Strömungslehre I

Dr.-Ing. Peter Wulf - Raum F219a http://www.mp.haw-hamburg.de/pers/Wulf/

6. Reibungsbehaftete Strömungen

- Scherströmungen (viskose Strömungen)
- Laminare und turbulente Strömungen
- Reynoldszahl
- Gesetz von Hagen-Poiseuille
- Widerstandsgesetze und Verlustbeiwerte
- Berücksichtigung in der Bernoulli-Gleichung

Fakultät Technik und Informatik Department Maschinenbau und Produktion

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Stand: 2009-09-14

Stoffeigenschaft: Viskosität (Wdhl. aus Kap. 1)

- ⇒ **Dynamische Viskosität** η ("eta"), Einheit [η]=Pa-s=Ns/m²=kg/ms:
 - ⇒ Maßzahl für die Zähigkeit eines Fluids
 - \Rightarrow Faktor für den Zusammenhang von **Schubspannung** τ und **Scher(winkel)geschwindigkeit** $\dot{\gamma}$: $\tau = f(\dot{\gamma})$
- \Rightarrow Kinematische Viskosität $v = \eta/\rho$ ("nü"), Einheit [v]=m²/s
- \Rightarrow Einfachster Ansatz: **Newtonsches Fluid**: $\tau = \eta \cdot \dot{\gamma} = \eta \, d\gamma / dt$
 - ⇒ Linearer Zusammenhang, η=Proportionalitätsfaktor

Reibungseffekte in Scherströmungen

- ⇒ Bisher: Betrachtung reibungsfreier Strömungen
- ⇒ In Realität treten in **Scherströmungen** (und Dehnströmungen) jedoch Reibungseffekte durch die Viskosität des Fluids auf
 - ⇒ Reibungskräfte (auf das Fluid oder auf den Körper)
 - ⇒ Energieverluste (bzw. Dissipation und Entropiezunahme)
 - ⇒ Laminare und turbulente Strömungen
 - ⇒ Ablösung, Totwassergebiete, Verwirbelungen
 (im Zusammenspiel mit (Massen-)Trägheitseffekten)
- ⇒ Für Schubspannungen bzw. Reibkräfte sind Scherströmungen verantwortlich, im Bsp.: $F_R = \int \tau_W dA = \int \eta \frac{\partial u}{\partial y} \bigg|_W dA$
- ⇒ τ_W = Wandschubspannung
- $\Rightarrow \text{An einer Wand haften} \\ \text{Newtonsche Fluide} \quad \vec{U}_W = \begin{pmatrix} u_W \\ v_W \\ w_W \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ (Haftbedingung)

Surek+Stempin, Angew. gsmechanik, 2007

Folie 2

- ⇒ Grenzschicht = besondere Form einer Scherströmung
- ⇒ Ansatz von Prandtl (1904): Aufteilung der Strömung in eine reibungsfreie Außenströmung und eine dünne, wandnahe und reibungsbehaftete Strömungsschicht

- ⇒ **Haftbedingung** an der Wand: u(y=0)=0
- \Rightarrow Grenzschichtrand bei $u(y=\delta)=0,99u_A$ (*Technische Definition*)
- ⇒ Grenzschichten treten auch an Freistrahlrändern auf

Farbfadenversuch von Reynolds (1883)

⇒ Laminare Strömung =
 Geordnete in parallelen Schichten
 verlaufende Strömung,
 Lat.: lamina = Schicht, Platte

⇒ Turbulente Strömung = ungeordnete, instationäre und wirbelbehaftete Strömung mit starker Quervermischung

Experimentaufbau

- ⇒Reibungsbehaftete Rohrströmung
- ⇒ Strömungsvisualisierung durch einen Farbfaden
- ⇒ Variation des Volumenstroms

Physikausbildung

Quelle: Messvideos in der

-achbereich Physik,

Reynoldszahl

- ⇒ Erkenntnis aus dem Farbfadenversuch von Reynolds (1883)
 - ⇒ Strömung schlägt bei einem kritischen Wert einer dimensionslosen Kennzahl von einer laminaren in eine turbulente Strömung um
 - ⇒ Kennzahl wird (*heute*) Reynoldszahl genannt

$$\Rightarrow$$
 Reynoldszahl $Re = \frac{\rho U L}{\eta} = \frac{U L}{\nu}$

Interpretation: Verhältnis von Trägheitskräften zu Reibungskräften (oder auch: Verhältnis der Impulsstromdichte zur Impulsdiffusion) **Fluiddichte**

