Tipo di Serie	Forma	Comportamento
Armonica Generalizzata	$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$	$\begin{cases} \text{Converge} & \text{se } \alpha > 1 \\ +\infty & \text{se } \alpha \le 1 \end{cases}$
Geometrica	$\sum_{n=0}^{\infty} q^n \ (o \sum_{n=1}^{\infty} q^n)$	$\begin{cases} \frac{1}{1-q} & \text{se } q < 1 \\ +\infty & \text{se } q \ge 1 \\ \text{Indeterminata} & \text{se } q \le -1 \end{cases}$
Serie di Funzioni	$\sum_{\substack{n=1\\\infty}}^{\infty} f_n(x)$	
Serie di Potenze	$\sum_{n=0}^{\infty} a_n x^n \circ \sum_{n=0}^{\infty} a_n x^{(n+1)}$	
Serie a segni alterni	$\sum_{\substack{n=1\\ \infty}}^{\infty} (-1)^n a_n \circ \sum_{n=1}^{\infty} (-1)^{n+1} a_n$	
Serie a segni positivi	$\sum_{n=1}^{\infty} a_n$	

1 Serie di potenze

1.1 Raggio di Convergenza R

Sia $l = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ o $l = \lim_{n \to \infty} \sqrt[n]{|a_n|}$. Allora il raggio di convergenza R è dato da:

$$R = \begin{cases} +\infty & \text{se } l = 0\\ \frac{1}{l} & \text{se } l \in (0, +\infty)\\ 0 & \text{se } l = +\infty \end{cases}$$

1.2 Insieme di Convergenza Puntuale I_c

L'insieme di convergenza puntuale si ottiene studiando la convergenza della serie negli estremi dell'intervallo (-R,R).

- $1. \sum_{n=0}^{\infty} a_n (\pm R)^n$
- 2. L'insieme I_c sarà (-R,R), [-R,R), (-R,R] o [-R,R] a seconda della convergenza agli estremi.

2 Convergenza e Divergenza delle Serie Numeriche

2.1 Convergenza Assoluta e Semplice

$$\sum_{n=1}^{\infty} a_n \text{ converge assolutamente se } \sum_{n=1}^{\infty} |a_n| \text{ converge.}$$

Teorema: Se una serie converge assolutamente \implies converge semplicemente.

2.2 Condizione Necessaria di Cauchy per le Serie

Data una serie qualsiasi:

$$\lim_{n \to +\infty} a_n = \begin{cases} 0 & \Rightarrow \text{la serie } \mathbf{puo} \text{ convergere o divergere (caso dubbio)} \\ \neq 0 \text{ o non esiste} & \Rightarrow \text{la serie } \mathbf{diverge} \text{ sicuramente} \end{cases}$$

Nota: Questa condizione è necessaria ma non sufficiente alla convergenza della serie.

2.3 Criteri di Convergenza/Divergenza per Serie a Termini Definitivamente Positivi

(Ovvero $\exists n_0 \text{ tale che } a_n \geq 0 \text{ per ogni } n \geq n_0$)

- Criterio del Rapporto (Utile con fattoriali n! o potenze con n all'esponente): Sia $l = \lim_{n \to +\infty} \frac{a_{n+1}}{a_n}$.
 - 1. Se $l < 1 \Rightarrow$ la serie converge.
 - 2. Se $l > 1 \Rightarrow$ la serie diverge.
 - 3. Se $l = 1 \Rightarrow$ il criterio non fornisce informazioni (la serie può convergere o divergere).
- Criterio della Radice (Utile con potenze n-esime come $(f(n))^n$): Sia $l = \lim_{n \to +\infty} \sqrt[n]{a_n}$.
 - 1. Se $l < 1 \Rightarrow$ la serie converge.
 - 2. Se $l > 1 \Rightarrow$ la serie diverge.
 - 3. Se $l = 1 \Rightarrow$ il criterio non fornisce informazioni.
- Criterio del Confronto: Supponiamo che $0 \le a_n \le b_n$ definitivamente.
 - Se $\sum b_n$ converge $\Rightarrow \sum a_n$ converge.
 - Se $\sum a_n$ diverge $\Rightarrow \sum b_n$ diverge.
- Criterio del Confronto Asintotico: Siano $a_n, b_n > 0$ definitivamente. Sia $L = \lim_{n \to +\infty} \frac{a_n}{b_n}$.

$$\begin{cases} L \in (0, +\infty) & \Rightarrow \sum a_n \text{ e } \sum b_n \text{ hanno lo stesso comportamento (convergenza/divergenza)} \\ L = 0 & \Rightarrow \text{Se } \sum b_n \text{ converge} \Rightarrow \sum a_n \text{ converge (se } \sum b_n \text{ diverge, nulla si può dire)} \\ L = +\infty & \Rightarrow \text{Se } \sum b_n \text{ diverge} \Rightarrow \sum a_n \text{ diverge (se } \sum b_n \text{ converge, nulla si può dire)} \end{cases}$$

Suggerimento per scegliere b_n : Prendi i termini di grado maggiore in numeratore e denominatore di a_n . (Es. $a_n = \frac{n+1}{n^2+3} \Rightarrow b_n = \frac{n}{n^2} = \frac{1}{n}$)

2.4 Criteri di Convergenza per Serie a Termini di Segno Alterno

- Criterio di Leibniz (per serie del tipo $\sum_{n=1}^{\infty} (-1)^n a_n$ o $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$): Se la successione a_n soddisfa le seguenti condizioni:
 - 1. $\lim_{n\to+\infty} a_n = 0$
 - 2. a_n è decrescente definitivamente $(a_{n+1} \le a_n \text{ per } n \ge n_0)$

allora la serie converge semplicemente.

