Chapter 7

Operators on Inner Product Spaces

Contents

2	 	7A Self-Adjoint and Normal Operators
2	 	1
2	 	2
3	 	3
4	 	4
4	 	5
5	 	6
5	 	7
6	 	8
7	 	9
7	 	10
7	 	11
8	 	12
9	 	13
9	 	$14 \dots \dots \dots$
10	 	$15 \dots \dots \dots$
11	 	$16 \ldots \ldots \ldots$
12	 	17
12		18

19																12
20																13
21																13
22																14
23																14
24																15
25																16
26																16
27																17
28																18
29																19
30																20
31																20
32																22

7A Self-Adjoint and Normal Operators

1 Suppose n is a positive integer. Define $T \in \mathcal{L}(\mathbb{F}^n)$ by

$$T(z_1,\ldots,z_n)=(0,z_1,\ldots,z_{n-1}).$$

Find a formula for $T^*(z_1, \ldots, z_n)$.

Solution:

Suppose $(z_1, \ldots, z_n), (w_1, \ldots, w_n) \in \mathbb{F}^n$. Then

$$\langle T(z_1, \dots, z_n), (w_1, \dots, w_n) \rangle = \langle (0, z_1, \dots, z_{n-1}), (w_1, w_2, \dots, w_n) \rangle$$

= $z_1 w_2 + z_2 w_3 + \dots + z_{n-1} w_n$
= $\langle (z_1, \dots, z_n), (w_2, \dots, w_n, 0) \rangle$

By the definition of the adjoint, we must have

$$T * (w_1, \dots, w_n) = (w_2, \dots, w_{n-1}, 0),$$

which is the sought formula for the adjoint. \Box

2 Suppose $T \in \mathcal{L}(V, W)$. Prove that

$$T = 0 \iff T^* = 0 \iff T^*T = 0 \iff TT^* = 0.$$

Solution:

First equivalence is just the property of a zero map. Indeed, for any $v \in V$, $u \in W$:

$$\langle 0v, u \rangle = 0 = \langle v, 0u \rangle.$$

That is, zero map is "self-adjoint" (although these maps are from different vector spaces).

Third equation follows directly from the second:

$$T^* = 0 \Rightarrow T^*(Tv) = 0$$
 for every $v \in V \Rightarrow T^*T = 0$.

Similarly, $T = 0 \Rightarrow TT^* = 0$.

Now suppose $T^*T=0$. That means for every $v\in V$:

$$\langle T^*Tv, v \rangle = \langle 0, v \rangle = 0$$

and also

$$\langle T^*Tv, v \rangle = \langle Tv, Tv \rangle = ||Tv||^2 = 0$$

By the definiteness property of the inner product, Tv=0 for every $v\in V$. Hence T=0.

Similarly, $TT^* = 0$ implies that $T^* = 0$.

Established relations are sufficient to get from any of the stated equations to any other, as desired. \Box

3 Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Prove that

 λ is an eigenvalue of $T \Longleftrightarrow \overline{\lambda}$ is an eigenvalue of T^* .

Solution:

Suppose λ is an eigenvalue of T with a corresponding eigenvector v. That means $(T - \lambda I)$ is not injective, i.e. dimension of its null space is greater than zero. Using properties of adjoint (7.6) and corollary 6.51, we see that

$$\dim \operatorname{range} (T^* - \overline{\lambda}I) = \dim V - \dim (\operatorname{range} (T^* - \overline{\lambda}I))^{\perp}$$
$$= \dim V - \dim (\operatorname{range} (T - \lambda I)^*)^{\perp}$$
$$= \dim V - \dim \operatorname{null} (T - \lambda I)$$
$$< \dim V$$

The last inequality implies that $(T^* - \overline{\lambda})$ is not injective (Theorem 3.22), which implies that $\overline{\lambda}$ is an eigenvalue of T^* (Theorem 5.7). \square

4 Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V. Prove that

U is invariant under $T \iff U^{\perp}$ is invariant under T^* .

Solution:

Suppose $u \in U$ and $v \in U^{\perp}$, U is invariant under T. We have

$$\langle Tu, v \rangle = 0$$

 $\langle Tu, v \rangle = \langle u, T^*v \rangle$

This means $\langle u, T^*v \rangle = 0$ for every choice of u and v. Therefore, $T^*v \in U^{\perp}$ for every $v \in U^{\perp}$, hence, U^{\perp} is invariant under T^* . Changing T to T^* and U to U^{\perp} gives proof in other direction. \square

5 Suppose $T \in \mathcal{L}(V, W)$. Suppose e_1, \ldots, e_n is an orthonormal basis of V and f_1, \ldots, f_m is an orthonormal basis of W. Prove that

$$||Te_1||^2 + \dots + ||Te_n||^2 = ||T^*f_1||^2 + \dots + ||T^*f_m||^2.$$

Solution:

Denote a matrix of T with respect to the bases e_1, \ldots, e_n and f_1, \ldots, f_m by A. Matrix of T^* is then A^* (Theorem 7.9).

