

DSLab. 07 Karnaugh Map (2)

Lab. 07 Karnaugh Map (2)

- Design and Verify the following circuits using Verilog HDL and Schematic
- Verilog
 - Behavioral level modeling
 - Dataflow modeling
 - Structural level modeling
- Schematic
- Please write and upload the lab report (Lab07) -- Due on 2022/10/21 23:59

Exercise 1

- F = (AB' + A'B)(C + D')
 - Implement F with AND-OR gates (denoted as F1)
 - Implement F with multi-level NAND gate circuit (denoted as F2)
 - Implement F with multi-level NOR gate circuit (denoted as F3)
 - Verify F1 = F2 = F3 (using Verilog Structural level modeling)

Exercise 2

- Simplify the following Boolean function using Karnaugh maps: $F(x,y,z) = \Sigma (1,2,3,4,5,7)$
- Find the simplest sum of products (*F4*) and draw its logic diagram (two-level implementation)
 - Implement F4 with two-level NAND gate circuit (denoted as F5)
 - F6 = (F4')', implement F6 with two-level OR-NAND (OAI) circuit
 - Verify F4 = F5 = F6 (using Verilog Structural level modeling)

Exercise 3

- Simplify the following Boolean function using Karnaugh maps: $F(x,y,z) = \Sigma (1,2,3,4,5,7)$
- Find the simplest product of sums (*F7*) and draw its logic diagram (two-level implementation)
 - Implement F7 with two-level NOR gate circuit (denoted as F8)
 - Implement F7 with two-level AND-NOR (AOI) circuit (denoted as F9)
 - Verify F7 = F8 = F9 (using Verilog Structural level modeling)