# Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation

H. R. Maei, C. Szepesvari, S. Bhatnagar, D. Precup, D. Silver, R. S. Sutton

24 mars 2017

#### Motivations

TD algorithms are great but potentially unstable in the off-policy case, or when the function approximation is non-linear.

Gradient methods (TDC, GTD...) help in the off-policy case.

The problem in the non-linear case remains  $\Rightarrow$  non-linear extensions of GTD and TDC

Convergent as long as the function approximation is **smooth** enough.

# The objective function

Linear TDC, GTD:

$$J(\theta) = MSPBE(\theta) = \|\Pi(TV_{\theta} - V_{\theta})\|_{D}$$

where  $\Pi$  projects onto  $\mathcal{M}=\{V_{\theta}|\theta\in\mathbb{R}^n\}=\{\Phi\theta|\theta\in\mathbb{R}^n\}$  (linear).

Non-linear TDC, GTD:  $\mathcal{M}$  is a non-linear manifold...  $\Rightarrow$  projection onto the tangent space of  $\mathcal{M}$  at  $\theta$ :  $T\mathcal{M}_{\theta} = \{\Phi_{\theta}\theta | \theta \in \mathbb{R}^n\}$  where  $(\Phi_{\theta})_{s,i} = \frac{\partial}{\partial \theta_i} V_{\theta}(s)$ :

$$J(\theta) = \| \Pi_{\theta} (TV_{\theta} - V_{\theta}) \|$$

# Visually...



 $\Upsilon_{ heta}$ : projection on the tangent plane  $\Pi_{ heta}(TV_{ heta}-V_{ heta})=\Upsilon_{ heta}TV_{ heta}-V_{ heta}$ 

#### Derivations

Let 
$$\Phi_{\theta} \equiv \nabla V_{\theta}(s)$$

$$J(\theta) = \mathbb{E}[\delta \Phi_{\theta}]^T \mathbb{E}[\Phi_{\theta} \Phi_{\theta}^T] \mathbb{E}[\delta \Phi_{\theta}]$$

#### Gradient of $J(\theta)$

$$-\frac{1}{2}\nabla J(\theta) = -\mathbb{E}[(\gamma \Phi_{\theta}' - \Phi_{\theta})\Phi_{\theta}^{T}\omega] + h(\theta, \omega)$$
 (GTD)  
$$= -\mathbb{E}[\delta \Phi_{\theta}] - \gamma \mathbb{E}[\Phi_{\theta}' \Phi_{\theta}^{T}\omega] + h(\theta, \omega)$$
 (TDC)

where  $\omega = \mathbb{E}[\Phi_{\theta}\Phi_{\theta}^T]^{-1}\mathbb{E}[\delta\Phi_{\theta}]$  and  $h(\theta,\omega) = -\mathbb{E}[\nabla^2 V_{\theta}(s)\omega]$ 

In comparison with the linear case, the only difference is the presence of a second order term  $h(\theta, \omega)$ .

### Non-linear GTD/TDC updates

#### Non-linear GTD

$$\theta_{k+1} = \theta_k + \alpha_k \left[ (\Phi_k - \gamma \Phi'_k)(\Phi_k^T w_k) - h_k \right]$$

#### Non-linear TDC

$$\theta_{k+1} = \theta_k + \alpha_k \left[ \delta_k \Phi_k - \gamma \Phi'_k (\Phi_k^T w_k) - h_k \right]$$

Same approximation trick for  $\omega$  (and h) as in the linear case :

$$\omega_{k+1} = \omega_k + \beta_k (\delta_k - \Phi_k^T \omega_k) \Phi_k$$
$$h_k = (\delta_k - \Phi_k^T w_k) \nabla^2 V_{\theta_k} (s_k) \omega_k$$

# The spiral counterexample

From cite

$$V_{\theta}(s) = (a[s]\cos(\lambda\theta - b[s]\sin(\lambda\theta)))\exp(\epsilon\theta)$$





# The spiral counterexample

