Contents

1	Intr	Introduzione 3				
	1.1	La carica elettrica e la forza di Coulomb	. 3			
		1.1.1 La cariche elettriche ed il loro moto	. 3			
	1.2	Densità volumetrica di carica	. 4			
		1.2.1 Densità di corrente J	. 4			
	1.3	Corrente elettrica	. 5			
	1.4	Tensione elettrica e differenza di potenziale elettrico				
	1.5	Legge di Ampere-Prima legge di Maxwell				
	1.6	Legge dell'induzione di Faraday-Seconda legge di Maxwell				
	1.7	Conservazione della carica elettrica				
	1.8	Legge di Gauss				
	1.9	Forza elettromotrice				
		Leggi dell'Elettromagnetismo in forma integrale				
		Leggi dell'Elettromagnetismo in forma locale				
		Relazioni materiale				
		SI Units				
	1.10	1.13.1 Unità derivate SI				
		1.13.2 Prefissi SI				
		1.19.2 11011661 61				
2	Circ	cuiti elettrici	11			
	2.1	Introduzione	. 11			
		2.1.1 Convenzione del generatore e dell'utilizzatore	. 12			
	2.2	Risolvere un circuito	. 12			
		2.2.1 Prima legge (LKT)	. 12			
		2.2.2 Seconda legge (LKC)	. 13			
		2.2.3 Teorema di Tellegen	. 13			
	2.3	Elementi circuitali passivi	. 13			
		2.3.1 Resistore	. 14			
		2.3.2 Condensatore	. 14			
		2.3.3 Induttore	. 15			
		2.3.4 Dispositivi in serie e in parallelo	. 16			
	2.4	Elementi circuitali attivi	. 16			
		2.4.1 Generatore indipendente di tensione	. 16			
		2.4.2 Generatore indipendente di corrente				
		2.4.3 Generatori dipendenti	. 18			
	2.5	Circuiti nel dettaglio	. 18			
		2.5.1 Circuiti aperti e chiusi	. 18			
		2.5.2 Esempio 1	. 19			
		2.5.3 Partitore di tensione	. 19			
		2.5.4 Partitore di corrente	. 20			
		2.5.5 Collegamenti di resistori a stella e a triangolo	. 20			
9	N / L - 4	4-3: 4:1:-:	99			
3	3.1	todi di analisi Metodo di Tanenblau	. 22 . 22			
	3.1					
	3.2	3.1.1 Esempio				
	$\frac{3.2}{3.3}$					
		Esempio				
	$\frac{3.4}{3.5}$	Teoremi di rete				
	ა.ა	Sovrapposizione degli effetti				
		3.5.1 Esempio				
	9.6	3.5.2 Esempio 2				
	3.6	Teorema di Thevenin				
		3.6.1 Esempio				
	97					
	3.7	Teorema di Norton				
	3.8	3.7.1 Esempio	. 29 30			

	3.9	Teorema di Millman
		3.9.1 Esempio 1
		3.9.2 Esempio 2
4	Ana	alisi del transitorio
	4.1	Formule notevoli
		4.1.1 Condensatore
		4.1.2 Induttore
	4.2	Introduzione
	4.3	Il problema di Cauchy
		4.3.1 Principio di conservazione dell'energia
	4.4	Circuito del primo ordine: Circuito RC
	4.5	Circuito del primo ordine: Circuito RL
	4.6	Confronto tra circuito RC e circuito RL
	4.7	Circuiti del secondo ordine: Circuito RLC
	4.8	Esercizi in regime transitorio
		4.8.1 Esercizio 1

Elettrotecnica

Giuseppe Bumma

August 3, 2023

1 Introduzione

1.1 La carica elettrica e la forza di Coulomb

Se due particelle cariche, supposte puntiformi, di carica q_0 e q_1 , siano a una distanza finita fra loro nel vuoto, la **legge di** Coulomb descrive la forza elettrostatica interagente fra loro:

$$|F_C| \propto \frac{q_1 q_2}{e^2}$$

con r distanza tra le due cariche.

La forza di Coulomb F_C è diretta nella direzione di r. Quando q_1 e q_2 hanno lo stesso segno la forza di Coulomb è repulsiva. Quando sono di segno opposto la forza è attrattiva.

L'unità di misura, nel Sistema Internazionale (SI), della forza di Coulomb è il newton [N] ed il coefficiente di proporzionalità è $1/(4\pi\epsilon_0)$ dove ϵ_0 è la costante dielettrica del vuoto $[\epsilon_0=8,854x10^{-12}C^2/(Nm^2)]$.

L'unità di misura della carica elettrica nel sistema di misura SI è il **coulomb** [C]. La carica elementare nel SI è e ove

$$e = 1,6021x10^{-19}C$$

Protone ed elettrone hanno carica di valore assoluto e. Due protoni o due elettroni si respingono. Un protone ed un elettrone si attraggono. Per convenzione la carica del protone è positiva (+e) e quella dell'elettrone negativa (-e). In natura esistano solamente cariche multiple di e. Non può esistere una carica sottomultiplo di e.

1.1.1 La cariche elettriche ed il loro moto

Forza che agisce su una particella carica:

$$\vec{F} = q(\vec{E} + \vec{u} \times \vec{B})$$

 \vec{F} : forza [N]

 \vec{q} : carica elettrica [C]

 \vec{u} : velocità della carica [m/s]

 \vec{E} : campo elettrico

 \vec{B} : vettore induzione magnetica

• Se $\vec{B}=0$ si ha la cosiddetta Forza elettrostatica

$$\vec{F} = q\vec{E}$$

Quindi il campo elettrico $\vec{E} = \frac{\vec{F}}{q}$ è una forza per unità di carica [N/C].

Campo elettrico e forza elettrostatica da cui esso deriva hanno la stessa direzione. Perciò il campo produce un'accelerazione della carica lungo la propria direzione.

Nel SI l'unità di misura di \vec{E} è: $N/C = V/m = m \ kg \ s^{-2}C^{-1}$.

• Se $\vec{E} = 0$ si ha la Forza di Lorentz

$$\vec{F} = q(\vec{u} \times \vec{B})$$

Quindi il vettore induzione magnetica \vec{B} è una forza per unità di carica e di velocità [Ns/Cm]. Campo elettrico e forza elettrostatica da cui esso deriva hanno la stessa direzione. Perciò il campo produce un'accelerazione della carica lungo la propria direzione. Nel SI l'unità di misura di \vec{E} è: $N/C = V/m = m \cdot kg \cdot s^{-2} \cdot C^{-1}$.

Una particella carica induce una forza sulle cariche che la circondano. Tale forza può essere attrattiva o repulsiva. Essa è la forza Coulombiana F_C (o forza elettrostatica). In ogni punto della regione attorno alla carica o in presenza ad una distribuzione di cariche vi è un campo elettrico $\vec{E}(x,y,z)$ definito dalla forza indotta su una carica di prova puntiforme unitaria posta nel punto considerato.

Qualora su una carica in moto si induca una forza deviante perpendicolare al moto, tale forza è la forza magnetica o forza di Lorentz F_L . Il campo di induzione magnetica $\vec{B}(x,y,z)$, legato a \vec{F}_L , è dato dalla forza indotta su una carica unitaria in moto per unità di velocità della carica stessa. La direzione del campo \vec{B} è perpendicolare alla velocità della carica ed alla forza indotta.

1.2 Densità volumetrica di carica

La carica elettrica non può essere creata o distrutta (legge della conservazione della carica elettrica). Può solo essere trasferita. Pertanto, la carica elettrica totale di un sistema isolato non può variare. La densità volumetrica di carica (o distribuzione di carica) è definita da:

$$\rho_C(x, y, z) = \lim_{\Delta t \to 0} \frac{\Delta q}{\Delta \tau} = \frac{dt}{dq}$$

dove $d\tau$ è l'elemento infinitesimo di volume.

1.2.1 Densità di corrente J

La densità di corrente elettrica \vec{J} è il vettore il cui modulo è la quantità di carica che attraversa una superficie unitaria perpendicolare alla velocità \vec{u} delle cariche. La direzione ed il verso di \vec{J} sono la direzione ed il verso di \vec{u} :

$$\vec{J} \cdot \hat{n} = \lim_{\Delta S \to 0} \lim_{\Delta t \to 0} \frac{\Delta Q}{\Delta S \Delta t}$$

 \vec{J} : densità di corrente $\left[\frac{C}{m^2 \cdot s}\right] = \left[\frac{A}{m^2}\right]$

 $\vec{J}(x,y,z)$ definisce un campo vettoriale ed è la densità di flusso delle cariche. La corrente elettrica i è il flusso di carica attraverso una superficie S:

$$i = \iint\limits_{S} \vec{J} \cdot \hat{n} \ dS$$

1.3 Corrente elettrica

La corrente elettrica i che attraversa una superficie è la quantità di carica che attraversa la superficie nell'unità di tempo:

$$i = \frac{\Delta q}{\Delta t}$$

Se si considera un cavo conduttore, ad esempio, la corrente nel conduttore è la quantità di carica che attraversa una sezione del cavo nell'unità di tempo.

