MEETING MINUTESITEA2-ModelWriter-13028 Project

Date	Subject	Location	Version
2015.08.04 Havelsan Use Case		Teleconference (Hangout) 1	
Conf. Link	https://plus.google.com/hangouts/_/modelwriter.eu/project		
Published	https://github.com/ModelWriter/WP5/tree/master/Meeting%20Minutes		

Attendees:

Name	Function	Company	Attendance
Ferhat Erata [FE]	Project Leader	UNIT	Yes
Moharram Challenger [MC]	Secondary Contact	UNIT	Yes
Etienne Juliot [EJ]	French Consortium Coordinator	OBEO	No
Yvan Lussaud [YLU]	Technical Contact	OBEO	No
Prof. Erhan Mengüsoğlu [EM]	Turkish Consortium Coordinator	MANTIS	No
Anne Monceaux [AM]	Technical Contact	AIRBUS	No
Samuel Cruz Lara [SL]	Secondary Contact	LORIA	No
Prof. Claire Gardent [SC]	Primary Contact	LORIA	No
Prof. Geylani Kardaş [GK]	Technical Contact and Consultant	KOCSISTEM	No
Mehmet Önat [MO]	Primary Contact Point	KOCSISTEM	No
Hale Gezgen [HG]	Secondary Contact Point	KOCSISTEM	No
Ersan Gürdoğan [EG]	Secondary Contact Point	HISBIM	No
Taşkın Kızıl [TK]	Primary Contact Point	HIBIM	No
Oğuz Yıldız [OY]	Technical Contact	HISBIM	No
Emil Khamitov [EK]	Technical Contact	UNIT	No
Prof. Hans Vangheluwe [HV]	Consultant	UNIT	No
Prof. Monique Snoeck [MS]	Belgian Consortium Leader	KUL2	No
Prof. Sien Moens [SM]	Secondary Contact	KUL1	No
Philippe Bureille [PB]	Primary Contact	SOGETI	No
Nicole Sohn [NS]	Secondary Contact	SOGETI	No
Yagup Macit [YM]	Technical Contact	Havelsan	Yes
Eray Tüzün [ET]	Technical Contact	Havelsan	Yes
Nuran Göksu [NG]	Primary Contact	Havelsan	No

MEETING MINUTESITEA2-ModelWriter-13028 Project

Dr. Mariem Mahfoudh [MM]	Technical Contact	LORIA	No
Serhat Çelik	Developer	UNIT	Yes
Hasan Emre Kırmızı	Developer	UNIT	Yes
Ümit Anıl Öztürk	Developer	UNIT	Yes

Agenda:

