Randomized Computation

Nabil Mustafa

Computational Complexity

Definition: **ZPP**

The complexity class \mathbf{ZPP} is the class of all languages L for which there exists a polynomial \mathbf{PTM} M such that

$$x \in L \implies M(x) = 1 \text{ or } M(x) = \text{`Don't know'}$$

Definition: **ZPP**

The complexity class \mathbf{ZPP} is the class of all languages L for which there exists a polynomial \mathbf{PTM} M such that

$$x \in L \implies M(x) = 1 \text{ or } M(x) = \text{`Don't know'}$$

$$x \notin L \implies M(x) = 0 \text{ or } M(x) = \text{`Don't know'}$$

Definition: **ZPP**

The complexity class \mathbf{ZPP} is the class of all languages L for which there exists a polynomial \mathbf{PTM} M such that

$$x \in L \implies M(x) = 1 \text{ or } M(x) = \text{`Don't know'}$$

 $x \notin L \implies M(x) = 0 \text{ or } M(x) = \text{`Don't know'}$
 $\forall x, \ Prob[M(x) = \text{`Don't know'}] \le 1/2$

Definition: **ZPP**

The complexity class **ZPP** is the class of all languages L for which there exists a polynomial **PTM** M such that

$$x \in L \implies M(x) = 1 \text{ or } M(x) = \text{`Don't know'}$$
 $x \notin L \implies M(x) = 0 \text{ or } M(x) = \text{`Don't know'}$
 $\forall x, \ Prob[M(x) = \text{`Don't know'}] \le 1/2$

Whenever M answers with a 0 or a 1, it answers correctly. If M is not sure, it'll output a 'Don't know'. On any input x, it outputs 'Don't know' with probability at most 1/2.

Theorem

 $ZPP = RP \cap coRP$

Theorem

$$ZPP = RP \cap coRP$$

Theorem

$$ZPP = RP \cap coRP$$

Claim: $ZPP \subseteq RP \cap coRP$

 \bullet Show that $\mathsf{ZPP} \subseteq \mathsf{RP}\$ and $\mathsf{ZPP} \subseteq \mathsf{coRP}\$

Theorem

$$ZPP = RP \cap coRP$$

- ullet Show that $\mathsf{ZPP} \subseteq \mathsf{RP}$ and $\mathsf{ZPP} \subseteq \mathsf{coRP}$
- ullet We prove $\mathsf{ZPP}\subseteq\mathsf{coRP}$, the other proof is similar

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP} \subseteq \mathsf{coRP}$, the other proof is similar
- Let L ∈ ZPP . Then ∃ PTM M that, for all x, either correctly decides x ∈ L or outputs 'Don't know'.

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP} \subseteq \mathsf{coRP}$, the other proof is similar
- Let L ∈ ZPP . Then ∃ PTM M that, for all x, either correctly decides x ∈ L or outputs 'Don't know'.
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = 'Don't know' and otherwise returns M(x).

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP} \subseteq \mathsf{coRP}$, the other proof is similar
- Let L ∈ ZPP . Then ∃ PTM M that, for all x, either correctly decides x ∈ L or outputs 'Don't know'.
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = `Don't know' and otherwise returns M(x).
 - ▶ *x* ∈ *L*:

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP} \subseteq \mathsf{coRP}$, the other proof is similar
- Let L ∈ ZPP . Then ∃ PTM M that, for all x, either correctly decides x ∈ L or outputs 'Don't know'.
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = `Don't know' and otherwise returns M(x).
 - ▶ $x \in L$: M(x) = 1

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP} \subseteq \mathsf{coRP}$, the other proof is similar
- Let L ∈ ZPP . Then ∃ PTM M that, for all x, either correctly decides x ∈ L or outputs 'Don't know'.
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = `Don't know' and otherwise returns M(x).
 - \times $x \in L$: M(x) = 1 or M(x) = 'Don't know'

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP} \subseteq \mathsf{coRP}$, the other proof is similar
- Let L ∈ ZPP . Then ∃ PTM M that, for all x, either correctly decides x ∈ L or outputs 'Don't know'.
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = `Don't know' and otherwise returns M(x).
 - \times $x \in L$: M(x) = 1 or M(x) = 'Don't know', so M'(x) = 1.

