Το στρώμα ζεύξης δεδομένων

Εισηγητής: Χρήστος Δαλαμάγκας

cdalamagkas@gmail.com

Άδεια χρήσης

Το παρόν εκπαιδευτικό υλικό υπόκειται στη διεθνή άδεια χρήσης Creative Commons Attribution-ShareAlike 4.0 (https://creativecommons.org/licenses/by-sa/4.0/).

7 Layers of the OSI Model

Application

- End User layer
- HTTP, FTP, IRC, SSH, DNS

Presentation

- Syntax layer
- SSL, SSH, IMAP, FTP, MPEG, JPEG

Session

- Synch & send to port
- · API's, Sockets, WinSock

Transport

- End-to-end connections
- TCP, UDP

Network

- Packets
- IP, ICMP, IPSec, IGMP

Data Link

- Frames
- · Ethernet, PPP, Switch, Bridge

Physical

- Physical structure
- Coax, Fiber, Wireless, Hubs, Repeaters

Το στρώμα πρόσβασης στο δίκτυο (network access layer)

- Το στρώμα πρόσβασης στο δίκτυο αποτελείται από δυο στρώματα κατά OSI:
 - Φυσικό στρώμα (Layer 1 L1)
 - Ο Στρώμα ζεύξης δεδομένων (Layer 2 L2)
- Το network access layer συμπεριλαμβάνει τις αρμοδιότητες και των δυο χαμηλότερων στρωμάτων του OSI
- Το στρώμα ζεύξης δεδομένων αποτελείται από δυο υποστρώματα
 - Ο Υπόστρωμα ελέγχου πρόσβασης (MAC)
 - Υπόστρωμα ελέγχου λογικών συνδέσεων (LLC)

Λειτουργίες στρώματος ζεύξης δεδομένων (DATA / L2)

- Η επικοινωνία κόμβων μέσω ενός κοινόχρηστου μέσου/καλωδίου στο
 Ethernet αποδείχτηκε μη επαρκής λύση
- Οι συγκρούσεις ήταν συχνό φαινόμενο και η διεπεραιωτικότητα του δικτύου αρκετά χαμηλή
- Ο μόνος τρόπος για να αποφύγουμε τις συγκρούσεις είναι σε κάθε segment
 να έχουμε αποκλειστικά δυο συσκευές/διεπαφές
- Το στρώμα ζεύξης δεδομένων συνδέει πολλά network segments μεταξύ τους, ώστε να έχουμε ένα ενιαίο δίκτυο
- Το αποτέλεσμα είναι παρόμοιο με τη διασύνδεση στο L1, όλες οι συσκευές
 φαίνονται να είναι στο ίδιο δίκτυο

Λειτουργίες στρώματος ζεύξης δεδομένων (DATA / L2)

- Υποεπίπεδο MAC (IEEE 802.3)
 - Μετάδοση: Δημιουργία frames (τελική ακολουθία 0 και 1 που θα μπεί στη γραμμή) και κατασκευή του πεδίου FCS για έλεγχο σφαλμάτων
 - Λήψη: αποσυναρμολόγηση του πλαισίου, αναγνώριση διεύθυνσης ΜΑС προορισμού και αναγνώριση σφαλμάτων
 - Έλεγχος πρόσβασης στο μέσο μετάδοσης του LAN (όχι στο OSI!)
- Υποεπίπεδο LLC (IEEE 802.2) (εκτός ύλης)
 - Λογισμικό που παρέχει διεπαφή με τα ανώτερα στρώματα
 - Προαιρετικό για το Ethernet

δεδομένων

Ethernet στο Στρώμα ζεύξης

Το υπόστρωμα MAC του Ethernet

- Τα δεδομένα των κόμβων θα πρέπει να έχουν την κατάλληλη μορφή, ώστε να μεταφέρονται από το ένα segment στο άλλο
- Το Ethernet καθορίζει συγκεκριμένη μορφή για τα δεδομένα που μεταδίδονται, ώστε να παραδίδονται αξιόπιστα στην κατάλληλη συσκευή
- Κάθε μονάδα δεδομένων αποτελείται από 64 μέχρι 1518 byte. Προαιρετικά,
 μέχρι 1522 byte, αν χρησιμοποιούνται VLAN tags (802.1Q)
- Η μονάδα δεδομένων στο στρώμα 2 αποκαλείται πλαίσιο (frame)