- Stima dell'Errore per Serie di Leibniz: Se una serie converge per il criterio di Leibniz a una somma S, e S_N è la somma parziale fino all'N-esimo termine, allora l'errore commesso è limitato dal primo termine tralasciato: $|S S_N| \le a_{N+1}$.
- Criterio di Dirichlet (per serie numeriche): Consideriamo una serie $\sum_{n=1}^{\infty} a_n b_n$. Se valgono le seguenti condizioni:
 - 1. Le somme parziali di $\sum a_n$ sono limitate: $\exists M>0 \mid \left|\sum_{k=1}^N a_k\right| \leq M \quad \forall N\geq 1.$
 - 2. La successione b_n è monotona (crescente o decrescente) definitivamente.
 - 3. $\lim_{n\to+\infty}b_n=0.$

Allora la serie $\sum_{n=1}^{\infty} a_n b_n$ converge. (Questo criterio è più generale di Leibniz, che è un caso particolare di Dirichlet con $a_n = (-1)^n$ o $(-1)^{n+1}$).

2.5 Esercizio d'esame

Dire se le sequenti serie convergono semplicemente e/o assolutamente

$$\bullet \sum_{n=1}^{+\infty} \frac{2\sqrt{n}-1}{\binom{2n}{3n}}$$

1.
$$\binom{2n}{3n} \sim \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{3}{2}} \left(\frac{27}{4}\right)^n \sim \frac{\sqrt{3}}{\sqrt{4\pi n}} \left(\frac{27}{4}\right)^n \sim \frac{\sqrt{3}}{2\sqrt{\pi n}} \left(\frac{27}{4}\right)^n$$

2. Cauchy:
$$\lim_{n \to +\infty} \frac{2\sqrt{n} - 1}{\binom{2n}{3n}} = \lim_{n \to +\infty} \frac{2\sqrt{n} - 1}{\frac{\sqrt{3}}{2\sqrt{\pi n}} \left(\frac{27}{4}\right)^n} = \lim_{n \to +\infty} \frac{4n\sqrt{\pi} - 2\sqrt{\pi n}}{\sqrt{3} \left(\frac{27}{4}\right)^n} = 0 \text{ verificato}$$

3. Equivalente asintotico:
$$\frac{4n\sqrt{\pi}-2\sqrt{\pi n}}{\sqrt{3}\left(\frac{27}{4}\right)^n}\sim\frac{n}{\left(\frac{27}{4}\right)^n}$$

4. Criterio della radice:
$$\lim_{n \to +\infty} \sqrt[n]{\frac{n}{\left(\frac{27}{4}\right)^n}} = \lim_{n \to +\infty} \left(\frac{n^{\frac{1}{n}}}{\frac{27}{4}}\right) = \frac{1}{\frac{27}{4}} = \frac{4}{27} < 1 \Rightarrow \text{converge assolutamente}$$

•
$$\sum_{n=2}^{+\infty} (-1)^{n+1} \frac{3n}{n^2 - 2n + 1}$$

1. Cauchy:
$$\lim_{n\to+\infty} \frac{3n}{n^2-2n+1} = \frac{+\infty}{+\infty_2} = 0$$
 verificato

2. Equivalente asintotico:
$$\frac{3n}{n^2-2n+1} \sim \frac{n}{n^2} \sim \frac{1}{n} \Rightarrow$$
 non converge assolutamente (serie armonica generalizzata $\alpha \leq 1$)

- 3. Leibnitz:
 - (a) Cauchy verificato prima
 - (b) Decrescente?

$$\frac{3n}{(n-1)^2} \ge \frac{3(n+1)}{((n+1)-1)^2}$$

$$\frac{n}{(n-1)^2} \ge \frac{(n+1)}{((n+1)-1)^2}$$

$$n \ge \frac{(n+1)(n-1)^2}{((n+1)-1)^2}$$

$$n((n+1)-1)^2 \ge (n+1)(n-1)^2$$

$$n^2 + n - 1 \ge 0$$

$$n_{1,2} = \frac{-1 \pm \sqrt{5}}{2} \to \text{decrescente da qua in point}$$

- (c) Soddisfa entrambi i requisiti quindi converge semplicemente
- Determinare l'insieme di convergenza puntuale I della serie di potenze $\sum_{n=1}^{+\infty} \frac{n}{5^n} x^n$

1. Cauchy:
$$\frac{n}{5^n} = 0$$

2. Criterio della radice:
$$\lim_{n \to +\infty} \sqrt[n]{\left|\frac{n}{5^n}\right|} = \lim_{n \to +\infty} \frac{n^{\frac{1}{n}}}{5} = \frac{1}{5}$$

3.
$$R = \frac{1}{\frac{1}{5}} = 5$$

4.
$$\sum_{n=0}^{\infty} (-5)^n = \sum_{n \to +\infty} |-n| = +\infty$$

5.
$$\sum \frac{n}{5^n} 5^n = \sum n \qquad \lim_{n \to +\infty} n = +\infty$$

6.
$$I = (-5, 5)$$

3 Polinomio di McLaurin

Consideriamo:

$$c_k = \frac{f^{(k)}(0)}{k!}$$
$$f^{(k)}(0) = c_k \cdot k!$$
$$P_k(x) = f(0) + \sum_{k=1}^k c_k x^k$$

Funzione $f(x)$	Serie di Maclaurin
e^x	$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$
sin(x)	$\sum_{n=0}^{\infty} \frac{n!}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$
$\cos(x)$	$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$
$\frac{1}{1-x}$ (Serie Geometrica)	$\sum_{n=1}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots$
	$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$
$\arctan(x)$	$\sum_{n=1}^{\infty} \frac{n}{2n+1} x^{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$
$(1+x)^{\alpha}$ (Serie Binomiale)	$\sum_{n=0}^{\infty} {\alpha \choose n} x^n = 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^2 + \dots$
	dove $\binom{\alpha}{n} = \frac{\alpha(\alpha-1)(\alpha-n+1)}{n!}$
$(1-x)^{-k}$	$\sum_{n=0}^{\infty} {n+k-1 \choose n} x^n = 1 + kx + \frac{k(k+1)}{2!} x^2 + \dots$
	(Questo è un caso speciale della serie binomiale con $\alpha = -k$)

3.1 Trovare $f^{(n)}(0)$ con n molto grande

- 1. Scomponi f(0) in funzioni le cui serie di McLaurin sono note e riscrivile come sommatorie (praticamente copia e incolla dalla tabella adattando l'argomento)
- 2. Prendi il coefficiente di ordine n di ogni sommatoria e poi sommali per ottenere il coefficiente totale
- 3. Sapendo la formula del coefficiente c_k dobbiamo isolare $f^{(k)}(0)$ moltiplicando entrambi i lati per k!

