

S Nagasundari

Department of Computer Science and Engineering

Unit – 5 Link Layer and LAN Roadmap

- Introduction
- Error detection, correction
- Multiple access protocols
- LANs
 - Addressing, ARP
 - Ethernet
 - Switches
- A day in the life of a web request
- Physical layer
- Wireless LANs: IEEE 802.11

Class 50 : Ethernet : Learning Objectives

- Physical Topology
- Frame Structure

Ethernet

"Dominant" wired LAN technology:

- First widely used LAN technology
- Simpler, cheap
- Kept up with speed race: 10 Mbps 400 Gbps
- Single chip, multiple speeds (e.g., Broadcom BCM5761)

Metcalfe's Ethernet sketch

Ethernet: Physical Topology

- Bus: popular through mid 90s
 - all nodes in same collision domain (can collide with each other)
- Switched: prevails today
 - active link-layer 2 switch in center
 - each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)

Traditional Ethernet

- Nodes connected with coax
- Long "runs" of wire everywhere
- CSMA/CD protocol

Hub acts as a broadcast repeater Shorted cable "runs", Useful for 100 Mbps

- CSMA/CD protocol
- Easy to add/remove users
- Easy to localize faults
- Cheap cabling (twisted pair, 10baseT)

Easy to increase data rate (e.g., Gbit Ethernet)

- Nodes transmit when they want
- Switch queues the packets and transmits to destination
- Typical switch capacity of 20-40 ports
- Each node can now transmit at the full rate of 10/100/Gbps
- Modularity: Switches can be connected to each ther using high rate ports

Ethernet Frame Structure

Sending interface encapsulates IP datagram (or other network layer protocol packet) in **Ethernet frame**

Preamble:

- Used to synchronize receiver, sender clock rates
- 7 bytes of 10101010 followed by one byte of 10101011

Data:

- 46 to 1,500 bytes
- Min-46

Ethernet Frame Structure (more)

- Addresses: 6 byte source, destination MAC addresses
 - if adapter receives frame with matching destination address, or with broadcast address (e.g., ARP packet), it passes data in frame to network layer protocol
 - otherwise, adapter discards frame
- Type: indicates higher layer protocol
 - mostly IP but others possible, e.g., Novell IPX, AppleTalk
 - used to demultiplex up at receiver
- CRC: cyclic redundancy check at receiver
 - error detected: frame is dropped

Ethernet: Unreliable Connectionless

- Connectionless: no handshaking between sending and receiving NICs
- Unreliable: receiving NIC doesn't send ACKs or NAKs to sending NIC
 - data in dropped frames recovered only if initial sender uses higher layer rdt (e.g., TCP), otherwise dropped data lost
- Ethernet's MAC protocol: unslotted CSMA/CD with binary backoff

802.3 Ethernet Standards: Link and Physical Layers

- Many different Ethernet standards
 - Common MAC protocol and frame format
 - Different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10 Gbps, 40 Gbps
 - Different physical layer media: fiber, cable

802.3 Ethernet Standards: Link and Physical Layers

Gigabit Ethernet is an extension of Ethernet standards

- Data rate- 40,000 Mbps, 40 Gigabit Ethernet
- Fully compatible with the huge installed base of Ethernet equipment.
- Standard IEEE 802.3z, does the following:
 - Uses the standard Ethernet frame format
 - Backward compatible with 10BASE-T and 100BASE-T technologies.
 - Allows for point-to-point links as well as shared broadcast channels
 - Point-to-point links use switches
 - Broadcast channels use hubs
 - Hubs-buffered distributors.
 - Uses CSMA/CD for shared broadcast channels.
 - In order to have acceptable efficiency, the maximum distance between nodes must be severely restricted.
 - Allows full-duplex operation at 40 Gbps in both directions for point-to-point channels.

THANK YOU

S Nagasundari

Department of Computer Science and Engineering

nagasundaris@pes.edu