

2D and 3D Graphics in Freescale Devices AMF-CON-T1025

Francisco Sandoval
Field Applications Engineer

Efficient Columns Logo, Nimels, modalied, 1906, PoswerQACC, Praintence Expert, Staff, Convincy, Schleinson, the Judy-Scane Ingel, Schleinson, Spatial Color, Sprightney and MintOSa are trademarks of Francisca Landsconduct, Inc., 1999, U.S. Pata, S. H. Off, Anthor, Sentil, Sentils, Sentils, Possible, Staff, Sentils, Possible, Staff, Sentils, Possible, Sentils, Sentils, Sentils, Sentils, Vybrid and Xinnais are trademarks of Francisca Expertils Sentils, Sentils, Inc., All other product or sentile names are the property of their sequences on movemen. It 2013. The sentils S

Agenda

- Graphics in Freescale
- Introduction to graphics standards
- OpenGL ES vs OpenGL ES 2.0 vs OpenGL ES 3.0 vs OpenGL
- Freescale GPU_SDK
- Boundaries and relationship between layers and tools
- Benchmarks

Driver Information Systems Product Roadmap

Best Graphics
Performance
And
Integration

Optimized Graphics, High Integration

Cost Effective Performance

Lowest System Cost, High Integration

Graphics cores

GC2000 GC880 GC355 GC255

Z430 Z160 GC320 2D-ACE IPU* VPU VIU etc

GCxxx cores are Vivante's IP, newer Zxxx cores are AMD's, older 2D-ACE (DCUx), IPU are Freescale's

Video input encoding decoding *ipu CSI

Content creation 2D/3D Real time rendering

Composition

Memory manipulation

Graphics cores

GC2000 GC880 Z430 OpenGL ES 1.1 OpenGL ES 2.0 OpenGL ES 3.0

3D

GC355 Z160 OpenVG 1.1

2D/Vector

GC320 IPU 2D-ACE/DCUx DirectFB 2D-ACE gfxlibs

Composition

Freescale Devices

- i.MX6x Most of them have 2D and 3D capabilities
 - DQ GC2000, GC355, GC320
 - DL, S GC880, GC320
 - SL GC355
 - SLX GC400T
- Spectrum PowerPC core, has DCU
- Rainbow PowerPC core, has DCU and z160
- Vybrid ARM core, has GC355, 2D-ACE

Key concepts

- OpenGL Open Graphics Library
- OpenGL ES OpenGL for Embedded Systems
- EGL Embedded-systems Graphics Library
- OpenCL Open Computing Library
- OpenVG Open Vector Graphics-library
- 2D-ACE 2D Animation and Composition Engine (sexy for DCU)
- DCU Display Controller Unit
- IPU Image processing Unit
- Wayland computer display server protocol, like X
- Weston reference implementation of a wayland compositor
- Frame buffer contiguous chunk of memory that stores a frame

i.MX6 Linux graphics layers

Layer/	Example	
IPU	Frame buffer	
EGL	Qt, DirectFB	
OGLES/OVG	glClear();	
Engine	Unity3D, EBGuide	
Application	3D cluster	

Vybrid graphics layers

Layer/	Example	
DCU	Configure DCU	
Scheduler/RTOS	MQX	
OVG/GFXLibs	vgClear(); Altia	
Application	2D cluster	

2.5D? 3D-like?

- 2D-ACE is very powerful, i.MX's gpus are not always better:
 - Locked framerate
 - Hardware layers
 - On the fly HUD warping (coming soon)
 - Cheaper solution
 - Can look as good, sometimes even better frame rate. Example:

Differences between OpenGLs

- OpenGL Desktop
- OpenGL ES 1.0, 1.1 (i.mx35, mpc5121, etc)
 - Fixed pipeline
 - Not compatible with 2.0
- OpenGL ES 2.0, 3.0 (i.mx5x, 6x)
 - Programmable pipeline (shader programs)
 - Compatible with 1.1 by a shader program

Fixed (1.0) Pipeline

Existing Fixed Function Pipeline

The OpenGL ES 2.0 Pipeline

Shaders

Presention, the Prosposite Sept. Allerian, C. S. Costell'EST, Costell'

Graphics process

Triangles in OpenGL

 3D objects are built from one or more series or "strips" of triangles

GL_TRIANGLE_STRIP

GL_TRIANGLES

GL_TRIANGLE_FAN

GL_QUADS

GL_QUAD_STRIP

How to place this in a 3D world?

