RENDRE LE SUJET AVEC LA COPIE.

Université Montpellier 2 HLMA 410 Année 2014-2015

Examen - session 2

Durée 2h00. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

1 Analyse

Exercice 1. Question de cours Soient $u=(u_1,u_2,u_3)$ et $v=(v_1,v_2,v_3)$ deux vecteurs de \mathbb{R}^3 . On note également $\langle \cdot, \cdot \rangle$ le produit scalaire canonique de \mathbb{R}^3 .

- 1. Donner la définition du produit vectoriel $u \wedge v$.
- 2. Montrer que $\langle u, u \wedge v \rangle = 0$.
- 3. Soient (e_1, e_2, e_3) une base orthonormale directe de \mathbb{R}^3 . Calculer : (a) $e_1 \wedge e_2$ (b) $e_3 \wedge e_2$ (c) $e_2 \wedge e_2$
- 4. L'application $v \mapsto (1,2,3) \land v$ est-elle continue? Est-elle différentiable?

Exercice 2. On considère l'application

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x, y, z) \mapsto (xye^z, \cos(yz))$

- 1. Justifier que f est de classe \mathcal{C}^{∞} sur \mathbb{R}^3 .
- 2. Donner la différentielle de f au point (1,2,3).

Exercice 3. Pour tout $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ on note $f(x,y) = \frac{xy^2}{x^2+y^2}$.

- 1. Montrer que f se prolonge en une fonction continue \tilde{f} définie sur \mathbb{R}^2 .
- 2. En quels points de \mathbb{R}^2 la fonction \tilde{f} est elle différentiable?

Exercice 4. Soit
$$f(x,y) = \exp\left(-9x^2 - \frac{y^2}{4} + 36x - y - 37\right)$$
.

- 1. Étudier la continuité f. Sur quel ensemble f est-elle \mathcal{C}^{∞} ?
- 2. Calculer le gradient et la Hessienne de f en les points de \mathbb{R}^2 pour lesquels ces quantités sont bien définies.
- 3. Déterminer alors le(s) point(s) critique(s) de f et donner leur nature (minimum/maximum, local/global, point selle,...).
- 4. On pose $D_1 = \{(X,Y) \in \mathbb{R}^2 | X^2 + Y^2 < 1\}$ et on donne $\iint_{D_1} \exp(-X^2 Y^2) dX dY = \pi(1 e^{-1})$. En déduire de la valeur de

$$\iint_{D_2} f(x, y) dx dy$$

où
$$D_2 = \{(x,y) \in \mathbb{R}^2 | 9(x-2)^2 + \frac{1}{4}(y+2)^2 < 1 \}.$$

2 Probabilité

Exercice 5. Soit X une variable aléatoire réelle telle que $\mathbb{E}(X^2) < +\infty$. Montrer que

$$\mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2.$$

Exercice 6. On vous propose un jeu d'argent : vous lancez trois fois une pièce équilibrée et si vous n'obtenez que des "pile" ou que des "face", vous empochez 5 euros. Sinon, c'est à vous de débourser 2 euros.

- 1. Donner la loi de probabilité de X, le gain associé à ce jeu.
- 2. Calculer l'espérance de X. Ce jeu vaut-il le coup?
- 3. Calculer la variance de X.

RENDRE LE SUJET AVEC LA COPIE.