Notes of EFT LSS Multi-tracer

BY XIAOYONG MU

National Astronamical Obeservatories, Chinese Academy of Sciences

School of Astronomy and Space Science, University of Chinese Academy of Sciences

December 15, 2021

Abstract

Notes of EFT LSS Multi-tracer.

1 Biased single-tracer in redshift space

Expand SPT kernals up to 3rd-order with counter-terms and stochastic terms:

$$\delta_{A,r} = \delta_{A,r}^{(1)} + \delta_{A,r}^{(2)} + \delta_{A,r}^{(3)} + \delta_{A,r}^{(3,\text{ct})} + \delta_{A,r}^{(\varepsilon)}$$
(1)

where

$$\delta_{A,r}^{(n)}(\vec{k}) = \int d^3q_1 \dots d^3q_n K_{A,r}^{(n)}(\vec{q}_1, \dots, \vec{q}_n)_{\text{sym}} \delta_D^3(\vec{k} - \vec{q}_1 \dots - \vec{q}_n) \delta^{(1)}(\vec{q}_1) \dots \delta^{(1)}(\vec{q}_n)$$
 (2)

The kernal $K_{A,r}^{(1)}(\vec{q}_1), K_{A,r}^{(2)}(\vec{q}_1, \vec{q}_2), K_{A,r}^{(3)}(\vec{q}_1, \vec{q}_2, \vec{q}_3)$ have been expressed with real space kernals. The counter-terms are as follows:

$$\delta_{A,r}^{(3,\text{ct})} = (c_{\text{ct}}^A + c_{r,1}^A \mu^2 + c_{r,2} \mu^4) k^2 \delta^{(1)}$$
(3)

where the RSD counter-term $c_{r,2}$ is independent of bia of the tracer A.

The stochasitic terms are as follows:

$$\langle \delta_{A,r} \delta_{A,r} \rangle = \frac{1}{\bar{n}_A} (c_{\varepsilon,1}^A + c_{\varepsilon,2}^A k^2 + c_{\varepsilon,3}^A f \mu^2 k^2) \tag{4}$$

Finally we get the single-tracer power spectrum P_{AA} :

$$\begin{split} \langle \delta_{A,r}(\vec{k}) \delta_{A,r}(\vec{k}) \rangle &= \left\langle \delta_{A,r}^{(1)}(\vec{k}) \delta_{A,r}^{(1)}(\vec{k}) \right\rangle + \left\langle \delta_{A,r}^{(2)}(\vec{k}) \delta_{A,r}^{(2)}(\vec{k}) \right\rangle + 2 \left\langle \delta_{A,r}^{(1)}(\vec{k}) \delta_{A,r}^{(3)}(\vec{k}) \right\rangle \\ &+ 2 \left\langle \delta_{A,r}^{(1)}(\vec{k}) \delta_{A,r}^{(3,\text{ct})}(\vec{k}) \right\rangle + \left\langle \delta_{A,r}^{(\varepsilon)}(\vec{k}) \delta_{A,r}^{(\varepsilon)}(\vec{k}) \right\rangle \\ &= \left(K_{A,r}^{(1)} \right)^{2} P_{11}(k) + 2 \int d^{3}q \left(K_{A,r}^{(2)}(\vec{q}_{1}, \vec{k} - \vec{q})_{\text{sym}} \right)^{2} P_{11}(|\vec{k} - \vec{q}|) P_{11}(q) \\ &+ 6 \int d^{3}\vec{q} K_{A,r}^{(3)}(\vec{q}, -\vec{q}, \vec{k})_{\text{sym}} K_{A,r}^{(1)} P_{11}(q) P_{11}(k) \\ &+ 2 K_{A,r}^{(1)} P_{11}(k) (c_{\text{ct}}^{A} + c_{r,1}^{A} \mu^{2} + c_{r,2} \mu^{4}) k^{2} \\ &+ \frac{1}{\bar{n}_{A}} (c_{\varepsilon,1}^{A} + c_{\varepsilon,2}^{A} k^{2} + c_{\varepsilon,3}^{A} f \mu^{2} k^{2}) \end{split}$$

2 Biased multi-tracer in redshift space

Assuming the stochastic terms of the two tracers are uncorrelated with Gaussian initial conditions, we have:

$$\langle \delta_{A,r} \delta_{B,r} \rangle = \frac{1}{2} \left(\frac{1}{\bar{n}_A} + \frac{1}{\bar{n}_B} \right) \left(c_{\varepsilon,1}^{AB} + c_{\varepsilon,2}^{AB} \left(\frac{k}{k_M} \right)^2 + c_{\varepsilon,3}^{AB} f \mu^2 \left(\frac{k}{k_M} \right)^2 \right)$$
 (6)

2 Section 2

Therefore, we can write the cross power spectrum P_{AB} in this way:

$$\begin{split} \langle \delta_{A,r}(\vec{k}) \delta_{B,r}(\vec{k}) \rangle &= \left\langle \delta_{A,r}^{(1)}(\vec{k}) \delta_{A,r}^{(1)}(\vec{k}) \right\rangle + \left\langle \delta_{A,r}^{(2)}(\vec{k}) \delta_{A,r}^{(2)}(\vec{k}) \right\rangle + \left\langle \delta_{A,r}^{(1)}(\vec{k}) \delta_{B,r}^{(3)}(\vec{k}) \right\rangle + \left\langle \delta_{A,r}^{(2)}(\vec{k}) \delta_{B,r}^{(2)}(\vec{k}) \delta_{B$$

For more clear expression, we organize all of the parameters needed:

$$P_{AA} : \{b_{1}^{A}, b_{2}^{A}, b_{3}^{A}, b_{4}^{A}, c_{ct}^{A}, c_{r,1}^{A}, c_{r,2}, c_{\varepsilon,1}^{A}, c_{\varepsilon,2}^{A}, c_{\varepsilon,3}^{A}\}$$

$$P_{BB} : \{b_{1}^{B}, b_{2}^{B}, b_{3}^{B}, b_{4}^{B}, c_{ct}^{C}, c_{r,1}^{B}, c_{r,2}, c_{\varepsilon,1}^{B}, c_{\varepsilon,2}^{B}, c_{\varepsilon,3}^{B}\}$$

$$P_{AB} : \{b_{1}^{A}, b_{2}^{A}, b_{3}^{A}, b_{4}^{A}, b_{1}^{B}, b_{2}^{B}, b_{3}^{B}, b_{4}^{B}, c_{ct}^{A}, c_{ct}^{A}, c_{r,1}^{A}, c_{ct}^{B}, c_{r,1}^{A}, c_{r,2}, c_{\varepsilon,1}^{AB}, c_{\varepsilon,2}^{AB}, c_{\varepsilon,3}^{AB}\}$$

$$(8)$$