Machine Learning 2

Lab 3 Oscar Teeninga

1. Zadanie wstępne (1)

Najpierw usunąłem 'sex' z cech i sprawdziłem wpływ na pozostałe cechy

name	1	X1 ~
sex	1.21955	1.21955
pclass	-0.908431	0.908431
age	-0.542026	0.542026
intercept	-0.487976	0.487976
sibsp	-0.317782	0.317782
fare	0.095779	0.095779
parch	0.0455476	0.0455476
	sex pclass age intercept sibsp fare	sex 1.21955 pclass -0.908431 age -0.542026 intercept -0.487976 sibsp -0.317782 fare 0.095779

	name	1	X1 ~
2	pclass	-0.833948	0.833948
3	age	-0.5479	0.5479
1	intercept	-0.411969	0.411969
5	parch	0.253208	0.253208
4	sibsp	-0.240451	0.240451
6	fare	0.184664	0.184664

Regresja logistyczna z sex

Regresja logiczna bez sex

	name	coef	X1 ~
1	intercept	0.408612	0.408612
7	sex	0.237728	0.237728
2	pclass	-0.147848	0.147848
3	age	-0.085454	0.085454
4	sibsp	-0.0475429	0.0475429
6	fare	0.0144862	0.0144862
5	parch	0.00801002	0.00801002

	name	coef	X1 ~
1	intercept	0.408612	0.408612
2	pclass	-0.181983	0.181983
3	age	-0.11161	0.11161
5	parch	0.0535358	0.0535358
4	sibsp	-0.0496436	0.0496436
6	fare	0.0349719	0.0349719

Regresja liniowa z sex

Regresja liniowa bez sex

W przypadku regresji logicznej widać, że zwiększyła się istotność cechy **parch**. W przypadku regresji liniowej występuje dokładnie to samo, cecha **parch** staje się

w przypadku regresji liniowej występuje dokładnie to samo, cecha **parch** staje się istotniejsza niż było to wcześniej o rząd wielkości.

Ranking cech w Glass

	# ~	Info.gain	Gain ratio	Gini	χ²	ReliefF	FCBF		name	coef	X1 ~	Ī		name	coef	X1	1 🗸
N		0.537	0.269	0.101	85.202	0.200	0.346	1	intercept	1.54206	1.54206	1	interd	name	1.54206		1.54206
N A		0.471	0.236	0.121	68.899	0.063	0.291	10	Mg	-0.595791	0.595791		Na	op.	0.90936	0	0.90936
N B	Mg	0.384	0.402	0.107	268.638	0.040	0.325		Na	0.588997 0.547345	0.588997 0.547345		Al		0.746692	0.	746692
N		0.368	0.184	0.080	59.018	0.034	0.214	5	Al Si	0.33189	0.33189	5	Si		0.63907	0	0.63907
NK		0.330	0.165	0.073	38.548	0.018	0.000	8	Ba	0.27095	0.27095	7	Ca		0.606669		606669
N c		0.325	0.163	0.074	20.663		0.185	2	RI	0.17301	0.17301		Ва		0.474662		474662
Ns Co		0.196	0.098	0.034	18.741 17.682	0.021	0.000	6	K	0.0670014	0.0670014		K		0.33406		14016
N R N Fe		0.145	0.073	0.031	24.077	0.038	0.000	9	Fe	-0.0584218 0.012848	0.0584218		RI		0.149168		.149168 436026
ш.		0.120	. 0.000	0.022	24.077	. 0.011	0.070	7	Ca	0.012848	0.012848	9	Fe		-0.0430020	0.0-	+50020
		name		1		2		3		5	6				7	X1	~
10	Mg			1.6570	9	-0.159639		0.8	52644	-1.01768	-0.2	26	414		-1.106	1.6	65709
4	Al			-1.5970	2	-0.166346		-1.	31744	1.58643	0.40)4(592		1.08968	1.	59702
1	interd	ept		1.0566		2.24505		-0.0	21796	-0.952759			079	0	.619259		05666
3	Na			0.57515		-0.718653			74527	-0.833202			474		.996795		75158
2	RI			0.43414	5	0.247769		-1.	31782	-0.266968	-0.17	74	406		1.07728	0.4	34145
8	Ba			0.31763		0.0213435			55131	-0.139001	0.93			0.	890397		317639
5	Si			0.28038	1 _	-0.408731		-1.	07559	-0.186769	0.37	78	559		1.01215	0.2	80381
9	Fe			0.24779	5	0.484646		0.2	40523	0.203282	-0.82	259	926	-0.	.350319		47795
7	Ca			0.20056		-0.373655			64292	0.579175	0.2				.740547		00563
6	K			0.12875	6	0.282863	_	-0.5	34485	0.799675	-1.4	14	607	0.	769264	0.1	28756
T	n	ame		1		2		3		5	6				7	X1	~
4	Al			-1.91913	-0	.0613028		_	5249	1.81955	0.34	164	104		1.26696		.91913
	Ca			-1.37383		-0.199198	-0	0.019	8402	1.24538	0.41	129	36	-0.0	654433	1.	37383
	interce	pt		1.24131		2.06943	C	.047	77239	-0.967189	-1.8	84	713	-0	.544152	1	.2413
	Na			-1.05423		-0.714521		-0.4	50178	-0.55884	1	.4	198		1.35796	1./	05423
2	RI			0.410434		0.160717	_	-1	.3657	-0.176823	-0.1	84	173		1.15554	0.4	10434
5	Si		-(.338338		-0.39376	-	-1.3	31305	0.139603	0.46	99	939		1.43561	0.3	38338
9	Fe		(0.239552		0.474475		0.23	84806	0.219746	-0.8	183	399	-0	.350179	0.2	39552
6	K			0.195927		0.281617		0.55	4302	0.973458	-1.4	45	133	0.	946483	0.1	95927
8	Ва		0	.0120869	0	.0282359	_	-0.2	31995	0.0205723	-0.96	69	758		1.14086	0.01	20869

