3-term Arithmetic Progressions

Siddharth Iyer

September 2022

1. Roth's Theorem

Theorem 1. For n sufficiently large, any subset $A \subseteq \{1, ..., n\}$ with density $\delta = \Omega(1/\log \log n)$ must contain a 3-term arithmetic progression.

Suppose $A \subseteq \{1, \ldots, n\}$ of density δ , that does not contain 3-term arithmetic progressions. It will be convenient to interpret A as a subset of \mathbb{Z}_p , where p is a prime between 2n and 4n, and addition being mod p.

Fourier Analysis over \mathbb{Z}_N . The Fourier transform of a function $f:\mathbb{Z}_N\to\mathbb{C}$ is given as

$$f(x) = \sum_{r} \widehat{f}(r)\omega^{rx},$$

where ω is the *n*-th root of unity and $\hat{f}(r) = \mathbf{E}_y[f(y)\omega^{-ry}]$. The following fact known as Plancherel's theorem, follows from the above definitions of the Fourier coefficients

$$\sum_{x} \left| \widehat{f}(r) \right|^2 = \mathbf{E}_x[|f(x)|^2] = ||f||_2^2.$$

Counting the number of 3-term APs. For a function $f: \mathbb{Z}_p \to \mathbb{C}$, define

$$\Lambda_3(f) := \sum_{x,y \in \mathbb{Z}_p} f(x-y) f(x) f(x+y).$$

Let 1_A be the indicator function corresponding to the subset A.

Observation 2. $\Lambda_3(1_A) = \delta n$.

Proof. The summands corresponding to y=0 contribute to $\Lambda_3(1_A)$ whenever $x \in A$. Hence, $\Lambda_3(1_A) \geq \delta n$.

When $y \neq 0$, we can assume without loss of generality that $y \in \{1, \dots, (p-1)/2\}$. Otherwise, we have $-y \in \{1, \dots, (p-1)/2\}$, and

$$1_A(x-y)1_A(x)1_A(x+y) = 1_A(x-(-y))1_A(x)1_A(x+(-y)).$$

Assume to a contradiction that $1_A(x-y)=1_A(x)=1_A(x+y)=1$. In particular, $x \in \{1, \ldots, n\} \subseteq \{1, \ldots, (p-1)/2\}$. Moreover, $x+y \in \{2, \ldots, p-1\}$,

and hence $x+y \mod p = x+y$. Finally, $x-y \in A$ implies that $y \leq x$, for otherwise, $x-y \mod p \in \{(p+1)/2,\ldots,p-1\}$. Therefore, the integers x-y,x,x+y, are distinct elements of A and form an arithmetic progression, which is impossible.

 $1_A - \delta 1_{[n]}$ has a large Fourier coefficient. For three functions $f, g, h : \mathbb{Z}_n \to \mathbb{C}$, define

$$\Lambda(f,g,h) := \sum_{x,y \in \mathbb{Z}_p} f(x-y)g(x)h(x+y).$$

Note that $\Lambda(f, f, f) = \Lambda_3(f)$. Using the Fourier transforms of f, g and h, we have

$$\Lambda(f,g,h) = p^2 \sum_{r} \widehat{f}(r)\widehat{g}(-2r)\widehat{h}(r). \tag{1}$$

Let us denote $1_A - \delta 1_{[n]} := g$.

Claim 3. If $\delta^2 \geq 8/n$, then there exists $r \neq 0$ such that $|\widehat{g}(r)| \geq C\delta^2$, for some absolute constant C > 0.

Proof. Note that $\Lambda_3(1_A) = \Lambda_3(g + \delta 1_{[n]})$. Using the Λ function, we can write

$$\begin{split} \Lambda_3(g+\delta 1_{[n]}) = & \Lambda_3(g) + \delta \Lambda(g,1_{[n]},g) + 2\delta \Lambda(g,g,1_{[n]}) + \\ & \delta^3 \Lambda_3(1_{[n]}) + \delta^2 \Lambda(1_{[n]},g,1_{[n]}) + 2\delta^2 \Lambda(1_{[n]},1_{[n]},g). \end{split}$$

