

Lecturer: Dr. Nguyen Hai Minh

OUTLINE

- Introduction
- Connectivity
- Graphs as ADTs
- Implementing Graphs
- Graph Traversals
- Application of Graphs
 - Topological Sorting
 - Minimum Spanning Tree

Introduction

■ Dogs ■ Cats ■ Fish ■ Hamsters

Common graphs that you are familiar with:

Introduction

- Graphs are used to:
 - Provide a way to illustrate data
 - Represent the relationships among data items
- ☐ Graphs in computer science: consist of 2 sets:

$$G = (V, E)$$

- V: vertices (or nodes)
- **E**: edges (connect the vectices)

Graph – Example

- Vertices: buildings
- Edges: sidewalks between building

Definitions – Edge Type

☐ Directed:

- Ordered pair of vertices
- u v
- Represented as (u, v) directed from vertex u to v

☐ Undirected:

- Unordered pair of vertices.
- Represented as {u, v}

Definitions – Edge Type

☐ Loop/Self Edge:

- Edge whoses endpoints are equal.
- Represented as $\{u, u\} = \{u\}$

☐ Multiple Edges

2 or more edges joining the same pair of vertices

Definitions – Graph Types

4 graph types

Type	Edges	Multiple edges allowed	Loops allowed?
Simple Graph /Undirected Graph	U	No	No
Multigraph	U	Yes	No/Yes
Directed Graph	D	No	No/Yes
Directed Multigraph	D	Yes	Yes

*U: undirected, D: directed

Definitions – Graph Types

(a) Simple Graph

(d) Directed Graph Without loop

(b) Multigraph without loop

(e) Directed Graph with loop

Nguyễn Hải Minh - FIT@HCMUS

(c) Multigraph with loop

(f) Directed Multigraph

Terminology – Undirected Graphs

- Adjacent vertices: 2 vertices u, v are adjacent if they are joined by an edge *e*={*u*, *v*}
- Degree of vertex: deg(v) = number of edges incident to the vertex. A loop contributes twice to the edge
 - Pendant Vertex: deg(v) = 1
 - Isolated Vertex: deg(v) = 0
- \square Example: $V = \{u, v, w, k\}, E = \{\{u, w\}, \{u, v\}\}$
 - ightharpoonup deg(u) = 2

 - ightharpoonup deg(k) = 0

Terminology – Directed Graphs

- Adjacent vertices: for the edge (u, v): u is adjacent to v or v is adjacent from u
 - u: Initial vertex
 - v: Terminal vertex
- □ Degree of vertex:
 - In-degree: deg⁻(u) = #edges for which u is terminal vertex
 - Out-degree: deg⁺(u) = #edges for which u is initial vertex
- \square Example: $V = \{u, v, w\}, E = \{(u, w), (v, w), (u, v)\}$
 - $\deg^-(u) = 0, \deg^+(u) = 2$
 - $\deg^-(v) = 1, \deg^+(v) = 1$
 - $\deg^-(w) = 2, \deg^+(w) = 0$

Theorems

□ Theorem 1 – The Handshaking theorem in undirected graph

$$\sum \deg v = 2|E|$$

- Theorem 2: An undirected graph has even number of vertices with odd degree
- □ Theorem 3: for directed graph

$$\sum \deg^+ u = \sum \deg^- u = |E|$$

Simple Graphs – Types

\square Complete graph: K_n

- Simple graph that contains exactly <u>one edge</u> between each pair of distinct vertices
- Example:

→ How many edges does K_n have?

Simple Graphs – Types

- \square Cycle: C_n , n > 2
 - Simple graph that consists of n vertices $v_1, v_2, ..., v_n$ and edges $\{v_1, v_2\}, \{v_2, v_3\}, ..., \{v_{n-1}, v_n\}, \{v_n, v_1\}$
 - Example

Simple Graphs – Types

\square Wheel: W_n

- Obtained by adding additional vertex to C_n and connecting all vertices to this new vertex by new edges.
- Example

Subgraphs

- \square A subgraph of a graph G = (V, E) is a graph H = (V', E') where V' is a subset of V and E' is a subset of E
- Example:

Weighted Graph

- ☐ The edges of a weighted graph have numeric labels.
- Example:

(a) Undirected Weighted Graph

(b) Directed Weighted Graph

GRAPH CONNECTIVITY phminh@FIT-HCMUS 5/20/24

19

Connectivity

Basic Idea: Is the Graph Reachable among vertices by traversing the edges?

Example:

Can Japan be reached from Vietnam?

Connectivity – Path

- □ Path: sequence of edges that begins at one vertex and ends at another vertex.
 - Example: G = (V, E)
 - Path P = { {u, v}, {v, w}, {w, h} }
- ☐ Cycle/Circuit: start vertex = end vertex
 - Cycle C = { {v, w}, {w, h}, {h, v} }

☐ Simple path: a path that does not pass through the same vertex more than once.

