Ideas of mathematical proof

Slides Week 25

Euclid's theorem on infinity of primes. Proof strategies: pigeon-hole principle, by contrapositive, case-by-case. Converse statements. Pythagoras theorem and its converse.

Mersenne and Fermat primes.

Let $\mathscr{U} = \mathbb{Z}$.

Is
$$\forall x \forall y ((x - y = 0) \Rightarrow (x^2 = y^2))$$
 true or false?

For implication, we only need to verify $x^2 = y^2$ when the condition x - y = 0 is true (because implication is automatically true if the premise is false).

Here, $x - y = 0 \Rightarrow x = y \Rightarrow x^2 = y^2$, as required.

Let
$$\mathscr{U} = \mathbb{R}$$
. Is $\forall x \exists y (x + y = 2x)$ true or false?

It is true: for any given x choose y = x.

Example

Let
$$\mathscr{U} = \mathbb{R}$$
. Is $\exists x \exists y ((xy = 1) \land (x + y = 0))$ true or false?

It is false: if x + y = 0, then xy is negative or 0.

Tautologies and contradictions with quantifiers

Definition

A statement with quantifiers is a tautology if it is always true, is a contradiction if it is always false.

Example

 $(\forall x \forall y P(x, y)) \Rightarrow (\exists x \exists y P(x, y))$ is a tautology, provided the universe of discourse is not empty.

Is
$$((\exists x P(x)) \land (\exists x Q(x)) \Rightarrow \exists x (P(x) \land Q(x))$$
 a tautology or not?

We guess not: if there are – possibly different – elements making P(x) true and Q(x) true, it does not always imply that there is an element making P(x) and Q(x) true <u>simultaneously</u> (needed for R.H.S.).

But a concrete example is needed:

e.g.
$$\mathcal{U} = \mathbb{N}$$
, $P(x) = (x < 5)$, $Q(x) = (x > 8)$.

Proof "strategies"

"Direct" proofs.

Sometimes for proving a theorem $P \Rightarrow Q$ we derive Q from P directly ("directly" means not by contradiction or contraposition.)

Example

Prove that if k is even, then k^2 is even.

Indeed, k=2m for $m\in\mathbb{Z}$, whence $k^2=4m^2=2\cdot 2m^2$, divisible by 2, as req.

Proving $\forall x P(x)$

where P(x) may be a compound statement.

Proof must be general, for all $x \in \mathcal{U}$;

just considering a few examples is not enough.

Example

Let $\mathscr{U} = \mathbb{N}$. Prove $\forall k (k^2 + k \text{ is even})$.

Proof: If k is even, then k^2 is even, the sum is even.

If k is odd, then k^2 odd, the sum odd+odd is even.

We considered all possible cases, checked for any k,

hence $\forall k (k^2 + k \text{ is even})$ is true.

Refuting $\forall x P(x)$

To show that $\forall x P(x)$ is false (in other words: to disprove it, or refute it), just one counterexample is enough.

Example

Show that $\forall k (k^2 + 1 \text{ is even})$ is false.

For example: for k = 2, $k^2 + 1 = 5$ is not even.

Agrees with negation rule: $\forall x P(x)$ is false is the same as $\neg(\forall x P(x))$ is true, which is $\exists x \neg P(x)$.

Proving $\exists x P(x)$.

Producing one $x \in \mathcal{U}$ such that P(x) is true is enough.

But to show that $\exists x P(x)$ is false, the argument must be general: P(x) is false for all $x \in \mathcal{U}$.

Also agrees with negation rules: $\exists x P(x)$ is false is the same as $\neg(\exists x P(x))$ is true, equivalent to $\forall x \neg P(x)$.

So to show that $\exists x P(x)$ is false, we must show that $\neg P(x)$ is true for all $x \in \mathcal{U}$,

that is, P(x) is false for all $x \in \mathcal{U}$.

Proof by contradiction.

Recall: any statement P is equivalent to $\neg P \Rightarrow F$ (where F is a contradiction — any statement that is always false).

Already seen examples of proof by contradiction:

- ullet Cantor's theorem that $\mathbb R$ is uncountable.
- k^2 even $\Rightarrow k$ even.
- $\sqrt{2} \notin \mathbb{Q}$.

