CMPE 322/327 - Theory of Computation Week 3: Nondeterministic Finite State Automata & Epsilon Transitions

Burak Ekici

March 7-11, 2022

1/27

A Quick Recap •000

Nondeterministic Finite Automata 000000000

Epsilon Transitions 000000

Closure Properties 000000

Outline

- 1 A Quick Recap
- 3 Epsilon Transitions
- 4 Closure Properties

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

1) Q: finite set of states 2) Σ : input alphabet 3) $\delta: Q \times \Sigma \rightarrow Q$: transition function

 $4 \le Q$: start state

⑤ F ⊆ Q: final (accept) states

• $\hat{\delta}: Q \times \Sigma^* \to Q$ is inductively defined by

$$\widehat{\delta}(q, \varepsilon) := q$$
 $\widehat{\delta}(q, xa) := \delta(\widehat{\delta}(q, x), a)$

- string $x \in \Sigma^*$ is accepted by M if $\widehat{\delta}(s, x) \in F$
- string $x \in \Sigma^*$ is rejected by M if $\hat{\delta}(s, x) \notin F$
- language accepted by M is given by $L(M) := \{x \mid \widehat{\delta}(x, s) \in F\}$

3/27

A Quick Recap ○○●○ Nondeterministic Finite Automata

Epsilon Transitions

Closure Properties

Example (DFA → Regular Sets)

This page has too many overlays. Please refer to the original slides (in w3.pdf) to monitor the whole content.

set $A \subseteq \Sigma^*$ is regular if A = L(M) for some DFA M

Theorem

regular sets are effectively closed under intersection, complement and union

5/27

A Quick Recap

Nondeterministic Finite Automata

•00000000

Epsilon Transitions

Closure Properties

Outline

- 1 A Quick Recap
- 2 Nondeterministic Finite Automata
- 3 Epsilon Transitions
- 4 Closure Properties

• nondeterministic finite automaton (NFA) is quintuple $N=(Q,\Sigma,\Delta,S,F)$ with

1 Q: finite set of states 2 Σ : input alphabet 3 $\Delta: Q \times \Sigma \rightarrow 2^Q$: transition function

4 $S \subseteq Q$: set of start states final (accept) states

• $\widehat{\Delta} : 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

 $\widehat{\Delta}(A, \varepsilon) := A$ $\widehat{\Delta}(A, xa) := \bigcup_{q \in \widehat{\Delta}(A, x)} \Delta(q, a)$

• string $x \in \Sigma^*$ is accepted by N if $\widehat{\Delta}(S, x) \cap F \neq \emptyset$

