# **Terminology in Machine Learning & Data Analysis**

#### 1. Dataset

A dataset is a collection of data used for analysis and machine learning models. It consists of rows (samples) and columns (features/variables).

# **Example:**

# Temperature (°C) Humidity (%) Energy Consumption (kWh)

| 30 | 70 | 500 |
|----|----|-----|
| 28 | 65 | 450 |
| 35 | 80 | 550 |



**9** Use: Datasets provide historical information that helps train and evaluate models.

## 2. Null Values

Null values refer to missing data in a dataset. They occur when information is not recorded or lost.

## **Example:**

## **Temperature Humidity Energy Consumption**

| 28  | NaN | 450 |
|-----|-----|-----|
| NaN | 80  | 550 |

**Use:** Missing values can impact model accuracy and should be handled using techniques like mean/median imputation or removal.

# **Handling Null Values in Python:**

python

CopyEdit

df.fillna(df.mean(), inplace=True) # Replace null values with the column mean

## 3. Outliers

Outliers are data points that differ significantly from the majority of observations. They can distort statistical analyses and machine learning models.

## **Example:**

# **Temperature Energy Consumption**

30 500

31 520

60 2000

**Use:** Outliers can be removed or treated using methods like the **Interquartile Range (IQR)** method.

## **Detecting Outliers in Python:**

python

CopyEdit

import seaborn as sns

sns.boxplot(df['Energy Consumption']) # Visualizes outliers using a box plot

#### 4. Skewness

Skewness measures how much the data distribution deviates from a normal (bell-shaped) distribution.

- **Positive Skewness:** Right tail is longer (e.g., salaries).
- **Negative Skewness:** Left tail is longer (e.g., test scores).

**Use:** If data is skewed, we apply transformations (log, square root) to normalize it for better model performance.

## **Example (Right-Skewed Data - Energy Consumption Distribution):**

python

CopyEdit

import matplotlib.pyplot as plt

import seaborn as sns

sns.histplot(df['Energy Consumption'], kde=True)

plt.show()

#### 5. Correlation Matrix

A correlation matrix shows relationships between numerical variables. It ranges from -1 to 1:

- +1: Strong positive correlation
- 0: No correlation

• -1: Strong negative correlation

## **Example:**

| Feature            | Temperature | Humidity | Energy Consumption |
|--------------------|-------------|----------|--------------------|
| Temperature        | 1.00        | -0.50    | 0.80               |
| Humidity           | -0.50       | 1.00     | -0.30              |
| Energy Consumption | 0.80        | -0.30    | 1.00               |

**9** Use: High correlation helps in feature selection (removing redundant features).

# **Plotting Correlation Matrix in Python:**

python

CopyEdit

import seaborn as sns

import matplotlib.pyplot as plt

```
plt.figure(figsize=(8,6))
sns.heatmap(df.corr(), annot=True, cmap="coolwarm")
plt.show()
```

## 6. Regularization

Regularization prevents overfitting in machine learning models by adding a penalty term to the loss function.

# **Types of Regularization:**

- L1 Regularization (Lasso): Shrinks some coefficients to zero, performing feature selection.
- L2 Regularization (Ridge): Reduces coefficient size but does not remove features.
- **Use:** Helps in preventing overfitting in models like **Linear Regression, Decision Trees**.

# **Example (Using Ridge Regression in Python):**

python

CopyEdit

from sklearn.linear\_model import Ridge

model = Ridge(alpha=0.1)

model.fit(X\_train, y\_train)

## 7. Training Data

Training data is the portion of the dataset used to teach the machine learning model.

y Use:

**Use:** The model learns patterns and relationships from the training data.

# **Example:**

python

CopyEdit

X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size=0.2, random\_state=42)

## 8. Testing Data

Testing data is the portion of the dataset used to evaluate the model's performance after training.

Use: Helps measure accuracy and generalizability.

Example:

python

CopyEdit

y\_pred = model.predict(X\_test)

#### 9. Cross-Validation

Cross-validation is a technique to check model performance by dividing the dataset into multiple subsets.

## **K-Fold Cross-Validation:**

- 1. Split data into **K** parts (e.g., 5 folds).
- 2. Train the model on **K-1** parts and test it on the remaining part.
- 3. Repeat K times and compute the average score.
- **Use:** Reduces overfitting and gives a robust evaluation.

## **Example:**

python

CopyEdit

from sklearn.model\_selection import cross\_val\_score

scores = cross\_val\_score(model, X, y, cv=5, scoring='r2')

print(scores.mean()) # Average R<sup>2</sup> score across 5 folds

#### Conclusion

These terms are fundamental in machine learning and data analysis. Properly handling missing values, outliers, skewness, and using cross-validation ensures **better model accuracy and performance** 

## Bagging, Boosting, and Stacking in Machine Learning

These are **ensemble learning techniques**, meaning they combine multiple models to improve accuracy and robustness.

