- All homeworks from last week due this Friday 8:30AM.
- New homework HW3 and Pre-lecture 3 due Monday 8:30AM.
- Tutoring room open 5-8pm M,Tu,W,Th in 347 AH.
- My office hours: M,W 1-2 (024 Illini Hall).

Last time: Substitution and Integration by Parts – no recipe or guarantee Today: integrals for which recipes can be developed and guarantees made.

7.2 Trig Integrals

Recall trig identities (see Appendix D):

$$\sin^2 x + \cos^2 x = 1$$

$$\frac{\sin(x+y) = \sin x \cos y + \cos x \sin y}{\cos(x+y) = \cos x \cos y - \sin x \sin y}$$

$$\int \sin^m x \cos^n x \, \mathrm{d}x$$

Case 1: at least one power odd

$$\sin^2 x + \cos^2 x = 1$$

Ex 1:
$$\int \sin^3 x \cos^6 dx$$

Ex 2:
$$\int_0^{\pi/2} \frac{\cos^5 x}{\sqrt{\sin x}} \, \mathrm{d}x =$$

- (A) 24/15
- (B) 32/15
- (C) 64/45
- (D) 82/9

Case 2: both powers even

Ex 3:
$$\int \sin^4 x \cos^2 dx$$

$$\sin^2 x = \frac{1}{2}(1 - \cos(2x))$$
$$\cos^2 x = \frac{1}{2}(1 + \cos(2x))$$

$$\int \sec^m x \tan^n x \, \mathrm{d}x$$

Recall: $(\sec x)' = \sec x \tan x$, $(\tan x)' = \sec^2 x$

Case 1: even power of $\sec x$

$$\sec^2 x = 1 + \tan^2 x$$

Ex 4: $\int \sec^4 x \tan^n x \, dx$

(A)
$$\int u^{2}(u^{n} - 1) du$$

(B) $\int u^{4}(u^{2} - 1)^{n} du$
(C) $\int (1 + u^{2})u^{n} du$
(D) $\int (1 + u^{2})^{2}u^{n} du$

(B)
$$\int u^4 (u^2 - 1)^n du$$

(C)
$$\int (1+u^2)u^n \, \mathrm{d}u$$

$$(D) \int (1+u^2)^2 u^n \, \mathrm{d}u$$

Case 2: odd power of $\tan x$

$$\tan^2 x = \sec^2 x - 1$$

Ex 5: $\int \sec x \tan^3 x \, dx$

Case 3: odd power of $\sec x$ and even power of $\tan x$

$$\int \tan x \, dx = \ln|\sec x| + C$$

$$\int \sec x \, dx = \ln|\sec x + \tan x| + C$$

7.3 Trig Substitution

Goal: evaluate integrals containing $\sqrt{a^2-x^2}$, $\sqrt{a^2+x^2}$, $\sqrt{x^2-a^2}$ Method:

Ex 6:
$$\int \sqrt{1-x^2} \, \mathrm{d}x$$