- Everything is referenced using three coordinate systems:
 - Global space
 - Model space
 - Camera space
- The Matrix

1000 **1** 0100 0010 xyz1

MATRICES!! MATH!!

The 3D world (Global space)

 The 3D Cartesian coordinates that define the triangle vertices are multiplied by a matrix to move it from the object's space to the "screen" space

N/P Frustum

Transformations (Modelview Matrix)

3D models

3D models are made from a series of triangles and UV textures

Texture Mapping

• If a texture (2D still image) is being applied to the surface, the interpolated texture coordinates are used to derive what color should be sampled from the texture.

Texture Mapping

 To every vertex in our mesh, a pair of 2D coordinates (UV) is assigned and pixels are interpolated

UV Textures go from (0.0,0.0) to (1.0, 1.0)

Text-tures

- Render string to texture
- PROS
 - Easiest method
- CONS
 - Least flexible method
 - Texture space in memory
 - Not scalable (resolution)

Text-tures

Create a sprite-based alphabet

- PROS
 - More efficient
 - Good for plain text
- CONS
 - Complexity ++
 - Check alignment, spacing, etc

```
! "#$&&'
0123456789:;<=>
@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]^
'abcdefghijklmno
pqrstuvwxyz{|}~
```


Text-tures

- Use library
- PROS
 - Most flexible, robust
- CONS
 - Most complex
 - Port engine to system
 - Third party SW

OpenGL Lighting

- Lighting is calculated at each vertex
- Phong Lighting 3 components:
 - Ambient.
 - Do not depend of the light source.
 - Diffuse.
 - The light is evenly reflected in all direction (think flashlight).
 - Specular.
 - The reflection is predominant in a given direction.
 - The specular coefficient can be varied.
- The light intensity can decrease according the distance (constant, linear or quadratic).

OpenGL Lighting

 By combining all the lighting components, we can create very realistic real-time renders

Ambient Only

Ambient + Diffuse

Ambient + Diffuse + Specular

Shading Modes (ES 1.0)

 A normal vector defines the orientation of a surface relative to a light source

Shading Modes (ES 2.0)

Flat color, vertex position only

Cartoony look

Color information

Per pixel lighting

Moving the vertices around

Textures

Rasterization

- After the 3 vertex coordinates are transformed into screen space, they are then bilinearly interpolated and aliased to 'fragments'
- Other data associated with the vertices is also interpolated (colors, normals, texture coordinates, etc.)

Linear Color Interpolation

Z-test

- After interpolation, fragments have a 'depth' into the screen that is tested against the fragments that have already been rasterized.
 - If a fragment has already been produced that is "closer" to the screen, then the new value is not stored.
 - Otherwise, the new color value overwrites the old and the new depth is written to a "Depth Buffer" or "Z Buffer".

Final image

Final z-buffer

- GL Shading Language
- Supported in OpenGL ES 2.0
- Lets you define specific parts of the graphics pipeline
 - Vertex shader
 - Fragment shader
- C like language to write shaders
- Shaders have to be written, compiled and linked

GLSL overview

Data types

•	float		float a,b; // two vectors
•	bool		int c = 2; $//$ c is initialized with 2
•	Int		bool d = true; // d is true
•	vec{2,3,4}		vec3 direction;
•	bvec{2,3,4}		<pre>bvec2 lightFlags;</pre>
•	ivec{2,3,4}		ivec3 color;
•	mat{2,3,4}		square matrices
•	sampler{1,2,3}D	for textures	
•	samplerCube		for cube map textures
•	sampler{1D,2D}Shadow	for shadow map	os
•	arrays	struct dirlight { // type definition	
•	structs	<pre>vec3 direction; vec3 color; };</pre>	

GLSL overview

Variable qualifiers

- const

The declaration is of a compile time constant

- attribute

- Global variables
- May change per vertex
- Passed from the application to vertex shaders.
- Can only be used in vertex shaders.
- Read-only variable.