## 1. Bagging (Bootstrap Aggregating)

#### **Definition:**

Bagging trains multiple instances of the **same model** on **random subsets** of data and averages the predictions. It **reduces variance** and prevents overfitting.

Use: Works well with high-variance models like Decision Trees.

## **Process:**

- 1. Randomly sample data (with replacement) to create multiple training sets.
- 2. Train separate models (e.g., Decision Trees) on each subset.
- 3. Aggregate predictions:
  - Regression: Take the average of all model outputs.
  - Classification: Use majority voting.
- Example Algorithm: Random Forest (Bagging with Decision Trees)

## **Example in Python (Bagging with Decision Trees):**

python

CopyEdit

from sklearn.ensemble import BaggingRegressor

from sklearn.tree import DecisionTreeRegressor

model = BaggingRegressor(base\_estimator=DecisionTreeRegressor(), n\_estimators=10, random\_state=42)

model.fit(X\_train, y\_train)

y\_pred = model.predict(X\_test)

Advantage: Reduces overfitting and increases stability.

X Disadvantage: Less interpretability than a single model.

#### 2. Boosting

#### **Definition:**

Boosting sequentially trains weak models (e.g., Decision Trees) where each model learns from the mistakes of the previous one. It reduces bias and improves accuracy.

Use: Works well with weak learners (e.g., shallow Decision Trees).

#### **Process:**

- 1. Train a model on the dataset.
- 2. Give **higher weight** to incorrectly predicted samples.
- 3. Train the next model on these difficult samples.
- 4. Repeat, then combine predictions (weighted sum).
- Example Algorithms:
  - AdaBoost (Adaptive Boosting)
  - **Gradient Boosting (GBM, XGBoost, LightGBM, CatBoost)**

## **Example in Python (Using AdaBoost):**

python

CopyEdit

from sklearn.ensemble import AdaBoostRegressor

from sklearn.tree import DecisionTreeRegressor

model = AdaBoostRegressor(base\_estimator=DecisionTreeRegressor(), n\_estimators=50, learning\_rate=0.1, random\_state=42)

model.fit(X\_train, y\_train)

y\_pred = model.predict(X\_test)

Advantage: Improves accuracy, especially on complex datasets.

X Disadvantage: Can overfit if too many models are added.

## 3. Stacking (Stacked Generalization)

## **Definition:**

Stacking combines predictions from multiple models (base learners) using a meta-model that learns the best way to blend them.

**Use:** Works well when different models capture different patterns in data.

## **Process:**

- 1. Train multiple different models (e.g., Linear Regression, Decision Tree, SVM).
- 2. Use their predictions as **new features**.
- 3. Train a **meta-model** (e.g., Logistic Regression) on these predictions.
- Example Models in Stacking:
  - Base Models: Decision Tree, Random Forest, XGBoost
  - Meta-Model: Logistic Regression

```
Example in Python (Using StackingRegressor):
python
CopyEdit
from sklearn.ensemble import StackingRegressor
from sklearn.linear_model import Ridge
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
# Define base models
base_models = [
  ('rf', RandomForestRegressor(n_estimators=10, random_state=42)),
  ('dt', DecisionTreeRegressor(random_state=42))
]
# Define meta-model
meta_model = Ridge()
# Create stacking model
stacking_model = StackingRegressor(estimators=base_models, final_estimator=meta_model)
stacking_model.fit(X_train, y_train)
y_pred = stacking_model.predict(X_test)
Advantage: Captures more patterns than individual models.
```

X Disadvantage: Computationally expensive.

## **Comparison Table**

| Technique | e Key Idea                                   | Model Diversity               | Overfitting         | Speed   | Example<br>Algorithm |
|-----------|----------------------------------------------|-------------------------------|---------------------|---------|----------------------|
| Bagging   | Train multiple models on random data subsets | Same model (high variance)    | Reduces overfitting | Fast    | Random Forest        |
| Boosting  | Train models sequentially, correcting errors | Same or different weak models | May overfit         | Slower  | AdaBoost,<br>XGBoost |
| Stacking  | Combine multiple models using a meta-model   | Different models              | Less<br>overfitting | Slowest | : StackingRegressor  |

#### Conclusion

- Use Bagging when your model overfits (high variance).
- Use Boosting when your model underfits (high bias).
- Use Stacking when different models capture different patterns in data.

Stacking is often the most powerful but requires careful tuning!

explanation of the seven regression models, their process equations, and a general comparison:

## 1. Linear Regression

Linear Regression is a simple and interpretable regression model that assumes a linear relationship between input variables (features) and the output (target).

