Student No.: Group A For each of the following problems, find the correct answer (tick as appropriate!). No justifications are required. Each problem has exactly one correct solution, which is worth 1 mark. Incorrect solutions (including no answer, multiple answers, or unreadable answers) will be assigned 0 marks; there are no penalties. 1. The volume of the pyramid ("tetrahedron") with vertices (b, 1, 1), (1, -1, -1), (-1, 1, -1), (-1,-1,1) is equal to 1 for $b = \frac{3}{2} \qquad b = \frac{5}{2} \qquad b = -\frac{1}{2} \qquad b = -\frac{1}{2}$ 2. The distance from the point (1,0,0) to the line connecting the points (0,0,1) and (1,2,3) is $\frac{1}{3}\sqrt{21}$ $\frac{1}{2}\sqrt{17}$ 3. The inverse matrix of $\begin{pmatrix} 2 & 3 & 5 \\ 1 & 2 & 3 \\ 0 & 1 & 2 \end{pmatrix}$ has the form $\begin{pmatrix} * & * & * \\ * & c & * \\ * & * & * \end{pmatrix}$ with 4. The reflection of \mathbb{R}^2 at the line $\sqrt{3}x + y = 0$ is afforded by the matrix $\begin{bmatrix} -1/2 & -\sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{bmatrix}$ $\begin{bmatrix} 1/2 & -\sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{bmatrix}$ 5. The maximum rank of $\mathbf{A} \in \mathbb{R}^{3\times 4}$ with all row sums and all columns sums equal to zero is 6. The linear system $2x_1 - x_2 = x_1 + ax_2 + x_3 = x_1 - x_2 + 2x_3 = 0$ has a nonzero solution for $a = -\frac{1}{4}$ $a = -\frac{3}{4}$ $a = \frac{1}{4}$ $a = \frac{3}{4}$ $a = -\frac{5}{4}$ 7. If $f: [0,\pi] \to \mathbb{R}^3$ satisfies f(0) = (0,0,1) and $f'(t) = (2t,\sin t,\cos t)$ then the point $f(\pi)$ is equal to

 $(\pi,0,0)$ $(\pi^2,-2,1)$ $(\pi^2,2,1)$ $(\pi^2,2,0)$ $(\pi^2,-2,0)$

8. The twisted cubic $f(t) = (t, t^2, t^3), t \in \mathbb{R}$ intersects the plane 3x - y + 2z = 4 in an angle of

 0° 90° 60°

9. The arc length of the curve $g(t) = (t^3 + 3t + 1, \sqrt{3}t^2, 4t - 2), t \in [0, 2]$ is $\boxed{}$ 36 $\boxed{}$ 84 $\boxed{}$ 17 $\boxed{}$ 12

10. For a differentiable curve $\gamma = \gamma(t)$ in \mathbb{R}^3 and a (constant) vector $\mathbf{u} \in \mathbb{R}^3$ with $|\mathbf{u}| = 1$ the derivative $\frac{d}{dt} |\gamma - (\gamma \cdot \mathbf{u})\mathbf{u}|^2$ is equal to

 $|2|\gamma - (\gamma \cdot \mathbf{u})\mathbf{u}|$ $\begin{vmatrix} 2\gamma \cdot \gamma' - 2(\gamma \cdot \mathbf{u})(\gamma' \cdot \mathbf{u}) & | 2|\gamma' - (\gamma' \cdot \mathbf{u})\mathbf{u}| \end{vmatrix}$