## Week 12 Project Deliverable

Group Name: Mike

Member Name: Mike Wang

Email: yuqiao.wang@vanderbilt.edu

**Country:** USA

College: Vanderbilt University

**Batch Code**: LISUM21

Specialization: Data Science

**Date**: 7/22/2023

Submitted to: Data Glacier

## **Problem Statement**

One of the challenge for all Pharmaceutical companies is to understand the persistency of drug as per the physician prescription. To solve this problem ABC pharma company approached an analytics company to automate this process of identification.

The main objective is to build a classification model to predict the NTM drug persistence of patients based on several factors.

# Project Schedule

| Week | Date       | Goal                            |  |  |  |
|------|------------|---------------------------------|--|--|--|
| 07   | 06/19/2023 | Problem Statement, Data Preview |  |  |  |
| 08   | 06/26/2023 | Data Preprocessing              |  |  |  |
| 09   | 07/02/2023 | Data Prepare and cleaning       |  |  |  |
| 10   | 07/09/2023 | EDA                             |  |  |  |
| 11   | 07/16/2023 | Recommendation and Model        |  |  |  |
|      |            | Suggestion                      |  |  |  |
| 12   | 07/23/2023 | Model Building and Evaluation   |  |  |  |
|      |            |                                 |  |  |  |

| 13 | 07/30/2023 | Presentation |
|----|------------|--------------|
|    |            |              |

# Data Understanding

## **Predictor Variables**

### Demographic features

| Age       | Age of the patient during their therapy         |
|-----------|-------------------------------------------------|
| Race      | Race of the patient from the patient table      |
| Region    | Region of the patient from the patient table    |
| Ethnicity | Ethnicity of the patient from the patient table |
| Gender    | Gender of the patient from the patient table    |



| IDN Indicator                       | Flag indicating patients mapped to IDN                         |
|-------------------------------------|----------------------------------------------------------------|
| NTM - Physician Specialty           | Specialty of the HCP that prescribed the NTM $\ensuremath{Rx}$ |
| NTM - T-Score                       | T Score of the patient at the time of the NTM $\dots$          |
| Change in T Score                   | Change in Tscore before starting with any ther                 |
| NTM - Risk Segment                  | Risk Segment of the patient at the time of the                 |
| Change in Risk Segment              | Change in Risk Segment before starting with an                 |
| NTM - Multiple Risk Factors         | Flag indicating if patient falls under multip                  |
| NTM - Dexa Scan Frequency           | Number of DEXA scans taken prior to the first                  |
| NTM - Dexa Scan Recency             | Flag indicating the presence of Dexa Scan befo                 |
| Dexa During Therapy                 | Flag indicating if the patient had a Dexa Scan                 |
| NTM - Fragility Fracture Recency    | Flag indicating if the patient had a recent fr                 |
| Fragility Fracture During Therapy   | Flag indicating if the patient had fragility f                 |
| NTM - Glucocorticoid Recency        | Flag indicating usage of Glucocorticoids (>=7                  |
| Glucocorticoid Usage During Therapy | Flag indicating if the patient had a Glucocort                 |
| NTM - Injectable Experience         | Flag indicating any injectable drug usage in t                 |
| NTM - Risk Factors                  | Risk Factors that the patient is falling into                  |
| NTM - Comorbidity                   | Comorbidities are divided into two main catego                 |
| NTM - Concomitancy                  | Concomitant drugs recorded prior to starting w                 |
| Adherence                           | Adherence for the therapies                                    |

## Target Variable:



Flag indicating if a patient was persistent or...