We will show that the dominant term in the above sum is due to $\delta^3 \Lambda_3(1_{[n]})$. First, it is easy to see that $\Lambda_3(1_{[n]}) \geq n^2/4$. Indeed, for any $x \in [n]$, we have $1_{[n]}(x-y)1_{[n]}(x)1_{[n]}(x+y) = 1$, when $y \in \{0\} \cup ([x-1] \cap [n-x])$. Hence,

$$\Lambda_3(1_{[n]}) \ge \sum_{x=1}^n \min\{x, n-x+1\} \ge 2\sum_{x=1}^{n/2} x \ge n^2/4.$$

Next, we upper bound the remaining terms using the Fourier transforms of the respective functions and Equation (1). For example,

$$\begin{split} &\Lambda(g,g,1_{[n]}) = p^2 \Big| \sum_r \widehat{g}(r) \widehat{g}(-2r) \widehat{1_{[n]}}(r) \Big| \\ &\leq \max_r |\widehat{g}(r)| \sum_r |\widehat{g}(-2r)| \cdot \Big| \widehat{1_{[n]}}(r) \Big| \qquad \text{(triangle inequality)} \\ &\leq \max_r |\widehat{g}(r)| \sqrt{\sum_r |\widehat{g}(r)|^2} \sqrt{\sum_r \Big| \widehat{1_{[n]}}(r) \Big|^2} \qquad \text{(Cauchy-Schwarz)} \\ &= \max_{r \neq 0} |\widehat{g}(r)| \cdot \|g\|_2 \cdot \|1_{[n]}\|_2, \qquad \text{(Plancherel)} \end{split}$$

where in the last line we also use the fact that $\widehat{g}(0) = 0$. The same analysis also shows that $\Lambda(g, 1_{[n]}, g) \leq \max_{r \neq 0} |\widehat{g}(r)| \cdot ||g||_2 \cdot ||1_{[n]}||_2$. Similarly,

$$\Lambda(g,1_{[n]},1_{[n]}), \Lambda(1_{[n]},g,1_{[n]}) \le p^2 \max_{r \ne 0} |\widehat{g}(r)| \cdot \|1_{[n]}\|_2^2,$$

and $\Lambda_3(g) \leq p^2 \max_{r \neq 0} |\widehat{g}(r)| \cdot ||g||_2^2$. Therefore,

$$\begin{split} \Lambda_3(g+\delta 1_{[n]}) &\geq \delta^3 n^2/4 - p^2 \max_{r \neq 0} |\widehat{g}(r)| \left(3\delta \|g\|_2 \cdot \|1_{[n]}\|_2 + 3\delta^2 \|1_{[n]}\|_2^2 + \|g\|_2^2\right) \\ &\geq \delta^3 n^2/4 - 8\delta p^2 \max_{r \neq 0} |\widehat{g}(r)| \,, \end{split}$$

which follows by noting that $||g||_2^2 \le ||g||_1 \le 2\delta$.

Recalling that $\Lambda_3(g+\delta 1_{[n]})=\Lambda_3(1_A)=\delta n$ and rearranging, we get

$$8\delta p^2 \max_{r \neq 0} |\widehat{g}(r)| \ge \delta^3 n^2 / 4 - \delta n \ge \delta^3 n^2 / 8,$$

which implies $\max_{r\neq 0} |\widehat{g}(r)| \geq C\delta^2$.

Density increment. We will now find a progression of the form

$$P_y = \{y, y + \beta, \dots, y + (k-1)\beta\},\$$

for some y, β and $k \in \mathbb{Z}_p$, restricted to which, A is denser. Assuming $P_y \subseteq [n]$, we have

$$\left| \underset{z \in P_y}{\mathbf{E}} [g(z)] \right| = \left| \frac{|A \cap P_y| - \delta |P_y \cap [n]|}{|P_y|} \right| = \left| \frac{|A \cap P_y|}{|P_y|} - \delta \right|,$$

which shows that $|\mathbf{E}_{z\in P_y}[g(z)]|$ is a measure of how much the density $|A\cap P_y|/|P_y|$ differs from δ . In order to reason about $|\mathbf{E}_{z\in P_y}[g(z)]|$ and choose an appropriate progression P_y we will use the concept of convolution. For two functions $f_1, f_2 : \mathbb{Z}_p \to \mathbb{C}$, the convolution $f_1 * f_2$ is a function defined as

