

UNIVERSITÉ ASSANE SECK DE ZIGUINCHOR UFR DES SCIENCES ET TECHNOLOGIES DÉPARTEMENT D'INFORMATIQUE

CHAPITRE IV OPTIMISATION DE REQUÊTES

ANNÉE ACADÉMIQUE: 2022 – 2023

FILIÈRE: INGÉNIERIE INFORMATIQUE

NIVEAU: LICENCE 3

SEMESTRE: 5

DR SERIGNE DIAGNE

PLAN DU COURS

Introduction

- I. Arbre algébrique
 - 1. Définition
 - 2. Représentation des opérations de l'algèbre relationnelle
- II. Optimisation de requêtes
 - 1. Restructuration algébrique
 - 2. Heuristiques d'optimisation
- III. Exercice d'application

INTRODUCTION

- La plupart des SGBD relationnels modernes offrent des langages de manipulation basés sur SQL;
- > SQL est un langage non procédural qui utilise des opérateurs ensemblistes ;
- L'utilisateur définit les données qu'il veut visualiser sans fournir des algorithmes d'accès à ces données ;
- L'objectif de l'optimisation est de déterminer ces algorithmes d'accès appelés plan d'exécution ;
- Il est essentiel pour un système d'utiliser des plans d'exécution optimisés pour les requêtes les plus fréquentes ;
- Un plan d'exécution dépend du schéma interne de la base de données (particulièrement per de l'existence d'index) et de la taille des tables.

INTRODUCTION

- Un optimiseur de requêtes transforme une requête exprimée dans un langage source (SQL par exemple) en un plan d'exécution ;
- Un plan d'exécution est une séquence d'opérations de bas niveau réalisant efficacement l'accès aux données ;
- L'exécution d'une requête SQL par un SGBD suit les étapes suivantes :
 - ✓ **Analyse syntaxique :** Vérification de la syntaxique et traduction en opérations algébriques ;
 - **✓ Contrôle de l'accès aux données :** Vérification des droits d'accès de l'utilisateur ;
 - **✓ Optimisation :** Génération des plans d'exécution et choix du meilleur ;
 - **▼ Exécution :** Compilation et exécution du plan choisi.
- Optimiser une requête c'est chercher le plan d'exécution optimal pour minimiser le coût de son exécution en ressources et diminuer la durée de son exécution ;
- Le système construit tous les arbres algébriques possibles pour la requête, puis évalue leur coût et enfin choisit celui qui a le plus petit coût d'exécution.

I. ARBRE ALGÉBRIQUE

I. 1. Définition

C'est la représentation graphique sous forme d'arbre d'une requête dans laquelle :

- les feuilles représentent les relations ;
- les nœuds intermédiaires représentent les opérateurs algébriques;
- le nœud racine représente la relation résultat de la requête ;
- les arcs représentent les flux de données entre les opérations ;
- les tris sont représentés par des rectangles contenant les attributs sur lesquels ils portent ;
- les agrégats sont représentés par un rectangle contenant les attributs de la clause **Group**By et d'un autre rectangle contenant les attributs résultats calculés.

I. ARBRE ALGÉBRIQUE

I. 2. Représentation des opérations de l'algèbre relationnelle

6

II. OPTIMISATION D'ARBRES ALGÉBRIQUES

II. 1. Restructuration algébrique

Pour optimiser une requête on la réécrit pour obtenir une requête équivalente en utilisant :

- la commutativité et l'associativité de la jointure naturelle : elles permettent de changer l'ordre des jointures pour :
 - ✓ minimiser la taille des données à parcourir ;
 - ✓ Diminuer le nombre de comparaisons de valeurs à faire ;
- le regroupement des sélections : il permet d'effectuer plusieurs sélections en un seul parcours de la table au lieu d'une sélection par parcours ;
- la commutativité des sélections et jointures : elle permet d'effectuer les sélections avant les jointures ;
- la descente des projections en veillant à conserver les attributs qui seront affichées ou utilisés dans des conditions.

II. OPTIMISATION D'ARBRES ALGÉBRIQUES

II. 2. Heuristiques d'optimisation

L'ordonnancement des opérations se fait ensuite comme suit :

- on fait descendre les opérations réductrices (projection, sélection) le maximum possible vers les feuilles ;
- on retarde le plus possible les jointures et les produits cartésien ;
- on exécute d'abord à chaque fois que c'est possible les jointures qui font appel aux relations les moins volumineuses.

III. EXERCICE D'APPLICATION

- Bus (Matricule, Marque, Version, Annee, Nb_Place, Consommation, Vitesse)
- Chauffeur (<u>Num_permis</u>, Nom, Prenom, Age, Sexe, Adresse, Telephone, Annee_permis)
 - Passager (NIN, Nom, Prenom, Adresse, Telephone, Age, Sexe)
- 9 Voyage (<u>Date, Heure_Depart, Ville_Depart</u>, Heure_Arrive, Ville_Arrive, #Bus)
 - Effectuer (#Chauffeur, #Date, #Heure_Depart, #Ville_Depart)
 - Voyager (#Client, #Date, #Heure_Depart, #Ville_Depart)
 - I. Donner les arbres relationnels optimisés des requêtes suivantes :
 - 1. Quelles sont les villes de départ et d'arrivée du passager Cheikh Gueye le 20/05/2020 ?
 - 2. Quel est le nombre de places du bus conduit par Aminata Fall le 14/01/2021 à 10h?
 - 3. Quelle est la moyenne d'âge des passagers du bus conduit par Jean Ndong le 08/03/2021 à 18h ?
 - 4. Matricules bus et Numéros de téléphone de chauffeurs ayant conduit un bus pris par Abdou GUEYE