Boolean Predictor Variable List: (All the variables in the list have two values of Yes or No)

```
['Gluco Record Prior Ntm',
 'Gluco_Record_During_Rx',
 'Dexa_During_Rx',
 'Frag_Frac_Prior_Ntm',
 'Frag_Frac_During_Rx',
 'Idn_Indicator',
'Injectable_Experience_During_Rx',
 'Comorb_Encounter_For_Screening_For_Malignant_Neoplasms',
 'Comorb_Encounter_For_Immunization',
 'Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx',
 'Comorb_Vitamin_D_Deficiency',
 'Comorb Other Joint Disorder Not Elsewhere Classified',
 'Comorb_Encntr_For_Oth_Sp_Exam_W_O_Complaint_Suspected_Or_Reprtd_Dx',
 'Comorb_Long_Term_Current_Drug_Therapy',
 'Comorb_Dorsalgia',
 'Comorb_Personal_History_Of_Other_Diseases_And_Conditions',
 'Comorb_Other_Disorders_Of_Bone_Density_And_Structure',
 'Comorb_Disorders_of_lipoprotein_metabolism_and_other_lipidemias',
 'Comorb_Osteoporosis_without_current_pathological_fracture',
 'Comorb_Personal_history_of_malignant_neoplasm',
 'Comorb Gastro esophageal reflux disease'.
 'Concom_Cholesterol_And_Triglyceride_Regulating_Preparations',
 'Concom_Narcotics',
 'Concom Systemic Corticosteroids Plain'
 'Concom_Anti_Depressants_And_Mood_Stabilisers',
 'Concom_Fluoroquinolones',
 'Concom Cephalosporins',
 'Concom_Macrolides_And_Similar_Types',
 'Concom_Broad_Spectrum_Penicillins',
 'Concom Anaesthetics General',
 'Concom_Viral_Vaccines',
 'Risk_Type_1_Insulin_Dependent_Diabetes',
 'Risk Osteogenesis Imperfecta',
 'Risk_Rheumatoid_Arthritis',
 'Risk_Untreated_Chronic_Hyperthyroidism',
 'Risk Untreated Chronic Hypogonadism',
 'Risk_Untreated_Early_Menopause',
 'Risk_Patient_Parent_Fractured_Their_Hip',
 'Risk_Smoking_Tobacco',
 'Risk_Chronic_Malnutrition_Or_Malabsorption',
 'Risk_Chronic_Liver_Disease',
 'Risk Family History Of Osteoporosis',
 'Risk_Low_Calcium_Intake',
 'Risk_Vitamin_D_Insufficiency',
 'Risk_Poor_Health_Frailty',
 'Risk_Excessive_Thinness',
 'Risk_Hysterectomy_Oophorectomy',
 'Risk_Estrogen_Deficiency',
 'Risk Immobilization'.
 'Risk_Recurring_Falls']
```

All these data will be dummy coded with 0 and 1 values for future classification model

Columns with quantitative data:

|      | Dexa_Freq_During_Rx | Count_Of_Risks |
|------|---------------------|----------------|
| 0    | 0                   | 0              |
| 1    | 0                   | 0              |
| 2    | 0                   | 2              |
| 3    | 0                   | 1              |
| 4    | 0                   | 1              |
|      |                     |                |
| 3419 | 0                   | 1              |
| 3420 | 0                   | 0              |
| 3421 | 7                   | 1              |
| 3422 | 0                   | 0              |
| 3423 | 0                   | 1              |
|      |                     |                |

|       | Dexa_Freq_During_Rx | Count_Of_Risks |  |  |
|-------|---------------------|----------------|--|--|
| count | 3424.000000         | 3424.000000    |  |  |
| mean  | 3.016063            | 1.239486       |  |  |
| std   | 8.136545            | 1.094914       |  |  |
| min   | 0.000000            | 0.000000       |  |  |
| 25%   | 0.000000            | 0.000000       |  |  |
| 50%   | 0.000000            | 1.000000       |  |  |
| 75%   | 3.000000            | 2.000000       |  |  |
| max   | 146.000000          | 7.000000       |  |  |

No outliers and missing values exist in the dataset

Data Cleaning and Transformation

Since there is no missing data in the dataset, the only values that need to be cleaned was features that contains 'Unknown'

Values:

```
# impute unknown value
df.loc[df['Change_Risk_Segment'] == 'Unknown', 'Change_Risk_Segment'] = 'No change'
df.loc[df['Change_T_Score'] == 'Unknown', 'Change_T_Score'] = 'No change'
```

For unknown changes, I grouped them all into unchanged group which is the majority of the variable

```
def transform_speciality(value):
    transform medical speciality
    if 'MEDICINE' in value.split(' '):
        return 'MEDICINE'
    elif 'SURGERY' in value.split(' '):
        return 'SURGERY'
    elif df['Ntm_Speciality'].value_counts()[value] < 10 or value == 'Unknown':
        return 'OTHER'
    return value</pre>
```

Cleaned and transform medical specialty to decrease the variable numbers.

