### **REMARKS**

Claims 112-141, 151-168, 185-216 and 226-243 are currently pending in the application. The foregoing separate sheets marked as "Listing of Claims" show all the claims in the application, with an indication of the current status of each.

Applicant thanks Examiner for the indication in the Office Action dated 10/15/2004 that all claims in the application are allowed. Further to Examiner's comments in that Office Action, Applicant has hereby amended the specification by replacing the first paragraph of the specification with a replacement paragraph that recites that the parent application of the present application is now abandoned and is no longer copending.

Further, Applicant herewith submits a corrected Sequence Listing for the application in which the sequences on page 89 and the sequences on page 69 are listed as SEQ ID NOS: 15 and 16 and SEQ ID NOS: 17 and 18, respectively. In addition, the specification has been amended in order to replace the two paragraphs that contain the sequences, paragraph [0380] on page 89 and paragraph [0329] on page 69, with replacement paragraphs that contain the SEQ ID NOS. Applicant submits that these amendments to the specification do not introduce any new matter, and requests entry of the replacement paragraphs. Applicant notes that the original paragraph [0380] contained underlining in the text within the sequence (the first 23 nucleotides) to indicate the T7 promoter sequence. This underlining has been retained in order to remain true to the original text, and should not be mistaken for new text, even though the new SEQ ID NOS. are also underlined to show that they are being added.

In view of the foregoing, Applicant submits that the application is now in *prima facie* condition for allowance. Should the Examiner find the application to be other than in condition for allowance, the Examiner is requested to contact the undersigned at 703-787-9400 (fax: 703-787-7557; email: ruth@wcc-ip.com) to discuss any other changes deemed necessary in a telephonic or personal interview.

If an extension of time is required for this response to be considered as being timely filed, a conditional petition is hereby made for such extension of time. Please charge any deficiencies in fees and credit any overpayment of fees to Attorney's Deposit Account No. 50-2041.

Respectfully submitted,

Ruth E. Tyler-Cross Reg. No. 45,922

Whitham, Curtis & Christofferson, P.C. 11491 Sunset Hills Road, Suite 340 Reston, VA 20190 703-787-9400 703-787-7557 (fax)



### IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re patent application of Betenbaugh et al.

Serial number: 09/930,440

Group Art Unit: 1652

Attorney Docket Number: 03940077pa

Examiner: Rao

Filed: 2001-08-16

For: "ENGINEERING INTRACELLULAR SIALYLATION PATHWAYS"

SUBMISSION OF SUBSTITUTE SEQUENCE LISTING AND STATEMENT TO SUPPORT FILING IN ACCORDANCE WITH 37 C.F.R.§ 1.821-1.825

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

In response to an Office Action mailed 10/15/2004, we enclose herein a corrected substitute computer readable form (diskette) and a corrected substitute paper copy of the sequence listings for the above-identified patent application. Please replace the Sequence Listing of the application with this substitute Sequence Listing. Also enclosed is a verified statement that the content of the paper and computer readable copies are the same and include no new matter.

Respectfully submitted,

Ruth E. Tyler Cross

Registration No. 45,922

Whitham, Curtis & Christofferson 11491 Sunset Hills Road; Suite 340 Reston, VA 20190 703-787-9400



### IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re patent application of Betenbaugh et al.

Serial number: 09/930,440

Attorney Docket Number: 03940077pa

Filed: 2001-08-16

For: "ENGINEERING INTRACELLULAR SIALYLATION PATHWAYS"

# STATEMENT TO SUPPORT FILING AND SUBMISSION IN ACCORDANCE WITH 37 C.F.R.§§ 1.821-1.825

Assistant Commissioner for Patents PO Box 1450 Alexandria, VA 22313-1450 Mail Stop SEQUENCE

Dear Sir:

In connection with a Substitute Sequence Listing submitted concurrently herewith, the undersigned states that:

- 1. the submission, filed herewith in accordance with 37 C.F.R.§ 1.821 (g), does not include new matter;
- 2. the content of the attached paper copy and the attached computer readable copy of the Sequence Listing, submitted in accordance with 37 C.F.R.§ 1.821(c) and (e), respectively, are the same; and
- 3. all statements made herein of their own knowledge are true and that all statements made on information and belief are believed to be true; and further, that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that

such willful false statements may jeopardize the validity of the application or any patent resulting therefrom.

