NP-completeness

1 Prelude about O-notation

1 Prelude about O-notation

Lemma 1. Let $f,g: \mathbb{N}_0 \to \mathbb{N}$ be functions, g(n) > 0 for all n and f(n) = O(g(n)). Then there is a constant C such that

$$f(n) \le C \cdot g(n)$$
 for all n

1 Prelude about O-notation

1 Prelude about O-notation

Lemma 1. Let $f,g: \mathbb{N}_0 \to \mathbb{N}$ be functions, g(n) > 0 for all n and f(n) = O(g(n)). Then there is a constant C such that

$$f(n) \le C \cdot g(n)$$
 for all n

• there is constant c such that

$$f(n) \le c \cdot g(n)$$
 for all $n \ge n_0$

define

$$r(n) = f(n)/g(n)$$

$$c' = \max\{r(n) : n < n_0\}$$

$$C = \max\{c, c'\}$$

$$f(n) = r(n) \cdot g(n)$$

$$\leq \begin{cases} c' \cdot g(n) & n < n_0 \\ c \cdot g(n) & n \ge 0 \end{cases}$$

$$\leq C \cdot g(n)$$

2.1 Polynomial reducibility

reminder: reducibility

- $L, L' \subseteq A^*$ languages
- $L \le L'$ iff there is *computable* function

$$f: A^* \to A^*$$

translating the question $w \in L$ into $f(w) \in L'$

$$\forall w. \quad w \in L \leftrightarrow f(w) \in L'$$

Lemma 2.

L' decidable $\land L \leq L' \rightarrow L$ decidable

2.1 Polynomial reducibility

reminder: reducibility

- $L', L \subseteq A^*$ languages
- $L' \leq L$ iff there is *computable* function

$$f: A^* \to A^*$$

translating the question $w \in L'$ into $f(w) \in L$

$$\forall w. \quad w \in L' \leftrightarrow f(w) \in L$$

Lemma 2.

$$L \ decidable \wedge L' \leq L \rightarrow L' \ decidable$$

def: polynomially time bounded machines A (Turing) machine m is polynomially time bounded if there is an exponent k such that for all inputs w machine M started with w makes at most $O(|w|^k)$ steps.

def: computability in poynomial time A function f is computable in polynomial time if it is computed (i.e. $f = f_M$) by a polynomialy time bounded machine M,

2.1 Polynomial reducibility

reminder: reducibility

- $L', L \subseteq A^*$ languages
- $L' \leq L$ iff there is *computable* function

$$f: A^* \to A^*$$

translating the question $w \in L'$ into $f(w) \in L$

$$\forall w. \quad w \in L' \leftrightarrow f(w) \in L$$

Lemma 2.

 $L \ decidable \wedge L' \leq L \rightarrow L' \ decidable$

def: polynomially time bounded machines A (Turing) machine m is polynomially time bounded if there is an exponent k such that for all inputs w machine M started with w makes at most $O(|w|^k)$ steps.

def: computability in poynomial time A function f is computable in polynomial time if it is computed (i.e. $f = f_M$) by a polynomialy time bounded machine M,

def: polynomial reducibility: reducibility in polynomial time resp. p-reducibility

- $L', L \subseteq A^*$ languages
- $L' \leq_p L$: iff there is function *computable in poynomial time*

$$f: A^* \to A^*$$

translating the question $w \in L'$ into $f(w) \in L$

$$\forall w. \quad w \in L' \leftrightarrow f(w) \in L$$

2.1 Polynomial reducibility

reminder: reducibility

- $L', L \subseteq A^*$ languages
- $L' \leq L$ iff there is *computable* function

$$f: A^* \to A^*$$

translating the question $w \in L'$ into $f(w) \in L$

$$\forall w. \quad w \in L' \leftrightarrow f(w) \in L$$

Lemma 2.

 $L \ decidable \wedge L' \leq L \rightarrow L' \ decidable$

def: polynomially time bounded machines A (Turing) machine m is polynomially time bounded if there is an exponent k such that for all inputs w machine M started with w makes at most $O(|w|^k)$ steps.

def: computability in poynomial time A function f is computable in polynomial time if it is computed (i.e. $f = f_M$) by a polynomialy time bounded machine M,

def: polynomial reducibility: reducibility in polynomial time resp. p-reducibility

- $L', L \subseteq A^*$ languages
- $L' \leq_p L$: iff there is function *computable in poynomial time*

$$f: A^* \to A^*$$

translating the question $w \in L'$ into $f(w) \in L$

$$\forall w. \quad w \in L' \leftrightarrow f(w) \in L$$

Lemma 3.

$$L \in P \land L' \leq_p L \rightarrow L' \in P$$

2.1 Polynomial reducibility

reminder: reducibility

- $L', L \subseteq A^*$ languages
- $L' \leq L$ iff there is *computable* function

$$f: A^* \to A^*$$

translating the question $w \in L'$ into $f(w) \in L$

$$\forall w. \quad w \in L' \leftrightarrow f(w) \in L$$

Lemma 2.

 $L \ decidable \wedge L' \leq L \rightarrow L' \ decidable$

def: polynomially time bounded machines A (Turing) machine m is polynomially time bounded if there is an exponent k such that for all inputs w machine M started with w makes at most $O(|w|^k)$ steps.

def: computability in poynomial time A function f is computable in polynomial time if it is computed (i.e. $f = f_M$) by a polynomialy time bounded machine M,

def: polynomial reducibility: reducibility in polynomial time resp. p-reducibility

- $L', L \subseteq A^*$ languages
- $L' \leq_p L$: iff there is function *computable in poynomial time*

$$f: A^* \to A^*$$

translating the question $w \in L'$ into $f(w) \in L$

$$\forall w. \quad w \in L' \leftrightarrow f(w) \in L$$

Lemma 3.

$$L \in P \land L' \leq_p L \rightarrow L' \in P$$

attention: there is a bit of arithmetic:

- Let M be $O(n^k)$ -time bounded acceptor for L
- Let M' be $O(n^{k'})$ time bounded machine computing f
- acceptor M'' for L': with input w of length n
 - 1. compute f(w) in time $O(n^{k'})$ and observe

$$|f(w)| = O(n^{k'})$$

2. behave as M' with input f(w). This takes time

$$O(|f(w)|^k) = O(n^{k \cdot k'})$$

2.2 Hardness and completeness

Let K be a set of languages (usually a complexity class) and L a language. Most important example

$$K = NP$$

• L is K-hard if every language $L' \in K$ is p-reducible to L

$$\forall L' \in K$$
. $L' \leq_p L$

• L' is K-complete if L is K-hard and $L \in K$

2.2 Hardness and completeness

Let K be a set of languages (usually a complexity class) and L a language. Most important example

$$K = NP$$

• L is K-hard if every language $L' \in K$ is p-reducible to L

$$\forall L' \in K$$
. $L' \leq_p L$

• L' is K-complete if L is K-hard and $L \in K$

Single K-complete languages L represent the feasability of accepting languages in the entire complexity classK

Lemma 4. Let L be K-complete. Then

$$K \subseteq P \quad \leftrightarrow \quad L \in P$$

- \rightarrow : trivial as $L \in K$
- \leftarrow : let $L' \in K$. Then $L' \leq_p L$ and $L' \in P$ by lemma 3.

2.2 Hardness and completeness

Let *K* be a set of languages (usually a complexity class) and *L* a language. Most important example

$$K = NP$$

• L is K-hard if every language $L' \in K$ is p-reducible to L

$$\forall L' \in K$$
. $L' \leq_p L$

• L' is K-complete if L is K-hard and $L \in K$

Single K-complete languages L represent the feasability of accepting languages in the entire complexity classK

Lemma 4. Let L be K-complete. Then

$$K \subseteq P \quad \leftrightarrow \quad L \in P$$

- \rightarrow : trivial as $L \in K$
- \leftarrow : let $L' \in K$. Then $L' \leq_p L$ and $L' \in P$ by lemma 3.

