Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Отчёт о лабораторной работе №2 Синтез помехоустойчивого кода Вариант №52

Выполнил:

Дядев Владислав Александрович, гр. Р3131

Проверила:

Авксентьева Е. Ю., к.п.н., доцент

Оглавление

Задание	3
Основные этапы вычисления	5
Схема декодирования кода Хэмминга (7;4)	5
Задание №37 (Часть 1)	5
Задание №69 (Часть 1)	6
Задание №101 (Часть 1)	7
Задание №21 (Часть 1)	7
Схема декодирования кода Хэмминга (15;11)	8
Задание №52 (Часть 2)	9
Вычисление минимального числа проверочных разрядов и коэфф	ициента
избыточности	10
Дополнительное задание	11
Заключение	13
Список использованных источников	14

Задание

- Определить свой вариант задания с помощью номера в ISU (он же номер студенческого билета). Вариантом является комбинация 3-й и 5-й цифр.
 т. е. если номер в ISU = 123456, то вариант = 35.
- 2. На основании номера варианта задания выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода.
- 3. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения.
- 4. Показать, исходя из выбранных вариантов сообщений (по 4 у каждого часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 5. На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 11-символьного кода.
- 6. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения.
- 7. Показать, исходя из выбранного варианта сообщений (по 1 у каждого часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. **Подробно прокомментировать** и записать правильное сообщение.
- 8. Сложить номера всех 5 вариантов заданий. <u>Умножить</u> полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.
- 9. Дополнительное задание №1 (позволяет набрать от 86 до 100 процентов от максимального числа баллов БаРС за данную лабораторную). Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7;4), а затем выдаёт

правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Варианту №52 соответствуют задания №37, №69, №101, №21 для первой части, а также задание №52 для второй части.

Основные этапы вычисления

Схема декодирования кода Хэмминга (7;4)

Схема декодирования классического кода Хэмминга (7;4) представлена на рисунке 1.

Рисунок 1 - Код Хэмминга (7;4)

Задание №37 (Часть 1)

Дано сообщение: 1001010. Построим таблицу, в которой покажем, какие информационные биты покрывают проверочные биты (Таблица 1).

	1	1 2		4	5	6	7
	r1	r2	i1	r3	i2	i3	i4
	1	0	0	1	0	1	0
1	X		X		X		X
2		X	X			X	X
4				X	X	X	X

Таблица 1 - Задание №37

Посчитаем контрольные суммы:

1)
$$s1 = r1 \oplus i1 \oplus i2 \oplus i4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$$

2)
$$s2 = r2 \oplus i1 \oplus i3 \oplus i4 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$$

3)
$$s3 = r3 \oplus i2 \oplus i3 \oplus i4 = 1 \oplus 0 \oplus 1 \oplus 0 = 0$$

Получим синдром:

$$S = (s1, s2, s3) = (1, 1, 0) \Rightarrow 011_2 = 3 \Rightarrow$$
 ошибка в i1

Правильное сообщение: $10\frac{1}{1010} (\frac{1}{1010} - \text{без проверочных битов})$

Задание №69 (Часть 1)

Дано сообщение: 1110100. Построим таблицу, в которой покажем, какие информационные биты покрывают проверочные биты (Таблица 2).

	1	2	3	4	5	6	7
	r1	r2	i1	r3	i2	i3	i4
	1	1	1	0	1	0	0
1	X		X		X		X
2		X	X			X	X
4				X	X	X	X

Таблица 2 - Задание №69

Посчитаем контрольные суммы:

1)
$$s1 = r1 \oplus i1 \oplus i2 \oplus i4 = 1 \oplus 1 \oplus 1 \oplus 0 = 1$$

2)
$$s2 = r2 \oplus i1 \oplus i3 \oplus i4 = 1 \oplus 1 \oplus 0 \oplus 0 = 0$$

3)
$$s3 = r3 \oplus i2 \oplus i3 \oplus i4 = 0 \oplus 1 \oplus 0 \oplus 0 = 1$$

Получим синдром:

$$S = (s1, s2, s3) = (1, 0, 1) \Longrightarrow 101_2 = 5 \Longrightarrow$$
 ошибка в i2

Правильное сообщение: 1110000 (1000 – без проверочных битов)

Задание №101 (Часть 1)

Дано сообщение: 0011111. Построим таблицу, в которой покажем, какие информационные биты покрывают проверочные биты (Таблица 3).

