Nirma University Institute of Technology

Computer Science and Engineering Department <u>Course Policy</u>

B.Tech. Computer Science and Engineering

Semester: VI, Academic Year: 2021-22, Term: Even

Course Code & Name		2CS601 Theory of Computation		
Course Coue & Name	:	2CS601 Theory of Computation		
<u>Credit Details</u>	:	4		
Course Co-ordinator	:	Jigna Patel		
Contact No. & Email	:	Ext: 9565, jignas.patel@nirmauni.ac.in		
<u>Office</u>	:	Besides N506		
Visiting Hours	:	11 am to 4 pm		
Course Blog	:	https://ce501tu.wordpress.com		
Course Faculty	:	Tejal Upadhyay, Prof Usha Patel, Prof Deepti Saraswat		
Contact No. & Email		tejal.upadhyay@nirmauni.ac.in deepti.saraswat@nirmauni.ac.in Usha.patel@nirmauni.ac.in		
<u>Office</u>	:	N Block 5 th Floor		
Visiting Hours	:	11 am to 4 pm		
Course Blog		https://ce501tu.wordpress.com		

Introduction to Course:

Theory of computation plays a strong foundation for a lot of abstract areas of computer science. It is a very close cousin of Artificial Intelligence than say Probability or Computer vision.

TOC teaches you about the elementary ways in which a computer can be made to think. There is a great deal of work that was made possible in the area of Natural Language Processing that involved building Finite State machines also known as Finite State Automata. State machines are also used in certain areas of mathematics like Number theory.

Regular expressions can be beautifully represented using Non-deterministic Finite

Automata.

Any algorithm can be expressed in the form of a finite state machine and can serve as a really helpful visual representation of the same. Sometimes, the finite state machines are easier to understand thus helping the cause furthermore.

Course Learning Outcomes:

After successful completion of this course, student will be able to:

- understand formal language theory and its application to computer science
- apply mathematical preliminaries to develop the basic components of language design
- design simple computational machines using the concepts of language theory
- correlate computability with formal computational machines

Syllabus

Topic	Teaching Hours
Unit I Review of Mathematical Terms and Theory: Basic Mathematical Notations and Set Theory, Logic Functions and Relations, Language Definitions, Mathematical Inductions and Recursive definitions	<u>5</u>
Unit II Finite Automata: Deterministic and Non Deterministic Finite Automata, Ù- Transitions, Conversion from NFA to DFA, Kleene's Theorem, Regular and Non Regular Languages	8

Unit III	10
CFG (Context Free Grammar): Introduction To CFG, CFG and Known	
Languages, Unions Concatenations and *'S Notations and CFL, Derivations of	
Trees and Ambiguity, Unambiguous CFG and Algebraic Expressions, Normal	
Forms and Simplified Forms	
Unit IV	12
Pushdown Automata, CFL and NFL: Introduction To PDA, Definition,	
DPDA, PDA corresponding to CFG, CFG Corresponding To PDA, Introduction	
To CFL, Intersections and Complements of CFL, Decisions Problems and CFL	
Unit V	10
Turing Machines, Recursive Language: Model of Computation and	
Church Turing Thesis, Definition of Turing Machine, TM and Language Acceptors,	
Variations of TM, Non Deterministic TM, Universal TM, Enumerable and	
Language, Recursive and Non Recursive Enumerable Computation Functions,	
Measuring, Classifications and Complexity, Primitive Recursive Functions, Halting	
Problem, Recursive Predicates and Some Bounded	
Operations	

Self-study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Tutorial details: (problem sheet, schedule, assessment policy)

References:

- 1. John C. Martin, Introduction To Languages and Theory of Computation, TMH
- 2. A.V. Aho, Ravi Sethi, J. D. Ullman, Compiler tools Techniques, Addison Wesley publication

<u>Component wise Continuous Evaluation & Semester End Examination weightage:</u>

Lesson Plan

Lecture	Topic	Mapped
No.		CLO
1	Introduction to Course and Formal Languages	1
	REGULAR LANGUAGES AND FINITE AUTOMATA	2 & 3
2	Regular Languages and Regular Expressions	
3	Memory requirement of language recognition	

