Exam 2

29 Questions

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. A positively charged particle has a velocity in the negative z direction at point P. The magnetic force on the particle at this point is in the negative y direction. Which one of the following statements about the magnetic field at point P can be determined from this data?

- a. B_z is positive.
- (b.) B_x is positive.
- c. B_v is positive.
- d. B_x is negative.
- B_v is negative.
- 2. For the circuit shown below, what is the voltage between the points 'a' and 'b'?

100p +30-101, +10-101, -101, -101, =0

- a. 18 V with 'a' at the lower voltage b) 8.0 V with 'a' at the higher voltage
 - c. 12 V with 'a' at the higher voltage
 - 18 V with 'a' at the higher voltage
 - 8.0 V with 'a' at the lower voltage

$$I_2-6I_2=-2$$

$$I_2=\frac{3}{2}$$
 amps

Could use Kirchhoffart egyphalent resistance.

3. Determine the voltage, ε , when $I = 0.50$ A and $R = 12 \Omega$.	
E = RANGER TOTAL E TOTAL AV3 TROTAL AV3 TROTAL	NSS T 3+
a. 6.0 V b. 12 V c. 30 V d. 15 V e. 24 V 4. If $C = 10 \mu\text{F}$, what is the equivalent capacitance for the combination shown?	"backwards" in
Will be a for party what to the equivalent expansion of the combination of the	The same is
	Aralogous to way capacitor problem solve
a. $7.5 \mu F$	
(b.) $5.8 \mu \text{F}$	
c. 6.5 µF	,
d. 7.0 μF	Traces .
e. $13 \mu \text{F}$: $C_{\text{FOT}} = 5.83 \text{W}$	Manage .
5. A microwave filter consist of vertical, parallel metal rods which (as we will soon se	e) absorb microwaves
whose electric fields oscillate along the direction of the metal rods. This sets up elec	
oscillate up and down in the rods. At any one instant, the current in each rod has the	Account to the second s
direction. Those currents interact so that	-1 1 1
- TV V P	ET DYD
a. the rods will try to move apart horizontally.	1-12/2/101
b. the rods will try to shift vertically downwards.	
c. the rods will try to shift vertically upwards.	
d.) the rods will try to move together horizontally.	to shown and
e. the rods will not be affected because the source of current is not a battery.	ankal & Day C
6. One reason why we know that magnetic fields are not the same as electric fields is b	ecause the force everted
on a charge $+q$	ceause the force exerted
on a charge $+q$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	E
a. is in the same direction in electric and magnetic fields.	
b. is in opposite direction in electric and magnetic fields.	a. VXK
	0. 1.2
d. is zero in both if the charge is not moving.	

	n a ferromagnetic material that has been magnetized is brought to a temperature greater than the Curi erature, what happens to its residual magnetism?
a. b. c. d. e.	The residual magnetism disappears. The residual magnetism reaches it's highest value. All the magnetic domains causing magnetism become a single domain. Nothing happens to the residual magnetism. The material of the magnet melts causing currents that are magnetic.
8. If 4	0 coulombs pass through a 4.0- Ω resistor in 10 min, what is the voltage across the resistor?
a. b. c. d.	T = 10 - 480 c = 0.8 amps 2.8 V 3.6 V $T = 10 + 60 Seconds$
e.	2.4V \\ \TR= 0.8*4= 3,2 volts

Next Page

9. A thin infinitely large sheet of current lies in the *y-z* plane, as shown in the diagram. The current is coming out of the page. Which diagram below correctly represents the direction of the magnetic field on either side of the sheet?

a.

b.

B B B

d.

e.

is out of the page A bit do imagination will The idea ob superposition leads us to the correct response.

Next page

- 10. Gauss's Law states that the net electric flux, ∮ E · dA, through any closed surface is proportional to the charge enclosed: $\oint \mathbf{E} \cdot d\mathbf{A} = \underbrace{\frac{q}{\varepsilon_0}}$ The analogous formula for magnetic fields is _____.
 - a. $\oint \mathbf{B} \cdot d\mathbf{A} = \frac{I}{I}$.
 - b. $\oint \mathbf{B} \cdot d\mathbf{A} = -\frac{d\Phi}{dt}$.
 - (c.) $\oint \mathbf{B} \cdot d\mathbf{A} = 0.$
 - d. $\oint \mathbf{B} \cdot d\mathbf{A} = \frac{q_{mag}}{\varepsilon}$.
 - e. $\oint \mathbf{B} \cdot d\mathbf{A} = \frac{I}{\mu_0 \varepsilon_0}$.

