

19961125 004

Central Heating Plant Modernization Study for Watervliet Arsenal, New York

by Martin J. Savoie and Thomas E. Durbin

The central heating plant (CHP) at Watervliet Arsenal, NY contains five boilers, two of which are 42 years old, two 40 years old, and one 17 years old. The age of this equipment warranted an investigation of alternatives for providing thermal energy for this facility. Watervliet Arsenal requested the U.S. Army Construction Engineering Research Laboratories (USACERL) to perform a study to determine the most viable options available to provide energy for the coming years. This study determined the status of the CHP, and identified and evaluated (both technically and economically)

options for meeting current and future thermal energy needs at WVA. Two alternatives were recommended: (1) installation of a new natural gas fired plant with cogeneration, which has the lowest life-cycle costs (LCC) based on a 25-year facility life, or (2) installation of new gas/oil boilers in the existing facility, which has a larger LCC, but lower initial investment costs, than the first recommended alternative.

DTIC QUALITY INSPECTED 3

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR

USER EVALUATION OF REPORT

REFERENCE: USACERL Technical Report 96/96, Central Heating Plant Modernization Study for Watervliet Arsenal, New York

Please take a few minutes to answer the questions below, tear out this sheet, and return it to USACERL. As user of this report, your customer comments will provide USACERL with information essential for improving future reports.

l. I report	Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which will be used.)
2. H	Iow, specifically, is the report being used? (Information source, design data or procedure, management lure, source of ideas, etc.)
3. H	as the information in this report led to any quantitative savings as far as manhours/contract dollars saved, ing costs avoided, efficiencies achieved, etc.? If so, please elaborate.
4. W	hat is your evaluation of this report in the following areas?
a.	Presentation:
b.	Completeness:
c.	Easy to Understand:
d.	Easy to Implement:
e.	Adequate Reference Material:
f.	Relates to Area of Interest:
g.	Did the report meet your expectations?
h.	Does the report raise unanswered questions?

of this type more responsive to your ne	what you think should be changed to make this report and future reports eeds, more usable, improve readability, etc.)
	,,,,,,,
5. If you would like to be contacted be discuss the topic, please fill in the following the followin	by the personnel who prepared this report to raise specific questions or awing information.
Name:	
Telephone Number:	
Organization Address:	
6. Please mail the completed form to:	
Demostration	C.1 A

Department of the Army
CONSTRUCTION ENGINEERING RESEARCH LABORATORIES
ATTN: CECER-TR-I
P.O. Box 9005
Champaign, IL 61826-9005

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources. gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Aflington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED August 1996 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Central Heating Plant Modernization Study for Watervliet Arsenal, New York **MIPR** W16H1F-3-79 6. AUTHOR(S) Martin J. Savoie and Thomas E. Durbin 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER U.S. Army Construction Engineering Research Laboratories (USACERL) P.O. Box 9005 TR 96/96 Champaign, IL 61826-9005 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING Watervliet Arsenal AGENCY REPORT NUMBER ATTN: SMCWV-ATD Bldg. 10 Watervliet, NY 12189-4050 11. SUPPLEMENTARY NOTES Copies are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. 12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited. 13. ABSTRACT (Maximum 200 words) The central heating plant (CHP) at Watervliet Arsenal, NY contains five boilers, two of which are 42 years old, two 40 years old, and one 17 years old. The age of this equipment warranted an investigation of alternatives for providing thermal energy for this facility. Watervliet Arsenal requested the U.S. Army Construction Engineering Research Laboratories (USACERL) to perform a study to determine the most viable options available to provide energy for the coming years. This study determined the status of the CHP, and identified and evaluated (both technically and economically) options for meeting current and future thermal energy needs at WVA. Two alternatives were recommended: (1) installation of a new natural gas fired plant with cogeneration, which has the lowest life-cycle costs (LCC) based on a 25-year facility life, or (2) installation of new gas/oil boilers in the existing facility, which has a larger LCC, but lower initial investment costs, than the first recommended alternative.

14. SUBJECT TERMS			
central heating plants			15. NUMBER OF PAGES 104
energy conservation Army facilities			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT
NSN 7540-01-200 5500			

Foreword

This study was conducted for Watervliet Arsenal under Military Interdepartmental Purchase Request (MIPR) No. W16H1F-3-79. The technical monitor was Philip Darcy, SMCWV-ATD.

The work was performed by the Utilities Division (UL-U) of the Utilities and Industrial Operations Laboratory (UL), U.S. Army Construction Engineering Research Laboratories (USACERL). The USACERL principal investigator was Thomas E. Durbin. Martin J. Savoie is Chief, CECER-UL-U; and John T. Bandy is Operations Chief, CECER-UL. The USACERL technical editor was William J. Wolfe, Technical Resources Center.

COL James T. Scott is Commander of USACERL, and Dr. Michael J. O'Connor is Director.

Contents

SF 2	8	. 1
Fore	vord	. 2
List	f Tables and Figures	. 5
1	Introduction	. 7
	Objectives	7
	Scope	8
2	Existing Steam Supply Systems Central Heating Plant Steam Distribution System	9
3	Thermal Energy Supply and Consumption CHP Steam Production	12
4	Electrical Power Consumption	20
5	Projected Energy Consumption	24
6	Study Alternatives Status Quo Alternative Alternative 1: New Gas/Oil Boilers Alternative 2: New Natural Gas-Fired Plant Alternative 3: New No. 2 Oil-Fired Plant Alternative 4: New Natural Gas-Fired Plant With Cogeneration	25 26 27 28
7	Conclusions	30
Appe	dix A: LCC Analyses	11
Appe	dix B: · CHPECON Cases E	31
Distri	ution	

Tables

List of Tables and Figures

1	Central heating plant boiler data9
2	Boiler 6 data
3	Building categories and energy consumption
4	Estimated monthly steam loads14
5	Estimated building heat loads
6	Average monthly heating degree days
7	Electric rate schedule
8	Total WVA electricity expenditures, 1992 and 1993
9	Electrical loads, normal and 1993
10	Status quo alternative LCC summary
, 11	New gas/oil boilers (installed in 1996) alternative LCC summary 27
12	New plant options LCC summary
Figures	·
1	Total boiler makeup water
2	Steam load profile (lb/hr)
3	Steam load profile (million Btu/hr)
4	Steam load (MBtu/hr) vs. heating degree days

5	Steam load (MBtu) vs. heating degree days	17
6	HEATLOAD (MBtu/hr) vs. heating degree days	18
7	Steam use model (MBtu/hr)	18
8	Steam use model (MBtu)	19
9	Unscheduled process electric demand	21
10	On-peak kW, 1993	22
11	Electricity consumption, kWh, 1993	22
12	Electricity consumption, kWh vs. cooling degree days	23
13	Electricity demand, on-peak kW vs. cooling degree days	~~

1 Introduction

Background

Watervliet Arsenal (WVA), established in 1813, specializes in the manufacture of cannons and gun tubes (barrels). Items produced at WVA originally included fuses, rockets, percussion caps, sponges, and gun carriages. WVA also worked to store and repair material. WVA thrived during the production "boom" of wartimes and managed to survive times of decreased production between wars and during military downsizing. WVA's manufacturing progressed with improvements in manufacturing technologies and today is a vital part of the Department of Defense (DOD). WVA supplies large caliber weapons to both U.S. and allied forces.

WVA is currently investigating modernization opportunities for the WVA Central Heating Plant (CHP). The CHP contains five boilers; two are 42 years old, two are 40 years old, and one is 17 years old. The age of this equipment warranted an investigation of alternatives for providing thermal energy for this facility. Increasing electrical costs have made cogeneration one potential alternative for modernizing the CHP. Watervliet Arsenal requested the U.S. Army Construction Engineering Research Laboratories (USACERL) to perform a study to determine the most viable options available to provide energy for the coming years.

Objectives

The objectives of this study were to determine the status of the CHP and to identify and evaluate (both technically and economically) options for meeting current and future thermal energy needs at WVA.

Approach

Past studies and operating records were analyzed to establish baseline conditions. A visual inspection of the CHP equipment was conducted to assess baseline operating conditions and problem areas.

The energy use patterns for WVA were analyzed for current thermal and electrical energy demand, heating load, and usage patterns. The future energy use for the facility was projected. Potential thermal energy supply options were then identified based on the energy use pattern analyses. These options were evaluated in terms of capital cost, operating cost, efficiency, and reliability. The evaluation also considered regionally available and appropriate fuel supplies. The life-cycle cost analyses were developed based on the study findings for maintaining the status quo, installing new boilers, and building a new plant.

Scope

The evaluation methods developed for the analysis and assessment of thermal and electrical requirements will be useful to many other installations, particularly those with central heating or power plants.

2 Existing Steam Supply Systems

Central Heating Plant

The WVA CHP, Building 136, was constructed in 1952. The two 50,000 lb/hr coal-fired, field-erected boilers originally installed at the plant produced 135 psig steam. However, the coal-firing systems were not used. These two boilers (#1 and #2) were converted to fire No. 6 oil, and a 400,000-gal oil storage tank was installed. In 1956, the building was expanded and two 110,000 lb/hr, oil-fired, water-tube boilers (#3 and #4) were added to the facility. Boiler 5, an oil-fired, 20,000 lb/hr, fire-tube boiler was installed in the plant in 1978. All five boilers are currently in operating condition and are fired with #2 oil. Boilers 1 and 2 are only operated in emergency situations with a maximum firing rate of 35,000 lb/hr. Boilers 3 and 4 are being retrofitted with gas-firing equipment and will primarily use natural gas for fuel. The installation of a low-NOx demonstration boiler to replace boiler #4 is currently being considered. Table 1 includes CHP boiler information.

Additionally, a gas-fired, 20,000 lb/hr, fire-tube boiler (#6) is housed in building 36. Boiler 6 is used to supply process steam during the summer months when the CHP is not operated. Table 2 lists information about Boiler 6. The installation of a natural gas pipeline to the CHP was begun in 1994. Both boilers 3 and 4 will burn natural gas as a primary fuel, reducing NOx emissions and essentially eliminating SOx emissions. There may be a boiler demonstration project at WVA that will provide the CHP with a new natural gas boiler equipped with a low-NOx burner to replace Boiler 4.

Though aging, the CHP is generally in good condition. The equipment has been well maintained, but much of the equipment is approaching the end of the typical useful

Table 1. Central heating plant boiler data.

Boilers	Manufacturer	Year Built	Туре	Capacity (lb/hr)
1 and 2	Erie City	1952	Coal fired, converted to No. 6 fuel oil fired, retrofitted to burn No. 2 fuel oil and natural gas	50,000
3 and 4	Union Iron Works	1956	No. 6 fuel oil fired, later converted to No. 2 fuel oil fired, retrofitted for natural gas firing	110,000
5	Trane	1978	No. 6 fuel oil fired	20.000

life. The asbestos piping insulation has been removed from the CHP. The previous asbestos removal project is important because it eliminates a significant cost and safety hazard as well as reduces the time necessary to implement the CHP modernization plan.

Table 2. Boiler 6 data.

Boiler:	6
Manufacturer:	Cleaver Brooks
Year built:	1984
Type:	Natural gas fired
Capacity:	20,000 lbs/hr

Steam Distribution System

The CHP provides steam for heating through a system of belowground and overhead steam pipes. The pipes are run aboveground through buildings and underground outside of buildings. The steam is distributed at 135 psig to 38 buildings. Condensate is pumped back to the CHP through a condensate return system that parallels the steam system. Steam system losses are indicated by the quantity of water added (or made-up) to the system. The system makeup water replaces live steam losses and condensate losses in places where the condensate is contaminated. Figure 1 shows boiler water makeup for 1993. The system makeup follows steam load, as expected. The Central Energy Plant and steam system are shut down in the summer months. Boiler 6, in Building 36, provides process steam for manufacturing systems from late April to early October.

Makeup water use, as a percentage of steam flow, varies from 17.8 to 44.6 percent in the winter and from 20.8 to 52.2 percent in the spring and fall. The higher percentage of makeup in the spring and fall is due to the constant losses along the distribution system and the relatively lower quantity of steam produced. Condensate returns in excess of 80 percent (below 20 percent makeup) for central systems of this type indicate that a system is in good condition and is operated properly with condensate being returned where possible. The higher percentage of makeup water being used at WVA is partially due to the fact that some of the steam is contaminated in manufacturing processes and must be sent to the water treatment facility instead of being returned to the CHP in the form of condensate. Also, the high makeup percentage indicates that there may be significant leaks in some of the steam valves and traps in the system.

Figure 1. Total boiler makeup water.

3 Thermal Energy Supply and Consumption

This chapter describes current thermal energy supply and use at Watervliet Arsenal. The CHP steam production and fuel consumption were analyzed for trends and building heating loads, and distribution systems losses were modeled. Correlations between thermal energy use and heating degree days were developed to model energy use.

CHP Steam Production

The CHP steam production was taken from the 1993 boiler logs. The boiler logs give the steam flow for each boiler, total steam produced, fuel used, and makeup water used. Figure 2 shows the steam load profile (lb/hr) for 1993. The daily average steam load for the plant varied from a high of 82,504 lb/hr in January to low loads of approximately 20,000 lb/hr in April and October, at the end and beginning of the heating season. (The plant is shut down in April or May and restarted in October when building heating is required.) Boiler 6 is operated during the summer months to supply process steam. Figure 3 shows the plant energy output in million Btu/hr instead of lb/hr as in Figure 2.

Steam End Use

The CHP output is a good indicator of current thermal energy use, but individual building loads were estimated to determine the efficiency of the existing distribution system. There are currently no operating steam meters to measure individual building heating or process loads. End user loads were estimated using modeling techniques.

The HEATLOAD program was used to estimate the steam loads. HEATLOAD was developed by USACERL to provide a simple method of calculating building heat requirements. Other computer programs such as BLAST or DOE2 can provide more accurate analyses, but require much more detailed information to develop a reliable heat load estimate. Experience with HEATLOAD has shown it to be quite accurate

Figure 2. Steam load profile (lb/hr).

Figure 3. Steam load profile (million Btu/hr).

for estimating installation-wide building heat requirements for central energy plant load modeling.

HEATLOAD is based on a series of linear regressions developed from heating use measurements at typical facilities on several Army installations. The facility categories and corresponding daily heating energy consumption equation takes the form:

$$E_h = a_1 + (b_1 \times HDD_d)$$
 [Eq 1]

where:

 E_h = daily heating degree

a₁ = a constant representing energy usage that occurs for zero heating degree days (HDD) and reflects nonheating loads such as hot water and cooking

 b_1 = the heating load parameter.

Building categories and area (sq ft) were obtained from the master planning files. Table 3 lists the parameters used for buildings at WVA.

The climatological data required for HEATLOAD, such as the historical average HDD and the design temperature, were obtained from the Army Technical Manual

Engineering Weather Data (TM 5.785, 1978) or directly from the USAF Environmental Technical Applications Center (ETAC) at Scott AFB, IL. With this information, HEATLOAD will calculate the peak hourly heating load, average monthly loads, maximum monthly loads, and total annual heating load. Table 4 shows the total monthly steam loads estimated from steam consumption data. The individual building loads were estimated based on 1993 heating degree days and summed for each month. Table 5

Table 3. Building categories and energy consumption.

Building	Consumption	
Administration/Training	$E_h = 75.71 + (7.02 \times HDD_d)$	
Family Housing	$E_h = 113.50 + (10.50 \times HDD_d)$	
Dining	$E_h = 241.90 + (0 \times HDD_d)$	
Storage/Warehouse 、	$E_h = 35.70 + (10.53 \times HDD_d)$	
Production/Maintenance	E _h = 138.25 + (10.53 x HDD _d)	
Fieldhouse/Gymnasiums	E _h = 73.69 + (4.39 x HDD _d)	

Table 4. Estimated monthly steam loads.

steam loads.		
Month	Heatload (Million Btu)	
January	43,699	
February	43,293	
March	41,880	
April	26,258	
May	5,717	
June	3,166	
July	1,941	
August	3,004	
September	3,509	
October	25,904	
November	35,545	
December	45,544	

gives the estimated building heating loads for the individual buildings at WVA.

Heating loads are typically very closely related to the outside temperature. A single year is not always a good prediction of the steam demand for the 25-year period required for life-cycle cost analysis of alternatives unless it is very close to the normal year. A correlation developed between steam demand and heating degree days (HDD) for 1 year can be used to project the steam demand for the life of the study period. Linear regressions were performed on the load profiles and the corresponding HDD. The monthly HDD from 1946 to 1992 were obtained from USAFETAC. Table 6 lists the long-term average monthly HDD data.

