In [1]: import pandas as pd import numpy as np import warnings warnings.filterwarnings("ignore")

In [2]: drug=pd.read_csv(r"C:\Users\reshma_koduri\Downloads\drug discovery.csv")

Out[2]:	: id		gen	smile	source	score	P_value	Conn
	0	AAAA	0	COc1cccc(NC(=O)Cc2ccc(NC(=O)N3CCCC3)cc2)c1	generated	99.9	0.003320	-0
	1	AAAB	0	C=CCNC(=O)CNc1cccc(C(=O)N(C)CCc2ccccc2)c1	generated	99.9	0.003384	-0
	2	AAAC	0	CC(=O)Nc1ccc(S(=O)(=O)Nc2ccc(C)c(C)c2)cc1	training	99.9	0.003397	-0
	3	AAAD	0	CCOC(=0)C1=C(C(=0)OCC)C(c2cccc(Cl)c2)NC(=0)N1	generated	99.9	0.003427	-0
	4	AAAE	0	NC(=O)c1ccc(NC(=O)C(CC(=O)O)NC(=O)c2cc(-c3cccc	generated	99.9	0.003468	-0
	•••							
	1172	ABTC	0	$ \begin{array}{l} CCCC1(CCc2ccccc2)CC(O) \! = \! C(C(CC)c2cccc(NS(=O) \\ (=\!O \end{array} $	manual	99.9	1.000000	0
	1173	ABTD	0	O=C1Nc2ccc(Cl)cc2C(C#CC2CC2)(C(F)(F)F)O1	manual	99.9	1.000000	0
	1174	ABTE	0	CC(C) (C)NC(=0)C1CN(Cc2cccnc2)CCN1CC(0)CC(Cc1cc	manual	99.9	1.000000	0
	1175	ABTF	0	CCOP(=O) (COc1ccc(CC(NC(=O)OC2COC3OCCC23)C(O)CN	manual	99.9	1.000000	0
	1176	ABTG	0	$\begin{aligned} COC(=O) NC(C(=O) NCCCCC(CO) N(CC(C) C) S(=O) \\ (=O) c1c \end{aligned}$	manual	99.9	1.000000	0

1177 rows × 8 columns

In [3]: drug.describe()

Out[3]:

	gen	score	P_value	Connectivity
count	1177.0	1.177000e+03	1177.000000	1177.000000
mean	0.0	9.990000e+01	0.677346	-0.049811
std	0.0	2.004582e-12	0.392285	0.163636
min	0.0	9.990000e+01	0.003320	-0.809330
25%	0.0	9.990000e+01	0.257861	-0.209375
50%	0.0	9.990000e+01	1.000000	0.000000
75%	0.0	9.990000e+01	1.000000	0.000000
max	0.0	9.990000e+01	1.000000	0.723920

```
In [4]:
         drug.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1177 entries, 0 to 1176
        Data columns (total 8 columns):
            Column
                           Non-Null Count Dtype
         0
                           1177 non-null
                                           object
             id
         1
                           1177 non-null
                                            int64
             gen
         2
             smile
                           1177 non-null
                                            object
         3
                           1177 non-null
             source
                                            object
         4
                            1177 non-null
                                            float64
             score
         5
             P_value
                           1177 non-null
                                            float64
         6
             Connectivity 1177 non-null
                                            float64
                           1177 non-null
                                            object
        dtypes: float64(3), int64(1), object(4)
        memory usage: 73.7+ KB
In [7]:
         drug['P_value'].unique()
        array([0.00331968, 0.00338356, 0.00339726, 0.00342658, 0.0034682 ,
Out[7]:
               0.00353087, 0.00355484, 0.00357524, 0.00358432, 0.00363285,
               0.0037343 , 0.00389023, 0.00396885, 0.0042186 , 0.00450414,
               0.00486791, 0.00550357, 0.00628477, 0.00643704, 0.00645932,
               0.00664478, 0.00697121, 0.00697142, 0.00757783, 0.00895931,
               0.00914021, 0.00915257, 0.00949567, 0.00980125, 0.01052681,
               0.01165854, 0.01199205, 0.01328552, 0.01357921, 0.01416115,
               0.01450921,\ 0.01463088,\ 0.01463118,\ 0.01520905,\ 0.01579844,
               0.01631903, 0.01670527, 0.01700551, 0.01744755, 0.01788815,
               0.01826373, 0.0196488, 0.01981558, 0.02005149, 0.02089379,
               0.02101087, 0.02143682, 0.02161217, 0.0219501, 0.02234632,
               0.02278351, 0.02366028, 0.023799 , 0.02386443, 0.02525801,
               0.02753619, 0.02795078, 0.02799259, 0.02833159, 0.02851516,
               0.02862323, 0.0286239 , 0.0289735 , 0.03181352, 0.03252018,
               0.03329107, 0.03354188, 0.03489295, 0.03526253, 0.03633253,
               0.03719375, 0.03806932, 0.0385287, 0.03897426, 0.03898927,
               0.03990402, 0.04046838, 0.04186649, 0.0418879, 0.04202482,
               0.04278029, 0.04308126, 0.04330748, 0.04456587, 0.04456773,
                0.04492331, \ 0.04518693, \ 0.04588357, \ 0.04598648, \ 0.04660964, 
               0.04676691, 0.04695373, 0.04730705, 0.04757408, 0.04768286,
               0.04870295, 0.05051713, 0.05053752, 0.05088461, 0.05182202,
               0.05275996, 0.05312042, 0.05427295, 0.05438078, 0.05514716,
               0.0552889 , 0.05568718, 0.05570817, 0.05605124, 0.05631784,
               0.05651632, 0.05871457, 0.06042298, 0.06051576, 0.06052005,
               0.06195518, 0.06382694, 0.06484602, 0.06511162, 0.06520212,
               0.06801367, 0.06811696, 0.06867639, 0.06892979, 0.06939979,
               0.06946658, 0.06976797, 0.06985624, 0.0704378, 0.07101772,
               0.0715195 , 0.07235723 , 0.07247133 , 0.07256171 , 0.07294612 ,
               0.07348202, 0.07354344, 0.07386633, 0.07582825, 0.07832784,
               0.07905461, 0.07907366, 0.07934654, 0.07973238, 0.07980567,
               0.07985288, 0.08081229, 0.08163699, 0.08181505, 0.08269558,
               0.08323564,\ 0.08490506,\ 0.08534807,\ 0.08605934,\ 0.08635457,
               0.08788697, 0.08806246, 0.08879437, 0.08895638, 0.09034253,
               0.09052705, 0.09104235, 0.09104315, 0.09104351, 0.09164863,
               0.09238933, 0.09306361, 0.09512018, 0.09555039, 0.09599071,
               0.09605064, 0.09713684, 0.0985899, 0.09952477, 0.10055522,
               0.10233047, 0.10413599, 0.10451931, 0.10484266, 0.1062647 ,
               0.10697024, 0.10719087, 0.10858597, 0.11185228, 0.11190014,
               0.11269503, 0.11280344, 0.11365458, 0.11459782, 0.11519795,
               0.11654348, 0.11750316, 0.11889455, 0.11979169, 0.12018904,
               0.12029071, 0.12276693, 0.12353802, 0.12390583, 0.12528238,
               0.12540111, 0.12793708, 0.12933567, 0.12954606, 0.12988079,
```

```
0.13063647, 0.13096454, 0.13260898, 0.13355352, 0.1357788 ,
0.1361732 , 0.13671895, 0.13886054, 0.13927272, 0.14051
0.14070866, 0.14088994, 0.14303162, 0.14806286, 0.14975012,
0.15256049, 0.15369048, 0.153924 , 0.15497247, 0.15562023,
0.15601202, 0.159757 , 0.16224638, 0.16280553, 0.16292021,
0.16302445, 0.16377314, 0.16875503, 0.1704928 , 0.17167054,
0.17234037, 0.17408346, 0.17500657, 0.17746683, 0.17785168,
0.17914667, 0.18192299, 0.18262087, 0.18344105, 0.18454918,
0.18738514, 0.18805847, 0.18832182, 0.19356944, 0.19369538,
0.19398345, 0.19751145, 0.19822424, 0.2005027, 0.20072904,
0.20129993, 0.2031834, 0.2045194, 0.20949127, 0.21140648,
0.2126268 , 0.21262762, 0.21613169, 0.21780821, 0.21813464,
0.219131 , 0.21973215, 0.22184002, 0.22306153, 0.2255502 ,
0.22735973, 0.22909195, 0.22978112, 0.23050537, 0.23165731,
0.23432149, 0.23781397, 0.23836461, 0.23956356, 0.24059466,
0.2416225 , 0.24277041, 0.24295499, 0.24399913, 0.24697031,
0.25342106, 0.25381506, 0.25786067, 0.25936012, 0.2618198,
0.2629654 , 0.26451257, 0.26835093, 0.27131117, 0.27422719,
0.27746106, 0.28264132, 0.28696908, 0.28860334, 0.28989767,
0.29014537, 0.29041303, 0.29251472, 0.29309081, 0.29326431,
0.29479569, 0.2954055, 0.29569829, 0.29959839, 0.30115981,
0.30311155, 0.30610146, 0.30647185, 0.31038972, 0.31091985,
0.31130012, 0.31566784, 0.31799599, 0.31969131, 0.32697298,
0.33026311, 0.33493444, 0.33584273, 0.33698531, 0.33813792,
0.33906063, 0.3397717, 0.34077915, 0.3415142, 0.34348328,
0.34451839, 0.34566832, 0.35022996, 0.35345171, 0.35524473,
0.35578981, 0.35606765, 0.3565432, 0.35925243, 0.35978151,
