A.V.V.M. SRI PUSHPAM COLLEGE (AUTONOMOUS), POONDI

Programme: M. Sc. Department: Physics

Syllabus Revision 2017-2018

S.No.	Courses	Number of courses having changes
1.	Core Course	04
2.	Elective Course	02
	TOTAL	06

Total Number of Courses : 23

Total Number of Courses having changes : 06

Percentage of Revision : 26.1 %

Note:

The content of the syllabus which has been revised is highlighted.

M.Sc. PHYSICS (2017- 2018)

S.	L SEM I COTOGORY		Category Paper Code Title of the Paper	Maximum Marks		Marks	Minimum Marks For Pass		Hours Week	Credits		
No	Ī	,	•	•	CIA	E.E	Total	CIA	E.E	Total	week	
1		Core	17P1PHC1	Classical Dynamics	25	75	100	10	30	50	6	5
2		Core	17P1PHC2	Mathematical Physics – I	25	75	100	10	30	50	6	4
3	I	Core	17P1PHC3	Statistical Mechanics	25	75	100	10	30	50	6	4
4		Core	17PIPHCP1	Major Practical – I	40	60	100	16	24	50	6	4
5	5	Major Elective	17P1PHEL1A 17P1PHEL1B	Nanophysics Laser and Fiber Optic Communication	25	75	100	10	30	50	6	4
6		Core	17P2PHC4	Electromagnetic Theory	25	75	100	10	30	50	5	5
7		Core	17P2PHC5	Mathematical Physics-II	25	75	100	10	30	50	5	4
8		Core	17P2PHC6	Electronics and Instrumentation	25	75	100	10	30	50	5	4
9	II	Core	17P2PHC7	Numerical Methods in Physics	25	75	100	10	30	50	5	4
10		Core	17P2PHCP2	Major Practical – II	40	60	100	16	24	50	6	4
11		Major Elective	17P2PHEL2A 17P2PHEL2B	Crystal growth & Thin Films Medical Physics	25	75	100	10	30	50	4	4
12		Core	17P3PHC8	Solid State Physics	25	75	100	10	30	50	5	4
13		Core	17P3PHC9	Quantum Mechanics	25	75	100	10	30	50	5	5
14		Core	17P3PHC10	Microcontroller- Programming and Applications	25	75	100	10	30	50	5	4
15	III	Core	17P3PHC11	Biomedical Instrumentation	25	75	100	10	30	50	4	4
16		Core	17P3PHCP3	Major Practical – III	40	60	100	16	24	50	6	4
17		EDC	17P3PHEDC	Extra Disciplinary Course	25	75	100	10	30	50	4	
			Communicativ	e Skill and Personality development	-	-	-	-	-	-	1	-
18		Core	17P4PHC12	Atomic and Molecular Spectroscopy	25	75	100	10	30	50	6	4
19	-	Core	17P4PHC13	Nuclear Physics	25	75	100	10	30	50	6	5
20		Core	17P4PHCP4	Major Practical – IV	40	60	100	16	24	50	6	4
21	IV	Major Elective	17P4PHEL3A 17P4PHEL3B	Advanced Optics Radiation Physics	25	75	100	10	30	50	6	4
22		CN	17P4PHCN	Comprehension	-	100	100	-	50	50	5	2
23	1	PR	17P4PHPR	Project	40	60	100	16	24	50	-	4
				e Skill and Personality Development	-	-	_	-	_		1	_
				Total		I	2300				120	90

I	17P1PHEL1A	Major Elective – I Nanophysics	6	4
Semester	Subject Code	Title of the Paper	Hours of Teaching/ week	No. of Credits

• To gain the knowledge about Nanotechnology.

Unit I Background and emergence of Nanotechnology

Atomic structure – Periodic table – Molecules and phases – Energy – Emergence of nanotechnology – Nanomaterials – types – characteristics – surface to volume ratio – its effect on properties of nanomaterials – Nanoparticles, wires, composites and nanoclusters – Applications of nanomaterials.

