Scale Invariant Feature Transform

Tutorial 3, CSC420 2017Fall Hang Chu

Introduction

- 1. Correspondence is fundamental to many core problems in computer vision.
 - a. Recognition / Detection
 - b. Tracking
 - c. Reconstruction
- 2. Features are the key.

Introduction

- 1. Three steps in finding correspondences.
 - a. Find interest points
 - b. Compute descriptors
 - c. Match
- 2. Alternatives
 - a. Learning-based
 - b. Direct method

Detected Interest Points/Regions

Descriptors

<5 0 0 11 37 15 ...>

<14 21 10 0 3 22 ...>

Interest Points

- 1. The Laplacian of Gaussian (LoG)
 - a. Detect blob-like structures

Interest Points

- 1. The Laplacian of Gaussian (LoG)
 - a. Similar to Difference of Gaussian (DoG)

Kernels:

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

(Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

(Difference of Gaussians)

where Gaussian

$$G(x, y, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Interest Points

- Harris-Laplacian¹
 Find local maximum of:
 - Harris corner detector in space (image coordinates)
 - Laplacian in scale

SIFT (Lowe)²

Find local maximum of:

 Difference of Gaussians in space and scale

¹ K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 2001

² D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". IJCV 2004

SIFT Descriptor

- 1. Orientation of interest points
 - a. Compute orientation histogram
 - b. Gaussian weighted around center
 - c. Select dominant orientation

SIFT Descriptor

1. Orientation of interest points

- a. 4x4 window, 8 direction histogram per window
- b. Gaussian weighted around center
- c. 4x4x8=128 dimensional descriptor

