6 92 80 34 23 // 6 54 75 60 37

♀ Yde, Ecole primaire CAMP BOVE

? Dla, Ecole Bilingue la Rousse ,PK8

We don't wait for the moment, we generate it...

ISE MATHS: EPREUVE ZERO

Les parties A et B sont indépendantes. Un accent particulier sera accordé à 1.4. Montrer que la formule suivante définit un produit scalaire sur $\mathbb{R}[X]$ la qualité de la rédaction et non au nombre d'exercices traités.

Partie A: Algèbre

Les polynômes de Hermite

On considère la fonction f définie de \mathbb{R} dans \mathbb{R} par :

$$\forall x \in \mathbb{R}, f(x) = e^{-x^2}$$

Pour tout entier n on pose, $H_n = \frac{(-1)^n}{2^n} x^n f^{(n)}$ où $f^{(n)}$ désigne la dérivée nième de f.

Première partie

- 1.1. Pour tout entier naturel n, montrer que la fonction $t \to t^n e^{-t^2}$ est intégrable dans \mathbb{R} On pose alors $I_n = \int_{-\infty}^{+\infty} t^n e^{-t^2} dt$ pour tout n dans \mathbb{N} . On admet que I_0 vaut $\sqrt{\pi}$. Que vaut I_1 ?
- 1.2. Pour tout n dans N, montrer la relation $I_{n+2} = \frac{n+1}{2} \times I_n$. On s'appuiera 1.2. Montrer que pour tout entier naturel n, la fonction H_n est sur une intégration par parties soigneusement menée. En déduire une expression de I_n , pour tout n dans \mathbb{N} . On distinguera les indices pairs et impairs et on exprimera le résultat final à l'aide de factoriels lorsque ça s'impose.
- 1.3. Montrer que pour tout polynôme P dans $\mathbb{R}[X]$, la fonction $P \times f$ est intégrable sur \mathbb{R} .

$$\forall (P,Q) \in \mathbb{R}[X], \quad (P|Q) = \int_{-\infty}^{+\infty} P(t)Q(t)e^{-t^2}dt$$

La norme euclidienne associée à ce produit scalaire sera notée ||||

- 1.5. Pour tout (i, j) dans \mathbb{N}^2 , calculer le produit scalaire $(X^i|X^j)$?
- 1.6. A l'aide du procédé de Gram-Schmidt, trouver une base orthogonale de $\mathbb{R}_3[X]$ pour ce produit scalaire.

Deuxième partie 1.1. Pour tout entier naturel p, montrer l'identité suivante

$$\forall x \in \mathbb{R}, f^{(p+2)}(x) + 2xf^{(p+1)}(x) + 2(p+1)f^{(p)}(x) = 0$$

En déduire l'égalité $2H_{p+2}(x) - 2xH_{p+1}(x) + (p+1)H_p(x) = 0$ pour tout $p \in \mathbb{N}$ et pour tout $x \in \mathbb{R}$

- polynomiale. Montrer de plus que pour tout entier naturel n, le polynôme H_n est unitaire et de degré n.
- 1.3. Calculer H_k pour tout indice k compris entre 0 et 3. Comparer ces polynômes avec ceux trouvés à la question 1.6.
- 1.4. Pour tout entier k strictement positif, montrer que H_k et H_0 sont orthogonaux.

- 1.5. Pour tout p dans \mathbb{N}^* , prouver l'égalité $H_p' = pH_{p-1}$.
- 1.6. Soient m et n deux entiers strictement positifs. a. Montrer l'égalité $(H_n|H_m) = \frac{m}{2}(H_{n-1}|H_{m-1})$. b. En déduire que la famille $(H_n)_{n\in\mathbb{N}}$ est une famille orthogonale de $\mathbb{R}[X]$. c. Calculer la norme de H_n pour tout n dans \mathbb{N} .
- 1.7. Soit un entier p strictement positif. Montrer que le polynôme H_p appartient à l'orthogonal de $\mathbb{R}_{p-1}[X]$.
- 1.8. Soit un entier p strictement positif. On veut montrer que le polynôme H_p est scindé sur \mathbb{R} , à racines simples. Notons r le nombre de racines réelles de H_p ayant un ordre de multiplicité impair. a. En utilisant l'égalité $(H_k|H_p)=0$, montrer que r n'est pas nul. On suppose maintenant que r est strictement inférieur à p. On note $x_1,...,x_r$ les racines réelles de H_p ayant un ordre de multiplicité impair, notée dans l'ordre croissant. On pose alors

