

Teoria dos Grafos 2011/01

Algoritmo de Dijkstra Estudo e Implementação

Professora: Claudia Boeres

Alunos: José Alexandre Macedo

Maycon Maia Vitali

Qual o caminho mínimo entre um vértice e os demais de um grafo?

- Aplicações
 - Calculo de rotas

- Aplicações
 - Algoritmos de roteamento (Vetor de Distâncias)

- Aplicações
 - Pré computação para heurísticas do Caixeiro Viajante

Solução mais simples...

 O algoritmo de busca em largura (BFS) calcula o caminho mínimo entre os vértices de grafos não valorados

- Encontra o caminho mínimo de origem única
- Características
 - Funciona para grafos ponderados
 - Apenas para arestas com peso positivo
 - Os grafos podem conter ciclo

Relembrando o algoritmo...

Estruturas necessárias

```
\pi[u] \rightarrow pai do vértice u
```

 $d[u] \rightarrow distância da origem até u$

 $Q \rightarrow conjunto de vértices (distância provisória)$

 $S \rightarrow conjunto de vértices (distância definitiva)$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
 d[s] \leftarrow 0
 S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
         d[v] \leftarrow d[u] + w(u,v)
         \pi[v] \leftarrow u
```

```
Vértice inicial
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
 d[s] \leftarrow 0
                                                 Função de peso
 S \leftarrow \{\}
  Q \leftarrow V
                                                              Remove vértice com
  Enquanto |Q| \neq 0
                                                              distância mínima do
    u \leftarrow extrairMinimo(Q)
                                                              conjunto Q
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u,v)
        \pi[v] \leftarrow u
```

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
                                                 1
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u, v)
        \pi[v] \leftarrow u
```


$\pi[v] =$			
d[v] =			
$Q = \{\}$			
$S = \{ \}$			

```
Dijkstra(G = (V,A), w, s)
     para cada v \in V
\rightarrow d[v] \leftarrow \infty
      \pi[v] \leftarrow NULL
     d[s] \leftarrow 0
     S \leftarrow \{\}
     Q \leftarrow V
     Enquanto |Q| \neq 0
        u \leftarrow extrairMinimo(Q)
        S \leftarrow S \cup \{u\}
        para cada v \in Adj[u]
          se d[v] > (d[u] + w(u, v))ent\tilde{a}o
            d[v] \leftarrow d[u] + w(u, v)
            \pi[v] \leftarrow u
```



```
Dijkstra(G = (V,A), w, s)
     para cada v \in V
       d[v] \leftarrow \infty
       \pi[v] \leftarrow NULL
\rightarrow d[s] \leftarrow 0
     S \leftarrow \{\}
     Q \leftarrow V
     Enquanto |Q| \neq 0
       u \leftarrow extrairMinimo(Q)
       S \leftarrow S \cup \{u\}
        para cada v \in Adj[u]
         se d[v] > (d[u] + w(u, v))ent\tilde{a}o
            d[v] \leftarrow d[u] + w(u, v)
            \pi[v] \leftarrow u
```


 $S = \{ \}$

$\pi[v] =$	NULL	NULL	NULL	NULL	NULL	NULL
d[v] =	∞	∞	∞	∞	∞	∞
$Q = \{\}$						

```
Dijkstra(G = (V,A), w, s)
     para cada v \in V
       d[v] \leftarrow \infty
       \pi[v] \leftarrow NULL
                                                     1
     d[s] \leftarrow 0
\rightarrow S \leftarrow \{\}
     Q \leftarrow V
     Enquanto |Q| \neq 0
       u \leftarrow extrairMinimo(Q)
       S \leftarrow S \cup \{u\}
       para cada v \in Adj[u]
         se d[v] > (d[u] + w(u, v))ent\tilde{a}o
            d[v] \leftarrow d[u] + w(u, v)
            \pi[v] \leftarrow u
```


