Completeness of Bottom-up Emissions Estimates and Associated Metadata

Dan Moore^{1,3}, Zoheyr Doctor^{1,3}, Krsna Raniga^{1,3}, Christy Lewis^{1,3}, Lekha Sridhar^{1,3}, Peter Thomas^{1,3},

Ishan Saraswat^{1,3}, Gary Collins^{2,3}, April Nellis^{2,3}, Nicole Brown^{2,3}, Michael Pekala^{2,3}, Justin Rokisky^{2,3}, Elizabeth Reilly^{2,3}, Marisa Hughes^{2,3}, and Gavin McCormick^{1,3}

1) WattTime, 2) Johns Hopkins University Applied Physics Laboratory, 3) Climate TRACE

1. Introduction

Spatial, temporal, and sectoral completeness of the Climate TRACE emissions inventory is critical to reducing greenhouse gas and pollutant emissions: A complete and bottom-up accounting of emissions provides a full view of when and where emissions *could* be reduced. Furthermore, metadata for these emissions – from the magnitude of emissions-causing activity to the confidence level of estimates – provide insight into *how* emissions can be reduced and how effective those changes might be. However, the raw measurements and inferences performed for each sub-sector may not be complete, meaning that missing values or other minor inconsistencies must be addressed post-hoc. In this document, we describe the suite of imputation techniques we use to ensure every reported source of emissions has estimates for all reported times in the Climate TRACE inventory, and that each of these estimates has associated metadata.

While each subsector's emissions may be modeled independently, they can all be cast into a sector-agnostic mathematical framework (US EPA, 2024). This enables us to use a common set of interventions to clean the data and impute any missing values, regardless of the sector, location, and gas. These interventions generally fall into three categories of imputation: fully constrained imputation, under-constrained imputation, or over-constrained imputation. In the fully constrained case, the existing information about an emitting source or "asset" is enough to constrain the values of any missing information. In the under-constrained case, only some information is provided, and missing information must either be interpolated from other Climate TRACE data or provided by an external source. Lastly, in the over-constrained case, information may exist for all or some of the emissions and metadata quantities, but some of the values are in contradiction to each other.

In Section 2, we describe the raw Climate TRACE data which may have missing or inconsistent information and then the set of interventions applied to achieve completeness. In Section 3, we detail the outcome of these interventions. Finally, in Sections 4 and 5, we discuss the implications of the interventions and outline future improvements.

2. Materials and Methods

2.1 Datasets Employed

The primary input dataset was the bottom-up inventory of emissions and metadata for each Climate TRACE asset for a given start and end time and gas as provided by Climate TRACE coalition members for each sector. These inputs came either in a catalog form or in rasterized form. In the rasterized case, we aggregated each quantity to predetermined spatial boundaries, namely the Database of Global Administrative Areas (GADM, 2022) and Global Human Settlement Functional Urban Areas (Schiavina et al 2019), and converted them to a catalog form which was concatenated with the rest of the data set. Table 2 in the Supplemental Materials shows the counts of the number of rows for each sector and gas from these data over all times starting from 2021.

The following metrics are required for each asset for comprehensiveness and comparability. However, depending on the sub-sector, some have all the metrics provided whereas others may have missing (NULL) metrics:

• Emissions metrics:

- Emissions quantity E: The mass of emissions emitted for a specific gas or pollutant.
- Activity A: The amount of sub-sector-specific activity occurring that is producing emissions.
- Capacity C: The maximum amount of activity possible for the source.
- Capacity factor κ : The ratio between activity and capacity. In most cases this is the fractional utilization of the total capacity, but in select cases is a unit-ful quantity that also transforms from capacity to activity units.
- Emissions factor ϵ : The amount of emissions per unit activity for a given gas or pollutant.

Robustness metrics:

- Confidence: A categorical confidence score associated with each of the above quantities. It can take values "very low", "low", "medium", "high", or "very high" indicating the robustness of the associated emissions metric. Each sub-sector may have a different approach to classifying estimates into these confidence categories.
- Uncertainty: A numerical value representing the width of uncertainty around each
 of the provided emissions metrics. This width may be differently defined
 depending on the sub-sector: It may be e.g. a 1-sigma credible interval or
 confidence interval, or a range that brackets the possible true value around the
 emissions metric.

By definition, each Climate TRACE asset has (or must have) the following emissions metrics that must obey the following equation:

$$E = \epsilon A = \epsilon \kappa C. \tag{1}$$

The time-segments (i.e. the windows of time over which the estimates are reported with start and end times) associated with each of the above quantities may be of varying granularity depending on the sub-sector, but all estimates are given on an annual, quarterly, or monthly segment. The equation above also defines our notion of emissions data being fully, under, or over-constrained: Fully constrained means that a missing variable could be solved for by two other known variables in Equation 1. Underconstrained would mean that one or no variables can solve for a missing value, and overconstrained means that the existing variables do not obey Equation 1.

Table 3 in the Supplemental Materials section summarizes the state of input emissions metrics to our imputation procedures. For each of the emissions metric quantities, we report the percentage of entries that were missing. We also report the percentage of over-constrained values by computing fractional differences between the reported activities and emissions and their expected values given the reported capacities times capacity factors and activities times emissions factors, respectively. For the purposes of identifying highly mismatched metrics, we choose to threshold on 0.05 as a fractional difference that constitutes an over-constraint:

$$\frac{|\kappa C - A|}{A} = \frac{\Delta A}{A} > 0.05 \tag{2}$$

$$\frac{|\epsilon A - E|}{E} = \frac{\Delta E}{E} > 0.05 \tag{3}$$

For example, a mining asset with a capacity of 2 tonnes of ore, a capacity factor 0.5, and an activity of 2 tonnes of ore would be identified as overconstrained, because the product of capacity and capacity factor is not within 5% of the reported activity. Note that this 5% threshold is not used within the data processing and is just to illustrate in Table 3 where there are larger rounding errors.

2.2 Model Development

At a high level, we process each Climate TRACE sub-sector's data separately, with the raw asset-level data flowing through a set of sequential interventions, each of which further cleans or imputes the data. Below, we describe the input data, external datasets that are used, and the set of interventions.

2.2.1 Emissions metrics

We examined the raw data submitted by each sector to assess which general interventions may be needed to fill in any missing emissions metrics and ensure adherence to Equation 1. Through this process, we identified a set of common interventions to apply to all sectors by default. If the data from a sector had no missing values or mathematical inconsistencies, it would pass through each intervention step without any change. We describe these interventions below and then summarize the order in which they are applied in Table 1.