Note that $||Te_j||^2$ equals sum of elements of the first row of A squared. Similarly, for other vectors e_j . Thus:

$$||Te_1||^2 + \dots + ||Te_n||^2 = \sum_{k=1}^n |A_{k,1}|^2 + \dots + \sum_{k=1}^n |A_{k,n}|^2 = \sum_{j=1}^m \sum_{k=1}^n |A_{k,j}|^2.$$

For T^* we have:

$$||T^*f_1||^2 + \dots + ||T^*f_m||^2 = \sum_{j=1}^m |A_{j,1}^*|^2 + \dots + \sum_{j=1}^n |A_{j,n}^*|^2 = \sum_{k=1}^n \sum_{j=1}^m |A_{j,k}^*|^2.$$

By definition of conjugate transpose:

$$\sum_{k=1}^{n} \sum_{j=1}^{m} |A_{j,k}^*|^2 = \sum_{k=1}^{n} \sum_{j=1}^{m} |\overline{A_{k,j}}|^2 = \sum_{k=1}^{n} \sum_{j=1}^{m} |A_{k,j}|^2,$$

thus leading to the desired equality. \square

- **6** Suppose $T \in \mathcal{L}(V, W)$. Prove that
 - (a) T is injective $\iff T^*$ is surjective;
 - (b) T is surjective $\iff T^*$ is injective.

Solution:

(a) We have:

$$\begin{split} T \text{ is injective} &\iff \dim \operatorname{null} T = 0 \\ &\iff \dim (\operatorname{range} T^*)^\perp = 0 \\ &\iff \operatorname{range} T^* = W \\ &\iff T^* \text{ is surjective.} \end{split}$$

Here we used Theorem 3.15 for the first equivalence, Property 7.6 for the second equivalence, Theorem 6.54 for the third equivalence and the last follows from the definition of *surjective*.

(b) We have:

$$\begin{split} T \text{ is surjective} &\iff \dim \operatorname{range} T = \dim V \\ &\iff \dim \left(\operatorname{range} T\right)^{\perp} = 0 \\ &\iff \dim \operatorname{null} T^* = 0 \\ &\iff T^* \text{ is injective.} \end{split}$$

Here we used the same properties of range and null space as in (a), and a different identity from 7.6, relating null space of T^* with range of T. \square

- 7 Prove that if $T \in \mathcal{L}(V, W)$, then
 - (a) $\dim \operatorname{null} T^* = \dim \operatorname{null} T + \dim W \dim V$;
 - (b) $\dim \operatorname{range} T^* = \dim \operatorname{range} T$

Solution:

(a) Using 7.6, 6.51 and Fundamental Theorem of Linear Maps, we get:

$$\dim \operatorname{null} T^* = \dim (\operatorname{range} T)^{\perp}$$

$$= \dim W - \dim \operatorname{range} T = \dim W - (\dim V - \dim \operatorname{null} T)$$

$$= \dim \operatorname{null} T + \dim W - \dim V. \quad \Box$$

(b) Here we can use result of part (a) to get:

$$\dim \operatorname{range} T^* = \dim W - \dim \operatorname{null} T^*$$

$$= \dim W - (\dim \operatorname{null} T + \dim W - \dim V)$$

$$= \dim V - \dim \operatorname{null} T$$

$$= \dim \operatorname{range} T. \quad \Box$$

8 Suppose A is an m-by-n matrix with entries in \mathbb{F} . Use (b) in Exercise 7 to prove that the row rank of A equals the column rank of A.

Solution:

Suppose V, W are vector spaces over \mathbb{F} , $T \in \mathcal{L}(V, W)$ and A is a matrix of T with respect to some bases.

By Theorem 3.78, column rank of A equals dim range T. According to the result of *Problem 7A.7b*, dim range T = dim range T^* , which in turn equals column rank of A^* , matrix of T^* , conjugate transpose of A.

Row rank of A equals column rank of A^t . Complex conjugation does not affect column (or row) rank, as span of columns does not change. If $\mathbb{F} = \mathbb{R}$, this is trivially true.

In case $\mathbb{F} = \mathbb{C}$, let k'th entry of j'th column of A^t equal $a_{k,j} = x_{k,j} + iy_{k,j}$. Suppose that rank of A^t equals m; without loss of generality let the first m columns of A^t be linearly independent. Thus, for every c_1, \ldots, c_m

$$c_1 a_{k,1} + \dots + c_m a_{k,m} = c_1 (x_{k,1} + iy_{k,1}) + \dots + c_m (x_{k,1} + iy_{k,1})$$

$$= c_1 x_{k,1} + \dots + c_m x_{k,m} + i (c_1 y_{k,1} + \dots + c_m y_{k,m})$$

$$\neq 0.$$

This implies that the sum of real or imaginary parts does not equal zero. For columns of A^* we have entries $a_{k,j} = x_{k,j} - iy_{k,j}$. The sums are:

$$c_1 a_{k,1}^* + \dots + c_m a_{k,m}^* = c_1 (x_{k,1} - iy_{k,1}) + \dots + c_m (x_{k,1} - iy_{k,1})$$

$$= c_1 x_{k,1} + \dots + c_m x_{k,m} - i (c_1 y_{k,1} + \dots + c_m y_{k,m})$$

$$\neq 0.$$

The last inequality follows from the fact that either the real or imaginary sum does not equal zero. Thus, span of columns of A^* is not less than span of columns of A^t .

