Completeness

This property of completeness distinguishes the set of real numbers \mathbb{R} from the rationals \mathbb{Q} .

One informal statement is that "the real number line has no holes in it." In contrast, the set of rational numbers is missing the irrationals such as $\sqrt{2}$ and e and so on.

Elsewhere we defined the supremum or least upper bound of a set A by saying that

- u is an upper bound for \mathbf{A} if $\forall x \in \mathbf{A}, x \leq u$,
- U is the supremum or least upper bound for \mathbf{A} if for all upper bounds $u, U \leq u$.

Note that for $U = \sup(\mathbf{A})$ it is not necessary that $U \in \mathbf{A}$. 0 is the supremum of both $\{x \mid x < 0\}$ and $\{x \mid x \le 0\}$, but only in the second case is 0 a member of the set.

The completeness axiom then says that

• Every non-empty subset of \mathbb{R} that is bounded above has a supremum in \mathbb{R} .

This is not a true statement for \mathbb{Q} . Suppose we define the subset of \mathbb{Q} that contains all numbers $r \mid r^2 < 2$. Then, $\sqrt{2}$ is the supremum of this set, but $\sqrt{2} \notin \mathbb{Q}$.

How does this definition of completeness lead to the properties that

we really care about, like: $\forall \epsilon > 0, \exists \delta \mid a - \epsilon < a - \delta < a$. No matter how small ϵ is and so no matter how close we are to a real number a, we can always find another real number that is even closer.

approximation property

Apostol gives this corollary to the completeness axiom:

Let **S** be a non-empty set of real numbers with a supremum, say $b = sup(\mathbf{S})$. Then for every a < b there is some x in **S** such that

$$a < x \le b$$

Proof: First, $x \leq b$ for all x in **S**. If we had $x \leq a$ for all x in **S**, then a would be an upper bound for **S** smaller than the least upper bound. Therefore, x > a for at least one x in **S**.