Tightening the Two-Sided Bounds of Nevo and Rosen when Instruments are Weak:

An Application of the Property of Transitivity in Correlations

Todd Sørensen University of Nevada and IZA

> Nathan Wiseman University of Nevada

> > Konstanz

May 26, 2015

DGP

DGP

DGP

DGP

Consider the following data generating process:

$$y = x\beta + u$$

OLS

OLS

OLS

$$plim[\beta_{OLS}] = plim[(x'x)^{-1}(x'y)]$$

OLS

$$plim[\beta_{OLS}] = plim[(x'x)^{-1}(x'y)]$$

= $plim[(x'x)^{-1}(x'(x\beta + u))]$

OLS

$$plim[\beta_{OLS}] = plim[(x'x)^{-1}(x'y)]$$

$$= plim[(x'x)^{-1}(x'(x\beta + u))]$$

$$= (x'x)^{-1}(x'x)\beta + plim[(x'x)^{-1}(x'u)]$$

OLS

$$plim[\beta_{OLS}] = plim[(x'x)^{-1}(x'y)]$$

$$= plim[(x'x)^{-1}(x'(x\beta + u))]$$

$$= (x'x)^{-1}(x'x)\beta + plim[(x'x)^{-1}(x'u)]$$

$$= \beta + \frac{\sigma_{xu}}{\sigma_{x}^{2}}$$

OLS

If x is correlated with u, of course OLS will be biased:

$$plim[\beta_{OLS}] = plim[(x'x)^{-1}(x'y)]$$

$$= plim[(x'x)^{-1}(x'(x\beta + u))]$$

$$= (x'x)^{-1}(x'x)\beta + plim[(x'x)^{-1}(x'u)]$$

$$= \beta + \frac{\sigma_{xu}}{\sigma_{x}^{2}}$$

And the asymptotic bias will be

OLS

If x is correlated with u, of course OLS will be biased:

$$plim[\beta_{OLS}] = plim[(x'x)^{-1}(x'y)]$$

$$= plim[(x'x)^{-1}(x'(x\beta + u))]$$

$$= (x'x)^{-1}(x'x)\beta + plim[(x'x)^{-1}(x'u)]$$

$$= \beta + \frac{\sigma_{xu}}{\sigma_{x}^{2}}$$

And the asymptotic bias will be

$$\beta_{OLS} - \beta = \frac{\sigma_{xu}}{\sigma_x^2}$$

IV

One solution is to find some z s.t. $\rho_{xz} \neq 0$ and use IV

One solution is to find some z s.t. $\rho_{xz} \neq 0$ and use IV

$$\beta_{IV} = (z'x)^{-1}(z'y)$$

One solution is to find some z s.t. $\rho_{xz} \neq 0$ and use IV

$$\beta_{IV} = (z'x)^{-1}(z'y)$$

We typically would assume that $ho_{zu}=0$ and move on,

One solution is to find some z s.t. $\rho_{xz} \neq 0$ and use IV

$$\beta_{IV} = (z'x)^{-1}(z'y)$$

We typically would assume that $\rho_{zu}=0$ and move on,

but here we will think of IV causing problems as well when this fails:

$$plim[\beta_{IV}] = plim[(z'x)^{-1}(z'y)]$$

$$plim[\beta_{IV}] = plim[(z'x)^{-1}(z'y)]$$
$$= plim[(z'x)^{-1}(z'(x\beta + u))]$$

$$plim[\beta_{IV}] = plim[(z'x)^{-1}(z'y)]$$

$$= plim[(z'x)^{-1}(z'(x\beta + u))]$$

$$= (z'x)^{-1}(z'x)\beta + plim(z'x)^{-1}(z'u)$$

$$plim[\beta_{IV}] = plim[(z'x)^{-1}(z'y)]$$

$$= plim[(z'x)^{-1}(z'(x\beta + u))]$$

$$= (z'x)^{-1}(z'x)\beta + plim(z'x)^{-1}(z'u)$$

$$= \beta + \frac{\sigma_{zu}}{\sigma_{xz}}$$

$$plim[\beta_{IV}] = plim[(z'x)^{-1}(z'y)]$$

$$= plim[(z'x)^{-1}(z'(x\beta + u))]$$

$$= (z'x)^{-1}(z'x)\beta + plim(z'x)^{-1}(z'u)$$

$$= \beta + \frac{\sigma_{zu}}{\sigma_{Vz}}$$

And the asymptotic bias will be

$$plim[\beta_{IV}] = plim[(z'x)^{-1}(z'y)]$$

$$= plim[(z'x)^{-1}(z'(x\beta + u))]$$

$$= (z'x)^{-1}(z'x)\beta + plim(z'x)^{-1}(z'u)$$

$$= \beta + \frac{\sigma_{zu}}{\sigma_{Vz}}$$

And the asymptotic bias will be

$$\beta_{IV} - \beta = \frac{\sigma_{zu}}{\sigma_{xz}}$$

$$eta_{OLS} - eta = rac{\sigma_{xu}}{\sigma_x^2}$$
 $eta_{IV} - eta = rac{\sigma_{zu}}{\sigma_{xz}}$

$$\beta_{OLS} - \beta = \frac{\sigma_{xu}}{\sigma_x^2}$$
$$\beta_{IV} - \beta = \frac{\sigma_{zu}}{\sigma_{xz}}$$

