Øving 11

Oppgave 1

Oppgave 2

$$\overset{\oplus}{\bigoplus}^H \operatorname{Cl} \longleftrightarrow \overset{H}{\bigoplus}^H \operatorname{Cl}$$

Oppgave 3

a)

Trifluormetyl vil være sterkt deaktiverende og reagere mye saktere enn toluen.

b)

Fenylacetat vil være moderat aktivert og reagere fortere enn metylbenzoat:

 $\mathbf{c})$

Amider er aktiverende og vil reagere raskere enn nitret benzen som er deaktivert:

Oppgave 4

$$(1) \text{ KMnO}_4, \text{ OH}^-, \text{ varme} \\ (2) \text{ H}_3\text{O}^+ \\ OH \\ 1 \text{ MO}_2 \\ m\text{-nitrobenzosyre}$$

Oppgave 5

Stoff ${\bf 1}$ ville dannet et primært karbokation ved en S_N1 reaksjon, som er veldig ustabilt og vil derfor ikke reagere via S_N1 mekanisme. Stoff ${\bf 2}$ har ville også dannet et primært karbokation, men dette vil blir kompensert av den konjugerte dobbeltbindingen ved resonans til et mer stabilt tertiært karbokation og derfor være stabilt nok til å kunne reagere via S_N1 mekanisme.

Oppgave 6

a)

b)

 $\mathbf{c})$

Oppgave 7

a)

$$NO_2$$
 OCH_3
 NO_2
 OCH_3

b)

d)
$$O_2N \longrightarrow O_2N$$

$$B_1$$

Oppgave 8

a)

$$\frac{\text{NBS}}{\text{ROOR}}$$

b)

$$\frac{\text{NBS}}{\text{ROOR}}$$

Oppgave 9

$$\underbrace{\text{NaBH}_4}_{\text{OH}}$$