Goal-oriented search for dialogue and question answering

Jian-Yun Nie

University of Montreal

nie@iro.umontreal.ca

http://rali.iro.umontreal.ca/nie-site/jian-yun-nie-en/

Context

- Search is used as a basic tool in many applications and tasks
 - Retrieval-based chatbot
 - Question answering
 - Social media analysis
 - ...
- Usually, simple IR methods to find relevant documents
 - Containing query words
- Are the search results the most appropriate for the task?

Search in the tasks

- Retrieval-based chatbot
 - Use the current utterance to retrieve relevant responses from the repository
- Question answering
 - Use the question to retrieve relevant documents/passages
- Social media analysis
 - Use queries (keywords) to retrieve tweets
- All these searches focus on *relevance*: containing the words
 - Does a retrieved response fit the context and goal?
 - Does a retrieved passage contain an answer?
 - Are the tweets about the specific event (person/product, ...) and the intended analysis?

Proposal: considering the goal in search

- Retrieval-based dialogue
 - Responses should fit the context and the goal
- Question answering
 - Retrieved passages should contain potential answers

- Query expansion is not enough
 - Query and Context/Goal should be used in different ways

This talk

- Dialogue with users
 - Response generation enhanced by retrieved responses
 - Incorporating the goal (proactive dialogue)
- Question answering
 - Answer-oriented passage reranking

Dialogue

- Chitchat: generate / retrieve a reasonable response
- Task-oriented conversation
- Dialogue with a goal, based on knowledge: Guide conversation in a direction
- Provide an answer (QA): finding an answer from documents / knowledge graph

• ...

Retrieval-based vs. Generation-based

Dialogue repository Retrieval-based: More fluent Message₁ Response₁ Message₂ Response₂ retrieve Input Message $(w_{q_1}, w_{q_2}, ..., w_{q_m}) \xrightarrow{\text{as query}} \text{Retrieval module}$ Message₂ Response₃ Message_{ns} Response, Generation-based: More flexible Input Message $(w_{q_1}, w_{q_2}, ..., w_{q_m})$ \longrightarrow Generation model response

1. Retrieved candidates serve as context for response generation

- Issue with generation-based responses
 - Often bland: I don't know, I don't understand what you say, ..
- Issue with retrieval-based responses
 - Limited choices
- Expected advantages of a combined approach
 - Reuse part of the existing responses (know how to respond)
 - Generate new responses

Yutao Zhu, Zhicheng Dou, Jian-Yun Nie, Ji-Rong Wen: ReBoost: a retrieval-boosted sequence-to-sequence model for neural response generation. Inf. Retr. J. 23(1): 27-48 (2020)

Some examples

Input Message	Gold Response	Retrieved Results
I'm bored , is anyone awake? Anyone want to chat ? 无聊中,有没有没睡觉的?聊下?	Let's go, I <u>haven't slept</u> yet. 来来,我也还 <u>没睡觉</u>	I'm bored! Is there anyone who can chat with me? I will reply to anything. 无聊中! 有陪聊的没? 有来必应。 It seems that many people are not sleeping. 看来不少人都沒睡觉哦
A fresh grown watermelon, have you ever seen one? 刚结出来的西瓜,你见过吗?	This is too tiny. Such a small watermelon. <u>Is it edible?</u> 这未免太迷你了,好袖珍的西瓜, <u>能吃吗?</u>	A blue watermelon , is it beautiful? Have you ever seen one? 蓝色的 西瓜 ,美不美?你见过吗? Such a weird watermelon. <u>Is it edible?</u> 好奇怪的西瓜, <u>这个能吃吗?</u>
The Beijing today is most suitable for sleeping 今天的北京最适合睡觉	<u>Sleeping</u> on rainy <u>days</u> is refreshing! 下雨 <u>天睡覚</u> 爽!	It's too humid in Beijing This type of day is most suitable for sleeping 北京湿透了…这天 最适合睡觉 了 <i>Today's plan: <u>sleep</u> all <u>day</u>. 今天的计划,全<u>天睡觉</u>。</i>

Response retrieval and encoding

Retrieval with a traditional IR method (BM25)

