A PROJECT REPORT

On

ENHANCED IDLE BUSY BASED TASK ROUTING APPROACH FOR DECENTRALIZED DISTRIBUTED SYSTEMS

Submitted in partial fulfillment of the

requirements for the degree of

BACHELOR OF TECHNOLOGY

In

Information and Communication Technology

Submitted by

116014045 - Janani T N

116014107 – Sushmita S

Under the Guidance of

Prof. Lavanya M

APII / ICT

April 2016

SHANMUGHA ARTS, SCIENCE, TECHNOLOGY & RESEARCH ACADEMY SASTRA UNIVERSITY

(A University Established under section 3 of the UGC Act, 1956)

SCHOOL OF COMPUTING BONAFIDE CERTIFICATE

This is to certify that the project entitled

ENHANCED IDLE BUSY BASED TASK ROUTING APPROACH FOR DECENTRALIZED DISTRIBUTED SYSTEMS

is a work done by

116014045 - Janani T N

116014107 - Sushmita S

BACHELOR OF TECHNOLOGY

IN

INFORMATION AND COMMUNICATION TECHNOLOGY OF SASTRA UNIVERSITY, Thanjavur during the year 2015-2016

Internal Guide	Associate Dean/ICT
Submitted for the university examination held on:	

Internal Examiner External Examiner

SHANMUGHA ARTS, SCIENCE, TECHNOLOGY & RESEARCH ACADEMY SASTRA UNIVERSITY

(A University Established under section 3 of the UGC Act, 1956)

TIRUMALAISAMUDRAM, THANJAVUR - 613401

DECLARATION

We submit this project entitled **ENHANCED IDLE BUSY BASED TASK ROUTING APPROACH FOR DECENTRALIZED DISTRIBUTED SYSTEMS** to Shanmugha Arts, Science, Technology & Research Academy, SASTRA University, Tirumalaisamudram, Thanjavur-613402 in partial fulfillment of the requirement for the award of the degree of "**BACHELOR OF TECHNOLOGY IN INFORMATION AND COMMUNICATION TECHNOLOGY**" and declare that it is my original and independent work carried out under the guidance of Prof. Lavanya M.

Date: Signature: 1, 2

Place: THANJAVUR Name: ¹Janani T N, ² Sushmita S

Reg. No: 1116014045, 2116014107

ACKNOWLEDGEMENT

We would forever remain grateful to honorable **Prof. R.Sethuraman, Vice Chancellor** for his encouragement in our academic life at SASTRA University.

We wish to express my profound gratitude to **Dr. S. Vaidhyasubramaniam**, **Dean** - **Planning & Development**, **Dr. S. Swaminathan**, **Director CeNTAB** and **Prof. G. Bhalachandran**, **Registrar** for their overwhelming support provided during my course span in SASTRA University.

We are extremely thankful to **Dr. P. Swaminathan, Dean School of Computing** and **Dr. K.S.Ravichandran, Associate Dean, Department of Information and Communication Technology** for providing me the opportunity to do this project and for all the academic help extended in my project.

We sincerely express our gratitude to our mentor **Prof. Lavanya M, APII, Department of Information and Communication Technology** for his assistance and guidance for the successful implementation of project in a systematic and professional manner.

We also thank all the **Teaching and Non-teaching staff**, and those who have directly or indirectly helped us by extending their moral support and encouragement for completion of this project.

We thank God Almighty and my parents for helping us procure such a challenging and interesting project, and in completing the same in due course without much difficulty.

SYNOPSIS

Distributed computing is a field of computer science that studies distributed systems. The components interact with each other in order to achieve a common goal. In distributed computing, a problem is divided into many tasks, each of which is solved by one or more computers. Distributed computing platforms are widely spread, harnessing the power of many computers to solve problems with heavy resource needs.

The major issue of distributed computing is scheduling of tasks over billions of nodes. The apportionments of the millions of tasks over the nodes are not secure in centralized scheduling models. The decentralized novel distribution scheme proposes three kinds of scheduling policies which can be enhanced further.

We present two algorithms which further enhances the efficiency of the decentralized novel distribution scheme. The basic criterion is that the memory and disk requirements of the task should always be lesser than the disk and memory of the nodes. The number of tasks to be submitted and task length of each task is accepted from the user. The node capacity is calculated and the task is routed to the most efficient node available of performing it. In Idle Busy Policy, we adopt a method of checking the computing efficiency of the execution nodes if two or more available nodes have same memory and disk space requirements. This minimizes the waiting time for the tasks. We also propose a mechanism for minimizing the make span by allocating tasks to those nodes in which queues remain the shortest. Make-span minimization policy is implemented to reduce the completion time of the currently executing nodes.

TABLE OF CONTENTS

Chapter No.	Contents	Page No
1	Introduction	
	1.1 Introduction	1
	1.2 Project Background	1
	1.3 Existing System	2
2	Software Project Plan	
	2.1 Time schedule for various phases	3
	2.2 Team Members' Responsibility	3
	2.3 Proposed System	4
3	Software Requirement specification	
	3.1 Functional requirements	6
	3.2 Non- Functional requirements	6
4	System Analysis	
	4.1 Work flow Diagram	9
	4.2 Use case Diagram	10
5	Design	
	5.1 Front-End Design	11
	5.2 Back-End Design	12
6	Coding	
	6.1 Algorithm	13
	6.2 Sample code	15
	6.3 Experiments and Results	36

7	Testing	
	7.1 Unit testing	37
	7.2 Validation Testing	39
8	Implementation	
	8.1 Problems Faced	46
	8.2 Lesson Learnt	46
9	Future plans	47
10	Conclusion	48
11	References	49
	11.1. Web References	50
12	Papers Published	

TABLES AND DIAGRAMS

Sl. No.	Contents	Page no.
1	Work flow Diagram	9
2	Use case Diagram	10
3	Diagnosis result displayed	37