

### **COMP10001**

# Foundations of Computing Semester 1, 2021 Tutorial 11

**Andrew Naughton** 

andrew.naughton@unimelb.edu.au



## Outline

- ❖ Number Systems
- Encoding Standards
- ❖ Text Document Encoding
- \* ACM Code of Ethics
- Dual Use
- Exercises



## Number Systems

- ❖ In essence, a number system is the way we represent numbers
- Common number systems:

| Name        | Base | Range    | Conversion Function           | Prefix | Example   |
|-------------|------|----------|-------------------------------|--------|-----------|
| Decimal     | 10   | [0,, 9]  | <pre>int(num[,base=10])</pre> |        | 419       |
| Binary      | 2    | [0, 1]   | bin()                         | 0b     | 0b1000101 |
| Octal       | 8    | [0,, 7]  | oct()                         | 00     | 00644     |
| Hexadecimal | 16   | [0,, 15] | hex()                         | 0x     | 0x45      |

Note: In Hexadecimal, "A", "B", "C", "D", "E" are used for 10, 11, 12, 13, 14, 15, resp.



## Number Systems

- Why is binary useful?
  - Similar to how our native numbering system is Decimal, computers use Binary, so all data is stored in Binary and processors are built to perform calculations using Binary values
- **❖** Why is Hexadecimal useful?
  - ❖ Higher information density: a single Hex character can represent 4 consecutive bits. Since a byte is 8 bits, 2 Hex characters can represent 1 byte.
  - ♣ E.g. 0b11011000 == 0xD8
  - Used to describe precise memory locations, as well as for specifying colours



## **Encoding Standards**

#### \* ASCII

- \* American Standard Code for Information Interchange
- ❖ A standard that contains a unique mapping for every character in the English alphabet (alongside other characters like punctuation symbols and space)

#### Unicode

- ❖ A standard that contains a unique mapping for every character in <u>every</u> language of the world
- ❖ Solves the problem that in the past, different languages had their own encoding standards, preventing multiple languages from appearing in the document



## **Text Document Encoding**

- ❖ Fixed-Length Encoders: All the characters will be represented using the same number of bits
- \* ASCII
  - Uses 7 bits to represent a single character
  - $\diamond$  Can encode up to 127 (i.e.  $2^7 1$ ) characters
  - ❖ Characters are usually stored using a byte (8 bits) so there's a single redundant bit at the start
- UTF-32 (Unicode Transformation Format 32-bit)
  - ❖ Uses 32 bits to represent a single character, so many more characters can be encoded
  - ❖ Wastes space, since many representations will have redundant bits added to the front



## **Text Document Encoding**

- Variable-Length Encoders: Different characters may be represented using a different number of bits
- **❖** ISO-8859
  - \* Adds a single bit to the front of an ASCII bit sequence, allowing an extra 128 characters to be represented
  - Since adding 1 extra bit doesn't allow a substantial number of extra characters, it comes in 16 variations (ISO-8859-1 to ISO-8859-16)
- UTF-8
  - ❖ Uses 1 to 4 bytes to represent a single character, depending on how much space is needed for it
- **❖** UTF-16
  - Uses 2 to 4 bytes to represent a single character, depending on how much space is needed for it



## **ACM Code of Ethics**

- ❖ Having knowledge of programming is powerful; can augment human abilities, allowing people to deploy systems at scale and change the world in both small and large ways
- Without a sense of ethics, computing can be dangerous and damaging
- ❖ Association for Computing Machinery (ACM) have a Code of Ethics and Professional Conduct − next slide has some of them



## **ACM Code of Ethics**

- Contribute to society and to human well-being, acknowledging that all people are stakeholders in computing
- **❖** Avoid harm
- **❖** Be honest and trustworthy
- ❖ Be fair and take action not to discriminate
- \* Respect the work required to produce new ideas, inventions, creative works, and computing artefacts
- Respect privacy
- Honour confidentiality



## **Dual Use**

- ❖ In computing, dual use refers to technologies which can be equally used for good and malicious purposes
- ❖ Many implementations of artificial intelligence (AI) and automation can be classified as dual use
- ❖ E.g.
  - Surveillance
  - Deepfake technology



# **Exercises**