#1. Kpurepun sapopeninbrocin cucrem. Konavecibenture ouenna. bapuari: 83 mod 25:8

1) Записать интегральний криторий эффективности СТИ для m=s и n=8 если оченки получены негодом ранкировии. Определить согласованный экспертов.

	1 30	cenept		2	AKCHEP	7		3	SKCHE	be
1	2	3	4	1	2	3	4	1	2	3
2,5	1,4,7,8	235	6	1,3	2,6	4,7	5,8	3,5	4,6	1,2,7,8
			3	7	233	8		10		10
	Sucusti				130	0				10
	92		11	93		96				7

(2)	(4)	7 - 2	16	1		15	-1	77
45	94	45-1-12	100	47	18	450	198	1
			4					h
	(2)							

97

7		19.12.		78									
1	I	1	2	3	4	5	6	7	Y	Ci; = 1	- <u>rij -1</u>		
	ris	4,5	1.5	7	4,5	1.5	8	4.5	4.5	6	h		
	Cis	0.5625	0.9375	ن ن	0.5625	0.3375	0,125	0.5625	0.5625	=4.5	0		
1	b::	0.125	0,208	0.056	0,125	0.20%	0.028	0.125	0.125	b	2		

2- a shenept:

(T)		3		5			7)	
91			42		94		•	15	
2			4		6			8	
93			76		97		c	18	
Ī		2	3	4	5	6	7	8	
419	1.5	3.5	1.5	5.5	7.5	1	1	1	
Cià	0.5375	Seaso.	0.9575	0,4375	. 18.75 E. 18.75	0.6835	0,43 ₂₅	0/875	- 4.5
bis	0.208	0.153	0.208	0.097	<i>৩.</i> ७५२	0.153	0.037	0.042	

E= 0.2089, +0.15392+0.20892+0.09794+0.04295+0.15396+

2) Решить задачу получения энспертных оценой методом последовательных приближений. Число застных притериев n=8, m=1. Придумать первышный ред оценой самостоятельно (наивысшая оцениа -1, наименьшая -0) и уточнить их с помощью системы решений.

	1	2	3	4	5	6			
	<	<	>	>	<	< 10			
I	3	7	1	8	5	y	2	6	R
C	1	0.8	0.75	0.6	0.5	0.3	0.15	0.1	<(0.3<03b)
C,	1	0.8	0.75	0.6	0.5	0.3	0.25	0.1	<(0.5<0,65)
C	1	0.8	0.75	0.6	0.5	0.3	0.25	0.1	>(0.6>1.15)
c,	2	1.8	1.75	1.6	0.5	0.3	0.15	0.1	> (1.75 > 2.75)
C"	3.25	2.05	3	1.6	0.5	0.3	0.25	0.1	< (2.05 < 5.75)
C	3.25	2.05	3	1,6	0.5	0.3	0.25	0.1	<(3.25 < 7.8)
Ce	3.25	2.05	3	1,6	0.5	0.3	0.25	0.1	\frac{7}{2}Ci3 = 11.05
Pi	0.254	0.186	ודב.ס	0.145	0.045	0.027	0.023	0.00%	4442

E= 0.2719, +0.02392+0.23493 +0.02794 +0.04595+0.00396 +

#2. Анализ систем по структурно-топологическим характеристикам bapuart: 85 mod 3 = 2 Ompegenure bug a copyrighto-tonorosaurecture xapaniepariuma copyrighta cuciema: R, 2, 8. Построин матрину смежности и определим свезность структуры A₅₃₅ = 10000 01000 01000 $R \Rightarrow \frac{1}{2} \sum_{i=1}^{5} \sum_{j=1}^{5} \alpha_{ij} \geqslant 4 \Rightarrow R = \frac{1}{2} ((1+1) + (1+1+1) + 1 + 1 + 1 + 1) = \frac{1}{2} \cdot 8 = 4$ Onpegenum etpyntyphyno uzbutounoctó: 2= n-1 -1 = R -1 =)4-1=0 2=> нининальная избыточность Chegen b enciene cionens, cuoneno Hesoxogans. Дия спределения структурной помнантноети вребен мазрини расстоянай Q => \$ \(\frac{2}{2} \) \(\dig \), ((14)) => Q = (1+1+2+2) + D_{5×5} = \[\begin{pmatrix} 0 & 1 & 1 & 2 & 2 \\ 1 & 0 & 2 & 1 & 1 \\ 2 & 1 & 3 & 0 & 2 \\ 2 & 1 & 3 & 2 & 0 \end{pmatrix} \] +(1+2+1+1)+(1+2+3+3)+(2+1+3+2)+ + (2+1+3+2) = 36

Определим степень шентрализации системы:

$$8 = \frac{4}{3} \cdot \frac{2 \cdot 3 - 5}{3} = \frac{4}{3} \cdot \frac{1}{3} = \frac{4}{9}$$

