

Map Reduce on YARN Overview

Originals of slides and source code for examples: http://www.coreservlets.com/hadoop-tutorial/. Also see the customized Hadoop training courses (onsite or at public venues) – http://courses.coreservlets.com/hadoop-training.html

Customized Java EE Training: http://courses.coreservlets.com/

Hadoop, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Android. Developed and taught by well-known author and developer. At public venues or onsite at *your* location.

© 2012 coreservlets.com and Dima May

For live customized Hadoop training (including prep for the Cloudera certification exam), please email info@coreservlets.com

Taught by recognized Hadoop expert who spoke on Hadoop several times at JavaOne, and who uses Hadoop daily in real-world apps. Available at public venues, or customized versions can be held on-site at <u>your</u> organization.

- · Courses developed and taught by Marty Hall
 - JSF 2.2, PrimeFaces, servlets/JSP, Ajax, jQuery, Android development, Java 7 or 8 programming, custom mix of topics
 Courses available in any state or country. Maryland/DC area companies can also choose afternoon/evening courses.
- Courses developed and taught by coreservlets.com experts (edited by Marty)
 - Spring, Hibernate/JPA, GWT, Hadoop, HTML5, RESTful Web Services

Contact info@coreservlets.com for details

Agenda

- MapReduce Introduction
- MapReduce Model
- YARN and MapReduce 2.0 Daemons
- MapReduce on YARN single node installation
- MapReduce and YARN command line tools

1

Hadoop MapReduce

- Model for processing large amounts of data in parallel
 - On commodity hardware cheap servers
 - Lots of nodes
- Derived from functional programming
 - Map and reduce functions
- Can be implemented in multiple languages
 - Java, C++, Ruby, Python (etc...)

Hadoop MapReduce History

MapReduce Model

- Imposes key-value input/output
- Defines map and reduce functions

```
map: (K1,V1) \rightarrow list (K2,V2)
reduce: (K2,list(V2)) \rightarrow list (K3,V3)
```

- 1. Map function is applied to every input key-value pair
- 2. Map function generates intermediate key-value pairs
- 3. Intermediate key-values are sorted and grouped by key
- 4. Reduce is applied to sorted and grouped intermediate key-values
- 5. Reduce emits result key-values

MapReduce Model/Framework

MapReduce Framework

- Takes care of distributed processing and coordination
- Scheduling
 - Jobs are broken down into smaller chunks called tasks.
 These tasks are scheduled
- Task Localization with Data
 - Framework strives to place tasks on the nodes that host the segment of data to be processed by that specific task
 - Code is moved to where the data is

MapReduce Framework

Error Handling

 Failures are an expected behavior so tasks are automatically re-tried on other machines

Data Synchronization

- Shuffle and Sort barrier re-arranges and moves data between machines
- Input and output are coordinated by the framework

10

Map Reduce 2.0 on YARN

- Yet Another Resource Negotiator (YARN)
- Various applications can run on YARN
 - MapReduce is just one choice (the main choice at this point)
 - <u>http://wiki.apache.org/hadoop/PoweredByYarn</u>
- YARN was designed to address issues with MapReduce1
 - Scalability issues (max ~4,000 machines)
 - Inflexible Resource Management
 - MapReduce1 had slot based model

MapReduce1 vs. YARN

MapReduce1 runs on top of JobTracker and TaskTracker daemons

- JobTracker schedules tasks, matches task with TaskTrackers
- JobTracker manages MapReduce Jobs, monitors progress
- JobTracker recovers from errors, restarts failed and slow tasks

MapReduce1 has inflexible slot-based memory management model

- Each TaskTracker is configured at start-up to have N slots
- A task is executed in a single slot
- Slots are configured with maximum memory on cluster start-up
- The model is likely to cause over and under utilization issues

12

MapReduce1 vs. YARN

YARN addresses shortcomings of MapReduce1

- JobTracker is split into 2 daemons
 - ResourceManager administers resources on the cluster
 - ApplicationMaster manages applications such as MapReduce
- Fine-Grained memory management model
 - ApplicationMaster requests resources by asking for "containers" with a certain memory limit (ex 2G)
 - YARN administers these containers and enforces memory usage
 - Each Application/Job has control of how much memory to request

