Linear Models - Regression

Common statistical tests are linear models

Last undated: 02 April 2010

See worked examples and more details at the accompanying notebook: https://lindeloev.github.io/tests-as-linear

	Common name	Built-in function in R	Equivalent linear model in R	Exact?	The linear model in words	Icon
(x +	y is independent of x P: One-sample t-test N: Wilcoxon signed-rank	t.test(y) wilcox.test(y)	Im(y ~ 1) Im(signed_rank(y) ~ 1)	for N >14	One number (intercept, i.e., the mean) predicts y (Same, but it predicts the <i>signed rank</i> of y .)	<u>;</u>
Simple regression: lm(y ~ 1	P: Paired-sample t-test N: Wilcoxon matched pairs	t.test(y ₁ , y ₂ , paired=TRUE) wilcox.test(y ₁ , y ₂ , paired=TRUE)	$Im(y_2 - y_1 \sim 1)$ $Im(signed_rank(y_2 - y_1) \sim 1)$	√ f <u>or N >14</u>	One intercept predicts the pairwise y ₂ -y ₁ differences (Same, but it predicts the <i>signed rank</i> of y ₂ -y ₁ .)	*
	y ~ continuous x P: Pearson correlation N: Spearman correlation	cor.test(x, y, method='Pearson') cor.test(x, y, method='Spearman')	Im(y ~ 1 + x) Im(rank(y) ~ 1 + rank(x))	for N >10	One intercept plus x multiplied by a number (slope) predicts y . - (Same, but with <i>ranked</i> x and y)	نعللمسم
	y ~ discrete x P: Two-sample t-test P: Welch's t-test N: Mann-Whitney U	t.test(y ₁ , y ₂ , var.equal=TRUE) t.test(y ₁ , y ₂ , var.equal=FALSE) wilcox.test(y ₁ , y ₂)	$Im(y \sim 1 + G_2)^A$ $gls(y \sim 1 + G_2, weights=^B)^A$ $Im(signed_rank(y) \sim 1 + G_2)^A$	√ √ for N >11	An intercept for group 1 (plus a difference if group 2) predicts y . - (Same, but with one variance <i>per group</i> instead of one common.) - (Same, but it predicts the <i>signed rank</i> of y .)	*
Multiple regression: $Im(y \sim 1 + x_1 + x_2 +)$	P: One-way ANOVA N: Kruskal-Wallis	aov(y ~ group) kruskal.test(y ~ group)	$\begin{aligned} & \text{Im}(y \sim 1 + G_2 + G_3 + + G_N)^A \\ & \text{Im}(\text{rank}(y) \sim 1 + G_2 + G_3 + + G_N)^A \end{aligned}$	√ for N >11	An intercept for group 1 (plus a difference if group ≠ 1) predicts y . - (Same, but it predicts the <i>rank</i> of y .)	i , t
	P: One-way ANCOVA	aov(y ~ group + x)	Im(y ~ 1 + G_2 + G_3 ++ G_N + x) ^A	~	- (Same, but plus a slope on x.) Note: this is discrete AND continuous. ANCOVAs are ANOVAs with a continuous x.	
	P: Two-way ANOVA	aov(y ~ group * sex)	$Im(y \sim 1 + G_2 + G_3 + + G_N + G_2 + S_3 + + S_K + G_2 * S_2 + G_3 * S_3 + + G_N * S_K)$	*	Interaction term: changing sex changes the $y \sim group$ parameters. Note: G_{2toN} is an indicator (0 or 1) for each non-intercept levels of the group variable. Similarly for S_{2toN} for sex. The first line (with G_i) is main effect of group, the second (with S_i) for sex and the third is the group \times sex interaction. For two levels (e.g. male/female), line 2 would just be " S_2 " and line 3 would be S_2 multiplied with each G_i .	[Coming]
	Counts ~ discrete x N: Chi-square test	chisq.test(groupXsex_table)	Equivalent log-linear model $glm(y \sim 1 + G_2 + G_3 + + G_N + G_2 + S_3 + + S_K + G_2 * S_2 + G_3 * S_3 + + G_N * S_K$, family=) ^A	*	Interaction term: (Same as Two-way ANOVA.) Note: Run glm using the following arguments: $glm (model, family=poisson())$ As linear-model, the Chi-square test is $log(y_i) = log(N) + log(a_i) + log(a_i) + log(a_i)$ where a_i and β_j are proportions. See more info in the accompanying notebook.	Same as Two-way ANOVA
Mu	N: Goodness of fit	chisq.test(y)	glm(y ~ 1 + G_2 + G_3 ++ G_N , family=) ^A	✓	(Same as One-way ANOVA and see Chi-Square note.)	1W-ANOVA

List of common parametric (P) non-parametric (N) tests and equivalent linear models. The notation $y \sim 1 + x$ is R shorthand for $y = 1 \cdot b + a \cdot x$ which most of us learned in school. Models in similar colors are highly similar, but really, notice how similar they *all* are across colors! For non-parametric models, the linear models are reasonable approximations for non-small sample sizes (see "Exact" column and click links to see simulations). Other less accurate approximations exist, e.g., Wilcoxon for the sign test and Goodness-of-fit for the binomial test. The signed rank function is $signed_rank = function(x) sign(x) * rank(abs(x))$. The variables G_1 and G_2 are "dummy coded" indicator variables (either 0 or 1) exploiting the fact that when $\Delta x = 1$ between categories the difference equals the slope. Subscripts (e.g., G_2 or g_1) indicate different columns in data. Im requires long-format data for all non-continuous models. All of this is exposed in greater detail and worked examples at https://lindeloev.github.io/tests-as-linear.

