

TUGAS AKHIR - KI141502

INTEGRASI EKSTRAKSI FITUR STATIS DAN DINAMIS PADA GERAKAN TANGAN MENGGUNAKAN KINECT 2.0 UNTUK MENGENALI BAHASA ISYARAT INDONESIA

IGNATIUS BENEDICT NRP 5113100044

Dosen Pembimbing Wijayanti Nurul Khotimah, S.Kom., M.Sc. Dr.Eng. Nanik Suciati, S.Kom., M.Kom.

DEPARTEMEN INFORMATIKA
Fakultas Teknologi Informasi dan Komunikasi
Institut Teknologi Sepuluh Nopember
Surabaya 2017

TUGAS AKHIR - KI141502

INTEGRASI EKSTRAKSI FITUR STATIS DAN DINAMIS PADA GERAKAN TANGAN MENGGUNAKAN KINECT 2.0 UNTUK MENGENALI BAHASA ISYARAT INDONESIA

IGNATIUS BENEDICT NRP 5113100044

Dosen Pembimbing Wijayanti Nurul Khotimah, S.Kom., M.Sc. Dr.Eng. Nanik Suciati, S.Kom., M.Kom.

DEPARTEMEN INFORMATIKA Fakultas Teknologi Informasi dan Komunikasi Institut Teknologi Sepuluh Nopember Surabaya 2017

FINAL PROJECT - KI141502

INTEGRATION EXTRACTION OF STATIC AND DYNAMIC FEATURES ON HAND GESTURES USING KINECT 2.0 TO RECOGNIZE INDONESIAN SIGN LANGUAGE

IGNATIUS BENEDICT NRP 5113100044

Advisor Wijayanti Nurul Khotimah, S.Kom., M.Sc. Dr.Eng. Nanik Suciati, S.Kom., M.Kom.

INFORMATICS DEPARTMENT
Faculty of Information Technology and Communication
Institut Teknologi Sepuluh Nopember
Surabaya 2017

LEMBAR PENGESAHAN

INTEGRASI EKSTRAKSI FITUR STATIS DAN DINAMIS PADA GERAKAN TANGAN MENGGUNAKAN KINECT 2.0 UNTUK MENGENALI BAHASA ISYARAT INDONESIA

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer pada

Bidang Studi Interaksi Grafis dan Seni Program Studi S-1 Jurusan Teknik Informatika Fakultas Teknologi Informasi dan Komunikasi Institut Teknologi Sepuluh Nopember

Oleh:

IGNATIUS BENEDICT NRP. 5113100044

Disetujui oleh Pembimbing Tugas Akhir:

1.	Wijayanti Nurul Khotimah, S.Kom., M.Sc. NIP: 19860312 201212 2 004	(pembimbing 1)
2.	Dr.Eng. Nanik Suciati, S.Kom., M.Kom. NIP: 19710428 199412 2 001	(pembimbing 2)

SURABAYA DESEMBER, 2017

INTEGRASI EKSTRAKSI FITUR STATIS DAN DINAMIS PADA GERAKAN TANGAN MENGGUNAKAN KINECT 2.0 UNTUK MENGENALI BAHASA ISYARAT INDONESIA

Nama Mahasiswa : Ignatius Benedict

NRP : 5113100044

Jurusan : Teknik Informatika FTIf-ITS

Dosen Pembimbing I: Wijayanti Nurul Khotimah, S.Kom.,

M.Sc.

Dosen Pembimbing II: Dr.Eng. Nanik Suciati, S.Kom., M.Kom.

ABSTRAK

Bahasa isyarat adalah sarana untuk berkomunikasi bagi orang yang menyandang tunarungu. Tidak semua orang dapat menguasai keahlian untuk memahami bahasa isyarat.

Pada Tugas Akhir sebelumnya, telah dikembangkan teknologi untuk mendukung pembelajaran bahasa isyarat Indonesia statis menggunakan Kinect 1.0 dan bahasa isyarat Indonesia dinamis menggunakan Kinect 2.0. Tugas akhir ini bertujuan untuk membantu orang memahami bahasa isyarat statis dan dinamis dengan cara mengintegrasikan kedua jenis bahasa isyarat dengan menggunakan teknologi Kinect 2.0.

Hasil pengujian dalam Tugas Akhir ini menunjukkan bahwa metode Decision Tree yang digunakan sebagai classifier gerakan bahasa isyarat mempunyai akurasi yang baik yaitu sekitar 83.67 persen. Hasil tersebut masih dapat ditingkatkan dengan menambahkan data training maupun menggunakan/membuat classifier lain untuk mengklasifikasikan bahasa isyarat.

Kata kunci: Kinect 2, Fitur Statis, Fitur Dinamis, Penganalan Bahasa Isyarat, Sistem Isyarat Bahasa Indonesia.

INTEGRATION EXTRACTION OF STATIC AND DYNAMIC FEATURES ON HAND GESTURES USING KINECT 2.0 TO RECOGNIZE INDONESIAN SIGN LANGUAGE

Name : Ignatius Benedict

NRP : 5113100044

Major : Informatics Department, FTIf-ITS

Advisor I : Wijayanti Nurul Khotimah, S.Kom., M.Sc. Advisor II : Dr.Eng. Nanik Suciati, S.Kom., M.Kom.

ABSTRACT

Sign language is a way to communicate for deaf people. Not everyone have the skill to understand sign language.

In the previous final project, the use of the technology to learning of static Indonesian sign language using Kinect 1.0 and dynamic Indonesian sign language using Kinect 2.0. This final project goal is to help people understand both static and dynamic sign language by integrating two types of sign language using Kinect 2.0 technology.

The test results of this final project show that the Decision Tree method used as classifier have a good accuracy which is about 83.67 percent. These results can be improved by adding training data or using/creating another classifier to classify sign language.

Keywords: : Kinect 2, Static Features, Dynamic Features, Sign Language Recognition, Indonesian Sign Language

KATA PENGANTAR

Puji dan syukur kepada Tuhan Yang Maha Esa atas berkat dan kasih-Nya, penulis dapat menyelesaikan Tugas Akhir ini sampai selesai. Penulis ingin menyampaikan rasa hormat dan terima kasih yang sebanyak-banyaknya kepada seluruh pihak yang telah membantu penulis dalam penyelesain Tugas Akhir ini.

- 1. Bapak Carolus, Ibu Anastasia, dan seluruh keluarga yang selalu memberikan dukungan penuh dalam penyelesaian Tugas Akhir ini.
- 2. Ibu Wijayanti Nurul Khotimah, S.Kom., M.Sc. dan Ibu Dr.Eng. Nanik Suciati, S.Kom., M.Kom. yang telah bersedia untuk menjadi dosen pembimbing Tugas Akhir sehingga penulis dapat mengerjakan Tugas Akhir dengan arahan dan bimbingan yang baik dan jelas.
- 3. Bapak dan ibu dosen Departemen Teknik Informatika ITS yang banyak memberikan ilmu serta bimbingan selama masa perkuliahan.
- 4. Teman-teman "DICE" yang selalu memberi semangat dan bantuan pada saat pengerjaan Tugas Akhir ini.
- 5. Teman-teman Mahasiswa Teknik Informatikan 2013 yang telah berjuang bersama-sama pada masa perkuliahan.
- 6. Teman-teman lain yang ikut serta membantu dalam terlaksananya Tugas Akhir ini.

Semoga Tuhan memberkati seluruh kegiatan dan memberikan balasan yang berlimpah kepada semua yang telah membantu pengerjaan Tugas Akhir ini. Penulis berharap semoga Tugas Akhir ini dapat bermanfaat bagi penulis dan bagi semuanya.

Surabaya, Desember 2017

Penulis

DAFTAR ISI

LEMBAR PENGESAHAN	vii
ABSTRAK	ix
ABSTRACT	xi
KATA PENGANTAR	xiii
DAFTAR ISI	XV
DAFTAR GAMBAR	xvii
DAFTAR TABEL	
DAFTAR KODE SUMBER	
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	
1.3 Batasan Masalah	2
1.4 Tujuan	2
1.5 Manfaat	
1.6 Metodologi	3
1.7 Sistematika Penulisan	4
BAB II DASAR TEORI	7
2.1 Tunarungu	7
2.2 Bahasa Isyarat	7
2.3 Kinect 2.0	8
2.4 Kinect SDK	9
2.5 Microsoft Visual Studio	10
2.6 Ekstraksi Fitur	11
2.7 Decision Tree	
BAB III ANALISIS DAN PERANCANGAN SISTEM	
3.1 Analisis Perangkat Lunak	15
3.1.1 Deskripsi Umum Perangkat Lunak	16
3.1.2 Spesifikasi Kebutuhan Perangkat Lunak	
3.1.3 Identifikasi Pengguna	17
3.2 Perancangan Perangkat Lunak	18
3.2.1 Model Kasus Penggunaan	
3.2.2 Definisi Aktor	19
3.2.3 Definisi Kasus Penggunaan	19

3.2.4 Arsitektur Umum Sistem	23
3.2.5 Rancangan Antarmuka Perangkat Lunak	23
3.2.6 Rancangan Proses Perangkat Lunak	
BAB IV IMPLEMENTASI	35
4.1 Lingkungan Pembangunan	35
4.1.1 Lingkungan Pembangunan Perangkat Keras	35
4.1.2 Lingkungan Pembangunan Perangkat Lunak	35
4.2 Implementasi Antarmuka	36
4.3 Implementasi Perangkat Lunak	40
4.3.1 Implementasi Pendeteksian Skeleton Pengguna	40
4.3.2 Implementasi Proses Ekstraksi Fitur	43
4.3.4 Implementasi Proses Testing Data	50
BAB V PENGUJIAN DAN EVALUASI	59
5.1 Lingkungan Pembangunan	59
5.2 Skenario Pengujian	59
5.2.1 Pengujian Skenario 1 dan Analisis	62
5.2.2 Pengujian Skenario 2 dan Analisis	64
5.2.3 Pengujian Skenario 3 dan Analisis	66
5.2.4 Pengujian Skenario 4 dan Analisis	68
5.3 Evaluasi	70
BAB VI KESIMPULAN DAN SARAN	72
6.1 Kesimpulan	72
6.2 Saran	
DAFTAR PUSTAKA	
LAMPIRAN A KODE SUMBER	
LAMPIRAN B SCREENSHOT PERANGKAT LUNAK	
BIODATA PENULIS	91

DAFTAR GAMBAR

Gambar 1.1 Alur Aplikasi yang Akan Dibuat3
Gambar 2.1 Contoh Bahasa Isyarat Statis (1) Gang; (2) Hamba
dan Bahasa Isyarat Dinamis (3) Bola; (4) Kijang8
Gambar 2.2 Kinect 2.09
Gambar 2.3 Skeleton Joint yang Dapat Dideteksi Oleh Kinect v2
11
Gambar 2.4 Pengelompokan Data Kuantisasi13
Gambar 3.1 Diagram Kasus Penggunaan Perangkat Lunak18
Gambar 3.2 Rancangan Antarmuka Perangkat Lunak23
Gambar 3.3 Diagram Alir Proses Ekstraksi Fitur24
Gambar 3.4 Posisi Gerakan Tangan pada Tubuh Mengacu pada
$Leher\ (Vektor\ N)\ dan\ Tulang\ Belakang\ Tengah\ (Vektor\ SM)\28$
Gambar 3.5 Rancangan Proses <i>Training Dataset</i> 29
Gambar 3.6 Decision Tree Statis31
Gambar 3.7 Decision Tree Dinamis
Gambar 3.8 Decision Tree Penentu Statis atau Dinamis33
Gambar 3.9 Rancangan Proses Testing Dataset33
Gambar 4.1 Antarmuka Perangkat Lunak36
Gambar 5.1 Gambar Ke-20 Bahasa Isyarat yang Digunakan61
Gambar 5.2 Hasil Uji Coba70
Gambar B.1 Penulis Melakukan Gerak Bahasa Isyarat Badan79
Gambar B.2 Penulis Melakukan Gerak Bahasa Isyarat Besar79
Gambar B.3 Penulis Melakukan Gerak Bahasa Isyarat Bingkai.80
Gambar B.4 Penulis Melakukan Gerak Bahasa Isyarat Bingung 80
Gambar B.5 Penulis Melakukan Gerak Bahasa Isyarat Bola81
Gambar B.6 Penulis Melakukan Gerak Bahasa Isyarat Kijang81
Gambar B.7 Penulis Melakukan Gerak Bahasa Isyarat Rujuk 82
Gambar B.8 Penulis Melakukan Gerak Bahasa Isyarat Samping 82
Gambar B.9 Penulis Melakukan Gerak Bahasa Isyarat Sempit 83
Gambar B.10 Penulis Melakukan Gerak Bahasa Isyarat Topeng 83
Gambar B.11 Penulis Melakukan Gerak Bahasa Isyarat Ada84
Gambar B.12 Penulis Melakukan Gerak Bahasa Isyarat Botol84
Gambar B.13 Penulis Melakukan Gerak Bahasa Isyarat Gang85

Gambar B.14 Penulis Melakukan Gerak Bahasa Isyarat Geledeg
85
Gambar B.15 Penulis Melakukan Gerak Bahasa Isyarat Hai86
Gambar B.16 Penulis Melakukan Gerak Bahasa Isyarat Hamba 86
Gambar B.17 Penulis Melakukan Gerak Bahasa Isyarat Hormat 87
Gambar B.18 Penulis Melakukan Gerak Bahasa Isyarat Jendral 87
Gambar B.19 Penulis Melakukan Gerak Bahasa Isyarat Ketua88
Gambar B.20 Penulis Melakukan Gerak Bahasa Isyarat Wadah.88
Gambar B.21 Penguji 1 Melakukan Gerak Bahasa Isyarat Hai89
Gambar B.22 Penguji 2 Melakukan Gerak Bahasa Isyarat Gang 89

DAFTAR TABEL

Tabel 2.1 Fitur yang Digunakan Pada Fitur Statis	12
Tabel 3.1 Definisi Pengguna	19
Tabel 3.2 Definisi Kasus Penggunaan	19
Tabel 3.3 Spesifikasi Kasus Penggunaan Membuat Data	Bahasa
Isyarat Baru	20
Tabel 3.4 Spesifikasi Kasus Penggunaan Testing Data	Bahasa
Isyarat Baru	21
Tabel 3.5 Data Kuantisasi Hasil Fitur	26
Tabel 3.6 Seluruh Fitur yang Digunakan	28
Tabel 5.1 Skenario Pengujian 1	62
Tabel 5.2 Hasil Uji Coba Skenario 1	63
Tabel 5.3 Skenario Pengujian 2	64
Tabel 5.4 Hasil Uji Coba Skenario 2	65
Tabel 5.5 Skenario Pengujian 3	
Tabel 5.6 Hasil Uji Coba Skenario 3	67
Tabel 5.7 Skenario Pengujian 4	68
Tabel 5.8 Hasil Uji Coba Skenario 4	69

DAFTAR KODE SUMBER

Kode Sumber 4.1 Tampilan Perangkat Lunak	39
Kode Sumber 4.2 Kode Sumber Integrasi Kinect	40
Kode Sumber 4.3 Kode Sumber Deteksi Skeleton Pengguna	43
Kode Sumber 4.4 Kode Sumber Ekstraksi Fitur Statis, Di	namis
dan Menentukan Posisi Gerakan Tangan dari Skeleton Pen	gguna
	48
Kode Sumber 4.5 Kode Sumber Menyimpan Hasil Ekstraksi	
Statis, Dinamis dan Posisi Gerak Tangan dari Skeleton Pen	gguna
	50
Kode Sumber 4.6 Implementasi Decision Tree dari	
Klasifikasi	58
Kode Sumber A.1 Fungsi Create File	77
Kode Sumber A.2 Fungsi Start Testing	77
Kode Sumber A.3 Fungsi Stop	77

BAB I PENDAHULUAN

Pada bab ini akan dipaparkan mengenai garis besar Tugas Akhir yang meliputi latar belakang, tujuan, rumusan, batasan permasalahan, dan manfaat.

