1a) Fundamentals of Artificial Intelligence (AI)

Artificial Intelligence (AI) is a broad field of computer science focused on building systems capable of performing tasks that typically require human intelligence. These tasks include reasoning, learning, problem-solving, perception, language understanding, and even creativity.

Core fundamentals of AI are:

1. Definition of AI

AI refers to the simulation of human intelligence in machines that are programmed to think and learn. The term was first coined by **John McCarthy** in 1956.

2. Branches of AI

a. Machine Learning (ML)

- Enables systems to learn from data and improve over time without being explicitly programmed.
- Types:
 - Supervised learning
 - o Unsupervised learning
 - o Reinforcement learning

b. Deep Learning

• A subset of ML using neural networks with many layers (e.g., CNNs, RNNs).

c. Natural Language Processing (NLP)

• Allows machines to understand and interpret human language (e.g., chatbots, translation tools).

d. Computer Vision

• Enables machines to understand and process visual data from the world (e.g., image recognition).

e. Robotics

 Combines AI with mechanical engineering to create machines that can perform tasks physically.

3. Core Concepts in AI

Concept Description

Agents An entity that perceives its environment and takes actions.

Search Algorithms Used for decision-making and problem-solving (e.g., A*, BFS, DFS).

Knowledge Ways to structure and store facts/rules about the world (e.g., semantic

Representation networks, ontologies).

Reasoning and Drawing conclusions from known information using logic (e.g., propositional

Inference and predicate logic).

Planning

AI plans a sequence of actions to achieve a goal (e.g., STRIPS, Planning

Graphs).

Learning The process of improving performance based on experience (includes ML,

deep learning).

Perception Ability to interpret sensory data to understand the environment (e.g., voice or

image recognition).

4. Applications of AI

• **Healthcare** (diagnostics, drug discovery)

- **Finance** (fraud detection, algorithmic trading)
- **Transportation** (self-driving cars)
- **Customer Service** (chatbots, virtual assistants)
- **Gaming** (AI opponents, game strategy)
- **Security** (facial recognition, threat detection)

5. Ethics and Challenges

- **Bias and fairness** in algorithms
- Data privacy and security
- Job displacement
- Transparency and explainability
- AI alignment and safety

6. Popular Tools and Languages

- Languages: Python, R, Java
- Libraries/Frameworks:
 - TensorFlow, PyTorch (Deep Learning)

- Scikit-learn (Machine Learning)
- OpenCV (Computer Vision)
- o NLTK, SpaCy (NLP)

7. Key AI Milestones

- 1950 Alan Turing proposes the Turing Test.
- 1956 Dartmouth Conference: Birth of AI.
- 1997 IBM's Deep Blue beats chess champion Garry Kasparov.
- 2016 AlphaGo beats Go champion Lee Sedol.
- 2020s Generative AI (e.g., ChatGPT) becomes mainstream.

1b): Fundamentals of Machine Learning

What is Machine Learning?

Machine Learning (ML) is a subset of Artificial Intelligence (AI) that focuses on building systems that learn from data and improve performance over time without being explicitly programmed.

Key Components of ML

Component Description

Data The foundation of ML; used to train and test models.

Model A mathematical representation that makes predictions.

Learning Algorithm The method used to train a model (e.g., gradient descent).

Training The process of feeding data to the model so it can learn patterns.

Prediction The model's output on new or unseen data.

Types of Machine Learning

1. Supervised Learning

- **Labeled data** is used (input-output pairs).
- The model learns a function to map inputs to outputs.
- **Examples**: Spam detection, image classification, regression

Algorithms: Linear Regression, Logistic Regression, Decision Trees, SVM, Neural Networks

2. Unsupervised Learning

- Uses unlabeled data.
- The model finds hidden patterns or groupings.
- **Examples**: Customer segmentation, anomaly detection

Algorithms: K-Means, Hierarchical Clustering, PCA, Autoencoders

3. Reinforcement Learning

- An agent learns by **interacting with an environment**.
- Rewards and penalties are used to guide learning.
- Examples: Game playing, robotics, autonomous vehicles

Techniques: Q-learning, Deep Q-Networks (DQN), Policy Gradients

Common ML Tasks

Task Description

Classification Predicting categories (e.g., spam or not spam)

Regression Predicting continuous values (e.g., house prices)

Clustering Grouping similar items (e.g., customer segments)

Dimensionality Reduction Reducing the number of input features

Anomaly Detection Identifying rare or unusual data points

Model Evaluation Metrics

For Classification:

- Accuracy
- Precision
- Recall
- F1-Score
- Confusion Matrix

For Regression:

- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- R² Score

Tools and Libraries

- Programming Languages: Python, R
- Libraries:
 - o Scikit-learn General ML
 - o **TensorFlow / PyTorch** Deep Learning
 - o **Pandas / NumPy** Data processing
 - o **Matplotlib / Seaborn** Visualization

Challenges in ML

- Overfitting vs Underfitting
- Data quality and bias
- Model interpretability
- Scalability
- Ethical concerns

Real-World Applications

- Fraud detection
- Personalized recommendations
- Medical diagnosis
- Speech recognition
- Self-driving cars

Summary

Term Meaning

ML Machines learning patterns from data

Supervised Learn with labeled data

Unsupervised Discover hidden structures in data

Reinforcement Learn through interaction and feedback