MA 110 Midsem TSC

Aditya Dwivedi & Aditya Agrawal

19th February 2024

Vector Spaces

Definition: A vector space (or linear space) \mathbf{V} over a field \mathbf{F} consists of a set on which two operations (called **addition** and **scalar multiplication**, respectively) are defined so that for each pair of elements \mathbf{x} , \mathbf{y} , in \mathbf{V} there is a unique element $\mathbf{x} + \mathbf{y}$ in \mathbf{V} , and for each element \mathbf{a} in \mathbf{F} and each element \mathbf{x} in \mathbf{V} there is a unique element \mathbf{x} in \mathbf{V} , such that the following conditions hold:

Vector Spaces

- 1. (VS 1) For all x, y in V, x + y = y + x (commutativity of addition).
- 2. (VS 2) For all x, y, z in V, (x + y) + z = x + (y + z) (associativity of addition).
- 3. (VS 3) There exists an element in V denoted by 0 such that x + 0 = x for each x = x in V.
- 4. (VS 4) For each element x in V there exists an element y in V such that x + y = 0.
- 5. (VS 5) For each element x in V, 1x = x.
- 6. (VS 6) For each pair of elements a, b in F and each element x in V, (ab)x = a(bx).
- 7. (VS 7) For each element a in F and each pair of elements x, y in V, a(x + y) = ax + ay.
- 8. (VS 8) For each pair of elements a, b in F and each element x in V, (a + b)x = ax + bx.

Subspaces

Definition: A subset W of a vector space V over a field F is called a subspace of V if W is a vector space over F with the operations of addition and scalar multiplication defined on V.

Lemma: Let V be a vector space and W a subset of V. Then W is a subspace of V if and only if the following three conditions hold for the operations defined in V.

- 1. $0 \in W$.
- 2. $x + y \in W$ whenever $x \in W$ and $y \in W$.
- 3. $cx \in W$ whenever $c \in F$ and $x \in W$.

Basis

Definition: A set of vectors $\mathcal{B} \subset V$ is called a basis if and only if they are linearly independent and \mathcal{S} pan $\{\mathcal{B}\} = V$

Lemma: Every vector space V has a basis.

- A basis is not a unique set of vectors
- ► The dimension of a vector space is defined as the cardinality of the basis. Obviously, for this to make sense all sets of basis must have the same cardinality.

Question: We have seen that a basis is not unique. Let \mathcal{C} be the set of all basis \mathcal{B} for V. Is this set \mathcal{C} also a vector space under usual definitions of addition and scalar multiplication?

Linear Transformations

Definition: A linear transformation $T: V \to W$ is a function which satisfies the linearity operations i.e.,

- $T(u+v) = T(u) + T(v) \ \forall u, w \in V$
- $T(\alpha v) = \alpha T(v) \quad \forall \alpha \in F \text{ and } v \in V$

Corollary

$$T(0) = 0$$

Isomorphism: A linear transformation $T:V\to W$ is called an isomorphism iff it is both one-one and onto.

Question: Let $T:V\to W$ be an isomorphism and $\mathcal B$ a basis for V. Prove that $T(\mathcal B)$ is a basis for W. Use this to prove \exists $T:V\to W$ which is an isomorphism iff the dimension of V and W are the same

Matrix Representation of Linear Transformations

A linear transformation $T:V\to W$ between finite dimensional vector spaces can be represented using matrices.

Note: This matrix is not unique and depends on the choice of basis in both V and W.

Let \mathcal{B} be a basis for a vector space V of dimension n. Then let $[v]_{\mathcal{B}}$ represent the $n \times 1$ vector with the corresponding coefficients for each of the basis vectors.

Question: Prove that $T:V\to\mathbb{R}^n$ given by $T(v)=[v]_\mathcal{B}$ is a linear isomorphism

Matrix Representation of Linear Transformations

Let \mathcal{B} be a basis for V and \mathcal{C} be a basis for W, then the matrix of transformations $M_{\mathcal{B}}^{\mathcal{C}}(T)$ for $T:V\to W$ is defined as

$$M_{\mathcal{B}}^{\mathcal{C}}(T) = \begin{bmatrix} [T(v_1)]_{\mathcal{C}} & [T(v_2)]_{\mathcal{C}} & \dots & [T(v_n)]_{\mathcal{C}} \end{bmatrix}$$

where $\{v_1, v_2, \dots v_n\} = \mathcal{B}$

Note: This matrix completely defines $T: V \to W$ because a linear transformation is completely defined by its action on a basis.

Question: Find the matrix of transformations for the linear transformation $T:V\to W$ given by $T(v)=v^T$ and basis $\mathcal B$ and $\mathcal B^T$

Rank- Nullity Theorem

Given any linear transformation $T:V\to W$, we can study some interesting properties related to them.

Definition: The image space of T denoted by C(T) is the set of vectors $w \in W$ such that $\exists v \in V$, T(v) = w.

