Granica funkcji rzeczywistej zmiennej rzeczywistej

Def. Punkt $x_0 \in R$ jest **punktem skupienia** zbioru $D \subset R \iff$ istnieje ciąg $(a_n) \subset D$ taki, że

$$\forall a_n \neq x_0 \quad \text{i} \quad \lim_{n \to \infty} a_n = x_0$$

Granica funkcji w punkcie skupienia

Niech $f:R\supset D\to R$ i $x_0\in R$ będzie punktem skupienia zbioru D (dziedziny funkcji f) **Def.** (Heine) Liczba $g\in R$ jest granicą funkcji f w punkcie x_0 , co zapisujemy $\lim_{x\to x_0} f(x)=g$, jeżeli $\forall \lim_{(x_n)\subset D-\{x_0\}} \lim_{n\to\infty} x_n=x_0 \Rightarrow \lim_{n\to\infty} f(x_n)=g \ .$

Powyższa definicja jest równoważna następującej

Def. (Cauchy)
$$\lim_{x \to x_0} f(x) = g \Leftrightarrow \bigvee_{\varepsilon > 0} \mathop{\exists}_{\delta > 0} \bigvee_{x \in D} 0 < |x - x_0| \le \delta \Rightarrow |f(x) - g| \le \varepsilon$$

Komentarz: Założenie, że $x_0 \in R$ jest punktem skupienia zbioru dziedziny D gwarantuje, że istnieje w dziedzinie przynajmniej jeden ciąg zbieżny do x_0 . Punkt x_0 nie musi należeć do D, czyli funkcja nie musi być określona w x_0 . Nawet jeśli funkcja jest określona w x_0 , to wartość funkcji w tym punkcie nie wpływa na granicę funkcji.

Dowód równoważności definicji Heinego i Cauchy'ego

(H \Rightarrow C) Dla dowodu nie wprost załóżmy że spełniony jest warunek z def. H i nie jest spełniony warunek z def. C, czyli $\exists \forall \exists 0 < |x-x_0| \le \delta \land |f(x)-g| > \varepsilon$. Przyjmując $\delta = \frac{1}{n}, n \in N$ wnosimy o istnieniu takiego ciągu (x_n) , że $0 < |x_n-x_0| \le \frac{1}{n} \land |f(x_n)-g| > \varepsilon$, co przeczy $\lim_{n\to\infty} f(x_n) = g$. (C \Rightarrow H). Zakładamy, że spełniony jest warunek z def. C. Ze zbieżności $\lim_{n\to\infty} x_n = x_0$ wynika, że prawie wszystkie wyrazy ciągu (x_n) spełniają warunek $0 < |x_n-x_0| \le \delta$, co pociąga za sobą spełnienie przez prawie wszystkie wyrazy ciągu $(f(x_n))$ warunku $|f(x_n)-g| \le \varepsilon$, czyli $\lim_{n\to\infty} f(x_n) = g$.

Własności arytmetyczne granic funkcji rzeczywistych

Rozważmy dwie funkcje $f,g:R\supset D\to R$ określone na tym samym zbiorze D . Niech punkt x_0 będzie punktem skupienia zbioru D.

Tw. Jeżeli
$$\lim_{x\to x_0} f(x) = a$$
 i $\lim_{x\to x_0} g(x) = b$, to

•
$$\lim_{x \to x_0} (f+g)(x) = \lim_{x \to x_0} (f(x) + g(x)) = a+b$$

$$\bullet \quad \lim_{x \to x_0} (f - g)(x) = a - b$$

$$\bullet \quad \lim_{x \to x_0} (f \cdot g)(x) = a \cdot b$$

•
$$\lim_{x \to x_0} \left(\frac{f}{g} \right)(x) = \frac{a}{b}$$
 gdy $b \neq 0 \land \forall_x g(x) \neq 0$

Dow. Twierdzenie powyższe jest natychmiastową konsekwencją definicji Heine'go granicy funkcji w punkcie i własności arytmetycznych granic ciągów liczb rzeczywistych.