Suppose that $k \in \mathbb{Z}$ is such that

 k^3 is not divisible by 5.

Prove that then k is not divisible by 5.

Proof by contradiction.

Suppose the opposite: k is divisible by 5, that is, k = 5s for $s \in \mathbb{Z}$. Then $k^3 = (5s)^3 = 5s \cdot 5s \cdot 5s = 5 \cdot (25s^3)$ is divisible by 5 — contradiction (with the given property).

Hence the assumption is false, so k is not divisible by 5.

Euclid's theorem on infinity of the set of primes

There are infinitely many prime numbers.

Proof by contradiction:

suppose the opposite (negation): there are only finitely many primes.

Then we can list them all: p_1, p_2, \ldots, p_n .

Consider $m = p_1 \cdot p_2 \cdots p_n + 1$.

This number is not divisible by any of the primes p_i , as it has remainder 1 after division by p_i .

(Even more rigorously: if m was divisible by p_i , then $1 = m - p_1 \cdots p_n$ would also be divisible by p_i , so $1 = p_i k$, a contradiction, as $1 < p_i \le p_i k$.)

Infinitely many primes (cont'd)

Recall: opposite: all primes are p_1, p_2, \ldots, p_n ; $m = p_1 \cdot p_2 \cdots p_n + 1$ is not divisible by any p_i . But by the prime factorization theorem (which we proved by cumulative induction in week 1), m is a product of primes, and all primes are these p_i by our assumption, so m must be divisible by some p_i . Contradiction: m both divisible by p_i , and not. Thus, assumption of the opposite implies a contradiction,

hence theorem is true: there are infinitely many primes.

Pigeon-hole principle:

"One cannot put 5 pigeons in 4 cages so that there be at most one pigeon in each cage."

Proof by contradiction: suppose the opposite, that it is possible.

Then there are at most $1 \times 4 = 4$ pigeons,

so $5 \le 4$, a contradiction.

Hence the assumption is false, as required.

The nickname **pigeon-hole principle** indicates that this type of argument is being used (sometimes much less obvious, where 'cages' are to be invented).

38 students had a test where they got marks ranging from 7 to 15. Prove that then there are at least 5 students with the same mark.

Proof. The marks 7, 8, ..., 15 are 9 'cages'.

Suppose the opposite:

cannot find 5 students with the same mark,

so every cage 'contains' at most 4 students.

Then there are at most $4 \times 9 = 36$ students,

so $38 \le 36$, a contradiction.

Hence the assumption is false, as required.

Suppose that 11,000 points are chosen in a square $100 \times 100\,\mathrm{cm}$. Prove that one can **always** find 5 points that can be covered by a disc of radius 1.5 cm.

(This means, for **any** choice of 11,000 points....)

Proof (in two stages). Divide the square into $50 \times 50 = 2,500$ square boxes 2×2 cm.

Claim: some of these boxes contains at least 5 points.

Proof by contradiction:

if each box contains at most 4 points, then there are at most $4\times 2,500=10,000$ points, so 11,000<10,000, a contradiction.

Example (continued)

Recall: we proved that there is a 2×2 box containing 5 points.

This box 2×2 is covered by the disc of radius $1.5\,\mathrm{cm}$ centred at the centre of the box, since $\sqrt{2} < 1.5$:

Thus, there are 5 points covered by such a disc.

Remarks on pigeon-hole principle

- 1. In advanced mathematical books or papers, they would simply write:
- "...By the pigeon-hole principle, one of these 2×2 squares contains at least 5 points..."

 (without detailed proof by contradiction).
- 2. Often such questions are attempted by trying to consider "the worst case". But it is often quite difficult to justify that this is a worst case....

This is a variation of proof by contradiction applied to conditional implication.

Namely,
$$P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P$$
.

This is a variation of proof by contradiction applied to conditional implication.

Namely,
$$P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P$$
.

This is a variation of proof by contradiction applied to conditional implication.

Namely,
$$P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P$$
.

This is a variation of proof by contradiction applied to conditional implication.

Namely,
$$P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P$$
.

This is a variation of proof by contradiction applied to conditional implication.

Namely,
$$P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P$$
.

