CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 4 OTTOBRE 2023

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: nome, cognome, matricola, gruppo di appartenenza.

Non è necessario consegnare la traccia. Dopo aver letto queste righe di istruzione intonare l'inno nazionale australiano.

Esercizio 1. Sia $\varphi(y)$ la formula $\forall x \in \mathbb{N} \ (x < y \to y^2 < 0)$.

- (i) Scrivere una negazione di $\varphi(y)$ in cui non appaiano né il quantificatore \forall né il connettivo di implicazione;
- (ii) assumendo il consueto significato per i simboli che appaiono in $\varphi(y)$, stabilire i valori di verità di $\varphi(0)$ e $\varphi(1)$.

Esercizio 2.

- (i) Trovare tutti i numeri interi primi divisori di 33³³³³.
- (ii) Indicare (non calcolare) il numero delle applicazioni iniettive e quello delle applicazioni suriettive da $A := \{n \in \mathbb{N} \mid n < 8\}$ a $B := \{n \in \mathbb{N} \mid n < 14\}$.
- (iii) Un grafo G ha (esattamente) 148 vertici e 99 lati. È possibile stabilire se G è o non è connesso?
- (iv) Per definizione, quando è che un elemento a di un anello R è un divisore dello zero in R?

Esercizio 3. Per ogni $n \in \mathbb{N}$, sia $\pi(n)$ l'insieme dei numeri primi positivi divisori di n. Definiamo in \mathbb{N} la relazione d'ordine σ ponendo, per ogni $a, b \in \mathbb{N}$,

$$a \sigma b \iff (a = b \lor (\pi(a) \neq \varnothing \land \forall p \in \pi(a) (\exists q \in \pi(b)(p < q))).$$

- (i) Determinare gli eventuali elementi minimali, massimali, minimo, massimo in (\mathbb{N}, σ) . Posto $L = \{1, 6, 10, 11, 21, 24, 32, 81\}$,
 - (ii) disegnare il diagramma di Hasse di (L, σ) ;
 - (iii) (L, σ) è un reticolo? Se lo è, stabilire se è distributivo, se è complementato, se è booleano. Se non lo è, stabilire se esiste $x \in \mathbb{N}$ tale che uno tra $(L \cup \{x\}, \sigma)$ e $(L \setminus \{x\}, \sigma)$ sia un reticolo.
 - (iv) Determinare una catena (parte totalmente ordinata) massimale (rispetto all'inclusione) in (L, σ) .
 - (v) Determinare, se possibile, un sottoinsieme M di L tale che (M, σ) sia booleano.

Esercizio 4. Sia f l'applicazione $\mathbb{N}^* \to \mathbb{N}$ che ad ogni numero intero positivo a associa il prodotto $c_k c_0$, dove c_0 e c_k sono la prima e l'ultima cifra nella rappresentazione decimale di a (vale a dire: $a = \sum_{i=0}^k c_i 10^i$, dove $k \in \mathbb{N}$, per ogni $i \in \{0, 1, ..., k\}$, $10 > c_i \in \mathbb{N}$ e $c_k \neq 0$). Sia poi \Re il nucleo di equivalenza di f.

- (i) Determinare $\overleftarrow{f}(\{1\})$ e $\overleftarrow{f}(\{100\})$.
- (ii)Stabilire se fè o non è iniettiva, suriettiva, biettiva.
- (iii) Determinare $|\mathbb{N}^*/\Re|$.
- (iv) Descrivere $[5]_{\Re}$.

Esercizio 5. Si consideri in \mathbb{Q} l'operazione binaria $*: (a,b) \in \mathbb{Q} \times \mathbb{Q} \mapsto \frac{a}{|b|+1} \in \mathbb{Q}$.

- (i) *è commutativa? È associativa?
- (ii) Determinare in $(\mathbb{Q}, *)$ gli elementi neutri a destra o a sinistra e, nel caso la domanda abbia senso, gli elementi simmetrizzabili.
- (iii) Determinare in $(\mathbb{Q}, *)$ gli elementi cancellabili a destra o a sinistra.

Esercizio 6. Per ogni $a \in \mathbb{Z}_{11}$, sia f_a il polinomio $(x-\bar{5})(x^2-\bar{4})g_a \in \mathbb{Z}_{11}[x]$, dove $g_a = x^4 + ax^3 + \bar{3}x^2 + \bar{6}$.

- (i) Determinare un $a \in \mathbb{Z}_{11}$ tale che $x \bar{3}$ divida g_a .
- (ii) Per questo valore di a, dando per noto che f_a ha un divisore irriducibile di grado tre, scrivere f_a come prodotto di polinomi irriducibili e non tutti monici in $\mathbb{Z}_{11}[x]$.