Amendment to the claims:

1. (Currently Amended) Compounds having the structure of Formula I:

$$\begin{array}{c|c}
 & X_1 \\
Y_2 & X_2 \\
\hline
 & X_1 \\
Y_1 & X_2 \\
\hline
 & X_1 \\
\hline
 & X_1 \\
\hline
 & X_2 \\
\hline
 & X_1 \\
\hline
 & X_1 \\
\hline
 & X_2 \\
\hline
 & X_1 \\
\hline
 & X_1 \\
\hline
 & X_2 \\
\hline
 & X_1 \\
\hline$$

Formula I

their a pharmaceutically acceptable <u>salt</u> salts, pharmaceutically acceptable solvates, enantiomers, diastereomers enantiomer, diastereomer, or N-oxide, N-oxides wherein

1) when X is oxygen in Formula I:

R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino; substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

(wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl); aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

(wherein R' is as defined above, but also including hydroxy);

$C(=O)NR_xR_v$

(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl, heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or $(CH_2)_m$ - $C(=O)R_3$ [wherein m is an integer in the range of 0-2 and R_3 can be optionally substituted R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the ring can be attached to $(CH_2)_m$ C(=O) through N and R_q can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected from the group consisting of N, O and S

wherein the ring can be attached to $(CH_2)_mC(=O)$ through C) and wherein the substituents of R_3 can be one or more of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, optionally substituted amino (wherein the substituents are selected from C_1 - C_6 alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, $C(=O)NR_5R_6$ (wherein R_5 and R_6 are independently selected from hydrogen, alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, aryl, and aralkyl), optionally substituted monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or heterocyclylalkyl];

 R_2 is selected from: cyano; heteroaryl; heterocyclyl; or $(CH_2)_nNHCOR_7$ (wherein n represents an integer 1 to 6 and R_7 can represent hydrogen, alkyl, alkenyl, alkynyl, (un)saturated, cycloalkyl, alkoxy, aryloxy, aryl, aralkyl, heteroaryl, heterocyclyl, $(CH_2)_{1-4}OR'$ wherein R' is the same as defined above, or NR_xR_v wherein R_x and R_v are the same as defined above);

 R_4 is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or $C(=0)NR_xR_y$ wherein R_x and R_y are the same as defined above;

 X_1 and X_2 are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; acyl; aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl;

Y is selected from: an oxygen atom; a sulphur atom; or NR

(wherein R is selected from hydrogen, alkyl, alkenyl, alkynyl, un(saturated) cycloalkyl, acyl, aryl, aralkyl, heterocyclyl, (heteroaryl)alkyl, or (heterocyclyl)alkyl);

 Y_1 and Y_2 are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 heteroatoms selected from N, O or S; and

2) when X is NR_8 or S wherein R_8 is hydrogen, lower alkyl (C_1 - C_6) or aryl:

 R_1 , R_4 , X_1 , X_2 , Y, Y_1 and Y_2 are the same as defined above;

 R_2 is selected from: $(CH)_nNHCOR_7$ (wherein n represents an integer 1 to 6 and R_7 is the same as defined above),

with the provisio that when R_2 is heterocyclyl, R_1 can not be $(CH_2)_{1-4}OR'$, $C(=O)NR_xR_y$ or $(CH_2)_m$ - $C(=O)R_3$.

2. (Currently Amended) A compound having the structure of Formula XXXIV,

$$Y_2$$
 X_1
 Y_2
 X_1
 Y_2
 X_1
 Y_1
 X_1
 Y_1
 X_1
 X_2
 X_1
 Y_1
 X_2
 X_1
 X_2
 X_1
 Y_1
 X_2
 X_1
 Y_1
 X_2
 Y_1
 Y_1
 Y_1
 Y_1
 Y_1
 Y_1
 Y_2
 Y_1
 Y_1

Formula XXXIV

their <u>a</u> pharmaceutically acceptable <u>salt</u> <u>salts</u>, pharmaceutically acceptable <u>solvates</u>, <u>enantiomers</u>, <u>diastereomers</u> <u>enantiomer</u>, <u>diastereomer</u>, or <u>N-oxide</u>, <u>N-oxides</u> wherein

R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino; substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

(wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl); aryl; aralkyl; heteroaryl; heterocyclyl; (heteroaryl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

(wherein R' is as defined above, but also including hydroxy);

$C(=O)NR_xR_v$

(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl, heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or $(CH_2)_m$ - $C(=O)R_3$ [wherein m is an integer in the range of 0-2 and R_3 can be optionally substituted R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the ring can be attached to $(CH_2)_mC(=O)$ through N and R_q can be a 4-12 membered (un)saturated monocyclic

or bicyclic ring containing 0-4 heteroatom(s) selected from the group consisting of N, O and S wherein the ring can be attached to $(CH_2)_mC(=O)$ through C) and wherein the substituents of R_3 can be one or more of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl, alkoxy, aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, optionally substituted amino (wherein the substituents are selected from C_1 - C_6 alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, $C(=O)NR_3R_6$ (wherein R_5 and R_6 are independently selected from hydrogen, alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, aryl, and aralkyl), optionally substituted monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or heterocyclylalkyl];

