Computational Methods for Astrophysical Applications

lleyk El Mellah & Jon Sundqvist

Centre for mathematical Plasma Astrophysics Instituut voor Sterrenkunde KU Leuven

Lesson 2:

Finite Difference Approximation for linear hyperbolic PDE

- Spatial discretization
 Mesh and data collocation
 Discrete equations
- Time advance
 Von Neumann stability analysis
 Explicit linear schemes

- Preliminary concepts
 - Mesh and data collocation
 - Consistency
 - Stability
- Spatial discretization
 - Discretized function
 - Discretized first order derivatives
 - Discretized second order derivatives
- Temporal discretization
 - Explicit methods
 - Implicit methods
 - Accuracy and positivity

Mesh

Numerical schemes require spatial and temporal discretization

Data collocation

- Finite difference (FD): values are located at points, not necessarily regularly distributed. There is no cell.
 - \Rightarrow Intuitive & computationally fast but not conservative and no straightforward refinement strategy
- Finite volume (FV): values are associated to the whole cell: the value of the function is constant over the cell. Conservative by Gauss' law (a.k.a Green-Ostrogradsky).
 - ⇒ Reconstruction at interfaces required => slower

Consistency of a method

A FD approximation of a PDE is consistent if and only if

$$\mathsf{FD} \xrightarrow{\Delta t, \Delta x \to 0} \mathsf{PDE}$$

- ⇒ Balsara 2.4
- Empirical order of convergence (EOC): u analytic solution and \tilde{u}_i numerical solution on 1D uniform grid x_i with $i \in [1, N_{\nu} = 2^{\nu}]$. Compute the maximal error $\epsilon_{\nu} = ||u \tilde{u}||_{\infty}$ and deduce EOC:

$$\mathsf{EOC}_{\nu} = \frac{\log\left(\epsilon_{\nu}/\epsilon_{\nu-1}\right)}{\log\left(N_{\nu-1}/N_{\nu}\right)}$$

- ⇒ quantify the overall quality of a method, on analytic test-cases
 - ⇒ see Project# 1 of Köln school
 - ⇒ see Balsara chapter 2, slides# 27-32

Von Neumann stability analysis

- Balsara 2.5 and intro of 2.7
- round-off errors should not grow during time progression
 - \Rightarrow numerical solution = exact + round-off error $\epsilon(x, t)$
 - \Rightarrow represent $\epsilon(x, t)$ in Fourier series, analyse Fourier term

$$\epsilon_i^n(k) = \hat{\epsilon}_k e^{\lambda t^n} e^{ikx_i}$$

• numerically stable scheme \forall spatial wavenumbers k if

$$\left|\frac{\epsilon_i^{n+1}(k)}{\epsilon_i^n(k)}\right| = \left|e^{\lambda \Delta t}\right| \le 1$$

Lax equivalence theorem :

consistent + stable <=> convergent

- Preliminary concepts
 - Mesh and data collocation
 - Consistency
 - Stability
- Spatial discretization
 - Discretized function
 - Discretized first order derivatives
 - Discretized second order derivatives
- Temporal discretization
 - Explicit methods
 - Implicit methods
 - Accuracy and positivity

Discretized function

- Balsara 2.3
- We now want to obtain a FD discretized form of the equations to solve

⇒ variables evaluated at the points

Discretized spatial derivatives

- Assume N + 1 points regularly spaced by Δx and u_i the associated values
- Key-question: how to get a FD approximation of the spatial derivatives u'_i , u''_i ...?
 - ⇒ Use Taylor series expansions

Backward, forward & central FD

• For instance, to 1st order accuracy in Δx , we have the 1st order forward difference:

$$u_i' \sim \frac{u_{i+1} - u_i}{\Delta x}$$

 \Rightarrow but we also have the 1st order backward difference:

$$u_i' \sim \frac{u_i - u_{i-1}}{\Delta x}$$

 \Rightarrow or the 2nd order central difference:

$$u_i' \sim \frac{u_{i+1} - u_{i-1}}{2\Delta x}$$

Which one to choose? Properties (e.g. stencil, accuracy)?

