第14次课

算法分析与设计(2020)

Analysis and Design of Algorithm

任课教师: 金嘉晖 副教授

办公室: 东南大学九龙湖校区计算机楼368

Email: jjin@seu.edu.cn

助教: 吴碧伟(220191682@seu.edu.cn)

回溯法的两种剪枝函数

1

可行性约束函数

2

限界函数

最大团问题及其应用

- 最大团问题(Maximum Clique Problem)
 - 图论中经典的组合优化问题
 - 完全图: 图中任意两顶点都有边相连
 - 子图: 若U是G的子图,则G含U中所有顶点和边
 - 目标: 找出图中顶点最多的所有完全子图

社会网络中的聚类分析

计算机视觉

最大团问题的解空间

- 实例
 - 6个顶点, 11条边

- ■问题的解
 - 顶点2, 3, 4, 5构成最大团
 - 解的表示⟨0,0,1,1,1,1)⟩

最大团问题的解空间树

最大团问题的剪枝函数

- ■可行性约束函数
 - 剪枝条件: 当前的解不是团
- 假设顶点数为n, 在第i层
- ■限界函数
 - 界:已找到的最大团的顶点数(bestn)
 - 代价函数:
 - 当前解的顶点数(cn)+未检查的顶点的数目(n-i)
 - 剪枝条件: *cn+n-i < bestn*

剪枝之可行性约束函数

剪枝之限界函数

最大团问题的运行实例(1)

最大团问题的运行实例(2)

最大团问题的运行实例(3)

最大团问题的运行实例(4)

-

最大团问题的运行实例(5)

最大团问题的运行实例(6)

最大团问题的运行实例(7)

最大团问题的运行实例(8)

最大团问题的运行实例(9)

最大团问题的运行实例(9)

最大团问题的算法实现

```
void Clique::Backtrack(int i) {
   if (i > n) {
       for (int j = 1; j \le n; j++) bestx[j] = x[j];
       bestn = cn;
       return;
   int OK = 1;
   for (int j = 1; j < i; j++)
       if (x[j] \&\& a[i][j] == 0) \{OK = 0; break;\}
   if
         复杂度分析
   if
            大团问题的回溯算法backtrack所需的计
         算时间为O(n2^n)。
```


最大独立集问题(最大团问题的推广)

- 最大独立集问题(Maximal Independent Set Problem)
 - 独立集: 任意两顶点都没边相连的顶点集合
 - 目标: 找出图中最大的独立集

最大独立集问题的求解思路

■问题的解

■ 顶点2, 3, 4, 5构成最大独立集

■ 解的表示⟨0,0,1,1,1,1)

■求解思路

等价于补图的最大团问题

提高回溯法效率的技巧

- 对输入的序列排序
 - 0-1背包(按单位价值由重自轻)
 - 最大团(按度数排)

- 设计精确的代价函数
 - 圆排列问题(数学推导)

- 回溯法的概念
 - 一种通用的求解解法
 - 具有剪枝函数的深度优先生成法
- 回溯法的核心问题
 - 构造解空间树(子集树、排列树、*n*叉树)
 - 设计剪枝函数(可行性约束函数、限界函数)
- 回溯法的应用
 - 装载问题; 批处理作业调度; n后问题; 0-1背包 问题;最大团问题;图的*m*着色问题;旅行商问题、 圆排列问题

第六章 分支限界法

- 理解分支限界法的剪枝搜索策略
- 掌握用分支限界法的算法框架
 - 队列式(FIFO)分支限界法
 - 优先队列式分支限界法

- 应用范例
 - 旅行商问题、0-1背包问题、装载问题

■ 华同学的巡回演唱会

- 地点:深圳、武汉、北京、 南京、杭州、泉州、广州 重庆、长沙、合肥
- 线路:从深圳出发,跑遍 各大城市,回到深圳
- 目标:考虑机票价格, 确定票价最少的线路

票价	深圳	武汉	北京	•••••
深圳	0	500	600	•••••
武汉	100	0	800	•••••
北京	1000	200	0	•••••
	•••••	•••••	•••••	•••••

