JP,07-030122,B

[Claim(s)]

[Claim 1] The manufacture approach of the polysaccharide derivative which is made to carry out the chemical bond of the silica gel which carried out silanizing to some hydroxyl groups of a polysaccharide through the isocyanate derivative of many organic functions, and is characterized by introducing a substituent into the remainder of the hydroxyl group of a polysaccharide after that.

(19) 日本国特許庁 (JP)

(12)特 許 公 報(B2)

(11)特許出願公告番号

特公平7-30122

(24) (44) 公告日 平成7年(1995) 4月5日

(51) Int. C1. 6

識別記号

310

FI.

C08B 37/00

Z 7433-4C

CO7B 57/00

7419-4H

発明の数1 (全8頁)

(21) 出願番号

特願昭61-114082

(22) 出願日

昭和61年(1986)5月19日

(65) 公開番号

特開昭62-270602

(43) 公開日

昭和62年(1987)11月25日

(71)出願人 999999999

ダイセル化学工業株式会社

大阪府堺市鉄砲町1番地

(72) 発明者 岡本 佳男

兵庫県尼崎市武庫之荘東1丁日24-11

(72) 発明者 畑田 耕…

大阪府池田市旭丘3-4-11

(74) 代理人 弁理士 古谷 馨

審查官 弘實 謙二

(54) 【発明の名称】多糖誘導体の製造方法

1

【特許請求の範囲】

【請求項1】多糖の水酸基の一部とシラン処理したシリカゲルとを多官能のイソシアネート誘導体を介して化学結合させ、その後多糖の水酸基の残部に置換基を導入することを特徴とする多糖誘導体の製造方法。

【発明の詳細な説明】

〔産業上の利用分野〕

本発明は、新規な多糖誘導体の製造方法に関する。 特に、ラセミ体の光学分割剤として有用な分離剤となる 多糖誘導体を提供するものである。

〔従来技術と問題点〕

シリカゲルに多糖誘導体を担持した充填剤は、ラセミ体の光学分割用分離剤として有用であることは知られている。しかしながら、この多糖誘導体の種類によっては、耐溶媒性が悪く、液体クロマトグラフィー用分離剤とし

2

て用いるとき使用できない溶離液がある。

本発明者らは、多糖誘導体の持つ有用な性質を摂なわず に、上記欠点を克服する方法について鋭意研究した結 果、本発明に到達したのである。

[問題点を解決するための手段]

即ち本発明は、多糖の水酸基の一部とシラン処理したシリカゲルとを多官能のイソシアネート誘導体を介して化学結合させ、その後多糖の水酸基の残部に置換基を導入することを特徴とする多糖誘導体の製造方法に関するも10 のである。

本発明における多糖とは合成多糖、天然多糖、天然物変成多糖のいずれかを問わず、光学活性であればいかなるものでも良いが、好ましくは結合様式の規則性の高いものである。例示すれば $\beta-1$, 4- グルカン(セルロース)、 $\alpha-1$, 4- グルカン(アミロース、アミロペクチ

ン)、 $\alpha-1.6-$ グルカン(デキストラン)、 $\beta-1.6-$ グルカン(プスツラン)、 $\beta-1.3-$ グルカン(例えば カードラン、シゾフィラン等)、 $\alpha-1.3-$ グルカン、 $\beta-1.2-$ グルカン(Crown Gall多糖)、 $\beta-1.4-$ ガラクタン、 $\beta-1.4-$ マンナン、 $\alpha-1.6-$ マンナン、 $\beta-1.2-$ フラクタン(イヌリン)、 $\beta-2.6-$ フラクタン(レバン)、 $\beta-1.4-$ キシラン、 $\beta-1.3-$ キシラン、 $\beta-1.4-$ キトサン、 $\beta-1.4-$ N-アセチルキトサン(キチン)、プルラン、アガロース、アルギン酸等であり、更に好ましくは高純度の多糖を容易に得ることので10きるセルロース、アミロース、 $\beta-1.4-$ キトサン、キチン、 $\beta-1.4-$ マンナン、 $\beta-1.4-$ キシラン、イヌリン、カードラン等である。

