R

Yi-Ju Tseng

2020-07-20

Contents

			11
1	R 1	101	13
	1.1	R	14
	1.2		14
	1.3		14
	1.4		14
	1.5		14
	1.6		14
	1.7		14
	1.8	$\operatorname{Help} \ \ldots \ $	14
2	R		15
_	2.1	vector	15
	2.2	factor	15
	2.3	list	15
	2.4	matrix	15
	2.5	data.frame	15
	2.6	data.table	15
	2.7		15
3			17
•	3 1		17

4	CO	ONTENTS

4			19
	4.1		19
	4.2		19
	4.3		19
	4.4		19
	4.5	Functional programming	19
	4.6	purrr	19
	4.7	map2 family	19
	4.8		19
5			21
	5.1	Facebook	22
	5.2		22
6			23
	6.1	Tidy Data	25
	6.2		25
	6.3		25
	6.4	Subset	25
	6.5		25
	6.6		25
	6.7	$(Join) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	25
	6.8		25
	6.9		25
	6.10	Case study	25
7			27
	7.1		28
	7.2	data.table	28
	7.3	dplyr	28

CONTENTS 5

29
29
29
29
29
29
29
31
31
31
31
33
33
34
39
42
61
68
70
84
89
91
92
92
92
92
93
93
93
93

6	CONTENTS

95
 95
 95
 95

List of Tables

List of Figures

Placeholder

R 101

Placeholder

- 1.1 R
- 1.2
- 1.3
- 1.4
- 1.5
- 1.5.1 numeric
- 1.5.2 character
- 1.5.3 logic
- 1.5.4 (Date)
- 1.6
- 1.6.1
- 1.6.2
- 1.7
- 1.8 Help

\mathbf{R}

$ \nu$ $_{\rm I}$	000	hal	\sim	Or
	ace	ш	ш	e.

- 2.1 vector
- 2.1.1
- 2.1.2
- 2.2 factor
- 2.3 list
- 2.3.1
- 2.3.2
- 2.4 matrix
- 2.5 data.frame
- 2.6 data.table
- 2.7

16 CHAPTER 2. R

Placeholder

- 3.1
- 3.1.1 if-else
- 3.1.2 if-else if-else

18 CHAPTER 3.

-				
Р	lace	hΩ	ld	er

- 4.1
- 4.2
- 4.3
- 4.4
- 4.5 Functional programming
- 4.6 purrr
- 4.7 map2 family
- 4.8

20 CHAPTER 4.

22 CHAPTER 5.

- 5.0.1 ()
- 5.0.2
- 5.0.3 Open Data
- 5.0.4 API (Application programming interfaces)
- 5.0.5 XML
- 5.0.5.1 XML
- $5.0.5.2 \quad xml2$
- 5.0.6 Webscraping
- 5.1 Facebook
- 5.1.1 Graph API in R
- 5.1.2 Rfacebook package
- 5.2
- 5.2.1 .txt
- 5.2.2 CSV .csv
- 5.2.3 R .rds

Placeholder

24 CHAPTER 6.

6.1 Tidy Data

- 6.2
- 6.2.1
- 6.2.2
- 6.3
- 6.3.1
- 6.3.2
- 6.3.3 (Regular Expression)
- 6.3.3.1
- 6.3.3.2
- 6.3.3.3
- 6.3.3.4
- 6.3.3.5
- 6.3.3.6

6.4 Subset

- 6.4.1 ()
- 6.4.2
- 6.5
- 6.5.1 sort
- 6.5.2 order
- 6.6
- 6.7 (Join)
- 6.8
- 6.9
- 0.10

26 CHAPTER 6.

28 CHAPTER 7.

- 7.1
- 7.2 data.table
- 7.2.1 i
- 7.2.2 j
- 7.2.3 by
- 7.2.4
- 7.3 dplyr
- 7.3.1 select()
- 7.3.2 filter()
- 7.3.3 mutate()
- 7.3.4 summarise()
- 7.3.5 group_by()
- 7.3.6 arrange()
- 7.3.7 rename()
- 7.3.8

D	lace	ا ما	LJ	

- 8.1
- 8.2 ggplot2
- 8.2.1 qplot()
- 8.2.2 ggplot()
- 8.3 ggplot2+
- 8.3.1 Choropleth map
- 8.3.2 ggmap()
- 8.4 Taiwan
- 8.4.1 ggmap+
- 8.5 Treemap
- 8.6

30 CHAPTER 8.

Placeholder

- 9.1 ggvis
- 9.2 Plot.ly
- 9.3 Shiny

32 CHAPTER 9.

10.1

Data mining

- / • /
- •
- Supervised learning
 - Regression $\,$, , , $\,$ Classification $\,$ P/N, Yes/No, M/F, Sick/Not sick / $\,$ (A/B/C/D)
- Unsupervised learning

34 CHAPTER 10.

- Clustering
- Association Rules
- Linear Regression
- Logistic Regression
- Support Vector Machines
- Decision Trees
- K-Nearest Neighbor
- Neural Networks
- Deep Learning
- Hierarchical clustering
- K-means clustering
- Neural Networks
- Deep Learning

 \mathbf{R}

10.2 Regression

Regression Analysis

- Linear Regression
- Logistic Regression

10.2.1 Linear Regression

Linear Regression NBA NBA

```
# SportsAnalytics package
library(SportsAnalytics)
# 2015-2016
NBA1516<-fetch_NBAPlayerStatistics("15-16")

library(ggplot2)
ggplot(NBA1516,aes(x=TotalMinutesPlayed,y=TotalPoints))+
    geom_point()+geom_smooth(method = "glm")</pre>
```


36 CHAPTER 10.

• DNA

```
# e+01: 10^1 / e-04: 10^(-4)
\verb|glm(TotalPoints~TotalMinutesPlayed+FieldGoalsAttempted)|,
   data =NBA1516)
##
## Call: glm(formula = TotalPoints ~ TotalMinutesPlayed + FieldGoalsAttempted,
##
      data = NBA1516)
##
## Coefficients:
                         TotalMinutesPlayed FieldGoalsAttempted
##
           (Intercept)
            -1.799e+01
                                 -2.347e-04
                                                       1.256e+00
##
##
## Degrees of Freedom: 475 Total (i.e. Null); 473 Residual
## Null Deviance:
                     99360000
## Residual Deviance: 2160000 AIC: 5367
     -0.0002347 *
                     + 1.255794 *
                                     -17.99 \text{ TotalPoints} = -0.0002347
* TotalMinutesPlayed + 1.255794 * FieldGoalsAttempted -17.99
                      formula
glm(TotalPoints~TotalMinutesPlayed+FieldGoalsAttempted+Position,
   data =NBA1516)
##
## Call: glm(formula = TotalPoints ~ TotalMinutesPlayed + FieldGoalsAttempted +
##
       Position, data = NBA1516)
##
## Coefficients:
           (Intercept)
                         TotalMinutesPlayed FieldGoalsAttempted
##
##
             22.852223
                                  -0.006537
                                                         1.275721
##
            PositionPF
                                 PositionPG
                                                       PositionSF
            -39.416327
                                 -65.034646
                                                       -38.522299
##
##
            PositionSG
##
            -52.175144
##
## Degrees of Freedom: 474 Total (i.e. Null); 468 Residual
```

```
(1 observation deleted due to missingness)
## Null Deviance:
                      99080000
## Residual Deviance: 1975000 AIC: 5322
# e+01: 10^1 / e-04: 10^(-4)
    TotalPoints
                            TotalPoints = -0.0065 * TotalMinutesPlayed
+ 1.28 FieldGoalsAttempted +22.85 + 22.85 PositionPF + -65.03 * PositionPF
tionPG + -38.52 * PositionSF + -52.18 * PositionSG
                                                                            PG
             Dummy Variable PositionPF PositionPG PositionSF PositionSG
  • PositionPF=0
  • PositionPG=1
  • PositionSF=0
   • PositionSG=0
                    (C)
  • PositionPF=0
   • PositionPG=0
   • PositionSF=0
   • PositionSG=0
       Χ
     \mathbf{R}
             factor R
10.2.2 Logistic Regression
                           01 - / - / - family="binomial"
Logistic Regression
mydata <- read.csv("https://raw.githubusercontent.com/CGUIM-BigDataAnalysis/BigDataCGUIM/master/b</pre>
# GRE: , GPA: , rank:
head(mydata)
```