L'unità di misura SI è l'ampere [A] dove $A = \frac{C}{s}$

La corrente elettrica istantanea è:

$$i(t) = \lim_{\Delta t \to 0} \frac{\Delta q}{\Delta t} = \frac{dq}{dt}$$

1.4 Tensione elettrica e differenza di potenziale elettrico

La tensione elettrica e_{12} fra i punti 1 e 2 lungo il percorso l, è il lavoro $L_{q=1}^{1\to 2,l}$ che il campo elettrico $\vec{E}(x,y,z)$ compie per portare una carica unitaria dl punto 1 al punto 2 lungo l:

$$e_{12} = \int_{1}^{2} \vec{E} \cdot d\vec{l}$$

Per spostare la carica q dal punto 1 al 2 il lavoro è:

$$L_q^{1 \to 2, l} = q \cdot e_{12}$$

L'unità di misura SI di e_{12} è il volt [V] dove $V = \frac{J}{C} = m^2 \cdot kg \cdot s^{-2} \cdot C^{-1}$. Qualora la tensione e 12 dipenda dai valori di una funzione v(x,y,z) definita in una regione che contiene la linea l essa diviene:

$$e_{12} = \int_{1,l}^{2} \vec{E} \ d\vec{l} = -\int_{1,l}^{2} dv = v_1 - v_2 = v_{12}$$

dove v(x,y,z) è la funzione potenziale elettrico e v_{12} è la differenza di potenziale elettrico.

Poiché v_{12} è la differenza fra i valori che la funzione v(x,y,z) assume nel punto iniziale e nel punto finale di l, v_{12} non dipende dal percorso che unisce i due punti. Quindi il campo \vec{E} è un **vettore conservativo** 1 con $\vec{E} = \vec{\nabla} \cdot v(x,y,z)$.

Per un percorso chiuso l_c contenuto nella regione ove \vec{E} è conservativo, si ha:

$$e_l = \oint_{l_c} \vec{E} \cdot d\vec{l}_c = -\oint_{l_c} \vec{\nabla} \cdot v \ d\vec{l}_c = 0$$

 $^{^{1}}$ un campo conservativo è un campo il cui integrale lineare è indipendente dalla traiettoria

1.5 Legge di Ampere-Prima legge di Maxwell

La grandezza vettoriale campo magnetico H è definito dalla legge di Ampere (prima legge di Maxwell)

$$\oint_{l_c} \vec{H} \ d\vec{l}_c = i_t$$

dove la corrente totale $i_t = i + i_s$.

In questo caso la corrente totale i_t è il flusso del vettore J_t i ovunque solenoidale $(J_t = J + \partial D/\partial t)$. Perciò i_t è il flusso concatenato con la linea chiusa l_C contorno della superficie che attraversa. Il verso di percorrenza di l è determinato con regola della vite destrogira.

L'unità di misura SI di \vec{H} è l'ampere su metro $\left[\frac{A}{m}\right]$. Per materiali lineari: $\vec{B} = \mu \vec{H}$ ove mu è la permeabilità magnetica del materiale. Per mezzi non lineari $\vec{B} = f(\vec{H})$. Solitamente per i materiali magnetici non lineari f è una funzione **isteretica** (materiali ferromagnetici).

$$\begin{split} \oint_{l_C} \vec{H} \ d\vec{l} &= \iint_S \left(\vec{J} + \frac{\partial D}{\partial t} \right) \ \hat{n} \ dS \\ &= \iiint_S \vec{J} \ \hat{n} \ dS \ + \iiint_S \frac{\partial D}{\partial t} \ \hat{n} \ dS \ = \\ &= \underset{\text{corrente di conduzione } I}{\underbrace{ \iint_S \partial D \ \hat{n} \ dS = \vec{\Phi}(D) }} \\ &= I + \underbrace{ \frac{\partial \vec{\Phi}(D)}{\partial t} }_{\text{corrente di spostamento}} \end{split}$$

Immaginiamo di descrivere due superfici S_1 e S_2 sulla linea chiusa l_C

$$\oint_{l_C} \vec{H} \ d\vec{l} = \iint_{S_1} \left(\vec{J} + \frac{\partial D}{\partial t} \right) \hat{n}_1 \ dS_1 = \iint_{S_2} \left(\vec{J} + \frac{\partial D}{\partial t} \right) \hat{n}_2 \ dS_2$$

Prendiamo una superficie chiusa S_C su S_2 , allora

$$\oint_{S_C} \underbrace{\left(\vec{J} + \frac{\partial D}{\partial t}\right)}_{\text{vertore solenoidale}} \hat{n}_C \ dS_C = \iint_{S_2} \left(\vec{J} + \frac{\partial D}{\partial t}\right) \hat{n}_2 \ dS_2 - \iint_{S_1} \left(\vec{J} + \frac{\partial D}{\partial t}\right) \hat{n}_1 \ dS_1 = 0$$

1.6 Legge dell'induzione di Faraday-Seconda legge di Maxwell

La legge dell'induzione (o legge di Faraday od anche seconda legge di Maxwell) stabilisce che:

$$e_{l_C} = \oint_{l_C} \vec{E} \ d\vec{l}_C = -\frac{d\Phi}{dt}$$

ove Φ è il flusso magnetico concatenato con la linea chiusa l_c . (direzione di l_C data dalla regola della vite destrogira). e_{l_c} è la tensione elettrica indotta sulla linea chiusa dalla variazione del flusso magnetico concatenato con l_c ; essa è detta forza elettromotrice (f.e.m.).

N.B. In questo caso \vec{E} non à conservativo.

1.7 Conservazione della carica elettrica

La carica elettrica non si crea né si distrugge. Perciò la diminuzione della carica elettrica all'interno di un volume τ corrisponde alle cariche che lasciano τ fluendo attraverso la superficie chiusa S, superficie esterna di τ .

La legge di conservazione della carica elettrica afferma questo ed è espressa dall'espressione:

$$\iint_S \vec{J} \; \hat{n} \; dS = -\frac{dQ}{dt}$$

si ha variazione di cariche solo se c'è passaggio di corrente.

1.8 Legge di Gauss

Il campo di induzione elettrica o campo spostamento elettrico è definito dalla legge di Gauss. Considerando una superficie chiusa S, che delimita il volume V; sia \hat{n} il versore normale alla superficie. La legge di Gauss afferma che:

$$\iint_S \vec{D} \ \hat{n} \ dS = \iiint_V \rho \ dV = Q$$

1.9 Forza elettromotrice

 \vec{E} e \vec{B} descrivono le forze prodotte dal fenomeno elettromagnetico sulle cariche (forza elettrica per unità di carica e forza magnetica per unità di carica e di velocità della carica). Esse descrivono ciò che viene prodotto dal fenomeno EM. Ne descrivono l'effetto.

 \vec{D} ed \vec{H} descrivono ciò che produce il fenomeno EM (la carica elettrica nel primo caso e la corrente totale nel secondo). Ne descrivono la **causa**.

1.10 Leggi dell'Elettromagnetismo in forma integrale

$\oint_{l_c} \vec{H} \ d\vec{l_c} = i_t$	1º legge di Maxwell	
$\oint_{l_c} \vec{E} \ d\vec{l_c} = \frac{d\Phi}{dt}$	2° legge di Maxwell	
$\oiint \vec{J} \hat{n} dS = -\frac{dq}{dt}$	legge di conservazione della carica	
$\oiint \vec{D} \ \hat{n}dS = q$	legge di Gauss	
$\oiint \vec{J_t} \ \hat{n}dS = 0$	$ec{J}t$ ovunque solenoidale	
$t \oiint_S \vec{B} \ \hat{n}dS = 0$	$ec{B}$ ovunque solenoidale	

Tre di queste sei equazioni sono linearmente indipendenti, le altre tre si ottengono dalle prime tre.

1.11 Leggi dell'Elettromagnetismo in forma locale

$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$	1° legge di Maxwell (dal teorema di Stokes)
$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$	2° legge di Maxwell (dal teorema di Stokes)
$\nabla \cdot \vec{J} = -\frac{\partial \rho_c}{\partial t}$	legge di conservazione della carica (teor. divergenza)
$\nabla \cdot \vec{D} = \rho_c$	legge di Gauss (dal teorema della divergenza)
$\nabla \cdot \vec{J_t} = 0$	$ec{J_t}$ ovunque solenoidale (dal teorema della divergenza)
$\nabla \cdot \vec{B} = 0$	$ec{B}$ ovunque solenoidale (dal teorema della divergenza)

Tre di queste sei equazioni sono linearmente indipendenti, le altre tre si ottengono dalle prime tre.

1.12 Relazioni materiale

 \vec{E} e D, \vec{B} ed \vec{H} descrivono i fenomeni dell'EM in modo diverso. \vec{E} e \vec{D} si riferiscono al fenomeno Elettrico, \vec{B} ed \vec{H} al fenomeno magnetico. \vec{D} ed \vec{H} descrivono i due fenomeni misurando ciò che li origina: la carica il primo, ed il moto della carica il secondo. Gli effetti misurati da \vec{E} e da \vec{B} sono in entrambe i casi le forze indotte. Essi dipendono da come i diversi materiali reagiscono. Inoltre, dipendentemente dalla proprietà del materiale, ad un certo valore del campo \vec{E} si induce un determinato moto di carica misurato da \vec{J} . Le relazioni fra queste descrizioni spesso sono lineari. A volte però non lo sono con relazioni anche di tipo isteretico.