Esempio: calcolare $f^{(15)}(0)$ di $f(x) = e^{2x} - \frac{x^2}{1+x}$

1.
$$e^{2x} \to \sum_{n=0}^{\infty} \left(\frac{(2x)^n}{n!} \right) \xrightarrow{n=15} \frac{(2x)^{15}}{15!}$$

$$2. \ \ \tfrac{x^2}{1+x} \to \textstyle \sum_{n=0}^{\infty} \left((-x)^n \cdot x^2 \right) = \textstyle \sum_{n=0}^{\infty} \left((-1)^n \cdot x^n \cdot x^2 \right) = \textstyle \sum_{n=0}^{\infty} \left((-1)^n \cdot x^{n+2} \right) \xrightarrow{n=13} -x^{15}$$

3.
$$a_{15} = \frac{2^{15}}{15!}x^{15} + x^{15} = x^{15} \left(\frac{2^{15}}{15!} + 1\right) \xrightarrow{\text{togliamo le x}} \frac{2^{15}}{15!} + 1$$

4.
$$f^{(15)}(0) = 15! \cdot a_{15} = 2^{15} \cdot 15!$$

3.2 Resto di Lagrange

Per trovare il resto di Lagrange di ordine k con centro x_0 (solitamente è 0) di una funzione g(x):

$$R_k(x) = \frac{g''(x)}{(k+1)!} x^{(k+1)}$$

Per fare una stima in un intervallo $x \in I$:

- 1. $|g''(x)| \leq M$
- 2. M è la sommatoria di tutti gli elementi di g''(x) a modulo, è possibile usare la disuguaglianza triangolare: $|x-y| \le |x| + |y|$

- 3. Troviamo gli equivalenti asintotici di M
- 4. Sostituiamo x con il valore di I più grande che possiamo usare
- 5. La stima è $|R_k(x)| \le \frac{M}{(k+1)!} x^{(k+1)}$

3.3 Esercizio da esame

- Data la funzione $f(x) = x(e^x 1) + \ln(1 + x^2) + \sin(2x)$, calcolarne il polinomio di McLaurin di ordine 4
 - 1. Dividiamo f(x) in polinomi che contengono le funzioni elementari quindi avremo:

$$-x(e^{x}-1) = x\left(1+x+\frac{1}{2}x^{2}+\frac{1}{3!}x^{3}-1\right) = x^{2}+\frac{x^{3}}{2}+\frac{x^{4}}{3!}+o\left(x^{4}\right)$$
$$-\ln(1+x^{2}) = \left(x^{2}-\frac{(x^{2})^{2}}{2}\right) = x^{2}-\frac{x^{4}}{2}+o\left(x^{4}\right)$$
$$-\sin(2x) = 2\left(x-\frac{x^{3}}{3!}\right) = 2x-\frac{(2x)^{3}}{3!}+o\left(x^{4}\right)$$

2. Costruiamo una tabella di questo tipo:

Ordine	$x(e^x-1)$	$\ln(1+x^2)$	$\sin(2x)$	Somma
1	/	/	2x	2x
2	x^2	x^2	/	$2x^2$
3	$\frac{x^3}{2}$	/	$-\frac{(2x)^3}{3!}$	$-\frac{5x^{3}}{6}$
4	$\frac{x^4}{3!}$	$-\frac{x^4}{2}$	/	$-\frac{x^4}{3}$

Dove andiamo a prendere gli elementi di ciascun polinomio dell'ordine indicato nella prima colonna ed eseguiamo la somma della riga nell'ultima colonna.

- 3. Poi costruiamo il polinomio $P_4(x)$ sommando l'ultima colonna: $P_4(x)=2x+2x^2-\frac{5x^3}{6}-\frac{x^4}{3}$
- Scrivere il resto di Lagrange $R_1(x)$ di ordine 1 (con centro in 0) della funzione $g(x) = \cos(x^2) + \sin(3x)$ e determinarne una stima per $x \in (0, \frac{1}{4}]$

1.
$$g''(x) = \frac{d}{dx}(g'(x)) = -4x^2\cos(x^2) - 2\sin(x^2) - 9\sin(3x)$$

2.
$$R_1(x) = \frac{g''(x)}{2!}x^2$$

3.

$$|g''(x)| \le M$$

 $\left| -4x^2 \cos(x^2) - 2\sin(x^2) - 9\sin(3x) \right| \le \left| 4x^2 \cos(x^2) \right| + \left| 2\sin(x^2) \right| + \left| 9\sin(3x) \right|$

4. Troviamo gli equivalenti asintotici per i singoli elementi di M

$$\sin(x^2) \sim x^2$$
$$\sin(3x) \sim 3x$$

 $\cos(x^2) \sim 1 \rightarrow \text{Usiamo 1 perchè vogliamo fare una stima grossolana}$

5. Riscriviamo M:

$$|4x^2\cos(x^2)| + |2\sin(x^2)| + |9\sin(3x)| = 4x^2 + 2x^2 + 27x = 6x^2 + 27x$$

6. Sostituiamo $x = \frac{1}{4}$ perchè è la x più grande che possiamo usare:

$$\frac{3}{8} + \frac{27}{4} = \frac{57}{8}$$

7. Quindi:

$$|R_1(x)| \le \frac{M}{2!}x^2 \to \frac{57}{8}\frac{1}{2}x^2 = \frac{57}{16}x^2 \simeq 3.56x^2$$

3.4 Esercizio da esame

Calcolare lo sviluppo di Taylor di ordine 8 attorno ad $x_0 = 0$ della funzione $f(x) = \ln(\cos(x^2))$. Quanto vale $f^{(8)}(0)$?

