METU EE 7566

Spring 2019

Homework 1: Vehicle Dynamics and Electrified Vehicle Powertrains

This is the first part of your HW1 that will have in total 5 parts. I expect you to develop a Matlab script with the parts explained below. Homework 1 will be collected once all parts are completed, but I highly recommend you to start working on it as the assignments are posted.

Part 1: Week 2 → Speed and torque calculations + maximum power required (EM and Battery)

Part 2: Week 3 → Acceleration Performance

Part 3: Week 4 → Drive Cycle Calculation

Part 4: Week 6 → Matlab Assignment EV

Part 5: Week 7 → Matlab Assignment Range Extender

Part 1: You are asked to redesign a midsize internal combustion engine vehicle (characteristics of the car is given below) as a battery electric vehicle with following requirements:

- Max vehicle speed 150 km/h and acceleration capability at maximum speed 0.05g

Find the following quantities:

- a. Electric machine maximum speed and torque at maximum speed (so required power)
- b. Power capacity of the battery

Assume following constant efficiency values for the energy converters.

Efficiency of electric machine + inverter	92%
Efficiency of gearbox + differential	97%
Efficiency of battery pack	95%

Vehicle and component characteristics:

Mass of body without powertrain	1000 kg
Increase in mass due to acceleration of rotating masses	1.05
Gravitational acceleration	9.8 m/s ²
Frontal area	2.57 m ²
Aerodynamic drag coefficient	0.26
Density of air	1.25 kg/m ³
Friction coefficient of tires	0.006
Radius of wheels	0.3 m
Gear ratio (electric motor to wheels	9.0478
Accessories consumption (fixed)	750 W
Adhesive coefficient of tires to ground surface	0.9
Front wheel drive with equally distributed load on wheels	0.5 (Acceleration)
Load distribution during braking, W _{front} /W _{total}	0.65 (Braking)
Specific cost of electric machine + inverter	\$30/kWh
Specific mass of electric machine + inverter	1.1 kW/kg
Specific volume of electric machine + inverter	2.6 kW/l
Battery pack specific cost, P _{batt} /E _{batt} : power-to-energy	\$(200 + 13 x P _{batt} /E _{batt})/kWh
ratio	
Battery pack specific mass	(200 - 3 x P _{batt} /E _{batt}) Wh/kg +120
	kg
Specific cost of internal combustion engine	\$50/kW
Specific mass of internal combustion engine	0.55 kW/kg
Charger mass and cost (fixed)	10 kg and \$300
Fuel tank mass and cost (fixed)	5 kg and \$150