CS 225 Switching Theory

Dr. Somanath Tripathy
Indian Institute of Technology Patna

Previous Class

Minimization/ Simplification of Switching Functions

K-map (SOP)

Quine-McCluskey (Tabular) Minimization

This Class

Combinational Circuit logic design

Design with Basic Logic Gates

Logic gates: perform logical operations on input signals

Positive (negative) logic polarity: constant 1 (0) denotes a high voltage and constant 0 a low (high) voltage

Synchronous circuits: driven by a clock that produces a train of equally spaced pulses

Asynchronous circuits: are almost free-running and do not depend on a clock; controlled by initiation and completion signals

Fanout: number of gate inputs driven by the output of a single gate

Fanin: bound on the number of inputs a gate can have

Propagation delay: time to propagate a signal through a gate

Logic Design with Integrated Circuits

Small scale integration (SSI): integrated circuit packages containing a few gates; e.g., AND, OR, NOT, NAND, NOR, XOR

Medium scale integration (MSI): packages containing up to about 100 gates; e.g., code converters, adders

Large scale integration (LSI): packages containing thousands of gates; arithmetic unit

Very large scale integration (VLSI): packages with millions of gates

circuit

n inputs

Combinational Circuit

m-outputs

S	tep	Description
Step 1: Capture behavior	Capture the function	Create a truth table or equations, whichever is most natural for the given problem, to describe the desired behavior of each output of the combinational logic.
Step 2: Convert to circuit	2A: Create equations 2B:	This substep is only necessary if you captured the function using a truth table instead of equations. Create an equation for each output by ORing all the minterms for that output. Simplify the equations if desired.
	Implement as a gate-based	For each output, create a circuit corresponding to the output's equation. (Sharing gates among multiple

outputs is OK optionally.)

Analysis of Combinational Circuits

Circuit analysis: determine the Boolean function that describes the circuit

 Done by tracing the output of each gate, starting from circuit inputs and continuing towards each circuit output

Example: a multi-level realization of a full binary adder

$$C_0 = AB + (A + B)C$$

 $= AB + AC + BC$
 $S = (A + B + C)[AB + (A + B)C]' + ABC$
 $= (A + B + C)(A' + B')(A' + C')(B' + C') + ABC$
 $= AB'C' + A'BC' + A'B'C + ABC$
 $= A \oplus B \oplus C$

Simple Design Problems

Parallel parity-bit generator: produces output value 1 if and only if an odd number of its inputs have value 1

$$P = X'Y'Z + X'YZ' + XY'Z' + XYZ$$

Implementation

Simple Design Problems (Contd.)

Serial-to-parallel converter: distributes a sequence of binary digits on a serial input to a set of different outputs, as specified by external control signals

Control		Ou	tput	t lin	es	L ogio oguationa			
C1	C2	L1	L2	L3	L4	Logic equations			
0	0	х	0	0	0	$L_1 = xC1'C2'$			
0	1	0	X	0	0	$L_2 = xC1'C2$			
1	0	0	0	X	0	$L_3 = xC1C2'$			
1	1	0	0	0	Х	$L_4 = xC1C2$			

Comparators

n-bit comparator: compares the magnitude of two numbers X and Y, and has three outputs f 1, f 2, and f 3

•
$$f_1 = 1 \text{ iff } X > Y$$

$$f_2 = 1 \text{ iff } X = Y$$

$$f_2 = 1 \text{ iff } X = Y$$
 $f_3 = 1 \text{ iff } X < Y$

2-Bit Comparator

K-Map

Block diagram

$\setminus x_1x_2$											
<i>y</i> ₁ <i>y</i> ₂	00	01	11	10							
00	2	1	1	1							
01	3	2	1	1							
11	3	3	2	3							
10	3	3	1	2							

Logic circuit diagram

Logic Expression

$$f_1 = X_1 X_2 Y_2' + X_2 Y_1' Y_2' + X_1 Y_1'$$

$$= (X_1 + Y_1') X_2 Y_2' + X_1 Y_1'$$

$$f_{2} = X_{1}'X_{2}'Y_{1}'Y_{2}' + X_{1}'X_{2}Y_{1}'Y_{2} + X_{1}X_{2}'Y_{1}Y_{2}' + X_{1}X_{2}Y_{1}Y_{2} = X_{1}'Y_{1}'(X_{2}'Y_{2}' + X_{2}Y_{2}) + X_{1}Y_{1}(X_{2}'Y_{2}' + X_{2}Y_{2}) = (X_{1}'Y_{1}' + X_{1}Y_{1}) (X_{2}'Y_{2}' + X_{2}Y_{2})$$

$$f_3 = X_2'Y_1Y_2 + X_1'X_2'Y_2 + X_1'Y_1$$

= $X_2'Y_2 (Y_1 + X_1') + X_1'Y_1$

4-bit/12-bit Comparators

Four-bit comparator: 11 inputs (four for X, four for Y, and three connected to outputs f 1, f 2 and f 3 of the preceding stage)

(a) A 4-bit comparator.

(b) A 12-bit comparator.

