Homework 6

February 27, 2017

Problem 1.

Prove that for $\mathbf{A} \in \mathbb{C}^{n \times n}$ such that NullSpace(\mathbf{A}) has dimensions > k then there is a nonzero vector \mathbf{v} in the nullspace of \mathbf{A} vanishing at any k specified entries of \mathbf{v} .

Problem 2.

Let $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{5 \times 1}$ show that

$$\det (\mathbf{I}_n - \mathbf{x} \cdot \mathbf{y}^\top) = 1 - \mathbf{y}^\top \cdot \mathbf{x}$$

Problem 3.

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$, $\mathbf{B} \in \mathbb{C}^{n \times m}$, $\mathbf{C} \in \mathbb{C}^{m \times n}$ and $\mathbf{D} \in \mathbb{C}^{m \times m}$, prove the following block matrix identity

$$\det \left\{ \left(\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{array} \right) \right\} = \det \left(\mathbf{A} \right) \cdot \det \left(\mathbf{D} - \mathbf{C} \cdot \mathbf{A}^{-1} \cdot \mathbf{B} \right)$$

Problem 4.

Let **A** denote the 4×4 matrix whose entries are given by

$$\forall 1 \leq u, v \leq 4, \quad \mathbf{A}[u, v] = (\sqrt{-1}u)^v.$$

Use the Gram-Schmidt process to expresse $\bf A$ as the product of a unitary matrix $\bf Q$ with an upper triangular matrix $\bf R$.

Problem 5.

Construct a 5×5 matrix ${\bf A}$ of rank 3 whose Nullspace is equal to

$$\operatorname{Span}\left\{ \begin{pmatrix} 1\\2\\3\\4\\5 \end{pmatrix}, \begin{pmatrix} 1^2\\2^2\\3^2\\4^2\\5^2 \end{pmatrix} \right\}$$