Η δομή του πλαισίου Ethernet

Layer	Preamble	Start of frame delimiter	MAC destination	MAC source	802.1Q tag (optional)	EtherType	Payload	FCS (32-bit CRC)	Interpacket gap
	7 bytes	1 byte	6 bytes	6 bytes	(4 bytes)	2 bytes	46-1500 bytes	4 bytes	12 bytes
Layer 2 Ethernet frame			← 64–1522	octets \rightarrow					
Layer 1 Ethernet packet & IPG	← 72–1530 ·	octets →							← 12 octets →

Preamble SF	Destination MAC Address	Source MAC Address	EtherType	Payload	4	7	FCS
-------------	-------------------------	--------------------------	-----------	---------	---	---	-----

Η δομή του πλαισίου Ethernet

- Preamble: Τα πρώτα 8 byte προετοιμάζουν τον δέκτη να λάβει δεδομένα. Θεωρούμε ότι το προοίμιο αντιστοιχίζεται στο φυσικό επίπεδο
- Destination address: 6 byte καταλαμβάνει η διεύθυνση της συσκευής για την οποία προορίζεται το πλαίσιο
- Source address: 6 byte καταλαμβάνει η διεύθυνση της συσκευής από την οποία προέρχεται το πλαίσιο
- EtherType: 2 byte καταλαμβάνει ένας αριθμός που υποδεικνύει το είδος των δεδομένων που ενθυλακώνονται στο πλαίσιο Ethernet (πχ IPv4, IPv6, ARP κλπ)
- Τα παραπάνω λέγονται δεδομένα ελέγχου ή επιβαρύνσεων γιατί είναι αναγκαία για να κάνουν δυνατή τη μετάδοση των ωφέλιμων δεδομένων (Payload)
- Συνολικά, τουλάχιστον 22 bytes επιβαρύνσεων προηγούνται πριν τα δεδομένα

Η δομή του πλαισίου Ethernet

- Μετά τις επιβαρύνσεις ακολουθούν τουλάχιστον 46 byte δεδομένων που αντιστοιχούν στην ωφέλιμη πληροφορία
- Αν τα πραγματικά δεδομένα δεν φτάνουν τα 46 byte, τότε η διεπαφή Ethernet
 προσθέτει μηδενικά στα bit που απομένουν (padding)
- Μετά τα ωφέλιμα δεδομένα, ακολουθεί μια ακολουθία FEC που χρησιμεύει στον έλεγχο και διόρθωση σφαλμάτων στο πλαίσιο, μήκους 4 byte
- Ένα σωστά διαμορφωμένο πλαίσιο Ethernet πρέπει συνολικά να έχει μήκος 64
 byte

$$6 + 6 + 2 + 46 + 4 = 64$$

Μετά τη μετάδοση, θα πρέπει τουλάχιστον για χρόνο αντίστοιχο με τη μετάδοση
 12 byte να υπάρξει κενό στη μετάδοση

Διευθύνσεις MAC (EUI-48)

- Κάθε κόμβος σε ένα δίκτυο Ethernet έχει μια φυσική διεύθυνση ή διεύθυνση υλικού (hardware address), ώστε να αναγνωρίζεται μοναδικά σε όλο το δίκτυο
- Έχει μήκος 48 bit ή 6 byte και αναγράφεται στο δεκαεξαδικό σύστημα ως έξι διψήφιοι δεκαεξαδικοί αριθμοί χωρισμένοι με παύλες (windows), ανω-κάτω τελείες (linux) ή τελείες (cisco)

74-ea-3a-cd-06-40

74:ea:3a:cd:06:40

74ea.3acd.0640

Διευθύνσεις MAC (EUI-48)

- Οι διευθύνσεις ΜΑC απαρτίζονται από δυο μέρη των 24ων δυαδικών ψηφίων.
 - Το πρώτο μέρος το οποίο ονομάζεται (μοναδική) Ταυτότητα του Οργανισμού (OUI –
 Organizational Unique Identifier), χορηγείται από την ΙΕΕΕ και διατίθεται αποκλειστικά στον κατασκευαστή υλικού.
 - Το δεύτερο μέρος το προσδιορίζει ο κατασκευαστής υλικού με δική του ευθύνη.
- Κατά τη μετάδοση αποστέλλεται το πιο σημαντικό byte (MSB) πρώτα, αλλά για κάθε byte αποστέλλεται πρώτα το λιγότερο σημαντικό bit (LSB). Αυτή η μέθοδος αποστολής ονομάζεται Little Endian σε επίπεδο byte.
- Πχ αν είναι να μεταδοθεί ο αριθμός 74 (0111 0100), τότε μεταδίδεται με την αντίστροφη σειρά (0010 1110)