Ważne granice

1)
$$\limsup_{x\to 0} \sin x = 0$$
; $\lim_{x\to 0} \cos x = 1$

2)
$$\lim_{x\to 0} \frac{\sin x}{x} = 1;$$

3)
$$\lim_{x\to 0} \frac{a^x - 1}{x} = \ln a$$

4)
$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha \quad (\alpha \in R)$$

Granice niewłaściwe i granice w nieskończoności

 $f:R\supset D\to R$, $D\neq\varnothing$, x_0 - punkt skupienia zbioru D.

$$\lim_{x \to x_0} f(x) = +\infty \Leftrightarrow \begin{cases} (C) & \forall \exists \forall 0 < |x - x_0| \le \delta \Rightarrow f(x) \ge M \\ (H) & \forall \lim_{(x_n) \subset D - \{x_0\}} \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = +\infty \end{cases}$$

$$\lim_{x \to x_0} f(x) = -\infty \Leftrightarrow \frac{\text{(C)}}{m < 0} \ \ \frac{\exists}{\delta > 0} \ \ \ \frac{\forall}{\exists} \ \ 0 < \left| x - x_0 \right| \le \delta \Rightarrow f(x) \le m$$

$$\text{(H)} \ \ \frac{\forall}{(x_n) \subset D - \{x_0\}} \ \ \forall_{x_n \ne x_0} \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = -\infty$$

Informatyka i Systemy Inteligentne - Analiza - Wykład 3 - dr Bogdan Ćmiel

Jeśli zbiór D (dziedzina funkcji) jest prawostronnie nieograniczony to możemy zdefiniować

$$\lim_{x \to +\infty} f(x) = g \Leftrightarrow (C) \ \ \forall \ \ \exists_{\varepsilon > 0} \ \ \underset{M > 0}{\forall} \ \ x \ge M \Rightarrow \left| f(x) - g \right| \le \varepsilon$$

$$(H) \ \ \forall \ \ \lim_{x \to \infty} x_n = +\infty \Rightarrow \lim_{n \to \infty} f(x_n) = g$$

Jeśli zbiór D (dziedzina funkcji) jest lewostronnie nieograniczony to możemy zdefiniować

$$\lim_{x \to -\infty} f(x) = g \Leftrightarrow (C) \quad \forall \underset{\varepsilon > 0}{\exists} \quad \forall x \le m \Rightarrow |f(x) - g| \le \varepsilon$$

$$(H) \quad \forall \underset{(x_n) \subset D}{\exists} \quad \lim_{n \to +\infty} x_n = -\infty \Rightarrow \lim_{n \to +\infty} f(x_n) = g$$

Granice jednostronne

 $f: R \supset D \to R$, x_0 - punkt skupienia zbioru $D \cap (x_0, +\infty)$.

$$\lim_{x \to x_0^+} f(x) = g \Leftrightarrow (C) \quad \forall \underset{\varepsilon > 0}{\exists} \quad \forall 0 < x - x_0 \le \delta \Rightarrow \left| f(x) - g \right| \le \varepsilon$$

$$(H) \quad \forall \underset{(x_n) \subset D \cap (x_0, +\infty)}{\forall} \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = g$$

Tw. Gdy x_0 jest punktem skupienia zbioru $D \cap (-\infty, x_0)$ i zbioru $D \cap (x_0, +\infty)$ to funkcja f ma w punkcie x_0 granicę g (właściwą lub niewłaściwą) $\Leftrightarrow f$ ma w punkcie x_0 granice lewo- i prawostronne i są one równe g.

Symbol o – porównywanie nieskończenie małych

$$f,g:R\supset D\to R$$
, $D\neq\emptyset$, x_0 - punkt skupienia zbioru D ,

Def. Mówimy, że f i g są nieskończenie małe w przejściu granicznym $x \rightarrow x_0$, gdy $\lim_{x \rightarrow x_0} f(x) = 0 \text{ i } \lim_{x \rightarrow x_0} g(x) = 0.$

Def. Piszemy, że f(x) = o(g(x)) przy $x \rightarrow x_0$ jeżeli $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$ (f(x) jest nieskończenie małą wyższego rzędu niż g(x)).