Data Selectors

Multiplexer: electronic switch that connects one of n inputs to the output

Data selector: application of multiplexer

- n data input lines, D_0 , D_1 , ..., D_{n-1}
- m select digit inputs S_0 , S_1 , ..., s_{m-1}
- 1 output

(b) Logic diagram.

Implementing Switching Functions with Data Selectors

Data selectors: can implement arbitrary switching functions

Example: implementing two-variable functions

$$z = sD_1 + s'D_0$$

If
$$s = A$$
, $D_0 = B$, and $D_1 = B'$ then $z = A \oplus B$

If
$$s = A$$
, $D_0 = 1$, and $D_1 = B'$, then $z = A' + B'$.

$$As AB' + A' = A' + B'$$

General case: Assign n-1 variables to the select inputs and last variable and constants 0 and 1 to the data inputs such that desired function results

Priority Encoders

Priority encoder: n input lines and log_2 n output lines

- Input lines represent units that may request service
- When inputs p_i and p_j , such that i > j, request service simultaneously, line p_i has priority over line p_i $_{Enable}$
- Encoder produces a binary output code indicating which of the input lines requesting service has the highest priority

Example: Eight-input, three-output priority encoder

(a) Block diagram.

		Outputs								
p_0	p_1	p_2	p_3	p_4	p_5	p_6	p_7	Z_4	Z_2	Z_1
1	0	0	0	0	0	0	0	0	0	0
φ	1	0	0	0	0	0	0	0	0	1
φ	ϕ	1	0	0	0	0	0	0	1	0
φ	ϕ	ϕ	1	0	0	0	0	0	1	1
φ	ϕ	ϕ	ϕ	1	0	0	0	1	0	0
φ	ϕ	ϕ	ϕ	ϕ	1	0	0	1	0	1
φ	ϕ	ϕ	ϕ	ϕ	ϕ	1	0	1	1	0
φ	ϕ	ϕ	ϕ	ϕ	ϕ	ϕ	1	1	1	1

(b) Truth table.

$$z_4 = p_4 p_5' p_6' p_7' + p_5 p_6' p_7' + p_6 p_7' + p_7 = p_4 + p_5 + p_6 + p_7$$

$$z_2 = p_2 p_3' p_4' p_5' p_6' p_7' + p_3 p_4' p_5' p_6' p_7' + p_6 p_7' + p_7 = p_2 p_4' p_5' + p_3 p_4' p_5' + p_6 + p_7$$

$$z_1 = p_1 p_2' p_3' p_4' p_5' p_6' p_7' + p_3 p_4' p_5' p_6' p_7' + p_5 p_6' p_7' + p_7 = p_1 p_2' p_4' p_6' + p_3 p_4' p_6' + p_5 p_6' + p_7$$

Priority Encoders (Contd.)

(c) Logic diagram.

Decoders

Decoders with n inputs and 2^n outputs: for any input combination, only one output is 1

Useful for:

- Routing input data to a specified output line, e.g., in addressing memory
- Basic building blocks for implementing arbitrary switching functions
- Code conversion
- Data distribution

Example: 2-to-4- decoder

Decoders (Contd.)

Example: 4-to-16 decoder made of two 2-to-4 decoders and a gate-switching matrix

Decimal Decoder

BCD-to-decimal: 4-to-16 decoder made of two 2-to-4 decoders and a gate-switching matrix

Decimal Decoder (Contd.)

Implementation using a partial-gate matrix:

Implementing Arbitrary Switching Functions

Example: Realize a distinct minterm at each output

Demultiplexers

Demultiplexers: decoder with 1 data input and n address inputs

• Directs input to any one of the 2ⁿ outputs

Example: A 4-output demultiplexer

Seven-segment Display

Seven-segment display: BCD to seven-segment decoder and seven LEDs

Seven-segment pattern and code:

Decimal Digit	BCD code				Seven-segment code								
	x1	x2	хЗ	х4	Α	В	С	D	Е	F	G		
1	0	0	0	1	0	1	1	0	0	0	0		
2	0	0	1	0	1	1	0	1	1	0	1		
3	0	0	1	1	1	1	1	1	0	0	1		ıc
4	0	1	0	0	0	1	1	0	0	1	1	ш	
5	0	1	0	1	1	0	1	1	0	1	1	ж	Щ
6	0	1	1	0	0	0	1	1	1	1	1	Ξ	ж
7	0	1	1	1	1	1	1	0	0	0	0	+	12
8	1	0	0	0	1	1	1	1	1	1	1		Н
9	1	0	0	1	1	1	1	0	0	1	1		ı≍
0	0	0	0	0	1	1	1	1	1	1	0		

$$A = x_1 + x_2'x_4' + x_2x_4 + x_3x_4$$

$$B = x_2' + x_3'x_4' + x_3x_4$$

$$C = x_2 + x_3' + x_4$$

$$D = x_2'x_4' + x_2'x_3 + x_3x_4' + x_2x_3'x_4$$

$$E = x_2'x_4' + x_3x_4'$$

$$F = x_1 + x_2x_3' + x_2x_4' + x_3'x_4'$$

$$G = x_1 + x_2'x_3 + x_2x_3' + x_3x_4'$$