Lab: Decision Tree

```
In [1]:
             library(ISLR)
In [2]:
             library(tree)
In [3]:
             remove(Carseats)
         Warning message in remove(Carseats):
         "object 'Carseats' not found"
             attach(Carseats)
In [4]:
In [5]:
             names(Carseats)
         'Sales' 'CompPrice' 'Income' 'Advertising' 'Population' 'Price' 'ShelveLoc' 'Age'
         'Education' 'Urban' 'US'
In [6]:
             #ifelse() function to create a variable, called High,
             #which takes on a value of Yes if the Sales variable exceeds 8,
             #and takes on a value of No otherwise.
             #recording sales as binary data from continous data
             High=ifelse(Sales<=8,"No","Yes")</pre>
             Carseats =data.frame(Carseats ,High)
In [7]:
             names(Carseats)
         'Sales' 'CompPrice' 'Income' 'Advertising' 'Population' 'Price' 'ShelveLoc' 'Age'
         'Education' 'Urban' 'US' 'High'
In [8]:
             ?Carseats
```

In [9]:

```
#We can fit a classification tree using tree() function
tree.carseats=tree(High~.-Sales, Carseats)
summary(tree.carseats)
```

```
Classification tree:

tree(formula = High ~ . - Sales, data = Carseats)

Variables actually used in tree construction:

[1] "ShelveLoc" "Price" "Income" "CompPrice" "Populati on"

[6] "Advertising" "Age" "US"

Number of terminal nodes: 27

Residual mean deviance: 0.4575 = 170.7 / 373

Misclassification error rate: 0.09 = 36 / 400
```

```
ShelveLoc: Bad, Medium
                     Price k 92.5
                                                                  Price < 135
                                                                 US: | Nacombe < 46
     Income < 57
                                  Advertising < 13.5
CompPointelation0<5207.5
                                                               YesNo
        \neg
      NoYes/es/es
                     CompPride < 124.5
                                                   Comp Prodent Prode 5 122.5
                 Price 4 106.5 Price 4 122.5
                                            Income < 100 rice < 125
                                                  ີ YesNo
             Population < 177
            Income < 60.50 Pride < 147.5
                                                          YesNo
                N<sub>0</sub>Yes
                                YesNo
```

```
In [11]: 1 tree.carseats

node), split, n, deviance, yval, (yprob)
   * denotes terminal node

1) root 400 541.500 No ( 0.59000 0.41000 )
   2) ShelveLoc: Bad, Medium 315 390.600 No ( 0.68889 0.31111 )
   4) Price < 92.5 46 56.530 Yes ( 0.30435 0.69565 )
   8) Income < 57 10 12.220 No ( 0.70000 0.30000 )
   16) CompPrice < 110.5 5 0.000 No ( 1.00000 0.00000 ) *</pre>
```

```
17) CompPrice > 110.5 5 6.730 Yes ( 0.40000 0.60000 ) *
       9) Income > 57 36 35.470 Yes ( 0.19444 0.80556 )
        18) Population < 207.5 16 21.170 Yes ( 0.37500 0.62500 ) *
