Deep Generative Models Lecture supp

Roman Isachenko

Ozon Masters

Spring, 2021

ELBO gradient (E-step, $\nabla_{\phi} \mathcal{L}(\phi, \theta)$)

$$\mathcal{L}(\phi, oldsymbol{ heta}) = \mathbb{E}_q \log p(\mathbf{X}|\mathbf{Z}, oldsymbol{ heta}) - \mathit{KL}(q(\mathbf{Z}|\mathbf{X}, \phi)||p(\mathbf{Z}))
ightarrow \max_{\phi, oldsymbol{ heta}}.$$

Difference from M-step: density function $q(\mathbf{z}|\mathbf{x}, \phi)$ depends on the parameters ϕ , it is impossible to use Monte-Carlo estimation:

$$abla_{m{\phi}} \mathcal{L}(m{\phi}, m{ heta}) = \int
abla_{m{\phi}} q(\mathbf{Z}|\mathbf{X}, m{\phi}) \log p(\mathbf{X}|\mathbf{Z}, m{ heta}) d\mathbf{Z} -
abla_{m{\phi}} KL$$

Log-derivative trick

$$abla_{\xi} q(\eta|\xi) = q(\eta|\xi) \left(rac{
abla_{\xi} q(\eta|\xi)}{q(\eta|\xi)}
ight) = q(\eta|\xi)
abla_{\xi} \log q(\eta|\xi).$$

$$abla_{\phi} q(\mathbf{Z}|\mathbf{X},\phi) = q(\mathbf{Z}|\mathbf{X},\phi)
abla_{\phi} \log q(\mathbf{Z}|\mathbf{X},\phi).$$

ELBO gradient (E-step, $\nabla_{\phi} \mathcal{L}(\phi, \theta)$)

$$egin{aligned}
abla_{\phi} \mathcal{L}(\phi, m{ heta}) &= \int
abla_{\phi} q(\mathbf{Z}|\mathbf{X}, \phi) \log p(\mathbf{X}|\mathbf{Z}, m{ heta}) d\mathbf{Z} -
abla_{\phi} KL = \\ &= \int q(\mathbf{Z}|\mathbf{X}, \phi) igl[
abla_{\phi} \log q(\mathbf{Z}|\mathbf{X}, \phi) \log p(\mathbf{X}|\mathbf{Z}, m{ heta}) igr] d\mathbf{Z} -
abla_{\phi} KL \end{aligned}$$

After applying log-reparametrization trick, we are able to use Monte-Carlo estimation:

$$abla_{\phi} \mathcal{L}(\phi, m{ heta}) pprox n
abla_{\phi} \log q(\mathbf{z}_i^* | \mathbf{x}_i, \phi) \log p(\mathbf{x}_i | \mathbf{z}_i^*, m{ heta}) -
abla_{\phi} KL,
onumber \ \mathbf{z}_i^* \sim q(\mathbf{z}_i | \mathbf{x}_i, \phi).$$

Problem

Unstable solution with huge variance.

Solution

Reparametrization trick

IWAE, 2015

How to determine whether all VAE latent variables are informative?

$$A_i = \mathsf{cov}_{\mathbf{x}}\left(\mathbb{E}_{q(z_i|\mathbf{x})}[z_i]
ight) > 0.01 \quad \Leftrightarrow \quad z_i ext{ is active}$$

	<u>k</u>	MNIST				OMNIGLOT			
# stoch.		VAE		IWAE		VAE		IWAE	
		NLL	active	NLL	active	NLL	active	NLL	active
1	1	86.76	19	86.76	19	108.11	28	108.11	28
	5	86.47	20	85.54	22	107.62	28	106.12	34
	50	86.35	20	84.78	25	107.80	28	104.67	41
2	1	85.33	16+5	85.33	16+5	107.58	28+4	107.56	30+5
	5	85.01	17+5	83.89	21+5	106.31	30+5	104.79	38+6
	50	84.78	17+5	82.90	26+7	106.30	30+5	103.38	44+7

https://arxiv.org/pdf/1509.00519.pdf

GatedPixelCNN (2016)

Van den Oord A. et al. Conditional image generation with pixelcnn decoders https://arxiv.org/pdf/1606.05328.pdf

GatedPixelCNN (2016)

Van den Oord A. et al. Conditional image generation with pixelcnn decoders https://arxiv.org/pdf/1606.05328.pdf

Extensions

- ► PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications https://arxiv.org/pdf/1701.05517.pdf (mixture of logistics instead of softmax);
- ► PixelSNAIL: An Improved Autoregressive Generative Model https://arxiv.org/pdf/1712.09763.pdf (self-attention to learn optimal autoregression ordering).

