ENCP 100 WS2020

Assignment 03

ZEESHAN HOODA

X61L — 01/30/20 and 2:00 P.M.

ANSWERS FOR QUESTION 1:

Question	Value
a	a =
	-3 -7 5
	3 -13 4
b	b =
	3.0000
	13.0000
	7.2832
С	C =
	7.8496 20.4911 10.4248
d	d =
	19.1416
е	e =
	8.5000
f	f =
	8.6603
g	g =
	18.9911 -16.7080 22.0000
h	h =
	19.1416
i	i =
	0.2157 -0.1961 -0.0784
	-0.4706 -0.1176 0.3529
	0.6667 0.6667 -0.3333
j	j =
	-25.5000
k	k =
	1.0000 -0.0000 0.0000
	0 1.0000 0.0000
_	-0.0000 0 1.0000
1	1 =
	2 3

MATLAB CODE FOR QUESTION 1:

```
clear all; clc; close all;
A = [5; 7; 1];
B = [-1, 3, pi];
C = [-1, 3, 9; 6, -4, 2];
D = [2, 10, 4; 3, 9, -2];
E = [5, 3, 2; -2, 0.5, 1; 6, 7, 3];
a = C - D
b = 2*B' + A
c = B*E
d = B*A
e = trace(E)
f = norm(A)
g = cross(A', B)
h = dot(A', B)
i = E^-1
j = det(E)
k = E*E^-1
l = size(D)
```

ANSWERS FOR QUESTION 2:

Question	Value
Total cost of all	total_cost =
parts together	
	323.3958
Average material	<pre>avg_material_cost =</pre>
cost	
	0.2007
Material cost of	<pre>max_labour_material_cost =</pre>
part with largest	
labour cost	94.9500
Number of parts	numParts =
printed in 3 hrs or	
more	3

MATLAB CODE FOR QUESTION 2:

```
clear all; clc; close all;
table = [50.05, 2, 0, 0, 0, 0, 0; ...
    0.10, 53, 12.50, 0, 0, 0, 0; ...
    2.50, 5, 23.99, 0, 0, 0, 0; ...
    0, 0, 0, 0.02, 5.43, 7.50, 3;...
    0, 0, 0, 0.23, 2.21, 7.50, 5; ...
    0, 0, 0, 0.42, 0.33, 10.55, 9;...
    0, 0, 0, 0.11, 0.43, 5.00, 1; ];
material cost = table(:, 5).*table(:, 4);
labour_cost = table(:, 6).*table(:, 7);
printed cost = material cost + labour cost;
purchased cost = 1.07*table(:, 1).*table(:, 2) + table(:, 3);
total cost = sum(printed cost) + sum(purchased cost)
avg material cost = mean(nonzeros(table(:, 5).*table(:, 4)))
[max labour cost , i] = max(labour cost);
max labour material cost = table(i, 6) *table(i, 7)
numParts = sum(table(:, 7)>=3)
```

ANSWERS FOR QUESTION 3:

Figure 1:

MATLAB CODE FOR QUESTION 3:

```
clear all; clc; close all;
x = -4:0.001:4;
k = [1, 2, 3];
a = [0.25, 0.5, 1];
Hx = 1./(1 + exp(-2*k(1)*x));
Hx1 = 1./(1 + exp(-2*k(2)*x));
Hx2 = 1./(1 + exp(-2*k(3)*x));
deltax = (1./(abs(a(1))*sqrt(pi))) * exp(-(x/a(1)).^2);
deltax1 = (1./(abs(a(2))*sqrt(pi))) * exp(-(x/a(2)).^2);
deltax2 = (1./(abs(a(3))*sqrt(pi))) * exp(-(x/a(3)).^2);
figure;
plotyy(x, [Hx; Hx1; Hx2], x, [deltax; deltax1; deltax2]);
% plot(x, [Hx; Hx1; Hx2; deltax1; deltax1]);
grid;
legend("H(x), k=1", "H(x), k=2", "H(x), k=3", "d(x), a=0.25", "d(x),
a=0.5", "d(x), a=1");
xlabel("x");
yyaxis left
ylabel("H(x)");
yyaxis right
ylabel("d(x)");
set(gca, 'YTick', []);
title ("Functions to describe discontinuities");
```

ANSWERS FOR QUESTION 4:

Image: scatter.png

Image: bestFit.png

MATLAB CODE FOR QUESTION 4:

```
clear all; clc; close all;
% NOTE: .dat files were stored in a seperate directory
   to keep my git repo organized.
data = csvread('data/botData.dat');
counts = data(:,1);
dist = data(:, 2);
figure;
scatter(counts, dist);
title ("Bot Calibration Data Scatter");
xlabel("Counts");
ylabel("Distance [m]");
% NOTE: Images also stored in a seperate directory
       because organization is key.
print -dpng img/scatter.png
figure;
scatter(counts, dist, '.b')
% Calculating and plotting the line of best fit
p = polyfit(counts, dist, 1);
f = polyval(p, counts);
hold on
plot(counts, f, '-r');
% Converting slope value to string and placing on plot
slope text = sprintf("slope = %f", p(1));
text(1250, 1.3, slope text);
title ("Bot Calibration Data Best Fit");
xlabel("Counts");
ylabel("Distance [m]");
print -dpng img/bestFit.png
```

ANSWERS FOR QUESTION 5:

Total number of oil spills:	7319
Average oil spill size [m^3]:	12.46281
Total volume of oil spilled [m^3]:	91215.30
Range of spill sizes:	0 - 6500
Year with maximum oil spill:	1980
Number of spills larger than 1000 m^3:	12

Image: hist.jpeg

ANSWERS FOR QUESTION 5 (cont'd):

Image: image02.jpeg

MATLAB CODE FOR QUESTION 5:

```
clear all; clc; close all;
data = csvread("data/oilSpillData.dat");
% Determine # of oil spills
num of spills = length(data(:,1));
fprintf("Total number of oil spills:
                                                 %d\n", num of spills);
% Determine average spill size
avg spill size = mean(data(:, 5));
fprintf("Average oil spill size [m^3]:
                                             %.5f\n", avg spill size);
% Determine total volume of oil spilled
total_spill_vol = sum(data(:, 5));
fprintf("Total volume of oil spilled [m^3]: %.2f\n", total spill vol);
% Determine range of spill sizes
spill_range = [min(data(:, 5)), max(data(:, 5))];
spill_range2 = range(data(:, 5));
fprintf("Range of spill sizes:
                                                 %d - %d\n", spill range(1),
spill range(2));
% Determine year of max oil spill
[m, i] = max(data(:, 5));
max year = data(i, 1);
fprintf("Year with maximum oil spill: %d\n", max year);
% Determine number of oil spills larger than 1000m^3
large spills = sum(data(:, 5) > 1000);
fprintf("Number of spills larger than 1000 m^3: %d\n", large spills);
% Create histogram of spills with pipe diameters less than 500mm
hist data = [];
for i = 1:length(data(:, 4))
  if data(i, 4) < 500
      hist data = [hist data data(i, 4)];
   end
end
figure;
hist(hist data);
title("Histogram of Oil Spills of Pipe Diameter < 500mm");
xlabel("bins");
ylabel("count");
print -djpeg img/hist.jpeg
% Create scatter plot of longitude vs lattitude
lon = data(:, 6);
lat = data(:, 7);
figure;
ab map = imread("data/albertaMap.png");
imshow(ab map);
title("Oil Spills in Alberta");
longNew = 75*(lon + 120);
latNew = (1406/11)*(60 - lat);
hold on
scatter(longNew, latNew, 'xk');
```

print -djpeg img/image02.jpeg