[ModelWriter] Havelsan - Product Owner Review Meeting (30-07-2015) Agenda 1. Discussion of HAVELSAN presentation presented in the workshop of Belgium Translation from Requirement document to structured requirement object Translation from Model to structured requirement object Havelsan ext - Traceability Matrix Havelsan ext - Suspect Analysis Havelsan ext - Document Generation Notes taken while the demonstration of the proprietary ALM (Application Lifecycle Management tool of HAVELSAN Although requirements are kept tracked online as Structured Requirements Objects, an infrastructure built on top of Microsoft Team Foundation Server by the ALM department of HAVELSAN, clients such as SSM (Undersecretariet for Defense Industries) and TSK (Turkish Arr Forces) enforces to get them in the form of specific document formats such as SRS/HRS (Software/Hardware Requirement Specification, System Subsystem Specification Documents etc for the sake of specific regulations. To this end, those documents delivered to clients are automatically generated easily, thanks to Structured Requirements Objects. However, if the client makes some changes on the document, those changes cannot be transferred into the tool automatically but only manually. This situation may expose problems in traceability. Document View/Generation: This tool of Havelsan generates specifications based on several wor templates aligns to several industry standards. Some sections in the documents are filled manual but the most important section which describes specifications are enumerated with regards to structured requirement objects based on structured selection. Several traceability views are in a tabular format into the documents. Description field of requirement objects are not utilized since the information provided in this field in the form of natural language. The texts in this field has not been able to be processed until now. Several domain knowledge have been accumulated by each contract requirements. For that reas every workitem (requiremen	To	pic	Comment			
1. Discussion of HAVELSAN presentation presented in the workshop of Belgium Translation from Requirement document to structured requirement object Translation from Model to structured requirement object Havelsan ext - Traceability Matrix Havelsan ext - Suspect Analysis Havelsan ext - Document Generation Notes taken while the demonstration of the proprietary ALM (Application Lifecycle Management tool of HAVELSAN) Although requirements are kept tracked online as Structured Requirements Objects, an infrastructure built on top of Microsoft Team Foundation Server by the ALM department of HAVELSAN, clients such as SSM (Undersecretariet for Defense Industries) and TSK (Turkish Arr Forces) enforces to get them in the form of specific document formats such as SRS/HRS (Software/Hardware Requirement Specification, System Subsystem Specification Documents etc for the sake of specific regulations. To this end, those documents delivered to clients are automatically generated easily, thanks to Structured Requirements Objects. However, if the client makes some changes on the document, those changes cannot be transferred into the tool automatically, but only manually. This situation may expose problems in traceability. Document View/Generation: This tool of Havelsan generates specifications based on several wor templates aligns to several industry standards. Some sections in the documents are filled manual but the most important section which describes specifications are enumerated with regards to structured requirement objects based on structured selection. Several traceability views are insert in a tabular format into the documents. Description field of requirement objects are not utilized since the information provided in this field in the form of natural language. The texts in this field has not been able to be processed until now several domain knowledge have been accumulated by each contract/project. Especially in comm and control systems, the legacy software artifacts may be analyzed and after a commonality and			- Product Owner Review Meeting (30-07-2015)			
Translation from Requirement document to structured requirement object Translation from Model to structured requirement object Havelsan ext - Traceability Matrix Havelsan ext - Suspect Analysis Havelsan ext - Document Generation Notes taken while the demonstration of the proprietary ALM (Application Lifecycle Management tool of HAVELSAN Although requirements are kept tracked online as Structured Requirements Objects, an infrastructure built on top of Microsoft Team Foundation Server by the ALM department of HAVELSAN, clients such as SSM (Undersecretariet for Defense Industries) and TSK (Turkish Arr Forces) enforces to get them in the form of specific document formats such as SRS/HRS (Software/Hardware Requirement Specification, System Subsystem Specification Documents etc for the sake of specific regulations. To this end, those documents delivered to clients are automatically generated easily, thanks to Structured Requirements Objects. However, if the client makes some changes on the document, those changes cannot be transferred into the tool automatically, but only manually. This situation may expose problems in traceability. Document View/Generation: This tool of Havelsan generates specifications based on several wor templates aligns to several industry standards. Some sections in the documents are filled manual but the most important section which describes specifications are enumerated with regards to structured requirement objects based on structured selection. Several traceability views are insert in a tabular format into the documents. Description field of requirement objects are not utilized since the information provided in this field in the form of natural language. The texts in this field has not been able to be processed until now. Several domain knowledge base can be constituted. Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirements. Every system/software requirement shall map to one or more contract requirements. For that reas every wor	_ ^					
Translation from Model to structured requirement object Havelsan ext - Traceability Matrix Havelsan ext - Suspect Analysis Havelsan ext - Document Generation Notes taken while the demonstration of the proprietary ALM (Application Lifecycle Management tool of HAVELSAN Although requirements are kept tracked online as Structured Requirements Objects, an infrastructure built on top of Microsoft Team Foundation Server by the ALM department of HAVELSAN, clients such as SSM (Undersecretariet for Defense Industries) and TSK (Turkish Arr Forces) enforces to get them in the form of specific document formats such as SRS/HRS (Software/Hardware Requirement Specification, System Subsystem Specification Documents etc for the sake of specific regulations. To this end, those documents delivered to clients are automatically generated easily, thanks to Structured Requirements Objects. However, if the client makes some changes on the document, those changes cannot be transferred into the tool automatically, but only manually. This situation may expose problems in traceability. Document View/Generation: This tool of Havelsan generates specifications based on several wor templates aligns to several industry standards. Some sections in the documents are filled manual but the most important section which describes specifications are enumerated with regards to structured requirement objects based on structured selection. Several traceability views are insert in a tabular format into the documents. Description field of requirement objects are not utilized since the information provided in this field in the form of natural language. The texts in this field has not been able to be processed until now several domain knowledge have been accumulated by each contract/project. Especially in comm and control systems, the legacy software artifacts may be analyzed and after a commonality and variability analysis a knowledge base can be constituted. Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardwa						
Notes taken while the demonstration of the proprietary ALM (Application Lifecycle Management tool of HAVELSAN Although requirements are kept tracked online as Structured Requirements Objects, an infrastructure built on top of Microsoft Team Foundation Server by the ALM department of HAVELSAN, clients such as SSM (Undersecretariet for Defense Industries) and TSK (Turkish Arr Forces) enforces to get them in the form of specific document formats such as SRS/HRS (Software/Hardware Requirement Specification, System Subsystem Specification Documents etc for the sake of specific regulations. To this end, those documents delivered to clients are automatically generated easily, thanks to Structured Requirements Objects. However, if the client makes some changes on the document, those changes cannot be transferred into the tool automatically, but only manually. This situation may expose problems in traceability. Document View/Generation: This tool of Havelsan generates specifications based on several wor templates aligns to several industry standards. Some sections in the documents are filled manual but the most important section which describes specifications are enumerated with regards to structured requirement objects based on structured selection. Several traceability views are insert in a tabular format into the documents. Description field of requirement objects are not utilized since the information provided in this field in the form of natural language. The texts in this field has not been able to be processed until now. Several domain knowledge have been accumulated by each contract/project. Especially in comm and control systems, the legacy software artifacts may be analyzed and after a commonality and variability analysis a knowledge base can be constituted. Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirements, specification, task, test case etc. should be tracked for changes) Traceability Matrix View between different type of requirements (such as			·			
