1 Section 1

(Theorem 2.5.4.)

Theorem 2.5.4. Hewitt-Savage 0-1 law. If X_1, X_2, \ldots are i.i.d. and $A \in \mathcal{E}$ then $P(A) \in \{0, 1\}$.

Proof Let $A \in \mathcal{E}$. As in the proof of Kolmogorov's 0-1 law, we will show A is independent of itself, i.e., $P(A) = P(A \cap A) = P(A)P(A)$ so $P(A) \in \{0, 1\}$. Let $A_n \in \sigma(X_1, \dots, X_n)$ so that

(a)
$$P(A_n \Delta A) \to 0$$

Here $A\Delta B=(A-B)\cup(B-A)$ is the symmetric difference. The existence of the A_n 's is proved in part ii of Lemma A.2.1. A_n can be written as $\{\omega:(\omega_1,\ldots,\omega_n)\in B_n\}$ with $B_n\in\mathcal{S}^n$. Let

$$\pi(j) = \begin{cases} j+n & \text{if } 1 \le j \le n \\ j-n & \text{if } n+1 \le j \le 2n \\ j & \text{if } j \ge 2n+1 \end{cases}$$

Observing that π^2 is the identity (so we don't have to worry about whether to write π or π^{-1}) and the coordinates are i.i.d. (so the permuted coordinates are) gives

(b)
$$P(\omega : \omega \in A_n \Delta A) = P(\omega : \pi \omega \in A_n \Delta A)$$

Now $\{\omega : \pi\omega \in A\} = \{\omega : \omega \in A\}$, since A is permutable, and

$$\{\omega : \pi\omega \in A_n\} = \{\omega : (\omega_{n+1}, \dots, \omega_{2n}) \in B_n\}$$

If we use A'_n to denote the last event then we have

- (c) $\{\omega : \pi\omega \in A_n\Delta A\} = \{\omega : \omega \in A'_n\Delta A\}$ Combining (b) and (c) gives
- (d) $P(A_n \Delta A) = P(A'_n \Delta A)$ It is easy to see that

$$|P(B) - P(C)| \le |P(B\Delta C)|$$

so (d) implies $P(A_n)$, $P(A'_n) \to P(A)$. Now $A - C \subset (A - B) \cup (B - C)$ and with a similar inequality for C - A implies $A\Delta C \subset (A\Delta B) \cup (B\Delta C)$. The last inequality, (d), and (a) imply

$$P(A_n \Delta A'_n) \le P(A_n \Delta A) + P(A \Delta A'_n) \to 0$$

The last result implies

$$0 \le P(A_n) - P(A_n \cap A'_n)$$

$$\le P(A_n \cup A'_n) - P(A_n \cap A'_n) = P(A_n \Delta A'_n) \to 0$$

so $P(A_n \cap A'_n) \to P(A)$. But A_n and A'_n are independent, so

$$P(A_n \cap A'_n) = P(A_n) P(A'_n) \to P(A)^2$$

This shows $P(A) = P(A)^2$, and proves Theorem 2.5.4.