これら多糖の数平均重合度(…分子中に含まれるピラノース或いはフラノース環の平均数)は5以上、好ましくは10以上であり、特に上限はないが500以下であることが取り扱いの容易さにおいて好ましい。

本発明において基材として用いられるシリカゲルの粒径は $1~\mu$ m~1cmであり、好ましくは $1~\mu$ m~ $1000~\mu$ mであり、更に好ましくは $1~\mu$ m~ $300~\mu$ mである。平均孔径は $10~\Lambda$ ~ $100~\mu$ mであり、好ましくは $50~\Lambda$ ~ $50000~\Lambda$ である。また、孔径対粒径の比は 1/10以下である。

本発明に用いられるシラン処理剤としては、従来シランカップリング剤として市販されているものが好適であるが、具体的には次の一般式で示されるものが挙げられる。

アミノ基を含むシラン処理剤

$$R_z$$
(HN-R₁-)_n-SiX_(4-n)

水酸基を含むシラン処理剤

 $(HO-R_1 \rightarrow n SiX_{14} \cdot n_1)$

メルカプタン基を含むシラン処理剤

 $(HS-R_1 \rightarrow R_1 \rightarrow R_1 SiX_{14} - R_1)$

尚、上記式中の記号の定義は次の通りである。

n:lより3までの整数で、好ましくは1である。

R₁:1より30までの炭素数を持つ炭化水素又は該誘導体。 R₂:水素又は1より30までの炭素数を持つ炭化水素又は 該誘導体。

 $% (3.5) = 1.00 \times 1.$

本発明において、化学結合を形成せしめる多官能のイソシアネート誘導体としては、脂肪族もしくは芳香族多官能イソシアネートのいずれでもよい。具体的に例示するなら、2.4ートリレンジイソシアネート、2.6ートリレンジイソシアネート、ヘキサメチレンー1.6ージイソシアネート、シクロヘキサンー1.4ージイソシアネート、ナフタレンー1.5ージイソシアネート、ジフェニルメタンー4.4′ージイソシアネート、キシレンジイソシアネート、ヘキサヒ 50

ドロキシリレンジイソシアネート、ジシクロヘキシルメタンー4.4′ージイソシアネート、1.4ーベンゼンジイソシアネート、3.3′ージメトキシー4.4′ージフェニルジイソシアネート、mーフェニレンジイソシアネート、イソホロンジイソシアネート、ポリメチレンポリフェニルイソシアネート、4.4′ーピフェニレンジイソシアネート、4ーイソシアナトシクロヘキシルー4′ーイソシアナトフェニルメタン、pーイソシアナトメチルフェニルイソシアネート等がある。

0 特に多官能でもジイソシアネートが好ましい。

本発明においてシリカゲルのシラン処理は、従来公知の 方法で実施できる。

このシラン処理したシリカゲルに、多官能イソシアネート誘導体を介して多糖の水酸基の一部を反応させる。この反応は従来公知の方法を用いることができる。

なお、この時の化学結合の割合(架橋率)は、1~20%が好ましい。ここで架橋率とは、セルロースの水酸基と 多官能イソシアネートが1対1に反応するとした際、水酸基の反応率に相当する値である。

20 ここで多糖の水酸基の一部とシラン処理したシリカゲルとを反応させるとき、前もって多糖をシラン処理したシリカゲルに担持させておくことが好ましい。

多糖を溶解し担持させる適当な溶媒がない場合には、多 糖の水酸基を保護して担持させた後に保護基をはずすこ ともできる。

例えば、セルロースとトリチルクロライドを塩基の存在下で反応させ、6-0-トリチルセルロースを得る。これをクロロホルムに溶解させ、シラン処理したシリカゲルにコーティングした後、塩酸等の酸でトリチル基をはずして、セルロースのコーティングされたシリカゲルを得る。そしてシラン処理したシリカゲルに、多糖を前述の方法でコーティングした後に、乾燥不活性溶媒中で多官能イソシアネート誘導体を反応させることによって、シリカゲルと多糖を化学的に結合させた新規物質を得ることができる。

