Propriedades dos determinantes

MAP 2110 - Diurno

IME USP

2 de junho

A definição do determinante

Se $A = [a_{ij}]$ é uma matriz quadrada $n \times n$ a definição de determinante dada foi:

$$\det(A) = \sum_{i=1}^n a_{i1}c_{i1}$$

onde $c_{ij}=(-1)^{i+j}\det(A_{ij})$ e A_{ij} é a matriz reduzida de dimensão $(n-1)\times(n-1)$ obtida eliminando-se a i-ésima linha e a j-ésima coluna de A.

Vamos usar também a notação seguinte:

$$a_{i*} = egin{bmatrix} a_{i1} & \cdots & a_{in} \end{bmatrix}$$
 para a linha i $a_{*j} = egin{bmatrix} a_{1j} \ dots \ a_{nj} \end{bmatrix}$ para a coluna j

Seria bom ter a imagem do que acontece em dimensão 3 para entender algumas provas:

entender algumas provas:
$$\det(A) = \left(a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} \right)$$

onde

$$A = egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

1 determinante da matriz identidade

Vamos fazer um monte de provas usando indução na dimensão da matriz. Primeiro notamos que para o caso de matrizes 2×2 isso foi feito na vez passada. Assumimos que a tese valha até o caso de matrizes $(n-1) \times (n-1)$ (hipótese de indução). Se $I_n = [\delta_{ij}]$ é a matriz identidade $n \times n$ temos pela definição de determinante que

$$\det(I) = \sum_{i=1}^{n} \delta_{i1} (-1)^{i+1} \det((I_n)_{i1}) = \delta_{11} \det I_{n-1} = 1$$

pois

- $\delta_{11} = 1$
- ightharpoonup det $(I_{n-1})=1$ usando a hipótese de indução.

2 troca de linhas

Suponha que duas matrizes $A = [a_{ij}]$ e $B = [b_{ij}]$ só têm os elementos de uma linha p e p + 1 trocados, isto é:

$$a_{p*} = b_{(p+1)*} \in a_{(p+1)*} = b_{p*}$$

então $\det(A) = -\det(B)$ Novamente usaremos indução para a dimensão das matrizes, o caso 2×2 é simples. A hipótese de indução é que a tese valha para matrizes $(n-1) \times (n-1)$, e vamos mostrar que então temos para o caso $n \times n$.

Observamos que

▶ Se $i \neq p, p+1$ então A_{i1} e B_{i1} continuam tendo as linhas p e p+1 trocadas, e pela hipótese de indução $\det(A_{i1)=-\det(B_{i1})}$

► Se
$$i = p, p + 1$$
 então $A_{p1} = B_{(p+1)1}$ e $B_{p1} = A_{(p+1)1}$

Então

$$\det(A) = \sum_{i=1}^{p-1} a_{i1} (-1)^{i+1} \det A_{i1} + \cdots + a_{p1} (-1)^{p+1} \det A_{p1} + a_{(p+1)1} (-1)^{p+2} \det A_{(p+1)1}$$

$$i=1$$
 $+a_{p1}(-1)^{p+1}\det A_{p1}+a_{(p+1)1}(-1)^{p+2}\det A_{(p+1)1}$

$$+a_{p1}(-1)^{p+1} \det A_{p1} + a_{(p+1)1}(-1)^{p+2} \det A_{(p+1)1} + \cdots$$

 $+ \sum_{i=1}^{n} a_{i1}(-1)^{i+1} \det A_{i1}$

$$\det(A) = -\sum_{i=1}^{p-1} b_{i1} (-1)^{i+1} \det B_{i1} + \cdots$$

$$b_{(p+1)1} (-1)^{p+1} \det B_{(p+1)1} + b_{p1} (-1)^{p+2} \det B_{(p)1} + \cdots$$

$$+b_{(p+1)1}(-1)^{p+1} \det B_{(p+1)1} + b_{p1}(-1)^{p+2} \det B_{(p)1} + \cdots$$

$$- \sum_{i=1}^{n} b_{i1}(-1)^{i+1} \det B_{i1} = -\det(B) \quad \Box$$

Exemplo

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 0 & -2 & 4 \end{pmatrix} \ \mathbf{e} \ B = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 0 & 2 \\ 0 & -2 & 4 \end{pmatrix}$$

E se trocarmos duas linhas quaisquer?

Se trocamos a linha p com a linha p+r note que podemos primeiro colocar a linha p na posição da linha p+r fazendo r trocas simples e para posicionar a linha que estava em p+r (e agora está em p+r-1) na linha p usamos mais r-1 trocas simples. Fizemos no total 2r-1 trocas simples, em cada troca alteramos o sinal do determinante, portanto temos o mesmo resultado: qualquer troca de linhas muda o sinal do determinante.

3 Duas linhas iguais

Se uma matriz A tem duas linhas iguais então seu determinante é igual a zero. Pois se trocamos as duas linhas iguais a matriz fica inalterada e usando a propriedade anterior temos

$$\det A = -\det A \implies \det A = 0$$

4 uma linha de zeros

Se A é uma matriz $n \times n$ com uma linha inteira com zeros então det A = 0.

Repetimos o mesmo tipo de prova por indução em n. O caso base é o n=2, isto é, para matrizes 2×2 o cálculo é fácil. E vamos tentar reduzir o caso geral n para o caso n-1.