$\pi[v] =$	NULL	NULL	NULL	NULL	NULL	NULL
d[v] =	0	∞	∞	∞	∞	∞
$Q = \{\}$						
$S = \{ \}$						

```
Dijkstra(G = (V,A), w, s)
     para cada v \in V
       d[v] \leftarrow \infty
       \pi[v] \leftarrow NULL
     d[s] \leftarrow 0
     S \leftarrow \{\}
\rightarrow Q \leftarrow V
     Enquanto |Q| \neq 0
       u \leftarrow extrairMinimo(Q)
       S \leftarrow S \cup \{u\}
       para cada v \in Adj[u]
         se d[v] > (d[u] + w(u, v))ent\tilde{a}o
            d[v] \leftarrow d[u] + w(u, v)
            \pi[v] \leftarrow u
```


$\pi[v] =$	NULL	NULL	NULL	NULL	NULL	NULL
d[v] =	0	∞	∞	∞	∞	∞
$Q = \{ \}$						
$S = \{ \}$						

```
Dijkstra(G = (V,A), w, s)
     para cada v \in V
       d[v] \leftarrow \infty
       \pi[v] \leftarrow NULL
     d[s] \leftarrow 0
     S \leftarrow \{\}
     Q \leftarrow V
\rightarrow Enquanto |Q| \neq 0
       u \leftarrow extrairMinimo(Q)
       S \leftarrow S \cup \{u\}
       para cada v \in Adj[u]
         se d[v] > (d[u] + w(u, v))ent\tilde{a}o
            d[v] \leftarrow d[u] + w(u, v)
            \pi[v] \leftarrow u
```


$\pi[v] =$	NULL	NULL	NULL	NULL	NULL	NULL	
d[v] =	0	∞	∞	∞	∞	∞	
$Q = \{1, 2, 3, 4, 5, 6\}$							
$S = \{ \}$							
u =							

```
para cada v \in V
  d[v] \leftarrow \infty
  \pi[v] \leftarrow NULL
                                                1
d[s] \leftarrow 0
S \leftarrow \{\}
Q \leftarrow V
Enquanto |Q| \neq 0
u \leftarrow extrairMinimo(Q)
  S \leftarrow S \cup \{u\}
   para cada v \in Adj[u]
     se d[v] > (d[u] + w(u, v))ent\tilde{a}o
       d[v] \leftarrow d[u] + w(u, v)
       \pi[v] \leftarrow u
```

Dijkstra(G = (V,A), w, s)

$$\pi[v] = \begin{bmatrix} \text{NULL} & \text{NULL} & \text{NULL} & \text{NULL} & \text{NULL} & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & \infty & \infty & \infty & \infty \\ 0 & \infty & \infty & \infty \end{bmatrix} \infty$$
 $Q = \{1, 2, 3, 4, 5, 6\}$
 $S = \{\}$
 $u = \{\}$

```
para cada v \in V
      d[v] \leftarrow \infty
      \pi[v] \leftarrow NULL
                                                    1
   d[s] \leftarrow 0
   S \leftarrow \{\}
   Q \leftarrow V
   Enquanto |Q| \neq 0
      u \leftarrow extrairMinimo(Q)
\rightarrow S \leftarrow S \cup \{u\}
      para cada v \in Adj[u]
        se d[v] > (d[u] + w(u, v))ent\tilde{a}o
          d[v] \leftarrow d[u] + w(u, v)
          \pi[v] \leftarrow u
```

Dijkstra(G = (V,A), w, s)

$$\pi[v] = \begin{bmatrix} \text{NULL} & \text{NULL} & \text{NULL} & \text{NULL} & \text{NULL} & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & \infty & \infty & \infty & \infty & \infty \\ Q = \{2, 3, 4, 5, 6\} \\ S = \{\} \\ u = 1 \end{bmatrix}$$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
 d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
   para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u, v)
        \pi[v] \leftarrow u
```


$\pi[v] =$	NULL	NULL	NULL	NULL	NULL	NULL
d[v] =	0	∞	∞	∞	∞	∞
$Q = \{2, 3\}$	3, 4, 5	, 6}				
$S = \{1\}$						
u = 1						

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
         d[v] \leftarrow d[u] + w(u,v)
        \pi[v] \leftarrow u
```