2.2.1.1 Fully Constrained Imputation

The most frequent intervention was for imputation in the fully-constrained case, which we refer to as "NULLtiplication," because NULL (i.e. missing) values were filled in via multiplication (or division) to satisfy Equation 1. In a NULLtiplication step, first any missing capacity, capacity factor, and then activity values were each solved for using the other two values, if the other two were not missing. For example, if A was NULL, we would fill it in with $A=\kappa C$ if κ and C were not missing. If C was missing, we filled it with A/κ , and so on. We then performed the analogous operation on the activity, emissions factor and emissions quantity. Finally, we attempted another solve for the capacity and capacity factor in case the activity was solved for via emissions quantity and emissions factor in the previous step.

2.2.1.2 Under-Constrained Imputation

If a value could not be filled in via NULLtiplication, we imputed it using other times and/or assets for the same sector (and the same gas for emissions factors or quantities). Each time an unconstrained imputation operation was performed, a NULLtiplication step followed

immediately thereafter to ensure that any missing values that were now fully constrained would be solved for. This also prevented introducing over-constrained entries.

A simple but common case was where emissions quantities or emissions factors were missing because they were meant to be zero. Through communication with sector leads, we determined which of these missing values should be zero and collated the list for use in our imputation pipeline. See Table 2 in Supplemental Materials for details.

If an asset had emissions metrics for some time-segments but not others, we first backward filled the missing values in time, and then attempted forward fill any remaining NULLs, thereby always preferring to fill with the most recent data. These backward/forward fills operated on each type of emissions metric independently, in order of emissions factor, capacity factor, capacity, and activity (emissions quantity was filled in automatically by a NULLtiplication step once activity and emissions factor were calculated).

For assets that were missing some emissions metrics for all reported times and could not be filled in via NULLtiplication and backward/forward fills, we attempted a "regional" imputation. We filled missing emissions factors and capacity factors with the median of those metrics from assets that had data for the same ISO3 country, sector, and time-segment (and gas for emissions factor). We did the same using mean values for capacity and activity, since capacity and activity quantities add to each other whereas the factors do not. We followed the regional imputation with a global analog for any remaining missing values.

As a final stopgap for remaining missing emissions metrics, we pulled from a hand-curated list of emission factors and if needed set capacity factors to 1. The only case requiring the use of a default emission factor was CO₂ in the coal-mining sector. We used the value of 0.0175 tonnes of CO₂ per tonne of coal extracted, following Table 4-5 of Skone (2018).

2.2.1.3 Over-Constrained Imputation

In some cases, the emissions metrics were over-constrained (>5% relative error in the expected multiplicand). These few over-constrained cases were caused by rounding of some very small raw values. We performed two operations to bring these back into alignment with Equation 1. First, if one or more of the metadata metrics was zero but the emissions quantity was non-zero, we turned those metadata metrics with zeros to NULL values and imputed them with the methods described in the previous sections, e.g. using a regional imputation to fill in NULL values. Then, as a very final step after all imputations, we "forced" consistency with Equation 1 by recomputing all emissions factors and capacity factors. This affected only the few asset entries where rounding of very small values in the input data had broken Equation 1.

2.2.1.4 Summary and Order of Default Imputations

In Table 1, we summarize the default imputations and the order we performed them in. We applied these imputations to all sectors and gases, except CO₂ equivalents, which were re-calculated post-hoc after imputation on the constituent gases as described in Section 2.2.1.6.

Table 1 Summary and order of default imputations applied to all sectors and gases

	Imputation
1	NULLtiplication
2	Turn zero-valued metadata into NULLs if emissions quantity was non-zero
3	Turn NULL emissions quantities and emissions factors to 0 for assets that are known to have no emissions
4	Backward/forward fill in time by asset
5	Regional imputation
6	Global imputation
7	Fill NULL emissions factors with default values
8	Force capacity factors and emissions factors to obey Equation 1

2.2.1.5 Sector-Specific Imputations

2.2.1.5.1 Cropland Fires

Cropland fire emissions only had reported emissions quantities in rasterized data. We aggregated these emissions to GADM and GHS-FUA regions. So, as a first step before any default imputation, the activities and capacities for these aggregations were set to the area of their respective aggregation regions. The capacity factors and emissions factors were then solved with Equation 1.

2.2.1.5.2 Forestry Sectors

Some time-segments did not have reported data in the forestry sectors (forest-land-degradation, forest-land-clearing, forest-land-fires, shrubgrass-fires, wetland-fires, and removals) from which to do regional and global imputations by time-segment. As such, regional and global fills were

also performed over all time-segments on the emissions factors and capacity factors to bootstrap the existing data to impute other time-segments.

2.2.1.5.3 Mining Sectors

Copper-mining and bauxite-mining sectors also had some assets that could not be imputed from other assets for the same time period. We therefore used regional and global imputations on emissions factors and capacity factors that used data from all time-segments. Additionally, some small activity and capacity values had been rounded in the input data causing some imputed capacity factors to be larger than one, even though capacity factors were defined to be between zero and one in these sectors. Any imputed capacity factors that exceeded one were set to exactly one and Equation 1 was used to recompute the capacity based on the activity.

2.2.1.5.4 "Other" Sectors

Several manufacturing sectors were submitted with only emissions quantities and no associated metadata, as described in Moore et al (2024). For each asset in these sectors (other-chemicals, other-metals, other-manufacturing), the activity and capacity were simply defined as "1 factory." Therefore, the resulting capacity factor was set to 1 in every case, and the emission factor for each gas was the emission quantity per manufacturing facility.

2.2.1.6 CO₂ Equivalents

CO₂-equivalent global warming potentials for 20-year and 100-year periods are provided in the Climate TRACE data as well. While these equivalents for a given time-segment and asset may have been present in the input data, we recomputed these from scratch after all imputations had been performed on the CO₂ equivalent constituent gases (CO₂, N₂O, CH₄). For CH₄, we use CO₂-equivalent global warming potentials of 81.2 and 27.9 for 20-year and 100-year periods, respectively. For N₂O, we use 273 for both 20-year and 100-year periods.

2.2.1.7 Spatio-Temporal (Dis)aggregation of Estimates

In order for the Climate TRACE inventory to have uniform resolution in time, emissions metrics were resampled to a common time grid as described in Raniga et al (2024). For emissions aggregated to specific spatial regions such as GADM or GHS-FUA boundaries, the metadata were aggregated as well by aggregating the activity and capacity and then solving for an average capacity factor and emissions factor via Equation 1. These spatio-temporal operations were performed after missing input data were imputed with the methods described in the previous sections.