4 Cases:

$$eta_{OLS} - eta = rac{\sigma_{xu}}{\sigma_x^2}$$
 $eta_{IV} - eta = rac{\sigma_{zu}}{\sigma_{xz}}$

4 Cases: Assume $\rho_{xu}\rho_{zu} > 0$

$$\beta_{OLS} - \beta = \frac{\sigma_{xu}}{\sigma_x^2}$$
$$\beta_{IV} - \beta = \frac{\sigma_{zu}}{\sigma_{xz}}$$

4 Cases: Assume $\rho_{xu}\rho_{zu} > 0$ (will always hold as we can redefine z as z = -w).

$$\beta_{OLS} - \beta = \frac{\sigma_{xu}}{\sigma_x^2}$$
$$\beta_{IV} - \beta = \frac{\sigma_{zu}}{\sigma_{xz}}$$

4 Cases: Assume $\rho_{xu}\rho_{zu} > 0$ (will always hold as we can redefine z as z = -w).

1 $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} > 0$:

$$\beta_{OLS} - \beta = \frac{\sigma_{xu}}{\sigma_x^2}$$
$$\beta_{IV} - \beta = \frac{\sigma_{zu}}{\sigma_{xz}}$$

- **4 Cases**: Assume $\rho_{xu}\rho_{zu} > 0$ (will always hold as we can redefine z as z = -w).
 - $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} > 0$: OLS is biased upward, IV is biased upward.

$$\beta_{OLS} - \beta = \frac{\sigma_{xu}}{\sigma_x^2}$$
$$\beta_{IV} - \beta = \frac{\sigma_{zu}}{\sigma_{xz}}$$

- **4 Cases**: Assume $\rho_{xu}\rho_{zu} > 0$ (will always hold as we can redefine z as z = -w).
 - $\rho_{xu}>0$, $\rho_{zu}>0$, $\rho_{xz}>0$: OLS is biased upward, IV is biased upward.
 - **2** $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} < 0$:

$$\beta_{OLS} - \beta = \frac{\sigma_{xu}}{\sigma_x^2}$$
$$\beta_{IV} - \beta = \frac{\sigma_{zu}}{\sigma_{xz}}$$

- **4 Cases**: Assume $\rho_{xu}\rho_{zu} > 0$ (will always hold as we can redefine z as z = -w).
 - **1** $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} > 0$: OLS is biased upward, IV is biased upward.
 - ② $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} < 0$: OLS is biased upward, IV is biased downwards.

$$\beta_{OLS} - \beta = \frac{\sigma_{xu}}{\sigma_x^2}$$
$$\beta_{IV} - \beta = \frac{\sigma_{zu}}{\sigma_{xz}}$$

- **4 Cases**: Assume $\rho_{xu}\rho_{zu} > 0$ (will always hold as we can redefine z as z = -w).
 - **1** $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} > 0$: OLS is biased upward, IV is biased upward.
 - ② $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} < 0$: OLS is biased upward, IV is biased downwards.
 - **3** $\rho_{xu} < 0$, $\rho_{zu} < 0$, $\rho_{xz} > 0$:

$$\beta_{OLS} - \beta = \frac{\sigma_{xu}}{\sigma_x^2}$$
$$\beta_{IV} - \beta = \frac{\sigma_{zu}}{\sigma_{xz}}$$

- **4 Cases**: Assume $\rho_{xu}\rho_{zu} > 0$ (will always hold as we can redefine z as z = -w).
 - **1** $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} > 0$: OLS is biased upward, IV is biased upward.
 - ② $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} < 0$: OLS is biased upward, IV is biased downwards.
 - **3** ρ_{xu} < 0, ρ_{zu} < 0, ρ_{xz} > 0 : OLS is biased downward, IV is biased downwards.

$$\beta_{OLS} - \beta = \frac{\sigma_{xu}}{\sigma_x^2}$$

$$\beta_{IV} - \beta = \frac{\sigma_{zu}}{\sigma_{xz}}$$

- **4 Cases**: Assume $\rho_{xu}\rho_{zu} > 0$ (will always hold as we can redefine z as z = -w).
 - **1** $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} > 0$: OLS is biased upward, IV is biased upward.
 - ② $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} < 0$: OLS is biased upward, IV is biased downwards.
 - **3** ρ_{xu} < 0, ρ_{zu} < 0, ρ_{xz} > 0 : OLS is biased downward, IV is biased downwards.
 - **1** $\rho_{xu} < 0$, $\rho_{zu} < 0$, $\rho_{xz} < 0$:

$$\beta_{OLS} - \beta = \frac{\sigma_{xu}}{\sigma_x^2}$$
$$\beta_{IV} - \beta = \frac{\sigma_{zu}}{\sigma_{xz}}$$

