Лекция 9: Основни теореми за диференцируеми функции

1 Локални екстремуми и Теорема на Ферма

Дефиниция 1.1. Локален екстремум на функция

Нека $f: D \to \mathbb{R}$. Казваме, че f има локален минимум в точката x_0 , ако съществува $\delta > 0$ такова, че $(x_0 - \delta, x_0 + \delta) \subset D$ и $f(x_0) \leq f(x)$ за всяко $x \in (x_0 - \delta, x_0 + \delta)$. Аналогично, ако при горните условия $f(x_0) \geq f(x)$ за всяко $x \in (x_0 - \delta, x_0 + \delta)$, то f има локален максимум в x_0 . Локалните минимуми и локалните максимуми се наричат локални екстремуми.

Пример 1.2. $f(x) = x^2$, дефинирана върху [-1,5], има локален (и глобален) минимум в точката 0, но няма локален максимум (глобалният максимум се достига в точката 5, но тя не е локален максимум, защото функцията не е дефинирана в нейна околност). Ако разгледаме f(x) = c за константа $c \in \mathbb{R}$, то всяка точка се явява едновременно локален минимум и локален максимум. На лекцията нарисувахме графиките на по-сложни примери.

Теорема 1.3. Теорема на Ферма

Нека $f: D \to \mathbb{R}$ и x_0 е точка на локален екстремум за f, като f е диференцируема в x_0 . Тогава $f'(x_0) = 0$.

Доказателство. Б.о.о. считаме, че x_0 е точка на локален максимум, т.е. съществува $\delta > 0$ такова, че $(x_0 - \delta, x_0 + \delta) \subset D$ и имаме $f(x_0) \geq f(x) \ \forall x \in (x_0 - \delta, x_0 + \delta)$. Разглеждаме производната $f'(x_0)$:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Имаме два случая - x да клони към x_0 отляво и отдясно. Ако $x \in (x_0, x_0 + \delta)$, то

$$\frac{f\left(x\right)-f\left(x_{0}\right)}{x-x_{0}}\leq0$$
 и следователно $f'\left(x_{0}\right)\leq0$

Ако $x \in (x_0 - \delta, x_0)$, то

$$rac{f\left(x
ight)-f\left(x_{0}
ight)}{x-x_{0}}\geq0$$
 и следователно $f'\left(x_{0}
ight)\geq0$

Получихме, че в точката x_0 стойността на производната може да бъде единствено нула. \square

Геометрично, допирателната към графиката в точка на локален екстремум (ако я има) е длъжна да бъде хоризонтална.

2 Теорема на Рол

Теорема 2.1. Теорема на Рол

 $He\kappa a\ f:[a,b]\to\mathbb{R}.\ He\kappa a\ f$ изпълнява условията:

- 1. $f \in \partial u \phi e p e н u u p y e м a \ в \ (a, b)$.
- $2. \ f$ е непрекъсната в точките $a\ u\ b.$
- 3. f(a) = f(b).

Тогава съществува точка $\xi \in (a,b)$ такава, че $f'(\xi) = 0$.

Доказателство. Знаем, че f е непрекъсната върху компактния интервал [a,b] и следователно можем да приложим Теоремата на Вайерщрас. Получаваме, че f е ограничена върху [a,b] и достига най-голяма стойност в някоя точка x_{max} и най-малка стойност в някоя точка x_{min} :

$$\exists x_{max} \in [a, b] : f(x_{max}) \ge f(x) \ \forall x \in [a, b]$$

$$\exists x_{min} \in [a, b] : f(x_{min}) \le f(x) \ \forall x \in [a, b]$$

Поне един от следните случаи е в сила:

- $x_{min} \in (a, b)$. В този случай x_{min} е локален минимум за f (защото дефиниционната област [a, b] на f е околност на x_{min}) и следователно според Теоремата на Ферма е в сила $f'(x_{min}) = 0$.
- $x_{max} \in (a, b)$. В този случай x_{max} е локален максимум за f (защото дефиниционната област [a, b] на f е околност на x_{min}) и следователно според Теоремата на Ферма е в сила $f'(x_{max}) = 0$.
- $x_{min}, x_{max} \in \{a, b\}$. Понеже f(a) = f(b), то $f(x_{max}) = f(x_{min})$, откъдето получаваме, че f е константа. Следователно $\forall \xi \in (a, b) : f'(\xi) = 0$.

