数学B問題

【必答問題】 数学B受験者はB1, B2, B3 を全問解答せよ。

B1 次の を正しくうめよ。解答欄には答えのみを記入せよ。

(2) 不等式 3(x-2) < 2x-5 ……① の解は (ウ) である。

また, xが不等式①を満たすことは, x<0 であるための

(1) $a=2-\sqrt{2}$ のとき, $a+\frac{2}{a}=$ (ア) であり, $a^2+\frac{4}{a^2}=$ (イ) である。

(100分)

田 に当てはまるものを、下の①~④のうちから1つ選べ。		
① 必要十分条件である		
② 必要条件であるが、十分条件でない		
③ 十分条件であるが、必要条件でない		
④ 必要条件でも十分条件でもない		
(3) 頂点が点(1,3)で、点(-1,-5)を通る放物線を表す2次関数は、y=	(1)	です
(4) 次のデータは、あるクラス 10 人の数学の小テストの得点である。		
7, 5, 8, 6, 7, 1, 10, 4, 3, 9		
このとき、中央値は か であり、第1四分位数は 中 である。		
(5) 男子2人,女子5人,計7人の生徒がいる。この中から委員3人を選ぶて	方法は,	全部
	· (分)	通
ある。	(配片	5 2
B2 白玉が2個入っている袋がある。コインを1枚投げて、表が出れば赤玉を	1個,	裏がん
れば白玉を1個,この袋に入れる操作を3回行い,袋の中の玉の個数を5個に	する。	さらり
この袋から3個の玉を同時に取り出し、取り出された赤玉の個数をXとする。		
(1) コインを3回投げた結果、袋の中の玉が白玉5個になっている確率を求め	よ。	3
(2) $X=3$ である確率を求めよ。		
(3) $X=2$ である確率を求めよ。また, $X=2$ であるとき, 3 回ともコインが表	表である	条件
付き確率を求めよ。	(配点	20)

$oxed{B3}$ $AB=3$, $\angle A=60^\circ$ の $\triangle ABC$ があり、 $\triangle ABC$ の外接円の半径は $\frac{\sqrt{39}}{3}$ である。
(1) 辺BCの長さを求めよ。
(2) 辺ACの長さを求めよ。また、 $\tan B$ の値を求めよ。 $AC=4$ 、 $touB=2\sqrt{3}$
(3) 直線 BC 上に ∠BAD = 90°となるように点 D をとる。線分 AD の長さを求めよ。また,
線分 AC を折り目として、 △ACD を折り曲げ、平面 ABC と平面 ACD が垂直になるよ
The solution of the solution o
139: -635 139: -635
B ₃ mH
【選択問題】 数学 B 受験者は、次の $B4$ \sim $B8$ のうちから2題を選んで解答せよ。
图4 整式 $P(x) = x^3 - (k+4)x^2 + (2k+5)x + 3k + 10$ (k は実数の定数) がある。 (1) $P(-1)$ の値を求めよ。 $P(-1) = 0$ (2) 3次方程式 $P(x) = 0$ が虚数解をもつような k の値の範囲を求めよ。 (3) (2)のとき、3次方程式 $P(x) = 0$ の3つの解を α 、 β 、 γ とする。 $(\alpha+2\beta)^2 + (\beta+2\gamma)^2 + (\gamma+2\alpha)^2 = 11$ となるような k の値を求めよ。 (配点 20) (2) -3 くたく 5
B5 座標平面上に3点A(3,0), B(-1,8), C(0,1)がある。 (1) 2点A, Bを通る直線の方程式を求めよ。

- **B6** θ の方程式 $2\cos 2\theta 2\sqrt{3}\cos \theta + 2\sin^2 \theta = a$ $(0 \le \theta < 2\pi)$ ……①がある。ただし、a は定数とする。
 - (1) $t = \cos\theta$ とおくとき、 $\cos 2\theta$ を t を用いて表せ。また、①の左辺を t を用いて表せ。
 - (2) $a = \frac{9}{2}$ のとき, ①を満たす θ の値を求めよ。
 - (3) ①の解がちょうど3個存在するとき, aの値を求めよ。

(配点 20)

(1)
$$\cos 2\theta = 2t^2 - 1$$
, $2t^2 - 2\sqrt{3}t$

$$(2) \quad 0 = \frac{5\pi}{6\pi}, \quad \frac{7\pi}{6\pi}$$

$$(3) \quad 0 = 2 - 2\sqrt{3}$$

- ${f B7}$ 数列 $\{a_n\}$ は等差数列であり, $a_3=-11$, $a_9-a_6=6$ を満たしている。
 - (1) 数列 $\{a_n\}$ の公差を求めよ。また、数列 $\{a_n\}$ の一般項 a_n をnを用いて表せ。
 - (2) $S_n = a_1 + a_2 + a_3 + \dots + a_n$ ($n = 1, 2, 3, \dots$) とする。 S_n を最小にするn の値を求めよ。また、 S_n の最小値を求めよ。
 - (3) $\sum_{k=1}^{7} \frac{1}{a_k a_{k+1}}$ の値を求めよ。また, $n \ge 9$ のとき, $\sum_{k=1}^{n} \frac{1}{|a_k a_{k+1}|}$ を n を用いて表せ。

(一)
$$d=2$$
, $d=2n-17$ (配点 20)

$$(2) N = 8, S_{N} = -64$$

$$(3)$$
 $\frac{59}{(5)} - \frac{1}{2} \cdot \frac{1}{2n-15}$

- f B8 $\triangle OAB$ の辺 OA の中点を C,辺 OB を 1:4 に内分する点を D,線分 CD を 1:2 に内分する点を P とする。また,直線 OP と辺 AB の交点を Q とし, $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ とする。
 - (1) \overrightarrow{OD} を \overrightarrow{b} を用いて表せ。また, \overrightarrow{OP} を \overrightarrow{a} , \overrightarrow{b} を用いて表せ。
 - (2) $\overline{OQ} = k \overline{OP}$ (k は実数)を満たす k の値を求めよ。
 - (3) $|\vec{a}|=1$, $|\vec{b}|=3$ とする。 $|\overrightarrow{OQ}|=\frac{\sqrt{6}}{3}$ のとき, \triangle OAB の面積を求めよ。(配点 20)

$$(3) \triangle 0AB = 5$$

- 7 -