for instance by cleaving an entire DNA corresponding to the complete genome of a LAV species, such as by cleavage by a partial or complete digestion thereof with a suitable restriction enzyme and by the subsequent recovery of the relevant fragments. The 25 different DNAs disclosed in the earlier mentioned British Application can be resorted to also as a source of suitable fragments. The techniques disclosed hereabove for the isolation of the fragments which were then included in the plasmids referred to hereabove and which were then 30 used for the DNA sequencing can be used.

Of course other methods can be used. Some of them have been exemplified in the earlier British Application. reference is for instance made to the following methods.
a) DNA can be transfected into mammalian cells 35 with appropriate selection markers by a variety of techniques, calcium phosphate precipitation, polyethylene

glycol, protoplast-fusion, etc..

b) DNA fragments corresponding to genes can be cloned into expression vectors for *E. coli*, yeast- or mammalian cells and the resultant proteins purified.

5 c) The proviral DNA can be "shot-gunned" (fragmented) into prokaryotic expression vectors to generate fusion polypeptides. Recombinant producing antigenically competent fusion proteins can be identified by simply screening the recombinants with antibodies against LAV 10 antigens .

The invention also relates more specifically to cloned probes which can be made starting from any DNA fragment according to this invention, thus to recombinant DNAs containing such fragments, particularly any plasmids 15 amplifiable in prokaryotic or eucaryotic cells and carrying said fragments.

Using the cloned DNA fragments as a molecular hybridization probe - either by marking with radionucleotides or with fluorescent reagents - LAV virion RNA may be 20 detected directly in the blood, body fluids and blood products (e.g. of the antihemophyllic factors such as Factor VIII concentrates) and vaccines, i.e. hepatitis B vaccine. It has already been shown that whole virus can be detected in culture supernatants of LAV producing cells. A 25 suitable method for achieving that detection comprises immobilizing virus onto said a support e.g. nitrocellulose filters, etc., disrupting the virion and hybridizing with labelled (radiolabelled or "cold" fluorescent- or enzyme-labelled) probes. Such an approach has already been 30 developed for Hepatitis B virus in peripheral blood (according to SCOTTO J. et al. Hepatology (1983), J. 379-384).

Probes according to the invention can also be used 35 for rapid screening of genomic DNA derived from the tissue of patients with LAV related symptoms, to see if the pro-viral DNA or RNA is present in host tissue and other

tissues.

A method which can be used for such screening comprise the following steps : extraction of DNA from tissue, restriction enzyme cleavage of said DNA, electrophoresis of the fragments and Southern blotting of genomic DNA from tissues, subsequent hybridization with labelled cloned LAV proviral DNA. Hybridization *in situ* can also be used.

Lymphatic fluids and tissues and other non-lymphatic tissues of humans, primates and other mammalian species can also be screened to see if other evolutionnary related retrovirus exist. The methods referred to hereabove can be used, although hybridization and washings would be done under non stringent conditions.

The DNA according to the invention can be used also for achieving the expression of LAV viral antigens for diagnostic purposes.

The invention also relates to the polypeptides themselves which can be expressed by the different DNAs of the inventions, particularly by the ORFs or fragments thereof, in appropriate hosts, particularly prokaryotic or eucaryotic hosts, after transformation thereof with a suitable vector previously modified by the corresponding DNAs.

These polypeptides can be used as diagnostic tools, particularly for the detection of antibodies in biological media, particularly in sera or tissues of persons afflicted with pre-AIDS or AIDS, or simply carrying antibodies in the absence of any apparent disorders. Conversely the different peptides according to this invention can be used themselves for the production of antibodies, preferably monoclonal antibodies specific of the different peptides respectively. For the production of hybridomas secreting said monoclonal antibodies conventional production and screening methods are used. These monoclonal antibodies, which themselves are part of

the invention then provide very useful tools for the identification and even determination of relative proportions of the different polypeptides or proteins in biological samples, particularly human samples containing 5 LAV or related viruses.

Thus all of the above peptides can be used in diagnostics as sources of immunogens or antigens free of viral particles, produced using non-permissive systems, and thus of little or no biohazard risk.

10 The invention further relates to the hosts (prokaryotic or eucaryotic cells) which are transformed by the above mentioned recombinants and which are capable of expressing said DNA fragments.

Finally it also relates to vaccine compositions 15 whose active principle is to be constituted by any of the expressed antigens, i.e. whole antigens, fusion polypeptides or oligopeptides in association with a suitable pharmaceutical or physiologically acceptable carrier.

Preferably the active principles to be considered 20 in that field consist of the peptides containing less than 250 aminosacid units, preferably less than 150 as deducible for the complete genomes of LAV, and even more preferably those peptides which contain one or more groups selected from N-X-S and N-X-T as defined above. Preferred peptides 25 for use in the production of vaccinating principles are peptides (a) to (f) as defined above. By way of example having no limitative character, there may be mentioned that suitable dosages of the vaccine compositions are those which enable administration to the host. 30 particularly human host ranging from 10 to 500 micrograms per kg, for instance 50 to 100 micrograms per kg.

For the purpose of clarity figs. 19 to 26 are added. reference may be made thereto in case of difficulties of reading blurred parts of figs. 4 to 12.

Needless to say that figs. 19-28 are merely a reiteration of the whole DNA sequence of the LAV genome.

Finally the invention also concerns vectors for the transformation of eucaryotic cells of human origin, particularly lymphocytes, the polymerases of which are capable of recognizing the LTRs of LAV. Particularly said vectors are characterized by the presence of a LAV LTR therein, said LTR being then active as a promoter enabling the efficient transcription and translation in a suitable host of the above defined, of a DNA insert coding for a determined protein placed under its controls.

Needless to say that the invention extends to all variants of genomes and corresponding DNA fragments (ORFs) having substantially equivalent properties, all of said genomes belonging to retroviruses which can be considered as equivalents of LAV.

CLAIMS

1. A DNA fragment of LAV extending from nucleotide position 236 to nucleotide position 1759.
2. A DNA fragment of LAV extending from nucleotide position 1555 to nucleotide position 5086.
3. A DNA fragment of LAV extending from nucleotide position 5670 to nucleotide position 8132.
4. A vector containing a DNA fragment according to any of claims 1 to 3.
5. Peptide corresponding to any of those encoded by the nucleotide sequences which extend respectively between the following positions :
 - a) from about 6095 to about 6200
 - b) " " 6280 " " 6310
 - c) " " 6390 " " 6440
 - d) " " 6485 " " 6520
 - e) " " 6860 " " 6930
 - f) " " 7535 " " 7830
6. Peptide characterized by a sequence of amino-acids deducible from LAV DNA the terminal aminoacids of which extend between the following positions with respect to the lysine (position 1) coded by the AAA at position 5670-5672 in the LAV DNA.