С това теоремата е доказана.

Нарисувайте си примери, за да се убедите, че и трите условия от Теоремата на Рол са съществени.

3 Теорема за крайните нараствания и следствия

Теоремата за крайните нараствания е основен инструмент, позволяващ от информация за производната на дадена функция да бъде извлечена информация за самата функция.

Теорема 3.1. Теорема на Лагранж (Теорема за крайните нараствания) Нека $f:[a,b] \to \mathbb{R}$. Нека f изпълнява условията:

- 1. f е диференцируема в (a,b).
- $2.\ f$ е непрекъсната в точките а u b.

Тогава съществува точка $\xi \in (a,b)$ такава, че $f'(\xi) = \frac{f(b)-f(a)}{b-a}$.

Доказателство. Да разгледаме функция g(x) = f(x) - kx, където искаме да изберем числото k такова, че g да удовлетворява условията на Теоремата на Рол. Дотук g е диференцируема в (a,b) и непрекъсната в точките a и b, защото f и линейното събираемо са такива. За да е налице g(a) = g(b), трябва f(a) - ka = f(b) - kb, откъдето избираме

$$k = \frac{f(b) - f(a)}{b - a}$$

Сега от Теоремата на Рол следва, че съществува точка $\xi \in (a,b)$ такава, че $g'(\xi) = 0$. Тъй като g'(x) = f'(x) - k от правилата за диференциране, получаваме

$$0 = g'(\xi) = f'(\xi) - k \implies f'(\xi) = k = \frac{f(b) - f(a)}{b - a}$$

Намерихме точка $\xi \in (a, b)$, за която е в сила твърдението.

Следващите две важни теореми са пример за приложения на Теоремата за крайните нараствания на Лагранж.

Теорема 3.2. Принцип за константност (Основна теорема на диференциалното смятане)

Нека $f: \Delta \to \mathbb{R}$, където Δ - отворен интервал. При това f е диференцируема в Δ . Твърдим, че f е константа точно тогава, когато f'(x) = 0 за всички $x \in \Delta$.

Доказателство. Доказателството в правата посока е тривиално (производна на константа е нула). В обратната посока имаме, че $f'(x) = 0 \ \forall x \in \Delta$. Нека $x_1, x_2 \in \Delta$ с $x_1 < x_2$ са произволни. Тогава $[x_1, x_2] \subset \Delta$, защото Δ е интервал. Прилагаме Теоремата на Лагранж и получаваме, че съществува $\xi \in (x_1, x_2)$, в която производната на функцията е нула:

$$0 = f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \Rightarrow f(x_2) - f(x_1) = 0 (x_2 - x_1) = 0$$

Заключаваме, че $f(x_2) = f(x_1) \ \forall x_1, x_2 \in \Delta$, тоест f е константа.

Обърнете внимание, че условието Δ да е интервал е съществено!

