1 Pre-Recorded Tasks

1.1 K-Means Clustering

Some pixel values of an image in HSV space are given:

1. Draw a 2-D diagram with hue and saturation as coordinates and mark the positions where the input image contains value pairs with '×'!

		S						
		0	1	2	3	4	5	6
Н	0							
	1							
	2							
	3							
	4							
	5							
	6							

- 2. K-Means clustering with K=2 clusters shall be performed. The initial centroids of the clusters A and B are given as $\mathbf{c}_{start}^{(A)}[H,S]=(5,1)$ and $\mathbf{c}_{start}^{(B)}[H,S]=(4,3)$. Mark the cluster centroid locations with 'o' and draw the nearest neighbor cluster border to the diagram!
- 3. Perform the nearest neighbor classification based on the cluster centroids \mathbf{c}_{start} . Decide for each data point k to which class (A or B) it belongs and write down the results in the table below!

Assigned class

4. Perform the next step of the k-means algorithm and calculate the new cluster centroids $\mathbf{c}_{step1}^{(A)}[H,S]$ and $\mathbf{c}_{step1}^{(B)}[H,S]!$

5. Draw a new diagram with the original data points and the new cluster centroids $\mathbf{c}_{step1}^{(A)}[H,S]$ and $\mathbf{c}_{step1}^{(B)}[H,S]$. Draw the new nearest neighbor cluster border as well!

6. Perform the nearest neighbor classification based on the new cluster centroids \mathbf{c}_{step1} . Decide for each data point k to which class (A or B) it belongs and write down the results in the table below!

Assigned class:

2 Self-Study Matlab Tasks

2.1 Chroma Keying

The term *keying* refers to the replacement of a certain color with a new background. We want to focus on creating a digital mask that tells apart the foreground from the background. In the following, we use color information only. Some images are provided in ~/SHARED_FILES/vcc/Ex8/.

1. Load a greenscreen image from the given files. At first, all processing shall be done in RGB color space. Use the red color channel and extract a histogram with 256 bins. Use the MATLAB function hist(img_red(:), 256)!

We now want to extract a typical color value of the background. We can assume that the upper left corner shows only background. Calculate the mean value of each color channel for a 20×20 region!

- 2. Use a single color channel and its corresponding mean value for segmentation of the image. Pixels with values close to the background color should be assigned to the background, whereas pixels with a larger color distance should belong to the foreground. Can you find a suitable distance that can be used for single color segmentation? Display the resulting mask!
- 3. Now, we want to segment the image based on two color channels. A pixel only belongs to the background if it is within a specific color range in both channels. Find a reasonable distance and display the resulting mask!

1 Pre-Recorded Tasks

1.1 K-Means Clustering

Some pixel values of an image in HSV space are given:

1. Draw a 2-D diagram with hue and saturation as coordinates and mark the positions where the input image contains value pairs with ' \times '!

		S						
		0	1	2	3	4	5	6
Н	0							
	1					Х		х
	2					Х		
	3							
	4		Х	х				
	2 3 4 5 6			х				
	6							

2. K-Means clustering with K=2 clusters shall be performed. The initial centroids of the clusters A and B are given as $\mathbf{c}_{start}^{(A)}[H,S]=(5,1)$ and $\mathbf{c}_{start}^{(B)}[H,S]=(4,3)$. Mark the cluster centroid locations with 'o' and draw the nearest neighbor cluster border to the diagram!

		S						
		0	1	2	3	4	5	6
Н	0							
	1					х		х
	2					х		
	3							
	4		Х	/×	0			
	2 3 4 5 6		0	X		В		
	6		A					

3. Perform the nearest neighbor classification based on the cluster centroids \mathbf{c}_{start} . Decide for each data point k to which class (A or B) it belongs and write down the results in the table below!

4. Perform the next step of the k-means algorithm and calculate the new cluster centroids $\mathbf{c}_{step1}^{(A)}[H,S]$ and $\mathbf{c}_{step1}^{(B)}[H,S]!$

$$\begin{array}{ll} \mathbf{c}_{step1}^{(A)}[H] = \frac{1}{2}(4+5) = 4.5 & \mathbf{c}_{step1}^{(B)}[H] = \frac{1}{4}(1+1+2+4) = 2 \\ \mathbf{c}_{step1}^{(A)}[S] = \frac{1}{2}(1+2) = 1.5 & \mathbf{c}_{step1}^{(B)}[S] = \frac{1}{4}(2+4+4+6) = 4 \\ \mathbf{c}_{step1}^{(A)}[H,S] = (4.5,1.5) & \mathbf{c}_{step1}^{(B)}[H,S] = (2,4) \end{array}$$

5. Draw a new diagram with the original data points and the new cluster centroids $\mathbf{c}_{step1}^{(A)}[H,S]$ and $\mathbf{c}_{step1}^{(B)}[H,S]$. Draw the new nearest neighbor cluster border as well!

6. Perform the nearest neighbor classification based on the new cluster centroids \mathbf{c}_{step1} . Decide for each data point k to which class (A or B) it belongs and write down the results in the table below!

2 Self-Study Matlab Tasks

2.1 Chroma Keying

The term *keying* refers to the replacement of a certain color with a new background. We want to focus on creating a digital mask that tells apart the foreground from the background. In the following, we use color information only. Some images are provided in ~/SHARED_FILES/vcc/Ex8/.

1. Load a greenscreen image from the given files. At first, all processing shall be done in RGB color space. Use the red color channel and extract a histogram with 256 bins. Use the MATLAB function hist(img_red(:), 256)!

We now want to extract a typical color value of the background. We can assume that the upper left corner shows only background. Calculate the mean value of each color channel for a 20×20 region!

- 2. Use a single color channel and its corresponding mean value for segmentation of the image. Pixels with values close to the background color should be assigned to the background, whereas pixels with a larger color distance should belong to the foreground. Can you find a suitable distance that can be used for single color segmentation? Display the resulting mask!
- 3. Now, we want to segment the image based on two color channels. A pixel only belongs to the background if it is within a specific color range in both channels. Find a reasonable distance and display the resulting mask!

