Report: Multimodal Regression Model

Introduction

This report outlines the implementation for predicting a target variable using multimodal data, including tabular, textual, and image data. The task is divided into two steps:

- 1. Optimization using tabular data only
- 2. Multimodal learning with text and image integration

Step 1: Optimization with Tabular Data

Objective

The goal for this step was to develop a regression model that predicts the target variable using only tabular data. Model performance is evaluated using **Mean Absolute Error (MAE)** and the **R2 score**.

Implementation

- 1. Tabular Data Preprocessing:
 - The TabularPreprocessor class performs essential preprocessing operations:
 - Missing Value Imputation: median for numerical data, constant for categorical.
 - Categorical Encoding: Applies LabelEncoder for categorical features
 - Feature Scaling: Standardizes numerical features using StandardScaler.
 - Target Transformation: Log transformation or normalization is optionally applied to the target.

2. Model and Pipeline:

• A GradientBoostingRegressor model was chosen with standard parameters (e.g., n_estimators=100, max_depth=5) for optimizing target prediction.

- The Step1Pipeline class integrates:
 - Tabular data preprocessing.
 - Dataset splitting for train/test sets.
 - Model training and evaluation.

Results

Following training, the tabular model achieved the following performance metrics:

• Train MAE: 6130.85

• Test MAE: 6525.80

• Train R2 Score: 0.8038

• Test R2 Score: 0.6971

Step 2: Multimodal Learning with Text and Images

Objective

This step extended the model to incorporate textual and visual data alongside tabular data. The description column and corresponding images were used to enhance target prediction through multimodal embeddings.

Implementation

1. Multimodal Preprocessing:

- The MultimodalPreprocessor class combines TabularPreprocessor functionality with text and image preprocessing:
 - Text Data: Tokenization and embedding generation for textual data using CLIP.
 - Image Data: Each image is resized to 224 × 224, converted to a tensor, and normalized.

2. Multimodal Dataset and Model:

- MultimodalDataset: This dataset class prepares each sample with tabular, text, and image data for model input.
- MultimodalModel: The model structure includes:
 - A fully connected network to process tabular data.

- CLIP to generate embeddings for both text and image data, with projection layers to align the embeddings in a common latent space.
- A fusion network that concatenates tabular, textual, and image embeddings to predict the target.

3. Pipeline and Training:

- The Step2Pipeline defines the multimodal training process:
 - Tabular, text, and image data are combined and split into train/test sets
 - The CLIP model (using the ViT-B-32 architecture) generates embeddings for text and image data.
 - Training is conducted using MSE loss and the Adam optimizer, with the best model saved during validation.

Results

During multimodal training, the following performance metrics were recorded:

• Training Loss: 0.4017

• Validation Loss: 0.1155

• Validation MAE: 9411.12

• Validation RMSE: 44776.07

Conclusion

This implementation effectively addresses a multimodal regression challenge:

- Step 1 optimized the model with tabular data alone, achieving reasonable MAE and R2 scores.
- Step 2 incorporated text and image data, utilizing CLIP for multimodal embeddings and showing improved feature integration, though the MAE and RMSE scores suggest room for fine-tuning and additional adjustments.

The project is completed with a ${\tt Dockerfile}$, enabling the end-to-end pipeline to run in a reproducible environment.