Figure 4 shows the linear regression of steam production (MBtu/hr) and heating degree days (HDD). Figure 5 reveals the relationship between steam production in MBtu (daily) and HDD. This includes the total heat in the steam plant output (not just the heat of vaporization).

A steam distribution system typically consists of steam generators, piping, regulators, valves, and steam traps. Steam enters the system at the steam

Table 5. Estimated building heat loads.

Building Number	Square Footage	Yearly Heat Load (Million Btu)	Average Heat Load (Million Btu/hr)
1	13,666	1,531	0.39
2	9,828	1,101	0.28
3	9,740	1,091	0.28
4	14,000	1,568	0.40
6	15,970	1,789	0.46
8	11,173	1,252	0.32
9	4,338	486	0.12
10	66,867	5,004	1.29
15	22,990	2,788	0.69
17	7,714	935	0.23
19	9,208	1,032	0.27
20	107,157	12,994	3.20
21	17,711	1,564	0.18
22	9,955	1,207	0.30
23	21,527	2,610	0.64
24	11,876	889	0.23
25	185,850	22,537	5.56
35	336,381	28,200	8.62
36	6,293	763	0.19
38	29,400	2,465	0.75
40	182,488	13,656	3.51
41	5,023	443	0.05
44	61,009	4,565	1.17
110	208,574	25,293	6.23
112	8,355	700	0.21
114	4,888	410	0.13
115	52,072	4,365	1.33
116	2,320	194	0.06
120	101,975	12,366	3.05
121	6,445	540	0.17
122	1,552	130	0.04
123	8,262	693	0.21
124	13,199	1,107	0.34
125	119,200	14,455	3.56
126	6,614	554	0.17
130	30,904	2,591	0.79
133	7,200	604	0.18
135	190,616	23,115	5.70

plant, passes through the piping and valves, and is delivered to the buildings. The steam loses heat through the piping walls by conduction. As the steam passes through the piping and valves, the pressure decreases due to the friction of the steam with the pipe wall and fittings. Condensate forms in the piping as the steam condenses and is removed through the steam traps. The quantity of energy lost through the steam distribution system can be substantial.

The heat lost in the distribution system can be estimated by comparing the user steam needs predicted by HEATLOAD and the actual steam production data from the CHP records. The predicted steam demand and the actual steam production (MBtu/hr) data are plotted in Figure 6. The HEATLOAD prediction does not include steam system losses or condensate losses. Figure 7 shows the heat lost due to steam and condensate loss, seen as makeup water use in the CHP, and added to the HEATLOAD model. The energy use model, based on HEATLOAD values and makeup water use, closely agrees with actual steam production reported by WVA. The difference in the curves was attributed to conduction and convection losses from the steam and condensate system. Figure 8 shows a similar relationship between the model and actual steam flow curves in MBtu (daily).

Previously, makeup water use, as a percentage of steam produced, was reported to vary from 17.8 to 44.6 percent in the winter and from 20.8 to 52.2 percent in the spring and fall. The data in Figure 7 show that, for a day with 28 HDD, the steam flow would average 50

MBtu/hr; the HEATLOAD estimates the building steam demand to be 30 MBtu/hr, resulting in a loss of 20 MBtu/hr (40 percent). This falls within the range previously determined for distribution system losses. Some of the heat loss in the distribution system was attributed to intentional dumping of contaminated condensate, but the rest of the losses must be attributed to leaks in traps, valves, and pipes, and conductive and convective heat loss. It would be beneficial to determine the amount of condensate/steam intentionally dumped due to contamination so that the losses attributable to leaks and conduction/convection could be accurately determined. Again, makeup water use/heat loss under 20 percent indicates that a system is in very good condition. Losses as high as 30 percent are not uncommon, but higher losses indicate a need for some system repairs. It is possible that the system is in good condition, but additional condensate dumping data must be collected before the status of distribution system can be confirmed.

Table 6. Average monthly heating degree days.

degree days.		
HDD		
1332		
1180		
954		
543		
219		
9		
0		
0		
114		
444		
757		
1172		

Figure 4. Steam load (MBtu/hr) vs. heating degree days.

Figure 5. Steam load (MBtu) vs. heating degree days.

Figure 6. HEATLOAD (MBtu/hr) vs. heating degree days.

Figure 7. Steam use model (MBtu/hr).

Figure 8. Steam use model (MBtu).

4 Electrical Power Consumption

Niagara Mohawk Power Corporation supplies electric power to WVA. Table 7 shows the rate schedule. The average cost of electricity reported by WVA was \$0.078 per kilowatt-hour (kWh), which equals \$22.93 per million Btu. Electricity use at WVA is heavily influenced by the use of process energy for manufacturing, and remains essentially constant throughout the typical year. Table 8 includes the monthly and annual electricity costs for WVA during 1992 and 1993. Figure 9 shows unscheduled process electric demand for a day in 1990 for the large manufacturing systems at the facility. Figure 10 shows the on-peak demand profile in kilowatts (kW) for 1993. The peak demand approaches 10,000 kW and the minimum load over the course of the year is approximately 8,000 kW. Figure 11 shows the electricity consumption in kWh for WVA in 1993. Monthly electricity use usually falls between 3,600,000 kWh and 4,100,000 kWh due to the high process electricity requirements of the manufacturing equipment at WVA. Electricity consumption (kWh) is plotted against cooling degree days (CDD) in Figure 12. On-Peak demand (kW) is plotted against CDD in Figure 13.

Table 7. Electric rate schedule.

Customer charge:	\$769.72 per month
On-peak energy charge:	\$0.066/kWh, \$19.34/MBtu (0800-2200 hrs., Mon-Fri)
Off-peak energy charge:	\$0.055/kWh, \$16.11/MBtu
Demand charge:	\$6.985/kW/month
Power factor charge:	\$1.0864/RKVA lagging reactive demand (KVAR)
Source:	Niagara Mohawk Electric Bill, October 1993
Average cost:	\$0.0782/kWh, \$22.93/MBtu

Table 8. Total WVA electricity expenditures, 1992 and 1993.

Month	Total Electricity Cost, 1993	Total Electricity Cost, 1992
January	307,972	239,830
February	332,136	299,807
March	305,481	282,154
April	296,874	287,479
May	276,042	315,042
June	304,326	318,738
July	315,560	318,738
August	293,650	347,012
September	293,650	380,981
October	264,867	342,811
Navember	291,090	319,442
December	291,090	310,753
Total	3,711,237	3,680,879

Figure 9. Unscheduled process electric demand.

Figure 10. On-peak kW, 1993.

Figure 11. Electricity consumption, kWh, 1993.

Figure 12. Electricity consumption, kWh vs. cooling degree days.

Figure 13. Electricity demand, on-peak kW vs. cooling degree days.

5 Projected Energy Consumption

WVA is not planning any large scale increase or decrease in the number of facility buildings that would significantly impact the CHP or electrical power use. The existing plant average daily production for January and February 1993 was 61,435 lb/hr. The maximum daily average steam production during the first 2 months of 1993 was 74,454 lb/hr, occurring on 1 February 1993. The recommended plant firm peak design capacity was set at 95,000 lb/hr to allow the CHP to meet the expected load at WVA. The plant firm capacity is the plant output with the largest boiler out of service. The plant could then meet the load if the largest boiler were down for maintenance or had some component failure that forced it off line. Figure 4, Steam Load (MBtu/hr) vs. HDD, and Figure 5, Steam Load (MBtu) vs. HDD, serve as the steam production model.

The consumption in the normal year was developed by taking electricity use data from 1992, a year similar to the average weather year in terms of cooling degree days, and adjusting it to match the average cooling degree day year. The consumption for a normal year peaks slightly higher than the 1993 year, but is not higher in all months. Table 9 gives a tabulation of the 1993 electrical use and the predicted usage for a normal (average) year. The data and predictions in Table 9 show that the electrical consumption at WVA is essentially independent of cooling load. The electrical consumption at WVA is primarily determined by the electricity-intensive

manufacturing processes. The electricity use at WVA is fairly consistent and heavily dependent on manufacturing process. The electricity consumption model was fairly represented by the data given in Figures 10 and 11 and Table 9.

Table 9. Electrical loads, normal and 1993.

Month	Normal CDD	Estimated Normal Electrical Load (kWh)	1993 CDD	1993 Electrical Load - kWh
January	0	3,868,213	0	3,916,504
February	0	3,868,213	0	4,120,578
March	0	3,868,213	0	4,151,058
April	2	3,868,936	2	4,077,133
May	15	3,873,632	15	3,473,564
June	62	3,890,612	122	3,844,456
July	206	3.942.634	258	4.097.972
August	143	3,919,874	221	3,860,479
September	8	3,871,103	55	3,860,479
October	0	3,868,213	2	3,619,640
November	0	3,868,213	0	3,773,777
December	0	3,868,213	0	3,866,766

6 Study Alternatives

Status Quo Alternative

The status quo (baseline) alternative was developed using the STATUS QUO computer program. STATUS QUO was developed by USACERL for the DOD Coal Use Program to provide a microcomputer-based technique to establish the existing condition of a CHP. The "status quo" situation implies the continued operation of the plant by performing routine maintenance and repair along with replacement of the various pieces of equipment on a scheduled basis. The STATUS QUO model provides a baseline alternative with which to compare the other plant alternatives.

The evaluation of the status quo of the CHP is determined through a field survey of the plant equipment. Evaluation forms are completed for all major components in the plant. The model is capable of estimating the life expectancy and cost of boiler equipment in the 20 to 200 million Btu/hr range. The model input consists of equipment size, capacity, performance data, general condition, and year of installation. The STATUS QUO program will display the year the equipment should be replaced and the equipment cost in the study year dollars. Costs are based on average industry prices and the replacement year is based on industry experience and average expected equipment life:

The program allows the default values to be changed if better information is available. For instance, a good method for establishing water-tube boiler life is to measure the steam drum metal thickness and compare it to the original thickness and pressure rating. Boiler codes limit allowable pressures, which are based on the drum metal thickness. Other components have methods available to determine the condition of the component and its life expectancy. Vibration analysis, motor testing, ultrasonic testing, thickness testing, oil analysis, infrared thermal surveys, eddy current testing, equipment performance tracking, and equipment run time can all be used as an indication of the current condition of equipment and can help predict a remaining useful life.

The program contains default values for labor, maintenance, spare parts, and utility costs. The actual plant operating costs should be used if they are available. The STATUS QUO model uses the LCCID program to perform the LCC analysis, and

produces an LCCID input file containing all the plant components with their replacement cost, year the equipment will be replaced, along with labor, maintenance, spare parts, and utility costs.

For the Status Quo case, the two existing 110,000 lb/hr boilers (Boilers 3 and 4) would be replaced in the year 2001, and Boilers 1 and 2 would not be operated (essentially abandoned in place). Replacement burners would be included with the new boilers in 2001.

Table 10 shows the LCC summary for this alternative. Costs shown are the 1994 net present worth of the LCC of the plant based on a 25-year life. The cost for the No. 2 oil is based on the reported cost of \$0.78 per gal or \$5.62 per million Btu.

The maintenance labor and supply costs are estimated from the cost predictions from the CHPECON (Central Heating Plant Economics) Program and plant information. The discount rate used in the LCC analyses is 4.0 percent. The escalation rate is 0.84 percent for electricity and 2.50 percent for No. 2 oil. Appendix A includes a copy of the computer program output.

Alternative 1: New Gas/Oil Boilers

Alternative 1 replaces the existing boilers (#3 and #4) with new gas/oil boilers in 1996. The two 110,000 lb/hr boilers would be replaced by two 110,000 lb/hr natural gas boilers. The plant operating pressure would remain at 135 psig. The new boilers would allow the plant to meet the peak load with one large boiler out of service and would allow the plant to turn down to the steaming rates that it can now achieve more efficiently.

Table 10. Status quo alternative LCC summary.

Initial Investment Cost		\$0
Energy Costs: Electricity Fuel Oil	\$1,082,748 \$39,990,180	
Total Energy Cost		\$41,072,928
Recurring Maintenance, Repair, and Custodial Costs		\$16,938,960
Major Repair and Replacement Costs		\$3,827,140
Base Electricity Cost		\$76,500,000
Net Present Worth of the LCCs and Benefits (1994 \$)		\$138,339,028

The boiler burners would be set up to fire natural gas or No. 2 fuel oil. The fuel oil would be a standby fuel used only if the gas supply were interrupted. The new burners would be low NO_x burners. Economizers would be provided for the new 110,000 lb/hr boilers. Boiler efficiency would be 82 percent when firing natural gas and 85 percent when firing fuel oil. New controls would be furnished with the new boilers. The existing fuel oil system would be used to handle the No. 2 fuel oil. One of the new 110,000 lb/hr boilers could be installed in the same location as Boiler 1 or Boiler 2 and the space left by removal of the other boiler would be vacant, allowing for the possible future addition of cogeneration, gas cooling, or fuel cell equipment. The second new boiler would replace Boiler 4. Boiler 3 could be left in place and used until the new boilers were completed and then kept as a reserve unit or removed to accommodate other equipment.

Table 11 shows the LCC summary for this alternative. Costs shown are the 1994 net present worth of the LCC of the plant, based on a 25-year life. Appendix A includes a copy of the cost estimate. The fuel cost for operation of the new boilers is lower than the fuel cost for the Status Quo alternative because of the increased efficiency (conservatively set for 5 percent savings) of the new boilers. The annual maintenance labor and service cost estimates are the same for the New Gas/Oil Boiler alternative and the Status Quo alternative.

Alternative 2: New Natural Gas-Fired Plant

The new plant includes three 36,000 lb/hr steam boilers. The number and size of boilers was calculated by the CHPECON program based on average monthly steam flow data from WVA. The boilers would be fitted with gas/oil burners. Boiler efficiency would be 80.8 percent when firing natural gas. Number 2 oil would be

Table 11. New gas/oil boilers (installed in 1996) alternative LCC summary.

Initial Investment Cost		\$0
Energy Costs:		
Electricity	\$1,031,009	
Fuel Oil	\$36,279,440	
Total Energy Cost		\$37,310,449
Recurring Maintenance, Repair, and Custodial Costs		·
Major Repair and Replacement Costs		\$4,403,923
Base Electricity Cost		\$76,500,000
Net Present Worth of the LCCs and Benefits (1994)		\$135,153,332

used as the reserve fuel during natural gas supply interruptions. Table 12 shows the LCC summary for this alternative. Costs shown are the 1995 net present worth of the LCC of the plant based on a 25-year life. The investment cost listed is the cost of building the new facility. Appendix B includes a copy of the CHPECON results.

Alternative 3: New No. 2 Oil-Fired Plant

As in the previous option, the new plant includes three, 36,000 lb/hr steam boilers. The number and size of boilers was calculated by the CHPECON program based on average monthly steam flow data from WVA. Heating plant efficiency would be 84.1 percent when firing No. 2 oil. Table 12 shows the LCC summary for this alternative. Costs shown are the 1995 net present worth of the LCC of the plant based on a 25-year life. The investment cost listed is the cost of building the new facility. Appendix B includes a copy of the CHPECON results. The Operation and Maintenance (O&M) costs are identical to those predicted for the New Natural Gas-Fired Plant (Alternative 2). The energy cost is slightly higher that that of Alternative 2 because of higher fuel cost.

Alternative 4: New Natural Gas-Fired Plant With Cogeneration

The new cogeneration plant includes three 42,000 lb/hr steam boilers with a cogeneration system sized for the plant maximum continuous rating of 125,000 lb/hr. The number and size of boilers was calculated by the CHPECON program based on average monthly steam flow data from WVA. The boilers would be fitted with gas/oil burners. Boiler efficiency would be 80.9 percent when firing natural gas. No. 2 oil would be used as the reserve fuel. Table 12 shows the LCC summary for the cogen-

Table 12. New plant options LCC summary.

	New Plant Natural Gas	New Plant #2 Oil	Cogeneration Follow Heat Load	Cogeneration Operate All Year
Investment	\$5,552,055	\$5,552,055	\$12,679,887	\$13,479,820
Plant Energy Cost	\$42,911,903	\$43,074,246	\$49,927,858	\$99,080,786
Annual O&M	\$8,280,674	\$8,280,674	\$9,005,485	\$12,735,865
Non-Annual O&M	\$250,552	\$250,552	\$1,117,963	\$1,133,706
Base Electricity Cost	\$76,500,000	\$76,500,000	\$76,500,000	\$76,500,000
Electricity Credit			\$38,725,304	\$77,213,909
Total LCC ('94)	\$133,495,184	\$133,657,527	\$110,505,889	\$125,716,268

eration alternative with natural gas as the primary fuel. The first cogeneration option presented in Table 12 is for operation following the heat load and the second cogeneration option shown is for operating the cogeneration system all year. Costs shown are the 1995 net present worth of the LCC of the plant, based on a 25-year life. Appendix B includes a copy of the CHPECON results.

