Avaliação 5 – Estabilidade de Sistemas Elétricos de Potência

Evandro Fernandes Ledema

Considere que, no sistema da figura:

- → A tensão no barramento infinito é V_B = 1/0°;
- → A magnitude da tensão no barramento 1 é 1,05 pu;
- → O gerador tem uma reatância transitória X'_d em uma base de 22 kV (L-L) e a potência base trifásica é 1500 MVA.
- → Na base do gerador, sua inercia é Hgen.
- → O transformador eleva 22 kV a 345 KV e tem uma reatância de X_{tr} em sua base de 1500 MVA.
- → As duas linhas de transmissão de 345 kV são de 100 quilômetros de comprimento e cada uma tem uma reatância série de X_L em (ohm/km), sendo a resistência série e a capacitância shunt, do seu modelo, ignoradas.

Figura 1: Sistema teste antes de iniciado o curto-circuito

Considerando que acontecem três momentos, sendo estes:

1. Antes da falta

Inicialmente, o fluxo de potência trifásico do gerador ao barramento infinito é P_e e que, o sistema está em regime permanente e em equilíbrio.

2. Durante a falta

Considere que depois de um segundo, um curto-circuito trifásico com contato para terra ocorre em uma das linhas, a **m%** de distância do barramento 1. Esta perturbação ou evento acontecerá até o relé de proteção abrir os disjuntores nos extremos da linha de transmissão. O tempo que demora desde o início do curto-circuito até a abertura dos disjuntores é conhecido como tempo de eliminação da falta **TEF**.

3. Depois de isolada a falta

Considere que depois de passado o tempo de eliminação da falta **TEF**, o sistema fica com a configuração da Figura 2.

Figura 1: Sistema teste antes de iniciado o curto-circuito

Assumir que nos três momentos pode-se calcular a reatância total **Xt**, a qual é definida como a reatância entre a barra interna do gerador e a barra infinita.

Calcular:

- a) O máximo TEF (em milissegundos) possível antes de perder o sincronismo (comumente conhecido como tempo crítico).
 - Comente, como usaria esse tempo no relé da linha de transmissão? **Resposta:**

Deve ser usado para que a curva do relé nunca seja próxima do tempo crítico pois nesse momento a linha não voltará a estabilidade e o sistema cairá.

Tempo Crítico (ms)

Como demostrado na simulação para TEF 344 ms:

Para os próximos itens escolha um valor de TEF menor ao tempo crítico.

- b) A constante de amortecimento D que faça que o ângulo δ amorteça em menos de 10 segundos. Registre qual foi o novo valor do ângulo δ do gerador.
 - Comente, o valor que você conseguiu para D é viável na prática?
 - Que outros equipamentos podem contribuir com amortecimento para o gerador?
 - Por que nos interessa analisar apenas 10 segundos?

Resposta:

O valor de D encontrado não é viável pois excede em muito os valores encontrados nas usinas geradores que variam em geral de 2 a 9.

Outros dispositivos que ajudam no amortecimento do gerador são os filtros.

É interessante utilizar 10s para análise devido o tempo ser adequado para que o relé atue e não haja maiores danos aos equipamentos.

TEF (ms)	D (pu/pu)	δ (degree)	
300,0	180	38°	

Para TEF de 300ms sem amortecimento:

c) Plotar as curvas do ângulo δ, da frequência w do gerador, a tensão na barra terminal, a corrente I e a potência P_e, (as duas últimas saindo da barra terminal do gerador), compareas para os casos D = 0 e D≠0 (assumir para D, o valor do item anterior). - Registre os

valores finais em regime permanente do ângulo δ , da frequência w do gerador, da tensão, da corrente I e da potência P_e na barra terminal.

- Comente sobre a importância do amortecimento para o Sistema Elétrico.
- Por que o ângulo δ e a tensão terminal do gerador não voltaram a seus valores iniciais, antes da falta?
- O que significa que a potência elétrica P_e final, para o caso D≠0, seja igual à potência mecânica da turbina P_m?

Resposta:

O amortecimento é o responsável de levar o sistema de volta a estabilidade, sem o amortecimento o sistema não voltaria a estabilidade e continuaria oscilante.

O ângulo e a tensão não voltam aos valores anteriores devido ao desequilíbrio causado pela falta.

A potência final Pe para o caso D≠0 é igual a potência mecânica Pm pois estão em sincronismo.

δ (degree)	w (rad/s)	V (pu)	l (pu)	Pe (MW)
38	377	1,1	14,6	1474

Para D = 0, δ (degree):

Para D = 180, δ (degree):

Para D = 0, W (rads/s):

Para D = 180, W (rads/s):

Para D = 0, V:

Para D = 180, V:

Para D = 0, I:

Para D = 180, I:

Para D = 0, Pe:

Para D = 180, Pe:

d) Entregar o código fonte que resolve o item a).

Vide anexo no arquivo zip.

Dados Para a Avaliação 5

	RGA						
		X'd (pu)	Hgen (pu)	Xtr (pu)	XL (ohm/km)	Pm (MW)	m (%)
1	201521302018	0,37	3,6	0,22	0,395	1362	55
2	201521302007	0,35	3,4	0,35	0,264	1576	67
3	201621302009	0,33	2,3	0,24	0,349	1485	11
4	201421302038	0,22	2,4	0,33	0,269	1583	23
5	202011302007	0,21	3,7	0,34	0,363	1233	45
6	201411302002	0,37	4,7	0,28	0,211	1474	71
7	201611302040	0,23	3,6	0,36	0,389	1400	19
8	201611302053	0,23	4,4	0,29	0,247	1548	49
9	201521302019	0,35	2,6	0,36	0,214	1205	64
10	201621302030	0,21	2,5	0,26	0,372	1444	21
11	201511302027	0,22	3,2	0,32	0,294	1387	44
12	201521302032	0,32	4,4	0,34	0,371	1475	35
13	201621302026	0,36	3,2	0,25	0,291	1283	22
14	201221302016	0,27	3,5	0,24	0,383	1405	11
15	201421302028	0,37	3,3	0,36	0,382	1554	83
16	201521302014	0,35	3,5	0,23	0,325	1485	11
17	201511302017	0,21	3,5	0,37	0,254	1461	64
18	201211302041	0,37	2,8	0,33	0,391	1536	37
19	201521302047	0,32	3,7	0,28	0,215	1567	33
20	201621302027	0,29	4,2	0,38	0,278	1431	30
21	201721302056	0,26	2,2	0,38	0,246	1418	71