2.2.2 Confidence

We took a similar approach to imputing missing confidences as we did with emissions metrics. An ordered set of operations were performed to fill out confidence scores for every asset, gas, and time. First, we performed the equivalent of a NULLtiplication operation but on confidences. If confidences existed for two emissions metrics, but a confidence was missing for a third one that could be constrained by the first two, we filled the missing confidence with the lower confidence of the two existing estimates. For example, if an emissions quantity was missing a confidence, it was filled with the lower of the confidences of the emissions factor and activity. A similar operation was performed for CO₂ equivalent confidences: the lower of the confidences of the constituent gases was used for imputation.

In cases where missing confidences were unconstrained by other confidence values, we filled them with the lowest confidence for that sector, gas, and value. Next, there were some cases where confidences were missing for emissions factors and emissions quantities because that gas was not expected to be emitted in that sector. In those cases, we set the confidence to "very high," with the corresponding emissions metrics being zero. Note that many of these very high estimates were downgraded to "high" from temporal downscaling described below. The final missing-confidence imputation operation was to fill any confidences that were still NULL with "very low."

After the NULL confidences were filled, we re-sampled all the confidences to the time granularity of the final emissions metric data (monthly). Any confidences that were not already originally at monthly (and therefore were coarser estimates in time) were downgraded by one confidence level indicating the uncertainty associated with temporal disaggregation. Estimates for any times that were missing coverage in the input data entirely were assigned "very low" confidence.

2.2.3 Uncertainty

A single, generic approach was taken to impute missing uncertainty information and standardize the information to the common temporal granularity, regardless of the sector and gas. Uncertainty values provided in the input data from coalition members were roughly treated as the standard deviation of a Gaussian distribution around the corresponding emissions metric estimate. The emissions metrics were treated as independent variables for simplicity, although Equation 1 does imply correlations among different quantities (Note that large uncertainties compared to their associated emissions metrics were not interpreted to imply negative emissions, and instead interpreted as a distribution that truncated at zero).

For assets that had uncertainties for some times but not others, we imputed each asset's missing uncertainties using the median uncertainties for each emissions metric for that asset over all times. If uncertainties existed for some but not all assets in a given sector, the median relative variance of all assets/times for a given gas was applied to any missing assets/times. If uncertainties did not exist for a given sector, the median relative standard deviation reported over all assets and all times for a given gas was applied to the missing values.

To resample the provided uncertainties to the common temporal granularity, we first compared the emissions metrics between the (cleaned and imputed) data with and without monthly resampling. If the emissions metrics were the same, the provided uncertainty was left unchanged. If instead a metric changed by some factor f through the monthly resampling, the variance (square of the standard deviation) was scaled by f as well. This operation preserved the input variance as being the sum of variances of estimates at finer temporal granularities.

If no uncertainty value σ_{orig} was provided in the input data for emissions quantity, activity, or capacity, the imputed uncertainty σ_{imp} was calculated using

$$\sigma_{imp}^{2}/M_{imp} = median(\sigma_{orig}^{2}/M_{orig}),$$
 (4)

where M_{imp} and M_{orig} were the imputed and original emissions metrics. The median was taken over either all times for the same asset, or if that data was not available, all assets in the sector. Emissions-factor and capacity-factor uncertainties were imputed similarly, with one key difference: if uncertainties did not exist in the input data, we took the smallest of the following possible values:

- Equation 4 with the median over all times for a given asset and gas
- Equation 4 with the median over all assets for a given sector and gas
- The larger of:
 - \circ the standard deviation of M_{orig} in that sector, gas, and country, or
 - \circ 5% of M_{imp}
- 50% of M_{imp}

This scheme automatically probed cases where a very specific emissions factor or capacity factor was used in a sector and country, suggesting it should have low (but not lower than 5%) uncertainty, while also controlling the uncertainty from becoming excessively large.

If the requisite data for σ_{orig} or M_{orig} did not exist for any of the above calculations, a blanket 50% uncertainty was applied. A 50% uncertainty was also applied to all metrics in the scraped-asset sectors described in Moore et al (2024), but capacity factor was given an uncertainty of 0.1. Capacity factor for lime, however, was kept as a 50% uncertainty. The choices herein were made so that uncertainties could be simply imputed across all sectors using the available information, while not introducing uncertainties that were unreasonably small or large.

3. Results

After performing the imputations from Section 2 on the input data, all missing and over-constrained values are eliminated. Table 2 shows the effect of our imputations on global emissions quantities. Only sectors where the absolute value of the percent change is at least 0.1 are shown. The mining sectors showed the largest increase from imputations because many assets' emissions quantities were missing in that sector. All other sectors' totals for 2023 changed less than 10%. The apparent negative changes shown in Table 2 are artifacts from our use of different global warming potentials as described in Section 2.2.1.6, not the underlying constituent gases. While imputing missing values had a small effect on emissions quantities overall, it nonetheless produced a complete dataset, giving users of the data an estimate for every quantity for each asset and time reported.

Table 2 Absolute difference and percentage change of total 2023 CO₂ equivalent (100 year global warming potential) emissions in millions of tonnes (Mt) for reported assets between the input data and data after imputation

input data and data after imputation								
sector	difference (Mt)	% change						
bauxite-mining	2999876	47.6						
iron-mining	20576662	42.8						
copper-mining	9932154	15.4						
coal-mining	139670257	8.2						
textiles-leather-apparel	2951393	6.9						
solid-waste-disposal	21924098	2.6						
enteric-fermentation-cattle-pasture	28351731	2.6						
enteric-fermentation-cattle-operation	2668012	2.6						
manure-management-cattle-operation	541413	2.6						
rice-cultivation	17182863	2.5						
water-reservoirs	1854711	2.5						
glass	385643	1.0						
lime	3300073	0.8						
domestic-wastewater-treatment-and-discharge	683696	0.5						
industrial-wastewater-treatment-and-discharge	47785	0.5						
manure-left-on-pasture-cattle	660416	0.2						
food-beverage-tobacco	174962	0.2						
cropland-fires	1635546	0.1						

sector	difference (Mt)	% change
non-residential-onsite-fuel-usage	-1334019	-0.3
petrochemical-steam-cracking	-800640	-0.3
oil-and-gas-refining	-6171594	-0.6
residential-onsite-fuel-usage	-20185607	-0.6
chemicals	-5697965	-0.9
oil-and-gas-transport	-26349287	-1.3
oil-and-gas-production	-105635170	-2.7

4. Discussion

The imputations we perform to achieve completeness of the input data make only a modest increase to total emissions in the inventory. However, a considerable number of metadata are imputed as shown in Tables 3 and 5. Many of the missing emissions metrics are immediately filled through NULLtiplication or through setting missing values to zero which are known to be a-priori. These imputations will enable stakeholders to easily investigate future changes in activity and emissions factors effected by pollution control measures that mitigate asset-level emissions and achieve climate goals.

