

Text Processing using Machine Learning

Memory Network and Conditioned Generation

Liling Tan
04 Dec 2019

OVER

5,500 GRADUATE

ALUMNI

OFFERING OVER

ENTERPRISE IT, INNOVATION

LEADERSHIP PROGRAMMES

TRAINING OVER

120,000 DIGITAL LEADERS

PROFESSIONALS

Overview

Lecture

- Gated Memory RNNs
- Conditioned Generation

Hands-on

Sequence Generation

Gated Memory RNNs

Recurrent Neural Nets

RNN Exploding gradient

Lets look at the "curled up" RNN:

$$h^t = f(h^{t-1}, x^t)$$

If we unroll the RNN that has 3 time-step, we get:

Exploding gradient

Lets look at the "curled up" RNN:

$$h^t = f(h^{t-1}, x^t)$$

If we **unroll the RNN** that has 3 timestep, we get:

$$h^3 = f(f(f(h^0, x^1), x^2), x^3)$$

And if consider f(x) as a "harmless-looking"

$$f(x) = 3.5x(1-x)$$

Figure and example from (Grosse 2017)

Solution: Gradient Clipping

end if

 General idea: if we don't like the big numbers, just put a max to the gradient values

Algorithm 1 Pseudo-code for norm clipping $\hat{\mathbf{g}} \leftarrow \frac{\partial \mathcal{E}}{\partial \theta} \\ \mathbf{if} \quad \|\hat{\mathbf{g}}\| \geq threshold \ \mathbf{then} \\ \hat{\mathbf{g}} \leftarrow \frac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}}$

Source: (Pascanu et al, 2013)

Solution: Gradient Clipping

- Figure above shows a loss surface of an RNN
- (Left) without clipping, weights values increases and so does gradient causing loss to "jump off the clip"
- (Right) with clipping, weights are kept to a max and loss doesn't inflate

Source: (Goodfellow et al. 2016)

Partial Gradients

RNN Vanishing Gradients

Why is vanishing gradient a problem?

 When moving along the timestep of RNN, gradient can be thought as "the effects of the past on the future" (See, 2019)

Why is vanishing gradient a problem?

- When moving along the timestep of RNN, gradient can be thought as "the effects of the past on the future" (See, 2019)
- Vanishing gradient means info from the previous words are less influential to predict words in the future

"Trump haz cheezburger" "Trump haz the kat tat haz cheezburger" "Trump haz the kat buy tat cheezburger"

Why is vanishing gradient a problem?

- When moving along the timestep of RNN, gradient can be thought as "the effects of the past on the future" (See, 2019)
- Vanishing gradient means info from the previous words are less influential to predict words in the future
- When gradients are small over longer distance, it's hard to know whether
 - Trump has no relation to the cheezburger or
 - the model learns to wrong parameter that doesn't capture relation between
 Trump and cheezburger

Solution: Information Controlling RNN

- General idea: make additive connections between time steps
- Keeping a memory of past time steps and add them to the current one

- Addition don't change gradient, no vanishing
- Gates control different information strengths from the past

Long Short Term Memory (LSTM)

At each time step, perform the following operations

Input: controls how much new cell info is written to cell

Output: controls how much info is written to hidden state

New cell info: new content to write to cell

Cell state (Memory): forget some of the previous cell info and write some new cell info

Hidden state: output some bits of info from the cell state for next cell to "remember"

$$i_t = \sigma \left(W^{(i)} x_t + U^{(i)} h_{t-1} \right)$$

$$f_t = \sigma \left(W^{(f)} x_t + U^{(f)} h_{t-1} \right)$$

$$o_t = \sigma \left(W^{(o)} x_t + U^{(o)} h_{t-1} \right)$$

$$\tilde{c}_t = \tanh\left(W^{(c)}x_t + U^{(c)}h_{t-1}\right)$$

$$c_t = f_t \circ c_{t-1} + i_t \circ \tilde{c}_t$$

$$h_t = o_t \circ \tanh(c_t)$$

Long Short Term Memory (LSTM)

At each time step, perform the following operations

LSTM Galore

Neural Network
Layer

Pointwise
Operation

Operation

Concatenate

Copy

Concatenate

Copy

From <u>Hochreiter and</u> Schmidhuber (1997)