7 Conclusions

The thermal and electrical energy usage at Watervliet Arsenal, NY was studied as part of an investigation of modernization alternatives for the Central Heating Plant. The energy consumption data was used to create thermal and electrical energy models. Thermal energy supply options were evaluated and compared to continued operation of the existing CHP on a life cycle cost basis. The baseline (status quo) option was developed for comparison of the alternatives to the existing situation. LCC analyses were performed to determine the option with the lowest LCC.

Based on the available data, Alternative 4: New Natural Gas Fired Plant With Cogeneration, has the lowest LCC based on a 25-year facility life. This option includes replacing Boilers 3 and 4 with new steam boilers and implements a cogeneration system operated during the heating season, when the CHP normally operates. A potential drawback to Alternative 4 is the relatively high initial investment cost, though this option does produce substantial financial savings in the long term through the process of cogeneration. Although Alternative 1: New Gas/Oil Boilers (in the existing facility) has a larger LCC than Alternative 4, it has lower initial investment costs (included in the status quo program as Major Repair/Replacement costs in 1996), which are attractive in the short term. If Alternative 1 were chosen, the cogeneration system could be added sometime in the future, placed in the current location of Boilers 1 and 2.

It is recommended that, when the low NOx boiler demonstration project is completed, which will replace Boiler 4, WVA should continue using the new boiler and replace or refurbish Boiler 3 (pursuant to Alternative 1: New Gas/Oil Boilers). These two boilers would provide enough steam capacity to drive a cogeneration system (as identified in Alternative 4). A boiler useful life inspection could be performed on Boiler 3 to determine its actual remaining life before deciding to refurbish or replace it. Any plans for its replacement should be made in conjunction with the investigation of a cogeneration alternative, and should provide the necessary connections to facilitate future connection to a cogeneration system. Boiler 5 should also be maintained to provide an additional increment of steam capacity if either Boiler 3 or 4 becomes inoperable during the heating season.

Appendix A: LCC Analyses

LIFE CYCLE COST ANALYSIS STUDY: WVAR LCCID 1.065 DATE/TIME: 02-08-95 10:56:29 PROJECT NO., FY, & TITLE: FY 1995 STATUS QUO INSTALLATION & LOCATION: WATERVLIET ARSENAL NEW YORK

DESIGN FEATURE:

ALT. ID. A; TITLE: STATUS QUO

NAME OF DESIGNER:

BASIC INPUT DATA SUMMARY

CRITERIA REFERENCE: Tri-Service MOA for Econ Anal/LCC (Energy)

DISCOUNT RATE: 4.0%

KEY PROJECT-CALENDAR INFORMATION

DATE OF STUDY (DOS)	JAN 94
MIDPOINT OF CONSTRUCTION (MPC)	JAN 95
BENEFICIAL OCCUPANCY DATE (BOD)	JAN 96
ANALYSIS END DATE (AED)	JAN 21

	=========	=======================================	=========
1	1	EOUIVALENT	1
COST / BENEFIT	COST	UNIFORM	TIME(S)
	İ	DIFFERENTIAL	1 11111(3)
DESCRIPTION	IN DOS S	ESCALATION	COST INCURRED
		RATE	I COST THEORIES!
1	(\$ X 10**0)		i :
	=========	=======================================	
INVESTMENT COSTS	.0	.00	JAN 95
ELECTRICITY	65740.3	.84	JUL96-JUL20
ELECT DEMAND		.00	JUL96-JUL20
DISTILLATE OIL	1938782.0	2.50	JUL96-JUL20
MAINT LABOR	540000.0		JUL96-JUL20
MAINT SERV	610000.0		JUL96-JUL20
OPACMONITOR	50000.0	.00	JAN 01
STACK	50000.0	.00	JAN 01
AIRHEAT	58500.0	.00	JAN 01
AIRPHEAT	8750.0	.00	JAN 01
DRUMCTL	5000.0	.00	JAN 01
DRUMCTL	5000.0	.00	JAN 07
DRUMCTL	5000.0	.00	JAN 08 1
FTBOILER	600000.0	.00	JAN 03
FTBURNER	42752.0	00	JAN 03 1
FW_REG	600.0	.00	JAN 01
FW_REG	2400.0	00	JAN 18
RELVALVE	2344.0	.00	JAN 98
RELVALVE	1953.0	.00	JAN 01
RELVALVE	1969.0	.00	JAN 01
RELVALVE	5859.0	.00 . 1	JAN 01
RELVALVE	5907.0	.00	JAN 01
WTBOILER	3200000.0	.00	JAN 01
WTBURNER	200000.0	.00	JAN 01
WTBURNER	103333.0	.00	JAN 01
PUMPSIMPLEX	6000.0	.00	
TANKPOLY	800.0	.00	JAN 11
BOILMASTER	5000.0 1	.00	JAN 11 JAN 01
BOILMASTER	5000.0	.00	JAN 17
DAMPACT	1100.0	.00	JAN 17
DAMPACT	1100.0	.00	
	, 1100.0 1	.00	JAN 17

LCCID 1.065 DATE/TIME: 02-08-95 10:56:29 PROJECT NO., FY, & TITLE: FY 1995 STATUS QUO INSTALLATION & LOCATION: WATERVLIET ARSENAL NEW YORK

DESIGN FEATURE:

ALT. ID. A; TITLE: STATUS QUO

NAME OF DESIGNER:

BASIC INPUT DATA SUMMARY

- 1	FLAMESAFE	1	20000						
- 1		1	20000.0	ŀ	.00	1	JAN	01	- !
	FLAMESAFE	1	20000.0	1	.00	1 '	JAN	17	1
-	O2TRIM	1	10000.0	1	.00	ì	JAN	17	i.
1	OILREMOVAL	1	80000.0	1	.00	İ	JAN	01	i
1	CONDPUMP	1	18750.0		.00	1	JAN	98	i
1	CONDREC	1	15600.0	1	.00	ĺ	JAN	01	i
- 1	DAIRHEATER	1	67500.0	1	.00	1	JAN	01	i
-	FEEDPUMP	1	40000.0	1	.00	1 .	JAN	15	ĺ
1	FWHEATER	1	55800.0	1	.00	1	JAN	01	i
-	NAGPIPEBELOW	1	6000.0	1	.00	1	JAN	19	i
-	PUMP	1	8000.0	1	.00	1	JAN	17	İ
-1	TANKABOVE		187000.0		.00	1	JAN	05	1
-	FLASHTANK	1	1550.0		.00	1	JAN	01	ĺ
	SZSOFT	1	256800.0	1	.00	1	JAN	01	İ
- [LIGHTS	1	20.0	1	.00	1	JAN	18	İ
1	ROOF	1	7.0	1	.00	1	JAN	14	i
==		===	========	==		======			

OTHER KEY INPUT DATA

LOCATION - NEW YORK CENSUS REGION: 1 RATES FOR INDUSTRIAL SECTOR. TABLES FROM OCT 92

ENERGY ENERGY ELECT	 \$/MBTU 22.93	AMOUNT 2867.0	ELECT.	10**0 DOLLARS PROJECTED DATES JAN96-JAN21
DIST	5.62	344979.0		JAN96-JAN21

LCCID 1.065 DATE/TIME: 02-08-95 10:56:29 PROJECT NO., FY, & TITLE: FY 1995 STATUS QUO INSTALLATION & LOCATION: WATERVLIET ARSENAL NEW YORK

DESIGN FEATURE:

ALT. ID. A; TITLE: STATUS QUO

NAME OF DESIGNER:

LIFE CYCLE COST TOTALS*

INITIAL INVESTMENT COSTS

0.

ENERGY COSTS:

ELECTRICITY

1082748.

DISTILLATE OIL

39990180.

TOTAL ENERGY COSTS

41072930.

RECURRING M&R/CUSTODIAL COSTS

16938960.

MAJOR REPAIR/REPLACEMENT COSTS

3827140.

OTHER O&M COSTS & MONETARY BENEFITS

0.

DISPOSAL COSTS/RETENTION VALUE

0.

LCC OF ALL COSTS/BENEFITS (NET PW)

61839030.

^{*}NET PW EQUIVALENTS ON JAN94; IN 10**0 DOLLARS; IN CONSTANT JAN94 DOLLARS *ENERGY ESCALATION RATES FROM NIST HANDBOOK 135 SUPPLEMENT DATED OCT 92

LCCID 1.065 DATE/TIME: 02-08-95 10:56:29 PROJECT NO., FY, & TITLE: FY 1995 STATUS QUO INSTALLATION & LOCATION: WATERVLIET ARSENAL NEW YORK DESIGN FEATURE: ALT. ID. A; TITLE: STATUS QUO NAME OF DESIGNER:

YEAR-BY-YEAR BREAKDOWN OF LIFE CYCLE COSTS*

DOLLARS IN 10**0

BENEFICIAL OCCUPANCY DATE: JAN96 ANNUAL PAYMENTS OCCUR: JUL96 THROUGH JUL20

===:	========	=======	=======	=======	=======
PA				R / R	
	=======	=======	=======	=======	=======
	.1 60517.	11884006.	11042592.	1 0.	0.1
	1 58570.	11880251.	11002493.	0.	0.1
1 3	1 56879.	11875664.	963935.	18031.	0.1
1 4	55291.	11873248.	926861.	1 0.	0.1
1 5	1 54053.	1869782.	891212.	0.	•
1 6	52878.	1855276.	856935.	3188023.	0.1
1 7	51242.	1832184.	823976.		0.1
1 8	49593.	1802828.	792284.	451589.	0.1
1 9	48108.	1767913.	761812.	0.	
1 10		1731770.		121472.	
11	1 45430.1	1692273.	704338.	0.	0.1
1 12	1 44090.1	1652104.	677248.	3003.	ŏ.i
1 13			651200.		
1 14			626154.		1
1 15			602071.		
i 16	,,			3491.	0.1
1 17			556649.		
1 18			535239.		
1 19					
1 20			514653.		
	33986.	13/0817.	494859.	17553.	•
21			475826.		
! 22		1309352.	457525.	17893.	0.1
23	30776.	1276652.	439927.1	944.1	0.1
1 24				2251.	0.1
			406738.		0.1
===	=======	======	=======	=======	======
***	11082748.1	******	******	3827140.1	0.1

^{*}NET PW EQUIVALENTS ON JAN94; IN 10**0 DOLLARS; IN CONSTANT JAN94 DOLLARS *ENERGY ESCALATION RATES FROM NIST HANDBOOK 135 SUPPLEMENT DATED OCT 92

LIFE CYCLE COST ANALYSIS STUDY: WVAR LCCID 1.065 DATE/TIME: 02-08-95 10:40:55 PROJECT NO., FY, & TITLE: FY 1995 NEW BOILERS IN 1996

INSTALLATION & LOCATION: WATERVLIET ARSENAL NEW YORK

DESIGN FEATURE:

ALT. ID. A; TITLE: STATUS QUO

NAME OF DESIGNER:

BASIC INPUT DATA SUMMARY

CRITERIA REFERENCE: Tri-Service MOA for Econ Anal/LCC (Energy)

DISCOUNT RATE: 4.0%

KEY PROJECT-CALENDAR INFORMATION

DATE OF STUDY (DOS)	JAN	94
MIDPOINT OF CONSTRUCTION (MPC)	JAN	95
BENEFICIAL OCCUPANCY DATE (BOD)	JAN	96
ANALYSIS END DATE (AED)	JAN	21

=======================================	========	=========	
	 	EOUIVALENT	1
COST / BENEFIT	i cost	UNIFORM	TIME(S)
, , , , , , , , , , , , , , , , , , , ,	1	DIFFERENTIAL	I IIIE(S)
DESCRIPTION	IN DOS S	ESCALATION	COST INCURRED
	1 11 200 5	RATE	COST INCURRED
i	(\$ X 10**0)		!
	(5 X 10 0)	(TER IEAR)	!
INVESTMENT COSTS	.0	.00	JAN 95
ELECTRICITY	62598.9	.84	JUL96-JUL20
ELECT DEMAND	.0	.00	JUL96-JUL20
NATURAL GAS	1697641.0	2.77	JUL96-JUL20
MAINT LABOR	540000.0		JUL96-JUL20
MAINT SERV	610000.0		JUL96-JUL20
OPACMONITOR	50000.0		
STACK	50000.0		JAN 01
AIRHEAT	50000.0 58500.0		JAN 01
AIRPHEAT	8750.0		JAN 01
DRUMCTL	5000.0 i	• • • •	JAN 01
DRUMCTL	5000.0	.00	JAN 01
DRUMCTL		.00	JAN 07
FTBOILER	5000.0	.00	JAN 08
FTBURNER	600000.0	.00	JAN 03
FIBORNER	42752.0	.00	JAN 03
FW_REG	600.0	.00	JAN 01
FW_KEG	2400.0	.00	JAN 18
RELVALVE	2344.0	.00	JAN 98
RELVALVE	1953.0	.00	JAN 01
RELVALVE	1969.0	.00	JAN 01
	5859.0	.00	JAN 01
RELVALVE	5907.0	.00	JAN 01
WTBOILER	3200000.0	.00	JAN 96
WTBURNER	200000.0	.00	JAN 96
WTBURNER	103333.0	.00	JAN 96
PUMPSIMPLEX	6000.0	.00	JAN 11
TANKPOLY	800.0	.00 ' 1	JAN 11
BOILMASTER	5000.0	.00	JAN 01
BOILMASTER	5000.0	.00	JAN 17
DAMPACT	1100.0	.00	JAN 01
DAMPACT	1100.0	.00	JAN 17

LCCID 1.065 DATE/TIME: 02-08-95 10:40:55 PROJECT NO., FY, & TITLE: FY 1995 NEW BOILERS IN 1996 INSTALLATION & LOCATION: WATERVLIET ARSENAL NEW YORK

DESIGN FEATURE:

ALT. ID. A; TITLE: STATUS QUO

NAME OF DESIGNER:

BASIC INPUT DATA SUMMARY

FLAMESAFE FLAMESAFE O2TRIM OILREMOVAL CONDPUMP CONDREC DAIRHEATER FEEDPUMP FWHEATER NAGPIPEBELOW PUMP TANKABOVE FLASHTANK SZSOFT	20000.0	.00		JAN 01 JAN 17 JAN 17 JAN 01 JAN 01 JAN 01 JAN 01 JAN 15 JAN 01 JAN 17 JAN 05 JAN 01	
	1550.0 256800.0 20.0 7.0	.00 .00 .00		JAN 01 JAN 01 JAN 18 JAN 14	1

OTHER KEY INPUT DATA

LOCATION - NEW YORK CENSUS REGION: 1 RATES FOR INDUSTRIAL SECTOR. TABLES FROM OCT 92

ENERGY USAGE: 10**6 BTUS ELECTRIC DEMAND: 10**0 DOLLARS ENERGY TYPE \$/MBTU AMOUNT ELECT 22.93 2730.0 ELECT. DEMAND PROJECTED DATES . 0 JAN96-JAN21 NAT G 5.18 327730.0 JAN96-JAN21

0.

LCCID 1.065 DATE/TIME: 02-08-95 10:40:55 PROJECT NO., FY, & TITLE: FY 1995 NEW BOILERS IN 1996 INSTALLATION & LOCATION: WATERVLIET ARSENAL NEW YORK

DESIGN FEATURE:

ALT. ID. A; TITLE: STATUS QUO NAME OF DESIGNER:

LIFE CYCLE COST TOTALS*

INITIAL INVESTMENT COSTS

ENERGY COSTS:

ELECTRICITY 1031009. NATURAL GAS 36279440.

TOTAL ENERGY COSTS 37310440.

RECURRING M&R/CUSTODIAL COSTS 16938960.

MAJOR REPAIR/REPLACEMENT COSTS 4403923.

OTHER O&M COSTS & MONETARY BENEFITS

DISPOSAL COSTS/RETENTION VALUE 0.

LCC OF ALL COSTS/BENEFITS (NET PW) 58653320.

