5G WIRELESS TECHNOLOGIES

Radio systems. Parameters. Modulations

Deniss Kolosovs Deniss.Kolosovs@rtu.lv

Riga Technical university

10th February 2021

Structure of the data transmission system

Digital Transmission Systems

10th February 2021 2 / 30

Transmitter and receiver

Digita: Radio Block Diagram

10th February 2021 3 / 30

Requierements for a transmission system

- Ensure the signal transmission from the source to the user without disrotion;
- Compensate distortions in the channel:
 - baseband;
 - radio channel for modulated signals.

10th February 2021 4 / 30

Example — audio signal transmission

Type of the signal	f_{min},Hz	f_{max} , Hz
Phone (voice) signal	300	3400
AM band signal	50	10000
FM band signal	30	15000

10th February 2021 5 / 30

Example — complex stereo signal

10th February 2021 6 / 30

Example — Latvian SWH radio signal

AF Start 0.0 Hz

Amplitude modulation

$$s_{AM}(t) = [S_m + a \cdot s(t)] \cos(2\pi f_0 t + \varphi_0).$$

$$\Delta f = 2f_{max}$$

where f_{max} is highest frequency in the spectrum of the modulating signal

10th February 2021 8 / 30

Frequency modulation

$$s_{FM}(t) = S_m \cos \left(2\pi f_0 t + 2\pi f_{dev} \int_0^t s(t) dt + \varphi_0 \right).$$

$$\Delta f = 2(f_{dev} + f_{max}),$$

where f_{max} is highest frequency in the spectrum of the modulating signal and f_{dev} is frequency deviation.

9 / 30 10th February 2021

Passband of the channel

Type of the channel	f_{min},Hz	f_{max} , Hz
Phone (voice) signal	0	4000
AM band signal	50	10000
FM band signal	30	15000

10th February 2021 10/30

Passband of the radio-frequency channel

Type of the channel	f_{max},kHz	Δf , kHz
Radiophone	4	8
AM band signal	10	20
FM band signal	57	265

10th February 2021 11 / 30

Spectral mask

10th February 2021 12 / 30

Dynamic range

The dynamic range of the signal D_{sig} should be narrower than the one of the channel D_{chan} .

The typical dynamic range of the human voice — 40dB.

The dynamic range of the symphonic orchestra — 70dB.

10th February 2021 13 / 30

Methods of the signal selection

- 1. By frequency.
- 2. By time TDMA.
- **3.** By code 3G.
- 4. By direction.
- 5. By polarization.
- **6.** By level.

10th February 2021 14 / 30

Selection by frequency

- Each transmitter-receiver pair operates on the dedicated carrier frequency.
- Uplink and downlink frequencies may be different.
- Channel separation by LC resonant circuit or more complex filter.

10th February 2021 15 / 30

Selection by direction and polarization

10th February 2021 16 / 30

Selection by level

Line synchronization pulses in the PAL system TV signal are separated by level.

Line Synchronizing Signal

10th February 2021 17 / 30

Detector receiver

In literature, commonly known as crystal receiver. Why?

- 1. Which types of modulations it is able to receive?
- 2. Which types of siganl selection methods it uses?

10th February 2021 18 / 30

Tuned receiver

In Latvian literature, known as tiešās pastiprināšanas uztvērējs.

- Main drawback of the crystal receiver?
- Why radio frequency amplifier is necessary?
- Why baseband amplifier is necessary?

10th February 2021 19 / 30

Tuned receiver drawbacks

The band width is carrier frequency dependent.

$$\begin{array}{c|c} \text{If } Q = 100, \\ \hline f_0 & 2\Delta f \\ 100 \text{ kHz} & 1 \text{ kHz} \\ 1 \text{ MHz} & 10 \text{ kHz} \\ 10 \text{ MHz} & 100 \text{ kHz} \\ 100 \text{ MHz} & 1 \text{ MHz} \\ \end{array}$$

The gain is also frequency dependent:

$$G=a\sqrt{rac{Y_{21}}{Y_{12}}}$$
, where $Y_{12}=\omega C$. So, $G arpropto rac{1}{\sqrt{\omega}}$.

Superheterodyne receiver I

10th February 2021 21 / 30

Superheterodyne receiver II

10th February 2021 22 / 30

Image frequency

- Main drawback of the superheterodyne receiver is problems with image frequency.
- Possible spectrum inversion.

10th February 2021 23 / 30

Example

Direct conversion receiver

 Which type of modulation is assumed to be processed by each receiver?

(a) An example of typical heterodyne receivers

10th February 2021 25 / 30

Evolution of radio receivers

- 1. Crystal receiver.
- 2. Tuned frequency receiver.
- 3. Superheterodyne receiver.
- 4. Direct conversion receiver.
- **5.** SDR.

10th February 2021 26 / 30

Radio parameters

- 1. Bands, modulations and intermediate frequencies.
- 2. Sensitivity.
- 3. Selectivity parameters.
- 4. Dynamic range.
- 5. Automatic gain control (AGC) capabilities.
- **6.** Output power.
- **7.** etc.

10th February 2021 27 / 30

Selectivity

- 1. Adjacent channel.
- 2. Image frequency.
- 3. Forward channel (IF).
- 4. Other possible channels.

Shows how much interfering signal is suppressed compared with a receiving signal.

10th February 2021 28 / 30

Sensitivity

- 1. Shows the receiver's ability to process weak signals.
- 2. Can be measured at different input voltage levels with antenna equivalent.
- 3. Input and output sensitivity.
- 4. Limit of the sensitivity.

Shows how much interfering signal is suppressed compared with a receiving signal.

10th February 2021 29 / 30

Noise in the system

$$h_{ex}=rac{P_{s,ex}}{P_{n,ex}}=rac{ar{V}_{s,ex}^2}{ar{V}_{n,ex}^2}=rac{ar{V}_{s,in}^2K_p}{ar{V}_{n,in}^2K_p}$$

$$V_{s,in}=\sqrt{h_{ex}ar{V}_{n,in}^2}$$

$$ar{V}_{n,in}^2=4k_BT\Delta fR_g$$
 of $V_{s,in}=\sqrt{h_{ex}4k_BT\Delta fR_g}$.

So, $V_{s,in} = \sqrt{h_{ex} 4 k_B T \Delta f R_g}$. Typical requirement: 20dB or BER 10^{-6} .

10th February 2021 30 / 3