$\pi[v] =$	NULL	NULL	NULL	NULL	NULL	NULL
d[v] =			8	8	8	8
$Q = \{2, 3\}$ $S = \{1\}$	3, 4, 5	, 6}				
u = 1						

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u, v)
        \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & \text{NULL} & \text{NULL} & \text{NULL} & \text{NULL} & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & \infty & \infty & \infty & \infty & \infty \\ Q = \{2, 3, 4, 5, 6\} \\ S = \{1\} \end{bmatrix}$$
 $u = 1$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u, v)
       \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & \text{NULL} & \text{NULL} & \text{NULL} & \text{NULL} & \text{NULL} \\ \text{d}[v] = \begin{bmatrix} 0 & 8 & \infty & \infty & \infty \\ Q = \{2, 3, 4, 5, 6\} \\ S = \{1\} \end{bmatrix}$$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u,v)
        \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & \text{NULL} & \text{NULL} & \text{NULL} & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & \infty & \infty & \infty & \infty \\ Q = \{2, 3, 4, 5, 6\} \\ S = \{1\} \end{bmatrix}$$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u, v)
        \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & \text{NULL} & \text{NULL} & \text{NULL} & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & \infty & \infty & \infty & \infty \\ Q = \{2, 3, 4, 5, 6\} \\ S = \{1\} \end{bmatrix}$$
 $u = 1$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u, v)
       \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & \text{NULL} & \text{NULL} & \text{NULL} & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & 12 & \infty & \infty \\ Q = \{2, 3, 4, 5, 6\} \\ S = \{1\} \end{bmatrix}$$

```
Dijkstra(G = (V,A), w, s)

para cada v \in V

d[v] \leftarrow \infty
\pi[v] \leftarrow NULL
d[s] \leftarrow 0
S \leftarrow \{\}
Q \leftarrow V

Enquanto |Q| \neq 0
```


$u \leftarrow extrairMinimo(Q)$ $S \leftarrow S \cup \{u\}$ $para cada v \in Adj[u]$ $se \ d[v] > (d[u] + w(u, v))ent\~ao$ $d[v] \leftarrow d[u] + w(u, v)$ $\pi[v] \leftarrow u$

$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 1 & \text{NULL} & \text{NULL} & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & 12 & \infty & \infty & \infty \\ Q = \{2, 3, 4, 5, 6\} \\ S = \{1\} \end{bmatrix}$$
 $u = 1$

```
para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u, v)
        \pi[v] \leftarrow u
```

Dijkstra(G = (V,A), w, s)

$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 1 & \text{NULL} & \text{NULL} & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & 12 & \infty & \infty & \infty \\ Q = \{2, 3, 4, 5, 6\} \\ S = \{1\} \end{bmatrix}$$
 $u = 1$

```
Dijkstra(G = (V,A), w, s)

para cada v \in V

d[v] \leftarrow \infty

\pi[v] \leftarrow NULL

d[s] \leftarrow 0

S \leftarrow \{\}

Q \leftarrow V

Enquanto |Q| \neq 0

u \leftarrow extrairMinimo(Q)

S \leftarrow S \cup \{u\}

para cada v \in Adi[u]
```


\rightarrow	$S \leftarrow S \cup \{u\}$
	para cada $v \in Adj[u]$
	se $d[v] > (d[u] + w(u, v))ent\tilde{a}o$
	$d[v] \leftarrow d[u] + w(u, v)$
	$\pi[v] \leftarrow u$

