

CS120: Computer Networks

Lecture 3. Physical Layer

Zhice Yang

Network Layers

within the network

Outline

- **≻**Communication Basics
 - Communication Medium
 - Carrier
 - Modulation
- Upper Bound of Throughput
- Transmission Method

How to Transmit a Bit in Physical World?

Bits in the physical world

$$a = 1 \& 0;$$

Bits are conveyed in physical medium (e.g., electrical signals)

How to Transmit a Bit in Physical World?

- Problems of directly conveying bits in cables
 - Distance, distortion, mobility, etc.

How to Transmit a Bit in Physical World?

Electrical Signals

Fiber: Light

Light

Physical Medium

Carrier Wave – the wave carrying information

Modulation

- Modulation: the process of varying one or more properties of the carrier wave to transmit the information
 - The signal containing information is called the modulated signal
- Example: On-Off Modulation

9

Demo: On-off Modulation

```
%%
clear all;
t=linspace(0,1,44100);
one=sin(2*pi*1000*t);
zero=zeros(1,length(one));
transmit=([one,zero,zero,one,one,zero,one,zero]);
figure;
plot(transmit);
sound(transmit,44100);
```


How Fast can We Achieve?

Outline

- Communication Basics
 - Communication Medium
 - Carrier
 - Modulation
- ➤ Throughput Upper Bound
- Transmission Method

Shannon-Hartley Theorem

• The theoretical throughput upper bound:

Bandwidth

$$C = B \log_2(1 + \frac{S}{N})$$

Channel Capacity

Noise Power

Signal Power

"Bandwidth" v.s. Bandwidth

- The term "bandwidth" is often used with two different meanings.
 - Rate: throughput (bps)
 - Spectrum: the width of the occupied spectrum (Hz)

"Bandwidth" v.s. Bandwidth

How Fast can We Achieve?

Limited by ADC DAC rate, Available Spectrum

Bandwidth Limited by Power and Safety Concerns

Signal Power

$$C = B \log_2(1 + \frac{S}{N})$$

Channel Capacity

Noise Power

Limited by Thermal Noise and Manufacturing

Outline

- Communication Basics
 - Communication Medium
 - Carrier
 - Modulation
- Upper Bound of Throughput
- ➤ Transmission Methods
 - Baseband Transmission
 - Passband Modulation

Transmission Methods

- Baseband Transmission (Line Coding)
 - No carrier wave, transmit bits or coded stream directly to the medium, might not be long-distance, e.g., usb, Ethernet, HDMI, etc.
- Passband Modulation
 - Good transmission properties (suitable medium, distance, etc.)

Spectrum of Mechanical Wave, Electromagnetic Wave, etc.

- "1" -> High Voltage
- "0" -> Low Voltage

- The communication signal is not necessarily changed in binary pattern, e.g.,:
 - "00" -> 2v
 - "01" -> 1v
 - NONE -> 0v
 - "10" -> -1v
 - "11" -> -2v

- Symbol Rate := Baud Rate
 - The number of symbols per unit time

Symbol Rate

- Unit: baud (Bd), i.e., symbols per second
- Convert to bit rate
 - M: the number of different symbols
 - R_B: Baud Rate
 - R_h: Bit Rate

$$R_b = R_B \log_2 M$$

- Can we increase number of different symbols to increase Bandwidth?
 - Signal/noise ratio is lower

• How to Receive?

