Plan du chapitre

Communications sur un médium

- 1) La couche 1 (couche physique)
 - Quelques définitions
 - Les différents câbles
- 2) La couche 2 (liaison de données), MAC, LLC
- 3) Présentation de quelques protocoles
 - IEEE 802.3 et Ethernet II
 - Anneau à jeton
 - 802.11, Wifi
- 4) Code détecteurs/correcteurs d'erreurs

Caractéristiques des médiums

bande passante

Espace de fréquence des signaux transmis sans affaiblissement

valence

Nombre d'états logiques distincts pour représenter l'information

débit maximal d'une voie

- D = W * log_2 (1+S/B) S/B : rapport signal sur bruit (db).
- Théorème de Shannon

taux d'erreurs

Matériaux conducteurs	semi-conducteurs	isolants
Cuivre	Carbone	Verre
Argent	Silicium	Papier
Or	Germanium	Air

Matière plastique

Types de médium (1)

Le câble coaxial:

2 conducteurs concentriques séparés par un isolant

BP = 120MHz, débit = 10 Mb/s

Longeur de câble max : 500m

- Te = 10^{-9}
- Coût : économique
- Très utilisé pour la télévision
- Nécessite des bouchons aux extrémités

Isolant en

matière plastique

2 sortes de câble coaxial pour les réseaux informatiques

• Nom : câble Ethernet épais -> norme ethernet : 10 Base 5

Nom : câble Ethernet fin -> norme ethernet : 10 base 2 (le plus utilisé)

Types de médium (2)

Le câble à paires torsadées blindées (STP : Shielded Twisted Pair)

- conducteurs de cuivre, isolés l'un de l'autre et enroulés de façon hélicoïdale autour de l'axe et protégés par de l'aluminium (torsade ->réduction du bruit électromagnétique)
- 2 paires de fils
- BP = 500kHz, débit = 10 à 1000Mb/s
- Longeur de câble max : 100 m
- Te = 10^{-7}
- Coût : modéré

- Le câble ScSTP (screened Twisted Pair)
 - Câble STP avec 4 paires de fils (très utilisé et assimilé à STP)

Types de médium (3)

- Le câble à paires torsadées non blindées (UTP : unshielded Twisted Pair)
 - conducteurs de cuivre, isolés l'un de l'autre et enroulés de façon hélicoïdale autour de l'axe

(torsade ->réduction du bruit électromagnétique)

- 4 paires de fils
- BP = 500kHz, débit = 10 à 1000Mb/s
- Longeur de câble max : 100 m
- Catégorie 4, 5, 5e, 6 (diminue le taux d'erreurs)
- Coût : le moins onéreux

Types de médium (4)

Le Faisceau satellitaire :

- 40 GHz > BP > 400 MHz, débit = 140 Mb/s
- antenne directive vers satellite + relais sur terre
- satellite géostationnaire (à 36000 km de la terre)

Le Faisceau Hertzien :

- BP limitée, bande ISM: Industrial, Scientific and Medical (900 Mhz, 1800 Mhz, 2,4 Ghz, 5 Ghz, 5,7 Ghz...)
- Débit : dépend de la norme utilisée et du mode d'accès aux fréquences (de 1MB/s à 100 MB/s)
- Distance: jusqu'à 200 m (diffusion circulaire) -> norme 802.11, Wifi, bluetooth, Zigbee jusqu'à 50 km (point à point) -> norme Wimax

(Pourquoi maximum = 50 km?)

Types de médium (5)

La fibre optique :

- BP > 1 GHz, débit = 10 Gb/s, mode simplex -> toujours 2 fibres
- distance = 2 ou 3 Kms.
- propagation de la lumière par réflexions successives sans perte
 - Indice de réfraction n1 (coeur) > n2 (enveloppe)
 - Angle d'incidence du rayon lumineux supérieur à l'angle critique du coeur et de l'enveloppe (pour éviter la réfraction)
- fibre monomode (un chemin, coeur = 10 microns, diamètre extérieure = 125 microns)
- fibre multimode (plusieurs chemins, coeur 50 microns, diamètre extérieure = 125 microns)
- Utilisation laser ou LED, aucun bruit électromagnétique

