FORMULE KOJE JE DOZVOLJENO IMATI NA KOLOKVIJU I PISMENOM ISPITU IZ KOLEGIJA "LINEARNI REGULACIJSKI SUSTAVI"

Laplace-ova transformacija:

$$L\{x(t)\} = X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt,$$

$$za x(t) = 0 \text{ pri } t < 0:$$

$$L\{x(t)\} = X(s) = \int_{0}^{\infty} x(t)e^{-st}dt$$

$$s = \sigma + j\omega$$

$$Za x(t) = 0 \text{ pri } t < 0:$$

$$L\{x(t)\} = X(s) = \int_{0}^{\infty} x(t)e^{-st}dt$$

Tablica Laplace-ovih transformacija osnovnih funkcija:

x(t), pri čemu je x(t) = 0 za $t < 0$	X(s)	x(t), pri čemu je x(t) = 0 za $t < 0$	X(s)	x(t), pri čemu je x(t) = 0 za t < 0	X(s)
$\delta(t)$	1	sin(ωt)	$\frac{\omega}{s^2 + \omega^2}$	$e^{\pm at} \sin(\omega t)$	$\frac{\omega}{(s \mp a)^2 + \omega^2}$
u(t)	1/s	cos(ωt)	$\frac{s}{s^2 + \omega^2}$	e ^{±at} cos(ωt)	$\frac{s \mp a}{(s \mp a)^2 + \omega^2}$
t	1/s ²	e ^{±at}	$\frac{1}{s \mp a}$	te ^{±at}	$\frac{1}{(s \mp a)^2}$
t ²	$2/s^3$	t ⁿ	n! / s ⁿ⁺¹		

LT pomaknutog signala:

$$L\{x(t \pm a)u(t \pm a)\} = e^{\pm as}X(s)$$
$$L\{e^{\pm as}x(t)u(t)\} = X(s \mp a)$$

LT derivacije signala:

$$L\bigg\{\frac{d^{n}x(t)}{dt^{n}}\bigg\} = s^{n}X(s) - s^{n-1}x(0) - s^{n-2}\dot{x}(0) - s^{n-3}\ddot{x}(0) - ...$$

LT integrala signala:

$$L\{n - tog int egrala od x(t)\} = \frac{1}{s^n} X(s)$$

Formula za određivanje residuuma višestrukih polova prijenosne funkcije:

$$W(s) = \frac{Br(s)}{\left(s - p_1\right)^m \left(s - p_2\right) ... \left(s - p_n\right)} = \frac{K_1}{\left(s - p_1\right)^m} + \frac{K_2}{\left(s - p_1\right)^{m-1}} + \frac{K_3}{\left(s - p_1\right)^{m-2}} + ... + \frac{K_m}{s - p_1} + \frac{K_{m+1}}{s - p_2} + ... + \frac{K_{m+n-1}}{s - p_n} + ... + \frac{K_{m+n-1}}{s - p_n}$$

 $K_{1}...K_{i}...K_{m}: \text{ residuumi m-strukog pola računaju se prema formuli: } K_{i} = \frac{1}{(i-1)!} \frac{d^{i-1}}{ds^{i-1}} \Big[(s-p_{1})^{m} \, W(s) \Big] \, \Big|_{s=p1}$

Specifikacije sustava u vremenskom području:

$$M_n = e^{\frac{-\pi \xi}{\sqrt{1-\xi^2}}}; T_n = \frac{\pi}{\omega_n \sqrt{1-\xi^2}}; T_s(5\%) = \frac{3}{\xi \omega_n}; T_s(2\%) = \frac{4}{\xi \omega_n}$$

Specifikacije sustava u frekvencijskom području:

$$M_{m} = \frac{1}{2\xi\sqrt{1-\xi^{2}}}; \quad \omega_{m} = \omega_{n}\sqrt{1-2\xi^{2}}; \quad PP = \omega_{n}\sqrt{1-2\xi^{2}+\sqrt{(1-2\xi^{2})^{2}+1}}$$

M-kružnice; radijus:
$$r = \left| \frac{M}{M^2 - 1} \right|$$
, centar kružnice: $\left(-\frac{M^2}{M^2 - 1}, 0 \right)$

AP
$$[dB] = 20 \log \left| \frac{1}{Re[W_{\circ}(j\omega_{\Pi})]} \right|$$
; $Im[W_{\circ}(j\omega_{\Pi})] = 0$

$$FP[^{\circ}]=180^{\circ} + \text{argument} [W_{0}(j \omega_{I})]; |W_{0}(j \omega_{I})|=1$$

