Second-Order Logic

Final seminar for "Logic in Computer Science"

Mattia Zorzan

University of Verona

Last rev. June 14, 2022

Outline

- Introduction
 - A recall on first-order logic
 - Syntax
 - Semantic

Second-Order Logic

Introduction

- First-order logic allows "iteration" over the elements of a structure
- Happens thanks to **quantifiers**: \forall , \exists
 - ▶ $\forall x.\phi(x) \rightarrow$ "For each x, x satisfies the formula ϕ "
 - ▶ $\exists x.\phi(x) \rightarrow$ "There exists x s.t. the formula ϕ is satisfied"
- Limiting since we may only need to range over subsets or "combinations" (e.g. Cartesian product)

A brief recall

- Second-order logic "extends" first-order logic
- Since that, let's recall the basics of first-order logic
- Two key parts:
 - Syntax: Which sequences constitute well-formed expressions
 - Semantics: The meaning behind this expressions

Syntax

Syntax - Introduction

- Two base types:
 - ▶ **Terms**: Represents *objects*
 - ► Formulas: Represents *predicates*
- Both formed by symbol concatenation
- All symbols together form the alphabet of the language
- Can divide symbols in two categories
 - Logical symbols
 - Non-logical symbols

Syntax - Logical symbols

- Infinite set of variables: $x, y, z, ..., x_0, x_1, ...$ (Lowercase letters)
- Connectives: $\land, \lor, \Rightarrow, \lnot$
- Quantifiers: ∀,∃
- **Equality** (or *Identity*): =
- Auxiliary symbols: (;); . (dot); , (comma)

Syntax - Non-logical symbols

- Represents predicates (or relations), functions and constants
- $\forall n \in \mathbb{Z}^*$ we have a set of *n*-ary **predicate symbols**

$$P_0^n, P_1^n, \dots$$
 (Uppercase letters)

• $\forall n \in \mathbb{Z}^*$ there exist <u>infinite</u> *n-ary* **function symbols**

$$f_0^n, f_1^n, \dots$$
 (Lowercase letters)

Syntax - Formation rules (1)

Definition (Terms formation)

The set TERM of *terms* can be inductively defined by the following rules:

- **1** If x is a variable, then $x \in TERM$
- ② Any expression $f(t_1,\ldots,t_n)$, with $t_1,\ldots,t_n\in \text{TERM}$, is a term. Since that, the following statement holds

$$f(t_1,\ldots,t_n)\in \mathtt{TERM}$$

Syntax - Formation rules (2)

Definition (Formulas formation)

The set FORM of formulas can be inductively defined by the following rules:

- lacktriangledown If $P \in \mathtt{PRED}^a$ and $t_1, \ldots, t_n \in \mathtt{TERM}$, than $P(t_1, \ldots, t_n) \in \mathtt{FORM}$
- ② If $t_1, t_2 \in \text{TERM}$, than $t_1 = t_2 \in \text{FORM}$
- **3** If $\phi \in FORM$, than $\neg \phi \in FORM$
- **1** If $\phi, \psi \in \text{FORM}$, than $\phi \square \psi \in \text{FORM}$ (with $\square \in \{\land, \lor, \Rightarrow\}$)
- **5** If $\phi \in \text{FORM}$ and x is a variable, than $Qx.\phi \in \text{FORM}$ (with $Q \in \{\forall, \exists\}$)

^aThe set of *predicate symbols*

Syntax - Variables (1)

Definition (Free and Bound variables)

The *free* and *bound* variable occurrences in a formula are defined inductively by the following rules:

- **1** If ϕ is atomic, than any variable $x \in Var(\phi)$ is free
- ② x is free/bound in $\neg \phi$ iff x is free/bound in ϕ
- **3** x is *free/bound* in $\phi \square \psi$ iff x is *free/bound* in either ϕ or ψ (with $\square \in \{\land, \lor, \Rightarrow\}$)
- x is free in $Qy.\phi$ iff x is free in ϕ and $y \neq x$
- **3** x is bound in $Qy.\phi$ iff x is bound in ϕ

Syntax - Variables (2)

- More easily, a variable x is bounded if it occurs in a quantification, x is free otherwise
- A variable can be both free and bounded in the same formula, e.g.

$$P(x,y) \Rightarrow \exists x. Q(x)$$

- 1 In the **LHS** *x* is *free*
- 2 In the **RHS** x is bounded
- Even so, the formula is still well-formed
- A formula with no free variables is called a sentence

Semantic

Semantic - Structure and Interpretation

Definition (Structure)

A structure is formed by a domain D, $\mathbb{P} = \{P_1, \dots, P_n\}$ predicates on D, $\mathbb{F} = \{f_1, \dots, f_n\}$ total functions on D and a set $\mathbb{C} \subseteq D$ of constants

Definition (Interpretation)

Given a structure \mathfrak{D} and a map $(\cdot)^{\mathfrak{D}}$ s.t.