Similarly, take a linearly dependent list of columns of A^t and take coefficients c_j that make a linear combination of the columns equal zero. Then, per-row sums of real and imaginary parts of entries of A^t equal zero. Under

complex conjugation only the sign of imaginary part changes, therefore, perrow sum of entries of A^* also equals zero. This shows that column rank of A^* is not greater than the column rank of A^t

Thus, we have: column rank of A equals column rank of A^* , which equals to column rank of A^t , which equals to row rank of A, proving the desired equality. \square

9 Prove that the product of two self-adjoint operators on V is self-adjoint if and only if the two operators commute.

Solution:

Suppose $T, S \in \mathcal{L}(V)$ are self-adjoint operators. Then we have:

$$TS = ST \iff TS = S^*T^* \iff TS = (TS)^*,$$

where we used definition of self-adjoint and property of the adjoint (7.5 d). \square

10 Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Prove that T is self-adjoint if and only if

$$\langle Tv, v \rangle = \langle T^*v, v \rangle$$

for all $v \in V$.

Solution:

First suppose T is self-adjoint. That means $T = T^*$, which trivially leads to equality $\langle Tv, v \rangle = \langle T^*v, v \rangle$.

Now suppose $\langle Tv, v \rangle = \langle T^*v, v \rangle$. Using definition of adjoint, property (7.5 c) $(T^*)^* = T$ and conjugate symmetry of inner products, we get

$$\langle T^*v, v \rangle = \langle v, Tv \rangle = \overline{\langle Tv, v \rangle}.$$

Thus, we have $\langle Tv, v \rangle = \overline{\langle Tv, v \rangle}$, which implies that $\langle Tv, v \rangle \in \mathbb{R}$ for all $v \in V$. That by Theorem 7.14 implies that T is self-adjoint, completing the proof. \square

- **11** Define an operator $S: \mathbb{F}^2 \to \mathbb{F}^2$ by S(w, z) = (-z, w).
 - (a) Find a formula for S^* .
 - (b) Show that S is normal but not self-adjoint.
 - (c) Find all eigenvalues of S.

Solution:

(a) To find formula for S^* , suppose $(w, z), (x, y) \in \mathbb{F}^2$. Then:

$$\langle S(w,z),(x,y)\rangle = \langle (-z,w),(x,y)\rangle = -zx + wy = \langle (w,z),(y,-x)\rangle.$$

This implies $S^*(w, z) = (z, -w)$.

(b) Formula for S^* clearly shows that S is not self-adjoint.

$$SS^*(w, z) = S(z, -w) = (w, z)$$

 $S^*S(w, z) = S^*(-z, w) = (w, z).$

Last two equations show that $SS^* = S^*S$, meaning S is a normal operator.

(c) Suppose λ is an eigenvalue of S. Then:

$$\begin{cases} -z = \lambda w, \\ w = \lambda z. \end{cases}$$

Eliminating z in the second equation via expression in the first we get:

$$w = -\lambda^2 w \quad \Rightarrow \quad (\lambda^2 + 1)w = 0.$$

As we need a non-zero eigenvector, $w \neq 0$. Hence we have equation on eigenvalues:

$$\lambda^2 + 1 = 0.$$

If $\mathbb{F} = \mathbb{R}$, there are no eigenvalues. If $\mathbb{F} = \mathbb{C}$, $\lambda = \pm i$. \square

12 An operator $B \in \mathcal{L}(V)$ is called *skew* if

$$B^* = -B.$$

Suppose that $T \in \mathcal{L}(V)$. Prove that T is normal if and only if there exist commuting operators A and B such that A is self-adjoint, B is a skew operator, and T = A + B.

Solution:

First suppose T is normal. Let

$$A = \frac{T + T^*}{2}$$
 and $B = \frac{T - T^*}{2}$. (7.1)

Then A is self-adjoint, B is a skew operator, and T = A + B. Commutator of A and B equals:

$$AB - BA = \frac{(T+T^*)(T-T^*)}{2} - \frac{(T-T^*)(T+T^*)}{2}$$

$$= \frac{T^2 - (T^*)^2 - TT^* + T^*T - T^2 + (T^*)^2 - TT^* + T^*T}{2}$$

$$= T^*T - TT^*.$$
(7.2)

Because T is normal, the right side of the equation above equals 0. Thus the operators A and B commute, as desired.

To prove the implication in the other direction, now suppose there exist commuting operators A and B such that A is self-adjoint, B is skew operator, and T = A + B. Then T = AB. Adding the last two equations and then dividing by 2 produces the equation for A in 7.1. Subtracting the last two equations and then dividing by 2 produces the equation for B in 7.1. Now 7.1 implies 7.2. Because A and B commute, 7.2 implies that T is normal, as desired. \Box

- 13 Suppose $\mathbb{F} = \mathbb{R}$. Define $A \in \mathcal{L}(\mathcal{L}(V))$ by $AT = T^*$ for all $T \in \mathcal{L}(V)$.
 - (a) Find all eigenvalues of A.
 - (b) Find the minimal polynomial of A.

Solution:

Using property 7.5 c of adjoint, we have:

$$\mathcal{A}^2T = T \implies (\mathcal{A}^2 - \mathcal{I})T = 0.$$

Hence the minimal polynomial of A is $p(z) = z^2 - 1$.

Eigenvalues of \mathcal{A} are roots of the minimal polynomial: ± 1 . \square

14 Define an inner product on $\mathcal{P}_2(\mathbb{R})$ by $\langle p, q \rangle = \int_0^1 pq$. Define an operator $T \in \mathcal{L}(\mathcal{P}_2(\mathbb{R}))$ by

$$T(ax^2 + bx + c) = bx.$$

- (a) Show that with this inner product, the operator T is not self-adjoint.
- (b) The matrix of T with respect to the basis $1, x, x^2$ is

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

This matrix equals its conjugate transpose, even though T is not self-adjoint. Explain why this is not a contradiction.

