

Hand in until November 29th, 2023 15:59 via ILIAS Discussion: December 4th/5th, 2023

Tutorial for Cyber-Physical Systems - Discrete Models Exercise Sheet 6

Accuracy is very important when talking about properties of a system. Therefore, we will now fix the meaning of symbols for which different interpretations have been encountered in the previous submissions: The symbol \mathbb{N} denotes the set $\{0,1,2,\ldots\}$ of (non-negative) natural numbers. We use $\mathbb{N}_{>i}$, where i can be any natural number, to denote the set $\{i+1,i+2,i+3,\ldots\}$, e.g., by $\mathbb{N}_{>0}$, we denote the set $\{1,2,3,\ldots\}$ of positive natural numbers.

Exercise 1: Linear-Time Properties

5 Points

The goal of this exercise is to find properties for given transition systems.

Assume $AP = \{a, b\}$. For each of the transition system T_i , complete the following tasks:

- (a) Give a property (different from "True") using set comprehension that is satisfied by T_i . Do not use any property more than once.
- (b) Give a property (different from "False") using set comprehension that is not satisfied by T_i . Do not use any property more than once.

Example: The property "always a" can be formalized using set comprehension as $\{A_0A_1A_2... | \forall i \in \mathbb{N} . a \in A_i\}.$

Exercise 2: Starvation Freedom

5 Points

Below you can see two different definitions of the star vation freedom property for the mutual exclusion problem. We consider the set of atomic propositions $AP = \{ wait_1, wait_2, crit_1, crit_2 \}$. The properties are defined as

$$\begin{split} LIVE := \left\{ \begin{array}{l} \text{set of all infinite traces } A_0A_1A_2\dots \text{ s.t.} \\ (\exists i \in \mathbb{N} \,.\, \text{wait}_1 \in A_i) \to \exists i \in \mathbb{N} \,.\, \text{crit}_1 \in A_i \\ (\exists i \in \mathbb{N} \,.\, \text{wait}_2 \in A_i) \to \exists i \in \mathbb{N} \,.\, \text{crit}_2 \in A_i \\ \end{array} \right. \\ LIVE' := \left\{ \begin{array}{l} \text{set of all infinite traces } A_0A_1A_2\dots \text{ s.t.} \\ \forall i \in \mathbb{N} \,.\, (\text{wait}_1 \in A_i \to \exists j \in \mathbb{N} \,.\, j \geq i \wedge \text{crit}_1 \in A_j) \\ \forall i \in \mathbb{N} \,.\, (\text{wait}_2 \in A_i \to \exists j \in \mathbb{N} \,.\, j \geq i \wedge \text{crit}_2 \in A_j) \end{array} \right. \end{split}$$

- (a) Show that the property LIVE' is at least as strong as the property LIVE, i.e., prove that $LIVE' \subseteq LIVE$.
- (b) Show that LIVE' is a *strictly stronger* property than LIVE: Give an infinite trace $\pi = A_0 A_1 A_2 \dots$, and prove that $\pi \in LIVE$ but $\pi \notin LIVE'$.
- (c) Does such a trace π with $\pi \in LIVE$ but $\pi \notin LIVE'$ exist in the transition systems for mutual exclusion discussed in the lecture (with semaphore resp. with Peterson algorithm)? Why/why not?
- (d) Does there exist a trace π with $\pi \in LIVE'$ but $\pi \notin LIVE$ in the transition systems for mutual exclusion discussed in the lecture (with semaphore resp. with Peterson algorithm)? Why/why not?

Exercise 3: Trace Inclusion

9 Points

Consider the program graphs \mathcal{P}_1 , \mathcal{P}_2 , \mathcal{P}_{3a} , and \mathcal{P}_{3b} as well as the transition system \mathcal{T}_4 .

The domain of the variable x in all 3 program graphs is the set of integers \mathbb{Z} . The effect of the assignment action is as expected, and $Effect(nop, \eta) = \eta$.

- (a) Draw the (reachable part of the) transition systems $\mathcal{T}_{\mathcal{P}_1}$, $\mathcal{T}_{\mathcal{P}_2}$ and $\mathcal{T}_{\mathcal{P}_{3a}||\mathcal{P}_{3b}}$. As atomic propositions of the transition system, use the guards of the actions in the program graph, i.e. $AP = \{x > 0, x = 0\}$.
- (b) For each of the 12 possible pairs $(\mathcal{T}, \mathcal{T}')$ that one can form with \mathcal{T} and \mathcal{T}' in $\{\mathcal{T}_{\mathcal{P}_1}, \mathcal{T}_{\mathcal{P}_2}, \mathcal{T}_{\mathcal{P}_{3a}||\mathcal{P}_{3b}}, \mathcal{T}_4\}$, consider the trace inclusion $\mathit{Traces}(\mathcal{T}) \subseteq \mathit{Traces}(\mathcal{T}')$. If it holds, argue why this is the case. If it does not hold, give a trace $\pi = A_0 A_1 A_2 \dots$ such that $\pi \in \mathit{Traces}(\mathcal{T})$ but $\pi \notin \mathit{Traces}(\mathcal{T}')$.
- (c) Give a property E (i.e., a set of traces) such that $\mathcal{T}_{\mathcal{P}_1} \models E$ and $\mathcal{T}_{\mathcal{P}_2} \models E$ but $\mathcal{T}_{\mathcal{P}_{3a} \parallel \mathcal{P}_{3b}} \not\models E$ and $\mathcal{T}_4 \not\models E$. Explain why each of the four hold; i.e., argue why $\mathcal{T}_{\mathcal{P}_1}$ and $\mathcal{T}_{\mathcal{P}_2}$ satisfy the property E, and give traces of $\mathcal{T}_{\mathcal{P}_{3a} \parallel \mathcal{P}_{3b}}$ and \mathcal{T}_4 that violate the property E.