Response encoder (Bi-directional RNN)

- Sentence encoding
- Sentence aggregation

Response generation

• Input: concatenation of message and retrieved responses

$$\mathbf{a}_t = [\mathbf{a}_t^M; \mathbf{a}_t^R],$$

Keyword-guided generation (keywords from responses by TF-IDF)

$$p_t = p_n$$
$$p_n = \operatorname{softmax}(\mathbf{W}_s \mathbf{s}_t + \mathbf{b}_s),$$

$$p_n$$
: normal generation prob.

 p_k : prob. of keyword selected from the responses

$$\mathbf{s}_t = \text{GRU}(\mathbf{y}_{t-1}, [\mathbf{s}_{t-1}; \mathbf{a}_t]),$$

Some results

- On NTCIR-13 STC task (Chinese)
- Open Subtitles (English)

(a) Results on Weibo Dataset

	Distinct-1	Distinct-2	BLEU-1	BLEU-2	BLEU-3	BLEU-4
S2SA	.0107	.0499	7.25	2.77	1.46	0.93
NRM-hyb	.0142	.0699	11.66	4.69	2.70	1.90
MMI	.0132	.0683	12.70	4.66	2.52	1.69
TA-Seq 2 seq	.0133	.0671	12.30	4.59	2.52	1.85
ReBoost	$\boldsymbol{.0302}$.2112	12.73	5.68	3.55	$\bf 2.62$

(b) Results on OpenSubtitles Dataset

	Distinct-1	Distinct-2	BLEU-1	BLEU-2	BLEU-3	BLEU-4
S2SA	.0025	.0078	6.84	2.59	1.4	0.75
NRM-hyb	.0025	.0080	6.57	2.7	1.46	0.77
MMI	.0015	.0062	8.83	3.36	1.76	0.9
TA-Seq 2 seq	.0026	.0089	5.04	2.03	1.16	0.7
ReBoost	$\boldsymbol{.0027}$.0090	8.57	3.93	$\bf 2.21$	1.49

2. Proactive Dialogue – meet a conversation goal

- Chitchat: without specific purpose
- Task-oriented dialogue: specific to a task (patterns, slots, ...)
- Can we design a general chatbot for some purpose?
 - To express *happy* emotion
 - To mention some entities (recommendation)
 - ...

Knowledge-grounded proactive conversation

- Movie domain
- The chatbot should lead the conversation to discuss about some entities (movie, actor, ...)
- Based on knowledge

Desired conversation

- (1) Bot Do you usually spend your weekend watching movies? (平时周末去看电影吗?)
- (2) User Of course, could you recommend good films for me? I can watch it on this weekend. (看呀,最近有好看的可以推荐一下,周末去看。)
- (3) Bot You can watch **Rise of the Rice Cooker**, which is rated <u>6.9</u>. (麦兜·饭宝奇兵这部电影,大众评分在6.9呢,值得一看。)
- (4) User Sounds great, thanks. (好的, 一定去看看。)
- (5) Bot It is very nice and funny. Do you know who is the star of this movie? (这部电影还不错,挺搞笑的。你知道饭麦兜·饭宝奇兵的主演是谁吗?)
- (6) User I don't know. Who is that? (不知道, 谁啊?)
- (7) Bot It's **Bo Peng**. Do you know him? People said that he was a kind of lacking explosive Performance.
 (彭博, 网友们评论说他缺少爆发力太温柔)
- (8) User I will know more about him later. (那我有时间去了解一下。)

Approach: integrating the goal and knowledge

- User's utterance (query): e^{u_i}
- Goal: e^g
- Select relevance piece of knowledge: \mathbf{e}^{k_j}
- Candidate response: e^r

• Word-level similarity: $\mathbf{m}_1^{u_i} = [\mathbf{e}^{u_i} \mathbf{A}_1 \mathbf{e}^r; \cos(\mathbf{e}^{u_i}, \mathbf{e}^r)],$

$$\mathbf{m}_1^{k_j} = [\mathbf{e}^{k_j'} \mathbf{A}_1 \mathbf{e}^r; \cos(\mathbf{e}^{k_j'}, \mathbf{e}^r)], \quad \mathbf{v}^u = [\mathbf{v}^{u_1}, \cdots, \mathbf{v}^{u_L}]$$

