Examenul de bacalaureat naţional 2018 Proba E. d)

Fizică

- Filiera teoretică profilul real, Filiera vocaţională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TENDEDINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu.

Timpul de lucru efectiv este de 3 ore.

A. MECANICA

Simulare

Se consideră accelerația gravitațională $g = 10 \,\mathrm{m/s}^2$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Despre energia mecanică a unui sistem fizic se poate afirma că este:
- a. o mărime fizică de proces;
- **b.** o mărime fizică de stare;
- c. întotdeauna mai mare decât energia cinetică a sistemului;
- d. întotdeauna egală cu lucrul mecanic efectuat de greutate.

(3p)

- 2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, relația de definiție a vectorului viteză medie este:
- **a.** $\vec{v}_{med} = \frac{d}{\Delta t}$

- **b.** $\vec{v}_{med} = \frac{d}{\Delta t}$ **c.** $\vec{v}_{med} = \frac{\vec{F}}{\Delta t}$ **d.** $\vec{v}_{med} = \frac{\vec{a}}{\Delta t}$ (3p)
- 3. Simbolurile mărimilor fizice și ale unităților de măsură fiind cele utilizate în manualele de fizică, unitatea de măsură a efortului unitar $\sigma = F \cdot S^{-1}$ exprimată în funcție de unități de măsură fundamentale din S.I. este:
- **a.** $kg \cdot m^{-1} \cdot s^{-3}$
- **b.** ka · m · s⁻²
- **c.** $kg \cdot m^{-2} \cdot s^{-1}$
- **d.** $kg \cdot m^{-1} \cdot s^{-2}$

(3p)

- 4. Un corp este lansat cu viteza inițială $v_0 = 6 \,\mathrm{m/s}$ de-a lungul unei suprafețe orizontale. Coeficientul de frecare la alunecare dintre corp și suprafața orizontală este $\mu = 0.4$. Distanța parcursă de corp până la oprire are valoarea:
- a. 15 m
- **b.** 9 m
- **c.** 4,5 m
- **d.** 2,4 m

(3p)

5. Asupra unui corp care se deplasează de-a lungul axei Ox acţionează, pe direcţia axei Ox, o forță variabilă. Variația proiecției forței pe axa Ox în funcție de coordonata x la care se află corpul este reprezentată în figura alăturată. Lucrul mecanic total efectuat de forță pe parcursul celor 6m este nul. Valoarea maximă a forței care acționează asupra corpului este:

- a. 18N
- **b.** 12N
- **c.** 9N
- **d.** 3N

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

Se consideră sistemul mecanic din figura alăturată. Masele celor trei corpuri sunt $m_1 = 1 \,\mathrm{kg}$, $m_2 = 2 \,\mathrm{kg}$ și $m_3 = 3 \,\mathrm{kg}$. Planul înclinat, de unghi $\alpha \,(\sin \alpha = 0.8)$, este fixat. Sistemul este lăsat liber. Corpul de masă m_3 coboară cu accelerația $a = 1.5 \,\mathrm{m/s^2}$. Firele sunt inextensibile, de masă neglijabilă și suficient de lungi, iar scripeții S₁ și S₂ sunt ideali. Coeficientul de frecare la alunecare dintre corpul

de masă m_1 și suprafața planului înclinat este egal cu coeficientul de frecare la alunecare dintre corpul de masă m_2 și suprafața planului orizontal.

- **a.** Reprezentați toate forțele care acționează asupra corpului de masă m_1 .
- b. Calculați raportul dintre valoarea forței de frecare care acționează asupra corpului de masă m_1 și valoarea forței de frecare care acționează asupra corpului de masă m_2 .
- c. Determinați valoarea forței de apăsare a firului asupra scripetelui S₂.
- **d.** Determinați valoarea coeficientului de frecare dintre corpul de masă m_1 și suprafața planului înclinat.

III. Rezolvati următoarea problemă:

Un corp de masă $m = 0.8 \,\mathrm{kg}$ este lansat vertical în sus de la nivelul solului. Forța de rezistență la înaintare datorată interactiunii cu aerul se consideră constantă pe tot parcursul miscării. În graficul din figura alăturată este reprezentată dependența pătratului vitezei corpului de înălțimea la care se află acesta până în momentul în care corpul atinge înălţimea maximă. Determinati:

- a. impulsul mecanic al corpului în momentul lansării;
- b. lucrul mecanic efectuat de greutate din momentul lansării corpului până în momentul în care acesta atinge înăltimea maximă:
- c. valoarea forței de rezistență la înaintare datorată interacțiunii cu aerul;
- d. timpul scurs din momentul lansării corpului până în momentul în care acesta atinge înălțimea maximă.

