## Signal Processing - 1 by One

Sibi Raj B. Pillai Dept of Electrical Engineering IIT Bombay





















Sampling Operator:  $y(t).\delta(t) = y(0)$  at t = 0 when y(0) well-defined





Sampling Operator:  $y(t).\delta(t) = y(0)$  at t = 0 when y(0) well-defined





Sampling Operator:  $y(t).\delta(t) = y(0)$  at t = 0 when y(0) well-defined.





Sampling Operator:  $y(t).\delta(t) = y(0)$  at t = 0 when y(0) well-defined.



#### Dirac's Formalism

Definition: [**Dirac Delta**] An operator  $\delta(t)$  such that

$$\int_{\mathbb{R}} x(t)\delta(t)dt = x(0),$$

for any function x(t) continuous at t = 0.

#### Dirac's Formalism

Definition: [**Dirac Delta**] An operator  $\delta(t)$  such that

$$\int_{\mathbb{R}} x(t)\delta(t)dt = x(0),$$

for any function x(t) continuous at t = 0.

$$\int_{\mathbb{R}} x(t+\tau)\delta(t)dt = x(\tau) = \int_{\mathbb{R}} x(u)\delta(u-\tau)du$$

#### Dirac's Formalism

Definition: [**Dirac Delta**] An operator  $\delta(t)$  such that

$$\int_{\mathbb{R}} x(t)\delta(t)dt = x(0),$$

for any function x(t) continuous at t = 0.

$$\int_{\mathbb{R}} x(t+\tau)\delta(t)dt = x(\tau) = \int_{\mathbb{R}} x(u)\delta(u-\tau)du$$

Sampling will be represented as **product** with an impulse,  $y(t) = x(t)\delta(t-\tau)$ , but the operation is **sample and hold**.



## **Impulse Operations**







## Impulse Operations





## Impulse Operations







$$f(t) = \alpha_1 \delta(t + \tau_1) + \alpha_2 \delta(t - \tau_2) + \delta(t - \tau_3)$$
 "Superposition"



# Periodic Sampling





## Periodic Sampling





## Periodic Sampling



$$f(t) = y(t) \sum_{n \in \mathbb{Z}} \delta(t - nT)$$



### Replacement Operation

- ▶ Product operation of a signal x(t) with  $\delta(t)$  is sampling.
- Star operation with  $\delta(t)$  is defined as: replacement of  $\delta(t)$  by the function x(t)



### Replacement Operation

- ▶ Product operation of a signal x(t) with  $\delta(t)$  is sampling.
- > Star operation with  $\delta(t)$  is defined as: replacement of  $\delta(t)$  by the function x(t).



### GnuRadio Experiments



