І.4. Структура информации

І.4.1. Зачем структурировать информацию?

Давайте сравним четыре информационных сообщения.

Первое:

«Для того, чтобы добраться до села Васино, нужно сначала долететь на самолете до Ивановска. Затем на электричке доехать до Ореховска. Там на пароме переправиться через реку Слоновую в поселок Ольховка, и оттуда ехать в Васино на попутной машине».

Второе:

Как ехать в Васино?

- 1) На самолете до Ивановска.
- 2) На электричке до Ореховска.
- 3) На пароме через р. Слоновую в пос. Ольховка.
- 4) На попутной машине до с. Васино.

Третье:

Откуда	Куда	Транспорт
Москва	Ивановск	самолет
Ивановск	Ореховск	электричка
Ореховск	пос. Ольховка	паром (р. Слоновая)
пос. Ольховка	с. Васино	попутная машина

Четвертое:

Можно считать, что все эти (такие разные по форме!) сообщения содержат одну и ту же информации. Какие из них проще воспринимать? Очевидно, что «вытащить» полезную информацию из простого текста (первое сообщение) сложнее всего. Во втором случае мы сразу видим все этапы поездки. Третье сообщение (таблицу) и четвертое (схему) можно понять сразу, с первого взгляда. Второй, третий и четвертый варианты лучше и быстрее воспринимаются, потому что в них выделена *структура* информации, в которой самое главное — этапы поездки в Васино.

Структура (лат. structura — строение) – это внутреннее устройство чего-либо.

Почему книгу разбивают на главы и разделы, а не пишут сплошной текст? Зачем в тексте выделяют абзацы? Прежде всего, для того, чтобы подчеркнуть основные мысли — каждая глава, раздел, абзац содержат определенную идею. При таком выделении структуры улучшается передача информации от автора к читателю.

Кроме того, есть еще и другая причина – облегчить **поиск** нужной информации. В книгах чаще всего есть оглавление, позволяющее быстро найти нужный раздел. Слова в словарях всегда расставлены в алфавитном порядке (представьте себе, что было бы, если бы они были расположены произвольно!). В больших книгах используют *индексы* – списки основных терминов с указанием страниц, на которых они встречаются.

Словарь:	Индекс:
автомат – automaton	Α
автор – author	аксиома 45
адрес – address	алгоритм 30, 78
алгебра – <i>algebra</i>	архиватор 125
алгоритм – algorithm	Б
архив – <i>archive</i>	бит 5, 15, 25, 43
архитектура – architecture	брандмауэр 112
	автомат — automaton автор — author адрес — address алгебра — algebra алгоритм — algorithm архив — archive

Структурирование — это выделение важных элементов в информационных сообщениях и установление связей между ними. Цели структурирования — облегчение восприятия и поиска информации, выявление закономерностей.

І.4.2. Простые структуры

Простейшая структура — это **множество**, то есть, некоторый набор элементов. Чтобы определить множество, мы должны перечислить все его элементы (например, множество, состоящее из Васи, Пети и Коли) или определить характерный признак, по которому элементы включаются в это множество (множество драконов с пятью зелеными хвостами).

Множество может состоять из конечного числа элементов (множество букв русского алфавита), бесконечного числа элементов (множество натуральных чисел) или вообще быть пустым (множество слонов, живущих на Северном полюсе). В документах конечное множество часто оформляют в виде маркированного списка, например:

- процессор;
- память;
- устройство ввода;
- устройства вывода.

В таком списке порядок элементов не важен, от перестановки элементов множество не меняется.

Если множество состоит из конечного числа элементов и его элементы должны быть расположены в строго определенном порядке, мы получаем **линейный список**. Список обычно упорядочен (отсортирован) по какому-то правилу, например, по алфавиту, по важности, по последовательности действий и т.д. В тексте он оформляется как нумерованный список, например:

- 1) надеть носки;
- 2) надеть ботинки;
- 3) выйти из дома.

