

(12)

AD

TECHNICAL REPORT ARCCB-TR-87014

**TEST METHODS FOR MATERIAL
CHARACTERIZATION OF COMPOSITE CYLINDERS**

AD-A182 534

Y. F. CHENG

JUNE 1987

STANDARD DTIC
ELECTED
JUL 16 1987
S D

**US ARMY ARMAMENT RESEARCH, DEVELOPMENT
AND ENGINEERING CENTER
CLOSE COMBAT ARMAMENTS CENTER
BENET WEAPONS LABORATORY
WATERVLIET, N.Y. 12189-4050**

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacturer(s) does not constitute an official indorsement or approval.

DESTRUCTION NOTICE

For classified documents, follow the procedures in DoD 5200.22-M, Industrial Security Manual, Section II-19 or DoD 5200.1-R, Information Security Program Regulation, Chapter IX.

For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.

For unclassified, unlimited documents, destroy when the report is no longer needed. Do not return it to the originator.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER ARCCB-TR-87014	2. GOVT ACCESSION NO. A182534	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) TEST METHODS FOR MATERIAL CHARACTERIZATION OF COMPOSITE CYLINDERS	5. TYPE OF REPORT & PERIOD COVERED Final	
7. AUTHOR(s) Y. F. Cheng	6. PERFORMING ORG. REPORT NUMBER	
9. PERFORMING ORGANIZATION NAME AND ADDRESS US Army ARDEC Benet Weapons Laboratory, SMCAR-CCB-TL Watervliet, NY 12189-4050	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS AMCMS No. 6126.23.1BL0.0 PRON No. 1A-7-7Z76A-NMSC	
11. CONTROLLING OFFICE NAME AND ADDRESS US Army ARDEC Close Combat Armaments Center Picatinny Arsenal, NJ 07806-5000	12. REPORT DATE June 1987	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES 7	
	15. SECURITY CLASS. (of this report) UNCLASSIFIED	
	16a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Composite Cylinder, Elastics Constants, Stiffness Matrix, Compliance Matrix,	Material Characterization, Anisotropic Materials, Orthotropic Materials, Transversely Isotropic Materials	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A study has been conducted of test methods for material characterization of composite cylinders. The purpose was to obtain constants in the stiffness matrix (C_{ij}), which is necessary in the designing process. Test methods for determining engineering constants (Young's moduli, Poisson's ratios, and shear moduli) for composite cylinders with fibers in the axial and circumferential directions have been found. Constants in the compliance matrix S_{ij} can then	(CONT'D ON REVERSE)	

20. ABSTRACT (CONT'D)

be calculated by means of the well-known equations relating compliance matrix to engineering constants. Finally, the stiffness matrix C_{ij} is given by the inverse of S_{ij} . For composite cylinders with other fiber directions, engineering constants may be obtained by the rotation of coordinate axes and rule of mixture. (Keywords:)

UNCLASSIFIED

TABLE OF CONTENTS

	<u>Page</u>
INTRODUCTION	1
STRESS-STRAIN RELATIONS FOR ANISOTROPIC MATERIALS	1
ENGINEERING CONSTANTS FOR TRANSVERSELY ISOTROPIC MATERIALS	4
CYLINDERS WITH FIBERS IN AXIAL DIRECTION	4
CYLINDERS WITH FIBERS IN CIRCUMFERENTIAL DIRECTION	5
CONCLUSIONS	6
<u>TABLES</u>	
I. COMPARISON BETWEEN TENSOR AND CONTRACTED NOTATIONS FOR STRESSES AND STRAINS	2

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DiIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A-1	

INTRODUCTION

Fiber-reinforced composite materials have been increasingly used in engineering structures as well as in lightweight armament components because of their high strength, stiffness, and significant weight savings. Some armament components have the form of cylinders. The stiffness matrix C_{ij} is needed in the designing of these cylinders. A study of test methods for material characterization of a filament wound composite cylinder was made with a purpose of obtaining its stiffness matrix.

