РЕАКЦИИ В НЕОРГАНИЧЕСКОЙ ХИМИИ

Электролитическая диссоциация

Классификация химических реакций в неорганической химии

Критерий	Реакции	
агрегатное состояние	реакции газовые	l
реагентов	в растворе	Ī
	твердофазные	Ī
	между веществами в различных агрегатн.состояниях	
вид реагирующих частиц	молекулярные	Ī
	ионные	
	радикальные	I
вид переносимых частиц	окислительно-восстановительные с переносом электронов	
	образования и разрушения комплексов с переносом ионов и молекул	
	образования и разрушения ионных кристаллов	ŧ
вид источника энергии	термохимические	
	фотохимические	
	электрохимические	

Классификация химических реакций в неорганической химии

Классификация химических реакций в неорганической химии

1) Определения

Электролитическая диссоциация —

процесс распада электролита на ионы при его растворении или плавлении

Электролиты — проводники второго рода. Вещества, которые в растворе (или расплаве) состоят полностью или частично из ионов и обладают ионной проводимостью

1) Определения

Неэлектролиты -

электрический ток не проводят. Большинство органических соединений

Электролиты — <u>проводники</u> второго рода.

Вещества, которые в растворе (или расплаве) состоят полностью или частично из ионов и обладают ионной проводимостью

1) Определения

Электролит -

вещество, расплав или раствор которого проводит электрический ток вследствие диссоциации на ионы

Электролиты — проводники второго рода.

Вещества, которые в растворе (или расплаве) состоят полностью или частично из ионов и обладают ионной проводимостью

1) Определения

Электролиты

Настоящие (истинные)

находятся в виде ионов уже в индивидуальном состоянии

соли NaNO₃ K₂SO₄

Потенциальные

в индивидуальном состоянии ионы не содержат, а образуют их при переходе в раствор

вещества, состоящие из молекул с сильно полярными ковалентными связями

HCI

2) Основные положения

1 - электролит распадается на ионы – катионы и анионы

$$KA \rightleftharpoons K^+ + A^-$$

3 – процесс диссоциации изображается химическим уравнением

$$HCI \Leftrightarrow H^+ + CI^-$$

Диссоциация - процесс обратимый

2 – под действием эл.токаК+ двигаются к катоду

 A^- двигаются к аноду

2) Основные положения

1 - электролит распадается на ионы – катионы и анионы

$$KA \rightleftharpoons K^+ + A^-$$

3 –процесс диссоциации изображается химическим уравнением

$$HCl+ H_2O \Leftrightarrow H_3Q^+ + Cl^-$$

ион гидроксония

2 – под действием электрического тока

□ И. А. Каблуков, В. А. Кистяковский, Д. И. Менделеев: при растворении электролита происходит его взаимодействие с водой

3) Механизм (типичные случаи)

1. ЭД кристаллов с ионной структурой

ЭД веществс полярными молекулами

Сольвата́ция — электростатическое взаимодействие между частицами (ионами, молекулами) растворенного вещества и растворителя. **Гидратация-** сольватация в водных растворах.

Образующиеся молекулярные агрегаты-**сольваты** (в воде -**гидраты**).

3) Механизм (типичные случаи)

1. ЭД кристаллов с ионной структурой

ЭД веществс полярными молекулами

Представление о сольватации ионов:

И. А. Каблуков и В. А. Кистяковский в <u>1889</u>—<u>1891</u>

Степень диссоциации а -

отношение числа молекул, диссоциированных на ионы \boldsymbol{n} , к общему числу молекул растворенного электролита \boldsymbol{N}

$$\alpha = \frac{n}{N}$$

или

$$\alpha = \frac{n}{N} \cdot 100\%$$

а↑ - с разбавлением раствора

- с↑ температуры

$$\alpha = \frac{n}{N}$$

ИЛИ

$$\alpha = \frac{n}{N} \cdot 100\%$$

а >30% - сильные электролиты

3% < a <30% - средней силы

a < 3% - слабые для децинормального (0,1н) раствора

- Сильные электролиты
 - a=1
- □ Диссоциируют полностью
- а не зависит от концентрации раствора С
 - многие неорганические кислоты HNO_3 , H_2SO_4 , $HMnO_4$, $HClO_4$, $HClO_3$, HCl, HBr, HJ,
 - основания щелочных и щелочноземельных металлов (IA и IIA групп) LiOH ...
 - почти все соли

