

Plan de la phase

Introduction Language binaire Langage hexadécimal Exercices

Introduction

Pour **passer** d'un **langage A** à un **langage B**, il faut un **systeme** de **codification** (ou de codage).

Il existe plusieures possibilités de codage de l'information :

- BINAIRE
- HEXADECIMAL
- BCD
- ASCII
- ...

Les **systemes** informatiques actuels ne **fonctionnent** actuellement que selon **une logique à deux états**, le courants passe ou ne passe pas. Ces deux états binaires notés **0** et **1** determine cette logique binaire.

Toute **information** à traiter devra être **représentée** sous une **forme binaire**, que ce soit en interne ou sur les « fils » reliant les composants de l'ordinateur.

LE LANGAGE BINAIRE

Alphabet: Symboles 0, 1

Ces symboles combinés, doivent permettre de définir toute information à traiter, La base de numérotation est 2 (car on utilise 2 symboles), et les calculs se font en base 2.

Un nombre base 2 est noté n_2

1102

En base 10 un nombre devrait être noté n_{10}

110₂ ≠ 110₁₀

LE LANGAGE BINAIRE - Conversion

On passe d'un nombre en base 10 à un nombre en base 2 par divisions successives. Soit 135₁₀ à convertir en base 2

```
reste
          33 reste
          16 reste
    = 8 reste
= 4 reste
= 2 reste
2 = 1 \text{ reste}
               reste
```


Chaque élément binaire 0 ou 1 est appelé un digit binaire ou bit

Une suite de quatre bits : un quartet Une suite de huit bits : un octet

En anglais octet se traduit par byte et non par bit

21/09/09

Numération de base

LE LANGAGE BINAIRE - Conversion

On passe d'un nombre en base 2 à un nombre en base 10 par multiplications successives.

Soit 10011, à convertir en décimal

1	0	0	1	1
×	X	X	X	X
24	2 ³	2 ²	2 ¹	20
(16)	(8)	(4)	(2)	(1)
=	=	=	=	=
16	0	0	2	1

dont la somme donne **19**₁₀

On peut en déduire une autre manière de convertir un nombre décimal en binaire :

LE LANGAGE BINAIRE - Conversion

Base 10	Base 2	Base 10	Base 2
1	1	6	110
2	10	7	111
3	11	8	1000
4	100	9	1001
5	101	10	1010

Les dix premiers nombres binaires

Le poids binaire : puissance à laquelle est élevé le bit lors de la conversion binaire-décimal :

$$135_{10} = (10000111)_2 = 1x2^7 + 0x2^6 + 0x2^5 + 0x2^4 + 0x2^3 + 1x2^2 + 1x2^1 + 1x2^0$$

MSB : Le bit de poids fort (Most Significant Bit), c'est le bit situés le plus à gauche.

LSB : Le bit de poids faible (Less Significant Bit), c'est le bit situés le plus à droite.

LE LANGAGE BINAIRE - Opération binaires

Addition

а	b	С	S	R
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

	1	1	1	1	1		(carried	digits)			
		0	1	1	0	1					
+		1	0	1	1	1					
=	1	0	0	1	0	O					

Soustraction

а	b	С	S	R
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

```
* * * * (starred columns are borrowed from)
1 1 0 1 1 1 0
- 1 0 1 1 1
-----
= 1 0 1 0 1 1 1
```


LE LANGAGE BINAIRE - Opération binaires

Multiplication

La multiplication binaire s'effectue selon le principe de la multiplication décimale.

Division

La division est basé sur une succession de soustraction et s'emploie de la même façon qu'une division décimale.

$$(11011)_2 = (101)_2 \times (101)_2 + (10)_2$$

 $(27)_{10} = (5)_{10} \times (5)_{10} + (2)_{10}$

LE LANGAGE BINAIRE - Nombres fractionnaires

La partie décimale d'un nombre se traduit en binaire en mettent en œuvre des puissances négatives de 2.

