# Applied Econometrics for Macro and Finance

#### **Unit-Root Econometrics**

Shiu-Sheng Chen

Department of Economics National Taiwan University

Spring 2023

#### Nonstationarity

Two important types of nonstationarity are:

- Trends
  - Deterministic Trend
  - Stochastic Trend (unit-root nonstationary)
- Structural breaks (parameter instability)
  - Threshold Model
  - Markov Switching Model

We will focus on Unit-Root Nonstationarity in this lecture.

 Nelson and Plosser (1982) found that the null hypothesis of unit root nonstationarity was not rejected for many macroeconomic series.

#### Outline of Discussion of Trends in Time Series Data

- What is a trend?
- What problems are caused by trends?
- How to address problems raised by trends
- How do you detect stochastic trends (statistical tests)?

#### What is a Trend?

- A trend is a persistent, long-term movement or tendency in the data.
- Trends need not be just a straight line!
- Let's check the following three series.

#### U.S. GDP



#### Federal Funds Rate



### Monthly Changes in WTI Prices



#### What is a Trend?

- Different types of a trend
  - US GDP clearly has a long-run upward trend.
  - Federal funds rate has long-term swings, periods in which it is persistently high for many years (1970s/early 1980s) and periods in which it is persistently low. Maybe it has a trend: hard to tell.
  - The changes in WTI prices has no apparent trend.
- Trending time series
  - Trend stationary
  - Difference stationary

#### Deterministic and Stochastic Trends

- A deterministic trend is a nonrandom function of time.
  - For instance, consider a linear trend model

$$y_t = \alpha + \delta t + u_t, \quad u_t \sim^{i.i.d.} (o, \sigma^2)$$

 A stochastic process that is stationary around a deterministic trend is called a trend stationary (TS) process.

#### Deterministic and Stochastic Trends

- A stochastic trend is random and varies over time.
- An important example of a stochastic trend is a random walk:
  - Driftless

$$y_t = y_{t-1} + u_t, \quad u_t \sim^{i.i.d.} (0, \sigma^2)$$

With drift

$$y_t = \mu + y_{t-1} + u_t, \quad u_t \sim^{i.i.d.} (o, \sigma^2)$$

• If  $y_t$  follows a random walk, then the value of y tomorrow is the value of y today, plus an unpredictable disturbance.

#### Deterministic and Stochastic Trends

Note that given a random walk with drift

$$y_{t} = \mu + y_{t-1} + u_{t}$$

$$= \underbrace{\mu t}_{\text{deterministic trend}} + \underbrace{\sum_{s=1}^{t} u_{s}}_{\text{stochastic trend}} + y_{o}$$

• The drift is  $\mu$ :  $y_t$  follows a random walk around a linear trend.

#### Random Walk with Drift vs. Driftless Random Walk





### Key Features of a Driftless Random Walk

Martingale

$$E(y_{T+h}|\Omega_T) = E_T(y_{T+h}) = y_T$$

- Your best prediction of the value of y in the future is the value of y today
- To a first approximation, log stock prices follow a random walk (more precisely, stock returns are unpredictable)
- Suppose  $y_0 = 0$ , then

$$Var(y_t) = t\sigma^2$$

This variance depends on t (increases linearly with t), so  $y_t$  isn't stationary.

#### **Unit Roots**

- The random walk model (with or without drift) is a good description of stochastic trends in many economic time series.
  - Random walk process is an example of a unit root process.
- Consider an AR(1) process

$$\beta(L)y_t = u_t,$$

which has a unit root if  $\beta(1) = 0$ .

That is,

$$\beta(L)=1-L,$$

then

$$beta(L) = 1-beta_1 L = 1 - L$$
, since  $beta_1 = 1$ 

$$(1-L)y_t = u_t$$
 or  $y_t = y_{t-1} + u_t$ 

A driftless random walk process!

