1、利用下图展示的数据,根据贝叶斯分类方法授课内容,分别使用高斯贝叶斯分类器和高斯朴素贝叶斯分类器预测样本 x=(密度=0.5,含糖率=0.3)的类别。(5分)

		* .
密度	含糖率	好瓜
0.697	0.460	是
0.774	0.376	是
0.634	0.264	是
0.608	0.318	是
0.556	0.215	是
0.403	0.237	是
0.481	0.149	是
0.437	0.211	是
0.666	0.091	否
0.243	0.267	否
0.245	0.057	否
0.343	0.099	否
0.639	0.161	否
0.657	0.198	否
0.360	0.370	否
0.593	0.042	否
0.719	0.103	否

2、试根据 Markov 模型授课内容,完成如下习题:某射击选手,当他射中,则下次也中靶的概率为 0.8;当他脱靶,则下次中靶的概率为 0.5。若第一次没中,问他第 4 次设计射中的概率为多少?(5 分)

3、试根据 GMM 授课内容,使用 EM 方法计算参数 $\{\pi_i, \mu_i, i=1,2,\cdots,k\}$ 在 M 步更新的公式

$$\arg\max_{\theta} \ln \left(\prod_{j=1}^{n} \boldsymbol{p}(x_{j}|\theta) \right) = \arg\max_{\theta} \sum_{j=1}^{n} \ln \left(\sum_{i=1}^{k} p(y_{j} = i, x_{j}|\theta) \right)$$

并使用 GMM 模型,对课堂上给出的如下一维数据进行上机编程实践(5分)。

One-dimensional dataset: $x_1 = 1.0, x_2 = 1.3, x_4 = 2.2, x_4 = 2.6, x_5 = 2.8, x_6 = 5.0, x_7 = 7.3, x_8 = 7.4, x_9 = 7.5, x_{10} = 7.7, x_{11} = 7.9$ 其中聚类个数 k=2,初始参数 $\mu_1 = 6, \sigma_1^2 = 1, P(C1) = 0.5$; $\mu_2 = 7.5, \sigma_2^2 = 1, P(C2) = 0.5$