1. Отношение делимости целых чисел

ОПРЕДЕЛЕНИЕ. Множество № *натуральных чисел* определяется с использованием *аксиом Пеано*:

- 1) 1 ∈ \mathbb{N} (единица натуральное число);
- 2) Для любого $a \in \mathbb{N}$ существует единственное последующее $a^+ \in \mathbb{N}$;
- 3) Для любого $a \in \mathbb{N}$ выполняется неравенство $a^+ \neq 1$ (единица наименьшее натуральное число);
- 4) Если $a^+ = b^+$, то a = b (каждое последующее число обладает единственным предыдущим);
- 5) Если некоторое подмножество $N \subseteq \mathbb{N}$ содержит единицу и для каждого натурального числа $a \in \mathbb{N}$ выполняется $a^+ \in \mathbb{N}$, то $N = \mathbb{N}$ (принцип индукции).

Таким образом, $\mathbb{N} = \{1, 2, 3, ...\}$.

В арифметику натуральных чисел включены операции сложения и умножения.

ОПРЕДЕЛЕНИЕ. Каждой паре натуральных чисел a, b можно единственным образом поставить их *сумму* – натуральное число $a + b = \underbrace{(...(a^+)^+...)^+}_{b \text{ раз}}$ так, чтобы выполнялись условия для любых натуральных чисел a, b, c:

- 1) $a + 1 = a^+$;
- 2) (a + b) + c = a + (b + c) (ассоциативность сложения);
- 3) a + b = b + a (коммутативность сложения);
- 4) если a + b = a + c, то b = c.

ОПРЕДЕЛЕНИЕ. Каждой паре натуральных чисел a, b можно единственным образом поставить их произведение – натуральное число $a \cdot b = \underbrace{(...(a+a)+\cdots+a)}_{b \text{ раз}}$ так, чтобы выполнялись условия для любых

натуральных чисел a, b, c:

1)
$$a \cdot 1 = a$$
;

2)
$$a \cdot b^+ = a \cdot b + a$$
;

- 3) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ (ассоциативность умножения);
- 4) $a \cdot b = b \cdot a$ (коммутативность умножения);
- 5) $a \cdot (b+c) = a \cdot b + a \cdot c, \quad (a+b) \cdot c = a \cdot c + b \cdot c$ (дистрибутивность умножения относительно сложения);
 - 6) если $a \cdot c = a \cdot b$, то b = c.

ОПРЕДЕЛЕНИЕ. Множество натуральных чисел *линейно упорядоченно*, т.е. $\forall a, b \in \mathbb{N}$ выполняется ровно одно из трех условий: a < b, a > b, a = b.

ОПРЕДЕЛЕНИЕ. Отношение «меньше» (<) (как и отношение «больше» (>)) *транзитивно*, то есть из неравенств a < b и b < c следует, что a < c ($a > b, b > c \implies a > c$).

ОПРЕДЕЛЕНИЕ. Множество *целых чисел* \mathbb{Z} определяется как объединение множеств натуральных чисел, им противоположных и нуля: $\mathbb{Z} = \mathbb{N} \cup (-\mathbb{N}) \cup \{0\}.$

Таким образом,
$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}.$$

На множестве целых чисел $\mathbb Z$ операции сложения и умножения задаются теми же правилами, что и для натуральных чисел.

ОПРЕДЕЛЕНИЕ. Пусть a и b некоторые целые числа, $b \neq 0$. Число b называется *делителем* числа a, если существует такое целое число q, что выполняется равенство a = bq. При этом a называется *кратным* числа b, а q – *частным* от деления a на b. Делитель называется *собственным*, если он отличен от самого числа.

Если число b является делителем числа a, то для краткости будем писать $b \mid a$. Если же b не является делителем числа a, то будем писать $b \nmid a$.

СВОЙСТВА ОТНОШЕНИЯ ДЕЛИМОСТИ

- 1) Для любого $a \in \mathbb{Z}$, $a \neq 0$ справедливо $a \mid a$ (рефлексивность);
- 2) Для любого $a \in \mathbb{Z}$ справедливо 1|a;
- 3) Если b|a, то при любом сочетании знаков $\pm b|\pm a$;
- 4) Если c|b и b|a, то c|a (транзитивность);
- 5) Если b|a, то $\forall \ k \in \mathbb{Z}, k \neq 0$ справедливо kb|ka;
- 6) Если kb|ka, причем $k \neq 0$, то b|a;