4	Introduction to Finite Automata	
5	More Examples on Finite Automata	
6	Distinguishing one string from other	
7	Union, Intersection and complement of languages, FA for Union,	
	Intersection and complement	
8	Non Deterministic Finite Automata	2 & 3
	Later heating New Later Data maintain	
9	Introduction-Need of Non Deterministic	
10	Conversion from NFA to DFA	
11	More Examples on NFA to DFA conversion	
12	NFA with A Transitions	
13	Conversion from NFA-Λ to NFA	
14	More Examples on NFA-Λ to NFA	
15	Introduction to Kleene's theorem Examples on Kleene's Theorem	
16	Criteria for Regularity	2 &3
10	Minimal Finite Automata and Pumping Lemma.	2 &3
17	Examples on Minimal Finite Automata	
18	More examples on Minimization	
19	Pumping Lemma for Regular languages	
21	Examples on Pumping Lemma	
21	CFG (CONTEXT FREE GRAMMAR)	
	Introduction to CGF	
22	Grammar rules to define languages and CFG	
23	Examples on CFG	
24	Unions ,concatenations and * notations and CFL	
25	CFG and Regular expressions and Regular Grammar	
26	Derivations of trees and ambiguity	
27	Identifying nullable variable and elimination null productions	
28	Identifying and removing unit productions	
29	Chomsky Normal Form and conversion of CFG to CNF	
30	More Examples on CNF.	
31	PUSHDOWN AUTOMATA, CFL AND NON-CFL	2 & 3
	Introduction and definition of PDA	
32	PDA for languages	
33	Deterministic PDA	
34	PDA corresponding to CFG	
35	Intersections and complements of CFL	
35	Pumping Lemma for CFL	
	More Examples on Pumping Lemma for CFL	
37	More Examples on 1 uniping Lemma for CFL	1

38	Top – down and bottom – up PDA	
39	Examples on Bottom up PDA	
40	TURING MACHINES & RECURSIVE LANGUAGE	4
	Definition of Turing machine, TM and language acceptors	
41	Examples on Turing machines	
42	Computing function with Turing Machine	
43	Model of computation and Church turing thesis	
44	Recursive and Enumerable Language	
45	COMPUTATION FUNCTIONS, TRACTABLE &	4
	INTRACTABLE PROBLEMS:	
	Introduction , recursive functions, Time and Space complexity	

Tutorial Plan

Tutorial	Topic	Mapped
No		CLO
1	Basics of Set Theory & PMI, Strong PMI	1
2	Finite Automata	2 & 3
3	Non Deterministic Finite Automata	2 & 3
4	Minimization of DFA & Pumping Lemma	2 & 3
5	Context Free Grammars	2 & 3
6	More Examples on CFG and CNF	2 & 3
7	Push Down Automata	2 & 3
8	More Examples on Push Down Automata	2 & 3
9	Turing Machines	2 & 3
10	More Examples on Turing Machines	2 & 3

Course Assessment Schemes

(Course without Laboratory & Tutorial components)

Assessment scheme		CE		SEE
Component weightage	0.6			0.4
	Class Test (Quiz 1 and Quiz 2) 35%	Sessional Exam 35%	Innovative assignment(DES) 30%	

Teaching-learning methodology: (Mention the proposed)

- Lectures: Use of Black board, PPT, Discussion, Case Studies etc.
- Tutorial: Innovative ways of Numerical solving, derivations, Problem Solving, Application of Mathematical Models to real Systems etc.

Active learning techniques (Mention the proposed)

- Flipped Class-room (Topics to be mentioned), Muddiest Points
- Others (Specify)

<u>Types of Special/Innovative Assignments, Term Papers, mini Projects</u> etc.

• Tutorial Evaluation

Course Material:

- Course Policy
- PPTs, Notes, other Material: https://sites.google.com/a/nirmauni.ac.in/ce501 theory-of-computation/home/academics/ay-2010-11/course-material
- Assignments, Tutorials, Lab Manuals : https://sites.google.com/a/nirmauni.ac.in/ce501 theory-of-computation/assignments
- Question bank: https://sites.google.com/a/nirmauni.ac.in/ce501 theory-of-computation/home/academics/ay-2010-11/v-question-bank
- Web-links, Blogs, Video Lectures, Journals:
- https://sites.google.com/a/nirmauni.ac.in/ce501 theory-of-computation/home/academics/ay-2010-11/m-course-related-important-weblinks
- Animations / Simulations, Softwares
- Advanced topics
- Industries/Organizations

Course Outcome Attainment:

- Use of formal evaluation components of continuous evaluation, tutorials, laboratory work, semester end examination
- Informal feedback during course conduction
- Surveys & Peer observation

NOTE: All the Titles to be of Cambria (Headings) style with 14 pt size, BOLD & Other text is of Cambria style with 12 pt size.