GROUPE D'ISOMÉTRIES DU CUBE ET DE L'OCTAÈDRE RÉGULIER

Sidi Mohammed BOUGHALEM

sithlord-dev.github.io University François Rabelais - Tours

On se place dans \mathbb{R}^3 muni d'un repère orthonormé et on considère $X:=\{-1,1\}^3\subset\mathbb{R}^3$, Les huit points de X, qui sont de coordonnées $(\pm 1,\pm 1,\pm 1)$ sont les sommets d'un cube. On les notera A,B,C,D,A',B',C',D' où A',B',C',D' sont, respectivement, les symétriques de A,B,C,D par rapport à O.

Figure 1

Soit G = Is(X) le groupe des isométries de X. Comme pour tout $g \in G$, g(O) = O, O est un point fixe de Is(X) (étant l'isobarycentre du cube). On a bien que $G \subset GL_3(R)$, on va donc identifier chaque élément $g \in G$ par sa matrice dans la base canonique de \mathbb{R}^3 . (Plus précisément, G est un sous-groupe de $O_3(\mathbb{R})$ étant composé d'isométries qui conservent l'origine.)

Considérons l'ensemble $\lambda = \{\lambda_1, \lambda_2, \lambda_3\}$ des axes de coordonnées $\lambda_i = \mathbb{R}e_i, \forall i \in \{1, 2, 3\}$. Soit $T := \{\pm e_1, \pm e_2, \pm e_3\}$ l'ensemble des points de \mathbb{R}^3 ayant une seule coordonnée non nulle, égale à ± 1 .

T, étant l'ensemble des barycentres des faces du cube, est stable par G. Comme λ est l'ensemble des droites $\mathbb{R}\overrightarrow{OM}$, $M \in T$, il en est de même pour λ . On en déduit donc une action de G sur λ et donc un morphisme

$$\psi: G \longrightarrow \mathfrak{S}(\lambda) \cong \mathfrak{S}_3$$

On considère maintenant le sous-groupe H de G formé des matrices de permutations

$$H := \{ P_{\sigma} \in GL_3(\mathbb{R}), \sigma \in \mathfrak{S}_3 \} \text{ avec } P_{\sigma}(e_i) = e_{\sigma(i)}$$

Il est clair que la restriction $\psi|_H: H \longrightarrow \mathfrak{S}_3$ est un isomorphisme, ce qui prouve que ψ est surjective.

Considérons maintenant le deuxième sous-groupe

$$K := \{Diag(\epsilon_i) \in GL_3(\mathbb{R}) / \epsilon_i = \pm 1, i = 1, 2, 3\} \cong (\{-1, 1\}^3, \times) \cong (\mathbb{Z}_2^3, +)$$

Par stabilité de T sous G, on a bien que $K \subset ker(\psi)$. D'autre part, pour tout $g \in ker(\psi)$ et pour tout i = 1, 2, 3 : g laisse stable chacune des droites $\lambda_i = \mathbb{R}e_i$, c'est donc une matrice diagonale $g = Diag(x_i)$, $x_i \in \mathbb{R}$. Or, comme $g \in O_3(\mathbb{R})$, $x_i = \pm 1$. D'où $K = ker(\psi)$. On obtient finalement que

$$G/K \cong \mathfrak{S}_3$$

et donc, |G| = |H||K| = 48.

De plus, comme $K \triangleleft G$ (étant le noyau du morphisme ψ), comme la seule matrice de permutation diagonale est I_3 (et donc $K \cap H = I_3$) et comme G = HK, on obtient que

$$G \cong H \rtimes K$$
.

Observons que, pour tout $g \in G$,

$$det(g) = det(P_{\sigma}k) = sign(\sigma) det(k) = \pm 1$$

Considérons le troisième sous-groupe $Is^+(X) := Is(X) \cap SO_3(\mathbb{R}) = \{g \in G \mid \det(g) = 1\} = G^+,$ qui est distingué et d'indice 2 dans G.

Soit $\mathcal{D} = \{D_1, D_2, D_3, D_4\}$ l'ensemble des 4 grandes diagonales du cube X, où

$$D_1 = [AA'], D_2 = [BB'], D_3 = [CC'], D_4 = [DD']$$

Comme G fixe O, l'image de deux points symétriques par rapport à O sont deux points symétriques par rapport à O, on en déduit que G agit sur \mathcal{D} et on obtient donc un morphisme

$$\varphi: G \longrightarrow \mathfrak{S}(\mathcal{D}) \cong \mathfrak{S}_4$$

On note $s_O := -I_3 \in G$ la symétrie par rapport à O. On a bien que $s_O \in ker(\varphi)$.

Soient

$$T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Géométriquement, T est la symétrie orthogonale par rapport au plan d'équation y=z. On voit que T fixe les points C, C', D, D' et permute $A \leftrightarrow B'$ et $B \leftrightarrow A'$. $\varphi(T)$ est donc la transposition (D_1D_2) .