Lemma 5. Let L be NP-complete. Then

$$NP = P \quad \leftrightarrow \quad L \in P$$

Proof. if $L \in P$ we have by lemma 4

$$P \subseteq NP \subseteq P$$

define language L as the set of words

$$u#vX^j$$

with

- $u \in \mathbb{B}^+$ codes a nondeterministic 1-tape TM M_u
- $v \in \{0,1,\#\}^+$ is an input for M_u
- padding symbol *X*
- M_u can accept v in j/|u| steps

Lemma 6.

$$L \in NP$$

- use nondeterministic universal machine U with 3 tapes
 - 1. tapes 1 and 2: preprocessor and simulation of steps of M_u
 - 2. tape 3 counting simulated steps.

define language L as the set of words

$$u#vX^j$$

with

- $u \in \mathbb{B}^+$ codes a nondeterministic 1-tape TM M_u
- $v \in \{0,1,\#\}^+$ is an input for M_u
- padding symbol *X*
- M_u can accept v in j/|u| steps

Lemma 6.

$$L \in NP$$

- use nondeterministic universal machine U with 3 tapes
 - 1. tapes 1 and 2: preprocessor and simulation of steps of M_u
 - 2. tape 3 counting simulated steps.

Then time

1. for preprocessor using 2 tapes is

$$O(|u| \cdot |v|) = O(n^2)$$

2. for simulating s = j/|u| steps

$$O(|u| \cdot s) = (O(j)) = O(n)$$

define language L as the set of words

$$u#vX^j$$

with

- $u \in \mathbb{B}^+$ codes a nondeterministic 1-tape TM M_u
- $v \in \{0,1,\#\}^+$ is an input for M_u
- padding symbol *X*
- M_u can accept v in j/|u| steps

Lemma 6.

$$L \in NP$$

- use nondeterministic universal machine U with 3 tapes
 - 1. tapes 1 and 2: preprocessor and simulation of steps of M_u
 - 2. tape 3 counting simulated steps.

Then time

1. for preprocessor using 2 tapes is

$$O(|u| \cdot |v|) = O(n^2)$$

2. for simulating s = j/|u| steps

$$O(|u| \cdot s) = (O(j)) = O(n)$$

Lemma 7. L is NP-hard

- Let $L' \in NP$ be accepted by $O(n^k)$ -time bounded nondeterministic k-tape TM M.
- tape reduction gives $O(n^{2k})$ time bounded 1-tape machine M' accepting L.
- by lemma 1 there is C such that machine M started with input of length n makes at most $C \cdot n^{2k}$ steps.
- let $M' = M_u$.
- reducing L' to L by machine M'': with input v of length n output

$$u # v X^j$$
 with $j = C \cdot n^{2k} \cdot |u|$

define language L as the set of words

$$u#vX^j$$

with

- $u \in \mathbb{B}^+$ codes a nondeterministic 1-tape TM M_u
- $v \in \{0,1,\#\}^+$ is an input for M_u
- padding symbol *X*
- M_u can accept v in j/|u| steps

Lemma 6.

$$L \in NP$$

- use nondeterministic universal machine U with 3 tapes
 - 1. tapes 1 and 2: preprocessor and simulation of steps of M_u
 - 2. tape 3 counting simulated steps.

Then time

1. for preprocessor using 2 tapes is

$$O(|u| \cdot |v|) = O(n^2)$$

2. for simulating s = j/|u| steps

$$O(|u| \cdot s) = (O(j)) = O(n)$$

Lemma 7. L is NP-hard

- Let $L' \in NP$ be accepted by $O(n^k)$ -time bounded nondeterministic k-tape TM M.
- tape reduction gives $O(n^{2k})$ time bounded 1-tape machine M' accepting L.
- by lemma 1 there is C such that machine M started with input of length n makes at most $C \cdot n^{2k}$ steps.
- let $M' = M_u$.
- reducing L' to L by machine M'': with input v of length n output

$$u # v X^j$$
 with $j = C \cdot n^{2k} \cdot |u|$

so far: all this could be abstract nonsense, possibly of some philosophical interest...

def: Boolean expressions

Variables

$$V = \{X_1, X_2, \ldots\}$$

- Boolean expressions BE, the *non extended* version.
 - 1.

$$V, \mathbb{B} \subset BE$$

2. if $A, B \in BE$ then

$$(A \wedge B)$$
, $(A \vee B)$, $\sim (A) \in BE$

3. this are all

priorities

$$\sim$$
 , \land , \lor

4 SAT

def: Boolean expressions

Variables

$$V = \{X_1, X_2, \dots\}$$

• Boolean expressions BE, the *non extended* version.

1.

$$V, \mathbb{B} \subset BE$$

2. if $A, B \in BE$ then

$$(A \wedge B)$$
, $(A \vee B)$, $\sim (A) \in BE$

3. this are all

priorities

$$\sim$$
 , \land , \lor

def: valuations

$$\varphi: V \to \mathbb{B}$$

extended to Boolean expressions by

$$\varphi(a) = a \text{ for } a \in \mathbb{B}$$

$$\varphi(\sim A) = \sim \varphi(A)$$

$$\varphi(A \circ B) = \varphi(A) \circ \varphi(B) \text{ for } \circ \in \{\land, \lor\}$$

4 SAT

def: Boolean expressions

Variables

$$V = \{X_1, X_2, \ldots\}$$

- Boolean expressions BE, the *non extended* version.
 - 1.

$$V, \mathbb{B} \subset BE$$

2. if $A, B \in BE$ then

$$(A \wedge B)$$
, $(A \vee B)$, $\sim (A) \in BE$

3. this are all

priorities

$$\sim$$
 , \wedge , \vee

def: valuations

$$\varphi: V \to \mathbb{B}$$

extended to Boolean expressions by

$$\varphi(a) = a \text{ for } a \in \mathbb{B}$$

$$\varphi(\sim A) = \sim \varphi(A)$$

$$\varphi(A \circ B) = \varphi(A) \circ \varphi(B) \text{ for } \circ \in \{\land, \lor\}$$

special Boolean expressions

• *literals*: variables X_i or their complement, written as

$$\sim X_i$$
, $/X_i$, $\overline{X_i}$

For $a \in \mathbb{B}$ and $X \in V$

$$X^a = \begin{cases} \overline{X} & a = 0 \\ X & a = 1 \end{cases}$$

monomials: ANDing literals L_i together, written as

$$L_1 \wedge \ldots \wedge L_n$$
 , $L_1 \ldots L_n$

• disjunctive normal forms, DNF, Boolean polynomials: ORing monomials M_i together

$$M_1 \vee \ldots \vee M_s$$

def: Boolean expressions

Variables

$$V = \{X_1, X_2, \ldots\}$$

• Boolean expressions BE, the *non extended* version.

