Day 2

Data Engineering Pipelines

Data Volume

Data Velocity

Data Variety

Data Value

Identifying Big Data Sources

Probability and Statistics

Fundamental Concepts of Probability

Probability and Inferential Statistics

Random Variables

Probability Distributions

Expectations

NumPy

Understanding Data Types in Python

Fixed-Type Arrays

Arrays from Lists

Arrays from Scratch

Data Engineering Pipelines:

Data Engineer => Data Science + Data Engineering
Skills => Prgmg skills, data storage (DB),System
Implementation, Database Management
Data Scientist => AI, ML, DL, Math, statistics,
programing language, domain knowledge

Data Engineering => It will help to create a dataset for Data Modelling and data production and send this data to Data Science dept (**Data Scientist**)

Data Engineering Pipelines

Big Data: It is a combination of Structured (Relational DB -> SQL , Oracle) , unstructured (Non Relational , No SQL DB → Cassandra , Reddis) and semi structured data (Unstructured DB)collected by a company

Eg: FB

Eg: Pig, Hive, Hbase etc...

5V's:

- Velocity How quick data generates & moves
- Volume Refers to the size of data
- Value Check whether the data is valuable or not

- Variety It will analyse the data types and storage db like relational or non relational db
- Veracity This defines the quality of data

Probability and Statistics:

Fundamental Concepts of Probability

- For solving the prediction problem -> Probability is used
- In DS:
 - a. Data preprocessing
 - b. model evaluation
 - c. Visualisation of features (numpy, pandas)
 - d. Dimensionality reduction
 - e. Feature engineering
 - f. Mean or Expectation value
 - Possible outcome of a random experiment repeated again and again for n times is called Expectation value

Eg: Six face dice

Possible outcome: {1,2,3,4,5,6} = \%

EV =
$$1(1/6)+2(1/6)+3(1/6)+4(1/6)+5(1/6)+6(1/6)$$

6)
= $(1+2+3+4+5+6)/6 = 21/6 = 3.5$
EV of 2 dice = $3.5+3.5 = 7$
EV of n => $3.5 *n$
Assignment -> Find the EV of 1 dice of 4 faced =? $(1+2+3+4)/4 = 10/4 = 2.5$

EV of 3 dice of 4 faced = 7.5

Variance

- a. Find the mean of the given data set.
 Calculate the average of a given set of values
- b. Now subtract the mean from each value and square them
- c. Find the average of these squared values, that will result in variance Eg: 610,

a.Mean =
$$1950 / 5 = 390$$

b. $(610-390)^2+(450-390)^2+(160-390)^2$
2+ $(420-390)^2+(310-390)^3$

- = 112200/5
- = 224400

Standard deviation

- 1.Mean
- 2. Diff of value with mean, square and sum
- 3. Square root of o/p of step 2 / (sum-1)

$$1.25/5 = 5$$

$$2.(4-5)^2+(2-5)^2+(5-5)^2+(8-5)^2+(6-5)^2$$

= $(-1)^2+(-3)^2+(0)^2+(3)^2+(1)^2$

3. Square root of (20) / (5-1=4) = 20/4=5Square root of 5 = 2.23

Bayes Theorem

Find 1 person in Image 1 -> Girl?

Image 1 =>
$$\frac{1}{2}$$

Image 2=> $\frac{1}{2}$
Prob of finding a girl in image 1 => $\frac{6}{10}$
Prob of finding a girl in image 2 => $\frac{3}{7}$

BT =
$$\frac{1}{2}$$
 * 6/10

$$\frac{}{(\frac{1}{2}$$
 * 6/10) + $(\frac{1}{2}$ * 3/7) = 7/12

Probability and Inferential Statistics:

DS -> AI, ML , DL , Math , stat, Domain Knowledge, Prgmg kn

Eg: Gender Classification

Data(I/ p Images) -> Apply Algo(DL, ML, Math algo)

-> Creating model(Brain) -> Test image (1 f, 3 m)

1 f ⇒ Accuracy ->80%

3 m=> Accuracy ->75%

Random Variables

- 1.It is a numerical data of random phenomenon
- 2.It is function of real num

Real Numbers:

- 1.Whole Num:(starts from 0...n)
- 2.Natural Num:(starts from 1...n)
- 3.Rational Num:(a/b)->3/6
- 4.Irrational number:square root of 3
- 5.Intergers:(-infinity+infinity)

Eg:

22/7 -> Rational number

3.14 -> Irrational number

Eg: Cricket :(1 over => 6 balls)

Prob of entire over => Range $X = \{0,1,2,3,4,5,6\}$

Prob of Each delivery=> ½ (Caught, Not caught)

Total number of outcomes =>2⁶ =64

No of outcome with no catch in a over=> 1/64

Random variable=> {0,1,2,3,4,5,6}

a.Discrete Random variable

Countable value / Finite value of random variables

b.Continuous Random Variable

It is a random variable of infinite number of possible values

Eg: T20 Match

Person => 4 over

Find the bowling speed of a bowler in 4 overs?

4 overs = 24 balls

Bowling speed of 1st ball = 136.7km/h

Bowling speed of 2nd ball = 110.5km/h

Bowling speed of 3rd ball = 140.3km/h

{136.7, 110.5, 140.3,}

Distribution:

It is a visual representation of data to understand the o/p clearly

a.Discrete distribution

Numpy, matplotlib, plotly, scipy, Seaborn 4 types:

1.Uniform distribution ->flower shop (min

, max)

2.Binomial distribution -> 2 possibility

Eg: Coin tossing

3.Poisson distribution(Time interval) ->

Call center: how many calls a person can get?

Eg: 10.17,10.18,10.19, 10.20

C1 = > (10.17 - 10.18)

4. Geometric distribution-> points, lines,

shapes, angles

b.Continuous distribution

Infinite num to be visualised in mat, plotly

Probability Distributions

Eg: Local election:

Parties-> P1, P2, P3, P4
Find the prob of winning team by non voters
100 people in district -> P1
10 -> Opposing P1
100 - 10 = 90 -> winning score of P1

Expectations Value

NumPy

Understanding Data Types in Python Fixed-Type Arrays Arrays from Lists Arrays from Scratch