Discrete Maths : Logic Logical Propostions

www.Stats-Lab.com

Twitter: @StatsLabDublin

Let p, q and r be the following propositions concerning integers n (where n > 1):

- ▶ p : n is a prime factor of 36
- q: n is a prime factor of 4
- r: n is a prime factor of 9

n	р	q	r
1	1	1	1
2	1	0	1
3	0	1	1

For each of the following compound statements, express it using the propositions p,q and r, and the appropriate logical symbols, then given the truth table for it,

- 1) If n is a prime factor of 36, then n is a prime factor of 4 or n is a prime factor of 9
- 2) If n is a prime factor of 4 or n is a prime factor of 9, then n is a prime factor of 36

Suppose $S = \{10, 11, 12, 13, 14, 15, 16, 17, 18, 19\}.$

Let p, q be the following propositions concerning the integer $n \in S$.

- p: n is a multiple of two. (i.e. {10, 12, 14, 16, 18})
- q: n is a multiple of three. (i.e. {12, 15, 18})

(i)
$$p \lor q$$
: $(p \ or \ q)$: $\{10, 12, 14, 15, 16, 18\}$

(ii)
$$p \land q$$
: (p and q): {12, 18}

(iii)
$$p \oplus q$$
: (p or q, but not both) : $\{10, 14, 15, 16\}$

Recall
$$p = \{10, 12, 14, 16, 18\}$$
 and $q = \{12, 15, 18\}$

(iv)
$$\neg p$$
 (i.e. not-p)

(v)
$$\neg p \lor q$$
 (i.e. not-p or q)

```
Recall S= {10, 11, 12, ...,18, 19}, p = {10, 12, 14, 16, 18} and q = {12, 15, 18}
```

(iv)
$$\neg p$$
 (i.e. not-p)

(v)
$$\neg p \lor q$$
 (i.e. not-p or q)

```
Recall S= {10, 11, 12, ...,18, 19}, p = {10, 12, 14, 16, 18} and q = {12, 15, 18}
```

(iv)
$$\neg p$$
 (i.e. $not-p$) = {11, 13, 15, 17, 19}

(v)
$$\neg p \lor q$$
 (i.e. not-p or q) = $\{11, 12, 13, 15, 17, 18, 19\}$

(vi)
$$\neg p \land q$$
 (i.e. not-p and q) = $\{15\}$

(vii)
$$\neg p \oplus q$$
 (i.e. not-p or q but not both)= $\{11, 12, 13, 17, 18, 19\}$

Recall S= {10, 11, 12, ...,18, 19},
$$\neg p = \{11, 13, 15, 17, 19\}$$
 and q = $\{12, 15, 18\}$

(vi)
$$\neg p \land q$$
 (i.e. not-p and q)

(vii)
$$\neg p \oplus q$$
 (i.e. not-p or q but not both)

Recall S= {10, 11, 12, ...,18, 19},
$$\neg p = \{11, 13, 15, 17, 19\}$$
 and q = $\{12, 15, 18\}$

Discrete Maths : Logic Proof With Truth Tables

www.Stats-Lab.com

Twitter: @StatsLabDublin

Let p and q be propositions. Use**Truth Tables** to prove that

$$p \to q \equiv \neg q \to \neg p$$

Important

Remember to make a comment at the end to say why the table proves that the two statements are logically equivalent.

For example: "Since the relevant columns are identical, then it can be said that both sides of the equation are equivalent".

Left hand side of expression : *p implies q*.

$$p \rightarrow q$$

р	q	p o q
0	0	1
0	1	1
1	0	0
1	1	1

Right hand side of expression : not-q implies not-p

$$\neg q \rightarrow \neg p$$

р	q	$\neg q$	$\neg p$	eg -q ightarrow eg p
0	0	1	1	1
0	1	0	1	1
1	0	1	0	0
1	1	0	0	1

Side by Side

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

р	q	p o q
0	0	1
0	1	1
1	0	0
1	1	1

р	q	$\neg q$	$\neg p$	eg q o eg p
0	0	1	1	1
0	1	0	1	1
1	0	1	0	0
1	1	0	0	1

(only "difference" is first and last rows)

Discrete Maths : Logic Laws of Logic

www.Stats-Lab.com

Twitter: @StatsLabDublin

Construct a truth table for each of the following compound statement and hence find simpler propositions to which it is equivalent.

