Assignment instruction

Question 1 to 3:

Derive the formula using a general model (don't need to simplify to double MA).

Question 4:

Write a R function as follows:

This function returns two output $E(R_t)$ and H, where

$$E(R_{t}) = \sqrt{\frac{2}{\pi}} \sigma_{X} \cdot corr(X_{t}, F_{t-1}) \cdot exp\left\{-\frac{\mu_{F}^{2}}{2\sigma_{F}^{2}}\right\} + \mu_{X}\left(1 - 2\Phi\left[-\frac{\mu_{F}}{\sigma_{F}}\right]\right), \quad (2)$$
Assignment Project Exam Help

$$H = \frac{\pi}{cos^{-1}\rho_{F}(1)}. \quad (3)$$
Use the results that you terper from question 1 Course of Example,

$$H = \frac{\pi}{\cos^{-1}\rho_F(1)}.$$
 (3)

- 1. σ_X is the sample standard deviation of log S&P500 index.
- 2. $\mu_F = E(\sum_{i=0}^{m-2} A_i \mathbf{Y} \mathbf{C}) = \mathbf{Y}_0^2 \mathbf{C}_i \mathbf{C}_i \mathbf{Y}_1 \mathbf{A}_i \mathbf{W} \mathbf{D}_i \mathbf{C}_i \mathbf{W} \mathbf{C}_i \mathbf{$ returns.

Question 6:

The most naïve way to solve this question is to write a double loop over feasible sets of m and r, where $250 > m > r \ge 1$ and $50 > m \ge r \ge 1$, for daily and weekly frequency. Within the loop, m and r are the augments to ${\it Q4}$ and return ER_t for each iteration. The pair of m^* and r^* that give you the maximum ER_t is your optimal choice.

For students who cannot do a full search, you may simplify your computation by considering

- m = 250, 120, 60, 20, 10, 5, and r = 120, 60, 20, 10, 5, 1, for daily frequency.
- m = 52, 26, 13, 4, 2, and r = 26, 13, 4, 2, 1, for weekly frequency.

Question 7:

- 1. Use your optimal choice in Question 6 to answer this question and let (m^*, r^*) denote your optimal choice.
- 2. Cumulative return ($cumRet_t$):

$$cumRet_t = \sum_{i=1}^{N} B_{t-1} X_t,$$

where N is the number of active trading days in your analysis, B_{t-1} is the position ± 1 at the end of period t-1, X_t is the log return over period t.

The estimate of ER_t may be given by

$$\frac{cumRet_t}{N}$$

3. The length of the (averaged) holding periods:

Assignment Project Exam Help
of B_{t-1} change sign over the trading period

The above formula provides the estimate of $\it H$. $\it https://powcoder.com$

