

تنظيم الحاسوب عملي

قبل البدء يجب معرفة انواع الرجسترات (Register) وكيفية تقسيمها

ملاحظة:-الرجسترات تستقبل كحد اقصى 16 بت باينري اي 4 بت من النظام السادس عشر (1234H)

1 - (AX, BX, CX, DX) :- هذا النوع يستقبل 16 بت باينري اي 4 بت هكسا ولكن يقسمها الى نوعين :- الاول LO ويرمز له لم ويستقبل 8 بت باينري اي 2 بت هكسا التي على اليمين (AL او BL او DL او DL او DH ا

2 - (SI, DI, BP, SP) :- هذا النوع يسمى رجسترات الفهرسة و لا يتم تقسيمه

3 – (CS, DS, ES, SS) :- هذا النوع هو SEGMENT ولا يتم تقسيمة ايظاً

ملاحظة:- هنالك رجستر IP يشير الى التنفيذ الحالي و رجستر Flags تحديد حالة الحالية للمعالج

ملاحظة: عدم الكتابة نوع النظام للرقم مثلاً AH او 1010B في حالة عدم الكتابة فسيعتبر الرقم عشري decimal

وبالنسبة للنظام السادس عشر يجب كتابة 0 قبل ABCDEF لأنه في حالة اردنا تحميل قيمة عشرة في النظام السادس عشر نكتب AH هنا سيفهمها البرنامج على انها رجستر لهذا نكتب 0

Memory

يرمز للذاكرة بأسم الموقع بين اقواس مربعة

مثال [BX]

عند ادخال 4 بت من النظام السادس عشر (H) يتم تقسيمها الى 2 بت اي انها تشبه النوع الاول من الرجسترات (AX, BX, CX, DX)

الجزء الاول يأخذ 2 بت التي على اليمين ويرمز له [BX]

اما الجزء الثاني يأخذ 2 بت التي على اليسار ويرمز له بموقع الذاكرة + 1 اي انه يكتب بالشكل التالي [1 + BX] ملاحظة :- يمكن ان يشار للموقع [BX+2] ففي هذه الحالة سيكون الجزء الثاني [BX+3] مثال آخر الموقع [BP+SI+10H+1] نفس الشيء سيكون الجزء الثاني [BP+SI+10H+1]

Mov and XCHG

MOV	XCHG
SREG, MEMORY	REG, MEMORY
MEMORY, SREG	MEMORY, REG
REG, SREG	REG, REG
SREG, REG	
MEMORY, IMMEDIATE	
REG, IMMEDIATE	
REG, REG	

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL,

DI, SI, BP, SP.

SREG: DS, ES, SS, and only as second operand: CS.

memory: [BX]

Immediate: 1234H

Physical Address and logical address

Ex: DS contains value 1234h, SI contains the value 7890h

sol.

Logical address: 1234:7890

Physical address = (Segment base*10H) + Offset Value.

= 1234h * 10h + 7890h = 19BD0h

Variables

تعريف المتغيرات يقسم الى :-

DB و تعني Define Byte ويتم فيها حفظ خلية واحدة فقط في الذاكرة لمتغير والحجم الكلي 1Byte

DW وتعني Define Word ويتم فيها حفظ خليتان في الذاكرة لمتغير والحجم الكلي 2Byte و تكون طريقة التعريف بهذا الشكل ((القيمة DB اسم المتغير))

ملاحظة :- التعريفات تكون بعد كلمة RET

Array

تعريف المصفوفات يتم بالشكل الآتي القيمة, القيمة, القيمة DB اسم المصفوفة ويتم الوصول الى عناصر المصفوفة عن طريق الاقواس المربعة اي مشابهة لطريقة البرمجة في السي شارب او البرامج الاخرى

مثال //

a[3]=1

a DB 5h,2h,6h,1h هنا تم تعريف مصفوفة وتم حفظ العناصر

a[0]=5 a[1]=2 a[2]=6

يمكن استخدام DUP لفتح مصفوفة كبيرة تحمل عناصر متكررة وتتم بالشكل الآتي

(الرقم المراد تكراره) DUP عدد التكرارات DB اسم المصفوفة

مثال //

a DB 4 DUP (8)

a[0] = 8 \\ a[1] = 8 \\ a[2] = 8 \\ a[3] = 8 \\ a[3] = 8 \\ a[0] = 8 \\

يمكن حفظ ارقام في متغيرات عن طريق امر EQU

مثال ۱۱ C EQU 5 وهنا يتم التعريف قبل RET

الايعازات الحسابية

ADD, SUB, CMP, AND, TEST, OR, XOR

REG, Memory

Memory, REG

REG, REG

Memory, immediate

REG, immediate

هذه الايعازات تؤثر على الاعلام الآتية: CF, ZF, SF, OF, PF, AF

ADD

هذا الايعاز يؤثر على الاعلام الآتية: CF, ZF, SF, OF, AF

يستخدم هذا الايعاز للجمع

مثال//

MOV AL,23 تحميل قيمة <u>23H</u> في الرجستر MOV AL,23 DH تحميل قيمة 42H في

DH عمع قيمة AL و DH و تحميل الناتج وحفظه في DH

_____ SUB _____

هذا الايعاز يؤثر على الاعلام الآتية: CF, ZF, SF, OF, AF

يستخدم هذا الايعاز للطرح

مثال//

MOV BX,44H تحميل قيمة 44H في الرجستر BX

MOV CX,42H تحميل قيمة 42H في الرجستر

SUB BX,CX طرح قيمة CX و BX وتحميل الناتج وحفظه في BX

ملاحظة: لايمكن جمع او طرح جزء رجستر من رجستر كلي اي مثلاً DH و CX او العكس الا اذا كان الاثنين مقسمين اي DL و CL او CH او الاثنين CX و BX او AX او DL و DL و DL و DL او CX و DX و DX

