Countability and Uncountability

Definition 1. We say that two sets A and B are equivalent if there exists a bijection from A to B. We denote it by $A \sim B$.

Definition 2. For any positive integer n, let $J_n = \{1, 2, ..., n\}$ and \mathbb{N} be the set of all positive integers (natural numbers). For any set A, we say:

- (a) A is finite if $A = \phi$ or $A \sim J_n$ for some $n \in \mathbb{N}$. n is said to be the cardinality of A or number of elements in A.
- (b) A is infinite if A is not finite.
- (c) A is countable if $A \sim \mathbb{N}$.
- (d) A is atmost countable if A is finite or countable.
- (e) A is uncountable if A is neither finite not countable.

Example 1. The set of all integers, \mathbb{Z} , is countable. Consider the function $f : \mathbb{N} \to \mathbb{Z}$ given by

$$f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ even} \\ -\frac{n-1}{2} & \text{if } n \text{ odd.} \end{cases}$$

Remark 1. A finite set cannot be equivalent to any of its proper subset. However, this is possible for an infinite set. For example consider the bijection $f: \mathbb{N} \to 2\mathbb{N}$ defined by

$$f(n) = 2n$$
.

Remark 2. If a set is countable, then it can be written as a sequence $\{x_n\}_{n\geq 1}$ of distinct terms.

Theorem 1. Every infinite subset of a countable set A is countable.

Proof. Suppose that $E \subset A$ and E is infinite. We can write the elements of A as $\{x_n\}$, sequence of distinct elements. Construct a sequence $\{n_k\}_{k\geq 1}$ as follows: Let n_1 be the smallest positive integer such that $x_{n_1} \in E$. Having chosen $n_1, n_2, \ldots, n_{k-1}$, let n_k be the smallest positive integer grater than n_{k-1} such that $x_{n_k} \in E$. Now $f(k) = x_{n_k}$ is a bijection from \mathbb{N} to E.

Theorem 2. Let $\{E_n\}_{n\geq 1}$ be a sequence of atmost countable sets and put $S=\cup_{n=1}^{\infty}E_n$. Then S is atmost countable.

Theorem 3. Let A_1, A_2, \ldots, A_n be at most countable sets. Then $B_n = A_1 \times A_2 \times \ldots \times A_n$ is at most countable.

Proof. We will prove it by induction. $B_1 = A_1$ is atmost countable. Now assume that B_{n-1} is atmost countable. The elements of B_n are of the form (b, a) where $b \in B_{n-1}$ and $a \in A_n$. For every fixed b, the set, A_b , of pairs (b, a) is equivalent to A_n and hence atmost countable. Then $B_n = \bigcup_{b \in B_{n-1}} A_b$. Hence B_n is atmost countable by Theorem 2.

Corollary 1. The set of rationals, \mathbb{Q} , is countable.

Theorem 4. The set, A, of all binary sequences is uncountable.

Proof. We will prove it by contradiction. If possible, suppose that A is countable. Then we can write it as a sequence of distinct elements $\{s_n\}_{n\geq 1}$. Now consider the sequence s, whose nth term is 1 if the nth term of s_n is 0 and 0 if the nth term of s_n is 1. Then $s \neq s_n$ for all $n \in \mathbb{N}$. It is a contradiction to the fact that A is countable.

Corollary 2. [0,1] is uncountable.

Corollary 3. \mathbb{R} is uncountable.

Corollary 4. \mathbb{Q}^c is uncountable.

Corollary 5. Any interval is uncountable.