Sub C' C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R⁴, C(NR⁴)NH₂, C(NR⁴)NHR⁴,
C(NR⁴)NR⁴R⁴,
XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴,
XOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴
XCN XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH,

XCONHOR4, XCOSR4

 XSR^4 , $XSOR^4$, XSO_2R^4 ,

SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴,

NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)SO₂R⁴,

XNR⁴SO₂R⁴,

XNHCOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴,

wherein two of said R substituents, if they are in ortho-position to one another, can be linked to one another in such a way that they jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

 \mathbb{R}^2 means a monocyclic or bicyclic C_{6-10} aryl group or a monocyclic or bicyclic 5-to 10-membered heteroaryl group with 1-4 heteroatoms selected from the group that consists of N, S or O, wherein said aryl or heteroaryl group is unsubstituted or is substituted with up to three of the following substituents, independently of one another:

F, Cl, Br, I,

XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴,

 $XCOR^4$, $XC(NOH)R^4$, $XC(NOR^4)R^4$, $XO(NO(COR^4))R^4$,

XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH,

XCONHOR⁴, XCOSR⁴,

XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴,

 NO_2 , $XNHR^4$, XNR^4R^4 , $XNHSO_2R^4$, $XN(SO_2R^4)SO_2R^4$, $XNR^4SO_2R^4$, tetrahydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R^4 ,

wherein two of said R² substituents, if they are in ortho-position to one another, can be linked to one another in such a way that they jointly form methanediyl-bisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

Burt

R³ means one or two substituents which are independently of one another: hydrogen,

F, Cl, Br, I,

XQH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴,

 $XCOR^4$, $XC(NOH)R^4$, $XC(NOR^4)R^4$, $XC(NO(COR^4))R^4$,

XCN, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH,

XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴,

SO₂NR⁴R⁴',

NO₂, XNH₂, XNHR⁴, XNR⁴R⁴,

 $XNHSO_2R^4$, $XNR^4SO_2R^4$, $XN(SO_2R^4)(SO_2R^4)$,

XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, or R⁴,

wherein two substituents \mathbb{R}^3 , if they are in ortho-position to one another, can be linked to one another in such a way that they jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

R⁴ and R⁴, independently of one another, mean C₁₋₄ perfluoroalkyl, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkinyl, C₃₋₇ cycloalkyl, C₁₋₃ alkyl-C₃₋₇ cycloalkyl, C₁₋₃ alkyl-C₆₋₁₀ aryl, C₁₋₃ alkyl-5 to 10-membered heteroaryl with 1-4 N, S or O atoms, or C₆₋₁₀ aryl or 5- to 10-membered heteroaryl with 1-4 N, S or O atoms, wherein aryl and heteroaryl groups are unsubstituted or substituted by one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, or can carry an annelated methanediylbisoxy group or ethane-1,2-diylbisoxy group, and wherein a 5-membered cycloalkyl ring can have an N or O ring member, and wherein a 6- or 7-membered cycloalkyl ring can have N and/or O, and wherein one or two ring members which are each ring nitrogens optionally can be substituted with C₁₋₃ alkyl or C₁₋₃ alkanoyl,

 R^5 and $R^{5'}$, independently of one another, mean C_{1-6} alkyl, C_{2-6} alkenyl, or C_{2-6} alkinyl, wherein in each case a carbon atom can be optionally replaced by O, S, SO, SO₂, NH, N C_{1-3} alkyl or N C_{1-3} alkanoyl,

C₃₋₇ cycloalkyl-C₀₋₃ alkyl, wherein a 5-membered cycloalkyl ring, can optionally have an N or O ring member and a 6- or 7-membered cycloalkyl ring can optionally have one or

Cox.