- **4 Cases**: Assume $\rho_{xu}\rho_{zu} > 0$ (will always hold as we can redefine z as z = -w).
 - $\rho_{xy} > 0$, $\rho_{zy} > 0$, $\rho_{xz} > 0$: OLS is biased upward, IV is biased upward.
 - $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} < 0$: OLS is biased upward, IV is biased downwards.
 - \bullet $\rho_{xu} < 0$, $\rho_{zu} < 0$, $\rho_{xz} > 0$: OLS is biased downward, IV is biased downwards.
 - $\Phi_{xu} < 0$, $\rho_{zu} < 0$, $\rho_{xz} < 0$: OLS is biased downward, IV is biased upward.

Bounding

Bounding

Bounding

Bounding

$$\beta < \min\{\beta_{OLS}, \beta_{IV}\} \tag{1}$$

Bounding

$$\beta < \min\{\beta_{OLS}, \beta_{IV}\} \tag{1}$$

$$\beta < \min\{\beta_{OLS}, \beta_{IV}\}$$
 (1)
$$\beta_{IV} < \beta < \beta_{OLS}$$
 (2)

Bounding

$$\beta < \min\{\beta_{OLS}, \beta_{IV}\} \tag{1}$$

$$\beta_{IV} < \beta < \beta_{OLS}$$
 (2)

$$\max\{\beta_{OLS}, \beta_{IV}\} < \beta \tag{3}$$

Bounding

$$\beta < \min\{\beta_{OLS}, \beta_{IV}\} \tag{1}$$

$$\beta_{IV} < \beta < \beta_{OLS}$$
 (2)

$$\max\{\beta_{OLS}, \beta_{IV}\} < \beta \tag{3}$$

$$\beta_{OLS} < \beta < \beta_{IV}$$
 (4)

New IV

New IV

New IV

$$V(\lambda) = \sigma_X z - \lambda \sigma_Z x$$

New IV

Nevo and Rosen expand on this with a new instrument:

$$V(\lambda) = \sigma_X z - \lambda \sigma_Z x$$

• Bias disappears completely when $\lambda = \lambda^* = \frac{\rho_{zu}}{\rho_{xu}}$

New IV

$$V(\lambda) = \sigma_{\mathsf{X}} \mathsf{Z} - \lambda \sigma_{\mathsf{Z}} \mathsf{X}$$

- Bias disappears completely when $\lambda = \lambda^* = \frac{\rho_{zu}}{\rho_{xu}}$
- This term is unknown

New IV

$$V(\lambda) = \sigma_{\mathsf{X}} \mathsf{Z} - \lambda \sigma_{\mathsf{Z}} \mathsf{X}$$

- ullet Bias disappears completely when $\lambda=\lambda^*=rac{
 ho_{{\scriptscriptstyle Z}{\scriptscriptstyle U}}}{
 ho_{{\scriptscriptstyle X}{\scriptscriptstyle U}}}$
- This term is unknown
- ullet NR take limiting case $\lambda=1$: your IV is no worse than X itself

New IV

$$V(\lambda) = \sigma_{\mathsf{X}} \mathsf{Z} - \lambda \sigma_{\mathsf{Z}} \mathsf{X}$$

- Bias disappears completely when $\lambda = \lambda^* = \frac{\rho_{zu}}{\rho_{xu}}$
- This term is unknown
- NR take limiting case $\lambda=1$: your IV is no worse than X itself
- Even in this case, the IV "V(1)" improves upon OLS

$$\beta < \min\{\beta_{IV}^{V}, \beta_{IV}^{Z}\} \tag{1}$$

$$\beta < \min\{\beta_{IV}^{V}, \beta_{IV}^{Z}\} \tag{1}$$

$$\beta < \min\{\beta_{IV}^{V}, \beta_{IV}^{Z}\}$$

$$\beta_{IV}^{Z} < \beta < \beta_{IV}^{V}$$
(1)

$$\beta < \min\{\beta_{IV}^{V}, \beta_{IV}^{Z}\} \tag{1}$$

$$\beta_{IV}^{Z} < \beta < \beta_{IV}^{V} \tag{2}$$

$$\beta < \min\{\beta_{IV}^{V}, \beta_{IV}^{Z}\}$$

$$\beta_{IV}^{Z} < \beta < \beta_{IV}^{V}$$

$$\max\{\beta_{IV}^{V}, \beta_{IV}^{Z}\} < \beta$$

$$(1)$$

$$(2)$$

$$(3)$$

$$\beta < \min\{\beta_{IV}^V, \beta_{IV}^Z\} \tag{1}$$

$$\beta < \min\{\beta_{IV}^{V}, \beta_{IV}^{Z}\}$$

$$\beta_{IV}^{Z} < \beta < \beta_{IV}^{V}$$
(1)

