Theoretical Background

1. a is an unknown parameter. On \mathbb{R}^2 , find out the region where the following equation is elliptic, hyperbolic, or parabolic, and study their dependence on a.

$$(a+x)\frac{\partial^2 u}{\partial x^2} + 2xy\frac{\partial^2 u}{\partial x \partial y} - y^2\frac{\partial^2 u}{\partial y^2} = 0$$

To classify a second order PDE of the form

$$a(x,y)\frac{\partial^2 u}{\partial x^2} + 2b(x,y)\frac{\partial^2 u}{\partial x \partial y} + c(x,y)\frac{\partial^2 u}{\partial y^2}$$

we must consider b^2-ac . For the given equation this yeilds $x^2y^2+(a+x)y^2$. Thus the regions depend on the parameter a. When $a>\frac{1}{4}$ the equation is hyperbolic everywhere. When $a=\frac{1}{4}$ the equations is parabolic at $x=-\frac{1}{2}$ and hyperbolic elsewhere. When $a<\frac{1}{4}$ then

$$\begin{cases} x = \frac{-1 \pm \sqrt{1 - 4a}}{2} & \text{parabolic} \\ \frac{-1 - \sqrt{1 - 4a}}{2} < x < \frac{-1 + \sqrt{1 - 4a}}{2} & \text{elliptic} \\ otherwise} & \text{hyperbolic} \end{cases}$$

2. We prove the maximum principle for the solution to the Poisson equation

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \end{cases}$$

Prove that there exists a constant C depending only on Ω such that

$$\max_{\bar{\Omega}} |u| \le C \left(\max_{\partial \Omega} |g| + \max_{\bar{\Omega}} |f| \right)$$

Here Ω is a bounded open subset of \mathbb{R}^n with Γ being its boundary. $\bar{\Omega} = \Omega \cup \partial \Omega$ is its closure. Several hints:

(a) You could use the following property: assume v is subharmonic, i.e. $-\Delta v \leq 0$ in Ω , then

$$v(x) \le \frac{1}{V} \int_{B(x,r)} v(y) \mathrm{d}y$$

Here B(x,y) is a ball centered at x with radius r, and V is the volume of the ball. Given this, you could prove the maximum of v is achieved at the boundary $\partial\Omega$.

(b) Try to show the function $u+\frac{|x|^2}{2n}\lambda$ is subharmonic. Here $\lambda=\max_{\bar{\Omega}}|f|.$

Finite Differencing

- 3. (a) Prove $\Delta_{-} + \Delta_{+} = \left(\mathcal{E}^{-\frac{1}{2}} + \mathcal{E}^{\frac{1}{2}}\right) \Delta_{0}$ Here \mathcal{E} is the shifting operator, $(\mathcal{E}u)_{j} = u_{j+1}$, and the definitions for Δ_{+} and Δ_{-} are consistent with what we has in class. $(\Delta_{0}u)_{j} = u_{j+\frac{1}{2}} u_{j-\frac{1}{2}}$
 - (b) Determine the constants c and d so that

$$\begin{split} \partial_x^2 u(x) - \frac{1}{h^2} \left(\Delta_+^2 - \Delta_+^3 \right) u(x) &= ch^2 \partial_x^4 u(x) + \mathcal{O}(h^3) \\ \partial_x^2 u(x) - \frac{1}{h^2} \Delta_0^2 u(x) &= dh^2 \partial_x^4 u(x) + \mathcal{O}(h^4) \end{split}$$

Here we assume u(x) is smooth enough.

- (c) The two identities above tell you how to approximate ∂_x^2 using forward differencing and central differencing. How many grid points do you need to get the second order approximation respectively using these two methods?
- 4. Write a computer code (using your favorite language) to determine, to highest possible order, a finite difference approximation to u''(x) based on the 5-point stencil $\{x-h, x-\frac{1}{2}h, x, x+h, x+2h\}$

$$u''(x) \approx c_0 u(x-h) + c_1 u\left(x - \frac{h}{2}\right) + c_2 u(x) + c_3 u(x+h) + c_4 u(x+2h)$$

- (a) Compute c_j .
- (b) Check the order.

Finite difference method for an elliptic equation

- 5. We used Fourier method for stability analysis in 1D in class. Carry out the same analysis for 2D.
- 6. Derive the expldit formulae for Green's functions in 1D and prove they are piecewise linear function.
- 7. In 2D, to compute the Poisson equation, u'' = f with zero boundary condition on a rectangular domain, we discretize the domain by even grid points with mesh size h. Denote A the associated discretization matrix with central differencing (5-stencil). Show $||A^{-1}||_{\infty}$ is bounded independent of h. Explain why it suggests that the order of accuracy of the numerical method is second order. (Hint:
 - (a) $\|A^{-1}\|_{\infty} = \sup \frac{\|A^{-1}v\|_{\infty}}{\|v\|_{\infty}}$. (b) Fundeamental theorem for numerical convergence.)
- 8. Prove the discrete version of the Poincaré inequality,

$$\sum_{m,n} |U_{m,n}|^2 \le \sum_{m,n} |\partial_x U_{m,n}|^2$$

Here U is a matrix on 2D with zero boundary condition, and $\partial_x U_{m,n}$ is the forward Euler representation of differentiation, definde by, $\partial_x U_{m,n} = \frac{1}{h} (U_{m+1,n} - U_{m,n})$.