8-23 aminoacids inclusive

 - 83-78 " "
 - 82-90 " "
 - 97-123 " "
 - 127-183 " "
 - 197-201 " "
 - 239-294 " "
 - 300-327 " "
 - 334-381 " "
 - 397-424 " "
 - 466-500 " "
 - 510-523 " "
 - 551-577 " "

594-603 · ·
621-630 · ·
657-678 · ·
718-758 · ·
5 780-803 · ·

or any combination of these peptides.

7. Peptide corresponding to the aminoacid sequences deducible from LAV DNA and the terminal aminoacids of which are positionned at the positions
10 hereafter counted from the Met at position 1 coded by the ATG sequence at nucleotide positions 280-2 :

12-32 aminoacids inclusive
37-48 · ·
49-79 · ·
15 88-153 · ·
158-165 · ·
178-188 · ·
200-220 · ·
226-234 · ·
20 238-264 · ·
288-331 · ·
352-361 · ·
377-390 · ·
392-432 · ·
25 437-484 · ·
482-498 · ·

and combination of said peptides.

8. Diagnostic means containing any of the DNA fragments of any of claims 1 to 3.

9. Diagnostic means containing any of the peptides of any of claims 4 to 8.

10. Vaccine compositions containing any of the peptides according to any of claims 4 to 8 in association with a pharmaceutical vehicle.

End of transmission

1011UV.84-29099
DFA 1/26

FIG.1.

16 NOV 84 - 29039
DFA 2/26

Fig. 2

16 NOV. 84- 29099
DFA 3/24

Fig. 3

16 NOV. 84 - 29099

DFA 1/26

Fig 4

16 NOV 84 - 29099

D F A 5/26

5

15 NOV 34 - 23039

DFA 6126

6
二

16 NOV 64 - 29099

DFA 7/26

1. *U. S. Fish Commission, Report for 1881*, p. 102.

16 NOV 34 - 23039

D F A 3/2-6

٨٦

16 NOV 84 - 29099

D F A

9/26

16 NOV 34 - 29039

DFA

10/26

C-1
4

16 NOV 84 - 29099

DFA 11/26

16 NOV 34 - 23099

D-F-A

12126

১৩৮১ মাহে সেই সময়ে কলকাতা পৰিয়ে আসিলে এই বাস্তবের অন্তর্ভুক্ত হইল।

993

- 8 -

DFA 16 NOV 84 23099

P C E U E C P V H P A L E F R K H P S S S P .
T F L S V K A S O I L D S P U S I D E V S L
CAGAGGAGAGCAAGAAATGGGAGCTAGATCTAGACTAGAGCCCTGGAGGCATCCAGGAAGTCACCCCAA
5240 5300 5310 5320 5330 5340 5350

P S L F H N K S L R H L L H Q E E A E T A T K T S
O V C F T T K A L G I S Y G R K K R R Q R R R P P
K F V S O D K P * A S P M A G R S G D S D E D L I
CCAAGTTGTTTACAACAAAAGCCTAGGCATCTCCTATGGCAGGAAGAAGCCGAGCACCGACCAAGACCTCC
5410 5420 5430 5440 5450 5460 5470

S T C N A T T Y T N S N S S I S S S V N N N S N S C V
V H V M O P I Q I A I A A L V V A I I I A I V V W
Y * C N L Y K * Q * Q H * * * Q * * * Q * L C
ACTACATGTAATGCAACCTATAACAAATACCAATAGCAGCATTAGTAGCTAGCAATAATAATAGCAATAGTTGTGTC
5530 5540 5550 5560 5570 5580 5590

* Q V N * * T N R K S R R O W Q * E * R R N I S
I H K L I D R L I E R A E D S G N E S E G E I S A
* T G * L I D * * K E Q K T V A M R V K E K Y J
AATAGACAGGTTAACATGACTAATAGAAAGAGCAGAAGACAGTGGCAATGAGAGTGAAGGAGAAATATCACC
5650 5660 5670 5680 5690 5700 5710

Y * * S V V L O K N C G S Q S I M G Y L C G R X Q
I D D L * C Y R K I V G H S L L H G T C V E G S N
L M I C S A T E K L H V T V Y Y G V P V W K E A
TATTGATGATCTGTAGTGCTACAGAAAAATTGTTGGGTACACAGTCTATTATGGGTACCTGCTGGAAGCAACCA
5770 5780 5790 5800 5810 5820 5830

K Y I Y F G P H M P V Y P G T P T H K K * Y * M
G T * C L G H T C L C T H R P Q P T R S S I G Y F
V H N V W A T H A C V P T D P N P Q E V V L V V
AGCTACATACTCTTGGGCCACACATGCCTGTGTACCCACAGCCCCAACCAAGAAAGTAGTATTGCTAAATGT
5870 5900 5910 5920 5930 5940 5950

C M R I * S V Y G I K A * S H V * N * P H S V L V
A * G Y N U F M G S K P K A M C K I N P T L C * F
H E D I I S L A D Q S L K P C V K L T P L C V S L
TCCATGAGGATAATCAGTTATGGGATCAAAGCCTAAAGCCATGCTAAATTAACCCCACACTCTGTGTTAGTT
5910 6020 6030 6040 6050 6060 6070

I P I V V A G K * * W R K E R * K T A L S I S A D
Y Q * * * K G H D C E R R D K K I L F D Y D H K
T M S S S G E M M M E K G E I K N C S F N I S T
ATACCAATACTACTACGGGGAAATGATGATGGAGAAAGCAGAGATAAAAAGTGTCTTTCAATATCACCAAC
6130 6140 6150 6160 6170 6180 6190

L I * Y Q * I M I L P A I R * U V V T P Q S L H R
* Y N T H R * * Y Y O L Y V D K L * H L S H Y T G
D I I P I D * D T T S Y T L T S C N T S V I T O
TGTATATAACCAATACTACTACGGGTATACGTTGACAAGTTGTAACACCTCAGTCATTACACAGG
6250 6260 6270 6280 6290 6300 6310

P * L V L Q F * N V I I K Q S * E Q D H V Q M S A

OFAI4

16/26

16 NOV 84-029099

S O P K T A C T T C Y C K K C C F H C
S V S L K L L V P L A I V K S V A F I A
CAGUAAGTCACCCCTAAACACTGCTTGTACCACTGCTATTGCTAAAGACTGTTGCCTTCATTG
5350 5360 5370 5380 5390 5400

A T K T - S S P Q S D S S S F S I K A Y S
U R R R P P Q G S G T H Q V S L S K Q * V
S D E D L L K A V R L I K F L Y Q S S K *
ACCGACCAAGACACCCTCCTCAAGGCAGTCAGACTCATCAAGTTCTATCAAAGCAGTAAGT
5470 5480 5490 5500 5510 5520

