- 1. Uvažte jazyk $L_1 = \{a^i b^j c^k \mid (i = 2j \lor j = 3k) \land i, j, k \ge 0\}.$
 - (a) Sestavte gramatiku G_1 takovou, že $L(G_1) = L_1$.

$$G_1 = (\{S, X, Y, U, V\}, \{a, b, c\}, P, S)$$
 s pravidly:

$$S \rightarrow X \mid Y \mid XU \mid VY$$

$$X \rightarrow aaXb \mid \epsilon$$

$$Y \rightarrow bbbYc \mid \epsilon$$

$$U \rightarrow Uc \mid \epsilon$$

$$V \rightarrow aV \mid \epsilon$$

- (b) Jakého typu (dle Chomského hierarchie jazyků) je G_1 a jakého typu je L_1 ? Mohou se tyto typy obecně lišit? Svoje tvrzení zdůvodněte (formální důkaz není požadován).
 - G_1 je typu 2 (bezkontextová gramatika), protože se na levých stranách jejích přepisovacích pravidel vyskytuje vždy jen jeden nonterminální symbol a nic dalšího a zároveň se na některých pravých stranách vyskytují pouze nonterminály.
 - L_1 je typu 2, protože gramatika G_1 , která ho generuje, je typu 2, a zároveň nemůže být generován gramatikou typu 3.
 - Platí, že $\mathcal{L}_3 \subseteq \mathcal{L}_2 \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_0$, kde \mathcal{L}_i značí třídu všech jazyků typu i. Tudíž gramatika G_i typu i může generovat jazyk třídy \mathcal{L}_i nebo jazyk některé konkrétnější třídy $\mathcal{L}_{j>i}$. Gramatika a jazyk, který generuje, mohou tedy být obecně jiného typu.
- 2. Uvažte regulární výraz $r = (abc + \epsilon)^*a^*b$.
 - (a) Převeď te r algoritmicky na redukovaný deterministický konečný automat M (tj. RV \rightarrow RKA \rightarrow DKA \rightarrow redukovaný DKA), přijímající jazyk popsaný výrazem r.
 - Převod regulárního výrazu r na rozšířený konečný automat.
 - Rozklad regulárního výrazu vyjádříme stromem:

• Regulárnímu výrazu $r_1 = a$ přísluší konečný automat M_1 :

• Regulárnímu výrazu $r_2 = b$ přísluší konečný automat M_2 :

• Regulárnímu výrazu $r_3 = ab$ přísluší konečný automat M_3 :

• Regulárnímu výrazu $r_4 = c$ přísluší konečný automat M_4 :

• Regulárnímu výrazu $r_5 = abc$ přísluší konečný automat M_5 :

• Regulárnímu výrazu $r_6 = \epsilon$ přísluší konečný automat M_6 :

- Regulárnímu výrazu $r_7 = abc + \epsilon$ přísluší konečný automat M_7 .

• Regulárnímu výrazu $r_8 = (abc + \epsilon)$ přísluší konečný automat M_7 .

• Regulárnímu výrazu $r_9 = (abc + \epsilon)^*$ přísluší konečný automat M_9 :

- Regulárnímu výrazu $r_{10} = r_1 = a$ přísluší konečný automat M_1 .

- Regulárnímu výrazu $r_{12}=r_2=b$ přísluší konečný automat M_2 .
- Regulárnímu výrazu $r_{13}=a^*b$ přísluší konečný automat M_{13} :

• Výslednému regulárnímu výrazu $r=(abc+\epsilon)^*a^*b$ přísluší rozšířený konečný automat M_R :