Charge en Josel. Count isolate magnetic charge (N,S) = QB-JA must be zero.

In your class notes, but you could also come to this conclusion yourself

11. What is the voltage across C_2 when $C_1 = 5.0 \ \mu\text{F}$, $C_2 = 15 \ \mu\text{F}$, $C_3 = 30 \ \mu\text{F}$, and $V_0 = 24 \ \text{V}$?

That is the voltage across C_2 when C_1 C_2 C_3 C_4 C_5 C_6 C_7 $C_$ AV= 24V JQ=100FOV TUN

in green inklas Jone in class notes

+24

 12. The magnetic field in a region of space is parallel to the surface of a long flat table. Imagine that this page is lying flat on that table. That places the magnetic field in the plane of this page. When current is present in a wire coil, which is also lying on the table as shown in the figure, the coil tends to rotate so that the left side moves out of the page and the right side moves in to the page. The magnetic field is
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
 a. in the plane of the page and downwards. b. in the plane of the page and upwards. c. in the plane of the page and to the right. d. in a direction that cannot be determined in this experiment e. in the plane of the page and to the left.
 13. The figure shows a cross section of three parallel wires each carrying a current of 24 A. The currents in wires B and C are out of the paper, while that in wire A is into the paper. If the distance $R = 5.0$ mm, what is the magnitude of the force on a 4.0-m length of wire A?
0.01 m B C A B ZY (0.01) DOWN
a. 15 mN b. 32 mN c. 59 mN d. 77 mN e. 12 mN
 14. A small bulb is rated at 7.5 W when operated at 125 V. Its resistance (in ohms) is
a. 940 $P = VR$ b. 0.45 c. 17 1.02 P e. 7.5 $R = 20830$ $E_A = I Q_A \times IR_D = 24(4)(8 \times 10^{-4}) \sin(90) = 0.07$ $= 76.8 \times 10^{-3}$ $= 76.8 \times 10^{-3}$
 15. On the average, in a ferromagnetic domain permanent atomic magnetic moments(microscopic) are aligned to one another. Hint: ferromagnetic materials, like iron, are use to make permenent magnets.
a. parallel b. randomly relative c. perpendicular d. alternately parallel and antiparallel e. antiparallel

Worked this	as	an	example	in	Moi	nday	()	Class	(3)
-------------	----	----	---------	----	-----	------	----	-------	-----

16. A segment of wire of total length 3.0 m carries a 15-A current and is formed into a semicircle of radius R. Determine the magnitude of the magnetic field at the center of the semicircle. Recall that a small step along the arc, dS, can be written as Rd θ . Also recall that the circumference of a circle is $2\pi R$. Note that the 3 meter wire does **not** form an entire circle. It only forms half a circle.

		TERR
a.	$15 \mu T$	- 71/5
b.	$1.0 \ \mu T$	

BO - NOI (NR) INI

Cert 4HP2

LIN

- 17. Determine the charge stored by C_1 when $C_1 = 20 \mu\text{F}$, $C_2 = 10 \mu\text{F}$, $C_3 = 30 \mu\text{F}$, and $V_0 = 18 \text{ V}$.

- 18. An electric heater is constructed by applying 110 V across a wire with a resistance of 5.0 Ω . What is the power rating of the heater?
 - 60 kW a.
 - b. 2.0 kW
 - 1.5 kW
 - 2.4 kW
 - 1.7 kW
- D= V= 2420 watts
- 19. An electron moving in the positive x direction experiences a magnetic force in the positive z direction. If $B_x =$ 0, what is the direction of the magnetic field? HINT: Draw a picture. Recall that an electron has a negative charge. Also make sure that you are using a right handed x,y,z coordinate system (which is the convention).
 - negative x direction
 - negative y direction
 - negative z direction
 - positive z direction
 - positive y direction

20. A long straight wire carries a current of 40 A in the +y direction. In that region of space, there is also an external magnetic field in the +y direction whose magnitude is $30-\mu T$. What is the magnitude of the total magnetic field at a point that is 20 cm from the wire?

b.	40 μT 36 μT	* B= Bune + Bertend = No I (- K) +	30×103
(c.)	50 μT 10 μT	- 5U(0's)	
d.	$10 \mu T$	D = -4x12 122 -62 110 121	5
e.	$70 \mu T$	B=-4×10 K+30×105 So 1B)=	2×10 1

21. A 2.0-m wire carries a current of 15 A directed along the positive x axis in a region where the magnetic field is uniform and given by $B = (30\hat{\mathbf{i}} - 40\hat{\mathbf{j}})$ mT. What is the resulting magnetic force on the wire? NOTE: The magnetic field is given in unist of millitesla.

