Model fleksji języka polskiego

Wojciech Jaworski, Szymon Rutkowski

Niniejszy artykuł opisuje zasady morfologiczne języka polskiego jako zestaw wykonywanych na obserwowanej formie słowa operacji prowadzących do przekształcenia jej w lemat i zestaw cech morfoskładniowych. Reguły opracowane zostały na podstawie Słownika Gramatycznego Języka Polskiego w wersji z 30.07.2017 [6].

Celem jest stworzenie reprezentacji polskiej fleksji, która z jednej strony jest zwarta i zrozumiała dla człowieka, a z drugiej będzie precyzyjna w sposób umożliwiający jej bezpośrednią implementację w postaci guessera. Guesser jest to program, który ma za zadanie przypisywanie ("odgadywanie") cech morfosyntaktycznych segmentu na podstawie jego formy, to znaczy przede wszystkim rozpoznawalnych afiksów. Widząc, powiedzmy, napis burachnajami, można od razu wziąć pod uwagę, że formą podstawową wyrazu jest burachnaj, a do niej dodano końcówkę narzędnika liczby mnogiej -ami. Różni się on od analizatora morfologicznego [3] tym, że jego działanie nie jest ograniczone do zamkniętego zbioru słów pochodzących z dostarczonego programowi słownika gramatycznego. Próbie interpretacji może zostać poddany dowolny napis.

Przedstawiony w artykule model został zaimplementowany i stał się fragmentem kategorialnego parsera składniowo-semantycznego "ENIAM" [2]. Internetowa wersja demonstracyjna guessera dostępna jest w Internecie $^{(i)}$.

Tworząc model skupiliśmy się na produktywnej części polskiej fleksji, by uchwycić odmianę słów nowych, nieznanych, nie należących do słownika. Model nie obejmuje nieregularnych czasowników oraz niewielkiej liczby słów należących do innych części mowy o nieregularnej odmianie. Wynika to stąd, że znany zamknięty zbiór słów można zawrzeć w słowniczku załączonym do modelu.

Zadania lematyzacji i anotacji morfosyntaktycznej oczywiście nie da się wykonać w sposób jednoznaczny jedynie na podstawie obserwacji pojedynczej, wyrwanej z kontekstu formy. Dlatego guesser określa z pomocą swoich reguł jedynie zbiór możliwych interpretacji. Mogą stanowić one dane wejściowe dla taggera [9], czyli programu przeprowadzającego dezambiguację morfosyntaktyczną na podstawie modeli statystycznych.

W literaturze pojawiały się dotąd próby ujmowania polskiej fleksji w systemy reguł przystosowane dla komputerów, ale zwykle nie powstawały one z myślą o klasyfikacji słów nieznanych. Przykładem może być tutaj praca Teresy Rokickiej

⁽i) http://eniam.nlp.ipipan.waw.pl/morphology.html

1	2	3	4	5	przykład
$\mathbf{d'} \leftarrow \mathbf{dzi}$	$\mathrm{d'}\leftarrow\mathrm{dz}$		$3 \leftarrow dz$	$\mathrm{d}' \leftarrow \mathrm{d} \acute{\mathrm{z}}$	$gwie\acute{z}dzie$
$k' \leftarrow ki$	$k' \leftarrow k$	k′j ← ki			wielkim
$m' \leftarrow mi$	$m' \leftarrow m$	m′j ← mi			miara
$n' \leftarrow ni$	$n' \leftarrow n$	n′j ← ni		$n' \leftarrow \acute{n}$	paniq
$r^j \leftarrow ri$	$r^j \leftarrow r$	rj ← ri	$\check{\mathbf{r}} \leftarrow \mathbf{rz}$		rzeka
$t' \leftarrow ci$	$t' \leftarrow c$			$t' \leftarrow \acute{c}$	kwiecie
$v' \leftarrow wi$	$v' \leftarrow w$	vj ← wi	$v \leftarrow w$		wierzq
$\check{z}^j \leftarrow \dot{z}i$	$\check{z}^j \leftarrow \dot{z}$	žj ← żi	$\check{z} \leftarrow \dot{z}$		$a\dot{z}iota\dot{z}$

Tablica 1: Wybrane reguły ortograficzno-fonetyczne. Odpowiednie przekształcenia są realizowane zawsze przy obecności odpowiedniego prawego kontekstu, który jest wspólny dla każdej kolumny. Kolumna~1. wymaga jednego z następujących ciągów bezpośrednio po prawej (ε oznacza koniec segmentu): a ą e ę o ó u; kolumna~2.: ib ic ić id if ig ih ii ij ik il ił im in iń ip ir is iś it iw iz iź i ε ; kolumna~3.: a ε ach ε ami ε a ε e ε e ε i ε o ε om ε on ε um ε ; kolumna~4.: a ą b c ć d e ę f g h k l ł m n ń o ó p r s ś t u w y z ź ż - ε ; kolumna~5.: b c ć d f g h k l ł m n ń p r s ś t w z ź ż - ε .

[5]. Ukoronowaniem tego rodzaju wysiłków są wzory paradygmatyczne Słownika Gramatycznego Języka Polskiego.

Bezpośrednie przechowywanie reguł fleksyjnych jest zwykle mało ekonomiczne, także w przedstawianiu wiedzy lingwistycznej, ponieważ struktura takich reguł jest powtarzalna. Na przykład o alternacje głosek następujące na granicy morfemów zachowują się zazwyczaj podobnie niezależnie od konkretnej końcówki. Ukazuje to, jak problem, przed którym staje guesser, angażuje różne poziomy systemu języka: fonologiczny, ortograficzny, morfonologiczny, morfologiczny.

Model rozdziela konceptualnie owe poziomy poprzez wyróżnienie trzech warstw reguł: ortograficzno-fonetycznej, analitycznej i intepretacji. Można o nich myśleć jako o kolejnych warstwach wykonujących swoje zadania "po kolei". W takim ujęciu:

- zadaniem warstwy **ortograficzno-fonetycznej** jest wyabstrahowanie od polskiej ortografii przez przekonwertowanie formy segmentu do wewnętrznej reprezentacji, odzwierciedlającej prawidłowości morfonologiczne języka;
- warstwa analityczna generuje lemat oraz określa występujące afiksy;
- wreszcie warstwa **interpretacji** nadaje segmentowi interpretację morfosyntaktyczną na podstawie wykrytych afiksów.

wyraz	przekształcenie	użyte reguły / prawy kontekst
wielkimi	v'elk'im'i	$v' \leftarrow wi/e, k' \leftarrow k/im, m' \leftarrow m/i\varepsilon$
paniq	${\tt pan'a}$	$\mathrm{n'} \leftarrow \mathrm{ni/a}$
kwiecie	$\mathtt{kv'et'e}$	$v' \leftarrow wi/e, t' \leftarrow ci/e$
przemierzyli	přem'eřyli	$\check{r} \leftarrow rz/e, m' \leftarrow mi/e, \check{r} \leftarrow rz/y$

Tablica 2: Przykłady przekształceń przy użyciu reguł ortograficznofonetycznych.

1 Warstwa ortograficzno-fonetyczna

Warstwa ortograficzno-fonetyczna odpowiada za przekształcenie formy ortograficznej segmentu, otrzymanej na wejściu, na specjalnie zaprojektowaną reprezentację wewnętrzną. Przypomina ona uproszczony zapis fonetyczny, chociaż zachowuje rozróżnienia (takich jak 'u'-'ó', 'ch'-'h', 'rz'-'ż') istotne dla przewidywania alternacji występujących w tematach wyrazów. Celem przeprowadzenia tej konwersji jest uproszczenie kolejnych reguł, które mogą korzystać z uogólnień dokonanych już przez tę warstwę.

Reguły opracowano ręcznie na podstawie danych ze Słownika Gramatyczny Języka Polskiego. Pełen ich spis znajduje się w Dodatku (6.1).

W polskim zapisie ortograficznym formy zawierające ten sam rdzeń często różnią się. Widać to na przykład w ciągu wyrazów: pani, pan, panie. Nasze reguły przekształcają je do postaci: pan'i, pan', pan'e, gdzie dobrze widoczny jest wspólny rdzeń (pan'). Odpowiednie reguły przedstawia Tablica 1.

Fonologiczne przekształcenia tematu mogą być bardziej skomplikowane. Widać to w wyrazach niedźwiadek, niedźwiedzica, niedźwiedź. Obejmują je reguły dla 'd'. Pokrewieństwa tych rzeczowników nie wykorzystujemy bezpośrednio w modelu (ze względu na przynależność do różnych części mowy i odmienne lematyzacje), ale jesteśmy w stanie dostrzec wspólność ich tematów. Dalsze przykłady przedstawia Tablica 2.

Domyślna reguła przepisuje znak wejściowy bez zmian; uruchamia się ona, kiedy żadna z innych reguł nie znajduje zastosowania. Stosowalność reguł wymaga po pierwsze dopasowania ciągu znaków podlegającego przekształceniu, po drugie dopasowania prawego kontekstu (ciągu znaków następującego bezpośrednio po ciągu przekształcanym).

Znak ''' służy jako stały operator palatalizacji, do którego redukują się zarówno polskie diakrytyki z "kreską", jak i zapisy ze zmiękczającym 'i'. Dzięki temu nie muszą istnieć reguły szczegółowe obsługujące każdy z tych przypadków oddzielnie. Z kolei operator 'j' służy wyrażeniu zmiękczającej roli 'i' tam, gdzie nie powoduje ono pełnej palatalizacji, np. formy tiara i Diana zostaną zapisane jako t^jara i D^jana. Analogicznie traktujemy zjawiska występujące w ostatnich zgłoskach wyrazów takich jak palatalizacja, inwazja czy Leokadia.

Jeśli pominąć operator palatalizacji ''', zapis wynikowy realizuje zasadę jeden

znak—jeden dźwięk. Istotnym wymaganiem, jakie stawiamy naszym regułom, jest odwracalność: z sekwencji liter powstającej na skutek stosowania reguł zawsze da się wydedukować pierwotną postać.

W wypadku słów o rdzeniu zapisywanym według obcej ortografii, które mimo wszystko odmieniają się według zasad polskiej fleksji (np. nazwisko prezydenta *Giscarda d'Estainga*), prowadzi to do zastosowania specjalnych znaczników w nawiasach klamrowych. Na przykład reguła

$$\{ng\}n \leftarrow ng \tag{1}$$

(stosowana przy dowolnym prawym kontekście) pozwala uwzględnić wymowę 'ng' jako 'n' przy operacjach regułowych. Dzięki temu wydedukowany później rdzeń zbiegnie się z tym uzyskanym z formy miejscownika d'Estainie, raportowanej przez Słownik Gramatyczny Języka Polskiego. Jednocześnie jednak kolejne warstwy reguł pozostają "świadome" powiązania 'ng' z 'n', przez co możliwy jest powrót do oryginalnej formy rdzenia. Oczywiście, na mocy pustej reguły "domyślnej", model będzie brał także pod uwagę możliwość 'ng' będącego po prostu 'ng', tak jak w słowie mustang.

Bardziej typowy przykład przedstawia słowo Franz, które dzięki regule

$$\{z\}c \leftarrow z$$
 (2)

(również stosowanej przy dowolnym prawym kontekście) zostanie przekształcone do formy Fran{z}c. Dzięki temu słowo to będzie mogło się odmieniać tak jak pajac, a nie jak markiz – stąd w miejscowniku i wołaczu liczby pojedynczej nie pojawi się forma Franzie, tylko Francu. Ponieważ w praktyce reguły dotyczące afiksów działają tylko przy początku i końcu wyrazów, element {z} nie wywiera wpływu na ich działanie i służy jako techniczne przypomnienie o początkowej formie wyrazu.

Część słów o obcej ortografii wymusza niestety złamanie zasady prostej odwracalności i oddzielne formułowanie specjalnych reguł odwrotnych. Służą one późniejszemu przejściu od zapisu konwencjonalnego, ustalanego na podstawie stosowania reguł, do zapisu ortograficznego lematu "odgadniętego" przez guesser. Spis owych reguł, obejmujących szczególne przypadki, znajduje się również w Dodatku (6.2).

2 Warstwa analityczna

Warstwa analityczna działa na ciągach wyjściowych z warstwy ortograficznofonetycznej. To na tym etapie nasz system reguł wykonuje większość swojej faktycznej pracy. Wydziela on afiksy i rdzeń oraz określa parametry, które ulegną potem mechanicznej intepretacji w kolejnej warstwie. Wynikiem pracy warstwy analitycznej jest także uzyskanie formy lematu w konwencjonalnym zapisie

	α' y	lpha'	lpha' arepsilon	$lpha { m y}$	lphae	lpha arepsilon	etali
							$li \rightarrow$
a							$\star \mathrm{eli} \to \mathrm{a}$
d', d	$\mathrm{d'i} \to \mathrm{d'}$	$d' \to d'$	$\mathrm{d}' o \mathrm{d}'$	$\mathrm{d}\mathrm{y} \to \mathrm{d}$	$\mathrm{de} \to \mathrm{d}$	$\mathrm{d} \to \mathrm{d}$	\star edli \rightarrow ad
			$\operatorname{\acute{o}d}' \to \operatorname{od}'$			$\mathrm{ed} \to \mathrm{d}$	
			$ad' \rightarrow ed'$			$\operatorname{\acute{o}d} \to \operatorname{od}$	
			$óz'd' \rightarrow oz'd'$			$\mathrm{ad} \to \mathrm{ed}$	
k, k'		$k' \rightarrow k'$		$k'i \rightarrow k$	$k'e \rightarrow k$	$k \rightarrow k$	
к, к		K / K		KI / K	KC / K	$ek \rightarrow k$	
						$ak \rightarrow ek$	
m', m	$m'i \rightarrow m'$	$m' \rightarrow m'$	$\mathrm{m} o \mathrm{m}'$	$my \rightarrow m$	$me \rightarrow m$	$\frac{q_{\mathbf{K}} \rightarrow q_{\mathbf{K}}}{\mathbf{m} \rightarrow \mathbf{m}}$	
111 , 111		111 / 111	111 / 111	111y / 111	me / m	$\mathrm{em} \to \mathrm{m}$	
n', n	$n'i \rightarrow n'$	$n' \rightarrow n'$	n' o n'	$ny \rightarrow n$	$ne \rightarrow n$	$\frac{n \to n}{n \to n}$	
11 , 11	111 / 11	11 , 11	$en' \rightarrow n'$	11, , 11	110 / 11	$\mathrm{en} \to \mathrm{n}$	
			$'$ en $' \rightarrow$ n $'$			$'$ en \rightarrow n	
			$\star d'en' \rightarrow edn'$				
			, da 511 , 5411				
	$ ilde{r} y ightarrow \check{r}$	$\check{\mathrm{r}} \to \check{\mathrm{r}}$	$\check{\mathrm{r}} \to \check{\mathrm{r}}$	$ry \rightarrow r$	$re \rightarrow r$	$r \rightarrow r$	
			$e \check{r} o \check{r}$			$\mathrm{er} \to \mathrm{r}$	
			$^{\prime}\mathrm{e}\check{\mathrm{r}}\rightarrow\check{\mathrm{r}}$			$^{\prime}\mathrm{er} ightarrow \mathrm{r}$	
			$\acute{ m o} \check{ m r} ightarrow { m o} \check{ m r}$			$ \text{or} \rightarrow \text{or} $	
			ójř $ ightarrow$ ojř			$\star \mathrm{cer} \to \mathrm{kr}$	
						$\operatorname{obr} \to \operatorname{obr}$	
						$\rm \acute{o}str \rightarrow ostr$	
t', t	$t'i \rightarrow t'$	$t' \to t'$	$\mathrm{t}' \to \mathrm{t}'$	$ty \rightarrow t$	$te \to t$	$t\rightarrowt$	\star etli \rightarrow ot
			$ ext{\'ot}' o ext{ot}'$			${ m et} ightarrow { m t}$	
			${ m et'} ightarrow { m t'}$			$ ext{ot} o ext{ot}$	
			$'{\rm et'} \to {\rm t'}$			$\mathrm{at} \to \mathrm{et}$	
$\overline{v', v}$	$v'i \rightarrow v'$	$v' \rightarrow v'$	$v \rightarrow v'$	$vy \to v$	$ve \rightarrow v$	$v \rightarrow v$	
			$ev \rightarrow v'$			$\mathrm{ev} \to \mathrm{v}$	
			$' ev \rightarrow v'$			$' ev \rightarrow v$	
			$\acute{\mathrm{o}}\mathrm{v}\to\mathrm{o}\mathrm{v}'$			$ olimits ov \rightarrow ov $	
ž	${ m \check{z}y} ightarrow { m \check{z}}$	$\check{\mathrm{z}} \to \check{\mathrm{z}}$	$\check{\rm z} \to \check{\rm z}$				
			$e\check{z} o \check{z}$				
			$\circ \check{z} o \circ \check{z}$				
			$\mathrm{a}\check{\mathrm{z}} \to \mathrm{e}\check{\mathrm{z}}$				
	'		· ·				

Tablica 3: Wybrane grupy alternacyjne (tytuł kolumny stanowi oznaczenie danej grupy). Po lewej stronie każdej reguły znajduje się ciag obecny w wyrazie przetworzonym przez reguły ortograficzno-fonetyczne, po prawej ciąg obecny w lemacie przewidywanym przez model. Reguły analityczne dotyczą zawsze całej grupy alternacyjnej (a więc całej kolumny). Symbol \star oznacza, że reguła jest nieproduktywna, czyli działa na zamkniętej grupie słów.

ortograficzno-fonetycznym. Z niej później zostanie uzyskana forma podstawowa słowa w zwyczajnej ortografii.

Reguły analityczne korzystają z dodatkowej abstrakcji **grup alternacyjnych**. Tworzą je grupy podreguł zawierających po lewej stronie (przekształcanej) ciąg znaków występujący w formie, a po prawej (docelowej) stronie ciąg występujący w lemacie. Poszczególne podreguły odnoszą się do konkretnych zjawisk alternacji w języku polskim – alternację rozumiemy tutaj jako wymianę głosek występujących przy końcu rdzenia.

Każda taka grupa podreguł jest wydzielana ze względu na przyjmowanie afiksów w podobny sposób i traktowana łącznie przez właściwe reguły analityczne.

Patrząc niejako z lotu ptaka, można dostrzec następujący układ grup alternacyjnych.

- Spółgłoski (funkcjonalnie) miękkie, gdzie mieszczą się zarówno zwyczajne palatalizacje, jak 's'' (z 's'), jak i spółgłoski pełniące analogiczną formę dla spółgłosek twardych z powodów historycznych (tak jak 't'' dla 't', powstające z 'ci' lub 'ć' na mocy reguł ortograficzno-fonetycznych). Zbiór ten tworzą grupy alternacyjne o symbolach zawierających α' (znak ' zwraca uwagę na zmiękczenie).
- Spółgłoski (funkcjonalnie) twarde, zazwyczaj posiadające swoje (funkcjonalne) zmiękczenia. Mieszczą się tutaj grupy alternacyjne o symbolu α bez zmiękczenia. Wiele leksemów wymienia w swoich różnych formach spółgłoski funkcjonalnie miękkie na twarde (por. np. mianownik niebo, miejscownik niebie).
- Podczas gdy powyższe grupy opisują zjawiska występujące we właściwie wszystkich częściach mowy polszczyzny, istnieją też grupy dotyczące zjawisk specyficznych. Podreguła $el \rightarrow al$ pozwala nam przejść od formy bielszy do lematu biały. Ma ona oznaczenie grupy alternacyjnej κ , odnoszące się do stopniowania przymiotników, podobnie jak λ . ξ dotyczy odmiany przysłówków. Pozostałe grupy alternacyjne w większości dotyczą specyficznej odmiany czasowników.

Podobny podział wśród polskich spółgłosek przy zachowaniach fleksyjnych zauważał Jan Tokarski [7][8], ale tego rodzaju obserwacji dokonywano w polskim językoznawstwie już co najmniej w początkach XIX wieku [4]; pewnym źródłem inspiracji był dla nas system opublikowany w Internecie przez Grzegorza Jagodzińskiego [1].

Przykładowy wybór grup alternacyjnych przedstawia Tabela 3. Pełna lista grup alternacyjnych znajduje się w Dodatku (6.3). Jej zawartość została wygenerowana na podstawie SGJP w wersji z 30.07.2017.

Sposób opisu alternacji staje się jaśniejszy, kiedy weźmiemy pod uwagę ich zastosowanie jako budulec właściwych reguł analitycznych. Poniższa reguła znajduje i usuwa sufiks składający się z wyniku zastosowania alternacji α' oraz ciągu ego, przypisując całemu segmentowi parametry wypisane z prawej strony.

'v'elk'im'i'

'pan'a'

'přem'eřyli'

Rysunek 1: Przykłady reguł analitycznych stosowanych do form uzyskanych z reguł warstwy ortograficzno-fonetycznej. Wykorzystane reguły są podkreślone.

$$-\alpha'$$
ego flex := ego, \upha, adj

Przykładami pasujących sufiksów są te zawarte w wyrazach bliźniego czy Idziego.

Reguły są zasadniczo zbudowane z oznaczenia grupy alternacyjnej i afiksu oraz wyszczególnienia przypiswanych atrybutów. Reguła może ucinać prefiks (postać \mathbf{x} -), ucinać sufiks (postać $-\mathbf{x}$) lub dodawać sufiks (postać $+\mathbf{x}$). Znak minus oznacza, że przekształcenie opisane w grupie alternacyjnej odbywa się zgodnie z kierunkiem strzałki (a więc w formie musi się znajdować zbitka znajdująca się z lewej strony i zostaje ona zamieniona na tę po prawej). Plus oznacza przekształcenie odwrotne.

Każdy wyraz, żeby jego identyfikacja się udała, musi pasować do jakiegoś schematu grup reguł analitycznych wykonywanych po kolei, od lewej do prawej. Wybór schematów pasujących do kilku przykładowych wyrazów przedstawia Rysunek 1. Wewnątrz schematu grupy są zawarte w dużych nawiasach kwadratowych.

Zwróćmy uwagę, jak model poradziłby sobie z uzyskanym wcześniej ciągiem v'elk'im'i (wielkimi). Wśród pierwszej grupy reguł w schemacie, najbardziej po lewej, segment zostaje uchwycony przez "pustą" regułę wykrywającą znacznik końca wyrazu (ε). Z drugiej grupy pasuje następująca reguła analityczna:

$$-\alpha ym'i$$
 flex := ymi, \downarrow , adj

Jest tak, ponieważ reguła $k'i \to k$ należy do grupy alternacyjnej αy – przy sprawdzaniu stosowalności reguły analitycznej jej symbol (w tym wypadku αy) wskazuje na miejsce zadziałania alternacji. Reguła ucina sufiks, zastosowuje zawartą w nim regułę alternacyjną i przypisuje segmentowi atrybuty podane po prawej stronie. Teraz ma więc on postać v'elk i parametry flex:=ymi, adj.

Obecność alternacji αy na końcu powoduje również zastosowanie reguły z ostatniej grupy (najbardziej na prawo w schemacie):

$$+\alpha y$$
 lemma := y

Ponieważ jest to grupa ze znakiem + (dodająca sufiks), reguły alternacyjne działają w przeciwną stronę. Odwrócona reguła $k'i \leftarrow k$ przekształca segment do postaci v'elk'i. Jest to hipoteza modelu co do lematu (i okazuje się ona słuszna: lemat wielki).

Nieco podobnie w wypadku segmentu pan'ą osiągamy (zgodnie z odpowiednim schematem z Rysunku 1) najpierw postać pan' na mocy reguły alternacyjnej $n' \to n'$ i analitycznej [$-\alpha'$ ą flex := a, \uparrow , noun]. Do uzyskania poprawnego lematu pan'i służy następnie reguła

$$+\alpha'y$$
 lemma := y

dzięki odwróceniu alternacji $n'i \to n'$ należącej do grupy $\alpha' y$.

Nieco bardziej skomplikowany proces analizy morfologicznej prześledzić można na przykładzie segmentu přem'eřyli (przemierzyli). Na pierwszym etapie przykładamy regułę

$$-\beta$$
li flex := i, flex2 := ł

- o obecności alternacji β li (nb. jest to w całości wytłuszczony symbol alternacji!) decyduje reguła $li \rightarrow$, gdzie po prawej stronie znajduje się pusty napis. Wynikiem jest forma přem'eřy. Następna reguła w schemacie, posługująca się alternacją $\check{r}y \rightarrow \check{r}$ należącą do grupy $\alpha'y$, wykrywa przynależność czasownika do jednej z grup morfologicznych i przypisuje segmentowi parametry group:=y, verb. Możemy wówczas przejść do określenia postaci podstawowej lematu, za co odpowiada reguła

$$+\alpha'$$
yt' lemma := palat-ć.

Przywraca ona dłuższą zbitkę **řy** i dodaje końcówkę **t'**, prowadząc do formy p**řem'eřyt'** (przemierzyć). Wynik to zatem znowu forma podstawowa opatrzona zbiorem parametrów, które posłużą następnej warstwie do rekonstrukcji oznaczeń morfosyntaktycznych.

3 Lematy kończące się wygłosem

Kiedy przewidywany lemat kończy się wygłosem, często występują dodatkowe zjawiska, które kształtują jego ostateczną postać. Na przykład gdy przewidujemy lemat $mę\dot{z}$, w istocie pojawi się on jako $mq\dot{z}$: 'ę' wymieni się tutaj na 'ą' w ostatniej samogłosce wyrazu.

Z myślą o tego typu przypadkach wytworzyliśmy dodatkowy zestaw reguł dla rzeczowników, których lemat kończy się wygłosem, a nie samogłoską. Próbują one przewidzieć, jakie dodatkowe zjawiska mogą wystąpić na końcu takiego lematu. Z materiału dostępnego w SGJP wydobyliśmy listę zamieszczoną w Dodatku (6.5). Zawiera ona zaobserwowane formy wygłosowe rzeczownika parametryzowane przez dwie ostatnie głoski tematu.

Dla wygenerowanych przez model lematów sprawdzamy, czy nie pasują one do jakichś pozycji z listy. Jeżeli tak, opcje zasugerowane przez owe pozycje są podawane jako odpowiedź modelu. Jeśli żadna wersja lematu nie pasuje, selekcja nie jest wykonywana (pozostawiamy sam lemat wyjściowy).

4 Warstwa interpretacji

Warstwa interpretacji przypisuje segmentowi interpretację morfosyntaktyczną (oznaczenie z tagsetu SGJP [?]) na podstawie wartości atrybutów określonych przez warstwę analityczną. Pełen spis tych reguł znajduje się w Dodatku (6.6).

interpretacja	cat	flex	lemma
adj:sg:inst.loc:m1.m2.m3.n:pos	adj	ym	у
adj:pl:dat:m1.m2.m3.f.n:pos			
adj:pl:nom.voc:m1:pos	adj	i	y
${ m adj:pl:gen.loc:m1.m2.m3.f.n:pos}$	adj	ych	y
adj:pl:acc:m1:pos			
${\it adj:pl:inst:m1.m2.m3.f.n:pos}$	adj	ymi	y
adjp	adj	u	y
adja	adj	О	у

Tablica 4: Próbka reguł warstwy intepretacji. Pierwsza kolumna zawiera zapis otagowania morfosyntaktycznego, a pozostałe wymagane dla nich wartości parametrów o nazwach podanych w tytule kolumny (czasami, jak w wypadku adj:pl:gen.loc:m1.m2.m3.f.n:pos i adj:pl:acc:m1:pos, takie same zestawy atrybutów mogą pasować do kilku zbiorów tagów).

Niewielką próbkę przedstawia poza tym Tabela 4. Jak pamiętamy, dla segmentu wielkimi uzyskaliśmy hipotezę lematu v'elk'i (wielki) oraz zestaw atrybutów flex:=ymi, adj, lemma:=ymi. Wartość adj wskazuje na parametr cat (dla niektórych parametrów o zamkniętym zbiorze wartości pomijamy często ich nazwę, bo jest określona jednoznacznie). Jak wskazuje Tabela 4, pozwala to wywnioskować otagowanie adj:pl:inst:m1.m2.m3.f.n:pos.

Atrybuty dostarczają strukturalnej informacji o morfologii, które mogą być wykorzystane do dalszej dezambiguacji morfosyntaktycznej.

