Sheet 3: Attack of the Continuum

Definition 1 (Disjoint) Two sets A and B are disjoint if $A \cap B = \emptyset$. A set of sets S is pairwise disjoint if for all sets $A, B \in S$ we have A = B or $A \cap B = \emptyset$.

Theorem 2 If $p, q \in C$ and p < q, then there exist disjoint regions containing p and q.

Proof. Let $a, c, p, q \in C$ such that a < p, p < q and q < c (A2.1, A2.2, A2.3). Then there are two possibilities. There may be another point $b \in C$ which is between p and q. We see that this implies p < b and b < q and so the region (a; b) contains p and the region (b; c) contains q but $(a; b) \cap (b; c) = \emptyset$. There is also the possibility that there are no points between p and q. Then the region (a; q) contains p but not q and the region (p; c) contains q but not p and $(a; q) \cap (p; c) = (p; q) = \emptyset$.

Corollary 3 A set consisting of one point has no limit points.

Proof. Let $A \subseteq C$ be a set with one point x. If $p \in C$ is to be a limit point of A, then every region which contains p must also contain a point in A which is not p. So we see $p \neq x$. But then p < x or p > x. In either case, Theorem 2 shows that there are disjoint regions containing p and x which means there exist regions containing p, but no points in A so p cannot be a limit point of A (3.2).

Theorem 4 A nonempty finite set of points has no limit points.

Proof. By Corollary 3 we see that a set with one point has no limit points (3.3). Use induction on n and assume that a subset of C with $n \in \mathbb{N}$ points has no limit points. Consider the set S where |S| = n + 1 and let $a \in S$. We know that $|S \setminus a| = n$ and so $S \setminus a$ has no limit points. But $S = (S \setminus a) \cup \{a\}$ and so we know that a limit point of S is a limit point of $S \setminus a$ or a limit point of $S \setminus a$. By the inductive hypothesis and Corollary 3 we know that both $S \setminus a$ and $S \setminus a$ have no limit points (3.3). Therefore $S \setminus a$ has no limit points. Thus, by induction, all nonempty finite sets have no limit points.

Corollary 5 If $A \subseteq C$ is a finite set and $x \in A$, then there exists a region R such that $A \cap R = \{x\}$.

Proof. Let $A \subseteq C$ be a finite set of n elements such that $x \in A$. We know that x cannot be a limit point of A by Theorem 4 and so there exists a region R such that $x \in R$ and $R \cap (A \setminus x) = \emptyset$ (3.4). But then we have $R \cap A = \{x\}$.

Theorem 6 If p is a limit point of a set A and R is a region containing p, then the set $R \cap A$ is infinite.

Proof. Assume that p is a limit point of a set $A \subseteq C$ and R is a region containing p. Assume to the contrary that $R \cap A$ is finite. Then p is not a limit point of $R \cap A$ by Theorem 4 (3.4). But since $(A \setminus (R \cap A)) \cup (R \cap A) = A$, and p is a limit point of the union, we see that p must be a limit point of $A \setminus (R \cap A)$ (2.17). We also have $R \cap (A \setminus (R \cap A)) = \emptyset$ and $p \in R$ so p is not a limit point of $A \setminus (R \cap A)$. This is a contradiction and so $R \cap A$ must be infinite.

Definition 7 (Closed Set) A set $A \subseteq C$ is closed if it contains all its limit points.

Corollary 8 Finite sets are closed.

Proof. Finite sets have no limit points and so they vacuously contain all of their limit points (3.4).

Definition 9 (Closure) Let $M \subseteq C$ be a set. Let \overline{M} , the closure of M, be the set consisting of M and all of its limit points:

 $\overline{M} = M \cup \{x \in C \mid x \text{ is a limit point of } M\}.$

Theorem 10 A set is $M \subseteq C$ is closed if and only if $M = \overline{M}$.

