The Market-Basket Model Finding Frequent Itemsets Scaling Up to Big Data

COMP336 — Big Data

Week 10 Lecture 1: Frequent Itemsets

Diego Mollá

Department of Computer Science Macquarie University

COMP336 2018H1

Diego Mollá W1

W10L1: Frequent Itemsets

- 1 The Market-Basket Model
- Finding Frequent Itemsets
- Scaling Up to Big Data

Reading

 Leskovec, Rajaraman, Ullman (2014): Mining of Massive Datasets, Chapter 6. http://www.mmds.org/

- The Market-Basket Model
 - Association Rules
 - Frequent Itemsets
 - Finding Association Rules
- Pinding Frequent Itemsets
- Scaling Up to Big Data

- The Market-Basket Model
 - Association Rules
 - Frequent Itemsets
 - Finding Association Rules
- 2 Finding Frequent Itemsets
- Scaling Up to Big Data

What Are Association Rules?

- Study of "what goes with what":
 - "Customers who bought X also bought Y".
 - What symptoms go with what diagnosis.
- Transaction-based or event-based.
- Also called "market basket analysis" and "affinity analysis".
- Originated with study of customer transactions databases to determine associations among items purchased.

Used in Many Recommender Systems

Share your own customer images Search inside this book Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner [Hardcover] Gall Shmuel (Fland). Niter, Replet (Author), Febr. C. Bruce (Author).

Androin (15 customer reviews) | Like (2)

List Price: \$120.00

Price: \$90.00 & this item ships for FREE with Super Saver Shipping. Details

You Save: \$30.00 (25%)

In Stock.
Ships from and sold by Amazon.com. Gift-wrap available.

Want it delivered Thursday, October 20? Order it in the next 18 hours and 24 minutes, and choose One-Day Shipping at checkout. Details

FREE Two-Day Shipping for Students. Learn more

Formats Amazon Price New from Used from

- Hardcover \$90.00 \$64.99 \$48.00

Customers Who Bought This Item Also Bought

Data Mining Techniques: For Marketing, Sales,... by Gordon S. Linoff ☆☆☆☆ (33) \$31.50

Data Warehousing 101: Concepts and Implementation by Arshad Khan (1)

Data Analysis and Decision Making (with... by S. Christian Abright ★★★★ (4) \$165.77

Customer Relationship Management: A Databased Approach by V. Kumar (2)

Business Process Change, Second Edition: A Guide f... by Paul Harmon (12)

A Working Example

Purchase of phone faceplates

A store that sells accessories for mobile phones runs a promotion on faceplates. Customers who purchase multiple faceplates from a choice of six different colours get a discount. The store managers, who would like to know what colours of faceplates customers are likely to purchase together, collected a transaction database.

Transaction	Faceplate colours purchased			
1	red	white	green	
2	white	orange		
3	white	blue		
4	red	white	orange	
5	red	blue		
6	white	blue		
7	white	orange		
8	red	white	blue	green
9	red	white	blue	
10	yellow			

7/51

Candidate Rules

```
Example of a rule

IF {red, white} THEN {green}

Terminology

Antecedent {red, white}.

Consequent {green}.

Item set {red, white, green, orange, blue, yellow}.
```

The antecedent and the consequent are disjoint:

• They have no items in common.

Many Rules are Possible

For example: Transaction 1 supports several rules, such as

- "If red, then white" ("If a red faceplate is purchased, then so is a white one").
- "If white, then red".
- "If red and white, then green".
- 4 . . .

Frequent Item Sets

- Ideally, we want to create all possible combinations of items.
- Problem: computation time grows exponentially as # items increases.
- Solution: consider only "frequent item sets".
- Criterion for frequent: support.

- The Market-Basket Model
 - Association Rules
 - Frequent Itemsets
 - Finding Association Rules
- 2 Finding Frequent Itemsets
- Scaling Up to Big Data

Definition of Frequent Itemsets

- A set of items that appears in many baskets is said to be "frequent".
- Assume there is a number s, called the support threshold.
- If I is a set of items, the support for I is the number of baskets for which I is a subset.
- We then say that *I* is frequent if its support is *s* or more.

In our Working Example

The support for the item set $\{red, white\}$ is 4

Transaction	Faceplate colours purchased			
1	red	white	green	
2	white	orange		
3	white	blue		
4	red	white	orange	
5	red	blue		
6	white	blue		
7	white	orange		
8	red	white	blue	green
9	red	white	blue	
10	yellow			

Applications of Frequent Itemsets I

Brick-and-Mortar Retailing

Items: Products.

