

PGADA:

Perturbation-Guided Adversarial Alignment for Few-shot Learning Under the Support-Query Shift

Siyang Jiang^{1,2}, Wei Ding¹, Hsi-Wen Chen¹, Ming-Syan Chen¹

May 18, 2022

- 1. National Taiwan University;
- 2. Huizhou University

Outlines

- Background
- ◆ Challenges
- Motivation
- Methodology
- ◆ Result
- **♦** Conclusion

Background

◆ Few-shot Learning (FSL)

Few-Shot Learning

Background

Support-Query Shift Few-shot Learning (SQS-FSL)

FSL SQS-FSL

Chanllenges

$$\mathsf{C}_{\mathrm{train}} \cap \mathsf{C}_{\mathrm{test}} = \emptyset$$

New shifts
$$D_{train} \cap D_{test} = \emptyset$$

Motivation

- Theoretical foundation
- ◆ A robust feature from images
- ◆ A better alignment plan for the support and query set

Motivation

Theoretical foundation

Theorem 1. The error of the transported embedding is

$$E[\|\hat{\phi}(x_{s,i}) - \hat{\phi}_{\sigma}(x_{s,i})\|_{2}^{2}] = \sqrt{d(\sigma_{s}^{2} + \sigma_{q}^{2})},$$

where $\hat{\phi}_{\sigma}(x_{s,i})$ is the transported embedding from the perturbed distribution $W_{\sigma}(\mu_s, \mu_q)$. $W_{\sigma}(\mu_s, \mu_q) \coloneqq W(\mu_s * \mathcal{N}_{\sigma_s}, \mu_q * \mathcal{N}_{\sigma_q})$ denotes the original support and query set distributions μ_s and μ_q being perturbed with Gaussian noises σ_s and σ_q , and σ_q is the convolution operator.

Methodology

◆ A robust feature from images

$$\min_{\phi,\theta} L_{ori} + \lambda_1 L_{adv} + \lambda_2 L_{self},$$

Methodology

◆ A better alignment plan for support and query set

Methodology

◆ A better alignment plan for support and query set

$$\pi^* = \arg\min_{\substack{x_{s,i} \sim \hat{\mu}_s \\ x_{q,j} \sim \hat{\mu}_q}} \beta w(x_{s,i}, x_{q,j}) \pi(x_{s,i}, x_{q,j}) + (1 - \beta) \pi(x_{s,i}, x_{q,j}) \log \pi(x_{s,i}, x_{q,j}),$$

Result

Dataset	CIFAR100				miniImageNet				FEMNIST			
	8-target		16-target		8-target		16-target		1-target			
12-13-00-00-02-1	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot	1-shot			
Few-shot Learning												
MatchingNet [30]	$30.71_{\pm 0.38}$	$41.15_{\pm0.45}$	$31.00_{\pm0.34}$	$41.83_{\pm 0.39}$	$35.26_{\pm0.50}$	$44.75_{\pm 0.55}$	$37.20_{\pm 0.48}$	$44.22_{\pm 0.52}$	$84.25_{\pm 0.71}$			
ProtoNet [26]	$30.02_{\pm0.40}$	$42.77_{\pm 0.47}$	$30.29_{\pm0.33}$	$42.52_{\pm0.41}$	$36.37_{\pm 0.50}$	$47.58_{\pm 0.57}$	$35.69_{\pm0.45}$	$46.29_{\pm 0.53}$	$84.31_{\pm 0.73}$			
TransPropNet [21]	$34.15_{\pm0.39}$	$47.39_{\pm0.42}$	$34.20_{\pm0.40}$	$44.31_{\pm0.38}$	$24.10_{\pm0.27}$	$27.24_{\pm0.33}$	$25.38_{\pm0.30}$	$28.05_{\pm0.30}$	$86.42_{\pm 0.76}$			
FTNET [10]	$28.91_{\pm0.37}$	$37.28_{\pm0.40}$	$28.66_{\pm0.31}$	$37.37_{\pm0.33}$	$39.02_{\pm0.46}$	$51.27_{\pm 0.45}$	$39.70_{\pm 0.40}$	$52.00_{\pm0.37}$	$86.13_{\pm 0.71}$			
TP [2]	$34.00 {\scriptstyle \pm 0.46}$	$49.71_{\pm 0.47}$	$35.55_{\pm0.41}$	$50.24_{\pm 0.39}$	$40.49_{\pm 0.54}$	$59.85_{\pm0.49}$	$43.83_{\pm 0.51}$	$55.87_{\pm0.42}$	$93.63_{\pm0.63}$			
Adversarial Data Augmentation												
MixUp [34]	$37.82_{\pm0.47}$	$52.57_{\pm 0.47}$	$38.52_{\pm 0.42}$	$53.33_{\pm 0.40}$	$42.98_{\pm 0.54}$	$57.22_{\pm 0.48}$	$43.64_{\pm0.48}$	$57.33_{\pm0.42}$	$97.22_{\pm 0.46}$			
CutMix [33]	$39.36 _{\pm 0.48}$	$54.76_{\pm0.48}$	$40.05_{\pm0.44}$	$55.44_{\pm0.40}$	$35.50_{\pm0.52}$	$45.50_{\pm 0.56}$	$35.78_{\pm0.48}$	$44.85_{\pm 0.52}$	$96.89_{\pm0.49}$			
Autoencoder [24]	$39.05_{\pm0.50}$	$53.24_{\pm0.47}$	$39.82_{\pm0.44}$	$53.88_{\pm0.40}$	$45.36_{\pm0.56}$	$57.69_{\pm 0.51}$	$45.65_{\pm 0.52}$	$57.39_{\pm0.44}$	$96.53_{\pm0.43}$			
AugGAN [16]	$39.54_{\pm0.50}$	$53.05_{\pm0.47}$	$39.50_{\pm0.45}$	$53.42_{\pm0.39}$	$44.65_{\pm 0.55}$	$57.55_{\pm 0.50}$	$44.91_{\pm 0.49}$	$57.10_{\pm0.42}$	$96.42_{\pm 0.52}$			
MaxEntropy [36]	$38.14_{\pm0.40}$	$51.02_{\pm 0.56}$	$38.21_{\pm 0.34}$	$51.33_{\pm 0.52}$	$48.21_{\pm 0.36}$	$57.67_{\pm 0.63}$	$48.99_{\pm0.21}$	$59.01_{\pm 0.44}$	$97.19_{\pm 0.51}$			
MaxUp [13]	$34.84_{\pm0.44}$	$47.51_{\pm0.46}$	$35.20_{\pm0.40}$	$47.63_{\pm0.39}$	$37.62_{\pm 0.55}$	$48.65_{\pm0.58}$	$38.13_{\pm 0.50}$	$49.19_{\pm0.51}$	$96.48_{\pm 0.53}$			
Ours												
PGADA (ProtoNet)	$42.16_{\pm0.52}$	$56.52_{\pm 0.47}$	$42.73_{\pm 0.46}$	$56.83_{\pm0.40}$	$55.44_{\pm0.61}$	$67.34_{\pm0.49}$	$55.69_{\pm0.62}$	$66.90_{\pm 0.50}$	$97.98_{\pm0.40}$			
PGADA (MatchingNet)	$42.25 {\scriptstyle \pm 0.53}$	$50.98_{\pm0.45}$	$42.60_{\pm0.45}$	$51.80_{\pm0.39}$	$56.15_{\pm0.61}$	$63.08_{\pm0.49}$	$56.12_{\pm 0.57}$	$63.61_{\pm0.45}$	$97.96_{\pm0.39}$			