Respectfully submitted,

Ruth E. Tyler-Cross

Reg. No. 45,922

Date



## Sequence Listing.ST25.txt SEQUENCE LISTING

| TRAI                             | ADEMARKS.                                                     |             |     |
|----------------------------------|---------------------------------------------------------------|-------------|-----|
| <110>                            | Betenbaugh, Michael J.<br>Lawrence, Shawn J.<br>Lee, Yuan C.  |             |     |
|                                  | Coleman, Timothy A.                                           |             |     |
| <120>                            | Engineering Intracellular Sialylation Pathways                |             |     |
| <130>                            | 03940077pa                                                    |             |     |
| <140><br><141>                   | 09/930,440<br>2001-08-16                                      |             |     |
| <150><br><151>                   | us 60/122,582<br>1999-03-02                                   |             |     |
| <150><br><151>                   | us 60/169,624<br>1999-12-08                                   |             |     |
| <150><br><151>                   | us 60/227,579<br>2000-08-25                                   |             |     |
| <150><br><151>                   | us 09/516,793<br>2000-03-01                                   |             |     |
| <160>                            | 18                                                            |             |     |
| <170>                            | PatentIn version 3.2                                          |             |     |
| <210><br><211><br><212><br><213> | 1<br>1429<br>DNA<br>Homo sapiens                              |             |     |
| <400><br>atggcct                 | 1<br>cttcc caaagaagaa acttcagggt cttgtggctg caaccatcac g      | ccaatgact   | 60  |
| gagaato                          | tggag aaatcaactt ttcagtaatt ggtcagtatg tggattatct t           | gtgaaagaa : | 120 |
| cagggag                          | agtga agaacatttt tgtgaatggc acaacaggag aaggcctgtc c           | ctgagcgtc : | 180 |
| tcagago                          | gcgtc gccaggttgc agaggagtgg gtgacaaaag ggaaggacaa g           | ctggatcag 2 | 240 |
| gtgataa                          | aattc acgtaggagc actgagcttg aaggagtcac aggaactggc c           | caacatgca   | 300 |
| gcagaaa                          | aatag gagctgatgg catcgctgtc attgcaccgt tcttcctcaa g           | ccatggacc   | 360 |
| aaagata                          | tatcc tgattaattt cctaaaggaa gtggctgctg ccgccctgc c            | ctgccattt   | 420 |
| tattact                          | ctatc acattcctgc cttgacaggg gtaaagattc gtgctgagga g           | ttgttggat   | 480 |
| gggatte                          | tctgg ataagatccc caccttccaa gggctgaaat tcagtgatac a           | gatctctta   | 540 |
| gacttc                           | cgggc aatgtgttga tcagaatcgc cagcaacagt ttgctttcct t           | tttggggtg   | 600 |
| gatgag                           | gcaac tgttgagtgc tctggtgatg ggagcaactg gagcagtggg c           | agttttgta   | 660 |
| tccaga                           | agatt tatcaacttt gttgtcaaac taggttttgg agtgtcacag a           | ccaaagcca   | 720 |
| tcatga                           | actct ggtctctggg attccaatgg gcccaccccg gcttccactg c           | agaaagcct   | 780 |
| ccaggga                          | gagtt tactgatagt gctgaagcta aactgaagag cctggatttc c<br>Page 1 | tttctttca   | 840 |
|                                  |                                                               |             |     |

| ctgatttaaa ggatggaaac ttggaagctg gtagctagtg cctctctatc aaatcaggg | gt 900  |
|------------------------------------------------------------------|---------|
| ttgcaccttg agacataatc taccttaaat agtgcatttt tttctcaggg aattttaga | at 960  |
| gaacttgaat aaactctcct agcaaatgaa atctcacaat aagcattgag gtacctttt | ig 1020 |
| tgagccttaa aaagtcttat tttgtgaagg ggcaaaaact ctaggagtca caactctca | ag 1080 |
| tcattcattt cacagatttt tttgtggaga aatttctgtt tatatggatg aaatggaat | tc 1140 |
| aagaggaaaa ttgtaattga ttaattccat ctgtctttag gagctctcat tatctcggt | cc 1200 |
| tctggttcct aatcctattt taaagttgtc taattttaaa ccactataat atgtcttca | at 1260 |
| tttaataaat attcatttgg aatctaggaa aactctgagc tactgcattt aggcaggca | ac 1320 |
| tttaatacca aactgtaaca tgtctcaact gtatacaact caaaatacac cagctcatt | tt 1380 |
| ggctgctcag tctaactcta gaatggatgc ttttgaattc atttcgatg            | 1429    |

<210> 2

<211> 304

<212> PRT

<213> Homo sapiens

<400> 2

Met Ala Phe Pro Lys Lys Lys Leu Gln Gly Leu Val Ala Ala Thr Ile  $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ 

Thr Pro Met Thr Glu Asn Gly Glu Ile Asn Phe Ser Val Ile Gly Gln
20 25 30

Tyr Val Asp Tyr Leu Val Lys Glü Gln Gly Val Lys Asn Ile Phe Val 35 40 45

Asn Gly Thr Thr Gly Glu Gly Leu Ser Leu Ser Val Ser Glu Arg Arg 50 55 60

Gln Val Ala Glu Glu Trp Val Thr Lys Gly Lys Asp Lys Leu Asp Gln 65 70 75 80

Val Ile Ile His Val Gly Ala Leu Ser Leu Lys Glu Ser Gln Glu Leu 85 90 95

Ala Gln His Ala Ala Glu Ile Gly Ala Asp Gly Ile Ala Val Ile Ala  $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$ 