Переставить местами элементы такого списка нельзя (это будет уже другой список). Линейный список может быть представлен в виде цепочки связанных элементов:

Список можно задать перечислением элементов, с первого до последнего:

(надеть носки, надеть ботинки, выйти из дома)

Теперь предположим, что нам нужно добавлять и удалять элементы в линейном списке. Знакомый вам пример — это *очередь* в кассу в магазине. Действительно, очередь — это цепочка, в которой элементы нельзя переставлять местами (если так случается, то кто-то лезет без очереди).

Очередь — это линейный список, в котором элементы добавляются с одного конца, а удаляются с другого («первым пришел — первым ушел» 13).

1

¹³ Англ. FIFO = First In – First Out.

Очередь можно представить в виде трубы, с одного конца которой добавляются шарики, а с другого — вынимаются. Трамваи, стоящие на перекрестке, — это тоже пример очереди, они не могут обогнать друг друга.

Возможен и другой вариант, когда элементы добавляются и удаляются с одного и того же конца списка. Это значит, что тот, кто пришел последним, уйдет первым. Такая структура называется **стек**. Например, стопка с книгами или автоматный магазин:

Во всех этих примерах для того, чтобы добраться до нужного объекта, нам нужно сначала удалить все те, что расположены выше него.

Стек — это линейный список, в котором элементы добавляются и удаляются только с одного конца $(«последний пришел — первым ушел» <math>^{14})$.

Более общий случай – это список, в котором добавление и удаление элементов разрешается с обоих концов. Такая структура называется **дек.**

Еще одна знакомая вам структура — **таблица**. С помощью таблиц устанавливается связь между несколькими элементами. Например, в следующей таблице элементы в каждой строке связаны между собой — это свойства некоторого объекта (человека):

Фамилия	Имя	Рост, см	Вес, кг	Год рождения
Иванов	Иван	175	67	1996
Петров	Петр	164	70	1998
Сидоров	Сидор	168	63	2000

Именно так хранится информация в базах данных: строка таблицы, содержащая информацию об одном объекте, называется *записью*, а столбец (название свойства) – *полем*.

Возможен и другой вариант таблицы, когда роли строк и столбцов меняются. В первом столбце записываются названия свойств, а данные в каждом из следующих столбцов описывают свойства какого-то объекта. Например, вот таблица с характеристиками разных марок автомашин:

Марка	Лада Приора	Лада Калина	BA3 2110	BA3 21099
Мощность, л.с.	98	89	89	81
Максимальная скорость, км/ч	183	165	187	167,5
Время разгона до 100 км/ч, с	12	12,5	12	13,5

В математике и программировании таблицы обычно называют матрицами.

І.4.3. Иерархия (дерево)

Линейных списков и таблиц иногда недостаточно для того, чтобы представить все связи между элементами. Например, в некоторой фирме есть директор, ему подчиняются главный инженер и главный бухгалтер, у каждого из них есть свои подчиненные. Если мы захотим нарисовать схему управления этой фирмы, она получится многоуровневой.

_

¹⁴ Англ. LIFO = Last In – First Out.

Такая структура, в которой одни элементы «подчиняются» другим, называется *иерархия* (от древнегреческого iєр α р χ (α – «священное правление»). В информатике иерархию называют **деревом**. Дело в том, что если перевернуть эту схему вверх ногами, она становится похожа на дерево (точнее, на куст, см. рисунок справа). Несколько деревьев образуют **лес**.

Дерево состоит из узлов и связей между ними (они называются дугами). Самый первый узел, расположенный на верхнем уровне (в него не входит ни одна стрелка-дуга) — это корень дерева. Конечные узлы, из которых не выходит ни одна дуга, называются листьями. Все остальные узлы, кроме корня и листьев — это промежуточные узлы.

