CMSI 2130 - Classwork 5

Instructions:

This worksheet gives you some important practice with the fundamentals of Huffman Coding, Bloom Filters, and Edit Distance!

- Provide answers to each of the following questions and write your responses in the blanks. If you are expected to show your work in arriving at a particular solution, space will be provided for you.
- Place the names of your group members below:

Group	Mem	bers:
-------	-----	-------

1.	Mike Hennessy
2.	Cameron Scolari
3.	

Problem 1 – Huffman Coding

As practice making *unique* Huffman Tries, we'll incorporate a tiebreaking criteria in the case that multiple nodes share the same minimal frequency. In particular: For any ties in priority, use ascending alphabetic order <u>of earliest letter in a SUBTREE first</u> (e.g., if a leaf node representing letter C and a parent node with children D and B have the same frequencies, the parent node will be popped first because B is earlier than C alphabetically). <u>Nodes popped first are placed at the parent's 0-child reference and those popped second at the parent's 1-child reference.</u>

Here's an example trie that would have been created from the text "AACCBBBBEEDD" in accordance with our tiebreaking rules. <u>Carefully study how this trie was found before going on!</u>

Let's walk through the steps of Huffman Coding together so you can get a solid grasp on the complete process. Your task, compress the corpus consisting of the string:

AGREEABLE

1.1. Find the frequencies of each character to encode in the corpus "AGREEABLE".

Character	Frequency
А	2
G	1
R	1
E	3
В	1
L	1

1.2. Find the Huffman Trie associated with the characters and frequencies from 1.1 above, i.e., that encodes the corpus "AGREEABLE" <u>using the tiebreaking rules specified on the provious page.</u>

1.3. Using the Huffman Trie you found in Part 1.2., decode the following anagram (and therefore, equivalently proportioned character distribution) to determine Andrew's favorite animal* (*may not be a real animal). This relies on having done 1.2. correctly, and a hint that they have *not* been done correctly is if each space-separated bitcode below does *not* map to a single character (e.g., 11 should be a letter, then 00, then 011, ...).

1.4. Find the encoding map derived from the Huffman Trie in 1.2.

Character	New Bitcode
А	00
G	00
R	011
E	11
В	100
L	(0)

1.5. Provide the new bitcode associated with the compressed corpus using the encoding map from 1.4. (spacing added below for clarity and convenience).

1.6. Provide the <u>header bitstring</u> that would be used to store the Huffman Trie that you found in 1.2.; you may leave letters as placeholders for their actual ASCII encoding.

As you know, in digital character encoding schemas, each character is represented by its bitcode, which translates to a corresponding decimal representation quite simply:

$$0100\ 1101 = 2^7 * 0 + 2^6 * 1 + 2^5 * 0 + 2^4 * 0 + 2^3 * 1 + 2^2 * 1 + 2^1 * 0 + 2^0 * 1 = 77$$

While machines need only represent these characters using their bitcodes, it is handy for us humans to be able to check their decimal representation in an encoding map, like ASCII-extended. You can use an online decimal to binary converter for this if you so choose!

Let's get some practice with that:

1.7. For each of the following characters, fill in the table that encodes each using its binary and decimal representation.

Character	Decimal Representation	Bitcode Representation
!	33	00100001
0	79	0100 1111
W	87	01010111
Z	90	0101 1010

1.8. Using the table you completed in 1.7., decode the following Huffman Trie (as may be transmitted in a header) as expressed in bitstring format. The characters at the leaves will be given in their bitcode representation (spaces added for clarity, you're welcome).

1.9. Using the Huffman Trie produced above, decode the following message (if you did the previous parts correctly, it will spell an exclamation of joy):

Problem 2 - Bloom Filters

I know this is a little out of order compared to the compression lectures, but meh. Consider we have the following Bloom Filter with 16 buckets, and 3 hash functions, f_0 , f_1 , f_2 and are inserting the following items A, B, C, D.

Item i	$f_0(i)$	$f_1(i)$	$f_2(i)$
Α	1	4	9
В	10	2	4
С	6	11	13
D	2	6	10

2.1. In the filter buckets below, assume all bits start out as 0 and are flipped to 1 when an inserted item is hashed to it. Show the state of the filter below after inserting A, B, C, D.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
O)	1	0	1	Q	1	0	0	_			0		Q	0

2.2. We are now querying the Bloom Filter from 2.1. on the following items A, E, F; for each, determine if it is a true/false negative/positive and label it as such in the far right column:

				<u> </u>
Item i	$f_0(i)$	$f_1(i)$	$f_2(i)$	T/F Neg/Pos?
Α	1	4	9	T 165
Е	4	6	14	T Neg
F	2	10	9	ि १०५

2.3. Using the values of m, k, n for the filter completed in 2.1, determine the likelihood of a false positive *for an average* Bloom Filter with these values, showing work in the space below:

positive for an average Bloom Filter with these values, showing work in the space below:
$$P = (1 - C1 - \frac{1}{m})^{k-n})^k = (1 - C1 - \frac{1}{k})^{3/4} = .1566 = P$$

$$N = 4 \quad m = 6 \quad k = 3$$

$$P = (5.66 \%)$$

Let's label our filter from 2.1 as B_0 and another, equivalently sized, filter below as B_1 , which stores items of the same type as B_0 and uses the same 3 hash functions:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	0	0	1	1	0	1	0	0	1	1	1	0	0	0	1

2.4. Indicate the state of a third Bloom Filter $B_2 = B_0 \cup B_1$ (i.e., the set <u>union</u> of B_0, B_1).

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1			ſ	1	0	1	0	9	1		1	0		0	

Problem 3 – Edit Distance

Let's round things off with a thorough example just doing some good, old-fashioned edit-distance using dynamic programming.

3.1. Using bottom-up dynamic-programming, compute the edit distance between the following strings found from a snake learning to type:

Dist("parisss", "parsimony")

$R \downarrow C \rightarrow$	Ø	Р	Α	R	I	S	S	S
Ø	0 ,		2	3	4	5	6	7
P	<u> </u>		, (2	3	4	O	G
Α	2		0	1	2	3)	4	5
R	3	2	<u>_</u>	+QO	1	2	3	4
S	4	3	2	11 e	1	1	2	3
I	5	4	3	2			2	બ
M	6	5	4	3	123	K J	2	ىما
0	7	B	5	4	3	-3 ×	M M	3
N	8	7	B	5	4	4	-4 4	R 4
Υ	9	8	7	6	5	5	5	5

3.2. Using the table generated in 3.1., determine *a single* list of transformations consisting of "R" = replacement, "T" = transposition, "I" = insertion, and "D" = deletion, with any ties broken in that same priority order that turn the row string into the column string. For example, if a cell could've been decided by both Transposition and Deletion, we'd choose Transposition because it comes earlier in the list of priorities [R, T, I, D]. Provide this in top-down order, i.e., the first transformation listed should be the one nearest the bottom-right cell of the table.

RRRDD