Είδη διευθύνσεων ΜΑΟ

- Διεύθυνση ευρυεκπομπής (broadcast)
 - Ο Έτσι ονομάζεται η διεύθυνση FF-FF-FF-FF
 - Ο Πλαίσιο με αυτή τη διεύθυνση προορισμού αφορά όλους τους κόμβους και παραλαμβάνεται από όλους όσοι ανήκουν στο ίδιο τοπικό δίκτυο.
- Διεύθυνση πολυδιανομής (multicast)
 - Ο Διευθύνσεις που έχουν το LSB του πρώτου byte ίσο με 1. Δηλαδή οι διευθύνσεις 01-XX-XX-XX-XX
 - Ο Συνήθως οι διευθύνσεις αντιστοιχούν σε πρωτόκολλα που δουλεύουν στο L2
 - Ο Πλαίσιο με αυτή τη διεύθυνση προορισμού επίσης λαμβάνεται από όλους τους κόμβους, με τη δυνατότητα να φιλτραριστεί
- Διεύθυνση μονοεκπομπής (unicast)
 - Ο Αντιστοιχίζεται σε μια φυσική (ή εικονική) διεπαφή
 - Ο Πλαίσιο με αυτή τη διεύθυνση προορισμού αφορά μονο τον κόμβο που έχει διεπαφή με τη συγκεκριμένη διεύθυνση

Μη έγκυρα πλαίσια και ΜΤυ

- Με βάση το μήκος τους κατηγοριοποιούμε τα μη έγκυρα πλαίσια Ethernet ως εξής
 - Runt frame: Το πλαίσιο με μήκος μικρότερο των 64 byte. Αποτέλεσμα τέτοιων πλαισίων είναι ο εντοπισμός συγκρούσεων. Όταν σε half-duplex ένας κόμβος εντοπίσει μετάδοση στο κανάλι Rx, τότε θα διακόψει αμέσως τη μετάδοσή του. Αυτό έχει ως αποτέλεσμα να μεταδοθεί ένα πλαίσιο μικρότερο των 64 byte. Αιτίες: χαλασμένη NIC και duplex mismatch
 - Baby giant frame: Το πλαίσιο με μήκος ωφέλιμων δεδομένων παραπάνω από 1500 και μέχρι
 1600 byte
 - Jumbo frame: Το πλαίσιο με μήκος ωφέλιμων δεδομένων μέχρι 9000 byte.
- Στο Ethernet ορίζεται το Maximum Transport Unit (MTU), το μεγαλύτερο frame που μπορεί να ληφθεί και να δεχθεί επεξεργασία, στα 1500 byte.

Δομή πλαισίου και διεύθυνσης MAC στο Ethernet

Συσκευές στο L2 και ορολογία

Γέφυρα (Bridge)

- Είναι η συσκευή που δημιουργεί ένα νέο δίκτυο,
 διασυνδέοντας πολλαπλά network segment
- Η γέφυρα δεν κάνει τα network segment ένα, αλλά επιτρέπει την επικοινωνία μεταξύ αυτών σε L2
- Η επικοινωνία είναι σαν να βρίσκονταν οι συσκευές στο ίδιο καλώδιο, απλώς απαλλάσσονται από ενδεχόμενο σύγκρουσης
- Η γέφυρα μπορεί να φιλτράρει πλαίσια αν χρειαστεί
- Η γέφυρα μπορεί να διασυνδέσει δίκτυα στο ίδιο ή σε διαφορετικό μέσο μετάδοσης (fibre/twisted, twisted/wireless)

Γέφυρα πολλαπλών θυρών (Μεταγωγέας/Switch)

- Ο μεταγωγέας διασυνδέει πολλά network segment μεταξύ τους
- Κάθε κόμβος τοποθετείται σε διαφορετικό segment, το οποίο αποτελείται μονο από τον κόμβο και τη θύρα του μεταγωγέα
 - Σε λειτουργία half-duplex, κάθε θύρα μεταγωγέα είναι και ένα collision domain
 - Σε λειτουργία full-duplex απαλείφονται τα collision domain
- Ο μεταγωγέας στέλνει (μετάγει) ένα πλαίσιο στην κατάλληλη θύρα ώστε να φτάσει στον προορισμό του

