1

CONTEXTE ET BASE DE DONNÉES

PRÉSENTATION DU JEU DE DONNÉES

Base de données = Cours de l'électricité dans 5 pays pour produire les gaz (azote, oxygène...)

5 pays : France - Belgique - Allemagne - Pays Bas - Portugal 1er janvier 2013 - 26 juin 2016 <u>sauf Portugal</u> : jusqu'au 30 avril 2017

1 observation = prix de l'électricité à une date et une heure précise

1 fichier = 1 pays pour 1 année

date	heure_start	heure_end	price
2013-12-31	0	1	15.15
2013-12-31	1	2	19.02

Portugal

1 seul fichier

0h	1h	 23h
48.01	45	 48.57
44.25	29	 48.01

Contexte et BDD

Méthodologie

Implémentation

VALIDATION ET ENRICHISSEMENT DES DONNÉES

1 fichier unique

id	date	day_of_week	country	price
0	2013-12-31-00	tuesday	FR	15.15
1	2013-12-31-00	tuesday	GE	19.02

<u>Valeurs aberrantes et manquantes</u> : variable price

Price = -200

→ énergies renouvelables Souvent un dimanche : beaucoup de production pour peu d'utilisation

date	day_of_week	country	price
2013-06-01-14	saturday	BE	NA
2013-03-31-23	sunday	PT	NA
2015-03-29-23	sunday	PT	NA

13 dates non inscrites

→ dû au changement d'heure

(prix de l'heure précédente + prix de l'heure suivante) /2

2

MÉTHODOLOGIE ADOPTÉE

Outils statistiques utilisés

Démonstration Contexte et BDD Méthodologie Implémentation Bilan

LES TRANSFORMÉES

Les données "brutes"

id	date	day_of_week	country	price
0	2013-12-31-00	tuesday	FR	15.15
1	2013-12-31-01	tuesday	FR	19.02

= série prix_0h_ prix_0h

01/01/2013

01/01/2013

prix_23h_

prix_1h

02/01/2013

prix_1h

02/01/2013

prix_23h 01/01/2013 02/01/2013

prix_0h 26/06/2013

prix_23h_ 26/06/2016

Variance mobile

paramètre d'entrée : dispersion + ou - 2 heures

Transformée de Fourier discrète

CLUSTERING: L'ALGORITHME

Utilisation du clustering : <u>classification non supervisée</u> ⇒ **Clustering K-Means**

Algorithme itératif

- <u>Paramètre</u> : nombre de clusters (k) à fixer à priori
- Critère d'arrêt : convergence des centroïdes
- Sortie : regroupement des séries temporelles similaires selon une distance choisie

1.
Choisir k centroïdes initiaux aléatoirement

CLUSTERING: LES MÉTRIQUES

⇒ Mesurer la similitude entre deux séries chronologiques

<u>Utilisation d'une distance</u>:

Contredit intuition \rightarrow mesures de similarité pessimistes lors d'une distorsion dans l'axe des temps.

CLUSTERING: LES MÉTRIQUES

Dynamic Time Warping (DTW): trouver l'alignement non linéaire optimal entre deux séries temporelles

On cherche W* tel que

$$W^* = argmin_W(\sqrt{\sum_{k=1}^K w_k}) \qquad \quad w_k = (q_i - c_j)_{_{10}}^2$$

$$w_k = (q_i - c_j)^2$$

En revenant à l'exemple précédent

3

IMPLÉMENTATION DU TABLEAU DE BORD

PRÉSENTATION DES DEUX BRIQUES DE VISUALISATION

◆ Brique de visualisation générale : en fonction d'un pays et d'une plage de temps

Source de données : Série complète (statique) Contexte et BDD Méthodologie Implémentation Démonstration Bilan

PRÉSENTATION DES DEUX BRIQUES DE VISUALISATION

- **Brique de clustering**:
- Visualisation des profils quotidiens sur une plage spécifique Sélection de différents paramètres :
 - Plage de temps
 - Métrique

Pays

Type de jours

Transformée

Nombre de cluster

Visualisation d'un échantillon du cluster sélectionné

Source de données : Série filtrée selon plage (dynamique)

STRUCTURE DES MODULES PYTHON

INTERACTION AVEC L'APPLICATION

initialisation.py

module_widget.py

module_plot.py

module_selection.py

