Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Тульский государственный университет»

Интернет-институт ТулГУ

Кафедра ИБ

ОТЧЕТ ПО ЛАБОРАТОРНЫМ РАБОТАМ

по дисциплине

«Диагностика и надежность автоматизированных систем»

Вариант № 5

DDIIIO/IIIII/I.	
	студент группы ИБ262521-ф Артемов Александр Евгеньевич
Проверил:	
	канд. техн. наук, доц.
	Сафронова Марина Алексеевна

Выполнил:

Лабораторная работа № 1.

Название работы: Надежность объекта.

Цель работы: Изучить основные показатели теории надежности систем.

Задание:

- 1. **Задача 1**. Дан объект с функцией надёжности $p(t) = 0.2e^{-3t} + 0.7e^{-t}$. Показать, что такого объекта не существует.
- 2. **Задача 3**. Даны два объекта с функциями надежности $p_1(t) = e^{-2t}$; $p_2(t) = 0.2 e^{-3t} + 0.8 e^{-t}$. У какого объекта больше средняя наработка?
- 3. **Задача 5**. Распределение наработки до отказа равномерное в интервале (0, а). Найти функцию надёжности, функцию отказа, среднюю наработку до отказа, интенсивность, вероятность безотказной работы в течение средней наработки.
- 4. **Задача 11**. Решить задачу 10, если интенсивность отказов линейно возрастает: $\lambda(t) = \alpha t$. Задача 10. У объекта с постоянной интенсивностью отказов $P\{T \le 50\} = \alpha$. Найти $P\{100 \le T \le 200\}$.

Выполнение лабораторной работы.

Изучен лекционный материал по теме работы.

Решение задач по варианту.

Задача 1. Дан объект с функцией надёжности $p(t) = 0.2e^{-3t} + 0.7e^{-t}$. Показать, что такого объекта не существует.

Решение:

Функция надежности должна обладать следующими свойствами:

- $\qquad p(t)$ убывающая функция;
- p(0) = 1, $\lim_{t \to 0} p(t) = 0$;
- $\frac{d}{dt}(p(t)) = -f(t).$

Если какое-то из свойств функцией надёжности $p(t) = 0.2 e^{-3t} + 0.7 e^{-t}$ не выполняется, то и сам объект не существует. Проверим свойства функции надёжности.

1). Убывание функции. Посмотрим график функции:

Действительно, функция убывает от 0 до $+\infty$.

2). Значение функции при t = 0. На графике функции видно, что функция в 0 не равна 1. Вычислим это значение:

$$p(0) = 0.2e^{-3t} + 0.7e^{-t} = 0.2e^{0} + 0.7e^{0} = 0.2 + 0.7 = 0.9 \neq 1$$

Так как свойство функции надёжности p(0) = 1 не выполняется, то объект с такой функцией надёжности не существует.

Ответ: свойство функции надёжности p(0) = 1 не выполняется, объект с такой функцией надёжности не существует.

Задача 3. Даны два объекта с функциями надежности $p_1(t) = e^{-2t}$; $p_2(t) = 0.2 e^{-3t} + 0.8 e^{-t}$. У какого объекта больше средняя наработка?

Решение:

Средняя наработка вычисляется через функцию надежности объекта по следующей формуле: $\tau = \int\limits_0^\infty p(t)dt$. Вычислим среднюю наработку каждого объекта:

$$\tau_{1} = \int_{0}^{\infty} p_{1}(t)dt = \int_{0}^{\infty} e^{-2t}dt = -\frac{1}{2e^{2t}}\Big|_{0}^{\infty} = -\frac{1}{2e^{\infty}} - \left(-\frac{1}{2e^{0}}\right) = -\frac{1}{\infty} - \left(-\frac{1}{2}\right) = 0 + \frac{1}{2} = \frac{1}{2}.$$

$$\tau_{2} = \int_{0}^{\infty} p_{2}(t)dt = \int_{0}^{\infty} (0.2e^{-3t} + 0.8e^{-t})dt = 0.2\int_{0}^{\infty} e^{-3t}dt + 0.8\int_{0}^{\infty} e^{-t}dt =$$

$$= 0.2\int_{0}^{\infty} e^{-3t}dt + 0.8\int_{0}^{\infty} e^{-t}dt = -\frac{1}{15e^{3t}}\Big|_{0}^{\infty} + \left(-\frac{4}{5e^{t}}\Big|_{0}^{\infty}\right) = \frac{1}{15} + \frac{4}{5} = \frac{13}{15} \approx 0.87.$$

Так как $\tau_1 < \tau_2$, значит, объект с функцией надежности $p_2(t)$ имеет большую среднюю наработку $\tau_2 \approx 0.87$.

