总复习

张晓平

武汉大学数学与统计学院

2017年12月26日

目录

1. 向量空间与线性变换

- ▶ 知识点
- ▶ 往年试题

2. 第五章 特征值问题

- ▶ 知识点
- ▶ 往年试题

3. 第六章 二次型

- ▶ 知识点
- ▶ 典型例题

- 1. 向量空间与线性变换
 - ▶ 知识点
 - ▶ 往年试题
- 2. 第五章 特征值问题
 - ▶ 知识点
 - ▶ 往年试题
- 3. 第六章 二次型
 - ▶ 知识点
 - ▶ 典型例题

- 1. 向量空间与线性变换
 - ▶ 知识点
 - ▶ 往年试题
- 2. 第五章 特征值问题
 - ▶ 知识点
 - ▶ 往年试题
- 3. 第六章 二次型
 - ▶ 知识点
 - ▶ 典型例题

基与坐标

定义 (\mathbb{R}^n 的基与向量关于基的坐标) 设有序向量组 $B=(\pmb{\beta}_1,\pmb{\beta}_2,\cdots,\pmb{\beta}_n)\subset\mathbb{R}^n$,如 果 B 线性无关,则 \mathbb{R}^n 中任一向量 α 均可由 B 线性表示,即

$$\boldsymbol{\alpha} = a_1 \boldsymbol{\beta}_1 + a_2 \boldsymbol{\beta}_2 + \dots + a_n \boldsymbol{\beta}_n,$$

称 B 为 \mathbb{R}^n 的一组基,有序数组 (a_1,a_2,\cdots,a_n) 是向量 $\pmb{\alpha}$ 在基 B 下的坐标,记作

$$\boldsymbol{\alpha}_B = (a_1, a_2, \dots, a_n) \quad \mathbf{g} \quad \boldsymbol{\alpha}_B = (a_1, a_2, \dots, a_n)^T$$

并称之为 α 的坐标向量。

$$\boldsymbol{\alpha} = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_n) \left(\begin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_n \end{array} \right)$$

定理 设 $B = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ 是 \mathbb{R}^n 的一组基,且

$$\begin{cases} \boldsymbol{\eta}_1 = a_{11}\boldsymbol{\alpha}_1 + a_{21}\boldsymbol{\alpha}_2 + \dots + a_{n1}\boldsymbol{\alpha}_n, \\ \boldsymbol{\eta}_2 = a_{12}\boldsymbol{\alpha}_1 + a_{22}\boldsymbol{\alpha}_2 + \dots + a_{n2}\boldsymbol{\alpha}_n, \\ \dots \\ \boldsymbol{\eta}_n = a_{1n}\boldsymbol{\alpha}_1 + a_{2n}\boldsymbol{\alpha}_2 + \dots + a_{nn}\boldsymbol{\alpha}_n. \end{cases}$$

则 $\eta_1, \eta_2, \cdots, \eta_n$ 线性无关的充要条件是

$$\det A = \left| \begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right| \neq 0.$$

设 \mathbb{R}^n 的两组基 $B_1 = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ 和 $B_2 = \{\eta_1, \eta_2, \dots, \eta_n\}$ 满足关系式

$$(\eta_1, \eta_2, \cdots, \eta_n) = (\alpha_1, \alpha_2, \cdots, \alpha_n) \left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right)$$

则矩阵

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

称为由旧基 B_1 到新基 B_2 的过渡矩阵。

定理 设 α 在两组基 $B_1 = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ 与 $B_2 = \{\eta_1, \eta_2, \dots, \eta_n\}$ 的坐标分别为

$$x = (x_1, x_2, \dots, x_n)^T$$
 $\pi \mathbf{1} \quad y = (y_1, y_2, \dots, y_n)^T$

基 B_1 到 B_2 的过渡矩阵为 A, 则

$$Ay = x$$
 或 $y = A^{-1}x$

基与坐标

列 已知 \mathbb{R}^3 的一组基为 $B_2 = \{ \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3 \}$,其中

$$\boldsymbol{\beta}_1 = (1,2,1)^T, \boldsymbol{\beta}_2 = (1,-1,0)^T, \boldsymbol{\beta}_3 = (1,0,-1)^T,$$

求自然基 B_1 到 B_2 的过渡矩阵。

基与坐标

例 已知 \mathbb{R}^3 的两组基为 $B_1 = \{\alpha_1, \alpha_2, \alpha_3\}$ 和 $B_2 = \{\beta_1, \beta_2, \beta_3\}$, 其中

$$\alpha_1 = (1,1,1)^T$$
, $\alpha_2 = (0,1,1)^T$, $\alpha_3 = (0,0,1)^T$,
 $\beta_1 = (1,0,1)^T$, $\beta_2 = (0,1,-1)^T$, $\beta_3 = (1,2,0)^T$.

- (1) 求基 B₁ 到 B₂ 的过渡矩阵。
- (2) 已知 α 在基 B_1 的坐标为 $(1,-2,-1)^T$,求 α 在基 B_2 下的坐标。

10/169 总复习 总复习

定义 (内积) 在 \mathbb{R}^n 中,对于 $\alpha = (a_1, a_2, \cdots, a_n)^T$ 和 $\beta = (b_1, b_2, \cdots, b_n)^T$,规定 α 和 β 的内积为

 $(\boldsymbol{\alpha},\boldsymbol{\beta})=a_1b_1+a_2b_2+\cdots+a_nb_n.$

$$(\boldsymbol{\alpha},\boldsymbol{\beta}) = \boldsymbol{\alpha}^T \boldsymbol{\beta} = \boldsymbol{\beta}^T \boldsymbol{\alpha}.$$

内积

性质 对于 $\alpha, \beta, \gamma \in \mathbb{R}^n$ 和 $k \in \mathbb{R}$,

(i)
$$(\alpha, \beta) = (\beta, \alpha)$$

(ii)
$$(\alpha + \beta, \gamma) = (\alpha, \gamma) + (\beta, \gamma)$$

(iii)
$$(k\boldsymbol{\alpha}, \boldsymbol{\beta}) = k(\boldsymbol{\alpha}, \boldsymbol{\beta})$$

(iv)
$$(\alpha, \alpha) \ge 0$$
, 等号成立当且仅当 $\alpha = 0$.

定义(向量长度) 向量 α 的长度定义为

$$\|\boldsymbol{\alpha}\| = \sqrt{(\boldsymbol{\alpha}, \boldsymbol{\alpha})}$$

总复习

定理 (柯西-施瓦茨 (Cauchy-Schwarz) 不等式)

$$|(\boldsymbol{\alpha}, \boldsymbol{\beta})| \leq ||\boldsymbol{\alpha}|| ||\boldsymbol{\beta}||$$

定义 (向量之间的夹角) 向量 α, β 之间的夹角定义为

$$<\alpha, \beta> = \arccos \frac{(\alpha, \beta)}{\|\alpha\| \|\beta\| \|}$$

定理

$$\boldsymbol{\alpha} \perp \boldsymbol{\beta} \iff (\boldsymbol{\alpha}, \boldsymbol{\beta}) = 0$$

定理 (三角不等式)

$$\|\boldsymbol{\alpha} + \boldsymbol{\beta}\| \le \|\boldsymbol{\alpha}\| + \|\boldsymbol{\beta}\|.$$

定理 \mathbb{R}^n 中两两正交且不含零向量的向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 是线性无关的。

定义 (标准正交基) 设 $\alpha_1, \alpha_2, \cdots, \alpha_n \in \mathbb{R}^n$, 若

$$(\boldsymbol{\alpha}_i, \boldsymbol{\alpha}_j) = \delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$
 $i, j = 1, 2, \dots, n.$

则称 $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ 是 \mathbb{R}^n 中的一组标准正交基。

标准正交基

例 设 $B = (\alpha_1, \alpha_2, \dots, \alpha_n)$ 是 \mathbb{R}^n 中的一组标准正交基,求 \mathbb{R}^n 中向量 β 在基 β 下的坐标。

解

$$\boldsymbol{\beta} = x_1 \boldsymbol{\alpha}_1 + x_2 \boldsymbol{\alpha}_2 + \dots + x_n \boldsymbol{\alpha}_n$$

$$\Longrightarrow (\boldsymbol{\beta}, \boldsymbol{\alpha}_j) = (x_1 \boldsymbol{\alpha}_1 + x_2 \boldsymbol{\alpha}_2 + \dots + x_n \boldsymbol{\alpha}_n, \boldsymbol{\alpha}_j) = x_j (\boldsymbol{\alpha}_j, \boldsymbol{\alpha}_j)$$

$$\Longrightarrow x_j = (\boldsymbol{\beta}, \boldsymbol{\alpha}_j)$$

目标

从线性无关的向量组 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 出发,构造标准正交向量组。

施密特正交化过程

给定 \mathbb{R}^n 中的线性无关组 $\alpha_1, \alpha_2, \cdots, \alpha_m$,

▶ 正交化

1

$$\beta_1 = \alpha_1$$

i

$$\boldsymbol{\beta}_2 = \boldsymbol{\alpha}_2 - \frac{(\boldsymbol{\alpha}_2, \boldsymbol{\beta}_1)}{(\boldsymbol{\beta}_1, \boldsymbol{\beta}_1)} \boldsymbol{\beta}_1$$

3.

$$\boldsymbol{\beta}_3 = \boldsymbol{\alpha}_3 - \frac{(\boldsymbol{\alpha}_3, \boldsymbol{\beta}_1)}{(\boldsymbol{\beta}_1, \boldsymbol{\beta}_1)} \boldsymbol{\beta}_1 - \frac{(\boldsymbol{\alpha}_3, \boldsymbol{\beta}_2)}{(\boldsymbol{\beta}_2, \boldsymbol{\beta}_2)} \boldsymbol{\beta}_2$$

4.

5.

$$\boldsymbol{\beta}_m = \boldsymbol{\alpha}_m - \frac{(\boldsymbol{\alpha}_m, \boldsymbol{\beta}_1)}{(\boldsymbol{\beta}_1, \boldsymbol{\beta}_1)} \boldsymbol{\beta}_1 - \frac{(\boldsymbol{\alpha}_m, \boldsymbol{\beta}_2)}{(\boldsymbol{\beta}_2, \boldsymbol{\beta}_2)} \boldsymbol{\beta}_2 - \dots - \frac{(\boldsymbol{\alpha}_m, \boldsymbol{\beta}_{m-1})}{(\boldsymbol{\beta}_{m-1}, \boldsymbol{\beta}_{m-1})} \boldsymbol{\beta}_{m-1}.$$

▶ 单位化

$$\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_m \xrightarrow{\boldsymbol{\eta}_j = \frac{\boldsymbol{\beta}_j}{\|\boldsymbol{\beta}_j\|}} \boldsymbol{\eta}_1, \boldsymbol{\eta}_2, \cdots, \boldsymbol{\eta}_m$$

施密特正交化过程

例 已知 $B = \{\alpha_1, \alpha_2, \alpha_3\}$ 是 \mathbb{R}^3 的一组基,其中

$$\boldsymbol{\alpha}_1 = (1, -1, 0)^T, \quad \boldsymbol{\alpha}_2 = (1, 0, 1)^T, \quad \boldsymbol{\alpha}_3 = (1, -1, 1)^T.$$

试用施密特正交化方法,由 B 构造 \mathbb{R}^3 的一组标准正交基。

解

$$\begin{aligned} \boldsymbol{\beta}_1 &= \boldsymbol{\alpha}_1 = (1, -1, 0)^T, \\ \boldsymbol{\beta}_2 &= \boldsymbol{\alpha}_2 - \frac{(\boldsymbol{\alpha}_2, \boldsymbol{\beta}_1)}{(\boldsymbol{\beta}_1, \boldsymbol{\beta}_1)} \boldsymbol{\beta}_1 \\ &= (1, 0, 1)^T - \frac{1}{2} (1, -1, 0)^T = \left(\frac{1}{2}, \frac{1}{2}, 1\right), \\ \boldsymbol{\beta}_3 &= \boldsymbol{\alpha}_3 - \frac{(\boldsymbol{\alpha}_3, \boldsymbol{\beta}_1)}{(\boldsymbol{\beta}_1, \boldsymbol{\beta}_1)} \boldsymbol{\beta}_1 - \frac{(\boldsymbol{\alpha}_3, \boldsymbol{\beta}_2)}{(\boldsymbol{\beta}_2, \boldsymbol{\beta}_2)} \boldsymbol{\beta}_2 \\ &= (1, -1, 1)^T - \frac{2}{3} \left(\frac{1}{2}, \frac{1}{2}, 1\right)^T - \frac{2}{2} (1, -1, 0)^T = \left(-\frac{1}{3}, -\frac{1}{3}, \frac{1}{3}\right). \end{aligned}$$

