FORMELSAMLING Sannolikhetsteori och Diskret matematik, FMASF40

Vanliga fördelningar

Fördelning			Väntevärde	Varians
Binomialfördelning Bin(n,p)	$P(\xi = x) = \binom{n}{x} p^{x} (1 - p)^{n-x}$	x = 0, 1,, n	пp	np(1-p)
Hypergeometrisk fördelning Hyp(N, n, p)	$P(\xi = x) = \frac{\binom{Np}{x} \binom{N - Np}{n - x}}{\binom{N}{n}}$			$\frac{N-n}{N-1}np(1-p)$
Poissonfördelning Po(λ)	$P(\xi=x)=e^{-\lambda}\cdot\frac{\lambda^x}{x!}$	$x = 0, 1, 2, \dots$	λ	λ
Normalfördelning N(μ,σ)	$P(\xi = x) = e^{-\lambda} \cdot \frac{\lambda^{x}}{x!}$ $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$	$-\infty < x < \infty$	μ	σ^2
Rektangelfördelning R(a,b)	$f(x) = \frac{1}{b - a}$	a < x < b	a . h	$\frac{(b-a)^2}{12}$
Exponentialfördelning $\operatorname{Exp}(\lambda)$	$f(x) = \lambda \cdot e^{-\lambda x}$	$x \ge 0$	1/2	$(1/\lambda)^2$

- Betingad sannolikhet: $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) \cdot P(B|A)}{P(B)}$.
- Oberoende händelser: $P(A \cap B) = P(A) \cdot P(B)$.
- Fördelningsfunktionen för en diskret s.v. ξ : $F(x_k) = P(\xi \le x_k) = \sum_{i=1}^k P(\xi = x_i)$.
- Fördelningsfunktionen för en kontinuerlig s.v. ξ : $F(x) = P(\xi \le x) = \int_{-\infty}^{x} f(t)dt$, där f(x) är en frekvensfunktion.

- Variansen för en s.v. ξ : $V(\xi) = E(\xi^2) (E(\xi))^2 = E(\xi^2) \mu^2$, där $E(\xi) = \mu$ är väntevärdet.
- Standardavvikelsen för en s.v. $\xi: D(\xi) = \sqrt{V(\xi)} = \sigma$.
- Låt a, b och c vara konstanter och ξ_1, ξ_2 stokastiska variabler så gäller:

a)
$$E(a\xi_1 + b\xi_2 + c) = aE(\xi_1) + bE(\xi_2) + c$$

b)
$$V(a\xi_1 + b\xi_2 + c) = a^2V(\xi_1) + b^2V(\xi_2)$$
, om ξ_1, ξ_2 är oberoende.

• Gauss approximations formler:

Låt g vara en funktion med kontinuerlig derivatan.

Låt ξ vara en stokastisk variabel med $E(\xi) = \mu$:

$$E(g(\xi)) \approx g(\mu) \text{ och } V(g(\xi)) \approx \left(\frac{\partial g}{\partial \xi}(\mu)\right)^2 \cdot V(\xi).$$

Låt ξ_1, ξ_2 och ξ_3 vara tre oberoende stokastiska variabler med $E(\xi_i) = \mu_i$, i = 1, 2, 3:

$$E(g(\xi_1, \xi_2, \xi_3)) \approx g(\mu_1, \mu_2, \mu_3)$$
 och

$$V(g(\xi_1,\xi_2,\xi_3)) \approx \left(\frac{\partial g}{\partial \xi_1}(\mu_1,\mu_2,\mu_3)\right)^2 \cdot V(\xi_1) + \left(\frac{\partial g}{\partial \xi_2}(\mu_1,\mu_2,\mu_3)\right)^2 \cdot V(\xi_2) + \left(\frac{\partial g}{\partial \xi_3}(\mu_1,\mu_2,\mu_3)\right)^2 \cdot V(\xi_3)$$