admit	gre	gpa	rank
0	380	3.61	3
1	660	3.67	3
1	800	4.00	1
1	640	3.19	4
0	520	2.93	4
1	760	3.00	2

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.989979073 1.139950936 -3.500132 0.0004650273
## gre 0.002264426 0.001093998 2.069864 0.0384651284
## gpa 0.804037549 0.331819298 2.423119 0.0153878974
## rank2 -0.675442928 0.316489661 -2.134171 0.0328288188
## rank3 -1.340203916 0.345306418 -3.881202 0.0001039415
## rank4 -1.551463677 0.417831633 -3.713131 0.0002047107
```

10.2.3

- Akaike's Information Criterion (AIC)
- Bayesian Information Criterion (BIC)

AIC BIC AIC

coefficients " "

```
sum2<-summary(TwoVar)
sum2$coefficients</pre>
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.798855e+01 5.659758251 -3.17832538 1.578333e-03
## TotalMinutesPlayed -2.347183e-04 0.009474631 -0.02477334 9.802462e-01
## FieldGoalsAttempted 1.255794e+00 0.022239494 56.46682752 2.474028e-212

sum3<-summary(ThreeVar)
sum3$coefficients
```

```
## (Intercept) 22.852222668 9.014714391 2.5349913 1.156964e-02
## TotalMinutesPlayed -0.006536874 0.009199968 -0.7105322 4.777281e-01
## FieldGoalsAttempted 1.275721212 0.021647176 58.9324535 1.144607e-218
## PositionPF -39.416326742 9.936541704 -3.9668053 8.425605e-05
## PositionPG -65.034646215 10.269250388 -6.3329497 5.648565e-10
## PositionSF -38.522298887 10.488170409 -3.6729284 2.674727e-04
## PositionSG -52.175143670 9.985331185 -5.2251791 2.625062e-07
```

10.3 Decision Trees

(Node)

Warning: package 'rpart.plot' was built under R version 4.0.2

Classification And Regression Tree (CART) rpart packages (Therneau and Atkinson, 2019)

```
install.packages("rpart")
 NBA
           / / /
                                      rpart(formula, data)
                            rpart()
library(rpart)
DT<-rpart(Position~Blocks+ThreesMade+Assists+Steals,data=NBA1516)
## n=475 (1 observation deleted due to missingness)
##
## node), split, n, loss, yval, (yprob)
         * denotes terminal node
##
##
     1) root 475 364 PF (0.15 0.23 0.21 0.18 0.23)
##
       2) ThreesMade< 2.5 132 74 C (0.44 0.35 0.098 0.053 0.061)
##
##
         4) Blocks>=4.5 89 37 C (0.58 0.38 0.011 0.011 0.011) *
         5) Blocks< 4.5 43 31 PF (0.14 0.28 0.28 0.14 0.16)
##
##
          10) Steals< 2.5 29 19 PF (0.17 0.34 0.14 0.21 0.14) *
##
          11) Steals>=2.5 14
                               6 PG (0.071 0.14 0.57 0 0.21) *
       3) ThreesMade>=2.5 343 242 SG (0.035 0.19 0.25 0.23 0.29)
##
         6) Assists>=170.5 96 39 PG (0.031 0.052 0.59 0.15 0.18) *
##
```

```
##
         7) Assists< 170.5 247 163 SG (0.036 0.24 0.12 0.26 0.34)
##
          14) Blocks>=20.5 80 42 PF (0.062 0.48 0 0.26 0.2)
            28) Steals< 59.5 58 21 PF (0.069 0.64 0 0.14 0.16) *
##
                                 9 SF (0.045 0.045 0 0.59 0.32) *
##
            29) Steals>=59.5 22
          15) Blocks < 20.5 167 99 SG (0.024 0.13 0.17 0.26 0.41)
##
##
            30) Assists < 81.5 110 68 SG (0.027 0.18 0.091 0.32 0.38)
##
              60) Blocks>=4.5 63 39 SF (0.032 0.29 0.016 0.38 0.29)
##
              120) ThreesMade< 13.5 19
                                          9 PF (0.11 0.53 0 0.26 0.11) *
               121) ThreesMade>=13.5 44 25 SF (0 0.18 0.023 0.43 0.36)
##
##
                 242) Blocks< 9.5 17
                                      7 SF (0 0.18 0.059 0.59 0.18) *
##
                 243) Blocks>=9.5 27 14 SG (0 0.19 0 0.33 0.48) *
##
              61) Blocks< 4.5 47 23 SG (0.021 0.043 0.19 0.23 0.51) *
            31) Assists>=81.5 57 31 SG (0.018 0.035 0.33 0.16 0.46)
##
##
              62) ThreesMade< 37 17
                                     5 PG (0 0.12 0.71 0.059 0.12) *
##
              63) ThreesMade>=37 40 16 SG (0.025 0 0.17 0.2 0.6) *
      SG SF PF C
par(mfrow=c(1,1), mar = rep(1,4)) #, , ,
plot(DT)
text(DT, use.n=F, all=F, cex=1)
```



```
# PG SG SF PF C

plot() rpart.plot package (Milborrow, 2019) prp()

install.packages("rpart.plot") #

library(rpart.plot)
prp(DT)
```


- Gini impurity
- Information gain
- Variance reduction

10.4 Clustering

Clustering

•

•

•

10.4.1 Hierarchical clustering

- An agglomerative approach
 - Find closest two things
 - Put them together
 - Find next closest
- Requires
 - A defined distance
 - A merging approach
- Produces
 - A tree showing how close things are to each other

distance

- Distance or similarity
 - Continuous euclidean distance
 - Continuous correlation similarity
 - Binary manhattan distance
- Pick a distance/similarity that makes sense for your problem

Example distances - Euclidean

$$\sqrt{(A_1-A_2)^2+(B_1-B_2)^2+\ldots+(Z_1-Z_2)^2}$$

Example distances - Manhattan

$$|A_1 - A_2| + |B_1 - B_2| + \dots + |Z_1 - Z_2|$$

Merging apporach

- Agglomerative
 - Single-linkage
 - Complete-linkage
 - Average-linkage

Hierarchical clustering - #1

Hierarchical clustering - #2

Hierarchical clustering - #3

dist()


