Tipping in a cellular automaton modelling forestfire feedback in tropical forest

Bert Wuyts & Jan Sieber

University of Exeter

PNAS 120 (45), e2211853120, 2023

e-mail: b.wuyts@ex.ac.uk

twitter: @b3wu8

OUTLINE

- 1. Stochastic cellular automaton of forest and fire
- 2. Slow and fast processes
- 3. Analysis: steady states & dynamics
 - => emergent structure-dynamics relations

Tropical tree cover bimodality

Stochastic cellular automaton:

fire and forest dynamics

Square Lattice (each cell ~ 30m x 30m) $N \times N \quad (N=100)$

4 Species: Tree, Grass, Burning, Ash

Empirical facts:

- fire ignites and spreads in grassland
- trees block fires but get damaged
- fast fire spread (hours-days)
- slow tree spread (years-decades)

- species: {G, T, B, A}
- reactions:

Spontaneous	Spread
$G\stackrel{eta}{ ightarrow} T$	$GT \stackrel{\alpha}{\to} TT$
$T \stackrel{\gamma}{ o} G$	$AT \stackrel{\alpha}{\to} TT$
$G\stackrel{\phi}{ ightarrow} B$	$GB \stackrel{ ho_G}{\to} BB$
$B \stackrel{\mu}{\rightarrow} A$	$TB \stackrel{ ho_T}{ ightarrow} BB$
$A \stackrel{\lambda}{ o} G$	

G	G	G	G
Τ	G	G	G
Т	Т	G	G
Т	Т	Т	G

- species: {G, T, B, A}
- reactions:

Spontaneous	Spread	
$G \stackrel{\beta}{ o} T$	$GT \stackrel{\alpha}{\to} TT$	
$T \stackrel{\gamma}{\to} G$	$AT \stackrel{\alpha}{\to} TT$	
$G \stackrel{\phi}{ o} B$	$GB \stackrel{ ho_G}{ ightarrow} BB$	
$B \stackrel{\mu}{\rightarrow} A$	$TB \stackrel{ ho_T}{ ightarrow} BB$	
$A \stackrel{\lambda}{\to} G$		

G	G	G	G
Т	G	G	G
Т	Т	G	G
Т	Т	Т	G

- species: {G, T, B, A}
- reactions:

Spontaneous	Spread
$G \stackrel{\beta}{ o} T$	$GT \stackrel{\alpha}{\to} TT$
$T \stackrel{\gamma}{ o} G$	$AT \stackrel{\alpha}{\to} TT$
$G\stackrel{\phi}{ ightarrow} B$	$GB \stackrel{ ho_G}{\to} BB$
$B \stackrel{\mu}{\rightarrow} A$	$TB \stackrel{ ho_T}{ o} BB$
$A \stackrel{\lambda}{ o} G$	

G	G	G	G
Т	Т	G	G
Т	Т	G	G
Т	Т	Т	G

- species: {G, T, B, A}
- reactions:

Spontaneous	Spread
$G \stackrel{\beta}{\to} T$	$GT \stackrel{\alpha}{\to} TT$
$T \stackrel{\gamma}{\to} G$	$AT \stackrel{\alpha}{\to} TT$
$G\stackrel{\phi}{ ightarrow} B$	$GB \stackrel{ ho_G}{ ightarrow} BB$
$B \stackrel{\mu}{\rightarrow} A$	$TB \stackrel{ ho_T}{ ightarrow} BB$
$A \stackrel{\lambda}{\to} G$	

G	G	G	G
7	Т	G	G
Т	Т	G	G
Т	Т	Т	G

- species: {G, T, B, A}
- reactions:

Spontaneous	Spread	
$G \stackrel{\beta}{\to} T$	$GT \stackrel{\alpha}{\to} TT$	
$T\stackrel{\gamma}{ o} G$	$AT \stackrel{\alpha}{\to} TT$	
$G \stackrel{\phi}{ o} B$	$GB \stackrel{ ho_G}{ o} BB$	
$B \stackrel{\mu}{\rightarrow} A$	$TB \stackrel{ ho_T}{ o} BB$	
$A \stackrel{\lambda}{ o} G$		

G	G	G	G
Т	Т	G	G
Т	Т	G	G
G	Т	Т	G

- species: {G, T, B, A}
- reactions:

