

Semesterplan

	ID	Was?	Wann?
	01 ASSOZIATION	Assoziationsanalyse, per Hand, in Java, in KNIME	17.10.
1	02 STATISTIK	Statistik-Grundlagen, Lineare Regression	24.10.
6			
0	03 KLASSIFIKATION	Regression (Forts.), Klassifikationsalgorithmen	7.11.
	04 CLUSTERING	Klassifikation (Forts.), Cluster-Analyse	15.11.
灭			
	05 KI	Neuronale Netze, Deep Learning	28.11.
0	06 TEXT	Text- und Bild-Analyse, Themen für Fallstudie	5.12.
1			
7	07 WEB	Web-Analyse	9.1.
	08 UEBUNG	Machine Learning anwenden	10.1.
	09 BIG DATA	Big-Data-Architekturen: Datenhaltungskonzepte	16.1.
	10 BIG DATA 2	Big-Data-Architekturen: Fortsetzung	23.1.
	11 PUFFER	Puffer/Arbeit an Fallstudie	30.1.
	12 FALLSTUDIE	Präsentation der Fallstudie	6.2.

14.1**2**.2024

04 CLUSTERING

- Wiederholung/Aufgaben Lineare Regression
- Wiederholung/Aufgaben Logistische Regression
- 3. Klassifikation: KNN-Algorithmus
- 4. Klassifikation: Entscheidungsbäume
- 5. Clustering: k-means-Algorithmus

MACHINE LEARNING – "ARTEN" – STAND HEUTE

Oberbegriff		tes Lernen ed learning)		perwachtes Lernen upervised learning)		Reinforcement
Ziel:	✓ "Regression": Vorhersage eines metrischen Wertes	Klassifikation: Vorhersage eines kategorialen Wertes	Clustering: Bildung von Klassen gleicher Objekte	Assoziation: Suchen von wenn- dann-Beziehungen	Anomaly Detection	Learning
	Einfache Lineare Regression	Logistische Regression	K-means-Algorithmus	☑ Apriori Algorithmus		
E	Multilineare Regression	kNN-Algorithmus	Hierarchisches Clustering			
	Polynomiale Regression	Entscheidungsbaum (Decision Tree)	DBSCAN (Density-Based Spatial)			
Anwendbare Verfahren:	Logistische Regression	Support Vector Maschine				
Anwo		Random Forest				
•		Naive Bayes				
		Neural Networks			Legende:	
		•••				

GÜTEMAßE (ODER: FEHLERMAßE, LOSS FUNCTIONS))

Gütemaße	Erklärung
R-squared (R ²)	Auch bekannt als Bestimmtheitsmaß. Zwischen 0 und 1. Je näher an 1, um so besser. Vorsicht: kann bei mehreren Prädiktoren steigen, auch wenn das Modell nicht besser wird
Mean Absolute Error (MAE)	Mittelwert der absoluten Abstände (selbe Skala wie der Zielwert)
Mean Squared Error (MSE)	Mittelwert der Quadrate der Abstände (sehr gebräuchlich)
Root Mean Squared Error (RMSE)	Wurzel aus MSE (selbe Skala wie der Zielwert, gewichtet hohe Abweichungen stärker)
Mean signed difference (MSD)	Zeigt plus/minus der Abweichung an
Mean absolute percentage error (MAPE)	Mittelwert der prozentualen Abweichungen
Adjusted R2	Häufig besser geeignet und stets niedrigerer as R ^{2.} Wird mittels MSE und Varianz ermittelt

▲ Statistics - 4:10 —	_ × .
File	
R2:	0,936
Mean absolute error:	3.372,166
Mean squared error:	12.176.751,486
Root mean squared error:	3.489,52
Mean signed difference:	3.372,166
Mean absolute percentage error:	0,109
Adjusted R2:	0,936

Empfehlung (nicht immer anwendbar):

- Schaut Euch zuerst R² bzw. Adj. R²
 an: Wenn die Werte zwischen 0,8 und
 liegen, ist die Schätzung recht gut.
- Betrachtet auch den RMSE und den MAE (MAPE), um die Auswirkung sehr großer Fehler einzuschätzen. Kleinere Werte sind immer besser.