Pro Phe Phe Leu Lys Pro Trp Thr Lys Asp Ile Leu Ile Asn Phe Leu 115 120 125

Lys Glu Val Ala Ala Ala Ala Pro Ala Leu Pro Phe Tyr Tyr His 130 135 140 Page 2

| Ile Pro Ala Leu Thr Gly Val Lys Ile Arg Ala Glu Glu Leu Leu Asp<br>145 150 155 160 |    |
|------------------------------------------------------------------------------------|----|
| Gly Ile Leu Asp Lys Ile Pro Thr Phe Gln Gly Leu Lys Phe Ser Asp<br>165 170 175     |    |
| Thr Asp Leu Leu Asp Phe Gly Gln Cys Val Asp Gln Asn Arg Gln Gln<br>180 185 190     |    |
| Gln Phe Ala Phe Leu Phe Gly Val Asp Glu Gln Leu Leu Ser Ala Leu<br>195 200 205     |    |
| Val Met Gly Ala Thr Gly Ala Val Gly Ser Phe Val Ser Arg Asp Leu<br>210 215 220     |    |
| Ser Thr Leu Leu Ser Asn Val Leu Glu Cys His Arg Pro Lys Pro Ser<br>225 230 235 240 |    |
| Leu Trp Ser Leu Gly Phe Gln Trp Ala His Pro Gly Phe His Cys Arg<br>245 250 255     |    |
| Lys Pro Pro Gly Ser Leu Leu Ile Val Leu Lys Leu Asn Arg Ala Trp<br>260 265 270     |    |
| Ile Ser Phe Leu Ser Leu Ile Arg Met Glu Thr Trp Lys Leu Val Ala<br>275 280 285     |    |
| Ser Ala Ser Leu Ser Asn Gln Gly Phe Ala Pro Leu Arg His Asn Leu<br>290 295 300     |    |
| <210> 3<br><211> 1305<br><212> DNA<br><213> Homo sapiens                           |    |
| <400> 3 atggactcgg tggagaaggg ggccgccacc tccgtctcca acccgcgggg gcgaccgtcc (        | 60 |
|                                                                                    | 20 |
|                                                                                    | 80 |
| aagaacatta agcacctggc gggggtcccg ctcattggct gggtcctgcg tgcggccctg 24               | 40 |
| gattcagggg ccttccagag tgtatgggtt tcgacagacc atgatgaaat tgagaatgtg 30               | 00 |
| gccaaacaat ttggtgcaca agttcatcga agaagttctg aagtttcaaa agacagctct 30               | 60 |
| acctcactag atgccatcat agaatttctt aattatyata atgaggktga cattgtagga 42               | 20 |
| aatattcaag ctacttctyc atgtttacat cctactgatc ttcaaaaagt tgcagaaatg 48<br>Page 3     | 80 |

| attcgagaa                                   | g aaggatatga | ttctgktttc | tctgttgtga | gacgccatca | gtttcgatgg | 540  |
|---------------------------------------------|--------------|------------|------------|------------|------------|------|
| agtgaaatt                                   | agaaaggagt   | tcgtgaagtg | accgaacctc | tgaatttaaa | tccagctaaa | 600  |
| cggcctcgt                                   | gacaagactg   | ggatggagaa | ttatatgaaa | atggctcatt | ttattttgct | 660  |
| aaaagacat                                   | tgatagagat   | gggttacttg | cagggtggaa | aaatggcata | ctacgaaatg | 720  |
| cgagctgaa                                   | atagtgtgga   | tatagatgtg | gatattgatt | ggcctattgc | agagcaaaga | 780  |
| gtattaaga                                   | atggctattt   | tggcaaagag | aagcttaagg | aaataaaact | tttggtttgc | 840  |
| aatattgat                                   | g gatgtctcac | caatggccac | atttatgtat | caggagacca | aaaagaaata | 900  |
| atatcttat                                   | g atgtaaaaga | tgctattggg | ataagtttat | taaagaaaag | tggtattgag | 960  |
| gtgaggcta                                   | a tctcagaaag | ggcctgttca | aagcagacgc | tgtcttcttt | aaaactggat | 1020 |
| tgcaaaatg                                   | g aagtcagtgt | atcagacaag | ctagcagttg | tagatgaatg | gagaaaagaa | 1080 |
| atgggcctg                                   | t gctggaaaga | agtggcatat | cttggaaatg | aagtgtctga | tgaagagtgc | 1140 |
| ttgaagaga                                   | g tgggcctaag | tggcgctcct | gctgatgcct | gttcctacgc | ccagaaggct | 1200 |
| gttggatac                                   | a tttgcaaatg | taatggtggc | cgtggtgcca | tccgagaatt | tgcagagcac | 1260 |
| atttgccta                                   | taatggaaaa   | agttaataat | tcatgccaaa | aatag      |            | 1305 |
| <210> 4<br><211> 43<br><212> PR<br><213> Ho | -            |            |            |            |            |      |

```
<220>
       misc_feature (133)..(133)
<221>
<222>
<223>
       Xaa can be any naturally occurring amino acid
<220>
<221>
       misc_feature
<222> (136)..(136)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
       misc_feature
<222>
<223>
       (147)...(147)
       Xaa can be any naturally occurring amino acid
<220>
<221>
       misc_feature
<222>
        (169)..(169)
<223>
       Xaa can be any naturally occurring amino acid
<400>
```