- Převedeme rozšířený konečný automat M_R na úplný deterministický konečný automat $M_D = (Q, \{a, b, c\}, \delta, A, F)$.
- Počáteční stav M_D = ϵ -uzávěr $(s) = \{s, 1, 2, 6, 7, 8, 9, 10, 12\} = A$.
- $\delta(A, a) = \epsilon$ -uzávěr $(\{3, 11\}) = \{3, 10, 11, 12\} = B$.
- $\delta(A, b) = \epsilon$ -uzávěr $(\{f\}) = \{f\} = C$.
- $\delta(A, c) = \epsilon$ -uzávěr $(\emptyset) = \emptyset = D$.
- $\delta(B, a) = \epsilon$ -uzávěr $(\{11\}) = \{10, 11, 12\} = E$.
- $\delta(B, b) = \epsilon$ -uzávěr $(\{4, f\}) = \{4, f\} = G$.
- $\delta(B, c) = \epsilon$ -uzávěr $(\emptyset) = \emptyset = D$.
- $\delta(C, a) = \epsilon$ -uzávěr $(\emptyset) = \emptyset = D$.
- $\delta(C, b) = \epsilon$ -uzávěr $(\emptyset) = \emptyset = D$.
- $\delta(C,c) = \epsilon$ -uzávěr $(\emptyset) = \emptyset = D$.
- $\delta(D, a) = \epsilon$ -uzávěr $(\emptyset) = \emptyset = D$.
- $\delta(D, b) = \epsilon$ -uzávěr $(\emptyset) = \emptyset = D$.
- $\delta(D, c) = \epsilon$ -uzávěr $(\emptyset) = \emptyset = D$.
- $\delta(E, a) = \epsilon$ -uzávěr $(\{11\}) = \{10, 11, 12\} = E$.
- $\delta(E, b) = \epsilon$ -uzávěr $(\{f\}) = \{f\} = C$.
- $\delta(E,c) = \epsilon$ -uzávěr $(\emptyset) = \emptyset = D$.
- $\delta(G, a) = \epsilon$ -uzávěr $(\emptyset) = \emptyset = D$.
- $\delta(G, b) = \epsilon$ -uzávěr $(\emptyset) = \emptyset = D$.
- $\delta(G,c) = \epsilon$ -uzávěr $(\{5\}) = \{1, 2, 5, 6, 7, 8, 9, 10, 12\} = H$.
- $\delta(H, a) = \epsilon$ -uzávěr $(\{3, 11\}) = \{3, 10, 11, 12\} = B$.
- $\delta(H, b) = \epsilon$ -uzávěr $(\{f\}) = \{f\} = C$.
- $\delta(H,c) = \epsilon$ -uzávěr $(\emptyset) = \emptyset = D$.
- Výsledná množina stavů $Q = \{A, B, C, D, E, G, H\}$
- Množina koncových stavů $F = \{C, G\}$
- Výsledný úplný deterministický konečný automat M_D :

- $\bullet\,$ Převod úplného deterministického konečného automatu M_D na výsledný redukovaný deterministický konečný automat M.

$\stackrel{0}{\equiv}$	δ	a	b	c	$\stackrel{1}{\equiv}$	δ	a	b	c
\overline{I} :	C	D_{II}	D_{II}	$\overline{D_{II}}$	\overline{I} :	C	D_{III}	D_{III}	$\overline{D_{III}}$
	G	D_{II}	D_{II}	H_{II}		G	D_{III}	D_{III}	H_{II}
\overline{II} :	\overline{A}	B_{II}	C_I	D_{II}	\overline{II} :	A	B_{II}	C_I	$\overline{D_{III}}$
	B	E_{II}	G_I	D_{II}		B	E_{II}	G_I	D_{III}
	D	D_{II}	D_{II}	D_{II}		E	E_{II}	C_I	D_{III}
	E	E_{II}	C_I	D_{II}		H	B_{II}	C_I	D_{III}
	H	B_{II}	C_I	D_{II}	\overline{III} :	D	D_{III}	D_{III}	$\overline{D_{III}}$

$\stackrel{2}{\equiv}$	δ	a	b	c	$\stackrel{3}{\equiv}$	δ	a	b	c
\overline{I} :	C	D_{IV}	D_{IV}	D_{IV}	I:	C	D_V	D_V	$\overline{D_V}$
\overline{II} :	G	D_{IV}	D_{IV}	H_{III}	II:	G	D_V	D_V	H_{III}
\overline{III} :	\overline{A}	B_{III}	C_I	D_{IV}	III:	A	B_{IV}	C_I	D_V
	B	E_{III}	G_{II}	D_{IV}		E	E_{III}	C_I	D_V
	E	E_{III}	C_I	D_{IV}		H	B_{IV}	C_I	D_V
	H	B_{III}	C_I	D_{IV}	IV:	B	E_{III}	G_{II}	D_V
\overline{IV} :	D	D_{IV}	D_{IV}	D_{IV}	\overline{V} :	\overline{D}	D_V	D_V	$\overline{D_V}$

