	DWM	Assignment	2
--	-----	------------	---

P, (6,3), P2 (2,2), P3 (3,4) 1 .

				_
LI	P١	P2	P 3	
Pi	0	5	4	
P 2	5	D	3	
P 3	4	3	0	

b) Eudidean distance

Put r=2 in formula

L 2	PI	P 2	Pa	
Pı	0	4.123	3.162	
P2	4.123	0	2.236	
P 3	3.162	2.236	0	_

3 Supremum distance

Put r = 00 in formula

Lajo	þ,	PL	P3
Pı	O	4	3
P2	4	0	2
Pa	3	2	0

2 Avg age = 26.6

std.income = 5.0695

Std. age = 11.9499

Avg height = 158

Avg income = 22600

Std. height = 19. 235

std income = 16697.305

Avg edu = 12.2

Age-Avg	Income - Avg	Edu-arg	Height - arg
-16.6	-22600	-8.2	-28
-6.6	-76 00	0 . 8	22
1.4	- 2600	0 8	2_
8.4	17400	5 · 8	-8
13.4	15400	0.8	12

Corr (Age, income) = $[(-16.6 *_{-2}^{2}600) + (-6.6 *_{-7600}) + (1.4 *_{-2600}) + (3.4 *_{17400}) + (13.4 *_{15400})]$ 14 * 11.94989 * 16697.305 = 0.97

correlation	Age	Income	Education	Height
Age	1	0.97	0.79	0.45
Income	0.97	(0.86	0.39
Education	0.79	0.86	(6.54
Height	0'45	0.39	0.54	,

3.
$$D_1 = 420201$$
 $D_2 = 20022$
 $D_1 D_2 = 10$
 $||D_1|| = (4^2 + 2^2 + 1^2)^{0.5} = 4.58$
 $||D_2|| = (2^2 + 2^2 + 2^2)^{0.5} = 3.46$

$$(D1,D2) = \frac{(D1.D2)}{(D1)\times (D2)} = \frac{10}{4.58\times3.46} = 0.63$$

4.
$$p = 001101$$

 $q = 111101$
 $M_{01} = 2 (p = 0, q = 1)$
 $M_{10} = 0 (p = 1, q = 0)$
 $M_{00} = 1 (p = 0, q = 0)$
 $M_{11} = 3 (p = 1, q = 1)$

$$\delta MC = \frac{(M_{11} + M_{00})}{(M_{01} + M_{10} + M_{11} + M_{00})}$$

$$= \frac{(3+1)}{(2+0+3+1)} = 0.67$$

$$T = \frac{(M_{11})}{(M_{01} + M_{10} + M_{11})}$$

$$T = \frac{3}{2+3} = 0.6$$

students, teacher contingency,

corelation.

n' test.

5. a) delta = (max-min) = 15 (1 = [5, 20)) (2 = [20, 35), (3 = [35, 50)](4 = [50, 65), (5 = [65, 80)]Count 4 20 35 F = N/K = 12/3 = 4 $CI = \{5, 10, 10, 15\}$, $(2 = \{20, 28, 30, 30\}$ $(3 = \{35, 60, 70, 80\}$ 4 ount 35 506580 min-max = 7-minp (newmaxp-newminp) + new minp normalization maxp-minp 6. V = 73600, minp = 12000, maxp = 98000, newmax, = 1 newminp = 0 .. MMN = 73600 -12000 (1-0) +0 = 0.716 98000 - 12000 Operation Examples Attribute pescoiption 7. type mode entropy zipcodes 1 Nominal values are just different

names. Attribute provide

one object from another

enough info to distinguish IDno sex


```
\cos (d_1, d_2) = d_1.d_2 = 0.6172
[d_1] \times [d_2]
10. We do not consider gender (symmetric attribute)
   Let Y and P be I and N be O
    d (Jack, Mary) = 0+1 = 0.33
    d(face, Jim) = 1+1 = 0.67
     d (Mary, Jim) = 1+2 - 0.75
   student < id, name, addr-id, major, status, univ>
12.
    course < id, name, dept)
    Instr < id, name, dept?
    sem < semid, name, yr>
    address < addrid, street, city, country, zipcode >
13. 9) setting min = 0, max = 10, min; = 200, max; = 1000
   min-max = V-minf (max-min)+min
                maxt -mint
   D = 200, minmax = 0 , v = 400, minmyx = 0.25
   v = 300, min max = 0.125, v = 800 minmax = 0.5
   2 = 1000, min max =1
 b) U= 1/n = 2xi =500 , UAP = 1/n 2(xi-u) =240
   Z = 2 - A
    V=200, Z= -1.25, Y=400, Z=-0.417, V=1000 Z=2.01
```

V = 300, Z = -0.833 V = 600, Z = 0.417