>>> Python Científico
>>> Python Científico: A

Nome: Tiarles Guterres

Data: Março 2019

LINK NOVO: https://tinyurl.com/y6rgu38n

[-]\$ _

[†]tiarles.guterres@ecomp.ufsm.br

>>> Assuntos desta Lecture

- 1. Numpy
- 2. Matplotlib
- 3. Prático: Cálculo de FFT
- 4. Pandas

[~]\$_

>>> Numpy

- * Introdução ao Numpy (numpy.zeros, numpy.array # Estrutura Básica)
- * Slicing the arrays
- * Indexação de arrays
- * Construindo e examinando arrays

[1. Numpy]\$ _

>>> Matplotlib

- * Introdução ao matplotlib (.pyplot)
- * Customizando plots
- * Diversos (histogramas, subplots, logspace, random para histogramas)

[2. Matplotlib]\$ _ [4/7]

>>> Prático: Cálculo de FFT

- * Passo à passo para a padronização das formas de onda da FFt.
- * Geração do eixo da frequência.
- * Mostrar utilizando matplotlib.pyplot

>>> Pandas

- * Criando um pandas.Series por listas
- * Criando um pandas.DataFrame por dicionários com listas
- * Reindexação
- * Exemplo com arquivo PSIM do Colpes:
 - * Arquivo separado por $' \setminus t$ '
 - * Importação, transformação em .csv e exportação
 - * Criação de um DataFrame a partir do .csv
 - * Plotagem do sinal no domínio do tempo e da frequência.

[4. Pandas]\$ _

>>> Jupyter Noteboo

- * np.concatenate
- >
- >
- y.
- ٠.
- .