#### TRANSPORTATION AND ASSIGNMENT PROBLEMS

- The Transportation Model
- Solution of a Transportation Problem
- The Assignment Model
- Solution of the Assignment Model

#### TRANSPORTATION AND ASSIGNMENT PROBLEMS

#### **OVERVIEW**

- Part of a larger class of linear programming problems known as network flow models.
- Possess special mathematical features that enabled development of very efficient, unique solution methods.
- Methods are variations of traditional simplex procedure.

#### THE TRANSPORTATION MODEL CHARACTERISTICS

- A product is transported from a number of sources to a number of destinations at the minimum possible cost.
- Each source is able to supply a fixed number of units of the product, and each destination has a fixed demand for the product.
- The linear programming model has constraints for supply at each source and demand at each destination.
- All constraints are equalities in a balanced transportation model where supply equals demand.
- Constraints contain inequalities in unbalanced models where supply does not equal demand.

#### TRANSPORTATION MODEL EXAMPLE PROBLEM DEFINITION AND DATA

- Problem: How many tons of wheat to transport from each grain elevator to each mill on a monthly basis in order to minimize the total cost of transportation ?

| - Data: | Grain Elevator | <u>Supply</u> | <u>Mill</u> | <u>Den</u> | <u>nand</u> |
|---------|----------------|---------------|-------------|------------|-------------|
|         | 1. Kansas City | 150           | A. Chic     | ago        | 200         |
|         | 2. Omaha       | 175           | B. St.Lo    | ouis       | 100         |
|         | 3. Des Moines  | 275           | C. Cinc     | innati     | 300         |
|         | Total          | 600 tons      | Total       | 600 1      | tons        |

|                | Transport cost from Grain Elevator to Mill (\$/ton) |              |               |  |  |  |  |
|----------------|-----------------------------------------------------|--------------|---------------|--|--|--|--|
| Grain Elevator | A. Chicago                                          | B. St. Louis | C. Cincinnati |  |  |  |  |
| 1. Kansas City | \$6                                                 | 8            | 10            |  |  |  |  |
| 2. Omaha       | 7                                                   | 11           | 11            |  |  |  |  |
| 3. Des Moines  | 4                                                   | 5            | 12            |  |  |  |  |

#### TRANSPORTATION MODEL EXAMPLE MODEL FORMULATION

minimize 
$$Z = \$6x_{1A} + 8x_{1B} + 10x_{1C} + 7x_{2A} + 11x_{2B} + 11x_{2C} + 4x_{3A} + 5x_{3B} + 12x_{3C}$$

subject to 
$$x_{1A} + x_{1B} + x_{1C} = 150$$
  
 $x_{2A} + x_{2B} + x_{2C} = 175$   
 $x_{3A} + x_{3B} + x_{3C} = 275$   
 $x_{1A} + x_{2A} + x_{3A} = 200$   
 $x_{1B} + x_{2B} + x_{3B} = 100$   
 $x_{1C} + x_{2C} + x_{3C} = 300$   
 $xij \ge 0$ 

where  $x_{ij} = tons$  of wheat from each grain elevator, i, i = 1, 2, 3, to each mill j, j = A.B.C



Network of transportation routes for wheat shipments

#### SOLUTION OF THE TRANSPORTATION MODEL TABLEAU FORMAT

• Transportation problems are solved manually within a *tableau* format.

• Each cell in a transportation tableau is analogous to a decision variable that indicates the amount allocated from a source to a destination.

• The supply and demand values along the outside rim of a tableau are called *rim* 

values.

| To From | A   | В   | С   | Supply |
|---------|-----|-----|-----|--------|
|         | 6   | 8   | 10  |        |
| 1       |     |     |     | 150    |
|         | 7   | 11  | 11  |        |
| 2       |     |     |     | 175    |
|         | 4   | 5   | 12  |        |
| 3       |     |     |     | 275    |
| Demand  | 200 | 100 | 300 | 600    |

The Transportation Tableau

#### SOLUTION OF THE TRANSPORTATION MODEL

#### **SOLUTION METHODS**

- Transportation models do not start at the origin where all decision values are zero; they must instead be given an *initial feasible solution*.
- Initial feasible solution determination methods include:
  - northwest corner method
  - minimum cell cost method
  - Vogel's Approximation Method
- Methods for solving the transportation problem itself include:
  - stepping-stone method and
  - modified distribution method.

#### THE NORTHWEST CORNER METHOD

- In the northwest corner method the largest possible allocation is made to the cell in the upper left-hand corner of the tableau , followed by allocations to adjacent feasible cells.

|                       | To<br>From | A   |   | В   |    | С   |    | Supply |
|-----------------------|------------|-----|---|-----|----|-----|----|--------|
|                       |            |     | 6 |     | 8  |     | 10 |        |
|                       | 1          | 150 | ) |     |    |     |    | 150    |
| The Initial NW Corner |            |     | 7 |     | 11 |     | 11 |        |
| Solution              | 2          | 50  | ) | 100 | )  | 25  | 5  | 175    |
|                       |            |     | 4 |     | 5  |     | 12 |        |
|                       | 3          |     |   |     |    | 275 | 5  | 275    |
|                       | Demand     | 200 |   | 100 |    | 300 |    | 600    |

- The initial solution is complete when all rim requirements are satisfied.
- Transportation cost is computed by evaluating the objective function:

$$Z = \$6x_{1A} + 8x_{1B} + 10x_{1C} + 7x_{2A} + 11x_{2B} + 11x_{2C} + 4x_{3A} + 5x_{3B} + 12x_{3C}$$
$$= 6(150) + 8(0) + 10(0) + 7(50) + 11(100) + 11(25) + 4(0) + 5(0) + !2(275)$$
$$= \$5,925$$

#### THE NORTHWEST CORNER METHOD

#### SUMMARY OF STEPS

- 1. Allocate as much as possible to the cell in the upper left-hand corner, subject to the supply and demand conditions.
- 2. Allocate as much as possible to the next adjacent feasible cell.
- 3. Repeat step 2 until all rim requirements are met.

