<u>Distributed Control Systems-EE601</u> <u>Course Project</u>

Prof: Dr. Parijat Bhowmick

Problem statement:

Apply the cooperative control law in on a group of two-input-two-output double integrator systems (represents the feedback-linearized version of a two-wheeled mobile robot having non-holonomic constraints) to achieve group formation tracking specified by the formation reference vector **r** and formation configuration vector **h**.

The cooperative control law is given by,

$$\begin{cases} u_i = (c_i + \rho_i)K\xi_i + \gamma_i - \mu f(\xi_i) \\ \dot{c}_i = \xi_i^T \Gamma \xi_i \end{cases} \forall i \in F$$

Theory:

The objective of our project is to perform the coordination control of a multiagent MIMO system. The above-mentioned control law is applied to achieve group formation tracking specified by the formation reference vector r and formation configuration vector h.

In the cooperative control law,

 $u_i \!\!=\! exogenous$ input given to the i^{th} leader which is independent of all agents in the system

 ζ_i = group formation tracking error

c_i= coupling weight assigned to the ith agent in the system

 $\rho_i = \zeta^T P \zeta$ =continuously differentiable function of ζ_i

K= R⁻¹B^TP=optimal parameter of the controller

Γ= PBR⁻¹B^TP=parameter of the controller

where P is the solution of the algebraic Riccati equation (ARE) and R=1

MATLAB Code:

Steps followed for writing the code:

- ➤ N denotes the number of agents in the double integrator system. In our case, N=4.
- > n=2 denotes the number of states of each agent that are being tracked in our double integrator system.
- ➤ By representing the system in state space representation, we obtained the matrices A, B, C and D which we later converted to A_bar, B_bar, C_bar and D_bar by applying the Kronecker product with an identity matrix of order N.
- ➤ We assumed a fully connected graph for representing the formation and computed the Laplacian matrix of the system.
- ➤ Here, h represents the formation vector which has a displacement input and a velocity input.
- We implemented the first part of the control where we computed K, c_i , ρ_i by using the formulae from the reference paper provided.
- ➤ Here K is computed by using solving ARE for A, B, Q=Identity matrix, R=1. We used the icare formula in MATLAB for solving the ARE.
- \triangleright P matrix which is the solution of ARE is then used to compute Γ matrix. Here, Γ=PBR⁻¹B^TP.
- \succ c_i which denotes coupling gain is computed by using derivative (c_i)'= $\zeta^T \Gamma \zeta$ which represents time-varying coupling gain.
- > This is sent through the integrator to obtain c_i.
- $\triangleright \rho_i$ is computed by using $\rho_i = \zeta^T P \zeta$.
- > These are also adjusted by using the Kronecker product.
- ➤ After this, a Simulink model was built for this system and the results were obtained.

Simulation in Simulink:

The Simulink model is as follows:

Simulink Model

Block for obtaining individual c_i 's

Matrix Multiplication block

Each block required for the feedback system is added to the simulation.

Steps followed in simulation formation:

- ➤ The state space block is added with matrices A_bar, B _bar, C _bar and D _bar.
- > Similarly, we placed h bar and L bar blocks wherever necessary.
- \triangleright While implementing the equation of c_i since c_i is for each (i) all the c_i 's were getting added after the product.
- So, we have used the subsystem to make sure that we get each ci separately.
- \triangleright A similar process was followed to get the matrix of ρ_i 's.
- There are four agents, so we got 4 c_i 's. But to multiply $c_i + \rho_i$ with K_bar which is 8x8 we need the c_i matrix in the form of [c_1 c_1 c_2 c_2 c_3 c_4 c_4] and ρ_i similarly.
- ➤ For this, we used a subsystem whose formation is shown in the above figures in this report.
- ➤ This made sure that the ultimate Kronecker product which we get is correct.
- ➤ Then we added the scope to separately track the displacement and velocity of each agent.

Simulation result for different inputs:

1. When we take h_bar as [1;2;1;2;1;2;1;2;], we will get product of h_bar and L_bar as zero. So, we can track that displacement and velocity to be zero at every point.

Velocity Tracking

2. When h_bar = [2;4;3;5;7;6;5;1;] then we would get a non-zero product of L_bar and h_bar. So, agents will reach a consensus from non-zero initial conditions.

Displacement Tracking

Conclusion:

- Using the above code and Simulink model, the results were obtained.
- ➤ It is evident that the consensus condition is achieved depending on the formation configuration vector.

References:

1. Junyan Hu, Parijat Bhowmick, and Alexander Lanzon, "Distributed Adaptive Time-Varying Group Formation Tracking for Multiagent Systems With Multiple Leaders on Directed Graphs", IEEE Transactions on Control of Network Systems, Vol. 7, No. 1, March 2020.

Team Members

- 1. Pynda Naga Venkata Sai Vamsi-200102071
- 2. Meesala ganesh-234102505
- 3. Bathula Jahnavi-200102016
- 4. Shaik Khaja Mohammad Rafi-200102085
- 5. Adepu Sriharsha Shashank-200102005
- 6. Parth Aswani-200102063
- 7. Nitya Tiwari-200102061
- 8. Ms. Meghna Kaushik-200102056