

Características:

- CPU ESP32 Wroom 1 N8R8
- 4 Salidas para ESC
- 4 Entradas de sensor de detección de línea
- 9 Conectores I²C
- Diseño de 6 canales I²C para módulo LASER
- 2 Salidas SPI
- Lector de tarjetas SD
- 4 Conectores GPIO
- 2 Conectores UART
- Programable por USB

Descripción:

Esta placa está diseñada para impulsar un robot brushless totalmente autónomo. La placa fue diseñada para satisfacer la mayoría de las necesidades que cualquier robot autónomo pueda necesitar. Tiene varios puertos para satisfacer cualquier necesidad que pueda encontrar I²C, SPI, UART y GPIO. La placa se puede alimentar por dos medios, por un BEC dedicado o por el regulador integrado que lleva el ECS. Para regular la potencia la placa cuenta con dos opciones, una NCP1117DT33T5G o una LD1117, ambas se pueden desactivar con un jumper soldado. La carga de código al ESP32 se puede realizar de tres formas diferentes: USB, UART y OTA.

Descripción del pin:

El gráfico indica cada función de los pines y, en la columna de más a la derecha, el uso que les asignamos.

N∘ de pin	Nombre	Tipo	Función	Usar
1	Tierra	P	Tierra	Tierra
2	3V3	P	Fuente de alimentación	3.3v
3	EN	I	Alto: encendido, habilita el chip. Bajo: apagado, el chip se apaga. Nota: No deje el pin EN flotando.	EN
4	IO4	I/O/T	RTC_GPIO4, GPIO4, TOUCH4, ADC1_CH3	Q1
5	105	I/O/T	RTC_GPIO5, GPIO5, TOQUE5, ADC1_CH4	Q3
6	106	I/O/T	RTC_GPIO6, GPIO6, TOUCH6, ADC1_CH5	GPIOP1
7	107	I/O/T	RTC_GPIO7, GPIO7, TOUCH7, ADC1_CH6	GPIOP2
8	IO15	I/O/T	/O/T RTC_GPIO15, GPIO15, U0RTS, ADC2_CH4, XTAL_32K_P	
9	IO16	I/O/T	RTC_GPIO16, GPIO16, U0CTS, ADC2_CH5, XTAL_32K_N	GPIOP4
10	IO17	I/O/T	RTC_GPIO17, GPIO17, U1TXD, ADC2_CH6	GPIOP5
11	IO18	I/O/T	RTC_GPIO18, GPIO18, U1RXD, ADC2_CH7, CLK_OUT3	GPIOP6
12	108	I/O/T	RTC_GPIO8, GPIO8, TOUCH8, ADC1_CH7, SUBSPICS1	GPIOP7
13	IO19	I/O/T	RTC_GPIO19, GPIO19, U1RTS, ADC2_CH8, CLK_OUT2, USB_D-	USB -
14	1020	I/O/T	RTC_GPIO20, GPIO20, U1CTS, ADC2_CH9, CLK_OUT1, USB_D+	USB +
15	IO3	I/O/T	RTC_GPIO3, GPIO3, TOUCH3, ADC1_CH2	
16	IO46	I/O/T	GPIO46	Tierra
17	109	RTC_GPIO9, GPIO9, TOUCH9, ADC1_CH8, FSPIHD, SUBSPIHD		M1-PWM
18	IO10	RTC_GPIO10, GPIO10, TOUCH10, ADC1_CH9, FSPICS0, FSPIIO4, SUBSPICS0		M1-C
19	IO11	I/O/T	RTC_GPIO11, GPIO11, TOUCH11, ADC2_CH0, FSPID, FSPIIO5, SUBSPID	B1
20	IO12	I/O/T	RTC_GPIO12, GPIO12, TOUCH12, ADC2_CH1, FSPICLK, FSPIIO6, SUBSPICLK	
21	RTC_GPIO13, GPIO13, TOUCH13, ADC2_CH2, FSPIQ, FSPIIO7, SUBSPIQ			PODER-I

