

BCD to 2'S Complement

VAMSI SUNKARI

vamsisunkari9849@gmail.com

IITH - Future Wireless Communication(FWC22040)

Abstract

4 karnaugh-map

This objective of this document is to show Conversion between BCD to 2's Complement

1 Components

Component	Value	Quantity	
Arduino	UNO	1	
Resistor	220ohm	4	
Bread board	-	1	
Jumber wires	M-M	20	
Led	-	4	

XW00 01 11 10 00 0 1 1 1 1 1 01 1 1 ZY11 0 0 0 0 1 10 0 0 0

2 BCD to 2's Complement

The Converter takes 4-bit boolean number as input and produces 2's complement as output. The corresponding truth tables is available

Z	Y	Х	W	Α	В	С	D
0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	0
0	0	1	1	1	1	0	1
0	1	0	0	1	1	0	0
0	1	0	1	1	0	1	1
0	1	1	0	1	0	1	0
0	1	1	1	1	0	0	1
1	0	0	0	1	0	0	0
1	0	0	1	0	1	1	1

FIG 1: K-map for A

		XW			
		00	01	11	10
ZY	00	0	1	1	1
	01	1	0	0	0
	11	0	0	0	0
	10	0	1	0	0

3 Boolean logic

Using Boolean logic,output A in table 0 can be expressed in terms of inputs W,X,Y,Z as

A=Z'W+Z'X+Z'YX'+ZY'X'W'

B=Z'YX'W'+Y'X'W+Z'Y'X

C=Z'X'W+Y'X'W+Z'XW'

D=Z'W+Y'X'W

Fig 2: K-map for B

Fig 3: K-map for C

		XW			
		00	01	11	10
ZY	00	0	1	1	0
	01	0	1	1	0
	11	0	0	0	0
	10	0	1	0	0

Fig 4: K-map for D

5 Hardware Connection

Arduino	2	3	4	5
Leds	led1	led2	led3	led4

Fig:4

Give the connections as per Table 4. For taking the inputs connect 5V of arduino to +ve line of bread board to consider it as logic 'HIGH'.connect GND pin of arduino to -ve line of bread board to consider it as logic 'LOW'.

6 Software

- 1. Connect the arduino to the computer
- 2.Download the follwing code

https://github.com/Vamsi9849/iithfwc/blob/main/a1-avrasm/codes/main.c

 $3.\mbox{The led\ will\ }\mbox{ON\ }\mbox{and\ }\mbox{OFF\ }\mbox{according\ to\ the\ given\ }\mbox{in-put\ }$