Пример 3.3. Ще изследваме функцията

$$f(x) = 2 \arctan x + \arcsin \frac{2x}{1+x^2} .$$

Първо определяме нейната дефиниционна област - стойностите на аргумента x, за които f е дефинирана. Тъй като аркустангенсът е дефиниран навсякъде, а аркуссинусът – в интервала [-1,1], трябва:

$$\frac{2x}{1+x^2} \in [-1,1] \iff -1 \le \frac{2x}{1+x^2} \le 1 \iff -(1+x^2) \le 2x \le 1+x^2 \iff$$

$$\iff \begin{cases} -1 - 2x - x^2 = -(1+x)^2 \le 0\\ 1 - 2x + x^2 = (1-x)^2 \ge 0 \end{cases}$$

Следователно функцията, която изследваме, е дефинирана за всяко $x \in \mathbb{R}$. Къде е диференцируема? Тъй като arcsin е диференцируема в (-1,1) и arctg е диференцируема за всеки реален аргумент, то, използвайки горните пресмятания, получаваме, че f е диференцируема в $(-\infty, -1) \cup (-1, 1) \cup (1, +\infty)$. Пресмятаме производната:

$$f'(x) = \frac{2}{1+x^2} + \frac{1}{\sqrt{1 - \left(\frac{2x}{1+x^2}\right)^2}} \left(\frac{2x}{1+x^2}\right)' =$$

$$= \frac{2}{1+x^2} + \frac{1}{\sqrt{1 - \frac{4x^2}{(1+x^2)^2}}} \left(\frac{2(1+x^2) - 2x(2x)}{(1+x^2)^2}\right) =$$

$$= \frac{2}{1+x^2} + \frac{|1+x^2|}{\sqrt{(1+x^2) - 4x^2}} \left(\frac{2 - 2x^2}{(1+x^2)^2}\right) = \frac{2}{1+x^2} + \frac{1+x^2}{\sqrt{1+2x^2+x^4-4x^2}} \left(\frac{2(1-x^2)}{(1+x^2)^2}\right) =$$

$$= \frac{2}{1+x^2} + \frac{1}{\sqrt{(1-x^2)^2}} \left(\frac{2(1-x^2)}{1+x^2}\right) = \frac{2}{1+x^2} + \frac{1}{|1-x^2|} \left(\frac{2}{1+x^2}\right)(1-x^2) =$$

$$= \frac{2}{1+x^2} \left(1 + \frac{1-x^2}{|1-x^2|}\right)$$

Различаваме следните два случая:

- Ако $x\in (-1,1),$ то $1-x^2>0,$ следователно $\frac{1-x^2}{|1-x^2|}=1$ и тогава $f'(x)=\frac{4}{1+x^2}.$
- Ако $x \in (-\infty, -1) \cup (1, +\infty)$, то $1-x^2 < 0$ и $\frac{1-x^2}{|1-x^2|} = -1$, откъдето f'(x) = 0.

Сега, съгласно Приниципа за константност, имаме:

$$\begin{cases} f(x) = const_1 \ \forall x \in (-\infty, -1) \\ f(x) = const_2 \ \forall x \in (1, +\infty) \end{cases}$$

f е непрекъсната, което влече:

$$\begin{cases} f(-1) = \lim_{x \to -1^{-}} f(x) = const_{1} \\ f(1) = \lim_{x \to 1^{+}} f(x) = const_{2} \end{cases}$$

Остава да пресметнем:

$$\begin{cases} f(-1) = 2 \arctan(-1) + \arcsin(-1) = 2\left(-\frac{\pi}{4}\right) + \left(-\frac{\pi}{2}\right) = -\pi = const_1 \\ f(1) = 2 \arctan(1) + \arcsin(1) = 2\left(\frac{\pi}{4}\right) + \left(\frac{\pi}{2}\right) = \pi = const_2 \end{cases}$$

Следователно $f(x) = \pi$ за всяко $x \ge 1$ и $f(x) = -\pi$ за всяко $x \le -1$.

Теорема 3.4. Принцип за монотонност

Нека $f: \Delta \to \mathbb{R}$, където Δ е отворен интервал, е диференцируема в Δ . Тогава:

- f е растяща в Δ тогава и само тогава, когато $f'(x) \geq 0 \ \forall x \in \Delta$.
- f е намаляваща в Δ тогава и само тогава, когато $f'(x) \leq 0 \ \forall x \in \Delta$.

