C S 358H: Intro to Quantum Information Science

Sayam Sethi

September 2024

Contents

1	Stochastic and Unitary Matrices	2
2	Tensor Products	4
3	Dirac Notation	6

1 Stochastic and Unitary Matrices

Part a

Question. Of the following matrices, which ones are stochastic? Which ones are unitary?

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, C = \begin{bmatrix} 1 & \frac{2}{3} \\ 0 & \frac{1}{3} \end{bmatrix}, D = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix},$$

$$E = \begin{bmatrix} 2 & \frac{1}{2} \\ -1 & \frac{1}{2} \end{bmatrix}, F = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, G = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix}, H = \begin{bmatrix} \frac{3i}{5} & \frac{4}{5} \\ \frac{4}{5} & -\frac{3i}{5} \end{bmatrix}$$

Solution. A matrix $\mathbf{A} = (a_{ij})$ is stochastic iff $\sum_i a_{ij} = 1 \land a_{ij} \ge 0$. Therefore, the stochastic matrices are B, C.

A matrix **A** is unitary iff $\mathbf{A}^{\dagger}\mathbf{A} = \mathbf{I}$. Therefore, the unitary matrices are B, D, F, G, H. Note that matrix A is neither stochastic nor unitary.

Part b

Question. Show that any stochastic matrix that is also unitary must be a permutation matrix.

Proof. Let **A** be a matrix that is stochastic and unitary. This implies,

$$\mathbf{A}^{\dagger} \mathbf{A} = \mathbf{I}$$

$$\sum_{i} a_{ij} = 1 \wedge a_{ij} \ge 0$$
(1)

Representing the above properties in terms of the matrix elements $\mathbf{A} = (a_{ij})$, we get the following,

$$\forall i: \sum_{i} a_{ij} \cdot a_{ji} = 1 \tag{2}$$

$$\forall i \neq k : \sum_{i} a_{ij} \cdot a_{ki} = 0 \tag{3}$$

$$\forall i: \exists p_i: a_{ip_i} \neq 0 \tag{4}$$

Now, from (3) and (4), we get that $a_{ij} = 0 \ \forall \ i \neq p_j$, which implies that $a_{ip_i} = 1$ from (2). Therefore, **A** is a permutation matrix with $\Pi = \{p_i\}$.

Part c

Question. Stochastic matrices preserve the 1-norms of nonnegative vectors, while unitary matrices preserve 2-norms. Give an example of a 2×2 matrix, other than the identity matrix, that preserves the 4-norm of real vectors $\begin{bmatrix} a \\ b \end{bmatrix}$: that is, $a^4 + b^4$.

Solution.
$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 preserves the 4-norm of the vector $\begin{pmatrix} a \\ b \end{pmatrix}$.

Part d
Question. Give a characterization of all real matrices that preserve the 4-norms of real vectors. Hopefully, your characterization will help explain why preserving the 2-norm, as quantum mechanics does, leads to a much richer set of transformations than preserving the 4-norm does.
Proof.

2 Tensor Products

Part a

Question. Calculate the tensor product

$$\begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \end{bmatrix} \otimes \begin{bmatrix} \frac{1}{5} \\ \frac{4}{5} \end{bmatrix}.$$

Solution.

$$\begin{pmatrix} \frac{2}{3} \\ \frac{1}{3} \end{pmatrix} \otimes \begin{pmatrix} \frac{1}{5} \\ \frac{4}{5} \end{pmatrix} = \begin{pmatrix} \frac{2}{3} \begin{pmatrix} \frac{1}{5} \\ \frac{4}{5} \end{pmatrix} \\ \frac{1}{3} \begin{pmatrix} \frac{1}{5} \\ \frac{4}{5} \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \frac{2}{15} \\ \frac{8}{15} \\ \frac{1}{15} \\ \frac{4}{15} \end{pmatrix}$$
(5)

Part b

Question. Of the following length-4 vectors, decide which ones are factorizable as a tensor product of two 2×1 vectors, and factorize them. (Here the vector entries should be thought of as labeled by 00, 01, 10, and 11 respectively.)

$$A = \begin{bmatrix} \frac{2}{9} \\ \frac{1}{9} \\ \frac{4}{9} \\ \frac{2}{9} \end{bmatrix}, \ B = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \ C = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{bmatrix}, \ D = \begin{bmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{bmatrix}, \ E = \begin{bmatrix} 0 \\ \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{bmatrix}.$$

Solution. The following matrices can be factorized as a tensor product of two 2×1 vectors:

$$A = \begin{pmatrix} \frac{1}{3} \\ \frac{2}{3} \end{pmatrix} \otimes \begin{pmatrix} \frac{2}{3} \\ \frac{1}{3} \end{pmatrix} \tag{6}$$

$$B = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{7}$$

$$C = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \otimes \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \tag{8}$$

$$E = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{9}$$

Matrix D cannot be factorized as a tensor product of two 2×1 vectors.

