Hinweis. Die Aufgaben sind aus Staatsexamina früherer Jahre entnommen. Die in Klammern angegebene Punktzahl ist die Punktzahl die damals erreicht werden konnte und ist nur zu Ihrer Orientierung angegeben.

Aufgabe 1.1 (F01T1A2). Eine Gruppe G heiße torsoinsfrei, wenn ihr neutrales Element e_G das einzige Element endlicher Ordnung ist. Eine abelsche torsionsfreie Gruppe $0 \neq (G, +)$ ist vom Rang 1, wenn für alle $g, h \in G$ jeweils $a, b \in \mathbb{Z}$ mit $(a, b) \neq (0, 0)$ gibt, so dass $ag + bh = 0_G$. (Zum Beispiel ist $(\mathbb{Q}, +)$ torsionsfrei vom Rang 1).

- (a) Torsionsfreie abelsche Gruppen vom Rang 1 lassen sich in $\mathbb Q$ einbetten.
- (b) Torsionsfreie lokal zyklische Gruppenvom Rang 1 (d.h. alle endlich erzeugten Untergruppen sind zyklisch) lassen sich in \mathbb{Q} einbetten.
- (c) Jede Untergruppe von \mathbb{Q} ist lokal zyklisch.

(9 Punkte)

Aufgabe 1.2 (F15T3A1). Gegeben seien eine Gruppe G und drei Untergruppen $U_1, U_2, V \subset G$ mit der Eigenschaft $V \subseteq U_1 \cup U_2$. Zeigen Sie, dass $V \subseteq U_1$ oder $V \subseteq U_2$ gilt. (8 Punkte)

Aufgabe 1.3 (F12T2A2). Es seien G eine endliche Gruppe und p eine Primzahl. Begründen Sie, daß die Anzahl der Elemente der Ordnung p in G durch p-1 teilbar ist, d.h.,

$$|\{a \in G \mid \operatorname{ord}(a) = p\}| = (p-1) \cdot k \text{ für ein } k \in \mathbb{N}.$$

(Hinweis: Betrachten Sie die Mengen $M_a = \{a, a^2, \dots a^{p-1}\}$ für $a \in G$ mit $\operatorname{ord}(a) = p$.) (6 Punkte)

Aufgabe 1.4 (F06T2A5). Beweisen Sie:

- (a) Eine Gruppe, in der jedes Element die Ordnung 2 hat, ist abelsch.
- (b) Hat eine nichtabelsche Gruppe G der Ordnung 8 zwei verschiedene Elemente der Ordnung zwei, so ist sie isomorph zur Symmetriegruppe eines Quadrates (ist also insbesondere eine Diedergruppe).

(5 Punkte)

Aufgabe 1.5 (F06T2A1). Beweisen Sie:

Es sei (G, +) eine abelsche Gruppe und U, V seien Untergruppen von G. Dann gilt $G = U \oplus V$ (d.h. G ist direkte Summe von U und V) genau dann, wenn je zwei Nebenklassen U + a und V + b mit $(a, b \in G)$ genau ein Element gemeinsam haben. (5 Punkte)