S N S C V V H S N H R I * E N I K T K K
I A I V V W S I V I I E Y R K I L R O R K
* O * L C G P * * S * N I G K Y * D K E K
TAGCAATAGTTGTGTGGTCCATAGTAATCATAGAATATAAGAAAATATTAAGACAAAGAAA
5590 5600 5610 5620 5630 5640

R R N I S T C G D G G G N G A P C S L G
G E I S A L V E M G V E M G H H A P W D
K E K Y Q H L W R W G H K W G T M L L G I
AAGGAGAAATATCAGCACTTGAGATGGGGTGGAAATGGGGCACCATGCTCCTGGGA
5710 5720 5730 5740 5750 5760

C G F K Q P P L Y F V H Q M L K H M I O
V E G S N H H S I L C I R C * S I * Y R
V W K E A T T T L F C A S D A K A Y D T E
TGTGGAAGGAACCAACCAACTCTATTTGTGCATGCTAAAGCATATGATACAG
5830 5840 5850 5860 5870 5880

* Y H * M * Q K I L T C G K M T W * N R
S I G K C D R K F * H V E K * H G R T D
V V L V [N V T] E N F N M W K N D M V E O M
TAGTATTGGTAAATGTGACAGAAAATTTAACATGTGGAAAAATGACATGGTACAAGA
5950 5960 5970 5980 5990 6000

H S V L V * S T A L T H G M E L I P M I V
T L C * F K V H * F G E C Y * Y O * * *
P L C V S L K C T O L G [N A T N T N S S N
CACTCTGTGTAGTTAAAGTGCACGTGATTTGGGAATGCTACTAATACCAATAGTAGTA
6070 6080 6090 6100 6110 6120

S I S A D A * E V R C P K N M H F F I N
O Y O H K H K R * G A E R I C I F L * T
[N I S T S I R G K V Q K E Y A F F Y K L
TCAATATCACACACATAAGAGGTAACGTCAGAATATGATTTTTATAAAC
6190 6200 6210 6220 6230 6240

G S L H R P V Q R Y P L S Q F P Y I I V
S H Y T G L S K G I L * A N S H T L L C
V I T Q A C P K V S F E P I P I H Y C A
CAGTCATTACACAGGCCCTGTCACAGGTATCCTTGAGCCAATTCCCACATCATTGTC
6310 6320 6330 6340 6350 6360

V Q M S A Q Y N V H * F L G Q Q Y Q L N

15 NOV 34 23039

DFA 17

15/26

P G A F C D S K * * * V J N H R T M Y K C N
P A G F A I L X C N [REDACTED] F [REDACTED] G P C T H V
CCCCGGGCTGGTTTGCATTCTAAATCTAATAAGACCTTCATGGAAACAGGACCATGACAAATCTAG
6370 6340 6390 6400 6410 6420 6430

C C * M A V * O K K R * * L D L P I S O T M L K I
A V E W O S S S R R R G S N * I C O F H R O C * N
L L [REDACTED] L A E E E V V I R S A [REDACTED] D N A K T
TCTCTTCAATGGCACTCTAGCAGAAGAAGGGTAGTAATTAGATCTGCCAATTTCACACACAATGCTAAACC
6490 6500 6510 6520 6530 6540 6550

P T T I O E K V S V S R G D O G E H L L O * E K *
O C O Y K K K Y P Y P E G T K E S I C Y N R K N
N [REDACTED] R K S I R I O R G P G R A F V T I G K I
CCAACAAACAATACAAGAAAAAGTATCCGTATCCAGAGGGGACCAAGGGAGAGCATTGTTACATAGGAAAAATA
6610 6620 6630 6640 6650 6660 6670

M P L * N R * L A N * E N N L E L I K O * S L S S
C H F K T O S * O I K R T I N K * * N N N L * A
[REDACTED] L K O I A S K L R E O F G N [REDACTED] I I F K O
ATGCCACTTAAACAGATAGCTAGCAAATTAAAGAGAACAAATTGGAAAATAAAACAAATACTTTAACCAA
6730 6740 6750 6760 6770 6780 6790

I G N F S T V I O H N C L I V L G L I V L G V L K
H G I F L L * F N T T V * * Y L V * * Y L E Y *
G E F F Y C [REDACTED] Q L F [REDACTED] N S T W S T E
GACGGGAATTCTACTGTAATTCAACACAACGTGTTAATAGTACTTGGTTAATAGTACTTGGAGTACTGAA
6850 6860 6870 6880 6890 6900 6910

E * N N L * T C G R K * E K O C M P L P S A D K L
N K T I Y K H V A G S R K S N V C P S H O R T H *
I K O F I N M H O E V G K A M Y A P P I S G O I
GAATAAAACAATTATAAACATGTGGCAGGAAGTAGGAAAAGCAATGTATGCCCTCCCATCAGGGACAAATT
6970 6980 6990 7000 7010 7020 7030

V I T T H G P R S S D L E E E I * G T I G E V N Y
* * O O H V R D L O T W R R R Y E G O L E K * I I
N N N [REDACTED] S E I F R P G G G D M R D N W R S E L
GTAATAACAACAATGGTCCGAGATCTCACACCTGGAGGAGATATGAGGGACAATTGGAGAAGTGAATT
7090 7100 7110 7120 7130 7140 7150

P R O R E E W C R E K K E Q N E * E L C S L G S W
O G K E K S G A E R K K S S G N R S F V P W V L *
K A K R R V V O R E K R A V G I G A L F L G F L
CCAAGGCAAGAGAGAGTGGTGCAGAGAGAAAAAGAGCACTGGAAATAGGAGCTTCTGGTTCTGCG
7210 7220 7230 7240 7250 7260 7270

Y R P D N Y C L V * C S S R T I C * G L L R R N S
T G O T I I V H Y S A A A E D F A E G Y * G A T *
O A R Q L L S G I V O O O N N L L R A I E A O O
TACAGGGCAGACAATTATTCTCGTATAGTCCAGCACCAACAAATTGCTGAGGGCTATTGAGGGCCACACK
7330 7340 7350 7360 7370 7380 7390

E S A L U X D T * R I N S S W G F G V A L E N S F

16 NOV. 24 23299
16/26
DFA

T M Y K C O N S T Y T H N * A S G I V S
G P C T Y V S T V O C T H G I R D V V S T U L
AACAGGACCATGTACAAATCTACCCACAGTACATGTACACATGGAAATTAGGCCACTAGTATCAACTAAC
6420 6430 6440 6450 6460 6470 6480

P I S O T M L K P * * Y S * T N L * K L I V U D
O F H R O C * N H H N S T A E P I C R N * L Y K T
N F T D N A K T I I V O L N D S V E I N C T R P
CAATTCACAGACAATGCTAAAACCATAATAGTACAGCTGAACCAATCTGAGAAATTAAATTGTACAAAGAC
6540 6550 6560 6570 6580 6590 6600