PROGNOSEVERFAHREN UND ÜBERWACHTES LERNEN IN KNIME

Fußzeile

ÜBUNG

OVERFITTING / **UNDERFITTING**

 Sucht im Internet nach einer einfachen, bildhaften Erklärung

- Train longer

Overfitting

Epo

AUFGABENBLATT 03, AUFGABE 1:

- Lade die Datei Einkommen.xlsx in KNIME
- Erstelle ein Linear Regression-Modell, in dem du das Einkommen aus folgenden Parametern prognostizierst:
 - o IQ
 - Alter
 - Höchster Abschluss
 - Größe
 - o Gender
- Versuche Kombinationen aus dieses Prädiktoren
- Welche Kombination hat den höchsten r-squared bzw. adjusted r-squared Wert?

AUFGABENBLATT 03, AUFGABE 2:

Aufgabe 2: Lineare Regression (Transfer)

- Lade die Datei FuelConsumptionCo2.csv in KNIME
- Erstelle ein Linear Regression-Modell, in dem du die CO2-Emissionen aus folgenden Parametern prognostizierst:
 - Fuel Consumption
- Versuche weitere Prädiktoren
- Welcher Prädiktor hat den höchsten r-squared bzw. adjusted r-squared Wert?

AUFGABENBLATT 03, AUFGABE 3:

Aufgabe 3: Lineare Regression (Vertiefung)

• Finde Daten zu den deutschen Bundesländern. Z.B. Fläche, Einwohnerzahl, BIP, uvm. Versuche herauszufinden, ob es "gute" lineare Korrelationen zwischen diesen Merkmalen

gibt.

04 CLUSTERING

- Wiederholung/Aufgaben Lineare Regression
- 2. Wiederholung/Aufgaben Logistische Regression
- 3. Klassifikation: KNN-Algorithmus
- 4. Klassifikation: Entscheidungsbäume
- 5. Clustering: k-means-Algorithmus

REGRESSION UND KLASSIFIKATION

Gemeinsamkeiten

- sind Prognoseverfahren
- d.h. sie versuchen aus einer Menge von Beobachtungen
- einen "Weg" zu finden, eine Vorhersage über Nicht-Beobachtetes zu machen
- sind Verfahren des "überwachten" Lernens (supervised learning):
 - Trainieren auf Basis von bekannten Beobachtungen
 - Testen auf Basis von bekannten Beobachtungen
 - ggf. Optimieren
 - Anwenden auf neue, nicht beobachtete Einheiten

Unterschiede

- Regression versucht einen mathematischen
 Zusammenhang zu finden, um metrische Werte für eine
 Vorhersage zu finden
 - − z.B. Einkommen in Abhängigkeit von IQ, Ausbildung, ...
- Klassifikation versucht hingegen, für kategoriale Werte eine Aussage zu finden, ob die Beobachtungseinheit zu einer bestimmten Klasse gehört
 - z.B. Einkommenskategorien {hoch, mittel, niedrig}finden,
 - z.B. Katze oder Hund
 - Z.B. Kreditwürdigkeit (ja, nein)

LOGISTISCHE REGRESSION

- Ist eigentlich ein Regressionsverfahren, das Prädiktoren einen metrischen Wert zwischen 0 und 1 zuweist.
- Dieser lässt sich als Wahrscheinlichkeitswert interpretieren
- De facto wird die logistische Regression aber vor allem für Klassifikationsaufgaben eingesetzt mit bi-nominalen Werten:
 - Ja/Nein
 - -0/1
 - Katze/Hund
 - Kreditwürdig/nicht kreditwürdig
 - Besteht Prüfung / Besteht nicht

ANWENDUNG DER LOGISTISCHEN FUNKTION

- Eine Sigmoidfunktion (genauer gesagt: logistische Funktion) ordnet
 beliebigen negativen oder positiven Werten einen Wert im Intervall [0 ... 1] zu
- Die Formel der Funktion lautet:

$$F(x)=rac{e^x}{1+e^x}=rac{1}{1+e^{-x}},\quad x\in\mathbb{R}$$

— Wenn wir die logistische Regression nutzen, suchen wir also die Koeffizienten a und b einer Funktion der Form:

$$P(Bestehen) = rac{1}{1 + e^{-(a+b imes Tage)}}$$

- Setzen wir z.B. a = -5 und b = 1, erhalten wir eine erste Annäherung
- Diese muss nun optimiert werden … das überlassen wir dem Algorithmus ☺

AUFGABENBLATT 03, AUFGABEN 5 UND 6:

Aufgabe 5: Logistische Regression

- Lade die Datei Einkommen2.csv in KNIME
- Denke an die Normalisierung
- Erstelle ein Logistic Regression-Modell, in dem du die Einkommenshöhe (niedrig, mittel, hoch) prognostizierst:

Aufgabe 6: Logistische Regression

- Lade die Datei Einkommen3.csv in KNIME
- Denke an die Normalisierung
- Erstelle ein Logistic Regression-Modell, in dem du das Income prognostizierst:

04 CLUSTERING

- Wiederholung/Aufgaben Lineare Regression
- Wiederholung/Aufgaben Logistische Regression
- 3. Klassifikation: KNN-Algorithmus
- 4. Klassifikation: Entscheidungsbäume
- 5. Clustering: k-means-Algorithmus

DER KNN-ALGORITHMUS

INTERNATIONALE HOCHSCHULE

- kNN: k-Nearest-Neighbour
- einfacher Algorithmus zur Klassifikation
- Klassifikation: Zuweisung eines Objekts zu einer Klasse von Objekten
- Voraussetzung: ein Abstandsmaß ist definierbar
- instanzenbasierter Algorithmus: es wird kein "unabhängiges"
 Modell entwickelt, sondern das zu klassifizierende Objekt wird mit den k "nächsten Nachbarn", d.h. mit den k bisherigen Instanzen, die den geringsten Abstand haben, verglichen und nach der häufigsten Klasse vorhergesagt.
- Dabei ergeben sich ggf. unterschiedliche Klassifikationen (siehe Beispiel rechts)

BEISPIELE VON ABSTANDSFUNKTIONEN

Euklidischer Abstand:

- Seien p und q Punkte im n-dimensionalenRaum
- $-Abstand_{euklid}(p, q) = \sqrt{\sum_{i=1}^{n} (pi qi)^2}$
- Für n = 2 entspricht das dem bekannten Satz von Pythagoras

Hamming-Abstand:

Anzahl nicht übereinstimmender
 Merkmalsausprägungen zwischen zwei
 Objekte

	Merkmal 1	Merkmal 2	Merkmal 3	Merkmal 4	Merkmal 5	
Objekt 1	ja	ja	nein	nein	ja	
Objekt 2	ja	nein	ja	nein	ja	Hamming-Distanz
Diff-Werte	0	1	1	0	0	2

Für eine KNN-Analyse sollten die Daten numerisch und normalisiert sein.

DEMO

KNN IN EXCEL UND IN KNIME

Nr	Alter	verheiratet	Eigenheim	Akademiker	Einkommen
neu	26	1	0	1	?
1	59	1	1	1	hoch
2	55	1	0	0	gering
3	40	0	0	0	gering
4	37	1	1	1	hoch
5	26	0	0	0	gering
6	24	1	0	0	mittel
7	22	1	1	1	mittel
8	53	0	1	0	hoch

ID	Alter	Alter	Verhei-	Eigen-	Akade-	Einkommen	Euklidischer
1D ~	Aitei	(gew.) ▼	ratet 🔻	heim 🔻	miker 🔻	Einkommen	Abstand → 1
6	24	0,05	1	0	0	hoch	1,001
7	22	0,00	1	1	1	mittel	1,006
4	37	0,41	1	1	1	mittel	1,043
2	55	0,89	1	0	0	gering	1,271
1	59	1,00	1	1	1	hoch	1,340
5	26	0,11	0	0	0	gering	1,414
3	40	0,49	0	0	0	gering	1,464
8	53	0,84	0	1	0	hoch	1,879
999	26	0,11	1	0	1	???	

DEMO

WISCONSIN BREAST CANCER DATA SET

יומי	'Clump_thickness'	'Uniformity_Cell_Size'	'Uniformity_Cell_Shape'	'Marginal_Adhesion'	'Single_Epithelial_Cell_Size'	'Bare_Nuclei'	'Bland_Chromatin'	'Normal_Nucleoli'	'Mitoses'	'Class'
T	Ŧ	¥	T	T	~	•	_	7	Ť	T
1000025	5	1	1	1	2	1	3	1	1	2
1002945	5	4	4	5	7	10	3	2	1	
1015425	3	1	1	1	2	2	3	1	1	2
1016277	6	8	8	1	3	4	3	7	1	2
1017023	4	1	1	3	2	1	3	1	1	2
1017122	8	10	10	8	7	10	9	7	1	4
1018099	1	1	1	1	2	10	3	1	1	2
1018561	2	1	2	1	2	1	3	1	1	2
1033078	2	1	1	1	2	1	1	1	5	2
1033078	4	2	1	1	2	1	2	1	1	2
1035283	1	1	1	1	1	1	3	1	1	2
1036172	2	1	1	1	2	1	2	1	1	2
1041801	5	3	3	3	2	3	4	4	1	4
1043999	1	1	1	1	2	3	3	1	1	2
1044572	8	7	5	10	7	9	5	5	4	4

