

ELECTROTECNIA

Estudia el uso y aprovechamiento de las aplicaciones técnicas de la electricidad con fines industriales.

CIRCUITO ELÉCTRICO

Se utilizan *modelos* procedentes de la física y se emplean métodos de análisis, cálculo y representación gráfica provenientes de las matemáticas.

Generalmente, el estudio de la electrotecnia procura determinar la interrelación existente entre un *circuito eléctrico*, la *excitación* que se le aplica y la *respuesta* que se obtiene.

MODELO

Reproducción en pequeña escala de una cosa

Modelo de un proceso o de un sistema físico es una *representación idealizada y simplificada* del mismo que resulta apropiada para estudiar su comportamiento en las condiciones bajo las cuales se realizará el estudio de dicho proceso o sistema

RESISTOR

MODELO DE CIRCUITO

En electrotecnia se utilizan modelos para representar excitaciones, respuestas, elementos del circuito y sus diferentes combinaciones.

Cuando un circuito posee elementos cuyas dimensiones son muy pequeñas en relación a la longitud de onda de las señales (excitaciones y respuestas) presentes, dicho circuito suele denominarse de *circuito de parámetros concentrados*.

La contraparte son los circuitos de *parámetros* distribuidos

Para conformar el *modelo de un circuito eléctrico* debe efectuarse la vinculación entre dichos elementos de circuito mediante *conductores perfectos*.

$$R = \frac{\rho \cdot r}{S}$$

ELEMENTOS DE CIRCUITO

ELEMENTOS DE CIRCUITO

Fuentes ideales independientes

TENSIÓN

Mantiene invariable la tensión entre sus bornes, independientemente de la corriente

CORRIENTE

Mantiene invariable la corriente entre sus bornes, independientemente de la tensión

Elementos pasivos *transforman* la energía:

irreversiblemente

resistor

capacitor e inductor

ECUACIONES CONSTITUTIVAS

$$u = i \cdot R$$
 $i = \frac{u}{R}$

$$u_C(t) = \frac{1}{C} \cdot \int_{-\infty}^{t} i(t) \cdot dt = \frac{1}{C} \cdot \int_{-\infty}^{0} i(t) \cdot dt + \frac{1}{C} \cdot \int_{0}^{t} i(t) \cdot dt$$

$$i_L(t) = \frac{1}{L} \cdot \int_{-\infty}^t u(t) \cdot dt = \frac{1}{L} \cdot \int_{-\infty}^0 u(t) \cdot dt + \frac{1}{L} \cdot \int_0^t u(t) \cdot dt$$

DUALIDAD

ELEMENTOS DE CIRCUITO

Cortocircuito

Circuito abierto

$$Ica = 0 A$$

$$\longrightarrow$$

$$Uca$$

DUALIDAD

TOPOLOGÍA

RAMA: parte elemental de un circuito que une dos puntos del mismo dando lugar a un camino para la corriente

NODO: punto de un circuito al cual concurren dos o más ramas

LAZO: trayectoria cerrada en un circuito que no repite ninguna rama que lo compone

LEYES UNIVERSALES

LEY DE OHM

$$u = i \cdot R$$
 $i = \frac{u}{R}$ $G = \frac{1}{R}$ $i = u \cdot G$ $u = \frac{i}{G}$ CONDUCTANCIA

DUALIDAD

LEYES DE KIRCHHOFF

Primera ley o ley de las corrientes: la suma algebraica de las corrientes que concurren a un nodo vale cero asignando convencionalmente signo (+) a las entrantes y signo (-) a las salientes

Segunda ley o ley de las tensiones: la suma algebraica de las tensiones de los elementos de una malla vale cero asignando convencionalmente signo (+) a las que tienen el sentido del recorrido de la malla y signo (-) a la inversa

$$\sum_{i} i_{i} = 0 \qquad \sum_{j} i_{jj} = \sum_{k} i_{k}$$

$$\sum_{i} u_{i} = 0 \qquad \sum_{j} u_{jj} = \sum_{k} u_{k}$$

DUALIDAD

UNIDADES

RESISTENCIA
$$[R] = \Omega$$
 ohm

CONDUCTANCIA
$$[G] = S$$
 siemens

CAPACITANCIA
$$[C] = F$$
 farad

INDUCTANCIA
$$[L] = H$$
 henry

TENSIÓN
$$egin{bmatrix} m{U} = m{V} & \textit{volt} \end{bmatrix}$$

CORRIENTE
$$I = A$$
 ampere

Nomenclatura

010

...