^{*}NET PW EQUIVALENTS ON JAN94; IN 10**0 DOLLARS; IN CONSTANT JAN94 DOLLARS *ENERGY ESCALATION RATES FROM NIST HANDBOOK 135 SUPPLEMENT DATED OCT 92

LCCID 1.065 DATE/TIME: 02-08-95 10:40:55 PROJECT NO., FY, & TITLE: FY 1995 NEW BOILERS IN 1996 INSTALLATION & LOCATION: WATERVLIET ARSENAL NEW YORK DESIGN FEATURE:

ALT. ID. A; TITLE: STATUS QUO NAME OF DESIGNER:

YEAR-BY-YEAR BREAKDOWN OF LIFE CYCLE COSTS*

DOLLARS IN 10**0

BENEFICIAL OCCUPANCY DATE: JAN96 ANNUAL PAYMENTS OCCUR: JUL96 THROUGH JUL20

===:		=======	========	=======	=======
PA					OTHER
===	- =======	=======	=======	=======	======
1 1	57626.	11612021.	11042592.	3239028.	0.1
1 2	21 55771.	1583730.	11002493.	1 0.	0.1
1 3	54161.	11564419.	1 963935.	18031.	0.1
				0.	
1 5			1 891212.		
1 6	50351.	11568284.	856935.	1 525778.	i 0.i
1 7	1 48793.	11569873.	823976.	1 0.	0.1
1 8				1 451589.	
1 9			761812.		
1 10				121472.	
11	43259.	11524587.	1 704338.	0.	0.1
12	41983.	1503942.	677248.	3003.	0.1
13				2887.	
1 14			626154.		•
1 15			602071.		
1 16	1 36938.	1449407.	578915.	3491.	
1 17			1 556649.		· · · ·
18	1 34572.	1387566.	1 535239.		
1 19	1 33448.	1357038.	1 514653.		0.1
1 20	1 32362.1	1326807.	494859.		
1 21			475826.		,
1 22			457525.		
1 23				944.	
1 24	28345.1	1203788.	423007	2251.	0.1
1 25	27418.	1172529	406738.	0.1	
	======				
	11031009.1				
				4403323.1	V • 1

^{*}NET PW EQUIVALENTS ON JAN94; IN 10**0 DOLLARS; IN CONSTANT JAN94 DOLLARS *ENERGY ESCALATION RATES FROM NIST HANDBOOK 135 SUPPLEMENT DATED OCT 92

Appendix B: CHPECON Cases

```
** Central Heating Plant Economics Evaluation Program Page 1 **

** File: WVAR1 Type: New plant (NP) 01/05/95 **

** Desc: WATERVLIET ARSENAL **
    Tech: Gas / Oil Fired Boiler
 ******************************
 State : NY - New York
 Location: 42d 43m - 73d 42m
 County :
 Emission regulation region
 # 0 - State and federal only
Annual heating degree days: 6725
 *************************** Boiler Characteristics **********************
Type of heating system : Steam
Average Monthly Steam Flows (million Btu/hr)
              Jan
                      Feb
                              Mar
                                      Apr
                                              May
                                                      Jun
               59
                      65
                              56
                                      36
                                              8
                                                       4
              Jul
                      Aug
                              Sep
                                      Oct
                                              Nov
                                                      Dec
                                      35
                                               49
Calculated PMCR: 107 thousand lb/hr steam
Boiler technology: Gas / Oil Fired Boiler
Boiler sizes (thousand lb steam/hr) :
       1: 36 2: 36 3: 36
Natural gas composition - volume basis
    82.90 % Methane 0.00 % Ethylene 0.00 % Propane 0.00 % Butane 2.20 % Nitrogen 0.00 % Oxygen
                                              14.90 % Ethane
                                             0.00 % Hydrogen
                                             0.00 % Hydrogen Sulfide (H2S)
     0.00 % Carbon Monoxide (CO)
                                              0.00 % Carbon Dioxide (CO2)
     1107 Btu/SCF Heating Value
Natural gas composition - weight basis
    73.70 % Carbon 22.94 % Hydrogen 0.00 % Oxygen
                     0.00 % Carbon Monoxide 3.36 % Inert gases (N2, CO2)
     0.00 % Sulfur
     22695 Btu/lb heating value
Boiler Operating Parameters -- Natural Gas
  Combustion air temp: 70 deg F 30 % relative humidity
  Flue gas temp: 350 deg F
                                3.00 % oxygen (dry basis)
  40.02 % combustibles
  10.25 % CO2
                                  86.73 % N2
  0.00481 lb/lb dry air
                                  0.00772 mole/mole dry air
   14.94 % excess air
                                  0.020 % combustibles
```

```
***********
 ** Central Heating Plant Economics Evaluation Program
 ** File: WVAR1 Type: New plant (NP)
                                                                                   Page 2 **
                                                                                 01/05/95 **
 ** Desc: WATERVLIET ARSENAL
                                                                                               **
 ** Tech: Gas / Oil Fired Boiler
 *************************
                                                                                                **
 Boiler Performance -- Natural Gas
    Sensible dry gas loss: 5.370 % Loss H2O vapor in air: 0.044 % Fuel H2O heat loss: 0.000 % H2 comb H2O heat loss: 10.741 % Radiation heat loss: 1.972 % Unaccounted for loss: 1.000 %
    Combustible gas heat loss: 0.064 %
    Boiler efficiency: 80.808 %
 Fuel Oil #2 composition - weight basis
      87.40 % Carbon 12.50 % Hydrogen 0.00 % Oxygen 0.00 % Nitrogen 0.10 % Sulfur 0.00 % Ash
       0.00 % Moisture
        18993 Btu/lb heating value
    0.856 Specific gravity
 Boiler Operating Parameters -- Fuel Oil #2
    Combustion air temp: 70 deg F 30 % relative humidity
Flue gas temp: 350 deg F 2.50 % oxygen (dry basis)
50.02 % combustibles
13.69 % CO2 83.79 % N2
    13.69 % CO2 83.79 % N2
0.00481 lb/lb dry air 0.00772 mole/mole dry air
12.65 % excess air 0.020 % combustibles
                                           0.020 % combustibles
Boiler Performance -- Fuel Oil #2
    Sensible dry gas loss: 5.775 % Loss H2O vapor in air: 0.048 % Fuel H2O heat loss: 0.000 % H2 comb H2O heat loss: 6.993 % Radiation heat loss: 1.972 % Unaccounted for loss: 1.000 %
   Sensible dry gas loss: 5.775 %
    Combustible gas heat loss: 0.068 %
    Boiler efficiency:
                                84.144 %
Blowdown : 5 %
Temperature out of stack: 350 deg F
Steam pressure : 150 psig
Steam temperature : 367 deg F
Condensate return temp : 150 deg F
Makeup water temperature : 50 deg F
Inlet water temperature : 120 deg F
enthalpy : 118.0 Btu/lb
enthalpy : 18.0 Btu/lb
******** @ PMCR ******* Area and Water Requirements @ PMCR *********************
Building size: 7500 sq ft
                                         Condensate Return : 75 %
Boiler house leakage : 2 %
Water requirements : 100 gpm (est)
Railway track length : 125 ft
Plant area : 1.17 acres
Plant height : 40 ft
Stack height : 60 ft
Sewer dischrg : 25 gpm (est)
```

***	*****	*****	*****	******	*******	******		
**	Coal Fire File: WVAI Desc: WAT	d Boil R1	er Evalu Type	ation Progra : New plant	em.		Page 3 01/05/95	* 1
**	Toch: Con	CKADIE	I AKSENA	⊔ -47				**
	Tech: Gas	/ 011	Fired B	olier		*****		**
				*******	******	******	*****	***
****	******	*****	**** Gen	eral Site Co	onsideration	S ********	*****	***;
	lopment and							
const funds	potential of truction of	of have	ing to bi central l	cing in cont	ractors for	ear the base. the re additional		
	Total:	20/	50 .	40%				
=====		*****	******			*********		
	•							
Fuel	Supply and	Site	Access	•				
Gas p	ourchase co	ntract	:s:					
Oil s Sco	supply cont ere: 0	racts:	•					
,							•	
·	Total:	0/	0	0%				
=====			******	********				
Ecolo	ЭŽ					•		
	Total:	0/	0	0.2				
		• ,	•		•	•		
=====			*****					
Socia.	l Considera	ations						
	Total:	0/	0	08				
•	· · · ·	J /	U	0*				

					•			
Facili	ity Service	es						

************* ** Central Heating Plant Economics Evaluation Program Page 4 ** ** File: WVAR1 Type: New plant (NP)

** Desc: WATERVLIET ARSENAL 01/05/95 ** ** Tech: Gas / Oil Fired Boiler ********************* Condition of system is fair Additional costs may be required to install a new distribution system. These costs are not considered in the detailed evaluation program. Score: 3 Steam distribution system routing is medium It may be difficult to incorporate the existing distribution system into the new plant. Additional costs may be required heavily modify the existing distribution system. These costs are not considered in the new plant detailed evaluation section of this program. Score: City water available: Yes Score: 5 New electrical substation required: No Score: 5 Total: 120/~ 170 70% Waste Handling and Emissions Local sewer system available: Yes Score: 5 Total: 50/ 50 100% Military Total: 0/ 0 0%

**	(*************************************	******	***
	Central Heating Plant Economics Evaluation Program	Page 5	**
**	File: WVAR1 Type: New plant (NP)		
**	Desc: WATERVLIET ARSENAL	01/05/95	**
			**
**	Tech: Gas / Oil Fired Boiler		
and the same of	***************		* *

General Questions Summary

	Total	Max	Rating
Development and Construction	20	50	40
Fuel Supply and Site Access	0	0	0
Ecology	0	0	0
Social Considerations	. 0	0	0
Facility Services	120	170	70
Waste Handling and Emissions	50	50	100
Military	0	0	0

Boiler technology rating: 10

Feasibility score: 10/10 = 100%

Central Heating Plant Economics Evaluation Program -- Cost Analysis Page 1 File: WVAR1 Type: New plant (NP) 01/05/95 Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler ************* Base and Plant Information ***************** State: NY - New York Base DOE Region: 1 PMCR: 107,000 lb/hr steam Number of boilers: 3 Height of the plant: 40 ft Building area: 7500 sq ft Plant area: 1.17 acres ************* Facility Parameters Capital Equipment Escalation Factor: 1.102 (5032.16/1995) Non-Labor Operation & Maintenance Escalation Factor: 1.092 (935.60/1995) Operation & Maintenance Labor Escalation Factor: 1.119 (4626.82/1995) Construction Labor Escalation Factor: 1.024 (271.10/1995) Annual electricity usage: 794,786 kW-hr 1995 cost for distillate: 0.780 \$/gallon 1995 cost for residual: 0.600 \$/gallon 1995 cost for natural gas: 5.180 \$/million Btu 1995 cost for electricity: 0.078 \$/kW-hr Annual Facility Output: 279,504 thousand 1b steam Annual Natural Gas Usage: 346 10^6 SCF Heating plant efficiency: 80.8% natural gas Year of Study: 1995 Years of Operation: 1999 - 2023 Annual #2 Fuel Oil Usage: 2,711 10^3 gal Heating plant efficiency: 84.1% #2 fuel oil ******************* Facility Capital Costs ************* Equipment Cost Equipment Cost Boiler: \$ 1,093,737 Stack: \$ 34,709
Building/service: \$ 1,143,696 Water trtmnt: \$ 188,681
Feedwtr pmps: \$ 18,757 Cond xfr pmps: \$ 16,385
Cond strg tnk: \$ 5,934 Oil (long) storage: \$ 201,113
Oil day strg pmp: \$ 4,958 Oil heaters: \$ 5,454
Oil day strg tanks: \$ 16,098 Oil unload pumps: \$ 14,544
Oil xfr pmps: \$ 4,793 Fire protection: \$ 44,075
Cont bldn tnk: \$ 845 Intr bldn tnk: \$ 845
Compressor: \$ 27,196 Car puller: \$ 22,037
Rail: \$ 11,707 Site preparation: \$ 3,223
Site improvements: \$ 169,139 Mobile equipment: \$ 42,973
Elec substation: \$ 60,803 Electrical: \$ 131,896

```
Central Heating Plant Economics Evaluation Program -- Cost Analysis
                                                      Page 2
 File: WVAR1 Type: New plant (NP)
                                                      01/05/95
 Desc: WATERVLIET ARSENAL
 Tech: Gas / Oil Fired Boiler
 *******************
  Facility Capital Costs, cont
 ***********************
Piping: $ 747,411
Direct costs: $ 1,485,804
                     747,411 Instrumentation: $
 *********************
Plant installed cost: $
                       6,245,307
 Facility Annual O & M and Energy Costs
 ************************
Operating staff: 10
Annual Labor Costs: $ 514,498
Annual Year Non-Labor O & M Costs : $
                               597.295
1999 Natural gas costs : $ 2,212,754
1999 Auxiliary Energy Costs : $
                               63,767
1999 #2 fuel oil costs : $ 2,452,774
*******************
  Periodic Major Maintenance Cost Summary
************************
                       Time Interval Cost
Time Interval Cost
3 years $ 30,000 5 years $ 6,251
10 years $ 59,691 15 years $ 73,127
18 years $ 6,554 20 years $ 12,862
*******************
 Facility Life Cycle Cost Summary
*******************
Analysis using natural gas as primary fuel
+ PV 'Adjusted' Investment Costs
                                         ≖ Ś
                                             5,552,055
+ PV Energy + Transportation Costs
                                         = $ 42,911,903
+ PV Annually Recurring O&M Costs
                                         = $
                                             8,280,674
+ PV Non-Annually Recurring Repair & Replacement
                                               250,552
+ PV Disposal Cost of Existing System
                                                   0
+ PV Disposal Cost of New/Retrofit Facility
                                         = $
                                                   0
Total Life Cycle Cost (1995)
                                         = $ 56,995,185
Levelized Cost of Service (1999 start)
Levelized Cost of Service (1999 start)
                                     = 12.772 $/MMBtu
                                   = 12.772 $/MMBtu
= 15.270 $/1000 lb steam
Levelized Cost of Service (1999 start)
Facility Life Cycle Cost Summary
**********************
Analysis using #2 fuel oil as primary fuel
+ PV 'Adjusted' Investment Costs
                                         = $ 5,552,055
```

Central Heating Plant Economics Evaluation Progra File: WVAR1 Type: New plant (NP) Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler	am Cost Analysis Page 3 01/05/95
Facility Life Cycle Cost Summary, cont	********
+ PV Energy + Transportation Costs + PV Annually Recurring O&M Costs + PV Non-Annually Recurring Repair & Replacement + PV Disposal Cost of Existing System + PV Disposal Cost of New/Retrofit Facility	= \$ 43,074,246 = \$ 8,280,674 = \$ 250,552 = \$ 0
Total Life Cycle Cost (1995)	= \$ 57,157,529
Levelized Cost of Service (1999 start) Levelized Cost of Service (1999 start)	= 12.808 \$/MMBtu = 15.313 \$/1000 lb steam

Central Heating Plant Economics Evaluation Program -- Cost Analysis Page 1 File: WVAR1 Type: New plant (NP) 01/05/95 Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler ***************** Base Information State: NY - New York Base DOE Region: 1 PMCR: 107,000 lb/hr steam Number of boilers: 3 Steam Properties: 150 psi (1195.6 Btu/lb)
Inlet water temp: 120 deg F enthalpy: enthalpy: 88.1 Btu/lb **************** Boiler Design Parameters ***********************

A mixed bed for condensate polishing IS NOT NEEDED A dealkalizer unit IS INCLUDED

