Memoria de la práctica 1 Algorítmica

FCO. JAVIER SÁEZ MALDONADO LAURA GÓMEZ GARRIDO LUIS ANTONIO ORTEGA ANDRÉS PEDRO BONILLA NADAL DANIEL POZO ESCALONA

> *Universidad de Granada* 24 de marzo de 2017

Índice

1.	Cálculo de la eficiencia empírica	3
	1.1. Tablas de las ejecuciones	4
	1.1.1. Tabla algoritmos $O(n^2)$	5
	1.1.2. Tablas de algoritmos n^3	6
	1.1.3. Tabla algoritmo Hanoi	7
	1.1.4. Tabla algoritmo Floyd	9
2.	Realización de las gráficas.	10
	2.1. Gráfica de algoritmos $O(n \log n)$	10
	2.2. Gráfica de algoritmos $O(n^2)$	11
	2.3. Gráfica del algoritmo $O(n^3)$	12
	2.4. Gráfica del algoritmo $O(2^n)$	13
3.	Cálculo de la eficiencia híbrida	13
4.	Ejercicio 4	15

11	Conclusiones	20
4.I.	Conclusiones	 ΔU

Introducción

En esta primera práctica, vamos a estudiar la eficiencia tanto empírica como teórica de ciertos algoritmos. Para ello, realizaremos pruebas empíricas con nuestros propios equipos para comprobar que la eficiencia se ajusta a la que calculada de forma teórica.

Comenzaremos presentando los algoritmos que vamos a estudiar. Son algoritmos bastante conocidos, así como sus eficiencias teóricas. Estos son:

- 1. Algoritmo de ordenación burbuja.
- 2. Algoritmo de ordenación por inserción.
- 3. Algoritmo de ordenación por **selección**.
- 4. Algoritmo de ordenación **mergesort**, basado en la técnica divide y vencerás.
- 5. Algoritmo de ordenación quicksort.
- 6. Algoritmo de ordenación heapsort.
- 7. Algoritmo de Floyd.
- 8. Algoritmo de Hanoi.

Los ejecutaremos en varias máquinas, a saber:

- 1. Máquina A: Procesador Intel Core I7-5700HQ, 6M Cache y 3.5 Ghz.
- 2. Máquina B: Procesador Intel Core I7-4712MQ, 6M cache y 2.30Ghz
- 3. Máquina C: Procesador: Intel Core i7-4510U ,2.00GHz
- 4. Máquina D: Máquina Virtual VirtualBox versión 5.1.112r112440(Qt5.6.2) dentro de una Máquina C.

1. Cálculo de la eficiencia empírica

A fin de facilitar el cálculo de la eficiencia empírica, escribimos un guion que automatizase el proceso de realizar las ejecuciones pedidas para cada algoritmo, recoger los datos y organizarlos en carpetas. El código es el siguiente:

mkdir resultados ejecutable 2> /dev/null

done

Además, según el tipo de algoritmo, hemos ido variando el número de veces que se ejecuta el código. El que hemos mostrado es el que ejecuta el programa de Hanoi. En la siguiente tabla se muestra el tamaño de los datos de entrada en cada iteración, para cada algoritmo.

Orden de eficiencia	Algoritmo	Tamaño inicial	Incremento	Tamaño final
$O(n \log n)$	Heapsort Mergesort Quicksort	1000	1000	100000
$O(n^2)$	Burbuja Inserción Selección	500	500	50000
$O(n^3)$	Floyd	25	25	2500
$O(2^n)$	Hanoi	1	1	28

1.1. Tablas de las ejecuciones

A continuación se presentan los datos resultantes de ejecutar los distintos algoritmos, agrupados por clases de eficiencia. Escribiremos las tablas generadas por el computador de tipo A, si bien incompletas, para no ocupar todo el documento con ellas. Estas tablas podrán ser consultadas en una carpeta incluída en el proyecto.