Ответ: объект с функцией надежности $p_2(t)$ имеет большую среднюю наработку $\tau_2 \approx 0.87$.

Задача 5. Распределение наработки до отказа — равномерное в интервале (0, a). Найти функцию надёжности, функцию отказа, среднюю наработку до отказа, интенсивность, вероятность безотказной работы в течение средней наработки.

Решение:

Функция равномерного распределения на интервале (а, b) определяется

формулой
$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x \le b. \\ 1 & x > b \end{cases}$$

Функция отказа q(t) = F(t) имеет равномерное распределение на интервале (0, a) и, исходя из функции равномерного распределения, определяется как:

$$q(t) = F(t) = \begin{cases} 0, & t=0\\ \frac{t}{a}, & 0 < t < a.\\ 1, & t \ge a \end{cases}$$

Следовательно, на на интервале (a, b) функция отказа имеет вид $q(t) = \frac{t}{a}$.

Функция надежности p(t) определяется по формуле p(t)=1-q(t), откуда $p(t)=1-q(t)=1-\frac{t}{a}$.

Средняя наработка до отказа вычисляется через функцию надежности объекта по следующей формуле: $\tau = \int\limits_0^a p(t)dt$, откуда $\tau = \int\limits_0^a \left(1-\frac{t}{a}\right)dt = \left(t-\frac{t^2}{2\,a}\right)\Big|_0^a = \left(a-\frac{a^2}{2\,a}\right)-0 = a-\frac{a}{2} = \frac{a}{2}.$

Интенсивность отказов вычисляется как $\lambda(t) = \frac{f(t)}{p(t)}$, где f(t) - плотность отказов и $f(t) = F'(t) = \frac{1}{a}$. Следовательно, $\lambda(t) = \frac{f(t)}{p(t)} = \frac{\frac{1}{a}}{1 - \frac{t}{a}} = \frac{1}{a - t}$.

Вероятность безотказной работы в течение средней наработки вычисляется как функция надежности от значения средней наработки до отказа, то есть, в нашем случае, $p(\tau) = 1 - \frac{\tau}{a} = 1 - \frac{\frac{a}{2}}{a} = 1 - \frac{1}{2} = \frac{1}{2}$.

Ответ: функция надежности $p(t) = 1 - \frac{t}{a}$; функция отказа $q(t) = \frac{t}{a}$; средняя наработка до отказа $\tau = \frac{a}{2}$; интенсивность отказов $\lambda(t) = \frac{1}{a-t}$; вероятность безотказной работы в течение средней наработки равна $\frac{1}{2}$.

Задача 11. Решить задачу 10, если интенсивность отказов линейно возрастает: $\lambda(t) = \alpha t$. Задача 10. У объекта с постоянной интенсивностью отказов $P\{T \le 50\} = \alpha$. Найти $P\{100 \le T \le 200\}$.

Решение:

С учетом условий задач 10 и 11 исходная задача имеет вид: у объекта интенсивность отказов линейно возрастает: $\lambda(t) = \alpha t$. Найти $P\{100 \le T \le 200\}$.

Функция надёжности p(t) связана с интенсивностью отказов $\lambda(t)$ как $p(t) = e^{-\int\limits_0^t \lambda(t)dt}$. Подставим $\lambda(t) = \alpha t$: $p(t) = e^{-\int\limits_0^t \alpha t \, dt} = e^{-\alpha \frac{t^2}{2}}$.