7/27

A Quick Recap

Nondeterministic Finite Automata

Epsilon Transitions

Closure Properties

Example

 $N = (Q, \Sigma, \Delta, S, F)$

$$\mathbf{0}$$
 $Q = \{1, 2, 3\}$

$$\Sigma = \{a, b\}$$

4
$$S = \{1\}$$

5
$$F = \{3\}$$

$$egin{array}{c|cccc} \Delta & {\sf a} & {\sf b} \\ \hline 1 & \{1,2\} & \{1\} \\ 2 & \{3\} & \{1,3\} \\ \hline \end{array}$$

```
Example (Unfolding of the multistep function \widehat{\Delta})
```

```
Let x = ababba over the alphabet \Sigma = \{a, b\}
                                                                                                                                                                                             1<sup>st</sup> rec. call
  \bigcup (q \in \widehat{\Delta}(A, ababb), a)
                                                                                                                                                                                             2<sup>nd</sup> rec. call
  \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A, abab) \, \Delta(q, b)) \, \Delta(q, a))
                                                                                                                                                                                             3<sup>rd</sup> rec. call
  \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A, aba) \, \Delta(q, b)) \, \Delta(q, b)) \, \Delta(q, a))
                                                                                                                                                                                             4<sup>th</sup> rec. call
  \bigcup (q \in \bigcup (q \in \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A, ab) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))
                                                                                                                                                                                             5<sup>th</sup> rec. call
  \bigcup (q \in \triangle (A, a) \Delta (q, b)) \Delta (q, a)) \Delta (q, b)) \Delta (q, b)) \Delta (q, a))
                                                                                                                                                                                             6<sup>th</sup> rec. call
  \bigcup (q \in \widehat{\Delta}(A, \varepsilon) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, b)) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))
  \bigcup (q \in A \Delta(q, a)) \Delta(q, b)) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))
  \bigcup (q \in B \Delta(q, b)) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))
                                                                                                                                                      assuming \bigcup (q \in A \Delta(q, a)) = B
  \bigcup (q \in \bigcup (q \in \bigcup (q \in \bigcup (q \in C \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))
                                                                                                                                                      assuming \bigcup (q \in B \Delta(q, b)) = C
  \bigcup (q \in \bigcup (q \in \bigcup (q \in D \Delta(q, b)) \Delta(q, b)) \Delta(q, a))
                                                                                                                                                      assuming \bigcup (q \in C \Delta(q, a)) = D
  \bigcup (q \in \bigcup (q \in E \Delta(q, b)) \Delta(q, a))
                                                                                                                                                      assuming \bigcup (q \in D \Delta(q, b)) = E
  \bigcup (\mathbf{q} \in F \Delta(\mathbf{q}, \mathbf{a}))
                                                                                                                                                      assuming \bigcup (q \in E \Delta(q, b)) = F
  G
                                                                                                                                                      assuming \bigcup (q \in F \Delta(q, a)) = G
```

9/27

A Quick Recap

Nondeterministic Finite Automata

Epsilon Transitions

Closure Properties

Lemma ($\widehat{\Delta}$ distributes)

$$\widehat{\Delta}(A, xy) = \widehat{\Delta}(\widehat{\Delta}(A, x), y) \quad \forall A \subseteq Q_N \text{ and } x, y \in \Sigma^*$$

Proof.

We argue by induction on |y|:

• base case: |y| = 0 thus $y = \varepsilon$

$$\widehat{\Delta}(A, x\varepsilon) = \widehat{\Delta}(A, x) = \widehat{\Delta}(\widehat{\Delta}(A, x), \varepsilon)$$

• step case: |y| > 0 thus y = zb s.t. |z| = |y| - 1 with $IH : \widehat{\Delta}(A, xz) = \widehat{\Delta}(\widehat{\Delta}(A, x), z)$

$$\begin{array}{lll} \widehat{\Delta}(A,xzb) & = & \bigcup\limits_{q \in \widehat{\Delta}(A,xz)} \Delta(q,b) & \text{(by definition of } \widehat{\Delta}) \\ & = & \bigcup\limits_{q \in \widehat{\Delta}(\widehat{\Delta}(A,x),z)} \Delta(q,b) & \text{(by IH)} \\ & = & \widehat{\Delta}(\widehat{\Delta}(A,x),zb) & \text{(by definition of } \widehat{\Delta}) \\ & = & \widehat{\Delta}(\widehat{\Delta}(A,x),y) & \text{(by definition of } \widehat{\Delta}) \end{array}$$

Theorem

every set accepted by NFA is regular

Proof.

- NFA $N = (Q_N, \Sigma, \Delta_N, S_N, F_N)$
- L(N) = L(M) for some DFA $M = (Q_M, \Sigma, \delta_M, s_M, F_M)$ with
 - $:= 2^{Q_N}$
 - $\bigcirc \delta_{M}(A,a) := \widehat{\Delta}(A,a)$
- $\forall A \subseteq Q_N \ \forall a \in \Sigma$

- S_M $:= S_N$
- $4 F_{M}$ $:= \{A \subseteq Q_N \mid A \cap F_N \neq \emptyset\}$
- claim: $\widehat{\delta_M}(A, x) = \widehat{\Delta}(A, x) \quad \forall A \subseteq Q \text{ and } x \in \Sigma^*$ by induction on |x| see next slide proof:

11/27

A Quick Recap

Nondeterministic Finite Automata 0000000000

Epsilon Transitions 000000

Closure Properties 000000

proof of the claim

claim: $\widehat{\delta_M}(A, x) = \widehat{\Delta_N}(A, x) \quad \forall A \subseteq Q_N \text{ and } x \in \Sigma^*$

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta_M}(A, \varepsilon) = A = \widehat{\Delta_N}(A, \varepsilon)$$