A See the note to the two-way ANOVA for explanation of the notation.

B Same model, but with one variance per group: gls(value ~ 1 + G2, weights = varIdent(form = ~1|group), method="ML").

The mean: A very simple statistical model

Advertisement Investment and Number of Records Sold in 2019

The method of least squares

Advertisement Investment and Number of Records Sold in 2019

Amount Spent on Adverts (Thousands of Dollars)

Linear Regression

Response = Intercept + Slope \times Predictor + Error

$$Y_i = (b_0 + b_1 X_i) + \varepsilon_i$$

Concept Check - Variance

total error = sum of deviances

$$= \sum (x_i - \overline{x}) = (-1.6) + (-0.6) + (0.4) + (0.4) + (1.4) = 0$$

sum of squared errors (SS) =
$$\sum (x_i - \bar{x})(x_i - \bar{x})$$

= $(-1.6)^2 + (-0.6)^2 + (0.4)^2 + (0.4)^2 + (1.4)^2$
= $2.56 + 0.36 + 0.16 + 0.16 + 1.96$
= 5.20

variance (s²) =
$$\frac{SS}{N-1} = \frac{\sum (x_i - \overline{x})^2}{N-1} = \frac{5.20}{4} = 1.3$$

$$s = \sqrt{\frac{\sum (x_i - \overline{x})}{N - 1}}$$
$$= \sqrt{1.3}$$
$$= 1.14$$

Concept Check – Standard Error

$$\sigma_{\bar{X}} = \frac{s}{\sqrt{N}}$$

Constructing Simple Regressions in

```
album_lm_1 <- lm(sales \sim 1 + adverts, data = album_data)
summary(album_lm_1)
Call:
lm(formula = sales \sim 1 + adverts, data = album_data)
Residuals:
    Min
          1Q Median 3Q
                                      Max
-152.949 -43.796 -0.393 37.040 211.866
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.341e+02 7.537e+00 17.799 <2e-16 ***
adverts 9.612e-02 9.632e-03 9.979 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 65.99 on 198 degrees of freedom
Multiple R-squared: 0.3346, Adjusted R-squared: 0.3313
F-statistic: 99.59 on 1 and 198 DF, p-value: < 2.2e-16
```

Exercise 1 – Simple Regression

```
Call:
lm(formula = sales \sim 1 + adverts, data = album_data)
Residuals:
    Min 10 Median 30
                                      Max
-152.949 -43.796 -0.393 37.040 211.866
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.341e+02 7.537e+00 17.799 <2e-16 ***
adverts 9.612e-02 9.632e-03 9.979 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 65.99 on 198 degrees of freedom
Multiple R-squared: 0.3346, Adjusted R-squared: 0.3313
F-statistic: 99.59 on 1 and 198 DF, p-value: < 2.2e-16
```

The Theory - Regression Output

```
Call:
lm(formula = sales \sim 1 + adverts, data = album_data)
Residuals:
    Min 1Q Median 3Q
                                     Max
-152.949 -43.796 -0.393 37.040 211.866
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.341e+02 7.537e+00 17.799 <2e-16 ***
adverts 9.612e-02 9.632e-03 9.979 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
Residual standard error: 65.99 on 198 degrees of freedom Multiple R-squared: 0.3346, Adjusted R-squared: 0.3313 F-statistic: 99.59 on 1 and 198 DF, p-value: < 2.2e-16
```

The Model - Assessing Goodness of Fit (R2)

between the mean value of *Y* and the regression line

 $R^2 = \frac{SS_{M}}{SS_{T}}$

$$1 - (1 - R^2) \frac{n - 1}{n - p - 1}$$

$$r = \sqrt{R^2}$$

$$F = \frac{MS_{M}}{MS_{R}}$$

The Theory - Regression Output

```
Call:
lm(formula = sales \sim 1 + adverts, data = album_data)
Residuals:
    Min 1Q
                  Median 3Q
                                      Max
-152.949 -43.796 -0.393 37.040 211.866
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.341e+02 7.537e+00 17.799 <2e-16 ***
adverts 9.612e-02 9.632e-03 9.979 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 65.99 on 198 degrees of freedom
Multiple R-squared: 0.3346, Adjusted R-squared: 0.3313
F-statistic: 99.59 on 1 and 198 DF, p-value: < 2.2e-16
```

The Predictors - Assessing Individual Predictors

$$t = \frac{b_{\text{observed}} - b_{\text{expected}}}{SE_b}$$
$$= \frac{b_{\text{observed}}}{SE_b}$$

