

Video on YouTube

• Watch the <u>fantastic video</u> by Grant Sanderson (3Blue1Brown)

These slides are only for your reference!

In These Slides

- Quaternions
 - Warmup: 2D rotations and complex numbers
 - Spherical linear interpolation (slerp)
 - Representing rotations using quaternions

1D Sphere and Complex Plane

- Represent 2D rotation by point on unit circle
 - − 2 coordinates but only 1 DOF
- Let's take the 2D plane to be the complex plane
 - Orientation = complex argument (angle)
 - Unit circle = complex magnitude is 1
 composition of rotation ⇔ complex multiplication
 - Trivial with exponential notation re^{iθ}
- Remember homogeneous coordinates? Adding a dimension can make life easier.
- Interpolation of angle is easy: Just slide the point along the circle.

 θ_0

Velocity Issue: lerp vs. slerp

• Linear Interpolation (lerp) between the 2D points interpolates the straight line between the two orientations

$$lerp(\mathbf{q}_0,\mathbf{q}_1,t) = \mathbf{q}(t) = \mathbf{q}_0(1-t) + \mathbf{q}_1t$$

- Renormalize q(t) to lie on the circle again
- → lerp motion does not have uniform angular velocity

Velocity Issue: lerp vs. slerp

• Spherical Linear Interpolation (slerp) interpolates along the arc lines by adding a sine term:

slerp
$$(\mathbf{q}_0, \mathbf{q}_1, t) = \mathbf{q}(t) = \frac{\mathbf{q}_0 \sin((1-t)\omega) + \mathbf{q}_1 \sin(t\omega)}{\sin(\omega)}$$
,

where ω is the angle between q0 and q1

- We still interpolate in 2D plane, but along an arc
- Silly to make things so complex in 2D, but will be critical in 3D

interpolate along arc line rather than secant

Velocity Issue: lerp vs. slerp

Linear Interpolation (ler Brain tteasers erpolates the straight line between the two orientations $\mathbf{q}(t) = \mathbf{q}_0 (1-t) + \mathbf{q}_1 t$

- Can you prove that...

 1) slerp motion does not have uniform angular velocity
 1) slerp produces a constant-speed curve? 2) the result is always a unit vector when **q**₀ and **q**₁ are unit vectors?
 - where ω is the angle between q_0 and q_1
- We still interpolate in 2D plane at unit speed, but along an arc (Hint for 1: Differentiate w.r.t. t, take magnitude, trig identities General hints: trig identities, (\mathbf{q}_0) and \mathbf{q}_1 are unit, definition of ω)

secant

rather than

Questions?

• Recap

- plane rotation in 2D: a point on unit circle
 - complex number interpretation
- use slerp for uniform speed
 - works on the sphere in any dimension

2-DOF Orientation

- Can represent by 2 angles
 - But this is messy because modulo 2π and pole...

(2-DOF Orientation)

- Can represent by 2 angles
 - But this is messy because modulo 2π and pole...
- Solution: Embed 2-sphere in 3D
 - Interpolate 3D points on the 2-sphere along great circles
 - When done interpolating, convert the point back to angles
- Use slerp for uniform velocity & to stay on sphere
 - Note that it's still a 1D problem along the great circle
 - $-\mathbf{q}_0$ and \mathbf{q}_1 are now 3D points

 q_1

3 DOF - Quaternions!

- Use the same principle
 - interpolate on higher-dimensional sphere
 - use slerp formula to get uniform angular velocity, stay on 3-sphere
- 3-sphere embedded in 4D
 - More complex, harder to visualize
 - A point on 3-sphere corresponds to an 3D orientation

Quaternions: Hypercomplex Numbers

- Due to Hamilton (1843)
- Can be defined like complex numbers but with 4 coordinates
 - -d+ai+bj+ck
 - One real part (d), three imaginary ones.