Функция распределения F(t) связана с функцией надёжности p(t) как $F(t)=1-p(t)=1-e^{-\alpha \frac{t^2}{2}}.$

Вероятность того, что время до отказа T лежит на интервале [100, 200], вычисляется как разность значений функции распределения F(t) на концах

интервала:
$$P\{100 \le T \le 200\} = F(200)$$
 — $F(100)$. Подставим $F(t) = 1 - e^{-\alpha \frac{t^2}{2}}$:
$$P\{100 \le T \le 200\} = \left(1 - e^{-\alpha \frac{200^2}{2}}\right) - \left(1 - e^{-\alpha \frac{100^2}{2}}\right),$$

$$P\{100 \le T \le 200\} = e^{-\alpha \frac{100^2}{2}} - e^{-\alpha \frac{200^2}{2}},$$

$$P\{100 \le T \le 200\} = e^{-5000\alpha} - e^{-20000\alpha}.$$

Otbet: $P\{100 \le T \le 200\} = e^{-5000 \,\alpha} - e^{-20000 \,\alpha}$.

Лабораторная работа № 2.

Название работы: Резервирование системы.

Цель работы: Изучить основные показатели теории надежности систем и резервирование системы.

Задание:

- 5. **Задача 1**. Интенсивность отказов объекта $\lambda = 0,016$ (1/ч). Для повышения надёжности можно либо облегчить режим работы и снизить интенсивность вдвое, либо дублировать изделие горячим резервом без облегчения режима. Какой способ более целесообразен, если надёжность изделия оценивать средней наработки?
- 6. **Задача 3**. Система из двух элементов с постоянной интенсивностью отказов и средней наработкой каждого элемента τ имеет в резерве третий элемент. Методом графа состояний определить среднюю наработку системы для случая горячего и холодного резерва, а также различных способов соединения элементов в систему.
- 7. **Задача 5**. Имеется один основной элемент и один резервный с постоянной интенсивностью отказов λ. Есть два варианта резервирования:
 - а) пассивное резервирование;
- б) активное резервирование с холодным резервом и переключателем с такой же интенсивностью отказов λ .

При каком резервировании будет выше надёжность?

Выполнение лабораторной работы.

Изучен лекционный материал по теме работы.

Решение задач по варианту.

Задача 1. Интенсивность отказов объекта $\lambda = 0,016$ (1/ч). Для повышения надёжности можно либо облегчить режим работы и снизить интенсивность вдвое, либо дублировать изделие горячим резервом без облегчения режима. Какой способ более целесообразен, если надёжность изделия оценивать средней наработки?

Решение:

Вычислим среднюю наработку до отказа τ для одного объекта с интенсивностью отказов λ : $\tau = \frac{1}{\lambda} = \frac{1}{0,016} = 62,5$ часов. При снижении интенсивность вдвое $\lambda_{HOB} = \frac{\lambda}{2} = 0,008$ (1/ч). Тогда средняя наработка до отказа увеличится: $\tau_{HOB} = \frac{1}{\lambda_{HOB}} = \frac{1}{0,008} = 125$ часов.

При дублировании изделия горячим резервом без облегчения режима средняя наработка до отказа вычисляется по формуле $\tau_s^{(r)} = \frac{1}{\lambda} \sum_{i=1}^{k+1} \frac{1}{i}$, откуда $\tau_s^{(r)} = \frac{1}{\lambda} \left(1 + \frac{1}{2} \right) = \frac{3}{2\lambda} = \frac{3}{2 \cdot 0.016} = 93,75$ часов.

Снижение интенсивности отказов вдвое (облегчение режима работы) более целесообразно, так как оно обеспечивает большую среднюю наработку до отказа (125 часов) по сравнению с дублированием горячим резервом без облегчения режима (93,75 часов).

Ответ: снижение интенсивности отказов вдвое (облегчение режима работы) более целесообразно.

Задача 3. Система из двух элементов с постоянной интенсивностью отказов и средней наработкой каждого элемента τ имеет в резерве третий элемент. Методом графа состояний определить среднюю наработку системы для случая горячего и холодного резерва, а также различных способов соединения элементов в систему.