$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 1 & \text{NULL} & \text{NULL} & \text{NULL} \\ d[v] = & 0 & 8 & 12 & \infty & \infty & \infty \end{bmatrix}$$
 $Q = \{3, 4, 5, 6\}$
 $S = \{1\}$
 $u = 2$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
 d[s] \leftarrow 0
 S \leftarrow \{\}
 Q \leftarrow V
 Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
  para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u, v)
```

 $\pi[v] \leftarrow u$

$\pi[v] =$	NULL	1	1	NULL	NULL	NULL	
d[v] =	0	8	12	∞	∞ ×	∞	
$Q = \{3, 4\}$	1, 5, 6	}		-			
$S = \{1, 2\}$							

$$u = 2$$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u,v)
        \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 1 & \text{NULL} & \text{NULL} & \text{NULL} \\ d[v] = & 0 & 8 & 12 & \infty & \infty \\ Q = \{3, 4, 5, 6\} \\ S = \{1, 2\} \end{bmatrix}$$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u, v)
        \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 1 & \text{NULL} & \text{NULL} & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & 12 & \infty & \infty & \infty \\ Q = \{3, 4, 5, 6\} \\ S = \{1, 2\} \end{bmatrix}$$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u, v)
       \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 1 & \text{NULL} & \text{NULL} & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & \infty & \infty \\ Q = \{3, 4, 5, 6\} \\ S = \{1, 2\} \end{bmatrix}$$

$$u = 2$$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
     se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u,v)
        \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & \text{NULL} & \text{NULL} & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & \infty & \infty \\ Q = \{3, 4, 5, 6\} \\ S = \{1, 2\} \end{bmatrix}$$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u, v)
        \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & \text{NULL} & \text{NULL} & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & \infty & \infty \\ Q = \{3, 4, 5, 6\} \\ S = \{1, 2\} \end{bmatrix}$$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u, v)
       \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & \text{NULL} & \text{NULL} & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & \infty & \infty \\ Q = \{3, 4, 5, 6\} \\ S = \{1, 2\} \end{bmatrix}$$

$$u = 2$$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u,v)
        \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & \text{NULL} & \text{NULL} \\ d[v] = & 0 & 8 & 9 & 11 & \infty & \infty \end{bmatrix}$$
 $Q = \{3, 4, 5, 6\}$
 $S = \{1, 2\}$
 $u = 2$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u, v)
        \pi[v] \leftarrow u
```



```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u, v)
        \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & \text{NULL} & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 15 & \infty \\ Q = \{3, 4, 5, 6\} \\ S = \{1, 2\} \end{bmatrix}$$

```
Dijkstra(G = (V,A), w, s)

para cada v \in V

d[v] \leftarrow \infty
\pi[v] \leftarrow NULL
d[s] \leftarrow 0
S \leftarrow \{\}
Q \leftarrow V

Enquanto |Q| \neq 0
```


$u \leftarrow extrairMinimo(Q)$ $S \leftarrow S \cup \{u\}$ para cada $v \in Adj[u]$ se $d[v] > (d[u] + w(u, v))ent\~ao$ $d[v] \leftarrow d[u] + w(u, v)$ $\pi[v] \leftarrow u$

$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 2 & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 15 & \infty \\ Q = \{3, 4, 5, 6\} \\ S = \{1, 2\} \end{bmatrix}$$

$$u = 2$$

```
para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u, v)
        \pi[v] \leftarrow u
```

Dijkstra(G = (V,A), w, s)

$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 2 & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 15 & \infty \\ Q = \{3, 4, 5, 6\} \\ S = \{1, 2\} \end{bmatrix}$$
 $u = 2$

```
Dijkstra(G = (V,A), w, s)
   para cada v \in V
     d[v] \leftarrow \infty
     \pi[v] \leftarrow NULL
   d[s] \leftarrow 0
   S \leftarrow \{\}
   Q \leftarrow V
   Enquanto |Q| \neq 0
     u \leftarrow extrairMinimo(Q)
\rightarrow S \leftarrow S \cup \{u\}
     para cada v \in Adj[u]
       se d[v] > (d[u] + w(u, v))ent\tilde{a}o
          d[v] \leftarrow d[u] + w(u, v)
```

 $\pi[v] \leftarrow u$

$\pi[v] =$	NULL	1	2	2	2	NULL
d[v] =	0	8	9	11	15	∞
$Q = \{4, 5\}$	5, 6}					
$S = \{1, 2\}$! }					

$$u = 3$$

```
Dijkstra(G = (V,A), w, s)

para cada v \in V

d[v] \leftarrow \infty

\pi[v] \leftarrow NULL

d[s] \leftarrow 0

S \leftarrow \{\}

Q \leftarrow V

Enquanto |Q| \neq 0

u \leftarrow extrairMinimo(Q)

