LeanDojo: Theorem Proving with Retrieval-Augmented Language Models

Kaiyu Yang

Postdoc @ Computing + Mathematical Sciences

Proof assistant

theorem gcd_self (n : nat) : gcd n n = n :=

Proof assistant


```
theorem gcd_self (n : nat) : gcd n n = n :=
```


Proof assistant

Human

Proof assistant

Human

Proof assistant

Human

Proof assistant

Human

```
n:\mathbb{N}
theorem gcd_self (n : nat) : gcd n n = n :=
                                                                        \vdash gcd n n = n
begin
                                                                           cases n
  cases n,
  { unfold gcd },
                                                                                   k:\mathbb{N}
                                                           \vdash gcd 0 0 = 0
  unfold gcd,
                                                                                   \vdash gcd (k + 1) (k + 1) = k + 1
  rewrite mod_self,
                                                     unfold gcd
                                                                                                    unfold gcd
                                                                              k:\mathbb{N}
                                                                              \vdash gcd ((k + 1) % (k + 1)) (k + 1) = k + 1
                                                                                                                            Proof assistant
                                                                                                    rewrite mod self
                                                                                     k:\mathbb{N}
                                                                                     \vdash gcd 0 (k + 1) = k + 1
```


Human

```
n:\mathbb{N}
theorem gcd_self (n : nat) : gcd n n = n :=
                                                                      \vdash gcd n n = n
begin
                                                                         cases n
  cases n,
  { unfold gcd },
                                                                                 k:\mathbb{N}
                                                         \vdash gcd 0 0 = 0
  unfold gcd,
                                                                                  \vdash gcd (k + 1) (k + 1) = k + 1
  rewrite mod_self,
                                                    unfold gcd
                                                                                                  unfold gcd
  apply gcd_zero_left
end
                                                                            k:\mathbb{N}
                                                                            \vdash gcd ((k + 1) % (k + 1)) (k + 1) = k + 1
                                                                                                                         Proof assistant
                                                                                                  rewrite mod self
                                                                                   k:\mathbb{N}
                                                                                   \vdash gcd 0 (k + 1) = k + 1
                                                                                                  apply gcd_zero_left
```


Human

Bottleneck: Finding the right tactics & premises

Human

Machine learning

- Bottleneck: Finding the right tactics & premises
- Learning to interact with proof assistants

Large Language Models (LLMs)

- Very big neural networks, massive data, predicting the next word
- Good at elementary math and coding

GPT-4 on standard exams (SAT, LSAT, etc.)

GitHub Copilot

Large Language Models (LLMs)

- Very big neural networks, massive data, predicting the next word
- Good at elementary math and coding

GPT-4 on standard exams (SAT, LSAT, etc.)

GitHub Copilot

LLMs are potentially powerful tools for theorem proving

Theorem Proving as a Challenge for LLMs

- Advanced mathematical reasoning
 - Bigger models are not sufficient
 - May need formal representations in proof assistants

- Rigorous evaluation w/o hallucination
 - LLMs are hard to evaluate
 - LLMs tend to hallucinate
 - Relatively easy to check if formal proofs are correct

Solving (some) formal math olympiad problems

Polu and Sutskever, GPT-f, 2020

Han et al., PACT, 2022

Polu et al., 2023

Lample et al., HTPS 2022

Meta Al

Teaching AI advanced mathematical reasoning

November 3, 2022

Jiang et al., LISA, 2021

Jiang et al., Thor, 2022

First et al., Baldur, 2023

Polu and Sutskever, GPT-f, 2020

Han et al., PACT, 2022

Polu et al., 2023

Lample et al., HTPS 2022

Jiang et al., Thor, 2022

First et al., Baldur, 2023

Polu and Sutskever, GPT-f, 2020

Han et al., PACT, 2022

Polu et al., 2023

Lample et al., HTPS 2022

Wang et al., DT-Solver, 2023

	Dataset available
Jiang et al., LISA, 2021	\checkmark
Jiang et al., Thor, 2022	\checkmark
First et al., Baldur, 2023	×
Polu and Sutskever, GPT-f, 2020	X
Han et al., PACT, 2022	×
Polu et al., 2023	×
Lample et al., HTPS 2022	×
Wang et al., DT-Solver, 2023	\checkmark

