过程控制课程 第一章作业

《过程控制系统》P136~139: 1.7, 1.9, 1.10, 1.11, 1.13

1.7 A、B 两种物料在题图 1.3 所示的混合器中混合后,由进入夹套的蒸汽加热。已知:混合器容积 V=500 L,加热蒸汽的汽化热 $\lambda=2268$ kJ。A 物料流量 $Q_A=20$ kg/min,入口温度 $\theta_A=20$ C (恒定);B 物料流量 $Q_B=80$ kg/min,入口温度 $\theta_B=20\pm10$ C (是指温度 θ_B 有 ±10 C 波动,可视为扰动量)。A,B 两物料的密度相同,均为 1kg/L。假设:(1) 在温度变化不大范围内,A,B 物料的比热容与其混合物的比热容相同,

均为 4.2 kJ/kg K;

- (2) 混合器壁薄,导热性能好,可忽略其蓄热能力和热传导阻力;
- (3) 蒸汽夹套绝热良好,可忽略其向外的散热损失。

试写出以混合器出口温度 $\Delta\theta$ 为输出量 y、蒸汽流量 ΔD 为输入量 u 和温度 $\Delta\theta_B$ 为扰动量 d 的动态方程,以及控制通道和扰动通道的传递函数。

题图 1.3

提示: 由热量衡算式 $[(\Sigma H_F - \Sigma H_P + Q)\Delta t = \Delta Q_A]$ 可得如下方程

 $Q_A C (\Delta \theta_A - \Delta \theta) \Delta t + Q_B C (\Delta \theta_B - \Delta \theta) \Delta t + \lambda \Delta D \Delta t = C V \rho \Delta \theta$

其中 λ 为汽化热, θ 为出口温度,D 为蒸汽流量, ρ 为密度,C 为比热容(均相等)。

1.9 有一水槽,其截面积 F 为 5000 cm²。流出侧阀门阻力实验结果为: 当水位 H 变化 20 cm 时,流出量变化为 1000 cm³/s。试求流出侧阀门阻力 R,并计算该水槽的时间常数 T。

1.10 对于第 1.9 题中的水槽,其流入侧管路上调节阀特性的实验结果如下: 当阀门开度变化量 $\Delta\mu$ 为 20%时,流入量变化 Δq_i 为 1000 cm³/s,则 $K_\mu = \Delta q_i / \Delta \mu = 50$ cm³/s (%)。试求该对象中从流入侧阀门开度 μ 到水位 H 的增益 K。

1..11 有一复杂液位对象,其液位阶跃响应实验结果为:

t/s	0	10	20	40	60	80	100	140	180	250	300	400	500	600
h/mm	0	0	0.2	0.8	2.0	3.6	5.4	8.8	11.8	14.4	16.6	18.4	19.2	19.6

- (1) 画出液位的阶跃响应曲线;
- (2) 若该对象用带纯迟延的一阶惯性环节近似,试用作图法确定纯迟延时间 τ 和时间常数 T:
- (3) 定出该对象增益 K 和响应速度 ε 。设阶跃扰动量 $\Delta \mu$ =20%。

要求对建立的传递函数模型进行仿真验证,即判断由传递函数得到的阶跃响应曲线和给出的数据是否拟合较好。

1.13 某温度对象矩形脉冲响应实验为:

t/min	1	3	4	5	8	10	15	16.5	20	25	30	40	50	60	70	80
θ/°C	0.46	1.7	3.7	9.0	19.0	26.4	36	37.5	33.5	27.2	21	10.4	5.1	2.8	1.1	0.5

矩形脉冲幅值为 2 t/h,脉冲宽度 Δt 为 10 min。

- (1) 试将该矩形脉冲响应曲线转换为阶跃响应曲线;
- (2) 用二阶惯性环节写出该温度对象的传递函数。

要求对建立的传递函数模型与实验数据进行仿真验证。