MATHÉMATIQUES TOUT LE COURS EN FICHES

Licence 1 · CAPES

MATHÉMATIOUES

TOUT LE COURS EN FICHES Licence 1 • CAPES

Claire David

Maître de conférences à l'UPMC (université Pierre-et-Marie-Curie), Paris

Sami Mustapha

Professeur à l'UPMC (université Pierre-et-Marie-Curie), Paris

Tout le catalogue sur www.dunod.com

ÉDITEUR DE SAVOIRS

Illustration de couverture : © delabo - Fotolia.com

Le pictogramme qui figure ci-contre mérite une explication. Son objet est d'alerter le lecteur sur la menace que

représente pour l'avenir de l'écrit, particulièrement dans le domaine de l'édition technique et universitaire, le développement massif du photocopillage.

Le Code de la propriété intellectuelle du 1^{er} juillet 1992 interdit en effet expressément la photocopie à usage collectif sans autori-

sation des ayants droit. Or, cette pratique s'est généralisée dans les établissements d'enseignement supérieur, provoquant une baisse brutale des achats de livres et de revues, au point que la possibilité même pour

droit de copie (CFC, 20, rue des Grands-Augustins, 75006 Paris).

DANGER

LE PHOTOCOPILLAGE TUE LE LIVRE

5 rue Laromiguière, 75005 Paris www.dunod.com

ISBN 978-2-10-059992-9

Le Code de la propriété intellectuelle n'autorisant, aux termes de l'article L. 122-5, 2° et 3° a), d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause est illicite » (art. L. 122-4).

Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles L. 335-2 et suivants du Code de la propriété intellectuelle.

© Dunod. Toute reproduction non autorisée est un délit.

Table des matières

Avant-propos	X
Comment utiliser cet ouvrage?	XII

Partie 1 Calculus

Nombres r	éels	1	
Fiche 1	Les ensembles de nombres	2	
Fiche 2	Intervalles, voisinages, bornes	6	
Limites		8	
Fiche 3	Limite d'une fonction en un point	8	
Fiche 4	Limite d'une fonction en $+\infty$ ou $-\infty$	12	
Fiche 5	Propriétés des limites – Opérations sur les limites	14	
Fiche 6	Notations de Landau	16	
Fonctions	numériques	18	
Fiche 7	Domaine de définition d'une fonction, graphe	18	
Focus	La construction de l'ensemble des réels : les coupures de Dedekind	21	
Fiche 8	Comment définir une fonction ?	22	
Fiche 9	Majorations et minorations	24	
Fiche 10	Fonctions monotones	26	
Fiche 11	Parité, imparité	28	
Fiche 12	Symétries	30	
Fiche 13	Fonctions périodiques	32	
Fonctions	usuelles	33	
Fiche 14	Fonctions puissances entières	33	
Fiche 15	Fonctions polynômes et fonction valeur absolue	35	
Focus	John Napier et les tables logarithmiques	38	
Fiche 16	La fonction logarithme népérien	39	
Fiche 17	La fonction exponentielle	41	
Fiche 18	Fonctions puissances « non entières »	43	
Focus	Leibniz et la fonction exponentielle	44	
Fiche 19	Fonctions circulaires	45	
Fiche 20	Fonctions hyperboliques	47	
Focus	L'origine de la trigonométrie	49	
Continuité		51	
Fiche 21	Continuité d'une fonction en un point	51	
Fiche 22	Fonctions continues sur un intervalle	55	
Dérivabilit	Dérivabilité 58		
Fiche 23	Dérivabilité en un point	58	

Fiche 24	Dérivabilité sur un intervalle	61	
Fiche 25	Dérivées successives		
Fiche 26	Théorème des accroissements finis et théorème de Rolle		
Fiche 27	Formule de Taylor-Lagrange		
Fonctions r	éciproques	72	
Fiche 28	Fonctions réciproques	72	
Fiche 29	Les fonctions trigonométriques inverses	75	
Fiche 30	Les fonctions hyperboliques inverses	79	
Développe	ments limités	81	
Fiche 31	Développements limités	81	
Fiche 32	Formule de Taylor-Young	84	
Fiche 33	Développements limités usuels	89	
Fiche 34	Opérations algébriques et composition des développements limités	92	
Développe	ments asymptotiques	95	
Fiche 35	Développements asymptotiques	95	
Convexité		96	
Fiche 36	Convexité	96	
Équations	différentielles linéaires du 1 ^{er} ordre	100	
Fiche 37	Équations différentielles linéaires du 1er ordre homogènes		
Fiche 38	Équations différentielles linéaires du 1 ^{er} ordre avec second membre	103	
Fonctions of	le plusieurs variables	111	
Fiche 39	Topologie	111	
Fiche 40	Fonctions de plusieurs variables	117	
Fiche 41	Les systèmes de coordonnées usuelles		
Fiche 42	Limites, continuité et dérivation		
Exercices		129	
Corrigés		133	
	Partie 2 Algèbre		
	Augebie		
-	nplexe – Les nombres complexes	161	
Focus	Les nombres complexes	162	
Fiche 43	Le corps des nombres complexes	164	
Fiche 44	Représentation géométrique des nombres complexes	167	
Fiche 45	Inversion des nombres complexes	170	
Fiche 46	Propriétés fondamentales des nombres complexes	172	
Fiche 47	Complément : les polynômes de Tchebychev	174	
Fiche 48	Racines n ^{ièmes} de l'unité, racines n ^{ièmes} complexes	177	
Fiche 49	Factorisation des polynômes dans le corps C	180	
Fiche 50	Fractions rationnelles et décomposition en éléments simples	185	