$$\max\{\beta_{IV}^{V}, \beta_{IV}^{Z}\} < \beta \tag{3}$$
$$\beta_{IV}^{V} < \beta < \beta_{IV}^{Z} \tag{4}$$

$$\beta_{IV}^{V} < \beta < \beta_{IV}^{Z} \tag{4}$$

We Improve Upon these Bounds Further

 We make a complementary contribution in the cases of two sided bounds (2 and 4)

- We make a complementary contribution in the cases of two sided bounds (2 and 4)
- We provided a new bound that will in some cases improve upon IV Z

- We make a complementary contribution in the cases of two sided bounds (2 and 4)
- We provided a new bound that will in some cases improve upon IV Z
- We do this by leveraging the assumptions in this case to introduce a new concept to the econometrics literature:

- We make a complementary contribution in the cases of two sided bounds (2 and 4)
- We provided a new bound that will in some cases improve upon IV Z
- We do this by leveraging the assumptions in this case to introduce a new concept to the econometrics literature:

- We make a complementary contribution in the cases of two sided bounds (2 and 4)
- We provided a new bound that will in some cases improve upon IV Z
- We do this by leveraging the assumptions in this case to introduce a new concept to the econometrics literature:
- Transitivity in Correlations

- We make a complementary contribution in the cases of two sided bounds (2 and 4)
- We provided a new bound that will in some cases improve upon IV Z
- We do this by leveraging the assumptions in this case to introduce a new concept to the econometrics literature:
- Transitivity in Correlations
- Our simulations show that this leads to improved bound and as the IV becomes weaker and more correlated with the unobservables

Transitivity in Correlations

Transitivity in Correlations

Transitivity in Correlations

Transitivity in Correlations

Two publications in the Statistics Literature establish this property.

Transitivity in Correlations

Transitivity in Correlations

Two publications in the Statistics Literature establish this property.

We use these properties, which require no additional assumptions, to derive a new set of bounds.

Intuition

Intuition

Intuition

•
$$\rho_{xu} > 0$$
, $\rho_{zu} > 0$, $\rho_{xz} < 0$

Intuition

- $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} < 0$
- *u* is positively correlated with *x*

Intuition

- $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} < 0$
- u is positively correlated with x
- x is negatively correlated with z

Intuition

- $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} < 0$
- u is positively correlated with x
- x is negatively correlated with z
- transitivity leads us to believe that u will be negatively correlated with z

Intuition

- $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} < 0$
- u is positively correlated with x
- x is negatively correlated with z
- transitivity leads us to believe that u will be negatively correlated with z
- But $\rho_{zu} > 0$ in this case

Intuition

- $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} < 0$
- u is positively correlated with x
- x is negatively correlated with z
- transitivity leads us to believe that u will be negatively correlated with z
- But $\rho_{zu} > 0$ in this case
- So this is a case of intransitive correlations

Intuition

Intuition

•
$$\rho_{xu} < 0$$
, $\rho_{zu} < 0$, $\rho_{xz} < 0$:

Intuition

- $\rho_{xu} < 0$, $\rho_{zu} < 0$, $\rho_{xz} < 0$:
- u is negatively correlated with x

Intuition

- $\rho_{xu} < 0$, $\rho_{zu} < 0$, $\rho_{xz} < 0$:
- u is negatively correlated with x
- x is negatively correlated with z

Intuition

- $\rho_{xu} < 0$, $\rho_{zu} < 0$, $\rho_{xz} < 0$:
- u is negatively correlated with x
- x is negatively correlated with z
- transitivity leads us to believe that u will be positively correlated with z

Intuition

- $\rho_{xu} < 0$, $\rho_{zu} < 0$, $\rho_{xz} < 0$:
- u is negatively correlated with x
- x is negatively correlated with z
- transitivity leads us to believe that u will be positively correlated with z
- But $\rho_{zu} < 0$ in this case

Intuition

- $\rho_{xu} < 0$, $\rho_{zu} < 0$, $\rho_{xz} < 0$:
- u is negatively correlated with x
- x is negatively correlated with z
- transitivity leads us to believe that u will be positively correlated with z
- But $\rho_{zu} < 0$ in this case
- So this is also a case of intransitive correlations

Theorem 1

Theorem 1

Langford et al (2001, *American Statistician*) introduces the concept of transitivity in correlations:

Theorem 1

Langford et al (2001, *American Statistician*) introduces the concept of transitivity in correlations:

Theorem

A sufficient condition for positive correlation between A and C $(\rho_{AC}>0)$, when $\rho_{AB}\rho_{BC}>0$ can be stated as follows: $\rho_{AB}^2+\rho_{BC}^2>1 \implies \rho_{AC}>0$.