Daemons

YARN Daemons

- Node Manger
 - · Manages resources of a single node
 - There is one instance per node in the cluster
- Resource Manager
 - Manages Resources for a Cluster
 - Instructs Node Manager to allocate resources
 - Application negotiates for resources with Resource Manager
 - There is only one instance of Resource Manager

MapReduce Specific Daemon

- MapReduce History Server
 - · Archives Jobs' metrics and meta-data

11

Sample YARN Daemons Deployments with HDFS and HBase **History** Resource Server Manager **HBase** Namenode Master Management Management Management Node Node **Node** Node Node Node Node Manager Manager Manager Manager Data Data Data Data Node Node Node Node Region Region Region Region Server Server Server Server Node 1 Node 2 Node 3 Node N

Old vs. New Java API

- There are two flavors of MapReduce API which became known as Old and New
- Old API classes reside under
 - org.apache.hadoop.mapred
- New API classes can be found under
 - org.apache.hadoop.mapreduce
 - org.apache.hadoop.mapreduce.lib
- We will use new API exclusively
- New API was re-designed for easier evolution
- Early Hadoop versions deprecated old API but recently deprecation was removed
- Do not mix new and old API

16

YARN with MapReduce 2.0 Installation

Single Node Installation

- Mimics Fully-Distributed Cluster but runs on just one host
- Good for testing, debugging and prototyping
- Not production use or performance benchmarking!
- Used in this class

Cluster

- Run YARN on many nodes
- Great for production and development clusters

Set Up Pseudo-Distributed Mode

- 1. Verify Prerequisites
 - Java, SSH, etc...
- 2. Configure YARN
 - Settings inside of yarn-site.xml and yarn-env.sh
- 3. Configure MapReduce
 - Settings inside of mapred-site.xml
- 4. Start YARN and MapReduce History Server

18

1: Verify Prerequisites

- Java version 6+
 - It is written in Java after all
 - Oracle JDK is the most popular

- Linux is the only production platform
- Supports all other Operating Systems for development
 - Windows, OS X
 - Cygwin is required for Windows development
- Password-less SSH is setup
 - Already had to do this for HDFS

2: Configure YARN

- Configuration Files are discovered by looking in the directory specified in YARN_CONF_DIR environment property
 - export YARN_CONF_DIR=\$HADOOP_CONF_DIR

20

2: Configure YARN

Config File	Description
yarn-env.sh	A bash script where YARN environment variables are specified. For example, configure log directory here.
yarn-site.xml	Hadoop configuration file where majority of properties are specified for YARN daemons. Configures Resource Manager, Node Manager and History Server.
slaves	A list of nodes where Node Manager daemons are started; one host per line.
mapred-site.xml	MapReduce specific properties go here. This is the application specific configuration file; an application is MapReduce in this case.

Note: YARN will also utilize core-site.xml and hadoop-env.sh which were covered in HDFS lecture

2: Configure YARN - yarn-env.sh

- Bash Script executed by YARN start script
- Sets things like daemons'
 - heap size
 - log location(s)
 - pid file locations
 - etc...

export YARN_LOG_DIR=/home/hadoop/Training/logs/yarn
export YARN_PID_DIR=\$TRAINING_HOME/hadoop_work/pids

22

2: Configure YARN - yarnsite.xml

- Configure host and ports for daemons, data output locations, auxiliary services, security, etc....
 - Configure hosts and ports for Resource Manager, Node Manager and MapReduce History Server
 - Configure local storage directories for Node Managers
 - Configure any application specific services

2: Configure YARN - yarnsite.xml

24

2: Configure YARN - yarnsite.xml

2: Configure YARN - yarnsite.xml

26

2: Configure YARN - yarnsite.xml

3: Configure MapReduce - mapred-site.xml

```
<configuration>
   property>
    <name>mapreduce.cluster.temp.dir
    <value>/home/hadoop/Training/hadoop_work/mapred/temp</value>
    <final>true</final>
  </property>
  cproperty>
    <name>mapreduce.cluster.local.dir
    <value>/home/hadoop/Training/hadoop_work/mapred/local</value>
    <final>true</final>
  </property>
  cproperty>
    <name>mapreduce.framework.name
    <value>yarn</value>
    <description>Use YARN as the servicer of MapReduce, if
not specified Local Job Runner is used</description>
  </property>
</configuration>
```