Fiche 51	Transformations du plan : translations, homothèties	196
Fiche 52	Transformations du plan : rotations	198
Fiche 53	Transformations du plan : similitudes	200
Focus	Transformations complexes, fractales, et représentations de la nature	204
Matrices		206
Fiche 54	Matrices de taille 2×2	206
Fiche 55	Déterminant de matrices de taille 2×2	208
Fiche 56	Matrices de taille 3×3	210
Fiche 57	Déterminant de matrices de taille 3×3	213
Fiche 58	Matrices de taille $m \times n$	216
Fiche 59	Opérations sur les matrices	218
Fiche 60	Matrices remarquables	220
Fiche 61	Introduction aux déterminants de matrices de taille $n \times n$	224
Fiche 62	Inversion des matrices carrées	226
Focus	L'origine des matrices	230
Focus	Les matrices et leurs applications	232
Fiche 63	Systèmes linéaires	234
Fiche 64	Vecteurs	238
Fiche 65	Barycentres	242
Fiche 66	Droites, plans	246
Fiche 67	Produit scalaire	249
Focus	Produit scalaire, espaces fonctionnels et calcul numérique	253
Fiche 68	Produit vectoriel	254
Fiche 69	Aires et volumes	256
Focus	Géométrie euclidienne – ou non ? Encore des matrices !	258
Transform	ations linéaires du plan	260
Fiche 70	Bases et transformations linéaires du plan	260
Fiche 71	Changement de base en dimension 2, et déterminant d'une application linéaire	264
Fiche 72	Conjugaison – Matrices semblables de taille 2×2	266
Fiche 73	Opérateurs orthogonaux en dimension 2	268
Fiche 74	Rotations vectorielles du plan	270
Transform	ations linéaires de l'espace	273
Fiche 75	Bases de l'espace \mathbb{R}^3	273
Fiche 76	Transformations linéaires de l'espace \mathbb{R}^3	274
Fiche 77	Changement de base en dimension 3	278
Fiche 78	Conjugaison – Matrices semblables de taille 3×3	280
Fiche 79	Opérateurs orthogonaux de l'espace \mathbb{R}^3	282
Fiche 80	Rotations vectorielles de l'espace \mathbb{R}^3	284
L'espace R	$\sum_{i} R_{i}$	286
Fiche 81	Vecteurs en dimension n , $n \ge 2$	286

Fiche 82	Espace engendré par une famille de vecteurs – Sous-espaces vectoriels de \mathbb{R}^n	288
Fiche 83	Transformations linéaires de l'espace \mathbb{R}^n	291
Fiche 84	Changement de base	295
Fiche 85	Conjugaison – Matrices semblables de taille $n \times n$	297
Fiche 86	Réduction des matrices carrées	299
Focus	Groupe spécial orthogonal et cristallographie	303
Focus	Diagonalisation – La toupie de Lagrange (et de Michèle Audin)	305
Espaces ve	ectoriels	306
Fiche 87	Les espaces vectoriels	306
Fiche 88	Sous-espaces vectoriels	310
Fiche 89	Somme de sous-espaces vectoriels	312
Fiche 90	Projecteurs, symétries	313
Exercices		315
Corrigés		323

Partie 3 Analyse

Suites		367
Fiche 91	Qu'est-ce qu'une suite ? L'espace des suites et opérations sur les suites	368
Fiche 92	Les différents types de suites	371
Focus	Suites arithmético-géométriques et finance	376
Fiche 93	Étude d'une suite	377
Fiche 94	Majorants, minorants d'une suite réelle – Croissance et décroissance	380
Fiche 95	Techniques d'étude des suites réelles	382
Fiche 96	Convergence	384
Fiche 97	Convergence des suites monotones	387
Fiche 98	Opérations sur les limites de suites	389
Fiche 99	Convergence des suites homographiques réelles	392
Fiche 100	Suites extraites	397
Fiche 101	Suites de Cauchy	399
Fiche 102	Comparaison des suites réelles	401
Focus	Suites et systèmes dynamiques – L'attracteur de Hénon	405
Intégrales		406
Fiche 103	Qu'est-ce qu'une intégrale ?	406
Fiche 104	Intégrale d'une fonction en escaliers	408
Fiche 105	Intégrale d'une fonction continue par morceaux	413
Fiche 106	Calcul intégral	419
Fiche 107	Primitives de fractions rationnelles	425
Fiche 108	Calcul approché d'intégrales	427

Avant-propos

Cet ouvrage est destiné aux étudiants du cycle L1 des filières universitaires scientifiques, ou des classes préparatoires. Il se base sur nos cours donnés en première année de Licence à l'UPMC (université Pierre et Marie Curie).

Face aux demandes croissantes de nos étudiants, qui recherchaient un ouvrage de référence complet mais abordable, ainsi que des exercices d'application corrigés, nous nous sommes lancés dans la conception de ce livre qui, nous l'espérons, sera un outil utile pour les générations d'étudiants à venir.

Cet ouvrage est donc le fruit d'un compromis : dans ce volume condensé, nous avons essayé de donner suffisamment d'éléments recouvrant l'ensemble des mathématiques de première année. Cet ouvrage correspond aussi à l'arrivée des nouveaux programmes universitaires et des classes préparatoires. Pour mieux assurer la jonction avec les mathématiques enseignées au lycée, nous avons opté, pour la première partie d'analyse, relative à l'étude des fonctions, à une présentation de type « Calculus », inspirée de l'esprit des « textbooks » anglo-saxons, qui permet d'aborder plus facilement le reste du programme, plus « classique », sur les suites et le calcul intégral. Pour l'algèbre, la présentation reprend celle de l'ouvrage $Calcul\ Vectoriel\ (Collection\ Sciences\ Sup)$, en allant un peu plus loin : \mathbb{R}^n , réduction, espaces vectoriels.

Malgré tout le soin apporté à la rédaction, nous demandons l'indulgence du lecteur pour les éventuelles imperfections qui pourraient subsister; qu'il n'hésite pas à nous les signaler.

Claire David Claire.David@upmc.fr Sami Mustapha sam@math.jussieu.fr

© Dunod. Toute reproduction non autorisée est un délit.

Remerciements

Nous remercions vivement toutes les personnes dont la relecture et les remarques ont contribué à améliorer la version initiale du manuscrit :

les membres du comité de lecture, pour leur relecture extrêmement minutieuse et leurs remarques très pertinentes ;

- Sylvie Benzoni, Université Claude Bernard Lyon 1, Institut Camille Jordan.
- Laurent Di Menza, Université de Reims, Laboratoire de Mathématiques de Reims (LMR).
- Jean-Pierre Escofier, Université de Rennes, Institut Mathématique de Rennes.
- Sandrine Gachet, Professeur de Mathématiques, Lycée Gustave Eiffel, Dijon.
- Chloé Mullaert, Professeur de Mathématiques, Lycée Paul Valéry, Paris.
- Laure Quivy, ENS Cachan et Université Paris XIII, Centre de Mathématiques et leurs applications (CMLA).
- Lamia Attouche, étudiante à l'UPMC, Paris.
- Alexis Prel, étudiant à l'UPMC, Paris.

mais aussi Albert Cohen, Ramona Anton, Sylvie Delabrière, Patrick Polo, Adnène Benabdesselem, Matthieu Solnon, Eugénie Poulon, Daniel Hoehener, Julien Piera Vest.

Comment utiliser cet ouvrage?

