<u> מודלים חישוביים – תרגיל 1</u>

<u>חלק ראשון</u>

א)1)

לא נכון, מכיוון שהמילה 000 -

$$\underbrace{000}_{\#_0(w)\bmod 3=0}\cdot\underbrace{\mathcal{E}}_{|w|\bmod 3=0}\in L_{\mathbf{l}}\cdot L_{\mathbf{2}}$$

 $3\%6 \neq 0$ אך מכיוון שמספר הפעמים ש0 מופיע במילה הוא 3 ו אך אך א

(2

נכון, מכיוון שמספר המופעים של 0 יהיה 0=0 יהיה $\mod 6=0$ ולאחר מכן $\mod 3=0$ אם מספר המופעים הוא $\mod 3=0$ ולכן זה יהיה שירשור של 2 מילים שלהם מס' האפסים יהיה $\mod 6=0 \to \mod 3=0$ בדיוק כמו M

- 1 לא מכיוון שהמילה

$$\underset{\#_0 \bmod 6=0}{\underbrace{1}} \cdot \underset{\#_0 \bmod 3=0}{\underbrace{\mathcal{E}}} \in L_3 \cdot L_2$$

ארית. ממחלק ב3 ללא שארית. במילה אותיות מספר האותיות מיוון שמספר $1 \not\in L_{\scriptscriptstyle \rm I}$

ב)

על מנת להוכיח את השיוויון נוכיח הכלה משני הצדדים.

 (\subseteq)

לכל שירשור מילים בגודל n (קליני) זה יראה כך

$$W = \left\{ w_1^R w_2^R \dots w_n^R \right\}$$

מכיוון ש $w_1^R, w_2^R, \dots, w_n^R \in L \to w_1, w_2, \dots, w_n \in L$ מכיוון שהיהיה אותה אותה אותה על סדר המילים סדר המילים

$$\left(\underbrace{w_n w_{n-1} ... w_1}_{L^*}\right)^R \in \left(L^*\right)^R$$

(⊇) כעת נוכיח מהצד השני

$$w\!\in\!\left(L^{\!R}
ight)^{\!*}$$
 נניח כי $w\!\in\!\left(L^{\!*}
ight)^{\!R}$ ונוכיח כי

$$W = \left(\underbrace{w_1 w_2 ... w_n}_{L^*}\right)^R$$
 לכן

$$w_1, w_2 ..., w_n \in L o w_1^R, w_2^R ..., w_n^R \in L$$
 מכיוון ש

ולכן ניקח את האותיות ברוורס ונעשה רוורס על סדר המילים כדי שהמילה הכוללת תישאר דומה ונקבל

$$\left(w_{n}^{R}w_{n-1}^{R}...w_{1}^{R}\right)\in\left(L^{R}\right)^{*}$$

<u>חלק שני</u>

א)1)

א)2)

ב)1)

ab שפת כל המילים שלאחר השירשור

ב)2)

השפה שמתחילה ומסתיימת באותה האות (תתחיל בa ותסיים בa או תתחיל בd ותסיים בd), כולל המילה הריקה.

לא ניתן לעשות זאת באוטומט עם פחות מצבים מכיוון שיש לפצל את 2 המקרים (אם התחלנו עם a או עם b) ולכן זה כבר **3 מצבים** (1 לכל התחלה והמצב ההתחלתי), לאחר מכן הבדיקה עבור סיום המילה גוזלת גם עוד מצב 1 מכל פיצול ולכן זה יהיה **5 מצבים**.

<u>חלק 3</u>

 $L\!=\!\left[\sum,Q,q_{\scriptscriptstyle 0},F,\delta
ight]$ נגדיר את החמישייה של

 $L_{\!\scriptscriptstyle \parallel}$ כעת נגדיר את החמישייה של

$$\Sigma' = \Sigma$$

$$Q' = Q \cup \{q_0, q_F\}$$

$$q_0 = q_0$$

$$F' = q_F$$

כעת נשאר רק להגדיר את פונקציית המעברים,

נתחיל בכך שמהמצב ההתחלתי החדש נעבור למצב ההתחלתי הישן בעת קבלת a ואם נקבל אות שונה מa נעבור למצב בור

$$\delta'(q_0', a) = \{q_0\}$$
$$\delta'(q_0', \sigma \in \Sigma \setminus \{a\}) = \emptyset$$

כעת נגדיר את המעברים הרגילים מהפונקציה הקודמת

$$\delta'(q \in Q \setminus \{F\}, \sigma \in \Sigma) = \delta(q, \sigma)$$

כעת נטפל במצבים בהם אנו נמצאים במצב המקבל המקורי – אם נקבל a נעבור גם לפי הפונקציה המקורית וגם נעבור למצב המקבל החדש.

$$\delta'(q \in F, \sigma \in a) = \delta(q, a) \cup q_F$$

אם קיבלנו אות שהיא לא a נמשיך רק באוטומט הישן

$$\delta'(q \in F, \sigma \in \Sigma \setminus \{a\}) = \delta(q, a)$$

כעת נשאר רק לטפל במקרה בו קיבלנו אות לאחר שאנו במצב המקבל החדש – דבר שיוביל אותנו למצב בור

$$\delta'(q_F, \sigma \in \Sigma) = \emptyset$$

משל

 $ig(w_1\in L\land w_2\in Lig)\capig(w_1\circ w_2\in Lig)$ כך, כך את השפה הגולרית נרכיב את השפה השפה לעון כי Splitig(Lig)