Met Asp Ser Val Glu Lys Gly Ala Ala Thr Ser Val Ser Asn Pro Arg
1 10 15

Gly Arg Pro Ser Arg Gly Arg Pro Pro Lys Leu Gln Arg Asn Ser Arg Page 4

Gly Gly Gln Gly Arg Gly Val Glu Lys Pro Pro His Leu Ala Ala Leu 35 40 45 His Leu Ala Gly Val Pro Leu Ile Gly Trp Val Leu Arg Ala Ala Leu 65 70 75 80 Asp Ser Gly Ala Phe Gln Ser Val Trp Val Ser Thr Asp His Asp Glu 85 90 95 Ile Glu Asn Val Ala Lys Gln Phe Gly Ala Gln Val His Arg Arg Ser 100 105 110 Ser Glu Val Ser Lys Asp Ser Ser Thr Ser Leu Asp Ala Ile Ile Glu 115 120 125 Leu Asn Tyr Xaa Asn Glu Xaa Asp Ile Val Gly Asn Ile Gln Ala 130 140 Thr Ser Xaa Cys Leu His Pro Thr Asp Leu Gln Lys Val Ala Glu Met 145 150 Ile Arg Glu Glu Gly Tyr Asp Ser Xaa Phe Ser Val Val Arg Arg His 165 170 175 Gln Phe Arg Trp Ser Glu Ile Gln Lys Gly Val Arg Glu Val Thr Glu 180 185 190 Pro Leu Asn Leu Asn Pro Ala Lys Arg Pro Arg Arg Gln Asp Trp Asp 195 200 205 Gly Glu Leu Tyr Glu Asn Gly Ser Phe Tyr Phe Ala Lys Arg His Leu 210 215 220 Ile Glu Met Gly Tyr Leu Gln Gly Gly Lys Met Ala Tyr Tyr Glu Met 225 230 235 240 Arg Ala Glu His Ser Val Asp Ile Asp Val Asp Ile Asp Trp Pro Ile 245 250 255 Ala Glu Gln Arg Val Leu Arg Tyr Gly Tyr Phe Gly Lys Glu Lys Leu 260 265 270