• Sentence-level similarity: $\mathbf{m}_2^{u_i} = [\mathbf{u}_i \mathbf{A}_2 \mathbf{r}; \cos(\mathbf{u}_i, \mathbf{r})],$ (LSTM) $\mathbf{m}_2^{k_j} = [\mathbf{k}_j \mathbf{A}_2 \mathbf{r}; \cos(\mathbf{k}_j, \mathbf{r})],$

Matching features

$$\mathbf{v}^u = [\mathbf{v}^{u_1}, \cdots, \mathbf{v}^{u_L}]$$

$$\mathbf{v}^k = [\mathbf{v}^{k_1}, \cdots, \mathbf{v}^{k_M}]$$

$$\hat{y} = (s(c, r) + s(k, r) + s(g, r))/3.$$

Some more details

- Selecting relevance pieces (triples) of knowledge, based on goal and utterance
 - Use a separate training to learn to use knowledge graph

$$\mathcal{L}_{kp} = -\frac{1}{|\mathcal{D}|} \sum (y_{k_j} \log s^{k_j} + (1 - y_{k_j}) \log(1 - s^{k_j}))$$

- Goal tracker
 - Track what part of the goal has been met, and what remains

Architecture

Some results

	Hits@1	Hits@3	MRR	BLEU1	BLEU2	KLG. P	KLG. R	KLG. F1	KLG. Acc.	Goal Acc.
	DuConv									
Ground-truth	-	-	-	1.00	1.00	38.24	9.20	14.83	100.00	100.00
DuRetrieval	50.12	75.68	63.13	0.47	0.32	30.11	7.24	11.68	53.64	58.90
KPN	66.94	87.52	78.30	0.56	0.42	33.45	8.05	12.97	57.82	77.58

- DuRetrieval: A naïve use of knowledge and goal (mixed)
- KPN: using knowledge and goal

Observations

- Both goal and knowledge are useful for retrieval-based conversation
- Different ways to use knowledge and goal (different paths of matching)

 Matching for the purpose of retrieving a response that fits the goal, based on knowledge

3. Open-domain QA: Answer-oriented passage reranking

Open domain QA: find answer from many texts

Retriever: retrieve a set of texts (documents/ paragraphs/sentences) for a question

Reader: Machine reading comprehension (MRC) to find an answer from the selected documents

Key issue: Retriever and Reader disconnected

Illustration Example

		-	ion: Truth:	What <u>Russian emigre</u> to the <u>U.S.</u> is <u>credited</u> with <u>inventing</u> the <u>helicopter</u> ? Igor			
	r a		a	Passages			
	D 1 0		0	Wright brothers: Orville and Wilbur Wright, were the two <u>Americans</u> who are <u>credited</u> with <u>inventing</u> and			
X	P ₁	1	0	building the world's <u>first</u> successful <u>airplane</u> .			
	P ₂	0 1 1		1	1	1	The fellow Russian emigre, Igor Ivanovich Sikorsky, was an American aviation pioneer in both
	Γ_2	1	1	helicopters and fixed-wing aircraft, who was credited with many other accomplishments			
	P ₃	0	1	<i>Igor</i> Ivanovich Sikorsky was an orthodox chiristian.			
His paternal grandfather, Leo Shoumatoff, was the bussiness manager of <i>Igor</i> Sil		His paternal grandfather, Leo Shoumatoff, was the bussiness manager of <i>Igor</i> Sikorsky's <u>aircraft</u> company,					
V	P_4		1	where Igor <u>developed the first helicopter</u> and the first passenger airplane.			

- Ranking by retriever: P2, P4, P1, P3
- Some of the passages contain query words, but do not contain the answer (P1) or do not support the answer (P2)
- Idea: Select passages that are relevant and may contain the answer (lightweight reader)

Background - Problems

- Current trend: increase the model size
 - Pretrained LMs as KBs: GPT-3 (175B), Switch Transformer (1.6T)
 - A 11B T5 model matches the performance with DPR with 3 BERT-based models (Roberts etc., 2020)
 - Heavy machinery is required to run them.