Couche Physique

Récapitulatif

	débits	longueur maximale	raccordement	prix
câble coaxial	10 Mb/s	200 m à 500 m	BNC	ancien
paire torsadée Blindée ou non	10 Mb/s à 1 Gb/s	100 m	RJ45	le moins cher
fibre optique	100 Mb/s à 10 Gb/s	quelques km	SC	cher
faisceau satellitaire	140 Mb/s	qq centaines km à qq milliers km	antenne directive	très cher
faisceau hertzien (réseau sans fil)	1Mb/s à 70Mb/s	qq cm à qq km	antenne (directive)	très divers
ligne série	très divers	très divers	Modem	très divers

Couche Physique

Médium téléphone

La ligne d'abonné (paire de cuivres) a une bande passante dont la largeur est de plusieurs centaines de Khz, mais le téléphone (vocal) n'utilise que la bande de largeur 0 à 4000 Hz

Transmission dans la communication téléphonique

bande : 0 à 3400 Hz

W = 4000 Hz

Dmax = 64 Kb/s

- Transmission sur toute la capacité de la ligne : xDSL
 - la bande est divisée en canaux (sous-bandes) de 4,3125 KHz

• le canal 0 (0 à 4312 Hz) est réservé pour la téléphonie (POTS - *Plain Old Telephone Service*), et les canaux 1 à 6 sont réservés .

- les autres canaux (7 à 255) sont répartis entre le flux upstream et le flux downstream (de l'opérateur vers le client)
- Dmax = 60 Kb/s par canal

Les médiums – raccordement

ETTD équipement terminal de traitement de données

- DTE data terminal equipement
- Exemple : PC, routeur,...

ETCD équipement terminal de circuit de données

- DCE data circuit equipment
- Exemple : modem téléphonique, modem RNIS, modem DSL, capteur...

la transmission peut être :

simplex

semi-duplex (half-duplex)

duplex

Raccordements physiques en RJ45

Connexion d'équipements différents -> câble droit (straight-through cable)

Connexion d'équipements similaires -> câble croisé (crossover cable)

1-2: émission

3-6: réception

Codages de l'information pour la transmission

2 modes de transmission

- Bande de base
 - différents codages possibles:
 - code NRZ (Non Remise à Zéro)
 - code de Miller
 - code de Manchester ou Manchester différentiel
 - code bipolaire
- Large bande ou bande modulée
 - Sinusoïde modulée :
 - en amplitude
 - en fréquence
 - en phase,...
 - modulations combinées

NRZ

Utilisation

• pour relier deux ordinateurs par câble croisé

Inconvénients

- pas de transition lors de longues séquences de 0 ou de 1 => pas de possibilité de synchroniser les horloges,
- composante continue diminuée, mais non nulle

Manchester

Codage

- Une transition est faite au milieu de chaque temps bit.
- La transition est montante pour 1, descendante pour 0

Utilisation

pour les liaisons Ethernet

Inconvénients

- largeur du spectre de la bande passante (BP double de celle du codage NRZ)
- ne pas inverser les polarités, sinon le code est inversé

Modulations

Isima Couche Physique

Les problèmes physiques

- L'atténuation : baisse d'amplitude du signal le long d'une liaison (db)
 ->nécessité de régénérer le signal
- Discontinuité d'impédance : mauvaise adaptation du câble sur la prise
 - ⇒Atténuation + discontinuité d'impédance = affaiblissement d'insertion
- *Diaphonie*: transmission des signaux d'un fil à un autre fil proche
 - diaphonie locale
 - diaphonie distante
- Test physique d'un câble : schéma de câblage (correct, ouvert, court-circuit),
 - affaiblissement d'insertion,
 - diaphonie locale et distante,
 - délai de propagation,
 - longueur de câble, etc...

Les équipements physiques

Les Différents câbles

• Les équipements actifs pour relier le réseau ou régénérer le signal

HUB

Modem

Répéteur

et aussi pont, routeur,...

