

LAN Tecnologias Ethernet / IEEE 802.3 Estrutura do Quadro (Frame)

Ethernet / IEEE 802.3 Formato do Quadro

- A estrutura original do quadro DIX (DEC, Intel e Xerox) foi proposta por Metcalfe e Boggs (1976), sendo depois padronizada pelo comitê da 802 da IEEE, onde foram feitas duas alterações:
 - A primeira foi reduzir o preâmbulo para 7 bytes e usar o último byte para delimitar o início do quadro (SFD).
 - A segunda foi alterar o campo tipo (Type) para comprimento (Length).

Quadro Ethernet

- Constituído por sete campos
- Comunicação NÃO confiável. Não possui reconhecimento de QUADRO recebido.
 Confiabilidade deve ser implementada pelos protocolos das camadas superiores

Quadro Ethernet Preâmbulo e SFD

- Preâmbulo: Todos os quadros iniciam com uma sequência de 7 bytes, cada um contendo o padrão 10101010:
 - Função de permitir o sincronismo ao nível de bit e detecção do sinal.
- Start Frame Delimiter (delimitador de início de quadro) - Contém o padrão 10101011 e marca o início do quadro.
 - Função de permitir o sincronização ao nível de quadro.
- Não fazem parte do frame. São adicionados à camada física.

Quadro Ethernet DA e SA

- Destination Address | Source Address: utilizados para armazernar os endereços de destino e origem, respectivamente:
 - Possuem 6 bytes;
 - O bit menos significativo do byte de mais alta ordem do endereço de destino quando igual a 0 (zero) indica um endereço comum, quando igual a 1 (um) indica um endereço de grupo (*multicast* ou multidifusão);
 - Se no campo de destino (DA) todos os bits estiverem iguais a 1 (um) significa que a mensagem será enviada por difusão (broadcast).

Quadro Ethernet Tipo

O tipo de quadro	Ethertype ou comprimento	Payload iniciar dois bytes
Ethernet II	→ ≥ 1536	Qualquer
Novell matéria-IEEE 802.3	≤ 1,500	0xFFFF
IEEE 802.2 LLC	≤ 1,500	Outro
IEEE 802.2 SNAP	≤ 1,500	0xAAAA

SNAP (Protocolo de Sub-rede de Acesso)

AA	AA ou AB	03	OUI 000000	Pro 3 Eth	tocolo <mark>Type</mark>	2 D	ados Max. 1492
802.2 LLC	_						
DSAP	SSAP 1	CTRL 1	Dados da c	amada	a superior >0		
	•	•	•		/	1	

IEEE 802.3

Preâmbulo 7	SFD 1	DA 6	SA 6	Tipo/Tamanho ₂	Prot. N3 / LLC	FCS 4
-------------	----------	------	------	---------------------------	----------------	-------

Quadro Ethernet II Tipo (>=1536)

- Este campo TIPO indica qual o protocolo da camada superior que está sendo transportado no campo de dados;
- Por exemplo, se o campo de dados contém um datagrama IP, o campo Tipo é 0800.

Como a estrutura de cada protocolo possui um tamanho padrão, indiretamente se obtém o tamanho do payload.

Quadro Ethernet II Tipo (>=1536)

Quadro Ethernet II Tipo (>=1536)

CONTEÚDO	HEXADECIMAL >= 0x0600	DECIMAL >= 1536
IPv4	0x0800	2048
ARP	0x0806	2054
RARP	0x8035	32821
IEEE 802.1Q	0x8100	33024
IPv6	0x86DD	34525

Quadro IEEE 802.2 - LLC Length (<=1500)