0.36077026, 0.3611143 , 0.3645551 , 0.36466251, 0.36488603,
0.36599735, 0.36632923, 0.36732451, 0.37056154, 0.37266574,
0.37691524,\ 0.3793924 , 0.382819 , 0.38502115,\ 0.38670005,
0.38963828, 0.3904334, 0.39046557, 0.39338427, 0.39496421,
0.39533117, 0.39597373, 0.39611395, 0.39717108, 0.40041048,
0.40283063, 0.40335082, 0.40725778, 0.40862107, 0.41547754,
0.41691513, 0.41779437, 0.41875114, 0.42050279, 0.42392585,
0.42457283, 0.43150115, 0.43405619, 0.4345
                                            , 0.43491885,
0.43743994, 0.44159002, 0.44313879, 0.44344144, 0.44504064,
0.44840355, 0.45309878, 0.4532101 , 0.45540034, 0.45643784,
0.45777869, 0.46177079, 0.46387273, 0.46650919, 0.46773491,
0.47100626, 0.47891295, 0.48408713, 0.4890688, 0.49065342,
0.49091957, 0.49403979, 0.49502733, 0.50120567, 0.51428287,
0.51527591, 0.51545886, 0.51561018, 0.51607102, 0.51700611,
0.51828149, 0.53071362, 0.53259767, 0.53337217, 0.53477984,
0.53610198, 0.53855403, 0.54437613, 0.54716412, 0.54831384,
0.54929137, 0.55035048, 0.55075521, 0.55199519, 0.55631202,
0.55880135, 0.55986261, 0.56173782, 0.56272893, 0.56286225,
0.56591826, 0.56785224, 0.56978596, 0.57093103, 0.57407658,
0.57999508, 0.58535212, 0.58550422, 0.58626813, 0.59541269,
0.59746188, 0.59822391, 0.60353854, 0.60386134, 0.60742148,
0.60751863, 0.60976589, 0.61140965, 0.62799904, 0.62815295,
0.62953156, 0.63818857, 0.64599034, 0.64846181, 0.66346141,
0.66994783, 0.67341921, 0.67359182, 0.67436709, 0.67515299,
0.67690288, 0.68476138, 0.68754834, 0.69626519, 0.70578261,
0.71110034, 0.71729496, 0.72085179, 0.72629987, 0.72695961,
0.72907016, 0.72952725, 0.73260065, 0.73553037, 0.74223549,
0.74764648, 0.74881536, 0.75298128, 0.75976866, 0.75990987,
0.76268508, 0.76287822, 0.766514 , 0.76814667, 0.77541254,
0.77667636, 0.78000203, 0.78502197, 0.78651408, 0.78684912,
0.79494148, 0.79848434, 0.80228855, 0.80485427, 0.8056745 ,
0.80638183, 0.80671752, 0.80794889, 0.80882712, 0.81621584,
0.81930391, 0.82023755, 0.82785384, 0.8282647, 0.83005382,
0.83728053, 0.83813994, 0.83853873, 0.84430938, 0.84688197,
0.84764454, 0.84921788, 0.85083233, 0.85232688, 0.85643685,
0.86003014, 0.86004176, 0.8608426, 0.86191448, 0.86540266,
0.87008488, 0.8782218, 0.88538814, 0.88558038, 0.89178938,
```

```
0.89319651, 0.89734209, 0.89865245, 0.9007128 , 0.90102661,
                0.90178276, 0.90324523, 0.90827515, 0.90889474, 0.90925129,
                 0.91212533, 0.91380576, 0.91990037, 0.92793323, 0.92866678,
                0.93086134, 0.93188156, 0.9376778 , 0.94442947, 0.94475727,
                0.94673358, 0.95926652, 0.96551891, 0.96554576, 0.96982546,
                 0.97057751, 0.97200691, 0.97305079, 0.97315653, 0.97444229,
                 0.97716526, 0.98104994, 0.98491947, 0.99460722, 0.99893939,
                           ])
 In [8]:
          drug['source'].unique()
          array(['generated', 'training', 'hiv', 'manual'], dtype=object)
 Out[8]:
 In [9]:
          drug['gen'].unique()
          array([0], dtype=int64)
 Out[9]:
In [10]:
          drug_sorted = drug.sort_values(by = 'P_value', ascending = True)
          drug sorted
Out[10]:
                  id
                      gen
                                                                  smile
                                                                                        P value Co
                                                                          source score
             O AAAA
                                COc1cccc(NC(=O)Cc2ccc(NC(=O)N3CCCC3)cc2)c1 generated
                                                                                  99.9
                                                                                       0.003320
               AAAB
                                 C=CCNC(=O)CNc1cccc(C(=O)N(C)CCc2cccc2)c1 generated
                                                                                  99.9 0.003384
                        0
             2 AAAC
                                   CC(=O)Nc1ccc(S(=O)(=O)Nc2ccc(C)c(C)c2)cc1
                                                                         training
                                                                                  99.9 0.003397
               AAAD
                             CCOC(=O)C1=C(C(=O)OCC)C(c2cccc(CI)c2)NC(=O)N1 generated
                                                                                  99.9 0.003427
             3
                        0
                AAAE
                            NC(=O)c1ccc(NC(=O)C(CC(=O)O)NC(=O)c2cc(-c3cccc... generated
                                                                                  99.9 0.003468
               ABDS
           772
                        0
                                     COc1ccc2c(c1)OC(CNC(=O)NCc1ccco1)CC2 generated
                                                                                  99.9 1.000000
                                COC(=O)C1COC(=O)N(c2ccc(NS(C)(=O)=O)cc2)C1 generated
                ABDT
                                                                                  99.9 1.000000
           773
           774 ABDU
                        0 O=C(COc1ccc2cc(OCCCN3CCOCC3)ccc2c1)NCC(c1ccccc... generated
                                                                                  99.9 1.000000
          767 ABDN
                        0
                                        Cc1cccc(C)c1N(C)S(=O)(=O)c1cnn(C)c1 generated
                                                                                  99.9 1.000000
                                  COC(=O)NC(C(=O)NCCCCC(CO)N(CC(C)C)S(=O)
          1176
               ABTG
                                                                                  99.9 1.000000
                                                                          manual
                                                               (=0)c1c...
         1177 rows × 8 columns
In [11]:
          drug sorted = drug sorted[['smile', 'P value']]
          drug sorted
Out[11]:
                                                      smile
                                                             P value
             0
                     1
                      C=CCNC(=O)CNc1cccc(C(=O)N(C)CCc2cccc2)c1 0.003384
             2
                        CC(=O)Nc1ccc(S(=O)(=O)Nc2ccc(C)c(C)c2)cc1 0.003397
             3
```

