Problem 1, 2, 3a

Problem 1, 2	<u>-, σα</u>
	ASEN SOUY
	Fall 2024
	Jash Bhalavat
	NWU!
Problem 1 ->	
Thuy was	Ideal - Ace of any suit & any true land/10 of any suit
Evert A →	P(Ace of any ouit) = 4/52 = P(A)
Evest B →	Total of face cards + 10s = (3)(4) + ()(4) = 16 - P(B) = 16/52
	Assuming an event occurs, the total # of cards decreases to 51
option 1-	A rappers first, then B -> P(A). P(B) = \frac{4}{52} \cdot \frac{16}{51} = 0.024133 = 2-4133
option 2 -	B happens triot, one A -> P(B)-P(A)= 16/52 4 = 0.024133 = 2-41337
	Ideal combriation is option 1 or option 2
	Probability of ideal combination = P(option 1) + P(option 2) = 2652
	= 4-82-65%
Problem 2 >	$f(x) = \int ax(1-x) x \in [0,1]$
2-3	(o otherwise
	A valid probability density function must always have - Loo fx(x) dx=1
	: t.(x) = 0 +0 x = [0,] - J. t.(x) dx = 1
	$S_0' t_x(x) dx = S_0' ax - ax^2 dx = \frac{1}{2}ax^2 - \frac{1}{3}ax^3 _0^1 = \frac{a}{2} - \frac{a}{3} = \frac{a}{6} = 1 \rightarrow a = 6$
	000000000000000000000000000000000000000
Problem 3 →	to = { 9e ax x>0 9 20
2.5	0 740
وَ عَالَ	Cumulative distribution function: $F(-\infty \le x \le \xi) = S_{\infty}^{\xi} f_{x}(x) dz = c(\xi)$
	$F(x) = \int_{0}^{\infty} 0 dx = 0$
	$F(x) = \int_{-\infty}^{\infty} dx + \int_{-\infty}^{\infty} de^{-at} dt = a \int_{0}^{\infty} e^{-at} dt = a \int_{-a}^{\infty} e^{-at} dt$
TO TO	= a[-aex + a] = -ax +1
	ar ar
//	$f(x) = \begin{cases} -e^{-2x} + 1 & x > 0 \end{cases}$
	L.O X<0

