Machine Learning

Week 8: Unsupervised Learning (Cont'd) **Support Vector Machines**

Mahesan Niranjan

School of Electronics and Computer Science University of Southampton

Autumn Semester 2015/16

Mahesan Niranjan (UoS)

COMP3206/COMP6229 (W2)

Autumn Semester 2015/16

1 / 13

Gaussian Mixture Model and K-Means Clustering

$$p(\boldsymbol{x}) = \sum_{k=1}^{K} \pi_{j} \mathcal{N}(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \quad \pi_{j} \geq 0, \quad \sum_{J=1}^{K} \pi_{j} = 1.$$

Input: $\boldsymbol{X} = \left\{ \boldsymbol{x}_n^t \right\}_{n=1}^{N}, K$ Output: \boldsymbol{C} , Idx

initialize: $\boldsymbol{c} = \left\{ \boldsymbol{c}_{j}^{t} \right\}_{i=1}^{K}$

repeat

assign n^{th} sample to nearest c_i

 $Idx(n) = \min_{i} ||\boldsymbol{x}_{n} - \boldsymbol{c}_{i}||^{2}$

recompute $\mathbf{c}_j = \frac{1}{N_j} \sum_{n=j} \mathbf{x}_n$ until no change in $\vec{c_1}$, $\vec{c_2}$, ... $\vec{c_k}$

return **C**, Idx

Objective Function for Clustering

Setting up an error function and minimizing it

$$J_e = \sum_{i=1}^K \sum_{m{x} \in \mathcal{D}_i} ||m{x} - m{m}_i||^2$$
 $m{m}_i = rac{1}{n_i} \sum_{m{x} \in \mathcal{D}_i} m{x}$

Which is also the same as (in terms of scatter)

$$J_{\rm e} = \frac{1}{2} \sum_{i=1}^{K} n_i \, \bar{s}_i$$

$$\bar{s}_i = \frac{1}{n_i^2} \sum_{\boldsymbol{x} \in \mathcal{D}_i} \sum_{\boldsymbol{v} \in \mathcal{D}_i} ||\boldsymbol{x} - \boldsymbol{y}||^2$$

Homework: Show this *i.e.* sum of average distance to cluster means and sum of within cluster scatter are the same.

Mahesan Niranjan (UoS)

COMP3206/COMP6229 (W2)

Autumn Semester 2015/16

3 / 13

Iterative Optimization

Note: Discrete optimzation

$$J_{\theta} = \sum_{i=1}^{K} J_{i}$$
$$= \sum_{i=1}^{K} \sum_{\boldsymbol{x} \in \mathcal{D}_{i}} ||\boldsymbol{x} - \boldsymbol{m}_{i}||^{2}$$

- Mean of each cluster: $\mathbf{m}_i = \sum_{\mathbf{x} \in \mathcal{D}_i} \mathbf{x}$
- Move sample (data) \hat{x} from cluster $\hat{\mathcal{D}}_i$ to \mathcal{D}_j ; Say new J_j is J_j^* and new m_j is m_j^*

$$\boldsymbol{m}_{j}^{*} = \boldsymbol{m}_{j} + \frac{1}{n_{j}+1} (\widehat{\boldsymbol{x}} - \boldsymbol{m}_{j})$$
*
$$\sum_{j=1}^{n} \|\mathbf{x}_{j} - \mathbf{m}_{j}\|^{2} + \|\widehat{\mathbf{x}}_{j} - \mathbf{m}_{j}\|^{2}$$

$$J_{j}^{*} = \sum_{\boldsymbol{x} \in \mathcal{D}_{j}} \left\| \boldsymbol{x} - \boldsymbol{m}_{j}^{*} \right\|^{2} + \left\| \widehat{\boldsymbol{x}} - \boldsymbol{m}_{j}^{*} \right\|^{2}$$

$$= \left(\sum_{\boldsymbol{x} \in \mathcal{D}_{j}} \left\| \boldsymbol{x} - \boldsymbol{m}_{j} - \frac{1}{n_{j} + 1} (\widehat{\boldsymbol{x}} - \boldsymbol{m}_{j}) \right\|^{2} \right) = \left\| \frac{n_{j}}{n_{j} + 1} (\widehat{\boldsymbol{x}} - \boldsymbol{m}_{j}) \right\|^{2}$$

$$= J_{j} + \frac{n_{j}}{n_{j} + 1} \left\| \widehat{\boldsymbol{x}} - \boldsymbol{m}_{j} \right\|^{2}$$