### THE MINIMUM CELL COST METHOD (1 OF 3)

- In the minimum cell cost method as much as possible is allocated to the cell with the minimum cost followed by allocation to the feasible cell with minimum cost.

| То     |     |     |     |        |
|--------|-----|-----|-----|--------|
| From   | A   | В   | С   | Supply |
|        | 6   | 8   | 10  |        |
| 1      |     |     |     | 150    |
|        | 7   | 11  | 11  |        |
| 2      |     |     |     | 175    |
|        | 4   | 5   | 12  |        |
| 3      | 200 |     |     | 275    |
| Demand | 200 | 100 | 300 | 600    |

| The Initial Minin                       | num Cell | Cost Allo | ocation |
|-----------------------------------------|----------|-----------|---------|
| 1 110 111111111111111111111111111111111 |          |           | Journal |

| To     |     |     |     |        |
|--------|-----|-----|-----|--------|
| From   | A   | В   | С   | Supply |
|        | 6   | 8   | 10  |        |
| 1      |     |     |     | 150    |
|        | 7   | 11  | 11  |        |
| 2      |     |     |     | 175    |
|        | 4   | 5   | 12  |        |
| 3      | 200 | 75  |     | 275    |
| Demand | 200 | 100 | 300 | 600    |

The Second Minimum Cell Cost Allocation

# THE MINIMUM CELL COST METHOD (2 OF 3)

- The complete initial minimum cell cost solution; total cost = \$4,550.
- The minimum cell cost method will provide a solution with a lower cost than the northwest corner solution because it considers cost in the allocation process.

|        |     |     |     | - <b>I</b> |
|--------|-----|-----|-----|------------|
| To     |     |     |     |            |
| From   | A   | В   | С   | Supply     |
|        | 6   | 8   | 10  |            |
| 1      |     | 25  | 125 | 150        |
|        | 7   | 11  | 11  |            |
| 2      |     |     | 175 | 175        |
|        | 4   | 5   | 12  |            |
| 3      | 200 | 75  |     | 275        |
| Demand | 200 | 100 | 300 | 600        |

The Initial Solution

# THE MINIMUM CELL COST METHOD SUMMARY OF STEPS (3 OF 3)

- 1. Allocate as much as possible to the feasible cell with the minimum transportation cost, and adjust the rim requirements.
- 2. Repeat step 1 until all rim requirements have been met.

# VOGEL'S APPROXIMATION METHOD (VAM) (1 OF 5)

- Method is based on the concept of *penalty cost* or *regret*.
- A penalty cost is the difference between the largest and the next largest cell cost in a row (or column).
  - In VAM the first step is to develop a penalty cost for each source and destination.
- Penalty cost is calculated by subtracting the minimum cell cost from the next higher cell cost in each row and column.

| To     |     |     |     |        |
|--------|-----|-----|-----|--------|
| From   | A   | В   | С   | Supply |
|        | 6   | 8   | 10  |        |
| 1      |     |     |     | 150    |
|        | 7   | 11  | 11  |        |
| 2      |     |     |     | 175    |
|        | 4   | 5   | 12  |        |
| 3      |     |     |     | 275    |
| Demand | 200 | 100 | 300 | 600    |
|        | 2   | 3   | 1   |        |

The VAM Penalty Costs

# **VOGEL'S APPROXIMATION METHOD (VAM)** (2 OF 5)

- VAM allocates as much as possible to the minimum cost cell in the row or column with the largest penalty cost.

|                 | To     |     |     |     |        | J |
|-----------------|--------|-----|-----|-----|--------|---|
|                 | From   | A   | В   | С   | Supply |   |
|                 |        | 6   | 8   | 10  |        |   |
|                 | 1      |     |     |     | 150    |   |
|                 |        | 7   | 11  | 11  |        | ı |
| The Initial VAM | 2      | 175 |     |     | 175    |   |
| Allocation      |        | 4   | 5   | 12  |        |   |
|                 | 3      |     |     |     | 275    |   |
|                 | Demand | 200 | 100 | 300 | 600    |   |
|                 |        | 2   | 3   | 2   |        |   |

## VOGEL'S APPROXIMATION METHOD (VAM) (3 OF 5)

The Second M Allocation

- After each VAM cell allocation, all row and column penalty costs are recomputed.

| То     |     |     |     |        |  |
|--------|-----|-----|-----|--------|--|
| From   | A   | В   | С   | Supply |  |
|        | 6   | 8   | 10  |        |  |
| 1      |     |     |     | 150    |  |
|        | 7   | 11  | 11  |        |  |
| 2      | 175 |     |     | 175    |  |
|        | 4   | 5   | 12  |        |  |
| 3      |     | 100 |     | 275    |  |
| Demand | 200 | 100 | 300 | 600    |  |
|        | 2   |     | 2   |        |  |

# VOGEL'S APPROXIMATION METHOD (VAM) (4 OF 5)

- Recomputed penalty costs after the third allocation.

| To     |     |     |     |        |
|--------|-----|-----|-----|--------|
| From   | A   | В   | С   | Supply |
|        | 6   | 8   | 10  |        |
| 1      |     |     | 150 | 150    |
|        | 7   | 11  | 11  |        |
| 2      | 175 |     |     | 175    |
|        | 4   | 5   | 12  |        |
| 3      | 25  | 100 | 150 | 275    |
| Demand | 200 | 100 | 300 | 600    |

The Third VAM Allocation

### VOGEL'S APPROXIMATION METHOD (VAM) (5 OF 5)

- The initial VAM solution; total cost = \$5,125
- VAM and minimum cell cost methods both provide better initial solutions than does the northwest corner method.

| To     |     |     |     |        |
|--------|-----|-----|-----|--------|
| From   | A   | В   | С   | Supply |
|        | 6   | 8   | 10  |        |
| 1      |     |     | 150 | 150    |
|        | 7   | 11  | 11  |        |
| 2      | 175 |     |     | 175    |
|        | 4   | 5   | 12  |        |
| 3      | 25  | 100 | 150 | 275    |
| Demand | 200 | 100 | 300 | 600    |

The Initial VAM Solution

#### VOGEL'S APPROXIMATION METHOD (VAM) SUMMARY OF STEPS

- 1. Determine the penalty cost for each row and column.
- 2. Select the row or column with the highest penalty cost.
- 3. Allocate as much as possible to the feasible cell with the lowest transportation cost in the row or column with the highest penalty cost.
- 4. Repeat steps 1, 2, and 3 until all rim requirements have been met.

