Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

<u>Факультет «Энергомашиностроение»</u> <u>Кафедра «Ракетные двигатели»</u>

Отчёт по преддипломной практике

Студент группы Э1-122: Булдаков Н.С. Тип практики: Преддипломная

Студент		Булдаков Н.С.
	(подпись, дата)	(фамилия и.о.)
Руководитель практики		Козичев В.В.
т уководитель практики	(подпись, дата)	(фамилия и.о.)

1. Введение	3
2. Конструкторская часть	4
2.1 Проектирование и расчёт заряда ракетного двигателя	4
2.1.1 Выбор топлива и термодинамический расчёт ПС	4
2.1.2. Выбор конструктивной формы заряда	6
2.1.3. Расчёт внутрибаллистических характеристик РДТТ	7
2.1.4 Расчет отклонений и оценка предельных значений внутрибаллистических характеристик РДТТ	12
2.1.4.1 Случайные отклонения параметров камеры сгорания, соплового блога и заряда твердого топлива	12
2.1.4.2 Предельные отклонения параметров, вызванные неслучайными отклонениями параметров камеры сгорания,	15
соплового блока и заряда твердого топлива	
2.2 Расчёт толщины теплозащитного покрытия в камере сгорания	
2.2.2 Расчёт параметров радиационного теплообмена в КС	22
2.2.3 Определение толщины ТЗП	23
2.3 Расчёт и проектирование корпуса и сопла РДТТ	24
2.3.1 Требования, предъявляемые к корпусу РД, выбор материала корпуса	24
2.3.2 Расчёт толщины силовой обечайки корпуса	24
2.4 Расчёт воспламенительного устройства	26
2.5 Расчёт и проектирование соплового блока	28
2.5.1 Профилирование сужающейся части сопла	29
2.5.2 Профилирование трансзвуковой части сопла	30
2.5.3 Профилирование расширяющейся части сопла	30
2 Report	32

1. Введение

В данном отчете будут приведены результаты, полученные входе выполнения дипломной работы по теме «Маршевый ракетный двигатель твердого топлива второй ступени ракеты-носителя». Исходные данные к дипломной работе изложены представлены в таблице 1.

Исходные данные:

Таблица 1. Исходные данные дипломной работы

Параметр	Значение
Тяга <i>P</i> , кН	500
Время работы τ_p , с	50
Давление в КС p_{κ} , МПа	7
Давление на срезе сопла p_a , МПа	0,03
Наружный диаметр камеры d_{κ} , м	1,5
Масса полезной нагрузки $M_{\text{п.н.}}$, т	10
Импульс тяги $I_{\scriptscriptstyle m T}$, МН \cdot с	12

2. Конструкторская часть

2.1 Проектирование и расчёт заряда ракетного двигателя

2.1.1 Выбор топлива и термодинамический расчёт ПС

Для обеспечения заданных условий работы РДТТ, необходимо подобрать топливо из имеющейся базы данных, которое будет максимально удовлетворять исходным данным.

В настоящее время в ракетной технике применяются два основных вида ТРТ: баллиститное и смесевое.

Энергетические характеристики смесевых топлив значительно выше аналогичных характеристик баллиститных топлив, что и определяет их выбор в качестве основных топливных составов в современных РДТТ.

С учетом требований ТЗ было выбрано смесевое твердое топлива, имеющее характеристики, представленные в таблице 2.1.1.

Таблица 2.1.1. Характеристики выбранного твердого топлива

Параметр	Значение		
Наименование топлива	ПХА-3М		
Условная химическая формула	$C_{10,664}H_{43,856}O_{22,469}N_{5,617}Cl_{5,617}Al_{7,042}$		
Энтальпия H_n , кДж/(кг·К)	-1934		
Плотность топлива $\rho_{\scriptscriptstyle { m T}}$, кг/м 3	1740		
Теплопроводность $C_{\text{\tiny T}}$, Дж/(кг·К)	$1,179\cdot 10^3$		
Коэффициент теплопроводности $\lambda_{\scriptscriptstyle \mathrm{T}}$,	1.0		
Bt/(m·K)	1,2		
Минимальное давление устойчивого	[220;323]		
горения p , к Π а			
Эксплуатационный интервал			
температур T , К			
Максимальная температура	323		
хранения T_{\max} , К			
Способ изготовления заряда	литье		
Тип топлива	Смесевое		

2.1.2. Выбор конструктивной формы заряда

Выбор формы заряда непосредственно влияет на внутри и внешнебаллистические характеристики ЛА, а также на соответствие параметров РДТТ данным тактико-технического задания.

Основные требования к заряду ТТ заключаются в следующем:

- 1. Форма заряда должна обеспечивать заданное изменение тяги или внутрикамерного давления по времени;
- 2. Заряд должен максимально теплоизолировать стенка КС в процессе работы;
- 3. Форма должна обеспечивать оптимальное удлинение корпуса ракеты для данного класса;
 - 4. Обеспечение оптимального расположения узлов воспламенения;
 - 5. Форма заряда должная быть технологичной;
- 6. Коэффициент заполнения камеры топливом должен быть максимальным.

Для обеспечения заданного импульса тяги была выбрана форма канальнощелевого заряда, геометрические размеры заряда подобраны с учётом вышеприведённых требований.

2.1.3. Расчёт внутрибаллистических характеристик РДТТ

Для получения основных параметров РДТТ необходимо произвести расчёт внутрибаллистических характеристик.

Из результатов термодинамического расчёта выбранного топлива используются значения равновесной температуры сгорания $T_{\kappa}=3153\mathrm{K}$, газовой постоянной $R=479,4\frac{\mathrm{Дж}}{\mathrm{кr}\cdot\mathrm{K}}$, показателя адиабаты k=1,15.

Так же зададимся следующими значениями:

- коэффициент, учитывающий потери энергии на нагрев стенок КС и на неполноту сгорания твердого топлива $\chi = 0.98$;
 - коэффициент потерь расхода сопла $\phi_{\rm c} = 0.93$.

По указанным в задании на проект данным определяются начальные газодинамические параметры.

$$A(k) = \left(\frac{2}{k+1}\right)^{\frac{1}{k-1}} \cdot \sqrt{\frac{2 \cdot k}{k+1}} = \left(\frac{2}{1,15+1}\right)^{\frac{1}{1,15-1}} \cdot \sqrt{\frac{2 \cdot 1,15}{1,15+1}} = 0,639;$$

$$\lambda_a = \sqrt{\frac{k+1}{k-1}} \cdot \left[1 - \left(\frac{p_a}{p_k} \right)^{\frac{k-1}{k}} \right] = \sqrt{\frac{1,15+1}{1,15-1}} \cdot \left[1 - \left(\frac{0,03}{7} \right)^{\frac{1,15-1}{1,15}} \right] = 2,698;$$

$$q_{a} = \lambda_{a} \cdot \left(1 - \frac{k-1}{k+1} \cdot \lambda_{a}^{2}\right)^{\frac{1}{k-1}} \cdot \left(\frac{k+1}{2}\right)^{\frac{1}{k-1}} =$$

$$= 2,698 \cdot \left(1 - \frac{1,15-1}{1,15+1} \cdot 2,698^{2}\right)^{\frac{1}{1,15-1}} \cdot \left(\frac{1,15+1}{2}\right)^{\frac{1}{1,15-1}} =$$

$$= 0,038;$$

$$f(\lambda_a) = \left(1 + \lambda_a^2\right) \cdot \left(1 - \frac{k - 1}{k + 1} \cdot \lambda_a^2\right)^{\frac{1}{k - 1}} =$$

$$= \left(1 + 2,698^2\right) \cdot \left(1 - \frac{1,15 - 1}{1,15 + 1} \cdot 2,698^2\right)^{\frac{1}{1,15 - 1}} =$$

$$= 0,071;$$

Зная газодинамические параметры, определяется удельный импульс:

$$I_{y} = \frac{\sqrt{\chi \cdot R \cdot T_{K}}}{A(k)} \cdot \frac{f(\lambda_{a}) - \frac{p_{h}}{p_{K}}}{q(\lambda_{a})} =$$

$$= \frac{\sqrt{0.98 \cdot 479.4 \cdot 3153}}{0.639} \cdot \frac{0.071 - \frac{0.04}{7}}{0.038} = 3258 \text{ m/c};$$