Доказателство. Разглеждаме двете посоки на горното твърдение, като б.о.о. се съсредоточаваме върху първата подточка (растяща функция).

 (\Rightarrow) Имаме, че f е растяща. От дефиницията за производна на f:

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Забелязваме, че знакът на Δx не оказва влияние върху знака на диференчното частно:

$$\left. \begin{array}{l} \Delta x > 0 \Rightarrow x + \Delta x > x \text{ и } f\left(x + \Delta x\right) \geq f\left(x\right) \\ \Delta x < 0 \Rightarrow x + \Delta x < x \text{ и } f\left(x + \Delta x\right) \leq f\left(x\right) \end{array} \right\} \Rightarrow \frac{f\left(x + \Delta x\right) - f\left(x\right)}{\Delta x} \geq 0 \Rightarrow f'(x) \geq 0$$

 (\Leftarrow) Сега знаем, че $f'(x) \geq 0$ за $x \in \Delta$. Взимаме произволни $x_1, x_2 \in \Delta$ с $x_1 < x_2$. Понеже Δ е интервал, то $[x_1, x_2] \subset \Delta$. Тъй като f е диференцируема в (x_1, x_2) и непрекъсната в $[x_1, x_2]$ (от диференцируемост следва непрекъснатост), можем да приложим Теоремата на Лагранж и да получим, че съществува $\xi \in (x_1, x_2) \subset \Delta$ такова, че

$$f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \Rightarrow (x_2 - x_1) f'(\xi) = f(x_2) - f(x_1)$$

Тъй като $x_2 > x_1$ и $f'(\xi) \ge 0$, то $f(x_2) \ge f(x_1)$. Тъй като $x_1, x_2 \in \Delta$ с $x_1 < x_2$ бяха произволни, получихме, че функцията f е растяща.

Забележка 1. При условията на теоремата от $f'(x) > 0 \ \forall x \in \Delta$ следва, че f е строго растяща в Δ (проверете, че същото доказателство дава резултата), но обратното не е вярно. Наистина, функцията $f(x) = x^3$ е строго растяща върху цялата реална права, но производната и $f'(x) = 2x^2$ се анулира в нулата.

Забележка 2. Ако f е растяща в (a,b) и непрекъсната в a (или b), то f е растяща в [a,b) (или (a,b]). Получава се чрез директна проверка от дефинициите на непрекъснатост и "растяща".

Дефиниция 3.5. Производни от по-висок ред

Нека $f: \Delta \to \mathbb{R}$ за Δ - отворен интервал, като f'(x) съществува за всяко $x \in \Delta$. Това позволява да разгледаме производната $f': \Delta \to \mathbb{R}$ като функция с аргумент $x \in \Delta$, понеже изображението $x \mapsto f'(x)$ е добре дефинирано. Означаваме:

$$f''\left(x\right)\coloneqq\left(f'\right)'\left(x\right)$$

По този начин можем индуктивно да дефинираме производни от колкото си искаме висок ред, стига съответната диференцируемост да е налице.

$$\begin{cases}
f'' & : \Delta \to \mathbb{R} \\
f''' & : \Delta \to \mathbb{R} \\
\dots & \\
f^{(n)} & : \Delta \to \mathbb{R}
\end{cases} \Rightarrow f^{(n+1)} := \left(f^{(n)}\right)'$$

Прието е с $f^{(0)}$ да се означава функцията f.

