Homework 6 Linear Algebra Math 524 Stephen Giang

Section 6.A Problem 1: Show that the function that takes $((x_1, x_2), (y_1, y_2)) \in \mathbb{R}^2 \times \mathbb{R}^2$ to $|x_1y_1| + |x_2y_2|$ is not an inner product on \mathbb{R}^2

Notice:

$$<(1,1) + (-1,-1), (1,1) > = <(1,1), (1,1) > + <(-1,-1), (1,1) >$$

= $2 + 2 = 4 \neq 0 = <(0,0), (1,1) >$

Because the function does not hold additivity in the first slot, it is not an inner product on \mathbb{R}^2

Section 6.A Problem 2: Show that the function that takes $((x_1, x_2, x_3), (y_1, y_2, y_3)) \in \mathbb{R}^3 \times \mathbb{R}^3$ to $x_1y_1 + x_3y_3$ is not an inner product on \mathbb{R}^3

Notice with $(x_2 \neq 0, y_2 \neq 0)$

$$<(0,x_2,0),(0,y_2,0)>=0$$

Because the function does not hold for definiteness, it is not an inner product on \mathbb{R}^3

Section 6.A Problem 4: Suppose V is a real inner product space

- (a) Show that $\langle u+v, u-v \rangle = ||u||^2 ||v||^2$ for every $u, v \in V$ $\langle u+v, u-v \rangle = \langle u, u \rangle + \langle u, -v \rangle + \langle v, u \rangle + \langle v, -v \rangle$ $= \langle u, u \rangle + -\langle u, v \rangle + \langle u, v \rangle \langle v, v \rangle$ $= ||u||^2 ||v||^2$
- (b) Show that if $u, v \in V$ have the same norm, then u + v is orthogonal to u v

Let ||u|| = ||v||

$$||u||^2 = ||v||^2$$

$$< u + v, u - v > = ||u||^2 - ||v||^2 = 0$$

Because $\langle u+v, u-v \rangle = 0$, then u+v is orthogonal to u-v

(c) Use part (b) to show that the diagonals of a rhombus are perpendicular to each other

Because the diagonals of a rhombus with 2 sides being u and the other 2 being v can be written as u + v and u - v, part (b) shows us that they are orthogonal, or perpendicular.

Section 6.A Problem 5: Suppose $T \in \mathcal{L}(V)$ is such that $||Tv|| \leq ||v||$ for every $v \in V$. Prove that $T - \sqrt{2}I$ is invertible.

Notice: For T not to be invertible, then $det(T - \lambda I) = 0$. To find the eigenvalues, λ , then

$$Tv = \lambda v$$

$$\begin{split} ||Tv|| &= \sqrt{< Tv, Tv>} \\ &= \sqrt{< \lambda v, \lambda v>} \\ &= \sqrt{\lambda^2} \sqrt{< v, v>} \\ &= |\lambda| ||v|| \\ &\leq ||v|| \end{split}$$

$$||Tv|| = |\lambda|||v|| \le ||v||$$

Thus $-1 \le \lambda \le 1$. Because $\sqrt{2}$ is not within the interval, it is also not an eigenvalue. So $\det(T - \sqrt{2}I) \ne 0$, thus $T - \sqrt{2}I$ is invertible.

Section 6.B Problem 1: Suppose $\theta \in R$. Show that $(\cos \theta, \sin \theta), (-\sin \theta, \cos \theta)$ and $(\cos \theta, \sin \theta), (\sin \theta, -\cos \theta)$ are orthonormal bases of \mathbb{R}^2 .

$$||(\cos \theta, \sin \theta)|| = \langle (\cos \theta, \sin \theta), (\cos \theta, \sin \theta) \rangle$$

$$= \sqrt{\cos^2 \theta + \sin^2 \theta}$$

$$= \sqrt{1} = 1$$

$$||(-\sin \theta, \cos \theta)|| = \langle (-\sin \theta, \cos \theta), (-\sin \theta, \cos \theta) \rangle$$

$$= \sqrt{\sin^2 \theta + \cos^2 \theta}$$

$$= \sqrt{1} = 1$$

$$||(\sin \theta, -\cos \theta)|| = \langle (\sin \theta, -\cos \theta), (\sin \theta, -\cos \theta) \rangle$$

$$= \sqrt{\sin^2 \theta + \cos^2 \theta}$$

$$= \sqrt{1} = 1$$

$$<(\cos\theta,\sin\theta),(-\sin\theta,\cos\theta)>=\sqrt{-\cos\theta\sin\theta+(\sin\theta\cos\theta}=0$$

$$<(\cos\theta,\sin\theta),(\sin\theta,-\cos\theta)>=\sqrt{\cos\theta\sin\theta-\sin\theta\cos\theta}=0$$

Because the 2 lists are orthonormal and their length, 2, is equal to \mathbb{R}^2 's dimension, then both lists are orthonormal bases.

