LLM модели в биологии

DNABERT, DNABERT-2, GENA-LM, ESM-1v

Bioinformatics, 37(15), 2021, 2112-2120

doi: 10.1093/bioinformatics/btab083

Advance Access Publication Date: 4 February 2021

Original Paper

Genome analysis

DNABERT: pre-trained Bidirectional Encoder Representations from Transformers model for DNA-language in genome

Yanrong Ji^{1,†}, Zhihan Zhou^{2,†}, Han Liu^{2,*} and Ramana V. Davuluri [®] ^{3,*}

Модель обучалась на геноме человека с длиной последовательностей от 5 до 510.

Использовалась k-mer токенизация:

DNABERT captures contextual information by performing the multi-head self-attention mechanism on *M*:

$$MultiHead(M) = Concat(head_1, ..., head_h)W^O$$

where

$$head_i = softmax \left(\frac{M W_i^Q M W_i^K T}{\sqrt{d_k}} \right) \cdot M W_i^V$$

 W^{O} and W_{i}^{Q} , W_{i}^{K} , W_{i}^{V} $\left\{W_{i}^{Q}, W_{i}^{K}, W_{i}^{V}\right\}_{i=0}^{b}$ are learned parameters

Модель обучалась на геноме 4-х видов с длиной последовательностей от 70 до 10000.

Для токенизации последовательностей ДНК использовался алгоритм Byte Pair Encoding (BPE):

Ite	eration	Corpus	Vocabulary
0	AA	CGCACTATATA	$\{A,T,C,G\}$
1	AAC	GCACTATATA	$\{A,T,C,G,TA\}$
2	AAC	CACTA TA TA	{A,T,C,G,TA, AC}
3	A AC	C AC TA TA TA	

(a) Average token length and the length ratio of original sequence v.s. tokenized sequence.

(b) Training FLOPs on 500-length sequences compared to model with 2^8 vocabulary.

(c) Model performance averaged over each tasks (macro) and individual dataset (micro).

DNABERT-2, низкоранговая адаптация (LoRA)

Пусть $W_0, W_1 \in \mathbb{R}^{m \times n}$ определяют одну и ту же весовую матрицу до и после тонкой настройки для конкретной задачи

Представим
$$W_1$$
 как $W_1 = W_0 + \Delta W$ где $\Delta W \in \mathbb{R}^{m \times n}$

А ΔW как перемножение 2-х низкоранговых матриц:

$$\Delta W = BA$$
 , где $B \in \mathbb{R}^{m imes r}, A \in \mathbb{R}^{r imes n}$ и $r \ll m, r \ll n$

Низкоранговая декомпозиция уменьшает количество обучаемых параметров с $\mathbf{m} \times \mathbf{n}$ до $\mathbf{r} \times (\mathbf{m} + \mathbf{n})$

DNABERT-2 vs DNABERT/Nucleotide Transformer

Статистика и производительность моделей:

Model	Params. ↓	FLOPs ↓	Trn. Tokens	Num. Top-2 ↑	Ave. Scores ↑
DNABERT (3-mer)	86M	3.27	122B	2 0	61.62
DNABERT (4-mer)	86M	3.26	122B	0 1	61.14
DNABERT (5-mer)	87M	3.26	122B	0 1	60.05
DNABERT (6-mer)	89M	3.25	122B	0 1	60.51
NT-500M-human	480M	3.19	50B	0 0	55.43
NT-500M-1000g	480M	3.19	50B	0 1	58.23
NT-2500M-1000g	2537M	19.44	300B	0 1	61.41
NT-2500M-multi	2537M	19.44	300B	7 <u>9</u>	66.93
DNABERT-2	117M	1.00	262B	8 4	66.80
DNABERT-2 ♦	117M	1.00	263B	$1\overline{1} \parallel 10$	67.77

В пяти столбцах представлено количество параметров модели, относительные FLOP по сравнению с DNABERT-2, количество токенов, использованных при предварительном обучении, количество попаданий в топ-2 среди всех моделей (1-й // 2-й), а также средние оценки на 28 наборах данных теста GUE.

◆ предварительное обучение выполнено на обучающих наборах эталонного теста GUE.

NT-500M-human, NT-500M-1000g, NT-2500M-1000g и NT-2500M-multi, где human, 1000g и multi соответственно относятся к эталонному геному человека GRCh38/hg38, набор из 3202 геномов человека с высоким охватом из проекта «1000 геномов» (Byrska-Bishop et al., 2021) и геномы 850 различных видов.

GENA-LM: A Family of Open-Source Foundational DNA Language Models for Long Sequences

Veniamin Fishman^{1,2*†}, Yuri Kuratov^{1,3†}, Maxim Petrov¹, Aleksei Shmelev^{1,4}, Denis Shepelin¹, Nikolay Chekanov¹, Olga Kardymon^{1,4*}, Mikhail Burtsev^{5*}

¹AIRI, Moscow, Russia.