- Building a large Neural retrieval model
 - Dense Passage Retrieval (DPR): also needs a large GPU server to run

Adding an answer-oriented passage selector

 Passage reranking: Relevance + Containing possible answer (lightweight reader)

for a question

Ranker:

select/rerank
passages
according to
relevance +
possible answer

Reader: Machine reading comprehension to find an answer from the selected documents

Training of Ranker with noisy data

- We are limited by the amount of training data (question-passageanswer)
- Available: Question-answer
- Assumption: a passage containing the answer is a good passage

Q	Question:		What Russian emigre to the U.S. is credited with inventing the helicopter?
Ground Truth:		Truth:	Igor
r a		a	Passages
P ₁	1 0		Wright brothers: Orville and Wilbur Wright, were the two <u>Americans</u> who are <u>credited</u> with <u>inventing</u> and
г	1	U	building the world's <u>first</u> successful <u>airplane</u> .
D	1	1	The fellow Russian emigre, Igor Ivanovich Sikorsky, was an American aviation pioneer in both
P_2	1	1	helicopters and fixed-wing aircraft, who was credited with many other accomplishments
P ₃	0	1	<i>Igor</i> Ivanovich Sikorsky was an orthodox chiristian.
D.	His paternal		His paternal grandfather, Leo Shoumatoff, was the bussiness manager of <i>Igor</i> Sikorsky's <u>aircraft</u> company,
P_4	1	1	where Igor developed the first helicopter and the first passenger airplane.

GAN-based training

- Try to separate good and bad examples
- General GAN:
 - Generator learns the distribution of true data
 - Discriminator tries to separate true and fake data
- Extended GAN framework
 - Generator
 - 2 discriminators: relevant and contain answer?

Some formulas

• Overall objective $J = \min_{\theta} \max_{\phi, \xi} \sum_{n=1}^{N} \left(\mathbb{E}_{d \sim p_{true}(d|q_n, a)} [\log D_{\phi}^r(d|q_n)] + \mathbb{E}_{d \sim p_{\theta}(d|q_n, a)} [\log (1 - D_{\phi}^r(d|q_n))] - \lambda_1 \cdot \mathbb{E}_{d \sim p_{\theta}(d|q_n, a)} [\log D_{\xi}^a(d|q_n)] + \lambda_2 \cdot \mathbb{E}_{d \sim p_{true}(d|q_n, a)} [\log \frac{p_{true}(d|q_n, a)}{p_{\theta}(d|q_n, a)}] \right)$

- Generator: $p_{\theta}(d|q_n, a)$
- Rank discriminator (relevance): D_{ϕ}^{r}
- Answer discriminator: D_{ξ}^{a}
- Regularizer: $\mathbb{E}_{d \sim p_{true}(d|q_n, a)} [\log \frac{p_{true}(d|q_n, a)}{p_{\theta}(d|q_n, a)}]$

Some more formulas for losses

• Rank discriminator: $\mathcal{L}_{D_{\phi}^{r}} = -\sum_{n=1}^{N} \left(\mathbb{E}_{d \sim p_{true}} [\log(\sigma(f_{\phi}(d, q_{n})))] + \mathbb{E}_{d \sim p_{\theta^{*}}} [\log(1 - \sigma(f_{\phi}(d, q_{n})))] \right)$

• Answer discriminator:
$$\mathcal{L}_{D_{\xi}^{a}} = -\sum_{n=1}^{N} \left(\sum_{d \in A^{+}} \log \sigma(f_{\xi}((d, q_{n}))) + \sum_{d \in A^{-}} \log(1 - \sigma(f_{\xi}(d, q_{n}))) \right)$$

• Generator:
$$\mathcal{L}_{p_{\theta}} = \sum_{n=1}^{N} \left(\mathbb{E}_{d \sim p_{\theta}} [\log(1 - \sigma(f_{\phi^*}(d, q_i)))] - \lambda_1 \mathbb{E}_{d \sim p_{\theta}} [\log \sigma(f_{\xi^*}(d, q_n))] - \lambda_2 \mathbb{E}_{d \sim p_{true}} [\log p_{\theta}(d|q_n, a)] \right)$$