Przykłady

•
$$x^2 = o(x) \text{ gdy } x \to 0 \text{ bo } \lim_{x \to 0} \frac{x^2}{x} = 0$$

•
$$\sin^2 x = o(x)$$
 gdy $x \rightarrow 0$ bo $\lim_{x \rightarrow 0} \frac{\sin^2 x}{x} = 0$

Ciągłość funkcji w punkcie

Def. Funkcję $f: R \supset D \to R$ nazywamy ciągłą w punkcie $x_0 \in D$ jeżeli

- Heine $\forall_{(x_n) \subset D} \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = f(x_0)$
- Cauchy $\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x \in D} |x-x_0| \leq \delta \Rightarrow |f(x)-f(x_0)| \leq \varepsilon$

Uwaga: Punkt $x_0 \in D$ ale nie musi być punktem skupienia zbioru D. Jeżeli $x_0 \in D$ jest punktem izolowanym zbioru D, to z definicji funkcja jest ciągła w punkcie izolowanym. Jeżeli natomiast $x_0 \in D$ jest punktem skupienia zbioru D, to z definicji funkcja jest ciągła w punkcie skupienia $\Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0)$.

Ciągłość punktowa funkcji $f: R \supset D \rightarrow R$

Def. Funkcja $f: R \supset D \to R$ jest **punktowo ciągła** w D, jeżeli jest ciągła w każdym punkcie zbioru

$$D, \text{ czyli} \qquad \begin{array}{ll} \text{(C)} & \forall_{x_1 \in D} \forall_{\varepsilon > 0} \exists_{\delta(x_1, \varepsilon) > 0} \forall_{x_2 \in D} & |x_1 - x_2| \leq \delta \Longrightarrow |f(x_1) - f(x_2)| \leq \varepsilon \\ \text{(H)} & \forall_{x \in D} \forall_{(x_n) \subset D} \lim_{n \to \infty} x_n = x \Longrightarrow \lim_{n \to \infty} f(x_n) = f(x) \end{array}$$

Ciagłość jednostajna

Def. Funkcja $f: R \supset D \rightarrow R$ jest **jednostajnie ciągła** w D gdy

$$\forall_{\varepsilon>0}\exists_{\delta>0}\forall_{x_1\in D}\forall_{x_2\in D}\mid x_1-x_2\mid\leq\delta\Rightarrow\mid f(x_1)-f(x_2)\mid\leq\varepsilon$$

Bezpośrednio z definicji otrzymujemy korzystając z tautologii $\{\exists x \ \forall y : \varphi(x,y)\} \Rightarrow \{\forall y \ \exists x : \varphi(x,y)\}$

Tw. Jeżelifjest jednostajnie ciągła na D, to f jest punktowo ciągła na D.

Problem. Jak praktycznie badać jednostajną ciągłość funkcji?

Użytecznym pojęciem jest tzw. moduł ciągłości funkcji.

Def. Modułem ciągłości funkcji $f: R \supset D \to R \cup \{\infty\}$ nazywamy funkcję

$$\omega_f(\delta) = \omega(f, \delta) = \sup\{ |f(x_1) - f(x_2)| : x_1, x_2 \in D \land |x_1 - x_2| \le \delta \}$$

Tw. Funkcja $f:R\supset D\to Y$ jest jednostajnie ciągła na $D\Leftrightarrow \lim_{\Delta\to 0}\omega(f,\Delta)=0$

