FÍSICA GENERAL I 2020

Soluciones guia 2

Problema 1: $T_A = 717, 4 \text{ N}$. Las tensiones en ambas cuerdas de la polea tienen el mismo módulo $T_B = 454, 8 \text{ N}$ $(g = 9, 8 \text{ m/s}^2)$.

Problema 2:

- (a) P = 574, 9 N.
- (b) R = 799, 7 N.

Problema 3:

- (a) $a = 1, 5 \text{ m/s}^2$. $T_2 = 45 \text{ N}$. $T_1 = 15 \text{ N}$.
- (b) $a = -8, 3 \text{ m/s}^2$, con respecto a un sistema de coordenadas unidimensional vertical que apunta hacia arriba. $T_2 = 45 \text{ N}$. $T_1 = 15 \text{ N}$.

Problema 4: $a = 1,44 \text{ m/s}^2$. T = 1,27 N.

Problema 5:

- (a) Módulo de la fuerza de contacto: C = 1 N.
- (b) C = 2 N.

Problema 6:

- (a) La balanza registra un peso $P = m_2 g \left(1 + \frac{a}{g}\right)$
- (b) $T = (m_1 + m_2 + m_3) (g + a)$.
- (c) a = g

Problema 7:

- (a) $\alpha = \arctan\left(\frac{a}{g}\right)$.
- (b) $\alpha = \arctan\left(\frac{\sin\theta + a/g}{\cos\theta}\right)$.

Problema 8:

- (a) v = 10 m/s.
- (b) R = 1,69 m.

Problema 9: $a = 0.696 \text{ m/s}^2$.

Problema 10:

- (a) P = 20 N.
- (b) P = 50 N.

Problema 11:

- (a)
- (b) $\theta = \operatorname{arctg}(\mu_e)$
- (c) $\theta = \operatorname{arctg}(\mu_d)$

Problema 12: $\mu_e \geq \frac{\sqrt{3}}{7}$

Problema 13:

- (a) a = 0. T = mg.
- (b) M = m.

Problema 14: $T_1 = g(m_2 + m_1 \cos \alpha)$. $T_2 = m_2 g$. $R = m_1 g \sin \alpha$.

Problema 15:

(a) Ayuda: la tensión de la cuerda sobre cada masa es tangencial al círculo en cada punto de aplicación.

(b)

$$\theta_1 = \arctan\left[\frac{m_2 \sin\left(\frac{L}{R}\right)}{m_1 + m_2 \cos\left(\frac{L}{R}\right)}\right].$$

(c) Tensión del hilo: $T=m_1g\sin\theta_1$. Reacciones (normales a la superficie del cilindro): $N_1=m_1g\cos\theta_1,\ N_2=m_2g\cos\theta_2$.

Problema 16:

- (a) $v = \frac{\pi}{4\sqrt{3}} \text{ m/s}.$
- (b) T = 0.637 N.
- (c) $\omega = 6.26 \text{ s}^{-1}$

Problema 17:

- (a)
- (b) $F_c = 0,204 \text{ N}.$

Problema 18:

- (a) $a = 1,66 \text{ m/s}^2$. T = 0,917 N.
- (b) $a = 5,43 \text{ m/s}^2$. T = 1,218 N.

Problema 19: $T = 3,057 \text{ N. } \theta = 50,19^{o}$

Problema 20:

- (a) $a = 1,36 \text{ m/s}^2$.
- (b) T = 11, 26 N.
- (c) ?