

Energy storage application for self-consumption

M.Sc. Nina Munzke

Competence E

Battery Energy Storage System "BESS"

Critical Success Factor for Battery Systems in the Homestorage Sector

Electricity production costs in Germany: PV vs Grid

PV-Storage at HIU

- Producer and consumer is the same "person"
- Public grid is not used

Increases the amount of self-consumption, prevents consumption peaks

Battery-container: Battery 76 kWh, Converter 60 kWp

PV-plant: 31 kWp

© PCE/KIT 2015

Initial operation May 2015

Battery Energy Storage System "BESS"

Lifetime

of batteries and power electronics

System sizing

PV-field, battery, power electronics

Profitability of "BESS"

=/

System control to increase:

- battery lifetime
- amount of self-consumption

System design

AC or DC linked system

© PCE/KIT 2016

Worldwide Li-Ion Cell Performance Benchmark

Cycle test 1C Chg / 1C Dischg / 100% DOD / RT

Energy Costs for Households - Comparison of Different System Sizes

Energy Costs: Invest + electricity prices (grid)

Evaluation of household Li-ion battery storage systems

Tests of around 20 commercial available "battery home storage systems" within a HiL test facility

- Safety
- Performance evaluation
 - Energy losses in standby mode
 - Battery efficiency
 - Efficiency of the inverter
 - Response time
 - Intelligent system control

Degree of selfsufficiency

Self-consumption ratio

- Evaluation of contribution to grid stability
 - Reduction of Load and Generation Peaks
 - Intelligent system control

© PCE/KIT 2016

Performance evaluation - efficiency

Household - yearly electricity demand: 4200 kWh Solar PV: 3,5 kWp

Battery efficiency between 78 % und 98 % Total system efficiency between 78 % und 94 %

Performance Evaluation - Efficiency Battery charge and discharge

Standby Consumption of the System

Losses of the reference household due to Standby consumption of the system:
between 2 € and 61
€ per year

© PCE/KIT 2017

Performance evaluation - degree of selfsufficiency and self-consumption ratio

- A higher self-consumption ratio might be due to:
 - a higher storage capacity
 - lower system efficiency

Battery Energy Storage System "BESS"

- Importance of smart control software

Intelligent system control on trial – different household PV storage systems

Response time of the storage system – example 1

Response time of the storage system –

Response time of the storage system

Losses: up to 40 € per year