Notes taken while the demonstration of the proprietary ALM (Application Lifecycle Management tool of HAVELSAN Although requirements are kept tracked online as Structured Requirements Objects, an infrastructure built on top of Microsoft Team Foundation Server by the ALM department of HAVELSAN, clients such as SSM (Undersecretariet for Defense Industries) and TSK (Turkish Arr Forces) enforces to get them in the form of specific document formats such as SRS/HRS (Software/Hardware Requirement Specification, System Subsystem Specification Documents etc for the sake of specific regulations. To this end, those documents delivered to clients are automatically generated easily, thanks to Structured Requirements Objects. However, if the client makes some changes on the document, those changes cannot be transferred into the tool automatically, but only manually. This situation may expose problems in traceability. Document View/Generation: This tool of Havelsan generates specifications based on several wor templates aligns to several industry standards. Some sections in the documents are filled manual but the most important section which describes specifications are enumerated with regards to structured requirement objects based on structured selection. Several traceability views are insert in a tabular format into the documents. Description field of requirement objects are not utilized since the information provided in this field in the form of natural language. The texts in this field has not been able to be processed until now. Several domain knowledge have been accumulated by each contract/project. Especially in comm and control systems, the legacy software artifacts may be analyzed and after a commonality and variability analysis a knowledge base can be constituted. Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirements. Every system/software requirement shall map to one or more contract requirements. For that reas every workitem (requirements are decomposed			·			
Notes taken while the demonstration of the proprietary ALM (Application Lifecycle Management tool of HAVELSAN Although requirements are kept tracked online as Structured Requirements Objects, an infrastructure built on top of Microsoft Team Foundation Server by the ALM department of HAVELSAN, clients such as SSM (Undersecretariet for Defense Industries) and TSK (Turkish Arr Forces) enforces to get them in the form of specific document formats such as SRS/HRS (Software/Hardware Requirement Specification, System Subsystem Specification Documents etc for the sake of specific regulations. To this end, those documents delivered to clients are automatically generated easily, thanks to Structured Requirements Objects. However, if the client makes some changes on the document, those changes cannot be transferred into the tool automatically, but only manually. This situation may expose problems in traceability. Document View/Generation: This tool of Havelsan generates specifications based on several wor templates aligns to several industry standards. Some sections in the documents are filled manual but the most important section which describes specifications are enumerated with regards to structured requirement objects based on structured selection. Several traceability views are insert in a tabular format into the documents. Description field of requirement objects are not utilized since the information provided in this field in the form of natural language. The texts in this field has not been able to be processed until now. Several domain knowledge have been accumulated by each contract/project. Especially in command control systems, the legacy software artifacts may be analyzed and after a commonality and variability analysis a knowledge base can be constituted. Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirements. Every system/software requirement shall map to one or more contract requirements. For that reas every workitem (requirements, specification,			·			
Although requirements are kept tracked online as Structured Requirements Objects, an infrastructure built on top of Microsoft Team Foundation Server by the ALM department of HAVELSAN, clients such as SSM (Undersecretariet for Defense Industries) and TSK (Turkish Arr Forces) enforces to get them in the form of specific document formats such as SRS/HRS (Software/Hardware Requirement Specification, System Subsystem Specification Documents etc for the sake of specific regulations. To this end, those documents delivered to clients are automatically generated easily, thanks to Structured Requirements Objects. However, if the client makes some changes on the document, those changes cannot be transferred into the tool automatically, but only manually. This situation may expose problems in traceability. Document View/Generation: This tool of Havelsan generates specifications based on several wor templates aligns to several industry standards. Some sections in the documents are filled manual but the most important section which describes specifications are enumerated with regards to structured requirement objects based on structured selection. Several traceability views are insert in a tabular format into the documents. Description field of requirement objects are not utilized since the information provided in this field in the form of natural language. The texts in this field has not been able to be processed until now. Several domain knowledge have been accumulated by each contract/project. Especially in comm and control systems, the legacy software artifacts may be analyzed and after a commonality and variability analysis a knowledge base can be constituted. Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirement shall map to one or more contract requirements. For that reas every workitem (requirement, specification, task, test case etc. should be tracked for changes) Traceability Matrix View between different type of requirements (such as parent-child rela			·			
 Although requirements are kept tracked online as Structured Requirements Objects, an infrastructure built on top of Microsoft Team Foundation Server by the ALM department of HAVELSAN, clients such as SSM (Undersecretariet for Defense Industries) and TSK (Turkish Arr Forces) enforces to get them in the form of specific document formats such as SRS/HRS (Software/Hardware Requirement Specification, System Subsystem Specification Documents etc for the sake of specific regulations. To this end, those documents delivered to clients are automatically generated easily, thanks to Structured Requirements Objects. However, if the client makes some changes on the document, those changes cannot be transferred into the tool automatically, but only manually. This situation may expose problems in traceability. Document View/Generation: This tool of Havelsan generates specifications based on several wor templates aligns to several industry standards. Some sections in the documents are filled manual but the most important section which describes specifications are enumerated with regards to structured requirement objects based on structured selection. Several traceability riews are insert in a tabular format into the documents. Description field of requirement objects are not utilized since the information provided in this field in the form of natural language. The texts in this field has not been able to be processed until now. Several domain knowledge have been accumulated by each contract/project. Especially in comm and control systems, the legacy software artifacts may be analyzed and after a commonality and variability analysis a knowledge base can be constituted. Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirement shall map to one or more contract requirements. For that reas every workitem (requirement, specification, task, test case etc. should be tracked for changes) Traceability Matrix View between different typ			emonstration of the proprietary ALM (Application Lifecycle Management)			
infrastructure built on top of Microsoft Team Foundation Server by the ALM department of HAVELSAN, clients such as SSM (Undersecretariet for Defense Industries) and TSK (Turkish Arr Forces) enforces to get them in the form of specific document formats such as SRS/HRS (Software/Hardware Requirement Specification, System Subsystem Specification Documents etc for the sake of specific regulations. To this end, those documents delivered to clients are automatically generated easily, thanks to Structured Requirements Objects. However, if the client makes some changes on the document, those changes cannot be transferred into the tool automatically, but only manually. This situation may expose problems in traceability. Document View/Generation: This tool of Havelsan generates specifications based on several wor templates aligns to several industry standards. Some sections in the documents are filled manual but the most important section which describes specifications are enumerated with regards to structured requirement objects based on structured selection. Several traceability views are insert in a tabular format into the documents. Description field of requirement objects are not utilized since the information provided in this field in the form of natural language. The texts in this field has not been able to be processed until now. Several domain knowledge have been accumulated by each contract/project. Especially in comm and control systems, the legacy software artifacts may be analyzed and after a commonality and variability analysis a knowledge base can be constituted. Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirements. Every system/software requirement shall map to one or more contract requirements. For that reas every workitem (requirement, specification, task, test case etc. should be tracked for changes) Traceability Matrix View between different type of requirements (such as parent-child relationship Each contract requirements are decomposed int	το		ponte are kent tracked online as Structured Poquirements Chicate, an			