Wszystkie możliwe przypisywane parametry to:

```
cat: kategoria (legalne wartości to noun, adj, adj:grad, adv, verb, ndm);
```

flex: końcówka fleksyjna;

 ${\tt flex2:} \ a fiks \ wyznaczający \ fleksem \ czasownikowy;$

group: afiks związany ze schematem odmiany czasownika;

grad: afiks stopnia wyższego;

pref: prefiks (naj, nie lub pusty);

lemma: końcówka lematu;

con: ostatnia głoska tematu formy;

con2: rozróżnienie grupy alternacyjnej formy, gdy con nie określa jej jednoznacznie;

lcon: ostatnia głoska tematu lematu (równa con);

1con2: rozróżnienie grupy alternacyjnej lematu, gdy 1con nie określa jej jednoznacznie;

- agl: określenie grupy alternacyjnej imiesłowu biernego, czasownika w czasie przeszłym, imiesłowu uprzedniego;
- agl2: rozróżnienie grupy alternacyjnej we wspomnianych wypadkach, jeżeli lcon nie określa jej jednoznacznie;
- palat: atrybut zdefiniowany tylko dla rzeczowników i przymiotników w stopniu równym; ma wartość t, gdy con jest funkcjonalnie miękkie i n, gdy con jest funkcjonalnie twarde;
- velar: atrybut zdefiniowany tylko dla rzeczowników z palat:=n oraz flex:=ie bądź flex:=u; ma wartość t, gdy con $\in \{x, h, g, k\}$ oraz i n w przeciwnym wypadku;
- orth: atrybut zdefiniowany tylko dla reguł z udziałem obcej ortografii, wymagających odgadnięcia dokładnego zapisu lematu; wartością jest dodany przez regułę sufiks o obcej ortografii.

Atrybuty nieokreślone dla danego wyrazu lub reguły mają wartości puste.

Reguły przypisujące interpretacje zestawom atrybutów układają się w quasiparadygmaty odmiany, gdzie np. wartości atrybutów cat, lemma, gender pozostają stałe, a zmienia się tylko flex (wskazujący na konkretny przypadek czy osobę). Należy jednak pamiętać, że dany lemat nie jest do takich "paradygmatów" sztywno przypisany; nie musi on mieć form pochodzących tylko z jednego paradygmatu i nie musi mieć wszystkich form występujących w danym paradygmacie.

Nie próbujemy przewidywać aspektu czasowników.

5 Generowanie reguł

W ramach technicznej optymalizacji na podstawe powyższego modelu, formułującego **reguły szczegółowe**, generowane są ujednolicone **reguły operacyjne**. Reguły te wykonują pracę wszystkich opisanych warstw za jednym zamachem. Operują one bezpośrednio na otrzymywanej formie: ucinają sufiks i ewentualnie prefiks, przypisują sufiks formy bazowej-lematu oraz nadają interpretację morfosyntaktyczną. W ten sposób dokonują lematyzacji i interpretacji morfosyntaktycznej dla słów spełniających wymagania całego ciągu reguł z kolejnych warstw.

Reguł tych uzyskujemy łącznie 30983. Zostały wygenerowane na podstawie słownika uzupełnionego o przykładowe formy gwarowe i dodatkowe odmienione akronimy.

Ponizsza tabela przedstawia liczbę reguł z podziałem na ich typy i części mowy:

	noun	adj	adv	verb	$_{ m suma}$
produktywne	7534	1501	150	9107	18292
* nieproduktywne	209	389	_	3701	4299
A obce	1275	_	_	_	1275
B obce	206			_	206
C akronimy	557	_	_		557
D gwarowe	2639	380	_	3474	6493
suma	12420	2270	150	16282	31122

Grupa "obcych A" dotyczy słów o obcej ortografii, w których pierwotna postać rdzenia jest zawarta w obserwowanej formie. W wypadku "obcych B" pierwotna postać rdzenia nie jest zawarta w obserwowanej formie i musi zostać odgadnięta (np. dopełniacz *Chiraka* od lematu *Chirac*). Powoduje to, że reguły typu B wprowadzają znaczną niejednoznaczność.

Wszystkim regułom towarzyszą informacje o frekwencji, wskazujące liczbę form ze słownika lematyzowalnych za pomocą danej reguły. Umożliwia to w praktyce wykorzystywanie informacji, jak bardzo jest ona "pospolita".

Reguły dla rzeczowników poprawnie opisują fleksję $\frac{143643}{143643+343}=99,76\%$ lematów rzeczownikowych. Reguły dla przymiotników poprawnie opisują fleksję $\frac{66426}{66426+26}=99,96\%$ lematów przymiotnikowych. Reguły dla przysłówków poprawnie opisują fleksję $\frac{25839}{25839+422}=98,39\%$ lematów przysłówkowych. Reguły dla czasowników poprawnie opisują fleksję $\frac{28571}{28571+1229}=95,88\%$ lematów czasownikowych, a gdy usuniemy lematy, które powstały poprzez dodanie prefiksu wartość ta wzrasta do $\frac{13852}{13852+167}=98,81\%$. Takie wartości wskazują, że opisywany model w sposób poprawny i pełny opisuje zawartą w SGJP fleksję języka polskiego.

Leksemy niepokryte przez model odmieniają się w sposób nieregularny – powinny one stanowić zamknięty zbiór. Jest to szczególnie istotne przy czasownikach, gdzie 167 nieregularnych rdzeni generuje, po uzupełnieniu o prefiksy, 1229 nieregularnych leksemów. W przypadku przysłówków, na 422 niepokryte przez model leksemy składają się zasadniczo przysłówki niestopniowalne i niepochodzące od przymiotników.

6 Podsumowanie

Przedstawiony model stanowi naszym zdaniem istotny krok w organizowaniu empirycznej wiedzy na temat polskiej morfonologii i w wykorzystywaniu tej wiedzy przez komputer. Struktura warstwowa pozwala na znaczną oszczędność i powiększenie, na ile to możliwe, jasności opisu złożonych zjawisk. Warstwa ortograficzno-fonetyczna usuwa niespójności wynikające ze sposobu zapisu wyrazów, warstwa analityczna wykrywa alternacje i wydziela końcówki, zaś warstwa interpretacji przegląda zebrane informacje i przyporządkowuje segmentowi ustandardyzowane tagi.

System reguł pozwala w formalny sposób wytworzyć zbiór potencjalnych interpretacji słowa, który często okazuje się duży. Następnym zadaniem, przed którym staje program komputerowy albo użytkownik języka, jest wybranie tej interpretacji, jaką ostatecznie zdecyduje się przypisać wyrazowi. Jest to już jednak odmienny problem, wymagający znajomości przynajmniej najbliższego kontekstu frazy. Wykracza tym samym poza zakres zainteresowań modelu fleksji.

Literatura

- [1] http://grzegorj.private.pl/gram/pl/wymiany.html (dostęp 9.05.2018)
- [2] Wojciech Jaworski, Jakub Kozakoszczak 2016: ENIAM: Categorial Syntactic-Semantic Parser for Polish, w Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics, s. 243-247.
- [3] Witold Kieraś, Marcin Woliński 2017: Morfeusz 2 analizator i generator fleksyjny dla języka polskiego, "Język Polski", 2017, 97, 1, s. 75-83.
- [4] Józef Mroziński 1822: Pierwsze zasady grammatyki języka polskiego. Warszawa. (s. 30-31)
- [5] Teresa Rokicka 2002: Komputerowy model alternacji tematu fleksyjnego polskich fleksemów odmiennych. Kraków.
- [6] Zygmunt Saloni, Marcin Woliński, Robert Wołosz, Włodzimierz Gruszczyński, Danuta Skowrońska, Grammatical Dictionary of Polish online version, http://sgjp.pl (dostęp: 16.07.2018).
- [7] Jan Tokarski 1951: Czasownik polski. Warszawa. (s. 53)
- [8] Jan Tokarski 2001: Fleksja polska. Warszawa. (s. 60)
- [9] Jakub Waszczuk 2012: Harnessing the CRF complexity with domain-specific constraints. The case of morphosyntactic tagging of a highly inflected language, w Proceedings of the 24th International Conference on Computational Linguistics (COLING 2012), s. 2789–2804.

7 Dodatek

7.1 Pełne reguły warstwy ortograficzno-fonetycznej

W poniższej tabeli oznaczenia kolumn identyfikują prawy kontekst; oznacza to, że regułę z danej kolumny można zastosować, gdy po rozpoznawanej sekwencji znaków znajduje się:

- 1. a ą e ę o ó u
- 2. ib ic ić id if ig ih ii ij ik il ił im in iń ip ir is iś it iw iz iź iż i- i $\pmb{\varepsilon}$
- 3. a ε ach ε ami ε ą ε e ε ę ε i ε o ε om ε on ε um ε
- 4. a ą b c ć d e ę f g h k l ł m n ń o ó p r s ś t u w y z ź ż ε
- 5. b c ć d f g h k l ł m n ń p r s ś t w z ź ż $\boldsymbol{\varepsilon}$
- 6. i

Symbol ε oznacza koniec segmentu.

1	2	3	4	5	6
$b' \leftarrow bi$ $d' \leftarrow dzi$ $d^j \leftarrow di$	$b' \leftarrow b$ $d' \leftarrow dz$ $d^{j} \leftarrow d$	bj ← bi dj ← di	3 ← dz	d ′ ← dź	$a^{j} \leftarrow a$
$f' \leftarrow fi$ $g' \leftarrow gi$ $h^j \leftarrow hi$	$ \begin{vmatrix} f' \leftarrow f \\ g' \leftarrow g \\ h^j \leftarrow h \end{vmatrix} $	$\begin{array}{c} fj \leftarrow fi \\ g'j \leftarrow gi \end{array}$			$e^{j} \leftarrow e$ $i^{j} \leftarrow i$
$k' \leftarrow ki$ $l^j \leftarrow li$ $m' \leftarrow mi$ $n' \leftarrow ni$	$k' \leftarrow k$ $m' \leftarrow m$ $n' \leftarrow n$	$k'j \leftarrow ki$ $lj \leftarrow li$ $m'j \leftarrow mi$ $n'j \leftarrow ni$		n' ← ń	$o^{j} \leftarrow 0$
$p' \leftarrow pi$ $r^{j} \leftarrow ri$ $s' \leftarrow si$ $t' \leftarrow ci$ $t^{j} \leftarrow ti$	$p' \leftarrow p$ $r^{j} \leftarrow r$ $s' \leftarrow s$ $t' \leftarrow c$ $t^{j} \leftarrow t$	$pj \leftarrow pi$ $rj \leftarrow ri$ $tj \leftarrow ti$	ř ← rz	$s' \leftarrow \acute{s}$ $t' \leftarrow \acute{c}$	0 ← 0
$v' \leftarrow wi$ $x^j \leftarrow chi$	$\begin{vmatrix} v' \leftarrow w \\ x^j \leftarrow ch \end{vmatrix}$	$vj \leftarrow wi$ $x^{j}j \leftarrow chi$	$\begin{array}{c} v \leftarrow w \\ x \leftarrow ch \end{array}$		$u^{j} \leftarrow u$ $y^{j} \leftarrow y$
$z' \leftarrow zi$ $\check{c}^j \leftarrow czi$	$\begin{bmatrix} z' \leftarrow z \\ \check{c}^j \leftarrow cz \end{bmatrix}$		č ← cz	$\mathbf{z'} \leftarrow \mathbf{\acute{z}}$	ý √ ý ó ^j ← ó
$\check{s}^j \leftarrow szi$ $\check{z}^j \leftarrow \dot{z}i$	$\check{s}^j \leftarrow sz$		$ \begin{array}{ccc} \dot{s} \leftarrow sz \\ \dot{z} \leftarrow \dot{z} \\ \dot{z} \leftarrow d\dot{z} \end{array} $		

Oto kolejne cztery reguły przydatne w wypadku sekwencji 'rz' i 'ei':

regula	prawy kontekst
$r \leftarrow r$	zi
$\max \leftarrow \max$	Z
$m'er \leftarrow mier$	Z
$n'e \leftarrow nie$	i

Kolejne reguły dotyczą słów obcych, przede wszystkim nazw własnych. W ich wypadku interpretacja nazw kolumn przedstawia się następująco:

- 1. a ą e ę o ó u
- 2. ib ic ić id if ig ih ii ij ik il ił im in iń ip ir is iś it iw iz iź iż i- i ε iv ix iq
- 3. a ą b c ć d e ę f g h k l ł m n ń o ó p r s ś t u w y z ź ż ε v x q
- 4. iε

1	2	3	4
{ay}aj ←ay	$\{dh\}d^j \leftarrow dh$	{dh}d ←dh	{ni}n' ←ni
{ey}ej ←ey	{gh}g' ←gh	$\{gh\}g \leftarrow gh$	{ri}r ^j ←ri
{oy}oj ←oy	{kh}k ′ ←kh	{kh}k ←kh	$\{ny\}n' \leftarrow ny$
{ai}aj ←ai	{nh}n' ←nh	{nh}n ←nh	
{dh}d ^j ←dhi	$\{th\}t^{j} \leftarrow th$	{th}t ←th	
{gh}g' ←ghi			
{kh}k' ←khi			
{nh}n' ←nhi			
$\{th\}t^j \leftarrow thi$			

Następujące reguły mają zastosowanie przy dowolnym prawym kontekście:

- $\bullet \ \{\mathrm{ch}\}\S \leftarrow \mathrm{ch} \qquad \qquad \bullet \ \{\mathrm{sh}\}\S \leftarrow \mathrm{sh} \qquad \qquad \bullet \ \{\mathrm{sch}\}\S \leftarrow \mathrm{sch}$

- $\{tch\}\check{c} \leftarrow tch$ $\{au\}a\check{l} \leftarrow au$ $\{z\}c \leftarrow z$

Następujące reguły mają zastosowanie jedynie na końcu segmentu:

• $\{zs\}\check{z} \leftarrow zs$ • {bee}b'i ← bee • $\{phe\}f \leftarrow phe$ • $\{cs\}\check{c} \leftarrow cs$ • $\{chais\}$ še \leftarrow chais • $\{ge\}\check{\mathfrak{z}} \leftarrow ge$ • $\{ay\}aj \leftarrow ay$ • $\{lais\}le \leftarrow lais$ • $\{ges\}\check{\mathbf{z}} \leftarrow ges$ • $\{\text{nais}\}$ ne \leftarrow nais • $\{ey\}ej \leftarrow ey$ • $\{gue\}g \leftarrow gue$ • $\{oy\}oj \leftarrow oy$ • $\{rès\}re \leftarrow rès$ • $\{gues\}g \leftarrow gues$ • $\{ai\}aj \leftarrow ai$ • $\{rés\}re \leftarrow rés$ • {ke}k ← ke • $\{dieu\}d^je \leftarrow dieu$ • $\{ré\}re \leftarrow ré$ • $\{que\}k \leftarrow que$ • $\{dieu\}d^{j}i \leftarrow dieu$ • {mée}me ← mée • $\{ques\}k \leftarrow ques$ • $\{quieu\}k'e \leftarrow qu-$ • $\{ge\}g'e \leftarrow ge$ • {le}l ← le • $\{ke\}k'e \leftarrow ke$ • $\{les\}l \leftarrow les$ • $\{quieu\}k'i \leftarrow qu-$ • $\{by\}b'i \leftarrow by$ • $\{me\}m \leftarrow me$ • $\{dy\}d^{j}i \leftarrow dy$ • {lieu}l^je ← lieu • $\{ne\}n \leftarrow ne$ • $\{di\}d^{j}i \leftarrow di$ • $\{\text{lieu}\}\$ l j i \leftarrow lieu • $\{gne\}n' \leftarrow gne$ • $\{phy\}f'i \leftarrow phy$ • $\{rie\}r^je \leftarrow rie$ • {re}r ← re • $\{rie\}r^{j}i \leftarrow rie$ • $\{guy\}g'i \leftarrow guy$ • $\{\text{rue}\}\text{r} \leftarrow \text{rue}$ • $\{ky\}k'i \leftarrow ky$ • $\{gie\}\check{g}^je \leftarrow gie$ • $\{se\}s \leftarrow se$ • $\{my\}m'i \leftarrow my$ • $\{gie\}\check{z}^{j}i \leftarrow gie$ • $\{ce\}s \leftarrow ce$ • $\{li\}li \leftarrow li$ • {kie}k'e ← kie • $\{che\}\check{s} \leftarrow che$ • {kie}k'i ← kie • $\{ly\}li \leftarrow ly$ • $\{te\}t \leftarrow te$ • $\{ry\}r^{j}i \leftarrow ry$ • $\{\text{tie}\}\text{t}^{j}\text{e} \leftarrow \text{tie}$ • $\{the\}t \leftarrow the$ • $\{sy\}s^{j}i \leftarrow sy$ • $\{\text{tie}\}$ t^ji \leftarrow tie • $\{ve\}v \leftarrow ve$ • $\{cy\}s^{j}i \leftarrow cy$ • $\{pie\}p'e \leftarrow pie$ • $\{we\}$ ł \leftarrow we • $\{pie\}p'i \leftarrow pie$ • $\{ si \} s^j i \leftarrow si$ • $\{se\}z \leftarrow se$ • $\{thy\}t^{j}i \leftarrow thy$ • $\{die\}d^je \leftarrow die$

7.2 Reguly ortograficzno-fonetyczne – odwrotne

• $\{die\}d^{j}i \leftarrow die$

• $\{bee\}b'e \leftarrow bee$

• $\{de\}d \leftarrow de$

• $\{fe\}f \leftarrow fe$

• $\{ge\}\check{z} \leftarrow ge$

• $\{oe\}oi \leftarrow oe$

regula	prawy kontekst
$\{A\}a \to A$	
$a \rightarrow A$	arepsilon
$\{B\}b \to B$	
$\{C\}k \to C$	
$\{C\}_{C} \to C$	
$\{D\}d \to D$	
$\{E\}e \rightarrow E$	
$\{F\}f \to F$	
$ \begin{aligned} \{G\}g \to G \\ \{H\}h \to H \end{aligned} $	
$\{I\}j \rightarrow I$	
$\{j\}j \to I$ $\{j\}jot \to J$	
$\{J\}$ jot $\to J$	
$\{J\}_{J} \to J$	
$\{K\}k \to K$	
$\{L\}I \to L$	
$\{M\}m \to M$	
${N}n \to N$	
$\{0\}$ o $\rightarrow 0$	
$\{P\}p \to P$	
$\{R\}r \to R$	
$\{S\}_S \to S$	
$ \begin{aligned} \{T\}t &\to T \\ \{U\}u &\to U \end{aligned} $	
$\{v\}v \to V$	
$\{V\}_{V} \to V$	
$\{W\}v \to W$	
$\{x\}$ ks $\to X$	
$\{X\}$ ks $\to X$	
$\{Y\}y \to Y$	
$\{Z\}$ zet $\to Z$	
${Z}z \to Z$	
$a \rightarrow a$	j
$a \rightarrow a$ $a \rightarrow ah$	arepsilon
$a \rightarrow an$ $\{ai\}aj \rightarrow ai$	arepsilon
$\{ai\}aj \rightarrow ai$	a e o u {eu} ó ą ę
$\{au\}al \rightarrow au$	
$\{ay\}aj \rightarrow ay$	arepsilon
$\{ay\}aj \rightarrow ay$	a e o u {eu} ó ą ę
$aja \rightarrow ayah$	arepsilon
$b \rightarrow b$	arepsilon
$\{bee\}b'i \rightarrow bee$	ϵ
$\{bee\}b'e \rightarrow bee$	arepsilon

```
b \to bes
                                                \varepsilon
\{by\}b'i \rightarrow by
                                                \varepsilon
k \rightarrow c
                                                a
k \to c
                                                O
k \rightarrow c
                                                ε
kk\to cc
                                                О
s \rightarrow ce
                                                \varepsilon
\{ce\}s \rightarrow ce
                                                \varepsilon
\{ch\}\check{s} \to ch
 \{\text{chais}\}\ \check{\text{se}} \rightarrow \text{chais}
                                                \varepsilon
 \{che\}\check{s} \to che
                                                \varepsilon
k \rightarrow cq
                                                \varepsilon
k \rightarrow cques
                                                \varepsilon
\{cs\}\check{c} \to cs
                                                \varepsilon
kt\to ct
                                                \varepsilon
\{cy\}s^{j}i \rightarrow cy
                                                \varepsilon
\mathbf{d} \to \mathbf{d}
                                                a
d \rightarrow d
                                                \varepsilon
d \rightarrow de
                                                \varepsilon
\{de\}d \rightarrow de
                                                \varepsilon
d \rightarrow dh
                                                a
\{dh\}d^j \to dh
                                                i- ib ic id if ig ih ii ij ik il im in ip ir is it iv iw ix iz i{ ić ič ił iń iř
                                                iś iš iź iž i<br/>ǯ iʒ i^{\mathrm{j}} i\varepsilon
\{dh\}d \rightarrow dh
                                                - a b c d e f g h i k l m n o p r s t u v w x y z { ó ą ć č ę ł ń ř ś š
                                                \dot{z} \dot{z} \dot{z} \bar{z} ε
\mathrm{d} \to \mathrm{dh}
                                                \varepsilon
\{dh\}d^j \to dhi
                                                a e o u {eu} ó ą ę
 {die}d^{j}i \rightarrow die
 {\rm die}{\rm d}^{\rm j}{\rm e} \to {\rm die}
                                                ε
 {\operatorname{dieu}} d^{j} \rightarrow {\operatorname{dieu}}
                                                \varepsilon
 {\text{dieu}} d^{j} e \rightarrow dieu
                                                \varepsilon
 \{dy\}d^{j}i \rightarrow dy
                                                \varepsilon
{di}d^{j}i \rightarrow di
                                                \varepsilon
e \rightarrow e
                                                j
ej \to ey
                                                \varepsilon
\{ey\}ej \rightarrow ey
                                                \varepsilon
\{\mathrm{ey}\}\mathrm{ej} \to \mathrm{ey}
                                                a e o u \{eu\} ó ą ę
f \to f
                                                \varepsilon
f \rightarrow fe
                                                \varepsilon
\{fe\}f \rightarrow fe
                                                ε
g \rightarrow g
                                                a
g \to g
                                                \varepsilon
g'e \rightarrow ge
                                                \varepsilon
\{ge\}\check{z} \, \to \, ge
                                                \varepsilon
\{ge\}\check{\mathfrak{z}} \longrightarrow ge
                                                \varepsilon
\{ge\}g'e \to ge
                                                \varepsilon
```

```
g'el \to gel
                                      \varepsilon
\{ges\}\check{\mathfrak{z}} \to ges
                                      ε
g \to gh
                                      a
\{gh\}g' \to gh
                                      i- ib ic id if ig ih ii ij ik il im in ip ir is it iv iw ix iz i{ ić ič ił iń iř
                                      iś iš iż iż iż iż i i  i \epsilon 
\{gh\}g\to gh
                                      - a b c d e f g h i k l m n o p r s t u v w x y z { ó ą ć č ę ł ń ř ś š
                                      źžǯʒε
\{gh\}g' \rightarrow ghi
                                      a e o u {eu} ó ą ę
\{gie\}\check{z}^{j}i \rightarrow gie
\{gie\}\check{z}^je \to gie
                                      \varepsilon
\{gne\}n' \to gne
                                      \varepsilon
g \rightarrow gue
                                      \varepsilon
\{gue\}g \rightarrow gue
                                      \varepsilon
g \rightarrow gues
                                      \varepsilon
\{gues\}g \rightarrow gues
                                      \varepsilon
\{guy\}g'i \rightarrow guy
                                      \varepsilon
k \to k
k \to k
                                      \varepsilon
k \to ke
                                      \varepsilon
k'e \rightarrow ke
                                      \varepsilon
\{ke\}k \rightarrow ke
                                      ε
\{ke\}k'e \rightarrow ke
                                      ε
k \to kh
                                      \mathbf{a}
\{kh\}k'\to kh
                                      i- ib ic id if ig ih ii ij ik il im in ip ir is it iv iw ix iz i{ ić ič ił iń iř
                                      iś iš iż iż iż iż i i  i \epsilon 
\{kh\}k \to kh
                                      źžǯʒε
\{kh\}k' \rightarrow khi
                                      a e o u {eu} ó ą ę
\mathbf{k'i} \to \mathbf{kie}
                                      \varepsilon
\{\mathrm{kie}\}\mathrm{k'i} \to \mathrm{kie}
                                      \varepsilon
{kie}k'e → kie
                                      \varepsilon
k'i \rightarrow kij
                                      \varepsilon
k'i \rightarrow koj
                                      \varepsilon
ks\to kx
                                      \varepsilon
k'i \rightarrow ky
                                       ε
\{ky\}k'i \rightarrow ky
                                      \varepsilon
\mathbf{k'i} \to \mathbf{kyj}
                                      \varepsilon
\{lj\}lj \rightarrow lj
                                      \mathbf{a}
\{lj\}lj \rightarrow lj
                                      е
l \rightarrow l
                                      i
{lais} = \rightarrow lais
                                      \varepsilon
\{le\}l \rightarrow le
                                      \varepsilon
{\left\{ \text{leigh} \right\}} l \rightarrow \text{leigh}
\{les\}l \rightarrow les
                                      \varepsilon
\{li\}li \rightarrow li
                                      \varepsilon
{lieu}^j \rightarrow lieu
                                      \varepsilon
```

```
{\text{lieu}} l^{j} e \rightarrow {\text{lieu}}
                                           \varepsilon
li \rightarrow ly
                                           \varepsilon
\{ly\}li \rightarrow ly
                                           \varepsilon
m \to m
                                           \varepsilon
m \to me
                                           ε
{\text{me}}{\text{m}} \to {\text{me}}
                                           ε
\{my\}m'i \rightarrow my
                                           ε
\{\text{m\'ee}\}\text{me} \rightarrow \text{m\'ee}
                                           \varepsilon
n \rightarrow n
                                           a
n \to n
                                           \varepsilon
{\text{nais}} = \rightarrow \text{nais}
                                           \varepsilon
n \to ne
                                           \varepsilon
\{ne\}n \rightarrow ne
                                           \varepsilon
n \to nes
                                           \varepsilon
{ng}n \rightarrow ng
n \rightarrow ng
                                           \varepsilon
n \to nh
                                           a
\{nh\}n' \to nh
                                           i- ib ic id if ig ih ii ij ik il im in ip ir is it iv iw ix iz i{ ić ič ił iń iř
                                           iś iš iż iž i\ddot{z} i\ddot{z} i\ddot{z} i\ddot{z} i\dot{\varepsilon}
                                           - a b c d ef g h i k l m n o p r s t u v w x y z { ó ą ć č ę ł ń ř ś š
\{nh\}n \to nh
                                           źžǯʒε
n \to nh
\{nh\}n' \to nhi
                                           a e o u {eu} ó ą ę
{ni}n' \rightarrow ni
\{ny\}n' \to ny
                                           \mathrm{i}arepsilon
o \rightarrow o
                                           j
\{oe\}ol \rightarrow oe
                                           \varepsilon
\{oy\}oj \rightarrow oy
                                           ε
\{oy\}oj \rightarrow oy
                                           a e o u {eu} ó ą ę
oja \rightarrowoya
                                           \varepsilon
{pj}pj \rightarrow pj
                                           e
f \rightarrow ph
                                           \varepsilon
f \to phe
                                           \varepsilon
\{phe\}f \rightarrow phe
                                           \varepsilon
 \{phy\}f'i \to phy
                                           \varepsilon
{\text{pie}} \text{p'i} \rightarrow \text{pie}
                                           ε
{\text{pie}} \text{p'e} \rightarrow \text{pie}
                                           ε
\{q\}k \rightarrow q
k \rightarrow q
                                           \varepsilon
k \rightarrow que
                                           ε
\{que\}k \rightarrow que
                                           \varepsilon
k \rightarrow ques
                                           \varepsilon
\{ques\}k \rightarrow ques
                                           \varepsilon
{quieu}k'i \rightarrow quieu
                                           ε
{quieu}k'e \rightarrow quieu
                                           \varepsilon
r \rightarrow r
                                           \mathbf{a}
```

```
r \rightarrow r
                                             \varepsilon
r \to re
                                             \varepsilon
{re}r \rightarrow re
                                             \varepsilon
r \to res
                                             \varepsilon
r \to rh
                                             a
r\to rh
                                             \varepsilon
\{ri\}r^j\to ri
                                             \mathrm{i}arepsilon
{\rm rie}r^{\rm j}i \to {\rm rie}
                                             \varepsilon
{\rm rie}r^{\rm j}e \to {\rm rie}
                                             ε
r \rightarrow rs
                                             \varepsilon
\{rue\}r \rightarrow rue
                                             \varepsilon
 \{ry\}r^{j}i \rightarrow ry
                                             \varepsilon
 {rès}re \rightarrow rès
                                             \varepsilon
 \{ré\}re \rightarrow ré
                                             \varepsilon
\{rés\}re \rightarrow rés
                                             \varepsilon
                                             k′i
s \to s
s \rightarrow s
                                             \varepsilon
\{\operatorname{sch}\}\check{s} \to \operatorname{sch}
s \rightarrow se
                                              ε
\{se\}z \to se
                                              ε
 \{se\}s \to se
                                             ε
 \{sh\}\check{s} \to sh
\{sy\}s^{j}i \rightarrow sy
                                             \varepsilon
sk'i \rightarrow szky
                                             \varepsilon
t \rightarrow t
                                             a
t\, \to\, t
                                              \varepsilon
\{tch\}\check{c} \to tch
t \to te
                                             ε
\{te\}t \rightarrow te
                                             ε
t \to tes
                                             \varepsilon
t \rightarrow th
                                             \mathbf{a}
\{th\}t^j \to th
                                             i- ib ic id if ig ih ii ij ik il im in ip ir is it iv iw ix iz i{ ić ič ił iń iř
                                             iś iš iź iž iǯ iʒ i^{j} i\varepsilon
\{th\}t \to th
                                             - a b c d e f g h i k l m n o p r s t u v w x y z \{ ó a ć č a f a f a s a
                                             źžʒʒε
t\to th
                                             \varepsilon
s \to th
                                             \varepsilon
t \to the
                                             \varepsilon
\{the\}t \rightarrow the
                                             \varepsilon
t \to thes
\{th\}t^j \to thi
                                             a e o u {eu} ó ą ę
\{thy\}t^{j}i \rightarrow thy
                                             \varepsilon
 \{\text{tie}\}t<sup>j</sup>i \rightarrow tie
                                             \varepsilon
 \{\text{tie}\}\text{t}^{\text{j}}\text{e} \to \text{tie}
                                             ε
\{\operatorname{tsch}\}\check{\operatorname{c}} \to \operatorname{tsch}
t \to tt
                                             \varepsilon
```

```
\{v\}v'\to v
                                       i- ib ic id if ig ih ii ij ik il im in ip ir is it iv iw ix iz i{ ić ič ił iń iř
                                       iś iš iź iž iǯ iʒ i^{j} i\varepsilon
\{v\}v \rightarrow v
                                       \{v\}v \rightarrow ve
\{ve\}v \rightarrow ve
                                        \varepsilon
\{v\}vj \rightarrow vi
                                       am'i\varepsilon ax\varepsilon a\varepsilon e\varepsilon i\varepsilon om\varepsilon on\varepsilon o\varepsilon um\varepsilon a\varepsilon e\varepsilon
\{v\}v' \rightarrow vi
                                       a e o u {eu} ó ą ę
\{w\}i \rightarrow w
\{we\}i \rightarrow we
ks \rightarrow x
\{x\}ks' \to x
                                       i- ib ic id if ig ih ii ij ik il im in ip ir is it iv iw ix iz i{ ić ič ił iń iř
                                       iś iš iź iž iǯ iʒ i^{j} i\varepsilon
\{x\}ks \to x
                                       - a b c d e f g h i k l m n o p r s t u v w x y z { ó ą ć č ę ł ń ř ś š
                                       źžǯʒε
ks \to x
\{x\}ks' \rightarrow xi
                                       a e o u {eu} ó ą ę
\{z\}zet \rightarrow z
\{z\}c \rightarrow z
\begin{cases} zs \} \check{z} \to zs \\ \{ \acute{C} \} t' \to \acute{C} \end{cases}
                                       \varepsilon
\{L\}I \to L
\{\check{r}i\}r^{j}i \rightarrow \check{r}i
                                       \varepsilon
\{\hat{S}\}s' \to \hat{S}
\{ si \} s^j i \rightarrow si
                                       \varepsilon
\{\dot{z}\}\check{z}\mathrm{et}\to\dot{Z}
\{\dot{Z}\}\check{z}et \rightarrow \dot{Z}
\{\dot{Z}\}\check{z}\to\dot{Z}
```