Les antennes

La couche 2 Les couches MAC

Couche 2 - Généralité

3 fonctionnalités importantes

- Gestion des données sous forme de trames (frames)
 - Repérage des trames sur le support physique

- Détection et correction des erreurs
 - Numérotation des trames
 - Utilisation de code détecteur/correcteur d'erreurs

- Régulation du trafic
 - utilisation d'acquittement

La couche MAC - Généralité (1)

Transmission de bits entre systèmes raccordés à un médium

Liaison de données	Lo	gic	cal Link	Control	(802.2)		
	CSMA/CD Bus Jeton DQDB Sans (802.3) (802.4) (802.5) (802.6) (802.1)						
Physique	Câble coaxial		Fibre o	ptique	Paire torsade	ée	

MAC : Medium Access Control

Tout signal émis par l'un des systèmes raccordés est entendu par tous les autres

LLC

MAC

La couche MAC - Généralité (2)

Une entité-MAC par système

- reçoit les demandes d'émission (de l'intérieur du système)
- décide quand émettre (méthode d'accès au médium)
- écoute ce qui est transmis, et décide de recevoir

Tout signal émis par l'un des systèmes raccordés est entendu par tous les autres

Appellation unique de chaque entité MAC sur le médium

• Identifie le système sur le médium

Remarque:

Un système raccordé à plusieurs médiums a autant d'entités-MAC que de raccordements, donc autant d'appellations.

La couche MAC - Généralité (3)

◆ Pas de communication entre deux couches MAC

Sauf si

un système est raccordé aux 2 supports et contient :

- une entité MAC pour chaque médium
- une entité-utilisateur de couches MAC liée à chacune des deux couches MAC

Isima Couche MAC 24

MAC – méthodes d'accès

point-à-point

 les 2 systèmes peuvent émettre en même temps, sur des fréquences différentes (pré-allocation en fréquence)

point-à-multipoint

- toutes les stations doivent émettre sur la même fréquence
- mais pas en même temps (sinon collision)
- il faut un règlement pour le droit d'émission (méthode d'accès)
 - pré-allocation en fréquence, en temps, en fréquence et en temps
 - par un jeton (token):
 - la possession du jeton donne le droit d'émettre
 - transmission du jeton de système en système (anneau réel ou virtuel)
 - géré par un maître (le maître donne le droit d'émettre)
 - CSMA (Carrier Sense Multiple Access)
 - écoute avant d'émettre, attente si transmission en cours
 - CD (Collision Detection): transmission, et écoute pour détecter une collision
 - CA (Collision Avoidance): envoi d'une demande de transmission et acquittement du destinataire

IEEE 802.3, Ethernet -II

- ◆ <u>Technique</u>: CSMA/CD Carrier Sense Multiple Access / Collision Detection
- ♦ Topologie : Bus et maintenant maillage
- Méthode d'accès : par compétition (écoute du médium : si libre, émission sinon attente)
 - Réémission après un temps d'attente si collision
- ◆ <u>Débit</u> :10 Mb/s, 100 Mb/s, 1 Gb/s
- ◆ Trame :

8 octets	6 octets	6 octets	2 octets	1 à 1500 octets	4 octets
Synchro	Adresse destinataire	Adresse expéditeur	type de trame / lg données	Données + bourrage	FCS

Isima MAC - Ethernet 26

Exemple ethernet -II

Exemple d'une trame en hexadécimal :

En général, le fanion et le contrôle d'erreur (FCS) ne sont jamais représentés.

