Do not write anything above this line [Page 1 of 9]

Mathematics I (MA101) IIT GUWAHATI

 $\begin{array}{c} {\rm MID~SEM} \\ {\rm 26^{th}~Sep~2013,~Thu.} \end{array}$

Questions: 10, Marks: 30, Pages: 9

1400–1600 (02 hrs.)

Roll No.:	TO BE FILLED BY THE STUDENT	Tut. Group:
Name:	Instructions	Sign:

- 1. Write all required information in the appropriate places above.
- 2. Verify the number of printed pages.
- 3. Write your answers in this booklet and only in the space marked for answers.
- 4. Additional space for writing/continuing your answers has been provided towards the end of the booklet. You must clearly indicate the question number(s) while using the additional space.
- 5. Supplementary sheets will be provided for rough work only. These sheets will NOT be evaluated.
- 6. No clarifications about the questions will be provided during examination.

						FICE USE					
	-				_		7	0		10	m , 1
Question:	1	2	3	4	5	6	7	8	9	10	Total
Points:	5	3	2	2	2	3	3	4	2	4	30
Score:											

Do not write anything above this line [Page 2 of 9]

1. Fill in the blanks.

Fill in the blanks.

(a) If
$$A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & a & b & 2 \\ 0 & 0 & c & 0 \end{bmatrix}$$
 is in RREF, then
$$a = \begin{bmatrix} 0 & b & 1 \\ 0 & a & b & 2 \\ 0 & 0 & c & 0 \end{bmatrix}$$

$$b = \begin{bmatrix} 1 & c & 0 \\ 0 & c & 0 \end{bmatrix}$$

(b) If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 0 \\ 2 & \lambda & 6 \end{bmatrix}$$
, then the system $A\mathbf{x} = \mathbf{0}$ will have infinitely many solutions, if $\lambda = \begin{bmatrix} 4 \end{bmatrix}$

(c) If
$$\begin{bmatrix} 1 & 3 & 0 \\ 2 & 5 & 1 \\ -3 & -9 & -1 \end{bmatrix}^{-1} = \begin{bmatrix} 4 & 3 & 3 \\ x & -1 & -1 \\ y & z & -1 \end{bmatrix}$$
, then $x = \begin{bmatrix} -1 \end{bmatrix}$ $y = \begin{bmatrix} -3 \end{bmatrix}$ $z = \begin{bmatrix} 0 \end{bmatrix}$

(Partial mark for (a) and (c): 1 mark for only two correct answers.)

- 2. Let A be an $m \times n$ matrix with linearly independent columns.
 - (a) Prove that A^TA is invertible.

(2 pts.)

(b) Must AA^T also be invertible? Explain.

(1 pt.)

Solution:

(a) Step 1.
$$x \in \text{null}(A^T A) \Rightarrow A^T A x = \mathbf{0} \Rightarrow x^T A^T A x = \mathbf{0}$$

 $\Rightarrow (Ax)^T A x = \mathbf{0} \Rightarrow A x = \mathbf{0}.$ (1 mark)

Step 2. $\Rightarrow x = \mathbf{0}$, since columns of A are LI. (1/2 mark)

Step 3. Hence $A^T A$, being a square matrix, is invertible. (1/2 mark)

Aliter to Step 1:

- (1) A linear combination A^TAy of columns of A^TA is zero implies Ay is zero.
- (2) The systems $A^T A x = \mathbf{0}$ and $A x = \mathbf{0}$ are equivalent.
- (3) $\operatorname{rank}(A^T A) = \operatorname{rank}(A)$.

Marking: For any of the above: with justification 1 mark, without 1/2 mark.

(b) No.

If m > n, then $rank(AA^T) \le n < m$. (1 mark)

Hence AA^T being an $m \times m$ matrix is not invertible.

Aliter: Take for example $A = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Then $AA^T = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ is not invertible.

(1 pt.)