$$Q = \prod_{i=1}^{r} (X - x_i)$$

- b. Montrer que la fonction $Q \times H_p$ est de signe constant sur \mathbb{R} . c. Montrer que le produit scalaire $(Q|H_p)$ est nul. d. Conclure.
- 1.9. Soit $p\in\mathbb{N}.$ A l'aide de la première identité obtenue en 1.1, montrer l'égalité

$$H_p'' - 2xH_p' + 2pH_p = 0$$

1.10. Soit $p \in \mathbb{N}$. On veut montrer que le seul polynôme Q unitaire vérifiant l'égalité

$$Q'' - 2xQ' + 2pQ = 0$$

est le polynôme H_p . On considère donc un tel polynôme Q.

a. Montrer que Q est de degré p. b. Montrer que le polynôme $R=H_p-Q$ vérifie l'égalité R''-2xR'+2pR=0 et que son degré est différent de p. c. Conclure

Troisième partie

Pour le reste du problème, on fixe un entier n supérieur ou égal à 2. On note U le sous-ensemble de \mathbb{R}^n défini par :

$$U = \{(x_1, ..., x_n) \in \mathbb{R}^n, x_1 < x_2 < ... < x_n\}$$

On définit sur l'ensemble U la fonction F par la formule suivante

$$F(x_1, ..., x_n) = \sum_{i=1}^{n} x_i^2 - 2 \sum_{1 \le i < j \le n} (x_i - x_j)$$

Cette fonction est de classe C^{∞} sur l'ouvert U. Ses dérivées partielles d'ordre 1 sont notées $\frac{\partial F}{\partial x_1},...,\frac{\partial F}{\partial x_n}$.

Dans cette partie, on montre que la fonction F possède un unique point critique et que celui-ci a pour coordonnées les n racines du polynôme H_n . 1.11.1. Justifier que U est un ouvert de \mathbb{R}^n .

1.11.2. On fixe un élément $a = (a_1, ..., a_n)$ de U et on considère le polynôme

$$P(X) = (X - a_1)(X - a_2)...(X - a_n)$$

a. Pour tout réel x distinct des nombres $a_1, ..., a_n$, montrer l'égalité suivante

$$\frac{P'(x)}{P(x)} = \sum_{i=1}^{n} \frac{1}{x - a_i}.$$

b. Pour tout indice i dans $\{1,...,n\}$, exprimer la limite de $\frac{P'(x)}{P(x)} - \frac{1}{x-a_i}$ quand x tend vers a_i , en s'appuyant sur la formule précédente. c. Trouver une autre expression cette limite précédente en s'appuyant cette fois sur un développement limité. d. Déduire des calculs précédents la formule suivante

$$\forall i \in \{1, ..., n\}, \quad \frac{1}{a_i - a_1} + ... + \frac{1}{a_i - a_{i-1}} + \frac{1}{a_i - a_{i+1}} + ... + \frac{1}{a_i - a_n} = 2P'(a_i)$$

- 1.11.3. Exprimer les dérivées partielles de la fonction F.
- 1.11.4. Montrer que si a est un point critique de F, alors ses coordonnées $a_1, ..., a_n$ sont racines de 2XP'' P'. En déduire que le polynôme 2XP'' P' est proportionnel à P et préciser le coefficient de proportionalité.
- 1.11.5. Montrer finalement que la fonction F possède exactement un point critique a et que les coordonnées de ce point critique sont les racines du polynôme H_n .

Quatrième partie

Dans cette partie, on explore le concept de fonction convexe. On rappelle qu'une partie convexe de \mathbb{R}^n est une partie C telle que

$$\forall (x, y, t) \in C \times C \times [0, 1], \quad tx + (1 - t)y \in C$$

On rappelle aussi que les parties convexes de $\mathbb R$ sont exactement les intervalles.