Un découpage en trois grandes parties : Calculus, Algèbre, Analyse

110 fiches de cours

Les notions essentielles du cours

Des exercices corrigés pour s'entraîner

Des focus pour découvrir des applications des mathématiques ou approfondir un point du cours

Calculus

Introduction

Après de brefs rappels sur les ensembles de nombres, nous présentons, dans ce qui suit, les notions d'analyse indispensables à l'étude des fonctions : l'étude des limites ; des généralités sur les fonctions numériques et les fonctions usuelles. Nous passons ensuite, naturellemment, à l'étude de la continuité, puis de la dérivabilité. Nous introduisons alors les fonctions réciproques. Puis, nous passons à l'étude des développements limités, et aux équations différentielles. Enfin, nous introduisons brièvement les fonctions de deux et trois variables.

Dans ce cours, certains résultats, dont la démonstration n'est pas considérée comme indispensable à l'apprentissage des techniques de base, sont admis.

Plan

Nombres réels	1
Limites	
Fonctions numériques	
Focus : La construction de l'ensemble des réels :	
les coupures de Dedekind	21
Fonctions usuelles	
Focus: John Napier et les tables logarithmiques	
Focus: Leibniz et la fonction exponentielle	
Focus : L'origine de la trigonométrie	
Continuité	51
Dérivabilité	58
Fonctions réciproques	72
Développements limités	81
Développements asymptotiques	
Convexité	96
Équations différentielles linéaires du 1 ^{er} ordre	
Fonctions de plusieurs variables	111
Exercices	129
Corrigés	133

fiche

Les ensembles de nombres

Un ensemble E est une collection d'objets, qui constituent les « éléments » de l'ensemble. Le nombre d'éléments de l'ensemble peut être fini, ou infini.

1. Notation

Pour décrire l'ensemble, on utilise des accolades, à l'intérieur desquelles on écrit les éléments de l'ensemble.

Suivant les cas, on peut, simplement, placer, à l'intérieur des accolades, la liste des éléments de l'ensemble; ainsi, dans le cas d'un ensemble E avec un nombre fini d'éléments e_1, \ldots, e_n , où n est un nombre entier positif, on écrit :

$$E = \{e_1, \dots, e_n\}$$

ou bien, dans le cas d'un ensemble d'éléments vérifiant une propriété donnée \mathcal{P} , on écrit

$$E = \{x | \mathcal{P}(x)\}$$
 ou encore $\{x, \mathcal{P}(x)\}$ ou encore $\{x; \mathcal{P}(x)\}$

ce qui désigne ainsi l'ensemble des éléments x tels que la propriété \mathcal{P} soit vérifiée pour x.

Exemples

- 1. {1, 2, 3, 4} est un ensemble. Ses éléments sont les nombres 1, 2, 3 et 4.
- 1. {1, 2, 3, 4} est un ensemble. Ses éléments sont les nombres entiers supérieurs ou égaux à 3.
 3. {x ∈ {1, 2, 3, 4, 5, 6} | x est impair} = {1, 3, 5}.

> Les entiers naturels

L'ensemble des entiers naturels, c'est-à-dire des entiers positifs ou nuls, est noté N:

$$\mathbb{N} = \{0, 1, 2, 3, 4, 5, \ldots\}$$

Les nombres pairs

L'ensemble des entiers naturels pairs est noté $2\mathbb{N}$:

$$2\mathbb{N} = \{0, 2, 4, 6, \ldots\} = \{2n, n \in \mathbb{N}\}\$$

$\triangleright k \mathbb{N}, k \in \mathbb{N}$

Étant donné un entier naturel $k, k \mathbb{N}$ désigne l'ensemble des entiers naturels mutiples de k:

$$k \mathbb{N} = \{k n, n \in \mathbb{N}\}\$$

➤ Les entiers relatifs

L'ensemble des entiers relatifs, c'est-à-dire des entiers qui sont soit positifs ou nuls, ou négatifs ou nuls, est noté \mathbb{Z} :

$$\mathbb{Z} = \{\ldots, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \ldots\}$$

$\triangleright \alpha \mathbb{Z}, \alpha \in \mathbb{R}$

Étant donné un réel α , $\alpha \mathbb{Z}$ désigne l'ensemble des réels de la forme αk , où k est un entier : $\alpha \mathbb{Z} = \{\alpha k, k \in \mathbb{Z}\}$

Exemple

$$2\pi\mathbb{Z} = \{2k\pi, k \in \mathbb{Z}\}.$$

➤ Les nombres rationnels

L'ensemble des nombres rationnels, c'est-à-dire de la forme $\frac{p}{q}$, où p et q sont deux entiers relatifs, avec $q \neq 0$, est noté \mathbb{Q} .

➤ Les nombres réels

L'ensemble des nombres réels est noté R.

ightharpoons

L'ensemble $\mathbb{R} \cup \{-\infty, +\infty\}$ est noté $\overline{\mathbb{R}}$ (c'est ce que l'on appelle la « droite réelle achevée », ou encore, l'adhérence de \mathbb{R})

➤ La notation « * »

Lorsque l'on écrit l'un des ensembles précédents avec l'exposant « \star », cela signifie que l'on exclut 0; ainsi, \mathbb{N}^{\star} désigne l'ensemble des entiers naturels non nuls; \mathbb{Z}^{\star} désigne l'ensemble des entiers relatifs non nuls; etc.

➤ La notation « + »

Lorsque l'on écrit l'un des ensembles précédents avec l'exposant « $^+$ », cela signifie que l'on ne considère que les nombres positifs de cet ensemble ; ainsi, \mathbb{Z}^+ (qui est aussi égal à \mathbb{N}), désigne l'ensemble des entiers positifs ou nuls ; \mathbb{R}^+ désigne l'ensemble des réels positifs ou nuls ; etc.

➤ La notation « - »

Lorsque l'on écrit l'un des ensembles précédents avec l'exposant « $^-$ », cela signifie que l'on ne considère que les nombres négatifs de cet ensemble ; ainsi, \mathbb{Z}^- (qui est aussi égal à $-\mathbb{N}$), désigne l'ensemble des entiers négatifs ou nuls ; \mathbb{R}^- désigne l'ensemble des réels positifs ou nuls ; etc.

➤ La notation « * »

Lorsque l'on écrit l'un des ensembles précédents avec l'exposant « $^{\star}_{+}$ », cela signifie que l'on ne considère que les nombres strictement positifs de cet ensemble ; ainsi, \mathbb{Z}_{+}^{\star} (qui est aussi égal à \mathbb{N}^{\star}), désigne l'ensemble des entiers strictement positifs ; \mathbb{R}_{+}^{\star} désigne l'ensemble des réels strictement positifs ; etc.

