Lecture 7 Floating Point Arithmetic

CS202 2023 Spring

Today's Agenda

Recap

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow

Context

- Floating-point real numbers
 - Representation and operations
 - FP-Decimal conversion
 - Decimal-FP conversion
- FP multiplication
- Reading: Textbook 3.5 -3.9

Recap

Floating Point

- Recap: Fixed Point v.s. Floating Point
- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

- In binary
 - $\pm 1.xxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Sign and Magnitude Representation Thought

Sign	Exponent	Fraction
1 bit	8 bits	23 bits
S	E	F

- More exponent bits:
 - wider range of numbers (not necessarily more numbers recall there are infinite real numbers)
- More fraction bits:
 - higher precision
- Register value = $(-1)^S$ x F x 2^E
- How to compare 1.5x10⁻³ v.s. 5.1x10²?
 - Using biased exponent

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent - Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand(规约化有效数字)
 - 1.0 ≤ |significand| < 2.0
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023

将指数都转化为整数进行比较,单精度指数+ 127,双精度+1023

Bias notation

- Why not use 2's complement for Exponent?
 - Biased exponent is always positive
 - Allows for a more efficient representation of small and large exponents
 - Simplifies the comparison of exponents.

```
For float(single precition):

+127

True exponent Exponent in register
-127
```


reserved

Example 1: Decimal to FP

- Represent –0.75
 - \bullet -0.75_{ten} = (-1)¹ × 1.1₂ × 2⁻¹
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 1_01111110_1000...00
- Double: 1_01111111110_1000...00 52bits

Recall:

+127

True exponent Exponent in register
-127

Exercise: Represent 24.5_{ten} in single-precision FP

- Sign bit = ?
- Fraction = ?
- Exponent = ?_{ten}

Example 2: FP to decimal

 What number is represented by the singleprecision float

11000000101000...00

- S = 1
- Fraction = $01000...00_2$
- Exponent = $10000001_2 = 129$

Exercise: Represent single-precision FP to decimal 0_10000011_1100...00

•
$$x = (-1)^1 \times (1.01_2) \times 2^{(129-127)}$$

= $(-1) \times 1.25_{ten} \times 2^2$
= -5.0_{ten}

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001
 - \Rightarrow actual exponent = 1 127 = -126
 - Fraction: 000...00
 - \Rightarrow significand = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110
 - \Rightarrow actual exponent = 254 127 = +127
 - Fraction: 111...11
 - ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001
 - \Rightarrow actual exponent = 1 1023 = -1022
 - Fraction: 000...00
 - \Rightarrow significand = 1.0
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 1111111110
 - \Rightarrow actual exponent = 2046 1023 = +1023
 - Fraction: 111...11
 - ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Overflow and Underflow

- Range of float: $(-2.0 \times 2^{127}, -1.0 \times 2^{-126}], [1.0 \times 2^{-126}, 2.0 \times 2^{127})$
- Range of double: $(-2.0 \times 2^{1023}, -1.0 \times 2^{-1022}], [1.0 \times 2^{-1022}, 2.0 \times 2^{1023})$

- Overflow: when the exponent is too large to be represented
- **Underflow**: when is negative exponent is too large to be represented(when it's exponent is too small to be represented)
- Examples:
 - For float number, 8-bit exponent, range: -126~127
 - 1×2^{128} , -1.1 $\times 2^{129}$ Overflow
 - 1×2^{-127} , -1.1×2^{-128} Underflow
 - For double number, 11-bit exponent, range: -1022~1023
 - 1×2^{1024} , -1.1×2^{1026} Overflow
 - 1×2⁻¹⁰²³, -1.1×2⁻¹⁰²⁵ Underflow

Denormal Numbers

• Exponent = $000...0 \Rightarrow$ hidden bit is 0

$$x = (-1)^{S} \times (0 + Fraction) \times 2^{-Bias}$$

- Smaller than normal numbers
 - allow for gradual underflow, with diminishing precision
- Denormal with fraction = 000...0

$$x = (-1)^{S} \times (0+0) \times 2^{-Bias} = \pm 0.0$$
Two representations of 0.0!