From Olah (2015) blogpost

From Schmidhuber (2017) page

From Neubig (2019)

CMU NN4NLP Course

From http://deeplearning.net

 x_t Input Gate c_t Output Gate

From Wikipedia

LSTM Galore

 $f_t = \sigma \left(W^{(f)} x_t + U^{(f)} h_{t-1} \right)$

Concat the previous hidden state and current input and put them through the Input, forget and output gates

Image from (Rocktaeschel, 2017)

Rather than multiplying, we get the final prediction c_t by adding "partly forgotten" c_{t-1}

 $c_t = f_t \circ c_{t-1} + i_t \circ \tilde{c}_t$

Bruce Lee on LSTM

"Absorb what is useful, discard what is not, add what is uniquely your own."

- Bruce Lee

Gated Recurrent Neural Nets

At each time step, perform the following operations

Update: controls how much info in the new hidden states are kept or updated

Reset: controls how much info in the previous hidden states are kept

New Hidden state: Reset selects info from previous hidden state and combines it with the current input

Hidden state: Update selects info from previous hidden state and combines it with the current input

$$egin{aligned} oldsymbol{u}^{(t)} &= \sigma \left(oldsymbol{W}_u oldsymbol{h}^{(t-1)} + oldsymbol{U}_u oldsymbol{x}^{(t)} + oldsymbol{b}_u
ight) \ oldsymbol{r}^{(t)} &= \sigma \left(oldsymbol{W}_r oldsymbol{h}^{(t-1)} + oldsymbol{U}_r oldsymbol{x}^{(t)} + oldsymbol{b}_r
ight) \end{aligned}$$

$$\tilde{\boldsymbol{h}}^{(t)} = \tanh\left(\boldsymbol{W}_h(\boldsymbol{r}^{(t)} \circ \boldsymbol{h}^{(t-1)}) + \boldsymbol{U}_h \boldsymbol{x}^{(t)} + \boldsymbol{b}_h\right)$$
$$\boldsymbol{h}^{(t)} = (1 - \boldsymbol{u}^{(t)}) \circ \boldsymbol{h}^{(t-1)} + \boldsymbol{u}^{(t)} \circ \tilde{\boldsymbol{h}}^{(t)}$$

RNN vs LSTM vs GRU

$$h_t = \tanh(Wx_t + Uh_{t-1})$$

$$egin{aligned} oldsymbol{u}^{(t)} &= \sigma \left(oldsymbol{W}_u oldsymbol{h}^{(t-1)} + oldsymbol{U}_u oldsymbol{x}^{(t)} + oldsymbol{b}_u
ight) \ oldsymbol{r}^{(t)} &= \sigma \left(oldsymbol{W}_r oldsymbol{h}^{(t-1)} + oldsymbol{U}_r oldsymbol{x}^{(t)} + oldsymbol{b}_r
ight) \end{aligned}$$

$$ilde{m{h}}^{(t)} = anh\left(m{W}_h(m{r}^{(t)} \circ m{h}^{(t-1)}) + m{U}_hm{x}^{(t)} + m{b}_h\right)$$
 $m{h}^{(t)} = (1 - m{u}^{(t)}) \circ m{h}^{(t-1)} + m{u}^{(t)} \circ ilde{m{h}}^{(t)}$

LSTM vs GRU

- No conclusive evidence on which performs better
- "I am impatient" -> Use GRU (fewer parameters)
- "I want good results easily" -> Use LSTM (more papers used it)
- In both cases, enjoy the grind of tuning hyperparameters...

Throw away your RNN

- "We fell for RNN, LSTM, and all their variants. Now it is time to drop them!" – Eugenio Culurciello
- RNNs are not hardware friendly
- Attention-base models (e.g. Transformer) outperforms RNN (<u>Vaswani et al. 2017</u>)
- Hierarchical Attention (Yang et al. 2016) or Casual Convolution Networks (Elbayad et al. 2018) outperforms LSTMs and Transformers

