nazwy liczb w działaniach

dzielnik

dzielna

cechy podzielności liczb

Liczba dzieli się przez:

- gdy jej ostatnia cyfra to: 2, 4, 6, 8 lub 0
- 4 gdy jej dwie ostatnie cyfry tworzą liczbę podzielną przez 4
- 5 gdy jej ostatnia cyfra to 0 lub 5
- gdy jej ostatnia cyfra to 0
- gdy suma jej cyfr jest liczbą podzielną przez 3
- gdy suma jej cyfr jest liczbą podzielną przez 9

liczby pierwsze i liczby złożone

liczba pierwsza – naturalna liczba dodatnia, która ma tylko dwa dzielniki: 1 i samą siebie np. 2, 3, 5, 7, 11

liczba złożona – naturalna liczba dodatnia, która ma więcej niż dwa dzielniki: np. 4, 6, 48 liczby 0 i 1 nie są ani liczbami pierwszymi ani liczbami złożonymi.

rozkład liczby na czynniki pierwsze

Przykład: 39 3
$$13 39 = 3 \cdot 13$$

kolejność wykonywania działań

działania w nawiasach 1 potęgowanie i pierwiastkowanie 2 mnożenie i dzielenie* dodawanie i odejmowanie* 4 *w kolejności występowania

rodzaje liczb

liczby naturalne: 0, 1, 2, 3, 4, 5, 6, ... liczby całkowite: ...,-3,-2,-1, 0, 1, 2, 3,... liczby wymierne: liczby, które można przedstawić w postaci ułamka, w którym licznik i mianownik są całkowite, np. 3; $\frac{1}{2}$; -0,25; -5 $\frac{1}{2}$ (mają rozwinięcie dziesiętne skończone lub nieskończone okresowe) liczby niewymierne: liczby, których nie można przedstawić w postaci ułamka zwykłego, np. $\sqrt{3}$, - $\sqrt[3]{7}$, π (mają rozwinięcie dziesiętne nieskończone nieokresowe)

ułamki zwykłe

licznik

mianownik

Ułamek dodatni jest:

- ułamkiem właściwym, gdy: licznik < mianownik
- ułamkiem niewłaściwym, gdy:

licznik ≥ mianownik

liczba odwrotna do $a \neq 0$

1 \boldsymbol{a}

(liczba 0 nie ma liczby odwrotnej)

liczba przeciwna do a

- *a*

(liczbą przeciwną do 0 jest 0)

prędkość, droga, czas

$$v = \frac{s}{t}$$

v – prędkość, s –droga, t - czas

ułamki i procenty

$$\frac{1}{100} = 0.01 = 1\%$$

$$\frac{1}{10}$$
 = 0,1 = 10%

$$\frac{1}{5} = 0.2 = 20\%$$

$$\frac{1}{4} = 0.25 = 25\%$$

$$\frac{1}{2} = 0.5 = 50\%$$

$$\frac{3}{4} = 0.75 = 75\%$$

(ułamek dziesiętny nieskończony okresowy)

$$\frac{1}{3} = 0.3333 \dots =$$

$$= 0, (3) \approx 33\frac{1}{3}\%$$

zaokrąglanie liczb

Jeśli pierwszą z odrzucanych cyfr jest 0, 1, 2, 3, 4, to ostatnia pozostawiona cyfra się nie zmienia. Odrzucone cyfry zastępujemy zerami. Np. przybliżenie do setek 3 430≈ 3 400

Jeśli pierwszą z odrzucanych cyfr jest 5, 6, 7, 8, 9, to do ostatniej pozostawionej cyfry dodajemy 1. Odrzucone cyfry zastępujemy zerami. Np. przybliżenie do setek 3 480≈ 3 500

skala

1:1

skala liczbowa na mapie

np. 1:200 000

mapa	rzeczywistość
1 cm	200 000 cm
1 cm	2 000 m
1 cm	2 km

Dla dowolnej liczby a i naturalnej liczby n większej od zera:

podstawa potęgi

Dla dowolnej nieujemnej liczby a:

pierwiastek kwadratowy

$$\sqrt{a} = b$$
, gdy $b^2 = a$

pierwiastek sześcienny

Dla dowolnych liczb a i b:

$$\sqrt[3]{a} = b$$
, gdy $b^3 = a$

działania na potęgach

Dla a i b różnych od zera i dla liczb naturalnych *m* i *n*:

$$a^m \cdot a^n = a^{m+n}$$

$$a^m: a^n = \frac{a^m}{a^n} = a^{m-n}$$

$$a^m \cdot b^m = (a \cdot b)^m$$

$$a^m: b^m = \frac{a^m}{b^m} = \left(\frac{a}{b}\right)^m$$

$$(a^m)^n = a^{m \cdot n}$$

szacowanie pierwiastków

wyrażenia algebraiczne

Jednomian – wyrażenie algebraiczne, które jest pojedynczą liczbą, pojedynczą literą lub iloczynem liczb i liter np. $-5x^2v^3$

Jednomian zapisujemy w kolejności:

znak → czynnik liczbowy → czynniki literowe w kolejności alfabetycznej

Jednomiany podobne – różnią się co najwyżej współczynnikami liczbowymi

Suma algebraiczna – suma jednomianów np. -2xy+4dk

liczba rozwiązań równania liniowego z jedną niewiadomą

np.
$$x+3=7$$

nieskończenie wiele rozwiązań

brak rozwiązań

kwadraty i sześciany liczb

$$11^{2} = 121$$

$$12^{2} = 144$$

$$13^{2} = 169$$

$$14^{2} = 196$$

$$15^{2} = 225$$

$$16^{2} = 256$$

$$17^{2} = 289$$

$$18^{2} = 324$$

 $19^2 = 361$

$$2^{3} = 8$$
 $3^{3} = 27$
 $4^{3} = 64$
 $5^{3} = 125$
 $6^{3} = 216$
 $7^{3} = 343$
 $8^{3} = 512$
 $9^{3} = 729$

średnia arytmetyczna

Średnia arytmetyczna zestawu liczb $a_1, a_2, ..., an$ jest równa sumie tych liczb podzielonej przez liczbę składników

$$\frac{a_1 + a_2 + \dots + an}{n}$$

prawdopodobieństwo

$$P(A) = \frac{n_A}{N}$$

liczba zdarzeń sprzyjających zdarzeniu A

liczba wszystkich możliwych zdarzeń elementarnych

odległość punktu od prostej

proste równoległe

proste prostopadłe

kąty przyległe

kąt ostry

kąt prosty

kąt rozwarty

kat

kąty wierzchołkowe

suma miar kątów w czworokącie

trójkąt

 $\alpha + \beta + \gamma = 180^{\circ}$

 $P = \frac{a \cdot h_1}{2} = \frac{b \cdot h_2}{2} = \frac{c \cdot h_3}{2}.$

$$0bw. = a + b + c$$

- trójkąt ostrokątny wszystkie kąty wewnętrzne są ostre
- trójkąt rozwartokątny- jeden z kątów wewnętrznych jest rozwarty, pozostałe są ostre
- trójkąt prosty- jeden z kątów wewnętrznych jest prosty, pozostałe są ostre

trójkat równoramienny

trójkąt równoboczny

trójkąt prostokątny

twierdzenie Pitagorasa

$$a^2 + b^2 = c^2$$

wielokąt foremny

- wszystkie boki mają taką samą długość oraz wszystkie kąty taką samą miarę;
- np. trójkąt równoboczny, kwadrat, sześciokąt foremny

zastosowania twierdzenia Pitagorasa

połowa trójkąta równobocznego:

figura osiowosymetryczna

figura, która ma oś symetrii, np.

$$P = a^2$$

$$d^2$$

 $0bw. = 4 \cdot a$

kwadrat

- wszystkie boki równej długości
- wszystkie kąty wewnętrzne proste
- przekątne prostopadłe do siebie i równej długości
- punkt przecięcia przekątnych jest środkiem każdej z nich
- $d=a\sqrt{2}$

prostokat

- $P = a \cdot b$
- $Obw. = 2 \cdot a + 2 \cdot b$
- pary boków równoległych tej samej długości
- wszystkie kąty wewnętrzne proste
- przekatne równej długości
- punkt przecięcia przekątnych jest środkiem każdej z nich