In terms of the confidences, many emissions quantity and emissions factor confidences are filled with "very high" because those values are known to be zero. Otherwise, most missing confidences are filled with "very low" to be conservative. Future work could refine these confidences further.

The uncertainty widths we imputed and re-sampled are a starting point for assessing the numerical uncertainty of Climate TRACE asset data and provide some numerical estimate to accompany confidences. However, we note that the input uncertainties may not be comparable between sectors and the full multivariate distributions of emissions metrics are not modeled here. Therefore, future work is needed to provide more robust uncertainty metrics.

Temporal disaggregation of both the metadata and the emissions estimates makes the Climate TRACE inventory both complete and also high-resolution in time. The confidences and uncertainties reflect the extra operations performed on the data for imputation and standardization.

Overall, the scheme outlined in this methodology has the advantage of being simple and sector-agnostic, making any changes to the data transparent and reproducible. However, the

sequential nature of the imputations does not account for correlations among different variables. We may explore multivariate techniques in future work.

5. Conclusion

In sum, we standardized the Climate TRACE dataset as reported directly from coalition members by filling missing data and re-sampling to a common monthly time resolution. We used a set of simple, sequential operations to achieve completeness of the data over time and over assets. The effect on total emissions quantities was little to none in most sectors.

6. Acknowledgements

We would like to acknowledge Dr. Aaron Davitt for helpful comments on this manuscript.

7. Supplementary materials

Table 3 Climate TRACE sectors by gas breakdown for the following: Percentage of emissions metrics with missing values for columns Emissions, E; Emissions factor, ϵ ; Activity, A; Capacity factor, κ ; and Capacity, C. Percentage of activity inconsistencies ($\Delta A/A > 0.05$) and emissions inconsistencies ($\Delta E/E > 0.05$), and total count (#) of assets per sector and gas.

sector	gas	E	<i>(</i>	A	K	С	Δ <i>A</i> / <i>A</i> > 0.05	Δ <i>E</i> / <i>E</i> > 0.05	#
bauxite-mining	N ₂ O	68.8	68.8	30.7	42.8	50.8	0.1	0.0	1056
bauxite-mining	CO ₂	30.7	30.7	30.7	42.8	50.8	0.1	0.0	1056
bauxite-mining	CH ₄	68.8	68.8	30.7	42.8	50.8	0.1	0.0	1056
cement	N ₂ O	100.0	100.0	0.0	0.0	0.0	0.0	0.0	96363
cement	CO ₂	0.0	0.0	0.0	0.0	0.0	0.0	0.0	96363
cement	CH₄	100.0	100.0	0.0	0.0	0.0	0.0	0.0	96363
coal-mining	N ₂ O	0.0	0.0	0.9	2.7	0.8	0.0	0.0	34092
coal-mining	CO ₂	100.0	100.0	0.9	2.7	0.8	0.0	0.0	34092
coal-mining	CH₄	0.9	0.0	0.9	2.7	0.8	0.0	0.0	34092
copper-mining	N ₂ O	72.4	72.4	20.8	34.0	56.2	0.2	0.0	2692
copper-mining	CO ₂	20.8	20.9	20.8	34.0	56.2	0.2	0.2	2692
copper-mining	CH ₄	72.4	72.4	20.8	34.0	56.2	0.2	0.0	2692
cropland-fires	N ₂ O	0.0	100.0	100.0	100.0	100.0	0.0	0.0	516194
cropland-fires	CO ₂	0.0	100.0	100.0	100.0	100.0	0.0	0.0	516194

sector	gas	E	ę	A	К	С	Δ <i>A</i> / <i>A</i> > 0.05	Δ <i>E</i> / <i>E</i> > 0.05	#
cropland-fires	CH ₄	0.0	100.0	100.0	100.0	100.0	0.0	0.0	516194
domestic-aviation	N ₂ O	22.7	22.7	22.7	22.7	22.7	0.0	0.0	127660
domestic-aviation	CO ₂	22.7	22.7	22.7	22.7	22.7	0.0	0.0	127660
domestic-aviation	CH₄	22.7	22.7	22.7	22.7	22.7	0.0	0.0	127660
electricity-generation	N ₂ O	100.0	100.0	0.0	0.0	0.0	0.0	0.0	577446
electricity-generation	CO ₂	0.0	0.2	0.0	0.0	0.0	0.0	0.0	577446
electricity-generation	CH ₄	100.0	100.0	0.0	0.0	0.0	0.0	0.0	577446
international-aviation	N ₂ O	72.8	72.8	72.8	72.8	72.8	0.0	0.0	127660
international-aviation	CO ₂	72.8	72.8	72.8	72.8	72.8	0.0	0.0	127660
international-aviation	CH₄	72.8	72.8	72.8	72.8	72.8	0.0	0.0	127660
iron-mining	N ₂ O	75.4	75.4	56.4	62.5	83.1	0.2	0.0	2888
iron-mining	CO ₂	56.4	56.4	56.4	62.5	83.1	0.2	0.0	2888
iron-mining	CH₄	75.4	75.4	56.4	62.5	83.1	0.2	0.0	2888
oil-and-gas-refining	N ₂ O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6363
oil-and-gas-refining	CO ₂	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6363
oil-and-gas-refining	CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6363
rice-cultivation	N ₂ O	29.6	0.0	0.0	0.0	0.0	0.0	0.0	172881
rice-cultivation	CO ₂	29.6	0.0	0.0	0.0	0.0	0.0	0.0	172881
rice-cultivation	CH ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.3	172881
road-transportation	N ₂ O	0.0	0.9	0.0	0.9	0.0	0.0	0.0	2635908
road-transportation	CO ₂	0.0	0.9	0.0	0.9	0.0	0.0	0.0	2635908
road-transportation	CH ₄	0.0	0.9	0.0	0.9	0.0	0.0	0.0	2635908
solid-waste-disposal	N ₂ O	99.0	99.0	0.0	0.0	0.0	0.1	0.0	462000
solid-waste-disposal	CO ₂	99.0	99.0	0.0	0.0	0.0	0.1	0.0	462000
solid-waste-disposal	CH ₄	0.0	0.0	0.0	0.0	0.0	0.1	0.0	462000
synthetic-fertilizer-application	N ₂ O	0.0	0.4	0.0	28.9	0.0	0.0	0.0	150647
synthetic-fertilizer-application	CO ₂	28.7	28.9	0.0	28.9	0.0	0.0	0.0	150647
synthetic-fertilizer-application	CH₄	28.7	28.9	0.0	28.9	0.0	0.0	0.0	150647
wetland-fires	N ₂ O	100.0	100.0	33.0	32.9	86.1	0.0	0.0	621633