Informatyka i Systemy Inteligentne - Analiza - Wykład 3 - dr Bogdan Ćmiel

Dowód .
$$f: R \supset D \rightarrow Y$$
 jest jednostajnie ciągła na D

$$\updownarrow \\ \forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x \in D} \forall_{y \in D} | x - y | \leq \delta \Rightarrow | f(x) - f(y) | \leq \varepsilon$$

$$\updownarrow \\ \forall_{\varepsilon>0} \exists_{\delta>0} \forall_{\Delta \leq \delta} \ \omega(f, \Delta) \leq \varepsilon$$

$$\updownarrow \\ \lim_{\Delta \to 0} \omega(f, \Delta) = 0$$

Przykład. Pokazać, że $f(x) = \sqrt{x}$ jest jednostajnie ciągła na przedziale $D=[0,\infty)$

$$\omega(f, \Delta) = \sup_{x_1, x_2 \in D} \{ |\sqrt{x_1} - \sqrt{x_2}| : |x_1 - x_2| \le \Delta \} = \sup_{x \ge 0} \{ |\sqrt{x + \Delta} - \sqrt{x}| \} = \sup_{x \ge 0} \{ \frac{x + \Delta - x}{\sqrt{x + \Delta} + \sqrt{x}} \} \le \frac{\Delta}{\sqrt{\Delta}} = \sqrt{\Delta}$$

Stąd $\lim_{\Delta\to 0} \omega(f,\Delta) = 0$, więc f jest jednostajnie ciągła na przedziale $[0,\infty)$.

Twierdzenia o funkcjach ciągłych

Tw. (Weierstrassa) Jeżeli funkcja $f: R\supset [a,b] \to R$ jest ciągła na [a,b], to f- ograniczona i

$$\exists_{x_1, x_2 \in [a,b]} : f(x_1) = \sup_{x \in [a,b]} f(x) i \ f(x_2) = \inf_{x \in [a,b]} f(x).$$

Dowód. Ograniczoność od góry. Dla dowodu nie wprost załóżmy, że funkcja f nie jest ograniczona do góry. Istnieje więc ciąg $(x_n) \subset [a,b]$ taki że $\lim_{n \to \infty} f(x_n) = \infty$. Z twierdzenia Bolzano-Weierstrassa wynika, że z ograniczonego ciągu (x_n) można wybrać podciąg (x_{n_k}) zbieżny tzn. $\lim_{k \to \infty} x_{n_k} = c \in [a,b]$. Z ciągłości funkcji f otrzymujemy $\lim_{k \to \infty} f(x_{n_k}) = f(c)$, co jest w sprzeczności z faktem $\lim_{k \to \infty} f(x_{n_k}) = \infty$ (każdy podciąg ciągu rozbieżnego do nieskończoności jest rozbieżny do nieskończoności).

Osiąganie kresu górnego $M=\sup_{x\in[a,b]}f(x)$. Jeśli kres górny M zbioru wartości funkcji nie jest osiągnięty, to jest on punktem skupienia zbioru wartości funkcji. Istnieje więc ciąg $(x_n)\subset[a,b]$ taki że $\lim_{n\to\infty}f(x_n)=M$. Z twierdzenia Bolzano-Weierstrassa istnieje podciąg zbieżny $\lim_{k\to\infty}x_{n_k}=c\in[a,b]$. Z ciągłości funkcji f otrzymujemy $\lim_{k\to\infty}f(x_{n_k})=f(c)=M$.

Informatyka i Systemy Inteligentne - Analiza - Wykład 3 - dr Bogdan Ćmiel

Tw. (Darboux) (o przyjmowaniu wartości pośrednich)

Jeżeli
$$f: R \supset I \to R$$
 - ciągła na przedziale I

$$\forall_{x_1, x_2 \in I} \forall_{y \in R} \ f(x_1) < y < f(x_2) \Rightarrow \exists_{x \in I} \ y = f(x)$$

