Clustering

In [1]:

```
1 # from google.colab import drive
2 # drive.mount('/gdrive')
3 # %cd /gdrive
```

Importing the data and necessary libraries

In [2]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt

import warnings
warnings.filterwarnings('ignore')
```

In [3]:

```
path = 'After_BERT(Embedded_Data).csv'
df = pd.read_csv(path, index_col = 0, keep_default_na=False)
df.head()
```

Out[3]:

	Industry	Company Location	New Job (90 Days)	Year Started	Profile Headline	Profile Summary	School	Degr
0	Mechanical or Industrial Engineering	Dublin, Ohio, United States	False	2020.0	Mechanical Design Engineer, System Integration	In the ever-growing technological world where	Chalmers University of Technology	
1	Information Technology and Services	New York City Metropolitan Area	False	2018.0	Digital DevOps Engineer at HSBC	AWS Certified Cloud Engineer holding 3 AWS Ass	Binghamton University	
2	Information Technology and Services	Chicago, Illinois, United States	False	2018.0	Leading Product + UX at Remedy (Two Point Conv	http://aroonmathai.com	Carnegie Mellon University	
3	Information Technology and Services	Bangalore Urban, Karnataka, India	False	2018.0	Product Designer at udaan		Vellore Institute of Technology	
4	Information Technology and Services	Jaipur, Rajasthan, India	True	2021.0	Digital Technology Intern at General Electric		Vellore Institute of Technology	

5 rows × 30 columns

In [4]:

```
coords = pd.read_csv('Coordinates.csv')
coords.head()
```

Out[4]:

	latitude	longitude
0	40.099229	-83.114077
1	44.870970	-0.547490
2	41.875562	-87.624421
3	12.945142	77.553645
4	26.915458	75.818982

In [5]:

```
1 df['latitude'] = coords['latitude']
2 df['longitude'] = coords['longitude']
```

In [6]:

1 df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 4910 entries, 0 to 4909
Data columns (total 32 columns):

#	Column	Non-Null Count	Dtype
0	Industry	4910 non-null	object
1	Company Location	4910 non-null	object
2	New Job (90 Days)	4910 non-null	bool
3	Year Started	4910 non-null	float64
4	Profile Headline	4910 non-null	object
5	Profile Summary	4910 non-null	object
6	School	4910 non-null	object
7	Degree	4910 non-null	object
8	Education End	4910 non-null	object
9	Domain	4910 non-null	object
10	CompanyName	4910 non-null	object
11	JobTitle	4910 non-null	object
12	My Network	4910 non-null	object
13	Country	4910 non-null	object
14	Continent	4910 non-null	object
15	FieldOfStudy	4910 non-null	object
16	<pre>Industry_embedding</pre>	4910 non-null	float64
17	Company Location_embedding	4910 non-null	float64
18	Profile Headline_embedding	4910 non-null	float64
19	Profile Summary_embedding	4910 non-null	float64
20	School_embedding	4910 non-null	float64
21	Degree_embedding	4910 non-null	float64
22	Education End_embedding	4910 non-null	float64
23	Domain_embedding	4910 non-null	float64
24	CompanyName_embedding	4910 non-null	float64
25	JobTitle_embedding	4910 non-null	float64
26	My Network_embedding	4910 non-null	float64
27	Country_embedding	4910 non-null	float64
28	Continent_embedding	4910 non-null	float64
29	FieldOfStudy_embedding	4910 non-null	float64
30	latitude	4910 non-null	float64
31	longitude	4910 non-null	float64
44	b1/1\	i a a + /1 / 1 \	

dtypes: bool(1), float64(17), object(14)

memory usage: 1.2+ MB

```
In [7]:
 1 df.columns
Out[7]:
Index(['Industry', 'Company Location', 'New Job (90 Days)', 'Year Started',
       'Profile Headline', 'Profile Summary', 'School', 'Degree',
       'Education End', 'Domain', 'CompanyName', 'JobTitle', 'My Network',
       'Country', 'Continent', 'FieldOfStudy', 'Industry_embedding',
       'Company Location_embedding', 'Profile Headline_embedding',
       'Profile Summary_embedding', 'School_embedding', 'Degree_embedding',
       'Education End_embedding', 'Domain_embedding', 'CompanyName_embeddin
g',
       'JobTitle_embedding', 'My Network_embedding', 'Country_embedding',
       'Continent_embedding', 'FieldOfStudy_embedding', 'latitude',
       'longitude'],
      dtype='object')
In [8]:
    df1 = df[['Country_embedding',
               'Continent embedding',
 2
 3
               'Domain_embedding',
               'Industry embedding',
 4
 5
               'FieldOfStudy_embedding',
               'latitude', 'longitude |
```

Standardisation and Normalisation of Data