- Ein häufig verwendet Datensatz der Universität Wisconsin
- Er enthält 10 Merkmale, die bei einer
 Vorsorgeuntersuchung erfasst werden.
- Das Ergebnis besteht aus zwei Werten:
 - −2: gutartig
 - − 4: bösartig

04 CLUSTERING

- Wiederholung/Aufgaben Lineare Regression
- Wiederholung/Aufgaben Logistische Regression
- 3. Klassifikation: KNN-Algorithmus
- 4. Klassifikation: Entscheidungsbäume
- 5. Clustering: k-means-Algorithmus

ENTSCHEIDUNGSBÄUME

- Entscheidungsbaum-Verfahren (Decision Trees)
- Wichtiger Algorithmus zur Klassifikation
- Abstandsmaß ist nicht notwendig
- modellbasierter Algorithmus: es wird ein unabhängiges
 Modell entwickelt, das in Form eines Entscheidungsbaums
 versucht, eine Klassifikation zu erreichen
- Weitere Erklärung an Hand eines Beispiels...

SHALL I PLAY TENNIS -> LOOK AT THE WEATHER FORECAST ©

- Ausgangspunkt: Ein Datensatz zu
 Wetterdaten und (davon abhängig) der
 Entscheidung Tennis zu spielen
- Das Beispiel besteht nur aus Nominalskalen

— Grundidee:

Wir wählen ein Merkmal aus (z.B. outlook)
 und prüfen, ob wir je nach
 Merkmalsausprägung bereits eine
 Entscheidung treffen können:

Tab. 5.6: Daten Wetter-Beispiel

Tag	outlook	temperature	humidity	windy	play
1	sunny	hot	high	false	no
2	sunny	hot	high	true	no
3	overcast	hot	high	false	yes
4	rainy	mild	high	false	yes
5	rainy	cool	normal	false	yes
6	rainy	cool	normal	true	no
7	overcast	cool	normal	true	yes
8	sunny	mild	high	false	no
9	sunny	cool	normal	false	yes
10	rainy	mild	normal	false	yes
11	sunny	mild	normal	true	yes
12	overcast	mild	high	true	yes
13	overcast	hot	normal	false	yes
14	rainy	mild	high	true	no

SCHRITT 1: WÄHLE OUTLOOK

Tag	outlook	temperature	humidity	windy	play
3	overcast	hot	high	false	yes
7	overcast	cool	normal	true	yes
12	overcast	mild	high	true	yes
13	overcast	hot	normal	false	yes
4	rainy	mild	high	false	yes
5	rainy	cool	normal	false	yes
6	rainy	cool	normal	true	no
10	rainy	mild	normal	false	yes
14	rainy	mild	high	true	no
1	sunny	hot	high	false	no
2	sunny	hot	high	true	no
8	sunny	mild	high	false	no
9	sunny	cool	normal	false	yes
11	sunny	mild	normal	true	yes

outlook = overcast → play tennis

Tag	outlook	temperature	humidity	windy	play
4	rainy	mild	high	false	yes
5	rainy	cool	normal	false	yes
6	rainy	cool	normal	true	no
10	rainy	mild	normal	false	yes
14	rainy	mild	high	true	no
1	sunny	hot	high	false	no
2	sunny	hot	high	true	no
8	sunny	mild	high	false	no
9	sunny	cool	normal	false	yes
11	sunny	mild	normal	true	yes

outlook = rainy/sunny → weiter analysieren

- − Bei Auswahl von outlook ergibt sich:
 - Klare Empfehlung falls outlook = overcast
 - Alle anderen Ausprägungen: weitere Analyse notwendig

- Klare Empfehlung falls outlook = overcast
- Alle anderen Ausprägungen: weitere Analyse notwendig