## THE STEPPING-STONE SOLUTION METHOD (1 OF 12)

- Once an initial solution is derived, the problem must be solved using either the stepping-stone method or the modified distribution method (MODI).
- The initial solution used as a starting point in this problem is the minimum cell cost method solution because it had the minimum total cost of the three methods used.

| To     |     |     |     |        |
|--------|-----|-----|-----|--------|
| From   | A   | В   | С   | Supply |
|        | 6   | 8   | 10  |        |
| 1      |     | 25  | 125 | 150    |
|        | 7   | 11  | 11  |        |
| 2      |     |     | 175 | 175    |
|        | 4   | 5   | 12  |        |
| 3      | 200 | 75  |     | 275    |
| Demand | 200 | 100 | 300 | 600    |

The Minimum Cell Cost Solution

# THE STEPPING-STONE SOLUTION METHOD (2 OF 12)

- The stepping-stone method determines if there is a cell with no allocation that would reduce cost if used.

|        |     |   |     |    |     |    |        | _ |
|--------|-----|---|-----|----|-----|----|--------|---|
| То     |     |   |     |    |     |    |        |   |
| From   | A   |   | В   |    | С   |    | Supply |   |
|        | +1  | 6 |     | 8  |     | 10 |        |   |
| 1      |     |   | 25  | 5  | 125 | 5  | 150    |   |
|        |     | 7 |     | 11 |     | 11 |        |   |
| 2      |     |   |     |    | 175 | 5  | 175    |   |
|        |     | 4 |     | 5  |     | 12 |        |   |
| 3      | 200 | ) | 75  | 5  |     |    | 275    |   |
| Demand | 200 | ) | 100 | )  | 300 | )  | 600    | _ |

The Allocation of One Ton to Cell 1A

# THE STEPPING-STONE SOLUTION METHOD (3 OF 12)

- Must subtract one ton from another allocation along that row.

| To     |     |   |     |    |     |    |        |
|--------|-----|---|-----|----|-----|----|--------|
| From   | A   |   | В   |    | С   |    | Supply |
|        | +1  | 6 | -1  | 8  |     | 10 |        |
| 1      |     |   | 25  | 5  | 125 | ;  | 150    |
|        |     | 7 |     | 11 |     | 11 |        |
| 2      |     |   |     |    | 175 | ;  | 175    |
|        |     | 4 |     | 5  |     | 12 |        |
| 3      | 200 | ) | 75  | 5  |     |    | 275    |
| Demand | 200 | ) | 100 | )  | 300 | )  | 600    |

The Subtraction of One Ton from Cell 1B

#### THE STEPPING-STONE SOLUTION METHOD (4 OF 12)

- A requirement of this solution method is that units can only be added to and subtracted from cells that already have allocations, thus one ton must be added to a cell as shown.

| To     |        |       |     |        |
|--------|--------|-------|-----|--------|
| From   | A      | В     | С   | Supply |
|        | +1 6   | →-1 8 | 10  |        |
| 1      |        | 25    | 125 | 150    |
|        | 7      | 11    | 11  |        |
| 2      |        |       | 175 | 175    |
|        | -1 ← 4 | -+1 5 | 12  |        |
| 3      | 200    | 75    |     | 275    |
| Demand | 200    | 100   | 300 | 600    |

The Addition of One Ton to Cell 3B and the Subtraction of One Ton from Cell 3A

#### THE STEPPING-STONE SOLUTION METHOD (5 OF 12)

- An empty cell that will reduce cost is a potential entering variable.
- To evaluate the cost reduction potential of an empty cell, a closed path connecting used cells to the empty cells is identified.

| To     |                           |                  |             |        |
|--------|---------------------------|------------------|-------------|--------|
| From   | A                         | В                | С           | Supply |
|        | 6                         | - ← 8            | -+<br>10    |        |
| 1      |                           | 25               | 125         | 150    |
|        | + 7                       | 11               | → <u>11</u> |        |
| 2      |                           |                  | 175         | 175    |
|        | <del>-</del> <del>4</del> | - <del>+</del> 5 | 12          |        |
| 3      | 200                       | 75               |             | 275    |
| Demand | 200                       | 100              | 300         | 600    |
|        |                           |                  |             |        |

The Stepping-Stone Path for Cell 2A

$$2A \rightarrow 2C \rightarrow 1C \rightarrow 1B \rightarrow 3B \rightarrow 3A$$
  
+  $$7 - 11 + 10 - 8 + 5 - 4 = -$1$ 

#### THE STEPPING-STONE SOLUTION METHOD $(6 ext{ OF } 12)$

- The remaining stepping-stone paths and resulting computations for cells 2B and 3C.

| To     |     |       |                   |        |
|--------|-----|-------|-------------------|--------|
| From   | A   | В     | С                 | Supply |
|        | 6   | + - 8 | 10                |        |
| 1      |     | 25    | 125               | 150    |
|        | 7   | - 11  | → <del>+</del> 11 |        |
| 2      |     |       | 175               | 175    |
|        | 4   | 5     | 12                |        |
| 3      | 200 | 75    |                   | 275    |
| Demand | 200 | 100   | 300               | 600    |

$$2B \rightarrow 2C \rightarrow 1C \rightarrow 1B$$
  
+  $$11 - 11 + 10 - 8 = +$2$ 

The Stepping-Stone Path for Cell 2B

> The Stepping-Stone Path for  $3C \rightarrow 1C \rightarrow 1B \rightarrow 3B$ Cell 3C

+ \$12 - 10 + 8 - 5 = +\$5

| To     |     |       |            | l .    |
|--------|-----|-------|------------|--------|
| From   | A   | В     | С          | Supply |
|        | 6   | + - 8 | - <u> </u> |        |
| 1      |     | 25    | 125        | 150    |
|        | 7   | 11    | 11         |        |
| 2      |     |       | 175        | 175    |
|        | 4   | 5     | → + 12     |        |
| 3      | 200 | 75    |            | 275    |
| Demand | 200 | 100   | 300        | 600    |

## THE STEPPING-STONE SOLUTION METHOD (7 OF 12)

- After all empty cells are evaluated, the one with the greatest cost reduction potential is the entering variable.
  - A tie can be broken arbitrarily.

| To     |       |                  |     |        |
|--------|-------|------------------|-----|--------|
| From   | A     | В                | С   | Supply |
|        | + ← 6 | - <del>-</del> 8 | 10  |        |
| 1      |       | 25               | 125 | 150    |
|        | 7     | 11               | 11  |        |
| 2      |       |                  | 175 | 175    |
|        | 4     | <b>→</b> + 5     | 12  |        |
| 3      | 200   | 75               |     | 275    |
| Demand | 200   | 100              | 300 | 600    |

The Stepping-Stone Path for Cell 1A

# THE STEPPING-STONE SOLUTION METHOD (8 OF 12)

- When reallocating units to the entering variable (cell), the amount is the minimum amount subtracted on the stepping-stone path.
  - At each iteration one variable enters and one leaves (just as in the simplex method).

| To     |     |     |     |        |
|--------|-----|-----|-----|--------|
| From   | A   | В   | С   | Supply |
| _      | 6   | 8   | 10  |        |
| 1      | 25  |     | 125 | 150    |
|        | 7   | 11  | 11  |        |
| 2      |     |     | 175 | 175    |
|        | 4   | 5   | 12  |        |
| 3      | 175 | 100 |     | 275    |
| Demand | 200 | 100 | 300 | 600    |

