ĐỀ THI CUỐI KỲ GIẢI TÍCH 2 - HỌC KỲ 20172

Nhóm ngành 1 - Thời gian: 90 phút

Câu 1 (1 điểm): Viết phương trình tiếp tuyến của đường tròn cho dưới dạng giao của mặt paraboloid $z=30-x^2-y^2$ và mặt nón $z=\sqrt{x^2+y^2}$ tại điểm M(3;4;5).

Câu 2 (1 điểm): Tính tích phân $\iint\limits_{D} |x+y| \ dxdy$, ở đó $D: x^2+y^2 \leq 1$.

Câu 3 (1 điểm): Tính diện tích của phần mặt paraboloid $x = y^2 + z^2$ thỏa mãn $x \le 1$.

Câu 4 (1 điểm): Tính tích phân bội ba $\iiint\limits_V xz\,dxdydz$, ở đó V là miền thỏa mãn $x^2+y^2+z^2-2x-2y-2z\leq -2$.

Câu 5 (1 điểm): Tính tích phân $\int_{0}^{1} x^{6} \sqrt{1-x^{2}} dx.$

Câu 6 (1 điểm): Tính tích phân đường $\int_C (x+y) ds$, ở đó C là đường tròn có phương trình $x^2+y^2=2y$.

Câu 7 (1 điểm): Chứng minh rằng trường vectơ

$$\overrightarrow{F} = e^{x^2 + y^2 + z^2} \left[\left(2x^2yz + yz \right) \overrightarrow{i} + \left(2xy^2z + xz \right) \overrightarrow{j} + \left(2xyz^2 + xy \right) \overrightarrow{k} \right]$$

là một trường thế. Tìm hàm thế vị.

Câu 8 (1 điểm): Tính tích phân mặt $\iint_S x^2 y \, dS$, ở đó S là phần mặt nón $y = \sqrt{x^2 + z^2}$, $1 \le y \le 2$.

Câu 9 (1 điểm): Cho trường vecto $\overrightarrow{F} = (xy^2 + z) \overrightarrow{i} + (x^2y + z) \overrightarrow{j}$. Tính thông lượng của \overrightarrow{F} qua mặt paraboloid $z = x^2 + y^2$ với $z \le 1$ hướng lên trên.

Câu 10 (1 điểm): Chứng minh rằng nếu f(u) là một hàm số cùng với đạo hàm của nó liên tục trên $\mathbb R$ và L là đường đi từ O(0;0) đến A(a;b) thì $\int\limits_L f(x+y)(dx+dy)=\int\limits_0^{a+b} f(u)\,du.$

LÒI GIẢI CUỐI KÌ MÔN GIẢI TÍCH 2 - Học kì 20172

Đề 1

Ta có:
$$\begin{cases} z = 30 - x^2 - y^2 \\ z = \sqrt{x^2 + y^2} \end{cases} \Leftrightarrow \begin{cases} F = z - 30 + x^2 + y^2 = 0 \\ G = z - \sqrt{x^2 + y^2} \end{cases}$$

$$\text{X\'et } F = z - 30 + x^3 + y^2 = 0 \text{ c\'o: } \begin{cases} F'_x = 2x \\ F'_y = 2y \end{cases} \Rightarrow \begin{cases} F'_x(M) = 6 \\ F'_y(M) = 8 \end{cases}$$

$$F'_z(M) = 1$$

Vectơ pháp tuyến của mặt F=0 tại điểm M là $\overrightarrow{a}=(6,3)$

Vectơ pháp tuyến của mặt G=0 tại điểm M là $\overrightarrow{b}=(-\frac{3}{5},-\frac{4}{5},1)$

Coi \overrightarrow{u} là vectơ chỉ phương tiếp tuyến của đường $\begin{cases} F=0 \\ G=0 \end{cases}$ tại điểm M(3,4,5)

$$\Rightarrow \overrightarrow{u} = \overrightarrow{a} \times \overrightarrow{b} = (\frac{44}{5}, -\frac{33}{5}, 0) = \frac{11}{5}(4, -3, 0) \Rightarrow \text{Tiếp tuyến cần tìm là} \begin{cases} x = 3 + 4t \\ y = 4 - 3t \\ z = 5 \end{cases}$$

Vậy tiếp tuyến cần tìm là $\begin{cases} x = 3 + 4t \\ y = 4 - 3t \end{cases}$

Câu 2:

Chuyển sang tọa độ cực:
$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases} \rightarrow \text{Miền } D \text{ trở thành } D' \begin{cases} 0 \le \theta \le 2\pi \\ 0 \le r \le 1 \end{cases} \quad \text{và } |J| = r$$

$$I = \iint\limits_{D} |x+y| \, dx dy$$

$$= \int\limits_{0}^{1} \int\limits_{0}^{2\pi} |r \cdot (\cos\theta + \sin\theta)| \cdot r \, dr d\theta$$

$$= \int\limits_{0}^{1} \int\limits_{0}^{2\pi} |r \cdot \sqrt{2} \sin\left(\frac{\pi}{4} + x\right)| \cdot r \, dr d\theta$$

$$= \sqrt{2} \int\limits_{0}^{1} r^{2} dr \int\limits_{0}^{2\pi} |\sin(x + \frac{\pi}{4})| \, d\theta$$

$$= \sqrt{2} \cdot \frac{1}{3} \cdot \left(\int\limits_{0}^{3\pi} \sin\left(x + \frac{\pi}{4}\right) d\theta - \int\limits_{\frac{3\pi}{4}}^{7\pi} \sin\left(x + \frac{\pi}{4}\right) d\theta + \int\limits_{\frac{7\pi}{4}}^{2\pi} \sin\left(x + \frac{\pi}{4}\right) d\theta\right)$$

$$= \frac{4\sqrt{2}}{3}$$

Câu 3:

Ta có:
$$x = y^2 + z^2 \Rightarrow \begin{cases} x'_y = 2y \\ x'_z = 2z \end{cases}$$
 $\Rightarrow \sqrt{1 + (x'_y)^2 + (x'_z)^2} = \sqrt{1 + (2y)^2 + (2z)^2} = \sqrt{1 + 4(y^2 + z^2)}$ \Rightarrow Diện tích của phần mặt paraboloid $x = y^2 + z^2$ thỏa mãn $x \le 1$ là:

$$I = \iint_{D} \sqrt{1 + (x'_{y})^{2} + (x'_{z})^{2}} \, dy dz$$
$$= \iint_{D} \sqrt{1 + 4(y^{2} + z^{2})} \, dy dz$$

Với
$$D$$
 là miền $y^2+z^2\leq 1$
 Đặt $\begin{cases} x=r\cos\varphi \\ y=r\sin\varphi \end{cases}$ $\Rightarrow |J|=r$ và miền D trở thành $D':\begin{cases} 0\leq r\leq 1 \\ 0\leq \varphi\leq 2\pi \end{cases}$

$$\Rightarrow I = \int_{0}^{2\pi} d\varphi \int_{0}^{1} r\sqrt{1 + 4r^2} dr$$

$$= 2\pi \int_{0}^{1} r\sqrt{1 + 4r^2} dr$$

$$= 2\pi \left(\frac{5\sqrt{5}}{12} - \frac{1}{12}\right) = \frac{\pi}{6} \left(5\sqrt{5} - 1\right)$$

Câu 4:

Cau 4:
$$I = \iiint_V xz \, dx \, dy \, dz \quad \text{trong } \text{d\'o V là miền: } x^2 + y^2 + z^2 - 2x - 2y - 2z \le -2.$$

Có
$$x^2 + y^2 + z^2 - 2x - 2y - 2z \le -2 \Leftrightarrow (x-1)^2 + (y-1)^2 + (z-1)^2 \le 1$$
. Ta đổi biến:

$$\begin{cases} x = 1 + r\cos\varphi\sin\theta \\ y = 1 + r\sin\varphi\sin\theta \\ z = 1 + r\cos\theta \end{cases} \quad \text{khi đó miền V trở thành V'} \begin{cases} 0 \le \varphi \le 2\pi \\ 0 \le \theta \le \pi \\ 0 \le r \le 1 \end{cases} , \quad |J| = r^2\sin\theta$$

$$\Rightarrow I = \iiint_{V'} (1 + r\cos\varphi\sin\theta)(1 + r\cos\varphi) \cdot |J| \, dr \, d\theta \, d\varphi$$

$$= \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} d\theta \int_{0}^{1} (1 + r\cos\varphi\sin\theta) (1 + r\cos\varphi) \cdot r^{2}\sin\theta \, dr$$

$$= \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} d\theta \int_{0}^{1} (r\cos\theta + r\cos\varphi\sin\theta + r^{2}\cos\varphi\sin\theta\cos\theta + 1) \cdot r^{2}\sin\theta \, dr$$

$$= \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} d\theta \int_{0}^{1} r^{2}\sin\theta \, dr$$

$$= 2\pi \cdot 2 \cdot \frac{1}{3} = \frac{4\pi}{3}$$

Câu 5:

$$\begin{split} I &= \int\limits_0^1 x^6 \sqrt{1-x^2} &\quad \text{ Dặt } \quad t = x^2 \to x = t^{\frac{1}{2}} \Rightarrow dx = \frac{1}{2} t^{-\frac{1}{2}} \\ &= \int\limits_0^1 t^{\frac{5}{2}} (1-t)^{\frac{1}{2}} dt &= \frac{1}{2} B(\frac{7}{2};\frac{3}{2}) \\ &= \frac{1}{2} \cdot \frac{\Gamma(\frac{7}{2})\Gamma(\frac{3}{2})}{\Gamma(5)} &= \frac{1}{2} \cdot \frac{\frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \sqrt{\pi} \cdot \frac{1}{2} \cdot \sqrt{\pi}}{4!} \\ &= \frac{5\sqrt{\pi}}{256} \end{split}$$

Câu 6: CLB HÔ TRƠ HOC TẬP

$$I = \int\limits_C (x+y) ds \quad \text{trong $d\'o$} \quad C: x^2 + y^2 = 2y$$
 Ta đặt
$$\begin{cases} x = \cos t \\ y = 1 + \sin t \end{cases} \Rightarrow \begin{cases} x'_t = -\sin t \\ y'_t = \cos t \end{cases}$$

Khi đó:

$$I = \int_{0}^{2\pi} (x(t) + y(t)) \sqrt{(x'_t)^2 + (y'_t)^2} dt = \int_{0}^{2\pi} (\cos t + \sin t + 1) dt = 2\pi$$

Câu 7:

$$\overrightarrow{F} = e^{x^2 + y^2 + z^2} \left[\left(2x^2yz + yz \right) \overrightarrow{i} + \left(2xy^2z + xz \right) \overrightarrow{j} + \left(2xyz^2 + xy \right) \overrightarrow{k} \right]$$

$$\Rightarrow \begin{cases}
P'_{y} = e^{x^{2}+y^{2}+z^{2}} (z + 4x^{2}y^{2}z + 2x^{2}z + 2y^{2}z) \\
P'_{z} = e^{x^{2}+y^{2}+z^{2}} (y + 4x^{2}yz^{2} + 2x^{2}y + 2yz^{2})
\end{cases}$$

$$\Rightarrow \begin{cases}
P = e^{x^{2}+y^{2}+z^{2}} (2x^{2}yz + yz) \\
Q = e^{x^{2}+y^{2}+z^{2}} (2xy^{2}z + xz) \\
R = e^{x^{2}+y^{2}+z^{2}} (2xyz^{2} + xy)
\end{cases}
\Rightarrow \begin{cases}
Q'_{x} = e^{x^{2}+y^{2}+z^{2}} (z + 4x^{2}y^{2}z + 2x^{2}z + 2y^{2}z) \\
Q'_{z} = e^{x^{2}+y^{2}+z^{2}} (x + 2xy^{2}z^{2} + 2xy^{2} + 2xz^{2}) \\
R'_{x} = e^{x^{2}+y^{2}+z^{2}} (y + 4x^{2}yz^{2} + 2x^{2}y + 2yz^{2}) \\
R'_{y} = e^{x^{2}+y^{2}+z^{2}} (x + 2xy^{2}z^{2} + 2xy^{2} + 2xz^{2})
\end{cases}$$

$$\Rightarrow \begin{cases} P'_y = Q'_x \\ P'_z = R'_x \\ Q'_z = R'_y \end{cases} \implies \overrightarrow{F} \text{ là trường thế.}$$