Section 6.B Problem 3: Suppose $T \in \mathcal{L}(\mathbb{R}^3)$ has an upper-triangular matrix with respect to the basis (1,0,0),(1,1,1),(1,1,2). Find an orthonormal basis of \mathbb{R}^3 with respect to which T has an upper-triangular matrix.

Because we have an upper-triangular matrix with respect to some basis, there exists an orthonormal basis e_1, e_2, e_3 that can be calculated from the Gram-Schmidt Procedure, to which T has an upper triangular matrix.

Let
$$v_1 = (1, 0, 0), v_2 = (1, 1, 1), v_3 = (1, 1, 2)$$

$$e_1 = \frac{v_1}{||v_1||} = \frac{(1, 0, 0)}{1} = (1, 0, 0)$$

$$e_2 = \frac{v_2 - \langle v_2, e_1 \rangle e_1}{||v_2 - \langle v_2, e_1 \rangle e_1||} = \frac{(1, 1, 1) - (1, 0, 0)}{||(1, 1, 1) - (1, 0, 0)||} = \frac{(0, 1, 1)}{\sqrt{2}} = (0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$$

$$e_3 = \frac{v_3 - \langle v_3, e_1 \rangle e_1 - \langle v_3, e_2 \rangle e_2}{||v_3 - \langle v_3, e_1 \rangle e_1 - \langle v_3, e_2 \rangle e_2||}$$

$$= \frac{(1, 1, 2) - (1, 0, 0) - \frac{3}{\sqrt{2}}(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})}{||1, 1, 2) - (1, 0, 0) - \frac{3}{\sqrt{2}}(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})||} = \frac{(0, 1, 2) - (0, \frac{3}{2}, \frac{3}{2})}{||(0, 1, 2) - (0, \frac{3}{2}, \frac{3}{2})||}$$

$$= \sqrt{2}(0, \frac{-1}{2}, \frac{1}{2}) = (0, \frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$$

Thus e_1, e_2, e_3 is an orthonormal basis of \mathbb{R}^3 with respect to which T has an upper-triangular matrix.

Section 6.B Problem 9: What happens if the Gram–Schmidt Procedure is applied to a list of vectors that is not linearly independent?

Let $v_1, ..., v_j$ be a linearly dependent list of vectors and $v_1, ..., v_{j-1}$ be a linearly independent list such that

$$v_j \in \operatorname{span}(v_1, ..., v_{j-1})$$

Because $v_1, ..., v_{j-1}$ is linearly independent, it can be used to turn into an orthonormal list $e_1, ..., e_{j-1}$ and by 6.30, $v_j = \langle v_j, e_1 \rangle e_1 + ... + \langle v_j, e_{j-1} \rangle e_{j-1}$. If we try to apply Gram-Schmidt on v_j , you would get a denominator of 0, Thus Gram-Schmidt doesn't work on linearly dependent lists.

Section 6.C Problem 5: Suppose V is finite-dimensional and U is a subspace of V. Show that $P_{U^{\perp}} = I - P_U$, where I is the identity operator of V.

By 6.47, $V = U \oplus U^{\perp}$. This means that $\forall v \in V, v = u + w$, with $u \in U$ and $w \in U^{\perp}$. By definition of $P_U, P_U(v) = w$. And by definition of $P_{U^{\perp}}, P_{U^{\perp}}(v) = u$.

$$P_{U^{\perp}}(v) = u = u + w - w = (u + w) - w = I(v) - P_{U}(v) = (I - P_{U})(v)$$

Thus $P_{U^{\perp}} = I - P_U$

Section 6.C Problem 11: In \mathbb{R}^4 , Let

$$U = \text{span}((1, 1, 0, 0), (1, 1, 1, 2))$$

Find $u \in U$ such that ||u - (1, 2, 3, 4)|| is as small as possible.

Using Gram-Schmidt, we can find an orthonormal basis

$$e_{1} = \frac{(1,1,0,0)}{\sqrt{2}} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0)$$

$$e_{2} = \frac{(1,1,1,2) - \langle (1,1,1,2), (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0) \rangle (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0)}{||(1,1,1,2) - \langle (1,1,1,2), (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0) \rangle (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0)||}$$

$$= \frac{(0,0,1,2)}{\sqrt{5}} = (0,0,\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}})$$

 $P_U(1,2,3,4) = <(1,2,3,4), e_1 > e_1 + <(1,2,3,4), e_2 > e_2$ is the closest $u \in U$ to (1,2,3,4) by 6.56. Which equals

$$(\frac{3}{2}, \frac{3}{2}, \frac{11}{5}, \frac{22}{5})$$