1.

$$V, \mathbb{B} \subset BE$$

2. if $A, B \in BE$ then

$$(A \wedge B)$$
, $(A \vee B)$, $\sim (A) \in BE$

3. this are all

priorities

$$\sim$$
 , \land , \lor

def: valuations

$$\varphi: V \to \mathbb{B}$$

extended to Boolean expressions by

$$\varphi(a) = a \text{ for } a \in \mathbb{B}$$

$$\varphi(\sim A) = \sim \varphi(A)$$

$$\varphi(A \circ B) = \varphi(A) \circ \varphi(B) \text{ for } \circ \in \{\land, \lor\}$$

special Boolean expressions

• *literals*: variables X_i or their complement, written as

$$\sim X_i$$
, $/X_i$, $\overline{X_i}$

For $a \in \mathbb{B}$ and $X \in V$

$$X^a = \begin{cases} \overline{X} & a = 0 \\ X & a = 1 \end{cases}$$

monomials: ANDing literals L_i together, written as

$$L_1 \wedge \ldots \wedge L_n$$
 , $L_1 \ldots L_n$

• disjunctive normal forms, DNF, Boolean polynomials: ORing monomials M_i together

$$M_1 \vee \ldots \vee M_s$$

• clauses: ORing literals L_i together

$$(L_1 \vee \ldots \vee L_n)$$

• conjunctive normal forms, CNF: ANDing clauses C_i together

$$C_1 \wedge \ldots \wedge C_s$$

• 3-CNF: conjunctive normal form with at most 3 literals per clause.

4.2 Functions computed by expressions

substituting bit vector a **for variables** For $a \in \mathbb{B}^n$ let φ_a be the valuation which substitutes a_i for X_i

$$\varphi_a(X_i) = a_i$$
 fo all i

function computed by Boolean expression e For $e \in BE$ with variables X_1, \dots, X_n define switching function

$$f_e: \mathbb{B}^n \to \mathbb{B}$$

by

$$f_e(a) = \phi_a(e)$$

i.e. in order to get function value $f_e(a)$ for a plug in a for variables (using valuation φ_a) and evaluate (to $\varphi_a(e)$).

4.2 Functions computed by expressions

substituting bit vector a **for variables** For $a \in \mathbb{B}^n$ let φ_a be the valuation which substitutes a_i for X_i

$$\varphi_a(X_i) = a_i$$
 fo all i

function computed by Boolean expression e For $e \in BE$ with variables X_1, \ldots, X_n define switching function

$$f_e: \mathbb{B}^n \to \mathbb{B}$$

by

$$f_e(a) = \phi_a(e)$$

i.e. in order to get function value $f_e(a)$ for a plug in a for variables (using valuation φ_a) and evaluate (to $\varphi_a(e)$).

Using function symbols in expressions

• in Boolean expressions include for function symbols f_i with n_i arguments and the rule:

$$A_1, \ldots, A_{n_i} \in BE \rightarrow f_i(A_1, \ldots, A_{n_i}) \in BE$$

evaluate

$$\varphi(f_i(A_1,\ldots,A_{n_i}))=f_i(\varphi(A_1),\ldots,\varphi(A_{n_i}))$$

• BE_{pure} : Boolean expressions without function symbols f_i .

4.2 Functions computed by expressions

substituting bit vector a **for variables** For $a \in \mathbb{B}^n$ let φ_a be the valuation which substitutes a_i for X_i

$$\varphi_a(X_i) = a_i$$
 fo all i

function computed by Boolean expression e For $e \in BE$ with variables X_1, \ldots, X_n define switching function

$$f_e: \mathbb{B}^n \to \mathbb{B}$$

by

$$f_e(a) = \phi_a(e)$$

i.e. in order to get function value $f_e(a)$ for a plug in a for variables (using valuation φ_a) and evaluate (to $\varphi_a(e)$).

Using function symbols in expressions

• in Boolean expressions include for function symbols f_i with n_i arguments and the rule:

$$A_1, \ldots, A_{n_i} \in BE \rightarrow f_i(A_1, \ldots, A_{n_i}) \in BE$$

evaluate

$$\varphi(f_i(A_1,\ldots,A_{n_i}))=f_i(\varphi(A_1),\ldots,\varphi(A_{n_i}))$$

• BE_{pure} : Boolean expressions without function symbols f_i .

equivalences For (extended) Boolean expressions e, e' we write

$$e \equiv e'$$

iff they evaluate for all valuaions to the same value

$$\varphi(e) = \varphi(e')$$
 for all φ

Lemma 8. Every switching function f is computed by a Boolean polynomial p

Lemma 9. Every switching function f is computed by a conjuctive normal form d

• for $a \in \mathbb{B}^n$ define monomial

$$m(a) = \bigwedge_{i=1}^{n} X_i^{a_i}$$

then

$$\varphi(m(a)) = 1 \leftrightarrow \varphi = \varphi_a$$

• OR these monmials together for a with f(a) = 1

$$p = \bigvee_{f(a)=1} m(a)$$

complete conjunctive normal form for f.

Lemma 8. Every switching function f is computed by a Boolean polynomial p

Lemma 9. Every switching function f is computed by a conjuctive normal form d

• for $a \in \mathbb{B}^n$ define monomial

$$m(a) = \bigwedge_{i=1}^{n} X_i^{a_i}$$

then

$$\varphi(m(a)) = 1 \leftrightarrow \varphi = \varphi_a$$

• OR these monmials together for a with f(a) = 1

$$p = \bigvee_{f(a)=1} m(a)$$

complete conjunctive normal form for f.

• for $a \in \mathbb{B}^n$ define clause

$$c(a) = \bigvee_{i=1}^{n} X_i^{\overline{a_i}}$$

then

$$\varphi(c(a)) = 0 \leftrightarrow \varphi = \varphi_a$$

• AND these clauses together for a with f(a) = 0

$$d = \bigwedge_{f(a)=0} c(a)$$

complete conjunctive normal form for f.

Lemma 10. For every clause c there is a formula C in 3-CNF such that for all valuations

$$\exists \varphi. \ \varphi(c) = 1 \leftrightarrow \exists \varphi. \ \varphi(C) = 1$$

i.e. c is satisfiable iff C is satisfiable.

• For the Boolean predicate

$$x \leftrightarrow y \lor z$$

there is by lemma 9 an equivalent conjunctive normal form e(x, y, z) satisfying

$$\varphi(e(x, y, z)) = 1 \leftrightarrow \varphi(x) = \varphi(y) \lor \varphi(z)$$

Exercise: derive this formula from the truth table of the predicate.

Lemma 10. For every clause c there is a formula C in 3-CNF such that for all valuations

$$\exists \varphi. \ \varphi(c) = 1 \leftrightarrow \exists \varphi. \ \varphi(C) = 1$$

i.e. c is satisfiable iff C is satisfiable.

• For the Boolean predicate

$$x \leftrightarrow y \lor z$$

there is by lemma 9 an equivalent conjunctive normal form e(x, y, z) satisfying

$$\varphi(e(x, y, z)) = 1 \leftrightarrow \varphi(x) = \varphi(y) \lor \varphi(z)$$

Exercise: derive this formula from the truth table of the predicate.

- because only 3 variables are involved, the conjunctive normal form e(x, y, z) is in 3 CNF.
- Let

$$c = X_{i_1}^{a_1} \vee \ldots \vee X_{i_s}^{a_s}$$

be a clause with $s \ge 4$ literals. Introduce new Variables Q_2, \dots, Q_s and set

$$C = e(Q_2, X_{i_2}^{a_2}, X_{i_1}^{a_1}) \land \bigwedge_{j=3}^{n} e(Q_j, X_{i_j}^{a_j} Q_{j-1})$$

Lemma 10. For every clause c there is a formula C in 3-CNF such that for all valuations

$$\exists \varphi. \ \varphi(c) = 1 \leftrightarrow \exists \varphi. \ \varphi(C) = 1$$

i.e. c is satisfiable iff C is satisfiable.

• For the Boolean predicate

$$x \leftrightarrow y \lor z$$

there is by lemma 9 an equivalent conjunctive normal form e(x, y, z) satisfying

$$\varphi(e(x, y, z)) = 1 \leftrightarrow \varphi(x) = \varphi(y) \lor \varphi(z)$$

Exercise: derive this formula from the truth table of the predicate.

