Введение в логику высказываний

Математическая логика и теория алгоритмов

Алексей Романов 25 сентября 2020 г.

МИЭТ

Предмет математической логики

- Математическая логика раздел математики, изучающий математические обозначения, формальные системы, доказуемость математических суждений, природу математического доказательства в целом, вычислимость и прочие аспекты оснований математики (из Wikipedia).
- Разделы нашего курса:
 - Логика высказываний
 - Логика предикатов
 - Теория множеств
 - Теория алгоритмов (если успеем)
- Курс очень короткий и каждый раздел будет на базовом уровне.

Предмет математической логики

- Математическая логика раздел математики, изучающий математические обозначения, формальные системы, доказуемость математических суждений, природу математического доказательства в целом, вычислимость и прочие аспекты оснований математики (из Wikipedia).
- Разделы нашего курса:
 - Логика высказываний
 - Логика предикатов
 - Теория множеств
 - Теория алгоритмов (если успеем)
- Курс очень короткий и каждый раздел будет на базовом уровне.
- Сегодня логика высказываний (далее ЛВ).

- Высказывания предложения, которые могут быть истинны или ложны.
- Например: 4 < 5, «Волга впадает в Балтийское море».
- Но не вопросы, императивные предложения и т.д.

- Высказывания предложения, которые могут быть истинны или ложны.
- Например: 4 < 5, «Волга впадает в Балтийское море».
- Но не вопросы, императивные предложения и т.д.
- Оба эти высказывания *простые* или *атомарные*, так как не содержат более простых.
- Их внутренняя структура в ЛВ не рассматривается.

- Высказывания предложения, которые могут быть истинны или ложны.
- Например: 4 < 5, «Волга впадает в Балтийское море».
- Но не вопросы, императивные предложения и т.д.
- Оба эти высказывания *простые* или *атомарные*, так как не содержат более простых.
- Их внутренняя структура в ЛВ не рассматривается.
- Мы можем комбинировать простые высказывания с помощью логических связок \land («и», конъюнкция), \lor («или», дизъюнкция), \to («если...то...», импликация), \neg («не», отрицание).

- Высказывания предложения, которые могут быть истинны или ложны.
- Например: 4 < 5, «Волга впадает в Балтийское море».
- Но не вопросы, императивные предложения и т.д.
- Оба эти высказывания *простые* или *атомарные*, так как не содержат более простых.
- Их внутренняя структура в ЛВ не рассматривается.
- Мы можем комбинировать простые высказывания с помощью логических связок \land («и», конъюнкция), \lor («или», дизъюнкция), \to («если...то...», импликация), \neg («не», отрицание).
- Например, «в огороде бузина, а в Киеве дядька» = «в огороде бузина» ∧ «в Киеве дядька».

• Язык ЛВ — это формальный язык, то есть множество последовательностей символов определённого алфавита, построенных по определённым правилам.

- Язык ЛВ это формальный язык, то есть множество последовательностей символов определённого алфавита, построенных по определённым правилам.
- Алфавит ЛВ состоит из:
 - Пропозициональных переменных $p,q,r,p_1,...$ Множество всех переменных обозначим Var_{Prop} .
 - Символов $\land, \lor, \rightarrow, \lnot$ (иногда включают также \leftrightarrow).
 - Скобок (,).

- Язык ЛВ это формальный язык, то есть множество последовательностей символов определённого алфавита, построенных по определённым правилам.
- Алфавит ЛВ состоит из:
 - Пропозициональных переменных $p,q,r,p_1,...$ Множество всех переменных обозначим Var_{Prop} .
 - Символов $\land, \lor, \rightarrow, \lnot$ (иногда включают также \leftrightarrow).
 - Скобок (,).
- Формулы ЛВ (множество Prop):
 - Каждая переменная формула ($Var_{Prop} \subset Prop$).
 - Если A формула, то $\neg A$ тоже ($\forall A : Prop \ \neg A \in Prop$).
 - Если *A* и *B* формулы, то $(A \land B)$, $(A \lor B)$ и $(A \to B)$ тоже $(\forall A, B : Prop\ (A \land B) \in Prop\ , \ldots).$
 - Других формул нет.