- Problems at Receiver
 - Determine the sampling time

- Clock Recovery
 - Synchronous Transmission
 - Transmit the clock directly through (additional line, frequency band, etc.)
 - low processing (decoding or encoding) overhead but low efficiency
 - Asynchronous Transmission

- Clock Recovery
 - Option 1: Synchronous Transmission
 - e.g., Manchester Code (Ethernet 10BaseT)

- Clock Recovery
 - Synchronous Transmission
 - Transmit the clock directly through (additional line, frequency band, etc.)
 - low processing (decoding or encoding) overhead but low efficiency
 - Asynchronous Transmission
 - Recover the clock from data signal
 - Use line encoder/decoder, high efficiency
 - Design
 - Goal: should avoid constant 0s or 1s
 - Reason: the hardware needs "changes" to track the clock

- Clock Recovery
 - Option 2: Asynchronous Transmission
 - e.g., 4B5B Code (Ethernet 100BASE-TX)
 - Map 4-bit data to 5-bit code
 - To ensure there is no >=4 consecutive 0s in the coded data
 - No guarantee for 1s.
 - Efficiency: 80% (much higher than Manchester code)

Table 2.2 4B/5B Encoding	
4-Bit Data Symbol	5-Bit Code
0000	11110
0001	01001
0010	10100
0011	10101
0100	01010
0101	01011
0110	01110
0111	01111
1000	10010
1001	10011
1010	10110
1011	10111
1100	11010
1101	11011
1110	11100
1111	11101

- Clock Recovery
 - Option 2: Asynchronous Transmission
 - e.g., 4B5B Code (Ethernet 100BASE-TX)+NRZI
 - NRZI takes transitions at bit 1
 - Use to break consecutive 1s.

Table 2.2 4B/5B Encoding	
4-Bit Data Symbol	5-Bit Code
0000	11110
0001	01001
0010	10100
0011	10101
0100	01010
0101	01011
0110	01110
0111	01111
1000	10010
1001	10011
1010	10110
1011	10111
1100	11010
1101	11011

1110

1111

11100

11101

Transmission Method

- Baseband Transmission (Line Coding)
- Passband Modulation
 - Good transmission property
 - Multiplexing

Spectrum of Mechanical Wave, Sound Wave, etc.

Demo: Baseband and Passband Signal

clear all;

```
fs=44100;
t=linspace(0,1,44100);
one=ones(1,length(t));% no carrier wave
zero=zeros(1,length(one));
transmit_05Hz_baseband=([one,zero,zero,one,one,zero,one,zero]); % 1bps 0.5Hz
fs unit=fs*(0:length(transmit 05Hz baseband)-1)/length(transmit 05Hz baseband);
figure;
plot(fs unit, abs(fft(transmit 05Hz baseband))); % spectrum
figure;
plot(transmit 05Hz baseband)
                              Baseband signal is used to modulate a carrier
                              signal to get a passband signal
clear all;
fs=44100;
t=linspace(0,1,44100);
one=sin(2*pi*1000*t);% carrier wave
zero=zeros(1,length(one));
transmit_05Hz_passband=([one,zero,zero,one,one,zero,one,zero]); % 1bps 0.5Hz
fs unit=fs*(0:length(transmit 05Hz passband)-1)/length(transmit 05Hz passband);
figure;
plot(fs_unit, abs(fft(transmit_05Hz_passband))); % spectrum
```

How to Describe the Carrier?

- Carrier is a wave, has attributes:
 - Amplitude
 - Frequency
 - Phase

$$A \cdot \sin(2\pi f t + \phi)$$

- On-off Keying (OOK)
 - Switching the working state (on or off) of the carrier wave to express symbols
 - A special case of modifying the amplitude of the carrier.
- Demodulation
 - Averaging the received power (low pass filter)
 - Thresholding

Demo: OOK Modulation

```
clear all;
t=linspace(0,1,44100);
one=sin(2*pi*10*t);
zero=zeros(1,length(one));
transmit=([one,zero,zero,one,zero,one,zero]);
receive=transmit;
receive power=receive.^2;
receive_power_smooth=smooth(receive_power,44100);
sampling_point=(44100/2:44100:length(receive));
figure;
plot(receive power smooth);
hold on;
for i=1:length(sampling point)
    plot([sampling_point(i), sampling_point(i)], [0.3, 0.7], 'r');
end
hold off;
samples=receive power smooth(sampling point);
bits=samples>mean(receive_power);
```

