Examen du module : Recherche d'information

Exercice 1 (4 pts): Question de cours

- 1. Est ce qu'il y a une différence entre un système de gestion de base de données et un système de recherche d'information ? OUI 1pt
- 2. Un terme qui apparaît dans un seul documents d'un corpus est-il discriminant ou non ? Justifier votre réponse.
 - Un terme qui apparaît dans un document est discriminant car ce terme distingue ou faire la différence entre ce document des autres documents.
- 3. Dans le modèle vectoriel, à quoi correspondent les axes de l'espace vectoriel? 1.5pt Les axes de l'espace vectoriel correspondent aux termes de la collection de documents.

Exercice 2 (4 pts): Indexation

Soient les ensembles des termes obtenus de l'indexation des documents D1 et D2 suivants:

D1 = {efficacité, recherche, mesurée, précision, moyenne}

D2 = {modèles, recherche, efficaces, langage, vectoriel}

1. Donner la table des fréquences : terme, document;

2pts

termes	D1	D2
efficacité	1	0
recherche	1	1
mesurée	1	0
précision	1	0
moyenne	1	0
modèles	0	1
efficaces	0	1
langage	0	1
vectoriel	0	1

2. Calculer TF*IDF de chaque terme où TF = $\frac{\text{freq}(t_i,d_j)}{1.5*\left(\frac{\text{Longueur_doc_dj}}{\text{Longueur_moy_doc}}\right) + \text{freq}(t_i,d_j) + 0.5}$

IDF= $Log(\frac{N}{Nt})$; où N_t est le nombre de documents contenant le terme t_i et N est le nombre de documents.

Longueur_doc_D₁=5; Longueur_doc_D₁=5; Longueur_moy_doc=10/2=5

termes	D1	D2	TF*IDF (D1)	TF*IDF (D2)
efficacité	1	0	[1/(1.5+1+0.5)]*log(2) = 0.1	0
recherche	1	1	0	0
mesurée	1	0	$(1/3)*\log(2) = 0.1$	0
précision	1	0	$(1/3)*\log(2) = 0.1$	0
moyenne	1	0	$(1/3)*\log(2) = 0.1$	0
modèles	0	1	0	(1/3)*log(2)=0.1
efficaces	0	1	0	(1/3)*log(2) = 0.1
langage	0	1	0	(1/3)*log(2) = 0.1
vectoriel	0	1	0	(1/3)*log(2) = 0.1

Examen du module : Recherche d'information

Exercice 3 (6 pts): Modèles de recherche d'information

Nous voulons mesurer la correspondance (la similarité) entre les documents d'un corpus qui ont été préalablement pondérés. Pour la correspondance entre un document **A** et un document **B** on utilisera la formule du cosinus du modèle vectoriel.

Soit la fonction COR_COS() qui prend en argument deux tableaux de poids WEIGHT_A et WEIGHT_B contenant les poids des termes des deux documents, et qui renvoie la valeur de la correspondance entre ces deux documents.

- A quoi correspond la taille de WEIGHT_A et de WEIGHT_B.

La taille de WEIGHT_A et de WEIGHT_B est égale à la taille de l'espace vectoriel engendré par termes de la collection de documents donc WEIGHT_A et de WEIGHT_B ont la même taille.

0.5

- Écrivez l'algorithme de la fonction COR_COS().

La formule du cosinus $\ de \ calcul \ de \ correspondance entre un document <math>\ d_i \ et \ d_k \ est \ donnée \ comme$ suit: 0.5

$$\mathbf{R}(\mathbf{d_p}, \mathbf{d_k}) = \mathbf{Cos}(\mathbf{d_p}, \mathbf{d_k}) = \frac{\sum_{j=1}^{m} w \ ij * w \ kj}{\sqrt{\sum_{j=1}^{m} w \ \frac{2}{kj} * \sum_{j=1}^{m} w \ \frac{2}{ij}}}$$

```
5pts
float COR _COS(WEIGHT_A[],WEIGHT _B[], int taille) {
        float sommeProduits = 0.0;
        float sommePAcarre = 0.0;
        float sommePBcarre = 0.0;
        for (int i=0; i<taille; i++){
            sommePAcarre += WEIGHT _A[i]* WEIGHT _A[i];
            sommePBcarre += WEIGHT _B[i]* WEIGHT _B[i];
            sommeProduits += WEIGHT_A[i]* WEIGHT_B[i];
            }
        return sommeProduits/(sqrt(sommePAcarre* sommePBcarre));
}</pre>
```

Exercice 4 (6 pts): Évaluation des SRI

Nous souhaitons évaluer un système de recherche d'information Sys1. Supposons que pour une requête Q1 le système S1 testé renvoie les réponses suivantes:

rang	n° doc	pertinent	précision	rappel
1	588	X	1/1=1	1/10=0.1
2	589	X	2/2=1	2/10=0.2
3	576	X	3/3=1	3/10=0.3
4	590			
5	986			
6	592	X	4/6=0.67	4/10=0.4
7	884			
8	988			
9	578	X	5/9=0,56	5/10=0.5
10	985			

Par Dr. A. ABBAS 2/1 Bon courage....

Examen du module : Recherche d'information

Supposons qu'il y a dans l'ensemble de tous les documents, 10 documents jugés pertinents pour la requête O1.

1. Calculer les taux de précision et de rappel du système et remplir le tableau ci-dessus. 2pts

 $rappel = \frac{Nombre\ de\ documents\ pertinents\ séléctionnés}{Nombre\ total\ de\ documents\ pertinents}$

 $précision = \frac{Nombre de documents pertinents sélectionnés}{Nombre total de documents sélectionnés}$

précision	rappel
1,00	0,10
1,00	0,20
1,00	0,30
0,67	0,40
0,56	0,50

2. Dessiner la courbe de rappel/précision.

2pts

3. Calculer les taux de précision "interpolés" pour les taux de rappels 0, 0.1, ... 1.0.

2pts

rappels	précisions
0	1
0,1	1
0,2	1
0,3	1
0,4	0.67
0,5	0.56
0,6	0
0,7	0
0,8	0
0,9	0
1	0