AA-S8 : Apprentissage Artificiel

Deep Learning

3/ Convolutional Neural Networks

Francesca Galassi, MCF, Esir

francesca.galassi@irisa.fr Lab Empenn Irisa-Inria Computer Vision

Computer Vision Convolution Operation Padding Stride Convolution over Volume Convolutional Layer ConvNet

Deep Learning in Computer Vision

→ Self-driving Cars

Courtesy of MIT

→ Face Detection and Recognition

Courtesy of Streamverse

→ Medicine, Biology, Healthcare

Litjens et al. (2019), A survey on Deep Learning in Medical Image Analysis, Medical image analysis

Computer Vision Convolution Operation Padding Stride Convolution over Volume Convolutional Layer ConvNet

Challenges in Deep Learning for Computer Vision

→ Image classification : fox? (0 or 1)

ImageNet sample image

- \rightarrow Low-res image $64 \times 64 \times 3 = 12228$ pixels
- → High-res image 1000 × 1000 × 3 = 3 million pixels

→ Fully connected network :

 $W^{[1]}:(1000,3M)\longrightarrow 3$ billion parameters

- → Many parameters to be learnt
- → The spatial structure of the image collapses

F. Galassi (UR, Irisa, Inria) AA/Deep Learning

Intuition on Deep Learning for Computer Vision

Image processing for Object Detection :

mage processing for object bettetion

Example:

detecting vertical edges :

detecting horizzontal edges :

- → Deep learning learns features at different levels, i.e., a hierarchy of features.
 - → Low-level : Initial layers extract basic features like edges.
 - → Mid-level : Intermediate layers recognize more complex patterns such as facial features.
 - → High-level : Final layers identify comprehensive patterns like entire faces.

F. Galassi (UR, Irisa, Inria) AA/Deep Learning 4 / 25

Convolution Operation

Vertical Edge Detection

gray scale image

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

6 × 6

filter

1 0 -1

1 0 -1

1 0 -1

 3×3

output

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

 4×4

→ Vertical edge detection using convolution operation

F. Galassi (UR, Irisa, Inria)

Vertical Edge Detection

→ Vertical edge detection using convolution operation

gray scale image

$$6 \times 6$$

Convolution operation: element-wise product followed by addition

$$3 \times 1 + 1 \times 1 + 2 \times 1 + 0 \times 0 + 5 \times 0 + 7 \times 0 + 1 \times -1 + 8 \times -1 + 2 \times -1 = -5$$

Shift the filter one step to the right

F. Galassi (UR, Irisa, Inria)

Vertical edge detection

Vertical edge detection using convolution operation

gray scale image

 6×6

- → Shift the filter one step to the right
- → End of line: shift the filter back to the left and one step down

F. Galassi (UR, Irisa, Inria) AA/Deep Learning

Vertical Edge Detection

→ Vertical edge detection using convolution operation

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

 4×4

 6×6

→ Vertical edge detector: a 3-by-3 region with brighter pixels on the left and darker on the right

*

→ A vertical edge is detected down the middle of the image

F. Galassi (UR, Irisa, Inria)

Vertical Edge Detection

→ Various vertical edge filters :

1	0	-1
1	0	-1
1	0	-1

Sobel filter 1 0 -1 2 0 -2 0

-1

Scharr filter						
3	0	-3				
10	0	-10				
3	0	-3				

· . .

- What is the best set of parameters?
- Learn the parameters using a Convolutional Neural Network

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

9 / 25

F. Galassi (UR, Irisa, Inria) AA/Deep Learning

Learning to Detect Edges

→ Learning parameters using a Convolutional Neural Network

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

$$w_1$$
 w_2 w_3 w_4 w_5 w_6 w_7 w_8 w_9 3×3

 6×6

→ Output matrix dimensions : $(n - f + 1) \times (n - f + 1)$ \longrightarrow 6 - 3 + 1 = 4 $n \times n$ image size, $f \times f$ filter size

Remarks:

- → Output shrinking
- → Less information from corners and edges

F. Galassi (UR, Irisa, Inria)

Padding

Padding

Padding the image with a zero border around the edges

→ If the amount of padding is p, with an image of size $n \times n$ and a filter of size $f \times f$, then the output size is given by :

$$(n+2p-f+1)\times (n+2p-f+1) \longrightarrow p=1, (6+2\times 1-3+1)=6$$

 \rightarrow This preserves the input image size of 6 \times 6.

Valid and Same convolutions

→ Valid convolution : no padding

$$n \times n \quad * \quad f \times f \quad \longrightarrow \quad (n-f+1) \quad \times \quad (n-f+1)$$

$$6\times 6 \quad * \quad 3\times 3 \quad \longrightarrow \quad 4\times 4$$

→ Same convolution : padding so that output size is the same as the input size

$$(n+2p-f+1) \times (n+2p-f+1)$$

To make the output dimensions as the input :

$$n+2p-f+1=n$$
 \Longrightarrow $p=\frac{f-1}{2}$

- e.g., $p = \frac{3-1}{2} = 1$
- \bullet by convention f is odd, i.e., central position, symmetric padding

Stride

Strided Convolutions

Stride: the number of pixels the convolutional filter moves horizontally or vertically after each convolution operation

Input image

2 ₃ 6 ₁	3 ₄	74	4	6	2	9								
61	60	92	8	7	4	3	****************	***************************************	filter	************		Out	put im	age
3-1	40	83	3	8	9	7		3	4	4		91	100	2
7	8	3	6	6	3	4	*	1	0	2	<u>==</u>	0	-2	-4
4	2	1	8	3	4	6		-1 may	0	3		-3	-2	-3
3	2	4	1	9	8	3			3 × 3				3 × 3	
0	1	3	9	2	1	4								

13 / 25

$$7 \times 7$$

→ Stride = 2

F. Galassi (UR, Irisa, Inria) AA/Deep Learning

Summary

- \rightarrow Given: image $n \times n$, filter $f \times f$ padding p, stride s
- The output image dimensions after convolution are :

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \quad \times \quad \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor$$

Example :
$$\frac{7+0-3}{2}+1$$
 \times $\frac{7+0-3}{2}+1$ \longrightarrow 3 \times 3

- \rightarrow Remark 1: If the fraction is not an integer, round it down, i.e., z = floor(z)
- → Remark 2 : In mathematical textbooks, the convolution operation does double mirroring of the filter first.
- → Remark 3: Cross-correlation in mathematical textbooks is the convolution operation in Deep Learning literature (simplified terminology).

Convolution over Volume

Convolutions on RGB Images

- → RGB images consist of 3 color channels : red, green, and blue.
- → The number of channels in the image must match the number of channels in the filter.

F. Galassi (UR, Irisa, Inria)

olution Operation Padding Stride **Convolution over Volume** Convolutional Layer ConvNet

Convolutions on RGB Images

- (i.) Place the filter in the upper leftmost position of the input volume.
- (ii.) Perform element-wise multiplication of the filter's values with the corresponding values in the input volume.
- (iii.) Sum up the results of the multiplications to compute the output value.
- (iv.) Slide the filter to the next position and repeat steps (ii.) and (iii.).
- Remark: Filters can have different values for different channels.

F. Galassi (UR, Irisa, Inria) AA/Deep Learning 16 / 25

Multiple Filters

- **→** Multiple filters can be applied simultaneously
- Their outputs are stacked together

Dimensions :

$$n \times n \times n_c \times f \times f \times n_c \longrightarrow (n-f+1) \times (n-f+1) \times n'_c$$

 n_c' is the number of filters, i.e., the *new* number of channels for a subsequent conv operation

Remark : depth often indicates the number of channels

F. Galassi (UR, Irisa, Inria)

Convolutional Layer

Convolutional layer: add a bias and apply non-linearity, e.g., ReLU

*

Analogy with standard Neural Network layer :

$$z^{[\ell]} = W^{[\ell]} a^{[\ell-1]} + b^{[\ell]}$$

$$a^{[\ell]} = g\left(z^{[\ell]}\right)$$

 $3 \times 3 \times 3$

 4×4

$\sim z^{[\ell]}$

Vision Convolution Operation Padding Stride Convolution over Volume Convolutional Layer ConvNet

Number of parameters in one layer

 \checkmark Question. In one layer of a convolutional neural network, if you have 10 filters, and each filter has dimensions of $3 \times 3 \times 3$, how many parameters does this layer have?

Answer.