$$f_1 * f_2(y) = \mathbf{E}[f_1(z)f_2(y-z)].$$

For a subset S, if we set f_2 to be its characteristic function, 1_S , then

$$f_1 * 1_S(y) = \frac{|S|}{p} \mathop{\mathbf{E}}_{z \in y - S} [f_1(z)],$$

where x - S is simply the reflected set -S, shifted by y. Therefore, for any y, the quantity $|\mathbf{E}_{z \in P_y}[g(z)]|$ is proportional to $|g * 1_{-P_0}(y)|$. The convolution $f_1 * f_2$ additional enjoys the property that its Fourier coefficients are simply products of those of f_1 and f_2 . In particular, we have

$$\left|\widehat{g*1_{-P_0}}(r)\right| = \left|\widehat{g}(r)\right| \cdot \left|\widehat{1_{-P_0}}(r)\right| = \left|\widehat{g}(r)\right| \cdot \left|\widehat{1_{P_0}}(r)\right|.$$

From the previous section, we know that $|\widehat{g}(r)| = \Omega(\delta^2)$. Now, we will choose the parameters β and k to ensure that $|\widehat{1}_{P_0}(r)|$ is also large. This will imply that the convolution has a large Fourier coefficient. A lower bound on the Fourier coefficient in turn implies that $g*1_{-P_0}(y)$ cannot be small everywhere, which will allow us to find a progression P_y where the density increases.

Claim 4.

$$\left|\widehat{1_{P_0}}(r)\right| \ge \frac{k}{p} \left(1 - 2\pi k \left\| \frac{r\beta}{p} \right\| \right),$$

where ||x|| denotes the distance of x to the closest integer.

Proof. We have

$$\begin{split} \left| \widehat{\mathbf{1}_{P_0}}(r) \right| &= \frac{k}{p} \Big|_{z \in P_0} [\omega^{-rz}] \Big| \\ &\geq \frac{k}{p} \left(1 - \Big|_{z \in P_0} [1 - \omega^{-rz}] \Big| \right) \\ &\geq \frac{k}{p} \left(1 - \max_{\ell \in [k]} \left| 1 - \omega^{\ell \beta r} \right| \right) \geq \frac{k}{p} \left(1 - k \left| 1 - \omega^{\beta r} \right| \right). \end{split}$$

Moreover,
$$|1 - \omega^{\beta r}| = 2 |\sin(\pi \beta r/p)| = 2 |\sin(\pi ||r\beta/p||)| \le 2\pi ||r\beta/p||$$
.

In order to use the previous claim, we must impose certain constraints on the common difference β to control the error in the above approximation while simultaneously ensuring that P_0 is a legitimate progression in [n]. Choosing $\beta = r^{-1}$ would ensure that the error in the approximation is sufficiently small, however, r^{-1} could be quite large, which might result in several points in P_0 wrapping around. If instead, we set $\beta = 1$, then it easy to ensure P_0 is a valid progression but the error could be quite large. It turns out that there is a choice of β that is not too large and also ensures a small error in the approximation.

Observation 5. Let t < p. There exists $\beta \in [t]$, such that $r\beta \mod p \le p/t$.

Proof. Indeed, if we partition $\{0,\ldots,p-1\}$ into t consecutive disjoint intervals, each of length at most p/t, it follows by the pigeonhole principle that for some two distinct values $a>b\in\{1,\ldots,t\}$, both $ar \mod p$ and $br \mod p$ land in the same interval. The claim follows by setting $\beta=a-b$.

For a parameter $t \in \mathbb{N}$ that we shall set later, let β be as promised by the previous observation. Then, the common difference in P_0 is bounded by t. If in addition, we set the length k so that $kt \ll n$, then P_y is a legitimate progression in [n] as long as $y \in [n-kt]$. Let us denote $E_1 := \{n+1,\ldots,p-kt\}$ and $E_2 := \{0,\ldots,p-1\} \setminus ([n-kt] \cup E_1)$. Note that

$$|g * 1_{-P_0}(y)| = \frac{k}{p} \left| \underset{z \in P_y}{\mathbf{E}} [g(z)] \right| = \begin{cases} 0, & \text{if } y \in E_1 \\ k/p, & \text{if } y \in E_2, \end{cases}$$

where the first case follows by observing that g(z) = 0 for all $z \in P_y$ since $P_y \cap [n] = \emptyset$, and the second case uses the fact that g is bounded in [-1, 1].