施密特正交化过程

解 (续)

$$\begin{split} & \pmb{\eta}_1 & = \frac{\pmb{\beta}_1}{\|\pmb{\beta}_1\|} = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right), \\ & \pmb{\eta}_2 & = \frac{\pmb{\beta}_2}{\|\pmb{\beta}_2\|} = \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right), \\ & \pmb{\eta}_3 & = \frac{\pmb{\beta}_3}{\|\pmb{\beta}_3\|} = \left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right). \end{split}$$

正交矩阵

定义 (正交矩阵) 设 $A \in \mathbb{R}^{n \times n}$, 如果

$$A^T A = I$$

则称 A 为正交矩阵。

定理

A为正交矩阵 \iff A的列向量组为一组标准正交基。

正交矩阵

定理 设 A, B 皆为 n 阶正交矩阵,则

- (1) |A| = 1 或 -1
- (2) $A^{-1} = A^T$
- (3) A^T 也是正交矩阵
- (4) AB 也是正交矩阵

定理 若列向量 $x,y \in \mathbb{R}^n$ 在 n 阶正交矩阵 A 的作用下变换为 $Ax,Ay \in \mathbb{R}^n$,则向量的内积、长度与向量间的夹角都保持不变。

线性空间的定义

定义 数域 F 上的线性空间 V 是一个非空集合,存在两种运算

- 加法 (α+β)
- 数乘 (λ ∈ α)

其中 α , β ∈ V, λ ∈ F, 且 V 对两种运算封闭, 并满足以下 8 条性质:

- 1. $\alpha + \beta = \beta + \alpha$
- 2. $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$
- 3. 存在 $0 \in V$ 使得 $\alpha + 0 = \alpha$, 其中 0 称为 V 的零元素
- 4. 存在 $-\alpha \in V$, 使得 $\alpha + (-\alpha) = 0$, 其中 $-\alpha$ 称为 α 的负元素
- 5. $1\alpha = \alpha$
- 6. $k(l\alpha) = (kl)\alpha$
- 7. $(k+l)\alpha = k\alpha + l\alpha$
- 8. $k(\alpha + \beta) = k\alpha + l\alpha$

其中 $\alpha, \beta, \gamma \in V, k, l \in F$ 。

线性空间的定义

例

- ▶ 数域 F 上的全体多项式 $\frac{F(x)}{F(x)}$,对通常的多项式加法和数乘多项式的运算构成数域 F 上的线性空间,其中
- ▶ 如果只考虑次数小于 n 的实系数多项式,则它们连同零多项式一起构成实数域 R 上的线性空间,记为 $\mathbb{R}[x]_n$ 。

例 对矩阵的加法和数乘运算构成实数域上的线性空间,记为 $\mathbb{R}^{m \times n}$ 。

线性空间的定义

例 对于[a,b]上的全体实连续函数,加法与数乘运算构成实数域上的线性空间,记为C[a,b]。

对于(a,b) 上全体 k 阶导数连续的实函数,对同样的加法和数乘运算也构成实线性空间,记为 $C^k(a,b)$ 。

25/169 总复习 △ ▽

线性空间的性质

性质 线性空间的零元素是唯一的。

性质 线性空间中任一元素 α 的负元素是唯一的。

性质 若 α , $\beta \in V$; k, $l \in F$, 则

$$k(\alpha - \beta) = k\alpha - l\beta$$
, $(k-l)\alpha = k\alpha - l\alpha$.

性质

- k0 = 0
- $k(-\beta) = -(k\beta)$
- $0\alpha = 0$
- $(-l)\alpha = -(l\alpha).$

性质 设 $\alpha \in V, k \in F$, 若 $k\alpha = 0$, 则 k = 0 或 $\alpha = 0$.

定义 (线性子空间) 设 V(F) 是一个线性空间, W 是 V 的一个非空子集合。如果 W 对 V(F) 中定义的线性运算也构成数域 F 上的一个线性空间,则称 W 为 V(F) 上的一个线性子空间(简称子空间)。

定理 线性空间 V(F) 的非空子集合 W 为 V 的子空间的充分必要条件是 W 对于 V 的两种运算封闭。

27/169 总复习 🛆 🗅

例 在线性空间 V 中,

- ▶ 由单个的零向量组成的子集合 $\{0\}$ 是 V 的一个子空间,称为零子空间;
- ▶ V 本身也是 V 的一个子空间,

这两个子空间都称为 V 的平凡子空间,而 V 的其他子空间称为非平凡子空间。

例 设 $A \in F^{m \times n}$, 则 Ax = 0 的解集合

$$S = \{x \mid Ax = 0\}$$

是 F^n 的一个子空间,称为齐次线性方程组的解空间 (也称矩阵 A 的零空间,记作 $\mathcal{N}(A)$)。

注: 非齐次线性方程组 Ax = b 的解集合不是 F^n 的子空间。

29/169 总复习 Δ ∇

例 全体 n 阶实数量矩阵、实对角矩阵、实对称矩阵、实上(下)三角矩阵分别组成的集合,都是 $\mathbb{R}^{n \times n}$ 的子空间。

例 设 \mathbb{R}^3 的子集合

$$V_1 = \{(x_1, 0, 0) \mid x_1 \in \mathbb{R}\}, V_2 = \{(1, 0, x_3) \mid x_3 \in \mathbb{R}\},\$$

则 V_1 是 \mathbb{R}^3 的子空间, V_2 不是 \mathbb{R}^3 的子空间。

注: 在 ℝ³ 中.

- 凡是过原点的平面或直线上的全体向量组成的子集合都是 ℝ³ 的子空间;
- ▶ 凡是不过原点的平面或直线上的全体向量组成的子集合都不是 R³ 的子空间。

总复习 Δ∇

定理 设 V 是数域 F 上的线性空间, S 是 V 的一个非空子集合, 则 S 中的一切向量组的所有线性组合组成的集合

$$W = \{k_1 \boldsymbol{\alpha}_1 + \dots + k_m \boldsymbol{\alpha}_m \mid \boldsymbol{\alpha}_i \in S, k_i \in F, i = 1, \dots, m\}$$

是 V 中包含 S 的最小的子空间。

这里, W 称为由 V 的非空子集 S 生成的子空间。

特别地, 当 S 为有限子集 $\{\alpha_1, \dots, \alpha_m\}$ 时, 记

$$W = L(\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m)$$
 $\vec{\mathbf{g}}W = span\{\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m\}$

为由向量组 $\alpha_1, \cdots, \alpha_m$ 生成的子空间。

例

- ▶ Ax = 0 的解空间是由它的基础解系生成的子空间;
- ightharpoons 中任一个过原点的平面上的全体向量所构成的子空间,是由该平面上任意两个线性无关的向量生成的子空间。

33/169 总复习 🛆 🗸

设 W_1, W_2 是数域 F 上的线性空间 V 上的两个子空间,且 定理

$$W_1 = L(\boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_s), \ W_2 = L(\boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_t),$$

则
$$W_1 = W_2$$
 的充分必要条件是两个向量组 $\alpha_1, \dots, \alpha_s$ 和 β_1, \dots, β_t 等价。

34/169 总复习 $\Delta \nabla$

定义 设 W_1, W_2 是线性空间 V 的两个子空间,则 V 的子集合

$$W_1 \cap W_2 = \{ \boldsymbol{\alpha} \mid \boldsymbol{\alpha} \in W_1 \ \underline{\mathbf{H}} \, \boldsymbol{\alpha} \in W_2 \},$$

 $W_1 + W_2 = \{ \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 \mid \boldsymbol{\alpha}_1 \in W_1, \ \boldsymbol{\alpha}_2 \in W_2 \}$

分别称为两个子空间的交与和。

如果 $W_1 \cap W_2 = \{0\}$, 则称 $W_1 + W_2$ 为直和, 记为 $W_1 \oplus W_2$ 。

定理 线性空间 V(F) 的两个子空间 W_1, W_2 的交与和仍是 V 的子空间。

总复习 $\Delta \nabla$

定义 矩阵 A 的列(行)向量组生成的子空间,称为矩阵 A 的列(行)空间,记为 $\mathcal{R}(A)$ $(\mathcal{R}(A^T))$ 。

若 $A \in \mathbb{R}^{m \times n}$, 则

▶ A 的列向量组为

$$\boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_n \in \mathbb{R}^m$$

▶ A 的行向量组为

$$\boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_m \in \mathbb{R}^n$$

于是

- ► $\mathcal{R}(A) = L(\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_n)$ 是 \mathbb{R}^m 的一个子空间;
- $\mathcal{R}(A^T) = L(\boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_m)$ 是 \mathbb{R}^n 的一个子空间。

非齐次线性方程组 Ax = b 有解

- ⇔ b 是 A 的列向量组的线性组合
- ⇔ b 属于 A 的列空间, 即 $b \in \mathcal{R}(A)$

定义 设 $\alpha \in \mathbb{R}^n$, $W \in \mathbb{R}^n$ 的一个子空间。如果对于任意的 $\gamma \in W$, 均有 $(\alpha, \gamma) = \mathbf{0}$,

则称 α 与子空间 W 正交, 记作 $\alpha \perp W$ 。

定义 设 V 和 W 是 \mathbb{R}^n 的两个子空间。如果对于任意的 $\alpha \in V, \beta \in W$,均有

$$(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \mathbf{0},$$

则称 V 与 W 正交, 记作 $V \perp W$ 。

线性子空间

例 对于齐次线性方程组 Ax = 0, 其每个解向量与系数矩阵 A 的每个行向量都正变,故解空间与 A 的行空间是正交的,即

$$\mathcal{N}(\mathbf{A}) \perp \mathcal{R}(\mathbf{A}^T).$$

定理 \mathbb{R}^n 中与子空间 V 正交的全部向量所构成的集合

$$W = \{ \boldsymbol{\alpha} \mid \boldsymbol{\alpha} \perp V, \ \boldsymbol{\alpha} \in \mathbb{R}^n \}$$

是 \mathbb{R}^n 的一个子空间。

线性子空间

定义 \mathbb{R}^{n} 中与子空间 V 正交的全体向量构成的子空间 W, 称为 V 的正交补, 记为 $W=V^{\perp}$ 。

例 Ax = 0 的解空间 $\mathcal{N}(A)$ 由与 A 的行向量都正交的全部向量构成. 故 $\mathcal{N}(A) = \mathcal{R}(A^T)^{\perp}.$

这是 Ax = 0 的解空间的一个基本性质。

在一般的线性空间 V(F) 中讨论元素(或称向量)的线性相关性、基、维数以及坐标。

42/169 总复习 Δ ∇

例 证明: 线性空间 $\mathbb{R}[x]_n$ 中元素 $f_0 = 1, f_1 = x, f_2 = x^2, \dots, f_{n-1} = x^{n-1}$ 是线性无关。

例 证明: 线性空间 $\mathbb{R}^{2\times 2}$ 中的元素

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $A_3 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, $A_4 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

是线性无关的。

43/169 总复习 Δ V

显然,在 $\mathbb{R}^{2\times2}$ 中,矩阵

$$\boldsymbol{E}_{11} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \boldsymbol{E}_{12} = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \boldsymbol{E}_{21} = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \boldsymbol{E}_{22} = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right)$$

是也线性无关的,且 $\mathbb{R}^{2\times 2}$ 中任一矩阵

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a\mathbf{E}_{11} + b\mathbf{E}_{12} + c\mathbf{E}_{21} + d\mathbf{E}_{22}.$$

在 $\mathbb{R}^{2\times 2}$ 中任意 5 个元素 (二阶矩阵)A,B,C,D,Q 是线性相关的,若 A,B,C,D 线 性无关,则Q可由A,B,C,D线性表出,且表示法唯一。