Ο πίνακας ΜΑC

- Πλεονέκτημα του μεταγωγέα είναι ότι γνωρίζει προς ποια θύρα να προωθήσει ένα πλαίσιο, ώστε αυτό να φτάσει στον προορισμό του
- Για να επιλέξει ο μεταγωγέας την κατάλληλη θύρα εξόδου ενός εισερχόμενου πλαισίου, συμπληρώνει τον πίνακα MAC
- Κάθε καταχώριση του πίνακα MAC αποτελείται τουλάχιστον από μια διεύθυνση MAC και τη θύρα του μεταγωγέα, πίσω από την οποία βρίσκεται η εν λόγω διεύθυνση
- Ο μεταγωγέας συμβουλεύεται τον πίνακα MAC για κάθε πλαίσιο που λαμβάνει, ώστε να το προωθήσει στην κατάλληλη θύρα

Ο πίνακας ΜΑC

- Για να προωθήσει ένα πλαίσιο, ο μεταγωγέας εξετάζει τη διεύθυνση προορισμού του πλαισίου
- Στις περιπτώσεις που:
 - Ο Η διεύθυνση προορισμου δεν υπάρχει στον πίνακα ΜΑΟ
 - Η διεύθυνση είναι τύπου ευρυεκπομπής ή πολυδιανομής

Ο μεταγωγέας προωθεί το πλαίσιο από όλες του τις θύρες, εκτός από αυτή από την οποία το έλαβε (flooding)

Ο πίνακας ΜΑC

- Ο πίνακας «χτίζεται» παρατηρώντας δυο πράγματα
 - Τη διεύθυνση MAC πηγής ενός εισερχόμενου πλαισίου
 - Ο Τη θύρα από την οποία εισήλθε το πλαίσιο
- Κρατώντας αυτές τις δυο πληροφορίες, ο μεταγωγέας γνωρίζει τη θύρα από την οποία θα «βγάλει» ένα πλαίσιο.

Παράδειγμα πίνακα ΜΑС

(gif)

Τομέας ευρυεκπομπής (Broadcast domain)

- Είναι ένας λογικός ορισμός ενός δικτύου, στο οποίο όλοι οι κόμβοι μπορούν
 να επικοινωνήσουν ο ένας με τον άλλον με χρήση μηνυμάτων ευρυεκπομπής
 στο L2
- Ο τομέας ευρυεκπομπής μπορεί να καταλαμβάνει μόνο ένα network segment, αλλά κυρίως εκτείνεται σε πολλά network segment, μέσω των διασυνδέσεων που προσφέρει ο μεταγωγέας
- Τα collision domain συνήθως περιλαμβάνονται μέσα σε ένα broadcast domain
- Τα collision domain τα «σπάνε» οι συσκευές L2
- Αντίστοιχα, τα broadcast domain «σπάνε» από συσκευές L3 (router)

Προβλήματα στα δίκτυα L2

- Όταν ο τομέας ευρυεκπομπής είναι μεγάλος, τότε το δίκτυο επιβαρύνεται από πολλά μηνύματα broadcast. Αυτό θα μπορούσε να οδηγήσει σε κατάρρευση κάποια στιγμή
- Συχνός κίνδυνος σε ένα δίκτυο L2 είναι η δημιουργία βρόχων μεταγωγής (switching loops)
 - Είναι μια δυσάρεστη κατάσταση, κατά την οποία ένα frame ευρυεκπομπής «παγιδεύεται» σε ένα δίκτυο μεταγωγέων
 - Ο Αυτή η κατάσταση είναι επικίνδυνη και μπορεί να καταστρέψει τους μεταγωγείς!
- Το πρωτόκολλο STP είναι ένας τρόπος απαλοιφής των βρόχων
- Το STP (IEEE 802.1D) ξεκινά τη λειτουργία του από τον κάθε μεταγωγέα μιας τοπολογίας, πριν ξεκινήσει η μετάδοση δεδομένων
- Το πρωτόκολλο μπλοκάρει τις πλεονάζουσες θύρες που μπορεί να προκαλέσουν βρόχο

Παράδειγμα καταιγίδας ευρυεκπομπών

Τρόποι αντιμετώπισης βρόχων

- Αρχικά, ψάχνουμε στις προδιαγραφές του μεταγωγέα, αν υποστηρίζει κάποια έκδοση του STP
 - Ο Αν υποστηρίζει, τότε φροντίζουμε να είναι ενεργοποιημένο
 - Κάποιες συσκευές μπορεί να μην ενεργοποιούν αυτόματα το STP και να χρειαστεί να το ενεργοποιήσουμε μόνοι μας μέσω ενός διαχειριστικού περιβάλλοντος
- Αν η συσκευή δεν υποστηρίζει STP, τότε πρέπει να είμαστε πολύ προσεκτικοί, ώστε να μην τη συνδέσουμε ταυτόχρονα με δυο μεταγωγείς και προκαλέσουμε βρόχο