### AR(2) model and Unit Root

• Given an AR(2) process

$$y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 y_{t-2} + u_t$$

In lag operator

$$(1 - \beta_1 L - \beta_2 L^2) y_t = \beta(L) y_t = \beta_0 + u_t$$

• If  $\beta(Z) = 0$  has a unit root,

LHS=因式分解 
$$(1-Z)(1-\theta Z) = 0 = 1 - \beta_1 Z - \beta_2 Z^2$$

Hence, the necessary condition for a unit root in AR(2) process is

$$\beta_1 + \beta_2 = 1$$

### AR(2) model and Dickey-Fuller Reparameterization

• Given AR(2)

$$y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 y_{t-2} + u_t$$

• Dickey-Fuller reparameterization:

$$\Delta y_t = \beta_0 + \delta y_{t-1} + \alpha_1 \Delta y_{t-1} + u_t,$$

where 
$$\delta = \beta_1 + \beta_2 - 1$$
,  $\alpha_1 = -\beta_2$ .

Recall the condition for AR(2) process with a unit root:

$$\beta_1 + \beta_2 = 1$$

• So if there is a unit root, then  $\delta = o$ .

# Unit Roots in the AR(p) Model

• The Dickey-Fuller reparameterization of AR(p) model:

$$\Delta y_t = \beta_{\rm o} + \delta y_{t-1} + \alpha_1 \Delta y_{t-1} + \alpha_2 \Delta y_{t-2} + \cdots + \alpha_k \Delta y_{t-p+1} + u_t$$

where

$$\delta = \beta_1 + \beta_2 + \dots + \beta_p - 1,$$

$$\alpha_j = -\sum_{s=i+1}^p \beta_s, \quad j = 1, \dots, p-1$$

• If there is a unit root in the AR(p) model, then  $\delta = 0$ 

### What Problems are Caused by Stochastic Trends?

- If y and x both have stochastic trends then they can look related even if they are not: spurious regression
- AR coefficients are strongly downward biased. This leads to poor forecasts.
- Some *t*-statistics don't have a standard normal distribution, even in large samples (more on this later).

### 1. Spurious Regression

Consider

$$y_t = \alpha + \beta z_t + e_t$$

- Granger and Newbold (1974) illustrate that if variables  $y_t$  and  $z_t$  are independent but contain stochastic trends,
  - the null hypothesis  $\beta = 0$  is rejected
  - the regressions usually have very high  $R^2$  values.
- When a regression model appears to find relationships between  $y_t$  and  $z_t$  that do not really exist, it is called a spurious regression.

### 2. Small Sample Downward Bias



### 3. Spurious Detrending and Inference Problem

### Spurious Detrending

 The presence of stochastic trend implies the effects of shocks persist forever and the cyclical fluctuations cannot be studied by simply removing the fixed time trend.

#### Inference Problem

• Consider the following regression

$$y_t = \alpha + \beta x_t + \varepsilon_t$$

•  $x_t$  contain stochastic trend: t-ratio for  $\beta$  doe not have standard asymptotic distribution

#### Inference Problem

Figure: 模擬在虛無假設  $\beta_1 = 1$  下 t-統計量之抽樣分配



#### How To Remove the Trend

Differencing for stochastic trend (difference stationary)

Detrending for deterministic trend (trend stationary)

Differencing

$$\Delta y_t = y_t - y_{t-1}$$

② Detrending

$$y_t - \mu_t$$

where

$$\mu_t = a_0 + a_1 t$$

# Differencing vs. Detrending

```
y_t=beta*t+epsilon_t
y_t-y_{t-1}=beta+epsilon_t-epsilon_{t-1}
```

- First-differencing a trend-stationary (TS) process has introduced a noninvertible unit root process into the MA component of the model.
- Substracting a deterministic time trend from a difference-stationary (DS) process does not necessary result in a stationary series.
- Hence, we need a tool to determine whether the series is TS or DS. This requires a formal test of stationarity: tests for a unit root.

### Differencing vs. Detrending: Nelson and Plosser (1982)

- Before the 1980's, it is believed that macroeconomic variables grow at a constant trend rate.
- Hence, it was a common practice of detrending macroeconomic data using a linear (or polynomial) deterministic trend.
- Nelson and Plosser (1982) challenge the traditional view by demonstrating that important macroeconomic variables tend to be DS rather than TS.