- Слабые электролиты
 - a<1
- □ Диссоциируют не полностью
- а уменьшается с ростом С
 - кислоты H₂S, HCN, H₂SiO₃,
 H₃BO₃, H₂CO₃; HNO₂
 - основания p-, d-, и f элементов
 Cu(OH)₂, Cr(OH)₃, Be(OH)₂
 - NH₄OH,
 - немногие соли $Fe(CNS)_3$, $HgCl_2$, $Hg(CN_2)$, CdI_2 , $CdCl_2$, $Pb(CH_3COO)_2$, $ZnCl_2$, ZnI_2
 - вода

□ Средней силы

некоторые органические и неорганические кислоты: щавелевая Н₂С₂О₄ муравьиная НСООН,

 H_2SO_3 , H_3PO_4

основания Mg(OH)₂

а >30% - сильные электролиты

3% < a <30% - средней силы

a < 3% - слабые для децинормального (0,1н) раствора

Слабые электролиты

Закон разбавления Оствальда

Степень диссоциации слабого электролита (a) увеличивается при разбавлении раствора обратно пропорционально корню квадратному из его молярной концентрации (C)

$$KA \rightleftharpoons K^+ + A^-$$

$$\mathsf{K}_{\mathsf{DUCC}} = \frac{[\mathsf{K}^+] \cdot [\mathsf{A}^-]}{[\mathsf{K}\mathsf{A}]}$$

$$\alpha \approx \sqrt{\frac{K}{c}}$$

Константа диссоциации -

константа равновесия обратимого процесса диссоциации

К характерна только для слабых электролитов. Чем больше К, тем больше ионов в растворе, тем сильнее электролит.

Процесс электролитической диссоциации

Кислот

 $HCI \rightarrow H^+ + CI^-$

Оснований

 $KOH \rightarrow K^+ + OH^-$

Средних (нормальных) солей, растворимых в воде $Ca(NO_3)_2 \rightarrow Ca^{2+}+2NO_3^-$

 $Al_2(SO_4)_3 \rightarrow 2Al^{3+} + 3SO_4^{2-}$

Ступенчаная электролитическая диссоциация

диссоциация по первой ступени

$$H_2CO_3 \leftrightarrow H^+ + HCO_3^-$$

диссоциация по второй ступени

$$HCO_3^- \leftrightarrow H^+ + CO_3^{2-}$$

Ступенчаная электролитическая диссоциация

диссоциация по первой ступени

$$K_1 = \frac{[H^+][HCO_3]}{[H_2CO_3]} H_2CO_3 \leftrightarrow H^+ HCO_3^-$$

диссоциация по второй ступени

$$K_{\pi} = \frac{[H^{+}][CO_{3}^{2}]}{[HCO_{3}]} H^{+} + CO_{3}^{2}$$

Ступенчаная электролитическая диссоциация

Для угольной кислоты константы диссоциации:

$$K_{\rm I} = 4,3 \times 10^{-7}$$

$$K_{\rm II} = 5.6 \times 10^{-11}$$

Для ступенчатой диссоциации всегда $K_{\rm I} > K_{\rm II} > K_{\rm III} > \dots$, т.к. энергия, которую необходимо затратить для отрыва иона, минимальна при отрыве его от нейтральной молекулы.

Электролитическая диссоциация. Кислые соли (гидросоли)

диссоциация по первой ступени

$$KHCO_3 \rightarrow K^+ + HCO_3^-$$

диссоциация по второй ступени

$$HCO_3^- \leftrightarrow H^+ + CO_3^{2-}$$

Электролитическая диссоциация. Основные соли (гидроксосоли)

диссоциация по первой ступени

FeOHCl₂↔FeOH²⁺+2Cl⁻

диссоциация по второй ступени

 $FeOH^{2+} \leftrightarrow Fe^{3+} + OH^{-1}$

Сильные электролиты

- □ Сильные электролиты в водных растворах распадаются на ионы полностью α=1
- □ В растворах сильных электролитов действуют не только силы теплового характера, но и электростатические силы между ионами
- Создаются ионные атмосферы, тормозящие движение

а- эффективная (кажущаяся) концентрация или активность

$$a = f_a \cdot c$$

 f_a - коэффициент активности (кажущаяся степень диссоциации)

С – концентрация ионов, моль/л

Сильные электролиты

$$a = f_a \cdot c$$

Сильно разбавленные растворы ${f f}={f 1}$ Слабое межионное взаимодействие $a={f C}$