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ± Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

IEEE 754 Encoding of FPN

• ± 0 , $\pm \infty$ (infinity), NaN

Single precision		Double precision		Object represented
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0
0	Nonzero	0	Nonzero	± denormalized number
1–254	Anything	1–2046	Anything	± floating-point number
255	0	2047	0	± infinity
255	Nonzero	2047	Nonzero	NaN (Not a Number)

- $\pm \infty$: divided by 0
- NaN: 0/0, subtracting infinity from infinity
- F + ∞ = ∞ ; F / ∞ = 0
- Recall
 - Smallest positive single precision normalized number = ?
 - Biggest negative single precision normalized number = ?

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 \times log₁₀2 \approx 23 \times 0.3 \approx 6 decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to 52 × log₁₀2 ≈ 52 × 0.3 ≈ 16 decimal digits of precision

Addition Example 1: decimal

- Consider a 4-digit decimal example
 - \bullet 9.999 \times 10¹ + 1.610 \times 10⁻¹

先把指数对齐,然后相加,化简

- 1. Align decimal points
 - Shift number with smaller exponent
 - $9.999 \times 10^{1} + 0.016 \times 10^{1}$
- 2. Add significands
 - $9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
- 3. Normalize result & check for over/underflow
 - 1.0015×10^{2}
- 4. Round and renormalize if necessary
 - 1.002×10^2

Addition Example 2: FP

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change) = 0.0625_{10}

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

0.5 - 0.4375 preserve 4digit

$$0.5 = 1.000_2 \times 2^{-1}$$

- S = 0
- Frac. = $0000...00_2$
- Exp. = -1 + 127 = 126

$$-0.4375 = -1.110_2 \times 2^{-2}$$

- S = 1
- Frac. = $1100...00_2$
- Exp. = -2 + 127 = 125

FP Multiplication

- Similar steps
 - Compute exponent (careful!)
 - Multiply significands (set the binary point correctly)
 - Normalize
 - Round (potentially re-normalize)
 - Assign sign

Multiplication Example 1: decimal

- Consider a 4-digit decimal example
 - $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands
 - $1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^{5}$
- 3. Normalize result & check for over/underflow
 - 1.0212×10^6
- 4. Round and renormalize if necessary
 - 1.021×10^{6}
- 5. Determine sign of result from signs of operands
 - $+1.021 \times 10^{6}$

Multiplication Example 1: FP

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - 1.110 $_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve \times -ve \Rightarrow -ve
 - $-1.110_2 \times 2^{-3} = -0.21875$

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Release 2 of MIPs ISA supports 32 imes 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- EP load and store instructions
 - lwc1, ldc1, swc1, sdc1
 - e.g., ldc1 \$f8, 32(\$sp)

FP Instructions in MIPS

- Single-precision arithmetic
 - add.s, sub.s, mul.s, div.s
 - e.g., add.s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add.d, sub.d, mul.d, div.d
 - e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - c. xx.s, c. xx.d (xx is eq, 1t, 1e, ...)
 - Sets or clears FP condition-code bit
 - e.g. c.lt.s \$f3, \$f4
- Branch on FP condition code true or false
 - bc1t, bc1f
 - e.g., bc1t TargetLabel

FP Instructions in MIPS

MIPS floating-point assembly language

Category	Instruction	Example	Meaning	Comments
	FP add single	add.s \$f2,\$f4,\$f6	\$f2 = \$f4 + \$f6	FP add (single precision)
	FP subtract single	sub.s \$f2,\$f4,\$f6	\$f2 = \$f4 - \$f6	FP sub (single precision)
	FP multiply single	mul.s \$f2,\$f4,\$f6	$$f2 = $f4 \times $f6$	FP multiply (single precision)
	FP divide single	div.s \$f2,\$f4,\$f6	\$f2 = \$f4 / \$f6	FP divide (single precision)
Arithmetic	FP add double	add.d \$f2,\$f4,\$f6	\$f2 = \$f4 + \$f6	FP add (double precision)
	FP subtract double	sub.d \$f2,\$f4,\$f6	\$f2 = \$f4 - \$f6	FP sub (double precision)
	FP multiply double	mul.d \$f2,\$f4,\$f6	\$f2 = \$f4 × \$f6	FP multiply (double precision)
	FP divide double	div.d \$f2,\$f4,\$f6	\$f2 = \$f4 / \$f6	FP divide (double precision)
Data	load word copr. 1	lwc1 \$f1,100(\$s2)	f1 = Memory[\$s2 + 100]	32-bit data to FP register
transfer	store word copr. 1	swc1 \$f1,100(\$s2)	Memory[$$s2 + 100$] = $$f1$	32-bit data to memory
	branch on FP true	bc1t 25	if (cond == 1) go to PC + 4 + 100	PC-relative branch if FP cond.
Condi-	branch on FP false	bc1f 25	if (cond == 0) go to PC + 4 + 100	PC-relative branch if not cond.
tional branch	FP compare single (eq,ne,lt,le,gt,ge)	c.lt.s \$f2,\$f4	if (\$f2 < \$f4) cond = 1; else cond = 0	FP compare less than single precision
	FP compare double (eq,ne,lt,le,gt,ge)	c.lt.d \$f2,\$f4	if (\$f2 < \$f4) cond = 1; else cond = 0	FP compare less than double precision

