Physique (MPSI) Année scolaire 2017-2018

Cours de N. TANCREZ

Lycée Saint-Louis

TABLE DES MATIÈRES

Ι	Sig	NAUX HARMONIQUES ET PROPAGATION
	1.	Oscillateur harmonique
	2.	Propagation d'un signal
	3.	Ondes progressives sinusoïdales
	4.	Interférences
	5.	Ondes stationnaires
	6.	Diffraction
ΙΙ	Op'	TIQUE GÉOMÉTRIQUE
	1.	Description ondulatoire de la lumière
	2.	Modèle géométrique de la lumière
	3.	Systèmes optiques
	4.	Systèmes centrés
	5.	Foyers et plans focaux
	6.	Miroir et dioptre plan
П	ІТн	ERMODYNAMIQUE

٠ [.

SIGNAUX HARMONIQUES ET PROPAGATION

I Équation différentielle

Définition. Un oscillateur harmonique à un degré de liberté est un système dont l'évolution est régie par une grandeur x(t) solution de :

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \omega_0^2 x = 0$$

pour une certain constante ω_0 , appelée **pulsation propre** de l'oscillateur.

Exemple. Un object mobile M de masse m fixé en son centre à un ressort horizontal linéaire de raideur k, de longueur à vide l_0 et de masse négligeable est un oscillateur harmonique lorsque les frottements sont négligés.

En effet, l'écart x à la position d'équilibre est alors solution de l'équation de l'oscillateur harmonique de pulsation propre $\omega_0 = \sqrt{\frac{k}{m}}$

II Étude des solutions

Propriété. Les solutions de l'équation de l'oscillateur harmonique de pulsation propre ω_0 et d'inconnue x s'écrivent :

$$x(t) = X_m \cos(\omega_0 t + \varphi)$$
 ou $x(t) = A \cos(\omega_0 t) + B \sin(\omega_0 t)$

où les couples X_m et φ d'une part, et A et B de l'autre, sont des couples de constantes d'intégration que l'on obtient à l'aide des conditions initiales. On passe d'une écriture à l'autre à l'aide des relations :

$$X_m = \sqrt{A^2 + B^2}$$
 et $\tan \varphi = -\frac{B}{A}$

Remarque. La première écriture montre que les solutions sont sinusoïdales.

Définition. La **période propre** T_0 d'un oscillateur est définie comme étant la période de ses oscillations :

On définit de plus la **fréquence propre** $f_0 = \frac{1}{T_0}$.

Propriété. La période propre T_0 s'exprime :

$$T_0 = \frac{2\pi}{\omega_0}$$

On remarque que T_0 est indépendante des conditions initiales : on parle d'isochronisme des oscillations.

III Portrait de phase

1. Oscillateur harmonique

Propriété. Les trajectoires de phase d'un oscillateur harmonique sont des ellipses de demi-axes X_m et $\omega_0 X_m$:

6

2. Propagation d'un signal

I Signaux et ondes

Définition. Un **signal** est une fonction s(t) décrivant les variations d'une grandeur physique au cours du temps. Un signal défini en tout point d'une région de l'espace est appelé **onde**, et est décrit à l'aide d'une fonction s(M, t).

Vocabulaire. Ces signaux sont à connaître :

- un **signal acoustique** est constitué des variations de la pression et de la masse volumique d'un *milieu matériel*, et de la vitesse des particules;
- un **signal électrique** est constitué des variations de l'intensité et de la tension dans un circuit;
- un **signal électromagnétique** décrit les variations des champs électrique et magnétique dans le milieu de propagation.

II Ondes progressives undimensionnelles

Définition. Une **onde unidimensionnelle** ne dépendant *que d'une coordonnée* le long d'un certain axe. En alignant Ox sur ce dernier, on a :

$$s(M, t) = s(x, t)$$

Définition. Une **onde progressive unidimensionnelle** correspond à la propagation d'un signal dans une unique direction de l'espace à une vitesse c > 0 appelée **célérité** de l'onde. Si l'onde se propage vers les x décroissants, on parle d'onde **régressive**.