1.
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} + O(x^{10})$$

2.
$$\cos(x^2) = 1 - \frac{x^4}{2!} + \frac{x^8}{4!} + O(x^{12})$$

3.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \frac{x^7}{7} - \frac{x^8}{8} + O(x^9)$$

4.
$$\ln(1+\cos(x^2)-1) = -\frac{x^4}{2!} + \frac{x^8}{4!} - \frac{1}{2}\left(\frac{x^4}{2!} + \frac{x^8}{4!}\right)^2 + \dots = -\frac{x^4}{2} + \frac{x^8}{24} - \frac{x^8}{8} + O(x^12) \to P_8(x)$$

5.
$$c_8 = x^8 \left(\frac{1}{24} - \frac{1}{8} \right) = -\frac{1}{12} x^8$$

6.
$$f^{(8)}(0) = -\frac{1}{12} \cdot 8! = -3360$$

4 Formula di Taylor

 $f^{(n)}$ indica l'ordine di derivazione n-esimo

Data una funzione $f: I \to \mathbb{R}$ definita su un intervallo I e derivabile infinite volte (C^{∞})

4.1 Polinomio di Taylor di f centrato in x_0 di ordine n

$$T_{x_0,n}^f(x) = f(x_0) + f'(x_0)(x - x_0) + f''(x_0)\frac{(x - x_0)^2}{2!} + \dots + f^{(n)}(x_0)\frac{(x - x_0)^n}{n!}$$

4.2 Formula di Taylor con resto di Lagrange

$$f(x) = T_{x_0,n}^f(x) + R_n f(x)$$

$$R_n f(x) = \frac{f^{(n+1)}(c_n)(x - x_0)^{n+1}}{(n+1)!} \text{ con } c_n \in \{x_0, x\}$$

Se x=be x_0 è vicino a b, $T^f_{x_0,n}(b)$ approssima f(b)e $\left|f(b)-T^f_{x_0,n}(b)\right|=|R_nf(b)|$

4.2.1 Determinare una stima del resto di Lagrange

Se dobbiamo calcolarlo con $x \in (0, a]$ al posto della x negli argomenti delle sotto-funzioni ci mettiamo a e calcoliamo M in base a quello.

$$\left| f^{(k+1)}(c) \right| \le M$$

Dove M è il maggiorante quindi prendiamo tutte le "sotto-funzioni" di $f^{(k+1)}(x)$ e combiniamo tutti i maggioranti tra di loro oppure calcoliamo $f^{(k+1)}(a)$. Per calcolare la stima quindi:

$$|R_k(x)| \le \frac{M}{(k+1)!} x^{k+1}$$

Esempio:

$$|f''(x)| = |e^{-2x} \cdot 13\sin(3x + \phi)|$$

I valori maggioranti di questi sono 1 e 13 (perchè la funzione seno oscilla tra -1 e 1 ma stiamo usando il modulo). Quindi:

$$M = 1 \cdot 13 = 13$$

Oppure calcoliamo |f''(a)| per trovare M.

$$|R_1(x)| \le \frac{M}{2!}x^2$$

4.3 Formula di Taylor con resti di Peano

$$f(x) = T_{x_0,n}^f(x) + (x - x_0)^n + \varepsilon(x - x_0) \text{ con } \lim_{x \to x_0} \varepsilon(x - x_0) = 0$$

4.4 Stimare l'errore commesso

$$|R_k(x_0)| = |T_k(x_0) - f(x_0)|$$

4.5 Unicità del Polinomio di Taylor

$$f(x) = (a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^n) + \varepsilon(x - x_0)(x - x_0)^n$$

Dove $a_0, a_1, \ldots, a_n \in \mathbb{R}$ e $\lim_{x \to x_0} \varepsilon(x - x_0) = 0$ allora:

$$a_k = \frac{f^{(k)}(x_0)}{k!}$$

5 Fourier

5.1 Coefficienti

Data una funzione f periodica di periodo T, i coefficienti di Fourier sono dati da:

$$\hat{f}_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) e^{-i\frac{2\pi}{T}kx} \qquad k \in \mathbb{Z}$$

E usando l'identità di Eulero:

$$\hat{f}_k = \left(\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \cos\left(\frac{2\pi}{T} kx\right) dx\right) - i \left(\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \sin\left(\frac{2\pi}{T} kx\right) dx\right)$$

5.1.1 Coefficienti reali

- $a_k = \hat{f}_k + \hat{f}_{-k} = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \cos(\frac{2\pi}{T}kx) dx$
- $b_k = i(\hat{f}_k + \hat{f}_{-k}) = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \sin\left(\frac{2\pi}{T}kx\right) dx$

Proprietà:

- Se f(x) è pari $\Rightarrow b_k$ nulli
- Se f(x) è dispari $\Rightarrow a_k$ nulli tranne $a_0 = 0$

5.2 Serie di Fourier

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{+\infty} \left[a_k \cos\left(\frac{2\pi k}{T}x\right) + b_k \sin\left(\frac{2\pi k}{T}x\right) \right]$$

5.3 Criterio di Dirichlet

Permette di dire a cosa converge e/o a dire il valore della serie di Fourier.