Accuracy of Floating-Point operations

- IEEE Std 754 specifies additional rounding control
- Extra bits of precision (guard, round, sticky)
 - 1stbit: Guardbit, 2ndbit: Roundbit, 3rdbit: Stickybit
- Consider the addition: $2.56 \times 10^0 + 2.34 \times 10^2$ $0.0256 \times 10^2 + 2.3400 \times 10^2 = 2.3656 \times 10^2 = 2.37 \times 10^2$ Guard and round
- If no guard and round extra bits, the result will be $0.02 \times 10^2 + 2.34 \times 10^2 = 2.36 \times 10^2$
- 2.3450000000000 (2.34) vs. 2.3450000000001 (2.35) by sticky bit (how to get?)

0.44 ulp (unit in the last place)

Interpretation of Data

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

Associativity

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail

		(x+y)+z	x+(y+z)
X	-1.50E+38		-1.50E+38
У	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

 Need to validate parallel programs under varying degrees of parallelism

FP Example: ° F to ° C

• C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1    $f16, const5($gp)
    lwc2    $f18, const9($gp)
    div.s    $f16, $f16, $f18
    lwc1    $f18, const32($gp)
    sub.s    $f18, $f12, $f18
    mul.s    $f0, $f16, $f18
    jr    $ra
```


FP Example: Array Multiplication

- $\bullet X = X + Y \times Z$
 - All 32 \times 32 matrices, 64-bit double-precision elements
- C code:

Addresses of x, y, z in \$a0, \$a1, \$a2, and i, j, k in \$s0, \$s1, \$s2

FP Example: Array Multiplication

MIPS code:

```
li $t1, 32
                 # $t1 = 32 (row size/loop end)
  li $s0, 0
                 # i = 0; initialize 1st for loop
L1:li \$s1, 0 # j = 0; restart 2nd for loop
L2:li \$s2, 0 # k = 0; restart 3rd for loop
  sll t2, s0, t2 # t2 = i * 32 (size of row of x)
  addu t2, t2, t2, t2 = i * size(row) + j
  sll $t2, $t2, 3 # $t2 = byte offset of [i][j]
  addu t2, a0, t2 # t2 = byte address of <math>x[i][j]
  1.d f4, 0(t2) # f4 = 8 bytes of x[i][j]
L3:sll $t0, $s2, 5 # $t0 = k * 32 (size of row of z)
  addu $t0, $t0, $s1 # $t0 = k * size(row) + j
  sll $t0, $t0, 3 # $t0 = byte offset of [k][j]
  addu t0, a2, t0 # t0 = byte address of <math>z[k][j]
  1.d f16, 0(t0) # f16 = 8 bytes of z[k][j]
```

FP Example: Array Multiplication

```
sll $t0, $s0, 5
                    # $t0 = i*32 (size of row of y)
addu t0, t0, s2 # t0 = i*size(row) + k
sll $t0, $t0, 3
                   # $t0 = byte offset of [i][k]
addu t0, a1, t0 # t0 = byte address of y[i][k]
1.d f18, 0(t0) # f18 = 8 bytes of y[i][k]
mul.d f16, f18, f16 # f16 = y[i][k] * z[k][j]
add.d f4, f4, f4 # f4=x[i][j] + y[i][k]*z[k][j]
addiu $s2, $s2, 1 # $k k + 1
bne \$s2, \$t1, L3 # if (k != 32) go to L3
s.d f4, O(t2) # x[i][j] = f4
addiu $$1, $$1, 1 # $j = j + 1
bne $s1, $t1, L2 # if (j != 32) go to L2
addiu $50, $50, 1 # $i = i + 1
                   # if (i != 32) go to L1
bne $s0, $t1, L1
```


Subword Parallellism

- Graphics and audio applications can take advantage of performing simultaneous operations on short vectors
 - Example: 128-bit adder:
 - Sixteen 8-bit adds
 - Eight 16-bit adds
 - Four 32-bit adds
- Also called data-level parallelism, vector parallelism, or Single Instruction, Multiple Data (SIMD)

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - 4 × 32-bit double precision
 - Instructions operate on them simultaneously
 - Single-Instruction Multiple-Data

Unoptimized code:

```
1. void dgemm (int n, double* A, double* B, double* C)
2. {
3. for (int i = 0; i < n; ++i)
   for (int j = 0; j < n; ++j)
5.
6. double cij = C[i+j*n]; /* cij = C[i][j] */
7.
    for (int k = 0; k < n; k++)
     cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
8.
    C[i+j*n] = cij; /* C[i][j] = cij */
9.
10.
11. }
```


x86 assembly code:

```
1. vmovsd (%r10), %xmm0 # Load 1 element of C into %xmm0
2. mov %rsi, %rcx # register %rcx = %rsi
3. xor %eax, %eax # register %eax = 0
4. vmovsd (%rcx), %xmm1 # Load 1 element of B into %xmm1
5. add %r9, %rcx # register %rcx = %rcx + %r9
6. vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1,
element of A
7. add \$0x1, \%rax  # register \%rax = \%rax + 1
8. cmp %eax, %edi # compare %eax to %edi
9. vaddsd %xmm1, %xmm0, %xmm0 # Add %xmm1, %xmm0
10. jg 30 \langle dgemm + 0x30 \rangle # jump if eax > edi
11. add $0x1, %r11d # register %r11 = %r11 + 1
12. vmovsd %xmm0, (%r10) # Store %xmm0 into C element
```


Optimized C code:

```
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. {
4. for ( int i = 0; i < n; i+=4 )
5. for (int j = 0; j < n; j++) {
      m256d c0 = mm256 load pd(C+i+j*n); /* c0 = C[i][j]
6.
* /
7. for ( int k = 0; k < n; k++)
8.
      c0 = mm256 \text{ add pd}(c0, /* c0 += A[i][k]*B[k][j] */
9.
                mm256 mul pd (mm256 load pd (A+i+k*n),
10.
               mm256 broadcast sd(B+k+j*n)));
    mm256 store pd(C+i+j*n, c0); /* C[i][j] = c0 */
11.
12.
13. }
```


Optimized x86 assembly code:

```
1. vmovapd (%r11), %ymm0
                     # Load 4 elements of C into %ymm0
2. mov %rbx, %rcx # register %rcx = %rbx
3. xor %eax, %eax # register %eax = 0
4. vbroadcastsd (%rax, %r8,1), %ymm1 # Make 4 copies of B element
5. add $0x8,%rax
                   # register %rax = %rax + 8
6. vmulpd (%rcx), %ymm1, %ymm1 # Parallel mul %ymm1, 4 A elements
                 # register %rcx = %rcx + %r9
7. add %r9,%rcx
8. cmp %r10,%rax
                # compare %r10 to %rax
9. vaddpd %ymm1, %ymm0, %ymm0 # Parallel add %ymm1, %ymm0
10. jne 50 <dqemm+0x50> # jump if not %r10 != %rax
                # register % esi = % esi + 1
11. add $0x1, %esi
12. vmovapd %ymm0, (%r11) # Store %ymm0 into 4 C elements
```


Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent

Quiz: Multiply 8_{ten} by 6_{ten}

-23S-Quiz W7

Iter	Multiplicand	Product
0		
1		

Multiplicand

4 bits

23S-Quiz W7 Tu

Iter	Multiplicand	Product
0		
1		

Quiz: Multiply 8_{ten} by 6_{ten}

Multiplicand

4 bits

Iter	Multiplicand	Product
0	1000	0000 0110
1	1000	0000 0110
	1000	0000 0011
2	1000	1000 0011
	1000	0100 000 <mark>1</mark>
3	1000	1100 0001
	1000	0110 000 <mark>0</mark>
4	1000	0110 0000
	1000	0011 0000

Add

Shift

Add

Shift

Add

Shift

Add

Shift