Step-1

$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}, Q = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}_{\text{and}} R = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}$$
Given that

We have to write P, Q and R in the form $\lambda_1 x_1 x_1^H + \lambda_2 x_2 x_2^H$.

Step-2

We find the eigenvalues of P.

The characteristic equation of P is $|P - \lambda I| = 0$

$$\Rightarrow \begin{vmatrix} \frac{1}{2} - \lambda & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} - \lambda \end{vmatrix} = 0$$

$$\Rightarrow \left(\frac{1}{2} - \lambda\right)^2 - \frac{1}{4} = 0$$

$$\Rightarrow \lambda^2 - \lambda = 0$$

$$\Rightarrow \lambda(\lambda-1)=0$$

$$\Rightarrow \lambda = 0,1$$

Hence the eigenvalues of P are $\lambda_1 = 0, \lambda_2 = 1$.

Step-3

We know that $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is an eigenvector of A if and only if $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is the nonzero solution of $|P - \lambda I| x = 0$

$$\begin{bmatrix} \frac{1}{2} - \lambda & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} - \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$
That is
$$\hat{\mathbf{a}} \in \hat{\mathbf{a}} \in \hat{\mathbf{a}} \in [1, 1]$$

Step-4

For $\lambda = 0$, (1) becomes

$$(P-0I)x=0$$

$$\Rightarrow \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

The Augmented matrix is

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

Step-5

Add (-1) times of row 1 to row 2, we get

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow \frac{1}{2}x_1 + \frac{1}{2}x_2 = 0$$

Here x_1 is free variable.

Step-6

Let $x_1 = k$, where k is a parameter.

$$\Rightarrow x_2 = -k$$

Therefore,
$$x = \begin{bmatrix} k \\ -k \end{bmatrix} = k \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Hence the eigenvector of *P* corresponding to $\lambda = 0$ is $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Therefore, x_1 with length scaled to 1 is $\frac{1}{\sqrt{2}}\begin{bmatrix} 1\\-1 \end{bmatrix}$

Step-7

For $\lambda_2 = 1$, (1) becomes

$$(P-1I)x=0$$

$$\Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

The Augmented matrix is

$$\begin{bmatrix} \frac{-1}{2} & \frac{1}{2} & 0\\ \frac{1}{2} & \frac{-1}{2} & 0 \end{bmatrix}$$

Step-8

Add row 1 to row 2, we get

$$\begin{bmatrix} \frac{-1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow \frac{-1}{2}x_1 + \frac{1}{2}x_2 = 0$$

Here x_2 is free variable.

Step-9

Let $x_2 = k$, where k is a parameter

$$\Rightarrow x_1 = k$$

$$x = \begin{bmatrix} k \\ k \end{bmatrix} = k \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
Therefore,

Hence the eigenvector of *P* corresponding to $\lambda = 1$ is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Therefore, x_2 with length scaled to 1 is $\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}$.

Step-10

Hence *P* can be written as

$$\begin{split} P &= \lambda_1 x_1 x_1^H + \lambda_2 x_2 x_2^H \\ &= 0 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} + 1 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \end{split}$$

$$P = 0 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} + 1 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Therefore.

Step-11

Now we have to write Q as $\lambda_1 x_1 x_1^H + \lambda_2 x_2 x_2^H$

The characteristic equation of Q is $|Q - \lambda I| = 0$

$$\Rightarrow \begin{vmatrix} -\lambda & 1 \\ 1 & -\lambda \end{vmatrix} = 0$$

$$\Rightarrow \lambda^2 - 1 = 0$$

$$\Rightarrow \lambda = \pm 1$$

$$\Rightarrow \lambda_1 = 1 \text{ and } \lambda_2 = -1$$

Therefore, the eigenvalues of Q are $\lambda_1 = 1$ and $\lambda_2 = -1$.

Step-12

Now find the eigenvectors of *Q*.

We know that $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is an eigenvector of A if and only if $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is the nonzero solution of $|Q - \lambda I| x = 0$

That is
$$\begin{bmatrix} -\lambda & 1 \\ 1 & -\lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

$$\hat{\mathbf{a}} \in \hat{\mathbf{a}} \in \hat{\mathbf{a}} \in \hat{\mathbf{a}} = 0$$

For
$$\lambda_1 = 1$$
, (1) becomes

$$(Q-I)x=0$$

$$\Rightarrow \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

Step-13

The Augmented matrix is

$$\begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix}$$

Add row 1 to row 2, we get

$$\begin{bmatrix} -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow -x_1 + x_2 = 0$$

Here x_2 is free variable

Step-14

Let $x_2 = k$, where k is a parameter

Then $x_1 = k$

$$x = \begin{bmatrix} k \\ k \end{bmatrix} = k \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 Therefore,

Hence the eigenvector of Q corresponding to $\lambda = 1$ is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Therefore, x_1 with length scaled to 1 is $\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}$.

