# Derivada Direcional

Priscila Bemm

UEM

# Objetivo

• Introduziremos um tipo de derivada, chamada derivada direcional, que nos permite encontrar a taxa de variação de uma função de duas ou mais variáveis em qualquer direção.

# Objetivo

• Introduziremos um tipo de derivada, chamada derivada direcional, que nos permite encontrar a taxa de variação de uma função de duas ou mais variáveis em qualquer direção.

# Bibliografia

- Cálculo III e IV, Marcos Henrique Santos Martins, Rosimary Pereira. Florianópolis: UFSC/EAD/CED/CFM, 2010.
- Cálculo Volume 2, **James Stewart**; tradução EZ2 Translate, 7<sup>a</sup> edição. São Paulo: Cengage Learning, 2013.

Seja z=f(x,y) uma função de duas variáveis. Lembramos que

$$f_x(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}.$$

Seja z=f(x,y) uma função de duas variáveis. Lembramos que

$$f_x(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}.$$

Isso significa que nós estamos analisando o quociente

$$\frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

a medida que nos aproximamos de  $(x_0, y_0)$  por pontos que estão sobre a reta horizontal  $y = y_0$ .

Portanto, o limite representa a taxa de mudança de z na direção da reta horizontal  $y=y_0$ .

Como a reta horizontal  $y=y_0$  é paralela ao eixo x, o limite representam as taxas de variação de z na direção na direção do eixo x, ou seja, na direção do vetor  $\vec{i}$ .

Analogamente,

$$f_y(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}.$$

$$\frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}$$

a medida que nos aproximamos de  $(x_0, y_0)$  por pontos que estão sobre a reta vertical  $x = x_0$ .

Portanto, o limite representam as taxas de mudança de z na direção da reta vertica  $x=x_0$ .

Como a reta vertical  $x=x_0$  é paralela ao eixo y, o limite representa a taxa de variação de z na direção na direção do eixo y, ou seja, na direção do vetor  $\vec{j}$ .

Por exemplo, a figura a seguir mostra um mapa de contorno da função temperatura T(x,y) para a China às 15 horas em 28/12/2004. As curvas de nível, ou isotérmicas, ligam-se às localidades que têm a mesma temperatura.





Por exemplo, a figura a seguir mostra um mapa de contorno da função temperatura T(x,y) para a China às 15 horas em 28/12/2004. As curvas de nível, ou isotérmicas, ligam-se às localidades que têm a mesma temperatura.









A derivada parcial  $T_x$  em um local como Xunquim é a taxa de variação da temperatura com relação à distância se nos movermos para o leste a partir de Xunquim.  $T_y$  é a taxa de variação da temperatura se nos movermos para o norte. Mas, e se quisermos saber a taxa de variação da temperatura quando viajamos para sudoeste ou em alguma outra direção?

Nessa aula, introduziremos um tipo de derivada, chamada **derivada direcional**, que nos permite encontrar a taxa de variação de uma função de duas ou mais variáveis em qualquer direção.

Seja z = f(x, y) uma função de duas variáveis.

Suponha que queiramos determinar a taxa de variação de z em  $(x_0, y_0)$  na direção de um vetor unitário arbitrário  $\vec{u} = \langle a, b \rangle$ .



Para isso, devemos considerar a superfície S com equação z=f(x,y) (gráfico de f) e tomar  $z_0=f(x_0,y_0)$ . Então o ponto  $P=(x_0,y_0,z_0)$  está em S.

Um vetor unitário  $\mathbf{u} = \langle a, b \rangle = \langle \cos \theta, \sin \theta \rangle$ 

O plano vertical que passa por P na direção de  $\vec{u}$  intercepta S em uma curva C. A inclinação da reta tangente T a C em P é a taxa de variação de z na direção de  $\vec{u}$ .



Sejam Q=(x,y,z) outro ponto sobre C e  $P^\prime,Q^\prime$  são as projeções de P e Q sobre o plano xy.

Então o vetor P'Q' é paralelo a  $\vec{u}$  e, portanto, existe um escalar h tal que

$$P'Q' = h\vec{u}$$

Sejam Q=(x,y,z) outro ponto sobre C e P',Q' são as projeções de P e Q sobre o plano xy.