Fluidviskosität (ggf. v)

Charakteristische Strömungsgeschwindigkeit

Charakteristisches Längenmaß

Re<1: Reibungsdominierte laminare Gesamtströmung (Schmiertheorie)

Bereich des laminar-turbulenten Übergangs = Transition Re>1:

Reibung beschränkt sich auf turbulente Grenzschichtbereiche Re>>1:

⇒ Kritische Reynoldszahl Re_{krit} Für Re>Re_{krit}: Einsetzen einer turbulenten Strömung mit scheinbar zufälligen Schwankungen der Strömungsgrößen

Laminare und turbulente Rohrströmung

⇒ Laminare Rohrströmung

- ⇒ Strömung in Schichten mit unterschiedlicher Geschwindigkeit
- ⇒ Diffusionstransport quer zur Strömung
- ⇒ Turbulente Rohrströmung
 - ⇒ Instationäre wirbelbehaftete Strömung
 - ⇒ Starke Querbewegungen
 - ⇒ Bauchiger Verlauf des <u>zeitlich</u> <u>gemittelten</u> Geschwindigkeitsprofils
- ⇒ Reynoldszahl der Rohrströmung

$$Re = \frac{\rho \overline{U} D}{\eta}$$

U = Mittlere Strömungsgeschwindigkeit (V/A)

D = Rohrdurchmesser

⇒ Kritische Reynoldszahl (bei technischer Rauhigkeit)

$$Re_{krit} = 2320$$

Laminare und turbulente Plattengrenzschicht

⇒ Laminar-turbulenter Übergang

 \Rightarrow Reynoldszahl mit Lauflänge x: Re_x = $\frac{u_{\infty} x}{v}$

 \Rightarrow Kritische Reynoldszahl $Re_{krit} = 3.5 \cdot 10^4 - 10^6$

U = Umschlagpunkt

Geschwindigkeitsprofile in der Grenzschicht

Beispiele für turbulente Strömungen

Turbulente Plattengrenzschicht (Momentaufnahme)

"Big whirls have little whirls, That feed on their velocity; And little whirls have lesser whirls, And so on to viscosity." Lewis Fry Richardson (1881-1953)

Folie 8

Wulf - Stl1 - Strömungen mit Reibung

Beispiele

- 1. Durch eine Schmierölleitung von 50 mm Innendurchmesser strömen in der Sekunde 2 ltr Schmieröl mit einer kinematischen Viskosität $v = 20 \cdot 10^{-6}$ m²/s. Ist die Strömung laminar oder turbulent?
- 2. Ein schlankes Tragflügelprofil wird im Flug mit 240 m/s angeströmt. Die kinematische Viskosität der Luft soll $v = 18 \cdot 10^{-6}$ m²/s betragen. Über wie viel Prozent der Flügeltiefe ist die Strömung laminar, wenn diese 2 m beträgt und die kritische Reynoldszahl Re_{krit,x}=5·10⁵ ist?
- ⇒ Beispiele werden an der Tafel vorgerechnet

Reibungsdruckverlust der Rohrströmung (1/2)

- ⇒ Kräftegleichgewicht an einem zylindrischen Fluidelement
 - ⇒ Element: Radius r und Länge dx
 - ⇒ Stationäre Strömung
 - → keine Trägheitskräfte
 - ⇒ Es wirken nur Druckkräfte an den Stirnflächen und Reibungskräfte am Umfang

⇒ Gleichgewicht zwischen Druck- und Reibungskräften

$$\sum F_x = 0 = (p - (p + dp))\pi r^2 + \tau(r)2\pi r dx \qquad \rightarrow \frac{dp}{dx} = 2\frac{\tau(r)}{r} \stackrel{!}{=} const$$

$$\rightarrow \frac{dp}{dx} = 2\frac{\tau(r)}{r} \stackrel{!}{=} const$$

- ⇒ Linke Seite ist von x abhängig, rechte Seite ist von r abhängig
 - ⇒ Gleichung nur dann erfüllt, wenn beide Seiten eine Konstante bilden

$$\frac{dp}{dx} = const = \frac{p_2 - p_1}{L} = -\frac{p_1 - p_2}{L} = -\frac{\Delta p}{L}$$