由此可以发现 $\mathbb{R}^{2\times 2}$ 的这些属性与 \mathbb{R}^4 是类似的,我们可以把线性空间的这些属性 抽象为基、维数与坐标的概念。

总复习

定义 如果线性空间 V(F) 中存在线性无关的向量组 $B = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$,且任一 $\alpha \in V$ 都可以由 B 线性表示为

$$\boldsymbol{\alpha} = x_1 \, \boldsymbol{\alpha}_1 + x_2 \, \boldsymbol{\alpha}_2 + \cdots + x_n \, \boldsymbol{\alpha}_n,$$

则称

- ▶ $V \neq n$ 维线性空间 (或者说V 的维数为 n, 记作 dimV = n);
- ▶ B 是 V 的一个基;
- ▶ 有序数组 (x₁,x₂,···,x_n) 为 α 关于基 B 的坐标 (向量), 记作

$$\boldsymbol{\alpha}_B = (x_1, x_2, \cdots, x_n)^T \in F^n.$$

在 n 维线性空间 V 中,

- ▶ 任意 n+1 个元素 $\beta_1, \beta_2, \dots, \beta_{n+1}$ 都可以由 V 的一个基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性 表示.
- ▶ n 维线性空间中任意 n+1 个元素都是线性相关的。

故 n 维线性空间 V 中,任何 n 个线性无关的向量都是 V 的一组基。

例

- ▶ $F[x]_n$ 是 n 维线性空间. $\{1, x, x^2, \dots, x^{n-1}\}$ 是它的一组基;
- ▶ $\mathbb{R}^{2\times 2}$ 是 4 维线性空间, $E_{11}, E_{12}, E_{21}, E_{22}$ 是它的一组基;
- ▶ $F^{m \times n}$ 是 $m \times n$ 维线性空间, $\{E_{ij}\}_{i=1,\dots,m;j=1,\dots,n}$ 是它的一组基。

总复习

在线性空间 V 中,dim $L(\alpha_1, \alpha_2, \dots, \alpha_s) = r(\alpha_1, \alpha_2, \dots, \alpha_s)$,向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 的极大线性无关组是 $L(\alpha_1, \alpha_2, \dots, \alpha_s)$ 的基。

例 矩阵 A 的列空间 $\mathcal{R}(A)$ 和行空间 $\mathcal{R}(A^T)$ 的维数都等于 A 的秩。V 的零子空间 $\{0\}$ 的维数为零。

 Ax=0 的基础解系是其解空间 $\mathcal{N}(A)$ 的基,如果 A 是 $m \times n$ 矩阵, $\mathbf{r}(A)=r$,则解空间 $\mathcal{N}(A)$ 的维数为 n-r,所以

dim
$$(\mathcal{R}(\mathbf{A}^T))$$
 + dim $(\mathcal{N}(\mathbf{A})) = n$.

48/169 总复习 Δ ∇

定理 设 V 是 n 维线性空间, W 是 V 的 m 维子空间, 且 $B_1 = \{\alpha_1, \alpha_2, \dots, \alpha_m\}$ 是 W 中的一组基, 则 B_1 可以扩充为 V 的基, 即在 B_1 的基础上可以添加 n-m 个向量而成为 V 的一组基.

定理 (子空间的维数公式) 设 W_1, W_2 是线性空间 V(F) 的子空间,则 dim W_1 + dim W_2 = dim $(W_1 + W_2)$ + dim $(W_1 \cap W_2)$.

49/169 总复习 △ ▽

n 维线性空间 V(F) 中向量在基 B 下的坐标,与 F^n 中向量关于基 B 的坐标是完全类似的,主要有以下几个结论:

- ▶ 向量在给定基下的坐标是唯一的;
- ▶ 由基 B₁ 到基 B₂ 的过渡矩阵是可逆的;
- ▶ 基变换与坐标变换的公式

在这里都是适用的。

给定 V(F) 中的一组基 $B=\{m{eta}_1,m{eta}_2,\cdots,m{eta}_n\},\ V(F)$ 中的向量及其坐标(F^n 中的向量)不仅是——对应的,而且这种对应保持线性运算关系不变,即

$$V(F)$$
 中 $\alpha + \gamma$ 对应于 F^n 中 $\alpha_B + \gamma_B$
 $V(F)$ 中 $\lambda \alpha$ 对应于 F^n 中 $\lambda \alpha_B$

事实上,若
$$\alpha = x_1 \boldsymbol{\beta}_1 + x_2 \boldsymbol{\beta}_2 + \dots + x_n \boldsymbol{\beta}_n, \boldsymbol{\gamma} = y_1 \boldsymbol{\beta}_1 + y_2 \boldsymbol{\beta}_2 + \dots + y_n \boldsymbol{\beta}_n, \lambda \in F$$
,则有
$$(\boldsymbol{\alpha} + \boldsymbol{\beta}) = (x_1 + y_1) \boldsymbol{\beta}_1 + (x_2 + y_2) \boldsymbol{\beta}_2 + \dots + (x_n + y_n) \boldsymbol{\beta}_n,$$

$$\lambda \boldsymbol{\alpha} = (\lambda x_1) \boldsymbol{\beta}_1 + (\lambda x_2) \boldsymbol{\beta}_2 + \dots + (\lambda x_n) \boldsymbol{\beta}_n$$

故

$$(\boldsymbol{\alpha} + \boldsymbol{\beta})_B = \boldsymbol{\alpha}_B + \boldsymbol{\beta}_B, \quad (\lambda \boldsymbol{\alpha})_B = \lambda \boldsymbol{\alpha}_B.$$

51/169 总复习 **△ ¹**

具有上述对应关系的两个线性空间 V(F) 和 F^n , 称它们是同构的。

也就是说,研究任何 n 维线性空间 V(F),都可以通过基和坐标,转化为研究 n 维向量空间 F^n 。

这样,我们对不同的 n 维线性空间就有了统一的研究方法,统一到研究 F^n 。

因此,通常把线性空间也成为向量空间,线性空间中的元素也称为向量。

52/169 总复习 △ ▽

例 证明: $B = \{1, x, \dots, x^{n-1}\}$ 是 $\mathbb{R}[x]_n$ 的一组基,并求

$$p(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$$

在基B下的坐标。

证明. 前面我们已经证明 B 是线性无关的,且 $\forall p(x) \in \mathbb{R}[x]_n$ 均可表示成

$$p(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1},$$

故 $B \in \mathbb{R}[x]_n$ 的一组基(自然基),因此 $\mathbb{R}[x]_n$ 是 n 维实线性空间。p(x) 在基 B 下的坐标为

$$(p(x))_B = (a_0, a_1, \cdots, a_{n-1})^T.$$

$$p(x) = (1, x, \cdots, x^{n-1}) \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{pmatrix}.$$

例 设
$$B_1 = (g_1, g_2, g_3), B_2 = (h_1, h_2, h_3),$$
 其中

$$\left\{ \begin{array}{l} g_1 = 1, \\ g_2 = -1 + x, \\ g_3 = 1 - x + x^2, \end{array} \right. , \quad \left\{ \begin{array}{l} h_1 = 1 - x - x^2, \\ h_2 = 3x - 2x^2, \\ h_3 = 1 - 2x^2, \end{array} \right.$$

- 1. 证明 B₁,B₂ 是 ℝ[x]₃ 的基
- 2. 求 B₁ 到 B₂ 的过渡矩阵
- 3. 已知 $[p(x)]_{B_1} = (1,4,3)^T$,求 $[p(x)]_{B_2}$.

定义 (线性变换) 设 V(F) 是一个向量空间,若 V(F) 的一个变换 σ 满足条件: $\forall \alpha, \beta \in V$ 和 $\lambda \in F$,

1.
$$\sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta)$$

2.
$$\sigma(\lambda \alpha) = \lambda \sigma(\alpha)$$

就称 σ 是 V(F) 的一个线性变换, 并称 $\sigma(\alpha)$ 为 α 的象, α 为 $\sigma(\alpha)$ 的原象。

线性运算等价于: $\forall \alpha, \beta \in V$ 和 $\lambda, \mu \in F$, 有

$$\sigma(\lambda \alpha + \mu \beta) = \lambda \sigma(\alpha) + \mu \sigma(\beta).$$

55/169 总复习 △ ▽

线性变换的定义

例 (旋转变换) \mathbb{R}^2 中每个向量绕原点按逆时针方向旋转 θ 角的变换 R_{θ} 是 \mathbb{R}^2 的一个线性变换。

例 (镜像变换) \mathbb{R}^2 中每个向量关于过原点的直线 L (看做镜面) 相对称的变换 ϕ 也是 \mathbb{R}^2 的一个线性变换,即

$$\phi(\alpha) = \alpha'$$
.

例 (投影变换) 把 \mathbb{R}^3 中向量 $\alpha = (x_1, x_2, x_3)$ 投影到 xOy 平面上的向量 $\beta = (x_1, x_2, 0)$ 的投影变换 $P(\alpha) = \beta$, 即

$$P(x_1, x_2, x_3) = (x_1, x_2, 0)$$

是 \mathbb{R}^2 的一个线性变换。

例 (恒等变换、零变换、数乘变换)

- ▶ 恒等变换 $\sigma(\alpha) = \alpha$, $\forall \alpha \in \mathbb{R}^n$
- ▶ 零变换 $\sigma(\alpha) = 0$, $\forall \alpha \in \mathbb{R}^n$
- ▶ 数乘变换 $\sigma(\alpha) = \lambda \alpha$, $\forall \alpha \in \mathbb{R}^n$

例 \mathbb{R}^3 中定义变换

$$\boldsymbol{\sigma}(x_1,x_2,x_3) = (x_1+x_2,x_2-4x_3,2x_3),$$

则 σ 是 \mathbb{R}^3 的一个线性变换。

例 ℝ3 中定义变换

$$\boldsymbol{\sigma}(x_1, x_2, x_3) = (x_1^2, x_2 + x_3, x_2),$$

则 σ 不是 \mathbb{R}^3 的一个线性变换。

对于 \mathbb{R}^n 的变换

$$\boldsymbol{\sigma}(x_1,x_2,\cdots,x_n)=(y_1,y_2,\cdots,y_n)$$

- ▶ 当 y_i 都是 x_1, x_2, \dots, x_n 的线性组合时, σ 是 \mathbb{R}^n 的线性变换。
- ▶ 当 y_i 有一个不是 x_1, x_2, \dots, x_n 的线性组合时, σ 不是 \mathbb{R}^n 的线性变换。

58/169 总复习 △ ▽

对于数域 F 上的向量空间 V 中的线性变换 σ

- ► 若 $\alpha = k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_n \alpha_n$, $k_i \in F$, $\alpha_i \in V$, 则

$$\sigma(\boldsymbol{\alpha}) = k_1 \sigma(\boldsymbol{\alpha}_1) + k_2 \sigma(\boldsymbol{\alpha}_2) + \cdots + k_n \sigma(\boldsymbol{\alpha}_n).$$

▶ 若 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性相关,则其象向量组 $\sigma(\alpha_1), \sigma(\alpha_n), \dots, \sigma(\alpha_n)$ 也线性相 关。

注 1 但 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关,不能推导出 $\sigma(\alpha_1), \sigma(\alpha_n), \dots, \sigma(\alpha_n)$ 也线性无 关。

总复习 $\Delta \nabla$ 定理 设 $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$ 是 V(F) 的一组基,若 V(F) 的两个线性变换 σ 和 τ 关于这组基的象相同,即

$$\sigma(\alpha_i) = \tau(\alpha_i), \quad i = 1, 2, \dots, n,$$

则 $\sigma = \tau$.