Truncation error and order of accuracy

• Taylor expansions linking u_i to the continuous function u:

$$u_{i+1} = u(0) + u'(0) \Delta x + u''(0) \frac{(\Delta x)^2}{2!} + u^{(3)}(0) \frac{(\Delta x)^3}{3!} + \dots$$
 (1)
$$u_i = u(0)$$
 (2)

$$u_{i-1} = u(0) - u'(0) \Delta x + u''(0) \frac{(\Delta x)^2}{2!} - u^{(3)}(0) \frac{(\Delta x)^3}{3!} + \dots$$
 (3)

$$\Rightarrow$$
 (1)-(3): $u'(0) = \frac{u_{i+1} - u_{i-1}}{2\Delta x} + \underbrace{O\left((\Delta x)^2\right)}_{\text{truncation error}}$

• Order of accuracy (o.a.) = order of first truncated term $\Rightarrow (\Delta x - > \Delta x/2) = > \text{accuracy improved by } 2^{\text{o.a.}}$

Stencil: points required, increases with o.a.

2nd order derivative

Same principle

(1)+(3)-2×(2):
$$u''(0) = \frac{u_{i+1}-2u_i+u_{i-1}}{(\Delta x)^2} + O\left((\Delta x)^2\right)$$

 $\Rightarrow Oa?$ Stencil?

- Exo
 - \Rightarrow 3rd, 4th & 5th order central difference representations of u_i ?
 - ⇒ 2nd order forward/backward differences?

- Preliminary concepts
 - Mesh and data collocation
 - Consistency
 - Stability
- Spatial discretization
 - Discretized function
 - Discretized first order derivatives
 - Discretized second order derivatives
- Temporal discretization
 - Explicit methods
 - Implicit methods
 - Accuracy and positivity

Principle

Consider the 1D linear advection equation with constant speed
 v:

$$\partial_t \rho + \mathbf{v} \partial_{\mathbf{x}} \rho = \mathbf{0} \tag{4}$$

• Explicit time integration: values at t^{n+1} computed from available information on time level $t^n = t^{n+1} - \Delta t$

Principle

 Example: explicit forward 2nd order central difference (a.k.a. Eulerâs Forward Time Central Space, FTCS)

$$\frac{u^{n+1} - u^n}{\Delta t} = -v \frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x}$$

⇒ rearrange to

$$u_i^{n+1} = u_i^n - v \frac{\Delta t}{\Delta x} \frac{u_{i+1}^n - u_{i-1}^n}{2}$$
 (5)

- ⇒ 1st order accurate in time, 2nd order in space
- ⇒ Is this FD approximation consistent?
- <u>Sandbox</u>: Write your 1st solver using the Euler's FTCS above (and periodic boundary conditions, ~ infinite simulation space).
 Apply it to the Riemann problem (advection of a step function). Is the numerical solution stable?

Von Neumann stability analysis

- Balsara 2.7.1
- Von Neumann stability analysis

$$e^{\lambda \Delta t} = 1 - \frac{v\Delta t}{\Delta x} \frac{e^{ik\Delta x} - e^{-ik\Delta x}}{2} = 1 - i \frac{v\Delta t}{\Delta x} \sin(k\Delta x)$$

 \Rightarrow scheme is unconditionally unstable since for all k

$$\left|\frac{\epsilon_k^{n+1}}{\epsilon_k^n}\right| > 1$$

- 3 possible solutions to stabilize
 - ⇒ add numerical diffusivity to damp nonphysical instability
 - ⇒ impose same space-time symmetry as original PDE
 - ⇒ use implicit scheme (next section)

Numerical diffusivity: the Lax-Friedrichs scheme

adding diffusion: advection-diffusion equation has form

$$\frac{\partial u}{\partial t} = -v \frac{\partial u}{\partial x} + \mathcal{D} \frac{\partial^2 u}{\partial x^2} \quad \text{with } \mathcal{D} \text{ a diffusion coefficient}$$

