National University of Computer & Emerging Sciences, Karachi Spring-2025 FAST School of Computing MT-2008 Multivariate Calculus

Assignment 1

Problem 1: Find and sketch the domain of the following functions

1.
$$f(x, y, z) = xylnz$$

2.
$$f(x,y) = ln(x^2 + y^2)$$

3.
$$f(x,y) = \sin^{-1}(y-x)$$

3.
$$f(x,y) = \sin^{-1}(y-x)$$

4. $f(x,y,z) = \frac{1}{x+1} + \frac{1}{y-1} + \frac{1}{x+y-z}$

Draw an assortment of level curves (contour plot) in the functions domain **Problem 2:**

1.
$$f(x,y) = 4x^2 + y^2 + 1$$

2.
$$-2 = 2x - 6y + z$$

Sketch the level surface for the given function at the specific value of k. **Problem 3:**

1.
$$\frac{x^2}{25} + \frac{y^2}{16} + \frac{z^2}{9} = k$$

2.
$$f(x, y, z) = 9x^2 + 4y^2 + z^2, k = 4$$

Problem 4: Find

1.
$$\lim_{(x,y)\to(0,0)} \frac{x^2-xy}{\sqrt{x}-\sqrt{y}}$$

2.
$$\lim_{(x,y)\to(0,0)} \cos\frac{x^2-y^3}{x+y+1}$$

The height of a right circular cone is increasing at 3mm/s and its radius is **Problem 5:** decreasing at 2mm/s. Determine, correct to 3 significant figures, the rate at which the volume is changing (in) when the height is 3.2 cm and the radius is 1.5 cm.

Problem 6: The area A of a triangle is given by $A = \frac{1}{2} acsinB$, where B is the angle between sides a and c. If a is increasing at 0.4 units/s, c is decreasing at 0.8 units/s and B is increasing at 0.2 units/s, find the rate of change of the area of the triangle, correct to 3 significant figures, when a is 3 units, c is 4units and B is $\pi/6$ radians.

Pressure p and volume V of a gas are connected by the equation $pV^{1.4} = k$ **Problem 7:** Determine the approximate percentage error in k when the pressure is increased by 4% and the volume is decreased by 1.5%.

Problem 8: The wind-chill index W is the perceived temperature when the actual temperature is T and the wind speed is v, so we can write W = f(T, v). The following table of values is an excerpt from Table

Wind speed (km/h)

(°C)	T v	20	30	40	50	60	70
ıture	-10	-18	-20	-21	-22	-23	-23
temperature	-15	-24	-26	-27	-29	-30	-30
	-20	-30	-33	-34	-35	-36	-37
Actual	-25	-37	-39	-41	-42	-43	-44

Estimate the values of $f_T(-15, 30)$ and $f_v(-15, 30)$. What are the practical interpretations of these values?

Problem 9: The wave heights h in the open sea depend on the speed v of the wind and the length of time that the wind has been blowing at that speed. Values of the function h = f(v, t), are recorded in feet in the following table.

Duration (hours)

Wind speed (knots)	v t	5	10	15	20	30	40	50
	10	2	2	2	2	2	2	2
	15	4	4	5	5	5	5	5
	20	5	7	8	8	9	9	9
	30	9	13	16	17	18	19	19
	40	14	21	25	28	31	33	33
	50	19	29	36	40	45	48	50
	60	24	37	47	54	62	67	69

- (a) What are the meanings of the partial derivatives $\partial h/\partial v$ and $\partial h/\partial t$?
- (b) Estimate the values of $f_v(40, 15)$ and $f_t(40, 15)$. What are the practical interpretations of these values?

National University of Computer & Emerging Sciences, Karachi Spring-2025 FAST School of Computing MT-2008 Multivariate Calculus

Problem 10: Find the directional derivative of the function at the given point in the direction of the vector v.

1.
$$f(x, y, z) = xe^y + ye^z + ze^x$$
, (0,0,0), $v = \langle 5, 1, -2 \rangle$

2.
$$f(x, y, z) = \sqrt{xyz}$$
, (3,2,6), $v = \langle -1, -2, 2 \rangle$

3.
$$f(x,y) = x - \frac{y^2}{x} + \sqrt{3}sec^{-1}(2xy)$$
, (1,1), $v = 12i + 5j$