	1	1 2		1 2 3 4 5					7
	r1	r2	i1	r3	i2	i3	i4		
	0	0	1	1	1	1	1		
1	X		X		X		X		
2		X	X			X	X		
4				X	X	X	X		

Таблица 3 - Задание №101

Посчитаем контрольные суммы:

1)
$$s1 = r1 \oplus i1 \oplus i2 \oplus i4 = 0 \oplus 1 \oplus 1 \oplus 1 = 1$$

2)
$$s2 = r2 \oplus i1 \oplus i3 \oplus i4 = 0 \oplus 1 \oplus 1 \oplus 1 = 1$$

3)
$$s3 = r3 \oplus i2 \oplus i3 \oplus i4 = 1 \oplus 1 \oplus 1 \oplus 1 = 0$$

Получим синдром:

$$S = (s1, s2, s3) = (1, 1, 0) \Longrightarrow 011_2 = 3 \Longrightarrow$$
 ошибка в i1

Правильное сообщение: 0001111 (0111 - без проверочных битов)

Задание №21 (Часть 1)

Дано сообщение: 0111001. Построим таблицу, в которой покажем, какие информационные биты покрывают проверочные биты (Таблица 4).

	1	2	3	4	5	6	7
	r1	r2	i1	r3	i2	i3	i4
	0	1	1	1	0	0	1
1	X		X		X		X
2		X	X			X	X
4				X	X	X	X

Таблица 4 - Задание №21

Посчитаем контрольные суммы:

1)
$$s1 = r1 \oplus i1 \oplus i2 \oplus i4 = 0 \oplus 1 \oplus 0 \oplus 1 = 0$$

2)
$$s2 = r2 \oplus i1 \oplus i3 \oplus i4 = 1 \oplus 1 \oplus 0 \oplus 1 = 1$$

3)
$$s3 = r3 \oplus i2 \oplus i3 \oplus i4 = 1 \oplus 0 \oplus 0 \oplus 1 = 0$$

Получим синдром:

$$S = (s1, s2, s3) = (0, 1, 0) \Longrightarrow 010_2 = 2 \Longrightarrow$$
 ошибка в r2

Правильное сообщение: 0011001 (1001 - без проверочных битов)

Схема декодирования кода Хэмминга (15;11)

Схема декодирования классического кода Хэмминга (15;11) представлена на рисунке 2.

Рисунок 2 - Код Хэмминга (15;11)

Задание №52 (Часть 2)

Дано сообщение: 010001101000011. Построим таблицу, в которой покажем, какие информационные биты покрывают проверочные биты (Таблица 5).

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	r1	r2	i1	r3	i2	i3	i4	r4	i5	i6	i7	i8	i9	i10	i11
	0	1	0	0	0	1	1	0	1	0	0	0	0	1	1
1	X		X		X		X		X		X		X		X
2		X	X			X	X			X	X			X	X
4				X	X	X	X					X	X	X	X
8								X	X	X	X	X	X	X	X

Таблица 5 - Задание №52

Посчитаем контрольные суммы:

- 1) $s1 = r1 \oplus i1 \oplus i2 \oplus i4 \oplus i5 \oplus i7 \oplus i9 \oplus i11 = 0 \oplus 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 1$
- 2) $s2 = r2 \oplus i1 \oplus i3 \oplus i4 \oplus i6 \oplus i7 \oplus i10 \oplus i11 = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 1$
- 3) $s3 = r3 \oplus i2 \oplus i3 \oplus i4 \oplus i8 \oplus i9 \oplus i10 \oplus i11 = 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 0$
- 4) $s4 = r4 \oplus i5 \oplus i6 \oplus i7 \oplus i8 \oplus i9 \oplus i10 \oplus i11 = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 1$