➤ La notation « * »

Lorsque l'on écrit l'un des ensembles précédents avec l'exposant « * », cela signifie que l'on ne considère que les nombres strictement positifs de cet ensemble ; ainsi, \mathbb{Z}^* (qui est aussi égal à $-\mathbb{N}^*$), désigne l'ensemble des entiers strictement négatifs ; \mathbb{R}^* désigne l'ensemble des réels strictement négatifs ; etc.

Propriété

On a:

© Dunod. Toute reproduction non autorisée est un délit.

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$

où le symbole ⊂ signifie « inclus dans ».

2. Les ensembles

➤ Ensemble vide

Un ensemble ne contenant aucun élément est appelé **ensemble vide**, et noté \emptyset .

Exemple

 $\{n \in 3 \mathbb{N}, n \text{ pair}\}\$ ne contient aucun nombre : c'est l'ensemble vide.

➤ Intersection d'ensembles

Étant donnés deux ensembles E_1 et E_2 , leur **intersection**, notée $E_1 \cap E_2$, est l'ensemble des éléments qui appartiennent à la fois à E_1 et à E_2 :

$$E_1 \cap E_2 = \{x, x \in E_1 \text{ et } x \in E_2\}$$

Union d'ensembles

Étant donnés deux ensembles E_1 et E_2 , leur **union**, notée $E_1 \cup E_2$, est l'ensemble des éléments qui appartiennent à E_1 , ou à E_2 :

$$E_1 \cup E_2 = \{x, x \in E_1 \text{ ou } x \in E_2\}$$

> Différence de deux ensembles

Étant donnés deux ensembles E_1 et E_2 , leur **différence**, notée $E_1 \setminus E_2$, est l'ensemble E_1 privé de E_2 :

$$E_1 \setminus E_2 = \{x, x \in E_1 \text{ et } x \notin E_2\}$$

Exemples

- R \ {1,2} est l'ensemble des réels différents de 1 et de 2.
 R \ πZ est l'ensemble des réels qui ne sont pas multiples de π.

> Complémentaire d'un ensemble

Étant donnés deux ensembles E_1 et E_2 tels que E_2 soit inclus dans E_1 (que l'on écrit $E_2 \subset E_1$), l'ensemble $E_1 \setminus E_2$ est le complémentaire de E_2 dans E_1 , noté $\bigcap_{E_1} E_2$:

$$C_{E_1}E_2=E_1\setminus E_2$$

Exemple

$$C_{\mathbb{R}}\left\{0\right\} = \mathbb{R}^{\star}$$

> Produit cartésien de deux ensembles

Étant donnés deux ensembles E_1 et E_2 , leur **produit cartésien**, noté $E_1 \times E_2$, est l'ensemble des couples d'éléments de la forme (x_1, x_2) , où le premier élément x_1 appartient à E_1 , et le second, x_2 , à E_2 :

$$E_1 \times E_2 = \{(x_1, x_2), x_1 \in E_1 \text{ et } x_2 \in E_2\}$$

- R² = {(x₁, x₂), x₁ ∈ R et x₂ ∈ R} est l'ensemble des couples de réels.
 N² = {(n₁, n₂), n₁ ∈ N et n₂ ∈ N} est l'ensemble des couples d'entiers naturels.

> Produit cartésien de trois ensembles

Étant donnés trois ensembles E_1 , E_2 et E_3 , leur **produit cartésien**, noté $E_1 \times E_2 \times E_3$, est l'ensemble des triplets d'éléments de la forme (x_1, x_2, x_3) , où le premier élément x_1 appartient à E_1 , le second, x_2 , à E_2 , et le troisième, x_3 , à E_3 :

$$E_1 \times E_2 \times E_3 = \{(x_1, x_2, x_3), x_1 \in E_1, x_2 \in E_2 \text{ et } x_3 \in E_3\}$$

➤ Produit cartésien de n ensembles, $n \in \mathbb{N}$, $n \ge 2$

Étant donnés un entier naturel $n \ge 2$, et n ensembles E_1, \ldots, E_n , leur **produit cartésien**, noté $E_1 \times \ldots \times E_n$, est l'ensemble des n-uplets d'éléments de la forme (x_1, \ldots, x_n) , où $x_1 \in E_1, \ldots, x_n \in E_n$:

$$E_1 \times \ldots \times E_n = \{(x_1, \ldots, x_n), x_1 \in E_1, \ldots, x_n \in E_n\}$$

> Application

Étant donnés deux ensembles E et F, une **application** φ de E dans F associe, à chaque élément de E, un et un seul élément de F. E est l'ensemble de départ, F, celui d'arrivée.

Pour tout élément x de E, l'unique élément de F ainsi mis en relation avec x par l'application φ est noté $\varphi(x)$, et appelé image de x. x est un antécédent de $\varphi(x)$. On écrit :

$$\varphi: E \to F$$
$$x \mapsto \varphi(x)$$

Exemples

1.

$$\varphi: \mathbb{N} \to \mathbb{N}$$
$$x \mapsto x$$

est une application de $\mathbb N$ dans $\mathbb N$, appelée application identité de $\mathbb N$.

2.

$$\psi: \mathbb{Q} \to \mathbb{Q}$$
$$x \mapsto 2x$$

est une application de Q dans Q.

➤ Fonction

Étant donnés deux ensembles de nombres E et F, une fonction f de E dans F associe, à chaque élément x de E, au plus un élément de F appelé alors image de x par f (ce qui signifie donc que tous les éléments de E n'ont pas nécessairement une image par f). E est l'ensemble de départ, F, celui d'arrivée. L'ensemble des éléments de E possédant une image par f est appelé domaine de définition de f, et noté \mathcal{D}_f . Elle permet de définir une application de \mathcal{D}_f dans F.

Exemple

© Dunod. Toute reproduction non autorisée est un délit.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \frac{1}{1-x}$$

est une fonction de \mathbb{R} dans \mathbb{R} , dont le domaine de définition est $\mathbb{R} \setminus \{1\}$. Elle permet de définir une application de $\mathbb{R} \setminus \{1\}$ dans \mathbb{R} .

Intervalles, voisinages, bornes

L'ensemble des nombres réels est habituellement représenté sous la forme d'une droite graduée, appelée droite des réels, où il faut pouvoir se repérer. À cet effet, on introduit les notions d'intervalle et de voisinage d'un point.

Figure 2.1 - La droite des réels.

