Propriedades mecânicas dos materiais

Propriedades mecânicas dos materiais

- Introdução
- Conceitos de tensão e deformação
- Curva tensão-deformação
- Esforços em elementos de máquinas
- Cisalhamento em componentes de paredes finas
- Círculo de Mohr no estado plano de tensões
- Conceitos de energia

- Introdução
- Conceitos de tensão e deformação
- Curva tensão-deformação
- Esforços em elementos de máquinas
- Cisalhamento em componentes de paredes finas
- Círculo de Mohr no estado plano de tensões
- Conceitos de energia

- Introdução
- Conceitos de tensão e deformação
- Curva tensão-deformação
- Esforços em elementos de máquinas
- Cisalhamento em componentes de paredes finas
- Círculo de Mohr no estado plano de tensões
- Conceitos de energia

- Introdução
- Conceitos de tensão e deformação
- Curva tensão-deformação
- Esforços em elementos de máquinas
- Cisalhamento em componentes de paredes finas
- Círculo de Mohr no estado plano de tensões
- Conceitos de energia

- Introdução
- Conceitos de tensão e deformação
- Curva tensão-deformação
- Esforços em elementos de máquinas
- Cisalhamento em componentes de paredes finas
- Círculo de Mohr no estado plano de tensões
- Conceitos de energia

- Introdução
- Conceitos de tensão e deformação
- Curva tensão-deformação
- Esforços em elementos de máquinas
- Cisalhamento em componentes de paredes finas
- Círculo de Mohr no estado plano de tensões
- Conceitos de energia

- Introdução
- Conceitos de tensão e deformação
- Curva tensão-deformação
- Esforços em elementos de máquinas
- Cisalhamento em componentes de paredes finas
- Círculo de Mohr no estado plano de tensões
- Conceitos de energia

Introdução

Testes de tração e compressão

corpo de prova

Testes de tração e compressão

Testes de tração e compressão

Resistência

Capacidade de um material suportar uma carga sem deformação excessiva, ou sem atingir a ruptura.

Testes de tração e compressão

Resistência

Capacidade de um material suportar uma carga sem deformação excessiva, ou sem atingir a ruptura.

Propriedade inerente ao material de que é confeccionado o corpo.

Resistência

Capacidade de um material suportar uma carga sem deformação excessiva, ou sem atingir a ruptura.

Propriedade inerente ao material de que é confeccionado o corpo.

Deve ser determinada experimentalmente.

Resistência

Capacidade de um material suportar uma carga sem deformação excessiva, ou sem atingir a ruptura.

Propriedade inerente ao material de que é confeccionado o corpo.

Deve ser determinada experimentalmente.

Não é possível medir tensão ou deformação, mas é possível medir força e deslocamento.

Testes de tração e compressão

Testes de tração e compressão

Testes de tração e compressão

Testes de tração e compressão

Testes de tração e compressão

Testes de tração e compressão

Testes de tração e compressão

Resistência

$$\sigma = F/A$$

 $\varepsilon = \Delta L/\tilde{L}$

Resistência

$$\sigma = F/A$$

Resistência

Resistência

Resistência

Resistência

Resistência

Diagrama tensão-deformação limite de proporcionalidade

Resistência

Diagrama tensão-deformação Sy limite de proporcionalidade

Resistência

Diagrama tensão-deformação Sy limite de proporcionalidade marca o início do escoamento

Resistência

Diagrama tensão-deformação Sy limite último ou limite de tração

Resistência

Resistência

Testes de tração e compressão

Resistência

Resistência

Diagrama tensão-deformação

região elástica

Testes de tração e compressão

Resistência

Diagrama tensão-deformação CORPO DE PROVA

Testes de tração e compressão

Resistência

Diagrama tensão-deformação CORPO DE PROVA

Testes de tração e compressão

Resistência

Diagrama tensão-deformação CORPO DE PROVA

Resistência

Resistência

Diagrama tensão-deformação Região de escoamento

Resistência

Diagrama tensão-deformação início da estricção Região de escoamento

Resistência

Testes de tração e compressão

Resistência

Aspecto do corpo de prova após o ensaio de tração

Resistência

Diferentes tipos de materiais

Resistência

Diferentes tipos de materiais

Resistência

Diferentes tipos de materiais

Resistência

Resistência

Diagrama tensão-deformação real

Resistência

Testes de tração e compressão

Comportamento mecânico de materiais dúteis e frágeis

A. Materiais dúteis

Testes de tração e compressão

Comportamento mecânico de materiais dúteis e frágeis

A. Materiais dúteis

Materiais que podem sofrer grande deformações permanentes.

