PROCESS MEASUREMENT & MONITORING LABORATORY 3

การเชื่อมต่อกับ Internet

วัตถุประสงค์

- 1. ศึกษาการเรียกใช้ข้อมูลต่างๆ
- 2. ศึกษาการเชื่อมต่อข้อมูลจากโปรแกรม LabView 2014® แล้วอัพขึ้นสู่เว็บไซต์

อุปกรณ์ที่ใช้ในการทดลอง

- 1. โปรแกรม LabView 2014®
- 2. DAQ
- 3. Notebook
- 4. ตัวต้านทาน, LED, สายไฟ

นายธิปก สรรพกิจ 56010611

ทฤษฎีที่เกี่ยวข้อง

Array

เป็นโครงสร้างข้อมูลที่ใช้เก็บข้อมูลชนิดเดียวกัน เป็นกลุ่มหรือชุดที่เรียงติดต่อกันเป็นแถว มีขอบเขตจำกัดและมี ขนาดคงที่

ข้อมูลชนิดเดียวกัน คือ ข้อมูลทุกตัวที่อยู่ในอาร์เรย์จะต้องเป็นข้อมูลชนิดเดียวกันเท่านั้น เช่น ถ้าเป็นอาร์เรย์ ชนิดจานวนเต็ม ข้อมูลทุกตัวในอาร์เรย์ก็ต้องเป็นชนิดจานวนเต็ม ไม่สามารถเก็บข้อมูลต่างชนิดกันได้

องค์ประกอบของ Array

ซึ่งใน Array จะประกอบด้วย

Index หรือตัวชี้ เป็นตัวที่ระบุตาแหน่งของอะเรย์โดยเริ่มจาก 0

Element หรือ ค่าที่เก็บไว้ในอะเรย์ในตาแหน่งหนึ่งๆ

อาร์เรย์ 1 มิติ (One-Dimension Array)

คือ อะเรย์ที่มีเพียง 1 แถวนอน แต่มี แถวตั้งหลายแถว ซึ่งในการระบุตาแหน่งหรือตัวชี้ (index) จะมีแต่ระบุแต่ ตาแหน่งของแถวตั้งเท่านั้น โดยนับเริ่มจาก 0

อาร์เรย์ 2 มิติ (Two-Dimension Array)

โครงสร้างอาร์เรย์ **2** มิติจะเป็นอาร์เรย์ของอาร์เรย์ **1** มิติ โดยสามารถอธิบายได้ในรูปแบบของตารางที่ ประกอบด้วยแถว (row) และคอลัมน์ (column)

ตัวอย่างการใช้งาน

การสร้าง Array 1 มิติ

จะสามารถขยาย element ได้แค่แนวตั้งหรือแนวนอนอย่างใดอย่างหนึ่งเท่านั้น

Block Diagram

การสร้าง Array 2 มิติ

จะคล้ายกับการสร้าง Array 1 มิติ แต่เพิ่มการดึงแถวลงอีก สามารถขยายแนวตั้งและแนวนอน

Block Diagram

การใช้ Write To Spreadsheet

Block Diagram

บันทึกข้อมูลลงในไฟล์ที่เราเลือกไว้

การใช้ Read From Spreadsheet

Block Diagram

Front Panel

โดยจะอ่านข้อมูลจากไฟล์ที่อยู่ที่เราได้เลือกไว้

การใช้ Write to Measurement

Block Diagram

บันทึกข้อมูล

การใช้ Read from Measurement

Block Diagram

การเชื่อมต่อและควบคุมผ่านเว็บ

ที่หน้า Front Panel ไปที่ Tools >> Web Publishing Tool

Example

• ออกแบบระบบควบคุมระดับน้ำโดยกำหนดให้

Hardware

- มีตัวต้านทานในการปรับค่าระดับน้ำที่ต้องการ
- มี LED เตือนค่าระดับอ้างอิงสูงหรือต่ำเกินไป

Show (Low/High Alarm) ด้วย RED LED

Show (Normal Status) ด้วย GREEN LED

Low Alarm แรงดันอ้างอิงต่ำกว่า 10%

High Alarm แรงดันอ้างอิงสูงกว่า 90%

- สามารถเลือกระดับน้ำจากสวิทซ์แสดงสวิทซ์ควบคุมภายนอก
- เก็บข้อมูลของระดับน้ำจำนวน 1 นาที พร้อมพล็อตกราฟ
- แสดงการทำงานผ่านเว็บได้

Block Diagram

บันทึกข้อมูล

Switch ควบคุมภายนอก

นายธิปก สรรพกิจ 56010611

สรุปผลการทดลอง

จากการทดลองเป็นการนำฟังก์ชั่นที่เราได้เรียนมาในครั้งก่อนๆมาประยุกต์ใช้เพื่อนำข้อมูลที่ได้มาทำการบันทึก ค่าและอ่านค่าข้อมูลด้วยการใช้พังก์ชั่น File I/O และนำข้อมูลทั้งหมดมาอัพโหลดขึ้น Website เพื่อที่จะสามารถ เรียกดูผลข้อมูล และควบคุมผ่างเว็บได้