Bonus Assignment on 7.5 Solutions

1

```
Claim: If G = S_3 then Inn(G) = Aut(G).
```

Proof. We know that $Inn(G) \subseteq Aut(G)$, so we must show that $Aut(G) \subseteq Inn(G)$. Since S_3 has only 6 elements, we will list the elements explicitly:

```
 \begin{aligned} &(1\,2\,3) = (1\,2)(1\,3\,2)(1\,2) \\ &(1\,3\,2) = (1\,2)(1\,2\,3)(1\,2) \\ &(1\,2) = (1\,2)(1\,2)(1\,2) \\ &(1\,3) = (1\,2)(2\,3)(1\,2) \\ &(2\,3) = (1\,2)(1\,3)(1\,2) \\ &e = (1\,2)e(1\,2). \end{aligned}
```

We have shown that every automorphism of G can be written as an inner automorphism, and is thus an element of the inner automorphism group. So $\operatorname{Inn}(G) \subseteq \operatorname{Aut}(G)$ and $\operatorname{Aut}(G) \subseteq \operatorname{Inn}(G)$, and as a result, $\operatorname{Inn}(G) = \operatorname{Aut}(G)$.

$\mathbf{2}$

Claim: The symmetric group S_n is isomorphic to a subgroup of the alternating group A_{n+2} .

Proof. We define a map $f: S_n \to A_{n+2}$ as follows: for every permutation τ_j in S_n for even j, $f(\tau_j) = \tau_j$, and for every permutation τ_k in S_n for odd k, $f(\tau_k) = \tau_k \sigma$ where σ is the transposition $(n \ n+1)$. Note that σ and any τ are disjoint, and note that σ is order 2. We must show that this map is an isomorphism.

First, let two permutations τ_a , τ_b in S_n be given. Their product $\tau_a \tau_b$ is either even or odd; if even, $f(\tau_a \tau_b) = \tau_a \tau_b$. If the product is odd, $f(\tau_a \tau_b) = \tau_a \tau_b \sigma$, which produces an even permutation. Now suppose τ_a is even and τ_b is even. Then $f(\tau_a)f(\tau_b) = \tau_a \tau_b$. If one of τ_a , τ_b is even and the other odd, then the product of the mappings $f(\tau_a)f(\tau_b)$ is either $\tau_a \sigma \tau_b$ or $\tau_a \tau_b \sigma$, and since σ is disjoint, these two terms are equal. If both τ_a and τ_b are odd, then $f(\tau_a)f(\tau_b) = \tau_a \sigma \tau_b \sigma = \tau_a \sigma \sigma \tau_b = \tau_a \tau_b$. So $f(\tau_a \tau_b) = f(\tau_a)f(\tau_b)$, and the mapping f is a homomorphism.

Next, let two permutations τ_a , τ_b be given, and suppose $f(\tau_a) = f(\tau_b)$. We have two cases for $f(\tau_a)$. Either $f(\tau_a) = \tau_a$, or $f(\tau_a) = \tau_a \sigma$. In the former case, this implies $\tau_a = \tau_b$. In the latter case, this implies $\tau_a \sigma = \tau_b \sigma$. Then with σ being order 2, we have

$$\tau_a \sigma \sigma^{-1} = \tau_b \sigma \sigma^{-1}$$

$$\to \tau_a \sigma \sigma = \tau_b \sigma \sigma$$

$$\to \tau_a = \tau_b,$$

so the mapping f is injective.

To show that f is surjective, let ϕ in $B \subseteq A_{n+2}$ be given. Then ϕ is either of the form τ_a for even a, or $\tau_a \sigma$ for odd a. Since τ_a is a permutation of at most length n, it is in the group S_n and we can choose τ_a from S_n to map $f(\tau_a) = \phi$, so the mapping f is surjective.

By the properties of homomorphisms, f maps the identity in S_n to the identity in $B \subseteq A_{n+2}$, and likewise it maps all inverses to B. Since σ is of order 2, the product of any two elements ϕ and α in B are of the form τ_a for even a, or $\tau_a \sigma$ for odd a, so B is closed under the group operation and is a subgroup of A_{n+2} .