Então o vetor P'Q' é paralelo a  $\vec{u}$  e, portanto, existe um escalar h tal que

$$P'Q' = h\vec{u} \Rightarrow \langle x - x_0, y - y_0 \rangle = \langle ha, hb \rangle.$$



Portanto,  $x=x_0+ha$  e  $y=y_0+hb$ . Neste caso,

$$\frac{\Delta z}{h}$$

Portanto,  $x=x_0+ha$  e  $y=y_0+hb$ . Neste caso,

$$\frac{\Delta z}{h} = \frac{z - z_0}{h}$$

Portanto,  $x = x_0 + ha$  e  $y = y_0 + hb$ . Neste caso,

$$\frac{\Delta z}{h} = \frac{z - z_0}{h} = \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}.$$

Portanto,  $x = x_0 + ha$  e  $y = y_0 + hb$ . Neste caso,

$$\frac{\Delta z}{h} = \frac{z - z_0}{h} = \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}.$$

Se tomarmos o limite quando  $h \to 0$ , obteremos a taxa de variação de z na direção de  $\vec{u}$ , que é chamada **derivada direcional** de f na direção e sentido de  $\vec{u}$ .

Seja z=f(x,y) uma função de duas variáveis. A **derivada direcional** de f em  $(x_0,y_0)$  na direção de um vetor unitário  $\vec{u}=\langle a,b\rangle$  é

$$D_{\vec{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

quando esse limite existir.

Seja z=f(x,y) uma função de duas variáveis. A **derivada direcional** de f em  $(x_0,y_0)$  na direção de um vetor unitário  $\vec{u}=\langle a,b\rangle$  é

$$D_{\vec{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

quando esse limite existir.

# Observação

ullet Se  $ec{u}=ec{i}=\langle 1,0
angle$  então

$$D_{\vec{i}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + 1h, y_0 + 0h) - f(x_0, y_0)}{h}$$

Seja z=f(x,y) uma função de duas variáveis. A **derivada direcional** de f em  $(x_0,y_0)$  na direção de um vetor unitário  $\vec{u}=\langle a,b\rangle$  é

$$D_{\vec{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

quando esse limite existir.

## Observação

ullet Se  $ec{u}=ec{i}=\langle 1,0
angle$  então

$$D_{\vec{i}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + 1h, y_0 + 0h) - f(x_0, y_0)}{h} = f_x(x_0, y_0).$$

Seja z=f(x,y) uma função de duas variáveis. A **derivada direcional** de f em  $(x_0,y_0)$  na direção de um vetor unitário  $\vec{u}=\langle a,b\rangle$  é

$$D_{\vec{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

quando esse limite existir.

#### Observação

• Se  $\vec{u}=\vec{i}=\langle 1,0 
angle$  então

$$D_{\vec{i}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + 1h, y_0 + 0h) - f(x_0, y_0)}{h} = f_x(x_0, y_0).$$

• Se  $\vec{u} = \vec{j} = \langle 0, 1 \rangle$  então

$$D_{\vec{j}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + 0h, y_0 + 1h) - f(x_0, y_0)}{h}$$



Seja z=f(x,y) uma função de duas variáveis. A **derivada direcional** de f em  $(x_0,y_0)$  na direção de um vetor unitário  $\vec{u}=\langle a,b\rangle$  é

$$D_{\vec{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

quando esse limite existir.

#### Observação

• Se  $\vec{u}=\vec{i}=\langle 1,0 
angle$  então

$$D_{\vec{i}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + 1h, y_0 + 0h) - f(x_0, y_0)}{h} = f_x(x_0, y_0).$$

• Se  $\vec{u} = \vec{j} = \langle 0, 1 \rangle$  então

$$D_{\vec{j}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + 0h, y_0 + 1h) - f(x_0, y_0)}{h} = f_y(x_0, y_0).$$



