Deep Neural Network module	
 深度神经网络模型	1
OpenCV 使用训练好的网络模型	
加载网络模型	
构建输入	
执行推理 inference	
解析输出	5
SSD(Single Shot MultiBox Detector)	
SSD caffe	5
PASCAL VOC 数据集	6
TensorFlow Object Detection API	
手动生成 config 文件	

Deep Neural Network module

深度神经网络模型

OpenCV 使用训练好的网络模型

https://docs.opencv.org/4.5.3/d6/d0f/group dnn.html

OpenCV dnn module 只能执行推理(对训练好的模型的使用),不能训练。 时下 OpenCV 支持的深度学习框架和相关层: https://github.com/opencv/opencv/wiki/Deep-Learning-in-OpenCV

加载网络模型

https://docs.opencv.org/4.5.3/d6/d0f/group dnn.html#ga3b34fe7a29494a6a4295c169a7d32422

```
• readNet() [1/2]
Net cv::dnn::readNet ( const String & model,
                      const String & config = ""
                      const String & framework = ""
Python:
   cv.dnn.readNet( model[, config[, framework]]
   cv.dnn.readNet( framework, bufferModel[, bufferConfig] ) -> retval
 #include <opencv2/dnn/dnn.hpp>
Read deep learning network represented in one of the supported formats.
       [in] model Binary file contains trained weights. The following file extensions are expected for models from different frameworks:

    *.caffemodel (Caffe, http://caffe.berkeleyvision.org/)

                            . *.pb (TensorFlow, https://www.tensorflow.org/)
                            • *.t7 | *.net (Torch, http://torch.ch/)

    *.weights (Darknet, https://pjreddie.com/darknet/)

    *.bin (DLDT, https://software.intel.com/openvino-toolkit)

    *.onnx (ONNX, https://onnx.ai/)

       [in] config Text file contains network configuration. It could be a file with the following extensions:
                            . *.prototxt (Caffe, http://caffe.berkeleyvision.org/)

    *.pbtxt (TensorFlow, https://www.tensorflow.org/)

                            . *.cfg (Darknet, https://pjreddie.com/darknet/)
                            . *.xml (DLDT, https://software.intel.com/openvino-toolkit)
       [in] framework Explicit framework name tag to determine a format.
```

设置计算后台:

Dnn module 支持设置不同的计算后台,在不同设备上进行。

setPreferableBackend()

void cv::dnn::Net::setPreferableBackend (int | backendId)

Python:

cv.dnn_Net.setPreferableBackend(backendld) -> None

Ask network to use specific computation backend where it supported.

Parameters

[in] backendld backend identifier.

See also

Backend

If OpenCV is compiled with Intel's Inference Engine library, DNN_BACKEND_DEFAULT means DNN_BACKEND_INFERENCE_ENGINE. Otherwise it equals to DNN_BACKEND_OPENCV.

• setPreferableTarget()

Python

cv.dnn_Net.setPreferableTarget(targetId) -> None

Ask network to make computations on specific target device.

Parameter:

[in] targetId target identifier.

See also

Target

List of supported combinations backend / target:

	DNN_BACKEND_OPENCV	DNN_BACKEND_INFERENCE_ENGINE	DNN_BACKEND_HALIDE	DNN_BACKEND_CUDA
DNN_TARGET_CPU	+	+	+	
DNN_TARGET_OPENCL	+	+	+	
DNN_TARGET_OPENCL_FP16	+	+		
DNN_TARGET_MYRIAD		+		
DNN_TARGET_FPGA		+		
DNN_TARGET_CUDA				+
DNN_TARGET_CUDA_FP16				+
DNN_TARGET_HDDL		+	2	

Examples:

samples/dnn/colorization.cpp.

设置使用 CPU 和 OpenCV 作为计算后台。

构建输入

blobFromImage:

• blobFromImage() [1/2]

#include <opencv2/dnn/dnn.hpp>

Creates 4-dimensional blob from image. Optionally resizes and crops image from center, subtract mean values, scales values by scalefactor, swap Blue and Red channels.

Parameters

image input image (with 1-, 3- or 4-channels).

size spatial size for output image

mean scalar with mean values which are subtracted from channels. Values are intended to be in (mean-R, mean-B) order if image

has BGR ordering and swapRB is true.

scalefactor multiplier for image values.

swapRB flag which indicates that swap first and last channels in 3-channel image is necessary.

crop flag which indicates whether image will be cropped after resize or not

ddepth Depth of output blob. Choose CV_32F or CV_8U.

if crop is true, input image is resized so one side after resize is equal to corresponding dimension in size and another one is equal or larger. Then, crop from the center is performed. If crop is false, direct resize without cropping and preserving aspect ratio is performed.