Dowód Rozważmy pomocniczą funkcję g(x)=f(x)-y. Funkcja g przyjmuje na końcach przedziału $[l_1,p_1]$ gdzie $l_1=\min\{x_1,x_2\}$ i $p_1=\max\{x_1,x_2\}$ wartości różnych znaków, tzn. $g(l_1)g(p_1)<0$. Niech s_1 będzie środkiem przedziału $[l_1,p_1]$. Jeśli $g(s_1)=0$, to twierdzenie zostało udowodnione. W przeciwnym przypadku rozważamy przedział $[l_2,p_2]$ zastępując jeden z końców l_1,p_1 punktem s_1 tak, aby $g(l_2)g(p_2)<0$. Powtarzamy powyższą procedurę konstruując ciąg przedziałów $[l_n,p_n]$ i ich środków s_n . Jeśli dla pewnego n otrzymamy $g(s_n)=0$, to twierdzenie jest udowodnione. Jeśli nie, to skonstruowaliśmy dwa ciągi zbieżne: niemalejący i ograniczony od góry (l_n) oraz nierosnący i ograniczony od dołu (p_n) przy czym $\lim_{n\to\infty}(p_n-l_n)=\lim_{n\to\infty}\frac{p_1-l_1}{2^{n-1}}=0$. Stąd $\lim_{n\to\infty}l_n=\lim_{n\to\infty}p_n=x$. Z tw. o zachowaniu słabej nierówności w granicy otrzymujemy $g^2(x)\leq 0$, więc g(x)=0, co kończy dowód.

Tw. (Cantora) Funkcja $f: R \supset [a,b] \to R$ - ciągła na przedziale domkniętym [a,b] jest jednostajnie ciągła na [a,b]

 \mathbf{Dow} : (nie wprost.) Nieprawda, że f jest jednostajnie ciągła \Leftrightarrow

$$\sim \left[\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x \in [a,b]} \forall_{x' \in [a,b]} \mid x - x' \mid < \delta \Rightarrow \mid f(x) - f(x') \mid < \varepsilon \right] \Leftrightarrow$$

 $\exists_{\varepsilon>0}\forall_{\delta>0}\exists_{x\in[a,b]}\exists_{x'\in[a,b]} \mid x-x'|<\delta \wedge \mid f(x)-f(x')\mid \geq \varepsilon \text{. Dla każdego }\delta \text{, czyli w szczególności dla}$ $\delta = \frac{1}{n} \text{ też istnieją ciągi }(x_n), \ (x_n') \text{ takie, że } \mid x_n-x_n'\mid < \frac{1}{n} \text{ i}\mid f(x_n)-f(x_n')\mid \geq \varepsilon \text{ (istnieje takie }\varepsilon \text{)}.$ Ponieważ (x_n) jest ciągiem w [a,b], więc można z niego wybrać podciąg zbieżny $x_{n_k}\to c$. Z warunku trójkąta mamy $\mid x_{n_k}'-c\mid \leq \mid x_{n_k}'-x_{n_k}\mid +\mid x_{n_k}-c\mid$, skąd wynika, że $x_{n_k}'\to c$. Z ciągłości funkcji f mamy $f(x_{n_k})\to f(c)$ i $f(x_{n_k}')\to f(c)$, więc $\mid f(x_{n_k})-f(x_{n_k}')\mid \to 0$), co przeczy warunkowi $\mid f(x_n)-f(x_n')\mid \geq \varepsilon \ \forall n$

Tw: (o lokalnym zachowaniu znaku)

Jeżeli funkcja $f: R \supset (a,b) \to R$ - ciągła na **przedziale otwartym** (a,b), $x_0 \in (a,b)$ i $f(x_0) > 0$, to istnieje otoczenie punktu x_0 (powiedzmy $K(x_0,\delta)$) takie, że $\forall x \in K(x_0,\delta)$ f(x) > 0.

Dowód. (nie wprost) gdyby w każdym otoczeniu punktu x_0 istniały punkty w których $f(x) \le 0$, to istnieje ciąg tych punktów , zbieżny do x_0 . Z ciągłości funkcji i twierdzenia o zachowaniu słabej nierówności w przejściu granicznym wynika , że $f(x_0) \le 0$, sprzeczność

Informatyka i Systemy Inteligentne – Analiza – Wykład 3 – dr Bogdan Ćmiel

Tw. (o ciągłości funkcji odwrotnej). Jeżeli funkcja $f: R \supset I \to R$ (gdzie I – dowolny przedział) jest ciągła i rosnąca (malejąca), to funkcja odwrotna f^{-1} jest ciągła i rosnąca (malejąca).

