一氧化氮对小麦叶片镍毒害的缓解作用*

王松华, 周正义, 何庆元, 王晓鹏, 宋李红, 陆晓明

(安徽科技学院生命科学学院,安徽 蚌埠 233100)

摘要:采用溶液培养法研究了重金属镍 (Ni) 对扬麦 158 (Triticum aestivum L) 幼苗生长的影响及外源一氧化氮 (NO) 对 Ni 毒害的缓解作用。结果表明, 100 μmol/L Ni 处理显著抑制小麦幼苗生长,导致叶绿素含量下降,丙二醛 (MDA) 含量显著升高,且叶片过氧化物酶 (POD)、超氧化物歧化酶 (SOD) 和谷胱甘肽转硫酶 (GST) 等抗氧化酶活性升高。400 μmol/L 硝谱钠 (SNP, NO 供体) 预处理 2 d, 能够明显减轻 Ni 毒害,使叶绿素和 MDA 含量基本恢复至对照水平。NO 可能是通过提高 APX 和 GR 等抗氧化酶的活性及谷胱甘肽含量而增强植株抗氧化能力,显著减轻由 Ni 导致的叶片 Ca 和 Fe 含量下降而增强小麦幼苗抵御 Ni 毒害的能力。

关键词:小麦;镍;一氧化氮;抗氧化酶

中图分类号: Q 945 文献标识码: A 文章编号: 0253 - 2700 (2007) 01 - 115 - 07

Nitric Oxide Alleviates the Nickel Toxicity in Wheat Seedlings

WANG Song-Hua, ZHOU Zheng-Yi, HE Qing-Yuan, Wang Xiao-Peng, SONG Li-Hong, LU Xiao-Ming

(Life Science College, Anhui Science and Technology University, Bengbu 233100, China)

Abstract: Effects of nickel on the growth of wheat seedlings cultivated in solution and the alleviation of nitric oxide (NO) on the nickel toxicity were explored . Treatment of nickel at $100~\mu mol/L$ caused dramatically reduction in seedling growth, decrease in chlorophyll levels and increase in MDA levels , and the increase in the activities of anti-oxidant enzymes , superoxide dismutase (SOD) , guaiacol peroxidase (POD) , and glutathione S-transferase (GST) in leaves . However , pretreatment of sodium nitroprusside (SNP) , a NO donor , at $400~\mu mol/L$ for 2 days alleviates significantly the nickel-induced symptom . The levels of chlorophyll and MDA in NO-pretreated seedlings were restored to the levels in the control . It is postulated that NO enhances the capacity of antioxidation in seedlings by increasing the activity of ascorbate peroxidase (APX) and glutathionein reductase (GR) , and the levels of glutathione , and mitigates reduction of contents of calcium and iron induced by nickel .

Key words: Wheat (*Triticum aestivum*); Nickel; Nitric oxide; Antioxidant enzyme

一氧化氮 (Nitric oxide, NO) 是最简单的生物活性分子之一。长期以来,植物学家一直把其当作有害的空气污染物。近十几年的研究表明,NO 是一种与乙烯同等重要的新型植物激素,在植物体内主要通过一氧化氮合酶 (Nitric oxide synthase, NOS) 和硝酸还原酶 (Nitrate reductade, NR) 催化合成,广泛参与植物生命活动的许多

过程,尽管其机理仍有待进一步研究。NO作为信号分子可促进植物不定根的发生、种子萌发、打破种子休眠等 (Lamotte 等,2005)。同时,NO具有缓解植物生物与非生物胁迫作用,如病原菌侵染、盐害、紫外线照射、干旱胁迫等 (An 等,2005; Zhang 等,2005)。Beligni and Lamattina (1996) 证实了外源NO能缓解马铃薯因喷施敌

收稿日期: 2006-03-10, 2006-05-23 接受发表

作者简介: 王松华 (1970-), 硕士, 副教授。E-mail: shwang70@yahoo.com.cn

^{*}基金项目:安徽省教育厅科研项目 (2005KJ155)、安徽省重点科研项目 (04023070)、安徽技术师范学院专项基金 (ZRC200426)

