Дискретный анализ. Домашнее задание 2

Красоткина Виктория

2022 г.

Содержание

1	Комбинаторика III	2
2	Неориентированные графы	5
3	Деревья и раскраски	5
4	Ориентированные графы	5
5	Бинарные отношения	5
6	Производящие функции	5

1 Комбинаторика III

1.1 Сколькими способами можно закрасить клетки таблицы 3×4 так, чтобы незакрашенные клетки содержали или верхний ряд, или нижний ряд, или две средних вертикали?

Решение

Всего 12 клеток. Для первых двух случаев существует по 2^8 вариантов (так как есть 2 состояния клетки – закрашена и не закрашена – и 8 вакантных клеток) раскраски таблицы. В случае незакрашенных вертикалей есть 6 свободных клеток, значит 2^6 вариантов.

Рассмотрим случаи пересечения: 2^4 вариантов, когда выполняются первые два условия, по 2^4 вариантов, когда выполняется первое + третье и второе + третье условия. 2^2 вариантов, когда выполняются все три условия.

Тогда по формуле включения-исключения:

$$N = (2^8 + 2^8 + 2^6) - (2^4 + 2^4 + 2^4) + 2^2 = 532$$

Ответ: 532 способа

1.2 Для полета на Марс набирают группу людей, в которой каждый должен владеть хотя бы одной из профессий повара, медика, пилота или астронома. При этом в техническом зада- нии указано, что каждой профессией из списка должно владеть ровно 6 человек в группе. Кроме того указано, что в группе должен найтись ровно один человек, владеющий всеми этими профессиями; каждой парой профессий должны владеть ровно 4 человека; каждой тройкой – ровно 2.

Выполнимо ли такое техническое задание?

Решение

Обозначим за A_1 множество поваров, за A_2 – медиков, A_3 – пилотов, A_4 – астрономов. Запишем условия:

$$\begin{cases} |A_1| = |A_2| = |A_3| = |A_4| = 6 \\ |A_1 \cap A_2 \cap A_3 \cap A_4| = 1 \\ |A_1 \cap A_2| = |A_1 \cap A_3| = |A_1 \cap A_4| = |A_2 \cap A_3| = |A_2 \cap A_4| = |A_3 \cap A_4| = 4 \\ |A_1 \cap A_2 \cap A_3| = |A_1 \cap A_2 \cap A_4| = |A_1 \cap A_3 \cap A_4| = |A_2 \cap A_3 \cap A_4| = 2 \end{cases}$$

Найдем количество людей в группе, чтобы условия выполнялись:

$$N(|A_1 \cup A_2 \cup A_3 \cup A_4|) = (6+6+6+6) - (4+4+4+4+4+4+4) + (2+2+2+2) = 7$$

Допустим, первые 6 из 7 человек – повара. Тогда среди медиков есть как минимум 5 медиков, а это противоречит условию $|A_1 \cap A_2| = 4$.

Значит, условие невыполнимо.

1.3 Пусть A и B – конечные непустые множества, и |A|=n. Известно, что число инъекций из A в B совпадает с числом сюръекций из A в B. Чему равно это число?

Решение

Инъекция $\Rightarrow |B| \ge |A|$

Сюръекция $\Rightarrow |B| \leq |A|$

По условию число инъекций из A в B совпадает с числом сюръекций из A в B, значит они обе существуют, и |A| = |B| = n. Таким образом, нужно понять, сколько существует способов сопоставить элементы B элементам A. Очевидно, n!. Это и есть ответ.

1.4 Пусть $X = \{1, \dots, n\}$. Найдите число способов взять k подмножеств X_1, \dots, X_k множества X таких, что $X_1 \subseteq X_2 \subseteq \dots \subseteq X_k$.

Решение

Если какой-то элемент из множества X принадлежит множеству X_i , то он принадлежит и X_j , где j>i. Значит, каждому элементу из X можно поставить в соответствие число i – номер множества, где он всречается первый раз:

$$i \in \{1, 2, \dots, k+1\}$$

Найдем число способов поставить i в соответствие элементу из X: оно будет равно $(k+1)^n$ — это и есть ответ на вопрос задачи.

1.5 В классе 20 учеников, каждый из которых дружит ровно с шестью одноклассниками. Найдите число таких различных компаний из трёх учеников, что в них либо все школьники дружат друг с другом, либо каждый не дружит ни с одним из двух оставшихся.

Решение

Количество компаний из трех человек.

$$N_1 = C_{20}^3 = \frac{20!}{3!17!} = \frac{18 \cdot 19 \cdot 20}{6} = 1140$$

Найдем число компаний, в которых хотя бы один человек с кем-то дружит, но не каждый с каждым:

$$N_2 = \frac{20 \cdot 6 \cdot (19 - 6)}{2} = 780$$

Тогда искомое количество:

$$N = N_1 - N_2 = 1140 - 780 = 360$$

1.6 Найдите количество неубывающих отображений

$$f: \{1, 2, \dots, n\} \to \{1, 2, \dots, m\}$$

Решение

Пусть $\{x_n\}$ – неубывающая последовательность такая, что

$$x_k = f(k) \ \forall k \in \{1, 2, \dots, n\}$$

f — неубывающее отражение, значит, $\{x_n\}$ — неубыающая последовательность. Тогда нам остается найти количество способов выбрать n из m элементов с повторениями, то есть

$$N = C_{n+m-1}^m$$

1.7 Чего больше, разбиений n-элементного множества на не более чем k подмножеств или разбиений (n+k)-элементного множества на ровно k подмножеств?

Решение

Предположим, что мужчины и женщины различимы, места за столом тоже различимы. Если женщины займут чётные места n! способами, то мужчины будут занимать нечетные места тоже n! способами и наоборот. Тогда

$$N = 2 \cdot (n!)^2$$

- **1.8** Функция неубывающая, если $x \le y$ влечет $f(x) \le f(y)$. Найдите количество
 - **а)** неубывающих инъекций $f:\{1,\ldots,n\} \to \{1,2,\ldots,m\}$
 - **b)** неубывающих сюръекций $f: \{1, ..., n\} \to \{1, 2, ..., m\}$

Решение

- **а)** Мы выбираем n элементов из m C_m^n способами, но тут уже не делаем перебор всех возможных перестановок, т.к. нам удовлетворяет ровно одна, т.к. все числа во множестве $B = \{1, 2, \ldots, m\}$ различны.
- **b)** Все элементы множества A шары, а элементы множества различные ящики в кол-ве m штук. Тогда воспользуемся формулой шаров и перегородок: C_{n-1}^{m-1} .
- 1.9 Найдите сумму:

$$n^{n} - C_{n}^{1}(n-1)^{n} + C_{n}^{2}(n-2)^{n} + \dots + (-1)^{n}C_{n}^{n}N_{n}$$

Решение

Заметим, что данная сумма эквивалентна формуле включения-исключения. Пусть $\{a_1,a_2,\ldots,a_n\}$ – свойства. a_i – элементу y_i не сопоставлен x. Значит, $N(\overline{a_1},\overline{a_2},\ldots,\overline{a_n})$ – число таких отображений, что каждому y_i сопоставлен x. А раз у каждого x свой y, то существует n! способов их распределить. Значит, $N(\overline{a_1},\overline{a_2},\ldots,\overline{a_n})=n!$ – и это же ответ на вопрос задачи.

- 2 Неориентированные графы
- 3 Деревья и раскраски
- 4 Ориентированные графы
- 5 Бинарные отношения
- 6 Производящие функции