

DESIGN AND ANALYSIS OF ALGORITHMS

Memory Function Knapsack

Reetinder Sidhu

Department of Computer Science and Engineering

DESIGN AND ANALYSIS OF ALGORITHMS

Memory Function Knapsack

Reetinder Sidhu

Department of Computer Science and Engineering

MEMORY FUNCTION KNAPSACK

UNIT 5: Limitations of Algorithmic Power and Coping with the Limitations

- Dynamic Programming
 - ► Computing a Binomial Coefficient
 - ► The Knapsack Problem
 - Memory Functions
 - Warshall's and Floyd's Algorithms
- Limitations of Algorithmic Power
 - Lower-Bound Arguments
 - Decision Trees
 - P, NP, and NP-Complete, NP-Hard Problems
- Coping with the Limitations
 - Backtracking
 - Branch-and-Bound. Architecture (microprocessor instruction set)

Concepts covered

- Memory Function Knapsack
 - Motivation
 - Algorithm
 - Example

Advantage of bottom up approach: each value computed only once

- Advantage of bottom up approach: each value computed only once
- Example computed bottom up:

		ca	pacit	y <i>j</i>	
i	1	2	3	4	5
1	0	12	12	12	12
2	10	12	22	22	22
3	10	12	22	30	32
4	10	15	25	30	37

- Advantage of bottom up approach: each value computed only once
- Example computed bottom up:

	capacity <i>j</i>					
i	1	2	3	4	5	
1	0	12	12	12	12	
2	10	12	22	22	22	
3	10	12	22	30	32	
4	10	15	25	30	37	

Disadvantage of bottom up approach: values not required also computed

Disadvantage of top down approach: same problem solved multiple times

- Disadvantage of top down approach: same problem solved multiple times
- Example computed top down:

- Disadvantage of top down approach: same problem solved multiple times
- Example computed top down:

Advantage of top down approach: only the required subproblems solved

MEMORY FUNCTION KNAPSACK Memory Function Dynamic Programming

- Combine the advantages of bottom up and top down approaches:
 - compute each subproblem only once
 - compute only the required subproblems

MEMORY FUNCTION KNAPSACK MF-DP Algorithm

Algorithm for Memory Function Dynamic Programming

```
1: procedure MFKNAPSACK(i, j)
2:
        ▶ Inputs: i indicating the number items, and
        ▷ j, indicating the knapsack capacity
 3:
4:
        Dutput: The value of an optimal feasible subset of the first i items
       \triangleright Note: Uses global variables input arrays Weights[1...n], Values[1...n],
5:
       \triangleright and table F[0...n,0...W] whose entries are initialized with -1's except
6:
        > row 0 and column 0 is initialized with 0
7:
        if F[i, j] < 0 then
8:
           if i < Weights[i] then
9:
                value \leftarrow MFKnapsack(i-1, j)
10:
           else value \leftarrow max(MFKnapsack(i-1,j), Values[i] + MFKnapsack(i-1,j-Weights[i]))
11:
                F[i, i] \leftarrow value
12:
       return F[i, j]
13:
```


$$F(i,j) = egin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \geq 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight <i>w_i</i>	value v_i
1	2	12
2	1	10
3	3	20
4	2	15

$$F(i,j) = egin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \geq 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight <i>w_i</i>	value <i>v_i</i>
1	2	12
2	1	10
3	3	20
4	2	15

		-	сара	city	j	
i	0	1	2	3	4	5
0	0					
1						
2						
3						
4						

$$F(i,j) = \begin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \ge 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight <i>w_i</i>	value <i>v_i</i>
1	2	12
2	1	10
3	3	20
4	2	15

			сара	city	j	
i	0	1	2	3	4	5
0	0					
1						
2						
3						
4						

$$F(i,j) = egin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \geq 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight <i>w_i</i>	value v_i
1	2	12
2	1	10
3	3	20
4	2	15

			capa	city	j	
i	0	1	2	3	4	5
0	0					
1						
2						
3						
4						

$$F(i,j) = egin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \geq 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight <i>w_i</i>	value <i>v_i</i>
1	2	12
2	1	10
3	3	20
4	2	15

			сара	city j	'	
i	0	1	2	3	4	5
0	0					
1						
2						
3						
4						

$$F(i,j) = egin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \geq 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight <i>w_i</i>	value v_i
1	2	12
2	1	10
3	3	20
4	2	15

	capacity <i>j</i>						
i	0	1	2	3	4	5	
0	0						
1							
2		-			-		
3		-	-		-		
4		-	-	-	-		

$$F(i,j) = egin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \geq 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight <i>w_i</i>	value <i>v_i</i>
1	2	12
2	1	10
3	3	20
4	2	15

capacity <i>j</i>						
i	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	_	12	22	-	22
3	0	_	_	22	-	32
4	0	-	-	-	-	37

$$F(i,j) = \begin{cases} \max(F(i-1,j), & v_i + F(i-1,j-w_i)) & \text{if } j - w_i \ge 0 \\ F(i-1,j) & \text{if } j - w_i < 0 \end{cases}$$

Dynamic Programming Example

item i	weight <i>w_i</i>	value <i>v_i</i>
1	2	12
2	1	10
3	3	20
4	2	15

What is the maximum value that can be stored in a knapsack of capacity 5?

	capacity <i>j</i>					
i	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	_	12	22	-	22
3	0	_	_	22	-	32
4	0	-	-	-	-	37

Knapsack problem solved by

- computing 21 out 30 possible subproblems
- reusing subproblem entry (1, 2)

MEMORY FUNCTION KNAPSACK Complexity

- Constant factor improvement in efficiency
 - ▶ Space complexity: $\Theta(nW)$
 - ▶ Time complexity: $\Theta(nW)$
 - ▶ Time to compose optimal solution: O(n)
- Bigger gains possible where computation of a subproblem takes more than constant time

MEMORY FUNCTION KNAPSACK

Think About It

 Consider the use of the MF technique to compute binomial coefficient using the recurrence

$$C(n, k) = C(n-1, k-1) + C(n-1, k)$$

- How many table entires are filled?
- How many are reused?