Solution:

If T were self-adjoint, we would have an equality $\langle Tp, q \rangle = \langle p, Tq \rangle$ for any $p, q \in \mathcal{P}_2(\mathbb{R})$.

Let $p = a_1 x^2 + b_1 x + c_1$ and $q = a_2 x^2 + b_2 x + c_2$ for some $a_1, a_2, b_1, b_2, c_1, c_2 \in \mathbb{R}$. Then we have:

$$\langle Tp, q \rangle = \langle b_1 x, a_2 x^2 + b_2 x + c_2 \rangle$$

$$= b_1 \int_0^1 (a_2 x^3 + b_2 x^2 + c_2 x) dx$$

$$= b_1 \left(a_2 \frac{x^4}{4} + b_2 \frac{x^3}{3} + c_2 \frac{x^2}{2} \right) \Big|_0^1$$

$$= \frac{b_1 a_2}{4} + \frac{b_1 b_2}{3} + \frac{b_1 c_2}{2}$$

$$\langle p, Tq \rangle = \langle a_1 x^2 + b_1 x + c_1, b_2 x \rangle$$

$$= b_2 \int_0^1 (a_1 x^3 + b_1 x^2 + c_1 x) dx$$

$$= b_2 \left(a_1 \frac{x^4}{4} + b_1 \frac{x^3}{3} + c_1 \frac{x^2}{2} \right) \Big|_0^1$$

$$= \frac{b_2 a_1}{4} + \frac{b_1 b_2}{3} + \frac{b_2 c_1}{2}$$

Therefore, $\langle Tp, q \rangle \neq \langle p, Tq \rangle$ for all p, q, thus T is not self-adjoint. \square

(b) Basis $1, x, x^2$ is not orthonormal, while Theorem 7.9 states that matrix of T^* equals complex conjugate transpose of the matrix of T when evaluated in an orthonormal basis. Thus, there is no contradiction.

- 15 Suppose $T \in \mathcal{L}(V)$ is invertible. Prove that
 - (a) T is self-adjoint $\iff T^{-1}$ is self-adjoint;
 - (b) T is normal $\iff T^{-1}$ is normal.

Solution:

(a) Suppose T is self-adjoint. Then by property 7.5 f, we have

$$(T^{-1})^* = (T^*)^{-1} = T^{-1},$$

thus, T^{-1} is self-adjoint.

Changing T to T^{-1} and using property $(T^{-1})^{-1} = T$ (see *Problem 3D.1*), we get the proof in other direction.

(b) Suppose T is normal. Then we have

$$\begin{split} T^{-1}(T^{-1})^* &= T^{-1}(T^*)^{-1} = (T^*T)^{-1} \\ &= (TT^*)^{-1} \\ &= (T^*)^{-1}T^{-1} \\ &= (T^{-1})^*T^{-1}, \end{split}$$

where we use property of inverse $((TS)^{-1} = S^{-1}T^{-1}$, see *Problem 3D.2*), property of adjoint 7.5 f and normality of T. This shows that T^{-1} is also normal.

Changing T to T^{-1} and using $(T^{-1})^{-1}=T,$ we get the proof in other direction. \square

- 16 Suppose $\mathbb{F} = \mathbb{R}$.
 - (a) Show that the set of self-adjoint operators on V is a subspace of $\mathcal{L}(V)$.
 - (b) What is the dimension of the subspace of $\mathcal{L}(V)$ in (a) [in terms of dim V]?

Solution:

- (a) We need to check three conditions of Theorem 1.34.
- 0 is a self-adjoint operator. \checkmark
- Suppose S and T are self-adjoint. Then $(S+T)^* = S^* + T^* = S + T$, hence self-adjoint operators are closed under addition. \checkmark
- Suppose T is self-adjoint and $\alpha \in \mathbb{R}$. Then $(\alpha T)^* = \overline{\alpha}T^* = \alpha T$, hence self-adjoint operators are closed under scalar multiplication. \checkmark

Thus, the set of self-adjoint operators on V is a subspace of $\mathcal{L}(V)$. \square

(b) Let e_1, \ldots, e_n be an orthonormal basis of V. In this basis, symmetric matrices represent self-adjoint operators on V. Every symmetric matrix can be constructed from a matrix with either only one non-zero entry on the diagonal or two equal non-zero entries $(A_{j,k}$ and $A_{k,j})$. Therefore, dimension of the subspace of self-adjoint operators equals:

$$n + \frac{n^2 - n}{2} = \frac{n^2 + n}{2} = \dim V(\dim V + 1)/2$$

17 Suppose $\mathbb{F} = \mathbb{C}$. Show that the set of self-adjoint operators on V is not a subspace of $\mathcal{L}(V)$.

