PCB Design Tutorial

PCB 设计 教程

目 录

1	使用 Capture 画原理图			2
2	建议规范			
	2.1	Allegro	o 配色方案	3
		2.1.1	ETCH	3
		2.1.2	Net	3
		2.1.3	其他辅助层	3
3	使用	使用 Allegro 画 PCB		
4	平时的一些经验			
	4.1	制作L	.OGO	5
	4.2	Skill 教	姓程	6
		4.2.1	Allegro skill 介绍	6
		4.2.2	Allegro skill 设置方法	6
		4.2.3	AlignTool	7
	4.3	制作异形过孔		7
	4.4	从之前	的工程中导入光绘设置	8
	4.5	新建 S	ubClass	9
	4.6	Allegro	o 设置快捷键	10
		4.6.1	快捷键介绍	10
		4.6.2	修改快捷键	10
	4.7	钽电容	「画法	11
		4.7.1	电源去耦电容的作用	11
		4.7.2	钽电容画法	11
	4.8	盲押孔	设计	12

说明 **——**

本文档教程来源于Hu Jiadong整理的文字版,内容来自于于博士视频。 有些内容是平时使用 Allegro 的技巧,做为教程的补充 教程发布在著名同性交友网站-Github上,地址是https://github.com/wyu0725/PCBDe-signTutorial。方便大家下载查看,可以自行修改,唯一的要求是开源。 另外教程也可移步我的博客,扫面下方二维码关注我的微信公众号亦可 本文档使用的模板来自于 ElegantBook,网址已经停止维护了,但是其中一个作者的 博客还在更新Ethlisan,感谢作者提供模板

第1章 使用 Capture 画原理图

第2章 建议规范

以下规范是在画板过程中总结出来的,不代表一定要遵守,但是请尽量按照这个 规范来画,如有不当请指正。

2.1 Allegro 配色方案

Allegro 提供不同的颜色将不同的 subclass 的颜色区分开有助于 PCB 设计,不同人有不 同的配色标准,本无不可,但是相互之间查看电路板还是会带来障碍,因此在这里提 供一种配色方案,希望大家都采用。

2.1.1 ETCH

Top 红色

Signall 天蓝色

Signal2 橘黄色

Signal3 粉红色

更多的内电层颜色请自定义鲜艳的颜色 Bottom 层深蓝色

2.1.2 Net

目前只规定GND的颜色为青青草原色 电源请自行选择鲜艳颜色,可以和 ETCH 的颜色重复

2.1.3 其他辅助层

Top 层丝印白色, Bottom 层丝印黄色

第3章 使用 Allegro 画 PCB

第4章 平时的一些经验

4.1 制作 LOGO

- 1. 需要准备一张 bmp 格式的图片,如下图所示 SDHCAL FEB V1.v
- 2. 新建一个 Format Symbol

- 3. 设置好画布和栅格点大小,按照经验最后 LOGO 的大小是画布大小的一半,按照自己需要的大小设置栅格点即可
- 4. 选择 File → Import → Logo, 并按照下图所示设置

5. 使用命令 Shape → Compose Shape 并在 Option 中设置 Class 和 Subclass 分别为 Board Geometry 和 Silkscreen_Top

6. 保存。大功告成了

4.2 Skill 教程

4.2.1 Allegro skill 介绍

- Skill 是 Cadence 提供的可第二次开发的语言。语法同 C 语言类似。在设计中使用 skill 可以大大简化 PCB 绘制流程,还可以定制各种各样的功能
- 本文只对 skill 使用做一个简单的介绍,进阶的方面以后学会再做笔记
- 推荐一个网站: Allegro Skill, 使用的 skill 和介绍均来自此网站

4.2.2 Allegro skill 设置方法

以一个 skill 为例 (ch_via_net),这个 skill 的功能是将电路板中的过孔的网络修改为任意一个网络。

- 1. 先从任何一个地方获取到这个 skill 文件 ch_via_net.il
- 2. 将文件放置在一个文件夹中,不含中文和空格。如我放置在 D:\Cadence\skill 中, 方便日后管理
- 3. 在环境变量文件夹中找到 allegro.ilinit 文件,这个文件一般在 C:\Users\×\AppData\Roaming\SPB_Data\pcbenv中,表示计算机用户名。

4.3 制作异形过孔 -7/12-

4. 编辑这个文件, 在文件中加入如下的代码

```
setSkillPath (buildString (append1 (getSkillPath () "D:/
  Cadence / skill ")));设置 skill 所在路径
load ("ch_via_net.il" "www.allegro-skill.com")
```

- ; 载入 skill 前一个参数是 skill 文件, 后一个是密码。
- 5. Skill 设计结束,可以在工程中使用了。
- 6. 最好为 skill 的操作设置一个快捷键,不然使用中不会很方便。
- 7. 可以自定义 allegro 菜单,将自己添加的 skill 加入菜单中方便使用在安装路径 D: \Cadence\SPB_16.6\share

textbackslash pcb\text\cuimenus 中找到 allegro.men 文件, 该文件为加载目录文件。 在目录的最后一个 end 前加入如下代码:

```
POPUP "My_Skill"
        BEGIN
        MENUITEM "&Chang Via's Net", "ch_via_net"
        END
```