22	IO14	I/O/T	RTC_GPIO14, GPIO14, TOUCH14, ADC2_CH3, FSPIWP, FSPIDQS, SUBSPIWP	ENERGÍA -V
23	IO21	I/O/T	RTC_GPIO21, GPIO21	М2-С
24	IO47	I/O/T	SPICLK_P_DIFF,GPIO47, SUBSPICLK_P_DIFF	M2-PWM
25	IO48	I/O/T	SPICLK_N_DIFF,GPIO48, SUBSPICLK_N_DIFF	М3-С
26	IO45	I/O/T	GPIO45	M3-PWM
27	100	I/O/T	RTC_GPIO0, GPIO0	
28	1035	I/O/T	SPIIO6, GPIO35, FSPID, SUBSPID	SCL [I2C]
29	IO36 I/O/T SPIIO7, GPIO36, FSPICLK, SUBSPICLK		SDA [I2C]	
30	1037	IO37 I/O/T SPIDQS, GPIO37, FSPIQ, SUBSPIQ		SS1
31	1038	O38 I/O/T GPIO38, FSPIWP, SUBSPIWP		М4-С
32	1039	I/O/T	MTCK, GPIO39, CLK_OUT3, SUBSPICS1	
33	IO40	I/O/T	MTDO, GPIO40, CLK_OUT2	SCK
34	IO41	I/O/T	T MTDI, GPIO41, CLK_OUT1	
35	1042	I/O/T	O/T MTMS, GPIO42	
36	RXD0	RXD0 I/O/T U0RXD, GPIO44, CLK_OUT2		RDX
37	TXD0 I/O/T U0TXD, GPIO43, CLK_OUT1		TDR	
38	IO2	IO2 I/O/T RTC_GPIO2, GPIO2, TOQUE2, ADC1_CH1		Q2
39	IO1	IO1 I/O/T RTC_GPIO1, GPIO1, TOQUE1, ADC1_CH0		Q4
40	Tierra	P	Tierra	
41	EPAD	P	Tierra	

En amarillo están los pines que tienen funciones específicas durante el proceso de arranque y reinicio. El pin 3, Enable, reinicia el ESP, mientras que el pin 27, IOO, se usa para bootear un nuevo programa en el chip.

En rojo están los pines que configuran el control del modo de arranque del chip.¹

-

¹ Para saber más sobre estos pines lea la sección 3.3.1 de la hoja de datos de ESP32.

Diagrama de conectores:

El tablero cuenta con 33 conectores, cada uno diseñado con un propósito en mente. Los terminales se pueden subdividir en 8 grandes grupos, entre esos grupos el paso del conector cambia haciendo imposible mezclar los conectores. Además, cada conector tiene su nombre serigrafiado indicando la función que cumple.

Motores:

Este grupo está formado por cuatro conectores JST XH B4B en cada esquina de la placa. Los identificadores son M1, M2, M3 y M4. Cada conector tiene en común tres señales, GND, Motor PWM y Dirección del motor. Adicionalmente cada terminal tiene un pin más, el pin N1, que no sirve para nada en tres de cada cuatro conectores, sólo en M1 cumple la función de BEC Auxiliar. Esto se debe a que la mayoría de los controladores electrónicos de velocidad (ESC) tienen uno que suministra 5v. Estas funciones se pueden activar y desactivar².

Sensores de detección de línea:

Este grupo está formado por cuatro conectores JST XH B3B en cada esquina de la placa. Los identificadores son QTR-1, QTR-2, QTR-3 y QTR-4. Cada conector tiene dos señales en común, Vcc y GND. El tercer pin corresponde a una entrada analógica.

² ver sección Jumpers.

Mediciones de corriente y tensión:

Este grupo está formado por cuatro conectores JST XH B2B en cada esquina de la placa. Los identificadores son V e I. Cada conector tiene dos entradas analógicas que miden la tension y la corriente que fluye a cada ESC.

Circuito inter integrado (I²C):

Este grupo está formado por tres conectores JST XH B4B y seis conectores JST PH B5B colocados en fila. Los identificadores son LASER e I2C. Cada terminal comparte tres señales, GND, SDA y SCL. Por un lado los JST XH B4B (I2C), tienen en el cuarto pin una conexión Vcc, que puede ser de 3.3v y 5v según la configuración de los jumpers³. Por otro lado el JST PH B5B tiene una fuente de 5v no configurable y un quinto pin que va a un pin IO digital. Este pin es para el pin XShut en la mayoría de los módulos LÁSER.

Interfaz periférica serial (SPI):

Este grupo está formado por dos JST XH B6B colocados uno al lado del otro. El identificador es SPI. Cada conector tiene cinco pines en común, GND, Vcc configurable⁴, MOSI, MISO y SCK. El sexto pin corresponde al Slave Select(SS) que va a un pin IO digital.

Transmisor receptor asíncrono universal (UART):

Este grupo está formado por dos JST PH B4B y un conector macho de cuatro pines colocados en fila. El identificador del grupo es Serial. Cada terminal tiene la misma conexión, GND, 5v, Rx y Tx. El encabezado está destinado únicamente a casos especiales en los que los métodos OTA y USB para programar el chip no funcionaron. En esos casos existe la opción de soldar el pines macho y cargar el código mediante un dispositivo ST-Link.

