Правилен отговор

1,00 от максимално 1,00 точки

Отбелязване
 на въпроса

Нека Σ е крайна азбука. Вярно ли е, че съществува регулярен израз s над Σ , такъв че за всеки регулярен израз r над Σ е в сила $\mathcal{L}(s\cdot r)=\mathcal{L}(r)$?

Правилният отговор е "Истина"

Правилен отговор

1,00 от максимално 1,00 точки

Р Отбелязване на въпроса Колко състояния има минималният детерминиран тотален автомат разпознаващ езика на НКА изобразен по-долу?

Браво!

Автоматът разпознава $(aa+b)^{\star}$.

Въпрос **3**Неправилен отговор
0,00 от максимално
1,00 точки

У Отбелязване

на въпроса

Вярно ли е, че ако $A \cap B$ е регулярен език, то поне един от езиците A и B също е регулярен ?

Нека $A=\{a^p|p$ е просто число $\}$, а $B=\{a^p|p$ не е просто число $\}$). Тогава $A\cap B=\emptyset$, който очевидно е регулярен, но нито A, нито B е регулярен език.

Правилният отговор е "Неистина"

Неправилен отговор

0,00 от максимално 1,00 точки

Отбелязване
 на въпроса

Да разгледаме регулярния език $L = \mathcal{L}(ab^{\star}a + ba^{\star}).$

Колко е минималния брой състояния на крайния детерминиран тотален автомат A, който разпознава езика $\{a,b\}^\star\setminus L$?

Отговор

Правилен отговор

1,00 от максимално 1,00 точки

Р Отбелязване на въпроса Кои от следните езици са регулярни?

Изберете едно или повече:

$$\{\omega \in \{a,b\}^\star \mid |\omega|_a = |\omega|_b \leq 42\}$$

$$\{\omega\in\{a,b\}^\star\mid |\omega|_a=|\omega|_b=42\}$$

$$\{\omega\in\{a,b\}^\star\mid |\omega|_a=|\omega|_b\geq 42\}$$

$$\{\omega \in \{a,b\}^\star \mid |\omega|_a = |\omega|_b \neq 42\}$$

Правилните отговори са: $\{\omega\in\{a,b\}^\star\mid |\omega|_a=|\omega|_b=42\}$, $\{\omega\in\{a,b\}^\star\mid |\omega|_a=|\omega|_b\leq42\}$

въпрос О

Неправилен отговор

0,00 от максимално 1.00 точки

Отбелязване на въпроса Да означим с \sim_L релацията на Майхил-Нероуд, т.е.

$$lpha \sim_L eta \ \stackrel{def}{\Longleftrightarrow} \ orall \gamma (lpha \gamma \in L \ \Longleftrightarrow \ eta \gamma \in L),$$

или еквивалентно

$$\alpha \sim_L \beta \Longleftrightarrow \alpha^{-1}(L) = \beta^{-1}(L).$$

За дума lpha, с $[lpha]_L$ означаваме класа на еквивалентност на lpha, т.е.

$$[lpha]_L = \{eta \in \Sigma^\star \mid lpha \sim_L eta\}.$$

Нека L е език над азбуката $\Sigma = \{a,b\}$ и нека

- aaa ∼_L bba,
- $ab \sim_L ba$.
- a ~_L b,

Посочете лексикографски най-малката четирибуквена дума lpha, за която $lpha\sim_L abaa$.

Отговор:

- 1. От първото свойство имаме, че $aaaa\sim_L bbaa$
- 2. От второто свойство имаме, че $abaa\sim_L bbaa$
- 3. Комбинирайки 1. и 2. получаваме, че $aaaa\sim_L abaa$.

Правилният отговор е: аааа

Въпрос **7**Неправилен отговор
0,00 от максимално
1,00 точки

№ Отбелязване

на въпроса

Намерете броят на състоянията на крайният, тотален, минимален, детерминиран автомат разпознаващ езикът

$$\bigcap_{n\in\mathbb{N}}\{a^kb^s\mid k\in\mathbb{N}\ \&\ s\in\mathbb{N}\ \&\ s\leq n\}$$

над азбуката $\{a,b,c\}$.