Materiali lineari	Materiali non lineari
$ec{D} = \epsilon ec{E}$	$ec{D}=f_1(ec{E})$
$\vec{B} = \mu \vec{H}$	$\vec{B} = f_2(\vec{H})$
$ec{J}=\sigmaec{E}$	$\vec{J} = f_3(\vec{E})$

con ϵ costante dielettrica, μ permeabilità magnetica e σ conducibilità termica.

la costante dielettrica (permittività elettrica) ϵ , e la permeabilità magnetica μ di un materiale sono espresse per mezzo dei loro valori relativi ϵ_r ed μ_r in riferimento al loro valore nel vuoto ϵ_0 ed μ_0 :

$$\epsilon = \epsilon_r \epsilon_0$$
dove $\epsilon_0 = 8,856x10^{-12} Farad/metro $\left[\frac{F}{m}\right]$

$$\mu = \mu_r \mu_0$$
dove $\mu_0 = 1,256x10^{-6} Henry/metro \left[\frac{H}{m}\right]$$

Riporto alcuni valori di ϵ_r

	ϵ_r
vuoto	1
aria	$\simeq 1$
plastica	2-5
vetro	4-8
acqua	80

Molto diverse sono le variazioni per materiali differenti della conducibilità elettrica, della permeabilità magnetica e della costante dielettrica. Per la conducibilità elettrica σ vi è una variazione anche di 10^{23} (23 ordini di grandezza) fra materiali isolanti e materiali conduttori. Per la permeabilità magnetica μ la variazione raggiunge al massimo un valore di circa 10^5 (5 ordini di grandezza). Per la costante dielettrica ϵ la variazione massima si riduce ad un valore massimo di circa 10^3 (3 ordini di grandezza).

La relazione fra \vec{J} ed \vec{E} è anche definita dalla resistività elettrica ρ :

$$\vec{E} = \rho \vec{J}$$

dove $\rho=\frac{1}{\sigma}~\sigma$ è in Siemens/metro $[\frac{S}{M}]$ e ρ in Ohm/metro $[\frac{\Omega}{m}].$

1.13 SI Units

1.13.1 Unità derivate SI

Grandezza	Simbolo (nome)	Unità SI non di base	Unità SI di base
Carica elettrica	C (Coulomb)		$s \times A$
Tensione elettrica e dif- ferenza di potenziale elettrico	V (Volt)	$\frac{W}{A}$	$m^2 \times kg \times s^{-3} \times A^{-1}$
Forza	N (Newton)		$m \times kg \times s^{-2}$
Energia/Lavoro	J (Joule)	N imes m	$m^2 \times kg \times s^{-2}$
Potenza	W (Watt)	$\frac{J}{s}$	$m^2 \times kg \times s^{-3}$
Flusso magnetico	Wb (Weber)	$V \times s$	$m2 \times kg \times s - 2 \times A^{-1}$
Induzione magnetica	T (Tesla)	$\frac{Wb}{m^2}$	$kg \times s^{-2} \times A^{-1}$
Resistenza elettrica	Ω (Ohm)	$\frac{V}{A}$	$m^2 \times kg \times s^{-3} \times A^{-2}$
Conduttanza elettrica	S (Siemens)	$\frac{A}{V}$	$m^{-2} \times kg^{-1} \times s^3 \times A^2$
Capacità	F (Farad)	$\frac{C}{V}$	$m^{-2} \times kg^{-1} \times s^4 \times A^2$
Induttanza	H (Henry)	$\frac{Wb}{A}$	$m^2 \times kg \times s^{-2} \times A^{-2}$
Frequenza	Hz (Hertz)		s^{-1}

1.13.2 Prefissi SI

Factor	Name	Symbol
10^{-24}	yocto	у
10^{-21}	zepto	z
10^{-18}	atto	a
10^{-15}	femto	f
10^{-12}	pico	p
10^{-9}	nano	n
10^{-6}	micro	μ
10^{-3}	milli	m
10^{-2}	centi	c
10^{-1}	deci	d
10^{1}	deca	da
10^{2}	hecto	mh
10^{6}	mega	M
10 ⁹	giga	G
10^{12}	tera	Т
10^{15}	peta	Р
10^{18}	exa	E
10^{21}	zetta	Z
10^{24}	yotta	Y

2 Circuiti elettrici

2.1 Introduzione

I circuiti elettrici sono degli elementi interconnessi tra loro e le connessioni possono essere considerate dei conduttori ideali.

Ipotesi:

•
$$\frac{\partial \vec{B}}{\partial t} = 0$$
 o $\frac{\partial \vec{D}}{\partial t} = 0$

• $L_c \ll \lambda$ (lunghezza d'onda)

Ricordiamo che $\lambda = \frac{c}{f} = \left[\frac{velocita\ onda}{frequenza\ onda} \right].$

Esempio

La rete elettrica ha frequenza f = 50 Hz

$$\lambda = \frac{c}{f} = \frac{3 \cdot 10^8}{50} \simeq 6000 km$$

infatti la linea di trasmissione della corrente elettrica è $L_c = 10^3 km$.

Gli elementi del circuito vengono chiamati multipoli; di seguito si riporta la lista:

- Nodo: punto di intersezione tra 2 o più elementi;
- Maglia: linea chiusa all'interno del circuito;

• Ramo: componenti insieme ai suoi morsetti

Le formule fondamentali per i circuiti sono:

$$\underbrace{P(t) = v(t) \cdot i(t)}_{\text{potenza}} \qquad \underbrace{W(t) = \int P(t) \ d}_{\text{energia}}$$

2.1.1 Convenzione del generatore e dell'utilizzatore

Per ogni circuito esistono due convenzioni per il verso della corrente

- negli utilizzatori tensione e corrente sono discordi
- nei generatori tensione e corrente sono concordi (si fa riferimento ai generatori di corrente e di tensione)

Ad esempio, nel caso di una batteria ricaricabile, se si utilizza la convenzione del generatore:

Scarica
$$v=1,5V$$
 $i=1A$ $P=v\cdot i=1,5W>0$ Carica $v=1,5V$ $i=-1A$ $P=v\cdot i=-1,5W<0$

mentre se si utilizza la convenzione dell'utilizzatore i segni di corrente e ,propedeuticamente, di potenza sono invertiti

Scarica
$$v=1,5V$$
 $i=-1A$ $P=v\cdot i=-1,5W<0$ Carica $v=1,5V$ $i=1A$ $P=v\cdot i=1,5W>0$

2.2 Risolvere un circuito

Risolvere un circuito vuol dire calcolare le tensioni e le correnti di tutti i componenti.

2.2.1 Prima legge (LKT)

Usando le leggi di Kirchhoff e le leggi costitutive

$$\oint \vec{E} \ d\vec{l} = \oiint \frac{\partial \vec{B}}{\partial t} \ \hat{n} dS \underbrace{=}_{Hp.1} 0$$

ne consegue che il campo elettrico è conservativo e dunque si può definire una differenza di potenziale.

$$\int_{l} \vec{E} \ d\vec{l} = v(A) - v(B) = v_{AB}$$

$$\underbrace{\oint_{0} \vec{E} \ d\vec{l}}_{0} = \int_{A}^{B} \vec{E} \ d\vec{l} + \int_{B}^{C} \vec{E} \ d\vec{l} + \int_{C}^{A} \vec{E} \ d\vec{l}$$

$$= v_{BA} + v_{CB} + v_{AC}$$

$$= 0$$

da qui la 1^a legge di Kirchhoff per le tensioni:

$$\sum_{k=1}^{n} v_k = 0$$

nella singola maglia.

Esempio

$$\begin{cases} M_1: & v_1-v_2=0\\ M_2: & v_2+v_3-v_4-v_5=0\\ M_3: & v_1+v_3-v_4-v_5=0 \end{cases}$$

I versi delle differenze di potenziale sono date dal testo dell'esercizio, il verso di percorrenza della maglia è scelto arbitrariamente. Il segno positivo o negativo delle tensioni è determinato in base al verso di percorrenza (positivo se concorde, negativo se discorde).

2.2.2 Seconda legge (LKC)

$$\iint \iint \vec{J} + \frac{\partial \vec{D}}{\partial t} \hat{n} dS = 0 \Longrightarrow \iint \iint \vec{J} \hat{n} dS = 0$$

"La somma delle correnti entranti ed uscenti da un componente è nulla (in un componente, entra ed esce la stessa quantità di corrente)."

Prendiamo in esame il seguente circuito

Sapendo che il segno di ogni corrente è negativo se entra in un nodo e positivo se ne esce, non è difficile calcolare le correnti nei nodi A e B

$$A: -i_1 - i_2 + i_3 = 0$$
 $B: -i_5 - i_4 + i_3 = 0$

2.2.3 Teorema di Tellegen

Combinando la LKT e la LKC su un circuito è possibile verificare che la somma delle potenze dei generatori è pari alla somma delle potenze degli utilizzatori.

$$\sum_{k=1}^{n^o \text{ generatori}} p_k = \sum_{j=1}^{n^o \text{ utilizzatori}} p_j$$

2.3 Elementi circuitali passivi

Gli elementi circuitali passivi sono elementi che (nel caso ideale) restituiscono la stessa energia che ricevono.

2.3.1 Resistore

$$\underbrace{v(t) = R \cdot i(t)}_{\text{1a legge di Ohm}} \Longrightarrow i(t) = \frac{1}{R} \cdot v(t)$$

$$\underbrace{R = \rho \cdot \frac{l}{S}}_{\text{2a legge di Ohm}} = \rho \cdot \frac{[\text{lunghezza filo}]}{[\text{sezione filo}]}$$

$$p(t) = v(t) \cdot i(t) = R \cdot i^{2}(t) > 0$$

Il resistore assorbe sempre potenza, non può erogarla.

2.3.2 Condensatore

$$i = C \cdot \frac{dv}{dt} \underset{i = \frac{dq}{dt}}{\Longrightarrow} \frac{dq}{dt} = C \cdot \frac{dv}{dt}$$

quindi $Q = C \cdot V$.

