Nondeterministic Top-Down Parsing

Parsing

- We have seen the relationship between CFGs and syntax trees.
- Now, we have to find an efficient algorithm to obtain the syntax tree for a given input $w \in \Sigma^*$ and the grammar G
 - We have to handle ambiguity in the grammar
 - We have to decide which rule to apply for $\alpha \Rightarrow \beta$ if α contains multiple non-terminal symbols
- Like for REs, we will use automata to analyze and understand the parsing process

Nondeterministic Top-Down Automaton

- The nondetermistic Top-Down parsing automaton NTA(G) of the CFG $G = < \Sigma, N, P, S >$ is defined by
 - Input alphabet Σ
 - Pushdown alphabet $X = N \cup \Sigma$
 - Output alphabet U = the rule numbers 1,2,3,...
 - States $\Sigma^* \times X^* \times U^*$
 - Two types of transitions for $w \in \Sigma^*$, $\alpha \in X$, $z \in U$:
 - **Expansion** of non-terminal symbol A using rule $A \rightarrow \beta$ with number i:

$$(w, A\alpha, z) \rightarrow (w, \beta\alpha, z i)$$

- Matching of terminal symbol $a \in \Sigma$: $(aw, a\alpha, z) \rightarrow (w, \alpha, z)$
- Initial state (w, S, ε) for $w \in \Sigma^*$
- Final state $(\varepsilon, \varepsilon, u)$ where $u \in U^*$

Example

$$E \to E + T \mid T$$
 (1, 2)
 $T \to T * F \mid F$ (3, 4)
 $F \to (E) \mid a \mid b$ (5, 6, 7)

- Running the NTA on w = (a) * b gives the leftmost analysis of w:
 - Initial state
 - Rule 2 to expand *E*
 - Rule 3 to expand T
 - Rule 4 to expand T
 - Rule 5 to expand E
 - Match the "("

 - Rule 4 to expand T
 - Rule 6 to expand F
 - Match "a"
 - Match ")"
 - Match "*"
 - Rule 7 to expand F
 - Match "b"

- $\begin{array}{ll}
 ((a) * b, & E, \varepsilon) \\
 ((a) * b, & T, 2)
 \end{array}$
- ((a)*b, T*F, 23)
- (a) * b, F * F, 234
- ((a) * b, (E) * F, 2345)
 - (a) * b, E) * F, 2345
- Rule 2 to expand E (a) * b, T) * F, 23452)
 - (a) * b, F) * F, 234524
 - (a) * b, a) * F, 2345246
 - ()*b,)*F, 2345246)
 - (* *b*, * *F*, 2345246)
 - (b, F, 2345246)
 - (b, 23452467)
 - ε , ε , 23452467)

Nondeterminism

- In the example on the previous slide, we "magically" knew which rule to apply, even in complicated situations
- For a CFG like

$$S \rightarrow A \mid B$$
 (1, 2)
 $A \rightarrow b$ (3)
 $B \rightarrow Cd$ (4)
 $C \rightarrow a$ (5)

how should the NTA know that in the initial state (ad, S, ε) the non-terminal S should be expanded to B and not A?

- Possible implementation: Backtracking
 - 1. The parser first tries rule 1.
 - 2. After rule 3, it sees that it cannot match the input "a"
 - 3. It goes back to step 1 and tries rule 2.
- Backtracking works, but it requires:
 - Remember the places where a choice was made (here: at rule 1)
 - "Unread" the tokens already read when backtracking