LUCRAREA I PENDULUL MATEMATIC

Obiectivele experimentului:

determinarea perioadei de oscilație a pendulului matematic în funcție de lungimea sa și amplitudinea unghiulară.

Teoria lucrării

Pendulul matematic este un corp idealizat, format dintr-un punct material de masă m suspendat de un fir ușor extensibil de lungime l. Deplasat din poziția de echilibru cu unghiul ϕ și lăsat liber, pendulul va oscila într-un plan vertical sub acțiunea gravitației.

Fig. 1. Reprezentarea schematică a mișcării pendulului matematic

Din legea conservării energiei, cu notațiile din figura 1, rezultă:

$$I^{2} \left[\frac{d\phi}{dt} \right]^{2} + 2 \cdot g \cdot I \left(1 - \cos \phi \right) = E_{0} = const. \tag{1}$$

Deoarece viteza unghiulară dispare la punctul de revenire, când $\phi=\alpha$ obținem pentru E_{θ} :

$$E_0 = 2 \cdot g \cdot l \left(1 - \cos \alpha\right).$$

Astfel, din (1) se obține:

$$\frac{T}{4} = \sqrt{\frac{l}{g}} \int_{0}^{\infty} \frac{d\phi}{\sqrt{(\cos\phi - \cos\alpha)}}.$$

Deoarece $k = \sin \alpha/2$, perioada obținută devine:

$$T = 4\sqrt{\frac{l}{g}} \cdot \int_{0}^{\alpha/2} \frac{d\phi}{\sqrt{1 - k^2 \sin^2 \phi}} = 4\sqrt{\frac{l}{g}} K(k).$$

Unde K este integrala eliptică totală de ordinul 1.

Dezvoltând în serie vom obține pentru K(k)

$$T = 2\pi \sqrt{\frac{I}{g}} \left\{ 1 + \frac{1}{4} \sin^2 \frac{\alpha}{2} + \dots \right\}$$
 (2)

Pentru valori mici ale lui α (α ≤ 4°)

$$T = 2\pi \sqrt{\frac{I}{g}} \tag{3}$$

Dispozitivul experimental

Montajul experimental al lucrării este prezentat în figura 2. O bilă de oțel este suspendată de un fir și prinsă la celălalt capăt între două cleme prevăzute cu un șurub.

Fig. 2. Dispozitivul experimental pentru determinarea perioadei de oscilație a pendulului matematic

Perioada este măsurată cu ajutorul unui numărător cu barieră de lumină. Lungimea firului se măsoară cu ajutorul unei rigle gradate.

Modul de lucru

Variația perioadei cu lungimea

Se suspendă bila de fir și se așteaptă câteva minute deoarece firul se alungește ușor. Se măsoară apoi lungimea pendulului. Se măsoară perioada de oscilație a pendulului matematic pentru diverse lungimi ale acestuia (lungimea pendulului se poate modifica spre exemplu în pași de 1–2 cm) și pentru unghiuri mici de deviație ($\alpha \le 4^{\circ}$). Se calculează accelerația gravitațională locală cu ajutorul relației:

$$g = \frac{4\pi^2 l}{T^2} \tag{4}$$

Se reprezintă grafic pătratul perioadei în funcție de lungimea pendulului, $T^2=f(l)$, obținându-se astfel o **dreaptă**. Din panta dreptei, $tg\alpha=\frac{y_2-y_1}{x_2-x_1}$, se determină valoarea accelerației gravitaționale cu formula:

$$g_{grafic} = \frac{4\pi^2}{\lg \alpha}.$$

Datele experimentale se trec într-un tabel de forma:

Nr. exp.	l (m)	T(s)	$g(\frac{m}{s^2})$	$\overline{g}(\frac{m}{s^2})$	$\frac{g_{grafic}}{\left(\frac{m}{s^2}\right)}$
1.	7.		91		
2.			11		
3.					
4.					
5.					

Se vor calcula valorile erorilor absolute și relative maxime pentru g, determinat cu relația (4), pentru fiecare valoare aleasă a lungimii pendulului I.

Variația perioadei cu amplitudinea unghiulară

În această parte a experimentului se va studia dependența perioadei unui pendul simplu funcție de amplitudinea unghiulară α (unghiul de lansare), menținând lungimea pendulului fixă. Se notează

$$T_0 = 2\pi \sqrt{\frac{l}{g}} \,. \tag{5}$$

Din relația (2) se obține:

$$\frac{T}{T_0} = 1 + \frac{1}{4}\sin^2\frac{\alpha}{2} + \frac{9}{64}\sin^4\frac{\alpha}{2} + \dots$$
 (6)

Mai întâi se va determina perioada T_0 pentru o amplitudine unghiulară de 4^0 . În continuare se vor face măsurători ale perioadei pentru unghiuri de 10°, 20°, 30°, 40°, respectiv 50°. Datele experimentale se vor trece în următorul tabel:

α	$T(\alpha)$	$\sin^2\frac{\alpha}{2}$

Cu datele din tabelul de mai sus se va reprezenta grafic perioada T în funcție de $\sin^2 \frac{\alpha}{2}$. Aspectul graficului obținut este o dreaptă, ca în figura 3.

Fig. 3. Perioada pendulului matematic în funcție de unghiul de deviație