5.Gene_expression_analysis

Fay

2022-08-09

load libraries

```
library(ggplot2)
library(tidyverse)
## -- Attaching packages -----
                                             ----- tidyverse 1.3.1 --
## v tibble 3.1.8
                 v dplyr
                          1.0.9
## v tidyr 1.2.0
                 v stringr 1.4.0
         2.1.2
                  v forcats 0.5.1
## v readr
## v purrr
         0.3.4
## -- Conflicts -----
                                  ## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                 masks stats::lag()
library(optimx)
```

Import data:

Here, we have the experimental / field data, inlcuding imputed data

```
lab <- read.csv("output_data/gene_expression/data_products/lab_imputed_gene_expression.csv")
field <- read.csv("output_data/gene_expression/data_products/field_imputed_gene_expression.csv")</pre>
```

Selecting genes

It is time to apply the package of Alice Balard et al. on our predictions!

Let's see if we indeed have differences across the hybrid index with our predicted weight loss.

Install the package

```
##
## * checking for file '/tmp/Rtmpor4leT/remotes2e67d0799862c7/alicebalard-parasiteLoad-1b43216/DESCRIPT
## * preparing 'parasiteLoad':
## * checking DESCRIPTION meta-information ... OK
## * checking for LF line-endings in source and make files and shell scripts
## * checking for empty or unneeded directories
## * building 'parasiteLoad_0.1.0.tar.gz'
```

Applying Alice's package on every gene

```
x <- field$ID01
# Define function to be used to test, get the log lik and aic
tryDistrib <- function(x, distrib){</pre>
  # deals with fitdistr error:
 fit <- tryCatch(MASS::fitdistr(x, distrib), error=function(err) "fit failed")</pre>
  return(list(fit = fit,
              loglik = tryCatch(fit$loglik, error=function(err) "no loglik computed"),
              AIC = tryCatch(fit$aic, error=function(err) "no aic computed")))
}
findGoodDist <- function(x, distribs, distribs2){</pre>
  l =lapply(distribs, function(i) tryDistrib(x, i))
  names(1) <- distribs
  print(1)
  listDistr <- lapply(distribs2, function(i){</pre>
    if (i %in% "t"){
      fitdistrplus::fitdist(x, i, start = list(df =2))
    } else {
      fitdistrplus::fitdist(x,i)
    }}
  par(mfrow=c(2,2))
  denscomp(listDistr, legendtext=distribs2)
  cdfcomp(listDistr, legendtext=distribs2)
  qqcomp(listDistr, legendtext=distribs2)
  ppcomp(listDistr, legendtext=distribs2)
  par(mfrow=c(1,1))
tryDistrib(x, "normal")
```

Functions for testing distributions

```
## $fit
##
         mean
                       sd
                   4.3044978
##
     15.1432029
## ( 0.2278182) ( 0.1610918)
##
## $loglik
## [1] -1027.66
##
## $AIC
## NULL
tryDistrib(x, "binomial")
## $fit
## [1] "fit failed"
##
## $loglik
## [1] "no loglik computed"
##
## $AIC
## [1] "no aic computed"
tryDistrib(x, "student")
## $fit
## [1] "fit failed"
## $loglik
## [1] "no loglik computed"
##
## $AIC
## [1] "no aic computed"
tryDistrib(x, "weibull")
## Warning in densfun(x, parm[1], parm[2], ...): NaNs produced
## Warning in densfun(x, parm[1], parm[2], ...): NaNs produced
## $fit
##
        shape
                     scale
##
      3.6718724
                 16.7658776
## ( 0.1428414) ( 0.2566000)
## $loglik
## [1] -1032.752
##
## $AIC
## NULL
tryDistrib(x, "weibullshifted")
## $fit
## [1] "fit failed"
##
## $loglik
```

```
## [1] "no loglik computed"
##
## $AIC
## [1] "no aic computed"
```