Решение:

Граф состояний для системы с горячим резервом:

Состояние $S_{3,0}$: Все три элемента работают.

Состояние $S_{2,0}$: Отказал один элемент, два элемента работают.

Состояние $S_{I,0}$: Отказали два элемента, один элемент работает.

Состояние S_0 : Отказали все три элемента (система отказала).

Интенсивность перехода:

из $S_{3,0}$ в $S_{2,0}$: 3 λ (может отказать любой из трёх элементов);

из $S_{2,0}$ в $S_{1,0}$: 2 λ (может отказать любой из двух оставшихся элементов);

из $S_{l,\theta}$ в S_{θ} : λ (отказывает последний элемент).

$$\tau_{\text{\tiny TOP}} = \left(\frac{1}{\lambda} + \frac{1}{2\lambda} + \frac{1}{3\lambda}\right) = \frac{11}{6\lambda}.$$

Граф состояний для системы с холодным резервом:

Состояние $S_{2,1}$: Два основных элемента работают, резервный элемент неактивен.

Состояние $S_{2,0}$: Отказал один основной элемент, резервный элемент активирован.

Состояние S_0 : Отказали два элемента (основной и резервный), система отказала.

Интенсивность перехода:

из $S_{2,l}$ в $S_{2,0}$: 2λ (может отказать любой из двух основных элементов);

из $S_{2,\theta}$ в S_{θ} : λ (отказывает резервный элемент).

$$\tau_{XOJI} = \left(\frac{1}{\lambda} + \frac{1}{2\lambda}\right) = \frac{3}{2\lambda}.$$

При последовательном соединении система отказывает, если отказывает хотя бы один элемент, поэтому средняя наработка системы: $\tau_{\text{посл}} = \left(\frac{1}{\lambda} + \frac{1}{2\,\lambda}\right) = \frac{1}{3\,\lambda}.$

При параллельном соединении система отказывает, если отказывают все элементы, поэтому средняя наработка системы: $\tau_{\text{ПАР}} = \frac{11}{6\,\lambda}$ (для горячего резерва) или $\tau_{\text{ПАР}} = \frac{3}{2\,\lambda}$ (для холодного резерва).

Ответ: средняя наработка системы для случая горячего резерва $au_{\text{ГОР}} = \frac{11}{6\,\lambda}$; холодного резерва $au_{\text{ХОЛ}} = \frac{3}{2\,\lambda}$; при последовательном соединении $au_{\text{ПОСЛ}} = \frac{1}{3\,\lambda}$; при параллельном соединении $au_{\text{ПАР}} = \frac{11}{6\,\lambda}$ (для горячего резерва) или $au_{\text{ПАР}} = \frac{3}{2\,\lambda}$ (для холодного резерва).

Задача 5. Имеется один основной элемент и один резервный с постоянной интенсивностью отказов λ . Есть два варианта резервирования:

- а) пассивное резервирование;
- б) активное резервирование с холодным резервом и переключателем с такой же интенсивностью отказов λ .

При каком резервировании будет выше надёжность?

Решение

Средняя наработка системы для случая пассивного резервирования $au_{\text{\tiny ПАС}} = \frac{1}{\lambda} + \frac{1}{\lambda} = \frac{2}{\lambda}.$

Средняя наработка системы для случая активного резервирования с холодным резервом и переключателем с такой же интенсивностью отказов $au_{AKT} = \frac{1}{\lambda + \lambda} + \frac{1}{2} \cdot \frac{1}{\lambda} = \frac{1}{\lambda}.$

Пассивное резервирование обеспечивает большую среднюю наработку системы по сравнению с активным резервированием с переключателем, поэтому пассивное резервирование более надёжно в данном случае.

Ответ: Надёжность будет выше при пассивном резервировании, так как оно обеспечивает большую среднюю наработку системы по сравнению с активным резервированием с переключателем.

Лабораторная работа № 3.

Название работы: Восстанавливаемый объект.

Цель работы: Изучить основные показатели теории надежности систем и характеристики восстанавливаемого объекта.

