Clustering Model Selection

Toby Dylan Hocking

Clustering framework

- Let $X = [x_1 \cdots x_n]^{\mathsf{T}} \in \mathbb{R}^{n \times p}$ be the data matrix (input for clustering), where $x_i \in \mathbb{R}^p$ is the input vector for observation i.
- **Example** iris n = 150 observations, p = 4 dimensions.
- Consider only one of those columns,

##		Petal.Length
##	[1,]	1.4
##	[2,]	1.4
##	[3,]	1.3
##	[4,]	1.5
##	[5,]	1.4
##	[6,]	1.7

One column can be visualized as a histogram

Simulation: three normal densities

Mixture density

Generate 20 random data from each density

Divide into train and validation

Overall negative log likelihood plot

Diagram of 3-fold cross-validation

- K-fold cross-validation randomly assigns a fold ID number from 1 to K to each row.
- ► There are *K* splits; for each split data with that fold ID are validation, and all others are train.
- ► For each hyper-parameter (e.g., number of clusters), we compute the mean log likelihood over all validation sets/splits.
- Select model with largest mean validation log likelihood.

Figure 1: Cross-validation for unsupervised learning

Possible exam questions

- ► What kinds of clustering hyper-parameter values result in underfitting, and why should that be avoided?
- ► What kinds of clustering hyper-parameter values result in overfitting, and why should that be avoided?
- Using cross-validation with a single split, how should the number of clusters be chosen in Gaussian mixture models?
- Using K-fold cross-validation, how should the number of clusters be chosen in Gaussian mixture models?
- Describe/draw typical (negative) log likelihood curves, as a function of the number of clusters. Explain/draw where over/under-fitting occur, and which model size should be selected.