IME625: Stochastic Processes 2021-22 Sem-II

Homework-14

In the queueing model of Homework 5, number of vehicles in the toll plaza at the end of $n+1^{\rm st}$ minute, $X_{n+1}=\max(X_n-c,0)+A_{n+1}$ for $n\geq 0$, where c is the number of counters and A_{n+1} is the number of vehicles arriving during $n+1^{\rm st}$ minute. Consider c=1 and the arrivals to be independent and identically distributed with mass function: $P(A=0)=a_0$, $P(A=1)=a_1$, $P(A=2)=a_2$, $P(A\geq 3)=0$. Determine the condition involving a_1,a_2 for the Markov chain to be positive recurrent. Assuming the condition holding, calculate the quantities of interest mentioned earlier, i.e., the long-run traffic congestion $\sum_{k\geq c+1}(k-c)\pi_k$ and counter utilization $\sum_{k\leq c-1}(k/c)\pi_k+\sum_{k\geq c}\pi_k$. What happens to these quantities if the condition does not hold?