3. Consider the following subspaces of \mathbb{R}^3 :

$$\mathbb{U} = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} : x_1 = 2x_3 - x_2, \ 2x_2 = x_3 \right\} \text{ and } \mathbb{W} = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} : x_1 = 2x_3 - x_2 \right\}.$$

- (a) Find a vector \mathbf{u} such that span $\{\mathbf{u}\} = \mathbb{U}$. (1 pt.)
- (b) Find a vector \mathbf{v} such that span $\{\mathbf{u}, \mathbf{v}\} = \mathbb{W}$.

Solution:

(a) Solving the system $x_1 = 2x_3 - x_2$, $2x_2 = x_3$, we get $\mathbb{U} = \left\{ t \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} : t \in \mathbb{R} \right\}$. So, $\mathbf{u} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$ (or any scalar multiple of this). (1 mark)

(For giving a correct \mathbf{u} without any justification - 1/2 mark)

(b) $\mathbb{W} = \left\{ t \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} + s \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} : s, t \in \mathbb{R} \right\}$. (1/2 mark) You can take $\mathbf{v} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ or $\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ or any nonzero linear combination of these two vectors which is not a scalar multiple of \mathbf{u} . (1/2 mark)

(For giving a correct \mathbf{v} without any justification - 1/2 mark)

Do not write anything above this line [Page 4 of 9]

4. Prove or disprove: There exists a linear transformation T from $\mathbb{R}^4 \to \mathbb{R}^3$ such that (2 pts.) $\operatorname{range}(T) = \{[x,y,z]^T : x+y+z=0\} \text{ and } \ker(T) = \{[x,y,z,w]^T : x+y-2z=0\}.$

Solution:

Step 1. rank(T) = 2 (with or without justification). (1/2 mark)

Step 2. nullity(T) = 3 (with or without justification). (1/2 mark)

Step 3. By rank-nullity theorem,

$$4 = \operatorname{rank}(T) + \operatorname{nullity}(T) = 5, \tag{1 mark}$$

which is not possible.

(No mark for just stating that the statement is FALSE. Wrong justification in any of the steps invites deduction of mark.)

5. Prove or disprove: If A and B are non-square matrices such that both AB and BA are (2 pts.) defined, then either AB or BA has zero as an eigenvalue.

Solution: Suppose A is an $m \times n$ matrix, where $m \neq n$. Then B is an $n \times m$ matrix. (1/2 mark)

Suppose m > n, then $rank(AB) \le min\{m, n\} = n < m$. (1 mark)

Hence, 0 is an eigenvalue of AB (because AB is $m \times m$ with rank < m.) (1/2 mark)

Similarly, if n > m, then 0 is an eigenvalue of BA.

- 6. Let $\mathbb{R}_4[x]$ be the vector space of all real polynomials of degree less than or equal to 4.
 - (a) Show that $\mathbb{W} = \{p(x) \in \mathbb{R}_4[x] : p''(0) = 2p(0)\}$ is a subspace of $\mathbb{R}_4[x]$. (1 pt.)
 - (b) Find the dimension of \mathbb{W} . (2 pts.)

Solution:

(a) $\mathbb{W} \neq \emptyset$, because the zero polynomial is in \mathbb{W} .

For $p_1, p_2 \in \mathbb{W}$, $\alpha, \beta \in \mathbb{R}$,

$$(\alpha p_1 + \beta p_2)''(0) = \alpha p_1''(0) + \beta p_2''(0)$$

$$= 2(\alpha p_1(0) + \beta p_2(0))$$

$$= 2(\alpha p_1 + \beta p_2)(0).$$
(1 mark)

(Alternatively, you may show $p_1 + p_2 \in \mathbb{W}$ and $\alpha p \in \mathbb{W}$ for any $p_1, p_2 \in \mathbb{W}$ and $\alpha \in \mathbb{R}$. Then, 1/2 mark for each of these two steps is awarded.)

Thus, $\alpha p_1 + \beta p_2 \in \mathbb{W}$ and so \mathbb{W} is a subspace.

