

- Each root node and internal node represent a specific input variable
 - Root and internal node tests each attribute
 - $\checkmark x_1 > 1$
 - $\checkmark x_3$ is orange
- Each branch corresponds to the result of the test of node
 - Yes vs. No
 - Values of attribute
 - ✓ Orange vs. Green
 - ✓ Long vs. Short
- Each leaf node assigns a class

In each node, how to choose attribute? how to split branches?

Decision Tree Algorithm

How to determine which one is the most effective?

Need some criteria for measure of effectiveness

Splitting Criteria

- Categorical target Classification
 - Entropy
 - Gini impurity
- Continuous target Regression
 - MSE
 - Friedman MSE
 - MAE

Splitting Criteria: Impurity

Select each split of a node so that in each of the child nodes are less impure than that in the parent node

- Entropy and Gini impurity are measures of impurity
 - Split a node toward decreasing impurity → Maximize reduction in impurity

Entropy

- **Expected value of the information**
 - The entropy quantifies how "informative" or "surprising" the entire random variable, averaged on all its possible outcomes
- Entropy *H* of event *X*

Expectation value Probability function

For discrete random variable X

$$H(X) = \sum_{i} P(x_i)I(x_i) = -\sum_{i} P(x_i)\log_b P(x_i)$$

- X with possible values of $\{x_1, x_2, ..., x_n\}$
- Commonly b is 2 (10, e are also used)

Example: Entropy

- When you flip one coin(*X*)
 - Possible output of *X*: H or T
 - P(H) = 0.5, P(T) = 0.5

$$H(X) = -P(H) \log_2 P(H) - P(T) \log_2 P(T)$$

= -0.5 \log_2 0.5 - 0.5 \log 0.5
= 1

- When you flip two coins *X*
 - ✓ Possible output of X: (H, H), (H, T), (T, H), (T, T)
 - ✓ P(H,H) = P(H,T) = P(T,H) = P(T,T) = 0.25

```
H(X) = -P(H,H) \log_2 P(H,H) - P(H,T) \log_2 P(H,T) - P(T,H) \log_2 P(T,H) - P(T,T) \log_2 P(T,T)
= -4 \times 0.25 \log_2 0.25
= 2
```

How to Define Effectiveness of Split

- If split is effective, information gain is large
 - Information gain = reduction of uncertainty

• Entropy of new state after split = normalized sum of entropy of split sets

$$H(T|a) = \sum_{i=1}^{n} \frac{|T_i'|}{|T|} \cdot H(T_i')$$

 \checkmark T is split to $T'_1, T'_2, ..., T'_n$

Example: Calculate Information Gain through Entropy

The node is split by age to predict profit of company

Age(x)	old	old	old	mid	mid	mid	mid	new	new	new
Profit(y)	down	down	down	down	down	up	up	up	up	up

$$H(T) = -P(down) \log_2 P(down) - P(up) \log_2 P(up)$$

= $-2 \times 0.5 \log_2 P(0.5) = 1$

Age(x)	old	old	old
Profit(y)	down	down	down

$$H(T_1') = -1\log_2 1 = 0$$

Age(x)	mid	mid	mid	mid	new	new	new
Profit(y)	down	down	up	up	up	up	up

$$H(T_2') = -\frac{2}{7}\log_2\frac{2}{7} - \frac{5}{7}\log_2\frac{5}{7} \approx 0.86$$

$$IG = H(before) - H(after) = 1 - 0.86 \times \frac{7}{10} = 1 - 0.602 = 0.398$$

Gini Impurity

Gini impurity: measure of impurity

$$G(T) = \sum_{i \neq j} P(i|T)P(j|T) = 1 - \sum_{j} P(j|T)^2 = 1 - \sum_{j} \left(\frac{n_j(T)}{n(T)}\right)^2$$

- P(j|t) is the probability of output j in node T
- n(t) is the total number of samples in node T
- $n_i(t)$ is the number of samples with output j in node T

$$G = 1 - \left(\frac{3}{7}\right)^2 - \left(\frac{2}{7}\right)^2 - \left(\frac{2}{7}\right)^2$$
$$= \frac{32}{49}$$

$$G = 1 - \left(\frac{1}{7}\right)^2 - \left(\frac{5}{7}\right)^2 - \left(\frac{1}{7}\right)^2$$
$$= \frac{22}{49}$$

Example: Calculate Information Gain through Gini Impurity

The node is split by age to predict profit of company

Age(x)	old	old	old	mid	mid	mid	mid	new	new	new
Profit(y)	down	down	down	down	down	up	up	up	up	up

$$G(T) = 1 - P^{2}(down) - P^{2}(up)$$

$$= 1 - \left(\frac{5}{10}\right)^{2} - \left(\frac{5}{10}\right)^{2} = 0.5$$
Is age old?