F H L L Q * E K * E I * D K H I V T L V F O N G
S I C Y V P K N R K Y E T S T L * H * * S K M E
A F V T I G K I G N R Q A H C R I S R A K W N
AGCATTGTTACAATAGGAAAAATAGGAAATATGAGACAAGCACATTGTAACATTAGTACAGCAAAATGGA
6640 6670 6680 6690 6700 6710 6720

I I K O * S I S N P O E G T Q K L * R T V L I V
* * N N V L * A I L R R G P R N C N A O F * L W
N K T I F K O S S G G D P E I V T H S F N C G
TAATAAAACAATAATCTTAAAGCAATCCTCAGGGGGGACCCAGAAATTGTAACCCACAGTTTAATTGTC
6780 6790 6800 6810 6820 6830 6840

S L I V L G V L K G Q I T L K F V T O S H S H A
V * * Y L E Y * R V K * H * R K * H V H T P M C
F N S T W S T E G S N N T E G S O T I T L P C R
GTTTAATAGTACTGGAGTACTGAAGGGTCAAATACACTGAAGGAAGTGACACAATCACACTCCATGCA
6900 6910 6920 6930 6940 6950 6960

M P L P S A D K L D V H O I L O G C Y * O E M V
C P S H Q R T N * M F I K Y Y R A A I N K R H W
A P P I S G Q I R C S S N I T G L L L T R D G G
TGCCCCCTCCCATCAGCGGACAAATTAGATGTTCATCAAATATTACAGGGCTGCTATTAACAAGAGATGTC
7020 7030 7040 7050 7060 7070 7080

* G T I G E V N Y I N I K * * K L N H * E * H P
E G O L E K * I I * I * S S K N * T I R S S T H
R O N W R S E L Y K Y K V V K I E P L G V A P T
GAGGCACAATTGGAGAAGTCAATTATAAATATAAAGTACTAAAAATTGACCAATTAGGAGTAGCACCA
7140 7150 7150 7170 7180 7190 7200

* E L C S L G S W E Q Q E A L W A H G O * R * R
R S F V P H V L G S S R K H Y G R T V N D A D G
G A L F L G F L G A A G S T M G A R S M T L T V
AGGAGCTTGTCTGGCTCTGGACCGAGCAACTATGGCGCACGGTCAATGACCGTCAACGG
7260 7270 7290 7290 7300 7310 7320

C * G L L R R N S I C C N S O S G A S S S S R O
A F G Y * G A T A S V A T H S L G H Q A A P G K
L R A I E A O O H L L O L T V W G I K U L D A R
CTGAGGGCTATTGAGGGCGAACAGCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTCCACCAA
7380 7390 7400 7410 7420 7430 7440

G V A L E N S F A P L L G L S * L V G V I N L

16 NOV 84 - 29999

17/26

V P G C G K I P K D F A
I L A V E R Y L K O O U G L L G I W G C S G K L I
G A T C C T G G C T G G A A A G A T A C C T A A A G G A T C A A C A G C T C C T G G G G A T T T G G G G T T G C T C T G G A A A A C T C A T T
7450 7460 7470 7480 7490 7500 7510

W N R F G I T * P G H S G T E K L T I T Q A * Y I
G T D L E * H D L D G V G D R N * O L H K L N T
E D I W N [REDACTED] W M E M D R E I N [REDACTED] N Y T S L I H
T G G A A C A G A T T T G G A A T A A C A T G A C C T G G A T G G A C A G A G A A A T T A A C A T T A C A C A G C T T A A T A C A T
7520 7580 7590 7600 7610 7620 7630

N Y H N * I N G O V C S I G L T * O I G C G I * K
I I G I R * M G K F V E L V * H N K L A V V Y K
L L E L D K H A S L H N W F [REDACTED] N H W L H Y I K
A A T T A T T G G A A T T A A T G G G C A A G T T G T G G A A T T G G T T A A C A A T T G G C T G T G G T A T A A A A
7690 7700 7710 7720 7730 7740 7750

L L Y F L * * I E L G R D I H H Y R F R P T S Q P
C C T F Y S E * S * A G I F T I I V S D P P P P N
A V L S I V ' N R V R O G Y S P L S F O T H L P T
T T G C T G T A C T T C T A A T G A A T A G A G T T A G G C A G G G A T T C A C C A T T A C G T T C A G A C C C A C C T C C C A A C C
7810 7820 7830 7840 7850 7860 7870

R E T E T D P F D * * T D P * H L S G T I C G A L
E R U R Q I H S I S E R I L S T Y L G R S A E P
R D R D R S I R L V [REDACTED] N G S L A L I W D O L R S L
A C A G A G A C A G A C A G A T C C A T T C G A T T A G T G A A C C C A T C C T T A G C A C T T A C T G G G A C G A T C T G C G G A G C C T T
7930 7940 7950 7960 7970 7980 7990

T R I V E L L C K R G H E A L K Y H W N L L O Y X
R G L H N F W D A G G G K P S N I G G I S Y S I
E D C G T S G T O G V G S P D I L V E S P T V L
A C C A G G A T T G T G G A A C T T C T G G G A C C C A G G G G T G G G A A G C C C T C A A A T A T T C G T C C A T C T C C T A C A G T T A T T C
8050 8060 8070 8080 8090 8100 8110

A I A V A E G T D R V I E V V O G A C R A I R H I
P * D * L R G Q I G L * K * Y K E L V E L F A T
H S S S * G D R * G Y R S S T R S L * S Y S P H
C C C A T G C A G T A G G T G A G G G G A C A G A T A G G G T T A T A G A A G T A G T A C A A G G A C T T G T A G A G G T A T T C G C C A C A T
8170 8180 8190 8200 8210 8220 8230

G H Q V V K K * C G H M A Y C K G K N E T S * A S
C G K H S K S S V V G H P T V R E R M R R A E P
V A S G Q K V V H L D G L L * G K E * D E L S O
G G G T G G C A A C T G G T C A A A A A G T A G T G T G G T T G G A T G C C T A C T G T A A G G G A A A G A A T G A G A C G A G C T G A G C C A G
8290 8300 8310 8320 8330 8340 8350

S N H X * O Y S S Y Q C C L C L A R S T R G G G C
A I T S S N T A A T N A A C A H L F A O E E E E
U S O V A I U D L P M L L V P G * K H K R R P S
A C C A A T C A C A A C T A G C A A T A C A G C C A C T A C C A A T G C T G C T T G T G C C T G G C T [REDACTED] A A G G C A C A G A G G G A G G G A G G
8410 8420 8430 8440 8450 8460 8470