• Normalfördelning:
$$\xi \in N(\mu, \sigma), P(\xi \le a) = \Phi\left(\frac{a - \mu}{\sigma}\right)$$

$$P(a < \xi \le b) = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right)$$

Normalfördelningen

Φ(x)=P(X≤x) där X∈N(0, 1) För negativa värden utnyttja att Φ(-x)= 1-Φ(x)

x	,00	,01	,02	,03	,04	,05	,06	,07	80,	,09
0,0	0,50000	0,50399	0,50798	0,51197	0,51595	0,51994	0,52392	0,52790	0,53188	0,53586
0,1	0,53983	0,54380	0,54776	0,55172	0,55567	0,55962	0,56356	0,56749	0,57142	0,57535
0,2	0,57926	0,58317	0,58706	0,59095	0,59483	0,59871	0,60257	0,60642	0,61026	0,61409
0,3	0,61791	0,62172	0,62552	0,62930	0,63307	0,63683	0,64058	0,64431	0,64803	0,65173
0,4	0,65542	0,65910	0,66276	0,66640	0,67003	0,67364	0,67724	0,68082	0,68439	0,68793
0,5	0,69146	0,69497	0,69847	0,70194	0,70540	0,70884	0,71226	0,71566	0,71904	0,72240
0,6	0,72575	0,72907	0,73237	0,73565	0,73891	0,74215	0,74537	0,74857	0,75175	0,75490
0,7	0,75804	0,76115	0,76424	0,76730	0,77035	0,77337	0,77637	0,77935	0,78230	0,78524
0,8	0,78814	0,79103		0,79673	0,79955	0,80234	0,80511	0,80785	0,81057	0,81327
0,9	0,81594	0,81859	0,82121	0,82381	0,82639	0,82894	0,83147	0,83398	0,83646	0,83891
1,0	0,84134	0,84375	0,84614	0,84849	0,85083	0,85314	0,85543	0,85769	0,85993	0,86214
1,1	0,86433	0,86650	0,86864	0,87076	0,87286	0,87493	0,87698	0,87900	0,88100	0,88298
1,2	0,88493	0,88686	0,88877	0,89065	0,89251	0,89435	0,89617	0,89796	0,89973	0,90147
1,3	0,90320	0,90490	0,90658	0,90824	0,90988	0,91149	0,91309	0,91466	0,91621	0,91774
1,4	0,91924	0,92073	0,92220	0,92364	0,92507	0,92647	0,92785	0,92922	0,93056	0,93189
1,5	0,93319	0,93448	0,93574	0,93699	0,93822	0,93943	0,94062	0,94179	0,94295	0,94408
1,6	0,94520	0,94630	0,94738	0,94845	0,94950	0,95053	0,95154	0,95254	0,95352	0,95449
1,7	0,95543	0,95637	0,95728	0,95818	0,95907	0,95994	0,96080	0,96164	0,96246	0,96327
1,8	0,96407	0,96485	0,96562	0,96638	0,96712	0,96784	0,96856	0,96926	0,96995	0,97062
1,9	0,97128	0,97193	0,97257	0,97320	0,97381	0,97441	0,97500	0,97558	0,97615	0,97670
2,0	0,97725	0,97778	0,97831	0,97882	0,97932	0,97982	0,98030	0,98077	0,98124	0,98169
2,1	0,98214	0,98257	0,98300	0,98341	0,98382	0,98422	0,98461	0,98500	0,98537	0,98574
2,2	0,98610	0,98645	0,98679	0,98713	0,98745	0,98778	0,98809	0,98840	0,98870	0,98899
2,3	0,98928	0,98956	0,98983	0,99010	0,99036	0,99061	0,99086	0,99111	0,99134	0,99158
2,4	0,99180	0,99202	0,99224	0,99245	0,99266	0,99286	0,99305	0,99324	0,99343	0,99361
2,5	0,99379	0,99396	0,99413	0,99430	0,99446	0,99461	0,99477	0,99492	0,99506	0,99520
2,6	0,99534	0,99547	0,99560	0,99573	0,99585	0,99598	0,99609	0,99621	0,99632	0,99643
2,7	0,99653	0,99664	0,99674	0,99683	0,99693	0,99702	0,99711	0,99720	0,99728	0,99736
2,8	0,99744	0,99752	0,99760	0,99767	0,99774	0,99781	0,99788			0,99807
2,9	0,99813	0,99819	0,99825	0,99831	0,99836	0,99841	0,99846	0,99851	0,99856	0,99861
3,0	0,99865	0,99869	0,99874	0,99878	0,99882	0,99886	0,99889	0,99893		0,99900
3,1	0,99903	0,99906	0,99910	0,99913	0,99916	0,99918	0,99921	0,99924		0,99929
3,2	0,99931	0,99934	0,99936	0,99938	0,99940	0,99942	0,99944	0,99946		0,99950
3,3	0,99952	0,99953	0,99955	0,99957	0,99958	0,99960	0,99961	0,99962		0,99965
3,4	0,99966	0,99968	0,99969	0,99970	0,99971	0,99972	0,99973	0,99974		0,99976
3,5	0,99977	0,99978	0,99978	0,99979	0,99980	0,99981	0,99981	0,99982		0,99983
3,6	0,99984	0,99985	0,99985	0,99986	0,99986	0,99987	0,99987	0,99988		0,99989
3,7	0,99989	0,99990	0,99990	0,99990	0,99991	0,99991	0,99992	0,99992	0,99992	0,99992
3,8	0,99993	0,99993	0,99993	0,99994	0,99994	0,99994	0,99994	0,99995		0,99995
3,9	0,99995	0,99995	0,99996	0,99996	0,99996	0,99996	0,99996	0,99996		0,99997
4,0	0,99997	0,99997	0,99997	0,99997	0,99997	0,99997	0,99998	0,99998	0,99998	0,99998