Degrees of freedom (df) = N - p - 1

Where:

N = Total sample size p = number of predictors

A.2 Critical values of the t-distribution

	Two-Ta	Two-Tailed Test		One-Tailed Test		
df	0.05	0.01	0.05	0.01		
1	12.71	63.66	6.31	31.82		
2	4.30	9.92	2.92	6.96		
3	3.18	5.84	2.35	4.54		
4	2.78	4.60	2.13	3.75		
5	2.57	4.03	2.02	3.36		
6	2.45	3.71	1.94	3.14		
7	2.36	3.50	1.89	3.00		
8	2.31	3.36	1.86	2.90		
9	2.26	3.25	1.83	2.82		
10	2.23	3.17	1.81	2.76		
11	2.20	3.11	1.80	2.72		
12	2.18	3.05	1.78	2.68		
13	2.16	3.01	1.77	2.65		
14	2.14	2.98	1.76	2.62		
15	2.13	2.95	1.75	2.60		
16	2.12	2.92	1.75	2.58		
17	2.11	2.90	1.74	2.57		
18	2.10	2.88	1.73	2.55		
19	2.09	2.86	1.73	2.54		
20	2.09	2.85	1.72	2.53		
21	2.08	2.83	1.72	2.52		
22	2.07	2.82	1.72	2.51		
23	2.07	2.81	1.71	2.50		
24	2.06	2.80	1.71	2.49		
25	2.06	2.79	1.71	2.49		
26	2.06	2.78	1.71	2.48		
27	2.05	2.77	1.70	2.47		
28	2.05	2.76	1.70	2.47		
29	2.05	2.76	1.70	2.46		
20	2.24	0.75	1 70	2 42		

Exercise 2.1 – Deriving the output

```
Call:
lm(formula = sales ~ 1, data = album_data)
                                                                         \sigma_{\bar{X}} = \frac{s}{\sqrt{N}}
Residuals:
   Min 1Q Median 3Q
                                  Max
-183.2 -55.7 6.8 56.8 166.8
Coefficients:
                                                                         s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{N_i - 1}}
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 193.200 5.706 33.86 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 80.7 on 199 degrees of freedom
```

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{N - 1}}$$

Exercise 2.1 - Deriving the output

```
Call:
lm(formula = sales ~ 1, data = album_data)
Residuals:
                                                                       \sigma_{\bar{X}} = \frac{s}{\sqrt{N}}
   Min 1Q Median 3Q
                                 Max
-183.2 -55.7 6.8 56.8 166.8
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 193.200 5.706 33.86 <2e-16 ***
                                                                       s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{\sum x_i}}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 80.7 on 199 degrees of freedom
estimate <- mean(album_data$sales); estimate</pre>
standard_error <- sd(album_data$sales)/sqrt(nrow(album_data)); standard_error
t_value <- estimate/standard_error; t_value
residuals_sales <- album_data$sales - mean(album_data$sales); residuals_sales
quantile_residuals_sales <- quantile(residuals_sales); quantile_residuals_sales
residual_standard_error <- sd(residuals_sales); residual_standard_error
```

Exercise 2.2 - Deriving the output

```
Call:
lm(formula = sales \sim 1 + adverts, data = album_data)
Residuals:
    Min 1Q Median 3Q
                                      Max
-152.949 -43.796 -0.393 37.040 211.866
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.341e+02 7.537e+00 17.799 <2e-16 ***
adverts 9.612e-02 9.632e-03 9.979 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 65.99 on 198 degrees of freedom
Multiple R-squared: 0.3346, Adjusted R-squared: 0.3313
F-statistic: 99.59 on 1 and 198 DF, p-value: < 2.2e-16
```

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{N - 1}}$$

$$1 - (1 - R^2) \frac{n - 1}{n - p - 1}$$

Exercise 2.2 – Deriving the output

```
Call:
lm(formula = sales \sim 1 + adverts, data = album_data)
Residuals:
    Min
              1Q Median
                               3Q
                                      Max
-152.949 -43.796 -0.393 37.040 211.866
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.341e+02 7.537e+00 17.799 <2e-16 ***
          9.612e-02 9.632e-03 9.979 <2e-16 ***
adverts
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 65.99 on 198 degrees of freedom
Multiple R-squared: 0.3346, Adjusted R-squared: 0.3313
F-statistic: 99.59 on 1 and 198 DF, p-value: < 2.2e-16
```

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{N - 1}}$$

$$1 - (1 - R^2) \frac{n - 1}{n - p - 1}$$

```
RMSE <- sqrt(sum(residuals(album_lm_1)^2)/df.residual(album_lm_1)); RMSE R2 <- cor(album_data$adverts, album_data$sales)^2; R2 R2_adjusted <- 1 - (1 - R2)*((200-1)/(200-1-1)); R2_adjusted F_test <- anova(album_lm_0, album_lm_1); F_test t_adverts <- 0.09612/0.009632; t_adverts t_intercept <- 134.1/7.537; t_intercept residuals <- quantile(album_lm_1$residuals); residuals
```

Exercise 3 – Anscombe Quartet

Thank you!