The Second Iteration of the Stepping-Stone Method

### THE STEPPING-STONE SOLUTION METHOD (9 OF 12)

- Check to see if the solution is optimal.

| To     |              |     |          |        |
|--------|--------------|-----|----------|--------|
| From   | A            | В   | С        | Supply |
|        | <del>-</del> | 8   | -+<br>10 |        |
| 1      | 25           |     | 125      | 150    |
|        | + 7          | 11  | 11       |        |
| 2      |              |     | 175      | 175    |
|        | 4            | 5   | 12       |        |
| 3      | 175          | 100 |          | 275    |
| Demand | 200          | 100 | 300      | 600    |

$$2A \rightarrow 2C \rightarrow 1C \rightarrow 1A$$
  
+  $\$7 - 11 + 10 - 6 = \$0$ 

The Stepping-Stone Path for Cell 2A

The Stepping-Stone Path for Cell

| From To | A              | В            | С   | Supply |
|---------|----------------|--------------|-----|--------|
|         | <del>_</del> 6 | <b>→</b> + 8 | 10  |        |
| 1       | 25             |              | 125 | 150    |
|         | 7              | 11           | 11  |        |
| 2       |                |              | 175 | 175    |
|         | + ← 4          |              | 12  |        |
| 3       | 175            | 100          |     | 275    |
| Demand  | 200            | 100          | 300 | 600    |

1B 
$$1B \rightarrow 3B \rightarrow 3A \rightarrow 1A$$
  
+  $\$8 - 5 + 4 - 6 = +\$1$ 

### THE STEPPING-STONE SOLUTION METHOD (10 OF 12)

- Continuing check for optimality.

| To     |             |             |                    |        |
|--------|-------------|-------------|--------------------|--------|
| From   | A           | В           | С                  | Supply |
|        | <u></u> ← 6 | 8           | →+<br>10           |        |
| 1      | 25          |             | 125                | 150    |
|        | 7           | + 11        | <u>-</u> <u>11</u> |        |
| 2      |             |             | 175                | 175    |
|        | + ← 4       | _ <u></u> 5 | 12                 |        |
| 3      | 175         | 100         |                    | 275    |
| Demand | 200         | 100         | 300                | 600    |

$$2B \rightarrow 3B \rightarrow 3A \rightarrow 1A \rightarrow 1C \rightarrow 2C + \$11 - 5 + 4 - 6 + 10 - 11 = +\$3$$

The Stepping-Stone Path for Cell 2B

| To     |          |   |     |    |            |     |    |        |
|--------|----------|---|-----|----|------------|-----|----|--------|
| From   | A        |   | В   |    | С          |     |    | Supply |
|        | +        | 6 |     | 8  |            |     | 10 |        |
| 1      | 25       |   |     |    |            | 125 | ,  | 150    |
|        |          | 7 |     | 11 |            |     | 11 |        |
| 2      |          |   |     |    |            | 175 | ;  | 175    |
|        | <u> </u> | 4 |     | 5  | _ <b>+</b> |     | 12 |        |
| 3      | 175      |   | 100 | )  |            |     |    | 275    |
| Demand | 200      |   | 100 |    | 300        |     | )  | 600    |

The Stepping-Stone  $3C \rightarrow 3A \rightarrow 1A \rightarrow 1C$ Path for Cell 3C + \$12-4+6-10=+\$4

#### THE STEPPING-STONE SOLUTION METHOD (11 OF 12)

- The stepping-stone process is repeated until none of the empty cells will reduce costs (i.e., an optimal solution).
- In example, evaluation of four paths indicates no cost reductions, therefore Table 19 solution is optimal.
  - Solution and total minimum cost:

$$x_{1A} = 25 \text{ tons}, x_{2C} = 175 \text{ tons}, x_{3A} = 175 \text{ tons}, x_{1C} = 125 \text{ tons}, x_{3B} = 100 \text{ tons}$$

$$Z = \$6(25) + 8(0) + 10(125) + 7(0) + 11(0) + 11(175) + 4(175) + 5(100) + 12(0)$$

$$= \$4,525$$

# THE STEPPING-STONE SOLUTION METHOD (12 OF 12)

- A multiple optimal solution occurs when an empty cell has a cost change of zero and all other empty cells are positive.
- An alternate optimal solution is determined by allocating to the empty cell with a zero cost change.
  - Alternate optimal total minimum cost also equals \$4,525.

| То     |     |     |     |        |
|--------|-----|-----|-----|--------|
| From   | A   | В   | С   | Supply |
|        | 6   | 8   | 10  |        |
| 1      |     |     | 150 | 150    |
|        | 7   | 11  | 11  |        |
| 2      | 25  |     | 150 | 175    |
|        | 4   | 5   | 12  |        |
| 3      | 175 | 100 |     | 275    |
| Demand | 200 | 100 | 300 | 600    |

The Alternative Optimal Solution

#### THE STEPPING-STONE SOLUTION METHOD SUMMARY OF STEPS

- 1. Determine the stepping-stone paths and cost changes for each empty cell in the tableau.
- 2. Allocate as much as possible to the empty cell with the greatest net decrease in cost.
- 3. Repeat steps 1 and 2 until all empty cells have positive cost changes that indicate an optimal solution.

# THE MODIFIED DISTRIBUTION METHOD (MODI) (1 OF 6)

- MODI is a modified version of the stepping-stone method in which math equations replace the stepping-stone paths.
- In the table, the extra left-hand column with the  $\boldsymbol{u}_i$  symbols and the extra top row with the  $\boldsymbol{v}_i$  symbols represent values that must be computed.
  - Computed for all cells with allocations :

 $u_i + v_j = c_{ij} = unit transportation cost for cell_{ij}$ .

|                  | $\mathbf{v}_{j}$ | $\mathbf{v_A} =$ | $\mathbf{v}_{\mathrm{B}} =$ | $\mathbf{v}_{\mathbf{C}} =$ |        |
|------------------|------------------|------------------|-----------------------------|-----------------------------|--------|
| $u_i$            | To<br>From       | A                | В                           | C                           | Supply |
|                  |                  | 6                | 8                           | 10                          |        |
| $\mathbf{u_1} =$ | 1                |                  | 25                          | 125                         | 150    |
|                  |                  | 7                | 11                          | 11                          |        |
| $\mathbf{u}_2 =$ | 2                |                  |                             | 175                         | 175    |
|                  |                  | 4                | 5                           | 12                          |        |
| $u_3 =$          | 3                | 200              | 75                          |                             | 275    |
|                  | Demand           | 200              | 100                         | 300                         | 600    |

