Poszukiwanie największej kliki w grafie

Anna Stępień Adam Stelmaszczyk

Spis treści

1	Zadanie	2
2	Założenia	2
3		2 3
4	Struktury danych	5
5	Testy 5.1 Badanie poprawności zwracanych wyników	

1 Zadanie

Kliką grafu nazywamy podgraf, w którym każde dwa wierzchołki są ze sobą połączone. Największą kliką nazywamy klikę o największej liczbie wierzchołków. Celem zadania jest implementacja wybranego algorytmu znajdującego największa klikę w grafie oraz analiza otrzymanych wyników.

2 Założenia

Wejściem dla algorytmu jest graf nieskierowany dany macierzą o n wierszach i n kolumnach:

 $q_{i,j}$ równe 0 oznacza, że wierzchołki i oraz j nie są połączone krawędzią. W przeciwnym razie, wierzchołki są połączone.

Macierz jest dana w pliku tekstowym, w którym kolejne $q_{i,j}$ w wierszu j są oddzielone co najmniej jednym znakiem białym. Przez znak biały rozumiemy spację lub tabulator. $q_{i,j}$ różne od 0 będą traktowane jak 1.

Wyjściem jest niepusty zbiór numerów wierzchołków, które tworzą największą klikę w podanym grafie. Wierzchołki numerujemy od 0 do n-1. W grafie może istnieć więcej niż jedna największa klika. W takim przypadku algorytm zwróci dowolną z nich.

Realizowana aplikacja będzie pracowała w trybie konsolowym, z ewentualną możliwością specyfikacji dodatkowych parametrów. W projekcie zostanie wykorzystany algorytm Brona–Kerboscha [1].

3 Algorytm

Algorytm Brona–Kerboscha jest rekurencyjnym algorytmem z nawrotami, który umożliwia poszukiwanie największych klik w zadanym grafie niezorientowanym.

Domyślnie algorytm zwraca wszystkie maksymalne kliki, tj. podzbiory wierzchołków grafu wejściowego do których nie można dodać już ani jednego wierzchołka. W algorytmie wprowadzona zostanie zmiana, dzięki której zwracana

będzie największa ze znalezionych klik, charakteryzująca się największą liczbą wierzchołków.

3.1 Pseudokod

Algorithm 1 Algorytm Brona–Kerboscha (wersja podstawowa)

```
1: function BRON_KERBOSCH(compsub, candidates, not)
 2:
        if candidates = \emptyset and not = \emptyset then
            return compsub
                                                               ⊳ Maksymalna klika
 3:
        else
 4:
            for each v in candidates do
 5:
                candidates \leftarrow candidates \setminus \{v\}
 6:
                new\_compsub \leftarrow compsub \cup \{v\}
 7:
                new\_candidates \leftarrow candidates \cap neighbors(v)
 8:
                new\_not \leftarrow not \cap neighbors(v)
 9:
10:
                BRON_KERBOSCH(new_compsub, new_candidates, new_not)
                compsub \leftarrow compsub \cup \{v\}
11:
            end for
12:
13:
        end if
14: end function
```

Algorithm 2 Algorytm Brona–Kerboscha (wersja rozszerzona)

```
1: compsub \leftarrow \emptyset
 2: candidates \leftarrow V(G)
 3: not \leftarrow \emptyset
 4: maximum\_clique \leftarrow \emptyset
 5: function BRON_KERBOSCH(candidates, not)
        if candidates = \emptyset and not = \emptyset then
 6:
             if size(maximum\_clique) < size(compsub) then
 7:
 8:
                 maximum\_clique \leftarrow compsub
             end if
 9:
             return maximum_clique
                                                                     ⊳ Maksymalna klika
10:
        else
11:
             pivot \leftarrow maxdeq
12:
             candidates\_to\_check \leftarrow candidates \setminus neighbors(pivot)
13:
             for each v in candidates_to_check do
14:
                 compsub \leftarrow compsub \cup \{v\}
15:
                 candidates \leftarrow candidates \setminus \{v\}
16:
                 new\_candidates \leftarrow candidates \cap neighbors(v)
17:
                 new\_not \leftarrow not \cap neighbors(v)
18:
                 BRON_KERBOSCH(new_candidates, new_not)
19:
                 compsub \leftarrow compsub \setminus \{v\}
20:
21:
                 not \leftarrow not \cup \{v\}
             end for
22:
        end if
23:
24: end function
```

3.2 Opis działania

Istotą działania przedstawionego algorytmu jest utrzymywanie trzech rozłącznych zbiorów: compsub, candidates oraz not.

Algorytm Brona–Kerboscha znajduje maksymalne kliki składające się ze wszystkich wierzchołków należących do zbioru *compsub*, niektórych należących do zbioru *candidates*, i z żadnego, który należy do zbioru *not*.

Poniżej przedstawiona została charakterystyka każdego ze zbiorów wykorzystywanych przez algorytm:

- $\bullet \ compsub$ do zbioru należą wszystkie wierzchołki grafu, które tworzą powstającą klikę.
- candidates

do zbioru należą wierzchołki grafu, które mogą posłużyć do rozszerzenia zbioru compsub.

not

do zbioru należą te wierzchołki, które były już wcześniej wykorzystane do rozszerzenia zbioru compsub.

Należy zauważyć, iż wszystkie wierzchołki, które są połączone z każdym wierzchołkiem należącym do zbioru *compsub* znajdują się albo w zbiorze *candidates* albo *not*.

Zmodyfikowana wersja algorytmu Brona–Kerboscha wprowadza pojęcie wierzchołka zwrotnego (dalej oznaczanego pivot), który wybierany jest ze zbioru $candidates \cup not$ jako wierzchołek o największym stopniu.

W każdym rekurencyjnym wywołaniu algorytmu rozważane są wierzchołki należące do zbioru *candidates*. Jeśli zbiory *candidates* i *not* są puste, sprawdzane jest czy znaleziona klika (oparta na wierzchołkach ze zbioru *compsub*) jest większa od największej dotychczas znalezionej kliki. Jeśli tak, to znaleziona klika staje się maksymalną i jest zwracana przez algorytm, w przeciwnym wypadku zwracana jest największa dotychczas znaleziona klika.

W przypadku, gdy zbiory candidates i not nie są puste, dla każdego wierzchołka ze zbioru $candidates \setminus neighbors(pivot)$ następuje rekurencyjne wywołanie algorytmu, w którym bieżący wierzchołek v dodawany jest do zbioru compsub i usuwany ze zbioru candidates, a w zbiorach candidates i not pozostawiane są tylko te wierzchołki grafu, które są sąsiadami wierzchołka v. Następnie, wierzchołek v jest dodawany do zbioru not jako już wykorzystany do rozszerzenia kliki oraz usuwany ze zbioru compsub.

- 4 Struktury danych
- 5 Testy
- 5.1 Badanie poprawności zwracanych wyników
- 5.2 Badanie czasu wykonania dla różnych typów grafów

Referencje

[1] Coen Bron, Joep Kerbosch, Algorithm 457: finding all cliques of an undirected graph, Communications of the ACM, 16(9): 575–577, 1973.