Theorem 1

Langford et al (2001, *American Statistician*) introduces the concept of transitivity in correlations:

Theorem

A sufficient condition for positive correlation between A and C $(\rho_{AC}>0)$, when $\rho_{AB}\rho_{BC}>0$ can be stated as follows: $\rho_{AB}^2+\rho_{BC}^2>1 \implies \rho_{AC}>0$.

Or: if two ρ s are big enough, the 3rd one must go the way we expected!

Corollary 1

Corollary 1

We provide the following corollary of *intransitivity in correlations*:

Corollary 1

We provide the following corollary of *intransitivity in correlations*:

Corollary

A necessary condition for negative correlation between A and C ($\rho_{AC} < 0$), when $\rho_{AB}\rho_{BC} > 0$, is as follows: $\rho_{AC} < 0 \implies \rho_{AB}^2 + \rho_{BC}^2 < 1$.

Corollary 1

We provide the following corollary of intransitivity in correlations:

Corollary

A necessary condition for negative correlation between A and C ($\rho_{AC} < 0$), when $\rho_{AB}\rho_{BC} > 0$, is as follows: $\rho_{AC} < 0 \implies \rho_{AB}^2 + \rho_{BC}^2 < 1$.

Or: if the 3rd one didn't go the way we expected, the first two ρ s must not have been big enough!

Theorem 2

Theorem 2

Lepovotsky and Conklin (2004) extend this research with a second theorem

Theorem 2

Lepovotsky and Conklin (2004) extend this research with a second theorem

Theorem

A sufficient condition for negative correlation between A and C ($\rho_{AC} < 0$), when $\rho_{AB}\rho_{BC} < 0$, can be stated as follows: $\rho_{AB}^2 + \rho_{BC}^2 > 1 \implies \rho_{AC} < 0$

Theorem 2

Lepovotsky and Conklin (2004) extend this research with a second theorem

Theorem

A sufficient condition for negative correlation between A and C ($\rho_{AC} < 0$), when $\rho_{AB}\rho_{BC} < 0$, can be stated as follows: $\rho_{AB}^2 + \rho_{BC}^2 > 1 \implies \rho_{AC} < 0$

Same intuition, just in the "negative" case.

Corollary 2

Corollary 2

We again provide a corollary:

Corollary 2

We again provide a corollary:

Corollary

A necessary condition for positive correlation between A and C ($\rho_{AC} > 0$), when $\rho_{AB}\rho_{BC} < 0$, is as follows: $\rho_{AC} > 0 \implies \rho_{AB}^2 + \rho_{BC}^2 < 1$.

Application

Application

Application

•
$$\rho_{xu} < 0$$
, $\rho_{zu} < 0$, $\rho_{xz} < 0$

Application

- $\rho_{xu} < 0$, $\rho_{zu} < 0$, $\rho_{xz} < 0$
- $\quad \bullet \ \, \rho_{xz}\rho_{xu}>0$

Application

- $\rho_{xu} < 0$, $\rho_{zu} < 0$, $\rho_{xz} < 0$
- $\rho_{xz}\rho_{xu} > 0$
- So we use Corrolary 1

Application

- $\rho_{xu} < 0$, $\rho_{zu} < 0$, $\rho_{xz} < 0$
- $\rho_{xz}\rho_{xu} > 0$
- So we use Corrolary 1
- Correspondence A=Z, B=X, C=U tells us that

Application

- $\rho_{xu} < 0$, $\rho_{zu} < 0$, $\rho_{xz} < 0$
- $\rho_{xz}\rho_{xu} > 0$
- So we use Corrolary 1
- Correspondence A=Z, B=X, C=U tells us that
- \bullet $\rho_{zu} < 0$

Application

- $\rho_{xu} < 0$, $\rho_{zu} < 0$, $\rho_{xz} < 0$
- $\rho_{xz}\rho_{xu} > 0$
- So we use Corrolary 1
- Correspondence A=Z, B=X, C=U tells us that
- $\rho_{zu} < 0$ implies $\rho_{xz}^2 + \rho_{xu}^2 < 1$

Application

- $\rho_{xu} < 0$, $\rho_{zu} < 0$, $\rho_{xz} < 0$
- $\rho_{xz}\rho_{xu} > 0$
- So we use Corrolary 1
- Correspondence A=Z, B=X, C=U tells us that
- $\rho_{zu} < 0$ implies $\rho_{xz}^2 + \rho_{xu}^2 < 1$
- Because we would expect $\rho_{zu} > 0$, so there must not be "too much" information in the other two ρ terms.

