PD - 97146A

IRLR8726PbF IRLU8726PbF

Applications HEXFET® Power MOSFET

- High Frequency Synchronous Buck Converters for Computer Processor Power
- High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use

	_		- 4	20	
н	e	n	eт	m	S

- Very Low R_{DS(on)} at 4.5V V_{GS}
- Ultra-Low Gate Impedance
- Fully Characterized Avalanche Voltage and Current
- Lead-Free
- RoHS compliant

V _{DSS}	· ,	Qg (typ.)
30V	$5.8 \text{m}\Omega@V_{GS} = 10V$	15nC

G	D	S
Gate	Drain	Source

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	30	V
V_{GS}	Gate-to-Source Voltage	± 20	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	86④	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	61⊕	Α
I _{DM}	Pulsed Drain Current ①	340	1
P _D @T _C = 25°C	Maximum Power Dissipation ®	75	W
P _D @T _C = 100°C	Maximum Power Dissipation ®	38	
	Linear Derating Factor	0.5	W/°C
T_{J}	Operating Junction and	-55 to + 175	°C
T _{STG}	Storage Temperature Range		
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ®		2.0	
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount) ^⑤		50	°C/W
$R_{\theta JA}$	Junction-to-Ambient		110	

Notes ① through © are on page 11

ORDERING INFORMATION:

See detailed ordering and shipping information on the last page of this data sheet. www.irf.com

International **TOR** Rectifier

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	30			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta \mathrm{BV}_{\mathrm{DSS}}\!/\!\Delta \mathrm{T}_{\mathrm{J}}$	Breakdown Voltage Temp. Coefficient		20		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		4.0	5.8	mΩ	V _{GS} = 10V, I _D = 25A ③
			5.8	8.0		$V_{GS} = 4.5V, I_D = 20A$ ③
$V_{GS(th)}$	Gate Threshold Voltage	1.35	1.80	2.35	٧	$V_{DS} = V_{GS}, I_D = 50\mu A$
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Coefficient		-8.6		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			1.0	μΑ	$V_{DS} = 24V, V_{GS} = 0V$
				150		$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
gfs	Forward Transconductance	73			S	$V_{DS} = 15V, I_D = 20A$
Q_g	Total Gate Charge		15	23		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		3.7			$V_{DS} = 15V$
Q_{gs2}	Post-Vth Gate-to-Source Charge		1.9		nC	$V_{GS} = 4.5V$
Q_gd	Gate-to-Drain Charge	_	5.7	_		$I_D = 20A$
Q_{godr}	Gate Charge Overdrive		3.7			See Fig. 15
Q_{sw}	Switch Charge (Q _{gs2} + Q _{gd})		7.6			
Q _{oss}	Output Charge		10		nC	$V_{DS} = 15V, V_{GS} = 0V$
R_{G}	Gate Resistance		2.0	3.5	Ω	
t _{d(on)}	Turn-On Delay Time		12			V _{DD} = 15V, V _{GS} = 4.5V ³
t _r	Rise Time		49			$I_{D} = 20A$
t _{d(off)}	Turn-Off Delay Time		15		ns	$R_G = 1.8\Omega$
t _f	Fall Time		16			See Fig. 13
C _{iss}	Input Capacitance		2150			V _{GS} = 0V
Coss	Output Capacitance		480		рF	V _{DS} = 15V
C _{rss}	Reverse Transfer Capacitance		205			f = 1.0 MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy@		120	mJ
I _{AR}	Avalanche Current ①		20	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			86@		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			340		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	٧	$T_J = 25^{\circ}C$, $I_S = 20A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		24	36	ns	$T_J = 25^{\circ}C, I_F = 20A, V_{DD} = 15V$
Q _{rr}	Reverse Recovery Charge		52	78	nC	di/dt = 300A/µs ③

International **TOR** Rectifier

IRLR/U8726PbF

 $(V) = 0.100 \\ (V) = 0.000 \\$

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

International

TOR Rectifier

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International **TOR** Rectifier

IRLR/U8726PbF

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International **TOR** Rectifier

Fig 12a. Maximum Avalanche Energy Vs. Drain Current

Fig 12b. Unclamped Inductive Test Circuit

Fig 12c. Unclamped Inductive Waveforms

Fig 13a. Switching Time Test Circuit

Fig 13b. Switching Time Waveforms

International **TOR** Rectifier

IRLR/U8726PbF

Fig 14. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs

Fig 15. Gate Charge Test Circuit

Fig 16. Gate Charge Waveform

International IOR Rectifier

D-Pak (TO-252AA) Package Outline

Dimensions are shown in millimeters (inches)

- NOTES:

 1.— DIVENSIONING AND TOLERANCING PER ASME Y14.5M—1994

 2.— DIVENSION ARE SHOWN IN NICHES [MILLIMETERS]

 2.— LEAD DIVENSION INCONTROLLED IN LG.

