

Teste Intermédio

Matemática A

Versão 1

Duração do Teste: 90 minutos | 30.04.2014

12.º Ano de Escolaridade

Indique de forma legível a versão do teste.

Utilize apenas caneta ou esferográfica, de tinta azul ou preta.

É permitido o uso de material de desenho e de medição, assim como de uma calculadora gráfica.

Não é permitido o uso de corretor. Deve riscar aquilo que pretende que não seja classificado.

Para cada resposta, indique a numeração do grupo e do item.

Apresente as suas respostas de forma legível.

Para cada item, apresente apenas uma resposta.

O teste inclui um formulário.

As cotações dos itens encontram-se no final do enunciado do teste.

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - amplitude, em radianos, do ângulo ao centro; r - raio)$

Áreas de figuras planas

Losango:
$$\frac{Diagonal\ maior \times Diagonal\ menor}{2}$$

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \times Altura$$

Polígono regular: Semiperímetro × Apótema

Sector circular:

$$\frac{\alpha r^2}{2}(\alpha - amplitude, em radianos, do ângulo ao centro; r - raio)$$

Áreas de superfícies

Área lateral de um cone:
$$\pi rg(r - raio da base; g - geratriz)$$

Área de uma superfície esférica: $4\pi r^2$ (r - raio)

Volumes

Pirâmide:
$$\frac{1}{3} \times \text{Área da base} \times \text{Altura}$$

Cone:
$$\frac{1}{3} \times \text{Área da base} \times \text{Altura}$$

Esfera:
$$\frac{4}{3}\pi r^3 (r - raio)$$

Trigonometria

$$sen(a+b) = sen a cos b + sen b cos a$$

$$cos(a+b) = cos a cos b - sen a sen b$$

$$tg(a+b) = \frac{tga + tgb}{1 - tga tgb}$$

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$${}^{n}\sqrt{\rho\operatorname{cis}\theta} = {}^{n}\sqrt{\rho}\operatorname{cis}\left(\frac{\theta+2k\pi}{n}\right) \ (k\in\{0,\ldots,n-1\} \ \mathbf{e} \ n\in\mathbb{N})$$

Probabilidades

$$\mu = p_1 x_1 + \dots + p_n x_n$$

$$\sigma = \sqrt{p_1 (x_1 - \mu)^2 + \dots + p_n (x_n - \mu)^2}$$

Se $X \in N(\mu, \sigma)$, então:

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0,6827$$

 $P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0,9545$
 $P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0,9973$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \, v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

1. Seja b um número real.

Sabe-se que $\log b = 2014$ (\log designa logaritmo de base 10)

Qual é o valor de log(100b) ?

- **(A)** 2016
- **(B)** 2024
- (C) 2114
- **(D)** 4028
- **2.** Na Figura 1, está representada parte do gráfico de uma função h, de domínio $\mathbb{R}\setminus\{1,e\}$

Tal como a figura sugere, as retas de equações $y=0, \ x=1$ e x=e são as assíntotas do gráfico da função h

Seja (x_n) uma sucessão tal que $\lim h(x_n) = +\infty$

Qual das expressões seguintes **não** pode ser termo geral da sucessão (x_n) ?

(B)
$$\left(1 + \frac{1}{n}\right)^3$$

(C)
$$1 - \frac{1}{n}$$

(D)
$$e + \frac{1}{n}$$

Figura 1

3. Seja f uma função, de domínio \mathbb{R}^+ , com derivada finita em todos os pontos do seu domínio. A sua derivada, f', é definida por $f'(x) = \frac{1}{2}x^2 - \ln x$

Quantos pontos de inflexão tem o gráfico da função f ?

- (A) Zero.
- (B) Um.
- (C) Dois.
- (D) Três.

4. Seja g a função, de domínio \mathbb{R} , definida por $g(x) = \cos^2\left(\frac{x}{12}\right) - \sin^2\left(\frac{x}{12}\right)$

Qual das expressões seguintes também define a função g?

- (A) $\operatorname{sen}\left(\frac{x}{24}\right)$
- (B) $\cos\left(\frac{x}{24}\right)$
- (C) $\operatorname{sen}\left(\frac{x}{6}\right)$
- (D) $\cos\left(\frac{x}{6}\right)$
- 5. Escolhe-se, ao acaso, um professor de uma certa escola secundária.

Sejam A e B os acontecimentos:

 ${\cal A}$: «o professor escolhido é do sexo masculino»

Sabe-se que:

- P(A) = 0.44
- $P(A \cup \overline{B}) = 0.92$

Qual é a probabilidade de o professor escolhido ensinar Matemática, sabendo que é do sexo feminino?

