# Supplementary material for: Multiresolution dictionary learning for conditional distributions

#### **Anonymous Author(s)**

Affiliation Address email

### 1 Full conditionals

Introduce the latent variable  $S_i \in \{1,\ldots,k\}$ , for  $i=1,\ldots,n$ , denoting the multiscale level used by the ith subject. Assuming data are normalized prior to analysis, we let  $\mu \sim \mathcal{N}(0,I)$  and  $\sigma = \mathcal{IG}(a,b)$  for the means and variances of the dictionary densities. Let  $n_{B_j}$  be the number of observations allocated to node  $B_j$ . Each Gibbs sampler iteration can be summarized in the following steps.

1. Update  $S_i$  by sampling from the multinomial full conditional with

$$\Pr(S_i = j \mid -) = \frac{\pi_{B_j(x_i)} f_{B_j(x_i)}(y_i)}{\sum_{h=1}^k \pi_{B_h(x_i)} f_{B_h(x_i)}(y_i)}$$

- 2. Update stick-breaking random variable  $V_{B_j(x_i)}$ , for  $j=1,\ldots,k$  and  $i=1,\ldots,n$ , from  $\mathrm{Beta}(\beta_p,\alpha_p)$  with  $\beta_p=1+n_{B_j}$  and  $\alpha_p=\alpha+\sum_{B_h(x_i)\in de\{B_j(x_i)\}}n_{B_h(x_i)}$ .
- 3. Update  $(\mu_{B_j(x_i)}, \sigma_{B_j(x_i)})$  by sampling from

$$\mu_{B_j} \sim \mathcal{N}\left(\bar{y}_{B_j} n_{B_j} / \sigma_{B_j}, (1 + n_{B_j} / \sigma_{B_j})^{-1}\right)$$

$$\sigma_{B_j} \sim \mathcal{IG}\left(a_{\sigma}, b + 0.5 \sum_{\{i: S_i = j, x_i \in B_j\}} \left(y_i - \mu_{B_j}\right)^2\right)$$

with  $a_{\sigma} = a + n_{B_i}/2$ ,  $\bar{y}_{B_i}$  being the average of the observation  $\{y_i\}$  allocated to node  $B_i$ .

#### 2 Predictions

Consider the case we want to predict the response  $y_{n+1}$  for a future subject based on the predictors  $x_{n+1}$  and  $(y_1, \ldots, y_n)$ . For each tree level, the new vector of predictors  $x_n$  is allocated to subsets having closer centers with respect some metric. We will consider the euclidean metric. Then, for a new observation the predictive density is defined as

$$p(y_{n+1}|x_{n+1}, y_1, \dots, y_n) = \int f(y_{n+1}|x_{n+1}, \Omega) dp(\Omega|y_1, \dots, y_n)$$
 (1)

with  $f\left(y_{n+1}|x_{n+1},\Omega\right)$  defined as in (1) and  $\Omega$  being the set of all parameters involved, i.e. weights, location and scale parameters. In order to make inference on the predictive density of  $y_{n+1}$ , at the sth Gibbs sampler iteration, we will first sample parameters involved in  $\ref{eq:total_scale}$  from its posterior, i.e.  $\Omega^{(s)} \sim p\left(\Omega|y_1,\ldots,y_n\right)$  and then we will sample  $y_{n+1}^{(s)}$  from  $p\left(y_{n+1}|x_{n+1},\Omega^{(s)}\right)$ . Let us assume the number of iterations is S an a burn-in of b is considered. Then, given the sequence  $\left(y_{n+1}^{(b+1)},\ldots,y_{n+1}^{(S)}\right)$ , summaries of the predictive density such as mean, variance and quantiles can be computed.