草快和百草枯两种除草剂而引起的活性氧介导的氧化损伤。Zhao 等(2004)研究表明 NO 能够刺激芦苇质膜 H⁺-ATPase 基因的表达而降低细胞对Na⁺ 吸收、提高细胞对 K⁺ 吸收,增强芦苇耐盐性。NO 可减轻 Cd 胁迫对向日葵叶片、Cd 胁迫对羽扇豆根系及 Al 对决明子根系、Cu 对水稻离体叶片的伤害(Laspina 等,2005; Wang and Yang, 2005; Yu 等,2005; Kopyra and Gwozdz, 2003)。外源 NO 能否缓解植物镍(Ni)毒害国内外尚少见报道。

Ni 是高等植物的必需微量元素 (Eskew 等, 1983),参与氮素利用、叶片花序衰老的调控及 抗真菌病害等生理过程,也是植物脲酶活性中心 组成成分。然而,过量 Ni 会对植物产生毒害作 用。Ni 虽不能象 Cu、Fe 等可变价金属发生 Fenten型 Haber-Weiss 反应催化超氧阴离子(O2) 和过氧化氢 (H2O2) 生成羟基自由基,但过量 Ni也可诱导植物细胞活性氧水平升高、诱导膜 脂过氧化使细胞受害甚至死亡,从而加速植物衰 老,严重地影响水稻、小麦等农作物产量和品质 (王海华等, 2001; Baccouch 等, 1998)。 植物细 胞内的 SOD、POD、CAT 和 APX 等抗氧化酶可以 在一定程度上抵御 Ni 胁迫造成的氧化迸发。一 般认为,POD 活性的升高是植物对逆境所造成的 氧化胁迫的保护反应, 但近期的研究表明 POD 在植物衰老过程中活性升高,抗逆境胁迫能力弱 的品种 POD 活性较抗逆境胁迫能力强的高,因 而认为是产生 H₂O₂ 有关的酶 (Neill 等, 2002; Mittler, 2002; Tewari 等, 2002; 程艳丽和宋纯 鹏,2005)。GST 则能将膜脂过氧化产生的有机 氢过氧化物催化还原成毒性较小的单羟基醇类。 SOD 能将 Q 歧化为 H Q , CAT 和 APX 则负责 清除 H₂O₂。此外,普遍存在于植物叶片和根系 中抗坏血酸 - 谷胱甘肽 (AsA-GSH) 循环也是清 除 H₂O₂ 的重要途径。这一途径主要由 3 种可以 相互转化的氧化还原对 (还原型 氧化型谷胱甘 肽、还原型 氧化型抗坏血酸、还原型 氧化型辅 酶 I) 及 4 种氧化还原酶 (抗坏血酸过氧化物酶 APX、单脱氢抗坏血酸还原酶、双脱氢抗坏血酸 还原酶、谷胱甘肽还原酶 GR) 组成,其中 APX 和 GR 为该途径的关键酶 (Mittler, 2002)。植物

各种抗氧化酶和 AsA-GSH 循环参与过量重金属处理时活性氧的清除。Baccouch 等 (1998) 研究 玉米叶片对过量 Ni 处理的反应时观察到 SOD、POD、CAT、APX 和 GR 活性均上升。我们前期的研究亦表明,过量 Cu 处理印度芥菜可刺激根中抗坏血酸和谷胱甘肽含量的上升,提高 APX 和 GR 酶活性,从而增强 AsA-GSH 循环清除 H_2O_2 的能力 (Wang 等,2004)。

本文以扬麦 158 为材料,采用溶液培养法,探讨外源 NO 对 Ni 毒害下小麦幼苗生长及各种抗氧化酶活性的影响,发现一定浓度的外源 NO 预处理对小麦叶片 Ni 毒害具有缓解作用。

