Scenario Week, November

2020

Word account: 2000

Data Analytics II

DATA ANALYTICS REPORT

SCENARIO WEEK 2

Hans-Alexander Miguel

Viessmann

Francois Barone - 19113943 Oliver Haulund - 19002407

Marek Istok - 19025338

Gabrielius Valiunas - 19020857 Ninon Lavolle - 19098458

Bhavya Gupta - 19073155

DATA ANALYTICS REPORT

2020

Table of Contents

Business Model	3
Our business	3
Our website	3
Data's role in our business	4
How data was used	5
Why focus on London?	5
Additional value from open-source data sets	7
Technical Considerations	9
Datasets and challenges	9
Hospitals (Health)	9
Cinemas (Entertainment)	9
Crime Rate	. 10
Merging Data	. 13
Challenges in Python and Tableau	. 13
Conclusion	14
Appendix	15
Appendix 1 – Business Model Canvas	. 15
Appendix 2 – Revenue estimation	. 16
Appendix 3 – Crime rate by area	. 17
Appendix 4 – Competitor comparison: What is the best borough for you?	. 18
Appendix 5 – Website mock-up	. 18
Annandiy 6 - Aroa types	22

Appendix 7 – Overview of data sets used	23
Appendix 8 – Overview of categories and subcategories	25
Appendix 9 – Why does the service make sense in London?	25
Appendix 10 – Distance to target area	27

Business Model

Our business

Borough that fits you recommends tailor fit areas to our users. London is one of the cities with the lowest life satisfaction in the UK (Dourou, 2019). At the same time, it is argued that residential environment is an important factor to take into account when it comes to assessing our well-being (Lee, 2020). Thus, we considered using open data from London boroughs and wards to develop a business with the aim of helping people who are new to London find the best place to live according to their personal preferences.

First, we evaluate each area according to different categories corresponding to different characteristics of an area such as safety, entertainment or facilities. Through data visualisation and analysis, we evaluate each area's performance in every category. In order to provide a complete and personalized service to customers, they have the option of weighting the categories by rating their importance on a scale of 1 to 10.

Our website

The website gives a personalised, interactive and intuitive experience to the customer¹. In our final personalised map, the colour of each ward corresponds to the compatibility rate. The higher the match, more intense is the colour. By clicking on an area, the customer gets the compatibility rate, information about this area and our inferences. To ensure customer retention and to help newcomers explore the new area, we provide newsletters about activities and new businesses in the chosen area.

The use and visualisation of open data is the key asset of our recommendations model and interactive maps, which ultimately provide added value to the customer in terms of variety (we consider 7 categories and 25 sub-categories), accuracy (most of our datasets include 1000+ observations across 380+ local authorities) and precision

¹ See it visualised in Appendix 5 – Website mock-up

(data granularity spans from boroughs to wards and output areas ²). For our business model, the free access and use of open data allows us to reduce costs significantly, while the accuracy of our recommendations model and suggestions is leveraged to show targeted advertisements of local businesses according to the areas the customer is interested in. This gives a break-even at a fairly low revenue generation, which is expected to be around just £38,000 the first year and £68,000 the second year³.

Data's role in our business

Initially, we considered running our business in the United Kingdom as a whole, thinking that the larger the market, the higher the revenue. Upon searching for datasets, we observed that for some metrics of assessing an area, the geographical scale was mostly districts, or even regions in the case of crimes⁴. This is quite broad and imprecise. We then turned to only London data and noticed that they were more precise with wards, postcodes, or even geographic coordinates. Our research on immigration to the United Kingdom revealed that London had 450,000 people moving in per year (Office for National Statistics, 2020a). After careful consideration, our group concluded that we would have more impact by providing a quality offer to fewer customers, rather than a fairly generic tool for more people.

We provide an overview of the standard of living by area with the help of a dataset on real estate prices (Office for National Statistics, 2020c). This is essential as income and spending power of people vary. We also considered ease of transport using 3 datasets showing the location of metro stations (Department for Transport, 2014), bus stops (Department for Transport, 2014), and self-service bicycle points (Au, 2019). We picked these three because they are in the top 5 of the most used means of transport in London with individual cars and taxis which are accessible from anywhere (Transport for London, 2019).

² A smaller part of a ward. See Appendix 6 – Area types, for clarification of area codes

³ See more in Appendix 1 – Business Model Canvas

⁴ See Appendix 3 – Crime rate by area

Then, we looked at health factors using NHS datasets providing the locations of hospitals, GPs, Dentists and pharmacies (NHS, 2020). Indeed, people with health problems or high risk of accidents might be reassured by being close to a medical point.