なお、シリカゲルに多糖を反応させる量は、シリカゲルに対して $1 \sim 100$ 重量%、好ましくは $5 \sim 50$ 重量%である。

ここで得られた新規物質のシリカゲルと反応した多糖の水酸基の残部と、水酸基と反応し得る官能基を有する化合物とを従来公知の方法でエステル結合、エーテル結合又はウレタン結合させることにより、水酸基の残部に置換基を導入し多糖誘導体を得ることができる。

ここで水酸基と反応し得る官能基を有する化合物とは、イソシアン酸誘導体、カルボン酸、エステル、酸ハライド、酸アミド、ハロゲン化物、エポキシド、アルデヒド、アルコール、或いはその他脱離基を有する化合物であればいかなるものでも良く、例えば、脂肪族、脂環族、芳香族、ヘテロ芳香族化合物などがある。

0 本発明の製造方法について多糖としてセルロースを用い

5

たスキームを次に示す。

$$C_zH_5O-Si-(CH_z)_3-NH_z$$

$$OH OC_zH_5 OC_zH_5$$

$$OH OC_zH_5 OC_zH_5$$

(mは5以上、好ましくは10以上で500以下)

このようにしてシリカゲルに化学結合された多糖誘導体はそのままでも分離剤として使用できるが、光学分割用分離剤として使用する場合は更に加熱処理により一層優れた性能を付与することができる場合がある。加熱処理は、例えば高沸点熱媒中分散させて行うか、カラムに充填後外部から加熱することにより行う方法が容易であり40好ましい。加熱温度は35℃乃至250℃が好ましい。

また、適当な溶媒を用いて、分離能を向上させることも 可能な場合がある。例えば多糖誘導体そのものを溶解す る溶媒にシリカゲルに化学結合した多糖誘導体を接触さ せた後、多糖誘導体そのものを溶解しない溶媒に置換す る場合、置換する前に一度溶媒を留去するか否かで特定 化合物に対する光学分割能が大きく変化する場合があ り、使用目的に応じて処理条件を適宜選択することがで きる。

(発明の効果)

本発明の製造法で得られたシリカゲルと反応した多糖誘導体は、耐溶媒性に優れ、光学分割用分離剤として最適である。

〔実施例〕

以下、本発明を実施例によって詳細に説明するが、本発 0 明はこれらの実施例に限定されるものではない。 実施例1

(1)シリカゲルの表面処理

多孔質シリカゲル(LiChrospher SI-1000、Merck社)を約180℃で2時間真空乾燥を行い、窒素気流下でシリカゲル100gにつき金属ナトリウムで乾燥したペンゼン600ml、ピリジン6ml、3-アミノプロピルトリエトキシシラン20mlの割合で各試薬を加え16時間加熱還流を行った。反応液をメタノールにそそぎ入れ濾過しメタノールで洗浄した後乾燥した。

50 ②セルロースが担持されたシリカゲルの調製

10

(a) グルコース単位で約1.5個のトリチル基が反応したトリチルセルロース0.9gをテトラヒドロフラン(THF)10mlに溶かし、上記①で得た表面処理を行ったシリカゲル3.0gに均一に振りかけ、溶媒を留去してトリチルセルロースを担持した。これにメタノール30ml、濃塩酸0.3mlをそそぎ、一晩室温に放置してトリチル基を除去した。濾過の後、メタノールで洗浄した。これにメタノール30ml、トリエチルアミン0.3mlをそそぎ、再度濾過