• step case: |x| > 0 thus x = ya s.t. |y| = |x| - 1 with $IH : \widehat{\delta_M}(A, y) = \widehat{\Delta_N}(A, y)$

$$\begin{array}{lll} \widehat{\delta_M}(A,ya) & = & \delta_M(\widehat{\delta_M}(A,y),a) & \text{(by definition of } \widehat{\delta_M}) \\ & = & \delta_M(\widehat{\Delta_N}(A,y),a) & \text{(by induction hypothesis IH)} \\ & = & \widehat{\Delta_N}(\widehat{\Delta_N}(A,y),a) & \text{(by definition of } \delta_M) \\ & = & \widehat{\Delta_N}(A,ya) & \text{(by distributivity of } \widehat{\Delta}) \\ & = & \widehat{\Delta_N}(A,x) & \end{array}$$

Proof. (NFA regularity)

statement: L(M) = L(N)

 $\forall x \in \Sigma^*, x \in L(M) \iff \widehat{\delta_M}(s_M, x) \in F_M$

 \iff $\widehat{\delta_M}(S_N, x) \in \{A \subseteq Q_N \mid A \cap F_N \neq \emptyset\}$

 $\iff \widehat{\Delta_N}(S_N,x) \in \{A \subseteq Q_N \mid A \cap F_N \neq \emptyset\}$

 \iff $\widehat{\Delta_N}(S_N, x) \cap F_N \neq \emptyset$

 \iff $x \in L(N)$

(by definition of acceptance)

(by definition of s_M and F_M)

(by claim proven in slide 12)

(by set comprehension)

(by definition of acceptance)

13/27

A Quick Recap

Nondeterministic Finite Automata ○○○○○○○●○ Epsilon Transitions

Closure Properties

Example

This page has too many overlays. Please refer to the original slides (in w3.pdf) to monitor the whole content.

Question

Every regular set is accepted by ...

- A ... an NFA having exactly one final state,
- B ... a DFA having exactly one final state,
- C ... an NFA having exactly one start state.

15/27

A Quick Recap 0000

Nondeterministic Finite Automata 000000000

Epsilon Transitions •00000

Epsilon Transitions

Closure Properties 000000

Outline

- 1 A Quick Recap
- 3 Epsilon Transitions
- 4 Closure Properties

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N=(Q,\Sigma,\varepsilon,\Delta,S,F)$ such that
 - $\mathbf{1} \in \mathcal{E} \Sigma$
 - Q $N_{\varepsilon} = (Q, \Sigma \cup \{\varepsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\varepsilon\}$
- $\Delta: Q \times \Sigma \cup \{\varepsilon\} \rightarrow 2^Q$
- ε -closure of set $A \subseteq Q$ is defined as $C_{\varepsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\varepsilon}}(A, x) \mid x \in \{\varepsilon\}^*\}$
- $\widehat{\Delta}_N : 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}_N(A, \varepsilon) = C_{\varepsilon}(A)$$

$$\widehat{\Delta}_N(A, xa) = \left\{ \left| \left\{ C_{\varepsilon}(\Delta(q, a)) \mid q \in \widehat{\Delta}_N(A, x) \right\} \right| \right\}$$

Example

$$\begin{array}{lcl} C_{\varepsilon}(\{1\}) & = & \{1,2,3\} \\ \widehat{\Delta}(\{1\},b) & = & C_{\varepsilon}(\Delta(1,b)) \cup C_{\varepsilon}(\Delta(2,b)) \cup C_{\varepsilon}(\Delta(3,b)) \end{array}$$

17/27

A Quick Recap

Nondeterministic Finite Automata

Epsilon Transitions ○●○○○○ Closure Properties

Definitions

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N = (Q, \Sigma, \varepsilon, \Delta, S, F)$ such that
 - $\mathbf{n} \circ \mathbf{t} \nabla$
 - Q $N_{\varepsilon} = (Q, \Sigma \cup \{\varepsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\varepsilon\}$
- $\Delta: Q \times \Sigma \cup \{\varepsilon\} \rightarrow 2^Q$
- ε -closure of set $A \subseteq Q$ is defined as $C_{\varepsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\varepsilon}}(A, x) \mid x \in \{\varepsilon\}^*\}$
- $\widehat{\Delta}_N : 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}_N(A, \varepsilon) = C_{\varepsilon}(A)$$

$$\widehat{\Delta}_N(A,xa) = \bigcup \left\{ \underline{C_{\varepsilon}}(\Delta(q,a)) \mid q \in \widehat{\Delta}_N(A,x) \right\}$$