 2.— DIVENSION DI, ET, LS, & D. SESTRALISH A MINNIUM MOUNTING SURFACE FOR THERMAL PAD.

 3.— SECTION C-C DIVENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD THE.

 3.— DIVENSION D & E DO NOT INCLUDE NOLD FLASH, MOLD FLASH SHALL NOT EXCEED .005 [0.13] PER SOBE, THESE DIMENSIONS ARE MEASURED AT THE CUMPOST EXTREMES OF THE PLASTIC BODY.

 3.— DIVENSION D & C. APPULL TO BASE META ONLY.

 3.— DIVENSION DA & C. APPULL TO BASE META ONLY.

 3.— DIVENSION CONTRONS TO RECOGNIZE TO 2520A.

- 9.- DUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA.

S		DIMEN	MENSIONS			
N N	MILLIM	ETERS	INC	HES	Ŷ	
<u>و</u>	MIN.	MAX.	MIN.	MAX.	É	
Ā	2.18	2.39	.086	.094	<u> </u>	
A1	-	0.13	-	.005		
ь	0,64	0,89	.025	.035		
ь1	0.65	0.79	.025	.031	7	
b2	0.76	1,14	.030	.045		
ь3	4,95	5,46	.195	.215	4	
c	0.46	0.61	.018	.024		
c1	0.41	0.56	.016	.022	7	
c2	0.46	0.89	.018	.035		
D	5,97	6.22	.235	.245	6	LEAD ASSIGNMENTS
D1	5.21	-	.205	-	4	
E	6.35	6.73	.250	.265	6	HEXFET
E1	4.32	-	.170	-	4	I III
e	2.29	BSC	.090	BSC	1	1 GATE
н	9.40	10.41	.370	.410	1	2 DRAIN
L	1,40	1,78	.055	.070		3 SOURCE 4 DRAIN
L1	2,74	BSC	.108	REF.	1	4 DRAIN
L2	0.51	BSC	.020	BSC	1	
L3	0.89	1.27	.035	.050	4	IGBT & CoPAK
L4	-	1.02	-	.040		IGBT & COPAK
L5	1,14	1.52	.045	.060	3	1 GATE
0	0,	10*	0,	10*		2 COLLECTOR
Ø1	0.	15"	0"	15"		3 EMITTER
ø2	25*	35°	25'	35*		4 COLLECTOR
						ı

D-Pak (TO-252AA) Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

International IOR Rectifier

IRLR/U8726PbF

I-Pak (TO-251AA) Package Outline

Dimensions are shown in millimeters (inches)

NOTES: 1.— DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS] △ DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED, 0.05 [0.13] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY. A- THERMAL PAD CONTOUR OPTION WITHIN DIMENSION 64, L2, E1 & D1. A- LEAD DIMENSION UNCONTROLLED IN L3. ⚠- DIMENSION 61, 63 & c1 APPLY TO BASE METAL ONLY. 7.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-251AA (Date 06/02).

B. - CONTROLLING DIMENSION : INCHES.

LEAD ASSIGNMENTS HEXFET 1.- GATE 2.- DRAIN 3.- SOURCE 4.- DRAIN

I-Pak (TO-251AA) Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com

D-Pak (TO-252AA) Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES

1. OUTLINE CONFORMS TO EIA-481.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

International TOR Rectifier

IRLR/U8726PbF

Orderable part number	Package Type	Standar	Note	
		Form	Quantity	
IRLR8726PBF	D-PAK	Tube/Bulk	75	
IRLR8726TRPBF	D-PAK	Tape and Reel	2000	
IRLU8726PBF	I-PAK	Tube/Bulk	75	

Qualification information[†]

D-PAK

Qualification level	Consumer ^{††}	
Majahana Osasahindha Lasad	MSL1	
Moisture Sensitivity Level	(per JEDEC J-STD-020D ^{†††})	
RoHS compliant	Yes	

I-PAK

Qualification level	Industrial
Moisture Sensitivity Level	Not applicable
RoHS compliant	Yes

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 0.605mH, $R_G = 25\Omega$, $I_{AS} = 20$ A.
- ③ Pulse width \leq 400µs; duty cycle \leq 2%.
- Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 50A.
- ⑤ When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- $^{\circ}$ R_{θ} is measured at T_J approximately at 90°C

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.11/2009

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

IRLR8726TRLPBF IRLR8726PBF IRLR8726TRPBF