Anneau à Jeton 802.5

- ◆ <u>Technique</u>: Token Ring
- ◆ <u>Topologie</u>: Anneau
- Méthode d'accès : par élection
 - Passage d'un jeton (droit de parole) entre les machines
 - Priorité des messages
 - Jeton de 3 octets (SD, AC, ED)
- ◆ <u>Débit</u> :4 ou 16 Mb/s
- ◆ <u>Trame</u>:

2 octets	1 octet	2 ou 6 octets	2 ou 6 octets	x octets	4 octets	2 octets
SD+AC	Contrôle		Adresse	Données	FCS	synchro
DDIAC	de trames	destinataire	expéditeur	Donnees		Syncino

La norme 802.11

La norme **802.11** définit la couche 1 et 2 pour une liaison sans fil utilisant des ondes électromagnétiques :

- La couche physique
 - ♦ codage DSSS, FHSS, IrDA

DSSS: étalement de spectre en séquence directe

FHSS : étalement de spectre avec sauts de fréquence

- La couche Liaison de données
 - couche LLC et couche MAC

Cette norme permet d'avoir un débit de 1 ou 2Mb/s et elle utilise un accès au médium par compétition (méthode CSMA/CA)

(CA: Collision Avoidance)

Mais, évolution de cette norme Wi-Fi (Wireless Fidelity)

Wi-Fi

Nom de la norme	Nom	Description
802.11a	Wifi5	Débit : 54Mb/s, 8 canaux radio dans la bande de fréquence des 5 Ghz.
802.11b	Wifi	Débit : 11Mb/s, portée 300m, 3 canaux radio dans la bande de fréquence des 2,4 Ghz
802.11c	Pontage	Etablissement d'un pont pour la norme 802.11d
802.11d	International	Etablit les règles à respecter entre les différents pays pour transporter les données 802.11
802.11e	QoS	Définition d'une QoS
802.11f	Roaming	Interopérabilité entre les différents points d'accès pour permettre l'itinérance (définition de l'IAPP)
802.11g	Wifi	Débit : 54MB/s, portée 300m, compatible avec 802.11b
802.11h	?	Norme proche de HyperLan 2, réseau européen
802.11i	WPA2	Amélioration de la sécurité pour les normes a, b et g.
802.11j	?	Norme pour la communauté japonaise
802.11n	?	Débit : 320 Mb/s avec intégration de la norme i mais pas de compatibilité (norme acceptée en 09/2009)

Isima MAC - Wifi 30

Topologies sans fils (1)

- 2 Sortes d'équipement
 - Une station sans fil
 - un ordinateur muni d'une carte Wifi (carte PCI, PCMCIA, adaptateur USB, carte compactflash, ...)
 - Un point d'accès (Access Point) ou borne sans fil
 - joue le rôle de pont entre réseau filaire et sans fil
 - équipé : d'un émetteur/récepteur radio
 d'une carte réseau filaire
 d'un logiciel de pontage conforme à la norme 802.11d

Topologies sans fils (2)

♦ Mode Infrastructure

Au minimum , 1 AP + postes sans fil

BSS : Basic Service Set

- identifié par un BSSID (abrégé en SSID -> Service Set Identifier)

- Plusieurs BSS forment un ESS (Extended Service Set) relié par un DS (Système de Distribution)
 - identifié par un SSID

Possibilité de roaming si même SSID

Isima MAC - Wifi

Topologies sans fils (3)

♦ Mode Ad-Hoc

Aucun AP, que des postes sans fil

■ IBSS : Independant Basic Service Set

- identifié par un SSID

Problème pour le routage

si A ---> B
si B ---> C alors A
$$\stackrel{}{\searrow}$$
-> C

Tout le monde doit voir tout le monde

Pc configuré comme routeur

Trames utilisées

La couche MAC

- Similaire à la couche Mac ethernet pour les adresses
- Fonctionnalité
 - Contrôle d'accès au support
 - Contrôle d'erreur par CRC
 - Fragmentation et réassemblage
 - Gestion de l'énergie
 - Gestion de la mobilité
- Deux méthodes d'accès pour le 802.11a, b, g
 - DCF (Distributed Coordination Function): utilisation pour les données asynchrones, collisions possibles
 - PCF (Point Coordination Function): utilisation pour les données synchrones, pas de collision (méthode non utilisée).

Distributed Coordination Function

DCF

Basé sur un accès CSMA/CA

Pour émettre :

- On écoute le support (ondes)
- Si libre pendant un temps donné (*DIFS*, Distributed Inter Frame Space)
 - -> transmission d'une trame Ready To Send (RTS) contenant les

informations sur le volume de données et la vitesse de transmission.

