The Constructive Model of Univalence in Cubical Sets

Literature review

W. Vanhulle¹ A. Nuyts² D. Devriese³

¹Student

²Supervisor

³Promoter

2nd master thesis presentation (45 min.)

Outline

Topology

Type Theory

Cubical model

Applications

Topology

Figure: Hubert-Brierre, 2013

- ▶ is the mirror monkey really another monkey?
- which properties does he (not) satisfy?

Figure: Hubert-Brierre, 2013

They are the same.

Mathematicians are monkeys

Take two similar objects A and B:

- ▶ Which properties does object B satisfy as well?
- Are objects A and B really different?

What is the sameness?

Definition

An isomorphism is a map that identifies *spaces* and their structure.

Notation	Space type	Isomorphisms	
\mathbb{E}^3	Euclidean	rotation, translation, mirroring	
Fin _n	Finite	permutations	
G	Groups	homomorphisms	
X	Topological	homotopy equivalences	

Figure: Examples of isomorphisms

Isomorphisms in mathematics

Used for classification of different but similar objects.

A mathematician is asked by a friend who is a devout Christian: "Do you believe in one God?"

He answers: "Yes – up to isomorphism." (\bigcirc Michael Benjamin Stepp)

Homotopy equivalence

Figure: A mug

Figure: A donut

Definition (homotopy equivalent)

Can be smoothly deformed into eachother.

What does a donut think when he sees a mug?

He has the same number of holes.

Definition (homotopy groups)

Computing holes

homotopy classes of smooth embeddings

$$S^n \to X$$
, or $[0,1]^n \to X$

Figure: A donut has two 1-dimensional homotopy classes.

Figure: A ball without center has two 2-dimensional homotopy classes.

Type Theory

Paradox in set theory

Zermelo, 1899

The set that contains all sets that do not contain itself:

$$R = \{x \mid x \notin x\}, R \in R \Leftrightarrow R \notin R$$

Weird set

Paradox eliminated with:

Universe hierarchy:

$$\mathcal{U}_0 \in \mathcal{U}_1 \in \dots \mathcal{U}_{\omega} \in \dots$$

Rejection of "set comprehension principle":

$$S = \{x \mid P(x)\}$$

Constructivism

Brouwer, 1905

Mathematics is in essence the result of pure thought.

Evolved into constructive logic (Heyting, 1930) Type theory (Russel, 1907 - ...):

replace sets (and propositions) by types and elements by terms,

$$x \in R \Rightarrow x : R$$

- set universes become type universes
- constructive logic replaced by formation rules of terms

Type theory as foundation for mathematics

Deductive system of judgements with typing rules:

$$\frac{\Gamma \vdash f: A \to B \qquad \Gamma \vdash a: A}{\Gamma \vdash b: B}$$

- judgments express that a type is inhabited
- all judgements have contexts
- typing rules tell how to form and combine types and terms

Definition (Type-checking)

Checking if the typing rules are respected.

Definitional equality

Definitional equality in type theory ("denoted =" in code):

```
data Nat : Set where
  zero : Nat
  suc : (n : Nat) → Nat

_+_ : Nat → Nat → Nat
zero + m = m
suc n + m = suc (n + m)
```

Figure: An example of definitional equality.

- used for stating terms, terms and typing rules
- defined such that type-checking decidable

Problems definitional equality

Definitional equality distinguishes 0 + m and m + 0: too *strong* for mathematics.

A weaker alternative?

Example (Leibniz's extensionality axiom)

Functions are identified with values:

$$f = g \Leftrightarrow f(x) = g(x), \forall x$$

Breaks decidability of type-checking \Rightarrow not possible with definitional equality.

Identity type

Martin-Löf, 1984

A type of equality between terms a, b : X, denoted a = b. Terms p : (a = b) are called "equalities".

Definition (Introduction rule)

Given a term a: X, there is an equality refl(a): a = a.

Elimination rule of equality type:

Definition (Induction rule)

Given the following terms:

- ▶ a predicate $C: \prod_{x,y:A} (x =_A y) \to \mathcal{U}$
- ▶ the base step $c: \prod_{x:A} C(x, x, refl_x)$

there is a function $f: \prod_{x,y:A} \prod_{p:x=_{A}y} C(x,y,p)$ such that $f(x,x,\text{refl}_x) \equiv c(x)$.

Role identity eliminator

To prove a property C that depends on terms x, y and equalities p: x = y it suffices to consider all the cases where

- x is definitionally equal to y
- the term of the intensional equality type under consideration is refl_x: x = x.

Implications:

- proves transitivity, symmetry
- ▶ less things equal ⇒ weaker than equality "by definition".

