Optimal block execution of trades

PL, July 2021

Petar Maymounkov

Problem statement, first stab

Traditionally, OTC service by brokers to institutional clients.

Electronic version, around 2005.

Now crypto OTC services.

Sell 1 FIL before a deadline for as much USD as possible, given a (probabilistic) model of FIL/USD.

(Market Making is block execution on both sides of the market.)

Model of a trade execution

If only selling, HIGH PRICE between syncs determines limit order matches.

Assumptions and objective

Assume given PROB_i: Probability that the next day highest price is PRICE_i.

Let $USD_t = dollars$ earned from selling FIL 1 between T_t and T_{LAST} using strategy.

Objective:

(the strategy)

the unknowns

 $\mathbf{maximize} \ \mathsf{E[USD}_0]$ over the choices of $\mathsf{SELL}_{\mathsf{i},\mathsf{t}}$

such that $SELL_{i,t} >= 0$ for all i,t and $\Sigma_i SELL_{i,t} <= 1$ for all t

Solution

$$USD_{I\Delta ST} = 0$$

$$\begin{split} \text{USD}_t &= \text{``matched orders between T}_t \text{ and T}_{t+1}'' + \text{``unsold FIL''} \cdot \text{USD}_{t+1} \\ &= \text{``orders with SELL}_{i,t} <= \text{HIGH}_t'' \\ &= \Sigma_{\text{p:price}} \big[\text{HIGH}_t = \text{PRICE}_p \big] \cdot \big(\sum_{i < = p} \text{PRICE}_i \cdot \text{SELL}_{t,i} + \big(1 - \sum_{i < = p} \text{SELL}_{t,i} \big) \cdot \text{USD}_{t+1} \big) \\ &= \sum_{\text{p:price}} \big[\text{HIGH}_t = \text{PRICE}_p \big] \cdot \big(\sum_{i < = p} \text{PRICE}_i \cdot \text{SELL}_{t,i} + \big(1 - \sum_{i < = p} \text{SELL}_{t,i} \big) \cdot \text{USD}_{t+1} \big) \\ &= \sum_{\text{p:price}} \text{Condition met}, \\ &= \sum_{\text{p:price}} \text{PROB}_p \cdot \big(\sum_{i < = p} \text{PRICE}_i \cdot \text{SELL}_{t,i} + \big(1 - \sum_{i < = p} \text{SELL}_{t,i} \big) \cdot \text{E[USD}_{t+1} \big] \big) \\ &= \sum_{\text{p:price}} \text{PROB}_p \cdot \big(\sum_{i < = p} \text{PRICE}_i \cdot \text{SELL}_{t,i} + \big(1 - \sum_{i < = p} \text{SELL}_{t,i} \big) \cdot \text{E[USD}_{t+1} \big] \big) \\ &= \sum_{\text{p:price}} \text{PROB}_p \cdot \big(\sum_{i < = p} \text{PRICE}_i \cdot \text{SELL}_{t,i} + \big(1 - \sum_{i < = p} \text{SELL}_{t,i} \big) \cdot \text{E[USD}_{t+1} \big] \big) \\ &= \sum_{\text{p:price}} \text{PROB}_p \cdot \big(\sum_{i < = p} \text{PRICE}_i \cdot \text{SELL}_{t,i} + \big(1 - \sum_{i < = p} \text{SELL}_{t,i} \big) \cdot \text{E[USD}_{t+1} \big] \big) \\ &= \sum_{\text{p:price}} \text{PROB}_p \cdot \big(\sum_{i < p} \text{PRICE}_i \cdot \text{SELL}_{t,i} + \big(1 - \sum_{i < p} \text{SELL}_{t,i} \big) \cdot \text{E[USD}_{t+1} \big] \big) \\ &= \sum_{\text{p:price}} \text{PROB}_p \cdot \big(\sum_{i < p} \text{PRICE}_i \cdot \text{SELL}_{t,i} + \big(1 - \sum_{i < p} \text{SELL}_{t,i} \big) \cdot \text{E[USD}_{t+1} \big] \big) \\ &= \sum_{\text{p:price}} \text{PROB}_p \cdot \big(\sum_{i < p} \text{PRICE}_i \cdot \text{SELL}_{t,i} + \big(1 - \sum_{i < p} \text{SELL}_{t,i} \big) \cdot \text{E[USD}_{t+1} \big] \big) \\ &= \sum_{\text{p:price}} \text{PROB}_p \cdot \big(\sum_{i < p} \text{PRICE}_i \cdot \text{SELL}_{t,i} + \big(1 - \sum_{i < p} \text{SELL}_{t,i} \big) \cdot \text{E[USD}_{t+1} \big) \\ &= \sum_{\text{p:price}} \text{PROB}_p \cdot \big(\sum_{i < p} \text{PROB}_p \cdot \big($$

Implementation intermission

github.com/petar/BlockExecExpMax.jl

ermission

Discussion and improvements

Caveat: Maximizing expectation, E[USD₀], can produce bi-modal (all-or-nothing) outcomes.

Intuitively, we want to maximize expectation **and** minimize variance.

However, minimizing variance contradicts maximizing expectation.

So, we must embed our preferences in a single objective function.

Sharpe ratio: E[USD₀] / StdDev[USD₀]

Weighted: E[USD₀] - 3*StdDev[USD₀]

Optimization challenges

Maximizing Sharpe (or any variance-based objectives) is **not** linear programming.

 $maximize_x$ Sharpe and $maximize_x$ Sharpe² find the same x.

$$\begin{aligned} &\mathsf{Sharpe}^2 = \mathsf{E}[\mathsf{USD}_0]^2 \, / \, \mathsf{StdDev}[\mathsf{USD}_0]^2 \\ &= \mathsf{E}[\mathsf{USD}_0]^2 \, / \, \mathsf{Var}[\mathsf{USD}_0] \\ &= \mathsf{E}[\mathsf{USD}_0]^2 \, / \, (\, \, \mathsf{E}[\mathsf{USD}_0^2] \, - \, \mathsf{E}[\mathsf{USD}_0]^2 \,) \end{aligned}$$

Therefore, the Sharpe maximization is rational and quadratic (in the unknowns $SELL_{t,i}$).

Possible approaches

Linear/quadratic/conic/semidefinite programming find global optima, but are harder to work with: objective needs to be rewritten cleverly.

Alternatively, one could find an optimum for the objective (e.g. Sharpe) using gradient methods like (**Stochastic**) **Gradient Descent**. Global optimum is not always found, but no need to rewrite the problem objective.

Takeaway

Every "control" problem can be somehow written as a mathematical optimization problem: maximize f(x), subject to a(x) >= 0, b(x) >= 0, etc.

With a little effort you can find a decent solution to any optimization problem.

(Use Julia as a one-stop-shop for math.)