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP} \subseteq \mathsf{coRP}$, the other proof is similar
- Let L ∈ ZPP . Then ∃ PTM M that, for all x, either correctly decides x ∈ L or outputs 'Don't know'.
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = `Don't know' and otherwise returns M(x).
 - \triangleright $x \in L$: M(x) = 1 or M(x) = 'Don't know', so M'(x) = 1.
 - x ∉ L:

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP} \subseteq \mathsf{coRP}$, the other proof is similar
- Let L ∈ ZPP . Then ∃ PTM M that, for all x, either correctly decides x ∈ L or outputs 'Don't know'.
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = `Don't know' and otherwise returns M(x).
 - \triangleright $x \in L$: M(x) = 1 or M(x) = 'Don't know', so M'(x) = 1.
 - ▶ $x \notin L$: M(x) = 0

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP} \subseteq \mathsf{coRP}$, the other proof is similar
- Let L ∈ ZPP . Then ∃ PTM M that, for all x, either correctly decides x ∈ L or outputs 'Don't know'.
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = `Don't know' and otherwise returns M(x).
 - \triangleright $x \in L$: M(x) = 1 or M(x) = 'Don't know', so M'(x) = 1.
 - $\triangleright x \notin L$: M(x) = 0, which is correct

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP} \subseteq \mathsf{coRP}$, the other proof is similar
- Let L ∈ ZPP . Then ∃ PTM M that, for all x, either correctly decides x ∈ L or outputs 'Don't know'.
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = `Don't know' and otherwise returns M(x).
 - \triangleright $x \in L$: M(x) = 1 or M(x) = 'Don't know', so M'(x) = 1.
 - $x \notin L$: M(x) = 0, which is correct, or M(x) = 'Don't know'

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP} \subseteq \mathsf{coRP}$, the other proof is similar
- Let L ∈ ZPP . Then ∃ PTM M that, for all x, either correctly decides x ∈ L or outputs 'Don't know'.
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = `Don't know' and otherwise returns M(x).
 - \times $x \in L$: M(x) = 1 or M(x) = 'Don't know', so M'(x) = 1.
 - ▶ $x \notin L$: M(x) = 0, which is correct, or M(x) = 'Don't know' where M'(x) returns incorrectly with probability $\leq 1/2$.

Theorem

$$ZPP = RP \cap coRP$$

- Show that $ZPP \subseteq RP$ and $ZPP \subseteq coRP$
- ullet We prove $\mathsf{ZPP} \subseteq \mathsf{coRP}$, the other proof is similar
- Let L ∈ ZPP. Then ∃ PTM M that, for all x, either correctly decides x ∈ L or outputs 'Don't know'.
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = `Don't know' and otherwise returns M(x).
 - \times $x \in L$: M(x) = 1 or M(x) = 'Don't know', so M'(x) = 1.
 - ▶ $x \notin L$: M(x) = 0, which is correct, or M(x) = 'Don't know' where M'(x) returns incorrectly with probability $\leq 1/2$.
- So $L \in \mathbf{coRP}$, and $\mathbf{ZPP} \subseteq \mathbf{coRP}$

Claim: $RP \cap coRP \subseteq ZPP$

• Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two TM 's s.t.:

```
Claim: RP \cap coRP \subseteq ZPP
```

- Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two TM 's s.t.:
 - ▶ $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$

- Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two **TM** 's s.t.:
 - $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$
 - ▶ $M_2(x) = 0$ if $x \notin L$. Incorrect for $x \in L$ with prob. $\leq 1/2$

- Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two TM 's s.t.:
 - ▶ $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$
 - ▶ $M_2(x) = 0$ if $x \notin L$. Incorrect for $x \in L$ with prob. $\leq 1/2$
- Construct a **PTM** M' which works as follows on M'(x):

- Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two **TM** 's s.t.:
 - ▶ $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$
 - ▶ $M_2(x) = 0$ if $x \notin L$. Incorrect for $x \in L$ with prob. $\leq 1/2$
- Construct a PTM M' which works as follows on M'(x):
 - ▶ Run $M_1(x)$, and if $M_1(x) = 0$, return $x \notin L$.

- Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two **TM** 's s.t.:
 - ▶ $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$
 - ▶ $M_2(x) = 0$ if $x \notin L$. Incorrect for $x \in L$ with prob. $\leq 1/2$
- Construct a PTM M' which works as follows on M'(x):
 - ▶ Run $M_1(x)$, and if $M_1(x) = 0$, return $x \notin L$.
 - ▶ Run $M_2(x)$, and if $M_2(x) = 1$, return $x \in L$.

- Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two **TM** 's s.t.:
 - ▶ $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$
 - ▶ $M_2(x) = 0$ if $x \notin L$. Incorrect for $x \in L$ with prob. $\leq 1/2$
- Construct a PTM M' which works as follows on M'(x):
 - ▶ Run $M_1(x)$, and if $M_1(x) = 0$, return $x \notin L$.
 - ▶ Run $M_2(x)$, and if $M_2(x) = 1$, return $x \in L$.
 - ► Else return 'Don't know'.

- Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two **TM** 's s.t.:
 - ▶ $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$
 - ▶ $M_2(x) = 0$ if $x \notin L$. Incorrect for $x \in L$ with prob. $\leq 1/2$
- Construct a PTM M' which works as follows on M'(x):
 - ▶ Run $M_1(x)$, and if $M_1(x) = 0$, return $x \notin L$.
 - ▶ Run $M_2(x)$, and if $M_2(x) = 1$, return $x \in L$.
 - Else return 'Don't know'.
- Claim: If M'(x) returns a 0 or a 1, it is correct.

- Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two **TM** 's s.t.:
 - ▶ $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$
 - ▶ $M_2(x) = 0$ if $x \notin L$. Incorrect for $x \in L$ with prob. $\leq 1/2$
- Construct a PTM M' which works as follows on M'(x):
 - ▶ Run $M_1(x)$, and if $M_1(x) = 0$, return $x \notin L$.
 - ▶ Run $M_2(x)$, and if $M_2(x) = 1$, return $x \in L$.
 - Else return 'Don't know'.
- Claim: If M'(x) returns a 0 or a 1, it is correct.
- Claim: M'(x) returns 'Don't know' with prob. $\leq 1/2$

- Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two **TM** 's s.t.:
 - ▶ $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$
 - ▶ $M_2(x) = 0$ if $x \notin L$. Incorrect for $x \in L$ with prob. $\leq 1/2$
- Construct a PTM M' which works as follows on M'(x):
 - ▶ Run $M_1(x)$, and if $M_1(x) = 0$, return $x \notin L$.
 - ▶ Run $M_2(x)$, and if $M_2(x) = 1$, return $x \in L$.
 - Else return 'Don't know'.
- Claim: If M'(x) returns a 0 or a 1, it is correct.
- Claim: M'(x) returns 'Don't know' with prob. $\leq 1/2$
 - Assume $x \in L$. Then we don't return a 1 iff $M_2(x) = 0$.

- Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two **TM** 's s.t.:
 - ▶ $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$
 - ▶ $M_2(x) = 0$ if $x \notin L$. Incorrect for $x \in L$ with prob. $\leq 1/2$
- Construct a PTM M' which works as follows on M'(x):
 - ▶ Run $M_1(x)$, and if $M_1(x) = 0$, return $x \notin L$.
 - ▶ Run $M_2(x)$, and if $M_2(x) = 1$, return $x \in L$.
 - Else return 'Don't know'.
- Claim: If M'(x) returns a 0 or a 1, it is correct.
- Claim: M'(x) returns 'Don't know' with prob. $\leq 1/2$
 - Assume $x \in L$. Then we don't return a 1 iff $M_2(x) = 0$.
 - ▶ By definition, $M_2(x) = 0$ for $x \in L$ with prob. $\leq 1/2$.

- Let $L \in \mathsf{RP} \ \cap \ \mathsf{coRP}$. Then there exist two **TM** 's s.t.:
 - ▶ $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$
 - ▶ $M_2(x) = 0$ if $x \notin L$. Incorrect for $x \in L$ with prob. $\leq 1/2$
- Construct a PTM M' which works as follows on M'(x):
 - ▶ Run $M_1(x)$, and if $M_1(x) = 0$, return $x \notin L$.
 - ▶ Run $M_2(x)$, and if $M_2(x) = 1$, return $x \in L$.
 - Else return 'Don't know'.
- Claim: If M'(x) returns a 0 or a 1, it is correct.
- Claim: M'(x) returns 'Don't know' with prob. $\leq 1/2$
 - Assume $x \in L$. Then we don't return a 1 iff $M_2(x) = 0$.
 - ▶ By definition, $M_2(x) = 0$ for $x \in L$ with prob. $\leq 1/2$.
 - ▶ The case for $x \notin L$ similar.

Theorem

 $\mathsf{BPP}\ \subseteq \Sigma_2$

Theorem

 $\mathsf{BPP}\ \subseteq \Sigma_2$

Let $L \in \mathsf{BPP}$.

Theorem

$$\mathsf{BPP}\ \subseteq \Sigma_2$$

Let $L \in \mathsf{BPP}$. Then \exists a randomized TM M such that:

•
$$x \in L$$
: Prob $[M(x,y) = 1] \ge 1 - 2^{-|x|}$

Theorem

$$\mathsf{BPP}\ \subseteq \Sigma_2$$

Let $L \in \mathsf{BPP}$. Then \exists a randomized TM M such that:

- $x \in L$: Prob $[M(x,y) = 1] \ge 1 2^{-|x|}$
- $x \notin L$: Prob $[M(x,y) = 1] \le 2^{-|x|}$

where y is a m-bit random string.

Theorem

$$\mathsf{BPP}\ \subseteq \Sigma_2$$

Let $L \in \mathsf{BPP}$. Then \exists a randomized TM M such that:

- $x \in L$: Prob $[M(x, y) = 1] \ge 1 2^{-|x|}$
- $x \notin L$: Prob $[M(x, y) = 1] \le 2^{-|x|}$

where y is a m-bit random string. To prove $L \in \Sigma_2$, show there exists **TM** N:

$$x \in L \iff \exists u \ \forall v \ N(x, u, v) = 1$$

Theorem

$$\mathsf{BPP}\ \subseteq \Sigma_2$$

Let $L \in \mathsf{BPP}$. Then \exists a randomized TM M such that:

- $x \in L$: Prob $[M(x,y) = 1] \ge 1 2^{-|x|}$
- $x \notin L$: Prob $[M(x, y) = 1] \le 2^{-|x|}$

where y is a m-bit random string. To prove $L \in \Sigma_2$, show there exists **TM** N:

$$x \in L \iff \exists u \ \forall v \ N(x, u, v) = 1$$

• m is the number of random bits M uses on |x| = n. Note that m is polynomial in n.