Exemple. On considère une corde tendue entre deux extrémités A et B, que l'on perturbe en soulevant légèrement un point M au voisinage de A. On constate alors que cette perturbation se propage vers B: c'est une onde progressive se dirigeant vers x croissants:

$$\begin{array}{c} M \longrightarrow A \\ \hline A \end{array}$$

La déformation est ici orthogonale à la direction de propagation : on parle de **polarisation transverse** (par opposition à une **polarisation longitu-dinale**, comme celle d'une onde sonore, où la direction de propagation est la même que la direction de la perturbation).

Remarque. On constate sur cet exemple qu'une onde ne correspond pas à un transfert de matière.

Propriété. Dans le cas où la célérité c d'une onde progressive unidimensionnelle est constante et que celle-ci se propage sans déformation vers les x croissants (resp. décroissants), on a:

$$s(x,t) = f(x-ct)$$
 (resp. $s(x,t) = f(x+ct)$)

III Principe de superposition

Propriété (admis). Si $s_1(x,t)$ et $s_2(x,t)$ sont deux ondes cœxistant dans un même milieu, alors le **principe de superposition** dit qu'elles se superposent sans interagir. Le milieu peut donc être considéré comme étant siège d'une unique onde s(x,t) telle que :

$$s(x,t) = s_1(x,t) + s_2(x,t)$$

Exemple. Sur une corde où cœxistent une onde progressive et une onde régressive correspondant à la propagation de deux déformations « inverses », il existe un instant où la corde n'est pas déformée :

∞

3. Ondes progressives sinusoïdales

I Généralités

Définition. Une onde progressive sinusoïdale (ou harmonique) unidimensionnelle (ou ops) est une onde progressive qui s'exprime si elle se propage vers les x croissants (resp. décroissants):

$$s(x,t) = A\cos(\omega t - kx + \varphi)$$
 (resp. $s(x,t) = A\cos(\omega t + kx + \varphi)$)

avec ω la pulsation, k le nombre d'onde et φ la phase à l'origine.

Exemple. On considère une corde supposée semi-infinie dans le sens des x croissants, dont l'extrémité O est fixée à un ressort vertical :

Lorsque l'extrémité O du ressort est écarté de sa position d'équilibre, il se met à vibrer sinusoïdalement (oscillateur harmonique). La perturbation en x=0 s'écrit alors :

$$s(0,t) = A\cos(\omega t + \varphi)$$

En réponse à cette excitation, une onde transverse, que l'on suppose non amortie et de célerité c constante, se propage vers les x croissants :

$$s(x,t) = f(x - ct) = s\left(0, t - \frac{x}{c}\right) = A\cos\left(\omega t - \frac{\omega}{c}x + \varphi\right)$$

L'onde ainsi créée est une OPS.

Propriété. Une ops présente une double périodicité :

- une périodicité temporelle, caractérisée par la **période** $T=\frac{2\pi}{\omega}$ ou bien la **fréquence** $\nu=\frac{1}{T}$;
- une périodicité spatiale, caractérisée par la longueur d'onde $\lambda = \frac{2\pi}{k}$.

Propriété. Les grandeurs caractéristiques d'une OPS sont reliées par les **relations de dispersion** (équivalentes entre elles) :

(i)
$$k = \frac{\omega}{c}$$
 (ii) $c = \lambda \nu$ (iii) $\lambda = cT$

II Déphasage

Définition. Deux signaux sinusoïdaux sont synchrones s'ils ont même pulsation ω ou, de manière équivalente, même fréquence ν ou même période T.

Définition. Le **déphasage** $\Delta \varphi$ de deux signaux sinusoïdaux synchrones

$$\begin{cases} s_1(t) = A_1 \cos(\phi_1(t)) & \text{avec } \phi_1(t) = \omega t + \varphi_1 \\ s_2(t) = A_2 \cos(\phi_2(t)) & \text{avec } \phi_2(t) = \omega t + \varphi_2 \end{cases}$$

est l'unique réel de $]-\pi,\pi]$ tel que :

$$\Delta \varphi \equiv \phi_2(t) - \phi_1(t) \equiv \varphi_2 - \varphi_1 \pmod{2\pi}$$

