Ejercicio 1. Colocar los límites de integración en uno y otro orden, en la integral doble: $\iint_R f(x,y)dxdy$ para los recintos:

- a) R es un paralelogramo cuyos vértices son A(1,2), B(2,4), C(2,7) y D(1,5).
- b) R es un sector circular, con centro en (0,0) y cuyo arco tiene sus extremos en los puntos (1,1) y (-1,1).

Ejercicio 2. Dada la integral $\iint_R (2x^2 + y^2 + 1)dxdy$, siendo R el cuadrado de vértices (1,0), (2,1), (1,2) y (0,1). Calcula dicha integral. (Sol: 9)

Ejercicio 3. Calcul el volumen del cilindroide limitado por el plano XY, la superficie $z = x^2 + y^2$, y $x = y^2$, $y = x^2$. (Sol: 6/35)

Ejercicio 4. Hallar $\iint_R xy(x-y)dxdy$, siendo R el rectángulo $0 \le x \le a; \ 0 \le y \le b$. (Sol: $\frac{1}{6}(a-b)ab^2$)

Ejercicio 5. Hallar $\iint_R (x^2 + y^2) dx dy$, siendo R el recinto $xy \le k^2$; $a \le y \le b$. (Sol: $\left(\frac{k^6}{6a^2b^2} + \frac{k^2}{2}\right)(b^2 - a^2)$)

Ejercicio 6. Calcula el área de las siguientes regiones:

a.

b.

(P)

c.

d. 🏵

(Sol: a ->1,273 ua; b -> 15/2 ua; c -> 14.4ua; d -> 0.4 ua)

Ejercicio 7. Dada la siguiente pileta, calcula los litros de pintura necesarios para pintar el área sonbreada, suponiendo que 1 litro de pintura rinde 0.5 m².

(Sol: 40 litros)

Ejercicio 8. Calcula la masa del sólido dado por la ecuación $\iint_R \sqrt{x+y} dx dy$, considerando a R como una región acotada por las rectas $y \le x$; $y \ge -x$; $x \le 1$. (Sol: $8\sqrt{2}/15$)