Unit II Preparation of nanomaterials

Nanomaterials – Preparation – Top-down method – Ball milling – Nanolithography – Photolithography – Electron beam lithography – Molecular beam epitaxy – Bottom-up technique – Molecular self assembly – Sol-gel synthesis.

Unit III Carbon nanotubes

Carbon age – new carbon forms – carbon clusters – discovery of C_{60} – Carbon fullerences – Bucky balls – Nanotubes – synthesis of single walled nanotubes – multiwalled nanotubes – thermal and mechanical properties – Applications of CNTs.

Unit IV Characterization Techniques

Structural characterization – Principle of X-ray powder diffraction – Determination of structural parameters – Optical studies – UV-Vis-NIR – Raman & IR spectral analysis – Surface morphological analysis – SEM – AFM – TEM.

Unit V Photonics & Nanoelectronics

Interaction of light and nanomaterials – Properties of light and nanophotonics – Nano manipulation – Imaging – Photonic crystals – New low cost energy efficient windows – Nanoelectronics – birth of electronics – Molecular diodes, transistors – quantum electronic devices.

Books for Study

- 1. Essentials of Nanotechnology, Preedep.
- 2. Nanostructures and Nanomaterials, synthesis, properties and applications, Imperial college press, London.
- 3. NanoScience and nanotechnology K.P.Mathur, 1stEdition 2007, RajatPublications, NewDelhi

- 1. M.Ratner.et al., Nanotechnology; A Gentle introduction, Prentice Hall ISBN 0-13-101400-5, 2003.
- 2. Nanotechnology; Basic Science and Emergining Technologies, CRC Press
- 3. Charles P.Poole Jr and Frank J. Owens. "Introduction to Nanotechnology" Wiley, 2003.
- 4. A.S. Edelstein and R.C. Cornmarata, Nanomaterials; synthesis, Properties and Applications, 2 Ed, Iop (U.K), 1996.

Semester	Subject Code	Title of the Paper	Hours of Teaching/ week	No. of Credits
II	17P2PHC6	Electronics and Instrumentation	5	4

• To gain the knowledge in Electronics and Instrumentation.

Unit - I Analog Electronics

Precision and accuracy–Introduction: Op-amp op-amp based circuits: Integrator-Differentiator– Summing– Differential–Logarithmic amplifier – comparators and controls–Analog simulation–Wein Bridge oscillators using op-amp– Instrumentation Amplifier–Solid state switching circuits – 555 Timer– Discrete and integrated voltage regulators.

Unit – II Digital Electronics

Logic gates-Combinational logic circuits-Flip Flop: SR-JK-M/S-D-T Flip Flop-Register: Left shift and right shift register – Counter: Modulus of a counter – MOD X counter (Feedback only)–4 bit asynchronous Ripple counter– Ring counter – A/D Convertor: Simultaneous conversion – Dual slope method – D/A convertor: Variable resistor network–R2Rmethod–Computer and Microprocessor: Introduction– Architectures – Sample & Hold Circuits.

Unit – III Optoelectronics

Semiconductor lasers – optical fiber and characteristics – modes of propagation – losses in fibers – fiber optic communication, optoelectronic modulation and switching devices – Photo detectors – Optocoupler and isolators – Optical data storage techniques.

Unit - IV Instrumentation - I

Static characteristics–Error in measurement– Errors: Gross error – Systematic error–Random error– Dynamic characteristics – Statistical analysis – Permanent magnetic moving coil –Taut band instrument – Electrodynamometer – moving iron type instrument –LCD – Dot matrix display – Liquid vapour display.

Unit – V Instrumentation – II

Qualities of measurements-digital instruments: Digital multimeter – transducers, strain gauge, LVDT, Load cell, piezo electric transducers, temperature transducers, flow meters - recorders and transducers – signal conditioning – data acquisition, conversion and transmission– digital signal processing.