 $\Rightarrow \Delta p = Druckverlust über die Rohrlänge L (Abstand zwischen 1 und 2)$

Reibungsdruckverlust der Rohrströmung (2/2)

$$\Rightarrow$$
 Mit $\frac{dp}{dx} = -\frac{\Delta p}{L}$ folgt für die Schubspannungsverteilung

$$\tau(r) = -\frac{\Delta p}{2L}r$$

- ⇒ Schubspannungsprofil ist linear vom Radius r abhängig
- ⇒ Bei r=0 wird die Schubspannung τ zu Null
- \Rightarrow Bei r=R an der Wand wird die Schubspannung maximal $\tau_W = -\frac{\Delta p}{2L}R$
- ⇒ Erkenntnisse sind gültig für laminare und turbulente Strömungen sowie für Newtonsche und Nicht-Newtonsche Fluide

- ⇒ Zur Ermittlung des Geschwindigkeitsprofils u(r) ist ein Stoffgesetz erforderlich
 - \Rightarrow Beschränkung hier auf Newtonsche Fluide: $\tau = \eta \cdot \dot{\gamma} = \eta \frac{du}{dr}$

Geschwindigkeitsverteilung der laminaren Rohrströmung

 \Rightarrow Mit $\tau = \eta \frac{du}{dr}$ folgt aus der Schubspannungsverteilung $\tau(r) = -\frac{\Delta p}{2L}r$

$$\eta \frac{du}{dr} = -\frac{\Delta p}{2L}r \quad \to \quad \int du = -\frac{\Delta p}{2\eta L} \int r dr \quad \to \quad u(r) = -\frac{\Delta p}{4\eta L}r^2 + C$$

- \Rightarrow Haftbedingung an der Wand u(r=R)=0 $\rightarrow C = \frac{\Delta p}{4\eta L}R^2$
- ⇒ Parabolische Geschwindigkeitsverteilung

$$u(r) = \frac{\Delta p}{4\eta L} \left(R^2 - r^2 \right)$$

$$u_{\text{max}} = u(r=0) = \frac{\Delta p}{4\eta L} R^2 \rightarrow u(r) = u_{\text{max}} \left(1 - \frac{r^2}{R^2} \right)$$

- ⇒ Vergleich mit der Schubspannungsverteilung
 - $\Rightarrow \tau=0$ bei du/dr=0 in der Rohrmitte
 - ⇒ τ=τ_{max} bei maximaler Scherung an der Wand

Hagen-Poiseuille'sches Gesetz der Rohrströmung

⇒ Volumenstrom aus Integration der Geschwindigkeitsverteilung

$$\dot{V} = \int u dA = \int_{0}^{R} 2\pi r u(r) dr = \frac{\pi \Delta p}{2\eta L} \int_{0}^{R} (R^{2} - r^{2}) r dr$$

$$= \frac{\pi \Delta p}{2\eta L} \left[\frac{r^{2}}{2} R^{2} - \frac{r^{4}}{4} \right]_{0}^{R} = \frac{\pi \Delta p}{2\eta L} \left[\frac{R^{4}}{2} - \frac{R^{4}}{4} \right]$$

$$\rightarrow \left[\dot{V} = \frac{\pi R^4}{8\eta L} \Delta p \right] \quad \text{bzw.} \quad \left| \Delta p = \frac{8\eta L}{\pi R^4} \dot{V} \right|$$

$$\Delta p = \frac{8\eta L}{\pi R^4} \dot{V}$$

Integration über eine Ringfläche

Gesetz von Hagen-Poiseuille für laminare Rohrströmungen:

Druckverlust ist proportional zur Viskosität, Rohrlänge und Volumenstrom und umgekehrt proportional zur 4. Potenz des Rohrradius