SCHRITT 2: ANALYSE FÜR OUTLOOK = SUNNY UND HUMIDITY

Tag	outlook	temperature	humidity	windy	play	
1	sunny	hot	high	false	no	
2	sunny	hot	high	true	no	humidity = high → don't play te
8	sunny	mild	high	false	no	
9	sunny	cool	normal	false	yes	lay tenni humidity = normal → play tenni
11	sunny	mild	normal	true	yes	Indimidity – normat z play termi

- − Bei Auswahl von humidity ergibt sich:
 - Klare Empfehlung falls
 - humidity = high
 - humidity = normal
 - keine weitere Analyse notwendig

SCHRITT 2: ANALYSE FÜR OUTLOOK = RAINY UND WINDY

Tag	outlook	temperature	humidity	windy	play
4	rainy	mild	high	false	yes
5	rainy	cool	normal	false	yes
10	rainy	mild	normal	false	yes
6	rainy	cool	normal	true	no
14	rainy	mild	high	true	no

- Bei Auswahl von windy ergibt sich ebenfalls klare Empfehlungen:
 - Keine weitere Analyse notwendig

29

Fußzeile

BEWERTUNG:

- Entscheidend ist hier offensichtlich die richtige Auswahl der Merkmale
- Diese kann erfolgen:
 - − Händisch → nicht realistisch bei größeren Datensätzen
 - Zufällig → kann zu guten oder schlechten Ergebnissen führen
 - per "Algorithmus"

MACHINE LEARNING – "ARTEN" – ZWISCHENSTAND

Oberbegriff		tes Lernen ed learning)	Unül (unsı	Reinforcement		
Ziel:	√ "Regression": Vorhersage eines metrischen Wertes	Klassifikation: Vorhersage eines kategorialen Wertes	Clustering: Bildung von Klassen gleicher Objekte	Assoziation: Suchen von wenn- dann-Beziehungen	Anomaly Detection	Learning
	Einfache Lineare Regression	Logistische Regression	K-means-Algorithmus	Apriori Algorithmus		
[Multilineare Regression	kNN-Algorithmus	Hierarchisches Clustering			
	Polynomiale Regression	Entscheidungsbaum (Decision Tree)	DBSCAN (Density-Based Spatial)			
Anwendbare Verfahren:	Logistische Regression	Support Vector Maschine				
Anwe		Random Forest				
•		Naive Bayes				
		Neural Networks			Legende:	

WANN MACHE ICH WAS?

INTERNATIONALE HOCHSCHULE

- Klassifikationsalgorithmen verwenden wir, wenn wir "labeled data" haben, und der Zielwert kategorial ist.
- Faustregeln: Verwende …
 - Logistische Regression: Wenn du lineare Beziehungen und Interpretierbarkeit brauchst.
 - k-NN: Wenn die Daten klein und einfach strukturiert sind, ohne lineare Annahmen.
 - Decision Tree: Wenn die Daten komplex sind und du nichtlineare Beziehungen und Interaktionen modellieren willst.
- Am besten testet ihr alle Algorithmen auf demselben Datensatz.
- Als Beispiel sehr hilfreich: Lest die Datei
 income analysis Lemon et al.pdf (findet ihr in Teams)

Classifier	Train Error	Test Error			
Baselines	24.008%	23.623%			
Naive Bayes	19.893%	20.432%			
Naive Bayes (Grouped)	22.353%	24.128%			
Logistic Regression	39.370%	38.612%			
Decision Tree	18.940%	14.778%			

WANN IST MEIN MODEL "GUT"?

Die wichtigsten Gütemaße kann man der Confusion
 Matrix entnehmen:

Die Confusion-Matrix ist eine Tabelle, die hilft, die Leistung eines Klassifikationsmodells zu bewerten. Sie zeigt, wie oft das Modell richtig oder falsch liegt, und teilt die Ergebnisse in vier Felder auf:

	Tatsächlich Positiv	Tatsächlich Negativ		
Vorhergesagt Positiv	True Positives (TP): richtig positiv	False Positives (FP): falsch positiv		
Vorhergesagt Negativ	False Negatives (FN): falsch negativ	True Negatives (TN): richtig negativ		

Erklärung der Begriffe:

- True Positives (TP): Fälle, bei denen das Modell "Positiv" vorhergesagt hat und es auch tatsächlich positiv ist.
- False Positives (FP): Fälle, bei denen das Modell "Positiv" vorhergesagt hat, aber es tatsächlich negativ ist (auch "False Alarm" genannt).
- False Negatives (FN): Fälle, bei denen das Modell "Negativ" vorhergesagt hat, aber es tatsächlich positiv ist.
- True Negatives (TN): Fälle, bei denen das Modell "Negativ" vorhergesagt hat und es auch tatsächlich negativ ist.

