

Next >

Previous

∷ Hide menu

Lecture: Vector Space Models

- Video: Week Introduction
 47 sec
- Video: Vector Space Models 2 min
- Reading: Vector Space Models
 10 min
- Video: Word by Word and Word by Doc. 4 min
- Reading: Word by Word and Word by Doc. 10 min
- Lab: Linear algebra in Python with Numpy

 1h
- Video: Euclidean Distance
 3 min
- Reading: Euclidian Distance
 10 min
- Video: Cosine Similarity: Intuition 2 min
- Reading: Cosine Similarity: Intuition
 10 min
- Video: Cosine Similarity
 3 min
- Reading: Cosine Similarity
 10 min
- Video: Manipulating Words in Vector Spaces 3 min
- Reading: Manipulating Words in Vector Spaces
 10 min
- Lab: Manipulating word embeddings

 1h
- Video: Visualization and PCA

Euclidean distance

$$d(B, A) = \sqrt{(B_1 - A_1)^2 + (B_2 - A_2)^2}$$
$$c^2 = a^2 + b^2$$

$$d(B,A) = \sqrt{(8820)^2 + (-6000)^2}$$

You can generalize finding the distance between the two points (A,B) to the distance between an n dimensional vector as follows:

$$d(ec{v},ec{w}) = \sqrt{\sum_{i=1}^n (v_i-w_i)^2}$$

Here is an example where I calculate the distance between 2 vectors (n=3).

		\vec{w}	\vec{v}
	data	boba	ice-cream
Al	6	0	1
drinks	0	4	6
food	0	6	8

$$= \sqrt{(1-0)^2 + (6-4)^2 + (8-6)^2}$$
$$= \sqrt{1+4+4} = \sqrt{9} = 3$$

