Intervalos Reales

Elementos de Álgebra

INTERVALOS DE NÚMEROS REALES

DEFINICIÓN: A un subconjunto de la recta real lo llamamos intervalo si contiene por lo menos dos números reales y también todos los números reales entre dos de sus elementos.

Ejemplo:

- a) $A = \{x \in R / 6 < x < 8\}$ es un intervalo.
- b) $B = \{1, 2, 5, 8\}$ no es un intervalo pues contiene a los números 1 y 2 pero no contiene a ninguno de los números $\sqrt{2}$ reales entre 1 y 2 como por ejemplo 3/2 ó

¿Cómo ubicamos a los números reales en la recta numérica? Para ello debemos tener en cuenta que dados dos números reales el menor siempre deberá estar ubicado a la izquierda del mayor. De esta manera:

Clasificación de intervalos

Se llama intervalo cerrado de extremos a y b al conjunto de los x que están entre a y b, incluyendo los extremos a y b.

Escribiremos $[a, b] = \{x \in R \mid a \le x \le b\}$. Gráficamente:

Se llama intervalo abierto a la izquierda al conjunto de los x tales que $a < x \le b$.

Escribiremos $(a, b] = \{x \in R / a < x \le b\}$. Gráficamente:

Se llama intervalo abierto a la derecha al conjunto de los x tales que $a \le x < b$. Escribiremos $[a, b) = \{x \in R \mid a \le x < b\}$. Gráficamente:

Llamaremos intervalos infinitos a los siguientes conjuntos de puntos:

$$\{x \in R / x > a\} = (a, +\infty)$$

$$\{x \in R / x \ge a\} = [a, +\infty)$$

$$\{x \in R / x < a\} = (-\infty, a)$$

$$\{x \in R / x \le a\} = (-\infty, a]$$

$$R = (-\infty, +\infty)$$

Observación:

A + ∞ y - ∞ no se los debe considerar como números; son solamente símbolos convencionales que indican todos los números reales hacia la derecha o izquierda de un número a fijo. Por esta razón, al expresar los intervalos nunca se debe usar corchetes [] junto a los símbolos + ∞ y - ∞ .

Ejemplos:

- 1) El conjunto $A = \{x \in \mathbb{R} \mid x \neq 0\}$ es la unión de dos intervalos $(-\infty, 0)$ y $(0, +\infty)$, es decir: $A = (-\infty, 0) \cup (0, +\infty)$.
- Consideremos los siguientes conjuntos:

$$A = \{x \in \mathbb{R} / -2 < x \le 5\} = (-2, 5] \text{ y } B = \{x \in \mathbb{R} / 0 \le x\} = [0, +\infty)$$

Gráficamente:

Podemos ver que:

-
$$A \cup B = \{x \in \mathbb{R} / -2 < x \le 5 \text{ o } 0 \le x\} = \{x \in \mathbb{R} / -2 < x\} = (-2, +∞).$$

$$-A \cap B = \{x \in \mathbb{R} / -2 < x \le 5 \text{ y } 0 \le x\} = \{x \in \mathbb{R} / 0 \le x \le 5\} = [0, 5].$$

Consideremos los siguientes intervalos: A = (-5, 0] y B = (2, 4).

Expresarlos utilizando desigualdades, representarlos en la recta numérica y hallar:

- i) $A \cap B$ ii) $A \cup B$ iii) A' iv) $B \cup \emptyset$ v) $A \cap \emptyset$

<u>Ejemplos</u>

Expresar en forma de intervalos los siguientes conjuntos:

a)
$$\{x/x \in \mathbb{R}, \frac{-1}{2} < x \le 3\} = (\frac{-1}{2}, 3]$$

b)
$$\{x/x \in \mathbb{R}, x < -2\} = (-\infty, -2)$$

c)
$$\{x/x \in \mathbb{R}, x \ge 0\} = [0,+\infty)$$

Notación importante:

$$R^+ = (0, +\infty)$$
 Reales positivos

$$R^{-} = (-\infty, 0)$$
 Reales negativos

$$R = R^{-} \cup \{0\} \cup R^{+}$$

$$[0,+\infty) = R^+ \cup \{0\}$$

$$(-\infty,0] = R^- \cup \{0\}$$