因 $\sigma(\alpha_i) \in V(F)$, 故它们可由 V(F) 的基 $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ 线性表出, 即有

$$\begin{cases}
\boldsymbol{\sigma}(\boldsymbol{\alpha}_1) = a_{11}\boldsymbol{\alpha}_1 + a_{21}\boldsymbol{\alpha}_{12} + \dots + a_{n1}\boldsymbol{\alpha}_n, \\
\boldsymbol{\sigma}(\boldsymbol{\alpha}_1) = a_{12}\boldsymbol{\alpha}_1 + a_{22}\boldsymbol{\alpha}_{22} + \dots + a_{n2}\boldsymbol{\alpha}_n, \\
\dots \\
\boldsymbol{\sigma}(\boldsymbol{\alpha}_1) = a_{1n}\boldsymbol{\alpha}_1 + a_{2n}\boldsymbol{\alpha}_{22} + \dots + a_{nn}\boldsymbol{\alpha}_n.
\end{cases}$$

记

$$\sigma(\alpha_1, \alpha_2, \cdots, \alpha_n) = (\sigma(\alpha_1), \sigma(\alpha_2), \cdots, \sigma(\alpha_n))$$

其矩阵形式为

$$\sigma(\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}) = (\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}) \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}.$$
(1)

61/169 总复习 △ ▽

定义 若 V(F) 中的线性变换 σ , 使得 V(F) 的基 $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ 和 σ 关于基的 象 $\sigma(\alpha_1), \sigma(\alpha_2), \dots, \sigma(\alpha_n)$ 满足

$$\boldsymbol{\sigma}(\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}) = (\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}) \left[\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right],$$

就称 $A \in \sigma$ 在基 $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ 下对应的矩阵。

定理 设 V(F) 中,

- ▶ 线性变换 σ 在基 $\{\alpha_1, \dots, \alpha_n\}$ 下的矩阵为 A,
- ▶ 向量 α 在基下的坐标向量为 $\mathbf{x} = (x_1, \dots, x_n)^T$,
- $\sigma(\alpha)$ 在基下的坐标向量为 $\mathbf{v} = (v_1, \dots, v_n)^T$,

则

$$y = Ax$$
.

例 旋转变换 \mathbf{R}_{θ} 在 \mathbb{R}^2 的标准正交基 $\mathbf{e}_1 = (1,0)^T$ 和 $\mathbf{e}_2 = (0,1)^T$ 的矩阵为

$$\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$
.

例 镜像变换 φ 在 \mathbb{R}^2 的标准正交基 $\{\omega, \eta\}$ 下所对应的矩阵为

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
.

例 \mathbb{R}^n 的恒等变换、零变换和数乘变换在任何基下的矩阵分别都是 $I_n, \mathbf{0}_n, \lambda I_n$ 。

64/169 总复习

例 设 σ 是 \mathbb{R}^3 的一个线性变换, $B = \{\alpha_1, \alpha_2, \alpha_3\}$ 是 \mathbb{R}^3 的一组基,已知

$$\alpha_1 = (1,0,0)^T$$
, $\alpha_2 = (1,1,0)^T$, $\alpha_3 = (1,1,1)^T$, $\sigma(\alpha_1) = (1,-1,0)^T$, $\sigma(\alpha_2) = (-1,1,-1)^T$, $\sigma(\alpha_3) = (1,-1,2)^T$.

- 1. 求 σ 在基 B 下对应的矩阵;
- 2. $\dot{\mathbf{x}}$ $\boldsymbol{\sigma}^2(\boldsymbol{\alpha}_1), \boldsymbol{\sigma}^2(\boldsymbol{\alpha}_2), \boldsymbol{\sigma}^2(\boldsymbol{\alpha}_3);$
- 3. 已知 $\sigma(\beta)$ 在基 B 下的坐标为 $(2,1,-2)^T$,问 $\sigma(\beta)$ 的原象 β 是否唯一?并求 β 在基 B 下的坐标。

总复习 65/169

解 1. 由 $\sigma(\alpha_1, \sigma_2, \sigma_3) = (\alpha_1, \sigma_2, \sigma_3)A$ 可知

$$\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 0 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} A$$

可求得

$$\mathbf{A} = \left(\begin{array}{rrr} 2 & -2 & 2 \\ -1 & 2 & -3 \\ 0 & 1 & 2 \end{array} \right)$$

解 2. 由

$$\boldsymbol{\sigma}(\boldsymbol{\alpha}_1,\boldsymbol{\sigma}_2,\boldsymbol{\sigma}_3)=(\boldsymbol{\sigma}(\boldsymbol{\alpha}_1),\boldsymbol{\sigma}(\boldsymbol{\sigma}_2),\boldsymbol{\sigma}(\boldsymbol{\sigma}_3))=(\boldsymbol{\alpha}_1,\boldsymbol{\sigma}_2,\boldsymbol{\sigma}_3)\boldsymbol{A}$$

可知

$$\begin{split} \boldsymbol{\sigma}(\boldsymbol{\sigma}(\boldsymbol{\alpha}_1), \boldsymbol{\sigma}(\boldsymbol{\sigma}_2), \boldsymbol{\sigma}(\boldsymbol{\sigma}_3)) &= \boldsymbol{\sigma}((\boldsymbol{\alpha}_1, \boldsymbol{\sigma}_2, \boldsymbol{\sigma}_3) A) \\ &= (\boldsymbol{\sigma}(\boldsymbol{\alpha}_1, \boldsymbol{\sigma}_2, \boldsymbol{\sigma}_3)) A = (\boldsymbol{\alpha}_1, \boldsymbol{\sigma}_2, \boldsymbol{\sigma}_3) A^2 \\ &= (\boldsymbol{\alpha}_1, \boldsymbol{\sigma}_2, \boldsymbol{\sigma}_3) \begin{pmatrix} 6 & -10 & 14 \\ -4 & 9 & -14 \\ 1 & -4 & 7 \end{pmatrix} \end{split}$$

解 3. 设 $(\boldsymbol{\beta})_B = (x_1, x_2, x_3)^T$,则

$$\begin{pmatrix} 2 & -2 & 2 \\ -1 & 2 & -3 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$$

解得

$$(x_1, x_2, x_3) = (3, 2, 0) + k(1, 2, 1), k \in \mathbb{R}$$

故 $\sigma(\beta)$ 的原象 β 不唯一。

定理 设线性变换 σ 在基 $B_1 = \{\alpha_1, \dots, \alpha_n\}$ 和基 $B_2 = \{\beta_1, \dots, \beta_n\}$ 下的矩阵分别 为 A 和 B, 且 B_1 到 B_2 的过渡矩阵为 C, 则

$$\boldsymbol{B} = \boldsymbol{C}^{-1} \boldsymbol{A} \boldsymbol{C}.$$

设 \mathbb{R}^3 的线性变换 σ 在自然基 $\{e_1, e_2, e_3\}$ 下的矩阵为

$$\mathbf{A} = \left(\begin{array}{rrr} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array} \right)$$

1. 求 σ 在基 { $\beta_1, \beta_2, \beta_3$ } 下的矩阵, 其中

$$\boldsymbol{\beta}_1 = (1,1,1)^T$$
, $\boldsymbol{\beta}_2 = (-1,1,0)^T$, $\boldsymbol{\beta}_3 = (-1,0,1)^T$.

2. $\boldsymbol{\alpha} = (1,2,3)^T$,求 $\boldsymbol{\sigma}$ 在基 { $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3$ } 下的坐标向量 $(y_1, y_2, y_3)^T$ 及 $\boldsymbol{\sigma}(\boldsymbol{\alpha})$.

总复习

解 1.由

$$(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)\boldsymbol{C}$$

知

$$\boldsymbol{C} = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) = \left(\begin{array}{ccc} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right), \quad \boldsymbol{C}^{-1} = \frac{1}{3} \left(\begin{array}{ccc} 1 & 1 & 1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array} \right)$$

于是 σ 在基 $\{\beta_1, \beta_2, \beta_3\}$ 下的矩阵为

$$\mathbf{B} = \mathbf{C}^{-1} \mathbf{A} \mathbf{C} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{array} \right).$$

解 2. α 在自然基下的坐标向量为其本身,即 $(1,2,3)^T$,因此,由坐标变换公式得

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{C}^{-1} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$

 σ 在基 { β_1 , β_2 , β_3 } 下的坐标向量为

$$\left(\begin{array}{c} y_1 \\ y_2 \\ y_3 \end{array}\right) = \boldsymbol{B} \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 3 \end{array}\right).$$

72/169 总复习 △ ▽

由

$$\boldsymbol{\sigma}(\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_n) = (\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_n) \left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right) := (\boldsymbol{\beta}_1,\cdots,\boldsymbol{\beta}_n)$$

知、给定 \mathbb{R}^n 中的一组基 $\{\alpha_1,\cdots,\alpha_n\}$ 、 \mathbb{R}^n 中任一向量组 β_1,\cdots,β_n 就等价于任给上式中的一个矩阵 A。

反过来,任给 n 个向量 $m{\beta}_1,\cdots,m{\beta}_n$,是否存在唯一的一个线性变换 $m{\sigma}$,使得 $m{\sigma}(m{\alpha}_j)=m{\beta}_j$?

73/169 总复习 △ マ

线性变换的矩阵表示

定理 设 $\{\alpha_1, \dots, \alpha_n\}$ 是 \mathbb{R}^n 的一组基, β_1, \dots, β_n 是在 \mathbb{R}^n 中任意给定的 n 个向量,则一定存在唯一的线性变换 σ ,使得

$$\sigma(\alpha_j) = \beta_j, \quad j = 1, \dots, n.$$

线性变换的矩阵表示

综上所述,可得重要结论:

给定 \mathbb{R}^n 的一组基后, \mathbb{R}^n 中的线性变换与 $\mathbb{R}^{n \times n}$ 中的矩阵——对应。

定义 设 σ 与 τ 是线性空间 V(F) 的两个线性变换, $\lambda \in F$, 定义

$$\begin{split} (\boldsymbol{\sigma} + \boldsymbol{\tau})(\boldsymbol{\alpha}) &&= \boldsymbol{\sigma}(\boldsymbol{\alpha}) + \boldsymbol{\tau}(\boldsymbol{\alpha}), \\ (\lambda \boldsymbol{\sigma})(\boldsymbol{\alpha}) &&= \lambda \boldsymbol{\sigma}(\boldsymbol{\alpha}), \\ (\boldsymbol{\sigma} \boldsymbol{\tau})(\boldsymbol{\alpha}) &&= \boldsymbol{\sigma}(\boldsymbol{\tau}(\boldsymbol{\alpha})) \end{split}$$

上述定义的 $\sigma + \tau$, $\lambda \sigma$, $\sigma \tau$ 仍是 V(F) 的线性变换。

线性变换的运算

定理 设线性空间 V(F) 的线性变换 σ 与 τ 在 V 的基 $\{\alpha_1, \dots, \alpha_n\}$ 下对应的矩阵 分别为 A 和 B, 则 $\sigma + \tau$, $\lambda \sigma$ 和 $\sigma \tau$ 在该组基下对应的矩阵分别为 A + B, λA 和 AB。

定义 如果线性变换 σ 对应的矩阵 A 为可逆矩阵,则称 σ 是<mark>可逆的线性变换</mark>。 σ 可逆也可定义为:如果存在线性变换 τ 使得

$$\sigma \tau = \tau \sigma = I$$

则称 σ 为可逆的线性变换。

线性变换的象(值域)与核

定义 设 σ 是线性空间 V(F) 的一个线性变换,

▶ 把 V 中所有元素在 σ 下的象所组成的集合

$$\sigma(V) = {\boldsymbol{\beta} | \boldsymbol{\beta} = \sigma(\boldsymbol{\alpha}), \boldsymbol{\alpha} \in V}$$

称为 σ 的象或值域, 记为 Im σ ;

▶ V 的零元 0 在 σ 下的完全原象

$$\sigma^{-1}(\mathbf{0}) = {\boldsymbol{\alpha} | \boldsymbol{\sigma}(\boldsymbol{\alpha}) = \mathbf{0}, \quad \boldsymbol{\alpha} \in V}$$

称为 σ 的核, 记为 Ker σ 。

线性变换的象(值域)与核

- (1) $\sigma(V)$ (或 Im σ) 是线性空间 V(F) 的一个子空间;
- (2) $\sigma^{-1}(\mathbf{0})$ (或 Ker σ) 也是线性空间 V(F) 的一个子空间;
- (3) 线性变换 σ 是单射的充分必要条件是 $\sigma^{-1}(0) = \{0\}$ 。

- dim σ(V) 称为 σ 的秩, 记作 r(σ);
- ▶ dim $\sigma^{-1}(\mathbf{0})$ 称为 σ 的零度,记作 $\mathcal{N}(\sigma)$ 。

定理 设线性空间 V(F) 的维数为 n, σ 是 V(F) 的一个线性变换,则 $\dim \sigma(V) + \dim \sigma^{-1}(\mathbf{0}) = n.$

$$\dim \, \boldsymbol{\sigma}(V) = \mathrm{r}(\boldsymbol{A}).$$

dim
$$\sigma^{-1}(\mathbf{0}) = \dim \mathcal{N}(\mathbf{A}).$$

- 1. 向量空间与线性变换
 - ▶ 知识点
 - ▶ 往年试题
- 2. 第五章 特征值问题
 - ▶ 知识点
 - ▶ 往年试题
- 3. 第六章 二次型
 - ▶ 知识点
 - ▶ 典型例题

例 (13-14 上) 在 \mathbb{R}^4 中,已知

$$\boldsymbol{\alpha}_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \boldsymbol{\alpha}_{2} = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \end{pmatrix}, \boldsymbol{\alpha}_{3} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \boldsymbol{\alpha}_{4} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix};$$
$$\boldsymbol{\beta}_{1} = \begin{pmatrix} 1 \\ -1 \\ a \\ 1 \end{pmatrix}, \boldsymbol{\beta}_{2} = \begin{pmatrix} -1 \\ 1 \\ 2-a \\ 1 \end{pmatrix}, \boldsymbol{\beta}_{3} = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \boldsymbol{\beta}_{4} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

- 1 求 a 使得 $\beta_1, \beta_2, \beta_3, \beta_4$ 为 \mathbb{R}^4 的基;
- 2 求由基 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 到基 $\beta_1, \beta_2, \beta_3, \beta_4$ 的过渡矩阵 P.

