

- (a) Compute f'
- (b) Plot f and f' with R
- (c) Find all possible candidates x^* for maxima and minima. Hint : exp is a strictly monotone function.
- (d) Compute f''
- (e) Determine if the candidates are local maxima, minima or neither.
- (f) Find the global maximum and global minimum of f

Consider two convex functions $f, g : \mathbb{R} \to \mathbb{R}$.

- (a) Show that $f + g : \mathbb{R} \to \mathbb{R}, x \mapsto f(x) + g(x)$ is convex.
- (b) Now, assume that g is additionally non-decreasing, i.e., $g(y) \ge g(x) \ \forall x \in \mathbb{R}, \forall y \in \mathbb{R}$ with y > x. Show that $g \circ f$ is convex.

y (4(x)

a) Find the Taylor polynomial for the function $\cos x$, around point x = 0

Problem 2. What is the (signed) area between the graph of f(x) and the coordinate axes on the interval [-1, 1]?

- a) f(x) = 2 4x,
- b) $f(x) = x^2 + 2$,
- c) $f(x) = e^{-x}$,
- $d) \quad f(x) = \sin x.$

Problem 3. Calculate f'(x):

- b) $3x^4 \frac{1}{x}$,
- c) $5\sin^2 x$,
- d) xe^x ,

2x +4xy = 10