Propriété. Soit $s_1(t)$ et $s_2(t)$ deux signaux sinusoïdaux synchrones de pulsation ω , t_1 et t_2 deux instants tels que :

$$s_1(t_1) = s_2(t_2)$$
 et $\frac{ds_1}{dt}(t_1) = \frac{ds_2}{dt}(t_2)$

Alors:

$$\Delta \varphi \equiv -\omega(t_2 - t_1) \pmod{2\pi}$$

Vocabulaire. Soit $s_1(t)$ et $s_2(t)$ deux signaux sinusoïdaux synchrones, on note $\Delta \varphi$ leur déphasage. On dit que :

- s_2 est en avance de phase (resp. retard de phase) sur s_1 lorsque $\Delta \varphi > 0$ (resp. $\Delta \varphi < 0$);
- s_1 et s_2 sont en **phase** lorsque $\Delta \varphi = 0$;
- s_1 et s_2 sont en **opposition de phase** lorsque $\Delta \varphi = \pi$;
- s_1 et s_2 sont en **quadrature** lorsque $\Delta \varphi = \pm \frac{\pi}{2}$.

III De l'OPS à la vibration quelconque

Propriété (admis). Une vibration quelconque peut toujours être exprimée comme une somme d'OPS en utilisant la transformation de Fourier.

4. Interférences

I Phénomène

Définition. On appelle **phénomène d'interférences** la superposition de plusieurs OPS *synchrones*.

Figure d'interférences à la surface d'une cuve à ondes

Propriété. Soit $s_1(M,t)$ et $s_2(M,t)$ deux OPS synchrones de pulsation ω :

$$\begin{cases} s_1(\mathbf{M}, t) = A_1 \cos(\omega t + \varphi_1(\mathbf{M})) \\ s_2(\mathbf{M}, t) = A_2 \cos(\omega t + \varphi_2(\mathbf{M})) \end{cases}$$

Alors l'onde s(M,t) résultant de la superposition de $s_1(M,t)$ et $s_2(M,t)$ a en tout point M la forme d'un signal sinusoïdal de même pulsation ω :

$$s(\mathbf{M}, t) = s_1(\mathbf{M}, t) + s_2(\mathbf{M}, t) = A_r(\mathbf{M}) \cos(\omega t + \varphi_r(\mathbf{M}))$$

II Représentation de Fresnel

Définition. La **représentation de Fresnel** d'un signal sinusoïdal $A\cos(\omega t + \varphi)$ est le vecteur du plan complexe d'amplitude A et faisant un angle φ avec l'axe des réels :

Propriété (admis). La représentation de Fresnel de la somme de deux signaux sinusoïdaux synchrones est la somme des leurs.

Propriété. En reprenant les notations précédentes, on a :

$$A_r(M)^2 = A_1^2 + A_2^2 + 2A_1A_2\cos\Delta\varphi(M)$$

III Cas particuliers

Propriété. Toujours avec les notations précédentes, pour M un point quelconque de l'espace, si les deux ondes $s_1(M,t)$ et $s_2(M,t)$:

— arrivent en phase en M, c'est-à-dire si $\Delta \varphi(M) = 0$, alors l'amplitude résultante $A_r(M)$ est maximale et vaut :

$$A_r(\mathbf{M}) = A_1 + A_2$$

On parle alors d'intérférences constructives;

— arrivent en opposition de phase en M, c'est-à-dire si $\Delta \varphi(M) = \pi$, alors $A_r(M)$ est minimale et vaut :

$$A_r(\mathbf{M}) = |A_1 - A_2|$$

On parle d'intérférences destructives.

5. Ondes stationnaires

I Ondes stationnaires sinusoïdales

Définition. Une **onde stationnaire unidimensionnelle** est une onde unidimensionnelle pouvant s'exprimer sous la forme :

$$s(x,t) = f(x)g(t)$$

Définition. Une **onde stationnaire sinusoïdale unidimensionnelle** (ou **oss**) est une onde stationnaire unidimensionnelle dont les composantes temporelle et spatiale sont sinusoïdales :

$$s(x,t) = C\cos(kx + \varphi)\cos(\omega t + \psi)$$

Propriété. La superposition de deux OPS synchrones de même amplitude et contre-propageantes donne naissance à une OSS.