- Язык ЛВ это формальный язык, то есть множество последовательностей символов определённого алфавита, построенных по определённым правилам.
- Алфавит ЛВ состоит из:
 - Пропозициональных переменных p,q,r,p_1,\ldots Множество всех переменных обозначим Var_{Prop} .
 - Символов $\land, \lor, \rightarrow, \lnot$ (иногда включают также \leftrightarrow).
 - Скобок (,).
- Формулы ЛВ (множество Prop):
 - Каждая переменная формула ($Var_{Prop} \subset Prop$).
 - Если *A* формула, то ¬*A* тоже (∀*A* : *Prop* ¬*A* ∈ *Prop*).
 - Если A и B формулы, то $(A \wedge B)$, $(A \vee B)$ и $(A \to B)$ тоже $(\forall A, B : Prop\ (A \wedge B) \in Prop, \ldots)$.
 - Других формул нет.
- Заметьте, что *A* и *B* не принадлежат языку ЛВ. Это *метапеременные*, т.е. переменные *метаязыка*, на котором мы описываем ЛВ.

- Данное определение формул ЛВ индуктивное (какие ещё индуктивные определения вы знаете?).
- Соответственно, если мы хотим доказать, что какое-то свойство P выполняется для всех формул ($\forall A: Prop\ P(A)$), достаточно показать, что:

- Данное определение формул ЛВ индуктивное (какие ещё индуктивные определения вы знаете?).
- Соответственно, если мы хотим доказать, что какое-то свойство P выполняется для всех формул ($\forall A: Prop\ P(A)$), достаточно показать, что:
 - оно верно для всех переменных, $\forall v : Var_{Prop} P(v)$ (v это снова метапеременная, не переменная ЛВ).
 - если A формула и P(A) верно, то верно и $P(\neg A)$, $\forall A : Prop\ (P(A) \to P(\neg A))$.
 - Если A и B формулы и P(A) и P(B) верны, то $P(A \wedge B)$, $P(A \vee B)$ и $P(A \to B)$ верны.

- Данное определение формул ЛВ индуктивное (какие ещё индуктивные определения вы знаете?).
- Соответственно, если мы хотим доказать, что какое-то свойство P выполняется для всех формул $(\forall A: Prop\ P(A))$, достаточно показать, что:
 - оно верно для всех переменных, $\forall v : Var_{Prop} P(v)$ (v это снова метапеременная, не переменная ЛВ).
 - если A формула и P(A) верно, то верно и $P(\neg A)$, $\forall A : Prop\ (P(A) \to P(\neg A))$.
 - Если A и B формулы и P(A) и P(B) верны, то $P(A \wedge B)$, $P(A \vee B)$ и $P(A \to B)$ верны.
- Пример: покажите, что число открывающих скобок в любой формуле равно числу закрывающих.

- Данное определение формул ЛВ индуктивное (какие ещё индуктивные определения вы знаете?).
- Соответственно, если мы хотим доказать, что какое-то свойство P выполняется для всех формул $(\forall A: Prop\ P(A))$, достаточно показать, что:
 - оно верно для всех переменных, $\forall v : Var_{Prop} P(v)$ (v это снова метапеременная, не переменная ЛВ).
 - если A формула и P(A) верно, то верно и $P(\neg A)$, $\forall A: Prop\ (P(A) \to P(\neg A)).$
 - Если A и B формулы и P(A) и P(B) верны, то $P(A \wedge B)$, $P(A \vee B)$ и $P(A \to B)$ верны.
- Пример: покажите, что число открывающих скобок в любой формуле равно числу закрывающих.
- Более важный: теорема о единственности прочтения.
 По формуле можно однозначно определить, какая операция была последней в её построении и к каким формулам она была применена.