- Based on three different roots of -1:
 - $-i^2=j^2=k^2=-1$
 - and weird multiplication rules
 - ij = k = -ji
 - jk = i = -kj
 - ki = j = -ik

Quaternions: Hypercomplex Numbers

- Due to Hamilton (1843)
- Can be defined like complex numbers but with 4 coordinates
 - -d+ai+bj+ck
 - One real part (d), three imaginary ones.

- Or defined with an imaginary part v that is a 3D vector:
 - -(s, v)
 - simpler notation

Quaternions: Rotation

- Rotations represented by unit vectors in 4D
 - Right-hand rotation of θ radians about v: $\mathbf{q} = (\cos(\theta/2); \mathbf{V} \sin(\theta/2)),$

- Notes
 - unit quaternions are restricted to the unit 3-sphere in 4D (by definition of the unit sphere)
 - q & -q represent the same orientation
 - Why? (Hint: Graphs of sine and cosine, what happens to angle when axis flips if rotation is to remain same?)
 - Resembles axis-angle, but with the sines and cosines

Quaternions: Identity

- Rotations represented by unit vectors in 4D
 - Right-hand rotation of θ radians about \mathbf{v} : $\mathbf{q} = (\cos(\theta/2); \mathbf{V} \sin(\theta/2)),$

• Identity orientation?

Quaternions: Identity

- Rotations represented by unit vectors in 4D
 - Right-hand rotation of θ radians about v: $\mathbf{q} = (\cos(\theta/2); \mathbf{V} \sin(\theta/2)),$

- Identity orientation?
 - $-\theta$ is zero => scalar part = 1
 - Axis can be arbitrary, but since we want a unit quaternion \Rightarrow $\mathbf{q} = (1, \mathbf{0})$
 - BUT: Can also take $\mathbf{q} = (-1, \mathbf{0})$
 - q & -q represent the same rotation, remember

Question?

• Recap:

- Rotation in 2D embedded on unit circle
 - complex number interpretation
 - slerp for uniform speed
 - works on the sphere in any dimension

- 4D extension of complex numbers
- rotations = unit quaternions (on 3-sphere)
- $(\cos(\theta/2); \mathbf{v} \sin(\theta/2))$: rotation of θ around \mathbf{v}

Interpolating Rotations

- Given two unit quaternions, we want to interpolate
- Use slerp!
 - Works on the sphere in any dimension

slerp
$$(\mathbf{q}_0, \mathbf{q}_1, t) = \mathbf{q}(t) = \frac{\mathbf{q}_0 \sin((1-t)\omega) + \mathbf{q}_1 \sin(t\omega)}{\sin(\omega)}$$
,

- Where ω is still the angle between \mathbf{q}_0 and \mathbf{q}_1 like in 2D
- Note: This is again a linear combination of \mathbf{q}_0 and \mathbf{q}_1

Linear Combination of

Just like vectors, just like complex numbers!

• Addition: Componentwise

$$-(s, v) + (s', v') = (s+s', v+v')$$

Multiplication by scalar

$$-t(s,v)=(ts,tv)$$

slerp
$$(\mathbf{q}_0, \mathbf{q}_1, t) = \mathbf{q}(t) = \frac{\mathbf{q}_0 \sin((1-t)\omega) + \mathbf{q}_1 \sin(t\omega)}{\sin(\omega)}$$
,

You Might Need To Invert q

• Recall: q & -q represent the same rotation

• Given \mathbf{q}_0 and \mathbf{q}_1 , test the angle (in 4D!)

- If dot product of \mathbf{q}_0 and \mathbf{q}_1 is negative, they are on opposite sides of the hypersphere, and interpolation will take the longer route (red)

If this is the case,
just use -q₁ instead of q₁

Problem with Splines

- Slerp only works to interpolate between **two** positions
- For splines, we need to blend more, typically 4 (for cubics)

- Remember what we did with cubic Bézier curves!
- Works to construct a point at any t
 - Only requires interpolation between pairs of points

- Remember what we did with cubic Bézier curves!
- Works to construct a point at any t
 - Only requires interpolation between pairs of points

- Remember what we did with cubic Bézier curves!
- Works to construct a point at any t
 - Only requires interpolation between pairs of points

- Remember what we did with cubic Bézier curves!
- Works to construct a point at any t
 - Only requires interpolation between pairs of points

This is an easy-ish 2! extra in Assignment 2!