Площадь критического сечения:

$$F_{\kappa p} = P \cdot \frac{\sqrt{\chi \cdot R \cdot T_{\kappa}}}{\varphi_{c} \cdot I_{y} \cdot p_{\kappa} \cdot A(k)} = 400 \cdot 10^{3} \cdot \frac{\sqrt{0.98 \cdot 479.4 \cdot 3153}}{0.93 \cdot 3258 \cdot 7 \cdot 10^{6} \cdot 0.639} = 0.036 \text{ m}^{2};$$

Диаметр критического сечения:

$$d_{\text{kp}} = \sqrt{\frac{4 \cdot F_{\text{kp}}}{\pi}} = \sqrt{\frac{4 \cdot 0,036}{3,14}} = 214 \text{ mm};$$

Площадь выходного сечения сопла:

$$F_a = \frac{F_{\kappa p}}{q(\lambda_a)} = \frac{0.036}{0.038} = 0.939 \text{ m}^2;$$

Диаметр выходного сечения сопла:

$$d_a = \sqrt{\frac{4 \cdot F_a}{\pi}} = \sqrt{\frac{4 \cdot 0,939}{3,14}} = 1093 \text{ mm};$$

Площадь поверхности горения:

$$F_{r} = \frac{P}{I_{y} \cdot u_{1} \cdot \left(\frac{p_{k}}{98066,5}\right)^{v}} = \frac{400 \cdot 10^{6}}{3258 \cdot 3,44 \cdot 10^{-3} \cdot \left(\frac{7 \cdot 10^{6}}{98066,5}\right)^{0,26}} = 6,777 \text{ m}^{2};$$

Внутренний диаметр заряда принимаем равным $d_{\text{вн}}$ =258 мм.

В программном комплексе КОМПАС-3D проводится построение заряда с учетом рассчитанных параметров и принятых допущений и определяется площадь горения в зависимости от величины сгоревшего свода.

Полученный данные используются для расчета давления в КС, тяги и скорости горения заряда по времени работы РДТТ в зависимости от величины сгоревшего свода.

Полученные ранее значения используются для расчёта давления:

$$p_{\kappa i} = \left[\frac{F_{\Gamma} \cdot \rho_{T} \cdot \left(\frac{u_{1}}{98066, 5^{\nu}} \right) \cdot \sqrt{\chi \cdot R \cdot T_{K}}}{\varphi_{c} \cdot F_{\kappa p} \cdot A(k)} \right]^{\frac{1}{1-\nu}};$$

Скорость горения вычисляем по формуле:

$$u_i = u_1 \cdot \left(\frac{p_{Ki}}{98066.5}\right)^v$$
;

Тяга определяется по формуле:

$$P(t) = \varphi_{c} \cdot p_{\kappa i} \cdot F_{\kappa p} \cdot \frac{f(\lambda_{a}) - \frac{p_{h}}{p_{\kappa i}}}{q(\lambda_{a})};$$

Полученные результаты приведены в таблице 2.1.2.

Таблица 2.1. – Результаты расчета

e, mm	F_{Γ} , M^2	<i>p</i> _к , МПа	u, mm/c	<i>P</i> , кН	t, c
0	6,78	7,00	10,43	400,000	0
10,43	6,68	6,87	10,38	392,045	1
20,82	6,59	6,75	10,34	384,246	2
31,15	6,50	6,62	10,29	376,609	3
41,44	6,42	6,50	10,24	369,126	4
51,68	6,33	6,38	10,19	361,775	5
61,87	6,25	6,27	10,14	354,548	6
72,01	6,16	6,15	10,09	347,487	7
82,10	6,08	6,04	10,04	340,449	8
92,14	5,99	5,93	9,99	333,536	9
102,13	5,91	5,82	9,95	326,701	10
112,08	5,83	5,71	9,90	319,954	11
121,98	5,75	5,60	9,85	313,279	12
131,83	5,67	5,50	9,80	306,691	13
141,62	5,59	5,39	9,75	300,173	14
151,38	5,51	5,29	9,70	293,724	15
161,08	5,43	5,19	9,65	287,346	16
170,73	5,35	5,08	9,60	281,034	17
180,33	5,27	4,98	9,55	274,820	18
189,89	5,19	4,89	9,50	268,703	19
199,39	5,12	4,79	9,45	262,619	20
208,84	5,04	4,69	9,40	256,605	21
218,25	4,96	4,60	9,35	250,671	22
227,60	4,89	4,50	9,30	244,825	23

e, mm	F_{Γ} , M^2	<i>p</i> _к , МПа	u, mm/c	<i>P</i> , кН	<i>t</i> , c
236,90	4,81	4,41	9,25	239,044	24
246,16	4,74	4,32	9,20	233,347	25
255,36	4,67	4,23	9,15	227,737	26
264,51	4,58	4,13	9,10	221,573	27
273,61	4,49	4,02	9,03	214,604	28
282,64	4,40	3,91	8,97	207,726	29
291,61	4,31	3,80	8,90	201,028	30
300,51	4,22	3,69	8,84	194,440	31
309,34	4,13	3,59	8,77	188,004	32
318,11	4,05	3,49	8,71	181,733	33
326,82	3,96	3,39	8,64	175,620	34
335,46	3,88	3,29	8,58	169,719	35
344,04	3,80	3,20	8,51	164,041	36
352,55	3,72	3,11	8,45	158,595	37
361,01	3,74	3,14	8,47	160,024	38
369,48	3,76	3,16	8,48	161,275	39
377,96	3,77	3,17	8,50	162,334	40
386,46	3,79	3,19	8,51	163,166	41
394,96	3,79	3,20	8,51	163,741	42
403,47	3,80	3,20	8,51	163,999	43
411,99	3,80	3,20	8,51	163,889	44
420,50	3,79	3,19	8,51	163,320	45
429,01	3,77	3,17	8,49	162,154	46
437,50	3,74	3,14	8,47	160,158	47
445,97	3,70	3,09	8,43	156,861	48
454,40	1,75	1,12	6,48	34,779	49
460,89	0,83	0,41	4,99	25,862	49,5
465,88	0,39	0,15	3,81	9,422	49,8

2.1.4 Расчет отклонений и оценка предельных значений внутрибаллистических характеристик РДТТ

Данный расчет ставит целью определение предельных значений внутрибаллистических характеристик РДТТ, вызванных случайными и неслучайными отклонениями параметров двигателя от номинальных.

