### String Matching with Mismatches

Some slides are stolen from Moshe Lewenstein (Bar Ilan University)

### String Matching with Mismatches

| Landau - \ | Vishkin | 1986 |
|------------|---------|------|
| Landau – ' | VISNKIN | 1980 |

Galil – Giancarlo 1986

Abrahamson 1987

Amir - Lewenstein - Porat 2000

#### Approximate String Matching

problem: Find all text locations where distance from pattern is sufficiently small.

distance metric: HAMMING DISTANCE

Let 
$$S = S_1S_2...S_m$$
 Ham $(S,R)$  = The number of locations  $j$  where  $S_j \neq r_j$ 

Example: S = ABCABC R = ABBAAC

Ham(5,R) = 2

### Problem 1: Counting mismatches

```
Input: T = t_1 ... t_n Output: For each i in T
P = p_1 \dots p_m
Ham(P, t_i t_{i+1} \dots t_{i+m-1})
```

```
P = ABBAAC
T = ABCAABCAC...
```

```
Input: T = t_1 ... t_n Output: For each i in T
P = p_1 \dots p_m
Ham(P, t_i t_{i+1} \dots t_{i+m-1})
```

$$Ham(P,T_1) = 2$$

```
Input: T = t_1 ... t_n Output: For each i in T
P = p_1 \dots p_m
Ham(P, t_i t_{i+1} \dots t_{i+m-1})
```

$$Ham(P,T_2) = 4$$

Input: 
$$T = t_1$$
 ...  $t_n$  Output: For each i in  $T$ 

$$P = p_1 \dots p_m$$
Ham(P,  $t_i t_{i+1} \dots t_{i+m-1}$ )

$$Ham(P,T_3) = 6$$

Input: 
$$T = t_1$$
 ...  $t_n$  Output: For each i in  $T$ 

$$P = p_1 \dots p_m$$
Ham(P,  $t_i t_{i+1} \dots t_{i+m-1}$ )

$$Ham(P,T_4) = 2$$

```
Input: T = t_1 ... t_n Output: For each i in T
P = p_1 \dots p_m
Ham(P, t_i t_{i+1} \dots t_{i+m-1})
```

```
P = ABBAAC
T = ABCAABCAC...
2,4,6,2,...
```

#### Problem 2: k-mismatches

```
Input: T = t_1 ... t_n Output: Every i where P = p_1 ... p_m Ham(P, t_i t_{i+1} ... t_{i+m-1}) \leq k
```

```
Example: k = 2

P = ABBAAC

T = ABCAABCAC...

2, 4, 6, 2, ...
```

#### Problem 2: k-mismatches

```
Input: T = t_1 ... t_n Output: Every i where P = p_1 \dots p_m Ham(P, t_i t_{i+1} \dots t_{i+m-1}) \le kh Example: k = 2
```

```
P = ABBAAC
T = ABCAABCAC...
\frac{2,4,6,2,...}{1,0,0,1,}
```

# Naïve Algorithm (for counting mismatches or k-mismatches problem)

- Goto each location of text and compute hamming distance of P and  $T_i$ 

Running Time: O(nm) n = |T|, m = |P|



Landau - Vishkin 1986

Galil – Giancarlo 1986



- -Create suffix tree (+ lca) for: s = P#T
- -Check P at each location i of T by kangrooing

```
P = ABBACABABACAB
T = ABBACABABABCABCA...
```



- Create suffix tree for: s = P#T
- -Check P at each location i of T by kangrooing

```
P = ABBACABABACAB
T = ABBACABABABCABCA...
```



- Create suffix tree for: s = P#T
- -Check P at each location i of T by kangrooing

```
P = ABBACABABABCABCA...
```



- Create suffix tree for: s = P#T
- -Check P at each location i of T by kangrooing

```
P = ABBACABABABCABCA...

i ABABACAB
```



- Create suffix tree for: s = P#T
- -Check P at each location i of T by kangrooing

```
P = ABBACABABABCABCA...
```



- Create suffix tree for: s = P#T
- -Check P at each location i of T by kangrooing

```
P = ABBACABABABCABCABCA...
```



- Create suffix tree for: s = P#T
- -Check P at each location i of T by kangrooing

```
P = ABBACABABABCABCABCA...
```



- Create suffix tree for: s = P#T
- Do up to k LCP queries for every text location

```
P = ABBACABABABCABCABCA...
```



#### Preprocess:

Build suffix tree of both P and T - O(n+m) time LCA preprocessing - O(n+m) time

#### Check P at given text location

Kangroo jump till next mismatch - O(k) time

Overall time: O(nk)

### How do we do counting in less than O(nm)?

### Lets start with binary strings



We can count matches using FFT in O(nlog(m)) time

**T** =

### And if the strings are not binary?



$$T = \dots \mid a \mid b \mid b \mid b \mid c \mid c \mid c \mid a \mid a \mid a \mid a \mid b \mid a \mid c \mid b \mid \dots$$



$$T = \frac{1}{\dots} \quad a \quad b \quad b \quad c \quad c \quad c \quad a \quad a \quad a \quad b \quad a \quad c \quad b \quad \dots$$



$$T = \dots \mid a \mid b \mid b \mid c \mid c \mid c \mid a \mid a \mid a \mid a \mid b \mid a \mid c \mid b \mid \dots$$











#### Boolean Convolutions (FFT) Method

#### Boolean Convolutions (FFT) Method

Running Time: One boolean convolution - O(n log m) time

 $\Rightarrow$  # of matches of all symbols -  $O(n|\Sigma| \log m)$  time

### How do we do counting in less than O(nm)?

Lets count matches rather than mismatches

For each character you have a list of offsets where it occurs in the pattern,

When you see the char in the text, you increment the appropriate counters.