Books for Study:-

- 1. B.G. Stretman and S. Banerjee, 'Solid state electronic devices', (5th Edition), Pearson Education Inc., New Delhi, (2000).
- 2. A.P. Malvino, 'Electronic principles', (6th Edition), Tata McGraw Hill Publ. Co.Ltd., New Delhi (1999).
- 3. Robert T. Paynter, "Introductory electronic devices and circuits", Pearson Education Inc., New Delhi, (2009).
- 4. T.L.Floyd, Electronic Devices (6th Edition), Pearson Education Inc., New Delhi, (2003).

- 1. P. Bhattacharya, Semiconductor Optoelectronic Devices, 2nd Edition, Pearson Education Inc., New Delhi, (2002).
- 2. H. S. Kalsi, Electronic Instrumentation, 2nd Edition, Tata McGraw Hill Publishing Co., New Delhi, (2004).
- 3. William David Cooper, Electronic Instrumentation and Measurement techniques Prentice Hall of India Pvt. Ltd., (1991).
- 4. A. K. Sawhney, Electrical and Electronic Measurements and Instrumentation, Dhanpat Rai and Sons, New Delhi, (1990).

Semester	Code	Title of the Paper	Hours of Teaching/ week	Credits
II	17P2PHC7	Numerical Methods in Physics	5	4

To gain the knowledge in Numerical methods in physics.

Unit - I Errors and Curve fitting

Errors and their computations – General formula for errors – Errors of observation and measurement – Round of errors and Computer Arithmetic – Empirical formula – Graphical method – method of averages – Least square fitting – curve fitting – parabola, exponential – Algorithms and convergence.

Unit - II Numerical solution of Algebraic and Transcendental equations

The iteration method – the bisection method – The method of false position – Newton – Raphson method - C++ program for finding roots using Newton – Raphson method - Simultaneous Linear algebraic equations: Direct methods – Gauss elimination method – Gauss – Jordan method – Iterative method – Jacobi's method – Gauss Seidel iterative method – C++ Program for solution of linear equations.

Unit – III Interpolation

Finite differences – Interpolation – Gregory – Newton forward interpolation of Newton's formula – Backward differences – Newton's Backward interpolation formula – central differences – Gauss's forward and backward formula – Stirling's formula – Divided differences – Newton's divided difference formula – Lagrange's interpolation formula - C ++programming for Lagrange's interpolation.

Unit - IV Numerical differentiation and integration

Introduction – Numerical differentiation – Errors in numerical differentiation – The cubic spline method – Maximum and Minimum values of a tabulated function – Numerical integration – Trapezoidal rule – simpson's rule – Extended Simpson's rule – Use of cubic splines – Romberg integration – C++ Program to evaluate integrals using Simpson's and trapezoidal rules – Gaussian integration.

Unit - V Numerical solutions of ordinary differential equations

Solution by Taylor's series – Picard's method of successive approximation – Euler's method – Modified Euler's method – Runge Kutta method – second and fourth order – Predictor – Corrector method – Milne's method – C++ program for solving ordinary differential equations using RK method.

Books for Study

- 1. Unit I-IV Numerical methods in Science and Engineering G. Venkatraman, National Publishing Co., Chennai, 2001.
- 2. Unit V Numerical methods E. Balagurusamy, McGraw Hill Publishing Company.
- 3. Introductory methods of Numerical Analysis S.S. Sastry, IV Ed, PHI learning pvt ltd, 2006.
- 4. Numerical methods Maccormic, Prentice hall.

- 1. Numerical Methods for Scientific and Engineering Computation M. K. Jain, S. R. K. Iyengar, R. K. Jain, New age international, New Delhi, 1983.
- 2. Numerical Methods P. Kandasamy, K. Thilagavathi and Gunavathy S. Chand & Co, New Delhi, 2010.