Application

Application

Application

•
$$\rho_{xu} > 0$$
, $\rho_{zu} > 0$, $\rho_{xz} < 0$

Application

- $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} < 0$
- $\rho_{xz}\rho_{xu}<0$

Application

- $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} < 0$
- $\rho_{xz}\rho_{xu}<0$
- So we use Corollary 2

Application

- $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} < 0$
- $\rho_{xz}\rho_{xu}<0$
- So we use Corollary 2
- Correspondence A=Z, B=X, C=U tells us that

Transitivity in Correlations Application

Application

To Case 2:

- $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} < 0$
- $\rho_{xz}\rho_{xu}<0$
- So we use Corollary 2
- Correspondence A=Z, B=X, C=U tells us that
- \bullet $\rho_{zu} < 0$

Transitivity in Correlations Application

Application

To Case 2:

- $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} < 0$
- $\rho_{xz}\rho_{xu}<0$
- So we use Corollary 2
- Correspondence A=Z, B=X, C=U tells us that
- $\rho_{zu} < 0$ implies $\rho_{xz}^2 + \rho_{xu}^2 < 1$

Transitivity in Correlations Application

Application

To Case 2:

- $\rho_{xu} > 0$, $\rho_{zu} > 0$, $\rho_{xz} < 0$
- $\rho_{xz}\rho_{xu} < 0$
- So we use Corollary 2
- Correspondence A=Z, B=X, C=U tells us that
- $\rho_{zu} < 0$ implies $\rho_{xz}^2 + \rho_{xu}^2 < 1$
- Because we would expect $\rho_{zu} < 0$, so there must not be "too much" information in the other two ρ terms.

Derivation of New Bounds

Derivation of New Bounds

In both cases, we work from

Derivation of New Bounds

In both cases, we work from

$$\rho_{\mathit{xu}}^2 + \rho_{\mathit{xz}}^2 < 1$$

Derivation of New Bounds

In both cases, we work from

$$\rho_{\mathit{xu}}^2 + \rho_{\mathit{xz}}^2 < 1$$

Solving a quadratic inequality for ρ_{xu}

Derivation of New Bounds

In both cases, we work from

$$\rho_{\mathit{xu}}^2 + \rho_{\mathit{xz}}^2 < 1$$

Solving a quadratic inequality for ρ_{xu}

$$\rho_{xu}^2 < 1 - \rho_{xz}^2$$

Derivation of New Bounds

In both cases, we work from

$$\rho_{\mathit{xu}}^2 + \rho_{\mathit{xz}}^2 < 1$$

Solving a quadratic inequality for ρ_{xu}

$$\begin{array}{ccc} \rho_{xu}^2 & < & 1 - \rho_{xz}^2 \\ \frac{\sigma_{xu}}{\sigma_x \sigma_u} = \rho_{xu} & \in & \pm \sqrt{1 - \rho_{xz}^2} \end{array}$$

Derivation of New Bounds

Derivation of New Bounds

Multiplying by $\frac{\sigma_u}{\sigma_x}$

Derivation of New Bounds

Multiplying by $\frac{\sigma_u}{\sigma_x}$

$$\frac{\sigma_{xu}}{\sigma_x^2} = (\beta_{OLS} - \beta) \in \pm \frac{\sigma_u}{\sigma_x} \sqrt{1 - \rho_{xz}^2}$$

Derivation of New Bounds

Derivation of New Bounds

Derivation of New Bounds

$$-\beta \in \pm \frac{\sigma_u}{\sigma_x} \sqrt{1 - \rho_{xz}^2} - \beta_{OLS}$$

Derivation of New Bounds

$$-\beta \in \pm \frac{\sigma_u}{\sigma_x} \sqrt{1 - \rho_{xz}^2} - \beta_{OLS}$$
$$\beta \in \beta_{OLS} \pm \frac{\sigma_u}{\sigma_x} \sqrt{1 - \rho_{xz}^2}$$

Derivation of New Bounds

$$-\beta \in \pm \frac{\sigma_{u}}{\sigma_{x}} \sqrt{1 - \rho_{xz}^{2}} - \beta_{OLS}$$
$$\beta \in \beta_{OLS} \pm \frac{\sigma_{u}}{\sigma_{x}} \sqrt{1 - \rho_{xz}^{2}}$$
$$\beta \in (\beta_{L}, \beta_{U})$$

Evaluating New Bounds

In Case 2 (4), OLS was an upper (lower) bound dominated by NR's new bound.

Evaluating New Bounds

In Case 2 (4), OLS was an upper (lower) bound dominated by NR's new bound.

So in Case 2, we are interested in β_L , and in Case 4 in β_H .

Evaluating New Bounds

In Case 2 (4), OLS was an upper (lower) bound dominated by NR's new bound.