• <u>Lax-Friedrichs scheme</u>: in (5), if we replace u_i^n by spatial average between i-1 and i+1, we get:

$$u_i^{n+1} = \frac{u_{i+1}^n + u_{i-1}^n}{2} - v \frac{\Delta t}{\Delta x} \frac{u_{i+1}^n - u_{i-1}^n}{2}$$

which can be rearranged to form

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = -v \frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x} + \frac{(\Delta x)^2}{2\Delta t} \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{(\Delta x)^2}$$

- \Rightarrow numerical dissipation with $\mathcal{D} \equiv (\Delta x)^2/2\Delta t$
- ⇒ 1st order accurate in time, 2nd order in space

CFL condition

perform von Neumann stability analysis for Lax-Friedrichs

$$e^{\lambda \Delta t} = \cos(k\Delta x) - i \frac{v\Delta t}{\Delta x} \sin(k\Delta x)$$

⇒ conditional stability requiring Courant number C

$$C \equiv \frac{|v|\Delta t}{\Delta x} \le 1$$

- \Rightarrow limitation of the time step Δt for a given resolution Δx
- ⇒ Courant-Friedrichs-Lewy condition (1928)
- ⇒ necessary condition for stability
- Rk: see stencil of Lax-Friedrichs scheme in Table on slide 26
- Exo: retrieve the figures on slide# 62 of Balsara 2.7.2
 - ⇒ very diffusive

The Lax-Wendroff scheme

- Lax-Friedrichs has different o.a. in space (2nd) and time (1st)
 - \Rightarrow 2nd order Taylor expansion in time of $u_i(t)$, yields:

$$u_i(t + \Delta t) = u_i(t) + u'_i(t)\Delta t + u''_i(t)\frac{(\Delta t)^2}{2}$$
 (6)

- \Rightarrow (4) => $u_i' \sim -v \partial_x u$
- \Rightarrow to find u_i'' , $\partial_t(4)$ and (illegaly) switch ∂_t and ∂_x in mixed term :

$$u_i'' \sim v^2 \partial_{xx} u$$

 \Rightarrow finally, reinject in (6) and use a central difference for spatial derivatives :

$$u_i^{n+1} = u_i^n - \frac{1}{2} \frac{\Delta t}{\Delta x} v (u_{i+1}^n - u_{i-1}^n) + \frac{1}{2} \frac{(\Delta t)^2}{(\Delta x)^2} v^2 (u_{i+1}^n - 2u_i^n + u_{i-1}^n)$$

The Lax-Wendroff scheme

- 2nd order in space and time
- Conditionally stable
 - \Rightarrow for $\Delta t = \Delta x/v$, we retrieve the Lax-Friedrichs scheme
- <u>Exo</u>: retrieve the figures on slide# 67 of Balsara 2.7.3 and compare the empirical order of convergence with respect to Lax-Friedrichs
 - ⇒ non positivity-preserving (<= monotonicity-preserving)</p>

Space-time symmetry

- How to maintain the space-time symmetry of the PDE in the FD approximation?
 - ⇒ use central discretisation for both time and space
 - ⇒ leapfrog scheme

$$u_i^{n+1} = u_i^{n-1} - v \frac{\Delta t}{\Delta x} \frac{u_{i+1}^n - u_{i-1}^n}{2}$$

- ⇒ conditionally stable and second-order accurate
- \Rightarrow multiple time levels involved: n-1, n, n+1
- ⇒ potential problem: even/odd time levels may 'decouple'
- stencil of leapfrog on slide 26

First order upwind scheme

- Balsara 2.7.5
- Physically-speaking, isn't it silly that, for v > 0 for instance, u_i^{n+1} depends on u_{i+1}^n ?
 - \Rightarrow Information should propagate wave speeds (see previous lesson)

$$\frac{u_i^{n+1}-u_i^n}{\Delta t}=-v\frac{u_i^n-u_{i-1}^n}{\Delta x}$$

⇒ also called the donor cell scheme

First order upwind scheme

Positivity preserving ("> 0"), but 1st order accurate

Figure 3.2: (upper panel) A central differencing numerical solving of the uni-dimensional linear advection equation of a step function which went wrong. The dotted line stands for the analytical solution while the markers and solid line indicate the numerical answer. (lower panel) The same numerical problem solved with an upwind differencing scheme. From Dullemond (2009).