Solution:

On the complex vector spaces, the set of self-adjoint operators is not closed under scalar multiplication:

$$(\alpha T)^* = \overline{\alpha} \, T^* = \overline{\alpha} \, T.$$

If α has an imaginary part, $\overline{\alpha} \neq \alpha$, hence $(\alpha T)^* \neq \alpha T$. \square

18 Suppose dim $V \ge 2$. Show that the set of normal operators on V is not a subspace of $\mathcal{L}(V)$.

Solution:

Suppose $S, T \in \mathcal{L}(V)$ are normal operators that do not commute and $ST^* - T^*S$ has a real component. Then their sum is not a normal operator:

$$(S+T)(S+T)^* - (S+T)^*(S+T) = SS^* + TT^* + ST^* + TS^*$$

$$- S^*S - T^*T - S^*T - T^*S$$

$$= (ST^* - T^*S) + (TS^* - S^*T)$$

$$= (ST^* - T^*S) + (ST^* - T^*S)^*$$

$$= 2\Re(ST^* - T^*S)$$

$$\neq 0$$

19 Suppose $T \in \mathcal{L}(V)$ and $||T^*v|| \leq ||Tv||$ for every $v \in V$. Prove that T is normal.

Solution:

Suppose e_1, \ldots, e_n is an orthonormal basis of V. Then (by *Problem 7A.5*) we have:

$$||Te_1||^2 + \dots + ||Te_n||^2 = ||T^*e_1||^2 + \dots + ||T^*e_n||^2.$$
 (7.3)

This, together with $||T^*v|| \le ||Tv||$, implies that $||Te_j||^2 = ||T^*e_j||^2$ for every e_j in the basis. Indeed, we can rearrange terms in 7.3 as:

$$||Te_1||^2 - ||T^*e_1||^2 = (||T^*e_2||^2 - ||Te_2||^2) + \dots + (||T^*e_n||^2 - ||Te_n||^2).$$
 (7.4)

The left-hand side of 7.4 is greater than or equal to zero, meanwhile the right-hand side is less than or equal to zero (as every term on the right side is less than or equal to zero). Therefore, $||Te_1|| = ||T^*e_1||$. Similarly, this equality can be shown for any other e_i .

Let $v = \alpha e_1$, then

$$||Tv|| = ||T(\alpha e_1)|| = |\alpha|||Te_1|| = |\alpha|||T^*e_1|| = ||T^*(\alpha e_1)|| = ||T^*v||.$$

Since the orthonormal basis is arbitrary, we can construct one starting from any arbitrary $v \in V$ using the Gram-Schmidt procedure (6.32). This implies $||Tv|| = ||T^*v||$ for every $v \in V$, hence T is normal (Theorem 7.20). \square

- **20** Suppose $P \in \mathcal{L}(V)$ is such that $P^2 = P$. Prove that the following are equivalent.
 - (a) P is self-adjoint.
 - (b) P is normal.
 - (c) There is a subspace U of V such that $P = P_U$.

Solution:

First suppose P is self-adjoint. Then it automatically means P is normal. Now suppose P is normal. Then, range $P = \text{range } P^*$ (Theorem 7.21) and null $P = (\text{range } P^*)^{\perp}$ (Theorem 7.6), which implies null $P = (\text{range } P)^{\perp}$. Thus, we have that every vector in the null space of P is orthogonal to every vector in range of P and $P = P^2$, which implies (by Problem 6C.9) that there exists a subspace U of V such that $P = P_U$.

Finally, suppose P is an orthogonal projection on some subspace U of V. Let $u_1, u_2 \in U$ and $w_1, w_2 \in U^{\perp}$. We have

$$\langle P(u_1 + w_1), u_2 + w_2 \rangle = \langle u_1, u_2 + w_2 \rangle = \langle u_1, u_2 \rangle$$

 $\langle P(u_1 + w_1), u_2 + w_2 \rangle = \langle u_1 + w_1, P^*(u_2 + w_2) \rangle.$

Two equations above imply that $P^*(u_2 + w_2) = u_2$ for any $u_2 \in U$ and $w_2 \in U^{\perp}$. This coincides with the definition of orthogonal projection on U, therefore $P = P^*$, hence P is self-adjoint.

Thus, we have shown that (a) implies (b), (b) implies (c) and (c) implies (a), hence these three statements are equivalent. \Box

21 Suppose $D: \mathcal{P}_8(\mathbb{R}) \to \mathcal{P}_8(\mathbb{R})$ is the differentiation operator defined by Dp = p'. Prove that there does not exist an inner product on $\mathcal{P}_8(\mathbb{R})$ that makes D a normal operator.

Solution:

Suppose there is an inner product such that D is a normal operator. By Theorem 7.21, range $D^* = \text{range } D$.

Now note that for any $p \in \mathcal{P}_8(\mathbb{R})$:

$$\langle Da_0, p \rangle = \langle 0, p \rangle = 0$$

 $\langle Da_0, p \rangle = \langle a_0, D^*p \rangle$

where a_0 is a constant polynomial. This equation implies that $D^*p \in (\text{span}(1))^{\perp}$. Thus, range $D \subset (\text{span}(1))^{\perp}$.

At the same time, $Dx = 1 \in \text{range } D$ and $1 \notin (\text{span}(1))^{\perp}$. Hence, our assumption leads to a contradiction, and there is no inner product such that D is a normal operator. \square

Comment: This problem can be extended to any finite-dimensional polynomial vector space with dimension greater than 1, as only this fact is used in the proof.

22 Give an example of an operator $T \in \mathcal{L}(\mathbb{R}^3)$ such that T is normal but not self-adjoint.

Solution:

Let T be an operator on \mathbb{R}^3 , with matrix in standard basis:

$$\mathcal{M}(T) = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}.$$

Then, the matrix of adjoint operator T^* is:

$$\mathcal{M}(T^*) = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}.$$

T is clearly not self-adjoint. Yet it is normal, as can be checked by matrix multiplication:

$$\begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 2 & 0 & -1 \\ 0 & 3 & 0 \\ -1 & 0 & 2 \end{pmatrix}.$$

23 Suppose T is a normal operator on V. Suppose also that $v,w\in V$ satisfy the equations

$$||v|| = ||w|| = 2$$
, $Tv = 3v$, $Tw = 4w$.