We are now ready a progression P_y where the density increases. We have,

$$\begin{split} \left|\widehat{g*1_{-P_0}}(r)\right| &= \left|\widehat{g*1_{-P_0}}(r)\right| + \widehat{g*1_{-P_0}}(0) \\ &\leq \mathbf{E}[\left|g*1_{-P_0}(y)\omega^{-ry}\right| + g*1_{-P_0}(y)] \\ &\leq \frac{k}{p} \left(\max_{y \in [n-kt]} \left(\left|\mathbf{E}_{z \in P_y}[g(z)]\right| + \mathbf{E}_{z \in P_y}[g(z)]\right) + \frac{2|E_2|}{p}\right). \end{split}$$

In the first equality, above we use the fact that $\widehat{g} * \widehat{1}_{-P_0}(0) = 0$ since $\widehat{g}(0) = 0$. Using the fact that $|\widehat{g}(r)| \geq \Omega(\delta^2)$ and Claim 4, we have

$$\begin{split} \max_{y \in [n-kt]} \left(\left| \underset{z \in P_y}{\mathbf{E}} [g(z)] \right| + \underset{z \in P_y}{\mathbf{E}} [g(z)] \right) + \frac{2|E_2|}{p} &\geq C \delta^2 \left(1 - \frac{2\pi k}{t} \right) \\ \Longrightarrow \max_{y \in [n-kt]} \left(\left| \underset{z \in P_y}{\mathbf{E}} [g(z)] \right| + \underset{z \in P_y}{\mathbf{E}} [g(z)] \right) &\geq C \delta^2 \left(1 - \frac{2\pi k}{t} \right) - \frac{4kt}{p}. \end{split}$$

Setting $kt = Cp\delta^2/16$ and $k/t = 1/4\pi$, we see that

$$\max_{y \in [n-kt]} \left(\left| \underset{z \in P_y}{\mathbf{E}} [g(z)] \right| + \underset{z \in P_y}{\mathbf{E}} [g(z)] \right) \ge C\delta^2/4,$$

which implies that $\mathbf{E}_{z \in P_y}[g(z)] \ge C\delta^2/8$, since $\left|\mathbf{E}_{z \in P_y}[g(z)]\right| + \mathbf{E}_{z \in P_y}[g(z)] \ge 0$. By our choice parameters β , k and y, we have a progression $P_y \subseteq [n]$ of length at least $C'\delta\sqrt{p}$, where $|A \cap P_y| \ge |P_y|(\delta + C'\delta^2)$, for an absolute constant C' > 0.

Calculations for the density constraint. Starting with a set $A \subseteq [n]$ of density δ , that does not contain 3-term APs, we can repeatedly restrict A to a progression and increase the density so long as $\delta^2 \geq 8/n$. In every iteration, the size of the ambient set shrinks to $C'\sqrt{n}\delta$ while the density increases by additive $C'\delta^2$, for some absolute constant C'. This process must terminate after $m := 8C'/\delta + \log(1/C'\delta)$ steps because then the density would exceed one. However, even after these number of steps the size of the ambient set is at least $n^{2^{-m}}(\delta^2C')^m > 8/\delta^2$, if $\delta = \Omega(1/\log\log n)$.

2. Improved Density Estimate

Again let $A \subseteq [n]$ of density δ . In this section, we shall think of A being a subset of \mathbb{Z}_n with addition being mod n. Throughout this section, we will denote $J := \{-n/12 + 1, \dots, n/12\}$.

Claim 6. If
$$|A \cap (\frac{n}{2} + J)| \ge \frac{\delta |J|}{2}$$
 and $\delta^2 > \frac{1}{1200n}$ then

$$\sum_{r \neq 0} \left| \widehat{1_A}(r) \right|^3 \ge 10^{-6} \delta^3. \tag{2}$$

Note that if $\left|A \cap \left(\frac{n}{2} + J\right)\right| < \frac{\delta|J|}{2}$ then

$$\left|A \cap \left\lceil \frac{5n}{12} \right\rceil \right| + \left|A \cap \left(\frac{7n}{12} + \left\lceil \frac{5n}{12} \right\rceil \right) \right| > \delta n - \frac{\delta n}{12} = \frac{11\delta n}{12} = \frac{11\delta n}{10} \cdot \frac{10n}{12}.$$

This implies that the density of A restricted to a shift of [5n/12] increases by $\delta/10$.