- \Rightarrow Mittlere Geschwindigkeit $\dot{V} = \overline{u}A = \overline{u}\pi R^2 \rightarrow \overline{u} = \frac{R^2}{8\pi I}\Delta p$
- \Rightarrow Vergleich mit Maximalgeschwindigkeit $u = \frac{1}{2}u_{\text{max}}$

$$\overline{u} = \frac{1}{2}u_{\text{max}}$$

Druckverlust der laminaren Rohrströmung

- \Rightarrow Druckverlust in Abhängigkeit der $\Delta p = \frac{8\eta L}{R^2} \overline{u}$ mittleren Geschwindigkeit
- $\Rightarrow \textbf{Erweiterung mit } \rho \overline{\textbf{u}} : \Delta p = \frac{16\eta L}{\rho \overline{\textbf{u}} R^2} \frac{\rho}{2} \overline{\textbf{u}}^2 = \frac{64\eta L}{\rho \overline{\textbf{u}} D^2} \frac{\rho}{2} \overline{\textbf{u}}^2 = \frac{64\eta}{\rho \overline{\textbf{u}} D} \frac{L}{D} \frac{\rho}{2} \overline{\textbf{u}}^2 = \frac{64}{\text{Re}} \frac{L}{D} \frac{\rho}{2} \overline{\textbf{u}}^2$
- \Rightarrow Mit der Reynoldszahl der Rohrströmung Re= $\frac{\rho \overline{u}D}{\eta}$ ergibt sich

$$\Delta p = \frac{64}{\text{Re}} \frac{L}{D} \frac{\rho}{2} \overline{u}^2$$
 bzw.
$$\Delta p = \lambda \frac{L}{D} \frac{\rho}{2} \overline{u}^2$$
 Druckverlust der laminaren Rohrströmung

- ⇒ Widerstandszahl oder auch Rohrreibungszahl λ
- \Rightarrow Widerstandsgesetz der laminaren Rohrströmung $\lambda = \frac{64}{\text{Re}}$
- ⇒ Druckverlust kann einfach in die erweiterte Bernoulli-Gleichung aufgenommen werden (ū = U)

$$\frac{1}{2}\rho U_1^2 + \rho g z_1 + p_1 = \frac{1}{2}\rho U_2^2 + \rho g z_2 + p_2 + \Delta p_V \quad \text{mit} \quad \Delta p_V = \frac{64}{\text{Re}} \frac{L}{D} \frac{\rho}{2} U^2$$

Beispiel

⇒ Eine Pumpe f\u00f6rdert durch eine Rohrleitung (Durchmesser D, L\u00e4nge L) eine viskose Fl\u00fcssigkeit mit dem Volumenstrom V in einen Hochbeh\u00e4lter.

Geg.: ρ =1100kg/m³, η =0,1Pas, H=4m, D=20mm, L=9m, \dot{V} =1ltr/s, g=9,81m/s²

Ges.: a) Welche Druckerhöhung Δp_M muss die Pumpe liefern?

b) Wie hoch ist die Maximalgeschwindigkeit im Rohr?

⇒ Beispiel wird an der Tafel vorgerechnet

Druckverlust der turbulenten Rohrströmung

- \Rightarrow Ansatz wie bei der laminaren Rohrströmung $\Delta p = \lambda \frac{L}{D} \frac{\rho}{2} \overline{u}^2$
- ⇒ Widerstandsgesetze sind jedoch empirisch oder halbempirisch ermittelt worden
- ⇒ Als Parameter gehen ein
 - ⇒ Reynoldszahl Re=ρūD/η
 - ⇒ **Relative Rauhigkeit** der Rohrwand k/D (k = Rauhigkeit in mm)
 - ⇒ Rohre mit Re·k/D<65 gelten als **hydraulisch glatt** = kein Rauhigkeitseinfluss

Ansatz von	Gleichung	Gültigkeit	Strömung	Rohr
Hagen- Poiseuille (1)	$\lambda = 64 / \text{Re}$	Re<2320	lam.	
Blasius (2)	$\lambda = 0.3164 \mathrm{Re}^{-0.25}$	2320 <re<10<sup>5 und Re·k/D<65</re<10<sup>	turb.	Glatt
Prandtl (3)	$\lambda = (\log(\text{Re}^2 \lambda) - 0.8)^{-2}$	Re>10 ⁵ und Re·k/D<65	turb.	Glatt
v. Kármán (5)	$\lambda = (2\log(3,715 \cdot D/k))^{-2}$	Re·k/D>1300	turb.	Rau
Colebrook (4)	$\lambda = (-2\log(\frac{2.51}{\text{Re}\sqrt{\lambda}} + 0.269 \cdot k/D))^{-2}$	65 <re·k d<1300<="" td=""><td>turb.</td><td>Rau</td></re·k>	turb.	Rau

Einteilung der Rauhigkeiten

⇒ Einfluss der Rauhigkeit

 \Rightarrow Strömung ist hydraulisch glatt, wenn die Rauhigkeit in der laminaren Unterschicht δ_{L} eingebettet ist