Soit C une partie convexe de \mathbb{R}^n , soit $f: C \to \mathbb{R}$ une fonction. Dire que ϕ est une fonction convexe sur C signifie que

$$\forall (x, y, t) \in C \times C \times [0, 1], \quad f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$$

- IV.1. Soit ϕ une fonction de classe C^2 sur un intervalle I de \mathbb{R} , à valeurs réelles. On suppose que la fonction ϕ'' est positive. Montrer que la fonction ϕ est convexe.
- IV.2. Montrer que les fonctions $t \to \ln(t)$ et $t \to t^2$ sont convexes sur des intervalles à préciser.
- IV.3. Montrer que l'ensemble U de la partie III est une partie convexe de \mathbb{R}^n .
- IV.4. Montrer que la fonction F de la partie III est convexe sur U. Pour la fin de cette partie, on note $a=(a_1,...,a_n)$ le point critique de F. On fixe un élément $x=(x_1,...,x_n)$ de U et on définit une fonction ϕ de [0,1] dans $\mathbb R$ par la formule

$$\forall t \in [0,1], \phi(t) = F(tx + (1-t)a)$$

- IV.5. Pour tout $t \in [0,1]$, prouver la majoration $\frac{\phi(t)-\phi(0)}{t} \leq f(x) f(a)$.
- IV.6. Exprimer la dérivée de ϕ sur [0,1] et en déduire le signe de $\phi'(0)$.
- IV.7. Montrer finalement que F admet un minimum en a.

Cinquième partie

Dans cette partie, on calcule la valeur du minimum F(a).

V.1. Exprimer le minimum de la fonction F dans le cas où n vaut 2.

- V.2. On suppose maintenant que n est supérieur ou égal à 3. On note $y_1, ..., y_{n-1}$ les racines du polynôme H_{n-1} et $z_1, ..., z_{n-1}$ les racines du polynôme H_{n-2} . On rappelle la relation $2H_n 2xH_{n-1} + (n+1)H_{n-2}$ obtenue en 1.1.
- a. Démontrer les égalités suivantes

$$|\prod_{i=1}^{2n} H_n(y_i(v))| = (\frac{2n}{2^{n-1}})^2 |\prod_{i=1}^{n-1} H_{n-2}(y_i(v))| \text{ et } |\prod_{i=1}^{n-1} H_{n-1}(z_i(v))| = (\frac{2^{n-1}}{2^{n-2}})^{n-1} |\prod_{i=1}^{n-2} H_{n-2}(y_i(v))| = (\frac{2^{n-1}}{2^{n-2}})^{n-1} |\prod_{i=1}^{n-2} H_{n-2}(y_i(v))|$$

En déduire l'égalité

$$\left|\prod_{i=1}^{n} H_n(y_i(v))\right| = \frac{22^n 3^3 (n-1)^{n-1}}{2^{n(n-1)/2}}$$

b. Pour tout $i \in \{1, ..., n\}$, montrer l'égalité $|H_n(a_i)| = |\prod_{j \neq i}^n (a_i - a_j)|$. On note p_n le produit $\prod_{1 \leq i < j \leq n} (a_j - a_i)$. Exprimer $(p_n)^2$ en fonction du produit $\prod_{i=1}^n H'_n(a_i)$. c. A l'aide de l'égalité $H'_n = nH_{n-1}$ montrer l'égalité $(p_n)^2 = \frac{22^n 3^3 (n-1)^{n-1}}{2^{n(n-1)/2}}$. d. Déterminer les coefficients devant x^{i-1} et x^{n-i} dans le développement du polynôme H_n . En déduire la valeur de $\sum_{i=1}^n a_i$, de $\sum_{i=1}^n a_i^2$ puis de $\sum_{1 \leq i < j \leq n} (a_i - a_j)$. e. En déduire la valeur du minimum de F sur U.

Partie B: Analyse

Etude d'une suite récurrente en fonction de sa valeur initiale

Dans ce problème, on considère l'ensemble S des suites $(u_n)_{n\in\mathbb{N}}$ à valeurs réelles vérifiant la relation

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{exp(u_n)}{n+1}$$

Pour tout nombre réelle x on note $(u_n(x))_{n\in\mathbb{N}}$ ou $(u_n(x))_n$ la suite appartenant à S et dont le premier terme vaut x.

