Data Analysis: Statistical Modeling and Computation in Applications

<u>Help</u>

sandipan_dey ~

Course Pro

Progress

<u>Dates</u>

Discussion

Resources

4. Random walk model

☐ Bookmark this page

Exercises due Nov 10, 2021 17:29 IST Completed

Before investigating the properties and stationarity of the AR(p) model, we consider one very important special case – **the random walk**.

A time series $\{X_t\}_{t\geq 1}$ is a random walk if the value of X_t is obtained from the value of X_{t-1} by adding a random perturbation W_t (white noise) that is independent of (or uncorrelated with) the past history of the series $\{X_s\}_{s< t}$:

$$X_t = X_{t-1} + W_t,$$

A time series $\{Y_t\}_{t\geq 1}$ is a random walk with drift if it is equal to the sum of a random walk process $\{X_t\}_{t\geq 1}$ (with no drift) with a deterministic linear trend:

$$egin{array}{lll} Y_t &=& \delta \cdot t + X_t, \ &=& \delta + Y_{t-1} + W_t, & ext{where } Y_{t-1} \,=\, \delta \left(t - 1
ight) + X_{t-1}. \end{array}$$

Random walk

Random Walk with Drift

Coin toss and random walk

5/5 points (graded)

Consider the following random walk model. Let the starting position $X_0=0$ be deterministic. At each time t you flip a fair coin and add 1 to X_{t-1} if you see heads H, else add -1 if you see tails T. Suppose the first 9 coin flips result in the sequence HTTTHHTTT.

Compute the first 10 terms of the time series $\{X_t\}_{t=0}^9$. (There is no answer box for this question.)

Find the expected position ${f E}\left[X_{10}
ight]$ at time t=10.

0 **✓ Answer:** 0

Find the expected position ${f E}\left[X_{20}
ight]$ at time t=20.

0 **✓ Answer:** 0

Find the variance of the position X_{10} at time t=10.

10 **✓ Answer:** 10

Find the variance of the position X_{20} at time t=20.

20 **✓ Answer:** 20

Find the forecast $\mathbf{E}[X_{10}|X_9]$.

0

0.5

 \bigcirc X_9

 $\bigcirc (X_1+\ldots+X_9)/9$

~

Solution:

The series is

$$\{X_0=0,X_1=1,X_2=0,X_3=-1,X_4=-2,X_5=-1,X_6=0,X_7=-1,X_8=-2,X_9=-3\}$$

If we let W_t to be the random variable with values ± 1 depending on the outcome of the tth flip of the fair coin (i.e., a Rademacher r.v.), then $X_t=0+\sum_{s=1}^t W_s$. By linearity of expectations,

$$\mathbf{E}\left[X_{t}
ight] = \mathbf{E}\left[\sum_{s=1}^{t}W_{s}
ight] = \sum_{s=1}^{t}\mathbf{E}\left[W_{s}
ight] = 0.$$

Therefore, $\mathbf{E}\left[X_{10}
ight] = \mathbf{E}\left[X_{20}
ight] = 0$. Next, we compute the variance.

$$egin{aligned} \mathsf{Var}\left(X_{t}
ight) &= \mathsf{Var}\left(\sum_{s=1}^{t}W_{s}
ight) = \sum_{s=1}^{t}\mathsf{Var}\left(W_{s}
ight) + \sum_{t
eq s}\mathsf{Cov}\left(W_{t},W_{s}
ight) \ &= t \cdot 1 + 0. \end{aligned}$$

Therefore, $Var(X_{10}) = 10$ and $Var(X_{20}) = 20$, so the position of the random walk at t = 20 is more uncertain than the position of the random walk at t = 10. This means that the random walk is not stationary.

Finally, the (best in the sense of smallest quadratic risk) prediction of X_{10} given the value of X_{9} is

$$egin{align} \mathbf{E}\left[X_{10}|X_{9}
ight] &= \mathbf{E}\Big[\sum_{s=1}^{10}W_{s}\mid\sum_{s=1}^{9}W_{s}\Big] \ &= \mathbf{E}\Big[\sum_{s=1}^{9}W_{s}\mid\sum_{s=1}^{9}W_{s}\Big] + \mathbf{E}\Big[W_{10}\mid\sum_{s=1}^{9}W_{s}\Big] \ &= \sum_{s=1}^{9}W_{s} + 0 = X_{9}. \end{split}$$

In words, the best prediction of the future position of a random walk is the present position of the random walk.

Submit

You have used 2 of 3 attempts

Biased coin toss and random walk

6/6 points (graded)

Continuing with the setup of the previous problem, suppose now that the coin you flip is biased with $\mathbf{P}(\mathsf{H}) = \frac{3}{4}$ and $\mathbf{P}(\mathsf{T}) = \frac{1}{4}$.