Theorem

$$\mathsf{BPP}\ \subseteq \Sigma_2$$

Let $L \in \mathsf{BPP}$. Then \exists a randomized TM M such that:

- $x \in L$: Prob $[M(x, y) = 1] \ge 1 2^{-|x|}$
- $x \notin L$: Prob $[M(x, y) = 1] \le 2^{-|x|}$

where y is a m-bit random string. To prove $L \in \Sigma_2$, show there exists **TM** N:

$$x \in L \iff \exists u \ \forall v \ N(x, u, v) = 1$$

- m is the number of random bits M uses on |x| = n. Note that m is polynomial in n.
- y_1, \ldots, y_{2^m} denote the 2^m possible random strings

Theorem

$$\mathsf{BPP}\ \subseteq \Sigma_2$$

Let $L \in \mathsf{BPP}$. Then \exists a randomized TM M such that:

- $x \in L$: Prob $[M(x,y) = 1] \ge 1 2^{-|x|}$
- $x \notin L$: Prob $[M(x, y) = 1] \le 2^{-|x|}$

where y is a m-bit random string. To prove $L \in \Sigma_2$, show there exists **TM** N:

$$x \in L \iff \exists u \ \forall v \ N(x, u, v) = 1$$

- m is the number of random bits M uses on |x| = n. Note that m is polynomial in n.
- y_1, \ldots, y_{2^m} denote the 2^m possible random strings
- Input to M is a m-bit string picked uniformly from all the y_i 's

From now on, lets fix the input x where |x| = n. Then:

- $x \in L$: Prob $[M(x,y) = 1] \ge 1 2^{-n}$
- $x \notin L$: Prob $[M(x, y) = 1] \le 2^{-n}$

From now on, lets fix the input x where |x| = n. Then:

- $x \in L$: Prob $[M(x,y) = 1] \ge 1 2^{-n}$
- $x \notin L$: Prob $[M(x, y) = 1] \le 2^{-n}$

This is equivalent to the following:

• $x \in L$: $\geq (1 - 2^{-n}) \cdot 2^m$ strings y_i s.t. $M(x, y_i) = 1$

From now on, lets fix the input x where |x| = n. Then:

- $x \in L$: Prob $[M(x, y) = 1] \ge 1 2^{-n}$
- $x \notin L$: Prob $[M(x,y) = 1] \le 2^{-n}$

This is equivalent to the following:

- $x \in L$: $\geq (1 2^{-n}) \cdot 2^m$ strings y_i s.t. $M(x, y_i) = 1$
- $x \notin L$: $\leq (2^{-n}) \cdot 2^m$ strings y_i s.t. $M(x, y_i) = 1$

From now on, lets fix the input x where |x| = n. Then:

- $x \in L$: Prob $[M(x, y) = 1] \ge 1 2^{-n}$
- $x \notin L$: Prob $[M(x,y) = 1] \le 2^{-n}$

This is equivalent to the following:

- $x \in L$: $\geq (1 2^{-n}) \cdot 2^m$ strings y_i s.t. $M(x, y_i) = 1$
- $x \notin L$: $\leq (2^{-n}) \cdot 2^m$ strings y_i s.t. $M(x, y_i) = 1$

To prove $L \in \Sigma_2$, have to find a way to distinguish the two cases using a ' \exists ' and a ' \forall ' quantifier.

From now on, lets fix the input x where |x| = n. Then:

- $x \in L$: Prob $[M(x, y) = 1] \ge 1 2^{-n}$
- $x \notin L$: Prob $[M(x,y) = 1] \le 2^{-n}$

This is equivalent to the following:

- $x \in L$: $\geq (1 2^{-n}) \cdot 2^m$ strings y_i s.t. $M(x, y_i) = 1$
- $x \notin L$: $\leq (2^{-n}) \cdot 2^m$ strings y_i s.t. $M(x, y_i) = 1$

To prove $L \in \Sigma_2$, have to find a way to distinguish the two cases using a ' \exists ' and a ' \forall ' quantifier.

Basic idea: Find a way to formulate, with polynomial-sized certificates u and v, the fact that $x \in L$ if and only if there exist lots $(\ge (1 - 2^{-n}) \cdot 2^m)$ of m-bit strings y_i such that for all of them, N returns 1.