Задание:

- 1. **Задача 1**. Пусть $K_{\Gamma} = 0.95$, среднее время восстановления 5 часов. Вычислить вероятность безотказной работы в течение первых 2 часов.
- 2. **Задача 3**. Вероятность безотказной работы объекта в течение первых трёх часов равно 0,997. Среднее время восстановления 2,5 часов. Найти K_{II}
- 3. **Задача 5**. Пусть известны значения K_{Γ} и $\tau = \frac{1}{\lambda}$. Можно ли определить функцию готовности $K_{\Gamma}(t)$?

Выполнение лабораторной работы.

Изучен лекционный материал по теме работы.

Решение задач по варианту.

Задача 1. Пусть $K_{\Gamma}=0.95$, среднее время восстановления 5 часов. Вычислить вероятность безотказной работы в течение первых 2 часов.

Решение:

Коэффициент готовности K_{Γ} связан с интенсивностью отказов λ и интенсивностью восстановления μ как $K_{\Gamma} = \frac{\mu}{\lambda + \mu}$. Среднее время восстановления τ_B связано с интенсивностью восстановления μ как $\tau_B = \frac{1}{\mu}$, откуда $\mu = \frac{1}{\tau_B} = \frac{1}{5} = 0,2$ 1/ч.

Выразим интенсивность отказов λ из формулы $K_{\Gamma} = \frac{\mu}{\lambda + \mu}$ и вычислим, подставив имеемые значения: $\lambda = \frac{\mu}{K_{\Gamma}} - \mu = \frac{0.2}{0.95} - 0.2 \approx 0.0105$.

Вычислим вероятность безотказной работы в течение первых 2 часов как $p(t)=e^{-\lambda t}$, откуда $p(2)=e^{-\lambda t}=e^{-0.0105\cdot 2}=e^{-0.021}\approx 0.9792.$

Ответ: Вероятность безотказной работы в течение первых 2 часов составит $p(2) \approx 0.9792$.

Задача 3. Вероятность безотказной работы объекта в течение первых трёх часов равно 0,997. Среднее время восстановления 2,5 часов. Найти K_{II}

Решение:

Вероятность безотказной работы вычисляется как $p(t) = e^{-\lambda t}$. Подставим исходные значения и получим уравнение 0,997 $= e^{-3\lambda}$. Решим его логарифмируя обе части: $\ln(0,997) = -3\lambda$. Выразим и вычислим интенсивность отказов λ : $\lambda = -\ln(0,997)/3 \approx 0,001001503$ 1/4.

Найдем интенсивность восстановления $\mu = \frac{1}{\tau_B} = \frac{1}{2,5} = 0,4$ 1/ч.

Коэффициент простоя $K_{\Pi}=\frac{\lambda}{\lambda+\mu}=\frac{0,001001503}{0,001001503+0,4}=\frac{0,001001503}{0,401001503}\approx 0,0025.$

Ответ: Коэффициент простоя $K_{\Pi} \approx 0,0025$.

Задача 5. Пусть известны значения K_{Γ} и $\tau = \frac{1}{\lambda}$. Можно ли определить функцию готовности $K_{\Gamma}(t)$?

Решение:

Функция готовности определяется как $K_{\Gamma}(t) = K_{\Gamma} + \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)t}$.

Коэффициент готовности определяется как $K_{\Gamma} = \frac{\mu}{\lambda + \mu}$, откуда $\mu = \frac{\lambda K_{\Gamma}}{1 - K_{\Gamma}}$. Так же из условия известно, что $\tau = \frac{1}{\lambda}$, откуда $\lambda = \frac{1}{\tau}$. Подставим μ в формулу функции готовности: $K_{\Gamma}(t) = K_{\Gamma} + \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)t} = K_{\Gamma} + \frac{\lambda}{\lambda + \frac{\lambda K_{\Gamma}}{1 - K_{\Gamma}}} e^{-\left(\lambda + \frac{\lambda K_{\Gamma}}{1 - K_{\Gamma}}\right)t} =$

$$=K_{\varGamma}+(1-K_{\varGamma})e^{-\left(\frac{\lambda}{1-K_{\varGamma}}\right)^{t}}.\ \Pi \text{ ОДСТАВИМ}\ \lambda=\frac{1}{\jmath\tau}:$$

$$K_{\varGamma}(t)=K_{\varGamma}+(1-K_{\varGamma})e^{-\left(\frac{\lambda}{1-K_{\varGamma}}\right)^{t}}=K_{\varGamma}+(1-K_{\varGamma})e^{-\left(\frac{t}{\tau\cdot(1-K_{\varGamma})}\right)}.$$