To assess quality of life, we focused on the presence of everyday essential facilities such as markets (Greater London Authority, 2018a), supermarkets (Geolytix, 2020), parks (Greater London Authority, 2018b), restaurants (Food Standards Agency, 2018), and entertainment with museums, cinemas, theatres, galleries, casinos, pubs, clubs and dance performances (Greater London Authority, 2018c) (Gambling Commission, 2020).

Other categories included are education and safety. We considered where schools (Greater London Authority, 2018d) and libraries (Collections Trust, 2012) are located for education, and a dataset containing several types of crimes to form a global score for safety (Metropolitan Police Service, 2020).

Finally, our model helps take into account the distance between two points. University and jobs are the main reason for people moving to London (Blinder, 2018), and they usually know where they will study or work. This feature is a real value-add to our offering and a way to personalize the experience even more.

Lastly, we used a dataset to manipulate the data we collected (Greater London Authority, 2014). It provides information on each borough of London, including descriptive figures like the number inhabitants or total area. For instance, this helped us to calculate the density of metro stations per borough.

How data was used

Why focus on London?

To understand where the service makes the most sense commercially, the density of long-term (12+ months) migration inflow is used (Office for National Statistics, 2020a) (Office for National Statistics, 2020b)⁵. This, as migration inflow itself would disregard the variety in area size of local authorities, which is eliminated by

^{5 (}Long-term international migration inflow + Long-term internal migration inflow) / Area to Mean High Water Excluding Area of Inland Water

density. Using migration inflow density, we can by chart 1 in visualisation 1 see that most of the local authorities with the highest density are those in or around London.

Chart 2 is also confirming this with a range of London boroughs in the top 20 of local authorities by the densest migration inflow, while it also shows that there is a significant variation in density even amongst the top 20.

Visualisation 1 – Charts on migration inflow density

While London is the most attractive market today, another factor important in the decision is how migration inflows will change in the nearest future. Thus, using the development in migration inflow the past 3 years⁶ as a proxy for future developments, the growth expectations were calculated (Office for National Statistics, 2020a). In chart 1 in visualisation 2, it is seen that the local authorities in and around London all have seen a fairly good growth over the past 3 years, and chart 4 shows that none of them have experienced negative growth.

Additional value from open-source data sets

While it is evident from "Data's role in our business" how a large range of data sets are adding value in our calculations, these are only being visualised combined in the end. However, we have in our work with mapping down the usefulness of the data sets that we have included visualised these, to understand their importance. Some examples of these includes:

Visualisation 5 - The real estate price by area

(Office for National Statistics, 2020c)

7

⁶ Mid 2015/16 to mid 2018/19

Visualisation 6 – Academic success vs. household income by borough

(Greater London Authority, 2014)

Technical Considerations

Datasets and challenges

Hospitals (Health)

Health datasets (NHS, 2020), such as the hospitals in figure 4.1 (see next page), only included postcodes as their address. Our goal was to calculate a density score for each LSOA. We did that in the following way:

- 1. Converted postcodes to LSOA codes using the London Postcode Directory provided by the Office For National Statistics 2020d
- 2. Count the total number of health facilities in each area by combining multiple datasets (hospitals, GPs, dentists, ...)
- 3. Calculated the density of health facilities for each LSOA
- 4. Standardizing the score to our normalized 0 to 100 score

Cinemas (Entertainment)

We considered 5 different datasets similar to the cinemas dataset (Greater London Authority, 2018c) (see figure 4.2 in the next page) when calculating the entertainment score. These datasets were pretty similar, and all came with precision at the level of wards. We calculated the amount of entertainment venues (cinemas, theatres, etc) in each ward and calculated their density. We then standardized an entertainment score for each ward (see figure X in the next page). However, we saw that when comparing the areas on a map, Westminster had such a high score that all the other areas were close to zero as seen in figure 4.2.1.

Figure 4.2.1, Map of Standardized Entertainment Score

To fix this issue, we took log of the score, which makes it more comparable as seen in figure 4.2.2

Figure 4.2.2, Map of Standardized Log Score of Entertainment

Crime Rate

The crime rate dataset (Office for National Statistics, 2020d) was one of the easiest ones to work with. It came with area codes at the LSOA level, so it was relatively easy to integrate with our framework. The values were also already normalized to per population levels, so we didn't have to do any special calculations (see figure 4.3 in the next page).