        19) Population > 207.5 20 7.941 Yes ( 0.05000 0.95000 ) *
     5) Price > 92.5 269 299.800 No ( 0.75465 0.24535 )
      10) Advertising < 13.5 224 213.200 No ( 0.81696 0.18304 )
        20) CompPrice < 124.5 96 44.890 No ( 0.93750 0.06250 )
          40) Price < 106.5 38 33.150 No ( 0.84211 0.15789 )
            80) Population < 177 12 16.300 No ( 0.58333 0.41667 )
             160) Income < 60.5 6 0.000 No ( 1.00000 0.00000 ) *
             161) Income > 60.5 6
                                  5.407 Yes ( 0.16667 0.83333 ) *
            81) Population > 177 26 8.477 No ( 0.96154 0.03846 ) *
          41) Price > 106.5 58
                                0.000 No ( 1.00000 0.00000 ) *
        21) CompPrice > 124.5 128 150.200 No ( 0.72656 0.27344 )
          42) Price < 122.5 51 70.680 Yes ( 0.49020 0.50980 )
            84) ShelveLoc: Bad 11
                                  6.702 No ( 0.90909 0.09091 ) *
            85) ShelveLoc: Medium 40 52.930 Yes ( 0.37500 0.62500 )
             170) Price < 109.5 16 7.481 Yes ( 0.06250 0.93750 ) *
             171) Price > 109.5 24 32.600 No ( 0.58333 0.41667 )
               342) Age < 49.5 13 16.050 Yes ( 0.30769 0.69231 ) *
               343) Age > 49.5 11
                                 6.702 No ( 0.90909 0.09091 ) *
          43) Price > 122.5 77 55.540 No ( 0.88312 0.11688 )
            86) CompPrice < 147.5 58 17.400 No ( 0.96552 0.03448 )
            87) CompPrice > 147.5 19 25.010 No ( 0.63158 0.36842 )
             174) Price < 147 12 16.300 Yes ( 0.41667 0.58333 )
               348) CompPrice < 152.5 7 5.742 Yes ( 0.14286 0.8571
4)*
               349) CompPrice > 152.5 5
                                        5.004 No ( 0.80000 0.20000
) *
             11) Advertising > 13.5 45 61.830 Yes ( 0.44444 0.55556 )
        22) Age < 54.5 25 25.020 Yes ( 0.20000 0.80000 )
          44) CompPrice < 130.5 14 18.250 Yes ( 0.35714 0.64286 )
            88) Income < 100 9 12.370 No ( 0.55556 0.44444 ) *
            89) Income > 100 5  0.000 Yes ( 0.00000 1.00000 ) *
          45) CompPrice > 130.5 11
                                   0.000 Yes ( 0.00000 1.00000 ) *
        23) Age > 54.5 20 22.490 No ( 0.75000 0.25000 )
          47) CompPrice > 122.5 10 13.860 No ( 0.50000 0.50000 )
            94) Price < 125 5
                               0.000 Yes ( 0.00000 1.00000 ) *
            95) Price > 125 5
                               0.000 No ( 1.00000 0.00000 ) *
   3) ShelveLoc: Good 85 90.330 Yes ( 0.22353 0.77647 )
     6) Price < 135 68 49.260 Yes ( 0.11765 0.88235 )
      12) US: No 17 22.070 Yes ( 0.35294 0.64706 )
        24) Price < 109 8  0.000 Yes ( 0.00000 1.00000 ) *
        25) Price > 109 9 11.460 No ( 0.66667 0.33333 ) *
      13) US: Yes 51 16.880 Yes ( 0.03922 0.96078 ) *
     7) Price > 135 17 22.070 No ( 0.64706 0.35294 )
      14) Income < 46 6 0.000 No ( 1.00000 0.00000 ) *
```