- uniform

- Global variables
- May change per primitive
- Passed from the application to the shaders
- Read-only variable.

- varying

- Used to pass data between vertex and fragment shader
- write in vertex shader, and read-only in a fragment shader.

GLSL overview

- Functions
- At least a main per shader
- Functions can't return arrays
- Function overloading is possible (different parameters)

```
vec4 toonify(in float intensity)
{
   vec4 color;
   if (intensity > 0.98)
       color = vec4(0.8,0.8,0.8,1.0);
   else if (intensity > 0.5)
       color = vec4(0.4,0.4,0.8,1.0);
   else if (intensity > 0.25)
       color = vec4(0.2,0.2,0.4,1.0);
   else
       color = vec4(0.1,0.1,0.1,1.0);
   return(color);
}
```


Vertex Shader Functions

- Receives vertex data as input (position, colors, normals...)
 - The vertex shader can do:
 - Transformation of position using model-view and projection matrices
 - Transformation of normals, including renormalization
 - Texture coordinate generation and transformation
 - Per-vertex lighting
 - Color computation
 - The vertex shader cannot do:
 - Anything that requires information from more than one vertex
 - Anything that depends on connectivity.
 - Any triangle operations (e.g. clipping, culling)
 - Access color buffer
- Responsible for writing AT LEAST gl_Position

Sample Vertex Shader

```
mat4 g_matModelView;
uniform
uniform mat4 g_matProj;
attribute vec4 g vPosition;
attribute vec3 g vColor;
varying vec3 g_vVSColor;
void main()
 vec4 vPositionES = g_matModelView * g_vPosition;
   gl_Position = g_matProj * vPositionES;
   g vVSColor = g vColor;
```


Fragment Shader Functions

- Receives vertex shader output (varying variables) as input
 - The fragment shader can do:
 - Texture blending
 - Fog
 - Alpha testing
 - Dependent textures
 - Pixel discarding
 - Bump and environment mapping
 - The fragment shader cannot do:
 - Blending with colour buffer
 - ROP operations
 - Depth or stencil tests
 - Write depth
- Responsible of writing gl_FragColor (fragment color)

Sample Fragment Shader

```
precision highp float;
varying vec3 g_vVSColor;
void main()
{
    gl_FragColor = vec4( g_vVSColor, 1.0 );
}
```


mpile the shader program

```
// Compile the shaders
GLuint hVertexShader = glCreateShader( GL VERTEX SHADER );
glShaderSource( hVertexShader, 1, &g strVertexShader, NULL );
glCompileShader( hVertexShader );
// Check for compile success with glGetShaderiv
GLuint hFragmentShader = glCreateShader( GL FRAGMENT SHADER );
glShaderSource( hFragmentShader, 1, &g strFragmentShader, NULL );
glCompileShader( hFragmentShader );
// Check for compile success with glGetShaderiv()
// Attach the individual shaders to the common shader program
g hShaderProgram = glCreateProgram();
glAttachShader( g hShaderProgram, hVertexShader );
glAttachShader( g hShaderProgram, hFragmentShader );
// Init attributes BEFORE linking
// Link the vertex shader and fragment shader together
glLinkProgram( g hShaderProgram );
// Check for link success with glGetProgramiv()
// Get uniform locations
g hModelViewMatrixLoc = glGetUniformLocation( g hShaderProgram, "g matModelView" );
g hProjMatrixLoc = glGetUniformLocation( g hShaderProgram, "g matProj" );
glDeleteShader( hVertexShader ); glDeleteShader( hFragmentShader );
```