Training

- Document and question encoding: BiLSTM + self-attention
- Score functions in discriminators: $f_{\phi}(d_i, q) = p(d_i|q) = \operatorname{softmax}(\max_j (\hat{d}_i^j Wq)),$
- Score by generator: $f_{\theta}(d_i, q) = p_{\theta}(a|q, d_i) = \max_{j,k} p_s^j(a|q, d_i) p_e^k(a|q, d_i)$
- REINFORCE algorithm for training

Retriever and Reader

- Retriever: BM25
- Reader: A more sophisticated reader based on 12-layer BERT

$$P(s, e, i) = P(d_i) \cdot P(s|d_i) \cdot P(e|d_i)$$

$$P(s|d_i) = \operatorname{softmax}(d_i w_{start})_s$$

$$P(e|d_i) = \operatorname{softmax}(d_i w_{end})_t$$

$$P(d_i) = \operatorname{softmax}(\hat{D}^T w_{doc})_i$$

Some experimental results

Test collections

Dataset	#Train	#Dev	#Test	#Psgs/Que
Quasar-T	37,012	3,000	3,000	100
SearchQA	99,811	13,893	27,247	~49.6
TriviaQA	87,291	11,274	10,790	100
CuratedTREC	1,353	133	694	Wikipedia (50)
Nat.Question	79,168	8,757	3,610	Wikipedia (50)

Reranking (part)

	SearchQA					
	BM25	DSQA	Ours	BM25	DSQA	Ours
Hits@1	6.3	27.7	35.2	13.7	59.9	63.9
Hits@3	10.9	36.8	52.0	24.1	69.8	83.0
Hits@5	15.2	42.6	59.5	32.7	75.5	88.8
Hits@20	-	-	72.3	-	-	97.5
Hits@50	-	1	74.8	-	-	99.8

Final answer

	Quasar-T	SearchQA	Cur.Trec	Trivia	NQ _{sub}
BM25	41.6	57.9	21.3	47.1	26.7
\mathbb{R}^3	35.3	49.0	28.4	47.3	-
DSQA	42.2	58.8	29.1	48.7	-
DPR	-	-	28.0	57.0	27.4
Ours	45.5	61.2	29.3	60.7	29.5

Example

		tion:	What Russian emigre to the U.S. is credited with inventing the helicopter?							
Gro	und	Truth:	Igor							
	r	a	Passages	DPR Score	Our Score					
P ₁	1	0	Wright brothers: Orville and Wilbur Wright, were the two <u>Americans</u> who are <u>credited</u> with <u>inventing</u> and building the world's <u>first</u> successful <u>airplane</u> .	71.7	242.9					
P_2	1	1	The fellow Russian emigre, <i>Igor</i> Ivanovich Sikorsky, was an American aviation pioneer in both helicopters and fixed-wing aircraft, who was credited with many other accomplishments	75.6	286.8					
P_3	0	1	<i>Igor</i> Ivanovich Sikorsky was an orthodox chiristian.	57.7	178.1					
P_4	1	1	His paternal grandfather, Leo Shoumatoff, was the bussiness manager of <i>Igor</i> Sikorsky's <u>aircraft</u> company, where Igor <u>developed the first helicopter</u> and the first passenger airplane.	74.4	292.3					

Conclusion on answer-oriented passage reranking

- Reranking based on possible answer in the passage is useful
- GAN can better leverage noisy training data
- Lightweight ranker: a fraction of retrieval and machine reading time

• Retriever: 3.3 ms

• Ranker: 0.5 ms

• Reader: 57.3 ms

Final notes

- Tailor search for different purposes
 - Design specific ways to enhance matching
- Towards a more general framework of goal-oriented search
 - A large body of work in the literature about the principles
 - Need to find ways to implement them
 - Neural nets offer a flexible framework for the implementation
- Additional issues:
 - Training and test data with user interactions
 - A new evaluation methodology

Thank you!