Stress-strain relations for anisotropic, orthotropic, and transversely isotropic materials are reviewed. Compliance matrix S_{ij} is given in terms of engineering constants E , μ , and G (Young's moduli, Poisson's ratios, and shear moduli, respectively). Test methods for obtaining these constants are shown. Finally, the stiffness matrix is given by the inverse of S_{ij} .

STRESS-STRAIN RELATIONS FOR ANISOTROPIC MATERIALS

The generalized Hooke's law relating stresses to strains can be written as

$$\sigma_i = C_{ij}\epsilon_j \quad i,j = 1,2,\dots,6$$

where σ_i are the stress components, C_{ij} the stress matrix, and ϵ_j the strain components. The comparison between tensor and contracted notations for stresses and strains is given in Table I, where τ and γ are shear stress and shear strain, respectively.

TABLE I. COMPARISON BETWEEN TENSOR AND CONTRACTED NOTATIONS FOR STRESSES AND STRAINS

Stresses		Strains	
Tensor Notation	Contracted Notation	Tensor Notation	Contracted Notation
σ_{11}	σ_1	ϵ_{11}	ϵ_1
σ_{22}	σ_2	ϵ_{22}	ϵ_2
σ_{33}	σ_3	ϵ_{33}	ϵ_3
$\tau_{23} = \sigma_{23}$	σ_4	γ_{23}	ϵ_4
$\tau_{31} = \sigma_{31}$	σ_5	γ_{31}	ϵ_5
$\tau_{12} = \sigma_{12}$	σ_6	γ_{12}	ϵ_6

The stiffness matrix C_{ij} has 36 components. By virtue of symmetry, $C_{ij} = C_{ji}$, and only 21 of the constants are independent. Similarly, we can write

$$\epsilon_i = S_{ij}\sigma_j \quad i, j = 1, 2, \dots, 6$$

where S_{ij} is the compliance matrix and the inverse of C_{ij} .

If there is one plane of material property symmetry, the strain-stress relations reduce to

$$\begin{Bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \gamma_{23} \\ \gamma_{31} \\ \gamma_{12} \end{Bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & 0 & 0 & S_{16} \\ S_{12} & S_{22} & S_{23} & 0 & 0 & S_{26} \\ S_{13} & S_{23} & S_{33} & 0 & 0 & S_{36} \\ 0 & 0 & 0 & S_{44} & S_{45} & 0 \\ 0 & 0 & 0 & S_{45} & S_{55} & 0 \\ S_{16} & S_{26} & S_{36} & 0 & 0 & S_{66} \end{bmatrix} \begin{Bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \tau_{23} \\ \tau_{31} \\ \tau_{12} \end{Bmatrix}$$

where the plane of symmetry is $z = 0$. There are 13 independent constants and such a material is termed monoclinic.

If there are three orthogonal planes of material property symmetry, the strain-stress relations reduce to

$$\left\{ \begin{array}{l} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \gamma_{23} \\ \gamma_{31} \\ \gamma_{12} \end{array} \right\} = \left[\begin{array}{cccccc} S_{11} & S_{12} & S_{13} & 0 & 0 & 0 \\ S_{12} & S_{22} & S_{23} & 0 & 0 & 0 \\ S_{13} & S_{23} & S_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & S_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & S_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & S_{66} \end{array} \right] \left\{ \begin{array}{l} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \tau_{23} \\ \tau_{31} \\ \tau_{12} \end{array} \right\}$$

There are nine independent constants and the material is termed orthotropic.