PixelVAE, 2016

Hierarchical VAE

PixelVAE, 2016

Hierarchical decomposition

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_L) = p(\mathbf{z}_L)p(\mathbf{z}_{L-1}|\mathbf{z}_L)\ldots p(\mathbf{z}_1,\mathbf{z}_2);$$

$$q(\mathbf{z}_1,\ldots,\mathbf{z}_L|\mathbf{x}) = q(\mathbf{z}_1|\mathbf{x})\ldots q(\mathbf{z}_L|\mathbf{x}).$$

ELBO

$$\begin{split} \mathcal{L}(q,\theta) &= \mathbb{E}_{q(\mathbf{z}_1|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}_1,\theta) - \mathcal{K}L(q(\mathbf{z}_1,\ldots,\mathbf{z}_L|\mathbf{x})||p(\mathbf{z}_1,\ldots,\mathbf{z}_L)) \\ &= \mathbb{E}_{q(\mathbf{z}_1|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}_1,\theta) - \int \prod_{j=1}^L q(\mathbf{z}_j|\mathbf{x}) \sum_{i=1}^L \log \frac{q(\mathbf{z}_i|\mathbf{x})}{p(\mathbf{z}_i|\mathbf{z}_{i+1})} d\mathbf{z}_1 \ldots d\mathbf{z}_L \\ &= \mathbb{E}_{q(\mathbf{z}_1|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}_1,\theta) - \sum_{i=1}^L \int \prod_{j=1}^L q(\mathbf{z}_j|\mathbf{x}) \log \frac{q(\mathbf{z}_i|\mathbf{x})}{p(\mathbf{z}_i|\mathbf{z}_{i+1})} d\mathbf{z}_1 \ldots d\mathbf{z}_L \\ &= \mathbb{E}_{q(\mathbf{z}_1|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}_1,\theta) - \sum_{i=1}^L \int q(\mathbf{z}_{i+1}|\mathbf{x}) q(\mathbf{z}_i|\mathbf{x}) \log \frac{q(\mathbf{z}_i|\mathbf{x})}{p(\mathbf{z}_i|\mathbf{z}_{i+1})} d\mathbf{z}_i d\mathbf{z}_{i+1} \\ &= \mathbb{E}_{q(\mathbf{z}_1|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}_1,\theta) - \sum_{i=1}^L \mathbb{E}_{q(\mathbf{z}_{i+1}|\mathbf{x})} \left[\mathcal{K}L(q(\mathbf{z}_i|\mathbf{x})||p(\mathbf{z}_i|\mathbf{z}_{i+1})) \right] \end{split}$$

RevNets, 2017

- Modern neural networks are trained via backpropagation.
- Residual networks are state of the art in image classification.

Problem

Storing the activations imposes an increasing memory burden. GPUs have limited memory capacity, leading to constraints often exceeded by state-of-the-art architectures (with thousand layers).

RevNets, 2017

NICE

$$\begin{cases} \mathbf{z}_1 = \mathbf{x}_1; \\ \mathbf{z}_2 = \mathbf{x}_2 + \mathcal{F}(\mathbf{x}_1, \boldsymbol{\theta}); \end{cases} \Leftrightarrow \begin{cases} \mathbf{x}_1 = \mathbf{z}_1; \\ \mathbf{x}_2 = \mathbf{z}_2 - \mathcal{F}(\mathbf{z}_1, \boldsymbol{\theta}). \end{cases}$$

RevNet

$$\begin{cases} \mathbf{y}_1 = \mathbf{x}_1 + \mathcal{F}(\mathbf{x}_2, \boldsymbol{\theta}); \\ \mathbf{y}_2 = \mathbf{x}_2 + \mathcal{G}(\mathbf{y}_1, \boldsymbol{\theta}); \end{cases} \Leftrightarrow \begin{cases} \mathbf{x}_2 = \mathbf{y}_2 - \mathcal{F}(\mathbf{y}_1, \boldsymbol{\theta}); \\ \mathbf{x}_1 = \mathbf{y}_1 - \mathcal{G}(\mathbf{x}_2, \boldsymbol{\theta}). \end{cases}$$

Gomez A. N. et al. The Reversible Residual Network: Backpropagation Without Storing Activations, 2017