Semester	Subject Code	Title of the Paper	Hours of Teaching/ week	No. of Credits
II	17P2PHEL2A	Major Elective – II Crystal Growth & Thin Films	4	4

- To introduce the knowledge of crystal growth
- To know the basic ideas of thin films

Unit - I Nucleation and Growth

Nucleation – Different kinds of nucleation - Concept of formation of critical nucleus – Classical theory of nucleation - Spherical and cylindrical nucleus – Growth Kinetics of Thin Films - Thin Film Structure – Crystal System and Symmetry.

Unit - II Growth Techniques

Solution Growth Technique: Low temperature solution growth: Solution - Solubility and super solubility –Expression of super saturation – Miers T-C diagram - Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods.

Gel Growth Technique: Principle – Various types – Structure of gel – Importance of gel – Experimental procedure – Chemical reaction method – Single and double diffusion method – Chemical reduction method – Complex and decomplexion method – Advantages of gel method.

Unit – III Melt and Vapour Growth Techniques

Melt technique: Bridgman technique - Basic process - Various crucibles design - Thermal consideration - Vertical Bridgman technique - Czochralski technique - Experimental arrangement - Growth process.

Vapour technique: Physical vapour deposition – Chemical vapour deposition (CVD) – Chemical Vapour Transport.

Unit – IV Thin Film Deposition Techniques

Thin Films – Introduction to Vacuum Technology - Deposition Techniques – Physical Methods – Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering – Chemical Methods – Spray Pyrolysis – Preparation of Transparent Conducting Oxides.

Unit - V Characterization Techniques

X - Ray Diffraction (XRD) - Powder and single crystal - Fourier transform Infrared analysis (FT-IR) - Elemental analysis - Elemental dispersive X-ray analysis (EDAX) -Scanning Electron Microscopy (SEM) - UV-Vis-NIR Spectrometer - Etching (Chemical) - Vickers Micro hardness.

Books for Study

- 1. J.C. Brice, Crystal Growth Processes, John Wiley and Sons, New York (1986)
- 2. A. Goswami, Thin Film Fundamentals, New Age International (P) Limited, NewDelhi (1996)

- P. SanthanaRagavan and P. Ramasamy, Crystal Growth Processes and Methods, KRU Publications, Kumbakonam (2001)
- 2. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, CBS, Publishers and Distributors, New Delhi

Semester	Subject Code	Title of the Paper	Hours of Teaching /week	No. of Credits
III	17P3PHC8	Solid State Physics	5	4

 This course deals with theoretical aspects of band theory, lattice vibration, dielectrics, ferroelectrics, superconductivity.

Unit – I Crystal Structure and Imperfections

Crystal symmetry – Bravais lattices – reciprocal lattice – X-ray diffraction – Bragg's law – experimental methods of x-ray diffraction: Rotating crystal method and Debye – Scherrer powder method- Atomic scattering factor – geometrical structure factor - Classification of imperfections: point defects – line defects – surface defects – volume defects – colour centres – Burger's vector – Schottky defects and Frenkel defects – Derivation.

Unit - II Conductors and Semiconductors

Conductors: Free electron theory – Classical and Quantum theory – Band theory of solids – Density of states – K- space – Bloch theorem – Kronig – Penny model – Construction of Brillouin Zones – Semiconductors: Intrinsic and Extrinsic semiconductors – Band gap –Effective mass – Carrier concentration – Electrical conductivity – Hall effect – Determination of type of conductivity – carrier concentration – mobility resistivity.

Unit – III Magnetic and Dielectric properties

Langevin's classical theory of diamagnetism and paramagnetism – Quantum theory of paramagnetism – Weiss theory of ferromagnetism – origin of domains – Hystersis – explanation on the basis of domain theory – Curie temperature and Neel temperature – Dielectrics – Macroscopic electric field – local electric field – dielectric constant and polarizability – types of polarization – Clausius - Mosotti relation – determination of dielectric constant – parallel plate method.

Unit – IV Lattice Vibrations and optical properties

Wave motions of one dimensional atomic lattice – wave motion of linear diatomic lattice – optical and acoustical modes – infrared absorption – inelastic scattering of neutrons – inelastic scattering of x-rays – Photoconductivity – Simple model of photoconductor – traps - influence of traps – Luminescence and its types – Emission and absorption spectra – Thermoluminescence and glow curve.