Bient

two ring members which are each N and/or O, wherein ring nitrogens optionally can be substituted with C_{1-3} alkyl or C_{1-3} alkanoyl,

 C_{6-10} aryl or 5- to 10-membered heteroaryl with 1-4 heteroatoms from N, S, and O, whereby the mentioned alkyl, alkenyl and alkinyl chains can be substituted with one of the previously mentioned cycloalkyls, aryls or heteroaryls,

whereby all previously mentioned alkyl and cycloalkyl radicals can be substituted with up to two substituents selected from CF₃, C_2F_5 , OH, O C_{1-3} alkyl, NH2, NH C_{1-3} alkyl, NH C_{1-3} alkyl), N(C_{1-3} alkyl)₂, N(C_{1-3} alkyl)(C_{1-3} alkanoyl), COOH, CONH₂, and COO C_{1-3} alkyl, and all previously mentioned aryl and heteroaryl groups can optionally be substituted with one or two substituents selected from F, Cl, Br, CH₃, C_2H_5 , NO₂, OCH₃, OC₂H₅, CF₃, and C_2F_5 , or else can carry an annelated methanediylbisoxy, ethane-1,2-diylbisoxy group,

or R^5 and R^5 together with the nitrogen atom form a 5-to 7-membered heterocyclic group, which can optionally contain another oxygen, nitrogen or sulfur atom and can be optionally substituted by C_{1-4} alkyl, C_{1-4} alkoxy- C_{0-2} alkyl, C_{1-4} alkoxy-carbonyl, aminocarbonyl or phenyl,

Means C_{1-10} alkanediyl, C_{2-10} alkenediyl, C_{2-10} alkinediyl, or (C_{0-5} alkanediyl- C_{3-7} cycloalkanediyl- C_{0-5} alkanediyl), wherein a 5-membered cycloalkyl ring, can optionally have an N or O ring member, and a 6- or 7-membered cycloalkyl ring can optionally have one or two ring members which are each N or O, whereby ring nitrogens optionally can be substituted with C_{1-3} alkyl or C_{1-3} alkanoyl,

whereby in above-mentioned aliphatic chains a carbon atom or two carbon atoms can be optionally replaced by O, NH, N C_{1-3} alkyl, N C_{1-3} alkanoyl, and whereby alkyl or cycloalkyl groups can be optionally substituted with up to two substituents selected from =O, OH, O C_{1-3} alkyl, NH2, NH C_{1-3} alkyl, NH C_{1-3} alkanoyl, N $(C_{1-3}$ alkyl), and N $(C_{1-3}$ alkyl) $(C_{1-3}$ alkanoyl),

B means COOH, COOR⁵, CONH₂, CONHNH₂, CONHR⁵, CONR⁵R^{5'}, CONHOH, CONHOR⁵, SO₃H, SO₂NH₂, SO₂NHR⁵, SO₂NR⁵R^{5'}, PO₃H, PO(OH)(OR⁵), PO(OR⁵)(OR^{5'}), PO(OH)(NHR⁵), PO(NHR⁵)(NHR^{5'}), or tetrazolyl, in each case bonded to a carbon atom of group A, or the entire group Y-A-B is N(SO₂R⁴)(SO₂R^{4'}) or NHSO₂R⁴,

X means a bond, CH_2 , $(CH_2)_2$, $CH(CH_3)$, $(CH_2)_3$, $CH(CH_2)_3$, $CH(CH_3)$, CH

Control.

Blent

- Y means O, NH, NR⁴, NCOR⁴, NSO₂R⁴, provided that if Y means NH, NR⁴, NCOR⁴ or NSO₂R⁴, and
- a) substituent R² contains a nitrogen-containing, saturated heterocyclic group, this heterocyclic group is not substituted in the imine nitrogen with H, methyl, ethyl, propyl or isopropyl,

or

b) in optionally present groups XNHR⁴ or XNR⁴R^{4'} of substituent R², R⁴ and/or R^{4'} does not mean $C_{1,4}$ alkyl,

that B does not mean COOH, SO₃H, PO₃H₂ or tetrazolyl at the same time, and R¹ and R², independently of one another, mean C_{5-6} heteroaryl or phenyl, if the latter, independently of one another, are unsubstituted, or are substituted simply with C_{1-6} alkyl, C_{1-4} perfluoroalkyl, O C_{1-6} alkyl, O C_{1-6} alkyl, COOH, COO C_{1-6} alkyl, CO C_{1-6} alkyl, CONH₂, CONHR⁴, NO₂, NH₂, NHCOR⁴, NHSO₂R⁴, or with 1 or 2 halogen atoms from the group F, Cl, Br, and I, and

whereby the following compounds are excluded:

- [(1,2-Diphenyl-1H-benzimidazol-6-yl)oxy]acetic acid methyl ester,
- 5-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]pentanoic acid methyl ester,
- 4-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]butanoic acid ethyl ester,
- 5-[[1-(4-nitrophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]-pentanoic acid methyl ester,
 - 6-[[1-(4-nitrophenyl)-2-phenyl-1H-benzimida201-6-yl]oxy]hexanoic acid methyl ester,
- 5-[[1-(4-aminophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester,
- 5-[[1-[4-[[(4-chlorophenyl)sulfonyl]amino]phenyl]-2\phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester,
- 5-[[1-[4-[(acetyl)amino]phenyl]-2-phenyl-1H-benzimida20l-6-yl]oxy]pentanoic acid methyl ester
- 5-[[1-(3-nitrophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester,
 - 6-[[1-(3-nitrophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexandic acid methyl ester,

STAT!

B'ent

Sub Cont

5-[[1-(3-aminophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester,

5-[[1-[3-[[(4-chlorophenyl)sulfonyl]amino]phenyl]-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester,

5-[[1-[3-[(acetyl)amino]phenyl]-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester.

Sub

13. (Amended) A process for preparing a pharmaceutical composition for treating or preventing diseases comprising combining a compound according to claim 1 with a pharmaceutical vehicle or diluent.

14. (Amended) A pharmaceutical composition comprising one or more compounds according to claim 1 and one or more vehicles or diluents.

Subs B2

(Amended) A method for treating a patient suffering from a disease associated with microglia activation comprising administering to said patient an effective amount of a benzimidazole compound of formula II

$$R^3$$
 R^2
 R^1
 R^1

in which

 R^1 means a monocyclic or bicyclic C_{6-12} aryl group or a monocyclic or bicyclic 5-to 10-membered heteroaryl group with 1-4 heteroatoms selected from of N, S and O, whereby said aryl or heteroaryl group can be optionally substituted with up to three of the following substituents, independently of one another:

Sub Cont.

B2 cont.

 \mathbb{R}^2

F, Cl, Br, I, C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R⁴, C(NR⁴)NH₂,

C(NR⁴)NHR⁴, C(NR⁴)NR⁴R⁴, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴,

XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN,

XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH,

XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴,

SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)(SO₂R⁴),

XNR⁴SO₂R⁴, XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5
dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7
dioxoisoindol-1-yl, and R⁴, wherein two R¹ substituents, if they are in orthoposition to one another, can optionally be linked to one another in such a way that they jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3
diyl, or butane-1,4-diyl;

means a monocyclic or bicyclic C₆₋₁₀ aryl group or a monocyclic or bicyclic 5-to 10-membered heteroaryl group with 1-4 heteroatoms selected from N, S and O, wherein said aryl or heteroaryl group can be optionally substituted with up to three of the following substituents, independently of one another:

F, Cl, Br, I, C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R⁴, C(NR⁴)NH₂,

C(NR⁴)NHR⁴, C(NR⁴)NR⁴R⁴, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴,

XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN,

XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH,

XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴,

SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)(SO₂R⁴),

XNR⁴SO₂R⁴, XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-

- 7 -

dioxoisoindol-1-yl, and R⁴, whereby two R² substituents, if they are in orthoposition to one another, can be optionally linked to one another in such a way that they jointly form methanediyl-bisoxy, ethane-1,2-diylbisoxy, propane-1,3diyl, or butane-1,4-diyl;

stands for one or two substituents which are each independently of one another:

hydrogen, F, Cl, Br, I, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴,

XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴,

XCN, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH,

XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴,

SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XNR⁴SO₂R⁴,

XN(SO₂R⁴)(SO₂R⁴), XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro
2,5-dioxopyrrol-1-yl, or 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7
dioxoisoindol-1-yl, or R⁴, wherein two substituents R³, if they are in orthoposition to one another, can be optionally linked to one another in such a way that they jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3
diyl, or butane-1,4-diyl;