Из двух связанных узлов тот, который находится на более высоком уровне, называется «*podumenem*», а другой – «*сыном*». Корень – это единственный узел, у которого нет «родителя»; у листьев нет «сыновей».

Используются также понятия «предок» и «потомок». «Потомок» какого-то узла — это узел, в

который можно перейти по стрелкам от узла-предка. Соответственно, «предок» какого-то узла — это узел, из которого можно перейти по стрелкам в данный узел.

В дереве на рисунке справа родитель узла E – это узел B, а предки узла E – это узлы A и B, для которых узел E – потомок. Потомками узла A (корня) являются все остальные узлы.

Типичный пример иерархии – различные *классификации* (животных, растений, минералов, химических соединений). Например, отряд *Хищные* делится на два подотряда: *Псообразные* и *Кошкообразные*. В каждом из них выделяют несколько семейств:

Конечно, на этой схеме показаны не все семейства, остальные обозначены многоточием.

В текстах иерархию часто оформляют в виде многоуровневого списка. Например, оглавление книги о хищниках может выглядеть так:

Глава 1. Псообразные

- 1.1 Псовые
- 1.2 Енотовые
- 1.3 Медвежьи

...

Глава 2. Кошкоообразные

2.1 Кошачьи

- 2.2 Гиеновые
- 2.3 Мангустовые

...

С иерархией мы встречаемся, работая с файлами и папками: классическая файловая система имеет древовидную структуру¹⁵. Вход в папку – это переход на следующий (более низкий) уровень иерархии:

Алгоритм вычисления арифметического выражения тоже может быть представлен в виде дерева:

Здесь листья – это числа и переменные, тогда как корень и промежуточные узлы – знаки операций. Вычисления идут «снизу вверх», от листьев – к корню. Показанное дерево можно записать так:

$$(-(*(+(a,3),5),*(2,b)))$$

Самое интересное, что скобки здесь не обязательны; если их убрать, то выражение все равно может быть однозначно вычислено:

Такая запись, которая называется *префиксной* (операция записывается *перед* данными), просматривается с конца. Как только встретится знак операции, эта операция выполняется с двумя значениями, записанными справа. В рассмотренном выражении сначала выполняется умножение:

$$- * + a 3 5 (2*b)$$

затем – сложение:

и еще одно умножение

и, наконец, вычитание: (a+3) *5- (2*b).

Для того, чтобы вычислять выражение не с конца, а с начала, префиксную форму «разворачивают» задом наперед, тогда получается постфиксная форма (операция после данных). Например, рассмотренное выше выражение может быть записано в виде

¹⁵ В современных файловых системах файл может «принадлежать» нескольким каталогам одновременно. При этом древовидная структура, строго говоря, нарушается.

Для вычисления такого выражения скобки также не нужны, и это очень удобно для автоматических расчетов. Когда программа на языке программирования высокого уровня переводится в машинные коды, все выражения записываются в бесскобочной постфиксной форме и именно так и вычисляются.

І.4.4. Графы

Подумайте, как можно структурировать такую информацию:

«От пос. Васюки три дороги идут в Солнцево, Грибное и Ягодное. Между Солнцевым и Грибным и между Грибным и Ягодным также есть дороги. Кроме того, есть дорога, которая идет из Грибного в лес и возвращается обратно в Грибное».

Можно, например, нарисовать схему дорог:

В информатике такие схемы называются графами.

Граф – это набор узлов (вершин) и связей между ними (рёбер).

Для хранения информации об узлах и связях показанного выше графа (см. правый рисунок) можно использовать таблицу (матрицу) такого вида,

	Α	В	С	D
Α	0	1	1	0
В	1	0	1	1
С	1	1	1	1
D	0	1	1	0

Единица на пересечении строки A и столбца В означает, что между узлами A и В есть связь. Ноль указывает на то, что связи нет. Такая таблица называется **матрицей смежности**. Она симметрична относительно главной диагонали (серые клетки в таблице).