Un condensatore (ideale) è non dissipativo: eroga sempre la stessa quantità di potenza che ha assorbito.

$$\underbrace{w(t)}_{\text{energia}} = \int_{t_1}^{t_2} p(t) dt$$

$$= \int_{t_1}^{t_2} Cv \frac{dv}{dt} dt$$

$$= C \int_{t_1}^{t_2} v dv$$

$$= \frac{1}{2} C \left[v^2(t_2) - v^2(t1) \right]$$

quindi se consideriamo $t_1=0$ e la tensione v calcolata in un istante finale t_f

$$w(0, t_f) = \frac{1}{2}Cv^2$$

v è la variabile di stato del condensatore.

in quel punto $\frac{dv}{dt} = \infty \Rightarrow i(t) = \infty \Rightarrow p(t) = \infty$, ma è impossibile avere potenza infinita, quindi non possiamo avere una variazione istantanea di tensione (il grafico della tensione di un condensatore non può avere discontinuità).

$$i(t) \ dt = C \cdot \frac{dv}{dt} \Longrightarrow \int_{-\infty}^{t} \frac{i(t)}{C} dt = \underbrace{\int_{-\infty}^{t} \frac{dv}{dt} dt}_{v(t)} \Longrightarrow v(t) = \int_{-\infty}^{t} \frac{1}{C} \cdot i(t) \ dt$$
$$= \underbrace{\int_{-\infty}^{0} \frac{1}{C} \cdot i(t) \ dt}_{v_0} + \int_{0}^{t} \frac{1}{C} \cdot i(t) \ dt$$

A differenza del resistore, per conoscere la tensione non ho bisogno solo della corrente nell'istante corrente, ma anche della tensione iniziale; per questo il condensatore è un **elemento con memoria**.

Un condensatore reale è semplicemente un condensatore messo in parallelo con un resistore.

2.3.3 Induttore

L'induttore è un componente elettrico che genera un campo magnetico al passaggio di corrente elettrica.

Sappiamo che la corrente genera un flusso:

$$\underbrace{\Phi = L \cdot i}_{I^a \text{ equazione di Maxwell}} = \underbrace{U = \frac{d\Phi}{dt}}_{leggediFaraday} = L\frac{di}{dt}$$

$$p(t) = v(t) \cdot i(t) = L \cdot i(t) \frac{di}{dt} \begin{cases} > 0 & \text{assorbita} \\ < 0 & \text{erogata} \end{cases}$$

L'induttore è un elemento non dissipativo.

$$w(t) = \int_{t_1}^{t_2} p(t) dt$$

$$= L \int_{t_1}^{t_2} i(t) \frac{di}{dt} dt$$

$$= \frac{1}{2} L \left[i^2(t_2) - i^2(t_1) \right]$$

$$w(0, t_f) = \frac{1}{2} L \cdot I_f^2$$

Anche per l'induttore le variazioni istantanee di tensione non sono possibili.

$$L = \frac{\mu N^2 A}{l}$$

$$i(t) = \frac{1}{L} \int_{-\infty}^{t} v(t) dt$$
$$= \frac{1}{L} \underbrace{\int_{-\infty}^{0} v(t) dt}_{i_0} + \frac{1}{L} \int_{0}^{t} v(t) dt$$

Si vede che anche l'induttore è un elemento **con memoria**. Un induttore reale è un induttore in serie con un resistore.

2.3.4 Dispositivi in serie e in parallelo

2.4 Elementi circuitali attivi

Gli elementi attivi sono elementi che possono generare (e fornire) energia elettrica.

2.4.1 Generatore indipendente di tensione

Il generatore di tensione ideale mantiene la tensione tra i suoi terminali indipendentemente dalla corrente che lo attraversa, quindi la tensione ai capi V è uguale alla tensione interna e (N.B. nel disegno la v_s è la tensione interna e).

$$p(t) = V \cdot i = e \cdot i \begin{cases} > 0 & \text{eroga} \\ < 0 & \text{assorbe} \end{cases}$$

Essendo e fisso, la potenza dipende solo da i (variabile di stato).

Per simulare un generatore di tensione reale (ad es. una batteria) si considera un resistenza interna R_i in serie con il generatore ideale:

$$V = e - R \cdot i$$

In realtà nella formula della tensione di una batteria ci sono anche termini dipendenti da altri piccoli condensatori nella stessa.

Se si hanno più generatori di tensione **in serie**, la tensione totale è semplicemente la somma delle tensioni dei vari generatori. I generatori di tensione **non sono collegabili in parallelo**: se così fosse si avrebbero, nella stessa maglia, due differenti tensioni, ma questo non è possibile perché non viene soddisfatta la LKT.

In un generatore di tensione reale, nel caso in cui la resistenza $R \to \infty \Longrightarrow i = \frac{V}{R} = 0$, mentre se $R \to 0 \Longrightarrow i = \frac{V}{R} = \infty$.

2.4.2 Generatore indipendente di corrente

Il generatore di corrente ideale mantiene la corrente che lo attraversa al valore A indipendentemente dalla differenza di potenziale fra i suoi terminali (N.B. nel disegno la i_s è la corrente interna A).

$$p(t) = V \cdot i = V \cdot A \begin{cases} > 0 & \text{eroga} \\ < 0 & \text{assorbe} \end{cases}$$

Un imprecisa approssimazione di un generatore di corrente reale è un pannello fotovoltaico, dotato di resistenza interna in parallelo con il generatore ideale

2.4.3 Generatori dipendenti

Gli elementi attivi visti prima possono essere "controllati" in tensione o in corrente.

Il generatore dipendente di tensione è controllato in tensione $V = v_c \cdot \mu$, o in corrente $V = r \cdot i_c$.

Il generatore dipendente di corrente è controllato in tensione $i = g \cdot v_c$, o in corrente $i = \alpha \cdot i_c$.

2.5 Circuiti nel dettaglio

2.5.1 Circuiti aperti e chiusi

Un ramo in circuito aperto si può considerare nei due seguenti modi:

• Un generatore di corrente con: A=0

• Un resistore con: $R = +\infty$

L'equazione dell'elemento circuitale è $i = 0, \forall v$.

Un ramo in circuito chiuso si può considerare nei due seguenti modi:

 $\bullet\,$ Un generatore di tensione con: e=0

• Un resistore con: R = 0

L'equazione dell'elemento circuitale è $v=0, \forall i$.

2.5.2 Esempio 1

2.5.3 Partitore di tensione

Un partitore di tensione è un tipo di circuito costituito da due o più componenti passivi collegati in serie ai capi dei quali, se viene applicata una tensione, essa si ripartirà sulle stesse componenti in base al loro valore. La legge generale si ottiene moltiplicando il valore della tensione applicata alla serie per il rapporto tra la resistenza ai capi della quale si vuole conoscere la tensione e la somma delle resistenze componenti la serie.

$$R_{eq} = R_1 + R_2 i = \frac{V_s}{R_{eq}} = \frac{V_s}{R_1 + R_2}$$

Dalla LKT si ha

$$v_1 + v_2 - V_s = 0 \Longrightarrow \qquad v_1 = V_s - v_2 = V_s - R_2 i \qquad v_2 = V_s - v_1 = V_s - R_1 i$$

$$\Longrightarrow_{\text{sostituisco } i} \qquad v_1 = \frac{R_1}{R_1 + R_2} V_s \qquad v_2 = \frac{R_2}{R_1 + R_2} V_s$$

2.5.4 Partitore di corrente

Il partitore di corrente è un circuito utilizzato per ottenere la corrente elettrica che scorre attraverso un'impedenza o attraverso un circuito quando esso viene connesso in parallelo con un'altra impedenza. La differenza sostanziale con il partitore di tensione è che in questo caso, nella formula, al numeratore della frazione va la resistenza che non si sta considerando.

$$R_{eq} = \frac{R_1 R_2}{R_1 + R_2} \qquad \qquad v = R_{eq} I_s = \frac{R_1 R_2}{R_1 + R_2} I_s$$

Dalla LKC si ha

$$i_1 + i_2 - I_s = 0 \Longrightarrow \qquad \qquad i_1 = I_s - i_2 = I_s - \frac{v}{R_2} \qquad \qquad i_2 = I_s - i_1 = I_s - \frac{v}{R_1}$$

$$\Longrightarrow_{\text{sostituisco } v} \qquad \qquad i_1 = \frac{R_2}{R_1 + R_2} I_s \qquad \qquad i_2 = \frac{R_1}{R_1 + R_2} I_s$$

2.5.5 Collegamenti di resistori a stella e a triangolo

Un sistema di tre resistenze può essere collegato a triangolo o a stella. Può essere meglio per l'analisi circuitale una connessione a stella invece che un triangolo o viceversa. Da sottolineare che una rete a stella può essere equivalente ad una rete a triangolo.

