Modern Cryptology - Problem Set 4. name: Guy Levy. ID: 206865362.

1. Homomorphic Encryption and CRHF

1. let $y \in \mathbb{F} : y \neq 0 \Rightarrow \exists j \in [n] : y_i \neq 0$

$$Pr_{x \in_{R} \mathbb{F}} \left[\langle x, y \rangle = 0 \right] = Pr_{x \in_{R} \mathbb{F}} \left[\sum_{i=0}^{n} x_{i} y_{i} = 0 \right]$$

$$= Pr_{x \in_{R} \mathbb{F}} \left[-x_{j} y_{j} = \sum_{i \neq j}^{n} x_{i} y_{i} \right]$$

$$= Pr_{x \in_{R} \mathbb{F}} \left[x_{j} = -y_{j} \cdot \left(\sum_{i \neq j}^{n} x_{i} y_{i} \right) \right]$$

(note : $-y_j \cdot (\sum_{i \neq j}^n x_i y_i)$ is some random number in \mathbb{F} as x is random.) $= Pr_{a \in \mathbb{R}} |a = b|$

(for some b)

$$=\frac{1}{|\mathbb{F}|}$$

2. Adversary chooses $x \in_R \mathbb{F}^n$ at random, we saw in (1) that if $y \neq 0$:

$$Pr_{x \in_{\mathbb{R}} \mathbb{F}} \left[\langle x, y \rangle = 0 \right] = \frac{1}{|\mathbb{F}|}$$

And in the case that y = 0 that probability is 1.

3. Assume there exists Adversary A and p(n) polynomial such that:

$$Pr_{k \in_{R} G(1^{n}), y \in_{R} \mathbb{F}^{n}} \left[A(E_{k}(y)) = x : \langle x, y \rangle = 0 \right] \ge \frac{1}{|\mathbb{F}|} + \frac{1}{p(n)}$$

Will show (G, E, D) not CPA secure, In contradiction to assumption. Thus will get what we wanted to prove.

Construct A' to break (G, E, D)'s CPA security:

A' sends challenger $m_0 \in_R \{0, 1\}^n, m_1 \in_R \{0, 1\}^n$. Challenger sends back $E_k(m_b)$ for random $b \in_R \{0, 1\}$. A' computes $A(E_k(m_h))$ to get some x. If $\langle m_0, x \rangle = 0$ returns b' = 0, else returns b' = 1.

Claim: A' breaks CPA:

i.e. claim $Pr[b'=b] \ge \frac{1}{2} + \frac{1}{p'(p)}$ for p' some polynomial.

$$Pr_{b \in_{R}\{0,1\}}[b'=b] = Pr_{b \in_{R}\{0,1\}}[A'(E_k(m_b)) = b]$$

$$= Pr_{b \in_{\mathbb{R}}\{0,1\}}[A'(E_k(m_0)) = 0] \cdot Pr[b = 0] + Pr_{b \in_{\mathbb{R}}\{0,1\}}[A'(E_k(m_1)) = 1] \cdot Pr[b = 1]$$

$$= 0.5 \cdot Pr[\langle m_0, x \rangle = 0] + 0.5 \cdot Pr[\langle m_1, x \rangle \neq 0]$$

$$\geq^{(*)} 0.5 \cdot (\frac{1}{|\mathbb{F}|} + \frac{1}{p(n)}) + 0.5 \cdot (1 - \frac{1}{|\mathbb{F}|} - \frac{1}{|\mathbb{F}|^n})$$

$$= \frac{1}{2} + \frac{1}{2p(n)} - \frac{1}{|\mathbb{F}|^n}$$

$$\geq^{(**)} \frac{1}{2} + \frac{1}{p'(n)}$$

(*):
$$Pr[< m_0, x >= 0] \le \frac{1}{|\mathbb{F}|} + Pr[x = 0]$$

(**): for $p'(n) = 3p(n)$. for all $n > N$ for some $N \in \mathbb{N}$

- 4. was not able to solve (especially was not able to use extension as I have 3 exams between 7.7 and 9.7)
- 5. was not able to solve

2. Circular Security of Regev Encryption

2.1 Circular Security

Enough to prove that we can get $enc_{pk}(s_i) \ \forall i \in [n]$ for free. From the fact that Regev is CPA, we can conclude that its circular secure.

Given (a,τ) an encryptio for 0, Claim $(a-\frac{q}{2}u_i,\tau)$ is an encryption for s_i and thus we conclude the proof.

Proof of claim:

Lets calculate
$$dec_{sk}((a-\frac{q}{2}u_i,\tau))$$

$$|\tau-< a-\frac{q}{2}u_i,s>|=|\tau-< a,s>+\frac{q}{2}< u_i,s>|=|\tau-< a,s>+\frac{q}{2}s_i|$$

if $s_i=0$ this equals $|\tau-\langle a,s\rangle|$ which is exactly the way we decrypt (a,τ) which is an encryption for 0. and thus $dec_{sk}((a-\frac{q}{2}u_i,\tau))=0$

if $s_i=1$ this equals $|\tau-< a,s>+\frac{q}{2}|$, now because $\tau-< a,s>$ is a number in $[-B\cdot n,B\cdot n]$ then $\tau-< a,s>+\frac{q}{2}$ is in $[\frac{q}{2}-B\cdot n,\frac{q}{2}+B\cdot n]$ and so $|\tau-< a,s>+\frac{q}{2}|>\frac{q}{4}$ so $dec_{sk}((a-\frac{q}{2}u_i,\tau))=1$

2.2 Key Dependent Security

Let f be some linear function over the binary field.

similarly to 2.1 lets show that an adversary can produce $enc_{pk}(f(s))$ and thus the encryption is still secure given $enc_{pk}(f(s))$.