Extensions

- Better interpolation
 - E.g. minimize acceleration, velocity constraint
 - http://www.gg.caltech.edu/STC/rr_sig97.html
 - http://portal.acm.org/citation.cfm? id=218486&dl=ACM&coll=portal&CFID=1729050& CFTOKEN=74418864
 - http://portal.acm.org/citation.cfm? id=134086&dl=ACM&coll=portal&CFID=1729050& CFTOKEN=74418864

From Kim et al. 1995

Cookbook Recipe

You need matrices to draw (e.g. OpenGL)

- General approach for 3 DOF rotations
 - Store keyframe orientations as quaternions
 - Interpolate between them using slerp (pairwise)
 or slerp + De Casteljau (splines)
 - Convert to quaternion to matrix
 - Profit.
 - (Or, store matrices, convert to quaternions for interpolation, then convert back.)

Cookbook Recipe

You need matrices to draw (e.g. OpenGL)

- General approach for 3 DOF rotations
 - Store keyframe orientations as quaternions
 - Interpolate between them using slerp (pairwise)
 or slerp + De Casteljau (splines)
 - Convert to quaternion to matrix
 - Profit.
- Often need to convert from matrix to quaternion.
 - Next: Conversion to/from matrices.

Quaternion to Rotation Matrix

• Quaternion (q0, q1, q2, q3) corresponds to matrix

$$\begin{pmatrix} 1 - 2q_2^2 - 2q_3^2 & 2(q_1q_2 - q_3q_0) & 2(q_1q_3 + q_2q_0) \\ 2(q_1q_2 + q_3q_0) & 1 - 2q_1^2 - 2q_3^2 & 2(q_2q_3 - q_1q_0) \\ 2(q_1q_3 - q_2q_0) & 2(q_1q_0 + q_2q_3) & 1 - 2q_1^2 - 2q_2^2 \end{pmatrix}$$

- Similar to Rodrigues' rotation formula
 - but recall that quaternions use $\theta/2$

• After conversion, you can combine rotations and other affine/projective transforms!

3x3 Orthonormal Matrix to Quaternion

- More challenging (e.g., not all **M**s are rotations)
- if M is a rotation, trace(M)>0 then you get quaternion (s, x, y, z) through:

```
-s = sqrt (1 + M_{11} + M_{22} + M_{33}) / 2
-x = (M_{23} - M_{32}) / (4 * s)
-y = (M_{31} - M_{13}) / (4 * s)
-z = (M_{12} - M_{21}) / (4 * s)
```

• if trace(M)<0, need permutations/sign changes

General Conversion Resource

• http://en.wikipedia.org/wiki/
Rotation representation %28mathematics%29

What about other transforms?

• What to do if the matrix to be interpolated does not only rotation, but scale, shear, etc.?

Non-orthonormal 3x3 matrix

- "Polar decomposition" breaks arbitrary matrix M into
 - Rotation Q (+potential reflection)
 - Symmetric positive definite S

 (anisotropic scale)

Figure 4. Direct Shear Interpolation

Figure 5. Decomposed Shear Interpolation

Polar Decomposition Algorithm

- Given 3x3 Matrix M
- Compute the rotation factor **Q** by averaging the matrix with its inverse transpose until convergence:
 - Set $\mathbf{Q}_0 = \mathbf{M}$,
 - then $\mathbf{Q}_{i+1} = 1/2(\mathbf{Q}_i + \mathbf{Q}_{i-T})$ until $\mathbf{Q}_{i+1} \mathbf{Q}_i \approx 0$.

