1	2	3	4	5	6	7	8	9

Calif.

APELLIDO Y NOMBRE:

Condición:

Libre

Regular

Algebra II - Final 19 de diciembre de 2019

Justificar todas las respuestas. No se permite el uso de dispositivos electrónicos. Todos los resultados teóricos utilizados deben ser enunciados apropiadamente; en caso de utilizar resultados teóricos no dados en clase, los mismos deben demostrarse. Para aprobar se debe tener como mínimo 15 pts. en la parte teórica y 30 pts. en la parte práctica.

Parte Teórica (30 pts.)

- 1. (10 pts) Sea \mathbb{K} un cuerpo, V un \mathbb{K} -espacio vectorial de dimensión finita, y sean $S, T \subset V$ subespacios.
 - Definir S + T, y probar que es un subespacio.
 - Dar una fórmula para $\dim(S+T)$ y demostrarla.
- 2. (10 pts) Sea \mathbbm{k} un cuerpo, V un \mathbbm{k} -espacio vectorial de dimensión finita y $f:V\to V$ una transformación lineal. Dar la definición de un autovalor para f y probar que $\lambda\in\mathbbm{k}$ es un autovalor de f si y sólo si λ es una raíz del polinomio característico de f.
- 3. (10 pts) Sea (V, \langle , \rangle) un \mathbb{R} -espacio vectorial de dimensión finita con producto interno. Enunciar y demostrar el Teorema de ortogonalización de Gram-Schmidt.
- 4. Determinar si cada una de las siguientes afirmaciones son verdaderas o falsas, justificando en cada caso la respuesta dada.
 - (a) (3 pts) Si $f: \mathbb{R}^3 \to \mathbb{R}^3$ es una transformación lineal cuyo polinomio característico tiene exactamente dos raíces reales distintas, entonces f no es diagonalizable.
 - (b) (3 pts) Sean V y W son \mathbb{Q} -espacios vectoriales y $f:V\to W$ una función que satisface $f(v_1+v_2)=f(v_1)+f(v_2)$ para todo par $v_1,v_2\in V$ entonces f es una transformación lineal.

Parte Práctica (70 pts.)

5. Sean $a, b, c \in \mathbb{R}$. Consideramos las siguientes matrices:

$$A = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 & 0 \\ 0 & 0 & a & b & c \\ 0 & 0 & -2 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} c & -1 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 & 0 \\ 0 & 0 & a & b & 1 \\ 0 & 0 & -2 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}.$$

- (a) (8 pts) Calcular $\det A$ y $\det B$ en función $\det a, b, c$.
- (b) (7 pts) Sean $S = \{(a, b, c) \in \mathbb{R}^3 | \det A = 0\}$, $T = \{(a, b, c) \in \mathbb{R}^3 | \det B = 0\}$. Decidir si S y T son subsequences de \mathbb{R}^3 .

- 6. Sea $\mathbb{R}[t]_n$ el \mathbb{R} -espacio vectorial de polinomios de grado menor o igual que n y sea $T : \mathbb{R}[t]_n \to \mathbb{R}[t]_n$ la transformación lineal dada por T(p(t)) = p(t) p'(t), para todo $p(t) \in \mathbb{R}[t]_n$.
 - (a) (6 pts) Probar que T es invertible.
 - (b) (6 pts) Probar que 1 es el único autovalor de T.
 - (c) (8 pts) Hallar el autoespacio de 1. Decidir si T es diagonalizable.
- 7. Sea V el \mathbb{R} -espacio vectorial de sucesiones que valen cero a partir de un valor, o sea si $f: \mathbb{N} \to \mathbb{R}$ es una función, entonces $f \in V$ si existe $n_0 \in \mathbb{N}$ (que depende de f) tal que f(n) = 0 para todo $n \geq n_0$. Sea $\Phi: V \times V \to \mathbb{R}$ la función dada por $\Phi(f,g) = \sum_{n=1}^{\infty} f(n)g(n)$ (notar que Φ es una función bien definida porque sólo hay una cantidad finita de sumandos no nulos).
 - (a) (8 pts) Probar que Φ es un producto interno en V.
 - (b) (3 pts) Sea $T: V \to V$, la función dada por $T(f)(n) = \begin{cases} 0 & \text{si } n = 1, \\ f(n-1) & \text{si } n \geq 2. \end{cases}$

Probar que T es una transformación lineal.

- (c) (6 pts) Probar que para todo par de funciones $f, g \in V$ se cumple $\Phi(T(f), T(g)) = \Phi(f, g)$. Deducir de esta igualdad que T es un monomorfismo.
- (d) (3 pts) Probar que T no es un isomorfismo.
- 8. Sean $\varphi_1, \varphi_2, \varphi_3 : \mathbb{R}[x]_2 \to \mathbb{R}$ las funciones dadas por:

$$\varphi_1(P) = P(-1),$$
 $\varphi_2(P) = P(0),$ $\varphi_3(P) = P(1),$ $P \in \mathbb{R}[x]_2.$

- (a) (10 pts) Probar que $B = \{\varphi_1, \varphi_2, \varphi_3\}$ es una base de $(\mathbb{R}[x]_2)^*$.
- (b) (5 pts) Sea $\varphi \in (\mathbb{R}[x]_2)^*$, $\varphi(a+bx+cx^2)=3a+9b+27c$. Hallar las coordenadas de φ en la base B.
- 9. Sea V un espacio vectorial de dimensión finita y $f:V\to V$ una transformación lineal.
 - (a) (3 pts) Probar que para todo $n \in \mathbb{N}$ vale que $\operatorname{Nu} f^n \subseteq \operatorname{Nu} f^{n+1}$, $\operatorname{Im} f^n \supseteq \operatorname{Im} f^{n+1}$.
 - (b) (7 pts) Probar que existe $m \in \mathbb{N}$ tal que

$$\operatorname{Nu} f \subsetneq \operatorname{Nu} f^2 \subsetneq \operatorname{Nu} f^3 \cdots \subsetneq \operatorname{Nu} f^m = \operatorname{Nu} f^{m+1}$$
$$\operatorname{Im} f \supsetneq \operatorname{Im} f^2 \supsetneq \operatorname{Im} f^3 \cdots \supsetneq \operatorname{Im} f^m = \operatorname{Im} f^{m+1}.$$

Ayuda: $f^n = f \circ f \circ \cdots \circ f$ es una transformación lineal. Utilizar relación entre las dimensiones de su núcleo y su imagen.

(c) (5 pts) Probar además que $V = \text{Nu} f^m \oplus \text{Im} f^m$.

EJERCICIO PARA LIBRES El puntaje entre paréntesis es lo que se le resta al puntaje de la parte práctica en caso de no ser resuelto correctamente

En $\mathbb{R}[x]_3$ consideramos los siguientes subespacios:

$$S_1 = \{ P \in \mathbb{R}[x]_3 : P(1) = P'(1) = 0 \},$$
 $S_2 = \{ P \in \mathbb{R}[x]_3 : P(-1) = P'(-1) = 0 \}.$

- 1. (-9pts) Hallar bases de S_1 , S_2 y $S_1 \cap S_2$.
- 2. (-6 pts) Decidir si existe un epimorfismo $T: \mathbb{R}[x]_4 \to \mathbb{R}^2$ tal que $\text{Nu}(T) = S_1$.