

Public-Key Cryptography

Aggelos Kiayias

A Basic Problem in Cryptography

"Alice"

"Bob"

secret message from Alice

secret message from Bob

"Eve"

Secret-Key Cryptography

"Alice"

"Bob"

secret messages

Secret-Key Cryptography

"Alice"

"Bob"

secret messages

"Eve"

Secret-Key Cryptography

"Alice"

"Bob"

secret messages

C. Shannon:

perfect security can only be achieved when |key|=|msg|

Public Key-Exchange?

"Alice"

"Bob"

secret messages

A paradox

- From a certain point of view it is impossible:
 - Alice and Bob should come up with some sort of secret information just by looking at data placed in the insecure channel.
 - Any information they can extract, the adversary can extract as well.
 - **key question** in how much time?

Using Time Complexity

"Alice"

secret messages till time T'

read/send messages in time T

"Eve"

read messages in

time T' > T

read/send messages in time T

Ralph Merkle, Secure Communications Over Insecure Channels, 1978

Alice generates puzzles

N puzzles

$$P_1,\ldots,P_N$$

Bob chooses **one** puzzle to solve

Use X_i as the key

Each puzzle requires N steps to solve

Choose i randomly Find X_i , the solution :

$$X_i: P_i(X_i) =$$
solved

Ralph Merkle, Secure Communications Over Insecure Channels, 1978

Alice generates puzzles

N puzzles

$$P_1,\ldots,P_N$$

Bob chooses **one** puzzle to solve

Use X_i as the key

Each puzzle requires N steps to solve

Choose i randomly Find X_i , the solution :

$$X_i: P_i(X_i) =$$
solved

Ralph Merkle, Secure Communications Over Insecure Channels, 1978

Alice generates puzzles

N puzzles

$$P_1,\ldots,P_N$$

Bob chooses **one** puzzle to solve

Use X_i as the key

Each puzzle requires N steps to solve

Choose i randomly Find X_i , the solution :

$$X_i: P_i(X_i) =$$
solved

Ralph Merkle, Secure Communications Over Insecure Channels, 1978

Alice generates puzzles

N puzzles

$$P_1,\ldots,P_N$$

Bob chooses **one** puzzle to solve

Use X_i as the key

Each puzzle requires N steps to solve

Choose i randomly Find X_i , the solution :

$$X_i: P_i(X_i) =$$
solved

Can we do better?

polynomial-time

- Make computation for Alice and Bob feasible.
- Make computation for Eve infeasible.

exponential-time

Key Exchange

Modular Arithmetic

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\} \qquad \mathbb{Z}_n = \{a \bmod n \mid a \in \mathbb{Z}\}$$

$$a \bmod n = \min\left(\{a - v \cdot n \mid v \in \mathbb{Z}\} \cap \{0, 1, 2, \ldots\}\right)$$
 if $\overline{a}, \overline{b} \in \mathbb{Z}_n$ then
$$\overline{a} + \overline{b} = (a + b) \bmod n \Big|_{\text{definition}}$$
 if $g \in \mathbb{Z}_n$ define
$$g^x = \underbrace{g \cdot g \cdot \ldots \cdot g}_{n} \Big|_{\text{definition}}$$

A group theoretic problem

- Given finite multiplicative group.
- ullet Consider cyclic subgroup generated by g

$$g, g^2, g^3, g^4, \dots$$

A problem that will concern us:

Given $h \in \langle g \rangle$ find min $x \in \mathbb{Z}$ such that $g^x = h$

Easy?

Hard?

Order of group

$$\exists k > 0 : g^k = 1$$

$$\{1, g, g^2, \dots, g^{|G|}\}$$
 $g^k = g^l$ $k > l \to g^{k-l} = 1$

Lagrange: $order(g) \mid |G|$

Exponentiation

$$g^{x} = g^{x_{0}+2x_{1}+\dots+2^{\nu-1}x_{\nu-1}}$$

$$= g^{x_{0}} \cdot (g^{2})^{x_{1}} \cdot \dots (g^{2^{\nu-1}})^{x_{\nu-1}}$$

$$= \prod_{\ell: x_{\ell}=1} g^{2^{\ell}}$$

Easy to compute.

Required: ν group squarings $\#\{\ell: x_\ell=1\}$ group operations

$$\nu = \lceil \log_2(\operatorname{order}(g)) \rceil$$

Discrete-Logarithm Computation

Given $h \in \langle g \rangle$ find min $x \in \mathbb{Z}$ such that $g^x = h$

The obvious algorithm tries all possible $x \in \mathbb{Z}$

Is this efficient?

Order of g is known.

Order of g is unknown: (but we know it must divide order of the group)

 2^{ν} group operations

Number Theory Problems

definition

Prime =
$$\{p \mid p \in \mathbb{Z}^+ \ \forall a, b \in \mathbb{Z} : p = a \cdot b \Rightarrow \{a, b\} = \{1, p\}\}$$

The Discrete-Logarithm Problem (over a prime finite field):

Given $p \in \text{Prime}, g \leftarrow_R \mathbb{Z}_p, y = g^x \mod p$ Find: x

The Factoring Problem

Given n = pq

Find: p, q

The e - th Root Problem

Given $z \in \mathbb{Z}_n, e \in \text{Prime } n = pq$

Find: $z^{1/e} \mod n$

Diffie Hellman KE

Public-Key Cryptography

- Alice wants to send a message to Bob.
- Bob publishes his public-key.
- Alice reads Bob's public-key.
- Encrypts the message with the public-key.
- Transmits the ciphertext.
- Bob decrypts the ciphertext with the secret-key

PK Encryption

```
(Gen, Enc, Dec)
```

$$(pk, sk) \leftarrow Gen(1^k)$$
 k : key size in bits.

$$Enc(pk, M) =$$
 a distribution of ciphertexts encoding M

$$Dec(sk, C) = decryption of C under sk$$

$$\forall M : Dec(sk, Enc(pk, M)) = M$$

PK Enc => Implies KE

 Using a public-key encryption we can achieve key-exchange.