Use label encoding and one hot encoding to transform different types of categorical features

|   | Ethnicity_Hispanic | Ethnicity_Not<br>Hispanic | Ethnicity_Unknown | Age_Bucket_55-<br>65 | Age_Bucket_65-<br>75 | Age_Bucket_<55 | Age_Bucket_>75 | Ntm_Speciality_Bucket_Endo/Onc/U |
|---|--------------------|---------------------------|-------------------|----------------------|----------------------|----------------|----------------|----------------------------------|
| 0 | 0.0                | 1.0                       | 0.0               | 0.0                  | 0.0                  | 0.0            | 1.0            | (                                |
| 1 | 0.0                | 1.0                       | 0.0               | 1.0                  | 0.0                  | 0.0            | 0.0            | (                                |
| 2 | 1.0                | 0.0                       | 0.0               | 0.0                  | 1.0                  | 0.0            | 0.0            | (                                |
| 3 | 0.0                | 1.0                       | 0.0               | 0.0                  | 0.0                  | 0.0            | 1.0            | (                                |
| 4 | 0.0                | 1.0                       | 0.0               | 0.0                  | 0.0                  | 0.0            | 1.0            | (                                |

Code target variables

```
# label encode other features
for col in bool_cols:
   label(df, col)
# code target variables
df['target'] = np.where(df['Persistency_Flag'] == 'Persistent', 1, 0)
df['target']
       1
2
4
3419
      1
3420
3421
      1
3422
3423
Name: target, Length: 3424, dtype: int32
```

# Exploratory Data Analysis and Recommendations



There is a huge distinction between the number of Male and Female patients, we will recommend not use this feature or weight it less.





Again, Race and Ethnicity groups are not balanced in the dataset, one way is that we can group other groups together into a new bigger group.

All the variables above have very unbalanced data distribution, as a result we recommend to group other values together into a new group for later model feature selection.



The healthcare dataset has many Boolean columns that contains YES or NO values. Again many of the unbalanced features will not be recommended for later use.

## **Model Selection and Building**

Through the model-building process, I evaluated two Linear Classification models (Logistic Regression, Support Vector Machine), one Ensemble model (Random Forest), and one Boosting model (Extreme Gradient Boosting).

First, the dataset was split into train and test sets for model evaluation. Then, we use the training set to train fit the model, then take the test set to predict target variables. Finally, use different evaluation metrics to evaluate performance of models.

#### **Logistic Regression:**

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)

clr = LogisticRegressionCV(cv=5, scoring='accuracy')

clr.fit(X_train, y_train)

LogisticRegressionCV(cv=5, scoring='accuracy')

pred = clr.predict(X_test)

acc_log = accuracy_score(y_test, pred)
print("Accuracy Score:", acc_log)
pre_log = precision_score(y_test, pred)
print('Precision Score:', pre_log)
recall_log = recall_score(y_test, pred)
print('Recall Score:', recall_log)
f1_log = f1_score(y_test, pred)
print('F1 Score:', f1_log)
roc_log = roc_auc_score(y_test, pred)
print('ROC Area:', roc_log)
```

Accuracy Score: 0.8394160583941606 Precision Score: 0.8148148148148

Recall Score: 0.752851711026616 F1 Score: 0.7826086956521738 ROC Area: 0.8231083199682843



#### Linear SVC:

After fitting Linear SVC Model, I visualized all features by their importance level and remove the unimportant features:

```
# visualize feature importance
num_features = 39
coef = svc.coef_.ravel()
top_positive_coefficients = np.argsort(coef)[-num_features:]
top_negative_coefficients = np.argsort(coef)[:num_features]
top_coefficients = np.hstack([top_negative_coefficients, top_positive_coefficients])
plt.figure(figsize=(20,10))
colors = ['green' if c < 0 else 'blue' for c in coef[top_coefficients]]
plt.bar(np.arange(2 * num_features), coef[top_coefficients], color=colors)
feature_names = np.array(X.columns.values)
plt.xticks(np.arange(2 * num_features), feature_names[top_coefficients], rotation=45, ha='right')
plt.show()</pre>
```



Accuracy Score: 0.8379562043795621 Precision Score: 0.8064516129032258 Recall Score: 0.7604562737642585

F1 Score: 0.7827788649706457 ROC Area: 0.8233560989674372



#### **Random Forest:**

Fit the data to Ensemble model Random Forest and visualized the top nodes of some of the decision trees:



Accuracy Score: 0.8350364963503649 Precision Score: 0.8048780487804879 Recall Score: 0.752851711026616

F1 Score: 0.7779960707269156 ROC Area: 0.8195538175986161



### **XGboost:**

For Boosting model, I selected XGboost to fit the data. I used Bayesian optimization to tune the hyperparameters:

```
params_gbm ={
    'max_depth':(1, 10),
    'learning_rate':(0.01, 1),
    'n_estimators':(80, 500),
    'subsample': (0.8, 1),
}
gbm_bo = BayesianOptimization(gbm_cl_bo, params_gbm, random_state=1)
gbm_bo.maximize(init_points=20, n_iter=4)
```

| iter | target | learni  | max_depth | n_esti | subsample |
|------|--------|---------|-----------|--------|-----------|
| 1    | 0.793  | 0.4229  | 7.483     | 80.05  | 0.8605    |
| 2    | 0.8109 | 0.1553  | 1.831     | 158.2  | 0.8691    |
| 3    | 0.7824 | 0.4028  | 5.849     | 256.1  | 0.937     |
| 4    | 0.7904 | 0.2124  | 8.903     | 91.5   | 0.9341    |
| 5    | 0.7857 | 0.4231  | 6.028     | 139.0  | 0.8396    |
| 6    | 0.789  | 0.8027  | 9.714     | 211.6  | 0.9385    |
| 7    | 0.782  | 0.8776  | 9.051     | 115.7  | 0.8078    |
| 8    | 0.797  | 0.1781  | 8.903     | 121.3  | 0.8842    |
| 9    | 0.7715 | 0.9583  | 5.798     | 370.6  | 0.8631    |
| 10   | 0.7839 | 0.6896  | 8.512     | 87.68  | 0.95      |
| 11   | 0.7802 | 0.989   | 7.733     | 197.8  | 0.9579    |
| 12   | 0.7915 | 0.1122  | 5.031     | 461.6  | 0.8587    |
| 13   | 0.8109 | 0.2949  | 2.17      | 88.13  | 0.9358    |
| 14   | 0.8003 | 0.2195  | 3.39      | 286.5  | 0.8107    |
| 15   | 0.7901 | 0.5784  | 2.321     | 327.5  | 0.94      |
| 16   | 0.7923 | 0.1113  | 4.727     | 371.6  | 0.8828    |
| 17   | 0.7967 | 0.05945 | 5.823     | 358.8  | 0.903     |
| 18   | 0.7882 | 0.9451  | 6.279     | 459.4  | 0.8275    |
| 19   | 0.7981 | 0.1479  | 8.267     | 247.0  | 0.8331    |
| 20   | 0.778  | 0.9282  | 4.13      | 395.3  | 0.9452    |
| 21   | 0.8076 | 0.01764 | 2.457     | 377.9  | 0.9529    |
| 22   | 0.7864 | 0.4481  | 4.721     | 310.1  | 0.9488    |
| 23   | 0.7956 | 0.3617  | 8.191     | 247.1  | 0.9915    |
| 24   | 0.8098 | 0.09787 | 1.855     | 159.1  | 0.8381    |
|      |        |         |           |        |           |

Accuracy Score: 0.8437956204379562 Precision Score: 0.8023255813953488

Recall Score: 0.7870722433460076

F1 Score: 0.7946257197696737 ROC Area: 0.8331095813886435



### I then grouped all the performances together into barplots to compare the difference:











Overall, every model has pretty similar performance regarding different evaluation metrics. Among them, XGboost has the best average performance. So it is recommended to use the XGboost model to make predictions. The model is save as the best model file for later use.

```
import pickle

# save the best model
filename = 'best_model.sav'
pickle.dump(clf, open(filename, 'wb'))

loaded_model = pickle.load(open(filename, 'rb'))
loaded_model.score(X_test, y_test)

0.8437956204379562
```