非对称旅行商问题

■ 问题定义

■ 城市集合: $C = \{c_1, c_2, \dots c_n\}$

■ 城市距离: $d(c_i, c_j)$

■ 距离不对称: $d(c_i, c_j) \neq d(c_j, c_i)$

■ 目标: 求遍历所有城市(不重复)的最短路径

道路拥堵情况下 的送快递问题

考虑城市单行线 的送快递问题

全国巡回演唱会 的路线安排问题

■ 实例

票价	深圳	武汉	北京	南京
深圳	0	500	600	100
武汉	100	0	800	500
北京	1000	200	0	2000
南京	400	400	100	0

最优解

■ 解的表示: ⟨1,4,3,2⟩

■ 路线:深圳→南京→北京→武汉→深圳

■ 总票价: 100+100+200+100=500

票价	1	2	3	4
1	0	500	600	100
2	100	0	800	500
3	1000	200	0	2000
4	400	400	100	0

回溯法

- 深度优先遍历解空间树
- 剪枝函数: 比较当前解与当前的界

是否可以知道该优先遍历哪些子树?

票价	1	2	3	4
1	0	500	600	100
2	100	0	800	500
3	1000	200	0	2000
4	400	400	100	0

- 如何尽快访问最优解
 - 不用深度优先搜索
 - 优先访问更靠近最优解的节点
 - 设置代价函数计算优先级
 - 利用优先级队列管理节点

- 如何设计优先级函数
 - 可以令优先级函数等于代价函数
 - 当前解的值 + 未来的最优解估计值

3

票价	1	2	3	4
1	0	500	600	100
2	100	0	800	500
3	1000	200	0	2000
4	400	400	100	0

节点颜色

● 红色:优先级队列中的节点

● 黄色:未被访问的节点

● 白色:已经完成访问的节点

 サ点
 当前值
 未来最优值
 总代价

 A
 0
 500
 500

优先级函数•=当前解的值

+ 未来的最优解估计值

每一个未选城市最低出发票价之和 + 当前选中城市的最低出发票价

票价	1	2	3	4
1	0	500	600	100
2	100	0	800	500
3	1000	200	0	2000
4	400	400	100	0

节点颜色

● 红色:优先级队列中的节点

● 黄色:未被访问的节点

● 白色:已经完成访问的节点

节点	当前值	未来最优值	总代价
В	0	500	500

优先级函数=当前解的值

+ 未来的最优解估计值

每一个未选城市最低出发票价之和 + 当前选中城市的最低出发票价

票价	1	2	3	4
1	0	500	600	100
2	100	0	800	500
3	1000	200	0	2000
4	400	400	100	0

节点颜色

▶ 红色:优先级队列中的节点

● 黄色:未被访问的节点

● 白色:已经完成访问的节点

优先级函数=当前解的值

+ 未来的最优解估计值

每一个未选城市最低出发票价之和 + 当前选中城市的最低出发票价

节点	当前值	未来最优值	总代价
С	500	400	900
D	600	400	1000
Е	100	400	500

票价	1	2	3	4
1	0	500	600	100
2	100	0	800	500
3	1000	200	0	2000
4	400	400	100	0

节点颜色

● 红色:优先级队列中的节点

● 黄色:未被访问的节点

● 白色:已经完成访问的节点

优先级函数=当前解的值 + 未来的最优解估计值

每一个未选城市最低出发票价之和 + 当前选中城市的最低出发票价

节点	当前值	未来最优值	总代价
C	500	400	900
D	600	400	1000
J	500	300	800
K	200	300	500

票价	1	2	3	4
1	0	500	600	100
2	100	0	800	500
3	1000	200	0	2000
4	400	400	100	0

节点颜色

● 红色:优先级队列中的节点

● 黄色:未被访问的节点

● 白色:已经完成访问的节点

优先级函数=当前解的值 + 未来的最优解估计值

每一个未选城市最低出发票价之和 + 当前选中城市的最低出发票价

节点	当前值	未来最优值	总代价
С	500	400	900
D	600	400	1000
J	500	300	800
Q	400	100	当前 500
			最优

最优

票价	1	2	3	4
1	0	500	600	100
2	100	0	800	500
3	1000	200	0	2000
4	400	400	100	0

节点颜色

● 红色:优先级队列中的节点

● 黄色:未被访问的节点

● 白色:已经完成访问的节点

优先级函数=当前解的值 + 未来的最优解估计值

每一个未选城市最低出发票价之和 + 当前选中城市的最低出发票价

节点	当前值	未来最优值	总代价
С	500	400	900
D	600	400	1000
J	500	300	800
Q	400	100	当前 500
			最优