Connectivity – Connectedness

□ Undirected Graph:

An undirected graph is connected if there exists a simple path between every pair of vertices

Example: G = (V, E) is connect since for V = {u, v, w, k, h}, there exists a path between each pair of vertices

W

Connectivity – Connectedness

☐ Directed Graph:

- A directed graph is strongly connected if there is a path from a to b and from b to a whenever a and b are vertices in the graph
- A directed graph is weakly connected if there is a (undirected) path between every two vertices in the underlying undirected path
- → A strongly connected graph can be weakly connected but the vice-versa is not true (why?)

Connectivity – Connectedness

□ Directed Graph: Example

Strongly connected Weakly connected

Undirected graph representation of G_1 or G_2

Graphs as ADTs

- Vertices contain values
- Edges represent relationship between vertices
- Operations:
 - 1. Test whether a graph is empty
 - 2. Get the number of vertices/edges in a graph
 - 3. See whether an edge exists between 2 given vertices
 - 4. Insert a vertex/an edge in a graph
 - 5. Remove a vertex/edge in a graph
 - Search the graph for the vertex that contains a given value

Implementing Graphs – Adjacency Matrix

Adjacency matrix of a graph with N vertices: an NxN array $A = [a_{ij}]$ such that

$$a_{ij} = \begin{cases} 1 & \text{if there is an edge between vertex i and j} \\ 0 & \text{otherwise} \end{cases}$$

■ Example: Adjacency matrix of undirected & directed graphs

	A	В	С
A	0	1	1
В	1	0	1
С	1	1	0

	A	В	С
A	0	1	0
В	0	0	0
С	1	1	0

Implementing Graphs – Adjacency Matrix

■ When the graph is weighted,

$$a_{ij} = \begin{cases} weight & \text{of the edge between vertex i and j} \\ \infty & \text{otherwise} \end{cases}$$

Example:

	A	В	С	D
A	8	6	7	9
В	6	8	2	∞
С	7	2	8	∞
D	9	8	8	∞

 G_3

Implementing Graphs – Adjacency List

- Each node (vertex) has a list of which nodes it is adjacent.
- Example:

Node	Adjacency List	
A	B, C	
В	C, A	
С	B, A	

Adjacency Matrix or Adjacency List, which one is better?

Implementating Graphs – Analysis

- □ Which implementation is better?
- depends on how your particular application uses the graph.
 - 1. Determine whether there is an edge from vertex *i* to vertex *j*
 - 2. Find all vertices adjacent to a given vertex
- □ Space requirement:
 - Adjacency Matrix: n² entries
 - Adjacency List:

5/20/24

- \square *n* head pointers
- # nodes = # edges (or twice # edges in a directed graph)

 nhminh@FIT-HCMUS

 29

Graph Traversals

- Visit all the vertices that it can reach.
 - Does not need to visit all the vertices? (Why?)
 - Visit only the subset of the graph's vertices: connected component

(a) Connected graph (b) Disconnected graph

Depth-first search

- From a given vertex v, the DFS strategy proceeds along a path from v as deeply into the graph as possible before backing up.
- Example:
 - DFS traversal visitsall the vertices in order:a, b, c, d, g, e, f, h, i

Depth-first search implement

- Recursive version:
 - DFS(v) //Traverses a graph beginning at vertex v
- 1. Mark *v* as visited
- for(each unvisited vertex u adjacent to v)
- 3. DFS(u)
- Iterative version:

DFS embarks the most recently visited vertex

→ LIFO → Stack

Breath-first search

- After visiting a given vertex v, BFS visits every vertex adjacent to v that it can before visiting any other vertex
- Example:
 - BFS traversal visits all the vertices in order: a, b, f, i, c, e, g, d, h

Breadth-first search implement

- Iterative version:
- BFS(v) //Traverses a graph beginning at vertex v
- 1. Q = a new empty queue
- 2. Q.Enqueue(v)
- 3. Mark v as visited
- 4. while(!Q.lsEmpty())
- 5. w = Q.Dequeue()
- 6. for(each unvisited vertex *u* adjacent to *w*)
- 7. Mark *u* as visited
- 8. Q.Enqueue(u)

Applications of Graphs

- Topological Sorting
- Spanning Trees
- Minimum Spanning Trees
- Shortest Paths
- Circuits
- Some Difficult Problems

TOPOLOGICAL SORTING Nguyễn Hải Minh - FIT@HCMUS 5/20/24

Topological Sorting

□ A directed graph without cycles has a linear order called a topological order: a list of vertices where vertex x precedes vertex y

Directed graph G

G arranged according to the topological orders

Topological Sorting Algorithm

TOPOLOGICAL-SORT(G, L, n) //Graph G, list L and number of vertices in G

- 1. n = number of vertices in G
- 2. for step = 1...n
- 3. Select a vertex *v* that has no successors
- 4. Remove v and all edges to v from G
- 5. Add v to L

Topological Sorting

Application:

- Represent the prerequisite structure for academic courses
- Schedule a sequence of jobs or tasks based on their dependencies
- Compute shortest paths quickly

MINIMUM SPANNING TREE Nguyễn Hải Minh - FIT@HCMUS 5/20/24 40

Spanning Trees

☐ A spanning tree of a connected undirected graph G is a subgraph of G that contains all of G's vertices and enough of its edges to form a tree.

