Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №4 «Аппроксимация функции методом наименьших квадратов»

по дисциплине «Вычислительная математика»

Вариант: 1

Преподаватели:

Малышева Татьяна Алексеевна Машина Екатерина Алексеевна

Выполнил:

Бондарев Алексей Михайлович

Группа: Р3212

<u>Цель работы</u>: найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

1. Вычислительная реализация задачи

Линейная аппроксимация:

$$y = \frac{12x}{x^4 + 1}$$

$$x \in [0; 2]$$

 $h = 0.2$

i	xi	xi^2	xi^3	xi^4	yi	xi yi	xi^2 yi
1	0.0	0.000	0.000	0.0000	0.000	0.0000	0.0000
2	0.2	0.040	0.008	0.0016	2.396	0.4792	0.0958
3	0.4	0.160	0.064	0.0256	4.680	1.8720	0.7488
4	0.6	0.360	0.216	0.1296	6.374	3.8244	2.2946
5	0.8	0.640	0.512	0.4096	6.810	5.4480	4.3584
6	1.0	1.000	1.000	1.0000	6.000	6.0000	6.0000
7	1.2	1.440	1.728	2.0736	4.685	5.6220	6.7704
8	1.4	1.960	2.744	3.8416	3.470	4.8577	6.8008
9	1.6	2.560	4.096	6.5536	2.542	4.0672	6.5075
10	1.8	3.240	5.832	10.4976	1.879	3.3819	6.0874
11	2.0	4.000	8.000	16.0000	1.412	2.8240	5.6480
Σ	11.000	15.400	24.200	40.5328	40.248	38.376	45.287

Нормальные уравнения:

$$egin{cases} a \ n + b \sum x_i = \sum y_i, \ a \sum x_i + b \sum x_i^2 = \sum x_i y_i. \ \begin{cases} 11a \ + \ 11.000 \, b \ = \ 40.248, \ 11.000 \, a \ + \ 15.400 \, b \ = \ 38.376. \end{cases}$$

Определитель:

$$\Delta = egin{vmatrix} 11 & 11.000 \ 11.000 & 15.400 \ \end{bmatrix} = 11 \cdot 15.400 - 11.000^2 = 169.4 - 121.0 = 48.4$$

Крамер:

$$\Delta_a = egin{array}{c|ccc} 40.248 & 11.000 \ 38.376 & 15.400 \ \end{array} = 40.248 \cdot 15.400 - 38.376 \cdot 11.000 = 620. + (-422.) = 197.6.$$

$$\Delta_b = egin{array}{ccc} 11 & 40.248 \ 11.000 & 38.376 \end{bmatrix} = 11 \cdot 38.376 - 40.248 \cdot 11.000 = 422.1 - 442.7 = -20.6.$$

Коэффициенты:

$$a=rac{\Delta_a}{\Delta}=rac{197.6}{48.4}=4.084, \qquad b=rac{\Delta_b}{\Delta}=rac{-20.6}{48.4}=-0.425.$$

$$arphi_{
m lin}(x) = 4.084 - 0.425\,x$$

Проверочные значения и ошибки:

i	xi	yi	$arphi_{ ext{lin}}(x_i)$	$arepsilon_i = y_i - arphi$	$arepsilon_i^2$
1	0.000	0.000	4.084	-4.084	16.679
2	0.200	2.396	3.999	-1.603	2.570
3	0.400	4.680	3.914	0.766	0.587
4	0.600	6.374	3.829	2.545	6.477
5	0.800	6.810	3.744	3.066	9.400
6	1.000	6.000	3.659	2.341	5.480
7	1.200	4.685	3.574	1.111	1.234
8	1.400	3.470	3.489	-0.019	0.000
9	1.600	2.542	3.404	-0.862	0.743
10	1.800	1.879	3.319	-1.440	2.074
11	2.000	1.412	3.234	-1.822	3.320
Σ					48.569

$$S_{
m lin} = \sum arepsilon_i^2 = 48.569, \quad \sigma_{
m lin} = \sqrt{rac{S}{n}} = \sqrt{rac{48.569}{11}} = 2.101.$$

