Final de Lógica

- 1. Sean (P,\leq) y (P',\leq') posets. Supongamos F es un isomorfismo de (P,\leq) en $(P',\leq').$
 - (a) Para $x, y \in P$, tenemos que x < y si y solo si F(x) <' F(y).
 - (b) Para $x,y,z\in P$, tenemos que $z=\inf\{x,y\}$ si y solo si $F(z)=\inf\{F(x),F(y)\}$
- 2. Sea τ un tipo y sean ${\bf A}$ y ${\bf B}$ estructuras de tipo τ . Supongamos que $F:{\bf A}\to{\bf B}$ es un isomorfismo. Sea $\varphi\in F^{\tau}$. Entonces

$$\mathbf{A} \models \varphi[(a_1, a_2, \ldots)] \text{ sii } \mathbf{B} \models \varphi[(F(a_1), F(a_2), \ldots)]$$

para cada $(a_1, a_2, ...) \in A^{\mathbf{N}}$.

3. Sea $\tau = (\emptyset, \{\times^2\}, \{\text{Conmut}^1, \text{Reemp}^2\}, a)$ y sea Σ dado por

$$\forall z \; (\text{Conmut}(z) \to \forall x \; (x \times z = z \times x))$$

 $\forall x \exists z \; (\text{Reemp}(x, z) \land \text{Conmut}(z))$

$$\forall x, z \; (\text{Reemp}(x, z) \to \forall y \; ((x \times y = z \times y) \land (y \times x = y \times z)))$$

Dar una prueba que atestigüe $(\Sigma, \tau) \vdash \forall x, y \ (x \times y = y \times x).$