Problem set 1 Esercizio 1

Alessandro Straziota

Algorithm 1 GreedyHorn

Return σ

INPUT: Una formula di Horn \mathcal{F} su un insieme di variabili X OUTPUT: Un'assegnazione di verità σ oppure None

Imposta $\sigma(x)=$ False per ogni variabile $x\in X$ while esiste una clausola $C\in$ IMP non soddisfatta da σ do Sia $C\in$ IMP una clausola non soddisfatta e sia x la variabile corrispondente all'unico letterale positivo di C Imposta $\sigma(x)=$ True if Esiste una clausola $C\in$ NEG che non è soddisfatta da σ then Return None else

Proof. Certamente se GreedyHorn restituisce un'assegnazione σ allora la formula \mathcal{F} è soddisfacibile. Infatti per ritornare σ vuol dire che durante l'esecuzione dell'algoritmo si è prima usciti dal ciclo WHILE (quindi tutte le clausole $C \in IMP$ sono soddisfatte) e poi si è entrati nello statement ELSE (quindi anche tutte le clausole $C \in NEG$ sono soddisfatte) e dato che IMP e NEG bipartiscono le clausole di \mathcal{F} vuol dire che σ soddisfa \mathcal{F} .

Quello che manca è invece mostrare che

se GreedyHorn ritorna None allora certamente \mathcal{F} non è soddisfacibile.

Il dubbio che l'affermazione non sia vera sorge dal pensiero che nel ciclo WHILE potrebbe accadere di porre a TRUE delle variabili di troppo, che in realtà non lo sarebbero dovute essere.

Supponiamo che \mathcal{F} sia soddisfacibile e sia τ una qualunque assegnazione di verità che la soddisfa. Dato che durante tutto il corso dell'algoritmo non può che aumentare il numero di variabili per le quali $\sigma(x) = \text{TRUE}$, si vuole dimostrare che non verranno assegnati più valori TRUE del dovuto. Più in generale si vuole

mostrare che il numero di variabili $x \in X$ tali che $\sigma(x) = \texttt{TRUE}$ non è maggiore del numero di variabili tali che $\tau(x) = \texttt{TRUE}$.

$$\sigma$$
 stays ahead of τ .

Quindi per ogni i=1,2,... sia $y_i \in X$ la variabile posta a TRUE durante l'i-esima iterazione del ciclo WHILE: verrà mostrato per induzione su i che $\forall i, \tau(y_i) = \text{TRUE}$.

Base: Sicuramente alla prima iterazione le uniche clausole $C \in IMP$ che non sono soddisfatte da σ saranno della forma

(x)

Perciò per i=1 avremo che $\tau(y_1)=\sigma(y_1)=\text{TRUE}.$

Ipotesi: Supponiamo che per i > 1 sia vero che $\tau(y_i) = \sigma(y_i)$.

Induzione: Supponendo che per i > 1 sia vero che $\tau(y_i) = \sigma(y_i) = \text{TRUE}$ si vuole dimostrare che l'ipotesi sia vera anche per i + 1. Perciò consideriamo una clausola $C \in IMP$ che durante l'iterazione (i + 1)-esima del ciclo WHILE non è soddisfatta da σ . Questa clausola potrà essere di due forme:

(x)

oppure

$$(x_1 \vee \overline{x_2} \vee ... \vee \overline{x_k})$$

Nel primo caso è banale osservare che se \mathcal{F} è soddisfacibile allora necessariamente $\tau(y_{i+1}) = \text{TRUE}$, confermando quindi che $\tau(y_{i+1}) = \sigma(y_{i+1})$. Il secondo caso invece non è così banale. Innanzitutto ricordando l'equivalenza $\overline{a} \vee b \equiv a \Rightarrow b$ potremmo riscrivere la clausola in questione come segue

$$(x_2 \wedge x_3 \wedge ... \wedge x_k) \Rightarrow x_1$$

A questo punto è più semplice verificare che se la clausola non è soddisfatta allora siamo nella situazione in cui

$$\forall j = 2, 3, ..., k[\sigma(x_j) = TRUE] \land \sigma(x_1) = FALSE$$

Sicuramente se siamo in questa situazione è giusto che $\forall j=2,3,...,k[\sigma(x_j)=TRUE]$ dato che $\sigma(x_j)=\tau(x_j)$ (per ipotesi induttiva). Mentre partendo dall'ipotesi iniziale che $\mathcal F$ sia soddisfacibile e che τ sia una **qualunque** assegnazione di verità che la soddisfa, allora necessariamente sarà vero che $\tau(x_1)=\tau(y_{i+1})=TRUE$. Dato che a quella iterazione sappiano che l'algoritmo si comporterà ponendo $\sigma(x_1)=TRUE$ possiamo quindi affermare che

$$\tau(y_{i+1}) = \sigma(y_{i+1})$$

Quindi è stato dimostrato che non è possibile che σ assegni alle variabili dei valori TRUE di troppo, smentendo il dubbio precedentemente sorto, e che quindi è possibile che l'algoritmo <code>GreedyHorn</code> restituisca il valore <code>TRUE</code> solamente qualora non esista una assegnazione che soddisfi $\mathcal F$

3