R⁴ and R⁴, independently of one another, mean C₁₋₄ perfluoroalkyl, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkinyl, C₃₋₇ cycloalkyl, (C₁₋₃ alkyl-C₃₋₇ cycloalkyl), C₁₋₃ alkyl-C₆₋₁₀ aryl, C₁₋₃ alkyl 5 to 10-membered heteroaryl with 1-4 N, S or O atoms, C₆₋₁₀ aryl, or 5- to 10-membered heteroaryl with 1-4 N, S or O atoms, wherein the C₆₋₁₀ aryl and heteroaryl groups can be optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, or else can carry an annelated methanediylbisoxy group or ethane-1,2-

Sub Cont. \mathbb{R}^3

Brent

Sub C7

Brank

diylbisoxy group, and wherein a 5-membered cycloalkyl ring can optionally have an N or O ring member, and wherein a 6- or 7-membered cycloalkyl ring can optionally have one or two ring members selected have N and O, wherein ring nitrogens optionally can be substituted with C_{1-3} alkyl or C_{1-3} alkanoyl,

R⁵ and R⁵, independently of one another, mean hydrogen, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkinyl, wherein in each case a carbon atom can be optionally replaced by O, S, SO, SQ₂, NH, N C₁₋₃ alkyl or N C₁₋₃ alkanoyl,

 C_{3-7} cycloalkyl- C_{0-3} alkyl, wherein a 5-membered cycloalkyl ring can optionally have an N or O ring member and a 6- or 7-membered cycloalkyl ring can optionally have one or two ring members selected from N and O, wherein ring nitrogens optionally can be substituted with C_{1-3} alkyl or C_{1-3} alkanoyl,

 C_{6-10} aryl or 5- to 10-membered heteroaryl with 1-4 heteroatoms selected from N, S, and O, whereby the mentioned alkyl, alkenyl and alkinyl chains can be substituted with one of the previously mentioned cycloalkyls, aryls or heteroaryls,

whereby all previously mentioned alkyl and cycloalkyl radicals can optionally be substituted with up to two substituents selected from CF₃, C₂F₅, OH, O C₁₋₃ alkyl, NH2, NH C₁₋₃ alkyl, NH C₁₋₃ alkanoyl, N (C₁₋₃ alkyl)₂, N(C₁₋₃ alkyl)(C₁₋₃ alkanoyl), COOH, CONH₂, and COO C₁₋₃ alkyl, and all previously mentioned aryl and heteroaryl groups can be optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅ or else can carry an annelated methanediylbisoxy, ethane-1,2-diylbisoxy group, or

 R^5 and $R^{5'}$ together with the nitrogen atom form a 5-to 7-membered group, which can optionally contain another oxygen, nitrogen or sulfur atom and can be optionally substituted by C_{1-4} alkyl, C_{1-4} alkoxy- C_{0-2} alkyl, C_{1-4} alkoxy-carbonyl, aminocarbonyl or phenyl,

means C_{1-10} alkanediyl, C_{2-10} alkenediyl, C_{2-10} alkinediyl, $(C_{0-5}$ alkanediyl- C_{3-7} cycloalkanediyl- C_{0-5} alkanediyl), $(C_{0-5}$ alkanediylarylene- C_{0-5} alkanediyl), or $(C_{0-5}$ alkanediyl-heteroarylene- C_{0-5} alkanediyl),

wherein the aryland heteroaryl groups can optionally be substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, wherein a 5-membered cycloalkyl ring can optionally have a ring member selected from N and O, and a 6- or 7-membered cycloalkyl ring can optionally have one or two ring members selected from N and O, wherein ring nitrogens optionally can be substituted with C₁₋₃ alkyl or C₁₋₃ alkanoyl, wherein the mentioned aliphatic chains, one or two carbon atoms can each optionally be replaced by for O, NH, NR⁴, NCOR⁴, or NSO₂R⁴, and wherein alkyl or cycloalkyl groups can be substituted with up to two substituents selected from F, OH, OR⁴, OCOR⁴, =O, NH₂, NR⁴R⁴, NHCOR⁴, NHCOR⁴, NHCONHR⁴, NHSO₂R⁴ SH, and SR⁴,