#### Teorema

Se f é uma função diferenciável de x e y, então f tem derivada direcional na direção de qualquer vetor unitário  $\vec{u} = \langle a, b \rangle$  e

$$D_{\vec{u}}f(x,y) = f_x(x,y)a + f_y(x,y)b$$

#### Teorema

Se f é uma função diferenciável de x e y, então f tem derivada direcional na direção de qualquer vetor unitário  $\vec{u} = \langle a, b \rangle$  e

$$D_{\vec{u}}f(x,y) = f_x(x,y)a + f_y(x,y)b = \langle f_x(x,y), f_y(x,y) \rangle \cdot \langle a,b \rangle.$$

#### Teorema

Se f é uma função diferenciável de x e y, então f tem derivada direcional na direção de qualquer vetor unitário  $\vec{u} = \langle a, b \rangle$  e

$$D_{\vec{u}}f(x,y) = f_x(x,y)a + f_y(x,y)b = \langle f_x(x,y), f_y(x,y) \rangle \cdot \langle a,b \rangle.$$

# Observação

Se o vetor unitário  $\vec{u}$  faz um ângulo  $\theta$  com o eixo x positivo então podemos escrever  $\vec{u} = \langle cos\theta, sen\theta \rangle$  e a fórmula do teorema anterior fica

$$D_{\vec{u}}f(x,y) = f_x(x,y)cos\theta + f_y(x,y)sen\theta$$

#### Observação

Se o vetor unitário  $\vec{u}$  faz um ângulo  $\theta$  com o eixo x positivo então podemos escrever  $\vec{u} = \langle cos\theta, sen\theta \rangle$  e a fórmula do teorema anterior fica

$$D_{\vec{u}}f(x,y) = f_x(x,y)\cos\theta + f_y(x,y)\sin\theta$$
$$= \langle f_x(x,y), f_y(x,y)\rangle \cdot \langle \cos\theta, \sin\theta\rangle.$$

## Observação

A hipótese " $\vec{u}$  unitário" é usada para interpretar  $D_{\vec{u}}$  como taxa por unidade de comprimento. A igualdade algébrica acima vale para qualquer  $\vec{u}$ ; se  $\vec{u}$  não for unitário, a taxa escala com  $\|\vec{u}\|$ .

# Exemplo

Encontre a derivada direcional  $D_{\vec{u}}f(x,y)$  se  $f(x,y)=x^3-3xy+4y^2$  e  $\vec{u}$  é o vetor unitário que faz um ângulo  $\theta=\frac{\pi}{6}$  com o eixo positivo x. Qual será  $D_{\vec{u}}f(1,2)$ ?

# Solução

Pela fórmula anterior,

$$D_{\vec{u}}f(x,y) = f_x(x,y)\cos\frac{\pi}{6} + f_y(x,y)\sin\frac{\pi}{6}$$
$$= (3x^2 - 3y)\frac{\sqrt{3}}{2} + (-3x + 8y)\frac{1}{2}$$
$$= \frac{1}{2} \left[ 3\sqrt{3}x^2 - 3x + (8 - 3\sqrt{3})y \right].$$

Portanto,

$$D_{\vec{u}}f(1,2) = \frac{1}{2} \left[ 3\sqrt{3}(1)^2 - 3(1) + (8 - 3\sqrt{3})(2) \right] = \frac{13 - 3\sqrt{3}}{2}.$$



A derivada direcional  $D_{\vec{u}}f(x,y)$  no exemplo anterior representa a taxa de variação de z na direção de  $\vec{u}$ . Ou seja, é a inclinação da reta da tangente para a curva de

intersecção da superfície  $z=x^3-3xy+4y^2$  e o plano vertical que passa por (1,2,0) na direção de  $\vec{u}$  mostrado na figura



# Exercícios



- Seja  $f(x,y)=e^{x^2+y^2}$ . No ponto p=(0,1), calcule  $D_{\vec{u}}f(p)$  na direção do vetor  $\vec{v}=(1,-\sqrt{3})$ .
- ② Seja  $f(x,y) = xe^y + y^2 \sin x$ . No ponto p = (0,0), calcule  $D_{\vec{u}}f(p)$  na direção do vetor que aponta de p para q = (2,-1)
- Seja  $f(x,y)=x^2-3x^2y+y^3$ . No ponto p=(1,2), calcule a derivada direcional  $D_{\vec{u}}f(p)$  na direção do vetor unitário que faz ângulo  $\theta=\frac{\pi}{4}$  com o eixo x positivo