1. There are 8 Jobs (A-H) with respective sizes. Using each Memory Allocation Strategy, allocate a partition to a job. Put the job/s in the Job Queue if there are no available partition for them. Compute for the Internal Fragments, External Fragments, and Memory Utilization (%).

JOBS	Α	В	С	D	Е	F	G	Н
SIZE	5	10	7	3	9	4	6	12

ALLOCATION STRATEGIES	FIXED PARTITIONS						JOB	IF	EF	%MU
	10	4	8	15	6	12	QUEUE			, with
FIRST FIT	A	D	С	В	F	Е	G, H	17	0	100.00%
NEXT FIT	A	D	F	В	G	С	E, H	20	0	100.00%
BEST FIT	В	D	С	F	A	Е	G, H	17	0	100.00%
WORST FIT	С		D	A	F	В	E, G, H	22	4	92.73%

IF = JOB SIZE – PARTITION OF SIZE

EF = UNUSED MEMORY

1. First Fit Strategy:

Job A (5): \rightarrow Partition $10 \rightarrow$ IF = 10 - 5 = 5

Job B (10): \rightarrow Partition 15 \rightarrow IF = 15 – 10 = 5

Job C (7): \rightarrow Partition 8 \rightarrow IF = 8 – 7 = 1

Job D (3): \rightarrow Partition 4 \rightarrow IF = 4 – 3 = 1

Job E (9): \rightarrow Partition 12 \rightarrow IF = 12 – 9 = 3

Job F (4): \rightarrow Partition 6 \rightarrow IF = 6 – 4 = 2

Job G (6) and Job H (12) has no available partitions for these jobs \rightarrow **Job Queue**

$$IF = 5 + 5 + 1 + 1 + 3 + 2 = 17$$

 $\mathbf{EF} = \mathbf{0}$, because all partitions are either used or cannot fit any remaining jobs.

MU = All memory is used; thus, MU is 100 %.

2. Next Fit Strategy

Job A (5): \rightarrow Partition $10 \rightarrow$ IF = 10 - 5 = 5

Job B (10): \rightarrow Partition 15 \rightarrow IF = 15 – 10 = 5

Job C (7): \rightarrow Partition 12 \rightarrow IF = 12 – 7 = 5

Job D (3): \rightarrow Partition $4 \rightarrow$ IF = 4 - 3 = 1

Job F (4): \rightarrow Partition 8 \rightarrow IF = 8 – 4 = 4

Job G (6): \rightarrow Partition 6 \rightarrow IF = 6 – 6 = 0

Job E (9) and Job H (12) has no available partitions for these jobs \rightarrow **Job Queue**

$$IF = 5 + 5 + 5 + 1 + 3 + 2 = 17$$

 $\mathbf{EF} = \mathbf{0}$, because all partitions are either used or cannot fit any remaining jobs.

MU = All memory is used; thus, MU is 100 %.

3. Best Fit Strategy

Job A (5):
$$\rightarrow$$
 Partition 6 \rightarrow IF = 6 – 5 = 1

Job B (10):
$$\rightarrow$$
 Partition $10 \rightarrow$ IF = $10 - 10 = 0$

Job C (7):
$$\rightarrow$$
 Partition 8 \rightarrow IF = 8 – 7 = 1

Job D (3):
$$\rightarrow$$
 Partition 4 \rightarrow IF = 4 – 3 = 1

Job E (9):
$$\rightarrow$$
 Partition 12 \rightarrow IF = 12 – 9 = 3

Job F (4):
$$\rightarrow$$
 Partition 15 \rightarrow IF = 15 – 4 = 11

Job G (6) and Job H (12) has no available partitions for these jobs \rightarrow **Job Queue**

$$IF = 1 + 0 + 1 + 1 + 3 + 11 = 17$$

 $\mathbf{EF} = \mathbf{0}$, because all partitions are either used or cannot fit any remaining jobs.

MU = All memory is used; thus, MU is 100 %.

4. Worst Fit Strategy

Job A (5):
$$\rightarrow$$
 Partition 15 \rightarrow IF = 15 – 5 = 10

Job B (10):
$$\rightarrow$$
 Partition $12 \rightarrow$ IF = $12 - 10 = 2$

Job C (7):
$$\rightarrow$$
 Partition $10 \rightarrow IF = 10 - 7 = 3$

Job D (3):
$$\rightarrow$$
 Partition $8 \rightarrow IF = 8 - 3 = 5$

Job F (4): \rightarrow Partition 6 \rightarrow IF = 6 – 4 = 2

Job E (9), Job G (6) and Job H (12) has no available partitions for these jobs \rightarrow **Job Queue**

$$\mathbf{IF} = 10 + 2 + 3 + 5 + 2 = 22$$

$$EF = 4$$

$$MU = 92.47\%$$

2. Using Buddy System, allocate the partition that best fits the jobs.

A. Allocation

Job A (5KB): \rightarrow Requires 8kb \rightarrow 64kb \rightarrow 32kb, 16kb, 8kb

-Allocate 8kb to A

Job B (10kb): \rightarrow Requires 16kb \rightarrow 32kb, 16kb

-Allocate 16kb to B

Job C (7kb): → Requires 8kb → Use remaining 8kb

-Allocate 8kb to C

Job D (3 kb): \rightarrow Requires 4 kb \rightarrow 16 kb \rightarrow 8 kb, 4 kb

-Allocate 4 kb to D

Job E (9 kb): → Requires 16 kb → Use remaining 16 kb block

-Allocate 16 kb to E

Job F (4 kb): → Requires 4 kb → Use remaining 4 kb block

-Allocate 4 kb to F

Job G (6 kb): \rightarrow Requires 8 kb \rightarrow 32 kb \rightarrow 16 kb, 8 kb

-Allocate 8 kb to G

B. After Termination & New Allocations

- A Terminates: Frees 8 KB block used by A
- Terminates: Frees 8 KB block used by C

Job H (12 KB): → Requires 16 KB → Use remaining 16 KB block

- Allocate 16 KB to H
- F Terminates: Frees 4 KB block used by F
- Terminates: Frees 4 KB block used by D