Testes de tração e compressão

Comportamento mecânico de materiais dúteis e frágeis

A. Materiais dúteis

Materiais que podem sofrer grande deformações permanentes.

Capazes de absorver energia de choque.

Comportamento mecânico de materiais dúteis e frágeis

A. Materiais dúteis

Materiais que podem sofrer grande deformações permanentes.

Capazes de absorver energia de choque.

Ex.: Aço, ligas de Cobre, ligas de Alumínio, etc.

Comportamento mecânico de materiais dúteis e frágeis

A. Materiais dúteis

Materiais que podem sofrer grande deformações permanentes. Capazes de absorver energia de choque.

Ex.: Aço, ligas de Cobre, ligas de Alumínio, etc.

Medida de dutilidade: porcentagem de alongamento.

Comportamento mecânico de materiais dúteis e frágeis

A. Materiais dúteis

Materiais que podem sofrer grande deformações permanentes.

Capazes de absorver energia de choque.

Ex.: Aço, ligas de Cobre, ligas de Alumínio, etc.

Medida de dutilidade: porcentagem de alongamento.

Máxima dutilidade de um material ocorre na ruptura.

Comportamento mecânico de materiais dúteis e frágeis

A. Materiais dúteis

Materiais que podem sofrer grande deformações permanentes.

Capazes de absorver energia de choque.

Ex.: Aço, ligas de Cobre, ligas de Alumínio, etc.

Medida de dutilidade: porcentagem de alongamento.

Máxima dutilidade de um material ocorre na ruptura.

porcentagem de alongamento =
$$\frac{L_{rup} - L_o}{L_o}$$
 (100%)

Testes de tração e compressão

Comportamento mecânico de materiais dúteis e frágeis

A. Materiais dúteis

Outra medida de dutilidade é a porcentagem de redução de área.

Comportamento mecânico de materiais dúteis e frágeis

A. Materiais dúteis

Outra medida de dutilidade é a porcentagem de redução de área.

porcentagem de redução de área =
$$A_{rup} - A_o$$
 (100%)

Testes de tração e compressão

Comportamento mecânico de materiais dúteis e frágeis

A. Materiais dúteis

Outra medida de dutilidade é a porcentagem de redução de área.

Nem todo material apresenta claramente o término da região elástica.

Comportamento mecânico de materiais dúteis e frágeis

A. Materiais dúteis

Comportamento mecânico de materiais dúteis e frágeis

A. Materiais dúteis

Comportamento mecânico de materiais dúteis e frágeis

A. Materiais dúteis

Comportamento mecânico de materiais dúteis e frágeis

A. Materiais dúteis

Testes de tração e compressão

Comportamento mecânico de materiais dúteis e frágeis

B. Materiais frágeis

Testes de tração e compressão

Comportamento mecânico de materiais dúteis e frágeis

B. Materiais frágeis

Materiais que permitem pouca ou nenhuma deformação permanente.

Testes de tração e compressão

Comportamento mecânico de materiais dúteis e frágeis

B. Materiais frágeis

Materiais que permitem pouca ou nenhuma deformação permanente.

Ex.: Ferro fundido cinzento, cerâmicas, concreto, etc.

Comportamento mecânico de materiais dúteis e frágeis

B. Materiais frágeis

Materiais que permitem pouca ou nenhuma deformação permanente.

Ex.: Ferro fundido cinzento, cerâmicas, concreto, etc.

Comportamento mecânico de materiais dúteis e frágeis

B. Materiais frágeis

Aspecto de um corpo elástico submetido à compressão.