Show that ||T(v + w)|| = 10.

Solution:

Here we use Theorem 7.22. Vectors v and w are eigenvectors of T, corresponding to distinct eigenvalues, hence they are orthogonal. Then we use Pythagorean theorem (6.12) to compute the norm directly:

$$||T(v+w)|| = ||3v + 4w|| = \sqrt{||3v||^2 + ||4w||^2}$$
$$= \sqrt{9||v||^2 + 16||w||^2}$$
$$= \sqrt{9 \cdot 4 + 16 \cdot 4}$$
$$= 10. \quad \Box$$

24 Suppose $T \in \mathcal{L}(V)$ and

$$a_0 + a_1 z + a_2 z^2 + \dots + a_{m-1} z^{m-1} + z^m$$

is the minimal polynomial of T. Prove that the minimal polynomial of T^* is

$$\overline{a_0} + \overline{a_1}z + \overline{a_2}z^2 + \dots + \overline{a_{m-1}}z^{m-1} + z^m$$

Solution:

First, note that every $v, u \in V$:

$$\langle p(T)v, u \rangle = 0 = \langle v, (p(T))^*u \rangle$$
 (7.5)

hence $(p(T))^* = 0$. Expanding adjoint of p(T) we get:

$$(p(T))^* = (a_0 I)^* + (a_1 T)^* + (a_2 T^2)^* + \dots + (a_m T^{m-1})^* + (T^m)^*$$

= $\overline{a_0} I + \overline{a_1} T^* + \overline{a_2} (T^*)^2 + \dots + \overline{a_m} (T^*)^{m-1} + (T^*)^m$.

Now suppose that there is a polynomial $q(z) \neq (\overline{a_0} + \overline{a_1}z + \dots + z^m)$ such that $q(T^*) = 0$ and $\deg q \leq \deg p$. Reversing 7.5 with q(z) in place of p(z) we conclude that $\overline{q(T)} = 0$ (that is, q(T) with all coefficients turned into their complex conjugate). That would imply that p(z) is not a minimal polynomial of T, being either of not the least degree or not unique. Hence, we must conclude that

$$\overline{a_0} + \overline{a_1}z + \overline{a_2}z^2 + \dots + \overline{a_{m-1}}z^{m-1} + z^m$$

is a minimal polynomial of T^* . \square

25 Suppose $T \in \mathcal{L}(V)$. Prove that T is diagonalizable if and only if T^* is diagonalizable.

Solution:

By Theorem 5.62, T is diagonalizable if and only if the minimal polynomial of T equals $(z - \lambda_1) \dots (z - \lambda_m)$ for some list of distinct $\lambda_1, \dots, \lambda_m \in \mathbb{F}$. Following argument of the previous problem, we see that the minimal polynomial of T^* is q(z) such that $q(T^*) = (p(T))^*$. Thus, we have:

$$q(T^*) = [(T - \lambda_1 I) \dots (T - \lambda_m I)]^* =$$

$$= (T - \lambda_m)^* \dots (T - \lambda_1 I)^*$$

$$= (T^* - \overline{\lambda_m} I) \dots (T^* - \overline{\lambda_1}).$$

As $\lambda_1, \ldots, \lambda_m$ are distinct, so are $\overline{\lambda_m}, \ldots, \overline{\lambda_1}$. Thus, the minimal polynomial of T^* has the desired form of a product of distinct $(z - \alpha_i)$ terms, which implies that T^* is diagonalizable.

Reversing proof with T^* in place of T, gives implication in other direction. \square

- **26** Fix $u, x \in V$. Define $T \in \mathcal{L}(V)$ by $Tv = \langle v, u \rangle x$ for every $v \in V$.
 - (a) Prove that if V is a real vector space, then T is self-adjoint if and only if the list u, x is linearly dependent.
 - (b) Prove that T is normal if and only if the list u, x is linearly dependent.

Solution:

(a) First, suppose that T is self-adjoint. Let v, w be arbitrary vectors in V. Then the inner product of Tv and w is:

$$\langle Tv, w \rangle = \langle \langle v, u \rangle x, w \rangle = \langle v, u \rangle \langle x, w \rangle,$$

and also:

$$\langle Tv, w \rangle = \langle v, Tw \rangle = \langle v, \langle w, u \rangle x \rangle = \langle v, x \rangle \langle w, u \rangle.$$

Thus we have:

$$\langle v, u \rangle \langle x, w \rangle - \langle v, x \rangle \langle w, u \rangle = 0$$
$$\langle v, \langle x, w \rangle u - \langle w, u \rangle x \rangle = 0$$

for every $v, w \in V$. This implies that $\langle x, w \rangle u - \langle w, u \rangle x = 0$, hence u, x is a linearly dependent list.

