Section 6.1

Sterling Jeppson

December 25, 2020

Problem 1

In each of (a)-(f), answer the following questions: Is $A \subseteq B$? Is $B \subseteq A$? Is either A or B a proper subset of the other?

- (a) $A = \{2, \{2\}, (\sqrt{2})^2\}, B = \{2, \{2\}, \{\{2\}\}\}\$
- (b) $A = \{3, \sqrt{5^2 4^2}, 24 \mod 7\}, B = \{8 \mod 5\}$
- (c) $A = \{\{1, 2\}, \{2, 3\}\}, B = \{1, 2, 3\}$
- (d) $A = \{a, b, c\}, B = \{\{a\}, \{b\}, \{c\}\}\$
- (e) $A = \{\sqrt{16}, \{4\}\}, B = \{4\}$
- (f) $A = \{x \in \mathbb{R} \mid \cos x \in \mathbb{Z}\}, B = \{x \in \mathbb{R} \mid \sin x \in \mathbb{Z}\}$

- (a) $A = \{2, \{2\}, (\sqrt{2})^2\} = \{2, \{2\}, 2\} = \{2, \{2\}\}\}$. It follows that $A \subseteq B$ because every element in A is in B. $B \nsubseteq A$ because $\{\{2\}\} \in B$ but $\{\{2\}\} \notin A$. It follows that $A \subset B$.
- (b) $A = \{3, \sqrt{5^2 4^2}, 24 \bmod 7\} = \{3, 3, 3\} = \{3\}$ and $B = \{8 \bmod 5\} = \{3\}$. It follows that $A \subseteq B$ and $B \subseteq A$ because every element in A is in B and every element in B is in A. It follows that $A \subset B$ and $B \subset A$.
- (c) $A \nsubseteq B$ because $\{1,2\} \in A$ but $\{1,2\} \notin B$. $B \nsubseteq A$ because $1 \in B$ but $1 \notin A$.
- (d) $A \nsubseteq B$ because $a \in A$ but $a \notin B$. $B \nsubseteq A$ because $\{a\} \in B$ but $\{a\} \notin A$.
- (e) $A = {\sqrt{16}, \{4\}} = {4, \{4\}}$. $B \subseteq A$ because every element in B is in A. $A \nsubseteq B$ because $\{4\} \in A$ but $\{4\} \notin B$. It follows that $B \subset B$.
- (f) $A = \{x \in \mathbb{R} \mid \cos x \in \mathbb{Z}\} = \{x \in \mathbb{R} \mid x = \frac{\pi}{2}n \text{ for some } n \in \mathbb{Z}\} = B$. It follows that $A \subseteq B$ and $B \subseteq A$.

Problem 2

Complete the proof from example 6.1.3: Prove that $B \subseteq A$ where

$$A = \{ m \in \mathbb{Z} \mid m = 2a \text{ for some integer } a \}$$

and

$$B = \{ n \in \mathbb{Z} \mid n = 2b - 2 \text{ for some integer } b \}$$

Solution

Part 2, proof that $B \subseteq A$: Suppose x is a particular but arbitrary element of B. By definition of B, there is an integer b such that x = 2b - 2 = 2(b - 1). It follows from closure under subtraction that b - 1 is an integer. Let that integer be t. Then x = 2t for some integer t. It follows that $B \subseteq A$.

Problem 3

Let sets R, S, and T be defined as follows:

 $R = \{x \in \mathbb{Z} \mid x \text{ is divisible by } 2\}$

 $S = \{ y \in \mathbb{Z} \mid y \text{ is divisible by } 3 \}$

 $T = \{ z \in \mathbb{Z} \mid Z \text{ is divisible by 6} \}$

- a. Is $R \subseteq T$? Explain.
- b. Is $T \subseteq R$? Explain.
- c. Is $T \subseteq S$? Explain.

Solution

- a. $R \nsubseteq T$ because there are elements in R that are not in T. For example, $2 \in R$ but $2 \notin T$ as $6 \nmid 2$.
- b. $T \subseteq R$. To see why this is so, suppose that z is a particular but arbitrary element of T. Then there is an integer q such that z = 6q = 2(3q). It follows that $2 \mid z$ and so $z \in R$.
- c. $T \subseteq S$. To see why this is so, suppose that z is a particular but arbitrary element of T. Then there is an integer q such that z = 6q = 3(2q). It follows that $3 \mid z$ and so $z \in S$.

Problem 4

Let $A = \{n \in \mathbb{Z} \mid n = 5r \text{ for some integer } r\}$ and $B = \{m \in \mathbb{Z} \mid m = 20s \text{ for some integer } s\}.$

- a. Is $A \subseteq B$? Explain.
- b. Is $B \subseteq A$? Explain.

- a. $A \not\subseteq B$ because there are elements in A that are not in B4. For example, $5 \in A$ but $5 \notin B$.
- b. $B \subseteq A$. To see why this is so suppose that m is any element in B. Then m = 20s = 5(4s). It follows that $m \in A$.

Problem 5

Let $C = \{n \in \mathbb{Z} \mid n = 6r - 5 \text{ for some integer } r\}$ and $D = \{m \in \mathbb{Z} \mid m = 3s + 1 \text{ for some integer } s\}$. Prove or disprove each of the following statements

a. $C \subseteq D$

b. $D \subseteq C$

Solution

a. $C \subseteq D$.

Proof. Suppose that n is any element in C. Then

$$n = 6r - 5 = 6r - 6 + 1 = 3(2r - 1) + 1$$

It follows that $n \in D$.

b. $D \nsubseteq C$ because there are elements in D that are not in C. For example, $4 \in D$ but $4 \notin C$

Problem 6

Let $\{A = x \in \mathbb{Z} \mid x = 5a + 2 \text{ for some integer } a\}$, $\{B = y \in \mathbb{Z} \mid y = 10b - 3 \text{ for some integer } b\}, \text{ and }$ $\{C=z\in\mathbb{Z}\mid z=10c+7 \text{ for some integer } c\}$. Prove or disprove the following

a. $A \subseteq B$ b. $B \subseteq A$ c. B = C

Solution

statements.

- a. $A \nsubseteq B$ because there are elements in A that are not in B. For example, $2 \in A$ but $2 \notin B$.
- b. $B \subseteq A$.

Proof. Suppose that y is any element in B. Then

$$y = 10b - 3 = 10b - 5 + 2 = 5(2b - 1) + 2$$

It follows that $y \in A$.

c. B = C.

Proof. Part 1, proof that $B \subseteq C$: Suppose that y is any element in B. Then

$$y = 10b - 3 = 10b - 10 + 7 = 10(b - 1) + 7$$

It follows that $y \in C$.

Part 2, proof that $C \subseteq B$: Suppose that z is any element in C. Then

$$z = 10c + 7 = 10c + 10 - 3 = 10(c + 1) - 3$$

It follows that $z \in B$.

Now since $B \subseteq C$ and $C \subseteq B$ it follows from the definition of set equality that B = C.

Problem 7

Let $\{A = x \in \mathbb{Z} \mid x = 6a + 4 \text{ for some integer } a\}$,

 $\{B = y \in \mathbb{Z} \mid y = 18b - 2 \text{ for some integer } b\}, \text{ and }$

 $\{C=z\in\mathbb{Z}\mid z=18c+16 \text{ for some integer }c\}$. Prove or disprove the following statements.

- a. $A \subseteq B$
- b. $B \subseteq A$ c. B = C

Solution

- a. $A \nsubseteq B$ because there are elements in A that are not in B. For example, $4 \in A$ but $4 \notin B$.
- b. $B \subseteq A$.

Proof. Suppose that y is any element in B. Then

$$y = 18b - 2 = 18b - 6 + 4 = 6(3b - 1) + 4$$

It follows that $y \in A$.

c. B = C.

Proof. Part 1, proof that $B \subseteq C$: Suppose that y is any element in B. Then

$$y = 18b - 2 = 18b - 18 + 16 = 18(b - 1) + 16$$

It follows that $y \in C$.

Part 2, proof that $C \subseteq B$: Suppose that z is any element in C. Then

$$z = 18c + 16 = 18c + 18 - 2 = 18(c+1) - 2$$

It follows that $z \in B$.

Now since $B \subseteq C$ and $C \subseteq B$ it follows from the definition of set equality that B = C.

Problem 8

Write in words how to read each of the following out loud. Then write the shorthand notation for each set

- a. $\{x \in U \mid x \in A \text{ and } x \in B\}$
- b. $\{x \in U \mid x \in A \text{ or } x \in B\}$
- c. $\{x \in U \mid x \in A \text{ and } x \notin B\}$
- d. $\{x \in U \mid x \notin A\}$

Solution

- a. The set of all x in U such that x is in A and x is in B. The shorthand notation is $A \cap B$.
- b. The set of all x in U such that x is in A or x is in B. The shorthand notation is $A \cup B$.
- c. The set of all x in U such that x is in A and x is not in B. The shorthand notation is A - B.
- d. The set of all x in U such that x is not in A. The shorthand notation is A.

Problem 9 and solution

Complete the following sentences without using symbols \cup , \cap , or -.

- a. $x \notin A \cup B$ if, and only if, x is not in A and x is not in B.
- b. $x \notin A \cap B$ if, and only if, x is not in A or x is not in B.
- c. $x \notin A B$ if, and only if, x is not in A or x is in B.

Problem 10 and solution

let $A = \{1, 3, 5, 7, 9\}$, $B = \{3, 6, 9\}$, and $C = \{2, 4, 6, 8\}$. Find each of the following:

- a. $A \cup B = \{1, 3, 5, 6, 7, 9\}$
- e. $A B = \{1, 5, 7\}$
- b. $A \cap B = \{3, 0\}$

- f. $B A = \{6\}$
- c. $A \cup C = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ g. $B \cup C = \{2, 3, 4, 6, 8, 9\}$

d. $A \cap C = \emptyset$

h. $B \cap C = \{6\}$

Problem 11 and solution

Let U be the set \mathbb{R} of real numbers and let $A = \{x \in \mathbb{R} \mid 0 < x \leq 2\},\$ $B = \{x \in \mathbb{R} \mid 1 \le x < 4\}, \text{ and } C = \{x \in \mathbb{R} \mid 3 \le x < 9\}.$ Find each of the following:

- a. $A \cup B = \{x \in \mathbb{R} \mid 0 < x < 4\}$
- b. $A \cap B = \{x \in \mathbb{R} \mid 1 \le x \le 2\}$
- c. $\overline{A} = \{x \in \mathbb{R} \mid x \le 0 \text{ or } x > 2\}$
- d. $A \cup C$
 - $= \{ x \in \mathbb{R} \mid 0 < x \le 2 \text{ or } 3 \le x < 9 \}$
- e. $A \cap C = \emptyset$

- f. $\overline{B} = \{x \in \mathbb{R} \mid x < 1 \text{ or } x \ge 4\}$
- g. $\overline{A} \cap \overline{B} = \{x \in \mathbb{R} \mid x \le 0 \text{ or } x \ge 4\}$
- h. $\overline{A} \cup \overline{B} = \{x \in \mathbb{R} \mid x < 1 \text{ or } x > 2\}$
- i. $\overline{(A \cap B)} = \{x \in \mathbb{R} \mid x < 1 \text{ or } x > 2\}$
- j. $\overline{(A \cup B)} = \{x \in \mathbb{R} \mid x < 0 \text{ or } x > 4\}$

Problem 12 and solution

Let U be the set \mathbb{R} of real numbers and let $A = \{x \in \mathbb{R} \mid -3 \le x \le 0\},\$ $B = \{x \in \mathbb{R} \mid -1 < x < 2\}, \text{ and } C = \{x \in \mathbb{R} \mid 6 < x \le 8\}.$ Find each of the following:

- a. $A \cup B = \{x \in \mathbb{R} \mid -3 \le x < 2\}$
- b. $A \cap B = \{x \in \mathbb{R} \mid -1 < x \le 0\}$
- c. $\overline{A} = \{x \in \mathbb{R} \mid x < 3 \text{ or } x > 0\}$
- e. $A \cap C = \emptyset$
- f. $\overline{B} = \{x \in \mathbb{R} \mid x < -1 \text{ or } x > 2\}$
- g. $\overline{A} \cap \overline{B} = \{x \in \mathbb{R} \mid x < -3 \text{ or } x > 2\}$
- h. $\overline{A} \cup \overline{B} = \{x \in \mathbb{R} \mid x < -1 \text{ or } x > 0\}$
- $= \{x \in \mathbb{R} \mid -3 \le x \le 0 \text{ or } 6 < x \le 8\} \quad \text{i. } \overline{(A \cap B)} = \{x \in \mathbb{R} \mid x \le -1 \text{ or } x > 0\}$
 - j. $\overline{(A \cup B)} = \{x \in \mathbb{R} \mid x < 3 \text{ or } x > 2\}$

Problem 13 and solution

Indicate which of the following relationships are true and which are false:

- a. $\mathbb{Z}^+ \subseteq \mathbb{Q}$: True
- b. $\mathbb{R}^- \subseteq \mathbb{Q}$: False as $-\sqrt{2} \in \mathbb{R}^-$ but $-\sqrt{2} \notin \mathbb{Q}$
- c. $\mathbb{Q} \subseteq \mathbb{Z}$: False as $\frac{1}{2} \in \mathbb{Q}$ but $\frac{1}{2} \notin \mathbb{Z}$
- d. $\mathbb{Z}^- \cup \mathbb{Z}^+ = Z$: False as $0 \in \mathbb{Z}$ but $0 \notin \mathbb{Z}^+$ and $0 \notin \mathbb{Z}^-$
- e. $\mathbb{Z}^- \cap \mathbb{Z}^+ = \emptyset$: True
- f. $\mathbb{Q} \cap \mathbb{R} = \mathbb{Q}$: True
- g. $\mathbb{Q} \cup \mathbb{Z} = \mathbb{Q}$: True
- h. $\mathbb{Z}^+ \cap \mathbb{R} = \mathbb{Q}$: True
- i. $\mathbb{Z} \cup \mathbb{Q} = \mathbb{Z}$: False as $\frac{1}{2} \in \mathbb{Z} \cup \mathbb{Q}$ but $\frac{1}{2} \notin \mathbb{Z}$

Problem 14

In each of the following, draw a Venn diagram for sets A, B, and C that satisfy the given conditions:

- a. $A \subseteq B$; $C \subseteq B$; $A \cap C = \emptyset$
- b. $C \subseteq A$; $B \cap C = \emptyset$

 $A \subseteq B$; $C \subseteq B$; $A \cap C = \emptyset$

$$C \subseteq A; B \cap C = \emptyset$$

Problem 15

Draw Venn diagrams to describe sets A, B, and C that satisfy the given conditions:

- a. $A \cap B = \emptyset$; $A \subseteq C$; $C \cap B \neq \emptyset$
- b. $A \subseteq B$; $C \subseteq B$; $A \cap C \neq \emptyset$
- c. $A \cap B \neq \emptyset$; $B \cap C \neq \emptyset$; $A \cap C = \emptyset$; $A \nsubseteq B$; $C \nsubseteq B$

Solution

Venn Diagram A

Venn Diagram B

Venn Diagram C

Problem 16

Let $A = \{a, b, c\}, B = \{b, c, d\}$ and $C = \{b, c, e\}.$

- a. Find $A \cup (B \cap C)$, $(A \cup B) \cap C$, and $(A \cup B) \cap (A \cup C)$. Which of these sets are equal?
- b. Find $A \cap (B \cup C)$, $(A \cap B) \cup C$, and $(A \cap B) \cup (A \cap C)$. Which of these sets are equal?
- c. Find (A B) C and A (B C). Are these sets equal?

- a. $A \cup (B \cap C) = \{a,b,c\}, (A \cup B) \cap C = \{b,c\}, \text{ and } (A \cup B) \cap (A \cup C) = \{a,b,c\}.$ Hence $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
- b. $A \cap (B \cup C) = \{b, c\}, (A \cap B) \cup C = \{b, c, e\}, \text{ and } (A \cap B) \cup (A \cap C) = \{b, c\}.$ Hence $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
- c. $(A-B)-C = \{a\}$ and $A-(B-C) = \{a,b,c\}$. Hence $(A-B)-C \neq A-(B-C)$.

Problem 17

Consider the Venn diagram shown below. For each of (a)-(f), copy the diagram and shade the region corresponding to the indicated set.

- a. $A \cap B$
- c. \overline{A}

e. $\overline{(A \cup B)}$

- b. $B \cup C$
- d. $A (B \cup C)$
- f. $\overline{A} \cap \overline{B}$

Solution

Venn Diagram A

Venn Diagram B

Venn Diagram C

Venn Diagram D

Venn Diagram E

Venn Diagram F

Problem 18

- a. Is the number 0 in \emptyset ? Why?
- c. Is $\emptyset \in {\{\emptyset\}}$? Why?

b. Is $\emptyset = {\emptyset}$? Why?

d. Is $\emptyset \in \emptyset$? Why?

- a. No. $0 \notin \emptyset$ because \emptyset has no elements.
- b. No. \emptyset is the empty set; it has no elements. $\{\emptyset\}$ is a set with one element: \emptyset .
- c. Yes. $\{\emptyset\}$ is a set which contains \emptyset .
- d. No. $\emptyset \not \in \emptyset$ because the empty set has no elements.

Problem 19 and solution

let $A_i = \{i, i^2\}$ for all integers i = 1, 2, 3, 4.

a.
$$A_1 \cup A_2 \cup A_3 \cup A_4 = \{1, 2, 3, 4, 9, 16\}$$

b.
$$A_1 \cap A_2 \cap A_3 \cap A_4 = \emptyset$$

c.
$$A_1, A_2, A_3$$
, and A_4 are not mutually disjoint because $A_2 \cap A_4 = \{4\} \neq \emptyset$.

Problem 20 and solution

Let $B_i = \{x \in \mathbb{R} \mid 0 \le x \le i\}$ for all integers i = 1, 2, 3, 4.

a.
$$B_1 \cup B_2 \cup B_3 \cup B_4 = \{x \in \mathbb{R} \mid 0 \le x \le 4\}$$

b.
$$B_1 \cap B_2 \cap B_3 \cap B_4 = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$$

c.
$$B_1, B_2, B_3$$
, and B_4 are not mutually disjoint because $B_1 \cap B_2 \cap B_3 \cap B_4 \neq \emptyset$.

Problem 21 and solution

Let $C_i = \{i, -i\}$ for all nonnegative integers i.

a.
$$\bigcup_{i=0}^{4} C_i = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$$

b.
$$\bigcap_{i=0}^{4} C_i = \emptyset$$

c. $C_0, C_1, C_2, ...$ are mutually disjoint because $C_i \cap C_j = \emptyset$ for all i, j = 1, 2, 3, ... whenever $i \neq j$.

d.
$$\bigcup_{i=0}^{n} C_i = \{-n, -(n-1), ..., -2, -1, 0, 1, 2, ..., (n-1), n\}$$

e.
$$\bigcap_{i=0}^{n} C_i = \emptyset$$

f.
$$\bigcup_{i=0}^{\infty} C_i = \mathbb{Z}$$
, the set of all integers.

g.
$$\bigcap_{i=0}^{\infty} C_i = \emptyset$$

Problem 22 and solution

Let $D_i = \{x \in \mathbb{R} \mid -i \le x \le i\} = [-i, i]$ for all nonnegative integers i.

a.
$$\bigcup_{i=0}^{4} D_i = \{x \in \mathbb{R} \mid 4 \le x \le 4\} = [4, 4]$$

b.
$$\bigcap_{i=0}^{4} D_i = \{0\}$$

c. $D_0, D_1, D_2, ...$ are not mutually disjoint because $0 \in D_0$ and $0 \in D_1$.

d.
$$\bigcup_{i=0}^{n} D_i = \{x \in \mathbb{R} \mid -n \le x \le n\} = [-n, n]$$

e.
$$\bigcap_{i=0}^{n} D_i = \{0\}$$

f.
$$\bigcup_{i=0}^{\infty} C_i = \mathbb{R}$$
, the set of all real numbers.

$$g. \bigcap_{i=0}^{\infty} C_i = \{0\}$$

Problem 23 and solution

Let $V_i = \left\{ x \in \mathbb{R} \mid -\frac{1}{i} \le x \le \frac{1}{i} \right\} = \left[-\frac{1}{i}, \frac{1}{i} \right]$ for all positive integers i.

a.
$$\bigcup_{i=1}^{4} V_i = \{ x \in \mathbb{R} \mid -1 \le x \le 1 \} = [-1, 1]$$

b.
$$\bigcap_{i=1}^{4} V_i = \left\{ x \in \mathbb{R} \mid -\frac{1}{4} \le x \le \frac{1}{4} \right\} = \left[-\frac{1}{4}, \frac{1}{4} \right]$$

c. V_0, V_1, V_2, \dots are not mutually disjoint because $1/4 \in V_1$ and $1/4 \in V_4$.

d.
$$\bigcup_{i=1}^{n} V_i = \{x \in \mathbb{R} \mid -1 \le x \le 1\} = [-1, 1]$$

e.
$$\bigcap_{i=1}^{n} V_i = \left\{ x \in \mathbb{R} \mid -\frac{1}{n} \le x \le \frac{1}{n} \right\} = \left[-\frac{1}{n}, \frac{1}{n} \right]$$

f.
$$\bigcup_{i=1}^{\infty} V_i = \{x \in \mathbb{R} \mid -1 \le x \le 1\} = [-1, 1]$$

g.
$$\bigcap_{i=1}^{\infty} V_i = \{0\}$$

Problem 24 and solution

Let $W_i = \{x \in \mathbb{R} \mid x > i\} = (i, \infty)$ for all nonnegative integers i.

a.
$$\bigcup_{i=0}^{4} W_i = \{x \in \mathbb{R} \mid x > 0\} = (0, \infty) = \mathbb{R}^+$$

b.
$$\bigcap_{i=0}^{4} W_i = \{x \in \mathbb{R} \mid x > 4\} = (4, \infty)$$

c. $W_0, W_1, W_2, ...$ are not mutually disjoint because $2 \in W_0$ and $2 \in W_1$.

d.
$$\bigcup_{i=0}^{n} W_i = \{x \in \mathbb{R} \mid x > 0\} = (0, \infty) = \mathbb{R}^+$$

e.
$$\bigcap_{i=0}^{n} W_i = \{x \in \mathbb{R} \mid x > n\} = (n, \infty)$$

f.
$$\bigcup_{i=0}^{\infty} W_i = \{x \in \mathbb{R} \mid x > 0\} = (0, \infty) = \mathbb{R}^+$$

g.
$$\bigcap_{i=0}^{\infty} W_i = \emptyset$$

Problem 25 and solution

Let $R_i = \left\{ x \in \mathbb{R} \mid 1 \le x \le 1 + \frac{1}{i} \right\} = \left[1, 1 + \frac{1}{i} \right]$ for all positive integers i.

a.
$$\bigcup_{i=1}^{4} R_i = \{x \in \mathbb{R} \mid 1 \le x \le 2\} = [1, 2]$$

b.
$$\bigcap_{i=1}^{4} R_i = \left\{ x \in \mathbb{R} \mid 1 \le x \le \frac{5}{4} \right\} = \left[1, \frac{5}{4} \right]$$

c. $R_0, R_1, R_2, ...$ are not mutually disjoint because $1 \in R_1$ and $1 \in R_2$.

d.
$$\bigcup_{i=1}^{n} R_i = \{x \in \mathbb{R} \mid 1 \le x \le 2\} = [1, 2]$$

e.
$$\bigcap_{i=1}^{n} R_i = \left\{ x \in \mathbb{R} \mid 1 \le x \le 1 + \frac{1}{n} \right\} = \left[1, 1 + \frac{1}{n} \right]$$

f.
$$\bigcup_{i=1}^{\infty} R_i = \{x \in \mathbb{R} \mid 1 \le x \le 2\} = [1, 2]$$

g.
$$\bigcap_{i=1}^{\infty} R_i = \{1\}$$

Problem 26 and solution

Let $S_i = \left\{ x \in \mathbb{R} \mid 1 < x < 1 + \frac{1}{i} \right\} = \left(1, 1 + \frac{1}{i} \right)$ for all positive integers i.

a.
$$\bigcup_{i=1}^{4} S_i = \{x \in \mathbb{R} \mid 1 < x < 2\} = (1, 2)$$

b.
$$\bigcap_{i=1}^{4} S_i = \left\{ x \in \mathbb{R} \mid 1 < x < \frac{5}{4} \right\} = \left(1, \frac{5}{4} \right)$$

c. S_0, S_1, S_2, \dots are not mutually disjoint because $1.2 \in S_1$ and $1.2 \in S_2$.

d.
$$\bigcup_{i=1}^{n} S_i = \{x \in \mathbb{R} \mid 1 < x < 2\} = (1, 2)$$

e.
$$\bigcap_{i=1}^{n} S_i = \left\{ x \in \mathbb{R} \mid 1 < x < 1 + \frac{1}{n} \right\} = \left(1, 1 + \frac{1}{n} \right)$$

f.
$$\bigcup_{i=1}^{\infty} S_i = \{x \in \mathbb{R} \mid 1 < x < 2\} = (1, 2)$$

g.
$$\bigcap_{i=1}^{\infty} S_i = \emptyset$$

Problem 27 and Solution

- a. $\{\{a,d,e\},\{b,c\},\{d,f\}\}\$ is not a partition of $\{a,b,c,d,e,f\}$ because the sets $\{\{a,d,e\},\{b,c\},\{d,f\}\}$ are not mutually disjoint as $\{b,c\}$ and $\{d,f\}$ both contain the element d.
- b. $\{\{w, x, v\}, \{u, y, q\}, \{p, z\}\}\$ is a partition of $\{p, q, u, v, w, x, y, z\}$ because $\{w, x, v\}, \{u, y, q\},$ and $\{p, z\}$ are mutually disjoint and $\{w, x, v\} \cup \{u, y, q\} \cup \{p, z\} = \{p, q, u, v, w, x, y, z\}.$
- c. $\{\{5,4\},\{7,2\},\{1,3,4\},\{6,8\}\}\$ is not a partition of $\{1,2,3,4,5,6,7,8\}$ because the sets $\{\{5,4\},\{7,2\},\{1,3,4\},\{6,8\}\}$ are not mutually disjoint as $\{5,4\}$ and $\{1,3,4\}$ both contain the element 4.
- d. $\{\{3,7,8\},\{2,9\},\{1,4,5\}\}$ is not a partition of $\{1,2,3,4,5,6,7,8,9\}$ as $\{3,7,8\}\cup\{2,9\}\cup\{1,4,5\}=\{1,2,3,4,5,7,8,9\}\neq\{1,2,3,4,5,6,7,8,9\}$.
- e. $\{\{1,5\},\{4,7\},\{2,8,6,3\}\}\$ is a partition of $\{1,2,3,4,5,6,7,8\}$ as $\{1,5\},\{4,6\}$ and $\{2,8,6,3\}$ are mutually disjoint and $\{1,5\}\cup\{4,7\}\cup\{2,8,6,3\}=\{1,2,3,4,5,6,7,8\}$.

Problem 28

Let E be the set of all even integers and O be the set of all odd integers. Is $\{E,O\}$ a partition of \mathbb{Z} the set of all integers? Explain your answer.

Solution

We can rewrite the set E as $E=\{a\in\mathbb{Z}\mid a=2c \text{ for some integer c}\}$ and the set O as $O=\{b\in\mathbb{Z}\mid b=2d+1 \text{ for some integer d}\}$. It follows from theorem 4.6.1 which states that there is no integer that is both even an odd that $E\cap O=\emptyset$. Hence E and O are mutually disjoint. Finally, $E\cup O=\{e\in\mathbb{Z}\mid e=2g \text{ or } e=2g+1 \text{ for some integer } g\}$. It follows from the quotient-remainder theorem that every integer can be expressed in the form 2g or 2g+1 for some integer g and so $\{E,O\}$ is a partition of Z.

Problem 29

Let R be the set of all real numbers. Is $\{\mathbb{R}^+, \mathbb{R}^-, \{0\}\}$ a partition of \mathbb{R} ? Explain your answer.

Solution

It follows from definition that $\mathbb{R}^+ \cap \mathbb{R}^- \cap \{0\} = \emptyset$. Hence $\{\mathbb{R}^+, \mathbb{R}^-, \{0\}\}$ are mutually disjoint. Finally $\{\mathbb{R}^+ \cup \mathbb{R}^- \cup \{0\}\} = \mathbb{R}$ and so $\{\mathbb{R}^+, \mathbb{R}^-, \{0\}\}$ form a partition of \mathbb{R} .

Problem 30

Let \mathbb{Z} be the set of all integers and let

```
A_0 = \{n \in \mathbb{Z} \mid n = 4k, \text{ for some integer } k\}
A_1 = \{n \in \mathbb{Z} \mid n = 4k + 1, \text{ for some integer } k\}
A_2 = \{n \in \mathbb{Z} \mid n = 4k + 2, \text{ for some integer } k\}
A_3 = \{n \in \mathbb{Z} \mid n = 4k + 3, \text{ for some integer } k\}
```

Is $\{A_0, A_1, A_2, A_3\}$ a partition of \mathbb{Z} ? Explain your answer.

It follows from the quotient remainder theorem that any integer n can be represented in exactly one of the following ways

$$n = 4k$$
 or $n = 4k + 1$ or $n = 4k + 2$ or $4k + 3$

for some integer k. Hence $A_0 \cap A_1 \cap A_2 \cap A_3 = \emptyset$ and $A_0 \cup A_1 \cup A_2 \cup A_3 = \mathbb{Z}$. It follows that $\{A_0, A_1, A_2, A_3\}$ is a partition of \mathbb{Z} .

Problem 31 and solution

Suppose $A = \{1, 2\}$ and $B = \{2, 3\}$. Find each of the following:

a.
$$\mathcal{P}(A \cap B) = \{\emptyset, \{2\}\}\$$

b.
$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}\$$

c.
$$\mathcal{P}(A \cup B) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$$

$$\begin{split} \text{d. } \mathscr{P}(A\times B) &= \{\emptyset, \{(1,2)\}, \{(1,3)\}, \{(2,2)\}, \{(2,3)\}, \{(1,2), (1,3)\}, \{(1,2), (2,2)\} \\ &\quad \{(1,2), (2,3)\}, \{(1,3), (2,2)\}, \{(1,3), (2,3)\}, \{(2,2), (2,3)\} \\ &\quad \{(1,2), (1,3), (2,2)\}, \{(1,2), (1,3), (2,3)\}, \{(1,2), (2,2), (2,3)\} \\ &\quad \{(1,3), (2,2), (2,3)\}, \{(1,2), (1,3), (2,2), (2,3)\} \} \end{split}$$

Problem 32

- a. Suppose $A = \{1\}$ and $B = \{u, v\}$. Find $\mathcal{P}(A \times B)$.
- b. Suppose $X = \{a, b\}$ and $Y = \{x, y\}$. Find $\mathcal{P}(X \times Y)$.

Solution

Problem 33 and solution

- a. $\mathcal{P}(\emptyset) = \{\emptyset\}$
- b. $\mathscr{P}(\mathscr{P}(\emptyset)) = \mathscr{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\$
- c. $\mathscr{P}(\mathscr{P}(\mathscr{P}(\emptyset))) = \mathscr{P}(\{\emptyset, \{\emptyset\}\}) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}$

Problem 34

Let $A_1 = \{1, 2, 3\}, A_2 = \{u, v\}, \text{ and } A_3 = \{m, n\}.$ Find each of the following sets.

- a. $A_1 \times (A_2 \times A_3)$
- b. $(A_1 \times A_2) \times A_3$
- c. $A_1 \times A_2 \times A_3$

a.
$$A_1 \times (A_2 \times A_3) = \{1, 2, 3\} \times \{(u, m), (u, n), (v, m), (v, n)\}$$

$$= \{(1, (u, m)), (1, (u, n)), (1, (v, n)), (1, (v, n))$$

$$(2, (u, m)), (2, (u, n)), (2, (v, n)), (2, (v, n))$$

$$(3, (u, m)), (3, (u, n)), (3, (v, n)), (3, (v, n))\}$$
b. $(A_1 \times A_2) \times A_3 = \{(1, u), (1, v), (2, u), (2, v), (3, u), (3, v)\} \times \{m, n\}$

$$((1, u), m), ((1, v), m), ((2, u), m), ((2, v), m), ((3, u), m), ((3, v), m)$$

$$((1, u), n), ((1, v), n), ((2, u), n), ((2, v), n), ((3, u), n), ((3, v), n)\}$$
c. $A_1 \times A_2 \times A_3 = \{1, 2, 3\} \times \{u, v\} \times \{m, n\}$

$$= \{(1, u, m), (1, u, n), (1, v, m), (1, v, n)$$

$$(2, u, m), (2, u, n), (2, v, m), (2, v, n)$$

$$(3, u, m), (3, u, n), (3, v, m), (3, v, n)\}$$

Problem 35

Let $A = \{a, b\}, B = \{1, 2\}$ and $C = \{2, 3\}$. Find each of the following sets.

a.
$$A \times (B \cup C)$$

b.
$$(A \times B) \cup (A \times C)$$

c.
$$(A \times (B \cap C))$$

d.
$$(A \times B) \cap (A \times C)$$

Solution

$$\begin{aligned} \text{a.} \quad & A \times (B \cup C) = \{a,b\} \times \{1,2,3\} = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\} \\ \text{b.} \quad & (A \times B) \cup (A \times C) = \{(a,1),(a,2),(b,1),(b,2)\} \cup \{(a,2),(a,3),(b,2),(b,3)\} \\ & = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\} \\ \text{c.} \quad & (A \times (B \cap C) = \{a,b\} \times \{2\} = \{(a,2),(b,2)\} \\ \text{d.} \quad & (A \times B) \cap (A \times C) = \{(a,1),(a,2),(b,1),(b,2)\} \cap \{(a,2),(a,3),(b,2),(b,3)\} \\ & = \{(a,2),(b,2)\} \end{aligned}$$

Problem 36

Trace the action of algorithm 6.1.1 on the variables i, j, found, and answer for m = 3, n = 3, and sets A and B represented as the arrays a[1] = u, a[2] = v, a[3] = w, b[1] = w, b[2] = u, b[3] = v.

	i	1			2				3	4
ſ	j	1	2	3	1	2	3	4	1	
	found	no	yes		no		yes		yes	
Γ	answer	$A \subseteq B$								

Problem 36

Trace the action of algorithm 6.1.1 on the variables i, j, found, and answer for m=4, n=4, and sets A and B represented as the arrays a[1]=u, a[2]=v, a[3]=w, a[4]=x, b[1]=r, b[2]=u, b[3]=y, b[4]=z.

Solution

i	1			2				
j	1	2	3	1	2	3	4	5
found	no	yes		no				
answer	$A \subseteq B$							$A \nsubseteq B$

Problem 37

Write an algorithm to determine whether a given element x, belongs to a given set, which is represented as an array a[1], a[2], ..., a[n].

Solution

Algorithm 11

1: **Input:** x [an element to be found], a[1], a[2], a[3], ...a[n] [an array of n elements which represents the set], n [a positive integer]

```
2: i := 1

3: answer := False

4: while (i \le n \text{ and } answer = False) do

5: if a[i] = x then

6: answer := True

7: end if

8: i := i + 1

9: end while
```

10: Output: answer