Концентрированные растворы f < 1 Сильное межионное

Взаимодействие

Ионное произведение воды

Вода - очень слабый электролит → диссоциирует на ионы

$$2H_2O \Leftrightarrow H_3O^+ + OH$$
,

или упрощенно

$$H_2O \Leftrightarrow H^+ + OH^-$$

$$K = \frac{[H^+] \cdot [OH^-]}{[H_2O]} = 1.8 \cdot 10^{-16}$$

$$[H_2O] = \frac{1000}{18} = 55,56$$
моль / л

Концентрация недиссоциированных молекул может быть принята равной общему числу моль в 1л

Ионное произведение воды

$$K \cdot [H_2 O] = 1.8 \cdot 10^{-16} \cdot 55.56 = 10^{-14} = [H^+] \cdot [OH^-]$$

$$[H^+] = [OH^-] = \sqrt{10^{-14}} = 10^{-7} \text{ моль / л}$$

$$K_B = [H^+][OH^-] = const = f(T)$$

$$pH = -lg [H^+] = -lg [H_3O^+]$$

Водородный показатель – отрицательный десятичный логарифм концентрации водородных ионов.

РН растворов

Растворы	[H ⁺], моль/л	pH = -lg [H+]
кислые		
нейтральные		
щелочные		

рН - по предложению датского физика-химика Cëpeнce (Sorensen)

РН растворов

Растворы	[Н+], моль/л	pH = -lg [H+]
кислые	> 10 ⁻⁷	
нейтральные	=10 ⁻⁷	
щелочные	< 10 ⁻⁷	

рН - по предложению датского физика-химика Cëpeнce (Sorensen)

РН растворов

Растворы	[H ⁺], моль/л	pH = -lg [H+]
кислые	> 10 ⁻⁷	< 7
нейтральные	=10 ⁻⁷	=7
щелочные	< 10 ⁻⁷	>7

рН - по предложению датского физика-химика Cëpeнce (Sorensen)

Кислотно-основные индикаторы

- органические соединения, способные изменять цвет в растворе при изменении кислотности (pH).
- □ Используют в <u>титровании</u> в <u>аналитической химии</u> и <u>биохимии</u>.
- □ Преимущества:
 - дешевизна
 - быстрота
 - наглядность исследования

Измерение рН с помощью индикаторной бумаги

Кислотно-основные индикаторы				
	pK₫	Интервал рН перехода окраски	Изменение окраски	
Метилоранж	3,7	3,1-4,4		
Бромкрезоловый зеленый	4,7	3,8-5,4		
Метиловый красный (метилрот)	5,1	4,2-6,3		
Бромтимоловый голубой	7,0	6,0-7,6		
Феноловый красный	7,9	6,8-8,4		
Фенолфталеин	9,4	8,3-10,0		

Название	индикатора

. .

Название индикатора	Цвет индикатора в различных средах		
	в кислой	в нейтральной	в щелочной
Метиловый оранжевый	красный (pH<3,1)	оранжевый	желтый
		(3,1 <ph<4,4)< td=""><td>(pH>4,4)</td></ph<4,4)<>	(pH>4,4)
Метиловый красный	красный (pH<4,2)	оранжевый	желтый
		(4,2 <ph<6,3)< td=""><td>(pH>6,3)</td></ph<6,3)<>	(pH>6,3)
Фенолфталеин	бесцветный (pH<8,0)	бледно-малиновый	малиновый
		(8,0 <ph<9,8)< td=""><td>(pH>9,8)</td></ph<9,8)<>	(pH>9,8)
Лакмус	красный (pH<5,0)	фиолетовый	синий
		(5,0 <ph<8,0)< td=""><td>(pH>8,0)</td></ph<8,0)<>	(pH>8,0)

Кислотно-основные индикаторы

- □ Из-за <u>субъективности</u> определения <u>цвета</u> и невысокой точности индикаторы рН не всегда удобны
- □ Для точного измерения рН используют рН-метры с цифровой индикацией

Кислотно-основные индикаторы

- □ Действие pH-метра основано на измерении величины ЭДС электродной системы, которая пропорциональна pH
- □ Измерительная схема представляет собой вольтметр, проградуированный непосредственно в единицах рН для конкретной электродной системы
- □ Обычно измерительный электрод стеклянный, вспомогательный хлоросеребряный.