-> Zmax= Z,= B2=3

0		•					7					
Dapa	3 : THOL	() (mod'	5 2 3			-	-		1	6 4 In	
Oye	muse B	Au &Hu e	qua	dogsin	Низы	ero yp	SHE	на про	eviup	banue	been	cucienu
							FI 15		1 120	201	4,014	00,0
Beca	neploc	o gp	PHF.	Q =1	10.4	0.2	0.3	0.13		1 1 1 1	1118	
45.13					46	-			-	F 97 - C		18
1883	Mexago	2 3r	DOHAL	u.				79.0	IF O	11000	6.4	0 4 , 11
	0:4	0.0 .	0.4	-	b.							*
AR :	0.4	0.4		0.2	6/8	0.00	1,04	1012.0	1.00	150-	HO- H	0 = 0
40	LIT		1.0	_	63							
12 1	0.3			0.7	1				DUNK	A gent ,	- st 2	fuito 1
77	40.4			0.3								
		b	3	by	b5				- 40	D : KK	MARK	1 - 50
	0.4	-	0,2	0.4	-]C,					1 10 0	-
	1000	04	0,2	0.3	0.1	P2		4	1 35	10 000	1795 0	ting.
BC =	0.5	-	Carin	0.1	0.4	53		4		10 55	111.0	
Pike	LO.9	0.7	0.1	11-	,	1(4	-			V - 45	1	17 7000
	C.	Cz	Cs	Cq	7 1		++	-	-	100	7,610	10
45	1-	0.3	_	0.7	14		-		++			THE COLUMN
CD		0.3	0.1	-	1-12	-	-			1 100	Mark	31 , 5
	10.1	0.2	0.3		013			-	-			
	Q.	-		Us	- 1	03	41 1100	Ou.	Teris	Jun Suls	100	March 18
	3.4	1		0.2		0.3		0.1				
		-				2		1			00/19	
		1	1		1		7		7			
		1		13 3	h	JK 5) i dic	P.J.C.	65	000	6- M	9 . 1
P	301.	p.	2		D3		Du		9			
				1			2		200	E 1 0 #	133	1 2-1
678	1									1 2 2 2	10000	4
4	c,	1 15		C2		Cz		Cy	1	E E I	CIPI	4
						1		-	1	-	10 pt	1 - 1
		1	7	7	7				911		-	
		-	4				~		+++			
		d.			d_2		da	1	-	,		

Определим относительные веса второго уровне: bi = Zpijaj 6, = 0.4.0.4+0.2.0.2+0.3.0.4 = 0.32 b. = 0.4 . 0.4 + 0.2 . 0.4 + 0.1 . 0.2 = 0.26 Zbj =0.32+0.26+0.3+0.19+ b: = 0.3.1.0=0.3 + 0.26 = 1.33 by= 0.4.0.3+0.1.0.7= 0.19 b= 0.4.0,4+0,2.0,2+0,3.0,1+0,1.0,3=0.26 Произведён нормирование: by: 0.32/1.33 = 0.24 bn= 0.26/1.33: 0.2 bu = 0.3/1.33=0.22 by = 0.19/1.33 = 014 b = 0.26/1.33:0.2 Onpegenum othornienbries peca ipeibero upobra: Ci = Iprib; C, = 0.24 . 0.4 + 0.22 . 0.2 + 0.14 . 0.4 = 0.136 5 c3:0.196+0.186+ C2 = 0.2 .0.4 + 0.22 .0.2 + 0.14 .0.3 + 0.2 .0.1 = 0.186 +0.214+0.21=0.806 Cx = 0.24 · 0.5 + 0.14 · 0.1 + 0.2 · 0.4 = 0.214 Cy = 0.24 . 0.21 0.2 . 0.710.22 . 0.1 = 0.21

```
Произведен нормирование.
Cm = 0.196/0.806 = 0.243
Cm : 0.186/0.806: 0.231
C .. : 0.214/0.806: 0.266
Cuy: 0,21/0,806: 0,26
Onpedenum othorniensmue pora neilèptoro apobre:
d = ZBice
                                                   Zd; = 0.2513+0.2417+
d = 0.231 . 0.3 + 0.26 . 07 = 0.2513
d, = 0,243 .0.6+0.231.0.3+0.266.0.1=0.2417
                                                         + 0.2543: 0.7473
d, = 0.243 · 0.1 + 0.231 · 0.2 + 0.266 · 0.3 + 0.26 · 0.4 = 0.2543
Произведён нормирование:
dm = 0.2513/0.7473 = 0.3363
                                         Maudonbure Bruenue na mpserinpola-
dnz: 0.2417/0.7472= 0.3234
                                     => Hue cucional oraxes abantop ds
dns = 0. 2543/0.7473= 0.3403
Программиний нод:
 module Solving Matrix where import Data List (elem Index)
  type Raw = [Double ]
  type Matrix : [Raw]
  type Task = (Raw, [Matrix])
  multiply :: Raw -> Raw -> Raw
multiply = zipWith (a)
```

normalize: Raw -> Raw
normalize vaw = map (/ sum vaw) vaw

calclevel: Raw -> Matrix -> Raw
calclevel vaw matrix = normalize level
where level = map (sum. multiply vaw) matrix

calc Ingluence: Task -> (Maybe Int, Double)

calc Ingluence (start, matrix) = (index, most)

where vaw = foldl calclevel start matrix

most = maximum vaw

index = (+3) <>> clem Index most vaw

main : IO ()
main = print & calcInfluence input

input e são broghere gammero

Resynctor: (Sust 3, 0.3392(142))

THE WORLD

J solu