Wyrzuciłem z cech Magnez (Mg).

Znacząco w przypadku regresji logicznej wzrasta ranking wapnia (**Ca**). Inne cechy również zmieniają swoją istotność, ale w mniejszym stopniu. Jednym słowem - widać różnicę. Analogicznie wygląda to dla regresji liniowej. Wapń (**Ca**) awansuje w rankingu. Inne cechy również zmieniają swoją pozycję jak np. **Ba**, który spada w rankingu zna ostatnie miejsce.

2. Zadanie wstępne (2)

Model ~	Train time [s]	Test time [s] AL	JC CA	F1	Precision	Recall	LogLoss	Specificity
Tree	0.621	0.001 0.	.767 0.760	0.756	0.758	0.760	4.329	0.721
SVM	0.529	0.029 0.	823 0.807	0.803	0.808	0.807	0.468	0.767
Random Forest	0.260	0.054 0.	835 0.782	0.780	0.780	0.782	1.239	0.752
CN2 rule inducer	72.076	0.056 0.	.762 0.735	0.733	0.733	0.735	0.589	0.704

Porównanie metod klasyfikacji

Płeć (sex) jest w tym przypadku najbardziej istotną cechą, zgodnie w poprzednim zadaniem. Natomiast ciekawe jest, że znacznie wyżej jest fare. Explain model bada, które cechy mają największy wpływ w zależności od ich wielkości dla każdego przykładu. Bardzo fajnie widać to po wieku (age) (zbiór mniej dyskretny niż np. sex). Widzimy, że dla dużego bardzo dużego wieku i małego wieku wpływ na model jest największy.

Następnie wybrałem dwa przykłady. Są to bardzo małe dzieci, podróżujące pierwszą klasą, będące chłopcami. Jest to ciekawe ze względu na to, że dzieci mają większą szansę na przeżycie, ale wiek jednego z dzieci to było 2 lata, więc może to dać ciekawe wnioski w jaki sposób model podchodzi do przykładów ekstremalnych (cechy powinny wręcz gwarantować przeżycie, a dziecko tak małe nie przeżyło).

	survived pclass		sex	age	sibsp	parch	fare	
1	0	1	1	2	1	2	151.55	
2	1	1	1	14	1	2	120	

Wybrane dwa przykłady

Co ciekawe, CN2 rule inducer zadziałał i zorientował się, że jedno z dzieci było na tyle młode, żeby nie przeżyć.

Model	~	Train time [s]	Test time [s]	AUC	CA	F1	Precision	Recall	LogLoss	Specificity
Tree		0.101	0.001	0.500	0.500	0.333	0.250	0.500	1.849	0.500
SVM		0.070	0.002	1.000	0.500	0.333	0.250	0.500	0.736	0.500
Random Forest		0.023	0.007	1.000	0.500	0.333	0.250	0.500	0.458	0.500
CN2 rule induc	er	13.674	0.005	1.000	1.000	1.000	1.000	1.000	0.166	1.000

Porównanie wyników klasyfikacji dwóch przykładów

Random forest Tree

3. Zadanie finalne (Glass)

Jak widać, CN2 i SVM są wyraźnie lepsze (Precision) od pozostałych.

Jak widzimy jeden przykład został zakwalifikowany jako 7 zamiast 5 (poprawnie dla CN2 i SVM, niepoprawnie dla Tree i Random Forest).