Consider the 2^m strings y_i 's and take 2^m permutations

	y_1	y_2	y_3	y_4	y_5	y_6
p_1	y_2	y_3	y_1	y_6	y_4	y_5
p_2	y_6	y_1	y_5	y_2	y_3	y_4
p_3	y_4	y_3	y_5	y_1	y_6	y_2
p_4	y_3	y_4	y_6	y_5	y_2	y_1

	y_1	•	•	y_{2^m}
p_1	$p_1 \oplus y_1$			$p_1 \oplus y_{2^m}$
•				•
•				•
p_{2^m}	$p_{2^m} \oplus y_1$	•	•	$p_{2^m} \oplus y_{2^m}$

• p_1 , ..., p_{2^m} are 2^m permutations of the y_i 's

	y_1	y_2	y_3	y_4	y_5	y_6
p_1	y_2	y_3	y_1	y_6	y_4	y_5
p_2	y_6	y_1	y_5	y_2	y_3	y_4
p_3	y_4	y_3	y_5	y_1	y_6	y_2
p_4	y_3	y_4	y_6	y_5	y_2	y_1

	y_1	•	•	y_{2^m}
p_1	$p_1 \oplus y_1$			$p_1 \oplus y_{2^m}$
•				•
•				•
p_{2^m}	$p_{2^m} \oplus y_1$	•	•	$p_{2^m} \oplus y_{2^m}$

- $p_1, ..., p_{2^m}$ are 2^m permutations of the y_i 's
- Claim: Each permutation p_i can be coded by a m-bit string

	y_1	y_2	y_3	y_4	y_5	y_6
p_1	y_2	y_3	y_1	y_6	y_4	y_5
p_2	y_6	y_1	y_5	y_2	y_3	y_4
p_3	y_4	y_3	y_5	y_1	y_6	y_2
p_4	y_3	y_4	y_6	y_5	y_2	y_1

	y_1	•	•	y_{2^m}
p_1	$p_1 \oplus y_1$			$p_1 \oplus y_{2^m}$
•				•
•				•
p_{2^m}	$p_{2^m} \oplus y_1$	•	•	$p_{2^m} \oplus y_{2^m}$

- $p_1, ..., p_{2^m}$ are 2^m permutations of the y_i 's
- Claim: Each permutation p_i can be coded by a m-bit string
 - ▶ For a fixed p, and any y_i , consider m-bit string $y_i \oplus p$

	y_1	y_2	y_3	y_4	y_5	y_6
p_1	y_2	y_3	y_1	y_6	y_4	y_5
p_2	y_6	y_1	y_5	y_2	y_3	y_4
p_3	y_4	y_3	y_5	y_1	y_6	y_2
p_4	y_3	y_4	y_6	y_5	y_2	y_1

	y_1	•	•	y_{2^m}
p_1	$p_1 \oplus y_1$			$p_1 \oplus y_{2^m}$
•				•
•				•
p_{2^m}	$p_{2^m} \oplus y_1$	•	•	$p_{2^m}\oplus y_{2^m}$

- $p_1, ..., p_{2^m}$ are 2^m permutations of the y_i 's
- Claim: Each permutation p_i can be coded by a m-bit string
 - ▶ For a fixed p, and any y_i , consider m-bit string $y_i \oplus p$
 - ▶ For contradiction, assume $T = y_i \oplus p = y_j \oplus p$

	y_1	y_2	y_3	y_4	y_5	y_6
p_1	y_2	y_3	y_1	y_6	y_4	y_5
p_2	y_6	y_1	y_5	y_2	y_3	y_4
p_3	y_4	y_3	y_5	y_1	y_6	y_2
p_4	y_3	y_4	y_6	y_5	y_2	y_1

	y_1	•	•	y_{2^m}
p_1	$p_1 \oplus y_1$			$p_1 \oplus y_{2^m}$
•				•
•				•
p_{2^m}	$p_{2^m} \oplus y_1$	•	•	$p_{2^m} \oplus y_{2^m}$

- $p_1, ..., p_{2^m}$ are 2^m permutations of the y_i 's
- Claim: Each permutation p_i can be coded by a m-bit string
 - ▶ For a fixed p, and any y_i , consider m-bit string $y_i \oplus p$
 - ▶ For contradiction, assume $T = y_i \oplus p = y_i \oplus p$
 - ▶ $A \oplus B = C \implies A = B \oplus C$. So \oplus is a 1-to-1 function

	y_1	y_2	y_3	y_4	y_5	y_6
p_1	y_2	y_3	y_1	y_6	y_4	y_5
p_2	y_6	y_1	y_5	y_2	y_3	y_4
p_3	y_4	y_3	y_5	y_1	y_6	y_2
p_4	y_3	y_4	y_6	y_5	y_2	y_1

	y_1	•	•	y_{2^m}
p_1	$p_1 \oplus y_1$			$p_1 \oplus y_{2^m}$
•				•
•				•
p_{2^m}	$p_{2^m} \oplus y_1$	•	•	$p_{2^m} \oplus y_{2^m}$