If at every point of the material there is one plane in which the mechanical properties are equal in all directions, then the material is termed transversely isotropic. If, for example, the 1-2 plane is the special plane of isotropy, then the strain-stress relations are

$$\left\{ \begin{array}{l} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \gamma_{23} \\ \gamma_{31} \\ \gamma_{12} \end{array} \right\} = \left[\begin{array}{cccccc} S_{11} & S_{12} & S_{13} & 0 & 0 & 0 \\ S_{12} & S_{11} & S_{13} & 0 & 0 & 0 \\ S_{13} & S_{13} & S_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & S_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & S_{44} & 0 \\ 0 & 0 & S & 0 & 0 & 2(S_{11}-S_{12}) \end{array} \right] \left\{ \begin{array}{l} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \tau_{23} \\ \tau_{31} \\ \tau_{12} \end{array} \right\}$$

There are only five independent constants.

ENGINEERING CONSTANTS FOR TRANSVERSELY ISOTROPIC MATERIALS

Engineering constants are Young's moduli E ; Poisson's ratios μ , and shear moduli G . These are measured in simple tests such as uniaxial tension. The constants obviously have more direct meaning than the components of the compliance and stiffness matrices. Most simple tests are performed with a known load or stress. Then the resulting strain is measured. Thus, the components of the compliance matrix S_{ij} are determined more directly than those of the stiffness matrix C_{ij} . For a transversely isotropic material, the components of the compliance matrix in terms of the engineering constants are

$$[S_{ij}] = \begin{bmatrix} 1/E_1 & -\mu_{21}/E_2 & -\mu_{31}/E_3 & 0 & 0 & 0 \\ -\mu_{12}/E_1 & 1/E_2 & -\mu_{32}/E_3 & 0 & 0 & 0 \\ -\mu_{13}/E_1 & -\mu_{23}/E_2 & 1/E_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/G_{23} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/G_{31} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1/G_{12} \end{bmatrix}$$

and

$E_1 = E_2$, $\mu_{12} = \mu_{21}$, $\mu_{13} = \mu_{23}$, $\mu_{31} = \mu_{32}$, $G_{23} = G_{31}$, $G_{12} = E_1/2(1+\mu_{21})$
where the 1-2 plane is the special plane of isotropy. Additional relations

$$\mu_{32}/E_3 = \mu_{23}/E_2, \quad \mu_{31}/E_3 = \mu_{13}/E_1$$

must be satisfied from the condition of symmetry in S_{ij} . There are only five independent engineering constants: E_1 , E_3 , μ_{12} , μ_{13} , and G_{23} .

CYLINDERS WITH FIBERS IN AXIAL DIRECTION

This is a transversely isotropic case where the Rθ plane is the special plane of isotropy. Letting (R,θ,Z) coincide with the $(1,2,3)$ directions, the compliance matrix in terms of the engineering constants follows:

$$[S_{ij}] = \begin{bmatrix} 1/E_r & -\mu_{r\theta}/E_\theta & -\mu_{rz}/E_z & 0 & 0 & 0 \\ -\mu_{r\theta}/E_r & 1/E_\theta & -\mu_{z\theta}/E_z & 0 & 0 & 0 \\ -\mu_{rz}/E_r & -\mu_{z\theta}/E_\theta & 1/E_z & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/G_{\theta z} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/G_{zr} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1/G_{r\theta} \end{bmatrix}$$

and

$$E_r = E_\theta, \quad \mu_{r\theta} = \mu_{\theta r}, \quad \mu_{rz} = \mu_{zr}, \quad \mu_{z\theta} = \mu_{\theta z}.$$

$$G_{\theta z} = G_{zr}, \quad G_{r\theta} = E_r/2(1+\mu_{r\theta})$$

Additional relations

$$\mu_{z\theta}/E_z = \mu_{\theta z}/E_\theta$$

$$\mu_{zr}/E_z = \mu_{rz}/E_r$$

must be satisfied from the condition of symmetry in S_{ij} . There are only five independent engineering constants: E_r , E_z , $\mu_{r\theta}$, μ_{rz} , and $G_{\theta z}$.