Baskets: Sets of products someone bought in one trip to the

store.

- By finding frequent itemsets, a retailer can learn what is commonly bought together and arrange the marketing and sales strategy accordingly.
- A famous example is the itemset "diapers and beer".
 - Strategy: run a sale on diapers and simultaneously raise the price of beer.
 - Strategy: place cans of beer in the aisle for baby products.

Applications of Frequent Itemsets II

Plagiarism Detection

Items: Documents.

Baskets: Sentences.

Clinical Analysis

Items Drugs and side-effects.

Baskets: Patients.

- Has been used to detect combinations of drugs that result in particular side-effects.
- This approach requires an extension: Absence of an item needs to be observed as well as presence.

- The Market-Basket Model
 - Association Rules
 - Frequent Itemsets
 - Finding Association Rules
- 2 Finding Frequent Itemsets
- Scaling Up to Big Data

Measures of Performance I

Confidence

The % of antecedent transactions that also have the consequent item set.

• Confidence is the conditional probability of taking the consequent given that we have taken the antecedent:

Confidence =
$$P(consequent|antecedent)$$

= $\frac{P(antecedent\&consequent)}{P(antecedent)}$

 However, if the antecedent or consequent have strong support, this value is not useful.

Measures of Performance II

Lift Ratio

$$\textit{Lift ratio} = \frac{\textit{Confidence}}{\textit{Benchmark confidence}}$$

 The benchmark confidence is the percentage of transactions in the entire dataset that have the consequent:

$$Benchmark \ confidence = \frac{\textit{no. transactions with consequent item set}}{\textit{no. transactions in database}}$$

 Lift ratio > 1 indicates that the rule is more useful than just selecting transactions randomly.

Process of Rule Selection I

Generate all rules that meet specified support & confidence.

- Find frequent item sets (those with sufficient support see above).
- Prom these item sets, generate rules with sufficient confidence (or lift ratio, whatever criteria we set).

Process of Rule Selection II

Example

Rules from {red, white} item set.

• Support for $\{\text{red}, \text{white}\} = 40\%$; Support for $\{\text{red}\} = 50\%$; Support for $\{\text{white}\} = 80\%$.

The rules are:

- IF {red} THEN {white}
 - Confidence = 40% / 50% = 80%.
 - Lift ratio = 80% / 80% = 1.
- IF {white} THEN {red}
 - Support for {red,white} = 40%.
 - Confidence = 40% / 80% = 50%.
 - Lift ratio = 50% / 50% = 1.

If confidence cutoff is 70%, report only rule 1. If lift ratio > 1, none of these rules are useful.

20/51

Interpretation

- Lift ratio shows how effective the rule is in finding consequents (useful if finding particular consequents is important).
- Confidence shows the rate at which consequents will be found (useful in learning costs of promotion).
- Support measures overall impact.

Caution: The Role of Chance

- Random data can generate apparently interesting association rules.
- The more rules you produce, the greater this danger.
- Rules based on large numbers of records are less subject to this danger.

- 1 The Market-Basket Model
- 2 Finding Frequent Itemsets
 - The A-Priori Algorithm
 - An Efficient Implementation of A-Priori
- Scaling Up to Big Data

- The Market-Basket Model
- Pinding Frequent Itemsets
 - The A-Priori Algorithm
 - An Efficient Implementation of A-Priori
- Scaling Up to Big Data

Finding Frequent Itemsets

- A naïve approach to find frequent itemsets of length k would use a nested loop that generates all possible itemsets.
- But in a real scenario there may be many possible different items.
- This approach would be too time-consuming and may exceed memory capacity.
 - Suppose 10⁵ items, counts are 4-byte integers.
 - Number of pairs of items: $10^5(10^5 1)/2 = 5 * 10^9$.
 - This would require $2 * 10^{10}$ bytes (20Gb of memory).
 - What about counting triples??

Intuition of the A-Priori Algorithm

Monotonicity

- If a set of items I appears at least s times, so does every subset J of I.
- Consequently: if a set of items J has a support below s, so does every set I containing J.
- Applied to a pair of items: If an item i does not appear in s baskets, then no pair including i can appear in s baskets.

Generating Frequent Item Sets

The A-Priori Algorithm

For k products . . .

