

Module 04 – Exercise Class

LINEAR REGRESSION Vectorization

Nguyen Quoc Thai

Objectives

Linear Regression

- Introduction
- Stochastic Gradient Descent
- ❖ Mini Batch Gradient Descent
- **❖** Batch Gradient Descent

Linear Regression for Timeseries

- Bitcoin Dataset
- Feature Scaling
- Modeling
- Evaluation
- Inference

Outline

SECTION 1

Linear Regression

SECTION 2

Time Series Application

Introduction

Data

Level	Salary
0	8
1	15
2	18
3	22
4	26
5	30
6	38
7	47

Introduction

Data

Level	Salary
0	8
1	15
2	18
3	22
4	26
5	30
6	38
7	47
/	4 /

Visualization

Introduction

Data

Level	Salary
0	8
1	15
2	18
3	22
4	26
5	30
6	38
7	47

Modeling

Visualization

Stochastic Gradient Descent

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

$$\hat{y} = wx + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w} \qquad b = b - \eta \frac{\partial L}{\partial b}$$

$$\eta \text{ is learning rate}$$

Stochastic Gradient Descent (Vectorization)

- 1) Pick a sample (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta}$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\nabla_{\boldsymbol{\theta}} \mathbf{L} = 2\boldsymbol{x}(\hat{\mathbf{y}} - \mathbf{y})$$

5) Update parameters

$$\theta = \theta - \eta \nabla_{\theta} \mathbf{L}$$

Stochastic Gradient Descent (Vectorization)

- 1) Pick a sample (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta}$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\nabla_{\boldsymbol{\theta}} \mathbf{L} = 2\boldsymbol{x}(\hat{\mathbf{y}} - \mathbf{y})$$

5) Update parameters

$$\theta = \theta - \eta \nabla_{\theta} \mathbf{L}$$

```
x = np.array([[2]])
y = np.array([18])
num samples = x.shape[0]
num samples
1
# append bias
x = np.hstack([x, np.ones((num samples, 1))])
X
array([[2., 1.]])
# init weights
theta = np.array([2, 2]) # num features: x.shape[1]
theta
array([2, 2])
```


Stochastic Gradient Descent (Vectorization)

- 1) Pick a sample (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta}$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\nabla_{\boldsymbol{\theta}} \mathbf{L} = 2\boldsymbol{x}(\hat{\mathbf{y}} - \mathbf{y})$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathbf{L}$$

```
# forward
def predict(x, theta):
    return x.dot(theta)

y_hat = predict(x, theta)
y_hat

array([6.])
```


Stochastic Gradient Descent (Vectorization)

- 1) Pick a sample (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta}$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\nabla_{\theta} \mathbf{L} = 2\mathbf{x}(\hat{\mathbf{y}} - \mathbf{y})$$

5) Update parameters

$$\theta = \theta - \eta \nabla_{\theta} \mathbf{L}$$

```
# compute gradient
def compute_gradient(x, y, y_hat):
    d_theta = 2*x*(y_hat-y)
    return d_theta

d_theta = compute_gradient(x, y, y_hat)
d_theta

array([[-48., -24.]])
```


Stochastic Gradient Descent (Vectorization)

- 1) Pick a sample (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta}$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\nabla_{\boldsymbol{\theta}} \mathbf{L} = 2\boldsymbol{x}(\hat{\mathbf{y}} - \mathbf{y})$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathbf{L}$$

```
# update weights
lr = 0.1

def update_weights(theta, d_theta, lr):
    new_theta = theta - lr*d_theta
    return new_theta

new_theta = update_weights(theta, d_theta, lr)
new_theta

array([[6.8, 4.4]])
```


Practice

- 1) Pick a sample (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta}$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\nabla_{\theta} \mathbf{L} = 2\mathbf{x}(\hat{\mathbf{y}} - \mathbf{y})$$

5) Update parameters

$$\theta = \theta - \eta \nabla_{\theta} \mathbf{L}$$

$$x = [1]3$$
$$y = 22$$

Init
$$\theta$$
 lr = 0.1

$$y = 2x + 2$$

3

Mini Batch Gradient Descent (Vectorization)

- 1) Pick m samples (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta}$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\nabla_{\boldsymbol{\theta}} \mathbf{L} = 2\boldsymbol{x}(\hat{\mathbf{y}} - \mathbf{y})$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathbf{L}$$

```
1 x = np.array([[2], [3], [1]])
   y = np.array([3, 4, 2])
   3 x, y
✓ 0.0s
(array([[2],
       [3],
       [1]]),
array([3, 4, 2]))
   1 x.shape, y.shape
✓ 0.0s
((3, 1), (3,))
   1 num_samples = x.shape[0]
   2 num_samples
✓ 0.0s
```


Mini Batch Gradient Descent (Vectorization)