U G S C R S * P L F K R K G G T G Z A N S L P T
15/15

16 NOV 84 - 29099

DFA

A K T H L H H C C A L E C * * I S
S K L I C T T A V P H A S H S N L
CTGGAAAACATTCATTTGCAACCCTGCTGTGCCCTGGAAATGCTAGTTGGAGTAATAAATCTC
7510 7520 7530 7540 7550 7560

O A * Y I P * L K N R K T S K K R M N K
K L N T F L N * R I A K P A R K E * T R
S L I H S L I E E S O V O O E K N E O E
CAAGCTTAATACATTCTTAATTGAAGAACGCAAAACCAGCAAGAAAAGAACAG
7630 7640 7650 7660 7670 7680

C G I * K Y S * * * E A H * V * E * F
V V Y K N I H N D S R R L G R F K N S F
W Y : I K I F I M I V G G L V G L / R / I V F
TGTGGTATAAAAAATTCTATAATGATACTAGGAGGCTTGGTAGGTTAAGAATAGTTT
7750 7760 7770 7780 7790 7800

P T S Q P R G D P T G P K E * K K K Y E
P P P N P E G T R Q A R R N R R R R H R
T H L P T P R G P D R P E G I E E E G G E
CCCACCTCCAACCCCCAGGGGACCCGACAGGCCCCAGGAATAGAAGAAGAGTGGAG
7870 7880 7890 7900 7910 7920

I C G A L C L F S Y H R L R D L L L I V
S A E P C A S S A T T A * E T Y S * L *
L R S L V P L O L P P L E R L T L D C N
ATCTGGGAGCCTTGTGCTCTCAGCTACCACCGCTTGAGAGACTTACTCTGATTGTA
7990 8000 8010 8020 8030 8040

L L Q Y H S Q E L K N S A V S L L N A T
S Y S I G V R N * R I V L L A C S M P O
P T V L E S G T K E * C C L A O C H S
TCCTACAGTATTGGACTAGGAACATAAGAATAGTGCCTAGCTTCAATGCCACA
8110 8120 8130 8140 8150 8160

A I R H I P R R I R O G L E R I L L * D
L F A T Y L E E * D R A W K G F C Y K M
Y S P H T * K N K T G L G K D F A I R H
CTATTCCCCACATACTAGAAGAATAAGACAGGGCTTGGAAAGGATTTGCTATAAGAT
8230 8240 8250 8260 8270 8280

T S * A S S R W G G S S I S R P G K T W
R A E P A A D G V G A A S R O L E K H G
E L S O O O * S H E D H L E T H K N M E
CGAGCTGAGCCAGCACAGATGGGTGGAGCACCATCTCGAGACCTGGAAAAACATGG
8350 8360 8370 8390 8390 8400

R G C G G G F S S H T S G T F K T N D L
E E E E V G F P V T P C V P L R P M T Y
R R P R N Y F 3 S 4 L R Y L * D Q * L T
ACGGAGGAGSAGGAGGAGGTTTCCAGTCACRCCCTCAGSTACCTTAAGACCAATGACTTA
8400 8400 8400 8500 8510 8520

Line break
3 15/15 B/14

16 NOV. 04 - 29095
19/26

DFA

Fig 19

10	20	30	40	50	60
AAGCTTGCCT	TGAGTGCCTC	AACTAGTGTG	TGCCCGCTG	TTGTGTGACT	CTGGTAAC
70	80	90	100	110	120
GAGATCCCTC	AGACCCCTTT	AGTCAGTGTG	GAAAATCTCT	AGCACTGGGG	CCCCAACAGG
130	140	150	160	170	180
GAATTGAAAG	CGAAAGGGAA	ACCAGAGGGAG	CTCTCTCGAC	GCAGGACTCG	GCTTGCCTGAA
190	200	210	220	230	240
GGCGGCACGG	CAAGAGGCCA	GGGGAGGCCA	CTGGTGAGTA	CGCCAAAAAT	TTTCACTAGC
250	260	270	280	290	300
GGAGGCTAGA	AGGAGAGAGA	TGGGTGGGAG	AGCGTCAGTA	TTAAGCGGGG	GAGAATTAGA
310	320	330	340	350	360
TCGATGGAA	AAAATTGGGT	TAAGGCCAGG	GGGAAAGAAA	AAATATAAAT	AAAAACATAT
370	380	390	400	410	420
ACTATGGCA	ACCAAGGGAGC	TAGAACGATT	CCCTGTTAAT	CCTGGCCTGT	TAGAAACATC
430	440	450	460	470	480
ACAAGGCTGT	AGACAAATAC	TGGGACAGCT	ACAACCATCC	CTTCAGACAG	GATCAGAAGA
490	500	510	520	530	540
ACTTAGATCA	TTATATAATA	CAGTAGCAAC	CCTCTATTGT	GTGCATCAA	GGATAGAGAT
550	560	570	580	590	600
AAAAGACACC	AAGGAAGCTT	TACACAAGAT	AGAGGAAGAG	CAAAACAAAA	GTAAGAAAAA
610	620	630	640	650	660
AGCACAGCAA	CCACCGAGCTG	ACACAGGACA	CAGCAGCCAG	CTCAGCCAAA	ATTACCCAT
670	680	690	700	710	720
ACTGCAGAAC	ATCCAGGGGC	AAATGGTACA	TCAGGCCATA	TCACCTAGAA	CTTTAAATGC
730	740	750	760	770	780
ATGGTAAAAA	GTAGTACAAG	AGAAGGCTTT	CAGCCCAGAA	GTGATAACCA	TGTTTCAGG
790	800	810	820	830	840
ATTATCAGAA	GGAGCCACCC	CACAAGATT	AAACACCATG	CTAAACACAG	TGCCCCGACA
850	860	870	880	890	900
TCAAGCAGCC	ATGCAAATGT	AAAAAGAGAC	CATCAATGAG	GAAGCTGCAG	AATGGATAG
910	920	930	940	950	960
AGTGCATCCA	GTGCATGCAG	GGCCTATTGC	ACCAGGCCAG	ATGAGAGAAC	CAAGGGAAAG
970	980	990	1000	1010	1020
TGACATAGCA	GGAACTACTA	GTACCCCTCA	GGAAACAAATA	GGATGGATGA	CAAATAATCC
1030	1040	1050	1060	1070	1080
ACCTATCCCA	GTAGGAGAAA	TTTATAAAAG	ATGGATAATC	CTGGGATTAA	ATAAAATAGT
1090	1100	1110	1120	1130	1140