Out[14]:

	smile	P_value
4	NC(=O)c1ccc(NC(=O)C(CC(=O)O)NC(=O)c2cc(-c3cccc	0.003468
•••		
772	COc1ccc2c(c1)OC(CNC(=O)NCc1ccco1)CC2	1.000000
773	COC(=O)C1COC(=O)N(c2ccc(NS(C)(=O)=O)cc2)C1	1.000000
774	O=C(COc1ccc2cc(OCCCN3CCOCC3)ccc2c1)NCC(c1ccccc	1.000000
767	Cc1cccc(C)c1N(C)S(=O)(=O)c1cnn(C)c1	1.000000
1176	COC(=O)NC(C(=O)NCCCCC(CO)N(CC(C)C)S(=O)(=O)c1c	1.000000

1177 rows × 2 columns

In [13]:	<pre>drug['source']=drug['source'].map({'generated':1,'training':0,'hiv':2,'manual':3})</pre>
----------	---

In [14]: drug

	id	gen	smile	source	score	P_value	Connect
0	AAAA	0	COc1cccc(NC(=O)Cc2ccc(NC(=O)N3CCCC3)cc2)c1	1	99.9	0.003320	-0.37
1	AAAB	0	C=CCNC(=O)CNc1cccc(C(=O)N(C)CCc2ccccc2)c1	1	99.9	0.003384	-0.26
2	AAAC	0	CC(=O)Nc1ccc(S(=O)(=O)Nc2ccc(C)c(C)c2)cc1	0	99.9	0.003397	-0.31
3	AAAD	0	CCOC(=O)C1 = C(C(=O)OCC)C(c2cccc(CI)c2)NC(=O)N1	1	99.9	0.003427	-0.32!
4	AAAE	0	NC(=O)c1ccc(NC(=O)C(CC(=O)O)NC(=O)c2cc(-c3cccc	1	99.9	0.003468	-0.28
•••							
1172	ABTC	0	$\label{eq:cccc} \begin{aligned} CCCC1(CCc2ccccc2)CC(O) \! = \! C(C(CC)c2cccc(NS(=O)\\ (=\!O \end{aligned}$	3	99.9	1.000000	0.00
1173	ABTD	0	O = C1Nc2ccc(CI)cc2C(C#CC2CC2)(C(F)(F)F)O1	3	99.9	1.000000	0.00
1174	ABTE	0	CC(C) (C)NC(=O)C1CN(Cc2cccnc2)CCN1CC(O)CC(Cc1cc	3	99.9	1.000000	0.00
1175	ABTF	0	CCOP(=O) (COc1ccc(CC(NC(=O)OC2COC3OCCC23)C(O)CN	3	99.9	1.000000	0.00
1176	ABTG	0	$\begin{aligned} COC(=O) NC(C(=O) NCCCCC(CO) N(CC(C) C) S(=O) \\ (=O) c1c \end{aligned}$	3	99.9	1.000000	0.00

1177 rows × 8 columns

Out[15]:		smile	source	score	P_value	Connectivity
	0	COc1cccc(NC(=O)Cc2ccc(NC(=O)N3CCCC3)cc2)c1	1	99.9	0.003320	-0.376625
	1	C=CCNC(=O)CNc1cccc(C(=O)N(C)CCc2ccccc2)c1	1	99.9	0.003384	-0.269090
	2	CC(=O)Nc1ccc(S(=O)(=O)Nc2ccc(C)c(C)c2)cc1	0	99.9	0.003397	-0.318895
	3	CCOC(=O)C1 = C(C(=O)OCC)C(c2cccc(CI)c2)NC(=O)N1	1	99.9	0.003427	-0.329905
	4	NC(=O)c1ccc(NC(=O)C(CC(=O)O)NC(=O)c2cc(-c3cccc	1	99.9	0.003468	-0.288555
	•••					
	1172	$CCCC1(CCc2ccccc2)CC(O) \!=\! C(C(CC)c2cccc(NS(=O)(=O$	3	99.9	1.000000	0.000000
	1173	O = C1Nc2ccc(CI)cc2C(C#CC2CC2)(C(F)(F)F)O1	3	99.9	1.000000	0.000000
	1174	CC(C)(C)NC(=O)C1CN(Cc2cccnc2)CCN1CC(O)CC(Cc1cc	3	99.9	1.000000	0.000000
	1175	CCOP(=O) (COc1ccc(CC(NC(=O)OC2COC3OCCC23)C(O)CN	3	99.9	1.000000	0.000000
	1176	COC(=O)NC(C(=O)NCCCCC(CO)N(CC(C)C)S(=O)(=O)c1c	3	99.9	1.000000	0.000000