Proof by truth table:

Р	Q	$P \Rightarrow Q$	$\neg P$	$\neg Q$	$\neg Q \Rightarrow \neg P$
T	T	T	F	F	T
T	F	F	F	T	F
F	T	T	T	F	T
F	F	T	T	Τ	T

The corresponding columns are the same, as required.

Let $\mathscr{U} = \mathbb{N}$.

If
$$P := (x^2 < 25)$$
, then $Q := (x < 5)$.

That is, $P \Rightarrow Q$.

We prove $\neg Q \Rightarrow \neg P$ instead, which is equivalent.

Indeed, if $\neg Q$ is true, $x \ge 5$,

then $x^2 \ge 25$, which means that $\neg P$ is true.

Thus, we proved $\neg Q \Rightarrow \neg P$, so $P \Rightarrow Q$ is true.

One of previous examples:

Example

Suppose that x^2 is odd. Prove that x is odd.

We proved Q = "x is odd" by contradiction:

derived from $\neg Q$ that x^2 is even,

which was a contradiction with the condition " x^2 is odd".

The same as proving $(x^2 \text{ is odd}) \Rightarrow (x \text{ is odd})$ by contrapositive:

we actually proved $(x \text{ is even}) \Rightarrow (x^2 \text{ is even})$.

Implicit universal quantifiers

When we prove $(x^2 \text{ is odd}) \Rightarrow (x \text{ is odd})$, we actually mean that this is true for all $x \in \mathbb{N}$.

So this is in fact proving that

$$\forall x \in \mathbb{N} \ (x^2 \text{ is odd}) \Rightarrow (x \text{ is odd}) \text{ is true.}$$

Similarly, in many other cases.

Example

$$(x^2 > 4) \Rightarrow ((x < -2) \lor (x > 2))$$

is actually $\forall x \in \mathbb{R} \ (x^2 > 4) \Rightarrow ((x < -2) \lor (x > 2))$.

Converse statements

Definition

For an implication $P \Rightarrow Q$,

its **converse** is $Q \Rightarrow P$.

In general, the converse is not equivalent to the original statement.

The same with universal quantifier:

$$\forall x (P(x) \Rightarrow Q(x))$$
 has converse $\forall x (Q(x) \Rightarrow P(x))$.

Let $\mathscr{U} = \mathbb{R}$.

Let
$$P(x) := (x > 3)$$
, and $Q(x) := (x^2 > 9)$.

Then $\forall x (P(x) \Rightarrow Q(x))$ is true.

But the converse $\forall x (Q(x) \Rightarrow P(x))$ is false: say, $(-4)^2 > 9$ is true but -4 > 3 is false.

When the converse is true, it is another theorem.

Pythagoras theorem

Pythagoras theorem

For any right triangle $\triangle ABC$ with $\angle C = 90^{\circ}$, the lengths of sides AB = c, BC = a, AC = b satisfy $c^2 = a^2 + b^2$.

... Attempt: $a = c \cdot \sin \alpha$ and $b = c \cdot \cos \alpha$, where $\alpha = \angle BAC$, then "easily" $a^2 + b^2 = (c \sin \alpha)^2 + (c \cos \alpha)^2 = c^2(\sin^2 \alpha + \cos^2 \alpha)$

$$=c^2$$
 because $\sin^2 \alpha + \cos^2 \alpha = 1$, "as is well known".

But how do we know that $\sin^2 \alpha + \cos^2 \alpha = 1$? from the Pythagoras theorem? then this is not a good proof (a 'circle').

Proof of Pythagoras theorem.

Consider a square $(a + b) \times (a + b)$. First arrange four copies of the triangle as on the left picture. n

The sum of angles is 180° , so the sum of acute angles is $\alpha + \beta = 90^{\circ}$. Hence the angles of the central quadrangle are all 90° . The sides are all c, so it is a square, area c^2 .

Then arrange four copies of our triangle as on the right. Since the sum of acute angles is 90° , the two pairs of our triangle form two rectangles $a \times b$, and the remaining area = two squares $a \times a$ and $b \times b$, with areas a^2 and b^2 . Simply by the areas: $c^2 = a^2 + b^2$.

Converse of the Pythagoras theorem

Converse of the Pythagoras theorem

If in a triangle $\triangle ABC$

with side lengths
$$AB = c$$
, $BC = a$, $AC = b$,

we have
$$c^2 = a^2 + b^2$$
, then $\angle C = 90^\circ$.

