SWO3	g zu Softwareentwicklung mit klassischen Sprachen und Bibliotheken 3	WS 2019/20, ÜZ 9
☐ Gruppe M. Hava		
☐ Gruppe J. Heinzelreiter	Name:	Aufwand [h]:
☐ Gruppe P. Kulczycki	Feedback von:	
I	Läsungsidaa Implement Tosts	···

Beispiel	Lösungsidee	Implement.	Testen
	(max. 100%)	(max. 100%)	(max. 100%)
1 (100 P)			

Beispiel 1: swo::deque (src/deque/)

Implementieren Sie einen ADT swo: :deque (double-ended queue, siehe https://en.wikipedia.org/wiki/Double-ended queue) gemäß dem in den beiliegenden Dateien definierten Interface. Eine swo::deque speichert ihre Elemente in einem Ringpuffer (siehe https://en.wikipedia.org/wiki/Circular buffer). Testen Sie ausführlich unter Zuhilfenahme von generischen Algorithmen und range-based for loops (siehe https://en.cppreference.com/w/cpp/language/range-for).

Die beiden beiliegenden Dateien deque.h und deque.cpp sind zu verwenden und entsprechend zu erweitern.