Sei K ein Körper und

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \in M_2(K)$$

eine beliebige 2×2 Matrix.

- (a) Schreiben Sie A^2 als Linearkombination von A und der Einheitsmatrix E.
- (b) Wann ist es möglich A^{-1} als Linearkombination von A und E zu schreiben?

 $L\ddot{o}sung$. (a) Nach dem Satz von Cayley–Hamilton ist die Matrix A Nullstelle ihres eigenen charakteristischen Polynoms

$$\chi_A(X) = \det(A - XE) = X^2 - \operatorname{tr}(A)X + \det(A).$$

Also gilt

$$A^2 = \operatorname{tr}(A)A - \det(A)E.$$

(b) Die Matrix A ist genau dann invertierbar, wenn $\det(A) \in K$ invertierbar ist, also wenn $\det(A) \neq 0$. In dem Fall ist

$$E = \frac{1}{\det(A)} \left(\operatorname{tr}(A)A - A^2 \right) = A \cdot \frac{1}{\det(A)} \left(\operatorname{tr}(A)E - A \right).$$

Also ist $A^{-1} = \frac{1}{\det(A)} (\operatorname{tr}(A)E - A)$.