Suponha que na linha p temos $a_{p*}=[0,\cdots,0]$. Então A_{i1} para todo $i\neq p$ tem uma linha de zeros correspondente à linha p de A. Pela hipótese de indução seu determinante é 0. Então

$$\det(A) = a_{p1}(-1)^{p+1}.\det(A_{p1})$$

mas por hipótese a_{p1} também é 0, mostrando que det(A) = 0

5 Mudança por uma matriz elementar

Suponha, primeiro lugar, que uma matriz A tenha uma linha multiplicada por r. Então B é uma matriz igual a A a menos da linha p onde $b_{p*}=ra_{p*}$. Então $\det B=r\det(A)$ Para o caso n=2

$$\begin{vmatrix} a_{11} & a_{12} \\ ra_{21} & ra_{22} \end{vmatrix} = r(a_{11}a_{22}) - r(a_{21}a_{12}) = r \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

Para o caso geral:

- ▶ se $i \neq p$ então $det(B_{i1}) = r det(A_{i1})$ pela hipótese de indução, e $a_{i1} = b_{i1}$.
- ightharpoonup se i=p então $A_{p1}=B_{p1}$ e $b_{p1}=ra_{p1}$

Usando a definição do determinante a prova está feita.

Suponha que A, B e C sejam matrizes quadradas que têm todos os elementos fora da linha q iguais e que na linha q temos $b_{q*} = a_{q*} + c_{q*}$. Vamos mostrar que $\det(B) = \det(A) + \det(C)$

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \ C = \begin{bmatrix} a_{11} & a_{12} \\ c_{21} & c_{22} \end{bmatrix} \ e \ B = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} + c_{21} & a_{22} + c_{22} \end{bmatrix}$$

e a verificação é simples

Caso n=2 temos

Agora usando indução temos:

se
$$i \neq q$$
 temos $a_{i1} = b_{i1} = c_{i1}$ e B_{i1}, A_{i1}, C_{i1} continuam com a mesma propriedade e pela hipótese de indução

$$\det(B) = \sum (-1)^{i+1} b_{i1} \det(B_{i1}) + (-1)^{q+1} b_{q1} \det(B_{q1}) =$$

$$\det(B) = \sum_{i \neq a} (-1)^{i+1} b_{i1} \det(B_{i1}) + (-1)^{q+1} b_{q1} \det(B_{q1}) =$$

$$\det(B) = \sum_{i \neq q} (-1)^{i} b_{i1} \det(B_{i1}) + (-1)^{i} b_{q1} \det(B_{q1}) =$$

$$= \sum_{i \neq q} (-1)^{i+1} b_{i1} (\det(A_{i1}) + \det(C_{i1})) + (-1)^{q+1} (a_{q1} + c_{q1}) \det(B_{q1}) =$$

det(A) + det(B)

Agora a diferença entre A e B é somente na linha p onde vale

$$b_{p*} = a_{p*} + ra_{k*} \operatorname{com} k \neq p$$

Então det(A) = det(B)Podemos usar o caso acima tomando como C a matriz igual a A só que na linha q tem ra_{k*} e como C tem duas vezes a linha a_{k*} seu determinante é zero

Matrizes elementares

Vamos ver qual é o determinante dos três tipos de matrizes elementares

- 1. Troca de linhas.
- 2. multiplicar uma linha por α
- 3. somar a uma linha o múltiplo de outra

1- Troca de linhas

Se E_1 é a matriz identidade com as trocas de linhas efetuadas em I_n , então

$$\det(E_1) = -1 \det(I_n) = -1$$

E como para toda matriz A, $E_1.A$ executa esta operação elementar na matriz A então temos

$$\det(E_1.A) = -\det(A) = \det(E_1)\det(A)$$

Executando duas trocas de linhas E_1 e E_2 teremos

$$\det(E_2.E_1) = \det(E_2).\det(E_1) = 1$$

2- multiplicar uma linha por lpha

Neste caso a matriz elementar E_{α} é obtida multiplicando uma linha de I_n por α , então

$$\det(E_{\alpha}) = \alpha \det(I_n) = \alpha$$

da mesma forma que antes temos

$$\det(E_{\alpha}.A) = r \det(A) = \det(E_{\alpha}) \det(A)$$

е

$$\det(E_{\alpha_1}.E_{\alpha_2}\cdots E_{\alpha_k}A) = \alpha_1.\det(E_{\alpha_2}\cdots E_{\alpha_k}A) = \cdots = \left(\prod_{i=1}^k \alpha_i\right)\det(A)$$

$$3- L_q = L_q + \alpha L_p$$

Se $E_{q,p}$ é a matriz elementar que realiza esta transformação então

$$\det(E_{q,p}) = \det(I_n) = 1$$

de novo

$$\det(E_{q,p}A)\det(E_{q,p})\det(A)=\det(A)$$

Sobre as transpostas

As matrizes elementares do tipo 1 e 2 não se alteram quando transpostas. Há uma simetria em relação à diagonal principal. Só precisamos ver o que acontece com as matrizes elementares do tipo $E_{q,p}$. Neste caso se denotamos $E_{q,p}=[e_{ij}]$ temos que $e_{qp}=\alpha$ e $e_{ij}=1$ os outros elementos são nulos. Então na matriz transposta $E_{q,p}^T=[h_{ij}]$ temos que

- $ightharpoonup h_{ii} = 1$, pois os elementos da diagonal ficam iguais.
- $h_{pq} = e_{qp} = \alpha$
- os outros elementos são 0

Mas esta é a matriz elementar que troca a linha p com $L_p = L_p + \alpha L_q$ que é do terceiro tipo também.

Teorema sobre as transpostas

Teorema

Se A é uma matriz quadrada, então $det(A^T) = det(A)$

- Se A não é inversível então det(A) = 0 e A^T também não é inversível, ou seja $det(A^T) = 0$
- Se A é elementar o teorema decorre da observação do último slide.
- ▶ Se A é inversível então $A = E_1.E_2 \cdots E_k$ é produto de matrizes elementares. Então $A^T = E_k^T \cdots E_1^T$. Usando agora a primeira parte segue o resultado.