Cálculo III

Lista 10 - Teorema de Green

Use o Teorema de Green para calcular a integral de linha ao longo da curva dada, com orientação positiva.

- 1. $\oint_C ye^x dx + 2e^x dy$, C é o retângulo com vértices (0,0), (3,0), (3,4) e (0,4)Resposta: $4(e^3-1)$
- 2. $\oint_C (x^2 + y^2) dx + (x^2 y^2) dy$, C é o triângulo com vértices (0,0), (2,1) e (0,1) Resposta: 0
- 3. $\oint_C (y + e^{\sqrt{x}}) dx + (2x + \cos y^2) dy$, C é o limite da região englobada pelas parábolas $y = x^2$ e $x = y^2$
- 4. $\oint_C \cos y \, dx + x^2 \sin y \, dy$, C é o retângulo com vértices (0,0), (5,0), (5,2) e (0,2)
- 5. $\oint_C y^3 dx x^3 dy$, C é o círculo $x^2 + y^2 = 4$ Resposta: -24π
- 6. $\oint_C xe^{-2x} dx + (x^4 + 2x^2y^2) dy$, C é o limite da região entre os círculos $x^2 + y^2 = 1$ e $x^2 + y^2 = 4$ Resposta: **FAZER**

Use o Teorema de Green para calcular $\int_C \mathbf{F} \cdot d\mathbf{r}$, verificando a orientação da curva antes de aplicar o teorema.

- 7. $\mathbf{F}(x,y) = \langle y \cos x xy \sin x, \, xy + x \cos x \rangle,$ C 'e o triângulo de (0,0) a (0,4) a (2,0) a (0,0)Resposta: $-\frac{16}{3}$
- 8. $\mathbf{F}(x,y) = \langle e^{-x} + y^2, e^{-y} + x^2 \rangle$, C consiste no arco da curva $y = \cos x$ de $\left(-\frac{\pi}{2},0\right)$ a $\left(\frac{\pi}{2},0\right)$ e no seguimento de reta de $\left(\frac{\pi}{2},0\right)$ a $\left(-\frac{\pi}{2},0\right)$
- 9. $\mathbf{F}(x,y) = \langle y \cos y, x \sin y \rangle$, C é o círculo $(x-3)^2 + (y+4)^2 = 4$ orientado no sentido horário

 Resposta: 4π
- 10. $\mathbf{F}(x,y) = \langle \sqrt{x^2 + 1}, \arctan x \rangle$, C é o triângulo de (0,0) a (1,1) a (0,1) a (0,0)Resposta: $\frac{\pi - 2 \ln(2)}{4}$

Referência

STEWART, James. Cálculo: volume 2. 8ª ed. São Paulo, SP: Cengage Learning, 2016. ISBN 9788522125845.