22. A straight wire is bent into the shape shown. Determine the total magnetic force on the wire when the current I travels in the direction shown in the magnetic field \vec{B} . NOTE: The current is in the +y direction on the left part of the wire, the +x direction crossing along the horizontal part of the wire, and the -y direction on the right part of the wire. At all locations, the magnetic field is in the +y direction. The +z direction is out of the page.

- a. 4IBL in the -z direction
- (b.) 2IBL in the +z direction
- c. 2IBL in the -z direction
- d. 4IBL in the +z direction
- e. zero
- 23. The algebraic sum of the voltages around any closed circuit loop in a circuit is _____
 - a. maximum if there are no sources of emf in the loop.
 - b. maximum.
 - c. equal to the sum of the currents in the branches of the loop.
 - d. zero.
 - e. zero only if there are no sources of emf in the loop.

- 24. An unusual lightning strike has a vertical portion with a positive current of +400 A upwards. The Earth's magnetic field at that location is parallel to the ground and has a magnitude of 30 μ T. If the Earth's magnetic field is pointing north, the force exerted by the Earth's magnetic field on the 25 m-long current is ...
 - 0.012 N, East.
 - 0. b.
 - 0.012 N, West.
 - 300 N, East. d.
 - 0.30 N, West.
- What maximum power can be delivered by an 18V battery if it is to be connected to both a $6.0-\Omega$ resistor and a 9.0- Ω resistor? HINT: The two resistors are configured so that the current in the circuit is a maximum.
 - => minimum registance => parallel 100 Krone 6+4 || P= V = 90.
- 26. Equal charges, one at rest, the other having a velocity of 10⁴ m/s, are released in a uniform magnetic field. Which charge has the largest force exerted on it by the magnetic field?
 - 3 F 13 ZERO The charge that is moving if its velocity makes an angle of 45° with the direction of the magnetic field when it is released.
 - The charge that is moving, if its velocity is parallel to the magnetic field direction when b. it is released.
 - The charge that is at rest.
 - All the charges above experience equal forces when released in the same magnetic field.
 - The charge that is moving if its velocity is perpendicular to the magnetic field direction when it is released. 17=18/11/11B1514(90)
- What is the power delivered to the $30-\Omega$ resistor?

- 27 W c.
- 30 W d.
- 13 W

9

(1.5		the cross section. What is the magnitude of the (line) integral $\oint \mathbf{B} \cdot d\mathbf{s}$ around a square path of the path is centered on the center of the rod and lies in a plane perpendicular to the axis $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} & \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} & \mathbf{B} \cdot d\mathbf{s} \end{cases} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} & \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} & \mathbf{B} \cdot d\mathbf{s} \end{cases} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} & \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} & \mathbf{B} \cdot d\mathbf{s} \end{cases} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} & \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} & \mathbf{B} \cdot d\mathbf{s} \end{cases} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} & \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} & \mathbf{B} \cdot d\mathbf{s} \end{cases} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} & \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} & \mathbf{B} \cdot d\mathbf{s} \end{cases} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} & \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} & \mathbf{B} \cdot d\mathbf{s} \end{cases} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} & \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} & \mathbf{B} \cdot d\mathbf{s} \end{cases} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} & \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} & \mathbf{B} \cdot d\mathbf{s} \end{cases} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} & \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} & \mathbf{B} \cdot d\mathbf{s} \end{cases} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} & \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \end{cases} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} & \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \end{aligned} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \end{aligned} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \end{aligned} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \end{aligned} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \end{aligned} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \end{aligned} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \end{aligned} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \end{aligned} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \end{aligned} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \end{aligned} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \end{aligned} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \end{aligned} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \end{aligned} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \end{aligned} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \end{aligned} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \end{aligned} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \end{aligned} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} \\ \mathbf{B} \cdot d\mathbf{s} \end{aligned} $ Lendard $ \begin{cases} \mathbf{B} \cdot d\mathbf{s} $
29. Wha	10 Ω	itude of the current in the 20- Ω resistor? NOTE: Trust the algebra. So Mothing Simple 15 V $\frac{1}{10}\Omega$
a. b. c. d. e.	0.75 A 0.00 A 0.50 A 0.25 A 1.00 A	Joseph +10-101, -701, -701, -10 -301, -201, -10
		Coxp#2 +15-2012-2011-1012-01 -2012-3012-11 E1 [4] +6] -30
		Consider (2) - 3+(1); From (1) => 2I_2=1 10 / I_2=1/2 ANU. ANU. ANU. ANU. ANU. ANU. ANU. ANU.