Blackboard: A derivation of the E-ICE equation for entropy of mixing

Same initial concentration " c_i "

$$\Delta S_{mix} = -n_A R ln\left(\frac{C_{A,f}}{C_i}\right) - n_B R ln\left(\frac{C_{B,f}}{C_i}\right)$$

$$\Delta S_{mix} = -n_{tot}R[\chi_A ln(\chi_A) + \chi_B ln(\chi_B)]$$

Clues ...

- Show that $\frac{C_{A,f}}{C_i} = \frac{C_{A,f}}{C_{A,f} + C_{B,f}} = \frac{n_A}{n_{tot}}$
- Use $\frac{n_A}{n_{tot}} = \chi_A$ couple of different ways
- Repeat for B, factor out n_{tot}

Blackboard: Deriving FE#1

Claim: The differential equation of state for U can be written dU = TdS - PdV, and the corresponding Maxwell relation is $\left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial P}{\partial S}\right)_V$. We can get that with the box, but how do we get there without the box?

Clues ...

- The thermodynamic definition of entropy says $dS = \frac{dq_{rev}}{T}$.
- If a process is reversible, the 1st Law (dU = dq + dw) becomes

$$dU = dq_{rev} - PdV$$

(you should explain this).

- Combining these, we get FE#1.
- Applying the cross-derivative rule gets us Maxwell.

By the way: There are actually three other Fundamental Equations; but these others are basically restatements of the same idea.

Blackboard: Deriving FE#2

The *Helmholtz energy* is defined by $A \equiv U - TS$. What's the differential equation of state for A? What's the corresponding Maxwell relation?

Clues:

- Take the total differential of A, using the product rule for TS.
- Combine with FE#1.
- Use cross-derivative rule to get the corresponding Maxwell relation.

Blackboard: Deriving FE#3 & 4

The **Enthalpy** is defined by $H \equiv U + PV$. What's the differential equation or state for H? What's the corresponding Maxwell relation?

Clues:

- Take the total differential of A, using the product rule for PV.
- Combine with FE#1.

The **Gibbs Energy** is defined by $G \equiv H - TS$. What's the differential equation or state for G? What's the corresponding Maxwell relation?

Clues:

- Take the total differential of G, using the product rule for TS.
- Combine with FE#3.