Now to proof the other direction, suppose u, x is a linearly dependent list. Then $u = \lambda x$, where $\lambda \in \mathbb{R}$. Let $v, w \in V$, then we have:

$$\begin{split} \langle Tv,w\rangle &= \langle \langle v,u\rangle x,w\rangle = \langle \langle v,\lambda x\rangle x,w\rangle \\ &= \lambda \langle v,x\rangle \langle x,w\rangle = \lambda \langle v,x\rangle \langle w,x\rangle \\ &= \langle v,\langle w,\lambda x\rangle x\rangle \\ &= \langle v,\langle w,u\rangle x\rangle \\ &= \langle v,T^*w\rangle. \end{split}$$

This implies that $T^* = T$, i.e. T is self-adjoint. \square

(b) Before the proof itself, we must explicitly find T^* for this case. Following the previous part, we have for $v, w \in V$:

$$\langle Tv, w \rangle = \langle v, u \rangle \langle x, w \rangle = \langle v, \langle w, x \rangle u \rangle.$$

Thus, $T^*v = \langle v, x \rangle u$.

Now, we suppose that T is normal. Then

$$TT^*v = T(\langle v, x \rangle u) = \langle \langle v, x \rangle u, u \rangle x = \langle v, x \rangle ||u||^2 x,$$

and

$$T^*Tv = T^*(\langle v, u \rangle x) = \langle \langle v, u \rangle x, x \rangle u = \langle v, u \rangle ||x||^2 u.$$

For a normal operator we have $TT^* - T^*T = 0$, hence

$$\langle v, x \rangle ||u||^2 x = \langle v, u \rangle ||x||^2 u$$

for every $v \in V$. Thus, the list u, x is linearly dependent.

For a proof in other direction, suppose that $u = \lambda x$, where $\lambda \in \mathbb{C}$. We have

$$\begin{split} \|Tv\| &= \|\langle v, u \rangle x\| = \|\langle v, \lambda x \rangle x\| \\ &= \|\overline{\lambda} \langle v, x \rangle x\| = |\lambda| \cdot \|\langle v, x \rangle x\| \\ &= \|\lambda \langle v, x \rangle x\| = \|\langle v, x \rangle u\| \\ &= \|T^*v\|. \end{split}$$

Thus, by Theorem 7.20, T is normal, completing the proof. \Box

27 Suppose $T \in \mathcal{L}(V)$ is normal. Prove that

$$\operatorname{null} T^k = \operatorname{null} T$$
 and $\operatorname{range} T^k = \operatorname{range} T$

for every positive integer k.

Solution:

Firstly, for k=1, the theorem is obviously true, so we will assume $k\geq 2$ in the rest of the proof.

That $\operatorname{null} T \subseteq \operatorname{null} T^k$ and range $T \subseteq \operatorname{range} T^k$ (for any operator), is true, as can be easily seen. We will prove the other direction of inclusion.

First, for a self-adjoint operator S (here it will be T^*T), suppose that $v \in \operatorname{null} S^k$. Then we have:

$$0 = \langle S^k v, S^{k-2} v \rangle = \langle S^{k-1} v, S^{k-1} v \rangle.$$

Thus, $||S^{k-1}v|| = 0$, which implies $S^{k-1}v = 0$, therefore null $S^k \subseteq \text{null } S^{k-1}$. Repeating the induction on k until k-1=1, we have that for every positive integer k, null $S^k \subseteq \text{null } S$. Hence, null $S^k = \text{null } S$.

Now we examine a normal operator T. Suppose $v \in \text{null } T^k$ for some positive integer k. Then.

$$T^k v = 0 \Rightarrow (T^*)^k T^k v = 0 \Rightarrow (T^*T)^k v = 0,$$

where the second implication is valid because T and T^* commute. Thus, $v \in \text{null}(T^*T)^k$, which implies $v \in \text{null}(T^*T)$. Hence

$$0 = \langle T^*Tv, v \rangle = \langle Tv, Tv \rangle \Longleftrightarrow Tv = 0 \Longleftrightarrow v \in \text{null } T.$$

Thus, we have shown $\operatorname{null} T^k = \operatorname{null} T$ for every positive integer k. Finally, using that T^k is also a normal operator, we see that

$$\operatorname{range} T^k = (\operatorname{null} (T^k)^*)^{\perp} = (\operatorname{null} T^k)^{\perp} = (\operatorname{null} T)^{\perp} = \operatorname{range} T^* = \operatorname{range} T,$$

completing the proof. \Box

28 Suppose $T \in \mathcal{L}(V)$ is normal. Prove that if $\lambda \in \mathbb{F}$, then the minimal polynomial of T is not a polynomial multiple of $(x - \lambda)^2$.

Solution:

Let p(z) be a minimal polynomial of T and suppose that it is a polynomial multiple of $(z - \lambda)^2$:

$$p(z) = (z - \lambda)^2 q(z)$$

for some polynomial q(z).

Then we have for every $v \in V$:

$$(T - \lambda I)^2 q(T)v = 0 \Rightarrow q(T)v \in \text{null}(T - \lambda I)^2.$$

By property of normal operator 7.21 (d), $(T - \lambda I)$ is a normal operator. Result of the previous problem thus implies that $q(T)v \in \text{null}(T - \lambda I)$. Thus for every $v \in V$:

$$(T - \lambda I)q(T)v = 0.$$

But this polynomial has a degree less than p(z), contradicting the fact that p(z) is a minimal polynomial of T. Hence, p(z) cannot be a polynomial multiple of $(z - \lambda)^2$ for any $\lambda \in \mathbb{F}$. \square

29 Prove or give a counterexample: If $T \in \mathcal{L}(V)$ and there is an orthonormal basis e_1, \ldots, e_n of V such that $||Te_k|| = ||T^*e_k||$ for each $k = 1, \ldots, n$, then T is normal.

