Midterm exam: Real analysis II

There are 6 problems and the due date is 10/29.

- 1. Let $c_0(\mathbb{N}) = \{(a_n)_{n \in \mathbb{N}} : \lim_n a_n = 0\}$. Show that $c_0^* \cong l^1$ and $(l^1)^* \cong l^{\infty}$.
- 2. Let $f(x) = \frac{1}{2} x$ on [0,1) and extend f to be periodic on \mathbb{R} .
- a. Compute f(k).
- b. Use Parseval identity to derive

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$$

- 3. Suppose that $K_n(x)$ on \mathbb{T} satisfies that
- (i) For all n,

$$\int_0^1 K_n(x) \, dx = 1$$

(ii) There is M > 0 such that for all n,

$$\int_0^1 |K_n(x)| \, dx < M$$

(iii) For every $\delta > 0$,

$$\lim_{n \to \infty} \int_{\delta}^{1-\delta} |K_n(x)| \, dx = 0.$$

Show that if f is continuous on \mathbb{T} , then $f * K_n \to f$ uniformly.

4. Let

$$F_N(x) = \frac{1}{N} (D_0(x) + D_1(x) + \dots + D_{N-1}(x)),$$

where $D_m(x) = \sum_{k=-m}^m e^{2\pi i k x}$. Show that (1) $F_N(x) = \frac{1}{N} \frac{\sin^2(Nx/2)}{\sin^2(x/2)}$

- (2) F_N satisfies conditions (i) (iii) in problem 2.
- 5. Use Problems 3 and 4 to show that:
- (1) If f is continuous on \mathbb{T} and $\hat{f} = 0$ for all $n \in \mathbb{Z}$, then f = 0.
- (2) Show that continuous functions on \mathbb{T} can be uniformly approximated by trigonometric polynomials.
- 6. Let $f \in C(\mathbb{R})$ with $f \in L^1$ and $\hat{f} \in L^1$. Suppose that for all x

$$\int_{-\infty}^{\infty} f(y)e^{-\pi y^2 + 2\pi xy} dy = 0.$$

1

Show that f = 0. (Hint: Consider f * g, where $g(x) = e^{-\pi x^2}$.)