Package 'jgsbook'

June 24, 2024

Type Package
Title Package of the German Book ``Statistik mit R und RStudio" by Joerg grosse Schlarmann
Description All datasets and functions used in the german book `Statistik mit R und RStudio" by grosse Schlarmann (2010-2024) https://www.produnis.de/R/ .
Version 1.0.7
Date 2024-06-24
Language de-de
License GPL (>= 2)
Depends R (>= 3.5.0)
Encoding UTF-8
Imports statip, jsonlite, httr, curl
LazyData true
RoxygenNote 7.3.1
NeedsCompilation no
Author Jörg große Schlarmann [aut, cre]
Maintainer Jörg große Schlarmann <schlarmann@produnis.de></schlarmann@produnis.de>
Repository CRAN
Date/Publication 2024-06-24 14:20:01 UTC
Contents
compare.lm
epa
Faktorenbogen
freqTable
KIbinomial a
KIbinomial u
KInormal_a

2 compare.lm

KInormal_u	8
lon.lat.osm	8
Mario ANOVA	9
Messwiederholung	10
mma	10
Nachtwachen	11
$nw\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	12
OrdinalSample	12
pairwise.chisq.test	13
pf8	13
Pflegeberufe	14
sens.spec	14
ztrans	15
	16

Index

compare.lm

Compare Linear Models

Description

This function fits and compares several models (linear, quadratic, cubic, exponential, logarithmic, sigmoidal, power, logistic) to a given set of dependent and independent variables. It returns either a summary of the models with their R-squared values or predicted values based on the models.

Usage

```
compare.lm(dep, ind, predict = FALSE, steps = 0.01)
```

Arguments

dep A numeric vector representing the dependent variable.

A numeric vector representing the independent variable.

Logical. If TRUE, the function returns predicted values for each model. Defaults to FALSE.

Steps Numeric. The step size for generating x-values for predictions. Only used if predict is TRUE. Defaults to 0.01.

Value

A data frame. If predict is FALSE, returns a data frame with the R-squared values for each model. If predict is TRUE, returns a data frame with the original data and predicted values for each model.

epa 3

Examples

```
x \leftarrow c(6, 9, 12, 14, 30, 35, 40, 47, 51, 55, 60)

y \leftarrow c(14, 28, 50, 70, 89, 94, 90, 75, 59, 44, 27)

compare.lm(y, x)

compare.lm(y, x, predict=TRUE)
```

ера

Datatable of the epa Example

Description

Datatable of the epa Example

Usage

data(epa)

Format

A data frame with 620 observations in 6 variables

Details

Variables in the dataset:

- sex. a factor with levels m w d, giving the proband's sex
- age. a numeric vector
- cms. a numeric vector
- risk. a dichotome vector, 0 = not at risk, 1 = at risk
- expert. a dichotome vector of expert's decision, 0 = not at risk, 1 = at risk
- decu. a dichotome vector, 0 = no decubitus, 1 = decubitus

Source

Faktorenbogen

Faktorenbogen

Datatable of the Faktorenbogen Example for factor analysis

Description

Datatable of the Faktorenbogen Example for factor analysis

Usage

```
data(Faktorenbogen)
```

Format

A data frame with 150 observations in 14 variables

Details

Variables in the dataset:

- gender. a factor with levels female male other, giving the proband's gender
- age. a numeric vector of proband's age in years
- A. Item A of the questionnaire, numeric
- B. Item B of the questionnaire, numeric
- C. Item C of the questionnaire, numeric
- D. Item D of the questionnaire, numeric
- E. Item E of the questionnaire, numeric
- F. Item F of the questionnaire, numeric
- G. Item G of the questionnaire, numeric
- H. Item H of the questionnaire, numeric
- I. Item I of the questionnaire, numeric
- J. Item J of the questionnaire, numeric
- K. Item K of the questionnaire, numeric
- L. Item L of the questionnaire, numeric

Source

freqTable 5

freqTable

create a frequency table

Description

returns a frequency table with absolute and relative frequencies and cumulated frequencies

