502 ASSIGNMENTS SPRING 2017

Assignment I

- 1. Let \mathcal{V} be a vector space over the field $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . A seminorm on \mathcal{V} is a map $\rho: \mathcal{V} \to \mathbb{R}$ satisfying
 - (i) $\rho(v) \geq 0$ for all $v \in \mathcal{V}$
 - (ii) $\rho(\alpha v) = |\alpha|\rho(v)$ for all $\alpha \in \mathbb{F}$ and $v \in \mathcal{V}$.
 - (iii) $\rho(v+w) \leq \rho(v) + \rho(w)$ for all $v, w \in \mathcal{V}$.

Let φ be a continuous function $[0,1] \to \mathbb{R}$.

For $f \in C[0,1]$ define $\rho(f) = \int_0^1 |f(x)| \varphi(x) dx$. What conditions must φ satisfy so that ρ is a seminorm? What conditions must φ satisfy so that ρ is a norm?

- 2. Let $C^{1}[0,1]$ denote the vector space of functions defined on the interval [0,1] which have continuous derivatives. (The derivative at an endpoint is the one-sided derivative.) For $f \in C^1[0,1]$, let $\rho(f) =$ $\max_{0 \le x \le 1} |f'(x)|$. Is ρ a norm? Is it a seminorm?
 - 3, Determine which of the following formulas define a metric.
 - (i) On \mathbb{R} , $d(x,y) = \sqrt{|x-y|}$ (ii) On \mathbb{R} , $d(x,y) = (x-y)^2$

 - (iii) On $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}, \ d(x, y) = |\log(y/x)|$
 - 4. Do exercises 1, 2, and 4 in section 2.1, p. 27 due 1/18

- Assignment II
 - (i) $\partial B_r(a)$ if $r \in \mathbb{Q}$, r > 0.
- (ii) $\partial B_r(a)$ if $r \in \mathbb{R} \setminus \mathbb{Q}$, r > 0.

1. In $(\mathbb{Z}, |\cdot|)$, let $a \in \mathbb{Q}$, describe

- 2. Do problems 1, 2, 4, and 5 in Sec. 2.2, p. 34.
- 3. Do problems 1 and 3 in Sec. 2.3, p. 40.

due 1/25