Example

$$\begin{array}{lcl} C_{\varepsilon}(\{1\}) & = & \{1,2,3\} \\ \widehat{\Delta}(\{1\},b) & = & C_{\varepsilon}(\emptyset) \cup C_{\varepsilon}(\{2\}) \cup C_{\varepsilon}(\emptyset) \end{array}$$

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N=(Q,\Sigma,\varepsilon,\Delta,S,F)$ such that
 - $\mathbf{1}$ $\varepsilon \notin \Sigma$
 - Q $N_{\varepsilon} = (Q, \Sigma \cup {\varepsilon}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup {\varepsilon}$
- $\Delta: Q \times \Sigma \cup \{\varepsilon\} \rightarrow 2^Q$
- ε -closure of set $A \subseteq Q$ is defined as $C_{\varepsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\varepsilon}}(A, x) \mid x \in \{\varepsilon\}^*\}$
- $\widehat{\Delta}_N : 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}_N(A, \varepsilon) = C_{\varepsilon}(A)$$

$$\widehat{\Delta}_N(A, xa) = \left\{ \int \left\{ C_{\varepsilon}(\Delta(q, a)) \mid q \in \widehat{\Delta}_N(A, x) \right\} \right\}$$

Example

$$C_{\varepsilon}(\{1\}) = \{1, 2, 3\}$$

 $\widehat{\Delta}(\{1\}, b) = \emptyset \cup \{2, 3\} \cup \emptyset$

17/27

A Quick Recap

Nondeterministic Finite Automata

Epsilon Transitions ○●○○○○ Closure Properties

Definitions

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N=(Q,\Sigma,\varepsilon,\Delta,S,F)$ such that
 - $\mathbf{n} \circ \mathbf{t} \nabla$
 - Q $N_{\varepsilon} = (Q, \Sigma \cup \{\varepsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\varepsilon\}$
- $\Delta: Q \times \Sigma \cup \{\varepsilon\} \rightarrow 2^Q$
- ε -closure of set $A \subseteq Q$ is defined as $C_{\varepsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\varepsilon}}(A, x) \mid x \in \{\varepsilon\}^*\}$
- $\widehat{\Delta}_N : 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}_N(A, \varepsilon) = C_{\varepsilon}(A)$$

$$\widehat{\Delta}_N(A,xa) = \bigcup \left\{ \underline{C_{\varepsilon}}(\Delta(q,a)) \mid q \in \widehat{\Delta}_N(A,x) \right\}$$

Example

$$C_{\varepsilon}(\{1\}) = \{1, 2, 3\}$$

 $\widehat{\Delta}(\{1\}, b) = \{2, 3\}$

Example (Unfolding of the multistep function $\widehat{\Delta}_{N}$)

```
Let x = baa over the alphabet \Sigma = \{a, b\}  \bigcup \{C_{\mathcal{E}}(\Delta(q, a)) \mid q \in \widehat{\Delta}_N(A, ba)\}   \bigcup \{C_{\mathcal{E}}(\Delta(q, a)) \mid q \in \bigcup \{C_{\mathcal{E}}(\Delta(q, a)) \mid q \in \widehat{\Delta}_N(A, b)\}\}   \bigcup \{C_{\mathcal{E}}(\Delta(q, a)) \mid q \in \bigcup \{C_{\mathcal{E}}(\Delta(q, a)) \mid q \in \bigcup \{C_{\mathcal{E}}(\Delta(q, b)) \mid q \in \widehat{\Delta}_N(A, \mathcal{E})\}\}\}   \bigcup \{C_{\mathcal{E}}(\Delta(q, a)) \mid q \in \bigcup \{C_{\mathcal{E}}(\Delta(q, a)) \mid q \in \bigcup \{C_{\mathcal{E}}(\Delta(q, b)) \mid q \in C_{\mathcal{E}}(A)\}\}\}   \bigcup \{C_{\mathcal{E}}(\Delta(q, a)) \mid q \in \bigcup \{C_{\mathcal{E}}(\Delta(q, a)) \mid q \in B\}\}   \bigcup \{C_{\mathcal{E}}(\Delta(q, a)) \mid q \in C\}   \bigcup \{C_{\mathcal{E}}(\Delta(q, a)) \mid q \in C\}   \bigcup \{C_{\mathcal{E}}(\Delta(q, a)) \mid q \in C\}   \bigcup \{C_{\mathcal{E}}(\Delta(q, a)) \mid q \in C\} = D
```

