

PLANT DISEASE CNN CLASSIFIER: HERB-AI

2211333 - Valentina Álvarez Valderrama2211848 - Diego Garcia-Barajas2211861- Erick Daniel Vargas

PROBLEMA

- Propagación rápida de plagas o infecciones de cultivos.
- Limitaciones de personal especializado.

OBJETIVO

Identificar y clasificar enfermedades que puedan afectar cultivos a través de la extracción de características que proporcionan las redes convolucionales, basado en las imágenes de hojas sanas y contaminadas.

DATASET

The classes are,

1.Apple_scab

2.Apple_black_rot

3.Apple_cedar_apple_rust

4.Apple_healthy

5.Background_without_leaves

6.Blueberry_healthy

7.Cherry_powdery_mildew

8.Cherry_healthy

9.Corn_gray_leaf_spot

10.Corn_common_rust

11.Corn_northern_leaf_blight

12.Corn_healthy

13.Grape_black_rot

14.Grape_black_measles

15.Grape_leaf_blight

16.Grape_healthy

17.Orange_haunglongbing

18.Peach_bacterial_spot

19.Peach_healthy

20.Pepper_bacterial_spot

21.Pepper_healthy

22.Potato_early_blight

23.Potato_healthy

24.Potato_late_blight

25.Raspberry_healthy

26.Soybean_healthy

27.Squash_powdery_mildew

28.Strawberry_healthy

29.Strawberry_leaf_scorch

30.Tomato_bacterial_spot

31.Tomato_early_blight

32.Tomato_healthy

33.Tomato_late_blight

34.Tomato_leaf_mold

35.Tomato_septoria_leaf_spot

36.Tomato_spider_mites_two-spotted_spider_mite

37.Tomato_target_spot

38.Tomato_mosaic_virus

39.Tomato_yellow_leaf_curl_virus

MÉTRICAS

$$\frac{\text{Accuracy}}{\text{All predictions}}$$

$$WeightedAvgPrecision = \sum_{c \in \{Classes\}} Precision \cdot Wc$$

$$WeightedAvgRecall = \sum_{c \in \{Classes\}} Recall \cdot Wc$$

$$WeightedF1Score = 2 \cdot (\frac{WeightedAvgPrecision \cdot WeightedAvgRecall}{WeightedAvgPrecision + WeightedAvgRecall})$$

$$MacroAvgPrecision = \frac{\sum\limits_{c \in \{Classes\}} Precision_c}{|\{Classes\}|}$$

$$MacroAvgRecall = \frac{\sum\limits_{c \in \{Classes\}} Recall_c}{|\{Classes\}|}$$

$$MacroF1Score = 2 \cdot (\frac{MacroAvgPrecision \cdot MacroAvgRecall}{MacroAvgPrecision + MacroAvgRecall})$$

VGGNET

 $\underline{Modelo~2: VGGNet.~Tomado~de}~https://medium.com/@siddheshb008/vgg-net-architecture-explained-71179310050f$

70-10-20

- Sklearn Accuracy: 0.9689
- Sklearn Macro Precision: 0.9669
- Sklearn Macro Recall: 0.9562
- Sklearn Macro F1-score: 0.9578

- Sklearn Weighted Precision: 0.9735
- Sklearn Weighted Recall: 0.9689
- Sklearn Weighted F1-score: 0.9683

AppleApple_scab	0	PotatoEarly_blight	21					
AppleBlack_rot	1	PotatoLate_blight	22	0. jpg – 6	11. jpg – 17	13(2). jpg – 13	13.jpg – 12	14. <i>jpg</i> – 12
AppleCedar_apple_rust	2	Potatohealthy	23					A AM
Applehealthy	3	Raspberryhealthy	24				V	
Background_without_leaves	4			15(2). jpg – 15	15(3). jpg – 11	15. <i>jpg</i> – 31	16.jpg – 19	17.jpeg – 4
Blueberryhealthy	5	Soybeanhealthy	25					
CherryPowdery_mildew	6	SquashPowdery_m	26			A	4-6	
Cherry_healthy	7	StrawberryLeaf_sc	27	18. jpg – 5	19. <i>jpg</i> – 19	20. <i>jpg</i> – 20	21.jpg – 14	25(2). jpg – 5
CornCercospora_leaf_spot Gray	8	Strawberryhealthy	28				(1)	
CornCommon_rust	9	TomatoBacterial_s	29				A Las	
CornNorthern_Leaf_Blight	10	TomatoEarly_bligh	30	25. jpg – 25	26(2). jpg – 4	26. jpg – 31	27(2). jpg – 33	27.jpg – 27
Cornhealthy	11	TomatoLate_blight	31				AND.	
GrapeBlack_rot	12	_						-
GrapeEsca_(Black_Measles)	13	TomatoLeaf_Mold	32	29. jpg – 8	3. jpg – 16	33(2). jpg – 30	33(3). jpg – 30	33. <i>jpg</i> – 33
GrapeLeaf_blight_(Isariopsis_Lo	14	TomatoSeptoria_le	33					
Grapehealthy	15	TomatoSpider_mit	34					The second
OrangeHaunglongbing_(Citrus	16	TomatoTarget_Spc	35	36. jpg – 36	6. jpg – 26	8. jpg – 8	9(2). jpg – 9	9. jpg – 8
PeachBacterial_spot	17	TomatoTomato_Ye	36	(CV)	-			
Peachhealthy	18	TomatoTomato_m	37	7/4				
Pepper,_bellBacterial_spot	19	Tomato healthy						
Pepper,_bellhealthy	20	Tomatoneartny	38					

13 (2).jpg Predicción: 13 Imagen original 13.jpg Predicción: 12 Imagen original 14.jpg Predicción: 12 Imagen original 15 (2).jpg Predicción: 15 Imagen original

Análisis GRADCAM

Figura 1: Enfermedades de la uva. Tomado de https://doi.org/10.3390/agriculture12101542

GrapeBlack_rot	12	1180
GrapeEsca_(Black_Measles)	13	1383
GrapeLeaf_blight_(Isariopsis_Leaf_Spot)	14	1076
Grapehealthy	15	423

11.jpg Predicción: 17

Imagen original

Análisis GRADCAM

6.jpg Predicción: 26

Imagen original

17.jpeg Predicción: 4

Imagen original

27.jpg

33 (2).jpg Predicción: 30

Imagen original

33 (3).jpg Predicción: 30

33.jpg Predicción: 33

Imagen original

Análisis GRADCAM

TomatoEarly_blight	30
TomatoLate_blight	31
TomatoLeaf_Mold	32
TomatoSeptoria_leaf_spot	33

Conclusiones

- Reducir la cantidad de clases puede mejorar el rendimiento del modelo enfocándose en un solo tipo de cultivo.
- El análisis con Grad-Cam reveló problemas en la atención del modelo, presta atención a zonas irrelevantes como el fondo, lo que sugiere una necesidad de mejorar la calidad del dataset o aplicar técnicas de segmentación previa.
- El modelo mostro buen desempeño con el conjunto de validación y testeando, pero mal con imágenes externas extraídas de google, demostrando una escasa habilidad para generalizar en contextos reales.

Trabajo Futuro

- Combinar con un proceso previo de detección.
- Reentrenar con datasets menos sesgados (Fondo muy controlado).
- Tomar medidas para contrarrestar el desbalance de datos.

TURNO DE...

PREGUNTAS (fáciles)
COMENTARIOS (bonitos)
CRÍTICAS (constructivas)
APORTACIONES (monetarias)

GRACIAS!