HAVELSAN, clients such as SSM (Undersecretariet for Defense Industries) and TSK (Turkish Arr Forces) enforces to get them in the form of specific document formats such as SRS/HRS (Software/Hardware Requirement Specification, System Subsystem Specification Documents etc for the sake of specific regulations. To this end, those documents delivered to clients are automatically generated easily, thanks to Structured Requirements Objects. However, if the client makes some changes on the document, those changes cannot be transferred into the tool automatically, but only manually. This situation may expose problems in traceability. • Document View/Generation: This tool of Havelsan generates specifications based on several wor templates aligns to several industry standards. Some sections in the documents are filled manual but the most important section which describes specifications are enumerated with regards to structured requirement objects based on structured selection. Several traceability views are insert in a tabular format into the documents. • Description field of requirement objects are not utilized since the information provided in this field in the form of natural language. The texts in this field has not been able to be processed until now. • Several domain knowledge have been accumulated by each contract/project. Especially in comm and control systems, the legacy software artifacts may be analyzed and after a commonality and variability analysis a knowledge base can be constituted. • Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirements shall map to one or more contract requirements. For that reas every workitem (requirement, specification, task, test case etc. should be tracked for changes) • Traceability Matrix View between different type of requirements (such as parent-child relationship Each contract requirements are decomposed into system requirements and so on, every entry in requirement document. • Example of a traceability scenario: Eray,						
Forces) enforces to get them in the form of specific document formats such as SRS/HRS (Software/Hardware Requirement Specification, System Subsystem Specification Documents etc for the sake of specific regulations. To this end, those documents delivered to clients are automatically generated easily, thanks to Structured Requirements Objects. However, if the client makes some changes on the document, those changes cannot be transferred into the tool automatically, but only manually. This situation may expose problems in traceability. • Document View/Generation: This tool of Havelsan generates specifications based on several wor templates aligns to several industry standards. Some sections in the documents are filled manual but the most important section which describes specifications are enumerated with regards to structured requirement objects based on structured selection. Several traceability views are insert in a tabular format into the documents. • Description field of requirement objects are not utilized since the information provided in this field in the form of natural language. The texts in this field has not been able to be processed until now. • Several domain knowledge have been accumulated by each contract/project. Especially in comm and control systems, the legacy software artifacts may be analyzed and after a commonality and variability analysis a knowledge base can be constituted. • Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirements. • Every system/software requirement shall map to one or more contract requirements. For that reas every workitem (requirement, specification, task, test case etc. should be tracked for changes) • Traceability Matrix View between different type of requirements (such as parent-child relationship Each contract requirements are decomposed into system requirements and so on, every entry in requirement document should have a relation with the entries of a parent document. • Example of a traceability scenario:			·			
 (Software/Hardware Requirement Specification, System Subsystem Specification Documents etc for the sake of specific regulations. To this end, those documents delivered to clients are automatically generated easily, thanks to Structured Requirements Objects. However, if the client makes some changes on the document, those changes cannot be transferred into the tool automatically, but only manually. This situation may expose problems in traceability. Document View/Generation: This tool of Havelsan generates specifications based on several wor templates aligns to several industry standards. Some sections in the documents are filled manual but the most important section which describes specifications are enumerated with regards to structured requirement objects based on structured selection. Several traceability views are insert in a tabular format into the documents. Description field of requirement objects are not utilized since the information provided in this field in the form of natural language. The texts in this field has not been able to be processed until now. Several domain knowledge have been accumulated by each contract/project. Especially in comm and control systems, the legacy software artifacts may be analyzed and after a commonality and variability analysis a knowledge base can be constituted. Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirements. Every system/software requirement shall map to one or more contract requirements. For that reas every workitem (requirement, specification, task, test case etc. should be tracked for changes) Traceability Matrix View between different type of requirements (such as parent-child relationship Each contract requirements are decomposed into system requirements and so on, every entry in requirement document should have a relation with the entries of a parent document. Example of a traceability scenario: Er			· · · · · · · · · · · · · · · · · · ·			
for the sake of specific regulations. To this end, those documents delivered to clients are automatically generated easily, thanks to Structured Requirements Objects. However, if the client makes some changes on the document, those changes cannot be transferred into the tool automatically, but only manually. This situation may expose problems in traceability. Document View/Generation: This tool of Havelsan generates specifications based on several wor templates aligns to several industry standards. Some sections in the documents are filled manual but the most important section which describes specifications are enumerated with regards to structured requirement objects based on structured selection. Several traceability views are insert in a tabular format into the documents. Description field of requirement objects are not utilized since the information provided in this field in the form of natural language. The texts in this field has not been able to be processed until now. Several domain knowledge have been accumulated by each contract/project. Especially in comm and control systems, the legacy software artifacts may be analyzed and after a commonality and variability analysis a knowledge base can be constituted. Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirements. Every system/software requirement shall map to one or more contract requirements. For that reas every workitem (requirement, specification, task, test case etc. should be tracked for changes) Traceability Matrix View between different type of requirements (such as parent-child relationship Each contract requirements are decomposed into system requirements and so on, every entry in requirement document should have a relation with the entries of a parent document. Example of a traceability scenario: Eray, software engineer, has written a test case for a feature, has no information about the change in the requirement which has an impact on the feature and results the test case would beco		•	· ·			
automatically generated easily, thanks to Structured Requirements Objects. However, if the client makes some changes on the document, those changes cannot be transferred into the tool automatically, but only manually. This situation may expose problems in traceability. • Document View/Generation: This tool of Havelsan generates specifications based on several wor templates aligns to several industry standards. Some sections in the documents are filled manual but the most important section which describes specifications are enumerated with regards to structured requirement objects based on structured selection. Several traceability views are insert in a tabular format into the documents. • Description field of requirement objects are not utilized since the information provided in this field in the form of natural language. The texts in this field has not been able to be processed until now. • Several domain knowledge have been accumulated by each contract/project. Especially in comm and control systems, the legacy software artifacts may be analyzed and after a commonality and variability analysis a knowledge base can be constituted. • Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirements. • Every system/software requirement shall map to one or more contract requirements. For that reas every workitem (requirement, specification, task, test case etc. should be tracked for changes) • Traceability Matrix View between different type of requirements (such as parent-child relationship Each contract requirements are decomposed into system requirements and so on, every entry in requirement document should have a relation with the entries of a parent document. • Example of a traceability scenario: Eray, software engineer, has written a test case for a feature, I has no information about the change in the requirement which has an impact on the feature and results the test case would become outdated. But the system notifies Eray about the change. Era		•				
