ECE/CS 559 - Fall 2017 - Homework #3 Due: 10/06/2017, the end of class.

Erdem Kovuncu

Note: All notes in the beginning of Homework #1 apply. Only a subset of the problems may be graded.

- 1. **Theorem:** Let X be a real $m \times q$ matrix. There exists a unique $q \times m$ matrix X^+ with the following properties: (i) $XX^+X = X$, (ii) $X^+XX^+ = X^+$, and (iii) X^+X and XX^+ are symmetric matrices. The matrix X^+ is called the pseudo-inverse, or the Moore-Penrose pseudo-inverse of X.
 - Show that if X has linearly independent columns, then X^TX is invertible, and $X^+ = (X^TX)^{-1}X^T$. You may use the theorem above.
 - Show that if X has linearly independent rows, then XX^T is invertible, and $X^+ = X^T(XX^T)^{-1}$. You may use the theorem above.
- 2. In this computer experiment, we will implement the gradient descent method and Newton's method. Let $f(x,y) = -\log(1-x-y) \log x \log y$ with domain $\mathcal{D} = \{(x,y) : x+y < 1, x > 0, y > 0\}$.
 - (a) Find the gradient and the Hessian of f on paper.
 - (b) Begin with an initial point in $w_0 \in \mathcal{D}$ with $\eta = 1$ and estimate the global minimum of f using the Gradient descent method, which will provide you with points w_1, w_2, \ldots . Report your initial point w_0 and η of your choice. Draw a graph that shows the trajectory followed by the points at each iteration. Also, plot the energies $f(w_0), f(w_1), \ldots$, achieved by the points at each iteration. Note: During the iterations, your point may "jump" out of \mathcal{D} where f is undefined. If that happens, change your initial starting point and/or η .
 - (c) Repeat part (b) using Newton's method.
 - (d) Compare the speed of convergence of gradient descent and Newton's method, i.e. how fast does each method approach the estimated global minimum?
- 3. Perform the following steps: Steps (e)-(g) are optional and will not be graded, although I highly recommend you do them.
 - (a) Let $x_i = i, i = 1, \dots, 50$.
 - (b) Let $y_i = i + u_i$, i = 1, ..., 50, where each u_i should be chosen to be an arbitrary real number between -1 and 1.
 - (c) Find the linear least squares fit to (x_i, y_i) , i = 1, ..., 50. Note that the linear least squares fit is the line $y = w_0 + w_1 x$, where w_0 and w_1 should be chosen to minimize $\sum_{i=1}^{50} (y_i (w_0 + w_1 x_i))^2$.
 - (d) Plot the points (x_i, y_i) , i = 1, ..., 50 together with their linear least squares fit.
 - (e) Find (on paper) the gradient of $\sum_{i=1}^{50} (y_i (w_0 + w_1 x_i))^2$ (derivatives with respect to w_0 and w_1).
 - (f) (Re)find the linear least squares fit using the gradient descent algorithm. Compare with (c).
 - (g) Show (on paper) that a single iteration of Newton's method with $\eta = 1$ provides the globally optimal solution (the solution in (c)) regardless of the initial point.