

## **BUGGY ROBOT**

Hieu is making a robot to participate in the upcoming Robocon. The robot is supposed to do a very basic task of moving from point ( $X_S, Y_S$ ) to point (0,0) to block his component from scoring points. The closer the robot gets to the point (0,0), the greater chance he blocks his component successfully.

However, due to a bug in his code, the robot moves in a very nondeterministic manner, defined by 4 integers a, b, c, d. In each step, the robot moves 1 unit in either east, north, west or south direction.

- With a probability of  $\frac{a}{a+b+c+d}$ , the robot moves toward the east ((x,y) to (x+1,y)).
- With a probability of  $\frac{b}{a+b+c+d}$ , the robot moves toward the north ((x,y) to (x,y+1)).
- With a probability of  $\frac{c}{a+b+c+d}$ , the robot moves toward the west ((x,y) to (x-1,y)).
- With a probability of  $\frac{d}{a+b+c+d}$ , the robot moves toward the south ((x,y) to (x,y-1)).

After *N* steps, the robot will stop at some point  $(X_E, Y_E)$ . Your task is to calculate the expected value of squared the distance from the actual ending point  $(X_E, Y_E)$  to the target ending point (0,0).

## Input

The input consists of 7 space-separated integers: N,  $X_S$ ,  $Y_S$ , a, b, c, d,  $(0 \le N \le 10^9, 0 \le X_S, Y_S, a, b, c, d \le 1000, a + b + c + d > 0)$ .

## Output

It can be proved that the expected value can be represented as an irreducible fraction  $\frac{P}{Q}$ . You should print the value  $P \times Q^{-1}$  modulo  $10^9 + 7$ . The given input guarantees that Q is not a multiple of  $10^9 + 7$ .

## **Examples**

| Standard Input | Standard Output |
|----------------|-----------------|
| 1001111        | 1               |
| 3111300        | 750000020       |