In general, we mainly faced these challenges when working with the datasets:

- Various area accuracy levels postcodes, geographic coordinates, LSOA codes, etc. This required us to use an additional dataset (see Appendix 4.1) to convert, for example, postcodes into OA area codes, which only then could be used for further analysis (we used Pandas to complete conversion).
- As datasets usually contained a lot of information which had to be either deleted or reformatted, we used python to clean them for further use. For example, in figure 4.1, we deleted unnecessary information such as Addresses, Sectors, Parent Organisation, Phone, Email, etc.
- Another issue stemmed from the fact that some datasets did not have a value for all areas as seen in figure 4.4. For example, our hospitals dataset was missing values for quite a few. We fixed this by filling the missing entries with the mean value for said category. This minimizes the impact missing data has on the final score.

E00001848	E01000378	E05000071	Bexley	15.3	0.10598	0.093457944
E00001685	E01000340	E05000066	Bexley	4.1	0.195406667	0.093457944
E00001604	E01000326	E05000064	Bexley	5.4	0.0548	0.142857143
E00001686	E01000340	E05000066	Bexley	4.6	0.200946666	0.163934426
E00001607	E01000326	E05000064	Bexley	11.9	0	
E00002172	E01000440	E05000080	Bexley	5	0.259153334	
E00002250	E01000461	E05000083	Bexley	16.5	0.152053333	

Figure 4.4, Missing values in Facilities dataset

We used over 20 different datasets in our analysis, here are samples of a couple of them.

Figure 4.1 Hospitals dataset

Figure 4.2 Cinemas dataset

Figure 4.3 Crime Rate dataset

Merging Data

After normalizing our datasets to a common area format, we joined them using Pandas' Merge function. We combined different datasets to provide a total score for any specific area. For example, for Health facilities we merged datasets regarding GPs, Hospitals, Dentists and Pharmacies. This allowed us to calculate a total score for this category. Similar process was done for all other categories as well. See Figure 4.6.

OA11CD	LSOA11CD	WD11CD_BF	LAD11NM	Total	Score	ScoreLog
E00023264	E01004612	E05000626	Wandsworth	0	0	0
E00003359	E01000692	E05000111	Bromley	1	0.54709719	9.45544958
E00023266	E01004615	E05000626	Wandsworth	0	0	0
E00020264	E01004027	E05000548	Southwark	0	0	0
E00023263	E01004613	E05000626	Wandsworth	0	0	0

Figure 4.6 - Example for the entertainment category.

In the end, we merged scores from all the categories to one final data frame, which we use to calculate customized scores based on our user's preferences. See Figure 4.7.

OA11CD	LSOA11CD_	WD11CD_BF	WD11NM_B	LAD11CD	LAD11NM_x area		EntScore	EntScoreLog	FacScore	TransportSco	CrimeScore	HealthScore	EduScore	CostScore	DistScore	Score	ScoreLog
E00023264	E01004612	E05000626	Tooting	E09000032	Wandsworth	4.10	8.05	2.20	13.19	35.17	4.69	18.85	0.00	4.87	63.43	32.50	76.09
E00003359	E01000692	E05000111	Chislehurst	E09000006	Bromley	7.30	0.47	0.39	12.14	18.85	1.78	21.51	9.13	3.25	68.20	31.35	75.33
E00023266	E01004615	E05000626	Tooting	E09000032	Wandsworth	1.50	8.05	2.20	15.30	35.17	3.94	21.51	0.00	1.19	61.40	34.62	77.42
E00020264	E01004027	E05000548	Riverside	E09000028	Southwark	4.40	24.81	3.25	13.69	58.76	16.30	11.62	18.45	3.98	88.81	52.27	86.14
E00023263	E01004613	E05000626	Tooting	E09000032	Wandsworth	1.90	8.05	2.20	13.19	35.17	9.44	28.75	0.00	3.85	64.15	34.54	77.37

Figure 4.7 - Combined dataset with scores for all the categories.

Challenges in Python and Tableau

Python:

- Merge datasets across area levels, which sometimes left gaps in datasets (see figure 4.4)
- Standardisation of data as datasets had very different magnitudes. We ended up normalising data from 0-100 in every step.

Tableau:

- To assign geographic roles, we needed to unify external datasets so that the area codes would represent the correct location.

- Along with local super output areas, we tried showing boroughs on the map using borders for clear understanding. However, it was not possible to do so. Additionally, some graphs were poor quality due to missing values in the dataset we were looking into.
- Lastly, for using Tableau in our real-life product, we would need to automate importing Python calculations into Tableau and then embed the visualisations in our website.

Conclusion

In conclusion, thanks to various and numerous open data we were able to propose our business idea without making any concession on the quality of the chosen categories. Also, the accuracy of the data in terms of geographical scale allowed us to build a precise model by breaking down London into small geographical areas. In terms of data manipulation, Python and Tableau allowed us to exploit our data, standardize our model and offer relevant and intuitive visualizations. We believe that the accuracy of our offering and the advertising campaigns we want to run will allow us in the short term to significantly increase our number of customers, and thus our revenues.