- (i) $p \vee F$
- (ii) $p \wedge T$

Solutions

р	Т	$p \vee T$	$p \wedge T$
0	1		
1	1		

Solutions

р	Т	$p \lor T$	$p \wedge T$
0	1	1	0
1	1	1	1

(i)
$$p \vee F \equiv T$$

(ii)
$$p \wedge T \equiv p$$

Construct a truth table for each of the following compound statement and hence find simpler propositions to which it is equivalent.

- (iii) $p \vee F$
- (iv) $p \wedge F$

Solutions

р	F	$p \vee F$	$p \wedge F$
0	0		
1	0		

Solutions

р	F	$p \vee F$	$p \wedge F$
0	0	0	0
1	0	1	0

(iii)
$$p \vee F = p$$

(iv)
$$p \wedge F = F$$

Discrete Maths : Logic Contra-positives

www.Stats-Lab.com

Twitter: @StatsLabDublin

Contra-positive

Write the contra-positive of each of the following statements:

- ▶ If n= 12, then n is divisible by 3.
- ▶ If n=5, then n is positive.
- ► If the quadrilateral is square, then four sides are equal.

Contra-positives

Solutions

- ▶ If n is not divisible by 3, then n is not equal to 12.
- If n is not positive, then n is not equal to 5.
- If the four sides are not equal, then the quadrilateral is not a square.

Discrete Maths : Logic Truth Sets

www.Stats-Lab.com

Twitter: @StatsLabDublin

2009

Let $n = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and let p and q be the following propositions concerning the integer n.

- p: n is even,
- q: $n \ge 5$.

By drawing up the appropriate truth table nd the truth set for each of the propositions $p \vee \neg q$ and $\neg q \rightarrow p$

n	р	q	$\neg q$	$p \lor \neg q$
1	0	0	1	
2	1	0	1	
3	0	0	1	
4	1	0	1	
5	0	1	0	
6	1	1	0	
7	0	1	0	
8	1	1	0	
9	0	1	0	

n	р	q	$\neg q$	$p \lor \neg q$
1	0	0	1	1
2	1	0	1	0
3	0	0	1	1
4	1	0	1	0
5	0	1	0	1
6	1	1	0	1
7	0	1	0	1
8	1	1	0	1
9	0	1	0	1

Truth Set = $\{1, 3, 5, 6, 7, 8, 9\}$

n	р	q	p o q	q o p
1	0	0	1	0
2	1	0	1	0
3	0	0	1	0
4	1	0	1	0
5	0	1	0	1
6	1	1	1	0
7	0	1	0	1
8	1	1	1	0
9	0	1	0	1

Truth Set
$$= \{5,7,9\}$$

Biconditional

See Section 3.2.1. Use truth tables to prove that $\neg p \leftrightarrow \neg q$ is equivalent to $p \leftrightarrow q$

р	q	$p \leftrightarrow q$		
0	0	1		
0	1	0		
1	0	0		
1	1	1		

Biconditional

р	q	$\neg p$	$\neg q$	$p \leftrightarrow q$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	1

Discrete Maths : Logic Logic Networks

www.Stats-Lab.com

Twitter: @StatsLabDublin

Logic Networks

(2008 Q3b)

Construct a logic network that accepts as input p and q, which may independently have the value 0 or 1, and gives as final input $\neg(p \land \not q)$ (i.e. $\equiv p \rightarrow q$).

Logic Networks

Logic Gates

- AND
- OR
- NOT

Examiner's Comments: Many diagrams were carefully and clearly drawn and well labelled, gaining full marks. The logic table was also well done by most, but there were a few marks lost in the final part by failing to deduce that since the columns of the table are identical the expressions are equivalent.

1.8 2008 Q3b Logic Networks

Construct a logic network that accepts as input p and q, which may independently have the value 0 or 1, and gives as final input $(p \land q) \lor \neg q$ (i.e. $\equiv p \rightarrow q$).

Important Label each of the gates appropriately and label the diagram with a symblic expression for the output after each gate.