- 7) Если b|a, то $\forall c \in \mathbb{Z}$ справедливо b|ca;
- 8) Если c|a и c|b, тогда c|(a+b) и c|(a-b);
- 9) Если $c|a_1,c|a_2,...,c|a_n$ и $b_1,b_2,...,b_n$ произвольные целые числа, тогда $c|(a_1b_1+a_2b_2+\cdots+a_nb_n);$
 - 10) Если $b_1|a_1,b_2|a_2,...,b_n|a_n$, тогда $b_1 \cdot b_2 \cdot ... \cdot b_n|a_1 \cdot a_2 \cdot ... \cdot a_n$;
 - 11) Если b|a и $a \neq 0$, то $|a| \geq |b|$;
 - 12) Если b|a и a|b, то |a| = |b|.

ОПРЕДЕЛЕНИЕ. Пусть a и b целые и $b \neq 0$. *Разделить* a на b с остатком – значит представить a в виде a = qb + r, где $q, r \in \mathbb{Z}$ и $0 \leq r < |b|$. Число q называется неполным частным, число r – остатком от деления a на b.

ПРИМЕР.

1) Для b = 15 имеем:

$$45 = 3 \cdot 15 + 0, \quad 0 \le 0 < 15;$$
 $123 = 8 \cdot 15 + 3, \quad 0 \le 3 < 15;$
 $-105 = (-7) \cdot 15 + 0, \quad 0 \le 0 < 15;$
 $-169 = (-12) \cdot 15 + 11, \quad 0 \le 11 < 15;$

...

2) Для b = -11 имеем:

$$44 = (-4) \cdot (-11) + 0, \quad 0 \le 0 < 11;$$

 $119 = (-10) \cdot (-11) + 9, \quad 0 \le 9 < 11;$
 $-253 = 23 \cdot (-11) + 9, \quad 0 \le 0 < 11;$
 $-288 = 21 \cdot (-11) + 3, \quad 0 \le 3 < 11;$

...

ТЕОРЕМА (о делении с остатком). Для любых $a,b \in \mathbb{Z}, b \neq 0$, существует единственная пара таких чисел $q,r \in \mathbb{Z}$, что $a = qb + r, 0 \leq r < |b|$.

ТЕОРЕМА. Для любых $a,b \in \mathbb{Z}, a>0, b\geq 2$, существует, и при том единственное разложение вида: $a=a_nb^n+\cdots+a_1b+a_0, 0\leq a_i< b, i=\overline{1,n}, 0< a_n< b.$

Представление числа a в виде $a = a_n b^n + \dots + a_1 b + a_0$ называется представлением числа b – ичной системе счисления и записывается в виде $a = (a_n \dots a_0)_b$.

УТВЕРЖДЕНИЕ. Пусть $a, b \in \mathbb{Z}, b \neq 0$. Число b является делителем числа a тогда и только тогда, когда остаток от деления a на b равен нулю.

2. Простые числа.

ОПРЕДЕЛЕНИЕ. Пусть a – целое число. Числа 1, -1, a, -a называются *тривиальными делителями* числа a.

ОПРЕДЕЛЕНИЕ. Целое число $p \in \mathbb{Z}/\{-1,0,1\}$ называется *простым*, если не имеет других делителей, кроме тривиальных. В противном случае число $p \in \mathbb{Z}/\{-1,0,1\}$ называется *составным*.

ПРИМЕР. Числа $\pm 2, \pm 3, \pm 5, \pm 7, \pm 11, \pm 13, \pm 17, \pm 19, \pm 23, \pm 29, ...$ являются простыми.

Числа: $4 = 2 \cdot 2$, $6 = 2 \cdot 3$, $8 = 2 \cdot 4$, $9 = 3 \cdot 3$, $10 = 2 \cdot 5$, ... являются составными.

СВОЙСТВА ПРОСТЫХ ЧИСЕЛ:

- 1) Если p и q простые и p делится на q, то $p{\sim}q$ (ассоциированные, т.е. $p=\pm q$).
- 2) Если число p простое и произведение ab делится на p, то либо a делится на p, либо b делится на p.
- 3) Если число p простое и произведение $a_1a_2 \dots a_k$ делится на p, то хотя бы одно из чисел a_1, a_2, \dots, a_k делится на p.

ТЕОРЕМА (первая теорема Евклида о простых числах). Простых чисел бесконечно много.

ТЕОРЕМА (вторая теорема Евклида о простых числах). Существуют сколь угодно длинные отрезки натурального ряда, не содержащие простых чисел.

