Subject Code: 17MCA4C22

JAMAL MOHAMED COLLEGE (Autonomous)

TIRUCHIRAPPALLI - 620 020

Objective Type Questions

Department of Computer Science

Semester: IV UG/PG: MCA

Title of the Paper: Core XXII: COMPUTER SIMULATION AND MODELING

- 1. Simulation can be used for the following purposes:
- a. used as a pedagogical device to reinforce analytic solution methodologies.
- b. used to verify analytic solutions.
- c. used to experiment with new designs or policies prior to implementation, so as to prepare for what may happen.
- d. All of them
- 2. Which one is following not advantage of simulation?
- a. Hypotheses about how or why certain phenomena occur can be tested for feasibility.
- b. Insight can be obtained about the interaction of variable.
- c. Simulation results may be difficult to interpret.
- d. "what if "questions can be answered.
- 3. Which one is following advantage of simulation?
- a. Model building requires special training.
- b. Insight can be obtained about the interaction of variable.
- c. Simulation modelling and analysis can be time consuming and expensive.
- d. Simulation results may be difficult to interpret

4. Where the outcome the activity can describe completely in terms of its input, the activity
is said to be
a. Deterministic b. Stochastic c. Exogenous d. Endogenous
5. A system which does have exogenous activity to be
a. Open system b. Closed system
c. both of them d. none of them
6. A system with no exogenous activity is
a. Closed system b. Open system
c. Both of them d. none of them
7. In a Bank system, What is customer?
a.Entity b. Activity c. Event d. Environment
8. Factory is an example of:
a. Attribute b. System c. Activity d. Event
9. Message in communication system is
a. Entity b. Attribute c. Environment d. all of them
10. Depositing in a Baking system is
10. Depositing in a Baking system isa. Activity b. Attribute c. Entity d. Environment

12. Bank, Trat	ffic and Super r	narket are the exa	mples of
a. Activity	b. System	c. Attribute	d. Environment
13. Bank syste	em is an examp	le of	
a. Exogenous.	b. Endoge	nous.	
c. Both of the	m. d. None of	them.	
14. Bank syste	em is an examp	le of	
a. Continuous	b. Discrete	c. Both of them	d. None of them
15. The head of	of water behind	a bam is an exam	pple of
a. Continuous	b. Discrete	c. Both of them	d. None of them
16. Break dow	of the produc	ction system is an	example of
a. Entity b. I	Event c. At	tribute d. Acti	vity
17. A	simulation	model, sometimes	s called a Monte Carlo simulation.
a. Static b	o. Dynamic	c. Deterministic	d. Stochastic
18. Simulation	n models that co	ontain no random	variable are classified as
a. Continuous	b. Determinis	stic c. Stochas	tic d. all of them
19. A	simulation	model has one o	r more random variables as inputs.
a. Determinist	ic b. Cont	tinuous c. Stock	nastic d. Statistic

20. ===== simulation models represents system at they change over time.
a. Statistic b. Deterministic c. Stochastic d. Dynamic
21. which of the following is general purpose programming language used in simulation?
a. C++ b. SQL c. JavaScript d. GPSS
22. Which of the following is not the special purpose simulation language?
a. BASIC b. GPSS c. SIMSCRIPT d. SIMAN
23. Which one of the following is a simulation package?
a. Java b. SIMSCRIPT c. Arena d. GPSS
24. In the history of simulation software, the period 1966 - 1970 was called as the period.
a. Advent b. Expansion c. search d. formative
25. In the history of simulation software, the period was called as the advent period.
a.1966 - 1970 b.1955-1960 c. 1961-1965 d.1979-1986
26. SIMSCRIPT language was developed by the Corporation.
a.IBM b. RAND c. AT&T d.SUN
27. Two major descendants of GASP are SLAM II and
a. SIMAN b. GPSS c. ALGOL d. SIMSCRIPT II
28 is a widely used programming language that has been used extensively in simulation.
a. BASIC b. Java c. Pascal d. Extend