Квадратичная аппроксимация:

$$y = \frac{12x}{x^4 + 1}$$

$$x \in [0; 2]$$

 $h = 0.2$

i	xi	xi^2	xi^3	xi^4	yi	xi yi	xi^2 yi
1	0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000
2	0.200	0.0400	0.0080	0.0016	2.396	0.4792	0.0958
3	0.400	0.1600	0.0640	0.0256	4.680	1.8720	0.7488
4	0.600	0.3600	0.2160	0.1296	6.374	3.8244	2.2946
5	0.800	0.6400	0.5120	0.4096	6.810	5.4480	4.3584
6	1.000	1.0000	1.0000	1.0000	6.000	6.0000	6.0000
7	1.200	1.4400	1.7280	2.0736	4.685	5.6220	6.7464
8	1.400	1.9600	2.7440	3.8416	3.470	4.8580	6.8012
9	1.600	2.5600	4.0960	6.5536	2.542	4.0672	6.5075
10	1.800	3.2400	5.8320	10.4976	1.879	3.3822	6.0880
11	2.000	4.0000	8.0000	16.0000	1.412	2.8240	5.6480
Σ	11.000	15.4000	24.2000	40.5328	40.248	38.3760	45.287

Нормальные уравнения:

$$egin{cases} a\,n+b\sum x_i+c\sum x_i^2 = \sum y_i,\ a\sum x_i+b\sum x_i^2 + c\sum x_i^3 = \sum x_iy_i,\ a\sum x_i^2 + b\sum x_i^3 + c\sum x_i^4 = \sum x_i^2y_i. \end{cases}$$

$$egin{cases} 11a + 11.000b + 15.400c = 40.248, \ 11.000a + 15.400b + 24.200c = 38.376, \ 15.400a + 24.200b + 40.533c = 45.287. \end{cases}$$

Гаус:

1. Умножаем первую строку на $\frac{11}{11}$ =1 и вычитаем её из второй:

$$(15.400-11.000)b + (24.200-15.400)c = 38.376-40.248 \implies 4.400\,b + 8.800\,c = -1.872$$

2. Аналогично для третьей строки:

$$(24.200-15.400)b+(40.533-24.200)c=45.287-15.400\cdot(40.248)/11.$$
 Получаем:

$$8.800 \, b + 17.681 \, c = 6.693$$

3. Решаем систему:

$$egin{cases} 4.400\,b + 8.800\,c = -1.872, \ 8.800\,b + 17.681\,c = 6.693. \end{cases} \Rightarrow egin{cases} c = -5.330, \ b = 10.234. \end{cases}$$

4. Подставляем b,с в первое исходное уравнение — получаем а=0.886.

$$arphi_{
m quad}(x) = 0.886 + 10.234\,x - 5.330\,x^2$$

Вычисление ошибок:

i	xi	yi	$arphi_{ ext{quad}}(x_i)$	$arepsilon_i = y_i - arphi$	$arepsilon_i^2$
1	0.000	0.000	0.886	-0.886	0.785
2	0.200	2.396	2.720	-0.324	0.105
3	0.400	4.680	4.127	0.553	0.306
4	0.600	6.374	5.108	1.266	1.604
5	0.800	6.810	5.662	1.148	1.318
6	1.000	6.000	5.790	0.210	0.044
7	1.200	4.685	5.492	-0.807	0.651
8	1.400	3.470	4.767	-1.297	1.682
9	1.600	2.542	3.616	-1.074	1.153
10	1.800	1.879	2.038	-0.159	0.025
11	2.000	1.412	0.034	1.378	1.899

Σ			9.571

$$S_{
m quad} = 9.571, \qquad \sigma_{
m quad} = \sqrt{rac{9.571}{11}} = 0.933.$$

Модель	а	b	С	σ
Линейная	4.084	-0.425	_	2.101
Квадратичная	0.886	10.234	-5.330	0.933

Квадратичная модель даёт минимальное среднеквадратичное отклонение, следовательно **является лучшим приближением**.