1.1 Latar Belakang

Para penyandang tunarungu memiliki keterbatasan dalam berkomunikasi menggunakan bahasa sehari-hari. Bahasa isyarat merupakan bahasa yang digunakan oleh penyandang tunarungu. Bahasa ini menggunakan gerak visual tubuh untuk menyampaikan maksud kepada lawan bicaranya. Sistem yang umum digunakan di Indonesia mengacu pada Sistem Bahasa Isyarat Bahasa Indonesia (SIBI) yang sama dengan bahasa isyarat Amerika (ASL – American Sign Language).

Bahasa isyarat bagi penyandang tunarungu merupakan bahasa umum, tetapi bagi orang normal merupakan bahasa asing [1]. Hal ini dapat mengakibatkan kesenjangan komunikasi antara orang normal dengan penyandang tunarungu. Untuk mempermudah proses komunikasi, dibutuhkan penerjemah antara penyandang tunarungu orang normal.

Sebelumnya sudah ada Tugas Akhir yang dibuat oleh Yohanes Aditya Sutanto dan Yahya Eka Nugyasa tentang pengenalan bahasa isyarat Indonesia menggunakan teknologi Kinect. Dalam Tugas Akhir yang dibangun oleh Yohanes Aditya Sutanto menggunakan teknologi Kinect 1.0, sudah dapat mendeteksi bahasa isyarat statis [2]. Dalam Tugas Akhir yang dibangun oleh Yahya Eka Nugyasa menggunakan teknologi Kinect 2.0, sudah dapat mendeteksi bahasa isyarat dinamis [3]. Oleh karena itu munculah ide untuk mengintegrasikan pendeteksi bahas isyarat statis dan bahasa isyarat dinamis. Bahasa isyarat yang digunakan mengacu pada SIBI.

1.2 Rumusan Masalah

Rumusan masalah yang terdapat pada Tugas Akhir ini diantaranya:

- 1. Bagaimana mengintegrasikan fitur statis dan dinamis pada gerakan tangan dalam mendeteksi bahasa isyarat?
- 2. Bagaimana menggunakan hasil integrasi fitur statis dan dinamis untuk mengenali gerakan yang telah ditentukan oleh pengguna?

1.3 Batasan Masalah

Batasan masalah yang terdapat pada Tugas Akhir ini adalah sebagai berikut:

- 1. Teknologi yang dipakai adalah Kinect 2.0.
- 2. Bahasa isyarat statis yang dideteksi berjumlah 10 gerakan.
- 3. Bahasa isyarat dinamis yang dideteksi berjumlah 10 gerakan.
- 4. Klasifikasi yang digunakan untuk mengklasifikasi gerakan adalah Decision Tree.

1.4 Tujuan

Tujuan dari pembuatan Tugas Akhir ini adalah mengintegrasi hasil ekstaksi fitur statis dan dinamis pada gerakan tangan menggunakan Kinect 2.0 untuk mengenali bahasa isyarat Indonesia.

1.5 Manfaat

Tugas Akhir ini diharapkan dapat mengenali bahasa isyarat statis dan bahasa isyarat dinamis sehingga dapat membantu orang tunarungu berkomunikasi dengan orang normal.

1.6 Metodologi

Pembuatan Tugas Akhir ini dilakukan menggunakan metodologi sebagai berikut:

A. Studi literatur

Pada tahap ini, dicari studi literatur yang relevan untuk dijadikan referensi dalam pengerjaan Tugas Akhir. Studi literatur dapat diambil dari buku, internet, maupun materi dalam suatu mata kuliah yang berhubungan dengan metode yang akan digunakan. Literatur-literatur yang dimaksud disebutkan sebagai berikut:

- 1. Tunarungu
- 2. Bahasa isyarat
- 3. Kinect
- 4. Kinect SDK
- 5. Decision Tree

B. Perancangan perangkat lunak

Gambar 1.1 Alur Aplikasi yang Akan Dibuat

Analisa dimulai dari pengguna yang memberikan masukan berupa gerakan tangan dan posisi gerakan tersebut dari badan ke alat Kinect 2.0. Kemudian masukan tersebut diproses dengan *classifier* yang telah ditentukan yaitu Decision Tree. Dan pada akhirnya, keluaran dari proses tersebut ditampilkan menggunakan aplikasi perangkat

lunak berbasis desktop. Seperti yang dapat dilihat pada Gambar 1.1.

C. Implementasi dan pembuatan sistem

Pembangunan aplikasi dilakukan dengan menggunakan bahasa pemrograman C#, IDE (*Integrated Development Environment*) Microsoft Visual Studio dan Kinect for Windows SDK 2.0. Tahap awal dari pembangunan perangkat lunak ini ada integrase aplikasi dengan perangkat Kinect. Berikutnya dilakukan implementasi ekstraksi fitur statis dan dinamis menggunakan Kinect 2.0. Dari data yang didapatkan, dilakukan proses *training* dan *testing* data untuk mendapatkan model. Aplikasi ini dibangun menggunakan Microsoft Visual Studio 2015.

D. Uji coba dan evaluasi

Pengujian akan dilakukan oleh dua orang pengguna. Pengguna tersebut akan diminta untuk melakukan gerakan yang telah ditentukan kemudian dihitung akurasi gerakan tersebut dari aplikasi yang telah dibuat.

E. Penyusunan laporan Tugas Akhir

Pada tahap ini dilakukan penyusunan laporan yang berisi dasar teori, dokumentasi dari perangkat lunak, dan hasilhasil yang diperoleh selama pengerjaan Tugas Akhir.

1.7 Sistematika Penulisan

Buku Tugas Akhir ini terdiri dari beberapa bab, yang dijelaskan sebagai berikut:

BAB I PENDAHULUAN

Bab ini berisi latar belakang masalah, rumusan dan batasan masalah, tujuan dan manfaat pembuatan Tugas Akhir, metodologi yang digunakan, dan sistematika penyusunan Tugas Akhir.

BAB II TINJAUAN PUSTAKA

Bab ini membahas dasar pembuatan dan beberapa teori penunjang yang berhubungan dengan pokok pembahasan yang mendasari pembuatan Tugas Akhir ini.

BAB III ANALISIS DAN PERANCANGAN

Bab ini membahas analisis dari sistem yang dibuat meliputi analisis permasalahan, deskripsi umum perangkat lunak, spesifikasi kebutuhan, dan identifikasi pengguna. Kemudian membahas rancangan dari sistem yang dibuat meliputi rancangan skenario kasus penggunaan, arsitektur, data, dan antarmuka.

BAB IV IMPLEMENTASI

Bab ini membahas implementasi dari rancangan sistem yang dilakukan pada tahap perancangan. Penjelasan implementasi meliputi implementasi antarmuka aplikasi dan pembuatan kebutuhan fungsional aplikasi

BAB V PENGUJIAN DAN EVALUASI

Bab ini membahas pengujian dari aplikasi yang dibuat dengan melihat keluaran yang dihasilkan oleh aplikasi dan evaluasi untuk mengetahui kemampuan aplikasi.

BAB VI PENUTUP

Bab ini berisi kesimpulan dari hasil pengujian yang dilakukan serta saran untuk pengembangan aplikasi selanjutnya.

BAB II DASAR TEORI

Pada bab ini akan dibahas mengenai dasar teori yang menjadi dasar pembuatan Tugas Akhir ini. Beberapa hal yang dibahas adalah penjelasan tentang tunarungu, bahasa isyarat secara umum, Kinect 2.0 dan SDK-nya, serta decicion tree.

2.1 Tunarungu

Tuna rungu dapat diartikan sebagai keterbatasan yang dimiliki seseorang dalam mendengar sesuatu karena tidak berfungsinya organ pendengaran yang dimilikinya. Ketunarunguan dapat dibedakan menjadi dua kategori yaitu tuli (deaf) dan kurang dapat mendengat (low hearing) [4].Tuli adalah keadaan dimana organ pendengaran telah mengalami kerusakan yang sangat parah dan mengakibatkan tidak berfungsinya pendengaran. Sedangkan kurang dapat mendengar adalah keadaan dimana organ pendengaran mengalami kerusakan tetapi masih dapat berfungsi untuk mendengar.

2.2 Bahasa Isyarat

Bahasa isyarat adalah bahasa yang digunakan untuk berkomunikasi dengan penyandang tunarungu. Bahasa isyarat yang sering digunakan di Indonesia berdasarkan pada Sistem Isyarat Bahasa Indonesia (SIBI). Ada 4 jenis bahasa isyarat dalam SIBI [5], yaitu:

- 1. Isyarat Pokok: melambangkan sebuah kata atau konsep;
- 2. Isyarat Tambahan: melambangkan awalan, akhiran, dan partikel (imbuhan);
- 3. Isyarat Bentukan: dibentuk dengan menggabungkan isyarat pokok dan isyarat tambahan;

4. Abjad Jari: dibentuk dengan jari-jari untuk mengeja huruf / angka.

Berdasarkan sifat geraknya, bahasa isyarat dibagi menjadi 2 kelompok yaitu gerak bahasa isyarat statis dan gerak bahasa isyarat dinamis. Contoh gerak bahasa isyarat statis dan dinamis dapat dilihat pada Gambar 2.1.

Gambar 2.1 Contoh Bahasa Isyarat Statis (1) Gang; (2) Hamba dan Bahasa Isyarat Dinamis (3) Bola; (4) Kijang

2.3 Kinect 2.0

Generasi kedua dari Kinect yang dirilis oleh Microsoft pada tahun 2014 adalah versi terbaru Kinect dari yang pertama kali dikeluarkan pada tahun 2010. Perangkat Kinect 2.0 seperti yang terlihat pada Gambar 2.2 Kinect 2.0, terdapat tiga lensa yaitu kamera RGB yang digunakan untuk menangkap spektrum warna, *infrared emitters* yang memproyeksikan spektrum inframerah dan sensor kedalaman yang menghasilkan gambar mendalam dari seseorang atau objek dengan menganalisis informasi inframerah. Dan sebuah *microphone* array yang dapat menemukan lokasi timbulnya suara. Alhasil, ada enam sumber data yang dihasilkan, termasuk warna, inframerah, kedalaman, indeks tubuh, tubuh, dan suara [6].

Gambar 2.2 Kinect 2.0

2.4 Kinect SDK

Kinect SDK adalah pustaka yang dibuat oleh Microsoft untuk pengembangan aplikasi perangkat lunak yang menggunakan Kinect sebagai alat input utama. Kinect SDK dapat diimplementasikan dengan bahasa pemrograman C#, C++, dan JavaScript. Pustaka ini memiliki beberapa fitur diantaranya skeleton tracking, thumb tracking, end of hand tracking, open/close hand gesture dan lainnya [7]. Kinect v2.0 ini dapat mendeteksi 25 skeleton joint yang dapat dilihat pada Error! Reference source not found.

Berikut adalah ke 25 skeleton joint yang dapat dideteksi:

- 0. jointtype_spinebase
- 1. jointtype_spinemid
- 2. jointtype_neck

- 3. jointtype_head
- 4. jointtype_shoulderleft
- 5. jointtype_elbowleft
- 6. jointtype_wristleft
- 7. jointtype_handleft
- 8. jointtype_shoulderright
- 9. jointtype_elbowright
- 10. jointtype_wristright
- 11. jointtype_handright
- 12. jointtype_hipleft
- 13. jointtype_kneeleft
- 14. jointtype_ankleleft
- 15. jointtype_footleft
- 16. jointtype_hipright
- 17. jointtype_kneeright
- 18. jointtype ankleright
- 19. jointtype_footright
- 20. jointtype_spineshoulder
- 21. jointtype_handtipleft
- 22. jointtype_thumbleft
- 23. jointtype_handtipright
- 24. jointtype_thumbright

2.5 Microsoft Visual Studio

Microsoft Visual Studio merupakan sebuah perangkat lunak lengkap yang dapat digunakan untuk melakukan pengembangan perangkat lunak, baik itu perangkat lunak bisnis, perangkat lunak pribadi, ataupun komponen perangkat lunak nya dalam bentuk perangkat lunak berbasis *console*, Windows, ataupun berbasis *website* [8].

Gambar 2.3 Skeleton Joint yang Dapat Dideteksi Oleh Kinect v2

2.6 Ekstraksi Fitur

Fitur yang digunakan dalam Tugas Akhir ini terdiri dari dua kelompok, yaitu fitur statis dan fitur dinamis. Fitur statis akan digunakan untuk mengklasifikasikan gerakan bahasa isyarat statis. Fitur dinamis akan digunakan untuk mengklasifikasikan gerak bahasa isyarat dinamis.

Fitur statis adalah fitur yang bersifat statis yang didapat dari hasil kalkulasi beberapa *skeleton joint* yand dideteksi oleh Kinect 2.0. Fitur yang digunakan terdiri dari 3 bagian yaitu *vector2*, *angel*, *distance*. Dari hasil perhitungan *skeleton joint*, didapatkan 21 buah fitur yang akan digunakan [9]. Fitur-fitur yang digunakan untuk fitur statis dapat di lihat pada Tabel 2.1.

Tabel 2.1 Fitur yang Digunakan Laua Fitur Statis				
Vektor2 (x,y)	Sudut (float)	Jarak (float)		
SR -> ER	\angle SS – SR – ER			
ER -> WR	\angle SR – ER – WR			
WR -> HR	\angle ER – WR – HR			
SL -> EL	\angle SS – SL – EL	HR - HL		
EL -> WL	$\angle SL - EL - WL$			
WL -> HL	$\angle EL - WL - HL$			
HR -> HL				

Tabel 2.1 Fitur yang Digunakan Pada Fitur Statis

Fitur dinamis merupakan fitur gerak atau fitur yang bersifat dinamis yang didapatkan dari deteksi Kinect 2.0 terhadap tangan. Fitur dinamis yang digunakan pada metode ini adalah fitur untuk mengolah gerakan tangan (hand gesture).

