28-07-2022 Shift-1

1

EE1030 : Matrix Theory Indian Institute of Technology Hyderabad

Satyanarayana Gajjarapu AI24BTECH11009

1 Shift-1(16-30)

- 1) The foot of the perpendicular from a point on the circle $x^2 + y^2 = 1$, z = 0 to the plane 2x + 3y + z = 6 lies on which one of the following curves?
 - a) $(6x + 5y 12)^2 + 4(3x + 7y 8)^2 = 1$, z = 6 2x 3y
 - b) $(5x + 6y 12)^2 + 4(3x + 5y 9)^2 = 1$, z = 6 2x 3y
 - c) $(6x + 5y 14)^2 + 9(3x + 5y 7)^2 = 1$, z = 6 2x 3y
 - d) $(5x + 6y 14)^2 + 9(3x + 7y 8)^2 = 1$, z = 6 2x 3y
- 2) If the minimum value of

$$f(x) = \frac{5x^2}{2} + \frac{\alpha}{x^5}, x > 0$$

is 14, then the value of α is equal to

- a) 32
- b) 64
- c) 128
- d) 256
- 3) Let α, β, γ be three positive real numbers. Let $f(x) = \alpha x^5 + \beta x^3 + \gamma x, x \in \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be such that g(f(x)) = x for all $x \in \mathbb{R}$. If $a_1, a_2, a_3, \dots, a_n$ be in arithmetic progression with mean zero, then the value of

$$f\left(g\left(\frac{1}{n}\sum_{i=1}^{n}f\left(a_{i}\right)\right)\right)$$

is equal to

- a) 0
- b) 3
- c) 9
- d) 27

4) Consider the sequence a_1, a_2, a_3, \cdots such that $a_1 = 1$, $a_2 = 2$ and $a_{n+2} = \frac{2}{a_{n+1} + a_n}$ for $n = 1, 2, 3, \cdots$. If

$$\left(\frac{a_1+\frac{1}{a_2}}{a_3}\right)\left(\frac{a_2+\frac{1}{a_3}}{a_4}\right)\left(\frac{a_3+\frac{1}{a_4}}{a_5}\right)\cdots\left(\frac{a_{30}+\frac{1}{a_{31}}}{a_{32}}\right)=2^{\alpha}\left(^{61}C_{31}\right),$$

then α is equal to

- a) -30
- b) -31
- c) -60
- d) -61
- 5) The minimum value of the twice differentiable function

$$f(x) = \int_0^x e^{x-t} f'(t) - (x^2 - x + 1) e^x, x \in \mathbb{R}$$

- a) $-\frac{2}{\sqrt{e}}$ b) $-2\sqrt{e}$ c) $-\sqrt{e}$ d) $\frac{2}{\sqrt{e}}$

- 6) Let S be the set of all passwords which are six to eight chaacters long, where each character is either an alphabet from $\{A, B, C, D, E\}$ or a number from $\{1, 2, 3, 4, 5\}$ with the repetition of characters allowed. If the number of passwords in S whose at least one character is a number from $\{1, 2, 3, 4, 5\}$ is $\alpha \times 5^6$, then α is equal to
- 7) Let P(-2,-1,1) and $Q\left(\frac{56}{17},\frac{43}{17},\frac{111}{17}\right)$ be the vertices of the rhombus PRQS. If the direction ratios of the diagonal RS are α , -1, β , where both α and β are integers of minimum absolute values, then $\alpha^2 + \beta^2$ is equal to
- 8) Let $f:[0,1] \to \mathbb{R}$ be a twice differentiable function in (0,1) such that f(0)=3and f(1) = 5. If the line y = 2x + 3 intersects the graph of f at only two distinct points in (0,1) then the least number of points $x \in (0,1)$ at which f''(x) = 0, is

$$\int_0^{\sqrt{3}} \frac{15x^3}{\sqrt{1+x^2+\sqrt{(1+x^2)^3}}} dx = \alpha \sqrt{2} + \beta \sqrt{3}$$

where α , β are integers, then $\alpha + \beta$ is equal to

10) Let $A = \begin{bmatrix} 1 & -1 \\ 2 & \alpha \end{bmatrix}$ and $B = \begin{bmatrix} \beta & 1 \\ 1 & 0 \end{bmatrix}$, $\alpha, \beta \in R$. Let α_1 be the value of α which satisfies

$$(A+B)^2 = A^2 + \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

and α_2 be the value of α which satisfies

$$(A+B)^2=B^2.$$

Then $|\alpha_1 - \alpha_2|$ is equal to _____

- 11) For $p, q \in R$, consider the real valued function $f(x) = (x p)^2 q$, $x \in R$ and q > 0. Let a_1 , a_2 , a_3 and a_4 be in an arithmetic progression with mean p and positive common difference. If $|f(a_i)| = 500$ for all i = 1, 2, 3, 4, then the absolute difference between the roots of f(x) = 0 is
- 12) For the hyperbola $H: x^2 y^2 = 1$ and the ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a > b > 0$, let the a) eccentricity of E be reciprocal of the eccentricity of H, and
 - b) the line $y = \sqrt{\frac{5}{2}}x + K$ be a common tangent of E and H.

Then $4(a^2 + b^2)$ is equal to _____

13) Let $x_1, x_2, x_3, \dots, x_{20}$ be in geometric progression with $x_1 = 3$ and the common ratio $\frac{1}{2}$. A new data is constructed replacing each x_i by $(x_i - i)^2$. If \overline{x} is the mean of new data, then the greatest integer less than or equal to \bar{x} is _____

14)

$$\lim_{x \to 0} \left(\frac{(x+2\cos(x))^3 + 2(x+2\cos(x))^2 + 3\sin(x+2\cos(x))}{(x+2)^3 + 2(x+2)^2 + 3\sin(x+2)} \right)^{\frac{100}{x}}$$

is equal to

15) The sum of all real value of x for which

$$\frac{3x^2 - 9x + 17}{x^2 + 3x + 10} = \frac{5x^2 - 7x + 19}{3x^2 + 5x + 12}$$

is equal to _____