7.3 Grupy alternacyjne warstwy analitycznej

	$\alpha' y$	lpha'	lpha' arepsilon
-b'	$b'i \rightarrow b'$	$b' \rightarrow b'$	$b \rightarrow b'$
			$ab \rightarrow eb'$
			$ób \rightarrow ob'$
d'	$d'i \rightarrow d'$	$d' \rightarrow d'$	$d' \rightarrow d'$
			$ oldsymbol{od'} \to od' $
			$ad' \rightarrow ed'$
			$\acute{o}z'd' \rightarrow oz'd'$
f'	$f'i \rightarrow f'$	$f' \to f'$	$f \rightarrow f'$
m'	$m'i \rightarrow m'$	$m' \rightarrow m'$	$m \rightarrow m'$
n'	$n'i \rightarrow n'$	$n' \rightarrow n'$	$n' \rightarrow n'$
			$en' \rightarrow n'$
			$'\mathrm{en'} o \mathrm{n'}$
			$\star d' en' \to edn'$

	$p'i \rightarrow p'$	$\begin{array}{c} p' \to p' \\ s' \to s' \end{array}$	$\frac{p \to p'}{s' \to s'}$
s '	$s'i \rightarrow s'$	$s' \to s'$	
			$\frac{\text{'es'} \to \text{s'}}{\text{t'} \to \text{t'}}$
	$t'i \rightarrow t'$	$t' \to t'$, ,
			$ ext{ót'} o ext{ot'}$
			$\mathrm{et}' \to \mathrm{t}'$
			$\frac{\text{'et'} \to \text{t'}}{\text{v} \to \text{v'}}$
v'	$v'i \rightarrow v'$	$v' \rightarrow v'$	
			$ev \rightarrow v'$
			$' ev \rightarrow v'$
			$\frac{\text{ov} \to \text{ov'}}{\text{z'} \to \text{z'}}$
$\mathbf{z'}$	$z'i \rightarrow z'$	$z' \rightarrow z'$	
			$\acute{o}z' \rightarrow oz'$
			$\frac{\mathrm{az'} \to \mathrm{ez'}}{1 \to 1}$
l	$li \rightarrow l$	$l \rightarrow l$	1 / 1
			$el \rightarrow l$ $'el \rightarrow l$
			$6l \rightarrow ol$
			$\frac{\text{odl} \to \text{odl}}{\text{c} \to \text{c}}$
c	$cy \rightarrow c$	$c \rightarrow c$	
			$\begin{array}{c} ec \rightarrow c \\ ec \rightarrow c \end{array}$
			$\operatorname{rec} \to \operatorname{c}$ $\operatorname{rec} \to \operatorname{rc}$
		× × ×	
č	čy → č	$\check{\rm c} \to \check{\rm c}$	$\begin{array}{c} \star n'ec \rightarrow 'en'c \\ & \check{c} \rightarrow \check{c} \end{array}$
č	čy → č	$\check{\rm c} \to \check{\rm c}$	$\begin{array}{c} \star n'ec \rightarrow 'en'c \\ & \ \ \check{c} \rightarrow \check{c} \\ & \ \ e\check{c} \rightarrow \check{c} \end{array}$
			$ \begin{array}{c} \star n'ec \rightarrow 'en'c \\ \hline c \rightarrow c \\ ec \rightarrow c \\ oc \rightarrow oc \end{array} $
č 3	čy → č 3y → 3	$ \overset{\circ}{3} \to \overset{\circ}{3} $	$ \begin{array}{c} \star n'ec \rightarrow 'en'c \\ \hline c \rightarrow c \\ ec \rightarrow c \\ oc \rightarrow oc \\ \hline 3 \rightarrow 3 \\ oc \rightarrow oc \end{array} $
3	$3y \rightarrow 3$	$3 \rightarrow 3$	$ \begin{array}{c} \star n'ec \rightarrow 'en'c \\ \hline c \rightarrow c \\ ec \rightarrow c \\ oc \rightarrow oc \\ \hline 3 \rightarrow 3 \\ oc \rightarrow oc \end{array} $
3	$3y \rightarrow 3$		$ \begin{array}{c} \star n'ec \rightarrow 'en'c \\ \hline c \rightarrow c \\ ec \rightarrow c \\ oc \rightarrow oc \\ \hline 3 \rightarrow 3 \\ oc \rightarrow oc \end{array} $
		$3 \rightarrow 3$	$\begin{array}{c} \star n'ec \rightarrow 'en'c \\ \hline č \rightarrow č \\ eč \rightarrow č \\ \acute{o}c \rightarrow oč \\ \hline 3 \rightarrow 3 \\ \acute{o}3 \rightarrow o3 \\ \hline \check{a} \rightarrow \check{a} \\ \\ \breve{a} \rightarrow \check{a} \\ \check{a} \rightarrow \check{a} $
3	$3y \rightarrow 3$	$3 \rightarrow 3$	$\begin{array}{c} \star n'ec \rightarrow 'en'c \\ \hline c \rightarrow c \\ ec \rightarrow c \\ oc \rightarrow oc \\ \hline 3 \rightarrow 3 \\ oc \rightarrow oc \\ \hline 3 \rightarrow 3 \\ oc \rightarrow oc \\ \hline 3 \rightarrow 5 \\ \hline c \rightarrow r \\ er \rightarrow r \\ \end{array}$
3	$3y \rightarrow 3$	$3 \rightarrow 3$	$\begin{array}{c} \star n'ec \rightarrow 'en'c \\ & \check{c} \rightarrow \check{c} \\ & e\check{c} \rightarrow \check{c} \\ & 6\check{c} \rightarrow o\check{c} \\ \hline & 3 \rightarrow 3 \\ & 63 \rightarrow o3 \\ & \check{3} \rightarrow \check{3} \\ & \check{r} \rightarrow \check{r} \\ & e\check{r} \rightarrow \check{r} \\ & 'e\check{r} \rightarrow \check{r} \end{array}$
3	$3y \rightarrow 3$	$3 \rightarrow 3$	$\begin{array}{c} \star n'ec \rightarrow 'en'c \\ & \check{c} \rightarrow \check{c} \\ & e\check{c} \rightarrow \check{c} \\ & o\check{c} \rightarrow o\check{c} \\ \hline & 3 \rightarrow 3 \\ & \acute{o}_3 \rightarrow o_3 \\ & \check{a} \rightarrow \check{a} \\ & \check{r} \rightarrow \check{r} \\ & e\check{r} \rightarrow \check{r} \\ & \acute{o}\check{r} \rightarrow o\check{r} \end{array}$
3	$ \begin{array}{c} 3y \to 3 \\ & 3y \to 3 \\ \hline & y \to 3 \\ & y \to 3 \end{array} $	$3 \rightarrow 3$	$\begin{array}{c} \star n'ec \rightarrow 'en'c \\ & \check{c} \rightarrow \check{c} \\ & e\check{c} \rightarrow \check{c} \\ & 6\check{c} \rightarrow o\check{c} \\ \hline & 3 \rightarrow 3 \\ & 63 \rightarrow o3 \\ & \check{3} \rightarrow \check{3} \\ & \check{r} \rightarrow \check{r} \\ & e\check{r} \rightarrow \check{r} \\ & 'e\check{r} \rightarrow \check{r} \end{array}$
3 <u>*</u> 3 *ř	$3y \rightarrow 3$	$\begin{array}{c} 3 \rightarrow 3 \\ & \tilde{3} \rightarrow \tilde{3} \\ & \tilde{r} \rightarrow \tilde{r} \end{array}$	$\begin{array}{c} \star n'ec \rightarrow 'en'c \\ & \check{c} \rightarrow \check{c} \\ & e\check{c} \rightarrow \check{c} \\ & o\check{c} \rightarrow o\check{c} \\ & 3 \rightarrow 3 \\ & 5 \rightarrow 5 \\ & \check{a} \rightarrow 5 \\ & \check{a} \rightarrow \check{a} \\ & \check{c} \rightarrow \check{c} \\ & $
3 <u>*</u> 3 *ř	$ \begin{array}{c} 3y \to 3 \\ & 3y \to 3 \\ \hline & y \to 3 \\ & y \to 3 \end{array} $	$\begin{array}{c} 3 \rightarrow 3 \\ & \tilde{3} \rightarrow \tilde{3} \\ & \tilde{r} \rightarrow \tilde{r} \end{array}$	$\begin{array}{c} \star n'ec \rightarrow 'en'c \\ \hline c \rightarrow c \\ ec \rightarrow c \\ oc \rightarrow oc \\ \hline 3 \rightarrow 3 \\ oc \rightarrow oc \\ \hline 3 \rightarrow 3 \\ oc \rightarrow oc \\ \hline 3 \rightarrow 5 \\ cc \rightarrow c \\ cc \rightarrow cc \rightarrow cc \rightarrow c \\ cc \rightarrow cc \rightarrow$
3 	$3y \to 3$ $3y \to 3$ $7y \to 7$ $7y \to 7$ $8y \to 8$	$\begin{array}{c} 3 \rightarrow 3 \\ & \overset{{}_{{}}}}}}}}$	$\begin{array}{c} \star n'ec \rightarrow 'en'c \\ & \check{c} \rightarrow \check{c} \\ & e\check{c} \rightarrow \check{c} \\ & o\check{c} \rightarrow o\check{c} \\ & 3 \rightarrow 3 \\ & \check{a} \rightarrow o_3 \\ & \check{a} \rightarrow \check{a} \\ & \check{r} \rightarrow \check{r} \\ & e\check{r} \rightarrow \check{r} \\ & e\check{r} \rightarrow \check{r} \\ & \acute{c} \rightarrow o\check{r} \\ & \acute{c} \rightarrow o\check{r} \\ & \acute{c} \rightarrow o\check{r} \\ & \acute{c} \rightarrow \check{c} \\ & \check{c} \rightarrow \check{c} \\ & c$
3 	$3y \to 3$ $3y \to 3$ $7y \to 7$ $8y \to 8$	$\begin{array}{c} 3 \rightarrow 3 \\ & \overset{{}_{{}}}}}}}}$	$\begin{array}{c} \star n'ec \rightarrow 'en'c \\ & \check{c} \rightarrow \check{c} \\ & e\check{c} \rightarrow \check{c} \\ & o\check{c} \rightarrow o\check{c} \\ & 3 \rightarrow 3 \\ & 5 \rightarrow 3 \\ & \check{c} \rightarrow \check{c} \\ & \check{c} \rightarrow \check{c} \\ & 3 \rightarrow 3 \\ & \check{c} \rightarrow \check{c} \\ & \check{c} \rightarrow \check{c} \\ & \check{c} \rightarrow \check{c} \\ & \check{c} \rightarrow \check{r} \\ & \acute{c} \rightarrow \check{r} \\ & \check{c} \rightarrow \check{r} \\ \\ & \check$
3 	$3y \to 3$ $3y \to 3$ $7y \to 7$ $8y \to 8$	$\begin{array}{c} 3 \rightarrow 3 \\ & \overset{{}_{{}}}}}}}}$	$\begin{array}{c} \star n'ec \rightarrow 'en'c \\ & \check{c} \rightarrow \check{c} \\ & e\check{c} \rightarrow \check{c} \\ & e\check{c} \rightarrow \check{c} \\ & 5\check{c} \rightarrow o\check{c} \\ & 3 \rightarrow 3 \\ & 5 \rightarrow 3 \\ & 5 \rightarrow \check{s} \\ & \check{r} \rightarrow \check{r} \\ & e\check{r} \rightarrow \check{r} \\ & e\check{r} \rightarrow \check{r} \\ & e\check{r} \rightarrow \check{r} \\ & \acute{o}\check{r} \rightarrow o\check{r} \\ & \acute{o}\check{j}\check{r} \rightarrow o\check{j}\check{r} \\ & \check{s} \rightarrow \check{s} \\ & e\check{s} \rightarrow \check{s} \\ & \check{c} \rightarrow \check{c} \\ & \acute{o}\check{c} \rightarrow o\check{c} \end{array}$
3 	$3y \to 3$ $3y \to 3$ $7y \to 7$ $8y \to 8$	$\begin{array}{c} 3 \rightarrow 3 \\ & \overset{{}_{{}}}}}}}}$	$\begin{array}{c} \star n'ec \rightarrow 'en'c \\ & \check{c} \rightarrow \check{c} \\ & e\check{c} \rightarrow \check{c} \\ & e\check{c} \rightarrow \check{c} \\ & \check{o}\check{c} \rightarrow o\check{c} \\ & 3 \rightarrow 3 \\ & \check{o}_3 \rightarrow o_3 \\ & \check{3} \rightarrow \check{3} \\ & \check{r} \rightarrow \check{r} \\ & e\check{r} \rightarrow \check{r} \\ & e\check{r} \rightarrow \check{r} \\ & \acute{o}\check{r} \rightarrow o\check{r} \\ & \acute{o}\check{j}\check{r} \rightarrow o\check{j}\check{r} \\ & \check{s} \rightarrow \check{s} \\ & e\check{s} \rightarrow \check{s} \\ & \check{c} \rightarrow \check{z} \end{array}$
3 	$\begin{array}{c} 3y \rightarrow 3 \\ \underline{\check{3}y \rightarrow \check{3}} \\ \check{r}y \rightarrow \check{r} \end{array}$ $\begin{array}{c} \check{s}y \rightarrow \check{s} \\ \\ \check{z}y \rightarrow \check{z} \end{array}$ $\begin{array}{c} \check{s}y \rightarrow \check{s} \\ \\ \check{z}y \rightarrow \check{z} \end{array}$	$\begin{array}{c} 3 \rightarrow 3 \\ \tilde{3} \rightarrow \tilde{3} \\ \tilde{r} \rightarrow \tilde{r} \end{array}$ $\tilde{s} \rightarrow \tilde{s}$ $\tilde{z} \rightarrow \tilde{z}$	$\begin{array}{c} \star n'ec \rightarrow 'en'c \\ & \check{c} \rightarrow \check{c} \\ & e\check{c} \rightarrow \check{c} \\ & e\check{c} \rightarrow \check{c} \\ & 5\check{c} \rightarrow o\check{c} \\ & 3 \rightarrow 3 \\ & 5 \rightarrow 3 \\ & 5 \rightarrow \check{s} \\ & \check{r} \rightarrow \check{r} \\ & e\check{r} \rightarrow \check{r} \\ & e\check{r} \rightarrow \check{r} \\ & e\check{r} \rightarrow \check{r} \\ & \acute{o}\check{r} \rightarrow o\check{r} \\ & \acute{o}\check{j}\check{r} \rightarrow o\check{j}\check{r} \\ & \check{s} \rightarrow \check{s} \\ & e\check{s} \rightarrow \check{s} \\ & \check{c} \rightarrow \check{c} \\ & \acute{o}\check{c} \rightarrow o\check{c} \end{array}$
3 	$\begin{array}{c} 3y \rightarrow 3 \\ & 3y \rightarrow \tilde{3} \\ & \tilde{r}y \rightarrow \tilde{r} \end{array}$ $\begin{array}{c} \tilde{s}y \rightarrow \tilde{s} \\ & \tilde{s}y \rightarrow \tilde{s} \end{array}$ $\begin{array}{c} \tilde{s}y \rightarrow \tilde{s} \\ & \tilde{z}y \rightarrow \tilde{z} \end{array}$	$\begin{array}{c} 3 \rightarrow 3 \\ & \tilde{3} \rightarrow \tilde{3} \\ & \tilde{r} \rightarrow \tilde{r} \end{array}$ $\tilde{s} \rightarrow \tilde{s}$ $\tilde{z} \rightarrow \tilde{z}$	$\begin{array}{c} \star n'ec \rightarrow 'en'c \\ & \check{c} \rightarrow \check{c} \\ & e\check{c} \rightarrow \check{c} \\ & e\check{c} \rightarrow \check{c} \\ & 5\check{c} \rightarrow o\check{c} \\ & 3 \rightarrow 3 \\ & 5 \rightarrow 3 \\ & 5 \rightarrow \check{s} \\ & \check{r} \rightarrow \check{r} \\ & e\check{r} \rightarrow \check{r} \\ & e\check{r} \rightarrow \check{r} \\ & e\check{r} \rightarrow \check{r} \\ & \acute{o}\check{r} \rightarrow o\check{r} \\ & \acute{o}\check{j}\check{r} \rightarrow o\check{j}\check{r} \\ & \check{s} \rightarrow \check{s} \\ & e\check{s} \rightarrow \check{s} \\ & \check{c} \rightarrow \check{c} \\ & \acute{o}\check{c} \rightarrow o\check{c} \end{array}$

			$ \begin{array}{c} \text{ój} \rightarrow \text{oj} \\ \text{yj} \rightarrow \text{j} \\ \text{ij} \rightarrow \text{j} \\ '\text{ij} \rightarrow \text{j} \end{array} $
		$g' \rightarrow g'$	
k ′		$k' \to k'$	
a	$a^{j}i \rightarrow a$	$a \rightarrow a$	
е	$e^{j}i \rightarrow e$	$e \rightarrow e$	

	1		_	_ •	_•-	
— <u>b</u>	$\begin{array}{c} \alpha y \\ bv \rightarrow b \end{array}$	$\frac{\alpha e}{be \rightarrow b}$	$\frac{\alpha}{b \to b}$	$\frac{\alpha_1}{b'i \to b}$	$\frac{\alpha ie}{b'e \rightarrow b}$	$\frac{\alpha\varepsilon}{b \to b}$
D	$ $ by \rightarrow b	$pe \rightarrow p$	$p \rightarrow p$	$0.1 \rightarrow 0$	$p, e \rightarrow p$	$\begin{array}{c} b \rightarrow b \\ eb \rightarrow b \end{array}$
						$ob \rightarrow b$ $ob \rightarrow ob$
						$ab \rightarrow cb$
						$\operatorname{\acute{o}s'b} \to \operatorname{os'b}$
						$óz'b \rightarrow oz'b$
	$xy \rightarrow x$	$xe \rightarrow x$	$x \to x$	$s'i \rightarrow x$	$\check{s}e \to x$	${x \to x}$
	11, , 11	110 , 11	,	S 1 , 11	20 , 11	$ex \rightarrow x$
\overline{d}	$dy \rightarrow d$	$de \rightarrow d$	$d \rightarrow d$	$d'i \rightarrow d$	$d'e \rightarrow d$	$d \rightarrow d$
				$ed'i \rightarrow ad$	$z'd'e \rightarrow zd$	$ed \rightarrow d$
					$ed'e \rightarrow ad$	oldownder dd
					$ed'e \rightarrow od$	$ad \rightarrow ed$
					$ez'd'e \rightarrow azd$	
f	$fy \rightarrow f$	$fe \rightarrow f$	$f \rightarrow f$	$f'i \rightarrow f$	$f'e \rightarrow f$	$f \rightarrow f$
h	$hy \rightarrow h$	$he \rightarrow h$	$h \rightarrow h$	$z'i \rightarrow h$	$\check{\mathrm{se}} \to \mathrm{h}$	$h \rightarrow h$
ł		łe → ł	$i \rightarrow i$	$li \rightarrow l$	$le \rightarrow l$	$l \rightarrow l$
				$eli \rightarrow ol$	$s'le \rightarrow sl$	$e^{i} \rightarrow i$
				$s' li \rightarrow s l$	$z' le \rightarrow z l$	$'$ eł \rightarrow ł
				z' li $\rightarrow z$ ł	$ele \rightarrow al$	$el \rightarrow ol$
					$ele \rightarrow ol$	$6l \rightarrow 0l$
					etle \rightarrow atł	$'$ oł \rightarrow ł
****	POTT 1 PO	**************************************	****	m ′ i → m	$\frac{\text{lle} \to \text{ll}}{\text{m'e} \to \text{m}}$	$rel \rightarrow rl$
m	$my \rightarrow m$	$me \rightarrow m$	$m \rightarrow m$	$s'm'i \rightarrow sm$	$s'm'e \rightarrow sm$	$m \rightarrow m$ $em \rightarrow m$
— <u> </u>	$ny \rightarrow n$	$ne \rightarrow n$	$n \rightarrow n$	$ \begin{array}{c} s m i \rightarrow sm \\ n'i \rightarrow n \end{array} $	$\frac{\text{s m e} \to \text{sm}}{\text{n'e} \to \text{n}}$	$\frac{\text{em} \to \text{m}}{\text{n} \to \text{n}}$
11	11y — 11	пе — п	п — п	$en'i \rightarrow on$	$en'e \rightarrow on$	$\operatorname{en} \to \operatorname{n}$
				*cen'i → t'on	$s'n'e \rightarrow sn$	$'$ en \rightarrow n
				*3en'i → d'on	$z'n'e \rightarrow zn$	311 , 11
				$s'n'i \rightarrow sn$		
				$z'n'i \rightarrow zn$		
— p	$py \rightarrow p$	$pe \rightarrow p$	$p \rightarrow p$	$p'i \rightarrow p$	$p'e \rightarrow p$	$p \rightarrow p$
_					- •	$ep \rightarrow p$
						$' ep \rightarrow p$
	•					

						$óp \rightarrow op$
r	$ry \rightarrow r$	$re \rightarrow r$	$r \rightarrow r$	$\check{r}y\to r$	$ m \check{r}e ightarrow r$	$r \rightarrow r$
					$e\check{r}e \rightarrow ar$	$\mathrm{er} \to \mathrm{r}$
					$et\check{r}e \rightarrow atr$	$'{ m er} ightarrow { m r}$
					$\check{\mathrm{r}}\mathrm{e} o \mathrm{rr}$	onumber or
						$\star \mathrm{cer} \to \mathrm{kr}$
						$\operatorname{obr} \to \operatorname{obr}$
\mathbf{S}	$sy \rightarrow s$	$se \rightarrow s$	$s \rightarrow s$	$s'i \rightarrow s$	$s'e \rightarrow s$	$s \rightarrow s$
					$es'e \rightarrow as$	$'$ es \rightarrow s
\mathbf{t}	$ty \rightarrow t$	$te \rightarrow t$	$t \rightarrow t$	$t'i \rightarrow t$	$t'e \rightarrow t$	$t \rightarrow t$
				$s't'i \rightarrow st$	$et'e \rightarrow at$	$et \rightarrow t$
				$et'i \rightarrow ot$	$et'e \rightarrow ot$	onumber ot
					$s't'e \rightarrow st$	$at \rightarrow et$
					$es't'e \rightarrow ast$	
V	$ vy \rightarrow v$	$ve \rightarrow v$	$v \rightarrow v$	$v'i \rightarrow v$	$v'e \rightarrow v$	$v \rightarrow v$
						$ev \rightarrow v$
						$' e v \rightarrow v$
						$ov \rightarrow ov$
\mathbf{Z}	$zy \rightarrow z$	$ze \rightarrow z$	$z \rightarrow z$	$z'i \rightarrow z$	$z'e \rightarrow z$	$z \rightarrow z$
						$ez \rightarrow z$
						$'$ ez \rightarrow z
						$óz \rightarrow oz$
						$\frac{\text{az} \to \text{ez}}{\text{g} \to \text{g}}$
g	$g'i \rightarrow g$	$g'e \rightarrow g$	$g \to g$	$3y \rightarrow g$	$3e \rightarrow g$	
						$eg \rightarrow g$
	1.7.	1,				$ag \rightarrow eg$
k	k ′ i → k	$k'e \rightarrow k$	$k \rightarrow k$	$cy \rightarrow k$	$ce \rightarrow k$	$k \rightarrow k$
						$ek \rightarrow k$
						$ak \rightarrow ek$
O	$oy \rightarrow o$	$oe \rightarrow o$	$o \rightarrow o$		$o^{j}i \rightarrow o$	$o^{j}i \rightarrow o$
u	$uy \rightarrow u$	$ue \rightarrow u$	$u \rightarrow u$		$u^{j}i \rightarrow u$	$u^{j}i \rightarrow u$

		κ'	λ'	ξ'
	m'			$m' \rightarrow m'$
_	n'	$n' \rightarrow n'$	$n' \rightarrow n'$	$n' \rightarrow n'$
	p '	$p \rightarrow p'$		$p' \rightarrow p'$
	\mathbf{c}	$\mathrm{et} \to \mathrm{ac}$		$ec \rightarrow ac$
	č			$\check{\mathrm{c}} \to \check{\mathrm{c}}$
_	ž	$\check{\mathrm{z}} \to \check{\mathrm{z}}$		$\check{\mathrm{z}} \to \check{\mathrm{z}}$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		κ	λ	ξ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b	$b \rightarrow b$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X	$x \rightarrow x$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d	$d \rightarrow d$	$d' \rightarrow d$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\mathrm{ed} \to \mathrm{ad}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	h	$h \rightarrow h$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ł	$l \rightarrow l$	$l \rightarrow l$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$s'l \rightarrow sl$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$el \rightarrow al$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m		$m' \rightarrow m$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n		$n' \rightarrow n$	$'\mathrm{en'} \to \mathrm{on}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$z'n' \to zn$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		'en $' o$ on		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	p	$p \rightarrow p$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r		$\check{r} \rightarrow r$	
$s't' \rightarrow st$ $v \rightarrow v \qquad v' \rightarrow v$ $s \qquad \check{z} \rightarrow g \qquad \qquad \check{z} \rightarrow g$ $b \rightarrow bk \qquad t' \rightarrow k \qquad c \rightarrow kk$ $b \rightarrow bok \qquad \star \check{z} \rightarrow ekk \qquad c \rightarrow tk$ $d \rightarrow dk \qquad \qquad t' \rightarrow k$ $k \rightarrow k \qquad \qquad t' \rightarrow tk$ $k \rightarrow k \qquad \qquad \check{c} \rightarrow k$ $el \rightarrow a \nmid k \qquad \qquad 3 \rightarrow dk$ $\star l \rightarrow lek \qquad \qquad d' \rightarrow dk$ $r \rightarrow rok \qquad \qquad \check{z} \rightarrow \check{z}k$ $p \rightarrow pk \qquad \qquad n' \rightarrow nk$ $r \rightarrow rok \qquad \qquad b' \rightarrow bok$ $\check{z} \rightarrow sk \qquad \qquad l \rightarrow lek$ $\check{z} \rightarrow sok \qquad \qquad \check{r} \rightarrow rok$ $\check{e}\check{z} \rightarrow qsk \qquad \qquad \check{e}z' \rightarrow qsk$ $t \rightarrow tk \qquad \qquad \check{z} \rightarrow ekk$ $t \rightarrow ck \qquad \qquad \check{z} \rightarrow sk$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t	$t \rightarrow t$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V	$v \rightarrow v$	$v' \rightarrow v$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	g k			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	k			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			⋆ž → ekk	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{ccccc} \check{z} \to sk & l \to lek \\ \check{z} \to sok & \check{r} \to rok \\ \varrho \check{z} \to qsk & \varrho z' \to qsk \\ t \to tk & \check{z} \to ekk \\ t \to ck & \check{z} \to sk \end{array}$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccc} e\check{z} \to ask & ez' \to ask \\ t \to tk & \check{z} \to ekk \\ t \to ck & \check{z} \to sk \end{array}$				
$\begin{array}{cccc} t \rightarrow tk & & \check{z} \rightarrow ekk \\ t \rightarrow ck & & \check{z} \rightarrow sk \end{array}$				
$t \to ck$ $\check{z} \to sk$				· ·
$z \rightarrow zK$ $z \rightarrow sok$		$t \rightarrow ck$		
		<u>∨</u> . ∨1		<u>∨</u> . 1