Exemple. Considérons une corde semi-infinie dans la direction des x décroissants, fixée en son extrémité au point O, sur laquelle on envoie un OPS se dirigeant vers les x croissants $A\cos(\omega t - kx)$. On suppose que l'onde se réfléchit en x=0, donnant naissance à une OPS régressive de même pulsation ω et nombre d'onde k, dont on montre qu'elle s'écrit $-A\cos(\omega t + kx)$. Finalement, d'après le principe de superposition, les oscillations de la corde s'écrivent :

$$s(x,t) = A\cos(\omega t - kx) - A\cos(\omega t + kx) = 2A\sin(kx)\sin(\omega t)$$

Vocabulaire. En un point d'abscisse x, les oscillations au cours du temps d'une oss $s(x,t) = C\cos(kx+\varphi)\cos(\omega t+\psi)$ sont d'amplitude $C|\cos(kx+\varphi)|$. On dit que x est :

- un **ventre** de vibration si $cos(kx + \varphi) = \pm 1$ (amplitude maximale);
- un **nœud** de vibration si $cos(kx + \varphi) = 0$ (amplitude nulle);

Propriété. Deux nœuds ou ventres successifs sont distants de $\frac{\lambda}{2}$:

II Modes propres d'une cavité

Définition. Les **modes propres** de vibration d'une cavité sont les OSS susceptibles d'y perdurer.

Propriété. Les longueurs d'onde λ_n (et donc les fréquences ν_n) accessibles aux modes propres d'une cavité de longueur L sont quantifiées, du fait des conditions aux limites :

$$\lambda_n = \frac{2L}{n} \quad \left(donc \ k_n = n\frac{\pi}{L}\right) \quad et \quad \nu_n = n\frac{c}{2L} \quad \left(donc \ \omega_n = n\frac{\pi c}{L}\right)$$

On peut donc représenter l'allure des premiers modes propres n de vibration :

Expérience. En pratique on peut utiliser une **corde de Melde** (et un stroboscope) pour visualiser les modes propres :

Propriété (admis). Une vibration quelconque perdurant dans une cavité peut toujours être exprimée comme une somme de modes propres.

6. Diffraction

I Phénomène

Définition. Le **phénomène de diffraction** est le comportement des OPS en présence d'obstacles.

II Diffraction à travers une fente

Propriété (admis). Lorsqu'une OPS plane de longueur d'onde λ traverse une fente de largeur a perpendiculaire à son sens de propagation, elle ressort en divergeant. L'amplitude diffractée est importante dans un secteur dont le sommet est le centre de la fente et de demi-ouverture angulaire θ tel que :

$$\sin\theta \simeq \frac{\lambda}{a}$$

Remarque. Ce phénomène n'est donc pas perceptible pour de trop grandes valeurs de a, c'est à dire telles que $a\gg\lambda$.

Π

OPTIQUE GÉOMÉTRIQUE

1. Description ondulatoire de la lumière

I Spectres d'émission

Définition. Le spectre d'émission d'une source lumineuse est l'ensemble des fréquences ν (ou des longueurs d'onde λ_0 dans le vide correspondantes) contenues dans le rayonnement émis par cette source.

Vocabulaire. On distingue trois grandes catégories de spectres :

 Le spectre d'émission continu se présente sous la forme d'une bande colorée ininterrompue. Il est caractéristique des corps chauds et denses.
 C'est par exemple le cas du filament d'une lampe à incandescence, ou bien de la surface des étoiles.

— Un **spectre d'émission de raies** ne contient qu'un nombre restreint de radiations quasi-monochromatiques appelées **raies**. Il est émis par un gaz chaud et à basse pression. En pratique, les lampes à décharge contenant un gaz ou des vapeurs métalliques donnent ce type de spectre.

Spectre d'émission de l'atome d'hélium

— Le **spectre d'émission monochromatique** ne contient qu'une seule raie. Une source associée à ce type de spectre est dite **monochromatique**.

Spectre d'émission d'un la la hélium-néon

II Propagation

Définition. Un milieu est :

- transparent lorsque l'extinction de la lumière y est négligeable;
- homogène si ses propriétés physiques sont identiques en tout point;
- **isotrope** si ses propriétés physiques ne dépendent pas de la direction.