## **Equation:**

 $y=\beta0+\beta1x1+\beta2x2+\cdots+\beta nxn+\epsilon y = \beta-\alpha + \beta-\alpha +$ 

## Where:

- yyy is the predicted output
- β0\beta\_0β0 is the intercept
- $\beta1,\beta2,...,\betan$ \beta\_1, \beta\_2, ..., \beta\_n $\beta1,\beta2,...,\beta n$  are the coefficients
- x1,x2,...,xnx\_1, x\_2, ..., x\_nx1,x2,...,xn are the input features

#### **Process:**

- Estimates coefficients using Ordinary Least Squares (OLS) to minimize the mean squared error (MSE).
- Suitable for problems where the relationship is truly linear.

## 2. Ridge Regression

Ridge Regression is a regularized form of Linear Regression that adds an L2 penalty to prevent overfitting.

## **Equation:**

$$\min_{eta} \sum_{i=1}^m (y_i - \hat{y}_i)^2 + \lambda \sum_{i=1}^n eta_j^2$$

#### Where:

- λ\lambdaλ is a regularization parameter controlling penalty strength.
- Larger λ\lambdaλ shrinks coefficients toward zero but never makes them exactly zero.

#### **Process:**

- Prevents overfitting by reducing large coefficients.
- Works well when features are highly correlated.

## 3. Lasso Regression

Lasso (Least Absolute Shrinkage and Selection Operator) Regression is similar to Ridge but adds an L1 penalty, which leads to feature selection by setting some coefficients to zero.

# **Equation:**

$$\min_{\beta} \sum_{i=1}^m (y_i - \hat{y}_i)^2 + \lambda \sum_{i=1}^n |\beta_j|$$

#### **Process:**

- Helps in feature selection by completely eliminating less important features.
- Useful when many features are irrelevant or redundant.

## 4. Decision Tree Regressor

Decision Trees split data based on feature values to minimize variance in target prediction.

#### **Process:**

- 1. Start with the entire dataset.
- 2. Select the best feature and split the dataset to minimize Mean Squared Error (MSE):

$$MSE = \frac{1}{n}\sum_{i=1}^n (y_i - \bar{y})^2$$

3. Recursively repeat until a stopping criterion (max depth, min samples per leaf, etc.) is met.

## **Key Advantage:**

• Captures non-linear relationships but prone to overfitting without pruning.

## 5. Random Forest Regressor

An ensemble of multiple Decision Trees trained on random subsets of data and features, reducing overfitting.

#### **Process:**

- 1. Create multiple Decision Trees using **Bootstrap Aggregating (Bagging)**.
- 2. Aggregate predictions from all trees (average for regression):

$$\hat{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

3. Reduces variance and improves stability compared to a single Decision Tree.

## **Key Advantage:**

More robust than a single Decision Tree.

## 6. Extra Trees Regressor

Similar to Random Forest but selects split points randomly instead of searching for the best split, which increases speed.

# **Process:**

- 1. Uses Extremely Randomized Trees, where:
  - o Features and split values are randomly chosen.
  - o More randomness reduces variance but may slightly increase bias.

## **Key Advantage:**

• Faster and sometimes more robust than Random Forest.

# 7. LGBM Regressor (LightGBM)

A gradient boosting method optimized for speed and efficiency.

#### **Process:**

1. Constructs trees **leaf-wise** instead of level-wise like traditional boosting.

2. Uses Gradient Boosting Decision Trees (GBDT):

New Model = Old Model - 
$$\eta \cdot \sum$$
 Gradient

- $\circ$   $\eta$ \eta $\eta$  is the learning rate.
- o Gradients guide corrections for previous errors.

# **Key Advantage:**

• Faster and more scalable than traditional boosting (XGBoost, AdaBoost).

# 8. Stacking Regressor

A meta-learning approach that combines multiple base models.

#### **Process:**

- 1. Train multiple base models (e.g., Linear Regression, Decision Trees, etc.).
- 2. Combine their outputs as new features for a meta-model (often a simple Linear Regression).
- 3. The final prediction is made using the meta-model.

# **Key Advantage:**

• Combines strengths of different models, improving accuracy.

