Faculdade de Tecnologia de Santo André

Curso Superior de Tecnologia em Eletrônica Automotiva

IHM PARA VEÍCULOS ELÉTRICOS E AUTÔNOMOS

Faculdade de Tecnologia de Santo André

Curso Superior de Tecnologia em Eletrônica Automotiva

IHM PARA VEÍCULOS ELÉTRICOS E AUTÔNOMOS

Autores: Miguel Balbastro Gomes Wilson Queiroz de Oliveira

Faculdade de Tecnologia de Santo André

Curso Superior de Tecnologia em Eletrônica Automotiva

IHM PARA VEÍCULOS ELÉTRICOS E AUTÔNOMOS

Autores:

Miguel Balbastro Gomes Wilson Queiroz de Oliveira

Professor Orientador:

Me. Paulo Tetsuo Hoashi

Literatura

Divisão da Apresentação

Introdução Motivação e Objetivo

Desenvolvimento Montagem e Software

Conclusões e Propostas futuras

Introdução

Motivação:

Desenvolvimento de veículos elétricos controlado por IHM (Interface Homem – Máquina) atuando como interface principal;

Introdução

Motivação:

Desenvolvimento de veículos elétricos controlado por IHM (Interface Homem – Máquina) atuando como interface principal;

Objetivo:

Desenvolver um veículo de demonstração em escala, para demonstrar a viabilidade de controlar e testar, todos os sistemas via IHM.

Porque Veículos elétricos ?

Energia ao longo tempo

Descoberta de diferentes fontes de Energia

Tecnologias que viabilizaram a utilização de diferentes fontes Energia

Princípios físicos

Com base na utilização de energia ao decorrer da história humana, podemos afirmar que:

Princípios físicos

Com base na utilização de energia ao decorrer da história humana, podemos afirmar que:

Princípios físicos

Com base na utilização de energia ao decorrer da história humana, podemos afirmar que:

A troca da matriz energética sempre ocorre, para a fonte de energia com maior eficiência, potência e densidade.

Podemos definir Eficiência:

Eficiência Energética nos Dias atuais:

Eficiência entre Tipos de veículos

Eficiência entre Tipos de veículos

Fonte de Energia	Distância Percorrida[km/MJ]
Gás natural	0,318
Células de hidrogênio	0,348
Diesel	0,478
<u>Etanol</u>	0,483
Gasolina	0,515
Híbridos	0,556
Elétricos	<mark>1,145</mark>

Eficiência entre Tipos de veículos

Fonte de Energia	Distância Percorrida[km/MJ]
Gás natural	0,318
Células de hidrogênio	0,348
Diesel	0,478
<u>Etanol</u>	<u>0,483</u>
Gasolina	0,515
Híbridos	0,556
<u>Elétricos</u>	<mark>1,145</mark>

Fonte: Tesla, 2006.(The 21st Century Electric Car Tesla Motors.) Fonte: Associação Brasileira de Engenharia Automotiva, 2017.

Custos

Custos

Veículos utilizados:

diesel: Kangoo Renault

elétrico: Kangoo Renault

Custos de operação:

Vantagem do elétrico sobre o diesel por 100km percorrido.

Diesel tem custo > que o elétrico		
Abastecimento	Manutenção	Emissões
703 %	1000 %	1632.47 %

Fonte: Almeida, 2015.

Desenvolvimento

Desenvolvimento

SOFTWARE

Sistemas embarcados

Fatec Fonte: Autor, 2022.

Sistemas em módulo/chip

• (Veiculo - Jetson nano):

SoC-(CPU-quatro núcleos de arquitetura ARM A57 de 64-bit / GPU-arquitetura Maxwell de 128 núcleos)(472GFLOPs)

• (IHM) - Raspberry Pi 3B:

SoC-(Broadcom BCM2837 com quatro núcleos de arquitetura ARM Cortex-A53)(24GFLOPs)

Primeira Montagem Elétrica

Conceito do veículo

Montagem Mecânica

Layout

Layout

Componentes

Sensor de corrente

Driver PWM

Fonte DC-DC

Câmera

Jetson nano

baterias

Layout

Componentes

Sensor de corrente

Driver PWM

Fonte DC-DC

Câmera

Jetson nano

baterias

Layout

Componentes

Fonte: Autor, 2022.

Servo

IMU

Componentes principais

Baterias

8 células 18650 2S 4P

Baterias

8 células 18650 2S 4P

Circuito de potência

2 Sensores de Corrente

Circuito de potência

2 Sensores de Corrente

Atuadores

O Driver PWM envia o sinal para os atuadores

Motor e Servo

O Driver PWM envia o sinal para os atuadores

Circuito conversor de sinal

Conversor analógico digital

Circuito conversor de sinal

Conversor analógico digital

CÓDIGO DO MÓDULO: ADS1115

IMU

Acelerômetros e Giroscópios

IMU

Acelerômetros e Giroscópios

Câmera

Câmera Raspcam v2.1(3280x2464)(320x240).

