Final Exam (ICE2003-46)

	Student ID:
	Name:
1.	(20 pts) Explain given terms.
	(a) (5 pts) Write conditions (in equation) that RP is stationary.
	(b) (10 pts) Consider random sinusoids. Answer questions with appropriate proof.
	Random amplitude sinusoid: $X(t) = A\cos(2\pi t)$, where A is some RV. Is this RP wide-sense-stationary (5 pts)?
	wide sense stationary (5 pts).
	Random phase sinusoid: $X(t) = \cos(\omega t + \Theta)$, where Θ is some RV. Is this RP wide-
	sense-stationary (5 pts)?
	(a) (5 max) A common and 1 are a constant failure and founding $u(A) = R^2(A)R(A) = 1$
	(c) (5 pts) A component has a constant failure rate function $r(t) = -R'(t)/R(t) = \lambda$, where $R(t) = P[T > t]$ is the reliability at time t and T is lifetime of the component.
	<u>Find mean time to failure (MTTF)</u> .

2.	(20 pts) Assume that we have input RV X and output RV Y of a system. The joint
	pdf is as below:

$$f_{X,Y}(x,y) = {ce^{-x}e^{-y} \over 0} \quad 0 \le y \le x < \infty$$
 elsewhere

(a) (4 pts) Find the coefficient c.

(b) (4 pts) Find marginal pdf's of X and Y.

(c) (2 pts) Are X and Y independent?

- (d) (2 pts) E[X] = 3/2, VAR[X] = 5/4, E[Y] = 1/2, VAR[Y] = 1/4. Find the correlation coefficient $\rho_{X,Y}$ and tell if X and Y are correlated.
- (e) (8 pts) Find the MAP and ML estimators for X in terms of Y.

ML:

MAP:

3. **(20 pts)** The input X to a communication channel assumes the values +1 or -1 with probabilities 1/3 and 2/3. The output Y of the channel is given by Y = X + N, where N is a zero-mean, unit-variance Gaussian RV.

Hint: pdf of Gaussian RV is:
$$f_X(x) = \frac{e^{-(x-m)^2/2\sigma^2}}{\sqrt{2\pi}\sigma}$$
 $E[X] = m$ $VAR[X] = \sigma^2$

(a) (10 pts) Find the conditional pdf of Y given X = +1, and given X = -1.

(b) **(10 pts)** Find $P[X = +1 \mid Y > 0]$.

Hint: Q(1) = 0.159

4.	(20 pts) A radio transmitter sends a signal $s > 0$ to a receiver using three paths. The
	signals that arrive at the receiver along each path are:

$$X_1 = s + N_1$$
, $X_2 = s + N_2$, and $X_3 = s + N_3$

where N_1 , N_2 , and N_3 are independent Gaussian RVs with zero mean and unit variance. (pdf of Gaussian RV is shown in Problem 3)

(a) **(6 pts)** Find the joint pdf of
$$X = (X_1, X_2, X_3)$$
.

(b) (7 pts) Find the probability that a majority of the signals are positive. (Write the result in terms of Gaussian cdf F)

(c) (7 pts) Find the mean vector and covariance matrix for $\mathbf{X} = (X_1, X_2, X_3)$.

5. **(20 pts)** A student uses pens whose lifetime is an exponential RV with mean 3 weeks. Use the central limit theorem to determine the minimum number of pens he should buy at the beginning of a 15-week semester, so that with probability 0.999 he does not run out of pens during the semester.

TABLE 4.3 $Q(x) = 10^{-k}$				
k	$x = Q^{-1}(10^{-k})$			
1	1.2815			
2	2.3263			
3	3.0902			
4	3.7190			
5	4.2649			
6	4.7535			
7	5.1993			
8	5.6120			
9	5.9978			
10	6.3613			