⇒ Unterscheidung zwischen

- ⇒ Sandrauhigkeit k_S (künstlich)
- ⇒ technische Rauhigkeit k

Quelle: Bohl, Elmendorf, Techn. Strömungslehre, 2005

Folie 17

Colebrook Diagramm

⇒ Darstellung der Widerstandsgesetze im Colebrook-Diagramm

Nicht-kreisförmige Leitungsquerschnitte

- ⇒ Hydraulischer Durchmesser D_H
 - ⇒ Druckdifferenz des Originalrohrs soll auch am Ersatzrohr wirken
 - \Rightarrow Originalrohr (**Umfang S**_U): Druckkraft = Reibkraft: $-(p_1 p_2)A = \tau_W S_U L$
 - \Rightarrow Aus Vergleich der Kräfte am Ersatzrohr (vgl. Folie 11) $|D_H=4A/S_U|$

 \Rightarrow Reynoldszahl: $Re = \rho \overline{u} D_H / \eta$

$$Re = \rho \overline{u} D_H / \eta$$

$$\Rightarrow$$
 Druckverlust: $\Delta p = \lambda \frac{L}{D_H} \frac{\rho}{2} \bar{u}^2$

⇒ Widerstandsgesetze sind von der Querschnittsform abhängig,

z.B. Rechteck mit laminarer Strömung

$$\lambda = \varphi \frac{64}{\text{Re}}$$

Hinweis: D_H=Hilfsdurchmesser, nicht für die Flächenberechnung verwenden

Quelle: Bohl, Elmendorf, Techn. Strömungslehre, 2005

Druckverluste von Strömungsführungselementen

⇒ Weitere Druckverluste durch

- ⇒ Umlenkungen
- ⇒ Querschnittsänderungen
- ⇒ Verzweigungen
- ⇒ Einlaufstrecken
- ⇒ Einbauten

Empirische Erfassung der Verluste

- ⇒ Datenblätter
- ⇒ Tabellen
- ⇒ Diagramme

ggf. Abhängigkeiten von mehreren Parametern

 \Rightarrow Allgemeiner Ansatz für einen Druckverlust $\Delta p_V = \zeta \frac{p}{2}U^2$

$$\Delta p_V = \zeta \frac{\rho}{2} U^2$$

- ⇒ Dimensionsloser Verlustbeiwert ζ ("zeta")
- \Rightarrow Achtung: Verlustbeiwert ζ ist im allg. an <u>einen</u> Querschnitt i der Strömungsführung gebunden → U_i richtig einsetzen !!
- \Rightarrow Bei mehreren Druckverlusten $\Delta p_{V,ges} = \sum_{i} \zeta_i \frac{\rho}{2} U_i^2$
- ⇒ Berücksichtigung in der erweiterten Bernoulli-Gleichung

$$\frac{1}{2}\rho U_1^2 + \rho g z_1 + p_1 = \frac{1}{2}\rho U_2^2 + \rho g z_2 + p_2 + \Delta p_V \quad \text{mit} \quad \Delta p_V = \sum_i \lambda_j \frac{L_j}{D_i} \frac{\rho}{2} U_i^2 + \sum_i \zeta_i \frac{\rho}{2} U_i^2$$

$$\Delta p_V = \sum_j \lambda_j \frac{L_j}{D_j} \frac{\rho}{2} U_i^2 + \sum_i \zeta_i \frac{\rho}{2} U_i^2$$

Auswahl Verlustbeiwerte (1/5)

⇒ Unstetige Erweiterung (Borda-Carnot-Diffusor)

$$\Delta p_V = \zeta_1 \frac{\rho}{2} U_1^2$$
 $\zeta_1 = \left(1 - \frac{A_1}{A_2}\right)^2$

 \Rightarrow Unstetige Verengung mit Strahlkontraktion $A_0 = \alpha \cdot A_2$ ($\alpha < 1$)

$$\Delta p_V = \zeta_2 \frac{\rho}{2} U_2^2$$
 $\zeta_2 = 1.5 \left(\frac{1-\alpha}{\alpha}\right)^2$

Auswahl Verlustbeiwerte (2/5)