- $p_1, ..., p_{2^m}$ are 2^m permutations of the y_i 's
- Claim: Each permutation p_i can be coded by a m-bit string
 - ▶ For a fixed p, and any y_i , consider m-bit string $y_i \oplus p$
 - ▶ For contradiction, assume $T = y_i \oplus p = y_i \oplus p$
 - ▶ $A \oplus B = C \implies A = B \oplus C$. So \oplus is a 1-to-1 function
 - ▶ Hence $y_i = y_j = T \oplus p$, contradiction since each y_i distinct

	y_1	y_2	y_3	y_4	y_5	y_6
p_1	y_2	y_3	y_1	y_6	y_4	y_5
p_2	y_6	y_1	y_5	y_2	y_3	y_4
p_3	y_4	y_3	y_5	y_1	y_6	y_2
p_4	y_3	y_4	y_6	y_5	y_2	y_1

	y_1	•	•	y_{2^m}
p_1	$p_1 \oplus y_1$			$p_1 \oplus y_{2^m}$
•				•
•				•
p_{2^m}	$p_{2^m} \oplus y_1$	•	•	$p_{2^m} \oplus y_{2^m}$

- $p_1, ..., p_{2^m}$ are 2^m permutations of the y_i 's
- Claim: Each permutation p_i can be coded by a m-bit string
 - ▶ For a fixed p, and any y_i , consider m-bit string $y_i \oplus p$
 - ▶ For contradiction, assume $T = y_i \oplus p = y_i \oplus p$
 - ▶ $A \oplus B = C \implies A = B \oplus C$. So \oplus is a 1-to-1 function
 - ▶ Hence $y_i = y_j = T \oplus p$, contradiction since each y_i distinct
- The value in each cell: $A_{ij} = M(x, P_i \oplus y_j)$

Because each row is just a permutation of y_i 's, we have

• If $x \in L$, every row has $\geq (1 - 2^{-n}) \cdot 2^m$ 1's

- If $x \in L$, every row has $\geq (1 2^{-n}) \cdot 2^m$ 1's
- If $x \notin L$, every row has $\leq (2^{-n}) \cdot 2^m 1$'s

- If $x \in L$, every row has $\geq (1 2^{-n}) \cdot 2^m$ 1's
- If $x \notin L$, every row has $\leq (2^{-n}) \cdot 2^m 1$'s
- No string y_i is mapped to the same string y_j twice

- If $x \in L$, every row has $\geq (1 2^{-n}) \cdot 2^m$ 1's
- If $x \notin L$, every row has $\leq (2^{-n}) \cdot 2^m$ 1's
- No string y_i is mapped to the same string y_j twice
 - ▶ Suppose p_1 maps $y_i \rightarrow y_j$ and p_2 also maps $y_i \rightarrow y_j$

- If $x \in L$, every row has $\geq (1 2^{-n}) \cdot 2^m$ 1's
- If $x \notin L$, every row has $\leq (2^{-n}) \cdot 2^m$ 1's
- No string y_i is mapped to the same string y_j twice
 - ▶ Suppose p_1 maps $y_i \rightarrow y_j$ and p_2 also maps $y_i \rightarrow y_j$
 - ▶ Then $y_j = y_i \oplus p_1$ and $y_j = y_i \oplus p_2$

- If $x \in L$, every row has $\geq (1 2^{-n}) \cdot 2^m$ 1's
- If $x \notin L$, every row has $\leq (2^{-n}) \cdot 2^m$ 1's
- No string y_i is mapped to the same string y_j twice
 - ▶ Suppose p_1 maps $y_i \rightarrow y_j$ and p_2 also maps $y_i \rightarrow y_j$
 - ▶ Then $y_j = y_i \oplus p_1$ and $y_j = y_i \oplus p_2$
 - ▶ But then, $p_1 = y_j \oplus y_i$ and $p_2 = y_j \oplus y_i$

- If $x \in L$, every row has $\geq (1 2^{-n}) \cdot 2^m$ 1's
- If $x \notin L$, every row has $\leq (2^{-n}) \cdot 2^m$ 1's
- No string y_i is mapped to the same string y_j twice
 - ▶ Suppose p_1 maps $y_i \rightarrow y_j$ and p_2 also maps $y_i \rightarrow y_j$
 - ▶ Then $y_j = y_i \oplus p_1$ and $y_j = y_i \oplus p_2$
 - ▶ But then, $p_1 = y_j \oplus y_i$ and $p_2 = y_j \oplus y_i$
 - ▶ Hence $p_1 = p_2$, contradiction since all p_i distinct strings

- If $x \in L$, every row has $\geq (1 2^{-n}) \cdot 2^m$ 1's
- If $x \notin L$, every row has $\leq (2^{-n}) \cdot 2^m$ 1's
- No string y_i is mapped to the same string y_j twice
 - ▶ Suppose p_1 maps $y_i \rightarrow y_j$ and p_2 also maps $y_i \rightarrow y_j$
 - ▶ Then $y_i = y_i \oplus p_1$ and $y_i = y_i \oplus p_2$
 - ▶ But then, $p_1 = y_j \oplus y_i$ and $p_2 = y_j \oplus y_i$
 - ▶ Hence $p_1 = p_2$, contradiction since all p_i distinct strings
 - **Each** column is just a permutation of the y_i 's