Ответ: При заданных значениях K_{Γ} и $\tau = \frac{1}{\lambda}$ можно определить функцию готовности как $K_{\Gamma}(t) = K_{\Gamma} + (1 - K_{\Gamma}) e^{-\left(\frac{t}{\tau \cdot (1 - K_{\Gamma})}\right)}$.

Лабораторная работа № 4.

Название работы: Восстанавливаемые системы.

Цель работы: Изучить основные показатели теории надежности систем и характеристики восстанавливаемых систем.

Задание:

- 1. Задача 1. Пусть в системе один основной элемент и один резервный. Резерв горячий, восстановление неограниченное. Построить граф состояний и записать уравнения переходного режима.
- 2. **Задача 3**. В системе один основной элемент и один запасной в холодном резерве. После отказа системы она не включается, пока оба отказавших элемента не будут восстановлены. Найти K_{Γ} , если восстановление: а) неограниченное; б) ограниченное. Проверить при $\lambda = \mu$.
- 3. **Задача 5**. Элемент имеет холодный резерв. Определить среднюю наработку до первого отказа.

Выполнение лабораторной работы.

Изучен лекционный материал по теме работы.

Решение задач по варианту.

Задача 1. Пусть в системе один основной элемент и один резервный. Резерв горячий, восстановление неограниченное. Построить граф состояний и записать уравнения переходного режима.

Решение:

Опишем возможные состояния системы:

Состояние 0: Оба элемента исправны (работают основной и резервный);

Состояние 1: Один элемент отказал (работает либо основной, либо резервный);

Состояние 2: Оба элемента отказали (система неработоспособна).

При этом интенсивности переходов:

- 2λ из состояния 0 в состояние 1 (может отказать любой из двух работающих элементов);
- λ из состояния 1 в состояние 2 (отказ последнего работающего элемента);
 - μ из состояния 2 в состояние 1 (восстановление одного элемента);
- 2μ из состояния 1 в состояние 0 (восстановление одного из двух элементов).

Запишем уравнения переходного режима:

$$\begin{cases} \Pi'_{0}(t) = -2\lambda \Pi_{0}(t) + \mu \Pi_{1}(t) \\ \Pi'_{1}(t) = 2\lambda \Pi_{0}(t) - (\mu + \lambda) \Pi_{1}(t) + 2\mu \Pi_{2}(t) \\ \Pi'_{2}(t) = \lambda \Pi_{1}(t) - 2\mu \Pi_{2}(t) \end{cases}$$

Так же $\Pi_0(t)+\Pi_1(t)+\Pi_2(t)=1$, $\Pi_0(0)=1$, $\Pi_1(0)=0$, $\Pi_2(0)=0$.

Ответ: граф состояний $S_0 = \sum_{\mu} X_1 = \sum_{\mu} X_2 = \sum_{\mu} X_3 = \sum_{\mu} X_4 = \sum_{\mu} X_4 = \sum_{\mu} X_4 = \sum_{\mu} X_5 =$

Задача 3. В системе один основной элемент и один запасной в холодном резерве. После отказа системы она не включается, пока оба отказавших элемента не будут восстановлены. Найти K_{Γ} , если восстановление: а) неограниченное; б) ограниченное. Проверить при $\lambda = \mu$.

Решение:

Рассмотрим случай неограниченного восстановления. Граф состояния:

Состояние 0: Оба элемента исправны (работает основной, резерв выключен);

Состояние 1: Основной отказал, резерв работает;

Состояние 2: Оба элемента отказали (система неработоспособна).

При этом интенсивности переходов:

 λ — из состояния 0 в состояние 1 (отказ основного элемента);

λ — из состояния 1 в состояние 2 (отказ резервного элемента);

 2μ — из состояния 2 в состояние 0 (восстановление одного из двух элементов).