Tìm hàm thế vị u, ta chọn $(x_0; y_0; z_0) = (0; 0; 0)$:

$$u = \int_{0}^{x} P(t;0;0) dt + \int_{0}^{y} Q(x;t;0) dt + \int_{0}^{z} R(x;y;t) dt + C$$

$$= \int_{0}^{x} 0 dt + \int_{0}^{y} 0 dt + \int_{0}^{z} e^{x^{2}+y^{2}+t^{2}} (2xyt^{2} + xy) dt + C$$

$$= e^{x^{2}+y^{2}+t^{2}} xyt \Big|_{0}^{z} + C$$

$$= e^{x^{2}+y^{2}+z^{2}} xyz + C$$

Câu 8:

Ta có:
$$I=\iint\limits_{S}x^2y\,dS$$
 , ở đó S là phần mặt nón $y=\sqrt{x^2+z^2},\,1\leq y\leq 2$

Do có:
$$\begin{cases} y_x' = \frac{x}{\sqrt{x^2 + z^2}} \\ y_z' = \frac{z}{\sqrt{x^2 + z^2}} \end{cases}$$

$$\Rightarrow \sqrt{1 + (y_x')^2 + (y_z')^2} = \sqrt{1 + \left(\frac{x}{\sqrt{x^2 + z^2}}\right)^2 + \left(\frac{z}{\sqrt{x^2 + z^2}}\right)^2} = \sqrt{2}$$

$$\Rightarrow I = \iint_S x^2 y \, dS$$

$$= \iint_D x^2 \sqrt{x^2 + z^2} \sqrt{1 + (y_x')^2 + (y_z')^2} \, dz dx$$

$$= \iint_D \sqrt{2} x^2 \sqrt{x^2 + z^2} \, dz dx \quad \text{trong $d\'o} \quad D: \begin{cases} 1 \le x^2 + z^2 \le 4 \\ y = 0 \end{cases}$$

$$\text{ Dặt } \left\{ \begin{array}{l} x = r\cos\varphi \\ z = r\sin\varphi \end{array} \right. \Rightarrow |J| = r \quad \text{ và miền } D \text{ trở thành } D' : \left\{ \begin{array}{l} 1 \leq r \leq 2 \\ 0 \leq \varphi \leq 2\pi \end{array} \right. \right.$$

$$\Rightarrow I = \int_{0}^{2\pi} d\varphi \int_{1}^{2} \sqrt{2} \cdot r \cdot (r \cos \varphi)^{2} \cdot r \cdot dr$$

$$= \sqrt{2} \int_{0}^{2\pi} d\varphi \int_{1}^{2} r^{4} (\cos \varphi)^{2} dr$$

$$= \sqrt{2} \int_{0}^{2\pi} \frac{31}{5} (\cos \varphi)^{2} d\varphi$$

$$= \frac{31\sqrt{2}\pi}{5}$$

Câu 9:

Trường vecto
$$\overrightarrow{F} = (xy^2 + z)\overrightarrow{i} + (x^2y + z)\overrightarrow{j}$$

Gọi S là mặt paraboloid $z = x^2 + y^2, z \le 1$ hướng lên trên,

S' là mặt paraboloid $z = x^2 + y^2, z \le 1$ hướng xuống dưới.

Khi đó thông lượng của \overrightarrow{F} qua mặt S là:

$$\iint\limits_{S} \overrightarrow{F} \cdot dS = -\iint\limits_{S'} \overrightarrow{F} \cdot dS$$

Gọi K là mặt giới hạn bởi $x^2+y^2\leqslant 1, z=1$, hướng lên trên.

Khi đó:
$$\iint\limits_{S'} \overrightarrow{F} \cdot dS = \iint\limits_{S' \cup K} \overrightarrow{F} \cdot dS - \iint\limits_{K} \overrightarrow{F} \cdot dS$$

 $S' \cup K$ là mặt kín nên áp dụng công thức Ostrogradski cho mặt này ta được:

$$-\iint\limits_{S'\cup K}\overrightarrow{F}d\overrightarrow{S'}=-\iiint\limits_{D}\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}dxdydz$$

$$=-\iiint\limits_{D}y^2+x^2\;dxdydz\quad\text{trong \mathfrak{F} of D là miền bao bởi S' và K}$$

Chuyển sang hệ tọa độ trụ:
$$\begin{cases} x=r\cos\theta\\ y=r\sin\theta &, |J|=r\\ z=z \end{cases}$$

Miền D trở thành miền D': $\{r^2 \leqslant z \leqslant 1; 0 \leqslant r \leqslant 1; 0 \leqslant \theta \leqslant 2\pi\}$ Khi đó:

$$\iint_{S' \cup K} \overrightarrow{F} \cdot dS = \iiint_{D'} r^2 \cdot r \, dr d\theta dz$$

$$= \iint_{D'} r^3 \cdot (1 - r^2) \, dr d\theta$$

$$= \int_0^{2\pi} d\theta \int_0^1 r^3 (1 - r^2) dr$$

$$= \theta \Big|_0^{2\pi} \cdot \left(\frac{r^4}{4} - \frac{r^6}{6}\right) \Big|_0^1$$

$$= 2\pi \cdot \left(\frac{1}{4} - \frac{1}{6}\right)$$

$$= \frac{\pi}{6}$$

Vì K là mặt giới hạn bởi $x^2 + y^2 \le 1$, z = 1, hướng lên trên nên ta có:

$$\iint\limits_K \overrightarrow{F} \cdot dS = \iint\limits_K (xy^2 + z) dy dz + (x^2y + z) dz dx = 0$$

$$\text{Vây} \iint\limits_S \overrightarrow{F} \cdot dS = -\iint\limits_{S'} \overrightarrow{F} \cdot dS = -\left(\iint\limits_{S' \cup K} \overrightarrow{F} \cdot dS - \iint\limits_K \overrightarrow{F} \cdot dS\right) = -\frac{\pi}{6}$$

Câu 10:

Ta có:
$$I = \int\limits_I f(x+y)(dx+dy)$$
 có miền xác định $D=\mathbb{R}^2$

$$\text{Coi:} \begin{cases} P = f(x+y) \Rightarrow P_y' = f'(x+y) \\ Q = f(x+y) \Rightarrow Q_x' = f'(x+y) \end{cases} \Rightarrow P_y' = Q_x' \quad \forall (x,y) \in \mathbb{R}^2 \Rightarrow \text{Tích phân I không phụ thuộc vào đường đi$$

Chọn đường đi
$$OA: y = \frac{b}{a}x$$

$$\Rightarrow I = \int_{0}^{a} f\left(x + \frac{b}{a}x\right) \left(\frac{b}{a} + 1\right) dx = \int_{0}^{a} f\left[\left(1 + \frac{b}{a}\right)x\right] d\left(x + \frac{b}{a}x\right)$$

$$khi \ x = a \Rightarrow u = a + b$$

khi
$$x = 0 \Rightarrow u = 0$$

$$\Rightarrow I = \int\limits_{L} f(x+y)(dx+dy) = \int\limits_{0}^{a+b} f(u)du \text{ (dpcm)}$$

ĐỀ THI CUỐI KÌ MÔN GIẢI TÍCH 2 - HỌC KÌ 20182

Nhóm ngành 1. Mã HP: MI1121. Thời gian: 90 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải kí xác nhận số đề vào bài thi.

Câu 1(1đ). Viết phương trình tiếp tuyến và pháp diện của đường cong $x=t\cos 2t, y=t\sin 2t, z=3t$ tại điểm ứng với $t=\frac{\pi}{2}$.

Câu 2(1đ). Tính tích phân $\int_0^\infty \frac{x^2 dx}{(1+x^4)^2}$.

Câu 3(1đ). Xác định những điểm không phải là điểm xoáy trong trường vecto $\overrightarrow{F} = (2xy - z^2)\overrightarrow{i} + (3x^2 + 2yz)\overrightarrow{j} - y^2\overrightarrow{k}$.

Câu 4(1đ). Tính tích phân $\iint_S \sqrt{1+x^2+y^2}dS$, trong đó S là mặt $2z=x^2+y^2, \ \ 0\leq x,y\leq 1.$

Câu 5(1đ). Tính khối lượng của một đường cong vật chất có phương trình $x=e^{\frac{t}{2}}\cos t, y=e^{\frac{t}{2}}\sin t, 0 \le t \le \frac{\pi}{2}$ trong mặt phẳng với hàm mật độ $\rho(x,y)=x+y.$

Câu 6(1đ). Tính tích phân kép $\iint_D (y^2 - x^2) dx dy$, trong đó D là miền $0 \le 2y \le x^2 + y^2 \le 2x$.

Câu 7(1đ). Tính tích phân đường $\oint_C \frac{dx + dy}{|x| + |y|}$, trong đó C là đường tròn $x^2 + y^2 = 1$ định hướng dương.

Câu 8(1đ). Tính tích phân $\iiint_V z dx dy dz$ trên miền V giới hạn bởi mặt $(x+2y)^2 + 4z^2 = 1$ trong góc phần tám thứ nhất và các mặt phẳng tọa độ.

Câu 9(1đ). Tính tích phân mặt $\iint_S y dz dx + z dx dy$, trong đó S là phía dưới của mặt nón $z = \sqrt{x^2 + y^2}$, $0 \le z \le 1$, khi nhìn từ chiều dương trục Oz.

Câu 10(1đ). Tính tích phân đường

$$\oint_C (y^2 + z^2)dx + (z^2 + x^2)dy + (x^2 + y^2)dz,$$

trong đó C là giao của mặt cầu $x^2+y^2+z^2=4$ với mặt nón $z=-\sqrt{x^2+(y-1)^2}$, với hướng cùng chiều kim đồng hồ khi nhìn từ gốc O.

LỜI GIẢI CUỐI KÌ MÔN GIẢI TÍCH 2 - HỌC KÌ 20182

Đề 1

Câu 1.