 R_4 is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or $C(=O)NR_xR_y$ wherein R_x and R_y are the same as defined above;

 X_1 and X_2 are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; acyl; aryl; aralkyl; heterocyclyl; (heterocyclyl)alkyl; or (heterocyclyl)alkyl;

Y is selected from: an oxygen atom; a sulphur atom; or NR

(wherein R is selected from hydrogen, alkyl, alkenyl, alkynyl, un(saturated) cycloalkyl, acyl, aryl, aralkyl, heterocyclyl, (heteroaryl)alkyl, or (heterocyclyl)alkyl);

 Y_1 and Y_2 are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 heteroatoms selected from N, O or S; and

R₁₉ represents -CONHNH₂, or

—c=n-o-c-r , wherein R' is the same as defined for Formula I.
$$_{\text{NH}_2}^{\text{O}}$$

3. (Currently Amended) The compound of claim 1 having the structure of Formula XXXII,

$$\begin{array}{c|c}
Y_2 & X_1 \\
Y_2 & A \\
Y_1 & Y_1
\end{array}$$

$$\begin{array}{c|c}
R_{15} & X_3 & R_1 \\
R_{16} & X_5 & X_6 & R_1
\end{array}$$

Formula XXXII

their <u>a</u> pharmaceutically acceptable <u>salt</u> <u>salts</u>, pharmaceutically acceptable solvates, enantiomers, diastereomers, or N-oxide, N-oxides wherein

R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino; substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

(wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

 $aryl; \ aralkyl; \ heterocyclyl; \ (heteroaryl) \ alkyl; \ (heterocyclyl) \ alkyl; \ (CH_2)_{1-4}OR'$

(wherein R' is as defined above, but also including hydroxy);

$C(=O)NR_xR_y$

(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl, heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or $(CH_2)_m$ - $C(=O)R_3$ [wherein m is an integer in the range of 0-2 and R_3 can be optionally substituted R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the ring can be attached to $(CH_2)_mC(=O)$ through N and R_q can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected from the group consisting of N, O and S wherein the ring can be attached to $(CH_2)_mC(=O)$ through C) and wherein the substituents of R_3 can be one or more of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl,

alkoxy, aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, optionally substituted amino (wherein the substituents are selected from C₁-C₆ alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, C(=O)NR₅R₆ (wherein R₅ and R₆ are independently selected from hydrogen, alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, hydroxyl, and alkoxy), heteroaryl, heteroarylalkyl, or heterocyclylalkyl];

 R_4 is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or $C(=O)NR_xR_y$ wherein R_x and R_y are the same as defined above;

Y is selected from: an oxygen atom; a sulphur atom; or NR

(wherein R is selected from hydrogen, alkyl, alkenyl, alkynyl, un(saturated) cycloalkyl, acyl, aryl, aralkyl, heterocyclyl, (heteroaryl)alkyl, or (heterocyclyl)alkyl);

 Y_1 and Y_2 are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and X_2 may together form a ring fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 heteroatoms selected from N, O or S;

 X_1 represents alkyl;

X₂ represents alkyl, cycloalkyl or aralkyl;

X₃, X₄, X₅ and X₆ independently represent C, CH, CH₂, CO, CS, NH, N, O, S; R₁₅, R₁₆, and R₁₇ independently represent no atom, alkyl, COCH₃, COOC₂H₅, NH₂, NH-cyclopropyl, CN, SH; and ---- represents an optional single bond.

4. (Currently Amended) The compound of claim 1 having the structure of Formula XXIII,

$$Y_2$$
 X_1
 Y_2
 X_1
 Y_2
 X_1
 Y_2
 X_1
 Y_2
 X_1
 Y_1
 X_2
 X_1
 X_2
 X_3
 X_4
 X_1
 X_2
 X_3
 X_4
 X_4

Formula XXXIII

their a pharmaceutically acceptable salt salts, pharmaceutically acceptable solvates; enantiomers, diastereomers enantiomer, diastereomer, or N-oxide, N-oxides wherein

R₁ is selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; cyano; nitro; amino; substituted amino; hydroxyl; alkoxy; aryloxy; COR'; COOR'

(wherein R' can be hydrogen, alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heterocyclyl, (heterocyclyl)alkyl, or (heteroaryl)alkyl);

aryl; aralkyl; heterocyclyl; (heterocyclyl) alkyl; (heterocyclyl) alkyl; (CH₂)₁₋₄OR'

(wherein R' is as defined above, but also including hydroxy);