1 材料与方法

1.1 材料培养与处理

选取均一、饱满的扬麦 158 (Triticum aestivum L Yangmai 158) 种子, 用 0.1 % HgCl₂ 消毒 5 min, 自来水冲 洗3~4次,蒸馏水冲洗2~3次。于(22±2) 培养箱 内、漂浮在塑料网上暗催芽 4 d。选取长势一致的幼苗转 至 1/2 强度 Hoagland 营养液中培养 8 d,用 HCl 或 NaOH 调 pH 至 5.5 ± 0.1。用 NiCl₂·6H₂O 配制成浓度分别为 0、 50、100、200、400 μmol/L的 1/2 强度 Hoagland 处理液或 用硝普钠 (Sodium nitroprusside SNP, NO 供体) 配制成浓 度分别为 0, 50, 100, 200, 400, 800, 2000 μmol/L和 1/2 强度的 Hoagland 处理液,用 HCl 或 NaOH 调 pH 至 5.5 ± 0.1, 各种处理设3个重复,隔2d更换一次处理液。处 理4d后,根据小麦幼苗的生长情况,筛选出合适的SNP 和 NiCla 浓度用于进一步实验。外源 NO 对 Ni 毒害缓解 效应实验设以下 3 个处理, (1) 1/2 强度 Hoagland 营养液 (CK, 不加 Ni 和 SNP); (2) 400 μmol/L SNP; (3) 100 μmol/L Ni; (4) 400 μmol/L SNP 预处理 2 d +100 μmol/L Ni。 其中处理组 (2) 和 (4) 先用400 μmol/L SNP 预处理, 而 其他组用 Hoagland 营养液处理 2 d 后, (3) 和 (4) 再加 Ni 处理 4 d, 收集第 2 位叶, 液氮速冻, -30 冰箱冷冻 贮存待用。

1.2 生理指标的测定

取 0.5 g 叶片按 1 5 (w/w) 加入提取液,冰浴研磨至匀浆,冷冻离心 (10 000 r/min, 30 min),取上清液作为待测液。丙二醛 (MDA) 含量测定参照赵世杰等 (1994)的方法。抗坏血酸过氧化物酶 (APX, EC1.11.1.11)活性测定参照 Nakano and Asada (1981)的方法。谷胱甘肽还原酶 (GR, EC1.6.4.2)活性测定参照 Knorzer等 (1996)的方法。谷胱甘肽转硫酶 (GST, EC2.5.1.18)活性测定参照 Komives等 (1985)的方法。过氧化氢酶

(CAT, EC1.11.1.6) 活性测定参照 Ananieva 等 (2004) 的方法。蛋白质含量测定参照 Brandford (1976) 的方法。谷胱甘肽 (CSH) 含量和过氧化氢 $(H_2 O_2)$ 含量测定参照 Wang 等 (2004) 的方法。Ni、Fe 和 Ca 含量的测定参照 Yang 等 (2001) 的方法。

1.3 数据统计

以上实验均重复3次,取均值,数据统计采用 SPSS10的ANOVA分析软件处理。

2 结果与分析

2.1 不同浓度 SNP 和 Ni 对小麦幼苗地上部生长的影响

 $0 \sim 2~000~\mu mol/L~SNP~$ 处理4~d,小麦幼苗地上部生物量变化情况如图 1A~ 所示。 $400~\mu mol/L~$ 以下 SNP~ 处理组植株生长与对照均无显著差异(p > 0.05)。当 SNP~ 浓度达到 800~ 和 $2~000~\mu mol/L~$ 时则显著抑制小麦幼苗地上部生长(p < 0.05),抑制率分别为 26%~ 和 45%~ 。鉴于此,在以下探讨NO 缓解小麦叶片 Ni~ 毒害效应实验时采用 400~ $\mu mol/L~$ 浓度的 SNP。

如图 1B 所示, $50 \, \mu mol/L \, Ni \,$ 处理 4 d 已显著 抑制幼苗的生长 (p < 0.05),而 $100 \, \mu mol/L \, Ni \,$ 处 理抑制率达 $55 \, \%$,且小麦幼苗表现出明显的 Ni 毒害症状,叶片黄化,叶组织坏死形成枯斑。随着处理浓度的增加,枯死叶片逐渐增多, $Ni \, \mu$ 制生长和发育作用更加明显, $400 \, \mu mol/L \, Ni \,$ 则为小麦幼苗的致死浓度(资料未列出)。

一般认为,重金属对植物生长抑制率为50%左右的浓度为中等浓度,此浓度的重金属已

对植物生长发育造成一定的伤害,但此时植物又能表现出一定的重金属抗性。鉴于此,在以下探讨外源 NO 缓解小麦叶片 Ni 毒害效应实验时设置对照 (CK)、400 μmol/L SNP (NO)、100 μmol/L Ni (Ni) 和 100 μmol/L Ni + 400 μmol/L SNP (Ni + NO) 4 种处理。