Câmera

Câmera Raspcam v2.1(3280x2464)(320x240).

Montagem Final

Fonte: Autor, 2022.

O que é Interface Homem-Maquina(IHM)?

IHM

É aplicada para facilitar a iteração entre operador e máquina.

Fonte: Paquette, 2022.

Hardware utilizado

Tela sensível ao toque de 7 polegadas (1024x600px) Computador em módulo Raspberry pi 3B.

Vantagens de Desenvolver com IHM.

1°.Personalização e atualizações constantes.

Versão 1

Versão 2

auto: True loop: True

Fonte: Autor, 2022.

m

Versão 3

```
output 3
GPS:$GPRMC,,V,,,,,,,,N*53
imu:
aceleracao longitudinal instantanea : -0.333 m/s^2
aceleracao longitudinal maxima: 0.000 m/s^2
desaceleração longitudinal maxima: -0.333 m/s^2
Tensão da bateria: 8.013 V
Corrente do motor: 0.146 A
Corrente do computador: 1.122 A
Controle lateral: 307
Controle longitudinal: 330
time loop: 0.09353208541870117
```


Versão 4

output 3 GPS:\$GPRMC,,V,,,,,,,,N*53

aceleracao longitudinal instantanea : -0.333 m/s^2

aceleracao longitudinal maxima: 0.000 m/s^2

desaceleração longitudinal maxima: -0.333 m/s^2

Tensão da bateria: 8.013 V Corrente do motor: 0.146 A

Corrente do computador: 1.122 A

Controle lateral: 307

Controle longitudinal: 330

time_loop: 0.09353208541870117

2°.Desenvolvimento de controles manuais e autônomos

Detecção de cores

Utilizada na detecção das cores dos obstáculos.

Tela RGB original

Tela de cor laranja

Tela de cor verde

Controle por cor de semáforo

Software

Software

Sistema operacional Linux

OpenCV Processamento de imagem

Jupyter notebook editor de texto, web GUI

C (controle do semáforo) compilador avr-gcc

Vídeo de teste 1 Versão 4

Vídeo de teste 2 Versão 4

Vídeo de teste 3 Versão 5

Tesla Ai Day:

https://www.youtube.com/watch?v=j0z4FweCy4M

Vídeo de teste 3 Versão 6

Conclusão

 A interface IHM permite a integração entre os automóveis e as últimas tecnologias criadas pela ciência da computação e indústria de comunicação.

Propostas futuras

- Aumentar performance utilizando a linguagem C;
- Aplicar malhas de Controle como: PID, Filtro de Kalman, antecipatório, cascata e outros...
- Utilizar hardware dedicado encoder e decoder de imagem da nvidia.
- Implementar redes neurais para o sistema de percepção e navegação via câmeras.
- Utilizando uma tela de 17 polegadas, criar GUI dedicada utilizando QT(C++), GTK(C) e monitoramento web com interface Javascript.

Literatura futura

Referência Bibliográfica

- BOSCH, Robert. Manual de Tecnologia Automotiva. Tradução de Helga Madjderey, Gumter W. Prokesch, Euryale de Jesus Zerbini, Suely Pfeferman. São Paulo: Blucher, 2005.
- EBERHARD, Martin; TARPENNING, Marc, The 21st Century Electric Car, Tesla
 Motors, p.1-10, out.2006, Disponivel em: http://idc online.com/technical_references/pdfs/electrical_engineering/Tesla_Motors.pdf. Acesso
 em: 21/09/2021
- FEYNMAN, Richard P. Lições de física de Feynman: a edição do novo milênio / Richard P. Feynman, Robert B. Leighton, Matthew Sands; tradução: Adriana Válio Roque da silva... [et al.]; revisão técnica: Alberto Fazzio. – Porto Alegre: Bookman, 2019.
- PEREIRA, Elisa Almeida, Análise comparativa dos custos dos veículos de combustão interna e veículos elétricos: estudo de caso dos correios, AMPET Ouro Preto-MG, p.2225-2235, nov.2015. Disponível em: http://146.164.5.73:20080/ssat/interface/content/anais_2015/TrabalhosFormatados/79 8AC.pdf. Acesso em: 18 set. 2021.

Contatos:

Wilson Queiroz de Oliveira:

https://wilsontecnologia.com/wilson.queiroz01@gmail.com

Miguel Balbastro Gomes:

https://www.linkedin.com/in/miguel-balbastro-gomes-7393b1207/miguel.balbastro@hotmail.com

Código do projeto disponível em:

https://github.com/WilsonQueirozdeOliveira/FATEC TCC 2022

Vídeos de teste em:

https://www.youtube.com/watch?v=i9Lv-ewDBG8

Fim... Obrigado pela Atenção!