2023년 한이음 ICT멘토링 프로젝트 수행계획서

l. 프로젝트 정보

프로젝트명	AI를 이용한 쓰레기 분리수거 로봇
주제영역	☑ 생활 □ 업무 □ 공공/교통 □ 금융/핀테크 □ 의료 □ 교육
T/110 7	□ 유통/쇼핑 □ 엔터테인먼트 □ H A 크림 A
기술분야	☑ SW·AI □ 방송·콘텐츠 □ 블록체인·융합 □ 디바이스 □ 차세대보안 □ 미래통신·전파
성과목표	☑ 논문게재 및 포스터 발표 □ 앱등록 □ 프로그램등록 □ 특허 □ 기술이전
044±	☑ 실용화 ☑ 공모전(한이음공모전) □ 기타()
수행예상기간	2023. 04. 01. ~ 2023. 11. 30.
	최근 로봇 기술과 인공지능(AI)의 발달로 인간이 담당하고 있던 많은 영역들이
	로봇과 인공지능으로 대체하고 있다. 이러한 사회적인 트렌드에 맞춰 사람들이 가장
프로젝트 소개	기피하는 3D(Dirty, Difficult, Dangerous) 업종에 기여하고자 한다.
및 제안배경	본 프로젝트는 실시간으로 카메라에 영상에 쓰레기를 인공지능(AI) 모델을 통해
	검출 및 분류한다. 이후 분리수거를 실행할 로봇을 설계하여 많은 양의 쓰레기
	분류를 요하는 직종에 종사하는 사람들에게 도움이 되고자 한다.
	1. 쓰레기 분류: 카메라 영상에 담긴 무작위의 플라스틱, 종이, 캔, 유리 등과 같은 쓰
	레기를 YOLO 모델을 이용해 검출(object detection)하고 분류(classification)한다.
주요기능	2. 분리수거: 앞 단계에서 분류된 쓰레기 종류에 따라, 6개의 모터를 내장한 Robot
1 = 18	Arm이 해당 쓰레기를 적절하게 분리수거 한다.
	3. 앱/웹을 통한 제어: 추가적인 Robot Arm에 세부적인 동작이 필요한 경우, 앱 또는
	웹을 활용해 로봇을 제어한다.
	1. 컴퓨터 비전: 카메라에 담기는 다양한 종류의 쓰레기 영상에서 유의미한 정보를
	추출하는 인공지능 기술
	2. YOLO object detection: 실시간으로 물체를 감지할 수 있는 물체 감지 모델로, 카
	메라 영상에서 객체를 식별하고 위치 및 분류를 제공하는 AI 모델 기술
	3. 머신러닝: 시간이 지남에 따라 계속된 학습으로 쓰레기를 분류하는 성능을 올릴
	수 있도록 도와주는 기술, 새로운 환경과 상황에 적응하고 쓰레기를 감지하고 분
적용 기술	류하는 능력 향상
	4. 로봇 공학, 제어 시스템: 로봇을 설계하고 로봇의 움직임을 제어하는 기술, 6개의
	서브 모터가 정상적으로 작동하는데 필요한 핵심 기술
	5. 센서 기술: 쓰레기를 분류할 때 분류 정확도를 높일 수 있는 추가적인 데이터를
	제공, 라이다 센서, 초음파 센서와 같은 센서를 설계 및 구동하는 기술
	6. 클라우드 시스템: Ethernet 또는 WiFi를 활용해 웹 또는 앱에서 통신하며 로봇을
	제어할 때 활용하는 기술

그림 1) 쓰레기에 대한 데이터 학습 및 쓰레기 분류 모델 생성

그림 2) 그림 1에서 생성된 모델 검 증 및 평가를 위한 오차 행렬

그림 3) 카메라가 쓰레기를 인식하고, 로봇이 쓰레기 분류

그림 4) 6개의 모터를 활용하는 로봇과 로봇을 제어하는 시스템 - 사람들이 기피하는 3D(Dirty, Difficult, Dangerous) 업종에 로봇을 활용함으로써 업 무에 대한 부담 감소 기대효과 및 - 사람보다 더 정확한 기계가 쓰레기를 분류함으로써 재활용 효율 극대화 활용 분야 - 폐기물을 많이 발생시키는 기업의 경우 자동으로 쓰레기를 분류할 수 있는 로봇을