На пересечении строки C и столбца C стоит единица, которая говорит о том, что в графе есть **петля** – ребро, которое начинается и заканчивается в одной и той же вершине.

Можно поступить иначе: для каждого узла перечислить все узлы, с которыми связан данный узел. В этом случае мы получим **список смежности**. Для рассмотренного графа список смежности выглядит так:

Матрица смежности (и список смежности) не дают никакой информации о том, как именно расположены узлы друг относительно друга. Для таблицы, приведенной выше, возможны, например, такие варианты:

В рассмотренном примере все узлы связаны, то есть, между любой парой узлов существует **путь** – последовательность ребер, по которым можно перейти из одного узла в другой. Такой граф называется *связным*.

Связный граф – это граф, в котором все узлы связаны.

Теперь представьте себе, что дороги Васюки – Солнцево, Васюки – Грибное и Грибное – Ягодное завалило снегом (ли размыло дождем) так, что по ним не пройти и не проехать.

Эту схему тоже можно считать графом (она подходит под определение), но в таком графе есть две несвязанные части, каждая из которых — связный граф. Такие части называют компонентами связности.

Вспоминая материал предыдущего пункта, можно сделать вывод, что дерево – это частный случай связного графа. Но у него есть одно важное свойство – в дереве нет замкнутых путей (*циклов*). Граф в последнем примере не является деревом, потому что в нем есть циклы: ABCA, BCDB, ABCDA.

Дерево – это связный граф, в котором нет циклов.

Если в первом примере с дорогами нас интересуют еще и расстояния между поселками, каждой связи нужно сопоставить число (вес).

Такой граф называется **взвешенным**, поскольку каждое ребро имеет свой **вес**. В реальных задачах это может быть не только расстояние, но и, например, стоимость проезда или другая величина.

Как хранить информацию о таком графе? Ответ напрашивается сам собой — нужно в таблицу записывать не 1 или 0, а вес ребра. Если связи между двумя узлами нет, на бумаге можно оставить ячейку таблицы пустой, а при хранении в памяти компьютера записывать в нее условный код, например, —1. Такая таблица называется весовой матрицей, потому что содержит веса ребер. В данном случае она выглядит так:

	Α	В	С	D
Α		12	8	
В	12		5	6
С	8	5	2	4
D		6	4	

Также как и матрица смежности, весовая матрица симметрична относительно диагонали. Две пустые ячейки говорят о том, что между узлами A и D нет связи.

Если в графе немного узлов, весовая матрица позволяет легко определить наилучший маршрут из одного узла в другой простым перебором вариантов. Рассмотрим граф, заданный весовой матрицей (числа определяют стоимость поездки между соседними пунктами):

	Α	В	U	D	Ε
Α			3	1	
В			4	5	1
С	3	4			2
D	1	5			1
Е		1	2	1	

Найдем наилучший путь из A в B — такой, при котором общая стоимость поездки минимальная. Сначала видим, что из пункта A напрямую в B ехать нельзя, а можно ехать только в C и D. Изобразим это на схеме:

Числа около каждого ребер показывают стоимость поездки по этому участку, а индексы у названий узлов показывают общую стоимость проезда в данный узел из узла А.

Теперь разберем варианты дальнейшего движения из узла C (узел A уже не нужно рассматривать, так как мы из него пришли).

Видим, что из C сразу можно попасть в B, стоимость проезда в этом случае равна 7. Но, возможно, это не самый лучший вариант, и нужно проверить еще путь через узел E. Действительно, оказывается, что можно сократить стоимость до 6:

Исследовать дальше маршрут, содержащий цепочку ACED, нет смысла, потому что его стоимость явно будет больше 6. Аналогично строим вторую часть схемы (вы догадались, что она представляет собой дерево!).

Таким образом, **оптимальный (наилучший) маршрут – ADEB**, его стоимость – 3. Маршруты ACED и ADEC, не дошедшие до узла В, далее проверять не нужно, они не улучшат результат.

