Cálculo Infinitesimal 3 – Lista 5 - 2020

Prof. Flavio Dickstein.

Questão 1. Seja $F = (F_1, F_2)$ um campo irrotacional, isto é, $\nabla \times F = 0$. Se $F_1(x, y) = x - 4y + 1$, determine F_2 .

Questão 2. Seja $F = (F_1, F_2)$ um campo incompressível, isto é, $\nabla \cdot F = 0$. Se $F_1(x, y) = x - 4y + 1$, determine F_2 .

Questão 3. Seja F(x,y) = (x,y) e seja γ o polígono de vértices (-2,0), (0,1), (1,0), (0,-2).

- (i) Calcule $\oint_{\mathcal{C}} F \cdot dl$ quando o circulação é feita no sentido trigonométrico.
- (ii) Calcule ∇F e refaça o item (i) usando o Teorema de Green.
- (iii) Calcule $\int_{\gamma} F \cdot d\eta$ tomando a normal exterior.
- (iv) Calcule $\nabla \cdot F$ e refaça o item (ii) usando o Teorema da Divergência.

Questão 4. Seja $F(x,y) = e^{xy}(-y,x)$ e seja γ a poligonal que vai de (-1,0) a (0,1) e, depois, de (0,1) a (1,0). Considere sobre o polígono o campo de normais unitárias que apontam para cima.

- (i) Calcule diretamente o fluxo $\int_{\gamma} F \cdot \eta$.
- (ii) Verifique que F é um campo incompressível, $\nabla \cdot F = 0$.
- (iii) Use o Teorema da Divergência para calcular $\int_{\gamma} F \cdot \eta$ de forma mais simples.

Questão 5. O rotacional de um campo $F = (F_1, F_2, F_3)$ é definido por

$$\nabla \times F = \left(\begin{array}{ccc} i & j & k \\ \partial_1 & \partial_2 & \partial_3 \\ F_1 & F_2 & F_3 \end{array} \right).$$

O divergente de F é definido por

$$\nabla \cdot F = \partial_1 F_1 + \partial_2 F_2 + \partial_3 F_3.$$

Mostre que o "produto misto" $\nabla \cdot \nabla \times F$ é nulo, isto é, que o divergente do rotacional é igual a zero.

Questão 6. Seja F(x, y, z) um campo escalar em \mathbb{R}^3 . Seja ∇F o gradiente de F. Mostre que o "produto misto" $\nabla \times \nabla F$ é nulo, isto é, que o rotacional do gradiente é igual a zero.