Езикът, който се получава е $\{a\}^\star$.

Да означим с \sim_L релацията на Майхил-Нероуд, т.е.

$$lpha \sim_L eta \ \stackrel{def}{\Longleftrightarrow} \ orall \gamma(lpha \gamma \in L \ \Longleftrightarrow \ eta \gamma \in L),$$

или еквивалентно

$$\alpha \sim_L \beta \Longleftrightarrow \alpha^{-1}(L) = \beta^{-1}(L).$$

За дума lpha, с $[lpha]_L$ означаваме класа на еквивалентност на lpha, т.е.

$$[lpha]_L = \{eta \in \Sigma^\star \mid lpha \sim_L eta\}.$$

Нека $L=\{a^nb^n\mid n\geq 0\}$ и \sim_L е релацията на Нероуд за езика L и нека с $[\omega]_L$ означим класа на еквивалентност на думата ω относно \sim_L . Посочете верните твърдения:

Изберете едно или повече:

$$(\forall i \geq 1)[a^ib^i \sim_L ab]$$

$$\varepsilon \sim_L ab$$

има точно един елемент в класа $[arepsilon]_L$

$$a \in [aa]_L$$

Релацията \sim_L има безкрайно много класове на еквивалентност

Правилните отговори са: има точно един елемент в класа $[arepsilon]_L$, Релацията \sim_L има безкрайно много класове на еквивалентност

,
$$(\forall i \geq 1)[a^ib^i \sim_L ab]$$

Въпрос **9** Неправилен

отговор

максимално 1,00 точки

№ Отбелязване
на въпроса

Колко състояния има минималният краен детерминиран автомат за езика $\mathcal{L}(a^*b^*(cc)^*)$?

Отговор:

Правилен отговор

1,00 от максимално 1.00 точки

Отбелязване
 на въпроса

Нека разгледаме езиците $L_n=\{a^n\}$ за $n\in\mathbb{N}$. Кои твърдения са верни ?

Изберете едно или повече:

 L_n е регулярен език, за произволно естествено число n

 $\bigcup L_i$ е краен език.

 $i \in \mathbb{N}$

 $igcup_{i=0}^n L_i$ е регулярен език., за произволно естествено число n.

$$\{a,b\}^\star\setminus igcup_{i\in\mathbb{N}} L_i$$
 не е регулярен език.

 L_n е краен език, за произволно естествено число n.

Вашият отговор е верен.

Правилните отговори са: L_n е регулярен език, за произволно естествено число n., L_n е краен език, за произволно естествено число n.

, $\bigcup_{i=0}^n L_i$ е регулярен език., за произволно естествено число n.

Неправилен отговор

0,00 от максимално 1.00 точки

♥ Отбелязване

на въпроса

Вярно ли е, че ако е даден един тотален, краен, детерминиран автомат, то обхождайки състоянията с BFS или DFS започвайки от началното състояние открием ориентиран цикъл и от някое състояние участващо в този цикъл можем да достигнем до някое финално състояние, то дадения автомат разпознава безкраен език?

Да, вярно е.

Правилният отговор е "Истина"

Неправилен отговор

0,00 от максимално 1,00 точки

√ Отбелязване
на въпроса

Нека L е произволен регулярен език. Тогава:

- съществува число p>1, за което
- ullet за всяка дума $\omega \in L$, за която $|\omega| \geq p$, такава че
- ullet съществува нейно разбиване на три части $w=xyz, |xy| \leq p, |y| \geq 1,$
- ullet за всяко $i\geq 0$ е изпълнено, че $xy^iz\in L.$

Грешна формулировка на лемата за покачването. Трябва да бъде "за всяко $p \geq 1$ ".

Правилният отговор е "Неистина"

Неправилен отговор

0,00 от максимално 1.00 точки

Отбелязване
 на въпроса

Нека е даден недетерминиран автомат $oldsymbol{A}$ със 5 състояния.

Алгоритъмът за детерминизация, приложен върху A, ще произведе еквивалентен детерминиран автомат с най-много колко състояния:

Отговор:

Всички подмножества на множество с пет елемента са $\mathbf{2}^5$ на брой.