Dowód. Niech f będzie ciągła i rosnąca w przedziałe I. Z tw.Darboux wynika że "ciągły obraz przedziału jest przedziałem" J=f[I] jest przedziałem a f jest funkcją różnowartościową. Istnieje więc $f^{-1}: J \rightarrow I$ i f^{-1} jest rosnąca (**dowód nie wprost**). Aby wykazać ciągłość funkcji f^{-1} w punkcie y_0 przedziału J, wystarczy wykazać, że jeśli $y_n \rightarrow y_0$, to $f^{-1}(y_n) = x_n \rightarrow x_0 = f^{-1}(y_0)$. Gdyby ciąg (x_n) nie dążył do granicy x_0 , to nieskończenie wiele wyrazów leżałoby na zewnątrz przedziału $(x_0-\varepsilon, x_0+\varepsilon)$ czyli spełniałoby jedną z nierówności $x_n < x_0-\varepsilon$, $x_n > x_0+\varepsilon$. W pierwszym przypadku $y_n = f(x_n) < f(x_0-\varepsilon) = f(x_0) - \eta_1$ (tu korzystamy z założenia, że f jest rosnąca). W drugim $y_n = f(x_n) > f(x_0+\varepsilon) = f(x_0) + \eta_2$ (η_1 i $\eta_2 > 0$). Wobec tego nieskończenie wiele wyrazów y_n leżałoby na zewnątrz przedziału $(y_0-\eta_1, y_0+\eta_2)$ co przeczy założeniu, ze $y_n \rightarrow y_0$.

Ciągłość złożenia

Tw. Jeżeli f jest ciągła w punkcie x_0 , a g jest ciągła w punkcie $f(x_0)$ to $g \circ f$ (złożenie $f \circ g$) jest ciągła w punkcie x_0 .

Tw. Jeżeli f jest ciągła na zbiorze A i g jest ciągła na zbiorze B i $f[A] \subset B$ to $g \circ f$ jest ciągła na zbiorze A.

Tw. Jeżeli f jest jednostajnie ciągła na zbiorze A i g jest jednostajnie ciągła na zbiorze B ($f[A] \subset B$), to $g \circ f$ jest jednostajnie ciągła na zbiorze A.

Dowód. Powyższe twierdzenia są natychmiastową konsekwencją definicji złożenia funkcji i definicji (odpowiednio punktowej i jednostajnej) ciągłości funkcji.

Ciągłość sumy, różnicy, iloczynu i ilorazu funkcji rzeczywistych zmiennej rzeczywistej

$$f: R \supset D \to R$$
; $g: R \supset D \to R$

Tw Jeżeli f i g są ciągłe w punkcie $x_0 \in D$, to f+g, f-g, $f \cdot g$, $\frac{f}{g}(g(x_0) \neq 0)$ są ciągłe w punkcie x_0 .

Jeżeli f i g są ciągłe na zbiorze D , to f+g , f-g , $f\cdot g$, $\frac{f}{g}$ ($\forall_{x\in D}$ $g(x)\neq 0$) są ciągłe na zbiorze D.

Jeżeli f i g są jednostajnie ciągłe na zbiorze D to, to f+g, f-g są jednostajnie ciągłe na zbiorze D (funkcje $f\cdot g$ i $\frac{f}{g}$ nie musza być jednostajnie ciągłe)

Wnioski

- 1º Wielomian jest funkcją ciągłą, bo jest on sumą funkcji ciągłych oraz iloczynów funkcji ciągłych.
- 2º Funkcja wymierna jest ciągła, bo jest ilorazem dwóch ciągłych wielomianów. Dowodzi się, że
 - 3° Funkcja potęgowa jest ciągła tzn. $\forall x_0 \in D \quad \lim_{x \to x_0} x^{\alpha} = x_0^{\alpha} \quad Z$ uwagi na równość $x^{\alpha} = x_0^{\alpha} \left(\frac{x}{x_0}\right)^{\alpha}$ wystarczy udowodnić ciągłość w punkcie x_0 =1 tzn. $\lim_{x \to 1} x^{\alpha} = 1$ (**ćwiczenia**)
 - 4º Funkcja wykładnicza jest ciągła $\forall x_0 \in D \quad \lim_{x \to x_0} a^x = a^{x_0}$. Z uwagi na równość $a^x = a^{x_0} a^{x-x_0}$ wystarczy udowodnić ciągłość w punkcie $x_0=0$ (**ćwiczenia**)
 - 5° Funkcje trygonometryczne są ciągłe np $\forall x_0 \quad \lim_{x \to x_0} \sin x = \sin x_0$ (**ćwiczenia**)

Wnioski.