Ta có:
$$\begin{cases} x'_t = \cos 2t - 2t \sin 2t \\ y'_t = \sin 2t + 2t \cos 2t \\ z'_t = 3 \end{cases}$$

Tại
$$t_0 = \frac{\pi}{2}$$
 có:
$$\begin{cases} x(t_0) = -\frac{\pi}{2} \\ y(t_0) = 0 \\ z(t_0) = \frac{3\pi}{2} \end{cases}$$
 và
$$\begin{cases} x'(t_0) = -1 \\ y'(t_0) = -\pi \\ z'(t_0) = 3 \end{cases}$$

Phương trình tiếp tuyến: $\frac{x + \frac{\pi}{2}}{-1} = \frac{y + \pi}{-\pi} = \frac{z + \frac{3\pi}{2}}{3}$

Phương trình pháp tuyến: $-\left(x+\frac{\pi}{2}\right)-\pi y+3\left(z-\frac{3\pi}{2}\right)\Leftrightarrow -x-\pi y+3z-5\pi=0$

$$I = \int_0^\infty \frac{x^2 dx}{(1+x^4)^4} = \int_0^\infty \frac{1}{4} \cdot \frac{x^{-1}}{(1+x^4)^4} \cdot 4x^3 dx$$

$$= \int_0^\infty \frac{1}{4} \cdot \frac{x^{-1}}{(1+x^4)^4} dt$$

$$= \int_0^\infty \frac{1}{4} \cdot \frac{t^{-\frac{1}{4}}}{(1+t)^4} dt$$

$$= \frac{1}{4} B\left(\frac{3}{4}; \frac{13}{4}\right)$$

$$= \frac{1}{4} \cdot \frac{\Gamma\left(\frac{3}{4}\right) \cdot \Gamma\left(\frac{13}{4}\right)}{\Gamma(4)}$$

$$= \frac{1}{4} \cdot \frac{9}{4} \cdot \frac{5}{4} \cdot \frac{1}{4} \cdot \Gamma\left(\frac{1}{4}\right) \cdot \Gamma\left(\frac{3}{4}\right)}{3!}$$

$$= \frac{15}{512} \cdot \frac{\pi}{\sin\left(\frac{\pi}{4}\right)}$$

$$= \frac{15\sqrt{2}}{1024} \pi$$

Câu 3.

Ta có:
$$\vec{F} = (2xy - z^2)\vec{i} + (3x^2 + 2yz)\vec{j} - y^2\vec{k} \Rightarrow rot\vec{F} = (-4y; 2z; 4x)$$

Những điểm không phải điểm xoáy thì $rot\vec{F} = \vec{0} \Leftrightarrow x = y = z = 0.$

Vậy O(0;0;0) không phải điểm xoáy của trường vecto trên.

Câu 4.

$$I = \iint_{S} \sqrt{1 + x^2 + y^2} dS = \iint_{D} \sqrt{1 + x^2 + y^2} . \sqrt{1 + x^2 + y^2} dx dy \text{ với miền } D: \begin{cases} 0 \leq x \leq 1 \\ 0 \leq y \leq 1 \end{cases}$$

Ta có:

$$I = \iint_D (1 + x^2 + y^2) dx dy$$

$$= \int_0^1 dx \int_0^1 (1 + x^2 + y^2) dy$$

$$= \int_0^1 \left(1 + x^2 + \frac{1}{3} dx \right)$$

$$= \frac{5}{3}.$$

Câu 5.

Khối lượng đường cong vật chất là:

$$M = \int_{C} \rho(x, y) ds = \int_{C} (x + y) ds$$

$$= \int_{0}^{\frac{\pi}{2}} \left(e^{\frac{t}{2}} \cos t + e^{\frac{t}{2}} \sin t \right) \cdot \frac{\sqrt{5}}{2} e^{\frac{t}{2}} dt$$

$$= \frac{\sqrt{5}}{2} \int_{0}^{\frac{\pi}{2}} e^{t} (\sin t + \cos t) dt$$

$$= \frac{\sqrt{5}}{2} e^{t} \sin t \Big|_{0}^{\frac{\pi}{2}}$$

$$= \frac{\sqrt{5}}{2} \cdot e^{\frac{\pi}{2}}.$$

Câu 6. CLB HO TRO HOC JAP

Đặt:
$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases}, |J| = r \text{ miền } D \to D' \begin{cases} 0 \le \varphi \le \frac{\pi}{4} \\ 2\sin\varphi \le r \le 2\cos\varphi \end{cases}$$

$$I = \iint_D (y^2 - x^2) dx dy = \iint_{D'} (r^2 \sin^2 \varphi - r^2 \cos^2 \varphi) \cdot r d\varphi dr$$

$$= \int_0^{\frac{\pi}{4}} d\varphi \int_{2\sin \varphi}^{2\cos \varphi} r^3 (\sin^2 \varphi - \cos^2 \varphi) dr$$

$$= \int_0^{\frac{\pi}{4}} (\sin^2 \varphi - \cos^2 \varphi) \cdot 4 \cdot (\cos^4 \varphi - \sin^4 \varphi) d\varphi$$

$$= -\frac{\pi}{2}.$$

Câu 7.

Đặt:
$$\begin{cases} x = \cos t \\ y = \sin t \end{cases} \Rightarrow \begin{cases} dx = -\sin t \\ dy = \cos t \end{cases}$$

Vì vậy:

$$I = \oint_C \frac{dx + dy}{|x| + |y|} = \int_{\widehat{AB}} + \int_{\widehat{BC}} + \int_{\widehat{CD}} + \int_{\widehat{DA}}$$

$$I = \int_0^{\frac{\pi}{2}} \frac{-\sin t + \cos t}{\sin t + \cos t} dt + \int_{\frac{\pi}{2}}^{\pi} \frac{-\sin t + \cos t}{\sin t - \cos t} dt + \int_{\pi}^{\frac{3\pi}{2}} \frac{-\sin t + \cos t}{-\sin t - \cos t} dt + \int_{\frac{3\pi}{2}}^{2\pi} \frac{-\sin t + \cos t}{-\sin t + \cos t} dt$$

$$= 0$$

Câu 8.

Ta có:
$$V:$$

$$\begin{cases} (x+2y)^2+4z^2=1\\ x,y,z\geq 0 \end{cases} \Leftrightarrow \begin{cases} z=\frac{1}{2}\sqrt{1-(x+2y)^2}\\ x,y,z\geq 0 \end{cases}$$

Ta có:

$$I = \iiint_{V} z dx dy dz$$

$$= \int_{0}^{1} dx \int_{0}^{\frac{1-x}{2}} dy \int_{0}^{\frac{\sqrt{1-(x+2y)^{2}}}{2}} z dz$$

$$I = \frac{1}{8} \int_0^1 dx \int_0^{\frac{1-x}{2}} 1 - (x+2y)^2 dy$$
$$= \frac{1}{64}$$

Câu 9. Dựng mặt
$$S'$$
 :
$$\begin{cases} z=1 \\ x^2+y^2 \leq 1 \end{cases}$$
 hướng theo chiều dương trục Oz

Ta cũng có:

$$\iint_{S \cup S'} = \iint_S + \iint_{S'}$$

Áp dụng công thức Osbogrodsky ta có:

$$\iint_{S \cup S'} = \iiint_V 2 dx dy dz \text{ v\'oi } V: \begin{cases} \sqrt{x^2 + y^2} \le z \le 1 \\ x^2 + y^2 \le 1 \end{cases}$$

$$\iint_{S \cup S'} = 2V = \frac{2\pi}{3}$$

Ta có:

$$\iint_{S'} = \iint_D dx dy = \pi \text{ v\'oi } D: x^2 + y^2 \le 1$$

$$\Rightarrow \iint_S = \frac{2\pi}{3} - \pi = -\frac{\pi}{3}$$

Câu 10.

Áp dụng công thức Stokes:

$$I = \iint_{S} 2(y-z)dydz + 2(z-x)dzdx + 2(x-y)dxdy$$

Trong đó S là phần mặt cầu phía trên hướng theo trục ${\cal O}z$

Ta có
$$z = \sqrt{4 - x^2 - y^2}$$

$$(\vec{n}, \vec{Oz}) < \frac{\pi}{2} \Rightarrow \vec{n} = (-z'_x, -z'_y, 1) = \left(\frac{x}{\sqrt{4 - x^2 - y^2}}, \frac{y}{\sqrt{4 - x^2 - y^2}}, 1\right)$$

$$\Rightarrow |\vec{n}| = \frac{2}{\sqrt{4 - x^2 - y^2}}$$

$$\Rightarrow \frac{\vec{n}}{|\vec{n}|} = \left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}\right)$$

$$\Rightarrow I = \iint_{S} (x(y-z) + y(z-x) + z(x-y))dS = 0$$

ĐỀ THI CUỐI KÌ MÔN GIẢI TÍCH 2 - HỌC KÌ 20183

Nhóm ngành 1. Mã HP: MI1121. Thời gian: 90 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải kí xác nhận số đề vào bài thi.

Câu 1(1đ). Viết phương trình tiếp tuyến và pháp diện tại A(-1;2;1) của đường x=t-1, $y=2-\sin t, z=e^{2t}$.

Câu 2(1đ). Tính $\iint_D (x-2y) dx dy$, với D giới hạn bởi x=0,y=0,x-y=1.

Câu 3(1đ). Tính $\iiint_V \frac{z^3 dx dy dz}{1+x^2+y^2}$, trong đó V xác định bởi $x \geq 0, \sqrt{x^2+y^2} \leq z \leq 1$.

Câu 4(2đ). Tính các tích phân sau:

a)
$$\int_0^{+\infty} x^5 e^{-x^4} dx$$
 b) $\int_0^{+\infty} \frac{2^{-x} - 3^{-x}}{x} dx$

Câu 5(1đ). Tính $\int_{\widehat{ABC}} 2ydx - 3xdy$, trong đó ABC là đường gấp khúc, với A(1;0), B(0;1), C(-1,0).

Câu 6(1đ). Tính $\iint_S (x-y+2z)^3 (dydz+dzdx+dxdy)$, trong đó S là mặt ellipsoid $x^2+y^2+4z^2=1$, hướng ra ngoài.

Câu 7(1đ). Chứng minh rằng trường vecto:

$$\overrightarrow{F} = \frac{1}{1 + x^2 + y^2 + z^2} (x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k})$$

là trường thế. Tìm hàm thế vị của \overrightarrow{F} .

Câu 8(1đ). Tìm lưu số của trường vectơ

$$\overrightarrow{F} = (2z - y)\overrightarrow{i} + (2x - z)\overrightarrow{j} + (2y - x)\overrightarrow{k}$$

dọc theo giao tuyến L của mặt $x^2+y^2+z^2=3$ và x+2y+2z=0, chiều theo L là ngược chiều kim đồng hồ nếu nhìn về phía z>0.

Câu 9(1đ). Tính $\int_L \frac{(10x^4-4y)dx+(7x^8-8y^7)dy}{\sqrt{4x^2+y^2}}$, trong đó L là đường $y=2\sqrt{1-x^2}$ đi từ A(1;0) đến B(-1;0).

LỜI GIẢI CUỐI KÌ MÔN GIẢI TÍCH 2 - HỌC KÌ 20183

Đề 1

Câu 1.

Điểm A(-1;2;1) ứng với t=0

Ta có:
$$\begin{cases} x = t - 1 \\ y = 2 - \sin t \end{cases} \Rightarrow \begin{cases} x'(t) = 1 \\ y'(t) = -\cos t \\ z'(t) = 2e^{2t} \end{cases} \Rightarrow \begin{cases} x'(0) = 1 \\ y'(0) = -1 \\ z'(0) = 2 \end{cases}$$

Phương trình tiếp tuyến tại điểm A(-1; 2; 1):

$$\frac{x+1}{1} = \frac{y-2}{-1} = \frac{z-1}{2}$$

Phương trình tiếp diện tại điểm A(-1;2;1):

$$(x+1) - (y-2) + 2(z-1) = 0$$
 hay $x - y + 2z + 1 = 0$

Câu 2.

