Running Time of a Recursive Function

• An alternative to using derivation is to model the derivation with trees

PowerOf2A and PowerOf2B

•
$$TA(n) = 2 TA(n-1) + C$$

•
$$TB(n) = TB(n-1) + D$$

- Let's build Trees to drill down
- Start with TB (easier)

• TB(n) = TB(n-1) + D

•
$$TB(n-1) = TB(n-2) + D$$

•
$$TB(n-2) = TB(n-3) + D$$

- This tree looks like a Linked list
- When do we stop?
- What is the running time? TB(n) = ??

- This tree looks like a Linked list
- When do we stop? At TB(0)
- What is the running time?
- At each level, we spend D time
- At the bottom level, we spend TB(0) time
- TB(n) = D + D + D + + D + TB(0)
- How many Ds are there?

- At each level, we spend D time
- At the bottom level, we spend TB(0) time
- TB(n) = D + D + D + + D + TB(0)
- How many Ds are there? n

• TB(n) = D n + TB(0) = Θ (n)

• TA(n) = 2 TA(n-1) + C

- Let's do TA
- Let's build a Tree to drill down

- TA(n) = 2 TA(n-1) + C
- Here is the corresponding tree

• TA(n-1) = 2 TA(n-2) + C

• TA(n) = C + 2C + 4TA(n-2)

• TA(n-2) = 2 TA(n-3) + C

• TA(n) = C + 2C + 4C + 8TA(n-3)

Level	Number of Cs
0	1
1	2
2	4
3	??
L	??
What is the last level??	???

Level	Number of Cs
0	1
1	2
2	4
3	$8 = 2^{3}$
L	2 ^L
k such that $n - k = 0$	0 but we have a lot of TA(0)s

Level	Number of Cs
0	1
1	2
2	4
3	$8 = 2^{3}$
L	2 ^L
n - 1	2 n-1
n	0 (but we have $2^n TA(0)$)

- At level L, we spend C * 2 ^L time
- At the bottom level, we spend TA(0) * 2^{n}

$$L = n - 1$$

•
$$TA(n) = \Sigma C * 2^{L} + TA(0) * 2^{n}$$

$$L = 0$$

$$L = n - 1$$

•
$$TA(n) = \sum C * 2^{L} + TA(0) * 2^{n}$$

$$L = n - 1$$

•
$$TA(n) = C \sum_{L=0}^{\infty} 2^{L} + TA(0) * 2^{n}$$

•
$$TA(n) = C \sum_{L=0}^{L=n-1} L + TA(0) * 2^{n}$$

- $TA(n) = C * (2^n 1) + TA(0) * 2^n$
- $TA(n) = \Theta(2^n)$

MCS Divide and Conquer

- We have
- T(n) = 2 T(n/2) + c n

- T(n) = 2 T(n/2) + cn
- Here is the corresponding tree

• $T(n/2) = 2 T(n/2^2) + c n/2$

•
$$T(n/2^2) = 2T(n/2^3) + cn/2^2$$

- At each level, it costs ???
- How many levels do we have ???
- How many leaves in the last level ???
- What is inside the leaves at the last level ???

- At each level, it costs c n
- How many levels do we have ? k
- How many leaves in the last level? 2 k where k is the level number (top level is level 0)
- What is inside the leaves at the last level? $T(n/2^k) = T(1) // base case$

- T(n) = c n * k + total costs of last level
- Total cost of last level = $T(1) * 2^k$
- $T(n/2^k) = T(1) \rightarrow n/2^k = 1$
- \rightarrow k = log n
- \rightarrow T(n) = c n log n + n T(1)

• SAME equation as we generated using derivation $\rightarrow \Theta(n \log n)$

Divide and Conquer

- Generally, we could have
- T(n) = a T(n/b) + f(n)
- Where a >= 1 and b > 1

Divide and Conquer

- T(n) = a T(n/b) + f(n)
- Where a >= 1 and b > 1

- Note 1: if b < 1, the problem gets bigger, not smaller
- Note 2: if b = 1, the size of the problem would stay the same

- T(n) = a T(n/b) + f(n)
- Here is the corresponding tree

- T(n) = a T(n/b) + f(n)
- How many branches in the tree below?

- T(n) = a T(n/b) + f(n)
- How many branches in the tree below? a

• T(n) = a T(n/b) + f(n)