Colleg. a triangolo Colleg. a stella

Ciò significa che le stesse tensioni v_{12} , v_{23} e v_{31} tra i nodi 1 e 2, i nodi 2 e 3 e i nodi 3 e 1 inducono le stesse correnti entranti nella stella e nel triangolo rispettivamente al nodo 1, al nodo 2 ed al nodo 3. Ora vediamo come passare da stella a triangolo e viceversa

Ogni resistenza della stella è il prodotto dei due resistori del triangolo collegati allo stesso nodo, diviso per la somma dei resistori a triangolo.

$$R_{Y1} = \frac{R_{\Delta 1}R_{\Delta 3}}{R_{\Delta 1} + R_{\Delta 2} + R_{\Delta 3}} \qquad \qquad R_{Y2} = \frac{R_{\Delta 1}R_{\Delta 2}}{R_{\Delta 1} + R_{\Delta 2} + R_{\Delta 3}} \qquad \qquad R_{Y3} = \frac{R_{\Delta 2}R_{\Delta 3}}{R_{\Delta 1} + R_{\Delta 2} + R_{\Delta 3}}$$

Ogni resistenza del triangolo è la somma dei prodotti a due a due di tutti i resistori della stella, divisa per la resistenza nel ramo opposto della stella.

$$R_{\Delta 1} = \frac{R_{Y_1}R_{Y_2} + R_{Y2}R_{Y3} + R_{Y3}R_{Y1}}{R_{Y_3}} \quad R_{\Delta 2} = \frac{R_{Y_1}R_{Y_2} + R_{Y2}R_{Y3} + R_{Y3}R_{Y1}}{R_{Y_1}} \quad R_{\Delta 1} = \frac{R_{Y_1}R_{Y_2} + R_{Y2}R_{Y3} + R_{Y3}R_{Y1}}{R_{Y_2}}$$

Per $R_{Y1}=R_{Y2}=R_{Y3}=R_Y$ risulta $R_{\Delta 1}=R_{\Delta 2}=R_{\Delta 3}=R_{\Delta}$ e viceversa:

$$R_Y = R_\Delta/3$$
 $R_\Delta = 3R_Y$

Esempio 2

Determinare la resistenza equivalente del seguente circuito

$$R_1 = 3\Omega$$
 $R_2 = 3\Omega$ $R_3 = 3\Omega$ $R_4 = 2\Omega$ $R_5 = 2\Omega$

$$R_{A\Delta} = \frac{R_1 R_2 + R_2 R_3 + R_1 R_3}{R_1} = 9\Omega \qquad R_{B\Delta} = \frac{R_1 R_2 + R_2 R_3 + R_1 R_3}{R_2} = 9\Omega \qquad R_{c\Delta} = \frac{R_1 R_2 + R_2 R_3 + R_1 R_3}{R_3} = 9\Omega$$

$$R_{B\Delta//R_5} = \frac{R_{B\Delta R_5}}{R_{B\Delta} + R_5} = 1,6364\Omega$$

$$R_{A\Delta//R_4} = \frac{R_{A\Delta R_4}}{R_{A\Delta} + R_4} = 1,6364\Omega$$

$$R_{eq}$$

$$R_{eq} = R_{C\Delta}//(R_{B\Delta}//R_5 + R_{A\Delta}//R_4) = (9)//(3,272) = 2,41\Omega$$

3 Metodi di analisi

3.1 Metodo di Tanenblau

Prendiamo un circuito di riferimento

Definiamo

- Nodo: intersezione tra 3 o più fili
- Ramo: Parte di circuito compresa tra due nodi
- Maglia: qualsiasi percorso chiuso del circuito
- Lato: connessione in successione di più rami

Possiamo riformulare la definizione di risoluzione di un circuito: calcolare tutte le tensioni di lato e tutte le correnti di lato. Quindi se L è il numero di lati, avremo L tensioni e L correnti in un circuito; in totale si hanno 2L incognite, che necessitano di 2L equazioni indipendenti.

Possiamo scrivere L equazioni costitutive dei componenti, le altre L equazioni di ricavano da LKC e LKT.

$$A(LKC): i_1 + i_3 - i_2 = 0 B(LKC): i_4 - i_3 - i_5 = 0$$
 + = $-i_2 = i_5 + i_1 + i_4$
 $C(LKC): i_2 + i_5 - i_1 - i_4 = 0$

La somma delle prime due equazioni è uguale alle terza con segni invertiti, quindi le tre equazioni non sono indipendenti, solo due di esse lo sono.

Le equazioni che servono per risolvere un circuito sono:

- ullet L equazioni costitutive
- N-1 LKC
- $\bullet~L-N+1$ LKT (maglie non intersecate da rami)

Infatti per il circuito avremo

$$M_1: v_1 - v_2 = 0$$
 $M_3: v_2 + v_3 - v_4 = 0$ $M_2: v_4 - v_5 = 0$

Passaggi

- 1. individuare N nodi e L lati
- 2. individuare 2L incognite (v, i)
- 3. scrivere le L equazioni di lato
- 4. scrivere le N-1 LKC e L-N+1 LKT
- 5. Risolvere il sistema di equazioni

3.1.1 Esempio

Equazioni di lato	Equazioni topologiche
Lato 1: $e_1 = E_1 \\ v_{R_1} = R_1 \cdot i_1 $ $v_1 = E_1 - R_1 \cdot i_i$	LKC(A): $i_1 + i_2 - i_3 = 0$
Lato 2: $e_2 = E_2 \\ v_{R_2} = R_2 \cdot i_2 $ $v_2 = E_2 - R_2 \cdot i_2$	$ LKT(M_1) : v_1 - v_3 = 0 $
Lato 3: $v_{R_3} = R_3 \cdot i_3$	$LKT(M_2): v_3 - v_2 = 0$

Ora effettuiamo la sostituzione:

$$\begin{vmatrix} v_1 - v_3 = E_1 - R_1 i_1 - R_3 i_3 = 0 \\ v_3 - v_2 = R_3 i_3 - E_2 + R_2 i_2 = 0 \end{vmatrix} \Longrightarrow \begin{cases} i_1 + i_2 - i_3 = 0 \\ R_1 i_1 + R_3 i_3 = E_1 \\ R_2 i_2 + R_3 i_3 = E_2 \end{cases}$$

3.2 Metodo dei potenziali di nodo

- 1. scegliere un nodo di rifermento
- 2. assegniamo le tensioni agli altri nodi
- 3. LKC ai nodi non di riferimento
- 4. scrivere le correnti in funzione dei potenziali di nodo
- 5. risolvere infine il sistema di equazioni

3.3 Esempio

Scegliamo come nodo di riferimento il nodo C

LKC(A):
$$i_1 - i_2 - I - i_3 = 0$$

LKC(B): $i_3 + I - i_4 = 0$

$$i_1 = \frac{E_1 - e_A}{R_1}$$
 $i_2 = \frac{e_A}{R_2}$ $i_3 = \frac{e_A - e_B}{R_3}$

3.4 Teoremi di rete

Ipotesi di linearità

 $f(x_1 + x_2)$ è lineare

additività:
$$f(x_1 + x_2) = f(x_1) + f(x_2)$$

omogeneità: $f(ax_1) = af(x_1)$

3.5 Sovrapposizione degli effetti

Ipotesi: circuito lineare.

Le variabili di rete (effetti) si possono ottenere come sovrapposizione delle risposte dovute alle singole cause.

3.5.1 Esempio

Calcoliamo i_3 .

Bisogna considerare una causa alla volta, quindi passivare alcuni generatori: passivando un generatore di tensione si ottiene un corto-circuito (quindi il circuito è chiuso), mentre se si passiva un generatore di corrente il circuito risultante è aperto. Per calcolare v_3 utilizzeremo la formula del partitore di tensione.

Causa E_1

$$i_3' = i_1 \cdot \frac{R_2}{R_2 + R_3} = \frac{E_1}{R_1 + R'_{eq}} \cdot \frac{R_2}{R_2 + R_3}$$

$$i_1 = \frac{E_1}{R_1 + R'_{eq}}$$

$$R'_{eq} = \frac{R_2}{R_3} = \frac{R_2 \cdot R_3}{R_2 + R_3}$$

Calcoli alternativi (più espliciti):

$$i_{1} = \frac{E_{1}}{R_{1} + R'_{eq}}$$

$$v_{3} = \frac{R'_{eq}}{R_{1} + R'_{eq}} \cdot E_{1} = \frac{R_{2} \cdot R_{3}}{R_{2} + R_{3}} \cdot \frac{E_{1}}{R_{1} + R'_{eq}} = \frac{R_{2} \cdot R_{3}}{R_{2} + R_{3}} \cdot i_{1}$$

$$R'_{eq} = R_{2} / / R_{3} = \frac{R_{2} \cdot R_{3}}{R_{2} + R_{3}}$$

$$i'_{3} = \frac{v_{3}}{R_{3}} = \frac{R_{2}}{R_{2} + R_{3}} \cdot i_{1}$$

Causa E_2

$$i_2 = \frac{E_2}{R_2 + R'_{eq}} \qquad \qquad i_3'' = i_2 \cdot \frac{R_1}{R_1 + R_3}$$

Calcoli alternativi (più espliciti):

$$i_2 = \frac{E_2}{R_2 + R_{eq}''} \qquad v_3 = \frac{R_{eq}''}{R_2 + R_{eq}''} \cdot E_2 = \frac{R_1 \cdot R_3}{R_1 + R_3} \cdot \frac{E_2}{R_2 + R_{eq}''} = \frac{R_1 \cdot R_3}{R_1 + R_3} \cdot i_2$$

$$R_{eq}'' = \frac{R_1 \cdot R_3}{R_1 + R_3} \qquad i_3'' = \frac{v_3}{R_3} = \frac{R_1}{R_1 + R_3} \cdot i_2$$

Ora possiamo calcolare i_3 :

$$i_3 = i_3' + i_3''$$

3.5.2 Esempio 2

3.6 Teorema di Thevenin

In un circuito lineare tempo-indipendente è messa in evidenza una porta. Il circuito N visto dalla porta, è equivalente ad un circuito formato dalla serie di un generatore indipendente di tensione ed un resistore. La tensione del generatore è data dalla tensione a vuoto della porta AB del circuito N. Il resistore è il resistore equivalente di N visto dalla porta AB quando tutti i generatori indipendenti interni al circuito N sono spenti.

Ipotesi:

- circuito lineare
- il carico non è accoppiato con la rete da semplificare

 E_{eq} è la tensione vista ai morsetti A e B a circuito aperto.

 R_{eq} è la resistenza equivalente vista da A e B passivando i generatori indipendenti.