1177 rows × 5 columns

In [17]:	drug1		

Out[17]:		smile	source	score	P_value	Connectivity
	0	COc1cccc(NC(=O)Cc2ccc(NC(=O)N3CCCC3)cc2)c1	1	99.9	0.003320	-0.376625
	1	C=CCNC(=O)CNc1cccc(C(=O)N(C)CCc2cccc2)c1	1	99.9	0.003384	-0.269090
	2	CC(=O)Nc1ccc(S(=O)(=O)Nc2ccc(C)c(C)c2)cc1	0	99.9	0.003397	-0.318895
	3	CCOC(=O)C1 = C(C(=O)OCC)C(c2cccc(CI)c2)NC(=O)N1	1	99.9	0.003427	-0.329905
	4	NC(=O)c1ccc(NC(=O)C(CC(=O)O)NC(=O)c2cc(-c3cccc	1	99.9	0.003468	-0.288555
	•••					
	1172	$CCCC1(CCc2ccccc2)CC(O) \!=\! C(C(CC)c2cccc(NS(=O)(=O$	3	99.9	1.000000	0.000000
	1173	O = C1Nc2ccc(CI)cc2C(C#CC2CC2)(C(F)(F)F)O1	3	99.9	1.000000	0.000000
	1174	CC(C)(C)NC(=O)C1CN(Cc2cccnc2)CCN1CC(O)CC(Cc1cc	3	99.9	1.000000	0.000000
	1175	CCOP(=O) (COc1ccc(CC(NC(=O)OC2COC3OCCC23)C(O)CN	3	99.9	1.000000	0.000000
	1176	COC(=O)NC(C(=O)NCCCCC(CO)N(CC(C)C)S(=O)(=O)c1c	3	99.9	1.000000	0.000000