sector	gas	E	ę	A	К	С	Δ <i>A</i> / <i>A</i> > 0.05	Δ <i>E</i> / <i>E</i> > 0.05	#
wetland-fires	CO ₂	0.1	86.1	33.0	32.9	86.1	0.0	0.0	621633
wetland-fires	CH ₄	100.0	100.0	33.0	32.9	86.1	0.0	0.0	621633
aluminum	N ₂ O	100.0	100.0	0.0	0.0	0.0	0.0	0.0	25070
aluminum	CO ₂	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25070
aluminum	CH₄	100.0	100.0	0.0	0.0	0.0	0.0	0.0	25070
forest-land-clearing	N ₂ O	100.0	100.0	31.2	31.1	44.1	0.0	0.0	658566
forest-land-clearing	CO ₂	0.1	44.2	31.2	31.1	44.1	0.0	0.0	658566
forest-land-clearing	CH₄	100.0	100.0	31.2	31.1	44.1	0.0	0.0	658566
pulp-and-paper	N ₂ O	100.0	100.0	0.0	0.0	0.0	0.0	0.0	30360
pulp-and-paper	CO ₂	0.0	0.0	0.0	0.0	0.0	0.0	0.0	30360
pulp-and-paper	CH₄	100.0	100.0	0.0	0.0	0.0	0.0	0.0	30360
chemicals	N ₂ O	100.0	100.0	0.0	0.0	0.0	0.0	0.0	40068
chemicals	CO ₂	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40068
chemicals	CH₄	100.0	100.0	0.0	0.0	0.0	0.0	0.0	40068
forest-land-degradation	N ₂ O	100.0	100.0	32.6	32.5	73.9	0.0	0.0	629761
forest-land-degradation	CO ₂	0.1	74.0	32.6	32.5	73.9	0.0	0.0	629761
forest-land-degradation	CH₄	100.0	100.0	32.6	32.5	73.9	0.0	0.0	629761
other-manufacturing	N ₂ O	36.2	100.0	100.0	100.0	100.0	0.0	0.0	3582
other-manufacturing	CO ₂	36.2	100.0	100.0	100.0	100.0	0.0	0.0	3582
other-manufacturing	CH₄	36.2	100.0	100.0	100.0	100.0	0.0	0.0	3582
forest-land-fires	N ₂ O	100.0	100.0	32.2	32.1	64.5	0.0	0.0	636943
forest-land-fires	CO ₂	0.1	64.5	32.2	32.1	64.5	0.0	0.0	636943
forest-land-fires	CH₄	100.0	100.0	32.2	32.1	64.5	0.0	0.0	636943
domestic-shipping	N₂O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	802827
domestic-shipping	CO ₂	0.0	0.0	0.0	0.0	0.0	0.0	0.0	802827
domestic-shipping	CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	802827
international-shipping	N ₂ O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	539462
international-shipping	CO ₂	0.0	0.0	0.0	0.0	0.0	0.0	0.0	539462
international-shipping	CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	539462

sector	gas	E	(A	K	С	Δ <i>A</i> / <i>A</i> > 0.05	Δ <i>E</i> / <i>E</i> > 0.05	#
net-forest-land	N ₂ O	100.0	100.0	0.2	0.0	2.1	0.0	0.0	529207
net-forest-land	CO ₂	0.2	3.7	0.2	0.0	2.1	0.0	0.0	529207
net-forest-land	CH₄	100.0	100.0	0.2	0.0	2.1	0.0	0.0	529207
net-shrubgrass	N ₂ O	100.0	100.0	0.1	0.0	2.4	0.0	0.0	530959
net-shrubgrass	CO ₂	0.1	4.2	0.1	0.0	2.4	0.0	0.0	530959
net-shrubgrass	CH ₄	100.0	100.0	0.1	0.0	2.4	0.0	0.0	530959
net-wetland	N ₂ O	100.0	100.0	0.3	0.1	17.6	0.0	0.0	516311
net-wetland	CO ₂	0.3	19.7	0.3	0.1	17.6	0.0	0.0	516311
net-wetland	CH₄	100.0	100.0	0.3	0.1	17.6	0.0	0.0	516311
removals	N ₂ O	100.0	100.0	0.0	0.0	2.3	0.0	0.0	541239
removals	CO ₂	0.1	4.1	0.0	0.0	2.3	0.0	0.0	541239
removals	CH₄	100.0	100.0	0.0	0.0	2.3	0.0	0.0	541239
shrubgrass-fires	N ₂ O	100.0	100.0	32.2	32.1	68.3	0.0	0.0	636441
shrubgrass-fires	CO ₂	0.1	68.4	32.2	32.1	68.3	0.0	0.0	636441
shrubgrass-fires	CH₄	100.0	100.0	32.2	32.1	68.3	0.0	0.0	636441
water-reservoirs	N ₂ O	100.0	100.0	0.0	0.0	0.0	0.0	0.0	808694
water-reservoirs	CO ₂	0.0	0.0	0.0	0.0	0.0	0.0	0.0	808694
water-reservoirs	CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	808694
enteric-fermentation-cattle-pasture	N ₂ O	100.0	100.0	0.5	0.9	0.0	0.0	0.0	437643
enteric-fermentation-cattle-pasture	CO ₂	100.0	100.0	0.5	0.9	0.0	0.0	0.0	437643
enteric-fermentation-cattle-pasture	CH₄	0.3	1.5	0.5	0.9	0.0	0.0	0.0	437643
manure-left-on-pasture-cattle	N ₂ O	0.3	1.5	0.5	0.9	0.0	0.0	0.0	437472
manure-left-on-pasture-cattle	CO ₂	100.0	100.0	0.5	0.9	0.0	0.0	0.0	437472
manure-left-on-pasture-cattle	CH ₄	0.3	1.5	0.5	0.9	0.0	0.0	0.0	437472
residential-onsite-fuel-usage	N ₂ O	0.5	0.5	0.0	0.0	0.0	0.0	0.0	2163440
residential-onsite-fuel-usage	CO ₂	0.5	0.6	0.0	0.0	0.0	0.0	0.0	2163440
residential-onsite-fuel-usage	CH₄	0.5	0.5	0.0	0.0	0.0	0.0	0.0	2163440

