

OUTLINE

- Description of the problem and a discussion of the background
- 2. Description of the data and how it will be used to solve the problem
- 3. Methodology
- 4. Results
- 5. Discussion
- 6. Conclusion

DESCRIPTION OF THE DATA

- Numbers of restaurants in each neighborhood,.
- Population and Density population
- Location of the most influential central business districts or the presence of major business offices as well as national and international banks, Hotels, courthouses, financial headquarters, cultural and tourist attractions.

SOURCE OF THE DATA

https://en.wikipedia.org/wiki/Miami

METHODOLOGY

Data Cleaning:

	Neighborhood	Demonym	Population2010	Population/Km²	Sub- neighborhoods	Coordinates	vteNeighborhoods in Miami	Unnamed:	vteMiami articles	Unnamed: 2
2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Mayors	Government	NaN
3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Hospitals Fire Police	Emergency services	NaN
4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Miami-Dade Transit Metro rail Bus people mover	Transportation	NaN
5	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Cuisine Dialect Film LGBT culture in Miami Mus	Culture	NaN
6	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Miami-Dade County Public Schools Elementary Sc	Education	NaN

	Neighborhood	Population2010	Population/Km ²	Longitude	Latitude
0	Allapattah	54289	4401	-80.224	25.815
1	Arts & Entertainment District	11033	7948	-80.190	25.799
2	Brickell	31759	14541	-80.193	25.758
3	Buena Vista	9058	3540	-80.192	25.813
4	Coconut Grove	20076	3091	-80.257	25.712

THE GEOPY LIBRARY WAS USED TO GET THE LATITUDE AND LONGITUDE VALUES OF THE CITY OF MIAMI, AND THE FOLIUM LIBRARY TO CREATE A MAP WITH NEIGHBORHOODS SUPERIMPOSED ON TOP.

Methodology

POPULATION DENSITY

Methodology

Examine Cluster Neighborhood:

Methodology

Results:

We can level each cluster as follows:

• Cluster 0: Art Gallery and Ice

Scream Shop

- Cluster_1: Hotels, Sea Food and Italian Restaurants
- Cluster 3: Cuban Restaurants

```
miami cluster 0['1st Most Common Venue'].value counts()
Art Gallery
Ice Cream Shop
                  4
Name: 1st Most Common Venue, dtype: int64
miami cluster 0['2nd Most Common Venue'].value counts()
Art Gallery
Ice Cream Shop
                  4
Café
Name: 2nd Most Common Venue, dtype: int64
miami_cluster 1['1st Most Common Venue'].value counts()
Hotel
Seafood Restaurant
Italian Restaurant
Name: 1st Most Common Venue, dtype: int64
miami cluster 1['2nd Most Common Venue'].value counts()
Seafood Restaurant
Italian Restaurant
Latin American Restaurant
Name: 2nd Most Common Venue, dtype: int64
miami cluster 2['1st Most Common Venue'].value counts()
```

Results

CONCLUSION

- Geolocation can be used to determine locations in many cities.
- Foursquare API permit us to determine the most common location of neighborhoods of the City of Miami.
- Using Pandas, and generally, Python and its libraries, permit us to find possible locations where we could invest to open a new restaurant.
- We recommend to invest in Brickell neighborhood. It is dense, highrise residential neighborhood, and has luxury condominium and apartment towers.
- Also, Our results show us that there are already many restaurants established.
- A fierce competition could be presented if we decide to launch an Italian or Seafood Restaurant. However, a further business analysis as competitive analysis will be necessary to complement the findings of this report.