Terdapat 40 *frame* yang akan diproses. Setiap *frame* akan menghasilkan koordinat gerak dinamis yang diproyeksikan ke dalam bidang X0Y yang merupakan prinsip dalam bidang. Kemudian dari hasil setiap data tersebut, akan dicatat orientasi sudut mutlak $\alpha_t \in (0,360^\circ)$ yang dapat dilihat pada persamaan (2.1) (2.2) dan (2.3) [6]. Orientasi sudut mutlak tersebut kemudian diterjemahkan menjadi data kuantisasi hasil ekstraksi fitur dinamis seperti yang dapat dilihat pada Gambar 2.4.

$$\Delta y = y_t - y_{t-1} \tag{2.1}$$

$$\Delta x = x_t - x_{t-1} \tag{2.2}$$

$$\alpha_{t} = \begin{cases} \arctan\left(\frac{\Delta y}{\Delta x}\right) * \left(\frac{180}{\pi}\right) + 180, & \Delta x < 0 \\ \arctan\left(\frac{\Delta y}{\Delta x}\right) * \left(\frac{180}{\pi}\right) + 360, & \Delta y < 0 \\ \arctan\left(\frac{\Delta y}{\Delta x}\right) * \left(\frac{180}{\pi}\right), & \Delta x > 0, \Delta y \ge 0 \end{cases}$$

$$(2.3)$$

Gambar 2.4 Pengelompokan Data Kuantisasi

2.7 Decision Tree

Pohon Keputusan atau dikenal dengan Decision Tree adalah salah satu metode klasifikasi yang menggunakan representasi suatu struktur pohon yang berisi alternatif-alternatif untuk pemecahan suatu masalah. Pohon ini juga menunjukkan faktor-faktor yang mempengaruhi hasil alternatif dari keputusan tersebut disertai dengan estimasi hasil akhir bila kita mengambil keputusan tersebut. Peranan pohon keputusan ini adalah sebagai Decision Support Tool untuk membantu manusia dalam mengambil suatu keputusan. Manfaat dari Decision Tree adalah melakukan break down proses pengambilan keputusan yang kompleks menjadi lebih mudah sehingga orang yang mengambil menginterpretasikan keputusan akan lebih solusi permasalahan. Konsep yang digunakan oleh Decision Tree adalah mengubah data menjadi suatu keputusan pohon dan aturan-aturan keputusan (rule).

Decision Tree menggunakan struktur hierarki untuk pembelajaran *supervised*. Proses dari Decision Tree dimulai dari *root node* hingga *leaf node* yang dilakukan secara rekursif. Di mana setiap percabangan menyatakan suatu kondisi yang harus

dipenuhi dan pada setiap ujung pohon menyatakan kelas dari suatu data. Pada Decision Tree terdiri dari tiga bagian yaitu:

a. Root Node

Node ini merupakan *node* yang terletak paling atas dari suatu pohon.

b. Internal Node

Node ini merupakan *node* percabangan, hanya terdapat satu input serta mempunyai minimal dua output.

c. Leaf Node

Node ini merupakan *node* akhir, hanya memiliki satu masukan, dan tidak mempunyai keluaran.

BAB III ANALISIS DAN PERANCANGAN SISTEM

Bab ini membahas tahap analisis permasalahan dan perancangan dari sistem yang dibangun. Analisis permasalahan membahas permasalahan yang diangkat dalam pengerjaan Tugas Akhir. Analisis kebutuhan mencantumkan kebutuhan-kebutuhan yang diperlukan oleh sistem. Selanjutnya dibahas mengenai perancangan sistem yang dibuat.

3.1 Analisis Perangkat Lunak

Bahasa isyarat merupakan alat komunikasi utama bagi penyandang tunarungu. Bahasa itu tidak mudah dipahami bagi orang pada umumnya, tetapi dapat sangat membantu penyandang tunarungu untuk berkomunikasi dengan sekitarnya. Namun masih banyak yang belum mengerti apa arti isyarat bagi yang diberi atau memberi isyarat. Perangkat lunak ini bertujuan untuk membantu pengguna mengartikan bahasa isyarat yang dilakukan. Perangkat lunak ini dibangun dengan Microsoft Visual Studio dan dengan bantuan Kinect 2.0 untuk mengekstraksi *skeleton joint*.

Proses *training* data dilakukan oleh pengguna untuk menambahkan bahasa isyarat yang diinginkan. Setelah proses pengambilan data *training* selesai, fitur fitur didapatkan dari hasil kakilasi *skeleton joint* disimpan dalam bentuk .csv untuk dikalsifikasikan menggunakan *classifier* WEKA. Hasil dari klasifikasi tersebut berupa model Decision Tree.

Untuk tahap *testing* data, pengguan melakukan pengujian dengan cara melakukan gerakan bahasa isyarat yang diinginkan. Kemudian perangkat lunak mengambil 40 *frame* hasil gerak pengguna. Dari 40 *frame* tersebut di hasilkan fitur fitur yang akan diklasifikasikan kedalam model Decision Tree yang sudah didapatkan sebelumnya. Kemuadian perangkat lunak akan menampilkan hasil dari gerakan bahasa isyarat yang dilakukan oleh pengguna dalam bentuk tulisan dan gambar.

3.1.1 Deskripsi Umum Perangkat Lunak

Tugas Akhir yang dibangun ini adalah sebuah modul pengenalan bahasa isyarat Indonesia dengan menggunakan teknologi Kinect 2.0. Gerakan isyarat yang dideteksi dapat berupa gerak isyarat statis dan gerakan isyarat dinamis.

Pengguna utama adalah semua orang yang ingin mempelajari gerakan isyarat yang mengacu pada SIBI. Pengguna dapat mempelajari isyarat yang sudah tersedia didalam perangkat lunak atau dapat memberikan isyarat baru yang mengacu pada SIBI.

3.1.2 Spesifikasi Kebutuhan Perangkat Lunak

Kebutuhan perangkat lunak yang akan dibuat ini melibatkan dua hal, yakni kebutuhan fungsional maupun kebutuhan non-fungsional. Dimana masing-masing berhubungan dengan keberhasilan dalam pembuatan Tugas Akhir ini.

3.1.2.1 Kebutuhan Fungsional Perangkat Lunak

Pada perangkat lunak ini, terdapat beberapa kebutuhan fungsional yang dapat mendukung jalannya perangkat lunak ini. Berikut adalah beberapa kebutuhan fungsional :

- a) Mendeteksi *skeleton* pengguna Perangkat lunak dapat mendeteksi pengguna yang sedang berada di depan Kinect 2.0.
- b) Mengekstraksi fitur statis dan dinamis *skeleton* Perangkat lunak dapat mendeteksi posisi dari *skeleton* yang akan diekstraksi menjadi fitur-fitur yang dibutuhkan. Fitur-fitur ini yang akan dikasifikasikan melalui proses *training* dan *testing*.

c) Menerjemahkan Bahasa Isyarat

Perangkat lunak dapat menerjemahkan bahasa isyarat Indonesia yang dihasilkan melalui proses ekstraksi fitur statis dan dinamis *skeleton* pengguna.

3.1.2.2 Kebutuhan Non-Fungsional

Tidak hanya kebutuhan fungsional saja, terdapat juga beberapa kebutuhan non-fungsional dalam mendukung dan menambah performa jalannya perangkat lunak. Kebutuhan non-fungsional tersebut adalah sebagai berikut:

a) Penyesuaian intensitas cahaya

Intensitas cahaya merupakan salah satu unsur yang perlu diperhatikan dalam penggunaan sensor Kinect 2.0. Jika intensitas cahaya pada saat pengambilan data kurang, maka dapat mengganggu stabilitas pengambilan data yang dapat berakibat pada hasil akhir yang ditampilkan oleh perangkat lunak. Maka dari itu, penggunaan perangkat lunak ini sebaiknya berada pada ruangan yang memiliki intensitas cahaya yang cukup.

b) Posisi Kinect dengan pengguna

Posisi peletakan Kinect 2.0 disesuaikan dengan pengguna untuk mendapatkan fitur-fitur yang maksimal, baik saat pengambilan data *traning* maupun testing. Jarak optimal Kinect 2.0 dengan pengguna adalah antara 0,6 sampai 1,8 meter.

3.1.3 Identifikasi Pengguna

Dalam Tugas Akhir yang dibangun ini, pengguna yang akan terlibat dalam menjalankan perangkat lunak hanya satu orang saja, yaitu orang yang akan melakukan pengenalan bahasa isyarat Indonesia.

3.2 Perancangan Perangkat Lunak

Subbab ini membahas bagaimana rancangan dari Tugas Akhir ini. Hal yang dibahas meliputi model kasus penggunaan, definisi aktor, definisi kasus penggunaan, arsitektur umum sistem, rancangan antarmuka perangkat lunak, dan rancangan proses perangkat lunak.

3.2.1 Model Kasus Penggunaan

Dari hasil analisa deskripsi umum perangkat lunak dan spesifikasi kebutuhan perangkat lunak yang telah dijelaskan, maka model kasus penggunaan untuk perangkat lunak pengenalan bahasa isyarat dapat dilihat pada Gambar 3.1.

Gambar 3.1 Diagram Kasus Penggunaan Perangkat Lunak

3.2.2 Definisi Aktor

Aktor yang terdapat dalam sistem aplikasi ini terlihat pada Tabel 3.1 .

Tabel 3.1 Definisi Pengguna

No	Nama	Deskripsi			
1	Pengguna	Merupakan aktor yang bertugas untuk menambahkan data <i>training</i> dan melakukan <i>testing</i> gerakan isyarat statis dan dinamis, seluruh fungsionalitas yang ada di dalam sistem dapat digunakan oleh pengguna.			

3.2.3 Definisi Kasus Penggunaan

Pada Tabel 3.1 telah dijelaskan bahwa aktor yang dalam hal ini disebut pengguna mempunyai dua kasus penggunaan, yakni membuat data bahasa isyarat baru dan melakukan *testing dataset*. Rincian mengenai kasus penggunaan tersebut dapat dilihat pada Tabel 3.2.

Tabel 3.2 Definisi Kasus Penggunaan

No	Kode Kasus Penggunaan	Nama Kasus Penggunaan	Keterangan		
1	UC-01	Membuat Data	Pengguna membuat		
		Bahasa Isyarat	data bahasa isyarat		
		Baru	yang baru		
2	UC-02	Testing Dataset	Pengguna melakukan		
			testing dataset		
			dengan melakukan		
			gerakan bahasa		
			isyarat Indonesia		
			yang tersedia.		

3.2.3.1 Kasus Penggunaan Membuat Data Bahasa Isyarat Baru

Spesifikasi kasus penggunaan membuat data bahasa isyarat baru dapat dilihat pada Tabel 3.3.

Tabel 3.3 Spesifikasi Kasus Penggunaan Membuat Data Bahasa Isyarat Baru

Nama Kasus	Membuat Data Bahasa Isyarat				
Penggunaan	Baru				
Nomor	UC-01				
Deskripsi	Kasus penggunaan aktor untuk				
	membuat data bahasa isyarat baru				
Aktor	Pengguna				
Kondisi Awal	Pengguna sudah menjalankan				
	perangkat lunak dan perangkat				
	Kinect 2.0 telah tersambung				
Alur Normal	1. Pengguna memasukan nama				
	bahasa isyarat yang akan dibuat				
	di dalam <i>textbox</i> perangkat				
	lunak				
	2. Pengguna menekan tombol				
	"Create File" di dalam				
	perangkat lunak				
	3. Perangkat lunak menerima				
	inputan dari Kinect 2.0 dan				
	ketika <i>skeleton</i> pengguna				
	ditemukan, perangkat lunak				
	memberikan waktu 5 detik				
	untuk pengguna				
	mempersiapkan gerakan				
	A1. Kinect 2.0 tidak				
	menemukan skeleton pengguna				
	4. Pengguna melakukan gerakan				
	bahasa isyarat yang akan dibuat				
	5. Perangkat lunak mengekstrak				

	1 1 1					
	data <i>skeleton</i> pengguna					
	sebanyak 40 <i>frame</i> untuk					
	dikalkulasi					
	6. Perangkat lunak menyimpan					
	hasil ekstraksi ke dalam sebuah					
	berkas berekstensi .csv					
Alur Alternatif	A1. Kinect 2.0 tidak menemukan					
	skeleton pengguna					
	1. Sistem memberikan					
	notifikasi bahwa <i>skeleton</i>					
	pengguna tidak ditemukan					
Kondisi Akhir	Perangkat lunak membuat dataset					
	bahasa isyarat yang baru					

3.2.3.2 Kasus Penggunaan Testing Data

Spesifikasi kasus penggunaan *Testing* Data dapat dilihat pada Tabel 3.4.

Tabel 3.4 Spesifikasi Kasus Penggunaan Testing Data Bahasa Isyarat Baru

13 yarat Dara					
Nama Kasus	Testing Dataset				
Penggunaan					
Nomor	UC-02				
Deskripsi	Kasus penggunaan aktor untuk melakukan <i>testing dataset</i> isyarat bahasa Indonesia				
Aktor	Pengguna				
Kondisi Awal	Pengguna dalam keadaan menjalankan perangkat lunak dan sudah ada model hasil <i>classifier</i> data isyarat bahasa Indonesia di dalam perangkat lunak				
Alur Normal	1. Pengguna menekan tombol "Start Testing" di dalam				

	perangkat lunak				
	2. Perangkat lunak menerima				
	inputan dari Kinect 2.0 dan				
	ketika skeleton pengguna				
	ditemukan, perangkat lunak				
	memberikan waktu 3 detik				
	untuk pengguna				
	mempersiapkan gerakan				
	A1. Kinect 2.0 tidak				
	menemukan skeleton pengguna				
	3. Pengguna melakukan gerakan				
	bahasa isyarat				
	4. Perangkat lunak mengekstrak				
	data skeleton pengguna				
	sebanyak 40 <i>frame</i> untuk				
	dikalkulasi				
	5. Hasil ekstraksi data				
	diklasifikasi menggunakan				
	Decision Tree yang sudah				
	dibuat di dalam perangkat lunak				
	6. Perangkat lunak menampilkan				
	isyarat bahasa Indonesia hasil				
A1 A1	klasifikasi				
Alur Alternatif	A1. Kinect 2.0 tidak menemukan				
	skeleton pengguna				
	1. Sistem memberikan				
	notifikasi bahwa <i>skeleton</i>				
Kondisi Akhir	pengguna tidak ditemukan				
KOHUISI AKIHI	Perangkat lunak memberikan				
	keluaran berupa bahasa isyarat				
	yang dimaksud oleh pengguna				

3.2.4 Arsitektur Umum Sistem

Arsitektur umum pada perangkat lunak ini memiliki perangkat tambahan Kinect 2.0 sebagai perangkat masukan. Implementasi aplikasi dibuat menggunakan Microsoft Visual Studio. Arsitektur umum perangkat lunak yang akan dibuat dapat dilihat pada Gambar 1.1.

3.2.5 Rancangan Antarmuka Perangkat Lunak

Rancangan antarmuka perangkat lunak diperlukan untuk memberikan gambaran umum kepada pengguna bagaimana sistem yang ada dalam perangkat lunak ini berinteraksi dengan pengguna. Selain itu, rancangan ini juga memberikan gambaran bagi pengguna tentang tampilan yang sudah disediakan didalam perangkat lunak, sehingga akan muncul kesan pengalaman pengguna yang baik dan mudah.

Rancangan antarmuka perangkat lunak ini hanya memiliki satu Windows dengan beberapa bagian seperti *color view*, *skeleton view* dan memiliki beberapa kontrol yang sekiranya dapat dipahami oleh pengguna. Rancangan antarmuka perangkat lunak dapat dilihat pada Gambar 3.2.

