REFERÊNCIA TÉCNICA DE ARQUITETURAS

Comparação entre x86, x86-64 e ARM64

Documento gerado em: 30/08/2025

1. REGISTRADORES DE PROPÓSITO GERAL

Linux x86	Linux x86-64	macOS ARM64	Convenção de Uso
EAX	RAX	X0	Valor de retorno / Acumulador
EBX	RBX	х1	Base / Preservado
ECX	RCX	Х2	Contador / Argumento
EDX	RDX	Х3	Dados / Argumento
ESI	RSI	X4	Índice origem / Argumento
EDI	RDI	Х5	Índice destino / Argumento
EBP	RBP	X29 (FP)	Frame pointer
ESP	RSP	SP	Stack pointer
EIP	RIP	PC	Program counter
_	R8-R15	X6-X28	Registradores adicionais
_	_	X30 (LR)	Link register

2. INTERFACE DE CHAMADA DE SISTEMA

Componente	Linux x86	Linux x86-64	macOS ARM64
Instrução	INT 0x80	SYSCALL	SVC #0x80
Número syscall	Número syscall EAX		X16

Retorno	EAX	RAX	X0
Arg 1	EBX	RDI	X0
Arg 2	ECX	RSI	X1
Arg 3	EDX	RDX	X2
Arg 4	ESI	R10	Х3
Arg 5	EDI	R8	X4
Arg 6	EBP	R9	X5

3. SYSCALLS FUNDAMENTAIS

Operação	x86 ■	x86-64 ■	ARM64 ■
exit	1	60	1
fork	2	57	2
read	3	0	63
write	4	1	64
open	5	2	5
close	6	3	6
execve	11	59	221
brk	45	12	214
mmap	90	9	222
munmap	91	11	215

4. ESPECIFICAÇÕES TÉCNICAS

4.1 Tamanho de Tipos de Dados

Tipo	x86	x86-64	ARM64
ВҮТЕ	8 bits	8 bits	8 bits
WORD	16 bits	16 bits	16 bits
DWORD	32 bits	32 bits	32 bits
QWORD	_	64 bits	64 bits
Ponteiro	32 bits	64 bits	64 bits
size_t	32 bits	64 bits	64 bits

4.2 Registradores de Estado

Flag	x86/x86-64	ARM64	Descrição
Zero	ZF	Z	Resultado igual a zero
Carry	CF	С	Carry/Borrow aritmético
Sign/Negative	SF	N	Resultado negativo
Overflow	OF	V	Overflow aritmético
Direction	DF	_	Direção de string
Interrupt	IF	_	Habilitação de interrupção

NOTAS TÉCNICAS

- 1. ARM64 utiliza registradores de 64 bits (X0-X30) com vistas de 32 bits (W0-W30).
- 2. x86-64 mantém compatibilidade com código de 32 bits através de prefixos de instrução.
- 3. macOS em ARM64 requer alinhamento de stack em 16 bytes antes de chamadas de função.
- 4. Registradores preservados (callee-saved) devem ser restaurados antes do retorno da função.
- 5. A convenção de chamada System V AMD64 ABI é utilizada em Linux x86-64.
- 6. macOS ARM64 segue a convenção de chamada AAPCS64 com modificações Apple.

Referência compilada para desenvolvimento em assembly de baixo nível