So in Case 2, we are interested in β_L , and in Case 4 in β_H .

We can then express the bounds as

Evaluating New Bounds

In Case 2 (4), OLS was an upper (lower) bound dominated by NR's new bound.

$$\beta \ < \min\{\beta_{IV}^V, \beta_{IV}^Z\}$$

Evaluating New Bounds

In Case 2 (4), OLS was an upper (lower) bound dominated by NR's new bound.

$$\begin{array}{ll} \beta & < \min\{\beta_{IV}^V, \beta_{IV}^Z\} \\ \max(\beta_{IV}^Z, \beta_L) < & \beta & < \beta_{IV}^V \end{array}$$

Evaluating New Bounds

In Case 2 (4), OLS was an upper (lower) bound dominated by NR's new bound.

$$\begin{array}{ccc} \beta & < \min\{\beta_{IV}^{V}, \beta_{IV}^{Z}\} \\ \max(\beta_{IV}^{Z}, \beta_{L}) < & \beta & < \beta_{IV}^{V} \\ \max\{\beta_{IV}^{V}, \beta_{IV}^{Z}\} < & \beta \end{array}$$

Evaluating New Bounds

In Case 2 (4), OLS was an upper (lower) bound dominated by NR's new bound.

$$\begin{array}{ccc} \beta & < \min\{\beta_{IV}^{V}, \beta_{IV}^{Z}\} \\ \max(\beta_{IV}^{Z}, \beta_{L}) < & \beta & < \beta_{IV}^{V} \\ \max\{\beta_{IV}^{V}, \beta_{IV}^{Z}\} < & \beta \\ \beta_{IV}^{V} < & \beta & < \min(\beta_{IV}^{Z}, \beta_{H}) \end{array}$$

Evaluating New Bounds

• Let's focus on Case 2.

- Let's focus on Case 2.
- We might do better then IV:

- Let's focus on Case 2.
- We might do better then IV:
- This bound will be tighter as ρ_{xz} become smaller

- Let's focus on Case 2.
- We might do better then IV:
- This bound will be tighter as ρ_{xz} become smaller
- And also as everything goes to hell with regular IV (ρ_{xz} smaller, ρ_{zu} bigger)

- Let's focus on Case 2.
- We might do better then IV:
- This bound will be tighter as ρ_{xz} become smaller
- And also as everything goes to hell with regular IV (ρ_{xz} smaller, ρ_{zu} bigger)
- We now turn to simulations

•
$$y = .5x + u$$

•
$$y = .5x + u$$

•
$$x = e_1 - \alpha_1 \times c + \alpha_2 \times u$$

•
$$y = .5x + u$$

•
$$x = e_1 - \alpha_1 \times c + \alpha_2 \times u$$

•
$$z = e_2 - \alpha_3 \times c + \alpha_4 \times u$$

DGP

•
$$y = .5x + u$$

•
$$x = e_1 - \alpha_1 \times c + \alpha_2 \times u$$

•
$$z = e_2 - \alpha_3 \times c + \alpha_4 \times u$$

• α_1 , α_3 are uniform(0,2)

Simulation DGP

DGP

•
$$y = .5x + u$$

•
$$x = e_1 - \alpha_1 \times c + \alpha_2 \times u$$

•
$$z = e_2 - \alpha_3 \times c + \alpha_4 \times u$$

- α_1 , α_3 are uniform(0,2)
- α_2 , α_4 are uniform(0,1)

Simulation DGP

DGP

•
$$y = .5x + u$$

•
$$x = e_1 - \alpha_1 \times c + \alpha_2 \times u$$

•
$$z = e_2 - \alpha_3 \times c + \alpha_4 \times u$$

- α_1 , α_3 are uniform(0,2)
- α_2 , α_4 are uniform(0,1)
- Other terms are N(0,1)

Simulations

Simulations

• Dataset: N=1,000,000

Simulations

• Dataset: N=1,000,000

• 100,000 Simulations

Simulations

Dataset: N=1,000,000

• 100,000 Simulations

Tables Below

Simulations

• Dataset: N=1,000,000

100,000 Simulations

Tables Below

ullet Columns: midpoint of $\lambda=rac{
ho_{zu}}{
ho_{xu}}$ bin

Simulations

- Dataset: N=1,000,000
- 100,000 Simulations
- Tables Below
- Columns: midpoint of $\lambda = \frac{\rho_{zu}}{\rho_{xu}}$ bin
- ullet Rows: midpoint of $ho_{\it xz}$ bin