²Institute of Cytology and Genetics, Novosibirsk, Russia.
³Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
⁴HSE University, Moscow, Russia.

⁵London Institute for Mathematical Sciences, London, UK.

"В этой работе мы демонстрируем успешное применение передовых нейронных сетей на основе трансформеров для прогнозного анализа различных функциональных геномных элементов в последовательностях ДНК, включая активность промоутера, сплайсинг, сайты полиаденилирования, аннотации энхансеров и профили хроматина. Мы вносим свой вклад в исследовательское сообщество, представляя GENA-LM, семейство моделей с открытым исходным кодом, доступных на GitHub, и предварительно обученные модели (с префиксом gena-lm-) на https://huggingface.co/AIRI-Institute. Мы эмпирически показываем, что точная настройка наших моделей превосходит результаты, полученные с помощью современных архитектур. Более того, мы доказываем, что дополнение GENA-LM архитектурой трансформера рекуррентной памяти (RMT) способствует увеличению длины входной последовательности, увеличивая качество решения сложных биологических задач."

Bases annotated as repeats among top 100 longest tokens

Figure 1: Building blocks of the attention mechanism used in BIGBIRD. White color indicates absence of attention. (a) random attention with r=2, (b) sliding window attention with w=3 (c) global attention with q=2. (d) the combined BIGBIRD model.

Model	Architecture	$\begin{array}{c} \text{Maximum seq len,} \\ \text{tokens } (\approx \text{bp}) \end{array}$	Tokenizer data	Training data
DNABERT	BERT-12L	512 (512)	3,4,5,6-mer	GRCh38.p13
GENA-LM models:				
bert-base bert-base-t2t bert-base-lastln-t2t bert-base-t2t-multi bert-large-t2t	BERT-12L BERT-12L BERT-12L BERT-12L BERT-24L	512 (4,500) 512 (4,500) 512 (4,500) 512 (4,500) 512 (4,500)	T2T split v1 T2T+1KG+M T2T+1KG+M T2T+1KG+M T2T+1KG+M	T2T split v1 T2T+1KG T2T+1KG T2T+1KG+M T2T+1KG
bigbird-base-sparse	BERT-12L, RoPE DS Sparse Att	4,096 (36,000)	T2T split v1	T2T split v1
bigbird-base-sparse-t2t	BERT-12L, RoPE DS Sparse Att	4,096 (36,000)	T2T+1KG+M	T2T+1KG
$bigbird ext{-}base ext{-}t2t$	BERT-12L HF Sparse Attention	4,096 (36,000)	T2T+1KG+M	T2T+1KG

Характеристики моделей GENA-LM. Выделены различия в данных предварительного обучения, количестве слоев, типе attention и длине последовательности. «Т2Т-сплит v1» - словарь токенов построен на разбиении сборки генома человека T2T, «1KG» является сокращением 1000G, «М» - включение данных нескольких видов.

Обозначения «DS Sparse» и «HF Sparse» относятся к реализациям DeepSpeed разреженного внимания и HuggingFace BigBird соответственно. Аббревиатура «RoPE» означает использование rotary position embeddings в качестве альтернативы абсолютного PE в BERT. Модели были структурированы либо из 12 (обозначаемых BERT-12L), либо из 24 (обозначаемых BERT-24L) слоев, содержащих 110М и 336М параметров соответственно.

Токены памяти добавляются в каждый сегмент для передачи информации между последовательными сегментами, что позволяет им использовать информацию из всех предыдущих сегментов. Таким образом, весь предварительно обученный Трансформер эффективно функционирует как единая рекуррентная единица.

Language models enable zero-shot prediction of the effects of mutations on protein function

Joshua Meier ¹² Roshan Rao ³ Robert Verkuil ¹ Jason Liu ¹ Tom Sercu ¹ Alexander Rives ¹²

ESM-1v One-time Per Task Pre-training Task specific Predictions Task specific MSA generation training Zero shot Sequence ESM-1v DB JackHMMer Few shot MSA DB MSA Transformer Task specific models JackHMMer Unsupervised fine-tuning $\xrightarrow{\text{train}} M_{Task}(x)$ Sequence ESM-1v fine-tuning DB JackHMMer Classical unsupervised $train \rightarrow M_{Task}(x)$ **EVMutation** (None) DeepSequence

ESM-1v

Мы оцениваем мутации, используя логарифмическое отношение вероятностей в мутированной позиции, предполагая аддитивную модель, когда несколько мутаций Т существуют в одной и той же последовательности:

$$\sum_{t \in T} \log p(x_t = x_t^{mt} | x_{\backslash T}) - \log p(x_t = x_t^{wt} | x_{\backslash T})$$