Lec 3/10

Friday, March 10, 2017 14:56

Tests regarding varioneer

$$y_1 = 30$$
 $y_2 = 20$
= 0.215, $S_2 = 0.20$ $d = 0.07$ $y_1 : \sigma_1 = \sigma_2$ $y_2 : \sigma_1 \neq \sigma_2$

$$H_i: \sigma_i = \sigma_2 \quad H_i: \sigma_i \neq \sigma_2$$

$$\frac{S_{1}^{2}}{S_{1}^{2}} = |.|03$$
 s_{0} $S_{1} > S_{2}$

muthon 2:
$$P$$
-value = which sides $P(f_{29,19} > 1.103) \cdot 2 > 0.02 = \alpha$ fail to reject

Sastests for proportions:

Telall: LRT for
$$H_0: \theta = \frac{1}{2}$$
 vs $H_1: \theta \neq \frac{1}{2}$ was reject H_0 when $|X - \frac{n}{2}| \ge K$

LRT of $H_0: \theta = \theta_0$ and $H_1: \theta \neq \theta_0$ is $X \neq K_{\alpha}$

2:
$$X \sim B_{in}(26, 0.2)$$
, $X = 1$
 $P-val = P(X \le 1; \theta = 0.2) = 0.8^{26} + 26 \cdot 0.2 \cdot 0.8^{25} = 0.02267 < 0.05$.

3: Yes tris is evidence; reject to

When N is large (>30), use normal approximation $X \sim N(n_{\theta}, n_{\theta(1-\theta)})$. $Z = \frac{\overline{X} - n_{\theta}}{\overline{n_{\theta}(1-\theta)}} \sim N(0,1) \quad \text{as } n \to \infty$

Use this Z as rest statistic to compute p-value.

Ex: n=200, 110 positive. determine whether 0 > 0.5.

test: Ho: O = a.s. Hi: O > o.s.

Stat! $Z = \frac{x - n6}{\sqrt{100 \cdot 0.5 \cdot as}} = \frac{10 - 100}{\sqrt{200 \cdot 0.5 \cdot as}} = \frac{10}{\sqrt{50}} = \sqrt{2} = 1.41$

pral: P(z > 1.41) = 0.07 > 0.05

So Cail to reject Ho.

§ 13.6 tests concerning differences of K proportions

let X,,..., Xx even be ind RVs w/ 13+ Bin (Mi, Oi)

When all n_i large, $X_i - n_i \theta_i$ when N(0,1) $\forall i \in \{1,...,k\}$

Consider testing

 $H_o: \theta_i = \cdots = \theta_n = \theta_o$ vs $H_i: \exists i \ st \cdot \theta_i \neq \theta_o$.

Consider $\chi^2 = \sum_{i=1}^{K} z_i^2 \sim \chi_{\kappa}^2$

Under
$$H_0$$
: $\theta_i = \theta_0$. so $\chi^2 = \sum_{i=1}^{K} \frac{(\chi_i - \eta_i \theta_0)^2}{\eta_i \theta_0 (1-\theta_0)}$