Proof. (of Claim 6) Denote $u = 1_A \cdot 1_{n/2+2J}$. We claim that

$$\Lambda(1_A, u, u) = \sum_{x,y} 1_A(x - y)u(x)u(x + y) \le |A|.$$

Indeed, if u(x) = u(x+y) = 1 then both $x, x+y \in \frac{n}{2} + 2J = \{\frac{n}{3} + 2, \dots, \frac{2n}{3}\}$. This implies that $y \in \{-\frac{n}{3} + 2, \dots, \frac{n}{3} - 2\} = -2 + 4J$. Since this set is symmetric, it contains -y, which implies

$$x - y \in \left(\frac{n}{2} - 2\right) + 6J = \left(\frac{n}{2} - 2\right) + \left\{-\frac{n}{2} + 6, \dots, \frac{n}{2}\right\} = \{4, \dots, n - 2\}.$$

Then, x - y, x and x + y form a 3-term AP in [n], which is impossible, unless y = 0, in which case, the above sum is at most |A|.

Now, we will lower bound $\Lambda(1_A, u, u)$. Denote $v = 1_A \cdot (1_{\frac{n}{2}+J} * 1_{\frac{n}{2}+J})$. Since for every $x, u(x) \geq v(x)$, it follows that $\Lambda(1_A, v, v) \leq \Lambda(1_A, u, u) \leq \delta n$. Applying Equation (1) for $\Lambda(1_A, v, v)$, we have

$$\delta n \ge n^2 \sum_r \widehat{1_A}(r) \cdot \widehat{v}(r) \cdot \widehat{v}(-2r) \ge n^2 \left(\frac{\delta^3}{600} - \sum_{r \ne 0} \left| \widehat{1_A}(r) \right| \cdot |\widehat{v}(r)| \cdot |\widehat{v}(-2r)| \right),$$

where in the last step, we used the fact that $|\widehat{v}(0)| \geq \delta/24$. This follows by observing that $v(x) \geq \frac{1_A(x)}{2}$, for every $x \in \frac{n}{2} + J$, and $|A \cap (\frac{n}{2} + J)| \geq \frac{\delta n}{12}$. Rearranging, we get

$$\sum_{r \neq 0} \left| \widehat{1_A}(r) \right| \cdot |\widehat{v}(r)| \cdot |\widehat{v}(-2r)| \ge \frac{\delta^3}{600} - \frac{\delta}{n} > \frac{\delta^3}{1200}.$$

We can upper bound the above sum as follows

$$\begin{split} \sum_{r \neq 0} \left| \widehat{1_A}(r) \right| \cdot |\widehat{v}(r)| \cdot |\widehat{v}(-2r)| &\leq \sqrt{\sum_{r \neq 0} \left| \widehat{1_A}(r) \right| \cdot |\widehat{v}(r)|^2} \cdot \sqrt{\sum_{r \neq 0} \left| \widehat{1_A}(r) \right| \cdot |\widehat{v}(-2r)|^2} \\ &\leq \left(\sum_{r \neq 0} \left| \widehat{1_A}(r) \right|^3 \right)^{1/3} \cdot \left(\sum_{r} |\widehat{v}(r)|^3 \right)^{2/3}, \end{split}$$

where we use Cauchy-Schwarz inequality in the first step and Hölder's inequality in the second. We can bound the norm of the Fourier spectrum of the function f * g in terms of appropriate norms of the Fourier spectrum of f and g. We have,

$$\|\widehat{f * g}\|_p \le \|\widehat{f}\|_p \cdot \|\widehat{g}\|_1. \tag{3}$$

Using this, we have

$$\begin{split} \|\widehat{v}\|_{3} &\leq \|\widehat{1_{A}}\|_{3} \cdot \|\widehat{1_{\frac{n}{2}+J} * 1_{\frac{n}{2}+J}}\|_{1} \\ &= \|\widehat{1_{A}}\|_{3} \cdot \left(\sum_{r} \left|\widehat{1_{\frac{n}{2}+J}}(r)\right|^{2}\right) = \|\widehat{1_{A}}\|_{3} \cdot \|\widehat{1_{\frac{n}{2}+J}}\|_{2}^{2} = \|\widehat{1_{A}}\|_{3}/6. \end{split}$$

