Hands-on Activity 6.1 Introduction to Data Analysis and Tools

CPE311 Computational Thinking with Python

Name: Carigo, Naira Jezreel

Section: CPE22S3

Performed on: 04/05/2025

Submitted on: 04/05/2025

Submitted to: Engr. Roman M. Richard

Exercise 1

Run the given code below for exercises 1 and 2, perform the given tasks without using any Python modules.

```
import random
random.seed(0)
salaries = [round(random.random()*1000000, -3) for _ in range(100)]
```

Using the data generated above, calculate the following statistics without importing anything from the statistics module in the standard library (https://docs.python.org/3/library/statistics.html) and then confirm your results match up to those that are obtained when using the statistics module (where possible): Mean Median Mode (hint: check out the Counter in the collections module of the standard library at https://docs.python.org/3/library/collections.html#collections.Counter) Sample variance Sample standard deviation

```
In [7]: import random
        from collections import Counter
        # Generate 100 salary values using random
        random.seed(0)
        salaries = [round(random.random() * 1000000, -3) for _ in range(100)]
        # sum of all values divided by the number of values
        total = 0
        for s in salaries:
            total += s
        mean = total / len(salaries)
        # Median
        # sort the list and get the middle value(s)
        sorted salaries = sorted(salaries)
        n = len(sorted salaries)
        if n % 2 == 0:
            median = (sorted_salaries[n // 2 - 1] + sorted_salaries[n // 2]) / 2
```

```
else:
    median = sorted salaries[n // 2]
# Mode
# use Counter to count frequencies and find the most common value(s)
frequency = Counter(salaries)
max count = max(frequency.values())
mode = [val for val, count in frequency.items() if count == max_count]
# Sample Variance
# use the formula: variance = \Sigma(x - mean)^2 / (n - 1)
sum squared diff = 0
for s in salaries:
    sum_squared_diff += (s - mean) ** 2
variance = sum squared diff / (n - 1)
# Sample Standard Deviation
# square root of the variance (using **0.5 instead of math.sqrt)
std dev = variance ** 0.5
# Display results
print("Exercise 1 Results:")
print("Mean:", mean)
print("Median:", median)
print("Mode:", mode)
print("Sample Variance:", variance)
print("Sample Standard Deviation:", std_dev)
```

Exercise 1 Results: Mean: 585690.0 Median: 589000.0 Mode: [477000.0]

Sample Variance: 70664054444.44444

Sample Standard Deviation: 265827.11382484

Exercise 2

Using the same data, calculate the following statistics using the functions in the statistics module where appropriate: Range Coefficient of variation Interquartile range Quartile coefficient of dispersion

```
In [12]: import statistics

# Range
# highest salary minus Lowest salary
range_val = max(salaries) - min(salaries)

# Coefficient of Variation
# (Standard Deviation / Mean) × 100
cv = (statistics.stdev(salaries) / statistics.mean(salaries)) * 100

# Interquartile Range (IQR)
# use statistics.quantiles with n=4 for quartiles
quartiles = statistics.quantiles(salaries, n=4)
```

```
q1 = quartiles[0] # 25th percentile
q3 = quartiles[2] # 75th percentile
iqr = q3 - q1

# Quartile Coefficient of Dispersion (QCD)
# (Q3 - Q1) / (Q3 + Q1)
qcd = (q3 - q1) / (q3 + q1)

# Display results
print("\nExercise 2 Results:")
print("Range:", range_val)
print("Coefficient of Variation: {:.2f}%".format(cv))
print("Interquartile Range (IQR):", iqr)
print("Quartile Coefficient of Dispersion (QCD):", round(qcd, 4))
```

```
Exercise 2 Results:
Range: 995000.0
Coefficient of Variation: 45.39%
Interquartile Range (IQR): 421750.0
Quartile Coefficient of Dispersion (QCD): 0.3449
```