- because only 3 variables are involved, the conjunctive normal form e(x, y, z) is in 3 CNF.
- Let

$$c = X_{i_1}^{a_1} \vee \ldots \vee X_{i_s}^{a_s}$$

be a clause with $s \ge 4$ literals. Introduce new Variables Q_2, \ldots, Q_s and set

$$C = e(Q_2, X_{i_2}^{a_2}, X_{i_1}^{a_1}) \land \bigwedge_{j=3}^{n} e(Q_j, X_{i_j}^{a_j} Q_{j-1})$$

4.3 Satisfiability problems

def: satisfiable Boolean expression A (not extended) Boolean expression e is satisfiable iff there is a valuateion, which makes it 1

$$\exists \phi$$
. : $\phi(e) = 1$

satisfiablility problems

$$SAT = \{e \in BE_{pure} : e \text{ satisfiable}\}$$

$$CNF - SAT = \{e : e \text{ is CNF and satisfiable}\}$$

$$3 - SAT = \{e : e \text{ is } 3\text{-CNF and satisfiable}\}$$

this result changes everything

Lemma 11. CNF - SAT is NP-complete

this result changes everything

Lemma 11. CNF - SAT is NP-complete

- why does it change the world?
- because you can polynomially reduce CNF SAT to thousands of optimization problems in NP (via long chains of reductions).

this result changes everything

Lemma 11. CNF - SAT is NP-complete

- why does it change the world?
- because you can polynomially reduce CNF SAT to thousands of optimization problems in NP (via long chains of reductions).

$SAT \in NP$:

- nondeterministic TM M with input e of length n
- guesses valuation φ for variables
- evaluates $\varphi(e)$ easily in time $O(n^2)$
- accept if $\varphi(e) = 1$

this result changes everything

Lemma 11. CNF - SAT is NP-complete

- why does it change the world?
- because you can polynomially reduce CNF SAT to thousands of optimization problems in NP (via long chains of reductions).

$SAT \in NP$:

- nondeterministic TM M with input e of length n
- guesses valuation φ for variables
- evaluates $\varphi(e)$ easily in time $O(n^2)$
- accept if $\varphi(e) = 1$

CNF - SAT is NP-hard:

- Given
 - 1. $L \in NP$ and p(n)-time bounded 1-tape acceptor M of L
 - 2. input w of length n for M
- we have to construct in polynomial time (in n))
 - 1. a CNF f(w) such that
 - 2. M accepts w iff f(w) is stisfiable

this result changes everything

Lemma 11. CNF - SAT is NP-complete

- why does it change the world?
- because you can polynomially reduce CNF SAT to thousands of optimization problems in NP (via long chains of reductions).

$SAT \in NP$:

- nondeterministic TM M with input e of length n
- guesses valuation φ for variables
- evaluates $\varphi(e)$ easily in time $O(n^2)$
- accept if $\varphi(e) = 1$

CNF - SAT is NP-hard:

- Given
 - 1. $L \in NP$ and p(n)-time bounded 1-tape acceptor M of L
 - 2. input w of length n for M
- we have to construct in polynomial time (in n))
 - 1. a CNF f(w) such that
 - 2. M accepts w iff f(w) is stisfiable

the good news (as so often): the semantics of Turing machines are extremely simple.

$$M = (Z, \Sigma, \delta, z_0, Z_A)$$

Figure 1: start configuration and reachable space for M started with w

CNF - SAT is NP-hard:

- Given
 - 1. $L \in NP$ and p(n)-time bounded 1-tape acceptor M of L
 - 2. input w of length n for M
- we have to construct in polynomial time (in n))
 - 1. a CNF f(w) such that
 - 2. M accepts w iff f(w) is stisfiable

the good news (as so often): the semantics of Turing machines are extremely simple.

$$M = (Z, \Sigma, \delta, z_0, Z_A)$$

Figure 1: start configuration and reachable space for M started with w

Variables for expression f(w) are motivated by figure 1.

for all steps $t \in [0:p(n)]$ use variables

$$V_{t} = \{c_{i,a,t} : a \in \Sigma, -p(n) \le i \le p(n)\}$$

$$\cup \{h_{i,t} : -p(n) \le i \le p(n)\}$$

$$\cup \{s_{z,t} : z \in Z\}$$

interpretation

- $c_{i,a,t} = 1$: before step t cell i contains symbol a
- $h_{i,t} = 1$: before step t the head is on cell i
- $s_{z,z} = 1$: before step t machine M is in state z

CNF - SAT is NP-hard:

- Given
 - 1. $L \in NP$ and p(n)-time bounded 1-tape acceptor M of L
 - 2. input w of length n for M
- we have to construct in polynomial time (in n))
 - 1. a CNF f(w) such that
 - 2. M accepts w iff f(w) is stisfiable

the good news (as so often): the semantics of Turing machines are extremely simple.

$$M = (Z, \Sigma, \delta, z_0, Z_A)$$

Figure 1: start configuration and reachable space for M started with w

Variables for expression f(w) are motivated by figure 1.

for all steps $t \in [0:p(n)]$ use variables

$$V_{t} = \{c_{i,a,t} : a \in \Sigma, -p(n) \le i \le p(n)\}$$

$$\cup \{h_{i,t} : -p(n) \le i \le p(n)\}$$

$$\cup \{s_{z,t} : z \in Z\}$$

interpretation

- $c_{i,a,t} = 1$: before step t cell i contains symbol a
- $h_{i,t} = 1$: before step t the head is on cell i
- $s_{z,z} = 1$: before step t machine M is in state z

M accepts *w* if there exists configurations $k_0, \ldots, k_{p(n)}$ such that

 $k_0 = B^{p(n)} z_0 w B^{p(n)-n+1}$

 $k_i \vdash k_{i+1}$ for $i \in [0: p(n) - 1]$

• $k_{p(n)}$ is accepting end configuration

Variables for expression f(w) are motivated by figure 1.

for all steps $t \in [0:p(n)]$ use variables

$$V_{t} = \{c_{i,a,t} : a \in \Sigma, -p(n) \le i \le p(n)\}$$

$$\cup \{h_{i,t} : -p(n) \le i \le p(n)\}$$

$$\cup \{s_{z,t} : z \in Z\}$$

interpretation

- $c_{i,a,t} = 1$: before step t cell i contains symbol a
- $h_{i,t} = 1$: before step t the head is on cell i
- $s_{z,z} = 1$: before step t machine M is in state z

M accepts w if there exists configurations $k_0, \ldots, k_{p(n)}$ such that

•

$$k_0 = B^{p(n)} z_0 w B^{p(n)-n+1}$$

•

$$k_i \vdash k_{i+1}$$
 for $i \in [0 : p(n) - 1]$

• $k_{p(n)}$ is accepting end configuration

auxiliary formula: exactly one variable is 1

•

$$u(x_1,\ldots,x_r)=(x_1\vee\ldots x_r)\wedge\bigwedge_{i\neq j}(\overline{x_i}\vee\overline{x_j})$$

• satisfied by setting exactly one variable to 1

$$\varphi(u(x_1,\ldots,x_r))=1 \leftrightarrow \varphi(x_i)=1$$
 for exactly one i

- lenght: $O(r^2)$. We count length of variables as 1
- coding indices in binary or decimal increases length only by factor $O(\log r)$

Variables for expression f(w) are motivated by figure 1.

for all steps $t \in [0:p(n)]$ use variables

$$V_{t} = \{c_{i,a,t} : a \in \Sigma, -p(n) \le i \le p(n)\}$$

$$\cup \{h_{i,t} : -p(n) \le i \le p(n)\}$$

$$\cup \{s_{z,t} : z \in Z\}$$

interpretation

- $c_{i,a,t} = 1$: before step t cell i contains symbol a
- $h_{i,t} = 1$: before step t the head is on cell i
- $s_{z,z} = 1$: before step t machine M is in state z

M accepts w if there exists configurations $k_0, \ldots, k_{p(n)}$ such that

•

$$k_0 = B^{p(n)} z_0 w B^{p(n)-n+1}$$

•

$$k_i \vdash k_{i+1}$$
 for $i \in [0: p(n) - 1]$

• $k_{p(n)}$ is accepting end configuration

auxiliary formula: exactly one variable is 1

•

$$u(x_1,\ldots,x_r)=(x_1\vee\ldots x_r)\wedge\bigwedge_{i\neq j}(\overline{x_i}\vee\overline{x_j})$$

V_t codes a configuration

• Let

$$Z = \{z_1, \dots, z_q\}$$

$$\Sigma = \{a_1, \dots, a_s\}$$

then

$$conf(V_t) = u(s_{z_1,t}, \dots, s_{z_q,t})$$

$$\wedge u(h_{-p(n),t}, \dots, h_{p(n),t})$$

$$\wedge \bigwedge_{-p(n) \le i \le p(n)} u(c_{i,a_1,t}, \dots, c_{i,a_s,t})$$

unique state, unique head position and unique symbol on each tape cell.