How it looks in a sample application

Render Loop

```
void render(float w, float h) {
   // Rotate and translate the model view matrix
    float matModelView[16] = {0};
    fslLoadIdentity (matModelView);
    fslTranslate('z', -4, matModelView);
   // Build a perspective projection matrix
    float matProi[16] = \{0\};
   loadFrustum(matProj, 120, 1.33);
   // Clear the colorbuffer and depth-buffer
   glClearColor( 0.0f, 0.0f, 0.5f, 1.0f );
   glClear ( GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT );
   // Set the shader program
    glUseProgram( g hShaderProgram );
   glUniformMatrix4fv( g hModelViewMatrixLoc, 1, 0, matModelView );
   glUniformMatrix4fv( g hProjMatrixLoc, 1, 0, matProj );
    // Bind the vertex attributes
   qlVertexAttribPointer( q hVertexLoc, 3, GL FLOAT, 0, 0, VertexPositions );
    glEnableVertexAttribArray( g hVertexLoc );
    glVertexAttribPointer( g hColorLoc, 4, GL FLOAT, 0, 0, VertexColors );
   glEnableVertexAttribArray( g hColorLoc );
   //Draw
   glDrawArrays(GL TRIANGLES, 0, 3);
   // Cleanup
   glDisableVertexAttribArray( g hVertexLoc );
   glDisableVertexAttribArray( g_hColorLoc );
```


GPU_SDK

- i.MX6 Graphics SDK Includes sample, demo code, and documentation for working with the i.MX6X family graphics cores. Includes OpenVG, OpenGL ES, and GAL2D reference files.
- Found in i.MX6 Software & Tools tab, under "Software Development Tools" -> "Snippets, Boot Code, Headers, Monitors, etc."
- Released and maintained by the Virtual Graphics Core Team

GPU_SDK – contents

NP

GPU_SDK – requirements

- A working LTIB with required libraries
- Export the following variables from console:
 - export CROSS_COMPILE=/opt/freescale/usr/local/gcc-4.6.2-glibc-2.13-linaro-multilib-2011.12/fsl-linaro-toolchain/bin/arm-fsl-linuxgnueabi-
 - export ROOTFS=/home/paco/ltib/121218/ltib/rootfs
- Cd to directory of sample/demo/tutorial, type
 - \$make -f Makefile.fb
- Copy generated binary and required resources (images, shader files, etc) to target then run.

Resources

- https://community.freescale.com/community/imx
- imxgpu mailing list (imxgpu@freescale.com)

Benchmark Comparisons i.MX 6 Series

Kyle Fox

Presention, the Presental Rosp, Allahor, C.S., Clark TST, Dobblewins, Caldhins, Collino, S., Whos, the Immigrative Collino, and Collino, and Collino, and Caldhins, Ca

Device

OS Version

Benchmarking Results Tegra3 i. MX6Q Sbera SD

VerC

R13.4.1-RC4

40.87296

53.72527

20

Triangles Based Benchmark

Physics Based Benchmark

	OS version	K13.4.1-KC4	K13.4.1-KC4	Anarola ??	Anaroia 4.1.1	Android 4.0.3
	CPU	i.MX6Quad 1G	i.MX6Quad 1.2G	1.2Ghz Quad A7	Tegra 3 1.3Ghz	Tegra 3 1.2Ghz
	GPU	Vivante GC2000	Vivante GC2000	Unknown	Tegra 3 GPU	Tegra 3 GPU
	Memory	1G DDR3	1G DDR3	Unknown	1GB LPDDR2	1GB LPDDR2
	Screen Resolution	1024*728	1024*728	Unknown	1280*800	1280*800
	Total	4028	4828	3384	3741	3978
	CPU	9554	11407		11069	10414
Quadrant	Memory	2796	3327		2943	2983
2.0	I/O	4354	5693		1259	3714
	2D	990	1000		990	314
	3D	2445	2445		2444	2464
	Total Scores	9605	11159	10429	10520	10011
	Memory	1950	2348	2131	2309	1996
	CPU Integer	3057	3665	3614	3391	3273
A T t D	CPU Float	2312	2782	2270	2746	2596
AnTutu Benchmark 2.9.4	2D Graphics	294	294	298	324	295
2.5.4	3D Graphics	1248	1249	1255	1307	1189
	Database IO	400	480	520	85	325
	SD Card Write	150	137	150	148	140
	SD Card Read	194	204	191	210	197
	Total Scores		12603	NT	NT	NT
	Memory		2326	NT		
	CPU Integer		3747	NT		
	CPU Float		2784	NT		
AnTutu Benchmark 3.0	2D Graphics		768	NT		
5.0	3D Graphics		2191	NT		
	Database IO		460	NT		
	SD Card Write		123	NT		
	SD Card Read		204	NT		
BaseMark ES20 (Taiji)	FPS	36		NT	17.93	14.65
NenaMark2	FPS	49.2		NT	46.5	46.4
	Dynamic Lighting Benchmark	23.57921		NT	Can't run	16.73816
_	Particle Systems Benchmark	26.32444		NT	Can't run	18.76312