2.1.4.1 Случайные отклонения параметров камеры сгорания, соплового блога и заряда твердого топлива

Относительное случайное отклонение единичной скорости горения, вызванное разбросом технологических режимов и свойств исходного сырья в пределах одной партии зарядов:

$$\delta u_1^{\text{c}_{11}} = 0,01...0,04 = 0,025.$$

Относительное случайное отклонение единичной скорости горения из-за неточности измерения начальной температуры заряда:

$$\begin{split} \delta u_1^{\text{cd}2} &= \frac{\Delta u_1}{u_1} = \frac{\partial u_1}{\partial T} \cdot \Delta T \cdot \frac{1}{u_1}, \\ u_1 &= u_1^* [1 + D \cdot \Delta T], \\ \frac{\partial u_1}{\partial T} &= u_1^* \cdot D, \\ \partial u_1^{\text{cd}2} &= \frac{u_1^* \cdot D}{u_1} \cdot \Delta T = \frac{u_1^* \cdot D \cdot \Delta T}{u_1^* \cdot \left[1 + D \cdot \Delta T\right]} = \frac{D \cdot \Delta T}{\left[1 + D \cdot \Delta T\right]} = \frac{0,003 \cdot 4}{1 + 0,003 \cdot 4} = 0,0118, \end{split}$$

Где ΔT - неточность измерения начальной температуры заряда, $\Delta T = 3^{\circ}...5^{\circ} = 4^{\circ}.$ D - эмпирический коэффициент, $D = 0{,}003$.

Случайное отклонение единичной скорости горения:

$$\partial u_1^{cn} = \partial u_1^{cn1} + \partial u_1^{cn2} = 0,025 + 0,0118 = 0,0368.$$

Случайное отклонение площади поверхности горения заряда твердого топлива:

$$\delta F_{r}^{c\pi} = 0,005...0,007 = 0,006.$$

Случайное отклонение плотности твердого топлива из-за отклонений технологических режимов при изготовлении заряда, а также из-за изменения химического состава топлива в пределах допуска:

$$\delta \rho_{T}^{\text{CJT}} = 0,005...0,007 = 0,006.$$

Относительное случайное отклонение энергетической характеристики твердого топлива, вызванное разбросом технологических режимов и свойств исходного сырья в пределах одной партии зарядов:

$$\delta (RT)_{K}^{\text{cnl}} = 0,005...0,015 = 0,01.$$

Относительное случайное отклонение комплекса RT_{κ} из-за неточности измерения начальной температуры заряда:

$$\delta (RT)_{\kappa}^{\text{cn2}} = m \cdot \Delta T = 2,5 \cdot 10^{-4} \cdot 4 = 0,001,$$

где m — эмпирический коэффициент, m = 0,0002...0,0003 = 0,00025.

Случайное отклонение энергетической характеристики твердого топлива:

$$\delta (RT)_{\kappa}^{\text{cn}} = \delta (RT)_{\kappa}^{\text{cnl}} + \delta (RT)_{\kappa}^{\text{cn2}} = 0.01 + 0.001 = 0.011.$$

Случайное отклонение коэффициента тепловых потерь, вызванное изменениями толщины стенок камеры сгорания, условий теплопередачи от газов к стенкам камеры и т.п.:

$$\delta \chi^{\text{ch}} = 0,002...0,003 = 0,0025.$$

Случайное отклонение коэффициента расхода сопла, вызванное изменениями геометрических размеров и состояния поверхности сопла в пределах допуска на изготовление:

$$\delta\varphi_c^{c\pi} = 0,002...0,004 = 0,003.$$

Случайный разброс площади критического сечения сопла из-за допуска на изготовление (Δd — половина поля допуска на изготовление вкладыша, допуск H12, $d^* = 214$ мм):

$$\Delta d = \frac{0.4}{2} = 0.2 \text{ MM},$$

$$\partial F_{\text{\tiny KP}}^{\text{\tiny C,\Pi}} = \frac{\left(d^* + \Delta d\right)^2 - d^{*2}}{d^{*2}} \cong \frac{214, 2 - 214}{214} = 0,002.$$

Случайное отклонение площади среза сопла, вызванное изменениями

диаметра сопла на срезе в пределах допуска на изготовление:

$$\delta F_a^{\text{CJ}} = 0,02...0,04 = 0,03.$$

Случайное отклонение комплекса $\Phi \begin{bmatrix} p_a \\ p_{\rm K} \end{bmatrix}$:

$$f_{4}^{*} = \frac{\left(\frac{p_{a}}{p_{k}}\right)^{\frac{k-1}{k}}}{f_{1}^{*2} + \left(\frac{p_{a}}{p_{k}}\right)^{\frac{k-1}{k}}},$$

где
$$f_1^* = \sqrt{\frac{2 \cdot k}{k-1} \cdot \left[1 - \left(\frac{p_a}{p_{\scriptscriptstyle K}}\right)^{\frac{k-1}{k}}\right]} = \sqrt{\frac{2 \cdot 1,15}{1,15} \cdot \left[1 - \left(\frac{0,03}{7}\right)^{\frac{1,15-1}{1,15}}\right]} = 2,791,$$

$$f_4^* = \frac{\left(\frac{p_a}{p_K}\right)^{\frac{k-1}{k}}}{f_1^{*2} + \left(\frac{p_a}{p_K}\right)^{\frac{k-1}{k}}} = \frac{\left(\frac{0,03}{7}\right)^{\frac{1,15-1}{1,15}}}{2,791 + \left(\frac{0,03}{7}\right)^{\frac{1,15-1}{1,15}}} = 0,059,$$

Тогда:

$$\delta\Phi^{\text{ch}} = (-\delta\varphi_{\text{c}}^{\text{ch}} - \delta F_{\text{kp}}^{\text{ch}} + \delta F_{\text{a}}^{\text{ch}}) \cdot f_{4}^{*} = (-0,003 - 0,002 + 0,03) \cdot 0,059 = 0,001,$$

$$\bar{\Phi}_{\text{ch}} = \delta\Phi_{\text{ch}} + 1 = 0,001 + 1 = 1,001.$$

Предельное отклонение комплекса $\Phi \begin{bmatrix} p_a \\ p_{\kappa} \end{bmatrix}$:

$$\delta\Phi_{\text{пред}}^{\text{сл}} = \pm f_4^* \cdot \sqrt{(\delta\varphi_{\text{c}}^{\text{сл}})^2 + \left(\delta F_{\text{кp}}^{\text{сл}}\right)^2 + \left(\delta F_a^{\text{сл}}\right)^2} = \pm 0,059 \cdot \sqrt{(0,003)^2 + \left(0,002\right)^2 + \left(0,003\right)^2} = \pm 0,002.$$

Предельное отклонение давления в камере сгорания:

$$\begin{split} &\partial p_{\kappa \, \text{пред}}^{\text{сл}} = \\ &= \pm \frac{1}{1 - \nu} \cdot \left[\left(\delta F_{\Gamma}^{\text{сл}} \right)^{2} + \left(\delta \rho_{\Gamma}^{\text{сл}} \right)^{2} + \left(\delta \rho_{\text{c}}^{\text{сл}} \right)^{2} + \left(\frac{\delta \chi^{\text{сл}}}{2} \right)^{2} + \left(\frac{\delta (RT)_{\kappa}^{\text{сл}}}{2} \right)^{2} + \left(\delta F_{\kappa p}^{\text{сл}} \right)^{2} + \left(\delta u_{1}^{\text{сл}} \right)^{2} \right]^{0.5} = \\ &= \pm \frac{1}{1 - 0.26} \cdot \left[\left(0.006 \right)^{2} + \left(0.006 \right)^{2} + \left(0.003 \right)^{2} + \left(\frac{0.0025}{2} \right)^{2} + \left(\frac{0.011}{2} \right)^{2} + \left(0.002 \right)^{2} + \left(0.037 \right)^{2} \right]^{0.5} = \\ &= \pm 0.052. \end{split}$$