Ta có miền
$$D: \begin{cases} 0 \le x \le 1 \\ x - 1 \le y \le 0 \end{cases}$$

$$\Rightarrow I = \int_0^1 dx \int_{x-1}^0 (x - 2y) dy$$

$$= \int_0^1 (xy - y^2) \Big|_{y=x-1}^{y=0} dx$$

$$= \int_0^1 \left[-x^2 + x + (x - 1)^2 \right] dx$$

$$= \int_0^1 (1 - x) dx$$

$$= \frac{1}{2}$$

Câu 3.

$$I = \iiint_V \frac{z^3}{1 + x^2 + y^2} dx dy dz \; ; \; \mbox{miền} \; V : \; x \geq 0 \; ; \; \sqrt{x^2 + y^2} \leq z \leq 1$$

$$\operatorname{Ta}\operatorname{co}: \left\{ \begin{array}{l} \sqrt{x^2+y^2} \leq z \leq 1 \\ x \geq 0 \end{array} \right. \Rightarrow \operatorname{hình \, chiếu \, của} \, V \, \operatorname{lên} \, Oxy \, \operatorname{là} \, D: \left\{ \begin{array}{l} x^2+y^2 \leq 1 \\ x \geq 0 \end{array} \right.$$

$$\text{ Dặt} \left\{ \begin{aligned} x &= r \cos \varphi \\ y &= r \sin \varphi \end{aligned} \right., |J| = r, V \to V' : \left\{ \begin{aligned} 0 &\le r \le 1 \\ -\frac{\pi}{2} \le \varphi \le \frac{\pi}{2} \\ r \le z \le 1 \end{aligned} \right.$$

$$\Rightarrow I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \int_{0}^{1} dr \int_{r}^{1} \frac{z^{3}r}{1+r^{2}} dz$$

$$= \pi \int_{0}^{1} \frac{z^{4}r}{4(1+r^{2})} \Big|_{z=r}^{z=1} dr$$

$$= \frac{\pi}{4} \int_{0}^{1} \frac{(1-r^{4})r}{1+r^{2}} dr$$

$$= \frac{\pi}{4} \int_{0}^{1} (1-r^{2})r dr$$

$$= \frac{\pi}{16}$$

a)
$$I_1 = \int_0^\infty x^5 e^{-x^4} dx$$

Đặt:
$$t = x^4 \Rightarrow dt = 4x^3 dx \Rightarrow dx = \frac{dt}{4t^{\frac{3}{4}}}$$

$$4t^{\frac{3}{4}}$$

$$\Rightarrow I_{1} = \int_{0}^{\infty} \frac{t^{\frac{5}{4}}}{4t^{\frac{3}{4}}} e^{-t} dt = \frac{1}{4} \int_{0}^{\infty} t^{\frac{1}{2}} e^{-t} dt = \frac{1}{4} \Gamma\left(\frac{3}{2}\right) = \frac{1}{4} \cdot \frac{1}{2} \cdot \sqrt{\pi} = \frac{\sqrt{\pi}}{8}$$
b) $I_{2} = \int_{0}^{\infty} \frac{2^{-x} - 3^{-x}}{x} dx$

b)
$$I_2 = \int_0^\infty \frac{2^{-x} - 3^{-x}}{x} dx$$

Ta có:
$$\int_{2}^{3} t^{-x-1} dt = \frac{t^{-x}}{-x} \Big|_{2}^{3} = \frac{2^{-x} - 3^{-x}}{x}$$

$$\Rightarrow I_2 = \int_0^\infty \left(\int_2^3 t^{-x-1} dt \right) dx$$

$$= \int_2^3 \left(\int_0^\infty t^{-x-1} dx \right) dt$$

$$= \int_2^3 \left(\frac{t^{-x-1}}{-\ln t} \Big|_0^\infty \right) dt$$

$$= \int_2^3 \frac{dt}{t \cdot \ln t} = \ln \left(\ln t \right) \Big|_2^3 = \ln \left(\frac{\ln 3}{\ln 2} \right)$$

Bổ sung thêm đoạn CA, ta được đường kín

Áp dung công thức Green, ta có:

$$I_1 = \int_{ABCA} 2y dx - 3x dy = -\iint_D 5 dx dy = -5S_{ABC} = -5$$
 Xét trên CA : $I_2 = \int_{CA} 2y dx - 3x dy = \int_{-1}^1 0 dx = 0$

 $\Rightarrow I = I_1 - I_2 = -5$ Câu 6.

$$I=\iiint_{V}\Big(x-y+2z\Big)^{3}\Big(dydz+dxdz+dxdy\Big);\ \ S:x^{2}+y^{2}+4z^{2}=1, \text{hướng ngoài}$$

Do S là mặt kín, miền không gian giới hạn bởi S là $V: x^2 + y^2 + 4z^2 \leq 1$ Áp dung công thức Ostrogradsky:

$$\begin{split} I &= \iiint_V \left[3 \Big(x - y + 2z \Big)^2 - 3 \Big(x - y + 2z \Big)^2 + 6 \Big(x - y + 2z \Big)^2 \right] dx dy dz \\ &= 6 \iiint_V \Big(x - y + 2x \Big)^2 dx dy dz \\ &= 6 \iiint_V \Big(x^2 + y^2 + 4z^2 - 2xy - 4yz + 4xz \Big) dx dy dz \\ &= 6 \iiint_V \Big(x^2 + y^2 + 4z^2 \Big) dx dy dz \text{ (do } -2xy, -4yz, 4xz \text{ là các hàm lễ)} \end{split}$$

$$\text{Đặt} \begin{cases} x = r \cos \varphi \sin \theta \\ y = r \sin \varphi \sin \theta \\ z = \frac{r}{2} \cos \theta \end{cases}, |J| = \frac{r^2}{2} \sin \theta, V \to V' \begin{cases} 0 \le r \le 1 \\ 0 \le \varphi \le 2\pi \\ 0 \le \theta \le \pi \end{cases}$$

$$\Rightarrow I = 6 \int_0^{2\pi} d\varphi \int_0^{\pi} d\theta \int_0^1 r^2 \cdot \frac{r^2}{2} \sin\theta dr$$

$$= 6.2\pi \cdot \frac{1}{2} \int_0^{\pi} \left(\frac{r^5}{5} \sin\theta \Big|_{r=0}^{r=1}\right) d\theta$$

$$= 6\pi \int_0^{\pi} \frac{\sin\theta}{5} d\theta$$

$$= \frac{12\pi}{5}$$

$$\vec{F} = \frac{1}{1 + x^2 + y^2 + z^2} \left(x\vec{i} + y\vec{j} + z\vec{k} \right)$$

Ta xét:

$$\begin{split} \operatorname{rot} \vec{F} &= \left(\left| \frac{\partial}{\partial y} \frac{\partial}{\partial z} \right|, \left| \frac{\partial}{\partial z} \frac{\partial}{\partial x} \right|, \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y} \right| \right) \\ &= \left(\frac{-2zy + 2yz}{(1 + x^2 + y^2 + z^2)^2}, \frac{-2zx + 2xz}{(1 + x^2 + y^2 + z^2)^2}, \frac{-2xy + 2yx}{(1 + x^2 + y^2 + z^2)^2} \right) \\ &= (0, 0, 0) \end{split}$$

 \Rightarrow \vec{F} là trường thế Ta có hàm thế vị:

$$\begin{split} u &= \int_0^x P(t,0,0) dt + \int_0^y Q(x,t,0) dt + \int_0^z R(x,y,t) dt \\ &= \int_0^x \frac{t}{1+t^2} dt + \int_0^y \frac{t}{1+x^2+t^2} dt + \int_0^z \frac{t}{1+x^2+y^2+t^2} dt \\ &= \frac{1}{2} \ln(1+t^2) \Big|_0^x + \frac{1}{2} \ln(1+x^2+t^2) \Big|_0^y + \frac{1}{2} \ln(1+x^2+y^2+t^2) \Big|_0^z + C \\ &= \frac{1}{2} \ln(1+x^2+y^2+z^2) + C \end{split}$$

Câu 8.

Ta có lưu số của \vec{F} :

$$I = \int_{L} (2z - y)dx + (2x - z)dy + (2y - x)dz$$

Áp dụng công thức Stokes, ta có:

$$I = \iint\limits_{S} 3dydx + 3dxdy + 3dzdx = 3\iint\limits_{S} dxdy + dydz + dzdx$$

Với S: x+2y+2z=0 hướng về phía z<0 nằm trong L Ta có: $z=-\frac{x}{2}-y\Rightarrow \vec{n}=(-z_x',-z_y',1)=\left(\frac{1}{2},1,1\right)$

$$\widehat{(\vec{n}, Oz)} > \frac{\pi}{2} \quad ; \quad \frac{\vec{n}}{|\vec{n}|} = \left(\frac{-1}{3}, \frac{-2}{3}, \frac{-2}{3}\right)$$

$$\Rightarrow I = 3 \iint_{S} \left(\frac{-1}{3} + \frac{-2}{3} + \frac{-2}{3} \right) dS = -5 \iint_{S} dS = -5S_{S} = -15\pi$$

Câu 9.

Đặt
$$\begin{cases} x = \cos t \\ y = 2\sin t \end{cases} \quad (0 \le t \le \pi)$$

Từ đó ta có:

$$I = \int_0^{\pi} \frac{(10\cos^4 t - 8\sin t)(-\sin t) + (7\cos^8 t - 1024\sin^7 t)(2\cos t)}{2} dt$$

$$= \frac{1}{2} \int_0^{\pi} (8\sin^2 t - 10\cos^4 t \sin t + 14\cos^9 t - 2048\sin^7 t) dt$$

$$= 4 \int_0^{\pi} \sin^2 t dt - 5 \int_0^{\pi} \cos^4 t \sin t dt + 7 \int_0^{\pi} \cos^9 t dt - 1024 \int_0^{\pi} \sin^7 t \cos t dt$$

$$= 2\pi - 2$$

CLB HỐ TRỢ HỌC TẬP

ĐỀ THI CUỐI KỲ GIẢI TÍCH 2 - HỌC KỲ 20192

Nhóm ngành 1 - Thời gian: 90 phút

Câu 1 (1 điểm). Viết phương trình tiếp diện và pháp tuyến tại A(-1;2;1) của mặt cong $4x^3 + 2y^2 - z^4 = 3$.

Câu 2 (1 điểm). Tính $\iiint\limits_V \sqrt{x^2+y^2+z^2} dx dy dz$, với V là miền xác định bởi $x^2+y^2+z^2 \leq 9, z \geq 0$.

Câu 3 (1 điểm). Tính $\iiint\limits_V \frac{dxdydz}{\sqrt{x^2+4z+4}}$ với V là miền xác định bởi $0 \le z \le 1, \ 0 \le x \le z, \ 0 \le y \le x.$

Câu 4 (1 điểm). Tính thể tích miền xác định bởi $2 \le z \le \sqrt{8 - 4x^2 - y^2}$.

Câu 5 (1 điểm). Tính tích phân $\int_{1}^{+\infty} \frac{(\ln x)^{\frac{3}{2}}}{x^5} dx.$

Câu 6 (1 điểm). Tính $\int_C (e^{2x}+y^2)dx+(x^4+2e^y)dy$, với C là đường cong $y=\sqrt[4]{1-x^2}$ đi từ điểm A(-1;0) đến điểm B(1;0).

Câu 7 (1 điểm). Tính $\iint_S dS$, trong đó S là phần mặt

$$z = \frac{2}{3}(x^{\frac{3}{2}} + y^{\frac{3}{2}}) \quad \text{v\'oi} \quad 0 \le x \le 1, 0 \le y \le 3$$

Câu 8 (1 điểm). Tính $\iint_S x^2 z dx dy$, với S là phần mặt nón $z^2 = x^2 + y^2$ nằm giữa hai mặt phẳng z = 1 và z = 3, hướng lên trên.