Problem 3b, 3c, 3d, 3e

Toblem 30, 30, 30
$\overline{b} = \int_{\infty}^{\infty} x f_{x}(x) dx = \int_{0}^{\infty} x a e^{-ax} dx = a \int_{0}^{\infty} x e^{-ax} dx$
Let $f=x$, $g'=e^{-ax}$ \Rightarrow $f'=dx$ $g=-ae^{-ax}$ \Rightarrow $f(g)=f(g)=f(g)$
$q \int_{-\infty}^{\infty} x e^{-\alpha x} = q \left[x(-\frac{1}{\alpha} e^{-\alpha x}) - \int_{-\infty}^{\infty} -\frac{1}{\alpha} e^{-\alpha x} dx \right] = a \left[-\frac{x}{\alpha} e^{-\alpha x} + \frac{1}{\alpha} \int_{-\infty}^{\infty} e^{-\alpha x} dx \right]$
[x -9x40] (-1 -ax) 100] - x -ax10 + (in -ax) 00
$= a \left[-\frac{x}{a} e^{-ax} \right]_{0}^{\infty} = -x e^{-ax} \left[-\frac{1}{a} e^{-ax} \right]_{0}^{\infty} = -x e^{-ax} \left[-\frac{1}{a} \left[-\frac{1}{a} e^{-ax} \right]_{0}^{\infty} - e^{-ax} \right]_{0}^{\infty}$
$= -xe^{-ax/\omega} \frac{1}{a} = \lim_{x \to 0} (-xe^{-ax})^{-0} + \frac{1}{a}$
$x = \frac{1}{a}$
$c \int E[x^2] = \int_{\infty}^{\infty} x^2 f_x(x) dx = \int_{0}^{\infty} x^2 e^{-4x} dx$
Let $f = x^2$, $g' = e^{-\alpha x} dx \rightarrow f' = 2x dx$ $g = -\frac{1}{\alpha} e^{-\alpha x} - 3fg' = fg - 3fg' $
$\left[\mathcal{E} \left[2^2 \right] = a \left[2^2 \left(-\frac{1}{a} e^{-\alpha z} \right) \right]^{\infty} + a \left[2 2 e^{-\alpha z} d\alpha \right]$
$= -\frac{x^2}{a} = \frac{ax}{a} + \frac{2}{a} \int_0^{\infty} x e^{-ax} dx$
Let $f = x$, $g' = e^{-Q^2C}dx \rightarrow f' = dx$, $g = -\frac{1}{4}e^{-Q^2C} \rightarrow Sfg' = fg - Sfg'$ $E[z^2] = \frac{2}{4} \left[x(-\frac{1}{4}e^{-Q^2C}) fg - \alpha^2 dx \right]$
[E[2=7 = 2]x(-1-02) 100 0 100 - az dz]
$= \frac{2}{9} \left[-\frac{1}{9} \left(-\frac{1}{9} \left(-\frac{1}{9} \right) \right) \right] = \frac{2}{9} \left[\frac{1}{9} \left(-\frac{1}{9} -\frac{1}{9} \right) \right] = \frac{2}{9} \left[\frac{1}{9} \left(-\frac{1}{9} -\frac{1}{9} \right) \right] = \frac{2}{9} \left[\frac{1}{9} -\frac{1}{9} -\frac{1}{9} -\frac{1}{9} \right] = \frac{2}{9} \left[\frac{1}{9} -\frac{1}{9} -$
d var(2) = E(x-12)2) = 52 = 50 (x-12)2 fx(2)dx
$= \int_0^\infty (x - \frac{1}{a})^2 a e^{-ax} dx = \int_0^\infty (x^2 - \frac{2x}{a} + \frac{1}{a^2}) a e^{-ax} dx$
$= \int_0^\infty x^2 e^{-ax} dx - \int_0^\infty \frac{2x}{a} e^{-ax} dx + \frac{1}{a^2} \int_0^\infty de^{-ax} dx$
= 30 × 92 - ax - 05 - a de 4x + a = 35 92 4x
from parts c - 500 x ae-ax dx = = ==============================
From Part 6 -> 500 xaeax dx = a
$\frac{2}{9} \int_{0}^{\infty} x d^{2} dx = \frac{1}{9} \left(\frac{1}{4} \right) = \frac{2}{4^{2}}$
$\int_{0}^{\infty} e^{-ax} dx = -\frac{1}{a} e^{-ax} \int_{0}^{\infty} = \lim_{x \to a} -\frac{1}{a} e^{-ax} - \left(-\frac{1}{a}e^{ax}\right) = \frac{1}{a} \rightarrow \frac{1}{a} \int_{0}^{\infty} e^{-ax} dx = \frac{1}{a} e^{-ax}$
100 (x) = 32 - 02 + 02 - 102 (x)
$ \begin{array}{lll} \bar{0} & \sigma_{x} = \sqrt{a} = \pm \frac{1}{a} \rightarrow \mu_{x} \pm \sigma_{x} = [0, 2/q] \\ c(\frac{2}{a}) = -e^{-a(2/a)} + 1 = -e^{-1} = [0.8646649 = c(\frac{1}{a})] \end{array} $
c(2) = -a(2/a) + 1 = -a + 1 = [n and 1]a = c(a)
This is the probability that an exponentially distributed RV
takes on a value within one standard deviation of the mean

Problem 4 - Simon Problem 2.16

The histogram for (x1 + x2)/2 indicates that the variance for the distribution is higher than the distribution for (x1 + x2 + x3 + x4)/4. This can be explained by the higher frequency around the mean (which is 0) and lower frequency around the mean. The second distribution, (x1 + x2 + x3 + x4)/4 also resembles a normal distribution more than the first distribution, (x1 + x2)/2.

```
clear; clc; close all;
% Problem 4
% Textbook - 2.16
n = 10000;
lower_bound = -1/2;
upper_bound = 1/2;
x1 = lower_bound + (upper_bound - lower_bound).*rand(n, 1);
x2 = lower_bound + (upper_bound - lower_bound).*rand(n, 1);
x3 = lower_bound + (upper_bound - lower_bound).*rand(n, 1);
x4 = lower_bound + (upper_bound - lower_bound).*rand(n, 1);
samples12 = (x1 + x2)/2;
samples1234 = (x1 + x2 + x3 + x4)/4;
nbins = 50;
figure()
histogram(samples12, nbins)
xlabel("(x1+x2)/2")
ylabel("Frequency")
title("Histogram for (x1 + x2)/2")
figure()
histogram(samples1234, nbins)
xlabel("(x1+x2+x3+x4)/4")
ylabel("Frequency")
title("Histogram for (x1 + x2 + x3 + x4)/4")
```


