#### Class core values

- 1. Be **respect**ful to yourself and others
- 2. Be **confident** and believe in yourself
- 3. Always do your **best**
- 4. Be **cooperative**
- 5. Be **creative**
- 6. Have **fun**
- 7. Be **patient** with yourself while you learn
- 8. Don't be shy to **ask "stupid" questions**





#### Learning Objectives

- Identify protein properties required to modify for different applications
- 2. Describe methods that can be used to measure given properties
- 3. Critically evaluate the limitations of methods for each property and propose alternative methods



#### Protein engineering is a growing field







**Engineering function** 



#### **Engineering function**

- Binding to other proteins
- Enzymatic activity
- Protein-based material



#### **Engineering function**

- Therapeutics: Binding to other proteins
- Enzymatic activity
- Protein-based material

**Engineering stability** 



#### **Engineering function**

- Therapeutics: Binding to other proteins
- Enzymatic activity
- Protein-based material

#### **Engineering stability**

- Thermal stability
- Protease stability
- Organic solvent tolerance



## To assess our success, we need to be able to measure these properties

#### **Engineering function**

- Binding to other proteins
- Enzymatic activity
- Protein-based material

#### **Engineering stability**

- Thermal stability
- Protease stability
- Organic solvent tolerance



Measurements can be quantitative or qualitative



#### Measurements can be quantitative or qualitative



#### Qualitative measurements are often "binary"

Starting point





#### Qualitative measurements are often "binary"





#### Qualitative measurements are often "binary"





Blue-white selection

Measurements can be quantitative or qualitative





































#### Measuring enzyme activity



Glycolytic enzymes (from PDB 101)



















#### Measuring binding



Glycolytic enzymes (from PDB 101)









Molecular Weight
MS (Mass Spectrometry)





Molecular Weight
Native MS (Mass Spectrometry)











# Binding measurements follow changes in the properties of single protein vs complex



Molecular Weight
Native MS
Native Protein Gel

Light diffraction properties SPR (Surface Plasmon Resonance)





# Binding measurements follow changes in the properties of single protein vs complex





Molecular Weight
Native MS
Native Protein Gel

Light diffraction properties
SPR
BLI (Biolayer Interferometry)

























#### In-class activity

Which one has lower  $K_D$  (ie higher affinity)?

B

Which one is a covalent binder?



# Binding measurements follow changes in the properties of single protein vs complex





Molecular Weight
Native MS
Native Protein Gel

Light diffraction properties
SPR
BLI

Changes in free energy
ITC (Isothermal Titration
Calorimetry)



Adiabatic jacket

$$\Delta G = -RT \ln K_a = \Delta H - T \Delta S$$
  $c = n*Ka*M$ 



# Binding measurements follow changes in the properties of single protein vs complex



Molecular Weight
Native MS
Native Protein Gel

Light diffraction properties
SPR
BLI

Changes in free energy
ITC (Isothermal Titration
Calorimetry)







#### In-class activity

Enthalpy vs Entropy driven

One vs two binding sites



### In-class activity

Enthalpy vs Entropy driven

One vs two binding sites





# Binding measurements follow changes in the properties of single protein vs complex





Molecular Weight
Native MS
Native Protein Gel

Light diffraction properties
SPR
BLI

Changes in free energy ITC

Movement MST (Micro Scale Thermophoresis)





#### Summary of binding methods

| Labe | I/Im    | m۸       | hil | li7  |
|------|---------|----------|-----|------|
| Labe | 71/ 111 | $\cdots$ | UII | IIZ. |

Throughput

Accuracy

Range

Sample quantity

Cost/expertise

Maintenance

| SPR    | ITC            | BLI    | MST              |  |
|--------|----------------|--------|------------------|--|
| N/Y    | N/N            | N/Y    | Y/N              |  |
| Medium | Low            | Medium | Medium/High      |  |
| High   | Thermodynamics | Low    | High (but sens.) |  |
| Wide   | Limited        | Wide   | Wide (complex)   |  |
| Small  | Large          | Medium | Small            |  |
| High   | Medium         | Medium | Medium           |  |
| High   | Medium         | Low    | Medium           |  |



### High throughput binding measurements



High throughput binding measurements can be achieved by linking binding to fluorescence, or life/death





### Measuring Stability





### Thermal stability is often correlated to proper folding of the protein





Protein fold can be assessed by measuring ...



Protein fold can be assessed by measuring its activity



# Protein fold can be assessed by measuring its activity or its secondary structure content





(Adapted from N. Greenfield, 1969)



### In-class activity





### Protease stability monitors protein degradation over time



Time (or [protease])



### Protease stability monitors protein degradation over time and can be made high throughput







# To measure stability against harsh conditions, we often measure activity





#### For the next lecture:

- Pre-class assessment for the next lecture
   Needs to be done before the start of class, will be available after this class
- 2. Post-class assignment
  The one from W1L2 due next lecture
  This lecture assignment: Proposal write-up
  Read journal for the next lecture
- 3. Make sure foldx is installed!

#### Next lecture:

Rational design of proteins guided by

structure