The limitations that our business is facing are the ability to retain our customers and the presence of 2 datasets that are 8 and 10 years old, whereas many changes can have occurred in the city since then. In the future, the major challenge will be to have recent data in order to propose a model that is always up to date. Our development objectives are to offer an even more personalized experience to our consumers while keeping it simple to use, to find a way to retain our consumers over the long term, and to extend our offer to another Megalopolis such as Paris or New York.

Appendix

Appendix 1 – Business Model Canvas

PROBLEM

- -Choosing an appropriate area to live in London
- -Unclarity about activities and facilities in a determined area
- -Complex gathering, reading & understanding of the open data available

EXISTING SOLUTIONS

- -Randstad's "What Is The Best Borough For You?" platform
- -Accommodation forums (The Student Room)
- -Real estate agencies & forums

SOLUTION

- Customized area recommendations
- -Activities suggestions by borough
- -Graphs/ visualisations leveraging various datasets

UNIQUE VALUE PROPOSITION

- -Helping customers with an important decision
- -Considering a large range of categories (7), made of 25 subcategories
- -Datasets with several hundreds of observations at least, providing a high accuracy degree
- -Different types of graphs/visualisations
- -High level of precision from boroughs to output areas

UNFAIR ADVANTAGE

- -Preferences customisation service
- -Recommendation model
- -Weekly updates with customized offers for members

CUSTOMER SEGMENTS

- -London newcomers: university students, employees looking for a career change...
- 18-35 years old: main age target group
- Families:secondary target
- Market size of 450,000 people/year [1]

KEY METRICS

- -Website visits
- -Conversion rate
- -Newsletter subscriptions
- -Generated revenue

CHANNELS

- -Social media presence
- -Online & outdoor advertising

COST STRUCTURE

- Website development & maintenance: £10,000 [2]
- Advertising campaign: £5,000 [3]
- Workforce (CEO, marketing & PR personnel, data scientists): £7,500/month

FINANCIAL YEAR

- -Targeted advertising based on people's preferences & area recommendations
- -Estimated annual revenue: £38,000 (Y1), £68,000 (Y27)

⁷ See more in Appendix 2 – Revenue estimation

Appendix 2 – Revenue estimation

In order to determine our expected annual revenue for Year 1 and Year 2, we had to consider market share, unique users and page views as key performance indicators.

Firstly, considering an approximate target market of 450,000 people/year, [4] we estimated a reach of 10% for the first year and 20% for the second year. We attribute this growth in unique users to our advertising campaigns and the general expansion of our business as people get familiar with it.

Drawing a comparison with the news website My London, which notifies its users of relevant news in their area, and averages 6.7m unique users and 80m monthly page views, [5] we estimated 10 page views per user for our revenue calculation.

Finally, we used Google AdSense [6] to obtain our expected revenue:

Monthly views - 450,000*[10% in Year 1, 20% in Year 2] * 10/12 =

[37.500 monthly users in Year 1, 75,000 monthly users in Year 2]

First year revenue - \$4,000 a month = \$48,000 a year = £38,000

Second year revenue - \$7,500 a month = \$90,000 a year = £68,000

Appendix 3 – Crime rate by area

			Violence against	Homicide Vi	olence with	Violence	Stalking and	Death or	Se
			the person		injury	without injury	harassment ⁴	serious injury	offe
		Total recorded						- unlawful	
		crime (excluding						driving	
Area Code	Area Name	fraud ³)							
Area Code	Alea Halle	raud)							
K0400001	ENGLAND AND WALES 6	5 0 3 2 5 4 4	1750750	725	512743	717824	518 688	770	152
E9200001	ENGLAND	4724104	1643872	689	483 459	675 647	483 337	740	142
E12000001	North East	265771	94697	27	24017	34 642	35996	15	7
E23000013	Cleveland	67 183	23675	11	5485	9135	9040	4	1
E23000008	Durham	61 889	25891	6	5428	8741	11705	11	1
E23000007	Northumbria	136 699	45 131	10	13 104	16766	15 251	0	4
E12000002	North West	675 164	243 216	114	67 484	101 174	74289	155	20
E23000006	Cheshire	92 174	38613	13	9910	13901	14784	5	2
E23000002	Cumbria	36 137	15408	7	4410	5889	5085	17	1
E23000005	Greater Manchester	278 374	85 465	46	23911	38 347	23 097	64	8
E23000003	Lancashire	134 788	55 076	28	15051	22734	17 223	40	4
E23000004	Merseyside	133 691	48 654	20	14 202	20 303	14 100	29	3
E12000003	Yorkshire and The Humber	555 135	204090	61	55941	76877	71 076	135	16
E23000012	Humberside	92732	33488	10	10315	13 220	9913	30	2
E23000009	North Yorkshire	44 129	16 386	6	5993	6477	3883	27	1
E23000011	South Yorkshire	143 171	47 865	18	14017	15441	18 369	20	4

Appendix 4 – Competitor comparison: What is the best borough for you?

