Ontology Enrichment and Analysis

Explotación semántica de datos Máster Universitario en Bioinformática

Functional enrichment of GO biological processes and KEGG pathway enrichment analysis in the identified Dynamic Network Biomarkers (DNB) of two diseases

UNIVERSIDAD DE MURCIA

Disease Di		NΒ	GO term P-value		Description			
Acute	{ GCLC; ASNS; PGD; EPHA2;		GO:0006979	7.6E-10	response to oxidative stress			
Lung	TXNL1; SRXN1; CH25H;		GO:0009611	1.4E-6	response to wounding			
Injury	HSPA1A;HSPA	HSPA1A;HSPA1B;CYP51;		1.5E-8	oxidation reduction			
	DNAJC5; DNA	JB4; HMOX1;	GO:0006629	6.9E-6	lipid biosynthetic process			
	GADD45G; PMAIP1; }		GO:0055114	2.7E-5	regulation of inflammatory response			
HBV induced	{ B2M; GCC2; HDAC10;		GO:0010629	0.0029	antigen processing and presentation			
liver	STAT6; CACH-		GO:0019882	0.0056	intracellular protein transport			
cancer	HLA-DMA; TAP		GO:0006886	0.0189	chromosome organization			
cancor	CDH1; YWHAB;		GO:0006325	0.023	negative regulation of gene expression			
	NAP1L1; }		GO:0045191	0.024	regulation of isotype switching			
Acute lu	ng injury			HBV indu	iced liver cancer			
Pathway term	/ term P-value		Pathway term		P-value			
Pathway in cancer		1.54E-6	Acute myeloid leukemia		1.28E-4			
MAPK signaling pathway		4.42E-6	Pathways in cancer		5.51E-4			
p53 signaling pathway		6.57E-6	Leishmaniasis		1.43E-3			
Chronic myeloid leukemia		4.08E-5	Pentose and glucuronate interconversions		3.51E-3			
Hepatitis Ć		4.71E-5	Cytosolic DNA-sensing pathway		3.70E-3			
Adipocytokine signaling pathway		7.95E-5	Adipocytokine signaling pathway		4.45E-3			
Acute myeloid leukemia		5.12E-5	Hepatitis C		5.56E-3			
Leishmaniasis		9.02E-5	Pancreatic cancer		6.17E-3			
Cell cycle		1.14E-4	Toll-like receptor signaling pathway		6.80E-3			

Tissue-specific clocks in Arabidopsis show asymmetric coupling Gene ontology slim term enrichment analysis

	Whole genome	Mesophyll-rich genes		Vasculature	rich genes
Functional category	Gene count	Gene count	P value	Gene count	P value
Other cellular processes	13639	160	5.01×10^{-7}	129	0.808
Other metabolic processes	12844	159	7.56×10^{-9}	107	0.995
Unknown biological processes	9047	35	1	80	0.913
Protein metabolism	4970	36	0.929	32	0.999
Response to stress	4092	56	5.48×10^{-4}	49	0.0948
Developmental processes	3844	47	0.0138	50	0.0278
Response to abiotic or biotic stimulus	3739	73	2.88×10^{-11}	43	0.174
Other biological processes	3555	43	0.0217	57	1.72×10^{-4}
Transport	3497	68	2.14×10^{-10}	42	0.113
Cell organization and biogenesis	3328	43	0.00752	27	0.894
Transcription, DNA-dependent	2547	15	0.970	20	0.893
Signal transduction	2002	17	0.613	20	0.526
DNA or RNA metabolism	919	0	1	6	0.898
Electron transport or energy pathways	592	25	1.46×10^{-10}	4	0.843

Systematic enrichment analysis of gene expression profiling studies identifies consensus pathways implicated in colorectal cancer development

UNIVERSIDAD DE MURCIA

Ontology Enrichment Analysis

- Given a set of genes of interest (with some particular properties), find which ontology terms are overrepresented using the annotations for the global set of genes.
- The hierarchical structure of the ontologies permit to perform such studies at different levels
- Not only GO can be used for enrichment analysis
- KEGG: which pathways are overrepresented

Use of a subset of genes of interest

To determine whether any GO terms annotate a specified list of genes at a frequency greater than that would be expected by chance, GO::TermFinder calculates a *P*-value using the hypergeometric distribution:

$$P=1-\sum_{i=0}^{k-1} {M\choose i} {N-M\choose n-i} \choose {N\choose i}.$$

In this equation, N is the total number of genes in the background distribution, M is the number of genes within that distribution that are annotated (either directly or indirectly) to the node of interest, n is the size of the list of genes of interest and k is the number of genes within that list which are annotated to the node. The background distribution by default is all the genes within a given annotation file, though the software also allows a user-defined background distribution, such that biases in the sampling population (e.g. the genes represented on a microarray) can be accounted for correctly. The hypergeometric distribution is sampling without replacement—for instance, consider a bag with 500 red and 500 green beads. If 20 beads were selected randomly, and beads were not replaced after each selection, and 17 were green, we would use the hypergeometric distribution to calculate the P-value as the probability of picking 17, or more, green beads from 20, given that there are 500 of each in the background distribution.

http://geneontology.org/docs/go-enrichment-analysis/

Gene Set Enrichment Analysis

 Use of all the genes associated with the functional concept, not only a subset of interest

(A) An expression data set sorted by correlation with phenotype, the corresponding heat map, and the "gene tags," i.e., location of genes from a set S within the sorted list. (B) Plot of the running sum for S in the data set, including the location of the maximum enrichment score (ES) and the leading-edge subset.

Ontology Enrichment

- Online enrichment
 - Gene Ontology
 - Reactome

- R libraries for ontology enrichment
 - CLUSTERPROFILER
 - https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
 - GPROFILER
 - https://cran.r-project.org/web/packages/gProfileR/index.html

GO Enrichment Analysis

Export results

Displaying all results; click here to display only results with P<0.05

	Homo sapiens (KEF)		upload	1 (V Hierarchy N	IEW!	<i>9</i>)
GO cellular component complete	<u>#</u>	<u>#</u>	expected	Fold Enrichment	<u>+/-</u>	P value
polysomal ribosome	<u>7</u>	1	.01	> 100	+	1.00E00
<u> </u>	<u>40</u>	1	.03	30.61	+	1.00E00
hintracellular ribonucleoprotein complex	<u>745</u>	3	.61	4.93	+	1.00E00
<u> </u>	13674	<u>16</u>	11.17	1.43	+	1.00E00

Enrichment Analysis in Reactome

UNIVERSIDAD DE **MURCIA**

Analyze Data

Tweets

Current Version: Reactome V54

reactome

2 Nov

Reactome @reactome

Our upgraded search tool has better performance, an improved results display, and integrated help desk access #solrlucene

reactome @reactome 26 Oct

Enrichment Analysis in Reactome

UNIVERSIDAD DE MURCIA

Analyse your data

This tool merges pathway identifier mapping, overrepresentation and expression analysis into a single tabbed data analysis portal, with integrated visualization and summary features.

Select a file from your computer and click on the "GO" button to perform the analysis.

Enrichment Analysis in Reactome

UNIVERSIDAD DE MURCIA

Exercises – Online Enrichment Analysis

AulaVirtual (Recursos → prácticas

→enrichment → ejercicio1-

GOReactomeOnlineEnrichment.pdf)

UNIVERSIDAD DE MURCIA

Enrichment Analysis in R

AulaVirtual (Recursos → prácticas → enrichment → ejercicio2-EnrichmentR.pdf)

Upload to Rstudio: Recursos →
prácticas → enrichment → files enrichment.zip

Questions, comments...