- 활용함으로써 업무 효율성 증가 및 인건비 절약
- AI 기술과 로봇 공학 기술을 결합하여 새로운 영역으로써의 사업 확장 가능

예상 결과물

Ⅱ. 프로젝트 수행계획

1. 프로젝트 개요

가. 프로젝트 소개

- 실시간으로 영상의 쓰레기를 인공지능(AI) 모델을 통해 검출 및 분류한다. 이후 분리수거를 실행할 로봇을 설계하여 많은 양의 쓰레기 분류를 요하는 직종에 종 사하는 사람들에게 도움이 되고자 한다.
- 머신러닝 기술이 적용해 쓰레기 데이터에 대한 학습을 계속해서 진행한다. 따라서 시간이 지날수록 학습된 데이터가 쌓여 분류하지 못하는 쓰레기가 없도록 완벽한 분리수거 로봇을 설계하고자 한다.
- o 로봇을 제어하는데 필요한 하드웨어 지식과 인공지능 모델을 활용하는데 필요한 소프트웨어 지식을 융합하여 프로젝트를 진행한다.

나. 추진배경 및 필요성

- 한국환경공단에서 조사한 최근 대한민국 재활용률 조사 결과에 따르면, 분리배출 단계에서 수거 후 선별까지 가는 재활용품 비율을 의미하는 명목 재활용률과 분리배출 단계에서 실질적인 재활용이 이루어지는 재활용품 비율인 실질 재활용률이 서로 차이가 있다. 구체적 예시로 분리배출 된 플라스틱을 사례로 보면, 실질 재활용률은 40%에 그치는 등 재활용 분리수거에 대한 문제가 심각하다.
- o 이러한 문제 인식과 로봇, 인공지능(AI)의 발달의 사회적인 트렌드를 기반으로 사람들이 가장 기피하는 3D(Dirty, Difficult, Dangerous) 업종에 기여하고자 한다.
- 또한 코로나 이후 배달 서비스 증가로 인해 일회용품 사용량이 급증했다. 그로 인해 많은 양의 쓰레기가 발생하게 되었고, 이 쓰레기를 자동화가 된 로봇이 처 리하여 효율성을 높이고자 한다.
- 로봇의 경우 초기 설치 비용을 배제하고, 구동을 위해 필요한 전력을 제외하면 사람의 인건비보다 저렴하게 사용할 수 있는 장점이 있다. 이러한 이점을 활용해 분리수거 작업을 많이 하는 대단지 아파트 또는 기업에서 로봇을 활용해 업무 효율성과 경제성 향상에 기여하고자 한다.

2. 프로젝트 내용

가. 주요 기능

구분	기능	설명
S/W	쓰레기 분류	카메라 영상에 담긴 무작위의 플라스틱, 종이, 캔, 유리 등과 같은 쓰레기를 YOLO 모델을 이용해 검출 (object detection)하고 분류(classfication)
S/W+H/W	분리수거	분류 단계에서 분류된 쓰레기 종류에 따라, 6개의 모터를 내장한 Robot Arm이 해당 쓰레기를 적절하 게 분리수거
S/W+H/W	웹/앱을 통한 제어	Robot Arm에 디테일한 동작이 필요한 경우, 앱 또 는 웹을 활용해 로봇 제어