```
In [9]:
 1 | # Standardize data
 2 from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
 4 | scaled_df = scaler.fit_transform(df1)
```

```
In [10]:
```

6

```
1 # Normalizing the Data
2 from sklearn.preprocessing import normalize
3 normalized df = normalize(scaled df)
```

In [11]:

```
1 | # Converting the numpy array into a pandas DataFrame
2 normalized_df = pd.DataFrame(normalized_df)
```

Using Elbow Method to determine the best value of k in **KMeans clustering**

In [12]:

```
from sklearn.cluster import KMeans
 2
 3
   sse = []
 4
   K = range(1,20)
 5
   for k in K:
 6
        kmeanModel = KMeans(n_clusters=k)
 7
        kmeanModel.fit(normalized_df)
        sse.append(kmeanModel.inertia_)
 8
 9
   plt.figure(figsize=(15,6))
10
   plt.plot(K, sse, 'bx-')
   plt.xlabel('Number of Clusters (k)', fontsize = 20)
   plt.ylabel('Sum of Squared Error', fontsize = 20)
   plt.title('The Elbow Method showing the optimal k', fontsize = 25)
13
   plt.show()
```


Here we see that there is no appropriate value of k. Thus we use DBSCAN method to cluster data.

Visualising the data using PCA

In [13]:

```
# Reducing the dimensions of the data
from sklearn.decomposition import PCA

pca = PCA(n_components = 3)

pcadf = pca.fit_transform(normalized_df)
pcadf = pd.DataFrame(pcadf)
pcadf.columns = ['Principal Component 1', 'Principal Component 2', 'Principal Component 7

pcadf.head(10)
```

Out[13]:

	Principal Component 1	Principal Component 2	Principal Component 3
0	0.375353	-0.061732	0.885181
1	-0.285591	-0.137249	0.815803
2	-0.244175	-0.140513	0.851572
3	-0.840738	-0.028420	-0.292160
4	-0.872485	-0.068228	0.046006
5	0.373151	0.525823	-0.481568
6	-0.840738	-0.028420	-0.292160
7	0.297989	-0.033309	0.666742
8	0.820311	0.211774	-0.202186
9	0.871196	0.125964	-0.024124

In [14]:

```
fig, ax = plt.subplots(figsize=(12, 8))
 2
    scatter = ax.scatter(pcadf['Principal Component 1'],
 3
                         pcadf['Principal Component 2'],
                         c = pcadf['Principal Component 3'],
 4
 5
                         alpha=0.6)
 6
    plt.title('Plotting the 3-Dimensional data after PCA is applied', fontsize = 20)
   plt.xlabel('Principal Component 1', fontsize = 15)
 7
   plt.ylabel('Principal Component 2', fontsize = 15)
 8
 9
   plt.legend(*scatter.legend_elements(), loc="best", title="Principal\nComponent 3")
   ax.plot([])
10
   ax.grid()
11
   plt.show()
12
```


In [15]:

```
fig = plt.figure(figsize = (15, 6))
    plt.suptitle("Plotting the 3 component with colors representing clusters\n'x axis : P1
 3
    x, s1 = pcadf['Principal Component 1'], "Principal Component 1"
y, s2 = pcadf['Principal Component 2'], "Principal Component 2"
 4
 5
    z, s3 = pcadf['Principal Component 3'], "Principal Component 3"
    ax = fig.add_subplot(111, projection = '3d')
 8
 9
    ax.scatter(x, y, z, c = "red", s=0.5, alpha = 1)
    ax.set xlabel(s1, fontsize = 15)
10
    ax.set_ylabel(s2, fontsize = 15)
11
    ax.set_zlabel(s3, fontsize = 15)
12
13
14
   plt.show()
```

Plotting the 3 component with colors representing clusters 'x axis : P1 | y axis : P2 | z axis : P3'

In [16]:

```
import plotly as py
    import plotly.graph_objs as go
 3
    import numpy as np
    import pandas as pd
 5
 6
    trace = go.Scatter3d(
 7
        x=pcadf['Principal Component 1'],
 8
        y=pcadf['Principal Component 2'],
        z=pcadf['Principal Component 3'],
 9
10
        mode='markers',
11
        marker=dict(
12
13
            size=5,
            color=pcadf['Principal Component 3'],
14
15
            colorscale='Viridis',
16
        ),
        name= 'PCA Visualization',
17
18
19
        # list comprehension to add text on hover
20
        text= [f"PCA 1: {a}<br>PCA 2: {b}<br>PCA 3: {c}" for a,b,c in list(zip(pcadf['Prince
21
        # if you do not want to display x,y,z
        hoverinfo='text'
22
23
    )
24
25
26
    layout = dict(title = 'PCA Visualization',)
27
28
   data = [trace]
29
   fig = dict(data=data, layout=layout)
30
31
   py.offline.plot(fig, filename = 'Test.html')
```

Out[16]:

'Test.html'

Since there are no distinguishable clusters, we go for DBSCAN clustering and Heirarchial Clustering algorithms

DBSCAN Clustering (World)

In [17]:

```
1 # df1 = df[['Country_embedding',
2 # 'Continent_embedding',
3 # 'Domain_embedding',
4 # 'Industry_embedding',
5 # 'FieldOfStudy_embedding',
6 # 'Latitude', 'Longitude']]
```

```
In [18]:
```

```
from sklearn.cluster import DBSCAN

db = DBSCAN(eps=0.3, min_samples=10).fit(df1.drop(['latitude', 'longitude'], axis = 1)]
labels = db.labels_
print(labels, len(labels))
```

```
[0 1 1 ... 2 2 2] 4910
```

```
In [19]:
```

```
1 df1['label'] = labels
2 df1['label'].value_counts()
```

Out[19]:

```
2 4341
1 204
0 204
-1 118
```

3 17 4 16

Name: label, dtype: int64

10

In [20]:

```
1 print("Cluster types: ",set(labels))
```

Cluster types: {0, 1, 2, 3, 4, 5, -1}

In [21]:

```
1 df1.sample(5)
```

Out[21]:

	Country_embedding	Continent_embedding	Domain_embedding	Industry_embedding	Field
1161	-0.156677	-0.227953	-0.112251	0.394512	
206	-0.156677	-0.227953	0.195954	0.026966	
3847	0.812406	-0.227953	0.116207	0.389670	
2046	-0.156677	-0.227953	0.484690	-0.245237	
3864	-0.156677	-0.227953	0.116207	-0.245237	
4					+

Evaluation Metrics

Silhouette Score

In [22]:

```
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score

sil_coeff = silhouette_score(df1, labels, metric='euclidean')
print("Silhoutte Score: ", sil_coeff)
```

Silhoutte Score: 0.6633363585442195

Plotting the world-wide profile clusters

In [25]:

```
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure

plt.figure(figsize=(10, 6), dpi=80)
plt.scatter(x=df1['longitude'], y=df1['latitude'])
plt.title('Plotting the Latitudes and the Longitudes', fontsize = 20)
plt.xlabel('Longitude', fontsize = 15)
plt.ylabel('Latitude', fontsize = 15)
plt.show()
```

Plotting the Latitudes and the Longitudes

In [26]:

```
#markers=['.',',','o','v','o','v','o','v','o','a','o','a','o','a','a','a','a']
import seaborn as sns
sns.set_theme(color_codes=True)
fig, ax = plt.subplots(figsize = (10, 6),dpi=80)
markers=['o','v','o','c', 'x', '.', ',']
sns.scatterplot(ax = ax , x = "longitude" , y = "latitude" , data = df1, hue = "label"]
ax.set_xlabel( "Longitude" , size = 15)
ax.set_ylabel( "Latitude" , size = 15)
ax.set_title( "Plotting Latitude Vs Longitude" , size = 20)
plt.show()
```

Plotting Latitude Vs Longitude

In [27]:

```
import plotly.io as pio; pio.renderers.default='notebook'
import plotly.express as px
import pandas as pd
fig = px.scatter_geo(df1,lat='latitude',lon='longitude', hover_name="label", color = dfig.update_layout(title = 'World map', title_x=0.5)
fig.show()
```

World map

In [52]:

```
import pandas as pd
from shapely.geometry import Point
import geopandas as gpd
from geopandas import GeoDataFrame

geometry = [Point(xy) for xy in zip(india_df['longitude'], df['latitude'])]
gdf = GeoDataFrame(india_df, geometry=geometry)

#this is a simple map that goes with geopandas
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
gdf.plot(ax=world.plot(figsize=(10, 6)), marker='o', color='red', markersize=15)
```

1

In []:

1

In [29]:

Word Clouds