	Dataset available	Model available	Code available
Jiang et al., LISA, 2021	\checkmark	X	X
Jiang et al., Thor, 2022	\checkmark	X	X
First et al., Baldur, 2023	×	X	X
Polu and Sutskever, GPT-f, 2020	X	X	X
Han et al., PACT, 2022	×	X	X
Polu et al., 2023	×	X	X
Lample et al., HTPS 2022	×	X	X
Wang et al., DT-Solver, 2023	\checkmark	X	X

	Dataset available	Model available	Code available	Interaction tool available
Jiang et al., LISA, 2021	\checkmark	X	X	\checkmark
Jiang et al., Thor, 2022	\checkmark	X	X	\checkmark
First et al., Baldur, 2023	×	X	X	\checkmark
Polu and Sutskever, GPT-f, 2020	X	X	X	X
Han et al., PACT, 2022	\sim	X	X	\checkmark
Polu et al., 2023	×	X	X	\checkmark
Lample et al., HTPS 2022	×	X	X	X
Wang et al., DT-Solver, 2023	\checkmark	X	X	X

	Dataset available	Model available	Code available	Interaction tool available	Model size (# params)	Compute (hours)
Jiang et al., LISA, 2021	\checkmark	X	X	\checkmark	163M	-
Jiang et al., Thor, 2022	\checkmark	X	X	\checkmark	700M	1K on TPU
First et al., Baldur, 2023	×	X	X	\checkmark	62,000M	-
Polu and Sutskever, GPT-f, 2020	X	X	X	X	774M	40K on GPU
Han et al., PACT, 2022	×	X	X	\checkmark	837M	1.5K on GPU
Polu et al., 2023	×	X	X	\checkmark	774M	48K on GPU
Lample et al., HTPS 2022	×	X	X	X	600M	34K on GPU
Wang et al., DT-Solver, 2023	\checkmark	X	X	X	774M	1K on GPU

	Dataset available	Model available	Code available	Interaction tool available	Model size (# params)	Compute (hours)
Jiang et al., LISA, 2021	\checkmark	X	X	\checkmark	163M	-
Jiang et al., Thor, 2022	\checkmark	X	X	\checkmark	700M	1K on TPU
First et al., Baldur, 2023	×	X	X	\checkmark	62,000M	-
Polu and Sutskever, GPT-f, 2020	X	X	X	X	774M	40K on GPU
Han et al., PACT, 2022	×	X	X	\checkmark	837M	1.5K on GPU
Polu et al., 2023	×	X	X	\checkmark	774M	48K on GPU
Lample et al., HTPS 2022	×	X	X	X	600M	34K on GPU
Wang et al., DT-Solver, 2023	\checkmark	X	X	X	774M	1K on GPU
LeanDojo (ours)	\checkmark	\checkmark	\checkmark	\checkmark	517M	120 on GPU

	Dataset available	Model available	Code available	Interaction tool available	Model size (# params)	Compute (hours)
Jiang et al., LISA, 2021	\checkmark	X	X	\checkmark	163M	-
Jiang et al., Thor, 2022	\checkmark	X	X	\checkmark	700M	1K on TPU
First et al., Baldur, 2023	×	X	X	\checkmark	62,000M	-
Polu and Sutskever, GPT-f, 2020	X	X	X	X	774M	40K on GPU
Han et al., PACT, 2022	×	X	X	\checkmark	837M	1.5K on GPU
Polu et al., 2023	×	X	X	\checkmark	774M	48K on GPU
Lample et al., HTPS 2022	×	X	X	X	600M	34K on GPU
Wang et al., DT-Solver, 2023	\checkmark	X	X	X	774M	1K on GPU
LeanDojo (ours)	\checkmark	\checkmark	\checkmark	\checkmark	517M	120 on GPU

Give researchers access to state-of-the-art LLM-based provers with modest computational costs

Lean (Lean 3 or Lean 4)