Spontaneous	Spread	
$G \overset{\beta}{\to} T$	$GT \stackrel{\alpha}{\to} TT$	
$T \stackrel{\gamma}{ o} G$	$AT \stackrel{\alpha}{\to} TT$	
$G\stackrel{\phi}{ ightarrow} B$	$GB \stackrel{ ho_G}{ o} BB$	
$B \stackrel{\mu}{\rightarrow} A$	$TB \stackrel{ ho_T}{ o} BB$	
$A \stackrel{\lambda}{ o} G$		

G	G	G	G
Τ	Τ	G	G
Т	Т	G	G
G	Т	Т	G

- species: {G, T, B, A}
- reactions:

Spontaneous	Spread
$G\stackrel{eta}{ ightarrow} T$	$GT \stackrel{\alpha}{\to} TT$
$T \stackrel{\gamma}{ o} G$	$AT \stackrel{\alpha}{\to} TT$
$G\stackrel{\phi}{ ightarrow} B$	$GB \stackrel{ ho_G}{\to} BB$
$B \stackrel{\mu}{\rightarrow} A$	$TB \stackrel{ ho_T}{ ightarrow} BB$
$A \stackrel{\lambda}{ o} G$	

G	G	G	G
Т	_	G	Т
Т	Т	G	G
G	Т	Т	G

- species: {G, T, B, A}
- reactions:

Spontaneous	Spread
$G \stackrel{\beta}{ o} T$	$GT \stackrel{\alpha}{\to} TT$
$T \stackrel{\gamma}{ o} G$	$AT \stackrel{\alpha}{\to} TT$
$G\stackrel{\phi}{ o} B$	$GB \stackrel{\rho_G}{\to} BB$
$B \stackrel{\mu}{\rightarrow} A$	$TB \stackrel{ ho_T}{ ightarrow} BB$
$A \stackrel{\lambda}{ o} G$	

G	G	G	G
Т	_	G	Т
Т	Т	G	G
G	Т	Т	G

- species: {G, T, B, A}
- reactions:

Spontaneous	Spread
$G \stackrel{\beta}{ o} T$	$GT \stackrel{\alpha}{\to} TT$
$T \stackrel{\gamma}{ o} G$	$AT \stackrel{\alpha}{\to} TT$
$G\stackrel{\phi}{ o} B$	$GB \stackrel{\rho_G}{\to} BB$
$B \stackrel{\mu}{\rightarrow} A$	$TB \stackrel{ ho_T}{ ightarrow} BB$
$A \stackrel{\lambda}{\to} G$	

В	G	G	G
Т	Τ	G	Т
Т	Т	G	G
G	Т	Т	G

- species: {G, T, B, A}
- reactions:

Spontaneous	Spread
$G \stackrel{\beta}{ o} T$	$GT \stackrel{\alpha}{\to} TT$
$T \stackrel{\gamma}{\to} G$	$AT \stackrel{\alpha}{\to} TT$
$G\stackrel{\phi}{ ightarrow} B$	$GB \stackrel{ ho_G}{ o} BB$
$B \stackrel{\mu}{\rightarrow} A$	$TB \stackrel{\rho_T}{\to} BB$
$A \stackrel{\lambda}{ o} G$	

В	G	G	G
Т	Т	G	Т
Т	Т	G	G
G	Т	Т	G

- species: {G, T, B, A}
- reactions:

Spontaneous	Spread
$G \stackrel{\beta}{ o} T$	$GT \stackrel{\alpha}{\to} TT$
$T \stackrel{\gamma}{\to} G$	$AT \stackrel{\alpha}{\to} TT$
$G \stackrel{\phi}{ o} B$	$GB \stackrel{ ho_G}{ o} BB$
$B \stackrel{\mu}{\rightarrow} A$	$TB \stackrel{\rho_T}{\to} BB$
$A \stackrel{\lambda}{ o} G$	

В	В	G	G
Т	Т	G	Т
Τ	Т	G	G
G	Т	Т	G

- species: {G, T, B, A}
- reactions:

Spontaneous	Spread
$G \stackrel{\beta}{ o} T$	$GT \stackrel{\alpha}{\to} TT$
$T \stackrel{\gamma}{ o} G$	$AT \stackrel{\alpha}{\to} TT$
$G\stackrel{\phi}{ o} B$	$GB \stackrel{\rho_G}{\to} BB$
$B \stackrel{\mu}{\rightarrow} A$	$TB \stackrel{\rho_T}{\to} BB$
$A \stackrel{\lambda}{ o} G$	