Table 1: Accuracy comparison of the three datasets with two types of baselines.

Result

	CIFAR100					FEMNIST						
Dataset	8-target		16-target		8-target		16-target		1-target			
	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot	1-shot			
PGADA	$\bf 42.16_{\pm 0.52}$	$\bf 56.52_{\pm 0.47}$	$\bf 42.73_{\pm 0.46}$	$56.83_{\pm 0.40}$	$\bf 55.44_{\pm 0.61}$	$67.34_{\pm0.49}$	$55.69_{\pm 0.62}$	$66.90_{\pm 0.50}$	$97.98_{\pm0.40}$			
Generator												
fixed G	$38.58_{\pm0.48}$	$52.41_{\pm 0.47}$	$39.26_{\pm0.43}$	$52.67_{\pm 0.39}$	$43.50_{\pm 0.55}$	$55.65_{\pm 0.50}$	$43.48_{\pm 0.51}$	$55.42_{\pm0.43}$	$96.41_{\pm 0.52}$			
w/o noise	$37.16 {\scriptstyle \pm 0.47}$	$50.12_{\pm 0.46}$	$37.73 {\scriptstyle \pm 0.41}$	$50.50_{\pm 0.38}$	$44.06_{\pm0.56}$	$56.97_{\pm 0.48}$	$44.42_{\pm 0.49}$	$56.96_{\pm0.42}$	$96.89_{\pm0.48}$			
w/o KL	$37.30_{\pm0.47}$	$50.79_{\pm 0.46}$	$37.91_{\pm0.42}$	$51.35_{\pm 0.39}$	$44.22_{\pm 0.54}$	$55.04_{\pm0.49}$	$44.21_{\pm 0.49}$	$53.96_{\pm0.41}$	$96.49_{\pm0.48}$			
	Regularized Optimal Transport (OT)											
w/o OT	$35.76_{\pm0.41}$	$54.06_{\pm0.45}$	$35.66_{\pm0.35}$	$54.09_{\pm0.38}$	$44.30_{\pm 0.52}$	$61.23_{\pm 0.53}$	$44.15_{\pm0.46}$	$60.86_{\pm0.48}$	$94.03_{\pm0.48}$			
TP [2]	$34.00_{\pm0.46}$	$49.71_{\pm 0.47}$	$35.55_{\pm0.41}$	$50.24_{\pm 0.39}$	$40.49_{\pm 0.54}$	$59.85_{\pm0.49}$	$43.83_{\pm0.51}$	$55.87_{\pm0.42}$	$93.63_{\pm0.63}$			
TP w/o OT	$33.07_{\pm0.38}$	$50.99_{\pm0.44}$	$32.96_{\pm0.32}$	$50.71_{\pm 0.37}$	$38.07_{\pm0.45}$	$55.31_{\pm 0.51}$	$37.94_{\pm0.41}$	$55.11_{\pm 0.44}$	$91.84_{\pm 0.56}$			
Self-supervised Learning (SSL)												
w/o SSL	$39.33_{\pm 0.50}$	$53.66_{\pm0.47}$	$40.31_{\pm0.44}$	$54.23_{\pm 0.40}$	$47.96_{\pm 0.57}$	$61.38_{\pm0.49}$	$48.70_{\pm 0.52}$	$61.44_{\pm0.43}$	$97.07_{\pm0.48}$			

Table 2: The results of ablation studies.

Conclusion

- ◆ PGADA
 - ◆ Theoretical foundation
 - Clean representations
 - Accurate Alignment Plans

Thanks for your attention.

