Dynamic Programming

Agenda

- Main features
 - Subproblem overlapping
 - Principle of optimality
- Approaches
 - Memoization (Top-Down)
 - Tab (Bottom-up)

▷ It is a powerful algorithm design technique

- ▷ It is a powerful algorithm design technique
- - O DP ≈ "careful brute force"
 - Using intelligently, one can reduce "exponential" problems to polynomials

- ▷ It is a powerful algorithm design technique
- - O DP ≈ "careful brute force"
 - Using intelligently, one can reduce "exponential" problems to polynomials
 - O DP ≈ Recursion + "reuse"
 - We will be more precise throughout the class

Dynamic Programming?

Bellman, (1984) p. 159 explained that he invented the name "dynamic programming" to hide the fact that he was doing mathematical research at RAND under a Secretary of Defense who "had a pathological fear and hatred of the term, research." He settled on "dynamic programming" because it would be difficult give it a "pejorative meaning" and because "It was something not even a Congressman could object to.

[John Rust 2006]

[https://editorialexpress.com/jrust/research/papers/dp.pdf]

Dr Richard Bellman

IEEE 1979 Medal

Contexto Programação dinâmica

Dynamic Programming (DP

Bellman, (1984) p. 159 explained that he invented the name "dynamic programming" to hide the fact that he was doing mathematical research at RAND under a Secretary of Defense who "had a pathological fear and hatred of the term, research." He settled on "dynamic programming" because it would be difficult give it a "pejorative meaning" and because "It was something not even a Congressman could object to.

[John Rust 2006]

[https://editorialexpress.com/jrust/research/papers/dp.pdf]

Something related to optimization

Something that won't give you problems

Dr Richard Bellman

Dynamic programming

- > Features
 - Overlapping problems (??)
 - Principle of optimality (??)

> Recurrence:

o
$$F_n = F_{n-1} + F_{n-2}$$

> Base case:

o
$$F_1 = F_2 = 1$$
, or

o
$$F_0 = F_1 = 1$$

> Recurrence:

o
$$F_n = F_{n-1} + F_{n-2}$$

▶ Base case:

o
$$F_1 = F_2 = 1$$
, or

o
$$F_0 = F_1 = 1$$

> Recurrence:

o
$$F_n = F_{n-1} + F_{n-2}$$

▶ Base case:

o
$$F_1 = F_2 = 1$$
, or

o
$$F_0 = F_1 = 1$$

> Recurrence:

o
$$F_n = F_{n-1} + F_{n-2}$$

> Base case:

o
$$F_1 = F_2 = 1$$
, or

o
$$F_0 = F_1 = 1$$

o Goal:

O Compute F_n

F_1	F_2	F_3	F_4	F_5	·	F_{n-2}	F_{n-1}	$\mathbf{F}_{\mathbf{n}}$
1	1	2	3	5				

```
1.def fib(n):
2.  if n <= 2:
3.    f = 1
4.  else:
5.    f = fib(n-1) + fib(n-2)
6.  return f</pre>
```

```
1.def fib(n):
2. if n <= 2:
3.    f = 1
4. else:
5.    f = fib(n-1) + fib(n-2)
6. return f</pre>
```

```
1.def fib(n):
2.  if n <= 2:
3.    f = 1
4.  else:
5.    f = fib(n-1) + fib(n-2)
6.  return f</pre>
```

```
1.def fib(n):
2.  if n <= 2:
3.    f = 1
4.  else:
5.    f = fib(n-1) + fib(n-2)
6.  return f</pre>
```

- Does the algorithm work?
- ▷ Is it a good algorithm?

```
1.def fib(n):
2.  if n <= 2:
3.     f = 1
4.  else:
5.     f = fib(n-1) + fib(n-2)
6.  return f</pre>
```

- Does the algorithm work? o Yes!
- ▷ Is it a good algorithm?
 - o No!
 - O Exponential time!!!

```
1.def fib(n):
2. if n \le 2:
3. f = 1
4. else:
5. f = fib(n-1) + fib(n-2) T(n) = T(n-1) + T(n-2) + O(1)
6. return f
```

```
1.def fib(n):
2. if n \le 2:
3. f = 1
4. else:
5. f = fib(n-1) + fib(n-2) T(n) = T(n-1) + T(n-2) + O(1) \ge F_n \approx \varphi^n
6. return f
```

« (| fn(7) starts running

Time ≈ # calls ≈ nodes

Time ≈ # calls ≈ nodes

Space ≈ size of the longest path (root, leaf)

Calls are stored in the activation

stack


```
1.fib(n):
2. if n <= 2:
3.    f = 1
4. else:
5.    f = fib(n-1) + f(n-2)
6. return f</pre>
```



```
1.fib(n):
2.  if n <= 2:
3.    f = 1
4.  else:
5.    f = fib(n-1) + f(n-2)
6.  return f</pre>
```

```
Time O(2<sup>n/2</sup>)
```

fib(50)
$$\approx 2^{50}$$
 steps

1.12e+15 = 1.125.899.906.842.624

Dynamic programming

- > Features
- ▷ Overlapping problems (

The principle of optimality

- Optimal substructure:
 - "A problem has optimal substructure if the optimal solution can be built from optimal solutions to its subproblems."