Overview of explicit methods

Name	Difference Equations	Stencil	
Backward Euler	$U_j^{n+1} = U_j^n - \frac{k}{2h}A(U_{j+1}^n - U_{j-1}^n)$	丁	
One-sided	$U_{j}^{n+1} = U_{j}^{n} - \frac{k}{h}A(U_{j}^{n} - U_{j-1}^{n})$	L	
One-sided	$U_j^{n+1} = U_j^n - \frac{k}{h}A(U_{j+1}^n - U_j^n)$	L	
Lax-Friedrichs	$U_j^{n+1} = \frac{1}{2}(U_{j-1}^n + U_{j+1}^n) - \frac{k}{2h}A(U_{j+1}^n - U_{j-1}^n)$	^	
Leapfrog	$U_j^{n+1} = U_j^{n-1} - \frac{k}{2h}A(U_{j+1}^n - U_{j-1}^n)$	\Diamond	
Lax-Wendroff	$U_j^{n+1} = U_j^n - \frac{k}{2h}A(U_{j+1}^n - U_{j-1}^n) + \frac{k^2}{2h^2}A^2(U_{j+1}^n - 2U_j^n + U_{j-1}^n)$	1	
Beam-Warming	$U_j^{n+1} = U_j^n - \frac{k}{2h} A(3U_j^n - 4U_{j-1}^n + U_{j-2}^n) + \frac{k^2}{2h^2} A^2 (U_j^n - 2U_{j-1}^n + U_{j-2}^n)$		

TABLE 10.1

Finite difference methods for the linear problem $u_t + Au_x = 0$.

 1^{st} order schemes safe, can be > 0 BUT very diffusive 2^{nd} order schemes accurate => great for smooth profiles (e.g. Gaussian) but terrible for discontinuous ones (e.g. top hat) because non > 0

Principle

 third cure to instability of Euler FTCS scheme: evaluate spatial derivative at tⁿ⁺¹

$$u_i^{n+1} = u_i^n - v \frac{\Delta t}{\Delta x} \frac{u_{i+1}^{n+1} - u_{i-1}^{n+1}}{2}$$

 \Rightarrow Backwards in Time, Central in Space Euler scheme (BTCS)

 $\Rightarrow u_i^{n+1}$ not expressed in terms of values at time t^n : implicit

Stencil?

Von Neumann stability analysis

von Neumann stability analysis for BTCS scheme

$$\left| e^{\lambda \Delta t} \right| = \frac{1}{\left| 1 + i \frac{v \Delta t}{\Delta x} \sin(k \Delta x) \right|} < 1$$
 for all k

- \Rightarrow unconditionally stable, any time step Δt allowed
- But stability ≠ accuracy
 - \Rightarrow the larger Δt , the lower the accuracy
- BTCS is 1st order in time
- Implicit methods more used for elliptic PDE => not covered by the current course

Godunov's theorem

Explicit schemes

Scheme o.a.	Can be stable? > 0'
FTCS 1st	noyes
Lax-Friedrichs1st	yesyes
Lax-Wendroff2 nd	yesno
Upwind1st	yesno

"All linear positivity-preserving schemes for linear advection are condemned to be 1st order accurate"

- We want :
 - \Rightarrow accuracy where the variables are smooth (i.e. \sim Gaussian)
 - ⇒ positivity where they are discontinuous (i.e. ~top hat)