Secretaría de Energía 🤣 @Energia_Ar · 8min

Interrupción del servicio eléctrico en la Región Centro

La Secretaría de Energía informa que en horas de la tarde de este miércoles 1 de marzo un incendio generó perturbaciones en la Línea de Alta Tensión de 500 kW que une las localidades de Campana y General Rodríguez.

Q 4

tl

1 12

0

10

111 1.425

1

Secretaría de Energía 📀 @Energia_Ar · 18h

Interrupción del servicio eléctrico en la Región Centro

La Secretaría de Energía informa que en horas de la tarde de este miércoles 1 de marzo un incendio generó perturbaciones en la Línea de Alta Tensión de 500 kv que une las localidades de Campana y General Rodríguez.

...

0

18

t7 64

0

109

III 25,2 mil

1

OTRAS FUENTES DE ENERGÍA

FUENTES REALES

Las fuentes reales son aquéllas que manifiestan pérdidas internas cuando se vinculan a un circuito.

OJO

Modelos y características de **regulación**:

DUALIDAD

OTRAS FUENTES

FUENTES CONTROLADAS

Sus parámetros dependen de otros parámetros del circuito (tensiones o corrientes)

Fuente de tensión controlada (ideal)

$$U_f = \alpha \cdot I_X$$

$$U_f = \beta \cdot U_X$$

Fuente de corriente controlada (ideal)

$$I_f = \delta \cdot I_Z$$

$$I_f = \gamma \cdot U_Z$$

INSTRUMENTOS

Ideal

Real

AMPERÍMETRO

Ideal

POTENCIA Y ENERGÍA

POTENCIA
$$p(t) = u(t) \cdot i(t)$$

ENERGÍA
$$w(t) = \int_{-\infty}^{t} p(\tau)d(\tau)$$

Los anteriores son valores instantáneos, pues son funciones del tiempo

UNIDADES

POTENCIA
$$egin{bmatrix} P = \mathbf{W} & \textit{watt} \end{bmatrix}$$
ENERGÍA $egin{bmatrix} W = \mathbf{J} & \textit{joule} \end{bmatrix}$

POTENCIA Y ENERGÍA EN ELEMENTOS

Los elementos de circuito (activos y pasivos) pueden entregar y/o recibir energía y ésto se puede determinar a partir de las polaridades de las tensiones y de los sentidos de las corrientes en los mismos

¿Qué pasa en los elementos pasivos y activos (fuentes, resistor, capacitor, inductor)?

FUENTES INDEPENDIENTES

Si entregan energía, la polaridad y el sentido de las corrientes son los indicados

En caso contrario reciben energía

¿Qué pasa con las fuentes controladas?

SEÑALES

Las señales son funciones con las cuales se va a excitar un circuito para obtener de éste una respuesta

SEÑALES

La **continua** es una señal o función independiente del tiempo

La **senoidal** es una señal o función que depende del tiempo de la siguiente manera:

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega \cdot t)$$

 $U_{m\acute{a}x}$: amplitud en [V] (si fuera tensión)

ω: pulsación en [rad/s]

Además $T=2\pi/\omega$

EXCITACIONES Y RESPUESTAS

Si se **excita** un resistor de resistencia **R** mediante una tensión continua, la **respuesta** es una corriente, también I=U/Rcontinua, cuyo valor responde a la ley de Ohm y se puede expresar como:

$$u(t) = U$$

$$u(t) = U$$
$$i(t) = \frac{U}{R} = I$$

EXCITACIONES Y RESPUESTAS

Si se **excita** el mismo resistor R mediante una tensión senoidal, la **respuesta** es una corriente, también senoidal, que está **en fase** con la tensión y cuya amplitud $I_{máx}$ vale $U_{máx}/R$ **?** Por qué?

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega \cdot t)$$

$$i(t) = I_{m\acute{a}x} \cdot sen(\omega \cdot t)$$

RESUMEN

Modelo

Elementos de circuito: ACTIVOS y PASIVOS

Leyes: OHM y KIRCHHOFF

Unidades de las magnitudes

Otras fuentes: REALES - CONTROLADAS

Instrumentos: VOLTÍMETRO - AMPERÍMETRO

Potencia y energía: DEFINICIONES - SIGNOS

Tipos de señales: NATURALES - NO NATURALES - CONTINUA

Excitación y Respuesta