(Если выписать подряд все простые числа, то можно заметить, что относительная плотность их убывает: от 1 до 10 – четыре простых числа, т.е. 40% целых чисел являются простыми, от 1 до 100 – 25 простых чисел (25%), от 1 до 1000 – 168 простых чисел (17%), от 1 до 10^5 – 9592 простых числа (менее 10%)).

ТЕОРЕМА (основная теорема арифметики). Всякое число $n \in \mathbb{Z}/\{-1,0,1\}$ можно представить в виде $n = \varepsilon \cdot p_1 \cdot p_2 \cdot ... \cdot p_r$, где $\varepsilon = \pm 1$ и $p_1,p_2,...,p_r$ – простые числа (не обязательно различные), $r \geq 1$.

ОПРЕДЕЛЕНИЕ. Представление числа $n \in \mathbb{Z}/\{-1,0,1\}$ в виде $n = \varepsilon \cdot p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot ... \cdot p_s^{\alpha_s}$, где $\varepsilon = \pm 1$ и $p_1, p_2, ..., p_s$ – простые числа, $\alpha_i \geq 1$ для $i = \overline{1,s}$ $(s \geq 1)$, называется *каноническим разложением* числа n.

ПРИМЕР. Записать каноническое разложение числа: а) 12345876; б) -2345679.

a)		б)	
12345876 ₁ 2		2345679 3	
6172938	2	781893	3
3086469	3	260631	3
1028823	3	86877	3
342941	17	28959	3
20173	20173	9653	7
1		1379	7
		197	197
		1	
			- . -2
$12345876 = 2^2 \cdot 3^2 \cdot 17 \cdot 20173$		$-2345679 = (-1) \cdot 3^5 \cdot 7^2 \cdot 197$	

УТВЕРЖДЕНИЕ 1. Для любого натурального числа n > 1 наименьший отличный от единицы делитель всегда есть простое число.

УТВЕРЖДЕНИЕ 2. Наименьший отличный от единицы делитель составного числа n не превосходит \sqrt{n} .

УТВЕРЖДЕНИЕ 3. Если натуральное число n > 1 не делится ни на одно простое число, не превосходящее \sqrt{n} , то оно простое.

На данном утверждении основан *метод пробных делений* проверки числа a на простоту. При этом перебираются все числа $d=2,3,...,[\sqrt{a}]$ ([] – целая часть без округления) и проверяется, делится ли число a на d. Если среди данного набора делитель не будет найден, то число a является простым.

Например, $a=17 \Rightarrow \left[\sqrt{17}\right]=4 \Rightarrow d=2,3,4 \Rightarrow 2 \nmid 17,3 \nmid 17,4 \nmid 17 \Rightarrow 17$ — простое.

3. Решето Эратосфена.

Алгоритм Эратосфена (III век до н.э.) или решето Эратосфена – древний и один из самых эффективных алгоритмов для нахождения простых чисел до определенного предела.

АЛГОРИТМ ЭРАТОСФЕНА:

- 1) Создать список чисел от 2 до заданного предела N.
- 2) Определить первое число в списке (в начале это будет 2) и удалить (просеять) все его кратные, кроме самого числа.
 - 3) Перейти к следующему числу в списке и повторить шаг2.
 - 4) Продолжать процесс, пока не дойдет до конца списка.
- 5) По завершении алгоритма, все оставшиеся числа в списке будут простыми.

ПРИМЕР. (любой)

Алгоритм Эратосфена можно оптимизировать для улучшения его производительности и снижения потребления памяти:

- 1. Исключить четные числа, чтобы сократить объем проверяемых чисел вдвое.
- 2. Ограничить проверку до \sqrt{N} , поскольку все простые числа, большие \sqrt{N} , не могут быть делителями составных чисел, меньших или равных N.
- 3. Провести сегментацию, которая позволяет сократить объем используемой память и обрабатывать большие интервалы чисел.

Проблемы и ограничения алгоритма Эратосфена:

- 1. Потребление памяти. Алгоритм требует большого объема памяти для хранения списка чисел, особенно при обработке больших диапазонов.
- 2. Время выполнения. С увеличение числового диапазона время выполнения алгоритма растет, что может стать проблемой в реальных приложениях, где требуется быстрый поиск простых чисел.
- 3. Параллелизация. Параллельная реализация алгоритма может быть сложной и не всегда обеспечивать значительное увеличение производительности.