```
mtcars.mxs<-as.matrix(mtcars)</pre>
d<-dist(mtcars.mxs) # euclidean</pre>
head(d)
## [1]
          0.6153251 \quad 54.9086059 \quad 98.1125212 \ 210.3374396 \quad 65.4717710 \ 241.4076490
             "euclidean", "maximum", "manhattan", "canberra", "binary" or
dist()
"minkowski"
d<-dist(mtcars.mxs, method="manhattan") # manhattan</pre>
head(d)
## [1]
          0.815 79.300 108.795 275.430 84.640 347.960
hclust
                   dist()
par(mar=rep(2,4),mfrow=c(1,1))
hc<-hclust(dist(mtcars.mxs)) # method</pre>
                                                 complete
plot(hc)
```

Cluster Dendrogram


```
par(mar=rep(2,4),mfrow=c(1,1))
hc<-hclust(dist(mtcars.mxs),method="average") #
plot(hc)</pre>
```



```
clusterCut <- cutree(hc, k=5) #5
sort(clusterCut)</pre>
```

##	Mazda RX4	Mazda RX4 Wag	Datsun 710	Merc 240D	
##	1	1	1	1	
##	Merc 230	Merc 280	Merc 280C	Fiat 128	
##	1	1	1	1	
##	Honda Civic	Toyota Corolla	Toyota Corona	Fiat X1-9	
##	1	1	1	1	
##	Porsche 914-2	Lotus Europa	Ferrari Dino	Volvo 142E	
##	1	1	1	1	
##	Hornet 4 Drive	Valiant	Merc 450SE	Merc 450SL	
##	2	2	2	2	
##	Merc 450SLC	Dodge Challenger	AMC Javelin	Hornet Sportabout	
##	2	2	2	3	
##	Duster 360	Camaro Z28	Pontiac Firebird	Ford Pantera L	
##	3	3	3	3	
##	Cadillac Fleetwood	Lincoln Continental	Chrysler Imperial	Maserati Bora	
##	4	4	4	5	


```
clusterCut <- cutree(hc,h =4) # =4 =4
sort(clusterCut)</pre>
```

##	Mazda RX4	Mazda RX4 Wag	Datsun 710	Hornet 4 Drive
##	1	1	2	3
##	Hornet Sportabout	Valiant	Duster 360	Merc 240D
##	4	5	6	7
##	Merc 230	Merc 280	Merc 280C	Merc 450SE
##	8	9	9	10
##	Merc 450SL	Merc 450SLC	Cadillac Fleetwood	Lincoln Continental
##	10	10	11	12
##	Chrysler Imperial	Fiat 128	Honda Civic	Toyota Corolla
##	13	14	15	16
##	Toyota Corona	Dodge Challenger	AMC Javelin	Camaro Z28
##	17	18	19	20
##	Pontiac Firebird	Fiat X1-9	Porsche 914-2	Lotus Europa
##	21	22	23	24
##	Ford Pantera L	Ferrari Dino	Maserati Bora	Volvo 142E
##	25	26	27	28

```
par(mar=rep(0.2,4),mfrow=c(1,1))
heatmap(mtcars.mxs)
```



```
distxy <- dist(mtcars.mxs)
hClustering <- hclust(distxy)
plot(hClustering)</pre>
```

Cluster Dendrogram

distxy hclust (*, "complete")

Hierarchical clustering: summary -

•

_

•

10.4.2 K-means clustering

•

_ _ _ /

•

```
- # of clusters
```

```
x<-scale(mtcars$hp[-1]);y<-scale(mtcars$mpg[-1])
plot(x,y,col="blue",pch=19,cex=2)
text(x+0.05,y+0.05,labels=labelCar)</pre>
```


kmeans()

• Important parameters: x, centers, iter.max, nstart

```
par(mar=rep(0.2,4))
plot(x,y,col=kmeans0bj$cluster,pch=19,cex=2)
points(kmeans0bj$centers,col=1:3,pch=3,cex=3,lwd=3)
```


Heatmaps

```
set.seed(1234)
dataMatrix <- as.matrix(dataFrame)[sample(1:12),]
kmeansObj <- kmeans(dataMatrix,centers=3)
par(mfrow=c(1,2), mar = c(2, 4, 0.1, 0.1))
image(t(dataMatrix)[,nrow(dataMatrix):1],yaxt="n")
image(t(dataMatrix)[,order(kmeansObj$cluster)],yaxt="n")</pre>
```


K-means

- # of clusters

 - cross validation/information theoryDetermining the number of clusters
- K-means

 - $\# \ {\rm of \ clusters} \\ \# \ {\rm of \ iterations}$

10.5 Association Rules

```
({\tt Market\ Basket\ Analysis}) \qquad \qquad {\bf Apriori} \\ ({\tt Boolean\ association\ rules}) \qquad \qquad {\tt R} \qquad {\tt arules}({\tt Hahsler\ et\ al.},\ 2019)
```

```
# Load the libraries
if (!require('arules')){
  install.packages("arules");
  library(arules) #for Apriori
}
```

```
if (!require('datasets')){
  install.packages("datasets");
  library(datasets) #for Groceries data
}
data(Groceries) # Load the data set
Groceries@data@Dim #169 9835
```

[1] 169 9835

	A	В	С	D	E	F	G	
1		semi-finished	margarine	ready soups				
2	tropical fruit	yogurt	coffee					
3	whole milk							
4	pip fruit	yogurt	cream chees	meat spread	s			
5	other vegeta	whole milk	condensed m	long life bake	ery product			
6	whole milk	butter	yogurt	rice	abrasive clea	iner		
7	rolls/buns							
8	other vegeta	UHT-milk	rolls/buns	bottled beer	liquor (appet	tizer)		
9	pot plants							
10	whole milk	cereals						
11	tropical fruit	other vegeta	white bread	bottled water	chocolate			
12	citrus fruit	tropical fruit	whole milk	butter	curd	yogurt	flour	bott
13	beef							
14	frankfurter	rolls/buns	soda					
15	chicken	tropical fruit						
16	butter	sugar	fruit/vegetak	newspapers				
17	fruit/vegetab	ole juice						
18	packaged fru	it/vegetables						
19	chocolate							
20	specialty bar							
21	other vegeta	bles						
22	butter milk	pastry						
23	whole milk							
24	tropical fruit	cream chees	processed ch	detergent	newspapers			
25	tropical fruit	root vegetab	other vegeta	frozen desse	rolls/buns	flour	sweet spread	saltv
26	bottled wate	canned beer						
27	yogurt							
28	sausage	rolls/buns	soda	chocolate				
29	other vegeta	bles						
30	brown bread	soda	fruit/vegetak	canned beer	newspapers	shopping bag	gs	
31	yogurt	beverages	bottled wate	specialty bar				
32	hamburger n	other vegeta	rolls/buns	spices	bottled water	hygiene artic	napkins	
					1			

arules apriori apriori

