Redes 2

A Arquitetura da Internet e o Protocolo

- IP
- A rede IP é não-confiável e não orientada a conexão
- Não-confiável: um pacote transmitido pode não chegar ao destino, ou seja, pode se perder e a origem não fica sabendo
- Na prática: não tem confirmação de recebimento (acknowledgment -> ACK)
- Não orientada à conexão: não tem o conceito de "conexão" entre origem e destino -> cada pacote é tratado individualmente
- Pacotes podem chegar embaralhados ao destino, fora da ordem em que foram enviados
- A confiabilidade fica nas pontas: os hosts devem garantir
 - Que todos os pacotes transmitidos são recebidos
 - A ordem de transmissão é preservada
- O protocolo TCP, da camada de transporte é confiável e orientável a conexão
- Quando é impossível usar TCP, a confiabilidade deve estar na aplicação
- Protocolo IP (Internet Protocol) IPv4
 - o O pacote IP -> datagrama IP
 - Datagrama = termo para protocolo n\u00e3o confi\u00e1vel e n\u00e3o orientado \u00e0 conex\u00e3o

I Versan (An) I		nho do der (4b)		Tipo de Serviço (ToS) (8b)	
Tamanho do Pacote (16b)				Identificador (16b)	
Flags (3b)	Deslocamento (Offset) do Fragmento (13b)				
Time To Live (TTL) (8b)		Protocolo (8b)		ocolo (8b)	Checksum do Header (16b)
Endereço IP Origem (32b) Endereço IP Des					P Destino (32b)
Opcionais ta				Padding (para completar manho total múltiplo 32 bits)	
DADOS-PAYLOAD					

- Versão: campo permite a evolução do protocolo, com múltiplas versões em funcionamento simultaneamente
- Tamanho do header: variável por causa dos opcionais IP
 Se os opcionais são usados: pode precisar de padding enche de bits para o tamanho total do header ser múltiplo de 32
 - O tamanho do header é indicado em número de "palavras" de 4 bytes (32 bits)

Pacotes com Opcionais são descartados de backbones comerciais Ou seja, na Internet não se usa Opcional, e o Header tem tamanho fixo de 20 bytes O campo tamanho do header é 5 quase sempre

- Tipo de serviço (ToS): originalmente, os 8 bits deste campo eram tratados da seguinte maneira
 - Prioridade (3 bits) impossível definir garantir na Internet como um todo (8 classes)
 - D (1 bit) Delay (Atraso)
 - T (1 bit) Throughput (Vazão)
 - R (1 bit) Reliability (Confiabilidade)
 - Reservados para uso futuro (2 bits)

Nos anos 1990: definição de arquiteturas de Qualidade de Serviço para a Internet

QoS: Quality of Service

No IETF, duas arquiteturas rivais foram definidas (IntServ e DiffServ)

A arquitetura DiffServ redefiniu o campo Tos

- Código do serviço (6bits)
- Reservados para uso futuro (2 bits)

Hoje em dia: Overprovisioning

Tamanho total do pacote: pode ter até 64 k bytes

Acontece que o pacote IP é encapsulado em um quadro da camada de enlace

No caso da Ethernet, há um limite máximo dos dados que transmite (MTU - Maximum Transfer Unit) é de 1500 bytes

Quando o tamanho do pacote IP é maior que o MTU do enlace no qual vai ser transmitido -> Fragmentação IP