 makes some changes on the document, those changes cannot be transferred into the tool automatically, but only manually. This situation may expose problems in traceability. Document View/Generation: This tool of Havelsan generates specifications based on several wor templates aligns to several industry standards. Some sections in the documents are filled manual but the most important section which describes specifications are enumerated with regards to structured requirement objects based on structured selection. Several traceability views are insert in a tabular format into the documents. Description field of requirement objects are not utilized since the information provided in this field in the form of natural language. The texts in this field has not been able to be processed until now. Several domain knowledge have been accumulated by each contract/project. Especially in comm and control systems, the legacy software artifacts may be analyzed and after a commonality and variability analysis a knowledge base can be constituted. Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirements. Every system/software requirement shall map to one or more contract requirements. For that reas every workitem (requirement, specification, task, test case etc. should be tracked for changes) Traceability Matrix View between different type of requirements (such as parent-child relationship Each contract requirements are decomposed into system requirements and so on, every entry in requirement document should have a relation with the entries of a parent document. Example of a traceability scenario: Eray, software engineer, has written a test case for a feature, has no information about the change in the requirement which has an impact on the feature and results the test case would become outdated. But the system notifies Eray about the change. Era 		-	•			
 Document View/Generation: This tool of Havelsan generates specifications based on several wor templates aligns to several industry standards. Some sections in the documents are filled manual but the most important section which describes specifications are enumerated with regards to structured requirement objects based on structured selection. Several traceability views are insert in a tabular format into the documents. Description field of requirement objects are not utilized since the information provided in this field in the form of natural language. The texts in this field has not been able to be processed until now. Several domain knowledge have been accumulated by each contract/project. Especially in comm and control systems, the legacy software artifacts may be analyzed and after a commonality and variability analysis a knowledge base can be constituted. Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirements. Every system/software requirement shall map to one or more contract requirements. For that reas every workitem (requirement, specification, task, test case etc. should be tracked for changes) Traceability Matrix View between different type of requirements (such as parent-child relationship Each contract requirements are decomposed into system requirements and so on, every entry in requirement document should have a relation with the entries of a parent document. Example of a traceability scenario: Eray, software engineer, has written a test case for a feature, has no information about the change in the requirement which has an impact on the feature and results the test case would become outdated. But the system notifies Eray about the change. Era 						
templates aligns to several industry standards. Some sections in the documents are filled manual but the most important section which describes specifications are enumerated with regards to structured requirement objects based on structured selection. Several traceability views are insert in a tabular format into the documents. Description field of requirement objects are not utilized since the information provided in this field in the form of natural language. The texts in this field has not been able to be processed until now. Several domain knowledge have been accumulated by each contract/project. Especially in comm and control systems, the legacy software artifacts may be analyzed and after a commonality and variability analysis a knowledge base can be constituted. Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirements. Every system/software requirement shall map to one or more contract requirements. For that reas every workitem (requirement, specification, task, test case etc. should be tracked for changes) Traceability Matrix View between different type of requirements (such as parent-child relationship Each contract requirements are decomposed into system requirements and so on, every entry in requirement document should have a relation with the entries of a parent document. Example of a traceability scenario: Eray, software engineer, has written a test case for a feature, has no information about the change in the requirement which has an impact on the feature and results the test case would become outdated. But the system notifies Eray about the change. Era		automatically, but	only manually. This situation may expose problems in traceability.			
 but the most important section which describes specifications are enumerated with regards to structured requirement objects based on structured selection. Several traceability views are insert in a tabular format into the documents. Description field of requirement objects are not utilized since the information provided in this field in the form of natural language. The texts in this field has not been able to be processed until now Several domain knowledge have been accumulated by each contract/project. Especially in comm and control systems, the legacy software artifacts may be analyzed and after a commonality and variability analysis a knowledge base can be constituted. Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirements. Every system/software requirement shall map to one or more contract requirements. For that reas every workitem (requirement, specification, task, test case etc. should be tracked for changes) Traceability Matrix View between different type of requirements (such as parent-child relationship Each contract requirements are decomposed into system requirements and so on, every entry in requirement document should have a relation with the entries of a parent document. Example of a traceability scenario: Eray, software engineer, has written a test case for a feature, has no information about the change in the requirement which has an impact on the feature and results the test case would become outdated. But the system notifies Eray about the change. Eray 		 Document View/G 	eneration: This tool of Havelsan generates specifications based on several word			
 structured requirement objects based on structured selection. Several traceability views are insert in a tabular format into the documents. Description field of requirement objects are not utilized since the information provided in this field in the form of natural language. The texts in this field has not been able to be processed until now. Several domain knowledge have been accumulated by each contract/project. Especially in comm and control systems, the legacy software artifacts may be analyzed and after a commonality and variability analysis a knowledge base can be constituted. Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirements. Every system/software requirement shall map to one or more contract requirements. For that reas every workitem (requirement, specification, task, test case etc. should be tracked for changes) Traceability Matrix View between different type of requirements (such as parent-child relationship Each contract requirements are decomposed into system requirements and so on, every entry in requirement document should have a relation with the entries of a parent document. Example of a traceability scenario: Eray, software engineer, has written a test case for a feature, has no information about the change in the requirement which has an impact on the feature and results the test case would become outdated. But the system notifies Eray about the change. Era 		templates aligns to several industry standards. Some sections in the documents are filled manua				
 in a tabular format into the documents. Description field of requirement objects are not utilized since the information provided in this field in the form of natural language. The texts in this field has not been able to be processed until now. Several domain knowledge have been accumulated by each contract/project. Especially in comm and control systems, the legacy software artifacts may be analyzed and after a commonality and variability analysis a knowledge base can be constituted. Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirements. Every system/software requirement shall map to one or more contract requirements. For that reas every workitem (requirement, specification, task, test case etc. should be tracked for changes) Traceability Matrix View between different type of requirements (such as parent-child relationship Each contract requirements are decomposed into system requirements and so on, every entry in requirement document should have a relation with the entries of a parent document. Example of a traceability scenario: Eray, software engineer, has written a test case for a feature, has no information about the change in the requirement which has an impact on the feature and results the test case would become outdated. But the system notifies Eray about the change. Era 						