Part o

Question. Prove that there's no 2×2 real matrix A such that

$$A^2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

This observation perhaps helps to explain why the complex numbers play such a central role in quantum mechanics.

Proof. We will prove this by contradiction. Let there be a real matrix \mathbf{A} such that $\mathbf{A}^2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Notice that $det(\mathbf{A}^2) = -1$. However, we know that $det(\mathbf{A}^2) = det(\mathbf{A})^2$. Therefore, $det(\mathbf{A})^2 = -1 \implies det(\mathbf{A}) = \pm i$, which is not possible since \mathbf{A} is a real matrix and hence its determinant will be real. This is a contradiction and hence there is no real matrix satisfying the condition.

3 Dirac Notation

Part a

Question. Let $|\psi\rangle = \frac{|0\rangle + 2|1\rangle}{\sqrt{5}}$ and $|\phi\rangle = \frac{2i|0\rangle + 3|1\rangle}{\sqrt{13}}$. What's $\langle \psi | \phi \rangle$?

Solution.

$$\langle \psi | \phi \rangle = \frac{1}{\sqrt{5}} \frac{2i}{\sqrt{13}} \langle 0 | 0 \rangle + \frac{2}{\sqrt{5}} \frac{3}{\sqrt{13}} \langle 1 | 1 \rangle = \frac{6+2i}{\sqrt{65}}$$
 (10)

Part b

Question. Usually quantum states are normalized: $\langle \psi | \psi \rangle = 1$. The state $|\phi\rangle = 2i |0\rangle - 3i |1\rangle$ is not normalized. What constant A makes $|\psi\rangle = \frac{|\phi\rangle}{A}$ a normalized state?

Solution.

$$\langle \phi | \phi \rangle = -2i \cdot 2i \langle 0 | 0 \rangle + 3i \cdot -3i \langle 1 | 1 \rangle = 13 = A^2 \langle \psi | \psi \rangle = A^2 \tag{11}$$

Therefore, $A = \pm \sqrt{13}$.

Part c

Question. Define $|i\rangle = \frac{|0\rangle + i|1\rangle}{\sqrt{2}}$ and $|-i\rangle = \frac{|0\rangle - i|1\rangle}{\sqrt{2}}$. Show (explicitly or implicitly) that the vectors $|i\rangle$ and $|-i\rangle$ form an orthonormal basis for \mathbb{C}^2 . (Hint: show that any vector in \mathbb{C}^2 can be decomposed as a linear combination of $|i\rangle$ and $|-i\rangle$.)

Proof. Consider any state $|\psi\rangle = a|0\rangle + b|1\rangle$. We can write this as,

$$|\psi\rangle = \frac{a - ib + a + ib}{2} |0\rangle + \frac{a - ib - (a + ib)}{2} i |1\rangle$$

$$= \frac{a - ib}{\sqrt{2}} \frac{|0\rangle + i |1\rangle}{\sqrt{2}} + \frac{a + ib}{\sqrt{2}} \frac{|0\rangle - i |1\rangle}{\sqrt{2}}$$

$$= \frac{a - ib}{\sqrt{2}} |i\rangle + \frac{a + ib}{\sqrt{2}} |-i\rangle$$
(12)

Since we can represent any state $|\psi\rangle$ as a linear combination of $|i\rangle$, $|-i\rangle$, they form an orthonormal basis for \mathbb{C}^2 .

Part d

Question. Write the normalized vector $|\psi\rangle$ from part (b) in the $\{|i\rangle, |-i\rangle\}$ -basis.

Solution. For $|\psi\rangle$, $a=2i/\sqrt{13}$ and $b=-3i/\sqrt{13}$ (assuming that we take the positive nor-

malization constant), we get,

$$|\psi\rangle = \frac{2i-3}{\sqrt{26}}|i\rangle + \frac{2i+3}{\sqrt{26}}|-i\rangle \tag{13}$$