|                          | Sequence Listing.ST25.txt |                          |            |            |            |            |            |            |                   |            |            |            |            |            |            |     |
|--------------------------|---------------------------|--------------------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|-----|
| Lys                      | Glu                       | 11e<br>275               | Lys        | Leu        | Leu        | Val        | Cys<br>280 | Asn        | Ile               | Asp        | Gly        | Cys<br>285 | Leu        | Thr        | Asn        |     |
| Gly                      | ніs<br>290                | Ile                      | Tyr        | ٧a٦        | Ser        | G]y<br>295 | Asp        | Gln        | Lys               | Glu        | Ile<br>300 | Ile        | Ser        | туг        | Asp        |     |
| va1<br>305               | Lys                       | Asp                      | Ala        | Ile        | Gly<br>310 | Ile        | Ser        | Leu        | Leu               | Lys<br>315 | Lys        | Ser        | Gly        | Ile        | Glu<br>320 |     |
| val                      | Arg                       | Leu                      | Ile        | Ser<br>325 | Glu        | Arg        | Ala        | Cys        | Ser<br>330        | Lys        | Gln        | Thr        | Leu        | Ser<br>335 | Ser        |     |
| Leu                      | Lys                       | Leu                      | Asp<br>340 | Cys        | Lys        | Met        | Glu        | va1<br>345 | Ser               | ٧a٦        | Ser        | Asp        | Lys<br>350 | Leu        | Ala        |     |
| val                      | val                       | Asp<br>355               | Glu        | Trp        | Arg        | Lys        | G]u<br>360 | Met        | Gly               | Leu        | Cys        | Trp<br>365 | Lys        | Glu        | val        |     |
| Ala                      | Tyr<br>370                | Leu                      | Gly        | Asn        | Glu        | Va7<br>375 | Ser        | Asp        | Glu               | Glu        | Cys<br>380 | Leu        | Lys        | Arg        | Val        |     |
| Gly<br>385               | Leu                       | Ser                      | Gly        | Ala        | Pro<br>390 | Аlа        | Asp        | Ala        | Cys               | Ser<br>395 | Tyr        | Ala        | Gln        | Lys        | Ala<br>400 |     |
| val                      | Gly                       | Tyr                      | Ile        | Cys<br>405 | Lys        | Cys        | Asn        | Gly        | Gly<br>410        | Arg        | Gly        | Ala        | Ile        | Arg<br>415 | Glu        |     |
| Phe                      | Ala                       | Glu                      | ніs<br>420 | Ile        | Cys        | Leu        | Leu        | Met<br>425 | Glu               | Lys        | val        | Asn        | Asn<br>430 | Ser        | Cys        |     |
| Gln                      | Lys                       |                          |            |            |            |            |            |            |                   |            |            |            |            |            |            |     |
| <21<br><21<br><21<br><21 | 1><br>2> I                | 5<br>1080<br>DNA<br>Homo | sap        | iens       |            |            |            |            |                   |            |            |            |            |            |            |     |
| <40<br>ata               |                           | 5<br>taa i               | aacte      | ggag       | ct a       | tato       | ccaa       | ם כמי      | rtaa              | ntaa       | מכמי       | ggca.      | aca        | ררכם.      | tgcttc     | 60  |
|                          |                           |                          |            |            |            |            |            |            |                   |            |            |            |            |            | atgatc     |     |
|                          |                           |                          |            |            |            |            |            |            |                   |            |            |            |            |            | gaattc     |     |
| aag                      | ttta                      | atc                      | ggaa       | agcc       | tt g       | gaga       | ggcc       | a ta       | cacc <sup>.</sup> | tcga       | agc        | attc       | ctg        | gggg       | aagacg     | 240 |
| tac                      | gggg                      | agc i                    | acaa       | acga       | ca t       | ctgg       | agtt       | c ag       | ccat              | gacc       | agt        | acag       | gga        | gctg       | cagagg     | 300 |
| tac                      | gccg                      | agg :                    | aggt       | tggg       | at c       | ttct       | tcac       | t gc       | ctct              | ggca       | tgg        | atga       | gat        | ggca       | gttgaa     | 360 |
| ttc                      | ctgc                      | atg                      | aact       | gaat       | gt t       | ccat       | tttt       | c aa       |                   | ggat       |            | gaga       | cac        | taat       | aatttt     | 420 |

•

| ccttatctgg | aaaagacagc | caaaaaaggt | cgcccaatgg | tgatctccag | tgggatgcag | 480  |
|------------|------------|------------|------------|------------|------------|------|
| tcaatggaca | ccatgaagca | agtttatcag | atcgtgaagc | ccctcaaccc | caacttctgc | 540  |
| ttcttgcagt | gtaccagcgc | atacccgctc | cagcctgagg | acgtcaacct | gcgggtcatc | 600  |
| tcggaatatc | agaagctctt | tcctgacatt | cccatagggt | attctgggca | tgaaacaggc | 660  |
| atagcgatat | ctgtggccgc | agtggctctg | ggggccaagg | tgttggaacg | tcacataact | 720  |
| ttggacaaga | cctggaaggg | gagtgaccac | tcggcctcgc | tggagcctgg | agaactggcc | 780  |
| gagctggtgc | ggtcagtgcg | tcttgtggag | cgtgccctgg | gctccccaac | caagcagctg | 840  |
| ctgccctgtg | agatggcctg | caatgagaag | ctgggcaagt | ctgtggtggc | caaagtgaaa | 900  |
| attccggaag | gcaccattct | aacaatggac | atgctcaccg | tgaaggtggg | tgagcccaaa | 960  |
| gcctatcctc | ctgaagacat | ctttaatcta | gtgggcaaga | aggtcctggt | cactgttgaa | 1020 |
| gaggatgaca | ccatcatgga | agaattggta | gataatcatg | gcaaaaaaat | caagtcttaa | 1080 |