2.2 NO 对 Ni 胁迫下小麦幼苗生长和叶绿素含量的影响

由图 2A 可知, 经 400 μmol/L SNP 预处理 2 d 的小麦幼苗再用 100 μmol/L Ni 处理 4 d, 其地上部鲜重显著高于单一 Ni 处理组。且其生长状况明显好于 100 μmol/L Ni 单独处理组,叶片基本未出现失绿及明显的枯死黄斑。然而 NO 并未完全缓解 Ni 毒害作用,其地上部鲜重仍显著低于对照组。(预备实验显示,800 μmol/L SNP 预处理不但不能缓解 100 μmol/L Ni 的毒害作用,反而会加剧 Ni 毒害作用)。

 $100\,\mu\text{mol/L Ni}$ 处理 4 d,小麦幼苗叶片叶绿素含量 显著下降至对照的 46% (p < 0.05)。400 $\mu\text{mol/L SNP预处理可显著减轻 Ni 胁迫造成的叶绿素含量下降,使其叶绿素含量基本恢复至对照水平。SNP 单独处理不影响叶绿素含量(图 2B)。$

2.3 NO 对 Ni 胁迫下小麦叶片中丙二醛、H₂ O₂ 和 GSH 含量的影响

MDA 是膜脂过氧化产物,其含量是细胞膜脂质过氧化作用水平的反映。如图 3A 所示,100 $\mu mol/L$ Ni 处理诱导 MDA 含量显著上升至对照的 1.52 倍(p < 0.05)。400 $\mu mol/L$ SNP 预处理可显

图 1 不同浓度 SNP (A) 和 Ni (B) 对小麦幼苗生长的影响

Fig. 1 Effects of SNP (A) and Ni (B) at various concentrations on the growth of wheat seedlings 注: *表示与对照比较差异显著 p < 0.05。 * Significantly different from controls, p < 0.05.

图 2 不同处理对小麦幼苗生长和叶绿素含量的影响

Fig. 2 Effects of different treatment on the growth and the chlorophyll content of wheat seedlings CK: control; NO: 400 μ mol/L SNP; Ni: 100 μ mol/L Ni; NO + Ni: 400 μ mol/L SNP + 100 μ mol/L Ni 注: 不同字母表示差异显著 p < 0.05。 Different letters within columns indicate significantly different p < 0.05

著降低 Ni 胁迫造成的植株叶片 MDA 含量的增高。SNP 单独处理不影响叶片 MDA 含量。

100 μmol/L Ni 单一处理组叶片 H₂ O₂ 含量是对照的 1.92 倍;与 Ni 单一处理相比,Ni + NO 处理组叶片 H₂ O₂ 的含量显著下降,但仍然显著高于对照(图 3B)。SNP 单独处理不影响叶片 H₂ O₂ 含量。

100 μmol/L Ni 处理叶片中 GSH 含量上升为对照的 1.39 倍; NO+ Ni 处理组 GSH 含量进一步上升至对照的 1.64 倍 (图 3C)。SNP 单独处理不影响叶片 GSH 含量。

2.4 NO 对 Ni 胁迫下小麦叶片中 POD、CAT、APX、GST、GR 和 SOD 活性的影响

由表 1 可知, 100 μmol/L Ni 处理下, POD、CAT、APX、GST、GR 和 SOD 活性均有不同程度的升高,但与对照相比有显著差异的只有 POD、APX、GST 和 SOD,分别上升至对照的1.95、1.36、

图 3 不同处理对小麦叶片中 MDA(A)、 $H_2O_2(B)$ 和 GSH(C) 含量的影响

Fig. 3 Effects of different treatment on the MDA content (A), the $H_2\,O_2$ content (B) and the GSH content (C) in wheat leaves CK: control; NO: 400 μ mol/L SNP; Ni: 100 μ mol/L Ni; NO + Ni: 400 μ mol/L SNP + 100 μ mol/L Ni

表 1 不同处理对小麦叶片 POD、CAT、APX、GST、GR 和 SOD 活性的影响 (U/mg protein)

Tabla 1	Effects of different treatment	on the activities of POD	$C\Lambda T \Lambda DY$	CST	GR and SOD in wheat leaves
1 able 1	Effects of different freatment	on the activities of FOD.	CAI, AIA,	OSI	OK and SOD in wheat leaves