		J. Strieß		GLA THE BY					746				THE PERSON NAMED IN		and such
	the growth			7	5	6	開始這	3.8.3	9.7	(0)	10.4				15
	1	0	0	0	0	0	0	0	0	O	0,	0	0	0	0
	1	1	0	0	<u></u>	0	0	0	0	.0	0	0	0	0	0
	1	3	1	(0	0	0	0	0	Ö	(0)	0	0)	0	0	0
	1	7	6	1	0	(0)	0	(9)	0	(6)	(9)	(0)	0	0	0
M6.5	1	15	25	10	1	0	(0)	Ø	(0)	Ø	©	0	0	9	(8)
6	1	31	90	65	15	1	O	0	(0)	0	0	0	10	0	(e)
7.2	1	63	301	350	140	21	1	0	O	0	0	0	0	0	0
8	1	127	966	1701	1050	266	28	1	0	0	0	0)	0	0	0
29	1	255	3025	7770	6951	2646	462	36	1	0	0	0	0)	0	0
10	1	511	9330	34105	42525	22827	5880	750	45	1	0	O	0	0	0
11	1	1023	28501	145750	246730	179487	63987	11880	1155	55	1	0	(0)	- 0	0
12	1	2047	86526	611501	1379400	1323652	627396	159027	22275	1705	66	1	C	0	0
13	1	4095	261625	2532530	7508501	9321312	5715424	1899612	359502	39325	2431	78	1	0	0
114	1	8191	788970	10391745	40075035	63436373	49329280	20912320	5135130	752752	66066	3367	91	1	0
15.	1	16383	2375101	42355950	210766920	420693273	408741333	216627840	67128490	12662650	1479478	106470	4550	105	1

STIRLINGTAL $S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k), \quad 1 < k < n \quad S(n,1) = S(n,n) = 1$ S(n,k) = 0, då k > n

MINIRÄKNARE: 2nd + vars

 $\xi \in Bin(n,p)$ $\xi \in P_o(\lambda)$

 $P(\xi = x)$: binompdf(n, p, x) | poissonpdf (λ, x)

 $P(\xi \leq x)$; binomcdf(n, p, x) poissoncdf (λ, x)