Usage

```
freqTable(werte)
```

Arguments

werte

factor with obeserved data

Value

dataframe table

Examples

```
x <- ceiling(stats::rnorm(20))
freqTable(x)</pre>
```

kenngroessen

create a tibble with kenngroessen

Description

returns a tibble with all kenngroessen

Usage

```
kenngroessen(werte)
```

Arguments

werte

numeric vector

Value

tibble with all kenngroessen

Examples

```
x <- ceiling(stats::rnorm(20))
kenngroessen(x)</pre>
```

6 KIbinomial_u

KIbinomial_a

compute confidence intervall for binomial proportions

Description

returns borders and length of confidence intervall for binomial proportions

Usage

```
KIbinomial_a(p, n, alpha)
```

Arguments

p proportion observedn number of observations

alpha error niveau

Value

confidence intervall

Examples

```
KIbinomial_a(0.35, 150, 0.05)
```

KIbinomial_u

compute confidence intervall for difference of binomial proportions

Description

returns borders and length of confidence intervall for difference of binomial proportions

Usage

```
KIbinomial_u(p1, n1, p2, n2, alpha)
```

Arguments

p1	proportion obeserved in group 1
n1	number of observations in group 1
p2	proportion obeserved in group 2
n2	number of observations in group 2

alpha error niveau

KInormal_a 7

Value

confidence intervall

Examples

```
KIbinomial_u(0.25, 100, 0.4, 150, 0.05)
```

KInormal_a

compute confidence intervall for mean of normal distributed data

Description

returns borders and length of confidence intervall for mean of normal distributed data

Usage

```
KInormal_a(xquer, s, n, alpha)
```

Arguments

xquer mean of obeserved data

s standard deviation of observed data

n number of observations

alpha error niveau

Value

confidence intervall

Examples

```
KInormal_a(400, 20, 100, 0.05)
```

8 lon.lat.osm

ΚT	normal	ш
1/1	HOI IIIAI	u

compute confidence intervall for mean of normal distributed data

Description

returns a data.frame with borders and length of confidence intervall for mean of normal distributed data

Usage

```
KInormal_u(x1, s1, n1, x2, s2, n2, alpha)
```

Arguments

x1	mean of obeserved data in group 1
s1	standard deviation of observed data in group 1
n1	number of observations in group 1
x2	mean of obeserved data in group 2
s2	standard deviation of observed data in group 2
n2	number of observations in group 2
alpha	error niveau

Value

data.frame of confidence intervall

Examples

```
\label{eq:KInormal_u(2.22, 0.255, 13, 2.7, 0.306, 10, 0.05)} KInormal\_u(2.22, 0.255, 13, 2.7, 0.306, 10, 0.05)
```

lon.lat.osm	get longitude and altitude from an address using OpenStreetMap's API
	at http://nominatim.openstreetmap.org

Description

get longitude and altitude from an address using OpenStreetMap's API at http://nominatim.openstreetmap.org

Usage

```
lon.lat.osm(address = NULL)
```

MarioANOVA 9

Arguments

address

a character of an address

Value

```
a data.frame containig "address", "lon", "lat"
```

Examples

```
lon.lat.osm("Eiffeltower")
```

MarioANOVA

Datatable of the SuperMario Example for Friedman-ANOVA

Description

Datatable of the SuperMario Example for Friedman-ANOVA

Usage

data(MarioANOVA)

Format

A data frame with 47 observations in 8 variables

Details

Variables in the dataset:

- Name. The characters' name
- Alter. The characters' age in years
- Kingdom. The characters' home
- Geschlecht. The characters' gender (männlich = male, weiblich = female)
- BadGuy. Whether the character is a bad guy, logical
- t1. Measure at time 1
- t2. Measure at time 2
- t3. Measure at time 3

Source

10 mma

Messwiederholung

Datatable of the Messwiederholung Example for ANOVA

Description

Datatable of the Messwiederholung Example for ANOVA

Usage

data(Messwiederholung)

Format

A data frame with 200 observations in 4 variables

Details

Variables in the dataset:

- Name. The first name of the probands.
- t1. Measure at time 1
- t2. Measure at time 2
- t3. Measure at time 3

Source

https://www.produnis.de/R/

mma

Dataset of a work sampling study

Description

Dataset of a work sampling study

Usage

data(mma)

Format

A data frame with 9768 observations in 6 variables.

Nachtwachen 11

Details

Variables in the dataset:

• day. a vector, giving the number of the observation day

- time. a factor giving the time of observation
- ward. a factor giving the ward under observation
- qual. a factor giving the qualification of the nurse
- category. a factor of qualification categories
- action. a factor giving the observed action

Source

```
https://www.produnis.de/R/
```

Nachtwachen

Dataset of the German Nachtwachen study

Description

Dataset of the German Nachtwachen study

Usage

data(Nachtwachen)

Format

A data frame with 276 observations in 37 variables.