2. Программная реализация задачи

https://github.com/666Daredevil666/calmath/tree/main/lab4

Результаты выполнения программы при различных исходных данных:

Пример №1 ввода с клавиатуры:

```
Введите пары х у (пустая строка — конец ввода):
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
Принято 8 точек.
Результаты:
           σ=1.8039e-15 R²=1 (отличное согласие) coef=[1, 1] r=1
Линейная
Полином 2-й ст. \sigma=3.61984e-14 R<sup>2</sup>=1 (отличное согласие) coef=[1, 1, 9.372e-17]
Полином 3-й ст. \sigma=2.4371e-13 R<sup>2</sup>=1 (отличное согласие) coef=[1, 1, -4.0746e-16, -5.9064e-17]
Экспоненциальная \sigma=1.6216 R<sup>2</sup>=0.874782 (хорошее согласие) coef=[2.5034, 0.13763]
Логарифмическая \sigma=1.64881 R^2=0.870543 (хорошее согласие) coef=[-0.1848, 5.0598]
Степенная
                σ=0.452539 R<sup>2</sup>=0.990248 (отличное согласие) coef=[1.841, 0.77587]
Лучшее приближение → Линейная
Отчёт сохранён в /Users/alexb/PycharmProjects/pythonProject6/results.txt
```

Results.txt

34		юм 3-й ст.				
	i	x_i	y_i	φ(x_i)	ε_i	
	1	1	2		-3.8725e-13	
	2	3			-3.4639e-13	
	3	5	6		-2.9843e-13	
		7	8		-2.3981e-13	
	5	9	10	10	-1.652e-13	
	6 7	11	12	12	-7.816e-14	
	8	13 15	14 16	14 16		
	0	13	10	10	1.36326-13	
	Экспо	ненциальная				
	i	x_i	y_i	φ(x_i)	ε_i	
	1	1	2	2.8728	-0.8728	
	2	3		3.7831	0.21686	
	3	5	6	4.9819	1.0181	
	4	7	8	6.5606	1.4394	
	5	9	10	8.6396	1.3604	
	6	11	12	11.377	0.62265	
	7	13	14	14.983	-0.98264	
	8	15	16	19.73	-3.7304	
	Поте	ифминовие				
	Логар і	ифмическая x_i	v i	φ(x_i)	ε_i	
	1	x_1 1	y_i 2	Ψ(X_1) -0.1848	ε_1 2.1848	
	2	3	4	5.3739	-1.3739	
	3	5	6	7.9586	-1.9586	
		7	8	9.6611	-1.6611	
	5	9	10	10.933	-0.93265	
	6	11	12	11.948	0.051999	
	7	13	14	12.793	1.2067	
65	8	15	16	13.517	2.4827	
50	4	,	ō	0.5000	1.4374	
	5	9	10	8.6396	1.3604	
	6	11	12	11.377	0.62265	
	7	13	14	14.983	-0.98264	
	8	15	16	19.73	-3.7304	
		ифмическая				
	i	x_i	y_i	φ(x_i)	ε_i	
	1	1	2	-0.1848	2.1848	
	2	3		5.3739	-1.3739	
	3	5	6	7.9586	-1.9586	
	4 5	7	8 10	9.6611 10.933	-1.6611 -0.03265	
	6	9 11	10 12	10.933	-0.93265 0.051999	
	7	13	14	12.793	1.2067	
	8	15	16	13.517	2.4827	
	Степе	нная				
	i	x_i	$y_{-}i$	φ(x_i)	ε_i	
	1	1	2	1.841	0.15899	
	2	3		4.3176	-0.31759	
	3	5	6	6.4175	-0.41752	
	4	7	8	8.3319	-0.33189	
	5	9	10	10.126	-0.12571	
	6	11	12	11.832	0.16842	
	7	13	14	13.469	0.53108	
	8	15	16	15.051	0.94948	

