Université Pierre et Marie Curie - Paris VI Faculté de Mathématiques TD no3, Formes Modulaires, le jeudi 11h15-13h15, salle 15/16 101.

Exercice 1. Une base de $S_{24}(\Gamma(1), \mathbb{Q})$ est donnée par $f_1 = E_4^3 \Delta = q + 696q^2 + O(q^3)$ et $f_2 = \Delta^2 = q^2 + O(q^3)$.

- i) Ecrire la matrice des opérateurs de Hecke \mathcal{T}_2 et \mathcal{T}_3 dans cette base.
- ii) Vérifier que $T_2T_3 = T_3T_2$.
- iii) Déterminer une base de formes propres de Hecke normalisées pour $S_{24}(\Gamma(1))$. Dans quel corps de nombres vivent leurs coefficients ?

Exercice 2. On a défini dans le cours la famille des opérateurs de Hecke $(T_n)_{n\geqslant 1}$ qui opèrent sur l'espace $M_k(SL_2(\mathbb{Z}), \mathbb{C})$ des formes modulaires de poids k et de niveau $SL_2(\mathbb{Z})$.

i. Soit p un nombre premier. Démontrer que pour tout $r, s \ge 1$,

$$T_{p^r}T_{p^s} = \sum_{\ell=0}^{\min(r,s)} p^{\ell(k-1)}T_{p^{r+s-2\ell}}.$$

ii. Démontrer l'identité

$$T_m \circ T_n = \sum_{d \mid (m,n)} d^{k-1} T_{\frac{nm}{d^2}},$$

où la sommation porte sur les d qui divisent le pgcd (m, n) de m et de n. On pourra procéder par récurrence sur le nombre de facteurs premiers communs de m et de n.

Exercice 3. (congruence de Kronecker). Soit $p \ge 2$ un nombre premier et $\zeta = e^{2i\pi/p}$. Le but de cet exercice est d'établir la congruence suivante pour le polynôme de classes $F_p[X,Y] \in \mathbb{Z}[X,Y]$ associé au j-invariant et introduit en cours :

$$F_p(X,Y) \equiv (X^p - Y)(X - Y^p) \bmod p\mathbb{Z}[X,Y].$$

a) On dira que deux fonctions modulaires $f = \sum a_n q^n$ et $g = \sum b_n q^n$ pour $SL_2(\mathbb{Z})$ à coefficients entiers sont congrues modulo p si $a_n = b_n \mod p$ pour tout $n \in \mathbb{Z}$.

Montrer que $j(p\tau) \equiv j(\tau)^p \mod p$.

- b) Plus généralement, si f et g sont à coefficients dans un sous-anneau $A \subset \mathbb{C}$ et I est un idéal de A, on dira que $f = g \mod I$ lorsque $a_n b_n \in I$ pour tout $n \in \mathbb{Z}$. Déduire de a) que $j(p\tau) = j(\tau)^p \mod (1-\zeta)\mathbb{Z}[\zeta]$.
 - c) Montrer que pour toute matrice $\sigma_b = \begin{pmatrix} 1 & b \\ 0 & p \end{pmatrix}, 0 \leqslant b < p$,

$$j(\sigma_b \tau) = j(\sigma_0 \tau) \mod (1 - \zeta) \mathbb{Z}[\zeta].$$

d) En déduire que $F(X,Y)=(X^p-Y)(X-Y^p) \bmod (1-\zeta)\mathbb{Z}[\zeta][X,Y]$, puis modulo $p\mathbb{Z}[X,Y]$.