Projet: Calculatrice à notation polonaise inverse

I - Exercice	5
II - Spécifications	7
III - Notation Polonaise Inverse	11

Exercice

Vous devez réaliser une calculatrice à notation polonaise inversée (notation postfixe). Vous travaillerez par groupe de deux en collaborant avec l'outil de gestion de versions de votre choix (SVN, CVS, GIT, Mercurial, etc.). Vous veillerez à respecter les principes d'encapsulation de la programmation orientée objet. Vous vous assurerez d'une gestion efficace de la mémoire. Vous ferez particulièrement attention aux designs patterns qu'il conviendra d'utiliser. Vous prendrez garde également à la bonne gestion des erreurs d'exécution.

Vous devrez respecter les spécifications en annexe de ce document. Ces spécifications vous proposent une série de fonctions optionnelles, vous devrez en implémenter **au moins une** de votre choix.

Pour mener à bien le projet, vous pourrez utiliser toutes les librairies standards de votre choix ainsi que le framework Qt. Vous pourrez également réutiliser des développements de TD ou TP qui vous sembleront utiles.

Résultats attendus

Le projet prendra fin lors de la dernière séance de TP. Une démonstration de votre exécutable vous sera demandé. Vous devrez livrer :

- L'accès au dépôt du système de gestion de versions
- La documentation doxygen complète (version pdf ou un accès à une version web)
- Un document justifiant vos choix de conception, un modèle UML de l'application et les diagrammes de séquence des principaux scénarios (2 à 5 pages)

Évaluation

La couverture des spécifications donnera une note sur 16 (il sera possible d'obtenir une note jusqu'à 20 en enrichissant votre code par d'autres fonctionnalités). Des points seront enlevés en cas de mauvais choix de conception, manque de clarté dans la documentation ou manque de clarté dans votre code source.

La note du projet s'additionne à une note de participation de TP, sur 4 points (et pour un maximum limité à 20). Le total participe à hauteur de 20% dans la note de l'UV.

Spécifications

Attention

Les spécifications présentées dans ce document présentent le fonctionnement de la calculatrice demandé. Vous pouvez les personnaliser à condition de ne pas diminuer la complexité du projet. En cas de doutes sur certaines adaptations, demandez l'avis de votre chargé de TP.

Ces spécifications vous laissent volontairement des choix de conception, tant fonctionnels que conceptuels et technologiques.

Quels que soit les choix et adaptations que vous ferez, vous prendrez garde de les exposer et justifier dans le document rendu avec le projet.

Type de données

La calculatrice peut manier différents types de constante :

- Entière : suite de chiffres
- Rationnelle : deux entiers séparés par le caractère '/'
- Réelle : suite de chiffres pouvant accepter une virgule
- Complexe : constituée de deux constantes (Entière, Rationnelle ou Réelle) séparées par le caractère '\$'
- Expression : expression entourée du caractère ' à évaluer ultérieurement

Gestion des données

- Les constantes sont stockées dans une pile au fur et à mesure de l'exécution
- Les X derniers éléments de la pile sont affichés à l'écran (où X est paramétrable)

Évaluation d'une expression

Une expression est composées d'opérateurs et de constantes séparés par des espaces. Une expression est évaluée lorsque l'utilisateur appuie sur la touche ENTRÉE. Dans le cas de la constante expression, (expression bornée par le caractère ' et stockée dans la pile) l'évaluation s'opère à l'aide de l'opérateur EVAL.

- Les éléments constituant une expression sont évalués un par un, de la gauche vers la droite
- L'évaluation d'une constante provoque son empilement
- L'évaluation d'un opérateur binaire provoque le dépilement des deux dernières constantes de la pile avec lesquels sera effectuée l'opération. Le résultat de l'opération est empilé. L'évaluation d'un opérateur unaire fonctionne de la même façon en ne dépilant qu'une unique constante.

Si la pile ne contient pas assez de constantes pour évaluer un opérateur, elle est laissée intacte et la calculatrice indique une erreur. Les éléments de l'expression en cours n'ayant pas encore pu être évalués (dont l'opérateur) sont laissés sur la ligne de commandes pour correction.

- Lorsqu'un opérateur différent de l'opérateur EVAL dépile une constante expression, l'opérateur ainsi qu'une éventuelle seconde constante sont ajoutés à la constante expression.
- L'évaluation d'une constante expression se réalise comme toute autre expression. La constante est dépilée, l'évaluation revient à entrer le contenu de la constante sur la ligne de commandes.

Afin d'évaluer une expression, la calculatrice utilisera des modes paramétrables par l'utilisateur :

- Type de constante (entière, rationnelle ou réelle)
- Unité des degrés (radiant ou degré)
- Utilisation des complexes (oui ou non)

Remarque

Les modes « type de constante » et « complexe » sont présents afin de simplifier le projet. Plusieurs fonctionnements sont envisageables :

- Utiliser ce mode à l'évaluation des constantes pour ne créer que des constantes du mode choisi.
- Utiliser ce mode uniquement à l'évaluation d'un opérateur. Les constantes sont alors converties dans le mode sélectionné. On prendra garde d'avertir l'utilisateur lorsqu'une partie du contenu est perdue par la conversion.
- Ne pas utiliser ce mode, le type de constante le plus riche est utilisé par défaut pour résoudre chaque opérateur.