The Minimum Cell Cost Initial Solution

#### THE MODIFIED DISTRIBUTION METHOD (MODI) (2 OF 6)

- Formulas for cells containing allocations:

| x <sub>1B</sub> :        | $u_1 + v_B = 8$  |
|--------------------------|------------------|
| <b>x</b> <sub>1C</sub> : | $u_1 + v_C = 10$ |
| <b>x</b> <sub>2C</sub> : | $u_2 + v_C = 11$ |
| x <sub>3A</sub> :        | $u_3 + v_A = 4$  |
| x <sub>3B</sub> :        | $u_3 + v_B = 5$  |

|                    | $\mathbf{v_j}$ | $\mathbf{v_A} = 7$ |   | $v_B = 8$ |    | $v_C = 10$ |    |        |
|--------------------|----------------|--------------------|---|-----------|----|------------|----|--------|
|                    | To             |                    |   |           |    |            |    |        |
| $\mathbf{u_i}$     | From           | A                  |   | В         |    | C          |    | Supply |
|                    |                |                    | 6 |           | 8  |            | 10 |        |
| $\mathbf{u}_1 = 0$ | 1              |                    |   | 25        |    | 125        |    | 150    |
|                    |                |                    | 7 |           | 11 |            | 11 |        |
| $u_2 = 1$          | 2              |                    |   |           |    | 175        | 5  | 175    |
|                    |                |                    | 4 |           | 5  |            | 12 |        |
| $u_3 = -3$         | 3              | 200                |   | 75        | 5  |            |    | 275    |
|                    | Demand         | 200                |   | 100       |    | 300        |    | 600    |

The Initial Solution with All ui and vj Values

- Five equations with 6 unknowns, therefore let  $u_1 = 0$  and solve to obtain:

$$v_B = 8$$
,  $v_C = 10$ ,  $u_2 = 1$ ,  $u_3 = -3$ ,  $v_A = 7$ 

#### THE MODIFIED DISTRIBUTION METHOD (MODI) (3 OF 6)

- Each MODI allocation replicates the stepping-stone allocation.
- Use following to evaluate all empty cells:

$$c_{ij} - u_i - v_j = k_{ij}$$

where  $k_{ij}$  equals the cost increase or decrease that would occur by allocating to a cell.

- For the empty cells in Table 26:

$$x_{1A}$$
:  $k_{1A} = c_{1A} - u_1 - v_A = 6 - 0 - 7 = -1$ 

$$x_{2A}$$
:  $k_{2A} = c_{2A} - u_2 - v_A = 7 - 1 - 7 = -1$ 

$$x_{2B}$$
:  $k_{2B} = c_{2B} - u_2 - v_B = 11 - 1 - 8 = +2$ 

$$x_{3C}$$
:  $k_{3C} = c_{3C} - u_3 - v_C = 12 - (-3) - 10 = +5$ 

# THE MODIFIED DISTRIBUTION METHOD (MODI) (4 OF 6)

- After each allocation to an empty cell, the  $\boldsymbol{u}_i$  and  $\boldsymbol{v}_j$  values must be recomputed.

|                  | $\mathbf{v_{j}}$ | $\mathbf{v_A} =$ | $\mathbf{v}_{\mathrm{B}} =$ | $\mathbf{v}_{\mathbf{C}} =$ |        |
|------------------|------------------|------------------|-----------------------------|-----------------------------|--------|
| $u_i$            | To<br>From       | A                | В                           | С                           | Supply |
|                  |                  | 6                | 8                           | 10                          |        |
| $\mathbf{u}_1 =$ | 1                | 25               |                             | 125                         | 150    |
|                  |                  | 7                | 11                          | 11                          |        |
| $\mathbf{u}_2 =$ | 2                |                  |                             | 175                         | 175    |
|                  |                  | 4                | 5                           | 12                          |        |
| u <sub>3</sub> = | 3                | 175              | 100                         |                             | 275    |
|                  | Demand           | 200              | 100                         | 300                         | 600    |

The Second Iteration of the MODI Solution Method

#### THE MODIFIED DISTRIBUTION METHOD (MODI)

- Recomputing  $\boldsymbol{u}_i$  and  $\boldsymbol{v}_j$  values:

$$x_{1A}$$
:  $u_1 + v_A = 6$ ,  $v_A = 6$   $x_{1C}$ :  $u_1 + v_C = 10$ ,  $v_C = 10$   $x_{2C}$ :  $u_2 + v_C = 11$ ,  $u_2 = 1$ 

$$x_{3A}$$
:  $u_3 + v_A = 4$ ,  $u_3 = -2$   $x_{3B}$ :  $u_3 + v_B = 5$ ,  $v_B = 7$ 

|                    | $\mathbf{v}_{j}$ | $\mathbf{v_A} = 6$ | $\mathbf{v}_{\mathrm{B}} = 7$ | $\mathbf{v}_{\mathrm{C}} = 10$ |        |
|--------------------|------------------|--------------------|-------------------------------|--------------------------------|--------|
| u <sub>i</sub>     | To<br>From       | A                  | В                             | С                              | Supply |
|                    |                  | 6                  | 8                             | 10                             |        |
| $\mathbf{u}_1 = 0$ | 1                | 25                 |                               | 125                            | 150    |
|                    |                  | 7                  | 11                            | 11                             |        |
| $u_2 = 1$          | 2                |                    |                               | 175                            | 175    |
|                    |                  | 4                  | 5                             | 12                             |        |
| $u_3 = -2$         | 3                | 175                | 100                           |                                | 275    |
|                    | Demand           | 200                | 100                           | 300                            | 600    |

The New ui and vj Values for the Second Iteration

## THE MODIFIED DISTRIBUTION METHOD (MODI) (6 OF 6)

- Cost changes for the empty cells,  $c_{ij}$  -  $u_i$  -  $v_j = k_{ij}$ ;

$$x_{1B}$$
:  $k_{1B} = c_{1B} - u_1 - v_B = 8 - 0 - 7 = +1$   
 $x_{2A}$ :  $k_{2A} = c_{2A} - u_2 - v_A = 7 - 1 - 6 = 0$   
 $x_{2B}$ :  $k_{2B} = c_{2B} - u_2 - v_B = 11 - 1 - 7 = +3$   
 $x_{3C}$ :  $k_{2B} = c_{2B} - u_3 - v_C = 12 - (-2) - 10 = +4$ 

- Since none of the values are negative, solution obtained is optimal.
- Cell 2A with a zero cost change indicates a multiple optimal solution.

