Построение линии регрессии

Что такое регрессия?

- Регрессия это метод моделирования зависимостей между переменными.
- Используется для предсказания числового значения.
- Например, прогнозирование цен, температуры, спроса, стоимости жилья.

Виды регрессий

- 1. Линейная
- 2. Логистическая
- 3. Полиномиальная
- 4. Гребневая (ридж) регрессия
- 5. Регрессия по методу «лассо»
- 6. Регрессия «эластичная сеть»

В рамках курса мы рассматриваем только первые 3 вида, так что поговорим на счет них подробнее.

Виды регрессий. Линейная регрессия.

- Линейная регрессия — это метод, используемый для моделирования зависимости одной переменной (зависимой) от другой или нескольких других (независимых) с помощью линейной функции.

Виды регрессий. Логистическая регрессия.

- Логистическая регрессия — это метод, используемый для моделирования вероятности принадлежности объекта к одному из двух классов. В отличие от линейной регрессии, она предсказывает вероятность (значение от 0 до 1), а не непрерывные числа.

Sigmoid (aka logistic) function

 $\sigma(z)' = \sigma(z)(1 - \sigma(z))$

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$
 Sigmoid is odd relative to (0, 0.5) point
$$1 - \sigma(z) = \sigma(-z)$$
 Derivative:

Виды регрессий. Полиномиальная регрессия

- Полиномиальная регрессия - это обобщение линейной регрессии, где зависимая переменная моделируется с помощью полинома (многочлена) вместо простой прямой линии.

$$y = a + b_1 x + b_2 x^2 + b_3 x^3 + \dots + b_n x^n + \varepsilon$$

Где:

- у зависимая переменная (то, что мы предсказываем);
- x независимая переменная (фактор);
- а свободный член (intercept);
- b₁, b₂, ..., b_n коэффициенты полинома;
- $x^2, x^3, ..., x^n$ дополнительные нелинейные признаки;
- ε ошибка модели.

Чем выше степень n, тем сложнее кривая.

Ошибки для регрессии

- Mean Absolute Error

Сумма модулей различий между значениями, поделенное на кол-во элементов

Mean Square Error

Сумма квадратов различий между значениями, поделенное на кол-во элементов

- Sum of Squared Errors

Сумма квадратов различий между значениями

- Mean Absolute Percentage Error

Как найти коэффициенты.

- Аналитически
- Метод наименьших квадратов (МНК)

Минимизируем сумму квадратов разностей между предсказанными значениями и реальными данными.

- Градиентный спуск (и его оптимизации)

Спускаемся по функции ошибки к минимуму.

Как оценить качество. R²

Коэффициент детерминации R^2 (англ. coefficient of determination) — это метрика, показывающая, насколько хорошо линейная регрессия объясняет данные.

$$R^2 = 1 - rac{SS_{res}}{SS_{tot}}$$

Где:

- ullet $SS_{res} = \sum (y_i \hat{y}_i)^2$ сумма квадратов остатков (ошибок модели).
- ullet $SS_{tot} = \sum (y_i ar{y})^2$ общая сумма квадратов отклонений от среднего значения.

Что показывает R^2 :

- Если $R^2=1$, модель идеально объясняет данные.
- ullet Если $R^2=0$, модель не лучше, чем простое среднее $ar{y}$.
- Если $\mathbb{R}^2 < 0$, модель хуже среднего, возможно, данные вообще не связаны линейной зависимостью.

Алгоритм построения линии регрессии

- 1. Подготавливаем данные
- 2. Пытаемся выделить, какой вид регрессии к нам подходит
- 3. Обучаем модель, используя один из видов подсчета коэффициентов.
- 4. При помощи R^2 оцениваем модель, если надо, то повторяем шаг 2.
- 5. Используем полученную модель