```
(a) D_1 = S_2 D_3 = C_3 D_4 = R
P = 1 \times 0.2 \times 0.4 \times 0.2
= 0.016 + 4
```

2.B

Code:

```
import numpy as np
trans = [
   [0.8, 0.4, 0.2],
   [0.2, 0.4, 0.6],
   [0, 0.2, 0.2]
today = [[0], [0], [1]]
states = [["s"], ["c"], ["r"]]
num = int(input("How many days: "))
if today[0][0] == 1:
   print("day 1 is sunny")
elif today[1][0] == 1:
   print("day 1 is cloud")
else:
   print("day 1 is rainy")
for i in range(2, num+1):
   tormorrow_p = np.dot(trans, today)
   tomorrow_d = np.random.choice(np.reshape(
       states, 3), replace=True, p=np.reshape(tormorrow_p, 3))
   if tomorrow_d == "s":
       print("day {} probable is sunny".format(i))
       today = [[1], [0], [0]]
   elif tomorrow_d == "c":
       print("day {} probable is cloudy".format(i))
       today = [[0], [1], [0]]
   else:
       print("day {} probable is rainy".format(i))
       today = [[0], [0], [1]]
```

輸出

第一天是 sunny:

```
PS D:\OneDrive - 國立陽明交通大學\NCTU\課程\自駕車\HW2> python 2_b.py
How many days: 9
day 1 is sunny
day 2 probable is sunny
day 3 probable is sunny
day 4 probable is cloudy
day 5 probable is rainy
day 6 probable is sunny
day 7 probable is sunny
day 8 probable is cloudy
day 9 probable is sunny
```

第一天是 cloudy:

```
PS D:\OneDrive - 國立陽明交通大學\NCTU\課程\自駕車\Hw2> python 2_b.py
How many days: 9
day 1 is cloud
day 2 probable is rainy
day 3 probable is rainy
day 4 probable is cloudy
day 5 probable is cloudy
day 6 probable is sunny
day 7 probable is cloudy
day 8 probable is cloudy
day 9 probable is cloudy
```

第一天是 rainy:

```
PS D:\OneDrive - 國立陽明交通大學\NCTU\課程\自駕車\Hw2> python 2_b.py
How many days: 9
day 1 is rainy
day 2 probable is rainy
day 3 probable is cloudy
day 4 probable is sunny
day 5 probable is sunny
day 6 probable is cloudy
day 7 probable is rainy
day 8 probable is sunny
day 9 probable is sunny
```

2.C

Code:

```
import numpy as np
trans = [
    [0.8, 0.4, 0.2],
    [0.2, 0.4, 0.6],
    [0, 0.2, 0.2]
]
```

```
states = [["s"], ["c"], ["r"]]
s_{count}, c_{count}, r_{count} = (0, 0, 0)
def sim(days):
    today = [[1], [0], [0]]
    num = days
    for i in range(2, num+1):
       tomorrow_p = np.dot(trans, today)
       tomorrow_d = np.random.choice(np.reshape(
            states, 3), replace=True, p=np.reshape(tomorrow_p, 3))
       if tomorrow d == "s":
            today = np.array([[1], [0], [0]])
       elif tomorrow_d == "c":
           today = np.array([[0], [1], [0]])
       else:
            today = np.array([[0], [0], [1]])
    return tomorrow d
for i in range(10000):
   wheather = sim(49)
    if wheather == "s":
        s_count = s_count+1
    elif wheather == "c":
       c_count = c_count+1
    else:
        r_{count} = r_{count+1}
stationary_distrubution = [s_count/10000, c_count/10000, r_count/10000]
print("Stationary Distriburion is" + str(stationary_distrubution))
```

輸出:

PS D:\OneDrive - 國立陽明交通大學\NCTU\課程\自駕車\HW2> python 2_c.py Stationary Distriburion is[0.6443, 0.2818, 0.0739]

(d)
$$x = \begin{cases} 0.3 & 0.4 & 0.6 \\ 0.2 & 0.4 & 0.6 \\ 0.2 & 0.6 & 0.2 \end{cases}$$

=) $A - I = \begin{cases} 0.2 & 0.4 & 0.2 \\ 0.2 & -0.6 & 0.6 \\ 0.2 & -0.6 & 0.6 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

=) $A = \begin{cases} -1 & 3 & 3 \\ 44 & 3 & 3 \end{cases}$

2.FG

	P MK-1 2	(k) =	PIXK IXK-17 P) :	FIRE (XK) XK	(7/4-1) 其中 P(7/4-1) 。 為 [元
	today sunny			Cloudy		Painy E7
		or8 x	X4	0.18 x 14 +0.18 x 14 +0.18 x 14		00x 10 + 0, 4x 10+
	Sunny		+014×14+0.2×14			
	Cloudy	012	x 年 + 0.4×井+0.6×市	014 X	14	01 px 14 + 01 px 14 + 1
		UI X IZ	+ 414 × 14 + 016 × 14		1 + 214 + 0, 62 14	
	Rainy	D		012 x 14		012×14
				0,+ 0,	1 × 4,0 + 11 × 4	0+0,2×14+01
	Ju	torda				
=)	today	1000	sunny.	doudy	Rainy	
	Sunny		0.8	0.1778	262010	
	cloudy		0,45	0.4	0115	
	Rainy		0	0.8	0.2	
					4	#
(g)	It will	sall	tollow Mar	-kou proper	ty.	

```
3. (a) P(T_{1} | Z_{2}; J_{1}) = \frac{P(Z_{1} | X_{2}; J_{1}, J_{1}) P(X_{1} | Z_{2}; J_{1}, J_{1})}{P(Z_{1} | Z_{2}; J_{1}, J_{1})} = \frac{P(Z_{1} | X_{2}; J_{1}, J_{1}) P(X_{2} | Z_{2}; J_{1}, J_{1})}{P(Z_{1} | Z_{2}; J_{1}, J_{1})} = \frac{P(Z_{1} | X_{2}; J_{1}, J_{1})}{P(Z_{1} | Z_{2}; J_{1}, J_{1})} = \frac{P(Z_{1} | Z_{2}; J_{1}, J_{1})}{P(Z_{1} | Z_{2}; J_{1}, J_{1})} = \frac{P(Z_{1} | Z_{2}; J_{1}, J_{1})}{P(Z_{1} | Z_{2}; J_{1}, J_{1})} = \frac{P(Z_{1} | Z_{2}; J_{1}, J_{1})}{P(Z_{1} | Z_{2}; J_{1}, J_{1})} = \frac{P(Z_{1} | Z_{2}; J_{1}, J_{1})}{P(Z_{1} | Z_{2}; J_{1}, J_{1})} = \frac{P(Z_{1} | Z_{2}; J_{1}, J_{1})}{P(Z_{1} | Z_{2}; J_{1}, J_{1})} = \frac{P(Z_{1} | Z_{2}; J_{1}, J_{1})}{P(Z_{1} | Z_{2}; J_{1}, J_{1})} = \frac{P(Z_{1} | Z_{2}; J_{1}, J_{1})}{P(Z_{1} | Z_{2}; J_{1}, J_{1})} = \frac{P(Z_{1} | Z_{2}; J_{1}, J_{1})}{P(Z_{1} | Z_{2}; J_{1}, J_{1})} = \frac{P(Z_{1} | Z_{2}; J_{1}, J_{1})}{P(Z_{1} | Z_{2}; J_{1}, J_{1})} = \frac{P(Z_{1} | Z_{2}; J_{1}, J_
```

3.B

3.C

```
Thus, do probability sequence: sunny, cloudy, raining
```