sector	gas	E	ę	A	К	С	Δ <i>A</i> / <i>A</i> > 0.05	Δ <i>E</i> / <i>E</i> > 0.05	#
non-residential-onsite-fuel-usage	N ₂ O	0.5	3.7	0.0	3.4	0.0	0.0	0.0	1949508
non-residential-onsite-fuel-usage	CO ₂	0.6	3.9	0.0	3.4	0.0	0.0	0.0	1949508
non-residential-onsite-fuel-usage	CH ₄	0.3	3.6	0.0	3.4	0.0	0.0	0.0	1949508
oil-and-gas-production	N ₂ O	100.0	100.0	100.0	100.0	100.0	0.0	0.0	2556
oil-and-gas-production	CO ₂	0.0	100.0	100.0	100.0	100.0	0.0	0.0	2556
oil-and-gas-production	CH₄	0.0	100.0	100.0	100.0	100.0	0.0	0.0	2556
oil-and-gas-transport	N ₂ O	100.0	100.0	100.0	100.0	100.0	0.0	0.0	2556
oil-and-gas-transport	CO ₂	0.0	100.0	100.0	100.0	100.0	0.0	0.0	2556
oil-and-gas-transport	CH ₄	0.0	100.0	100.0	100.0	100.0	0.0	0.0	2556
domestic-wastewater-treatment-and- discharge	N ₂ O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6139470
domestic-wastewater-treatment-and- discharge	CO ₂	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6139470
domestic-wastewater-treatment-and- discharge	CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6139470
industrial-wastewater-treatment-and- discharge	N ₂ O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	145464
industrial-wastewater-treatment-and- discharge	CO ₂	0.0	0.0	0.0	0.0	0.0	0.0	0.0	145464
industrial-wastewater-treatment-and- discharge	CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	145464
petrochemical-steam-cracking	N ₂ O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2106
petrochemical-steam-cracking	CO ₂	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2106
petrochemical-steam-cracking	CH ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2106
iron-and-steel	N ₂ O	100.0	100.0	0.0	0.0	0.0	0.0	0.0	36342
iron-and-steel	CO ₂	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36342
iron-and-steel	CH₄	100.0	100.0	0.0	0.0	0.0	0.0	0.0	36342
glass	N ₂ O	66.4	66.4	0.0	0.0	0.0	0.0	0.8	6390
glass	CO ₂	0.8	0.8	0.0	0.0	0.0	0.0	0.0	6390
glass	CH₄	58.2	58.2	0.0	0.0	0.0	0.0	0.3	6390

sector	gas	E	€	A	к	C	Δ <i>A</i> / <i>A</i> > 0.05	Δ <i>E</i> / <i>E</i> > 0.05	#
lime	N ₂ O	92.7	92.7	0.4	0.0	0.4	0.0	0.0	16090
lime	CO ₂	0.1	0.4	0.4	0.0	0.4	0.0	0.0	16090
lime	CH₄	93.7	93.7	0.4	0.0	0.4	0.0	0.0	16090
food-beverage-tobacco	N ₂ O	0.4	0.4	0.0	0.0	0.0	0.0	0.0	147690
food-beverage-tobacco	CO ₂	0.6	0.6	0.0	0.0	0.0	0.0	0.0	147690
food-beverage-tobacco	CH₄	0.3	0.3	0.0	0.0	0.0	0.0	0.0	147690
other-metals	N ₂ O	40.9	100.0	100.0	100.0	100.0	0.0	0.0	3762
other-metals	CO ₂	40.9	100.0	100.0	100.0	100.0	0.0	0.0	3762
other-metals	CH₄	40.9	100.0	100.0	100.0	100.0	0.0	0.0	3762
other-chemicals	N ₂ O	33.5	100.0	100.0	100.0	100.0	0.0	0.0	3951
other-chemicals	CO ₂	33.5	100.0	100.0	100.0	100.0	0.0	0.0	3951
other-chemicals	CH₄	33.5	100.0	100.0	100.0	100.0	0.0	0.0	3951
textiles-leather-apparel	N ₂ O	25.8	25.8	0.0	0.0	0.0	0.0	0.0	128290
textiles-leather-apparel	CO ₂	25.8	25.8	0.0	0.0	0.0	0.0	0.0	128290
textiles-leather-apparel	CH₄	25.8	25.8	0.0	0.0	0.0	0.0	0.0	128290
enteric-fermentation-cattle-operation	N ₂ O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2798208
enteric-fermentation-cattle-operation	CO ₂	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2798208
enteric-fermentation-cattle-operation	CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2798208
manure-management-cattle-operation	N ₂ O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2798208
manure-management-cattle-operation	CO ₂	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2798208
manure-management-cattle-operation	CH ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2798208

Table 4 Mapping of which NULL emissions quantities and emissions factors should be interpreted as zeros, defined as "TRUE". Where there is a "FALSE", NULL emissions quantities and emissions factors are not necessarily to be interpreted as zero.

sector	CH ₄ → 0	CO ₂ -> 0	N ₂ O → 0
electricity-generation	TRUE	FALSE	TRUE
aluminum	TRUE	FALSE	TRUE
cement	TRUE	FALSE	TRUE