 Description field of requirement objects are not utilized since the information provided in this field in the form of natural language. The texts in this field has not been able to be processed until now. Several domain knowledge have been accumulated by each contract/project. Especially in comm and control systems, the legacy software artifacts may be analyzed and after a commonality and variability analysis a knowledge base can be constituted. Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirements. Every system/software requirement shall map to one or more contract requirements. For that reas every workitem (requirement, specification, task, test case etc. should be tracked for changes) Traceability Matrix View between different type of requirements (such as parent-child relationship Each contract requirements are decomposed into system requirements and so on, every entry in requirement document should have a relation with the entries of a parent document. Example of a traceability scenario: Eray, software engineer, has written a test case for a feature, has no information about the change in the requirement which has an impact on the feature and results the test case would become outdated. But the system notifies Eray about the change. Eray 		•	·			
 in the form of natural language. The texts in this field has not been able to be processed until now Several domain knowledge have been accumulated by each contract/project. Especially in comm and control systems, the legacy software artifacts may be analyzed and after a commonality and variability analysis a knowledge base can be constituted. Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirements. Every system/software requirement shall map to one or more contract requirements. For that reas every workitem (requirement, specification, task, test case etc. should be tracked for changes) Traceability Matrix View between different type of requirements (such as parent-child relationship Each contract requirements are decomposed into system requirements and so on, every entry in requirement document should have a relation with the entries of a parent document. Example of a traceability scenario: Eray, software engineer, has written a test case for a feature, has no information about the change in the requirement which has an impact on the feature and results the test case would become outdated. But the system notifies Eray about the change. Eray 						
 Several domain knowledge have been accumulated by each contract/project. Especially in command control systems, the legacy software artifacts may be analyzed and after a commonality and variability analysis a knowledge base can be constituted. Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirements. Every system/software requirement shall map to one or more contract requirements. For that reas every workitem (requirement, specification, task, test case etc. should be tracked for changes) Traceability Matrix View between different type of requirements (such as parent-child relationship Each contract requirements are decomposed into system requirements and so on, every entry in requirement document should have a relation with the entries of a parent document. Example of a traceability scenario: Eray, software engineer, has written a test case for a feature, has no information about the change in the requirement which has an impact on the feature and results the test case would become outdated. But the system notifies Eray about the change. Eray 						
 and control systems, the legacy software artifacts may be analyzed and after a commonality and variability analysis a knowledge base can be constituted. Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirements. Every system/software requirement shall map to one or more contract requirements. For that reas every workitem (requirement, specification, task, test case etc. should be tracked for changes) Traceability Matrix View between different type of requirements (such as parent-child relationship Each contract requirements are decomposed into system requirements and so on, every entry in requirement document should have a relation with the entries of a parent document. Example of a traceability scenario: Eray, software engineer, has written a test case for a feature, has no information about the change in the requirement which has an impact on the feature and results the test case would become outdated. But the system notifies Eray about the change. Eray 			e e e			
 variability analysis a knowledge base can be constituted. Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirements. Every system/software requirement shall map to one or more contract requirements. For that reas every workitem (requirement, specification, task, test case etc. should be tracked for changes) Traceability Matrix View between different type of requirements (such as parent-child relationship Each contract requirements are decomposed into system requirements and so on, every entry in requirement document should have a relation with the entries of a parent document. Example of a traceability scenario: Eray, software engineer, has written a test case for a feature, has no information about the change in the requirement which has an impact on the feature and results the test case would become outdated. But the system notifies Eray about the change. Eray 						
 Requirement Flow in Havelsan: Contract Requirements -> System Requirements -> Software/Hardware Requirements. Every system/software requirement shall map to one or more contract requirements. For that reas every workitem (requirement, specification, task, test case etc. should be tracked for changes) Traceability Matrix View between different type of requirements (such as parent-child relationship Each contract requirements are decomposed into system requirements and so on, every entry in requirement document should have a relation with the entries of a parent document. Example of a traceability scenario: Eray, software engineer, has written a test case for a feature, has no information about the change in the requirement which has an impact on the feature and results the test case would become outdated. But the system notifies Eray about the change. Eray 						
 Software/Hardware Requirements. Every system/software requirement shall map to one or more contract requirements. For that reas every workitem (requirement, specification, task, test case etc. should be tracked for changes) Traceability Matrix View between different type of requirements (such as parent-child relationship Each contract requirements are decomposed into system requirements and so on, every entry in requirement document should have a relation with the entries of a parent document. Example of a traceability scenario: Eray, software engineer, has written a test case for a feature, has no information about the change in the requirement which has an impact on the feature and results the test case would become outdated. But the system notifies Eray about the change. Eray 			•			
 Every system/software requirement shall map to one or more contract requirements. For that reas every workitem (requirement, specification, task, test case etc. should be tracked for changes) Traceability Matrix View between different type of requirements (such as parent-child relationship Each contract requirements are decomposed into system requirements and so on, every entry in requirement document should have a relation with the entries of a parent document. Example of a traceability scenario: Eray, software engineer, has written a test case for a feature, has no information about the change in the requirement which has an impact on the feature and results the test case would become outdated. But the system notifies Eray about the change. Eray 						
 every workitem (requirement, specification, task, test case etc. should be tracked for changes) Traceability Matrix View between different type of requirements (such as parent-child relationship Each contract requirements are decomposed into system requirements and so on, every entry in requirement document should have a relation with the entries of a parent document. Example of a traceability scenario: Eray, software engineer, has written a test case for a feature, has no information about the change in the requirement which has an impact on the feature and results the test case would become outdated. But the system notifies Eray about the change. Eray 			·			
 Traceability Matrix View between different type of requirements (such as parent-child relationship Each contract requirements are decomposed into system requirements and so on, every entry in requirement document should have a relation with the entries of a parent document. Example of a traceability scenario: Eray, software engineer, has written a test case for a feature, has no information about the change in the requirement which has an impact on the feature and results the test case would become outdated. But the system notifies Eray about the change. Eray 						
 Each contract requirements are decomposed into system requirements and so on, every entry in requirement document should have a relation with the entries of a parent document. Example of a traceability scenario: Eray, software engineer, has written a test case for a feature, has no information about the change in the requirement which has an impact on the feature and results the test case would become outdated. But the system notifies Eray about the change. Eray 						
requirement document should have a relation with the entries of a parent document. • Example of a traceability scenario: Eray, software engineer, has written a test case for a feature, has no information about the change in the requirement which has an impact on the feature and results the test case would become outdated. But the system notifies Eray about the change. Eray		•	*			
 Example of a traceability scenario: Eray, software engineer, has written a test case for a feature, has no information about the change in the requirement which has an impact on the feature and results the test case would become outdated. But the system notifies Eray about the change. Eray 		-				
has no information about the change in the requirement which has an impact on the feature and results the test case would become outdated. But the system notifies Eray about the change. Era		-	·			
results the test case would become outdated. But the system notifies Eray about the change. Eray						
			· · · · · · · · · · · · · · · · · · ·			
TEVIEWS AND COMOTHS THE CHANGE.			· · · · · · · · · · · · · · · · · · ·			