Пример 3.6. Искаме да определим знака на $f(x) = \sin x - x + \frac{x^3}{3!}$ за неотрицателни x.

$$f(x) = \sin x - x + \frac{x^3}{3!}$$

$$f'(x) = \cos x - 1 + \frac{x^2}{2!}$$

$$f''(x) = -\sin x + x$$

$$f'''(x) = -\cos x + 1$$

Понеже $f'''(x) \ge 0$ за всяко $x \in \mathbb{R}$, то f'' е растяща върху цялата реална права. Тъй като f''(0) = 0, оттук получаваме, че $f''(x) \ge 0 \ \forall x \in [0, +\infty)$. Следователно f' е растяща в този интервал. Тъй като f'(0) = 0, имаме $f'(x) \ge 0 \ \forall x \in [0, +\infty)$. Оттук можем да заключим, че f е растяща в $[0, +\infty)$. И тъй, последователното прилагане на Принципа за монотонност (и Забележка 2 след него) ни дава (разбира се, като използваме, че f(0) = 0):

$$\sin x - x + \frac{x^3}{3!} \ge 0 \ \forall x \ge 0$$

4 Обобщена теорема за крайните нараствания и следствия

Теорема 4.1. Теорема на Коши (Обобщена теорема за крайните нараствания) Нека $f,g:[a,b] \to \mathbb{R}$. Нека са изпълнени условията:

- 1. f,g са диференцируеми в (a,b)
- 2. f, g са непрекъснати в [a, b]
- 3. $q'(x) \neq 0 \ \forall x \in (a, b)$

Тогава съществува $\xi \in (a,b)$ такова, че:

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Забележка: Третото условие е съществено. Да разгледаме $f(x) = x^2, g(x) = x^3$ в интервала [-1,1]. Всички условия без третото са изпълнени и заключението на теоремата не е вярно:

$$\frac{f'(x)}{g'(x)} = \frac{2x}{3x^2} = \frac{2}{3x} \neq 0 = \frac{f(1) - f(-1)}{g(1) - g(-1)} \ \forall x \in (-1, 1) \ .$$

Доказателство. Дефинираме функцията h(x) = f(x) - kg(x), като искаме да изберем числото k по такъв начин, че да се удовлетворява равенството h(a) = h(b). Следователно, искаме:

$$f(a) - kg(a) = f(b) - kg(b) \iff k(g(b) - g(a)) = f(b) - f(a)$$

Ако допуснем, че g(a)=g(b), то всички условия на Теоремата на Рол ще бъдат изпълнени за функцията g и следователно ще съществува $x\in(a,b)$ такова, че g'(x)=0. Това противоречи на третото условие. Получихме, че $g(a)\neq g(b)$ и следователно можем да изберем

$$k = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Очевидно е, че h е диференцируема в (a,b) (като линейна комбинация на диференцируеми) и непрекъсната в [a,b] (като линейна комбинация на непрекъснати). Тъй като h(a) = h(b), можем да приложим Теоремата на Рол за h и да получим, че съществува $\xi \in (a,b)$ такова, че $h'(\xi) = 0$. От правилата за диференциране имаме h'(x) = f'(x) - kg'(x) и следователно

$$0 = h'(\xi) = f'(\xi) - kg'(\xi) \implies \frac{f'(\xi)}{g'(\xi)} = k = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Намерихме точка $\xi \in (a,b)$, за която твърдението от теоремата е в сила.

Добре е да си дадете сметка защо Обобщената теорема за крайните нараствания не може да бъде получена с прилагане на Теоремата на Лагранж поотделно към числителя и знаменателя и комбиниране на получените резултати.

В тази лекция ще приложим Обобщената теорема за крайните нараствания към правилото на Лопитал за търсене на граници, а в следващата лекция ще видим далеч посъществено приложение.

Теорема 4.2. 1-ва теорема на Лопитал (неопределеност от вида $\left[\frac{0}{0}\right]$) Нека $f,g:(a,b]\to\mathbb{R}$ са диференцируеми в (a,b) и непрекъснати в точката b. Нека освен това $f(b)=g(b)=0,\ g'(x)$ не се анулира в (a,b) и съществува границата $\lim_{x\to b^-}\frac{f'(x)}{g'(x)}$. Тогава съществува границата $\lim_{x\to b^-}\frac{f(x)}{g(x)}$ и двете граници са равни, т.е.