Предельное отклонение секундного расхода газов:

$$\begin{split} &\partial \dot{m}_{\text{пред}}^{\text{сл}} = \\ &= \pm \frac{1}{1 - \nu} \cdot \left[\left(\delta F_{\text{r}}^{\text{сл}} \right)^2 + \left(\delta \rho_{\text{r}}^{\text{сл}} \right)^2 + \left(\delta \rho_{\text{c}}^{\text{сл}} \right)^2 + \left(\nu \cdot \frac{\delta \chi^{\text{сл}}}{2} \right)^2 + \left(\nu \cdot \frac{\delta (RT)_{\text{k}}^{\text{сл}}}{2} \right)^2 + \left(\nu \cdot \delta F_{\text{kp}}^{\text{сл}} \right)^2 + \left(\delta u_{\text{l}}^{\text{сл}} \right)^2 \right]^{0.5} = \\ &= \pm \frac{1}{1 - 0.26} \cdot \left[\frac{\left(0.006 \right)^2 + \left(0.006 \right)^2 + \left(0.003 \right)^2 + \left(0.26 \cdot \frac{0.0025}{2} \right)^2 + \left[0.26 \cdot \frac{0.0025}{2} \right)^2 + \left(0.26 \cdot \frac{0.0025}{2} \right)^2 +$$

Предельное отклонение тяги двигателя:

$$a = \frac{P^* + p_h \cdot F_a^*}{P^*} = \frac{400000 + 30000 \cdot 0,939}{400000} = 1,094,$$

$$b = \frac{p_h \cdot F_a^*}{P^*} = \frac{30000 \cdot 0,939}{400000} = 0,094,$$

$$\delta P_{\text{пред}}^{\text{сл}} =$$

$$= \pm \left[a^2 \cdot \left[\left(\delta p_{\text{к пред}}^{\text{сл}} \right)^2 + \left(\delta \varphi_{\text{c}}^{\text{сл}} \right)^2 + \left(\delta F_{\text{кр}}^{\text{сл}} \right)^2 + \left(\delta \Phi_{\text{пред}}^{\text{сл}} \right)^2 \right] + \left(b \cdot \delta F_a^{\text{сл}} \right)^2 \right]^{0.5} =$$

$$= \pm \left[1,094^2 \cdot \left[\left(0,052 \right)^2 + \left(0,003 \right)^2 + \left(0,002 \right)^2 + \left(0,002 \right)^2 \right] + \left(0,094 \cdot 0,03 \right)^2 \right]^{0.5} =$$

$$= \pm 0,057.$$

Предельное отклонение удельного импульса:

$$\delta I_{\text{у пред}}^{\text{сл}} = \pm \sqrt{\left(\delta P_{\text{пред}}^{\text{сл}}\right)^2 + \left(\delta \dot{m}_{\text{пред}}^{\text{сл}}\right)^2} = \pm \sqrt{\left(0,057\right)^2 + \left(0,051\right)^2} = \pm 0,077.$$

Предельное отклонение времени работы двигателя:

$$t = \frac{e}{u_1 \cdot p_{K}^{V}},$$

$$\ln t = \ln e - \ln u_1 - v \cdot \ln p_{\kappa},$$

Продифференцируем и заменим дифференциалы конечными приращениями:

$$\frac{\Delta t}{t} = \frac{\Delta e}{e} - \frac{\Delta u_1}{u_1} - v \cdot \frac{\Delta p_{_{\rm K}}}{p_{_{\rm K}}},$$

$$\delta t = \delta e - \delta u_1 - v \cdot \delta p_{\kappa},$$

$$\delta e = 0$$
,

$$\delta t_{\rm npeq}^{\rm cn} = \pm \sqrt{\left(\delta u_1^{\rm cn}\right)^2 + \left(\nu \cdot \delta p_{\rm k \, npeq}^{\rm cn}\right)^2} = \pm \sqrt{\left(0,0368\right)^2 + \left(0,26 \cdot 0,052\right)^2} = \pm 0,039.$$

Предельное отклонение импульса тяги:

$$I_{\mathrm{T}} = P \cdot t$$

$$\ln I_{\mathrm{T}} = \ln P \cdot \ln t.$$

Продифференцируем и заменим дифференциалы конечными приращениями:

$$\frac{\Delta I_{\mathrm{T}}}{I_{\mathrm{T}}} = \frac{\Delta P}{P} - \frac{\Delta t}{t},$$

$$\delta I_{\mathrm{T}} = \delta P - \delta t$$

$$\delta I_{\text{T пред}}^{\text{сл}} = \pm \sqrt{\left(\delta P_{\text{пред}}^{\text{сл}}\right)^2 + \left(\delta t_{\text{пред}}^{\text{сл}}\right)^2} = \pm \sqrt{\left(0,057\right)^2 + \left(0,039\right)^2} = \pm 0,069.$$

2.1.4.2 Предельные отклонения параметров, вызванные неслучайными отклонениями параметров камеры сгорания, соплового блока и заряда твердого топлива

Отклонения из-за разных начальных температур заряда:

$$\begin{split} & \bar{u}_{1 \, \text{min}} = 1 + 0,0036 \cdot \left(T_{\text{min}} - 293\right) = 1 + 0,0036 \cdot \left(223 - 293\right) = 0,748, \\ & \bar{u}_{1 \, \text{max}} = 1 + 0,0036 \cdot \left(T_{\text{max}} - 293\right) = 1 + 0,0036 \cdot \left(323 - 293\right) = 1,108, \\ & \delta u_{1 \, \text{min}} = \bar{u}_{1 \, \text{min}} - 1 = 0,748 - 1 = -0,252, \\ & \delta u_{1 \, \text{max}} = \bar{u}_{1 \, \text{max}} - 1 = 1,108 - 1 = 0,108, \\ & \delta p_{\kappa \, u}^{\min} = \left[\bar{u}_{1 \, \min}\right]^{\frac{1}{1 - \nu}} - 1 = \left[0,748\right]^{\frac{1}{1 - 0,26}} - 1 = -0,325, \\ & \delta p_{\kappa \, u}^{\max} = \left[\bar{u}_{1 \, \min}\right]^{\frac{1}{1 - \nu}} - 1 = \left[1,108\right]^{\frac{1}{1 - 0,26}} - 1 = 0,149, \\ & \delta \dot{m}_{u}^{\min} = \left[\bar{u}_{1 \, \min}\right]^{\frac{1}{1 - \nu}} - 1 = \left[1,108\right]^{\frac{1}{1 - 0,26}} - 1 = 0,149, \\ & \delta P_{u}^{\min} = \left(\left[\bar{u}_{1 \, \min}\right]^{\frac{1}{1 - \nu}} - 1\right) \cdot (1 + b) = \left(\left[0,748\right]^{\frac{1}{1 - 0,26}} - 1\right) \cdot (1 + 0,094) = -0,355, \\ & \delta P_{u}^{\max} = \left(\left[\bar{u}_{1 \, \min}\right]^{\frac{1}{1 - \nu}} - 1\right) \cdot (1 + b) = \left(\left[1,108\right]^{\frac{1}{1 - 0,26}} - 1\right) \cdot (1 + 0,094) = 0,163. \end{split}$$