A test at uniaxial loading gives the values of E_z and $\mu_{z\theta}$. Data taken at the outside surface of a test under internal pressure with floating ends determine the value of E_θ . The values of $\mu_{\theta z}$ and μ_{rz} can then be calculated. Data taken at the inside surface of the same test determine the value of $\mu_{r\theta}$. The remaining engineering constant $G_{\theta z}$ can be determined by means of a torsion test.

CYLINDERS WITH FIBERS IN CIRCUMFERENTIAL DIRECTION

This is again a transversely isotropic case where the RZ-plane is the special plane of isotropy. Letting (Z,R,θ) coincide with the $(1,2,3)$ directions, all statements in the previous section hold provided that proper changes of directions are made. Specifically, S_{ij} has the following form:

$$[S_{ij}] = \begin{bmatrix} 1/E_z & -\mu_{rz}/E_r & -\mu_{z\theta}/E_\theta & 0 & 0 & 0 \\ -\mu_{rz}/E_z & 1/E_r & -\mu_{r\theta}/E_\theta & 0 & 0 & 0 \\ -\mu_{z\theta}/E_z & -\mu_{r\theta}/E_r & 1/E_\theta & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/G_{r\theta} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/G_{\theta z} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1/G_{zr} \end{bmatrix}$$

The five independent engineering constants are: E_z , E_θ , μ_{rz} , $\mu_{z\theta}$, and $G_{r\theta}$. They can be found by a uniaxial test, an internal pressure test with floating ends, and a torsion test.

CONCLUSIONS

Test methods for determining engineering constants, i.e., Young's moduli, Poisson's ratios, and shear moduli, for composite cylinders with fibers in the axial or circumferential directions have been shown. Constants in the compliance matrix S_{ij} can then be calculated by means of the well-known equations relating compliance matrix to engineering constants. The stiffness matrix is given by the inverse of S_{ij} .

For composite cylinders with other fiber directions, engineering constants may be obtained by the rotation of coordinate axes and the rule of mixture.

TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

	<u>NO. OF COPIES</u>
CHIEF, DEVELOPMENT ENGINEERING BRANCH ATTN: SMCAR-CCB-D	1
-DA	1
-DC	1
-DM	1
-DP	1
-JR	1
-DS (SYSTEMS)	1
CHIEF, ENGINEERING SUPPORT BRANCH ATTN: SMCAR-CCB-S	1
-SE	1
CHIEF, RESEARCH BRANCH ATTN: SMCAR-CCB-R	2
-R (ELLEN FOGARTY)	1
-RA	1
-RM	1
-RP	1
-RT	1
TECHNICAL LIBRARY ATTN: SMCAR-CCB-TL	5
TECHNICAL PUBLICATIONS & EDITING UNIT ATTN: SMCAR-CCB-TL	2
DIRECTOR, OPERATIONS DIRECTORATE ATTN: SMCWV-OD	1
DIRECTOR, PROCUREMENT DIRECTORATE ATTN: SMCWV-PP	1
DIRECTOR, PRODUCT ASSURANCE DIRECTORATE ATTN: SMCWV-QA	1

NOTE: PLEASE NOTIFY DIRECTOR, BENET WEAPONS LABORATORY, ATTN: SMCAR-CCB-TL,
OF ANY ADDRESS CHANGES.