Exercise 3: Pandas for Data Analysis

Load the diabetes.csv file. Convert the diabetes.csv into dataframe Perform the following tasks in the diabetes dataframe:

- 1. Identify the column names
- 2. Identify the data types of the data
- 3. Display the total number of records
- 4. Display the first 20 records
- 5. Display the last 20 records
- 6. Change the Outcome column to Diagnosis
- 7. Create a new column Classification that display "Diabetes" if the value of outcome is 1, otherwise "No Diabetes"
- 8. Create a new dataframe "withDiabetes" that gathers data with diabetes
- 9. Create a new dataframe "noDiabetes" thats gathers data with no diabetes
- 10. Create a new dataframe "Pedia" that gathers data with age 0 to 19
- 11. Create a new dataframe "Adult" that gathers data with age greater than 19
- 12. Use numpy to get the average age and glucose value.
- 13. Use numpy to get the median age and glucose value.
- 14. Use numpy to get the middle values of glucose and age.
- 15. Use numpy to get the standard deviation of the skinthickness.

```
import pandas as pd
import numpy as np

diabetes = pd.read_csv("diabetes.csv")
df = pd.DataFrame(diabetes)
df.head()
```

Out[20]:	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunc	
	0 6	148	72	35	0	33.6	C	
	1 1	85	66	29	0	26.6	C	
	2 8	183	64	0	0	23.3	C	
	3 1	89	66	23	94	28.1	C	
	4 0	137	40	35	168	43.1	2	
	4					_		
In [18]:	# 1. display of df.columns	all column	n names in the	dataset				
Out[18]:	<pre>Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',</pre>							
In [22]:	# 2. display data types for each column df.dtypes							
Out[22]:	Pregnancies		int64					
	Glucose		int64					
	BloodPressure		int64					
	SkinThickness int64 Insulin int64							
	BMI		float64					
	DiabetesPedig	reeFuncti						
	Age		int64					
	Outcome dtype: object		int64					
In [24]:	# 3. get the total number of rows in the dataset len(df)							
Out[24]:	768							
In [26]:	# 4. show the df.head(20)	first 20	rows of the Da	ıtaFrame				

Out[26]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabetes Pedigree Fur
	0	6	148	72	35		33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	5	5	116	74	0	0	25.6	
	6	3	78	50	32	88	31.0	
	7	10	115	0	0	0	35.3	
	8	2	197	70	45	543	30.5	
	9	8	125	96	0	0	0.0	
	10	4	110	92	0	0	37.6	
	11	10	168	74	0	0	38.0	
	12	10	139	80	0	0	27.1	
	13	1	189	60	23	846	30.1	
	14	5	166	72	19	175	25.8	
	15	7	100	0	0	0	30.0	
	16	0	118	84	47	230	45.8	
	17	7	107	74	0	0	29.6	
	18	1	103	30	38	83	43.3	
	19	1	115	70	30	96	34.6	
	4							•

In [28]: # 5. show the Last 20 rows of the DataFrame
df.tail(20)

Out[28]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeF ι
	748	3	187	70	22	200	36.4	
	749	6	162	62	0	0	24.3	
	750	4	136	70	0	0	31.2	
	751	1	121	78	39	74	39.0	
	752	3	108	62	24	0	26.0	
	753	0	181	88	44	510	43.3	
	754	8	154	78	32	0	32.4	
	755	1	128	88	39	110	36.5	
	756	7	137	90	41	0	32.0	
	757	0	123	72	0	0	36.3	
	758	1	106	76	0	0	37.5	
	759	6	190	92	0	0	35.5	
	760	2	88	58	26	16	28.4	
	761	9	170	74	31	0	44.0	
	762	9	89	62	0	0	22.5	
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	
	4 (•
In [58]:				Outcome' to 'Di Outcome": "Dia				

localhost:8888/lab/tree/CPE22S3_Carigo-HoA6.1.ipynb?

df

Out[58]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFu
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	•••	•••		•••				
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	