Length of rail track: 125 ft

Annual personnel water use: 89,162 gallons

Central Heating Plant Economics Evaluation Program -- Cost Analysis Page 2 File: WVAR1 Type: New plant (NP) 01/05/95 Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler ****************** Plant Design Parameters --- Space Requirements Height of the plant: 40 ft Building area: 7500 sq ft Plant area: 1.17 acres Plant Design Parameters --- Water & Water Treatment Specifications ***************** Number of deaerators: 1 Number of resin vessels / train: 1 Number of mixed beds / train: 0 Boiler 1: 1 motor-driven feedwater pump -- 69 gpm Boiler 2: 1 motor-driven feedwater pump -- 69 gpm Boiler 3: 1 motor-driven feedwater pump -- 69 gpm Number of condensate transfer pumps: 3 Condensate transfer pump size: 848 gpm Condensate storage tank size: 3430 gallons Number of long term oil storage tanks: 1 Capacity of one long term oil storage tank: 625000 gal Number of oil (day storage) pumps: 3 Short term storage tank size: 3,464 gallons

```
Central Heating Plant Economics Evaluation Program -- Cost Analysis
                                                                       Page 3
 File: WVAR1
                   Type: New plant (NP)
                                                                     01/05/95
 Desc: WATERVLIET ARSENAL
 Tech: Gas / Oil Fired Boiler
 **********************
    Facility Capital Costs
 ************************
 Boiler capital costs: $ 1,093,737
   Boiler #1 ( 36 k-lb stm/hr) cost: $ 364,579
   Boiler #2 ( 36 k-lb stm/hr) cost: $ 364,579
   Boiler #3 ( 36 k-lb stm/hr) cost: $ 364,579
 Stack capital costs: $ 34,709
 Building and service capital costs: $ 1,143,696
   Boiler house capital costs: $ 1,033,016
   Miscellaneous building costs: $ 110,680
 Boiler Water Treatment System Capital Costs: $ 188,681
   Cost of zeolite softeners: $ 15,514
   Cost of dealkalizers: $ 101,706
   Cost of chemical injection skid: $ 22,037
   Cost of water lab: $ 22,037
  Cost of 1 deaerator: $ 27,385
Cost of boiler feedwater pumps: $ 18,757
Cost of condensate transfer pumps: $ 16,385
Cost of condensate storage tank: $ 5,934
Cost of long term oil storage: $ 201,113
  Cost of long term storage tanks: $ 163,255
  Cost of long term storage-other: $ 37,857
Cost of oil (day storage) pumps: $ 4,958
Cost of oil (day storage) heaters: $ 5,454
Cost of short term storage tanks: $ 16,098
Cost of oil unloading pumps: $ 14,544
Cost of [3] oil transfer pumps: $ 4,793
Cost of fire protection equipment: $ 44,075
Cost of 1 continuous blowdown tank: $ 845
Cost of 1 intermittent blowdown tank: $ 845
Compressor cost (2 - 30 Hp - 150 psig): $ 27,196
Cost of car puller and accessories: $ 22,037
Cost of rail tracks: $ 11,707
Site preparation cost: $ 3,223
Site improvement cost: $ 169,139
Total cost of mobile equipment: $ 42,973
  Cost of fork lift: $ 22,037
  Cost of pickup truck: $ 15,426
 Cost of power sweeper: $ 5,509
Cost of electric substation: $ 60,803
```

Central Heating Plant Economics Evaluation Program -- Cost Analysis File: WVAR1 Type: New plant (NP)

Page 4 01/05/95

Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler

Electrical costs: \$ 131,896

Piping costs: \$ 747,411

Instrumentation costs: \$ 276,353

Spare parts cost: \$ 24,321

Initial consumables: \$ 8,512

Tools cost: \$ 22,037

Central Heating Plant Economics Evaluation Program -- Cost Analysis File: WVAR1

Type: New plant (NP)

Page 5 01/05/95

Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler

************ Direct Costs ************************

Direct costs: \$ 1,485,804

Development permit cost: \$ 60,803 Project contingency costs: \$ 451,063 Construction management costs: \$ 210,496 Engineering and design costs: \$ 360,851

Owner management costs: \$ 180,425

Startup cost: \$ 222,163

*************** Installed Capital Equipment Cost Summary ************

Total Capital Costs: \$ 3,326,420 Total Direct labor cost: \$ 837,303 Total Freight cost: \$ 63,833 Total Bulk material cost: \$ 531,946 Total Direct costs: \$ 1,485,804

Plant installed cost: \$ 6,245,307

Annual Labor Costs: \$ 514,498

```
Central Heating Plant Economics Evaluation Program -- Cost Analysis
File: WVAR1
                                                             Page 6
               Type: New plant (NP)
                                                           01/05/95
Desc: WATERVLIET ARSENAL
Tech: Gas / Oil Fired Boiler
*************
  Facility Operating Labor Requirements
*******************
Operation personnel requirements
    plant manager: 1
    plant engineer: 0
    plant technician: 0 plant clerk: 0
    plant secretary: 0
    plant janitor: 0
    operations operator: 4
    operations assistant operator: 1
    fuel storage operator equipment: 0
    maintenance a mechanic: 1
    maintenance a electrician: 1
Operating staff: 10
```

Central Heating Plant Economics Evaluation Program -- Cost Analysis File: WVAR1 Type: New plant (NP) Page 7 01/05/95 Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler ************ Yearly O & M Costs Summary Annual boiler maintenance costs: \$ 7,656 Annual insurance cost: \$ 106,389 Maximum electrical consumption @ PMCR: 272 kW Annual electricity usage: 794,786 kW-hr Annual O & M (materials/supplies) costs: \$ 40,343 Annual condensate make-up water cost: \$ 25,113 Annual blowdown make-up water cost: \$ 5,022 Annual facility washdown water cost: \$ 2,340 Annual personnel water cost: \$ 267 Annual zeolite softener water cost: \$ 4,252 Annual chemicals cost: \$ 787 Annual sanitary sewer cost: \$ 2,559 Annual miscellaneous maintenance costs: \$ 8,983 Study year water cost: \$3.00/1000 gallon 1995 cost for distillate: 0.780 \$/gallon 1995 cost for residual: 0.600 \$/gallon 1995 cost for natural gas: 5.180 \$/million Btu 1995 cost for electricity: 0.078 \$/kW-hr Annual consumables cost: \$ 1,702 Annual spare parts cost: \$ 3,648 Annual mobile equipment maintenance: \$ 3,437 1999 Natural gas costs : \$ 2,212,754 1999 Auxiliary Energy Costs 63,767 1999 #2 fuel oil costs : \$ 2,452,774

Major deaerator maintenance costs (every 20 years): \$ 6,846 Motor-driven feedwater pumps maint costs (every 15 years): \$ 7,502 Centrifugal pump maint costs (every 18 years): \$ 6,554 Sump pump maintenance costs (every 20 years): \$ 6,016 Oil pump maintenance costs (every 5 years): \$ 6,251 Periodic EPA permit testing/renewal costs (every 3 years): \$ 30,000 Central Heating Plant Economics Evaluation Program -- Cost Analysis Page 9
File: WVAR1 Type: New plant (NP)
01/05/95

Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler

Capital Equipment Escalation Factor: 1.102 based on Engineering News Record, Construction Cost Index: 5032.16

Non-Labor Operation & Maintenance Escalation Factor: 1.092 based on Chemical Engineering, M & S Index, Steam Power Comp: 935.60.

Operation & Maintenance Labor Escalation Factor: 1.119 based on Engineering News Record, Skilled Labor Index: 4626.82

Construction Labor Escalation Factor: 1.024 based on Chemical Engineering, Construction Labor Index: 271.10

Annual Facility Output: 279,504 thousand 1b steam

Steam enthalpy: 1195.6 Btu/lb
Inlet enthalpy: 88.0 Btu/lb
Annual Natural Gas Usage: 346 10^6 SCF
Heating plant efficiency: 80.8% natural gas

Discount Rate: 4 % Year of Study: 1995

Years of Operation: 1999 - 2023

10% Investment Cost Exclusion IS NOT applied Annual #2 Fuel Oil Usage: 2,711 10^3 gal Heating plant efficiency: 84.1% #2 fuel oil

Desc	ral Heating Plant : WVAR1 Typ : WATERVLIET ARSEN : Gas / Oil Fired	NAL	luation Prog: (NP)	ram Cost Analysis	Page 10 01/05/95
****	******	******	******	***	
Ca	ash Flow Summary			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ * * * *	******
****	*******	*******	******	************	*****
Analy	ysis using natural	. gas as prima:	ry fuel		
1998	adjusted investme	ent: 6,245,30	7 existin	ng plant salvage:	0
Year	Boiler	Auxiliary	Non-Engage		
	Fuel	Energy	Non-Energy	Repair and	
1999	2,212,754	63,767	O&M	Replacement	•
2000	2,302,342	64,951	580,270	0	
2001	2,396,397	66,055	597,295 597,295	0	
2002	2,494,939	66,370	597,295 597,295	30,000	
2003	2,584,525	66,844	597,295	6 25	
2004	2,669,623	67,474	597,295	6,251	
2005	2,759,210	68,341	597,295	30,000	
2006	2,821,927	68,894	597,295	0	
2007	2,898,069	69,564	597,295	30,000	
2008	2,974,210	69,604	597,295	65,942	
2009	3,090,686	69,880	597,295	0	•
2010	3,202,655	71,102	597,295	30,000	
2011	3,260,197	71,536	597,295	0	·
2012	3,317,720	71,976	597,295	0	- '
2013	3,375,262	72,419	597,295	109,378	,
2014	3,432,787	72,868	597,295	0	
2015	3,490,327	73,322	597,295	. 0	
2016 2017	3,547,852	73,781	597,295	36,554	
2017	3,605,394	74,245	597,295	0	
2019	3,653,332	74,683	597,295	78,804	
2020	3,701,285	75,125	597,295	30,000	
2021	3,749,221 3,797,158	75,574	597,295	. 0	
2022	3,845,112	76,028	597,295	0	
2023	3,893,049	76,488	597,295	30,000	
_ 0 _ 0	3,033,043	76,953	597,295	6,251	

Central Heating Plant Economics Evaluation Progra File: WVAR1 Type: New plant (NP) Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler	am Cost Analysis Page 11 01/05/95

Life Cycle Cost Summary	
***************	*******
Analysis using natural gas as primary fuel + PV 'Adjusted' Investment Costs + PV Energy + Transportation Costs + PV Annually Recurring O&M Costs + PV Non-Annually Recurring Repair & Replacement + PV Disposal Cost of Existing System + PV Disposal Cost of New/Retrofit Facility	= \$ 5,552,055 = \$ 42,911,903 = \$ 8,280,674 = \$ 250,552 = \$ 0
Total Life Cycle Cost (1995)	= \$ 56,995,185
Levelized Cost of Service (1999 start) Levelized Cost of Service (1999 start)	= 12.772 \$/MMBtu = 15.270 \$/1000 lb steam

2024 new plant salvage:

File:		pe: New plant (N NAL		ram Cost Analysis	Page 12 01/05/95				
****	*********************								
	sh Flow Summary	******	*****	******	******				
Analy	sis using #2 fue	l oil as primary	fuel						
1998	adjusted investme	ent: 6,245,307	existin	ng plant salvage:	0				
Year	Boiler	Auxiliary N	on-Energy	Repair and					
	Fuel	Energy	Mão	Replacement					
1999	2,452,774	63,767	580,270	- 0					
2000	2,545,266	64,951	597,295	. 0	5				
2001	2,621,657	66,055	597,295	30,000					
2002	2,690,006	66,370	597,295	. 0					
2003	2,750,335	66,844	597,295	6,251					
2004	2,802,602	67,474	597,295	30,000					
2005	2,854,871	68,341	597,295	0					
2006	2,899,096	.68,894	597,295	0					
2007	2,943,321	69,564	597,295	30,000	. •				
2008	2,991,589	69,604	597,295	65,942					
2009	3,035,814	69,880	597,295	. 0					
2010	3,067,978	71,102	597,295	30,000					
2011	3,123,088	71,536	597,295	. 0					
2012	3,178,198	71,976	597,295	0	•				
2013	. 3,233,327	72,419	597,295	109,378					
2014	3,288,436	72,868	597,295	0 .					
2015	3,343,547	73,322	597,295	25 554	•				
2016	3,398,655	73,781	597,295	36,554					
2017	3,453,764	74,245	597,295	70.004					
2018	3,499,696	74,683	597,295	78,804	•				
2019	3,545,626	75,125	597,295	30,000					
2020	3,591,556	75,574	597,295	0					
2021	3,637,489	76,028	597,295	30 000					
2023	3,683,401 · 3,729,333	76,488	597,295	30,000					
2023	3,143,333	76,953	597,295	6,251					

= 15.313 \$/1000 lb steam

Central Heating Plant Economics Evaluation Program -- Cost Analysis File: WVAR1 Type: New plant (NP) 01/05/95 Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler *************************** Life Cycle Cost Summary ****************** Analysis using #2 fuel oil as primary fuel + PV 'Adjusted' Investment Costs = \$ 5,552,055 = \$ 43,074,246 + PV Energy + Transportation Costs + PV Annually Recurring O&M Costs = \$ 8,280,674 = \$ 250,552 + PV Non-Annually Recurring Repair & Replacement + PV Disposal Cost of Existing System + PV Disposal Cost of New/Retrofit Facility Total Life Cycle Cost (1995) = \$ 57,157,529 Levelized Cost of Service (1999 start) = 12.808 \$/MMBtu

Levelized Cost of Service (1999 start)

************* Central Heating Plant Economics Evaluation Program Page 1 ** 02/08/95 File: WVARCOG1 Type: Cogeneration new plant (CG) * * ** Desc: WATERVLIET ARSENAL ** Tech: Gas / Oil Fired Boiler : NY - New York Location: 42d 43m - 73d 42m County Emission regulation region # 0 - State and federal only Annual heating degree days: 6725 ****************************** Boiler Characteristics ********* Type of heating system : Steam Average Monthly Steam Flows (million Btu/hr) Jan Feb Mar Apr May Jun 35 8 4 59 56 65 Jul Sep Oct Nov Dec Aug 61 35 49 *** manual entry Calculated PMCR: 125 thousand lb/hr steam Average Monthly Electrical Loads (kW) Jun Apr May Feb Mar Jan 7000 8000 7000 7000 7000 7000 Oct Nov Dec Jul Aug Sep 7000 7000 7000 7000 7000 8000 Peak Monthly Electrical Loads (kW) Mar Jun Jan Feb Apr Mav 8300 8000 9500 8000 8000 8000 Oct Nov Dec Jul Aug Sep 8000 8000 8000 8000 9500 8000 Maximum peak monthly electrical load: 9500 kW Cogeneration efficiency: 30%

Steam required for peak: 83,726 lb/hr

Plant specified can meet steam requirements for peak

Boiler technology: Gas / Oil Fired Boiler

Boiler sizes (thousand lb steam/hr) :

1: 42 2: 42 3: 42

```
***************
** Central Heating Plant Economics Evaluation Program Page 2 **
                                                                                          02/08/95
                                                                                                            **
   File: WVARCOG1 Type: Cogeneration new plant (CG)
** Desc: WATERVLIET ARSENAL
    Tech: Gas / Oil Fired Boiler
*****************
Natural das composition - volume basis
     82.90 % Methane 0.00 % Ethylene 14.90 % Ethane 0.00 % Propane 0.00 % Butane 0.00 % Hydrogen 0.00 % Carbon Monoxide (CO) 0.00 % Carbon Dioxide (CO2)
       1107 Btu/SCF Heating Value
Natural gas composition - weight basis
73.70 % Carbon 22.94 % Hydrogen 0.00 % Oxygen
0.00 % Sulfur 0.00 % Carbon Monoxide 3.36 % Inert gases (N2, CO2)
        22695 Btu/lb heating value
Boiler Operating Parameters -- Natural Gas
    Combustion air temp: 70 deg F 30 % relative humidity Flue gas temp: 350 deg F 3.00 % oxygen (dry basis)
    40.02 % combustibles
                                           86.73 % N2
0.00772 mole/mole dry air
0.020 % combustibles
    10.25 % CO2
    0.00481 lb/lb dry air
14.94 % excess air
Boiler Performance -- Natural Gas

      Sensible dry gas loss:
      5.370 %
      Loss H2O vapor in air:
      0.044 %

      Fuel H2O heat loss:
      0.000 %
      H2 comb H2O heat loss:
      10.741 %

      Radiation heat loss:
      1.849 %
      Unaccounted for loss:
      1.000 %

    Combustible gas heat loss: 0.064 %
    Boiler efficiency:
                                 80.932 %
Fuel Cil #2 composition - weight basis
87.40 % Carbon 12.50 % Hydrogen
0.00 % Nitrogen 0.10 % Sulfur
                                                                   0.00 % Oxygen
0.00 % Ash
       0.00 % Moisture
        18993 Btu/lb heating value
    0.856 Specific gravity
Boiler Operating Parameters -- Fuel Oil #2
 Combustion air temp: 70 deg F 30 % relative humidity Flue gas temp: 350 deg F 2.50 % oxygen (dry basis)
    50.02 % combustibles
    13.69 % CO2 83.79 % N2
0.00481 lb/lb dry air 0.00772 mole/mole dry air
12.65 % excess air 0.020 % combustibles
Boiler Performance -- Fuel Oil #2
   Sensible dry gas loss: 5.775 % Loss H2O vapor in air: 0.048 % Fuel H2O heat loss: 0.000 % H2 comb H2O heat loss: 6.993 % Radiation heat loss: 1.849 % Unaccounted for loss: 1.000 % Combustible gas heat loss: 0.068 %
   Boiler efficiency: 84.267 %
```