Solution:Let $\mathbb{F} = \mathbb{R}$ and take the operator T and its adjoint, defined by matrices, with respect to the standard basis:

$$\mathcal{M}(T) = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & 3 \end{pmatrix} \qquad \mathcal{M}(T^*) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}$$

As can be checked with matrix multiplication, these operators do not commute:

$$\mathcal{M}(T) \cdot \mathcal{M}(T^*) = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 5 & 2 \\ 3 & 2 & 10 \end{pmatrix}$$
$$\mathcal{M}(T^*) \cdot \mathcal{M}(T) = \begin{pmatrix} 2 & 2 & 1 \\ 2 & 5 & 3 \\ 1 & 3 & 10 \end{pmatrix}.$$

Hence, T is not a normal operator. Meanwhile, for vectors of the basis we have:

$$Te_1 = e_1 + e_2, \quad T^*e_1 = e_1 + e_3,$$

 $Te_2 = 2e_2 + e_3, \quad T^*e_2 = e_1 + 2e_2,$
 $Te_3 = e_1 + 3e_3, \quad T^*e_3 = e_2 + 3e_3.$

So we have $||Te_k|| = ||T^*e_k||$ for every k = 1, 2, 3, but T is not normal, counterproving the statement of the problem. \square

30 Suppose that $T \in \mathcal{L}(\mathbb{F}^3)$ is normal and T(1,1,1) = (2,2,2). Suppose $(z_1, z_2, z_3) \in \text{null } T$. Prove that $z_1 + z_2 + z_3 = 0$.

Solution:

Vector (1,1,1) is an eigenvector of T with eigenvalue 2; (z_1,z_2,z_3) is an eigenvector of T with eigenvalue 0. By Theorem 7.22, these two vectors are orthogonal. Hence

$$0 = \langle (z_1, z_2, z_3), (1, 1, 1) \rangle = z_1 + z_2 + z_3,$$

as desired. \square

31 Fix a positive integer n. In the inner product space of continuous real-valued functions on $[-\pi, \pi]$ with inner product $\langle f, g \rangle = \int_{-\pi}^{\pi} fg$, let

$$V = \operatorname{span}(1, \cos x, \cos 2x, \dots, \cos nx, \sin x, \sin 2x, \dots, \sin nx).$$

- (a) Define $D \in \mathcal{L}(V)$ by Df = f'. Show that $D^* = -D$. Conclude that D is normal but not self-adjoint.
- (b) Define $T \in \mathcal{L}(V)$ by Tf = f''. Show that T is self-adjoint.

Solution:

(a) Earlier (in *Problem 6B.4*) we have shown that

$$\frac{1}{\sqrt{2\pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\cos 2x}{\sqrt{\pi}}, \dots, \frac{\cos nx}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \frac{\sin 2x}{\sqrt{\pi}}, \dots, \frac{\sin nx}{\sqrt{\pi}}$$

is an orthonormal list. Hence, this list is an orthonormal basis of V. Operator D acts on the basis vectors as follows

$$D(\frac{1}{\sqrt{2\pi}}) = 0$$

$$D(\frac{\cos kx}{\sqrt{\pi}}) = -k\frac{\sin kx}{\sqrt{\pi}}$$

$$D(\frac{\sin kx}{\sqrt{\pi}}) = k\frac{\cos kx}{\sqrt{\pi}}.$$

Thus, in this basis, the matrix of D is

$$\mathcal{M}(D) = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & n \\ 0 & -1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & -2 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -n & 0 & 0 & \cdots & 0 \end{pmatrix}$$

Matrix of D^* is a transpose of this matrix. We see that $(\mathcal{M}(D))^t = -\mathcal{M}(D)$, hence $D^* = -D$.

Clearly, D is not self-adjoint, but it is indeed normal:

$$DD^* = D(-D) = -D^2 = (-D)D = D^*D.$$

(b) Working in the same basis, we have:

$$T(\frac{1}{\sqrt{2\pi}}) = 0$$

$$T(\frac{\cos kx}{\sqrt{\pi}}) = -k^2 \frac{\cos kx}{\sqrt{\pi}}$$

$$T(\frac{\sin kx}{\sqrt{\pi}}) = -k^2 \frac{\sin kx}{\sqrt{\pi}}.$$

Thus, the matrix of T is

$$\mathcal{M}(T) = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & -4 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & -n^2 \\ 0 & -1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & -4 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -n^2 & 0 & 0 & \cdots & 0 \end{pmatrix}.$$

This matrix is symmetric and hence T is a self-adjoint operator. \square

32 Suppose $T:V\to W$ is a linear map. Show that under the standard identification of V with V' and the corresponding identification of W with W', the adjoint map $T^*:W\to V$ corresponds to the dual map $T':W'\to V'$. More precisely, show that

$$T'(\varphi_w) = \varphi_{T^*w}$$

for all $w \in W$, where φ_w and φ_{T^*w} are defined as in 6.58.

Solution:

Following Riesz representation theorem, we define $\varphi_v(u)$ as

$$\varphi_v(u) = \langle u, v \rangle,$$

where v, u are either in V, or in W, and we use the inner product defined on the corresponding vector space.

Let $v \in V, w \in W$. Then, using definition of dual map and adjoint, we have:

$$(T'(\varphi_w))(v) = (\varphi_w \circ T)v = \varphi_w(Tv)$$
$$= \langle Tv, w \rangle = \langle v, T^*w \rangle$$
$$= \varphi_{T^*w}(v),$$

as desired. \square