(b) (a) と同様の方法により6.6gの表面処理したシリカゲルに2.0gのトリチルセルロースを担持してからトリチル基を除去した。

し、メタノールで洗浄してから乾燥した。

(c) (a) と同様の方法により6.6gの表面処理したシリカゲルに8.0gのトリチルセルロースを担持してからトリチル基を除去した。

③-1 架橋率12.8%セルロース3.5-ジクロロフェニルカルバメートの調製

前記②で得たセルロースを吸着させたシリカゲル (a) 3.28gへ、金属ナトリウムで乾燥したトルエン (以下乾燥トルエンと称す) 5mlにフェニレンジイソシアネート2 20 24mgを溶かしたものを窒素気流下でそそいだ。 4 時間後ピリジン2mlを加えて60℃に加熱した。70時間後にIRスペクトルでNCO基の消失を確認し、3.5-ジクロロフェニルイソシアネート1.00gをピリジン4mlに溶かしたものを加えた。更にピリジン6mlをそそぎ110℃に加熱した。20時間還流させた後、グラスフィルターに取り出して濾過し、THFで洗浄し乾燥した。濾液は濃縮しヘキサンにそそぎ入れたが何も析出してこなかった。

③ − 2 架橋率 5 %セルロース3, 5 − ジクロロフェニルカルバメートの調製

前記②で得たセルロースを吸着させたシリカゲル (b) 3.30gへ窒素気流下で4.4′ージフェニルメタンジイソシアネート49mgを乾燥トルエン6mlに溶かしてそそぎ、ピリジン2mlを加えて60℃に加熱した。4時間後3.5ージクロロフェニルイソシアネート700mgを10mlのピリジンに溶かして加え、100℃に加熱した。18時間後IRスペクトルでは反応溶液にNCO基の存在が確認できなかったので更に3.5ージクロロフェニルイソシアネート100mgを加え反応を継続した。3時間後に濾過しTHFで洗浄し乾燥した。濾液は濃縮しヘキサンにそそぎ入れ析出した白色沈 40 澱を濾過してグラスフィルターに集め真空乾燥を行い0.38gを得た。

③-3 架橋率3%セルロース3.5-ジクロロフェニルカルバメートの調製

前記②で得たセルロースを吸着させたシリカゲル (c) 3.27gへ、乾燥トルエン10mlをそそぎ、3.5-ジクロロフェニルイソシアネート30mgを加えよく振り混ぜた。 1 時間後4.4′-ジフェニルメタンジイソシアネートを61mg加え窒素気流下で90℃に加熱し、30分後ピリジン5mlを加えた。20時間加熱した後、室温に戻し、3.5-ジクロ

ロフェニルイソシアネートI. 3gを加えCaCI, 管を通じた 大気開放下で16時間, 120℃に加熱し反応させた。グラス フィルターに取り出し濾過しTHFで洗浄して真空乾燥を 行った。濾液は濃縮しヘキサンにそそぎ入れ、析出した 白色沈澱をグラスフィルターに集め真空乾燥を行い0.18 gを得た。

③-4 架橋率5%セルロース3.5-ジメチルフェニルカルパメートの調製。

前記②で得たセルロースを吸着させたシリカゲル (b) 3.3gへ、窒素気流下で乾燥トルエン5mlに溶かした4.4′ージフェニルメタンジイソシアネート47.6mgをそそぎ、よく混ぜてからピリジン2mlを加え60℃に加熱した。4時間後ピリジン20mlをそそいでから3.5ージメチルフェニルイソシアネート0.8mlを加え110℃に加熱した。16時間後グラスフィルターに取り出して濾過しTHFで洗浄し、乾く前にメタノールで洗浄してから乾燥した。濾液は濃縮しメタノールにそそぎ入れ、析出した白色沈澱をグラスフィルターに集め真空乾燥を行い0.17g得た。

