Ayna ML Internship Report

1. Objective

This project aims to develop a deep learning model capable of generating colored polygon images from grayscale inputs and a given color name. This approach simulates multimodal learning by combining visual (grayscale image) and textual (color name) inputs to predict an RGB image output, fulfilling a use case relevant to generative visual systems.

2. Dataset Overview

Inputs:

- o Grayscale polygon image (1 channel, 64x64).
- o Color name (e.g., "red", "green", "blue").

Output:

o Colored RGB polygon image (3 channels, 64x64).

Dataset Format:

- Provided via PyTorch Dataset class.
- o Color names embedded using torch.nn.Embedding.

3. Methodology

3.1 Preprocessing:

- Grayscale and RGB images normalized to [0, 1].
- Color names encoded as indices and mapped to embeddings.
- Resized images to 64x64 (if needed).

3.2 Model Architecture:

A custom **UNet** model was implemented with modifications to incorporate color embeddings:

• Encoder:

 \circ 3 convolutional blocks with increasing filters (16 → 32 → 64).

- Decoder:
 - o Transpose convolutions to upsample and reconstruct the image.
- Color Conditioning:
 - Color embedding vector expanded spatially and concatenated with image feature maps.
 - Allows the model to "paint" the grayscale image according to the color name.

3.3 Loss Function:

• Mean Squared Error (MSE) loss between predicted and ground truth RGB images.

3.4 Optimizer:

• Adam optimizer with learning rate of 0.001.

4. Training Details

• **Epochs**: 20

• Batch size: 16

• **Framework**: PyTorch

• Tracking: Weights & Biases (W&B) used to log:

- Training and validation loss.
- Sample outputs.

5. Evaluation and Results

- Visual comparison of predicted vs. ground truth images shows:
 - o Accurate color transfer aligned with the provided color name.
 - o Correct structure and placement of the polygons.
- Validation loss converged steadily, indicating proper learning without overfitting.

Sample Visual Output:

6. Code Highlights

- CustomDataset class to load grayscale image, color index, and RGB target.
- UNet model modified to integrate color embeddings into decoder pathway.
- Visualization script to save predictions and display outputs side by side.
- Model saved in .pth format.

7. Challenges Faced

- Integrating textual embeddings into image-based models.
- Ensuring spatial broadcast of embeddings while maintaining tensor alignment.
- Limited dataset size required careful tuning to avoid overfitting.

10. Conclusion

This project demonstrates the power of multimodal learning by conditioning an image generation model with textual input. The successful use of a UNet model modified for color guidance shows potential for broader applications in vision-language systems, such as art generation, colorization, and educational tools.