Definition: The null space or the kernel of T denoted by N(T) is the set of all vectors $v \in V$, T(v) = 0 verify!! both of them are vector spaces

Theorem

Rank Nullity Theorem states that the sum of the dimension of C(T) and N(T) is equal to the dimension of V.

Question: Given N(T) and C(T) and V, W, is it always possible to define a unique linear transformation using these??

Determinants

The study of determinants is an interesting topic because they help provide a heuristic to reason about linear transformations.

Definition: Let $V = \mathbb{R}^n$, then the determinant is a function $f: V^n \to \mathbb{R}$ which has the following properties:

- Multilinearity: $f(v_1, v_2, ..., \alpha a + \beta b, ..., v_n) = \alpha f(v_1, v_2, ..., a, ..., v_n) + \beta f(v_1, v_2, ..., b, ..., v_n)$
- Alternating: $f(v_1, v_2, \dots, v_i, \dots, v_j, \dots, v_n) = -f(v_1, v_2, \dots, v_j, \dots, v_i, \dots, v_n)$
- ightharpoonup f(I) = 1 where I is the identity matrix

Note: The normal way we use to calculate determinants is in fact a function which satisfies these properties.

Determinants

Some useful properties of determinants which help us reason about linear transformations:

- ▶ A matrix is invertible iff its determinant is non zero
- $\blacktriangleright det(CD) = det(C)det(D)$
- ightharpoonup det(CD) = det(DC)
- $det(\lambda A) = \lambda^n det(A)$ where n is the dimension of the matrix.
- If any matrix of transformation in your favourite basis has non zero determinant, then the linear transformation is an isomorphism.
- ➤ A basis transformation is also a linear transformation. Using properties of determinants, it is easy to show that this a linear isomorphism

Dot Products (Inner Product)

Definition: Let V be a vector space, then the dot product is a function $f: V \times V \to \mathbb{R}$ with the following properties:

- f(u+v,w) = f(u,w) + f(v,w)
- $f(\alpha u, v) = \alpha f(u, v)$
- f(u,v) = f(v,u)
- $f(u,u) \ge 0$ and f(u,u) = 0 iff u = 0

Note: Two vectors u, v are said to be orthogonal iff f(u, v) = 0Note: It is convenient to represent this instead by use of a dot such that f(u, v) = u.v

Corollary:

$$u.0 = 0.u = 0$$

Orthogonal Spaces

Definition: Let V be a vector space equipped with a dot product . and W be a subspace of V. The set of all vectors $u \in V$ such that $u.v = 0 \ \forall v \in W$ also form a subspace (verify!!) in V. Let us denote this by U. U is called the orthogonal subspace of W.

The orthogonal subspace has some very interesting properties:

- ▶ $U \cap W = \{0\}$. Prove this!!
- ▶ dim(U) + dim(W) = dim(V). Does this remind you of something :)

Question: Let $v \in V$ be a fixed vector. Prove that T(u) = u.v is a linear transformation.

Question: Let \mathcal{B} be a basis of U and \mathcal{C} be a basis of W, then prove that $\mathcal{B} \cup \mathcal{C}$ is a basis of V.

Orthogonal Basis

Definition: Let V be a vector space equipped with a dot product ., then an orthonormal basis set $\mathcal B$ is a set which is first of all a basis and all pairs of basis vectors are mutually orthogonal.

Note: It is easy to prove existence of such a basis for finite dimensional vector spaces using Gram- Schmidt Orthogonalization

The great thing about an orthogonal basis is that it is extremely easy to calculate the coefficients of the basis vectors.

$$v = c_1 v_1 + c_2 v_2 + \cdots + c_n v_n$$
 then $c_i = v \cdot v_i / v_i \cdot v_i$

Projection Matrices

Let us now consider the following problem of projecting a vector onto a subspace. We tackle this problem by constructing an orthonormal basis for the subspace and then projecting a vector onto it.

Note: Let \mathcal{B} be an orthonormal basis for the subspace W and P represent the matrix $P = [v_1 v_2 \dots v_n]$, then the projection matrix $\pi = PP^T$, this is simply utilizing the above fact.

Note: The norm of a vector u is defined as $\sqrt{u.u}$

Eigenvalues and Eigenvectors

Definition: Let A be a matrix and v be a vector such that $Av = \lambda v$, then λ is called an eigenvalue of A and v is an eigenvector corresponding to eigenvalue λ . Some properties which follow are:

- The set of all eigenvectors corresponding to an eigenvalue λ also forms a vector space and is known as the eigenspace.
- Eigenvectors corresponding to distinct eigenvalues are linearly independent.
- ▶ If all the eigenvalues corresponding to a matrix are distinct, then its eigenspace spans \mathbb{R}^n
- ▶ $det(A \lambda I)$ is known as the characteristic polynomial of A. Roots of this polynomial are known as the eigenvalues of A

Diagonalization

Definition: A matrix A is said to be diagonalizable if \exists an invertible matrix P such that $P^{-1}AP = \Lambda$ where Λ is diagonal. Some properties are:

- ▶ A matrix *A* is diagonalizable iff eigenspace of *A* has *n* linearly independent vectors.
- n distinct eigenvalues provides a sufficient condition for n linearly independent vectors.
- $ightharpoonup P = [v_1 v_2 \dots v_n]$ where v_i are n linearly independent vectors
- $ightharpoonup A = P\Lambda P^{-1}$ is known as the eigenvalue decomposition of A

Question: The Cayley Hamilton theorem states that the matrix *A* satisfies its characteristic equation. Prove the Cayley Hamilton theorem for diagonalizable matrices.