Conversion de binaire / décimal

Ainsi
$$1\ 0\ 0$$
 . $0\ 1\ _2$ sera équivalent à $(1\times 2^2)\ +\ (0\times 2^1)\ +\ (0\times 2^0)$. $(0\times 2^{-1})\ +\ (1\times 2^{-2})$ $(1\times 4)\ +\ (0\times 2)\ +\ (0\times 1)$. $(0\times 1/2)\ +\ (1\times 1/4)$ soit 4.25_{10}

Conversion de décimal / binaire

Soit
$$0.625_{10}$$

 $0.625 \times 2 = 1.250$ Poids binaire 1×2^{-1}
 $0.250 \times 2 = 0.500$ Poids binaire 0×2^{-2}
 $0.500 \times 2 = 1.000$ Poids binaire 1×2^{-3}

On arrête le processus quand il n'y a plus de partie fractionnaire ou que la précision obtenue est jugée suffisante.

Ains
$$\frac{1}{100}$$
635)₁₀ = (0.101)₂

LE LANGAGE HEXADECIMAL - Conversion

Le système hexadécimal permet un compromis entre l'utilisation d'un code binaire et une facilité de lecture des résultats.

On utilise un **alphabet** de **16** symboles.

Symboles hexadécimal : 0 1 2 3 4 5 6 7 8 9 A B C D E F Équivalent décimal : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conversion décimal / hexadécimal

Soit à convertir en base 16 le nombre (728)₁₀

Les nombres supérieurs à 9 n'existent pas dans la notation hexadécimal, le « 13 » doit être remplacé par son équivalent hexadécimal « D »

Donc $(728)_{10} = (2D8)_{16}$, on notera les nombres en base 16 par 0x2D8 ou par 2D8H

LE LANGAGE HEXADECIMAL - Conversion

Conversion hexadécimal / décimal

Soit **0x13D** à convertir en base 10

LE LANGAGE HEXADECIMAL - Conversion

Conversion binaire / hexadécimal

La représentation des 16 symboles de l'alphabet hexadécimal en binaire, utilise au maximum 4 bits.

Décimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Binaire	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111
Hexadécimal	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F

On peut donc **directement** et facilement **passer** du **binaire** en **hexadécimal** en **décomposant** le nombre binaire en **blocs de 4 bits** – en partant de la droite (bits dits de poids fiable) et en restituant sa valeur hexadécimal à chacun de ces blocs.

$$(732)_{10} = (1011011100)_2 = (0010 1101 1100)_2 = (2DC)_{16}$$

Conversion hexadécimal / binaire

Pour cela, on convertit les chiffres qui composent le nombre hexadécimal en leur équivalent binaire.

Ainsi:
$$(1AB)_{16}$$
 1 A B $(1AB)_{16} = (000110101011)_{2}$
0001 1010 1011

LE LANGAGE HEXADECIMAL - Addition

L'addition s'effectue à partir de la technique de l'addition et de la table d'addition suivante:

+	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
H	H	H		\vdash												
0	ᆜ	1	2	3	4	5	6	7	8	9	<u> </u>	В	C	D	E	F
1	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F	10
2	2	3	4	5	6	7	8	9	А	В	С	D	Е	F	10	11
3	3	4	5	6	7	8	9	Α	В	С	D	Е	F	10	11	12
4	4	5	6	7	8	9	Α	В	С	D	Е	F	10	11	12	13
5	5	6	7	8	9	Α	В	С	D	E	F	10	11	12	13	14
6	6	7	8	9	Α	В	С	D	Е	F	10	11	12	13	14	15
7	7	8	9	Α	В	С	D	E	F	10	11	12	13	14	15	16
8	8	9	А	В	С	D	E	F	10	11	12	13	14	15	16	17
9	9	А	В	С	D	E	F	10	11	12	13	14	15	16	17	18
Α	Α	В	С	D	Е	F	10	11	12	13	14	15	16	17	18	19
В	В	С	D	Е	F	10	11	12	13	14	15	16	17	18	19	1A
С	С	D	Е	F	10	11	12	13	14	15	16	17	18	19	1A	1B
D	D	Е	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C
E	Е	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D
F	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E