Unit - V Super Conductivity

Zero resistance – behaviour in magnetic field – Meissner effect – Type I and Type II superconductors – entropy – Isotopic effect - Thermal conductivity – London equations – penetration depth – Josephson Effect – AC and DC – Quantum tunneling – BCS theory – high Tc super conductors – SQUID.

Books for Study:-

- 1. Introduction to Solid State Physics Charles Kittel, John Wiley, 2004.
- 2. Solid State Physics Gupta & Kumar, K. Nath & Co, Meerut, 2000.
- 3. Solid State Physics Singhal, Kedarnath Ramnath & Co, Meerut, 2005.
- 4. Material Science M.Arumugam.

- 1. Elementary solid state physics-Ali Omar, Addison Wesley Publishing Company, 1975.
- 2. Elements of Solid State Physics J.P.Srivastava, Second Edition.
- 3. Solid State Physics and Electronics A.B.Gupta & Nurul Islam.

Semester	Subject Code	Title of the Paper	Hours of Teaching/ week	No. of Credits
III	17P3PHC11	Biomedical Instrumentation	4	4

• To introduce the knowledge in Biomedical Instrumentation.

Unit - I Human Physiological Systems

Cells and their structure – Nature of Cancer cells – Transport of ions through the cell membrane – Resting and action potentials – Bio-electric potentials – Nerve tissues and organs – Different systems of human body – Biopotential Electrodes and Transducers Design of Medical instruments – components of the biomedical instrument system – Electrodes – Transducers.

Unit - II Biosignal Acquisition

Physiological signal amplifiers – Isolation amplifiers – Medical preamplifier design – Bridge amplifiers – Line driving amplifier – Current amplifier – Chopper amplifier – Biosignal analysis – Signal recovery and data acquisition – Drift Compensation in operational amplifier – Pattern recognition – Physiological Assist Devices – Pacemakers – Pacemakers batteries – Artificial heart valves – Defibrillators – nerve and muscle stimulators Heart – Lung machine – Kidney machine.

Unit - III Biopotential Recorders

Characteristics of the recording system – Electrocardiography (ECG) – Electroencephalography (EEG) – Electromyography (EMG) – Electroretinography (ERG) and Electroculography (EOG) – Recorders with high accuracy – recorders for OFF line analysis.

Unit - IV Operation Theatre Equipment

Surgical diathermy- shortwave diathermy - Microwave diathermy - Ultrasonic diathermy - Therapeutic effect of heat - Range and area of irritation of different techniques - Ventilators - Anesthesia machine - Blood flow meter - Cardiac Output measurements - Pulmonary function analyzers - Gas analyzers - Blood gas analyzers - Oxymeters - Elements of intensive care monitoring.

Unit - V Specialized Medical Equipments

Blood Cell counter – Electron microscope – Radiation detectors – Photometers and colorimeters – digital thermometer – audiometers – X-rays tube – X-ray machine – image intensifiers – Angiography – Application of X-ray examination – Safety instrumentation: Radiation safety instrumentation – Physiological effects due to 50Hz current passage – Micro shock and macro shock – electrical accident Hospitals – Devices to protect against electrical hazards – Hospitals architecture.

Books for study

- 1. Dr. M. Arumugan–Biomedical instrumentation, Anurada Agencies Publishers, 1992.
- 2. R.S Khandpur, "Handbook on Biomedical Instrumentation", Tata McGraw Hill Company, New Delhi, 1989
- 3. Ohn G Webster, Ed., "Medical Instrumentation Application and Design", Third edition, John Wiley & Sons, Singapore, 1999

- 1. L. Cromwell, F. J. Weibell, E. A. Pfeiffer Biomedical instrumentation and Measurements, PHI second edition, 1993.
- 2. Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology", Pearson Education Asia, New Delhi, 4th Edition, 2001.