15) Income > 46 11 15.160 Yes (0.45455 0.54545) *

```
In [12]:
             set.seed(4)
             train=sample(1:nrow(Carseats), 200)
             Carseats.test=Carseats[-train,]
             High.test=High[-train]
             tree.carseats=tree(High~.-Sales, Carseats, subset=train)
             tree.pred=predict(tree.carseats, Carseats.test, type="class")
             table(tree.pred,High.test)
              (89+52)/200
                  High.test
         tree.pred No Yes
               No 89 34
               Yes 25 52
         0.705
In [13]:
             summary(tree.carseats)
         Classification tree:
         tree(formula = High \sim . - Sales, data = Carseats, subset = train)
         Variables actually used in tree construction:
         [1] "ShelveLoc"
                           "Price"
                                         "Advertising" "CompPrice"
                                                                       "Age"
         [6] "Population" "Income"
         Number of terminal nodes: 17
         Residual mean deviance: 0.3521 = 64.43 / 183
         Misclassification error rate: 0.075 = 15 / 200
In [14]:
             set.seed(3)
             cv.carseats=cv.tree(tree.carseats,FUN=prune.misclass)
```

'size' 'dev' 'k' 'method'

names(cv.carseats)

```
In [15]:
             cv.carseats
         $size
         [1] 17 14 10 7 6 4 3 1
         $dev
         [1] 44 44 34 50 53 56 66 67
         $k
         [1]
                  -Inf 0.000000 1.000000 3.666667 4.000000 6.000000 10.00
         0000
         [8] 11.000000
         $method
         [1] "misclass"
         attr(,"class")
         [1] "prune"
                             "tree.sequence"
```


In [18]:

#to check how well pruned tree perform on test data, we apply pred
tree.pred=predict(prune.carseats, Carseats.test, type = "class")
table(tree.pred, High.test)
(92+58)/200

High.test tree.pred No Yes No 92 28 Yes 22 58

0.75


```
tree.pred=predict(prune.carseats, Carseats.test, type = "class")
In [20]:
             table(tree.pred,High.test)
             (97+49)/200
                  High.test
         tree.pred No Yes
               No 97 37
               Yes 17 49
         0.73
In [21]:
             #Fitting regression tree
             library(MASS)
In [22]:
             #creating training set and fit tree to the training data
             set.seed(1)
             train=sample(1:nrow(Boston),nrow(Boston)/2)
             tree.boston=tree(medv~.,Boston,subset=train)
             summary(tree.boston)
         Regression tree:
         tree(formula = medv ~ ., data = Boston, subset = train)
         Variables actually used in tree construction:
         [1] "rm"
                     "lstat" "crim" "age"
         Number of terminal nodes:
         Residual mean deviance: 10.38 = 2555 / 246
         Distribution of residuals:
             Min. 1st Qu.
                             Median
                                        Mean 3rd Qu.
                                                           Max.
```

0.0000

1.9230

16.5800

 $-10.1800 \quad -1.7770 \quad -0.1775$


```
In [25]:
             cv.boston
         $size
         [1] 7 6 5 4 3 2 1
         $dev
              4380.849 4544.815 5601.055 6171.917 6919.608 10419.472 19630
         [1]
         .870
         $k
         [1]
                   -Inf
                          203.9641
                                     637.2707
                                                796.1207 1106.4931 3424.7810
         10724.5951
         $method
         [1] "deviance"
         attr(,"class")
         [1] "prune"
                             "tree.sequence"
```


In [27]: 1 | summary(prune.boston)

Regression tree:

tree(formula = medv ~ ., data = Boston, subset = train)

Variables actually used in tree construction:

[1] "rm" "lstat" "crim" "age"

Number of terminal nodes: 7

Residual mean deviance: 10.38 = 2555 / 246

Distribution of residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-10.1800 -1.7770 -0.1775 0.0000 1.9230 16.5800

35.2868818594623

Bagging and Random Forests

randomForest 4.6-14
Type rfNews() to see new features/changes/bug fixes.

Call:

Mean of squared residuals: 11.39601 % Var explained: 85.17

23.5927297079061

19.6202073910648

In [32]: 1 importance(rf.boston)

	%IncMSE	IncNodePurity
crim	16.697017	1076.08786
zn	3.625784	88.35342
indus	4.968621	609.53356
chas	1.061432	52.21793
nox	13.518179	709.87339
rm	32.343305	7857.65451
age	13.272498	612.21424
dis	9.032477	714.94674
rad	2.878434	95.80598
tax	9.118801	364.92479
ptratio	8.467062	823.93341
black	7.579482	275.62272
Istat	27.129817	6027.63740

In [33]: 1 varImpPlot(rf.boston)

rf.boston

#Boosting

In [34]: 1 library(gbm)

Loaded gbm 2.1.5

	var	rel.inf
rm	rm	43.9919329
Istat	Istat	33.1216941
crim	crim	4.2604167
dis	dis	4.0111090
nox	nox	3.4353017
black	black	2.8267554
age	age	2.6113938
ptratio	ptratio	2.5403035
tax	tax	1.4565654
indus	indus	0.8008740
rad	rad	0.6546400
zn	zn	0.1446149
chas	chas	0.1443986

In [37]: 1 yhat.boost=predict(boost.boston,newdata=Boston[-train,], n.trees=5
2 mean((yhat.boost-boston.test)^2)

18.8470923079959

18.3345451839923