29. GPSS was develo	ped by				
a. Jerry Banks	b. Nance				
c. Geoffrey Gordon	d. Harry Ma	arkowitz			
30. The first version of	of GPSS was	released by _			
a. Microsoft Corpora	tion l	o. IBM corpor	ation		
c. Google corporation	n	d. AT&T cor	poration		
31. The purpose of th individual transaction		k in GPSS is	to signal th	ne end of data collection	n for an
a. QUEUE	b. TEST	c. ADVA	NCE	d. DEPART	
32. Theis an object oriented ,proce		_	rface that	describes a set of capab	oilities for
a. SSF	b. CSIM	c. AUTON	MOD	d. GPSS/H	
33 bridges the g	-		oped in pur	e Java and models deve	loped in
a. CSIM	b. C	++ c.	SSF	d. Arena	
34 is simulati systems.	on software	that can be us	ed for simu	ulating discrete and con	tinuous
a. SLAM	b. Automo	od c	Arena	d. QUEST.	
35 simula manufacturing and m			reate discre	ete-event simulation mo	odels of
a. AutoMod	b. Arena	c.]	Extend	d. GPSS/H	

a. AutoMod	b. Are	na c. l	Extend	d. GPSS/H
37 is a	discrete-event,	object-oriented sin	nulator developed	in C++, using Open GL
technology.				
a. Java	b. SSF	c. Flexsim	d. Micro sain	t
		ose, discrete-event, e real-life processes		n-software package for
a. Java	b. SSF	c. Flexsim	d. Mic	ero saint
a. HTML	b. CSS	tion model and dat C. XML		d.class file
40	_is a discrete-e	event simulation pa	ckage from Lanne	r Group.
a. WITNESS	b. EXTEND	c. ARENA	d.SSF	
	variable that a		countably infinite	number of values is
a. Continuous	b. disc	erete c. regular	d. unc	ertain
42. A variable variable.	that can assun	ne any possible valu	ue between two po	ints is called random
D .	b. Continuou	s c. regular	d. uncertain	
a. Discrete				
	ed value of a ra	andom variable is e	qual to its:	
	ed value of a ra b. Standard		qual to its:	

44. Var(X) is a. E(X ²)	equal to: b. $[E(X)]^2$ c. E	$(X^2) - [E(X)]^2$	d. $E(X^2) + [E(X)]^2$
		case, the is the val	ue of the random variable that occurs
most frequent		c. mean	d. variance
46.If only rand	dom failures occur, the	time-to-failure (TTF.	distribution may be modeled as
a. binomial	b. Poisson	c. normal	d. Exponential.
	Distribution is a distribution stribution		
48. If n = 10 a a. 0.08	and p= 0.8, then the me b.1.26 c. 1.60	ean of the binomial distortion d. 8.00	tribution is
	nial Distribution, if p, ovely then the variance b. npq	is given by	of success, failure and number of d. pq
a. Continuous	stribution is applied fo Random Variable andom Variable	b. Discrete Random	
a. all probabileb. the binomiac. the Poisson	and variance are equality distributions I distribution. distribution al probability distribution		
52. A random a. (a-b)/2	variable X is uniforml b. (a+ b)/2		terval (a,b), then the mean is given by d.(a+b)(a-b)/2
a. Two parameb. a single parc. Two parame	nential distribution is deters: a mean and standameter defined as a rate eters: a minimum and a meter, a mean.	dard deviation e.	
54. The norma a. discrete c. positively si	l distribution is ak	_ distribution. b. continuous d. rectangular	

55. A standard norma a. The mean is equal to b. The mean and the voc. The mean is equal to d. The mean is equal to d.	to the standard devariance both equals to 0 and the varian	al 1.	perties?
56. When the shape p a. normal		the weibull distribution is triangular d. Exponentia	reduced to distribution.
57. The mean of a trial a. $(a + b + c) / 3$	ngular distribution b.(a-b-c)/	n is 3 c.(a+b+c)/2	d.(a*b*c)/3
58. The population of a. system capacity c. server	-		_
59. The maximum nu a. system capacity c. server	b. calling	s allowed in the system is consposed population arrival process	alled the
60. In queuing theory a. System In Reverse b. Service In Random c. Software Inspection d. Service In Reverse	Order Order 1 In Random Ord		
61. The key properties a. Uniform and deperture c. Different and deperture 62. Each random number a. Poisson	ndent ndent iber Ri must be an	b. Different and indep d. Uniformity and independent sample drawn	pendent dependent n from a distribution. d. random
		number Ri is	1.4/2
a. 1/2	b. 3/4	c.1/3	d. 4/3
64. The variance of ea a. 1/2	ach random numb b. 3/4	er Ri is c.1/24	d. 1/12
65.Linear congruentia numbers. a. Xi+1=(aXi+c) mod c. Xi+1=(a/Xi+c) / m	m	b.Xi+1=(aXi mod Xi+c) mod m	to generate randon
66. In the LCM recu Cogruential me		i+1=(aXi+c) mod m, when	c=0, then the form is called
a. additive	b. mixed	c. multiplicative	d. Lehmer

