Sistemas Inteligentes. Práctica obligatoria de Redes Bayesianas.

Hugo Fonseca Díaz uo258318@uniovi.es

3 de diciembre de 2021

1. Descripción de la red bayesiana

La red bayesiana implementada modela la estrategia de parada en boxes de una carrera de la Fórmula 1.

Para ganar en la Fórmula 1 es imperativo el tener una buena estrategia de carrera, además de un buen coche o buenos pilotos. Para ello, los equipos trabajan con una gran cantidad de datos que ayudan a formular una estrategia de carrera adecuada a cada circuito. En este ejemplo se ha modelado de forma muy simplificada diez factores que pueden influir en la decisión del ingeniero de carrera de ordenar al piloto la entrada a boxes.

Los diez nodos que se han modelado son los siguientes:

- Boxes: Indicador de entrada en boxes.
- Pinchazo: Si la rueda ha sufrido un pinchazo.
- Ruedas: Si las ruedas son nuevas o desgastadas.
- ¿Undercut del rival?: Si el piloto rival ha parado en boxes antes que el piloto del ingeniero de carrera, con la intención de adelantarle cuando sea éste el que entre en boxes.
- Coche de seguridad: Si el coche de seguridad ha salido a pista. Cuando el coche de seguridad está en pista se suele perder menos tiempo con respecto al resto de pilotos.
- Escombros en la pista: Si hay material peligroso en pista.
- Condición pista: Si la pista está seca, mojada o muy mojada.
- ¿Dos tipos neumáticos distintos?: Si al menos se ha corrido con dos tipos de neumáticos con distinto compuesto. Es una regla de la Fórmula 1 el que los pilotos corran con al menos dos tipos de neumático seco en una carrera.

- Neumáticos actuales: Indica el tipo de neumático actual. Pueden ser secos, intermedios o de lluvia.
- ¿Neumáticos correctos?: Indica si el tipo de neumático concuerda con la condición de la pista.

2. Justificación del modelo

La temática de Fórmula 1 aporta varias situaciones modelables mediante redes bayesianas. Se ha escogido la estrategia de parada en boxes ya que puede cambiar según se van descubriendo evidencias a lo largo de la carrera, lo que la hace idónea. Además, es sencilla de comprender aunque no se conozca el deporte (o eso se ha intentado).

Con respecto a la originalidad, se desconoce si las redes bayesianas son realmente utilizadas por los equipos de F1. Es probable que usen algún tipo de sistema inteligente para preparar y resolver las carreras, aunque aquí se ha modelado una red muy simplificada en base a la experiencia del autor viendo carreras de Fórmula 1. Por tanto se considera que la red es suficientemente original, si no en temática al menos en contenido.

3. Independencias

Se describen a continuación las tres independencias solicitadas, dos condicionales y otra sin condición.

3.1. Independencias condicionales

3.1.1. Coche de seguridad y Pinchazo

Mediante el criterio de d-separación, se sabe que las variables *Coche de seguridad* y *Pinchazo* son condicionalmente independientes si se conoce su nodo padre *Escombros en pista*, ya que se bloquea el camino entre ambas.

3.1.2. Escombros en pista y Boxes

Mediante el criterio de d-separación, se obtiene que las variables *Escombros* en pista (E, para luego aclararse mejor en la explicación) y *Boxes* (B) son condicionalmente independientes si se conocen tanto *Pinchazo* (P), *Coche de seguridad* (C) y *Ruedas* (R). Esto se debe a que se deben cortar tres caminos:

- De E a B pasando por C. Se corta al conocer C.
- De E a B pasando por P. Se corta al conocer P.
- **De E a B pasando por R primero y luego P**. Como conocemos P, R y E son dependientes, por lo que se debe conocer R para cortar el camino entre E y B.

3.2. Independencias no condicionales

3.2.1. Neumáticos actuales y Condición pista

Mediante el criterio de d-separación, se da que las variables Neum'aticos actuales y Condici'on pista son independientes sin condici\'on ya que existe una tripleta com\'un, por lo que si no se conocen ni su hija \raingle Neum'aticos correctos? ni los descendientes de ésta el camino entre ambas variables está bloqueado.

4. Probabilidades del modelo

Las probabilidades del modelo se han estimado en base a la experiencia propia del autor viéndo carreras de Fórmula 1 a lo largo de los años. Por supuesto no son exactas pero se intentan asemejar lo máximo posible a la realidad de las carreras.