Additions and Corrections

Omid Karoussi and Aly A. Hamouda*: Imbibition of Sulfate and Magnesium Ions into Carbonate Rocks at Elevated Temperatures and Their Influence on Wettability Alteration and Oil Recovery, *Energy & Fuels* **2007**, *21*, 2138–2146.

Equation 8 was published with a typing error (a misplaced parenthesis). The corrected equation is as follows:

$$\xi(T) = (0.01712(T - T_0) + 1)\xi(T_0) \tag{8}$$

Corrected Figures 7 and 8 are presented below. The conclusions remain the same with no change.

A correction is needed to the right column on page 2145 (in the Water Film Stability (Disjoining Pressure) section). The sentence "In the third case with the Mg^{2+} /modified calcite system (Figure 8c), it is shown that increasing the temperature leads to an increase of the maximum from a value of \sim 0.93 to \sim 35 atm when the temperature is increased from 45 to 130 °C, respectively." should read as follows: "In the third case, with

Figure 7. Estimated interaction potential for modified calcite surfaces (0.005 M SA) in aqueous solution containing 0.1 M Mg²⁺, 0.1 M SO₄²⁻, or distilled water (D.W.) for two different particle sizes: (a) 1 μ m; (b) 4 μ m.

the $Mg^{2+}/modified$ calcite system (Figure 8c), it is shown that increasing the temperature leads to an increase of the maximum from a value of ~25 to ~85 atm when the temperature is increased from 40 to 130 °C, respectively."

Figure 8. Disjoining pressure (atm) vs water film thickness (m) for different aqueous solutions: (a) modified calcite/D.W.; (b) modified calcite/0.1 M Na₂SO₄; (c) modified calcite/0.1 M MgCl₂.

EF800083U

10.1021/ef800083u

Published on Web 03/20/2008