Asimptote grana grafa GMK:

Broj asimptota: $q = n_p - n_z$;

Točka izlaza asimptota s realne osi:
$$\sigma = \frac{\sum_{j=1}^{np} \text{Re}(p_j) - \sum_{i=1}^{nz} \text{Re}(z_i)}{q}$$

Kut kojeg asimptote zatvaraju s '+' dijelom realne osi: $\Phi = (2l+1)/q*180(^0)$, pri čemu je: l=0,1,2,...,(q-1)

Pravila blok algebre:

Prebacivanje TO	ČKE GRANANJA	Prebacivanje TOČKE ZBRAJANJA		
U smjeru toka	Suprotno smjeru	U smjeru toka	Suprotno smjeru	
signala	toka signala	signala	toka signala	
Prijenosnu funkciju	Prijenosnu funkciju	Prijenosnu funkciju	Prijenosnu funkciju	
grane KOJU	grane KOJU	grane KOJU	grane KOJU	
prebacujemo	prebacujemo	prebacujemo	prebacujemo	
DIJELIMO s	MNOŽIMO s	MNOŽIMO s	DIJELIMO s	
prijenosnom	prijenosnom	prijenosnom	prijenosnom	
funkcijom grane	funkcijom grane	funkcijom grane	funkcijom grane	
PREKO KOJE	PREKO KOJE	PREKO KOJE	PREKO KOJE	
prebacujemo	prebacujemo	prebacujemo	prebacujemo	

Opis objekta i regulacijskog sustava s varijablama stanja:

Objekt	Regulacijski sustav
Opis objekta s varijablama stanja: $\underline{\dot{x}}(t) = \underline{A}\underline{x}(t) + \underline{b}u(t)$ $y(t) = \underline{c}^T\underline{x}(t)$ $\underline{X}(s) = \underline{\Phi}(s)\underline{b}U(s)$	Opis regulacijskog sustava s varijablama stanja: $\underline{\dot{x}}(t) = \underline{A_K}\underline{x}(t) + K\underline{b}r(t)$ $y(t) = \underline{c^T}\underline{x}(t)$ Pri čemu je: $\underline{A_K} = \underline{A} - K\underline{b}\underline{k}^T$
Odnos prijenosne funkcije objekta i opisa s varijablama stanja: $G_P(s) = \frac{Y(s)}{U(s)} = \underline{c}^T \underline{\phi}(s) \underline{b}$	$\underline{X}(s) = K\underline{\Phi}_{K}(s)\underline{b}R(s)$ Odnos prijenosne funkcije regulacijskog sustava i opisa s varijablama stanja: $W(s) = \frac{Y(s)}{R(s)} = K\underline{c}^{T}\underline{\phi}_{K}(s)\underline{b}$ ili $W(s) = \frac{Y(s)}{R(s)} = \frac{K\underline{c}^{T}\underline{\phi}(s)\underline{b}}{1 + K\underline{k}^{T}\underline{\phi}(s)\underline{b}}$
	$R(s) = \frac{1}{R(s)} - \frac{1}{1 + K\underline{k}^{T}} \underline{\phi}(s)\underline{b}$ Prikaz reg. sustava preko Heq; $H_{eq}(s) = \frac{\underline{k}^{T}}{c^{T}} \underline{\phi}(s)\underline{b}}{c^{T}} = \frac{\underline{k}^{T}}{G_{p}} \underline{\phi}(s)\underline{b}}$

Kompenzatori s faznim zaostajanjem i prethođenjem:

$$\begin{split} & \omega_{\max} = \sqrt{\omega_1 \omega_2} \\ & \varphi_{\max} = \arctan(\sqrt{\frac{\omega_1}{\omega_2}}) - \arctan(\sqrt{\frac{\omega_2}{\omega_1}}) \quad \text{(fazno zaostajanje)} \\ & \varphi_{\max} = \arctan(\sqrt{\frac{\omega_2}{\omega_1}} - \arctan(\sqrt{\frac{\omega_1}{\omega_2}}) \quad \text{(fazno prethođenje)} \end{split}$$

Aproksimacije za arctan:

Ako vrijedi da je a << b, biti će:

$$\arctan(\frac{a}{b}) = \frac{a}{b}$$

 $\arctan(\frac{b}{a}) = \frac{\pi}{2} - \frac{a}{b}$