Category	Added Value
Granularity	WBFY shows results at output area scale, while Randstad's tool only covers boroughs. Therefore, WBFY offers more precision.
Preference Categories	Randstad's website only allows users to choose different filters, but not score or rate them. That is, it doesn't consider all filters, and it does so in an absolute way. In comparison, WBFY's approach ensures that the user picks the relative importance of all categories, resulting in a higher accuracy.
Map Visualisation	WSBY's result map is interactive and allows the user to look at the data and performance of each area by hovering over them. Randstad's map is fixed and doesn't highlight the recommended borough.
Results Layout	Randstad's results section is poorly optimised (missing pictures, inoperative buttons, results 2-18 not shown), heavily damaging the user experience. WSBY's website has a simple, intuitive and up-to-date design.

(Randstad, 2020)

Appendix 5 – Website mock-up

Welcome page:

Product explanation page:

Which borough fits you?

Moving to London?

Looking for the borough that fits you the most ? BTFY is your partner in your search for perfect location.

Our solution for you

Match with your area by filling in your preferences. Our up-to-date data give you the locations with best compatibility rates

Individualised weightings page 1:

Individualised weightings page 2:

Your individualised map:

The individualised map is interactive:

From the individualised map, you can deep-dive into interesting areas for you:

Extra information for a specific area chosen from individualised map:

Step off the tube and enter the colourful world of Camden, undoubtedly one of the most vibrant boroughs in London. Original stomping ground to punks and goths, this grungy street food mecca is home to one of the best live music scenes in London. But while Camden is known for its heady atmosphere and sprawling markets, it has a softer side too. Meander away from the hustle and bustle of the main high street to discover broad, treelined streets filled with whitewashed Victorian houses and the kind of quiet atmosphere you could live in.

ant to know more about your borough and your future neighbours.

We also have an app:

Appendix 6 – Area types

Full Name	Abbreviation	Description
Output Area	OA	Lowest geographical level at which census estimates are
Output / irea	OA	provided, with an average population of about 310 residents.
Lower Layer Super	LSOA	Geographical hierarchy level with an average population of
Output Area	LSUA	1500 people.
Middle Layer	MSOA	Geographical hierarchy level with an average population of
Super Output Area	IVISUA	about 7500 residents.

Appendix 7 – Overview of data sets used

Categories /	Purpose	Content	Date	Size	Format
Subcategories					
Education					
				-	
Libraries	Libraries in	Description / Identification: ID/ Name/Type	12/2012	4,274 rows	CSV
	the UK	Location: Country/ County/ Locality/		14 columns	
		Postcode/ Street/ Town/		51,124 data	
		Contact: Email/ Phone/ Website			
Primary Schools	Primary	Description / Identification: Gender/	2016	3,890 rows	CSV
	Schools in	ID/ Name/ Phase/ Status/ Type/ URN		25 columns	
	London	Location: Address/ Easting/ LA/ LSOA/		96,250 data	
		Northing/ Postcode/ Town/ Ward/			
		Contact: Website			
Entertainments					
				-	
Cinemas	Cinemas in	Access: Address/Borough/Latitude/	01/2019	80 rows	CSV
	London	Longitude/Ward/Website		16 columns	
		Name	/	971 data	
Dance Performances	Dance Performances in	Access: Address/ Borough/ Latitude/ Longitude/ Ward/ Website	12/2018	190 rows 16 columns	CSV
	London	Name		2,459 data	
Museums and public	Museums and	Access: Address/ Borough/ Latitude/	01/2019	164 rows	CSV
galleries	Galleries in	Longitude/ Ward/ Website		16 columns	
	London	Name		2,461 data	
Music venues	Music venues in	Access: Address/ Borough/ Latitude/	03/2018	798 rows	CSV
	London	Longitude/ Ward/ Website	Updated	16 columns	
Pubs	Pubs in London	Name Access: Address/Borough/Latitude/	immanent 01/2019	10,770 data 4,099 rows	CSV
FUDS	FUDS III LOIIGOII	Longitude/Ward/Website	Updated	16 columns	CSV
		Name	immanent	52,386 data	
Theatres	Museums and	Access: Address/Borough/Latitude/	01/2019	265 rows	CSV
	Galleries in	Longitude/Ward/Website		16 columns	
F '11''	London	Name		3,970 data	
Facilities Markets	Fresh food	Description / Identification: ID/ Name/Type	28/12/201	24 rows	XLS
MUIKEIS	markets in	Location Opening hours/ Postcode Contact:	8	7 columns	ΛLS
	London	Website		136 data	
Parks	Parks in London	Location: Output areas/ Local authority	30/11/201	25,054 rows	CSV
		districts/ Lower layer super output areas	8 ′ ′	8 columns]

