7章分		相差
II: DY R	.I, RZ, R}	RAW on RI from II to I2 and I3
Iz: or R	2, RI, R4	RAW on R2 from I2 to I3
I3: or R	21, R1, R2	WAR on R2 from II to IZ
		WAR ON RI from IZ to I3
		WAW on RI from II to I;

(2)	٥٢	RI, RZ, R3	
	nop		Delay I2 to avoid RAW harzard On RI from II
	hop		on RI from II
	ογ	R2, R1, R4	
	1		Delay Is to avoid RAW hazard on
	nop		122 from I2
	0 γ	RI. RI, P2	

)			
	ŋΥ	RI, RZ, P3	
	ογ	122, 121, 124	No RAW hazard on RI from II (forwarded)
	VO	R1, R1, R2	No RAW hazard on RI from IZ (forwarded)

(4) No forwarding: (7+4).180 ps = 1980 pswith forwarding: (7-240) ps = 1.180 psspeed up: $\frac{1980}{1680} = 1.18$

(6) No forwarding:
$$(7+4).180 \text{ ps} = 1980 \text{ ps}$$

with forwarding: $7.210 \text{ ps} = 1470 \text{ ps}$

speed up: $\frac{1980}{1470} = 1.35$

410. C1)

Instruction	Pipeline Stage	Cycles
SW R16, 12(R6)	IF ID EX MEM WB	11
LW RIB, &CR6)	IF ED EX MEM WB	
BEQ RS, R4, L61	IF ID EX WEW MB	
ADD RS, RI, R4	IF LD EX MEM WB	
SLT RS, RIS, RA	IF ID EX MEM WB	

- (2) Instructions Executed: SCycles with S stages: 4+S=9Cycles with 4 stages: 3+S=8Speedup: 9/8=1-13
- (3) Instructions Executed: 5

 Branches Executed: 1

 Cycles with branch in EXE: 4+5+1×2=11

 Cycles with branch in ID: 4+5+1×1=10

 speedup: 11/10 = 1.10

(4) Cycle time with 5 stages: 200 ps (IF)

Cycle time with 4 stages:
$$210 \text{ ps}$$
 (MEM + 20 ps)

Speedup: $(9.200)/(8.210) = 1.07$

(5) New ID latency: 180ps

New EX Latency: 140ps

New cycle time: 200ps (IF)

Old cycle time: 200ps (IF)

Speedup:
$$\frac{11\cdot200}{10\cdot200} = 1.10$$

(b) Cycles with branch in EX 1 4+5+
$$1\times2 = 11$$

Execution time (branch in EX): $11\cdot200$ ps = 2200 ps
Cycles with branch in MEM: $4+5+1\times3 = 12$
Execution time (branch in MEM): $12\cdot200$ ps = 2400 ps
Speedup: $2200 = 0.92$

4.11 41)

- (2) Cycles per Loop iteration: 8

 Cycles in which all stages do useful mork: 0

 9. of cycles in which all stages do useful nork: 0%

 4.12.41 CPI: $1+0.35\times2+0.15\times1=1.85$ Stall Cycles: 46% (0.85/1.85)
 - (2) CPI: 1+02 = 1.2 Stall Cycles: 17% (0.20/1.20)

```
(3) EX/MEM: 0.2+0.05+0.1+0.1 = 0.45
MEM/WB: 005+0,2+0/=0,35
Fewer stall cycles with, MEM/ WB
(a) Without forwarding: 1.85.150ps = 277.5ps
With forwarding: 1-20. 150 ps = 180 ps
   Speedup? 1.54
(5) With full forwarding. 1.20. 150 ps = 180 ps
Time-travel forwarding = 1. 250ps= 250ps
Speedup: 0.72
(b) EX/MEAN: 1.45. 150 ps = 217.5
MEM/ WB = 1.35. (50 PS = 202.5 PS
Shorter time per instruction with: MEM/WB
4.13: (1) ADD RS, RZ, RI
         NOP
         NOP
              R3, 4 (RS)
         LW
               R2, 0 (122)
         LW
        NDP
              RS, RS, R3
         0(5
         NOP
         NOP
         SW R3, 0(RS)
      II: ADD RS, RZ, RI
 (2)
      Iz: LW R2, O(R2)
                             Moved up to fill NOP slot
      NDP
      12: LW R3, 4 (R5)
                            Had to add another NOP here,
      NOP
      NOP
                            So there is no performance gain
                R) , PJ , R}
      I4: 0R
      NOP
      MOD
      IS: SW R3,0( RS)
```

between the load and the next instruction).

Instruction Sequence	First five cycles	5 ig nals
ADD RS, RZ, RI LW R3, 4(RS) LW R2, 0(R2) DR R3, R5, R3 SW R3, 0(RS)	IF ID EX MEM WB IF ID EX MEM IF ID EX IF ID IF	1: PC Write = 1, ALUIN I = X, ALUIN 2 = X 2: PC Write = 1, ALUIN I = X, ALUIN 2 = X 3: PC Write = 1, ALUIN I = 0, ALUIN 2 = 0 4: PC Write = 1, ALUIN I = 1, ALUIN 2 = 0 5: PC Write = 1, ALUIN I = 0, ALUIN 2 = 0

(5) we need to these Rd for R-type instructions and Rd for Loads.

No additional outputs are needed. We can stall the pipeline using the three output signals that we already have.

U)

Instruction sequence	First five cycles	s ig nals
ADD RS, RZ, RI LW R3, 4(RS) LW R2, 0(R2) DR R3, R5, R3 SW R3, 0(RS)	IF ID EX MEM WB IF ID	1 : PC Write = 1 2 : PC Write = 1 3 : PC Write = 1 4 : PC Write = 0 5 : PC Write = 0

4.15 CI) Extra UI: 3× CI- 0.45) × 0.25 = 0.41

(1) Extra CPI: 3x (1-ass) x0.25 = 0.34

(1) Extra CPI: 3x (1-0,85) yours 0,113

(4) CPI without coversion: (+3x(1-0.85).0-25 = 1.113

UPI with conversion: 1+3x (1-0.85) x0.25 x 0.5 = 1.056

(5) CPI without conversion: 1-113

Cycles per original instruction with conversion: 1+C1+3×(1-0.85)) ×0.75×0.5= 1/18)

speedup from conversion: 1.113/1.181 = 0.94

(6) Greetly predicted: B.O.85
Correctly predicted non-loop-lack, B.O.OS

Acturary on non- loop-back branches: (Bx0.05)/(Bx0.20) = 0.25(25%)