MEETING MINUTES

ITEA2-ModelWriter-13028 Project

Suggested Features for ModelWriter Platform:

- 1. *Versioning of each mapping (aka linking)* in order to be able to perform a possible rollback/undo operation.
- 2. Tagging of Marking (such as Baseline) and Typing of Mapping (such as relationship type -Composion or shared-)
 - Baseline (TR. "temel çizgi") Scenario: Baseline means that every changes made after the
 date of the baseline should be tracked. It's like to take a snapshot of the system. This
 feature enforces ModelWriter to be integrated with the a git server (in Eclipse it is called
 EGit). Every concession request after a baseline must be approved by the client.
 - Assigning tags to markers enhances the analysis of the system under design. For instance, the tag information can be used for filtration purposes while creating traceability matrix view.
 - Assigning types for mapping (linking) such as parent-child, predessor-successor can be used for analysis of the system in traceability matrix view and suspect analysis view.
- 2. Traceability Matrix View
- 3. Suspect (Impact/Change) Analysis View
- 4. The semantic of marking and mapping can be defined by relational logic

Conceptual Design - Inputs - Tagging of Marking

Marking	Tag (user defined)
x:marker	Requirement
	Feature
y:marker	Issue
	Change Request
z:marker	Artifact
	Feature
a:marker	Test Case
b:marker	Concept
	Test Case
c:marker	Model
	Feature
d:marker	Concept
	Feature

Typing of Mapping

Marking Relat	on Type Ma	rking
---------------	------------	-------

MEETING MINUTESITEA2-ModelWriter-13028 Project

x:marker	>>composed_of>>	y:marker
	>>composed_of>>	a:marker
y:marker	>>relates_to>>	z:marker
c:marker (Feature c)	>>requires>>	d:marker (Feature d)
c:marker (Feature c)	< <validates<<< td=""><td>b:marker (Test Case b)</td></validates<<<>	b:marker (Test Case b)

If x:marker is deleted, y:marker and a:marker should be deleted as well.

