13 Multiple Testing

By: Udit (based on ISLR)

Review of T-test

Simple t-tests using 100 variables, each consisting of 10 observations The first 50 variables have a non-zero mean of 0.5 by design and variance of 1, while others have mean of 0.

```
set.seed(6)
x = matrix(rnorm(10*100), 10, 100)
x[,1:50] = x[,1:50] + 0.5
dim(x)
## [1] 10 100
t.test(x[,1],mu=0)
##
##
    One Sample t-test
##
## data: x[, 1]
## t = 2.0841, df = 9, p-value = 0.06682
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.05171076 1.26242719
## sample estimates:
## mean of x
## 0.6053582
p.values = rep(0,100)
for(i in 1:100){
  p.values[i] = t.test(x[,i], mu=0)$p.value
decision = ifelse(p.values <= 0.05, "Reject Null", "Do Not Reject")</pre>
table(decision, true = c(rep("Reject Null",50), rep("Do Not Reject", 50)))
##
                  true
                   Do Not Reject Reject Null
## decision
     Do Not Reject
                                           40
##
                               47
                                3
     Reject Null
```

At $\alpha = 0.05$ we reject just 11 our of 50 false null hypotheses. And we would incorrectly reject 3 of the true null hypotheses.

```
# Using Stronger Signal/Noise ratio
x = matrix(rnorm(10*100),10,100)
x[,1:50] = x[,1:50] + 1
p.values = rep(0,100)
for(i in 1:100){
```

41

Family Wise Error Rate (FWER)

##

Reject Null

FWER: P(Rejecting atleast 1 True Null)

FWER - Fund Manager Dataset

```
library(ISLR2)
fund.mini <- Fund[,1:5]</pre>
t.test(fund.mini[,1], mu=0)
##
##
    One Sample t-test
##
## data: fund.mini[, 1]
## t = 2.8604, df = 49, p-value = 0.006202
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
   0.8923397 5.1076603
## sample estimates:
## mean of x
##
           3
fund.p = rep(0,5)
for (i in 1:5){
  fund.p[i] = t.test(fund.mini[,i], mu=0)$p.value
fund.p
## [1] 0.006202355 0.918271152 0.011600983 0.600539601 0.755781508
# Bonderroni adjustment alpha/m
p.adjust(fund.p, method="bonferroni")
## [1] 0.03101178 1.00000000 0.05800491 1.00000000 1.00000000
#Holm's adjustment
p.adjust(fund.p, method = "holm")
## [1] 0.03101178 1.00000000 0.04640393 1.00000000 1.00000000
Because the paired t-test below was conducted after visual inspection of the 5 fund managers, in essence, we already carried
out 5C2 pairwise comparison through visual inspection. Therefore the p-value should be adjusted for this using Tukey's HSD
(Honest Significant Difference) method.
#Paired t-test
apply(fund.mini, 2, mean)
## Manager1 Manager2 Manager3 Manager4 Manager5
        3.0
                 -0.1
                           2.8
                                    0.5
                                              0.3
t.test(fund.mini[,1], fund.mini[,2], paired=T)
##
##
    Paired t-test
##
## data: fund.mini[, 1] and fund.mini[, 2]
## t = 2.128, df = 49, p-value = 0.03839
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
```

```
0.1725378 6.0274622
## sample estimates:
   mean of the differences
##
returns = as.vector(as.matrix(fund.mini))
manager = rep(c("1","2","3","4","5"), rep(50,5))
a1 = aov(returns ~ manager) #ANOVA
TukeyHSD(x = a1) #diff between M1 & M2 is no longer significant
##
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
   Fit: aov(formula = returns ~ manager)
##
##
   $manager
##
       diff
                   lwr
                                     p adj
## 2-1 -3.1 -6.9865435 0.7865435 0.1861585
   3-1 -0.2 -4.0865435 3.6865435 0.9999095
   4-1 -2.5 -6.3865435 1.3865435 0.3948292
   5-1 -2.7 -6.5865435 1.1865435 0.3151702
  3-2 2.9 -0.9865435 6.7865435 0.2452611
  4-2 0.6 -3.2865435 4.4865435 0.9932010
## 5-2 0.4 -3.4865435 4.2865435 0.9985924
## 4-3 -2.3 -6.1865435 1.5865435 0.4819994
## 5-3 -2.5 -6.3865435 1.3865435 0.3948292
## 5-4 -0.2 -4.0865435 3.6865435 0.9999095
plot(TukeyHSD(x = a1))
```

