99-91

問題文

 90 Srは以下に示す放射壊変により、放射性核種 90 Yを経て、 90 Zrの安定核種になる。 90 Yの放射能の時間 推移を示す曲線はどれか。 10 選べ。ただし、時間ゼロにおける 90 Srの放射能は 5 X10 4 Bgとする。

90
Sr $\xrightarrow{\beta^-}$ 90 Y $\xrightarrow{\beta^-}$ 90 Zr
矢印の下の数字は半減期を示す。

解答

3

解説

まず、t=0 の時、 90 Y はまだ無いはずです。つまり、放射能の強さは 0 のはずです。よって、正解は 3 , 4 のどちらかです。

次に、今回の放射壊変は、親の半減期(90 Sr の半減期: $^{28.8}$ 年)が娘の半減期よりも、圧倒的に長いため永続平衡です。永続平衡では、ある程度時間がたつと、娘核種の放射能と、親核種の放射能が等しくなります。ある程度時間が経った時、半減期が数年かかる親核種の 90 Sr の放射能は、ほぼ 5 0 0 0 0 と考えてよいです。よって、時間が経つにつれ、 50,000 Bq 付近に近づく曲線が正解です。

以上より、正解は3です。