5/16

Соглашения об опускании скобок

• TODO

Семантика логики высказываний

- Пока мы говорили только о *синтаксисе* языка ЛВ, т.е. какие комбинации символов в нём допустимы.
- *Семантика* или *интерпретация* формального языка описывает соответствие между объектами языка и тем, что они обозначают.
- У одного языка может быть много интерпретаций. Даже у такого простого, как язык ЛВ. Но мы посмотрим только на стандартную.
- Напомним, что высказывания могут быть истинны (обозначим как 1) или ложны (0). $\mathbb{B} = \{0,1\}$ множество значений истинности.
- *Оценка* σ это функция $Var_{Prop} \to \mathbb{B}$. Каждую оценку можно продолжить на всё Prop рекурсивно:
 - $\sigma(\neg A) = \neg \sigma(A)$
 - ...
- Заметьте, что ¬/∧/... слева символы языка ЛВ, а справа операции булевой алгебры.

Свойства формул

- Теперь среди всех формул А можно выделить
 - тождественно истинные (обозначаем как \models A): $\forall \sigma \ \sigma(A) = 1;$
 - тождественно ложные: $\forall \sigma \ \sigma(A) = 0$;
 - выполнимые: $\exists \sigma \ \sigma(A) = 1$;
 - опровержимые: $\exists \sigma \ \sigma(A) = 0$.

Свойства формул

- Теперь среди всех формул А можно выделить
 - тождественно истинные (обозначаем как \models A): $\forall \sigma \ \sigma(A) = 1;$
 - тождественно ложные: $\forall \sigma \ \sigma(A) = 0$;
 - выполнимые: $\exists \sigma \ \sigma(A) = 1;$
 - опровержимые: $\exists \sigma \ \sigma(A) = 0$.
- Формулы A и B эквивалентны (обозначаем $A \equiv B$), если $\forall \sigma \ \sigma(A) = \sigma(B)$.

1.
$$p o (q o p \wedge q) = 0$$
 Дано

1.
$$p o (q o p \wedge q) = 0 ext{ } \checkmark$$
 Дано

$$2. \hspace{1cm} p=1 \hspace{1cm} 1$$

3.
$$q \rightarrow p \land q = 0$$
 1

1.
$$p o (q o p \wedge q) = 0$$
 \checkmark Дано

2.
$$p = 1 \checkmark$$
 1
3. $q \to p \land q = 0$ 1

3.
$$q \rightarrow p \land q = 0$$

1.
$$p o (q o p \wedge q) = 0$$
 \checkmark Дано

2.
$$p = 1 \checkmark$$
 1

3.
$$q \rightarrow p \land q = 0 \checkmark$$
 1

4.
$$q = 1 \checkmark$$
 3

5.
$$p \wedge q = 0$$

1.
$$p o (q o p \wedge q) = 0 \checkmark$$
 Дано

2.
$$p = 1 \checkmark$$
 1

3.
$$q \rightarrow p \land q = 0 \checkmark$$

4.
$$q = 1 \checkmark$$

5.
$$p \wedge q = 0$$
 3

6.
$$p = 0$$
 $q = 0$ 5

• Начнём с примера. Нужно доказать $p o (q o p \wedge q)$:

1.
$$p o (q o p \wedge q) = 0 \checkmark$$
 Дано

2.
$$p=1$$
 \checkmark

3.
$$q \rightarrow p \land q = 0 \checkmark$$

4.
$$q = 1 \checkmark$$

5.
$$p \wedge q = 0$$

$$\wedge q = 0$$

5

- Начнём с примера. Нужно доказать $p o (q o p \wedge q)$:
- Пусть $p o (q o p \wedge q) = 0$.
- Тогда p=1 и $q o p\wedge q=0$.
- Тогда q=1 и $p \wedge q=0$.
- Отсюда p=0 или q=0. Но оба невозможны!
- Значит, $p o (q o p \wedge q) = 0$ невозможно.
- $p o (q o p \wedge q)$ тождественно истинно!