$C(=O)NR_xR_y$

(wherein R_x and R_y can be independently selected from hydrogen, alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl, heterocyclyl, heteroarylalkyl, or heterocyclylalkyl); or (CH₂)_m-C(=O)R₃ [wherein m is an integer in the range of 0-2 and R₃ can be optionally substituted R_p or R_q (wherein R_p can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 1-4 heteroatom(s) selected from N, O and S wherein the ring can be attached to (CH₂)_mC(=O) through N and R_a can be a 4-12 membered (un)saturated monocyclic or bicyclic ring containing 0-4 heteroatom(s) selected from the group consisting of N, O and S wherein the ring can be attached to (CH₂)_mC(=O) through C) and wherein the substituents of R₃ can be one or more of: alkyl, alkenyl, alkynyl, (un)saturated cycloalkyl, halogen, hydroxyl,

alkoxy, aryloxy, nitro, cyano, amino, substituted amino, hydroxyalkyl, oxo, acyl, optionally substituted amino (wherein the substituents are selected from C₁-C₆ alkyl, aryl, aralkyl, or cycloalkyl), aryl, carboxyl, alkaryl, carbamoyl, alkyl ether, C(=O)NR₅R₆ (wherein R₅ and R₆ are independently selected from hydrogen, alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl, and aralkyl), optionally substituted monocyclic or bicyclic 4-12 membered carbocyclic ring system (wherein the optional substituent(s) is/are selected from alkyl, alkenyl, alkynyl, halogen, hydroxyl, and alkoxy), heteroaryl, heterocyclyl, heteroarylalkyl, or heterocyclylalkyl];

 R_4 is selected from: hydrogen; alkyl; halogen; cyano; carboxy; or $C(=O)NR_xR_y$ wherein R_x and R_y are the same as defined above;

 X_1 and X_2 are independently selected from: hydrogen; alkyl; alkenyl; alkynyl; cycloalkyl; acyl; aryl; aralkyl; heterocyclyl; (heteroaryl)alkyl; or (heterocyclyl)alkyl;

Y is selected from: an oxygen atom; a sulphur atom; or NR

(wherein R is selected from hydrogen, alkyl, alkenyl, alkynyl, un(saturated) cycloalkyl, acyl, aryl, aralkyl, heterocyclyl, (heteroaryl)alkyl, or (heterocyclyl)alkyl);

 Y_1 and Y_2 are independently selected from: hydrogen; alkyl; nitro; cyano; halogen; OR wherein R is the same as defined earlier; SR wherein R is the same as defined earlier; NHR wherein R is the same as defined earlier; COOR'; or COR' wherein R' is the same as defined above, or further, Y_1 and X_2 , X_1 and Y_2 , X_1 and Y_2 , Y_3 and Y_4 , and Y_5 may together form a ring fused with the ring A containing 3-5 carbon atoms within the ring and having 1-3 heteroatoms selected from N, O or S;

X₇ represents O or S; and

R₁₈ represents hydrogen, alkyl, aryl, heteroaryl, cycloalkyl or heterocyclyl.

- 5. (Original) The compound of claim 1 wherein R_2 is cyano.
- 6. (Original) The compound of claim 1 wherein R_2 is $(CH_2)_nNHCOR_7$, n represents an integer 1 to 6; and R_7 can represent hydrogen, alkyl, alkenyl, alkynyl, (un)saturated, cycloalkyl, alkoxy, aryloxy, aryl, aralkyl, heteroaryl, heterocyclyl, $(CH_2)_{1-4}OR'$ wherein R' is the same as defined above, or NR_xR_y (wherein R_x and R_y can be independently selected from hydrogen,

alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, (un)saturated cycloalkyl, aryl, aralkyl, heteroaryl, heterocyclyl, heteroarylalkyl, or heterocyclylalkyl).

- 7. (Original) The compound of claim 1 wherein R_2 is 6-membered heteroaryl.
- 8. (Original) A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 1, together with at least one pharmaceutically acceptable carrier, excipient or diluent.
- 9. (Previously Cancelled)
- 10. (Previously Cancelled)
- 11. (Previously Cancelled)
- 12. (Previously Cancelled)
- 13. (Previously Cancelled)
- 14. (Previously Cancelled)
- 15. (Previously Cancelled)
- 16. (Previously Cancelled)
- 17. (Previously Cancelled)
- 18. (Previously Cancelled)
- 19. (Previously Cancelled)
- 20. (Previously Cancelled)
- 21. (Previously Cancelled)
- 22. (Previously Cancelled)
- 23. (Previously Cancelled)
- 24. (Previously Cancelled)
- 25. (Previously Cancelled)
- 26. (Previously Cancelled)

RLL-544US U.S. Serial No. 10/596,059 PALLE et al. Page 12 of 15

- 27. (Previously Cancelled)
- 28. (Previously Cancelled)