```
# Get the rules
rules <- apriori(Groceries, # data= Groceries</pre>
                 parameter = list(supp = 0.001, conf = 0.8), #
                 control = list(verbose=F)) # output
options(digits=2) # Only 2 digits
inspect(rules[1:5]) # Show the top 5 rules
##
       lhs
                                                  support confidence coverage lift
                                   rhs
## [1] {liquor,red/blush wine} => {bottled beer} 0.0019 0.90
                                                                      0.0021
                                                                               11.2
## [2] {curd,cereals}
                                => {whole milk}
                                                  0.0010 0.91
                                                                      0.0011
                                                                                3.6
## [3] {yogurt,cereals}
                                                                                3.2
                                => {whole milk}
                                                  0.0017 0.81
                                                                      0.0021
## [4] {butter, jam}
                                => {whole milk}
                                                  0.0010 0.83
                                                                      0.0012
                                                                                3.3
## [5] {soups,bottled beer}
                               => {whole milk}
                                                  0.0011 0.92
                                                                      0.0012
                                                                                3.6
##
       count
## [1] 19
## [2] 10
## [3] 17
## [4] 10
## [5] 11
 =>
  • Support:
  • Confidence:
                    Α
                           В
  • Lift:
       - lift=1: items on the left and right are independent.
         confidence
rules<-sort(rules, by="confidence", decreasing=TRUE) # confidence</pre>
inspect(rules[1:5]) # Show the top 5 rules
##
       lhs
                                rhs
                                             support confidence coverage lift count
## [1] {rice,
        sugar}
                            => {whole milk} 0.0012
                                                                   0.0012 3.9
                                                                                  12
##
## [2] {canned fish,
                            => {whole milk} 0.0011
                                                                   0.0011 3.9
        hygiene articles}
                                                                                  11
## [3] {root vegetables,
##
        butter,
        rice}
                            => {whole milk} 0.0010
                                                                   0.0010 3.9
##
                                                                                  10
## [4] {root vegetables,
```

[5] {whole milk} => {tropical fruit}

```
whipped/sour cream,
##
##
        flour}
                            => {whole milk} 0.0017
                                                                 0.0017 3.9
                                                                                17
## [5] {butter,
##
        soft cheese,
        domestic eggs}
                           => {whole milk} 0.0010
                                                             1 0.0010 3.9
                                                                                10
##
rulesR<-apriori(data=Groceries, parameter=list(supp=0.001,conf = 0.08),
        appearance = list(default="lhs", rhs="whole milk"), #
        control = list(verbose=F)) # output
rulesR<-sort(rulesR, decreasing=TRUE,by="confidence") # confidence</pre>
inspect(rulesR[1:5]) # Show the top 5 rules
##
                                            support confidence coverage lift count
       lhs
                               rhs
## [1] {rice,
                            => {whole milk} 0.0012
##
        sugar}
                                                             1
                                                                 0.0012 3.9
                                                                                12
## [2] {canned fish,
       hygiene articles}
                            => {whole milk} 0.0011
                                                             1
                                                                 0.0011 3.9
## [3] {root vegetables,
##
       butter,
       rice}
                            => {whole milk} 0.0010
                                                                 0.0010 3.9
                                                                                10
##
                                                             1
## [4] {root vegetables,
##
       whipped/sour cream,
##
        flour}
                            => {whole milk} 0.0017
                                                                 0.0017 3.9
                                                                                17
## [5] {butter,
##
        soft cheese.
##
        domestic eggs}
                           => {whole milk} 0.0010
                                                             1 0.0010 3.9
                                                                                10
rulesL<-apriori(data=Groceries, parameter=list(supp=0.001,conf = 0.15,minlen=2),
        appearance = list(default="rhs",lhs="whole milk"), #
        control = list(verbose=F)) # output
rulesL<-sort(rulesL, decreasing=TRUE, by="confidence") # confidence</pre>
inspect(rulesL[1:5]) # Show the top 5 rules
##
       lhs
                                          support confidence coverage lift count
                       rhs
## [1] {whole milk} => {other vegetables} 0.075
                                                 0.29
                                                             0.26
                                                                      1.5 736
                                                  0.22
## [2] {whole milk} => {rolls/buns}
                                          0.057
                                                             0.26
                                                                      1.2 557
## [3] {whole milk} => {yogurt}
                                          0.056 0.22
                                                             0.26
                                                                      1.6 551
## [4] {whole milk} => {root vegetables} 0.049 0.19
                                                             0.26
                                                                      1.8 481
```

0.042 0.17

0.26

1.6 416

```
if (!require('arulesViz')){
   install.packages("arulesViz");
   library(arulesViz)
}
#Mac->http://planspace.org/2013/01/17/fix-r-tcltk-dependency-problem-on-mac/
plot(rules,method="graph",interactive=TRUE,shading=NA) #
```


10.6 Open Source Packages

10.6.1 Prophet

Prophet Facebook 2017

Prophet for R

- C/C++ Tool
 - R Tools on Windows
 - Command Line Tools on OS X

install.packages('prophet')

R API

Prophet

10.6.2 TensorFlow

- Python 3.5.3 **64 bit**
 - Windows x86-64 executable installer
- TensorFlow 1.0.1
 - pip3 install -upgrade tensorflow
 - $-\,$ pip
3 install –upgrade tensorflow-gpu
- C/C++ Tool
 - R Tools on Windows
 - Command Line Tools on OS X
- tensorflow package for R

```
devtools::install_github("rstudio/tensorflow")
```

TensorFlow for R

- Locating TensorFlow (optional)
- Hello World

```
library(tensorflow)
sess = tf$Session()
hello <- tf$constant('Hello, TensorFlow!')
sess$run(hello)</pre>
```

10.6.3 MXNet

Amazon Install MXNet for R MXNet for R Tutorials

MXNet for R

```
install.packages("drat", repos="https://cran.rstudio.com")
drat:::addRepo("dmlc")
install.packages("mxnet")
```

10.7

- Training set, Development set:
- Test set, Validation set:

Training set Test set 2/3 Training set 1/3 Test set

10.7.

10.7.1 Regression

NBA

```
# SportsAnalytics package
if (!require('SportsAnalytics')){
   install.packages("SportsAnalytics")
```

library(SportsAnalytics)