This is not the same as Pythagoras theorem! Has to be proved.

Proof of Converse Pythagoras theorem

Proof by contradiction. Suppose the opposite:

 $\angle C \neq 90^{\circ}$. Then the perpendicular dropped from A to the side BC or its extension has base $H \neq C$. We have two cases: H is further from B than C, or closer to B than C.

If H is further from B than C, let HC = d. By the Pythagoras theorem applied to $\triangle AHC$ we have $b^2 = d^2 + h^2$, and by the Pythagoras theorem applied to $\triangle AHB$ we have $c^2 = (a+d)^2 + h^2 = a^2 + 2ad + d^2 + h^2$; substituting we obtain $c^2 = a^2 + 2ad + b^2$. But $c^2 = a^2 + b^2$ by hypothesis, so 0 = 2ad, a contradiction.

If H is closer to B than C, let again HC = d. By the Pythagoras theorem applied to $\triangle AHC$ we have $b^2 = d^2 + h^2$, and by the Pythagoras theorem applied to $\triangle AHB$ we have

 $c^2 = (a-d)^2 + h^2 = a^2 - 2ad + d^2 + h^2$; substituting we obtain $c^2 = a^2 - 2ad + b^2$. But $c^2 = a^2 + b^2$ by hypothesis, so 0 = -2ad, a contradiction.

Thus, we obtained a contradiction in all cases, which proves that the assumption that $\angle C \neq 90^{\circ}$ is false, so $\angle C = 90^{\circ}$, as req.

Recall:

Implication rule (proved earlier):

$$A \Rightarrow B \equiv \neg A \lor B$$
.

Case-by-case proofs

If the premise of an implication splits into several cases, then simply prove the implication in each case.

Indeed, proving $P \Rightarrow Q$, where $P \equiv P_1 \vee P_2$:

$$P\Rightarrow Q\equiv (P_1\vee P_2)\Rightarrow Q$$
 $\equiv \neg(P_1\vee P_2)\vee Q$ implication rule $\equiv (\neg P_1\wedge \neg P_2)\vee Q$ de Morgan law $\equiv (\neg P_1\vee Q)\wedge (\neg P_2\vee Q)$ distributivity $\equiv (P_1\Rightarrow Q)\wedge (P_2\Rightarrow Q)$ implication rule.

A similar calculation can be done if there are more than two cases: $P \equiv P_1 \vee P_2 \vee \cdots \vee P_k$.

Example

If $3 \nmid m \in \mathbb{N}$, then $3 \mid (m^2 - 1)$.

Possible remainders after division by 3 are 1 or 2.

Hence the condition $3 \nmid m$ splits into two cases:

$$m = 3k + 1$$
 or $m = 3k + 2$.

Consider each case:

If
$$m = 3k + 1$$
, then $m^2 - 1 = (3k + 1)^2 - 1$
= $9k^2 + 6k + 1 - 1 = 3(3k^2 + 2k)$ is divisible by 3.

If
$$m = 3k + 2$$
, then $m^2 - 1 = (3k + 2)^2 - 1 = 9k^2 + 12k + 4 - 1 = 3(3k^2 + 4k + 1)$ is divisible by 3.

All is proved: we considered all cases.

Proving $P \Leftrightarrow Q$

Proving $P \Leftrightarrow Q$ means proving both $P \Rightarrow Q$ and $Q \Rightarrow P$ (recall: converse is not always true, proving just one direction does not prove the other!).

This is often read: "P is a necessary and sufficient condition for Q"

or, which is the same: "Q is a necessary and sufficient condition for P",

or: "P holds if and only if Q holds".

Example (Pythagoras)

Since we proved in both directions, we do have

$$\angle C = 90^{\circ} \Leftrightarrow a^2 + b^2 = c^2 \text{ in } \triangle ABC.$$

Example

Prove that $|x+1| = |x| + 1 \Leftrightarrow x \ge 0$.

```
"\Leftarrow": easy: for x \ge 0 also x+1 \ge 0, so on the left |x+1|=x+1, and |x|=x, so the equation is x+1=x+1, true.
```

Example (continued)

Prove that
$$|x+1| = |x| + 1 \Leftrightarrow x \ge 0$$
.