Comme les transpositions engendrent $\mathfrak{S}(\mathfrak{D})$, on a que φ est surjective et on obtient finalement que

$$G/ker(\varphi) \cong \mathfrak{S}_4$$

et $|ker(\varphi)| = \frac{|G|}{|\mathfrak{S}_4|} = 2$. Enfin

$$ker(\varphi) = \{id, s_O\} = \langle s_O \rangle \lhd G$$

Comme $s_O \in G \setminus G^+$ (det $(s_O) = -1$), la restriction $\varphi_{|G^+}$ est injective, et donc, par argument de cardinalité, on a que

$$G^+ \cong \mathfrak{S}_4$$

Finalement, on en déduit que

$$Is(X) = Is(X)^+ \times \langle s_O \rangle \cong \mathfrak{S}_4 \times \mathbb{Z}_2$$

Ainsi, pour étudier le groupe Is(X), on est amené à étudier $Is(X)^+$. Comme ce groupe est isomorphe à \mathfrak{S}_4 , $Is(X)^+$ a 5 classes de conjugaisons, qu'on peut lister comme suit :

- $C_1 = \{id\}$
- $C_2 = \{(D_3D_4), (D_1D_2), (D_3D_3), (D_1D_4), (D_1D_3), (D_2D_4)\}$
- $C_3 = \{(D_1D_4D_2), (D_1D_2D_3), (D_1D_3D_4), (D_2D_4D_3), (D_1D_2D_4), (D_1D_3D_2), (D_1D_4D_3), (D_2D_3D_4)\}$
- $C_4 = \{(D_1D_3D_2D_4), (D_1D_4D_2D_3), (D_1D_3D_4D_2), (D_1D_2D_4D_3), (D_1D_2D_3D_4), (D_1D_4D_3D_2)\}$
- $C_5 = \{(D_1D_2)(D_3D_4), (D_1D_4)(D_2D_3), (D_1D_3)(D_2D_4)\}$

La notation matricielle si on préfère :

$$\begin{array}{lll} C_1 & = & \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\} \\ C_2 & = & \left\{ \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \right\}, & \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}, & \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, & \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, & \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \right\} \\ C_3 & = & \left\{ \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, & \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, & \begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}, & \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}, & \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}, & \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix}, & \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}, & \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix}, & \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix}, & \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \end{pmatrix}, & \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, & \begin{pmatrix} 0$$

Et l'interprétation géométrique :

- L'identité.
- 6 symétries orthogonales par rapports aux plans d'équations : $x = \pm y, x = \pm z, y = \pm z$ (comme vu plus haut).
- 8 rotations autours des quatre diagonales D_i d'angle $\pm \frac{2\pi}{3}$.
- 6 rotations d'axes respectifs Ox, Oy, Oz et d'angle $\pm \frac{\pi}{2}$. Par exemple, considérons

$$R_{\frac{\pi}{2}} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $R_{\frac{\pi}{2}}$ est la rotation de 90° et d'axe Oz. Elle permute circulairement les sommets A, B, C, D. $\varphi(R_{\frac{\pi}{2}})$ est donc le 4-cycle $(D_1D_2D_3D_4)$.

• 3 rotations d'axes respectifs Ox, Oy, Oz et d'angle π , qui sont aussi les carrés, respectivement, des rotations ci haut.

Ainsi, on peut finalement dresser la table de caractère de Is(X). Comme $Is(X) \cong Is(X)^+ \times \times \mathbb{Z}_2$, les classes de conjugaisons de Is(X) sont donc $\{\pm C_1, \pm C_2, \pm C_3, \pm C_4, \pm C_5\}$. On peut déjà donc lister les représentation irréductibles det, sign et la représentation standard de Ix(X) dans \mathbb{C}^3 , ainsi que leur produits. On peut donc déjà dresser la table avec ces valeurs.

Is(X)	C_1	C_2	C_3	C_4	C_5	$-C_1$	$-C_2$	$-C_3$	$-C_4$	$-C_5$
id	1	1	1	1	1	1	1	1	1	1
det	1	1	1	1	1	-1	-1	-1	-1	-1
sign	1	-1	1	-1	1	1	-1	1	-1	1
$\det .sign$	1	-1	1	-1	1	-1	1	-1	1	-1
χ_{std}	3	-1	0	1	-1	-3	1	0	-1	1
$\det .\chi_{std}$	3	-1	0	1	-1	3	-1	0	1	-1
$sign.\chi_{std}$	3	1	0	-1	-1	-3	-1	0	1	1
$\det.sign.\chi_{std}$	3	1	0	-1	-1	3	1	0	-1	-1

D'après la formule de Burnside, on a que

$$1^{2} + 1^{2} + 1^{2} + 1^{2} + n^{2} + n^{2} + n^{2} + 3^{2} + 3^{2} + 3^{2} + 3^{2} = n^{2} + n^{2} + 40 = 48$$

Les seules valeurs possibles pour n et m sont donc n=m=2. On a vu plus haut que $Is(X)/K \cong \mathfrak{S}_3$, on a donc une première représentation irréductible de Is(X): χ' , qui se trouve être de dimension 2. On remarque qu'on faisant le produit $sign.\chi'$ on retombe sur χ' , on conclut alors que la représentation manquante de dimension 2 est det $.\chi'$.

La représentation standard de \mathcal{S}_4 par permutation, est la somme directe de la représentation id et une représentation irréductible π_s . En la relevant à Is(X) par φ , on obtient une représentation irréductible dont le caractère est det $.sign.\chi_{std}$.

Is(X)	C_1	C_2	C_3	C_4	C_5	$-C_1$	$-C_2$	$-C_3$	$-C_4$	$-C_5$
id	1	1	1	1	1	1	1	1	1	1
det	1	1	1	1	1	-1	-1	-1	-1	-1
sign	1	-1	1	-1	1	1	-1	1	-1	1
$\det .sign$	1	-1	1	-1	1	-1	1	-1	1	-1
χ'	2	0	-1	0	2	2	0	-1	0	2
$\det .\chi'$	2	0	-1	0	-2	-2	0	1	0	2
χ_{std}	3	-1	0	1	-1	-3	1	0	-1	1
$\det .\chi_{std}$	3	-1	0	1	-1	3	-1	0	1	-1
$sign.\chi_{std}$	3	1	0	-1	-1	-3	-1	0	1	1
$\det.sign.\chi_{std}$	3	1	0	-1	-1	3	1	0	-1	-1