## THE MODIFIED DISTRIBUTION METHOD (MODI) SUMMARY OF STEPS

- 1. Develop an initial solution.
- 2. Compute the  $u_i$  and  $v_j$  values for each row and column.
- 3. Compute the cost change,  $k_{ii}$ , for each empty cell.
- 4. Allocate as much as possible to the empty cell that will result in the greatest net decrease in cost (most negative  $k_{ij}$ )
- 5. Repeat steps 2 through 4 until all  $k_{ij}$  values are positive or zero.

# THE UNBALANCED TRANSPORTATION MODEL (1 OF 2)

- When demand exceeds supply a dummy row is added to the tableau.

| To     |     |     |     |        |
|--------|-----|-----|-----|--------|
| From   | A   | В   | С   | Supply |
|        | 6   | 8   | 10  |        |
| 1      |     |     |     | 150    |
|        | 7   | 11  | 11  |        |
| 2      |     |     |     | 175    |
|        | 4   | 5   | 12  |        |
| 3      |     |     |     | 275    |
|        | 0   | 0   | 0   |        |
| Dummy  |     |     |     | 50     |
| Demand | 200 | 100 | 350 | 650    |

An Unbalanced Model (Demand . Supply)

## THE UNBALANCED TRANSPORTATION MODEL (2 OF 2)

- When supply exceeds demand, a dummy column is added to the tableau.
- The dummy column (or dummy row) has no effect on the initial solution methods or the optimal solution methods.

| To     |     |     |     |       |        |
|--------|-----|-----|-----|-------|--------|
| From   | A   | В   | С   | Dummy | Supply |
|        | 6   | 8   | 10  | 0     |        |
| 1      |     |     |     |       | 150    |
|        | 7   | 11  | 11  | 0     |        |
| 2      |     |     |     |       | 175    |
|        | 4   | 5   | 12  | 0     |        |
| 3      |     |     |     |       | 375    |
| Demand | 200 | 100 | 300 | 100   | 700    |

An Unbalanced Model (Supply . Demand)

# DEGENERACY (1 OF 3)

- In a transportation tableau with m rows and n columns, there must be m + n 1 cells with allocations; if not, it is *degenerate*.
- The tableau in the figure does not meet the condition since 3 + 3 1 = 5 cells and there are only 4 cells with allocations.

| To     |     |     |     |        |
|--------|-----|-----|-----|--------|
| From   | A   | В   | С   | Supply |
|        | 6   | 8   | 10  |        |
| 1      |     | 100 | 50  | 150    |
|        | 7   | 11  | 11  |        |
| 2      |     |     | 250 | 250    |
|        | 4   | 5   | 12  |        |
| 3      | 200 |     |     | 200    |
| Demand | 200 | 100 | 300 | 600    |

The Minimum Cell Cost Initial Solution

## DEGENERACY (2 OF 3)

- In a degenerate tableau, all the stepping-stone paths or MODI equations cannot be developed.
- -To rectify a degenerate tableau, an empty cell must artificially be treated as an occupied cell.

| То     |     |     |     |        |
|--------|-----|-----|-----|--------|
| From   | A   | В   | С   | Supply |
|        | 6   | 8   | 10  |        |
| 1      | 0   | 100 | 50  | 150    |
|        | 7   | 11  | 11  |        |
| 2      |     |     | 250 | 250    |
|        | 4   | 5   | 12  |        |
| 3      | 200 |     |     | 200    |
| Demand | 200 | 100 | 300 | 600    |

The Initial Solution

# DEGENERACY (3 OF 3)

- The stepping-stone path s and cost changes for this tableau:

2A 2C 1C 1A

$$x_{2A}$$
: 7 - 11 + 10 - 6 = 0

2B 2C 1C 1B

$$x_{2B}$$
: 11 - 11 + 10 - 8 = +2

3B 1B 1A 3A

$$x_{3B}$$
: 5 - 8 + 6 - 4 = -1

3C 1C 1A 3A

$$x_{3C}$$
: 12 - 10 + 6 - 4 = +4

| То     |     |   | n   |    |     |    | 0 1    |
|--------|-----|---|-----|----|-----|----|--------|
| From   | A   |   | В   |    | C   |    | Supply |
|        |     | 6 |     | 8  |     | 10 |        |
| 1      | 100 | ١ |     |    | 50  |    | 150    |
|        |     | 7 |     | 11 |     | 11 |        |
| 2      |     |   |     |    | 250 | ١  | 250    |
|        |     | 4 |     | 5  |     | 12 |        |
| 3      | 100 | ١ | 100 | )  |     |    | 200    |
| Demand | 200 |   | 100 | )  | 300 |    | 600    |

The Second Stepping-Stone Iteration

#### PROHIBITED ROUTES

- A prohibited route is assigned a large cost such as M.
- When the prohibited cell is evaluated, it will always contain the cost M, which will keep it from being selected as an entering variable.



#### THE ASSIGNMENT MODEL

#### **CHARACTERISTICS**

- Special form of linear programming model similar to the transportation model.
- Supply at each source and demand at each destination limited to one unit.
- In a balanced model supply equals demand.
- In an unbalanced model supply does not equal demand.

## THE ASSIGNMENT MODEL EXAMPLE PROBLEM DEFINITION AND DATA

Problem: Assign four teams of officials to four games in a way that will minimize total distance traveled by the officials. Supply is always one team of officials, demand is for only one team of officials at each game.

|           | Game Sites |         |        |         |  |
|-----------|------------|---------|--------|---------|--|
| Officials | Raleigh    | Atlanta | Durham | Clemson |  |
| A         | 210        | 90      | 180    | 160     |  |
| В         | 100        | 70      | 130    | 200     |  |
| С         | 175        | 105     | 140    | 170     |  |
| D         | 80         | 65      | 105    | 120     |  |

### THE ASSIGNMENT MODEL EXAMPLE PROBLEM MODEL FORMULATION

Minimize  $Z = 210x_{AR} + 90x_{AA} + 180x_{AD} + 160x_{AC} + 100x_{BR} + 70x_{BA} + 130x_{BD} + 200x_{BC} + 175x_{CR} + 105x_{CA} + 140x_{CD} + 170x_{CC} + 80x_{DR} + 65x_{DA} + 105x_{DD} + 120x_{DC}$  subject to

$$x_{AR} + x_{AA} + x_{AD} + x_{AC} = 1$$
 $x_{BR} + x_{BA} + x_{BD} + x_{BC} = 1$ 
 $x_{CR} + x_{CA} + x_{CD} + x_{CC} = 1$ 
 $x_{DR} + x_{DA} + x_{DD} + x_{DC} = 1$ 
 $x_{AR} + x_{BR} + x_{CR} + x_{DR} = 1$ 
 $x_{AA} + x_{BA} + x_{CA} + x_{DA} = 1$ 
 $x_{AD} + x_{BD} + x_{CD} + x_{DD} = 1$ 
 $x_{AC} + x_{BC} + x_{CC} + x_{DC} = 1$ 
 $x_{CC} + x_{CC} + x_{DC} = 1$ 

# SOLUTION OF THE ASSIGNMENT MODEL (1 OF 7)

- An *assignment problem* is a special form of the transportation problem where all supply and demand values equal one.
- Example: assigning four teams of officials to four games in a way that will minimize distance traveled by the officials.

