Problem 5.1:
(2.7 # 13. Inhaducken to Linear
Algebra: Strung).
(a) Find a 3 by 3 permutation matrix with $P^3 = I$ (but not $P = I$) (b) Find a 4 by 4 permutation \widehat{P} with $\widehat{P}^4 \neq I$
(b) Find a 4 by 4 permutation P
with P4 & I
Solution.
Let P more le rous ind cycle:
the hist to the second, the second
to the third, he third to the Rivst.
_

So .

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$J = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$J = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(b) Let P be the block dragonal nation with I and P on the dragonal; P= [10].

Since p³= I, also P³= I

So P4 & I.

Problem 5-2:

- Suppose A is a hour by Lour
mulix
How many entities of A can be
How many entities of A can be chosen independently it:
[9] A is sympetric?
(a) A is symnetrie? (AT = A)
Solahasi
Solution:
Car 21 1 Car 1 Car 1 Car
(a) The nost general borm of a brushy by hur symmetric neutrix.
by hur symmetric neutrix.
la e k g
Azleshi
Az e b h i f h c j g i i d

1. 10 entres can be chosen independently.

bour by hur skew-symmetrie ration U:

$$A = \begin{bmatrix} 0 - a - b - c \\ a & 0 - d - e \\ b & d & 0 - f \\ c & e & f & 0 \end{bmatrix}$$

Rohlem 5-3:

(3. L # 18)

True or helpe Check addition or

gire a counterexample):

(a) The symmetric meetricés is M. Cwith AT = A) born a subspace

True: AT=A & BT=B load to:

 $(A+B)^{T}=A^{T}+B^{T}=A+B$, and $(CA)^{T}=CA$.

b) The skew-symmetric natures. 15 M (with AT = -A) form a subspace.

True: AT = -A & BT = -B lead to:

(CA+B) = AT+BT=-A-B

 $-(cA)^Tz c-Az-cA$

(c) The unsymmetrie natures.

in M (with AT #A) brom a

subspace.

Palse: