

Constitutive modelling

CLAY MODEL

Suppose clay changes from:
+ State 1:
$$e_0$$
, $\rho = \rho_0$, $q = q_0 = 0$ to

/ State 2: e, p, q
/ State 2: e, p, q
/ 1 + e = N -
$$\lambda \ln (p_s/p_a)$$

/ 1 + e = N - $\lambda \ln (P/p_a)$ + (T-N) $\ln (1 + \frac{q}{Mp})$

Volumetric strain from this change of state:
$$\frac{\mathcal{E}_{v} = (1+e) - (1+e)}{1+e_0} = \frac{1}{v_0} \left[\frac{N-7}{\ln 2} \ln \left(\frac{1}{M} \right)^2 \right] + \lambda \ln \frac{P}{P_0}$$

Plastic volumetric strain

$$\rightarrow \mathcal{E}_{v}^{P} = \mathcal{E}_{v} - \mathcal{E}_{v}^{P} = \frac{1}{V_{o}} \left[\frac{N-17}{\ln 2} \ln \left\{ 1 + \left(\frac{2}{M} \right)^{2} \right\} + (\lambda - K) \ln \frac{P}{P_{o}} \right]$$

Yield function:

$$f = \frac{1}{v_0} \frac{N-T}{\ln 2} \ln \left\{ 1 + \left(\frac{2}{M} \right)^2 \right\} + \frac{\lambda - K}{v_0} \ln \frac{P}{P^0} - \varepsilon_v^P$$

Increase stress: EP = 0

Suisable for the meaning of yeeld surface