Algebra Lineare

14 Marzo 2022

Guida alla valutazione

Regole generali: Ogni esercizio vale 8 punti. Se la risposta finale ad una domanda \bar{e} sbagliata, ma ci sono solo errori di calcolo e il metodo \bar{e} corretto, la risposta vale 75% del punteggio (e non 0).

Esercizio 1. Si consideri un'applicazione lineare $A: \mathbb{R}^2 \to \mathbb{R}^2$ tale che

$$A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \quad \text{e} \quad A \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

- (1) Si scriva la matrice di A rispetto alla base standard di \mathbb{R}^2 (stessa base in partenza e in arrivo). (3 punti)
- (2) Si scriva la matrice di A rispetto alla base $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ (stessa base in partenza e in arrivo). (3 punti)
- (3) Si scriva la matrice di A rispetto alla base $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ in partenza e alla base $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ in arrivo. (2 punti)

Esercizio 2. Trovare per quali valori di $k \in \mathbb{R}$ si ha che

$$w = \begin{bmatrix} 4 \\ 5 \\ 3 \end{bmatrix} \in \text{Span} \left\{ \begin{bmatrix} 4 \\ k \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\} .$$

(8 punti)

Esercizio 3. Sia $V = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right\} \subseteq \mathbb{R}^3$ e sia $W \subseteq \mathbb{R}^3$ il kernel dell'applicazione lineare $A \cdot \mathbb{D}^3$

l'applicazione lineare $A: \mathbb{R}^3 \to \mathbb{R}$ definita da A((x,y,z)) = 2x + 4y + 2z. Determinare:

- (a) la dimensione dello spazio vettoriale V+W (2 punti)
- (b) la dimensione dello spazio vettoriale $V \cap W$ (3 punti)
- (c) una base di $V \cap W$ (3 punti)

Esercizio 4. Sia $\mathbb{R}[x]_{\leq 3}$ lo spazio vettoriale dei polinomi su \mathbb{R} di grado minore o uguale a 3 e sia $V \subseteq \mathbb{R}[x]_{\leq 3}$ il sottospazio dei polinomi $p(x) = ax^3 + bx^2 + cx + d$ tali che p'(-2) = 0, dove p'(x) è la derivata di p(x).

- i) Trovare la dimensione di V. (4 punti)
- ii) Trovare una base di V. (4 punti)