Treatment	POD activity	CAT activity	APX activity	GST activity	GR activity	SOD activity
CK	$2.86 \pm 0.43c$	$64.40 \pm 4.32b$	$1.04 \pm 0.02c$	$7.12 \pm 0.82b$	$30.21 \pm 4.34b$	$38.32 \pm 1.24b$
NO	$3.04 \pm 0.72c$	$60.23 \pm 2.89 \mathrm{b}$	$1.27 \pm 0.16c$	$8.35 \pm 0.29b$	$28.39 \pm 3.68b$	$37.39 \pm 3.81b$
Ni	$5.58 \pm 0.76a$	$69.21 \pm 3.62b$	$1.42 \pm 0.06b$	$13.08 \pm 1.25a$	$38.64 \pm 2.95b$	$56.82 \pm 3.26a$
Ni + NO	$3.96 \pm 1.13b$	$86.80 \pm 1.92 a$	$2.07 \pm 0.12a$	14.48 ± 0.67a	$52.26 \pm 4.31a$	$61.34 \pm 4.28a$

1.42和1.48倍。与 Ni 单一处理相比, NO + Ni 处理组 GST 和 SOD 酶活性并不受 NO 预处理影响,但 NO 预处理能够显著提高 CAT 和 GR 酶的活性,更进一步提高 APX 活性,而显著降低 POD 酶活性。SNP 单独处理不影响叶片中 CAT 等 6 种抗氧化酶活性。

2.5 NO 对 Ni 胁迫下小麦叶片中 Ni、Ca 和 Fe 元素含量的影响

由表 2 可知,对照组检测不到 Ni 元素,100 µmol/L Ni 单一处理 4 d 时,植株叶片中 Ni 积累量达到 3.65 mg/kg。SNP预处理并不影响叶片 Ni 含量。Ni 单一处理可显著降低植株叶片中 Ca 和 Fe 的含量,而 SNP 预处理则可显著减轻由 Ni 导致的叶片 Ca 和 Fe 含量的下降,尤其是 Fe 的含量已恢复至对照水平。SNP 单独处理不影响叶片 Ca 和 Fe 元素含量。

表 2 不同处理对小麦幼苗叶片 Ni、Ca 和 Fe 含量的影响 (mg/kg)
Table 2 Effects of different treatment on the contents

of Ni, Ca and Fe in wheat leaves

Treatment	Ni content	Ca content	Fe content
CK	0.00b	57.21 ± 2.36a	10.41 ± 0.68a
NO	0.00b	$54.32 \pm 3.15 a$	11.22 ± 1.26a
Ni	$3.65 \pm 0.32a$	$42.37 \pm 1.51 c$	7.03 ± 0.44 b
Ni + NO	$3.37 \pm 0.21a$	49.98 ± 1.83b	11.84 ± 0.49a

3 讨论

Ni 虽然是高等植物生命活动必需的微量元素 (Eskew 等, 1983),但超过生理浓度的 Ni 可通过诱导活性氧的大量生成而使玉米、水鳖、水稻、拟南芥及 Ni 超积累植物天蓝遏蓝菜等植物细胞处于氧化胁迫状态,导致叶绿素含量下降、膜脂过氧化产物 MDA 含量的升高,引起植株生长受阻 (Freeman 等, 2004, 2005; 张小兰等, 2003; 王海华等, 2001; Baccouch 等, 1998)。这也为本研究结果所证实。100 µmol/L Ni 处理 4 d, 小麦幼苗叶片 H₂ Q, 含量上升近 1 倍,叶片组织中膜脂过氧化产物丙二醛含量上升 63%,叶绿素含

量降至对照 46%,植株生长抑制率达 55% (图 2、3)。这可能是由于小麦幼苗叶片中产生 H_2O_2 的 SOD 和 POD 活性显著升高,而负责清除 H_2O_2 的 CAT 和 GR 的活性无显著变化,尽管此时 APX 活性有一定程度的升高,但不足以及时清除 Ni 胁 迫产生的过量 H_2O_2 所致 (表 1, 图 3)。

