Проектирование в Quartus II

Верификация проектов

Верификация проекта

- Большая часть времени, затрачиваемого на проектирование ПЛИС, уходит на верификацию
- Методы верификации
 - Временной анализ
 - Проверка на соответствие проекта временным требованиям
 - Моделирование (отдельных модулей и системы в целом)
 - Проверка на корректность функционирования путем моделирования
 - Формальную верификацию
 - Доказательство корректности реализации
 - Анализ энергопотребления
 - Проверка на соответствие требованиям по энергопотреблению
 - Анализ целостности сигналов
 - Проверка соответствия требованиям внешних интерфейсов
 - Внутрисхемное тестирование
 - Отладка и контроль в процессе работы устройства

Возможности Quartus II

- Quartus[®] II предоставляет следующие возможности для верификации:
 - Временной анализатор TimeQuest
 - Пакет ModelSim-Altera [Starter] Edition и поддержка других симуляторов
 - Анализатор энергопотребления PowerPlay Power Analyzer
 - Анализ шумов при одновременных переключениях SSN Analyzer
 - Средства отладки интерфейсов External Memory Interface Toolkit и Transceiver Toolkit
 - Средства внутрисхемной отладки

Проектирование в Quartus II

Временной анализ

Цели

- Базовые понятия временного анализа
- Интерфейс TimeQuest
- Разработка файлов временных требований SDC
- Проверка временных характеристик простых проектов в анализатореTimeQuest

Принципы временной верификации

- Должен быть проведен анализ всех путей распространения сигналов на соответствие временным требованиям и ограничениям
 - Позволяет обнаружить ошибки, связанные с нарушениями временных требований, быстрее и надежнее, чем временное моделирование и тестирование устройства
- Требуется ввод всех требований и исключений
 - Используется при синтезе и разводке для оптимизации проектов
 - Используется при временном анализе после компиляции для контроля выполнения временных требований и анализа временных характеристик

Принципы временной верификации

- Каждый временной путь имеет начальную и конечную точки
- Например, путь от источника тактовых импульсов до входа тактовых импульсов триггера

Пути распространения сигналов

Три типа путей

- Пути тактовых импульсов
- 2. Пути данных
- з. Асинхронные пути*

^{*}Пути распространения сигналов, поступающих на асинхронные входы триггеров

Запускающий и защелкивающий фронт

- Запускающий фронт (Launch edge) фронт, по которому срабатывает регистр-источник
- Защелкивающий фронт (Latch Edge) фронт, по которому защелкиваются данные в регистре-приемнике

Setup & Hold

Setup (время предустановки) – минимальное время, в течение которого сигнал данных не должен изменяться **перед** приходом тактового импульса

Hold (время удержания) - минимальное время, в течение которого сигнал данных не должен изменяться после прихода тактового импульса

Время установки и удержания формируют временное окно относительно фронта тактового импульса (Data Required Window), в котором данные не должны изменяться

Data Arrival Time

 Время прибытия данных - время поступления данных на синхронный вход регистра-приемника

Data Arrival Time = launch edge + T_{clk1} + t_{co} + T_{data}

Clock Arrival Time

 Время прибытия тактового импульса - время поступления защелкивающего фронта на вход тактового импульса регистра-приемника

Clock Arrival Time = latch edge + T_{clk2}

Data Required Time (Setup)

 Требуемое время предустановки данных - момент времени перед приходом защелкивающего фронта, к которому данные на входе триггеры должны быть

Data Required Time (Setup) = Clock Arrival Time - t_{su} - Setup Uncertainty

Data Required Time (Hold)

 Требуемое время удержания данных - момент времени после прихода защелкивающего фронта, до которого данные на входе триггера должны

Data Required Time (Hold) = Clock Arrival Time + t_h + Hold Uncertainty

Data Required Time и тактовый импульс

 Требуемые времена предустановки и удержания данных в основном определяются временем распространения тактового импульса от источника

Data Required Time (Setup) = Clock Arrival Time - t_{su} - Setup Uncertainty

Data Required Time (Hold) = Clock Arrival Time + t_h + Hold Uncertainty

Clock Arrival Time >> t_h, t_{su}

Setup Slack

Запас предустановки – запас, с которым выполняется требование предустановки

Setup Slack

- Равен разнице между минимальным требуемым временем предустановки и максимальным временем прибытия данных.
- Positive slack положительный запас, временные требования выполняются
- Negative slack отрицательный запас, временные требования не выполняются

Setup Slack = **Minimum** Data Required Time (Setup)

- **Maximum** Data Arrival Time

Hold Slack

 Запас удержания – запас, с которым выполняется требование удержания.

Hold Slack

- Равен разнице между минимальным временем прибытия данных и максимальным требуемым временем удержания.
- Positive slack положительный запас, временные требования выполняются
- Negative slack отрицательный запас, временные требования не выполняются

Hold Slack = Minimum Data Arrival Time – Maximum Data Required Time (Hold)

Recovery & Removal

Recovery (время восстановления) - минимальное время до прихода тактового импульса, за которое асинхронный сигнал должен перейти в неактивное состояние

Removal (время снятия) - минимальное время после прихода тактового импульса, по истечение которого асинхронный сигнал может перейти в неактивное состояние

Анализ ввода/вывода с общим тактовым импульсом

- Анализ временных характеристик по портам ввода/выводы в синхронном проекте использует те же уравнения для расчета запаса
 - Требуется учесть временные характеристики внешнего устройства и задержки на печатной плате
 - Рекомендуется определять виртуальные тактовые импульсы для задания внешних задержек по входам/выходам

Асинхронный и синхронные сигналы

- Асинхронный управляющий сигнал рассматривается как синхронный
 - Уравнения расчета запаса
 - Асинхронный путь рассматривается как путь прибытия данных
 - Recovery, аналогично предустановке, removal удержанию

Пример 1

Пример 2

Временные модели в Quartus II

- Quartus II по умолчанию оценивает временные характеристики устройства для двух точек PVT
 - Медленная модель (Slow Corner)
 - Медленное устройство при максимально допустимой температуре и минимальном напряжении питания
 - Быстрая модель (Fast Corner)
 - Быстрое устройство при минимально допустимой температуре и максимальном напряжении питания
- Времена предустановки должны выполняться в медленной модели
- Времена удержания должны выполняться в быстрой модели
- Третья модель (медленная при минимальной температуре) используется для устройств на основе технологии 65 нм и меньше (феномен температурной инверсии)

Проектирование в Quartus II

Стандартные временные параметры

Установка ТИ (fmax)

- Максимальная частота, с которой можно тактировать схему
 - Ограничивается цепью с наибольшей задержкой (критической цепью)


```
Период ТИ = tco + tcomb + tsu - (tclkb - tclka)

fmax = 1/Период ТИ
```


Анализ удержания ТИ

- Проверяет выполнение внутреннего времени удержания регистра приемника
 - Серьезная ошибка схема не работоспособна
- Проблема возникает, когда задержка в цепи данных меньше перекоса тактовых импульсов
 - Результат передачи ТИ не по глобальным шинам
 - Применение логики для формирования ТИ

Анализ времен установки и удержания

tsu = tcomb - tclk + tsuвн

th = tclk - tcomb + theh

Анализ задержки выхода по ТИ

tco = tclk + внутр. tco + tcomb