Предельные отклонения основных параметров двигателя определяются по формулам:

$$\begin{split} &\delta p_{\text{K}\Sigma}^{\text{min}} = \delta p_{\text{K пред}}^{\text{cn}} + \delta p_{\text{K u}}^{\text{min}} = -0,052 - 0,325 = -0,377, \\ &\delta p_{\text{K}\Sigma}^{\text{max}} = \delta p_{\text{K пред}}^{\text{cn}} + \delta p_{\text{K u}}^{\text{max}} = 0,052 + 0,149 = 0,201, \\ &\delta \dot{m}_{\Sigma}^{\text{min}} = \delta \dot{m}_{\text{пред}}^{\text{cn}} + \delta \dot{m}_{u}^{\text{min}} = -0,051 - 0,325 = -0,376, \\ &\delta \dot{m}_{\Sigma}^{\text{max}} = \delta \dot{m}_{\text{пред}}^{\text{cn}} + \delta \dot{m}_{u}^{\text{max}} = 0,051 + 0,149 = 0,201, \\ &\delta P_{\Sigma}^{\text{min}} = \delta P_{\text{пред}}^{\text{cn}} + \delta P_{u}^{\text{min}} = -0,057 - 0,355 = -0,412, \\ &\delta P_{\Sigma}^{\text{max}} = \delta P_{\text{пред}}^{\text{cn}} + \delta P_{u}^{\text{max}} = 0,057 + 0,163 = 0,22. \end{split}$$

По результатам определяются максимальные диапазоны давления в камере сгорания, расхода и тяги:

$$\begin{split} & p_{\kappa \, \text{min}} = p_{\kappa \, N} \cdot \left(1 + p_{\kappa \Sigma}^{\text{min}}\right) = 7000000 \cdot \left(1 - 0,377\right) = 4,365 \cdot 10^6 \, \Pi \text{a}, \\ & p_{\kappa \, \text{max}} = p_{\kappa \, N} \cdot \left(1 + p_{\kappa \Sigma}^{\text{max}}\right) = 70000000 \cdot \left(1 + 0,201\right) = 8,404 \cdot 10^6 \, \Pi \text{a}, \\ & \dot{m}_{\min} = \dot{m}_{N} \cdot \left(1 + \dot{m}_{\Sigma}^{\text{min}}\right) = 132 \cdot \left(1 - 0,376\right) = 82,389 \, \, \text{kg/c}, \\ & \dot{m}_{\max} = \dot{m}_{N} \cdot \left(1 + \dot{m}_{\Sigma}^{\text{max}}\right) = 132 \cdot \left(1 + 0,201\right) = 158,399 \, \, \text{kg/c}, \\ & P_{\min} = P_{N} \cdot \left(1 + P_{\Sigma}^{\text{min}}\right) = 4000000 \cdot \left(1 - 0,412\right) = 235,2 \, \text{kH}, \\ & P_{\max} = P_{N} \cdot \left(1 + P_{\Sigma}^{\text{max}}\right) = 4000000 \cdot \left(1 + 0,22\right) = 487,8 \, \text{kH}. \end{split}$$

2.2 Расчёт толщины теплозащитного покрытия в камере сгорания

2.2.1 Расчёт параметров конвективного теплового потока в КС Проводятся расчеты тепловых потоков для следующих начальных условий:

- температура $T_{K} = 3152 \text{K},$
- газовая постоянная $R_{\rm K} = 479,392 \frac{\text{Дж}}{\text{кг} \cdot \text{K}},$
- показатель адиабаты k = 1,15,
- относительное массовое содержание к-фазы z = 325,
- полная энтальпия ПС $I_{\kappa} = -1940 \frac{\kappa Дж}{\kappa \Gamma}$,
- коэффициент динамической вязкости $\eta = 0.879 \frac{\text{кг}}{\text{м} \cdot \text{c}}$,
- теплоёмкость продуктов сгорания $C_p = 3370 \frac{Дж}{кг \cdot K}$,
- диаметр критического сечения $d_{\rm kp} = 214$ мм.

Теплозащитные покрытия должны обеспечивать:

- надежную защиту стенки КС от воздействия тепловых потоков;
- работоспособность при эрозионном воздействии газового потока;
- стабильность свойств при длительном хранении;
- сохранение собственных несущих свойств (отсутствие разрушения) в условиях упругой деформации и при вибрации;
- надежную адгезию к корпусу и защитно-крепящему слою.

В качестве материала ТЗП применяется композиционный материал с основой связующего из термопластичного полимера и дисперсноволокнистого наполнителя из керамики.

Данный аблятор обладает следующими характеристиками:

- плотность материала покрытия $\rho_{\rm II} = 1300 \frac{{\rm K}\Gamma}{{\rm M}^3}$,
- удельная теплоёмкость покрытия $C_{p,\Pi} = 2600 \frac{\text{Дж}}{\text{кг} \cdot \text{K}}$,
- коэффициент теплопроводности $\lambda_{\text{п}} = 0.9 \frac{\text{BT}}{\text{M} \cdot \text{K}}$,
- температурный коэффициент линейного расширения $\alpha_{\rm n} = 2 \cdot 10^{-7} \ \frac{1}{\rm K},$
- полная энтальпия материала покрытия $I_{\Pi} = -4 \cdot 10^6 \ \frac{\text{Дж}}{\text{кг}},$
- массовое содержание связующего $\phi = 0,6$,
- удельная теплота абляции материала $Q_{\rm n} = 3 \cdot 10^6 \ \frac{\text{Дж}}{\text{кг}}.$

Используем в расчетах плотность твердого топлива $\rho_{\rm T} = 1740 \; {\rm kF/m^3}$,

закон горения
$$u = 3,44 \cdot \left(\frac{p}{98066,5}\right)^{0,26} \frac{\text{мм}}{\text{c}}.$$

Зона переднего днища характеризуется следующими параметрами:

- эквивалентный размер области $d_9 \approx \frac{\pi \cdot d_{\rm H}}{4} = \frac{3,14 \cdot 1,5}{4} = 1,139$ м,
- примем характерную скорость течения газа равной $W = 50 \, \frac{\mathrm{M}}{\mathrm{c}}$,
- время взаимодействия ПС со стенкой соответствует времени работы РДТТ $t = \tau_{\rm p} = 50 \, {\rm c}.$

Число Маха в данной зоне:

$$M = \frac{W}{\sqrt{kRT_{K}}} = \frac{50}{\sqrt{1,15.479,392.3152}} = 0,023,$$

Определим статическую температуру продуктов сгорания в районе заднего днища:

$$T_{\rm K}^1 = \frac{T_{\rm K}}{1 + \frac{k - 1}{2} {\rm M}^2} = \frac{3152}{1 + \frac{1,15 - 1}{2} \cdot 0,023} = 3153 {\rm K}.$$

Коэффициент восстановления температуры: $r = \sqrt[3]{\text{Pr}} = \sqrt[3]{0,347} = 0,703$.

Температура и полная энтальпия продуктов сгорания на адиабатической стенке:

$$T_r = T_{\kappa}^1 \cdot \left[1 + \frac{k-1}{2} \cdot r \cdot M^2 \right] = 3153 \cdot \left[1 + \frac{1,15-1}{2} \cdot 0,703 \cdot 0,023^2 \right] = 3153 \text{ K},$$

$$H_r = C_p \cdot T_r = 3370 \cdot 3153 = 1,063 \cdot 10^7 \frac{\text{Дж}}{\text{кг}}.$$

Энтальпия и плотность продуктов сгорания при температуре стенки:

$$T_w = T_r \cdot 0.85 = 2679 \text{ K},$$

$$H_w = C_p \cdot T_w = 3370 \cdot 2679 = 9.032 \cdot 10^6 \frac{\text{Дж}}{\text{K}\Gamma},$$

$$\rho_{W} = \frac{p_{K}}{R_{K}T_{W}} = \frac{7 \cdot 10^{6}}{479,392 \cdot 2679} = 5,449 \frac{K\Gamma}{M^{3}}.$$