Comportamento mecânico de materiais dúteis e frágeis Lei de Hooke

Comportamento mecânico de materiais dúteis e frágeis

Lei de Hooke

Lei de Hooke

Lei de Hooke

Lei de Hooke

Lei de Hooke

Lei de Hooke

Comportamento mecânico de materiais dúteis e frágeis Módulo de ELASTICIDADE

Comportamento mecânico de materiais dúteis e frágeis Módulo de ELASTICIDADE

Propriedade do material;

Comportamento mecânico de materiais dúteis e frágeis Módulo de ELASTICIDADE

Propriedade do material;

Comportamento mecânico de materiais dúteis e frágeis Módulo de ELASTICIDADE

Propriedade do material;

Comportamento mecânico de materiais dúteis e frágeis Módulo de ELASTICIDADE

Propriedade do material;

Comportamento mecânico de materiais dúteis e frágeis Módulo de ELASTICIDADE

Propriedade do material;

Comportamento mecânico de materiais dúteis e frágeis Módulo de ELASTICIDADE

Propriedade do material;

Depende dos componentes do material;

Comportamento mecânico de materiais dúteis e frágeis Módulo de ELASTICIDADE

Propriedade do material;

Depende dos componentes do material;

Comportamento mecânico de materiais dúteis e frágeis Módulo de ELASTICIDADE

Propriedade do material;

Depende dos componentes do material;

Comportamento mecânico de materiais dúteis e frágeis Módulo de ELASTICIDADE

Propriedade do material;

Depende dos componentes do material;

Comportamento mecânico de materiais dúteis e frágeis Módulo de ELASTICIDADE

Propriedade do material;

Depende dos componentes do material;

Comportamento mecânico de materiais dúteis e frágeis Módulo de ELASTICIDADE

Propriedade do material;

Depende dos componentes do material;

Comportamento mecânico de materiais dúteis e frágeis Módulo de ELASTICIDADE

Propriedade do material;

Depende dos componentes do material;

Comportamento mecânico de materiais dúteis e frágeis Módulo de ELASTICIDADE

Propriedade do material;

Depende dos componentes do material;

Materiais dúteis

Diagrama Tensão (σ) vs Deformação (ε)

Diagrama Tensão (σ) vs Deformação (ε)

Diagrama Tensão (σ) vs Deformação (ε)

Diagrama Tensão (σ) vs Deformação (ε)

Materiais dúteis

Materiais dúteis

Materiais dúteis

Materiais dúteis

Endurecimento por deformação

Materiais dúteis

Materiais dúteis

Materiais dúteis

Energia de deformação

Energia de deformação

Energia de deformação

Energia de deformação

Energia de deformação

Energia de deformação

Trabalho realizado por uma força externa aplicada sobre uma barra = energia interna resultante da deformação da barra

$$\Delta F = \sigma \cdot \Delta A = \sigma \cdot \Delta y \cdot \Delta z$$

Trabalho realizado por uma força externa aplicada sobre uma barra = energia interna resultante da deformação da barra

$$\Delta F = \sigma \cdot \Delta A = \sigma \cdot \Delta y \cdot \Delta z$$

o deslocamento será

Trabalho realizado por uma força externa aplicada sobre uma barra = energia interna resultante da deformação da barra

$$\Delta F = \sigma \cdot \Delta A = \sigma \cdot \Delta y \cdot \Delta z$$

o deslocamento será

$$d = \epsilon . \Delta x$$

Trabalho realizado por uma força externa aplicada sobre uma barra = energia interna resultante da deformação da barra

$$\Delta F = \sigma \cdot \Delta A = \sigma \cdot \Delta y \cdot \Delta z$$

o deslocamento será

$$d = \epsilon \cdot \Delta x$$

logo, o trabalho é dado por

Trabalho realizado por uma força externa aplicada sobre uma barra = energia interna resultante da deformação da barra