means hydrogen, OH, OCOR⁵, OCONHR⁵, OCOOR⁵, COR⁵, C(NOH)R⁵, C(NOR⁵)R^{5'}, C(NO(COR⁵))R^{5'}, COOH, COOR⁵, CONH₂, CONHNH₂, CONHR⁵, CONR⁵R^{5'}, CONHOH, CONHOR⁵, SO₃H, SO₂NH₂, SO₂NHR⁵, SO₂NR⁵R^{5'}, PO₃H, PO(OH)(OR⁵), PO(OR⁵)(OR^{5'}), PO(OH)(NHR⁵), PO(NHR⁵)(NHR^{5'}), or tetrazolyl, respectively bonded to a carbon atom of group **A**,

Sub

Bent

В

Sub con. or the entire group Y-A-B is $N(SO_2R^4)(SO_2R^4)$ or $NHSO_2R^4$,

means a bond, CH₂, (CH₂)₂, CH(CH₃), (CH₂)₃, CH(CH₂CH₃), CH(CH₃)CH₂,

or CH₂CH(CH₃),

X

Y means a bond, O, S, SO, SO₂, NH, NR⁴, NCOR⁴, or NSO₂R⁴.

16. (Amended) Amethod according to claim 15, wherein

R¹ means a monocyclic or bicyclic aryl group or a monocyclic or bicyclic 5- to 10-membered heteroaryl group with 1-2 heteroatoms selected from the group that consists of N, S and O, wherein said aryl or heteroaryl group can be optionally substituted with up to three of the following substituents, independently of one another:

F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XCN, COOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, NO₂, XNHR⁴, XNR⁴R⁴, and R⁴,

wherein two \mathbb{R}^1 substituents, if they are in ortho-position to one another, can be linked to one another in such a way that they jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl.

17. (Amended) A method according to claim 15, wherein,

means a monocyclic or bicyclic aryl group or a monocyclic or bicyclic 5- to 10-membered heteroaryl group with 1-2 heteroatoms selected from N, S and O, wherein said aryl group or heteroaryl group can be optionally substituted with up to three of the following substituents, independently of one another:

F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNR⁴SO₂R⁴, XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, or R⁴, whereby two R² substituents, if they are in ortho-position to one another, can be optionally linked to one another in such a way that they jointly form

Brank

Com.

methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl or, butane-1,4-diyl.

- 18. (Amended) A method according to claim 15, wherein
- R³ stands for one or two substituents, which independently of one another, each mean:

hydrogen,

F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴,

XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XNR⁴SO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, or R⁴, wherein two substituents R³, if they are in ortho-position to one another, can be linked to one another in such a way that they jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl or, butane-1,4-diyl.

19. (Amended) A method according to claim 15, wherein

R⁴ and R⁴, independently of one another, mean CF₃, C₂F₅, C_{1.4}
alkyl, C_{2.4} alkenyl, C_{2.4} alkinyl, C_{3.6} cycloalkyl, (C_{1.3} alkyl-C_{3.6} cycloalkyl),
C_{1.3} alkylaryl, C_{1.3} alkylheteroaryl, monocyclic aryl or 5- to 6-membered heteroaryl with 1-2 N, S or O atoms, wherein said the aryl and heteroaryl groups can be optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅ or else can carry an annelated methanediylbisoxy or ethane-1,2-diylbisoxy group, and in addition a 5-membered cycloalkyl ring can optionally have a ring member selected from N and O, and a 6-membered cycloalkyl ring can optionally have one or two ring members selected from N and O, wherein ring nitrogens optionally can be substituted with C_{1.3} alkyl or C_{1.3} alkanoyl.