最优

分支限界法的基本思想

- ■一种与回溯法类似的算法
 - 将问题建模为解空间树
 - 通常用代价函数估算每个分支的最优值
 - 优先选择当前看来最好的分支
 - 通常用广度优先搜索
 - 搜索过程中剪枝
- 分支限界的剪枝函数
 - 不满足约束条件
 - 代价函数值不优于当前的界

分支限界法(算法框架-Step1)

```
void Branch-and-Bou
                       根结点入队列:
  Q.enqueue(x);
                       初始化界的值
  Initialize bestx
                       bestx
  while (Q \text{ is not emp})
     S=Q.dequeue();
     if(constraint(S) && bound(S, bestx)){
       Partition S into S_1, S_2, ..., S_n
       for(i=1; i <= n; i++){
          if(S_i) is a leaf node) update bestx
          else Q.enqueue(S_i);
```


- 正被访问结点
- 〇 已访问结点 未被访问结点

变量	值
Q	<a>
S	

分支限界法(算法框架-Step2)

```
void Branch-and-Bound(x){
  Q.enqueue(x);
  Initialize bestx
                           根据优先级
  while(Q is not empty){
     S=Q.dequeue();
     if(constraint(S) & \square
       Partition S into S<sub>1</sub> 结点
       for(i=1; i <= n; i++){
          if(S_i is a leaf node) update bestx
          else Q.enqueue(S_i);
```


- 正被访问结点
- 〇已访问结点
- 未被访问结点

变量	值
Q	<>
\boldsymbol{S}	$oldsymbol{A}$

分支限界法(算法框架-Step3)

```
void Branch-and-Bound(x){
  Q.enqueue(x);
  Initialize bestx
  \mathbf{while}(Q \text{ is not empty})
    S=Q.dequeue();
    if constraint(S) && bound(S, bestx)){
       Partition S into S
      for(i=1; i<=n; i
        根据可行性约束函数和限界
        函数判断是不是对S剪枝
```


- 正被访问结点
 - 未被访问结点

变量	值
Q	<>
S	$oldsymbol{A}$

分支限界法(算法框架-Step4)

```
void Branch-and-Bound(x){
  Q.enqueue(x);
  Initialize bestx
  \mathbf{while}(Q \text{ is not empty})
     S=Q.dequeue();
     if(constraint(S) && bound(S, bestx)){
       Partition S into S_1, S_2, ..., S_n
       for(i=1; i<=y
          if(S. is a le
                         ode) update bestx
          els
              生成S的子结点
```


- 正被访问结点
- 〇 已访问结点
- 未被访问结点

变量	值
Q	<>
S	\boldsymbol{A}

分支限界法(算法框架-Step5)

```
void Branch-and-Bound(x){
  Q.enqueue(x);
  Initialize bestx
  while(Q is not empty){
    S=Q.dequeue();
    if(constraint(S) && bound(S, bestx)){
      Partition S into S_1, S_2, ..., S_n
      for(i=1; i \le n; i++)
        if(S_i is a leaf node) update bestx
        else Q.enqu(S_i);
     若子结点为叶子结点(即完整
      的解向量)则更新当前的界
```


- 正被访问结点
 - 未被访问结点

O	已访	问结	点
		, ,-,	,,,,

变量	值
Q	<>
S	\boldsymbol{A}

分支限界法(算法框架-Step6)

```
void Branch-and-Bound(x){
  Q.enqueue(x);
  Initialize bestx
  while(Q is not empty){
    S=Q.dequeue();
    if(constraint(S) && bound(S, bestx)){
      Partition S into S_1, S_2, ..., S_n
      for(i=1; i <= n; i++){
        if(S_i is a leaf node) update bestx
        else Q.enqueue(S_i);
     若子结点是非叶子结点(即部
     分解向量)则将子结点入队列
```