Câu 9 (1 điểm). Chứng minh rằng trường vectơ

$$\overrightarrow{F} = (2ye^{2x} + 3)\overrightarrow{i} + (e^yz^2 + e^{2x} - 2yz^3)\overrightarrow{j} + (2ze^y - 3y^2z^2)\overrightarrow{k}$$

là trường thế. Tìm hàm thế vị của \overrightarrow{F} .

Câu 10 (1 điểm). Tính tích phân kép $\iint\limits_D (2x^2+y^2)dxdy$, với D là miền xác định bới $x^2-xy+y^2\leq 1$.

LỜI GIẢI ĐỀ CUỐI KỲ GIẢI TÍCH 2 - HỌC KỲ 20192

Đề 2

Câu 1:

$$\begin{split} &\text{X\'et } f(x,y,z) = 4x^3 + 2y^2 - z^4 - 3 \\ &\Rightarrow f(x,y,z) = 0 \text{ l\`a phương trình mặt cong đã cho} \\ &\begin{cases} f_x' = 12x^2 \\ f_y' = 4y \\ f_z' = -4z^3 \end{cases} &\Rightarrow \begin{cases} f_x'(A) = 12 \\ f_y'(A) = 8 \\ f_z'(A) = -4 \end{cases} \end{split}$$

 \Rightarrow (12, 8, -4) là 1 vector pháp tuyến tại điểm A của mặt cong đã cho.

Phương trình pháp tuyến tại điểm A của mặt cong là:

$$\frac{x+1}{12} = \frac{y-2}{8} = \frac{z-1}{-4}$$

Phương trình tiếp diện tại điểm A của mặt cong là:

$$12(x+1) + 8(y-2) - 4(z-1) = 0$$
hay
$$3x + 2y - z = 0$$

Câu 2:

$$\begin{split} & \text{D} \breve{\mathbf{g}} \mathbf{t} \begin{cases} x = r \sin \theta \cos \phi \\ y = r \sin \theta \sin \phi \\ z = r \cos \phi \end{cases} \\ & \text{Ta có } V' \begin{cases} 0 \leq \phi \leq 2\pi \\ 0 \leq \theta \leq \frac{\pi}{2} \\ 0 < r \leq 3 \end{cases} \end{aligned}$$

$$\Rightarrow I = \iiint_{V'} r \cdot r^2 \cdot \sin \theta dr d\phi d\theta$$
$$= \int_0^{2\pi} d\phi \cdot \int_0^{\frac{\pi}{2}} \sin \theta d\theta \cdot \int_0^3 r^3 dr$$
$$= 2\pi \cdot 1 \cdot \frac{81}{4} = \frac{81\pi}{2}$$

Câu 3:

$$I = \iiint\limits_V \frac{dxdydz}{\sqrt{x^2 + 4z + 4}} \quad \text{ trong $d\'{o}$ } V \begin{cases} 0 \le z \le 1 \\ 0 \le x \le z \\ 0 \le y \le x \end{cases}$$

$$I = \int_{0}^{1} dz \int_{0}^{z} dx \int_{0}^{x} \frac{1}{\sqrt{x^{2} + 4z + 4}} dy$$

$$= \int_{0}^{1} dz \int_{0}^{z} \frac{1}{\sqrt{x^{2} + 4z + 4}} .x dx$$

$$= \frac{1}{2} \int_{0}^{1} dz \int_{0}^{z} \frac{1}{\sqrt{x^{2} + 4z + 4}} d(x^{2} + 4z + 4)$$

$$= \int_{0}^{1} z + 2 - 2\sqrt{z + 1} dz$$

$$= \left(\frac{z^{2}}{2} + 2z - \frac{4}{3} .(z + 1)\sqrt{z + 1}\right) \Big|_{0}^{1}$$

$$= \frac{23}{6} - \frac{8\sqrt{2}}{3}$$

Miền V là phần màu đỏ trong hình vẽ

Câu 4:

Ta có
$$V: 2 \le z \le \sqrt{8 - 4x^2 - y^2}$$
.

⇒ thể tích của miền giới han trên là:

$V = \iint_{D} (\sqrt{8 - 4x^2 - y^2} - 2) dx dy$

Trong đó V là miền : $\sqrt{8-4x^2-y^2} \geq 2 \quad \Rightarrow D: 4x^2+y^2 \leq 4$

$$\text{ Dặt } \left\{ \begin{array}{l} x = r\cos\varphi \\ y = 2r\sin\varphi \end{array} \right. \Rightarrow |J| = 2r \quad \text{ và miền } D \text{ trở thành } D' : \left\{ \begin{array}{l} 0 \leq r \leq 1 \\ 0 \leq \varphi \leq 2\pi \end{array} \right. \right.$$

$$\Rightarrow I = \int_{0}^{2\pi} d\varphi \int_{0}^{1} 2r(\sqrt{8 - 4r^2} - 2)dr$$

$$= 2\pi \int_{0}^{1} 2r(\sqrt{8 - 4r^2} - 2)dr$$

$$= 2\pi (\frac{8\sqrt{2}}{3} - \frac{10}{3}) = \frac{16\pi\sqrt{2} - 20\pi}{3}$$

Câu 5:

$$I = \int_{1}^{+\infty} \frac{(\ln x)^{\frac{3}{2}}}{x^5} dx$$

$$\Rightarrow I = \int_{0}^{+\infty} \frac{t^{\frac{3}{2}} \cdot e^t}{e^5} dt = \int_{0}^{+\infty} t^{\frac{3}{2}} \cdot e^{-4t} dt$$

$$\Rightarrow I = \int_{0}^{+\infty} \left[\left(\frac{a}{4} \right)^{\frac{3}{2}} \cdot e^{-a} \right] \frac{da}{4}$$

$$\Rightarrow I = \int_{0}^{+\infty} \left[\left(\frac{5}{2} \right)^{\frac{3}{2}} \cdot e^{-a} \right] \frac{da}{4}$$

$$= \frac{1}{32} \Gamma(\frac{5}{2}) = \frac{1}{32} \Gamma(\frac{2 \cdot 2 + 1}{2})$$

$$= \frac{1}{32} \frac{3!!}{2^2} \sqrt{\pi}$$

$$= \frac{3}{129} \sqrt{\pi}$$

 $I = \int\limits_C (e^{2x} + y^2) dx + (x^4 + 2e^y) dy, \text{ với } C \text{ là đường cong } y = \sqrt[4]{1-x^2} \text{ đi từ điểm } A(-1;0) \text{ đến điểm } B(1;0)$

Bổ sung thêm đoạn thẳng BA, hướng từ B tới A ta có: $C \cup BA$ là đường cong kín, hướng âm:

$$\Rightarrow I = \int_{C} (e^{2x} + y^2)dx + (x^4 + 2e^y)dy$$

$$\Rightarrow I = \int_{C \cup BA} (e^{2x} + y^2) dx + (x^4 + 2e^y) dy - \int_{BA} (e^{2x} + y^2) dx + (x^4 + 2e^y) dy = I_1 - I_2$$

Áp dụng định lí Green cho I_1 , ta có:

$$I_1 = -\iint\limits_D (4x^3-2y) dx dy \quad ext{ (vì } C \cup BA ext{ là đường cong kín , hướng âm)}$$

Trong đó
$$D \left\{ \begin{array}{l} -1 \leq x \leq 1 \\ 0 \leq y \leq \sqrt[4]{1-x^2} \end{array} \right.$$

Mà D là miền đối xứng qua trục Qy và $4x^3$ là hàm lẻ theo x

$$\Rightarrow I_1 = \iint_D 2y \, dx dy = \int_{-1}^1 dx \int_0^{4\sqrt{1-x^2}} 2y \, dy = \int_{-1}^1 \sqrt{x^2 - 1} dx = \frac{\pi}{2}$$

Ta có:
$$BA\begin{cases} y=0 \to dy=0 \\ x:1 \to -1 \end{cases}$$

$$\Rightarrow I_2 = \int_{BA} (e^{2x} + y^2) dx = \int_1^{-1} (e^{2x} + 0^2) dx = -\frac{e^2}{2} + \frac{e^{-2}}{2}$$

$$\Rightarrow I = I_1 - I_2 = \frac{\pi}{2} - \frac{e^{-2}}{2} + \frac{e^2}{2} = \frac{\pi + e^2 - e^{-2}}{2}$$

Câu 7:
$$I = \iint_{S} dS$$
LB HÔ TRO HO TÂP

Trong đó S là phần mặt $z=\frac{2}{3}\left(x^{\frac{3}{2}}+y^{\frac{3}{2}}\right)$ với $0\leq x\leq 1; 0\leq y\leq 3$

Có
$$\begin{cases} z'_x = x^{\frac{1}{2}} \\ z'_y = y^{\frac{1}{2}} \end{cases} \Rightarrow \sqrt{(z'_x)^2 + (z'_y)^2 + 1} = \sqrt{x + y + 1} \Rightarrow I = \iint_D \sqrt{x + y + 1} dx dy$$

Với D là hình chiếu của mặt S lên mặt phẳng Oxy với D : $\begin{cases} 0 \leq x \leq 1 \\ 0 \leq y \leq 3 \end{cases}$

$$\Rightarrow I = \iint\limits_{D} \sqrt{x+y+1} dx dy = \int\limits_{0}^{3} dy \int\limits_{0}^{1} \sqrt{1+x+y} dx = \int\limits_{0}^{3} \left[\frac{2}{3} (y+2)^{\frac{3}{2}} - \frac{2}{3} (y+1)^{\frac{3}{2}} \right] dy = \frac{20\sqrt{5}}{3} - \frac{16\sqrt{2}}{15} - \frac{124}{15} -$$

$$\frac{15}{15} - \frac{15}{15}$$
Vậy $I = \frac{20\sqrt{5}}{3} - \frac{16\sqrt{2}}{15} - \frac{124}{15}$

$$I = \iint\limits_{S} x^2 z dx dy$$

Với S: $z=\sqrt{x^2+y^2}$ và $1\leq x\leq 3$, ta thấy vectơ pháp tuyến của S là \overrightarrow{n} tạo với tia \overrightarrow{Oz} một góc nhọn. $\Rightarrow I=\iint\limits_{D}x^2\sqrt{x^2+y^2}dxdy$

Với miền D là hình chiếu của S lên mặt phẳng Oxy với $D:1\leq \sqrt{x^2+y^2}\leq 3$

$$\text{Dặt} \left\{ \begin{array}{ll} x = r\cos\varphi \\ y = r\sin\varphi \end{array} \right. \Rightarrow |J| = r \text{ miền } D \text{ trở thành:} \left\{ \begin{array}{ll} 1 \leq r \leq 3 \\ 0 \leq \varphi \leq 2\pi \end{array} \right.$$

$$\Rightarrow I = \int_{1}^{3} r^{4} dr \int_{0}^{2\pi} \cos^{2} \varphi d\varphi = \frac{242\pi}{5}$$
 Vậy $I = \frac{242\pi}{5}$

Câu 9:

$$\overrightarrow{F} = (2ye^{2x} + 3)\overrightarrow{i} + (e^{y}z^{2} + e^{2x} - 2yz^{3})\overrightarrow{j} + (2ze^{y} - 3y^{2}z^{2})\overrightarrow{k}$$

$$= \langle P(x, y, z); Q(x, y, z); R(x, y, z) \rangle$$

$$\overrightarrow{\text{rot } F} = \langle R'_{y} - Q'_{z}; P'_{z} - R'_{x}; Q'_{x} - P'_{y} \rangle$$

$$= (2ze^{y} - 6yz^{2} - 2ze^{y} + 6yz^{2})\overrightarrow{i} + (0 - 0)\overrightarrow{j} + (2e^{2x} - 2e^{2x})\overrightarrow{k}$$

$$= 0$$

Vậy trường vecto \overrightarrow{F} là trường thế.