Therefore, we obtain

$$\begin{split} \frac{\delta^3}{1200} & \leq \left(\sum_{r \neq 0} \left| \widehat{1_A}(r) \right|^3 \right)^{1/3} \cdot \frac{\|\widehat{1_A}\|_3^2}{36} \\ & \leq \frac{1}{36} \left(\sum_{r \neq 0} \left| \widehat{1_A}(r) \right|^3 \right)^{1/3} \cdot \left(\delta^3 + \sum_{r \neq 0} \left| \widehat{1_A}(r) \right|^3 \right)^{2/3}, \end{split}$$

which implies that $\sum_{r\neq 0} \left| \widehat{1_A}(r) \right|^3 \geq 10^{-6} \delta^3$.

Density Increment. In the previous section, we found a progression of length $\approx \delta \sqrt{n}$, restricted to which, the density of A increased by $\approx \delta^2$. In order to obtain this we used the fact that some non trivial Fourier coefficient of $1_A - \delta 1_{[n]}$ had magnitude $\approx \delta^2$.

We will follow the same density increment template. First, let us order the elements in $\mathbb{Z}_{[n]} \setminus \{0\}$ as r_1, \ldots, r_{n-1} so that $\left|\widehat{1}_A(r_1)\right| \geq \ldots \geq \left|\widehat{1}_A(r_{n-1})\right|$. Our starting point is Equation (2)¹, and using this, we will show the following.

- 1. Assuming A is sufficiently $(\delta \ge (\log n)^{-O(1)})$, there exists $q \le (\log n)^{O(1)}$ such that $\sum_{i=1}^q \left|\widehat{1_A}(r_i)\right|^2 = \Omega(q^{1/3}\delta^2)$, and
- 2. there is a progression $P_y = \{y, y + \beta, \dots, y + (k-1)\beta\}$ such that $k\beta < n$, $|P_y| = \Omega(n^{1/(q+1)})$, and $\mathbf{E}_{z \in P_y}[1_A(z)]^2 = \delta^2 + \Omega\left(\sum_{i=1}^q \left|\widehat{1_A}(r_i)\right|^2\right)$.

The assumption that $k\beta < n$ is useful because it implies, P_y can be partitioned into two sub-progressions that are legitimate progressions in [n].

Claim 7. For any $\varepsilon > 0$, assuming Equation (2), there exists $q \leq \delta^{-3}$ and a constant C (depending on ε) such that

$$\sum_{i=1}^{q} \left| \widehat{1_A}(r_i) \right|^2 \ge C\delta^2 q^{1/3 - 2\varepsilon} \tag{4}$$

¹Note that this equation already implies that some non-trivial Fourier coefficient of 1_A has magnitude at least $\approx \delta^2$.

Proof. Denote $t = \delta^{-3}$. We shall prove the stronger statement that for some $q \le t$ it holds that $|\widehat{1_A(r_q)}| \ge C\delta q^{-(1/3+\varepsilon)}$. Indeed, this implies,

$$\sum_{i=1}^{q} \left| \widehat{1_A(r_i)} \right|^2 \ge q \left| \widehat{1_A(r_q)} \right|^2 \ge C^2 \delta^2 q^{1/3 - 2\varepsilon}.$$

Therefore, assume to a contradiction that $|\widehat{1_A(r_q)}| < C\delta q^{-(1/3+\varepsilon)}$ for all $q \le t$. This immediately implies,

$$\sum_{i > t} \left| \widehat{1_A(r_i)} \right|^3 \le \delta \cdot \left| \widehat{1_A(r_t)} \right| \le C \delta^2 t^{-1/3} = C \delta^3.$$

Moreover,

$$\sum_{i \ge 1} \left| \widehat{1_A(r_i)} \right|^3 \le C^3 \delta^3 \sum_{q=1}^t q^{-(1+3\varepsilon)} + C\delta^3$$

$$\le C^3 \delta^3 \left(1 + \int_2^q (x-1)^{-(1+3\varepsilon)} \right) + C\delta^3 < C\delta^3 \left(2 + \frac{1}{3\varepsilon} \right),$$

which contradicts Claim 6, if $C = \varepsilon 10^{-6}$.