Table 1: Linear manifold example 1: Mean and standard deviations of squared errors under multiscale stick-breaking (MSB), CART and Lasso for sample size 50 and 100 for different simulation scenarios.

|         |     | r = 5              |                     |                      |                     |                     | r = 10               |                     |  |
|---------|-----|--------------------|---------------------|----------------------|---------------------|---------------------|----------------------|---------------------|--|
| p       | n   |                    | MSB                 | CART                 | LASSO               | MSB                 | CART                 | LASSO               |  |
| 1e + 04 | 50  | MSE<br>STD<br>TIME | 0.18<br>0.32<br>3   | 0.31<br>0.30<br>2    | 0.25<br>0.42<br>1   | 0.22<br>0.24<br>3   | 0.58<br>0.54<br>3    | 0.22<br>0.30<br>1   |  |
| 1e + 04 | 100 | MSE<br>STD<br>TIME | 0.18<br>0.26<br>5   | 0.27<br>0.42<br>5    | 0.26<br>0.46<br>2   | 0.20<br>0.23<br>5   | 0.41<br>0.46<br>5    | 0.52<br>0.78<br>1   |  |
| 1e + 05 | 50  | MSE<br>STD<br>TIME | $0.35 \\ 0.53 \\ 3$ | $0.45 \\ 0.77 \\ 25$ | $0.89 \\ 1.04 \\ 2$ | $0.16 \\ 0.21 \\ 3$ | $0.33 \\ 0.46 \\ 27$ | $0.20 \\ 0.31 \\ 2$ |  |
| 1e + 05 | 100 | MSE<br>STD<br>TIME | $0.43 \\ 0.59 \\ 7$ | 0.88<br>1.29<br>50   | $0.52 \\ 0.70 \\ 5$ | $0.17 \\ 0.24 \\ 7$ | $0.50 \\ 0.75 \\ 51$ | $0.31 \\ 0.49 \\ 5$ |  |
| 5e + 05 | 50  | MSE<br>STD<br>TIME | 0.11<br>0.15<br>5   | 0.16<br>0.24<br>90   | 0.15<br>0.19<br>11  | 0.83<br>1.01<br>5   | 2.26<br>2.60<br>121  | 0.92<br>3.69<br>10  |  |
| 5e + 05 | 100 | MSE<br>STD<br>TIME | 0.003<br>0.16<br>10 | 0.17<br>0.23<br>214  | 0.08<br>0.13<br>43  | 0.13<br>1.12<br>8   | 1.37<br>1.81<br>227  | 1.06<br>1.50<br>42  |  |
| 7e + 05 | 50  | MSE<br>STD<br>TIME | 1.70<br>2.18<br>6   | 1.48<br>2.47<br>121  | 1.47<br>1.63<br>12  | 0.66<br>0.87<br>7   | 1.65<br>1.49<br>151  | 1.07<br>0.95<br>13  |  |
| 5e + 05 | 100 | MSE<br>STD<br>TIME | 0.69<br>0.94<br>13  | 1.36<br>1.47<br>321  | 0.82<br>1.28<br>41  | 0.78<br>1.03<br>12  | 1.52<br>1.34<br>325  | 1.43<br>2.11<br>44  |  |

Table 2: Linear manifold example 2: Mean and standard deviations of squared errors under multiscale stick-breaking (MSB), CART and Lasso for different sample sizes

|          |     |            | r=2          |              |              | r = 5        |              |              |
|----------|-----|------------|--------------|--------------|--------------|--------------|--------------|--------------|
| p        | n   |            | MSB          | CART         | LASSO        | MSB          | CART         | LASSO        |
| 10e + 03 | 100 | MSE<br>STD | 1.54<br>1.70 | 1.78<br>1.72 | 2.37<br>0.89 | 0.84<br>1.38 | 1.25<br>1.35 | 1.62<br>1.47 |
| 50e + 03 | 100 | MSE<br>STD | 0.76<br>1.04 | 0.97<br>1.21 | 1.77<br>3.13 | 0.88<br>1.00 | 1.53<br>1.59 | 1.43<br>2.73 |
| 10e + 04 | 100 | MSE<br>STD | 0.77<br>0.94 | 1.01<br>1.13 | 1.61<br>1.85 | 0.67<br>0.82 | 0.46<br>0.61 | 0.97<br>1.16 |
| 20e + 04 | 100 | MSE<br>STD | 0.86<br>1.30 | 0.90<br>1.35 | 1.41<br>1.41 | 0.74<br>0.95 | 1.09<br>1.98 | 0.78<br>0.95 |

## 3 Synthetic examples



Figure 1: Non-linear manifolds: Swissroll (I) and S-Manifold (II) embedded in  $\mathcal{R}^{3}$