Mahesan Niranjan (UoS)

COMP3206/COMP6229 (W2)

Autumn Semester 2015/16

Iterative optimization (cont'd)

...similarly, m_i changes to

$$\boldsymbol{m}_{i}^{*} = \boldsymbol{m}_{i} - \frac{1}{n_{i}-1}(\widehat{\boldsymbol{x}} - \boldsymbol{m}_{i})$$

$$J_i = J_i - \frac{n_i}{n_i - 1} \| \widehat{\pmb{x}} - \pmb{m}_i \|^2$$

So, if

$$\left\| \frac{n_i}{n_i - 1} \left\| \widehat{\pmb{x}} - \pmb{m}_i \right\|^2 > \left\| \frac{n_j}{n_i + 1} \left\| \widehat{\pmb{x}} - \pmb{m}_j \right\|^2$$

then it is advantageous to move $\hat{\mathbf{x}}$ from \mathcal{D}_i to \mathcal{D}_i

Algorithm:

- Select a data point at random
- Move it to cluster for which $\frac{n_j}{N_i+1} \|\widehat{\pmb{x}} \pmb{m}_j\|^2$ is minimum.
- Recalculate means m_i, i=1,...,K

This will be a sequential version of K—means algorithm; *i.e.* update at each data, rather than wait till we classify all data.

Mahesan Niranjan (UoS)

COMP3206/COMP6229 (W2)

Autumn Semester 2015/16

5/13

Hierarchical Clustering

Dendrogram

Homework:

Use MATLAB to draw a dendrogram for the Boston Housing data

Agglomerative Hierarchical Clustering

- Initialize: $\hat{K} = n$ (No. clusters = No. data)
- Repeat (until $\widehat{K} = K$)
 - find nearest clusters \mathcal{D}_i and \mathcal{D}_i
 - merge \mathcal{D}_i and \mathcal{D}_j
 - $\hat{c} \leftarrow \hat{c} 1$

Defining nearest clusters

$$D_{\min} (\mathcal{D}_i, \mathcal{D}_j) = \min_{\boldsymbol{x} \in \mathcal{D}_i \boldsymbol{y} \in \mathcal{D}_j} \|\boldsymbol{x} - \boldsymbol{y}\|^2$$

$$D_{\text{avg}} (\mathcal{D}_i, \mathcal{D}_j) = \frac{1}{n_i n_j} \sum_{\boldsymbol{x} \in \mathcal{D}_j} \sum_{\boldsymbol{y} \in \mathcal{D}_j} \|\boldsymbol{x} - \boldsymbol{y}\|^2$$

Mahesan Niranjan (UoS)

COMP3206/COMP6229 (W2)

Autumn Semester 2015/16

7 / 13

Now for something completely different!

Margin

(b in formula is w_0 in figure)

- Hyperplane: $\mathbf{w}^t \mathbf{x} + b = 0$ See Lab 2 vfill
- Data:

$$\mathcal{D} = \{ \boldsymbol{x}_n, y_n \}_{n=1}^N, \ \boldsymbol{x}_n \in \mathcal{R}^d, \ y_n \in \{-1, +1\}$$

vfill

Learning problem:

$$y_n \left[\mathbf{w}^t \mathbf{x}_n + b \right] \ge 1, \ n = 1, ..., N$$

Mahesan Niranjan (UoS)

COMP3206/COMP6229 (W2)

Autumn Semester 2015/16

9/13

Margin

• Distance from data \mathbf{x}_n to a hyperplane (\mathbf{w}, b) :

$$d(\mathbf{w},b,\mathbf{x}_n) = \frac{|\mathbf{w}^t\mathbf{x}_n + b|}{||\mathbf{w}||}$$

