

Animesh Kumar-8
Payas S Nimje-32
Ruchita Singhal-42

Problem Statement - Predicting whether a person has diabetes or not by machine learning

Overview

We'll be using Machine Learning to predict whether a person has diabetes or not, based on information about the patient such as blood pressure, body massindex (BMI), age, In particular, all patients here belong to the Pima Indian heritage (subgroup of Native Americans), and are females of ages 21 and above.

Method

We'll be using Python and some of its popular data science related packages. First of all, we will import pandas to read our data from a CSV file and manipulate it for further use. We will also use numpy to convert out data into a format suitable to feed our classification model. We'll use seaborn and matplotlib for visualizations. We will then import Logistic Regression algorithm from sklearn

We now want to train a Machine to do the Doctor's task.

For this purpose we have to train the machine with the same experience/knowledge using the historical data.

nof_tir	ni gluco	SW_CODIC	blood pe	essure ski	in fold thickne	2-Hour serum in	trick BMI	0	labetes Age	In Diabetic
	6	146		72	15		0	33.5	0.627	59 YES
	1	85		66	25		0	25.5	0.351	31.NO
	8	181		64	(0	23.3	0.672	32 YES
	1	87		60	23		54	25.1	0.267	21 NO
	0	337		40	35		168	43.1	2,288	33 YES
	5	115		74	(Ŕ.	0	25.5	0.201	39 NO
	3	78		50	10		88	31	0.248	26 YES
	10	113		0	(0.	35.3	0.134	29 NO
	2	197		70	40		543	30.5	6.156	50 YES
	8	125		95	(N .	0	0	0.232	54 YES
	4	110		92	(0	37.5	0.191	39 NO
- 1	10	168		74	(k:	0	34	0.537	34 YES
	10	139		80	(0	27.1	1.401	57 NO
	1	189		60	11	i e	845	30.1	6.256	59 YES
	5	166		72	15	i	175	25.8	0.587	51 YES

Business Implication

Patient: I want to get diagnosed for Diabetes Doctor: Ok let me check the reports

Data explanation

The following features have been provided to help us predict whether a person is diabetic or not

Pregnancies: Number of times pregnant

Glucose: Plasma glucose concentration over 2 hours in an oral glucose tolerance test

Blood Pressure: Diastolic blood pressure (mm Hg) **Skin Thickness**: Triceps skin fold thickness (mm)

Insulin: 2-Hour serum insulin (mu U/ml)

BMI: Body mass index (weight in kg/(height in m)2)

DiabetesPedigreeFunction: Diabetes pedigree function (a function which scores likelihood of

diabetes based on family history)

Age: Age (years)

Outcome: Class variable (0 if non-diabetic, 1 if diabetic)

Data Description

In [3]: data=pd.read_csv('E:\MBA\TRIM-3\python-project\diabetes.csv')

In [7]: data

Out[7]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
(2	138	62	35	0	33.6	0.127	47	1
1	0	84	82	31	125	38.2	0.233	23	0
2	. 0	145	0	0	0	44.2	0.630	31	1
3	0	135	68	42	250	42.3	0.365	24	1
4	1	139	62	41	480	40.7	0.536	21	0
1998	2	75	64	24	55	29.7	0.370	33	0
1996	8	179	72	42	130	32.7	0.719	36	1
1997	6	85	78	0	0	31.2	0.382	42	0
1998	0	129	110	46	130	67.1	0.319	26	1
1999	2	81	72	15	76	30.1	0.547	25	0

2000 rows × 9 columns

We have our data saved in a CSV file called diabetes.csv. We first read our dataset into a Pandas data frame called diabetes, and then use the head() function to show the first five records from our dataset

Let's check the missing values in our dataset and Dataypes

We don't have any missing values

data.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 2000 entries, 0 to 1999 Data columns (total 9 columns): Column Non-Null Count Dtype Pregnancies 2000 non-null int64 Glucose int64 2000 non-null BloodPressure 2000 non-null int64 SkinThickness int64 2000 non-null int64 Insulin 2000 non-null BMI 2000 non-null float64 float64 DiabetesPedigreeFunction 2000 non-null int64 Age 2000 non-null Outcome 2000 non-null int64 dtypes: float64(2), int64(7) memory usage: 140.8 KB

