Series 3 Warmup

Numerical methods for PDEs Last edited: April 7, 2017 Due date: None at 23:59

Template codes are available on the course's webpage at https://moodle-app2.let.ethz.ch/course/view.php?id=3089.

This is a warmup problem. You do **NOT need to hand in** this problem.

Exercise 1 Transient heat equation in 1D

We consider the following one-dimensional, time dependent heat equation:

$$\frac{\partial u}{\partial t}(x,t) - \frac{\partial^2 u}{\partial x^2}(x,t) = 0, \qquad (x,t) \in (0,1) \times (0,T), \tag{1}$$

$$u(0,t) = g_L(t), \quad u(1,t) = g_R(t),$$
 $t \in [0,T],$ (2)

$$u(x,0) = u_0(x), x \in [0,1], (3)$$

where T > 0 is the final time, and $g_L, g_R : [0, T] \longrightarrow \mathbb{R}$ are Dirichlet boundary conditions.

We first discretize the above equation with respect to the spatial variable, using centered finite differences.

To this aim, we subdivide the interval [0,1] in N+1 subintervals of equal length, where N is the number of *interior* grid points x_1, \ldots, x_N , and $x_0 = 0$, $x_{N+1} = 1$.

The space discretization leads to a semidiscrete system of equations associated to (1):

$$\frac{\partial \boldsymbol{u}}{\partial t}(t) + \mathbf{A}\boldsymbol{u}(t) = \boldsymbol{G}(t),\tag{4}$$

where $\mathbf{A} \in \mathbb{R}^{N \times N}$ and $\mathbf{u} = \{u_i\}_{i=1}^N$ denotes the approximate values of the solution at the interior grid points. $\mathbf{G} : [0, T] \longrightarrow \mathbb{R}^N$ is a source term coming from the boundary conditions.

Hint: G appears from the fact that the discretization for u_1 and u_N includes respectively $u_0 = g_L(t)$ and $u_{N+1} = g_R(t)$

1a)

Denote by h the mesh width, that is $h = \frac{1}{N+1}$. Write down the matrix **A** and the vector G(t) explicitly.

To fully discretize (1), we still need to apply a time discretization to (4).

1b)

Apply the forward Euler scheme to (4), denoting by $\boldsymbol{u}^k = \left\{u_i^k\right\}_{i=1}^N$ the approximate value of the vector \boldsymbol{u} at time k, for $k = 0, \ldots, K$, and by $\Delta t = \frac{T}{K}$ the time step. How does the update formula at each time step look like?

1c)

In the template file heat_1dfd.cpp, implement the function

```
void createPoissonMatrix(SparseMatrix& A, int N),
```

where typedef Eigen::SparseMatrix<double> SparseMatrix. This function computes the matrix A from (4). Here the input parameter N denotes the number of *interior* grid points. Assume that the size of the input matrix A has not been initialized.

Hint: You can copy the routine directly from the solution to an old assignment and do very small modifications to obtain the desired matrix!

1d)

In the template file heat_1dfd.cpp, implement the function

(with typedef Eigen::VectorXd Vector). The input and output parameters are specified in the template file.

1e)

With the help of the script sol_movie.m provided in the handout, observe a movie of the approximate solution to (1) when using the forward Euler scheme. Set the parameters to T=0.3, $\Delta t=0.0002$, N=40 and $u_0(x)=1+\min(2x,2-2x)$ the hat function, $x\in[0,1]$. Take $g_L(t)=g_R(t)=\exp(-10t)$. What happens to the energy of the system? How does it change if $g_L(t)=0$, $g_R(t)=0$? And if $g_L(t)=1$, $g_R(t)=0$?

1f)

We now consider an implicit timestepping. Namely, we derive the Crank-Nicolson scheme. Start with the semidiscrete formulation (4) and integrate over $[t^k, t^{k+1}]$. Use the trapezoidal rule for the integrals involving $\mathbf{A}\boldsymbol{u}$ and G(t), and the approximation $\boldsymbol{u}^k \approx \boldsymbol{u}(t^k)$. Write down the system of equations to be solved at each timestep (this should agree with the Crank-Nicolson scheme stated in the script).

1g)

In the template file heat_1dfd.cpp, implement the function

```
void CrankNicolson(Eigen::MatrixXd & u, Vector & time, const Vector u0, double dt, double T,
int N)
```

(with typedef Eigen::VectorXd Vector). The input and output parameters are specified in the template file.

Hint: In this exercise, you may want to compute I - M, where M is a certain sparse matrix and I is the identity. Due to Eigen typecasting, if I is not explicitly defined as a sparse matrix (e.g. it is generated with Eigen::MatrixXd::Identity), I - M will not be a sparse matrix, and sparse solvers will not work. There are several ways to go around this; a simple one is to define I as sparse too with:

```
SparseMatrix I(N,N);
I.setIdentity();
```

1h)

With the help of the script sol_movie.m provided in the handout, observe a movie of the approximate solution to (1) when using the Crank-Nicolson timestepping scheme. Set the parameters as in subproblem 1e). Concerning the energetic behavior of the system, you should observe the same qualitative behavior as in subproblem 1h).

1i)

Compute an approximate solution to (1) with both the forward Euler and the Crank-Nicolson schemes. Set the parameters to T=0.3, N=20, $\Delta t=0.001$ and $u_0(x)=1+\min(2x,2-2x)$, $x\in[0,1]$, $g_L(t)=g_R(t)=\exp(-10t)$. Use now the script sol_movie.m provided in the handout to observe the movie for each of the two solutions. Repeat the experiment with N=20, $\Delta t=0.01$ and with N=5, $\Delta t=0.01$. What do you observe?

1j)

Give an explanation for the observations from subproblem 1i). Which condition has to be fulfilled by Δt when using the explicit Euler scheme?