Source

12 OrdinalSample

n۷

Dataset of the German Nachtwachen study with labelled variables

Description

Dataset of the German Nachtwachen study, labelled version

Usage

data(nw)

Format

A data frame with 276 observations in 37 variables.

Source

https://www.produnis.de/R/

OrdinalSample

Datatable of an Ordinal Sample

Description

Datatable of an Ordinal Sample

Usage

```
data(OrdinalSample)
```

Format

A data frame with 415 observations in 4 variables.

Details

Variables in the dataset:

- Konflikt. a numeric vector giving the potential of conflicts.
- Zufriedenh. a numeric vector giving the satisfaction of workers
- Geschlecht. a factor of proband's sex, 1 = male, 2=female
- · Stimmung. an ordinal factor of proband's mood

Source

pairwise.chisq.test 13

pairwise.chisq.test Pairwise Chi-Square Tests

Description

This function performs pairwise Chi-Square tests for two factors.

Usage

```
pairwise.chisq.test(A, B, p.adjust.method = "bonferroni")
```

Arguments

- A factor with two or moew levels. The first variable.
- B A factor with two or more levels. The second variable.
- p.adjust.method

A string specifying the method for adjusting p-values. Default is "bonferroni".

Details

This function creates all possible pairs of levels of factor B and performs a Chi-Square test for each pair of B on variable A. The p-values are adjusted according to the specified method. #' This function is created for educational purposes only. For exact p-values, consider using report tools::pairwise.fisher.test().

Value

A data frame with the results of the pairwise Chi-Square tests. Includes the groups, Chi-Square statistic, degrees of freedom, p-values, adjusted p-values, and significance stars.

Examples

```
set.seed(123)
A <- factor(sample(c("Male", "Female"), 100, replace = TRUE))
B <- factor(sample(c("Location1", "Location2", "Location3"), 100, replace = TRUE))
pairwise.chisq.test(A, B, "holm")</pre>
```

pf8

Dataset of the PF8 example.

Description

This is the dataset of the PF8 example.

Usage

```
data(pf8)
```

sens.spec

Format

A data frame with 731 observations in 16 variables.

Source

```
https://www.produnis.de/R/
```

Pflegeberufe

Matrix of Pflegeberufe by Isfort et al. 2018

Description

Matrix of Pflegeberufe by Isfort et al. 2018

Usage

```
data(Pflegeberufe)
```

Format

A matrix with 9 cols (years) and 5 rows (nursing profession).

Author(s)

Isfort et al. 2018 (Pflegethermometer)

Source

```
https://www.produnis.de/R/
```

sens.spec

compute sensitivity and specifity

Description

returns sensitivity specifity, negativ-predictive-value, postitiv-predictive-value

Usage

```
sens.spec(rp, rn, fp, fn)
```

Arguments

rp	number of true-positive (richtig-positiv)
rn	number of true-negative (richtig-negativ)
fp	number of false-positive (falsch-positiv)
fn	number of false-negative (falsch-negativ)

ztrans 15

Value

```
a data.frame with sens, spec, ppw, npw
```

Examples

```
sens.spec(40, 17, 85, 4)
```

ztrans

z-Transformation by given numbers, with z = (x - mu) / sd

Description

z-Transformation by given numbers, with z = (x - mu) / sd

Usage

```
ztrans(x, mu = 0, sd = 1)
```

Arguments

x a value to transform

mu the given mu

sd the given standard deviation

Value

the z-transformed value

Examples

```
ztrans(120,mu=118,sd=20)
```

Index

```
* datasets
                                                 sens.spec, 14
    epa, 3
                                                 ztrans, 15
    Faktorenbogen, 4
    MarioANOVA, 9
    Messwiederholung, 10
    mma, 10
    Nachtwachen, 11
    nw, 12
    OrdinalSample, 12
    pf8, 13
    Pflegeberufe, 14
compare.lm, 2
epa, 3
Faktorenbogen, 4
freqTable, 5
kenngroessen, 5
KIbinomial_a, 6
KIbinomial_u, 6
KInormal_a, 7
KInormal_u, 8
lon.lat.osm, 8
MarioANOVA, 9
Messwiederholung, 10
mma, 10
Nachtwachen, 11
nw, 12
nw_labelled (nw), 12
OrdinalSample, 12
ordinalSample (OrdinalSample), 12
pairwise.chisq.test, 13
pf8, 13
Pflegeberufe, 14
```