Gambar 3.2 Rancangan Antarmuka Perangkat Lunak

3.2.6 Rancangan Proses Perangkat Lunak

Pada rancangan proses perangkat lunak akan dijelaskan mengenai proses yang terjadi dalam sistem untuk memenuhi fungsionalitas yang ada pada perangkat lunak. Proses ini penting agar perangkat lunak dapat berjalan secara baik dan benar.

3.2.6.1 Rancangan Proses Ekstraksi Fitur

Proses ekstraksi fitur ini sangat dibutuhkan bagi pengguna untuk melakukan *training* dan *testing*. Rancangan proses pengambilan fitur dapat dilihat pada Gambar 3.3.

Gambar 3.3 Diagram Alir Proses Ekstraksi Fitur

1. *Input skeleton joint* pengguna oleh Kinect 2.0

Saat perekaman *skeleton joint* oleh Kinect 2.0 yang kemudian diolah menjadi fitur data, perangkat lunak akan memberikan waktu terlebih dahulu kepada pengguna selama 5 detik untuk mempersiapkan gerakan. Setelah itu, perangkat lunak mengambil total 40 *frame* untuk dikalkulasi dan dijadikan fitur.

Jumlah data tersebut ditentukan berdasarkan durasi gerakan bahasa isyarat yang paling lama dilakukan diantara seluruh *sample* gerakan yang sudah ditentukan sebelumnya. Apabila gerakan pengguna terlalu cepat atau terlalu lambat, maka pengambilan data harus diulang sekali kembali guna mendapatkan hasil yang maksimal.

Untuk melakukan ekstraksi *skeleton* pengguna dalam melakukan *training* maupung *testing*, penulis mengambil sebanyak 11 *skeleton joints* yang diketahui oleh Kinect 2.0. Sebelas *skeleton joints* tersebut adalah sebagai berikut:

- 1. Leher (Vektor N)
- 2. Bahu tulang belakang (Vektor SS)
- 3. Tulang belakang tengah (Vektor SM)
- 4. Bahu tangan kanan (Vektor SR)
- 5. Siku tangan kanan (Vektor ER)
- 6. Pergelangan tangan kanan (Vektor WR)
- 7. Telapak Tangan kanan (Vektor HR)
- 8. Bahu tangan kiri (Vektor SL)
- 9. Siku tangan kiri (Vektor EL)
- 10. Pergelangan tangan kiri (Vektor WL)
- 11. Telapak tangan kiri (Vektor HL)

2. Ekstraksi fitur statis

Dalam proses ekstraksi fitur statis, didapatkan fitur yang berjumlah 21 buah [9]. Dua puluh satu fitur yang dimaksud dapat dilihat pada Tabel 2.1.

3. Ekstraksi fitur dinamis dan kuantisasi

Dalam proses ekstraksi fitur dinamis, berdasarkan persamaan (2.1) dan (2.2), perangkat lunak terlebih dahulu menentukan Δx dan Δy yang didapatkan dari hasil selisih masingmasing koordinat X dan Y antar data ke-n dan n+1 skeleton joints HR dan HL. Nilai Δx dan Δy kemudian digunakan dalam menentukan orientasi sudut mutlak (α_t) berdasarkan persamaan (2.3) yang dapat dijelaskan sebagai berikut:

- 1. Jika Δx dan Δy lebih besar atau sama dengan daripada nol, maka nilai α_t adalah arctan hasil pembagian Δy dan Δx kemudian dikalikan dengan hasil pembagian 180 dengan PI (π) .
- 2. Jika Δx lebih kecil daripada nol, maka nilai adalah arctan hasil pembagian Δy dan Δx dikalikan dengan hasil pembagian 180 dengan π kemudian ditambahkan 180.
- 3. Jika Δy lebih kecil daripada nol, maka nilai α_t adalah arctan hasil pembagian Δy dan Δx dikalikan dengan hasil pembagian 180 dengan π kemudian ditambah 360.

Hasil dari α_t tersebut kemudian diterjemahkan menjadi data kuantisasi hasil ekstraksi fitur dinamis (berdasarkan Gambar 2.4) yang dapat dijelaskan pada Tabel 3.5:

Tabel 3.5 Data Kuantisasi Hasil Fitur

Tuber de Buta Haamilbast Hashi Fitai						
Rule No.	α_t	Nilai Fitur				
1	$\alpha_t = 0$	9				
2	$\alpha_t > 314$	8				
3	$\alpha_t > 269$	7				
4	$\alpha_t > 224$	6				
5	$\alpha_t > 179$	5				
6	$\alpha_t > 134$	4				
7	$\alpha_t > 89$	3				
8	$\alpha_t > 44$	2				
9	$\alpha_t > 0$	1				

Data kuantisasi hasil ekstraksi fitur dinamis gerakan tangan yang didapatkan kemudian dijadikan fitur data. Terdapat 80 fitur dinamis yang diekstraksi. Fitur ke 1 s.d. 40 menginterprestasikan data kuantisasi 40 *frame* yang dihasilkan oleh tangan kiri. Sedangkan fitur ke 41 s.d. 80 menginterprestasikan data kuantisasi 40 *frame* yang dihasilkan oleh tangan kanan.

Setelah dikurangi dari 10% data yang diabaikan dalam tahap persiapan, perangkat lunak mengambil hanya data genap saja untuk mendapatkan data yang lebih akurat [6]. Maka didapatlah 18 fitur dinamis untuk tangan kanan dan 18 fitur dinamis untuk tangan kiri.

4. Posisi gerakan tangan

Pada *frame* ke-20, perangkat lunak mengidentifikasi posisi gerakan tangan yang dilakukan oleh pengguna. Seperti yang dapat dilihat pada Gambar 3.4, posisi gerakan tangan dibagi menjadi tiga daerah, yaitu Area 1 (kepala), Area 2 (dada), dan Area 3 (perut). Daerah posisi gerakan tangan tersebut ditentukan oleh *skeleton joints* N dan SM yang dapat dijelaskan sebagai berikut:

- 1. Jika koordinat *skeleton joints* HR dan atau HL berada diatas (lebih besar daripada) koordinat *skeleton joints* N, maka posisi diidentifikasikan berada pada Area 1.
- Jika koordinat skeleton joints HR dan atau HL berada dibawah (lebih kecil daripada) koordinat skeleton joints N dan diatas (lebih besar daripada) koordinat skeleton joints SM, maka posisi diidentifikasi berada pada Area 2.
- 3. Jika koordinat *skeleton joints* HR dan atau HL berada dibawah (lebih kecil daripada) koordinat *skeleton joints* SM, maka posisi diidentifikasikan berada pada Area 3.

Posisi gerakan tangan yang sudah teridentifikasi kemudian dijadikan fitur data. Terdapat dua fitur data yang dihasilkan oleh

penentuan posisi gerakan tangan. Masing-masing fitur mewakili tangan pengguna yaitu tangan kanan dan tangan kiri.

Gambar 3.4 Posisi Gerakan Tangan pada Tubuh Mengacu pada Leher (Vektor N) dan Tulang Belakang Tengah (Vektor SM)

5. Fitur data akhir

Setelah seluruh fitur yang diperlukan sudah didapat. Fitur-fitur tersebut disatukan dan disimpan. Susunan dari fitur-fitur tersebut dapat dilihat pada Tabel 3.6.

Tabel 3.6 Seluruh Fitur yang Digunakan

Tabel 5.0 Sciul un Titul yang Digunakan				
Fitur	Indeks Fitur			
Kuantisasi Tangan Kiri	Fitur ke 1 s.d. 18			
Kuantisasi Tangan Kanan	Fitur ke 19 s.d. 36			
Posisi Tangan Kiri	Fitur ke 37			
Posisi Tangan Kanan	Fitur ke 38			
Statis	Fitur ke 39 s.d. 59			

3.2.6.2 Rancangan Proses Training Dataset

Gambar 3.5 Rancangan Proses Training Dataset

Seperti yang dapat dilihat pada Gambar 3.5, proses *training dataset* dimulai dengan menyimpan fitur data yang didapatkan sebelumnya terlebih dahulu ke dalam sebuah berkas berekstensi .csv. Data *training* tersebut kemudian diolah pada perangkat lunak WEKA menggunakan algoritma Random Tree. Keluaran yang didapatkan dari hasil *training* data tersebut berupa model Decision Tree dan digunakan sebagai *classifier* ketika pengguna melakukan *testing* data. *Classifier* berupa Decision Tree.

Proses pembentukan model Decision Tree dilakukan 2 bagian. Proses ini dilakukan baik pada fitur statis dan fitur dinamis, dikarenakan fitur-fitur yang dibutuhkan oleh bahasa isyarat statis dan dinamis berbeda. Hasil model Decision Tree Statis dapat dilihat pada Gambar 3.6 dan model Decision Tree Dinamis Gambar 3.7.

3.2.6.3 Rancangan Proses Testing Data

Proses *testing* data dilakukan dengan mengenali gerakan isyarat yang dilakukan merupakan gerakan isyarat statis atau dinamis. Berdasarkan uji coba yang telah dilakukan penulis, pemisah gerak bahasa isyarat statis dan dinamis dapat dilihat pada Gambar 3.8. Setelah hasil data fitur baru diambil, data tersebut dimasukan kedalam *classifier* yang sudah didapatkan pada proses *training* data di Subbab 3.2.6.2. Keluaran hasil klasifikasi yang dilakukan tersebut berupa prediksi gerakan bahasa isyarat yang dimaksud oleh pengguna dalam bentuk gambar dan juga tulisan bahasa isyarat. Dapat dilihat pada Gambar 3.9

Gambar 3.7 Decision Tree Dinamis

Gambar 3.8 Decision Tree Penentu Statis atau Dinamis

Gambar 3.9 Rancangan Proses Testing Dataset

[Halaman ini sengaja dikosongkan]

BAB IV IMPLEMENTASI

Pada bab ini akan dibahas mengenai implementasi dari perancangan sistem. Implementasi berupa kode sumber dengan bahasa pemrograman C# dengan menggunakan Kinect SDK. Berikut ini akan diperkenalkan lingkungan yang digunakan untuk mengimplementasikan perangkat lunak ini.

4.1 Lingkungan Pembangunan

Dalam membangun aplikasi ini digunakan beberapa perangkat pendukung, baik perangkat keras maupun perangkat lunak. Lingkungan pembangunan aplikasi ini dijelaskan sebagai berikut.

4.1.1 Lingkungan Pembangunan Perangkat Keras

Perangkat keras yang digunakan dalam pembuatan aplikasi ini adalah sebuah perangkat laptop dengan spesifikasi sebagai berikut:

- Prosesor Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz
- Memori (RAM) 16,00 GB

Dengan tambahan perangkat lunak Kinect Sensor Xbox One.

4.1.2 Lingkungan Pembangunan Perangkat Lunak

Spesifikasi perangkat lunak yang digunakan untuk membuat aplikasi ini sebaga berikut.

- Microsoft Visual Studio 2015
- Windows 10 64 bit sebagai sistem operasi
- Kinect SDK

4.2 Implementasi Antarmuka

Seperti yang telah dijelaskan pada Subbab 3.2.5, modul pengenalan bahasa isyarat yang akan dibuat hanya akan memiliki satu window utama yang sudah mencakup semua fungsionalitas perangkat lunak yang dibutuhkan. Tampilan antarmuka perangkat dapat dilihat pada Gambar 4.1. Sedangkan kode sumber untuk antarmuka perangkat lunak dapat dilihat pada Kode Sumber 4.1.

Gambar 4.1 Antarmuka Perangkat Lunak

```
<Window x:Class="KinectHandTracking.MainWindow"</p>
2
       xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presenta
      tion"
3
      xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
      Title="Kinect 2 hand tracking" Height="738.5" Width="1200"
4
      Loaded="Window Loaded" Closed="Window Closed">
5
6
           <Grid Margin="0,0,2,0">
7
               <Border BorderBrush="Black" BorderThickness="1"</pre>
      HorizontalAlignment="Left" Height="129" Margin="398,561,0,0"
      VerticalAlignment="Top" Width="563"/>
8
               <Border BorderBrush="Black" BorderThickness="1"</pre>
```