i. MX6Q Sbera SD

VerC

R13.4.1-RC4

Media Tek

Android ??

i.MX6Q/6D wins with Quadrant total score

i.MX 6Q/6D wins with **Antutu** (normalized to screen size)

i.MX 6Q wins with BaseMark ES2.0. On par with NenaMark due to LCD size

i.MX6Q wins with M₃D

Kernel Bootup Time seconds

Presecute, the Freezoole logic, ARWey, C.S. Code/TEST, Code/Marrior, Cold/Fire, Code/Fire, C. Mare, the Energy Efficien Processor Expert Codiff. Gorges, EsthAssare, the SateAssare loss: StarCore Screpture and Vorside are traderants of Freezont-Servicested Servicestor, to: Her U.S. For 8 7th Offi Arrian, Swiff, Beeltich, Confest, Laywonge, Mignly, MRC, Platforn in a Partings, GoriG Gorivega, GUIDC Engine, Ready Play, SWARTMOS, Tower, TuboLink, Vytral and Ethnics are trademorks of President Sermiconductor, Inc. All other product or service names the property of their respective services. © 2013 Freedock Sermiconductor, Inc.

23.14258

35.68423

ASUS TF201

Android 4.0.3

Nexus 7

Android 4.1.1

NT

NT

NT

Can't run

Can't run

36

IX 6Quad/6Dual, 6DualLite, 6Solo vs Competition

	Device	SABRE SD	SABRE SD	SABRE SD	SABRE SD	Nexus 7	ASUS Eee PAD TF201	Galaxy Tab P7500
	OS Version	Android R13.4.1-RC4	Android R13.4.1-RC4	Android R13.4.1-RC4	Android R13.4.1-RC4	Android 4.1.1	Android 4.0.3	Android 3.1
	СРИ	i.MX6Quad 1G	i.MX6Quad 1.2G	i.MX6 DL 1G	i.MX 6S 1Ghz	Tegra 3 1.3Ghz	Tegra 3 1.2Ghz	Tegra 2 1Ghz
	GPU	GC2000 GC320	GC2000 GC320	GC880 GC320	GC880 GC320	Tegra 3 GPU	Tegra 3 GPU	Tegra 2 GPU
	Memory	64bit DDR3	64bit DDR3	64bit DDR3	32bit DDR3	LPDDR2	LPDDR2	DDR2
	Screen Resolution	1024*728	1024*728	1024*728	1024*728	1280*800	1280*800	1280*800
	Total	4011	4828	3005	2414	3741	3978	2559
	CPU	9435	11407	4813	2411	11069	10414	3141
Quadrant	Memory	2809	3327	2807	2726	2943	2983	2584
2.0	1/0	4371	5693	4166	3973	1259	3714	4988
	2D	1000	1000	817	608	990	314	280
	3D	2441	2445	2420	2352	2444	2464	1804
	Total Scores	9605	11159	5583		10707	10675	
	Memory	1950	2348	971		2051	2226	
	CPU Integer	3057	3665	1527		3594	3648	
	CPU Float	2312	2782	1148		2694	2729	
AnTutu	2D Graphics	294	294	294		298	293	
2.9.4	3D Graphics	1248	1249	927		1242	1198	
	Database IO	400	480	385		500	300	
	SD Card Write	150	137	127		150	89	
	SD Card Read	194	204	204		178	192	
	Total Scores	11126	12603		4531	12972	12161	
	Memory	1992	2326		672	2033	2121	
	CPU Integer	3133	3747		775	3714	3621	
	CPU Float	2303	2784		564	2690	2503	
AnTutu	2D Graphics	765	768		474	797	730	
3.0.3	3D Graphics	2212	2191		1423	3003	2643	
	Database IO	430	460		350	395	310	
	SD Card Write	134	123		139	150	90	
	SD Card Read	157	204		134	190	143	
BaseMark ES20 (Taiji)	FPS	25.65	25.63	7.78	7.67	17.93	14.65	
NenaMark2	FPS	49.2	49.1	30.5	27.2	46.5	46.4	
	Dynamic Lighting	23.57921	23.54141	7.302674	7.254386		16.73816	5.979404
	Particle Systems	26.32444	26.29946	10.13034	10.08059	0.08059		8.139534
M3D	Triangles Based	40.87296	43.22133	19.66406	19.00992	Can't run 18.76312 23.14258		13.9976
	Physics Based	53.72527	60.34217	43.28051	23.14033		35.68423	22.77416