*********	***********
** Coal Fired Boiler Evaluation Program	n Page 3 **
** File: WVARCOG1 Type: Cogeneration	on new plant (CG) 02/08/95 **
** Desc: WATERVLIET ARSENAL	**
** Tech: Gas / Oil Fired Boiler	**
***********	***********
****** Boiler Performa	ince @ PMCR **************
Blowdown : 5 %	
Temperature out of stack: 350 deg F	
Steam pressure : 600 psig Steam temperature : 750 deg F	
Steam temperature : 750 deg F	enthalpy : 1378.9 Btu/lb
Condensate return temp : 150 deg F	enthalpy : 118.0 Btu/lb
Makeup water temperature: 50 deg F	enthalpy : 18.0 Btu/lb
Inlet water temperature : 120 deg F	enthalpy : 88.1 Btu/lb
***************** Area and Water Requ	irements @ PMCR **************
Building size : 10500 sq ft	Tondonasto Potum . 75 %
Building size: 10500 sq ft Plant area: 1.42 acres Plant height: 40 ft	Condensate Return : 75 % Soiler house leakage : 2 %
Plant height . An ft	Water requirements : 100 gpm (est)
Stack height: 60 ft	Railway track length: 125 ft
Sewer dischrg: 50 gpm (est)	tallway track length : 125 ft
sewer gracuita : so Abu (esc)	

	File: WVAF Desc: WATE Tech: Gas	RCOG1 ERVLIET / Oil	Type: ARSENAL Fired Bo	iler *******	on new pl	ant (CG)	Page 4 02/08/95	****
Deve:	lopment and	d Const	ruction					
	Total:	0/	0	0%	•			
====	=**=====							====
Fuel	Supply and	Site	Access			• • •		,
Gas I	purchase co ore: 0	ntract	s:					
	supply cont ore: 0	racts:			•		-	
	Total:	,		0%				
Ecolo	ogy							
	Total:	0/	0	0%				
	*****		=======	========		**********	*******	====
Socia	al Consider	ations						٠.
	Total:	0/ .	0	0%				
=====	========	:		=========			==========	
Facil	ity Service	es						
Condition of system is fair Additional costs may be required to install a new distribution system. These costs are not considered in the detailed evaluation program. Score: 3								

Page 5 ** Central Heating Plant Economics Evaluation Program ** 02/08/95 File: WVARCOG1 Type: Cogeneration new plant (CG) Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler ***************** Steam distribution system routing is medium It may be difficult to incorporate the existing distribution system into the new plant. Additional costs may be required heavily modify the existing distribution system. These costs are not considered in the new plant detailed evaluation section of this program. Score: City water available: Yes Score: 5 95/ 145 65% Total: Waste Handling and Emissions Local sewer system available: Yes Score: 5 50/ 50 100% Total: Military 0/ 0% Total: Cogeneration

Plant will operated for over 6000 hours per year The facility will be operating enough to justify building a cogeneration plant.

Score: 5

The existing electricity distribution system IS compatible with a cogeneration system Score: 5

It IS NOT likely that energy demand will be curtailed Score: 5

The utility WILL maintain and repair interconnection facilities Score: 5

The utility MAY be cooperative in setting up the
electrical interconnections and stand by power costs
Additional costs may be required to set up the electrical interconnections
and stand by power costs. This should be further evaluated before
proceeding to a detailed evaluation.
Score: 2

The electric utility DOES use coal as their primary fuel Cogeneration may not be cost effective due to the local availability of relativaly low cost electricity generated by coal. Score: 1

The facility's average electrical power / steam ratio is above 75 kWh/MBtu Cogeneration may not be cost effective because a significant portion of the base's electric requirements must still be purchased from the local utility. A more detailed analysis of the electrical and thermal load curves should be performed prior to a detailed evavuation. Score: 5

Cost of electricity: 7.80 cents/kWh Cost of coal: 5.10 \$/Mbtu
The high cost of fuel may make cogeneration prohibitive.
The facility's electric load is below 25 MW
Due to small facility electric load mearurements it may not be
Cost effective to cogenerate.

The facility's load factor is above 40%
The load factor is sufficient to warrant cogeneration.
Score: 5

The facility's annual electrical power / steam ratio is above 75 kWh/MBtu Cogeneration may not be cost effective because a significant portion of the base's electric requirements must still be purchased from the local utility. A more detailed analysis of the electrical and thermal load curves should be performed prior to a detailed evavuation. Score: 5

PMCR is below 200 MMBtu output; facility is probably not suitable for cogenerat

Total: 400/ 550 72%

**	Central Heating Plant Economics Evaluation Program	Page 7	**
**	File: WVARCOG1 Type: Cogeneration new plant (CG)	02/08/95	**
**	Desc: WATERVLIET ARSENAL		**
**	Tech: Gas / Oil Fired Boiler		**

General Questions Summary

•	Total	Max	Rating
Development and Construction	0	0	0
Fuel Supply and Site Access	0	0	0
Ecology	. 0	0	. 0
Social Considerations	0	0	0
Facility Services	95	145	65
Waste Handling and Emissions	50	50	100
Military	0	0	0
Cogeneration	400	550	72

Boiler technology rating: 10

Feasibility score: 10/10 = 100%

Central Heating Plant Economics Evaluation Program -- Cost Analysis Page 1 02/08/95 File: WVARCOG1 Type: Cogeneration new plant (CG) For the Legal Desc: WATERVLIET ARSENAL Follow Heat Load Tech: Gas / Oil Fired Boiler ******************** Base and Plant Information ************************ State: NY - New York Base DOE Region: 1 PMCR: 125,000 lb/hr steam Number of boilers: 3 Height of the plant: 40 ft Building area: 10500 sq ft Plant area: 1.42 acres Facility Parameters *********************** Capital Equipment Escalation Factor: 1.102 (5032.16/1995) Non-Labor Operation & Maintenance Escalation Factor: 1.092 (935.60/1995) Operation & Maintenance Labor Escalation Factor: 1.119 (4626.82/1995) Construction Labor Escalation Factor: 1.024 (271.10/1995) Annual electricity usage: 1,019,734 kW-hr 1995 cost for distillate: 0.780 \$/gallon 1995 cost for residual: 0.600 \$/gallon 1995 cost for natural gas: 5.180 \$/million Btu 1995 cost for electricity: 0.078 \$/kW-hr Annual Facility Output: 278,784 thousand 1b steam 278,784 thousand 1b steam (incl cogen) Annual Natural Gas Usage: 401 10⁶ SCF Heating plant efficiency: 80.9% natural gas Year of Study: 1995 Years of Operation: 1999 - 2023 Annual #2 Fuel Oil Usage: 3,147 10^3 gal Heating plant efficiency: 84.3% #2 fuel oil ************************** Facility Capital Costs ********************************* Cost Equipment Cost
 Equipment
 Cost
 Equipment
 Cost

 Boiler:
 \$ 1,553,656
 Stack:
 \$ 34,709

 Building/service:
 \$ 1,582,995
 Cogen Equipment:
 \$ 2,363,542

 Water trtmnt:
 \$ 645,440
 Feedwtr pmps:
 \$ 138,724

 Cond xfr pmps:
 \$ 18,658
 Cond strg tnk:
 \$ 6,293

 Oil (long) storage:
 \$ 245,946
 Oil day strg pmp:
 \$ 6,280

 Oil heaters:
 \$ 6,390
 Oil day strg tanks:
 \$ 18,151

 Oil unload pumps:
 \$ 14,544
 Oil xfr pmps:
 \$ 5,454

 Fire protection:
 \$ 44,075
 Cont bldn tnk:
 \$ 895

 Intr bldn tnk:
 \$ 895
 Compressor:
 \$ 27,196

 Car puller:
 \$ 22,037
 Rail:
 \$ 11,707

 Site preparation:
 \$ 3,911
 Site improvements:
 \$ 179,056
 Equipment Site preparation: \$

```
Central Heating Plant Economics Evaluation Program -- Cost Analysis
                                                             Page 2
                                                            02/08/95
File: WVARCOG1 Type: Cogeneration new plant (CG)
Desc: WATERVLIET ARSENAL
Tech: Gas / Oil Fired Boiler
*****************
  Facility Capital Costs, cont
*****************
                        42,973 Elec substation: $ 95,663
182,994 Piping: $ 1,036,966
383,416 Direct costs: $ 3,084,850
Mobile equipment: $ 42,973
Electrical: $ 182,994
Instrumentation: $ 383,416
**********
Plant installed cost: $ 14,263,149
***************
 Facility Annual O & M and Energy Costs
*************
Operating staff: 11
Annual Labor Costs: $ 544,914
Annual Year Non-Labor O & M Costs : $
                                  649,840
1999 Natural gas costs : $ 2,568,396
1999 Auxiliary Energy Costs : $
1999 #2 fuel oil costs : $ 2,847,199
                                   81,815
**************
 Periodic Major Maintenance Cost Summary
************
                          Time Interval Cost
Time Interval Cost
3 years $ 30,000 5 years $ 254,162
10 years $ 250,358 15 years $ 148,709
18 years $ 7,463 20 years $ 12,862
25 years $ 6,498
*************
 Facility Life Cycle Cost Summary
*****************
Analysis using natural gas as primary fuel
+ PV 'Adjusted' Investment Costs
                                              = $ 12,679,887
                                             = $ 49,927,858
+ PV Energy + Transportation Costs
+ PV Disposal Cost of New/Potential - $ 9,005,485

+ PV Disposal Cost of New/Potential - $ 1,117,963

- PV Disposal Cost of New/Potential - $ 38,725,304

- PV Disposal Cost of New/Potential - $ 0
+ PV Disposal Cost of New/Retrofit Facility
                                          . = $
Total Life Cycle Cost (1995)
                                              = $ 34,005,891
                                      = 6.6244 $/MMBtu
Levelized Cost of Service (1999 start)
Levelized Cost of Service (1999 start)
                                          = 9.1344 \$/1000 lb steam
```

```
Central Heating Plant Economics Evaluation Program -- Cost Analysis
                                                                               Page 3
File: WVARCOG1 Type: Cogeneration new plant (CG)
                                                                           02/08/95
Desc: WATERVLIET ARSENAL
Tech: Gas / Oil Fired Boiler
   Facility Life Cycle Cost Summary
Analysis using #2 fuel oil as primary fuel
+ PV 'Adjusted' Investment Costs
                                                           = $ 12,679,887
+ PV Energy + Transportation Costs
+ PV Annually Recurring O&M Costs
                                                           = $ 50,119,842
                                                          = $ 9,005,485
+ PV Non-Annually Recurring Repair & Replacement
                                                       = $ 1,117,963
= $ 38,725,304
= $ 0
- PV Cogeneration Electricity Credit
+ PV Disposal Cost of Existing System
+ PV Disposal Cost of New/Retrofit Facility
                                                           = $
                                                                          0
Total Life Cycle Cost (1995)
                                                           = $ 34,197,875
Levelized Cost of Service (1999 start)
                                                     = 6.6618 $/MMBtu
                                                   = 9.1859 $/1000 lb steam
Levelized Cost of Service (1999 start)
```

	File: WVAI	eating Plant RCOG1 Ty ERVLIET ARSE / Oil Fired	rpe: Coge NAL				Follow His	nalysis Loss Yeat Loa	02/0	age 1 08/95
	**************************************	*********** nformation ******	*****	******	******	*******	*****	******	*****	****
		- New York ,000 lb/hr s	steam	Ba Number	se DOE F of boil	Region: 1 Lers: 3				
		perties: 60 er temp: 120				88.1 Btu	1/1b			
**************************************					******	*****	******	*****	****	
		ed for conde izer unit IS			IS REQUI	IRED				•
**************************************					******	*****	****			
	Average St	team Loads (1000 lb/	hr)						
	Heat /Dwee		Feb		Apr	May 8*	Jun			
	Heat/Proc: Cogen Sys:			56* 62	35* 62		4* 62			
	cogen byb.		Aug		Oct					
	Heat/Proc:		4*	5*	35*	49*	61*			
	Cogen Sys:	: 71	62		62	62	62			
		ion efficien tem sized fo		0 lb ste	am/hr					

Length of rail track: 125 ft

Annual personnel water use: 93,537 gallons

Central Heating Plant Economics Evaluation Program -- Cost Analysis Page 2 File: WVARCOG1 Type: Cogeneration new plant (CG) 02/08/95 Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler **************************** Plant Design Parameters --- Space Requirements ************************** Height of the plant: 40 ft Building area: 10500 sq ft Plant area: 1.42 acres ************************** Plant Design Parameters --- Water & Water Treatment Specifications ************ Feedwater flow: 263 gpm Surface area of feedwater heater: 0 sq ft Number of deaerators: 1 Number of resin vessels / train: 2 Number of mixed beds / train: 1 Boiler 1: 1 motor-driven feedwater pump -- 81 gpm Boiler 2: 1 motor-driven feedwater pump -- 81 gpm Boiler 3: 1 motor-driven feedwater pump -- 81 gpm Number of condensate transfer pumps: 3 Condensate transfer pump size: 991 gpm Condensate storage tank size: 4000 gallons Number of long term oil storage tanks: 1 Capacity of one long term oil storage tank: 861000 gal Number of oil (day storage) pumps: 3 Short term storage tank size: 4,779 gallons

```
Central Heating Plant Economics Evaluation Program -- Cost Analysis
                                                                       Page 3
File: WVARCOG1 Type: Cogeneration new plant (CG).
                                                                     02/08/95
Desc: WATERVLIET ARSENAL
Tech: Gas / Oil Fired Boiler
  Facility Capital Costs
Boiler capital costs: $ 1,553,656
  Boiler #1 ( 42 k-lb stm/hr) cost: $ 517,885
 Boiler #2 ( 42 k-lb stm/hr) cost: $ 517,885
 Boiler #3 ( 42 k-lb stm/hr) cost: $ 517,885
Stack capital costs: $ 34,709
Building and service capital costs: $ 1,582,995
 Boiler house capital costs: $ 1,446,222
 Miscellaneous building costs: $ 136,773
Cogeneration equipment capital costs: $ 2,363,542
  Cooling tower and condenser not required. Heating uses all steam.
 Cost of feedwater heater: $ 5,511
  Cost of turbine generator: $ 2,358,031
Boiler Water Treatment System Capital Costs: $ 645,440
 Cost of demineralizers: $ 386,219
 Cost of mixed bed for condensate polishing: $ 154,704
 Cost of chemical injection skid: $ 33,056
 Cost of water lab: $ 44,075
 Cost of 1 deaerator: $ 27,385
Cost of boiler feedwater pumps: $ 138,724
Cost of condensate transfer pumps: $ 18,658
Cost of condensate storage tank: $ 6,293
Cost of long term oil storage: $ 245,946
 Cost of long term storage tanks: $ 202,231
 Cost of long term storage-other: $ 43,715
Cost of oil (day storage) pumps: $ 6,280
Cost of oil (day storage) heaters: $ 6,390
Cost of short term storage tanks: $ 18,151
Cost of oil unloading pumps: $ 14,544
Cost of [3] oil transfer pumps: $ 5,454
Cost of fire protection equipment: $ 44,075
Cost of 1 continuous blowdown tank: $ 895
Cost of 1 intermittent blowdown tank: $ 895
Compressor cost (2 - 30 Hp - 150 psig): $ 27,196
Cost of car puller and accessories: $ 22,037
Cost of rail tracks: $ 11,707
Site preparation cost: $ 3,911
Site improvement cost: $ 179,056
Total cost of mobile equipment: $ 42,973
```

B36 USACERL TR 96/96

Central Heating Plant Economics Evaluation Program -- Cost Analysis

File: WVARCOG1 Type: Cogeneration new plant (CG)

Page 4 02/08/95

Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler

Cost of fork lift: \$ 22,037 Cost of pickup truck: \$ 15,426 Cost of power sweeper: \$ 5,509

Cost of electric substation: \$ 95,663

Electrical costs: \$ 182,994

Piping costs: \$ 1,036,966

Instrumentation costs: \$ 383,416

Spare parts cost: \$ 32,555

Initial consumables: \$ 11,394

Tools cost: \$ 28,648

USACERL TR 96/96 B37

Central Heating Plant Economics Evaluation Program -- Cost Analysis Page 5 File: WVARCOG1 Type: Cogeneration new plant (CG) 02/08/95

Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler

Direct Costs

Direct costs: \$ 3,084,850

Development permit cost: \$ 81,389

Project contingency costs: \$ 1,037,361 Construction management costs: \$ 484,102 Engineering and design costs: \$ 829,889