S \leftarrow S \cup \{u\}

para cada v \in Adi[u]
```


	$\mathcal{S} \times \mathcal{S} \subseteq \{a\}$
\rightarrow	para cada $v \in Adj[u]$
	se $d[v] > (d[u] + w(u, v))ent$ ão
	$d[v] \leftarrow d[u] + w(u, v)$
	$\pi[v] \leftarrow u$

$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 2 & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 15 & \infty \\ Q = \{4, 5, 6\} \\ S = \{1, 2, 3\} \end{bmatrix}$$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u,v)
        \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 2 \end{bmatrix} \quad \text{NULL}$$
 $d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 15 & \infty \end{bmatrix}$
 $Q = \{4, 5, 6\}$
 $S = \{1, 2, 3\}$

$$u = 3$$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u,v)
        \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 2 & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 15 & \infty \\ Q = \{4, 5, 6\} \\ S = \{1, 2, 3\} \end{bmatrix}$$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u, v)
        \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 2 & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 13 & \infty \\ Q = \{4, 5, 6\} \\ S = \{1, 2, 3\} \end{bmatrix}$$

$$u = 3$$

```
Dijkstra(G = (V,A), w, s)

para cada v \in V

d[v] \leftarrow \infty
\pi[v] \leftarrow NULL
d[s] \leftarrow 0
S \leftarrow \{\}
Q \leftarrow V

Enquanto |Q| \neq 0
```

 $\pi[v] \leftarrow u$

u = 3

$u \leftarrow extrairMinimo(Q)$ $S \leftarrow S \cup \{u\}$ para cada $v \in Adj[u]$ se d[v] > (d[u] + w(u, v))então $d[v] \leftarrow d[u] + w(u, v)$

$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 3 & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 13 & \infty \\ Q = \{4, 5, 6\} \\ S = \{1, 2, 3\} \end{bmatrix}$$

```
para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
         d[v] \leftarrow d[u] + w(u, v)
        \pi[v] \leftarrow u
```

Dijkstra(G = (V,A), w, s)

$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 3 & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 13 & \infty \\ Q = \{4, 5, 6\} \\ S = \{1, 2, 3\} \end{bmatrix}$$
 $u = 3$

```
Dijkstra(G = (V,A), w, s)
   para cada v \in V
     d[v] \leftarrow \infty
     \pi[v] \leftarrow NULL
   d[s] \leftarrow 0
   S \leftarrow \{\}
   Q \leftarrow V
   Enquanto |Q| \neq 0
      u \leftarrow extrairMinimo(Q)
\rightarrow S \leftarrow S \cup \{u\}
      para cada v \in Adj[u]
       se d[v] > (d[u] + w(u, v))ent\tilde{a}o
          d[v] \leftarrow d[u] + w(u, v)
```

 $\pi[v] \leftarrow u$

$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 3 & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 13 & \infty \\ Q = \{5, 6\} \\ S = \{1, 2, 3\} \end{bmatrix}$$

$$u = 4$$

```
Dijkstra(G = (V,A), w, s)

para cada v \in V

d[v] \leftarrow \infty

\pi[v] \leftarrow NULL

d[s] \leftarrow 0

S \leftarrow \{\}

Q \leftarrow V

Enquanto |Q| \neq 0

u \leftarrow extrairMinimo(Q)

S \leftarrow S \cup \{u\}

para cada v \in Adj[u]
```


para cada $v \in Adj[u]$
se $d[v] > (d[u] + w(u, v))ent\tilde{a}c$
$d[v] \leftarrow d[u] + w(u, v)$
$\pi[v] \leftarrow u$

$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 3 & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 13 & \infty \\ Q = \{5, 6\} \\ S = \{1, 2, 3, 4\} \end{bmatrix}$$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u,v)
        \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 3 & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 13 & \infty \\ Q = \{5, 6\} \\ S = \{1, 2, 3, 4\} \\ u = 4 \end{bmatrix}$$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u,v)
        \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 3 & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 13 & \infty \\ Q = \{5, 6\} \\ S = \{1, 2, 3, 4\} \\ u = 4 \end{bmatrix}$$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u,v)
        \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 3 & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 13 & \infty \\ Q = \{5, 6\} \\ S = \{1, 2, 3, 4\} \end{bmatrix}$$
 $u = 4$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u, v)
        \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 3 & \text{NULL} \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 13 & 32 \\ Q = \{5, 6\} \\ S = \{1, 2, 3, 4\} \end{bmatrix}$$