sector	CH ₄ → 0	CO ₂ → 0	N ₂ O → 0
chemicals	TRUE	FALSE	TRUE
pulp-and-paper	TRUE	FALSE	TRUE
iron-and-steel	TRUE	FALSE	TRUE
petrochemical-steam-cracking	FALSE	FALSE	TRUE
other-manufacturing	FALSE	FALSE	FALSE
coal-mining	FALSE	FALSE	FALSE
oil-and-gas-refining	FALSE	FALSE	FALSE
domestic-aviation	TRUE	TRUE	TRUE
international-aviation	TRUE	TRUE	TRUE
cropland-fires	FALSE	FALSE	FALSE
enteric-fermentation-cattle-operation	FALSE	TRUE	TRUE
enteric-fermentation-cattle-pasture	FALSE	TRUE	TRUE
manure-management-cattle-operation	FALSE	TRUE	FALSE
manure-left-on-pasture-cattle	FALSE	TRUE	FALSE
rice-cultivation	FALSE	TRUE	TRUE
synthetic-fertilizer-application	TRUE	TRUE	TRUE
solid-waste-disposal	FALSE	TRUE	TRUE
industrial-wastewater-treatment-and-discharge	FALSE	FALSE	FALSE
domestic-wastewater-treatment-and-discharge	FALSE	FALSE	FALSE
net-forest-land	TRUE	FALSE	TRUE
net-shrubgrass	TRUE	FALSE	TRUE
net-wetland	TRUE	FALSE	TRUE
forest-land-clearing	TRUE	FALSE	TRUE
forest-land-degradation	TRUE	FALSE	TRUE
forest-land-fires	TRUE	FALSE	TRUE
shrubgrass-fires	TRUE	FALSE	TRUE
wetland-fires	TRUE	FALSE	TRUE
removals	TRUE	FALSE	TRUE
water-reservoirs	FALSE	FALSE	TRUE
bauxite-mining	TRUE	FALSE	TRUE

sector	CH ₄ → 0	CO ₂ → 0	N ₂ O → 0
copper-mining	TRUE	FALSE	TRUE
iron-mining	FALSE	FALSE	FALSE
domestic-shipping	FALSE	FALSE	FALSE
international-shipping	FALSE	FALSE	FALSE
oil-and-gas-production-and-transport	FALSE	FALSE	FALSE
road-transportation	FALSE	FALSE	FALSE
oil-and-gas-transport	FALSE	FALSE	FALSE
oil-and-gas-production	FALSE	FALSE	FALSE
lime	FALSE	FALSE	FALSE
textiles-leather-apparel	FALSE	FALSE	FALSE
food-beverage-tobacco	FALSE	FALSE	FALSE
glass	FALSE	FALSE	FALSE
other-metals	FALSE	FALSE	FALSE
other-chemicals	FALSE	FALSE	FALSE
residential-onsite-fuel-usage	TRUE	TRUE	TRUE
non-residential-onsite-fuel-usage	TRUE	TRUE	TRUE

Table 5 Number of missing confidences filled in by confidence type by confidence imputations.

sector	metric	very low	low	medium	high	very high
bauxite-mining	activity	220	35	0	0	0
bauxite-mining	capacity	220	70	0	85	0
bauxite-mining	capacity_factor	220	105	0	0	0
bauxite-mining	emissions_factor	161	56	24	66	256
bauxite-mining	emissions_quantity	153	0	0	0	256
cement	emissions_factor	0	29304	0	0	29304
cement	emissions_quantity	0	0	0	0	29304
coal-mining	emissions_factor	7642	7350	0	0	0
coal-mining	emissions_quantity	7496	0	0	0	0
copper-mining	activity	685	15	25	5	0
copper-mining	capacity	685	1170	0	0	0

sector	metric	very low	low	medium	high	very high
copper-mining	capacity_factor	685	1170	0	0	0
copper-mining	emissions_factor	507	196	262	526	1348
copper-mining	emissions_quantity	441	0	0	0	1346
cropland-fires	activity	243340	0	0	0	0
cropland-fires	capacity	243340	0	0	0	0
cropland-fires	capacity_factor	243340	0	0	0	0
cropland-fires	emissions_factor	243340	0	0	0	0
electricity-generation	emissions_factor	0	0	0	0	209410
electricity-generation	emissions_quantity	0	0	0	0	209410
iron-mining	activity	2045	0	0	0	0
iron-mining	capacity	1990	1010	0	0	0
iron-mining	capacity_factor	3055	0	0	0	0
iron-mining	emissions_factor	3251	66	126	28	0
iron-mining	emissions_quantity	3193	0	0	0	0
wetland-fires	activity	221520	0	0	0	0
wetland-fires	capacity	221520	0	0	0	0
wetland-fires	capacity_factor	221520	0	0	0	0
wetland-fires	emissions_factor	134961	2046	2046	7164	109418
wetland-fires	emissions_quantity	134278	1364	1364	4776	107030
aluminum	emissions_factor	0	5232	0	0	5232
aluminum	emissions_quantity	0	0	0	0	5232
forest-land-clearing	activity	47255	0	0	0	0
forest-land-clearing	capacity	47255	0	0	0	0
forest-land-clearing	capacity_factor	47255	0	0	0	0
forest-land-clearing	emissions_factor	40857	12504	12501	43761	146012
forest-land-clearing	emissions_quantity	36689	8336	8334	29174	131426
pulp-and-paper	emissions_factor	0	6336	0	0	6336
pulp-and-paper	emissions_quantity	0	0	0	0	6336
chemicals	emissions_factor	912	0	0	0	912
chemicals	emissions_quantity	0	0	0	0	912

sector	metric	very low	low	medium	high	very high
forest-land-degradation	activity	166865	0	0	0	0
forest-land-degradation	capacity	166865	0	0	0	0
forest-land-degradation	capacity_factor	166865	0	0	0	0
forest-land-degradation	emissions_factor	105447	5325	5328	18642	120893
forest-land-degradation	emissions_quantity	103671	3550	3552	12428	114680
forest-land-fires	activity	187200	0	0	0	0
forest-land-fires	capacity	187200	0	0	0	0
forest-land-fires	capacity_factor	187200	0	0	0	0
forest-land-fires	emissions_factor	116427	4107	4107	14370	116624
forest-land-fires	emissions_quantity	115058	2738	2738	9580	111834
net-forest-land	activity	5600	0	0	0	0
net-forest-land	capacity	5600	0	0	0	0
net-forest-land	capacity_factor	5600	0	0	0	0
net-forest-land	emissions_factor	18363	15003	15003	52506	154760
net-forest-land	emissions_quantity	13362	10002	10002	35004	137258
net-shrubgrass	activity	6655	0	0	0	0
net-shrubgrass	capacity	6655	0	0	0	0
net-shrubgrass	capacity_factor	6655	0	0	0	0
net-shrubgrass	emissions_factor	18933	14940	14937	52287	154538
net-shrubgrass	emissions_quantity	13953	9960	9958	34858	137110
net-wetland	activity	48990	0	0	0	0
net-wetland	capacity	48990	0	0	0	0
net-wetland	capacity_factor	48990	0	0	0	0
net-wetland	emissions_factor	41793	12399	12399	43395	145649
net-wetland	emissions_quantity	37660	8266	8266	28930	131184
removals	activity	255635	0	0	0	0
removals	capacity	255635	0	0	0	0
removals	capacity_factor	255635	0	0	0	0
removals	emissions_factor	153381	0	0	0	102254
removals	emissions_quantity	153381	0	0	0	102254