В	В	В	В
Т	_	В	Т
Т	Т	В	В
G	Т	Т	G

- species: {G, T, B, A}
- reactions:

Spontaneous	Spread
$G \stackrel{\beta}{\to} T$	$GT \stackrel{\alpha}{\to} TT$
$T \stackrel{\gamma}{\to} G$	$AT \stackrel{\alpha}{\to} TT$
$G \stackrel{\phi}{ o} B$	$GB \stackrel{ ho_G}{\to} BB$
$B \stackrel{\mu}{\rightarrow} A$	$TB \stackrel{\rho_T}{\to} BB$
$A \stackrel{\lambda}{\to} G$	

В	В	В	В
Т	Т	В	Т
Т	Т	В	В
G	Т	Т	G

- species: {G, T, B, A}
- reactions:

Spontaneous	Spread
$G \stackrel{\beta}{ o} T$	$GT \stackrel{\alpha}{\to} TT$
$T \stackrel{\gamma}{ o} G$	$AT \stackrel{\alpha}{\to} TT$
$G \stackrel{\phi}{ ightarrow} B$	$GB \stackrel{ ho_G}{\to} BB$
$B \stackrel{\mu}{\rightarrow} A$	$TB \stackrel{\rho_T}{\to} BB$
$A \stackrel{\lambda}{ o} G$	

В	В	В	В
В	Τ	В	Т
Т	Т	В	В
G	Т	Т	G

- species: {G, T, B, A}
- reactions:

Spontaneous	Spread
$G \stackrel{\beta}{\to} T$	$GT \stackrel{\alpha}{\to} TT$
$T \stackrel{\gamma}{\to} G$	$AT \stackrel{\alpha}{\to} TT$
$G \stackrel{\phi}{ o} B$	$GB \stackrel{ ho_G}{\to} BB$
$B \stackrel{\mu}{\rightarrow} A$	$TB \stackrel{ ho_T}{ ightarrow} BB$
$A \stackrel{\lambda}{\rightarrow} G$	

В	В	В	В
В	Т	В	Т
Т	Т	В	В
G	Т	Т	G

- species: {G, T, B, A}
- reactions:

Spontaneous	Spread
$G \xrightarrow{\beta} T$	$GT \stackrel{\alpha}{\to} TT$
$T \xrightarrow{\gamma} G$	$AT \stackrel{\alpha}{\to} TT$
$G \stackrel{\phi}{ o} B$	$GB \stackrel{\rho_G}{\to} BB$
$B \stackrel{\mu}{\rightarrow} A$	$TB \stackrel{ ho_T}{ ightarrow} BB$
$A \stackrel{\lambda}{\to} G$	

А	В	В	В
В	Т	В	Т
Т	Т	В	В
G	Т	Т	G

- species: {G, T, B, A}
- reactions:

Spontaneous	Spread
$G \stackrel{\beta}{ o} T$	$GT \stackrel{\alpha}{\to} TT$
$T \stackrel{\gamma}{ o} G$	$AT \stackrel{\alpha}{\to} TT$
$G\stackrel{\phi}{ ightarrow} B$	$GB \stackrel{\rho_G}{\to} BB$
$B \stackrel{\mu}{\rightarrow} A$	$TB \stackrel{ ho_T}{ ightarrow} BB$
$A \stackrel{\lambda}{ o} G$	

А	А	А	А
Α	Т	Α	Т
Т	Т	Α	Α
G	Т	Т	G

Cellular automaton:

- species: {G, T, B, A}

- reactions:

Spontaneous	Spread
$G \stackrel{\beta}{ o} T$	$GT \stackrel{\alpha}{\to} TT$
$T \stackrel{\gamma}{ o} G$	$AT \stackrel{\alpha}{\to} TT$
$G\stackrel{\phi}{ ightarrow} B$	$GB \stackrel{ ho_G}{\to} BB$
$B \stackrel{\mu}{\rightarrow} A$	$TB \stackrel{ ho_T}{ o} BB$
$A\stackrel{\lambda}{ o} G$	

А	А	А	А
Α	_	Α	Т
Т	Т	Α	Α
G	Т	Т	G

- species: {G, T, B, A}
- reactions:

Spontaneous	Spread
$G \stackrel{\beta}{ o} T$	$GT \stackrel{\alpha}{\to} TT$
$T \stackrel{\gamma}{\to} G$	$AT \stackrel{\alpha}{\to} TT$
$G\stackrel{\phi}{ ightarrow} B$	$GB \stackrel{\rho_G}{\to} BB$
$B \stackrel{\mu}{\rightarrow} A$	$TB \stackrel{\rho_T}{\to} BB$
$A\stackrel{\lambda}{ o} G$	

G	А	А	А
Α	_	Α	Т
Т	Т	Α	Α
G	Т	Т	G

- species: {G, T, B, A}
- reactions:

Spontaneous	Spread
$G \stackrel{\beta}{ o} T$	$GT \stackrel{\alpha}{\to} TT$
$T \stackrel{\gamma}{ o} G$	$AT \stackrel{\alpha}{\to} TT$
$G\stackrel{\phi}{ ightarrow} B$	$GB \stackrel{ ho_G}{\to} BB$
$B \stackrel{\mu}{\rightarrow} A$	$TB \stackrel{ ho_T}{ o} BB$
$A\stackrel{\lambda}{ o} G$	

G	G	G	G
G	_	G	Т
Т	Т	G	G
G	Т	Т	G

dynamics (decades)

Analysis of the forest & fire automaton

steady states, dynamics and structure-dynamics relations

Fire spreading probability

Dufresne et al., 2018 Wuyts & Sieber, 2023

MACROSCOPIC QUANTITIES

Steady states and dynamics

- => first define macroscopic quantities:
 - frequency of T or G cells:

[T], [G] (FOREST/GRASS AREA)

- frequency of TG pairs:

[TG] (FOREST PERIMETER)

e.g.:

G	G	G	G
G	Т	G	G
G	Т	Т	G
G	G	G	G

normalised by N:

but:

$$[TG] = 0.5 < 4 [T][G] = 0.61$$

SLOW-FAST DYNAMICS

Fast dynamics

 For each grass patch, fires ignite and spread through entire patch to bounding forest:

forest exposure to fire damage: $\phi N \sum_{j=1}^{\infty} [G]_j [TG]_j$

$$\phi N \sum_{j=1}^{n_c} [G]_j [TG]_j$$

in cluster *i*

Slow dynamics

fire-induced loss:

$$\Delta_T^{\mathrm{loss}} := \sum_{j=1}^{n_c} \quad \phi N[G]_j \quad imes \quad rac{
ho_T}{
ho_T + \mu} [TG]_j$$
 # fires per time loss per fire

in cluster *i*

forest spread and spontaneous conversion:

$$\Delta_T^{\text{gain}} := \beta[G] - \gamma[T] + \alpha[TG]$$

BALANCE ON SLOW TIMESCALE

undetermined

$$\Downarrow \langle [TG] \rangle_{\operatorname{cg}} := \sum_{j=1}^{n_c} \frac{[G]_j}{[G]} [TG]_j$$

STEADY STATES VIA FEEDBACK CONTROL

conventional simulation

STEADY STATES VIA FEEDBACK CONTROL

video (T0 = 40%)

simulation with feedback control

STEADY STATES & BISTABILITY

CLOSURE

Wuyts & Sieber, 2023

STRUCTURE-DYNAMICS RELATIONS

$$\frac{\mathrm{d}[T]}{\mathrm{d}t} = \beta[G] - \gamma[T] + \alpha[TG]^* - \phi Nq[G] \langle [TG] \rangle_{\mathrm{cg}}^*$$

linear terms
(independent of spatial structure)

nonlinear terms

(emerge from interactions at forest perimeter)

 $[TG]^*([T])$: **perimeter-area** relation

 $\langle [TG] \rangle_{\operatorname{cg}}^*([T])$: weighted perimeter-area relation

Can be calculated from spatial data

=> test where fire feedbacks are strong enough to cause bistability

EARLY-WARNING SIGNS

Hole of critical size in the forest

CONCLUSIONS

- Hypothesis of tropical tree cover bistability relies on bimodality in observations, but alternative explanations exist
 - => more specific indicators are required
- Processes on extremely different timescales
 - => slow-fast analysis gives forest balance equation
- Spreading processes occur near the forest perimeter
 - => structure-dynamics relations emerge
 - => test where fire-vegetation feedbacks cause bistability
- Explore saddle landscapes
- Explore Ash blocking fire spread for frequent fires