Пример №2 ввода с клавиатуры.

```
Введите пары х у (пустая строка - конец ввода):
0 0
1 1
2 2
4 4
5 5
6 6
8 8
Принято 9 точек.
→ exponential пропущена: Экспоненциальная модель требует у > 0

ightarrow logarithmic пропущена: Логарифмическая модель требует х > 0
→ power пропущена: Степенная модель требует x, y > 0
Результаты:
               σ=3.51471e-15 R²=1 (отличное согласие) coef=[4.2809e-16, 1] r=1
Линейная
Полином 2-й ст. \sigma=4.38999e-15 R<sup>2</sup>=1 (отличное согласие) coef=[1.1312e-15, 1, 2.0269e-16]
Полином 3-й ст. \sigma=1.88411e-13 R<sup>2</sup>=1 (отличное согласие) coef=[1.6572e-14, 1, -1.1613e-15, -6.9669e-16]
Лучшее приближение → Линейная
Отчёт сохранён в /Users/alexb/PycharmProjects/pythonProject6/results.txt
```

Result.txt

Пример ввода с dataset'a:

Results.txt

```
data.csv

    ≡ results.txt

    Аппроксимация методом наименьших квадратов
   Полином 2-й ст. \sigma=0.932766 R<sup>2</sup>=0.806105 (хорошее согласие) coef=[0.88639, 10.234, -5.3296]
   Полином 3-й ст. \sigma=0.335814 R<sup>2</sup>=0.974869 (отличное согласие) coef=[-0.43557, 20.736, -19.1, 4.5901]
   Лучшее приближение → Полином 3-й ст.
    Линейная
                       2.396
                       6.374
                       6.81
                                                  3.066
                                                 2.3411
                       4.685
                                                 1.1111
                                   3.4888
                                             -0.018818
                       2.542
                                               -0.86177
                                               -1.8217
                                φ(x_i)
                                              -0.88639
                                  0.88639
                       2.396
                                               -0.32399
                        4.68
                                                0.55277
```

≡ da	ta.csv	≡ results	s.txt ×		
23	Полин	юм 2-й ст.			
24	i	x_i	y_i	φ(x_i)	ε_i
25	1	0	0	0.88639	-0.88639
26	2	0.2	2.396	2.72	-0.32399
27	3	0.4	4.68	4.1272	0.55277
28		0.6	6.374	5.1081	1.2659
29	5	0.8	6.81	5.6626	1.1474
30	6	1	6	5.7907	0.20926
31	7	1.2	4.685	5.4925	-0.80751
32	8	1.4	3.47	4.7679	-1.2979
33	9	1.6	2.542	3.617	-1.075
34	10	1.8	1.879	2.0396	-0.16063
35	11	2	1.412	0.035937	1.3761
36					
37	Полин	юм 3-й ст.			
38	i	x_i	y_i	φ(x_i)	ε_i
39	1	0	Θ	-0.43557	0.43557
40	2	0.2	2.396	2.9844	-0.58838
41	3	0.4	4.68	5.0967	-0.41666
42		0.6	6.374	6.1216	0.2524
43	5	0.8	6.81	6.2795	0.53048
44	6	1	6	5.7907	0.20926
45	7	1.2	4.685	4.8756	-0.1906
46	8	1.4	3.47	3.7544	-0.28441
47	9	1.6	2.542	2.6475	-0.10552
48	10	1.8	1.879	1.7752	0.10376
49	11	2	1.412	1.3579	0.054105

● ● Figure 1

Вывод

В ходе данной работы мною была выполнена аппроксимация функций с использованием линейного, квадратичного, кубического, экспоненциального и логарифмического приближений. Также на основе этих методов мною был реализован Python скрипт, который реализует метод наименьших квадратов и строит графики исходной функции и аппроксимаций. Исследование позволило определить наилучшее приближение, вычислить среднеквадратические отклонения и коэффициент корреляции Пирсона для линейной зависимости.