

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA

ANÁLISE NUMÉRICA

 $2^{\mathrm{o}} \; \mathrm{SEMESTRE} \; 2015/2016$

16 de Junho de 2016 2º Teste Duração: **2h00m**

Instruções:

- É obrigatória a apresentação de um documento de identificação.
- Não se aceitam provas ou questões escritas a lápis.
- Não pode responder a diferentes grupos numa mesma folha de resposta.
- O abandono da sala só poderá efetuar-se decorrida uma hora a partir do início da prova e implica a entrega da mesma.
- É permitida a consulta de uma folha A4 manuscrita pelo aluno.
- \bullet É autorizado o uso de máquinas de calcular que respeitem as condições estabelecidas no Ofício-Circular nº 03/DSDC/DES/JNE/2008.
- Não é permitido o manuseamento ou exibição de equipamentos electrónicos durante a prova, excepto a máquina de calcular.

Justifique convenientemente todas as respostas.

- 1. Considere a função $f(x) = x^4 + 2x^3 x 1$ que é crescente em $]0.5, +\infty[$.
- [1.5] (a) Mostre que a equação só tem uma raiz α no intervalo [0.8, 1].
- [3.0] (b) Obtenha uma aproximação de α usando o método da bisseção em [0.8, 1] para 3 iterações.
- [4.0] (c) Verifique que o método de Newton converge para α em [0.8, 1] e use-o para calcular uma aproximação de α com erro absoluto inferior a 0.05.
- [3.5] 2. Calcule o polinómio interpolador de Lagrange da função $f(x) = \sin\left(\frac{\pi x}{6}\right)$ para os nós de interpolação $x_0 = 0$, $x_1 = 1$ e $x_2 = 3$.

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA

ANÁLISE NUMÉRICA

 2° SEMESTRE 2015/2016

16 de Junho de 2016 2º Teste Duração: **2h00m**

[3.5] 3. Considere o seguinte suporte de interpolação de uma certa função f:

x	1.3	1.6	1.9
f(x)	0.62	0.46	0.28

Calcule um valor aproximado de f (1.5) usando a fórmula de Gregory-Newton com diferenças finitas.

[3.0] 4. Aplique a regra dos trapézios para calcular um valor aproximado de

$$I = \int_0^1 \sqrt{1 + 2x} dx,$$

utilizando 4 subintervalos equidistantes. Indique um majorante do erro cometido.

[1.5] 5. Considere a função $f(x) = x^2 - e^x$. Determine uma função g que torne o método do ponto fixo convergente para o único zero de f no intervalo [-1,0].

Fim do teste