Univalence axiom

Voevodsky, 2009

Definition (Type equivalence)

Given types $X, Y : \mathcal{U}$ for some universe \mathcal{U} , an equivalence $f : X \simeq Y$ of types is a map $f : X \to Y$ that is a bijection up to equality.

Equivalences are isomorphisms between topological spaces.

Axiom (Univalence axiom)

Given types $X, Y : \mathcal{U}$ for some universe \mathcal{U} , the map $\Phi_{X,Y} : (X = Y) \to (X \simeq Y)$ is an equivalence of types.

Equivalences are (up to homotopy equivalence) the same as equalities.

Type theory up to isomorphism (homotopy type equivalence)

Consequences of univalence

Example (Natural numbers)

 \mathbb{N} is a type that behaves like a set.

equivalences

$$\mathbb{N}\simeq\mathbb{N}_0$$

are bijections

$$\mathbb{N} \leftrightarrow \mathbb{N}_0$$

univalence implies

$$p:(\mathbb{N}\leftrightarrow\mathbb{N}_0)\Rightarrow p:(\mathbb{N}=\mathbb{N})$$

▶ forces multiple equalities $\mathbb{N} = \mathbb{N}_0$

 \Rightarrow terms of equality are paths

Consequences of path interpretation

A way to construct paths in topology:

Definition (Covering)

A surjective smooth map $\pi: E \rightarrow B$ that is locally homeomorphic.

Defining transport:

- ► take path p in base space B and point b in $\pi^{-1}(p(1))$
- path p is lifted to path p_{*} ending in b
- ightharpoonup transport gives start $p_{\star}(0)$

More paths means more equalities \Rightarrow identity type is indeed weak.

Ε

Homotopy type theory (HoTT)

Awodey, 2006

Gives *homotopy* interpretation to equality type:

$$p,q: a =_X b$$
 $r,s: p =_{Id_X(a,b)} q$

⇒ alternative foundation for mathematics based on type theory and topology

Origin univalence

Grayson, 2018

Figure: Voevodsky (1966 - 2017)

Definition (Univalent type theory)

Type theory + univalence axiom (also homotopy type theory)

... these foundations seem to be faithful to the way in which I think about mathematical objects in my head ...

faithful = univalent in a Russian translation of Boardman (2006)

Practical limitations of univalence

The univalence axiom adds:

- intuitive explanation of equality
- a definition of equivalence and connection with equality
- ▶ field of mathematics: HoTT

But does not:

- make all proofs in mathematics easier or shorter
- eliminate need for proofs of equivalence

Computing with univalence Huber, 2015

Question posed in 2013:

Can the univalence axiom be implemented in computers such that

- equalities are really paths
- calculations with very simple types as N still work?

Canonicity of \mathbb{N} in cubical type theory:

$$t \equiv ua(...) \rightsquigarrow u \equiv S(...(0)...) : \mathbb{N}$$

Cubical model

Cubical type theory

Cohen et al., 2015

A constructive extension of HoTT with dimension variables $i, j, k : \mathbb{I}$ (cubes) as primitives:

Figure: Discrete "n-cubes". Huber (2016)

- univalence becomes constructable
- computational interpretation for univalence

Are cubes a good idea?

EnigmaChord, 2016

Figure:

Cubes model homotopy

Altenkirch, Brunerie, Licata, et. al 2013

Homotopy groups are defined as equivalence classes of smooth embeddings:

$$[0,1]^n \rightarrow X$$

In HoTT, higher-dimensional eqalities behave like these embeddings

Level	Types	Cubes	Topology
1 2	p, q : (a = b) r, s : (p = q)		line path homotopy
 n		 n-hypercube	 n-dimensional homotopy

Operations on cubes

Bezem, Coquand, Huber et al., 2013

Figure: Daniel Kan (1927 — 2013)

Necessary for modelling HoTT:

- ightharpoonup composition \Rightarrow equality type
- ▶ glueing ⇒ univalence

Presheaf model on $\mathscr C$ Dybjer, 1994

Give interpretation for stuff in type theory:

- ightharpoonup base category $\mathscr C$ contains "extra tools" for model
- ightharpoonup every context Γ is modelled as presheaf on \mathscr{C} , denoted $\widehat{\mathscr{C}}$.
- lacktriangle types and terms also interpreted in $\widehat{\mathscr{C}}$

Goals:

- verify consistency of type theory in sets
- justify primitives for implementations

Denoted as "presheaf model $\widehat{\mathscr{C}}$ ".