	HorizontalAlignment="Left" Height="171" Margin="976,335,0,0"
	VerticalAlignment="Top" Width="171"/>
9	<pre></pre>
,	
	HorizontalAlignment="Left" Height="133" Margin="966,26,0,0"
	VerticalAlignment="Top" Width="189"/>
10	<pre><border <="" borderbrush="Black" borderthickness="1" pre=""></border></pre>
	HorizontalAlignment="Left" Height="65" Margin="966,186,0,0"
	VerticalAlignment="Top" Width="189"/>
11	<pre></pre>
11	
	HorizontalAlignment="Left" Height="333" Margin="966,300,0,0"
	VerticalAlignment="Top" Width="189"/>
12	<pre><border <="" borderbrush="Black" borderthickness="1" pre=""></border></pre>
	HorizontalAlignment="Left" Height="72" Margin="973,546,0,0"
	VerticalAlignment="Top" Width="175"/>
13	
14	77' or how Width="040" Hainht="700" Manain="10 10 0 0"
14	<pre><viewbox <="" height="700" margin="10,10,0,0" pre="" width="940"></viewbox></pre>
	HorizontalAlignment="Left" VerticalAlignment="Top">
15	<grid></grid>
16	<pre><image <="" name="camera" pre="" width="1920"/></pre>
	Height="1080" />
17	<pre><canvas <="" name="canvas" pre="" width="1920"></canvas></pre>
' '	Height="1080" ClipToBounds="True" Margin="-10,10,10,-10" />
1.0	
18	<border <="" borderbrush="Black" td=""></border>
	BorderThickness="1" HorizontalAlignment="Left" Height="976"
	VerticalAlignment="Top" Width="382" Margin="758,104,0,0"/>
19	
20	
21	\/ \IONDOM
	7 1 1 7 H2 1 10H 0 1 1 H2 1 H 1 H 1 H
22	<pre><label <="" content="Testing Data" name="label3" pre=""></label></pre>
	HorizontalAlignment="Left" Margin="969,186,0,0"
	<pre>VerticalAlignment="Top" Width="152" FontSize="16"/></pre>
23	<pre><button <="" content="Start Testing" name="OneTestButton" pre=""></button></pre>
	HorizontalAlignment="Left" Margin="975,222,0,0"
	VerticalAlignment="Top" Width="75"
	Click="OneTestButton_Click"/>
24	
25	<pre><label <="" content="Create New Gesture" name="label5" pre=""></label></pre>
	HorizontalAlignment="Left" Margin="969,23,0,0"
	VerticalAlignment="Top" Width="152" FontSize="16"/>
26	<pre><label <="" content="Gesture Name:" name="label6" pre=""></label></pre>
20	
	HorizontalAlignment="Left" Margin="973,49,0,0"
	VerticalAlignment="Top" Width="115" FontSize="16"/>
27	<pre><textbox <="" horizontalalignment="Left" name="fileName" pre=""></textbox></pre>
	Height="28" Margin="979,84,0,0" TextWrapping="Wrap"
	VerticalAlignment="Top" Width="146" FontSize="16"/>
28	<pre></pre>
20	
	HorizontalAlignment="Left" Margin="979,131,0,0"
	VerticalAlignment="Top" Width="75"
L	Click="createButton_click"/>
	_

```
<Label Name="ambil" Content="-"
29
       HorizontalAlignment="Left" Height="47"
       Margin="1069,120,62,0" VerticalAlignment="Top" Width="59"
       FontSize="24"/>
               <Label Name="label13" Content="/15"</pre>
30
       HorizontalAlignment="Left" Height="47" Margin="1096,117,0,0"
       VerticalAlignment="Top" Width="59" FontSize="24"/>
31
32
               <Label Name="label7" Content="Output Image"</pre>
       HorizontalAlignment="Left" Margin="969,299,0,0"
       VerticalAlignment="Top" Width="152" FontSize="16"/>
33
               <Border HorizontalAlignment="Left" Height="171"</pre>
       Margin="976,336,0,0" VerticalAlignment="Top" Width="171" >
34
                    <Image x:Name="outputImage"</pre>
       Stretch="UniformToFill" Margin="0,-3,0.2,2.2"/>
35
               </Border>
36
               <Label Name="label8" Content="Output Text"</pre>
37
       HorizontalAlignment="Left" Margin="969,514,0,0"
       VerticalAlignment="Top" Width="152" FontSize="16"/>
38
               <Label Name="outputText" Content=""</pre>
       HorizontalAlignment="Left" Margin="973,555,0,0"
       VerticalAlignment="Top" Height="48" Width="174"
       FontSize="26.667" RenderTransformOrigin="0.981,2.1"/>
39
40
               <Label Name="label9" Content="Status:"</pre>
       HorizontalAlignment="Left" Margin="6,560,0,0"
       VerticalAlignment="Top" Width="100" FontSize="24"
       Height="47"/>
41
               <Label Name="statusDetail" Content="Kinect Not</pre>
       Connected" HorizontalAlignment="Left" Height="47"
       Margin="82,560,0,0" VerticalAlignment="Top" Width="341"
       FontSize="24"/>
42
43
               <Label Name="label10" Content="Left Hand:"</pre>
       HorizontalAlignment="Left" Margin="399,559,0,0"
       VerticalAlignment="Top" Width="119" FontSize="24"
       Height="47"/>
44
               <Label Name="tblLeftHandState" Content="Not</pre>
       Detected" HorizontalAlignment="Left" Height="47"
       Margin="515,559,0,0" VerticalAlignment="Top" Width="187"
       FontSize="24"/>
45
               <Label Name="labelxL" Content="X"</pre>
       HorizontalAlignment="Left" Height="42" Margin="404,606,0,0"
       VerticalAlignment="Top" FontSize="16"/>
               <Label Name="labelyL" Content="Y"</pre>
46
       HorizontalAlignment="Left" Height="42" Margin="404,648,0,-
       11" VerticalAlignment="Top" FontSize="16"/>
47
               <Label Name="xL" Content="-"
```

```
HorizontalAlignment="Left" Height="42" Margin="428,606,0,0"
       VerticalAlignment="Top" FontSize="16"/>
48
               <Label Name="yL" Content="-"
       HorizontalAlignment="Left" Height="42" Margin="428,641,0,0"
       VerticalAlignment="Top" FontSize="16"/>
49
50
               <Label Name="label11" Content="Right Hand:"</pre>
       HorizontalAlignment="Left" Margin="671,559,0,0"
       VerticalAlignment="Top" Width="144" FontSize="24"
       Height="47"/>
51
               <Label Name="tblRightHandState" Content="Not</pre>
       Detected" HorizontalAlignment="Left" Height="47"
      Margin="803,559,0,0" VerticalAlignment="Top" Width="187"
       FontSize="24"/>
52
               <Label Name="labelxR" Content="X"</pre>
       HorizontalAlignment="Left" Height="42" Margin="671,606,0,0"
       VerticalAlignment="Top" FontSize="16"/>
53
               <Label Name="labelyR" Content="Y"</pre>
       HorizontalAlignment="Left" Height="42" Margin="671,641,0,0"
       VerticalAlignment="Top" FontSize="16"/>
54
               <Label Name="xR" Content="-"
       HorizontalAlignment="Left" Height="42" Margin="695,606,0,0"
      VerticalAlignment="Top" FontSize="16"/>
               <Label Name="yR" Content="-"
55
       HorizontalAlignment="Left" Height="42" Margin="695,641,0,0"
       VerticalAlignment="Top" FontSize="16"/>
56
57
               <Label Name="label12" Content="Frame:"</pre>
       HorizontalAlignment="Left" Margin="981,251,0,0"
       VerticalAlignment="Top" Width="144" FontSize="24"
       Height="47"/>
58
               <Label Name="ambilData" Content="Done"</pre>
       HorizontalAlignment="Left" Height="47" Margin="1069,251,-
       66,0" VerticalAlignment="Top" Width="187" FontSize="24"/>
59
60
               <Button Name="stopButton" Content="Stop"
       HorizontalAlignment="Left" Margin="981,663,0,0"
       VerticalAlignment="Top" Width="75"
       Click="stopButton Click"/>
61
62
           </Grid>
63
       </Window>
```

Kode Sumber 4.1 Tampilan Perangkat Lunak

4.3 Implementasi Perangkat Lunak

Pada subbab ini akan dibahas mengenai implementasi perangkat lunak dari kasus penggunaan ke dalam baris kode. Dijelaskan juga dengan fungsi yang dibutuhkan untuk menunjang perangkat lunak ini agar dapat berjalan sebagaimana mestinya. Implementasi ini dilakukan menggunakan Microsoft Visual Studio 2015 dengan bahasa pemrograman C#.

4.3.1 Implementasi Pendeteksian Skeleton Pengguna

Untuk menjalankan perangkat lunak ini diperlukan bantuan untuk mendeteksi *skeleton* pengguna, sehingga dibutuhkan bantuan dari perangkat keras Kinect 2.0. Sebelum mendeteksi *skeleton*, Kinect 2.0 harus diintegrasikan dengan program terlebih dahulu.

Kode sumber proses integrasi Kinect 2.0 dapat dilakukan seperti pada Kode Sumber 4.2. Untuk melakukan ekstraksi fitur, perangkat lunak mendeteksi tubuh pengguna terlebih dahulu. Ketika tubuh pengguna sudah terdeteksi, perangkat lunak kemudian menggambarkan *skeleton* pengguna secara keseluruhan termasuk 11 *skeleton joints* yang akan digunakan dalam proses ekstraksi fitur statis dan dinamis serta menentukan posisi gerakan. Kode sumber untuk mendeteksi *skeleton* pengguna dapat dilihat pada Kode Sumber 4.3.

Kode Sumber 4.2 Kode Sumber Integrasi Kinect

```
async void Reader MultiSourceFrameArrived(object sender,
    MultiSourceFrameArrivedEventArgs e)
2
3
        var reference = e.FrameReference.AcquireFrame();
4
5
        #region Acquire Frame Color
6
        // Color
7
        using (var frame =
    reference.ColorFrameReference.AcquireFrame())
8
9
             if (frame != null)
10
11
                 camera.Source = frame.ToBitmap();
12
13
14
        #endregion
15
16
        using (var frame =
    reference.BodyFrameReference.AcquireFrame())
17
18
            if (frame != null)
19
20
                 canvas.Children.Clear();
21
                 bodies = new
22
    Body[frame.BodyFrameSource.BodyCount];
                 frame.GetAndRefreshBodyData( bodies);
23
24
                 var csv = new StringBuilder();
25
                 string filePath = "E:\\Kuliah\\TUGAS
    AKHIR\\TABI\\Data\\DataSet\\dataori.csv";
26
                 string imagePath = "";
27
2.8
                 foreach (var body in bodies)
29
30
                     if (body != null)
31
32
                         if (body.IsTracked)
33
34
                             Joint handRight =
    body.Joints[JointType.HandRight];
35
                             Joint handLeft =
    body.Joints[JointType.HandLeft];
36
                             Joint wristRight =
    body.Joints[JointType.WristRight];
37
                             Joint wristLeft =
    body.Joints[JointType.WristLeft];
                             Joint elbowRight =
38
    body.Joints[JointType.ElbowRight];
```

```
39
                              Joint elbowLeft =
    body.Joints[JointType.ElbowLeft];
40
                             Joint shoulderRight =
    body.Joints[JointType.ShoulderRight];
                             Joint shoulderLeft =
41
    body.Joints[JointType.ShoulderLeft];
42
                             Joint spineMid =
    body.Joints[JointType.SpineMid];
43
                             Joint spineShoulder =
    body.Joints[JointType.SpineShoulder];
44
                             Joint neck =
    body.Joints[JointType.Neck];
45
46
                              foreach (Joint joint in
    body.Joints.Values)
47
48
                                  if (joint.TrackingState ==
    TrackingState.Tracked)
49
50
                                      CameraSpacePoint
    jointPosition = joint.Position;
51
                                      Point point = new Point();
52
53
                                      ColorSpacePoint colorPoint =
     sensor.CoordinateMapper.MapCameraPointToColorSpace(jointPosi
    tion);
54
                                      point.X =
    float.IsInfinity(colorPoint.X) ? 0 : colorPoint.X;
                                      point.Y =
55
    float.IsInfinity(colorPoint.Y) ? 0 : colorPoint.Y;
56
57
                                      Ellipse ellipse = new Ellipse
58
59
                                          Fill = Brushes.Yellow,
                                          Width = 30,
60
61
                                          Height = 30
62
                                      };
63
64
                                      Canvas.SetLeft(ellipse,
    point.X - ellipse.Width / 2);
65
                                      Canvas.SetTop(ellipse,
    point.Y - ellipse.Height / 2);
66
67
                                      canvas.Children.Add(ellipse);
68
                                  }
69
70
                         }
71
                     }
72
```

73		}				
74	}					
75	}					

Kode Sumber 4.3 Kode Sumber Deteksi Skeleton Pengguna

4.3.2 Implementasi Proses Ekstraksi Fitur

Pada Kode Sumber 4.4 dijelaskan mengenai proses ekstraksi fitur statis dan dinamis pada setiap data serta menentukan posisi gerakan tangan yang dilakukan oleh pengguna. Penjelasan kode sumber tersebut adalah sebagai berikut:

- 1. Variabel *i* menunjukkan *frame* ke-*i* yang sedang diolah.
- 2. Variabel *Ny* menunjukkan koordinat *y skeleton joints* N.
- 3. Variabel *SMy* menunjukkan koordinat *y skeleton joints* SM.
- 4. Variabel SS menunjukkan koordinat skeleton joints SS
- 5. Variabel *SL* menunjukkan koordinat *skeleton joints* SL.
- 6. Variabel *EL* menunjukkan koordinat *skeleton joints* EL.
- 7. Variabel *WL* menunjukkan koordinat *skeleton joints* WL.
- 8. Variabel *HL* menunjukkan koordinat *skeleton joints* HL.
- 9. Variabel *SR* menunjukkan koordinat *skeleton joints* SR.
- 10. Variabel *ER* menunjukkan koordinat *skeleton joints* ER.
- 11. Variabel *WR* menunjukkan koordinat *skeleton joints* WR.
- 12. Variabel *HR* menunjukkan koordinat *skeleton joints* HR.

- 13. Variabel *tanganKanan* menunjukkan posisi tangan kanan.
- 14. Variabel *tanganKiri* menunjukkan posisi tangan kiri.
- 15. Variabel *deltaHLx* menunjukkan Δx tangan kiri.
- 16. Variabel *deltaHLy* menunjukkan Δy tangan kiri.
- 17. Variabel *alphaHL* menunjukkan α_t tangan kiri.
- 18. Variabel *deltaHRx* menunjukkan Δx tangan kanan.
- 19. Variabel *deltaHRy* menunjukkan Δ*y* tangan kanan.
- 20. Variabel *alphaHR* menunjukkan α_t tangan kanan.
- 21. Variabel *kuantKiri* menunjukkan hasil kuantisasi fitur dinamis tangan kiri.
- 22. Variabel *kuantKanan* menunjukkan hasil kuantisasi fitur dinamis tangan kanan.
- 23. Variabel *SRER* menunjukkan vektor bahu menuju siku tangan kanan.
- 24. Variabel *ERWR* menunjukkan vektor siku menuju pergelangan tangan kanan.
- 25. Variabel *WRHR* menunjukkan vektor pergelangan menuju telapak tangan kanan.
- 26. Variabel *SLEL* menunjukkan vektor bahu menuju siku tangan kiri.
- 27. Variabel *ELWL* menunjukkan vektor siku menuju pergelangan tangan kiri.
- 28. Variabel *WLHL* menunjukkan vektor pergelangan menuju telapak tangan kiri.
- 29. Variabel *HRHL* menunjukkan vektor telapak tangan kanan menuju telapak tangan kiri.
- 30. Variabel *SSSRER* menunjukkan sudut pada bahu tangan kanan.
- 31. Variabel *SRERWR* menunjukkan sudut pada siku tangan kanan.
- 32. Variabel *ERWRHR* menunjukkan sudut pada pergelangan tangan kanan.
- 33. Variabel *SSSLEL* menunjukkan sudut pada bahu tangan kiri.

- 34. Variabel *SLELWL* menunjukkan sudut pada siku tangan kiri.
- 35. Variabel *ELWLHL* menunjukkan sudut pada pergelangan tangan kiri.
- 36. Variabel DisHRHL menunjukkan jarak antara telapak tangan kanan dan telapak tangan kiri.