```
1 df.columns
Out[29]:
Index(['Industry', 'Company Location', 'New Job (90 Days)', 'Year Started',
       'Profile Headline', 'Profile Summary', 'School', 'Degree',
       'Education End', 'Domain', 'CompanyName', 'JobTitle', 'My Network',
       'Country', 'Continent', 'FieldOfStudy', 'Industry_embedding',
       'Company Location_embedding', 'Profile Headline_embedding',
       'Profile Summary_embedding', 'School_embedding', 'Degree_embedding',
       'Education End_embedding', 'Domain_embedding', 'CompanyName_embeddin
g',
       'JobTitle_embedding', 'My Network_embedding', 'Country_embedding',
       'Continent_embedding', 'FieldOfStudy_embedding', 'latitude',
       'longitude'],
      dtype='object')
In [30]:
 1
    word_cloud_df = df[['Industry',
 2
             'Degree',
             'Domain',
 3
 4
             'CompanyName',
             'JobTitle',
 5
             'FieldOfStudy']]
 6
In [31]:
 1 word_cloud_df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 4910 entries, 0 to 4909
Data columns (total 6 columns):
                   Non-Null Count
 #
     Column
                                    Dtype
 0
     Industry
                   4910 non-null
                                    object
 1
     Degree
                   4910 non-null
                                    object
 2
     Domain
                   4910 non-null
                                    object
 3
                   4910 non-null
     CompanyName
                                    object
 4
                   4910 non-null
     JobTitle
                                    object
 5
     FieldOfStudy 4910 non-null
                                    object
dtypes: object(6)
memory usage: 268.5+ KB
In [32]:
 1
    def join_text(df):
 2
        k = ""
 3
        for col in df.columns:
 4
                 k = (' '.join(df[col].str.lower()))
 5
 6
            except:
 7
                 print(col)
 8
        return k
```

-1

3

4

```
In [33]:
```

```
1 word_cloud_df['label'] = labels
2 word_cloud_df['label'].value_counts()

Out[33]:
2     4341
1     204
0     204
```

5 10 Name: label, dtype: int64

118

17

16

In [34]:

```
1 clus1_df = word_cloud_df[word_cloud_df['label'] == -1]
```

In [35]:

```
def plot_wordCloud(df):
 2
        from textblob import TextBlob
 3
        from collections import Counter
 4
        from wordcloud import WordCloud, STOPWORDS
 5
        import matplotlib.pyplot as plt
 6
 7
        k = join_text(df.drop(['label'], axis = 1))
 8
        wordcloud = WordCloud(width = 2000, height = 1000, prefer_horizontal = 0.3).generat
 9
        plt.figure(figsize=(15,15))
        plt.imshow(wordcloud)
10
        plt.axis('off')
11
```

In [36]:

```
import collections
   import numpy as np
 2
   import pandas as pd
4 import matplotlib.cm as cm
 5
   import matplotlib.pyplot as plt
 6 from matplotlib import rcParams
   from wordcloud import WordCloud, STOPWORDS
 7
 8
   %matplotlib inline
9
   stopwords = STOPWORDS
    stopwords.add('&')
10
11
    stopwords.add('-')
12
13
    def analyse_word_cloud(df, num):
        all_words = join_text(df)
14
15
16
        filtered_words = [word for word in all_words.split() if word not in stopwords]
        counted_words = collections.Counter(filtered_words)
17
18
19
        words = []
20
        counts = []
21
        for letter, count in counted_words.most_common(10):
22
            words.append(letter)
            counts.append(count)
23
24
25
        colors = cm.rainbow(np.linspace(0, 1, 10))
26
        rcParams['figure.figsize'] = 20, 10
        plt.title('Top words in the cluster (' + str(num) + ') vs their count', fontsize =
27
28
        plt.xlabel('Count', fontsize = 20)
29
        plt.ylabel('Words', fontsize = 20)
30
        plt.xticks(fontsize = 20)
31
        plt.yticks(fontsize = 20)
        plt.barh(words, counts, color=colors)
32
33
        plt.show()
```

In [37]:

1 plot wordCloud(clus1 df)

In [38]:

1 analyse_word_cloud(clus1_df, -1)

label

In [39]:

- clus2_df = word_cloud_df[word_cloud_df['label'] == 0]
 plot_wordCloud(clus2_df)
- communication rengineering industrialengineering properties of the standard of

In [40]:

1 analyse_word_cloud(clus2_df, 0)

label

In [41]:

- 1 clus3_df = word_cloud_df[word_cloud_df['label'] == 1]
- plot_wordCloud(clus3_df)

In [42]:

1 analyse_word_cloud(clus3_df, 1)

label

In [43]:

- 1 clus4_df = word_cloud_df[word_cloud_df['label'] == 2]
- plot_wordCloud(clus4_df)

In [44]:

1 analyse_word_cloud(clus4_df, 2)

label

In [45]:

- 1 clus5_df = word_cloud_df[word_cloud_df['label'] == 3]
- plot_wordCloud(clus5_df)

In [46]:

1 analyse_word_cloud(clus5_df, 3)

label

In [47]:

- 1 clus6_df = word_cloud_df[word_cloud_df['label'] == 4]
- plot_wordCloud(clus6_df)

In [48]:

1 analyse_word_cloud(clus6_df, 4)

label

In [49]:

- 1 clus7_df = word_cloud_df[word_cloud_df['label'] == 5]
- plot_wordCloud(clus7_df)

In [50]:

1 analyse_word_cloud(clus7_df, 5)

label