Examenul de bacalaureat naţional 2018 Proba E. d)

Fizică

- Filiera teoretică profilul real, Filiera vocaţională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TENDEDINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

B. ELEMENTE DE TERMODINAMICĂ

Simulare

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \, \mathrm{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \, \mathrm{J \cdot mol}^{-1} \cdot \mathrm{K}^{-1}$. Între parametrii de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$.

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. O cantitate de gaz considerat ideal este comprimată adiabatic. În acest proces:
- a. densitatea gazului scade
- b. energia internă a gazului crește
- c. gazul cedează căldură mediului exterior
- d. gazul cedează lucru mecanic mediului exterior.

(3p)

2. Căldurile molare pentru gaze se pot exprima cu ajutorul exponentului adiabatic $\gamma = \frac{C_p}{C}$. Căldura molară la

presiune constantă a unui gaz ideal se exprimă, în funcție de exponentul adiabatic, prin relația:

a.
$$C_p = \frac{\gamma R}{\gamma - 1}$$

b.
$$C_{\rho} = C_{V} + \gamma R$$

c.
$$C_p = \frac{R}{\gamma - 1}$$

a.
$$C_{p} = \frac{\gamma R}{\gamma - 1}$$
 b. $C_{p} = C_{V} + \gamma R$ **c.** $C_{p} = \frac{R}{\gamma - 1}$ **d.** $C_{p} = \gamma R - C_{V}$ (3p)

3. Unitatea de măsură în S.I. a mărimii fizice exprimate prin raportul $Q/\Delta T$ dintre căldura schimbată de un sistem cu mediul exterior și variația temperaturii sistemului este:

d.
$$J \cdot K^{-1}$$

4. O cantitate de gaz ideal aflată într-un recipient cu pereții rigizi este răcită de la $t_1 = 77^{\circ}$ C până la $t_2 = 7^{\circ}$ C. Presiunea gazului scade cu:

5. O cantitate constantă de gaz ideal monoatomic $(C_v = 1,5R)$ descrie succesiunea de procese termodinamice reprezentate în coordonate p-T în graficul din figura alăturată. Raportul dintre căldura primită de gaz în procesul 1→2 și lucrul mecanic efectuat de gaz în procesul $2 \rightarrow 3$ este:

(15 puncte)

II. Rezolvaţi următoarea problemă:

Un cilindru orizontal de volum $V_1 = 16,62 L$ este împărțit în două compartimente egale cu ajutorul unui piston de secțiune $S = 166,2 \, \text{cm}^2$ și grosime neglijabilă, care se poate deplasa fără frecări. Inițial, pistonul este în echilibru. În ambele compartimente se află neon ($\mu_{Ne} = 20 \, \text{g/mol}$) la presiunea $p_1 = 10^5 \, \text{Pa}$. Unul dintre compartimente este pus în legătură, printr-un tub de volum neglijabil prevăzut cu un robinet R, inițial închis, cu un balon de sticlă B, ca în figura alăturată. În balonul B se află oxigen $(\mu_{0_2} = 32 \, \text{g/mol})$ la presiunea $p_2 = 2 \cdot 10^5 \, \text{Pa}$, iar volumul balonului este $V_2 = 8,31 \text{ L}$. Temperatura întregului sistem este menținută constantă la valoarea T = 250 K .

- a. Determinați densitatea oxigenului din balonul de sticlă.
- b. Calculați numărul atomilor de neon dintr-unul dintre compartimentele

- c. Se deschide încet robinetul. Determinați distanța pe care s-a deplasat pistonul până când acesta ajunge din nou în echilibru mecanic.
- d. Determinați masa molară medie a amestecului de gaze format după deschiderea robinetului.

III. Rezolvaţi următoarea problemă:

(15 puncte)

O cantitate $v = 4.81 \text{ mol} \left(= \frac{40}{8.31} \text{ mol} \right)$ de gaz ideal biatomic $(C_v = 2.5R)$

parcurge procesul ciclic reprezentat în graficul din figura alăturată. Temperatura gazului în starea 1 este $T_1 = 300 \,\mathrm{K}$, iar $V_2 = 2 \,\mathrm{V}_1$. Se cer:

- **a.** temperatura gazului la finalul destinderii $1 \rightarrow 2$;
- **b.** căldura primită de gaz în transformarea $1 \rightarrow 2$;
- c. randamentul motorului termic care ar functiona după acest ciclu:
- d. randamentul unui motor termic care ar funcționa după un ciclu Carnot între temperaturile extreme atinse de gaz în procesul ciclic $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$.