- 正被访问结点
- 未被访问结点

已访问结点

变量	值
Q	< <i>C</i> , <i>B</i> >
S	\boldsymbol{A}

分支限界法(算法框架-Step7)

```
void Branch-and-Bound(x){
  Q.enqueue(x);
  Initialize bestx
  while(Q is not empty){
     S=Q.dequeue();
     if(constraint(S) && bound(S, bestx)){
       Partition S into S_1, S_2, ..., S_n
       for(i=1; i<=n; i++){
          if(S_i is a leaf node) update bestx
          else Q.enqueue(S_i);
```


- 正被访问结点
- 〇已访问结点
- 未被访问结点

变量	值
Q	< <i>B</i> >
\boldsymbol{S}	\boldsymbol{C}

分支限界法(算法框架-Step8)

```
void Branch-and-Bound(x){
  Q.enqueue(x);
  Initialize bestx
  while(Q is not empty){
    S=Q.dequeue();
    if(constraint(S) && bound(S, bestx))
       Partition S into S_1, S_2, ..., S_n
       for(i=1; i <= n; i++){
          if(S_i is a leaf node) update bestx
          else Q.enqueue(S_i);
```


- 正被访问结点
- 〇已访问结点
- 未被访问结点

变量	值
Q	< <i>B</i> >
\boldsymbol{S}	\boldsymbol{C}

分支限界法(算法框架-Step9)

```
void Branch-and-Bound(x){
  Q.enqueue(x);
  Initialize bestx
  while(Q is not empty){
    S=Q.dequeue();
    if(constraint(S) && bound(S, bestx)){
       Partition S into S_1, S_2, ..., S_n
       for(i=1; i<=p/
         if (S_i \text{ is a Te})
                        pde) update bestx
          生成C的子结点F和G
```


- 正被访问结点
- 未被访问结点

O	已访问	J结点

变量	值
Q	< <i>B</i> >
S	$oldsymbol{C}$

分支限界法(算法框架-Step10)

```
void Branch-and-Bound(x){
  Q.enqueue(x);
  Initialize bestx
  while(Q is not empty){
    S=Q.dequeue();
    if(constraint(S) && bound(S, bestx)){
       Partition S into S_1, S_2, ..., S_n
       for(i=1; i <= n; i++){
         if(S_i is a leaf node) update bestx
         else Q.enqueue
           判断F和G是否为叶子结点
```


- 正被访问结点
- ○已访问结点
- 未被访问结点

变量	值
Q	< <i>B</i> >
S	\boldsymbol{C}

分支限界法(算法框架-Step11)

```
void Branch-and-Bound(x){
  Q.enqueue(x);
  Initialize bestx
  while(Q is not empty){
     S=Q.dequeue();
     if(constraint(S) && bound(S, bestx)){
       Partition S into S_1, S_2, ..., S_n
       for(i=1; i<=n; i++){
          if(S_i 	ext{ is a leaf node}) 	ext{ update } bestx
          else Q.enqueue(S_i);
          将F和G入队列
```


- 正被访问结点
 - 未被访问结点

\bigcirc	己访	<u> </u>	结点

变量	值
Q	< G , <i>B</i> , <i>F</i> >
S	\boldsymbol{C}

分支限界法(算法框架-Step12)

```
void Branch-and-Bound(x){
  Q.enqueue(x);
  Initialize bestx
  while(Q is not empty){
    S=Q.dequeue();
    if(constraints) & & bound(S, bestx)){
                Mathred S_1, S_2, ..., S_n
      Partitiq
   假设当前访优先级最
                           update bestx
   高的结点为G
```


- 正被访问结点
- 未被访问结点

O	已访问	结点

变量	值
Q	< <i>B</i> , <i>F</i> >
S	\boldsymbol{G}

分支限界法(算法框架-Step13)

```
void Branch-and-Bound(x){
  Q.enqueue(x);
  Initialize bestx
  while(Q is not empty){
    S=Q.dequeue();
    if(constraint(S) && bound(S, bestx)){
      Partition S into S_1, S_2, ..., S_n
      for(i=1; i <= n; i++){
         if(S_i is a leaf node) update bestx
         else Q.enqueue/
           子结点N和O是叶子结点,
           更新当前的界bestx
```