768 rows × 10 columns

In [68]: # 7. add a new column that shows 'Diabetes' if Diagnosis is 1, otherwise 'No Diabet
df["Classification"] = ["Diabetes" if x == 1 else "No Diabetes" for x in df["Diagno
df[["Diagnosis", "Classification"]]

Out[68]:		Diagnosis	Classification
	0	1	Diabetes
	1	0	No Diabetes
	2	1	Diabetes
	3	0	No Diabetes
	4	1	Diabetes
	•••		
	763	0	No Diabetes
	764	0	No Diabetes
	765	0	No Diabetes
	766	1	Diabetes
	767	0	No Diabetes

768 rows × 2 columns

```
# 8. filter and store rows where Diagnosis is 1 (has diabetes)
In [64]:
          withDiabetes = df[df["Diagnosis"] == 1]
          withDiabetes.head()
Out[64]:
             Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunc
                      6
                                                                                               (
          0
                             148
                                             72
                                                           35
                                                                       33.6
                      8
          2
                             183
                                             64
                                                            0
                                                                    0 23.3
                                                                                               (
                                                                                               2
          4
                      0
                                             40
                                                                  168 43.1
                             137
                                                           35
                      3
                              78
                                             50
                                                           32
                                                                   88 31.0
                                                                                               (
          6
                      2
                             197
                                             70
                                                           45
                                                                  543 30.5
                                                                                               C
          8
          # 9. filter and store rows where Diagnosis is 0 (no diabetes)
In [70]:
          noDiabetes = df[df["Diagnosis"] == 0]
          noDiabetes.head()
Out[70]:
              Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFur
           1
                       1
                               85
                                              66
                                                            29
                                                                        26.6
                                                                     0
                       1
                               89
                                                            23
                                                                    94 28.1
           3
                                              66
                       5
                                                             0
                                                                     0 25.6
           5
                              116
                                              74
           7
                       10
                              115
                                               0
                                                             0
                                                                     0 35.3
                                              92
                                                             0
                                                                     0 37.6
          10
                       4
                              110
In [72]: # 10. filter and store rows for pediatric patients (age 0 to 19)
          Pedia = df[df["Age"] <= 19]</pre>
          Pedia.head()
Out[72]:
            Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunct
In [74]: # 11. filter and store rows for adult patients (age greater than 19)
          Adult = df[df["Age"] > 19]
          Adult.head()
```

Out[74]:	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeFunc		
	0 6	148	72	35	0	33.6	C		
	1 1	85	66	29	0	26.6	C		
	2 8	183	64	0	0	23.3	C		
	3 1	89	66	23	94	28.1	C		
	4 0	137	40	35	168	43.1	2		
	4						•		
In [44]:	<pre> : # 12. #calculate the average (mean) of Age using numpy avg_age = np.mean(df["Age"]) # calculate the average (mean) of Glucose using numpy</pre>								
	<pre>avg_glucose = print("Average print("Average</pre>	np.mean(c	<pre>If["Glucose"]) avg_age)</pre>		у				
	Average Age: 33. Average Glucose:	24088541	6666664	,					
In [46]:	<pre># 13. # Calculate the median Age using numpy median_age = np.median(df["Age"])</pre>								
	print("Median print("Median	_		se)					
	Median Age: 29.0 Median Glucose:								
In [52]:	<pre># 14. # get the middle index of the dataset middle_index = len(df) // 2</pre>								
	<pre># get the age middle_age = d</pre>								
	<pre># get the glucose value at the middle index middle_glucose = df["Glucose"].iloc[middle_index]</pre>								
	<pre>print("Middle Age:", middle_age) print("Middle Glucose:", middle_glucose)</pre>								
	Middle Age: 25 Middle Glucose:	125							
In [78]:	# 15. use nump std_skin = np.				of Ski	nThick	Rness		

print("Standard Deviation of SkinThickness:", std_skin)

Standard Deviation of SkinThickness: 15.952217567727677