PK Enc Based KE

RSA PK Encryption

public-key = $n = pq, e \in Prime$

 $\mathsf{secret\text{-}key} = d, \mathsf{s.t.} \forall x : x^{e \cdot d} = x \bmod n$

encryption $c = m^e \mod n$ decryption $m = c^d \mod n$

plaintext is an $e-\mathrm{th}$ root of ciphertext

Historical

- In 1976, W. Diffie and M. Hellman publish:
 New Directions in Cryptography
 [modern cryptography is born]
- In 1978, R. Rivest, A. Shamir, L. Adleman publish: A Method for Obtaining Digital Signatures and Public-key Cryptosystems. The first public-key encryption.
- Interesting: Both techniques were discovered earlier by the CESG (Communications Electronics Security Group, UK) in '74 and '73 respectively.

Modeling Security, I

Ciphertext-only attack for PK encryption

Modeling Security, II

IND-CPA attack for PK encryption

Modeling Security, III

IND-CCAI attack for PK encryption

Modeling Security, IV

IND-CCA2 attack for PK encryption

Check:

- Is the RSA cryptosystem (in the way just presented) secure in IND-CCA2 sense?
 - think: encryption is "deterministic"
 - think: ciphertexts are "malleable"

Encryption vs. Authentication

- What about authenticating the origin of the message?
- Public-key equivalent of a MAC ?

Digital Signatures

- In some sense the reverse of public-key encryption:
 - Given message apply to it secret-key to obtain *digital signature*. Release message and signature.
 - Using the public-key third parties verify the message-signature pair as coming from the owner of the public-key pair.

RSA Signature

public-key = $n = pq, e \in Prime$

$$\mathsf{secret\text{-}key} = d, \mathsf{s.t.} \forall x : x^{e \cdot d} = x \bmod n$$

signing
$$\sigma = m^d (\bmod n)$$

verification $\sigma^e \stackrel{?}{=} m (\bmod n)$

signature is an $e-\mathrm{th}$ root of message

Modeling Security

 Adaptive One-more Forgery Attack for Digital signatures

Check:

- Is the RSA signature (in the way just presented) secure against an Adaptive Onemore Forgery Attack?
 - think: how can a proof of security be structured?
 - The reductionist approach: does an attacker imply an e-th root solver?

Provable Security, I

- RSA encryption and signature as described in previous slides are not secure according to the given security definitions.
 - some more work is required to obtain the suitable reductions.

Provable Security, II

- A cryptographic scheme has provable security, if:
 - the existence of an adversary implies the solvability of a well-known hard problem.
 - Note: no <u>unconditional proofs</u> of security are known: cf. the P vs. NP problem.

Modern Schemes

- Diffie Hellman Key Exchange. DLog based
- RSA encryption & signatures with random padding schemes. Root finding based + Random Oracle
- ElGamal public-key encryption and signatures.
 The <u>digital signature algorithm</u>.
 DLog based + Random Oracle
- Paillier public-key encryption. Root Finding based
- Strong-RSA based digital signatures. Root Finding based

Challenges of PK Crypto

- 99% of schemes based on related assumptions. Diversify?
- Basic PK cryptographic operation: modular exponentiation. Expensive!

Comparison on a 64-bit Athlon

AES 128 bits approx. 80 MB/s

RSA-sig 1024 bits sign=88 Kb/s verify=1.56 Mb/s

note the asymmetry

Exotic Cryptography

- Based on other computational problems:
 - Knapsack Problem-based cryptography.
 - Lattices-based cryptography.
 - Braid Groups-based cryptography.
 - Random Linear Codes-based cryptography.
 - Polynomial Reconstruction-based cryptography.

Quantum Cryptography

- Heisenberg uncertainty principle:
 - There are complementary variable measurements that the observation of one affects the other.
 - The polarization of a photon has such measurements: horizontal/vertical vs circular polarization.
 - A measurement will stabilize the variable.

Photon Polarization & Measurement

Quantum Key Exchange

Quantum Adversary Detection

Quantum Key Exchange, II

- Different (randomly selected) portions of photon stream can be used for key extraction and for estimating of eavesdropper interference.
- QKE is a reality. But is it marketable?
 - current implementations < 100km.
 - wireless is possible!
 - check: <u>www.magiqtech.com</u> (and buy for < \$50K)

Quantum Computing

- Not a reality at present. Should not to be confused with Quantum Cryptography. It is much harder.
 - In a quantum computer "Qubits" should be processed in a coordinated fashion whereas quantum crypto is a "single qubit operation".
- If realized it can bring the death of many classical crypto algorithms (but most likely not all "exotic" crypto remains secure).
- Realization problems: Decoherence requires quantum error correction which in turn increases the required number of qubits by several orders of magnitude.