RevNets, 2017

Amalaita atuma	CIFAR	-10 [15]	CIFAR-100 [15]		
Architecture	ResNet	RevNet	ResNet	RevNet	
32 (38)	7.14%	7.24%	29.95%	28.96%	
110	5.74%	5.76%	26.44%	25.40%	
164	5.24%	5.17%	23.37%	23.69%	

- ► If the network contains non-reversible blocks (poolings, strides), activations for these blocks should be stored.
- To avoid storing activations in the modern frameworks, the backward pass should be manually redefined.

i-RevNet, 2018

Hypothesis

The success of deep convolutional networks is based on progressively discarding uninformative variability about the input with respect to the problem at hand.

- It is difficult to recover images from their hidden representations.
- ▶ Information bottleneck principle: an optimal representation must reduce the MI between an input and its representation to reduce uninformative variability + maximize the MI between the output and its representation to preserve each class from collapsing onto other classes.

i-RevNet, 2018

Hypothesis

The success of deep convolutional networks is based on progressively discarding uninformative variability about the input with respect to the problem at hand.

Idea

Build a cascade of homeomorphic layers (i-RevNet), a network that can be fully inverted up to the final projection onto the classes, i.e. no information is discarded.

i-RevNet, 2018

Architecture	Injective	Bijective	Top-1 error	Parameters
ResNet	-	-	24.7	26M
RevNet	-	-	25.2	28M
i-RevNet (a)	yes	-	24.7	181M
<i>i</i> -RevNet (b)	yes	yes	26.7	29M

GAN objective

$$egin{align} \min_{G} \max_{D} V(G,D) \ V(G,D) &= \mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(G(\mathbf{z}))) \ \end{array}$$

Latent vector \mathbf{z} is not imposed to be disentangled. InfoGAN decomposes input vector:

- z incompressible noise;
- **c** structured latent code $p(\mathbf{c}) = \prod_{i=1}^{d} p(c_i)$.

Information-theoretic regularization

$$\max I(\mathbf{c}, G(\mathbf{z}, \mathbf{c}))$$

Information in the latent code c should not be lost in the generation process.

Chen X. et al. InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets, 2016

Objective

$$\min_{G} \max_{D} V(G, D) - \lambda I(\mathbf{c}, G(\mathbf{z}, \mathbf{c}))$$

Variational Information Maximization

$$I(\mathbf{c}, G(\mathbf{z}, \mathbf{c})) = H(\mathbf{c}) - H(\mathbf{c}|G(\mathbf{z}, \mathbf{c})) =$$

$$= H(\mathbf{c}) + \mathbb{E}_{\mathbf{x} \sim G(\mathbf{z}, \mathbf{c})} \left[\mathbb{E}_{\mathbf{c}' \sim p(\mathbf{c}|\mathbf{x})} \log p(\mathbf{c}'|\mathbf{x}) \right] =$$

$$= H(\mathbf{c}) + \mathbb{E}_{\mathbf{x} \sim G(\mathbf{z}, \mathbf{c})} KL(p(\mathbf{c}'|\mathbf{x})||q(\mathbf{z}'|\mathbf{x})) +$$

$$+ \mathbb{E}_{\mathbf{x} \sim G(\mathbf{z}, \mathbf{c})} \mathbb{E}_{\mathbf{c}' \sim p(\mathbf{c}|\mathbf{x})} \log q(\mathbf{c}'|\mathbf{x}) \geq$$

$$\geq H(\mathbf{c}) + \mathbb{E}_{\mathbf{x} \sim G(\mathbf{z}, \mathbf{c})} \mathbb{E}_{\mathbf{c}' \sim p(\mathbf{c}|\mathbf{x})} \log q(\mathbf{c}'|\mathbf{x}) =$$

$$H(\mathbf{c}) + \mathbb{E}_{\mathbf{c} \sim p(\mathbf{c})} \mathbb{E}_{\mathbf{x} \sim G(\mathbf{z}, \mathbf{c})} \log q(\mathbf{c}|\mathbf{x})$$

Latent codes on MNIST

- (a) Varying c_1 on InfoGAN (Digit type)
- (b) Varying c_1 on regular GAN (No clear meaning)

- (c) Varying c_2 from -2 to 2 on InfoGAN (Rotation)
- (d) Varying c_3 from -2 to 2 on InfoGAN (Width)

Latent codes on 3D Faces

Chen X. et al. InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets, 2016