- Funkcje logarytmiczne i cyklometryczne są ciągłe (bo są odwrotne do funkcji ciągłych)
- Funkcje elementarne, czyli wszystkie powyższe oraz takie, które można otrzymać z
 poprzednich przez skończoną ilość działań arytmetycznych oraz złożeń, są ciągłe w swoich
 naturalnych dziedzinach.

Nieciągłości

- f ma w x_0 nieciągłość usuwalną istnieje granica w x_0 , ale $\lim_{x \to x_0} f(x) \neq f(x_0)$
- f ma w x_0 nieciągłość I-go rodzaju istnieją granice jednostronne skończone i są one różne $\lim_{x\to x_0^-} f(x) \neq \lim_{x\to x_0^+} f(x)$
- f ma w x_0 nieciągłość II-go rodzaju pozostałe przypadki.

Nieciągłości funkcji monotonicznych.

Tw. Jeżeli $f:(a,b)\to R$ jest monotoniczna, to $\forall_{x_0\in(a,b)}$ istnieją $\lim_{x\to x_0^-} f(x_0) = f(x_0^-)$ i $\lim_{x\to x_0^+} f(x_0) = f(x_0^+)$. Funkcja monotoniczna może mieć więc jedynie punkt nieciągłości I-go rodzaju.

Dow. (dla funkcji niemalejącej). Niech $x_0 \in (a,b)$ będzie punktem nieciągłości. Z monotoniczności $x < x_0 \Rightarrow f(x) \le f(x_0)$ zbiór $\{f(x) : a < x < x_0\}$ jest ograniczonym od góry przez $f(x_0)$ podzbiorem zbioru liczb R. Z zasady ciągłości R istnieje $A = \sup_{a < x < x_0} f(x)$. Naśladując dowód twierdzenia "ciąg monotoniczny i ograniczony jest zbieżny" pokazujemy, że $A = \lim_{x \to x_0^-} f(x)$. Analogicznie $B = \inf_{x > x_0} f(x) = \lim_{x \to x_0^+} f(x)$.

Tw. Zbiór punktów nieciągłości funkcji monotonicznej jest co najwyżej przeliczalny.

Dow. (dla funkcji niemalejącej) $f:(a,b)\to R$. Niech x_0 będzie punktem nieciągłości (I-go rodzaju) Z monotoniczności: $f(x_0^-) < f(x_0^+)$. W przedziale $\left(f(x_0^-), f(x_0^+)\right)$ wybieramy liczbę wymierną $r(x_0)$. Postępując tak samo dla każdego punktu nieciągłości określamy funkcję r, która odwzorowuje zbiór punktów nieciągłości w zbiór liczb wymiernych. Z monotoniczności: funkcja r jest ściśle rosnąca, a więc różnowartościowa. Zbiór punktów nieciągłości funkcji monotonicznej jest równoliczny z pewnym podzbiorem przeliczalnego zbioru liczb wymiernych, czyli jest co najwyżej przeliczalny.

Uzupełnienia

• Ciągłość funkcji wykładniczej .

Należy pokazać, że $\forall x_0 \lim_{x \to x_0} a^x = a^{x_0}$. Z uwagi na równość $a^x = a^{x_0} a^{x-x_0}$ wystarczy pokazać ciągłość funkcji wykładniczej w punkcie 0, czyli $\lim_{x \to 0} a^x = a^0 = 1$. Korzystając z definicji Heinego granicy funkcji należy pokazać, że $\forall (x_n) \lim_{n \to \infty} x_n = 0 \Rightarrow \lim_{n \to \infty} a^{x_n} = 1$.