Quand un milieu a toutes ces propriétés, on parle de milieu THI (ou MTHI).

Définition. On note $v(\lambda_0) \leq c$ la vitesse de propagation d'une onde électromagnétique de longueur d'onde λ_0 dans le vide dans un MTHI. On appelle alors **indice de réfraction** de ce milieu pour λ_0 le scalaire :

$$n(\lambda_0) = \frac{c}{v(\lambda_0)}$$
 avec $n(\lambda_0) \ge 1$

Le milieu est dit **dispersif** lorsque n dépend de λ_0 .

Remarque. Tous les milieux sauf le vide sont plus ou moins dispersifs.

Propriété (admis). Les MTHI ont un indice de réfraction qui suit généralement la loi de Cauchy:

$$n(\lambda_0) = A + \frac{B}{{\lambda_0}^2}$$
 avec $A, B \ge 0$ des constantes du milieu

Propriété (admis). Dans un MTHI, les grandeurs λ et ν d'une onde électromagnétique sont reliées par la relation de dispersion $v = \lambda \nu$.

Propriété. On considère une onde électromagnétique de longueurs d'onde λ_0 dans le vide et λ dans un MTHI. Alors :

$$\lambda = \frac{\lambda_0}{n(\lambda_0)} \quad et \ donc \ \lambda \le \lambda_0$$

Remarque. La couleur perçue d'un rayonnement visible dépend seulement de sa fréquence ν donc de sa longueur d'onde dans le vide λ_0 , pas de sa longueur d'onde dans le milieu λ .

2. Modèle géométrique de la lumière

I Approximation de l'optique géométrique

Définition. Un rayon lumineux est une ligne de l'espace qui correspond à la direction de propagation de l'énergie lumineuse. Un large ensemble de ces rayons est appelé faisceau lumineux.

Définition. L'optique géométrique repose sur plusieurs principes :

- (i) Indépendance des rayons lumineux : les rayons lumineux n'interagissent pas entre eux, donc leurs trajectoires sont indépendantes;
- (ii) Propagation rectiligne de la lumière : dans un MTHI, les rayons lumineux sont des droites car la lumière s'y propage en ligne droite;
- (iii) Retour inverse de la lumière : dans un milieu isotrope et transparent, le trajet suivi par la lumière entre deux points est indépendant de son sens de propagation.

Propriété (admis). Les lois de l'optique géométrique sont valables tant que les caractéristiques des milieux traversés (en particulier l'indice optique) varient peu à l'échelle de l'onde, soit :

$$a \gg \lambda$$

avec λ la longueur d'onde et a la dimension caractéristique de variation des propriétés avec lesquels elle interagit. Lorsque cette condition est respectée, on peut se placer dans l'approximation de l'optique géométrique.

II Lois de Snell-Descartes

Définition. On appelle **dioptre** la frontière séparant deux MTHI d'indices différents.

Propriété (admis). Lorsqu'un rayon lumineux (alors appelé rayon incident) rencontre un dioptre, il donne naissance à un rayon réfléchi et éventuellement à un rayon réfracté (de l'autre côté du dioptre).

Théorème (admis). Les lois de Snell-Descartes s'appliquent dès lors qu'un rayon incident rencontre un dioptre séparant deux MTHI d'indices de réfraction n_1 et n_2 :

1. le rayon réfléchi et le rayon réfracté (lorsqu'il existe) sont contenus dans le plan d'incidence, qui est le plan contenant le rayon incident et la normale $\mathcal N$ au dioptre au point d'incidence $\mathcal I$. On a donc le schéma suivant :

2 . les angles d'incidence i_1 et de réflexion r_1 sont opposés :

$$r_1 = -i_1$$

3 . les angles d'incidence i_1 et de réfraction i_2 suivent la relation :

$$n_1 \sin i_1 = n_2 \sin i_2$$

Définition. On dit qu'un milieu d'indice n_1 est moins **réfringent** qu'un autre d'indice n_2 si $n_1 < n_2$.

