AIME Projects

Supervised & Unsupervised

Project 1: Supervised Machine learning

Supervised Machine Learning

Problem Statement

Unexpected equipment failures lead to costly downtimes. Predicting failures before they occur allows proactive maintenance.

Binary Classification

Methodology Used

CRISP - DM : Cross Industry Standard Process for Data Mining

It Starts from Business Understanding to Model Deployment

Step By Step Process

Inspired by CRISP-DM

Data Extraction —————————————————————— Web Data, CSV, Excel Sheet etc...

Data Analysis Pattern & Trend Analysis

Model Building — — — Model Building based on use case

Python Use Cases

NumPy

A fundamental package to manipulate arrays

<u>PyEnsembl</u>

ETE

<u>ArviZ</u>

emcee

The fundamental package for scientific computing with Python

LATEST RELEASE: NUMPY 2.3. VIEW ALL RELEASES

<u>Analyst</u>

Sverchok

Quantum Computing	Statistical Computing	Signal Processing	Image Processing	Graphs and Networks	Astronomy	Cognitive Psychology
	~	الالا		Dog.		(2)
QuTiP PyQuil Qiskit PennyLane	Pandas statsmodels Xarray Seaborn	SciPy PyWavelets python-control HyperSpy	Scikit-image OpenCV Mahotas	NetworkX graph-tool igraph PyGSP	AstroPy SunPy SpacePy	<u>PsychoPy</u>
Bioinformatics	Bayesian Inference	Mathematical Analysis	Chemistry	Geoscience	Geographic Processing	Architecture & Engineering
		+ - * =		6		
BioPython Scikit-Bio	<u>PyStan</u> <u>PyMC</u>	SciPy SymPy	<u>Cantera</u> <u>MDAnalysis</u>	Pangeo Simpeg	<u>Shapely</u> <u>GeoPandas</u>	COMPAS City Energy

RDKit

<u>PyBaMM</u>

cvxpy

FEniCS

<u>ObsPy</u>

Fatiando a Terra

<u>Folium</u>

Pandas

Pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language.

PANDAS MAIN CAPABILITIES

Pandas

Series

Data Frame

Conditional Filtering

GroupBy
Operations

pd.Series

pd.Series(data, index)

Creation of Series

Arithematic operations

pd.DataFrame

pd.DataFrame(data, index, columns)

pd.read_csv('file_path')

df.head()

df.tail()

df.describe()

df.info()

Create/drop the columns

iloc and loc

pd.DataFrame(Conditional)

df[df['column_name'] <= 'value']</pre>

Multiple columns filtering -

And(&) Or (|)

df.isin()

df.groupby()

Evaluation Metrics

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F_{1} = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$

Project 2: Un-supervised Machine learning

Un - supervised Machine Learning

Problem Statement and Objective

Retailers struggle with onesize-fits-all marketing. Segmenting customers helps tailor promotions and improve retention.

- Identify distinct customer groups based on purchase behavior.
- Provide actionable business strategies for each segment.

Methodology

Step By Step Approach

- 1. Data Cleaning: Remove null transactions, aggregate purchases per customer.
- 2. Feature Engineering:
 - 1. RFM (Recency, Frequency, Monetary Value).
 - 2. Derived features (avg basket size, category diversity).
- 3. Clustering:
 - 1. K-Means, Gaussian Mixture, DBSCAN.
 - 2. Dimensionality reduction with PCA/UMAP for visualization.
- 4. Cluster Validation:
 - 1. Silhouette score, Davies-Bouldin index.
- 5. Business Insight:
 - 1. Map clusters \rightarrow marketing personas (e.g., "loyal high spenders," "deal-seekers").