```
Dijkstra(G = (V,A), w, s)

para cada v \in V

d[v] \leftarrow \infty
\pi[v] \leftarrow NULL
d[s] \leftarrow 0
S \leftarrow \{\}
Q \leftarrow V

Enquanto |Q| \neq 0
```



```
u \leftarrow extrairMinimo(Q)
S \leftarrow S \cup \{u\}
para cada v \in Adj[u]
se d[v] > (d[u] + w(u, v))ent\~ao
d[v] \leftarrow d[u] + w(u, v)
\pi[v] \leftarrow u
```

$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 3 & 4 \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 13 & 32 \\ Q = \{5, 6\} \\ S = \{1, 2, 3, 4\} \end{bmatrix}$$

```
para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
         d[v] \leftarrow d[u] + w(u, v)
         \pi[v] \leftarrow u
```

Dijkstra(G = (V,A), w, s)

$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 3 & 4 \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 13 & 32 \\ Q = \{5, 6\} \\ S = \{1, 2, 3, 4\} \end{bmatrix}$$
 $u = 4$

```
para cada v \in V
      d[v] \leftarrow \infty
      \pi[v] \leftarrow NULL
    d[s] \leftarrow 0
    S \leftarrow \{\}
    Q \leftarrow V
    Enquanto |Q| \neq 0
      u \leftarrow extrairMinimo(Q)
\rightarrow S \leftarrow S \cup \{u\}
       para cada v
```

Dijkstra(G = (V,A), w, s)

$J \times J \cup \{a\}$							
para cada $v \in Adj[u]$	$\pi[v] =$	NULL	1	2	2	3	4
se $d[v] > (d[u] + w(u, v))ent$ ão	,, [,]						
	d[v] =	0	8	9	11	13	32
$d[v] \leftarrow d[u] + w(u, v)$							
$\pi[v] \leftarrow u$	$Q = \{6\}$						

$$S = \{1, 2, 3, 4\}$$

$$u = 5$$

```
Dijkstra(G = (V,A), w, s)

para cada v \in V

d[v] \leftarrow \infty

\pi[v] \leftarrow NULL

d[s] \leftarrow 0

S \leftarrow \{\}

Q \leftarrow V

Enquanto |Q| \neq 0

u \leftarrow extrairMinimo(Q)

S \leftarrow S \cup \{u\}
```


	<i>B</i> • <i>B</i> • (<i>a</i>)
\rightarrow	para cada $v \in Adj[u]$
	se $d[v] > (d[u] + w(u, v))ent$ ão
	$d[v] \leftarrow d[u] + w(u, v)$
	$\pi[v] \leftarrow u$

$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 3 & 4 \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 13 & 32 \\ Q = \{6\} \\ S = \{1, 2, 3, 4, 5\} \end{bmatrix}$$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u,v)
        \pi[v] \leftarrow u
```


y = 5

$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 3 & 4 \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 13 & 32 \\ Q = \{6\} \\ S = \{1, 2, 3, 4, 5\} \end{bmatrix}$$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u, v)
        \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 3 & 4 \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 13 & 32 \\ Q = \{6\} \\ S = \{1, 2, 3, 4, 5\} \end{bmatrix}$$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u, v)
        \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 3 & 4 \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 13 & 28 \\ Q = \{6\} \\ S = \{1, 2, 3, 4, 5\} \end{bmatrix}$$

$$u = 5$$

```
Dijkstra(G = (V,A), w, s)

para cada v \in V

d[v] \leftarrow \infty
\pi[v] \leftarrow NULL
d[s] \leftarrow 0
S \leftarrow \{\}
Q \leftarrow V

Enquanto |Q| \neq 0
```


1 101
$u \leftarrow extrairMinimo(Q)$
$S \leftarrow S \cup \{u\}$
para cada $v \in Adj[u]$
se $d[v] > (d[u] + w(u, v))ent$ ão
$d[v] \leftarrow d[u] + w(u, v)$
$\pi[v] \leftarrow u$

$$\pi[v] = \begin{bmatrix} \text{NUL} & 1 & 2 & 2 & 3 & 5 \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 13 & 28 \\ Q = \{6\} \\ S = \{1, 2, 3, 4, 5\} \end{bmatrix}$$

```
para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u, v)
        \pi[v] \leftarrow u
```