- O IEEE 802.2 LLC fornece serviço orientado ou não-orientado à conexão para protocolos superiores da Arquitetura de Redes OSI.
 - Só utilizado em redes NetWare antigas (IPX/SPX), que não migraram para plataforma TCP/IP, ou para suportar interconexão através de bridges (Ethernet/Token Ring/FDDI)
 - Os principais protocolos das camadas superiores, como o IP, não usam os serviços do protocolo LLC.
 - Se DSAP e SSAP tiverem os valores 0xAA ou 0xAB, o LLC chama SNAP que permite valores Ethertype para serem usados com LLC (possibilita a interoperação Ethernet com todos protocolos IEEE 802).
 - Tráfego IP só pode ser encapsulado em LLC através do SNAP (adequar ARP, Ipv6, IPv4)

SNAP (Protocolo de Sub-rede de Acesso) OUI **Dados Protocolo** AA AA ou AB 03 000000 **EthType** Max. 1492 802.2 LLC Dados da camada superior **CTRL DSAP SSAP IEEE 802.3** preâmbulo 6 Tipo/Tamanho₂ 10 SA FCS ₄ DA 802.2 LLC

Ethernet / IEEE 802.3 Formato do Quadro

- Quando o IEEE 802.3 foi publicado, já existia um número grande de hardwares e softwares baseados no DIX;
 - Isso n\u00e3o motivou os fabricantes a converterem o campo tipo para comprimento;
- Contudo, em 1997, a IEEE desistiu de ter um único formato como padrão, pois afirmou que ambas estruturas eram compatíveis. Isso porque:
 - O campo TIPO em uso antes de 1997, assumiam valores sempre maiores que 1500 bytes;
 - Desse modo, os valores atribuídos nesse campo que forem menores ou iguais a 1500, passaram a ser interpretados como sendo o comprimento (length);
 - Portanto, o IEEE passou a afirmar que ambos os formatos seguem sua padronização.

Quadro Ethernet DADOS

- Embora o campo tamanho possa indicar um campo de dados com tamanho zero, isso causa um problema;
- Quando o transceptor detecta uma colisão, ele trunca o quadro a ser transmitido causando o aparecimento de partes do quadro no barramento;
- Para distinguir esta parte dos quadros efetivamente válidos, a norma IEEE 802.3, requer que o quadro tenha um tamanho mínimo de 64 bytes e máximo de 1518 bytes (entre o campo DA até FCS – SEM O PREÂMBULO).
- Desta forma, para quadros DE DADOS menores que 64 bytes, o campo PAD (de preenchimento automático) é usado com a finalidade de garantir o tamanho mínimo de quadro definido.

12

Quadro Ethernet FCS

- Frame Check Sequence (Seqüência de Verificação de Erros) – Este campo carrega 32 bits para detecção de erro, calculados pela técnica de CRC – Código de Redundância Cíclica;
- O cálculo é realizado sobre todos os campos, exceto o Preâmbulo, SFD e FCS.

Erro, gera lacuna para as camadas superiores (LLC ou da pilha TCP/IP)

Quadro Ethernet FCS

- Condições para ocorrência de Quadro inválido:
 - Identificação inválida pela camada física;
 - Não conter um número inteiro de bytes;
 - Não apresentar a estrutura de campos correta;

Neste caso, o QUADRO não é entregue ao protocolo da camada superior (ou a PDU LLC não é entregue e é indicada a condição de erro à camada LLC).

Referências

- Comer, Douglas E., Interligação de Redes com TCP/IP
- Forouzan, Behrouz A, Comunicação de Dados e Redes de Computadores, 4. ed, Porto Alegre: AMGH, 2010.
- James F. Kurose, Redes de Computadores e a Internet
- Mendes, Douglas Rocha, Redes de Computadores : Teoria e Prática
- Cisco Programa Cisco Neworking Academy
- UFRN, Programa de Pós-Graduação em Engenharia Elétrica, Arquitetura de Redes e Protocolos de Baixo Nível, Professor Sérgio Viana Fialho, Seminário - Tecnologia Ethernet, Fast Ethernet e Gigabit Ethernet, Alunos: Mario Sergio Silva e Raimundo Viegas Junior