LSTM: A Search Space Odyssey

Greff et al. (2017) explored 8 variants of LSTMs

- No Peepholes == GRU
- Original LSTM works well

CIFG and GRU simplifies LSTM but no drop in performance

NIG: No Input Gate:
$$\mathbf{i}^t = \mathbf{1}$$

NFG: No Forget Gate:
$$f^t = 1$$

NOG: No Output Gate:
$$\mathbf{o}^t = \mathbf{1}$$

NIAF: No Input Activation Function:
$$g(\mathbf{x}) = \mathbf{x}$$

NOAF: No Output Activation Function:
$$h(\mathbf{x}) = \mathbf{x}$$

CIFG: Coupled Input and Forget Gate:
$$\mathbf{f}^t = \mathbf{1} - \mathbf{i}^t$$

NP: No Peepholes:

$$egin{aligned} ar{\mathbf{i}}^t &= \mathbf{W}_i \mathbf{x}^t + \mathbf{R}_i \mathbf{y}^{t-1} + \mathbf{b}_i \ ar{\mathbf{f}}^t &= \mathbf{W}_f \mathbf{x}^t + \mathbf{R}_f \mathbf{y}^{t-1} + \mathbf{b}_f \ ar{\mathbf{o}}^t &= \mathbf{W}_o \mathbf{x}^t + \mathbf{R}_o \mathbf{v}^{t-1} + \mathbf{b}_o \end{aligned}$$

FGR: Full Gate Recurrence:

$$egin{aligned} ar{\mathbf{i}}^t &= \mathbf{W}_i \mathbf{x}^t + \mathbf{R}_i \mathbf{y}^{t-1} + \mathbf{p}_i \odot \mathbf{c}^{t-1} + \mathbf{b}_i \\ &+ \mathbf{R}_{ii} \mathbf{i}^{t-1} + \mathbf{R}_{fi} \mathbf{f}^{t-1} + \mathbf{R}_{oi} \mathbf{o}^{t-1} \\ ar{\mathbf{f}}^t &= \mathbf{W}_f \mathbf{x}^t + \mathbf{R}_f \mathbf{y}^{t-1} + \mathbf{p}_f \odot \mathbf{c}^{t-1} + \mathbf{b}_f \\ &+ \mathbf{R}_{if} \mathbf{i}^{t-1} + \mathbf{R}_{ff} \mathbf{f}^{t-1} + \mathbf{R}_{of} \mathbf{o}^{t-1} \\ ar{\mathbf{o}}^t &= \mathbf{W}_o \mathbf{x}^t + \mathbf{R}_o \mathbf{y}^{t-1} + \mathbf{p}_o \odot \mathbf{c}^{t-1} + \mathbf{b}_o \\ &+ \mathbf{R}_{io} \mathbf{i}^{t-1} + \mathbf{R}_{fo} \mathbf{f}^{t-1} + \mathbf{R}_{oo} \mathbf{o}^{t-1} \end{aligned}$$

 Alpay (2016) investigated different ways to manipulate the timesteps in RNNs

 Simple Recurrent Network (SRN) == Vanilla RNN

- Next prediction conditioned on previous timestep
- Backpropagation through time sequentially

 Recurrent Plausible Network (RPN) (Wermter et al. 1995)

Short cutting the connections between timesteps

 Needs to account for a timelag factor φ

 Recurrent Plausible Network (RPN) (Wermter et al. 1995)

Short cutting the connections between timesteps

 Needs to account for a timelag factor φ

 Clockwork RNN (CWRNN) (Koutnik et al. 2014)

No time lag parameter

 An external module controls how much temporal information to propagate

- Alpay (2016) investigated different ways to manipulate the timesteps in RNNs
- Manipulating timesteps connection allows units to self-organize long vs short term contexts
- Not sure which is really the best for NLP = (

LSTM/GRU solves the vanishing gradients?

- The additive memory of the "forget gate" prevents small partial gradients from disappearing
- It remembers information over multiple timesteps so the hidden states don't disappear across time
- But LSTM/GRU doesn't guarantee no gradient vanishing/exploding, it's just better than the vanilla RNN

Is vanishing/exploding gradient just an RNN problem?

- Nope, as long as functions keeps getting nested in the network and the partial derivations needs to be multiplied causing unstable gradients
- As long as there are many layers, the functions and gradients gets multiplied in a nested manner

 Without using gates, we can just "short-circuit" the network and make previous layers interact directly with the current layers

Non-Gate Connections

 He et al. (2015) proposed Residual Networks, that skip connections for alternate layers

Figure 2. Residual learning: a building block.

