Satyam Kumar Modi, 2019CS50448 Rupanshu Shah, 2019CS10395

Question 1

0.1 Shamir's Trick

We will use the Shamir's trick which states that given n, e, f, w, y as input, where n is a positive integer, e and f are relatively prime and w and y are elements of Z_n^* , that satisfy $w^e = y^f$ and outputs $x \in Z_n^*$ such that $x^e = y$.

Proof: Since, e and f are co-prime, gcd(e, f) = 1, we can compute s, t such that es + ft = 1. Compute $x = y^s.w^t$, $x^e = y^{se}.w^{te} = y^{se}.y^{ft} = y$

0.2 CRHF construction

N = pq and e is a random prime in $Z_{\phi}(N)$ that is coprime to $\phi(N)$. The key is (N, e) and a random integer $z \leftarrow Z_N^*$. The hash function is defined as $H_{N,e,z}: Z_N^* \times Z_e \to Z_N^*$ where $H_{N,e,z}(x,y) = x^e.z^y (modN)$.

0.3 Proof that is a CRHF

Assume that above defined hash function is not a secure CRHF. The means there exists a ppt adversary \mathcal{A} such that given (N, e, z), it is able to produce a collision (x_1, y_1) and (x_2, y_2) such that $x_1^e.z^{y_1} \pmod{N} = x_2^e.z^{y_2} \pmod{N}$. We present a ppt reduction \mathcal{B} such that it can break the RSA.

The reduction \mathcal{B} does the following:

- Challenger of RSA sends (N, e, y) to the reduction \mathcal{B} .
- Reduction \mathcal{B} sends (N, e, y) to the adversary \mathcal{A} .
- Now, adversary \mathcal{A} produces two collisions (x_1, y_1) and (x_2, y_2) to the reduction \mathcal{B} such that $x_1^e.y^{y_1} \pmod{N} = x_2^e.y^{y_2} \pmod{N} \implies (x_1.x_2^{-1})^e \pmod{N} = y^{y_2-y_1} \pmod{N}$. (The inverse for x_2^e exists as $x_2 \in \mathbb{Z}_N^*$ which means $\gcd(x_2, N) = 1$, which implies x_2^e must also be co-prime to N. The inverse of x_2^e can be calculated from the Euclid's division Lemma. Same argument works for the inverse of y^{y_1}).
- Reduction \mathcal{B} uses Shamir's Trick to get x such that $x^e = y$ in the following way:
 - Here, $f = (y_2 y_1), (y_2 y_1)$ must be co-prime to e as $y_1, y_2 \in Z_e$.
 - Here $w = x_1.x_2^{-1}$ as $x_1, x_2 \in Z_n^*$ and $y = x^e \pmod{N}$, both w and y are in Z_n^* . (The inverse of x can be efficiently computed as gcd(x, e) = 1 and using Euclid's division algorithm, we can get (a, b) such that x.a + e.b = 1, here $a \mod e$ is the inverse of x in Z_{ϕ_N}).
 - Since, the reduction \mathcal{B} knows n = N, e, w, f, y, it uses Shamir's trick and gets x.
- Reduction \mathcal{B} sends x to the adversary.

Proof or correctness follows from the proof of correctness of Shamir's trick.

Question 2

We are given $\mathcal{E} = (KeyGen, Enc, Dec)$ CCA-secure encryption scheme where \mathcal{E} encrypts n-bit messages. We construct encryption scheme $\mathcal{E}' = (KeyGen', Enc', Dec')$ such that \mathcal{E}' encrypts n-bit messages. \mathcal{E}' is no-pre CCA secure but not CCA secure. Ciphertext of \mathcal{E}' is twice the size of ciphertext of original encryption scheme \mathcal{E} .

```
KeyGen':
(pk, sk) \leftarrow KeyGen
k_1: PRF \text{ key}
pk' = pk; sk' = (sk, k_1)
return (pk', sk')
Enc'(m, pk):
\alpha = Enc(m, pk)
return \alpha || \alpha
Dec'(ct_1||ct_2):
m^* = F(sk, k_1) where F is a secure PRF that maps n - bit strings to n/2 - bit strings
If (ct_1 == ct_2):
then return Dec(ct_1, sk)
Else
\beta_1 = Dec(ct_1, sk)
\beta_2 = Dec(ct_2, sk)
If \beta_1 = m^* || m^*
then return m^*||m^*|
Else return 0^{n/2}||m^*||
```

\mathcal{E}' is CCA-no-pre secure:

Proof:

Proof is through a sequence of Games. **Game 0** is the original CCA-no-pre security game. **Game 1** is same as **Game 0** with PRF F being replaced by totally random function F'

Claim 1: Game 0 is indistinguishable from Game 1

Proof (Claim 1):

If there exists a p.p.t \mathcal{A} that can distinguish between **Game 0** and **Game 1** with non-negligible advantage then there exists a reduction \mathcal{B} that breaks PRF security of F.

```
\mathcal{B} chooses (pk, sk) \leftarrow KeyGen.
```

 \mathcal{B} obtains a n/2 - bit string m^* from PRF Challenger.

For \mathcal{A} 's decryption queries(post-challenge), \mathcal{B} responds according to Decryption Protocol of \mathcal{E}' .

For Challenge messages, \mathcal{B} always returns encryption of m_0 .

 \mathcal{A} finally sends its guess b' corresponding to the **Game b**. \mathcal{B} forwards b' to PRF Challenger.