Can calculate any linear function with XOR so enough to show that adversary can produce $enc_{pk}(s_i \oplus s_j)$.

We saw that given $enc_{pk}(0)=(a,\tau)$: $(a-\frac{q}{2}u_i,\tau)$ is an encryption for s_i .

Claim $(a - \frac{q}{2}u_i - \frac{q}{2}u_j, \tau)$ is an encryption of $s_i \oplus s_j$.

$$|\tau - \langle a - \frac{q}{2}u_i - \frac{q}{2}u_j, s \rangle| = |\tau - \langle a, s \rangle + \frac{q}{2} \langle u_i, s \rangle + \frac{q}{2} \langle u_j, s \rangle|$$

$$= |\tau - \langle a, s \rangle + \frac{q}{2}s_i + \frac{q}{2}s_j|$$

if $s_i = s_j$ this equals $|\tau - < a, s>|$ so $(a - \frac{q}{2}u_i - \frac{q}{2}u_j, \tau)$ encrypts $0 = s_i \oplus s_j$ else one of s_i, s_j is 1 and the other is 0 so equals $|\tau - < a, s> +\frac{q}{2}|$ which we saw encrypts $1 = s_i \oplus s_j$

3. ZK for Hamiltonicity

3.1 Interactive Proof

Denote n as the number of nodes in G.

Denote A as the adjacency matrix of G.

Denote A' as the adjacency matric of G'.

Assume H is a sequence of vertices.

Protocol:

- 1. P samples $\pi \in_R S_n, \forall k \in [n]: H'_k = \pi(H_k)$
- 2. P for all $i, j \in [n]$: $A'_{ij} = A'_{\pi(i)\pi(j)}$ samples $r_{ij} \in_R \{0, 1\}^n$ sends $c_{ij} = commit(r_{ij}, A'_{ij})$ to V
- 3. V samples $b \in_R \{0, 1\}$ and sends it to P.
- 4. P follows:

if b=0 sends to V : all r_{ij},A_{ij}',π

if b=1 sends to V:H' and the r_{uv},A'_{uv} that correspond to edges in H'.

5. V checks:

if b=0, checks that $G'=\pi(G)$, (G' implied by A')

if b=1 , checks that edges in H^\prime exist, i.e. $commit(r_{uv},1)=c_{uv}$

(*V* accepts if passes checks)

soundness error: given $G \notin HC$ and for all P^*

 P^* commits to some adjacency matrix for a graph G' with no hamiltonian circle.

 P^* has 3 possibilities:

- (I) commit to G' not isomorphic to G with some circle H'.
- (II) commit to G' isomorphic to G with invalid circle H'.
- (III) commit to G^{\prime} not isomorphic to G with invalid circle H^{\prime} .

either way $Pr[(P^*, V)(G) = 1] \le \frac{1}{2}$.

commitment: the prover should protect its own interest - its privacy, thus will prefer perfectly hiding commitment.

3 .2 HVZK

Will show PPT S such that $S(G) \sim View(V)$. View(V) consists of commitments to adjacency matrix of G', b and what P sends in response to b.

S samples $\pi^{(1)} \in_R S_n$ produces $G' = \pi^{(1)}(G)$.

S produces commitments $c_{ij}^{(1)} = commit(r_{ij}^{(1)}, A_{ij}')$

S samples $\pi^{(0)} \in_R S_n$ produces G_d which is a simples circle graph $\pi^{(0)}(1) \to \ldots \to \pi^{(0)}(n)$.

S produces commitments $c_{i,i+1}^{(0)} = commit(r_{i,i+1}^{(0)}, 1)$, those are n commits, produce rest of commits $c_{i,i}^{(0)} = commit(r_{i,i}^{(0)}, 0)$.

S samples $b \in_R \{0, 1\}$

if b = 1 S outputs $c = c^{(1)}, b = 1, r^{(1)}, A', \pi^{(1)}$

if b=0 S outputs $c=c^{(0)}, b=0, H'=\pi^{(0)}(1)\to\ldots\to\pi^{(0)}(n)$ and 1's for adjacency matrix entrys.

 $View(V) \sim S(G)$:

From perfect hiding of commit $c^{(0)}$ and $c^{(1)}$ matrices distribute the same.

Bit b sampled randomly.

If b = 1 S does exactly as P so view distributes the same.

If b=0 verifier sees in either way a circle of random ordered n nodes and commitment verifications for 1's.

3.3 Malicious Verifier ZK.

 V^* 's freedom in the interaction is in sampling b.

claim: S_{V^*} which acts like S from before with the exception of sampling b like V^* , satisfies $S^* \sim View(V^*)$.

 $View(V^*)$ given V^* chose b=1 is exactly S^* given S^* chose b=1.

same for b = 0.

so because they sample b the same it follows $S^* \sim View(V^*)$.

3 .4 Soundness Error

Suggest a new protocol (P_n, V_n) .

 P_n interacts with V_n exactly as P interacts with V, just that they repeat the interaction n times.

 V_n accepts only if accepted all interactions.

So given $G \notin HC$, $Pr[(P_n, V_n)(G) = 1] = (Pr[(P, V)(G) = 1])^n = 2^{-n} = neg(n)$.

To get soundness error of ϵ : choose n that satisfies

$$2^{-n} = \epsilon$$

. i.e.

$$n = -log_2(\epsilon)$$

In the 3COL ZK protocol we get soundness error of less than $\frac{2}{3}$ so will have to repeat more times to reach the same goal ϵ .

$$n' = -\frac{log_2(\epsilon)}{log_2(3/2)}$$