Age(x)	old	old	old
Profit(y)	down	down	down

Age(x)	mid	mid	mid	mid	new	new	new
Profit(y)	down	down	up	up	up	up	up
		_	_	-			

$$G(T_1') = 1 - \left(\frac{3}{3}\right)^2 = 0$$

$$G(T_2') = 1 - \left(\frac{2}{7}\right)^2 - \left(\frac{5}{7}\right)^2 \approx 0.41$$

No

$$IG=G(before)-G(after)=0.5-0.41\times\frac{7}{10}=0.5-0.287=0.213$$

Question

 Predict profit of companies based on age of company, type of company, and competition status

Age	Competition	Туре	Profit
old	yes	S/W	down
old	no	S/W	down
old	no	H/W	down
mid	yes	S/W	down
mid	yes	H/W	down
mid	no	H/W	up
mid	no	S/W	up
new	yes	S/W	up
new	no	H/W	up
new	no	S/W	up

- 1) How much information gain based on Entropy is obtained with the splitting on competition?
- 2) How much information gain based on Gini impurity is obtained with the splitting on type of company?

Decision Tree Algorithm: C4.5

Procedure of C4.5

2-1

2-2

4

Check for terminal conditions

• (No fulfilled terminal conditions)For each input variable x, calculate the normalized information gain from splitting on x

• (Any terminal condition is fulfilled) Create leaf node and move onto step 1 with different internal node

 Create a decision node that splits on the input variable with the highest normalized information gain

• Repeat this process until there is no internal node

Terminal conditions

- 1. All the samples in the list belong to the same class
- 2. None of the features provide any information gain

4
_
6
5
4
3
6
6
5
4
4

$$G = 1 - \left(\frac{5}{10}\right)^2 - \left(\frac{5}{10}\right)^2 = 0.5$$
Yes $x_2 < 5.5$ No

$$G = 1 - \left(\frac{2}{7}\right)^2 - \left(\frac{5}{7}\right)^2 \qquad G = 1 - \left(\frac{3}{3}\right)^2 - \left(\frac{0}{3}\right)^2$$

$$\approx 0.4083 \qquad = 0$$

$$IG = 0.5 - 0.408 \times \frac{7}{10} - 0 \times \frac{3}{10} = 0.2144$$

Class	x_1	x_2
1	1	4 6
1	2	6
1	2	5
0	2	4
0	2	3
1	3	6
1	4	6
0	4	5
0	4	4
0	5	4

$$G = 1 - \left(\frac{1}{1}\right)^2 - \left(\frac{0}{1}\right)^2 = 0$$
 $G = 1 - \left(\frac{1}{6}\right)^2 - \left(\frac{5}{6}\right)^2 \approx 0.278$

$$IG = \left(0.408 - 0 \times \frac{1}{7} - 0.278 \times \frac{6}{7}\right) \times \frac{7}{10} \approx 0.11$$

Class	χ_1	x_2
1	1	4
1	2	6
1	2	5
0	2	4
0	2	3
1	3	6
1	4	6
0	4	5
0	4	4
0	5	4

$$G = 1 - \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = 0.5$$
 $G = 1 - \left(\frac{0}{4}\right)^2 - \left(\frac{4}{4}\right)^2 = 0$

$$IG = \left(0.278 - 0.5 \times \frac{2}{6} - 0 \times \frac{4}{6}\right) \times \frac{6}{10} \approx 0.067$$

Class	x_1	x_2
1	1	4
1	2	6
1	2	5
0	2	4
0	2	3
1	3	6
1	4	6
0	4	5
0	4	4
0	5	4

$$G = 1 - \left(\frac{1}{1}\right)^2 - \left(\frac{0}{1}\right)^2 = 0$$
 $G = 1 - \left(\frac{0}{1}\right)^2 - \left(\frac{1}{1}\right)^2 = 0$

$$G = 1 - \left(\frac{0}{1}\right)^2 - \left(\frac{1}{1}\right)^2 = 0$$

$$IG = \left(0.5 - 0 \times \frac{1}{2} - 0 \times \frac{1}{2}\right) \times \frac{2}{10} = 0.1$$

Step	Impurity Change	Total impurity
0	0.000	0.500
1	0.214	0.286
2	0.119	0.167
3	0.067	0.100
4	0.100	0.000

What Does Tree Stop Growing?

