rel_4_una_muestra

Marta Venegas Pardo

4/9/2021

Contents

1	Intr	roducción
	1.1	Test Shapiro-Wilk:
	1.2	Test de normalidad en el paquete fBasics
2	Ejei	rcicio 1
	2.1	Estudiar gráficamente la normalidad
		Ejercicio 2
	2.3	Ejercicio 3
		2.3.1 Apartado a
		2.3.2 Apartado b
	2.4	Ejercicio 4
		2.4.1 Apartado a

1 Introducción

Sea el siguiente contraste de hipótesis, dado un nivel de confianza α :

$$H_0 \sim N(\mu, \sigma^2)$$

1.1 Test Shapiro-Wilk:

En el paquete base con la instrucción shapiro.test

Creamos una variable aleatoria:

W = 0.96152, p-value = 0.7189

```
set.seed(12345)
x=rnorm(15,0,1)
x

## [1]  0.5855288  0.7094660 -0.1093033 -0.4534972  0.6058875 -1.8179560
## [7]  0.6300986 -0.2761841 -0.2841597 -0.9193220 -0.1162478  1.8173120
## [13]  0.3706279  0.5202165 -0.7505320

Test de Shapiro Wilk para ver si mi variable aleatoria sigue una normal.
shapiro.test(x)

## ## Shapiro-Wilk normality test
## ## data: x
```

Tenemos que el p-valor=0.7189 por lo que acepto la hipótesis nula, es decir, los datos provienen de una variable aleatoria con distribución normal.

1.2 Test de normalidad en el paquete fBasics

Instalamos la librería.

```
library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
Test de normalidad:
ksnormTest(x)
##
## Title:
    One-sample Kolmogorov-Smirnov test
##
##
## Test Results:
     STATISTIC:
##
##
       D: 0.1724
##
     P VALUE:
##
       Alternative Two-Sided: 0.7025
##
                        Less: 0.5779
       Alternative
                     Greater: 0.3683
##
       Alternative
##
## Description:
## Fri Apr 9 10:55:50 2021 by user:
```

En el paquete nortest vienen recogido otros test.

2 Ejercicio 1

Dibujar la densidad de la t-Student bajo H0, los cuantiles que definen los puntos críticos y el valor del estadístico.

Para hacer contrastes paramétricos deberíamos hacer antes contrastes de normalidad.

2.1 Estudiar gráficamente la normalidad.

Tenemos 15 empresas y medimos a cada una de ellas la variable X=Gasto en publicidad en miles de euros. Construir un IC.

```
x =c(17,12,15,16,15,11,12,13,20,16,14,13,10,13,11,10,13)
length(x)
## [1] 17
#anador_tidy(x)
```

Ligera asimetría a la derecha pero no la suficiente para rechazar la normalidad.

Caja y bigotes no revela que haya observaciones outliers.

```
summary(x)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 10.00 12.00 13.00 13.59 15.00 20.00
```

Realizamos el siguiente contraste de hipótesis:

$$H_0: \mu = 15$$

 $H_0: \neq 15$

```
Se pueden utilizar test paramétricos:
t.test(x)
##
##
    One Sample t-test
##
## data: x
## t = 20.978, df = 16, p-value = 4.576e-13
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 12.21512 14.96136
## sample estimates:
## mean of x
## 13.58824
Si no ponemos nada, estudia si la media es 0 o no. Por ello aparece un p-valor muy pequeño. Debemos fijar
H_0: \mu = 15
Luego,
t.test(x, mu=15)
##
    One Sample t-test
##
## data: x
## t = -2.1796, df = 16, p-value = 0.04458
## alternative hypothesis: true mean is not equal to 15
## 95 percent confidence interval:
## 12.21512 14.96136
## sample estimates:
## mean of x
## 13.58824
# t.test(x, mu=15, level=0.99, alternative="less") Podemos cambiar el nivel de confianza para el interv
Acepto H_0
Con las otras opciones: (revisar y escribir bien)
                                          H_0: \mu \le 15
                                          H_0: \mu > 15
library(ggplot2)
funcion_g_dt_test=function(x,mu_=15){
#mu_=15
datos=data.frame(X=x)
resul=t.test(datos$X,mu=mu_)
  ggplot(datos, aes(x=X)) +
```

funcion_g_dt_test(x,mu_ = 15)

Warning: `mapping` is not used by stat_function()

2.2 Ejercicio 2

Cmd+Option+I.

```
\#func\_g\_dt\_test\_unilateral(x,mu\_=15)
```

2.3 Ejercicio 3

Se desea contrastar H_0 precio medio igual a 500

```
x=c(110,12,2.5,98,1017,540,54,4.3,150,432)
#ananor_tidy
```

No podemos usar la estadística paramétrica para estudiar esta muestra, habrá que emplear técnicas no

paramétricas, como el test de rangos signos de Wilcoxson.

```
wilcox.test(x,conf.int = TRUE,mu=500)

##

## Wilcoxon signed rank test

##

## data: x

## V = 11, p-value = 0.1055

## alternative hypothesis: true location is not equal to 500

## 95 percent confidence interval:

## 33.0 514.5

## sample estimates:

## (pseudo)median

## 150

El intervalo incluye al valor 500, el pvalor= 0.1055, acepto H<sub>0</sub>
```

2.3.1 Apartado a

Calcular directamente W+ (test de rango-signo de Wilcoxon)

```
#W+=suma(rangos(|Xi|),xi>0)
# H0 = mu=0
mu_=500
rangos=rank(abs(x-mu_))
rangos[(x-mu_) >0]
```

```
## [1] 10 1
(est.w=sum(rangos[(x-mu_) >0]))
```

```
## [1] 11
```

Obtenemos el valor V del test anterior.

2.3.2 Apartado b

Dibujar la función de probabilidad (densidad) de W+ para esta n, usando *dsignrank*

```
#dsignrank()
n=length(x)
xx=seq(0,n*(n+1)/2,1)
plot(xx,dsignrank(xx,n=n),type="l")
```


Tengo en el eje X las x y en el Y la f(x).

Esperanza

```
# E[W+]
# Un estiamdor seria:
sum(xx*dsignrank(xx,n=n))
## [1] 27.5
Varianza
sum(xx^2*dsignrank(xx,n=n))-(n*(n+1)/4)^2
## [1] 96.25
```

2.4 Ejercicio 4

$$H_0: p = \frac{3}{4}$$
$$H_0: p \neq \frac{3}{4}$$

Con el test binomial, realizamos el contraste bilateral

binom.test(c(682,243),p=3/4)

```
##
## Exact binomial test
##
## data: c(682, 243)
## number of successes = 682, number of trials = 925, p-value = 0.3825
## alternative hypothesis: true probability of success is not equal to 0.75
## 95 percent confidence interval:
## 0.7076683 0.7654066
## sample estimates:
```

```
## probability of success
## 0.7372973
```

Acepto H_0 , podemos afirmar que p=3/4.

2.4.1 Apartado a

```
prop.test(x=682,n=682+243,p=3/4)

##

## 1-sample proportions test with continuity correction
##

## data: 682 out of 682 + 243, null probability 3/4

## X-squared = 0.72973, df = 1, p-value = 0.393

## alternative hypothesis: true p is not equal to 0.75

## 95 percent confidence interval:
## 0.7074391 0.7651554

## sample estimates:
## p

## 0.7372973
```

Este contraste usa la aproximación normal. Aceptamos \mathcal{H}_0