- 1) Pick m samples (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta}$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\nabla_{\boldsymbol{\theta}} \mathbf{L} = 2\boldsymbol{x}(\hat{\mathbf{y}} - \mathbf{y})$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathbf{L}$$

```
1 # append bias
   2 x = np.hstack([np.ones((num_samples, 1)), x])
✓ 0.0s
array([[1., 2.],
      [1., 3.],
      [1., 1.]
   1 # init weights
   2 theta = np.array([2, 2]) # num_features: x.shape[1]
   3 theta
✓ 0.0s
array([2, 2])
```


Mini Batch Gradient Descent (Vectorization)

- 1) Pick m samples (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta}$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\nabla_{\boldsymbol{\theta}} \mathbf{L} = 2\boldsymbol{x}(\hat{\mathbf{y}} - \mathbf{y})$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathbf{L}$$

```
array([6., 8., 4.])
```


Mini Batch Gradient Descent (Vectorization)

- 1) Pick m samples (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta}$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\nabla_{\boldsymbol{\theta}} \mathbf{L} = 2\boldsymbol{x}(\hat{\mathbf{y}} - \mathbf{y})$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathbf{L}$$

 η is learning rate

array([9., 16., 4.])

Mini Batch Gradient Descent (Vectorization)

- 1) Pick m samples (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta}$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\nabla_{\boldsymbol{\theta}} \mathbf{L} = 2\boldsymbol{x}(\hat{\mathbf{y}} - \mathbf{y})$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathbf{L}$$

 η is learning rate

array([18., 40.])

Mini Batch Gradient Descent (Vectorization)

- 1) Pick m samples (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta}$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\nabla_{\boldsymbol{\theta}} \mathbf{L} = 2\boldsymbol{x}(\hat{\mathbf{y}} - \mathbf{y})$$

5) Update parameters

$$\theta = \theta - \eta \nabla_{\theta} \mathbf{L}$$

```
array([ 0.2, -2. ])
```


Comparision

Outline

SECTION 1

Linear Regression

SECTION 2

Time Series Prediction

Bitcoin Dataset

```
1 df = pd.read_csv('/content/BTC-Daily.csv')
2 df = df.drop_duplicates()
3
```

1 df.head()

	unix	date	symbol	open	high	low	close	Volume BTC	Volume USD
0	1646092800	2022-03-01 00:00:00	BTC/USD	43221.71	43626.49	43185.48	43185.48	49.006289	2.116360e+06
1	1646006400	2022-02-28 00:00:00	BTC/USD	37717.10	44256.08	37468.99	43178.98	3160.618070	1.364723e+08
2	1645920000	2022-02-27 00:00:00	BTC/USD	39146.66	39886.92	37015.74	37712.68	1701.817043	6.418008e+07
3	1645833600	2022-02-26 00:00:00	BTC/USD	39242.64	40330.99	38600.00	39146.66	912.724087	3.573010e+07
4	1645747200	2022-02-25 00:00:00	BTC/USD	38360.93	39727.97	38027.61	39231.64	2202.851827	8.642149e+07

1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2651 entries, 0 to 2650
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype	
0	unix	2651 non-null	int64	
1	date	2651 non-null	object	
2	symbol	2651 non-null	object	
3	open	2651 non-null	float64	
4	high	2651 non-null	float64	
5	low	2651 non-null	float64	
6	close	2651 non-null	float64	
7	Volume BTC	2651 non-null	float64	
8	Volume USD	2651 non-null	float64	
<pre>dtypes: float64(6), int64(1), object(2)</pre>				
memory usage: 186.5+ KB				

Bitcoin Dataset

Bitcoin Dataset

Feature Scaling

MaxAbsScaler

Feature Scaling

MinMaxScaler

$$x_{new} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

Feature Scaling

StandardScaler

$$x_{new} = \frac{x - \mu}{\sigma}$$

$$\mu = \frac{1}{N} \sum_{i} x_{i} \qquad \sigma = \sqrt{\frac{1}{N} \sum_{i} (x_{i} - \mu)^{2}}$$

Modeling

- 1) Pick all the N samples from training data
- 2) Compute output $\hat{\mathbf{y}}$

$$\hat{y} = x\theta$$

3) Compute loss

$$L(\widehat{y}, y) = (\widehat{y} - y) \odot (\widehat{y} - y)$$

4) Compute derivative

$$k = 2(\hat{y} - y)$$
$$L'_{\theta} = x^T k$$

5) Update parameters

$$oldsymbol{ heta} = oldsymbol{ heta} - \eta rac{L_{oldsymbol{ heta}}'}{N}$$
 η is learning rate

Summary

Linear Regression

- Introduction
- Stochastic Gradient Descent
- ❖ Mini Batch Gradient Descent
- **❖** Batch Gradient Descent

Linear Regression for Timeseries

- Bitcoin Dataset
- Feature Scaling
- Modeling
- Evaluation
- Inference

Thanks! Any questions?