Returns

4-dimensional Mat with NCHW dimensions order.

Examples:

 $samples/dnn/classification.cpp, samples/dnn/colorization.cpp, samples/dnn/object_detection.cpp, samples/dnn/openpose.cpp, and samples/dnn/segmentation.cpp.$

执行推理 inference

Net::forward:

https://docs.opencv.org/4.5.3/db/d30/classcv 1 1dnn 1 1Net.html

```
Mat forward (const String &outputName=String())
Runs forward pass to compute output of layer with name outputName . More...

void forward (OutputArrayOfArrays outputBlobs, const String &outputName=String())
Runs forward pass to compute output of layer with name outputName . More...

void forward (OutputArrayOfArrays outputBlobs, const std::vector< String > &outBlobNames)
Runs forward pass to compute outputs of layers listed in outBlobNames . More...

void forward (std::vector< std::vector< Mat > > &outputBlobs, const std::vector< String > &outBlobNames)
Runs forward pass to compute outputs of layers listed in outBlobNames . More...
```

• forward() [1/4]

Mat cv::dnn::Net::forward (const String & outputName = String())

Python:

cv.dnn_Net.forward([, outputName]) -> retval
cv.dnn_Net.forward([, outputBlobs[, outputName]]) -> outputBlobs
cv.dnn_Net.forward(outBlobNames[, outputBlobs]) -> outputBlobs
cv.dnn_Net.forwardAndRetrieve(outBlobNames) -> outputBlobs

Runs forward pass to compute output of layer with name outputName.

Parameters

outputName name for layer which output is needed to get

Returns

blob for first output of specified layer.

By default runs forward pass for the whole network.

Examples

samples/dnn/colorization.cpp, and samples/dnn/openpose.cpp

解析输出

.....

SSD(Single Shot MultiBox Detector)

模型描述文件:

https://github.com/opencv/opencv/blob/master/samples/dnn/models.yml

SSD_caffe

输入: [Nx3x300x300] 通道顺序:RGB

输出: [1x1xNx7], 7 对应的浮点数据对应如下: [image_id,label, conf, x_min, y_min, x_max, y_max]

N:batchsize

```
ssd_caffe:
     load_info:
     url: "https://drive.google.com/uc?export=download&id=0B3gersZ2cHIxRm5PMWRoTkdHdHc"
     sha1: "994d30a8afaa9e754d17d2373b2d62a7dfbaaf7a"
    model: "MobileNetSSD_deploy.caffemodel"
    config: "MobileNetSSD_deploy.prototxt"
     mean: [127.5, 127.5, 127.5]
60
     scale: 0.007843
     width: 300
    height: 300
    rgb: false
63
64
     classes: "object_detection_classes_pascal_voc.txt"
     sample: "object_detection"
```

rgb 为 false,表示格式正确(BGR),不需要更改为 rgb

PASCAL VOC 数据集

Fig. 2 VOC2007 Classes. Leaf nodes correspond to the 20 classes. The year of inclusion of each class in the challenge is indicated by superscripts: 2005¹, 2006², 2007³. The classes can be considered in a notional taxonomy, with successive challenges adding new branches (increasing the domain) and leaves (increasing detail)

文件下载:

MobileNetSSD deploy.caffemodel:

https://drive.google.com/uc?export=download&id=0B3gersZ2cHIxRm5PMWRoTkdHdHc
MobileNetSSD deploy.prototxt:

 $\frac{https://raw.githubusercontent.com/chuanqi305/MobileNet-SSD/master/voc/MobileNetSSD_deploy.p}{rototxt}$

Classes:

https://raw.githubusercontent.com/opencv/opencv/master/samples/data/dnn/object_detection_classes_pascal_voc.txt

TensorFlow Object Detection API

https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API

下载使用已经训练好的模型

Use existing config file for your model

You can use one of the configs that has been tested in OpenCV. This choice depends on your model and TensorFlow version:

Model	Version		
MobileNet-SSD v1	2017_11_17	weights	config
MobileNet-SSD v1 PPN	2018_07_03	weights	config
MobileNet-SSD v2	2018_03_29	weights	config
Inception-SSD v2	2017_11_17	weights	config
MobileNet-SSD v3 (see #16760)	2020_01_14	weights	config
Faster-RCNN Inception v2	2018_01_28	weights	config
Faster-RCNN ResNet-50	2018_01_28	weights	config
Mask-RCNN Inception v2	2018_01_28	weights	config
EfficientDet-D0 (see #17384)		weights	config

注意事项:下载 config 文件时候要点击 Raw

手动生成 config 文件