1. Intervalles

➤ Intervalle fermé et borné (ou segment)

On appelle intervalle fermé et borné (ou segment) tout ensemble de la forme

$$[a,b] = \{x \in \mathbb{R}, a \le x \le b\}$$
 , $(a,b) \in \mathbb{R}^2, a \le b$

➤ Intervalle ouvert

On appelle intervalle ouvert tout ensemble de la forme

$$\label{eq:alphabeta} \begin{split}]a,b[=\{x\in\mathbb{R},\,a< x< b\} \quad,\quad (a,b)\in\mathbb{R}^2,\,a< b \\ \text{ou} \quad]-\infty,b[=\{x\in\mathbb{R},\,x< b\} \quad,\quad b\in\mathbb{R} \\ \text{ou encore} \quad]a,+\infty[=\{x\in\mathbb{R},\,a< x\} \quad,\quad a\in\mathbb{R} \\ \text{où }\mathbb{R}^2=\mathbb{R}\times\mathbb{R} \text{ est l'ensemble des couples de réels.} \end{split}$$

➤ Intervalle ouvert et borné

On appelle intervalle ouvert et borné tout ensemble de la forme

$$]a, b[= \{x \in \mathbb{R}, a < x < b\}$$
 , $(a, b) \in \mathbb{R}^2, a < b$

➤ Intervalle semi-ouvert et borné

On appelle intervalle semi-ouvert et borné tout ensemble de la forme

$$[a, b[=\{x \in \mathbb{R}, \, a \le x < b\} \quad , \quad (a, b) \in \mathbb{R}^2, \, a < b$$

$$u \quad]a, b] = \{x \in \mathbb{R}, \, a < x \le b\} \quad , \quad (a, b) \in \mathbb{R}^2, \, a < b$$

➤ Intervalle fermé

Par convention, tout ensemble de la forme

$$[a,+\infty[=\{x\in\mathbb{R},\,x\geqslant a\}\quad,\quad a\in\mathbb{R}$$
 ou
$$]-\infty,b]=\{x\in\mathbb{R},\,x\leqslant b\}\quad,\quad b\in\mathbb{R}$$
 est considéré comme étant un intervalle fermé.

➤ Ensemble vide

L'ensemble, noté 0, qui ne contient aucun nombre réel, est aussi un intervalle, appelé ensemble vide.

> Singleton

On appelle singleton un ensemble ne contenant qu'un seul élément, et qui est donc de la forme $\{a\}$, où a est un nombre réel.

ou

➤ Intervalle

On appelle intervalle de \mathbb{R} l'un des ensembles définis ci-dessus, ou bien \mathbb{R} tout entier.

Un singleton est un intervalle fermé (le singleton $\{a\}$ est donc assimilé à l'intervalle fermé [a,a]).

➤ Adhérence d'un intervalle

Soit I un intervalle de \mathbb{R} . Son adhérence \bar{I} est l'ensemble tel que :

- si I est un segment, alors $\bar{I} = I$;
- si *I* est de la forme]a,b[ou]a,b[ou [a,b[, $(a,b)\in\mathbb{R}^2,$ alors $\overline{I}=[a,b];$
- si I est de la forme $[a, +\infty[$ ou $[a, +\infty[$, $a \in \mathbb{R}$, alors $\overline{I} = [a, +\infty[\cup \{+\infty\};$
- si *I* est de la forme $]-\infty, a[$ ou $]-\infty, a], a \in \mathbb{R}$, alors $\bar{I}=]-\infty, a] \cup \{-\infty\}$;
- si *I* l'ensemble vide \emptyset , alors $\bar{I} = \emptyset$.

2. Voisinage

➤ Voisinage d'un point

On appelle voisinage d'un point a de \mathbb{R} un sous-ensemble de \mathbb{R} contenant un intervalle ouvert de la forme $]a - \eta, a + \eta[$, où η est un réel strictement positif et tel que $\eta < a$.

On peut étendre la notion de voisinage à $+\infty$ ou $-\infty$; ainsi, un voisinage de $+\infty$ est une partie de $\mathbb R$ contenant un intervalle ouvert de la forme $]x_0, +\infty[$, où x_0 est un nombre réel quelconque. De même, un voisinage de $-\infty$ est une partie de $\mathbb R$ contenant un intervalle ouvert de la forme $]-\infty, x_0[$, où x_0 est un nombre réel quelconque.

3. Les intervalles de $\mathbb R$

Dans ce qui suit, a, b, x_0 sont des réels tels que a < b. Le tableau suivant reprend les différents types d'intervalles de \mathbb{R} .

[a, b]	Segment
] <i>a, b</i> [Intervalle ouvert et borné
] <i>a, b</i>]	Intervalle semi-ouvert et borné (ouvert à gauche, fermé à droite)
[a, b[Intervalle semi-ouvert et borné (fermé à gauche, ouvert à droite)
Ø	Ensemble vide
{ a }	Singleton
] <i>x</i> ₀ , +∞[Voisinage de +∞
$[x_0, +\infty[$	
$]-\infty$, x_0 [Voisinage de -∞
$]-\infty$, x_0	
] - ∞, +∞[${\mathbb R}$ tout entier

Limite d'une fonction en un point

1. Limite finie d'une fonction en un point

Soient f une fonction définie sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} , a un point de I, et ℓ un réel.

On dit que f admet pour limite (finie) ℓ en a si, lorsque x devient très proche de a, f(x) devient lui aussi très proche de ℓ , ce qui se traduit mathématiquement par le fait que pour tout réel ε strictement positif, il existe un réel η strictement positif tel que :

$$\forall x \in I, \ 0 < |x - a| < \eta \Rightarrow |f(x) - \ell| < \varepsilon$$

On écrit :
$$\lim_{x \to a} f(x) = \ell$$
 ou $\lim_{a} f = \ell$.

Exemple

On considère la fonction qui, à tout x de] – 1, 1[, associe $\sqrt{1-x^2}$. Alors :

$$\lim_{x \to 1} \sqrt{1 - x^2} = 0$$

➤ Notation 0⁺

Soient f une fonction définie sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} , et a un point de I.

On dit que f tend vers 0^+ en a si, lorsque x devient très proche de a, f(x) tend vers zéro, mais en restant positif, ce qui se traduit mathématiquement par le fait que pour tout réel ε strictement positif, il existe un réel η strictement positif tel que :

$$\forall x \in I, \ 0 < |x - a| < \eta \Rightarrow 0 \le f(x) < \varepsilon$$

On écrit : $\lim_{x \to a} f(x) = 0^+$ ou $\lim_{a} f = 0^+$.

