

CORRECTION MATH II

Partie I

- 1. a) $x \in \text{Ker}(u) \iff \langle u(x), y \rangle = 0, \ \forall y \in E \iff \langle x, u^*(y) \rangle = 0, \ \forall y \in E \iff x \in (\text{Im } u^*)^{\perp}.$
- 2) D'après ce qui précède $\operatorname{Ker} u^* = (\operatorname{Im}(u^*)^*)^{\perp} = (\operatorname{Im} u)^{\perp}$.
 - b) On a dim Ker $u + \dim \operatorname{Im} u = n$ et d'après la première question dim Ker $u + \dim \operatorname{Im} u^* = n$ et dim Ker $u^* + \dim \operatorname{Im} u = n$. Donc dim Ker $u = \dim \operatorname{Ker} u^*$ et que $u = u^*$ ont le même rang.
- 2. a) Si $x \in \text{Ker}(u^*)$, alors $uu^*(x) = 0$, donc $\text{Ker } u^* \subset \text{Ker } u^{**}$. Si $x \in \text{Ker } uu^*$, alors $\langle uu^*(x), x \rangle = 0 = \langle u^*(x), u^*(x) \rangle = ||u^*(x)||^2$, donc $u^*(x) = 0$. Si $y = uu^*(x)$, avec $x \in E$, alors $y \in \text{Im } u$, donc $\text{Im } uu^* \subset \text{Im } u$. Par ailleurs dim $\text{Im } uu^* = n - \dim \text{Ker } uu^* = n - \dim \text{Ker } u = \dim \text{Im } u$.
- b) dim Ker $uu^* = \dim \operatorname{Ker} u^*$ et dim Ker $u^*u = \dim \operatorname{Ker} u$. Le résultat se déduit de la question 1-b).
- 3. Comme u est diagonalisable, la dimension de tout sous-espace propre est égale à la multiplicité de la valeur propre associée.
- 2 4. a) i) On sait que dans un espace euclidien E si F et G sont deux sous-espaces de E, $F^{\perp} + G^{\perp} = (F \cap G)^{\perp}$, donc $(\operatorname{Ker} uu^*)^{\perp} + (\operatorname{Ker} vv^*)^{\perp} = (\operatorname{Ker} uu^* \cap \operatorname{Ker} vv^*)^{\perp}$.
- ii) $x \in \ker(uu^* + vv^*) \Rightarrow \langle uu^*(x) + vv^*(x), x \rangle = \langle uu^*(x), x \rangle + \langle vv^*(x), x \rangle = 0 \Rightarrow ||u^*(x)||^2 + ||v^*(x)||^2 = 0 \Rightarrow x \in \operatorname{Ker} u^* \cap \operatorname{Ker} v^*.$ L'autre inclusion est évidente = Keruu* $\cap \operatorname{Ker} vv^*$
- b) Il est évident que $\operatorname{Im}(uu^* + vv^*) \subset \operatorname{Im} u + \operatorname{Im} v$ et d'après ce qui précède $\dim \operatorname{Im}(uu^* + vv^*) = n \dim \operatorname{Ker}(uu^* + vv^*) = n \dim \operatorname{Ker} uu^* \cap \operatorname{Ker} vv^* = \dim(\operatorname{Ker} uu^* \cap \operatorname{Ker} vv^*)^{\perp} = \dim((\operatorname{Ker} uu^*)^{\perp} + (\operatorname{Ker} vv^*)^{\perp}) = \dim(\operatorname{Im} uu^* + \operatorname{Im} vv^*) = \dim(\operatorname{Im} uu^* + \operatorname{Im} vv^*)$
- 5. a) $(u^*u)^* = u^*u$ et $(uu^*)^* = uu^*$ et pour tout $x \in E$, $\langle uu^*(x), x \rangle = \langle u^*(x), u^*(x) \rangle \ge 0$ et $\langle u^*u(x), x \rangle = \langle u(x), u(x) \rangle \ge 0$.
 - b) Si $x \neq 0$ est un vecteur propre de uu^* associé à la

valeur propre λ , alors $u^*u(u^*(x)) = \lambda u^*(x)$, de plus $u^*(x) \neq 0$ car si $u^*(x) = 0$, alors $\lambda = 0$. Donc λ est une valeur propre commune à uu^* et à u^*u . Si x_1, \ldots, x_m est une base de $\operatorname{Ker}(uu^* - \lambda \operatorname{Id})$, alors $u^*(x_1), \ldots, u^*(x_m)$ est un système

libre de Ker $(u^*u - \lambda\operatorname{Id})$. Il en résulte que $\dim\operatorname{Ker}(u^*u - \lambda\operatorname{Id}) \geq m$ et par symétrie $\dim \operatorname{Ker}(u^*u - \lambda \operatorname{Id}) = m.$