Fitur statis dan dinamis serta posisi gerakan tangan digabungkan menjadi fitur data yang kemudian disimpan ke dalam sebuah berkas berekstensi .csv dengan pembagian fitur data berdasarkan Tabel 2.1. Sebelum disimpan, seluruh atribut yang ada di dalam fitur data diubah terlebih dahulu menjadi atribut tipe string. Kode sumber penyimpanan fitur data dapat dilihat pada Kode Sumber 4.5.

```
if (i < 40 && statusAmbil != 0)
2
3
          if (i < 38)
4
5
              ambilData.Content = (i + 1).ToString();
6
7
          else ambilData.Content = "Done";
8
9
          if (i == 1)
10
              Ny = (neck.Position.Y);
11
12
              SMy = (spineMid.Position.Y);
13
14
          if (i == 20)
15
16
              if (HL.Y > Ny) tanganKiri = "Kepala";
17
              else if (HL.Y < SMy) tanganKiri = "Perut";
              else tanganKiri = "Dada";
18
19
20
              if (HR.Y > Ny) tanganKanan = "Kepala";
21
              else if (HR.Y < SMy) tanganKanan = "Perut";
22
              else tanganKanan = "Dada";
2.3
          }
24
25
          // tangan kanan
26
          if (deltaHRx == 0 && deltaHRy == 0)
27
28
              alphaHR = -1;
29
```

```
else if (deltaHRx >= 0 \&\& deltaHRy >= 0)
30
31
32
              alphaHR = (Math.Atan(deltaHRy / deltaHRx)) * (180 /
      Math.PI);
33
34
          else if (deltaHRx < 0)
35
36
              alphaHR = (Math.Atan(deltaHRy / deltaHRx)) * (180 /
      Math.PI) + 180;
37
          }
38
          else
39
40
              alphaHR = (Math.Atan(deltaHRy / deltaHRx)) * (180 /
      Math.PI) + 360;
41
42
4.3
          // tangan kiri
          if (deltaHLx == 0 && deltaHLy == 0)
44
45
46
              alphaHL = -1;
47
48
          else if (deltaHLx >= 0 && deltaHLy >= 0)
49
50
              alphaHL = (Math.Atan(deltaHLy / deltaHLx)) * (180 /
      Math.PI);
51
52
          else if (deltaHRx < 0)
53
54
              alphaHL = (Math.Atan(deltaHLy / deltaHLx)) * (180 /
      Math.PI) + 180;
55
          }
56
          else
57
58
              alphaHL = (Math.Atan(deltaHLy / deltaHLx)) * (180 /
      Math.PI) + 360;
59
          }
60
61
          // tangan kanan
62
          if (alphaHR \geq 315) { kuantKanan[i] = 8; }
63
          else if (alphaHR >= 270) { kuantKanan[i] = 7; }
64
          else if (alphaHR >= 225) { kuantKanan[i] = 6; }
65
          else if (alphaHR >= 180) { kuantKanan[i] = 5; }
66
          else if (alphaHR >= 135) { kuantKanan[i] = 4; }
67
          else if (alphaHR >= 90) { kuantKanan[i] = 3; }
68
          else if (alphaHR >= 45) { kuantKanan[i] = 2; }
69
          else if (alphaHR >= 0) { kuantKanan[i] = 1; }
70
          else if (alphaHR < 0) { kuantKanan[i] = 0; }</pre>
71
72
          // tangan kiri
```

```
73
          if (alphaHL >= 315) { kuantKiri[i] = 8; }
74
          else if (alphaHL \geq 270) { kuantKiri[i] = 7; }
75
          else if (alphaHL >= 225) { kuantKiri[i] = 6; }
76
          else if (alphaHL >= 180) { kuantKiri[i] = 5; }
77
          else if (alphaHL >= 135) { kuantKiri[i] = 4; }
78
          else if (alphaHL >= 90) { kuantKiri[i] = 3; }
79
          else if (alphaHL >= 45) { kuantKiri[i] = 2; }
80
          else if (alphaHL >= 0) { kuantKiri[i] = 1; }
81
          else if (alphaHL < 0) { kuantKiri[i] = 0; }</pre>
82
83
          if (1 < i && i < 38)
84
85
              SRER += ER - SR;
86
              ERWR += WR - ER;
87
              WRHR += HR - WR;
88
              SLEL += EL - SL;
89
              ELWL += WL - EL;
90
              WLHL += HL - WL;
91
              HRHL += HL - HR;
92
93
              Vector v1, v2;
94
              double res;
95
96
              //SS-SR-ER
97
              v1 = SS - SR;
98
              v2 = ER - SR;
99
              res = Vector.AngleBetween(v1, v2);
100
              SSSRER += (double) res * Math.PI / 180;
101
102
              //SR-ER-WR
103
              v1 = SR - ER;
104
              v2 = WR - ER;
105
              res = Vector.AngleBetween(v1, v2);
106
              SRERWR += (double) res * Math.PI / 180;
107
              //ER-WR-HR
108
109
              v1 = ER - WR;
110
              v2 = HR - WR;
111
              res = Vector.AngleBetween(v1, v2);
112
              ERWRHR += (double) res * Math.PI / 180;
113
114
              //SS-SL-EL
115
              v1 = SS - SL;
116
              v2 = EL - SL;
117
              res = Vector.AngleBetween(v1, v2);
118
              SSSLEL += (double) res * Math.PI / 180;
119
120
              //SL-EL-WL
121
              v1 = SL - EL;
```

```
123
              v2 = WL - EL;
124
              res = Vector.AngleBetween(v1, v2);
125
              SLELWL += (double) res * Math.PI / 180;
126
127
              //EL-WL-HL
128
              v1 = EL - WL;
129
              v2 = HL - WL;
130
              res = Vector.AngleBetween(v1, v2);
131
              ELWLHL += (double) res * Math.PI / 180;
132
133
              //Distance HR - HL
              DisHRHL += Math.Sqrt((HR.X - HL.X) * (HR.X - HL.X)
      + (HR.Y - HL.Y) * (HR.Y - HL.Y)); // sqrt from dotproduct
      = length
134
          }
135
```

Kode Sumber 4.4 Kode Sumber Ekstraksi Fitur Statis, Dinamis dan Menentukan Posisi Gerakan Tangan dari *Skeleton* Pengguna

```
var stringSRER = SRER.ToString();
2
     var stringERWR = ERWR.ToString();
3
      var stringWRHR = WRHR.ToString();
4
      var stringSLEL = SLEL.ToString();
5
     var stringELWL = ELWL.ToString();
6
     var stringWLHL = WLHL.ToString();
8
     var stringHRHL = HRHL.ToString();
     var stringSSSRER = SSSRER.ToString();
8
9
     var stringSRERWR = SRERWR.ToString();
10
     var stringERWRHR = ERWRHR.ToString();
11
     var stringSSSLEL = SSSLEL.ToString();
12
     var stringSLELWL = SLELWL.ToString();
13
     var stringELWLHL = ELWLHL.ToString();
14
     var stingDisHRHL = DisHRHL.ToString();
15
16
     var stringkuant4 = kuantKiri[4].ToString();
17
     var stringkuant6 = kuantKiri[6].ToString();
18
     var stringkuant8 = kuantKiri[8].ToString();
19
     var stringkuant10 = kuantKiri[10].ToString();
     var stringkuant12 = kuantKiri[12].ToString();
20
21
     var stringkuant14 = kuantKiri[14].ToString();
22
     var stringkuant16 = kuantKiri[16].ToString();
23
     var stringkuant18 = kuantKiri[18].ToString();
24
     var stringkuant20 = kuantKiri[20].ToString();
25
     var stringkuant22 = kuantKiri[22].ToString();
26
     var stringkuant24 = kuantKiri[24].ToString();
2.7
     var stringkuant26 = kuantKiri[26].ToString();
28
     var stringkuant28 = kuantKiri[28].ToString();
29
     var stringkuant30 = kuantKiri[30].ToString();
     var stringkuant32 = kuantKiri[32].ToString();
30
```

```
31
      var stringkuant34 = kuantKiri[34].ToString();
32
      var stringkuant36 = kuantKiri[36].ToString();
33
      var stringkuant38 = kuantKiri[38].ToString();
34
35
      var stringkuant43 = kuantKanan[4].ToString();
36
      var stringkuant45 = kuantKanan[6].ToString();
37
      var stringkuant47 = kuantKanan[8].ToString();
38
      var stringkuant49 = kuantKanan[10].ToString();
39
      var stringkuant51 = kuantKanan[12].ToString();
40
      var stringkuant53 = kuantKanan[14].ToString();
41
      var stringkuant55 = kuantKanan[16].ToString();
42
      var stringkuant57 = kuantKanan[18].ToString();
43
      var stringkuant59 = kuantKanan[20].ToString();
44
      var stringkuant61 = kuantKanan[22].ToString();
45
      var stringkuant63 = kuantKanan[24].ToString();
46
      var stringkuant65 = kuantKanan[26].ToString();
47
      var stringkuant67 = kuantKanan[28].ToString();
48
      var stringkuant69 = kuantKanan[30].ToString();
49
      var stringkuant71 = kuantKanan[32].ToString();
50
      var stringkuant73 = kuantKanan[34].ToString();
51
      var stringkuant75 = kuantKanan[36].ToString();
52
      var stringkuant77 = kuantKanan[38].ToString();
53
54
      var stringtangankiri = tanganKiri;
55
      var stringtangankanan = tanganKanan;
56
      var stringnamagerakan = namaGerakan;
57
58
      if (statusAmbil == 1)
59
60
          var newLine =
      string.Format("{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}
      , {11}, {12}, {13}, {14}, {15}, {16}, {17}, {18}, {19}, {20}, {21}, {22
      },{23},{24},{25},{26},{27},{28},{29},{30},{31},{32},{33},{3
      4}, {35}, {36}, {37}, {38}, {39}, {40}, {41}, {42}, {43}, {44}, {45}, {
      46}, {47}, {48}, {49}, {50}, {51}, {52}",
61
                   stringkuant4, stringkuant6,
62
                   stringkuant8, stringkuant10,
63
                   stringkuant12, stringkuant14,
64
                   stringkuant16, stringkuant18,
65
                   stringkuant20, stringkuant22,
66
                   stringkuant24, stringkuant26,
67
                  stringkuant28, stringkuant30,
68
                   stringkuant32, stringkuant34,
69
                   stringkuant36, stringkuant38,
70
                   stringkuant43, stringkuant45,
71
                   stringkuant47, stringkuant49,
72
                   stringkuant51, stringkuant53,
73
                   stringkuant55, stringkuant57,
74
                   stringkuant59, stringkuant61,
```

```
stringkuant63, stringkuant65,
76
                  stringkuant67, stringkuant69,
77
                  stringkuant71, stringkuant73,
78
                  stringkuant75, stringkuant77,
79
                  stringtangankiri, stringtangankanan,
80
                  stringSRER, stringERWR, stringWRHR,
81
                  stringSLEL, stringELWL, stringWLHL,
82
                  stringHRHL.
83
                  stringSSSRER, stringSRERWR, stringERWRHR,
84
                  stringSSSLEL, stringSLELWL, stringELWLHL,
85
                  stingDisHRHL,
86
                  stringnamagerakan
87
88
89
          csv.AppendLine(newLine);
90
```

Kode Sumber 4.5 Kode Sumber Menyimpan Hasil Ekstraksi Fitur Statis, Dinamis dan Posisi Gerak Tangan dari *Skeleton* Pengguna

4.3.4 Implementasi Proses Testing Data

Hasil dari *training* data yang dapat berupa *tree* yang dipisahkan dalam 2 bagian, yaitu *tree* statis dan dinamis yang dilihat pada Gambar 3.6 dan Gambar 3.7. Model *tree* tersebut kemudian diimplentasikan ke dalam perangkat lunak seperti yang dapat dilihat pada Kode Sumber 4.6. Keluaran dari kode sumber tersebut berupa prediksi gerakan yang dilakukan oleh pengguna ketika melakukan proses *testing* baik itu dalam bentuk tulisan maupun dalam bentuk gambar.

```
11
12
13
           if (flag4 > 9)
14
15
               // Statis
16
               if (ELWL.X < 0.03)
17
18
                    if (SRER.X < 0.11)
19
20
                        if (SLEL.X < -0.02)
21
22
                            if (DisHRHL < 0.47)
23
24
                                 outputText.Content = "Hamba";
25
26
                            else if (DisHRHL \geq 0.47)
27
28
                                outputText.Content = "Jendral";
29
30
                        else if (SLEL.X >= -0.02)
31
32
33
                            outputText.Content = "Wadah";
34
35
36
                    else if (SRER.X >= 0.11)
37
38
                        if (SLEL.X < -0.04)
39
40
                            if (SRERWR < -0.84)
41
42
                                outputText.Content = "Hai";
43
                            else if (SRERWR \geq -0.84)
44
45
46
                                outputText.Content = "Hormat";
47
48
49
                        else if (SLEL.X >= -0.04)
50
51
                            if (SRERWR < -0.84)
52
53
                                outputText.Content = "Hai";
54
55
                            else if (SRERWR \geq -0.84)
56
57
                                outputText.Content = "Ketua";
58
59
```

```
60
61
                }
                else if (ELWL.X >= 0.03)
62
63
64
                    if (ERWR.Y < -0.03)
65
66
                        if (SLEL.X < -0.1)
67
68
                             outputText.Content = "Ada";
69
70
                        else if (SLEL.X >= -0.1)
71
72
                             outputText.Content = "Gang";
73
74
75
                    else if (ERWR.Y >= -0.03)
76
77
                        if (SRER.Y < -0.12)
78
79
                             outputText.Content = "Botol";
80
81
                        else if (SRER.Y \geq= -0.12)
82
83
                             outputText.Content = "Geledeg";
84
85
                    }
86
                }
87
           else if (flag4 <= 9)
88
89
90
                // Dinamis
91
                if (kuantKiri[20] < 6)</pre>
92
93
                    if (kuantKiri[24] < 5.5)
94
                        if (kuantKiri[34] < 0.5)
95
96
97
                             if (kuantKanan[18] < 2)</pre>
98
99
                                 if (kuantKanan[8] < 0.5)
100
101
                                     outputText.Content = "Samping";
102
103
                                 else if (kuantKanan[8] >= 0.5)
104
105
                                     outputText.Content = "Sempit";
106
107
108
                             else if (kuantKanan[18] >= 2)
```

```
109
110
                                if (kuantKanan[26] < 4.5)
111
112
                                     if (kuantKanan[36] < 2)
113
                                         if (kuantKanan[18] < 6.5)
114
115
116
                                             outputText.Content =
       "Topeng";
117
118
                                         else if (kuantKanan[18] >=
       6.5)
119
120
                                             outputText.Content =
       "Samping";
121
                                         }
122
123
                                     else if (kuantKanan[36] >= 2)
124
125
                                         if (kuantKiri[32] < 0.5)
126
127
                                             if (kuantKiri[18] < 0.5)
128
129
                                                  outputText.Content =
       "Topeng";
130
131
                                             else if (kuantKiri[18]
       >= 0.5)
132
133
                                                  outputText.Content =
       "Bingung";
134
135
136
                                         else if (kuantKiri[32] >=
       0.5)
137
138
                                             outputText.Content =
       "Bingung";
139
140
141
142
                                else if (kuantKanan[26] >= 4.5)
143
144
                                     if (kuantKiri[16] < 3.5)
145
146
                                         outputText.Content =
       "Sempit";
147
148
                                     else if (kuantKiri[16] >= 3.5)
```

```
149
150
                                         outputText.Content =
       "Bingkai";
151
152
                                }
153
154
                        else if (kuantKiri[34] >= 0.5)
155
156
                            if (tanganKiri == "Perut")
157
158
159
                                if (kuantKanan[26] < 4.5)
160
161
                                     if (kuantKiri[30] < 0.5)
162
163
                                         if (kuantKanan[32] < 2)</pre>
164
165
                                              if (tanganKanan ==
       "Kepala")
166
167
                                                  outputText.Content =
       "Topeng";
168
169
                                             else if (tanganKanan ==
       "Perut")
170
                                                  outputText.Content =
171
       "Samping";
172
173
                                             else if (tanganKanan ==
       "Dada")
174
175
                                                 outputText.Content =
       "Topeng";
176
                                              }
177
178
                                         else if (kuantKanan[32] >=
       2)
179
180
                                             outputText.Content =
       "Bingung";
181
                                         }
182
                                     else if (kuantKanan[30] >= 0.5)
183
184
185
                                         if (kuantKanan[32] < 3)
186
                                             outputText.Content =
187
       "Topeng";
```

```
188
189
                                          else if (kuantKanan[32] >=
       3)
190
191
                                              outputText.Content =
       "Sempit";
192
193
194
                                 else if (kuantKanan[26] >= 4.5)
195
196
197
                                     if (kuantKiri[20] < 0.5)</pre>
198
199
                                          if (kuantKiri[18] < 2)
200
201
                                              outputText.Content =
       "Sempit";
202
203
                                         else if (kuantKiri[18] >=
       0.5)
204
205
                                              outputText.Content =
       "Bingung";
206
207
208
                                     else if (kuantKiri[20] >= 0.5)
209
210
                                         outputText.Content =
       "Sempit";
211
212
213
214
                             else if (tanganKiri == "Dada")
215
216
                                 outputText.Content = "Rujuk";
217
                             else if (tanganKiri == "Kepala")
218
219
220
                                 outputText.Content = "Kijang";
221
222
223
224
                    else if (kuantKiri[24] >= 5.5)
225
226
                        if (kuantKiri[18] < 2.5)
227
228
                             if (kuantKanan[14] < 3)</pre>
229
230
                                 outputText.Content = "Kijang";
```

```
231
232
                            else if (kuantKanan[14] >= 3)
233
234
                                outputText.Content = "Bola";
235
236
237
                        else if (kuantKanan[18] >= 2.5)
238
239
                            outputText.Content = "Badan";
240
241
                    }
242
               else if (kuantKiri[20] >= 6)
243
244
245
                    if (kuantKanan[30] < 3)
246
247
                        if (kuantKanan[36] < 3)
248
249
                            if (kuantKanan[32] < 4.5)
250
251
                                if (kuantKanan[28] < 1.5)
252
253
                                    if (kuantKanan[24] < 2)
254
255
                                         outputText.Content =
       "Besar";
256
257
                                    else if (kuantKanan[24] >= 2)
258
259
                                         outputText.Content =
       "Kijang";
260
261
262
                                else if (kuantKanan[28] >= 1.5)
263
264
                                    if (kuantKanan[6] < 1)
265
266
                                         outputText.Content =
       "Kijang";
2.67
268
                                    else if (kuantKanan[6] >= 1)
269
270
                                         outputText.Content =
       "Besar";
271
272
273
                            else if (kuantKanan[32] >= 4.5)
274
275
```

```
276
                                outputText.Content = "Kijang";
277
                            }
278
279
                        else if (kuantKanan[36] >= 3)
280
281
                            if (kuantKanan[26] < 4)
282
                                outputText.Content = "Kijang";
283
284
285
                            else if (kuantKanan[26] >= 4)
286
287
                                if (kuantKiri[22] < 7.5)
288
289
                                     outputText.Content = "Bingkai";
290
291
                                else if (kuantKiri[22] >= 7.5)
292
293
                                     outputText.Content = "Badan";
294
295
296
297
298
                    else if (kuantKanan[30] >= 3)
299
300
                        if (kuantKiri[12] < 7.5)
301
302
                            if (kuantKanan[34] < 6.5)
303
304
                                 if (kuantKiri[14] < 0.5)
305
306
                                     outputText.Content = "Bingung";
307
308
                                else if (kuantKiri[14] >= 0.5)
309
310
                                     if (kuantKiri[22] < 4)</pre>
311
312
                                         outputText.Content =
       "Rujuk";
313
314
                                     else if (kuantKiri[22] >= 4)
315
316
                                         outputText.Content = "Bola";
317
318
319
320
                            else if (kuantKanan[34] >= 6.5)
321
322
                                if (kuantKanan[18] < 7.5)
323
```

```
324
                                    outputText.Content = "Badan";
325
                                }
326
                                else if (kuantKanan[18] >= 7.5)
327
328
                                    outputText.Content = "Bingung";
329
330
331
332
                       else if (kuantKiri[12] >= 7.5)
333
                            if (kuantKiri[14] < 5.5)
334
335
                                if (kuantKanan[20] < 7.5)
336
337
338
                                    outputText.Content = "Badan";
339
340
                                else if (kuantKanan[20] >= 7.5)
341
342
                                    outputText.Content = "Bola";
343
344
345
                            else if (kuantKiri[14] >= 5.5)
346
347
                                if (tanganKiri == "Perut")
348
349
                                    outputText.Content = "Bola";
350
351
                                else if (tanganKiri == "Dada")
352
353
                                    outputText.Content = "Bingkai";
354
355
                                else if (tanganKiri == "Kepala")
356
                                    outputText.Content = "Kijang";
357
358
359
                            }
360
361
                   }
362
              }
363
           }
364
```

