1. Transformation

A transformation f with input of type A and output of type B

2. Composition

Transformations with compatible input and output can be composed

3. Composition is a Transformation

Trivially (but crucially), a composition of transformations is again a transformation

4. Composition Combinator

5. Example: Components of a Composition

6. Example: Composition

 $chain_of(\mathsf{department},\mathsf{name})$

7. Counter-example: Plural Component

8. Counter-example: Optional Component

Can we represent composition of these transformations with an intuitive diagrammatic notation?

9. Idea: Unbundle the Wire

10. Idea: Compose Using the Object Wire

Attaching a transformation to the object wire indicates that the transformation is applied to each element of the collection

11. Block Type

12. Cardinality

Cardinality is a constraint on the number of elements in a block

13. Unbundling

We can unbundle a wire of a block type into a functor and object components

14. Object Transformation

Then any compatible transformation can be applied to the object wire, which indicates that the transformation is applied to every element of the block

13. Multiwired transformations

14. Example: Multiwired Transformations

Maps a department to the collection of associated employees

Produces the sum of a collection of integers

14. Example: Multiwired Composition

15. Example: Details

 $chain_of({\tt employee}, with_elements({\tt salary}), sum)$

Transformation

A transformation f maps input of type A to the output of type B.

Composition

Transformations with compatible input and output can be composed.

Composition is a Transformation

Crucially, a composition of transformations is again a transformation.