1

ЛАБОРАТОРНАЯ РАБОТА

ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ

Отчет по лабораторной работе должен содержать следующие материалы по каждой задаче: 1) постановка задачи; 2) необходимый теоретический материал; 3) результаты вычислительного эксперимента; 4) тексты программ и графический материал.

Задача 1. Вычислить значение интеграла $I = \int_a^b P_n(x) dx$, где $P_n(x) = \sum_{i=0}^n c_i x^i$, с помощью

простой и обобщенной квадратурных формул прямоугольников (левого, правого), трапеции, Симпсона. Для обобщенных формул шаг h=0.1. Результаты вычислений занести в таблицу

Простые формулы			Обобщенные формулы				
прямоугольника	трапеции	Симпсона	прямоугольника	Трапеции	Симпсона		
			h =	h =	h =		

Таблица к задаче 1

Nº	c_0	c_1	c_2	c_3	c_4	a	В
1	0.6	1.3	0	1.2	1.9	1	3
2	1	0.9	0.8	0.7	0.5	-1	2
3	0.4	0.3	0.2	0.1	2	-2.5	3.1
4	0.1	-0.1	1	1	1	-4.1	1.5
5	1.5	0	-2.1	-1.1	3.1	-2.2	2.2
6	2.5	-2.1	0	0.4	0.5	3.3	4.2
7	6.8	1.7	-4.1	0.1	-6.1	- 3	1
8	0	1.4	3.2	1.6	-9.4	-7.7	-6.7
9	1.3	0	-0.1	0.7	8.1	-10	-7

Задача 2. Вычислить значение интеграла $\int_a^b f(x) dx$, используя обобщенную формулу трапеций и Симпсона с шагами $h = \frac{b-a}{2}, \frac{b-a}{4}, \dots, \frac{b-a}{10}$ и формулу Чебышева n = 3, 4. Результаты вычислений занести в таблицу

Шаг	трапеций	Симпсона	Формула	Формула
			Чебышева	Чебышева
			n =3	n=4
h =				
h =				

Таблица к задаче 2

No	f(x)	а	b	№	f(x)	а	b
11	$(2x)^3\cos(x)$	0	1.5	20	$(\cos(x) - x)e^{x^2}$	-1.7	0
12	$e^{-2\sin(x)}$	-1.5	0	21	$\sqrt[3]{2x}\left(\cos(x^2)-2\right)$	-2	0
13	$(x+2x^4)\cdot\sin(x^2)$	0	1.7	22	$x^2 \left(\sin(\sqrt[3]{x}) - 3 \right)$	0.5	1.5
14	$\left(x^2 - 2x^3\right)\cos(x^2)$	-3	0	23	$\ln\left(2x+\sin\left(x^2\right)\right)$	1	4
15	$\sin(x)e^{x^2}$	0.7	1.7	24	$4\ln(\cos(x^3) + x^2)$	0	2
16	$\frac{6 - \sqrt{x} + \sqrt[4]{x}}{\sqrt{x^3} - 7x - 6\sqrt[4]{x^3}}$	1	4	25	$\frac{x + \cos x}{x^2 + 2\sin x}$	π	2π
17	$\frac{x + \sqrt{3x - 2} - 10}{\sqrt{3x - 2} + 7}$	1	2	26	$\frac{2x^3 + 7x^2 + 7x + 9}{(x^2 + x + 1)(x^2 + x + 2)}$	2	4
18	$\frac{2\cos x + 3\sin x}{\left(2\sin x - 3\cos x\right)^3}$	1	2	27	$\frac{(\arccos x)^3 - 1}{\sqrt{1 - x^2}}$	0	$\frac{1}{\sqrt{2}}$
19	$\sqrt[4]{7x} \begin{pmatrix} \cos(x^3 + x) - \\ -2\sin x \end{pmatrix}$	1	3	28	$(x^8 + 7x^4) \cdot \sin(\cos x^2)$	-1	2