研究表明,NO 具有缓解生物与非生物胁迫 的能力,且这种缓解作用可能主要是通过以下途 径调节胁迫条件下活性氧代谢实现: NO 作为 一种抗氧化剂可以直接与超氧阴离子反应产生过 氧亚硝酸根阴离子,后者可进一步与过氧化氢反 应生成亚硝酸根离子和分子氧,而直接清除活性 NO 可以间接阻断由活性氧引发的脂质过 氧: 氧化链式反应; NO 作为信号分子通过级联反 应提高 CAT、GR、APX 等抗氧化酶活性,从而能 够及时清除生物及非生物胁迫诱导产生的活性氧, 阻断膜脂过氧化、减轻细胞伤害 (Laspina 等, 2005; Poliandri 等, 2004)。NO 缓解氧化胁迫的机 制似乎在小麦幼苗叶片也存在。与 Ni 单一处理 相比,NO 和 Ni 复合处理组 SOD 活性并不受 NO 处理影响,但可以显著降低叶片中 POD 酶活性, 减少 H₂O₂ 的生成量;同时能够显著提高抗坏血 酸 - 谷胱甘肽循环的两个重要酶 APX 和 GR 酶的 活性 (表 1), 使叶片 H₂O₂ 能及时得到清除 (图 3)、减轻由 Ni 胁迫造成的氧化损伤、从而降低 叶片 MDA 的积累、保护了叶绿素免遭降解、最 终增强小麦幼苗抵御 Ni 毒害能力 (图 2)。

NO 预处理能够诱导 Ni 胁迫条件下小麦幼苗叶片 APX 和 GR 等抗氧化酶活性升高与 Laspina等 (2005) 和 Uchida 等 (2002) 研究结果一致。其可能的机理是: NO 诱导 APX 和 GR 酶编码基因的表达,从而增加其酶蛋白含量而提高酶活性; NO 对在细胞中已存在的酶蛋白进行翻译后修饰而提高酶活性 (Bogdan, 2001)。但是 NO 对抗氧化酶活性的影响亦有相反的报道,如

Clark (2000) 等发现,NO能与血红素中的 Fe 结合而可逆抑制烟草叶片 CAT、APX 和 POD 等血红素酶活性。这可能与 NO 的浓度及处理方式不同有关。此外,我们的研究表明,用 NO 供体 SNP 单独处理不并影响小麦幼苗叶片抗氧化酶的活性 (表 1),因而在 NO 和 Ni 复合处理组 POD 酶活性显著降低可能不是由于 NO 直接与 POD 血红素 Fe 结合所致。

目前,关于植物 POD 生物学功能一直是学 术界争论的话题。比较公认的观点是 POD 具有 保护(清除 ឣ 짆) 和伤害(产生 ឣ 짆) 双重效 应,其具体的作用取决于植物材料和植物不同发 育阶段 (杨淑慎和高俊凤, 2001)。 Wang 等 (2005) 的研究表明,与 AI 单独处理相比, SNP 预处理可显著降低 Al 处理时决明子根 POD 活 性,减轻 Al 对根生长的抑制作用,而 SNP 单独 处理对 POD 活性无影响,并认为 POD 活性升高 是 Al 抑制根生长的原因, 因为 POD 参与木质素 等次生代谢物的合成而使细胞伸缩性下降。Hsu and Kao (2004) 在做外源 NO 减轻离体水稻叶片 Cd 毒害时亦发现 SNP 处理可降低由 Cd 胁迫引起 的 POD 活性的升高。Kopyra and Gwozdz (2003) 在研究 NO 对 Cd 胁迫对羽扇豆根系缓解作用时 也发现 NO 抑制 POD 活性及其同工酶的表达。本 研究的结果表明,在小麦叶片遭受 Ni 胁迫时, POD 活性的升高 (表 1), 同时 H_2 O_2 水平的上升 (图3), 这可能是造成 Ni 毒害的原因之一。NO 预处理显著降低 Ni 和 NO 复合处理组 POD 活性, 使 H, O, 含量下降,从而减轻叶片 Ni 毒害。

研究表明,Cd、Pb、Ni 等重金属胁迫影响植株根系对矿质元素的吸收,导致植株体内矿质元素代谢紊乱,植株生长受阻。本研究结果显示,100 µmol/L Ni 单一处理可显著降低植株叶片中 Ca 和 Fe 的含量,这可能是营养液中过量 Ni 存在竞争性地抑制了植株根系对 Ca 和 Fe 等矿质元素的吸收,也可能是根系中大量 Ni 的积累而限制了 Ca 和 Fe 向地上部的运输,从而导致叶片失绿黄化。NO 预处理可显著减轻由 Ni 导致的叶片 Ca 和 Fe 含量的下降,尤其是 Fe 的含量已恢复至对照水平,从而维持了植物体内矿质元素代谢平衡。