Конечно, для более сложных графов метод перебора работает очень долго, поэтому используются более совершенные (но более сложные) методы, о которых мы поговорим в 11-м классе.

Наверное, вы заметили, что при изображении деревьев, которые описывают иерархию (подчинение), мы ставили стрелки от верхних уровней к нижним. Это означает, что для каждого ребра указывается направление, и двигаться можно только по стрелкам, но не наоборот. Такой граф называется *ориентированным* (или коротко *орграфом*). Он может служить, например, моделью системы дорог с односторонним движением. Матрица смежности и весовая матрица для орграфа уже не обязательно будут симметричными.

На этой схеме всего две дороги с двусторонним движением, по остальным можно ехать только в одну сторону:

C

8

5 | 6

4

Ребра в орграфе называют дугами. Дуга, в отличие от ребра, имеет начало и конец.

Контрольные вопросы

- 1. Что такое структура?
- 2. Что такое структурирование информации? Зачем оно нужно?
- 3. Что такое алфавитный порядок? Как поступают, если начальные символы слов совпали?
- 4. Расскажите, как используются оглавление, словарь и индекс для быстрого поиска нужной информации. Чем эти средства отличаются друг от друга?
- 5. Какими способами можно задать множество? Что такое пустое множество?
- 6. Приведите примеры множеств.
- 7. Чем отличаются множество и линейный список?
- 8. Что такое очередь? Приведите примеры.
- 9. Что такое стек? Чем он отличается от очереди? Приведите примеры.
- 10. Расшифруйте английские сокращения LIFO и FIFO.
- 11. Какая структура позволяет объединить возможности стека и очереди?
- 12. Что такое матрица?
- 13. Как можно записать табличные данные в виде списка?
- 14. Что такое иерархия? Приведите примеры.
- 15. Вспомните известные вам классификации, которые вы изучали на других предметах.
- 16. Как называется соответствующая структура в информатике?
- 17. Что такое «корень», «лист», «родитель», «сын», «предок», «потомок»?
- 18. В дереве 4 потомка и все они являются листьями. Нарисуйте это дерево. Сколько в нем узлов?
- 19. Что такое «лес»?
- 20. В чем разница между понятиями «ребро» и «дуга»?
- 21. В чем отличие понятий «дерево», «лес», «граф»?
- 22. Какой граф называется связным?
- 23. Что такое компонента связности?
- 24. Что такое петля? Как по матрице смежности определит, есть ли петли в графе?

- 25. Выберите наиболее подходящий способ структурирования информации для хранения
 - а) данных по крупнейшим озерам мира;
 - б) рецепта приготовления шашлыка;
 - в) схемы железных дорог;
 - г) схемы размещения файлов на флэш-диске.
- 26. Что такое орграф? Когда для представления данных используются орграфы? Приведите примеры.

(D)(C)

Задачи

1. Определите выражения, соответствующие каждому из деревьев, в «нормальном» виде со скобками (эту форму называют *инфиксной* – операция записывается *между* данными). Постройте для каждого из них постфиксную форму.

- 2. Постройте деревья, соответствующие следующим арифметическим выражениям. Запишите эти выражения в префиксной и постфиксной формах.
 - a) (a+b) * (c+2*d)

B) (a+b+2*c)*d

б) (2*a-3*d) *c+2*b

- г) 3*a-(2*b+c)*d
- 3. Вычислите выражение, записанное в постфиксной форме
 - a) 12 6 + 7 3 1 * 12 +
 - 6) 12 10 5 7 + * 7 2 *
 - B) 56789+-+-
 - r) 5 4 3 2 1 - -

Запишите его в инфиксной и в префиксной формах. Постройте дерево, соответствующее этому выражению. Единственно ли такое дерево? В этом дереве назовите корень, листья и промежуточные узлы.