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

	<u>NO. OF COPIES</u>		<u>NO. OF COPIES</u>
ASST SEC OF THE ARMY RESEARCH AND DEVELOPMENT ATTN: DEPT FOR SCI AND TECH THE PENTAGON WASHINGTON, D.C. 20310-0103		COMMANDER ROCK ISLAND ARSENAL ATTN: SMCRI-ENM ROCK ISLAND, IL 61299-5000	1
ADMINISTRATOR DEFENSE TECHNICAL INFO CENTER ATTN: DTIC-FDAC CAMERON STATION ALEXANDRIA, VA 22304-6145	12	DIRECTOR US ARMY INDUSTRIAL BASE ENGR ACTV ATTN: AMXIB-P ROCK ISLAND, IL 61299-7260	1
COMMANDER US ARMY ARDEC ATTN: SMCAR-AEE SMCAR-AES, BLDG. 321 SMCAR-AET-O, BLDG. 351N SMCAR-CC SMCAR-CCP-A SMCAR-FSA SMCAR-FSM-E SMCAR-FSS-O, BLDG. 94 SMCAR-MSI (STINFO) PICATINNY ARSENAL, NJ 07806-5000	1 1 1 1 1 1 1 1 2	COMMANDER US ARMY TANK-AUTMV R&D COMMAND ATTN: AMSTA-DOL (TECH LIB) WARREN, MI 48397-5000	1
DIRECTOR US ARMY BALLISTIC RESEARCH LABORATORY ATTN: SLCBR-DD-T, BLDG. 305 ABERDEEN PROVING GROUND, MD 21005-5066	1	COMMANDER US MILITARY ACADEMY ATTN: DEPARTMENT OF MECHANICS WEST POINT, NY 10996-1792	1
DIRECTOR US ARMY MATERIEL SYSTEMS ANALYSIS ACTV ATTN: AMXSY-MP ABERDEEN PROVING GROUND, MD 21005-5071	1	US ARMY MISSILE COMMAND REDSTONE SCIENTIFIC INFO CTR ATTN: DOCUMENTS SECT, BLDG. 4484 REDSTONE ARSENAL, AL 35898-5241	2
COMMANDER HQ, AMCCOM ATTN: AMSMC-IMP-L ROCK ISLAND, IL 61299-6300	1	COMMANDER US ARMY FGN SCIENCE AND TECH CTR ATTN: DRXST-SD 220 7TH STREET, N.E. CHARLOTTESVILLE, VA 22901	1
		COMMANDER US ARMY LACOM MATERIALS TECHNOLOGY LAB ATTN: SLCMT-IML (TECH LIB) WATERTOWN, MA 02172-0001	2

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER, US ARMY AMCCOM, ATTN: BENET WEAPONS LABORATORY, SMCAR-CCB-TL, WATERVLIET, NY 12189-4050, OF ANY ADDRESS CHANGES.

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

<u>NO. OF COPIES</u>	<u>NO. OF COPIES</u>		
COMMANDER US ARMY LABCOM, ISA ATTN: SLCIS-IM-TL 2800 POWDER MILL ROAD ADELPHI, MD 20783-1145	1	COMMANDER AIR FORCE ARMAMENT LABORATORY ATTN: AFATL/MN EGLIN AFB, FL 32543-5434	1
COMMANDER US ARMY RESEARCH OFFICE ATTN: CHIEF, IPO P.O. BOX 12211 RESEARCH TRIANGLE PARK, NC 27709-2211	1	COMMANDER AIR FORCE ARMAMENT LABORATORY ATTN: AFATL/MNG EGLIN AFB, FL 32542-5000	1
DIRECTOR US NAVAL RESEARCH LAB ATTN: DIR, MECH DIV CODE 26-27 (DOC LIB) WASHINGTON, D.C. 20375	1	METALS AND CERAMICS INFO CTR BATTELLE COLUMBUS DIVISION 505 KING AVENUE COLUMBUS, OH 43201-2693	1

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER, US ARMY AMCCOM, ATTN: BENET WEAPONS LABORATORY, SMCAR-CCB-TL, WATERVLIET, NY 12189-4050, OF ANY ADDRESS CHANGES.

DEPARTMENT OF THE ARMY

ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER
BENÉT WEAPONS LABORATORY, CCAC
US ARMY ARMAMENT, MUNITIONS AND CHEMICAL COMMAND
WATERVLIET, N.Y. 12189-4060

OFFICIAL BUSINESS
SMCAR-CCB-TL

BOOK RATE