	š	ši	č	ι	ν	a
С			$\check{c} \rightarrow c$			
š	$\check{s} \rightarrow \check{s}$	$s'i \rightarrow \check{s}$				
a				$a \rightarrow a$	$a \rightarrow a$	$a \rightarrow a$
е						$\star \mathrm{e} \to \mathrm{e}$
i				$i \rightarrow i$		
1				$1 \rightarrow 1$		

0	$o \rightarrow o$
	$e \rightarrow o$
	$ce \rightarrow t'o$
У	$y \rightarrow y$

	$oldsymbol{eta}$ ł	$oldsymbol{eta}$ li	$oldsymbol{eta}\mathbf{t'}$	$\gamma arepsilon$	γ	η	ζ
		$li \rightarrow$					
1				$l \rightarrow l$	$l \rightarrow l$	$l \rightarrow l$	
С						$c \rightarrow c$	
č						$\check{\mathrm{c}} \to \check{\mathrm{c}}$	
ř						$\check{r} \to \check{r}$	
ž	žł → ž					$\check{z} \to \check{z}$	
j				$aj \rightarrow aj$	$aj \rightarrow aj$	$j \rightarrow j$	
a		⋆eli → a					
b	$bl \rightarrow b$		$s't' \to b$	$b \rightarrow b$	$b' \rightarrow b$	$b \rightarrow b$	
	abl o eb						
X	$xt \rightarrow x$				\star š \rightarrow x	$x \rightarrow x$	
	$\star ext \rightarrow x$						
d	$dl \rightarrow d$	\star edli \rightarrow ad	$s't' \to d$	$\check{z}\check{z} \to zd$	$\check{z}\check{z} \to zd$	$d \rightarrow d$	$3 \rightarrow d'$
	$adl \rightarrow ed$		$es't' \rightarrow ad$				$\check{z}\check{z} \to z'd'$
	$\operatorname{\acute{o}dl} o \operatorname{od}$		$es't' \rightarrow od$				
	$adl \rightarrow ed$		$ \text{ós't'} \to \text{od} $				
			$as't' \rightarrow ed$				
f						$f \rightarrow f$	
h	$hl \rightarrow h$					$h \rightarrow h$	
ł	$ii \rightarrow i$				⋆ s'l → sł		
m				$m \rightarrow m$	$m' \rightarrow m$	$m \rightarrow m$	_
n							$n \rightarrow n'$
p	$pl \rightarrow p$			$\begin{array}{c} p \to p \\ \check{r} \to r \end{array}$	$\begin{array}{c} \mathbf{p'} \to \mathbf{p} \\ \mathbf{\check{r}} \to \mathbf{r} \end{array}$	$p \rightarrow p$	
r	$rl \rightarrow r$			$\check{r} \rightarrow r$	$\check{r} \rightarrow r$	$r \rightarrow r$	
				óř \rightarrow or			
s	$st \rightarrow s$	⋆ s'li → s	$s't' \rightarrow s$	$\check{s} \rightarrow s$	$\check{\mathrm{s}} \to \mathrm{s}$	$s' \to s$	$\check{s} \to s'$
	$ósl \rightarrow os$	⋆es'li → os	$es't' \rightarrow os$			$s \rightarrow s$	
	$ast \rightarrow es$		$as't' \rightarrow es$				
t	t daggerrow t	⋆etli → ot	$s't' \rightarrow t$	$\check{c} \rightarrow t$	$c \rightarrow t$	$t \rightarrow t$	$\check{c} \to t'$
			$es't' \rightarrow ot$	$\check{s}\check{c}\longrightarrowst$	$\check{c} \to t$		$c \to t'$
					$\check{s}\check{c} \to st$		$\check{s}\check{c} \to s't'$
V					$\star v' \rightarrow v$	$v \rightarrow v$	
					$\star v \rightarrow v$		
Z	$z l \rightarrow z$	⋆ z'li → z	$z't' \rightarrow z$	$\check{z} \to z$	$\check{z} \rightarrow z$	$z' \rightarrow z$	$\check{z} \to z'$
	$ózt \rightarrow oz$	⋆ez'li → az	$ez't' \rightarrow az$			$z \rightarrow z$	
	$azl \rightarrow ez$	⋆ez'li → oz	$ez't' \rightarrow oz$				

		$az't' \rightarrow ez$			
g	gl o g	$c \rightarrow g$	$\check{z} \to g$	$\check{z} \to g$	$g \rightarrow g$
		$óc \rightarrow og$	$\check{z}\check{z} \to zg$	$\check{z}\check{z}\to zg$	
	agl o eg	$ac \rightarrow eg$			
	azgl o ezg				
k	$kl \rightarrow k$	$c \rightarrow k$	$\check{c} \to k$	$\check{\mathrm{c}} \to \mathrm{k}$	$k \rightarrow k$
	ókł → ok	$ac \rightarrow ek$	$\check{s}\check{c} \to sk$	$\check{s}\check{c}\to sk$	
	akl o ek				

7.4 Reguly warstwy analitycznej

Dla oszczędności miejsca nie podajemy nazw atrybutów, gdzie wartości atrybutów jednoznacznie na nie wskazują. W ten sposób w domyśle pozostają nazwy atrybutów:

- cat mającego wartości ndm, adj, adj:grad, adv, noun, verb
- palat mającego wartości ↑ (dla funkcjonalnie miękkich) i ↓ (dla funkcjonalnie twardych)
- velar mającego wartości \leftarrow (dla b,d,f,ł,m,n,p,r,s,t,v,z,o,u) i \rightarrow (dla x,h,g,k)

Oznaczenie \star odnosi się do odmian, które uznaliśmy za nieproduktywne (niewystępujące poza zamkniętą listą lematów). Oznaczenie \boldsymbol{D} odnosi się do odmian gwarowych i w inny sposób niestandardowych, które zostały dodane z powodu ich obecności w podkorpusie milionowym Narodowego Korpusu Języka Polskiego.