c. Kolmogorov-Smirnov		d. poker	
68 test is	s used to check for inde	ependence of random numbe	rs.
a. chi-square		b. LCM	
c. Kolmogorov-S	Smirnov	d. runs	
69. A is de	fined as succession of	similar events preceded and	followed by a different even
a. Walk	b. jump	c. run	d. path
70 A is a	sequence of numbers	above the mean.	
a. positive run	sequence of numbers	b. negative run	
c. runs up		d. runs down	
	on tests can be used to	check for of randon	n numbers
a. Uniformity	ion tests can be used to		ii iidiilocis.
•		b. independence	
c. maximization		d. Expectation	
72. The tes	t is used to determine t	he significance of the interval	al between recurrence of the
same digit.			
a. auto correlatio	n b. runs	c. Gap	d. poker
		_	_
73. In a three di	git number, P(3 differe	nt digits. =	
a.0.27	b.0.127	c. 0.01	d. 0.72
74 test is	used to test the freque	encies of digits within number	ers.
a. auto correlatio	n b. runs	c. Gap	d. poker
75.Random num	bers generated from a	specified probability distribu	ition is called a
a.pdf		b. random stream	
c. random variate	e d. random even	ıt	
76.Random varia	nte of probability distri	bution can be generated usin	gtechnique
a. Inverse-transf		c. mid square	d.data table
		1	
77. The inverse t	ransform technique ca	n be used to sample from	distribution.
a. Binomial	b. Poisson	c. Geometric	d. exponential
			-
78. The Acceptar	ce-rejection technique	can be used to sample from	distribution.
a. Binomial	b. Poisson	c. Geometric	d. exponential
			•
79.The	method refers to addir	ig together two or more rand	om variables to obtain a nev
	with the desired distril	<u> </u>	
a. inverse transfe			
c. acceptance-rej			
		ed to sample from dist	ribution
	b. Poisson	c. Geometric	d. Exponential
a. Erlang			

- 81. Development of a useful model of input data:
- a. Collect data from the real system of interest.
- b. Identify a probability distribution to represent the input process.
- c. Both of them
- d. None of them
- 82. The following suggestion(s. may enhance and facilitate the conduct of the data collection
- a. A useful expenditure of time is in planning.
- b. Try to combine homogeneous data set.
- c. Try to analyse the data as it is being collected.
- d. All of them.
- 83. A histogram is constructed as follows
- a. Label the horizontal axis to confirm to the interval selected.
- b. Determine the frequency of occurrences within each interval.
- c. Plot the frequencies on the vertical axis.
- d. All of above.
- 84. A histogram is not constructed as follows
- a. Label the vertical axis to confirm to the interval selected.
- b. Determine the frequency of occurrences within each interval.
- c. Plot the frequencies on the vertical axis.
- d. Label the vertical axis so that the total occurrences can be plotted for each interval
- 85.A family of distribution is selected on the basis of what might arise in the context being Investigated along with the shape of the ------.
- a. Square b. Pie diagram c. Histogram d. none of them.
- 86. Models the number of independent events that occur in a fixed amount of time or space.
- a. Binomial b. Normal c. Poisson d. Exponential
- 87. Models the number of successes in n trials, when the trials are independent with common success probability, p.
- a. Binomial b. Normal c. Poisson d. Exponential
- 88. Models the distribution of a process that can be thought of as the sum of a number of component processes.
- a. Binomial b. Normal c. Poisson d. Exponential
- 89. Models the time between independent events, or a process time which is memoryless.
- a. Binomial b. Normal c. Poisson d. Exponential
- 90. Models the time to failure for components
- a. Poisson b. Normal c. Weibull d. Exponential
- 91.Models a process when only the minimum, most likely, and maximum values of the distribution are known.
- a. Triangular b. Gamma c. Normal d. Beta