- -> réception d'un Clear To Send (CTS)
- -> envoie des données
- -> récupération d'un ACK pour chaque trame

Pourquoi un ACK pour chaque trame?

2 stations peuvent vouloir émettre en même temps sans se voir. (Collision Avoidance...)

PPP (Point to Point Protocol)

caractéristiques

- médium : ligne série non permanente
- méthode d'accès : AMRF
- destinataire unique
- livraison sans erreur

points d'accès

- un point d'accès par couche supérieure
- adresse = code de la couche supérieure (RFC 1700, PPP DLL, protocol numbers)

mode connecté

 livraison garantie ou avertissement de non-livraison

protocole

- transfert de données utilisateur
- contrôle de qualité de transmission
- authentification
- cryptage
- compression

PPP - schéma

La couche LLC

- Les fonctions de la couche 2 non prises en charge par la couche MAC ont été placées dans la sous-couche LLC (Logical Link Control) :
 - points d'accès pour les entités des fournisseurs de couches 3.
 - rattrapage des erreurs (transformées en pertes par les couches MAC).
 - contrôle de flux.

Mais comme les 2 dernières fonctions ne sont pas toujours nécessaires, différentes couches LLC ont été spécifiées

Le Traitement des erreurs (1)

- ◆ Te = taux d 'erreur
 - Te = Nb bits erronés / Nb bits transmis pendant une période d'observation $10^{-9} < \text{Te} < 10^{-3}$

Principes

Un **vocabulaire** commun à l'émetteur et au récepteur L'émetteur n'émet que des **mots** du vocabulaire

Le récepteur reçoit une chaîne de bits qui :

◆ <u>n'est pas</u> un mot détection du vocabulaire

détection d'une ou plusieurs erreurs

<u>est</u> un mot du vocabulaire

Pas d'erreur de transmission ou plusieurs erreurs qui se compensent

Le Traitement des erreurs (2)

Exemple

Vocabulaire	Α	В	С
V1	00	01	10
V2	000	011	101
V3	00000	01111	10110

L'émetteur envoie le mot A Erreur sur le 2ème bit Que détecte le récepteur ?

La chaîne de bits appartientelle au vocabulaire?

émis reçu reconnu corrigé

V1	V2	V3
00	000	00000
01	010	01000
oui	non	non
non	non	oui

- La détection par écho
 - La détection par répétition
 - La détection par redondance

Stratégie de traitement d'une erreur

Isima

Traitement des erreurs

Code détecteur d'erreurs (1)

Contrôle de parité

- code VCR (Vertical redundancy Check)
- code LCR (Longitudinal Redundancy Check)

Codes Polynomiaux

CRC : Cyclic Redundancy Check

FCS: Frame Control Check

G(x) : polynôme générateur de degré r

M(x): message à encoder

1100101
$$<-> 1*x^6 + 1*x^5 + 0*x^4 + 0*x^3 + 1*x^2 + 0*x^1 + 1*x^0$$

 $<-> x^6 + x^5 + x^2 + 1$

ex :
$$G(x) = x^{16} + x^{12} + x^5 + 1$$

$$G(x) = x^8 + x^2 + x + 1$$

$$G(x) = x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$$
 CRC-32-ethernet

Code détecteur d'erreurs (2)

Méthode

- On divise le polynôme M(x)*x^r par G(x) et on obtient le reste R(x)
 M(x)*x^r =G(x)*Q(x) + R(x)
- On envoie la séquence de bits de longueur n=m+r $N(x)=M(x)^*x^r+R(x)$
 - N(x) est multiple de G(x) car :
 N(x)=M(x)*xr + R(x) = G(x)*Q(x)+R(x)+R(x)

$$A(x) = W(x)^{*}x^{*} + R(x) = G(x)^{*}Q(x) + R(x) + R(x)$$

= $G(x)^{*}Q(x)$

On décode en faisant la division, le reste doit être nul

Mathématique en base 2 :

+ 0 1 0 0 1 1 1 0

Addition

Soustraction

-	0	1
0	0	1
1	1	0