- User sets a minimum support criterion.
- First pass: generate list of one-item sets that meet the support criterion.
- Second pass: use the list of one-item sets to generate list of two-item sets that meet the support criterion.
- Third pass: use list of two-item sets to generate list of three-item sets.
- **5** . . .
- Ontinue up through k-item sets.

The Dataset Transaction Faceplate colours purchased red white green white orange 3 white blue white red orange 5 blue red 6 white blue white orange white red blue green white blue red 10 vellow

One-item	sets with	

Set	Support
red	5
white	8
green	2
orange	3
blue	5
yellow	1

The Dataset Transaction Faceplate colours purchased red white green white orange white blue white red orange 5 blue red 6 white blue white orange white red blue green white blue red 10 vellow

One-item sets with support > 3

Set	Support
red	5
white	8
green	2
orange	3
blue	5
yellow	1

Two-item sets ≥ 3 Set Support red, white 4 red, orange 1 red, blue 3 white, orange 3 white, blue 4 orange, blue 0

Three-item sets

blue

The Dataset Transaction Faceplate colours purchased red white green white orange 3 white blue white red orange 5 blue red 6 white blue white orange white red blue green

white

One-item sets with support ≥ 3

red

vellow

Set	Support
red	5
white	8
green	2
orange	3
blue	5
yellow	1

10

The Dataset

Transaction	Faceplate colours purchased			
1	red	white	green	
2	white	orange		
3	white	blue		
4	red	white	orange	
5	red	blue		
6	white	blue		
7	white	orange		
8	red	white	blue	green
9	red	white	blue	_
10	yellow			

Two-item sets ≥ 3

Support
4
1
3
3
4
0

One-item sets with support ≥ 3

Set	Support
red	5
white	8
green	2
orange	3
blue	5
yellow	1

Three-item sets

The Dataset

Transaction	Faceplate colours purchased			
1	red	white	green	
2	white	orange		
3	white	blue		
4	red	white	orange	
5	red	blue		
6	white	blue		
7	white	orange		
8	red	white	blue	green
9	red	white	blue	_
10	yellow			

Two-item sets ≥ 3

Set	Support
red, white	4
red, orange	1
red, blue	3
white, orange	3
white, blue	4
orange, blue	0

One-item sets with support ≥ 3

Set	Support
red	5
white	8
green	2
orange	3
blue	5
yellow	1

Three-item sets

Set	Support
red, white, blue	2

- The Market-Basket Model
- Pinding Frequent Itemsets
 - The A-Priori Algorithm
 - An Efficient Implementation of A-Priori
- Scaling Up to Big Data

Considerations for Efficiency

- We assume that there are too many baskets to fit in main memory.
- So the file of baskets must be read from disk.
- We also assume that the number of items in each basket is relatively small.
- It will generally take much longer time to read a basket than to compute pairs or triples of items in the basket.
- There will normally be very few itemsets with size larger than 3 and support over the threshold.

We'd better read the basket file sequentially, and as few times as possible.

A-Priori Algorithm — Pass 1

- Initialise counters for all items to zero.
- FOR each basket:
- Read basket from disk.
- FOR each item in basket:
- Increment item's count.

Pass 1 — Example

The Dataset

Transaction	Fa	ceplate colo	ırs purchas	ed
1	red	white	green	
2	white	orange		
3	white	blue		
4	red	white	orange	
5	red	blue	_	
6	white	blue		
7	white	orange		
8	red	white	blue	green
9	red	white	blue	-
10	yellow			

One-item sets with

support ≥ 3

Set	Support
red	1
white	1
green	1
orange	0
blue	0
yellow	0

The Dataset

Transaction	Fa	ceplate colo	ırs purchas	ed
1	red	white	green	
2	white	orange		
3	white	blue		
4	red	white	orange	
5	red	blue		
6	white	blue		
7	white	orange		
8	red	white	blue	green
9	red	white	blue	-
10	yellow			

One-item sets with

Set	Support
red	1
white	2
green	1
orange	1
blue	0
yellow	0

The Dataset

Transaction	Faceplate colours purchased			
1	red	white	green	
2	white	orange		
3	white	blue		
4	red	white	orange	
5	red	blue		
6	white	blue		
7	white	orange		
8	red	white	blue	green
9	red	white	blue	
10	yellow			