1.1.1. Tabla algoritmos $O(n^2)$

Tamaño Vector	Burbuja	Inserción	Selección
500	0.000183	0.00012	9.41e-05
1000	0.000676	0.00041	0.00033464
1500	0.001421	0.000889	0.00073601
2000	0.002645	0.001483	0.00124963
2500	0.004357	0.002291	0.002069
3000	0.00658	0.003276	0.002789
3500	0.009617	0.004485	0.003708
4000	0.013066	0.005808	0.00491
4500	0.017328	0.007279	0.006437
5000	0.022303	0.00898	0.007507
5500	0.0279	0.010837	0.008995
6000	0.034061	0.012819	0.010721
6500	0.041173	0.01515	0.012625
7000	0.049032	0.017688	0.014594
7500	0.057096	0.020175	0.017596
8000	0.06641	0.023064	0.018863
8500	0.076047	0.026317	0.02148
9000	0.087017	0.029131	0.023866
9500	0.099032	0.032499	0.026604
10000	0.11069	0.03597	0.029735
10500	0.123762	0.039592	0.032609
11000	0.138682	0.043482	0.03555
11500	0.151532	0.047382	0.038855
12000	0.166319	0.051606	0.042199
12500	0.181765	0.055837	0.045834
13000	0.198691	0.060376	0.049303
13500	0.21569	0.064976	0.053129
14000	0.231813	0.069198	0.057271
14500	0.250401	0.074645	0.061438
15000	0.269076	0.079654	0.065577
15500	0.290561	0.084977	0.069896
16000	0.31048	0.090637	0.07443
16500	0.330982	0.0963	0.07922
17000	0.353309	0.103345	0.084177
17500	0.373751	0.109385	0.09186
18000	0.397518	0.115501	0.094513
18500	0.426722	0.122327	0.099572
19000	0.4511	0.129006	0.104891

1.1.2. Tablas de algoritmos n^3

Tamaño Vector	Mergesort	Heapsort	Quicksort
1000	4.1423e-05	6.1e-05	4.9e-05
2000	9.9989e-05	0.000142	9.7e-05
3000	0.000187499	0.000223	0.00016
4000	0.000221424	0.000268	0.000192
5000	0.000303942	0.000367	0.000286
6000	0.000399219	0.000416	0.000285
7000	0.00039881	0.000476	0.000372
8000	0.000474348	0.00052	0.00038
9000	0.000563394	0.000629	0.000425
10000	0.000649712	0.000784	0.000484
11000	0.000845	0.000783	0.000528
12000	0.000895	0.000903	0.000607
13000	0.000838	0.000944	0.000659
14000	0.000898	0.001027	0.000732
15000	0.000968	0.001096	0.000847
16000	0.001065	0.001107	0.000836
17000	0.00123	0.001167	0.000906
18000	0.001332	0.001311	0.001203
19000	0.001334	0.001318	0.000972
20000	0.001487	0.001464	0.00107
21000	0.001621	0.00148	0.001146
22000	0.001656	0.001573	0.001186
23000	0.001772	0.00167	0.001244
24000	0.001905	0.001867	0.001324
25000	0.002049	0.00199	0.001348
26000	0.001807	0.001893	0.001459
27000	0.001879	0.00198	0.00151
28000	0.001937	0.002086	0.001498
29000	0.002007	0.00212	0.001579
30000	0.002077	0.002397	0.001664
31000	0.002285	0.002336	0.001741
32000	0.002266	0.002378	0.001808
33000	0.00244	0.002577	0.001808
34000	0.002571	0.002529	0.00185
35000	0.002595	0.002641	0.001948
36000	0.002639	0.002733	0.002045
37000	0.002763	0.002752	0.002108
38000	0.002913	0.002832	0.002109