Запишем уравнения переходного режима:

$$\begin{cases} -\lambda \Pi_0 + 2\mu \Pi_1 = 0 \\ \lambda \Pi_0 - \lambda \Pi_1 = 0 \\ \lambda \Pi_1 - 2\mu \Pi_2 = 0 \end{cases}$$

Из 2-го уравнения $\Pi_0=\Pi_1$, из 3-го уравнения $\Pi_2=\frac{\lambda}{2\,\mu}\Pi_1=\frac{\lambda}{2\,\mu}\Pi_0$, а также уравнение нормировки $\Pi_0+\Pi_1+\Pi_2=1$, откуда $\Pi_0+\Pi_0+\frac{\lambda}{2\,\mu}\Pi_0=1$, где $\Pi_0=\frac{2\,\mu}{4\,\mu+\lambda}$.

Коэффициент готовности равен сумме вероятностей нахождения системы в работоспособном состоянии, поэтому $K_{\Gamma}=\Pi_0+\Pi_1=2\cdot\Pi_0=\frac{4\,\mu}{4\,\mu+\lambda}.$ При $\mu=\lambda$ $K_{\Gamma}=\frac{4\,\mu}{4\,\mu+\mu}=\frac{4}{5}=0$,8.

Рассмотрим случай ограниченного восстановления. Граф состояния:

Состояние 0: Оба элемента исправны (работает основной, резерв выключен);

Состояние 1: Основной отказал, резерв работает;

Состояние 2: Оба элемента отказали (система неработоспособна, начато восстановление).

При этом интенсивности переходов:

 λ — из состояния 0 в состояние 1 (отказ основного элемента);

 λ — из состояния 1 в состояние 2 (отказ резервного элемента);

μ — из состояния 2 в состояние 0 (восстановление обоих элементов).

Запишем уравнения переходного режима:

$$\begin{cases} -\lambda \Pi_0 + \mu \Pi_1 = 0 \\ \lambda \Pi_0 - \lambda \Pi_1 = 0 \\ \lambda \Pi_1 - \mu \Pi_2 = 0 \end{cases}$$

Из 2-го уравнения $\Pi_0=\Pi_1$, из 3-го уравнения $\Pi_2=\frac{\lambda}{\mu}\Pi_1=\frac{\lambda}{\mu}\Pi_0$, а также уравнение нормировки $\Pi_0+\Pi_1+\Pi_2=1$, откуда $\Pi_0+\Pi_0+\frac{\lambda}{\mu}\Pi_0=1$, где $\Pi_0=\frac{\mu}{2\mu+\lambda}$.

Коэффициент готовности равен сумме вероятностей нахождения системы в работоспособном состоянии, поэтому $K_{\Gamma}=\Pi_0+\Pi_1=2\cdot\Pi_0=\frac{2\,\mu}{2\,\mu+\lambda}.$ При $\mu=\lambda$ $K_{\Gamma}=\frac{2\,\mu}{2\,\mu+\mu}=\frac{2}{3}\approx 0,667.$

Ответ: неограниченное восстановление: $K_{\Gamma} = \frac{4 \, \mu}{4 \, \mu + \lambda}$, при $\mu = \lambda \ K_{\Gamma} = 0.8$; ограниченное восстановление: $K_{\Gamma} = \frac{2 \, \mu}{2 \, \mu + \lambda}$, при $\mu = \lambda \ K_{\Gamma} \approx 0.667$.

Задача 5. Элемент имеет холодный резерв. Определить среднюю наработку до первого отказа.

Решение:

Пусть интенсивность отказов основного элемента равна λ, а резервного элемента после активации такая же. Тогда средняя наработка до отказа как

основного элемента, так и резерва равна $\frac{1}{\lambda}$. Значит, средняя наработка до отказа сумме наработок элемента и его резерва, то есть $\frac{1}{\lambda} + \frac{1}{\lambda} = \frac{2}{\lambda}$.

Ответ: средняя наработка до первого отказа равна $\frac{2}{\lambda}$.