Lorsque $+\infty$ est une borne de I, on dit que f **tend vers** 0^+ **en** $+\infty$ si, lorsque x devient très grand, f(x) tend vers zéro, mais en restant positif, ce qui se traduit mathématiquement par le fait que pour tout réel ε strictement positif, il existe un réel A strictement positif tel que :

$$\forall x \in I, x > A \Rightarrow 0 \leq f(x) < \varepsilon$$

On écrit : $\lim_{x \to +\infty} f(x) = 0^+$ ou $\lim_{x \to +\infty} f = 0^+$.

Lorsque $-\infty$ est une borne de I, on dit que f **tend vers** 0^+ **en** $-\infty$ si, lorsque x devient très grand en valeur absolue, mais en restant à valeurs négatives, f(x) tend vers zéro, mais en restant positif, ce qui se traduit mathématiquement par le fait que pour tout réel ε strictement positif, il existe un réel A strictement positif tel que :

$$\forall x \in I, x < -A \Rightarrow 0 \leq f(x) < \varepsilon$$

On écrit : $\lim_{x \to -\infty} f(x) = 0^+$ ou $\lim_{-\infty} f = 0^+$.

Exemple

On utilisera aussi la notation 0⁺ pour indiquer que l'on tend vers zéro par valeurs supérieures.

➤ Notation 0⁻

Soient f une fonction définie sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} , et a un point de I.

On dit que f tend vers 0^- en a si, lorsque x devient très proche de a, f(x) tend vers zéro, mais en restant négatif, ce qui se traduit mathématiquement par le fait que pour tout réel ε strictement positif, il existe un réel η strictement positif tel que :

$$\forall x \in I, \ 0 < |x - a| < \eta \Rightarrow -\varepsilon < f(x) \le 0$$

On écrit : $\lim_{x \to a} f(x) = 0^-$ ou $\lim_a f = 0^-$.

Lorsque $+\infty$ est une borne de *I*, on dit que *f* tend vers 0^- en $+\infty$ si, lorsque *x* devient très grand, f(x) tend vers zéro, mais en restant négatif, ce qui se traduit mathématiquement par le fait que pour tout réel ε strictement positif, il existe un réel A strictement positif tel que:

$$\forall x \in I, x > A \Rightarrow -\varepsilon < f(x) \le 0$$

On écrit : $\lim_{x \to +\infty} f(x) = 0^-$ ou $\lim_{+\infty} f = 0^-$.

Lorsque $-\infty$ est une borne de I, on dit que f tend vers 0^- en $-\infty$ si, lorsque x devient très grand en valeur absolue, mais en restant à valeurs négatives, f(x) tend vers zéro, mais en restant négatif, ce qui se traduit mathématiquement par le fait que pour tout réel ε strictement positif, il existe un réel A strictement positif tel que :

$$\forall \, x \in I, \, x < -A \Rightarrow -\varepsilon < f(x) \leq 0$$

On écrit : $\lim_{x \to -\infty} f(x) = 0^-$ ou $\lim_{-\infty} f = 0^-$.

Exemple

$$\lim_{x \to 0} -x^4 = 0^-$$

© Dunod. Toute reproduction non autorisée est un délit.

On utilisera aussi la notation 0^- pour indiquer que l'on tend vers zéro par valeurs inférieures.

Exemple

$$\lim_{x \to 0^{-}} x^{3} = 0^{-}$$

➤ Notation a^+ , $a \in \mathbb{R}$

a étant un réel, la notation a^+ signifie que l'on tend vers a par valeurs supérieures.

➤ Notation a^- , $a \in \mathbb{R}$

a étant un réel, la notation a^- signifie que l'on tend vers a par valeurs inférieures.

2. Limite infinie d'une fonction en un point

Soient f une fonction définie sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} , et a un point de I.

On dit que f admet pour limite « plus l'infini (on note $+\infty$) » en a si, lorsque x devient très proche de a, f(x) devient très grand, ce qui se traduit mathématiquement par le fait que pour tout réel A strictement positif, il existe un réel η strictement positif tel que:

$$\forall x \in I, 0 < |x - a| < n \Rightarrow f(x) > A$$

On écrit alors : $\lim_{x \to a} f(x) = +\infty$ ou $\lim_{a} f(x) = +\infty$. On dit que f admet pour limite « moins l'infini (on note $-\infty$) » en a si, lorsque x devient très proche de a, f(x) devient très grand en valeur absolue, mais en étant à valeurs négatives, ce qui se traduit mathématiquement par le fait que pour tout réel A strictement positif, il existe un réel η strictement positif tel que :

$$\forall x \in I, 0 < |x - a| < \eta \Rightarrow f(x) < -A$$

On écrit : $\lim_{x \to a} f(x) = -\infty$ ou $\lim_{a} f = -\infty$.

Exemple

$$\lim_{x \to 1^+} \frac{1}{\sqrt{x^2 - 1}} = +\infty$$

3. Limite finie à droite (ou par valeurs supérieures)

Soient f une fonction définie sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} , a un point de I, et ℓ un réel.

On dit que f admet pour limite (finie) ℓ à droite en a (ou encore, par valeurs supérieures) si, lorsque x devient très proche de a, en restant plus grand que a, f(x) devient lui aussi très proche de ℓ , ce qui se traduit mathématiquement par le fait que pour tout réel ε strictement positif, il existe un réel η strictement positif tel que :

$$\forall x \in I, \ 0 < x - a < \eta \Rightarrow |f(x) - \ell| < \varepsilon$$

On écrit : $\lim_{x \to a^+} f(x) = \ell$ ou $\lim_{a^+} f = \ell$.

Exemple

$$\lim_{x \to 1^+} \left(2 + \sqrt{x - 1} \right) = 2$$

4. Limite finie à gauche (ou par valeurs inférieures)

Soient f une fonction définie sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} , a un point de I, et ℓ un réel.

On dit que f admet pour limite (finie) ℓ à gauche en a (ou encore, par valeurs inférieures) si, lorsque x devient très proche de a, en restant plus petit que a, f(x) devient lui aussi très proche de ℓ , ce qui se traduit mathématiquement par le fait que pour tout réel ε strictement positif, il existe un réel η strictement positif tel que :

$$\forall \, x \in I, \, -\eta < x - a < 0 \Rightarrow |f(x) - \ell| < \varepsilon$$

On écrit : $\lim_{x \to a^-} f(x) = \ell$ ou $\lim_{a^-} f = \ell$.

5. Limite infinie à droite (ou par valeurs supérieures)

Soient f une fonction définie sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} , et a un point de I.