例 在
$$P[x]_3$$
 中,求 $f(x) = 3x^2 + 7x + 3$ 在基: $f_1 = x^2 + x$, $f_2 = x^2 - x$, $f_3 = x + 1$ 下的坐标。

解 设 $f = k_1 f_1 + k_2 f_2 + k_3 f_3$ 得

$$\begin{cases} k_1 + k_2 = 3, \\ k_1 - k_2 + k_3 = 7, \\ k_3 = 3 \end{cases}$$

它有唯一解 $(k_1, k_2, k_3) = (\frac{7}{2}, -\frac{1}{2}, 3)$ 。故 f(x) 在所给基下的坐标为 $(\frac{7}{2}, -\frac{1}{2}, 3)$ 。

85/169 总复习 🛆 🔨

例 在 $\mathbb{R}^{2\times 2}$ 中所有 2 阶实对称矩阵所组成的集合构成 $\mathbb{R}^{2\times 2}$ 的一个子空间 V。在 V 中定义线性变换 $T:T(A)=\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}A\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$,求线性变换 T 在基 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ 下的矩阵。

解设

$$A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, A_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, A_3 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

则

$$T(A_1) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = A_1 + A_2 + A_3,$$

$$T(A_2) = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} = A_2 + 2A_3,$$

$$T(A_3) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = A_3,$$

故所求矩阵为

$$\left[\begin{array}{cccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 1
\end{array}\right]$$

例 已知 \mathbb{R}^3 中的一组基为 $\boldsymbol{\alpha}_1 = (1,-1,0)^T$, $\boldsymbol{\alpha}_2 = (0,2,-1)^T$, $\boldsymbol{\alpha}_3 = (0,1,-1)^T$, 线性 变换 T 将 $\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3$ 分别变到 $\boldsymbol{\beta}_1 = (1,1,-1)^T$, $\boldsymbol{\beta}_2 = (0,3,-2)^T$, $\boldsymbol{\beta}_3 = (1,0,-1)^T$.

- 1. 线性变换 T 在 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵表示 A;
- 2. 求 $\boldsymbol{\xi} = (1,2,-1)^T$ 以及 $T(\boldsymbol{\xi})$ 在基 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 下的坐标。

1. 由 $(\beta_1, \beta_2, \beta_3) = (T(\alpha_1), T(\alpha_2), T(\alpha_3)) = (\alpha_1, \alpha_2, \alpha_3)A$ 得矩阵方程

$$\left[\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 3 & 0 \\ -1 & 2 & -1 \end{array}\right] = \left[\begin{array}{ccc} 1 & 0 & 0 \\ -1 & 2 & 0 \\ 0 & -1 & -1 \end{array}\right] A$$

可求得

$$\mathbf{A} = \left[\begin{array}{rrr} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array} \right]$$

2. 设 ξ 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标为 $x = (x_1, x_2, x_3)^T$, 那么 $\xi = (\alpha_1, \alpha_2, \alpha_3)x$, 即

$$\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 1 \\ 0 & -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

解得

$$\boldsymbol{x} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

设 $L(\alpha_1, \alpha_2, \dots, \alpha_m)$ 表示由 $\alpha_1, \alpha_2, \dots, \alpha_m$ 生成的子空间,设有子空间

$$\begin{split} V_1 &= \left\{ \pmb{\alpha} = (x_1, x_2, x_3, x_4)^T \ \middle| \ x_1 + x_2 + x_3 + x_4 = 0 \right\}, \\ V_2 &= \left\{ \pmb{\alpha} = (x_1, x_2, x_3, x_4)^T \ \middle| \ x_1 - x_2 + x_3 - x_4 = 0 \right\}. \end{split}$$

- 1. 将 V_1 和 V_2 用 $L(\alpha_1, \alpha_2, \dots, \alpha_m)$ 表示出来;
- 2. 求子空间 $V_1 + V_2$ 和 $V_1 \cap V_2$ 的维数和一组基。

总复习

1. $\mathbf{R} x_1 + x_2 + x_3 + x_4 = 0$ 得基础解系:

$$\boldsymbol{\alpha}_1 = (-1, 1, 0, 0)^T$$
, $\boldsymbol{\alpha}_2 = (-1, 0, 1, 0)^T$, $\boldsymbol{\alpha}_3 = (-1, 0, 0, 1)^T$

解 $x_1 - x_2 + x_3 - x_4 = 0$ 得基础解系:

$$\boldsymbol{\beta}_1 = (1, 1, 0, 0)^T, \ \boldsymbol{\beta}_2 = (-1, 0, 1, 0)^T, \ \boldsymbol{\beta}_3 = (1, 0, 0, 1)^T$$

故

$$V_1 = L(\alpha_1, \alpha_2, \alpha_3), \quad V_2 = L(\beta_1, \beta_2, \beta_3).$$

2. 显然 dim $V_1 = \dim V_2 = 3$, $V_1 + V_2 = L(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3)$ 。 而

$$(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3,\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\boldsymbol{\beta}_3) \xrightarrow{\begin{subarray}{c|c}\hline \end{subarray}} \begin{bmatrix} 1 & & & -1 \\ & 1 & & \\ & & 1 & \\ & & & 1 \\ & & 1 \\$$

由此可以看出 $\alpha_1,\alpha_2,\alpha_3,\beta_1$ 是 V_1+V_2 的一组基,从而 $\dim\ (V_1+V_2)=4$ 。由 $\dim\ V_1+\dim\ V_2=\dim\ (V_1\cap V_2)+\dim\ (V_1+V_2)$ 知 $\dim\ (V_1\cap V_2)=2$ 。解方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 - x_4 = 0 \end{cases}$$

可得 $V_1 \cap V_2$ 的一组基

$$\gamma_1 = (-1, 0, 1, 0)^T, \quad \gamma_2 = (0, -1, 0, 1)^T.$$

- 1. $1+x,x+x^2,x^2-1$ 可否作为 $L(1+x,x+x^2,x^2-1)$ 的一组基? 求 $L(1+x,x+x^2,x^2-1)$ 的维数;
- 2. 求 $V \rightarrow W$ 的线性变换 $T(a,b,c) = \left[\begin{array}{cc} a+b+c & a+c \\ 0 & 2a+b+2c \end{array} \right]$ 的值域的基和零空间的基。

解

1. 因
$$[1+x,x+x^2,x^2-1] = [1,x,x^2]$$
 $\begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, 而 $\begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ \rightarrow $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ 故 $1+x,x+x^2$ 可作为 $L(1+x,x+x^2,x^2-1)$ 的一组基,其维数为 2。

而
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & 1 & 2 \end{bmatrix}$$
 \rightarrow $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, 故 $R(T)$ 的基为 $\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$,

ker(T) 的基为 $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ 。

- 1. 向量空间与线性变换
 - ▶ 知识点
 - ▶ 往年试题

2. 第五章 特征值问题

- ▶ 知识点
- ▶ 往年试题
- 3. 第六章 二次型
 - ▶ 知识点
 - ▶ 典型例题

- 1. 向量空间与线性变换
 - ▶ 知识点
 - ▶ 往年试题

2. 第五章 特征值问题

- ▶ 知识点
- ▶ 往年试题
- 3. 第六章 二次型
 - ▶ 知识点
 - ▶ 典型例题

特征值与特征向量

定义 (特征值与特征向量) 设 A 为复数域 $\mathbb C$ 上的 n 阶矩阵,如果存在数 $\lambda \in \mathbb C$ 和非零的 n 维向量 x 使得

$$Ax = \lambda x$$

则称 λ 为矩阵 A 的特征值, x 为 A 的对应于特征值 λ 的特征向量。

- (1) 特征向量 x≠0;
- (2) 特征值问题是对方针而言的。

由定义,n 阶矩阵 A 的特征值,就是使齐次线性方程组

$$(A - \lambda I)x = 0$$

有非零解的 λ 值, 即满足方程

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

的 λ 都是矩阵 A 的特征值。

特征值与特征向量

定义 (特征多项式、特征矩阵、特征方程) 设 n 阶矩阵 $A = (a_{ij})$, 则

$$f(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$

称为矩阵 A 的特征多项式, $A-\lambda I$ 称为 A 的特征矩阵, $\det(A-\lambda I)=0$ 称为 A 的特征方程。

例 例 1 求矩阵

$$\mathbf{A} = \left(\begin{array}{ccc} 5 & -1 & -1 \\ 3 & 1 & -1 \\ 4 & -2 & 1 \end{array} \right)$$

的特征值与特征向量。

特征值与特征向量

例 例 1 求矩阵

$$\mathbf{A} = \left(\begin{array}{ccc} 5 & -1 & -1 \\ 3 & 1 & -1 \\ 4 & -2 & 1 \end{array} \right)$$

的特征值与特征向量。

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 5 - \lambda & -1 & -1 \\ 3 & 1 - \lambda & -1 \\ 4 & -2 & 1 - \lambda \end{vmatrix} = -(\lambda - 3)(\lambda - 2)^2 = 0$$

故特征值为 $\lambda_1 = 3$, $\lambda_{2,3} = 2$ (二重特征值)。

特征值与特征向量

▶ 对于特征值 λ₁ = 3, 齐次线性方程组 (A-3I)x=0 为

$$\begin{pmatrix} 2 & -1 & -1 \\ 3 & -2 & -1 \\ 4 & -2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

基础解系为 $x_1 = (1,1,1)^T$,因此 $k_1 x_1 (k_1 \neq 0)$ 是 A 对应于 $\lambda_1 = 3$ 的全部特征 向量。

▶ 对于特征值 $\lambda_{2,3} = 2$, 齐次线性方程组 (A - 2I)x = 0 为

$$\begin{pmatrix} 3 & -1 & -1 \\ 3 & -1 & -1 \\ 4 & -2 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

基础解系为 $x_2 = (1,1,2)^T$,因此 $k_2 x_2 (k_2 \neq 0)$ 是 A 对应于 $\lambda_{2,3} = 2$ 的全部特征向量。

98/169 总复习 🛆 ...

特征值与特征向量的性质

定理 设 n 阶矩阵 $A = (a_{ij})$ 的 n 个特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$, 则

$$(1) \sum_{i=1}^n \lambda_i = \sum_{i=1}^n a_{ii}$$

(2)
$$\prod_{i=1}^{n} \lambda_i = \det(A)$$

- 当 det(A) ≠ 0, 即 A 为可逆矩阵时, 其特征值全为非零数;
- ▶ 奇异矩阵 A 至少有一个零特征值。

定理 一个特征向量不能属于不同的特征值。

特征值与特征向量的性质

性质 性质 1

表: 特征值与特征向量

	特征值	特征向量
A	λ	x
k A	kλ	x
A^m	λ^m	x
A^{-1}	λ^{-1}	x

性质 性质 2 矩阵 $A = A^T$ 的特征值相同。

特征值与特征向量的性质

例 例 对于下列矩阵 A 的特征值,能做怎样的断言?