Правила деревьев истинности

- Формулы со знаком (A=0 или A=1) делятся на 4 типа:
 - Атомарные (слева переменная).
 - Слева отрицание.
 - α ведут себя как «и»: $\alpha \Leftrightarrow \alpha_1 \wedge \alpha_2$.
 - β ведут себя как «или»: $\beta \Leftrightarrow \beta_1 \vee \beta_2$.

Правила деревьев истинности

- Формулы со знаком (A=0 или A=1) делятся на 4 типа:
 - Атомарные (слева переменная).
 - Слева отрицание.
 - α ведут себя как «и»: $\alpha \Leftrightarrow \alpha_1 \wedge \alpha_2$.
 - β ведут себя как «или»: $\beta \Leftrightarrow \beta_1 \vee \beta_2$.
- Правила:

			β		β_2
$A \wedge B = 1$	A = 1	B=1	$A \wedge B = 0$	A = 0	B = 0
$A \lor B = 0$	A = 0	B=0	$A \lor B = 1$	A = 1	B=1
$A \rightarrow B = 0$	<i>A</i> = 1	B=0	$A \rightarrow B = 1$	A=0	B=1

Правила деревьев истинности

- Формулы со знаком (A=0 или A=1) делятся на 4 типа:
 - Атомарные (слева переменная).
 - Слева отрицание.
 - α ведут себя как «и»: $\alpha \Leftrightarrow \alpha_1 \wedge \alpha_2$.
 - β ведут себя как «или»: $\beta \Leftrightarrow \beta_1 \vee \beta_2$.
- Правила:

			β		β_2
$A \wedge B = 1$	A = 1	B=1	$A \wedge B = 0$	A = 0	B = 0
$A \lor B = 0$	A = 0	B=0	$A \lor B = 1$	A = 1	B=1
$A \rightarrow B = 0$	<i>A</i> = 1	B=0	$A \rightarrow B = 1$	A=0	B=1

- Идея в поиске контрпримера для формулы (или секвенции), которую хотим доказать.
- Для доказательства формулы A мы начинаем с уравнения A=0.
- Для секвенции A₁, A₂, ... ⊢ В начинаем с

- Идея в поиске контрпримера для формулы (или секвенции), которую хотим доказать.
- Для доказательства формулы A мы начинаем с уравнения A=0.
- Для секвенции $A_1, A_2, \ldots \vdash B$ начинаем с $A_1 = 1, A_2 = 1, \ldots, B = 0$ (пишем их в столбик).
- Для эквивалентности $A \equiv B$ строим 2 дерева:

- Идея в поиске контрпримера для формулы (или секвенции), которую хотим доказать.
- Для доказательства формулы A мы начинаем с уравнения A=0.
- Для секвенции $A_1, A_2, \ldots \vdash B$ начинаем с $A_1 = 1, A_2 = 1, \ldots, B = 0$ (пишем их в столбик).
- Для эквивалентности $A \equiv B$ строим 2 дерева: A = 1, B = 0 и A = 0, B = 1.

- Идея в поиске контрпримера для формулы (или секвенции), которую хотим доказать.
- Для доказательства формулы A мы начинаем с уравнения A=0.
- Для секвенции $A_1, A_2, \ldots \vdash B$ начинаем с $A_1 = 1, A_2 = 1, \ldots, B = 0$ (пишем их в столбик).
- Для эквивалентности $A \equiv B$ строим 2 дерева: A = 1, B = 0 и A = 0, B = 1.
- На каждом шаге:
 - Выбираем неразобранное уравнение (не отмечено \checkmark).
 - Применяем правила с предыдущего слайда.
 - Результаты дописываются в конец всех открытых ветвей под ним.
 - Отмечаем как разобранное.