Entradas y salidas generales (GPIO):

Este grupo está formado por tres JST ZR B3B y un JST ZR B6B seguidos. El identificador del grupo es GPIO. Por un lado los conectores JST ZR B3B tienen dos pines en común, GND y un Vcc configurable⁵, el tercer pin está conectado a una entrada analógica. Por otro lado, el conector JST ZR B6B dispone de GND, un Vcc configurable y cuatro entradas analógicas.

³ Consulte la sección Jumpers para obtener más información.

⁴ Consulte la sección Jumpers para obtener más información.

⁵ Ver sección de jumpers.

Conectores diversos:

Este grupo está formado por un JST ZR B4B y un cabezal macho de dos pines. El conector JST ZR B4B se identifica como USB y el conector macho se identifica como Aux. El JST ZR B4B está conectado al D+ y D- del Esp32 mientras que el encabezado auxiliar está conectado a la red de 3.3v a través de un interruptor NC. Esto le permite activar solo el esp32 sin activar los otros circuitos.

Potencia:

Este grupo está formado por un JST XH B6B. El conector JST XH B6B está identificado como BEC. Tiene dos pines GND, dos pines Vcc conmutables, un pin de detección de corriente y uno de voltaje. Este BEC está destinado a alimentar la placa y medir el voltaje y la corriente de la batería.

Jumpers:

La placa cuenta con un sistema de jumpers para dar más libertad al elegir las opciones de sensores. Este consta de tres sistemas principales, el sistema de direcciones, el sistema de voltaje y el sistema de habilitación. El sistema de direcciones le permite cambiar la dirección del expansor IO, el sistema de tensión le permite conectar sensores de 5v o sensores de 3.3v, ofreciendo una gama más amplia de opciones, y el sistema de habilitación le permite elegir la fuente de alimentación, BEC o ESC. BEC. Para configurar cualquiera de las opciones, debe soldar un puente en el área designada que se muestra en la siguiente tabla.

Conector	Designador de puente de 3,3 v	Designador de puente de 5v
J22	W27	W24
J23	W28	W25
J24	W29	W26
CON1	W23	W14
J20	W11	W9
J19	W10	W2

J6	W7	W8
J4	W5	W6
J1	W3	W4

Designante	Habilitar pines
J11	W30 y W31
J10	W22 y W42
U10	W13

MPC23017			
Número de PIN	Tierra	5v	
1	W20	W17	
2	W19	W16	
3	W18	W15	

El puente de soldadura se debe realizar sobre la línea que une el footprint, como se muestra:

Manera correcta

Manera incorrecta

ES IMPORTANTE NO SOLDAR MÁS DE UN PUENTE POR CONEXIÓN, eso provocará un cortocircuito. También es obligatorio soldar todos los jumpers del sistema de direcciones, de lo contrario podría causar problemas a la hora de asignar dispositivos.

Ranura SD:

La placa cuenta con una ranura SD para registro de datos. Para escribir en la tarjeta SD se utiliza el protocolo SPI, el pin SS(Slave Select) se encuentra en el pin 30 del ESP32.

Lista de materiales:

Nombre	Designator	Cantidad	Fabricante
APHCM2012SYCK-F01	D1	1	Manufacturer
B3B-ZR(LF)(SN)	J7, J8, J9	3	Kingbright
B4B-XH-A(LF)(SN)	$J10 \rightarrow J12, J21 \rightarrow J24$	7	JST
B4B-ZR(LF)(SN)	J6	1	JST
B6B-PH-KK(LF)(SN)	J1	1	JST
B6B-XH-A(LF)(SN)	J19, J20	2	JST
CRCW080510K0FKEA	R1, R6, R8, R9, R12	5	JST
CRCW080547K0FKEA	R3, R5	2	Vishay
CRCW0805390RFKEA	\$10, \$1	2	Vishay
ERJ-P06F1001V	R13 → R21, R27, R28, R33	12	Vishay
GRM31CR71A226KE15L	C6, C7	2	Panasonic
LTST-C170KFKT	D13	1	Murata
NCP1117DT33T5G	U7	1	Vishay Lite-On
RG2012N-332-C-T5	R22, R23, R24, R25	4	ON Semiconductor
SN74LVC125APWR	U9	1	Susumu
TMK212BBJ106KG-T	C1	1	Texas Instruments
TXS0108EQPWRQ1	U5, U6	2	Taiyo Yuden
B6B-ZR	CON1	1	Texas Instruments
ESP32-S3-WROOM-1 N8R8	U1	1	JST
Encabezado 2	P1	1	- Expressif systems
Encabezado 4	P6	1	-
Saltador	W1 → W29	29	-
Punto de prueba	T1, T2, T3	3	-
TS10-63-26-BE-250-SMT- TR	T1	1	CUI Devices
150080BS75000	D4 → D20	dieciséis	Wurth Electronics