Figure 3. Physical View of Polar Decomposition

Figure 6. Polar Decomposed Matrix Interpolation

More Quaternion Magic: Multiplication

- Turns out that quaternion multiplication corresponds to composing rotations
 - $-\mathbf{q}_2 = \mathbf{q}_1 \mathbf{q}_0$ is equivalent to first rotating by \mathbf{q}_0 , then \mathbf{q}_1 .

$$(\theta; \mathbf{v})(\theta'; \mathbf{v}') = \mathbf{v} \cdot \mathbf{v}'; \ \theta \mathbf{v}' + \theta' \mathbf{v} + \mathbf{v} \times \mathbf{v}')$$

- Multiplication is not commutative (why? cross product)
 - $-\mathbf{q}_1\mathbf{q}_0$ does not equal $\mathbf{q}_0\mathbf{q}_1$ except in special cases
 - Makes sense, rotations are not commutative either

Even More Quaternion Magic

- Let's define a conjugate $\mathbf{q}^* = (\mathbf{\theta}, -\mathbf{v})$
 - Remember complex conjugate? a = x + iy, $a^* = x iy$
- Is there an inverse quaternion **q**⁻¹ such that **qq**⁻¹=(1; **0**) for unit **q**? Let's try the conjugate...
 - Again, compare to complex: $aa^* = x^2+y^2 = 1$ when a is unit length.

$$egin{aligned} (heta; oldsymbol{v})(heta'; oldsymbol{v}') &= \ (heta heta' - oldsymbol{v} \cdot oldsymbol{v}'; \ heta oldsymbol{v}' + heta' oldsymbol{v} + oldsymbol{v} imes oldsymbol{v}') \end{aligned}$$

Conjugate = Inverse for Unit Q's

- Let's define a conjugate $q^* = (\theta, -v)$
 - Remember complex conjugate? a = x + iy, $a^* = x iy$
- Let's see:

$$qq^* =$$

$$(\theta^2 + \boldsymbol{v} \cdot \boldsymbol{v}; \ \theta \boldsymbol{v} - \theta \boldsymbol{v} + \boldsymbol{v} \times \boldsymbol{v}) = (1; \boldsymbol{0})$$

 Note that this only works for unit q. If not unit, need normalization factor.

Conjugate = Inverse for Unit Q's

- Let's define a conjugate $q^* = (\theta, -v)$
 - Remember complex conjugate? a = x + iy, $a^* = x iy$
- Let's see:

$$qq^*=$$
 $q^*=q^{-1}$ for unit quaternions $(\theta^2+m{v}\cdotm{v};\; hetam{v}- hetam{v}+m{v} imesm{v})=(1;m{0})$

 Note that this only works for unit q. If not unit, need normalization factor.

Inverse & Conjugate: Geometry

- $\mathbf{q} = (\cos \theta/2; \sin \theta/2 \mathbf{v})$ represents a rotation of angle θ around
- Inverse rotation **q**⁻¹:
 - Angle - θ around **V**
 - Angle θ around -**V**

- In both cases, leads to $(\cos \theta/2; -\sin \theta/2 \mathbf{V})$
 - $-\mathbf{q}^* = (\mathbf{\theta}, -\mathbf{v})$, remember

Inverse & Conjugates: Matrices

• What is the inverse of a rotation matrix?

Inverse & Conjugates: Matrices

- What is the inverse of a rotation matrix?
- The conjugate/transpose matrix!
 - For a rotation (or any orthonormal matrix) M^TM=I
 - (Formally, to get the conjugate of a complex-valued matrix, take the transpose and the conjugate of each coefficient. But we don't care here.)
- The notion of conjugation is related between matrices & quaternions
 - Isn't that cool?

Even More 4D Magic: Rotating a Point

- 3D vector **p** is represented by quaternion (0, **p**)
- To rotate 3D point/vector **p** by rotation/quaternion **q**, compute

$$qpq^{-1} = q(0; p)q^{-1}$$

• (In practice, better convert the quaternion to a matrix first.)