Let $V = \{(a_1, a_2) : a_1, a_2 \in \mathbb{R}\}$. Define addition of elements of V coordinatewise, and for $(a_1, a_2) \in V$ and $c \in \mathbb{R}$, define

$$c \cdot (a_1, a_2) = \begin{cases} (0,0) & \text{if } c = 0, \\ (ca_1, a_2/c) & \text{if } c \neq 0. \end{cases}$$

Is V a vector space over \mathbb{R} with these operations?

Let $S = \{(a_1, a_2) : a_1, a_2 \in \mathbb{R}\}$. For (a_1, a_2) , $(b_1, b_2) \in S$, and $c \in \mathbb{R}$, define

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 - b_2)$$

and

$$c\cdot(a_1,a_2)=(ca_1,ca_2).$$

Is V a vector space over \mathbb{R} with these operations?

Let S be a nonempty set and F a field. Let $\mathcal{C}(S,F)$ denote the set of all functions $f \in \mathcal{F}(S,F)$ such that f(s)=0 for all but a finite number of elements of S. We want to prove that $\mathcal{C}(S,F)$ is a subspace of $\mathcal{F}(S,F)$.

Let W be a subspace of a vector space V over a field F. For any $v \in V$, the set $v + W = \{v + w : w \in W\}$ is called the coset of W containing v. It is customary to denote this coset by v + W rather than $\{v\} + W$.

- (a) Prove that v + W is a subspace of V if and only if $v \in W$.
- (b) Prove that $v_1 + W = v_2 + W$ if and only if $v_1 v_2 \in W$. Addition and scalar multiplication by scalars of F can be defined in the collection $S = \{v + W : v \in V\}$ of all cosets of W as follows:

$$(v_1 + W) + (v_2 + W) = (v_1 + v_2) + W$$
 for all $v_1, v_2 \in V$,

and

$$a(v+W) = av + W$$
 for all $v \in V$ and $a \in F$.

Prove that the set S is a vector space with the operations defined. This vector space is called the quotient space of V modulo W and is denoted by V/W. Comment on the dimension of V/W

Let V and W be vector spaces and dim(V) > dim(W). Prove that there is no one-one linear transformation $T: V \to W$.

Let V be a vector space, and let $T:V\to V$ be linear. A subspace W of V is said to be T-invariant if $T(x)\in W$ for every $x\in W$, that is, $T(W)\subseteq W$. Prove that the subspaces $\{0\}$, V, C(T), and N(T) are all T-invariant.

Prove the Cauchy Schwartz inequality $|v||w| \ge |v.w|$ using properties of dot product

For each of the following matrices $A \in M_{n \times n}(F)$,

- 1. Determine all the eigenvalues of A.
- 2. For each eigenvalue λ of A, find the set of eigenvectors corresponding to λ .
- 3. If possible, find a basis for F^n consisting of eigenvectors of A.
- 4. If successful in finding such a basis, determine an invertible matrix Q and a diagonal matrix D such that $Q^{-1}AQ = D$.

(a)

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$$
 for $F = \mathbb{R}$

(b)

$$A = \begin{pmatrix} 0 & -2 & -3 \\ 1 & -1 & 2 \\ 2 & 2 & 5 \end{pmatrix} \text{ for } F = \mathbb{R}$$

Label the following statements as true or false.

- (a) Any linear operator on an n-dimensional vector space that has fewer than n distinct eigenvalues is not diagonalizable.
- **(b)** Two distinct eigenvectors corresponding to the same eigenvalue are always linearly dependent.
- (c) If λ is an eigenvalue of a linear operator T, then each vector in E_{λ} is an eigenvector of T.
- (d) If λ_1 and λ_2 are distinct eigenvalues of a linear operator T, then $E_{\lambda_1} \cap E_{\lambda_2} = \{0\}$.
- (e) Let $A \in M_{n \times n}(F)$ and $\beta = \{v_1, v_2, \dots, v_n\}$ be an ordered basis for F^n consisting of eigenvectors of A. If Q is the $n \times n$ matrix whose jth column is v_j $(1 \le j \le n)$, then $Q^{-1}AQ$ is a diagonal matrix.
- (f) A linear operator T on a finite-dimensional vector space is diagonalizable if and only if the multiplicity of each eigenvalue λ equals the dimension of E_{λ} .
- (g) Every diagonalizable linear operator on a nonzero vector space has at least one eigenvalue.

Consider a vector space V and all possible linear transformations $T:V\to\mathbb{R}$. Then prove that this set also forms a vector space and find its dimension. Infact, this is known as the dual space of V.