```
}
# 2015-2016
NBA1516<-fetch_NBAPlayerStatistics("15-16")</pre>
NBA1516<-NBA1516[complete.cases(NBA1516),]</pre>
     Training set
     Test set
         Training set Training set
         Test set
sample(1:10,3) # 110
## [1] 8 3 4
sample(1:nrow(NBA1516),nrow(NBA1516)/3) #
                                              1/3
     [1] 93 122 389 66 175 424 379 468 304 108 131 343 41 115 228 328 416 298
##
   [19] 299 258 117 79 182 305 358 184 307 390 452 221 224
                                                           49 313 136 282 145
    [37] 123 264 234 96 22 291 297 208 465 342 57
                                                   10 406 248 365 153 431 83
##
    [55] 245 426 218 215 326 276 169 71 61 352 417 383 155 460 467
                                                                   60
                                                                       36 375
    [73] 19 137 126 158 319 116 440 102 214 314 448
                                                   85 392 160
                                                               77
                                                                   17 401 262
   [91] 130 181 267 316 356 163 461 277 396 134 265 403 249 435
                                                              40
                                                                  29 425 185
## [109] 294 88 400 363 411 335 86 142 147 414 188 355
                                                        26 372 418 28 101 296
## [127] 323 408 359 189 196 84 422 250 388 281 380 471
                                                        30 428 354 444 80
6 263
    1/3
           NBA
                 Training Test set
NBA1516$Test<-F #
# 1/3 Test set
NBA1516[sample(1:nrow(NBA1516),nrow(NBA1516)/3),"Test"]<-T</pre>
# Training set : Test set
c(sum(NBA1516$Test==F),sum(NBA1516$Test==T))
## [1] 317 158
    NBA1516\$Test == F
```

```
fit<-glm(TotalPoints~TotalMinutesPlayed+FieldGoalsAttempted+
            Position+ThreesAttempted+FreeThrowsAttempted,
            data =NBA1516[NBA1516$Test==F,])
summary(fit)$coefficients
##
                     Estimate Std. Error t value Pr(>|t|)
                                        1.24 2.2e-01
## (Intercept)
                      9.7517 7.8573
                                        -0.36 7.2e-01
## TotalMinutesPlayed
                      -0.0028
                                0.0078
## FieldGoalsAttempted 0.9921
                               0.0234 42.36 1.7e-130
## PositionPF
                   -14.5514
                                         -1.74 8.3e-02
                               8.3559
## PositionPG
                    -34.5378
                                         -3.78 1.9e-04
                                9.1477
                                        -1.53 1.3e-01
## PositionSF
                    -14.2217
                                9.2792
## PositionSG
                    -25.6675 9.3777 -2.74 6.6e-03
## ThreesAttempted
                     0.1016 0.0315 3.23 1.4e-03
## FreeThrowsAttempted 0.7903 0.0390
                                         20.28 1.2e-58
   stepwise
library(MASS)
## AIC ,
              direction = "backward"
##trace=FALSE:
finalModel_B<-stepAIC(fit,direction = "backward",trace=FALSE)</pre>
summary(finalModel_B)$coefficients
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      8.70 7.275 1.2 2.3e-01
## FieldGoalsAttempted 0.99
                                0.017 56.6 4.3e-165
## PositionPF
                     -14.34
                                8.322 -1.7 8.6e-02
                                9.068 -3.8 2.0e-04
## PositionPG
                     -34.14
                                9.246
## PositionSF
                     -14.01
                                         -1.5 1.3e-01
## PositionSG
                      -25.26
                                9.294 -2.7 6.9e-03
## ThreesAttempted
                       0.10
                                0.031
                                         3.2 1.4e-03
                                 0.039
                                          20.4 4.3e-59
## FreeThrowsAttempted
                        0.79
   stepwise
## AIC , direction = "forward"
finalModel_F<-stepAIC(fit,direction = "forward",trace=FALSE)</pre>
summary(finalModel_F)$coefficients
##
                     Estimate Std. Error t value Pr(>|t|)
                     9.7517 7.8573 1.24 2.2e-01
## (Intercept)
## TotalMinutesPlayed -0.0028
                                0.0078 -0.36 7.2e-01
```

```
## FieldGoalsAttempted 0.9921
                                   0.0234
                                           42.36 1.7e-130
## PositionPF
                      -14.5514
                                   8.3559
                                           -1.74 8.3e-02
## PositionPG
                                           -3.78 1.9e-04
                      -34.5378
                                   9.1477
## PositionSF
                      -14.2217
                                   9.2792
                                           -1.53 1.3e-01
## PositionSG
                      -25.6675
                                           -2.74 6.6e-03
                                   9.3777
## ThreesAttempted
                        0.1016
                                   0.0315
                                            3.23 1.4e-03
## FreeThrowsAttempted
                        0.7903
                                   0.0390
                                           20.28 1.2e-58
```

stepwise

```
## AIC , direction = "both"
finalModel_Both<-stepAIC(fit, direction = "both", trace=FALSE)
summary(finalModel_Both)$coefficients</pre>
```

##		Estimate Std	d. Error	t value	Pr(> t)
##	(Intercept)	8.70	7.275	1.2	2.3e-01
##	${\tt FieldGoalsAttempted}$	0.99	0.017	56.6	4.3e-165
##	PositionPF	-14.34	8.322	-1.7	8.6e-02
##	PositionPG	-34.14	9.068	-3.8	2.0e-04
##	PositionSF	-14.01	9.246	-1.5	1.3e-01
##	PositionSG	-25.26	9.294	-2.7	6.9e-03
##	ThreesAttempted	0.10	0.031	3.2	1.4e-03
##	FreeThrowsAttempted	0.79	0.039	20.4	4.3e-59

Test set predict

```
plot(x=predictPoint,y=NBA1516[NBA1516$Test==T,]$TotalPoints)
```


10.7.2 Logistic Regression

```
Training Test set Level 2 -> / ...

mydata <- read.csv("https://raw.githubusercontent.com/CGUIM-BigDataAnalysis/BigDataCGUIM/master/tmydata$admit <- factor(mydata$admit) # factor
mydata$rank <- factor(mydata$rank) # factor
mydata$Test<-F #
mydata[sample(1:nrow(mydata),nrow(mydata)/3),"Test"]<-T # 1/3 Test set
c(sum(mydata$Test==F),sum(mydata$Test==T)) # Training set : Test set

## [1] 267 133

# factor level: Level 2 1 -->Level 2
mydata$admit<-factor(mydata$admit,levels=c(0,1))
```

```
## glm(formula = admit ~ gpa + rank, family = "binomial", data = mydata[mydata$Test ==
      F, ])
##
##
## Deviance Residuals:
## Min 1Q Median
                             3Q
                                   Max
## -1.578 -0.893 -0.632 1.085
                                  2.146
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -4.022
                           1.437 -2.80 0.00514 **
## gpa
                1.232
                           0.400
                                   3.08 0.00206 **
## rank2
                -0.641
                           0.387 -1.66 0.09783 .
                -1.440
                                   -3.37 0.00074 ***
## rank3
                            0.427
## rank4
                -1.589
                            0.516 -3.08 0.00207 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 339.9 on 266 degrees of freedom
## Residual deviance: 309.8 on 262 degrees of freedom
## AIC: 319.8
## Number of Fisher Scoring iterations: 4
AdmitProb<-predict(finalFit, # Training set
                  newdata = mydata[mydata$Test==T,], #Test==T, test data
                  type="response") #
head(AdmitProb)
          2
              10
     1
                   11
                        13
## 0.27 0.28 0.54 0.34 0.71 0.30
table(AdmitProb<0.5, mydata[mydata$Test==T,]$admit) # row, column
##
##
           0 1
    FALSE 11 9
##
##
    TRUE 84 29
```

- Sensitivity
 Specificity
 Positive Predictive Value (PPV)
 Negative Predictive Value (NPV)

		Predicte
	Total population	Predicted Condition positive
True	condition positive	True positive
condition	condition negative	False Positive (Type I error)

- TP:
- TN:
- FP:
- FN:

			Patients with bowel cancer (as confirmed on endoscopy)		
			Condition positive	Condition negative	
	Fecal occult blood	Test outcome positive	True positive (TP) = 20	False positive (FP) = 180	Po
	screen test outcome	Test outcome negative	False negative (FN) = 10	True negative (TN) = 1820	Ne
			Sensitivity = TP / (TP + FN) = 20 / (20 + 10) ≈ 67%	Specificity = TN / (FP + TN) = 1820 / (180 + 1820) = 91%	

- Sensitivity
- Specificity
- Positive Predictive Value (PPV)
- Negative Predictive Value (NPV)

table(AdmitProb<0.5,mydata[mydata\$Test==T,]\$admit) # row,column</pre>

