Recap

- Alpha Vectors
- Best solver for discrete POMDPs:

SARSOP

Sad facts ● 🛱

• Infinite horizon POMDPs are undecidable

- Infinite horizon POMDPs are *undecidable*
- Finite horizon POMDPs are *PSPACE Complete*

- Infinite horizon POMDPs are undecidable
- Finite horizon POMDPs are *PSPACE Complete*
 - Among the hardest problems that can be solved using a polynomial amount of space

- Infinite horizon POMDPs are *undecidable*
- Finite horizon POMDPs are *PSPACE Complete*
 - Among the hardest problems that can be solved using a polynomial amount of space

- Infinite horizon POMDPs are *undecidable*
- Finite horizon POMDPs are *PSPACE Complete*
 - Among the hardest problems that can be solved using a polynomial amount of space

- Infinite horizon POMDPs are *undecidable*
- Finite horizon POMDPs are *PSPACE Complete*
 - Among the hardest problems that can be solved using a polynomial amount of space

- Infinite horizon POMDPs are undecidable
- Finite horizon POMDPs are *PSPACE Complete*
 - Among the hardest problems that can be solved using a polynomial amount of space
 - Any algorithm that can solve a general POMDP will have exponential complexity

- Infinite horizon POMDPs are *undecidable*
- Finite horizon POMDPs are *PSPACE Complete*
 - Among the hardest problems that can be solved using a polynomial amount of space
 - Any algorithm that can solve a general POMDP will have exponential complexity (we think)

Numerical Approximations

(approximately solve original problem)

Numerical Approximations

(approximately solve original problem)

Numerical Approximations

(approximately solve original problem)

Offline

Last week

Numerical Approximations

(approximately solve original problem)

Offline

Last week

Online

Numerical Approximations

(approximately solve original problem)

Offline

Last week

Online

Thursday

Numerical Approximations

(approximately solve original problem)

Offline

Last week

Online

Thursday

Formulation Approximations

(solve a slightly different problem)

Numerical Approximations

(approximately solve original problem)

Offline

Last week

Online

Thursday

Formulation Approximations

(solve a slightly different problem)

Today!

Rotor Failure Example

 $S = (x, y, z, \dot{x}, \dot{y}, \dot{z}, \dot{\Phi}, \Theta, \psi, p, q, r, m_1, m_2 \dots m_6)$ Enoun Enoun Enoun Enoun

Centainty - Equivalence

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$\pi^* = rgmax_{\pi: B
ightarrow A top S} \mathrm{E} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, \pi(b_t))
ight]$$

$$b' = au(b,a,o)$$

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b,a,o)$$

$$\pi^* = rgmax_{\pi:B o A} \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b, a, o)$$

$$b' = au(b, a, o)$$

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b'= au(b,a,o)$$

$$egin{align} \pi_{ ext{CE}}(b) &= \pi_s(ext{E}[s]) \ \pi_{ ext{MOP}} & \pi_{arsigma}(\cdots) & arsigma = ext{E}(\cdots) \ b' &= au(b,a,o) \ \end{pmatrix}$$

$$T(\mathbf{s}' \mid \mathbf{s}, \mathbf{a}) = \mathcal{N}(\mathbf{s}' \mid \mathbf{T}_{s}\mathbf{s} + \mathbf{T}_{a}\mathbf{a}, \mathbf{\Sigma}_{s})$$

$$O(\mathbf{o} \mid \mathbf{s}') = \mathcal{N}(\mathbf{o} \mid \mathbf{O}_{s}\mathbf{s}', \mathbf{\Sigma}_{o})$$

$$R(s, \mathbf{a}) = -s^{\mathsf{T}}R_{s}s = a^{\mathsf{T}}R_{a}a$$

Optimal for LOG

$$b(\mathbf{s}) = \mathcal{N}(\mathbf{s} \mid \boldsymbol{\mu}_b, \boldsymbol{\Sigma}_b)$$

Prediction
$$\boldsymbol{\mu}_p \leftarrow \mathbf{T}_s \boldsymbol{\mu}_b + \mathbf{T}_a \mathbf{a}$$

$$\boldsymbol{\Sigma}_p \leftarrow \mathbf{T}_s \boldsymbol{\Sigma}_b \mathbf{T}_s^\top + \boldsymbol{\Sigma}_s$$

$$\boldsymbol{\omega}_p \boldsymbol{\omega} \leftarrow \mathbf{E}$$

$$\mathbf{K} \leftarrow \boldsymbol{\Sigma}_p \mathbf{O}_s^\top \left(\mathbf{O}_s \boldsymbol{\Sigma}_p \mathbf{O}_s^\top + \boldsymbol{\Sigma}_o \right)^{-1}$$

$$\boldsymbol{\mu}_b \leftarrow \boldsymbol{\mu}_p + \mathbf{K} \left(\mathbf{o} - \mathbf{O}_s \boldsymbol{\mu}_p \right)$$

$$\boldsymbol{\Sigma}_b \leftarrow (\mathbf{I} - \mathbf{K} \mathbf{O}_s) \boldsymbol{\Sigma}_p$$

QMDP

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b,a,o)$$

QMDP

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b, a, o)$$

$$b' = au(b,a,o)$$

QMDP

POMDP Objective

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b,a,o)$$

Value

$$b'= au(b,a,o)$$

argmax & a b

optimal Q-value for the fully observable

Example: Tiger POMDP with Waiting

$$Q_{mop}(any, open) = 10$$

$$y = 0.9$$

pseudo alpha vectors

$$\mathcal{S}=\mathbb{Z}$$
 $\mathcal{O}=\mathbb{R}$ $s'=s+a$ $o\sim\mathcal{N}(s,s-10)$ $\mathcal{A}=\{-10,-1,0,1,10\}$ $R(s,a)=egin{cases} 100 & ext{if } a=0,s=0 \ -100 & ext{if } a=0,s
eq 0 \ -1 & ext{otherwise} \end{cases}$

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \ -1 & ext{otherwise} \end{cases}$

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \end{cases}$ otherwise

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \end{cases}$ otherwise

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \ -1 & ext{otherwise} \end{cases}$

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \end{cases}$ otherwise

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \ -1 & ext{otherwise} \end{cases}$

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \end{cases}$ otherwise

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \ -1 & ext{otherwise} \end{cases}$

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \end{cases}$ otherwise

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \ -1 & ext{otherwise} \end{cases}$

POMDP Solution

QMDP

Same as **full observability** on the next step

Information Gathering

QMDP

Full POMDP

Information Gathering

QMDP

Full POMDP

Information Gathering

QMDP

Full POMDP

QMDP

INDUSTRIAL GRADE

QMDP

ACAS X [Kochenderfer, 2011]

Hindsight Optimization

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b'= au(b,a,o)$$

Thop(b) = argmax
$$\frac{1}{m} \sum_{i=1}^{m} \forall k (s_i a_i)$$
ao:
 $a_{0:\infty}$

Subject to
$$s_{t+1}^i = G(s_{t,a_t}^i, \phi_t^i)$$
outcome
$$a_i^i = a_i^j \quad \forall i,j$$
cenarios

FIB

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = \tau(b, a, o)$$

$$QMDP$$

$$QMDP$$

$$TB$$

iterate
$$\alpha_{a}^{(k+1)}[s] = R(s,a) + \gamma \sum_{a'} \max_{s'} \sum_{s'} Z(s|a,s')$$

$$T(s'|s,a) \alpha_{a'}[s']$$

k-Markov

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b'= au(b,a,o)$$

Open Loop

$$\pi^* = rgmax_{\pi:B o A} \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b'= au(b,a,o)$$