Санкт-Петербургский государственный университет Математико-механический факультет Информационно-аналитические системы

Ким Юния Александровна 18.Б07-мм

Вычислительный практикум

Отчёт по заданию N5

Преподаватель: Евдокимова Т.О.

 ${
m Caнкт-}\Pi{
m erep}{
m fypr}$ 2021

Содержание

1.	Ссылка на код	
2.	Постановка задачи	
	Теоретическая часть	
	3.1. Степенной метод	
	3.1. Степенной метод	
4.	Численный эксперимент	
	4.1. Описание	
	4.2. Результаты	
	4.3. Анализ	

1. Ссылка на код

https://github.com/yuniyakim/MethodsOfComputation/pull/15

2. Постановка задачи

Задача – реализация двух методов нахождения максимального по модулю собственного числа матрицы: степенного метода и метода скалярных произведений, а также сравнение количества итераций и точности.

3. Теоретическая часть

Исходная задача — нахождение максимального по модулю собственного числа матрицы A.

3.1. Степенной метод

Пусть $\lambda_1, ..., \lambda_n$ — собственные числа матрицы A. Пусть $|\lambda_1| \ge |\lambda_2| \ge ... \ge |\lambda_n|$. В качестве начального приближения берём произвольный вектор $x^{(0)}$. Вычисляем значения $x^{(k)}, \lambda_1^{(k)}$ следующим образом.

- $x^{(k)} = Ax^{(k-1)}$.
- $\lambda_1^{(k)} = (x^{(k)})_i / (x^{(k-1)})_i$.

Процесс продолжаем, пока не будет достигнута желаемая точность $\epsilon: |\lambda_1^{(k+1)} - \lambda_1^{(k)}| < \epsilon$. Таким образом, $\lambda_1 \approx \lambda_1^{(k+1)}$.

3.2. Метод скалярных произведений

Пусть $\lambda_1, ..., \lambda_n$ — собственные числа матрицы A. Пусть $|\lambda_1| \ge |\lambda_2| \ge ... \ge |\lambda_n|$. В качестве начального приближения берём произвольный вектор $x^{(0)}$. Пусть $y^{(0)} = x^{(0)}$. Вычисляем значения $x^{(k)}, y^{(k)}, \lambda_1^{(k)}$ следующим образом.

- $x^{(k)} = Ax^{(k-1)}$.
- $\bullet \ y^{(k)} = A^T y^{(k-1)}.$
- $\lambda_1^{(k)} = \frac{(x^{(k)}, y^{(k)})}{(x^{(k-1)}, y^{(k)})}$.

Процесс продолжаем, пока не будет достигнута желаемая точность $\epsilon: |\lambda_1^{(k+1)} - \lambda_1^{(k)}| < \epsilon$. Таким образом, $\lambda_1 \approx \lambda_1^{(k+1)}$.

4. Численный эксперимент

4.1. Описание

Для численного эксперимента брались следующие матрицы.

1. Верхняя треугольная матрица.

$$\left(\begin{array}{cccc} -198.1 & 389.9 & 123.2 \\ 0 & 202.4 & 249.3 \\ 0 & 0 & 489.2 \end{array} \right)$$

2. Трёхдиагональная матрица.

$$\left(\begin{array}{ccccccc}
2 & -1 & 0 & 0 & 0 \\
-3 & 8 & -1 & 0 & 0 \\
0 & -5 & 12 & 2 & 0 \\
0 & 0 & -6 & 18 & -4 \\
0 & 0 & 0 & -5 & 10
\end{array}\right)$$

$$3. \left(\begin{array}{cc} 1 & 0.99 \\ 0.99 & 0.98 \end{array}\right)$$

$$4. \left(\begin{array}{ccc} -401.98 & 200.34 \\ 1202.04 & -602.32 \end{array}\right)$$

- 5. Матрица Гильберта порядка 4.
- 6. Матрица Гильберта порядка 5.
- 7. Матрица Гильберта порядка 6.

Точность ϵ варьировалась от 10^{-2} до 10^{-5} .