On dit que f admet pour limite $+\infty$ à droite en a (ou encore, par valeurs supérieures) si, lorsque x devient très proche de a, en restant plus grand que a, f(x) devient très grand, ce qui se traduit mathématiquement par le fait que pour tout réel A strictement positif, il existe un réel η strictement positif tel que :

$$\forall x \in I, 0 < x - a < \eta \Rightarrow f(x) > A$$

On écrit :
$$\lim_{x \to a^+} f(x) = +\infty$$
 ou $\lim_{a^+} f = +\infty$.

On dit que f admet pour limite $-\infty$ à droite en a (ou encore, par valeurs supérieures) si, lorsque x devient très proche de a, en restant plus grand que a, f(x) devient très grand en valeur absolue, mais en étant à valeurs négatives, ce qui se traduit mathématiquement par le fait que pour tout réel A strictement positif, il existe un réel η strictement positif tel que :

$$\forall x \in I, 0 < x - a < \eta \Rightarrow f(x) < -A$$

On écrit :
$$\lim_{x \to a^+} f(x) = -\infty$$
 ou $\lim_{a^+} f = -\infty$.

6. Limite infinie à gauche (ou par valeurs inférieures)

Soient f une fonction définie sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} , et a un point de I.

On dit que f admet pour limite $+\infty$ à gauche en a (ou encore, par valeurs inférieures) si, lorsque x devient très proche de a, en restant plus grand que a, f(x) devient très grand, ce qui se traduit mathématiquement par le fait que pour tout réel A strictement positif, il existe un réel η strictement positif tel que :

$$\forall x \in I, -\eta < x - a < 0 \Rightarrow f(x) > A$$

On écrit :
$$\lim_{x \to a^{-}} f(x) = +\infty$$
 ou $\lim_{a^{-}} f = +\infty$.

On dit que f admet pour limite $-\infty$ à gauche en a (ou encore, par valeurs inférieures) si, lorsque x devient très proche de a, en restant plus grand que a, f(x) devient très grand en valeur absolue, mais en étant à valeurs négatives, ce qui se traduit mathématiquement par le fait que pour tout réel A strictement positif, il existe un réel η strictement positif tel que :

$$\forall x \in I, \eta < x - a < 0 \Rightarrow f(x) < -A$$

On écrit :
$$\lim_{x \to a^{-}} f(x) = +\infty$$
 ou $\lim_{a^{-}} f = +\infty$.

© Dunod. Toute reproduction non autorisée est un délit.

Limite d'une fonction en $+\infty$ ou $-\infty$

1. Limite finie d'une fonction en l'infini

Soient f une fonction définie sur un intervalle de la forme $[a, +\infty]$ de \mathbb{R} , $a \in \mathbb{R}$, et ℓ un réel.

On dit que f admet pour limite (finie) ℓ en « plus l'infini (on note $+\infty$) » si, lorsque x devient très grand, f(x) devient très proche de ℓ , ce qui se traduit mathématiquement par le fait que pour tout réel ε strictement positif, il existe un réel « seuil », A, strictement positif tel que:

$$\forall x \in [a, +\infty[, x > A \Rightarrow | f(x) - \ell| < \varepsilon$$

On écrit alors : $\lim_{x \to +\infty} f(x) = \ell$ ou $\lim_{t \to \infty} f = \ell$. Si f est définie sur un intervalle de la forme $]-\infty,a]$ de $\mathbb{R},a\in\mathbb{R}$, et si ℓ désigne encore un réel, on dit que f admet pour limite (finie) ℓ en « moins l'infini (on note $-\infty$) » si, lorsque x devient très grand en valeur absolue, mais en étant à valeurs négatives, f(x)devient très proche de ℓ , ce qui se traduit mathématiquement par le fait que pour tout réel ε strictement positif, il existe un réel A, strictement positif tel que :

$$\forall x \in]-\infty, a], x < -A \Rightarrow |f(x) - \ell| < \varepsilon$$

On écrit alors : $\lim_{x \to -\infty} f(x) = \ell$ ou $\lim_{-\infty} f = \ell$.

Exemple

$$\lim_{x \to +\infty} \left(1 - \frac{1}{\sqrt{x^2 - 1}} \right) = 1$$

2. Limite infinie d'une fonction en plus l'infini

Soit f une fonction définie sur un intervalle de la forme $[a, +\infty]$ de \mathbb{R} , $a \in \mathbb{R}$.

On dit que f admet pour limite $+\infty$ en « plus l'infini » si, lorsque x devient très grand, f(x) devient lui aussi très grand, ce qui se traduit mathématiquement par le fait que pour tout réel B strictement positif, il existe un réel « seuil », A, strictement positif tel que:

$$\forall x \in [a, +\infty[, x > A \Rightarrow f(x) > B]$$

On écrit alors : $\lim_{x \to +\infty} f(x) = +\infty$ ou $\lim_{x \to +\infty} f = +\infty$. On dit que f admet pour limite $-\infty$ en « plus l'infini » si, lorsque x devient très grand, f(x) devient très grand en valeur absolue, mais en étant à valeurs négatives, ce qui se traduit mathématiquement par le fait que pour tout réel B strictement positif, il existe un réel « seuil », A, strictement positif tel que :

$$\forall x \in [a, +\infty[, x > A \Rightarrow f(x) < -B]$$

On écrit alors : $\lim_{x \to +\infty} f(x) = -\infty$ ou $\lim_{+\infty} f = -\infty$.

3. Limite infinie d'une fonction en moins l'infini

Soit f une fonction définie sur un intervalle de la forme $]-\infty,a]$ de $\mathbb{R},a\in\mathbb{R}.$

On dit que f admet pour limite $+\infty$ en « moins l'infini » si, lorsque x devient très grand en valeur absolue, mais en étant à valeurs négatives, f(x) devient lui aussi très grand, ce qui se traduit mathématiquement par le fait que pour tout réel B strictement positif, il existe un réel réel A, strictement positif tel que :

$$\forall x \in]-\infty, a], x < -A \Rightarrow f(x) > B$$

On écrit alors : $\lim_{x \to -\infty} f(x) = +\infty$ ou $\lim_{x \to -\infty} f = +\infty$.

On dit que f admet pour limite $-\infty$ en « moins l'infini » si, lorsque x devient très grand en valeur absolue, en étant négatif, f(x) devient aussi très grand en valeur absolue, en étant négatif, ce qui se traduit mathématiquement par le fait que pour tout réel B strictement positif, il existe un réel A, strictement positif tel que :

$$\forall x \in]-\infty, a], x < -A \Rightarrow f(x) < -B$$

On écrit alors : $\lim_{x \to -\infty} f(x) = -\infty$ ou $\lim_{x \to -\infty} f = -\infty$.