For each character you have a list of offsets where it occurs in the pattern,

When you see the char in the text, you increment the appropriate counters.



This is fast if all characters are "rare"



# Partition the characters into rare and frequent

Rare: occurs < c times in the pattern

For rare characters run this scheme with the counters

Takes O(nc) time

# Frequent characters

You have at most m/c of them

Do a convolution for each

Total cost  $O((m/c)n \log(m))$ .

# Fix c

$$cn = \frac{m}{c} n \cdot \log(m) \Rightarrow$$

$$c^2 = m \cdot \log(m) \Rightarrow$$

$$c = \sqrt{m \cdot \log(m)}$$

Complexity:  $O(n\sqrt{m} \cdot \log(m))$ 

# Back to the k-mismatch problem

Want to beat the O(nk) kangaroo bound

Frequent Symbol: a symbol that appears at least  $2\sqrt{k}$  times in P.

# Few (≤√k) frequent symbols

Do the counters scheme for non-frequent  $O(n\sqrt{k})$ 

Convolve for each frequent  $O(n\sqrt{k} \log m)$ 

# (≥√k) frequent symbols

Intuition: There cannot be too many places where we match

# (≥√k) frequent symbols

- Consider  $\sqrt{k}$  frequent symbols.
- For each of them consider the first  $2\sqrt{k}$  appearances.

Do the counters scheme just for these symbols and occurrences

$$k = 4$$
,  $2\sqrt{k} = 4$ 
 $P = \begin{bmatrix} a & b & a & c & c & a & c & b & a & c & c \\ a & b & a & c & c & a & c & b & a & c & c \\ a & b & a & c & c & a & c & b & a & c & c \\ c-mask & a & b & a & c & c & a & c & b & a & c & c \\ \end{bmatrix}$ 

### Example of Masked Counting

$$k = 4$$
,  $2\sqrt{k} = 4$ 

counter

### Example of Masked Counting

#### Counting Stage:

Run through text and count occurrences of all marks.

Time:  $O(n\sqrt{k})$ .

#### Important Observations:

- 1) Sum of all counters  $\leq 2\sqrt{k}$  n
- 2) Every counter whose value is less than k already has more than k errors.

Why? The total # of elements in all masks is  $2\sqrt{k}\sqrt{k} = 2k$ .

⇒ For location i of T, if counter<sub>i</sub> < k then no match at location i.

#### How many locations remain?

Sum of all counters:  $\leq 2n\sqrt{k}$ 

Value of potential matches > k

$$\Rightarrow$$
 # of potential matches:  $\leq \frac{2n\sqrt{k}}{k} = \frac{2n}{\sqrt{k}}$ 

#### How do we check these locations?

Use The Kangaroo Method.

Kangaroo method takes: O(k) per location

Overall Time: 
$$O(\frac{n}{\sqrt{k}}k) = O(n\sqrt{k})$$

#### Additional Points

Can reduce to

O( n 
$$\sqrt{k \log k}$$
 )

# An alternative presentation of this last result

## Back to the k-mismatch problem Nicolae and Rajasekaran (2013)

Want to beat the O(nk) Kangaroo bound

Collect 2k "instances" (=individual chars in the pattern) with cost at most B (> n). The cost of an "instance" is its frequency in the text.

Greedily put cheap instances first

## Back to the k-mismatch problem Nicolae and Rajasekaran (2013)

Case 1: Managed to collect 2k instances of total cost at most B:

Run the counting procedure for them.

Rule out positions with counter < k

Run kangaroo for the other positions

# Back to the k-mismatch problem Nicolae and Rajasekaran (2013)

Case 2: There aren't 2k instances of total cost at most B ....

Run the counting procedure for the instances in the knapsack

Do convolution for characters out of the knapsack

# Analysis

Preparing the Knapsack takes O(m+n)

Case 1: Managed to collect 2k instances of total cost at most B:

Run the counting procedure for them. O(n+B)

Rule out positions with counter  $\langle k \rangle$  O(n)

Run kangaroo for the other positions

At most B/k positions with counter > k... O(B) to run the kangaroo on them

# Analysis

Do convolution for characters out of the knapsack

We will put instances of chars that occur  $\leq$  B/n times in the pattern in the Knapsack

Doing marking for them will take  $\leq$  B time

Now there are at most r=2k/(B/n) not in the Knapsack (Otherwise we should have filled the Knapsack taking B/n occurrences of each)

Total cost of convolution  $O(n^2k\log(m)/B)$ 

# Analysis

$$\frac{n^2k\log(m)}{B} = B$$

$$B = n\sqrt{k\log(m)}$$