We have 7 features as integer and 2 in decimal form

Check the missing values Through Missingno Plot

Data Description

In [12]: df.describe().T

Out[12]:

	count	mean	std	min	25%	50%	75%	max
Pregnancies	2000.0	3.70350	3.306063	0.000	1.000	3.000	6.000	17.00
Glucose	2000.0	121.18250	32.068636	0.000	99.000	117.000	141.000	199.00
BloodPressure	2000.0	69.14550	19.188315	0.000	63.500	72.000	80.000	122.00
SkinThickness	2000.0	20.93500	16.103243	0.000	0.000	23.000	32.000	110.00
Insulin	2000.0	80.25400	111.180534	0.000	0.000	40.000	130.000	744.00
ВМІ	2000.0	32.19300	8.149901	0.000	27.375	32.300	36.800	80.60
DiabetesPedigreeFunction	2000.0	0.47093	0.323553	0.078	0.244	0.376	0.624	2.42
Age	2000.0	33.09050	11.786423	21.000	24.000	29.000	40.000	81.00
Outcome	2000.0	0.34200	0.474498	0.000	0.000	0.000	1.000	1.00

Exploratory Data Analysis

Correlation Matrix

As we can see from the table and the heat map, glucose levels, age, BMI have significant correlation with the outcome variable

- 0.8 - 0.6 - 0.4

- 0.0

sns.countplot(x='Outcome',data=data) <AxesSubplot:xlabel='Outcome', ylabel='count'>

Check for outliers- the dots outside the boxplot shows the outliers

Treating Outliers- by use of Inter Quartile range

```
In [33]:
         q3 = data['BMI'].quantile(.75)
         q1 = data['BMI'].quantile(.25)
         iqr = q3-q1
         igr
                                                                                                                                          Insulin
         upperrange = q3+1.5*iqr
         bottomrange = q1-1.5*iqr
         data2 = data[(data['BMI']>bottomrange) & (data['BMI']<upperrange)]</pre>
         sns.boxplot(data=data2,x='BMI',color = 'purple')
Out[33]: <AxesSubplot:xlabel='BMI'>
                                                                                                                     200
                                                                                                                                   300
                                                                                                              Insulin
                                                         BMI
                                                                                                                                             Age
             20
                   25
                                                                                                                         50
                                                                                                                                    60
```

Analysis Through Mean Values grouped by Outcome(Likelihood)

df.groupby('Outcome').mean() Out[15]: BloodPressure Pregnancies Glucose SkinThickness Insulin DiabetesPedigreeFunction Age Outcome 0.434676 31.081307 0 3.168693 110.586626 68.094985 20 052432 70 563830 30.567477 4.732456 141.568713 71.166667 22.633041 98.897661 35.320468 0.540681 36.956140 1

Dataset Preparation (Normalization)

In [18]: #Normalizing the data
means = np.mean(x, axis=0)
stds = np.std(x, axis=0)

X = (x - means)/stds
X

Out[18]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	${\bf Diabetes Pedigree Function}$	Age
(-0.515394	0.524553	-0.372481	0.873645	-0.722016	0.172683	-1.063246	1.180424
	-1.120495	-1.159756	0.670080	0.625186	0.402563	0.737249	-0.735551	-0.856326
2	-1.120495	0.742890	-3.604422	-1.300374	-0.722016	1.473638	0.491759	-0.177409
;	-1.120495	0.430980	-0.059713	1.308449	1.527142	1.240448	-0.327478	-0.771462
4	-0.817945	0.555744	-0.372481	1.246334	3.596367	1.044077	0.201161	-1.026055
199	-0.515394	-1.440474	-0.268225	0.190382	-0.227201	-0.305970	-0.312021	-0.007680
1990	1.299907	1.803381	0.148800	1.308449	0.447546	0.062225	0.766899	0.246914
1997	0.694807	-1.128565	0.461568	-1.300374	-0.722016	-0.121872	-0.274924	0.756101
1998	-1.120495	0.243835	2.129667	1.556908	0.447546	4.284191	-0.469686	-0.601732
1999	-0.515394	-1.253329	0.148800	-0.368651	-0.038272	-0.256877	0.235167	-0.686597

2000 rows × 8 columns

Segregating the data into Dependent and Independent variables

```
x = df.drop(['Outcome'], axis=1) #independent value
Out[16]:
                                                                     0 33.6
                                                                                              0.127
                                               82
                                                             31
                                                                   125 38.2
                                                                                              0.233
                                                                                                     23
                                                                     0 44.2
                                                                                              0.630 31
                                                                   250 42.3
                                                                                              0.365
                                               62
                                                                                              0.536 21
                                               72
                                                                   130 32.7
                                                                     0 31.2
                                                                                              0.382
                                              110
            1998
                                                                    130 67.1
                                                                    76 30.1
                                                                                              0.547 25
```