Growing full-size tree can cause overfitting

• Low classification accuracy on the test set

Introduce pruning step after growing tree

- Pruning simplifies the tree by trimming some branches of the fully grown tree
- Generate several pruned trees and select best tree

There are several popular pruning algorithms

- Reduced error pruning: Starting at leaf node, each node is replaced with its most popular class and if the prediction accuracy is not affected then the change is kept
- Cost complexity pruning: Cost complexity pruning removes subtree based on cost complexity measure at each step

Misclassification cost at node t

$$r(t) = \min_{i} \sum_{k=1}^{K} C(i|k)p(k|t) \to r(t) = 1 - \max_{k} p(k|t)$$

- $C(i|k) = \begin{cases} 1, & \text{if } i \neq k \\ 0, & \text{if } i = k \end{cases}$ is the cost of classifying a sample of class k into class i.
- p(k|t) is the probability that the class of data point is k given that it is in node t
- Misclassification cost at tree T

$$R(T) = \sum_{t \in \tilde{T}} r(t)p(t) = \sum_{t \in \tilde{T}} R(t)$$

- \tilde{T} is set of terminal nodes of tree T
- p(t) is probability that data point is in node t
- Set R(t) = r(t)p(t)

Cost complexity measure

$$R_{\alpha}(T) = R(T) + \alpha |T|$$

- |T| is tree complexity = the number of terminal nodes
- For a terminal node t

$$R_{\alpha}(t) = R(t) + \alpha$$

For a subtree at t

$$R_{\alpha}(T_t) = R(T_t) + \alpha |T_t|$$

Cost complexity pruning prunes subtree at t which minimizes

$$\alpha(t) = \frac{R(t) - R(T_t)}{|T_t| - 1}$$

• Prunes subtree if $R_{\alpha}(t) \leq R_{\alpha}(T_{\epsilon})$

At node t_2 $R(t_2) = r(t_2)p(t_2)$ $= \left(1 - \frac{5}{7}\right) \times \frac{7}{10} = 0.2$ $\left|T_{t_2}\right| = 4$ $R(T_{t_2})$ $= (1 - 1) \times \frac{1}{10} + (1 - 1) \times \frac{1}{10}$ $+ (1 - 1) \times \frac{1}{10} + (1 - 1) \times \frac{4}{10} = 0$ $\alpha(t_2) = \frac{0.2 - 0}{4 - 1} \approx 0.067$

Pros and Cons of Decision Tree

Pros

- Easy interpretation
- Non-parametric approach
- Inherently non-linear
- Easy to handle categorical variables (also friendly to unnormalized numeric variables)
- Implicitly perform feature selection

Cons

- Large computing cost
- Lack of linearity of main effects
- Each node only considers single variable
 - ✓ Many algorithms has been proposed to overcome this problem.

CART

- Classification And Regression Tree (CART) is one of decision tree algorithms
- Decision tree can be also used for regression analysis

New split rule

- Entropy and Gini impurity are not appropriate split measure for regression analysis
- MSE (Mean squared error)
 - ✓ The split that most decrease the MSE is selected

$$\hat{y}_i = \frac{\sum_{j \in t_i} y_j}{|t_i|}$$

$$R(t_i) = \frac{1}{N_{t_i}} \sum_{j \in t_i} (y_j - \hat{y}_i)^2$$

$$IG = p(t_p) R(t_p) - p(t_r) R(t_r) - p(t_l) R(t_l)$$

Friedman MSE

$$\hat{y}_i = \frac{\sum_{j \in t_i} y_j}{|t_i|}$$

$$IG = \frac{N_{t_r} N_{t_l}}{N_{t_r} + N_{t_l}} (\hat{y}_{t_r} - \hat{y}_{t_l})^2$$

New split rule

- MAE (Mean absolute error)
 - \checkmark The split that minimizes the L1-loss using the median of each terminal node is selected \hat{y}_i = the median of each terminal node

$$R(t_i) = \frac{1}{N_{t_i}} \sum_{j \in t_i} |y_j - \hat{y}_i|$$

$$IG = p(t_p) R(t_p) - p(t_r) R(t_r) - p(t_l) R(t_l)$$

New split rule

- Entropy and Gini impurity are not appropriate split measure for regression analysis
- Use least square deviation (LSD) split rule
 - ✓ After split, mean of output values in child nodes should be significantly different.

New split rule

- Entropy and Gini impurity are not appropriate split measure for regression analysis
- Use least square deviation (LSD) split rule
 - ✓ After split, mean of output values in children nodes should be significantly different

$$\hat{y}_i = \frac{\sum_{j \in t_i} y_j}{|t_i|}$$

$$G(t_i) = \sum_{j \in t_i} (y_j - \hat{y}_i)^2$$

$$IG = G(t_p) - P_r G(t_r) - P_l G(t_l)$$

Prediction

- Output value is predicted based on output values of training samples at the leaf node
 - ✓ Calculate average

Drawback of regression tree

Thank you! Thank you!