Partie II

1. a) \Rightarrow b). Soit λ une valeur propre de u et x un vecteur propre non nul associé à λ . $\langle u(x), x \rangle = \lambda \langle x, x \rangle$. Comme $x \neq 0$ et $\langle u(x), x \rangle \geq 0$, alors $\lambda \geq 0$.

b) \Rightarrow c). Comme u est symétrique, il existe une base orthonormée $(e_1, \dots e_n)$ de E formée de vecteurs propres de u. $u(e_j)=\lambda_j e_j$, avec $\lambda_j\geq 0$. On pose w l'endomorphisme de Edéfini par $w(e_j) = \sqrt{\lambda_j} e_j$. w est diagonalisable dans une base orthonormée, donc w est symétrique. Soit $x = \sum_{j=1}^{n} x_j e_j$ un vecteur de E.

$$\langle w(x), x \rangle = \sum_{j=1}^{n} \sqrt{\lambda_j} x_j^2 \ge 0.$$

Donc w est positif.

 $(c)\Rightarrow a$). Soit $x\in E$. $\langle u(x),x\rangle=\langle w^2(x),x\rangle=\langle w(x),w(x)\rangle\geq 0$. donc u est positif.

2. a) Il existe une base orthonormée (e_1, \ldots, e_n) de E formée de vecteurs propres de u. $(u(e_j) = \lambda_j e_j)$. Soit $x = \sum_{i=1}^{n} x_j e_j$ un vecteur de E. $(u(x), x) = \sum_{i=1}^{n} \lambda_j x_j^2$. Comme les $\lambda_j \geq 0$ et $x_j^2 \geq 0$, alors $[\langle u(x), x \rangle = 0 \Rightarrow \sum_{i=1}^n \lambda_j x_j = u(x) = 0]$. Il est évident que si $u(x) = 0, \langle u(x), x \rangle = 0.$

b) Si u est inversible, alors Ker $u = \{0\} = \{x \in E; \langle u(x), x \rangle = 0\}$. Donc $\langle u(x), x \rangle > 0$, Λ pour $x \in E \setminus \{0\}$.

Réciproquement si $\langle u(x), x \rangle > 0$, pour $x \in E \setminus \{0\}$, alors $\operatorname{Ker} u = \{0\}$. Donc u est injectif, donc bijectif.

3. a) $(v^*uv)^* = v^*uv$, donc v^*uv est symétrique. Soit $x \in E$, $\langle v^*uv(x), x \rangle = \langle u(v(x)), v(x) \rangle \geq v^*uv$ 0. Donc v^*uv est positif.

> b) u est symétrique positif et inversible, donc il existe $w \in S^+(E)$ inversible tel que $u=w^2$. Donc $uv=w(wvw)w^{-1}$. Donc uv est semblable à l'endomorphisme wvw qui est west inversible can of desu = (del w) = des w =0

symétrique d'après ce qui précède, donc il est diagonalisable dans une base orthonormée. Il en résulte que uv est diagonalisable. (pas nécessairement dans une base orthonormée).

- c) i) Les valeurs propres de *uv* sont les même que pour l'endomorphisme *wvw* qui sont positives.
- ii) D'après ce qui précède, uv injectif ssi wvw est injectif, ce qui est équivalent au fait que v est injectif, car w est inversible.
- iii) $u^{-1}v$ est diagonalisable et ses valeurs propres sont positives. Si $(\lambda_1, \ldots, \lambda_n)$ sont les valeurs propres de $u^{-1}v$, alors $(1+\lambda_1, \ldots, 1+\lambda_n)$ sont les valeurs propres de $(\mathrm{Id}+u^{-1}v)$. Donc $\det(\mathrm{Id}+u^{-1}v)=\prod_{j=1}^n(1+\lambda_j)\geq 1$. $\det(u+v)=\det u\det(\mathrm{Id}+u^{-1}v)\geq \det u$.
- iv) f est la composée de l'application affine $t \mapsto u + tv$ de $[0, +\infty[$ à valeurs dans $\mathcal{L}(E)$ et de l'application det qui est continue sur $\mathcal{L}(E)$. Sind $\leq s \leq t < +\infty$, alors $\det(u + tv) = \det[(u + sv) + (t s)v] \geq \det(u + sv)$, d'après ce qui précède.