<sup>&</sup>lt;210> 6

<400> 6

Met Pro Leu Glu Leu Glu Leu Cys Pro Gly Arg Trp Val Gly Gln 10 15

His Pro Cys Phe Ile Ile Ala Glu Ile Gly Gln Asn His Gln Gly Asp 20 25 30

Leu Asp Val Ala Lys Arg Met Ile Arg Met Ala Lys Glu Cys Gly Ala 35 40 45

Asp Cys Ala Lys Phe Gln Lys Ser Glu Leu Glu Phe Lys Phe Asn Arg 50 55 60

Lys Ala Leu Glu Arg Pro Tyr Thr Ser Lys His Ser Trp Gly Lys Thr 65 70 75 80

Tyr Gly Glu His Lys Arg His Leu Glu Phe Ser His Asp Gln Tyr Arg 85 90 95

Glu Leu Gln Arg Tyr Ala Glu Glu Val Gly Ile Phe Phe Thr Ala Ser 100 105 110

Gly Met Asp Glu Met Ala Val Glu Phe Leu His Glu Leu Asn Val Pro 115 120 125

<sup>&</sup>lt;211> 359

<sup>&</sup>lt;212> PRT

<sup>&</sup>lt;213> Homo sapiens

Sequence Listing.ST25.txt
Phe Phe Lys Val Gly Ser Gly Asp Thr Asn Asn Phe Pro Tyr Leu Glu
130 135 140 Lys Thr Ala Lys Lys Gly Arg Pro Met Val Ile Ser Ser Gly Met Gln 145 150 155 160 Ser Met Asp Thr Met Lys Gln Val Tyr Gln Ile Val Lys Pro Leu Asn 165 170 175 Pro Asn Phe Cys Phe Leu Gln Cys Thr Ser Ala Tyr Pro Leu Gln Pro 180 185 190 Glu Asp Val Asn Leu Arg Val Ile Ser Glu Tyr Gln Lys Leu Phe Pro 195 200 205 Asp Ile Pro Ile Gly Tyr Ser Gly His Glu Thr Gly Ile Ala Ile Ser 210 215 220 Val Ala Val Ala Leu Gly Ala Lys Val Leu Glu Arg His Ile Thr 225 230 235 240 240 Leu Asp Lys Thr Trp Lys Gly Ser Asp His Ser Ala Ser Leu Glu Pro 245 250 255 Gly Glu Leu Ala Glu Leu Val Arg Ser Val Arg Leu Val Glu Arg Ala 260 265 270 Leu Gly Ser Pro Thr Lys Gln Leu Leu Pro Cys Glu Met Ala Cys Asn 275 280 285 Glu Lys Leu Gly Lys Ser Val Val Ala Lys Val Lys Ile Pro Glu Gly 290 295 300 Thr Ile Leu Thr Met Asp Met Leu Thr Val Lys Val Gly Glu Pro Lys 305 310 315 320 Ala Tyr Pro Pro Glu Asp Ile Phe Asn Leu Val Gly Lys Lys Val Leu 325 330 335 Val Thr Val Glu Glu Asp Asp Thr Ile Met Glu Glu Leu Val Asp Asn 340 350 His Gly Lys Lys Ile Lys Ser 355

<210> 7 <211> 1059 <212> DNA

### <213> Escherichia coli

| <400> 7    |            |            |            |            |            |      |
|------------|------------|------------|------------|------------|------------|------|
|            | tatatatcgt | tgctgaaatt | ggttgcaacc | ataatggtag | tgttgatatt | 60   |
| gcaagsagaa | atgatattaa | aagccaaaga | ggccggtgtt | aatgcagtaa | aattccaaac | 120  |
| atttaaagct | gataaattaa | tttcagctat | tgcacctaag | gcagagtatc | aaataaaaaa | 180  |
| cacaggagaa | ttagaatctc | agttagaaat | gacaaaaaag | cttgaaatga | agtatgacga | 240  |
| ttatctccat | ctaatggaat | atgcagtcag | tttaaattta | gatgttttt  | ctaccccttt | 300  |
| tgacgaagac | tctattgatt | ttttagcatc | tttgaaacaa | aaaatatgga | aaatcccttc | 360  |
| aggtgagtta | ttgaatttac | cgtatcttga | aaaaatagcc | aagcttccga | tccctgataa | 420  |
| gaaaataatc | atatcaacag | gaatggctac | tattgatgag | ataaaacagt | ctgtttctat | 480  |
| ttttataaat | aataaagttc | cggttggtaa | tattacaata | ttacattgca | atactgaata | 540  |
| tccaacgccc | tttgaggatg | taaaccttaa | tgctattaat | gatttgaaaa | aacacttccc | 600  |
| taagaataac | ataggcttct | ctgatcattc | tagcgggttt | tatgcagcta | ttgcggcggt | 660  |
| gccttatgga | ataactttta | ttgaaaaaca | ttttacttta | gataaatcta | tgtctggccc | 720  |
| agatcatttg | gcctcaatag | aacctgatga | actgaaacat | ctttgtattg | gggtcaggtg | 780  |
| tgttgaaaaa | tctttaggtt | caaatagtaa | agtggttaca | gcttcagaaa | ggaagaataa | 840  |
| aatcgtagca | agaaagtcta | ttatagctaa | acagagataa | aaaaaggtga | ggtttttca  | 900  |
| gaaaaaaata | taacaacaaa | aagacctggt | aatggtatca | gtccgatgga | gtggtataat | 960  |
| ttattgggta | aaattgcaga | gcaagacttt | attccagatg | aattaataat | tcatagcgaa | 1020 |
| ttcaaaaatc | agggggaata | atgagaacaa | aaattattg  |            |            | 1059 |

