Exercises for the course Abteilung Maschinelles Lernen Institut für Softwaretechnik und theoretische Informatik Machine Learning 1 Fakultät IV, Technische Universität Berlin Prof. Dr. Klaus-Robert Müller Winter semester 2021/22 Email: klaus-robert.mueller@tu-berlin.de Exercise Sheet 1 Exercise 1: Estimating the Bayes Error (10+10+10 P)The Bayes decision rule for the two classes classification problem results in the Bayes error $\,$ $P(\text{error}) = \int P(\text{error}|\boldsymbol{x}) p(\boldsymbol{x}) d\boldsymbol{x},$ where $P(\text{error}|\boldsymbol{x}) = \min\left[P(\omega_1|\boldsymbol{x}), P(\omega_2|\boldsymbol{x})\right]$ is the probability of error for a particular input \boldsymbol{x} . Interestingly, while class posteriors $P(\omega_1|\mathbf{x})$ and $P(\omega_2|\mathbf{x})$ can often be expressed analytically and are integrable, the error function has discontinuities that prevent its analytical integration, and therefore, direct computation of the (a) Show that the full error can be upper-bounded as follows: Note that the integrand is now continuous and corresponds to the harmonic mean of class posteriors weighted by p(x). P(error) = Sp(error(x) p(x) dx = pcx) dx $P(error(x) = mih [P(w_i(x)), P(w_i(x))] = mih [P(w_i(x)), I-P(w_i(x))] \le \frac{1}{P(w_i(x))} + \frac{1}{P(w_i(x))}$ $\frac{1-P(\omega_1(x)+P(\omega_1(x))}{P(\omega_1(x))(1-P(\omega_1(x)))} = 2 P(\omega_1(x))(1-P(\omega_1(x)))$ P(w.1x) (- P(w.1x) P(wilx) P(wx/x) $0 \le P(\omega_1(x) \le \frac{1}{2}$ ρ ((w.(x) P(error (x) = min [P(w,1x), 1- P(w,(x)] = = < p(w.1x) ≤ ($(\frac{1}{2},\frac{1}{2})$ 1 P(error(x) ≤ 2 P(w, (x) (1-P(w, 1x)) P(emor) = Sp(emor(x) p(x) dx = p(x)dx P(w.(x) + P(wx)x) 0

Exercise 2: Bayes Decision Boundaries (15+15 P)

One might speculate that, in some cases, the generated data $p(x|\omega_1)$ and $p(x|\omega_2)$ is of no use to improve the accuracy of a classifier, in which case one should only rely on prior class probabilities $P(\omega_1)$ and $P(\omega_2)$ assumed here to be strictly positive.

For the first part of this exercise, we assume that the data for each class is generated by the univariate Laplacian probability distributions:

$$p(x|\omega_1) = \frac{1}{2\sigma} \exp\left(-\frac{|x-\mu|}{\sigma}\right) \quad \text{and} \quad p(x|\omega_2) = \frac{1}{2\sigma} \exp\left(-\frac{|x+\mu|}{\sigma}\right)$$

where $\mu, \sigma > 0$.

(a) Determine for which values of $P(\omega_1)$, $P(\omega_2)$, μ , σ the optimal decision is to always predict the first class (i.e. under which conditions $P(\text{error}|x) = P(\omega_2|x) \ \forall \ x \in \mathbb{R}$).

P(Err(
$$\times$$
) = min \mathcal{E} P(ω , \times), \mathcal{E} P(ω , \times) = \mathcal{E} (ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times) $\Rightarrow \mathcal{E}$ P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times) $\Rightarrow \mathcal{E}$ P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times) $\Rightarrow \mathcal{E}$ P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times) $\Rightarrow \mathcal{E}$ P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times) $\Rightarrow \mathcal{E}$ P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \times)

$$\forall \times : \mathcal{E}$$
 P(ω , \vee)

$$\forall \times : \mathcal{E}$$
 P(ω , \vee)

(b)	Repeat	the	exercise	for	the	case	where	the	data	for	each	class	is	generated	by	the	univariate	Gaussian
	probabi	ility	distribut	S:														

$$p(x|\omega_1) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \quad \text{and} \quad p(x|\omega_2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x+\mu)^2}{2\sigma^2}\right).$$

where $\mu, \sigma > 0$.

$$P(Err(x) = min \{ P(w, (x), P(w, (x)) \} = P(w, (x))$$

$$\Rightarrow \forall x : P(w_1(x) \ge P(w_2(x))$$

$$\forall x : \frac{P(x|\omega_1) \cdot P(\omega_1)}{P(x|\omega_2) \cdot P(\omega_2)}$$

$$(\Rightarrow) \forall x : P(x|\omega_1) \cdot P(\omega_1) \Rightarrow P(x|\omega_2) \cdot P(\omega_2)$$

$$(\Rightarrow) \exp\left(-\frac{(x-\mu)}{2\sigma^2}\right) \cdot P(\omega_1) \Rightarrow \exp\left(-\frac{(x+\mu)^2}{2\sigma^2}\right) \cdot P(\omega_2)$$

$$(\Rightarrow) \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \cdot P(\omega_1) \Rightarrow \exp\left(-\frac{(x+\mu)^2}{2\sigma^2}\right) \cdot P(\omega_2)$$

$$(\Rightarrow) \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \cdot P(\omega_1) \Rightarrow \exp\left(-\frac{(x+\mu)^2}{2\sigma^2}\right) \cdot P(\omega_2)$$

$$(\Rightarrow) \exp\left(-\frac{(x+\mu)^2}{2\sigma^2}\right) \cdot P(\omega_1) \Rightarrow \exp\left(-\frac{(x+\mu)^2}{2\sigma^2}\right) \cdot P(\omega_2)$$

$$(=) - \frac{(x-\mu)^2}{2\sigma^2} + \log P(\omega_1) \ge - \frac{(x+\mu)^2}{2\sigma^2} + \log P(\omega_2)$$

(a)
$$\mu_{1} = \mu_{1} = \mu_{2}$$
 (x- $\mu_{1}^{2} = \mu_{2}$ (x- $\mu_{1}^{2} = \mu_{2}$