

Hierarchical Neural Network Deep Learning CS230 Project

Suresh Sugumar ssugumar@stanford.edu

Motivation

Drawbacks of CNN Architecture

- Pooling layers (max pooling) results in poor translational invariance
 - Looses lot of valuable information during pooling
 - Ignores relation between the parts and the whole

- To improve the translational invariance of CNN
 - Train network with lots of augmented data
 - Inefficient and waste of time and resources
 - But does not solve the problem completely

(source)

Goal of this Project

Build a neural network that is as good as CNN plus has translational invariance qualities

Current CNN Predictions

Capsules

A capsule is a group of neurons whose activity vector represents the instantiation parameters of a specific type of entity such as an object or an object part.

Capsule vs. Traditional Neuron

Input from low-level neurons/capsules		$vector(u_i)$	$scalar(x_i)$
Operations	Linear/Affine Transformation	$\hat{\boldsymbol{u}}_{j i} = \boldsymbol{W}_{ij} \boldsymbol{u}_i + \boldsymbol{B}_j \ (\text{Eq. 2})$	$a_{jj} = w_{ij} x_i + b_j$
	Weighting	$s_j = \sum_i c_{ij} \hat{\boldsymbol{u}}_{ji} \text{(Eq. 2)}$	$z_{j} = \sum_{i=1}^{3} 1 \cdot a_{j i}$
	Summation		
	Non-linearity activation	$v_j = squash(s_j)$ (Eq. 1)	$h_{w,b}(x) = f(z_j)$
output		vector(v _j)	scalar(h)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			x_1 x_2 y_2 y_3 y_4 y_5 y_7 y_7 y_8 y_8 y_8 y_9

Capsule Network written for MNIST

(based on paper by Hinton et., al.)

Dataset

- MNIST Handwritten Digits
 - ➤ Train set 60000 examples
 - ➤ Test set 10000 examples
 - Additional 500 images generated for testing, with following operations

Rotation Operation:

Overlap Operation:

Test Setup

Results

Observations

- Longer training duration compared to CNN
 - Further investigation and optimization required

GitHub

https://github.com/sureshsugumar/HierNet

References

Concept inspiration –

Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules. <u>arXiv:1710.09829</u>, 2017.

MNIST Video generation – http://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/

Demo inspiration –

https://github.com/lexfridman/mit-deeplearning/blob/master/tutorial deep learning basics/deep learning basics.ipynb

Project Demo

YouTube Video

https://youtu.be/TL81fl0X6vg