Linear Transformation

Lecture 3

One-to-One and Onto:

Let V and W be vector spaces and let $T:V \to W$ be linear transformation.

1. The mapping T is called **one-to-one** or **injective** if distinct elements of V must have distinct images in W.

i.e.
$$T(u) = T(v) \Rightarrow u = v$$
 OR $u \neq v \Rightarrow T(u) \neq T(v)$.

2. The mapping T is called **onto** or **surjective** if the range of T is W. i.e. given any $w \in W$ there is $v \in V$ such that w = T(v) OR W = T(V).

A mapping is called **bijective** if it is both injective and surjective.

Example : Show that $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(v) = Av, A = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$. Show that T is

bijective.

Let
$$u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}, v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in \mathbb{R}^2$$
,

$$T\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = T\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Rightarrow \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Rightarrow \begin{pmatrix} u_1 + u_2 \\ -u_1 \end{pmatrix} = \begin{pmatrix} v_1 + v_2 \\ -v_1 \end{pmatrix}$$

This implies $u_1 = v_1 \& u_2 = v_2$, i.e., $\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Rightarrow u = v$. Therefore T is one-one.

To check T is onto. Let $w = \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$ be any general vector, to find $u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ such that w = T(u)

$$T(u) = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = w \Rightarrow \begin{pmatrix} u_1 + u_2 \\ -u_1 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}. \text{ This solves to } u_1 = -b \& u_2 = a + b. \text{ Thus given}$$

$$w = \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$$
, there is $u = \begin{pmatrix} -b \\ a+b \end{pmatrix}$ such that $T \begin{pmatrix} -b \\ a+b \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$. Therefore T is onto.

As T is one-one as well as onto, T is bijective.

Results: 1) Let $T:V \to W$ be a linear transformation. Then T is one-to-one if and only if $Ker(T) = \{0\}$, i.e.,

 $T:V\to W$ is One-one if and only if Ker(T) only contains zero or null vector of W.

2) Let $T:V \to W$ be a linear transformation, where W is finite dimensional. Then T is onto if and only if rank of T equals dimension of W, i. e, $\dim(R(T)) = \operatorname{rank} \operatorname{of} T = \dim(W)$

3) Let $T:V\to W$ be a linear transformation, where $\dim(V)=\dim(W)=n$ finite. Then

T is one-one if and only if T is onto.

Linear Transformation

Example:

The linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is represented by T(X) = AX. Find the nullity and rank of and determine whether is one-to-one, onto, or neither.

a)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
, $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$. Here matrix of T is in echelon form, hence $rank$ of $T = 3$.

Further $\dim(V) = 3$. By rank-nullity thm, nullity= $\dim(V) - rank = 0$. Hence $Ker(T) = \{0\}$. Therefore T is one-one. By result 3 above, $\dim(V) = \dim(W) = 3$, T is onto also.

b)
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
, $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$. Here matrix of T is in echelon form, hence $rank \ of \ T = 2$.

Further $\dim(V) = 2$. By rank-nullity thm, nullity= $\dim(V) - rank = 0$. Hence $Ker(T) = \{0\}$. Therefore T is one-one. By result 2 above, $\dim(W) = 3 \neq rank = 2$, T is not onto also.

c)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \end{bmatrix}$. Here matrix of T is in echelon form, hence $rank \ of \ T = 2$.

Further $\dim(V) = 3$. By rank-nullity thm, nullity= $\dim(V) - rank = 1$. Hence $Ker(T) \neq \{0\}$. Therefore T is not one-one. By result 2 above, $\dim(W) = 2 = rank$, T is onto also.

d)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
, $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. Here matrix of T is in echelon form, hence $rank$ of $T = 2$.

Further $\dim(V) = 3$. By rank-nullity thm, nullity= $\dim(V) - rank = 1$. Hence $Ker(T) \neq \{0\}$.

Therefore T is not one-one. By result 2 above, $dim(W) = 3 \neq rank = 2$, T is not onto also.

Isomorphisms of Vector Spaces

A linear transformation is called an **isomorphism** if it is one-to-one and onto, i.e., bijective.