- (1) $\det(I A^2) = 0$
- (2) $A^k = 0$
- (3) A = kI B (λ_0 为 B 的特征值)

相似矩阵

定义 (相似矩阵) 对于方阵 A 和 B,若存在可逆矩阵 P,使得 $P^{-1}AP=B,$

就称 A 相似于 B, 记作 $A \sim B$.

定理 相似矩阵的特征值相同。

矩阵可对角化的条件

矩阵可对角化,即矩阵与对角阵相似。

定理 矩阵可对角化 \iff n 阶矩阵有 n 个线性无关的特征向量

定理 A 的属于不同特征值的特征向量是线性无关的。

推论 推论 若 $A \in \mathbb{R}$ 有 n 个互不相同的特征值,则 A 与对角阵相似。

例 例 设实对称矩阵

问 A 是否可对角化?若可对角化,求对角阵 Λ 及可逆矩阵 P 使得 $P^{-1}AP = \Lambda$,再求 A^k 。

矩阵可对角化的条件

例 例 设实对称矩阵

问 A 是否可对角化?若可对角化,求对角阵 Λ 及可逆矩阵 P 使得 $P^{-1}AP = \Lambda$,再求 A^k 。

证明

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & -1 & -1 & -1 \\ -1 & 1 - \lambda & -1 & -1 \\ -1 & -1 & 1 - \lambda & -1 \\ -1 & -1 & -1 & 1 - \lambda \end{vmatrix} = (\lambda + 2)(\lambda - 2)^3$$

故特征值为 $\lambda_1 = -2$, $\lambda_{2,3,4} = 2$

矩阵可对角化的条件

▶ 对于特征值 $\lambda_1 = -2$,齐次线性方程组 (A+2I)x = 0 为

$$\begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & 1 & 1 \\ -1 & -1 & 3 & 1 \\ -1 & -1 & -1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

基础解系为

$$x_1 = (1, 1, 1, 1)^T$$
,

故对应于 $\lambda_1 = -2$ 的全部特征向量为 $k_1 x_1 (k_1 \neq 0)$.

▶ 对于特征值 $\lambda_1 = -2$,齐次线性方程组 (A+2I)x = 0 为

$$\begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & 1 & 1 \\ -1 & -1 & 3 & 1 \\ -1 & -1 & -1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

基础解系为

$$x_1 = (1, 1, 1, 1)^T$$

故对应于 $\lambda_1 = -2$ 的全部特征向量为 $k_1 x_1 (k_1 \neq 0)$.

▶ 对于特征值 $\lambda_{2,3,4} = 2$, 齐次线性方程组 (A-2I)x = 0 为

基础解系为

$$\mathbf{x}_2 = (1, -1, 0, 0)^T$$
, $\mathbf{x}_3 = (1, 0, -1, 0)^T$, $\mathbf{x}_4 = (1, 0, -1, 0)^T$,

故对应于 $\lambda_2 = 2$ 的全部特征向量为 $k_2 x_2 + k_3 x_3 + k_4 x_4 (k_2, k_3, k_4$ 不全为零)

由特征值问题定义可知

$$A(x_1, x_2, x_3, x_4) = (x_1, x_2, x_3, x_4) \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \lambda_3 & \\ & & & \lambda_4 \end{pmatrix}$$

取

$$\mathbf{P} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix}$$

则 $AP = P\Lambda$, 注意到 $det(P) \neq 0$, 于是

$$A = P\Lambda P^{-1}.$$

例 例 2 设 $A = (a_{ij})_{n \times n}$ 是主对角元全为 2 的上三角矩阵,且存在 $a_{ij} \neq 0 (i < j)$,问 A 是否可对角化?

例 例 2设 $A = (a_{ij})_{n \times n}$ 是主对角元全为 2的上三角矩阵,且存在 $a_{ij} \neq 0 (i < j)$,问 A 是否可对角化?

证明

$$A = \begin{pmatrix} 2 & * & \cdots & * \\ 0 & 2 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 2 \end{pmatrix} \implies \det(A - \lambda I) = (2 - \lambda)^n \implies \lambda = 2 \text{ 为 } A \text{ 的 } n \text{ 重特征值}$$

$$r(2I-A) \ge 1$$
 \Longrightarrow $(2I-A)x=0$ 的基础解系所含向量个数 $\le n-1$ \Longrightarrow A 的线性无关的特征向量的个数 $\le n-1$ \Longrightarrow A 不与对角阵相似。

定理 实对称矩阵 A 的任一特征值都是实数。

定理 实对称矩阵 A 对应于不同特征值的特征向量正交。

定理 对于 n 阶实对称矩阵 A,存在 n 阶正交矩阵 T,使得 $T^{-1}AT = \Lambda$

例 例设

$$\mathbf{A} = \left(\begin{array}{rrr} 1 & -2 & 2 \\ -2 & -2 & 4 \\ 2 & 4 & -2 \end{array} \right)$$

求正交阵 T,使 $T^{-1}AT$ 为对角阵。

例 例设

$$\mathbf{A} = \left(\begin{array}{rrr} 1 & -2 & 2 \\ -2 & -2 & 4 \\ 2 & 4 & -2 \end{array} \right)$$

求正交阵 T,使 $T^{-1}AT$ 为对角阵。

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & -2 & 2 \\ -2 & -2 - \lambda & 4 \\ 2 & 4 & -2 - \lambda \end{vmatrix} = -(\lambda - 2)^2 (\lambda + 7)$$

特征值为 $\lambda_{1,2}=2$ (二重) 和 $\lambda_3=-7$ 。

▶ 对于特征值 $\lambda_{1,2}=2$,齐次线性方程组 (A-2I)x=0 为

$$\begin{pmatrix} -1 & -2 & 2 \\ -2 & -3 & 4 \\ 2 & 4 & -4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

得特征向量 $x_1 = (2,-1,0)^T$, $x_2 = (2,0,1)^T$ 。

▶ 对于特征值 $\lambda_2 = -7$,齐次线性方程组 $(A - \lambda_2 I)x = 0$ 为

$$\left(\begin{array}{ccc} 8 & -2 & 2 \\ -2 & 5 & 4 \\ 2 & 4 & 5 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right)$$

得特征向量 $x_3 = (1,2,-2)^T$ 。

▶ 对特征向量 $x_1 = (2, -1, 0)^T$, $x_2 = (2, 0, 1)^T$, 先用<mark>施密特正交化过程正交化</mark>, 然后单位化。

先正交化得

$$\beta_1 = x_1,$$

$$\beta_2 = x_2 - \frac{(x_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1$$

$$= \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} - \frac{4}{5} \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix}$$

▶ 对特征向量 $x_1 = (2, -1, 0)^T$, $x_2 = (2, 0, 1)^T$, 先用<mark>施密特正交化过程正交化</mark>, 然后单位化。

先正交化得

$$\beta_1 = x_1,$$

$$\beta_2 = x_2 - \frac{(x_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1$$

$$= \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} - \frac{4}{5} \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix}$$

再单位化得

$$y_1 = \left(\frac{2\sqrt{5}}{5}, -\frac{\sqrt{5}}{5}, 0\right)^T, \quad y_2 = \left(\frac{2\sqrt{5}}{15}, -\frac{4\sqrt{5}}{15}, \frac{\sqrt{5}}{3}\right)^T$$

▶ 对特征向量 $x_3 = (1,2,-2)^T$ 单位化,得 $y_3 = \left(\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}\right)^T$ 。

取正交矩阵

$$T = (y_1, y_2, y_3) = \begin{pmatrix} \frac{2\sqrt{5}}{5} & \frac{2\sqrt{5}}{15} & \frac{1}{3} \\ -\frac{\sqrt{5}}{5} & -\frac{4\sqrt{5}}{15} & \frac{2}{3} \\ 0 & \frac{\sqrt{5}}{3} & -\frac{2}{3} \end{pmatrix}$$

则

$$T^{-1}AT = diag(2, 2, -7).$$

例 例 设实对称矩阵 A 和 B 是相似矩阵,证明:存在正交矩阵 P,使 $P^{-1}AP = B$ 。

例 设实对称矩阵 A 和 B 是相似矩阵,证明:存在正交矩阵 P,使 $P^{-1}AP = B_{\circ}$

证明

$$A \sim B$$
 \Longrightarrow A , B 有相同的特征值 $\lambda_1, \lambda_2, \cdots, \lambda_n$
$$\Longrightarrow \exists \mathbb{E} \mathfrak{S} \mathfrak{E} P_1, P_2, \quad s.t. \quad P_1^{-1} A P_1 = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n) = P_2^{-1} A P_2$$

$$\Longrightarrow P_2 P_1^{-1} A P_1 P_2^{-1} = B$$

取 $P = P_1 P_2^{-1}$, 则 P 为正交阵, 且

$$P^{-1}AP = B$$

115/169 总复习

例 例设 A,B 都是 n 阶实对称矩阵,若存在正交矩阵 T 使 $T^{-1}AT$, $T^{-1}BT$ 都是对角阵,则 AB 是实对称矩阵。

例 例设 A,B 都是 n 阶实对称矩阵,若存在正交矩阵 T 使 $T^{-1}AT$, $T^{-1}BT$ 都 是对角阵,则 AB 是实对称矩阵。

证明

$$\left. \begin{array}{c}
 T^{-1}AT = \Lambda_1 \\
 T^{-1}BT = \Lambda_2
\end{array} \right\} \implies (T^{-1}AT)(T^{-1}BT) = \Lambda_1\Lambda_2 = \Lambda_2\Lambda_1 = (T^{-1}BT)(T^{-1}AT) \\
 \Longrightarrow T^{-1}ABT = T^{-1}BAT$$

$$\Longrightarrow AB = BA$$

$$\Longrightarrow (AB)^T = B^TA^T = BA = AB$$

总复习

例 $\star\star\star$ 三阶实对称矩阵 A 的特征值为 $\lambda_1=-1,\lambda_2=\lambda_3=1$,对应于 $\lambda_1=-1$ 的特征向量为 $\alpha_1=(0,1,1)^T$,求 A。

117/169 总复习 △ ▽

例 ★★★ 三阶实对称矩阵 A 的特征值为 $\lambda_1 = -1, \lambda_2 = \lambda_3 = 1$,对应于 $\lambda_1 = -1$ 的特征向量为 $\alpha_1 = (0, 1, 1)^T$,求 A。

证明

$$A \sim \text{diag}(-1, 1, 1)$$

注意<mark>不同特征值对应的特征向量正交</mark>,在与 α_1 正交的平面上取两个线性无关的向量,如 $\alpha_2 = (1,0,0)^T$, $\alpha_3 = (0,1,-1)^T$,则

$$A(\boldsymbol{\alpha}_1, \ \boldsymbol{\alpha}_2, \ \boldsymbol{\alpha}_3) = (\boldsymbol{\alpha}_1, \ \boldsymbol{\alpha}_2, \ \boldsymbol{\alpha}_3) \left(\begin{array}{ccc} -1 & & & \\ & 1 & & \\ & & 1 \end{array} \right)$$

注意到 α_1 , α_2 , α_3 正交, 单位化即得标准正交向量组

$$\boldsymbol{\beta}_1 = \frac{1}{\sqrt{2}}(0,1,1)^T$$
, $\boldsymbol{\beta}_2 = (1,0,0)^T$, $\boldsymbol{\beta}_3 = \frac{1}{\sqrt{2}}(0,1,-1)^T$.