TuTu v2.9.3, v2.9.4 and v3.0 Comparison (6Quad) vs MediaTek

	Device	i. MX6Q Sbera SD VerC		
	OS Version	R13.4.1-RC4		
	CPU	i.MX6Quad 1.2G		
	GPU	Vivante GC2000		
	Memory	1G DDR3		
	Total Scores	11159		
	Memory	2348		
AnTutu	CPU Integer	3665		
Benchmark	CPU Float	2782		
2.9.4	2D Graphics	294		
	3D Graphics	1249		
	Database IO	480		
	SD Card Write	137		
	SD Card Read	204		
	Total Scores	12603		
	Memory	2326		
	CPU Integer	3747		
AnTutu	CPU Float	2784		
Benchmark	2D Graphics	768		
3.0	3D Graphics	2191		
	Database IO	460		
	SD Card Write	123		
	SD Card Read	204		

freescale™

Normalizing Antutu results

- Antutu benchmark measures full range of capabilities
 - CPU integer/float, memory b/w, database i/o and storage card
 - 2D and 3D performance metrics are only part of the story
 - Goal is to ensure a more complete view of the performance of the CPU
- Freescale i.MX 6Quad/6Dual Antutu tested on 1024x768 display
 - Mediatek benchmarks are assumed to be 720p (1280x720)
 - Delta is around 14.6% greater pixels in Mediatek screen vs Freescale
 - This will affect the 2D and 3D portions of the Antutu benchmark
- To quickly normalize Freescale's results to a 720p screen:
 - 1) all scores for i.MX 6Q/6D stay the same except for the 2D/3D scores.
 - 2) the i.MX 6Q/6D scores for 2D/3D are reduced by 14.6% to account for a 720p screen
 - -2D was 294. New score is 250.9
 - -3D was 1249. New score is 1065.81
- Therefore the Freescale i.MX 6Q/6D normalized score would be: 10887.71
 - existing score: 11,159; subtract original 2D/3D: 11,159 294 1294 = 9571
 - add in normalized 2D/3D #'s: 9571 + 250.9 + 1065.81 = 10887.71

Benchmark Comparison – OMAP4470 and 4460

Benchmark Suite	Item	i.MX6Quad 1Ghz 1024x768	i.MX6Dual 1Ghz 1024x768	Archos 101x Tablet TI OMAP 4470 1.5Ghz 1280x800 lcd	Archos 101 G9 Tablet OMAP 4460 1.2Ghz 1280x800 lcd
Quadrant	Total	4636	3300	3557	2622
Antutu	Total	10488	6911	5874	7835
Linpack	Multithread	136.71	87	94.9	82.6
Velamo		1086	752	1374	1325

Selevant Benchmarks

3DMarkMobile ES 1.1: Samurai

3DMarkMobile ES 2.0: Taiji Girl

3DMarkMobile ES 2.0: Hover Jet

Mem Read (MB/s) (higher is better)