1177 rows × 5 columns

```
In [18]: drug1.isna().sum()
```

```
smile
                           0
Out[18]:
                           0
          source
          score
                           0
          P_value
                           0
          Connectivity
                           0
          dtype: int64
In [23]:
           x=drug1.drop(['smile', 'P_value'],axis=1)
           y=drug1['P value']
In [24]:
Out[24]:
                source score Connectivity
             0
                         99.9
                                 -0.376625
                     1
                     1
                         99.9
                                 -0.269090
             2
                     0
                         99.9
                                 -0.318895
             3
                     1
                         99.9
                                 -0.329905
             4
                     1
                         99.9
                                 -0.288555
                         99.9
                                 0.000000
          1172
                     3
          1173
                     3
                         99.9
                                 0.000000
                         99.9
                                 0.000000
          1174
                     3
          1175
                     3
                         99.9
                                 0.000000
          1176
                         99.9
                                 0.000000
                     3
         1177 rows × 3 columns
In [25]:
                   0.003320
Out[25]:
          1
                   0.003384
          2
                   0.003397
          3
                   0.003427
                   0.003468
          1172
                   1.000000
          1173
                   1.000000
          1174
                   1.000000
          1175
                   1.000000
          1176
                   1.000000
          Name: P_value, Length: 1177, dtype: float64
In [26]:
           from sklearn.model_selection import train_test_split
           x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=42)
In [51]:
           from sklearn.linear_model import LinearRegression
           regressor=LinearRegression()
           regressor.fit(x_train, y_train)
```

```
Out[51]: ▼ LinearRegression
LinearRegression()
```

```
In [54]:
          y pred1=regressor.predict(x test)
          y pred1
         array([ 0.4792085 ,
                              0.73645914,
                                          0.44729332,
                                                       0.73645914,
                                                                    0.73645914,
Out[54]:
                 0.73645914,
                              0.73645914,
                                          0.73645914,
                                                       0.47052954,
                                                                    0.54183498,
                 0.46870273,
                             0.50462075,
                                          0.73645914,
                                                      0.73645914,
                                                                   0.46724534,
                 0.96909842,
                             0.56132863,
                                          0.73645914, 0.98740331, 0.73645914,
                 0.38314728, 0.51886069, 0.51886572, 0.73645914, 0.42158891,
                              0.97044837,
                 0.94517211,
                                          1.04037868,
                                                       0.95571984, 0.52452744,
                 0.45530233,
                              0.73645914,
                                          0.73645914,
                                                       0.44926283,
                                                                    0.46404339,
                 0.73645914,
                              0.73645914,
                                          0.54334108,
                                                       0.50082277,
                                                                    0.73645914,
                 0.73645914,
                             0.57090419,
                                          0.95277312,
                                                      0.64107794,
                                                                   0.73645914,
                 0.51679043, 0.73645914,
                                          0.73645914, 0.73645914, 0.53255157,
                 0.64107794,
                              0.49644551,
                                          0.5045452 , 0.98257271, 0.73645914,
                 0.73645914,
                              0.73645914,
                                          0.73645914,
                                                       0.83184034, 0.73645914,
                                          0.52508656,
                                                       0.73645914, 0.73645914,
                 0.73645914,
                              0.73645914,
                                          0.91823361, 0.73645914, 0.84751917,
                 0.73645914,
                             0.73645914,
                 0.92460556,
                             0.73645914.
                                          0.73645914, 0.46433389,
                                                                   0.73645914,
                                          0.51224191, 0.73645914, 0.73645914,
                 0.73645914, 0.51671487,
                 0.99499425, 0.94534338,
                                          0.48778671, 0.94969041, 0.9707103,
                 0.51177346,
                              0.40662025,
                                          0.73645914,
                                                       0.73645914, 0.73645914,
                 0.94381209,
                                          0.73645914,
                                                       0.73645914,
                                                                    0.73645914,
                              0.73645914,
                 0.52552983,
                              0.54759744,
                                          0.96161327,
                                                       0.73645914,
                                                                    0.73645914,
                 0.73645914,
                             0.43915837,
                                          0.73645914, 0.73645914,
                                                                   0.73645914,
                                          0.46081798, 0.73645914, 0.73645914,
                 0.45683866, 0.73645914,
                 0.94979619, 0.40853773,
                                          0.92722154, 0.51685088, 0.73645914,
                              0.54730025,
                                          0.52515205,
                                                       0.73645914, 0.51154679,
                 0.94446188.
                                          0.48728803,
                                                       0.96581926, 0.93918298,
                 0.73645914,
                              0.73645914,
                 0.49885325,
                             0.96139163,
                                          0.47794418, 0.73645914, 0.92703345,
                                                                   0.9807795 ,
                 0.48527319,
                             0.73645914,
                                          0.73645914, 0.54621224,
                 0.73645914,
                             0.73645914,
                                          0.56129337, 0.48520267, 0.47579333,
                 0.47254943,
                              0.73645914,
                                          0.52556509,
                                                       0.88306611,
                                                                    0.73645914,
                 0.450779 ,
                                          1.0587289 ,
                              0.73645914,
                                                       0.73645914,
                                                                    0.73645914,
                 0.95339773,
                              0.49856614,
                                           0.73645914,
                                                       0.55751553,
                                                                    0.48842138,
                 0.83184034,
                              0.46947678,
                                          0.73645914,
                                                       0.64107794,
                                                                   0.73645914,
                              0.73645914,
                                          0.73645914,
                 0.73645914,
                                                      0.49485882,
                                                                   0.55462422,
                 0.73645914,
                              0.73645914,
                                          0.73645914,
                                                       0.73645914,
                                                                    0.41264802,
                 0.44922923,
