Universidade do Minho

5 de abril de 2024

Resolução do 1º Teste de

Autómatos e Linguagens Formais

LCC/LMAT Duração: 2 horas

- 1. Considere as linguagens $L_1 = A^*aA^*aA^*$, $L_2 = A^*aaA^*$ e $L_3 = L_1 \setminus A^*abA^*$ sobre o alfabeto $A = \{a, b\}$. Para cada uma das afirmações seguintes, diga, justificando, se a afirmação é verdadeira ou falsa.
 - a) $L_1 = L_2$.
 - R: Tem-se, por exemplo, que a palavra aba pertence a L_1 mas não pertence a L_2 . Logo, a afirmação é falsa.
 - b) $L_3 \subseteq L_2$.
 - R: A afirmação é verdadeira. De facto, consideremos uma palavra $w \in L_3$, ou seja, $w \in L_1$ e $w \notin A^*abA^*$. Deve-se mostrar que $w \in L_2$.

Ora, de $w \in L_1$, resulta que w é da forma $w = u_1 a u_2 a u_3$ para palavras $u_i \in A^*$. Se u_2 tivesse alguma ocorrência da letra b é claro que w teria o fator ab, em contradição com a hipótese de que $w \notin A^*abA^*$. Logo $u_2 = a^k$ para algum $k \in \mathbb{N}_0$, donde

$$w = u_1 a a^k a u_3 = u_1 a a a^k u_3$$

tem o fator aa. Portanto $w \in L_2$, como se queria provar.

- **2.** Seja L a linguagem representada pela expressão regular $(a^* + b)^*c^*a(b^* + c)a(b + c)^*(abc)^*$ sobre o alfabeto $A = \{a, b, c\}$.
 - a) Indique um autómato finito com transições vazias que reconheça L.
 - R: Note-se que $(a^*+b)^*=(a+b)^*$. Um autómato finito com transições vazias que reconhece L é, por exemplo,

- b) Indique todas as palavras de L de comprimento ≤ 4 .
- R: As palavras de L de comprimento ≤ 4 são:

 $a^2, a^3, ba^2, ca^2, aba, aca, a^2b, a^2c, a^4, aba^2, ba^3, b^2a^2, aca^2, bca^2, c^2a^2, a^2ba, a^2ca, (ba)^2, baca, \\ caba, (ca)^2, a^3b, a^3c, ba^2b, ba^2c, ca^2b, ca^2c, ab^2a, (ab)^2, abac, acab, (ac)^2, a^2b^2, a^2bc, a^2cb, a^2c^2.$

- c) É verdade que $L \cap A^*abcaA^* = \emptyset$? Justifique.
- R: É falso pois, por exemplo, a palavra $abca^2$ pertence a L e tem o fator abca.
- d) Indique uma palavra u de $L \cap bcaA^*$ de comprimento 8 tal que $u = u^I$.
- R: A única palavra nas condições requeridas é $u=bcab^2acb$.

- 3. Seja L a linguagem sobre o alfabeto $A = \{a, b, c\}$ definida indutivamente pelas seguintes regras:
 - i) $c \in L$;
 - ii) Se $w \in L$, então $bw \in L$;
 - iii) Se $w \in L$, então $awaa \in L$.

Seja ainda $K = \{xca^{2n} : x \in \{a, b\}^*, n \in \mathbb{N}_0, |x|_a = n\}.$

- a) Mostre que a palavra $u = ab^2abca^4$ pertence a L e a K.
- R: Por i), $c \in L$ donde, por ii), $bc \in L$. Aplicando agora a regra iii), obtém-se que $abca^2 \in L$. A seguir, aplicando duas vezes consecutivas a regra ii), tem-se que $b^2abca^2 \in L$. Finalmente, usando novamente iii), conclui-se que $u = ab^2abca^4 \in L$.

A palavra u é da forma $u=xca^{2n}$ com $x=ab^2ab$ e n=2. Dado que $|x|_a=2$, deduz-se que $u\in K$.