$\stackrel{3}{\equiv}$	δ	a	b	c
\overline{I} :	C	D_{VI}	D_{VI}	D_{VI}
II:	G	D_{VI}	D_{VI}	H_{III}
III:	A	B_V	C_I	D_{VI}
	H	B_V	C_I	D_{VI}
\overline{IV} :	E	E_{IV}	C_I	D_{VI}
V:	B	E_{IV}	G_{II}	D_{VI}
VI:	D	D_{VI}	D_{VI}	D_{VI}

ullet Výsledný redukovaný deterministický konečný automat M:

(b) Pro jazyk L(M) určete počet tříd ekvivalence relace \sim_L (viz. Myhill-Nerodova věta) a vypište tyto třídy. Jednotlivé třídy můžete popsat například konečným automatem, který akceptuje všechna slova patřící do dané třídy.

Celkem 6 tříd:

Obrázek 1: $L^{-1}(I)$

Obrázek 2: $L^{-1}(II)$

Obrázek 3: $L^{-1}(III)$

Obrázek 4: $L^{-1}(IV)$

Obrázek 5: $L^{-1}(V)$

Obrázek 6: $L^{-1}(VI)$

3. Uvažte NKA M_3 nad abecedou $\Sigma = \{a, b, c\}$ z obrázku:

Obrázek 7: NKA M_3

Řešením rovnic nad regulárními výrazy sestavte k tomuto automatu ekvivalentní regulární výraz.

Sestavíme soustavu rovnic nad regulárními výrazy pro M_3 :

$$X_1 = aX_2$$

$$X_2 = bX_3 + cX_1$$

$$X_3 = \epsilon + aX_2 + bX_1$$

Regulárnímu výrazu ekvivalentnímu automatu M_3 odpovídá řešení této soustavy pro X_1 .

Dosadíme do třetí rovnice za aX_2 podle první rovnice:

$$X_3 = \epsilon + X_1 + bX_1$$

Dosadíme výsledek do druhé rovnice za X_3 :

$$X_2 = b(\epsilon + X_1 + bX_1) + cX_1 = b + bX_1 + bbX_1 + cX_1$$

Dosadíme výsledek do první rovnice za X_2 :

$$X_1 = a(b + bX_1 + bbX_1 + cX_1) = ab + abX_1 + abX_1 + acX_1 = (ab + abb + ac)X_1 + ab$$

Nejmenším pevným bodem rovnice nad regulárními výrazy ve tvaru X = pX + q je $X = p^*q$, řešení pro X_1 a hledaný regulární výraz tedy je:

$$X_1 = (ab + abb + ac)^*ab$$

- 4. Mějme funkci $\Phi: \Sigma^* \to (\Sigma \cup \{\bullet\})^*$, kde $\bullet \notin \Sigma$, která každý třetí symbol ve slově nahradí symbolem \bullet . Formálně je Φ definována následujícím předpisem:
 - $\Phi(\epsilon) = \epsilon$
 - $\Phi(a_1) = a_1$, kde $a_1 \in \Sigma$
 - $\Phi(a_1a_2) = a_1a_2$, kde $a_1, a_2 \in \Sigma$
 - $\Phi(a_1 a_2 a_3 u) = a_1 a_2 \bullet \Phi(u)$, kde $a_1, a_2, a_3 \in \Sigma, u \in \Sigma^*$

Například: $\Phi(aaa) = aa \bullet, \Phi(abcde) = ab \bullet de, \Phi(abcdef) = ab \bullet de \bullet$

Navrhněte a formálně popište algoritmus, který má na vstupu konečný automat $M_1 = (Q, \Sigma, \delta, q_0, F)$ (může být nedeterministický), a jehož výstupem bude konečný automat M_2 takový, že $L(M_2) = \{\Phi(w) \mid w \in L(M_1)\}$.

Algoritmus:

Vstup: Konečný automat $M_1 = (Q_1, \Sigma_1, \delta_1, q_{01}, F_1)$ (může být i nedeterministický)

Výstup: Konečný automat $M_2=(Q_2,\Sigma_2,\delta_2,q_{02},F_2)$ takový, že $L(M_2)=\{\Phi(w)\mid w\in L(M_1)\}$

Metoda:

- Polož $Q = \{0, 1, 2\}$
- Polož $Q_2 = Q_1 \times Q$
- Polož $\Sigma_2 = \Sigma_1 \cup \{ ullet \}$
- Polož $q_{02} = (q_{01}, 0)$
- Polož $F_2 = F_1 \times Q$

5. Mějme jazyk $L = \{w \mid w \in \{a, b, c, d\}^* \land \#_a(w) = \#_b(w) \land \#_c(w) = \#_d(w)\}$, kde $\#_x(w)$ je počet symbolů x ve slově w. Je jazyk L regulární? Dokažte nebo vyvraťte.