                              0.92722154,
                                           0.73645914, -0.07887897,
                                                                    0.73645914,
                                          0.73645914,
                                                                    0.73645914,
                                                       0.73645914,
                 0.73645914,
                              0.73645914,
                 0.93360185,
                              0.73645914,
                                           0.73645914,
                                                       0.90923228,
                                                                    0.53781536,
                 0.73645914,
                             0.51156694,
                                          0.9337983 ,
                                                       0.73645914,
                                                                   0.73645914,
                                          1.01191392,
                 0.55669448,
                             0.64107794,
                                                       0.73645914, 0.73645914,
                                          0.545502 ,
                 0.73645914,
                              0.73645914,
                                                       0.73645914,
                                                                    0.54906324,
                 0.64107794,
                              0.42048578,
                                           0.73645914,
                                                       0.73645914,
                                                                    0.73645914,
                 0.50107462,
                              0.73645914,
                                           0.73645914,
                                                       0.52525279,
                                                                    0.46433892,
                              0.73645914,
                 0.91042607,
                                           0.73645914,
                                                       0.73645914,
                                                                    0.54689728,
                                           0.3996237,
                 0.46459582.
                              0.73645914,
                                                       0.49422414,
                                                                    0.73645914,
                 0.73645914,
                              0.49246115,
                                          0.95949768,
                                                       0.9313553 ,
                                                                    0.54105926,
                 0.49426948,
                              0.4651499 ,
                                           0.52360565,
                                                       0.73645914,
                                                                    0.50987951,
                 0.48183787,
                              0.73645914,
                                           0.41524717,
                                                       0.92722154,
                                                                    0.93672487,
                 0.73645914,
                              0.73645914,
                                           1.00077686,
                                                       0.53646038,
                                                                    0.559344
                 0.93377815,
                              0.47260483,
                                          0.73645914,
                                                       0.94553479,
                                                                    0.73645914,
                 1.02893434,
                              0.73645914,
                                          0.98018512,
                                                       0.73645914,
                                                                   0.99875194,
                 0.73645914,
                              0.52377188,
                                          0.97063474,
                                                       0.93013128,
                                                                    1.06892906,
                              0.53384611,
                 0.73645914,
                                           0.73645914,
                                                       0.47154704,
                                                                    0.73645914,
                              0.50492298,
                                                       0.99759844,
                 0.73645914,
                                           0.41596244,
                                                                    0.95059205,
                 0.94154539,
                              0.97490622,
                                           0.73645914,
                                                       0.73645914,
                                                                    0.40410507,
                 0.53643015,
                              0.73645914,
                                          0.73645914, 0.73645914,
                                                                    0.52176207,
```

```
0.73645914, 0.73645914, 0.73645914, 0.47339566, 0.73645914,
                 0.73645914, 0.52731801, 0.73645914, 0.56646649, 0.73645914,
                 0.73645914, 0.4913278,
                                          0.73645914, 0.73645914, 0.73645914,
                 0.52178221, 0.99907431,
                                          0.46127636, 0.73645914, 0.47170823,
                 0.4141239 , 0.73645914,
                                          0.73645914, 0.73645914, 0.73645914,
                 0.73645914, 0.73645914, 0.92722154, 0.44845855, 0.73645914,
                 0.73645914, 0.55084638, 0.73645914, 0.5601449, 0.73645914,
                 0.51391927, 0.73645914, 0.44810933, 0.91208329, 0.3198156,
                 0.27815864, 0.50809133, 0.73645914, 0.95625377, 0.73645914,
                                          0.43175381, 0.73645914, 0.94555997,
                 0.50654493, 0.92920949,
                 0.52610406, 0.73645914, 0.73645914, 0.47404545, 0.73645914,
                 0.73645914, 0.73645914, 0.53078354, 0.51814542, 0.42319237,
                 0.30838134, 0.94641628, 1.01619044, 0.95181607, 1.03537178,
                 0.45971485, 0.73645914, 0.38081344, 0.49300516, 0.73645914,
                 0.73645914, 0.73645914, 0.48277981, 0.73645914, 0.73645914,
                 0.92722154, 0.73645914, 0.73645914, 0.73645914])
In [55]:
          from sklearn.metrics import r2 score
          r2_score(y_test,y_pred1)
         0.07536894330655464
Out[55]:
In [56]:
          from sklearn.metrics import mean squared error
          mean_squared_error(y_test,y_pred1)
         0.14430117799862377
Out[56]:
In [57]:
          results=pd.DataFrame(columns=['actual','predicted'])
          results['actual']=y_test
          results['predicted']=y_pred1
          results=results.reset index()
          results['ID']=results.index
          results.head(5)
Out[57]:
            index
                    actual predicted ID
         0
              107 0.053120
                           0.479208
             774 1.000000
         1
                           0.736459
                                    1
         2
              81 0.039904
                           0.447293
         3
                           0.736459
                                    3
             787 1.000000
              665
                 1.000000
                           0.736459
In [58]:
          import seaborn as sns
          import matplotlib.pyplot as plt
          sns.lineplot(x='ID',y='actual',data=results.head(50))
          sns.lineplot(x='ID',y='predicted',data=results.head(50))
          plt.plot()
         []
Out[58]:
```



```
In [59]:
          from sklearn.model_selection import GridSearchCV
          from sklearn.ensemble import RandomForestRegressor
          reg=RandomForestRegressor()
          n_estimators=[25,50,75,100,125,150,175,200]
          criterion=['squared_error']
          max_depth=[3,5,10]
          parameters={'n_estimators': n_estimators,'criterion':criterion,'max_depth':max_depth
          rfc_reg = GridSearchCV(reg, parameters)
          rfc_reg.fit(x_train,y_train)
                       GridSearchCV
Out[59]:
          ▶ estimator: RandomForestRegressor
                 ▶ RandomForestRegressor
In [34]:
          rfc_reg.best_params_
          {'criterion': 'squared_error', 'max_depth': 3, 'n_estimators': 100}
Out[34]:
In [60]:
          reg=RandomForestRegressor(n estimators=100,criterion='squared error',max depth=3)
In [61]:
          reg.fit(x_train,y_train)
Out[61]:
                 RandomForestRegressor
         RandomForestRegressor(max_depth=3)
In [63]:
          y_pred2=reg.predict(x_test)
          y pred2
         array([0.1105979, 0.98309181, 0.07864243, 0.98309181, 0.98309181,
Out[63]:
                 0.98309181, 0.98309181, 0.98309181, 0.08299423, 0.68306458,
                 0.9810374 , 0.18038375, 0.98309181, 0.98309181, 0.08213904,
                 0.2403811 , 0.97888836 , 0.98309181 , 0.2403811 , 0.98309181 ,
                  0.1105979 \;\; , \; 0.37034336, \; 0.37034336, \; 0.98309181, \; 0.07864243,
```