18/27

A Quick Recap

Nondeterministic Finite Automata

Epsilon Transitions

Closure Properties

Lemma

 $C_{\varepsilon}(A)$ is least extension of A that is closed under ε -transitions:

$$q \in C_{\varepsilon}(A) \implies \Delta_{N_{\varepsilon}}(q, \varepsilon) \subseteq C_{\varepsilon}(A)$$

Theorem

every set accepted by NFA_{ϵ} is regular

Proof. (by construction)

- NFA $_{\varepsilon}$ $N_1 = (Q, \Sigma, \varepsilon, \Delta_1, S, F_1)$
- $L(N_1) = L(N_2)$ for NFA $N_2 = (Q, \Sigma, \Delta_2, S, F_2)$ with

 $2 F_2 := \{ q \mid C_{\varepsilon}(\{q\}) \cap F_1 \neq \emptyset \}$

Example

This page has too many overlays. Please refer to the original slides (in w3.pdf) to monitor the whole content.

20/27

A Quick Recap

Nondeterministic Finite Automata

Epsilon Transitions ○○○○○● Closure Properties

Example (cont'd)

 $\mathsf{NFA}_{\varepsilon} \; \textit{N}_1 = (\{1,2,3\}, \{\textit{a},\textit{b},\textit{c}\}, \varepsilon, \Delta_1, \{1\}, \{3\}) \; \mathsf{with} \;$

•	Δ_{1}	а	b	C	ε
	1	{1}	Ø {2}	Ø	{2}
	2		{2}	Ø	{3}
	3	Ø	Ø	{3}	Ø

NFA $N_2 = (\{1, 2, 3\}, \{a, b, c\}, \Delta_2, \{1\}, F_2)$ with

•
$$F_2 = \{q \mid C_{\varepsilon}(\{q\}) \cap F_1 \neq \emptyset\}$$

•	Δ_{2}	a	b	С
	1	{1, 2, 3}	{2,3}	{3}
	2	Ø	{2,3}	{3}
	3	Ø	Ø	{3}

Outline

- 1 A Quick Recap
- 2 Nondeterministic Finite Automata
- 3 Epsilon Transitions
- 4 Closure Properties

22/27

A Quick Recap

Nondeterministic Finite Automata

Epsilon Transitions

Closure Properties

Theorem

regular sets are effectively closed under concatenation

Proof. (by construction)

- $A = L(N_1)$ for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ $B = L(N_2)$ for NFA $N_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- without loss of generality $Q_1 \cap Q_2 = \emptyset$
- AB = L(N) for $NFA_{\varepsilon} N = (Q, \Sigma, \varepsilon, \Delta, S_1, F_2)$ with

Example

 $\{x \in \{a\}^* \mid |x| \text{ is divisible by 3}\}$ $\{x \in \{a\}^* \mid |x| \text{ is divisible by 4}\}$

 $\{X \in \{a\} \mid |X| \notin \{1, 2, 5\}$

24/27

A Quick Recap

Nondeterministic Finite Automata

Epsilon Transitions

Closure Properties

Theorem

regular sets are effectively closed under asterate

Proof. (by construction)

- $A = L(N_1)$ for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
- $A^* = L(N)$ for NFA_{ε} $N = (Q, \Sigma, \varepsilon, \Delta, S, F)$ with

Example

This page has too many overlays. Please refer to the original slides (in w3.pdf) to monitor the whole content.

26/27

A Quick Recap

Nondeterministic Finite Automata

Epsilon Transitions

Closure Properties ○○○○○●

Thanks! & Questions?