Introduction, Gradient Descent, and A1

CSE 447 / 517 January 6th, 2022 (Week 1)

Eisenstein (2019) 2, Appendix B

Logistics

- Submit the Academic Integrity Form on Canvas
- Submit the poll of virtual sections on Canvas by Friday (1/7) 11:59 PM
- Assignment 1 (A1) is due on Wednesday, 1/12
- Quiz 1 is due on Monday, 1/10
 - The quiz will be on **multinomial logistic regression**.
 - It is graded based on **completion** and contributes to your participation points.
 - We will go over the quiz in the section next week.

Agenda

- Binary Logistic Regression
- Gradient Descent
- A1 Overview / Q&A

Feature Vectors

- The features fully determine what a learned model "sees" about an example.
- We often stack the features into a feature vector:

$$oldsymbol{\phi}(oldsymbol{x}) \in \mathbb{R}^d$$

- which "embeds" the input x in d-dimensional space
- Example feature from lecture: word frequencies, idf... You can stack them to be a feature vector!

Logistic Regression

A logistic regression model usually has:

- A collection of feature functions, denoted $\phi_1, \ldots \phi_d$ each mapping $\mathcal{V}^* o \mathbb{R}$.
- A coefficient or "weight" for every feature, denoted θ_1,\dots,θ_d each $\in \mathbb{R}$

Binary Logistic Regression

The label set is
$$\mathcal{L}=\{+1,-1\}$$
. the labels are arbitrary and can be changed as long as the classify() function is modified accordingly!

$$ext{score}_{ ext{LR}}(\boldsymbol{x}; \boldsymbol{\theta}) = \sum_{j=1}^d \theta_j \phi_j(\boldsymbol{x}) = \boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\boldsymbol{x})$$

 $ext{classify}_{ ext{LR}}(\boldsymbol{x}) = ext{sign}(ext{score}_{ ext{LR}}(\boldsymbol{x}; \boldsymbol{\theta}))$

Binary Logistic Regression

$$p_{LR}(Y=y\,|\,\mathbf{X}=\mathbf{x},\, heta) = \sigma(y\cdot \mathrm{score}_{LR}(\mathbf{x},\, heta))$$
 from Lecture Slide 40 $=\sigma(y\cdot \left(heta^ op\phi(\mathbf{x})
ight))$ apply the definition of the score function $=rac{1}{1+e^{-(y\cdot (heta^ op\phi(\mathbf{x})))}}$ apply the definition of the standard logistic function

Symbol	Definition	Scalar / Vector
x	Input	Vector
У	Output	Scalar
θ	Parameters	Vector
φ(x)	Feature vector (Lecture Slide 31)	Vector

Goal: Given a dataset $\mathcal{D} = \{(\boldsymbol{x}^{(i)}, y^{(i)})\}_{i=1}^N$, find the weights θ^* by maximum likelihood estimation.

$$egin{aligned} m{ heta}^* &= rg \max_{m{ heta} \in \mathbb{R}^d} \prod_{i=1}^n p_{\mathrm{LR}}(Y = y_i \mid m{X} = m{x}_i; m{ heta}) \ &= rg \max_{m{ heta} \in \mathbb{R}^d} \sum_{i=1}^n \log p_{\mathrm{LR}}(Y = y_i \mid m{X} = m{x}_i; m{ heta}) \ &= rg \min_{m{ heta} \in \mathbb{R}^d} \sum_{i=1}^n \underbrace{-\log p_{\mathrm{LR}}(Y = y_i \mid m{X} = m{x}_i; m{ heta})}_{ ext{sometimes called "log loss" or "cross entropy"} \end{aligned}$$

Goal: Given a dataset $\mathcal{D} = \{(\boldsymbol{x}^{(i)}, y^{(i)})\}_{i=1}^N$, find the weights θ^* by maximum likelihood estimation.

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \underbrace{\sum_{i=1}^n \log \left(1 + \exp\left(-y_i \cdot \boldsymbol{\theta}^\top \boldsymbol{\phi}(\boldsymbol{x}_i) \right) \right)}_{\operatorname{loss}(\boldsymbol{\theta})}$$

apply the definition of p_{IR} that we found in Section Slide 4

Big idea: minimize the loss by "optimization along the (negative) gradient".

Step 1: finding the gradient.

Start from the loss function:

$$ext{loss} = \sum_{i=1}^n \log \left(1 + \exp(-y_i \cdot heta^ op \phi(\mathbf{x_i}))
ight)$$

Differentiate with respect to the parameters:

$$rac{\partial ext{loss}}{\partial heta} = \sum_{i=1}^n rac{\exp\left(-y_i \cdot heta^ op \phi(\mathbf{x_i})
ight)}{1 + \exp\left(-y_i \cdot heta^ op \phi(\mathbf{x_i})
ight)} \cdot -y_i \cdot \phi(x_i)$$

Step 1: finding the gradient.

Simplify the gradient:

$$egin{aligned} rac{\partial ext{loss}}{\partial heta} &= \sum_{i=1}^n \left(1 - \sigmaig(y_i \cdot heta^ op \phi(\mathbf{x_i})ig)
ight) \cdot -y_i \cdot \phi(\mathbf{x_i}) \ &= \sum_{i=1}^n (1 - \sigma(y_i \cdot ext{score}_{\operatorname{LR}}(\mathbf{x}; \, heta))) \cdot -y_i \cdot \phi(\mathbf{x_i}) \ &= \sum_{i=1}^n (1 - \operatorname{p}_{\operatorname{LR}}(Y = y_i \, | \, \mathbf{X} = \mathbf{x_i}, heta)) \cdot -y_i \cdot \phi(\mathbf{x_i}) \end{aligned}$$

Step 2: take a step.

Update the parameters:

$$\theta \leftarrow \theta - \alpha \frac{\partial loss}{\partial \theta}$$

where a is the learning rate.

Step 3: repeat Step 1-2 until converge (i.e. loss basically stops decreasing).

Things to consider: how to choose learning rate? Another hyperparameter!

From https://www.jeremyjordan.me/nn-learning-rate/

Stochastic Gradient Descent

Input: initial value θ , number of epochs T, learning rate α

For
$$t \in \{1, ..., T\}$$
:

- ▶ Choose a random permutation π of $\{1, ..., N\}$.
- ▶ For $i \in \{1, ..., N\}$:

$$\boldsymbol{\theta} \leftarrow \mathbf{w} - \alpha \cdot \nabla_{\boldsymbol{\theta}} g_{\pi(i)}$$

Output: θ

A1 - Overview

Preparing the data:

- Randomly selected 400 samples, set them aside as test set (you never touch this until evaluation)
- Tokenization (split texts into "tokens")

Build a classifier:

- Sentiment lexicon-based classifier
- Logistic regression classifier
 - You pick the text features
 - You have to implement gradient descent

Evaluate your model

Use the test set to compute accuracy and F1 score

Test the significance (extra credit)

See Eisenstein (2019) Section 4.4.3 (p.g. 84-87)