$$\begin{bmatrix} -\epsilon & \text{ndm} \end{bmatrix}$$


```
flex := y, \downarrow, adj
                                                                                                            -\alpha y
                                                                                                            -\alpha \mathbf{y} \mathbf{x}
                                                                                                                                              flex := ych, \downarrow, adj
     ⋆ – žkolv'ek
                                               suf := žkolv'ek
                                                                                                            -\alpha \mathbf{y}m
                                                                                                                                              flex := ym, \downarrow, adj

    ★ - žekolv'ek
    ★ - s'kolv'ek

                                               suf := žkolv'ek
suf := s'kolv'ek
                                                                                                            -\alpha y m'i
                                                                                                                                             \mathrm{flex} := \mathrm{ymi}, \downarrow, \mathrm{adj}

    ★ - kolv'ek
    ★ - ž

                                                                                                           -\alpha e
                                                                                                                                             \mathrm{flex} := \mathrm{e}, \downarrow, \mathrm{adj}
                                                suf := kolv'ek
                                                                                                           -\alpha \mathbf{e}go
                                                                                                                                             flex := ego, \downarrow, adj
                                               suf := \check{z}
                                                                                                                                             flex := ej, \downarrow, adj
flex := emu, \downarrow, adj
     x - z ex - ž ex - ž
                                                                                                           -\alpha ei
                                               suf := \check{z}
                                                                                                           -\alphaemu
                                               suf := že
    * - ž

* - že

* - s't'is'

* - t'is'

* - s't'i

* - s'ik

* - s'i
                                                                                                                                                                                                    \otimes \left[ \begin{array}{cc} +\alpha y & \text{lemma} := y \\ \star + \alpha \varepsilon & \text{lemma} := \varepsilon \end{array} \right] 
                                                                                                          -\alphaa
                                                                                                                                              flex := a, \downarrow, adj
                                               suf := \check{z}e
                                                                                               \otimes
                                                                                                          -lphaą
                                                                                                                                             flex := a, \downarrow, adj
                                               suf := s't'is'
                                                                                                            -\alpha0
                                                                                                                                             \mathrm{flex} := \mathrm{o}, \downarrow, \mathrm{adj}
                                               suf := t'is'
suf := s'
suf := s't'i
                                                                                                            -\alpha u
                                                                                                                                             \mathrm{flex} := \mathrm{u}, \downarrow, \mathrm{adj}
                                                                                                                                             flex := i, \downarrow, adj
                                                                                                            -\alpha i

\begin{array}{l}
\star - \alpha \varepsilon \\
D - \alpha \varepsilon \\
D - \alpha \varepsilon
\end{array}

\begin{array}{l}
D - \alpha \varepsilon \\
D - \alpha \varepsilon
\end{array}

                                                                                                                                             flex := \varepsilon, \downarrow, adj
                                               \mathrm{suf} := \mathrm{sik}
                                                                                                                                             flex := ym,↓, adj
                                               suf := si
                                                                                                                                             flex := ymi, ↓, adj
                                                                                                                                             \mathrm{flex} := \mathrm{a}, \downarrow, \mathrm{adj}
                                                                                                         D - \alphaom
                                                                                                                                             \mathrm{flex} := \mathrm{a}, \downarrow, \mathrm{adj}
                                                                                                        flex := y, adj:grad
flex := ych, adj:grad
flex := ym, adj:grad
                                                                        −šy
                                                                        −šyx
                                                                          −šym
                                                                          −šym'i
                                                                                                        flex := ymi, adj:grad
                                                                         −še
                                                                                                         flex := e, adj:grad
                                                                        -\mathbf{\check{s}}\mathbf{ego}
                                                                                                        flex := ego, adj:grad
                                                                        −šej
−šemu
                                                                                                        flex := ej, adj:grad
flex := emu, adj:grad
flex := a, adj:grad
                                                                                                                                                                     \otimes \left[ \begin{array}{cc} -\kappa' \S & \text{grad} := \text{sz} \\ -\lambda' \text{ej} \S & \text{grad} := \text{iejsz} \end{array} \right] \otimes \left[ \begin{array}{cc} +\alpha' \mathbf{y} & \text{lemma} := \mathbf{y} \\ \star + \alpha' \varepsilon & \text{lemma} := \varepsilon \end{array} \right]
\begin{bmatrix} \varepsilon - \\ \text{naj} - \end{bmatrix}
                        \mathrm{pref} := \pmb{\varepsilon}
                        -ša
                                                                         −šą
                                                                                                         flex := a, adj:grad
                                                                         -ši
                                                                                                         flex := i, adj:grad
                                                                        D — šem D — šemi D — šo
                                                                                                        {\rm flex} := {\rm ym}, {\rm adj:grad}
                                                                                                        flex := ymi, adj:grad
flex := a, adj:grad
                                                                    D - \check{s}om
                                                                                                        flex := a, adj:grad
                                                                                                         flex := y, adj:grad
                                                                         -\check{\mathbf{s}}v
                                                                        −šyx
                                                                                                         flex := ych, adj:grad
                                                                         -\check{\mathbf{s}}\mathbf{y}\mathbf{m}
                                                                                                         flex := ym, adj:grad
                                                                         −šym'i
                                                                                                        {\rm flex} := {\rm ymi}, {\rm adj:grad}
                                                                        -še-šego-šej-šemu
                                                                                                        flex := e, adj:grad
                                                                                                        flex := ego, adj:grad
flex := ej, adj:grad
                                                                                                                                                                      \otimes \left[ \begin{array}{cc} -\boldsymbol{\kappa} \S & \operatorname{grad} := \operatorname{sz} \\ -\boldsymbol{\lambda} \operatorname{ej} \S & \operatorname{grad} := \operatorname{iejsz} \end{array} \right] \otimes \left[ \begin{array}{cc} +\boldsymbol{\alpha} \mathbf{y} & \operatorname{lemma} := \mathbf{y} \\ \star + \boldsymbol{\alpha} \boldsymbol{\varepsilon} & \operatorname{lemma} := \boldsymbol{\varepsilon} \end{array} \right] 
                        flex := emu, adj:grad
naj-
                                                                         -ša
                                                                                                        flex := a, adj:grad
                                                                        -šą
                                                                                                         flex := a, adj:grad
                                                                        -ši
                                                                                                         flex := i, adj:grad
                                                                                                        flex := ym, adj:grad
flex := ymi, adj:grad
flex := a, adj:grad
                                                                        D-{f \check{s}}{
m em}
                                                                        D – šemi
                                                                        D - \S 0
D - \S 0
                                                                                                        flex := a, adj:grad
                \left[\begin{array}{cc} \varepsilon- & \operatorname{pref} := \varepsilon \\ \operatorname{naj} - & \operatorname{pref} := \operatorname{naj} \end{array}\right] \otimes \left[\begin{array}{cc} -\alpha' \circ & \operatorname{flex} := \circ, \operatorname{adv} \\ -\xi' \circ & \operatorname{flex} := \operatorname{iej}, \operatorname{adv} \end{array}\right] \otimes \left[\begin{array}{cc} +\alpha' \circ & \operatorname{lemma} := \circ \end{array}\right]
```

```
-\alpha0
                                                                         flex := o, adv
                                                       -\alpha ie_1
                                                                         flex := ie, adv
                                                                                                                    +\alpha0
                                                                                                                                     lemma := 0
\left[\begin{array}{c} \varepsilon-\\ \mathrm{naj}- \end{array}\right.
                  \operatorname{pref} := \boldsymbol{\varepsilon}
                  -lphaie_2
                                                                         \mathrm{flex} := \mathrm{ie}, \mathrm{adv}
                                                                                                          \otimes
                                                                                                                   +\alphaie<sub>1</sub>
                                                                                                                                     lemma := ie
                                                      −ξej
                                                                         flex := iej, adv
                                                                                                                                     lemma := ie
                                                                                                                    +\alpha ie_2
                                                                        flex := iej, adv
flex := iej, adv
                                                      -\alpha ie_1 j
                                                      -\alpha i e_2 j
```

```
\begin{array}{l} \text{flex} := y, \uparrow \text{ , noun} \\ \text{flex} := y\text{ch}, \uparrow \text{ , noun} \\ \text{flex} := y\text{m}, \uparrow \text{ , noun} \\ \text{flex} := y\text{mi}, \uparrow \text{ , noun} \end{array}
 -\alpha' y
-\alpha' y x
-\alpha' y m
-\alpha'ym'i -\alpha'e -\alpha'ego
                                                                     Hex := e, \uparrow , noun

flex := e, \uparrow , noun
-\alpha'ej -\alpha'em
-\alpha'emu-\alpha'a
                                                                      flex := a, \uparrow , noun flex := ach, \uparrow , noun flex := ami, \uparrow , noun
-\alpha'ax -\alpha'am'i
                                                                    Hex := am_1, \uparrow , noun

Hex := a, \uparrow , noun
-\alpha'ą -\alpha'ę -\alpha'ο
-\alpha'om
 -\alpha'ov'i
 -\alpha'ov'e
 -\alpha'óv
                                                                      flex := u, \uparrow, noun flex := um, \uparrow, noun
 -\alpha'u
 -\alpha'um
                                                                    Hex := um, \uparrow , noun

flex := \varepsilon, \uparrow , noun

flex := ami, \uparrow , noun

flex := cze, \uparrow , noun

flex := ym, \uparrow , noun

flex := ym, \uparrow , noun

flex := ami, \uparrow , noun
-\alpha' \varepsilon

\star - \alpha' \varepsilon m' i
\lambda - \alpha' \in M'
-\check{\epsilon}e
D - \alpha' \in M'
                                                                      flex := a, noun
D - \alpha' on D - \alpha' o D - \alpha' e D - \alpha' om' i D - \alpha' amy D - \alpha' ox
                                                                       flex := ą, noun
                                                                       flex := e, noun
                                                                      flex := ami,↑, noun
flex := ami,↑, noun
flex := ach,↑, noun
```

```
-\alpha y
                            \mathrm{flex} := \mathrm{y}, \downarrow, \mathrm{noun}
 -\alpha yx
                            \mathrm{flex} := \mathrm{ych}, \downarrow, \mathrm{noun}
                            flex := ym, \downarrow, noun flex := ymi, \downarrow, noun
 -\alpha ym
 -\alpha y m' i
                            flex := e, \downarrow, noun
 -\alpha e
 -\alpha ego
                            flex := ego,↓, noun
 -\alpha ej
-\alpha em
                            \mathrm{flex} := \mathrm{ej}, \downarrow, \mathrm{noun}
                            flex := em, \downarrow, noun
                            {\rm flex}:={\rm emu}, \downarrow, {\rm noun}
 -\alphaemu
                            flex := a, \downarrow, noun flex := ach, \downarrow, noun
 -\alphaa
 -\alphaax
 -\alphaam'i
                            flex := ami, ↓, noun
 -\alphaą
                            \mathrm{flex} := \mathrm{a}, \downarrow, \mathrm{noun}
 -\alpha e -\alpha o
                            \mathrm{flex} := \varrho, \downarrow, \mathrm{noun}
                                                                                                              lemma := y
                                                                                        +\alpha y
                            \mathrm{flex} := \mathrm{o}, \downarrow, \mathrm{noun}
                                                                                        +\alpha e
                                                                                                              \mathrm{lemma} := \mathrm{e}
                            \mathrm{flex} := \mathrm{om}, \downarrow, \mathrm{noun}
 -\alphaom
                                                                                         +\alphaa
                                                                                                              lemma := a
                            flex := owi,↓, noun
 -\alphaov'i
                                                                                        +\alpha0
                                                                                                              lemma := o
 -\alphaov'e
                            \text{flex} := \text{owie}, \downarrow, \text{noun}
                                                                             \otimes
                                                                                        +\alphaov'e
                                                                                                              lemma := owie
 -\alphaóv
                             flex := ów,↓, noun
                                                                                        +\alphaum

\star + \alphaus

+\alphai
                                                                                                              lemma := um
 -lpha_1u
                            flex := u, \downarrow, \leftarrow, noun
                                                                                                              lemma := us
 -lpha_2u
                            \mathrm{flex} := \mathrm{u}, \downarrow, \rightarrow, \mathrm{noun}
                                                                                                              lemma := i
 -\alphaum
                            \mathrm{flex} := \mathrm{um}, \downarrow, \mathrm{noun}
                                                                                        +\alpha \varepsilon
                                                                                                              \mathrm{lemma} := \pmb{\varepsilon}
                            \begin{array}{l} \text{flex} := i, \downarrow, \text{noun} \\ \text{flex} := ie, \downarrow, \leftarrow, \text{noun} \\ \text{flex} := ie, \downarrow, \rightarrow, \text{noun} \end{array}
 -\alpha i
 -\alpha ie_1
 -\alpha ie_2
                             flex := \varepsilon, \downarrow, noun
 -\alpha \varepsilon
\star - \alpha \varepsilon m'i D - \alpha \varepsilon m
                            \mathrm{flex} := \mathrm{ami}, \downarrow, \mathrm{noun}
                            \mathrm{flex} := \mathrm{ym}, \downarrow, \mathrm{noun}
 D - \alpha \text{em'} i
                            flex := ymi, ↓, noun
 D - \alphaom
                            {\rm flex}:={\rm a,noun}
 D - \alpha_0
                            flex := a, noun
 D - \alpha e
                            flex := ę, noun
 D - \alphaom'i
                            flex := ami, ↓, noun
 D - \alphaamy
                            \mathrm{flex} := \mathrm{ami}, \downarrow, \mathrm{noun}
 \overline{D} - \alpha ox
                            \text{flex} := \text{ach}, \downarrow, \text{noun}
D - \alpha yma
                            \mathrm{flex} := \mathrm{ami}, \downarrow, \mathrm{noun}
         -\alpha'ę -\alpha'ęt'a -\alpha'ęt'u -\alpha'ęt'em -\alpha'ęta
                                    \mathrm{flex} := \varrho, \mathrm{noun}
                                    flex := ęcia, noun
flex := ęciu, noun
                                    flex := ęciem, noun
                                     flex := eta, noun
                                                                                  \otimes \left[ +\alpha' e \text{ lemma} := e \right]
         -\alpha'ęta-\alpha'ętom-\alpha'ętam'i-\alpha'ętax
                                     flex := at, noun
                                    flex := etom, noun
flex := etam'i, noun
                                    flex := etach, noun
        -an'e
                              flex := anie, noun
        -an
                              flex := an, noun
        -anom
                              flex := anom, noun
                                                                           \otimes [ +an'in lemma := anin ]
        -anóv
                              flex := anów, noun
        -anam'i
                              flex := anami, noun
                              flex := anach, noun
        -anax
       -any
                              flex := any, noun
```

```
-m'ę
-m'en'a
-m'en'u
-m'en'em
                      \text{flex} := \text{mie}, \text{noun}
                      {\rm flex}:={\rm mienia,\,noun}
                      {\rm flex}:={\rm mieniu}, {\rm noun}
                      {\rm flex}:={\rm mieniem}, {\rm noun}
-m'ona
                      flex := miona, noun
                                                            \otimes [ +m'e lemma := mie ]
-m'on
-m'onom
                      flex := mion, noun
                      flex := mionom, noun
-m'onam'i
                      flex := mionami, noun
-m'onax
                      flex := mionach, noun
     —о
—опа
                      {\rm flex} := {\rm o, noun}
                       flex := ona, noun
     -onov'i
                      {\rm flex}:={\rm onowi, noun}
     -onem
-on'e
                      {\rm flex}:={\rm onem,\,noun}
                      flex := onie, noun
flex := onowie, noun
     -onov'e
                                                          \otimes [ +o lemma := o(n) ]
     -ony
                       flex := ony, noun
     — o nóv
                       flex := onów, noun
     -onom
                       flex := onom, noun
     -onam'i
                      {\it flex}:={\it onami}, {\it noun}
                      flex := onach, noun
                   {\it flex}:={\it stwo}, {\it noun}
    -stvo
                   flex := stwa, noun
flex := stwu, noun
    -stva
    -stvu
                                                      \otimes [ +stwo lemma := stwo ]
    -\mathrm{stvo}
                   flex := stwo, noun
    -stvem
                   flex := stwem, noun
      -\iota n'i
                         flex := ni, noun
     - \(\lambda \text{n'} \) \(\lambda \text{n'} \)
                         flex := nia, noun
                         \mathrm{flex} := \mathrm{nie}, \mathrm{noun}
                         \mathrm{flex} := \mathrm{nie}, \mathrm{noun}
                                                           \otimes [ +n'i lemma := ni ]
                         flex := ń, noun
                         flex := niach, noun
      -\iota n'om
                         flex := niom, noun
      -\iota n'am'i
                        flex := niami, noun
```

```
\text{flex} := \varepsilon, \text{flex} \, 2 := \varepsilon
                                                -my
                                                                        flex := my, flex 2 := \epsilon
                                                -t'e
                                                                        \text{flex} := \text{cie}, \text{flex} 2 := \varepsilon
                                                —š
                                                                       \text{flex} := \text{sz}, \text{flex} 2 := \varepsilon
                                               D - m
D - s
                                                                       flex := my, flex 2 := \varepsilon
flex := sz, flex 2 := \varepsilon
                                               -βłšy
-βł
-l
                                                                       flex := szy, flex 2 := 1
                                                                       \text{flex} := \varepsilon, \text{flex} 2 := 1
                                                                       \text{flex} := \epsilon, \text{flex} 2 := 1
                                                -la
                                                                       flex := a, flex 2 := l
                                               −ło
                                                                       flex := 0, flex 2 := 1
                                               -ły
                                                                       flex := y, flex 2 := l

flex := i, flex 2 := l
                                               −jšli
                                                                                                                                            group := a, verb
                                                                       flex := ych, flex 2 := t
                                                -tvx
                                                                                                                           —u
                                                                                                                                             group := u, verb
                                                -tym
                                                                        flex := ym, flex 2 := t
                                                                                                                           -\alpha y
                                                                                                                                            group := y, verb
                                                −tym'i
                                                                       flex := ymi, flex 2 := t
                                                                                                                          -\mathrm{uje}
                                                                                                                                            \mathtt{group} := \mathtt{uje}, \mathtt{verb}
                                                -te
                                                                       flex := e, flex 2 := t
                                                                                                                          -\mathrm{eje}
                                                                                                                                             \mathrm{group} := \mathrm{eje}, \mathrm{verb}
                                                -ty
                                                                       \mathrm{flex} := y, \mathrm{flex} \, 2 := t
                                                                                                                          -\check{aje}
                                                                                                                                             group := aje, verb
                                                -ta
                                                                       \text{flex} := a, \text{flex} 2 := t
                                                                                                                                                                                        +ovat'
                                                                                                                                                                                                         lemma := ować
                                                                                                                                            group := uje, verb
group := uj, verb
                                                                       flex := a, flex 2 := t
                                                                                                                           -lphayje
                                                -ta
                                                                                                                                                                                        +yvat'
                                                                                                                                                                                                         lemma := ywać
                                                                                                                           —uj
\left[\begin{array}{c} \varepsilon-\\ \mathrm{n'e}-\end{array}\right.
                                                                        flex := o, flex 2 := t
                                                                                                                                                                                        + \operatorname{avat}'
                 \operatorname{pref}:=oldsymbol{arepsilon}
                                                -to
                                                                                                                                                                                                         lemma := awać
                —еj
                                                                                                                  \otimes
                                                                                                                                             group := ej, verb
                                                                                                                                                                                \otimes
                                                                                                                                                                                        +at'
                                                -tego
                                                                        flex := ego, flex 2 := t
                                                                                                                                                                                                         lemma := ać
                                                                                                                          -aj
                                                                                                                                             group := aj, verb
                                                -temu
                                                                       flex := emu, flex 2 := t
                                                                                                                                                                                        +ut'
                                                                                                                                                                                                         lemma := uć
                                                                                                                                            group := yj, verb
group := a, verb
group := aje, verb
                                                                                                                           -lphayj
                                               \begin{array}{c} -\mathrm{tej} \\ -\mathrm{t'i} \end{array}
                                                                       \mathrm{flex} := \mathrm{ej}, \mathrm{flex} \, 2 := \mathrm{t}
                                                                                                                                                                                        +yt'
                                                                                                                                                                                                         lemma := yć
                                                                                                                          D - 0
D - 0
D - 0je
                                                                       flex := i, flex 2 := t
                                                                       flex := a, flex 2 := t
                                                D − to
                                                                                                                          D - oj
                                                                                                                                            group := aj, verb
                                                \overline{D} – tom
                                                                       flex := a, flex 2 := t
                                                                                                                          -\gamma \varepsilon
                                                                                                                                            group := J\varepsilon, verb
                                                D-\mathrm{tem}
                                                                       flex := ym, flex 2 := t
                                                                                                                          -\stackrel{\prime}{\gamma}^{\rm e} - \stackrel{\prime}{\gamma}^{\rm e}
                                                                                                                                             group := Je, verb
                                                D - \text{tem'}i
                                                                        flex := ymi, flex 2 := t
                                                                                                                                             group := J, verb
                                                -t'om
                                                                        flex := om, flex 2 := c
                                                -t'am'i
                                                                       \mathrm{flex} := \mathrm{ami}, \mathrm{flex} \, 2 := \mathrm{\acute{c}}
                                                -t'ax
                                                                       flex := ach, flex 2 := c
                                                -t'e
                                                                       \mathrm{flex} := \mathrm{e}, \mathrm{flex2} := \mathrm{\acute{c}}
                                               -t'a
                                                                       flex := a, flex 2 := c
                                                                       flex := u, flex 2 := c
                                                -t'u
                                               -t'em
                                                                       flex := em, flex 2 := c
                                                -t'
                                                                       \text{flex} := \varepsilon, \text{flex} \, 2 := \varepsilon
                                                D - t'om'i
                                                                       flex := ami, flex 2 := c
                                               D = t \text{ om } I
D = t' \text{amy}
D = t' \text{ox}
\star - \beta t'
-\text{v} \text{šy}
                                                                       flex := ami, flex 2 := 6
                                                                        flex := ach, flex 2 := c
                                                                       \mathrm{flex} := \varepsilon, \mathrm{flex} \, 2 := \circ
                                                                       \mathrm{flex} := \mathrm{szy}, \mathrm{flex} \, 2 := \mathrm{w}
```

```
\text{flex} := \text{m}, \text{flex} 2 := \epsilon
                              -am
                              -ą
                                                      \text{flex} := a, \text{flex} 2 := \epsilon
                                                      \mathrm{flex} := \varrho, \mathrm{flex} 2 := \varepsilon
                              \vec{D} - 0
                                                      \mathrm{flex} := \mathrm{a}, \mathrm{flex} \, 2 := \pmb{\varepsilon}
                              \overline{D} – om
                                                      f(ex) := q, f(ex) := \epsilon

f(ex) := q, f(ex) := \epsilon
                              D − e
                                                      flex := ych, flex 2 := n
                              -nvx
                              -nym
                                                      flex := ym, flex 2 := n
                              -nym'i
                                                      flex := ymi, flex 2 := n
                              —ne
                                                      \mathrm{flex} := \mathrm{e}, \mathrm{flex} 2 := \mathrm{n}
                              -ny
                                                      \mathrm{flex} := y, \mathrm{flex2} := n
                              -na
                                                      f(x) := a, f(x) := n

f(x) := a, f(x) := n
                              -na
                                                      flex := 0, flex 2 := n
                              -no
                              — nego
                                                      flex := ego, flex 2 := n
                              -nemu
                                                      flex := emu, flex 2 := n
                              -\mathrm{n}\,\mathrm{e}\mathrm{j}\ -oldsymbol{
u}\,\mathrm{n}^\prime\mathrm{i}
                                                      {\rm flex}:={\rm ej}, {\rm flex}\, 2:={\rm n}
                                                                                                                            group := a, verb
                                                                                                          —a
                                                      \mathrm{flex}:=\mathrm{i},\mathrm{flex}\,2:=\mathrm{n}
                                                                                                                            group := u, verb
                                                                                                          —u
                              D - no
D - nom
                                                      \mathrm{flex}:=\mathrm{a},\mathrm{flex}\,2:=\mathrm{n}
                                                                                                          -\alpha y
                                                                                                                            group := y, verb
                                                      \mathrm{flex} := \mathbf{\hat{a}}, \mathrm{flex} \, \mathbf{2} := \mathbf{n}
                                                                                                          —uje
                                                                                                                            group := uje, verb
                              D — nem
                                                      flex := ym, flex 2 := n
                                                                                                          -\mathrm{eje}
                                                                                                                            \mathrm{group} := \mathrm{eje}, \mathrm{verb}
                              D - \text{nem'}i
                                                      flex := ymi, flex 2 := n
                                                                                                                            group := aje, verb
                                                                                                          -aje
                                                                                                                                                                      +ovat'
                                                                                                                                                                                       lemma := ować
                              -n'om
                                                      flex := om, flex 2 := \acute{n}
                                                                                                                            group := yje, verb
                                                                                                          -\alpha \mathbf{y}je
                                                                                                                                                                       +yvat'
                                                                                                                                                                                      lemma := ywać
                              -n'am'i
                                                      flex := ami, flex 2 := ń
                                                                                                          -uj
                                                                                                                            group := uj, verb
\operatorname{pref}:=oldsymbol{arepsilon}
                                                                                                                                                                      +avat'
                                                                                                                                                                                       lemma := awać
pref := nie \mid \otimes
                              −n'ax
                                                      flex := ach, flex 2 := \acute{n}
                                                                                                  \otimes
                                                                                                          —еj
                                                                                                                            group := ej, verb
                                                                                                                                                               \otimes
                                                                                                                                                                      +at'
                                                                                                                                                                                       lemma := ać
                                                                                                          -aj
                              -n'e
                                                      \mathrm{flex} := \mathrm{e}, \mathrm{flex2} := \mathrm{\acute{n}}
                                                                                                                            \mathrm{group} := \mathrm{aj}, \mathrm{verb}
                                                                                                                                                                      +ut'
                                                                                                                                                                                       lemma := uć
                                                                                                         -\alpha yj
D - 0
D - 0je
D - 0j
                              -n'a
                                                      \mathrm{flex} := \mathrm{a}, \mathrm{flex} \, 2 := \mathrm{\acute{n}}
                                                                                                                            \mathrm{group} := \mathrm{yj}, \mathrm{verb}
                                                                                                                                                                      +yt'
                                                                                                                                                                                       lemma := yć
                                                      flex := u, flex 2 := n
                                                                                                                            group := a, verb
group := aje, verb
                              −n'u
                              -n'em
                                                      flex := em, flex 2 := n
                              -n'
                                                      flex := \varepsilon, flex 2 := \acute{n}
                                                                                                                            group := aj, verb
                              D - n'om'i
                                                      flex := ami, flex 2 := n
                                                                                                          -\gamma \varepsilon
                                                                                                                            group := J\varepsilon, verb
                              D - n'amy D - n'ox
                                                                                                          -\dot{\gamma}e
                                                      flex := ami, flex 2 := ń
                                                                                                                            group := Je, verb
                                                                                                                            group := J, verb
                                                      flex := ach, flex 2 := n
                              -acyx
                                                      flex := ych, flex 2 := ac
                              -acym
                                                      flex := ym, flex 2 := ac
                              −ącym'i
                                                      \mathrm{flex} := \mathrm{ymi}, \mathrm{flex} \, 2 := \mathrm{ac}
                                                      flex := e, flex 2 := ac

flex := o, flex 2 := ac
                              -ace
                              -aco
                                                      flex := y, flex 2 := ac
                              -ący
                              -aca
                                                      flex := a, flex 2 := ac
                              -aca
                                                      flex := a, flex 2 := ac
                              -acego
                                                      \mathrm{flex} := \mathrm{ego}, \mathrm{flex} \, 2 := \mathrm{ac}
                              -ącemu
                                                      \mathrm{flex} := \mathrm{emu}, \mathrm{flex} 2 := \mathrm{ac}
                                                      flex := ej, flex 2 := ac
                              -acej
                             -ac
D - acom
D - aco
D - acem
D - acem'i
                                                      flex := \varepsilon, flex 2 := ac
                                                      flex := a, flex 2 := ac
                                                      \mathrm{flex} := \mathrm{a}, \mathrm{flex} \, 2 := \mathrm{ac}
                                                      \mathrm{flex} := \mathrm{ym}, \mathrm{flex} \, 2 := \mathrm{ac}
                                                      flex := ymi, flex 2 := ac
```

```
\mathrm{flex} := \varepsilon, \mathrm{flex} \, 2 := \varepsilon
                                                            -my
                                                                                          \text{flex} := \text{my}, \text{flex} \, 2 := \epsilon
                                                            -t'e
                                                                                           \text{flex} := \text{cie}, \text{flex} 2 := \varepsilon
                                                            —š
                                                                                          \mathrm{flex} := \mathrm{sz}, \mathrm{flex} \, 2 := \varepsilon
                                                           D - m
D - s
                                                                                          flex := my, flex 2 := \epsilon
flex := sz, flex 2 := \epsilon
flex := szy, flex 2 := \epsilon
                                                            -βłšy
-βł
-l
                                                                                          \text{flex} := \varepsilon, \text{flex} 2 := 1
                                                                                          \text{flex} := \varepsilon, \text{flex} 2 := 1
                                                            -la
                                                                                          \mathrm{flex} := \mathrm{a}, \mathrm{flex2} := \mathrm{i}
                                                            −ło
                                                                                          flex := 0, flex 2 := 1
                                                            -ły
                                                                                          flex := y, flex 2 := l

flex := i, flex 2 := l
                                                            -\check{\boldsymbol{\beta}}li
                                                            -tyx
                                                                                          flex := ych, flex 2 := t
                                                                                           flex := ym, flex 2 := t
                                                            −tym'i
                                                                                          flex := ymi, flex 2 := t
                                                            -te
                                                                                          \mathrm{flex} := \mathrm{e}, \mathrm{flex} 2 := \mathrm{t}
                                                            -ty
                                                                                          flex := y, flex 2 := t

flex := q, flex 2 := t
                                                                                                                                                          -\alpha' \mathbf{y}
-\alpha' \mathbf{e}
                                                                                                                                                                                   \mathtt{group} := \mathtt{y}, \mathtt{verb}
                                                            -ta
                                                                                                                                                                                   \mathtt{group} := \mathtt{e}, \mathtt{verb}
                                                                                          flex := a, flex 2 := t
                                                                                                                                                          -\alpha'eje-\alpha'ej
                                                            -ta
                                                                                                                                                                                   \mathtt{group} := \mathtt{eje}, \mathtt{verb}
ε-
n'e-

\operatorname{pref} := \varepsilon

\operatorname{pref} := \operatorname{nie}

\left[ \otimes \right]

                                                             -to
                                                                                          flex := o, flex 2 := t
                                                                                                                                                                                                                                        +\alpha'yt'
                                                                                                                                                                                                                                                              \begin{array}{l} \operatorname{lemma} := \operatorname{palat-\acute{c}} \\ \operatorname{lemma} := \operatorname{palat-e\acute{c}} \end{array}
                                                                                                                                                                                   group := ej, verb
                                                                                                                                                \otimes
                                                                                                                                                                                                                               \otimes
                                                                                                                                                                                                                                        +\alpha'et'
                                                             -tego
                                                                                          flex := ego, flex 2 := t
                                                                                                                                                         -\alpha'yj-\alpha'\varepsilon
                                                                                                                                                                                  group := yj, verb
group := \epsilon, verb
group := a, verb
                                                            -temu
                                                                                          flex := emu, flex 2 := t
                                                            −tej
−t'i
                                                                                          \mathrm{flex} := \mathrm{ej}, \mathrm{flex} \, 2 := \mathrm{t}
                                                                                                                                                           -\alpha'a
                                                                                          \mathrm{flex} := \mathrm{i}, \mathrm{flex} \, 2 := \mathrm{t}
                                                                                                                                                         D - \alpha'0
                                                                                                                                                                                  group := a, verb
                                                            D - to
D - tom
                                                                                          flex := a, flex 2 := t
                                                                                          flex := a, flex 2 := t
                                                            D-\mathrm{tem}
                                                                                          flex := ym, flex 2 := t
                                                            D-\mathrm{tem'i}
                                                                                          flex := ymi, flex 2 := t
                                                            -t'om
                                                                                          flex := om, flex 2 := c
                                                            -t'am'i
                                                                                          \mathrm{flex} := \mathrm{ami}, \mathrm{flex} \, 2 := \mathrm{\acute{c}}
                                                            -t'\mathrm{ax}
                                                                                          flex := ach, flex 2 := c
                                                            -t'e
                                                                                          \mathrm{flex} := \mathrm{e}, \mathrm{flex2} := \mathrm{\acute{c}}
                                                            -t'a
                                                                                          flex := a, flex 2 := c
                                                                                          flex := u, flex 2 := c
flex := u, flex 2 := c
flex := em, flex 2 := c
                                                            -t'u
                                                            -t'em
-t'
                                                                                          \text{flex} := \varepsilon, \text{flex} \, 2 := \varepsilon
                                                            D - t'om'i
                                                                                          flex := ami, flex 2 := c
                                                            D = t \text{ om } I
D = t' \text{amy}
D = t' \text{ox}
\star - \beta t'
-\text{v} \text{šy}
                                                                                          flex := ami, flex 2 := 6
                                                                                          flex := ach, flex 2 := c
                                                                                          \mathrm{flex} := \varepsilon, \mathrm{flex} \, 2 := \circ
                                                                                          \mathrm{flex} := \mathrm{szy}, \mathrm{flex} \, 2 := \mathrm{w}
```

```
\text{flex} := \text{m}, \text{flex} 2 := \epsilon
                                   -am
                                   -a
                                                               \text{flex} := a, \text{flex} 2 := \epsilon
                                                               \mathrm{flex} := \varrho, \mathrm{flex} 2 := \varepsilon
                                   D - 0
                                                               \mathrm{flex} := \mathrm{a}, \mathrm{flex} \, 2 := \pmb{\varepsilon}
                                   \overline{D} – om
                                                               flex := \mathfrak{g}, flex 2 := \varepsilon

flex := \mathfrak{g}, flex 2 := \varepsilon

flex := \mathfrak{g}, flex 2 := \varepsilon

flex := \mathfrak{g}, flex 2 := \varepsilon
                                   D − e
                                   -nyx
                                   -nym
                                                               flex := ym, flex 2 := n
                                   -nym'i
                                                               flex := ymi, flex 2 := n
                                    — n e
                                                               \mathrm{flex} := \mathrm{e}, \mathrm{flex} 2 := \mathrm{n}
                                   -ny
                                                               \mathrm{flex} := y, \mathrm{flex2} := n
                                   -na
                                                               flex := a, flex 2 := n

flex := a, flex 2 := n
                                   -na
                                                               flex := 0, flex 2 := n
                                   -no
                                    -nego
                                                               flex := ego, flex 2 := n
                                   -nemu
                                                               flex := emu, flex 2 := n
                                   -\mathrm{n}\,\mathrm{e}\mathrm{j}\ -oldsymbol{
u}\,\mathrm{n}^\prime\mathrm{i}
                                                               {\rm flex}:={\rm ej}, {\rm flex}\, 2:={\rm n}
                                                               \mathrm{flex}:=\mathrm{i},\mathrm{flex}\,2:=\mathrm{n}
                                   D - no
D - nom
                                                               flex := a, flex 2 := n
                                                               \text{flex} := a, \text{flex} 2 := n
                                   D-\text{nem}
                                                               flex := ym, flex 2 := n
                                                                                                                                             group := J, verb
                                   D - \text{nem'}i
                                                               flex := ymi, flex 2 := n
                                                                                                                                            group := J, verb
group := J, verb
                                                                                                                            -lpha'ej
                                    -n'om
                                                               flex := om, flex 2 := \acute{n}
                                                                                                                            -\zeta
                                    -n'am'i
                                                               flex := ami, flex 2 := n
                                                                                                                                            group := Je, verb
group := Je, verb
                                                                                                                                                                                   \otimes \left[ egin{array}{l} + t' \\ + et' \end{array} 
ight.
\operatorname{pref}:=oldsymbol{arepsilon}
                                                                                                                           -\alpha'e
                                                                                                                                                                                                           lemma := palat-ć
\operatorname{pref} := \varepsilon
\operatorname{pref} := \operatorname{nie} \otimes
                                    -n'ax
                                                               flex := ach, flex 2 := \acute{n}
                                                                                                                  \otimes
                                                                                                                                                                                                           lemma := palat-eć
                                                                                                                           -\zeta e -\alpha' a
                                   -n^{\prime}\mathrm{e}
                                                               \mathrm{flex} := \mathrm{e}, \mathrm{flex2} := \mathrm{\acute{n}}
                                                                                                                                             group := Ja, verb
                                                               \mathrm{flex}:=a,\mathrm{flex}\,2:=n
                                   -n'a
                                                                                                                           -\alpha'_0
-\zeta_0
                                                                                                                                            group := Jo, verb
                                                               flex := u, flex 2 := n
flex := u, flex 2 := n
flex := em, flex 2 := n
                                   −n'u
                                                                                                                                             group := Jo, verb
                                   -n'em
                                    -n'
                                                               flex := \varepsilon, flex 2 := \acute{n}
                                   D - n'om'i
                                                               flex := ami, flex 2 := n
                                   D - n'amy D - n'ox
                                                               flex := ami, flex 2 := ń
                                                               flex := ach, flex 2 := n
                                   -ącyx
-ącym
                                                               flex := ych, flex 2 := ac
                                                               \operatorname{flex} := \operatorname{ym}, \operatorname{flex} 2 := \operatorname{ac}
                                   −ącym'i
                                                               \mathrm{flex} := \mathrm{ymi}, \mathrm{flex} \, 2 := \mathrm{ac}
                                                               flex := e, flex 2 := ac

flex := o, flex 2 := ac
                                   -ace
                                   -aco
                                   -ący
                                                               flex := y, flex 2 := ac
                                    -aca
                                                               flex := a, flex 2 := ac
                                    -aca
                                                               flex := a, flex 2 := ac
                                   -\mathrm{acego}
                                                               \mathrm{flex} := \mathrm{ego}, \mathrm{flex} \, 2 := \mathrm{ac}
                                   -ącemu
                                                               \mathrm{flex} := \mathrm{emu}, \mathrm{flex} 2 := \mathrm{ac}
                                                               flex := ej, flex 2 := ac
flex := \epsilon, flex 2 := ac
                                   -acej
                                  -ac
D - acom
D - acom
D - acom
D - acom
D - acom'i
                                                               flex := a, flex 2 := ac
                                                               \mathrm{flex} := \mathrm{a}, \mathrm{flex} \, 2 := \mathrm{ac}
                                                               \mathrm{flex} := \mathrm{ym}, \mathrm{flex} \, 2 := \mathrm{ac}
                                                               flex := ymi, flex 2 := ac
```

```
\mathrm{flex} := \varepsilon, \mathrm{flex} \, 2 := \varepsilon
                                                       -my
                                                                                  \text{flex} := \text{my}, \text{flex} \, 2 := \epsilon
                                                       -t'e
                                                                                  \text{flex} := \text{cie}, \text{flex} 2 := \varepsilon
                                                       —š
                                                                                 \mathrm{flex} := \mathrm{sz}, \mathrm{flex} \, 2 := \varepsilon
                                                      D - m
D - s
                                                                                 flex := my, flex 2 := \epsilon
flex := sz, flex 2 := \epsilon
flex := szy, flex 2 := \epsilon
                                                      -βłšy
-βł
-l
                                                                                  \text{flex} := \varepsilon, \text{flex} 2 := 1
                                                                                 \text{flex} := \varepsilon, \text{flex} 2 := 1
                                                       -la
                                                                                 \mathrm{flex} := \mathrm{a}, \mathrm{flex2} := \mathrm{i}
                                                      −ło
                                                                                 flex := 0, flex 2 := 1
                                                      -ły
                                                                                 flex := y, flex 2 := l

flex := i, flex 2 := l
                                                      -\check{\boldsymbol{\beta}}li
                                                      -tyx
                                                                                  flex := ych, flex 2 := t
                                                                                  flex := ym, flex 2 := t
                                                       −tym'i
                                                                                 flex := ymi, flex 2 := t
                                                       -te
                                                                                  \mathrm{flex} := \mathrm{e}, \mathrm{flex} 2 := \mathrm{t}
                                                      -ty
                                                                                 flex := y, flex 2 := t

flex := a, flex 2 := t
                                                                                                                                           -\boldsymbol{\eta}n'e
                                                                                                                                                              group := nie, verb
                                                       -ta
                                                                                                                                           -\etaną -\etan'ę
                                                                                                                                                              group := na, verb
                                                                                 flex := a, flex 2 := t
                                                       -ta
                                                                                                                                                             group := nię, verb
                                                                                                                                                                                                     \otimes \left[\begin{array}{c} +\eta \mathrm{nat'} \\ \star +\beta \mathbf{t'} \end{array}\right.
ε-
n'e-

\operatorname{pref} := \varepsilon

\operatorname{pref} := \operatorname{nie}

\left[ \otimes \right]

                                                       -to
                                                                                  flex := o, flex 2 := t
                                                                                                                                                                                                                                  lemma := nąć
                                                                                                                                           -\etanę -\etan'ij
                                                                                                                                  \otimes
                                                                                                                                                              group := nę, verb
                                                       -tego
                                                                                  flex := ego, flex 2 := t
                                                                                                                                                                                                                                  lemma := \varepsilonć
                                                                                                                                                              group := nij, verb
                                                       -temu
                                                                                 flex := emu, flex 2 := t
                                                                                                                                           -\dot{\eta}^{\mathrm{n}}
-\eta
                                                      −tej
−t'i
                                                                                                                                                              group := n, verb
                                                                                 \mathrm{flex} := \mathrm{ej}, \mathrm{flex} \, 2 := \mathrm{t}
                                                                                                                                                              \operatorname{group} := \boldsymbol{\varepsilon}, \operatorname{verb}
                                                                                 \mathrm{flex} := \mathrm{i}, \mathrm{flex2} := \mathrm{t}
                                                      D - to
D - tom
                                                                                  flex := a, flex 2 := t
                                                                                 flex := a, flex 2 := t
                                                       D-\mathrm{tem}
                                                                                  flex := ym, flex 2 := t
                                                      D-\mathrm{tem'i}
                                                                                  flex := ymi, flex 2 := t
                                                       -t'om
                                                                                  flex := om, flex 2 := c
                                                       -t'am'i
                                                                                  \mathrm{flex} := \mathrm{ami}, \mathrm{flex} \, 2 := \mathrm{\acute{c}}
                                                      -t'\mathrm{ax}
                                                                                 flex := ach, flex 2 := c
                                                      -t'e
                                                                                 \mathrm{flex} := \mathrm{e}, \mathrm{flex2} := \mathrm{\acute{c}}
                                                      -t'a
                                                                                 flex := a, flex 2 := c
                                                                                 flex := u, flex 2 := c
                                                      -t'u
                                                      -t'em
-t'
                                                                                 flex := em, flex 2 := c
                                                                                 \text{flex} := \varepsilon, \text{flex} \, 2 := \varepsilon
                                                       D - t'om'i
                                                                                 flex := ami, flex 2 := c
                                                      D = t om 1

D = t' amy

D = t' ox

\star = \beta t'

-v šy
                                                                                  flex := ami, flex 2 := 6
                                                                                  flex := ach, flex 2 := c
                                                                                 \mathrm{flex} := \varepsilon, \mathrm{flex} \, 2 := \circ
                                                                                 \mathrm{flex} := \mathrm{szy}, \mathrm{flex} \, 2 := \mathrm{w}
```

```
-am
                                                              flex := m, flex 2 := \varepsilon
                                   —а
                                                              \text{flex} := a, \text{flex} 2 := \epsilon
                                                              \mathrm{flex} := \varrho, \mathrm{flex} 2 := \varepsilon
                                   \vec{D} - 0
                                                              \mathrm{flex} := \mathrm{a}, \mathrm{flex} \, 2 := \pmb{\varepsilon}
                                   D – om
                                                              \mathrm{flex} := \mathrm{a}, \mathrm{flex} \, 2 := \pmb{\varepsilon}
                                  D − e
                                                              \mathrm{flex} := \varrho, \mathrm{flex} 2 := \varepsilon
                                                              flex := ych, flex 2 := n
                                   -nvx
                                   -nym
                                                              flex := ym, flex 2 := n
                                   -nym'i
                                                              flex := ymi, flex 2 := n
                                                              \mathrm{flex} := \mathrm{e}, \mathrm{flex} 2 := \mathrm{n}
                                   -ny
                                                              \mathrm{flex} := y, \mathrm{flex2} := n
                                                              flex := a, flex 2 := n

flex := a, flex 2 := n
                                   -na
                                   -na
                                                              flex := 0, flex 2 := n
                                   -no
                                   —nego
                                                              flex := ego, flex 2 := n
                                   -nemu
                                                              flex := emu, flex 2 := n
                                   -\mathrm{nej} \ -oldsymbol{
u} \mathrm{n'i}
                                                              {\rm flex}:={\rm ej}, {\rm flex}\, 2:={\rm n}
                                                              \mathrm{flex} := \mathrm{i}, \mathrm{flex} 2 := \mathrm{n}
                                  D - no
D - nom
                                                              \mathrm{flex}:=\mathrm{a},\mathrm{flex}\,2:=\mathrm{n}
                                                              flex := a, flex 2 := n
                                   D — nem
                                                              flex := ym, flex 2 := n
                                   D - \text{nem'}i
                                                              flex := ymi, flex 2 := n
                                                                                                                          −ηn′e
                                                                                                                                           group := nie, verb
                                     -n'om
                                                              flex := om, flex 2 := \acute{n}
                                                                                                                         -\etaną
                                                                                                                                           group := na, verb
                                   -n'am'i
                                                              flex := ami, flex 2 := n
                                                                                                                          -\dot{m{\eta}}n'ę
                                                                                                                                           group := nię, verb
\operatorname{pref}:=oldsymbol{arepsilon}
                                                                                                                                                                                          +\etanat'
                                                                                                                                                                                                              lemma := nać
\operatorname{pref} := \varepsilon
\operatorname{pref} := \operatorname{nie} \otimes
                                                                                                                                                                                  \otimes \left| \begin{array}{c} +\eta \text{nat} \\ \star + \beta \text{t'} \end{array} \right|
                                   -n'ax
                                                              flex := ach, flex 2 := n
                                                                                                                                           group := nę, verb
                                                                                                                         -\etanę
                                                                                                                                                                                                              lemma := \epsilonć
                                   -n'e
                                                              \mathrm{flex} := \mathrm{e}, \mathrm{flex2} := \mathrm{\acute{n}}
                                                                                                                         -\etan'ij
                                                                                                                                           \mathtt{group} := \mathtt{nij}, \mathtt{verb}
                                   -n'a
                                                                                                                         -\dot{\eta}n
                                                              \mathrm{flex} := a, \mathrm{flex} \, 2 := \acute{n}
                                                                                                                                           group := n, verb
                                   -n^{\prime}\mathbf{u}
                                                              \mathrm{flex} := u, \mathrm{flex} \, 2 := \acute{n}
                                                                                                                         -\eta
                                                                                                                                           \mathrm{group} := \pmb{\varepsilon}, \mathrm{verb}
                                   -n'em
                                                              flex := em, flex 2 := \acute{n}
                                   -n'
                                                              flex := \varepsilon, flex 2 := \acute{n}
                                   D - n'om'i
                                                              flex := ami, flex 2 := n
                                  D - n'amy D - n'ox
                                                              flex := ami, flex 2 := \acute{n}
                                                              flex := ach, flex 2 := n
                                     -ącyx
                                                              flex := ych, flex 2 := ac
                                   -ącym
                                                              \operatorname{flex} := \operatorname{ym}, \operatorname{flex} 2 := \operatorname{ac}
                                   −ącym'i
                                                              \mathrm{flex} := \mathrm{ymi}, \mathrm{flex} \, 2 := \mathrm{ac}
                                                              flex := e, flex 2 := ac

flex := o, flex 2 := ac
                                   -\mathrm{ace}
                                   -aco
                                                              flex := y, flex 2 := ac
                                   -ący
                                   -aca
                                                              flex := a, flex 2 := ac
                                   -aca
                                                              flex := a, flex 2 := ac
                                   -acego
                                                              \mathrm{flex} := \mathrm{ego}, \mathrm{flex} \, 2 := \mathrm{ac}
                                   —ącemu
                                                              \mathrm{flex} := \mathrm{emu}, \mathrm{flex} 2 := \mathrm{ac}
                                                              flex := ej, flex 2 := ac
flex := \epsilon, flex 2 := ac
                                   -acej
                                 -ac
D - acom
D - aco
D - acem
D - acem'i
                                                              flex := a, flex 2 := ac
                                                              \mathrm{flex} := \mathrm{a}, \mathrm{flex} \, 2 := \mathrm{ac}
                                                              \mathrm{flex} := \mathrm{ym}, \mathrm{flex} \, 2 := \mathrm{ac}
                                                              \operatorname{flex} := \operatorname{ymi}, \operatorname{flex} 2 := \operatorname{ac}
```

7.5 Reguły dla rzeczowników z lematami wygłosowymi

Tytuły kolumn oznaczają tutaj przedostatnią głoskę, zaś wierszy – ostatnią.

	a	\mathbf{a}	\mathbf{e}	ę	i	O	Ó	\mathbf{u}	У
b	ab	ąb	eb	ąb	ib	ob	ób	$\mathbf{u}\mathbf{b}$	yb
				ęb		ób			-
bi	ab	ąb	eb	ąb		ób		ub	

_ c	ac	ąc	ec	ęc	ic	oc		uc	yc
$\frac{\mathrm{ch}}{}$	ach	ąch	ech	ęch	ich	och	óch	uch	ych
ci	ać	ąć	eć	ęć	ić	οć		uć	yc
						óć			уć
cz	acz	ącz	ecz	ęcz	icz	ocz	ócz	ucz	ycz
dz	adz	ądz	edz	ędz	idz	ódz		udz	ydz
dzi	adź		edź	ądź	idź	odź	ódź	$\mathrm{ud} z$	
				ędź		ódź			
dż	adż		edż		idż	odż		udż	ydż
f	af		ef		if	of		uf	yf
g	ag	ag	eg	ąg	ig	og		ug	yg
				ęg		óg			
gi	ag			ęg	ig	óg		ug	
_ <u>h</u>	ah					oh		uh	
j	aj		ej		ij	oj	ój	uj	уj
	,				.,	ój '			
k	ak	ąk	ek	ąk	ik	ok	ók	uk	yk
1.				ęk	• 1	1		- 1	1
ki				ąk	ik	ok		uk	yk
	1		1	ęk	• 1	1	/1	1	1
l	al		el		il	ol	ól	ul	yl
1	_ 1		_ 1		: 1	ól	٤1	1	1
ł	ał		eł		ił	oł	ół	uł	ył
	0.000		0.000		:	ół			*****
	am		em		im	om		um	ym
$\frac{\text{mi}}{r}$	0.10		em		im	om		1110	ym
n	an		en eń		in iń	on		un	yn
ni 	ań			0.10		oń		uń	yń
р	ap		ep	éБ	ip	op óp		up	ур
pi	9.0	0.0	on		ip	óp		110	
	ap	ąp	ep		тþ	op		up	
$\frac{q}{r}$	aq		er		ir	or	ór	ur	yr
1	aı		CI		11	ór	OI	uı	уı
rz	arz		erz			orz	órz	urz	yrz
12	arz		CIZ			órz	OLZ	uiz	yız
	95	28	es	25	is			us	VS
S	as	ąs	es	ąs ęs	10	os		uю	ys
si	aś	ąś	eś	ęś	iś	oś		uś	yś
SZ	asz	do.	esz	λ,	isz	osz	ósz	usz	ysz
$\frac{\mathbf{z}}{\mathbf{t}}$	at	ąt	et	ąt	it	ot	ót	ut	yt
		બુડ	00	ęt	10	ót	0.0	Caro.	J
	au			٧٠					