The principle of optimality

- Optimal substructure:
 - O "A problem has optimal substructure if the optimal solution can be built from optimal solutions to its subproblems."
- ▷ In other words:
 - O We can solve bigger problems using smaller instance solutions of the same problem!

§15 e 27

The principle of optimality

- Dependence on subproblems
 - Must form DAG (Directed Acyclic Graph)
 - If it has cycles, the PD algorithm can execute infinitely

Dynamic programming

- > Features
- ▷ Overlapping problems (
- ▶ Principle of optimality (
- ➤ The dependencies of the subproblems must be acyclic (DAG!)

Why?

Dynamic programming

▷ By using smartly one can reduce "exponential" problems to polynomials

How?

Prob. must have 2 characteristics

- Overlapping problems (
 ✓)
- \triangleright Principle of optimality (\checkmark)

What?

Fibonacci sequence Problem

$$\triangleright F_n = F_{n-1} + F_{n-2}$$

Remember & reuse previously computed problem solutions

- Remember & reuse previously computed problem solutions
 - Maintains a "dictionary"
 - Subproblems → solutions

- Remember & reuse previously computed problem solutions
 - Maintains a "dictionary"
 - Subproblems → solutions
- - Return a stored solution or
 - Compute and store a solution

```
1 memo = {}
2.def fib(n):
3. if n in memo: return memo[n]
4. if n <= 2:
5.     f = 1
6. else:
7.     f = fib(n-1) + f(n-2)
8. memo[n] = f
9. return f</pre>
```

```
1 memo = {}
2.def fib(n):
3.    if n in memo: return memo[n]
4.    if n <= 2:
5.         f = 1
6.    else:
7.         f = fib(n-1) + f(n-2)
8.    memo[n] = f
9.    return f</pre>
```



```
1 memo = {}
2.def fib(n):
3. if n in memo: return memo[n]
4. if n <= 2:
5.    f = 1
6. else:
7.    f = fib(n-1) + f(n-2)
8. memo[n] = f
9. return f</pre>
```



```
1.memo = {}
2.def fib(n):
3.    if n in memo: return memo[n]
4.    if n <= 2:
5.         f = 1
6.    else:
7.         f = fib(n-1) + f(n-2)
8.    memo[n] = f
9.    return f</pre>
```

- Does fib(k) once for each k
- - Only n no 'memorized' calls
 - O O(1) time per call
 - Ignore recursion

The cost to compute each solution is paid only once

- The cost to compute each solution is paid only once
- > The cost of DP with memoization:

$$Time \leq \sum_{subproblems} Nonrecursive work$$

- The cost to compute each solution is paid only once
- The cost of DP with memoization:

- The cost to compute each solution is paid only once
- The cost of DP with memoization:

Context Dynamic programming

- ▷ Second perspective on PD:
 - o DP ≈ Recursion + "recycling"

Context Dynamic programming

- Second perspective on PD:
 - O DP ≈ Recursion + "reuse"
 - Memoization ("remind") & reuse solutions to subproblems that help solve the original problem

```
1.def fib_button_up(n):
2.  memo[0] = memo[1] = 1
3.  for i in range(2,n+1)
       memo[i] = memo[i-1] + memo[i-2]
5.  return memo[n]
F<sub>1</sub> F<sub>2</sub> F<sub>3</sub>

1 1 2
```

```
1.def fib_button_up(n):
2.  memo[0] = memo[1] = 1
3.  for i in range(2,n+1)
    memo[i] = memo[i-1] + memo[i-2]
5.  return memo[n]
F<sub>1</sub> F<sub>2</sub> F<sub>3</sub> F<sub>4</sub>

1 1 2 3
```

```
1.def fib_button_up(n):
2.  memo[0] = memo[1] = 1
3.  for i in range(2,n+1)
    memo[i] = memo[i-1] + memo[i-2]
5.  return memo[n]
F<sub>1</sub> F<sub>2</sub> F<sub>3</sub> F<sub>4</sub> F<sub>5</sub>

1 1 2 3 5
```

```
1.def fib_button_up(n):
2.  memo[0] = memo[1] = 1
3.  for i in range(2,n+1)
4.  memo[i] = memo[i-1] + memo[i-2]
5.  return memo[n]
```


Does the same computation as the memoized version

```
1.def fib_button_up(n):
2.  memo[0] = memo[1] = 1
3.  for i in range(2,n+1)
4.  memo[i] = memo[i-1] + memo[i-2]
5.  return memo[n]
```

```
1.def fib_button_up(n):
2.  memo[0] = memo[1] = 1
3.  for i in range(2,n+1)
4.  memo[i] = memo[i-1] + memo[i-2]
5.  return memo[n]
```