Machine learning model

Machine learning model

Extracting States and Tactics

- Need (state, tactic) pairs for training
 - Tactics could be obtained by parsing the Lean source code into ASTs
 - Proof states are not available in the code

```
theorem gcd_self (n : nat) : gcd n n = n :=
begin
  cases n,
  { unfold gcd },
  unfold gcd,
  rewrite mod_self,
  apply gcd_zero_left
end
```


Extracting Premises in the Same File

- Tactics rely on premises
 - Lemmas
 - Definitions

```
theorem gcd_self (n : nat) : gcd n n = n :=
begin
  cases n,
  { unfold gcd },
  unfold gcd,
  rewrite mod_self,
  apply gcd_zero_left
end
```


Extracting Premises in the Same File

- Tactics rely on premises
 - Lemmas
 - Definitions

data/nat/gcd.lean

Extracting Premises from Other Files

Data Extraction in LeanDojo

Arbitrary Lean repo on GitHub

Data Extraction in LeanDojo

Data Extraction in LeanDojo

Interacting with Lean Programmatically

- An interface for the model to observe states and run tactics
 - initialize(theorem): Given a theorem, return its initial state
 - run_tac(state, tactic): Run a tactic on a given state and return the next state
- Demo

Interacting with Lean Programmatically

- An interface for the model to observe states and run tactics
 - initialize(theorem): Given a theorem, return its initial state
 - run_tac(state, tactic): Run a tactic on a given state and return the next state
- Demo
- The first tool to interact with Lean 3 reliably
 - Existing tool, lean-gym, misjudges 21% correct proofs as incorrect
 - Only 2.1% for LeanDojo

Interacting with Lean Programmatically

- An interface for the model to observe states and run tactics
 - initialize(theorem): Given a theorem, return its initial state
 - run_tac(state, tactic): Run a tactic on a given state and return the next state
- Demo
- The first tool to interact with Lean 3 reliably
 - Existing tool, lean-gym, misjudges 21% correct proofs as incorrect
 - Only 2.1% for LeanDojo
- The first tool to interact with Lean 4
 - Several prototypes and ongoing projects, no mature tool before LeanDojo

Constructing Benchmarks using LeanDojo

- LeanDojo Benchmark, from mathlib on Aug 5, 2023
 - 98,641 theorems and proofs
 - 217,639 tactics
 - 129,162 premises
- LeanDojo Benchmark 4, from mathlib4 on Aug 10, 2023
 - 100,780 theorems and proofs
 - 209,133 tactics
 - 101,500 premises
- Easy to construct your own benchmarks

- random: Splitting theorems into training/validation/testing randomly
- LLMs can prove seemingly nontrivial theorems by memorizing similar proofs in training

- random: Splitting theorems into training/validation/testing randomly
- LLMs can prove seemingly nontrivial theorems by memorizing similar proofs in training

```
src/algebra/quaternion.lean
  lemma conj_mul : (a * b).conj = b.conj * a.conj := begin
    ext; simp; ring_exp
  end

lemma conj_conj_mul : (a.conj * b).conj = b.conj * a := begin
    rw [conj_mul, conj_conj]
  end

lemma conj_mul_conj : (a * b.conj).conj = b * a.conj := begin
    rw [conj_mul, conj_conj]
  end
```

- random: Splitting theorems into training/validation/testing randomly
- LLMs can prove seemingly nontrivial theorems by memorizing similar proofs in training

```
src/algebra/quaternion.lean
    lemma conj_mul : (a * b).conj = b.conj * a.conj := begin
    ext; simp; ring_exp
    end

lemma conj_conj_mul : (a.conj * b).conj = b.conj * a := begin
    rw [conj_mul, conj_conj]
    end

lemma conj_mul_conj : (a * b.conj).conj = b * a.conj := begin
    rw [conj_mul, conj_conj]
    end
Test
```

- random: Splitting theorems into training/validation/testing randomly
- LLMs can prove seemingly nontrivial theorems by memorizing similar proofs in training

```
src/algebra/quaternion.lean
    lemma conj_mul : (a * b).conj = b.conj * a.conj := begin
    ext; simp; ring_exp
    end

lemma conj_conj_mul : (a.conj * b).conj = b.conj * a := begin
    rw [conj_mul, conj_conj]
    end

lemma conj_mul_conj : (a * b.conj).conj = b * a.conj := begin
    rw [conj_mul, conj_conj]
    end
```