sector	metric	very low	low	medium	high	very high
shrubgrass-fires	activity	190160	0	0	0	0
shrubgrass-fires	capacity	190160	0	0	0	0
shrubgrass-fires	capacity_factor	190160	0	0	0	0
shrubgrass-fires	emissions_factor	118026	3927	3930	13749	116003
shrubgrass-fires	emissions_quantity	116716	2618	2620	9166	111420
water-reservoirs	emissions_factor	0	38114	130702	0	84408
water-reservoirs	emissions_quantity	0	0	0	0	84408
oil-and-gas-production	activity	1430	0	0	0	0
oil-and-gas-production	capacity	1430	0	0	0	0
oil-and-gas-production	capacity_factor	1430	0	0	0	0
oil-and-gas-production	emissions_factor	1430	0	0	0	0
oil-and-gas-production	emissions_quantity	286	0	0	0	0
oil-and-gas-transport	activity	1430	0	0	0	0
oil-and-gas-transport	capacity	1430	0	0	0	0
oil-and-gas-transport	capacity_factor	1430	0	0	0	0
oil-and-gas-transport	emissions_factor	1430	0	0	0	0
oil-and-gas-transport	emissions_quantity	286	0	0	0	0
iron-and-steel	emissions_factor	0	20114	0	0	20114
iron-and-steel	emissions_quantity	0	0	0	0	20114
glass	emissions_quantity	1278	0	0	0	0
food-beverage-tobacco	activity	102345	0	0	0	0
food-beverage-tobacco	capacity	102345	0	0	0	0
food-beverage-tobacco	capacity_factor	102345	0	0	0	0
food-beverage-tobacco	emissions_factor	102345	0	0	0	0
food-beverage-tobacco	emissions_quantity	102296	49	0	0	0
enteric-fermentation-cattle-operation	emissions_factor	0	5292	14	0	5306
enteric-fermentation-cattle-operation	emissions_quantity	0	0	0	0	5306
manure-management-cattle-operation	emissions_factor	0	0	0	0	2653
manure-management-cattle-operation	emissions_quantity	0	0	0	0	2653

Permissions and Use: All Climate TRACE data is freely available under the Creative Commons Attribution 4.0 International Public License, unless otherwise noted below.

Data citation format: Moore, D., Doctor, Z, Raniga, K., Lewis, C., Sridhar, L., Thomas, P., Saraswat, I., Collins, G., Nellis, A., Brown, N., Pekala, M., Rokisky, J., Reilly, E., Hughes, M. and McCormick, G. (2024). *Completeness of Bottom-up Emissions Estimates and Associated Metadata*. WattTime and Johns Hopkins University Applied Physics Laboratory, USA, Climate TRACE Emissions Inventory. https://climatetrace.org [Accessed date]

Geographic boundaries and names (iso3_country data attribute): The depiction and use of boundaries, geographic names and related data shown on maps and included in lists, tables, documents, and databases on Climate TRACE are generated from the Global Administrative Areas (GADM) project (Version 4.1 released on 16 July 2022) along with their corresponding ISO3 codes, and with the following adaptations:

- HKG (China, Hong Kong Special Administrative Region) and MAC (China, Macao Special Administrative Region) are reported at GADM level 0 (country/national);
- Kosovo has been assigned the ISO3 code 'XKX';
- XCA (Caspian Sea) has been removed from GADM level 0 and the area assigned to countries based on the extent of their territorial waters;
- XAD (Akrotiri and Dhekelia), XCL (Clipperton Island), XPI (Paracel Islands) and XSP (Spratly Islands) are not included in the Climate TRACE dataset;
- ZNC name changed to 'Turkish Republic of Northern Cyprus' at GADM level 0;
- The borders between India, Pakistan and China have been assigned to these countries based on GADM codes Z01 to Z09.

The above usage is not warranted to be error free and does not imply the expression of any opinion whatsoever on the part of Climate TRACE Coalition and its partners concerning the legal status of any country, area or territory or of its authorities, or concerning the delimitation of its borders.

Disclaimer: The emissions provided for this sector are our current best estimates of emissions, and we are committed to continually increasing the accuracy of the models on all levels. Please review our terms of use and the sector-specific methodology documentation before using the data. If you identify an error or would like to participate in our data validation process, please contact us.

References

- 1. GADM (2022). *GADM Maps and Data* [Online]. Available at: gadm.org (Accessed: 8 November 2024)
- 2. Moore, D., et al (2024). *Bottom-up Estimation of Emissions in Manufacturing Sub-sectors* [Online]. Available at: https://github.com/climatetracecoalition/methodology-documents/tree/main/2024/Post%2

- <u>0Processing%20for%20Global%20Emissions%20and%20Metadata%20Completeness</u> (Accessed: 15 November 2024)
- 3. Raniga, K., et al (2024). Temporal Disaggregation of Emissions Data for the Climate TRACE Inventory [Online]. Available at: https://github.com/climatetracecoalition/methodology-documents/tree/main/2024/Post%2 <a href="https://github.com/climatetracecoalition/methodology-documents/tree/ma
- Schiavina, M., Moreno-Monroy, A., Maffenini, L., Veneri, P. (2019): GHS-FUA R2019A GHS functional urban areas, derived from GHS-UCDB R2019A (2015). European Commission, Joint Research Centre (JRC) [Dataset] doi: 10.2905/347F0337-F2DA-4592-87B3-E25975EC2C95 PID: http://data.europa.eu/89h/347f0337-f2da-4592-87b3-e25975ec2c95
- Skone, T.J., Schivley, G., Jamieson, M., Marriott, J., Cooney, G., Littlefield, J., Mutchek, M., Krynock, M., and Shih, C.Y. (2018). *Life Cycle Analysis: Sub-Critical Pulverized Coal (SubPC) Power Plants* [Online]. Office of Scientific and Technical Information. United States. Available at: https://doi.org/10.2172/1542447 (Accessed: 11 November 2024)
- 6. United States Environmental Protection Agency (2024). *Basic Information of Air Emissions Factors and Quantification* [Online]. Available at:

 https://www.epa.gov/air-emissions-factors-and-quantification/basic-information-air-emissions-factors-and-quantification (Accessed: 8 November 2024)