V	av				iv				
w	aw		ew		iw	ow		uw	yw
						ów			
wi	aw		ew			ów			
у	ay		ey			oy			
Z	az	ąz	ez	ąz	iz	ΟZ		uz	yz
				ęz		ÓΖ			
zi	aź		eź	ąź	iź	οź	óź	uź	yź
				ęź		óź			
ż	aż	ąż	eż	ąż	iż	οż	óż	uż	yż
				ęż		óż			

	c	ć	cz	$\mathrm{d}\mathrm{z}$	dź	$\mathrm{d}\dot{z}$	j	1	ń	rz	\mathbf{SZ}	ś	ź	ż
b		ćb	czb		dźb		jb	lb	ńb	rzb		śb	źb	żb
С	cc	ciec	czec		dziec		jс	lc	ńc	rzec	szec	siec	ziec	żec
							$_{ m jec}$	lec	$_{ m niec}$					
ch								lch		rzch	szech	ı		
ci								lć	ńć			ść		
cz							jcz	lcz	ńcz		szcz			
dzi								ldź	ńdź					
dż						dżdż								
f							jf	lf						
g							jg	lg		rzg				
h								lh						
k	ck	ciek	czek	dzk	dziek	dżek	jk	lk	$_{ m niek}$	rzek	szek	siek	ziek	żek
	cek			dzek			jek	lek						
ki	cek	ciek	czek				jek	lek	$_{ m niek}$		szek			żek
l	cel		czel	dzel			jl	ll			szel	śl		żel
ł	ceł						jeł							żeł
m		ćm	czm		dźm		jm	lm		rzm	szem	śm		żm
		$_{ m ciem}$	czem	1			$_{ m jem}$			rzem				żem
n			czn				jn	\ln		rzn	szn	śn	zien	żn
			czen				jen	len			szen			żen
ni			czeń				jń	lń		rzeń	$\operatorname{sze\acute{n}}$		źń	żeń
							$_{ m jen}$						zień	
												sień		
_ p	ср						jр	lp						
_q	cq													
r	cr					dżr	jr							
							jer							
S	cs						js	ls						
SZ							jsz	lsz						ższ
t	ct		czt				jt	lt		rzt	\mathbf{szt}			

	cet	czet					
v				lv			
W	ćw		jw	lw	rzw	szw	żw
				lew		szew	$\dot{\mathrm{z}}\mathrm{ew}$
wi				lew			
у				ly			
Z			jz	lz			
ż				lż			

	b	ch	d	f	g	h	k	ł	m	n	p	r	\mathbf{s}	t	v	W	x	Z
b								łb	mb			rb	sb			wb		zb
								łeb				${\rm reb}$						
bi								łb										
С	bied	;	dc	fiec	;				miec	nc	рс	rc	sc	ciec		wc		ziec
			${\rm dec}$							$_{ m niec}$	pec	rzec	\sec			wie	ec	
			dzie	ec							piec		siec					
ch							kch		mech	nch		rch	sch	tch				
ci	bć	chć		fć	gieć		kć	łć	mć	nć	рć	rć				wć		
		$\mathrm{che}\acute{\mathrm{c}}$					kieć	łeć			peć							
cz			dec	Z				łcz		ncz		rcz						
dz										ndz		rdz						
dzi					gdź				$\mathrm{md}\acute{\mathrm{z}}$	$\mathrm{nd}\acute{\mathrm{z}}$		rdź						
dż										$\mathrm{nd}\dot{\mathrm{z}}$								
f				ff					mf	nf	pf	rf						
g					gg			łg	mg	ng		rg						zg
																		zeg
gi										ng								
h			dh		gh		kh			nh	ph	rh	sh	$^{\mathrm{th}}$				
k	bek	chek	dek	fek			kk	łk	mek	nk	pek	rk	sk	tek	vek	wk		zek
								lek		nek		${\rm rek}$	sek			we	k	
ki	bek		dek					łk		nek	pek	rek	sek	tek		we	k	
								lek										
1	bl	chel	del	fl	gel	hl	kl		ml	nel	pl	rl	sel	tl	vel	wl	xel	zel
	$_{\mathrm{bel}}$			fel	giel	hel	kel		$_{\mathrm{mel}}$		$_{\mathrm{pel}}$			$_{ m tel}$		we	l	
							kiel											
ł	bł	cheł	deł		gł		kieł	łł	mł		peł	reł	sł	cieł		we	ł	zł
	beł				gieł							rzeł	sel	tel				zel
																		zieł
m		$_{ m chm}$	$d\mathbf{m}$		gm	hm		łm	mm			rm	sm	$_{ m tm}$				zm
			den	1									sem	l				
n	bn	$_{ m chn}$	dn	fn	gn	hn	kn	łn	mn	nn	pn	rn	sn	tn		wn		zn
	ben	$_{\mathrm{chen}}$	den		gien	hen	kien	łen	men	nien	pien	ren	sen	cier	1	wie	en	zen
									mien				sier	1				
ni		$_{\mathrm{chen}}$	deń		gien		kien	łń	mń		pń	rń		cień	1	wie	en –	

		cheń	dzie dzie		gień	:					pień	reń		teń	wień	
р	bp						kiep	łp	mp		pp	rp				
pi								łр	mp			rp				
r	br	$_{ m chr}$	dr	fr	gr	hr	kr		mr	nr	pr	rr		tr	wr	
	ber	cher	der	fer	ger gier		kier		mer		per			ter	wer	
rz	brz	chrz			gier	Z	kier	Z			prz			trz		
	berz	Z			_						_					
s	bs		ds				ks		ms	ns	ps	rs	SS	ts	ws	ZS
							X				pies				wies	
si												rś			wieś	
SZ							ksz	łsz	$_{ m msz}$	nsz		rsz			wesz	
t		cht	dt	ft	gt	ht	kt	łt		nt	pt	rt	st	tt		
													set			
w		chw	dw		gw		kw	łw		nw		rw		tw		ZW
		chew	dew	Ī			kiew	7				rew		tew		zew
wi		chew			giew	7	kiew	łw		new		rw		tew		zew
												rew	-			
_ y					gy											
Z	bz				gz			łz	mz	nz				tz		$\mathbf{Z}\mathbf{Z}$
	bez				giez			łez								
ż					gż			łż	$m\dot{z}$	nż		rż				
								łeż	$me\dot{z}$			reż				

7.6 Reguly warstwy interpretacji

interpretacja	cat	flex	lemma
adj:sg:nom.acc.voc:n:pos	adj	е	y
adj:pl:nom.acc.voc:m2.m3.f.n:pos			
${ m adj:sg:nom.voc:m1.m2.m3:pos}$	adj	y	y
adj:sg:acc:m3:pos adj:pl:nom.voc:m1:pos			
${ m adj:sg:nom.voc:m1.m2.m3:pos}$	adj	y	y
adj:sg:acc:m3:pos			
adj:sg:nom.voc:f:pos	adj	a	y
adj:sg:gen.dat.loc:f:pos	adj	ej	y
adj:sg:gen:m1.m2.m3.n:pos	adj	ego	у
adj:sg:acc:m1.m2:pos			
adj:sg:dat:m1.m2.m3.n:pos	adj	emu	у
adj:sg:acc.inst:f:pos	adj	ą	у
${ m adj:sg:inst.loc:m1.m2.m3.n:pos}$	adj	ym	y
adj:pl:dat:m1.m2.m3.f.n:pos			
adj:pl:nom.voc:m1:pos	adj	i	y

${ m adj:pl:gen.loc:m1.m2.m3.f.n:pos}$	adj	ych	у
adj:pl:acc:m1:pos			
adj:pl:inst:m1.m2.m3.f.n:pos	adj	ymi	у
adjp	adj	u	у
adja	adj	О	У
★adj:sg:nom:m1.m2.m3:pos adj:sg:acc:m3:pos	adj	ε	у
$\star \mathrm{adjc}$	adj	ε	у
★adj:sg:nom.acc.voc:n:pos adja	adj	О	ε
★adj:sg:nom.acc.voc:n:pos	adj	О	ε
★adj:sg:nom.acc.voc:n:pos	adj	e	ε
adj:pl:nom.acc.voc:m2.m3.f.n:pos			
\star adj:sg:nom.voc:m1.m2.m3:pos	adj	arepsilon	ε
${ m adj:sg:acc:m3:pos}$			
\star adj:sg:nom.voc:m1.m2.m3:pos	adj	у	ε
adj:sg:acc:m3:pos			
★adj:sg:nom.voc:f:pos	adj	a	ε
★adj:sg:nom:m1.m2.m3:pos adj:sg:acc:m3:pos	adj	ε	ε
\star adj:sg:nom:m1.m2.m3:pos	adj	ε	ε
\star adj:sg:nom:n:pos adj:pl:nom:m2.m3.f.n:pos	adj	е	ε
★adj:sg:nom:f:pos	adj	a	ε
\star adj:sg:gen.dat.loc:f:pos	adj	ej	ε
\star adj:sg:gen:m1.m2.m3.n:pos	adj	ego	ε
adj:sg:acc:m1.m2:pos			
\star adj:sg:dat:m1.m2.m3.n:pos	adj	$_{ m emu}$	ε
★adj:sg:acc.inst:f:pos	adj	ą	ε
\star adj:sg:inst.loc:m1.m2.m3.n:pos	adj	ym	ε
adj:pl:dat:m1.m2.m3.f.n:pos			
\star adj:pl:nom.acc.voc:m2.m3.f.n:pos	adj	е	ε
⋆adj:pl:nom.voc:m1:pos	adj	у	ε
★adj:pl:nom.voc:m1:pos	adj	i	ε
★adj:pl:nom:m1:pos	adj	i	ε
\star adj:pl:gen.loc:m1.m2.m3.f.n:pos	adj	ych	ε
adj:pl:acc:m1:pos			
\star adj:pl:inst:m1.m2.m3.f.n:pos	adj	ymi	ε
⋆adj:sg.pl:nom.gen.dat.acc.inst.loc.voc	adj	ε	ε
:m1.m2.m3.f.n:pos adja	-		
*adj:sg.pl:nom.gen.dat.acc.inst.loc.voc	adj	ε	ε
:m1.m2.m3.f.n:pos	-		
-	1	•	ı

interpretacja	cat	pref	flex	lemma
adj:sg:acc.inst:f:com	adj:grad	ε	ą	у
adj:pl:inst:m1.m2.m3.f.n:com	adj:grad	ε	ymi	y
adj:sg:inst.loc:m1.m2.m3.n:com	adj:grad	ε	ym	l y
adj:pl:dat:m1.m2.m3.f.n:com				

adj:pl:gen.loc:m1.m2.m3.f.n:com	adj:grad	$ $ ε	ych	у
adj:pl:acc:m1:com			-	-
adj:sg:nom.voc:m1.m2.m3:com	adj:grad	ε	у	у
adj:sg:acc:m3:com			-	
adj:pl:nom.voc:m1:com	adj:grad	ϵ	i	у
adj:sg:dat:m1.m2.m3.n:com	adj:grad	ε	emu	y
adj:sg:gen.dat.loc:f:com	adj:grad	ϵ	ej	y
adj:sg:gen:m1.m2.m3.n:com	adj:grad	ϵ	ego	y
adj:sg:acc:m1.m2:com				
adj:sg:nom.acc.voc:n:com	adj:grad	ε	e	у
adj:pl:nom.acc.voc:m2.m3.f.n:com				-
adj:sg:nom.voc:f:com	adj:grad	ε	a	у
adj:sg:acc.inst:f:sup	adj:grad	naj	ą	у
adj:pl:inst:m1.m2.m3.f.n:sup	adj:grad	naj	ymi	у
adj:sg:inst.loc:m1.m2.m3.n:sup	adj:grad	naj	ym	у
adj:pl:dat:m1.m2.m3.f.n:sup				
adj:pl:gen.loc:m1.m2.m3.f.n:sup	adj:grad	naj	ych	у
adj:pl:acc:m1:sup				
adj:sg:nom.voc:m1.m2.m3:sup	adj:grad	naj	у	у
adj:sg:acc:m3:sup				
adj:pl:nom.voc:m1:sup	adj:grad	naj	i	у
adj:sg:dat:m1.m2.m3.n:sup	adj:grad	naj	emu	у
adj:sg:gen.dat.loc:f:sup	adj:grad	naj	ej	у
adj:sg:gen:m1.m2.m3.n:sup	adj:grad	naj	ego	у
adj:sg:acc:m1.m2:sup				
adj:sg:nom.acc.voc:n:sup	adj:grad	naj	e	у
adj:pl:nom.acc.voc:m2.m3.f.n:sup				
adj:sg:nom.voc:f:sup	adj:grad	naj	a	у

interpretacja	cat	flex	lemma
adv:pos	adv	О	0
adv:com	adv	iej	О
adv:com	adv	iej	ie
adv:pos	adv	ie	ie
adv:sup	adv	iej	О
adv:sup	adv	iej	ie

interpretacja	cat
subst:sg.pl:nom.gen.dat.acc.inst.loc.voc:n:ncol	$_{ m ndm}$
subst:sg.pl:nom.gen.dat.acc.inst.loc.voc:m3	$_{ m ndm}$
subst:sg.pl:nom.gen.dat.acc.inst.loc.voc:m2	ndm
★subst:sg.pl:nom.gen.dat.acc.inst.loc.voc:m1	ndm
subst:sg.pl:nom.gen.dat.acc.inst.loc.voc:m1	ndm
[depr:pl:nom.acc.voc:m2]	

interpretacja	cat	pref	flex	flex2
★fin:sg:pri	verb	ε	ę	ε
★fin:sg:sec	verb	ε	sz	ε
★fin:sg:ter	verb	ε	ε	arepsilon
⋆ fin:pl:pri	verb	ε	my	ε
★fin:pl:sec	verb	ε	$_{ m cie}$	ε
★fin:pl:ter	verb	ε	ą	ε
⋆ fin:sg:pri	verb	ε	ę	n
★fin:pl:ter	verb	ε	ą	n
⋆ fin:sg:pri	verb	ε	m	ε
⋆ impt:sg:sec	verb	ε	ε	ε
⋆ impt:pl:pri	verb	ε	my	ε
⋆ impt:pl:sec	verb	ε	cie	ε
*pcon:imperf	verb	ε	ε	ąc
⋆ pacta	verb	ε	О	ąc
\star pact:sg:nom.acc.voc:n:imperf:aff	verb	ε	e	ąc
pact:pl:nom.acc.voc:m2.m3.f.n:imperf:aff				
\star pact:sg:nom.acc.voc:n:imperf:neg	verb	nie	e	ąc
pact:pl:nom.acc.voc:m2.m3.f.n:imperf:neg				
\star pact:sg:nom.voc:m1.m2.m3:imperf:aff	verb	ε	у	ąc
pact:sg:acc:m3:imperf:aff				
pact:pl:nom.voc:m1:imperf:aff				
\star pact:sg:nom.voc:f:imperf:aff	verb	ε	a	ąc
\star pact:sg:nom.voc:m1.m2.m3:imperf:neg	verb	nie	У	ąc
${ m pact:sg:acc:m3:imperf:neg}$				
pact:pl:nom.voc:m1:imperf:neg				
\star pact:sg:nom.voc:f:imperf:neg	verb	nie	a	ac
\star pact:sg:gen.dat.loc:f:imperf:aff	verb	ε	ej	ac
\star pact:sg:gen.dat.loc:f:imperf:neg	verb	nie	ej	ac
\star pact:sg:gen:m1.m2.m3.n:imperf:aff	verb	ε	ego	ąc
${ m pact:sg:acc:m1.m2:imperf:aff}$				
\star pact:sg:gen:m1.m2.m3.n:imperf:neg	verb	nie	ego	ąc
${ m pact:sg:acc:m1.m2:imperf:neg}$				
\star pact:sg:dat:m1.m2.m3.n:imperf:aff	verb	ε	emu	ąc
\star pact:sg:dat:m1.m2.m3.n:imperf:neg	verb	nie	emu	ac
\star pact:sg:acc.inst:f:imperf:aff	verb	ε	ą	ac
\star pact:sg:acc.inst:f:imperf:neg	verb	nie	ą	ac

	1 1	ı		1
*pact:sg:inst.loc:m1.m2.m3.n:imperf:aff	verb	ε	ym	ąc
pact:pl:dat:m1.m2.m3.f.n:imperf:aff	1.			
*pact:sg:inst.loc:m1.m2.m3.n:imperf:neg	verb	$_{ m nie}$	ym	ąc
pact:pl:dat:m1.m2.m3.f.n:imperf:neg	1.		1.	
*pact:pl:gen.loc:m1.m2.m3.f.n:imperf:aff	verb	ε	ych	ąc
pact:pl:acc:m1:imperf:aff	,		,	
*pact:pl:gen.loc:m1.m2.m3.f.n:imperf:neg	verb	$_{ m nie}$	ych	ąc
pact:pl:acc:m1:imperf:neg	1.			
*pact:pl:inst:m1.m2.m3.f.n:imperf:aff	verb	arepsilon .	ymi	ąc
*pact:pl:inst:m1.m2.m3.f.n:imperf:neg	verb	nie	ymi	ąc
*inf	verb	ε	ε	ć
*pant	verb	ε	szy	W
*pant	verb	ε	szy	ł
★i mps	verb	ε	О	t
*imps	verb	ε	О	n
★praet:sg:m1.m2.m3:nagl	verb	ε	ε	ł
*praet:sg:m1.m2.m3:agl	verb	ε	ε	ł
*praet:sg:m1.m2.m3	verb	ε	ε	ł
*praet:pl:m2.m3.f.n	verb	ε	У	ł
*praet:sg:n	verb	ε	0	ł
*praet:pl:m1	verb	ε	i	ł
*praet:sg:f	verb	ε	a	ł
★ger:pl:gen:n:aff	verb	ε	ε	ć
★ger:sg:dat.loc:n:aff	verb	ε	u	ć
★ger:pl:dat:n:aff	verb	ε	om	ć
*ger:sg:inst:n:aff	verb	ε	em	ć
★ger:sg:nom.acc:n:aff	verb	ε	е	ć
★ger:pl:inst:n:aff	verb	ε	ami	ć
*ger:pl:loc:n:aff	verb	ε	ach	ć
⋆ger:sg:gen:n:aff ger:pl:nom.acc:n:aff	verb	arepsilon	a	ć
*ger:pl:gen:n:neg	verb	nie	ε	ć
★ger:sg:dat.loc:n:neg	verb	nie	u	ć
★ger:pl:dat:n:neg	verb	nie	om	ć
★ger:sg:inst:n:neg	verb	nie	em	ć
★ger:sg:nom.acc:n:neg	verb	nie	е	ć
★ger:pl:inst:n:neg	verb	$_{ m nie}$	ami	ć
★ger:pl:loc:n:neg	verb	$_{ m nie}$	ach	ć
★ger:sg:gen:n:neg ger:pl:nom.acc:n:neg	verb	$_{ m nie}$	a	ć
⋆ger:pl:gen:n:aff	verb	ε	ε	ń
★ger:sg:dat.loc:n:aff	verb	ε	u	ń
★ger:pl:dat:n:aff	verb	ε	om	ń
*ger:sg:inst:n:aff	verb	ε	$_{ m em}$	ń
★ger:sg:nom.acc:n:aff	verb	ε	е	ń
★ger:pl:inst:n:aff	verb	ε	ami	ń
*ger:pl:loc:n:aff	verb	ε	ach	ń
★ger:sg:gen:n:aff ger:pl:nom.acc:n:aff	verb	ε	a	ń

	1		1	1
★ger:pl:gen:n:neg	verb	nie	ε	ń
★ger:sg:dat.loc:n:neg	verb	nie	u	ń
★ger:pl:dat:n:neg	verb	nie	om	ń
★ger:sg:inst:n:neg	verb	nie	em	ń
★ger:sg:nom.acc:n:neg	verb	nie	e	ń
★ger:pl:inst:n:neg	verb	nie	ami	ń
★ger:pl:loc:n:neg	verb	nie	ach	ń
★ger:sg:gen:n:neg ger:pl:nom.acc:n:neg	verb	nie	a	ń
⋆ ppas:sg:nom.acc.voc:n:aff	verb	ε	e	t
ppas:pl:nom.acc.voc:m2.m3.f.n:aff				
⋆ ppas:sg:nom.acc.voc:n:neg	verb	nie	e	t
ppas:pl:nom.acc.voc:m2.m3.f.n:neg				
\star ppas:sg:nom.voc:m1.m2.m3:aff	verb	ε	у	t
ppas:sg:acc:m3:aff				
⋆ ppas:sg:nom.voc:f:aff	verb	ε	a	t
\star ppas:sg:nom.voc:m1.m2.m3:neg	verb	nie	у	t
ppas:sg:acc:m3:neg				
\star ppas:sg:nom.voc:f:neg	verb	nie	a	t
*ppas:sg:gen.dat.loc:f:aff	verb	ε	ej	t
*ppas:sg:gen.dat.loc:f:neg	verb	nie	ej	t
\star ppas:sg:gen:m1.m2.m3.n:aff	verb	ε	ego	t
ppas:sg:acc:m1.m2:aff				
\star ppas:sg:gen:m1.m2.m3.n:neg	verb	nie	ego	t
ppas:sg:acc:m1.m2:neg				
\star ppas:sg:dat:m1.m2.m3.n:aff	verb	ε	emu	t
★ppas:sg:dat:m1.m2.m3.n:neg	verb	nie	emu	t
*ppas:sg:acc.inst:f:aff	verb	ε	ą	t
★ppas:sg:acc.inst:f:neg	verb	nie	ą	t
★ppas:sg:inst.loc:m1.m2.m3.n:aff	verb	ε	ym	t
ppas:pl:dat:m1.m2.m3.f.n:aff				
★ppas:sg:inst.loc:m1.m2.m3.n:neg	verb	nie	ym	t
ppas:pl:dat:m1.m2.m3.f.n:neg				
*ppas:pl:nom.voc:m1:aff	verb	ε	i	t
*ppas:pl:nom.voc:m1:neg	verb	nie	i	t
*ppas:pl:gen.loc:m1.m2.m3.f.n:aff	verb	ε	ych	t
ppas:pl:acc:m1:aff			-	
★ppas:pl:gen.loc:m1.m2.m3.f.n:neg	verb	nie	ych	t
ppas:pl:acc:m1:neg			*	
★ppas:pl:inst:m1.m2.m3.f.n:aff	verb	ε	ymi	t
★ppas:pl:inst:m1.m2.m3.f.n:neg	verb	nie	ymi	t
*ppas:sg:nom.acc.voc:n:aff	verb	ε	e	n
ppas:pl:nom.acc.voc:m2.m3.f.n:aff				
★ppas:sg:nom.acc.voc:n:neg	verb	nie	e	n
ppas:pl:nom.acc.voc:m2.m3.f.n:neg				
		1		
*ppas:sg:nom.voc:m1.m2.m3:aff	verb	ε	У	n

*ppas:sg:nom.voc:f:aff	verb	ε	a	n
\star ppas:sg:nom.voc:m1.m2.m3:neg	verb	$_{ m nie}$	у	n
ppas:sg:acc:m3:neg				
\star ppas:sg:nom.voc:f:neg	verb	$_{ m nie}$	a	n
\star ppas:sg:gen.dat.loc:f:aff	verb	ε	ej	n
\star ppas:sg:gen.dat.loc:f:neg	verb	$_{ m nie}$	ej	n
\star ppas:sg:gen:m1.m2.m3.n:aff	verb	ε	ego	n
ppas:sg:acc:m1.m2:aff				
\star ppas:sg:gen:m1.m2.m3.n:neg	verb	$_{ m nie}$	ego	n
ppas:sg:acc:m1.m2:neg				
\star ppas:sg:dat:m1.m2.m3.n:aff	verb	ε	emu	n
\star ppas:sg:dat:m1.m2.m3.n:neg	verb	$_{ m nie}$	emu	n
⋆ ppas:sg:acc.inst:f:aff	verb	ε	ą	n
⋆ ppas:sg:acc.inst:f:neg	verb	$_{ m nie}$	ą	n
\star ppas:sg:inst.loc:m1.m2.m3.n:aff	verb	ε	ym	n
ppas:pl:dat:m1.m2.m3.f.n:aff				
\star ppas:sg:inst.loc:m1.m2.m3.n:neg	verb	$_{ m nie}$	ym	n
ppas:pl:dat:m1.m2.m3.f.n:neg				
*ppas:pl:nom.voc:m1:aff	verb	ε	i	n
*ppas:pl:nom.voc:m1:neg	verb	$_{ m nie}$	i	n
\star ppas:pl:gen.loc:m1.m2.m3.f.n:aff	verb	ε	ych	n
ppas:pl:acc:m1:aff				
\star ppas:pl:gen.loc:m1.m2.m3.f.n:neg	verb	$_{ m nie}$	ych	n
ppas:pl:acc:m1:neg				
\star ppas:pl:inst:m1.m2.m3.f.n:aff	verb	ε	ymi	n
\star ppas:pl:inst:m1.m2.m3.f.n:neg	verb	$_{ m nie}$	ymi	n

interpretacja	cat	pref	group	flex	flex2	lemma
fin:sg:pri	verb	ε	a	m	ε	ać
fin:sg:sec	verb	ε	a	sz	ε	ać
fin:sg:ter	verb	ε	a	arepsilon	ε	ać
fin:pl:pri	verb	ϵ	a	my	ε	ać
fin:pl:sec	verb	ϵ	a	$_{ m cie}$	ε	ać
fin:pl:ter	verb	ϵ	aj	ą	ε	ać
impt:sg:sec	verb	ϵ	aj	ε	ε	ać
impt:pl:pri	verb	ϵ	aj	my	ε	ać
impt:pl:sec	verb	ϵ	aj	$_{ m cie}$	ε	ać
pcon:imperf	verb	ϵ	aj	ε	ąc	ać
pacta	verb	ε	aj	О	ąc	ać
pact:sg:nom.acc.voc:n:imperf:aff	verb	ε	aj	e	ąc	ać
pact:pl:nom.acc.voc:m2.m3.f.n:imperf:aff						
pact:sg:nom.acc.voc:n:imperf:neg	verb	nie	aj	e	ąc	ać
pact:pl:nom.acc.voc:m2.m3.f.n:imperf:neg						

