CLAIMS

I claim:

1	1. An audio appliance for reading and processing digital audio data stored on an
2	optical storage medium, comprising:
3	a controlled drive device arranged for rotating the storage medium at a speed of
4	rotation that is variable;
5	optical sampling means for reading the audio data from the storage medium;
6	a decompression module operatively connected to said optical sampling means for
7	receiving the audio data read by said optical sampling means and for decompressing compressed
8	audio data; and
9	evaluation means for converting the digital audio data to analog audio data,
10	wherein said speed of rotation is varied in response to a type of audio data being
11	read by said optical sampling means.
1	2. The audio appliance of claim 1, wherein said speed of rotation is set to a first
2	speed when the audio data read by said optical sampling means comprises compressed data and
3	said speed of rotation is set to a second speed when the audio data read by said optical sampling
4	means comprises uncompressed data, said first speed being lower than said second speed.
1	3. The audio appliance of claim 1, further comprising means for automatically
2	bypassing said decompression module when the audio data read by said optical sampling means
3	comprises uncompressed audio data.

3

ì	4. The audio appliance of claim 1, wherein said speed of rotation is automatically
2	settable for a continuous audio reproduction without buffering of the audio data when the audio
3	data read by said optical sampling means comprises compressed data and when the audio data
4	read by said optical sampling means comprises uncompressed data.
1	5. The audio appliance of claim 1, wherein said decompression module is
2	arranged for decompressing lossy-compressed audio data.
1	6. The audio appliance of claim 1, wherein said decompression module is
2 .	arranged for decompressing asymmetrically compressed audio data.
1	7. The audio appliance of claim 1, wherein said decompression module is
2	designed on the basis of the MP3 standard.
1	8. The audio appliance of claim 1, wherein said speed of rotation is automatically
2	determined from information stored on the storage medium.
1	9. The audio appliance of claim 1, wherein the storage medium is a compact disk
1	10. The audio appliance of claim 1, wherein the storage medium is a digital
2	versatile disk.
1	11. The audio appliance of claim 1, wherein the storage medium contains both
2	compressed and uncompressed audio data