Arquitetura de Computadores I Multiplicação e Divisão binárias

António de Brito Ferrari ferrari@ua.pt

Algoritmo de Booth (signed multiplication)

Recodificação do multiplicador:

y _i	y _{i-1}	Operação	
0	0	Shift	
0	1	Add - Shift	Fim de sequência de 1s
1	0	Add 2's complement - Shift	Início de sequência de 1s
1	1	Shift	

• Algoritmo baseia-se na decomposição de sequências de 1s:

$$\sum_{i=0}^{k-1} y_i = 2^k - 2^0$$
 Exemplo: 1111 = 10000 - 0001

• Algoritmo para multiplicador de n-bits: i = 0 ... n; $i_{-1} = 0$

ABF - AC 1 - Aritmética

q

Algoritmo de Booth "2 bits at a time"

y _{i +1}	y _i	y _{i-1}	Operação	
0	0	0	Shift 2 bits	Sequência de Os
0	0	1	Add X – shift 2 bits	Fim de sequência de 1s na posição (i-1)
0	1	0	Add X - shift 2 bits	1 isolado na posição i
0	1	1	Add 2*X - shift 2 bits	Fim de sequência de 1s na posição i
1	0	0	Sub 2*X - shift 2 bits	Início de sequência de 1s na posição (i+1)
1	0	1	Sub X - shift 2 bits	Fim de sequência de 1s na posição (i-1) e Início de sequência de 1s na posição (i+1)
1	1	0	Sub X - shift 2 bits	Início de sequência de 1s na posição i
1	1	1	Shift 2 bits	Sequência de 1s

Metade do número de Produtos Parciais gerados – **n/2 ciclos**

ABF - AC 1 - Aritmética

10

Multiplicação no MIPS

- Dois registos de 32-bit para o produto
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instruções
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt # pseudo-instrução
 - Least-significant 32 bits of product -> rd

ABF - AC 1 - Aritmética

11

Divisão

Dividendo = Quociente * Divisor + Resto

- - Operandos de n-bits: n-bit

Dividendo = Quociente * Divisor + Resto

quociente e resto: n-bit

- Check for 0 divisor
- Divisor ≠ 0
 - If divisor ≤ bits do dividendo
 - novo bit do quociente = 1, subtrair
 - else
 - novo bit do quociente = 0
 - Juntar ao resto parcial bit seguinte do dividendo
- Restoring division
 - Subtrair sempre o divisor; se resto < 0 somar de novo o divisor
- Signed division
 - Dividir usando os valores absolutos
 - Ajustar o sinal do quociente e do resto

ABF - AC 1 - Aritmética

12

Divisão no MIPS

- Registos HI/LO usados para o resultado
 - HI: resto da divisão
 - LO: quociente
- Instruções
 - -div rs, rt / divu rs, rt
 - No divide-by-0 checking
 - Cabe ao software fazer o teste, se necessário
 - mfhi, mflo para aceder ao resultado

ABF - AC 1 - Aritmética

15