Owner management costs: \$ 414,944

Startup cost: \$ 237,162

Installed Capital Equipment Cost Summary

Total Capital Costs: \$ 7,342,135 Total Direct labor cost: \$ 2,241,343

Total Freight cost: \$ 170,873

Total Bulk material cost: \$ 1,423,946

Total Direct costs: \$ 3,084,850

Plant installed cost: \$ 14,263,149

```
Central Heating Plant Economics Evaluation Program -- Cost Analysis
                                                                    Page 3
File: WVARCOG1 Type: Cogeneration new plant (CG)
                                                                   02/08/95
Desc: WATERVLIET ARSENAL
Tech: Gas / Oil Fired Boiler
********************
Facility Operating Labor Requirements
Operation personnel requirements
    plant manager: 1
    plant engineer: 0
   plant technician: 0
plant clerk: 0
plant secretary: 0
plant janitor: 0
operations operator: 4
    operations assistant operator: 1
    maintenance a mechanic: 1
    maintenance a electrician: 1
Operating staff: 11
```

B38

Annual Labor Costs: \$ 544,914

Page 7

Central Heating Plant Economics Evaluation Program -- Cost Analysis File: WVARCOG1 Type: Cogeneration new plant (CG) 02/08/95 Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler ******************* Yearly O & M Costs Summary ********************** Annual boiler maintenance costs: \$ 10,875 Annual insurance cost: \$ 284,789 Maximum electrical consumption @ PMCR: 370 kW Annual electricity usage: 1,019,734 kW-hr Annual O & M (materials/supplies) costs: \$ 49,757 Annual condensate make-up water cost: \$ 25,048 Annual blowdown make-up water cost: \$ 5,009 Annual facility washdown water cost: \$ 2,340 Annual personnel water cost: \$ 280 Annual condensate polisher water cost: \$ 910 Annual demineralizer water cost: \$ 2,348 Annual mixed bed water cost: \$ 910 Annual chemicals cost: \$ 10,346 Annual sanitary sewer cost: \$ 2,562 Annual miscellaneous maintenance costs: \$ 10,903 Study year water cost: \$3.00/1000 gallon 1995 cost for distillate: 0.780 \$/gallon 1995 cost for residual: 0.600 \$/gallon 1995 cost for natural gas: 5.180 \$/million Btu 1995 cost for electricity: 0.078 \$/kW-hr Annual consumables cost: \$ 2,278 Annual spare parts cost: \$ 4,883 Annual mobile equipment maintenance: \$ 3,437 1999 Natural gas costs : \$ 2,568,396

81,815

1999 Auxiliary Energy Costs : \$ 1999 #2 fuel oil costs : \$ 2,847,199

Central Heating Plant Economics Evaluation Program -- Cost Analysis Page 8
File: WVARCOG1 Type: Cogeneration new plant (CG) 02/08/95
Desc: WATERVLIET ARSENAL

Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler

Major boiler maintenance costs (every 15 years): \$ 93,219
Major stack maintenance costs (every 10 years): \$ 6,941
Major cooling tower maintenance costs (every 15 years): \$ 0
Turbine generator maintenance costs (every 5 years): \$ 247,593
Major water treatment system maintenance costs (every 10 years): \$ 243,415
Major deaerator maintenance costs (every 20 years): \$ 6,846
Motor-driven feedwater pumps maint costs (every 15 years): \$ 55,489
Centrifugal pump maint costs (every 18 years): \$ 7,463
Circulation water pump maintenance costs (every 25 years): \$ 6,497
Sump pump maintenance costs (every 20 years): \$ 6,016
Oil pump maintenance costs (every 5 years): \$ 6,569
Periodic EPA permit testing/renewal costs (every 3 years): \$ 30,000

Central Heating Plant Economics Evaluation Program -- Cost Analysis Page 9 02/08/95 File: WVARCOG1 Type: Cogeneration new plant (CG) Desc: WATERVLIET ARSENAL

Tech: Gas / Oil Fired Boiler

Economic Data Summary ***************

Capital Equipment Escalation Factor: 1.102 based on Engineering News Record, Construction Cost Index: 5032.16

Non-Labor Operation & Maintenance Escalation Factor: 1.092 based on Chemical Engineering, M & S Index, Steam Power Comp: 935.60

Operation & Maintenance Labor Escalation Factor: 1.119 based on Engineering News Record, Skilled Labor Index: 4626.82

Construction Labor Escalation Factor: 1.024 based on Chemical Engineering, Construction Labor Index: 271.10

Annual Facility Output: 278,784 thousand 1b steam

278,784 thousand lb steam (incl cogen)

1378.9 Btu/lb Steam enthalpy: 88.0 Btu/lb Inlet enthalpy: Annual Natural Gas Usage: 401 10⁶ SCF Heating plant efficiency: 80.9% natural gas

Discount Rate: 4 %

Cogeneration Electricity Credit Basis: 31,632,003 kW-hr

Year of Study: 1995

Years of Operation: 1999 - 2023

10% Investment Cost Exclusion IS NOT applied Annual #2 Fuel Oil Usage: 3,147 10^3 gal Heating plant efficiency: 84.3% #2 fuel oil

Central Heating Plant Economics Evaluation Program -- Cost Analysis Page 10 File: WVARCOG1 Type: Cogeneration new plant (CG) 02/08/95

Desc: WATERVLIET ARSENAL

Tech: Gas / Oil Fired Boiler

Analysis using natural gas as primary fuel

1998 adjusted investment: 14,263,149 existing plant salvage:

Year	Boiler	Auxiliary	Non-Energy	Repair and	Cogen Elec
	Fuel	Energy	Mao	Replacement	Credit
1999	2,568,396	81,815	627,051	0	. 2,537,919
2000	2,672,382	83,334	649,840	. 0	2,585,010
2001	2,781,554	84,750	649,840	30,000	2,628,955
2002		85,155	649,840	50,000	
2003	2,999,919	85,762	649,840	254,162	2,641,508
2004	3,098,694	86,572	649,840	•	2,660,350
2005		87,684	649,840	30,000	2,685,453
2006	3,275,477	88,393	649,840	. 0	2,719,967
2007	3,363,856	89,253	649,840	30,000	2,741,952
2008	3,452,235	89,304	649,840		2,768,629
2009	3,587,431	89,658	649,840	504,520	2,770,201
2010	3,717,397	91,226	649,840	30 000	2,781,182
2011	3,784,187	91,783	•	30,000	2,829,845
2012	3,850,955	92,347	649,840	.0	2,847,115
2013	3,917,746	92,916	649,840	430 071	2,864,602
2014	3,984,517	93,492	649,840	432,871	2,882,257
2015	4,051,305	94,075	649,840	. 0 .	2,900,130
2016	4,118,075		649,840	. 37 460	2,918,197
2017	4,184,866	94,663	649,840	37,463	2,936,457
2018	4,240,508	95,259	649,840	0	2,954,936
2019		95,821	649,840	517,382	2,972,352
2020	4,296,169	96,388	649,840	30,000	2,989,960
	4,351,808	96,964	649,840	0	3,007,810
2021	4,407,450	97,546	649,840	0	3,025,878
2022	4,463,112	98,136	649,840	30,000	3,044,188
2023	4,518,754	98,734	649,840	260,660	3,062,715
2024	nou niene esiem				'-
2024	new plant salvag	e: 0			

Central Heating Plant Economics Evaluation Progration: WVARCOG1 Type: Cogeneration new plant (Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler	m Cost Analysis Page 11 CG) 02/08/95
**************************************	******
Analysis using natural gas as primary fuel + PV 'Adjusted' Investment Costs + PV Energy + Transportation Costs + PV Annually Recurring O&M Costs + PV Non-Annually Recurring Repair & Replacement - PV Cogeneration Electricity Credit + PV Disposal Cost of Existing System + PV Disposal Cost of New/Retrofit Facility	= \$ 12,679,887 = \$ 49,927,858 = \$ 9,005,485 = \$ 1,117,963 = \$ 38,725,304 = \$ 0 = \$ 0
Total Life Cycle Cost (1995)	= \$ 34,005,891
Levelized Cost of Service (1999 start) Levelized Cost of Service (1999 start)	= 6.6244 \$/MMBtu = 9.1344 \$/1000 lb steam

2024 new plant salvage:

File: Desc:	Central Heating Plant Economics Evaluation Program Cost Analysis File: WVARCOG1 Type: Cogeneration new plant (CG) Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler						

Analy	Analysis using #2 fuel oil as primary fuel						
1998	adjusted investm	nent: 14,263,1	49 existin	ng plant salvag	re: 0		
Year	Boiler	Auxiliary	Non-Energy	Repair and	Cogen Elec		
	Fuel	Energy	MãO	Replacement	Credit		
1999	2,847,199	81,815	627,051	. 0	2,537,919		
2000	2,954,564	83,334	649,840	0	2,585,010		
2001	3,043,240	84,750	649,840	30,000	2,628,955		
2002	3,122,580	85,155	649,840	0	2,641,508		
2003	3,192,610	85,762	649,840	254,162	2,660,350		
2004	3,253,283	86,572	649,840	30,000	2,685,453		
2005	3,313,956	87,684	649,840	. 0	2,719,967		
2006	3,365,293	88,393	649,840	0	2,741,952		
2007	3,416,630	89,253	649,840	30,000	2,768,629		
2008	3,472,660	89,304	649,840	504,520	2,770,201		
2009	3,523,996	89,658	649,840	0 .	2,781,182		
2010	3,561,333	91,226	649,840	30,000	2,829,845		
2011	3,625,305	91,783	649,840	. 0	2,847,115		
2012	3,689,277	92,347	649,840	0	2,864,602		
2013	3,753,271 3,817,242	92,916	649,840	432,871	2,882,257		
2015	3,881,215	93,492	649,840	0	2,900,130		
2016	3,945,185	94,075 94,663	649,840	25 463	2,918,197		
2017	4,009,157	95,259	649,840	37,463 0	2,936,457		
2018	4,062,474	95,821	649,840 649,840	517,382	2,954,936		
2019	4,115,790	96,388	649,840	30,000	2,972,352 2,989,960		
2020	4,169,106	96,964	649,840	30,000	3,007,810		
2021	4,222,425	97,546	649,840	0	3,007,810		
2022	4,275,720	98,136	649,840	30,000	3,044,188		
2023	4,329,039	98,734	649,840	260,660	3,062,715		

Central Heating Plant Economics Evaluation Progra File: WVARCOG1 Type: Cogeneration new plant (Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler	am Cost Analysis Page 13 (CG) 02/08/95
*********	*******
Life Cycle Cost Summary ************************************	*******
Analysis using #2 fuel oil as primary fuel + PV 'Adjusted' Investment Costs + PV Energy + Transportation Costs + PV Annually Recurring O&M Costs + PV Non-Annually Recurring Repair & Replacement - PV Cogeneration Electricity Credit + PV Disposal Cost of Existing System + PV Disposal Cost of New/Retrofit Facility	= \$ 12,679,887 = \$ 50,119,842 = \$ 9,005,485 = \$ 1,117,963 = \$ 38,725,304 = \$ 0
Total Life Cycle Cost (1995)	= \$ 34,197,875
Levelized Cost of Service (1999 start) Levelized Cost of Service (1999 start)	= 6.6618 \$/MMBtu = 9.1859 \$/1000 lb steam

Desc: WATERVLIET ARSENAL Operate All Year Tech: Gas / Oil Fired Boiler ********* Base and Plant Information *********************** State: NY - New York Base DOE Region: 1 State: NY - New York Base DOE Region: PMCR: 125,000 lb/hr steam Number of boilers: 3 Height of the plant: 40 ft Building area: 10500 sq ft Plant area: 1.42 acres Facility Parameters Capital Equipment Escalation Factor: 1.102 (5032.16/1995) Non-Labor Operation & Maintenance Escalation Factor: 1.092 (935.60/1995) Operation & Maintenance Labor Escalation Factor: 1.119 (4626.82/1995) Construction Labor Escalation Factor: 1.024 (271.10/1995) Annual electricity usage: 1,649,523 kW-hr 1995 cost for distillate: 0.780 \$/gallon 1995 cost for residual: 0.600 \$/gallon 1995 cost for natural gas: 5.180 \$/million Btu 1995 cost for electricity: 0.078 \$/kW-hr Annual Facility Output: 278,784 thousand 1b steam 555,864 thousand lb steam (incl cogen) Annual Natural Gas Usage: 800 10^6 SCF Heating plant efficiency: 80.9% natural gas Year of Study: 1995 Years of Operation: 1999 - 2023 Annual #2 Fuel Oil Usage: 6,275 10^3 gal Heating plant efficiency: 84.3% #2 fuel oil ************ Facility Capital Costs *********************** Equipment Cost Equipment Cost

Boiler: \$ 1,553,656 Stack: \$ 34,709
Building/service: \$ 1,582,995 Cogen Equipment: \$ 2,797,500
Water trumnt: \$ 645,440 Feedwtr pmps: \$ 138,724
Cond xfr pmps: \$ 18,658 Cond strg tnk: \$ 6,293
Oil (long) storage: \$ 245,946 Oil day strg pmp: \$ 6,280
Oil heaters: \$ 6,390 Oil day strg tanks: \$ 18,151
Oil unload pumps: \$ 14,544 Oil xfr pmps: \$ 5,454
Fire protection: \$ 44,075 Cont bldn tnk: \$ 895
Intr bldn tnk: \$ 895 Compressor: \$ 27,196
Car puller: \$ 22,037 Rail: \$ 11,707
Site preparation: \$ 3,911 Site improvements: \$ 179,056 Equipment Cost Equipment

```
Central Heating Plant Economics Evaluation Program -- Cost Analysis
                                                         Page 2
                                                      02/08/95
File: WVARCOG1 Type: Cogeneration new plant (CG)
Desc: WATERVLIET ARSENAL
Tech: Gas / Oil Fired Boiler
*************
  Facility Capital Costs, cont
************
Mobile equipment: $ 42,973 Elec substation: $ Electrical: $ 182,994 Piping: $ Instrumentation: $ 383,416 Direct costs: $
                                                      95,663
                                               $
                                                    1,036,966
                                              Ś
                                                    3,258,433
*******************
Plant installed cost: $
                      15,162,965
 ***************
 Facility Annual O & M and Energy Costs
*******************
Operating staff: 11
Annual Labor Costs: $ 544,914
Annual Year Non-Labor O & M Costs : $
                                918,445
1999 Natural gas costs : $ 5,121,093
1999 Auxiliary Energy Costs : $
                                132,345
1999 #2 fuel oil costs : $ 5,676,996
***************
 Periodic Major Maintenance Cost Summary
**************
                            Time Interval
                Cost
Time Interval
------
                            ______
3 years $ 30,000
10 years $ 250,358
18 years $ 7,463
25 years $ 6,498
                          5 years
15 years
20 years
                                    $ 254,162
$ 180,601
$ 12,862
***************
 Facility Life Cycle Cost Summary
************************
Analysis using natural gas as primary fuel
+ PV 'Adjusted' Investment Costs
                                          = $ 13,479,820
+ PV Energy + Transportation Costs
+ PV Annually Recurring O&M Costs
                                          = $ 99,080,786
                                         = $ 12,735,865
+ PV Non-Annually Recurring Repair & Replacement
                                          = $
                                              1,133,706
                                       = $ 77,213,909
- PV Cogeneration Electricity Credit
+ PV Disposal Cost of Existing System
                                          = $ 0
+ PV Disposal Cost of New/Retrofit Facility
                                          = $
                                                     0
Total Life Cycle Cost (1995)
                                           = $ 49,216,269
Levelized Cost of Service (1999 start)
                                      = 9.5874 \$/MMBtu
Levelized Cost of Service (1999 start)
                                       = 13.220 \$/1000 lb steam
```

= 13.322 \$/1000 lb steam

Central Heating Plant Economics Evaluation Program -- Cost Analysis Page 3 File: WVARCOG1 Type: Cogeneration new plant (CG) 02/08/95 Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler Facility Life Cycle Cost Summary ******************* Analysis using #2 fuel oil as primary fuel + PV 'Adjusted' Investment Costs = \$ 13,479,820 = \$ 99,463,582 = \$ 12,735,865 + PV Energy + Transportation Costs + PV Annually Recurring O&M Costs + PV Non-Annually Recurring Repair & Replacement = \$ 1,133,706 - PV Cogeneration Electricity Credit = \$ 77,213,909 + PV Disposal Cost of Existing System + PV Disposal Cost of New/Retrofit Facility = \$ 0 -----Total Life Cycle Cost (1995) = \$ 49,599,065 Levelized Cost of Service (1999 start) = 9.6620 \$/MMBtu