4.2. Результаты

Рисунок 4.1. Результаты верхней треугольной матрицы

```
\times
                                                     Microsoft Visual Studio Debug Console
Power method
           |lambda - lambda ε|
                                      Amount of iterations
           10.427452434530508
0.01
                                       25
0.001
                                      34
           10.401148278389517
0.0001
           10.398457311364748
                                       43
1E-05
           10.398180262569504
                                      52
Scalar products method
                                      Amount of iterations
           ||lambda - lambda ε|
0.01
           10.41130809171585
                                      12
0.001
           10.399198582917972
                                      17
0.0001
           10.39828768854316
                                       21
1E-05
           10.39815958654004
                                      26
```

Рисунок 4.2. Результаты трёхдиагональной матрицы

```
Microsoft Visual Studio Debug Console
                                                    Х
Power method
                                     Amount of iterations
           |lambda - lambda ε|
0.01
           5.3386426390744646E-09
                                      2
0.001
           5.3386426390744646E-09
                                     2
0.0001
           1.3633538742396922E-13
                                     3
                                     13
1E-05
          1.3633538742396922E-13
Scalar products method
           ||lambda - lambda_ε|
                                     Amount of iterations
0.01
           2.220446049250313E-16
                                     2
0.001
           2.220446049250313E-16
                                     2
0.0001
           2.220446049250313E-16
                                     2
1E-05
                                     2
          2.220446049250313E-16
```

Рисунок 4.3. Результаты матрицы номер 3

```
X
 Microsoft Visual Studio Debug Console
Power method
           |lambda - lambda ε|
                                      Amount of iterations
0.01
           2005.9999991902482
                                       3
                                      |3
0.001
           2005.9999991902482
                                      4
0.0001
           2005.9999999989504
1E-05
           2005.9999999989504
                                      4
Scalar products method
                                      Amount of iterations
           |lambda - lambda ε|
           2006.00000000000005
0.01
                                      2
0.001
           2006.00000000000005
                                      2
                                      2
0.0001
           2006.00000000000005
1E-05
           2006.00000000000005
                                      2
```

Рисунок 4.4. Результаты матрицы номер 4

```
Microsoft Visual Studio Debug Console
                                                    X
Power method
                                     Amount of iterations
           |lambda - lambda_ε|
0.01
           0.0001966683541909653
                                      5
0.001
           2.2176189596434526E-05
0.0001
           2.500284818740539E-06
                                      6
1E-05
          2.8189435052894396E-07
                                     7
Scalar products method
           ||lambda - lambda_ε|
                                     Amount of iterations
0.01
           3.76055313193735E-05
                                      2
                                      3
0.001
           4.78030945272323E-07
           4.78030945272323E-07
0.0001
                                      3
1E-05
          6.076430691948076E-09
                                     4
```

Рисунок 4.5. Результаты матрицы Гильберта порядка 4

```
Microsoft Visual Studio Debug Console
                                                    Power method
                                     Amount of iterations
           lambda - lambda ε
0.01
           0.0008981380468948696
                                     2
0.001
           0.00011747045273291512
                                     3
0.0001
                                     5
           2.078058274790351E-06
1E-05
          2.7653507927993815E-07
                                     6
Scalar products method
                                     Amount of iterations
           lambda - lambda ε
0.01
           1.2398752824438475E-07
                                     2
                                     2
0.001
           1.2398752824438475E-07
0.0001
           1.2398752824438475E-07
                                     2
                                     2
1E-05
          1.2398752824438475E-07
```

Рисунок 4.6. Результаты матрицы Гильберта порядка 5

```
Microsoft Visual Studio Debug Console
                                                    П
                                                           X
Power method
                                      Amount of iterations
           lambda - lambda ε
0.01
           0.0009307788421679675
0.001
           0.00013926551692478029
                                      4
0.0001
           3.120944052303898E-06
                                      6
1E-05
           4.672267137628694E-07
                                      17
Scalar products method
           llambda - lambda ε
                                      Amount of iterations
0.01
           6.231788665100879E-06
                                      2
0.001
                                      2
           6.231788665100879E-06
           1.3966888712246828E-07
0.0001
                                      3
1E-05
           1.3966888712246828E-07
                                      13
```

Рисунок 4.7. Результаты матрицы Гильберта порядка 6

4.3. Анализ

В результате экспериментов была выявлена зависимость между точностью и числом итераций: чем лучшая точность необходима, тем большее количество итераций требуется.

Кроме того, при сравнении результатов, полученных с помощью степенного метода и метода скалярных произведений, было замечено, что последний требует меньшее количество итераций для достижения одинаковой точности.