Aliter:

If you show $\mathbb{W} = \{p(x) = a_0(1+x^2) + a_1x + a_3x^3 + a_4x^4 : a_0, a_1, a_3, a_4 \in \mathbb{R}\}$, as in part (b) below, and then justify that \mathbb{W} is a subspace using this.

(b) If $p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$, then $p''(0) = 2p(0) \Rightarrow a_0 = a_2$. (1 mark) Then $\mathbb{W} = \{p(x) = a_0(1+x^2) + a_1 x + a_3 x^3 + a_4 x^4 : a_0, a_1, a_3, a_4 \in \mathbb{R}\}$ Therefore $\dim(\mathbb{W}) = 4$.

Aliter:

(a)
$$T: \mathbb{R}_4[x] \to \mathbb{R}$$
 defined as $T(p) = p''(0) - 2p(0)$ is a LT. (1/2 mark) $\mathbb{W} = \ker(T)$, and therefore is a subspace of $\mathbb{R}_4[x]$. (1/2 mark)

(b)
$$rank(T) = 1$$
, since $range(T) = \mathbb{R}$. (1 mark)

Since $\dim(\mathbb{R}_4[x]) = 5$, by rank-nullity theorem,

$$\dim(\mathbb{W}) = \text{nullity}(T) = 4.$$
 (1 mark)

Do not write anything above this line [Page 6 of 9]

- 7. Let $\mathcal{M}_2(\mathbb{R})$ denote the vector space of all 2×2 real matrices. Let $T : \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$ be defined by $T(A) = A + A^T$.
 - (a) Show that T is a linear transformation. (1 pt.)
 - (b) Find a basis for range(T) and a basis for ker(T). (2 pts.)

Solution:

(a) For $A, B \in \mathcal{M}_2(\mathbb{R})$ and $\alpha \in \mathbb{R}$,

$$T(A+B) = (A+B) + (A+B)^T = (A+A^T) + (B+B^T)$$

= $T(A) + T(B)$. (1/2 mark)

$$T(\alpha A) = \alpha A + (\alpha A)^T = \alpha (A + A^T) = \alpha T(A). \tag{1/2 mark}$$

(Alternatively, showing $T(\alpha A + \beta B) = \alpha T(A) + \beta T(B)$. (1 mark)) Hence T is a LT.

(b) If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then $T(A) = A + A^T = \begin{bmatrix} 2a & b+c \\ b+c & 2d \end{bmatrix}$. Therefore,

$$\operatorname{range}(T) = \left\{ \begin{bmatrix} 2a & b+c \\ b+c & 2d \end{bmatrix} : a, b, c, d \in \mathbb{R} \right\}.$$

Thus,
$$A \in \text{range}(T) \Leftrightarrow A$$
 is symmetric. (1/2 mark)

A basis for range(T) =
$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$
. (1/2 mark)

(For writing the basis without any justification also gets full 1 mark.)

$$\dim(\ker(T)) = 1$$
 (by rank nullity theorem). (1/2 mark)

A basis for
$$\ker(T) = \left\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$
. (1/2 mark)

(For writing the basis without any justification also gets full 1 mark.)

(2 pts.)

- 8. Consider the 10×10 matrix $A = \mathbf{x}\mathbf{y}^T$, where $\mathbf{x} = \begin{bmatrix} 1\\2\\\vdots\\9\\10 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} -1\\-1\\\vdots\\-1\\-1 \end{bmatrix}$.
 - (a) Show that A is diagonalizable. (2 pts.)
 - (b) Find two eigenvectors corresponding to two distinct eigenvalues of A.

Solution:

(a) rank(A) = 1, and hence nullity(A) = 9. (1/2 mark)

So 0 is an eigenvalue of A with geometric multiplicity 9 (i.e., A has 9 LI eigenvectors corresponding to the eigenvalue 0). (1/2 mark)

 $\mathbf{y}^T \mathbf{x} \neq 0$ is another eigenvalue of A. (1/2 mark)

Thus, for each eigenvalue of A, geometric multiplicity equals its algebraic multiplicity. (1/2 mark)

(i.e., A has ten LI eigenvectors.)