One-item sets with

Set	Support
red	1
white	3
green	1
orange	1
blue	1
yellow	0

The Dataset

Transaction	Fa	ceplate colo	urs purchas	ed
1	red	white	green	
2	white	orange		
3	white	blue		
4	red	white	orange	
5	red	blue		
6	white	blue		
7	white	orange		
8	red	white	blue	green
9	red	white	blue	_
10	yellow			

One-item sets with

Set	Support
red	2
white	4
green	1
orange	2
blue	1
yellow	0

The Dataset

Transaction	Fa	ceplate colo	urs purchas	ed
1 2	red white	white orange	green	
3	white	blue		
4 5	red red	white blue	orange	
6	rea white	blue		
7	white	orange		
8	red	white	blue	green
9	red	white	blue	
10	yellow			

One-item sets with

Set	Support
red	3
white	4
green	1
orange	2
blue	2
yellow	0

The Dataset

Transaction	Fa	ceplate colo	urs purchas	ed
1	red	white	green	
2	white	orange		
3	white	blue		
4	red	white	orange	
5	red	blue		
6	white	blue		
7	white	orange		
8	red	white	blue	green
9	red	white	blue	
10	yellow			

One-item sets with

Set	Support
red	3
white	5
green	1
orange	2
blue	3
yellow	0

The Dataset

Transaction	Fa	ceplate colo	urs purchas	ed
1 2	red white	white orange	green	
3	white	blue		
4	red	white	orange	
5	red	blue		
6	white	blue		
7	white	orange		
8	red	white	blue	green
9	red	white	blue	
10	yellow			

One-item sets with

Set	Support
red white green orange blue yellow	3 6 1 3 3

The Dataset

Transaction	Faceplate colours purchased			
1 2	red white	white orange	green	
3	white	blue		
4	red	white	orange	
5	red	blue		
6	white	blue		
7	white	orange		
8	red	white	blue	green
9	red	white	blue	
10	yellow			

One-item sets with

Set	Support
red white green orange	4 7 2 3
blue yellow	0

The Dataset

Transaction	Faceplate colours purchased			
1	red	white	green	
2	white	orange		
3	white	blue		
4	red	white	orange	
5	red	blue		
6	white	blue		
7	white	orange		
8	red	white	blue	green
9	red	white	blue	_
10	yellow			

One-item sets with

Set	Support
red white green orange blue yellow	5 8 2 3 5

The Dataset

Transaction	Faceplate colours purchased			
1 2	red white	white orange	green	
3	white	blue		
4	red	white	orange	
5	red	blue		
6	white	blue		
7	white	orange		
8	red	white	blue	green
9	red	white	blue	
10	yellow			

One-item sets with

Set	Support
red white green orange blue yellow	5 8 2 3 5

The Dataset

Transaction	Faceplate colours purchased			
1 2	red white	white orange	green	
3 4	white red	blue white	orange	
5	red	blue	orange	
6 7	white white	blue orange		
8	red	white	blue	green
9 10	red yellow	white	blue	

Set	Support
red	5
white	8
green	2
orange	3
blue	5
yellow	1

A-Priori Algorithm — Storage Considerations for Pass 2

- Storing all possible pairs of items might not fit on memory.
- So, we only store pairs of items that we are counting.
- Pairs of items are stored as triples:

i: Item 1

j: Item 2

c: Count (initialised to zero)

A-Priori Algorithm — Pass 2

- FOR each basket:
- Read basket from disk.
- **Solution** FOR each pair (i, j) of items in basket:
- IF both i and j are frequent (according to first pass):
- \bullet IF (i,j) has been counted:
- Increment count for (i,j)
- ELSE:
- Add counter for (i,j) initialised to 1.

The Dataset

Transaction	Faceplate colours purchased			
1	red	white	green	
2	white	orange		
3	white	blue		
4	red	white	orange	
5	red	blue		
6	white	blue		
7	white	orange		
8	red	white	blue	green
9	red	white	blue	
10	yellow			

Two-item sets > 3

i	j	с
red	white	1

Only 5 pairs were counted from a total of 15.

Set	Support
red white	5 8
orange	3
blue	5

The Dataset

Transaction	Faceplate colours purchased			
1 2 3	red white white	white orange blue	green	
4 5 6	red red white	white blue blue	orange	
7	white red	orange white	blue	green
9 10	red yellow	white	blue	

Two-item sets ≥ 3

i	j	с
red white	white orange	1

Only 5 pairs were counted from a total of 15.