- Ветвь, в которой одновременно есть A=1 и A=0 для какой-то формулы A, называется *закрытой*.
- В ней можно дальше ничего не писать.
- Дерево закрыто, если все его ветви закрыты.
- В этом случае уравнения, с которых начали, не имеют решений!
- Значит, исходная формула/секвенция не имеет контрпримера и она тождественно истинна.

- Ветвь, в которой одновременно есть A=1 и A=0 для какой-то формулы A, называется *закрытой*.
- В ней можно дальше ничего не писать.
- Дерево закрыто, если все его ветви закрыты.
- В этом случае уравнения, с которых начали, не имеют решений!
- Значит, исходная формула/секвенция не имеет контрпримера и она тождественно истинна.
- Если какая-то ветвь закончилась (нет неразобранных строк), но не закрылась, то мы нашли контрпример к исходной формуле и она *не* тождественно истинна.

- Ветвь, в которой одновременно есть A=1 и A=0 для какой-то формулы A, называется *закрытой*.
- В ней можно дальше ничего не писать.
- Дерево закрыто, если все его ветви закрыты.
- В этом случае уравнения, с которых начали, не имеют решений!
- Значит, исходная формула/секвенция не имеет контрпримера и она тождественно истинна.
- Если какая-то ветвь закончилась (нет неразобранных строк), но не закрылась, то мы нашли контрпример к исходной формуле и она *не* тождественно истинна.
- Порядок применения влияет только на размер дерева, но не на результат.
- Выгоднее сначала применять правила без ветвления.

Пример незакрытого дерева

- Проверим $(p \rightarrow r) \lor (q \rightarrow r) \rightarrow (p \lor q \rightarrow r)$: 1. $(p \rightarrow r) \lor (q \rightarrow r) \rightarrow (p \lor q \rightarrow r) = 0 \checkmark$ Дан 2. $(p \rightarrow r) \lor (q \rightarrow r) = 1 \checkmark$ 3. $p \lor q \rightarrow r = 0 \checkmark$ 4. $p \lor q = 1 \checkmark$ 5. $r = 0 \checkmark$ $p \rightarrow r = 1 \checkmark$ 6. $a \rightarrow r = 1 \checkmark$ 7. $p = 1 \checkmark \qquad q = 1 \checkmark \qquad p = 1 \checkmark \qquad q = 1 \checkmark$ 8. $p = 0 \checkmark \quad r = 1 \checkmark \qquad q = 0 \checkmark \quad r = 1 \checkmark$ 9.
 - В законченной ветви $p=1,\,q=0,\,r=0.$ На этом наборе строка 1 выполняется, значит,

Пример незакрытого дерева

8.

9.

• Проверим $(p \rightarrow r) \lor (q \rightarrow r) \rightarrow (p \lor q \rightarrow r)$: 1. $(p \rightarrow r) \lor (q \rightarrow r) \rightarrow (p \lor q \rightarrow r) = 0 \checkmark$ 2. $(p \rightarrow r) \lor (q \rightarrow r) = 1 \checkmark$ 3. $p \lor q \rightarrow r = 0 \checkmark$ 4. $p \lor q = 1 \checkmark$ 5. $r = 0 \checkmark$ 6. $p \rightarrow r = 1 \checkmark$ $a \rightarrow r = 1 \checkmark$ 7. $p = 1 \checkmark \qquad q = 1 \checkmark \qquad p = 1 \checkmark \qquad q = 1 \checkmark$

 7,8 5,8 5,8 5,8 6 В законченной ветви $p=1,\ q=0,\ r=0.$ На этом наборе строка 1 выполняется, значит, формула не тождественно истинна.

 $p = 0 \checkmark \quad r = 1 \checkmark \qquad q = 0 \checkmark \quad r = 1 \checkmark$

Дан

Корректность и полнота

- Формальная система корректна для какого-то свойства, если все выводимые в этой системе формулы (или другие объекты) имеют это свойство.
- Формальная система *полна* для какого-то свойства, если все объекты с этим свойством выводимы.