# Testing Unit Root Hypothesis: AR(1) Model

- $y_t = \alpha y_{t-1} + u_t$ ,  $u_t \sim^{i.i.d.} (o, \sigma^2)$ • Null Hypothesis:  $\alpha = 1$
- Dickey-Fuller Tests (the t-ratio)

$$\tau = \frac{\hat{\alpha} - 1}{se(\hat{\alpha})} \xrightarrow{d} DF_{\text{alpha}}$$

# Testing for a Unit Root in the AR(1) Model

Most of the time, we write the DF regression into

$$\Delta y_t = (\alpha - 1)y_{t-1} + u_t = \delta y_{t-1} + u_t$$

• Then the hypothesis becomes

$$H_0: \delta = o \text{ vs. } H_1: \delta < o$$

• The t-ratio is

$$\tau = \frac{\hat{\delta}}{se(\hat{\delta})} \xrightarrow{d} DF_{\tau}$$

#### Remarks

• We have assumed that  $u_t \sim^{i.i.d.} (o, \sigma^2)$ . Suppose that  $u_t$  is a dependent process, we need to modify the asymptotic distributions.

| $u_t$ i.i.d.                         | $u_t$ serially correlated |
|--------------------------------------|---------------------------|
| $DF_{\alpha}$ test/ $DF_{\tau}$ test | ADF test                  |

Let's see how the ADF test works.

### Testing Unit Root Hypothesis: AR(k) Model

Consider the AR(k) model

$$\varphi(L)y_t = \mu + \varepsilon_t$$

where

$$\varphi(L) = 1 - \varphi_1 L - \dots - \varphi_k L^k$$
,  $\varepsilon_t \sim^{i.i.d.} (o, \sigma^2)$ 

• We say that  $y_t$  has a unit root if  $\varphi(z) = 0$  has a root on the unit circle:  $\varphi(1) = 0$ .

# Testing Unit Root Hypothesis: AR(k) Model

- Let p = k 1.
- It can be shown that

$$\varphi(L) = (1-L) - \delta L - \alpha_1(L-L^2) - \cdots - \alpha_p(L^p - L^{p+1})$$

• We thus have the following Dickey-Fuller reparameterization of  $\varphi(L)y_t = \mu + \varepsilon_t$ :

$$\Delta y_t = \mu + \delta \ y_{t-1} + \alpha_1 \ \Delta y_{t-1} + \dots + \alpha_p \ \Delta y_{t-p} + \varepsilon_t$$

• Hence,  $\varphi(1) = -\delta$ , that is , the parameter  $\delta$  summarizes the information about the unit root.

### Testing Unit Root Hypothesis: AR(k) Model

Dickey-Fuller reparameterization

$$\Delta y_t = \mu + \delta y_{t-1} + \alpha_1 \Delta y_{t-1} + \dots + \alpha_p \Delta y_{t-p} + \varepsilon_t$$

ullet Therefore, the hypothesis of a unit root in  $y_t$  can be stated as

$$H_o: \delta = o$$
 versus  $H_i: \delta < o$ 

- This is the most popular unit root test, and is called Augmented Dickey-Fuller (ADF) test.
- Under  $H_0$ , we can not assess the significance of the ADF statistic using the normal table.

### Simulating the Dickey-Fuller Distribution

• Given  $\delta$  = o. (under  $H_0$ ),

$$\mathsf{ADF}_t = \frac{\hat{\delta}}{se(\hat{\delta})} \xrightarrow{d} DF_{\tau}^{\mu}$$

- T = 300, B = 10000 replications
  - -3.44980 (1%), -2.86484 (5%), -2.55646 (10%)

# Example: Does US-UK (log) Real Exchange Rate have a Unit Root?

- ADF-t = -3.2624, which can reject a unit root at 5% significance level.
- The long-run relative PPP holds.