- (A) $\frac{1}{5}$
- **(B)** $\frac{1}{6}$
- (C) $\frac{1}{7}$
- **(D)** $\frac{1}{8}$

Na resposta aos itens deste grupo, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1. Seja f a função, de domínio \mathbb{R} , definida por

$$f(x) = \begin{cases} 2x + 1 + e^{-x} & \text{se } x \le 0 \\ \\ \frac{3x + \ln x}{x} & \text{se } x > 0 \end{cases}$$

Resolva os itens 1.1. e 1.2. recorrendo a métodos analíticos, sem utilizar a calculadora.

1.1. Seja t a reta tangente ao gráfico da função f no ponto de abcissa 1

Determine a equação reduzida da reta t

1.2. Estude a função f quanto à existência de assíntotas do seu gráfico.

Na sua resposta, deve:

- mostrar que existe uma única assíntota vertical e escrever uma equação dessa assíntota;
- mostrar que existe uma assíntota horizontal quando $x \to +\infty$ e escrever uma equação dessa assíntota;
- mostrar que não existe assíntota não vertical quando $x \to -\infty$
- **1.3.** Na Figura 2, estão representados, num referencial o.n. xOy, parte do gráfico da função f, os pontos A e B, ambos pertencentes ao gráfico de f, e a reta AB

Sabe-se que:

- a reta AB é paralela à bissetriz dos quadrantes pares;
- os pontos A e B têm abcissas simétricas;
- a abcissa do ponto A pertence ao intervalo]0,1[

Seja a a abcissa do ponto A

Determine o valor de a, recorrendo à calculadora gráfica.

Figura 2

Na sua resposta, deve:

- · equacionar o problema;
- reproduzir, num referencial, o gráfico da função ou os gráficos das funções que visualizar na calculadora, devidamente identificado(s);
- indicar o valor de *a*, com arredondamento às milésimas.

2. Numa certa escola, eclodiu uma epidemia de gripe que está a afetar muitos alunos.

Admita que o número de alunos com gripe, t dias após as zero horas de segunda-feira da próxima semana, é dado aproximadamente por

$$f(t) = (4t+2)e^{3,75-t}$$
, para $t \in [0,6]$

Como, por exemplo, $f(1,5) \approx 76$, pode concluir-se que 76 alunos dessa escola estarão com gripe às 12 horas de terça-feira da próxima semana.

2.1. Resolva este item recorrendo a métodos analíticos, sem utilizar a calculadora.

Estude a função f quanto à monotonia e conclua em que dia da próxima semana, e a que horas desse dia, será máximo o número de alunos com gripe.

2.2. Nessa escola, há 300 alunos.

Às 18 horas de quinta-feira da próxima semana, vão ser escolhidos aleatoriamente 3 alunos, de entre os 300 alunos da escola, para responderem a um inquérito.

Qual é a probabilidade de pelo menos um dos alunos escolhidos estar com gripe?

Apresente o resultado na forma de dízima, com arredondamento às centésimas.

3. Na Figura 3, está representada, num referencial o.n. Oxyz, uma pirâmide quadrangular regular [ABCDV], cuja base está contida no plano xOy e cujo vértice V tem cota positiva.

O ponto P é o centro da base da pirâmide.

Admita que:

- $\overline{AV} = 10$
- o vértice A pertence ao eixo Ox e tem abcissa igual a 6
- ullet o vértice V tem abcissa e ordenada iguais a 6

Figura 3

- **3.1.** Mostre que o vértice V tem cota igual a 8
- **3.2.** Seja M o ponto médio da aresta [BV]

Determine uma condição cartesiana que defina a reta CM

3.3. Determine uma equação cartesiana do plano que passa no ponto P e que é perpendicular à aresta $\lceil DV \rceil$

4. Na Figura 4, está representada uma planificação de uma pirâmide quadrangular regular cujas arestas laterais medem 4

Figura 4

Seja $\, \, \alpha \,$ a amplitude, em radianos, do ângulo $\, \mathit{FSE} \, \left(\alpha \in \left] \frac{\pi}{2}, \pi \right[\right) \,$

A aresta da base da pirâmide e, consequentemente, a área de cada uma das faces laterais variam em função de $\,arphi$

Mostre que a área lateral da pirâmide é dada, em função de α , por $-32\cos\alpha$

Sugestão – Comece por exprimir a área de uma face lateral em função da amplitude do ângulo FSP, que poderá designar por β

FIM

COTAÇÕES

GRUPO I

1.		10 pontos	
2.		10 pontos	
3.		10 pontos	
4.		10 pontos	
5.		10 pontos	
			50 pontos
	GRUPO II		
	GROTOTI		
1.			
	1.1.	15 pontos	
	1.2.	20 pontos	
	1.3.	20 pontos	
2.			
	2.1.	20 pontos	
	2.2.	20 pontos	
3.			
•	3.1.	5 pontos	
	3.2.	15 pontos	
	3.3.	15 pontos	
4.		20 pontos	
			150 pontos
	TOTAL		200 pontos