#### **Game Sites**

| Officials | Raleigh | Atlanta | Dur ham | Clemson      |
|-----------|---------|---------|---------|--------------|
| A         | 210     | 90      | 180     | 160          |
| В         | 100     | 70      | 130     | 200          |
| С         | 175     | 105     | 140     | 1 <b>7</b> 0 |
| D         | 80      | 65      | 105     | 120          |

The Travel Distances to Each Game for Each Team of Officials

## SOLUTION OF THE ASSIGNMENT MODEL (2 OF 7)

- An *opportunity cost table* is developed by first subtracting the minimum value in each row from all other row values (*row reductions*) and then repeating this process for each column.

|           | Game Sites |         |        |         |  |
|-----------|------------|---------|--------|---------|--|
| Officials | Raleigh    | Atlanta | Durham | Clemson |  |
| A         | 120        | 0       | 90     | 70      |  |
| В         | 30         | 0       | 60     | 130     |  |
| С         | <b>7</b> 0 | 0       | 35     | 65      |  |
| D         | 15         | 0       | 40     | 55      |  |

The Assignment Tableau with Row Reductions

# SOLUTION OF THE ASSIGNMENT MODEL (3 OF 7)

- The minimum value in each column is subtracted from all column values (*column reductions*).
  - Assignments can be made in the table wherever a zero is present.
- An *optimal solution* results when each of the four teams can be assigned to a different game.
  - Table 36 does not contain an optimal solution

| Officials | Game Sites |         |        |            |  |
|-----------|------------|---------|--------|------------|--|
|           | Raleigh    | Atlanta | Durham | Clemson    |  |
| A         | 105        | 0       | 55     | 15         |  |
| В         | 15         | 0       | 25     | <b>7</b> 5 |  |
| С         | 55         | 0       | 0      | 10         |  |
| D         | 0          | 0       | 5      | 0          |  |

The Tableau with Column Reductions



# SOLUTION OF THE ASSIGNMENT MODEL (4 OF 7)

- An optimal solution occurs when the number of independent unique assignments equals the number of rows and columns.
- If the number of unique assignments is less than the number of rows (or columns) a line test must be used.

|           | Game Sites |         |         |            |  |
|-----------|------------|---------|---------|------------|--|
| Officials | Raleigh    | Atlanta | Dur ham | Clemson    |  |
| A         | 105        | 0       | 55      | 15         |  |
| В         | 15         | O       | 25      | <b>7</b> 5 |  |
| С         | 35         | 0       | 0       | 10         |  |
| D         | 0          | 0       | 5       | 0          |  |

The Opportunity Cost Table with the Line Test

## SOLUTION OF THE ASSIGNMENT MODEL (5 OF 7)

- In a line test all zeros are crossed out by horizontal and vertical lines; the minimum uncrossed value is subtracted from all other uncrossed values and added to values where two lines cross.

| Officials | Game Sites |         |         |         |  |
|-----------|------------|---------|---------|---------|--|
|           | Raleigh    | Atlanta | Dur ham | Clemson |  |
| A         | 90         | 0       | 40      | 0       |  |
| В         | 0          | 0       | 10      | 60      |  |
| С         | 55         | 15      | 0       | 10      |  |
| D         | 0          | 15      | 5       | 0       |  |

The Second Iteration



## SOLUTION OF THE ASSIGNMENT MODEL (6 OF 7)

- At least four lines are required to cross out all zeros in table 38.
- This indicates an optimal solution has been reached.
- Assignments and distances:

| Assignment                   | <u>Distance</u> | <u>Assignment</u>            | <u>Distance</u> |
|------------------------------|-----------------|------------------------------|-----------------|
| Team $A \rightarrow Atlanta$ | 90              | Team $A \rightarrow Clemson$ | 160             |
| Team $B \rightarrow Raleigh$ | 100             | Team $B \rightarrow Atlanta$ | 70              |
| Team $C \rightarrow Durham$  | 140             | Team $C \rightarrow Durham$  | 140             |
| Team $D \rightarrow Clemson$ | 120             | Team $D \rightarrow Raleigh$ | 80              |
| Total                        | 450 miles       | Total                        | 450 miles       |

- If in initial assignment team A went to Clemson, result is the same; resulting assignments represent multiple optimal solutions.



# SOLUTION OF THE ASSIGNMENT MODEL (7 OF 7)

- When supply exceeds demand, a dummy column is added to the tableau.
- When demand exceeds supply, a dummy row is added to the tableau.
- The addition of a dummy row or column does not affect the solution method.
- A prohibited assignment is given a large relative cost of M so that it will never be selected.

|           | Game Sites   |            |        |         |       |  |  |
|-----------|--------------|------------|--------|---------|-------|--|--|
| Officials | Raleigh      | Atlanta    | Durham | Clemson | Dummy |  |  |
| A         | 210          | 90         | 180    | 160     | 0     |  |  |
| В         | 100          | <b>7</b> 0 | 130    | 200     | 0     |  |  |
| С         | 1 <b>7</b> 5 | 105        | 140    | 170     | 0     |  |  |
| D         | 80           | 65         | 105    | 120     | 0     |  |  |
| Е         | 95           | 115        | 120    | 100     | 0     |  |  |

An Unbalanced Assignment Tableau with a Dummy Column



## SOLUTION OF THE ASSIGNMENT MODEL SUMMARY OF SOLUTION STEPS

- 1. Perform row reductions.
- 2. Perform column reductions.
- 3 In the completed opportunity cost table, cross out all zeros using the minimum number of horizontal and/or vertical lines.
- 4. If fewer than *m* lines are required, subtract the minimum uncrossed value from all other uncrossed values, and add the same value to all cells where two lines intersect.
  - 5. Leave all other values unchanged and repeat step 3.
- 6. If m lines are required, the tableau contains the optimal solution. If fewer than m lines are required, repeat step 4.



# THE ASSIGNMENT PROBLEM WITH MORE EXAMPLES



- In many business situations, management needs to assign - personnel to jobs, - jobs to machines, - machines to job locations, or salespersons to territories.
- Consider the situation of assigning n jobs to n machines.
- When a job i (=1,2,...,n) is assigned to machine j (=1,2,....n) that incurs a cost Cij.
- The objective is to assign the jobs to machines at the least possible total cost.



