Introduction: Combinatorial Problems

Combinatorial Problem Solving (CPS)

Enric Rodríguez-Carbonell

February 11, 2020

Combinatorial Problems

- A combinatorial problem consists in finding, among a finite set of objects, one that satisfies a set of constraints
- Several variations:
 - Find one solution
 - ◆ Find all solutions
 - ◆ Find best solution according to an objective function

Given a formula F in propositional logic, is F satisfiable? (= is there any assignment of Boolean values to variables that evaluates F to "true"?)

- Given a formula F in propositional logic, is F satisfiable? (= is there any assignment of Boolean values to variables that evaluates F to "true"?)
- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$ satisfiable?

- Given a formula F in propositional logic, is F satisfiable? (= is there any assignment of Boolean values to variables that evaluates F to "true"?)
- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$ satisfiable? Yes: set p, q to true

- Given a formula F in propositional logic, is F satisfiable? (= is there any assignment of Boolean values to variables that evaluates F to "true"?)
- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$ satisfiable? Yes: set p, q to true
- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q) \land (\neg p \lor \neg q)$ satisfiable?

- Given a formula F in propositional logic, is F satisfiable? (= is there any assignment of Boolean values to variables that evaluates F to "true"?)
- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$ satisfiable? Yes: set p, q to true
- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q) \land (\neg p \lor \neg q)$ satisfiable? No

- Given a formula F in propositional logic, is F satisfiable? (= is there any assignment of Boolean values to variables that evaluates F to "true"?)
- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$ satisfiable? Yes: set p, q to true
- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q) \land (\neg p \lor \neg q)$ satisfiable? No
- Arises in:
 - Hardware verification
 - ♦ Circuit optimization
 - **♦** ...

Examples (II): Graph Coloring

Given a graph and a number of colors, can vertices be painted so that neighbors have different colors?

- Arises in:
 - ◆ Frequency assignment
 - ♦ Register allocation
 - **♦** ...

Examples (III): Knapsack

Given n items with weights w_i and values v_i , a capacity W and a number V, is there a subset S of the items such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq V$?

- Arises in:
 - Selection of capital investments
 - Cutting stock problems

5 / 9

Examples (IV): Bin Packing

Given n items with volumes v_i and k identical bins with capacity V, is it possible to place all items in bins?

- Arises in:
 - ◆ Logistics

• ...

A Note on Complexity

- All previous examples are NP-complete
 - No known polynomial algorithm (likely none exists)
 - Available algorithms have worst-case exp behavior: there will be small instances that are hard to solve
 - ◆ In real-world problems there is a lot of structure, which can hopefully be exploited

A Note on Complexity

- All previous examples are NP-complete
 - No known polynomial algorithm (likely none exists)
 - ◆ Available algorithms have worst-case exp behavior: there will be small instances that are hard to solve
 - In real-world problems there is a lot of structure, which can hopefully be exploited
- Other combinatorial problems solvable in P-time, e.g.
 - Bipartite matching: given a set of boys and girls and their compatibilities, can we marry all of them?
 - Shortest paths: given a graph and two vertices, which is the shortest way to go from one to the other?

A Note on Complexity

- All previous examples are NP-complete
 - No known polynomial algorithm (likely none exists)
 - Available algorithms have worst-case exp behavior: there will be small instances that are hard to solve
 - In real-world problems there is a lot of structure, which can hopefully be exploited
- Other combinatorial problems solvable in P-time, e.g.
 - Bipartite matching: given a set of boys and girls and their compatibilities, can we marry all of them?
 - ◆ Shortest paths: given a graph and two vertices, which is the shortest way to go from one to the other?
- \blacksquare Our focus will be on hard (= NP-complete) problems

Approaches to Problem Solving

- Specialized algorithms
 - ◆ Costly to design, implement and extend

Approaches to Problem Solving

- Specialized algorithms
 - Costly to design, implement and extend
- Declarative methodology
 - 1. Choose a problem solving framework (what is my language?)
 - 2. Model the problem (what is a solution?)
 - Define variables
 - Define constraints
 - 3. Solve it (with an off-the-shelf solver)

Approaches to Problem Solving

- Specialized algorithms
 - ◆ Costly to design, implement and extend
- Declarative methodology
 - 1. Choose a problem solving framework (what is my language?)
 - 2. Model the problem (what is a solution?)
 - Define variables
 - Define constraints
 - 3. Solve it (with an off-the-shelf solver)
- Pros of Declarative methodology
 - Specification of the problem is all we need to solve it!
 - ◆ Fast development and easy maintenance
 - ◆ Often better performance than ad-hoc techniques

About CPS

- Problem solving frameworks
 - ◆ Constraint Programming (CP)
 - ◆ Linear Programming (LP)
 - Propositional Satisfiability (SAT)
- For each of these frameworks
 - Modeling techniques
 - ♦ Inner workings of solvers