20. (Amended) A method according to claim 15, wherein ${\bf R^5}$ and ${\bf R^5}$, independently of one another, can be $C_{1.6}$ alkyl wherein

Brush

a carbon atom can optionally be replaced by O, NH, N C_{1-3} alkyl, N C_{1-3} alkanoyl, or C_{3-7} cycloalkyl- C_{0-3} alkyl, wherein a 5-membered cycloalkyl ring can optionally have a ring member selected from N and O, and a 6- or 7-membered cycloalkyl ring can optionally have one or two ring members selected from N and O, wherein ring nitrogens optionally can be substituted with C_{1-3} alkyl or C_{1-3} alkanoyl, wherein the mentioned C_{1-6} alkyl part can optionally be substituted with one of the previously mentioned cycloalkyls or else a 5- to 6-membered heteroaromatic group with 1-2 heteroatoms selected from N, S and O,

wherein all previously mentioned alkyl and cycloalkyl parts can be substituted with up to two substituents selected from CF₃, OH, and O C₁₋₃ alkyl, and the previously mentioned heteroaryl groups can optionally be substituted with one or two substituents selected from F, Cl, CF₃, CH₃, C₂H₅, OCH₃, and OC₂H₅, or R⁵ and R^{5'} together with the nitrogen atom form a 5- to 7-membered heterocyclic group which optionally contains another oxygen, nitrogen or sulfur atom and is optionally substituted by C₁₋₄ alkyl, C₁₋₄ alkoxy-C₀₋₂ alkyl, C₁₋₄ alkoxy-carbonyl, aminocarbonyl or phenyl.

21. (Amended) A method according to claim 15, wherein

means C₁₋₁₀ alkanediyl, C₂₋₁₀ alkenediyl, C₂₋₁₀ alkinediyl, (C₀₋₅ alkanediyl-C₃₋₇ cycloalkanediyl-C₀₋₅ alkanediyl), or (C₀₋₅ alkanediyl-heteroarylene-C₀₋₅ alkanediyl), wherein if a heteroaryl group is present it is optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, and in addition a 5-membered cycloalkyl ring can optionally have a ring member selected from N and O, and a 6- or 7-membered cycloalkyl ring can optionally have one or two ring members selected from N and O, wherein ring nitrogens optionally can be substituted with C₁₋₃ alkyl or C₁₋₃ alkanoyl,

wherein in aliphatic chains one or two carbon atoms can be replaced by O, NH, N C₁₋₃ alkyl, N C₁₋₃ alkanoyl, or NSO₂ C₁₋₃ alkyl,

Brook

and whereby alkyl or cycloalkyl parts can be optionally substituted with up to two F atoms or by one of the substituents selected from OH, O C_{1-3} alkyl, O C_{1-3} alkanoyl, =O, NH₂, NH C_{1-3} alkyl, N (C_{1-3} alkyl)₂, NH C_{1-3} alkanoyl, N (C_{1-3} alkyl) (C_{1-3} alkanoyl), NHCOO C_{1-3} alkyl, NHCONH C_{1-3} alkyl, NHSO₂ C_{1-3} alkyl, SH, and S C_{1-3} alkyl.

Brent

- 22. (Amended) A method according to claim 15, wherein
- means hydrogen, OH, OCOR⁵, OCONHR⁵, OCOOR⁵, COOH, COOR⁵, CONH₂, CONHR⁵, CONR⁵R⁵, CONHOH, CONHOR⁵, or tetrazolyl, in each case bonded to a carbon atom of group **A**.
- 23. (Amended) A method according to claim 15, wherein
- X means a bond or CH_2 .
- 24. (Amended) A method according to claim 15, wherein
- Y means a bond, O, S, NH, NR⁴, NCOR⁴ or NSO₂R⁴.

Please add the following new claims:

3

- 25. (New) A compound according to claim 1, wherein said compound is 6-[[1-(4-methylphenyl)-2-phenyl-1H-benzimdazol-6-yl]oxy] hexanoic isopropyl ester.
- 26. (New) A method according to claim 15, wherein said compound is 6-[[1-(4-methylphenyl)-2-phenyl-1H-benzimdazol-6-yl]oxy] hexanoic isopropyl ester.