Hence, A is diagonalizable.

(Alternatively, one can actually find a matrix P (e.g., finding ten LI eigenvectors) and a diagonal matrix D such that AP = PD. One can take P as

$$P = \begin{bmatrix} 1 & 1 & \dots & 1 & 1 \\ -1 & 0 & \dots & 0 & 2 \\ 0 & -1 & \dots & 0 & 3 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & -1 & 10 \end{bmatrix}.$$

(Appropriate marks are awarded.)

(b) Note that $\mathbf{y}^T \mathbf{x}$ is a scalar, and therefore, $(\mathbf{x}\mathbf{y}^T)\mathbf{x} = \mathbf{x}(\mathbf{y}^T\mathbf{x}) = (\mathbf{y}^T\mathbf{x})\mathbf{x}$, i.e., \mathbf{x} is an eigenvector of A corresponding to eigenvalue $\mathbf{y}^T\mathbf{x} \neq 0$. (1 mark)

For an eigenvector corresponding to 0, any \mathbf{z} such that $\sum_{i=1}^{10} z_i = 0$ will be an eigenvector.

For example $\mathbf{z} = [1, -1, 0, \dots, 0]^T$. (1 mark)

Do not write anything above this line [Page 8 of 9]

9. Applying Gram-Schmidt process to $\left\{\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}$ find an orthonor- (2 pts.) mal basis of \mathbb{R}^3 .

Solution:

$$\mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}. \tag{1/2 mark}$$

 $\mathbf{u}_2 = \mathbf{v}_2 - (\mathbf{w}_1 \cdot \mathbf{v}_2) \mathbf{w}_1.$

$$= \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 (1/2 mark)

Therefore
$$w_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
.

$$\mathbf{u}_3 = \mathbf{v}_3 - (\mathbf{w}_1 \cdot \mathbf{v}_3)\mathbf{w}_1 - (\mathbf{w}_2 \cdot \mathbf{v}_3)\mathbf{w}_2.$$
 (1/2 mark)

$$= \frac{1}{2} \begin{bmatrix} 1\\0\\-1 \end{bmatrix}.$$

$$w_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}} \end{bmatrix}. \tag{1/2 mark}$$

(For finding an **orthogonal** basis in stead of **orthonormal** only partial mark is awarded.)

10. Let
$$T: \mathbb{R}^5 \to \mathbb{R}^5$$
 be defined by $T\begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$. Consider the ordered bases

 $\mathcal{B} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4, \mathbf{e}_5\} \text{ and } \mathcal{C} = \{\mathbf{e}_5, \mathbf{e}_4, \mathbf{e}_3, \mathbf{e}_2, \mathbf{e}_1\} \text{ of } \mathbb{R}^5.$

- (a) Find the matrix $[T]_{\mathcal{C} \leftarrow \mathcal{B}}$ of T with respect to the bases \mathcal{B} and \mathcal{C} . (2 pts.)
- (b) Find the change of basis matrix (also known as transition matrix) $P_{\mathcal{C}\leftarrow\mathcal{B}}$. (1 pt.)
- (c) Find rank(T) and nullity(T). (1 pt.)

Solution:

(a)
$$[T]_{\mathcal{C}\leftarrow\mathcal{B}} = [[T(\mathbf{e}_1)]_{\mathcal{C}}, \dots, [T(\mathbf{e}_5)]_{\mathcal{C}}].$$
 (1 mark)

$$= \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}. \tag{1 mark}$$

(If only the matrix $[T]_{\mathcal{C}\leftarrow\mathcal{B}}$ is written correctly without doing the first step (that is without writing the form), then also gets full 2 marks.)

(b)
$$P_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 (1 mark)

(c)
$$\operatorname{rank}(T) = 4$$
. $(1/2 \text{ mark})$
 $\operatorname{nullity}(T) = 1$. $(1/2 \text{ mark})$