Amplificateur Linéaire Intégré / Principe et montages de base

MODE NON-LINÉAIRE

COMPARATEUR SIMPLE

Caractéristique Vs = f (ϵ) avec ϵ = V+ - V-

COLLECTEUR OUVERT / ÉMETTEUR OUVERT

Comparateur associé à un transitor

T:

 I_B : courant entrant dans la base

I_C: courant entrant dans le collecteur → si I_P > 0 alors I_C > 0, T = interrupteur fermé

→ sinon I_a = 0. T = interrupteur ouvert

 $Si V_{E2} > V_{E1}$ $\rightarrow I_{B} > 0$

$$V_S = E_M$$

$$Si V_{E1} > V_{E2}$$

$$\rightarrow I_{B} = 0$$

$$V_{S} = E_{0}$$

COMPOSANTS

• LM311 : asymétrique, CO, EO

• LM339: asymétrique, CO, 4 comparateurs

NON

CONTRE-RÉACTION NÉGATIVE ??

OUI

FONCTION DE TRANSFERT

$$V_S = A \cdot (V + - V -)$$

avec $10^5 < A < 10^7$ Saturation à Vs = V_{cc} +

CARACTÉRISTIQUES

- Slew Rate (SR) en V/µs
- Produit Gain Bande Passante en MHz $G \cdot BP = constante$
- Puissance dissipable en W
- Courant maximal en sortie en A

ALIMENTATION

- Symétrique : V_{CC} + = +U et V_{CC} = -U
- Asymétrique : V_{CC} + = +U et V_{CC} = 0V
 - avec 3 V < U < 18 V

CHECK-LIST PRATIQUE

- Vérifier les alimentations
- Vérifier le signal d'entrée V_{CC} $< V_E < V_{CC}$ +
- Vérifier que V+ = V- si mode linéaire
- Vérifier la tension de sortie, si $Vs = V_{CC} + ou V_{CC}$
 - modifier la tension d'entrée
 - modifier le gain du montage

MODE LINÉAIRE

$$V - = V +$$

TRANSIMPEDANCE

COMPOSANTS

- TL071 / TL081 : symétrique, GBP = 3 MHz
- TL082 / TL084 = 2 x TL081 / 4 x TL081
- TLE2072 : symétrique, GBP = 9 MHz
- LM358 : asymétrique, GBP = 1 MHz