

Lecture 15: Goodness of Fit Test for

5. Maximum Likelihood Estimator

课程 □ Unit 4 Hypothesis testing □ Discrete Distributions

☐ for the Categorical Distribution

5. Maximum Likelihood Estimator for the Categorical Distribution

Video note: The following video derives the maximum likelihood estimator $\hat{\mathbf{p}}$ of a categorical statistical model. Note that we have seen this previously in <u>Lecture 10</u> and in <u>Recitation 6</u>.

The maximum likelihood estimator will form the basis of goodness of fit testing for discrete distributions.

MLE for the Categorical Distribution

字幕开始。跳转至结尾。

All right, so now I need to compute the MLE. All right.

So this is, as we said, p1 to the N1, all the way

to pk to the NK.

I want to compute the MLE, can somebody tell me--

let's say I say, compute the MLE.

What do you do?

下载视频文件

下载 SubRip (.srt) file

下载 Text (.txt) file

Concept Check: Examples of the Categorical Distribution

2/2得分 (计入成绩)

Consider the distribution $\operatorname{Ber}(0.25)$. Consider the categorical statistical model $(\{a_1,\ldots,a_K\},\{\mathbf{P_p}\})$ for this Bernoulli distribution.

If we let $a_1=1$ and $a_2=0$, then this corresponds to a categorical distribution ${f P_p}$ with parameter vector ${f p}$ given by...

0.25

0.75

 $left[0.25 \ 0.75]^T$

 $\quad \boxed{ [0.75 \;\; 0.25]^T }$

some choice of parameter **p**.

Let $a_i=i$ for $i=1,\ldots,K$. The uniform distribution on $E=\{1,2,\ldots,K\}$ can be expressed as a categorical distribution $\mathbf{P_p}$ for

1/K

☐ **Answer:** 1/K

 $\frac{1}{K}$

STANDARD NOTATION

Solution:

Let $X \sim \mathrm{Ber}\,(0.25)$. Observe that

$$p_1 = P(X = a_1) = P(X = 1) = 0.25$$

and

$$p_2 = P(X = a_2) = P(X = 0) = 0.75.$$

Hence, $\mathbf{p} = \begin{bmatrix} 0.25 & 0.75 \end{bmatrix}^T$.

Remark: Observe that $\operatorname{Ber}(p)$ has a one-dimensional parameter and $\operatorname{P}_{\mathbf{p}}$ for this example involves a parameter that is two-dimensional, but such that the second parameter depends on the first one $(p_1=1-p_2)$. In general, the categorical distribution for $\mathbf{p}\in\Delta_K$ involves a K-dimensional parameter, but the last parameter p_K , for example, is redundant because $p_K=1-\sum_{i=1}^{K-1}p_i$. Even though \mathbf{p} is K-dimensional, the categorical distribution has only K-1 degrees of freedom. This will make our analysis more challenging: the extra constraint on the parameter $\sum_{i=1}^K p_i = 1$ implies that the Fisher information for the model as specified **does not exist**. Hence, we cannot apply Wald's test directly.

For the second question, by definition, the uniform distribution weighs all elements in $\{1,\ldots,K\}$ equally. Let ${\bf P}$ denote the parameter vector of the uniform distribution on $\{1,2,\ldots,K\}$. Then

$$p_i = P\left(X=i
ight) = rac{1}{K}.$$

Thus,

$$\sum_{i=1}^K p_i^2 = \sum_{i=1}^K rac{1}{K^2} = rac{1}{K}.$$

提交

你已经尝试了2次(总共可以尝试2次)

☐ Answers are displayed within the problem

Likelihood for a Categorical Distribution

3/3得分 (计入成绩)

Suppose that K=3, and let $E=\{1,2,3\}$. Let $X_1,\ldots,X_n\stackrel{iid}{\sim}\mathbf{P_p}$ for some unknown $\mathbf{p}\in\Delta_3$. Let $f_\mathbf{p}$ denote the pmf of $\mathbf{P_p}$ and recall that the likelihood is defined to be

$$L_{n}\left(X_{1},\ldots,X_{n},\mathbf{p}
ight)=\prod_{i=1}^{n}f_{\mathbf{p}}\left(X_{i}
ight).$$

Here we let the sample size be n=12, and you observe the sample $\mathbf{x}=x_1,\ldots,x_{12}$ given by

$$\mathbf{x} = 1, 3, 1, 2, 2, 2, 1, 1, 3, 1, 1, 2, .$$

The likelihood for this data set can be expressed as $L_{12}\left(\mathbf{x},\mathbf{p}
ight)=p_{1}^{A}p_{2}^{B}p_{3}^{C}$.

