

Александр Петюшко, к.ф.-м.н.

Илья Иванов, к.ф.-м.н.

Нейронные сети: история вопроса

- 1943 Маккалок и Питтс формализуют понятие нейрона
- 1949 Хебб предлагает первый алгоритм обучения
- 1958 Розенблатт изобретает однослойный персептрон и демонстрирует его способность решать задачу классификации
- 1974 Галушкин и Вербос предлагают метод обратного распространения ошибки (впоследствии улучшен Хинтоном в 1986)
- 1975-1980 Фукусима предлагает мощную модель когнитрона и неокогнитрона (прототип сверточных сетей)
- 1989 Лекун представляет первую работу по объединению свёрточных нейросетей и метода обратного распространения ошибки
- 2012 Крижевский и Хинтон публикуют первую успешную глубокую классификационную нейросеть **AlexNet**

Неокогнитрон

- Фукусима предложил практически современный метод построения архитектуры нейросетей, заимствованный им из модели первичной зрительной коры
- Два вида нейронов:
 - Простые (<u>Simple</u>), отвечающие за локальные признаки
 - Сложные (<u>Complex</u>), отвечающие за компенсацию искажения
 - Организованы в каскадную структуру SCSCSC...
 - В сверточной сети **S**=свертка, **C**=субдискретизация
- Главный минус: не было предложено метода обратного распространения ошибки для обучения

Нейронные сети: предпосылки успеха

- Несмотря на то, что весь математический аппарат был готов уже к середине 80-х годов прошлого века, революция в компьютерном зрении произошла только в 2012 году
- Основные причины начала новой эры в нейронных сетях
 - Появились большие наборы данных для обучения (~10⁶ изображений)
 - Появились мощные видеокарты для обучения нейронных сетей
 - Открытость исследований (arxiv.org, github.com)

Свертка: основа компьютерного зрения

- Слой субдискретизации решает две проблемы:
 - Снижает пространственную размерность
 - Помогает не переобучаться

Субдискретизация

1	m	2	ø
7	4	1	5
8	5	2	3
4	2	1	4

7	9
8	

ReLU(x) = max(0, x)

Активация: оставляем наиболее значимую информацию

Визуализация работы сверточной сети

Необходимое оборудование: NVIDIA- видеокарты

- На данный момент обучение нейросетей немыслимо без использования видеокарт (GPU, graphical processing unit) от NVIDIA
- Для обучения промышленных нейросетей (например, как
 Mask R-CNN) необходим объем памяти GPU от 12-16 ГБ
 - В силу этого подходящие карты на данный момент: Titan X, GTX 1080 Ti, P100, V100
 - Для любого проекта необходимо обеспечить доступ к данному оборудованию (например, удаленно через ssh)

Компьютерное зрение: классификация

Основные представители:

2012 – AlexNet

2014 - VGGNet

2014 - GoogleNet/Inception

2015 - ResNet

2017 - MobileNet

2017 - NASNet/PNASNet

- Задача: отнести входное изображение к одному из классов
 - По фотографии человека определить пол, возраст и т.д
 - По фотографии автомобиля определить марку и модель
- Самая простая задача компьютерного зрения
 - Решается с помощью сверточных нейросетей (СНС)
- Проблема: двусмысленность изображений
 - Не любое изображение можно описать одним классом (см. ниже)

Сено, лошадь или женщина?

Faster R-CNN

Компьютерное зрение: детекция

Основные представители:

2013 - Overfeat

2014 - R-CNN

2015 - Faster R-CNN

2015 - YOLO

2015 - SSD

2016 - R-FCN

- Задача: по входному изображению требуется найти объекты заранее заданных классов и обвести их прямоугольником
- Сложнее, чем классификация, так как необходимо не только распознать класс, но и локализовать объект
- Существуют алгоритмы, которые решают эту задачу (в т.ч. в реальном времени)
 - Faster R-CNN, YOLO, SSD

Компьютерное зрение: сегментация

Основные представители:

2014 - FCN

2015 - U-Net

2015 - SegNet

2016 - RefineNet

2016 - PSPNet

2017 – Mask R-CNN

- Задача: по входному изображению найти объекты заранее заданных классов и выдать попиксельную маску объекта
- Сложнее, чем детекция, так как необходимо точно определять границы объекта (а не просто заключить в прямоугольник)
- На данный момент существуют алгоритмы-комбайны (решающие одновременно задачи распознавания, детекции и сегментации)
 - Пока не работают в реальном времени (Mask R-CNN)

Улучшение изображений: НейроСверх-разрешение

Метод сверх-разрешения	PSNR
Бикубическая интерполяция	24.32 dB
Бикубическая интерполяция + GIMP	24.69 dB
Бикубическая интерполяция + Photoshop	24.72 dB
НейроСверх-разрешение	27.20 dB

- Задача: увеличить разрешение фотографии / видео-кадра
 - Применяется нейронная сеть, заранее обученная на множестве картинок / видео (ESPCN)
 - Цель: победить классические алгоритмы

Бикубическая интерполяция: PSNR = 24.32 НейроСверх-разрешение: PSNR = 27.20

ESPCN, 2016

Малоразмерный вход

x4

- Задача: улучшить качество дефектных изооражений
 - Устранить смаз и размытие (ShallowCNN)
 - Удалить артефакты, являющиеся результатом попытки устранить дефекты зашитым в камере алгоритмом (SRGAN)

Улучшение изображений: устранение дефектов

Классический

Коммерческое

Нейросетевое

«Сырое» изображение с камеры

Устранение дефектов внутри камеры

Классическая нейросеть

Нейросеть с генератором

Пример задачи: распознавание автомобильных номеров

- Задача: по видеопотоку детектировать транспортное средство и распознать госномер
- Как правило, такие системы состоят из следующих моделей:
 - Детектирование автомобиля
 - Распознавание марки и модели (опционально)
 - Трекинг автомобиля
 - Детектирование номера
 - Распознавание номера
 - Объединение результатов с разных кадров / поиск ключевых кадров

Пример задачи: реидентификация пешеходов

- Задача: идентификация пешеходов на камерах наблюдения
- Задача сводится к решения следующих подзадач
 - Предобработка
 - Детектирование пешеходов
 - Трекинг пешеходов
 - Извлечение признаков
 - Поиск в пространстве признаков

Пример задачи: распознавание лиц

- Задача: по входному изображению лица распознать человека.
 Есть два подтипа задач:
 - Верификация принадлежат ли две входные картинки одному человеку?
 - Идентификация нахождение в базе данных человека,
 фотография которого подана на вход
- Решается с помощью СНС, но главная особенность нахождение N-мерного вектора признаков, соответствующего данному человеку