SEARCHED - S. S. - 16 NOV 34 - 29099

□ E5A/26

AAGAATGTAT AGCCCTACCA GCATTCTGGA CATAAGACAA GGACCAAAAG AACCCTTAG
 1150 1160 1170 1180 1190 1200
 AGACTATGTA GACCGGTTCT ATAAAACCT AAGAGCCGAG CAAGCTTCAC AGGAGGTAAA
 Fig 90
 1210 1220 1230 1240 1250 1260
 AAATTGGATG ACAGAAACCT TGTTGGTCCA AAATGCCAAC CCAGATTGTA AGACTATTT
 1270 1280 1290 1300 1310 1320
 AAAAGCATTG CGACCAGCAG CTACACTAGA AGAAATGATG ACAGCATGTC AGGGAGTGGG
 1330 1340 1350 1360 1370 1380
 AGCACCCGGC CATAAGGCAA GAGTTTGGC TGAAGCAATG AGCCAAGTAA CAAATTCAAC
 1390 1400 1410 1420 1430 1440
 TACCATATAATG ATGCAAAGAG GCAATTTAG GAACCAAAGA AAGATTGTTA AGTGTTCAA
 1450 1460 1470 1480 1490 1500
 TTGTGGCAAA GAAGGGCACA TAGCCAGAAA TTGCAGGGCC CCTAGGAAAA AGGGCTTGTG
 1510 1520 1530 1540 1550 1560
 GAAATGTGGA AAGGAAGGAC ACCAAATGAA AGATTGTA AGAGAGACAGG CTAATTTTT
 1570 1580 1590 1600 1610 1620
 AGGGAAAGATC TGGCCTTCCT ACAAGGGAAG CCCAGGGAAAT TTTCTTCAGA CGAGACCAGA
 1630 1640 1650 1660 1670 1680
 GCCAACAGCC CCACCGAGAAG AGAGCTTCAG GTCTGGGTA GAGACAACAA CTCCCTCTCA
 1690 1700 1710 1720 1730 1740
 GAAGCAGGAG CCGATAGACA AGGAACGTGA TCCTTTAACT TCCCTCAGAT CACTCTTGG
 1750 1760 1770 1780 1790 1800
 CAACGGACCCC TCGTCACAAT AAAGATAGGG GGGCAACTAA AGGAAGCTCT ATTAGATAAC
 1810 1820 1830 1840 1850 1860
 GGAGGCAGATG ATACAGTATT AGAAGAAATG AGTTTGCAG AGAGATGGAA ACCAAAAATG
 1870 1880 1890 1900 1910 1920
 ATAGGGGAA TTGGAGGT TATCAAAGTA AGACACTATG ATCAGATACT CATAGAAATC
 1930 1940 1950 1960 1970 1980
 TGTGGACATA AAGCTATAGG TACAGTATTA GTAGGACCTA CACCTGTCAA CATAATTGGA
 1990 2000 2010 2020 2030 2040
 AGAAATCTGT TGACTCAGAT TGGTTGCACT TTAAATTTTC CCATTAGTCC TATTGAAACT
 2050 2060 2070 2080 2090 2100
 GTACCACTAA ATTAAAGCC AGGAATGGAT GGCCCCAAAG TTAAACAATG CCCATTGACA
 2110 2120 2130 2140 2150 2160
 GAAGAAAAAA TAAGGAGATT AGTAGAAATT TGTACAGAAA TCGAAAAGGA AGGGAAAATT
 2170 2180 2190 2200 2210 2220
 TCAAAAATTG GGCTGAAAA TCCATACAAAT ACTCCAGTAT TTGCCATAAA GAAAAAACAC
 2230 2240 2250 2260 2270 2280
 AGTACTAAAT GGAGAAAATT AGTAGATTTC AGAGAACTTA ATAAGAGAAC TCAAGACTTC
 2290 2300 2310 2320 2330 2340
 TGGGAAGTTC ATTAGGAAT ACCACATGCC GCAGGGTTAA AAAAGAAAAAA ATCAGTAACA

16 NOV 84 - 29099

DFA

ATGAGCTTGTGGTGTGTC ATATTTTCA GTTCCCTTAG ATGAAGACTT CAGGAACAT
2410 2420 2430 2440 2450 2460
ACTGCATTTA CCATAACCTAG TATAAACAAAT GAGACACCAAG GGATTAGATA TCAGTACAAT
2470 2480 2490 2500 2510 2520
GTGCCCTCAC AGGGATGGAA AGGATCACCA GCAATATTCC AAAGTAGCAT CACAAAAATC
2530 2540 2550 2560 2570 2580
TTAGACCCCTT TTAGAAAACA AAATCCAGAC ATAGTTATCT ATCAATACAT CGATGATTTG
2590 2600 2610 2620 2630 2640
TATGTAGGAT CTGACTTACA AATAGGGCAG CATAGAACAA AAATACAGGA CCTGAGACAA
2650 2660 2670 2680 2690 2700
CATCTGTTGA GGTGGGGACT TACCACACCA GACAAAAAAC ATCAGAAAAGA ACCTCCATTG
2710 2720 2730 2740 2750 2760
CTTGGATGG GTTATGAACCT CCATCCTGAT AAATGGACAG TACAGCCTAT AGTGCTGCCA
2770 2780 2790 2800 2810 2820
CAAAAAGACA CCTGGACTGT CAATGACATA CAGAAGTTAG TGGGAAAATT GAATTGGGCA
2830 2840 2850 2860 2870 2880
AGTCAGATTT ACCCAGGGAT TAAAGTAAGG CAATTATGTA AACTCCTTAG AGGAACCAAA
2890 2900 2910 2920 2930 2940
GCACTAACAG AAGTAATACC ACTAACAGAA GAAGCAGAGG TAGAACTGGC AGAAAACAGA
2950 2960 2970 2980 2990 3000
GAGATTCTAA AAGAACCGT ACATGGAGTG TATTATGACC CATCAAAAGA CTTAATACCA
3010 3020 3030 3040 3050 3060
GAAATACAGA AGCAGGGGCA AGGCCAATGG ACATATCAA TTTATCAAGA CCCATTAAA
3070 3080 3090 3100 3110 3120
AATCTGAAAA CAGGAAAATA TGCAAGAACG AGGGGTGCC CACACTAATGA TGTAAAACAA
3130 3140 3150 3160 3170 3180
TTAACAGAGG CAGTGCAGAA ATAACCACA GAAACCATAG TAATATGGGG AAAGACTCCT
3190 3200 3210 3220 3230 3240
AAATTAAAC TACCCATACA AAAGGAAACA TGGGAAACAT GGTGGACAGA GTATTGGCAA
3250 3260 3270 3280 3290 3300
CCCACCTGGA TTCCTGAGTG GGAGTTGTC AATACCCCTC CTTAGTGAA ATTATGCTAC
3310 3320 3330 3340 3350 3360
CAGTTAGAGA AAGAACCCAT AGTAGGAGCA GAAACGTTCT ATGTAGATGG GGCAGCTAGC
3370 3380 3390 3400 3410 3420
AGGGAGACTA AATTAGGAAA ACCAGGATAT GTTACTAATA GAGGAAGACAA AAAAGTTGTC
3430 3440 3450 3460 3470 3480
ACCCCTAATG ACACAACAAA TCAGAAGACT GAGTTACAAG CAATTCTATCT AGCTTTGCAG
3490 3500 3510 3520 3530 3540
GATTGGGAT TAGAAGTAAA TATAGTAACA GACTCACAAAT ATCCATTAGG AATCATTCAA
3550 3560 3570 3580 3590 3600
GCACAAACAG ATAAAAGTGA ATCAGAGTTA GTCAATCAA TAATAGACCA CTTAATAAA
3610 3620 3630 3640 3650 3660