		Diverse info: Green space/ Rent price/ Safety/ Schools/ Travel		200,432 data	
Restaurants	Restaurants in London	Description / Identification: IDs Name / Local Authority info (name / email) / Scores of satisfactions / Type Location: Postcode / Latitude / Longitude Contact: Website	27/07/202	2397 rows 37 columns 74,964 data	XML
Retailers	Retailers in the UK	PQI/ Retailer/ Size Location: Address/ Easting/ Latitude/ Longitude/ Northing/ Postcode/ Suburb/ Town		16,688 rows 18 columns 268,703 data	CSV
Health					
Dentists	Dentists in the UK	Description / Identification: Code/ ID/ Name/ Organization status/ PIMS Management?/ Subtypes/ Type Location: Address/ City/County/ Latitude/ Longitude/ Postcode Contact: Email/ Fax/ Phone/ Website	05/2020	7,378 rows 21 columns 133,173 data	CSV
GPs	GPs in the UK	Description / Identification: Code/ EPS Enabled?/ ID/ Name/ Organization status/ PIMS Management?/ Sector/ Subtypes/ Type Location: Address/ City/ County/ Latitude/ Longitude/ Postcode Contact: Email/ Fax/ Phone/ Website	05/2020	9,074 rows 24 Columns 176,818 data	CSV
Hospitals	Hospitals in the UK	Description / Identification: Code/ ID/ Name/ Organization status/ PIMS Management?/ Sector/ Subtypes/ Type Location: Address/ City/ County/ Latitude/ Longitude/ Postcode Contact: Email/ Fax/ Phone/ Website	05/2020	1,207 rows 20 Columns 22,271 data	CSV
Pharmacies	Pharmacies in the UK	Description / Identification: Code/ ID/ Name/ Organization status/ PIMS Management?/ Sector/ Subtypes/ Type Location: Address/ City/ County/ Latitude/ Longitude/ Postcode Contact: Email/ Fax/ Phone/ Website	05/2020	11,026 rows 24 columns 211,010 data	CSV
Safety	Crimes in London	Description: Category / Date Location: / Borough/ LSOA Code	From 11/2018 to 10/2020	103,846 rows 28 columns 2,907,688 data	CSV
Standard of living	Cost of real estate in London	Description: Rent for 1/2/3/4 room(s) Location: Output Areas	11/2018	25,054 rows 5 columns 125,270 data	CSV
Transports					
Bike Stations	Bike Stations in London	Description / Identification: Capacity/ ID/ Name Location: Longitude/ Latitude	2018	774 rows 5 columns 3870 data	CSV
Bus and Metro Stations	Bus and Metro Stations in the UK	Description / Identification: Code/Creation/ ID/ Modification/ Name/ Status / Type Location: Easting and Northing	2010	104,114 rows 13 columns 1,233,553 data	CSV

Appendix 8 – Overview of categories and subcategories

Appendix 9 – Why does the service make sense in London?

To investigate whether our service makes sense in London, we decided to compare 5 very similar Output Areas. Output Areas compared were:

- E00023657
- E00023681
- E00023686
- E00024109
- E00024112

Visualisation 3 - The 5 Output Areas

(ArcGIS, 2020)

For the Output Areas in visualisation 3, the standardised score on 3 different datasets were calculated.

Visualisation 4 - The 5 Output Areas compared

Normalised scores from 0-1 for rent per m2 (orange), green area (blue), and safety (red).

(Greater London Authority, 2018b)

As can be seen from visualisation 4, E00024112, E00023657 and E00023681, all more or less have the same rent price per m2, though the areas differ widely in how much green area and how safe the areas are. Similarly, E00023686 and E00024109 score very high on both safety and green area, though they are way less expensive. Finally, particularly interesting is E00023681 and E00023686 who border each other, though E00023686 is almost half as expensive while keeping the same amount of green area and outperforming E00023681 significantly on safety. Thus, it is evident that there are significant differences between individual Output Areas, and informing about these differences on Output Level or close to for people migrating to London can add significant value for them.