③-5 架橋率3%セルロース3,5-ジメチルフェニルカルバメートの調製

前記②で得たセルロースを吸着させたシリカゲル (c) 3.3gへ、窒素気流下で乾燥トルエン8mlをそそぎ、4.4′ージフェニルメタンジイソシアネート61mgを加えてよく振り混ぜてから80℃に加熱し、2時間後ピリジン2mlを加えた。3時間後3.5ージメチルフェニルイソシアネート2mlとピリジン5mlを加え120℃に加熱し反応させた。16時間後グラスフィルターに取り出して濾過し、THFで洗浄し乾燥した。濾液は濃縮しヘキサンにそそぎ入れ、析出した白色沈澱をグラスフィルターに集め真空乾燥を行30 い0.96g得た。

得られた多糖誘導体**③**-1~**③**-5の元素分析値、架橋率、結合量を表-1に示す。

ここに結合量とは、得られた充填剤中でセルロース誘導 体の占める重量%を示す。

表 - 1

多糖		元素分	分析值		架橋	結合量
体No.	C(%)	H(%)	N(%)	CI(%)	率 (%)	(wt%)
®-1	10,91	0.74	1.79	4, 87	12,8	20,0
®-2	8,07	0,57	0.86	4. 10	5,0	13,8
③-3	12,79	0.81	1,58	7.38	3.0	26.3
3-4	8.89	0.93	0.87	-	5,0	12.1
3 −5	15,00	1.40	1.43		3.0	21,7

応用例1

O光学分割用カラムの作製

実施例で調製した各種の多糖誘導体を充填剤として用い、長さ25cm、内径0.46cmのステンレススチール製のカラムにスラリー充填法で充填した。吸着力の小さい化合50 物に対する理論段数は2,000~6,000段であった。

ı۸

②光学分割

高圧液体クロマトグラフィー (HPLC) には日本分光製のTRIROTAR-II、TRIROTAR-IIp、BIP-1の3台を使用した。 検知器は紫外吸収測定に日本分光製のUVIDEC-100111又はVを、施光性測定に日本分光製のDIP-181C(セル:長さ5cm、内径0.3cm)を使用した。溶離液の流速は0.5ml/min、温度は25℃の条件下で行った。 また、反応の様子を知るのにIRスペクトルを用いた。測定には日本分光製のModel IR-Sスペクトロフォトメーターを使用した。

各種ラセミ化合物の光学分割の結果を表-2~表-4に 示す。

尚、表中で表される用語の定義は次の通りである。

容量比(k;') =

〔(対掌体の保持時間) - (デッドタイム)〕

(デッドタイム)

 $分離係数(\alpha) =$ より強く吸着される対掌体の容量比 より弱く吸着される対掌体の容量比

分離度(Rs)=

2× (より強く吸着される対算体とより弱く) 2× (吸着される対算体の両ピーク間の距離)

両ピークのバンド幅の合計

表 - :

ラセミ化合物	③ − 1(∮	架橋率12.	8%)
プセミル音物	k³ ı	α	Rs
Ph Ph	0.49(+)	1.34	1.11
OH OH CH ₃ CH ₃	1,14(-)	1,22	0.77
Ph	2,25(-)	1,16	0.87
CF3-CH-O	0.46(-)	1.14	-

ラセミ化合物	3-1(5	火橋率12.	8%)
7 C C 10 B 797	k'ı	α	Rs
	0.88(+)	1,17	
Ph O H CPh ₃	0.34(+)	1.24	1

表 - 3

ラセミ化合物	3 -20	架橋率 5	%)	③-3[架橋率3%]			比較品(被覆型)		
7 6 1 10 149	k' 1	а	Rs	k' 1	а	Rs	k' 1	α	Rs
Ph	0,37(+)	1.54	1,71	0.86(+)	1,54	2, 22	0,56(+)	1.84	4, 20
OH OH CH ₃ CH ₃	1,13(-)	1,31	1.33	2,23(-)	1.20	0.72	1.62(+)	1.11	0, 75
CF ₃ -CH-O	0.32(-)	1,27	_	0.52(-)	1,38	_	0.28(-)	1,38	0,83
H Ph ₃ C — C — Ph OH	0.47(+)	≈I		0.81(+)	1, 10	_	0,40(+)	1.29	0,84
O Ph	1,31(-)	1, 12	0.84	3.06(-)	1, 11	1	-	_	_
Ph	1.90(-)	1,23	1.60	4.47(-)	1.24	1,66	2.65(-)	1.26	1,95