La notation $u_n(x)$ désigne le terme d'indice n de cette suite. Ainsi $u_0(x) = x$, $u_1(x) = exp(x)$ et $u_2 = \frac{1}{2}exp(exp(x))$.

Si x est fixé sans ambiguïté on pourra écrire plus rapidement u_n au lieu de $u_n(x)$.

I. Etude de la convergence de $(u_n(x))_n \in S$

- 1.1. Démontrer que toute suite appartenant à S est strictement positive à partir du rang 1.
- 1.2. Soit $(u_n)_n$ une suite appartenant à S. a) On suppose qu'il existe un rang $N \geq 2$ pour le quel $u_N \leq 1$. Montrer que pour tout $n \geq N+1$, $u_n \leq \frac{1}{n}$. En déduire que $(u_n)_n$ converge vers 0. b) Réciproquement, montrer que si $(u_n)_n \in S$ converge vers 0 alors il existe un entier $N \geq 2$ tel que $u_N \leq 1$. On pourra utiliser la définition : $(u_n)_n$ converge vers 0 si $\forall \epsilon > 0$, $\exists N \in \mathbb{N} : n \geq N \Rightarrow |u_n| \leq \epsilon$.
- 1.3. Soit $(u_n)_n$ une suite appartenant à S. On suppose que $(u_n)_n$ ne converge pas vers 0. a) Montrer que pour tout $n \in \mathbb{N}$, $u_n \ge \ln(n)$. b) En déduire la nature de $(u_n)_n$ et sa limite
- 1.4. On note l'ensemble des x réels pour lesquels $(u_n(x))$ converge vers 0 et l'ensemble des réels pour lesquels $(u_n(x))$ diverge vers $+\infty$. En déduire des deux questions précédentes des propriétés ensemblistes reliant E_0 , E_∞ et \mathbb{R} .

II. Etude des ensembles E_0 et E_{∞}

On note, pour tout entier

$$\forall n \in \mathbb{N}, \quad \phi_n : \mathbb{R} \to \mathbb{R}^+, x \mapsto \frac{exp(x)}{n+4}$$

On donne les valeurs numériques : $ln(2) \approx 1.42, ln(3) \approx 1.09,$ $ln(1.109) \approx 1.101, ln(1.35) \approx 1.36$ et $e \approx 7.38, 7.39$].

- 1.11. Démontrer que $0 \in E_0$.
- 1.11.2. a) Montrer par récurrence sur $n \in \mathbb{N}$ que la composée de fonctions strictement croissantes de \mathbb{R} dans \mathbb{R} est une fonction strictement croissante. b) Exprimer, pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, (x) comme la valeur en x de la composée de n fonctions strictement croissantes. c) En déduire $x \in E_0$ si et alors l'intervalle [-1,x] est inclus dans E_0 .
- 1.11.3. On note $f: x \in \mathbb{R} \mapsto (x+1)$. a) Montrer, en étudiant les variations de f que pour tout $x \geq 2$, $f(x) \geq 0$. b) Soit $(u_n)_n$ une suite appartenant à S. On suppose qu'il existe un rang $N \geq 1$ tel que $u_N \geq N + 1$. Montrer que pour tout $n \geq N + 1$, $u_{n+1} \geq n + 1$... En déduire que u_0 appartient à E_{∞} . c) Montrer que $x \in E_{\infty}$.

- 1.11.4. On suppose que $x \in E_{\infty}$. Montrer que $|x| + c \in E_{\infty}$.
- 1.11.5. Compte tenu des résultats établis dans les deux premières parties quelles formes conjecturez-vous pour les ensembles E_0 et E_{∞} . III.