Partie III

- 1. $u \leq v \iff v u$ est positif, ce qui est par définition équivalent au fait que pour tout $x \in E$. $\langle (v u)(x), x \rangle \geq 0 \iff \langle u(x), x \rangle \leq \langle v(x), x \rangle$.
- 2. a) Soit $u, v, w \in S^+(E)$. On a $u-u=0 \in S^+(E)$, donc la relation \leq est réflexive. Si $u \leq v$ et $v \leq u$, alors les valeurs propres de u-v sont nulles et comme c'est un endomorphisme diagonalisable, il est nul, donc la relation \leq est antisymétrique. Si $u \leq v$ et $v \leq w$, alors pour tout $x \in E$, $\langle (w-u)(x), x \rangle = \langle (w-v)(x), x \rangle + \langle (v-u)(x), x \rangle \geq 0$. Donc la relation \leq est transitive et donc elle est une relation d'ordre sur $S^+(E)$.
 - b) La relation \leq n'est pas totale. u et v sont positifs, $u v \in \mathcal{S}(E)$, mais ni u v ni v u n'est positif. En effet les valeurs propres de u v sont 1 et -1.
- 3. Il existe une base orthonormée (e_1, \ldots, e_n) de E formée de vecteurs propres de u. $(u(e_j) = \lambda_j e_j)$. Donc $(\alpha \operatorname{Id} u)(e_j) = (\alpha \lambda_j) e_j$ pour tout j et $\alpha \lambda_j \geq 0$. Donc $\alpha \operatorname{Id} u \in \mathcal{S}^+(E)$.
- 4. a) Comme $\langle u(x), x \rangle \le \langle v(x), x \rangle$, donc Ker $v \subset$ Ker u et d'après I-1) $(\operatorname{Im} v)^{\perp} \subset (\operatorname{Im} u)^{\perp} \iff \operatorname{Im} u \subset \operatorname{Im} v$.

- b) Si u est inversible, Ker $u = \{0\} \Rightarrow$ Ker $v = \{0\} \Rightarrow v$ est inversible. Ou encore d'après la question II-3)iii) det $v = \det((v u) + u) \ge \det u > 0$.
- 2. 5. a) \Rightarrow b). D'après III-4)-a) $uu^* \leq \lambda vv^* \Rightarrow \operatorname{Im} uu^* \subset \operatorname{Im} vv^*$. Comme $\operatorname{Im} uu^* = \operatorname{Im} u$ et $\operatorname{Im} vv^* = \operatorname{Im} v$. Donc $\operatorname{Im} u \subset \operatorname{Im} v$.
- 2) $b) \Rightarrow c$). Soit (e_1, \ldots, e_n) une base de E, comme $\operatorname{Im} u \subset \operatorname{Im} v$, pour tout $1 \leq j \leq n$, il existe $x_j \in E$ tel que $v(x_j) = u(e_j)$. Le vecteur x_j n'est pas nécessairement unique. On pose $w(e_j) = x_j$ pout tout j, avec $w \in \mathcal{L}(E)$. Alors $u = v \circ w$.
- $\mathcal{Q} \qquad c) \Rightarrow a). \text{ Si } \lambda \text{ est la plus grande valeur propre de } ww^*, \text{ alors } (\lambda \operatorname{Id} ww^*) \in \mathcal{S}^+(E).$ $uu^* = vww^*v^* = \lambda vv^* v(\lambda \operatorname{Id} ww^*)v^*. \text{ Comme } v(\lambda \operatorname{Id} ww^*)v^* \text{ est dans } \mathcal{S}^+(E). \text{ donc } uu^* \leq \lambda vv^*.$
- 6. a) i) L'application $\varphi_1(x) = \langle y, x \rangle$ est linéaire, donc différentiable $d\varphi_1(x)h = \langle y, h \rangle$. L'application $\varphi_2(x) = \langle u(x), x \rangle$ est différentiable et $d\varphi_2(x)h = \langle u(x), h \rangle + \langle u(h), x \rangle = 2\langle u(x), h \rangle$. car u est symétrique. Donc φ est différentiable sur E et $d\varphi(x)h = 2\langle y u(x), h \rangle$.
- ii) Le seul point critique c'est le point x_0 tèl que $u(x_0) = y$, car u est injective.
- b) $\varphi(x_0+h)-\varphi(x_0)=2\langle u(x_0),x_0\rangle+2\langle u(x_0),h\rangle-\langle u(x_0),x_0\rangle-\langle u(x_0),h\rangle-\langle u(h),x_0\rangle-\langle u(h),h\rangle-2\langle u(x_0),x_0\rangle+\langle u(x_0),x_0\rangle=-\langle u(h),h\rangle\leq 0.$
- c) Comme $u \leq v$. donc $\varphi \geq \psi$. Il en résulte que le maximum de φ est plus grand que le maximum de ψ soit $\varphi(u^{-1}(y)) \geq \psi(v^{-1}(y))$, pour tout $y \in E$. Comme $\varphi(u^{-1}(y)) = 2\langle y, u^{-1}(y) \rangle ||y||^2$ et $\psi(u^{-1}(y)) = 2\langle y, v^{-1}(y) \rangle ||y||^2$, il en résulte que

$$\langle y, v^{-1}(y) \rangle \le \langle y, u^{-1}(y) \rangle, \quad \forall y \in \vec{E}$$

Donc $v^{-1} \leq u^{-1}$.