Ta tìm hàm thế vị của \overrightarrow{F} , chọn $(x_0; y_0; z_0) = (0; 0; 0)$:

$$u(x, y, z) = \int_{0}^{x} P(x, 0, 0)dx + \int_{0}^{y} Q(x, y, 0)dy + \int_{0}^{z} R(x, y, z)dz + C$$
$$= 3x + ye^{2x} + z^{2}e^{y} - y^{2}z^{3} + C$$

Câu 10:

$$I = \iint\limits_D (2x^2 + y^2) dx dy. \text{ Dặt } \begin{cases} u = x - \frac{y}{2} \\ v = \frac{\sqrt{3}y}{2} \end{cases}$$
$$|J^{-1}| = \begin{vmatrix} 1 & \frac{-1}{2} \\ 0 & \frac{\sqrt{3}}{2} \end{vmatrix} = \frac{\sqrt{3}}{2} \Rightarrow |J| = \frac{2}{\sqrt{3}}$$

Miền D trở thành miền D': $u^2 + v^2 \le 1$

Ta có:

$$\begin{cases} y = \frac{2}{\sqrt{3}}v \\ x = u + \frac{y}{2} = u + \frac{1}{2} \cdot \frac{2}{\sqrt{3}}v = u + \frac{v}{\sqrt{3}} \end{cases}$$

$$I = \iint\limits_{D'} \left[2\left(u + \frac{v}{\sqrt{3}}\right)^2 + \left(\frac{2}{\sqrt{3}}v\right)^2 \right] \cdot \frac{2}{\sqrt{3}}dudv$$
$$= \frac{2}{\sqrt{3}} \cdot \iint\limits_{D'} 2u^2 + \frac{4\sqrt{3}}{3}uv + 2v^2dudv$$

Đặt
$$\begin{cases} u = r\cos\phi \\ v = r\sin\phi \end{cases} \Rightarrow |J| = r$$

$$V': \begin{cases} 0 \le \phi \le 2\pi \\ 0 < r \le 1 \end{cases}$$

$$I = \frac{2}{\sqrt{3}} \cdot \iint_{V'} \left[2r^2 + \frac{4\sqrt{3}}{3} r^2 (\sin \phi + \cos \phi) \right] \cdot r dr d\phi$$

$$= \frac{2}{\sqrt{3}} \cdot \iint_{V'} r^3 \cdot \left(2 + \frac{4\sqrt{3}}{3} (\sin \phi + \cos \phi) \right) dr d\phi$$

$$= \frac{2}{\sqrt{3}} \cdot \int_0^1 r^3 dr \cdot \int_0^{2\pi} 2 + \frac{4\sqrt{3}}{3} (\sin \phi + \cos \phi) d\phi$$

$$= \frac{2}{\sqrt{3}} \cdot \frac{1}{4} \cdot 2 \cdot 2\pi$$

CLB HÔ TRỢ HỌC TẬP

ĐỀ THI CUỐI KỲ GIẢI TÍCH 2 - HOC KỲ 20192

Nhóm ngành 1 - Thời gian: 90 phút

Chú ý: Thí sinh không được sử dụng tài liêu và giám thị phải kí xác nhân số đề vào bài thi

Câu 1. Viết phương trình tiếp tuyến và pháp diện tại
$$A(-1;2;0)$$
 của đường
$$\begin{cases} x=2t-\cos t\\ y=e^{3t}+1\\ z=t^2+\sin t \end{cases}$$

Câu 2. Tính
$$\iiint\limits_V (z+1) dx dy dz$$
, với V xác định bởi $x^2+y^2+z^2 \leq 2z$

Câu 2. Tính
$$\iint\limits_V (z+1)dxdydz, \text{ với }V \text{ xác định bởi }x^2+y^2+z^2 \leq 2z.$$
 Câu 3. Tính
$$\iint\limits_V \frac{zdxdydz}{x^2+y^2+2}, \text{ với }V \text{ là miền xác định bởi }\sqrt{x^2+y^2-1} \leq z \leq 1$$

Câu 4. Tính diện tích phần mặt paraboloid $z = 4x - x^2 - y^2$ nằm phía trên mặt phẳng Oxy.

Câu 5. Tính tích phân
$$\int_{-\infty}^{+\infty} \frac{e^{\frac{x}{4}}}{(1+e^x)^2} dx$$

Câu 6. Tính $\oint_C (e^x + y^2) dx + x^2 e^y dy$, với C là biên của miền giới hạn bởi các đường $y = 1 - x^2$ và y = 0có chiều dương.

Câu 7. Tính
$$I=\iint\limits_S y^2zdS$$
, với S là phần mặt nón $z=\sqrt{x^2+y^2}$ nằm giữa hai mặt phẳng $z=1;z=2.$

 Câu 8. Tính $I=\iint\limits_S xy^3dydz+(x^2+z^2)dxdy$, với S là nửa mặt cầu $x^2+y^2+z^2=4, z\leq 0$, hướng ra phía ngoài mặt cầu.

Câu 9. Tính đạo hàm theo hướng $\overrightarrow{l}=(1;2;-2)$ của hàm $u(x,y,z)=e^x(y^2+z)-2xyz^3$ tại điểm $A(0;1;\frac{\mathbf{2}}{2})$ Câu 10. Tính tích phân kép $\iint_{\mathbf{P}}(y^2-x^4)dxdy$, với \mathbf{D} là miền xác định bởi $2|x|+|x^2+y|\leq 1$

Câu 10. Tính tích phân kép
$$\iint_{\mathbf{D}} (y^2 - x^4) dx dy$$
, với **D** là miền xác định bởi $2|x| + |x^2 + y| \le 1$

Mỗi câu: 1 điểm

LỜI GIẢI ĐỀ CUỐI KỲ GIẢI TÍCH 2 - HỌC KỲ 20192

Đề 3

Câu 1:

$$\begin{cases} x = 2t - \cos t \\ y = e^{3t} + 1 \end{cases} \longrightarrow \begin{cases} x'(t) = 2 + \sin t \\ y'(t) = 3e^{3t} \\ z'(t) = 2t + \cos t \end{cases}$$

$$\text{Diểm } A(-1;2;0) \text{ ứng với } t = 0 \Rightarrow x'(0) = 2; y'(0) = 3; z'(0) = 1$$

$$\longrightarrow \begin{cases} \textbf{Phương trình tiếp tuyến:} \quad \frac{x+1}{2} = \frac{y-2}{3} = \frac{z}{1} \\ \textbf{Phương trình pháp diện:} \quad 2x + 3y + z - 4 = 0 \end{cases}$$

Câu 2:

$$\begin{split} I &= \iiint\limits_{V} (z+1) \mathrm{d}x \mathrm{d}y \mathrm{d}z, V : x^2 + y^2 + z^2 \leq 2z \\ \mathrm{D} \overset{}{\mathrm{a}} \mathrm{t} \begin{cases} x = r \sin \theta \cos \varphi \\ y = r \sin \theta \sin \varphi \\ z = 1 + r \cos \theta \end{cases} &\to \begin{cases} 0 \leq \varphi \leq 2\pi \\ 0 \leq \theta \leq \pi \\ 0 \leq r \leq 1 \end{cases} \quad |J| = r^2 \sin \theta \\ 0 \leq r \leq 1 \end{split}$$

CLB $H \oplus \frac{8\pi}{3}$ RO $H \oplus C$ TAP

Câu 3:

$$\begin{split} I &= \iiint\limits_V \frac{z \mathrm{d} x \mathrm{d} y \mathrm{d} z}{x^2 + y^2 + 2} \\ V &: \sqrt{x^2 + y^2 - 1} \leq z \leq 1. \text{ X\'et giao điểm của hai mặt: } \sqrt{x^2 + y^2 - 1} = 1 \\ \Rightarrow D &: x^2 + y^2 \leq 2 \\ \text{Dặt} \left\{ \begin{aligned} x &= r \cos \varphi \\ y &= r \sin \varphi \end{aligned} \right. &\to \left\{ \begin{aligned} 0 &\leq \varphi \leq 2\pi \\ 1 &\leq r \leq \sqrt{2} \end{aligned} \right. \quad |J| = r \\ \sqrt{r^2 - 1} \leq z \leq 1 \end{split} \right. \end{split}$$

$$I = \int_{0}^{2\pi} d\varphi \int_{1}^{\sqrt{2}} dr \int_{\sqrt{r^{2}-1}}^{1} \frac{zr}{r^{2}+2} dz = 2\pi \int_{1}^{\sqrt{2}} \frac{[1-(r^{2}-1)]r}{2(r^{2}+2)} dr$$

$$= \frac{\pi}{2} \int_{1}^{\sqrt{2}} \frac{2-r^{2}}{2+r^{2}} dr^{2} = \frac{\pi}{2} \int_{1}^{\sqrt{2}} (\frac{4}{2+r^{2}}-1) dr^{2}$$

$$= \frac{\pi}{2} \left[4ln(x+r^{2}) - r^{2} \right]_{r=1}^{r=\sqrt{2}}$$

$$= \frac{\pi}{2} (4\ln\frac{4}{3}-1)$$

Câu 4:

$$z = 4x - x^{2} - y^{2} \ge 0, (D) : (x - 2)^{2} + y^{2} \le 4$$

$$\Rightarrow \begin{cases} z'_{x} = 4 - 2x \\ z'_{y} = -2y \end{cases}$$

 \Rightarrow Diện tích phần mặt paraboloid nằm trên Oxy:

$$\sigma = \iint_{D} \sqrt{1 + z_{x}^{\prime 2} + z_{y}^{\prime 2}} dxdy = \iint_{D} \sqrt{1 + 4[(x - 2)^{2} + y^{2}]} dxdy$$

Đặt
$$\begin{cases} x = 2 + r \cos \varphi \\ y = r \sin \varphi \end{cases} \rightarrow \mathbf{D}' \begin{cases} 0 \le \varphi \le 2\pi \\ 0 \le r \le 2 \end{cases} |J| = r$$

$$\Rightarrow \sigma = \iint_{D'} \sqrt{1 + 4r^2} \cdot r dr d\varphi = \frac{1}{8} \int_{0}^{2\pi} d\varphi \int_{0}^{2} \sqrt{1 + 4r^2} d(1 + 4r^2) = \frac{\pi}{6} (17\sqrt{17} - 1)$$

Câu 5

$$I = \int_{-\infty}^{+\infty} \frac{e^{\frac{x}{4}}}{(1+e^x)^2} \mathrm{d}x$$

Đặt
$$e^x = t \rightarrow dt = t dx$$

$$\Rightarrow I = \int_{0}^{+\infty} \frac{t^{\frac{1}{4}}}{(1+t^{2})t} dt = \int_{0}^{+\infty} \frac{t^{\frac{-3}{4}}}{(1+t^{2})} dt$$

$$\Rightarrow I = \beta(\frac{1}{4}; \frac{7}{4}) = \frac{\Gamma(\frac{1}{4})\Gamma(\frac{7}{4})}{\Gamma(2)} = \frac{\frac{3}{4} \cdot \Gamma(\frac{1}{4}) \cdot \Gamma(\frac{3}{4})}{\Gamma(2)} = \frac{3}{4} \cdot \frac{\frac{\pi}{\sin \frac{\pi}{4}}}{1!} = \frac{3\pi\sqrt{2}}{4}$$