Non-Gate Connections

- He et al. (2015) proposed Residual Networks, that skip connections for alternate layers
- Huang et al. (2018)
 proposed connects every previous layer to every layer down the network

Figure 1: A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.

LSTMs: Real-Word Success (Briefly)

- In 2013-2015, LSTMs started achieving state-of-the-art results
 - Successful tasks include: handwriting recognition, speech recognition, machine translation, parsing, image captioning
 - LSTM became the dominant approach

- Now (2019), other approaches (e.g. Transformers) have become more dominant for certain tasks.
 - For example in WMT (a MT conference + competition):
 - In WMT 2016, the summary report contains "RNN" 44 times
 - In WMT 2018, the report contains "RNN" 9 times and "Transformer"
 63 times

Conditioned Generation

• RNN generation starts with a random hidden state h_0

• What if h_0 is something non-random?

• What if h_0 is something non-random?

Encoder Model

• What if h_0 is something non-random?

- RNN generation starts with a random hidden state h_0
- What if h_0 is something non-random?
- FR->EN Translation: Initialize English model h_0 inputs with h_x outputs from a French model

• What if input of model that produces h_x isn't text?

• What if input of model that produces h_x isn't text?

• RNN generation starts with a random hidden state h_0

• What if h_0 is something non-random?

Translation: French -> English

Image Captioning: Image -> Text

Speech Recognition: Audio -> Text

Generalized Encode-Decoder Framework

Conditional RNN Generation

• RNN generation starts with a random hidden state h_0

• What if h_0 is something non-random?

• Translation: French -> English

Image Captioning: Image -> Text

Speech Recognition: Audio -> Text

• Summarization: Document -> Summary

Chatbots: Utterance -> Response

Conditioned RNN Generation

- Endless possibilities of what to condition on and what to generate
- But training requires the paired condition and target generation
- And relatively large amount of data is needed for model to train well

Language Model Probability

Conditioned Language Model Probability

Generalized Encode-Decoder Framework

Sequence to Sequence Learning with NN

 Take final hidden state of an encoder model, feed it as the start state of a decoder model (<u>Sutskever et al. 2014</u>)

Sequence to Sequence Learning with NN

- Take final hidden state of an encoder model, feed it as the start state of a decoder model (<u>Sutskever et al. 2014</u>)
- RNNs deal naturally with undefined encoding input lengths

 But we're depending on a single hidden state to squeeze information of the inputs to feed to the decoder

Recurrent Continuous Translation Models

Add the encoded hidden state at every decoder time step

(Kalchbrenner & Blunsom, 2013) is never **Predict Predict** RNN RNN RNN h_{x} language is never

Recurrent Continuous Translation Models

- Add the encoded hidden state at every decoder time step (Kalchbrenner & Blunsom, 2013)
- Having the encoded hidden state force fed to every decoder timestep is too overwhelming
- Still, too much depend on that one hidden encoder state

Greedy Decoding

- Generally, we want to find the most probable output given the input
- Simple approximation is to pick the highest probability word at each time step, torch.max (predictions, 1)
- Simple causes problem...
 - Often generate "easy" words first
 - Prefers common phrases to one rare word

Beam Search

 Better approximation is to predict k-best outputs at each time step

Environment Setup

Open Anaconda Navigator.

Go to the PyTorch installation page, copy the command as per configuration: https://pytorch.org/get-started/locally/

Fire up the terminal in Anaconda Navigator.

Start a Jupyter Notebook.

Download http://bit.ly/ANLP-Session6Gen

Import the .ipynb to the Jupyter Notebook

Summary

Gated RNN + Generation Knowledge Checklist

Gated Recurrent Neural Net

- Always use GRU or LSTM, never vanilla RNN
- When gradient explodes, clip it, even if it doesn't still clip it
- Bi-directional GRU/LSTM produces reasonable results

Conditioned Generation

- Encode inputs into a hidden state vector/matrix, then generating outputs stepwise in an RNN
- Pairs of conditions and target generations are necessary
- When possible, always do beam search

Fin