目前普遍认为、GSH在抵御重金属的毒害中

有三重作用 GSH 作为 AsA-GSH 循环中的重要 成员,清除因重金属诱导产生的过量 H.Q.; GSH 能直接与¹O₂、O₂ 、OH 等活性氧 (ROS) 发生非酶促反应而清除之 (Freeman 等 2004, Kuzniak 等 2001); GSH 是 GST 的底物,可清除 因·OH 造成的膜脂过氧化物和 DNA 氧化降解产物 (Drazkiewicz 等, 2003)。Freeman (2004, 2005) 等 研究表明,正常生长的 Ni 超积累植物 GSH 含量显 著高于非超积累植物,外源水杨酸主要是通过刺 激 GSH 合成途径中的丝氨酸转乙酰酶 (SAT) 而 促进 GSH 合成,提高拟南芥 Ni 耐性。本研究结果 表明,NO单独处理并不影响小麦叶片 GSH 含量, 但 NO 预处理可显著提高 Ni 处理时 GSH 含量 (图 3)。其可能原因是; 通过级联反应提高 GR 活 性 (表 1), 加速 GSSG 向 GSH 的转化; 细胞一样, NO 通过增强 GSH 合成途径中的关键 酶 -谷氨酰—半胱氨酸合成酶基因的表达而促进 GSH 的合成 (Moellering 等, 1998); NO 作为信 号分子提高水杨酸含量,进而通过水杨酸刺激 SAT 而促进 GSH 合成。

[参考文献]

- An LZ, Liu YH, Zhang MX *et al* . 2005 . Effects of nitric oxide on growth of maize seedling leaves in the presence or absence of ultraviolet-B radiation [J] . *J Plant Physiol*, **162** : 317—326
- Ananieva EA, Christov KN, Popova LP, 2004. Exogenous treatment with Salicylic acid leads to increased antioxidant capacity in leaves of barley exposed to paraquat [J]. *J Plant Physiol*, **161**: 319—328
- Baccouch S, Chaoui A, Ferjani EE, 1998. Nickel-induced oxidative damage and antioxidant responses in *Zea mays* shoots [J]. *Plant Physiol Biochem*, **36** (9): 689—694
- Beligni MV, Lamattina L, 1999. Nitric oxide protects against cellular damage produced by methylviologen herbicides on potato plants [J]. Nitric Oxide, $\bf 3$ (3): 199—208
- Bogdan C, 2001 . Nitric oxide and the regulation of gene expression [J] . Trends in Cell Biol, 11 (2): 66—75
- Bradford MWA, 1976. Rapid and sensitive method for the quantitation of microgram quantities protein using the principle of protein-dye binding [J]. *Anal Biochem*, **72** (2): 248—259
- Cheng YL (程艳丽), Song CP (宋纯鹏), 2005. The signalling transduction pathway of hydrogen peroxide in the plant cell [J]. Science in China C: Life Sciences (中国科学), 35 (6): 480—489
- Clark D, Durner J, Navarre DA *et al* . 2000 . Nitric oxide inhibition of tobacco catalase and ascorbate poroxidase [J] . *Mol Plant-Microbe In-*

- teract, 13 (12): 1380—1384
- Drazkiewicz M, Polit ES, Krupa Z, 2003. Response of the ascorbate-glutathione cycle to excess copper in *Arabidopsis thaliana* L [J].