Proof. We see that if $M \subseteq C$ is closed, then it contains all its limit points. That is $\{x \in C \mid x \text{ is a limit point of } M\} \subseteq M.$ So we have $M = M \cup \{x \in C \mid x \text{ is a limit point of } M\} = \overline{M}.$ Conversely, if $M = \overline{M}$ then $M = M \cup \{x \in C \mid x \text{ is a limit point of } M\}$. Therefore $\{x \in C \mid x \text{ is a limit point of } M\} \subseteq M$, and so M contains all its limit points. Thus M is closed. **Theorem 11** For all $M \subseteq C$ we have $\overline{M} = \overline{\overline{M}}$ *Proof.* We wish to show that the set of limit points of \overline{M} is a subset of \overline{M} for $M \subseteq C$. Consider a limit point $p \in C$ of \overline{M} . Since $\overline{M} = M \cup \{x \mid x \text{ is a limit point of } M\}$ we see that p is a limit point of M or p is a limit point of the set of limit points of M because p is a limit point of their union (2.17). If p is a limit point of M, then $p \in \overline{M}$. If p is a limit point of the set of limit points of M, then every region containing p contains a limit point of M. But every region containing a limit point of M contains a point in M and so for all regions $R \subseteq C$ such that $p \in R$ we have $R \cap M \neq \emptyset$. But then either p is in M or p is a limit point of M and so $p \in \overline{M}$. Thus we see $\{x \mid x \text{ is a limit point of } \overline{M}\} \subseteq \overline{M}$ and so $\overline{M} = M \cup \{x \mid x \text{ is a limit point of } M\} \cup \{x \mid x \text{ is a limit point of } \overline{M}\} = \overline{\overline{M}}.$ Corollary 12 If M is a set of points, then \overline{M} is closed. *Proof.* Let $M \subseteq C$ be a set of points. By Theorem 11 we know $\overline{M} = \overline{\overline{M}}$ and so by Theorem 10, \overline{M} is closed (3.10, 3.11).**Theorem 13** The sets C and \emptyset are closed. *Proof.* All limit points are elements of C and so C must contain all its limit points and is closed. The empty set can have no limit points since there are no regions which contain a point in \emptyset . Therefore it vacuously contains all its limit points and is closed. **Definition 14 (Open Set)** A set of points M is open if the complement $C \setminus M$ is closed. **Theorem 15** The sets C and \emptyset are open. *Proof.* We see that the complement $C \setminus C = \emptyset$ and \emptyset is closed so C is open (3.13). Likewise $C \setminus \emptyset = C$ and C is closed so \emptyset is open (3.13). **Theorem 16** Every region is open and its complement is closed. *Proof.* We wish to show that for all regions R, the complement $C \setminus R$ is closed. So we assume that for some region R there exists a limit point p of $C \setminus R$ such that $p \notin C \setminus R$. Thus, $p \in R$. But then, since $R \cap (C \setminus R) = \emptyset$, p is not a limit point of $C \setminus R$ and this is a contradiction. Thus, $C \setminus R$ contains all its limit points and so it is closed which means R is open for all $R \subseteq C$. **Theorem 17 (Open Condition)** A set $A \subseteq C$ is open if and only if for all $x \in A$, there exists a region $R \subseteq A$ such that $x \in R$. *Proof.* Let $A \subseteq C$ be open. Then $C \setminus A$ is closed. Assume there exists $x \in A$ such that for all regions R containing x, R is not a subset of A. Then for all regions R containing x, R contains at least one point in $C \setminus A$ and so x is a limit point of $C \setminus A$. But x is in A and $C \setminus A$ is closed and so we have a contradiction. Thus for all $x \in A$, there exists a region $R \subseteq A$ such that $x \in R$. Conversely, let $A \subseteq C$ be a subset such that for all $x \in A$ there exists a region $R \subseteq A$ such that $x \in R$. Assume A is not open. Then $C\setminus A$ is not closed and so it doesn't include all its limit points. But then there exists a limit point p of $C \setminus A$ such that $p \in A$. And so there exists a region $R \subseteq A$ which contains p and so

p is not a limit point of $C \setminus A$. This is a contradiction and so A must be open.

Corollary 18 Every nonempty open set is the union of regions.

Proof. Let $R_a \subseteq A$ denote a region containing an element $a \in A$ for some open set A. Then we see that $\bigcup_{a \in A} R_a$ is a union of subsets of A which contains every element of A so it must be equal to A.