$$\tilde{f}(x) = \begin{cases} f(x) & \text{se continua} \\ \frac{f(x^+) + f(x^-)}{2} & \text{se discontinua in } x \end{cases}$$

5.3.1 Utilizzo

- 1. Se la funzione è definita a tratti cerchiamo i punti di giunzione e controlliamo se sono continui o no (usando la tecnica del limite sinistro e destro), se la funzione è periodica anche gli estremi devono essere considerati come punti di giunzione
- 2. Riscrivi $\tilde{f}(x)$ impostando la condizione (se periodica di periodo T) come $x = x_0 + Tk$ o $x \neq x_0 + Tk$ dove x_0 è il punto di discontinuità

Una serie di Fourier converge **uniformemente** se f è continua su tutto \mathbb{R} (o su T). Per vedere se una serie converge uninformemente basta usare una di queste strategie:

- Funzione continua e derivabile a tratti ⇒ converge
- Usare il criterio di Weierstrass
- E' funzione Lipschitziana $(|f(x) f(y)| \le k|x y|)$

5.4 Esercizio d'esame

Sia f la funzione ottenuta estendendo per periodicità a tutto $\mathbb R$ la funzione

$$g(x) = \begin{cases} 2\pi + x & x \in [-\pi, 0) \\ 2\pi - x & x \in [0, \pi) \end{cases}$$

- Disegna il grafico di f
- Calcolare il coefficiente di Fourier \hat{f}_0

1. Sappiamo che
$$\hat{f}_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{2\pi} \left[\int_{-\pi}^{0} (2\pi + x) dx + \int_{0}^{\pi} (2\pi - x) dx \right] = \frac{3\pi}{2}$$

- Calcolare il coefficiente di Fourier \hat{f}_k per $k \neq 0$
 - 1. Se f(x) è pari, i coefficienti b_k sono nulli e i coefficienti $a_k = \frac{2}{2\pi} \int_{-\pi}^{\pi} f(x) \cos(\frac{2\pi}{2\pi}kx) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos(kx) dx$
 - 2. Poichè $\hat{f}_k = \frac{a_k ib_k}{2}$ nel nostro caso sarà $\hat{f}_k = \frac{a_k}{2}$
 - 3. Calcoliamo a_k

$$a_k = \frac{2}{\pi} \int_0^{\pi} (2\pi - x) \cos(kx) dx = \frac{2}{\pi k^2} [1 - (-1)^k]$$

4. Quindi dobbiamo calcolare per k pari e $\neq 0$ e dispari:

$$\hat{f}_k = \begin{cases} \frac{2}{\pi k^2} & \text{se } k \text{ dispari} \\ 0 & \text{se } k \text{ pari e } \neq 0 \end{cases}$$

- Calcolare il valore della serie di Fourier di f sull'intervallo $[-\pi,\pi)$
 - 1. Sappiamo che $T=2\pi$
 - 2. Calcoliamo a_0 :

$$a_0 = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) dx = \frac{2}{\pi} \int_0^{\pi} (2\pi - x) dx = \frac{2}{\pi} \left(\int_0^{\pi} 2\pi dx - \int_0^{\pi} x dx \right)$$
$$= \frac{2}{\pi} \left(2\pi \left[x \right]_0^{\pi} - \left[\frac{x^2}{2} \right]_0^{\pi} \right) = \frac{2}{\pi} \left(2\pi^2 - \frac{\pi^2}{2} \right) = \frac{2}{\pi} \frac{3\pi^2}{2} = 3\pi$$

3. Sostituiamo a_0, a_k e b_k con quelli calcolati in precedenza

$$f(x) \sim \frac{3\pi}{2} + \sum_{k=1}^{+\infty} \left[\frac{2}{\pi k^2} [1 - (-1)^k] \cos(kx) \right]$$

5.5 Esercizio d'esame

Consideriamo la funzione di periodo 4 ottenuta prolungando per periodicità: $f(x) = \begin{cases} 0 & x \in [-2,0) \\ 2x & x \in [0,2) \end{cases}$

- Disegnare il grafico di f(x) nell'intervallo [-10, 10]
- Calcolare i coefficienti a_k e b_k per ogni $k \ge 0$

1.
$$a_0 = b_0 = \frac{2}{T} \int_{-T/2}^{T/2} f(x) dx = \frac{1}{2} \int_{-2}^{2} f(x) dx = \frac{1}{2} \left(\int_{-2}^{0} 0 \, dx + \int_{0}^{2} 2x \, dx \right) = \frac{1}{2} (0 + 4) = 2$$

2.
$$a_k = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \cos\left(\frac{2\pi}{T}kx\right) dx = \frac{1}{2} \left(\int_{-2}^0 0 dx + \int_0^2 2x \cos\left(\frac{\pi}{2}kx\right) dx\right) = \frac{4}{(\pi k)^2} ((-1)^k - 1)$$

$$\int 2x \cos\left(\frac{\pi}{2}kx\right) dx \xrightarrow{t=\frac{\pi}{2}kx; dt=\frac{\pi}{2}k dx} \int \frac{2t}{\frac{\pi}{2}k} \cos\left(t\right) \left(\frac{2}{\pi k}\right) dt = \frac{2}{\pi k} \cdot \frac{4}{\pi k} \int t \cos\left(t\right) dt = \frac{8}{(\pi k)^2} \int t \cos\left(t\right) dt$$

$$\xrightarrow{f'=\cos(t); g=t} \frac{8}{(\pi k)^2} \left(t \sin(t) - \int \sin(t) dt\right) = \frac{8}{(\pi k)^2} \left(t \sin(t) + \cos(t)\right)$$

$$\xrightarrow{t=\frac{\pi}{2}kx} \frac{8}{(\pi k)^2} \left(\frac{\pi}{2}kx \sin\left(\frac{\pi}{2}kx\right) + \cos\left(\frac{\pi}{2}kx\right)\right) = \frac{4x}{\pi k} \sin\left(\frac{\pi}{2}kx\right) + \frac{8}{(\pi k)^2} \cos\left(\frac{\pi}{2}kx\right)$$