Quel que soit le fonctionnement choisi, la pile doit avoir la possibilité de contenir des constantes de type différent (que ce soit par un changement de mode en cours d'utilisation ou en reconnaissant différentes entrées de l'utilisateur).

Une attention particulière sera portée à la relation entre les constantes rationnelles et réelles. Une constante rationnelle est par défaut plus riche qu'une constante réelle. Par exemple la constante 1/3 contient plus d'information que la constante 0,3333.

Par défaut, un opérateur retourne une constante de même type que le mode sélectionné. Certaines exceptions sont possibles à condition de les justifier dans le document rendu (l'opérateur MEAN retourne une constante réelle ou rationnelle, les opérateurs trigonométriques peuvent retourner des constantes réelles quel que soit le type de constante d'entrée, etc.).

Interface

- La calculatrice possède un afficheur et un clavier
- L'affichage du clavier est une option paramétrable par l'utilisateur
- La calculatrice peut être utilisée à la souris ou directement au clavier
- Toutes les options de paramétrages sont définies à travers une interface simple et agréable à utiliser.

Sauvegarde du contexte

Au démarrage de l'application, l'état de la pile et les paramétrages de la calculatrice lors de la dernière exécution sont récupérés.

Fonctions annuler et rétablir

La calculatrice dispose des fonctions « annuler » et « rétablir ». Ces fonctions peuvent être appelées par un menu ou par les raccourcis Ctrl-Z et Ctrl-Y.

Opérateurs binaires

Les types entre parenthèses sont les types disponibles pour l'utilisation de l'opérateur :

- +, -, *, / (entier, rationnel, réel, complexe)
- POW: puissance (entier, rationnel, réel)
- MOD : modulo (entier)
- SIGN: inversion du signe (entier, rationnel, réel, complexe)

Opérateurs unaires

Les types entre parenthèses sont les types disponibles pour l'utilisation de l'opérateur :

- SIN: sinus (entier, rationnel, réel)
- COS: cosinus (entier, rationnel, réel)
- TAN: tangente (entier, rationnel, réel)
- SINH: sinus hyperbolique (entier, rationnel, réel)
- COSH : cosinus hyperbolique (entier, rationnel, réel)
- TANH: tangente hyperbolique (entier, rationnel, réel)
- LN : logarithme népérien (entier, rationnel, réel)
- LOG: logarithme décimal (entier, rationnel, réel)
- INV: inverse (entier, rationnel, réel)
- SQRT : racine carré (entier, rationnel, réel)
- SQR : fonction carré (entier, rationnel, réel, complexe)
- CUBE : fonction cube (entier, rationnel, réel, complexe)
- ! : factorielle (entier)
- EVAL : évaluation d'une expression (Expression)

Opérations sur la pile

La pile peut être manipulée à l'aide des opérateurs suivants.

Opérateur binaire :

• SWAP : inversion de l'élément numéro x et l'élément numéro y de la pile (où x et y sont les arguments de l'opérateur) (entier)

Opérateurs unaires :

- SUM : somme des x premiers éléments de la pile (où x est l'argument) (entier)
- MEAN : moyenne des x premiers éléments de la pile (où x est l'argument) (entier)

Opérations sans arguments :

• CLEAR (ou Ctrl - C) : vider la pile

- DUP (ou Entrée sans aucune expression sur la ligne) : duplique le premier élément de la pile
- DROP (ou Retour en arrière sans aucune expression sur la ligne) : supprime le premier élément de la pile

Options

Pour compléter votre projet, vous choisirez au minimum une des fonctions suivantes :

Commande utilisateur : vous commencerez par enrichir les expressions par

Spécifications

la possibilité d'ajouter une ou deux variables (formatage prédéfini à inclure dans l'expression). Ces expressions s'exécuteront comme un opérateur (unaire ou binaire). Vous ajouterez ensuite un nouvel opérateur binaire prenant une chaîne de caractères et une expression dynamique en argument. L'utilisation de la chaîne appellera l'expression dynamique enregistrée. Vous ferez en sorte que les réglages utilisateurs soient persistants d'une exécution à l'autre de la calculatrice.

- Onglets: vous placerez votre pile dans une collection STL de votre choix. La commande Ctrl-N ouvrira un nouvel onglet avec une pile vide. Cette pile sera ajoutée à la collection. La commande Ctrl - T ouvrira un nouvel onglet en dupliquant la pile courante. La commande Ctrl-W supprimera l'onglet courant.
- Log: vous implémenterez une classe LogMessage, contenant un message et un degré d'importance du message de log. Une seconde classe LogSystem manipulera des LogMessage pour écrire les message de log sur à la console et dans un fichier dédié.

Notation Polonaise Inverse

La notation polonaise inverse est une méthode de notation mathématique permettant de s'abstenir de l'utilisation de parenthèse.

Lors de la résolution d'une expression exprimée en notation polonaise inversée, un opérateur est remplacé par la valeur de l'opération qu'il représente en utilisant les n termes le précédents (opérateur unaire, un terme, opérateur binaire, deux terme, etc.).

Ainsi:

- 1+1 s'écrit 1 1 +
- 2 x 2 + 1 s'écrit 2 2 x 1 +
- (2 +3) x 4 s'écrit 2 3 + 4 x

Pour plus d'information, vous pouvez consulter la page wikipédia¹ dédiée.