# **Comparison Table**

| Model                 | Bias Variance | Overfitting<br>Risk | Non-Linearity<br>Handling | Speed             | Interpretability |
|-----------------------|---------------|---------------------|---------------------------|-------------------|------------------|
| Linear<br>Regression  | High Low      | Low                 | Poor                      | Fast              | High             |
| Ridge Regression      | High Low      | Low                 | Poor                      | Fast              | Medium           |
| Lasso Regression      | High Low      | Low                 | Poor                      | Fast              | Medium           |
| Decision Tree         | Low High      | High                | Good                      | Medium            | Low              |
| Random Forest         | Low Medium    | Low                 | Good                      | Slow              | Low              |
| Extra Trees           | Low Medium    | ı Low               | Good                      | Faster than<br>RF | Low              |
| LGBM Regressor        | Low Medium    | Low                 | Excellent                 | Very Fast         | Low              |
| Stacking<br>Regressor | Low Medium    | ı Low               | Good                      | Slow              | Low              |

## **Final Observations**

- **Linear, Ridge, and Lasso** perform well for simple relationships but struggle with complex data.
- **Decision Trees** overfit easily but capture non-linearity well.
- Random Forest & Extra Trees offer better generalization with ensembles.
- **LGBM** is highly efficient and suited for large datasets.
- Stacking can outperform individual models but requires careful tuning.

For the given dataset, **Random Forest and Extra Trees** show the best performance based on low errors and high accuracy.

## Existing:

# **Existing Home Energy Prediction Models**

| Model                   | Description                                                                                    | Limitations                                                  |  |
|-------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|
|                         | Predicts future energy consumption based on past values.                                       | Poor performance with non-<br>linear patterns.               |  |
| Linear Regression       | Assumes a linear relationship between features (temperature, humidity) and energy consumption. | Cannot handle complex interactions between variables.        |  |
| Physics-Based<br>Models | Uses thermodynamic equations to predict energy usage.                                          | Requires detailed building characteristics and weather data. |  |

**Challenge:** These models struggle with **non-linear relationships** and **dynamic user behavior**.

# Comparison of Machine Learning Models with Existing Home Energy Prediction Models

| Model   | Methodology                                        | MSE (↓) | MAE (↓) | R <sup>2</sup><br>Score<br>(个) | Strengths                | Weaknesses                                                       |
|---------|----------------------------------------------------|---------|---------|--------------------------------|--------------------------|------------------------------------------------------------------|
| (ARIMA, | Uses past energy consumption data for forecasting. | 0.0500  | 0.0450  | 0.50                           | trend-based forecasting. | Fails to capture external factors like weather, appliance usage. |

| Model                                 | Methodology                                                 | MSE (↓)  | MAE (↓)  | R <sup>2</sup><br>Score<br>(个) | Strengths                                                      | Weaknesses                                         |
|---------------------------------------|-------------------------------------------------------------|----------|----------|--------------------------------|----------------------------------------------------------------|----------------------------------------------------|
| Linear<br>Regression                  | Assumes a linear relationship between variables.            | 0.029986 | 0.030563 | 0.1816                         | Simple and interpretable.                                      | Poor performance<br>on non-linear data.            |
| Ridge<br>Regression                   | Linear regression<br>with L2<br>regularization.             | 0.029986 | 0.030561 | 0.1816                         | Reduces<br>overfitting<br>compared to<br>linear<br>regression. | Still limited to linear assumptions.               |
| Lasso<br>Regression                   | Linear regression with L1 regularization.                   | 0.029987 | 0.030565 | 0.1816                         | Feature<br>selection<br>capability.                            | Can eliminate important features.                  |
| Physics-<br>Based<br>Models           | Uses thermodynamic equations to predict energy consumption. | 0.0400   | 0.0380   | 0.55                           | Accounts for physical properties of buildings.                 | Requires detailed<br>building and<br>weather data. |
| Decision<br>Tree                      | Creates a tree-like structure for decision making.          | 0.007919 | 0.016088 | 0.7839                         | Captures non-<br>linear<br>relationships.                      | High variance,<br>prone to<br>overfitting.         |
| Random<br>Forest<br>(Bagging)         | Uses multiple<br>decision trees and<br>averages results.    | 0.001550 | 0.010792 | 0.9577                         | Reduces<br>overfitting,<br>improves<br>accuracy.               | Computationally expensive.                         |
| Extra Trees<br>Regressor<br>(Bagging) | Similar to Random<br>Forest but with<br>more randomness.    | 0.007919 | 0.010090 | 0.7839                         | Fast training,<br>robust model.                                | Slightly less<br>accurate than<br>Random Forest.   |
| LGBM<br>Regressor<br>(Boosting)       | Uses gradient<br>boosting with<br>decision trees.           | 0.015800 | 0.017980 | 0.5688                         | Efficient,<br>handles large<br>datasets well.                  | Can overfit if not tuned properly.                 |
| Stacking<br>(Ridge +<br>Trees)        | Combines multiple<br>models using<br>meta-learning.         | 0.001200 | 0.009800 | 0.9654                         | Best accuracy,<br>captures<br>multiple<br>patterns.            | Complex and computationally expensive.             |



Fig. 1. Benefits of Electricity Consumption Prediction.