- If $x \in L$, every row has $\geq (1 2^{-n}) \cdot 2^m$ 1's
- If $x \notin L$, every row has $\leq (2^{-n}) \cdot 2^m$ 1's
- No string y_i is mapped to the same string y_j twice
 - ▶ Suppose p_1 maps $y_i \rightarrow y_j$ and p_2 also maps $y_i \rightarrow y_j$
 - ▶ Then $y_i = y_i \oplus p_1$ and $y_i = y_i \oplus p_2$
 - ▶ But then, $p_1 = y_j \oplus y_i$ and $p_2 = y_j \oplus y_i$
 - ▶ Hence $p_1 = p_2$, contradiction since all p_i distinct strings
 - Each column is just a permutation of the y_i's
- If $x \in L$, every column has $\geq (1 2^{-n}) \cdot 2^m$ 1's

- If $x \in L$, every row has $\geq (1 2^{-n}) \cdot 2^m$ 1's
- If $x \notin L$, every row has $\leq (2^{-n}) \cdot 2^m 1$'s
- No string y_i is mapped to the same string y_j twice
 - ▶ Suppose p_1 maps $y_i \rightarrow y_j$ and p_2 also maps $y_i \rightarrow y_j$
 - ▶ Then $y_j = y_i \oplus p_1$ and $y_j = y_i \oplus p_2$
 - ▶ But then, $p_1 = y_j \oplus y_i$ and $p_2 = y_j \oplus y_i$
 - ▶ Hence $p_1 = p_2$, contradiction since all p_i distinct strings
 - Each column is just a permutation of the y_i's
- If $x \in L$, every column has $\geq (1 2^{-n}) \cdot 2^m$ 1's
- If $x \notin L$, every column has $\leq (2^{-n}) \cdot 2^m$ 1's

Claim 1

If $x \in L$, there exist m columns such that none of the rows have all 0's in these m columns

Claim 1

If $x \in L$, there exist m columns such that none of the rows have all 0's in these m columns

Proof

• We know each row has at most 2^{m-n} 0's.

Claim 1

If $x \in L$, there exist m columns such that none of the rows have all 0's in these m columns

- We know each row has at most 2^{m-n} 0's.
- For a fixed row r, there are $\binom{2^{m-n}}{m}$ ways to choose m columns such that each one of them contains a 0 for that row

Claim 1

If $x \in L$, there exist m columns such that none of the rows have all 0's in these m columns

- We know each row has at most 2^{m-n} 0's.
- For a fixed row r, there are $\binom{2^{m-n}}{m}$ ways to choose m columns such that each one of them contains a 0 for that row
- Therefore, for each row r, there are at most $\binom{2^{m-n}}{m}$ ways to choose m columns that are 'bad' for that row

Claim 1

If $x \in L$, there exist m columns such that none of the rows have all 0's in these m columns

- We know each row has at most 2^{m-n} 0's.
- For a fixed row r, there are $\binom{2^{m-n}}{m}$ ways to choose m columns such that each one of them contains a 0 for that row
- Therefore, for each row r, there are at most $\binom{2^{m-n}}{m}$ ways to choose m columns that are 'bad' for that row
- Therefore, there are at most $\binom{2^{m-n}}{m} \cdot 2^m$ ways to choose m columns that are 'bad' for *some* row

Claim 1

If $x \in L$, there exist m columns such that none of the rows have all 0's in these m columns

- We know each row has at most 2^{m-n} 0's.
- For a fixed row r, there are $\binom{2^{m-n}}{m}$ ways to choose m columns such that each one of them contains a 0 for that row
- Therefore, for each row r, there are at most $\binom{2^{m-n}}{m}$ ways to choose m columns that are 'bad' for that row
- Therefore, there are at most $\binom{2^{m-n}}{m} \cdot 2^m$ ways to choose m columns that are 'bad' for *some* row
- This is an over-count since same set of m columns can be 'bad' for more than one row

Claim 1

If $x \in L$, there exist m columns such that none of the rows have all 0's in these m columns

- We know each row has at most 2^{m-n} 0's.
- For a fixed row r, there are $\binom{2^{m-n}}{m}$ ways to choose m columns such that each one of them contains a 0 for that row
- Therefore, for each row r, there are at most $\binom{2^{m-n}}{m}$ ways to choose m columns that are 'bad' for that row
- Therefore, there are at most $\binom{2^{m-n}}{m} \cdot 2^m$ ways to choose m columns that are 'bad' for *some* row
- This is an over-count since same set of m columns can be 'bad' for more than one row
- The number of ways to choose m columns: $\binom{2^m}{m}$

Pigeon-hole Principle: If the number of ways to choose m columns that are 'bad' for some row is less than the total number of ways to choose m columns, then there must exist m columns that are 'good' for each row

Pigeon-hole Principle: If the number of ways to choose m columns that are 'bad' for some row is less than the total number of ways to choose m columns, then there must exist m columns that are 'good' for each row