Set	Support
red white orange	5 8 3
blue	5

The Dataset

Transaction	Fac	ceplate colo	urs purcha	sed
1	red	white	green	
2	white	orange		
3	white	blue		
4	red	white	orange	
5	red	blue		
6	white	blue		
7	white	orange		
8	red	white	blue	green
9	red	white	blue	_
10	yellow			

Two-item sets > 3

i	j	с
red	white	1
white	orange	1
white	blue	1

Only 5 pairs were counted from a total of 15.

Set	Support
red	5
white	8
orange	3
blue	5

The Dataset

Transaction	Faceplate colours purchased			
1 2 3	red white white	white orange blue	green	
4 5	red red	white blue	orange	
6 7 8	white white red	blue orange white	blue	green
9	red yellow	white	blue	

Two-item sets > 3

i	j	с
red	white	2
white	orange	2
white	blue	1
red	orange	1

Only 5 pairs were counted from a total of 15.

Set	Support
red	5
white	8
orange	3
blue	5

The Dataset

Transaction	Fac	ceplate colo	urs purcha	sed
1 2	red white	white	green	
3	white	orange blue		
4 5	red red	white blue	orange	
6	white	blue		
7 8	white red	orange white	blue	
9	red	white	blue	green
10	yellow			

Two-item sets > 3

i	j	с
red white white red red	white orange blue orange blue	2 2 1 1

Only 5 pairs were counted from a total of 15.

Set	Support
red	5
white	8
orange	3
blue	5

The Dataset

Transaction	Faceplate colours purchased			
1	red	white	green	
2	white	orange		
3	white	blue		
4	red	white	orange	
5	red	blue		
6	white	blue		
7	white	orange		
8	red	white	blue	green
9	red	white	blue	
10	yellow			

Two-item sets > 3

i	j	с
red	white	2
white	orange	2
white	blue	2
red	orange	1
red	blue	1

Only 5 pairs were counted from a total of 15.

Set	Support
red	5
white	8
orange	3
blue	5

The Dataset

Transaction	Faceplate colours purchased			
1 2 3	red white white	white orange blue	green	
4 5 6	red red white	white blue blue	orange	
7 8 9	white red red yellow	orange white white	blue blue	green

Two-item sets ≥ 3

i	j	с
red white white red red	white orange blue orange blue	2 3 2 1 1

Only 5 pairs were counted from a total of 15.

Set	Support
red white	5 8
orange	3
blue	5

The Dataset

Transaction	Faceplate colours purchased			
1	red	white	green	
2	white	orange		
3	white	blue		
4	red	white	orange	
5	red	blue		
6	white	blue		
7	white	orange		
8	red	white	blue	green
9	red	white	blue	
10	yellow			

Two-item sets > 3

i	j	с
red white white red red	white orange blue orange blue	3 3 3 1 2

Only 5 pairs were counted from a total of 15.

Set	Support
red	5
white	8
orange	3
blue	5

The Dataset

Transaction	Faceplate colours purchased			
1 2 3	red white white	white orange blue	green	
4 5 6	red red white	white blue blue	orange	
7 8 9 10	white red red yellow	orange white white	blue blue	green

Two-item sets > 3

i	j	с
red white white red red	white orange blue orange blue	4 3 4 1 3

Only 5 pairs were counted from a total of 15

Set	Support
red	5
white	8
orange	3
blue	5

The Dataset

Transaction	Faceplate colours purchased			
1 2 3	red white white	white orange blue	green	
4 5 6	red red white	white blue blue	orange	
7 8 9 10	white red red yellow	orange white white	blue blue	green

Two-item sets > 3

i	j	с
red white white red red	white orange blue orange blue	4 3 4 1 3

Only 5 pairs were counted from a total of 15.

Set	Support
red	5
white	8
orange	3
blue	5

The Dataset

Transaction	Fac	ceplate colo	urs purchas	sed
1	red	white	green	
2	white	orange		
3	white	blue		
4	red	white	orange	
5	red	blue		
6	white	blue		
7	white	orange		
8	red	white	blue	green
9	red	white	blue	
10	yellow			

Two-item sets ≥ 3

i	j	с
red	white	4
white	orange	3
white	blue	4
red	orange	1
red	blue	3

Only 5 pairs were counted from a total of 15.