Fill in the values of A, B, and C below.

$$A = \boxed{6}$$
 \Box Answer: 6 $B = \boxed{4}$ \Box Answer: 4 $C = \boxed{2}$ \Box Answer: 2

Solution:

Since K=3 and $E=\{1,2,3\}$,

$$f_{\mathbf{p}}\left(i
ight)=p_{i},\quad i=1,2,3.$$

Next,

$$L_{n}\left(X_{1},\ldots,X_{n},\mathbf{p}
ight)=\prod_{i=1}^{n}f_{\mathbf{p}}\left(X_{i}
ight)=p_{1}^{N_{1}}p_{2}^{N_{2}}p_{3}^{N_{3}}$$

where

$$N_i = ext{number of times } i ext{ appears in } (X_1, \ldots, X_n) \,, \quad i = 1, 2, 3.$$

In the data set above, 1 appears ${f 6}$ times, 2 appears ${f 4}$ times, and 3 appears ${f 2}$ times. Thus, $A=N_1={f 6}, B=N_2={f 4}$, and $C=N_3={f 2}$.

提交

你已经尝试了1次(总共可以尝试2次)

☐ Answers are displayed within the problem

Maximum Likelihood Estimator for Categorical Distribution

3/3得分 (计入成绩)

As above, under the statistical model $(\{1,2,3\},\{\mathbf{P_p}\}_{\mathbf{p}\in\Delta_3})$, we have

$$L_{12}\left(\mathbf{x},\mathbf{p}
ight)=p_{1}^{A}p_{2}^{B}p_{3}^{C}$$

where

$$\mathbf{x} = 1, 3, 1, 2, 2, 2, 1, 1, 3, 1, 1, 2.$$

In the previous problem, you found the specific values for A, B, and C.

Recall that the MLE is given by

$$\widehat{\mathbf{p}}_{n}^{MLE} = \operatorname{argmax}_{\mathbf{p} \in \Delta_{3}} \log L_{n}\left(X_{1}, \ldots, X_{n}, \mathbf{p}
ight).$$

By the theory of Lagrange multipliers, one can show that the maximum occurs at the point ${f p}$ such that there exists ${f \lambda}
eq {f 0}$ so that

$$abla \log L_n\left(X_1,\ldots,X_n,\mathbf{p}
ight) = \lambda egin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}.$$

(The gradient above is taken with respect to the parameter \mathbf{p} .)

Using this result and the previous problem, what is the estimate $\widehat{\mathbf{p}}_{12}^{MLE}$ for \mathbf{p} given the data set \mathbf{x} ?

$$(\widehat{\mathbf{p}}_{12}^{MLE})_1 = \boxed{1/2}$$
 \Box Answer: 1/2 $(\widehat{\mathbf{p}}_{12}^{MLE})_2 = \boxed{1/3}$ \Box Answer: 1/3 $(\widehat{\mathbf{p}}_{12}^{MLE})_3 = \boxed{1/6}$

Solution:

In the previous problem, we saw that A=6, B=4, and C=2. Thus

$$\log L_n\left(\mathbf{x},\mathbf{p}\right) = 6\log p_1 + 4\log p_2 + 2\log p_3.$$

Hence,

$$abla \log L_n\left(\mathbf{x},\mathbf{p}
ight) = egin{bmatrix} rac{6}{p_1} \ rac{4}{p_2} \ rac{2}{p_3} \end{bmatrix}.$$

Applying the Lagrange multipliers, we have

$$\left[egin{array}{c} rac{6}{p_1} \ rac{4}{p_2} \ rac{2}{p_2} \end{array}
ight] = \lambda \left[egin{array}{c} 1 \ 1 \ 1 \end{array}
ight].$$

Therefore,

$$p_1=rac{6}{\lambda},\;p_2=rac{4}{\lambda},\;p_3=rac{2}{\lambda}.$$

By the constraint $p_1+p_2+p_3=1$, we see that

$$\lambda = 6 + 4 + 2 = 12.$$

Therefore,

提交

$$\widehat{\mathbf{p}}_{12}^{MLE} = egin{bmatrix} rac{1}{2} \ rac{1}{3} \ rac{1}{6} \end{bmatrix}$$
 .

你已经尝试了1次(总共可以尝试2次)