- length $O(p^2(n))$
- from a valuation with $\varphi(conf(V_t) = 1$ we can extract configuration $k_t(\varphi)$ of M in a unique and obvious way.

for all steps $t \in [0:p(n)]$ use variables

$$V_{t} = \{c_{i,a,t} : a \in \Sigma, -p(n) \le i \le p(n)\}$$

$$\cup \{h_{i,t} : -p(n) \le i \le p(n)\}$$

$$\cup \{s_{z,t} : z \in Z\}$$

interpretation

- $c_{i,a,t} = 1$: before step t cell i contains symbol a
- $h_{i,t} = 1$: before step t the head is on cell i
- $s_{z,z} = 1$: before step t machine M is in state z

auxiliary formula: exactly one variable is 1

 $u(x_1,\ldots,x_r)=(x_1\vee\ldots x_r)\wedge\bigwedge_{i\neq j}(\overline{x_i}\vee\overline{x_j})$

V_t codes a configuration

$$conf(V_t) = u(s_{z_1,t}, \dots, s_{z_q,t})$$

$$\wedge u(h_{-p(n),t}, \dots, h_{p(n),t})$$

$$\wedge \bigwedge_{-p(n) \le i \le p(n)} u(c_{i,a_1,t}, \dots, c_{i,a_s,t})$$

for all steps $t \in [0:p(n)]$ use variables

$$V_{t} = \{c_{i,a,t} : a \in \Sigma, -p(n) \le i \le p(n)\}$$

$$\cup \{h_{i,t} : -p(n) \le i \le p(n)\}$$

$$\cup \{s_{z,t} : z \in Z\}$$

interpretation

- $c_{i,a,t} = 1$: before step t cell i contains symbol a
- $h_{i,t} = 1$: before step t the head is on cell i
- $s_{z,z} = 1$: before step t machine M is in state z

auxiliary formula: exactly one variable is 1

 $u(x_1,\ldots,x_r)=(x_1\vee\ldots x_r)\wedge\bigwedge_{i\neq j}(\overline{x_i}\vee\overline{x_j})$

V_t codes a configuration

$$conf(V_t) = u(s_{z_1,t}, \dots, s_{z_q,t})$$

$$\wedge u(h_{-p(n),t}, \dots, h_{p(n),t})$$

$$\wedge \bigwedge_{-p(n) \le i \le p(n)} u(c_{i,a_1,t}, \dots, c_{i,a_s,t})$$

auxiliary formula: if and only if

$$x \leftrightarrow y = (x \land y) \lor (\overline{x} \land \overline{y})$$
$$= (\overline{x} \lor y) \land (x \lor \overline{y})$$

for all steps $t \in [0:p(n)]$ use variables

$$V_{t} = \{c_{i,a,t} : a \in \Sigma, -p(n) \le i \le p(n)\}$$

$$\cup \{h_{i,t} : -p(n) \le i \le p(n)\}$$

$$\cup \{s_{z,t} : z \in Z\}$$

interpretation

- $c_{i,a,t} = 1$: before step t cell i contains symbol a
- $h_{i,t} = 1$: before step t the head is on cell i
- $s_{z,z} = 1$: before step t machine M is in state z

auxiliary formula: exactly one variable is 1

 $u(x_1,\ldots,x_r)=(x_1\vee\ldots x_r)\wedge\bigwedge_{i\neq j}(\overline{x_i}\vee\overline{x_j})$

V_t codes a configuration

$$conf(V_t) = u(s_{z_1,t}, \dots, s_{z_q,t})$$

$$\wedge u(h_{-p(n),t}, \dots, h_{p(n),t})$$

$$\wedge \bigwedge_{-p(n) \le i \le p(n)} u(c_{i,a_1,t}, \dots, c_{i,a_s,t})$$

auxiliary formula: if and only if

$$x \leftrightarrow y = (x \land y) \lor (\overline{x} \land \overline{y})$$
$$= (\overline{x} \lor y) \land (x \lor \overline{y})$$

symbols on cells without head don't change in step t

•

$$D_t = \bigwedge_{-p(n) \le i \le p(n), a \in \Sigma} (h_{i,t} \lor (c_{i,a,t} \leftrightarrow c_{i,a,t+1}))$$

• length O(p(n))

for all steps $t \in [0:p(n)]$ use variables

$$V_{t} = \{c_{i,a,t} : a \in \Sigma, -p(n) \le i \le p(n)\}$$

$$\cup \{h_{i,t} : -p(n) \le i \le p(n)\}$$

$$\cup \{s_{z,t} : z \in Z\}$$

interpretation

- $c_{i,a,t} = 1$: before step t cell i contains symbol a
- $h_{i,t} = 1$: before step t the head is on cell i
- $s_{z,z} = 1$: before step t machine M is in state z

V_t codes a configuration

$$conf(V_t) = u(s_{z_1,t}, \dots, s_{z_q,t})$$

$$\wedge u(h_{-p(n),t}, \dots, h_{p(n),t})$$

$$\wedge \bigwedge_{-p(n) \le i \le p(n)} u(c_{i,a_1,t}, \dots, c_{i,a_s,t})$$

symbols on cells without head don't change in step t

 $D_{t} = \bigwedge_{-p(n) \leq i \leq p(n), a \in \Sigma} (h_{i,t} \vee (c_{i,a,t} \leftrightarrow c_{i,a,t+1}))$

for all steps $t \in [0:p(n)]$ use variables

$$V_{t} = \{c_{i,a,t} : a \in \Sigma, -p(n) \le i \le p(n)\}$$

$$\cup \{h_{i,t} : -p(n) \le i \le p(n)\}$$

$$\cup \{s_{z,t} : z \in Z\}$$

interpretation

- $c_{i,a,t} = 1$: before step t cell i contains symbol a
- $h_{i,t} = 1$: before step t the head is on cell i
- $s_{z,z} = 1$: before step t machine M is in state z

V_t codes a configuration

$$conf(V_t) = u(s_{z_1,t}, \dots, s_{z_q,t})$$

$$\wedge u(h_{-p(n),t}, \dots, h_{p(n),t})$$

$$\wedge \bigwedge_{-p(n) \le i \le p(n)} u(c_{i,a_1,t}, \dots, c_{i,a_s,t})$$

symbols on cells without head don't change in step t

$$D_{t} = \bigwedge_{-p(n) \leq i \leq p(n), a \in \Sigma} (h_{i,t} \vee (c_{i,a,t} \leftrightarrow c_{i,a,t+1}))$$

when M in state z reads a on cell i in step t:

• either this is not the case

$$\delta_{iazt}^1 = \overline{c_{i,a,t}} \vee \overline{h_{i,t}} \vee \overline{s_{z,t}}$$

for all steps $t \in [0 : p(n)]$ use variables

$$V_{t} = \{c_{i,a,t} : a \in \Sigma, -p(n) \le i \le p(n)\}$$

$$\cup \{h_{i,t} : -p(n) \le i \le p(n)\}$$

$$\cup \{s_{z,t} : z \in Z\}$$

interpretation

- $c_{i,a,t} = 1$: before step t cell i contains symbol a
- $h_{i,t} = 1$: before step t the head is on cell i
- $s_{z,z} = 1$: before step t machine M is in state z

V_t codes a configuration

$$conf(V_t) = u(s_{z_1,t}, \dots, s_{z_q,t})$$

$$\wedge u(h_{-p(n),t}, \dots, h_{p(n),t})$$

$$\wedge \bigwedge_{-p(n) \le i \le p(n)} u(c_{i,a_1,t}, \dots, c_{i,a_s,t})$$

symbols on cells without head don't change in step t

$$D_{t} = \bigwedge_{-p(n) \leq i \leq p(n), a \in \Sigma} (h_{i,t} \vee (c_{i,a,t} \leftrightarrow c_{i,a,t+1}))$$

when M in state z reads a on cell i in step t:

• either this is not the case

$$\delta_{iazt}^1 = \overline{c_{i,a,t}} \vee \overline{h_{i,t}} \vee \overline{s_{z,t}}$$

• or δ^2

$$\delta_{iazt} = \delta^1_{iazt} \vee \delta^1_{iazt}$$

This is an implication

for all steps $t \in [0:p(n)]$ use variables

$$V_{t} = \{c_{i,a,t} : a \in \Sigma, -p(n) \le i \le p(n)\}$$

$$\cup \{h_{i,t} : -p(n) \le i \le p(n)\}$$

$$\cup \{s_{z,t} : z \in Z\}$$

interpretation

- $c_{i,a,t} = 1$: before step t cell i contains symbol a
- $h_{i,t} = 1$: before step t the head is on cell i
- $s_{z,z} = 1$: before step t machine M is in state z

V_t codes a configuration

$$conf(V_t) = u(s_{z_1,t}, \dots, s_{z_q,t})$$

$$\wedge u(h_{-p(n),t}, \dots, h_{p(n),t})$$

$$\wedge \bigwedge u(c_{i,a_1,t}, \dots, c_{i,a_s,t})$$

$$-p(n) \le i \le p(n)$$

symbols on cells without head don't change in step t

 $D_t = \bigwedge_{-p(n) \le i \le p(n), a \in \Sigma} (h_{i,t} \lor (c_{i,a,t} \leftrightarrow c_{i,a,t+1}))$

when M in state z reads a on cell i in step t:

• either this is not the case

$$\delta_{iazt}^1 = \overline{c_{i,a,t}} \vee \overline{h_{i,t}} \vee \overline{s_{z,t}}$$

• or δ^2

$$\delta_{iazt} = \delta^1_{iazt} \vee \delta^1_{iazt}$$

This is an implication

•

$$\delta^t = \bigwedge_{-p(n) \leq i \leq p(n), a \in \Sigma, z \in Z} \delta^t_{iazt}$$

• length $O(p(n)) \cdot |\delta_{iazt}|$

for all steps $t \in [0:p(n)]$ use variables

$$V_{t} = \{c_{i,a,t} : a \in \Sigma, -p(n) \le i \le p(n)\}$$

$$\cup \{h_{i,t} : -p(n) \le i \le p(n)\}$$

$$\cup \{s_{z,t} : z \in Z\}$$

interpretation

- $c_{i,a,t} = 1$: before step t cell i contains symbol a
- $h_{i,t} = 1$: before step t the head is on cell i
- $s_{z,z} = 1$: before step t machine M is in state z

V_t codes a configuration

$$conf(V_t) = u(s_{z_1,t}, \dots, s_{z_q,t})$$

$$\wedge u(h_{-p(n),t}, \dots, h_{p(n),t})$$

$$\wedge \bigwedge u(c_{i,a_1,t}, \dots, c_{i,a_s,t})$$

$$-p(n) \le i \le p(n)$$

symbols on cells without head don't change in step t

$$D_{t} = \bigwedge_{-p(n) \leq i \leq p(n), a \in \Sigma} (h_{i,t} \vee (c_{i,a,t} \leftrightarrow c_{i,a,t+1}))$$

when M in state z reads a on cell i in step t:

• either this is not the case

$$\delta_{iazt}^1 = \overline{c_{i,a,t}} \vee \overline{h_{i,t}} \vee \overline{s_{z,t}}$$

• or δ^2

$$\delta_{iazt} = \delta^1_{iazt} \vee \delta^1_{iazt}$$

This is an implication

•

$$\delta^t = \bigwedge_{-p(n) \le i \le p(n), a \in \Sigma, z \in Z} \delta^t_{iazt}$$

• length $O(p(n)) \cdot |\delta_{iazt}|$

Turing machine step

$$\tilde{\delta}_{iazt}^{2} = \bigvee_{\substack{(q,b,L) \in \delta(z,a)}} c_{i,b,t+1} \wedge h_{i-1,t+1} \wedge s_{q,t+1}$$

$$\vee \bigvee_{\substack{(q,b,N) \in \delta(z,a)}} c_{i,b,t+1} \wedge h_{i,t+1} \wedge s_{q,t+1}$$

$$\vee \bigvee_{\substack{(q,b,R) \in \delta(z,a)}} c_{i,b,t+1} \wedge h_{i+1,t+1} \wedge s_{q,t+1}$$

$$conf(V_t) = u(s_{z_1,t}, \dots, s_{z_q,t})$$

$$\wedge u(h_{-p(n),t}, \dots, h_{p(n),t})$$

$$\wedge \bigwedge_{-p(n) \le i \le p(n)} u(c_{i,a_1,t}, \dots, c_{i,a_s,t})$$

symbols on cells without head don't change in step t

•

$$D_t = \bigwedge_{-p(n) \le i \le p(n), a \in \Sigma} (h_{i,t} \lor (c_{i,a,t} \leftrightarrow c_{i,a,t+1}))$$

when M in state z reads a on cell i in step t:

• either this is not the case

$$\delta_{iazt}^1 = \overline{c_{i,a,t}} \vee \overline{h_{i,t}} \vee \overline{s_{z,t}}$$

• or δ^2

$$\delta_{iazt} = \delta^1_{iazt} \vee \delta^1_{iazt}$$

This is an implication

•

$$\delta^t = \bigwedge_{-p(n) \le i \le p(n), a \in \Sigma, z \in Z} \delta^t_{iazt}$$

• length $O(p(n)) \cdot |\delta_{iazt}|$

Turing machine step

$$\tilde{\delta}_{iazt}^{2} = \bigvee_{\substack{(q,b,L) \in \delta(z,a)}} c_{i,b,t+1} \wedge h_{i-1,t+1} \wedge s_{q,t+1}$$

$$\vee \bigvee_{\substack{(q,b,N) \in \delta(z,a)}} c_{i,b,t+1} \wedge h_{i,t+1} \wedge s_{q,t+1}$$

$$\vee \bigvee_{\substack{(q,b,R) \in \delta(z,a)}} c_{i,b,t+1} \wedge h_{i+1,t+1} \wedge s_{q,t+1}$$

$$conf(V_t) = u(s_{z_1,t}, \dots, s_{z_q,t})$$

$$\wedge u(h_{-p(n),t}, \dots, h_{p(n),t})$$

$$\wedge \bigwedge_{-p(n) \le i \le p(n)} u(c_{i,a_1,t}, \dots, c_{i,a_s,t})$$

symbols on cells without head don't change in step t

•

$$D_{t} = \bigwedge_{-p(n) \leq i \leq p(n), a \in \Sigma} (h_{i,t} \lor (c_{i,a,t} \leftrightarrow c_{i,a,t+1}))$$

when M in state z reads a on cell i in step t:

• either this is not the case

$$\delta_{iazt}^1 = \overline{c_{i,a,t}} \vee \overline{h_{i,t}} \vee \overline{s_{z,t}}$$

• or δ^2

$$\delta_{iazt} = \delta^1_{iazt} \vee \delta^1_{iazt}$$

This is an implication

•

$$\delta^t = \bigwedge_{-p(n) \le i \le p(n), a \in \Sigma, z \in Z} \delta^t_{iazt}$$

• length $O(p(n)) \cdot |\delta_{iazt}|$

Turing machine step

$$\begin{split} \tilde{\delta}_{iazt}^2 &= \bigvee_{\substack{(q,b,L) \in \delta(z,a)}} c_{i,b,t+1} \wedge h_{i-1,t+1} \wedge s_{q,t+1} \\ &\vee \bigvee_{\substack{(q,b,N) \in \delta(z,a)}} c_{i,b,t+1} \wedge h_{i,t+1} \wedge s_{q,t+1} \\ &\vee \bigvee_{\substack{(q,b,R) \in \delta(z,a)}} c_{i,b,t+1} \wedge h_{i+1,t+1} \wedge s_{q,t+1} \end{split}$$

- not CNF but length O(1). Obtain δ^1_{iazt} by converting $\tilde{\delta}^2_{iazt}$ into equivalent CNF with length O(1)
- length of δ^t : O(p(n))

$$conf(V_t) = u(s_{z_1,t}, \dots, s_{z_q,t})$$

$$\wedge u(h_{-p(n),t}, \dots, h_{p(n),t})$$

$$\wedge \bigwedge_{-p(n) \le i \le p(n)} u(c_{i,a_1,t}, \dots, c_{i,a_s,t})$$

symbols on cells without head don't change in step t

•

$$D_{t} = \bigwedge_{-p(n) \le i \le p(n), a \in \Sigma} (h_{i,t} \lor (c_{i,a,t} \leftrightarrow c_{i,a,t+1}))$$

when M in state z reads a on cell i in step t:

• either this is not the case

$$\delta_{iazt}^1 = \overline{c_{i,a,t}} \vee \overline{h_{i,t}} \vee \overline{s_{z,t}}$$

• or δ^2

$$\delta_{iazt} = \delta^1_{iazt} \vee \delta^1_{iazt}$$

This is an implication

•

$$\delta^t = \bigwedge_{-p(n) \le i \le p(n), a \in \Sigma, z \in Z} \delta^t_{iaz}$$

• length $O(p(n)) \cdot |\delta_{iazt}|$

Turing machine step

•

$$\begin{split} \tilde{\delta}_{iazt}^2 &= \bigvee_{\substack{(q,b,L) \in \delta(z,a)}} c_{i,b,t+1} \wedge h_{i-1,t+1} \wedge s_{q,t+1} \\ &\vee \bigvee_{\substack{(q,b,N) \in \delta(z,a)}} c_{i,b,t+1} \wedge h_{i,t+1} \wedge s_{q,t+1} \\ &\vee \bigvee_{\substack{(q,b,R) \in \delta(z,a)}} c_{i,b,t+1} \wedge h_{i+1,t+1} \wedge s_{q,t+1} \end{split}$$

- not CNF but length O(1). Obtain δ_{iazt}^1 by converting $\tilde{\delta}_{iazt}^2$ into equivalent CNF with length O(1)
- length of δ^t : O(p(n))

•

$$\varphi(conf(V_t) \wedge conf(V_{t+1}) \wedge \delta^t \wedge D_t) = 1$$

$$\Leftrightarrow k_t(\varphi) \vdash k_{t+1}(\varphi)$$

initial configuration

• with w = w[0: n-1]

$$A(w) = s_{z_0,0} \land (\bigwedge_{i \in [-(p(n):-1] \cup [n:p(n)]} c_{i,B,0}) \land (\bigwedge_{0 \le i \le n-1} c_{i,w[i],0})$$

• length O(p(n))

$$conf(V_t) = u(s_{z_1,t}, \dots, s_{z_q,t})$$

$$\wedge u(h_{-p(n),t}, \dots, h_{p(n),t})$$

$$\wedge \bigwedge_{-p(n) \le i \le p(n)} u(c_{i,a_1,t}, \dots, c_{i,a_s,t})$$

symbols on cells without head don't change in step t

•

$$D_{t} = \bigwedge_{-p(n) \le i \le p(n), a \in \Sigma} (h_{i,t} \lor (c_{i,a,t} \leftrightarrow c_{i,a,t+1}))$$

when M in state z reads a on cell i in step t:

• either this is not the case

$$\delta_{iazt}^1 = \overline{c_{i,a,t}} \vee \overline{h_{i,t}} \vee \overline{s_{z,t}}$$

• or δ^2

$$\delta_{iazt} = \delta^1_{iazt} \vee \delta^1_{iazt}$$

This is an implication

•

$$\delta^t = \bigwedge_{-p(n) \le i \le p(n), a \in \Sigma, z \in Z} \delta^t_{iazt}$$

• length $O(p(n)) \cdot |\delta_{iazt}|$

Turing machine step

•

$$\tilde{\delta}_{iazt}^{2} = \bigvee_{\substack{(q,b,L) \in \delta(z,a) \\ \forall \bigvee_{\substack{(q,b,N) \in \delta(z,a) \\ (q,b,N) \in \delta(z,a)}}} c_{i,b,t+1} \wedge h_{i,t+1} \wedge s_{q,t+1}$$

$$\vee \bigvee_{\substack{(q,b,R) \in \delta(z,a) \\ (q,b,R) \in \delta(z,a)}} c_{i,b,t+1} \wedge h_{i+1,t+1} \wedge s_{q,t+1}$$

•

$$\varphi(conf(V_t) \wedge conf(V_{t+1}) \wedge \delta^t \wedge D_t) = 1$$

$$\Leftrightarrow k_t(\varphi) \vdash k_{t+1}(\varphi)$$

initial configuration

• with w = w[0: n-1]

$$A(w) = s_{z_0,0} \land (\bigwedge_{i \in [-(p(n):-1] \cup [n:p(n)]} c_{i,B,0}) \land (\bigwedge_{0 \le i \le n-1} c_{i,w[i],0})$$

• length O(p(n))

$$\varphi(conf(V_0) \land A(w)) = 1$$

$$\Leftrightarrow k_0(\varphi) = B^{p(n)} z_0 w B^{p(n)-n+1}$$

polynomial reduction

•

$$f(w) = \bigwedge_{0 \le t \le p(n)} (conf(V_t))$$

$$\wedge \bigwedge_{0 \le t \le p(n)} (D_t \wedge \delta_t)$$

$$\wedge A(w)$$

$$\wedge (\bigvee_{z_a \in Z_A} s_{z_a, p(n)})$$

• length: $O(p^3(n))$

polynomial reduction

•

$$f(w) = \bigwedge_{0 \le t \le p(n)} (conf(V_t))$$

$$\wedge \bigwedge_{0 \le t \le p(n)} (D_t \wedge \delta_t)$$

$$\wedge A(w)$$

$$\wedge (\bigvee_{z_a \in Z_A} s_{z_a, p(n)})$$

- length: $O(p^3(n))$
- with binary or decimal indices of variables $O(p^3(n)\log n)$

•

$$\exists \varphi. \ \varphi(f(w)) = 1 \Leftrightarrow M \text{ accepts } w$$

Lemma 12. 3 - SAT is NP-complete

Proof. Replace long clauses c clauses in f(w) by equivalent expressions C in 3-CNF as indicated by lemma 10.