Jazyk L je nekonečný. Předpokládejme, že jazyk L je regulární. Pak podle Pumping lemma pro regulární jazyky platí:

$$\exists k>0: \forall w\in L: |w|\geq k \Rightarrow \exists x,y,z\in \Sigma^*: w=xyz\wedge |y|>0 \wedge |xy|\leq k \wedge \forall i\geq 0: xy^iz\in L$$

Uvažme libovolné k > 0 takové, že:

$$\forall w \in L: |w| \geq k \Rightarrow \exists x, y, z \in \Sigma^*: w = xyz \land |y| > 0 \land |xy| \leq k \land \forall i \geq 0: xy^iz \in L$$

Zvolme
$$w=a^kb^k\in L,$$
 $|w|=2k>k$ a tedy z výše uvedeného: $\exists x,y,z\in \Sigma^*: w=a^kb^k=xyz \wedge |y|>0 \wedge |xy|\leq k \wedge \forall i\geq 0: xy^iz\in L$

Uvažme libovolné
$$x,y,z\in \Sigma^*$$
 takové, že:
$$w=a^kb^k=xyz\wedge |y|>0 \wedge |xy|\leq k \wedge \forall i\geq 0: xy^iz\in L$$

Zvolme
$$i=2k>0$$
, tedy: $w=a^kb^k=xyz\wedge |y|>0 \wedge |xy|\leq k \wedge v=xy^{2k}z\in L$

Z toho je zřejmé, že řetězec xy může obsahovat pouze symboly a, proto pro řetězec v musí platit, že: $\#_a(v) \ge 2k \wedge \#_b(v) = k$,

tudíž

$$\#_a(v) > \#_b(v),$$

takže

$$v = xy^{2k}z \notin L$$
,

což je SPOR. Jazyk L tudíž není regulární.

6. Dokažte, že pro každý regulární jazyk existuje jednoznačná gramatika (definice jednoznačné gramatiky - viz. slidy 4, strana 11).

Podle definice **4.5** ze slidů 4 je jednoznačná gramatika taková gramatika, ve které existuje pro každou větu, kterou v ní lze vygenerovat, jen jeden derivační strom s koncovými uzly tvořícími tuto větu.

Dále podle studijní opory platí:

- Každý regulární jazyk lze vyjádřit ekvivalentním regulárním výrazem.
- Každý regulární výraz lze převést na ekvivalentní deterministický konečný automat (např. algoritmy **3.7** a **3.6** ve studijní opoře).
- Podle důkazu věty 3.7 ve studijní opoře lze každý deterministický konečný automat $M=(Q,\Sigma,\delta,q_0,F)$ vyjádřit ekvivalentní gramatikou $G=(Q,\Sigma,P,q_0)$ typu 3 s pravidly definovanými takto:
 - (a) Je-li $\delta(q, a) = r$, pak P obsahuje pravidlo $q \to ar$
 - (b) Je-li $p \in F$, pak P obsahuje pravidlo $p \to \epsilon$

kde
$$q, r, p \in Q, a \in \Sigma$$

• Z bodu (a) plyne, že G nemůže obsahovat žádná dvě pravidla tvaru:

$$q \rightarrow ar_1 \\
q \rightarrow ar_2$$

kde
$$q, r_1, r_2, p \in Q, a \in \Sigma$$
, taková, že $r_1 \neq r_2$

- Z toho je zřejmé, že v gramatice G nemůžou existovat dvě různé posloupnosti přímých derivací začínajících počátečním neterminálem, na jejichž konci by byla tatáž věta. Tím pádem v gramatice G musí pro každou větu, kterou v ní lze vygenerovat, existovat pouze jeden derivační strom s koncovými uzly tvořícími tuto větu. Takto sestavená gramatika G musí tudíž vždy být jednoznačná.
- Z předchozích bodů plyne, že každý regulární jazyk lze převést na ekvivalentní jednoznačnou gramatiku, a tudíž je dokázáno, že pro každý regulární jazyk existuje jednoznačná gramatika.