Получим синдром:

$$S = (s1, s2, s3, s4) = (1, 1, 0, 1) \Longrightarrow 1011_2 = 11 \Longrightarrow$$
 ошибка в i7

Правильное сообщение: 0100011010_1^10011 (001110_1^10011 — без проверочных битов)

Вычисление минимального числа проверочных разрядов и коэффициента избыточности

Число информационных разрядов: (37 + 69 + 101 + 21 + 52) * 4 = 1120

Минимальное число проверочных разрядов вычисляется по формуле:

$$2^{r} \ge r + i + 1 \leftrightarrow 2^{r} \ge r + 1121 \leftrightarrow \min r = 11$$

Коэффициент избыточности — это отношение числа проверочных разрядов к общему числу разрядов. В данном случае он равен 11 / (11+1120) = 11 / 1131 (~0,0097).

Дополнительное задание

Код программы по обнаружению ошибки с помощью классического кода Хэмминга (7;4), написанный на языке Python, представлен на рисунке 3.

```
• • •
def hamming_analyze(s):
          # вводим обозначения для проверочных и информационных разрядов symbols = ("r1", "r2", "i1", "r3", "i2", "i3", "i4")
         s1 = (digits[0] + digits[2] + digits[4] + digits[6]) % 2
s2 = (digits[1] + digits[2] + digits[5] + digits[6]) % 2
s3 = (digits[3] + digits[4] + digits[5] + digits[6]) % 2
               num = int("".join(list(map(str, syndrome))[::-1]), 2)
               print("Исходное сообщение неверно!")
               print(f"Ошибка в бите {symbols[num - 1]}")
               print("Исходное сообщение верно!")
          print(f"Правильное сообщение: {digits[2]}{digits[4]}{digits[5]}{digits[6]}\n")
     except AssertionError:
          print("Можно ввести только строку длиной 7, состоящую из 0 и 1.\n")
s = input("Введите сообщение: ")
hamming_analyze(s)
```

Рисунок 3 – Исходный код программы

Также исходный код программе представлен в репозитории на github (https://github.com/Alvas07/ITMO/blob/main/1%20Informatics/Labs/Lab2/lab2.p
у)

Результат работы программы представлен на рисунке 4.

```
Введите сообщение: 123
Можно ввести только строку длиной 7, состоящую из 0 и 1.
Введите сообщение: 1001010
Исходное сообщение неверно!
Ошибка в бите i1
Правильное сообщение: 1010
Введите сообщение: 1110100
Исходное сообщение неверно!
Ошибка в бите і2
Правильное сообщение: 1000
Введите сообщение: 0011111
Исходное сообщение неверно!
Ошибка в бите i1
Правильное сообщение: 0111
Введите сообщение: 0111001
Исходное сообщение неверно!
Ошибка в бите г2
Правильное сообщение: 1001
```

Рисунок 4 – Результат работы программы

Заключение

В ходе лабораторной работы мы научились искать ошибки в сообщениях с помощью классических кодов Хэмминга (7;4) и (15;11), нарисовали схемы декодирования для них. Также мы вспомнили, как рассчитывать минимальное количество проверочных разрядов и коэффициент избыточности. Кроме того, нами была написана программа для анализа сообщения на ошибки с помощью классического кода Хэмминга (7;4).

Список использованных источников

- 1. Коды и устройства помехоустойчивого кодирования информации / сост. Королев А. И.: 2002. с. 286
- 2. Основы цифровой радиосвязи. Помехоустойчивое кодирование: метод. Указания / сост. Д. В. Пьянзин. Саранск: Изд-во Мордов. ун-та, 2009 16с.
- 3. Ромащенко А. Е., Румянцев А. Ю., Шень А. Заметки по теории кодирования. 2-е изд., испр. и доп. М.: МЦНМО, 2017. 88 с.