Partie IV

On note $C^{\infty}(\mathbb{R})$ l'espace des fonctions de classe C^{∞} sur \mathbb{R} et soit E_n le sous espace de $C^{\infty}(\mathbb{R})$ formé des fonctions de la forme $f(t) = e^{-t^2/2}P(t)$, avec P un polynôme de degré au plus n. On muni E_n du produit scalaire $(f/g) = \int_{-\infty}^{+\infty} f(t)g(t)dt$. Pour $f \in E_n$, on pose $u(f)(t) = -f''(t) + t^2f(t)$, pour tout $t \in \mathbb{R}$.

1. Soit $f \in E_n$, $f(t) = e^{-t^2/2}P(t)$, avec P un polynôme de degré au plus n.

$$\begin{array}{l} \text{A,S:} \quad \text{u(b)-Em} \\ \text{f'}(t) = -te^{-t^2/2}P(t) + e^{-t^2/2}P'(t) \text{ et } f''(t) = -e^{-t^2/2}P(t) + t^2e^{-t^2/2}P(t) - 2te^{-t^2/2}P'(t) + t^2e^{-t^2/2}P'(t) + t^2e^{-t^2/2}P(t) = e^{-t^2/2}(P(t) + 2tP'(t) - P''(t)). \text{ Il en résulte que u est un endomorphisme de E_n.} \end{array}$$

2. a) Si $f, g \in E_n$.

$$(u(f)/g) = \int_{-\infty}^{+\infty} t^2 f(t)g(t)dt - \int_{-\infty}^{+\infty} f''(t)g(t)dt$$

On fait une intégration par parties on aura:

(3)
$$(u(f)/g) = \int_{-\infty}^{+\infty} t^2 f(t)g(t)dt + \int_{-\infty}^{+\infty} f'(t)g'(t)dt$$

4.5 + 1.4 + 1.4 b) L'identité (3) montre que u est un automorphisme symétrique et positif.

- 3. a) Soit λ une valeur propre de u associé au vecteur propre f de la forme $f(t) = e^{-t^2/2}P_k(t)$, avec P_k un polynôme de degré k, alors $-f''(t) + (t^2 k)f(t) = 0$ pour tout $t \in \mathbb{R}$. $-f''(t) + (t^2 \lambda)f(t) = e^{-t^2/2}(-(\lambda 1)P(t) + 2tP'(t) P''(t)).$ Le coefficient de plus haut degré est $(2k + (1 \lambda))a_k$, avec a_k le coefficient de t^k dans P. Il résulte que $\lambda = 2k + 1$.
- b) D'après ce qui précède si $f = e^{-t^2/2}P$ est un vecteur propre de 2k+1, alors nécessairement le degré de P est k. Si $f = e^{-t^2/2}P$ et $g = e^{-t^2/2}Q$ sont deux vecteurs propres associés à la valeur propre 2k+1, avec P et Q deux polynômes unitaires, alors f-g est encore un vecteur propre pour la valeur propre 2k+1. Comme P-Q est degré au plus k-1, donc P=Q et donc f=g. Il en résulte que le sous-espace propre associé à la valeur propre 2k+1 est de dimension 1.
- 2) Comme u est diagonalisable et les sous-espaces propres sont de dimension 1, alors les seules valeurs propres sont $\{2k+1;\ 0\leq k\leq n\}$.
- 4. Les vecteurs $g_0(t) = e^{-t^2/2}$, $g_1(t) = te^{-t^2/2}$ et $g_2(t) = (\frac{-1}{2} + t^2)e^{-t^2/2}$ sont des vecteurs propres de u associé respectivement aux valeurs propres 1, 3 et 5. Ces vecteurs sont orthogonaux car ils sont associés à des valeurs propres différentes. $||g_0|| = \pi^{1/4}$, $||g_1|| = \frac{\pi^{1/4}}{\sqrt{2}}$, $||g_2|| = \frac{\pi^{1/4}}{\sqrt{2}}$. On prend $f_0 = \frac{g_0}{||g_0||}$, $f_1 = \frac{g_1}{||g_1||}$, $f_2 = \frac{g_2}{||g_2||}$.