Quelle: Surek+Stempin, Angew. Strömungsmechanik, 2007

Plattrohr-Lyrabogen $\zeta=0,2$

Faltenrohr-Lyrabogen $\zeta=1,4$

Auswahl Verlustbeiwerte (3/5)

Abzweigstücke

Die ζ -Werte beziehen sich auf den Querschnitt vor der Trennung bzw. Vereinigung

V = Gesamtvolumenstrom; Va = ab- bzw. zufließender Volumenstrom

 ζd = Widerstand im Hauptrohr; ζa = Widerstand im Abzeigrohr

Minuszeichen bedeutet Druckgewinn

		Tren	nung			Verein	nigung	
	Ů ·	Vd Va	V -	Vd 45° Va	Ÿd ▶	Ϋ́a	Vd 45° √	∀ Va
Ϋa/Ÿ	ζа	ζd	ζa	ζd	ζa	ζd	ζа	ζd
0	0,95	0,04	0,90	0,04	-1,20	0,04	-0,92	0,04
0,2	0,88	-0,08	0,68	-0,06	-0,40	0,17	-0,38	0,17
0,4	0,89	-0,05	0,50	-0,04	0,08	0,30	0,00	0,19
0,6	0,95	0,07	0,38	0,07	0,47	0,41	0,22	0,09
0,8	1,10	0,21	0,35	0,20	0,72	0,51	0,37	-0,17
1,0	1,28	0,35	0,48	0,33	0,91	0,60	0,37	0,54

Quelle: Surek+Stempin, Angew. Strömungsmechanik, 2007

Quelle: Surek+Stempin, Angew. Strömungsmechanik, 2007

Auswahl Verlustbeiwerte (4/5)

\Rightarrow Druckverlustbeiwerte ζ_{K} von Rohrkrümmern (Umlenkung ohne Reibung)

a) Kreisbogenkrümmer

- CI			rauh				
α		15°	22,5°	45°	60°	90°	90°
R/d=1		0,03	0,04	0,14	0,19	0,21	0,51
2		0,03	0,04	0,09	0,12	0,14	0,30
4	ζ	0,03	0,04	0,08	0,10	0,11	0,23
6		0,03	0,04	0,07	0,09	0,09	0,18
10		0,03	0,04	0,07	0,07	0,11	0,20

b) Segmentkrümmer

α	15°	22,5°	30°	45°	60°	90°
Anzahl der Rundnähte	1	1	2	2	3	3
ζ	0,06	0,08	0,1	0,15	0,2	0,25

c) Faltenrohrbogen 90°

d) Zusammengesetzte Krümmer aus 2.90°

e) Gusskrümmer 90°

NW	50	100	200	300	400	500
ζ	1,3	1,5	1,8	2,1	2,2	2,2

Auswahl Verlustbeiwerte (5/5)

\Rightarrow Druckverlustbeiwerte ζ_K von Kniestücken (Umlenkung ohne Reibung)

f) Kniestücke

δ	22,5°	30°	45°	60°	90°
glatt ζ	0,07	0,11	0,24	0,47	1,13
rauh ζ	0,11	0,17	0,32	0,88	1,27

g) Kniestücke

l/d	0,71	0,943	1,174	1,42	1,86	2,56	6,25
glatt ζ	0,51	0,35	0,33	0,28	0,29	0,36	0,40
rauh ζ	0,51	0,41	0,38	0,38	0,39	0,43	0,45

h) Kniestücke

l/d	1,23	1,67	2,37	3,77
glatt ζ	0,16	0,16	0,14	0,16
rauh ζ	0,30	0,28	0,26	0,24

i) Kniestücke

	l/d	1,76 6,0
٠ [glatt ζ	0,15 0,2
	rauh ζ	0,3 0,4

\Rightarrow Verlustbeiwert für die Reibung in Rohr<u>krümmern</u>: $\zeta_R = \lambda \frac{R}{d} \alpha$ (α im Bogenmaß

Beispiel

 Aus einem Behälter strömt durch ein scharfkantiges Loch im Boden eine Flüssigkeit in ein Rohr (Länge L) mit der Wandrauhigkeit k. Die Strömung wird im Krümmer (R/D=2) um 90° umgelenkt und kann mit einem Schieber (β=12°) reguliert werden.

Geg.: ρ =900kg/m³, η =0,002Pas, D=30mm, L=5m, k=0,01mm, g=9,81m/s²

Ges.: a) Ermitteln Sie die Verlustbeiwerte für den Einlauf, die Umlenkung und den vollständig geöffneten Schieber.