4. Forme indéterminée

© Dunod. Toute reproduction non autorisée est un délit.

On appelle **forme indéterminée** une limite que l'on ne sait pas déterminer ; cela correspond donc à des quantités ne l'on peut pas quantifier **de façon exacte**, comme, par exemple, le quotient de $+\infty$ avec $+\infty$.

Propriétés des limites Opérations sur les limites

1. Propriétés des limites

➤ Unicité de la limite

Soient f une fonction définie sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} , et a dans \overline{I} . Si f possède une limite en a, celle-ci est unique.

• Soient f une fonction définie sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} , a un point de I, et ℓ dans $\overline{\mathbb{R}}$.

Alors, si f est définie dans un voisinage à gauche de a, et dans un voisinage à droite de a:

$$\lim_{x \to a} f(x) = \ell \Leftrightarrow \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = \ell$$

- Soient f une fonction définie sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} , et a dans \overline{I} ; m et M sont deux réels. Alors :
 - si $\lim_{x \to a} f(x) < M$, il existe un voisinage de a tel que, pour tout x de ce voisinage :

- si $\lim_{x\to a} f(x) > m$, il existe un voisinage de a tel que, pour tout x de ce voisinage :

Limites et comparaison

Soient f et g deux fonctions définies sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} , et a dans \overline{I} ; m et M sont deux réels. Alors, **si** f **et** g **ont des limites finies en** a, et s'il existe un voisinage V de a tel que, pour tout x de ce voisinage,

$$f(x) \leq g(x)$$

on a: $\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$

➤ Limites et minoration

Soient f et g deux fonctions définies sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} , et a dans \overline{I} . S'il existe un voisinage de a tel que, pour tout x de ce voisinage,

$$f(x) \leq g(x)$$

et si, de plus, $\lim_{x \to a} g(x) = -\infty$ alors : $\lim_{x \to a} f(x) = -\infty$

➤ Limites et majoration

Soient f et g deux fonctions définies sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} , et a dans \overline{I} . S'il existe un voisinage de a tel que, pour tout x de ce voisinage, $f(x) \ge g(x)$, et si $\lim g(x) = +\infty$, alors :

$$\lim_{x \to a} f(x) = +\infty$$

> Théorème des gendarmes

Soient f et g et h trois fonction définies sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} , et a dans \overline{I} ; ℓ est un réel. S'il existe un voisinage de a tel que, pour tout x de ce voisinage, $f(x) \le h(x) \le g(x)$, et si, de plus, $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \ell$, alors : $\lim_{x \to a} h(x) = \ell$

2. Opérations sur les limites

➤ Limite d'une somme de fonctions

Soient f et g deux fonctions définies sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} , et a dans \overline{I} ; ℓ et ℓ' sont deux réels finis. Alors :

$\lim_{x\to a}f(x)$	$\lim_{x\to a}g(x)$	$\lim_{x\to a}(f(x)+g(x))$
ℓ	ℓ'	$\ell + \ell'$
ℓ	+∞	+∞
ℓ	-∞	-∞
+∞	+∞	+∞
-∞	-∞	-∞
+∞	-∞	Forme indéterminée

➤ Limite d'un produit de fonctions

Soient f et g deux fonctions définies sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} , et a dans \overline{I} ; ℓ et ℓ' sont deux réels. Alors :

$\lim_{x\to a}f(x)$	$\lim_{x\to a}g(x)$	$\lim_{x\to a}f(x)g(x)$
ℓ	ℓ'	$\ell\ell'$
ℓ , avec $\ell > 0$	+∞	+∞
ℓ , avec $\ell > 0$	-∞	-∞
ℓ , avec ℓ < 0	+∞	-∞
ℓ , avec ℓ < 0	-∞	+∞
0	+∞	Forme indéterminée
0	$-\infty$	Forme indéterminée

➤ Limite d'un quotient de fonctions

Dunod. Toute reproduction non autorisée est un délit.

Soient f et g deux fonctions définies sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} , et a dans \overline{I} ; ℓ et ℓ' sont deux réels. Alors :

$\lim_{x\to a}f(x)$	$\lim_{x\to a}g(x)$	$\lim_{x\to a}\frac{f(x)}{g(x)}$
ℓ	ℓ' , avec $\ell' \neq 0$	$\frac{\ell}{\ell'}$
ℓ	+∞	0
ℓ	-∞	0
ℓ , avec $\ell > 0$	0+	+∞
ℓ , avec $\ell > 0$	0-	-∞
ℓ , avec ℓ < 0	0+	-∞
ℓ , avec ℓ < 0	0-	+∞
+∞	+∞	Forme indéterminée
+∞	-∞	Forme indéterminée
-∞	+∞	Forme indéterminée
-∞	-∞	Forme indéterminée

Notations de Landau

1. Négligeabilité

Définition

Soient f et g deux fonctions définies sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} , et a

On suppose que q ne s'annule pas dans un voisinage de a. On dit que f est **négligeable** devant q au voisinage de a si

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 0$$

On note alors

$$f(x) = o(g(x))$$
 ou $f = o(g)$

On dit que f est un « petit o » de g au voisinage de a.

La notation « petit o » , de même que la notation « grand O » , qui sera vue plus loin, est appelée notation de Landau, en hommage au mathématicien Edmund Landau¹. Leur paternité est visiblement assez controversée, et reviendrait, a priori, à Paul Bachmann².

Exemple

On considère les fonctions f et g définies, pour tout réel x, par

$$f(x) = x^2 \quad , \quad g(x) = x^4$$

 $f(x)=x^2\quad,\quad g(x)=x^4$ Alors, comme $\lim_{x\to+\infty}\frac{f(x)}{g(x)}=\lim_{x\to+\infty}\frac{1}{x^2}=0$, on en déduit : f=o(g).

Pour traduire le fait qu'une fonction f possède une limite nulle en $a, a \in \mathbb{R}$, ou, éventuellement, $a = +\infty$ ou $a = -\infty$, on écrit aussi :

$$f(x) = o(1)$$

2. Domination

Définition

Soient f et q deux fonctions définies sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} , et a dans \bar{I} . On suppose que q ne s'annule pas dans un voisinage de a, sans, pour autant, que q(a) soit non nul.

^{1.} Edmund Georg Hermann Landau (1877-1938), mathématicien allemand, spécialiste de théorie des

^{2.} Paul Bachmann (1837-1920), mathématicien allemand lui aussi, et également spécialiste de théorie des nombres.