

Bilevel Optimization for SEEG based Seizure Detection

A F M Saif, Sombuddha Chatterjee ECSE, RPI

ECSE, RPI | 12/04/24

Topics Overview

- Motivation and Problem
- Data Description
- Seizure detection task
- Overview of reference methodology
- Problem formulation
- Algorithm
- Model Architecture
- Experimental Results
- Ablation Study
- Conclusion

Motivation & Problem

- Epilepsy affects over 50 million people globally, with many having drugresistant epilepsy.
- SEEG is used to localize the Seizure Onset Zone (SOZ) for surgical intervention.
- Existing seizure detection models are patient-specific and not generalizable.
- Challenge: Developing a patientindependent seizure detection model that handles variability across patients.

An MRI of the brain showing Stereo EEG implant

Data Description - Public dataset from Mayo Clinic

- 3-second clips categorized into four distinct events:
 - Physiological SEEG: During wakefulness and sleep.
 - Pathophysiological activity: Includes epileptiform features like spikes or high-frequency oscillations.
 - Artifacts: Muscle, movement, and machineinduced.
 - Powerline noise (50/60 Hz, dependent on clinic's powerline frequency).
- Data collected from 23 different patients.
- Each 3 second clip is sampled at 5 kHz and labelled independently by 3 different reviewers.

Classification category	Mayo Clinic
Physiological Activity	56730
Pathological Activity	15227
Artifacts	41303
Power line noise (50Hz/60Hz)	41922
Total	155182

Seizure Detection as a Time Series Classification Task

Data Representation:

- SEEG recording is a multivariate time series: $\mathbf{T} \in \mathbb{R}^{N \times C}$
- N: Length of series, C: Number of channels.
- Single Channel: $\mathbf{x}_{c} = (x_1, x_2, ..., x_N)$

Data Segmentation:

Contiguous data is divided into segments:

$$Sc = \{s_{c,0}, s_{c,1} + \cdots, s_{c,K-1}\}$$

where $\mathbf{s}_{c,k} = \{x_{l \times k+1}, \dots, x_{l \times (k+1)}\}$ is the k-th segment data on channel c from \mathbf{T} (l is the length of each segment, K = |N/l| is the total number of segments on channel c)

Labels:

$$\mathbb{Y}_c = \{y_{c,0}, y_{c,1}, \dots, y_{c,K-1}\},\$$

where $y_{c,k} \in \{0,1\}$ is the label of $s_{c,k}$, which indicates whether the segment contains a seizure event $(y_{c,k} = 1)$ or not $(y_{ck} = 0).$

Overview of the Reference Methodology (Yuan et al, NIPS 2024)

Challenges:

- Variability in seizure patterns across patients
- Aligning seizure and non-seizure data distributions across patients.
- Learning representations robust to domain shifts.

Self-Supervised Learning (SSL):

- Channel Discrimination: $\boldsymbol{h}_{cd}^{m_1} = \operatorname{abs} \left(\boldsymbol{h}_{c_1,k_1}^{m_1} \boldsymbol{h}_{c_2,k_2}^{m_1} \right)$
- $\boldsymbol{h}_{c_1,k_1}^{m_1}$, $\boldsymbol{h}_{c_2,k_2}^{m_1}$ are the feature vector encodings of two sequences $(\boldsymbol{u}_{c_1,k_1}^{m_1},\boldsymbol{u}_{c_2,k_2}^{m_1})$ sampled from different channels with equal probability. Binary CE loss applied: \mathcal{L}_{cd}
- A decoder is used to reconstruct the original sequences $(\hat{\pmb{u}}_{c_1,k_1}^{m_1},\hat{\pmb{u}}_{c_2,k_2}^{m_1})$
- Reconstruction loss measured as: $\mathcal{L}_{rec} = \sum_{m_1=1}^{M_1} \left(\left\| \boldsymbol{u}_{c_1,k_1}^{m_1} \hat{\boldsymbol{u}}_{c_1,k_1}^{m_1} \right\|^2 + \left\| \boldsymbol{u}_{c_2,k_2}^{m_1} \hat{\boldsymbol{u}}_{c_2,k_2}^{m_1} \right\|^2 \right)$.
- Context Swapping: Context of the selected sequence was swapped with variable probability and a binary CE loss applied as \mathcal{L}_{cs} .
- SSL Loss:

$$\mathcal{L}_{ssl} = \mathcal{L}_{rec} + \mathcal{L}_{cd} + \mathcal{L}_{cs}$$

Problem Formulation

Bilevel optimization can be presented as

$$\begin{split} \theta^* &= \arg\min_{\theta} \mathcal{L}_{\mathrm{val}}(\theta, \phi^*(\theta); \mathcal{D}_{\mathrm{val}}) + \lambda \mathcal{L}_{\mathrm{pretrain}}(\theta; \mathcal{D}_{\mathrm{pretrain}}) \\ \text{s.t.} \quad \phi^*(\theta) &= \arg\min_{\phi} \mathcal{L}_{\mathrm{train}}(\theta, \phi; \mathcal{D}_{\mathrm{train}}). \end{split}$$

Here,

- Backbone parameters: θ
- Classification head parameters: φ

Supervised loss

Supervised loss used here is the cross-entropy loss:

$$\mathcal{L}_{\text{train}}(\theta, \phi; \mathcal{D}_{\text{train}}) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{C} y_{i,c} \log \hat{y}_{i,c}$$

Here,

Number of samples: N

Number of classes: C

• True label: $y_{i,c}$

• Predicted label: $\hat{y}_{i,c}$

Unsupervised loss

Channel discrimination loss:

$$\mathcal{L}_{\mathrm{cd}}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \mathrm{distance}(z_{i,c_1}, z_{i,c_2})$$

Here.

Embedding of different channel: $z_{\{i,c1\}}$, $z_{\{i,c2\}}$

Context-swapping loss:

$$\mathcal{L}_{cs}(\theta) = -\frac{1}{N} \sum_{i=1}^{N} (y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i))$$

Combined pretraining loss:

$$\mathcal{L}_{\text{pretrain}}(\theta) = \mathcal{L}_{\text{cd}}(\theta) + \mathcal{L}_{\text{cs}}(\theta)$$

Lower-level Problem: Supervised-Training

Lower-level objective is to learn ϕ :

$$\phi^*(\theta) = \arg\min_{\phi} \mathcal{L}_{train}(\theta, \phi; \mathcal{D}_{train})$$

Here,

- Supervised training loss: L_{train}
- Fine-tuned parameters: $\phi^*(\theta)$

Upper-level Problem

Upper-level objective is to learn θ :

$$\theta^* = \arg\min_{\theta} \mathcal{L}_{val}(\theta, \phi^*(\theta); \mathcal{D}_{val}) + \lambda \mathcal{L}_{pretrain}(\theta; \mathcal{D}_{pretrain})$$

Here,

- Validation loss: L_{val}
- Pre-training loss: $L_{pretrain}$

Penalty-based bilevel optimization algorithm is used:

$$\begin{aligned} \min_{\theta,\phi} f(\theta,\phi) &= \min_{\theta,\phi} \left[(1-\gamma) \Big(\mathcal{L}_{\text{val}}(\theta,\phi^*(\theta);\mathcal{D}_{\text{val}}) + \lambda \mathcal{L}_{\text{pretrain}}(\theta;\mathcal{D}_{\text{pretrain}}) \Big) \right. \\ &+ \gamma \Big(\mathcal{L}_{\text{train}}(\theta,\phi;\mathcal{D}_{\text{train}}) - \min_{\phi^*} \mathcal{L}_{\text{train}}(\theta,\phi^*;\mathcal{D}_{\text{train}}) \Big) \right] \\ &\left. p(\theta,\phi) \end{aligned}$$

Here,

Penalty constant: γ

Algorithm Development

Step 1: Computing $\nabla_{\phi} f(\theta, \phi)$:

$$\nabla_{\phi} f(\theta, \phi) = \nabla_{\phi} \gamma \mathcal{L}_{\text{train}}(\theta, \phi; \mathcal{D}_{\text{train}})$$