$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = \lim_{x \to b^{-}} \frac{f'(x)}{g'(x)}$$

Забележка: При прилагане на тази теорема е възможно да се загуби информация. Напълно е възможно оригиналната граница да съществува, а границата на частното от производните – не. Ето пример:

$$\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x} = \lim_{x \to 0} \frac{x}{\sin x} \cdot \lim_{x \to 0} x \sin \frac{1}{x} = 0$$

Тук използвахме, че произведението на ограничена функция и функция, клоняща към нула, клони към нула. Какво се получава, ако приложим горната теорема в този случай?

$$\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x} = \begin{bmatrix} 0\\0 \end{bmatrix} = \lim_{x \to 0} \frac{2x \sin \frac{1}{x} + \cancel{x}^2 \cos \frac{1}{x} \left(-\frac{1}{\cancel{x}^2} \right)}{\cos x} =$$

$$= \lim_{x \to 0} x \sin \frac{1}{x} \cdot \lim_{x \to 0} \frac{2}{\cos x} - \lim_{x \to 0} \frac{1}{\cos x} \cdot \lim_{x \to 0} \cos \frac{1}{x} = -\lim_{x \to 0} \cos \frac{1}{x}$$

Последната граница не съществува, следователно не можем да използваме Лопитал - условията от теоремата не са изпълнени.

Доказателство. Нека $x \in (a,b]$ е произволна. Прилагаме Обобщената теорема за крайните нараствания към функциите f и g в интервала [x,b]. Възможно е да го направим, защото всички условия са удовлетворени. Получаваме, че съществува $\xi(x) \in (x,b)$ такова, че:

$$\frac{f'\left(\xi\left(x\right)\right)}{g'\left(\xi\left(x\right)\right)} = \frac{f\left(b\right) - f\left(x\right)}{g\left(b\right) - g\left(x\right)} = \frac{f\left(x\right)}{g\left(x\right)}$$

Важно е да отбележим, че ξ зависи от избора на x, което бележим с $\xi(x)$ и понякога с ξ_x . В зависимост от това, кое x избираме, интервалът [x,b] се мени, което може да доведе до смяна на ξ , за което е в сила дадената теорема. И така, имаме:

$$\lim_{x \to b^{-}} \frac{f\left(x\right)}{g\left(x\right)} = \lim_{x \to b^{-}} \frac{f'\left(\xi\left(x\right)\right)}{g\left(\xi\left(x\right)\right)} = \lim_{y \to b^{-}} \frac{f'\left(y\right)}{g'\left(y\right)}$$

Последното равенство е точно това, което искаме. Извършихме полагане $y \coloneqq \xi(x)$ и остана да съобразим, че при $x \xrightarrow[x < b]{} b$ е в сила $y = \xi(x) \to b$, като y < b (от $\xi(x) \in (x,b)$ и Лемата за двамата полицаи).

Теорема 4.3. 2-ра теорема на Лопитал (неопределеност от вида $\left[\frac{\infty}{\infty}\right]$) Нека $f,g:(a,b]\to\mathbb{R}$ са диференцируеми в (a,b). Нека освен това:

$$\lim_{x \to b^{-}} f(x) = \infty \ u \ \lim_{x \to b^{-}} g(x) = \infty$$

При това g'(x) не се анулира в (a,b) и съществува границата $\lim_{x\to b^-} \frac{f'(x)}{g'(x)}$. Тогава съществува границата $\lim_{x\to b^-} \frac{f(x)}{g(x)}$ и двете граници са равни, т.е.