Dijkstra(G = (V,A), w, s)

$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 3 & 5 \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 13 & 28 \\ Q = \{6\} \\ S = \{1, 2, 3, 4, 5\} \\ u = 5 \end{bmatrix}$$

```
Dijkstra(G = (V,A), w, s)
   para cada v \in V
     d[v] \leftarrow \infty
     \pi[v] \leftarrow NULL
  d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
     u \leftarrow extrairMinimo(Q)
\rightarrow S \leftarrow S \cup \{u\}
     para cada v \in Adj[u]
       se d[v] > (d[u] + w(u, v))ent\tilde{a}o
```

 $d[v] \leftarrow d[u] + w(u, v)$

 $\pi[v] \leftarrow u$

$\pi[v] =$	NULL	1	2	2	3	5
d[v] =	0	8	9	11	13	28
$Q = \{\}$				•		
$S = \{1, 2\}$	2, 3, 4,	5}				

$$u = 6$$

```
Dijkstra(G = (V,A), w, s)

para cada v \in V

d[v] \leftarrow \infty

\pi[v] \leftarrow NULL

d[s] \leftarrow 0

S \leftarrow \{\}

Q \leftarrow V

Enquanto |Q| \neq 0

u \leftarrow extrairMinimo(Q)

S \leftarrow S \cup \{u\}

para cada v \in Adi[u]
```


	2 · 2 · (a)
\rightarrow	para cada $v \in Adj[u]$
	se $d[v] > (d[u] + w(u, v))ent$ ão
	$d[v] \leftarrow d[u] + w(u, v)$
	$\pi[v] \leftarrow u$

$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 3 & 5 \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 13 & 28 \\ Q = \{\} \\ S = \{1, 2, 3, 4, 5, 6\} \\ u = 6 \end{bmatrix}$$

```
Dijkstra(G = (V,A), w, s)

para cada v \in V

d[v] \leftarrow \infty
\pi[v] \leftarrow NULL
d[s] \leftarrow 0
S \leftarrow \{\}
Q \leftarrow V

Enquanto |O| \neq 0
```


	40.000
ι	$\iota \leftarrow extrairMinimo(Q)$
S	$S \leftarrow S \cup \{u\}$
р	para cada $v \in Adj[u]$
	se $d[v] > (d[u] + w(u, v))ent\tilde{a}o$
	$d[v] \leftarrow d[u] + w(u, v)$
	$\pi[v] \leftarrow u$

$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 3 & 5 \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 13 & 28 \\ Q = \{\} \\ S = \{1, 2, 3, 4, 5, 6\} \end{bmatrix}$$

```
Dijkstra(G = (V,A), w, s)
  para cada v \in V
    d[v] \leftarrow \infty
    \pi[v] \leftarrow NULL
 d[s] \leftarrow 0
  S \leftarrow \{\}
  Q \leftarrow V
  Enquanto |Q| \neq 0
    u \leftarrow extrairMinimo(Q)
    S \leftarrow S \cup \{u\}
    para cada v \in Adj[u]
      se d[v] > (d[u] + w(u, v))ent\tilde{a}o
        d[v] \leftarrow d[u] + w(u, v)
        \pi[v] \leftarrow u
```


$$\pi[v] = \begin{bmatrix} \text{NULL} & 1 & 2 & 2 & 3 & 5 \\ d[v] = \begin{bmatrix} 0 & 8 & 9 & 11 & 13 & 28 \\ Q = \{\} \\ S = \{1, 2, 3, 4, 5, 6\} \end{bmatrix}$$

Implementação

- Estruturas de dados considerada
 - Lista de adjacência com pesos nos nós

Algoritmo implementado utilizando heaps

Hã?! heap!?