1.1.3. Tabla algoritmo Hanoi

Tamaño Vector	Hanoi
1	1,00E-06
2	1,00E-06
3	1,00E-06
4	1,00E-06
5	1,00E-06
6	1,00E-06
7	1,00E-06
8	2,00E-06
9	2,00E-06
10	4,00E-06
11	6,00E-06
12	1.1e-05
13	1.8e-05
14	3.8e-05
15	8.2e-05
16	0.000174
17	0.000324
18	0.000663
19	0.001226
20	0.002177
21	0.004413
22	0.008785
23	0.017613
24	0.034917
25	0.069979
26	0.138508
27	0.276828
28	0.552919

1.1.4. Tabla algoritmo Floyd

Tamaño Vector	Floyd
50	0.000147
75	0.000422
100	0.000841
125	0.001555
150	0.002624
175	0.004146
200	0.005986
225	0.008689
250	0.011423
275	0.015214
300	0.019555
325	0.024801
350	0.030623
375	0.037862
400	0.045488
425	0.058492
450	0.069071
475	0.079011
500	0.08839
525	0.102404
550	0.119307
575	0.134324
600	0.161119
625	0.172804
650	0.192393
675	0.216992
700	0.240593
725	0.269456
750	0.295816
775	0.327231
800	0.359917
825	0.408639
850	0.433239
875	0.47942
900	0.522784
925	0.577851
950	0.618519
975	0.675189
1000	0.759402

2. Realización de las gráficas.

Para la realización de las gráficas usamos, sobre los datos previamente ofrecidos, el programa veusz (https://github.com/jeremysanders/veusz | hyperref[pagina oficial]http://home.gna.org/veusz/). En ellas hemos buscado la máxima claridad y legibilidad de estas.

2.1. Gráfica de algoritmos $O(n \log n)$

2.2. Gráfica de algoritmos $O(n^2)$

2.3. Gráfica del algoritmo $O(n^3)$

2.4. Gráfica del algoritmo $O(2^n)$

3. Cálculo de la eficiencia híbrida

A continuación calcularemos la eficiencia híbrida de los datos de la máquina B, para ello utilizaremos el mismo programa que hemos utilizado para elaborar las gráficas, indicándole qué tipo de ajuste queremos que nos realice para cada algoritmo. Para los algoritmos de eficiencia logaritmica, le indicamos que la curva a partir de la cual queremos que parametrice es

 $ax \log(x) + bx$ y dándonos los siguientes resultados:

Algoritmo	Coeficientes
Heapsort	a = 4,45661980236212e - 9 b = 4,57091330896553e - 8
	a = 1,04427553800116e - 8
Mergesort	b = -2,58720994439492e - 8
Quicksort	a = 2,79493370281663e - 9
Quicksori	b = 3,29731080614046e - 8

De la misma forma, para los algoritmos eficiencia cuadrática, le hemos indicado que la curva sobre la cual queremos que ajuste se trata de $a+bx+cx^2$ y obteniendo así:

Algoritmo	Coeficientes
	a = 0,00082695543722856
Burbuja	b = -1,78008100621617e - 6
	c = 1,41949043281942e - 9
	a = 9,34565785754161e - 6
Inserción	b = 4,03176585100252e - 8
	c = 4,60339062991612e - 10
	a = -3,46794858274209e - 5
Selección	b = 1,18720037408458e - 7
	c = 3,13826775410318e - 10

Ahora, nos encontramos con Floyd cuya eficiencia es cúbica y tendríamos pues que ajustar sobre la curva $a + bx + cx^2 + dx^3$ y obteniendo de esta forma que:

Algoritmo	Coeficientes
	a = -0,0001373576928425
Flord	b = 7,19449328754654e - 6
Floyd	c = -6,0356967827879e - 8
	d = 1,02809541531643e - 9

Finalmente, sólo nos queda ver qué ocurre con Hanoi cuya curva es $a2^{bx}$ y nos da:

Algoritmo	Coeficientes
Hanoi	a = 7,0670287742651e - 9
папоі	b = 0,92649353651508

4. Ejercicio 4

Otro aspecto interesante a analizar mediante este tipo de estudio es la variación de la eficiencia empírica en función de parámetros externos tales como: las opciones de compilación utilizada (con/sin optimización), el ordenador donde se realizan las pruebas, el sistema operativo, etc. Sugiera algún estudio de este tipo, consulte con el profesor de prácticas y llévelo a cabo.

