

Atlas of Cancer Signaling Networks (ACSN) and NaviCell are user-friendly web-based environments for integrative systems biology of cancer

Inna Kuperstein

"Computational Systems Biology of Cancer"
U900 Institut Curie/INSERM/Ecole des Mines ParisTech, Paris, France

What will attract scientific community to participate in model creation, sharing and update?

Addressing the following questions:

- 1. How to ensure efficient model sharing (easy access repository)?
- 2. How to allow model exploration (efficient navigation tool)?
- 3. How to organize model curation by scientific community and model update (forum for model commenting and maintenance)?

A web tool for navigation, curation and maintenance of large models

NaviCell = map (Google Maps engine) + Blog (WordPress)
Provides advanced navigation features (semantic zooming; supports hierarchical structure of maps)

NaviCell: a web tool for navigation, curation and maintenance of large molecular interaction maps. Kuperstein I, Pook S, Cohen DPA, Calzone L, Barillot E and Zinovyev A (in revison) http://navicell.curie.fr

A web repository for available CellDesigner models

NaviCell is a web tool suitable for visualization, navigation and exposure for community curation of models from any collections or databases or for individual projects

Atlas of Cancer Signalling Networks (rationale)

http://acsn.curie.fr acsn@curie.fr

Atlas of Cancer Signalling Networks (structure)

http://acsn.curie.fr acsn@curie.fr

Atlas of Cancer Signalling Networks (features)

Atlas of Cancer Signalling Networks (content)

Map/Module	Chemical species	Proteins	Reactions	References	Creation date	Last update
Apoptosis map	1640	687	1166	595	2010	2013
AKT_MTOR	142	67	98	61		
CASPASES	197	110 28	118 30	109 20		
HIF1 MITOCH_METABOLISM	704	411	397	212		
MOMP_REGULATION	255	120	184	143		
TNF_RESPONSE	212	113	142	62		
APOPTOSIS_GENES	213	113	142	208		
Cell cycle map	165	78	165	235	2008	2011
APOPTOSIS_ENTRY	49	16	24	46		
APC	40	16	24	11		
CDC25 CYCLINA	21 18	9	14	29		
CYCLINA	31	16	31	37		
CYCLING	5	7	2	2		
CYCLIND	32	12	20	18		
CYCLINE	31	24	14	19		
CYCLINH	15	12	7	12		
E2F1	34	15	20	27		
E2F4	32	16	17	21		
E2F6 INK4	28 10	18 5	14 5	5 11		
P21CIP	31	24	15	23		
P27KIP	30	23	15	21		
RB	23	18	10	19		
WEE	10	6	4	11		
Cell survival map WNT_NON_CANONICAL	1926	554	1304	846	2011	2013
WNT_CANONICAL WNT_CANONICAL	442 201	179 336	285 492	179 221		
HEDGEHOG	351	97	245	251		
PI3K_AKT_MTOR	393	128	262	203		
MAPK	248	100	176	64		
DNA repair map	709	377	505	593	2010	2013
CHECKPOINTS	N.a.	N.a.	N.a.	N.a	2010	2015
G1_S_CHECKPOINT	66	38	34	141		
S_PHASE_CHECKPOINT	83	43	45	122		
G2_M_CHECKPOINT	98 39	47 36	61 19	176 77		
SPINDLE_CHECKPOINT CELL_CYCLE	N.a.	36 N.a.	N.a.	N.a		
G1_CC_PHASE	77	40	1N.a. 46	122		
S_CC_PHASE	114	80	47	140		
G2_CC_PHASE	16	15	26	46		
M_CC_PHASE	65	40	35	75		
DNA_REPAIR_PATHWAYS	N.a.	N.a.	N.a.	N.a		
BER	111	57	57	205		
NER MMR	90 57	48 35	36 30	125 130		
MMK HR	121	69	49	230		
NHEJ	58	37	25	158		
MMEJ	36	23	13	115		
FANCONI	115	82	54	182		
TLS	35	24	17	88		
SSA	29	19	13	75		
DR	14	3	8	44		
EMT and cell motility map	1233	571	1078	522	2012	2013
EMT_REGULATORS	296	82	199	172		
ECM CELL MATRIX ADJUGUOUS	250	98	130	146		
CYTOSKELETON BOLARITY	218 279	88 206	169	59 198		
CYTOSKELETON_POLARITY CELL_CELL_ADHESIONS	341	162	269 324	230		
TIGHT_JUNCTIONS	N.a.	N.a.	N.a.	N.a.		
ADHERENS_JUNCTIONS	N.a.	N.a.	N.a.	N.a.		
DESMOSOMES	N.a.	N.a.	N.a.	N.a.		
GAP HINCTIONS	N o	N o	N o	N a		_
ACSN global map	5905	1821	4600	2774	2013	

Comparison of connectivity (ACSN vs. REACTOME)

1					
	Chemical	Proteins	Reactions	References	Creation date
	species				
ACSN	5905	1821	4600	2774	2013
global map					

PubMed IDs distribution (ACSN vs. REACTOME)

Species

Protein

Receptor

Ion Channel

Gene

RNA

Truncated Protein

Anti Sense RNA

Simple Molecule

Phenotype

Drug

Unknown

Degraded

Protein

Receptor

n Channel

Truncated

Gene

RNA

iSenseR

Phenotype

Simple_Molecul

Drug

Unknown

Standards and tools for signaling networks construction

Visual syntax

Systems Biology Graphical Notation (SBGN)

Biological molecules and interactions representation

Tool: CellDesigner

Diagram editor for signalling networks representation

Phosphorylated

Acetylated

Ubiqutinated

Methylated

Hydroxylated

Glycosylated

Myristoylated

Protonated

Sulfated

empty

Don't Care

Unknown

ACSN DEMO

Conclusions

- -NaviCell is a tool that combines several essential features for map navigation, curation, maintenance
- -NaviCell uses existing open-source interfaces (Google Maps engine, WordPress)
- -NaviCell is a repository of available models created in CellDesigner
- -NaviCell can be used as a tool for visualization, navigation and commenting of any models in existing databases or for individual projects
- -ACSN is a repository of models related to signalling implicated in cancer
- -ACSN is created using systems biology standards and the content of ACSN is available in several exchange formats
- -ACSN is a way of representing biological information in the form of territory where biological processes are represented as continents and countries on atlas, in analogy with geographical maps

Acknowledgements

Computational Systems

Biology of Cancer Group

Institut Curie, Paris

Laurence Calzone

Simon Fourquet

David Cohen

Hie-Anh Nughen

Bruno Tesson

Guillem Rigaill

Stuart Pook

Erio Bonnet

Eric Viara

Paola Vera-Licona

Andrei Zinovyev

Emmanuel Barillot

Laboratory of Cell Signalling

Institut Curie, Paris

Celine Baldeyron

Thierry Dubois

Institut de Recherches Servier

Cancer Research & Drug Discovery,

Croissy sur Seine

Gordon Tucker

Francisco Cruzalegui

Institut Curie, Paris

Marc-Henri Stern

Tatyana Popova

Manolis Papamichos

Suylvie Robine

Daniel Louvard

Maia Chanrion

Institut Curie, Orsay

Mounira Amor-Guéret

Janet Hall

Marie Dutreix

Institut Gustave Roussy, Villejuif

Murat Saparbaev

Pilippo Roselli

Patricia Kannouche

University of California, Davis

Wolf-Dietrich Heyer