Step-15

For $\lambda_2 = -1$, (1) becomes

$$(Q+I)x=0$$

$$\Rightarrow \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

The augmented matrix is

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

Add (-1) times of row 1 to row 2, we get

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow x_1 + x_2 = 0$$

Here x_1 is free variable.

Let $x_2 = k$, where k is a parameter.

Then
$$x_2 = -k$$

Step-16

Therefore,
$$x = \begin{bmatrix} k \\ -k \end{bmatrix} = k \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Hence the eigenvector of Q corresponding to $\lambda = -1$ is $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Therefore, x_2 with length scaled to 1 is $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Step-17

So we can write Q as

$$Q = \lambda_{1} x_{1} x_{1}^{H} + \lambda_{2} x_{2} x_{2}^{H}$$

$$= 1 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} - 1 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

$$Q = 1 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} - 1 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

Therefore,

Step-18

We have to write R as $\lambda_1 x_1 x_1^H + \lambda_2 x_2 x_2^H$

$$R = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}$$
 Given that

The characteristic equation of *R* is $|R - \lambda I| = 0$

$$\Rightarrow \begin{vmatrix} 3 - \lambda & 4 \\ 4 & -3 - \lambda \end{vmatrix} = 0$$

$$\Rightarrow (3 - \lambda)(-3 - \lambda) - 16 = 0$$

$$\Rightarrow \lambda^2 - 25 = 0$$

$$\Rightarrow \lambda = \pm 5$$

Therefore the eigenvalues of R are $\lambda_1 = 5$ and $\lambda_2 = -5$.

Step-19

Now find the eigenvectors of R.

We know that $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is an eigenvector of A if and only if $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is the nonzero solution of $|R - \lambda I| x = 0$

That is
$$\begin{bmatrix} 3-\lambda & 4 \\ 4 & -3-\lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$
 $\hat{\mathbf{a}} \in \hat{\mathbf{a}} \cdot \hat{\mathbf{c}} \cdot \hat{\mathbf{c}} = 0$

Step-20

For $\lambda_1 = 5$, (1) becomes

$$(R-5I)x=0$$

$$\Rightarrow \begin{bmatrix} -2 & 4 \\ 4 & -8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

The Augmented matrix is

$$\begin{bmatrix} -2 & 4 & 0 \\ 4 & -8 & 0 \end{bmatrix}$$

$$\Rightarrow -2x_1 + 4x_2 = 0$$

Here x_2 is free variable.

Step-21

Let $x_2 = k$, where k is a parameter

$$\Rightarrow x_1 = 2k$$

Therefore, $x = \begin{bmatrix} 2k \\ k \end{bmatrix} = k \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

Hence the eigenvector of *R* corresponding to $\lambda = 5$ is $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

Therefore, x_1 with length scaled to 1 is $\frac{1}{\sqrt{5}}\begin{bmatrix} 2\\1 \end{bmatrix}$.

Step-22

For $\lambda_2 = -5$, (1) becomes

$$(R+5I)x=0$$

$$\Rightarrow \begin{bmatrix} 8 & 4 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

The Augmented matrix is

$$\begin{bmatrix} 8 & 4 & 0 \\ 4 & 2 & 0 \end{bmatrix}$$

Add $\left(\frac{-1}{2}\right)$ times of row 1 to row 2, we get

$$\begin{bmatrix} 8 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow 8x_1 + 4x_2 = 0$$

Here x_1 is free variable.

Step-23

Let $x_1 = k$, where k is a parameter

$$\Rightarrow x_2 = -2k$$

Therefore,
$$x = \begin{bmatrix} k \\ -2k \end{bmatrix} = k \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

Hence the eigenvector of *R* corresponding to $\lambda = -5$ is $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$.

Therefore, x_2 with length scaled to 1 is $\frac{1}{\sqrt{5}}\begin{bmatrix} 1 \\ -2 \end{bmatrix}$.

Step-24

So we can write R as

$$R = \lambda_{1} x_{1} x_{1}^{H} + \lambda_{2} x_{2} x_{2}^{H}$$

$$= 5 \begin{bmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix} - 5 \begin{bmatrix} \frac{1}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \end{bmatrix}$$

$$R = 5 \begin{bmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix} - 5 \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \end{bmatrix}$$

Therefore,