

WHAT IS CLAIMED IS:

1. An orthogonal frequency division multiplex modem circuit which uses a plurality of subcarriers for communication, and transmits and receives a plurality of communication channels,
5 wherein each of a plurality of sub carrier groups into which the plurality of subcarriers are divided is assigned to each of the plurality of communication channels.
2. The orthogonal frequency division multiplex modem circuit according to claim 1, wherein the assignment of sub carrier
10 groups to the respective communication channels is adaptively performed.
3. The orthogonal frequency division multiplex modem circuit according to claim 1, wherein a modulation system given to each of the sub carrier groups is changed according to QoS (Quality
15 of Service) needed for a corresponding communication channel.
4. The orthogonal frequency division multiplex modem circuit according to claim 1, wherein means for randomizing alignment of the respective subcarriers on a frequency axis is included in a transmitting side, and means for de-randomizing a signal
20 where the alignment is randomized is included in a receiving side.
5. The orthogonal frequency division multiplex modem circuit according to claim 2, wherein all subcarriers are assigned to

asinglechannelasrequired,whilecommunicationofotherchannels
is stopped.

6. The orthogonal frequency division multiplex modem circuit
according to claim 3, wherein the changeable modulation system
5 uses at least any one of BPSK (Binary Phase Shift Keying), QPSK
(Quadrature Phase Shift Keying), and QAM (Quadrature Amplitude
Modulation), and a symbol point on a phase plane is changed
according to the QoS.

7. The orthogonal frequency division multiplex modem circuit
10 according to claim 3, wherein peak values of modulation symbols
are determined so that transmission power of the respective
subcarriers becomes the same irrespective of the modulation
systems.

8. The orthogonal frequency division multiplex modem circuit
15 according to claim 4, wherein the processing for randomizing
positions of the respective subcarriers is updated every symbol.

9. The orthogonal frequency division multiplex modem circuit
according to claim 8, wherein means for determining the
randomization pattern every symbol and transmitting the
20 randomization pattern every symbol to the receiving side is
included in the transmitting side, and means for synchronizing
transmission and reception of the randomization pattern is
included.

053262-00120

10. The orthogonal frequency division multiplex modem circuit
according to claim 9, wherein a predetermined communication
channel and a sub carrier corresponding thereto are assigned
as the means for synchronizing transmission and reception of
5 the randomization pattern.

11. The orthogonal frequency division multiplex modem circuit
according to claim 10, wherein the predetermined communication
channel and the sub carrier corresponding thereto are excluded
from the randomization process.

10

09336262000000000000000000000000