5-1-2/LA##	3-20	架橋率 5	%)	③-3〔架橋率3%〕			比較品(被覆型)		
ラセミ化合物	k*1	α	Rs	k',	α	Rs	k' 1	α	Rs
CONHPh CONHPh	0.71(+)	1, 22	_	1.42(+)	1,24	_		-	
OH OH	2.86(+)	1,04		_	_	-	_	_	_
	0.92(+)	1, 20	0.92	1.80(+)	1.20	0, 70	0.87(+)	1.65	3, 89
Co(acac)₃	3,61(+)	1.18	0,53	3,61(+)	1,40	0, 93	0.76(+)	1.82	4.06
	2, 555	1,71	2, 93	_	_	_	2.69(+)	2.36	8, 90
Ph O CPh ₃	0.54	2.05	2.59	_	_	_	_	_	

表 - 4

ラセミ化合物	3-4(架橋率 5	%)	③−5 [3	架橋率	3%)	比較品(被覆型)		
ノビミルロが	k'ı	α	Rs	k' 1	α	Rs	k' 1	α	Rs
Ph Ph	0.41(+)	1,27	1,10	0.74(-)	1, 18	_	0,74(-)	1,68	_
OH OH CH ₃ CH ₃	1.05(-)	3, 51	6, 95	1.86(-)	4.02	6, 09	2,36(-)	1.83	
CF ₃ -CH-O	1,12(-)	1.70	2,89	1.91(-)	2.03	2, 95	2, 13(-)	2.59	_

ラセミ化合物	3-40	架橋率 5	%)	③− 5(§	架橋率	峰率3%) 比較品		品(被覆型)	
ノこく10日初	k*ı	α	Rs	k*1	α	Rs	k *1	α	Rs
Ph _s C—C—Ph OH	0.85(+)	1, 14	0.61	1.54(+)	1.14		1,37(+)	1.34	_
O Ph	0.98(-)	1,09	0.40	1.62(-)	1.16	0, 80	1,47(-)	1.41	
O Ph	0.81(-)	1,20	1,28	1,27(-)	1,26	1,30	1.17(-)	1.15	-
CONHPh	1.06	≈ı	_	1,64(+)	1,20	_	0.83(+)	3, 17	-
ОН ОН ОН	1.77(+)	1, 15	1,25	2.97(+)	1.24	1, 31	2.43(+)	1,58	

応用例2

実施例1中の多糖誘導体3-5を充填剤として作成した 光学分割用カラムの加熱処理条件の光学分割能への影響 を表-5に示す。

尚、充填剤の加熱処理は次の様にして行った。 カラム内溶媒をヘキサン-2-プロパノール9:1の混合 溶媒とし外部水槽に浸漬し、水槽の温度を各々45,60,65 ℃に変えた。処理時間は各々1時間とした。また、カラ

ム内溶媒をトルエンー2ープロパノール9:1混合溶媒と し、沸騰水に1時間浸漬し、100℃の加熱処理を行っ た。

上記トルエンー2ープロパノール混合溶媒に代え、キシ 30 レン又はデカリン-2-プロパノール9:1とし、モノク ロロベンゼン還流下に1時間置いて130℃の加熱処理を 行った。

5 k*ı α Rs k' 1 Rs α 未処理 0.74(-)1, 18 _ 1.62(-)1, 16 0.80 45°C 0.73(-)1.24 1,08 65°C 0.72(-)1,33 1,39 1.68(-)1.18 1.09 100℃ 0.77(-)1,51 2, 24 1.79(-)1.21 1,41 130℃ 0.90(-)1,62 3, 12 1.74(-)0,99 1.24