 $\diamondsuit P = (\boldsymbol{\beta}_1, \ \boldsymbol{\beta}_2, \ \boldsymbol{\beta}_3), \$ 则

$$\boldsymbol{A} = \boldsymbol{P} \boldsymbol{\Lambda} \boldsymbol{P}^{-1} = \boldsymbol{P} \boldsymbol{\Lambda} \boldsymbol{P}^{T} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$

117/169 总复习 总复习

- 1. 向量空间与线性变换
 - ▶ 知识点
 - ▶ 往年试题

2. 第五章 特征值问题

- ▶ 知识点
- ▶ 往年试题
- 3. 第六章 二次型
 - ▶ 知识点
 - ▶ 典型例题

例 (05-06 上) 设二阶方阵 A 满足 $A^2 - 3A + 2I = 0$,求 A 所有可能的特征值。

例 (05-06 下) 设三阶方阵 A 有三个实特征值 $\lambda_1, \lambda_2, \lambda_3$,且 $\lambda_1 = \lambda_2 \neq \lambda_3$,如果 λ_1 对应两个线性无关的特征向量 α_1 和 α_2 , λ_3 对应一个特征向量 α_3 ,证明 $\alpha_1, \alpha_2, \alpha_3$ 线性无关。

例 (05-06 下) 设
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & -1 \\ x^2 & 0 & 0 \end{pmatrix}$$
, x 为实数, 试讨论 x 为何值时, A 可与对角阵相似?

121/169 总复习 △ ▽

例
$$(06-07 \pm, 08-09 \pm)$$
 设 $A = \begin{pmatrix} 1 & k & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

- ightharpoonup 当 k=1 时,是否存在正交矩阵 $oldsymbol{Q}$,使得 $oldsymbol{Q}^T A oldsymbol{Q}$ 为对角阵?如果存在,是否唯一?
- ▶ 当 k=0 时, A 能否与对角阵相似?

例
$$(07-08 \perp)$$
 设 $A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & -1 \\ 1 & 0 & 1 \end{pmatrix}$

- ▼ 求 A 的特征值和特征向量;
- ▶ 求 A^k 及其特征值和特征向量;

- 例 $(07-08 \ \ \ \ \ \)$ 已知 1,1,-1 是三阶实对称矩阵 A 的三个特征值,向量 $\alpha_1 = (1,1,1)^T, \alpha_2 = (2,2,1)^T$ 是 A 的对应于 $\lambda_1 = \lambda_2 = 1$ 的特征向量。
- (1) 能否求出 A 的属于 $\lambda_3 = -1$ 的特征向量?如能,试求出该特征向量,若不能,请说明理由;
- (2) 能否由此求得 A? 若能, 试求之, 若不能请说明理由。

例 $(08-09 \perp)$ 已知 A 是三阶方阵,且 $A^2 \neq 0$, $A^3 = 0$ 。

- (1) 能否求出 A 的特征值?如能,试求出该特征值,若不能,请说明理由;
- (2) A 能否对角化? 若能, 试求之, 若不能请说明理由。
- (3) 已知 $B = A^3 5A^2 + 3I$,能否求得 det(B),若能,试求之,若不能请说明理由。

例 (09-10 下) 设 α 是 n 维非零实列向量, $A = I - \frac{2}{\alpha^T \alpha} \alpha \alpha^T$,

- (1) 计算 A^T , 并回答 kI A 能否对角化?请说明理由, 其中 k 为常数;
- (2) 计算 A^2 , 并回答 kI A 是否可逆? 请说明理由, 其中 $k \neq \pm 1$ 为常数;
- (3) 给出 $I-2\alpha\alpha^T$ 为正交矩阵的充分必要条件。

例 $(08-09 \perp)$ 已知 A 是三阶方阵,且 $A^2 \neq 0$, $A^3 = 0$ 。

- (1) 能否求出 A 的特征值?如能,试求出该特征值,若不能,请说明理由;
- (2) A 能否对角化? 若能, 试求之, 若不能请说明理由。
- (3) 已知 $B = A^3 5A^2 + 3I$,能否求得 det(B),若能,试求之,若不能请说明理由。

例 (12-13 下) 已知 A 是三阶实对称阵,且 $A^2 + 2A = 0$,已知 r(A) = 2。

- (1) 求 A 的全部特征值?
- (2) 计算 det(A+4I)
- (3) 当 k 为何值时, A+kI 正定。

例 (12-13 下) 已知三阶矩阵 A 的特征值为 1,2,3, 求 $\det(A^3 - 5A^2 + 7A)$

例 (12-13 下) 证明: 设 A 为 n 阶非零实对称矩阵,则存在 n 维列向量 x 使得 $x^TAx \neq 0$.

例 (13-14 上) 设
$$\boldsymbol{\alpha} = (a_1, a_2, a_3)^T$$
, $\boldsymbol{\beta} = (b_1, b_2, b_3)^T$, 且 $\boldsymbol{\alpha}^T \boldsymbol{\beta} = 2$, $\boldsymbol{A} = \boldsymbol{\alpha} \boldsymbol{\beta}^T$,

- (1) 求 A 的特征值;
- (2) 求可逆阵 P 及对角阵 Λ 使得 $P^{-1}AP = \Lambda$ 。

- 1. 向量空间与线性变换
 - ▶ 知识点
 - ▶ 往年试题
- 2. 第五章 特征值问题
 - ▶ 知识点
 - ▶ 往年试题
- 3. 第六章 二次型
 - ▶ 知识点
 - ▶ 典型例题

- 1. 向量空间与线性变换
 - ▶ 知识点
 - ▶ 往年试题
- 2. 第五章 特征值问题
 - ▶ 知识点
 - ▶ 往年试题
- 3. 第六章 二次型
 - ▶ 知识点
 - ▶ 典型例题

二次型的定义和矩阵表示

定义 n 元变量 x_1, x_2, \dots, x_n 的二次齐次多项式

其矩阵形式为

$$f(x_1, x_2, \dots, x_n) = (x_1, x_2, \dots, x_n) \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \mathbf{x}^T \mathbf{A} \mathbf{x}$$

134/169 总复习 Δ T

二次型的定义和矩阵表示

例 设
$$f(x_1, x_2, x_3, x_4) = 2x_1^2 + x_1x_2 + 2x_1x_3 + 4x_2x_4 + x_3^2 + 5x_4^2$$
, 则它的矩阵为

$$\mathbf{A} = \left(\begin{array}{cccc} 2 & 1/2 & 1 & 0 \\ 1/2 & 0 & 0 & 2 \\ 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 5 \end{array} \right)$$

135/169 总复习 △ ▽

二次型的定义和矩阵表示

设 α 在两组基 $\{\epsilon_1, \epsilon_2, \cdots, \epsilon_n\}$ 和 $\{\eta_1, \eta_2, \cdots, \eta_n\}$ 下的坐标向量分别为

$$\mathbf{x} = (x_1, x_2, \dots, x_n)^T$$
 $\mathbf{x} = (y_1, y_2, \dots, y_n)^T$

又

$$(\boldsymbol{\eta}_1, \boldsymbol{\eta}_2, \cdots, \boldsymbol{\eta}_n) = (\boldsymbol{\epsilon}_1, \boldsymbol{\epsilon}_2, \cdots, \boldsymbol{\epsilon}_n) \boldsymbol{C}$$

故

$$x = Cy$$

从而

$$f(\boldsymbol{\alpha}) = \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{y}^T (\boldsymbol{C}^T \boldsymbol{A} \boldsymbol{C}) \boldsymbol{y}$$

二次型的定义和矩阵表示

设 α 在两组基 $\{\epsilon_1, \epsilon_2, \cdots, \epsilon_n\}$ 和 $\{\eta_1, \eta_2, \cdots, \eta_n\}$ 下的坐标向量分别为

$$x = (x_1, x_2, \dots, x_n)^T$$
 π $y = (y_1, y_2, \dots, y_n)^T$

又

$$(\boldsymbol{\eta}_1, \boldsymbol{\eta}_2, \cdots, \boldsymbol{\eta}_n) = (\boldsymbol{\epsilon}_1, \boldsymbol{\epsilon}_2, \cdots, \boldsymbol{\epsilon}_n) \boldsymbol{C}$$

故

$$x = Cy$$

从而

$$f(\boldsymbol{\alpha}) = \boldsymbol{x}^T A \boldsymbol{x} = \boldsymbol{y}^T (\boldsymbol{C}^T A \boldsymbol{C}) \boldsymbol{y}$$

二次型 $f(\alpha)$ 在两组基 $\{m{\epsilon}_1, m{\epsilon}_2, \cdots, m{\epsilon}_n\}$ 和 $\{m{\eta}_1, m{\eta}_2, \cdots, m{\eta}_n\}$ 下所对应的矩阵分别为 $A \ \ \mathbf{A} \ \ \mathbf{C}^T A \mathbf{C}$

矩阵的合同

定义 (矩阵的合同) 对于两个矩阵 A 和 B. 若存在可逆矩阵 C. 使得 $C^TAC = B$.

就称 A 合同于 B, 记作 $A \simeq B$ 。

- 含平方项而不含混合项的二次型称为标准二次型。
- ▶ 化二次型为标准型,就是对实对称矩阵 A,寻找可逆阵 C,使 C^TAC 成为对角矩阵。

定理(主轴定理) 对于任一个 n 元二次型

$$f(x_1, x_2, \cdots, x_n) = \mathbf{x}^T \mathbf{A} \mathbf{x},$$

存在正交变换 x = Qy(Q) 为正交阵), 使得

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{y}^T (\mathbf{Q}^T \mathbf{A} \mathbf{Q}) \mathbf{y} = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2,$$

其中 $\lambda_1, \lambda_2, \dots, \lambda_n$ 为 A 的 n 个特征值, Q 的 n 个列向量 $\alpha_1, \alpha_2, \dots, \alpha_n$ 是 A 对 应于 $\lambda_1, \lambda_2, \dots, \lambda_n$ 的标准正交特征向量。

总复习

例 ★★★★★ 用正交变换法,将二次型

$$f(x_1,x_2,x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

化为标准型。

例 ★★★★★ 用正交变换法,将二次型

$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

化为标准型。

对应方程为

$$\mathbf{A} = \left(\begin{array}{rrr} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{array} \right)$$

例 ★★★★★ 用正交变换法,将二次型

$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

化为标准型。

对应方程为

$$\mathbf{A} = \left(\begin{array}{rrr} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{array} \right)$$

其特征多项式为

$$\det(\mathbf{A} - \lambda \mathbf{I}) = -(\lambda - 1)^2 (\lambda - 10)$$

得特征值 $\lambda_{1,2} = 1$ 和 $\lambda_3 = 10$.

$$(A - I)x = \mathbf{0} \quad \Rightarrow \quad \begin{pmatrix} 1 & 2 & -2 \\ 2 & 4 & -4 \\ -2 & -4 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{0}$$

$$\Rightarrow \quad x_1 = (-2, 1, 0)^T, \quad x_2 = (2, 0, 1)^T.$$

$$(A - 10I)x = \mathbf{0} \quad \Rightarrow \quad \begin{pmatrix} -8 & 2 & -2 \\ 2 & -5 & -4 \\ -2 & -4 & -5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{0}$$

$$\Rightarrow \quad x_3 = (1, 2, -2)^T.$$

$$(A-I)x = \mathbf{0} \implies \begin{pmatrix} 1 & 2 & -2 \\ 2 & 4 & -4 \\ -2 & -4 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{0}$$

$$\Rightarrow x_1 = (-2,1,0)^T, \quad x_2 = (2,0,1)^T.$$

$$(A-10I)x = \mathbf{0} \implies \begin{pmatrix} -8 & 2 & -2 \\ 2 & -5 & -4 \\ -2 & -4 & -5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{0}$$

$$\Rightarrow x_3 = (1,2,-2)^T.$$

对 x_1, x_2 用施密特正交化过程先正交化,再单位化,得

$$\boldsymbol{\xi}_1 = \left(-\frac{2\sqrt{5}}{5}, \frac{2\sqrt{5}}{5}, 0\right)^T, \qquad \boldsymbol{\xi}_2 = \left(\frac{2\sqrt{5}}{15}, \frac{4\sqrt{5}}{15}, \frac{\sqrt{5}}{3}\right)^T$$

对 x₃ 单位化, 得

$$\xi_3 = \left(\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}\right)^T$$

