Deep CNN Project Report

201902014 신영민

1. 서론

이 프로젝트에서는 TensorFlow에 구현된 DCNN을 사용해 식물을 12개로 분류하는 것을 구현한다. 보고서는 데이터셋, 전처리, 아키텍처 설계 그리고 Baseline 모델과 개선된 모델의 성능 평가에 중 점을 둔다.

2. 데이터 셋

2.1 설명

데이터 셋의 경우 프로젝트를 위해 제공된 데이터 셋을 사용했으며 그 데이터는 Black-grass, Charlock, and Sugar Beet를 포함한 12종의 식물로 구분된다. 데이터 이미지의 경우 모델 훈련을 위한 3847장의 트레이닝 이미지, 훈련 중 성능 확인을 위한 447개의 검증 이미지 그리고 최종 모델을 평가하기 위한 456개의 이미지로 구성되어 있으며 사이즈는 RGB 64x64 픽셀로 조정된다.

2.2 전처리

픽셀 값은 Min-Max 정규화를 사용해 [0, 1] 범위로 조정되며 클래스 라벨은 softmax output layer 와의 호환성을 위해 categorical 형식으로 변환된다. 훈련 데이터 셋은 다양한 미니 배치와 개선된모델의 일반화를 보장하기 위해 셔플링된다.

3. Baseline DCNN Architecture

3.1 Architecture 설계

Baseline DCNN은 ReLU activation이 있는 8개의 레이어인 Convolutional Layers와 피처 맵 디멘션을 줄이기 위한 5개의 MaxPooling 레이어인 Pooling Layers, 밀집된 특징 표현을 위한 2개의 레이어인 Fully Connected Layers 그리고 12종을 분류하기 위한 softmax activation 레이어인 출력 Layer로 구성되어 있다.

3.2 트레이닝 파라미터

Optimizer: Adam method (학습률 0.0001)

배치 사이즈:64

Epochs: 100

Loss Function : 다중 클래스 분류를 위한 Categorical Cross-Entropy

3.3 Baseline 성능

Baseline 실행 결과 트레이닝 정확도 95.6%, 검증 정확도 69%, 테스트 정확도는 68.2%가 나왔다.

4. Modified Architectures

4.1 DCNN with 3 Additional Convolution Layers

Baseline 레이어 다음에 ReLU activation이 포함된 3 convolutional layers를 추가했다. 결과적으로 트레이닝 정확도 96.8%, 검증 정확도 70.4% 그리고 테스트 정확도는 69.7%가 나왔다.

4.2 DCNN with 7 Additional Convolution Layers

Baseline 레이어 다음에 ReLU activation이 포함된 7 convolutional layers를 추가했다. 성능 결과로 트레이닝 정확도 97.5%, 검증 정확도 71.6% 마지막으로 테스트 정확도는 70.3%가 나왔다.

5. 결과 및 분석

5.1 테스트 정확도 비교

모델	정확도(%)
Baseline DCNN	68.2
3 Additional Layers	69.7
7 Additional Layers	70.3

5.2 프로젝트 관측 보고

convolutional layer를 더 추가할수록 트레이닝 정확도와 검증 정확도가 향상된다. 또한 테스트 정확도는 additional layer에서 점진적인 개선을 보여 더 나은 generalization을 나타냈다. 7 additional layers가 있는 모델이 가장 좋은 성능을 보였지만 트레이닝 중 약간의 과적합을 보였다.

5.3 Loss and Accuracy Graphs

각 모델의 트레이닝과 검증 단계에서의 Loss를 비교한 그래프이다.

각 모델의 트레이닝과 검증 단계에서의 정확도를 비교한 그래프이다.

6. 결론

Baseline DCNN은 분류작업에서 신뢰성 높은 foundation을 제공하지만 더 많은 convolutional layers가 추가될수록 더 나은 성능을 보였다. 이는 모델의 깊이가 증가할수록 더 복잡한 특징을 추출해낼 수 있음을 볼 수 있는 지점이다. 하지만 convolutional layers를 추가하면 정확도가 향상되지만 특정 깊이 이후에는 이러한 향상이 감소됨을 볼 수 있다.

더 나은 개선을 위해서 과적합 방지를 위한 dropout이나 고급 데이터 증강과 같은 정규화 기술에 초점을 맞출 필요가 있다.