First Order Logic constraints can be added as well.

For all marked elements which are tagged with "Issue" ...

Traceability Matrix View:- Feature -> Test Case

-	TC: marker_a	TC: marker_b	
F: marker_x	>>composed_of>>	!	
F: marker_z	!	!	
F: marker_c	!	< <validates<<< td=""><td></td></validates<<<>	
F: marker_d			

Rule: Each Test Case must have some feature.

Tag: Feature	Tag: Test Case
F: x:marker	TC: a:marker
F: z:marker	n/a
F: c:marker	TC: b:marker
F: d:marker	n/a

MEETING MINUTES

ITEA2-ModelWriter-13028 Project

Traceability Matrix View: Requirement -> Feature -> Test Case

Tag: Requirement	Tag: Feature	Tag: Test Case
R: marker_x	marker_a	
R: marker_z	n/a	

Traceability Matrix View: Suspect (Impact/Change) Analysis View -Output

Based upon a selection of a marked element, user can start a suspect analysis. Default Graph depth may be provided by the user as well.

Depth: 2	Level 1	Level 2
x:marker		
	y:marker	
		z:marker
	a:marker	
		b:marker
		c:marker

Action plan:

No	Item	Assigned to	Due Date	Status
1	Considering a connector for Havelsan's Framework (TFS)			
2				
3				
4				

MEETING MINUTES

ITEA2-ModelWriter-13028 Project

Distribution:

Name < Email>, Function

Ferhat Erata < ferhat@computer.org >, Project Leader (UNIT)

Etienne Juliot < etienne Juliot < etienne.juliot@obeo.fr>, French Consortium Coordinator (OBEO)

Marwa Rostren <marwa.rostren@obeo.fr>, Technical Contact (OBEO)

Yvan Lussaud <<u>yvan.lussaud@obeo.fr</u>>, Technical Contact (OBEO)

Erhan Mengüsoğlu < erhan Mengüsoğlu < erhan Mengüsoğlu < erhanmengusoglu@mantis.com.tr, Turkish Consortium Coordinator (Mantis)

Güven Köse <guvenkose@mantis.com.tr>, Secondary Contact Point (Mantis)

Geylani Kardas <<u>geylani.kardas@ege.edu.tr</u>>, Technical Consultant (KoçSistem)

Mehmet Önat <<u>mehmet.onat@kocsistem.com.tr</u>>, Primary Contact Point (KoçSistem)

Hale Gezgen < hale.gezgen@kocsistem.com.tr >, Secondary Contact Point (KoçSistem)

Moharram Challenger < moharram.challenger@unitbilisim.com >, Secondary Contact Point (UNIT)

Hans Vangheluwe < Hans. Vangheluwe@uantwerpen.be > , Technical Consultant (UNIT)

Emil Khamitov <emil.khamitov@unitbilisim.com>, Financial Contact Point (UNIT)

Ersan Gürdoğan <ersan@hisbim.com>, Primary Contact Point (HISBIM)

Taskin Kızıl <taskin@hisbim.com>, Secondary Contact Point (HISBIM)

Claire Gardent <<u>claire.gardent@loria.fr</u>>, Primary Contact Point (CNRS-LORIA)

Samuel Cruz-Lara < Samuel.Cruz-Lara@loria.fr >, Secondary Contact Point (CNRS-LORIA)

Anne Monceaux <anne.monceaux@airbus.com>, Primary Contact Point (AIRBUS)

Philippe Bureille <philippe.bureille@sogeti.com >, Primary Contact Point (SOGETI)

Yves de Beauregard < yves.de.beauregard@sogeti.com>, Financal Contact Point (SOGETI)

Nicole Sohn < nicole.sohn@sogeti.com >, Secondary Contact Point (SOGETI)

Monigue Snoeck <monigue.snoeck@kuleuven.be>, Primary Contact Point (KULueven 2)

Sien Moens < sien.moens@cs.kuleuven.be>, Primary Contact Point (KULeuven 1)

Eray Tüzün <etuzun@havelsan.com.tr>, Technical Contact Point (Havelsan)

Yagup Macit <<u>vmacit@havelsan.com.tr</u>>, Technical Contact Point (Havelsan)

Nuran Göksu <<u>nuran@havelsan.com.tr</u>>, Primary Contact Point (Havelsan)

Mariem Mahfoudh mariem.mahfoudh@loria.fr> Technical Contact (LORIA)

Serhat Çelik < serhat.celik@unitbilisim.com >, Developer (UNIT)

Hasan Emre Kırmızı < emre.kirmizi@unitbilisim.com>, Developer (UNIT)

Ümit Anıl Öztürk <anil.ozturk@unitbilisim.com >, Developer (UNIT)