学院	<u>-</u>	€业			班	年级			
天津大学 2012 年同等学力研究生									
《工程与科学计算》试卷									
题号		三	成绩	核分人签字					
得分									
一、填空	一、填空题(共 20 分,每小题 2 分)								
$1, l_k(x)$	1 、 $l_k(x)$ 是 n 阶 Lagrange 插值基函数, $\{x_j: j=0,1,\cdots,n\}$ 是插值节点,则								
$l_k(x_j) = \underline{}$									
2、 设 $A = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{bmatrix}$,则 $\operatorname{cond}_{\infty}(A) = \underline{\hspace{1cm}}$ 。									
3、试写出求解方程 $x^3 + 2x^2 + 10x - 20 = 0$ 的 Newton 迭代格式:。									
4 、 $f(x) = x^3 - 1$,则 $f[2^0, 2^1, 2^2, 2^3, 2^4] =。 5、具有 n+1个不同求积节点的插值型求积公式,至少具有$									
6、Cotes 求积系数 $C_k^{(n)}$ 满足 $\sum_{k=0}^n C_k^{(n)} =$ 。									
	的 Eular 格式具 oson 求积公式为								
9、迭代格式 $x = Mx + f$ 对任意初值都收敛的充要条件是 $\lim_{k \to \infty} M^k = \underline{\qquad}$ 。									
 10、试写	「 ラ出初値问题 {	$y = y - \frac{2x}{y}$	$0 < x \le 1$	句 Eular 迭代格5	式:	o			

y(0) = 1

二、判断题(每小题1分,共10分)

1、 $A \in \mathbb{R}^{n \times n}$, A 存在 **Doolittle** 分解的充要条件是 A 的各阶顺序主子式大于零。(

共3页第1页

- 2、A 严格对角占优,则 A 是非奇异矩阵。 ()
- 3、设线性方程 Ax = b 的迭代格式为 x = Mx + f ,若 M 是正定矩阵,则其对任意初值都收敛。()
- 4、Cotes 求积系数都大于零。()
- 5、差商与所含节点的排列顺序无关。 ()
- 6、若 A 是非奇异矩阵,则线性方程组 Ax = b 必可以用 Gauss 消元法求解。()
- 7、 $l_k(x)$ 是 n 阶 Lagrange 插值基函数,则 $\sum_{k=0}^{n} l_k(x) = 1$ 。()
- 8、奇数个求积节点的 Newton-Cotes 求积公式的代数精度至少等于节点个数。(
- 9、若 Jacobi 迭代格式收敛,则 Seidel 迭代格式收敛。()
- 10、标准 Runge-Kutta 格式具有四阶精度。()
- 三. 计算题(共70分)
- 1、(14分)已知线性方程组

$$\begin{cases} 3x_1 + x_2 + x_3 = 4 \\ x_1 + 3x_2 = -2 \\ x_1 + x_2 + 2x_2 = 4 \end{cases}$$

写出求解该方程组的 Jacobi 迭代格式和 Seidel 迭代格式,并判断其收敛性。

学院专业	班	年级	学号		共 3 页 第 2 页
------	---	----	----	--	-------------

2、(10分)给定数表:

10 11 10 11							
X	1.0	1.1	1.2	1.3	1.4		
f(x)	0.2500	0.2268	0.2066	0.1890	0.1736		

用三点公式求f'(1.0), f'(1.1), f'(1.4)的近似值。

4. (14 分) 用 Romberg 方法求定积分 $\int_0^1 \frac{1}{\sqrt{x^3+1}}$ 。

T_n	S_n	C_n	R_n
T_1	S_1	C_1	$R_{\rm l}$
T_2	S_2	C_2	R_2
T_4	S_4	C_4	
T_8	S_8		
T ₁₆			

3、(10 分) 写出二阶常微分方程 $\ddot{y} = f(x, y, \dot{y})$ 的标准 Runge-Kutta 格式,其中初值条

件为: $y(0) = 0, \dot{y}(0) = 1.$

6. (10 分) 设有求积公式

5. (12分)给定数表:

X	75	76	77	78	79	81	82
f(x)	2.7680	2.8362	2.9025	2.9785	3.0617	3.2553	3.3698

$$\int_0^4 f(x)dx \approx A_0 f(0) + \frac{8}{3} f(x_1) + A_1 f(4),$$

试确定待定系数 A_0, x_1, A_1 ,使上述求积公式具有尽量高的代数精度,并指出所确定的求积公式的代数精度。

用三次 Newton 插值多项式计算 f(76.54) 和 f(81.76) 。