First note that $(\frac{e2^{m-n}}{m})^m \cdot 2^m \le (\frac{2^m}{m})^m$ since $2e < 2^n$

Pigeon-hole Principle: If the number of ways to choose m columns that are 'bad' for some row is less than the total number of ways to choose m columns, then there must exist m columns that are 'good' for each row

First note that $(\frac{e2^{m-n}}{m})^m \cdot 2^m \le (\frac{2^m}{m})^m$ since $2e < 2^n$ Using the following well-known inequality,

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{e \cdot n}{k}\right)^k$$

we get that
$$(\frac{2^m}{m})^m \le {2m \choose m}$$
 and ${2m-n \choose m} \le (\frac{e2^{m-n}}{m})^m$

Pigeon-hole Principle: If the number of ways to choose m columns that are 'bad' for some row is less than the total number of ways to choose m columns, then there must exist m columns that are 'good' for each row

First note that $(\frac{e2^{m-n}}{m})^m \cdot 2^m \le (\frac{2^m}{m})^m$ since $2e < 2^n$ Using the following well-known inequality,

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{e \cdot n}{k}\right)^k$$

we get that
$$(\frac{2^m}{m})^m \le {2m \choose m}$$
 and ${2m-n \choose m} \le (\frac{e2^{m-n}}{m})^m$

Therefore, we have
$$\binom{2^{m-n}}{m} \cdot 2^m < \binom{2^m}{m}$$

Pigeon-hole Principle: If the number of ways to choose m columns that are 'bad' for some row is less than the total number of ways to choose m columns, then there must exist m columns that are 'good' for each row

First note that $(\frac{e2^{m-n}}{m})^m \cdot 2^m \le (\frac{2^m}{m})^m$ since $2e < 2^n$ Using the following well-known inequality,

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{e \cdot n}{k}\right)^k$$

we get that
$$(\frac{2^m}{m})^m \le {2m \choose m}$$
 and ${2m-n \choose m} \le (\frac{e2^{m-n}}{m})^m$

Therefore, we have
$$\binom{2^{m-n}}{m} \cdot 2^m < \binom{2^m}{m}$$

Hence there exists a way to select m columns such that none of the rows have all 0's in those columns.

Claim 2

If $x \notin L$, no matter how we choose our m columns, at least one of the rows will have all 0's.

Claim 2

If $x \notin L$, no matter how we choose our m columns, at least one of the rows will have all 0's.

Proof

• We know each column has at most 2^{m-n} 1's.

Claim 2

If $x \notin L$, no matter how we choose our m columns, at least one of the rows will have all 0's.

Proof

- We know each column has at most 2^{m-n} 1's.
- So each column picked can only 'cover' at most 2^{m-n} rows

Claim 2

If $x \notin L$, no matter how we choose our m columns, at least one of the rows will have all 0's.

Proof

- We know each column has at most 2^{m-n} 1's.
- So each column picked can only 'cover' at most 2^{m-n} rows
- The total number of rows covered with m columns: $2^{m-n} \cdot m$

Claim 2

If $x \notin L$, no matter how we choose our m columns, at least one of the rows will have all 0's.

Proof

- We know each column has at most 2^{m-n} 1's.
- So each column picked can only 'cover' at most 2^{m-n} rows
- The total number of rows covered with m columns: $2^{m-n} \cdot m$
- The total number of rows is 2^m . As $m < 2^n$,

$$2^{m-n} \cdot m < 2^m$$

 Therefore, there will always be some rows having all 0's, for any choice of m columns

Putting Everything Together

Claim 1: If $x \in L$, we will be able to choose m strings, y_1, \ldots, y_m , such that for all m-bit permutation strings p, the machine M will output 1 for at least one of $M(x, y_i \oplus p)$, where $1 \le i \le m$

Putting Everything Together

Claim 1: If $x \in L$, we will be able to choose m strings, y_1, \ldots, y_m , such that for all m-bit permutation strings p, the machine M will output 1 for at least one of $M(x, y_i \oplus p)$, where $1 \le i \le m$

Claim 2: If $x \notin L$, whichever y_1, \ldots, y_m we choose, for at least one particular p, the machine M will output 0 for all of $M(x, y_i \oplus p)$, where $1 \le i \le m$

Putting Everything Together

Claim 1: If $x \in L$, we will be able to choose m strings, y_1, \ldots, y_m , such that for all m-bit permutation strings p, the machine M will output 1 for at least one of $M(x, y_i \oplus p)$, where $1 \le i \le m$

Claim 2: If $x \notin L$, whichever y_1, \ldots, y_m we choose, for at least one particular p, the machine M will output 0 for all of $M(x, y_i \oplus p)$, where $1 \le i \le m$

From Claims 1 and 2 we conclude

• $x \in L$ if and only if

$$\exists y_1,\ldots,y_m \ \forall p \ (M(x,y_1\oplus z)\vee\ldots\vee M(x,y_m\oplus p))=1$$

• Therefore, $L \in \Sigma_2$, and so BPP $\subseteq \Sigma_2$.