"⇒": by contradiction:

suppose
$$x < 0$$
, two cases: $x \le -1$ and $-1 \le x < 0$.

If
$$x \le -1$$
, then the equation is $-x - 1 = -x + 1$, $-1 = 1$, a contradiction.

If
$$-1 \le x < 0$$
, then the equation is $x + 1 = -x + 1$, $x = 0$, a contradiction as $x < 0$ in this case.

Thus a contradiction in all cases, which means that the assumption x < 0 is false, so x > 0, as req.

Mersenne primes

An example of proof by contrapositive.

Example

If $2^n - 1$ is a prime for $n \in \mathbb{N}$, then n is a prime.

Remark: This type of primes are called Mersenne primes. It is still an open problem whether there are infinitely many such primes!

Useful formula (geometric series)

Use the well-known formula

$$a^{u}-1=(a-1)(a^{u-1}+a^{u-2}+\cdots+a+1)$$

simply proved by expanding brackets on the right;

also known from the sum of geometric series:

$$1+a+\cdots+a^{u-2}+a^{u-1}=\frac{a^u-1}{a-1}.$$

Mersenne primes continued

...Proving: $2^n - 1$ is a prime $\Rightarrow n$ is a prime.

Proof by contrapositive: assume n is not a prime and derive that then $2^n - 1$ is not a prime.

Not a prime: n=st for $s,t\in\mathbb{N}$ with s>1 and t>1. Then

$$2^{n} - 1 = 2^{st} - 1$$

$$= (2^{s})^{t} - 1$$

$$= (2^{s} - 1)(2^{s(t-1)} + 2^{s(t-2)} + \dots + 2^{s} + 1).$$

On the right both factors are > 1, since s > 1 and t > 1, so $2^n - 1$ is not a prime, as required.

Thus, we proved $2^n - 1$ is a prime $\Rightarrow n$ is a prime. \square

Fermat primes

Example

If $2^n + 1$ is a prime for $n \in \mathbb{N}$, then $n = 2^k$ for $k \in \mathbb{N}$.

Remark. This type of primes are called Fermat primes. It is still an open problem whether there are infinitely many such primes!

Another formula (works only for odd powers):

$$a^{2u+1}+1=(a+1)(a^{2u}-a^{2u-1}+a^{2u-2}-\cdots(-1)^ka^{2u-k}\pm\cdots),$$

simply proved by expanding brackets on the right.

Useful formula for odd powers

$$a^{2u+1}+1=(a+1)(a^{2u}-a^{2u-1}+a^{2u-2}-\cdots(-1)^ka^{2u-k}\pm\cdots),$$

expanding brackets on the right:

$$(a+1)(a^{2u} - a^{2u-1} + a^{2u-2} \cdot \dots \cdot)$$

$$= a^{2u+1} - a^{2u} + a^{2u-1} - a^{2u-2} \cdot \dots \cdot$$

$$+ a^{2u} - a^{2u-1} + a^{2u-2} - \dots \cdot + 1$$

$$= a^{2u+1} + 0 + 0 \cdot \dots + 1$$

Fermat primes continued

... Proving $2^n + 1$ is a prime $\Rightarrow n = 2^k$.

Proof by contrapositive: assume that

 $n \neq 2^k$ and derive that then $2^n + 1$ is not a prime.

By assumption, n is divisible by some odd integer >1, so that n=s(2t+1) for $s,t\in\mathbb{N}$ and t>0.

Then
$$2^n + 1 = 2^{s(2t+1)} + 1$$

= $(2^s)^{2t+1} + 1$
= $(2^s + 1)(2^{s(2t)} - 2^{s(2t-1)} + \cdots)$.

On the right both factors are > 1, since t > 0, so $2^n + 1$ is not a prime, as required.

Recap of "Elements of Mathematical Logic"

Logical statements: operations (connectives), logical laws, logical equivalence, truth tables, tautology, contradiction, implication, converse.

Predicate calculus: quantifiers, negation rules with quantifiers, translation of natural language sentences into logical expressions.

Proof strategies: proof by contradiction, by contraposition, case-by-case proofs, examples of proofs by contradiction ($\sqrt{2} \notin \mathbb{Q}$, infinity of the set of primes).