równoległobok

$$P = b \cdot h_2$$

$$0 hw = 2 \cdot a + 2$$

- dwie pary boków równoległych
- pary boków równoległych tej samej długości
- punkt przecięcia przekątnych jest środkiem każdej z nich
- suma katów przy każdym boku równa 180°

graniastosłup

 $P_c = 2 \cdot P_p + P_b$ $V = P_n \cdot H$

 P_c - pole powierzchni całkowitej

P_b- pole powierzchni bocznej

 P_p - pole podstawy

V- objętość graniastosłupa to kwadraty

H- wysokość graniastosłupa

przykład siatki graniastosłupa: graniastosłup prosty, wszystkie ściany są prostokątami

prostopadłościan:

sześcian: graniastosłup prosty, wszystkie ściany

graniastosłup prosty:

graniastosłup prosty, podstawa jest wielokątem

prostopadłe do podstaw,

graniastosłup prawidłowy:

krawędzie boczne

ściany boczne są

prostokatami

foremnym

 $P = a \cdot h_1$

 $Obw. = 2 \cdot a + 2 \cdot b$

trapez

 $P = a \cdot h$

 $0bw. = 4 \cdot a$

- wszystkie boki równej długości
- dwie pary boków równoległych
- przekatne prostopadłe do siebie
- punkt przecięcia przekątnych jest środkiem każdej z nich

co najmniej jedna para

boków równoległych

ramieniu równa 180°

suma kątów przy jednym

suma kątów przy każdym boku równa 180°

sześcian

wszystkie ściany są kwadratami

$$P_c = 6 \cdot a^2$$

$$V = a^3$$

ostrosłup

podstawa

$$P_c = P_p + P_b$$
$$V = \frac{1}{3} \cdot P_p \cdot H$$

P_c - pole powierzchni całkowitej

P_b- pole powierzchni bocznej

 P_{p} - pole podstawy

V - objętość ostrosłupa

H- wysokość ostrosłupa

ostrosłup prosty: krawędzie boczne równej długości ostrosłup prawidłowy:

ostrosłup prosty, w którym podstawa to wielokat foremny

czworościan: ostrosłup, w którym wszystkie ściany są trójkątami

> przykład siatki ostrosłupa:

ramiona trapezu

 $P = \frac{(a+b) \cdot h}{2}$

Obw. = a + b + c + d

jednostki masy

jednostki czasu

 $1 \min = 60 s$

1 h = 60 min = 3600 s

1 kwadrans = 15 min

1 doba = 24 h

1 tydzień = 7 dni

1 rok = 365 lub 366 dni

1 rok = 12 miesięcy

jednostki długości

1 mm 1 cm = 10 mm 1 dm = 10 cm 1 m = 10 dm = 100 cm 1 km = 1000 m 1 mm = 0,1 cm 1 dm = 0,1 dm 1 dm = 0,1 m 1 cm = 0,01 m 1 cm = 0,01 m

jednostki prędkości

 $1\frac{m}{s}$ $1\frac{km}{h} = \frac{1000}{3600} \frac{m}{s}$

jednostki pola

1 mm²

 $1 \text{ cm}^2 = 100 \text{ mm}^2$

 $1 \text{ dm}^2 = 100 \text{ cm}^2$

 $1 \text{ m}^2 = 100 \text{ dm}^2$

 $1 \text{ m}^2 = 10\ 000\ \text{cm}^2$

 $1 a = 100 m^2$

 $1 \text{ ha} = 10\ 000\ \text{m}^2$

1 ha = 100 a

1 dm = 10 cm

 $1 \, dm = 10 \, cm$

 $1 \text{ dm} \cdot 1 \text{ dm} = 1 \text{ dm}^2 =$ = 10 cm · 10 cm = 100 cm² 1 a 10 m

10 m

1 ha

100 m

100 m

jednostki objętości i pojemności

1 mm³

 $1 \text{ cm}^3 = 1 000 \text{ mm}^3$

 $1 \, dm^3 = 1 \, 000 \, cm^3$

 $1 \text{ m}^3 = 1 000 \text{ dm}^3$

 $1 \text{ m}^3 = 1 000 000 \text{ cm}^3$

1 dm = 10 cm 1 dm = 10 cm

1 ml = 1 cm³

1 l = 1 000 ml

 $1 I = 1 dm^3$

 $1 \text{ m}^3 = 1000 \text{ I}$