Значение числа Рейнольдса и Прандля у стенки:

$$Re_{w} = \frac{\rho_{w} \cdot w \cdot d_{9}}{\eta_{w}} = \frac{5,449 \cdot 50 \cdot 1,139}{0,879} = 2,118 \cdot 10^{6},$$

$$Pr_{w} = 0,409886.$$

Значение числа Стантона на идеальной стенке:

$$St^* = 0,0296 \cdot \text{Re}_w^{-0,2} \cdot \text{Pr}_w^{-0,6} \cdot \left(\frac{H_w}{H_r}\right)^{0,39} \cdot \left[1 + r \cdot \frac{k-1}{2} \cdot M^2\right]^{0,11} =$$

$$= 0,0296 \cdot \left(2,188 \cdot 10^6\right)^{-0,2} \cdot 0,409886 \cdot \left(\frac{9,032 \cdot 10^6}{1,063 \cdot 10^7}\right)^{0,39} \cdot \left[1 + 0,703 \cdot \frac{1,15-1}{2} \cdot 0,023^2\right]^{0,11} =$$

$$= 0,003.$$

Значение числа Стантона для реальных условий определим по формуле:

$$St = St^* \cdot k_{_{\mathrm{B}}} \cdot k_{_{\mathrm{III}}} \cdot k_{_{\mathrm{T}}} \cdot k_{_{p}},$$
где:

• коэффициент, учитывающий вдув газа в результате разложения газа:

$$k_{_{\rm B}}=0,9,$$

• коэффициент, учитывающий шероховатость стенки:

$$k_{\text{III}} = 1 + 0.151 \cdot k_s^{0.29} = 1 + 0.151 \cdot 0.25^{0.29} = 1.1,$$

• коэффициент, учитывающий влияние конденсированных частиц в ПС:

$$k_p = 1 + 0.0246 \cdot \text{Re}_w^{-0.3} \cdot \left(\frac{Z_k}{1 - Z_k}\right)^{2.45} =$$

$$= 1 + 0.0246 \cdot \left(2.118 \cdot 10^6\right)^{-0.3} \cdot \left(\frac{0.325}{1 - 0.325}\right)^{2.45} = 1,$$

Подставляя значения рассчитанных величин соотношение для определения числа Стантона для данной зоны, получим:

$$St = St^* \cdot k_{\text{\tiny B}} \cdot k_{\text{\tiny III}} \cdot k_{\text{\tiny p}} = 0,003 \cdot 0,9 \cdot 1,1 \cdot 1 = 0,003.$$

Значение плотности конвективного теплового потока к стенке камеры сгорания:

$$\alpha = \rho_{w} \cdot w \cdot St \cdot C_{p} = 5,449 \cdot 50 \cdot 0,003 \cdot 3370 = 1531 \frac{BT}{M^{3} \cdot K},$$

$$q_{K} = \alpha (T_{K} - T_{W}) = 1531 \cdot (3152 - 2679) = 724,3 \cdot 10^{3} \frac{BT}{M^{2}}.$$

2.2.2 Расчёт параметров радиационного теплообмена в КС

Примем значение степени черноты стенки $\varepsilon_{w} = 0.8$.

Из результатов термодинамического расчета в программном комплексе «Тегга» находим парциальное давления молекул воды $p_{H_2O}=0,33303~{
m M\Pi a}$ и углекислого газа $p_{CO_2}=0,0263~{
m M\Pi a}$.

Далее, принимая характерный диаметр излучающего объема $D_{_{\! 9}}$, равным характерному размеру зоны переднего днища $d_{_{\! 9}}$, определяем среднюю длину пути луча $l=0,9\cdot d_{_{\! 9}}=0,9\cdot 1,5=1,025$ м. По номограммам находим интегральные излучательные способности трехатомных молекул и газообразных продуктов сгорания в целом:

$$\varepsilon_{H_2O} = 4,4425 \cdot \left(p_{H_2O} \cdot 10^{-6}\right)^{0.8} \cdot l^{0.6} \cdot \left(\frac{T_{\kappa}}{100}\right)^{-1} = 0,059,$$

$$\varepsilon_{CO_2} = 1,5306 \cdot \left(p_{CO_2} \cdot 10^{-6}\right)^{0.8} \cdot l^{0.33} \cdot \left(\frac{T_{\kappa}}{100}\right)^{-0.5} = 0,0827,$$

$$\varepsilon_{_{\Gamma}} = \varepsilon_{_{H_2O}} + \varepsilon_{_{CO_2}} - \varepsilon_{_{H_2O}} \varepsilon_{_{CO_2}} = 0,059 + 0,0827 - 0,059 \cdot 0,0827 = 0,137.$$

Будем считать, что плотность к-фазы составляет $\rho_{\text{к.ф}} = 2200 \; \frac{\text{KT}}{\text{M}^3}.$

Среднемассовый диаметр конденсированных частиц ПС определяем по выражению:

$$d_{43} = 10,68 \cdot d_{\text{kp}}^{0,293} \left[1 - e^{-0,1128 \cdot z_{\text{k}} \cdot t_{\text{k}} \cdot p_{\text{k}}/10^{-6}} \right] = 51,5 \text{ MKM}.$$

Тогда эффективный коэффициент ослабления луча в продуктах сгорания и величина \mathcal{E}_{nc} равны:

$$d = 0.042 \cdot \frac{1}{\rho_{\text{\tiny K.} \Phi}} \sqrt[3]{\frac{T_{\text{\tiny K}}}{d_{43}^2}} z_{\text{\tiny K}} = 0.0657,$$
$$\varepsilon_{\text{\tiny IIC}} = 1 - (1 - \varepsilon_{\text{\tiny L}}) \cdot e^{(-d \cdot l)} = 0.193.$$

Определим плотность радиационного теплового потока:

$$q_{\rm p} = \varepsilon_{\rm w} \cdot \varepsilon_{\rm nc} \cdot \sigma_0 \cdot \left(T_{\rm K}^4 - T_{\rm w}^4\right) = 0.8 \cdot 0.193 \cdot 5.67 \cdot 10^{-8} \cdot \left(3153^4 - 2679^4\right) = 414.3 \frac{\rm KBT}{\rm M^2}.$$

2.2.3 Определение толщины ТЗП

Скорость уноса массы материала ТЗП рассчитываем в предположении равенства начальной температуры ТЗП $T_{n}^{0} = 293 \text{ K}$:

$$\begin{split} &U_{_{\Pi}} = \frac{q_{_{\mathbb{K}}} + q_{_{\mathbb{P}}}}{\rho_{_{\Pi}} \cdot \left(Q_{_{\Pi}} + \varphi \cdot \left(I_{_{\mathbb{K}}} - I_{_{\Pi}}\right) + C_{_{\mathbb{P},\Pi}} \cdot \left(T_{_{W}} - T_{_{\Pi0}}\right)\right)} = \\ &= \frac{724, 3 \cdot 10^{3} + 414, 3 \cdot 10^{3}}{1300 \cdot \left(3 \cdot 10^{6} + 0, 6 \cdot \left(-1940 \cdot 10^{6} + 4 \cdot 10^{6}\right) + 2600 \cdot \left(2679 - 293\right)\right)} = 8,385 \cdot 10^{-5} \frac{\mathrm{M}}{\mathrm{c}}. \end{split}$$

Примем, что максимально допустимая температура силовой оболочки под материалом ТЗП равна $T_{\scriptscriptstyle M}=500~{\rm K}.$ Тогда с учетом определенных выше значений необходимую толщину слоя абляционного ТЗП рассчитываем по формуле:

$$\begin{split} & \mathcal{S}_{_{\Pi}} = \frac{\alpha_{_{\Pi}}}{U_{_{\Pi}}} \cdot \ln \left(\frac{T_{_{W}} - T_{_{\Pi 0}}}{T_{_{M}} - T_{_{\Pi 0}}} \right) + U_{_{\Pi}} \cdot t_{_{p}} = \\ & = \frac{2 \cdot 10^{-7}}{8,385 \cdot 10^{-5}} \cdot \ln \left(\frac{2679 - 293}{500 - 293} \right) + 8,385 \cdot 10^{-5} \cdot 50 = 8,566 \text{ mm}. \end{split}$$

Для дальнейшего проектирования принимаем толщину ТЗП в данной зоне 9 мм. Аналогичным образом можно рассчитать потребные значения толщин ТЗП в других характерных зонах камеры сгорания РДТТ. При этом следует изменять определяющие параметры потока, в частности скорость.