3.6.1 Esempio

Applichiamo il teorema di Thevenin ai morsetti A e B:

Utilizzando l'LKT sulla maglia più grande:

$$\begin{split} E_1 - v_{R_1} + v_{R_2} - E_2 &= 0 \Rightarrow E_1 - R_1 i - R_2 i - E_2 = 0 \\ &\Rightarrow E_1 - E_2 = R_1 i + R_2 i \\ &\Rightarrow E_1 - E_2 = (R_1 + R_2) i \\ &\Rightarrow i = \frac{E_1 - E_2}{R_1 + R_2} \end{split}$$

mentre l'LKT sulla maglia più piccola a sinistra:

$$E_1 - R_1 i - E_{eq} = 0 \Longrightarrow_{i = \frac{E_1 - E_2}{R_1 + R_2}} E_{eq} = E - R_1 \cdot \frac{E_1 - E_2}{R_1 + R_2}$$

$$= \frac{E_1 R_1 + E_1 R_2 - R_1 E_1 + R_1 E_2}{R_1 + R_2}$$

$$= \frac{E_1 R_2 + E_2 R_1}{R_1 + R_2}$$

$$R_{eq} = R_1//R_2 = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

$$i_3 = \frac{E_{eq}}{R_3 + R_{eq}} = \frac{E_1 R_2 + E_2 R_1}{R_1 + R_2} \cdot \frac{1}{R_3 + R_{eq}}$$

3.6.2 Esercizio

Si consideri il seguente circuito:

Vogliamo calcolare la corrente nella resistenza R_5 ; utilizzando il teorema di Thevenin otteniamo il circuito

e il circuito della R_{eq} è il seguente

Da notare che le resistenze R_1 e R_2 (come anche R_3 e R_4) sono in serie viste da B e C, cosa non vera nel circuito ottenuto corto-circuitando la resistenza R_5 .

$$R_{eq} = (R_1 + R_2) / / (R_3 + R_4)$$

Per calcolare E_{eq} consideriamo la maglia M_1 nel circuito ottenuto corto-circuitando la resistenza R_5 ; è evidente che e_B è concorde a essa, mentre e_C è discorde, quindi (chiamando la tensione del circuito aperto E_{CA})

$$\begin{split} M_1: e_B - E_{CA} - e_C &= 0 \Longrightarrow E_{CA} = e_B - e_C \\ &= R_2 I_2 - R_4 I_3 \\ &= R_2 \frac{E}{R_1 + R_2} - R_4 \frac{E}{R_3 + R_4} = E_{eq} \end{split}$$

$$I_5 = \frac{E_{eq}}{R_{eq} + R_5}$$

3.7 Teorema di Norton

In un circuito N lineare tempo-indipendente è messa in evidenza una porta. Visto dalla porta il circuito è equivalente ad un circuito formato dal parallelo di un generatore indipendente di corrente ed un resistore. La corrente del generatore è data dalla corrente di cortocircuito della porta AB del circuito N. Il resistore è il resistore equivalente di N visto dalla porta AB quando tutti i generatori indipendenti interni al circuito N sono spenti.

Ipotesi:

- circuito lineare
- il carico non è accoppiato con la rete da semplificare

 I_{eq} è la corrente tra A e B quando vi è un corto-circuito.

 R_{eq} è resistenza vista ai morsetti A e B passivando i generatori indipendenti.

3.7.1 Esempio

Vogliamo calcolare i_3 . Quindi applichiamo il teorema di Norton, utilizzando la formula del partitore di corrente per calcolare i_3 :

 $I_{eq} = i_1 + i_2 = \frac{E_1}{R_1} + \frac{E_2}{R_2}$

$$R_{eq} = R_1 / / R_2 = \frac{R_1 \cdot R_2}{R_1 + R_2} \qquad i_3 = I_{eq} \cdot \frac{R_{eq}}{R_{eq} + R_3}$$

3.8 Teorema del massimo trasferimento di potenza

Consideriamo il seguente circuito

Qual è il valore di R_L che massimizza il trasferimento di potenza? Proviamo a calcolarlo.

$$\begin{split} P_L &= I \cdot V_L \\ &= R_L \cdot I^2 \\ &= R_L \left(\frac{E}{R + R_L}\right)^2 \begin{cases} R_L = 0 \Rightarrow P_L = 0 \\ R_L \to \infty \Rightarrow P_L = 0 \text{ (circuito aperto)} \end{cases} \end{split}$$

Per trovare il massimo poniamo la derivata della potenza a 0; sapendo che $P_L = E^2 \frac{R_L}{(R + R_L)^2}$

$$\begin{split} \frac{\partial P_L}{\partial R_L} &= 0 \Rightarrow E^2 \frac{(R+R_L)^2 - 2R_L(R+R_L)}{(R+R_L)^4} = 0 \\ &\Rightarrow R^2 + R_L^2 + 2RR_L - 2RR_L - 2R_L^2 = 0 \\ &\Rightarrow R = R_L \end{split}$$

$$P_{L,Max} = R \frac{E^2}{(R+R)^2}$$
$$= R \frac{E^2}{4R^2}$$
$$= \frac{E^2}{4R}$$

3.9 Teorema di Millman

Data una rete con due o più lati in parallelo, la tensione ai capi della rete è pari al rapporto delle correnti di corto-circuito di ogni singolo lato e la sommatoria delle conduttanze di ogni lato.

$$v_{AB} = \frac{\sum\limits_{k} \frac{v_k}{R_k} + \sum\limits_{j} i_j}{\sum\limits_{n} \frac{1}{R_n}}$$

3.9.1Esempio 1

Dimostriamo che questa formula è vera utilizzando il metodo dei potenziali di nodo (applicato al nodo B):

$$v_{AB} = E_1 - R_1 i_1 \Rightarrow i_1 = \frac{E_1 - v_{AB}}{R_1} \tag{1}$$

$$v_{AB} = E_1 - R_1 i_1 \Rightarrow i_1 = \frac{E_1 - v_{AB}}{R_1}$$

$$v_{AB} = -E_2 + R_2 i_2 \Rightarrow i_2 = \frac{E_2 + v_{AB}}{R_2}$$
(1)

$$i_3 = I_3 \tag{3}$$

$$i_3 = I_3 \tag{3}$$

$$i_4 = \frac{v_{AB}}{R_4} \tag{4}$$

$$\begin{split} \text{LKC: } i_1 - i_2 + i_3 - i_4 &= 0 \Rightarrow \frac{E_1 - v_{AB}}{R_1} - \frac{E_2 + v_{AB}}{R_2} + I_3 - \frac{v_{AB}}{R_4} = 0 \\ \Rightarrow \frac{E_1}{R_1} - \frac{v_{AB}}{R_1} - \frac{E_2}{R_2} - \frac{v_{AB}}{R_2} + I_3 - \frac{v_{AB}}{R_4} = 0 \\ \Rightarrow v_{AB} \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \right) &= \frac{E_1}{R_1} - \frac{E_2}{R_2} + I_3 \\ \Rightarrow v_{AB} &= \frac{\frac{E_1}{R_1} + \frac{E_2}{R_2} + I_3}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}} \end{split}$$

3.9.2 Esempio 2

Calcoliamo i_3 :

$$v_{AB} = \frac{\frac{E_1}{R_1} + \frac{E_2}{R_2}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2}} \Rightarrow i_3 = \frac{v_{AB}}{R_3}$$

4 Analisi del transitorio

4.1 Formule notevoli

4.1.1 Condensatore

Condensatore lineare

$$C = \frac{Q}{\Delta V} \qquad \qquad C = \varepsilon \cdot \frac{S}{d}$$

dove C è la capacità in farad, ε la permittività elettrica assoluta dell'isolante in farad su metro, S la superficie delle due armature in metri quadrati e d la distanza fra le armature in metri.

Energia immagazzinata

$$dW = V \ dq = \frac{q}{C} \ dq \qquad \qquad U = \frac{1}{2}CV^2$$

L'energia immagazzinata da un condensatore è uguale al lavoro W; U è l'energia potenziale.

Equazione caratteristica

$$v(t) = \frac{q(t)}{C} = \frac{1}{C} \int_{t_0}^{t} i(\tau) d\tau + v(t_0)$$

$$i(t) = \frac{dq(t)}{dt} = C \frac{dv(t)}{dt}$$

4.1.2 Induttore

Energia

$$W = \frac{1}{2}LI^2$$

Equazione differenziale

$$v(t) = L \frac{di(t)}{dt}$$

Campo magnetico prodotto da un solenoide

$$B = \mu \frac{N}{l} I$$

4.2 Introduzione

Fin'ora abbiamo usato delle sorgenti costanti, quindi abbiamo fatto esercizi con circuiti DC (circuiti con corrente continua). Consideriamo ora invece la variabile tempo; i nostri circuiti subiranno delle variazioni:

- avremo generatori variabili nel tempo
- si possono presentare dei guasti nel circuito
- il circuito sarà dotato di un interruttore:
 - se aperto $i=0 \Rightarrow$ circuito aperto
 - se chiuso $v = 0 \Rightarrow$ cortocircuito

Per il **resistore** $v = R \cdot i$, vi è un legame istantaneo, viene chiamato legame **adinamico** (senza memoria). Per **induttori e condensatori** il legame è integro-differenziale, viene chiamato legame **dinamico** (con memoria).

Induttore Condensatore
$$\varepsilon = \frac{1}{2}L \cdot I^2 \qquad \qquad \varepsilon = \frac{1}{2}C \cdot V^2$$

Per l'induttore la variabile di stato è la corrente, mentre per il condensatore la variabile di stato è la tensione.