Câu 6:

$$I = \oint\limits_C (e^x + y^2) dx + x^2 e^y dy$$

 Dăt $P = e^x + y^2, Q = x^2 e^y$

Nhận xét: C là đường cong kín, giới hạn miền D : $\begin{cases} -1 \leq x \leq 1 \\ 0 \leq y \leq 1 - x^2 \end{cases}$

 ${\cal C}$ lấy theo chiều dương, áp dụng Green ta có:

$$\begin{split} I &= \iint\limits_{D} (Q_x' - P_y') dx dy = \iint\limits_{D} (2xe^y - 2y) dx dy \\ &= \int\limits_{-1}^{1} dx \int\limits_{0}^{1-x^2} (2xe^y - 2y) dy \\ &= \int\limits_{-1}^{1} (2xe^y - y^2) \Big|_{y=0}^{y=1-x^2} dx = \int\limits_{-1}^{1} \left[2xe^{1-x^2} - 2x - (1-x^2)^2 \right] dx \\ &= \int\limits_{-1}^{1} 2xe^{1-x^2} dx - \int\limits_{-1}^{1} \left[2x + (1-x^2)^2 \right] dx = (-e^{1-x^2}) \Big|_{-1}^{1} - \frac{16}{15} = \frac{-16}{15} \end{split}$$

Câu 7:

Ta có:
$$I = \iint_S y^2 z dS$$

$$z = \sqrt{x^2 + y^2} \Rightarrow z_x' = \frac{x}{\sqrt{x^2 + y^2}}; z_y' = \frac{y}{\sqrt{x^2 + y^2}}$$

$$\Rightarrow dS = \sqrt{1 + \left(\frac{x}{\sqrt{x^2 + y^2}}\right)^2 + \left(\frac{y}{\sqrt{x^2 + y^2}}\right)^2} dx dy = \sqrt{2} dx dy$$

$$\Rightarrow I = \sqrt{2} \iint_D y^2 \sqrt{x^2 + y^2} dx dy$$

Với
$$D: 1 \le x^2 + y^2 \le 4$$

$$\begin{split} & \text{Dặt} \left\{ \begin{aligned} x &= r cos \varphi \\ y &= r sin \varphi \end{aligned} \right. \Rightarrow |J| = r \Rightarrow \left\{ \begin{aligned} 1 &\leq r \leq 2 \\ 0 &\leq \varphi \leq 2\pi \end{aligned} \right. \\ & \Rightarrow I = \sqrt{2} \int\limits_{0}^{2\pi} d\varphi \int\limits_{1}^{2} r^{3} sin^{2} \varphi. r dr = \sqrt{2}.\pi. \frac{31}{5} = \frac{31\pi\sqrt{2}}{5} \end{aligned} \right.$$

Câu 8:

$$I = \iint\limits_S xy^3 dy dz + (x^2 + z^2) dx dy$$
 Bổ sung thêm mặt

S':z=0, véc tơ pháp tuyến $\overrightarrow{n'}$ hướng xuống dưới .

 $\Rightarrow S \cup S'$ là mặt cong kín, hướng ra ngoài.

Ta có:
$$\iint\limits_{S \cup S'} = \iint\limits_{S} + \iint\limits_{S'}$$
 hay $I_1 = I + I_2$

Tính I_1 : Theo Ostrogradsky:

$$I_1 = \iiint\limits_V (y^3 + 2z) dx dy dz = \iiint\limits_V 2z dx dy dz$$

(do $f(x,y,z)=y^3$ là hàm lẻ đối với y, miền V đối xứng qua y=0)

Với
$$V$$
:
$$\begin{cases} z \geq 0 \\ x^2 + y^2 + z^2 \leq 4 \end{cases}$$

$$\text{Đặt} \begin{cases} x = r \cos \varphi \sin \theta \\ y = r \sin \varphi \sin \theta \\ z = r \cos \theta \end{cases} \Rightarrow |J| = r^2 \sin \theta \Rightarrow \begin{cases} 0 \le \varphi \le 2\pi \\ 0 \le r \le 2 \\ 0 \le \theta \le \frac{\pi}{2} \end{cases}$$

$$\Rightarrow I_1 = \int_0^{2\pi} d\varphi \int_0^2 r^3 dr \int_0^{\frac{\pi}{2}} 2\sin\theta \cos\theta d\theta = 2\pi \cdot 4 \cdot 1 = 8\pi$$

Tính I_2 : Mặt S': z = 0. Do $(\overrightarrow{n'}, \overrightarrow{Oz}) > \frac{\pi}{2}$ nên mặt S' có véc tơ pháp tuyến đơn vị $\overrightarrow{n'} = (0, 0, -1)$

$$\Rightarrow I_2 = -\iint\limits_D x^2 dx dy \text{ v\'oi } D: x^2 + y^2 \le 4$$

$$\begin{cases} x = r \cos \varphi \\ y = r \sin \varphi \end{cases} \Rightarrow |J| = r \Rightarrow \begin{cases} 0 \le \varphi \le 2\pi \\ 0 \le r \le 2 \end{cases}$$
$$\Rightarrow I_2 = -\int d\varphi \int r^3 \cos^2 \varphi dr = -4\pi$$

Vậy :
$$I = I_1 - I_2 = 12\pi$$

Câu 9:

$$\begin{split} &\operatorname{Ta}\operatorname{c\'o:} u(x,y,z) = e^x(y^2+z) - 2xyz^3 \\ &\Rightarrow \begin{cases} u'_x = e^x(y^2+z) - 2yz^3 \\ u'_y = 2e^xy - 2xz^3 \\ u'_z = e^x - 6xyz^2 \end{cases} &\operatorname{Tại} A(0;1;2) \Rightarrow \overrightarrow{grad}u(A) = (-13;2;1) \\ &\Rightarrow \frac{\partial u}{\partial \ \overrightarrow{l}}(A) = \overrightarrow{grad}u(A). \frac{\overrightarrow{l'}}{|\overrightarrow{l'}|} = -13. \frac{1}{3} + 2. \frac{2}{3} + 1. \left(\frac{-2}{3}\right) = \frac{-11}{3} \end{split}$$

Câu 10:

$$\begin{split} I &= \int\limits_{D} (y^2 - x^4) dx dy \\ D &\text{ dối xứng qua } x = 0 \text{ và } f(x,y) = y^2 - x^4 \text{ là hàm chẵn đối với } x \\ \Rightarrow I &= 2 \iint\limits_{D^+} (y^2 - x^4) dx \text{ với } D^+ : \begin{cases} 2|x| + |x^2 + y| \leq 1 \\ x \geq 0 \end{cases} \\ \text{Đặt } \begin{cases} u = x \\ v = x^2 + y \end{cases} \Rightarrow \begin{cases} 2u + |v| \leq 1 \\ u \geq 0 \end{cases} \Rightarrow \begin{cases} 0 \leq u \leq \frac{1}{2} \\ 2u - 1 \leq v \leq 1 - 2u \end{cases} \\ \Rightarrow J^{-1} &= \begin{vmatrix} u_x' & u_y' \\ v_x' & v_y' \end{vmatrix} = 1 \Rightarrow |J| = 1 \end{split}$$

$$\Rightarrow I = 2 \int_{0}^{\frac{1}{2}} du \int_{2u-1}^{1-2u} (v - 2u^{2})v dv = 2 \int_{0}^{\frac{1}{2}} (\frac{v^{3}}{3} - u^{2}v^{2}) \Big|_{v=2u-1}^{v=1-2u} du$$

$$= 2 \int_{0}^{\frac{1}{2}} \frac{(1-2u)^{3}}{3} - u^{2}(1-2u)^{2} - \frac{(2u-1)^{3}}{3} + u^{2}(2u-1)^{2} du$$

$$= \frac{1}{6}$$

CLB HỐ TRỢ HỌC TẬP

ĐỀ THI CUỐI KỲ GIẢI TÍCH 2 - HOC KỲ 20201

Nhóm ngành 1 - Thời gian: 90 phút

Câu 1 (1đ): Tính độ cong của đường $x=2\cos t, y=\frac{2}{\sqrt{3}}\sin t$ tại điểm ứng với $t=\frac{\pi}{3}$.

Câu 2 (1đ): Tính tích phân $\iint_D xydxdy$, với D là miền giới hạn bởi các đường thẳng y=x,x=1 và y=0.

Câu 3 (1đ): Tính tích phân $\iint_D (x+y) dx dy$, với $D = \{(x,y) | (x-4)^2 + y^2 \le 1, y \ge 0 \}$.

 $\textbf{Câu 4 (1d):} \text{ Tính tích phân} \iiint\limits_{V} (x^2+y^2) dx dy dz, \text{ với V là miền xác định bởi } \begin{cases} x^2+y^2+z^2 \leq 9 \\ \sqrt{x^2+y^2} \leq z \end{cases}.$

Câu 5 (1đ): Tính thể tích của miền giới hạn bởi các mặt z = 0, $z = 1 + x^2 + y^2$ và mặt $4x^2 + y^2 = 4$.

Câu 6 (1đ): Tính tích phân $\int_{0}^{+\infty} x^{30}e^{-x^2}dx.$

Câu 7 (1đ): Tính $\int_L 2(x^3+y^5)dx + 5x(2y^4-1)dy$, với L là đường gấp khúc ABCA nối các điểm A(0;0), B(1;1), C(0;2).

Câu 8 (1đ): Tính $\int_C \left(e^x \sin y + y^2\right) dx + \left(x^2 + 2xy + e^x \cos y\right) dy$, với C là nửa đường tròn $x = \sqrt{2y - y^2}$, đi từ điểm O(0; 0) đến điểm A(0; 2).

Câu 9 (1đ): Tính tích phân mặt $\iint_S x^3 dy dz + y^3 dz dx + \left(x^2 + y^2 + z^3\right) dx dy$, với S là phía ngoài mặt ellipsoid $9x^2 + y^2 + z^2 = 9$.

Câu 10 (1đ): Tính thông lượng của trường vecto $\overrightarrow{F} = xz^2\overrightarrow{i} + x^2y\overrightarrow{j} + y^2(z+1)\overrightarrow{k}$ qua nửa mặt cầu $S: x^2 + y^2 + z^2 = 1, z \ge 0$, hướng ra ngoài.

