Econ 703 Note 7

Chia-Min Wei*

October 23, 2025

1 The Inner Product on \mathbb{R}^n

Definition 1.1: The inner product between two vectors $u, v \in \mathbb{R}^n$, denoted by $u \cdot v$, is defined by

$$u \cdot v = \sum_{i=1}^{n} u_i v_i,$$

where $u = (u_1, ..., u_n)$ and $v = (v_1, ..., v_n)$.

There are many others notations for the inner product. The most common ones include $u^{\mathsf{T}}v$ and $\langle u,v\rangle$.

Theorem 1.1: The inner product on \mathbb{R}^n satisfies the following properties:

- (i) $\mathbf{0} \cdot u = 0$ for all $u \in \mathbb{R}^n$.
- (ii) $u \cdot u \ge 0$ for all $u \in \mathbb{R}^n$. The equality holds if and only if u = 0.
- (iii) $u \cdot v = v \cdot u$ for all $u, v \in \mathbb{R}^n$.
- (iv) $(u+v) \cdot w = u \cdot w + v \cdot w$ for all $u, v, w \in \mathbb{R}^n$.
- (v) $(au) \cdot v = a(u \cdot v)$ for all $a \in \mathbb{R}$ and $u, v \in \mathbb{R}^n$.

 $||u|| = \sqrt{u \cdot u}$ is called the **norm** of u. The Euclidean distance between two vectors u and v is then d(u,v) = ||u-v||.

2 Cauchy Schwartz Inequality

Theorem 2.1 (Cauchy Schwartz Inequality): For all $u, v \in \mathbb{R}^n$,

$$(u \cdot v)^2 \le ||u||^2 ||v||^2$$
.

The equality holds when u = kv for some $k \in \mathbb{R}$.

^{*}This TA Note is based on Prof. John Kennan's math camp lecture taught in 2025 at UW-Madison. All errors are mine.

Proof. Let $u, v \in \mathbb{R}^n$. For all $t \in \mathbb{R}$,

$$(tu+v)\cdot(tu+v)\geq 0$$
 (Theorem 1.1 (ii))

$$\implies tu \cdot (tu + v) + v \cdot (tu + v) \ge 0$$
 (Theorem 1.1 (iv))

$$\implies (u \cdot u)t^2 + (u \cdot v)t + (v \cdot u)t + v \cdot v \ge 0$$
 (Theorem 1.1 (iv))

$$\implies ||u||^2 t^2 + 2(u \cdot v)t + ||v||^2 \ge 0.$$
 (Theorem 1.1 (iii))

Write $a = \|u\|^2$, $b = 2(u \cdot v)$ and $c = \|v\|^2$. Therefore, the quadratic function

$$f(t) = at^2 + bt + c \ge 0$$

for all $t \in \mathbb{R}$. So the discriminant $D \leq 0$:

$$b^{2} - 4ac \ge 0 \implies 4(u \cdot v)^{2} - 4||u||^{2}||v||^{2} \le 0$$

$$\implies (u \cdot v)^{2} \le ||u||^{2}||v||^{2}$$

When u = kv for some $k \in \mathbb{R}$,

$$|u \cdot v|^2 = |k|^2 |v \cdot v|^2 = |k|^2 ||v||^4 = ||kv||^2 ||v||^2 = ||u||^2 ||v||^2.$$

Example 2.1: Given any data $\{(y_i, x_i)\}_{i=1}^n$ where $y_i, x_i \in \mathbb{R}^n$, the sample correlation is defined as

$$\hat{\rho}_n = \frac{\sum_{i=1}^n (y_i - \overline{y})(x_i - \overline{x})}{\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^n (y_i - \overline{y})^2}},$$

where $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$. Let $u = (x_1 - \overline{x}, ..., x_n - \overline{x})$ and $v = (y_1 - \overline{y}, ..., y_n - \overline{y})$, By Cauchy-Schwartz Inequality,

$$|\hat{\rho}_n| = \frac{|u \cdot v|}{\|u\| \|v\|} \le 1 \implies \hat{\rho}_n \in [-1, 1].$$

3 Projection

Definition 3.1: A nonempty subset W of \mathbb{R}^n is called a **subspace** of \mathbb{R}^n if the following two conditions hold:

- (i) If $w \in W$ and $a \in \mathbb{R}$, then $aw \in W$.
- (ii) If $u, v \in W$, then $u + v \in W$.

Theorem 3.1: Let $u \in \mathbb{R}^n$ and W be a subspace of \mathbb{R}^n . Then there exists a unique $\hat{u} = \arg\min_{w \in W} \|u - w\|^2$. Moreover, \hat{u} satisfies $(u - \hat{u}) \cdot w = 0$ for all $w \in W$.

We will skip the proof now since it uses concepts in linear algebra.

Example 3.1: Consider a regression model $y_i \in \mathbb{R}$ and $x_i \in \mathbb{R}^k$,

$$y_i = x_i' \beta_0 + \epsilon_i$$
.

Given data (y, X), we estimate the true parameter $\beta_0 \in \mathbb{R}^k$ by minimizing $\|y - X\beta\|^2$, where

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n, \quad \boldsymbol{X} = \begin{bmatrix} x_1' \\ x_2' \\ \vdots \\ v_n' \end{bmatrix} \in \mathbb{R}^{n \times k}.$$

One can check the set $W = \{w \in \mathbb{R}^n : w = X\beta \text{ for some } \beta \in \mathbb{R}^k\}$ is a subspace of \mathbb{R}^k . Therefore, by the above theorem, there exists a unique $\hat{y} = \arg\min_{w \in W} \|y - w\|^2$. If X is of full rank, then \hat{y} takes the form

$$\hat{y} = \boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'y.$$

And the estimator of β_0 ,

$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'y.$$

Observe that for any $w \in W$, say $w = X\beta$,

$$(y - \hat{y}) \cdot w = (y - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'y) \cdot \mathbf{X}\beta$$

$$= y \cdot (\mathbf{X}\beta) - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'y \cdot \mathbf{X}\beta$$

$$= y'\mathbf{X}\beta - (\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'y)'(\mathbf{X}\beta)$$

$$= y'\mathbf{X}\beta - y'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\beta$$

$$= y'\mathbf{X}\beta - y'\mathbf{X}\beta = 0.$$

The fourth equation holds since $(X'X)^{-1}$ is symmetric.