- 92. In a evaluation of the linearity of a q-q plot, the following should be considered
- a. The observed values will never fail exactly on a straight line.
- b. The ordered values are not independent since they have been ranked.
- c. The variances of the extremes are much higher than the variances in the middle of the pot.
- d. All the above.
- 93. The goal of the validation process is
- a. to produce a model that represents true system behaviour closely enough for the model to be used as a substitute for the actual system for the purpose of experimenting with the system b. to increase to an acceptable level the credibility of the model, so that the model will be used by managers and other decision makes.
- c. Both of them
- d. None of them
- 94. The verification and validation process consists of the following component:
- a. Verification is concerned with building the model right.
- b. Validation is concerned with building the right model
- c. Both of them
- d. None of them
- 95. Conceptual model contains
- a. Assumptions on system components
- b. Structural assumptions which define the interactions between system components
- c. Input parameters and data assumptions.
- d. All the above.
- 96. Conceptual model consists
- a. assumption on system components and system structure
- b. parameter values
- c. abstractions and simplifications
- d. all of these
- 97. Many common sense suggestions can be given for use in the verification process
- a. Have the computerized representation checked by someone other than its developer
- b. Closely examine the model output for reasonableness under a variety of settings of the input parameters.
- c. Make the computerized representation as self-documenting as possible.
- d. all of them
- 98. The IRC assists in finding and correcting those errors in the following ways.
- a. The simulation can be monitored as it progress.
- b. Attention can be focussed on a particular block, group of blocks, or a particular entity.
- c. Values of selected model components can be observed.
- d. All the them.

- 99. Naylor and Finger formulated approach which has been widely followed
- a. Build a model that has high face validity
- b. Validate mdl model assumptions.
- c. Compare the model input-output transformations to corresponding input-output transformation for the real system.
- d. All of them.
- 100. Using computer software for the purpose, the analysis consists of
- a. Identifying the appropriate probability distribution.
- b. Estimating the parameters of the hypothesized distribution.
- c. Validating the assumed statistical model by a goodness of fit test, such as the chi-squareor Kolmogorov-Smirnov test, and by graphical method.
- d. All the above.

ANSWERS WITH EXPANSION

- 1. d. All of them
- 2. c. Simulation results may be difficult to interpret.
- 3. b. Insight can be obtained about the interaction of variable.
- 4. a. Deterministic
- 5. b. Closed system
- 6. a. Closed system
- 7. a. Entity
- 8. b. System
- 9. a. Entity
- 10. a. Activity
- 11. c. Activity
- 12. b. System
- 13. c. Both of them
- 14. b. Discrete
- 15. a. Continuous
- 16. b. Event
- 17. a. Static
- 18. b. Deterministic
- 19. c. Stochastic
- 20. d. Dynamic
- 21. a. C++
- 22. a. BASIC
- 23. c. Arena
- 24. d. formative
- 25. c. 1961-1965
- 26. b. RAND
- 27. a. SIMAN
- 28. b. Java

- 29. c. Geoffrey Gordon
- 30. b. IBM corporation
- 31. d. DEPART
- 32. a. SSF
- 33. c. SSF
- 34. c. Arena
- 35. a. AutoMod
- 36. c. Extend
- 37. c. Flexsim
- 38. d. Micro saint
- 39. c. XML
- 40. a. WITNESS
- 41. b. discrete
- 42. b. Continuous
- 43. c. Mean
- 44. c. $E(X^2) [E(X)]^2$
- 45. b. mode
- 46. d. Exponential
- 47. b. discrete distribution
- 48 d. 8.00
- 49. b. npq
- 50. b. Discrete Random Variable
- 51. c. the Poisson distribution
- 52. b. (a+b)/2
- 53. b. a single parameter defined as a rate.
- 54 . b. continuous
- 55. c. The mean is equal to 0 and the variance is equal to 1
- 56. d. Exponential
- 57. a. (a + b + c)/3
- 58. b. calling population
- 59. a. system capacity
- 60. b. Service In Random Order
- 61. d. Uniformity and independent
- 62. c. uniform
- 63. a. ½
- 64. d. 1/12
- 65. a. $Xi+1=(aXi+c) \mod m$
- 66. c. multiplicative
- 67. c. Kolmogorov-Smirnov
- 68. d. runs
- 69. c. run
- 70. a. positive run
- 71. b. independence
- 72. c. Gap
- 73. d. 0.72

- 74. d. poker
- 75. c. random variate
- 76. a. Inverse-transform
- 77. d. exponential
- 78. b. Poisson
- 79. b. convolution
- 80. a. Erlang
- 81. c. Both of them
- 82. d. All of them
- 83. d. All of above
- 84. a. Label the vertical axis to confirm to the interval selected
- 85. c. Histogram
- 86. c. Poisson
- 87. a. Binomial
- 88. b. Normal
- 89. d. Exponential
- 90. c. Weibull
- 91. a. Triangular
- 92. d. All the above
- 93. c. Both of them
- 94. c. Both of them
- 95. d. All the above
- 96. d. all of these
- 97. d. all of them
- 98. d. All the them
- 99. d. All of them.
- 100. d. All the above