Examenul de bacalaureat naţional 2018

Proba E. d) **Fizică**

Filiera teoretică – profilul real, Filiera vocaţională – profilul militar

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TENDEDINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă 10 puncte din oficiu.

Timpul de lucru efectiv este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Simulare

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Un circuit simplu conține un rezistor alimentat la un generator electric cu rezistența interioară nenulă. Dacă se conectează încă un rezistor identic cu primul în paralel cu generatorul, atunci:
- a. intensitatea curentului electric prin generator se înjumătăteste
- b. intensitatea curentului electric prin generator se dublează
- c. tensiunea la bornele generatorului scade
- d. tensiunea la bornele generatorului creste.

(3p)

2. Un consumator alcătuit din n rezistoare identice legate în serie, având fiecare rezistența electrică R, este conectat la bornele unei baterii alcătuite din n generatoare identice grupate în paralel, având fiecare tensiunea electromotoare E și rezistența interioară r. Randamentul circuitului este:

a.
$$\frac{n^2R}{R+n^2r}$$

b.
$$\frac{n^2 R}{n^2 R + r}$$

c.
$$\frac{nR}{nR+r}$$

d.
$$\frac{nR}{R+nr}$$
 (3p)

- 3. Mărimea fizică a cărei unitate de măsură în S.I. poate fi scrisă sub forma $J \cdot s^{-1} \cdot A^{-2}$ este:
- **a.** rezistența electrică **b.** sarcina electrică
- c. puterea electrică
- d. energia electrică

(3p)

(3p)

4. Rezistența electrică a unui fir conductor crește cu 12% când temperatura conductorului crește de la 0°C până la 80°C. Neglijând variația dimensiunilor firului cu temperatura, coeficientul termic al rezistivității materialului din care este confecționat firul este:

a.
$$1.2 \cdot 10^{-3} \, \text{K}^{-1}$$

b.
$$1,5 \cdot 10^{-3} \,\mathrm{K}^{-1}$$

c.
$$3 \cdot 10^{-3} \, \text{K}^{-1}$$

d.
$$9,6 \cdot 10^{-3} \,\mathrm{K}^{-1}$$

5. În figura alăturată este redată dependența tensiunii la bornele unei surse de intensitatea curentului electric prin aceasta. Rezistența interioară a sursei are valoarea:

- **a.** 0.5Ω
- **b.** $1,0\Omega$
- c. $1,5\Omega$
- d. $2,0\Omega$

(3p)(15 puncte)

II. Rezolvaţi următoarea problemă:

În figura alăturată este reprezentată schema unui circuit electric. Se cunosc: $E_1 = 27 \, \text{V}$, $r_1 = 2 \, \Omega$, $E_2 = 36 \, \text{V}$,

 $r_2=5\,\Omega$, $R_1=8\,\Omega$, $R_2=35\,\Omega$. Ampermetrul ideal $\left(R_{\rm A}\cong 0\,\Omega\right)$ montat în circuit indică intensitatea $I_2 = 0.5 \,\mathrm{A}$, având sensul indicat în figură. Determinați:

- **b.** valoarea tensiunii la bornele rezistorului R_1 ;
- **c.** rezistența electrică a rezistorului R_3 ;
- **d.** valoarea pe care ar trebui să o aibă rezistența rezistorului R_3 pentru ca intensitatea curentului electric prin rezistorul R, să fie nulă.

III. Rezolvaţi următoarea problemă:

(15 puncte)

În figura alăturată este reprezentată schema unui circuit electric. Bateria este formată prin legarea în serie a patru generatoare identice, fiecare având t.e.m $E_0 = 1V$ şi rezistenţa interioară r_0 . Se cunosc: $R_1 = 3\Omega$, $R_2 = 5\Omega$, iar firul conductor, notat NM, al reostatului cu cursor, are lungimea $L_{NM} = 90$ cm și rezistența electrică totală $R_{NM} = 48\Omega$. Întrerupătorul K este deschis, iar ampermetrul ideal montat în circuit $(R_A \cong 0 \Omega)$ indică intensitatea I = 400 mA.

- a. Calculați puterea totală dezvoltată de baterie.
- **b.** Calculați rezistența interioară r_0 a unui generator.