1. Accuracy (Genauigkeit)

• Definition: Anteil der richtig klassifizierten Fälle an der Gesamtanzahl der Fälle.

$$\label{eq:accuracy} Accuracy = \frac{True\ Positives\ (TP) + True\ Negatives\ (TN)}{Gesamtanzahl\ der\ Instanzen}$$

• Zeigt die allgemeine Modellleistung, kann jedoch bei unausgeglichenen Klassen irreführend sein.

2. Precision (Präzision)

• **Definition**: Anteil der korrekt als positiv vorhergesagten Fälle an allen positiven Vorhersagen.

$$\operatorname{Precision} = rac{\operatorname{True\ Positives\ (TP)}}{\operatorname{True\ Positives\ (TP)} + \operatorname{False\ Positives\ (FP)}}$$

• Wichtig, wenn falsch-positive Vorhersagen vermieden werden sollen, z.B. bei Diagnosen.

3. Cohen's Kappa

- Maß zur Bewertung der Übereinstimmung zwischen Modellvorhersagen und tatsächlichen Werten, unter Berücksichtigung zufälliger Übereinstimmungen.
- Hilfreich bei unausgeglichenen Klassen, da es eine robustere Einschätzung der Modellleistung bietet.

CLUSTERING: K-MEANS-ALGORITHMUS

04 CLUSTERING

- Wiederholung/Aufgaben Lineare Regression
- Wiederholung/Aufgaben Logistische Regression
- 3. Klassifikation: KNN-Algorithmus
- 4. Klassifikation: Entscheidungsbäume
- 5. Clustering: k-means-Algorithmus

KLASSIFIKATION VS CLUSTERING

Klassifikation

- kategoriale Ergebniswerte
- − ist ein prädiktives Verfahren
 - d.h. versucht auf Basis von Beobachtungsdaten
 - ein Modell zu finden,
 - das eine Vorhersage zur Zugehörigkeit eines unbeobachten Objekts x
 - zu einer bekannten Klasse C zu machen
 - Kernfrage: Ist x ∈ C?
- in der Regel: überwachtes Lernen

Clustering

- ebf.: kategoriale Ergebniswerte
- ist ein deskriptives Verfahren
 - d.h. v versucht auf Basis von Beobachtungsdaten
 - sinnvolle Klassen innerhalb der Beobachtungseinheiten zu finden,
 - die "ähnliche" Objekte beinhalten
 - Kernfrage: Gibt es sinnvolle Klassen C_i ⊆ C?
 - in der Regel: unüberwachtes Lernen

Wir betrachten zunächst den <u>k-Means-Algorithmus</u> als Beispiel

DER K-MEANS-ALGORITHMUS

Listing 6.2 (k-Means – Basis-Variante).

PROCEDURE k-Means

Erzeuge (zufällig) k
 Anfangscluster C_i //Alle Objekte x werden (zufällig) einem Cluster zugeordnet

REPEAT

Tausch_erfolgt := false

Bestimme die Centroide $\overline{x_1}$, $\overline{x_2}$, ..., $\overline{x_k}$ der Cluster

Für alle x aus den Eingabedaten: Weise x demjenigen Cluster C_i zu, zu dessen Centroiden $\overline{x_i}$ x die geringste Distanz hat

IF ein *x* wird einem anderen Cluster zugewiesen **THEN** Tausch_erfolgt := true

UNTIL NOT Tausch_erfolgt

END k-Means

Die Anzahl der (gesuchten) Klassen k wird vorgegeben.

Eine Abstandsfunktion muss definiert sein (siehe k-Nearest-Neighbour)

Der Algorithmus versucht nun k Teilmengen zu finden, ...

... bei denen die Summen der Abstände zu einem jeweils gemeinsamen Punkt (dem Centroid) minimal ist

- Dabei wird mit einer zufälligen Verteilung angefangen ...
- ... um dann solange Elemente einer anderen Menge zuzuordnen
- ... bis keine Optimierung mehr möglich ist.

DER K-MEANS-ALGORITHMUS "IN BILDERN"

DEMO

BEISPIELDATEN IN EXCEL UND IN KNIME

_ _

10

●A ●B ●C ■ZA ■ZB ⅢZC