Contexts in presheaf model $\widehat{\mathscr{C}}$

Definition (Presheaves $\widehat{\mathscr{C}}$)

Contravariant functors $\mathscr{C} \to \mathbf{Set}$

- generalize sheaves (see sheafication)
- model contexts

Figure: A representation of a preseheaf

Contexts in presheaf model $\{0,1\}$

Example (Reflexive directed graph) Take $\mathscr{C} = \{0,1\}$ and $\mathsf{Hom}_\mathscr{C} = \{B,E,R\}$, $\Gamma \in \widehat{\{0,1\}}$, then Applying functorial identities:

Figure: Reflexive graph

Types in presheaf model $\widehat{\mathscr{C}}$

Lemma (Types in a presheaf model)

If $\Gamma \in \widehat{\mathscr{C}}$ a context, then the types are $\left\{ (\Delta, \sigma) \mid \Delta \in \widehat{\mathscr{C}}, \sigma \in \mathit{Hom}_{\mathit{Ctx}}(\Delta, \Gamma) \right\}$.

Helps to characterize types without using presheaves explicitly.

Types in a presheaf model $\widehat{\{0,1\}}$

Example (Dependent directed reflexive graph) Applying previous lemma to the type A in $\{0,1\}$:

CTT as a presheaf model

Dimension variables and cubes have an abstract representation as "hypercubes" in a base category:

Figure: Presheaf acting on cubes

- proves consistency of CTT and HoTT
- justifies primitives used in implementations

Cube category

Definition ("Cube" □)

Category with:

- ▶ objects: $\{I \mid |I| < \infty, I \subset \mathbb{A}\}$
- ► morphisms $J \rightarrow I$: maps $I \mapsto dM(J)$
 - distributive lattice
 - $x \land 0 = 0, x \lor 1 = 1$
 - ightharpoonup
 abla 0 = 1 and
 abla 1 = 0

A: countable set of "dimension variables"

Figure: A simple lattice

Contexts in presheaf model $\widehat{\Box}$

Example (Cubical contexts ("cubical sets"))

A presheaf $\Gamma \in \widehat{\square}$ is a functor $\square \to \mathbf{Set}$

- ▶ $\Gamma \in \widehat{\square}$ applied to $\{i,j\}$ gives square $\rho \in \Gamma(i,j)$
- ▶ morphisms in lattice dM(i,j) give corners of ρ

Types in presheaf model $\widehat{\Box}$

Type A can be represented by a context and a morphism on top of Γ :

- ▶ the ρ ∈ Γ(i) is an edge of a square
- endpoints $\rho(0), \rho(1)$ can be lifted to points in the type $u(0), u(1) \in A(i, \rho)$

Partial types in $\widehat{\Box}$

Bezem, Coquand, Huber 2013

Partial type A(i/0) is a subtype of $A[(i=0) \mapsto A(i/0)]$ on top of sub-subpolyhedron of cubes $(i=0) \lor (i=1)$:

- ightharpoonup A behaves like a new context Δ by lemma
- ▶ partial type A(i/0) is the left side of A:

Other types in presheaf model $\widehat{\Box}$

In the presheaf model on \square :

- types more complicated
- types no longer simply nested graphs

Interpreting types in presheaf model \square hard but possible.

... transition from interpretation in model to syntax of types

Path type

Bezem, Coquand, 2013

Syntactical definition of Path type with typing rules:

$$\frac{i: \mathbb{I} \vdash t: A \qquad i: \mathbb{I} \vdash t(i/0) = a: A \qquad i: \mathbb{I} \vdash t(i/1) = b: A}{\left(\right) \vdash \langle i \rangle \ t: \text{Path } a \ b}$$

- almost models equality type
- ▶ not necessarily transitive ⇒ composition operation

$$\begin{array}{ccc}
 a & ---- & c \\
 refl & q & j \\
 a & \xrightarrow{p i} & b
\end{array}$$

Figure: Transitivity can be proven with composition operation.

CTT as extension for HoTT

Other HoTT types interpreted in CTT:

- product, sum types
- natural numbers

Univalence proven with concepts from (Streicher, Voevodsky, Kapulkin et al. 2006 – 2012):

- simplicial sets replaced by cubical sets
- partial types and glueing construction conserved

Figure: Every simplicial complex is a simplicial set

Proving univalence

Cohen, Coquand, Huber, Moertberg (2015)

Axiom (Univalence axiom)

Given types $X, Y: \mathcal{U}$ for some universe \mathcal{U} , there is a map $\Phi_{XY}: (X = Y) \to (X \simeq Y)$ that is an equivalence of types.

Proof.