Simulation Counts

Number of Iterations in Each Bin

Simulation Counts

Number of Iterations in Each Bin

	.05	.15	.25	.35	.45	.55	.65	.75	.85	.95	
-0.75	480	361	329	250	220	182	171	141	139	102	
-0.65	1441	1353	1139	1142	991	822	694	672	574	553	
-0.55	1538	1459	1495	1442	1403	1325	1214	1147	1078	957	
-0.45	1474	1483	1470	1413	1436	1455	1390	1396	1412	1226	
-0.35	1471	1526	1408	1447	1447	1413	1448	1465	1361	1281	
-0.25	1427	1551	1469	1491	1416	1469	1432	1461	1376	1338	
-0.15	1590	1630	1590	1497	1540	1617	1581	1522	1464	1288	
-0.05	1991	1791	1761	1740	1656	1779	1707	1663	1511	1416	

Simulation IV

IV

Simulation IV

IV

		.05	.15	.25	.35	.45	.55	.65	.75	
	-0.75	0.492	0.479	0.469	0.458	0.449	0.445	0.439	0.435	
	-0.65	0.488	0.464	0.443	0.425	0.408	0.393	0.380	0.368	
	-0.55	0.481	0.446	0.412	0.383	0.355	0.331	0.307	0.286	
	-0.45	0.471	0.419	0.370	0.323	0.285	0.246	0.209	0.181	
	-0.35	0.457	0.378	0.302	0.234	0.173	0.114	0.062	0.010	
	-0.25	0.432	0.305	0.183	0.078	-0.024	-0.126	-0.213	-0.298	
	-0.15	0.374	0.138	-0.093	-0.298	-0.502	-0.698	-0.862	-1.018	
	-0.05	-2.940	-3.786	-8.123	-15.890	-11.365	-16.597	-18.315	-22.781	

Simulation Our Lower Bound

Our Lower Bound

Simulation Our Lower Bound

Our Lower Bound

		.05	.15	.25	.35	.45	.55	.65	.75	.85
-	-0.75	0.036	0.025	0.006	-0.004	-0.006	-0.024	-0.026	-0.033	-0.03
	-0.65	0.074	0.066	0.058	0.053	0.040	0.030	0.015	0.006	-0.00
	-0.55	0.095	0.078	0.078	0.074	0.071	0.062	0.056	0.054	0.043
	-0.45	0.123	0.107	0.097	0.094	0.081	0.090	0.079	0.069	0.07
	-0.35	0.142	0.128	0.129	0.119	0.103	0.097	0.094	0.087	0.084
	-0.25	0.179	0.162	0.153	0.139	0.126	0.119	0.116	0.098	0.094
	-0.15	0.202	0.183	0.178	0.160	0.150	0.138	0.119	0.121	0.08
	-0.05	0.208	0.199	0.199	0.172	0.167	0.150	0.137	0.111	0.089
-										

Simulation Share with Improvement

Share with Improvement

Simulation Share with Improvement

Share with Improvement

	.05	.15	.25	.35	.45	.55	.65	.75	.85
-0.75	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-0.65	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-0.55	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.007
-0.45	0.000	0.000	0.005	0.035	0.086	0.160	0.261	0.353	0.431
-0.35	0.000	0.056	0.205	0.340	0.459	0.565	0.649	0.706	0.766
-0.25	0.062	0.318	0.521	0.628	0.720	0.799	0.847	0.872	0.900
-0.15	0.242	0.590	0.760	0.846	0.880	0.920	0.937	0.961	0.958
-0.05	0.627	0.894	0.949	0.967	0.982	0.987	0.985	0.996	0.992

Earlier Work

Earlier Work

 When we assume direction of bias, IV and OLS provide us with bounds

Earlier Work

- When we assume direction of bias, IV and OLS provide us with bounds
- These are two sided in two of four cases

Earlier Work

- When we assume direction of bias, IV and OLS provide us with bounds
- These are two sided in two of four cases
- Nevo and Rosen improve either lower or upper bound in this case

Our Contribution

• We introduce the concept of *transitivity in correlations* to the econometrics literature for the first time

- We introduce the concept of *transitivity in correlations* to the econometrics literature for the first time
- We show that the two sided bounds represent intransitive correlations

- We introduce the concept of transitivity in correlations to the econometrics literature for the first time
- We show that the two sided bounds represent intransitive correlations
- This provides us with new information

- We introduce the concept of transitivity in correlations to the econometrics literature for the first time
- We show that the two sided bounds represent intransitive correlations
- This provides us with new information
- The new information provides us with new bounds, which may improve upon the bound NR did not improve upon

- We introduce the concept of transitivity in correlations to the econometrics literature for the first time
- We show that the two sided bounds represent intransitive correlations
- This provides us with new information
- The new information provides us with new bounds, which may improve upon the bound NR did not improve upon
- Improvement most likely when IV is more invalid or weaker

- We introduce the concept of transitivity in correlations to the econometrics literature for the first time
- We show that the two sided bounds represent intransitive correlations
- This provides us with new information
- The new information provides us with new bounds, which may improve upon the bound NR did not improve upon
- Improvement most likely when IV is more invalid or weaker