pact:sg:nom.voc:m1.m2.m3:imperf:aff	verb	ε	aj	у	ąc	ać
pact:sg:acc:m3:imperf:aff						
pact:pl:nom.voc:m1:imperf:aff						
pact:sg:nom.voc:f:imperf:aff	verb	ϵ	aj	a	ąc	ać
pact:sg:nom.voc:m1.m2.m3:imperf:neg	verb	nie	aj	у	ąc	ać
pact:sg:acc:m3:imperf:neg			,	,	~-	
pact:pl:nom.voc:m1:imperf:neg						
pact:sg:nom.voc:f:imperf:neg	verb	nie	aj	a	ąc	ać
pact:sg:gen.dat.loc:f:imperf:aff	verb	ε	aj	ej	ąc	ać
pact:sg:gen.dat.loc:f:imperf:neg	verb	nie	aj	ej	ąc	ać
pact:sg:gen:m1.m2.m3.n:imperf:aff	verb	ε	aj	ego	ąc	ać
pact:sg:acc:m1.m2:imperf:aff	VCID		α σ	CgO	ąc	ac
pact.sg:gen:m1.m2.m3.n:imperf:neg	verb	nie	aj	ogo	2.0	ać
pact.sg.acc:m1.m2:imperf:neg	Verb	Ine	aj	ego	ąc	ac
pact.sg.dat:m1.m2.m3.n:imperf:aff	Tronh		.;	02211		s á
_ = _ = _	verb	ϵ	aj	emu	ąc	ać
pact:sg:dat:m1.m2.m3.n:imperf:neg	verb	nie	aj - :	emu	ąc	ać
pact:sg:acc.inst:f:imperf:aff	verb	ε	aj	ą	ąc	ać
pact:sg:acc.inst:f:imperf:neg	verb	nie	aj	ą	ąc	ać
pact:sg:inst.loc:m1.m2.m3.n:imperf:aff	verb	ε	aj	ym	ąc	ać
pact:pl:dat:m1.m2.m3.f.n:imperf:aff	,					
pact:sg:inst.loc:m1.m2.m3.n:imperf:neg	verb	nie	aj	ym	ąc	ać
pact:pl:dat:m1.m2.m3.f.n:imperf:neg	١,			,		
pact:pl:gen.loc:m1.m2.m3.f.n:imperf:aff	verb	ϵ	aj	ych	ąc	ać
pact:pl:acc:m1:imperf:aff		_				
pact:pl:gen.loc:m1.m2.m3.f.n:imperf:neg	verb	nie	aj	ych	ąc	ać
pact:pl:acc:m1:imperf:neg						
pact:pl:inst:m1.m2.m3.f.n:imperf:aff	verb	ε	aj	ymi	ąc	ać
pact:pl:inst:m1.m2.m3.f.n:imperf:neg	verb	nie	aj	ymi	ąc	ać
inf	verb	ϵ	a	ε	ć	ać
pant	verb	ϵ	a	szy	W	ać
imps	verb	ϵ	a	О	n	ać
praet:sg:m1.m2.m3	verb	ϵ	a	ε	ł	ać
praet:pl:m2.m3.f.n	verb	ε	a	у	ł	ać
praet:sg:n	verb	ε	a	О	ł	ać
praet:pl:m1	verb	ϵ	a	i	ł	ać
praet:sg:f	verb	ϵ	a	a	ł	ać
ppas:sg:nom.acc.voc:n:aff	verb	ε	a	e	n	ać
ppas:pl:nom.acc.voc:m2.m3.f.n:aff						
ppas:sg:nom.acc.voc:n:neg	verb	nie	a	e	n	ać
ppas:pl:nom.acc.voc:m2.m3.f.n:neg						
ppas:sg:nom.voc:m1.m2.m3:aff	verb	ϵ	a	у	n	ać
ppas:sg:acc:m3:aff						
ppas:sg:nom.voc:f:aff	verb	ϵ	a	a	n	ać
ppas:sg:nom.voc:m1.m2.m3:neg	verb	nie	a	y	n	ać
ppas:sg:acc:m3:neg				-		
ppas:sg:nom.voc:f:neg	verb	nie	a	a	n	ać
L LO	1	1	1 55	1	1	1

ppas:sg:gen.dat.loc:f:aff	verb	ϵ	a	ej	n	ać
ppas:sg:gen.dat.loc:f:neg	verb	nie	a	ej	n	ać
ppas:sg:gen:m1.m2.m3.n:aff	verb	ε	a	ego	n	ać
ppas:sg:acc:m1.m2:aff						
ppas:sg:gen:m1.m2.m3.n:neg	verb	nie	a	ego	n	ać
ppas:sg:acc:m1.m2:neg						
ppas:sg:dat:m1.m2.m3.n:aff	verb	ϵ	a	emu	n	ać
ppas:sg:dat:m1.m2.m3.n:neg	verb	nie	a	$_{ m emu}$	n	ać
ppas:sg:acc.inst:f:aff	verb	ε	a	ą	n	ać
ppas:sg:acc.inst:f:neg	verb	nie	a	ą	n	ać
ppas:sg:inst.loc:m1.m2.m3.n:aff	verb	ε	a	ym	n	ać
ppas:pl:dat:m1.m2.m3.f.n:aff						
ppas:sg:inst.loc:m1.m2.m3.n:neg	verb	nie	a	ym	n	ać
ppas:pl:dat:m1.m2.m3.f.n:neg						
ppas:pl:nom.voc:m1:aff	verb	ε	a	i	n	ać
ppas:pl:nom.voc:m1:neg	verb	nie	a	i	n	ać
ppas:pl:gen.loc:m1.m2.m3.f.n:aff	verb	ε	a	ych	n	ać
ppas:pl:acc:m1:aff						
ppas:pl:gen.loc:m1.m2.m3.f.n:neg	verb	nie	a	ych	n	ać
ppas:pl:acc:m1:neg						
ppas:pl:inst:m1.m2.m3.f.n:aff	verb	ε	a	ymi	n	ać
ppas:pl:inst:m1.m2.m3.f.n:neg	verb	nie	a	ymi	n	ać
ger:pl:gen:n:aff	verb	ε	a	ε	ń	ać
ger:sg:dat.loc:n:aff	verb	ε	a	u	ń	ać
ger:pl:dat:n:aff	verb	ε	a	om	ń	ać
ger:sg:inst:n:aff	verb	ε	a	em	ń	ać
ger:sg:nom.acc:n:aff	verb	ε	a	e	ń	ać
ger:pl:inst:n:aff	verb	ε	a	ami	ń	ać
ger:pl:loc:n:aff	verb	ε	a	ach	ń	ać
ger:sg:gen:n:aff ger:pl:nom.acc:n:aff	verb	ε	a	a	ń	ać
ger:pl:gen:n:neg	verb	nie	a	ε	ń	ać
ger:sg:dat.loc:n:neg	verb	nie	a	u	ń	ać
ger:pl:dat:n:neg	verb	nie	a	om	ń	ać
ger:sg:inst:n:neg	verb	nie	a	em	ń	ać
ger:sg:nom.acc:n:neg	verb	nie	a	e	ń	ać
ger:pl:inst:n:neg	verb	nie	a	ami	ń	ać
ger:pl:loc:n:neg	verb	nie	a	ach	ń	ać
ger:sg:gen:n:neg ger:pl:nom.acc:n:neg	verb	nie	a	a	ń	ać

interpretacja	cat	pref	group	flex	flex2	lemma
fin:sg:sec	verb	ε	nie	SZ	ε	nąć
fin:sg:ter	verb	ε	nie	ε	ε	nąć
fin:pl:pri	verb	ε	nie	my	ε	nąć
fin:pl:sec	verb	ϵ	nie	cie	ε	nąć
fin:sg:pri	verb	ε	n	ę	ε	nąć

						ı
fin:pl:ter	verb	ε	n 	ą	ε	nąć
impt:sg:sec	verb	ε	nij	ε	ε	nąć
impt:pl:pri	verb	ε	nij	my	ε	nąć
impt:pl:sec	verb	ε	$_{ m nij}$	cie	ε	nąć
pcon:imperf	verb	ε	\mathbf{n}	ε	ąc	nąć
pacta	verb	ε	\mathbf{n}	О	ąc	nąć
pact:sg:nom.acc.voc:n:imperf:aff	verb	ε	\mathbf{n}	e	ąc	nąć
pact:pl:nom.acc.voc:m2.m3.f.n:imperf:aff						
pact:sg:nom.acc.voc:n:imperf:neg	verb	nie	\mathbf{n}	e	ąc	nąć
pact:pl:nom.acc.voc:m2.m3.f.n:imperf:neg						
pact:sg:nom.voc:m1.m2.m3:imperf:aff	verb	ε	\mathbf{n}	У	ąc	nąć
pact:sg:acc:m3:imperf:aff						
pact:pl:nom.voc:m1:imperf:aff						
pact:sg:nom.voc:f:imperf:aff	verb	ε	\mathbf{n}	a	ąc	nąć
pact:sg:nom.voc:m1.m2.m3:imperf:neg	verb	nie	\mathbf{n}	у	ąc	nąć
pact:sg:acc:m3:imperf:neg						
pact:pl:nom.voc:m1:imperf:neg						
pact:sg:nom.voc:f:imperf:neg	verb	nie	n	a	ąc	nąć
pact:sg:gen.dat.loc:f:imperf:aff	verb	ε	n	ej	ąc	nąć
pact:sg:gen.dat.loc:f:imperf:neg	verb	nie	n	ej	ąc	nąć
pact:sg:gen:m1.m2.m3.n:imperf:aff	verb	ε	n	ego	ąc	nąć
pact:sg:acc:m1.m2:imperf:aff				J	· ·	
pact:sg:gen:m1.m2.m3.n:imperf:neg	verb	nie	n	ego	ąc	nąć
pact:sg:acc:m1.m2:imperf:neg				J	Č	
pact:sg:dat:m1.m2.m3.n:imperf:aff	verb	ε	n	emu	ąc	nąć
pact:sg:dat:m1.m2.m3.n:imperf:neg	verb	nie	n	emu	ąc	nąć
pact:sg:acc.inst:f:imperf:aff	verb	ε	n	ą	ąc	nąć
pact:sg:acc.inst:f:imperf:neg	verb	nie	n	ą	ąc	nąć
pact:sg:inst.loc:m1.m2.m3.n:imperf:aff	verb	ϵ	n	ym	ąc	nąć
pact:pl:dat:m1.m2.m3.f.n:imperf:aff				U	C	
pact:sg:inst.loc:m1.m2.m3.n:imperf:neg	verb	nie	n	ym	ąc	nąć
pact:pl:dat:m1.m2.m3.f.n:imperf:neg				·	·	
pact:pl:gen.loc:m1.m2.m3.f.n:imperf:aff	verb	ϵ	n	ych	ąc	nąć
pact:pl:acc:m1:imperf:aff				U	C	
pact:pl:gen.loc:m1.m2.m3.f.n:imperf:neg	verb	nie	n	ych	ąc	nąć
pact:pl:acc:m1:imperf:neg				J	-د	-6
pact:pl:inst:m1.m2.m3.f.n:imperf:aff	verb	ε	n	ymi	ac	nąć
pact:pl:inst:m1.m2.m3.f.n:imperf:neg	verb	nie	n	ymi	ąc	nąć
inf	verb	ε	ną	ε	ć	nąć
pant	verb	ε	ną	szy	w	nąć
imps	verb	ε	nię	0	t	nąć
praet:sg:m1.m2.m3	verb	ε	ną	arepsilon	ł	nąć
praet:pl:m2.m3.f.n	verb	ε	nę	у	ł	nąć nąć
praet:sg:n	verb	ε	nę	0	ł	nąć nąć
praet:pl:m1	verb	ε	nę	i	ł	nąć nąć
praet:sg:f	verb	ε	nę	\mathbf{a}	ł	nąć nąć
brace.pg.r	1 1010	ا ر	116	C.	1	11qc

				ı	ı	
ppas:sg:nom.acc.voc:n:aff	verb	ϵ	nię	e	t	nąć
ppas:pl:nom.acc.voc:m2.m3.f.n:aff						
ppas:sg:nom.acc.voc:n:neg	verb	nie	nię	e	t	nąć
ppas:pl:nom.acc.voc:m2.m3.f.n:neg						
ppas:sg:nom.voc:m1.m2.m3:aff	verb	ϵ	nię	У	t	nąć
ppas:sg:acc:m3:aff						
ppas:sg:nom.voc:f:aff	verb	ε	nię	a	t	nąć
ppas:sg:nom.voc:m1.m2.m3:neg	verb	nie	nię	У	t	nąć
ppas:sg:acc:m3:neg						
ppas:sg:nom.voc:f:neg	verb	nie	nię	a	t	nąć
ppas:sg:gen.dat.loc:f:aff	verb	ϵ	nię	ej	t	nąć
ppas:sg:gen.dat.loc:f:neg	verb	nie	nię	ej	t	nąć
ppas:sg:gen:m1.m2.m3.n:aff	verb	ϵ	nię	ego	t	nąć
ppas:sg:acc:m1.m2:aff						
ppas:sg:gen:m1.m2.m3.n:neg	verb	nie	nię	ego	t	nąć
ppas:sg:acc:m1.m2:neg						
ppas:sg:dat:m1.m2.m3.n:aff	verb	ϵ	nię	emu	t	nąć
ppas:sg:dat:m1.m2.m3.n:neg	verb	nie	nię	emu	t	nąć
ppas:sg:acc.inst:f:aff	verb	ϵ	nię	ą	t	nąć
ppas:sg:acc.inst:f:neg	verb	nie	nię	ą	t	nąć
ppas:sg:inst.loc:m1.m2.m3.n:aff	verb	ϵ	nię	ym	t	nąć
ppas:pl:dat:m1.m2.m3.f.n:aff			-			-
ppas:sg:inst.loc:m1.m2.m3.n:neg	verb	nie	nię	ym	t	nąć
ppas:pl:dat:m1.m2.m3.f.n:neg			-			-
ppas:pl:nom.voc:m1:aff	verb	ε	nię	i	t	nąć
ppas:pl:nom.voc:m1:neg	verb	nie	nię	i	t	nąć
ppas:pl:gen.loc:m1.m2.m3.f.n:aff	verb	ε	nię	ych	t	nąć
ppas:pl:acc:m1:aff						
ppas:pl:gen.loc:m1.m2.m3.f.n:neg	verb	nie	nię	ych	t	nąć
ppas:pl:acc:m1:neg						
ppas:pl:inst:m1.m2.m3.f.n:aff	verb	ε	nię	ymi	t	nąć
ppas:pl:inst:m1.m2.m3.f.n:neg	verb	nie	nię	ymi	t	nąć
ger:pl:gen:n:aff	verb	ε	nię	ε	ć	nąć
ger:sg:dat.loc:n:aff	verb	ϵ	nię	u	ć	nąć
ger:pl:dat:n:aff	verb	ϵ	nię	om	ć	nąć
ger:sg:inst:n:aff	verb	ϵ	nię	em	ć	nąć
ger:sg:nom.acc:n:aff	verb	ϵ	nię	e	ć	nać
ger:pl:inst:n:aff	verb	ϵ	nię	ami	ć	nąć
ger:pl:loc:n:aff	verb	ϵ	nię	ach	ć	nąć
ger:sg:gen:n:aff ger:pl:nom.acc:n:aff	verb	ϵ	nię	a	ć	nąć
ger:pl:gen:n:neg	verb	nie	nię	ε	ć	nąć
ger:sg:dat.loc:n:neg	verb	nie	nię	u	ć	nąć
ger:pl:dat:n:neg	verb	nie	nię	om	ć	nąć
ger:sg:inst:n:neg	verb	nie	nię	em	ć	nąć
ger:sg:nom.acc:n:neg	verb	nie	nię	e	ć	nąć
ger:pl:inst:n:neg	verb	nie	nię	ami	ć	nąć
9-1-1-1-1-1-1-2	1	1	1 K		1	1 1140

ger:pl:loc:n:neg	verb	nie	nię	ach	ć	nąć
ger:sg:gen:n:neg ger:pl:nom.acc:n:neg	verb	nie	nię	a	ć	nąć
★inf	verb	ε	ε	ε	ć	nąć
⋆ pant	verb	ε	ε	szy	ł	nąć
\star praet:sg:m1.m2.m3:nagl	verb	ϵ	ε	ε	ł	nąć
\star praet:sg:m1.m2.m3:agl	verb	ϵ	ε	ε	ł	nąć
praet:sg:m1.m2.m3	verb	ϵ	ε	ε	ł	nąć
praet:pl:m2.m3.f.n	verb	ϵ	ε	у	ł	nąć
praet:sg:n	verb	ϵ	ε	О	ł	nąć
praet:pl:m1	verb	ϵ	ε	i	ł	nąć
praet:sg:f	verb	ε	ε	a	ł	nąć

interpretacja	cat	pref	group	flex	flex2	lemma
fin:sg:sec	verb	ε	uje	SZ	ε	ować
$ ext{fin:sg:ter}$	verb	ε	uje	arepsilon	ε	ować
fin:pl:pri	verb	ε	uje	$_{ m my}$	ε	ować
fin:pl:sec	verb	ε	uje	cie	ε	ować
fin:sg:pri	verb	ε	uj	ę	ε	ować
fin:pl:ter	verb	ε	uj	ą	ε	ować
impt:sg:sec	verb	ε	uj	arepsilon	ε	ować
impt:pl:pri	verb	ε	uj	$_{ m my}$	ε	ować
$\operatorname{impt:pl:sec}$	verb	ε	uj	$_{ m cie}$	ε	ować
pcon:imperf	verb	ε	uj	arepsilon	ąc	ować
pacta	verb	ε	uj	О	ąc	ować
pact:sg:nom.acc.voc:n:imperf:aff	verb	ε	uj	е	ąc	ować
pact:pl:nom.acc.voc:m2.m3.f.n:imperf:aff						
pact:sg:nom.acc.voc:n:imperf:neg	verb	nie	uj	е	ąc	ować
pact:pl:nom.acc.voc:m2.m3.f.n:imperf:neg						
${ m pact:sg:nom.voc:m1.m2.m3:imperf:aff}$	verb	ε	uj	у	ąc	ować
pact:sg:acc:m3:imperf:aff						
pact:pl:nom.voc:m1:imperf:aff						
pact:sg:nom.voc:f:imperf:aff	verb	ε	uj	a	ąc	ować
${ m pact:sg:nom.voc:m1.m2.m3:imperf:neg}$	verb	nie	uj	у	ąc	ować
pact:sg:acc:m3:imperf:neg						
pact:pl:nom.voc:m1:imperf:neg						
pact:sg:nom.voc:f:imperf:neg	verb	nie	uj	a	ąc	ować
pact:sg:gen.dat.loc:f:imperf:aff	verb	ε	uj	ej	ąc	ować
pact:sg:gen.dat.loc:f:imperf:neg	verb	nie	uj	ej	ąc	ować
${ m pact:sg:gen:m1.m2.m3.n:imperf:aff}$	verb	ε	uj	ego	ąc	ować
pact:sg:acc:m1.m2:imperf:aff						
${ m pact:sg:gen:m1.m2.m3.n:imperf:neg}$	verb	nie	uj	ego	ąc	ować
pact:sg:acc:m1.m2:imperf:neg						
pact:sg:dat:m1.m2.m3.n:imperf:aff	verb	ε	uj	$_{ m emu}$	ąc	ować
pact:sg:dat:m1.m2.m3.n:imperf:neg	verb	nie	uj	$_{ m emu}$	ac	ować
pact:sg:acc.inst:f:imperf:aff	verb	ε	uj	ą	ąc	ować

pact:sg:acc.inst:f:imperf:neg	verb	nie	uj	ą	ąc	ować
pact:sg:inst.loc:m1.m2.m3.n:imperf:aff	verb	ε	uj	ym	ąc	ować
pact:pl:dat:m1.m2.m3.f.n:imperf:aff						
pact:sg:inst.loc:m1.m2.m3.n:imperf:neg	verb	nie	uj	ym	ąc	ować
pact:pl:dat:m1.m2.m3.f.n:imperf:neg						
pact:pl:gen.loc:m1.m2.m3.f.n:imperf:aff	verb	ε	uj	ych	ąc	ować
pact:pl:acc:m1:imperf:aff						
pact:pl:gen.loc:m1.m2.m3.f.n:imperf:neg	verb	nie	uj	ych	ąc	ować
pact:pl:acc:m1:imperf:neg					-	
pact:pl:inst:m1.m2.m3.f.n:imperf:aff	verb	ε	uj	ymi	ąc	ować
pact:pl:inst:m1.m2.m3.f.n:imperf:neg	verb	nie	uj	ymi	ąc	ować

interpretacja	cat	pref	group	flex	flex2	lemma
fin:sg:sec	verb	ε	eje	SZ	ε	palat-eć
fin:sg:ter	verb	ε	eje	ε	ε	palat-eć
fin:pl:pri	verb	ε	eje	my	ε	palat-eć
fin:pl:sec	verb	ε	eje	cie	ε	palat-eć
⋆ fin:sg:sec	verb	ε	у	sz	ε	palat-eć
⋆ fin:sg:ter	verb	ε	у	ε	ε	palat-eć
⋆ fin:pl:pri	verb	ε	у	my	ε	palat-eć
⋆ fin:pl:sec	verb	ε	у	cie	ε	palat-eć
fin:sg:pri	verb	ε	J	ę	ε	palat-eć
$\operatorname{fin:pl:ter}$	verb	ε	J	ą	ε	palat-eć
impt:sg:sec	verb	ε	ej	ε	ε	palat-eć
$\operatorname{impt:pl:pri}$	verb	ε	ej	my	ε	palat-eć
impt:pl:sec	verb	ε	ej	cie	ε	palat-eć
⋆ impt:sg:sec	verb	ε	уj	ε	ε	palat-eć
⋆ impt:pl:pri	verb	ε	уj	my	ε	palat-eć
$\star \text{impt:pl:sec}$	verb	ε	уj	cie	ε	palat-eć
⋆ impt:sg:sec	verb	ε	ε	ε	ε	palat-eć
⋆ impt:pl:pri	verb	ε	ε	my	ε	palat-eć
⋆ impt:pl:sec	verb	ε	ε	cie	ε	palat-eć
pcon:imperf	verb	ε	J	ε	ąc	palat-eć
pacta	verb	ε	J	О	ąc	palat-eć
pact:sg:nom.acc.voc:n:imperf:aff	verb	ε	J	e	ąc	palat-eć
pact:pl:nom.acc.voc:m2.m3.f.n:imperf:aff						
pact:sg:nom.acc.voc:n:imperf:neg	verb	nie	J	e	ąc	palat-eć
pact:pl:nom.acc.voc:m2.m3.f.n:imperf:neg						
pact:sg:nom.voc:m1.m2.m3:imperf:aff	verb	ε	J	У	ąc	palat-eć
pact:sg:acc:m3:imperf:aff						
pact:pl:nom.voc:m1:imperf:aff						
pact:sg:nom.voc:f:imperf:aff	verb	ε	J	a	ąc	palat-eć
pact:sg:nom.voc:m1.m2.m3:imperf:neg	verb	nie	J	у	ąc	palat-eć
pact:sg:acc:m3:imperf:neg						
pact:pl:nom.voc:m1:imperf:neg						

				1	ı	
pact:sg:nom.voc:f:imperf:neg	verb	nie	J	a	ąc	palat-eć
pact:sg:gen.dat.loc:f:imperf:aff	verb	ϵ	J	ej	ąc	palat-eć
pact:sg:gen.dat.loc:f:imperf:neg	verb	nie	J	ej	ąc	palat-eć
pact:sg:gen:m1.m2.m3.n:imperf:aff	verb	ε	J	ego	ac	palat-eć
pact:sg:acc:m1.m2:imperf:aff						
${ m pact:sg:gen:m1.m2.m3.n:imperf:neg}$	verb	nie	J	ego	ąc	palat-eć
pact:sg:acc:m1.m2:imperf:neg						
pact:sg:dat:m1.m2.m3.n:imperf:aff	verb	ε	J	emu	ac	palat-eć
pact:sg:dat:m1.m2.m3.n:imperf:neg	verb	nie	J	emu	ac	palat-eć
pact:sg:acc.inst:f:imperf:aff	verb	ε	J	ą	ąc	palat-eć
pact:sg:acc.inst:f:imperf:neg	verb	nie	J	ą	ąc	palat-eć
pact:sg:inst.loc:m1.m2.m3.n:imperf:aff	verb	ε	J	ym	ąc	palat-eć
pact:pl:dat:m1.m2.m3.f.n:imperf:aff						
pact:sg:inst.loc:m1.m2.m3.n:imperf:neg	verb	nie	J	ym	ąc	palat-eć
pact:pl:dat:m1.m2.m3.f.n:imperf:neg						
pact:pl:gen.loc:m1.m2.m3.f.n:imperf:aff	verb	ε	J	ych	ąc	palat-eć
pact:pl:acc:m1:imperf:aff						
pact:pl:gen.loc:m1.m2.m3.f.n:imperf:neg	verb	nie	J	ych	ąc	palat-eć
pact:pl:acc:m1:imperf:neg						-
pact:pl:inst:m1.m2.m3.f.n:imperf:aff	verb	$ $ ε	J	ymi	ąc	palat-eć
pact:pl:inst:m1.m2.m3.f.n:imperf:neg	verb	nie	J	ymi	ąc	palat-eć
inf	verb	$ $ ε	e	ε	ć	palat-eć
pant	verb	$ $ ε	a	szy	w	palat-eć
imps	verb	ϵ	Ja	o	n	palat-eć
praet:sg:m1.m2.m3	verb	ϵ	a	ε	ł	palat-eć
praet:pl:m2.m3.f.n	verb	ϵ	a	у	ł	palat-eć
praet:sg:n	verb	ϵ	a	o	ł	palat-eć
praet:pl:m1	verb	ϵ	a	i	ł	palat-eć
praet:sg:f	verb	ϵ	a	a	ł	palat-eć
ger:pl:gen:n:aff	verb	ϵ	Je	ε	ń	palat-eć
ger:sg:dat.loc:n:aff	verb	ϵ	Je	u	ń	palat-eć
ger:pl:dat:n:aff	verb	ϵ	Je	om	ń	palat-eć
ger:sg:inst:n:aff	verb	ϵ	Je	em	ń	palat-eć
ger:sg:nom.acc:n:aff	verb	ε	Je	e	ń	palat-eć
ger:pl:inst:n:aff	verb	ε	Je	ami	ń	palat-eć
ger:pl:loc:n:aff	verb	ε	Je	ach	ń	palat-eć
ger:sg:gen:n:aff ger:pl:nom.acc:n:aff	verb	ε	Je	a	ń	palat-eć
ger:pl:gen:n:neg	verb	nie	Je	ε	ń	palat-eć
ger:sg:dat.loc:n:neg	verb	nie	Je	u	ń	palat-eć
ger:pl:dat:n:neg	verb	nie	Je	om	ń	palat-eć
ger:sg:inst:n:neg	verb	nie	Je	em	ń	palat-eć
ger:sg:nom.acc:n:neg	verb	nie	$_{ m Je}^{ m Je}$	e	ń	palat-eć
ger:pl:inst:n:neg	verb	nie	Je	ami	ń	palat-eć
ger:pl:loc:n:neg	verb	nie	Je	ach	ń	palat-eć
ger:sg:gen:n:neg ger:pl:nom.acc:n:neg	verb	nie	Je	acii	ń	palat-eć
Serios, Sentinines Seripinoni, accinines	verb	1110	1 30	a	11	Parau-cc

⋆ ppas:sg:nom.acc.voc:n:aff	verb	ε	Ja	e	n	palat-eć
ppas:pl:nom.acc.voc:m2.m3.f.n:aff						
⋆ ppas:sg:nom.acc.voc:n:neg	verb	nie	Ja	е	n	palat-eć
ppas:pl:nom.acc.voc:m2.m3.f.n:neg						
\star ppas:sg:nom.voc:m1.m2.m3:aff	verb	ε	Ja	У	n	palat-eć
ppas:sg:acc:m3:aff						
*ppas:sg:nom.voc:f:aff	verb	ϵ	Ja	a	n	palat-eć
\star ppas:sg:nom.voc:m1.m2.m3:neg	verb	nie	Ja	У	n	palat-eć
ppas:sg:acc:m3:neg						
⋆ ppas:sg:nom.voc:f:neg	verb	nie	Ja	a	n	palat-eć
⋆ ppas:sg:gen.dat.loc:f:aff	verb	ε	Ja	ej	n	palat-eć
\star ppas:sg:gen.dat.loc:f:neg	verb	nie	Ja	ej	n	palat-eć
\star ppas:sg:gen:m1.m2.m3.n:aff	verb	ε	Ja	ego	n	palat-eć
ppas:sg:acc:m1.m2:aff						
\star ppas:sg:gen:m1.m2.m3.n:neg	verb	nie	Ja	ego	n	palat-eć
ppas:sg:acc:m1.m2:neg						
\star ppas:sg:dat:m1.m2.m3.n:aff	verb	ε	Ja	$_{ m emu}$	n	palat-eć
\star ppas:sg:dat:m1.m2.m3.n:neg	verb	nie	Ja	$_{ m emu}$	n	palat-eć
⋆ ppas:sg:acc.inst:f:aff	verb	ε	Ja	ą	n	palat-eć
⋆ ppas:sg:acc.inst:f:neg	verb	nie	Ja	ą	n	palat-eć
\star ppas:sg:inst.loc:m1.m2.m3.n:aff	verb	ε	Ja	ym	n	palat-eć
ppas:pl:dat:m1.m2.m3.f.n:aff						
$\star ppas:sg:inst.loc:m1.m2.m3.n:neg$	verb	nie	Ja	ym	n	palat-eć
ppas:pl:dat:m1.m2.m3.f.n:neg						
⋆ppas:pl:nom.voc:m1:aff	verb	ε	Ja	i	n	palat-eć
★ppas:pl:nom.voc:m1:neg	verb	nie	Ja	i	n	palat-eć
\star ppas:pl:gen.loc:m1.m2.m3.f.n:aff	verb	ε	Ja	ych	n	palat-eć
ppas:pl:acc:m1:aff						
\star ppas:pl:gen.loc:m1.m2.m3.f.n:neg	verb	nie	Ja	ych	n	palat-eć
ppas:pl:acc:m1:neg						
\star ppas:pl:inst:m1.m2.m3.f.n:aff	verb	ε	Ja	ymi	n	palat-eć
\star ppas:pl:inst:m1.m2.m3.f.n:neg	verb	nie	Ja	ymi	n	palat-eć

interpretacja	cat	pref	group	flex	flex2	lemma
fin:sg:sec	verb	ε	у	sz	ε	palat-ć
fin:sg:ter	verb	ε	у	ε	ε	palat-ć
fin:pl:pri	verb	ε	у	my	ε	palat-ć
fin:pl:sec	verb	ε	у	cie	ε	palat-ć
fin:sg:pri	verb	ε	J	ę	ε	palat-ć
$\operatorname{fin:pl:ter}$	verb	ε	J	ą	ε	palat-ć
impt:sg:sec	verb	ε	уj	ε	ε	palat-ć
impt:pl:pri	verb	ε	уj	my	ε	palat-ć
$\operatorname{impt:pl:sec}$	verb	ε	уj	cie	ε	palat-ć
impt:sg:sec	verb	ε	ε	ε	ε	palat-ć
$\mathrm{impt:}\mathrm{pl:}\mathrm{pri}$	verb	ε	ε	my	ε	palat-ć

