Fonctions trigonométriques

1. Fonction cosinus et sinus

1.1 Définitions

Définitions. Soit M le point image d'un réel x sur le cercle trigonométrique dans un repère orthonormé (O, I, J). On a ainsi $M(\cos(x); \sin(x))$.

- La fonction *cosinus*, notée cos est définie sur \mathbb{R} par : cos : $x \to \cos(x)$.
- La fonction sinus, notée sin est définie sur \mathbb{R} par : sin : $x \to \sin(x)$.

Remarques.

- Pour tout réel $x, \ldots \leqslant \cos(x) \leqslant \ldots$ et $\ldots \leqslant \sin(x) \leqslant \ldots$
- $\bullet \cos^2(x) + \sin^2(x) = \dots$

1.2 Dérivabilité

Propriétés admises.

- La fonction cos est *dérivable* sur \mathbb{R} et a pour dérivée la fonction : $x \mapsto \ldots$
- La fonction sin est **dérivable** sur \mathbb{R} et a pour dérivée la fonction : $x \mapsto \ldots$

Mini-exercice. Calculer la fonction dérivée des fonctions dérivables sur $\mathbb R$ suivantes :

- 1. $f_1(x) = 5\cos(x) 4\sin(x)$.
- 2. $f_2(x) = \cos(x)\sin(x)$
- 3. $f_3(x) = \frac{\sin(x)}{\cos(x) + 2}$

Propriétés. Soit a et b deux réels.

- La fonction $x \mapsto \cos(ax+b)$ est **dérivable** sur \mathbb{R} et a pour dérivée la fonction $x \mapsto \dots$
- La fonction $x \mapsto \sin(ax + b)$ est **dérivable** sur \mathbb{R} et a pour dérivée la fonction $x \mapsto \dots$

Propriétés. Soit u une fonction **dérivable** sur un intervalle I de \mathbb{R} .

- La fonction cos(u) est **dérivable** sur I et a pour dérivée la fonction
- La fonction $\sin(u)$ est **dérivable** sur I et a pour dérivée la fonction

Mini-exercice. Calculer la fonction dérivée des fonctions suivantes :

1.
$$f_4(x) = 3\cos\left(2x - \frac{2\pi}{5}\right) \text{ sur } I = \mathbb{R}.$$

2.
$$f_5(x) = \sin(\sqrt{x}) \text{ sur } I =]0; +\infty[.$$

3.
$$f_6(x) = \cos\left(\frac{1}{x}\right) \text{ sur } I = \mathbb{R}^*.$$

1.3 Limites

Propriétés.

- Les fonctions cos et sin n'ont pas de limite en $+\infty$ et en $-\infty$.
- $\lim_{x \to 0} \frac{\sin(x)}{x} = 1$ et $\lim_{x \to 0} \frac{\cos(x) 1}{x} = 0$.

Mini-exercice. Soit la fonction définie sur I =]0; $+\infty[$ par $f(x) = \frac{\sin^2(x)}{x}$.

- 1. Calculer la limite de f en $+\infty$ et interpréter graphiquement ce résultat.
- 2. Calculer la limite de f en 0.

2. Variations des fonctions trigonométriques

2.1 Périodicité et parité

Propriétés.

- Pour tout réel x, les points du cercle trigonométrique associés aux réels x et $(x+2\pi)$ sont confondus. Ainsi on a $\cos(x+2\pi) = \cos(x)$ et $\sin(x+2\pi) = \sin(x)$. Les fonction cos et sin sont *périodiques* de période 2π . Leur courbe représentative se répète sur des intervalles de longueur 2π .
- Pour tout réel x on a $\cos(-x) = \cos(x)$: la fonction \cos est **paire**: sa courbe représentative admet l'axe des ordonnées comme axe de symétrie.
- Pour tout réel x on a $\sin(-x) = -\sin(x)$: la fonction \sin est *impaire*: sa courbe représentative admet *l'origine du repère O* comme *centre de symétrie*.

2.2 La fonction cos

Pour tracer la courbe représentative de la fonction cosinus, on peut déjà dresser son tableau de variations sur $[0; \pi]$:

x	0 π	
signe de $\cos'(x)$	_	
Variations de cos	1	1

Ensuite, grâce à la parité de la fonction cosinus on peut compléter sur $[-\pi; 0]$ puis on reporte sur les autres intervalles grâce à la périodicité.

La partie noire pleine est la représentation sur $[0; \pi]$, la partie bleue est obtenue grâce à la parité (fonction paire donc symétrie par rapport à l'axe des ordonnées) et la partie rouge est obtenue grâce à la périodicité (translation de vecteur $2\pi \overrightarrow{i}$).

2.3 La fonction sin

De même, pour tracer la courbe représentative de la fonction sinus, on peut déjà dresser son tableau de variations sur $[0; \pi]$:

La partie noire pleine est la représentation sur $[0; \pi]$, la partie bleue est obtenue grâce à la parité (fonction impaire donc symétrie par rapport à l'origine) et la partie rouge est obtenue grâce à la périodicité (translation de vecteur $2\pi \overrightarrow{i}$).

4

3. Équations avec le cosinus, le sinus

3.1 Avec le cosinus

Propriété. Soit a un nombre réel. On note $\mathscr S$ l'ensemble des solutions de l'équation $\cos(x)=a$ sur $[-\pi\,;\,\pi]$.

- Si a > 1 ou a < -1 alors $\mathscr{S} = \varnothing$.
- Si a = 1 alors $\mathscr{S} = \{0\}$.
- Si a = -1 alors $\mathscr{S} = \{-\pi; \pi\}$.
- Si -1 < a < 1 alors $\mathscr{S} = \{-\theta \, ; \, \theta\}$ avec $\theta \in]-\pi \, ; \, \pi[$ tel que $\cos(\theta) = a.$

3.2 Avec le sinus

Propriété. Soit a un nombre réel. On note $\mathscr S$ l'ensemble des solutions de l'équation $\sin(x) = a$ sur $[-\pi; \pi]$.

- Si a > 1 ou a < -1 alors $\mathscr{S} = \varnothing$.
- Si a = -1 alors $\mathscr{S} = \{-\frac{\pi}{2}\}.$
- Si a = 0 alors $\mathscr{S} = \{-\pi; 0\}.$
- Si a = 1 alors $\mathscr{S} = \{\frac{\pi}{2}\}.$
- Si 0 < a < 1 alors $\mathscr{S} = \{\pi \theta; \theta\}$ avec $\theta \in]0; \pi[$ tel que $\sin(\theta) = a.$
- Si -1 < a < 0 alors $\mathscr{S} = \{-\pi \theta; \theta\}$ avec $\theta \in]-\pi; 0[$ tel que $\sin(\theta) = a$.