Appendix 10 – Distance to target area

We also wanted to give our customers the ability to choose a target location (in the form of a postcode) as we believe it's an important factor when moving in. The goal of this was to find an ideal area for our user close to where they need to be (for example as a university student).

We did this in the following way:

- 1. Get OA code of the postcode our user submitted using the London Postcode Directory provided by the Office For National Statistics 2020d
- 2. Calculate centre points in coordinates for all OAs using geopandas, from a map file containing the borders of each OA (ArcGIS, 2020)
- 3. Calculate the distance between the target location and each OA

This resulted in a map such as figure 4.5.

Figure 4.5, OA distance to School of Management building in Canary Wharf.

Combining this with the scores for each area allowed us to find the best area close to where our user needs to be.

Bibliography

ArcGIS, 2020. Customisable map for UK. [Online]

Available at:

https://www.arcgis.com/home/webmap/viewer.html?panel=gallery&suggestField=true&url=https% 3A%2F%2Fons-

<u>inspire.esriuk.com%2Farcgis%2Frest%2Fservices%2FAdministrative</u> <u>Boundaries%2FWards</u> <u>December 2015</u> <u>Boundaries%2FMapServer%2F0</u>

[Accessed 26 November 2020].

Au, E., 2019. London Bike Sharing System. [Online]

Available at: https://www.kaggle.com/edenau/london-bike-sharing-system-data?select=stations.csv [Accessed 19 November 2020].

Barrat, 2018. How to choose the right area of London to live in. [Online]

Available at: https://www.barratthomes.co.uk/new-homes/london/advice-and-inspiration/how-to-choose-right-area-of-london/

[Accessed 19 November 2020].

Blinder, S., 2018. *Immigration by Category: Workers, Students, Family Members, Asylum Applicants.* [Online]

Available at: https://migrationobservatory.ox.ac.uk/resources/briefings/immigration-by-category-workers-students-family-members-asylum-applicants/

[Accessed 22 November 2020].

Collections Trust, 2012. UK Public Libraries contacts. [Online]

Available at: https://data.gov.uk/dataset/de509172-9bf3-4e2b-bea3-518dc70217cb/uk-public-libraries-contacts

[Accessed 21 November 2020].

Department for Transport, 2014. National Public Transport Access Nodes (NaPTAN). [Online]

Available at: https://data.gov.uk/dataset/ff93ffc1-6656-47d8-9155-85ea0b8f2251/national-public-

transport-access-nodes-naptan

[Accessed 18 November 2020].

Dourou, S., 2019. London continues to be most miserable place in the UK Read more:

https://metro.co.uk/2019/10/23/london-continues-to-be-most-miserable-place-in-the-uk-

10971619/?ito=cbshare Twitter: https://twitter.com/MetroUK | Facebook:

https://www.facebook.com/MetroUK/. [Online]

Available at: https://metro.co.uk/2019/10/23/london-continues-to-be-most-miserable-place-in-the-uk-10971619/

[Accessed 23 November 2020].

Food Standards Agency, 2018. UK food hygiene rating data (London) - Food Standards Agency. [Online]

Available at: https://data.gov.uk/dataset/e945d1f5-72fe-4b08-8b58-8e68d83441b5/uk-food-

hygiene-rating-data-london-food-standards-agency

[Accessed 22 November 2020].

Gambling Commission, 2020. Licensed gambling premises. [Online]

Available at: https://data.gov.uk/dataset/8dc9bef0-ad46-497b-9a74-30a6ce9d2f98/licensed-gambling-premises

[Accessed 23 November 2020].

Geolytix, 2020. Retail Places. [Online]

Available at: https://www.geolytix.co.uk/#!geodata

[Accessed 21 November 2020].

Greater London Authority, 2014. London Borough Profiles and Atlas. [Online]

Available at: https://data.london.gov.uk/dataset/london-borough-profiles

[Accessed 20 November 2020].

Greater London Authority, 2018a. Number of fresh produce food markets in London. [Online]

Available at: https://data.gov.uk/dataset/cb31e5e2-77d9-4583-8e0e-16dc4e3270a7/number-of-

fresh-produce-food-markets-in-london

[Accessed 22 November 2020].

Greater London Authority, 2018b. MyLondon data. [Online]

Available at: https://data.gov.uk/dataset/65449de8-fd8a-41a0-b2db-13879b0a48f2/mylondon [Accessed 19 November 2020].

Greater London Authority, 2018c. Cultural Infrastructure Map. [Online]

Available at: https://data.london.gov.uk/dataset/cultural-infrastructure-map

[Accessed 21 November 2020].

