MathDNN HW 1

2018-13260 Jaehyeon Cha

1 Problem 1

(a) Write $\theta = (\theta_1, \theta_2, \dots \theta_p)^{\top}$ and $X_i = (x_{1i}, x_{2i}, \dots x_{pi})^{\top}$. We can rewrite $l_i(\theta)$ as

$$l_i(\theta) = \frac{1}{2} (X_i^{\top} \theta - Y_i)^2 = \frac{1}{2} (\sum_{k=1}^p x_{ki} \theta_p - Y_i)^2.$$

Computing j-th partial derivative gives

$$\frac{\partial}{\partial \theta_j} l_i(\theta) = (\sum_{k=1}^p x_{ki} \theta_k - Y_i) x_{ji} = (X_i^\top \theta - Y_i) x_{ji}.$$

Gathering up, we get

$$\nabla_{\theta} l_i(\theta) = \left(\frac{\partial}{\partial \theta_1} l_i(\theta), \frac{\partial}{\partial \theta_2} l_i(\theta), \cdots, \frac{\partial}{\partial \theta_N} l_i(\theta)\right)^{\top}$$
$$= (X_i^{\top} \theta - Y_i)(x_{1i}, x_{2i}, \cdots, x_{pi})^{\top} = (X_i^{\top} \theta - Y_i)X_i.$$

(b) Since we are working in Hilbert space \mathbb{R}^N with its inner product as usual dot product,

$$||X\theta - Y||^2 = \langle X\theta - Y, X\theta - Y \rangle = \sum_{i=1}^{N} (X_i\theta - Y_i)^2.$$

Thus, from (a) we conclude

$$\nabla_{\theta} \mathcal{L}(\theta) = \sum_{i=1}^{N} \nabla_{\theta} \frac{1}{2} (X_{i}\theta - Y_{i})^{2} = \sum_{i=1}^{N} \nabla_{\theta} l_{i}(\theta)$$

$$= \sum_{i=1}^{N} (X_{i}^{\top} \theta - Y_{i}) X_{i}$$

$$= \begin{pmatrix} x_{11} & \cdots & x_{1N} \\ & \vdots & \\ x_{p1} & \cdots & x_{pN} \end{pmatrix} \begin{pmatrix} X_{1}\theta - Y_{1} \\ \vdots \\ X_{N}\theta - Y_{N} \end{pmatrix}$$

$$= X^{\top} (X\theta - Y).$$

2 Problem 2

Since $f'(\theta) = \theta$, $\theta^{k+1} = (1 - \alpha)\theta^k$. Induction gives $\theta^{k+1} = (1 - \alpha)^k \theta^0$. Now, since we assume $\alpha > 2$, $|1 - \alpha| > 1$. Therefore θ^k diverges unless $\theta^0 = 0$, which is our hypothesis.

3 Problem 3

From Problem 1 we have $\nabla_{\theta} f(\theta) = X^{\top} (X\theta - Y)$, so

$$\theta^{k+1} = \theta^k - \alpha X^{\top} (X\theta - Y) = (I - \alpha X^{\top} X) \theta^k + \alpha X^{\top} Y,$$

where I is the identity matrix on $\mathcal{M}_{p\times p}(\mathbb{R})$. Subtracting $(X^{\top}X)^{-1}X^{\top}Y$ on both side, we get

$$\theta^{k+1} - (X^{\top}X)^{-1}X^{\top}Y = (I - \alpha X^{\top}X)(\theta^k - (X^{\top}X)^{-1}X^{\top}Y)).$$

Thus, if we let $\phi^k = \theta^k - (X^{\top}X)^{-1}X^{\top}Y$, $\phi^{k+1} = (1 - \alpha X^{\top}X)\phi^k$.

There exists an eigenvalue λ of $X^{\top}X$ satisfying $|\lambda| = \rho(X^{\top}X)$ because the number of eigenvalues of $X^{\top}X$ is finite. In this case $\alpha X^{\top}X$ has eigenvalue $\alpha\lambda$, $|\alpha\lambda| > 2$ by the condition of α . Let v be its corresponding eigenvector. We have $(I - \alpha X^{\top}X)v = (1 - \alpha\lambda)v$, so $\phi^{k+1}v = (1 - \alpha\lambda)^0\phi(v)$. Unless $\phi^0 = 0$, there is nonzero component ϕ of ϕ^0 . Condition $|\alpha\lambda| > 2$ and applying Problem 2 on ϕ implies $\phi^k v$ diverges, so ϕ^k diverges, which implies θ^k diverges. Now, if we give a topology on \mathbb{R}^N as product topology of \mathbb{R} and its measure as usual Lebesgue measure, the set $\{\theta^0 \mid \phi^0 = 0\} = \{(X^{\top}X)^{-1}X^{\top}Y\}$ has measure zero. Therefore θ^0 diverges almost everywhere.