4.
$$b_k = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \sin\left(\frac{2\pi}{T}kx\right) dx = (-1)^{k+1} \left(\frac{2}{\pi k}\right)$$

• Calcolare la serie di Fourier di f e discuterne la convergenza puntuale

1.
$$f(x) = 1 + \sum_{k=1}^{+\infty} \left[\left(\frac{4}{(\pi k)^2} ((-1)^k - 1) \right) \cos \left(\frac{\pi k}{2} x \right) + \left((-1)^{k+1} \left(\frac{2}{\pi k} \right) \sin \left(\frac{2}{\pi k} \right) \right) \right]$$

(a)
$$x = 0 \to \begin{cases} \lim_{n \to 0^{-}} f(x) = 0 \\ \lim_{n \to 0^{+}} f(x) = 0 \end{cases}$$
 continua in $x = 0$

(a)
$$x = 0 \to \begin{cases} \lim_{n \to 0^{-}} f(x) = 0 \\ \lim_{n \to 0^{+}} f(x) = 0 \end{cases}$$
 continua in $x = 0$
(b) $x = 2 \to \begin{cases} \lim_{n \to 2^{-}} f(x) = 4 \\ \lim_{n \to 2^{+}} f(x) = 0 \end{cases}$ discontinua in $x = 2, \tilde{f}(2) = \frac{4+0}{2} = 2 \leftarrow \text{converge a 2 per } x = 2$

(c)
$$\tilde{f} = \begin{cases} f(x) & \text{se } x \neq 2 + 4k \\ 2 & \text{se } x = 2 + 4k \end{cases}$$

6 Funzioni a due variabili

6.1 Proprietà degli insiemi

- Un insieme è chiuso se c'è $\leq, \geq, =$
- Un insieme è **limitato** se è limitato "orizzontalmente" $(i \le x \le j)$ e "verticalmente" $(k \le y \le z)$

6.2 Derivata parziale

Deriviamo la funzione fissando una variabile e l'altra la trattiamo come costante:

$$f(x,y) = x^2y + 3xy^2$$

$$f_x(x,y) = \frac{\vartheta f}{\vartheta x} = 2xy + 3y^2$$

$$f_y(x,y) = \frac{\vartheta f}{\vartheta y} = x^2 + 6x$$

6.2.1 Di ordine superiore

Equivalgono alle derivate di ordine superiore al primo, nel caso di derivata parziale mista prima deriviamo per la prima variabile e poi deriviamo il risultato fissando la seconda variabile

$$f(x,y) = x^{2}y + 3xy^{2}$$

$$f_{xx}(x,y) = \frac{\vartheta^{2}f}{\vartheta x^{2}} = \frac{\vartheta}{\vartheta x} \left(\frac{\vartheta f}{\vartheta x}\right) = \frac{\vartheta}{\vartheta x} (2xy + 3y^{2}) = 2y$$

$$f_{xy}(x,y) = \frac{\vartheta^{2}f}{\vartheta x \vartheta y} = \frac{\vartheta}{\vartheta y} \left(\frac{\vartheta f}{\vartheta x}\right) = \frac{\vartheta}{\vartheta y} (2xy + 3y^{2}) = 2x$$

6.3 Gradiente

$$\nabla f(x_0, y_0) = \left(\frac{\vartheta f}{\vartheta x}(x_0, y_0), \frac{\vartheta f}{\vartheta y}(x_0, y_0)\right)$$

6.4 Derivata direzionale

Dato u di modulo 1 $\left(\sqrt{u_x^2+u_y^2}=1\right)$

$$D_u f(x_0, y_0) = \nabla f(x_0, y_0) \cdot u = \left(\frac{\vartheta f}{\vartheta x}(x_0, y_0) \cdot u_x\right) + \left(\frac{\vartheta f}{\vartheta y}(x_0, y_0) \cdot u_y\right)$$

6.4.1 Normalizzazione vettore v

$$u = \frac{v}{\sqrt{v_x^2 + v_y^2}}$$

6.5 Equazione del piano tangente al grafico di f in (x_0, y_0, z_0)

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

$$z = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + z_0$$

6.6 Punti critici di f

Un punto (x_0, y_0) nel dominio di f è un punto critico se:

- $\nabla f(x_0, y_0) = (0, 0)$ (Punti **stazionari**)
 - 1. Calcola $\nabla f(x,y)$
 - 2. Trova i punti in cui il gradiente è nullo:

$$\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases}$$

3. Le coppie di (x,y) che risolvono il sistema ma non appartengono al dominio non sono punti critici.

9

• oppure, una o entrambe le derivate parziali $f_x(x_0, y_0)$ e $f_y(x_0, y_0)$ non esistono

6.6.1 Classificazione

1. Calcolo le derivate parziali seconde:

- $f_{xx}(x,y)$
- $f_{yy}(x,y)$
- $f_{xy}(x,y)$

2. Costruisco la matrice Hessiana:

$$H(x,y) = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$$

- 3. Calcolo il determinante: $D(x,y) = f_{xx}(x,y) \cdot f_{yy}(x,y) (f_{xy}(x,y))^2$
- 4. Per ogni punto critico (x_0, y_0) calcolo $D(x_0, y_0)$:

$D(x_0, y_0) > 0$	$D(x_0, y_0) < 0$	$D(x_0, y_0) = 0$
Minimo locale $(f_{xx}(x_0, y_0) > 0)$	Punto di sella	Test inconcludente
Massimo locale $(f_{xx}(x_0, y_0) < 0)$		