15 NOV 84 - 29099

221
3670 3680 3690 3700 3710 3720
CTAGATAAT TAGTCAGTGC TCGAACAGG AAAGTACTAT TTTTAGATGG AATAGAT

Fig 92
3730 3740 3750 3760 3770 3780
CCCCAAGATG AACATGAGAA ATATCACAGT AATTGGAGAG CAATGGCTAG TGATTTAAC

3790 3800 3810 3820 3830 3840
CTGCCACCTG TAGTAGCAA AGAAATAGTA GCCAGCTGTG ATAAATGTCA CCTAAAACGA

3850 3860 3870 3880 3890 3900
GAAGCCATGC ATGGACAAAGT AGACTGTAGT CCAGGAATAT GGCAACTAGA TTGTACACAT

3910 3920 3930 3940 3950 3960
TTAGAAGGAA AAGTTATCCT GGTAGCAGTT CATGTAGCCA GTGGATATAT AGAAGCAGAA

3970 3980 3990 4000 4010 4020
GTTATTCCAG CAGAAACAGG GCAGGAAACA GCATACTTTC TTTTAAAATT AGCAGGAAGA

4030 4040 4050 4060 4070 4080
TGGCCAGTAA AAACAATACA TACAGACAAT GGCAGCAATT TCACCAAGTAC TACGGTTAAG

4090 4100 4110 4120 4130 4140
GCCGCCCTGTT GGTGGGGGGG AATCAAGCAG GAATTTGAA TTCCCTACAA TCCCCAAAGT

4150 4160 4170 4180 4190 4200
CAAGGAGTAG TAGAATCTAT GAATAAAGAA TAAAGAAAAA TTATAGGCCA GTAAAGAGAT

4210 4220 4230 4240 4250 4260
CAGGCTGAAC ATCTTAAGAC ACCAGTACAA ATGGCACTAT TCATCCACAA TTTTAAAAGA

4270 4280 4290 4300 4310 4320
AAAGGGGGGA TTGGGGGGTA CAGTCCAGGG GAAAGAATAG TAGACATAAT AGCAACACAC

4330 4340 4350 4360 4370 4380
ATACAAACTA AAGAATTACA AAAACAAATT ACAAAAATTTC AAAATTTCG GGTTTATTAC

4390 4400 4410 4420 4430 4440
AGGGACAGCA GAGATCCACT TTGCAAAGGA CCAGCAAAGC TCCTCTGGAA AGGTGAAGGG

4450 4460 4470 4480 4490 4500
CCAGTAGTAA TACAAGATAA TAGTGACATA AAAGTAGTGC CAAGAAGAAA AGCAAAAGATC

4510 4520 4530 4540 4550 4560
ATTAGGGATT ATGAAAAACA GATGGCAGGT GATGATTGTG TGGCAAGTAG ACAGGATGAG

4570 4580 4590 4600 4610 4620
GATTAGAACCA TGGAAAAGTT TAGTAAACCA CCATATGTAT GTTTCAGGGAAAGCTAGGGG

4630 4640 4650 4660 4670 4680
ATGGTTTAT AGACATCACT ATGAAAGCCC TCATCCAAGA ATAAGTTCAAG AAGTACACAT

4690 4700 4710 4720 4730 4740
CCCACTAGGG GATGCTAGAT TCGTAATAAC AACATATTGG GGTCTGCATA CAGGAGAAAG

4750 4760 4770 4780 4790 4800
AGACTGGCAT CTGGGTCAAGG GAGTCTCCAT AGAATGGAGG AAAAAGAGAT ATAGCACACA

4810 4820 4830 4840 4850 4860
AGTAGACCCCT GAACTAGCAG ACCAACTAAT TCATCTGTAT TACTTTGACT GTTTTCAGA

4870 4880 4890 4900 4910 4920

16 NOV 84 - 29099

4930 4940 4950 4960 4970 4980
AGGACATAAC AAGGTAGGAT CTCTACAATA CTTGGCACTA GCAGCATTAA TAACACCAAA

4990 5000 5010 5020 5030 5040
AAAAGATAAAC CCACCTTTCG CTACTGTTAC GAAACTGACA GAGGATAGAT GGAACAAGCC

5050 5060 5070 5080 5090 5100
CCAGAAGACC AAGGGCCACA GAGGGGCCA CACAATGAAT GGACACTAGA GCTTTAGAG

5110 5120 5130 5140 5150 5160
GAGCTTAAGA ATGAAGCTGT TAGACATTT CCTAGGATT GCCTCCATGG CTTAGGGCAA

5170 5180 5190 5200 5210 5220
CATATCTATG AAACCTTATGG CGATACTTGC CCAGGAGTGG AAGCCATAAT AAGAATTCTG

5230 5240 5250 5260 5270 5280
CAACAACTGC TGTTTATCCA TTTCAGAATT GGGTGTGAC ATAGCAGAAT AGGCGTTACT

5290 5300 5310 5320 5330 5340
CAACAGAGGA GACCAAGAAA TGGAGCCAGT AGATCCTAGA CTAGAGCCCT GGAAGCATCC

5350 5360 5370 5380 5390 5400
AGGAAGTCAG CCTAAAATG CTTGTACAC TTGCTATTGT AAAAAGTGT GCTTCATTG

5410 5420 5430 5440 5450 5460
CCAAGTTTGT TTCACAAACAA AAGCCTTAGG CATCTCCTAT GGCAGGAAGA AGCGGAGACA

5470 5480 5490 5500 5510 5520
GGCACCGAAGA CCTCCTCAAG GCAGTCAGAC TCATCAAGTT TCTCTATCAA AGCAGTAAGT

5530 5540 5550 5560 5570 5580
ACTACATGTA ATGCAACCTA TACAAATAGC AATAGCAGCA TTAGTAGTAG CAATAATAAT

5590 5600 5610 5620 5630 5640
AGCAATAGTT GTGTGGTCCA TAGTAATCAT AGAATATAGG AAAATATTAA GACAAAGAAA

5650 5660 5670 5680 5690 5700
AATAGACAGG TTAATTGATA GACTAATAGA AAGAGCAGAA GACAGTGGCA ATGAGAGTGA

5710 5720 5730 5740 5750 5760
AGGAGAAATA TCAGGACTTG TGGAGATGGG CGTGGAAATG GGGCACCATG CTCTTGGGA

5770 5780 5790 5800 5810 5820
