Artigo Disciplina de Macroeconometria- Volatilidade Condicional

Professor: Dr. Marcos Minoru Hasegawa João Carlos de Carvalho Lucca Simeoni Pavan

A maioria das séries financeiras de tempo possuem heterocedasticidade condicional. Assume-se que as inovações ou erros das séries de tempo z_t são serialmente não correlacionada e possuem média nula e matriz de variância e covariância seja positiva definida. Seja $\Sigma_t = Cov\left(a_t|F_{t-1}\right)$ a matriz de covariância condicional de z_t dada F_{t-1} (em que F_{t-1} denota σ -campo com todos os valores $\{z_{t-1}/i=1,2,3\}$. A heterocedasticidade condicional significa que Σ_t é tempodependente. A dependência dinâmica de Σ_t é o objeto da modelagem de volatilidade multivariada.

A matriz de volatilidade tem muitas aplicações financeiras. Por exemplo, é amplamente utilizado na alocação de ativos e na gestão de riscos. A modelação de Σ_t , no entanto, enfrenta duas grandes dificuldades. A primeira dificuldade é em relação a dimensionalidade. Para uma série de tempo k-dimensional z_t , a matriz de volatilidade Σ_t consiste em k variâncias condicionais e(k-1)/2 covariâncias condicionais. Em outras palavras, Σ_t consiste em k(k+1)/2 elementos diferentes que variam no tempo. Para k=30, Σt contém 465 elementos diferentes. A dimensão de Σ_t assim aumenta quadrática com k. A segunda dificuldade é manter a restrição positiva definida. A matriz de volatilidade Σ_t deve ser positiva definida para todo t. Atenção especial é necessária para manter essa restrição quando k é grande.

Similarmente ao caso univariado, pode-se decompor uma série temporal multivariada z_t como:

$$Z_t = \mu_t + a_t,$$

Onde $\mu_t=E\left(z_t\left|F_{t-1}\right.\right)$ é a expectativa condicional de z_t dada F_{t-1} ou a componente previsível de z_t . Para um processo linear μ_t a série pode seguir algum Modelo Multivariado. Também é possível utilizar modelos não lineares. A inovação é imprevisível porque está serialmente não correlacionada. Nós escrevemos o choque como

$$a_t = \Sigma_t^{1/2} \epsilon_t,$$

onde $\{\epsilon_t\}$ é uma sequência de vetores aleatórios independentes e identicamente distribuídos com $E\left(\epsilon_t\right)=0$ e $Cov\left(\epsilon_t\right)=I_k$ e $\Sigma_t^{1/2}$ denota a raiz quadrada da matriz positiva definida Σ_t . Especificamente, $\Sigma_t=P_t\Lambda_tP_t$ representar a

decomposição espectral de Σ_t , onde Λ_t é a matriz diagonal dos autovalores de Σ_t e P_t denota a matriz ortonormal de autovetores. Então, $\Sigma_t^{1/2} = P_t \Lambda_t^{-1/2} P_t$.

Existem outras formas de parametrizar a matriz de volatilidade. Por exemplo, pode-se usar a decomposição de Cholesky para \mathcal{E}_t . A parametrização, porém, não afeta a modelagem da matriz de volatilidade \mathcal{E}_t . Se a inovação $\{\epsilon_t\}$ não é gaussiano, assumimos ainda que E (ϵ_{it}^2) é finita para tudo i. Uma distribuição não gaussiana comumente usada para é a distribuição multivariada padroniza t- Student com v graus de liberdade.

A modelagem da volatilidade consiste tipicamente em dois conjuntos de equações. O primeiro conjunto de equações regula a evolução temporal da média condicional μ_t , enquanto que o segundo conjunto descreve a dependência dinâmica da matriz de volatilidade Σ_t . Estes dois conjuntos de equações são, portanto, referidos como equações de média e volatilidade. Para a maioria das séries de retorno de ativos, o modelo para μ_t é relativamente simples porque μ_t pode ser um vetor constante ou seguir um modelo VAR simples. O objetivo do artigo é modelar Σ_t , ou seja, modelar a volatilidade condicional da séries financeiras (ainda não escolhemos as quais as séries financeiras que serão usadas no trabalho, tão quanto suas periodicidades).

Primeiramente serão realizados testes para verificar a existência de heterocedasticidade condicional nas séries de financeiras. Os principais são o teste de Portmanteau e os testes baseados no posto. É importante salientar que as séries utilizadas serão extraídas por meio do pacote GetHFData elaborado por Marcelo Perlin (professor da Pontifícia Universidade Católica do Rio Grande do Sul) do software estatístico R. Após a verificação da heterocedasticidade serão realizados testes para escolha do modelo de volatilidade condicional, entre eles o teste da estatística Tse. Por último, serão realizadas as estimações para os modelos de volatilidade escolhidos.

Referências Bibliográficas:

Bauwens, L., Hafner, C., e Laurent, S. (2012). *Handbook of Volatility Models and Their Applications*. John Wiley & Sons, Inc, Hoboken, NJ.

Tsay, Ruey S. (2014). *Multivariate time series analysis: with R and financial applications*. John Wiley & Sons, Inc, Hoboken, NJ.