Find the expected position ${f E}\left[X_{10}
ight]$ at time t=10.

5 **Answer:** 5

Find the expected position ${f E}\left[X_{20}
ight]$ at time t=20.

10 **✓ Answer:** 10

Find the variance of the position X_{10} at time t=10.

15/2 **✓ Answer:** 7.5

Find the variance of the position X_{20} at time t=20.

15 **✓ Answer:** 15

What is the slope of the drift of this random walk?

0.5 **✓ Answer:** 0.5

Find the forecast $\mathbf{E}\left[X_{10} \middle| X_9
ight]$.

O 0

0.5

 $\bigcirc X_9$

 $\bigcirc (X_1+\ldots+X_9)/9$

 $> X_9 + 0.5$

 $(X_1+\ldots+X_9)/9+0.5$

~

Solution:

Let V_t denote the random variable with values ± 1 depending on the outcome of the tth flip of the biased coin. Then $\mathbf{E}\left(V_t\right)=1\cdot\frac{3}{4}-1\cdot\frac{1}{4}=\frac{1}{2}$ and $\mathsf{Var}\left(V_t\right)=1-\left(\frac{1}{2}\right)^2=\frac{3}{4}$.

Continuing with the calculations of the previous problem, $\mathbf{E}\left[X_t\right]=\sum_{s=1}^t\mathbf{E}\left[V_s\right]=t\cdot \frac{1}{2}$. So, $\mathbf{E}\left[X_{10}\right]=5$ and $\mathbf{E}\left[X_{20}\right]=10$.

Next, $\mathsf{Var}(X_t) = \sum_{s=1}^t \mathsf{Var}(V_s) = t \cdot \frac{3}{4}$. So, $\mathsf{Var}(X_{10}) = 7.5$ and $\mathsf{Var}(X_{20}) = 15$.

The drift is another name for the trend in the context of a random walk time series. To see that $m{X}$ is a random

walk with drift, let $W_t = V_t - \frac{1}{2}$ and note that $\{W_t\}$ is white noise. Then

$$X_t = \sum_{s=1}^t V_s = rac{1}{2}t + \sum_{s=1}^t W_s,$$

so the slope of the drift of X is $\frac{1}{2}$, and equal to the bias of the random perturbation at each step.

Finally, the forecast of a future position of the process

$$\mathbf{E}\left[X_{10}|X_{9}
ight] = X_{9} + \mathbf{E}\left[W_{10}|X_{9}
ight] = X_{9} + rac{1}{2}$$

is the present position adjusted for the drift.

Submit

You have used 2 of 3 attempts

Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Module 4: Time Series: Time Series: Statistical Models / 4. Random walk model

Add a Post

if W was Bernoulli, $var(X_{10}) = sum of i.i.d.$ Bernoulli random variables, where var(Bernoulli) = p(1-p). Bernoulli returns {0,1}. W in the model return $\{-1,1\}$, so you need to calculate the variance. It is not p(1-p). You can use definition of variance in terms of moments: $var(X) = E[X^2] - E[X]^2$ posted 2 months ago by **ababs** Add a comment <u>kozaronek</u> 2 months ago Thanks @ababs & @mtuznik, your hints were very helpful:) For those who are still a little confused, formulating the variance as such, might be even more clear. $Var\left(X_{t}
ight) = \sum_{i=1}^{t}\left(\sum_{coin}^{2}\left(x_{coin}^{2}*p
ight) - E[X]^{2}
ight)$ Where $coin = \{Head = 1, Tails = -1\}$ Add a comment michael_seitz1992 + 2 months ago There is also a quick and intuitive way using a Bernoulli random variable: As mentioned before, Bernoulli random variale X returns $\{0,1\}$. Using Y = 2*X results in a variable which returns $\{0,2\}$. We know that multiplying a constant with a random Variable scales the variance quadratically with the constant: $Var(Y) = 2^2Var(X)$. Defining Z = Y - 1 results in the variable we are interested in, which returns $\{-1,1\}$. However, shifting a variable does not change the variance. Hence: Var(Z) = Var(Y) = ...••• Hey Michael. Great way to frame the problem in terms of probabilistic thinking. Thanks for the tip. The fair coin version is called Rademacher distribution. posted 2 months ago by jtourkis ••• Nice way Mike! posted 2 months ago by **ncranwell** Add a comment <u>ZY-A</u> 2 months ago Thanks everyone. This was indeed a very helpful post! Add a comment Showing all responses

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>