• novel_premises: Testing proofs must use >1 premise that is never used in training

Tactic Generator in Existing LLM-Based Provers

- State -> tactic
- The model can use premises only by memorizing their names

[Vaswani et al., NeurIPS 2017]

• Given a state, we retrieve premises from the set of all accessible premises

```
State k : \mathbb{N}

\vdash \gcd((k+1)\%(k+1))(k+1) = k+1
```

All *accessible premises* in the math library

```
theorem mod_self (n : nat) : n % n = 0

theorem gcd_zero_left (x : nat) : gcd 0 x = x

: 33K on average :

def gcd : nat \rightarrow nat \rightarrow nat \rightarrow ...
```

• Given a state, we retrieve premises from the set of all accessible premises

• Given a state, we retrieve premises from the set of all accessible premises

- Given a state, we retrieve premises from the set of all accessible premises
- Retrieved premises are concatenated with the state and used for tactic generation

- Given a state, we retrieve premises from the set of all accessible premises
- Retrieved premises are concatenated with the state and used for tactic generation

Premise Retrieval Improves Theorem Proving

Premise Retrieval Improves Theorem Proving

Discovering New Proofs on MiniF2F and ProofNet

• We evaluate the model on MiniF2F and ProofNet (in zero shot) to discover new Lean proofs

```
theorem exercise_2_3_2 {G : Type*} [group G] (a b : G) :
   g : G, b * a = g * a * b * g^{1} :=
begin
                                                                     begin
  exact b, by simp,
                                                                       rw infi,
end
theorem exercise 11 2 13 (a b : ) :
                                                                       rw Inf image,
  (of int a : gaussian int) of int b \rightarrow a b :=
                                                                       simp [hH],
begin
  contrapose,
                                                                       split,
  simp,
                                                                       intros x hx g,
end
                                                                       intro i,
theorem exercise 1 1 17 \{G : Type*\} [group G] \{x : G\} \{n : \}
  (hxn: order of x = n):
                                                                     end
  x^{1} = x^{(n-1)} :=
begin
  rw zpow sub one,
  simp,
                                                                     begin
 rw [← hxn, pow_order_of_eq_one],
                                                                       apply_instance,
end
                                                                     end
```

```
theorem exercise_3_1_22b {G : Type*} [group G] (I : Type*)
  (H : I \rightarrow subgroup G) (hH : i : I, subgroup.normal (H i)) :
  subgroup.normal ( (i : I), H i):=
 rw ←set.image univ,
 haveI := i, (H i).normal,
 rw subgroup.mem_infi at hx ,
 apply (hH i).conj_mem (hx i),
theorem exercise 3 4 5a {G : Type*} [group G]
  (H : subgroup G) [is solvable G] : is solvable H :=
```


- https://leandojo.org
- Tutorial @ NeurIPS 2023

Future Direction: GPT for Theorem Proving in Lean

- ChatGPT can use LeanDojo to interact with Lean
- Strengths:
 - Interleave informal math with formal proofs
 - Explain and correct errors
 - Steerable via prompt engineering
- Limitations:
 - Hallucinating informal math
 - Unable to prove nontrivial theorems

Future Direction: Tools for Lean Users

- We focus on enabling machine learning researchers to work on theorem proving
- LeanDojo is also useful for building practical proof automation tools for Lean users
- LLMStep
 - Work by Sean Welleck and Rahul Saha
 - Finetune LLMs for tactic generation on LeanDojo Benchmark
 - Integrate into Lean's VSCode workflow

```
example (f : \mathbb{N} \to \mathbb{N}): Monotone f \to \forall n, f n \le f (n + 1) := by
 Lean Infoview X
▼ Examples.lean:43:2
 ▼ Tactic state
  1 goal
   \vdash Monotone f → \forall (n : \mathbb{N}), f n \leq f (n + 1)
▶ All Messages (2)
```

Team