4: Start YARN and MapReduce History Server

```
$ cd $HADOOP_HOME/sbin
$ ./start-yarn.sh
```

- \$./mr-jobhistory-daemon.sh start historyserver
- start-yarn.sh script starts all the YARN related daemons on the cluster
 - Resource Manager is started on the machine that startyarn.sh script is executed on
 - Delegates to \$yarn-daemon.sh start resourcemanager
 - Node Manager is started for each machine specified in the <YARN_CONF_DIR>/slaves
 - Delegates to \$yarn-daemon.sh start nodemanager

YARN Web-UI

Resource Manager Web-UI

- Cluster resource usage, job scheduling, and current running jobs
- Runs on port 8088 by default

Application Proxy Web-UI

- Provides information about the current job
- Runs as a part of Resource Manager Web-UI by default
- After completion, jobs get exposed by History Server

Node Manager Web-UI

- Single Node information and current containers being executed
- Runs on port 8042 by default

MapReduce History Server Web-UI

- Provides history and details of past MapReduce jobs
- Runs on port 19888 by default

30

MapReduce 2.0 Web-UI

Command Line Tools

- <hadop_install>/bin/yarn
 - Execute code with a jar
 - \$yarn jar jarFile [mainClass] args...
 - Print out CLASSPATH: \$yarn classpath
 - Resource Manager admin: \$yarn rmadmin
- <hadop_install>/bin/mapred
 - \$mapred job
 - Get information about jobs
 - Kill Jobs

32

\$ yarn jar jarFile [mainClass] args...

Execute code in the provided jar

\$ yarn jar

\$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.0.0-cdh4.0.0.jar pi 5 5

Examples jar files shipped with hadoop

pi is the program that computes pi

Specify number of mappers

Number of samples; artifact of pi application

33

\$ yarn rmadmin

- Runs ResourceManager admin client
- Allows to refresh and clear resources

```
$ yarn rmadmin -refreshNodes
```

Resource Manager will refresh its information about all the Node Managers

34

\$mapred job

- Command line interface to view job's attributes
- Most of the information is available on Web-UI

List Jobs that are currently running

```
$ mapred job -list
```

\$ mapred job -status job_1340417316008_0001

Retrieve job's status by Job ID

Resources: Books

Hadoop: The Definitive Guide

Tom White (Author) O'Reilly Media; 3rd Edition (May6, 2012)

Hadoop in Action

Chuck Lam (Author)

Manning Publications; 1st Edition (December, 2010)

MapReduce Design Patterns

Donald Miner (Author), Adam Shook (Author) O'Reilly Media (November 22, 2012)

Resources: Books

HBase: The Definitive Guide

Lars George (Author)

O'Reilly Media; 1 edition (September 20, 2011)

Hadoop Operations

Eric Sammer (Author) O'Reilly Media (October 22, 2012)

Data-Intensive Text Processing with MapReduce

Jimmy Lin and Chris Dyer (Authors) (April, 2010) Download for FREE:

http://lintool.github.com/MapReduceAlgorithms/index.html

Resources: Books

Hadoop in Practice

Alex Holmes (Author)
Manning Publications; (October 10, 2012)

38

Resources

- Home Page
 - <u>http://hadoop.apache.org</u>
- Mailing Lists
 - <u>http://hadoop.apache.org/mailing_lists.html</u>
- Wiki
 - http://wiki.apache.org/hadoop
- Documentation:
 - http://hadoop.apache.org/docs/r2.0.2-alpha

Wrap-Up

Customized Java EE Training: http://courses.coreservlets.com/

Hadoop, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Android.

Developed and taught by well-known author and developer. At public venues or onsite at *your* location.

Summary

We learned about

- MapReduce Model
- YARN/MapReduce 2.0 Daemons
- MapReduce on YARN single node installation
- MapReduce and YARN command line tools

© 2012 coreservlets.com and Dima May

Questions?

http://www.coreservlets.com/hadoop-tutorial/ – Hadoop programming tutorial rylets.com/hadoop-training.html – Customized Hadoop training courses, at public venues or onsite at *your* organization http://courses.coreservlets.com/Course-Materials/java.html – General Java programming tutorial

Customized Java EE Training: http://courses.coreservlets.com/

Hadoop, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Android. Developed and taught by well-known author and developer. At public venues or onsite at *your* location.