Propriété. Lorsque la lumière se propage d'un milieu n_1 vers un milieu plus réfringent n_2 , elle se réfracte en se rapprochant de la normale. De plus, on a toujours $i_2 < i_{2,\text{lim}}$, où l'angle de réfraction limite $i_{2,\text{lim}}$ est tel que :

$$\sin i_{2,\lim} = \frac{n_1}{n_2}$$

Propriété. Lorsque la lumière se propage d'un milieu n_1 vers un milieu moins réfringent n_2 , il existe un **angle d'incidence limite** $i_{1,\text{lim}}$ vérifiant :

$$\sin i_{1,\lim} = \frac{n_2}{n_1}$$

tel que :

- si $i_1 \leq i_{1,\text{lim}}$, la lumière se réfracte en s'éloignant de la normale;
- sinon la lumière est totalement réfléchie : on parle de **réflexion totale**.

3. Systèmes optiques

I Systèmes optiques

Définition. Un système optique \mathscr{S} est un ensemble de milieux séparés par des surfaces réfractantes (dioptres) ou réfléchissantes (miroirs).

Définition. On appelle **rayon incident** (resp. **émergent**) un rayon lumineux arrivant sur le (resp. ressortant du) système optique dans le *sens de propagation de la lumière*:

II Objets et images

Définitions. On appelle **objet ponctuel** (resp. **image ponctuelle**) ou **point objet** (resp. **point image**) pour un certain système optique l'intersection des *rayons incidents* (resp. *émergents*) (caractère **réel**) ou de leurs prolongements (caractère **virtuel**).

Ici, A est un objet réel pour $\mathcal S$ et B' est une image virtuelle

Remarque. Les objets et images virtuels ne sont pas visibles par un capteur car l'énergie lumineuse ne s'y concentre pas. L'œil étant un système optique

à part entière, il est potentiellement capable d'observer tout type d'objet ou d'image pour un autre système optique.

Définitions. Un **objet étendu** (resp. **image étendue**) est un ensemble de *points objets* (resp. *images*) conjoints.

Ici, A'B' est une image étendue, virtuelle (donc en pointillés)

III Stigmatisme

Définition. Un système optique $\mathscr S$ est dit **rigoureusement stigmatique** pour un couple de points A et A' si les *rayons incidents* issus du *point objet* A ne donnent lieu, après avoir traversé $\mathscr S$, qu'à un unique *point image*, A' :

On dit alors que A et A' sont **conjugués** par \mathscr{S} (ou que A' est l'image de A par \mathscr{S}), ce que l'on note A $\stackrel{\mathscr{S}}{\longmapsto}$ A'.

Remarque. Lorsque l'image d'un point A par \mathscr{S} n'est pas rigoureusement ponctuelle mais est une tâche de faible dimension, on parle de **stigmatisme** approché (et on continue de noter $A \xrightarrow{\mathscr{S}} A'$).

4. Systèmes centrés

I Systèmes centrés

Définition. Un système optique est **centré** s'il possède un axe de révolution, alors appelé **axe optique** et noté Δ . On le schématise alors :

Propriété. L'image d'un objet situé sur l'axe optique d'un système centré et stigmatique est également située sur l'axe optique.

Définition. Un système centré est **rigoureusement aplanétique** si l'image A'B' de tout objet AB plan et perpendiculaire à son axe optique l'est aussi.

Le système optique \mathcal{S}_1 est aplanétique, contrairement à \mathcal{S}_2

Remarque. Dans la plupart des instruments d'optique réels, l'aplanétisme est réalisé pour les points situés au voisinage de Δ . On parle d'aplanétisme approché.

II Conditions de Gauss

Définition. Les **conditions** de Gauss pour un *système centré* consiste à n'utiliser que des **rayons paraxiaux**, c'est-à-dire proches de l'axe optique et

peu inclinés par rapport à celui-ci.

Remarque. On se place en pratique dans les conditions de Gauss en diaphragmant le système et en observant des objets petits ou éloignés :

Définition. L'approximation de Gauss (ou approximation des petits angles) consiste à confondre fonctions trigonométriques et approximation affine :

$$-\cos \alpha \simeq 1$$
 $-\sin \alpha \simeq \alpha \text{ (mais } \sin^2 \alpha \simeq \alpha^2 \simeq 0)$ $-\tan \alpha \simeq \alpha$

Propriété. Les conditions de Gauss permettent d'obtenir un stigmatisme et un aplanétisme approché, et d'utiliser l'approximation de Gauss.