Kode Sumber 4.6 Implementasi Decision Tree dari Hasil Klasifikasi

BAB V PENGUJIAN DAN EVALUASI

Bab ini membahas pengujian dan evaluasi pada perangkat yang dikembangkan. Pengujian yang dilakukan adalah pengujian terhadap kebutuhan fungsional secara keseluruhan. Pengujian dilakukan dengan beberapa skenario. Hasil evaluasi menjabarkan tentang rangkuman hasil pengujian pada bagian akhir bab ini.

5.1 Lingkungan Pembangunan

Dalam membangun perangkat lunak ini digunakan beberapa perangkat pendukung baik perangkat keras maupun perangkat lunak lainnya. Perangkat keras yang digunakan dalam pembuatan perangkat lunak ini adalah sebuah laptop yang memiliki spesifikasi sebagai berikut:

- Prosesor Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz
- Memori (RAM) 16,00 GB
- Kinect Sensor

5.2 Skenario Pengujian

Pengujian dilakukan terhadap 20 bahasa isyarat yang dipilih oleh penulis seperti yang dapat dilihat pada Gambar 5.1. Bahasa isyarat tersebut adalah sebagai berikut:

- 1. Badan
- 2. Besar
- 3. Bingkai
- 4. Bingung
- 5. Bola
- 6. Kijang
- 7. Rujuk
- 8. Samping
- 9. Sempit

- 10. Topeng
- 11. Ada
- 12. Botol
- 13. Gang
- 14. Geledeg
- 15. Hai
- 16. Hamba
- 17. Hormat
- 18. Jendral
- 19. Ketua
- 20. Wadah

Dari ke 20 bahasa isyarat diatas, dibagi menjadi 2 jenis yaitu bahas isyarat statis dan bahasa isyarat dinamis. Bahasa isyarat statis yang berisikan Ada, Botol, Gang, Geledeg, Hai, Hamba, Hormat, Jendral, Ketua, dan Wadah. Bahasa isyarat dinamis terdiri dari Badan, Besar, Bingkai, Bingung, Bola, Kijang, Rujuk, Samping, Sempit, dan Topeng.

Pada tahap pengujian ini, dilakukan menggunakan dua data *training*. Penjelasan sebagai berikut :

- 1. Data *training* A didapat dari bahasa isyarat statis dan dinamis yang diklasifikasikan secara langsung.
- 2. Data *training* B didapat dari bahasa isyarat statis dan dinamis yang dikelompokkan terlebih dahulu, setelah itu digabungkan pada tree utama.

Pengujian dilakukan pada 10 gerakan bahasa isyarat statis dan 10 gerakan isyarat dinamis. Pengujian yang dilakukan sebagai berikut:

1. Pengujian skenario 1 merupakan pengujian akurasi yang dilakukan oleh penulis dengan menggunakan data *training* A.

Gambar 5.1 Gambar Ke-20 Bahasa Isyarat yang Digunakan

- 2. Pengujian skenario 2 merupakan pengujian akurasi yang dilakukan oleh penulis dengan menggunakan data *training* B.
- 3. Pengujian skenario 3 dan 4 merupakan pengujian akurasi yang dilakukan oleh pengguna lain menggunakan data *training* B.

5.2.1 Pengujian Skenario 1 dan Analisis

Pada pengujian skenario 1, uji coba dilakukan sendiri oleh penulis yang mempunyai karakteristik tinggi badan 179 cm. Klasifikasi dilakukan menggunakan data yang telah diambil oleh penulis sebelumnya. Skenario dapat dilihat pada Tabel 5.1

Tabel 5.1 Skenario Pengujian 1

Nama Skenario	Pengujian Akurasi 1
Pengujian	
Kode	SP-1
Algoritma	Decision Tree
Model Bahasa Isyarat	Data training A
Penguji	Penulis memiliki tinggi 179 cm
Prosedur Pengujian	Penulis melakukan uji coba 20 gerakan bahasa isyarat dimana masing-masing gerakan dilakukan uji coba sebanyak 5 kali
Hasil yang Diperoleh	Akurasi 58%

Hasil yang didapatkan dari skenario 1 tidak optimal. Banya hasil klasifikasi yang tidak sesuai dengan kelas yang dituju. Detail hasil percobaan ini dapat dilihat pada Tabel 5.2.

Menurut hasil pengamatan penulis, banyak terjadi kesalahan klasifikasi diakibatkan karena kurangnya stabilitas data yang diterima. Selain data yang tidak tetap, klasifikasi bahasa isyarat statis dan dinamis yang digabungkan secara langsung mengakibatkan data yang diklasifikasi menjadi tidak sesuai.

Tabel 5.2 Hasil Uji Coba Skenario 1

											Target	Kelas									
		Badan	Besar	Bingkai	Bingung	Bola	Kijang	Rujuk	Samping	Sempit	Topeng	Ada	Botol	Gang	Geledeg	Hai	Hamba	Hormat	Jendral	Ketua	Wadah
	Badan	1	1	1	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	Besar	2	2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	Bingkai	0	0	2	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	Bingung	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0
1	Bola	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	Kijang	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	Rujuk	0	0	2	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0
-	Samping	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	2	0	0	0	0
qo	Sempit	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0
Uji C	Topeng	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0
2	Ada	1	0	0	0	0	0	0	0	2	0	1	0	1	0	0	0	0	0	0	0
Hasil	Botol	0	0	0	0	0	0	0	0	0	0	1	4	0	0	0	0	0	0	0	0
-	Gang	1	2	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0
1	Geledeg	0	0	0	0	0	1	0	0	0	0	0	0	0	4	0	0	0	0	0	0
1	Hai	0	0	0	0	0	0	0	0	0	2	0	0	0	0	3	0	0	0	0	0
1	Hamba	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	2	0	0
ı	Hormat	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	3	0	0	0
ı	Jendral	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0
ı	Ketua	0	0	0	0	0	0	0	0	0	0	2	0	0	0	1	0	0	0	2	0
	Wadah	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	2

Hal ini dikarenakan fitur-fitur yang dibutuhkan oleh bahasa isyarat statis dan dinamis berbeda. Beberapa faktor tersebut yang mengakibatkan hasil klasifikasi dari perangkat lunak ini kurang optimal.

5.2.2 Pengujian Skenario 2 dan Analisis

Pada pengujian skenario 2, uji coba dilakukan sendiri oleh penulis yang mempunyai karakteristik tinggi badan 179 cm. Klasifikasi dilakukan menggunakan data yang telah diambil oleh penulis sebelumnya. Skenario dapat dilihat pada Tabel 5.3.

Tabel 5.3 Skenario Pengujian 2

	Shemaro r engajum 2
Nama Skenario	Pengujian Akurasi 2
Pengujian	
Kode	SP-2
Algoritma	Decision Tree
Model Bahasa Isyarat	Data training B
Penguji	Penulis memiliki tinggi 179 cm
Prosedur Pengujian	Penulis melakukan uji coba 20 gerakan bahasa isyarat dimana masing-masing gerakan dilakukan uji coba sebanyak 5 kali
Hasil yang Diperoleh	Akurasi 89%

Hasil yang didapatkan pada skenario 2 cukup baik, seperti yang dapat dilihat pada Tabel 5.4. Kesalahan klasifikasi terjadi pada beberapa gerakan. Menurut pengamatan penulis, kesalahan klasifikasi tersebut terjadi karena posisi berdiri yang kurang tepat dan gerakan yang dilakukan kurang sesuai dengan gerakan bahasa isyarat yang diinginkan.

Tabel 5.4 Hasil Uji Coba Skenario 2

											Target	Kelas									
		Badan	Besar	Bingkai	Bingung	Bola	Kijang	Rujuk	Samping	Sempit	Topeng	Ada	Botol	Gang	Geledeg	Hai	Hamba	Hormat	Jendral	Ketua	Wadah
г	Badan	4	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
l	Besar	0	4	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bingkai	0	0	4	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
l	Bingung	0	0	0	3	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0
ı	Bola	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Kijang	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	Rujuk	0	0	0	0	0	0	3	0	2	0	0	0	0	0	0	0	0	0	0	0
m	Samping	0	0	0	0	0	0	0	4	1	0	0	0	0	0	0	0	0	0	0	0
ops	Sempit	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0
Uji C	Topeng	0	0	0	0	0	0	0	0	1	4	0	0	0	0	0	0	0	0	0	0
2	Ada	0	0	0	0	0	0	0	0	0	0	4	1	0	0	0	0	0	0	0	0
Hasil	Botol	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
-	Gang	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0
ı	Geledeg	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0
1	Hai	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0
ı	Hamba	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0
1	Hormat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0
ı	Jendral	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0
ı	Ketua	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0
	Wadah	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	4

5.2.3 Pengujian Skenario 3 dan Analisis

Pada pengujian skenario 3, uji coba dilakukan oleh pengguna yang mempunyai karakteristik tinggi badan 172 cm. Klasifikasi dilakukan menggunakan data yang telah diambil oleh penulis sebelumnya. Skenario dapat dilihat pada **Error! Not a valid bookmark self-reference.**

Tabel 5.5 Skenario Pengujian 3

Nama Skenario	Pengujian Akurasi 3
Pengujian	
Kode	SP-3
Algoritma	Decision Tree
Model Bahasa Isyarat	Data training B
Penguji	Pengguna memiliki tinggi 172
Prosedur Pengujian	Pengguna melakukan uji coba 20 gerakan bahasa isyarat pokok dimana masing-masing gerakan dilakukan uji coba sebanyak 5 kali
Hasil yang Diperoleh	Akurasi 81%

Hasil yang didapatkan pada skenario 3 cukup baik namun akurasi yang didapatkan lebih rendah dibandingkan dengan skenario 2, seperti yang dapat dilihat pada Tabel 5.6.

Berdasarkan skenario 3 yang telah dilakukan, terdapat lebih banyak gerakan yang kurang sesuai dengan yang diinginkan. Dapat dilihat pada gerak bahasa isyarat "Ada" memiliki tingkat akurasi yang kurang yaitu 2 dari 5 kali uji coba. Dari percobaan ini, menurut pengamatan penulis, kesalahan terjadi dikarenakan perbedaan postur tubuh penguji yang cukup berbeda dan kurang terbiasanya penguji dalam melakukan gerak bahasa isyarat ini.