- Características dos heaps (árvores especiais):
 - Se B é filho de A, então valor(B) > valor(A)
 - Implementações de fila de prioridade

- Heaps mais comuns
 - heap binário: STL priority_queue do C++
 - heap binomial
 - heap de fibonacci: implementado no trabalho

Heap Binário

• Implementações de *min-heap* ou *max-heap*

Implementado pela STL priority_queue do C++

- Complexidade:
 - Inserção
 - O(log n)
 - Remoção do mínimo
 - O(log n)

Heap de Fibonacci

- Composto por várias árvores enraizadas
- Cada nó x possui como apontadores:
 - p[x] para seu pai
 - child[x] para qualquer um de seus filhos
 - left[x] e right[x] para seus irmão
 - Fila circular duplamente encadeada
 - No nós raiz, left[x] e right[x] apontam para os nós raízes vizinhos.
- min[H] aponta para o valor mínimo do heap

Exemplo de Heap de Fibonacci

Exemplo de Heap de Fibonacci

Heap de Fibonacci: Inserção

```
Algoritmo FIB-HEAP-INSERT(H,x)
```

```
1 início
       degree[x] \leftarrow 0
    p[x] \leftarrow NIL
    child[x] \leftarrow NIL
     left[x] \leftarrow x
       right[x] \leftarrow x
       mark[x] \leftarrow FALSE
       concatenar a lista de raizes que contém x com a lista de raizes que
 8
       contém H
       se min[H] = NIL ou key[x] < key[min[H]] então
       min[H] \leftarrow x
10
       n[H] \leftarrow n[H] + 1
11
12 fim
```

Heap de Fibonacci: Inserção

Inserir um elemento 21 no heap = O(?)

Heap de Fibonacci: Inserção

• Inserir um elemento 21 no heap = O(1)

Algoritmo FIB-HEAP-EXTRACT-MIN(H)

```
início
        z \leftarrow min[H]
        se z \neq NIL então
 3
             para cada filho x de z faça
                  adicione x à lista de raizes de H
 5
                  p[x] \leftarrow \mathsf{NIL}
             remova z da lista de raizes de H
             se z = right[z] então
                  min[H] \leftarrow NIL
             senão
10
                  min[H] \leftarrow right[z]
11
                  CONSOLIDATE(H)
12
             n[H] \leftarrow n[H] - 1
13
        retorna z
14
```

Algoritmo CONSOLIDATE(H)

```
início
          para i \leftarrow 0 até D(n[H]) faça
            A[i] \leftarrow NIL
          para cada nó w na lista de raizes de H faça
 5
                x \leftarrow w
                d \leftarrow degree[x]
                enquanto A[d] \neq NIL faça
                     FIB-HEAP-LINK(H, y, x)
10
11
12
                A[d] \leftarrow x
13
          min[H] \leftarrow NIL
          para i \leftarrow 0 até D(n[H]) faça
14
15
                se A[i] \neq NIL então
                     se min[H] = NIL \ ou \ key[A[i]] < key[min[H]] \ então
16
                           min[H] \leftarrow A[i]
17
18 fim
```


Implementação: Complexidade

Estruturas de Dados Consideradas

	Heap Binário	Vetor Estático	Heap de Fibonacci
INSERÇÃO	O(log n)	O(1)	O(1)
REMOVE-MIN	O(log n)	O(n)	O(log n)

Tipo de grafos

	Grafo Genérico	Grafo Denso e → v(v-1)/2 = O(v²)	Grafo Esparso e → v-1 = O(v)
Heap Binário	$O((v + e) \log v)$	$O(v^2 \log v)$	O(v log v)
Vetor Estático	$O(v^2)$	$O(v^2)$	$O(v^2)$
Heap de Fibonacci	O(e + v log v)	$O(v^2 + v \log v) = O(v^2)$	$O(v + v \log v) = O(v \log v)$

Implementação

- Linguagem
 - C++
- Bateria de Testes
 - Grafos
 - Denso
 - Esparso
 - Completo
 - Número de vértices variando entre 50 e 5000 (de 50 em 50 com um total de 300 amostras)

– Esparso (5,4 Mb)

- Esparso (5,4 Mb)
- -Denso (3,9 Gb)

- Esparso (5,4 Mb)
- -Denso (3,9 Gb)
- -Completo (4,8 Gb)

- Esparso (5,4 Mb)
- -Denso (3,9 Gb)
- -Completo (4,8 Gb)

~9Gb de Grafos!!

DESAFIO ACEITO

Resultados (Grafos Esparso)

Resultados (Grafos Denso)

Resultados (Grafos Completo)

Conclusão

Qual a melhor estrutura?