```
## 0 1
## FALSE 11 9
## TRUE 84 29
```

			h bowel cancer d on endoscopy)	
		Condition positive	Condition negative	
Fecal occult blood	Test outcome positive	True positive (TP) = 20	False positive (FP) = 180	Positive pred = TP / (TP = 20 / (20 - = 10%
screen test outcome	Test outcome negative	False negative (FN) = 10	True negative (TN) = 1820	Negative pre = TN / (FN = 1820 / (1 ≈ 99.5%
		Sensitivity = TP / (TP + FN) = 20 / (20 + 10)	Specificity = TN / (FP + TN) = 1820 / (180 + 1820)	

= 91%

≈ 67%

Factor w/ 2 levels "0","1": 1 1 2 1 2 1 1 1 1 1 ...

```
## - attr(*, "names")= chr [1:133] "1" "2" "10" "11" ...
library(caret) # install.packages("caret") # packages
sensitivity(AdmitAns,mydata[mydata$Test==T,]$admit)
## [1] 0.88
specificity(AdmitAns,mydata[mydata$Test==T,]$admit)
## [1] 0.24
posPredValue(AdmitAns,mydata[mydata$Test==T,]$admit)
## [1] 0.74
negPredValue(AdmitAns,mydata[mydata$Test==T,]$admit)
## [1] 0.45
10.7.3 Decision Trees
/ / / / -
if (!require('rpart')){
    install.packages("rpart"); library(rpart)
DT<-rpart(Position~Blocks+TotalRebounds+ThreesMade+Assists+Steals,
         data=NBA1516[NBA1516$Test==F,]) # Training set
         SG SF PF C
DT
## n= 317
##
## node), split, n, loss, yval, (yprob)
         * denotes terminal node
##
##
    1) root 317 240 PF (0.16 0.23 0.21 0.18 0.22)
      2) ThreesMade< 6.5 121 76 C (0.37 0.36 0.091 0.091 0.091)
##
        4) Blocks>=3.5 78 37 C (0.53 0.44 0.013 0.026 0)
##
```

```
##
          8) Blocks>=17 55 20 C (0.64 0.35 0.018 0 0)
           16) Assists< 40 16
                              1 C (0.94 0.063 0 0 0) *
##
##
           17) Assists>=40 39 19 C (0.51 0.46 0.026 0 0)
##
             34) Blocks>=88 12
                                1 C (0.92 0.083 0 0 0) *
             35) Blocks< 88 27 10 PF (0.33 0.63 0.037 0 0) *
##
##
          9) Blocks< 17 23 8 PF (0.26 0.65 0 0.087 0) *
##
        5) Blocks < 3.5 43 32 SG (0.093 0.21 0.23 0.21 0.26)
##
         10) Assists< 0.5 9
                              4 SF (0 0.33 0.11 0.56 0) *
         11) Assists>=0.5 34 23 SG (0.12 0.18 0.26 0.12 0.32)
##
##
           22) ThreesMade< 0.5 13 8 PG (0.31 0.23 0.38 0 0.077) *
##
           23) ThreesMade>=0.5 21 11 SG (0 0.14 0.19 0.19 0.48) *
##
      3) ThreesMade>=6.5 196 140 SG (0.031 0.15 0.29 0.23 0.3)
        6) Assists>=1.4e+02 75 32 PG (0.027 0.04 0.57 0.15 0.21)
##
##
         12) TotalRebounds< 2.8e+02 48
                                        9 PG (0 0 0.81 0 0.19) *
##
         13) TotalRebounds>=2.8e+02 27    16 SF (0.074 0.11 0.15 0.41 0.26) *
        7) Assists< 1.4e+02 121 79 SG (0.033 0.22 0.11 0.29 0.35)
##
##
         14) TotalRebounds>=2.9e+02 29 13 PF (0.069 0.55 0 0.34 0.034)
##
           28) Steals< 54 16 3 PF (0.12 0.81 0 0.062 0) *
           29) Steals>=54 13
                               4 SF (0 0.23 0 0.69 0.077) *
##
         15) TotalRebounds< 2.9e+02 92 51 SG (0.022 0.12 0.14 0.27 0.45)
##
           30) ThreesMade< 48 62 41 SG (0.032 0.15 0.18 0.31 0.34)
##
##
             60) TotalRebounds>=1.2e+02 21
                                            9 SF (0.048 0.24 0 0.57 0.14)
                                  3 PF (0.12 0.62 0 0.12 0.12) *
##
              120) Steals< 24 8
              121) Steals>=24 13
                                 2 SF (0 0 0 0.85 0.15) *
##
##
             61) TotalRebounds< 1.2e+02 41 23 SG (0.024 0.098 0.27 0.17 0.44)
              ##
##
              123) Assists< 43 27 13 SG (0.037 0.11 0.074 0.26 0.52) *
           31) ThreesMade>=48 30  10 SG (0 0.067 0.067 0.2 0.67) *
##
 / / / / -
           rpart.plot package prp()
 plot()
if (!require('rpart.plot')){
  install.packages("rpart.plot");
 library(rpart.plot)
}
```

prp(DT)

/ / / / -


```
posPred<-predict(DT,newdata= NBA1516[NBA1516$Test==T,]) #Test==T, test data
# class probabilities, type = "prob"
head(posPred)</pre>
```

C PF PG SF SG

S4 CHAPTER 10.