 The margin – distance between data closest to the hyperplane on either side

$$\rho(\mathbf{w}, b) = \min_{\mathbf{x}_n: y_n = -1} d(\mathbf{w}, b, \mathbf{x}_n) + \min_{\mathbf{x}_n: y_n = +1} d(\mathbf{w}, b, \mathbf{x}_n)$$

$$= \min_{\mathbf{x}_n: y_n = -1} \frac{|\mathbf{w}^t \mathbf{x}_n + b|}{||\mathbf{w}||} + \min_{\mathbf{x}_n: y_n = +1} \frac{|\mathbf{w}^t \mathbf{x}_n + b|}{||\mathbf{w}||}$$

$$= \frac{1}{||\mathbf{w}||} \left(\min_{\mathbf{x}_n: y_n = -1} |\mathbf{w}^t \mathbf{x}_n + b| + \min_{\mathbf{x}_n: y_n = +1} |\mathbf{w}^t \mathbf{x}_n + b| \right)$$

$$= \frac{2}{||\mathbf{w}||}$$

Lagrangian for SVM Classification

$$\mathcal{L}(\boldsymbol{w},b,\alpha) = \frac{1}{2}||\boldsymbol{w}||^2 - \sum_{n=1}^{N} \alpha_n \left(y_n \left[\boldsymbol{w}^t \boldsymbol{x}_n + b\right] - 1\right), \ \alpha_n \geq 0$$

- Setting $\frac{\partial \mathcal{L}}{\partial b}$ to zero, gives $\sum_{n=1}^{N} \alpha_n y_n = 0$
- Setting $\frac{\partial \mathcal{L}}{\partial \mathbf{w}}$ to zero, gives $\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$
- Note: the unknown weights are computed as a weighted sum of the training examples; do you see a similarity to the perceptron algorithm?
- Substitute to get the dual problem

$$\max_{\alpha} -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{t} \boldsymbol{x}_{j} + \sum_{k=1}^{N} \alpha_{k}$$

Mahesan Niranjan (UoS)

COMP3206/COMP6229 (W2)

Autumn Semester 2015/16

11 / 13

$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^t \boldsymbol{x}_j - \sum_{k=1}^{N} \alpha_k$$

subject to
$$\alpha_n \ge 0$$
 and $\sum_{n=1}^N \alpha_n y_n = 0$

Quadratic programming

MATLAB> help quadprog

$$\min_{\mathbf{x}} \frac{1}{2} \mathbf{x}^t \mathbf{H} \mathbf{x} + \mathbf{f}^t \mathbf{x}$$

Subject to

$$m{A} m{x} \leq m{b}$$

 $m{A}_{\mathrm{eq}} m{x} = m{b}_{\mathrm{eq}}$
 $m{b} < m{x} < m{u} m{b}$

MATLAB> x = quadprog(H, f, A, b, Aeq, beq, lb, ub);

Calculating the Bias Term

- Constraints $\alpha_n \ge 0$; Parameters $\mathbf{w} = \sum_{n=1}^{N} y_n \alpha_n \mathbf{x}_n$
- Non-zero α_n 's correspond to Support Vectors
- For any of these support vectors (\mathbf{x}_s) : $y_s[\mathbf{w}^t\mathbf{x}_s + b] = 1$; we can compute the bias term b from this.

$$y_{s} \left[\sum_{m \in \mathcal{S}} \alpha_{m} y_{m} \boldsymbol{x}_{m}^{t} \boldsymbol{x}_{s} + b \right] = 1$$

$$y_s^2 \left(\sum_{m \in \mathcal{S}} \alpha_m y_m \boldsymbol{x}_m^t \, \boldsymbol{x}_s + b \right) = y_s$$

Note:
$$y_s^2 = 1$$
; Hence $b = y_s - \sum_{m \in S} \alpha_m y_m \mathbf{x}_m^t \mathbf{x}_s$

• In practice, instead of using any one support vector, use we average:

$$b = \frac{1}{N_s} \sum_{s \in \mathcal{S}} \left(y_s - \sum_{m \in \mathcal{S}} \alpha_m y_m \boldsymbol{x}_m^t \boldsymbol{x}_s \right)$$