Leguizard PCB Controlador Motores Brushless y sensores

150080SS75000	D3	1	Wurth Electronics
473521001	SD1	1	Molex
ADS1115IDGST	U3, U4	2	Texas Instruments
B2B-PH-K-S(LF)(SN)	J2, J3, J4, J5	4	JST
B3B-PH-K-S(LF)(SN)	P2, P3, P4, P5	4	JST
B4B-PH-K-S(LF)(SN)	P7, P8	2	JST
B5B-PH-K-S(LF)(SN)	J13, J14, J15, J16, J17, J18	6	JST
BAS3010A03WE6327HTS A1	D2	1	Infineon
C0805C105K4PACTU	C3	1	KEMET
CRCW0805680RFKEA	R7	1	Vishay
ERJ6ENF6800V	R26	1	Panasonic
ERJ-6ENF1500V	R29, R30, R31, R32	4	Panasonic
FSMSMTR	SW1, SW2, SW3, SW4	4	TE Connectivity
GRM21BR71H104KA01L	C2, C4, C5	3	Murata
HSMG-C170	DS1, DS2	2	Broadcom Avago
LM7805CT	U8	1	ON Semiconductor / Fairchild
PCF8574DWR	U2	1	Texas Instruments
RC0805FR-07100KL	R2, R4	2	Yageo

Cualquier \rightarrow indica que la secuencia va del primer designtaor sumando uno hasta el ultimo. Ej: R1 \rightarrow R4 = R1, R2, R3, R4

La lista de materiales completa se adjunta al proyecto.

Dimensiones físicas:

Los agujeros de montaje son M2 HEX.

Programando el ESP32:

Programando el ESP32

- 1. Instalar Arduino IDE⁶
- 2. Descargar e instalar las placas de la familia ESP⁷
- 3. Descargar e instalar las bibliotecas
- 4. Subir el código a la placa.

Hay varias formas de cargar el código en el ESP32.

- A través de programación OTA⁸
- A través del puerto USB
- Vía protocolo TTL (usar sólo cuando los otros dos métodos no funcionaron)

⁶ Consulte la sección de recursos para obtener más información sobre Arduino.

⁷ Consulte la sección de recursos para obtener más información sobre la familia ESP.

⁸ Consulte la sección de recursos para obtener más información sobre la programación OTA.

Leguizard PCB Controlador Motores Brushless y sensores

Para tener acceso a los pines Tx y Rx, para la programación TTL, hay unos pines sin soldar en la sección Serial de la placa. Para cargar el código debes tener un ST-LINK.

TENGA EN CUENTA QUE EL CÓDIGO NO SE CARGARÁ SI NO PRESIONA EL BOTÓN DE ARRANQUE. Si el código aún no se sube correctamente, puede intentar suministrar a la placa con SÓLO 3.3v externamente y desconectar el resto del circuito mediante el botón Chip PWR. El conector para alimentar externamente está identificado como Aux

Consideraciones:

Conociendo el entorno en el que probablemente se utilizará la placa, aquí enumeramos algunas recomendaciones:

- La instalación de la placa cerca de motores brushless provocará inevitablemente ruido eléctrico. Recomendamos blindar lo mejor posible los motores, los cables y si es posible la placa.
- Instalar la placa en un lugar con estrés mecánico provocará tensiones internas en la placa, en las uniones de soldadura y en las conexiones internas de los componentes. Te recomendamos que si hay algún problema de estabilidad cambies la placa o al menos refluyas el PCB.
- Instalar la placa en un área cerrada puede causar problemas con las comunicaciones inalámbricas OTA, WiFi y BlueTooth. Esto se cumple especialmente si la carcasa es conductora.
- Los pines GPIO, disponibles en la placa, se pueden usar para generar hasta 28 mA MAX sin quemar el ESP32.
- No recomendamos instalar la placa en un ambiente que supere los 50° C.

Recursos:

- ESP32 cuarto de baño Hoja de datos de 1U N8R8
- <u>familia ESP32</u>
- arduino
- Programación por aire
- Directorio de GitHub