Mem Write (MB/s) (higher is better

BCopy (libc) (MB/s) (higher is better)

Main Mem Latency (ns) (lower is better)

Rand Mem Latency (ns) (lower is better)

L1 Latency (ns) (lower is better)

L2 Latency (ns) (lower is better)

i.MX 6 vastly outperforms

1) Ill's require 'quality'	nivels to enhance view	

Benchmark Unit

3) UI content is inherently dynamic \rightarrow Cannot predict content so need High speed, wide memory bus

i.MX 6

108 FPS

103 FPS

35 FPS

25 FPS

264

2280

590

3.93

27.2

113.8

172

8K copies: 6975

64K copies: 4542

1M copies: 2674

16M copies:

1097

Competition 1

Comm

Tegra3 and 2

UI Category

LMBENCH

LMBENCH

LMBENCH

LMBENCH

LMBENCH

LMBENCH

LMBENCH

MemCopy

Linux

60 (iPad 2)

60 (iPad 2)

24 (iPad 2)

14 (iPad 2)

163 (OMAP 4)

2221 (OMAP 4)

312.8 (OMAP 4)

3.974 (OMAP 4)

29.6 (OMAP 4)

194.1 (OMAP 4)

265 (OMAP 4)

TI OMAP4 1Ghz on

PANDA board

8K copies: 6510

64K copies: 3906

1M copies: 737

16M copies: 595

5.1 (Tegra2) 15.8 (Tegra3)

require quality pixels to enhance view 2) 3D performance for User interface manipulation, games, video texturing

FPS

FPS

FPS

MB/s

MB/s

MB/s

ns

ns

ns

ns

MB/s

3DMarkMobile ES 1.1: Proxycon

games

games

oder gen benchmark for more basic

Older gen benchmark for more basic

Updated for latest 3D - tests whether

Updated for latest 3D - tests whether complex games can be run at high FPS

Ability to read content fast during decode

or 3D operations Ability to write data during decode or 3D

operations Ability to replicate frame buffers or other

content especially during UI

How fast memory roundtrip is to CPU

Determines efficiency of the memory

controller for different size 'chunks' of

memory. Video files tend to be large

chunks. User data tends to be smaller

chunks. Need to be good at all ranges

complex games can be run at high FPS

FPS

evant Benchmarks – User Interface – Cont

	CVai	t Benefilla	113	00011	menade	Oont
UI Category		Benchmark	Unit	i.MX 6	Competition 1	Comments
4) UI requires high resolution support 2 1080p TV or LCD				the norm		
		080p h.264 high profile on two different 1080p	FPS	30 fps per screen decode	Not possible on Tegra 2. unlikely to be capable on Tegra 3 due to single memory channel	Measures ability of chip to drive higher resolution displays than just 1080p. Plus ability to do picture in picture video playback simultaneously
	CPU Core l of video co	Jtilization during Playback Intent	% of max	4 %	Not measured	Determines if CPU provider is using main core to offload some or most of the decode. Also measures how much CPU is left over for other tasks
5) Access to fas	st CPU MIPS	→ used for complicated trans	forms to	augment visual exp	perience	
	Dhrystone	Tegra 3 limited by single memory	DMIPS	2.45 DMIPS/Mhz	TI PANDA Board 2.2 DMIPS/MHz	Very basic benchmark that is useful to determine if core has been implemented correctly to ARM spec. Lower score means possible implementation problems or slow transistors.
	CoreMark	channel	Score	i.MX 6Quad processor at 1Ghz, 4 cores: 11147 coremark;	Nvidia Tegra 3 with 5 cores: 11352	Better score for CPU than Dhrystone. Much more complete set of tests to measure CPU performance
	SunSpider (0.9.1) Java		Sec	run on i.MX 6Quad core 1: 1830; core 2: 1827; core 3: 1836; core 4: 1849	OMAP4 @1Ghz on Panada Board: 1756 with two cores active	Browser test with broad support. Also a good measure for the CPU's ability to handle JAVA
	Threading to	est	Tbd	Tbd	Tbd	Measure ability to hit multiple threads and allocate effectively across multiple CPUs

