# Smart Parking Enforcement System Using License Plate Recognition

A next-generation approach to campus parking management using computer vision technology to create a more efficient, fair, and user-friendly parking experience.

Team 212



## The Problem & Research

### **Current Challenges**

Parking violations often go unnoticed in real-time. Manual enforcement is error-prone and costly.

ASU's current system relies on manual patrols and basic scanning devices.

## Research Findings

Computer Vision offers automation for vehicle tracking and payment validation.

Manual systems struggle during peak hours. Real-time data remains largely underutilized.

## **Proposed Solution**

Smart Parking Enforcement using
License Plate Recognition to automate
the enforcement process.

This system will improve efficiency and user satisfaction across campus.

# Why This Matters

**/** 

#### **Reduces Errors**

Prevents unfair ticketing through accurate license plate identification.

(O)

### **Optimizes Resources**

Enforcement staff can focus on genuine violations and customer service.

000

### **Supports Planning**

Provides valuable data for infrastructure development and lot utilization.

9

## Key Stakeholders

Benefits Parking Services, students, faculty, staff, visitors, and campus security.



## **End-to-End Solution Overview**

**Image Capture** High-definition cameras installed throughout parking areas capture vehicle plates. Plate Detection Computer vision model identifies and isolates license plates in captured images. Database Cross-Check System verifies plate against parking payment database instantly. **Dashboard Updates** 4 Operations center receives real-time violation and occupancy data. **Digital Ticketing** 5 System issues electronic citations for confirmed violations.



## Scope & Success Metrics

## Pilot Scope

- ASU Tempe Campus initial deployment
- Focus on high-traffic parking structures
- 3-month evaluation period

#### **Success Metrics**

- 90%+ plate detection accuracy
- 20% reduction in ticket complaints
- 25% reduction in enforcement costs

### Resources Required

- HD cameras at entry/exit points
- GPU-enabled environment (for model training and fine-tuning)
- Cloud-based monitoring dashboard

# Risk Mitigation

## **Recognition Challenges**

Poor lighting and damaged plates may reduce accuracy.



#### **Technical Solutions**

Model tuning and synthetic data augmentation improve performance.

## Privacy Concerns

License plate data requires proper security protocols.



#### **Data Protection**

Encryption and limited retention periods safeguard personal information.

## CV Model Workflow



#### **Image Capture**

HD webcams strategically positioned capture vehicle images.



#### Plate Detection

YOLOv8 algorithm identifies license plate location within the image.



## OCR Recognition

TrOCR extracts the alphanumeric plate number from the detected region.



#### Fee Calculation

System checks payment status and applies appropriate fee structure.



#### Model Details

#### **Training Configuration**

- **Base Model**: YOLOv8s (pretrained on COCO dataset)
- Fine-tuning Approach:
  - Transfer learning on custom car plate dataset
  - Updated weights to specialize in plate detection
- Dataset:
  - Custom annotated images (specified in car\_plate.yaml)
  - Train-validation split handled by YOLO automatically
- **Epochs**: 50
- Image Size: 640x640 pixels
- Batch Size: 16
- Optimizer: AdamW
- Loss Functions:
  - Distribution focal loss
  - Objectness loss
  - Classification loss

#### **Environment Setup for text detection**

- Trock: OCR model for text extraction from plates
- Config:
  - YOLO Weights: Path to trained model
  - Video Source: Webcam or video file
  - Confidence Threshold: 0.2
  - Padding for OCR: 20px
  - Beam Size (TrOCR): 5
- Optimization:
  - TrOCR: FP16 on GPU for speed

Solution Notebook: <a href="https://colab.research.google.com/drive/17ddclCH5\_ZFycnwfvKGrql\_XE8kKLufh?usp=sharing">https://colab.research.google.com/drive/17ddclCH5\_ZFycnwfvKGrql\_XE8kKLufh?usp=sharing</a>

## Technical Implementation Details



Validation Results

mAP50: 0.98, mAP50-95: 0.74



**Performance Metrics** 

Precision: 0.96, Recall: 0.98



Training Data

Kaggle dataset

## .00

#### Training metrics over epochs



## Demonstration



| 5A22845 processed → Outsider → Pay \$10 |          |        |            |               |                     |  |
|-----------------------------------------|----------|--------|------------|---------------|---------------------|--|
|                                         | Name     | ASU ID | Car Number | Amount to Pay | Timestamp           |  |
| 0                                       | Outsider | -      | 5A22845    | \$10          | 2025-04-27 18:34:02 |  |

## Conclusion

1

#### **High Detection Accuracy**

The fine-tuned YOLOv8 model achieves high precision in detecting license plates from video feeds in real-time.

# 2

#### **Effective OCR**

The TrOCR text recognition model accurately extracts alphanumeric text from detected plates.

### **Seamless Integration**

3

The end-to-end pipeline combines YOLO for detection and TrOCR for OCR, providing a robust license plate recognition system.



#### Findings

- High detection accuracy with adjustable confidence threshold
- TrOCR effective for plate text extraction, but struggles with low contrast or blurry images
- Real-time integration with webcam enables practical use for security and vehicle tracking



#### Limitations

- Accuracy drops in low-light or low-resolution conditions
- Difficulty detecting multiple plates in a single frame
- Requires GPU for optimal real-time performance



## **Future Enhancements**

- 1 Improve Detection Accuracy
  Fine-tune YOLO and OCR models for higher precision
- 2 Multi-Plate Handling
  Detect and process multiple license plates per image
- Payment Integration
  Integrate with PayPal or Stripe for seamless payments
- Low-Light Performance

  Enhance model accuracy for night-time or poor lighting conditions

## Task ownership

| Problem and Dataset Selection | Kartik, Kriti, Minsoo, Ravi, Vindhya |
|-------------------------------|--------------------------------------|
| Solution Ideation             | Kartik, Kriti, Minsoo, Ravi, Vindhya |
| Model Training and Testing    | Minsoo, Ravi                         |
| Presentation Preparation      | Kartik, Kriti, Minsoo, Ravi, Vindhya |

#### References

- Kaggle License Plate Data. (n.d.). Car Plate Detection Dataset. Retrieved from <a href="https://www.kaggle.com/datasets/andrewmvd/car-plate-detection/data">https://www.kaggle.com/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-detection/datasets/andrewmvd/car-plate-det
- Ultralytics. (2024). YOLOv8 Object Detection. Retrieved from https://docs.ultralytics.com/
- Microsoft Research. (n.d.). *TrOCR OCR Model*. <a href="https://github.com/huggingface/huggingface\_hub">https://github.com/huggingface/huggingface\_hub</a>
- OpenCV. (n.d.). OpenCV Image Processing. Retrieved from <a href="https://opencv.org/">https://opencv.org/</a>
- **PyTorch**. (n.d.). *PyTorch Deep Learning Framework*. Retrieved from <a href="https://pytorch.org/">https://pytorch.org/</a>

# Thank You!