95% family-wise confidence level

Differences in mean levels of manager

False Discovery

Far too many tests to control for FWER (since that would be impossibly punitive and lead to extremely few 'discoveries'.) Instead, we focus on FDR: expected fration of rejected null hypotheses that are actually false positives.

```
fund.p = rep(0,2000)
for (i in 1:2000){
  fund.p[i] = t.test(Fund[,i],mu=0)$p.value
}
fund.p[1:5]
## [1] 0.006202355 0.918271152 0.011600983 0.600539601 0.755781508
# Benjamini-Hochberg adjustment
q.BH = p.adjust(fund.p, method="BH")
q.BH[1:10] # q.value is the lower FDR at which that HO can be rejected
    [1] 0.08988921 0.99149100 0.12211561 0.92342997 0.95603587 0.07513802
    [7] 0.07670150 0.07513802 0.07513802 0.07513802
# Rejected Nulls for FDR of 10%
sum(q.BH <= 0.1) # 146.. we can expect ~15 of these to be false positives
## [1] 146
# Bonferroni would be extremely punitive
sum(fund.p <= (0.1/2000)) # 0 discoveries</pre>
## [1] 0
# BH method - arrange p-values, compare with q*j/m
m = length(fund.p)
p = sort(fund.p)
q = .1
idx = which(p < q*(1:m)/m)
plot(p, log="xy", ylim=c(4e-6,1), ylab="P-value", xlab="Index", main="", pch=20, col="gray")
points(idx, p[idx], col=4, pch=20)
abline(a=0, b = (q/m), col=2, untf=TRUE)
```

abline(h=0.1/2000, col=3)

Resampling Approach

```
attach(Khan) #Khan gene data
x = rbind(xtrain, xtest)
y = c(ytrain, ytest)
table(y) # Four classes of cancer
## y
## 1 2 3 4
## 11 29 18 25
# Comparing 11 gene's difference b/w class 2 and 4
x1 = x[which(y==2),]
x2 = x[which(y==4),]
t.out = t.test(x1[,11], x2[,11], var.equal=TRUE)
t.out$statistic; t.out$p.value  # p-value based on 'theoretical' distribution
##
## -2.093633
## [1] 0.04118644
# Re-sampling to build empirical distribution
n1 = nrow(x1)
n2 = nrow(x2)
set.seed(1)
```

```
b = 10000
t.b = rep(NA,b)
for(i in 1:b){
   dat = sample(c(x1[,11],x2[,11])) # jumbles up all values
   t.b[i] = t.test(dat[1:n1], dat[(n1+1):(n1+n2)], var=T)$statistic
}
mean(abs(t.b) >= abs(t.out$statistic)) #0.0416.. same as theoritical distribution
```

```
## [1] 0.0416
```

```
hist(t.b, breaks=100, xlim=c(-4.2, 4.2), xlab="Null Distribution of Test Stat")
lines(seq(-4.2,4.2,len=1000),dt(seq(-4.2,4.2,len=1000), df=(n1+n2-2))*1000)
text(t.out$statistic, 350, paste("T = ", round(t.out$statistic,4), sep=""))
```

Histogram of t.b

Null Distribution of Test Stat

Calculating FDR

for all 2,308 genes.

```
m = 50  #taking 50 genes at random
set.seed(1)
index = sample(ncol(x), m)
Ts = rep(NA, m)
Ts.star = matrix(NA, ncol = m, nrow = b)
for(j in 1:m){
    k = index[j]
    Ts[j] = t.test(x1[,k], x2[,k], var.equal=TRUE)$statistic
    for (i in 1:b){
        dat = sample(c(x1[,k],x1[,k]))
        Ts.star[i,j] = t.test(dat[1:n1], dat[(n1+1):(n1+n2)], var.equal=TRUE)$statistic
    }
}
```

```
cs = sort(abs(Ts))
FDRs = Rs = Vs = rep(NA,m)
for(j in 1:m){
    Vs[j] = sum(abs(Ts.star) >= cs[j])/b  # V = false rejections
    Rs[j] = sum(abs(Ts) >= cs[j])  # R = total rejected nulls.. 50:1
    FDRs[j] = Vs[j]/Rs[j]
}
max(Rs[FDRs <= 0.1]) #6 out of 50 nulls can be rejected.. expect ~1 false positive

## [1] 6

max(Rs[FDRs <= 0.3]) #15 out of 50 nulls can be rejected.. expect ~2 false positive

## [1] 15

plot(Rs, FDRs, xlab="Number of Rejections", type="1", ylab="FDR", col=4, lwd=3)</pre>
```