TATTGATGAT CTGTAGTGCT ACAGAAAAAT TCTGGTCAC ACTCTATTAT GGGCTACCTG

5830 5840 5850 5860 5870 5880
TGTGGAAGGA AGCAACCACC ACTCTATTT GTGCATCAGA TGCTAAAGCA TATGATACAG

5890 5900 5910 5920 5930 5940
ACGTACATAA TGTTGGGCC ACACATGCCT GTGTACCCAC AGACCCCCAAC CCACAAAGAAG

5950 5960 5970 5980 5990 6000
TAGTATTGGT AAATGTGACA GAAAATTTA ACATGTGGAA AAATGACATG GTAGAAACAGA

6010 6020 6030 6040 6050 6060
TGCATGAGGA TATAATCAGT TTATGGATC AAAGCCTAAA GCCATGTGTA AAATTAACCC

6070 6080 6090 6100 6110 6120
CACTCTGTGT TAGTTAAAG TGCACTGATT TCCCCAATGC TACTAATACC AATACTAGTA

6130 6140 6150 6160 6170 6180

16 NOV 84- 29095

ATACCAATAAG TAGTAGCCGGG GAAATCATGA TGGAGAAGGG AGAGATAAAA AACTCCTCTT
D F A
6170 6200 6210 6220 6230 6240
24/26 TCAATATCAG CACAAGCATA AGAGGTAAGG TGCACAAAGA ATATGCATT TTTTATAAAC
6250 6260 6270 6280 6290 6300
TTGATATAAT ACCAATAGAT AATGATACTA CCAGCTATAC GTTGACAAGT TGTAACACCT
6310 6320 6330 6340 6350 6360
CACTCATTAC ACAGGCCGT CCTTTCAGCC AATTCCCATA CATTATTCTG
6370 6380 6390 6400 6410 6420
CCCCGGCTGG TTTTGCATT CTAAAATGTA ATAATAAGAC GTTCAATGGA ACAGGACCAT
6430 6440 6450 6460 6470 6480
CTACAAATGT CAGCACAGTA CAATGTACAC ATGGAATTAG GCCAGTACTA TCAACTCAAC
6490 6500 6510 6520 6530 6540
TGCTGTTGAA TGGCAGTCTA GCAGAAGAAC AGGTAGTAAT TAGATGTGCC AATTTCACAG
6550 6560 6570 6580 6590 6600
ACAATGCTAA AACCATATAA GTACAGCTGA ACCAATCTGT AGAAATTAAT TGTACAAGAC
6610 6620 6630 6640 6650 6660
CCAACAAACAA TACAACAAAA ACTATCCGT A TCCAGAGGGG ACCAGGGAGA GCATTTGTTA
6670 6680 6690 6700 6710 6720
CAATAGGAAA AATAGGAAAT ATGAGACAAG CACATTGTA CATTAGTACA GCAAAATGGA
6730 6740 6750 6760 6770 6780
ATGCCACTTT AAAACAGATA GCTAGCAAAT TAAGAGAAC A ATTGGAAAT AATAAAACAA
6790 6800 6810 6820 6830 6840
TAATCTTTAA GCAATCCTCA GGAGGGGACC CAGAAATTGT AACGCACAGT TTTAATTGTC
6850 6860 6870 6880 6890 6900
GAGGGGAATT TTTCTACTGT AATTCAACAC AACTGTTAA TAGTACTTGG TTTAATAGTA
6910 6920 6930 6940 6950 6960
CTTGGACTAC TCAAGGGTCA AATAACACTG AAGGAAGTCA CACAATCACA CTCCCATGCA
6970 6980 6990 7000 7010 7020
GAATAAAACA ATTATAAAC ATGTGGCAGG AAGTAGGAAA AGCAATGTAT GCCCCTCCCC
7030 7040 7050 7060 7070 7080
TCAGCGGACA AATTAGATGT TCATCAAATA TTACAGGGCT GCTATTAACA AGAGATGCTG
7090 7100 7110 7120 7130 7140
CTAATAACAA CAATGGGTCC GAGATCTTC GACCTGGAGG AGGAGATATG AGGGACAATT
7150 7160 7170 7180 7190 7200
GGAGAAGTGA ATTATATAAA TATAAAGTAG TAAAAATTGA ACCATTAGGA GTAGCACCCA
7210 7220 7230 7240 7250 7260
CCAAGGCCAA GAGAACAGTG GTGCAGAGAG AAAAAAGAGC AGTGGGAATA GGAGCTTTGT
7270 7280 7290 7300 7310 7320
TCCTTGGCTT CTTGGGAGCA GCAGGAAGCA CTATGGGGCC ACGGTCAATG ACGCTGACGG
7330 7340 7350 7360 7370 7380
TACAGGCCAG ACAATTATTG TCTCGTATAG TGCAGCAGCA GAACAATTG CTGAGGGCTA
7390 7400 7410 7420 7430 7440

170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870

15 HUV. 34- 230

D.F.A.

CCC1GATTCG CAGAACTACA CACCAAGGCC AGGGGTCAAG TATCCACTGA CCTTTCGATC
b1/26 8710 8720 8730 8740 8750 8760
GTGCTACAGA CTAGTACCGAG TIGAGCCAGA TAAGGTAGAA GAGGCAATA AAGGAGAGAA
8770 8780 8790 8800 8810 8820
CACCAAGCTTG TTACACCGCTG TGACCCCTGCA TGGAATGGAT GACCCCTGAGA GAGAAGTGT
8830 8840 8850 8860 8870 8880
AGACTGGAGG TTTGACAGCC GCCTAGCATT TCATCACGTG CCCCCGAGAGC TGCATCCGGA
8890 8900 8910 8920 8930 8940
CTACTTCAAG AACTGCTGAC ATCGAGCTTG CTACAAGGGA CTTTCCGCTG GGGACTTTCC
8950 8960 8970 8980 8990 9000
AGGGAGGEGT GGECTGGCG GAACTGGGGA GTGGCGAGCC CTCAGATGCT GCATATAAGC
9010 9020 9030 9040 9050 9060
AGCTGCTTTT TGCCTGTACT GGGTCTCTCT GTTAGACCA GATTTGAGCC TGGGAGCTCT
9070 9080 9090 9100 0 0
CTGGCTAACT AGGGAAACCCA CTGCTTAAGC CTCATAAAAG CTT

Fig 2b