Probability of \mathcal{B} winning PRF security game = Probability of \mathcal{A} winning this distinguish game.

Thus, if there exists a p.p.t \mathcal{A} that can distinguish between **Game 0** and **Game 1** with non-negligible advantage then there exists a reduction \mathcal{B} that breaks PRF security of F. Hence proved.

Claim 2: If there is a p.p.t. adversary \mathcal{A} that can win Game 1 then there exists a p.p.t. reduction \mathcal{B}

that breaks CCA-no-pre security (and consequently CCA security) of \mathcal{E}

Step 1: Challenger sends pk to \mathcal{B} . \mathcal{B} forwards pk to \mathcal{A}

Challenger also chooses random bit b

 \mathcal{B} chooses a random n/2 - bit string m^* . Choosing m^* randomly is like computing totally random function F' on the fly and assigning $F'(sk) = m^*$

Step 2: \mathcal{A} sends m_0, m_1 challenge messages to \mathcal{B} .

 \mathcal{B} forwards these challenge messages to Challenger.

Challenger sends Challenge ciphertext ct^* (Encrypton of m_b) to \mathcal{B} .

 \mathcal{B} sends $ct^*||ct^*|$ to \mathcal{A}

Step 3: (polynomially many Post-challenge decryption queries)

 \mathcal{A} sends $(ct_1||ct_2)_i$ to \mathcal{B} .

 \mathcal{B} checks if $ct_1 == ct_2$. If yes, then \mathcal{B} forwards ct_1 to Challenger, gets reply m_i from Challenger. \mathcal{B} sends m_i to \mathcal{A}

If $ct_1 \neq ct_2$, then \mathcal{B} sends $(ct_1)_i$ to Challenger, receives $(\beta_1)_i$ from Challenger.

Similarly, \mathcal{B} sends $(ct_2)_i$ to Challenger, receives $(\beta_2)_i$ from Challenger.

 \mathcal{B} checks if $(\beta_1)_i == m^* || m^*$. If yes, then \mathcal{B} returns $m^* || m^*$ to \mathcal{A} . Else it sends $0^{n/2} || m^*$ to \mathcal{A}

Step 4: \mathcal{A} sends guess b' to \mathcal{B} .

 \mathcal{B} forwards b' to Challenger.

Probability of \mathcal{B} winning (against CCA-no-pre for \mathcal{E}) = Probability of \mathcal{A} winning in above construction. Therefore, if \mathcal{A} breaks CCA-no-pre security of \mathcal{E}' then \mathcal{B} breaks CCA-no-pre security of \mathcal{E} . Hence proved.

\mathcal{E}' is not CCA-secure:

Proof:

p.p.t. adversary \mathcal{B} wins as follows:

- \mathcal{B} chooses two n-bit random strings m_0, m_1 such that first n/2 bits of m_0 are not same as last n/2 bits of m_0 .
- \mathcal{B} computes $ct_0 = Enc(m_0, pk)$ and $ct_1 = Enc(m_1, pk)$.
- \mathcal{B} sends one Decryption query $ct_0||ct_1|$
- \mathcal{B} gets back $m' = 0^{n/2} || m^*$.
- \mathcal{B} sets $m_3 = m^* || m^*$ and m_4 a random string such that $m_3 \neq m_4$
- \mathcal{B} sends m_3, m_4 as challenge messages to the challenger
- \mathcal{B} receives Challenge ciphertext $(ct^*||ct^*)$
- \mathcal{B} chooses a random n-bit string m_5 and encrypts it using pk, such that $ct_5 = Enc(m_5, pk)$ and $ct_5 \neq ct^*$.
- \mathcal{B} sends $ct^*||ct_5$ as a decryption query. If \mathcal{B} receives $m^*||m^*$ as the decryption then \mathcal{B} guesses b' = 0 (i.e., $ct^*||ct^*$ is Encryption of m_3). Else \mathcal{B} receives $0^{n/2}||m^*$ as the decryption in which case it guesses b' = 1 (i.e., $ct^*||ct^*$ is Encryption of m_4).
- \mathcal{B} wins with probability 1.

Question 3

Let S = KeyGen, Sign, Verify be a secure Digital signature scheme. that signs n - bit messages. Construct S' from S = KeyGen', Sign', Verify' that signs n - bit messages as follows:

```
Sign'(m, sk): Choose n-bit random string r Return \sigma=(r, Sign(r, sk), Sign(m\oplus r))
Verify'(m, \sigma, vk): \\ \sigma=(\sigma_1, \sigma_2, \sigma_3) \\ \text{Check if } Verify(r, \sigma_2, vk) \text{ and } Verify(m\oplus \sigma_1, \sigma_3, vk) \text{ both return 1.} 
If yes, then return 1, else return 0.

This scheme S' is not a secure digital scheme, although the attack is not very trivial.

Attack: Choose two random n-bit strings m_0, m_1.

Ask for signature of m_0, obtain \sigma_0=(\sigma_{01},\sigma_{02},\sigma_{03})
Ask for signature of m_1, obtain \sigma_1=(\sigma_{11},\sigma_{12},\sigma_{13})

Now, m^*=m_1\oplus\sigma_{11}\oplus\sigma_{01} is a message such that m^*\oplus\sigma_{01}=m_1\oplus\sigma_{11}.

Send m^*,\sigma^*=(\sigma_{01},\sigma_{02},\sigma_{13}) as the forgery.

Verify'(m^*,\sigma^*)=1. Thus, S' is not secure digital signature scheme.
```