- **b**) Prove que L = K.
- R: A prova da igualdade dos conjuntos L e K faz-se por "dupla inclusão".
 - Comecemos por provar que $L \subseteq K$. A prova será feita por indução estrutural sobre a definição de L. Seja $v \in L$. Pretende-se mostrar que $v \in K$.
 - I) Suponhamos primeiro que v=c. Neste caso tem-se $v=xca^{2n}$ com $x=\epsilon$ e n=0. Como $|\epsilon|_a=0$ é imediato que $v\in K$.
 - II) Suponhamos agora que v = bw, com $w \in L$. Suponhamos ainda, por hipótese de indução, que $w \in K$. Então w é do tipo $w = xca^{2n}$ com $x \in \{a,b\}^*$ e $|x|_a = n$. Daí resulta que $v = bxca^{2n}$ e que $|bx|_a = n$. Portanto $v \in K$.
 - III) Assumamos por fim que $v = awa^2$, com $w \in L$. Assume-se também, por hipótese de indução, que $w \in K$. Logo $w = xca^{2n}$ com $x \in \{a,b\}^*$ e $|x|_a = n$. Assim $v = axca^{2(n+1)}$ com $|ax|_a = n+1$. Consequentemente, $v \in K$.
 - De I) a III) resulta, pelo Princípio de indução estrutural sobre a definição de L, que $v \in K$. Terminou-se deste modo a prova da inclusão $L \subseteq K$.
 - Mostremos agora que $K \subseteq L$. Seja $v \in K$. Então $v = xca^{2n}$ com $x \in \{a, b\}^*$, $n \in \mathbb{N}_0$ e $|x|_a = n$. Mostremos, por indução sobre n, que $v \in L$.
 - I) Suponhamos primeiro que n=0. Então $v=b^mc$ para algum $m\in\mathbb{N}_0$. Por i), $c\in L$. Se m=0, então $v=c\in L$. Senão m>0 e aplicando m vezes consecutivas a regra ii) deduz-se que $v=b^mc\in L$.
 - II) Suponhamos agora que n>0. Suponhamos ainda, por hipótese de indução, que, para cada elemento $z\in K$ da forma $z=yca^{2(n-1)}$ com $y\in \{a,b\}^*$ e $|y|_a=n-1$, tem-se $z\in L$. De $|x|_a=n$, resulta que x é da forma $x=b^may$ com $y\in \{a,b\}^*$ e $|y|_a=n-1$. Logo, $v=b^maza^2$ onde $z=yca^{2(n-1)}$. Por definição de $K,z\in K$. Logo, pela hipótese de indução, $z\in L$. Pela regra iii) deduz-se, por conseguinte, que a palavra aza^2 pertence a L. Para concluir que $v\in L$ basta agora aplicar m vezes a regra ii).
 - De I) e II) resulta, pelo Princípio de indução, que $v \in L$, concluindo-se assim a prova da inclusão $K \subseteq L$.

- c) Mostre que a linguagem $M=\{a^mca^{2m}: m\in\mathbb{N}_0\}$ não é regular.
- R: Pelo Teorema de Kleene, mostrar que M não é regular equivale a mostrar que não é reconhecível. Suponhamos que M é reconhecível. Então, pelo Lema da Iteração, existe um $n \in \mathbb{N}$ tal que, para todo o $u \in M$, com $|u| \geq n$, existem palavras $x, y, z \in A^*$ tais que:
 - I) $|xy| \le n \text{ e } y \ne \epsilon;$
 - II) u = xyz;
 - III) $\forall k \in \mathbb{N}_0, xy^k z \in M$.