(Ответ: 66; 34; 9; 3)

- 4. Нарисуйте граф, в котором 5 вершин и три компоненты связности. Постройте его матрицу смежности.
- 5. Структурируйте эту информацию разными способами: «Между поселками Верхние Васюки и Нижние Васюки есть проселочная дорога длиной 10 км. Село Сергеево соединяется двумя асфальтовыми шоссе с Нижними Васюками (22 км) и Верхними Васюками (16 км). В Солнечное можно доехать только из Сергеева по грунтовой дороге (5 км)». Можно ли сказать, как точно расположены эти пункты?
- 6. Для графа, полученного в предыдущей задаче, постройте матрицу смежности, список смежности, весовую матрицу. Является ли этот граф деревом?

7. Постройте матрицы смежности и весовые матрицы для каждого графа:

a)

б)

в)

B 1 D

г)

8. Постройте графы, соответствующие каждой из матриц смежности:

a)					
		Α	В	C	D	Е
	Α		0	1	1	0
	В	0		1	0	1
	С	1	1		0	1
	D	1	0	0		0
	Е	0	1	1	0	

6	б)							
		Α	В	C	D	Ε		
	Α		0	1	1	1		
	В	0		1	0	0		
	U	1	1		0	1		
	D	1	0	0		0		
	Ε	1	0	1	0			

в)					
	Α	В	С	D	Ε
Α		0	1	1	1
В	0		1	0	1
С	1	1		0	1
D	1	0	0		0
Ε	1	1	1	0	

Γ)					
		Α	В	U	۵	Е
	Α		0	0	1	0
	В	0		1	0	1
	С	0	1		1	1
	D	1	0	1		0
	Ε	0	1	1	0	

9. Постройте графы, соответствующие каждой из весовых матриц:

ā	a)					
		Α	В	C	D	Е
	Α		4	3		7
	В	4			2	
	С	3			6	
	D		2	6		1
	Ε	7			1	

6	5)					
		Α	В	U	D	Е
	Α		2	5		6
	В	2			3	
	С	5				
	D		3			1
	Ε	6			1	

Е	3)					
		Α	В	U	D	Е
	Α			2	2	6
	В				2	
	С	2			2	
	D	2	2	2		
	Ε	6				

Γ)					
		Α	В	C	D	Е
	Α		5	2		6
	В	5			5	
	С	2			2	
	D		5	2		3
	Ε	6			3	

10. Стоимость перевозок между пунктами, которые для краткости обозначены буквами А, В, С, D и Е, задается таблицей (весовой матрицей графа). Нужно перевезти груз из пункта А в пункт В. Для каждого из четырех вариантов определите оптимальный маршрут и полную стоимость перевозки.

ā	a)					
		Α	В	С	D	Ε
	Α			3	1	
	В			4		2
	C	3	4			2
	D	1				
	Ε		2	2		

6	б)							
		Α	В	С	D	Ε		
	Α			თ	1	1		
	В			4				
	С	3	4			2		
	D	1						
	Ε	1		2				

Α	В	C	D	E
		3	1	4
		4		2
3	4			2
1				
4	2	2		
	3	3 4	3 4 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 1 3 4 5 1 6

г <u>)</u>					
	Α	В	U	D	Е
Α				1	
В			4		1
С		4		4	2
D	1		4		
Ε		1	2		

11. Постройте орграф, соответствующий каждой из этих таблиц.

6	a)					
		Α	В	С	D	Ε
	Α			3	1	
	В	2		4		2
	С	3				
	D	1				
	Е			2		

6	5)					
		Α	В	С	D	Е
	Α			5	1	1
	В			6	4	
	С	3	4			2
	D		2			
	Ε			3		

	Α	В	С	D	Ε
Α			3	1	4
В			4		2
С		4			2
D					
Ε	4		2		

Γ)					
		Α	В	C	D	Ε
	Α				1	
	В			4		1
	С	3	4		4	2
	D	1	2	4		
	Ε	1	1	2		