There maybe several spanning trees for G

Spanning Trees

- Idea: Remove edges until there are no cycles
- Determine whether a graph contains a cycle:
 - A connected undirected graph that has n vertices must have at least n-1 edges.
 - A connected undirected graph that has n vertices and exactly n-1 edges cannot contain a cycle.
 - A connected undirected graph that has n vertices and more than n-1 edges must contain at least one cycle.
 - → Counting G's vertices and edges

DFS Spanning Tree

DFSTree(v) //Traverses a graph beginning at vertex v

- 1. Mark v as visited
- 2. for(each unvisited vertex *u* adjacent to *v*)
- 3. Mark the edge from *u* to *v*
- 4. DFSTree(u)

BFS Spanning Tree

BFSTree(v) //Traverses a graph beginning at vertex v

- 1. Q = a new empty queue
- 2. Q.Enqueue(v)
- 3. Mark v as visited
- 4. while(!Q.IsEmpty())
- 5. w = Q.Dequeue()
- 6. for(each unvisited vertex *u* adjacent to *w*)
- 7. Mark *u* as visited
- 8. Mark edge between w and u
- 9. Q.Enqueue(u)

Spanning Tree

(a) DFS Spanning Tree

(b) BFS Spanning Tree

Minimum Spanning Trees (MST)

Problem:

Design a telephone wire system so that all customers can call the central office.

Wiring: Naïve Approach

Expensive!

Wiring: Better Approach

Minimize the total length of wire connecting the customers

MST – Prim's algorithm

- ☐ Idea: find a minimum spanning tree *T*
 - At each stage, select a least-cost edge *e* from among those that begin with a vertex *u* in the tree and end with a vertex *v* not in the tree.
 - Add v and e into T.

MST – Prim's algorithm

```
MST-PRIM(G, w, r)
1 for each vertex u \in G.V
2 u.key = \infty
u.\pi = NIL
4r.key = 0
5Q = \emptyset
6 for each vertex u \in GV
7 INSERT(Q, u)
8 while Q \neq \emptyset
    u = \text{EXTRACT-MIN}(Q) // add u to the tree
  for each vertex v in// update keys of u's non-tree
10
        G.Adj[u]
                neighbors
       if v \in Q and w(u, v) < v.key
11
12
           v.\pi = u
          v.key = w(u, v)
13
          DECREASE-KEY(Q, v, w(u, v))
14
```


☐ A weighted, connected, undirected graph

Mark a, consider edges from a

☐ Mark i, include edge (a, i)

■ Mark f, include edge (a, f)

☐ Mark g, include edge (f, g)

■ Mark d, include edge (g, d)

■ Mark h, include edge (d, h)

■ Mark c, include edge (d, c)

☐ Mark e, include edge (c, e)

☐ Mark b, include edge (a, b)

Prim's Algorithm Analysis

- □ The running time of Prim's algorithm depends on the implementation of the min-priority queue:
 - We can use binary heap to implement
 - Line 7: build min-heap: $O(\log_2 |V|)$
 - Line 9: Extract-Min: $O(|V| \log_2 |V|)$
 - For loop from line 10-14: O(|E|)
 - Line 14: Decrease-Key: $O(|E| \log_2 |V|)$
- □ Total: $O((|V| + |E|) \log_2 |V|) = O(|E| \log |V|)$ complexity

Prim's Algorithm Analysis

- □ You can further improve the asymptotic running time of Prim's algorithm by implementing the minpriority queue with a Fibonacci heap.
 - If a Fibonacci heap holds |V| elements:
 - **EXTRACT-MIN** operation takes $O(\log_2 |V|)$ time.
 - INSERT and DECREASE-KEY operation takes only 0(1)
- Therefore, by using a Fibonacci heap to implement the min-priority queue Q, the running time of Prim's algorithm improves to $O(|E| + |V| \log |V|)$

MST Applications

- ☐ Planning how to lay network cable to connect several locations to the internet
- Planning how to efficiently bounce data from router to router to reach its internet destination

☐ Creating a 2D maze (to print on cereal boxes,

etc.)

Nguyễn Hải Minh - FIT@HCMUS

What's next?

- After today:
 - Reading Textbook 2, Chapter 20 (page 630~)
 - Do homework 7
- Next class:
 - Individual Assignment 5
 - Lecture 7 part 2: Finding Shortest Path & Other Graphs Problems