141/169 总复习 总复习

取正交矩阵

$$\mathbf{Q} = (\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \boldsymbol{\xi}_3) = \begin{pmatrix} -\frac{2\sqrt{5}}{5} & \frac{2\sqrt{5}}{15} & \frac{1}{3} \\ \frac{2\sqrt{5}}{5} & \frac{4\sqrt{5}}{15} & \frac{2}{3} \\ 0 & \frac{\sqrt{5}}{3} & -\frac{2}{3} \end{pmatrix}$$

则

$$\boldsymbol{Q}^{-1}\boldsymbol{A}\boldsymbol{Q} = \boldsymbol{Q}^T\boldsymbol{A}\boldsymbol{Q} = \mathrm{diag}(1,1,10).$$

取正交矩阵

$$\mathbf{Q} = (\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \boldsymbol{\xi}_3) = \begin{pmatrix} -\frac{2\sqrt{5}}{5} & \frac{2\sqrt{5}}{15} & \frac{1}{3} \\ \frac{2\sqrt{5}}{5} & \frac{4\sqrt{5}}{15} & \frac{2}{3} \\ 0 & \frac{\sqrt{5}}{3} & -\frac{2}{3} \end{pmatrix}$$

则

$$\mathbf{Q}^{-1}A\mathbf{Q} = \mathbf{Q}^{T}A\mathbf{Q} = \text{diag}(1, 1, 10).$$

令
$$\mathbf{x} = (x_1, x_2, x_3)^T$$
, $\mathbf{y} = (y_1, y_2, y_3)^T$. 做正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$. 原二次型就化成标准型
$$\mathbf{x}^T A \mathbf{x} = \mathbf{y}^T (\mathbf{Q}^T A \mathbf{Q}) \mathbf{y} = y_1^2 + y_2^2 + 10y_2^2.$$

 定理(惯性定理) 对于一个 n 元二次型 $x^T Ax$,不论做怎样的坐标变换使之化为标准形,其中正平方项的项数 p 和负平方项的项数 q 都是唯一确定的。或者说,对一个 n 阶实对称矩阵 A,不论取怎样的可逆矩阵 C,只要使

其中 $d_i > 0$ $(i = 1, 2, \dots, p + q), p + q \le n$ 成立,则 p 和 q 是由 A 唯一确定的。

143/169 总复习 Δ ∇

惯性定理和二次型的规范形

定义 二次型 $x^T A x$ 的标准形中,

- ► 正平方项的项数 (与 *A* 合同的对角阵中正对角元的个数), 称为二次型 (或 *A*) 的正惯性指数;
- ▶ 负平方项的项数(与 A 合同的对角阵中负对角元的个数), 称为二次型(或 A)的负惯性指数;
- ▶ 正、负惯性指数的差称为符号差;
- ▶ 矩阵 A 的秩也成为二次型 $x^T Ax$ 的秩。

惯性定理和二次型的规范形

定义 二次型 $x^T A x$ 的标准形中,

- 正平方项的项数(与 A 合同的对角阵中正对角元的个数), 称为二次型(或 A)的正惯性指数;
- ▶ 负平方项的项数(与 A 合同的对角阵中负对角元的个数), 称为二次型(或 A)的负惯性指数;
- ▶ 正、负惯性指数的差称为符号差;
- ▶ 矩阵 A 的秩也成为二次型 $x^T Ax$ 的秩。

设 r(A) = r, 正惯性指数为 p, 则

- ▶ 负惯性指数为 q=r-p
- ▶ 符号差为 p-q=2p-r
- ▶ 与 A 合同的对角阵的零对角元个数为 n-r。

推论 设 A 为 n 阶实对称矩阵,若 A 的正、负惯性指数分别为 p 和 q,则

$$A \simeq \operatorname{diag}(\underbrace{1, \dots, 1, -1, \dots, -1}_{p \uparrow}, \underbrace{0, \dots, 0}_{n-p-q \uparrow})$$
A的合同规范形

 $extbf{ t h}$ 设 A 为 n 阶实对称矩阵,若 A 的正、负惯性指数分别为 p 和 q,则

$$A \simeq \operatorname{diag}(\underbrace{1, \dots, 1}_{p \uparrow}, \underbrace{-1, \dots, -1}_{n-p-q \uparrow}, \underbrace{0, \dots, 0}_{n-p-q \uparrow})$$
A的合同规范形

或者说,对于二次型 $x^T A x$,存在坐标变换 x = C y,使得

$$\mathbf{x}^T A \mathbf{x} = \underbrace{y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_{p+q}^2}_{\mathbf{x}^T A \mathbf{x}$$
的规范形

145/169 总复习 Δ V

正定二次型和正定矩阵

定义 如果对于任意的非零向量 $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$, 恒有

$$\mathbf{x}^{T} \mathbf{A} \mathbf{x} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{i} x_{j} > 0,$$

就称 $x^T A x$ 为正定二次型,称 A 为正定矩阵。

正定二次型和正定矩阵

定义 如果对于任意的非零向量 $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$, 恒有

$$\mathbf{x}^{T} \mathbf{A} \mathbf{x} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{i} x_{j} > 0,$$

就称 $x^T A x$ 为正定二次型,称 A 为正定矩阵。

注:正定矩阵是针对对称矩阵而言的。

结论 二次型
$$f(y_1, y_2, \dots, y_n) = d_1 y_1^2 + d_2 y_2^2 + \dots + d_n y_n^2$$
 正定 $\iff d_i > 0 \quad (i = 1, 2, \dots, n)$

结论 一个二次型 x^TAx , 经过非退化线性变换 x = Cy, 化为 $y^T(C^TAC)y$, 其正定性保持不变。即当

$$x^T A x \iff y^T (C^T A C) y$$
 (C可逆)

时,等式两端的二次型有相同的正定性。

定理 若 A 是 n 阶实对称矩阵,则以下命题等价:

- (1) A 正定;
- (2) A 的正惯性指数为 n, 即 $A \simeq I$;
- (3) 存在可逆矩阵 P 使得 $A = P^T P$;
- (4) A 的 n 个特征值 $\lambda_1, \lambda_2, \dots, \lambda_n$ 全大于零。
- (5) A 的 n 个顺序主子式全大于零。

定理

A正定
$$\Longrightarrow$$
 $a_{ii} > 0 (i = 1, 2, \dots, n)$ 且 $\det(A) > 0$

例 A正定 $\implies A^{-1}$ 正定

例 判断二次型

$$f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_2 - 2x_2x_3$$

是否为正定二次型。

例 判断二次型

 $f(x_1, x_2, x_3) = 3x_1^2 + x_2^2 + 3x_3^2 - 4x_1x_2 - 4x_1x_3 + 4x_2x_3$

是否为正定二次型。

- 1. 向量空间与线性变换
 - ▶ 知识点
 - ▶ 往年试题
- 2. 第五章 特征值问题
 - ▶ 知识点
 - ▶ 往年试题
- 3. 第六章 二次型
 - ▶ 知识点
 - ▶ 典型例题

例 (2005-2006 第一学期) 求二次型
$$f(x_1, x_2, x_3) = (x_1 + x_2)^2 + (x_2 - x_3)^2 + (x_3 + x_1)^2$$
 的秩。

例 (2005-2006 第一学期) 设二次型 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - 2x_1x_2 - 2x_2x_3 - 2x_3x_1$,

- (1) 求二次型 f 的矩阵 A 的全部特征值;
- (2) 求可逆矩阵 P,使得 $P^{-1}AP$ 为对角阵;
- (3) 计算 det(A^m).

例 (2005-2006 第二学期) 判断二次型
$$f(x_1,x_2,x_3)=x_1^2+2x_2^2+6x_3^2+2x_1x_2+2x_1x_2+6x_2x_3$$
 的正定性。

例 (2006-2007 第一学期) 设二次型

 $f(x_1, x_2, x_3) = x_1^2 + 4x_2^2 + 2\lambda x_1 x_2 - 2x_1 x_3 + 4x_2 x_3$, 试求该二次型的矩阵,并指出 λ 取何值时,f 正定?

例 (2006-2007 第二学期) 判断二次型 $f(x, y, z) = 3x^2 + 2y^2 + 2z^2 + 2xy + 2xz$

- (1) 用正交变换化二次型 f 为标准型,并写出相应的正交阵;
- (2) 求 f(x, y, z) 在单位球面 $x^2 + y^2 + z^2 = 1$ 上的最大值和最小值。

例 (2006-2007 第二学期) 设二次型 $f(x_1, x_2, x_3) = 2x_1x_3 + 2x_1x_3 - 2x_2x_3$,

- (1) 写出二次型 f 的矩阵 A;
- (2) 求出 A 的全部特征值和特征向量;
- (3) 化 f 为标准型;
- (4) 判断 f 是否正定.

例 (2007-2008 第一学期,2009-2010 第一学期) 对于二次型 $f(x_1,x_2,x_3)=ax_1^2+2x_2^2-2x_3^2+2bx_1x_3(b>0)$, 其中二次型的矩阵 A 的特征值之和为 1, 特征值之积为 -12.

- (1) 求 a,b;
- (2) 化 f 为标准型,并写出所用的正交变换和正交矩阵。

例 (2007-2008 第二学期) 设二次型的矩阵为
$$\begin{pmatrix} 5 & -a & 2b-1 \\ a-b & c & 2-c \\ c-2 & -3 & 3 \end{pmatrix}$$
, a,b,c 为

常数,则

- (1) 写出二次型 f 的具体形式;
- (2) 求出 A 的全部特征值和特征向量;
- (3) 求正交变换 x = Py, 化 f 为标准型;
- (4) 在 ||x|| = 1 的条件下,求 f 的最大值和最小值.

例 (2008-2009 第一学期) 设二次型

 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 2ax_1x_2 + 2bx_2x_3 + 2x_1x_3$,经正交变换 $\mathbf{x} = \mathbf{P}\mathbf{y}$ 化为标准型 $f = y_2^2 + 2y_3^2$,试求 a, b。

例 (2008-2009 第一学期) 设二次型 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - 2x_1x_2 - 2x_2x_3 - 2x_3x_1$,

- (1) 求出 A 的全部特征值和特征向量;
- (2) 求正交变换 x = Py, 化 f 为标准型;
- (3) 计算 det(A^m)

例 (2009-2010 第二学期) 设二次型 $f(x_1, x_2, x_3) = 2x_1x_3 + x_2^2$,

- (1) 求出 A 的全部特征值和特征向量;
- (2) 求正交变换 x = Py, 化 f 为标准型。

例 (2010-2011 第一学期) 设二次型
$$f(x_1, x_2, x_3) = 4x_2^2 - 3x_3^2 + 4x_1x_2 - 4x_1x_3 + 8x_2x_3$$
,

- (1) 写出 A;
- (2) 求正交变换 x = Py, 化 f 为标准型。

例 (2010-2011 第二学期) 设二次型 $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + x_3^2 + 2tx_1x_2 + 2x_1x_3$ 的矩阵是奇异阵.

- (1) 写出 A 并求 t 的值;
- (2) 根据所求 t 的值,求一个可逆矩阵 P 和一个对角阵 Λ ,使得 $P^{-1}AP = \Lambda$;
- (3) 求 $A^n (n \ge 2)$.

例 (2011-2012 第二学期) 在正交变换 x = Qy 将二次型 $f(x_1, x_2, x_3) = 2x_1x_2 + 2x_1x_3 + 2x_2x_3$ 化为标准型。

例 (2012-2013 第二学期) 已知二次型 $f(x_1, x_2, x_3) = (1-a)x_1^2 + (1-a)x_2^2 + 2x_2^2 + 2(1+a)x_1x_2$ 的秩为 2,

- (1) 求 a;
- (2) 求正交变换 x = Py, 将 f 化为标准型.

例 (2012-2013 第二学期) 已知二次型 $f(x_1, x_2, x_3) = 2x_1^2 + 3x_2^2 + 3x_3^2 + 4x_2x_3$ 的 秩为 2,

- (1) 把 f 写成 $f = x^T Ax$ 的形式;
- (2) 求 A 的特征值和特征向量;
- (3) 求正交变换 x = Py, 将 f 化为标准型.

例 (2013-2014 第一学期) 用正交变换化二次型
$$f(x_1,x_2,x_3)=x_1^2+x_2^2+2x_3^2-2x_1x_2+4x_1x_3+4x_2x_3$$
 为标准型.