Consideremos, em particular, a palavra $u=a^nca^{2n}$. Como $u\in M$ e $|u|\geq n$, deduz-se de I)–III) que u=xyz para alguns $x,y,z\in A^*$ tais que $|xy|\leq n,\,y\neq\epsilon$ e

$$xy^2z \in M. (1)$$

Como $|xy| \le n$, xy é um prefixo de a^n , donde

$$x = a^r$$
, $y = a^s$ e $z = a^t ca^{2n}$

com $r, s, t \in \mathbb{N}_0$, $s \neq 0$ e r + s + t = n, como se ilustra na seguinte figura.

a^n			ca^{2n}
x	y	z	

Portanto

$$xy^2z = a^r(a^s)^2a^tca^{2n} = a^{n+s}ca^{2n}$$

Ora, como $s \neq 0$, $2(n+s) \neq 2n$ e, por isso, $xy^2z \notin M$, em contradição com (1). Consequentemente, M não é reconhecível donde, pelo Teorema de Kleene, não é regular.

- d) Indique uma linguagem regular R tal que $L \cap R = M$.
- R: A linguagem $R = \{a^m c a^n : m, n \in \mathbb{N}_0\}$ está nas condições pretendidas. Que é regular decorre de ser representada pela expressão regular $a^* c a^*$. Mostremos que $L \cap R = M$.

É claro que $M \subseteq L \cap R$ pois toda a palavra da forma $a^m ca^{2m}$, com $m \in \mathbb{N}_0$, pertence a L(=K) e a R. Verifiquemos, para concluir, que $L \cap R \subseteq M$. Seja $v \in L \cap R$. Então $v \in L$ e $v \in R$. De $v \in R$, deduz-se que $v = a^m ca^n$ para alguns $m, n \in \mathbb{N}_0$. Agora, de $v \in L$, e do facto de L = K por **b**), resulta que n = 2m. Logo, $v \in M$ como queríamos provar.

- \mathbf{e}) Apresente uma definição indutiva de R.
- R: A linguagem R é definida indutivamente pelas seguintes regras:
 - i) $c \in R$;
 - ii) Se $w \in R$, então $aw \in R$;
 - iii) Se $w \in R$, então $wa \in R$.

- 4. Seja L a linguagem sobre o alfabeto $\{a,b\}$ constituída pelas palavras que começam por a e não têm o fator b^2 .
 - a) Indique um autómato finito que reconheça L.
 - R: O autómato seguinte reconhece L:

- b) Para cada uma das expressões regulares seguintes, diga, justificando, se a expressão representa L ou não.
 - i) $a(ba)^* + a(ab)^*$.
 - R: A expressão $r = a(ba)^* + a(ab)^*$ não representa a linguagem L pois, por exemplo, a palavra aba^2 pertence a L e não pertence a $\mathcal{L}(r)$.
 - **ii)** $a(a + ba)^*$.
 - R: A expressão $r = a(a+ba)^*$ não representa L. De facto, ab é um caso de um elemento de L que não pertence à linguagem $\mathcal{L}(r)$ representada pela expressão regular.
 - iii) $a(a+ba)^*(\epsilon+b)$.
 - R: A expressão $r = a(a+ba)^*(\epsilon+b)$ representa L pois, claramente, r é a expressão regular que representa a linguagem reconhecida pelo autómato indicado na alínea **a)** (ou seja, L).
- c) Indique todas as palavras de L de comprimento ≤ 4 .
- R: Tem-se $\{u \in L : |u| \le 4\} = \{a, a^2, ab, a^3, a^2b, aba, a^4, a^3b, a^2ba, aba^2, (ab)^2\}.$
- 5. Seja \(\mathcal{A} \) o autómato finito representado pelo seguinte grafo:

- a) Construa um autómato finito determinista completo acessível equivalente a \mathcal{A} .
- R: O autómato $DA(\mathcal{A})$, apresentado de seguida, verifica o estipulado

- **b)** Indique palavras $u, v \in A^*$ tais que |u| = |v| = 6, $u \in L(\mathcal{A})$ e $v \notin L(\mathcal{A})$.
- R: Por exemplo, $u = a^2b^2a^2$ e $v = a^3ba^2$.