- b) Welche Höhe H ist für einen Volumenstrom von 3ltr/s notwendig?
- c) Auf welches Flächenverhältnis $A_{NW}/A_{E} \text{ muss der Schieber eingestellt}$ werden, wenn der Volumenstrom 2,5ltr/s
 betragen soll (H aus b))?
 (NW = Nennweite, E=Engstelle)

⇒ Beispiel wird an der Tafel vorgerechnet

Kennlinien vom Pumpen und Gebläsen

- ⇒ Pumpen und Gebläse (G) werden durch **Kennlinien** charakterisiert
 - ⇒ Hohe Druckdifferenz bei geringem Fördervolumen \ Typische
 - ⇒ Hohes Fördervolumen bei geringer Druckdifferenz ∫ Eigenschaften
- ⇒ Mit der Kennlinie der reibungsbehafteten Strömung der Anlage (A) ergibt sich im Schnittpunkt der Betriebspunkt (B)

$$\begin{split} \Delta p_G &= \Delta p_A \\ \Delta p_G &= f(\dot{V}) \\ \Delta p_A &= \sum_j \lambda_j \frac{L_j}{D_j} \frac{\rho}{2} U_i^2 + \sum_i \zeta_i \frac{\rho}{2} U_i^2 + \dots \\ &= g(\dot{V}) \qquad (\dot{V} = U_i A_i) \end{split}$$

100

- ⇒ Im Betriebspunkt stimmen Druck ⁰ ₀ ₅₀ und Volumenstrom beider Kennlinien überein
- ⇒ Die Pumpen- und Gebläsekennlinien werden vom Hersteller angegeben und zur Auswahl oder Auslegung der Anlage verwendet

150

200

V [m3/h]

Quelle: G.U.N.T Gerätebau GmbH, Barsbütte

Teilung und Vereinigung

- ⇒ Bei Teilung oder Vereinigung von Strömungen gilt
 - \Rightarrow Volumenstrom teilt sich auf oder vereinigt sich: $\dot{V}_{ges} = \sum_{i=1}^{N} \dot{V}_{i}$
 - ⇒ Drücke sind im Teilungs- oder Vereinigungspunkt für alle N Leitungen gleich: $p_{ges} = p_i$ (i = 1,...,N)
 - ⇒ Druckverluste in **parallel** geschalteten Leitungen sind gleich

Teilungspunkt:

$$\dot{V}_{ges} = \dot{V}_1 + \dot{V}_2$$
 $p_{ges_T} = p_{1_T} = p_{2_T}$

$$\Delta p_{V_1} = p_{1_T} - p_{1_V}$$

$$\Delta p_{V_2} = p_{2_T} - p_{2_V}$$

$$\Delta p_{V_1} = \Delta p_{V_2}$$

Vereinigungspunkt:

$$\dot{V_1} + \dot{V_2} = \dot{V_{ges}}$$

$$p_{ges_V} = p_{1_V} = p_{2_V}$$

⇒ Der Volumenstrom teilt sich nach Anzahl und Art der Druckverluste auf

$$\Delta p_{V_1} = f(\dot{V_1})$$

$$\Delta p_{V_2} = g(\dot{V_2})$$
 Im allg. ist $\dot{V_1} \neq \dot{V_2}$

Literatur Verlustbeiwerte

- ⇒ Literatur zu Druckverlustbeiwerten
 - ⇒ VDI-Wärmeatlas (Kapitel L).
 Hrsg. VDI-Gesellschaft Verfahrenstechnik. 10. Aufl., 2006
 - ⇒ W. Bohl, W. Elmendorf: Technische Strömungslehre.
 13. Aufl., Vogel-Fachbuch Kamprath-Reihe, 2005
 - ⇒ W. Wagner: Strömungen mit Druckverlust.6. Aufl., Vogel-Fachbuch Kamprath-Reihe, 2008
 - ⇒ Dubbel Taschenbuch für den Maschinenbau . Hrsg. W. Beitz, K. Grote, 20. Aufl., Springer, 2001
 - ⇒ Herstellerinformationen: Datenblätter und Tabellen
- ⇒ Die Angaben in der Literatur sind
 - ⇒ meist von mehreren Parametern abhängig
 - ⇒ können auch widersprüchlich sein