6.7 Massimi e minimi vincolati (Metodo di Lagrange)

Dato un vincolo g(x,y)=0, cerchiamo i massimi e minimi assoluti della funzione f(x,y) vincolati a $C=\{(x,y)\in A\mid g(x,y)=0\}$. Quindi nella frontiera.

$$\begin{cases} \nabla f(x,y) = \lambda \nabla g(x,y) \\ g(x,y) = 0 \end{cases} = \begin{cases} f_x(x,y) = \lambda g_x(x,y) \\ f_y(x,y) = \lambda g_y(x,y) \\ g(x,y) = 0 \end{cases}$$

Interpretazione geometrica: in un punto vincolato di massimo o minimo, i gradienti di f e g sono paralleli $\Rightarrow \nabla f = \lambda \nabla g$

Procedura:

- 1. Isola le λ
- 2. Mettile in uguaglianza
- 3. Risolvi il vincolo (isolando una delle due variabili)
- 4. Risolvi il sistema

Con più vincoli: $g_1(x,y) = 0, g_2(x,y) = 0 \ \nabla f = \lambda_1 \nabla g_1 + \lambda_2 \nabla g_2 \ g_1(x,y) = 0, \quad g_2(x,y) = 0$

6.7.1 Altro metodo (più veloce)

Sfrutta l'interpretazione geometrica detta prima, quindi il determinante della matrice = 0:

$$\begin{pmatrix} f_x & g_x \\ f_y & g_y \end{pmatrix}$$

Quindi dobbiamo risolvere: $\begin{cases} f_x \cdot g_y - g_x \cdot f_y = 0 \\ g(x,y) = 0 \end{cases}$ e troviamo tutti i punti critici candidati

6.8 Esercizio da esame

Sia $f(x,y) = \frac{3}{2}x^2 - 8x - 4xy + 4y^2 + 12\ln x$

- 1. Determinare il dominio di f e dire dove f è differenziabile
 - (a) Dom $f: (0, +\infty)$
 - (b) $f_x(x,y) = 3x 8 4y + \frac{12}{x}$ e $f_y(x,y) = -4x + 8y$. Il dominio di queste derivate parziali è $(0,+\infty)$
 - (c) Concludiamo dicendo che è differenziabile su tutto il dominio
- 2. Calcolare il gradiente nel punto (1,0), la derivata direzionale $\frac{\vartheta f(1,0)}{\vartheta v}$ per $v = \left(-\frac{4}{5}, \frac{3}{5}\right)$ e scrivere l'equazione del piano tangente al grafico di f in (1,0,f(1,0))

- (a) $\nabla f(1,0) = (7,-4)$
- (b) $||v|| = \sqrt{\frac{16}{25} + \frac{9}{25}} = 1$

(c)
$$D_v f(1,0) = \nabla f(1,0) \cdot v = (7,-4) \cdot (-\frac{4}{5}, \frac{3}{5}) = -\frac{28}{5} - \frac{12}{5} = -8$$
 (d)

$$z = f_x(1,0)(x-1) + f_y(1,0)(y-0) + z_0$$

$$z = f_x(1,0)(x-1) + f_y(1,0)(y-0) + f(1,0)$$

$$z = 7(x-1) - 4y - \frac{13}{2}$$

$$z = 7x - 7 - 4y - \frac{13}{2}$$

$$z = 7x - 4y - \frac{27}{2}$$

3. Stabilire quali sono i punti critici di f sul suo dominio e classificarli

$$\begin{cases} 3x - 8 - 4y + \frac{12}{x} = 0 \to x - 8 + \frac{12}{x} = 0 \to x^2 - 8x + 12 = 0 \to x_{1,2} = \frac{8 \pm \sqrt{64 - 48}}{2} = \frac{8 \pm 4}{2} = \begin{cases} x_1 = 6 \\ x_2 = 2 \end{cases} \\ -4x + 8y = 0 \to 8y = 4x \to y = \frac{x}{2} \end{cases}$$

I punti critici sono (6,3) e (2,1)

- (b) Calcolo $f_{xx}, f_{yy} \in f_{xy}$
 - $f_{xx}(x,y) = 3 \frac{12}{x^2}$
 - $f_{yy}(x,y) = 8$
 - $f_{xy}(x,y) = -4$

(c) Calcolo
$$D(x,y) = \left(3 - \frac{12}{x^2}\right) \cdot 8 - 16 = 24 - \frac{96}{x^2} - 16 = 8 - \frac{96}{x^2}$$

(d) •
$$(2,1) \to D(2,1) = 8 - \frac{96}{4} = -16 \Rightarrow \text{Punto di sella}$$

(c) Calcolo
$$D(x,y) = \left(3 - \frac{12}{x^2}\right) \cdot 8 - 16 = 24 - \frac{96}{x^2} - 16 = 8 - \frac{96}{x^2}$$

(d) \bullet $(2,1) \to D(2,1) = 8 - \frac{96}{4} = -16 \Rightarrow \text{Punto di sella}$
 \bullet $(6,3) \to D(6,3) = 8 - \frac{96}{36} = \frac{16}{3}, f_{xx}(6,3) = 3 - \frac{12}{36} = \frac{8}{3} \Rightarrow \text{Minimo locale}$

6.9 Esercizio da esame

 $Sia \ f(x,y) = xe^{-y^2 - x}$

- Stabilire se f è differenziabile sul suo dominio e calcolarne la derivata direzionale lungo v=(1,2) nel punto $P_0 = (3, -1)$
 - $1. \ f$ è differenziabile sul suo dominio perchè è una composizione di funzioni elementari

2.
$$f_x(x,y) = e^{-y^2 - x}(1-x)$$

3.
$$f_y(x,y) = -2yxe^{-y^2-x}$$

4.
$$\nabla f(3,-1) = (-2e^{-4}, 6e^{-4})$$

5.
$$||v|| = \sqrt{5} \neq 1 \rightarrow u = \frac{1}{\sqrt{5}}(1,2) = \left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$$

