§5. Производная по направлению. Градиент.

П1. **Производная по направлению.** Пусть функция u(M) определена в некоторой окрестности точки M.. Из точки M_0 проведем луч, направление которого определяется вектором s. На луче возьмем точку $M \neq M_0$ и составим отношение $\frac{u(M)-u(M_0)}{|M_0M|}$, которое можно рассматривать как среднюю скорость изменения функции на отрезке M_0M . Устремим точку M вдоль луча к точке M_0 ($M \to M_0$). Если при этом существует конечный $\lim_{M \to M_0} \frac{u(M)-u(M_0)}{|M_0M|}$, то он называется производной функции u(M) по направлению s в точке M_0 и обозначается

$$\frac{\partial u(M_0)}{\partial s} = \lim_{M \to M_0} \frac{u(M) - u(M_0)}{|M_0 M|}.$$
 (1)

Эту производную можно трактовать как скорость изменения функции в точке M_0 в направлении вектора s. Если $\frac{\partial u(M_0)}{\partial s} > 0$, то в достаточно малой окрестности точки M_0 функция возрастает в направлении вектора s. Вычисление производной $\frac{\partial u}{\partial s}$ в прямоугольной декартовой системе координат основано на **теореме**:

Если функция u(x,y,z) имеет в области D непрерывные производные первого порядка, по всем переменным, то в любой точке $M \in D$ и для любого направления s справедлива формула

$$\frac{\partial u(M)}{\partial s} = \frac{\partial u(M)}{\partial x} \cos \alpha + \frac{\partial u(M)}{\partial y} \cos \beta + \frac{\partial u(M)}{\partial z} \cos \gamma , \qquad (2)$$

где $\cos \alpha$, $\cos \beta$, $\cos \gamma$ — направляющие косинусы вектора s, т.е. $s^0 = i \cos \alpha + j \cos \beta + k \cos \gamma$ — орт вектора s.

lackbox Пусть $u(M_0) = u(x,y,z)$, $u(M) = u(x+\Delta x,y+\Delta y,z+\Delta z)$ и $\overrightarrow{M_0M} = \Delta s = \Delta x \, \pmb{i} + \Delta y \, \pmb{j} + \Delta z \, \pmb{k}$. Тогда из определения (1) следует

$$\frac{\partial u}{\partial \mathbf{s}} = \lim_{M \to M_0} \frac{\Delta u}{|\Delta \mathbf{s}|} = \lim_{\rho \to 0} \frac{\Delta u}{\Delta \mathbf{s}},\tag{3}$$

где $\rho = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}$ и $\Delta u = u(x + \Delta x, y + \Delta y, z + \Delta z) - u(x, y, z)$ – полное приращение функции u(M). Как известно, полное приращение Δu функции u можно представить в виде

$$\Delta u = u(x + \Delta x, y + \Delta y, z + \Delta z) - u(x, y, z) = \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + \frac{\partial u}{\partial z} \Delta z + \gamma \rho, \tag{4}$$

где $\gamma \to 0$ при $\rho \to 0$. Так как $\frac{\Delta x}{\Delta s} = \cos \alpha$, $\frac{\Delta y}{\Delta s} = \cos \beta$, $\frac{\Delta z}{\Delta s} = \cos \gamma$ — направляющие косинусы вектора s, по направлению которого вычисляется производная (1), то из (3) и (4) следует

$$\frac{\partial u}{\partial s} = \lim_{\rho \to 0} \left(\frac{\partial u}{\partial x} \cdot \frac{\Delta x}{\Delta s} + \frac{\partial u}{\partial y} \cdot \frac{\Delta y}{\Delta s} + \frac{\partial u}{\partial z} \cdot \frac{\Delta z}{\Delta s} + \gamma \rho \right) = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma .$$
 (5)

Из формулы (5) следует, что производная по направлению является линейной комбинацией частных производных. Причем направляющие косинусы являются как бы весовыми множителями, показывающим вклад в производную по направлению соответствующей частной производной.

П2. **Градиент. Определение**. *Градиентом* функции u(M) в точке M_0 называется вектор, в направлении которого производная $\frac{\partial u(M_0)}{\partial s}$ принимает наибольшее значение, и длина которого равна $\max \frac{\partial u(M_0)}{\partial s}$.

Обозначается этот вектор: $\operatorname{grad} u(M_0)$. В любой точке M скалярного поля u(M) = u(x,y,z) (которое с самого начала предполагалось непрерывно дифференцируемым в области D) $\operatorname{grad} u(M)$ существует и может быть вычислен в декартовой прямоугольной системе координат по формуле

grad
$$u(x, y, z) = \frac{\partial u}{\partial x} \mathbf{i} + \frac{\partial u}{\partial y} \mathbf{j} + \frac{\partial u}{\partial z} \mathbf{k}$$
 (6)

Отметим основные соотношения, связанные с градиентом скалярного поля.

- 1. $\frac{\partial u}{\partial s} = \pi \operatorname{p}_s \operatorname{grad} u = \operatorname{grad} u \cdot s^0 = |\operatorname{grad} u| \cdot \cos \varphi$, где s^0 орт вектора s, φ угол между векторами $\operatorname{grad} u$ и s.
- **2**. В любой точке M_0 скалярного поля u(M) g г а $u(M_0)$ направлен по нормали к поверхности уровня поля, проходящей через точку M_0 , т.е. к поверхности $u(M) = u(M_0)$, в сторону возрастания поля.
 - **3**. grad $C = \mathbf{0}$, C постоянное поле.
 - 4. grad (u+v) = grad u + grad v.
 - 5. grad $(uv) = v \operatorname{grad} u + u \operatorname{grad} v$.
 - **6.** grad $\frac{u}{v} = \frac{v \operatorname{grad} u u \operatorname{grad} v}{v^2}, \quad v \neq 0.$
 - 7. Градиент сложной функции: grad u(v) = u'(v) grad v.

Пример. Найти производную функции $u = x^2y^2 + z^2$ в точке A(5,1,2) в направлении к точке B(9,4,14).

$$\mathbf{s} = \overrightarrow{AB} = (4, 3, 12), \quad \mathbf{s}^0 = \frac{\mathbf{s}}{|\mathbf{s}|} = \frac{(4, 3, 12)}{13}, \quad \text{grad } u = (2xy^2, 2x^2y, 2z), \quad \text{grad } u(A) = (10, 50, 4);$$

$$\frac{\partial u(A)}{\partial s} = \text{grad } u(A) \cdot \mathbf{s}^0 = \frac{40 + 150 + 36}{13} = \frac{226}{13}. \blacktriangleleft$$