- 正被访问结点
 - 入未被访问结点

〇已访问结点	ĭ
--------	---

变量	值
Q	< <i>B</i> , <i>F</i> >
S	\boldsymbol{G}

分支限界法(算法框架-Step14)

```
void Branch-and-Bound(x){
  Q.enqueue(x);
  Initialize bestx
  while(Q is not empty){
    S=Q.dequeue();
                      \operatorname{bound}(S, bestx)){
    if(constraint(S)
       不断进行出队和入队操作,
       直到队列Q为空
                                   estx
         cise Q.enqueuc(Si),
```


- 正被访问结点
 - 未被访问结点

〇 已访问结点

变量	值
Q	< <i>B</i> , <i>F</i> >
\boldsymbol{S}	\boldsymbol{G}

- 搜索方式不同
 - 回溯法:深度优先
 - 分支限界法: FIF0队列式(广度优先)、优先级队列式
- 搜索目标不同
 - 回溯法: 找所有解、可行解、最优解
 - 分支限界法: 找最优解
- 搜索用到的函数不同
 - 回溯法:约束函数、限界函数
 - 分支限界: 约束函数、限界函数、优先级函数

分支限界法与回溯法

- 遍历所需的空间不同
 - 回溯法: 树的高度
 - 分支限界法: 队列的长度
- 构造最优解的方式不同
 - 回溯法
 - 采用了深度优先搜索
 - 只需要*O*(|*X*|)空间, |*X*|为解向量长度
 - 分支限界法
 - 采用了广度优先搜索
 - 每个活的节点都需要保存解,空间开销大
 - 改进: 用指针指向父节点,减少保存公共父节点的开销(书P169)

分支限界法的应用

-

0-1背包问题

实例

- \blacksquare 4种物品,重量 w_i 和价值 v_i 分别为
- $v_1 = 1, v_2 = 3, v_3 = 5, v_4 = 10$
- $w_1 = 2, w_2 = 3, w_3 = 6, w_4 = 7$
- 背包重量限制为10

例如: 0-1背包问题

最大化
$$x_1 + 3x_2 + 5x_3 + 10x_4$$

满足约束条件

$$\begin{cases} 2x_1 + 3x_2 + 6x_3 + 7x_4 \le 10 \\ x_i \in \{0,1\}, & i = 1, 2, 3, 4 \end{cases}$$

4

0-1背包问题—代价函数(回顾)

• 按 v_i/w_i 从大到小排序, $i=1,2,\cdots,n$

■ 假设位于结点 $\langle x_1, x_2, \cdots, x_k \rangle$

- 代价函数=已装入价值+Δ
 - △: 还可继续装入最大价值的上界
 - Δ =背包剩余重量× v_{k+1}/w_{k+1} (可装)
 - Δ=0 (不可装)

0-1背包问题—分支限界法

- 基本思想
 - 将物品按 v_i/w_i 从大到小排序,确定解空间树
 - 从空集Ø和仅含空集Ø的优先队列开始
 - ■选择计算节点队列中代价值最高的节点并扩展
 - 若扩展出节点不被剪枝,将节点<mark>插入</mark>节点队列
 - 反复2~3步, 直到优先队列为空时为止
- ■代价函数(优先级函数)
 - ■已装入价值+Δ
- ■剪枝函数
 - ■与回溯法相同

0-1背包问题—分支限界法

最大化
$$10x_1 + 3x_2 + 5x_3 + x_4$$

满足 $7x_1 + 3x_2 + 6x_3 + 2x_4 \le 10$; $x_i \in \{0,1\}$, $i = 1, 2, 3, 4$

装载问题(回顾)

• 有一批共n个集装箱要装上2艘载重量分别为 c_1 和 c_2 的轮船,其中集装箱i的重量为 w_i ,且

$$w_1 + w_2 + \dots + w_n \le c_1 + c_2$$

装载问题要求确定是否有一个合理的装载方案 可将这个集装箱装上这2艘轮船。如果有,找 出一种装载方案。

云计算虚拟机调度 操作系统内存管理

物料最优剪裁

集装箱最优装载9

装载问题的求解思路(回顾)

- 输入: 集装箱重量W, 轮船载重 c_1, c_2
 - 首先将第一艘轮船尽可能装满;
 - 将剩余的集装箱装上第二艘轮船。
 - 将第一艘轮船尽可能装满等价于选取全体集装箱 的一个子集,使该子集中集装箱重量之和最接近。

■ 实例:

- $W = \langle 90,65,40,30,20,12,10 \rangle$
- $c_1 = 152, c_2 = 130$
- 最优解⟨1,0,0,1,1,1,0⟩

$$\max \sum_{i=1}^{n} w_{i} x_{i}$$

$$\text{s.t.} \sum_{i=1}^{n} w_i x_i \le c_1$$

$$x_i \in \{0,1\}, 1 \le i \le n$$

- →基本思想(与0-1背包问题类似)
 - 从空集Ø和仅含空集Ø的优先队列开始
 - ■选择计算节点队列中代价值最高的节点并扩展
 - ■若扩展出节点不被剪枝,将节点插入节点队列
 - 反复2~3步, 直到优先队列为空时为止
- ■代价函数
 - 当前重量之和+未选 中物品的重量之和
- ■剪枝函数
 - ■与回溯法相同

- 实例
 - 集装箱重量W = ⟨90,65,40,30,20,12,10⟩
 - $c_1 = 152, c_2 = 130$

优先级队列

	A		
代价	267		

实例

- 集装箱重量W = ⟨90,65,40,30,20,12,10⟩
- $c_1 = 152, c_2 = 130$

优先级队列

	В	C		
代价	267	177		

实例

- 集装箱重量W = ⟨90,65,40,30,20,12,10⟩
- $c_1 = 152, c_2 = 130$

优先级队列

	E	C		
代价	202	177		

实例

- 集装箱重量W = 〈90,65,40,30,20,12,10〉
- $c_1 = 152, c_2 = 130$

优先级队列

	F	C	G	
代价	202	177	162	

实例

- 集装箱重量W = 〈90,65,40,30,20,12,10〉
- $c_1 = 152, c_2 = 130$

优先级队列

	C	I	G	
代价	177	172	162	

实例

- 集装箱重量W = 〈90,65,40,30,20,12,10〉
- $c_1 = 152, c_2 = 130$

优先级队列

	J	I	G	K	
代价	177	172	162	112	

实例

- 集装箱重量W = 〈90,65,40,30,20,12,10〉
- $c_1 = 152, c_2 = 130$

优先级队列

	L	I	G	M	K
代价	177	172	162	137	112

实例

- 集装箱重量W = ⟨90,65,40,30,20,12,10⟩
- $c_1 = 152, c_2 = 130$

优先级队列

	I	G	O	M	K
代价	172	162	147	137	112

实例

- 集装箱重量W = 〈90,65,40,30,20,12,10〉
- $c_1 = 152, c_2 = 130$

优先级队列

	P	G	О	Q	M	K
代价	172	162	157	152	137	112

B C K
D C K
F G L M
P Q

实例

- 集装箱重量W = 〈90,65,40,30,20,12,10〉
- $c_1 = 152, c_2 = 130$

优先级队列

	G	S	О	Q	M	K
代价	162	160	157	152	137	112

实例

- 集装箱重量W = 〈90,65,40,30,20,12,10〉
- $c_1 = 152, c_2 = 130$

优先级队列

	T	S	O	Q	M	K
代价	162	160	157	152	147	137

	U			
代价	132			

实例

- 集装箱重量W = 〈90,65,40,30,20,12,10〉
- $c_1 = 152, c_2 = 130$

优先级队列

	V	S	O	Q	M	W
代价	162	160	157	152	147	142

	K	U		
代价	137	132		

实例

- 集装箱重量W = 〈90,65,40,30,20,12,10〉
- $c_1 = 152, c_2 = 130$

优先级队列

	X	S	О	Q	Y	M
代价	162	160	157	152	147	147
	W	K	U			
代价	142	137	132			

实例

- 集装箱重量W = 〈90,65,40,30,20,12,10〉
- $c_1 = 152, c_2 = 130$

优先级队列

	X	S	O	Q	Y	M
代价	162	160	157	152	147	147

	W	K	U		
代价	142	137	132		

当前最优重量: $152=c_1$ 得到了最优解!

本章小结

■ 分支限界法的剪枝和搜索策略

- 可行性约束函数
- 限界函数
- 优先级函数(代价函数)

■ 分支限界法的算法框架

- FIFO队列式分支限界法(广度优先搜索)
- 优先队列式分支限界法(优先级由代价函数确定)

■ 分支限界法的应用

- 非对称旅行商问题
- 0-1背包问题
- 装载问题