<sup>&</sup>lt;210> 8 <211> 346 <212> PRT

Met Ser Asn Ile Tyr Ile Val Ala Glu Ile Gly Cys Asn His Asn Gly  $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ 

Ser Val Asp Ile Ala Arg Glu Met Ile Leu Lys Ala Lys Glu Ala Gly 20 25 30

Val Asn Ala Val Lys Phe Gln Thr Phe Lys Ala Asp Lys Leu Ile Ser 35 40 45

Ala Ile Ala Pro Lys Ala Glu Tyr Gln Ile Lys Asn Thr Gly Glu Leu 50 60

<sup>&</sup>lt;213> Escherichia coli

<sup>&</sup>lt;400> 8

Sequence Listing.ST25.txt
Glu Ser Gln Leu Glu Met Thr Lys Lys Leu Glu Met Lys Tyr Asp Asp
65 70 75 80 Tyr Leu His Leu Met Glu Tyr Ala Val Ser Leu Asn Leu Asp Val Phe 85 90 95 Ser Thr Pro Phe Asp Glu Asp Ser Ile Asp Phe Leu Ala Ser Leu Lys  $100 \hspace{1cm} 105 \hspace{1cm} 110$ Gln Lys Ile Trp Lys Ile Pro Ser Gly Glu Leu Leu Asn Leu Pro Tyr 115 120 125 Leu Glu Lys Ile Ala Lys Leu Pro Ile Pro Asp Lys Lys Ile Ile 130 135 140 Ser Thr Gly Met Ala Thr Ile Asp Glu Ile Lys Gln Ser Val Ser Ile 145 150 155 160 Phe Ile Asn Asn Lys Val Pro Val Gly Asn Ile Thr Ile Leu His Cys 165 170 175 Asn Thr Glu Tyr Pro Thr Pro Phe Glu Asp Val Asn Leu Asn Ala Ile 180 185 190 Asn Asp Leu Lys Lys His Phe Pro Lys Asn Asn Ile Gly Phe Ser Asp 195 200 205 His Ser Ser Gly Phe Tyr Ala Ala Ile Ala Ala Val Pro Tyr Gly Ile 210 215 220 Thr Phe Ile Glu Lys His Phe Thr Leu Asp Lys Ser Met Ser Gly Pro 225 230 235 240 Asp His Leu Ala Ser Ile Glu Pro Asp Glu Leu Lys His Leu Cys Ile 245 250 255 Gly Val Arg Cys Val Glu Lys Ser Leu Gly Ser Asn Ser Lys Val Val 260 265 270 Thr Ala Ser Glu Arg Lys Asn Lys Ile Val Ala Arg Lys Ser Ile Ile 275 280 285 Ala Lys Thr Glu Ile Lys Lys Gly Glu Val Phe Ser Glu Lys Asn Ile 290 295 300 Thr Thr Lys Arg Pro Gly Asn Gly Ile Ser Pro Met Glu Trp Tyr Asn 305 310 315 320

Leu Leu Gly Lys Ile Ala Glu Gln Asp Phe Ile Pro Asp Glu Leu Ile 325 330 335

Ile His Ser Glu Phe Lys Asn Gln Gly Glu 340 345

```
<210>
       9
       20
<211>
<212>
       DNA
       Artificial
<213>
<220>
<223>
       synthetic oligonucleotide primer: T/C, T, I,
       C,A,C/T,T,G,G,C,A,C/T,A/T/C,T,I,G,T,I,G,A
<220>
<221>
<222>
       misc_feature
      (1)..(1)
<223>
      n = t or c
```

<220> <221> misc\_feature (3)..(3)n = i <222>

<223>

<220> <221> misc\_feature <222> (6)..(6)<223> n = c or t

<220>

<221> misc\_feature <222> (12)..(12)<223> n = c or t

<220> <221> misc\_feature <222> (13)..(13)<223> n = a, c or t

<220> <221> misc\_feature <222> <222> (15)..(15) <223> n = i

<220> <221> misc\_feature <222> (18)..(18) <223> n = i<400> 9

ntncantggc anntngtnga

<210> 10 <211> 20 <212> DNA <213> Artificial

```
Sequence Listing.ST25.txt
<220>
<223>
       synthetic oligonucleotide primer
       G,A,G/A,A/T,T,A/C/T,G,A,C/T,I,I,I,C,C,I,G,G/C,I,C,A
<220>
<221>
       misc_feature
<222>
       (3)..(3)
<223> n = g or a
<220>
<221> misc_feature
      (4)..(4)
n = a or t
<222>
<223>
<220>
<221>
      misc_feature
<222>
       (6)..(6)
<223> n = a,c or t
<220>
<221> misc_feature
<222> (9)..(9)
<223> n = c or t
<220>
<221>
       misc_feature
<222>
       (10)..(10)
<223> n = i
<220>
<221> misc_feature
<222> (11)..(11)
<223> n = i
<220>
<221> misc_feature
<222> (12)..(12)
<223> n = i
<220>
<221> misc_feature
<222>
       (15)..(15)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (17)..(17)
<223> n = g or c
<220>
<221> misc_feature
<222>
       (18)..(18)
<223> n = i
<400> 10
ganntngann nnccngnnca
<210>
        11
<211>
       20
```

