

planetmath.org

Math for the people, by the people.

functor

Canonical name Functor

Date of creation 2013-03-22 12:02:50 Last modified on 2013-03-22 12:02:50

Owner nerdy2 (62) Last modified by nerdy2 (62)

Numerical id 7

Author nerdy2 (62) Entry type Definition Classification msc 18-00

Synonym covariant functor Synonym contravariant functor

Related topic Endofunctor

Related topic Monad

Given two categories \mathcal{C} and \mathcal{D} , a covariant functor $T: \mathcal{C} \to \mathcal{D}$ consists of an assignment for each object X of \mathcal{C} an object T(X) of \mathcal{D} (i.e. a "function" $T: \mathrm{Ob}(\mathcal{C}) \to \mathrm{Ob}(\mathcal{D})$) together with an assignment for every morphism $f \in \mathrm{Hom}_{\mathcal{C}}(A, B)$, to a morphism $T(f) \in \mathrm{Hom}_{\mathcal{D}}(T(A), T(B))$, such that:

- $T(1_A) = 1_{T(A)}$ where 1_X denotes the identity morphism on the object X (in the respective category).
- $T(g \circ f) = T(g) \circ T(f)$, whenever the composition $g \circ f$ is defined.

A contravariant functor $T: \mathcal{C} \to \mathcal{D}$ is just a covariant functor $T: \mathcal{C}^{\text{op}} \to \mathcal{D}$ from the opposite category. In other words, the assignment reverses the direction of maps. If $f \in \text{Hom}_{\mathcal{C}}(A, B)$, then $T(f) \in \text{Hom}_{\mathcal{D}}(T(B), T(A))$ and $T(g \circ f) = T(f) \circ T(g)$ whenever the composition is defined (the domain of g is the same as the codomain of f).

Given a category \mathcal{C} and an object X we always have the functor $T: \mathcal{C} \to \mathbf{Sets}$ to the category of sets defined on objects by $T(A) = \mathrm{Hom}(X,A)$. If $f: A \to B$ is a morphism of \mathcal{C} , then we define $T(f): \mathrm{Hom}(X,A) \to \mathrm{Hom}(X,B)$ by $g \mapsto f \circ g$. This is a covariant functor, denoted by $\mathrm{Hom}(X,-)$.

Similarly, one can define a contravariant functor $\operatorname{Hom}(-,X):\mathcal{C}\to\operatorname{\mathbf{Sets}}$.