나. 적용 기술

- 컴퓨터 비전: 로봇에게 시각 데이터 처리 능력을 부여하여 카메라를 활용해 쓰레기 종류를 분류하고 식별하는 기술이다.
- o YOLO object detection: 객체 검출 모델 중 하나로 여러 사물을 식별하여 분류하고 해당 사물의 위치를 박스로 표시하여 위치 정보를 나타내는 기술이다. YOLO 는 이미지를 타 모델과 다르게 여러 장으로 분할하여 해석하지 않고 통합된 모델을 사용하기에 빠르고 실시간으로 객체 검출이 가능하다.
- o 머신러닝: 시간이 지남에 따라 지속적인 학습을 통해 쓰레기 분류 성능을 높이는 기법이다. 변화하고 다양한 환경에 적응하여 쓰레기를 분류한다.
- o 로봇 공학, 제어 시스템: 로봇의 시스템을 설계하고 로봇의 움직임을 제어하는 기술로 로봇팔의 서브 모터를 제어한다.
- 센서 기술: 로봇이 쓰레기를 정확하게 인식할 수 있도록 추가적인 정보를 제공,
 센서에서 제공하는 추가적인 정보를 소프트웨어로 처리하여 분류 작업을 수행한다.
- o 클라우드 시스템: Ethernet이나 WiFi를 이용해 웹이나 앱에서 통신으로 로봇을 제어할 때 사용되는 기술이다.

다. 필요기자재(기자재/장비)

품목	활용계획
OFFO上	Web과 Robot Arm과의 연결을 위해서 필요하다. WiFi Shield를 이용하여 Web을 통해 Robot Arm을 구동한다.
PHPoC WiFi Shield for 아두이노	Web과 Robot Arm과의 연결을 위해서 필요하다. 아두이노를 이 용하여 Web을 통해 Robot Arm을 구동한다.
6 DOF Robotic Arm	프로젝트의 제일 기본이 되는 ARM 로봇을 만들기 위해 필요하다. ARM 로봇을 아두이노, WIFI SHIELD 등을 이용해서 제작하고계획한 것들을 구현한다.
카메라 및 초음파 센서	Robot Arm 주변 쓰레기의 유무, 거리, 방향을 인식하고 추정한 다.
블루투스 모듈	외부 센서로부터 수집한 정보를 전송한다.

라이다 센서	360도 회전하는 센서이며, 카메라 등의 센서들로는 알 수 없 사물의 형태, 3차원 공간정보를 제공해준다.				
배터리	모터와 아두이노의 전원을 공급한다.				
DC 모터, 모터 드라이버	DC모터: Robot Arm 프레임의 휠을 구동하여 Robot Arm의 이동성을 확보시켜준다. 모터 드라이버: 모터의 회전 방향을 바꿔주어 좌우로 Robot Arm의 이동을 가능하게 한다.				
400 선형 슬라이드 CNC 엑추에이터 아두이노	Robot Arm 프레임의 바디가 좌우로 이동하는 레일이다.				

라. 예상결과물

예상 결과물 이미지	설명
Drinking Waste 4 - class TrashCan 8 - class	카메라에서 촬영되는 실시간 이미지를 사전에 학습된 YOLO 모델이 판별(detection) 및 분류(classification)하여 쓰 레기를 분류한다.
	카메라, 라이다 센서, 초음파 센서, 아두이노, 6 DOF Robot Arm 등을 모두 조립 및 구동하여 앞에서 분류된 결 과를 바탕으로 분리수거를 진행한다.
B C C C C C C C C C C C C C C C C C C C	세부적인 Robot Arm의 제어가 필요한 경우, PHPoC WiFi Shield for 아두이노로 웹/앱을 활용해 Robot Arm을 구동 한다.