<212> DNA

<213> Artificial

Page 12

```
<220>
<223>
        synthetic oligonucleotide primer
T,G,I,C/G,C,I,G,G,I,I,I,G/A,T,C,T/G/A,A,T/A,C/T,T,C
<220>
<221>
        misc_feature
        (3)..(3)
n = i
<222>
<223>
<220>
<221> misc_feature
<222>
        (4)...(4)
<223> n = c or g
<220>
<221> misc_feature
<222>
<223>
       (6)..(6)
n = i
<220>
<221>
<222>
        misc_feature
        (9)..(9)
<223>
        n = i
<220>
<221> misc_feature <222> (10)..(10)
<222> (10)..(10)
<223> n = i
<220>
<221> misc_feature
<222> (11)..(11)
<223> n = i
<222>
<220>
<221>
        misc_feature
(12)..(12)
<222>
<223> n = g or a
<220>
<221>
        misc_feature
        (15)..(25)
<222>
<223> n = t, g or a
<220>
<221>
        misc_feature
<222>
        (17)..(17)
<223> n = t or a
<220>
<221> misc_featu
<222> (18)..(18)
<223> n = c or t
        misc_feature
<400> 11
tgnncnggnn nntcnanntc
```

<210> 12 <211> 20 <212> DNA

```
Sequence Listing.ST25.txt
<213> Artificial
<220>
<223>
         synthetic oligonucleotide primer A, C/A/G, C/T,
         \mathsf{T},\mathsf{C},\mathsf{G}/\mathsf{A},\mathsf{T},\mathsf{C},\mathsf{I},\mathsf{C},\mathsf{C},\mathsf{I},\mathsf{C},\mathsf{C},\mathsf{I},\mathsf{I},\mathsf{I},\mathsf{G}/\mathsf{A},\mathsf{T},\mathsf{G}
<220>
<221>
         misc_feature
<222>
         (2)..(2)
<223>
         n = c, a or g
<220>
<221>
        misc_feature
<222>
         (3)..(3)
<223>
        n = c or t
<220>
<221>
<222>
         misc_feature
          (6)..(6)
<223>
         n = g \text{ or } a
<220>
<221>
         misc_feature
        (9)...(9)
n = i
<222>
<223>
<220>
<221> misc_feature
<222> (12)..(12)
<223> n = i
<220>
<221>
         misc_feature
<222>
<223>
         (15)..(15)
         n = i
<220>
<221>
         misc_feature
<222>
         (16)..(16)
<223>
        n = i
<220>
<221>
<222>
         misc_feature
         (17)...(17)
n = i
<223>
<220>
<221>
         misc_feature
<222>
         (18)..(18)
<223> n = g or a
<400> 12
anntcntcnc cnccnnnntg
                                                                                                  20
<210> 13
<211>
         54
<212>
         DNA
<213> Artificial
<220>
<223> synthetic oligonucleotide primer
```

Page 14

```
<400> 13
                                                                       54
tgtaatacga ctcactatag ggcggatccg ccatcatgcc gctggagctg gagc
<210>
      14
      34
<211>
<212> DNA
<213> Artificial
<220>
     synthetic oligonucleotide primer
<223>
<400> 14
gtacggtacc ttattaagac ttgattttt tgcc
                                                                       34
<210>
      15
<211>
      54
<212>
      DNA
<213>
      Artificial
<220>
      synthetic oligonucleotide primer
<223>
tgtaatacga ctcactatag ggcggatccg ccatcatgga ctcggtggag aagg
                                                                       54
<210>
      16
<211>
      44
<212> DNA
<213> Artificial
<220>
<223>
      synthetic oligonucleotide primer
<400> 16
gtacggtacc ttactatttt tggcatgaat tattaacttt ttcc
                                                                       44
<210> 17
<211> 14
<212>
      PRT
<213> Escherichia coli
<400>
Ile Ile Ala Ile Ile Pro Ala Arg Ser Gly Ser Lys Gly Leu
<210>
      18
      14
<211>
<212>
      PRT
<213>
      Homo sapiens
<400> 18
Leu Ala Ala Leu Ile Leu Ala Arg Gly Gly Ser Lys Gly Ile
```