LỜI GIẢI ĐỀ CUỐI KỲ GIẢI TÍCH 2 - HỌC KỲ 20201

Đề 2

Câu 1

Ta có
$$\begin{cases} x = 2\cos t \\ y = \frac{2}{\sqrt{3}}\sin t \end{cases} \Rightarrow \begin{cases} x'(t) = -2\sin t; x''(t) = -2\cos t \\ y'(t) = \frac{2}{\sqrt{3}}\cos t; y''(t) = \frac{-2}{\sqrt{3}}\sin t \end{cases}$$
Tại $t = \frac{\pi}{3} \Rightarrow \begin{cases} x' = -\sqrt{3}; x'' = -1 \\ y' = \frac{\sqrt{3}}{3}; y'' = -1 \end{cases}$

Độ cong của đường cong tại điểm ứng với $t=\frac{\pi}{3}$ là:

$$C = \frac{\left| x'(\frac{\pi}{3})y''(\frac{\pi}{3}) - x''(\frac{\pi}{3})y'(\frac{\pi}{3}) \right|}{\left(x'(\frac{\pi}{3})^2 + y'(\frac{\pi}{3})^2 \right)^{\frac{3}{2}}} = \frac{\left| (-\sqrt{3}).(-1) - (-1).\frac{\sqrt{3}}{3} \right|}{\left[(-\sqrt{3})^2 + \left(\frac{\sqrt{3}}{3}\right)^2 \right]^{\frac{3}{2}}} = \frac{3\sqrt{10}}{25}$$

Câu 2.

$$I = \iint\limits_{D} xy dx dy \quad \text{v\'oi D} \begin{cases} 0 \le x \le 1 \\ 0 \le y \le x \end{cases}$$

$$\Rightarrow I = \int\limits_{0}^{1} dx \int\limits_{0}^{x} xy dy = \int\limits_{0}^{1} \left(\frac{xy^{2}}{2}\right) \Big|_{y=0}^{y=x} dx = \int\limits_{0}^{1} \frac{x^{3}}{2} dx = \frac{1}{8}$$

Câu 3.

$$I = \iint_D (x+y)dxdy$$
 với $D = \{(x,y) | (x-4)^2 + y^2 \le 1; y \ge 0\}$

$$\text{Đặt} \begin{cases} x = 4 + r \cos \varphi \\ y = r \sin \varphi \end{cases} \Rightarrow |J| = r, D \to D' \begin{cases} 0 \le \varphi \le \pi \\ 0 \le r \le 1 \end{cases}$$

$$\Rightarrow I = \int_{0}^{\pi} d\varphi \int_{0}^{1} \left(4r + r^{2}(\sin\varphi + \cos\varphi)\right) dr$$
$$= \int_{0}^{\pi} \left(2 + \frac{1}{3}(\sin\varphi + \cos\varphi)\right) d\varphi = 2\pi + \frac{2}{3}$$

Câu 4.

$$I = \iiint\limits_V (x^2 + y^2) dx dy dz \quad \text{ v\'oi } V \begin{cases} x^2 + y^2 + z^2 \le 9 \\ \sqrt{x^2 + y^2} \le z \end{cases}$$

Xét giao của 2 mặt cong
$$\begin{cases} x^2 + y^2 + z^2 = 9 \\ \sqrt{x^2 + y^2} = z \end{cases} \Leftrightarrow \begin{cases} z^2 + z^2 = 9 \\ \sqrt{x^2 + y^2} = z \end{cases} \Leftrightarrow \begin{cases} z = \frac{3}{\sqrt{2}} \\ \sqrt{x^2 + y^2} = z \end{cases}$$

$$\text{ Dặt } \begin{cases} x = r \cos \varphi \\ y = r \sin \varphi \end{cases} \Rightarrow |J| = r, V \rightarrow V' \begin{cases} 0 \leq \varphi \leq 2\pi \\ 0 \leq r \leq \frac{3}{\sqrt{2}} \\ r \leq z \leq \sqrt{9 - r^2} \end{cases}$$

$$\Rightarrow I = \int_{0}^{2\pi} d\varphi \int_{0}^{\frac{3}{\sqrt{2}}} dr \int_{r}^{\sqrt{9-r^2}} r^3 dz = 2\pi \int_{0}^{\frac{3}{\sqrt{2}}} r^3 \left(\sqrt{9-r^2} - r\right) dr$$

$$= 2\pi \left[\int_{0}^{\frac{3}{\sqrt{2}}} \left(\frac{1}{2} (9-r^2) \sqrt{9-r^2} - \frac{9}{2} \sqrt{9-r^2} \right) d(9-r^2) - \int_{0}^{\frac{3}{\sqrt{2}}} r^4 dr \right]$$

$$= 2\pi \left[\left(\frac{1}{2} \cdot \frac{(9-r^2)^{\frac{5}{2}}}{\frac{5}{2}} - \frac{9}{2} \cdot \frac{(9-r^2)^{\frac{3}{2}}}{\frac{3}{2}} \right) \Big|_{r=0}^{r=\frac{3}{\sqrt{2}}} - \frac{243}{20\sqrt{2}} \right]$$

$$= 2\pi \left(\frac{162}{5} - \frac{81\sqrt{2}}{4} \right)$$

$$\begin{split} \text{Dặt} \left\{ \begin{aligned} x &= \frac{r}{2}\cos\varphi \\ y &= r\sin\varphi \quad \Rightarrow |J| = \frac{r}{2}, V \to V' \\ z &= z \end{aligned} \right. &\Rightarrow |J| = \frac{r}{2}, V \to V' \left\{ \begin{aligned} 0 &\leq \varphi \leq 2\pi \\ 0 &\leq r \leq 2 \\ r &\leq z \leq 1 + \frac{r^2}{4}\cos^2\varphi + r^2\sin^2\varphi \end{aligned} \right. \end{split}$$

$$\Rightarrow V = \iiint_{V'} \frac{1}{2} r d\varphi dr dz = \frac{1}{2} \int_{0}^{2\pi} d\varphi \int_{0}^{2} dr \int_{0}^{1 + \frac{r^2}{4} \cos^2 \varphi + r^2 \sin^2 \varphi} r dz = \frac{1}{2} \int_{0}^{2\pi} d\varphi \int_{0}^{2} \left(r + \frac{r^3}{4} \cos^2 \varphi + r^3 \sin^2 \varphi\right) dr$$

$$= \frac{1}{2} \int_{0}^{2\pi} \left[\left(\frac{r^2}{2} + \frac{r^4}{16} \cos^2 \varphi + \frac{r^4}{4} \sin^2 \varphi\right) \Big|_{r=0}^{r=2} \right] d\varphi$$

$$= \frac{1}{2} \int_{0}^{2\pi} \left(2 + \cos^2 \varphi + 4 \sin^2 \varphi\right) d\varphi$$

Câu 6.

$$\begin{split} I &= \int\limits_{0}^{+\infty} x^{30}.e^{-x^2}dx \\ \text{Dặt } t &= x^2 \Rightarrow dt = 2xdx = 2\sqrt{t}dx \\ \Rightarrow I &= \int\limits_{0}^{+\infty} \frac{t^{15}.e^{-t}}{2\sqrt{t}}dt = \frac{1}{2}\int\limits_{0}^{+\infty} t^{\frac{29}{2}}e^{-t}dt = \frac{1}{2}\Gamma\left(\frac{31}{2}\right) = \frac{1}{2}\Gamma\left(15 + \frac{1}{2}\right) = \frac{1}{2}.\frac{29!!}{2^{15}}\sqrt{\pi} \end{split}$$

Câu 7.

$$I = \int_{L} 2(x^{3} + y^{5})dx + 5x(2y^{4} - 1)dy$$

$$\begin{cases} P(x, y) = 2(x^{3} + y^{5}) \\ Q(x, y) = 5x(2y^{4} + 1) \end{cases}$$

$$\longrightarrow \begin{cases} P'_{y} = 10y^{4} \\ Q'_{x} = 10y^{4} - 5 \end{cases}$$

Áp dụng Green:

$$I = \iint_{D} -5dxdy = -5S_{D} = -5.\frac{1}{2}.2.1 = -5$$

Cân 8

$$I = \int_{C} (e^{x} \sin y + y^{2}) dx + (2xy + e^{x} \cos y) dy + \int_{C} x^{2} dy = I_{1} + I_{2}$$

+) Xét
$$I_1$$
: Đặt
$$\begin{cases} P(x,y) = e^x \sin y + y^2 \\ Q(x,y) = 2xy + e^x \cos y \end{cases} \Rightarrow \begin{cases} P'_y = e^x \cos y + 2y \\ Q'_x = 2y + e^x \cos y \end{cases}$$

 \Rightarrow Tích phân I_1 không phục thuộc vào đường đị

Chọn đường đi là
$$OA: x = 0 \Rightarrow I_1 = \int\limits_0^2 \cos y dy = \sin(2)$$

+)
$$I_2 = \int_C x^2 dy = \int_0^2 (2y - y^2) dy = \frac{4}{3}$$

 $\Rightarrow I = I_1 + I_2 = \sin(2) + \frac{4}{3}$

Câu 9:

S là mặt cong kín, hướng dương ra ngoài, theo Ostrogradsky:

$$I = \iiint_{V} (3x^2 + 3y^2 + 3z^2) dxdydz$$

Với
$$V : 9x^2 + y^2 + z^2 \le 9$$

$$\text{ Dặt } \begin{cases} y = r \sin \theta \cos \varphi \\ z = r \sin \theta \sin \varphi \\ x = \frac{1}{3} r \cos \theta \end{cases} \rightarrow \begin{cases} 0 \leq \varphi \leq 2\pi \\ 0 \leq \theta \leq \pi \\ 0 \leq r \leq 3 \end{cases} \quad |J| = \frac{1}{3} r^2 \sin \theta$$

$$I = \int_{0}^{2\pi} d\varphi \int_{0}^{3} dr \int_{0}^{\pi} \frac{1}{3} r^{2} \sin \theta . 3 \left[\frac{1}{9} r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta \right] d\theta$$

$$= 2\pi \int_{0}^{3} dr \int_{0}^{\pi} \frac{1}{9} r^4 \cos^2 \theta \sin \theta + r^4 \sin^3 \theta d\theta$$

$$=2\pi \int_{0}^{3} \frac{2}{27}r^{4} + \frac{4}{3}r^{4} dr = \frac{684\pi}{5}$$

Câu 10.

Thông lượng của trường vecto:

$$\phi = \iint\limits_{S} xz^{2} dydz + x^{2}ydzdx + y^{2}(z+1)dxdy$$

 Bổ sung thêm mặt S':z=0, véc tơ pháp tuyến $\overrightarrow{n'}$ hướng xuống dưới.

$$\Rightarrow \iint\limits_{S \cup S'} = \iint\limits_{S} + \iint\limits_{S'} \Leftrightarrow I = \phi + I'$$

Do $S \cup S'$ kín, theo Ostrogradsky:

$$I = \iiint\limits_V (z^2 + x^2 + y^2) dx dy dz$$

Với
$$D:$$

$$\begin{cases} x^2+y^2+z^2 \leq 1 \\ z \geq 0 \end{cases}$$

Đặt
$$\begin{cases} x = rcos\varphi sin\theta \\ y = rsin\varphi sin\theta \end{cases} \Rightarrow |J| = r^2 sin\theta \\ z = rcos\theta$$

$$\Rightarrow V \to V': \begin{cases} 0 \le \varphi \le 2\pi \\ 0 \le r \le 1 \\ 0 \le \theta \le \frac{\pi}{2} \end{cases} \Rightarrow I = \int_{0}^{2\pi} d\varphi \int_{0}^{1} r^{4} dr \int_{0}^{\frac{\pi}{2}} sin\theta d\theta = 2\pi \cdot \frac{1}{5} \cdot 1 = \frac{2\pi}{5}$$

$$\begin{array}{l} \text{Tính } I'\text{: Mặt } S'\text{ : }z=0\text{ có }\overrightarrow{n'}=(0,0,-1)\text{ do }(\overrightarrow{n'},\overrightarrow{Oz})>\frac{\pi}{2}\\ \Rightarrow I'=\int\limits_{x^2+y^2\leq 1}-y^2(z+1)dxdy=\int\limits_{x^2+y^2\leq 1}-y^2dxdy \end{array}$$

Vậy
$$\phi = I - I' = \frac{13\pi}{20}$$