III Relation de conjugaison et grandissement

Définition. On appelle **relation de conjugaison** la relation algébrique liant les positions d'un objet et de son image par un système optique. Lorsque ce dernier est *centré*, on se contente en pratique d'objets (et donc d'images) situés sur l'axe optique.

Définition. Pour un objet AB perpendiculaire à l'axe optique d'image A'B' également perpendiculaire à l'axe optique, on définit le **grandissement** transversal γ par :

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}}$$

Vocabulaire. On dit que l'image est :

- plus grande (resp. plus petite) que l'objet si $|\gamma| > 1$ (resp. $|\gamma| < 1$);
- droite (resp. renversée) si $\gamma > 0$ (resp. $\gamma < 0$).

5. Foyers et plans focaux

I Objets et images à l'infini

Définition. Un **objet ponctuel à l'infini** (resp. **image ponctuelle à l'infini**) est un faisceau de *rayons incidents* (resp. *émergents*) parallèles, que l'on repère à l'aide de son inclinaison par rapport à l'axe optique.

 A_{∞} à l'infini sur l'axe optique, B'_{∞} est situé à l'infini hors axe optique $(\beta' \neq 0)$

Définition. Lorsqu'un objet étendu $A_{\infty}B_{\infty}$ plan et centré sur l'axe optique est situé à l'infini, on dit qu'il possède un diamètre angulaire (ou diamètre apparent) 2α , où le rayon angulaire (ou rayon apparent) α désigne l'angle des faisceaux issus de A_{∞} et B_{∞} avec l'axe optique :

II Foyers et plans focaux

Définition. Le **foyer objet** F (resp. **foyer image** F') est le *point objet* (resp. *point image*) dont le conjugué se trouve à l'infini sur Δ :

$$F \xrightarrow{\mathscr{S}} A'_{\infty} \in \Delta$$
 et $A_{\infty} \in \Delta \xrightarrow{\mathscr{S}} F'$

On appelle **plan focal objet** (resp. **plan focal image**) le plan transversal passant par F (resp. par F').

Propriété. Tout rayon incident passant par F (resp. parallèle à Δ) émerge du système optique parallèment à Δ (resp. en passant par F').

Propriété (admis). *Tout* système centré étudié dans les conditions de Gauss possède un foyer image et un foyer objet.

Vocabulaire. Dans le cas particulier où F et F' sont rejetés à l'infini, le système est dit **afocal**.

Définition. On appelle foyer secondaire objet ϕ (resp. foyer secondaire image ϕ') tout point du plan focal objet (resp. plan focal image).

Propriété. Par aplanétisme, le conjugué d'un foyer secondaire objet ϕ (resp. foyer secondaire image ϕ') est un point situé à l'infini :

$$\phi \stackrel{\mathscr{S}}{\longmapsto} A'_{\infty} \qquad (resp. \ A_{\infty} \stackrel{\mathscr{S}}{\longmapsto} \phi')$$

19

6. Miroir et dioptre plan

I Miroir plan

Définition. On modélise un **miroir plan** $\mathcal M$ par une surface plane parfaitement réflechissante :

Propriété. Un miroir plan est rigoureusement stigmatique et aplanétique.

Propriété. Soit A un point objet d'image A' par $\mathcal M$ et de projeté orthogonal H sur le plan de $\mathcal M$:

La relation de conjugaison du miroir plan $s.{\'e}crit~alors$:

$$\overline{AH} + \overline{A'H} = 0$$

Propriété. Un objet plan AB parallèle au plan de \mathcal{M} d'image A'B' a pour grandissement transversal :

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = 1$$

II Dioptre plan

Propriété. Un dioptre plan \mathcal{D} n'est pas rigoureusement stigmatique (et donc pas rigoureusement aplanétique):

Propriété. Les conditions de Gauss permettent un stigmatisme approché :

La relation de conjugaison du dioptre plan s'écrit alors :

$$\frac{n_1}{\overline{\rm AH}} = \frac{n_2}{\overline{\rm A'H}}$$

7. Lentilles minces sphériques

-[[[-

THERMODYNAMIQUE