 *Plant Science, 164: 195—20
- Eskew DL, Welch RM, Norvell WA, 1983. Nickel: An essential micronutrient for legumes and possibly all higher plant [J]. *Science*, 222 (11): 621—623
- Freeman JL, Persans MV, Nieman K *et al* . 2004. Increased glutathione biosynthesis plays a role in nickel tolerance in *Thlaspi* nickel hyperaccumulators [J]. *Plant Cell*, **16**: 2176—2191
- Freeman JL, Garcia D, Kim D *et al* . 2005. Constitutively elevated Salicylic acid signals glutathione-mediated nickel tolerance in thlaspi nickel hyperaccumulators [J]. *Plant Physiol*, **137**: 1082—1091
- Hsu YT, Kao CH, 2004. Cadmium toxicity is reduced by nitric oxide in tice leaves [J]. *Plant Growth Regul*, 42: 227—238
- Knorzer OC, Durner J, Boger P, 1996. Alteration in the antioxidative system of suspension cultivated soybean cells (*Glycine max*) induced by oxidative stress [J]. *Physiol Plant*, **97**: 388—396
- Komives AV, Komivs T, Dutka F, 1985. Effect of thiolcarbamate herbicides on the activity of glutathione-S-transfrease in maize [J]. *Cereals Res Commun*, 13: 253—257
- Kopyra M, Gwozdz EA, 2003. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of *Lupinus luteus* [J]. *Plant Physiol Biochem*, 41: 1011—1017
- Kuzniak E, Sklodowska M, 2001. Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by *Botrytis cinerea*[J] . Plant Science, 160: 943—950
- Lamotte O, Courtois C, Pugin LBA *et al* . 2005 . Nitric oxide in plants: the biosynthesis and cell signalling properties of a fascinating molecule [J] . *Planta*, **221**: 1—4
- Laspina NV, Groppa MD, Tomaro ML *et al*. 2005. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress [J]. *Plant Science*, **169** (2): 323—330
- Mittler R, 2002 . Oxidative stress, antioxidants and stess tolerance [J] . Trends in Plant Science, 7 (9): 405—410
- Moellering D, Mcandrew J, Patel RP *et al* . 1998 . Nitric oxide-dependent induction of glutathione synthesis through increased expression of -glutamylcysteine synthesase [J]. *Archiv Biochem Bioph*, **358** (1): 74—82
- Nakano Y, Asada K, 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. *Plant Cell Physiol*, **22**: 867—880

- Neill S, Desikan R, Hancock J, 2002. Hydrogen peroxide signalling

 [J]. Curr Opon Plant Biol, 5: 388—395
- Poliandri AHB, Velardez MO, Cabilla JP *et al*. 2004. Nitric oxide protects anterior pituitary cells from cadmium-induced apoptosis [J]. *Free Radical Biol Med*, **37** (9): 1463—1471
- Tewari RK, Kuman P, Sharma PN *et al* . 2002 . Modulation of oxidative stress responsive enzymes by excess cobalt [J] . *Plant Science*, **162**: 381—388
- Uchida A, Jagendorf AT, Hibino T *et al*. 2002. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice
 [J]. *Plant Science*, **163**: 515—523
- Wang HH (王海华), Kang J (康健), Zeng FH (曾富华) et al. 2001. Effect of nickel at high concentrations on growth and activities of enzymes of rice seedlings [J]. Acta Agron Sin (作物学报), 27 (6): 953—957
- Wang SH, Yang ZM, Yang H *et al* . 2004. Copper-induced stress and antioxidative responses in roots of *Brassica juncea* L [J]. *Bot Bull Aca Sin*, **45** (3): 203—212
- Wang YS, Yang ZM, 2005. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of *Cassia tora* L [J]. *Plant Cell Physiol*, **46** (12): 1—9
- Yang H, Wong JWC, Yang ZM et al. 2001. Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids [J]. J Environ Science, 13 (3): 368—375
- Yang SS (杨淑慎), Gao JF (高俊凤), 2001. Influence of active oxygen and free radicals on plant senescence [J]. *Acta Bot Boreal-Occident Sin* (西北植物学报), **21** (2): 215—220
- Yu CC, Hung KT, Kao CH, 2005 . Nitric oxide reduces Cu toxicity and Cu-niduced NH $_4$ * accumulation in rice leaves [J] . *J Plant Physiol*, **162** (12): 1319—1330
- Zhang XL (张小兰), Shi GX (施国新), Xu QS (徐勤松) et al.

 2003. Detoxication of lanthanum against nickel in Hydrocharis dubia B
 L [J]. J Chin Rare Earth Society (中国稀土学报), 21: 81—84
- Zhang H, Shen WB, Zhang W et al. 2005. A rapid response of amylase to nitric oxide but not gibberellin in wheat seeds during the early stage of germination [J]. Planta, 220: 708—716
- Zhao LQ, Zhang F, Zhang LX, 2004. Nitric oxide functions as a signal in salt resistance in the calluses two ceotypes of reed [J]. *Plant Physiol*, **134**: 849—857
- Zhao SJ (赵世杰), Xu CC (许长成), Zou Q (邹琦) *et al*. 1994.
 Improvements of malondialdehyde in plant tissues [J]. *Plant Physiol Commun* (植物生理学通讯), **30** (3): 207—210