Set	Support
red	5
white	8
orange	3
blue	5

Programme

- 1 The Market-Basket Mode
- 2 Finding Frequent Itemsets
- Scaling Up to Big Data
 - PCY Algorithm
 - Multistage Algorithm

Programme

- 1 The Market-Basket Mode
- 2 Finding Frequent Itemsets
- Scaling Up to Big Data
 - PCY Algorithm
 - Multistage Algorithm

Park-Chen-Yu Algorithm

Observation of A-Priori algorithm

- In pass 1, most memory is idle.
- Pass 2 will usually be the most memory-consuming.
- ⇒ Can we use the idle memory to reduce memory required in pass 2?

Solution by PCY

At pass 1, while counting items, maintain a hash table that will count pairs of items.

PCY Algorithm — First Pass

Algorithm

- FOR each basket:
- FOR each item in basket:
- 3 Add 1 to item's count.
- FOR each pair of items in basket:
- 6 Hash the pair to a bucket.
- Add 1 to the count for that bucket.

Notes

- We want to use as many hash buckets as we can fit in memory.
- Generalisation of a Bloom filter: We need to count the pairs so that we can check if their support is at least s.

PCY Algorithm — Second Pass

Algorithm

- FOR each basket:
- FOR each pair in the basket:
- IF both items in the pair are frequent:
- Use hash function of pass 1 to hash the pair to a bucket.
- **Solution** IF the count for that bucket is $\geq s$:
- 6 Count the pair.

Note

- Several pairs might have hashed to the same bucket.
- \Rightarrow Even if a pair hashes to a bucket with count $\geq s$, it might not be frequent.
- \Rightarrow If a pair does not hash to a bucket with count $\geq s$, we are certain that it is not frequent.

What is the Advantage of Hash Tables?

- Like in the Bloom filter, the space to store the buckets in memory is smaller than the space of storing pairs of items and their counts.
- This is so because the number of buckets is less than the number of pairs of items.
- We only need to know what buckets are over a threshold, so after the first pass we can compact the hash table into a bit vector.
 - Bit = 1 if bucket is $\geq s$.
- We can actually chain hash tables to reduce the number of pairs to count... see below.

Main Memory: Picture of PCY

http://www.mmds.org

Programme

- The Market-Basket Model
- 2 Finding Frequent Itemsets
- Scaling Up to Big Data
 - PCY Algorithm
 - Multistage Algorithm

The Multistage Algorithm

- The multistage algorithm attempts to reduce the number of pairs to be counted.
- It does this by adding a new pass through the file of baskets.

Pass 1

Count individual items and maintain a hash table of counts of pairs as in PCY algorithm.

Pass 2

Create a new hash table, using an independent hash function, that counts pairs whose items were hashed as frequent in pass 1 and both items in the pair are frequent as determined by pass 1.

Pass 3

Count pairs that hashed to frequent buckets in both hashes.

Multistage Algorithm — Pass 1

Algorithm

- FOR each basket:
- FOR each item in basket:
- Add 1 to item's count.
- FOR each pair of items in basket:
- Use hash function 1 to hash the pair to a bucket.
- 6 Add 1 to the count for that bucket.

Note

This is exactly the same as pass 1 of PCY.

Multistage Algorithm — Pass 2

Algorithm

- FOR each basket:
- FOR each pair in the basket:
- IF both items in the pair are frequent:
- Use hash function 1 to hash the pair to a bucket.
- IF the count for that bucket is $\geq s$:
- 6 Use hash function 2 to hash the pair to a bucket.
- Add 1 to the count for that bucket...

Note

We keep two separate hash tables, one per hash function.

Multistage Algorithm — Pass 3

Algorithm

- FOR each basket:
- FOR each pair in the basket:
- IF both items in the pair are frequent:
- Use hash function 1 to hash the pair to a bucket.
- Use hash function 2 to hash the pair to a bucket.
- **1** IF the count for both buckets is $\geq s$:
- Count the pair.

Do we really need to maintain both hashes in pass 3?

- It would be tempting to avoid checking the first hash in pass 3.
- But there may be pairs that hash to a frequent bucket in hash
 2 but do not hash to a frequent bucket in pass 1.
- Remember: due to collisions, an infrequent pair may end up hashed in the same bucket as a frequent pair.
- We therefore need to make sure that the two hash functions are independent.

Main Memory: Multistage

Take-home Messages

- The Marked-Basket model.
- General approach to find association rules.
- Counting item pairs are the costliest part of finding association rules.
- The A-Priori algorithm.
- Efficient implementation of A-Priori.
- Variants for big data.

What's Next

Week 11

Large-Scale Machine Learning (I)