L7 practice problems

Answers:

1.

a.
$$F(X,Y,Z) = X'Y + X'Y'Z$$

= $X'Y(Z' + Z) + X'Y'Z$
= $X'YZ' + X'YZ + X'Y'Z$
= $\sum m (1, 2, 3)$

b.
$$F(A,B,C,D) = ([(A+B')' + C]' + D)'$$
 - apply DeMorgans theorem $= [(A+B')' + C]$ D' $= (A'B + C)$ D' $= A'BD' + CD'$ $= A'B (C+C')$ D' $+ (A'B' + A'B + AB' + AB)$ CD' $= A'B'CD' + A'BCD' + A'BC'D' + AB'CD' + ABCD'$ $= \sum m (2, 6, 4, 10, 14)$ $= m M (0, 1, 3, 5, 7, 8, 9, 11, 12, 13, 15)$

(a)

XY	Z	F
0 0	0	0
0 0	1	1
0 1	0	1
0 1	1	1
1 0	0	0
1 0	1	0
1 1	0	0
1 1	1	0

(b)

Α	В	С	D	F
0	0	0	0	0
0	0	0	1	0 0
0	0	1	0	1
0 0 0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1 0 0 0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1 0 0 0
1	1	0	1	
1	1	1	0	1
1	1	1	1	0

2. $F(X, Y, Z) = \sum m (1, 2, 3)$

Page 1

3.
$$F(A, B, C, D) = \pi M (0, 1, 3, 5, 7, 8, 9, 11, 12, 13, 15)$$

4a.
$$Z = ABC + AB'(A'C')'$$

 $= ABC + AB'(A'' + C'')$ - DeMorgan's theorem
 $= ABC + AB' + AB'C$
 $= ABC + AB' (1 + C)$
 $= ABC + AB'$
 $= A(BC + B')$ - apply absorption law X+X'Y = X+Y
 $= A(C + B')$
 $= AC + AB'$ (SOP)

4b.
$$X = (A' + B)(A + B + D)D'$$

 $= (AA' + A'B + A'D + AB + BB + BD)D'$
 $= (A'B + AB + B + A'D + BD)D'$
 $= (B(1 + A' + A) + A'D + BD)D'$
 $= (B + A'D + BD)D'$
 $= BD' + A'DD' + BDD'$
 $= BD' + 0 + 0$
 $= BD'$ (SOP)

A minimum-cost SOP expression will have the minimum number of products, and each product will have the minimum number of variables.

Similarly, a minimum-cost POS expression will have the minimum number of sums, and each sum will have the minimum number of variables.

Page 2 ©2021 NTU