- 27 weights + bias ---- 28 parameters
- 10 filters ---- 280 parameters
- → Remark : no matter the height and width of the input image, the number of parameters does not change

19 / 25

F. Galassi (UR, Irisa, Inria) AA/Deep Learning

Summary

→ If layer ℓ is a convolution layer :

$$\begin{split} f^{[\ell]} \times f^{[\ell]} \times n_c^{[\ell-1]} &= \text{filter size} \\ p^{[\ell]} &= \text{padding} \\ s^{[\ell]} &= \text{stride} \\ n_c^{[\ell]} &= \text{number of filters} \end{split}$$

Input :
$$n_H^{[\ell-1]} \times n_W^{[\ell-1]} \times n_c^{[\ell-1]}$$

Output :
$$n_H^{[\ell]} \times n_W^{[\ell]} \times n_c^{[\ell]}$$

$$n_{H,W}^{[\ell]} = \left[\frac{n_{H,W}^{[\ell-1]} + 2p^{[\ell]} - f^{[\ell]}}{s^{[\ell]}} + 1 \right]$$

 $\rightarrow n_c^{[\ell]} = \text{number of filters} = \text{number of channels output volume}$

Weights :
$$f^{[\ell]} \times f^{[\ell]} \times n_c^{[\ell-1]} \times n_c^{[\ell]}$$
 ; Bias : $n_c^{[\ell]}$

ConvNet

Convolutional Neural Network

- → ConvNet for image classification task, outputs at each layer
- → Output dimensions at conv layer ℓ :

$$n_{H,W}^{[\ell]} = \left[\frac{n_{H,W}^{[\ell-1]} + 2p^{[\ell]} - f^{[\ell]}}{s^{[\ell]}} + 1 \right]$$

Input image

 $a^{[1]}$

2[2]

[3]

$$39 \times 39 \times 3$$

$$37 \times 37 \times 10$$

$$17 \times 17 \times 20$$

$$7 \times 7 \times 40$$

$$n_h^{[0]} = n_w^{[0]} =$$
 $n_c^{[0]} = 3$

$$n_h^{[0]} = n_w^{[0]} = 39$$
 $n_H^{[1]} = n_W^{[1]} = 37$ $n_H^{[2]} = n_W^{[2]} = 17$ $n_L^{[0]} = 3$ $n_L^{[1]} = 10$ $n_L^{[2]} = 20$

$$n_H^{[2]} = n_W^{[2]} =$$

$$n_c^{[2]} = 20$$

- → Last step: unrolling into a vector (flattening) and feed it to a softmax unit
- → As you go deeper, height and width decrease and number of channels increases

F. Galassi (UR. Irisa, Inria)

Pooling Layer

- The pooling layer reduces the spatial size of the input image while retaining the most important features.
- → Pooling hyperparameters : filter size f (f = 2), stride s (s = 2), max or average :

1	3	2	1
2	9	1	1
1	3	2	3
5	6	1	2

- Pooling is applied on each channel (or feature map) independently.
- → Remark : pooling layers do not have any learnable parameters.

F. Galassi (UR, Irisa, Inria)

Convolution Operation Padding Stride Convolution over Volume Convolutional Layer ConvNet

ConvNet: Example

ConvNet inspired by LeNet-5:

→ Fully-connected (FC) layer: single NN layer e.g., FC3, W^[3]: (120, 400), b^[3]: (120, 1)

F. Galassi (UR, Irisa, Inria)

onvolution Operation Padding Stride Convolution over Volume Convolutional Layer ConvNet

ConvNet : example

	Activation shape	Activation size	# parameters
Input :	(32, 32, 3)	3,072	0
conv1 (f=5, s=1)	(28, 28, 6)	4,704	456
pool1	(14, 14, 6)	1,176	0
conv2 (f=5, s=1)	(10, 10, 16)	1,600	2,416
pool2	(5, 5, 16)	400	0
FC3	(120, 1)	120	48,120
FC4	(84, 1)	84	10,164
softmax	(10, 1)	10	850

F. Galassi (UR, Irisa, Inria) AA/Deep Learning 24 / 25

Convolution Operation Padding Stride Convolution over Volume Convolutional Layer ConvNet

Why Convolutions?

Main advantages over Fully Connected (FC) layers :

- Parameter sharing: Features learned in one part of the image are reused across different regions.
- → Sparsity of connections: Each output value in a layer depends only on a subset of inputs, reducing computational complexity.

F. Galassi (UR, Irisa, Inria)