LE LANGAGE HEXADECIMAL – Multiplication

La multiplication s'effectue à partir de la technique de la multiplication par glissement par jalousies et en utilisant la table de multiplication suivante :

х	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
2	0	2	4	6	8	Α	С	Е	10	12	14	16	18	1A	1C	1E
3	0	3	6	9	С	F	12	15	18	1B	1E	21	24	27	2A	2D
4	0	4	8	С	10	14	18	1C	20	24	28	2C	30	34	38	3C
5	0	5	Α	F	14	19	1E	23	28	2D	32	37	3C	41	46	4B
6	0	6	С	12	18	1E	24	2A	30	36	3C	42	48	4E	54	5A
7	0	7	Е	15	10	23	2A	31	38	3F	46	4D	54	5B	62	69
8	0	8	10	18	20	28	30	38	40	48	50	58	60	68	70	78
9	0	9	12	1B	24	2D	36	3F	48	51	5A	63	60	75	7E	87
Α	0	Α	14	1E	28	32	3C	46	50	5A	64	6E	78	82	8C	96
В	0	В	16	21	20	37	42	4D	58	63	6E	79	84	8F	9A	A5
С	0	С	18	24	30	3C	48	54	60	6C	78	84	90	90	A8	В4
D	0	D	1A	27	34	41	4E	5B	68	75	82	8F	90	A9	B6	C3
E	0	Е	1C	2A	38	46	54	62	70	7E	8C	9A	A8	B6	C4	D2
F	0	F	1E	2D	3C	4B	5A	69	78	87	96	A5	B4	СЗ	D2	E1

Exercices

2.1 Convertir en binaire les nombres 397_{10} , 133_{10} et 110_{10} puis en décimal les nombres 101_2 , 0101_2 et 1101110_2 et vérifier en convertissant pour revenir à la base d'origine.

2.2 Effectuer les opérations suivantes et vérifier les résultats en procédant aux conversions nécessaires.

```
a) 1 1 0 0 + 1 0 0 0 =
```

$$b) 1 0 0 1 + 1 0 1 1 =$$

$$c) 1 1 0 0 - 1 0 0 0 =$$

$$d) 1 0 0 0 - 1 0 1 =$$

$$e)$$
 1 + 1 + 1 + 1 =

2.3 Réaliser les opérations suivantes et vérifier les résultats en procédant aux conversions nécessaires.

a) 1 0 1 1
$$\times$$
 1 1 =

b)
$$1\ 1\ 0\ 0 \times 1\ 0\ 1 =$$

$$c) 1 0 0 1 1 1 \times 0 1 1 0 =$$

2.4 Réaliser les opérations suivantes et vérifier les résultats en procédant aux conversions nécessaires.

$$a) 1 0 0 1 0 0 / 1 1 =$$

2.5 Convertir en binaire 127.75_{10} puis 307.18_{10} Vous pourrez constater, à la réalisation de ce dernier exercice, que la conversion du .18 peut vous entraîner « assez loin ». C'est tout le problème de ce type de conversion et la longueur accordée à la partie fractionnaire dépendra de la précision souhaitée.

Exercices

2.6	Convertir en hexadécimal	<i>a</i>) 3167 ₁₀	b) 219 ₁₀	c) 6560 ₁₀
2.7	Convertir en décimal	a) 0x3AE	b) 0xFFF	c) 0x6AF
2.8	Convertir en base 16	<i>a</i>) 128 ₁₀ <i>d</i>) 110 ₂	b) 101 ₁₀ e) 1001011 ₂	c) 256 ₁₀
2.9	Convertir en base 10	a) 0xC20	b) 0xA2E	
2.10	Convertir en base 2	a) 0xF0A	b) 0xC01	