Корректность и полнота

- Формальная система *корректна* для какого-то свойства, если все выводимые в этой системе формулы (или другие объекты) имеют это свойство.
- Формальная система *полна* для какого-то свойства, если все объекты с этим свойством выводимы.
- В приложении к деревьям истинности:
- Теорема о корректности деревьев истинности для логики высказываний: если для A=0 есть закрытое дерево истинности, то A тождественно истинна.
- Теорема о полноте деревьев истинности для логики высказываний: если A тождественно истинна, то для A=0 есть закрытое дерево истинности.
- Можно доказать больше: любое законченное дерево истинности для A=0 закрыто.

- Теорема: если для A = 0 есть закрытое дерево истинности, то A тождественно истинна.
- Доказательство: от противного. Если A не тождественно истинна, то A=0 выполнимо.

- Теорема: если для A = 0 есть закрытое дерево истинности, то A тождественно истинна.
- Доказательство: от противного. Если A не тождественно истинна, то A=0 выполнимо.
- Значит, в исходном дереве единственная ветвь выполнима (есть оценка, для которой все уравнения в этой ветви истинны одновременно).

- Теорема: если для A = 0 есть закрытое дерево истинности, то A тождественно истинна.
- Доказательство: от противного. Если A не тождественно истинна, то A=0 выполнимо.
- Значит, в исходном дереве единственная ветвь выполнима (есть оценка, для которой все уравнения в этой ветви истинны одновременно).
- Лемма: если в дереве есть выполнимая ветвь, после применения правил такая ветвь тоже есть. Доказательство отдельно для правил ¬, α и β (используя $\alpha \Leftrightarrow \alpha_1 \wedge \alpha_2$ и $\beta \Leftrightarrow \beta_1 \vee \beta_2$).

- Теорема: если для A = 0 есть закрытое дерево истинности, то A тождественно истинна.
- Доказательство: от противного. Если A не тождественно истинна, то A=0 выполнимо.
- Значит, в исходном дереве единственная ветвь выполнима (есть оценка, для которой все уравнения в этой ветви истинны одновременно).
- Лемма: если в дереве есть выполнимая ветвь, после применения правил такая ветвь тоже есть. Доказательство отдельно для правил ¬, α и β (используя $\alpha \Leftrightarrow \alpha_1 \wedge \alpha_2$ и $\beta \Leftrightarrow \beta_1 \vee \beta_2$).
- Значит, сколько не применяем правила к исходному дереву, на каждом шаге есть выполнимая ветвь.

- Теорема: если для A = 0 есть закрытое дерево истинности, то A тождественно истинна.
- Доказательство: от противного. Если A не тождественно истинна, то A=0 выполнимо.
- Значит, в исходном дереве единственная ветвь выполнима (есть оценка, для которой все уравнения в этой ветви истинны одновременно).
- Лемма: если в дереве есть выполнимая ветвь, после применения правил такая ветвь тоже есть. Доказательство отдельно для правил ¬, α и β (используя $\alpha \Leftrightarrow \alpha_1 \wedge \alpha_2$ и $\beta \Leftrightarrow \beta_1 \vee \beta_2$).
- Значит, сколько не применяем правила к исходному дереву, на каждом шаге есть выполнимая ветвь.
- Закрытая ветвь не может быть выполнима, значит, на каждом шаге есть открытая ветвь.
- Значит, дерево не может быть закрыто.

- Теорема: если A тождественно истинна, то любое законченное дерево истинности для A=0 закрыто.
- Доказательство: снова от противного.