Ovviamente valgono ancora le formule LKC, LKT e le equazioni costitutive.

$$E^{\dagger} = 0 \quad \text{T is chiscle} \quad \text{This chiscle}$$

Ecco che dobbiamo risolvere un'equazione differenziale.

Per i circuiti lineari, quindi con equazioni differenziali ordinarie (ODE) a coefficienti costanti, utilizzeremo il metodo di Cauchy. La soluzione finale sarà la somma di due contributi:

- la soluzione dell'omogenea associata o(t)
- la soluzione particolare p(t)

4.3 Il problema di Cauchy

In generale la soluzione sarà un espressione di questo tipo

$$a_n \frac{d^n x(t)}{dt} + a_{n-1} \frac{d^{n-1} x(t)}{dt} + \dots + a_1 \frac{dx(t)}{dt} + a_0 x(t) = b(t)$$

- b(t) è il termine noto
- $a_n, a_{n-1}, ..., a_1, a_0$ sono i coefficienti costanti
- x(t) è l'incognita

La condizione iniziale del problema di Cauchy è $x(t=0)=X_0$; rappresenta lo stato energetico del sistema prima che si inneschi il transitorio. Per risolvere il problema di Cauchy non solo serve sapere quest'ultimo, ma anche le variabili di stato prima che si inneschi il transitorio.

L'integrale particolare p(t) ha la stessa evoluzione di b(t); ad esempio se b(t) è costante allora anche p(t) è costante (b(t) dipende solo dai generatori).

L'integrale dell'omogenea associata o(t) è la soluzione dell'ODE quando il termine noto è nullo, cioè si passivano i generatori. Esso rappresenta l'evoluzione libera:

$$a_n \frac{d^n x(t)}{dt} + a_{n-1} \frac{d^{n-1} x(t)}{dt} + \dots + a_1 \frac{dx(t)}{dt} + a_0 x(t) = 0$$

il **polinomio associato** all'integrale dell'omogenea è

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \ldots + a_1 \lambda + a_0 = 0 \underset{\text{soluzioni}}{\Longrightarrow} \lambda_1, \lambda_2, \ldots, \lambda_n$$

$$o(t) = k_1 e^{\lambda_1 t} + k_2 e^{\lambda_2 t} + \ldots + k_n e^{\lambda_n t} \qquad \qquad \lambda_1, \lambda_2, \ldots, \lambda_n < 0$$

Costante di tempo:

$$\tau_n = -\frac{1}{\lambda_n}[s]$$

4.3.1 Principio di conservazione dell'energia

Al fine di inibire variazioni istantanee dell'energia immagazzinata, nei condensatori la variazione istantanea della tensione è nulla e negli induttori la variazione istantanea della corrente è nulla. L'energia immagazzinata da un elemento non può variare bruscamente

Induttore

Condensatore

$$\varepsilon = \frac{1}{2}L \cdot I^2$$

$$\varepsilon = \frac{1}{2}C \cdot V^2 = \frac{1}{2}\frac{Q^2}{C}$$

Nell'induttore variazioni istantanee di i non sono possibili

Nel condensatore variazioni istantanee di V e Q non sono possibili

4.4 Circuito del primo ordine: Circuito RC

LKT:
$$\begin{cases} E - v_R - v_C = 0 \\ v_R = R \cdot i \\ i = C \frac{dv_C}{dt} \end{cases} \implies E - RC \frac{dv_C}{dt} - v_C = 0$$
$$\implies \frac{dv_C}{dt} + \frac{v_C}{RC} = \frac{E}{RC}$$

Perveniamo a una equazione differenziale del primo ordine. Per risolverla dobbiamo trovare la soluzione dell'omogenea associata e la soluzione particolare.

1. Soluzione dell'omogenea associata

$$\frac{dv_C}{dt} + \frac{v_C}{RC} = 0$$

il polinomio associato è

$$\lambda + \frac{1}{RC} = 0 \Rightarrow \lambda = -\frac{1}{RC}$$

quindi la soluzione è

$$o(t) = Ae^{-t/RC}$$

 $\frac{t}{RC}$ è detto numero puro, e la costante di tempo è $\tau=RC.$ Si può pervenire alla soluzione dell'omogenea associata anche in un altro modo: riprendiamo l'omogenea associata e poniamo sotto integrale ambo i membri:

$$\frac{dv_C}{dt} = -\frac{v_C}{RC} \Rightarrow \int \frac{dv_C}{dt} = -\int \frac{v_C}{RC}$$

$$\Rightarrow \ln(v_C) + k_1 = -\frac{t}{RC} + k_2$$

$$\Rightarrow \ln(v_C) = -\frac{t}{RC} + \underbrace{(k_2 - k_1)}_{k_3}$$

$$\Rightarrow v_C = e^{-t/RC} + \underbrace{e^{k_3}}_{A}$$

$$\Rightarrow v_C = Ae^{-t/RC}$$

2. Soluzione particolare

Siccome p(t) si comporta come b(t) e $b(t) = \frac{E}{RC}$ (una costante), allora p(t) sarà una costante

$$\frac{dp(t)}{dt} + \frac{p(t)}{RC} = \frac{E}{RC} \Rightarrow p(t) = E$$

3.

$$v_C = o(t) + p(t) = Ae^{-t/RC} + E$$

4. Consideriamo la condizione iniziale

$$v_C(t = 0^-) = V_{C0}$$
 $v_C(t = 0^+) = Ae^{-0/RC} + E = V_{C0}$ $\Rightarrow A + E = V_{C0}$ $\Rightarrow A = V_{C0} - E$

5.

$$v_C(t) = \underbrace{(V_{C0} - E)e^{-t/RC}}_{\text{Risposta transitoria}} + \underbrace{E}_{\substack{\text{Risposta} \\ \text{a regime}}} = \underbrace{V_{C0} \cdot e^{-t/RC}}_{\text{Evoluzione libera}} + \underbrace{E(1 - e^{-t/RC})}_{\text{Risposta formata}}$$

Ricordiamo che $\tau = -\frac{1}{\lambda}$, quindi in questo caso $\tau = RC$

N.B. nel grafico la $V0 \ \ E.$

Dal grafico si può facilmente vedere che $\tau_1 < \tau_2$, quindi la tensione è continua.

$$e^{-t/\tau} \begin{cases} \text{Analiticamente è 0 con } t \to \infty \\ \text{Praticamente: } e^{-5\not //\not } = e^{-5} = \frac{1}{e^5} = 0,0067 \end{cases}$$

$$i(t) = C \frac{dv_C}{dt}$$

$$= C \frac{d}{dt} \left[(V_{C0} - E) e^{-t/RC} + E \right]$$

$$= \mathcal{C} - \left(\frac{1}{R\mathcal{C}} \right) (V_{C0} - E) e^{-t/RC}$$

$$\Rightarrow i(t) = \frac{E - V_{C0}}{R} e^{-t/RC}$$

Dal grafico è evidente che la corrente non varia con continuità.

4.5 Circuito del primo ordine: Circuito RL

L'obiettivo è determinare la risposta naturale del circuito RL (che si ha alla chiusura del derivatore da 1 a 2). Il circuito risultante è il seguente:

$$\begin{aligned} \text{LKT} : \begin{cases} E - v_R - v_L &= 0 \\ v_R &= R \cdot i \\ v_L &= L \frac{di}{dt} \end{cases} \\ \Rightarrow E - R \cdot i - L \frac{di}{dt} &= 0 \\ \Rightarrow \frac{di}{dt} + \frac{R}{L} i &= \frac{E}{L} \end{aligned}$$

Siamo arrivati a una equazione differenziale del primo ordine.

1. Soluzione dell'omogenea associata

$$\frac{di}{dt} + \frac{R}{L}i = 0$$

il polinomio associato è

$$\lambda + \frac{R}{L} = 0 \Rightarrow \lambda = -\frac{R}{L}$$

quindi la soluzione è

$$o(t) = Ae^{\lambda t} = Ae^{-\frac{R}{L}t}$$

 $\frac{t}{RC}$ è il numero puro, e la costante di tempo è $\tau = \frac{R}{L}.$

2. Soluzione particolare

Siccome p(t) si comporta come b(t) e $b(t) = \frac{E}{RC}$ (una costante), allora p(t) sarà una costante

$$\frac{dp(t)}{dt} + \frac{R}{L}p = \frac{E}{L} \Rightarrow p(t) = \frac{E}{R}$$

3.

$$i(t) = o(t) + p(t) = Ae^{-\frac{R}{L}t} + \frac{E}{R}$$

4. Consideriamo le condizioni iniziali

$$i(t = 0^{-}) = I_{0}$$
 $i(t = 0^{+}) = I_{0}$ $i(0) = Ae^{-\frac{R}{L}0} + \frac{E}{R} = I_{0}$ $\Rightarrow A = I_{0} - \frac{E}{R}$

5.

$$i(t) = \underbrace{\left(I_0 - \frac{E}{R}\right)e^{-\frac{R}{L}t}}_{\text{Risposta transitoria}} + \underbrace{\frac{E}{R}}_{\text{Risposta a regime}} = \underbrace{I_0 \cdot e^{-\frac{R}{L}t}}_{\text{Evoluzione libera}} + \underbrace{\frac{E}{R}(1 - e^{-\frac{R}{L}t})}_{\text{Risposta formata}}$$

La corrente varia con continuità.

$$v_{L} = L \frac{di}{dt}$$

$$= L \frac{d}{dt} \left[\left(I_{0} - \frac{E}{R} \right) e^{-\frac{R}{L}t} + \frac{E}{R} \right]$$

$$= \mathcal{L} \left(\left(-\frac{R}{L} \right) \right) \left(I_{0} - \frac{E}{R} \right) e^{-\frac{R}{L}t}$$

$$\Rightarrow v_{L} = (E - RI_{0}) e^{-\frac{R}{L}t}$$

La tensione non varia con continuità.