```
"SG"
## 4 "0"
             "0" "0.81" "0" "0.19" "Arron Afflalo"
## 10 "0"
             "0.23" "0"
                           "0.69" "0.08" "Tony Allen"
                                                          "SG"
## 15 "0.04" "0.11" "0.07" "0.26" "0.52" "James Anderson" "SG"
## 22 "0.26" "0.65" "0" "0.09" "0"
                                         "Joel Anthony"
                                                          "C"
## 30 "0.12" "0.62" "0"
                           "0.12" "0.12" "Luke Babbitt"
                                                          "SF"
## 36 "0.07" "0.11" "0.15" "0.41" "0.26" "Matt Barnes"
                                                          "SF"
    - -2
posPredC<-predict(DT,newdata= NBA1516[NBA1516$Test==T,],type = "class")
# type = "class"
head(posPredC)
## 4 10 15 22 30 36
## PG SF SG PF PF SF
## Levels: C PF PG SF SG
    - -2
resultC<-cbind(as.character(posPredC), NBA1516[NBA1516$Test==T,]$Name,
      as.character(NBA1516[NBA1516$Test==T,]$Position))
head(resultC)
##
        [,1] [,2]
                              [,3]
## [1,] "PG" "Arron Afflalo"
                              "SG"
## [2,] "SF" "Tony Allen"
                              "SG"
## [3,] "SG" "James Anderson" "SG"
## [4,] "PF" "Joel Anthony"
                              "C"
## [5,] "PF" "Luke Babbitt"
                              "SF"
## [6,] "SF" "Matt Barnes"
                              "SF"
```

10.8 Case Study

• Sonar, Mines vs. Rocks

1.1:

\$ V38

\$ V39

: num 0.61 0.106 0.676 0.881 0.322 ... : num 0.494 0.184 0.537 0.986 0.283 ...

#install.packages("mlbench") # package dataset

```
library(mlbench)
data(Sonar)
str(Sonar) #
                       factor
## 'data.frame': 208 obs. of 61 variables:
   $ V1
           : num 0.02 0.0453 0.0262 0.01 0.0762 0.0286 0.0317 0.0519 0.0223 0.0164 ...
    $ V2
                 0.0371 0.0523 0.0582 0.0171 0.0666 0.0453 0.0956 0.0548 0.0375 0.0173 ...
##
           : num
##
    $ V3
           : num 0.0428 0.0843 0.1099 0.0623 0.0481 ...
##
    $ V4
                 0.0207 0.0689 0.1083 0.0205 0.0394 ...
           : num
##
    $ V5
                 0.0954 0.1183 0.0974 0.0205 0.059 ...
           : num
##
    $ V6
                  0.0986 0.2583 0.228 0.0368 0.0649 ...
           : num
##
    $ V7
           : num 0.154 0.216 0.243 0.11 0.121 ...
    $ V8
                 0.16 0.348 0.377 0.128 0.247 ...
           : num
##
    $ V9
           : num
                  0.3109 0.3337 0.5598 0.0598 0.3564 ...
    $ V10
           : num 0.211 0.287 0.619 0.126 0.446 ...
##
   $ V11
          : num
                 0.1609 0.4918 0.6333 0.0881 0.4152
   $ V12
          : num
                 0.158 0.655 0.706 0.199 0.395 ...
##
   $ V13
                  0.2238 0.6919 0.5544 0.0184 0.4256
          : num
    $ V14
           : num
                 0.0645 0.7797 0.532 0.2261 0.4135 ...
   $ V15
           : num 0.066 0.746 0.648 0.173 0.453 ...
    $ V16
          : num 0.227 0.944 0.693 0.213 0.533 ...
    $ V17
                 0.31 1 0.6759 0.0693 0.7306 ...
##
           : num
##
    $ V18
           : num 0.3 0.887 0.755 0.228 0.619 ...
                 0.508 0.802 0.893 0.406 0.203 ...
##
   $ V19
           : num
##
   $ V20
          : num 0.48 0.782 0.862 0.397 0.464 ...
##
   $ V21
           : num
                 0.578 0.521 0.797 0.274 0.415 ...
##
           : num 0.507 0.405 0.674 0.369 0.429 ...
   $ V22
   $ V23
                 0.433 0.396 0.429 0.556 0.573 ...
           : num
    $ V24
                 0.555 0.391 0.365 0.485 0.54 ...
##
           : num
##
    $ V25
           : num
                  0.671 0.325 0.533 0.314 0.316 ...
##
   $ V26
                 0.641 0.32 0.241 0.533 0.229 ...
           : num
   $ V27
                  0.71 0.327 0.507 0.526 0.7 ...
           : num
##
   $ V28
                  0.808 0.277 0.853 0.252 1 ...
           : num
    $ V29
                 0.679 0.442 0.604 0.209 0.726 ...
           : num
   $ V30
           : num
                 0.386 0.203 0.851 0.356 0.472 ...
   $ V31
           : num
                 0.131 0.379 0.851 0.626 0.51 ...
           : num 0.26 0.295 0.504 0.734 0.546 ...
##
    $ V32
           : num 0.512 0.198 0.186 0.612 0.288 ...
##
    $ V33
##
   $ V34
           : num 0.7547 0.2341 0.2709 0.3497 0.0981 ...
##
    $ V35
           : num 0.854 0.131 0.423 0.395 0.195 ...
##
   $ V36
           : num 0.851 0.418 0.304 0.301 0.418 ...
   $ V37
           : num 0.669 0.384 0.612 0.541 0.46 ...
```

```
##
   $ V40 : num 0.274 0.197 0.472 0.917 0.243 ...
   $ V41 : num 0.051 0.167 0.465 0.612 0.198 ...
##
   $ V42 : num 0.2834 0.0583 0.2587 0.5006 0.2444 ...
   $ V43 : num 0.282 0.14 0.213 0.321 0.185 ...
   $ V44 : num 0.4256 0.1628 0.2222 0.3202 0.0841 ...
##
##
   $ V45 : num 0.2641 0.0621 0.2111 0.4295 0.0692 ...
   $ V46 : num 0.1386 0.0203 0.0176 0.3654 0.0528 ...
   $ V47 : num 0.1051 0.053 0.1348 0.2655 0.0357 ...
         : num 0.1343 0.0742 0.0744 0.1576 0.0085 ...
##
   $ V48
##
   $ V49 : num 0.0383 0.0409 0.013 0.0681 0.023 0.0264 0.0507 0.0285 0.0777 0.0092
   $ V50 : num 0.0324 0.0061 0.0106 0.0294 0.0046 0.0081 0.0159 0.0178 0.0439 0.019
##
   $ V51 : num 0.0232 0.0125 0.0033 0.0241 0.0156 0.0104 0.0195 0.0052 0.0061 0.011
   $ V52 : num 0.0027 0.0084 0.0232 0.0121 0.0031 0.0045 0.0201 0.0081 0.0145 0.009
##
   $ V53 : num 0.0065 0.0089 0.0166 0.0036 0.0054 0.0014 0.0248 0.012 0.0128 0.0223
##
   $ V54 : num 0.0159 0.0048 0.0095 0.015 0.0105 0.0038 0.0131 0.0045 0.0145 0.0179
   $ V55 : num 0.0072 0.0094 0.018 0.0085 0.011 0.0013 0.007 0.0121 0.0058 0.0084 .
##
   $ V56 : num 0.0167 0.0191 0.0244 0.0073 0.0015 0.0089 0.0138 0.0097 0.0049 0.006
##
   $ V57 : num 0.018 0.014 0.0316 0.005 0.0072 0.0057 0.0092 0.0085 0.0065 0.0032 .
##
   $ V58 : num 0.0084 0.0049 0.0164 0.0044 0.0048 0.0027 0.0143 0.0047 0.0093 0.003
   $ V59 : num 0.009 0.0052 0.0095 0.004 0.0107 0.0051 0.0036 0.0048 0.0059 0.0056
##
   $ V60 : num 0.0032 0.0044 0.0078 0.0117 0.0094 0.0062 0.0103 0.0053 0.0022 0.004
##
  $ Class: Factor w/ 2 levels "M", "R": 2 2 2 2 2 2 2 2 2 2 ...
```

Exploratory data analysis

Exploratory data analysis

```
library(ggplot2);library(reshape2) #install.packages(c("ggplot2", "reshape2"))
Sonar.m<-melt(Sonar,id.vars = c("Class"))
ggplot(Sonar.m)+geom_boxplot(aes(x=Class,y=value))+
    facet_wrap(~variable, nrow=5,scales = "free_y") #</pre>
```

```
        V1
        V2
        V3
        V4
        V5
        V6
        V7
        V8
        V9
        /11
        /11
        /11
        /12

        0.10
        0.20
        0.31
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.41
        0.
```

1.2:

•

•

- Class M: mine ->+, R: rock->-

factor

_

•

2:

1/3 1/5...