$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = \lim_{x \to b^{-}} \frac{f'(x)}{g'(x)}$$

Доказателство. Избираме произволни точки x, x_0 от интервала (a, b) такива, че $a < x_0 < x < b$. Прилагаме Обобщената теорема за крайните нараствания към функциите f и g в интервала $[x_0, x] \subset (a, b)$ (възможно е да го направим, защото всички предположения са в сила). Получаваме, че съществува точка $\xi(x, x_0)$ (тя зависи както от избора на x, така и от избора на x_0), разположена между x и x_0 , т.е. $x_0 < \xi(x, x_0) < x$, за която е в сила:

$$\frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(\xi(x, x_0))}{g'(\xi(x, x_0))}$$

Да означим границата $\lim_{x\to b^-}\frac{f'(x)}{g'(x)}=L$. Нека $\varepsilon>0$ е произволно. Тогава съществува $\bar\delta>0$ такова, че ако $y\in (b-\bar\delta,b)$, то

$$\left| \frac{f'(y)}{g'(y)} - L \right| < \frac{\varepsilon}{2} .$$

Ако $x_0 > b - \bar{\delta}$, то и $\xi(x, x_0) \in (b - \bar{\delta}, b)$, откъдето

$$\left| \frac{f\left(x\right) - f\left(x_{0}\right)}{g\left(x\right) - g\left(x_{0}\right)} - L \right| = \left| \frac{f'\left(\xi\left(x, x_{0}\right)\right)}{g'\left(\xi\left(x, x_{0}\right)\right)} - L \right| < \frac{\varepsilon}{2}$$

Оттук получаваме

$$|f(x) - f(x_{0}) - Lg(x) + Lg(x_{0})| < \frac{\varepsilon}{2}|g(x) - g(x_{0})| \Rightarrow$$

$$\Rightarrow |f(x) - Lg(x)| = |f(x) - f(x_{0}) - Lg(x) + Lg(x_{0}) + f(x_{0}) - Lg(x_{0})| \le$$

$$\le |f(x) - f(x_{0}) - Lg(x) + Lg(x_{0})| + |f(x_{0}) - Lg(x_{0})| <$$

$$< \frac{\varepsilon}{2}|g(x) - g(x_{0})| + |f(x_{0}) - Lg(x_{0})| \Rightarrow$$

$$\Rightarrow |f(x) - Lg(x)| < \frac{\varepsilon}{2} |g(x) - g(x_0)| + |f(x_0) - Lg(x_0)| | : g(x)$$

$$\Rightarrow \left| \frac{f(x)}{g(x)} - L \right| < \frac{\varepsilon}{2} \left| 1 - \frac{g(x_0)}{g(x)} \right| + \left| \frac{f(x_0) - Lg(x_0)}{g(x)} \right|$$

Следователно

$$\left| \frac{f(x)}{g(x)} - L \right| < \frac{\varepsilon}{2} + \frac{1}{|g(x)|} \left(\frac{\varepsilon}{2} |g(x_0)| + |f(x_0) - Lg(x_0)| \right).$$

Фиксирали сме някакво x_0 , за което $b>x_0>b-\bar{\delta}$. Тъй като по предположение $|g\left(x\right)|\xrightarrow[x\to b^-]{}+\infty$, можем да изберем $\delta>0$ (без ограничение на общността δ е толкова малко, че $x_0< b-\delta$) такова, че за всички $x\in (b-\delta,b)$ е в сила

$$\frac{1}{|g(x)|} \left(\frac{\varepsilon}{2} |g(x_0)| + |f(x_0) - Lg(x_0)| \right) < \frac{\varepsilon}{2}.$$

Забележете, че тук първо избрахме x_0 близо до b, фиксирахме го, и после видяхме колко близо трябва x да бъде до b при така фиксираното x_0 . И тъй, получихме, че за всички $x \in (b - \delta, b)$ е изпълнено неравенството

$$\left| \frac{f(x)}{g(x)} - L \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
.

Тъй като $\varepsilon > 0$ беше произволно, с това доказателството на теоремата е завършено. \square

На основата на доказаните първа и втора Теорема на Лопитал можем да формулираме и докажем други теореми. Например, досега разглеждахме леви граници за частното на две функции, но съвсем лесно можем да си представим условията и твърденията за аналогичния случай на десни граници. Освен това, възможно е аргументът да клони към $+\infty$, $-\infty$ или ∞ .