$$\Delta F = \sigma \cdot \Delta A = \sigma \cdot \Delta y \cdot \Delta z$$

o deslocamento será

$$d = \epsilon . \Delta x$$

logo, o trabalho é dado por

$$\Delta W = \frac{1}{2} \Delta F$$
. d

Trabalho realizado por uma força externa aplicada sobre uma barra = energia interna resultante da deformação da barra

$$\Delta F = \sigma \cdot \Delta A = \sigma \cdot \Delta y \cdot \Delta z$$

o deslocamento será

$$d = \epsilon \cdot \Delta x$$

logo, o trabalho é dado por

$$\Delta W = \frac{1}{2} \Delta F \cdot d$$

$$\Delta W = \frac{1}{2} \sigma \cdot \epsilon \cdot (\Delta x \cdot \Delta y \cdot \Delta z)$$

Energia de deformação

Trabalho realizado por uma força externa aplicada sobre uma barra = energia interna resultante da deformação da barra

portanto, a energia interna será

Trabalho realizado por uma força externa aplicada sobre uma barra = energia interna resultante da deformação da barra

portanto, a energia interna será

$$\Delta U = -\frac{1}{2} \sigma \cdot \epsilon \cdot \Delta V$$

Trabalho realizado por uma força externa aplicada sobre uma barra = energia interna resultante da deformação da barra

$$\Delta U = -\frac{1}{2} \sigma \cdot \epsilon \cdot \Delta V$$

Densidade de energia interna de deformação

Trabalho realizado por uma força externa aplicada sobre uma barra = energia interna resultante da deformação da barra

ΔF

$$\Delta U = -\frac{1}{2} \sigma \cdot \epsilon \cdot \Delta V$$

Densidade de energia interna de deformação

$$u = (\Delta U/\Delta V) = \frac{1}{2} \sigma . ε$$

Energia de deformação

Quando $\sigma = S_y$, a deformação é dada por $\epsilon = S_y/E$. Assim,

Energia de deformação

Quando $\sigma = S_y$, a deformação é dada por $\epsilon = S_y/E$. Assim,

$$u_R = \frac{1}{2} S_y \cdot (S_y/E) = \frac{1}{2} (S_y^2/E),$$

Energia de deformação

Quando $\sigma = S_y$, a deformação é dada por $\epsilon = S_y/E$. Assim,

$$U_R = \frac{1}{2} S_y \cdot (S_y/E) = \frac{1}{2} (S_y^2/E),$$

Quando $\sigma = S_y$, a deformação é dada por $\epsilon = S_y/E$. Assim,

$$u_R = \frac{1}{2} S_y \cdot (S_y/E) = \frac{1}{2} (S_y^2/E),$$

Quando $\sigma = S_y$, a deformação é dada por $\epsilon = S_y/E$. Assim,

$$u_R = \frac{1}{2} S_y \cdot (S_y/E) = \frac{1}{2} (S_y^2/E),$$

Quando $\sigma = S_y$, a deformação é dada por $\epsilon = S_y/E$. Assim,

$$u_R = \frac{1}{2} S_y \cdot (S_y/E) = \frac{1}{2} (S_y^2/E),$$

A área sombreada do diagrama mostra a tenacidade do material

A área sombreada do diagrama mostra a tenacidade do material

A área sombreada do diagrama mostra a tenacidade do material

$$u_T = \int_0^{\epsilon_r} \sigma d\epsilon$$

Coeficiente de Poisson

Deformação longitudinal $\epsilon_L = \Delta L/L$

Coeficiente de Poisson

Deformação longitudinal $\epsilon_L = \Delta L/L$

Deformação transversal

 $\varepsilon_t = \Delta D/D$

Deformação longitudinal

$$\varepsilon_L = \Delta L/L$$

Deformação transversal

$$\varepsilon_t = \Delta D/D$$

Deformação longitudinal

$$\varepsilon_L = \Delta L/L$$

Deformação transversal

$$\varepsilon_t = \Delta D/D$$
 (<0!)

S.D.Poisson ⇒ deformações são proporcionais na região elástica.

$$v = - \varepsilon_t / \varepsilon_L$$

Variação do Coeficiente de Poisson para materiais homogêneos isotrópicos

1/4 < v < 1/3

FIM