Para llevar a cabo la resolución de este ejercicio, utilizando el script de realización de las tablas, lo que hemos hecho ha sido realizar las ejecuciones en las distintas máquinas y exponerlas en una misma gráfica para ver las diferencias que se obtienen de los distintos procesadores y prestaciones, con los mismos algoritmos. Las gráficas que se generan están hechos con los datos que estarán en las tablas que expondremos en un fichero externo a la memoria. Pasamos a exponer las gráficas.

1. Burbuja:

Podemos observar que las máquinas de prestaciones similares tienen tiempos similares en este pesado algoritmo, y que la máquina D(la máquina virtual) comienza pronto a realizar las ejecuciones mucho más despacio que las demás y luego, por razones de procesamiento, consigue en una ejecución acercarse al tiempo normal de ejecución pero luego vuelve a su estado de procesamiento lento.

2. Inserción:

Podemos ver que nuestra máquina con mejor procesador realiza las ejecuciones de este algoritmo mejor que las demás, alejándose al aumentar el tamaño de las demás. Además, también tenemos un comportamiento extraño en la máquina D, que a veces hace ejecuciones muy lentas y otras veces realiza ejecuciones con velocidad similar a las máquinas B y C.

3. Selección:

En este algoritmo, todas las máquinas comienzan tardando lo mismo hasta la mitad del tamaño de las ejecuciones, lo cual es sorprendente por parte de la máquina D, pero luego se aleja mucho realizando grandes oscilaciones en los tiempos de ejecución.

4. Heapsort:

En el algoritmo Heapsort, podemos observar un comportamiento un tanto peculiar de la máquina virtual. Como se puede observar, comienza con los tiempos en cero, por lo que probablemente la máquina no pudo ejecutar el algoritmo y luego se ve como va ascendiendo en escalones, tardando exactamente el mismo tiempo para varios tamaños del vector, lo cual no tiene mucho sentido. Las demás máquinas sí que realizan un comportamiento normal. Es importante denotar que este error es producido por la máquina, ya que todas las máquinas utilizan el mismo script para realizar las ejecuciones.

5. Mergesort:

En Mergesort, de nuevo la máquina virtual da un comportamiento extraño, empieza ejecutando bien(aunque lento) el algoritmo, luego hasta $4x10^4$ no puede ejecutar el algoritmo y por último realiza las ejecuciones con tiempos, como en el anterior algoritmo, que ascienden en escalón. Por otro lado, también es notable el comportamiento de las máquinas A,B y C, que llevan un ritmo bastante similar durante toda la ejecución.

6. Quicksort:

En este algoritmo, las tres máquinas principales llevan un ritmo bastante similar y la máquina virtual se separa mucho de ellas desde el principio, teniendo un comportamiento similar al que tiene en los algoritmos anteriores.

7. Hanoi:

En este caso, volvemos a la normalidad con la máquina D, aunque podemos notarle que aunque las tres máquinas reales vayan al mismo ritmo, la máquina virtual se separa antes de ellas para comenzar a realizar la curva ascendente.

8. Floyd:

En el último algoritmo a analizar, podemos ver que la máquina virtual se separa rápidamente d elas demás en cuanto a tiempo de ejecución y que en torno al tamaño 2000 del vector, la máquina *A* también se separa del resto de máquinas y tarda menos en el tiempo de ejecución

4.1. Conclusiones

Como conclusión a este ejercicio, podemos afirmar que las tres máquinas reales (A, B y C) tienen comportamientos muy similares en las ejecuciones aunque, por lo general, la máquina A consigue sacar ventaja en tiempo a las otras dos debido a su ventaja en características de procesamiento. Por otro lado, también se observa fácilmente que en la mayoría de los algoritmos, la máquina virtual genera tiempos muy dispares a los de las demás máquinas.