2.3 Расчёт и проектирование корпуса и сопла РДТТ

2.3.1 Требования, предъявляемые к корпусу РД, выбор материала корпуса

Одной из особенностей РДТТ является то, что корпус двигателя одновременно является и корпусом ракеты, и «топливным баком», и камерой сгорания. Корпус РДТТ, являющийся частью силовой конструкции ракеты, предназначен также для передачи тяги от двигателя к летательному аппарату в целом. Кроме того, он воспринимает внешние аэродинамические нагрузки при движении в атмосфере. В условиях хранения корпус предохраняет заряд твердого топлива от внешних атмосферных и биологических воздействий.

В настоящее время в РДТТ применяются в основном три типа обечаек: металлические, из композиционных материалов и комбинированные.

Корпус проектируемого ракетного двигателя выполнен методом спирально-кольцевой намотки из органопластика на основе арамидных волокон Армос. Его основные характеристики приведены в таблице 1.4.

Таблица 1.4 - Характеристики материала Армос

Параметр	$[\sigma_{\scriptscriptstyle \mathrm{B}}]$, ГПа	Е, ГПа	ρ , kg/m 3	$[\sigma_{\scriptscriptstyle \mathrm{B}}]/\rho/g_{\scriptscriptstyle 0}$, kn	μ
Значение	2,352,5	93100	1350	183	0,30,6

2.3.2 Расчёт толщины силовой обечайки корпуса

В качестве исходных данных для расчета силовой оболочки корпуса примем следующие величины:

- $p_{_{\rm K}}^{\rm max} = 8,404~{
 m M\Pi a}$ максимальное давление в камере сгорания;
- $d_{01} = 0,66$ м диаметр переднего полюсного отверстия;
- $d_{02} = 0.82$ м диаметр заднего полюсного отверстия;
- d = 1,5м наружный диаметр корпуса.

Допустимое напряжение определяется соотношением:

$$\sigma_{\rm B} = \frac{\left[\sigma_{\rm B}\right]}{k_{\rm a}} = \frac{2500}{1,2} = 2083,3\,{\rm MHa},$$

где $k_{_3} = (1,15...1,30)$ - коэффициент запаса прочности;

 $\left[\sigma_{\mathrm{B}}\right]$ - предел прочности на разрыв в тангенциальном направлении.

Вычислим значения
$$\overline{d}_{01} = \frac{d_{01}}{d} = \frac{0,66}{1,5} = 0,44$$
, $\overline{d}_{02} = \frac{d_{02}}{d} = \frac{0,82}{1,5} = 0,547$.

Найдём допустимые напряжение при спиральной $\sigma_{_{\mathrm{BC}}}$ и кольцевой намотке $\sigma_{_{\mathrm{BK}}}$:

$$\sigma_{_{\mathrm{BC}}} = \alpha \cdot \sigma_{_{\mathrm{BK}}} = 0,6 \cdot 2083,3 = 1250 \,\mathrm{M}\Pi\mathrm{a},$$

$$\sigma_{_{\mathrm{BK}}} = \sigma_{_{\mathrm{B}}} = 2083,3 \,\mathrm{M}\Pi\mathrm{a}.$$

Рассчитаем углы намотки волокон у переднего и заднего днищ β_1 и β_2 соответственно:

$$\beta_1 = \arccos\left(\sqrt{1 - (\bar{d}_{01})^2}\right) = \arccos\left(\sqrt{1 - (0.44)^2}\right) = 26.104^\circ,$$

$$\beta_2 = \arccos\left(\sqrt{1 - (\bar{d}_{02})^2}\right) = \arccos\left(\sqrt{1 - (0.547)^2}\right) = 33.139^\circ.$$

Рассчитаем толщины обечаек спиральной намотки в месте соединения цилиндрической обечайки с передним $h_{\rm c1}$ и задним $h_{\rm c2}$ днищами:

$$h_{\rm c1} = \frac{p_{\rm K}^{\rm max} \cdot d}{2 \cdot \sigma_{\rm BC} \cdot \left(\cos\left(\beta_{\rm l}\right)\right)^2} = \frac{8,404 \cdot 10^6 \cdot 1,5}{2 \cdot 1250 \cdot 10^6 \cdot \left(\cos\left(26,104\right)\right)^2} = 12,506 \text{ MM},$$

$$h_{c2} = \frac{p_{\kappa}^{\text{max}} \cdot d}{2 \cdot \sigma_{\text{BC}} \cdot \left(\cos(\beta_2)\right)^2} = \frac{8,404 \cdot 10^6 \cdot 1,5}{2 \cdot 1250 \cdot 10^6 \cdot \left(\cos(33,139)\right)^2} = 14,383 \text{ MM}.$$

Определим угол намотки волокон цилиндрической части оболочки:

$$\beta = \frac{\beta_1 + \beta_2}{2} = \frac{26,104 + 33,139}{2} = 29,621^{\circ}.$$

Так как выполняется условие $\overline{d}_{01} < \overline{d}_{02}$, то толщины спиральной и

кольцевой намоток в центральной части обечайки находим по формулам:

$$h_{\rm c} = h_{\rm c2} \cdot \frac{\cos\left(\beta_2\right)}{\cos\left(\beta_1\right)} = 14,383 \cdot \frac{\cos\left(33,139\right)}{\cos\left(26,104\right)} = 13,412 \text{ mm},$$

$$h_{\rm k} = \alpha \cdot h_{\rm c} \cdot \left(3 \cdot \left(\cos\left(\beta\right)\right)^2 - 1\right) = 0,6 \cdot 13,412 \cdot \left(3 \cdot \left(\cos\left(29,621\right)\right)^2 - 1\right) = 10,196 \text{ mm}.$$

Тогда толщина центральной части цилиндрической обечайки будет равна:

$$\delta_{\text{II}} = h_{\text{c}} + h_{\text{K}} = 13,412 + 10,196 = 23,608 \text{ MM}.$$

Рассчитаем толщины обечаек в центральной части переднего и заднего днища:

$$\delta_1 = \frac{h_{c1}}{\overline{d}_{01}} = \frac{12,506}{0,44} = 28,423 \,\mathrm{mm},$$

$$\delta_2 = \frac{h_{c2}}{\overline{d}_{02}} = \frac{14,383}{0,547} = 26,311$$
 mm.

2.4 Расчёт воспламенительного устройства

Основным назначением системы воспламенения является зажигание топливного заряда РДТТ за заданное время по определенному закону и при выполнении совокупности дополнительных требований:

- обеспечение заданного времени задержки воспламенения и выхода на квазистационарный режим работы;
- обеспечение заданной скорости нарастания давления в КС при выходе на режим;
- отсутствие «забросов» p_{κ} при воспламенении заряда за установленный предел;
- надежность, приемлемость габаритно-массовых характеристик и др. эксплуатационные требования.

Основными задачами при проектировании системы воспламенения являются:

- выбор способа воспламенения;
- выбор конструктивной схемы системы воспламенения и её пространственного размещения в камере сгорания двигателя;
 - выбор марки воспламенительного состава;
 - определение массовых, геометрических параметров системы

воспламенения.