- Теорема: если A тождественно истинна, то любое законченное дерево истинности для A=0 закрыто.
- Доказательство: снова от противного.
- Пусть есть дерево с законченной открытой ветвью $\mathcal{B}.$

- Теорема: если A тождественно истинна, то любое законченное дерево истинности для A=0 закрыто.
- Доказательство: снова от противного.
- Пусть есть дерево с законченной открытой ветвью \mathcal{B} .
- Рассмотрим оценку

$$\sigma(v) = \left\{egin{array}{ll} 1, \ ext{если} \ v = 1 \in \mathcal{B} \ 0, \ ext{если} \ v = 0 \in \mathcal{B} \ 0 \ ext{иначе} \end{array}
ight.$$

• Лемма: все уравнения в $\mathcal B$ выполняются на оценке σ .

- Теорема: если A тождественно истинна, то любое законченное дерево истинности для A=0 закрыто.
- Доказательство: снова от противного.
- Пусть есть дерево с законченной открытой ветвью \mathcal{B} .
- Рассмотрим оценку

$$\sigma(v) = \left\{egin{array}{ll} 1, \ ext{если} \ v = 1 \in \mathcal{B} \ 0, \ ext{если} \ v = 0 \in \mathcal{B} \ 0 \ ext{иначе} \end{array}
ight.$$

- Лемма: все уравнения в $\mathcal B$ выполняются на оценке σ .
- Доказательство по индукции: для переменных по определению σ , и для случаев \neg , α и β .
- Для β : $\beta \in \mathcal{B} \Rightarrow \beta_1 \in \mathcal{B} \lor \beta_2 \in \mathcal{B}$ (т.к. β разобрана в \mathcal{B}) $\Rightarrow \sigma(\beta_1) = 1 \lor \sigma(\beta_2) = 1$ (по предположению индукции) $\Rightarrow \sigma(\beta) = 1$.

- Теорема: если A тождественно истинна, то любое законченное дерево истинности для A=0 закрыто.
- Доказательство: снова от противного.
- Пусть есть дерево с законченной открытой ветвью \mathcal{B} .
- Рассмотрим оценку

$$\sigma(v) = \left\{egin{array}{ll} 1, \ ext{если} \ v = 1 \in \mathcal{B} \ 0, \ ext{если} \ v = 0 \in \mathcal{B} \ 0 \ ext{иначе} \end{array}
ight.$$

- Лемма: все уравнения в $\mathcal B$ выполняются на оценке σ .
- Доказательство по индукции: для переменных по определению σ , и для случаев \neg , α и β .
- Для $\beta\colon \beta\in\mathcal{B}\Rightarrow\beta_1\in\mathcal{B}\vee\beta_2\in\mathcal{B}$ (т.к. β разобрана в \mathcal{B}) $\Rightarrow\sigma(\beta_1)=1\vee\sigma(\beta_2)=1$ (по предположению индукции) $\Rightarrow\sigma(\beta)=1.$
- Для α аналогично, но \wedge вместо \vee .

- Теорема: если A тождественно истинна, то любое законченное дерево истинности для A=0 закрыто.
- Доказательство: снова от противного.
- Пусть есть дерево с законченной открытой ветвью \mathcal{B} .
- Рассмотрим оценку

$$\sigma(v) = \left\{egin{array}{ll} 1, \ \mathsf{если} \ v = 1 \in \mathcal{B} \ 0, \ \mathsf{если} \ v = 0 \in \mathcal{B} \ 0 \ \mathsf{иначe} \end{array}
ight.$$

- Лемма: все уравнения в $\mathcal B$ выполняются на оценке σ .
- Доказательство по индукции: для переменных по определению σ , и для случаев \neg , α и β .
- Для β : $\beta \in \mathcal{B} \Rightarrow \beta_1 \in \mathcal{B} \vee \beta_2 \in \mathcal{B}$ (т.к. β разобрана в \mathcal{B}) $\Rightarrow \sigma(\beta_1) = 1 \vee \sigma(\beta_2) = 1$ (по предположению индукции) $\Rightarrow \sigma(\beta) = 1$.
- Для α аналогично, но \wedge вместо \vee .
- В частности, $\sigma(A) = 0$ и A не тождественно истинна. 16/16