Tabel 5.6 Hasil Uji Coba Skenario 3

											Target	Kelas									
		Badan	Besar	Bingkai	Bingung	Bola	Kijang	Rujuk	Samping	Sempit	Topeng	Ada	Botol	Gang	Geledeg	Hai	Hamba	Hormat	Jendral	Ketua	Wadah
	Badan	4	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ı	Besar	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
L	Bingkai	0	0	3	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
L	Bingung	0	0	0	3	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0
L	Bola	1	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ı	Kijang	0	1	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ı	Rujuk	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0
	Samping	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0
ops	Sempit	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0
Uji C	Topeng	0	0	0	2	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0
o lis	Ada	0	0	0	0	0	0	0	0	0	0	2	2	1	0	0	0	0	0	0	0
Has	Botol	0	0	0	0	0	0	0	0	0	0	0	4	1	0	0	0	0	0	0	0
	Gang	0	0	0	0	0	0	0	1	0	0	0	0	4	0	0	0	0	0	0	0
ı	Geledeg	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0
ı	Hai	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0
L	Hamba	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0
L	Hormat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	4	0	0	0
L	Jendral	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0
ı	Ketua	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	3	0
	Wadah	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	3

5.2.4 Pengujian Skenario 4 dan Analisis

Pada pengujian skenario 4, uji coba dilakukan oleh pengguna yang mempunyai karakteristik tinggi badan 161 cm. Klasifikasi dilakukan menggunakan data yang telah diambil oleh penulis sebelumnya. Skenario dapat dilihat pada **Error! Not a valid bookmark self-reference.**

Tabel 5.7 Skenario Pengujian 4

	Shenaro I engajian .
Nama Skenario	Pengujian Akurasi 4
Pengujian	
Kode	SP-4
Algoritma	Decision Tree
Model Bahasa Isyarat	Data training B
Penguji	Pengguna memiliki tinggi 161 cm
Prosedur Pengujian	Pengguna melakukan uji coba 20 gerakan bahasa isyarat pokok dimana masing-masing gerakan dilakukan uji coba sebanyak 5 kali
Hasil yang Diperoleh	Akurasi 81%

Hasil yang didapatkan pada skenario 4 cukup baik. Walaupun akurasi yang didapatkan lebih rendah dibandingkan dengan skenario 2, seperti yang dapat dilihat pada Tabel 5.8.

Menurut pengamatan penulis, hasil klasifikasi yang lebih rendah terjadi karena posisi dan gerakan yang dilakukan kurang sesuai dengan gerakan bahasa isyarat yang diinginkan serta belum terbiasanya penguji menggunakan perangkat lunak yang dibangun. Pada uji coba ini juga dapat dilihat bahwa hasil gerak bahasa isyarat "Wadah" hanya memiliki benar 1 dari 5 kali pengujian, menandakan hasil klasifikasi wadah yang kurang baik.

Tabel 5.8 Hasil Uji Coba Skenario 4

											Target	Kelas									
		Badan	Besar	Bingkai	Bingung	Bola	Kijang	Rujuk	Samping	Sempit	Topeng	Ada	Botol	Gang	Geledeg	Hai	Hamba	Hormat	Jendral	Ketua	Wadah
	Badan	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	Besar	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	Bingkai	1	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	Bingung	0	0	0	2	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0
1	Bola	1	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	Kijang	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	Rujuk	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0
_	Samping	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0
opa	Sempit	0	0	0	0	1	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0
Uji C	Topeng	0	0	0	2	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0
=	Ada	0	0	0	0	0	0	0	0	0	0	3	1	1	0	0	0	0	0	0	0
Hasil	Botol	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
_	Gang	0	0	0	0	0	0	0	0	0	0	0	1	4	0	0	0	0	0	0	0
	Geledeg	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0
1	Hai	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0
ı	Hamba	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0
ı	Hormat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	4	0	0	0
ı	Jendral	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0
ı	Ketua	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0
	Wadah	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	3	0	1

5.3 Evaluasi

Subbab ini membahas mengenai evaluasi terhadap pengujian-pengujian yang telah dilakukan. Evaluasi disampaikan dalam bentuk analisis hasil secara keseluruhan sebagai berikut:

1. Klasifikasi fitur statis dan dinamis di dalam perangkat lunak yang dibuat mempunyai akurasi rata-rata 83.67%. Grafik hasil akurasi dari masing-masing percobaan dapat dilihat pada Gambar 5.2.

Gambar 5.2 Hasil Uji Coba

- 2. Pada percobaan skenario 1 dapat dilihat hasil dari klasifikasi kurang memuaskan. Hal ini dikarenakan kebutuhan fitur untuk klasifikasi statis dan dinamis tidak sama, sehingga pengelompokan gerakan diperlukan agar akurasi hasil klasifikasi meningkat. Dapat dilihat dari hasil skenario 2 bahawa hasil yang didapat lebih optimal karena klasifikasi sudah dibedakan sesuai kebutuhan.
- 3. Ada beberapa gerakan bahasa isyarat dinamis yang menyerupai sehingga mengakibatkan salah dalam mengklasifikasikan data. Dapat dilihat pada gerakan "Bola" ,"Bingkai" dan "Badan", ketiga gerakan ini memiliki gerakan dan posisi yang menyerupai sehingga dapat membuat kerancuan dalam mengolah data.

- 4. Ada beberapa gerakan bahasa isyarat statis yang juga memiliki kemiripan posisi. Contoh pada bahasa isyarat "Gang" dan "Ada", kedua gerakan ini memiliki posisi yang menyerupai, sehingga terjadi beberapa kesalahan pengartian pada saat uji coba.
- 5. Bahasa isyarat statis "Wadah" memiliki tingkat akurasi yang sangat kurang dikarenakan pada proses ekstarksi fitur, fitur yang digunakan hanya fitur 2 dimensi saja.
- 6. Dalam perangkat lunak ini menggunakan decision tree sehingga memumgkinkan sebuah fitur dianggap lebih penting dibandingkan dengan fitur yang lainnya. Hal ini dapat mengurangi tingkat akurasi dari klasifikasi perangkat lunak.

BAB VI KESIMPULAN DAN SARAN

Pada bab ini akan diberikan kesimpulan yang diambil selama pengerjaan Tugas Akhir serta saran-saran tentang pengembangan yang dapat dilakukan terhadap Tugas Akhir ini di masa yang akan datang.

6.1 Kesimpulan

Dari proses pengerjaan selama perancangan, implementasi, dan proses pengujian aplikasi yang dilakukan, dapat diambil kesimpulan sebagai berikut:

- 1. Fitur yang digunakan dalam proses ekstraksi fitur statis ada 21 fitur yang digunakan yaitu 7 fitur vektor 2D, 6 fitur angle, dan 1 fitur distance. Fitur yang digunakan dalam proses ekstraksi fitur dinamis berjumlah 38 fitur yaitu 18 fitur awal merupakan ekstraksi fitur dinamis tangan kiri, 18 fitur berikutnya merupakan ekstraksi fitur dinamis tangan kanan, dan 2 fitur untuk menentukan posisi tangan kiri dan kanan. Semua fitur tersebut didapatkan dari hasil olah data koordinat 11 skeleton joints yang ditentukan oleh penulis, yaitu:
 - a. Leher (vector N)
 - b. Bahu tulang belakang (Vektor SS)
 - c. Tulang belakang tengah (Vektor SM)
 - d. Bahu tangan kanan (Vektor SR)
 - e. Siku tangan kanan (Vektor ER)
 - f. Pergelangan tangan kanan (Vektor WR)
 - g. Telapak Tangan kanan (Vektor HR)
 - h. Bahu tangan kiri (Vektor SL)
 - i. Siku tangan kiri (Vektor EL)
 - j. Pergelangan tangan kiri (Vektor WL)
 - k. Telapak tangan kiri (Vektor HL)

- 2. Ketepatan posisi berdiri dan melakukan gerakan bahasa isyarat yang dilakukan ketika melakukan *training* dan *testing* data sangat berpengaruh terhadap akurasi klasifikasi fitur.
- 3. Perbedaan karakteristik tinggi badan berpengaruh terhadap penentuan koordinat *skeleton joints* dimana perbedaan tersebut mempengaruhi identifikasi posisi gerakan yang dilakukan oleh perangkat lunak.
- 4. Perangkat lunak yang dibangun pada Tugas Akhir ini dapat menerjemahkan bahasa isyarat pokok dengan akurasi ratarata 83.67%.

6.2 Saran

Berikut saran-saran untuk pengembangan dan perbaikan sistem di masa yang akan datang. Di antaranya adalah sebagai berikut:

- 1. Memperbanyak data *training* dari berbagai macam pengguna yang mempunyai karakteristik tubuh dan sudut pengambilan Kinect 2.0 yang berbeda-beda.
- 2. Identifikasi *skeleton joints* tidak hanya posisi tangan saja. Karena pada beberapa gerakan bahasa isyarat, terdapat kesamaan dalam gerakan atau posisi namun memiliki bentuk atau model tangan yang berbeda.
- 3. Melakukan normalisasi data koordinat masing-masing *skeleton joints* sebelum dilakukan proses ekstraksi fitur dinamis agar mendapatkan hasil lebih akurat.
- 4. Menggunakan *classifier* yang lebih baik dapat meningkatkan akurasi perangkat lunak ini.
- 5. Fitur yang digunakan sebaiknya ditambahkan menjadi vektor 3D untuk meningkatkan akurasi hasil klasifikasi perangkat lunak.

[Halaman ini sengaja dikosongkan]

DAFTAR PUSTAKA

- [1] N. Sugianto and F. Samopa, "Analisa Manfaat dan Penerimaan Terhadap Implementasi Bahasa Isyarat Indonesia pada Latar Belakang Komplek Menggunakan Kinect dan Jaringan Syaraf Tiruan (Studi Kasus SLB Karya Mulia 1)," *JUISI*, vol. 1, pp. 56-72, 2015.
- [2] Y. A. Sutanto, "Rancang Bangun Modul Pengenalan Bahasa Isyarat Indonesia Menggunakan Teknologi Kinect dan Metode Back Propagation Genetic Algorithm Neural Network," Institut Teknologi Sepuluh Nopember, Surabaya, 2016.
- [3] Y. E. Nugyasa, "Ekstraksi Fitur Dinamis Pada Gerakan Tangan Menggunakan Kinect 2.0 Untuk Mengenali Bahas Isyarat Indonesia," Institut Teknologi Sepuluh Nopember, Surabaya, 2017.
- [4] A. W. Yanuardi, S. Prasetio and P. P. Johannes Adi, "Indonesian Sign Language Computer Application for the Deaf," in *International Conference on Education Technology and Computer*, Shanghau, 2010.
- [5] M. Iqbal, "Pengenalan Bahasa Isyarat Indonesia Berbasis Sensor Flex dan Accelerometer Menggunakan Dynamic Time Warping," Institut Teknologi Sepuluh Nopember, Surabaya, 2011.
- [6] Y. Chen, B. Luo, Y.-L. Chen, G. Liang and X. Wu, "A Real-time Dynamic Hand Gesture Recognition System Using Kinect Sensor," in *IEEE Conference on Robotics and Biomimetics*, Zhuhai, 2015.
- [7] "Kinect," Wikipedia, [Online]. Available: http://en.wikipedia.org/wiki/Kinect. [Accessed 7 June 2016].
- [8] "Microsoft Visual Studio," Wikipedia, [Online]. Available: http://id.wikipedia.org/wiki/Microsoft_Visual_Studio. [Accessed 7 Juny 2016].
- [9] C. Sun, T. Zhang, B.-K. Bao and C. Xu, "Discriminative

Exemplar Coding for Sign Language," in *IEEE TRANSACTIONS ON CYBERNETICS*, 2013.

LAMPIRAN A KODE SUMBER

```
private void OneTestButton Click(object sender,
       RoutedEventArgs e)
2
3
           statusDetail.Content = "Testing Data";
4
           statusAmbil = 2;
5
           flag2 = 0;
6
           flag3 = 0;
7
           i = 0;
8
           InitStaticFeatures();
9
```

Kode Sumber A.1 Fungsi Create File

```
private
                    void
                               createButton click(object
                                                                sender,
       RoutedEventArgs e)
2
3
           statusDetail.Content = "Create Dataset";
4
           statusAmbil = 1;
5
           flag2 = 0;
6
           flag3 = 0;
7
           i = 0;
8
           InitStaticFeatures();
9
10
           namaGerakan = fileName.Text;
11
```

Kode Sumber A.2 Fungsi Start Testing

```
private void stopButton Click(object sender, RoutedEventArgs
       e)
2
       {
3
           statusDetail.Content = "Idle";
4
           statusAmbil = 0;
5
           flag2 = 0;
6
           ambilData.Content = "Done";
7
           outputText.Content = "";
8
           outputImage.Source = null;
9
       }
```

Kode Sumber A.3 Fungsi Stop

[Halaman ini sengaja dikosongkan]

LAMPIRAN B SCREENSHOT PERANGKAT LUNAK

Gambar B.1 Penulis Melakukan Gerak Bahasa Isyarat Badan

Gambar B.2 Penulis Melakukan Gerak Bahasa Isyarat Besar

Gambar B.3 Penulis Melakukan Gerak Bahasa Isyarat Bingkai

Gambar B.4 Penulis Melakukan Gerak Bahasa Isyarat Bingung

Gambar B.5 Penulis Melakukan Gerak Bahasa Isyarat Bola

Gambar B.6 Penulis Melakukan Gerak Bahasa Isyarat Kijang

Gambar B.7 Penulis Melakukan Gerak Bahasa Isyarat Rujuk

Gambar B.8 Penulis Melakukan Gerak Bahasa Isyarat Samping

Gambar B.9 Penulis Melakukan Gerak Bahasa Isyarat Sempit

Gambar B.10 Penulis Melakukan Gerak Bahasa Isyarat Topeng

Gambar B.11 Penulis Melakukan Gerak Bahasa Isyarat Ada

Gambar B.12 Penulis Melakukan Gerak Bahasa Isyarat Botol

Gambar B.13 Penulis Melakukan Gerak Bahasa Isyarat Gang

Gambar B.14 Penulis Melakukan Gerak Bahasa Isyarat Geledeg

Gambar B.15 Penulis Melakukan Gerak Bahasa Isyarat Hai

Gambar B.16 Penulis Melakukan Gerak Bahasa Isyarat Hamba

Gambar B.17 Penulis Melakukan Gerak Bahasa Isyarat Hormat

Gambar B.18 Penulis Melakukan Gerak Bahasa Isyarat Jendral

Gambar B.19 Penulis Melakukan Gerak Bahasa Isyarat Ketua

Gambar B.20 Penulis Melakukan Gerak Bahasa Isyarat Wadah

Gambar B.21 Penguji 1 Melakukan Gerak Bahasa Isyarat Hai

Gambar B.22 Penguji 2 Melakukan Gerak Bahasa Isyarat Gang

[Halaman ini sengaja dikosongkan]

BIODATA PENULIS

Penulis lahir di kota Surabaya pada 05 September 1995. Merupakan anak tunggal yang mampunyai hobi bermain game, mendaki gunung dan fotografi. Penulis telah menempuh pendidikan formal vaitu TKK Maria Regina (2000 -2001), SDK Maria Regina (2001 -2007), SMPK Carolus (2007 - 2010), SMAK Frateran (2010 - 2013), dan **S**1 Departemen mahasiswa Teknik Informatika **Fakultas** Teknologi

Informasi Institut Teknologi Sepuluh Nopember Surabaya rumpun mata kuliah Interaksi, Grafika, dan Seni (IGS).

Penulis pernah mengikuti beberapa organisasi dan kepanitiaan yaitu ITS EXPO sebagai staf (2015), dan GERIGI ITS sebagai *Organizing Committee* (2014) dan *Instructor Committee* (2015). Penulis dapat dihubungi melalui surel inyas.benedict@gmail.com.