- This is a universe; thousands are known.
- M. Garey and D. Johnson: Computers and Intractability. W.H. Freeman and co, San Francisco 1979
- great stuff for a (not so difficult) seminar.
- here: only clique problem

- This is a universe; thousands are known.
- M. Garey and D. Johnson: Computers and Intractability. W.H. Freeman and co, San Francisco 1979
- great stuff for a (not so difficult) seminar.
- here: only clique problem

cliques

- Let G = (V, E) be undirected graph and $k \in \mathbb{N}$
- $V' \subseteq V$ is k-clique if
 - 1. |V'| = k and
 - 2. $\forall u, v \in V'$. $\{u, v\} \in E$

clique problem

$$CLIQUE = \{code(G, k) : G \text{ has } k\text{-clique}\}$$

- This is a universe; thousands are known.
- M. Garey and D. Johnson: Computers and Intractability. W.H. Freeman and co, San Francisco 1979
- great stuff for a (not so difficult) seminar.
- here: only clique problem

cliques

- Let G = (V, E) be undirected graph and $k \in \mathbb{N}$
- $V' \subseteq V$ is k-clique if
 - 1. |V'| = k and
 - 2. $\forall u, v \in V'$. $\{u, v\} \in E$

clique problem

$$CLIQUE = \{code(G, k) : G \text{ has } k\text{-clique}\}$$

Lemma 13. CLIQUE is NP complete

 $CLIQUE \in NP$: trivial. Guess clique and verify.

- This is a universe; thousands are known.
- M. Garey and D. Johnson: Computers and Intractability. W.H. Freeman and co, San Francisco 1979
- great stuff for a (not so difficult) seminar.
- here: only clique problem

cliques

- Let G = (V, E) be undirected graph and $k \in \mathbb{N}$
- $V' \subseteq V$ is k-clique if
 - 1. |V'| = k and
 - 2. $\forall u, v \in V'$. $\{u, v\} \in E$

clique problem

$$CLIQUE = \{code(G, k) : G \text{ has } k\text{-clique}\}$$

Lemma 13. CLIQUE is NP complete

 $CLIQUE \in NP$: trivial. Guess clique and verify.

CLIQUE is NP-hard: we show

$$3 - SAT \leq_p CLIQUE$$

- given
 - 1. conjunctive normal form

$$A = c_1 \land \ldots, \land c_t \in 3 - CNF$$

2. literals $L_{i,j}$

$$c_i = (L_{i,1} \lor \ldots \lor L_{i,n(i)}) \quad n(i) \le 3$$

• we construct garph G = (V, E) and clique size

$$k = t = \#$$
 clauses

such that

$$A \in 3 - SAT \leftrightarrow (G, k) \in CLIQUE$$

CLIQUE is NP-hard: we show

$$3 - SAT \leq_p CLIQUE$$

- given
 - 1. conjunctive normal form

$$A = c_1 \land \ldots, \land c_t \in 3 - CNF$$

2. literals $L_{i,j}$

$$c_i = (L_{i,1} \lor \ldots \lor L_{i,n(i)}) \quad n(i) \le 3$$

• we construct garph G = (V, E) and clique size

$$k = t = \#$$
 clauses

such that

$$A \in 3 - SAT \leftrightarrow (G, k) \in CLIQUE$$

nodes: the indices (i, j) of literals $L_{i,j}$

$$V = \{(i, j) : 1 \le i \le t, 1 \le j \le n(i)\}$$

edges: between indices of literals

$$E = \{\{(i,j), (i',j')\} : i \neq i', L_{i,j} \neq \overline{L_{i',j'}}\}$$

Interpretation:

- 1. $i \neq i'$: in different clauses
- 2. $L_{i,j} \neq \overline{L_{i',j'}}$: literals can be satisfied simultaneously

example:

$$A = (x_1 \vee \overline{x_2}) \wedge (x_1 \vee \overline{x_3}) \wedge (\overline{x_1} \vee x_2 \vee x_3)$$

Figure 2: the graph G generated for A

• claim A satisfiable iff G has a t-clique.

CLIQUE is NP-hard: we show

$$3 - SAT \leq_p CLIQUE$$

- given
 - 1. conjunctive normal form

$$A = c_1 \land \ldots, \land c_t \in 3 - CNF$$

2. literals $L_{i,j}$

$$c_i = (L_{i,1} \lor \ldots \lor L_{i,n(i)}) \quad n(i) \le 3$$

• we construct garph G = (V, E) and clique size

$$k = t = \#$$
 clauses

such that

$$A \in 3-SAT \leftrightarrow (G,k) \in CLIQUE$$

nodes: the indices (i, j) of literals $L_{i,j}$

$$V = \{(i, j) : 1 \le i \le t, 1 \le j \le n(i)\}$$

edges: between indices of literals

$$E = \{\{(i,j), (i',j')\} : i \neq i', L_{i,j} \neq \overline{L_{i',j'}}\}$$

Interpretation:

- 1. $i \neq i'$: in different clauses
- 2. $L_{i,j} \neq \overline{L_{i',j'}}$: literals can be satisfied simultaneously

example:

$$A = (x_1 \vee \overline{x_2}) \wedge (x_1 \vee \overline{x_3}) \wedge (\overline{x_1} \vee x_2 \vee x_3)$$

Figure 2: the graph G generated for A

• claim A satisfiable iff G has a t-clique.

 \rightarrow :

$$\varphi(A) = 1 \rightarrow \forall i \exists j(i). \ \varphi(L_{i,j(i)}) = 1$$

$$i \neq i' \rightarrow L_{i,j(i)} \neq \overline{L_{i',j(i')}}$$

 $\rightarrow \{(i,j(i)),(i,j(i'))\} \in E$
 $\rightarrow \{(i,j(i)): 1 \leq i \leq t\} \text{ is } t - \text{clique}$

CLIQUE is NP-hard: we show

$$3 - SAT \leq_p CLIQUE$$

- given
 - 1. conjunctive normal form

$$A = c_1 \land \ldots, \land c_t \in 3 - CNF$$

2. literals $L_{i,j}$

$$c_i = (L_{i,1} \lor \ldots \lor L_{i,n(i)}) \quad n(i) \le 3$$

• we construct garph G = (V, E) and clique size

$$k = t = \#$$
 clauses

such that

$$A \in 3 - SAT \leftrightarrow (G, k) \in CLIQUE$$

nodes: the indices (i, j) of literals $L_{i,j}$

$$V = \{(i, j) : 1 \le i \le t, 1 \le j \le n(i)\}$$

edges: between indices of literals

$$E = \{\{(i,j), (i',j')\} : i \neq i', L_{i,j} \neq \overline{L_{i',j'}}\}$$

Interpretation:

- 1. $i \neq i'$: in different clauses
- 2. $L_{i,j} \neq \overline{L_{i',j'}}$: literals can be satisfied simultaneously

example:

$$A = (x_1 \vee \overline{x_2}) \wedge (x_1 \vee \overline{x_3}) \wedge (\overline{x_1} \vee x_2 \vee x_3)$$

Figure 2: the graph G generated for A

• claim A satisfiable iff G has a t-clique.

←: let

$$\{(i_r, j_r) : 1 \le i \le r\}$$

be *t*-clique

$$i_r \neq i_{r'}$$
 for $r \neq r'$

assign

$$\varphi(L_{i_r,j_r})=1$$
 $1 \leq r \leq t$

well defined as

$$L_{i_r,j_r} \neq \overline{L_{i_{r'},j_{r'}}}$$

assigning remaining variables in each clause arbitrary values does not change $\varphi(A) = 1$