כעת נוכיח כי $w_1 \in L \land w_2 \in L$ - נתון כי בתון כי - $(w_1 \in L \land w_2 \in L)$ כעת נוכיח כי - נתון כי - נתון

כעת נוכיח כי שרשור של 2 שפות ביתה כי שרשור של 2 שפות - $\left(w_1\circ w_2\in L\right)$ כעת נוכיח כי $\left(w_1\circ w_2\in L\right)$ - נתון כי רגולריות (הוכחנו קודם כי הם שפות רגולריות) היא גם שפה רגולריות

– כעת החיתוך של 2 השפות הרגולרית ($\left(w_1\circ w_2\in L\right)$ ו ו ווער העולרית שפה הרגולרית שפה הרגולרית ($\left(w_1\circ w_2\in L\right)$ הוכחנו זאת בכיתה.

<u>חלק רביעי</u>

(4

 $ig\{q_0,q_1,q_3ig\}$ המצב ההתחלתי שלנו מכיל מעבר אפסילון ולכן המצב ההתחלתי יהיה (1

אם נקבל a במצב ההתחלתי

$$\deltaig(q_0,aig)\!=\!ig\{q_1,q_2,q_3ig\}$$
 לכן נגיע למצב $\deltaig(q_1,aig)\!=\!arnothing$ $\deltaig(q_3,aig)\!=\!arnothing$

אם נקבל b במצב ההתחלתי אין משם מעבר מוגדר ולכן נגיע למצב בור.

$$\deltaig(q_0,big)\!=\!arnothing$$
 $\{q_1,q_3\}$ לכן נגיע למצב $\deltaig(q_1,big)\!=\!ig\{q_1,q_3ig\}$ $\deltaig(q_3,big)\!=\!arnothing$

$\{q_1, q_2, q_3\}$ (2.1

כעת מהמצב של קבוצת המצבים נוכל $\left\{q_1,q_2,q_3
ight\}$ אם נקבל אחד מהמצב של קבוצת מהמצב או ל

$$\deltaig(q_{_{\!1}},aig)$$
 $=$ \varnothing לכן האיחוד שלהם יהיה גם $\deltaig(q_{_{\!2}},aig)$ $=$ $\deltaig(q_{_{\!3}},aig)$

אם נקבל אחד מהמצבים נוכל להגיע b $\{q_1,q_2,q_3\}$ בכל המצבים נוכל להגיע אם נקבל מהמצב של קבוצת המצבים

$$\deltaig(q_1,big)=ig\{q_3,q_1ig\}$$
 לכן האיחוד שלהם יהיה $\deltaig(q_2,big)=ig\{q_3,q_1ig\}$ $\deltaig(q_3,big)=ig\{q_3,q_1ig\}$

 ${igl(q_1,q_3igr)}$ כעת נבדוק את המעברים עבור קבוצת המצבים (2.2

a אם נקבל

$$arnothing$$
 לכן נעבור למצב $\deltaig(q_{\scriptscriptstyle 1},aig) = arnothing$ $\deltaig(q_{\scriptscriptstyle 3},aig) = arnothing$

b אם נקבל

$$\left\{q_{\!\scriptscriptstyle 1},q_{\!\scriptscriptstyle 3}
ight\}$$
 לכן נעבור למצב $\delta\left(q_{\!\scriptscriptstyle 1},b
ight)=\left\{q_{\!\scriptscriptstyle 1},q_{\!\scriptscriptstyle 3}
ight\}$ לכן $\delta\left(q_{\!\scriptscriptstyle 3},b
ight)=\left\{q_{\!\scriptscriptstyle 1},q_{\!\scriptscriptstyle 3}
ight\}$

. כעת כל מצב שהוא קבוצת מצבים מהאוטומט המקורי שמכיל מצב מקבל הוא גם מצב מקבל

<u>חלק חמישי</u>

$$L = \left\{ 0^i 1 0^i \mid i \ge 0 \right\}$$

נניח בשלילה שL רגולרית. יהיה n הקבוע שקיומו מובטח מלמת הניפוח.

 $1 \le |y|$, $|xy| \le n$ כך ש: w = xyz ויהי פירוק המילה $|w| \ge n$, $w \in L$, $w = 0^n 10^n$ נבחר

$$x=0^s\mid s\geq 0$$

$$y=0^t\mid t\geq 1$$
 ז"א
$$z=0^{n-(s+t)}10^n\mid s+t\leq n$$

כאשר $w^2 = 0^s 0^{2t} 0^{n-(s+t)} 10^n = 0^{n+t} 10^n$ - i=1 כאשר

. נבחר $xy^iz \notin L$ ובכך להגיע לסתירה. $xy^2z \in L$ ובכך להגיע לסתירה נבחר i=2

. כאשר $u^2 = 0^s 0^{2t} 0^{n-(s+t)} 10^n = 0^{n+t} 10^n$ - i=2 כאשר