- Does the same computation as the memoized version
- ➤ Topological ordering of subproblem dependencies (form a DAG!)


```
1.def fib_button_up(n):
2.  memo[0] = memo[1] = 1
3.  for i in range(2,n+1)
4.   memo[i] = memo[i-1] + memo[i-2]
5.  return memo[n]
```

- ▶ In practice it is faster
 - There is no recursion
- Can save space
 - We can remember only the last 2 fibs
 - Space O(1)

```
1.def fib button up(n):
   memo[0] = memo[1] = 1
    for i in range (2, n+1)
      memo[i] = memo[i-1] + memo[i-2]
    return memo[n]
```

- ▶ In practice it is faster O There is no recursion
- The analysis is more obvious
- Can save space
 - We can remember only the last 2 fibs
 - Space O(1)

There is an implementation of the seq. Time cost Fibonacci O(lg n) via a different technique!

Generic algorithms Top-Down and Bottom-Up

Generic algorithms Top-Down and Bottom-Up

```
1.def fib_button_up(n):
2. memo[1] = momo[2] = 1
2. Base case
3. for i in range(2,n+1)
4. memo[i] = memo[i-1] + memo[i-2]
5. return memo[n]
5. original return
6.
```

Comparison between PD techniques: memoization (top-down) and tabulation (bottom-up)

	Tabulation (bottom-up)	Memoization (Top-Down)
Speed	Fast. Directly accesses dependent solutions directly from the table	Slow. Due to multiple recursive calls and returns
Solution for subprob.	If all subproblems must be solved at least once, DP using Bottom-up usually performs better than top-down DP	If not all subproblems in the subproblem space need to be solved, the solution using memoization has the advantage of solving only the necessary subproblems
Memo filling	Starts from the first entry. The other entries are filled in one by one.	The table is populated on demand, that is, not all entries are necessarily populated.
Code	It can become complex when you have multiple conditions	Typically less complicated and drawn directly from recurrence.

Algorithmic paradigms so far

Greedy. Build up a solution incrementally, myopically optimizing some local criterion.

Recursive/ Divide-and-conquer. Break up a problem into *independent* subproblems, solve each subproblem, and combine solutions to form solution to original problem.

- subproblems are defined by their smaller size
- the input of the subproblems is not the same, only the size

Dynamic programming. Break problem into a series of *reusable* subproblems, and build up solutions to larger and larger subproblems.

- subproblems are defined both by size and content
 - the outcome of each subproblem (as specified by their input) is reused multiple times

Dynamic Programming Applications

Areas.

- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- Computer science: theory, graphics, AI, compilers, systems,

Some famous dynamic programming algorithms.

- Unix diff for comparing two files.
- Viterbi for hidden Markov models.
- Smith-Waterman for genetic sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.

- Given n objects and a "knapsack."
- Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

W = 11

#	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Greedy: repeatedly add item with maximum ratio v_i / w_i .

Ex: $\{5, 2, 1\}$ achieves only value = $35 \Rightarrow \text{greedy not optimal}$.

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

- Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1 }
- Case 2: OPT selects item i.
 - accepting item i does not immediately imply that we will have to reject other items
 - without knowing what other items were selected before i,
 we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

- Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1 } using weight limit w
- Case 2: OPT selects item i.
 - new weight limit = w wi
 - OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \{ OPT(i-1, w), v_i + OPT(i-1, w-w_i) \} & \text{otherwise} \end{cases}$$

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

```
Input: n, W, w<sub>1</sub>,...,w<sub>N</sub>, v<sub>1</sub>,...,v<sub>N</sub>

for w = 0 to W
   M[0, w] = 0

for i = 1 to n
   for w = 1 to W
        if (w<sub>i</sub> > w)
            M[i, w] = M[i-1, w]
        else
            M[i, w] = max {M[i-1, w], v<sub>i</sub> + M[i-1, w-w<sub>i</sub>]}

return M[n, W]
```

Knapsack Algorithm

		0	1	2	3	4	5	6	7	8	9	10	11
n + 1	ф	0	0	0	0	0	0	0	0	0	0	0	0
	{ 1 }	0	1	1	1	1	1	1	1	1	1	1	1
	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{1,2,3}	0	1	6	7	7	18	19	24	25	25	25	25
	{1,2,3,4}	0	1	6	7	7	18	22	24	28	29	29	40
•	{1,2,3,4,5}	0	1	6	7	7	18	22	28	29	34	34	40

OPT: { 4, 3 } value = 22 + 18 = 40

W = 11

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Problem: Running Time

Running time. $\Theta(n W)$.

- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time algorithm that produces a feasible solution that has value within 0.01% of optimum. [Section 11.8]