Wiadomo, że
$$\lim_{n\to\infty} \sqrt[n]{a} = 1$$
 i $\lim_{n\to\infty} \frac{1}{\sqrt[n]{a}} = 1$ stąd

$$\forall \varepsilon \ \exists n_0 \ \forall k \geq n_0 \ 1 - \varepsilon \leq a^{\frac{1}{k}} \leq 1 + \varepsilon \ \land 1 - \varepsilon \leq a^{\frac{-1}{k}} \leq 1 + \varepsilon$$

Z faktu $\lim_{n\to\infty}x_n=0$ wynika, że $\forall k\ \exists m_0\ \forall n\geq m_0\ \frac{-1}{k}\leq x_n\leq \frac{1}{k}$. Wobec tego $a^{\frac{-1}{k}}\leq a^{x_n}\leq a^{\frac{1}{k}}$, gdy a>1 i $a^{\frac{1}{k}}\leq a^{x_n}\leq a^{\frac{-1}{k}}$ gdy a<1. Stąd biorąc $N=\max\{\ n_0\ ,m_0\}$ mamy $\forall \varepsilon\,\exists N\,\forall n\geq N\ 1-\varepsilon\leq a^{x_n}\leq 1+\varepsilon$, czyli $\lim_{n\to\infty}a^{x_n}=1$.

• Ciągłość funkcji potęgowej.

Należy pokazać, że $\forall x_0 \in D \lim_{x \to x_0} x^\alpha = x_0^\alpha$. Z uwagi na równość $x^\alpha = x_0^\alpha \left(\frac{x}{x_0}\right)^\alpha$ wystarczy pokazać ciągłość funkcji potęgowej w punkcie 1, czyli $\lim_{x \to 1} x^\alpha = 1^\alpha = 1$. Korzystając z definicji Heinego granicy funkcji należy pokazać, że $\forall (x_n) \lim_{n \to \infty} x_n = 1 \Rightarrow \lim_{n \to \infty} x_n^\alpha = 1$.

Niech $k \in N$ będzie takie, że $-k \le \alpha \le k$. Z tw. o arytmetyce granic wiadomo, że $\lim_{n \to \infty} x_n = 1 \Rightarrow \lim_{n \to \infty} x_n^k = 1$ i $\lim_{n \to \infty} x_n^{-k} = 1$. Wobec tego

$$\forall \varepsilon \ \exists n_0 \ \forall n \geq n_0 \ 1 - \varepsilon \leq x_n^k \leq 1 + \varepsilon \ \land 1 - \varepsilon \leq x_n^{-k} \leq 1 + \varepsilon \ .$$

Rozważając wszystkie warianty związane z monotonicznością funkcji potęgowej i położeniem x_n względem 1, mamy nierówność $\min\{x_n^k,x_n^{-k}\}\leq x_n^\alpha\leq \max\{x_n^k,x_n^{-k}\}$, z której wynika, że $\forall\,\varepsilon\,\,\exists\,n_0\,\,\forall\,n\geq n_0\,\,\,1-\varepsilon\leq x_n^\alpha\leq 1+\varepsilon$, czyli $\lim_{n\to\infty}x_n^\alpha=1$, co dowodzi ciągłości funkcji potęgowej w punkcie 1.

• Ciągłość funkcji sinus.

Należy pokazać, że $\forall x_0 \lim_{x \to x_0} \sin x = \sin x_0$. Z tożsamości $\sin x - \sin x_0 = 2\cos\frac{x + x_0}{2}\sin\frac{x - x_0}{2}$, ograniczoności funkcji cosinus i nierówności $|\sin x| \le |x|$ mamy $|\sin x - \sin x_0| \le |x - x_0|$, z której łatwo wynika ciągłość funkcji sinus.

Podobnie dowodzi się ciągłości funkcji cosinus. Funkcje tangens i cotangens jako ilorazy funkcji ciągłych są ciągłe w swoich dziedzinach.