- Amplitude Shift Keying (ASK)
 - Switching in amplitude of the carrier wave to express symbols

• Example:

- Demodulation
 - Non-coherent
 - Find the envelop (low pass filtering)
 - Thresholding
 - Coherent
 - Dot product with the carrier wave
 - Acos $(2\pi ft) \cdot \cos(2\pi ft) = \frac{1}{2}A(\cos(2\pi 2ft) + 1)$
 - Low pass filtering
 - Thresholding

```
%% ASK demo
clear all;
t=linspace(0,1,44100);
one=sin(2*pi*10*t);
zero=0.5*sin(2*pi*10*t);
transmit=([one,zero,zero,one,one,zero,one,zero]);

receive=transmit;
receive_shift=receive.*[one,one,one,one,one,one,one];
figure;
plot(smooth(receive_shift,44100))
```

- Frequency Shift Keying (FSK)
 - Switching the frequency of the carrier wave to express symbols

• Example:

- Demodulation
 - Similar as ASK

```
%% FSK demo
clear all;
t=linspace(0,1,44100);
one=sin(2*pi*10*t);
zero=cos(2*pi*20*t);
transmit=([one,zero,zero,one,zero,one,zero]);
receive=transmit;
receive_shift=receive.*[one,one,one,one,one,one,one];
figure;
plot(receive_shift)
figure;
plot(smooth(receive_shift,44100))
```

- Phase Shift Keying (PSK)
 - Switching the phase of the carrier wave to express symbols
 - Example:

"1'

- Demodulation
 - Coherent
 - Dot product with the carrier wave
 - $\cos(2\pi ft) \cdot \cos(2\pi ft) = \frac{1}{2}(\cos(2\pi 2ft) + 1)$
 - $\cos(2\pi ft + \pi) \cdot \cos(2\pi ft) = \frac{1}{2}(-\cos(2\pi 2ft) 1)$
 - Low pass filtering
 - Thresholding

```
%% PSK demo
clear all;
t=linspace(0,1,44100);
one=sin(2*pi*10*t);
zero=cos(2*pi*10*t);
transmit=([one,zero,zero,one,one,zero,one,zero]);

receive=transmit;
receive_shift=receive.*[one,one,one,one,one,one,one];
figure;
plot(smooth(receive_shift,44100))
```

- Quadrature Amplitude Modulation (QAM)
 - ASK + PSK
 - Example:

Spectrum Shifting

- How to conveniently modulate the carrier?
 - Generate the baseband digitally, and convert it to the passband through multiplying with the carrier wave.

Mathematically, passband signal is frequencyshifted from the baseband signal

By Now

 Bit stream can either be converted to analog signal via line coding or through modulating the carrier.

Bit Steam

Reference

Textbook 2.2

Other Implementation Issues

Carrier Phase Misalignment

• The Problem

Received Signal:

Transmitter Carrier Wave:

Local Carrier Wave:

Carrier Phase does not Match Big Problem for PSK!

Carrier Phase Misalignment

- Solution
 - Option1: find the accurate start of the received signal
 - to align the local carrier phase to the transmitter's carrier phase
 - Option2: use orthogonal carrier waves to find and align the phase shift
 - Transmitter Carrier Wave: $\cos{(2\pi ft + \phi)}$
 - Local Carrier Wave 1: $\cos(2\pi f t)$
 - Local Carrier Wave 2: $\cos \left(2\pi ft + \frac{\pi}{2}\right)$

$$\cos (2\pi ft + \phi) = A \cdot \cos (2\pi ft) + B \cdot \cos \left(2\pi ft + \frac{\pi}{2}\right)$$

Carrier Frequency Offset

- There is a frequency offset between two nodes
 - $\cos(2\pi ft) * \cos(2\pi ft + 2\pi \Delta ft) = \frac{1}{2}(\cos(2\pi 2ft + 2\pi \Delta ft) + \cos(2\pi \Delta ft))$
- Solution
 - Calibration
 - Do not use long frame in PSK