Levelized Cost of Service (1999 start)

Central Heating Plant Economics Evaluation Program Cost Analysis Page 1 File: WVARCOG1 Type: Cogeneration new plant (CG) GROWN OZ/08/95 Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler Coperate All Year

Base Information
State: NY - New York Base DOE Region: 1 PMCR: 125,000 lb/hr steam Number of boilers: 3
Steam Properties: 600 psi (1378.9 Btu/lb) Inlet water temp: 120 deg F enthalpy: 88.1 Btu/lb
inter water temp. 120 deg 1 thematpy. 00.1 Dea/12

Boiler Design Parameters

A mixed bed for condensate polishing IS REQUIRED
A dealkalizer unit IS NOT NEEDED

Cogeneration Subsystem Design Parameters

Average Steam Loads (1000 lb/hr)
Jan Feb Mar Apr May Jun Heat/Proc: 59 65 56 35 8 4
Cogen Sys: 62* 71* 62* 62* 62*
Jul Aug Sep Oct Nov Dec
Heat/Proc: 3 4 5 35 49 61 Cogen Sys: 71* 62* 62* 62* 62* 62*
Cogeneration efficiency: 30%
Cogen system sized for 84,000 lb steam/hr

Central Heating Plant Economics Evaluation Program -- Cost Analysis Page 2 File: WVARCOG1 Type: Cogeneration new plant (CG) 02/08/95 Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler **************************** Plant Design Parameters --- Space Requirements ************************** Height of the plant: 40 ft Building area: 10500 sq ft Plant area: 1.42 acres Plant Design Parameters --- Water & Water Treatment Specifications *********************** Cooling tower-condenser water circulation rate: 9,336 gpm Feedwater flow: 263 gpm Surface area of feedwater heater: 0 sq ft Number of deaerators: 1 Number of resin vessels / train: 2 Number of mixed beds / train: 1 Boiler 1: 1 motor-driven feedwater pump -- 81 gpm Boiler 2: 1 motor-driven feedwater pump -- 81 gpm Boiler 3: 1 motor-driven feedwater pump -- 81 gpm Number of condensate transfer pumps: 3 Condensate transfer pump size: 991 gpm Condensate storage tank size: 4000 gallons Number of long term oil storage tanks: 1 Capacity of one long term oil storage tank: 861000 gal Number of oil (day storage) pumps: 3 Short term storage tank size: 4,779 gallons Length of rail track: 125 ft Annual cooling tower makeup water use: 67,256,332 gallons

Annual personnel water use: 93,537 gallons

```
Central Heating Plant Economics Evaluation Program -- Cost Analysis
                                                                            Page 3
                   Type: Cogeneration new plant (CG)
File: WVARCOG1
                                                                          02/08/95
Desc: WATERVLIET ARSENAL
Tech: Gas / Oil Fired Boiler
 ***********************
   Facility Capital Costs
********
Boiler capital costs: $ 1,553,656
  Boiler #1 ( 42 k-lb stm/hr) cost: $ 517,885
Boiler #2 ( 42 k-lb stm/hr) cost: $ 517,885
  Boiler #3 ( 42 k-lb stm/hr) cost: $ 517,885
Stack capital costs: $ 34,709
Building and service capital costs: $ 1,582,995
  Boiler house capital costs: $ 1,446,222
  Miscellaneous building costs: $ 136,773
Cogeneration equipment capital costs: $ 2,797,500
  Cost of condenser: $ 115,036
  Cost of cooling tower: $ 318,921
  Cost of feedwater heater: $ 5,511
  Cost of turbine generator: $ 2,358,031
Boiler Water Treatment System Capital Costs: $ 645,440
  Cost of demineralizers: $ 386,219
  Cost of mixed bed for condensate polishing: $ 154,704
  Cost of chemical injection skid: $ 33,056
  Cost of water lab: $ 44,075
  Cost of 1 deaerator: $ 27,385
Cost of boiler feedwater pumps: $ 138,724
Cost of condensate transfer pumps: $ 18,658
Cost of condensate storage tank: $ 6,293
Cost of long term oil storage: $ 245,946
  Cost of long term storage tanks: $ 202,231 Cost of long term storage-other: $ 43,715
Cost of oil (day storage) pumps: $ 6,280
Cost of oil (day storage) heaters: $ 6,390
Cost of short term storage tanks: $ 18,151
Cost of oil unloading pumps: $ 14,544
Cost of [3] oil transfer pumps: $ 5,454
Cost of fire protection equipment: $ 44,075
Cost of 1 continuous blowdown tank: $ 895
Cost of 1 intermittent blowdown tank: $ 895
Compressor cost (2 - 30 Hp -- 150 psig): $ 27,196
Cost of car puller and accessories: $ 22,037
Cost of rail tracks: $ 11,707
Site preparation cost: $ 3,911
Site improvement cost: $ 179,056
```

Central Heating Plant Economics Evaluation Program -- Cost Analysis File: WVARCOG1 Type: Cogeneration new plant (CG)

02/08/95

Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler

Facility Capital Costs, cont

Total cost of mobile equipment: \$ 42,973

Cost of fork lift: \$ 22,037 Cost of pickup truck: \$ 15,426 Cost of power sweeper: \$ 5,509

Cost of electric substation: \$ 95,663

Electrical costs: \$ 182,994

Piping costs: \$ 1,036,966

Instrumentation costs: \$ 383,416

Spare parts cost: \$ 32,555

Initial consumables: \$ 11,394

Tools cost: \$ 28,648

Central Heating Plant Economics Evaluation Program -- Cost Analysis Page 5 Type: Cogeneration new plant (CG). 02/08/95 File: WVARCOG1 Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler ******************** Direct Costs Direct costs: \$ 3,258,433 Development permit cost: \$ 81,389 Project contingency costs: \$ 1,102,455 Construction management costs: \$ 514,479 Engineering and design costs: \$ 881,964 Owner management costs: \$ 440,982 Startup cost: \$ 237,162

Installed Capital Equipment Cost Summary

Total Capital Costs: \$ 7,776,093

Total Direct labor cost: \$ 2,412,110 Total Freight cost: \$ 183,892

Total Bulk material cost: \$ 1,532,435

Total Direct costs: \$ 3,258,433

Plant installed cost: \$ 15,162,965

Annual Labor Costs: \$ 544,914

Central Heating Plant Economics Evaluation Program -- Cost Analysis Page 6 File: WVARCOG1 Type: Cogeneration new plant (CG) 02/08/95 Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler ************************* Facility Operating Labor Requirements ************************** Operation personnel requirements plant manager: 1 plant engineer: 0 plant technician: 0 plant clerk: 0
plant secretary: 0
plant janitor: 0
operations operator: 4 operations assistant operator: 1 maintenance a mechanic: 1 maintenance a electrician: 1 Operating staff: 11

Central Heating Plant Economics Evaluation Program -- Cost Analysis Page 7 File: WVARCOG1 Type: Cogeneration new plant (CG) 02/08/95 Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler ************ Yearly O & M Costs Summary Annual boiler maintenance costs: \$ 10,875 Annual insurance cost: \$ 306,487 Maximum electrical consumption @ PMCR: 370 kW Annual electricity usage: 1,649,523 kW-hr Annual O & M (materials/supplies) costs: \$ 318,362 Annual condensate make-up water cost: \$ 49,944 Annual blowdown make-up water cost: \$ 9,988 Annual facility washdown water cost: \$ 2,340 Annual cooling tower water cost: \$ 201,768 Annual personnel water cost: \$ 280 Annual condensate polisher water cost: \$ 1,815 Annual demineralizer water cost: \$ 4,682 Annual mixed bed water cost: \$ 1,815 Annual chemicals cost: \$ 21,308 Annual sanitary sewer cost: \$ 24,417 Annual miscellaneous maintenance costs: \$ 10,903 Study year water cost: \$3.00/1000 gallon 1995 cost for distillate: 0.780 \$/gallon 1995 cost for residual: 0.600 \$/gallon 1995 cost for natural gas: 5.180 \$/million Btu 1995 cost for electricity: 0.078 \$/kW-hr Annual consumables cost: \$ 2,278 Annual spare parts cost: \$ 4,883 Annual mobile equipment maintenance: \$ 3,437 1999 Natural gas costs : \$ 5,121,093 1999 Auxiliary Energy Costs : \$ 1999 #2 fuel oil costs : \$ 5,676,996 132,345

Central Heating Plant Economics Evaluation Program -- Cost Analysis Page 8
File: WVARCOG1 Type: Cogeneration new plant (CG) 02/08/95

Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler

Periodic Maintenance Costs Summary

Major boiler maintenance costs (every 15 years): \$ 93,219
Major stack maintenance costs (every 10 years): \$ 6,941
Major cooling tower maintenance costs (every 15 years): \$ 31,892
Turbine generator maintenance costs (every 5 years): \$ 247,593
Major water treatment system maintenance costs (every 10 years): \$ 243,415
Major deaerator maintenance costs (every 20 years): \$ 6,846
Motor-driven feedwater pumps maint costs (every 15 years): \$ 55,489
Centrifugal pump maint costs (every 18 years): \$ 7,463
Circulation water pump maintenance costs (every 25 years): \$ 6,497
Sump pump maintenance costs (every 20 years): \$ 6,016
Oil pump maintenance costs (every 5 years): \$ 6,569
Periodic EPA permit testing/renewal costs (every 3 years): \$ 30,000

Central Heating Plant Economics Evaluation Program -- Cost Analysis Page 9 02/08/95 File: WVARCOG1 Type: Cogeneration new plant (CG)

Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler

Economic Data Summary

Capital Equipment Escalation Factor: 1.102 based on Engineering News Record, Construction Cost Index: 5032.16

Non-Labor Operation & Maintenance Escalation Factor: 1.092 based on Chemical Engineering, M & S Index, Steam Power Comp: 935.60

Operation & Maintenance Labor Escalation Factor: 1.119 based on Engineering News Record, Skilled Labor Index: 4626.82

Construction Labor Escalation Factor: 1.024 based on Chemical Engineering, Construction Labor Index: 271.10

Steam enthalpy: 1378.9 Btu/lb
Inlet enthalpy: 88.0 Btu/l Annual Natural Gas Usage: 800 10^6 SCF Heating plant efficiency: 80.9% natural gas

Discount Rate: 4 %

Cogeneration Electricity Credit Basis: 63,070,663 kW-hr

Year of Study: 1995

Years of Operation: 1999 - 2023

10% Investment Cost Exclusion IS NOT applied Annual #2 Fuel Oil Usage: 6,275 10^3 gal Heating plant efficiency: 84.3% #2 fuel oil

Central Heating Plant Economics Evaluation Program Cost Analysis Page 10 File: WVARCOG1 Type: Cogeneration new plant (CG) 02/08/95 Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler ***********************************					
	ijusted investm			g plant salvag	e: 0
Year	Boiler	Auxiliary	Non-Energy	Repair and	Cogen Elec
	Fuel	Energy	M-3O	Replacement	Credit
1999	5,121,093	132,345	895,656	0	5,060,326
2000	5,328,431	134,801	918,445	0	5,154,220
2001	5,546,108	137,092	918,445	30,000 .	5,241,842
2002	5,774,169	137,747	918,445	0	5,266,871
2003	5,981,502	138,730	918,445	254,162	5,304,440
2004	6,178,449	140,039	918,445	30,000	5,354,493
2005	6,385,786	141,838	918,445	0	5,423,309
2006	6,530,934	142,985	918,445	. 0	5,467,145
2007	6,707,152	144,376	918,445	30,000	5,520,335
2008	6,883,369	144,458	918,445	504,520	5,523,471
2009	7,152,936	145,031	918,445	0	5,545,366
2010	7,412,072	147,568	918,445	30,000	5,642,393
2011	7,545,245	148,469	918,445	0	5,676,829
2012	7,678,373	149,381	918,445	0	5,711,696
2013	7,811,547	150,301	918,445	464,763	5,746,897
2014	7,944,679	151,233	918,445	0	5,782,533
2.015	8,077,848	152,176	918,445	0 .	5,818,559
2016	8,210,979	153,128	918,445	37,463	5,854,965
2017	8,344,153	154,091	918,445	. 0	5,891,811
2018	8,455,097	155,000	918,445	517,382	5,926,537
2019	8,566,078	155,918	918,445	30,000	5,961,646
2020	8,677,018	156,849	918,445	0	5,997,237
2021	8,787,962	157,791	918,445	0	6,033,262
2022	8,898,945	158,746	918,445	30,000	6,069,769
2023	9,009,888	159,712	918,445	260,660	6,106,710

2024 new plant salvage:

Central Heating Plant Economics Evaluation Progra File: WVARCOG1 Type: Cogeneration new plant Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler	am Cost Analysis Page 11 (CG) 02/08/95
**************************************	**********
Analysis using natural gas as primary fuel + PV 'Adjusted' Investment Costs + PV Energy + Transportation Costs + PV Annually Recurring O&M Costs + PV Non-Annually Recurring Repair & Replacement - PV Cogeneration Electricity Credit + PV Disposal Cost of Existing System + PV Disposal Cost of New/Retrofit Facility	= \$ 13,479,820 = \$ 99,080,786 = \$ 12,735,865 = \$ 1,133,706 = \$ 77,213,909 = \$ 0
Total Life Cycle Cost (1995)	= \$ 49,216,269
Levelized Cost of Service (1999 start) Levelized Cost of Service (1999 start)	= 9.5874 \$/MMBtu = 13.220 \$/1000 lb steam

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

6,924,094

7,026,453

7,100,898

7,228,452

7,356,005

7,483,602

7,611,153

7,738,708

7,866,257

7,993,809

8,100,118

8,206,424 8,312,730

8,419,042

8,525,307

5,523,471

5,545,366

5,642,393

5,676,829

5,711,696

5,746,897

5,782,533

5,818,559

5,854,965

5,891,811

5,926,537

5,961,646

5,997,237

6,033,262

6,069,769

File: Desc:	l Heating Plant WVARCOG1 Ty WATERVLIET ARSE Gas / Oil Fired	pe: Cogenerat NAL	aluation Progr ion new plant	ram Cost Ana (CG)	lysis Page 12 02/08/95	

Analys	is using #2 fue:	l oil as prima	ary fuel			
1998 a	djusted investme	ent: 15,162,	965 existin	ng plant salvag	e: 0	
Year	Boiler Fuel	Auxiliary Energy	Non-Energy O&M	Repair and Replacement	Cogen Elec Credit	
1999	5,676,996	132,345	895,656	00	5,060,326	
2000	5,891,070	134,801	918,445	ō	. 5,154,220	
2001	6,067,879	137,092	918,445	30,000	5,241,842	
2002	6,226,075	137,747	918,445	0	5,266,871	
2003	6,365,707	138,730	918,445	254,162	5,304,440	
2004	6,486,681	140,039	918,445	30,000	5,354,493	
2005	6,607,657	141,838	918,445	0	5,423,309	
2006	6,710,016	142,985	918,445	0	5,467,145	
2007	6,812,378	144,376	918,445	30,000	5,520,335	
0000						

918,445

918,445

918,445

918,445

918,445

918,445

918,445

918,445

918,445

918,445

918,445

918,445

918,445

918,445

918,445

504,520

30,000

464,763

37,463

517,382

30,000

30,000

0

٥

0

0

0

0

0

2023 8,631,618 159,712 918,445 260,660 6,106,710 2024 new plant salvage: 0

144,458

145,031

147,568

148,469

149,381

150,301

151,233

152,176

153,128

154,091

155,000

155,918

156,849

157,791

158,746

Central Heating Plant Economics Evaluation Progra File: WVARCOG1 Type: Cogeneration new plant Desc: WATERVLIET ARSENAL Tech: Gas / Oil Fired Boiler	am Cost Analysis Page 13 (CG) 02/08/95
**************************************	********
Analysis using #2 fuel oil as primary fuel + PV 'Adjusted' Investment Costs + PV Energy + Transportation Costs + PV Annually Recurring O&M Costs + PV Non-Annually Recurring Repair & Replacement - PV Cogeneration Electricity Credit + PV Disposal Cost of Existing System + PV Disposal Cost of New/Retrofit Facility	= \$ 13,479,820 = \$ 99,463,582 = \$ 12,735,865 = \$ 1,133,706 = \$ 77,213,909 = \$ 0
Total Life Cycle Cost (1995)	= \$ 49,599,065
Levelized Cost of Service (1999 start) Levelized Cost of Service (1999 start)	= 9.6620 \$/MMBtu = 13.322 \$/1000 lb steam