6.
$$D_u F(3, -1) = \nabla f(3, -1) \cdot u = (-2e^{-4}, 6e^{-4}) \left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right) = -\frac{2e^{-4}}{\sqrt{5}} + \frac{12e^{-4}}{\sqrt{5}} = \frac{10e^{-4}}{\sqrt{5}}$$

- Dopo aver disegnato l'insieme $C = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$ e stabilito se è chiuso e limitato, determinare, se esistono, i punti di massimo/minimo di f su C
 - 1. Insieme chiuso e limitato

2.
$$x^2 + y^2 < 4$$

(a)
$$\begin{cases} e^{-y^2 - x} (1 - x) = 0 \to 1 - x = 0 \to x = 1 \\ -2yxe^{-y^2 - x} = 0 \to -2xy = 0 \to -2y = 0 \to y = 0 \end{cases}$$

Punto critico $P_0(1,0)$ massimo locale per matrice Hessiana.

(b)
$$x^2 + y^2 = 4$$

i.
$$\nabla g(x,y) = (2x,2y)$$

ii.
$$\begin{cases} e^{-y^2 - x} (1 - x) = \lambda 2x \\ -2yxe^{-y^2 - x} = \lambda 2y \\ x^2 + y^2 = 4 \end{cases}$$

$$x^2 + y^2 = 4$$

- iii. Facciamo le casistiche per $x=0, \lambda=0$ e y=0, risolvendo i sistemi abbiamo che solo per y=0abbiamo due punti critici: $P_1(2,0)$ e $P_2(-2,0)$
- iv. Calcolando questi punti nella funzione f abbiamo che P_2 è minimo assoluto e P_0 è minimo locale e assoluto.

7 Extra

7.1 Determinare crescenza/decrescenza velocemente

Se h(n) = f(g(n))

g(n)	f(x)	h(n)
decrescente	crescente	descrescente
descrescente	decrescente	crescente
crescente	crescente	crescente
crescente	decrescente	decrescente

7.2 Formule utili

$$f(n)^{g(n)} = \{0^0, \infty^0, 1^\infty\} \to f(n)^{g(n)} = e^{g(n)\ln(f(n))}$$

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \text{ per } n \to +\infty$$

$$\binom{\alpha n}{\beta n} \sim \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{\alpha}{\beta(\alpha - \beta)}} \left(\frac{\alpha^\alpha}{\beta^\beta(\alpha - \beta)^{\alpha - \beta}}\right)^n$$

$$\{(n!)^2\} \sim \frac{2\pi n}{e^{2n}} \left(\frac{n}{e}\right)^{2n} = \frac{2\pi n}{e^{2n}} (n!)^2$$

7.3 Equivalenze Asintotiche Notevoli (per $x \to 0$ e $n \to +\infty$ rispettivamente):

Funzione	Equivalenza asintotica	Dominio
$\sin x$	x	$x \to 0$
$\cos x$	$1 - \frac{x^2}{2}$	$x \to 0$
$\tan x$	x	$x \to 0$
$\arcsin x$	x	$x \to 0$
$\arctan x$	x	$x \to 0$
$\ln(1+x)$	x	$x \to 0$
$e^x - 1$	x	$x \to 0$
$(1+x)^{\alpha}-1$	αx	$x \to 0, \alpha \neq 0$
$\sqrt{1+x}-1$	$\frac{x}{2}$	$x \to 0$
$\cos x - 1$	$-\frac{x^2}{2}$	$x \to 0$
$1-\cos x$	$\frac{x^2}{2}$ $\frac{x^2}{2}$	$x \to 0$
$ \cosh x - 1 $	$\frac{x^2}{2}$	$x \to 0$
$\sinh x$	x	$x \to 0$
$\tanh x$	x	$x \to 0$

Funzione	Equivalenza asintotica
$\sin\left(\frac{1}{-}\right)$	1_
n	n
$\ln\left(1+\frac{1}{-}\right)$	$\frac{1}{2}$
n	n
$e^{1/n} - 1$	$\frac{1}{\underline{}}$
	n
$\left(1+\frac{1}{-}\right)^n-e$	\underline{e}
$\binom{1}{n}$	$\overline{2n}$
$\sqrt{n+1}-\sqrt{n}$	$\frac{1}{2\sqrt{n}}$
$\ln(n+1) - \ln n$	1 -
	TL

7.4 Equivalenze trigonometriche

- $\cos(k\pi) = (-1)^k \quad \forall k \in \mathbb{Z}$
- $\sin(k\pi) = 0 \quad \forall k \in \mathbb{Z}$
- $\cos((2k+1)\frac{\pi}{2}) = 0 \quad \forall k \in \mathbb{Z}$
- $\sin((2k+1)\frac{\pi}{2}) = (-1)^k \quad \forall k \in \mathbb{Z}$
- $\sin(-x) = -\sin(x)$
- $\cos(-x) = \cos(x)$

7.5 Insiemi vincolati noti

Condizione	Grafico	
$x^2 + y^2 \le k$	Cerchio di raggio \sqrt{k}	
$(x - x_0)^2 + (y - y_0)^2 \le k$	Cerchio di raggio \sqrt{k} centrato in (x_0, y_0)	
$-a \le x \le a \land -a \le y \le a$	Quadrato	
$x_0 \pm a \le x \le x_0 \pm a \land y_0 \pm a \le y \le y_0 \pm a$	Quadrato centrato in (x_0, y_0)	
$x_1 \le x \le x_2 \land y_1 \le y \le y_2$	Rettangolo	
$\frac{x^2}{a^2} + \frac{y^2}{b^2} \le k$	Ellisse	
$x \ge 0 \land y \ge 0 \land \frac{x}{L} + \frac{y}{H} \le 1$	Triangolo	
$R_1^2 \le x^2 + y^2 \le R_2^2$	Anello	