Two vector spaces V and W are said to be **isomorphic if there exist a map** $T:V\to W$

such that

- i) T is one-one as well as onto, i.e., T is bijective
- ii) T is linear, i.e., $T(ku+v) = kT(u) + T(v), u, v \in V, k \in \mathbb{R}$.

Result: Two finite dimensional vector spaces V and W are isomorphic if and only if they are of same dimension, i.e., $\dim(V) = \dim(W)$.

Isomorphic Vector Spaces:

The vector spaces \mathbb{R}^4 , $M_{4\times 1}(\mathbb{R})$, P_3 , $M_{2\times 2}(\mathbb{R})$, $M_{1\times 4}(\mathbb{R})$ are isomorphic to each other as dimension of each vector space is 4.

Result: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with standard matrix A=[T], then the Following conditions are equivalent.

- 1. *T* is invertible.
- 2. *T* is an isomorphism.
- 3. A is invertible.

And, if T is invertible with standard matrix A, then the standard matrix for T^{-1} is A^{-1} .

Linear Transformation

Problem Session

Attempt the following

1) Let
$$T, S: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined as $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + y \\ -x + 3y \end{pmatrix}$ and $S \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ x + y \end{pmatrix}$.

i) Find
$$-3S$$
, $2T + S$, $T \circ S$, $S \circ T$

- ii) Find rank and nullity of each of the above transformations.
- iii) Which of the above transformations are one-one, onto? Justify your answer.
- 2) Which vector spaces are isomorphic to \mathbb{R}^6 ?

i)
$$M_{2\times 3}(\mathbb{R})$$

ii)
$$P_{\epsilon}$$

ii)
$$P_6$$
 iii) $C[0,6]$

iv)
$$M_{6\times 1}(\mathbb{R})$$

v)
$$P_5$$

Verify that the matrix defines a linear function T that is one-to-one and onto. Justify 3) your answer

i)
$$\begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix}$$

ii)
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

iii)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

i)
$$\begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix}$$
 ii) $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ iii) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ iv) $\begin{bmatrix} 1 & 2 & 3 \\ -1 & 2 & 4 \\ 0 & 4 & 1 \end{bmatrix}$

- 4) Define $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ by $T(A) = A - A^t$. Find the kernel and nullity of T. Hence determine whether the transformation is one-one or not. Is it onto also.
- 5) A linear transformation is represented by a matrix A. Determine which of the

i)
$$A = \begin{bmatrix} -1 & 3 & 2 & 1 & 4 \\ 2 & 3 & 5 & 0 & 0 \\ 2 & 1 & 2 & 1 & 0 \end{bmatrix}$$
 ii) $A = \begin{bmatrix} -2 & 0 & 1 \\ 1 & -1 & -1 \\ 0 & 1 & 0 \end{bmatrix}$

ii)
$$A = \begin{bmatrix} -2 & 0 & 1 \\ 1 & -1 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

iii)
$$A = \begin{bmatrix} 1 & 3 & 0 \\ -1 & -2 & -3 \\ 0 & -1 & 3 \end{bmatrix}$$

iv)
$$A = \begin{bmatrix} 1 & 2 & -1 & 4 \\ 3 & 1 & 2 & -1 \\ -4 & -3 & -1 & -3 \\ -1 & -2 & 1 & 1 \end{bmatrix}$$

6) Find the kernel and nullity of the linear transformation. Hence state which are one-one transformations.

i)
$$T: \mathbb{R}^3 \to \mathbb{R}^3, T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

i)
$$T: \mathbb{R}^3 \to \mathbb{R}^3, T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 ii) $T: \mathbb{R}^3 \to \mathbb{R}^3, T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ 0 \\ z \end{pmatrix}$

iii)
$$T: P_3 \to \mathbb{R}, T(a_0x^3 + a_1x^2 + a_2x + a_3) = a_3$$

iv)
$$T: P_3 \to P_1, T(a_0x^2 + a_1x + a_2) = 2a_0x + a_1$$

v)
$$T: \mathbb{R}^3 \to \mathbb{R}^2, T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - 3y \\ 2y + 4z \\ 4x + 8z \end{pmatrix}$$

7) Let A be a fixed $n \times n$ matrix. Show that $T: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ defined by $T(B) = ABA^{-1}$ is an isomorphism.