Department of Electrical Engineering Indian Institute of Technology, Kanpur

6.5.21

a)	A system has low-frequency gain of 50 dB, and two negative real poles, having pole frequencies at 1		
	Mra	nd/sec and 100 Mrad/sec.	
	i)	What is its unity-gain bandwidth?	
	ii)	If it is used in a negative feedback configuration, determine the feedback factor (f), at which the	
		poles would <i>just</i> start to have imaginary components.	
	iii)	If f is increased beyond the value calculated in part ii), comment on the stability of the system	
		giving clear physical justification(s).	
b)	Under unity negative feedback, the loop gain characteristic of a 3-pole (all negative and real) system is		
	four	nd to cross 0 dB at 2 MHz, with the total phase at this point equal to -120° .	
	i)	What is the phase margin of the system?	
	ii)	Is the gain margin positive or negative? Justify.	
	iii)	Based on the answers of parts i) and ii), comment on the stability of the system.	
	iv)	If the locations of the second and third pole frequencies are 3 MHz and 5 MHz respectively, find	
		the location of the first pole frequency.	

END-SEM P4

EE 210