Так как в проектируемом РДТТ используется смесевое твердое топливо, то для воспламенения выбираем пиротехнический состав Б-20СН. Его характеристики приведены в таблице 1.5.

Таблица 1.5 - Характеристики пиротехнического состава [7]

Параметр	Состав Б-20СН
Удельная теплоемкость, Дж/(кг-К)	977
Удельная теплоемкость, Дж/(кг-К)	905
Коэффициент теплопроводности, Вт/(м-К)	0,2
Коэффициент динамической вязкости, Па-с	0,0001
Молекулярная масса, кг/кмоль	115
Температура продуктов сгорания, К	3676
Полная энтальпия, кДж/кг	3140,1
Относительная массовая концентрация к-фазы	0,562
Единичная скорость горения, м/с	0,011
Показатель степени в законе горения	0,37

Для надёжного воспламенения пиротехнического состава используется навеска дымного ружейного пороха, которая предварительно воспламеняется от пиропатронов. Так как проектируемый РДТТ в ракете, то для повышения надёжности запуска используется два пиропатрона. Затем продукты сгорания навески ДРП обеспечивают надёжное зажигание пиротехнического состава.

Потребное давление в КС, создаваемое воспламенителем:

$$p_{\rm R} = (0,3...0,5) \cdot p_{\rm K} = 0,3 \cdot 7 = 2,1$$
 MIIa.

Ввиду высокого потребного давления в камере сгорания, создаваемого воспламенителем, массой находящегося в камере воздуха можно пренебречь.

Свободный объем камеры сгорания: $V_{cB} = 0.62 \,\mathrm{m}^3$,

Давление, создаваемое воспламенителем: $p = \frac{m}{V_{_{\mathrm{CR}}}} \cdot R_{_{\mathrm{IIc}}} \cdot T_{_{\mathrm{IIc}}},$

Газовая постоянная продуктов сгорания: $R = \frac{R_0}{M} = \frac{8314}{115} = 72, 3\frac{\text{Дж}}{\text{кг} \cdot \text{K}},$

Тогда масса воспламенителя: $m_1 = \frac{p \cdot V_{\text{св}}}{R \cdot T_{\text{пс}}} = \frac{2,1 \cdot 10^6 \cdot 0,62}{72,3 \cdot 3676} = 4,898 \, \text{кг}.$

Примем массу воспламенителя как:

$$m = \frac{m_1}{\sqrt{1 - \frac{m_{\text{возд}}}{m_1}}} = \frac{4,898}{\sqrt{1 - \frac{0,762}{4,898}}} = 5,33 \text{ K}\text{Г}.$$

Объём воспламенительного состава с учётом насыпной плотности:

$$V_{\text{воспл}} = \frac{m}{\rho_{\text{нас}}} = \frac{5,33}{1670} = 0,003 \,\text{m}^3.$$

Диаметр заряда воспламенителя:

$$d = \sqrt[3]{\frac{2 \cdot V_{\text{воспл}}}{\pi}} = \sqrt[3]{\frac{2 \cdot 0,003}{\pi}} = 0,126 \text{ M}.$$

Длина заряда воспламенителя:

$$l = \frac{4 \cdot V_{\text{воспл}}}{\pi \cdot d^2} = \frac{4 \cdot 0,003}{\pi \cdot 0,126^2} = 0,252 \,\text{M}.$$

2.5 Расчёт и проектирование соплового блока

Качество профилирования контура сужающейся, трансзвуковой и расширяющейся частей сопла определяет массово-габаритные и тягово-

импульсные характеристики, как двигательной установки, так и ЛА в целом. Поэтому проектирование соплового блока является одной из основных задач создания РДТТ.

В состав разрабатываемого соплового блока входят:

- силовой каркас;
- теплозащитное покрытие силового корпуса;
- вкладыш критической части;
- раструб.

Силовой каркас выполнен из металла и служит для передачи усилий, создаваемых воздействием продуктов сгорания, на корпус РДТТ. В качестве материала используется жаропрочный сплав на основе титана.

Теплозащитное покрытие силового корпуса расположено в зоне с относительно невысокими скоростями потока, выполнено из углепластика.

Входной вкладыш расположен в зоне с увеличивающейся скоростью потока. Материал — УУКМ.

Вкладыш критической части предохраняет элементы конструкции от тепловых потоков. Используется графит с анизотропией свойств (коэффициент теплопроводности в радиальном направлении меньший, чем в осевом и окружном).

Раструб сопла, расположенный дальше по потоку, подвергается меньшим тепловым нагрузкам, что позволяет применить в качестве материала тугоплавкий сплав на основе молибдена.

2.5.1 Профилирование сужающейся части сопла

Профиль утопленной части сопла выполнен поверхностью, образованной вращением эллипса с полуосями a и b относительно оси сопла, где

$$a/b = 3/2$$
.

Для уменьшения эрозии сопла входное сечение выполняется в соответствии с рекомендацией:

$$R_{_{
m BX}} / R_{_{
m Kp}} > 1,25,$$
 $R_{_{
m Kp}} = 106,94\,\mathrm{mm} \cong 107\,\mathrm{mm}.$ Пусть $R_{_{
m BX}} = 200\,\mathrm{mm}$, тогда $R_{_{
m BX}} / R_{_{
m Kp}} = 200/107 = 1,87 > 1,25,$ $b = R_{_{
m BX}} - R_{_{
m Kp}} = 200-107 = 93\,\mathrm{mm},$ $a = \frac{3}{2} \cdot b = \frac{3}{2} \cdot 93 = 139,5\,\mathrm{mm}.$

2.5.2 Профилирование трансзвуковой части сопла

Неоптимальный профиль в районе критического сечения сопла, как и неверный профиль сужающейся части, могут привести к возникновению системы скачков уплотнения, которые приводят к потерям энергии и уменьшению удельного импульса.

Минимальную длину расширяющейся части сопла обеспечивает сверхзвуковой контур с «угловой точкой», в котором сопряжение дозвукового и сверхзвукового участков сопла выполнено с изломом. Но при наличии «угловой точки» возникает скачок уплотнения и унос материала проточного тракта в начальной части расширяющегося участка сопла.

Из технологических соображений критическое сечение выполнено в виде ленты шириной 44 мм.

2.5.3 Профилирование расширяющейся части сопла

Для профилирования расширяющейся части сопла используется метод Pao.

Для профилирования расширяющейся части сопла будем использовать метод огибающих. Зная, что $R_{_{\rm BX}}$ / $R_{_{\rm Kp}}$ = 1,87 и, задавшись относительной длиной сопла $L_{_{\rm OTH}}$ = L / $R_{_{\rm Kp}}$ = 9 , по номограмме из определяем углы наклона образующей на входе $\beta_{_{\rm BX}}$ = 30° и на срезе сопла β_a = 17°

Далее определяем длину сверхзвуковой части сопла:

$$L = R_{\text{kp}} \cdot L_{\text{OTH}} = 107 \cdot 9 = 963 \,\text{MM}.$$

Профиль сопла представлен на рисунке 1

Рис. 1 - Профилирование расширяющейся части сопла

2. Вывод

В данном отчёте были представлены результаты проделанной работы по дипломному проекту. Были показаны: внутрибаллистический расчёт; изменение внутрибаллистических характеристик по времени горения заряда; расчёт предельных отклонений давления, тяги и массового расхода продуктов сгорания; расчёт ТЗП; расчёт толщины силовой оболочки; расчёт заряда воспламенителя; расчёт и профилирование соплового блока.