Filiera teoretică - profilul real, Filiera vocațională - profilul militar

- c. Se închide întrerupătorul K și se poziționează cursorul reostatului (C) la jumătatea firului NM. Calculați energia electrică consumată de circuitul exterior bateriei în timpul $\Delta t = 100 \, \text{s}$.
- d. Întrerupătorul K rămâne închis și cursorul reostatului (C) se poziționează astfel încât puterea absorbită de circuitul exterior generatoarelor să fie maximă. Aflați distanța la care se află cursorul față de punctul M.

Examenul de bacalaureat national 2018 Proba E. d)

Fizică

Filiera teoretică – profilul real, Filiera vocațională – profilul militar

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TENDUNAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

D. OPTICA Simulare

Se consideră: viteza luminii în vid $c = 3.10^8$ m/s, constanta Planck $h = 6.6.10^{-34}$ J·s.

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect.
- 1. Imaginea unui obiect real formată de o lentilă divergentă este:
- a. virtuală, mărită **b.** reală, micsorată
 - c. virtuală, răsturnată d. dreaptă, micsorată

- 2. Simbolurile mărimilor fizice fiind cele utilizate în manuale de fizică, semnificația fizică a expresiei
- $1 + x_1 \cdot f^{-1}$ este:

- d. β

(3p)

- 3. Unitatea de măsură în S.I. a mărimii exprimate prin produsul dintre frecventă si lungimea de undă a unei radiatii este:
- **a.** m⋅s⁻¹

- **c.** m⁻¹ · s

(3p)

- 4. O rază de lumină monocromatică provine dintr-un mediu cu indicele de refracție $n_1 = 2$ și este incidentă pe suprafața de separație dintre acesta și un alt mediu cu indicele de refracție $n_2 = 1,73 \, (\cong \sqrt{3})$. Dacă valoarea unghiului de incidență este $i = 60^{\circ}$, valoarea unghiului de refracție este:
- **b**. 30°
- **c.** 45°

5. Energia cinetică maximă a electronilor extrași prin efect fotoelectric extern depinde de frecvența radiației incidente conform graficului din figura alăturată. Energia cinetică maximă a unui electron extras când frecvența radiației incidente este

 $v_1 = 1,36 \cdot 10^{15} \,\text{Hz}$ are valoarea:

- **a.** $3.03 \cdot 10^{-19}$ J
- **b.** 5,94 · 10⁻¹⁹ J
- **c.** 8.98 · 10⁻¹⁹ J
- **d.** $9.88 \cdot 10^{-18}$ J

(3p)

II. Rezolvaţi următoarea problemă: (15 puncte) O lentilă subțire L_1 are convergența $C_1 = 5 \, \mathrm{m}^{-1}$. La distanța de 70 cm de lentilă se așază, perpendicular pe axa optică principală, un obiect luminos liniar. Imaginea clară a obiectului, obținută pe un ecran, are înălțimea $|y_2| = 1$ cm.

- a. Realizați un desen în care să evidențiați construcția imaginii prin lentilă.
- b. Determinati distanta dintre lentilă si ecran.
- c. Determinați înălțimea obiectului.
- **d.** Se aduce în contact cu lentila L_1 o altă lentilă subțire, L_2 . Orice fascicul paralel de raze de lumină care intră în sistemul optic format de cele două lentile, iese tot paralel din sistem. Determinați distanța focală a lentilei L_2 .

III. Rezolvați următoarea problemă:

(15 puncte)

O sursă de lumină coerentă monocromatică cu $\lambda = 480\,\mathrm{nm}$ este așezată pe axa de simetrie a unui dispozitiv interferențial Young. Distanța dintre cele două fante ale dispozitivului este $2\ell = 0.8\,\mathrm{mm}$, iar distanța dintre planul fantelor și ecran este $D = 3 \,\mathrm{m}$.

- a. Determinati frecventa radiatiei utilizate.
- b. Calculați valoarea interfranjei.
- c. Determinați distanța dintre franja luminoasă de ordinul 2 aflată de o parte a franjei centrale și a patra franjă întunecoasă aflată de aceeași parte a franjei centrale.
- d. În fața uneia dintre fante se plasează o lamă subțire, confecționată dintr-un material transparent, de grosime $e = 1.5 \cdot 10^{-6}$ m. Se observă că franja centrală s-a deplasat în poziția ocupată inițial de a treia franjă întunecoasă. Determinați indicele de refracție al materialului din care este confecționată lama.