Fraction Physics: Ledger v1.3

Minimal-Description-Length for the Constants

Evan Wesley

August 2025

Contents

1	Protocol (anti-numerology guardrails)	1
2	Ledger (frozen integers with decimals)	1
3	Scoring (single-line rule)	3
4	Muon $g-2$ (QED block consistency)	3
5	CKM Geometry and Rare-Decay Cores	3
6	PMNS / Neutrinos	4
7	Quantum Gravity: Structured Absence (toy monitor)	4

Abstract

This is a fully static build of my Fraction Physics ledger: exact rational **Locks**, derived identities and predictions, compact CKM/PMNS geometry, a QED g-2 consistency block seeded by an exact α , rare-decay cores, EW/mass-ratio checks, flat Λ CDM fractions, and a small "structured absence" monitor. All decimals are precomputed (no runtime math), and we use $\overline{\rm MS}$ notation (no '\=' macros).

1 Protocol (anti-numerology guardrails)

- R1. Search space: primitive rationals p/q with small description length (qualitative here).
- **R2.** Scheme/scale: each entry declares a scheme/scale; comparisons never mix schemes silently.
- **R3**. Freeze & score: once published, integers are fixed. New data only update z-scores on the scoreboard.
- **R4.** Out-of-sample digits: crisp identities (e.g. $\sin 2\beta = \frac{119}{169}$) are pre-announced and tracked.

2 Ledger (frozen integers with decimals)

All fractions are exact; decimals are for audit only.

QED / Electroweak

Quantity	Exact	Decimal	Scheme/Scale	Type
Fine structure (inverse)	$\alpha^{-1} = \frac{361638}{2639}$ $\alpha = \frac{2639}{361638}$	137.035998484	on-shell $(\alpha(0))$	Lock
Fine structure	$\alpha = \frac{2639}{361638}$	0.007297352601	on-shell $(\alpha(0))$	Lock
Weak mixing	$\sin^2\theta_W = \frac{3}{12}$	0.2307692308	$\overline{\mathrm{MS}}$ at M_Z	Fit/Toy
Strong coupling	$\alpha_s(M_Z) = \frac{13}{84419}$	0.117900000	$\overline{\mathrm{MS}}$ at M_Z	Lock

CKM (priors and identities)

Parameter/Observable	Exact	Decimal	Type
λ	$\frac{2}{9}$	0.22222222	Lock
A	$ \frac{2}{9} $ $ \frac{21}{25} $ $ \frac{3}{20} $ $ \frac{7}{20} $	0.84	Lock
$ar{ ho}$	$\frac{3}{20}$	0.15	Lock
$ar{\eta}$	$\frac{7}{20}$	0.35	Lock
$\sin 2\beta$	119 169	0.704142012	Prediction
$J_{ m CKM}$	$\frac{197,568}{6,643,012,500}$	2.97407×10^{-5}	Derived
$\frac{ V_{td} ^2}{ V_{ts} ^2}$	$\lambda^2[(1-\bar{\rho})^2+\bar{\eta}^2]$	0.0417283951	Derived

PMNS (angles, phase, first row)

Lock	Exact	Decimal	Type
$\sin^2 \theta_{12}$	$\frac{7}{23}$ $\frac{2}{89}$ $\frac{9}{16}$	0.304347826	Lock
$\sin^2 \theta_{13}$	$\frac{2}{89}$	0.0224719101	Lock
$\sin^2 \theta_{23}$	$\frac{9}{16}$	0.5625	Lock
$\delta_{ m PMNS}$	$-\pi/2$	maximal	Lock
$ U_{e1} ^2$	$\frac{1392}{2047}$ 609	0.680019541	Derived
$ U_{e2} ^2$	$\frac{609}{2047}$	0.297508549	Derived
$ U_{e3} ^2$	$\frac{2}{89}$	0.0224719101	Derived

$Neutrino\ splittings\ (illustrative)$

Quantity	Exact	Decimal
$\begin{array}{c} \Delta m_{31}^2 \\ \Delta m_{21}^2 \end{array}$	$\begin{array}{c} \frac{1}{400} \ eV^2 \\ \frac{1}{13600} \ eV^2 \end{array}$	$2.500 \times 10^{-3} \text{ eV}^2$ $7.352941 \times 10^{-5} \text{ eV}^2$

Cosmology (flat Λ CDM ledger)

Quantity	Exact	Decimal	Type
Matter fraction Dark energy Split Hubble constant	$ \Omega_m = \frac{63}{200} \Omega_{\Lambda} = \frac{137}{200} \Omega_b: \Omega_c = 14:75 H_0 = \frac{337}{5} \text{ km s}^{-1} \text{ Mpc}^{-1} $	0.315 0.685 — 67.4	Lock Lock Lock Lock
Implied Ω_b Implied Ω_c	$\frac{\frac{14}{89}}{\frac{75}{89}}\Omega_m$	0.04955 0.26545	Derived Derived

Electroweak / mass-ratio checks

Ratio	Exact	Decimal	Type
$\frac{M_W/M_Z}{M_t/M_Z}$ M_W/v	$\begin{array}{r} 901479375\\ \hline 1022701703\\ \hline 1219404375\\ \hline 643896907\\ \hline 17807\\ \hline 54547\\ \end{array}$	0.001100000	Lock Lock Lock
Custodial snapshot	$1 - (M_W/M_Z)^2$	0.223013216	Derived

3 Scoring (single-line rule)

$$z(\mathcal{O}) = \frac{\left|\mathcal{O}_{\text{pred}} - \mathcal{O}_{\text{exp}}\right|}{\sigma}.$$
 (1)

$$\chi_{\text{eff}}^2 = \sum z^2 + \lambda_{\text{MDL}} \sum L. \tag{2}$$

4 Muon g-2 (QED block consistency)

Seed the 1–5 loop QED series with $\alpha = \frac{2639}{361638}$:

Using CODATA α instead shifts the total by only 5.917×10⁻¹²; known hadronic terms dominate any residual tension.