Greater London Authority, 2018d. London Schools Atlas. [Online]

Available at: https://data.gov.uk/dataset/6b776872-c786-4960-af1d-dab521aa4ab0/london-schools-atlas

[Accessed 21 November 2020].

Kinleigh Folkard & Hayward, 2020. *Identifying location and requirements*. [Online]

Available at: https://www.kfh.co.uk/resources/buyers/buying-process/identifying-location-and-

requirements

[Accessed 20 November 2020].

Lee, K.-Y., 2020. The Effect of Residential Environmental Satisfaction on Quality of Life and the

Moderating Effect of Housing Type: The Case of Gyeonggi, Korea. [Online]

Available at: <a href="https://www.ajpor.org/article/13055-the-effect-of-residential-environmental-satisfaction-on-quality-of-life-and-the-moderating-effect-of-housing-type-the-case-of-gyeonggi-news-moderating-effect-of-housing-type-the-case-of-gyeonggi-news-moderating-effect-of-housing-type-the-case-of-gyeonggi-news-moderating-effect-of-housing-type-the-case-of-gyeonggi-news-moderating-effect-of-housing-type-the-case-of-gyeonggi-news-moderating-effect-of-housing-type-the-case-of-gyeonggi-news-moderating-effect-of-housing-type-the-case-of-gyeonggi-news-moderating-effect-of-housing-type-the-case-of-gyeonggi-news-moderating-effect-of-housing-type-the-case-of-gyeonggi-news-moderating-effect-of-housing-type-the-case-of-gyeonggi-news-moderating-effect-of-housing-type-the-case-of-gyeonggi-news-moderating-effect-of-housing-type-the-case-of-gyeonggi-news-moderating-effect-of-housing-type-the-case-of-gyeonggi-news-moderating-effect-of-housing-type-the-case-of-gyeonggi-news-moderating-effect-of-housing-type-the-case-of-gyeonggi-news-moderating-effect-of-housing-type-the-case-of-gyeonggi-news-moderating-effect-of-housing-type-the-case-of-gyeonggi-news-moderating-effect-of-housing-type-the-gyeonggi-news-moderating-effect-of-housing-type-the-gyeonggi-news-moderating-effect-of-housing-type-the-gyeonggi-news-moderating-effect-of-housing-gyeonggi-news-moderating-effect-of-housing-gyeonggi-news-moderating-effect-of-housing-gyeonggi-news-moderating-gyeonggi-news-mo

korea

[Accessed 24 November 2020].

Metropolitan Police Service, 2020. Recorded Crime: Geographic Breakdown. [Online]

Available at: https://data.london.gov.uk/dataset/recorded crime summary

[Accessed 22 November 2020].

NHS, 2020. NHS website datasets. [Online]

Available at: https://www.nhs.uk/about-us/nhs-website-datasets/

[Accessed 20 November 2020].

Office for National Statistics, 2020a. Local area migration indicators UK. [Online]

Available at:

https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/migrationwithin theuk/datasets/localareamigrationindicatorsunitedkingdom

[Accessed 18 November 2020].

Office for National Statistics, 2020b. *Standard Area Measurements (2019) for Administrative Areas in the United Kingdom.* [Online]

Available at: https://geoportal.statistics.gov.uk/datasets/standard-area-measurements-2019-for-administrative-areas-in-the-united-kingdom

[Accessed 18 November 2020].

Office for National Statistics, 2020c. *Median house prices by lower layer super output area: HPSSA dataset 46.* [Online]

Available at:

 $\underline{https://www.ons.gov.uk/people population and community/housing/datasets/median price paid by lower layer superout put area hpss adataset 46$

[Accessed 19 November 2020].

Office for National Statistics, 2020d. Postcode Directory for London. [Online]

Available at: https://data.london.gov.uk/dataset/postcode-directory-for-

london?fbclid=IwAR2aCPiPLYvh9jhI4qMo7TXljZONUee6ApH9ah8uQft9qLQg6c0tvZd8FL8

[Accessed 19 November 2020].

Quilty, D., 2019. Where Should I Live? – 14 Factors When Deciding the Best Place to Live. [Online]

Available at: https://www.moneycrashers.com/where-should-i-live-decide-best-places/

[Accessed 20 November 2020].

Randstad, 2020. Which London borough are you best suited to?. [Online]

Available at: https://www2.randstad.co.uk/best-london-borough/

[Accessed 17 November 2020].

Transport for London, 2019. *Travel in London*. [Online]

Available at: http://content.tfl.gov.uk/travel-in-london-report-12.pdf

[Accessed 21 November 2020].