- 1. construction inverse map ua: $(X \simeq Y) \rightarrow (X = Y)$ with Glue construction.
- 2. for any partial $f: X \to Y$, Glue $[\varphi \mapsto (X, f)] Y \simeq Y$
- 3. for any type Y, $\sum_{X} X \simeq Y$ contractible
- 4. existence of induction principle for $X \simeq Y$.
- 5. the trivial map $p: X = Y \rightarrow X \simeq Y$ is an inverse "up-to-path" of ua
- \Rightarrow the map ua $\equiv \Phi_{X,Y}^{-1}$ is proper inverse and $\Phi_{X,Y}$ equivalence

Constructing ua

Definition

ua:
$$\forall X Y: \mathcal{U}, X \simeq Y \rightarrow X = Y$$

Input:

- partial equivalence f, type X
- a dimension variable or parameter i

Output:

- ▶ ua $f \equiv \text{Glue } [(i=0) \mapsto (X, f), (i=1) \mapsto (X, \text{idEquiv } Y)] Y$
- ua f is path with endpoints X and Y.

Applications

Applying ua from univalence

Example (Monoids)

$$M_1 \equiv (\mathbb{N}, (m, n) \mapsto m + n, 0)$$

and

$$M_2 \equiv (\mathbb{N}_0, (m, n) \mapsto m + n - 1, 1)$$

▶ are isomorphic by

$$\lambda n \rightarrow n+1$$

▶ (path-) equal in CTT

Encoding the structures in Agda

```
notZero n = \Sigma N (\lambda m \rightarrow (n \equiv (m + 1)))
N<sub>0</sub> = \Sigma N (\lambda n \rightarrow notZero n)
```

Figure: Definition of \mathbb{N}_0 with sum type.

```
M<sub>2</sub> : Algebra.Magma _ _ _
M<sub>2</sub> = record {
    Carrier = N<sub>0</sub> ;
    _≈_ = (_≡_) ;
    _·_ = op<sub>2</sub> ;
    isMagma = ... ,
}
```

Figure: Problem reduced to magmas.

Equality of sets $\mathbb{N} = \mathbb{N}_0$

```
f : \mathbb{N} \to \mathbb{N}_0

f n = (suc n , (n , refl))
```

Figure: Bijections are equivalences for (set-like) types

```
univalence/ua returns equality \mathbb{N} \equiv \mathbb{N}_0
```

```
fEquiv : \mathbb{N} \simeq \mathbb{N}_0

fEquiv = (f , isoToIsEquiv (iso f g l' r'))

fEq : \mathbb{N} \equiv \mathbb{N}_0

fEq = ua fEquiv
```

Figure: The equality

Equality of structures $M_1 = M_2$

If $M: M_1 = M_2$, then $\forall i \in [0,1]$, M(i) magma \Rightarrow point-wise definition:

- ► carrier set *M*(*i*) given by fEq i
- ▶ operator op_i : $(m,n) \mapsto m+_i n$ on M(i) is defined with transport of arguments m,n from fEq i to \mathbb{N}

proofs of magma properties can be transported over M: commutativity, etc.

HoTT/univalence/ua gives topological interpretation to invariance of algebraic properties ...

Topological transport of arguments

Figure: Transport of the arguments

Conclusion

Licata, Harper, Cavallo, Orton et al.

- HoTT redefines equality
- CTT implements HoTT
- ► HoTT gives formulism for equivalent structures.

Other introductions to cubical type theory: [Hub16] and [Ort19] Recent interesting publications:

- computational type theory is an alternative implementation [AHH18]
- composition operation CTT may not be too strong [CM19]
- ▶ modelling $\widehat{\Box}$ and Glue with language of topoi or other axioms to simplify CTT and composition operations [OP17], [Ort19]

For Further Reading I

Thanks for watching!
This presentation and full text:

https://github.com/wvhulle/ctt-presentation Source code application:

https://github.com/wvhulle/transport-magmas

Carlo Angiuli, Robert Harper, and Kuen-Bang Hou, Cartesian cubical computational type theory: Constructive reasoning with paths and equalities, 27th EACSL Annual Conference on Computer Science Logic (CSL 2018), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018, Available on https:

//www.cs.cmu.edu/~rwh/papers/cartesian/paper.pdf.

Evan Cavallo and Anders Mörtberg, A unifying cartesian cubical type theory, Available on http://www.cs.cmu.edu/~ecavallo/works/unifying-cartesian.pdf.

For Further Reading II

- Simon Huber, Cubical interpretations of type theory, Ph.D. thesis, University of Gothenburg, Gothenburg, Sweden, November 2016, Available on http:
 //www.cse.chalmers.se/~simonhu/misc/thesis.pdf.
- lan Orton and Andrew M. Pitts, *Decomposing the univalence axiom*, arXiv (2017).
- Richard Ian Orton, Cubical models of homotopy type theory-an internal approach, Ph.D. thesis, University of Cambridge, 2019, Text available at https://www.repository.cam.ac.uk/handle/1810/289441 and code on https://doi.org/10.17863/CAM.35681.