Frontière entre E_0 et E_{∞}

- 1.11.1. Montrer que pour tout $n \in \mathbb{N}$ établir une bijection de \mathbb{R} sur \mathbb{R}^+ . On pose ϕ_n , la bijection réciproque.
- 1.11.2. Expliciter ϕ_n , la bijection réciproque.
- 1.11.3. Soit n > 2 un entier fixé. On pose $c_n = \phi_n \circ \phi_{n-1} \circ ... \circ \phi_1 \circ \phi_0(1)$ (1) et on admet que la suite $(c_n)_{n \in \mathbb{N}}$ est bien définie. a) Que vaut $u_n(c_n)$? Que peut-on en déduire concernant l'appartenance de c_n à E_0 ou E_∞ . b) En exploitant les résultats de la partie 1.1. montrer que $c_n \leq 1$. d) Montrer l'équivalence : $c_n \leq \frac{1}{n} \Leftrightarrow \ln(n+1) \leq 1$. d) En déduire que $(c_n)_{n \in \mathbb{N}}$ est une suite convergente. On pose $c = \lim_{n \to +\infty} c_n$.
- 1.11.5. Montrer que si $x \in E_0$ alors nécessairement $x \le c$.
- 1.11.6. Montrer que $c \in E_0$, puis expliciter E_0 et E_{∞} en fonction de c.

Valeurs infiniment répétées de certaines suites d'entiers

On considère une suite $(u_n)_{n\in\mathbb{N}}$ à valeur dans $\{-1,1\}$ et on définit la suite $(S_n)_{n\in\mathbb{N}}$ par

$$S_n = \sum_{k=1}^n u_k$$

On dira qu'un entier k est une valeur infiniment répétée de la suite $(S_n)_n$ si et seulement si l'ensemble $\{n \in \mathbb{N} | S_n = k\}$ est infini.

- 1. Montrer que $(S_n)_n$ est à valeur dans \mathbb{Z} .
- 2. On suppose dans cette question que les premiers termes de $(S_n)_n$ sont 1, 1, 1, -1, 1, -1, 1, -1, 1, -1. Calculer les 11 premiers termes de la suite $(S_n)_n$.
- 3. On suppose dans cette question que $(u_n)_n = (1, -1)^n$. Calculer la suite $(S_n)_n$. Quelles sont ses valeurs infiniment répétées?
- 4. Montrer que l'application $\phi : \{-1,1\}^{\mathbb{N}} \to \mathbb{Z}^{\mathbb{N}}$ défini par $\phi((u_n)_{n \in \mathbb{N}}) = (S_n)_{n \in \mathbb{N}}$ est injective. Est-elle surjective?

5. Soit $p \le q$ deux entiers naturels. Posons $i \in \{1,...,n\}$ et S_q supposons $a < b, c \in [a,b]$. a) Soit $P \le Q$,

 $min(p,c) + \lfloor \frac{P}{c} \rfloor (v-c) \leq S_Q \leq b + \lfloor \frac{Q}{c} \rfloor (v-c)$. Justifier l'existence de n_1 . b) Montrer que $S_{n_1} = c$. c) Justifier que $n_p \leq n_q$. Formuler avec des mots le résultat que l'on vient de prouver. Quel théorème d'analyse ce résultat vous rappelle t'il? d) Si l'on retire l'hypothèse a < b le résultat établi ci-dessus est-il encore vrai?

6. Soit a et b deux entiers relatifs tels que a < b et $c \in [a, b]$. a) Montrer l'équivalence c n'est pas une valeur infiniment répétée de $(S_n)_n \Leftrightarrow \exists K \in \mathbb{N}$:

$$\forall n \geq K, S_n \neq c$$

- b) Montrer par l'absurde que si a et b sont deux valeurs infiniment répétées de $(S_n)_n$, en est aussi une.
- 7. On dit qu'une suite $(a_n)_n$ tend vers $+\infty$ si et seulement si

$$\forall M \in \mathbb{R}, \exists N \in \mathbb{N} : n \ge N \Rightarrow a_n \ge M$$

- a) Que dire sur les valeurs infiniment répétées de $(S_n)_n$ si S_n tend vers $+\infty$? Justifier votre réponse.
- b) Traduire avec les quantificateurs que $(S_n)_n$ ne tend pas vers $+\infty$.
- c) On suppose qu'il existe $A \in \mathbb{R}$ tel que l'ensemble $\{n \in \mathbb{N} | S_n \in [-A, A]\}$ est infini. En déduire que $(S_n)_n$ a une valeur infiniment répétée.