0.45420826, 0.2403811, 0.2403811, 0.24385797, 0.39389183, 0.08213904, 0.98309181, 0.98309181, 0.07864243, 0.97888836, 0.98309181, 0.98309181, 0.68306458, 0.17107253, 0.98309181,

```
0.98309181, 0.98309181, 0.24385797, 0.98309181, 0.98309181,
0.34893965, 0.98309181, 0.98309181, 0.98309181, 0.54666365,
0.98309181, 0.16780143, 0.18038375, 0.2403811, 0.98309181,
0.98309181, 0.98309181, 0.98309181, 0.98309181, 0.98309181,
0.98309181, 0.98309181, 0.39477277, 0.98309181, 0.98309181,
0.98309181, 0.98309181, 0.97623168, 0.98309181, 0.45639779,
0.97623168, 0.98309181, 0.98309181, 0.08213904, 0.98309181,
0.98309181, 0.30080766, 0.2395556 , 0.98309181, 0.98309181,
0.2403811 , 0.45420826, 0.15384059, 0.31964021, 0.2403811 ,
0.23492148, 0.20182701, 0.98309181, 0.98309181, 0.98309181,
0.45639779, 0.98309181, 0.98309181, 0.98309181, 0.98309181,
0.3942879 , 0.68306458, 0.24385797, 0.98309181, 0.98309181,
0.98309181, 0.07864243, 0.98309181, 0.98309181, 0.98309181,
0.08213904, 0.98309181, 0.08213904, 0.98309181, 0.98309181,
0.31964021, 0.07864243, 0.98309181, 0.34893965, 0.98309181,
0.45639779, 0.68306458, 0.39477277, 0.98309181, 0.23492148,
0.98309181, 0.98309181, 0.15384059, 0.24197299, 0.46376708,
0.16780143, 0.24385797, 0.1105979, 0.98309181, 0.97623168,
0.15384059, 0.98309181, 0.98309181, 0.68306458, 0.2403811,
0.98309181, 0.98309181, 0.97888836, 0.15384059, 0.1105979 ,
0.08649073, 0.98309181, 0.3942879, 0.2403811, 0.98309181,
0.07864243, 0.98309181, 0.24505316, 0.98309181, 0.98309181,
0.24385797, 0.16780143, 0.98309181, 0.97354632, 0.15384059,
0.98309181, 0.08213904, 0.98309181, 0.98309181, 0.98309181,
0.98309181, 0.98309181, 0.98309181, 0.15623551, 0.92607113,
0.98309181, 0.98309181, 0.98309181, 0.98309181, 0.07864243,
0.68306458, 0.98309181, 0.98309181, 0.12908683, 0.98309181,
0.98309181, 0.98309181, 0.98309181, 0.98309181, 0.98309181,
0.84597302, 0.98309181, 0.98309181, 0.98309181, 0.66494968,
0.98309181, 0.23492148, 0.84597302, 0.98309181, 0.98309181,
0.97354632, 0.98309181, 0.2403811, 0.98309181, 0.98309181,
0.98309181, 0.98309181, 0.68306458, 0.98309181, 0.70364411,
0.98309181, 0.07864243, 0.98309181, 0.98309181, 0.98309181,
0.17107253, 0.98309181, 0.98309181, 0.39477277, 0.08213904,
0.98088658, 0.98309181, 0.98309181, 0.98309181, 0.68306458,
0.08213904, 0.98309181, 0.15623551, 0.15623551, 0.98309181,
0.98309181, 0.15384059, 0.24385797, 0.92390784, 0.68306458,
0.15623551, 0.08213904, 0.38186201, 0.98309181, 0.18038375,
0.15280524, 0.98309181, 0.07864243, 0.98309181, 0.68060794,
0.98309181, 0.98309181, 0.2403811, 0.62137309, 0.97888836,
0.84597302, 0.0911396, 0.98309181, 0.45420826, 0.98309181,
0.2403811 , 0.98309181, 0.2403811 , 0.98309181, 0.2403811 ,
0.98309181, 0.39098956, 0.2403811 , 0.95361485, 0.24505316,
0.98309181, 0.5516065, 0.98309181, 0.08427123, 0.98309181,
0.98309181, 0.18038375, 0.07864243, 0.2403811 , 0.25937109,
0.45639779, 0.2403811 , 0.98309181, 0.98309181, 0.07864243,
0.62137309, 0.98309181, 0.98309181, 0.98309181, 0.38010798,
0.98309181, 0.98309181, 0.98309181, 0.10638875, 0.98309181,
0.98309181, 0.4087991 , 0.98309181, 0.98309181, 0.98309181,
0.98309181, 0.15384059, 0.98309181, 0.98309181, 0.98309181,
0.38010798, 0.2403811 , 0.08213904, 0.98309181, 0.08649073,
0.07864243, 0.98309181, 0.98309181, 0.98309181, 0.98309181,
0.98309181, 0.98309181, 0.98309181, 0.68306458, 0.98309181,
0.98309181, 0.70989336, 0.98309181, 0.97888836, 0.98309181,
0.26472263, 0.98309181, 0.07864243, 0.98088658, 0.07864243,
0.11383012, 0.18038375, 0.98309181, 0.24385797, 0.98309181,
0.18038375, 0.95361485, 0.07864243, 0.98309181, 0.45420826,
0.3942879 , 0.98309181, 0.98309181, 0.10638875, 0.98309181,
0.98309181, 0.98309181, 0.42831935, 0.37076762, 0.36476196,
0.07864243, 0.45420826, 0.2403811 , 0.24610428, 0.2403811 ,
0.08213904, 0.98309181, 0.11383012, 0.15384059, 0.98309181,
0.98309181, 0.98309181, 0.15384059, 0.98309181, 0.98309181,
0.98309181, 0.98309181, 0.98309181, 0.98309181])
```

```
In [64]:
           from sklearn.metrics import r2_score
           r2_score(y_test,y_pred2)
          0.9381965864950121
Out[64]:
In [65]:
           results=pd.DataFrame(columns=['actual','predicted'])
           results['actual']=y_test
           results['predicted']=y_pred2
           results=results.reset_index()
           results['ID']=results.index
           results.head(5)
Out[65]:
             index
                      actual predicted ID
          0
               107 0.053120
                             0.110598
          1
               774
                   1.000000
                             0.983092
                                       1
                             0.078642
          2
                81
                   0.039904
                                       2
          3
               787
                   1.000000
                             0.983092
                                       3
          4
               665
                   1.000000
                             0.983092
In [66]:
           import seaborn as sns
           import matplotlib.pyplot as plt
           sns.lineplot(x='ID',y='actual',data=results.head(50))
           sns.lineplot(x='ID',y='predicted',data=results.head(50))
           plt.plot()
          []
Out[66]:
             1.0
             0.8
             0.6
             0.4
             0.2
             0.0
                                                                50
                           10
                                    20
                                              30
                                                       40
                                        ID
 In [ ]:
```