5 CKM Geometry and Rare-Decay Cores

With $(\lambda, A, \bar{\rho}, \bar{\eta}) = (2/9, 21/25, 3/20, 7/20),$

$$\tan \beta = \frac{7}{17}$$
, $\sin 2\beta = \frac{119}{169} = 0.704142012$, $J_{\text{CKM}} = 2.97407 \times 10^{-5}$.

Golden kaons $(K \to \pi \nu \bar{\nu})$. Using compact short-distance placeholders $X_t = \frac{37}{25}$ and $P_c = \frac{2}{5}$,

$$\operatorname{Core}(K_L) = (A^2 \bar{\eta} X_t)^2 \approx 0.133590835, \quad \operatorname{Core}(K^+) = \operatorname{Core}(K_L) + [P_c + A^2 (1 - \bar{\rho}) X_t]^2 \approx 1.791619966.$$

Leptonic B decays.

$$\frac{\mathrm{BR}(B_d \to \mu^+ \mu^-)}{\mathrm{BR}(B_s \to \mu^+ \mu^-)} = \frac{\tau_{B_d}}{\tau_{B_s}} \frac{m_{B_d}}{m_{B_s}} \frac{f_{B_d}^2}{f_{B_s}^2} \times \frac{|V_{td}|^2}{|V_{ts}|^2}, \qquad \frac{|V_{td}|^2}{|V_{ts}|^2} = 0.0417283951.$$

6 PMNS / Neutrinos

Locks:

$$\sin^2 \theta_{12} = \frac{7}{23}$$
, $\sin^2 \theta_{13} = \frac{2}{89}$, $\sin^2 \theta_{23} = \frac{9}{16}$, $\delta_{\text{PMNS}} = -\pi/2$.

Exact first row:

$$|U_{e1}|^2 = \frac{1392}{2047} = 0.680019541, \quad |U_{e2}|^2 = \frac{609}{2047} = 0.297508549, \quad |U_{e3}|^2 = \frac{2}{89} = 0.0224719101.$$

Quark–lepton complementarity (indicative): $\theta_C = \arcsin(2/9) \approx 12.78^{\circ}$ and $\theta_{12}^{(\nu)} \approx 33.4^{\circ} \Rightarrow \theta_C + \theta_{12}^{(\nu)} \approx 46^{\circ}$.

7 Quantum Gravity: Structured Absence (toy monitor)

Define

$$\left(\frac{v}{M_P}\right)^2 \approx K \alpha^{\nu} \left[J_{\text{CKM}} \sin \theta_{13} \lambda^{2k}\right] (J_{\text{PMNS}})^{\epsilon}.$$

With $(\nu, k, \epsilon) = (11, 2, 1)$, $\alpha = \frac{2639}{361638}$, $\lambda = \frac{2}{9}$, and maximal leptonic CP, the static monitor evaluates to

$$K \approx 0.3573,$$
 and imposing $K = 1 \implies \nu_{\rm best} \approx 11.209$.

(This section is a toy falsifier: track whether K stays $\mathcal{O}(1)$ as mixing inputs sharpen.)

Scoreboard (drop in measurements)

Edit only the last two columns to update z.

Observable	Prediction	Measured	σ	z
α^{-1} (on-shell)	137.035998484	fill	fill	${ \cdot /\sigma}$
$\sin 2\beta$	0.704142012	fill	fill	$ \cdot /\sigma$
$ V_{us} $	0.22222222	fill	fill	$ \cdot /\sigma$
$J_{ m CKM}$	2.97407×10^{-5}	fill	fill	$ \cdot /\sigma$
$ U_{e3} ^2$	0.0224719101	fill	fill	$ \cdot /\sigma$
Ω_m	0.315	fill	fill	$ \cdot /\sigma$
H_0	$67.4 \mathrm{km s^{-1} Mpc^{-1}}$	fill	fill	$ \cdot /\sigma$
M_W/M_Z	0.881468538	fill	fill	$ \cdot /\sigma$
$\alpha_s(M_Z)$	0.117900000	fill	fill	$ \cdot /\sigma$
K (struct. absence)	0.3573			

Graveyard (near-misses; transparency)

- $\lambda = 1/4$ (too far from $|V_{us}|$ globally despite low complexity).
- $\sin^2 \theta_{13} = 1/64$ ($|U_{e3}|^2$ too large vs reactor data).

Gauge and gravitational anomalies (per generation)

With standard hypercharges (1/6, 2/3, -1/3, -1/2, -1) and optional $Y_{\nu_R} = 0$, the sums vanish:

Anomaly	Sum per generation
$\overline{[SU(3)_c]^2U(1)_Y}$	0
$[SU(2)_L]^2U(1)_Y$	0
$U(1)_{Y}^{3}$	0
$\operatorname{grav}^2 U(1)_Y$	0

Reproducibility

All decimals are hard-coded from the exact fractions above. If anyone wants to update the scoreboard, change only the "Measured" and " σ " cells.