- This situation is a special case of the Transportation Model And it is known as the assignment problem.
- Here, jobs represent "sources" and machines represent "destinations."
- The supply available at each source is 1 unit And demand at each destination is 1 unit.



|             |   | Machine |     |  |     |        |  |  |
|-------------|---|---------|-----|--|-----|--------|--|--|
|             |   | 1       | 2   |  | n   | Source |  |  |
|             | 1 | C11     | C12 |  | C1n | 1      |  |  |
|             | 2 | C21     | C22 |  | C2n | 1      |  |  |
| Job         |   |         |     |  |     |        |  |  |
|             | ٠ |         |     |  |     |        |  |  |
|             |   |         |     |  |     |        |  |  |
|             | n | Cn1     | Cn2 |  | Cnn | 1      |  |  |
| Destination |   | 1       | 1   |  | 1   |        |  |  |

The assignment model can be expressed mathematically as follows:

Xij= 0, if the job j is not assigned to machine i 1, if the job j is assigned to machine i



$$\begin{array}{ccc} & n & n \\ \text{Min} & \Sigma & \Sigma & \text{Cij Xij} \\ & \text{i=1 j=1} \end{array}$$

(Sum of assignments from a source should be exactly equal to 1):

n 
$$\Sigma$$
 Xij = 1 For i=1,2,...,n j=1

(Sum of assignments to a destination should be equal to the demanded quantity by that destination):

n 
$$\Sigma$$
 Xij = 1 For j=1,2,...,n i=1

(Quantities to be assigned can be either 0 or 1):

Xij = 0 or 1 For all i and j.

#### THE ASSIGNMENT PROBLEM EXAMPLE

- Ballston Electronics manufactures small electrical devices.
- Products are manufactured on five different assembly lines (1,2,3,4,5).
- When manufacturing is finished, products are transported from the assembly lines to one of the five different inspection areas (A,B,C,D,E).
- Transporting products from five assembly lines to five inspection areas requires different times (in minutes)



#### THE ASSIGNMENT PROBLEM EXAMPLE

|               |    | Inspection | on Area |    |          |
|---------------|----|------------|---------|----|----------|
| Assembly Line | A  | В          | C       | D  | <u>E</u> |
| 1             | 10 | 4          | 6       | 10 | 12       |
| 2             | 11 | 7          | 7       | 9  | 14       |
| 3             | 13 | 8          | 12      | 14 | 15       |
| 4             | 14 | 16         | 13      | 17 | 17       |
| 5             | 19 | 11         | 17      | 20 | 19       |

Under current arrangement, assignment of inspection areas to the assembly lines are 1 to A, 2 to B, 3 to C, 4 to D, and 5 to E.

This arrangement requires 10+7+12+17+19 = 65 man minutes.



|     |   | Machine |    |    |   |
|-----|---|---------|----|----|---|
|     |   | 1 2 3   |    |    |   |
|     | 1 | 5       | 7  | 9  | 1 |
| Job | 2 | 14      | 10 | 12 | 1 |
|     | 3 | 15      | 13 | 16 | 1 |
|     |   | 1       | 1  | 1  |   |

Step 1: Select the smallest value in each row. Subtract this value from each value in that row

Step 2: Do the same for the columns that do not have any zero value.



|     |   | Machine |    |    |
|-----|---|---------|----|----|
|     |   | 1       | 2  | 3  |
|     | 1 | 5       | 7  | 9  |
| Job | 2 | 14      | 10 | 12 |
|     | 3 | 15      | 13 | 16 |

|     |   | Machine |   |   |
|-----|---|---------|---|---|
|     |   | 1       | 2 | 3 |
|     | 1 | 0       | 2 | 4 |
| Job | 2 | 4       | 0 | 2 |
|     | 3 | 2       | 0 | 3 |

|   | Machine |   |   |  |  |
|---|---------|---|---|--|--|
|   | 1       | 2 | 3 |  |  |
| 1 | 0       | 2 | 2 |  |  |
| 2 | 4       | 0 | 0 |  |  |
| 3 | 2       | 0 | 1 |  |  |

If not finished, continue with other columns.



Step 3: Assignments are made at zero values.

- Therefore, we assign job 1 to machine 1; job 2 to machine 3, and job 3 to machine 2.
- Total cost is 5+12+13=30.
- It is not always possible to obtain a feasible assignment as in here.



|   | 1        | 2        | 3  | 4        |
|---|----------|----------|----|----------|
| 1 | <u>1</u> | 4        | 6  | 3        |
| 2 | 9        | <u>Z</u> | 10 | 9        |
| 3 | <u>4</u> | 5        | 11 | 7        |
| 4 | 8        | 7        | 8  | <u>5</u> |

|   | 1 | 2 | 3        | 4 |
|---|---|---|----------|---|
| 1 | 0 | 3 | <u>5</u> | 2 |
| 2 | 2 | 0 | 3        | 2 |
| 3 | 0 | 1 | <u>7</u> | 3 |
| 4 | 3 | 2 | <u>3</u> | 0 |

|   | 1        | 2        | 3        | 4 |
|---|----------|----------|----------|---|
| 1 | <u>0</u> | 3        | 2        | 2 |
| 2 | 2        | <u>0</u> | 0        | 2 |
| 3 | 0        | 1        | 4        | 3 |
| 4 | 3        | 2        | <u>0</u> | 0 |



- A feasible assignment is not possible at this moment.
- In such a case, The procedure is to draw a minimum number of lines through some of the rows and columns, Such that all zero values are crossed out.



|     | 1 | 2 | 3        | 4  |
|-----|---|---|----------|----|
| 1   | þ | 3 | 2        | 2  |
| 2 — | 2 | 0 | 0        | 2  |
| 3   | D | 1 | 4        | 3  |
| 4   | 3 | 2 | <u> </u> | Q. |

The next step is to select the smallest uncrossed out element. This element is *subtracted from every uncrossed out element* and *added to every element at the intersection* of two lines.

|   | 1        | 2                    | 3        | 4                    |
|---|----------|----------------------|----------|----------------------|
| 1 | <u>0</u> | 2                    | 1        | 1                    |
| 2 | 3        | 0                    | <u>0</u> | 2                    |
| 3 | 0        | $\underline{\theta}$ | 3        | 2                    |
| 4 | 4        | 2                    | 0        | $\underline{\theta}$ |



- We can now easily assign to the zero values. Solution is to assign (1 to 1), (2 to 3), (3 to 2) and (4 to 4).
- If drawing lines do not provide an easy solution, then we should perform the task of drwaing lines one more time.
- Actually, we should continue drawing lines until a feasible assignment is possible.