In [16]: # Model Building

2000 rows x 8 columns

```
In [17]: v = df.Outcome #dependent value
Out[17]:
          1995
          1996
          1997
          1998
          1999
```

Splitting the data into training and testing set

```
In [19]: #Test Train Split
         from sklearn.model_selection import train_test_split, cross_val_score, ShuffleSplit, GridSearchCV
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 365)
         MODEL Comparision
In [20]: # Logistic Regression
         from sklearn.linear model import LogisticRegression
         log reg = LogisticRegression().fit(X_train, y_train)
         log_reg
Out[20]: LogisticRegression()
```

Model Prediction

```
In [25]: y pred = log reg.predict(X test)
         y pred
Out[25]: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1,
                1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,
                0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0,
                0, 0, 0, 0], dtype=int64)
```

Prediction, Model Accuracy, Confusion Matrix

```
In [27]: print('Probability:', y_probs[:1])
         print('Prediction:', y pred[:1])
         Probability: [[0.62466566 0.37533434]]
         Prediction: [0]
In [28]: from sklearn.metrics import accuracy score
         log_score = accuracy_score(y_test, y_pred)
         print("Model accouracy = ", log_score * 100)
         Model accouracy = 78.5
In [29]: print('accuracy score of the model is',log reg.score(X test, y test) * 100)
         accuracy score of the model is 78.5
In [30]: from sklearn.metrics import confusion matrix, plot confusion matrix
         confusion_matrix(y_test, y_pred)
Out[30]: array([[231, 21],
                [ 65, 83]], dtype=int64)
```

Variable Significance Level

In [21]: coef = list(log_reg.coef_[0])
 coef

Out[21]: [0.4460220020404043, 1.0516271413393867, -0.17702875388896225, -0.032704992570814835, -0.07551321077762954, 0.6563619357224418, 0.2858376434041782, 0.14967169950086961]

Confusion Matrix

```
In [30]: plot_confusion_matrix(log_reg, X_test, y_test, values_format='.5g')
Out[30]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x27d3b839c10>
                                                   - 225
                                                    - 200
                      231
                                      21
                                                   - 175
                                                   - 150
                                                   - 125
                                                   - 100
                                                   - 75
                                                   - 50
                          Predicted label
```

Comparing Logistic Model With other Classification Models

Random forest

Random Forest

```
In [31]: from sklearn.ensemble import RandomForestClassifier
    r_for = RandomForestClassifier().fit(X_train, y_train)
    r_for
```

Out[31]: RandomForestClassifier()

```
In [32]: y_pred = r_for.predict(X_test)
y_pred[:20]
```

Out[32]: array([1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1], dtype=int64)

```
In [33]: rf_score = accuracy_score(y_test, y_pred)
    rf score
```

Out[33]: 0.9775

KNN

```
In [35]: from sklearn.neighbors import KNeighborsClassifier
         knn = KNeighborsClassifier(n_neighbors=3).fit(X_train,y_train)
In [36]:
         knn
Out[36]: KNeighborsClassifier(n_neighbors=3)
In [37]: y_pred = knn.predict(X_test)
         y_pred[:20]
Out[37]: array([0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1],
               dtype=int64)
In [38]:
         knn_score = accuracy_score(y_test,y_pred)
         knn_score
Out[38]: 0.8925
In [39]: confusion_matrix(y_test,y_pred)
Out[39]: array([[238, 14],
                [ 29, 119]], dtype=int64)
```

KNN

Support Vector Machine (SVM)

Support Vector Machine (SVM)

```
In [40]: from sklearn.svm import SVC
In [41]: svm_model = SVC(C=5,degree=9,kernel = 'poly').fit(X_train,y_train)
         svm_model
Out[41]: SVC(C=5, degree=9, kernel='poly')
In [42]: y_pred = svm_model.predict(X_test)
         y_pred[:20]
Out[42]: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1],
               dtype=int64)
In [43]: svm_score = accuracy_score(y_test,y_pred)
         svm_score
Out[43]: 0.8225
In [44]: confusion_matrix(y_test,y_pred)
Out[44]: array([[250, 2],
                [ 69, 79]], dtype=int64)
```

Model Comparison

THANKSI

GitHub Link for the project.

https://github.com/Payas10/Python Project

https://github.com/Animesh100-Kumar/Python-Project Diabetes-Prediction

https://github.com/RuchitaSinghal/Python-Project