	1 1	ı	l.		I	1 1
impt:pl:sec	verb	ε	ε	cie	ε	palat-ć
pcon:imperf	verb	ε	J	ε	ąc	palat-ć
pacta	verb	ε	J	О	ąc	palat-ć
pact:sg:nom.acc.voc:n:imperf:aff	verb	ε	J	е	ąc	palat-ć
pact:pl:nom.acc.voc:m2.m3.f.n:imperf:aff	,		-			
pact:sg:nom.acc.voc:n:imperf:neg	verb	nie	J	е	ąc	palat-ć
pact:pl:nom.acc.voc:m2.m3.f.n:imperf:neg	_		_			_
pact:sg:nom.voc:m1.m2.m3:imperf:aff	verb	ϵ	J	У	ąc	palat-ć
pact:sg:acc:m3:imperf:aff						
pact:pl:nom.voc:m1:imperf:aff						_
pact:sg:nom.voc:f:imperf:aff	verb	ε	J	a	ac	palat-ć
pact:sg:nom.voc:m1.m2.m3:imperf:neg	verb	nie	J	У	ąc	palat-ć
pact:sg:acc:m3:imperf:neg						
pact:pl:nom.voc:m1:imperf:neg						
pact:sg:nom.voc:f:imperf:neg	verb	nie	J	a	ąc	palat-ć
pact:sg:gen.dat.loc:f:imperf:aff	verb	ε	J	ej	ąc	palat-ć
pact:sg:gen.dat.loc:f:imperf:neg	verb	nie	J	ej	ąc	palat-ć
pact:sg:gen:m1.m2.m3.n:imperf:aff	verb	ϵ	J	ego	ąc	palat-ć
pact:sg:acc:m1.m2:imperf:aff						
pact:sg:gen:m1.m2.m3.n:imperf:neg	verb	nie	J	ego	ąc	palat-ć
pact:sg:acc:m1.m2:imperf:neg				_		
pact:sg:dat:m1.m2.m3.n:imperf:aff	verb	ε	J	emu	ąc	palat-ć
pact:sg:dat:m1.m2.m3.n:imperf:neg	verb	nie	J	emu	ąc	palat-ć
pact:sg:acc.inst:f:imperf:aff	verb	ε	J	ą	ąc	palat-ć
pact:sg:acc.inst:f:imperf:neg	verb	nie	J	ą	ąc	palat-ć
pact:sg:inst.loc:m1.m2.m3.n:imperf:aff	verb	ε	J	ym	ąc	palat-ć
pact:pl:dat:m1.m2.m3.f.n:imperf:aff				-		_
pact:sg:inst.loc:m1.m2.m3.n:imperf:neg	verb	nie	J	ym	ąc	palat-ć
pact:pl:dat:m1.m2.m3.f.n:imperf:neg						_
pact:pl:gen.loc:m1.m2.m3.f.n:imperf:aff	verb	ϵ	J	ych	ąc	palat-ć
pact:pl:acc:m1:imperf:aff						_
pact:pl:gen.loc:m1.m2.m3.f.n:imperf:neg	verb	nie	J	ych	ąc	palat-ć
pact:pl:acc:m1:imperf:neg				v		1
pact:pl:inst:m1.m2.m3.f.n:imperf:aff	verb	ϵ	J	ymi	ąc	palat-ć
pact:pl:inst:m1.m2.m3.f.n:imperf:neg	verb	nie	J	ymi	ąc	palat-ć
inf	verb	ε	y	ε	ć	palat-ć
pant	verb	ε	y	szy	w	palat-ć
imps	verb	ε	Jo	0	n	palat-ć
praet:sg:m1.m2.m3	verb	ε	y	ε	ł	palat-ć
praet:pl:m2.m3.f.n	verb	ε	y	у	ł	palat-ć
praet:sg:n	verb	ε	y	0	ł	palat-ć
praet:pl:m1	verb	ε	y	i	ł	palat-ć
praet:sg:f	verb	ε	y	a	ł	palat-ć
ger:pl:gen:n:aff	verb	ε	Je	ε	ń	palat-ć
ger:sg:dat.loc:n:aff	verb	ε	Je	u	ń	palat-ć
ger:pl:dat:n:aff	verb	ε	Je	om	ń	palat-ć
ger.pr.dat.ii.aii	LAGID	ء ا	1 26	0111	11	Parat-C

_		1	ı			
ger:sg:inst:n:aff	verb	ε	Je	$_{ m em}$	ń	palat-ć
ger:sg:nom.acc:n:aff	verb	ε	Je	е	ń	palat-ć
ger:pl:inst:n:aff	verb	ε	Je	ami	ń	palat-ć
ger:pl:loc:n:aff	verb	ε	Je	ach	ń	palat-ć
ger:sg:gen:n:aff ger:pl:nom.acc:n:aff	verb	ε	Je	a	ń	palat-ć
ger:pl:gen:n:neg	verb	nie	Je	arepsilon	ń	palat-ć
$\operatorname{ger:sg:dat.loc:n:neg}$	verb	nie	Je	u	ń	palat-ć
ger:pl:dat:n:neg	verb	nie	Je	$^{ m om}$	ń	palat-ć
ger:sg:inst:n:neg	verb	nie	Je	$_{ m em}$	ń	palat-ć
ger:sg:nom.acc:n:neg	verb	nie	Je	e	ń	palat-ć
$\operatorname{ger:pl:inst:n:neg}$	verb	nie	Je	ami	ń	palat-ć
ger:pl:loc:n:neg	verb	nie	Je	ach	ń	palat-ć
ger:sg:gen:n:neg ger:pl:nom.acc:n:neg	verb	nie	Je	a	ń	palat-ć
ppas:sg:nom.acc.voc:n:aff	verb	ε	Ja	e	n	palat-ć
ppas:pl:nom.acc.voc:m2.m3.f.n:aff						
ppas:sg:nom.acc.voc:n:neg	verb	nie	Ja	е	n	palat-ć
ppas:pl:nom.acc.voc:m2.m3.f.n:neg						
ppas:sg:nom.voc:m1.m2.m3:aff	verb	ε	Ja	у	n	palat-ć
ppas:sg:acc:m3:aff						
ppas:sg:nom.voc:f:aff	verb	ε	Ja	a	n	palat-ć
ppas:sg:nom.voc:m1.m2.m3:neg	verb	nie	Ja	у	n	palat-ć
ppas:sg:acc:m3:neg						
ppas:sg:nom.voc:f:neg	verb	nie	Ja	a	n	palat-ć
ppas:sg:gen.dat.loc:f:aff	verb	ε	Ja	ej	n	palat-ć
ppas:sg:gen.dat.loc:f:neg	verb	nie	Ja	ej	n	palat-ć
ppas:sg:gen:m1.m2.m3.n:aff	verb	ε	Ja	ego	n	palat-ć
ppas:sg:acc:m1.m2:aff				J		_
ppas:sg:gen:m1.m2.m3.n:neg	verb	nie	Ja	ego	n	palat-ć
ppas:sg:acc:m1.m2:neg				J		_
ppas:sg:dat:m1.m2.m3.n:aff	verb	ε	Ja	emu	n	palat-ć
ppas:sg:dat:m1.m2.m3.n:neg	verb	nie	Ja	emu	n	palat-ć
ppas:sg:acc.inst:f:aff	verb	ε	Ja	ą	n	palat-ć
ppas:sg:acc.inst:f:neg	verb	nie	Ja	ą	n	palat-ć
ppas:sg:inst.loc:m1.m2.m3.n:aff	verb	ε	Ja	ym	n	palat-ć
ppas:pl:dat:m1.m2.m3.f.n:aff				-		_
ppas:sg:inst.loc:m1.m2.m3.n:neg	verb	nie	Ja	ym	n	palat-ć
ppas:pl:dat:m1.m2.m3.f.n:neg				-		_
ppas:pl:nom.voc:m1:aff	verb	ε	Ja	i	n	palat-ć
ppas:pl:nom.voc:m1:neg	verb	nie	Ja	i	n	palat-ć
ppas:pl:gen.loc:m1.m2.m3.f.n:aff	verb	ε	Ja	ych	n	palat-ć
ppas:pl:acc:m1:aff				-		_
ppas:pl:gen.loc:m1.m2.m3.f.n:neg	verb	nie	Ja	ych	n	palat-ć
ppas:pl:acc:m1:neg						•
ppas:pl:inst:m1.m2.m3.f.n:aff	verb	ϵ	Ja	ymi	n	palat-ć
ppas:pl:inst:m1.m2.m3.f.n:neg	verb	nie	Ja	ymi	n	palat-ć
	1	1	1		1	

ppas:sg:nom.acc.voc:n:aff	verb	ϵ	Jo	e	\mathbf{n}	palat-ć
ppas:pl:nom.acc.voc:m2.m3.f.n:aff						
ppas:sg:nom.acc.voc:n:neg	verb	nie	Jo	e	n	palat-ć
ppas:pl:nom.acc.voc:m2.m3.f.n:neg						
ppas:sg:nom.voc:m1.m2.m3:aff	verb	ε	Jo	У	n	palat-ć
ppas:sg:acc:m3:aff						
ppas:sg:nom.voc:f:aff	verb	ε	Jo	\mathbf{a}	n	palat-ć
ppas:sg:nom.voc:m1.m2.m3:neg	verb	nie	Jo	у	n	palat-ć
ppas:sg:acc:m3:neg						
ppas:sg:nom.voc:f:neg	verb	nie	Jo	\mathbf{a}	n	palat-ć
ppas:sg:gen.dat.loc:f:aff	verb	ε	Jo	ej	n	palat-ć
ppas:sg:gen.dat.loc:f:neg	verb	nie	Jo	ej	n	palat-ć
ppas:sg:gen:m1.m2.m3.n:aff	verb	ε	Jo	ego	n	palat-ć
ppas:sg:acc:m1.m2:aff						
ppas:sg:gen:m1.m2.m3.n:neg	verb	nie	Jo	ego	n	palat-ć
ppas:sg:acc:m1.m2:neg						
ppas:sg:dat:m1.m2.m3.n:aff	verb	ε	Jo	emu	n	palat-ć
ppas:sg:dat:m1.m2.m3.n:neg	verb	nie	Jo	emu	n	palat-ć
ppas:sg:acc.inst:f:aff	verb	ε	Jo	ą	n	palat-ć
ppas:sg:acc.inst:f:neg	verb	nie	Jo	ą	n	palat-ć
ppas:sg:inst.loc:m1.m2.m3.n:aff	verb	ε	Jo	ym	n	palat-ć
ppas:pl:dat:m1.m2.m3.f.n:aff						
ppas:sg:inst.loc:m1.m2.m3.n:neg	verb	nie	Jo	ym	n	palat-ć
ppas:pl:dat:m1.m2.m3.f.n:neg						
ppas:pl:nom.voc:m1:aff	verb	ε	Jo	i	n	palat-ć
ppas:pl:nom.voc:m1:neg	verb	nie	Jo	i	n	palat-ć
ppas:pl:gen.loc:m1.m2.m3.f.n:aff	verb	ε	Jo	ych	n	palat-ć
ppas:pl:acc:m1:aff						
ppas:pl:gen.loc:m1.m2.m3.f.n:neg	verb	nie	Jo	ych	n	palat-ć
ppas:pl:acc:m1:neg						
ppas:pl:inst:m1.m2.m3.f.n:aff	verb	ε	Jo	ymi	n	palat-ć
ppas:pl:inst:m1.m2.m3.f.n:neg	verb	nie	Jo	ymi	n	palat-ć

interpretacja	cat	pref	group	flex	flex2	lemma
fin:sg:sec	verb	ε	uje	SZ	ε	ywać
fin:sg:ter	verb	ε	uje	ε	ε	ywać
fin:pl:pri	verb	ε	uje	my	ε	ywać
fin:pl:sec	verb	ε	uje	cie	ε	ywać
fin:sg:pri	verb	ε	uj	ę	ε	ywać
$\operatorname{fin:pl:ter}$	verb	ε	uj	ą	ε	ywać
impt:sg:sec	verb	ε	uj	ε	ε	ywać
impt:pl:pri	verb	ε	uj	my	ε	ywać
impt:pl:sec	verb	ε	uj	cie	ε	ywać
pcon:imperf	verb	ε	uj	ε	ąc	ywać
pacta	verb	ε	uj	О	ąc	ywać

t	l1					
pact:sg:nom.acc.voc:n:imperf:aff	verb	ε	uj	е	ąc	ywać
pact:pl:nom.acc.voc:m2.m3.f.n:imperf:aff			:	_		
pact:sg:nom.acc.voc:n:imperf:neg	verb	nie	uj	е	ąc	ywać
pact:pl:nom.acc.voc:m2.m3.f.n:imperf:neg	١, ١					,
pact:sg:nom.voc:m1.m2.m3:imperf:aff	verb	ε	uj	У	ąc	ywać
pact:sg:acc:m3:imperf:aff						
pact:pl:nom.voc:m1:imperf:aff			_			
pact:sg:nom.voc:f:imperf:aff	verb	ε	uj	a	ąc	ywać
pact:sg:nom.voc:m1.m2.m3:imperf:neg	verb	$_{ m nie}$	uj	У	ąc	ywać
pact:sg:acc:m3:imperf:neg						
pact:pl:nom.voc:m1:imperf:neg						
pact:sg:nom.voc:f:imperf:neg	verb	$_{ m nie}$	uj	a	ąc	ywać
pact:sg:gen.dat.loc:f:imperf:aff	verb	ε	uj	ej	ąc	ywać
pact:sg:gen.dat.loc:f:imperf:neg	verb	$_{ m nie}$	uj	ej	ąc	ywać
pact:sg:gen:m1.m2.m3.n:imperf:aff	verb	ε	uj	ego	ąc	ywać
pact:sg:acc:m1.m2:imperf:aff						
pact:sg:gen:m1.m2.m3.n:imperf:neg	verb	$_{ m nie}$	uj	ego	ąc	ywać
pact:sg:acc:m1.m2:imperf:neg						
pact:sg:dat:m1.m2.m3.n:imperf:aff	verb	ε	uj	emu	ąc	ywać
pact:sg:dat:m1.m2.m3.n:imperf:neg	verb	$_{ m nie}$	uj	emu	ąc	ywać
pact:sg:acc.inst:f:imperf:aff	verb	ε	uj	ą	ąc	ywać
pact:sg:acc.inst:f:imperf:neg	verb	nie	uj	ą	ąc	ywać
pact:sg:inst.loc:m1.m2.m3.n:imperf:aff	verb	ε	uj	ym	ąc	ywać
pact:pl:dat:m1.m2.m3.f.n:imperf:aff			-	-	· ·	
pact:sg:inst.loc:m1.m2.m3.n:imperf:neg	verb	$_{ m nie}$	uj	ym	ąc	ywać
pact:pl:dat:m1.m2.m3.f.n:imperf:neg			Ü	· ·	C	
pact:pl:gen.loc:m1.m2.m3.f.n:imperf:aff	verb	ε	uj	ych	ąc	ywać
pact:pl:acc:m1:imperf:aff			J	U	C	v
pact:pl:gen.loc:m1.m2.m3.f.n:imperf:neg	verb	nie	uj	ych	ąc	ywać
pact:pl:acc:m1:imperf:neg			J	J	-c	J
pact:pl:inst:m1.m2.m3.f.n:imperf:aff	verb	ε	uj	ymi	ąc	ywać
pact:pl:inst:m1.m2.m3.f.n:imperf:neg	verb	$_{ m nie}$	uj	ymi	ąc	ywać
	1				C	

Poniższe tablice w lewej kolumnie zawierają interpretację, w prawej wartości atrybutu flex, palat i velar, a w nagłówku opis pozostałych atrybutów. Brak określenia wartości dla palat lub velar oznacza, że wartość może być dowolna.

cat=noun lemma=a gender:=f		sg:nom	a
G		sg:gen	y ⋆ ε
		sg:gen.dat.loc	ej
		sg:dat.loc	y↑ ie↓
		sg:acc	ę ą
		sg:inst	ą
		sg:voc	u† o a
		pl:nom.acc.voc	у↓ е
		pl:gen	ε y↑
		pl:gen.loc	ych
	60	pl:dat	ym om
		pl:inst	ymi ami
		pl:loc	ach

 $cat{=}noun\;lemma{=}a\;gender{:}{=}m1$

sg:nom	a
sg:gen	y ⋆ ego
sg:gen.acc	⋆ ego
$\operatorname{sg:dat}$	⋆emu
sg:dat.loc	y↑ ie↓
sg:acc	ę
$\operatorname{sg:inst}$	ą ⋆ ym
sg:loc	⋆ ym
sg:voc	o ⋆ u
$\operatorname{pl:nom.voc}$	y↑ i↓ owie ⋆e
$\operatorname{pl:gen.acc}$	ów ⋆ε
pl:dat	om
$_{ m pl:inst}$	ami
pl:loc	ach
depr	уе
'	'

cat=noun lemma=a gender:=m2

	0
sg:nom	a
sg:gen	у
$\operatorname{sg:dat.loc}$	y↑ ie↓
sg:acc	ę
$\operatorname{sg:inst}$	ą
sg:voc	О
pl:nom.acc.voc	y↓ e↑
pl:gen	ów y
$\operatorname{pl}:\operatorname{dat}$	om
pl:inst	ami
pl:loc	ach

cat=noun lemma=a gender:=n:ncol

	. 0
sg:nom.acc.voc	★a
sg:gen	★a
sg:dat	★a
sg:inst	★a
sg:loc	★a

 $cat = noun \ lemma = a \ gender := n:pt$

$\operatorname{pl:nom.acc.voc}$	a
pl:gen	εów y↑
pl:dat	om
pl:inst	ami
pl:loc	ach

 $cat{=}noun\;lemma{=}anin\;gender{:}{=}m1$

$\operatorname{pl:nom.voc}$	anie
$_{ m pl:gen.acc}$	anów an
pl:dat	anom
pl:inst	anami
pl:loc	anach
depr	anv

 $cat=noun\ lemma=e\ gender:=m1$

sg:nom.voc depr	e
sg:gen.acc	ego
sg:dat	emu
sg:inst.loc	$_{ m em}$
pl:nom.voc	owie
pl:gen.acc	ów
pl:dat	om
pl:inst	ami
pl:loc	ach

 $cat = noun \ lemma = e \ gender := n : ncol$

sg:nom.acc.voc	e
sg:gen	ego
sg:gen pl:nom.acc.voc	a↑
sg:dat	emu
sg:dat.loc	u↑
sg:inst	em↑
sg:inst.loc	em↓ ym
pl:nom.acc.voc	е
pl:gen	ε↑⋆ów y↑
pl:gen.loc	ych
pl:dat	ym om↑
pl:inst	ymi ami↑
pl:loc	ach↑
	•

 $cat{=}noun\ lemma{=}e\ gender{:}=n{:}pt$

	_
$\operatorname{pl:nom.acc.voc}$	e
pl:gen	ε ↑ ów↑ ych↓ y↑
pl:dat	ym om
pl:inst	ymi ami
pl:loc	ych ach

 $cat{=}noun\ lemma{=}mie\ gender:{=}n:ncol$

```
sg:nom.acc.voc
                     mię
                                                 sg:nom
                                                                     o
 sg:gen
                      mienia
                                                 sg:gen.acc
                                                                     a
 sg:dat.loc
                     mieniu
                                                 sg:dat
                                                                     owi
 sg:inst
                     mieniem
                                                 sg:inst
                                                                     em
 pl:nom.acc.voc
                     miona
                                                 sg:loc
                                                                     u\uparrow u\downarrow \rightarrow ie\downarrow \leftarrow
 pl:gen
                                                 sg:voc
                      mion
                                                                     u o
 pl:dat
                      mionom
                                                 pl:nom.acc.voc
                                                                     y↓ e↑ a↓
 pl:inst
                      mionami
                                                 pl:gen
                                                                     ów
 pl:loc
                     mionach
                                                 pl:dat
                                                                     om
                                                 pl:inst
                                                                     ami
cat=noun lemma=ni gender:=f
                                                 pl:loc
                                                                     ach
 sg:nom.gen.dat.loc.voc
 sg:acc
                               nię ⋆nią
                                               cat=noun lemma=o gender:=m3
 sg:inst
                              nią
                                                 sg:nom.acc
                                                                     *0
 pl:nom.acc.voc
                              _{
m nie}
                                                 sg:gen
                                                                     ⋆a
 pl:gen
                              ń
                                                 sg:dat
                                                                     ⋆owi
 pl:dat
                              niom
                                                 sg:inst
                                                                     ⋆em
 pl:inst
                              niami
                                                 sg:loc
                                                                     ⋆u
 pl:loc
                              niach
                                                 sg:voc
                                                                     ⋆u
                                                 pl:nom.acc.voc
cat=noun lemma=o gender:=m1
                                                 pl:gen
                                                                     ★ów
 sg:nom
                                                 pl:dat
                                                                     ⋆om
                 y \downarrow \star a
 sg:gen
                                                 pl:inst
                                                                     ⋆ami
 sg:gen.acc
                 \mathbf{a}
                                                 pl:loc
                                                                     ★ach
 sg:dat
                 u↓ owi ie↓
 sg:acc
                 ę↓
                                               cat=noun lemma=o gender:=n:ncol
 sg:inst
                                                 sg:nom.acc.voc
                                                                     o
                 ą↓ em
 sg:loc
                 u \uparrow u \downarrow \rightarrow ie \downarrow
                                                 sg:gen
                                                                     a
 sg:voc
                 u \uparrow u \downarrow \rightarrow o
                                                 sg:dat
                                                                     u
 pl:nom.voc
                 owie a↓
                                                 sg:inst
 pl:gen.acc
                 ów
                                                 sg:loc
                                                                     u\uparrow u\downarrow \rightarrow ie\downarrow \leftarrow
 pl:dat
                                                 pl:nom.acc.voc
                 om
                                                                     \mathbf{a}
 pl:inst
                 ami
                                                 pl:gen
                                                                     ε ów ⋆y
 pl:loc
                 ach
                                                 pl:dat
                                                                     om
 depr
                y↓ o e↑ a↓
                                                 pl:inst
                                                                     ami
                                                 pl:loc
                                                                     \operatorname{ach}
cat=noun lemma=o gender:=m1:pt
 pl:nom.voc
                                               cat=noun lemma=o(n) gender:=m1
 pl:gen.acc
                 a
 pl:dat.loc
                 u
```

pl:inst

em

cat=noun lemma=o gender:=m2

```
ona
 sg:gen.acc
                                         cat=noun lemma=y gender:=m2
 sg:dat
               onowi
                                          sg:nom.voc
 sg:inst
               onem
                                          sg:gen.acc
                                                             ego
 sg:loc.voc
               onie
                                          sg:dat
                                                              emu
 pl:nom.voc
               onowie
                                          sg:inst.loc|pl:dat
                                                              ym
 pl:gen.acc
               onów
                                          pl:nom.acc.voc
                                                              e
 pl:dat
               onom
                                          pl:gen.acc.loc
                                                             ych
 pl:inst
               onami
                                          pl:inst
                                                             ymi
 pl:loc
               onach
                                         cat=noun lemma=y gender:=m3
 depr
               ony
                                          sg:nom.acc.voc
cat = noun
               lemma=stwo
                                  gen-
                                          sg:gen
                                                              ego
der:=m1:pt
                                          sg:dat
                                                              emu
 pl:nom.voc
               stwo
                                          sg:inst.loc|pl:dat
                                                              ym
 pl:gen.acc
               stwa
                                          pl:nom.acc.voc
                                                              е
 pl:dat.loc
               stwu
                                          pl:gen.loc
                                                             ych
 pl:inst
               stwem
                                          pl:inst
                                                             ymi
cat=noun lemma=um gender:=n:ncol
                                         cat=noun lemma=y gender:=n:pt
 sg:nom.gen.dat.acc.inst.loc.voc
                                   um
                                          pl:nom.acc.voc
 pl:nom.acc.voc
                                   a
                                          pl:gen
                                                            ε↓ów y↑
 pl:gen
                                   ów
                                          pl:dat
                                                            om
 pl:dat
                                   om
                                          pl:inst
                                                            ami
 pl:inst
                                   ami
                                          pl:loc
                                                            ach
 pl:loc
                                   ach
                                         cat=noun\ lemma=e\ gender:=n:col
cat=noun lemma=us gender:=m3
                                          sg:nom.acc.voc
 sg:gen
                   \mathbf{u}
                                          sg:gen
                                                            ęcia
 sg:dat
                   owi
                                          sg:dat.loc
                                                            ęciu
 sg:inst
                   em
                                          sg:inst
                                                            ęciem
 sg:loc.voc
                   ie
                                          pl:nom.acc.voc
                                                            et a
 pl:nom.acc.voc
                                          pl:gen
                   у
                                                            ąt
 pl:gen
                   ów
                                          pl:dat
                                                            ętom
 pl:dat
                   om
                                          pl:inst
                                                            etami
 pl:inst
                   ami
                                          pl:loc
                                                            etach
 pl:loc
                   ach
                                         cat=noun lemma=\varepsilon gender:=f
cat=noun lemma=y gender:=m1
                                          sg:nom.acc
                                                                     \varepsilon \uparrow
 sg:nom.voc
                    У
                                          sg:gen.dat.loc.voc|pl:gen
                                                                     у↑
 sg:gen.acc
                    ego
                                          sg:inst
                                                                     ą†
 sg:dat
                    emu
                                          pl:nom.acc.voc
                                                                     y↑ e↑
 sg:inst.loc|pl:dat
                    ym
                                          pl:dat
                                                                     om†
 pl:nom.voc
                    y↑ owie i↓ *y
                                          pl:inst
                                                                     ami↑
 pl:gen.acc.loc
                    ych
                                          pl:loc
                                                                     ach↑
 pl:inst
                    ymi
                                         cat=noun\ lemma=\varepsilon\ gender:=m1
 depr
                    e
```

```
sg:nom
                                                            sg:nom
                     \varepsilon
                                                                                    \varepsilon
                                                            sg:gen.acc
 sg:gen
                     ⋆у
                                                                                    a
 sg:gen.acc
                                                            sg:dat
                                                                                    owi ⋆u
 sg:dat
                     owi ⋆u
                                                            sg:inst
                                                                                    em
 sg:dat.loc
                                                            sg:loc.voc
                                                                                    \mathbf{u}\!\uparrow\mathbf{u}\!\!\downarrow\to\mathbf{ie}\!\!\downarrow\leftarrow
                     ⋆у
 sg:acc
                                                            pl:nom.acc.voc
                     ⋆у
                                                                                    y↓ e↑ ★e
 sg:inst
                                                            pl:gen
                                                                                    ów y↑
                     em ⋆ą
 sg:loc
                     ⋆u ⋆ie
                                                            pl:dat
                                                                                    om
 sg:loc.voc
                     \mathbf{u}\!\uparrow\mathbf{u}\!\!\downarrow\to\mathbf{ie}\!\!\downarrow\leftarrow
                                                            pl:inst
                                                                                    ami
 sg:voc
                     cze↑ *y *ie
                                                            pl:loc
                                                                                    \operatorname{ach}
                                                          cat = noun lemma = \varepsilon gender = m3
 pl:nom.voc
                     y↑ i↓ e↑ owie *ie
                                                            sg:nom.acc
                                                                                    ε
 pl:gen.acc
                     ów y↑
 pl:dat
                     om
                                                            sg:gen
                                                                                    u a
                                                            sg:dat
                                                                                    ∗u↓ owi
 pl:inst
                     ami
                                                            sg:inst
                                                                                    _{
m em}
 pl:loc
                     \operatorname{ach}
                                                            sg:loc
                                                                                    ⋆ie
 _{
m depr}
                    y↓ e↑
                                                                                    u{\uparrow}\;u{\downarrow}{\rightarrow}\;ie{\downarrow}{\leftarrow}
                                                            sg:loc.voc
cat=noun\ lemma=\varepsilon\ gender:=m2
                                                                                    ⋆ie
                                                            sg:voc
                                                            pl:nom.acc.voc
                                                                                    y↓ e↑ ★e ★a
                                                            pl:gen
                                                                                    ów y↑
                                                            pl:dat
                                                                                    om
                                                            pl:inst
                                                                                    ami
                                                            pl:loc
                                                                                    \operatorname{ach}
```