4.2.3 AlignTool

安装方法:

- 1. 下载 AlignTool1.0.zip 并解压到电脑中。
- 2. 在解压出来的文件夹中直接点击 install.bat 进行安装,不需要手动进行安装。
- 3. 重启 allegro, 输入命令 aln 运行。

4.3 制作异形过孔

看图不说话

4.4 从之前的工程中导入光绘设置

在画电路板完成后需要生成光绘文件,如果每次都手动添加光绘设置会显得非常细碎,同时可能会有失误,如果此时正好有一个相同层数且布局相同的.brd 文件,就可以从中导出以前的光绘设置,大大减少工作量。下面就是操作步骤

- 1. 先打开已经生成过光绘的.brd 工程的生成光绘页面
- 2. 点击 Select all 选中所有的光绘层, 然后对着其中一个层右键单击
- 3. 在出现对话框中选择 Save All Checked
- 4. Allegro 会在工程文件夹下面生成一个 FILM_SETUP.txt 的文件,这便是我们需要的文件,复制到新的工程目录下

5. 在新的工程中生成光绘页面点击 Add,在弹出对话框中选择刚刚复制过来的 FILM_SETUP.txt,光绘设置即被成功导入

4.5 新建 SubClass -9/12-

4.5 新建 SubClass

Allegro 自己默认了许多的 Class 和 Subclass, 这些 Subclass 都是在画电路板的时候必须的。有的时候画电路板需要一些辅助线,比如说分割 FPGA 的 bank,摆放器件的时候也需要一些辅助线。以前的做法是放在丝印层,但是这种方法并不是设计安全的,如果忘记删除,会留下一些不好看的痕迹,最好的做法是创建一个自己的 Subclass 来摆放它们,下面是如何自定义 Subclass

1. 在 Setup→Subclasses 中

2. 然后在弹出的窗口中选择一个 Class 点击, 然后在弹出的框中的 New Subclass 中填入自定义的 Subclass 的名称

4.6 Allegro 设置快捷键

Allegro 中本身默认了一些快捷键,但是使用起来不太方便,大多需要两个键一起组合,本教程介绍如何修改快捷键

4.6.1 快捷键介绍

先说一下 Allegro 的变量文件,一共有 2 个,一个是用户变量,一个是全局变量。用户变量文件的位置,通过系统环境变量设置:系统属性-高级-环境变量,其中的 Home 值就是 env 所在目录。要注意的是,这里也有两个变量,一个是用户变量一个是系统变量,在用户变量里设置了 Home 之后就不需要在系统变量里再设置了,如果同时设置的话,会以用户变量的为准而忽略系统变量。

4.6.2 修改快捷键

- 1. 在 C:\Users* \AppData\Roaming\SPB_Data\pcbenv 下面,编辑 env 文件,用任意文档编辑器打开即可,* 是用户名
- 2. 修改快捷键有两个命令一个是 alias, 另一个是 funckey,
- 3. alias 可以用来指定除字母以外的其他按键,举例如下

下面是我的一些快捷键

4.7 钽电容画法 -11/12-

4.7 钽电容画法

此法又叫手动焊盘增大术, 名字来源于Haolei Chen

4.7.1 电源去耦电容的作用

通俗来说滤波电容的作用就是保证芯片供电量增大时供电能够保证,一般使用一个小的陶瓷电容配上一个大的钽电容。打个比方,两个电容就像水窖和水库,当芯片耗电量突然增加时,首先从陶瓷电容上放出电荷,WTW.

4.7.2 钽电容画法

钽电容的焊盘一般都比较大,如果还是用 6mil 或 8mil 的走线将其连到相应的电源和 GND 上势必会造成较大的走线电感,和钽电容的寄生电感一叠加就雪上加霜了。更 重要的是,用细的走线势必要用小过孔,小过孔不仅增加电感,过大电流能力还不好,那就用大过孔+粗走线,如下图所示

一个钽电容用 40mil 的走线连到一个 40mil 的过孔上,问题是解决了,但是大的地孔会将地平面和电源平面打出一些洞,如果不幸有走线在这些洞附近,其地回路必然受到影响。还有更优的选项,在焊盘上铺上一层铜,然后在铜皮上打许多小过孔,这样寄生电感更小还可以塞孔,如下图所示,相当于把钽电容的焊盘增大了一部分用于打过孔。这样的方法同样适用于其他需要和内电层良好接触的表贴焊盘。

图 4.1: 用 40mil 走线和 40mil 过孔连接钽电容

图 4.2: 在钽电容焊盘上铺铜然后打小孔

4.8 盲埋孔设计