```
Sonar$Test<-F #
# 1/3 Test set
Sonar[sample(1:nrow(Sonar),nrow(Sonar)/3),"Test"]<-T
# Training set : Test set
c(sum(Sonar$Test==F),sum(Sonar$Test==T))
## [1] 139 69</pre>
```

3:

 $\mathtt{Test} \ == F$

Χ

```
fit<-glm(Class~., Sonar[Sonar$Test==F,],family="binomial")</pre>
finalFit<-stepAIC(fit,direction = "both",trace = F)</pre>
summary(finalFit)$coefficients
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                    8637
                              253120
                                       0.034
                                                  0.97
## V1
                  -27931
                              828078
                                     -0.034
                                                  0.97
## V4
                  -29704
                              865613
                                      -0.034
                                                  0.97
## V7
                   19584
                              569191
                                       0.034
                                                  0.97
## V12
                   -3853
                              115443
                                     -0.033
                                                  0.97
## V15
                                      -0.035
                   -4393
                              126979
                                                  0.97
## V16
                    9634
                              278340
                                       0.035
                                                  0.97
## V18
                   -6121
                              177507
                                     -0.034
                                                  0.97
## V24
                   -6950
                              204480
                                     -0.034
                                                  0.97
## V29
                    4569
                              132801
                                       0.034
                                                  0.97
## V30
                  -13257
                              385129
                                      -0.034
                                                  0.97
## V31
                   10863
                              313890
                                       0.035
                                                  0.97
                   -7224
                              207966 -0.035
## V35
                                                  0.97
## V36
                   13153
                              378812
                                       0.035
                                                  0.97
                              282208 -0.034
## V39
                   -9482
                                                  0.97
## V40
                                       0.034
                   10567
                              313200
                                                  0.97
## V42
                   -5664
                              167265
                                     -0.034
                                                  0.97
## V44
                  -11255
                              322840
                                      -0.035
                                                  0.97
## V48
                  -25776
                              746398 -0.035
                                                  0.97
## V56
                  159309
                             4633625
                                       0.034
                                                  0.97
## V58
                 -179362
                             5140624 -0.035
                                                  0.97
 4.1:
MinePred<-predict(finalFit,newdata = Sonar[Sonar$Test==T,])</pre>
MineAns<-ifelse(MinePred>0.5, "R", "M") #>0.5: Level 2
MineAns<-factor(MineAns,levels = c("M","R"))</pre>
MineAns
##
     2
         5
                     14
                              22
                                  24
                                      27
                                           32
                                               34
                                                   37
                                                        39
                                                            40
                                                                43
                                                                     45
                                                                         48
                                                                                 53
                                                                                      55
              6
                  8
                         17
                                                                             51
##
     R
         R
             R
                  М
                      R
                          R
                               М
                                   R
                                       Μ
                                            R
                                                R
                                                    R
                                                         R
                                                             R
                                                                 R
                                                                      М
                                                                          Μ
                                                                              R
                                                                                   R
##
    56
        60
            68
                 74
                     75
                         80
                              83
                                  84
                                      94
                                           95 103 105
                                                      109 112 113 115 123 126 128 130
##
     Μ
         R
             R
                  М
                      R
                          М
                               Μ
                                   М
                                       Μ
                                            R
                                                Μ
                                                    М
                                                         М
                                                                      М
                                                                          Μ
                                                                              Μ
                                                                                   М
                                                             М
                                                                 М
## 131 132 133 135 143 144 150 151 154 158 160 161 162 163 166 168 169 175 179 183
##
     М
         М
             R
                  R
                      М
                          М
                               Μ
                                   R
                                       М
                                            М
                                                М
                                                    М
                                                        М
                                                             М
                                                                 М
                                                                      М
                                                                          М
                                                                              М
                                                                                  R
```

Μ

М

М

10.9.

```
## 184 188 190 192 199 200 201 202 203
            R
                Μ
                   M
                       M M
        Μ
## Levels: M R
 4.2:
library(caret) # install.packages("caret") # packages
sensitivity(MineAns,Sonar[Sonar$Test==T,]$Class)
## [1] 0.87
specificity(MineAns,Sonar[Sonar$Test==T,]$Class)
## [1] 0.6
posPredValue(MineAns,Sonar[Sonar$Test==T,]$Class)
## [1] 0.74
negPredValue(MineAns,Sonar[Sonar$Test==T,]$Class)
## [1] 0.78
   UCI Machine Learning Repository
                  60
                                           (M)
                                                 (R)
                             V1 + V2 + V3 + V4 + V7 + V11 + V12 +
V13 + V17 + V18 + V22 + V24 + V25 + V26 + V30 + V31 + V32 + V38 + \\
V39 + V48 + V50 + V52 + V53 + V58 + V59 25
                       97% 89%
                                    89\%
                                          97\%
10.9
      - Machine Learning Foundations
      - Machine Learning Techniques
```

• Market Basket Analysis with R

• Deep Learning in R

Chapter 11

- 11.1 R + Hadoop
- 11.2 RHadoop (Cloudera)
- 11.2.1 /
- 11.2.2
- 11.2.3
- 11.2.3.1 Cloudera CDH QuickStart VM
- 11.2.3.2 R
- 11.2.3.3 RHadoop-1
- 11.2.3.4 RHadoop-2 rmr2
- 11.2.3.5 RHadoop-3 rhdfs
- 11.2.4
- 11.2.5
- 11.2.6 RStudio Server
- 11.3 RHadoop MapReduce: easy word count
- 11.4 R + Spark

Chapter 12

Placeholder

- 12.1 R
- 12.2 RStudio
- 12.3 RStudio
- 12.3.1
- 12.3.2 RStudio

Chapter 13

13.1

R YouTube

13.2

13.3

```
1. R101 [R ]
2. [R ]
3. [R ]
4. [R ]
5. [R ]
```

6. [R]

Yi-Ju Tseng

Lab:

Bibliography

- Hahsler, M., Buchta, C., Gruen, B., and Hornik, K. (2019). arules: Mining Association Rules and Frequent Itemsets. R package version 1.6-4.
- Milborrow, S. (2019). rpart.plot: Plot 'rpart' Models: An Enhanced Version of 'plot.rpart'. R package version 3.0.8.
- Therneau, T. and Atkinson, B. (2019). rpart: Recursive Partitioning and Regression Trees. R package version 4.1-15.