

INTEGRATIVE ANALYSIS OF NEXT GENERATION SEQUENCING DATA

ABSCHLUSSPRÄSENTATION ZUM SOFTWAREPROJEKT "FUNCTIONAL GENOMICS"

Gruppe 1:

Maximilian Otto, Lucas Rieckert, Kevin Zidane

° INTRODUCTION

- Main goals:
 - Identifying correlation between histone modification profiles (HMP) and gene expression
 - Create a prediction model for the expression of genes
- Data: ChIP-Seq, ATAC-Seq, RNA-Seq
- Samples:
 - Tissue types: limb, forebrain and lung tissue
 - Development states: cells from embryos, 14.5 days post conception (E14.5d) cells from completely developed mouses, postnatal (P0)
- Considered marks: H3K4me3, H3K4me1, H3K27ac, H3K36me3, H3K9me3, H3K27me3

METHODS

- Data collection and quality verification
 - ENCODE Database 🗘
 - FastQC

- Univariate analyses
 - Mapping
 - Peak calling
 - Correlation between histone marks
 - Characterization of H3K27ac-peaks

METHODS Multivariate analyses with ChromHMM

Differential gene expression analyses

Multivariate statistical prediction model

RESULTS: DATA QUALITY

FastQC: Status Checks

mm_ATAC_E14.5_limb_r mm ATAC E14.5 limb r mm_ATAC_E14.5_lung_r mm_ATAC_E14.5_lung_r mm_ATAC_E14.5_lung_r mm ATAC P0 lung rep1 mm_ATAC_P0_lung_rep1 mm_ATAC_P0_lung_rep2 mm_ChIP_E14.5_limb_H mm_ChIP_E14.5_limb_H mm_ChIP_E14.5_limb_H mm_ChIP_E14.5_limb_H mm_ChIP_E14.5_limb_H mm ChIP E14.5 limb H mm_ChIP_E14.5_limb_H mm_ChIP_E14.5_limb_H mm_ChIP_E14.5_limb_H mm_ChIP_E14.5_limb_H mm_ChIP_E14.5_limb_H mm_ChIP_E14.5_lung_H mm_ChIP_E14.5_lung_H mm_ChIP_E14.5_lung_H mm_ChIP_E14.5_lung_H mm_ChIP_E14.5_lung_H mm_ChIP_E14.5_lung_H mm_ChIP_E14.5_lung_H mm_ChIP_E14.5_lung_H mm ChIP E14.5 lung H mm ChIP P0 lung H3K2 mm_ChIP_P0_lung_H3K2 mm_ChIP_P0_lung_H3K4 mm ChIP P0 lung H3K4 mm_ChIP_P0_lung_H3K9 mm_ChIP_P0_lung_H3K9 mm_ChIP_P0_lung_H3k2 mm_ChIP_P0_lung_H3k3 mm ChIP P0 lung H3k3 mm_ContChIP_E14.5_li mm_ContChIP_E14.5_lu mm_ContChIP_P0_lung_ mm_RNA_E14.5_limb_re mm_RNA_E14.5_limb_re mm_RNA_E14.5_limb_re mm RNA_E14.5_lung_re mm_RNA_E14.5_lung_re mm RNA E14.5 lung re mm_RNA_P0_lung_rep1. mm_RNA_P0_lung_rep2 mm_RNA_P0_lung_rep2.

Correlation between histone marks:

Surveying of the amount of common peaks:

Clustered heatmap of read coverage in common H3K27ac peaks of limb, lung and forebrain at E14.5 and P0 apart from limb in P0. We can observe a cluster for forebrain and lung, but less for limb.

Heatmap of read coverage of ATAC-SEQ, H3K27ac, H3K27me3, H3K4me1 and H3K4me3 in lung at regions of H3K27ac-peaks at E14.5 and P0.

ChromHMM's obtained states:

- = weak TSS dist. Enhancer
- 2 = poised, TSS-dist. Enhancer
- 3 = Strong, TSS-dist Enhancer
- 4 = active TSS
- 5 = Poised, TSS-prox Enhancer
- 6 = weak inactive Promoter
- 7 =Strong, TSS-prox Enhancer, Transk. for 5'-3'
- 8 = Initiation Transkription
- 9 = Strong Transkription
- 10 = H3K36me3 associated, but unknown functionality
- 11 = unknown functionality
- 12 = H3K36me3 associated Heterochromatin
- 13 = no Signal
- 14 = Polycomb associated Heterochromatin
- 15 = Bivalent Promoter

RESULTS: DIFFERENTIAL GENE ANALYSIS

RESULTS: DIFFERENTIAL GENE ALAYSIS

RESULTS: DIFFERENTIAL GENE ANALYSIS

RESULTS: DIFFERENTIAL GENE ANALYSIS

RESULTS: PREDICTION MODEL

- Prediction model for the limb tissue data
 - Trained on 75% of the data and tested on the other 25%
- Beta-coefficients:
 - H3K4me3: 0.864
 - H3K4me1: 0.126
 - H3K27ac: 0.416
 - H3K36me3: 0.019
 - H3K9me3: -0.344
 - H3K27me3: -0.358
- R²-value: 0.4549
- Adjusted R²-value: 0.4547
- Correlation between test dataset and the RPKM values: 0,683

RESULTS: PREDICTION MODEL

CONCLUSION

- Coherence between functionality of chromatin states and their responsible histone modifications
- Some genes are only distinctly necessary for different tissues at different development states
- Prediction model: correlation coefficient (between HMP and expressed genes) = 0.7
- General expression of genes, depending on HMPs, could be predictable over different tissues
- Further questions:
 - Including other marks in analysis may enhance prediction accuracy