Claim 8. For every q > 0, there exists a progression $P = \{0, \beta, \dots, (k-1)\beta\}$ and $y \in \mathbb{Z}_n$ such that $k\beta < n$ and $k \ge (n^{1/(q+1)})/4\pi$, and

$$\mathop{\mathbf{E}}_{z \in y + P} [1_A(z)]^2 = \delta^2 + \frac{1}{4} \sum_{i=1}^q \left| \widehat{1_A}(r_i) \right|^2.$$

Proof. First, we choose a common difference β so that for the progression $P = \{0, \beta, \dots, (k-1)\beta\}$, we have

$$\left|\widehat{1_P}(r_i)\right| \ge \frac{k}{2n}$$
, for every $i \in [q]$.

For a parameter t>0, let us partition $\{0,\ldots,n-1\}$ into $\ell=t^{1/q}$ disjoint consecutive intervals, I_1,\ldots,I_ℓ . These sets induce a partition of the product set $\{0,\ldots,n-1\}^q$ into cells, where each cell is a Cartesian product of q intervals. For each $j\in\{1,\ldots,t\}$, we can identify the tuple (jr_1,\ldots,jr_q) by the cell that contains it. Since the number of cells is $\ell^q\leq t$, the pigeonhole principle implies that there must be distinct j,j' such that the corresponding tuples are contained in the same cell. Setting $\beta=j-j'$, we see that $\beta r_i\in\{-n/\ell,\ldots,n/\ell\}$. Now, we have

$$\begin{split} \left| \widehat{1_P(r_i)} \right| &= \frac{k}{n} \left| \underset{z \in P}{\mathbf{E}} [\omega^{-zr_i}] \right| \\ &\geq \frac{k}{n} \left(1 - \left| \underset{z \in P}{\mathbf{E}} [1 - \omega^{-zr_i}] \right| \right) \\ &\geq \frac{k}{n} \left(1 - \max_{j \in [k]} \left| 1 - \omega^{-r_i k \beta} \right| \right) \geq \frac{k}{n} \left(1 - k \left| 1 - \omega^{-r_i \beta} \right| \right) \end{split}$$

Using the fact that

$$\left|1 - \omega^{-r_i\beta}\right| = 2\sin\left(\frac{\pi r_i\beta}{n}\right) \le 2\pi \left\|\frac{r_i\beta}{n}\right\| \le \frac{2\pi}{\ell},$$

and setting $k = \ell/4\pi$, we have

$$\left|\widehat{1_P(r_i)}\right| \ge \frac{k}{n} \left(1 - \frac{2\pi k}{\ell}\right) \ge \frac{k}{2n}.$$

Note that $k\beta \leq \ell t/4\pi \leq t^{(q+1)/q}/4\pi$. Setting $t = n^{q/(q+1)}$, we can ensure that $k\beta < n$. This gives us a progression P of length $k = \ell/4\pi = n^{1/(q+1)}/4\pi$, as desired. It remains to find a shift of P where the density of A increases. Since $|1_A*1_{-P}(y)| = (k/n) \mathbf{E}_{z \in y+P}[1_A(z)]$, it suffices to lower bound $||1_A*1_{-P}||_{\infty}^2$. We have

$$\begin{aligned} \|1_{A} * 1_{-P}\|_{\infty}^{2} &\geq \|1_{A} * 1_{-P}\|_{2}^{2} \\ &= \sum_{r} \left|\widehat{1_{A}}(r)\right|^{2} \left|\widehat{1_{-P}}(r)\right|^{2} \\ &\geq \delta^{2} \left|\widehat{1_{P}}(0)\right|^{2} + \sum_{i=1}^{q} \left|\widehat{1_{A}}(r)\right|^{2} \left|\widehat{1_{P}}(r)\right|^{2} \\ &= \left(\frac{k}{n}\right)^{2} \left(\delta^{2} + \frac{1}{4} \sum_{i=1}^{q} \left|\widehat{1_{A}}(r)\right|^{2}\right), \end{aligned}$$

which implies the claim.