Parameter update:

$$\phi^{(k+1)} = \phi^{(k)} - \alpha_{\phi} \nabla_{\phi} f(\theta, \phi)$$

Here,

• Learning rate: α_{ϕ}

Algorithm Development

Step 2: Computing $\nabla_{\theta} f(\theta, \phi)$:

$$\nabla_{\theta} f(\theta, \phi) = \nabla_{\theta} \left((1 - \gamma) \Big(\mathcal{L}_{\text{val}}(\theta, \phi^{*}(\theta); \mathcal{D}_{\text{val}}) + \lambda \mathcal{L}_{\text{pretrain}}(\theta; \mathcal{D}_{\text{pretrain}}) \Big) + \gamma \Big(\mathcal{L}_{\text{train}}(\theta, \phi; \mathcal{D}_{\text{train}}) + \mathcal{L}_{\text{train}}(\theta, \hat{\phi}; \mathcal{D}_{\text{train}}) \Big) \right)$$

Here:

$$\hat{\phi} \approx \phi^*(\theta) := \arg\min_{\phi} \mathcal{L}_{\text{train}}(\theta, \phi; \mathcal{D}_{\text{train}})$$

Parameter update:

$$\theta^{(k+1)} = \theta^{(k)} - \alpha_{\theta} \nabla_{\theta} f(\theta, \phi)$$

Full Algorithm

Algorithm 1 Penalty-Based Bilevel Optimization Algorithm

1: Initialize parameters θ and ϕ .

2: while not converged do

3: Compute $\nabla_{\phi} f(\theta, \phi)$.

4: Update ϕ using:

$$\phi^{(k+1)} = \phi^{(k)} - \alpha_{\phi} \nabla_{\phi} f(\theta, \phi).$$

5: Compute $\nabla_{\theta} f(\theta, \phi)$.

6: Update θ using:

$$\theta^{(k+1)} = \theta^{(k)} - \alpha_{\theta} \nabla_{\theta} f(\theta, \phi).$$

7: Here,

$$\nabla_{\theta} \min_{\phi} f(\theta, \phi) \approx \nabla_{\theta} f(\theta, \hat{\phi})$$

8: where,

$$\hat{\phi} \approx \phi^*(\theta) := \arg\min_{\phi} \mathcal{L}_{train}(\theta, \phi; \mathcal{D}_{train})$$

9: end while

Model Architecture and Hyperparameter set

- Input Data: EEG signals shaped as (32, 1, 200, 116) (batch size: 32, 1 channel, 200 time steps, 116 spatial channels).
- Feature Extraction (CNN Encoder):
 - **Layer 1**: 16 filters, kernel: 3x3, max-pooling: 2x2 → Output: (32, 16, 100, 58).
 - **Layer 2**: 32 filters, kernel: 3x3, max-pooling: 2x2 → Output: (32,32,50,29).
 - Fully Connected Layer: Flattens to size 46,400, reduces to 128-dimensional representation.
- LSTM:
 - Single-layer LSTM with 64 hidden units for temporal dependencies.
 - Output Layer: Fully connected, 4 classes (softmax activation).

Component	Details
Pretraining Tasks	Channel discrimination, Context swapping
Epochs	50
Upper-level learning rate	10^(-3)
Lower-level learning rate	10^(-4)
Penalty constant increase rate (gamma)	0.002
Batch Size	16
Loss Function	Cross-entropy loss
Optimizer	Adam optimizer

Model architecture

Experimental Results Summary

Method	AUROC	AUPRC
Base Model (Random		
Initialization)	0.84	0.79
PT+FT (Yuan et al. (2024))	0.89	0.85
Bilevel Optimization (Our		
Method)	0.92	0.88

- **AUROC (Area Under the ROC Curve)**: evaluates the model's ability to distinguish between classes by plotting the True Positive Rate (sensitivity) against the False Positive Rate (1-specificity) across thresholds.
 - Measures the model's ability to differentiate seizure vs. non-seizure events across all thresholds.
- **AUPRC (Area Under the Precision-Recall Curve)**: focuses on the positive (seizure) class by plotting Precision (positive predictive value) against Recall (sensitivity).
 - Focuses on identifying seizures in imbalanced datasets by balancing recall (sensitivity) and precision (positive predictive value).
- The result shows an improvement of 3.7% in AUROC and 3.4% in AUPRC.

Ablation Study

- Low γ : The performance is moderate.
- Moderate γ : The performance improved.
- High γ : The performance declined.

Conclusion

- Bilevel optimization enhances seizure detection performance.
- Effectively addresses the domain shift challenge across patients.
- Successfully tackles variations in brain region characteristics.
- Regularization improves the model's robustness and reliability.

Thank You