마. 성과목표

ᄭᆘᆂᅭ	□ 특허출원 ☑ 논문발표 □ 앱등록 □ 프로그램등록 □ 기술이전
	☑ 실용화 ☑ 공모전(한이음공모전) □ 기타()

- ㅇ 논문발표: 임베디드 시스템 구축에 대한 논문 게재 및 발표
- 실용화: 쓰레기 분류장에서 분류 작업에 바로 사용할 수 있는 실용성 높은 로봇 제작
- o 공모전(한이음 공모전): 쓰레기 분류 임베디드 시스템과 인공지능을 토대로 시제 품을 만들어 입상 목표

3. 프로젝트 수행방법

가. 프로젝트 추진일정

그ㅂ	구분 추진내용		추진일정									
丁正			3월	4월	5월	6월	7월	8월	9월	10월	11월	
계획	계획서 작성, 역할 분담											
분석	컴퓨터 비전, 머신러닝 스터디											
正円	프로젝트 H/W 구매 및 스터디											
	6 DOF Robot ARM 설계											
설계	아두이노 보드 및 센서 설계											
	쓰레기 데이터 수집 및 학습											
	6 DOF Robot ARM 조립 및 제작											
개발	아두이노 보드와 센서 Robot Arm 부착 및 구동											
	YOLO 모델 생성 및 적용											
테스트	성능 개선 및 오류 테스트											
종료	논문 작성 및 공모전 참가											
오프라인 미팅계획	멘토 멘티 간 협의하여 유동적 미팅											

나. 의사소통방법

- o 대면을 최우선으로 하고 불가피한 경우 Zoom을 활용해 수시로 팀원 간 적극적 인 커뮤니케이션 진행
- ㅇ 팀원 간 의견 차이가 발생하는 경우 다수결의 원칙으로 결정
- o 프로젝트 개발을 진행하고 그 과정에서 해결되지 않는 이슈가 생긴 경우 이를 정리하여 멘토에게 보고하고 해결 방안에 대해 커뮤니케이션 진행
- ㅇ 멘토의 의견 및 피드백을 수렴하여 프로젝트를 개선하는 방향으로 진행

다. 프로젝트 Ground Rule (기본원칙)

- ㅇ 주 1회 멘티 간 미팅을 통해 프로젝트 진행 상황 공유
- ㅇ 미팅 시 적극적인 참여 필수
- ㅇ 미팅에서 공유한 내용은 모두 기록하여 관리
- o 미팅 전 팀원이 작성한 소스코드가 있는 경우, 깃헙/깃랩에 올려 팀원 전체가 공유
- ㅇ 이슈 발생 시, 본인 담당이 아닌 경우에도 적극적으로 참여

Ⅲ. 기대효과 및 활용분야

1. 기대효과

가. 작품의 기대효과

- o 효율성 향상: 로봇을 활용하게 되면 자동화 작업이 가능하게 되어 분리수거 작업에 효율성을 높일 수 있다.
- 이 비용 절감: 분리수거를 할 때 투입해야 하는 인원에 대해 인건비를 절약함으로써 경제적인 운영을 할 수 있다.
- o 3D 업종 기여: 사람들이 기피하는 업종에 로봇이 참여함으로써 사람들의 기피 현상을 해소하고 위험한 작업에 투입을 줄일 수 있다.

나. 참여 멘티의 교육적 기대효과

- o 로봇의 시스템을 제작하고 구동하면서 로봇 공학의 전반적인 지식을 학습할 수 있다.
- 아두이노 보드와 관련된 센서들을 사용해보면서 임베디드 시스템에 대한 전반적인 지식을 학습할 수 있다.
- 컴퓨터 비전과 머신러닝을 실제로 활용해보면서 인공지능에 대해 깊이 있게 다 뤄볼 수 있다.

2. 활용분야

- 많은 양의 쓰레기를 분리수거 하는 기업이나 대단지 아파트의 경우 로봇을 활용해 분리수거 작업을 자동화 할 수 있다.
- o 생활, 공공, 산업, 농업, 재활용, 건설, 병원 등 다양한 쓰레기가 나오는 현장에서 활용할 수 있다.
- 이 데이터 학습 단계에서 쓰레기가 아닌 다른 데이터를 학습시켜 다양한 산업 환경에서 사용할 수 있다.
- ㅇ 올바른 재활용품 분리배출에 대한 교육과 학습의 기반을 제공할 수 있다.