ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Лабораторная работа № 5.4.2

Исследование энергетического спектра β -частиц и определение их максимальной энергии при помощи магнитного спектрометра.

Серебренников Даниил Группа Б02-826м **Цель работы:** с помощью магнитного спектрометра исследовать энергетический спектр β -частиц при распаде ядер $^{137}\mathrm{Cs}$ и определить их максимальную энергию.

1 Теоретическая часть

Бета-распад - самопроизвольное превращение ядер, при котором их массовое число не изменяется, а заряд увеличивается или уменьшается на единицу. В данной работе:

$$_{Z}^{A}X \rightarrow_{Z+1}^{A}X + e^{-} + \widetilde{\nu}.$$

Величина $W(p_e)$ является плотностью вероятности. Распределение электронов по энергии может быть вычислено теоретически. Для разрешенных переходов вероятность β -распада просто попрорциональна сатистическому весу.

$$W(p_e)dp_e \propto p_e^2(E_m - E_e)^2 dp_e.$$

Кинетическая энергия электрона и его импульс связаны друг с другом обычной формулой:

$$E = \sqrt{(p_e c)^2 + (m_e c^2)^2} - m_e c^2$$

Выражение (1) приводит к спектру, имеющему вид широкого колокола. Кривая плавно отходит от нулся и стольже плавно, по параболе, касается оси абсцисс в области максимального импульса электронов.

Дочерние ядра, возникающие в результате β -распада, нередко оказываются возбужденными. Возбужденные ядра отдают свою энергию либо излучая γ -квант, либо передвавая избыток энергии одному из электронов внутренних оболочек атома. Излучаемые в таком процессе электроны имеют строго определенную энергию и называются конверсионными.

Конверсия чаще всего происходит на оболочках К и L. Ширина конверсионной линии является чисто аппаратурной – по ней можно оценить разрешающую силу спектрометра.

2 Экспериментальная установка

Блок-схема установки для изучения β -спектров изображена на рис. 1а. Радиоактивный источник ¹³⁷Сs помещен внутрь откачанной трубы. Электроны, сфокусированные магнитной линзой, попадают в счетчик. В газоразрядном счетчике они инициируют газовый разряд и тем самым приводят к появлению электрических импульсов на электродах, которые затем регистрируются пересчетным прибором.

Рис. 1: Экспериментальная установка.

Энергию β -частиц определяют с помощью β -спектрометров (рис. 1b). В работе используется магнитный спектрометр с «короткой линзой». Отметим, что в течение всего опыта геометрия прибора остается неизменной, поэтому импульс сфокусированных электронов пропорционален величине тока:

$$p_e = kI. (\star)$$

Связь между числом частиц, регистрируемых установкой, и функцией $W(p_e)$ выражается формулой:

$$N(p_e) \propto W(p_e)p_e$$

откуда

$$\frac{\sqrt{N}}{p_e^{3/2}} \propto E_m - E \tag{**}$$

3 Экспериментальные данные

Таблица 1: Результаты измерений β -спектра.

I, A	σ_I, A	N, c^{-1}	$\sigma_N, \mathrm{c}^{-1}$
0,00	0,02	1,34	0,05
0,50	0,02	1,42	0,05
1,00	0,02	2,9	0,1
1,51	0,02	4,7	0,2
1,55	0,02	5,8	0,2
1,60	0,02	7,0	0,3
1,70	0,02	7,8	0,3
1,90	0,02	8,1	0,3
2,00	0,02	8,0	0,3
2,15	0,02	7,6	0,3
2,25	0,02	7,2	0,3
2,40	0,02	6,4	0,2
2,50	0,02	5,2	0,2
2,60	0,02	4,4	0,2
2,75	0,02	3,5	0,1
2,90	0,02	3,3	0,1
3,00	0,02	3,8	0,1
3,10	0,02	7,3	0,3
3,15	0,02	9,6	0,4
3,20	0,02	10,2	0,4
3,25	0,02	10,5	0,4
3,30	0,02	9,4	0,3
3,40	0,02	7,2	0,3
3,50	0,02	3,8	0,1
3,60	0,02	2,37	0,09
3,70	0,02	1,57	0,06
3,80	0,02	0,87	0,03
3,90	0,02	0,60	0,02
4,00	0,02	0,75	0,03
4,10	0,02	0,56	0,02

Таблица 2: Результаты измерения фона.

I, A	t, c	N_{Φ}, c^{-1}	$\sigma_{N_{\Phi}}, c^{-1}$
0,00	100	1,3	0,1
4,10	100	0,54	0,07

4 Обработка результатов

По результатам измерений (табл. 1) построим график спектра β -распада атома $^{137}\mathrm{Cs}$ и откалибруем его. Для этого пересчитаем значения силы тока в импульс по формуле (\star). Коэффициент k определим по известной конверсионной линии:

$$1013, 5$$
 кэ $B = kcI_0$,

где c – скорость света, $I_0=3,25$ A – сила тока, при которой наблюдается конверсионный пик. Получаем, что

$$k = (312 \pm 2) \frac{\text{кэВ}}{c \cdot \text{A}}.$$

Сдвиг графика по оси ординат сделаем на величину радиационного фона N_{Φ} при I=4,10 A (табл. 2), так как в этом случае график касается оси абсцисс в области максимальной энергии, что соответствует теоретической зависимости.

Рис. 2: Спектр β -распада атома $^{137}\mathrm{Cs}.$

Рис. 3: Откалиброванный график.

Определим максимальную энергию β -спектра. Анализ рис. 3 в таком случае даст достаточно грубый результат, так как нам придётся ограничииться исследованием точек у самой верхней границы спектра. Эти точки измерены с наименьшей статистической точностью. Однако мы можем уменьшить ошибку определения максимальной энергии посредством процедуры Ферми-Кюри. Для этого мы отложим по оси ординат величину $\sqrt{N}/p^{3/2}$, а по оси абсцисс энергию β -частиц (с учётом того, что энергия электронов внутренней конверсии 137 Cs равна 634, кэВ). В таком случае мы задействуем большинство экспериментальных точек, и прежде всего точки середины β -спектра, которые измерены с наилучшей точностью.

Рис. 4: График Ферми-Кюри.

Таблица 3: Результаты линейной аппроксимации.

	$a, c^{1/2} \cdot c^{3/2} \cdot \kappa \ni B^{-5/2}$	$b, c^{1/2} \cdot c^{3/2} \cdot \kappa \ni B^{-3/2}$
Величина	-0,748	467
Погрешность	0,018	9

Ясно, что
$$E_m=-\frac{b}{a}$$
 и $\sigma_{E_m}=E_m\sqrt{\left(\frac{\sigma_a}{a}\right)^2+\left(\frac{\sigma_b}{b}\right)}$, откуда $E_m=(620\pm20)$ кэВ.

5 Обсуждение результатов и выводы

В ходе лабораторной работы с помощью магнитного спектрометра мы исследовали энергетический спектр β -частиц при распаде ядер $^{137}\mathrm{Cs}$. Калибровку спектрометра осуществили по энергии электронов внутренней конверсии.

Анализ графика (рис. 3) показывает, что точки купола достаточно хорошо приближаются параболой. Такой вид зависимости согласуется с теоретической. Конверсионный же пик оказывается можно приблизить Гауссовым распределением. Заметим, что в окрестности нуля спектр положителен – эти точки требуют повторного измерения.

Также мы определили максимальную энергию $E_m = 620$ кэВ вылетающих электронов при β -распаде ядря $^{137}\mathrm{Cs}$ методом Ферми-Кюри с ошибкой в 3%.