4.6 Confronto tra circuito RC e circuito RL

$$\begin{aligned} & \mathbf{RC} & \mathbf{RL} \\ & \frac{dv_c}{dt} + \frac{v_c}{RC} = \frac{E}{RC} & \frac{di}{dt} + \frac{R}{L}i = \frac{E}{L} \\ & \frac{dv_c}{dt} + \frac{v_c}{\tau} = \frac{E}{RC} & \frac{di}{dt} + \frac{i}{\tau} = \frac{E}{L} \\ & \frac{dx(t)}{dt} + \frac{x(t)}{\tau} = X_F \\ & x(t) = o(t) + p(t) = \underbrace{X_n(t)}_{\text{Evolulizione libera}} + X_F \\ & \underbrace{\begin{cases} x(t) = \underbrace{ke^{-t/\tau}}_{Transitorio} + \underbrace{X_{\infty}}_{\text{Regime}} \\ x(t = 0^-) = x(t = 0^+) = X_0 \end{cases}}_{X(0) = k + X_{\infty} = X_0 \\ & \Rightarrow k = X_0 - X_{\infty} \\ & \Rightarrow x(t) = (X_0 - X_{\infty}) e^{-t/\tau} + X_{\infty} \end{aligned}$$

4.7 Circuiti del secondo ordine: Circuito RLC

$$\begin{aligned} \text{LKT:} & \begin{cases} E - v_R - v_L - v_C = 0 \\ v_R = Ri \\ v_L = L \frac{di}{dt} \\ v_C = \frac{1}{C} \int i(\tau) d\tau \\ \Rightarrow E - Ri - L \frac{di}{dt} - \frac{1}{C} \int i(\tau) d\tau = 0 \\ & \underset{\text{in } dt}{\Rightarrow} R \frac{di}{dt} + L \frac{d^2i}{dt} + \frac{1}{C}i = 0 \\ & \Rightarrow \frac{d^2i}{dt} + \frac{R}{L} \frac{di}{dt} + \frac{1}{LC}i = 0 \end{cases}$$

Siamo arrivati a un'equazione differenziale del secondo ordine.

Soluzione dell'omogenea associata

$$i(t) = Ae^{\lambda_1 t} + Be^{\lambda_2 t}$$

il polinomio associato è

$$\lambda^2 + \frac{R}{L}\lambda + \frac{1}{LC} = 0 \Rightarrow \lambda_{1,2} = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$

$$\frac{R}{2L} = \alpha \text{: coefficiente di smorzamento}$$

$$\frac{1}{LC} = \omega_0^2 \text{: pulsazione di risonanza}$$

$$\begin{split} \lambda_{1,2} &= -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} \\ \Rightarrow \Delta &= \alpha^2 - \omega_0^2 \begin{cases} > 0 \to \text{ soluzioini reali distinte} \\ = 0 \to \text{ soluzioini reali coincidenti} \\ < 0 \to \text{ soluzioini complesse coniugate} \end{cases} \end{split}$$

• $\Delta > 0$

$$\alpha^2 > \omega_0^2 \Rightarrow \alpha > \omega_0$$

 $i(t) = Ae^{\lambda_1 t} + Be^{\lambda_2 t}$

Analizziamo le condizioni iniziali:

$$i(0^{-}) = i(0^{+}) = 0$$

$$\Rightarrow i(0) = 0$$

$$\Rightarrow A + B = 0$$

$$\Rightarrow A = -B$$

$$v_{C}(0) = V_{C0}$$

$$\Rightarrow E - \underbrace{Ri(0)}_{0} - L\frac{di}{dt} - V_{C0} = 0$$

$$\Rightarrow E - L\frac{di}{dt}\Big|_{0} - V_{C0} = 0$$

$$\Rightarrow \frac{di}{dt}\Big|_{0} = \frac{E - V_{C0}}{L}$$

$$\begin{aligned} \frac{di}{dt} \bigg|_{0} &= \left(A\lambda_{1}e^{\lambda_{1}t} + B\lambda_{2}e^{\lambda_{2}t} \right) \bigg|_{0} \\ &= A\lambda_{1} + B\lambda_{2} \\ &\Rightarrow A\lambda_{1} + \underbrace{B}_{-A}\lambda_{2} = \frac{E - V_{C0}}{L} \\ &\Rightarrow A(\lambda_{1} - \lambda_{2}) = \frac{E - V_{C0}}{L} \\ &\Rightarrow A = \frac{E - V_{C0}}{L(\lambda_{1} - \lambda_{2})} \end{aligned}$$

$$i(t) = \frac{E - V_{C0}}{L(\lambda_1 - \lambda_2)} (e^{\lambda_1 t} - e^{\lambda_2 t})$$

$$= \frac{E - V_{C0}}{2L(\alpha^2 - \omega_0^2)} \left(e^{\left(-\alpha + \sqrt{\alpha^2 - \omega_0^2}\right)t} - e^{\left(-\alpha - \sqrt{\alpha^2 - \omega_0^2}\right)t} \right)$$

$$= \frac{E - V_{C0}}{2L(\alpha^2 - \omega_0^2)} \left(e^{\left(\sqrt{\alpha^2 - \omega_0^2}\right)t} - e^{\left(-\sqrt{\alpha^2 - \omega_0^2}\right)t} \right) e^{-\alpha t}$$

Risposta sovrasmorzata:

$$i(t) = \frac{E - V_{C0}}{2L(\alpha^2 - \omega_0^2)} \left(e^{\left(\sqrt{\alpha^2 - \omega_0^2}\right)t} - e^{\left(-\sqrt{\alpha^2 - \omega_0^2}\right)t} \right) e^{-\alpha t}$$

• $\Delta = 0$

$$\alpha^2 = \omega^2 \Rightarrow \alpha = \omega$$

$$\Rightarrow \lambda_1 = \lambda_2 = \lambda = -\alpha$$
 Risposte reali coincidenti

$$i(t) = (A + Bt) e^{\lambda t} = (A + Bt) e^{-\alpha t}$$

Utilizziamo le condizioni iniziali

$$i(t = 0^{-}) = i(t = 0^{+}) = 0$$

 $\Rightarrow i(0) = A = 0$

$$v_C(t=0^-) = v_C(t=0^+) = V_{C0}$$

$$\Rightarrow E - Ri(0) - L\frac{di}{dt} - V_{C0} = 0$$

$$\Rightarrow \frac{di}{dt}\Big|_0 = \left(-\alpha(Bt)e^{-\alpha t} + Be^{-\alpha t}\right)\Big|_0$$

$$= B = \frac{E - V_{C0}}{L}$$

$$\Rightarrow \frac{di}{dt}\Big|_0 = \frac{E - V_{C0}}{L}$$

Smorzamento critico:

$$i(t) = \frac{E - V_{C0}}{L}t \cdot e^{-\alpha t}$$

∆ < 0

$$\alpha^2 < \omega_0^2$$
 $\Rightarrow \alpha < \omega_0$

$$\lambda_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$

$$= -\alpha + \sqrt{-\underbrace{(\omega_0^2 - \alpha^2)}_{\substack{\text{Pulsazione} \\ \text{nat. smorzata}}}$$

$$\lambda_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$
$$= -\alpha - j\omega_d$$

 $= -\alpha + j\omega_d$

$$i(t) = \frac{E - V_{C0}}{2Lj\omega_d} \left(e^{j\omega_d t} - e^{-j\omega_d t} \right) e^{-\alpha t}$$

Utilizziamo le formule di eulero:

$$e^{j\theta} = \cos \theta + j \sin \theta$$
$$e^{-j\theta} = \cos \theta - j \sin \theta$$

$$i(t) = \frac{E - V_{C0}}{2Lj\omega_d} j 2\sin(\omega_d t) e^{-\alpha t}$$

Risposta sottosmorzata:

$$i(t) = \frac{E - V_{C0}}{L\omega_d} \sin(\omega_d t) e^{-\alpha t}$$

4.8 Esercizi in regime transitorio

Risolvere un'equazione differenziale di ordine superiore al secondo è complesso; in questi casi si usa il **metodo per ispezione**.

Siamo interessati a

• $t=0^-$: istante immediatamente prima che si instauri il transitorio

• $t=0^+$: istante immediatamente dopo l'instaurasi del transitorio

• $t = \infty$: regime

4.8.1 Esercizio 1

$$R_1 = 100\Omega$$

$$C_1 = 100F$$

$$E_1 = 10V$$

T si chiude a t=0; il condensatore è inizialmente scarico.

Dobbiamo trovare:

- $P_{E_1,max}$ e $t_{P_E,max}$
- $P_{E_1}(t=\infty)$
- $\bullet \ t_{P_E^*} \in P_E^* = \frac{1}{2} P_{E,max}$

$$P_{E_1} = E_1 \cdot i_1$$

$$t = 0^- : v_C(t = 0^-) = 0V$$

$$t = 0^+ : v_C(t = 0^+) = v_C(t = 0^-) = 0V$$

$$t = \infty : v_C(t = \infty) = E_1 = 10V$$

Ricordiamo la formula trovata dal confronto tra circuito RC e RL:

$$x(t) = (X_0 - X_{\infty}) e^{-t/\tau} + X_{\infty}$$

$$v_C(t) = (0 - 10)e^{-t/\tau} + 10V$$
$$= 10\left(1 - e^{-t/\tau}\right)$$