Теорема 4.4. Следствия от теоремите на Лопитал

- 1. Нека $f, g: [a, b) \to \mathbb{R}$ са диференцируеми в (a, b) и $g'(x) \neq 0$ в (a, b). Ако едното от следните две условия е в сила
 - (a) $\lim_{x\to a^+} f(x) = \lim_{x\to a^+} g(x) = 0$
 - (6) $\lim_{x\to a^+} f(x) = \lim_{x\to a^+} g(x) = \infty$

и ако съществува границата $\lim_{x\to a^+} \frac{f'(x)}{g'(x)}$, то съществува и границата $\lim_{x\to a^+} \frac{f(x)}{g(x)}$ и те са равни, т.е.

$$\lim_{x \to a^{+}} \frac{f'(x)}{g'(x)} = L = \lim_{x \to a^{+}} \frac{f(x)}{g(x)}$$

- 2. Нека $f, g: (c, +\infty)$ са диференцируеми и $g'(x) \neq 0$ в $(c, +\infty)$. Ако едното от следните две условия е в сила
 - (a) $\lim_{x\to+\infty} f(x) = \lim_{x\to+\infty} g(x) = 0$
 - (6) $\lim_{x\to+\infty} f(x) = \lim_{x\to+\infty} g(x) = \infty$

и ако съществува границата $\lim_{x\to +\infty} \frac{f'(x)}{g'(x)}$, то съществува и $\lim_{x\to +\infty} \frac{f(x)}{g(x)}$, като двете граници са равни, т.е.

$$\lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = L = \lim_{x \to +\infty} \frac{f(x)}{g(x)}$$

Доказателство. Ще направим разсъжденията само за втората част. Разглеждаме границата $\lim_{x\to +\infty} \frac{f(x)}{g(x)}$. Да извършим полагане $t:=\frac{1}{x}$ и да означим $F\left(t\right):=f\left(\frac{1}{t}\right), G\left(t\right):=g\left(\frac{1}{t}\right)$. Тогава пресмятаме

$$\lim_{x\to +\infty} \frac{f\left(x\right)}{g\left(x\right)} = \lim_{t\to 0^{+}} \frac{F\left(t\right)}{G\left(t\right)} = \underbrace{\left\{\begin{array}{c} \left[\frac{0}{0}\right] \\ \left[\frac{\infty}{\infty}\right] \end{array}\right\}}_{\text{Лопитал}} = \lim_{t\to 0^{+}} \frac{F'\left(t\right)}{G'\left(t\right)} = \lim_{t\to 0^{+}} \frac{f'\left(\frac{1}{t}\right)\left(\frac{1}{t^{2}}\right)}{g'\left(\frac{1}{t}\right)\left(\frac{1}{t^{2}}\right)} = \lim_{x\to +\infty} \frac{f'\left(x\right)}{g'\left(x\right)} = L$$

ЗАДАЧА ЗА ОБМИСЛЯНЕ ВКЪЩИ:

Дефиниция 4.5. Едностранна производна на функция <math>f

Ако $f:[a,b)\to\mathbb{R}$, то дефинираме дясна производна на f в точката a чрез

$$f'(a+0) := \lim_{\Delta x \to 0^{+}} \frac{f(a+\Delta x) - f(a)}{\Delta x}$$

Ако $f:(a,b]\to\mathbb{R}$, то дефинираме дясна производна на f в точката b чрез

$$f'(b-0) := \lim_{\Delta x \to 0^{-}} \frac{f(b+\Delta x) - f(b)}{\Delta x}$$

Задача. Нека $f:[a,b)\to\mathbb{R}$ е непрекъсната в точката a и диференцируема в (a,b). Нека съществува $\lim_{x\to a^+}f'(x)=L$. Докажете, че f е диференцируема в точката a и f'(a+0)=L.