- ullet for all c in my language, $(c)^{\mathfrak{D}}=c^{\mathfrak{D}}\in\mathbb{C}$
- for all k-ary function f in my language, $(f)^{\mathfrak{D}} = f^{\mathfrak{D}}: D^k \to D \in \mathbb{F}$
- for all *n-ary* predicate P in my language, $(P)^{\mathfrak{D}} = P^{\mathfrak{D}} \subseteq D^k \in \mathbb{P}$ we call $(\mathfrak{D}, (\cdot)^{\mathfrak{D}})$ an *interpretation*.

Semantic - Evaluation (1)

- Given an interpretation and an assignment a, it is possible to evaluate a formula
- The evaluation process maps the whole formula to a truth value
- ullet The assignment \overline{a} associates each free variable with a truth value
- If the formula is a *sentence*, \overline{a} does not affect the *truth value* of the formula
- Next slides shows the evaluation steps

Semantic - Evaluation (2)

- **1** Extend \bar{a} to all terms of the language with the following rules:
 - ▶ Each variable x evaluates to $\overline{a}(x)$
 - ▶ Given $\{t_1, \ldots, t_n\}$ ∈ TERM evaluated to $\{d_1, \ldots, d_n\}$, a function $f(t_1, \ldots, t_n)$ evaluates to $(f)^{\mathfrak{D}1}(d_1, \ldots, d_n)$
- Assign each formula to a truth value with the following (inductive) rules:
 - ▶ (Continues in next slides)

Semantic - Evaluation (3)

• An atomic formula $P(t_1, ..., t_n)$ is associated with a truth value, depending on the truth of the following:

$$\langle v_1,\ldots,v_n\rangle\in (P)^{\mathfrak{D}}$$

where v_1, \ldots, v_n represents the evaluation of the predicate terms

• An atomic formula $t_1 = t_2$ evaluates to a truth value depending if $v_1 = v_2$ in D, where v_1, v_2 represents the evaluation of the terms

Semantic - Evaluation (4)

- A formula containing *logical connectives* (e.g. $\phi \Box \psi^2, \neg \phi$) is evaluated according to the *truth table* of the connective
- A formula $\exists x.\phi$ is evaluated true iff exists an assignment \overline{a}' s.t. it differs from \overline{a} only for the assignment of x and ϕ is evaluated true via the \overline{a}' assignment, false otherwise
- A formula $\forall x.\phi$ is evaluated true iff exists an assignment \overline{a}' s.t. it differs from \overline{a} only for the assignment of x and ϕ is evaluated true for all values in \overline{a}' , false otherwise

Semantic - Evaluation (5)

ullet Given a structure \mathfrak{D} , evaluation can be seen as a map

$$\rho_{\mathfrak{D}}: Var \to D$$

ullet We can use the $[\![\cdot]\!]$ notation to express the evaluation of a term

Definition

Given a structure $\mathfrak D$ and $[\![\cdot]\!]_{
ho_{\mathfrak D}}$: TERM o D, we can define

Semantic - Satisfiability

Definition (Satisfiability relation)

Given a *structure* \mathfrak{D} we can recursively define the *satisfiability relation* \vDash as:

- \bullet $\rho_{\mathfrak{D}} \not\models \bot$

Second-Order Logic

Syntax and Semantic

- As said before, second-order logic extends first-order logic
- The terms and formulas are unchanged...
- ...but we need to redefine structures to represent this "extension"

Structure

Definition (Second-Order Structure)

A structure is formed by a domain D, a set $D^* = \langle D_n \mid n \in \mathbb{N} \rangle$ with $D_n \subseteq \mathcal{P}(A^n)$, a set $\mathbb{P} = \{P_1^n, \dots, P_k^n\}$ of predicates s.t. $P_i^n \in D_n$ and a set of constants $\mathbb{C} \subseteq D$

- If D_n contains **all** n-ary predicates $(D_n = \mathcal{P}(D^n))$ we call the structure *full*
- Even if the *elements* of a Second-Order structure are slightly different from the elements of a First-Order structure, we can use the same rules for **interpretation** and **evaluation**

Satisfiability

Definition (Second-Order Satisfiability relation)

Given a Second-Order structure $\mathfrak D$ and a language $\mathcal L$ that defines a name $\overline S$ for all $S \in D$, we can define the satisfiability relation \models as:

- \bullet $\rho_{\mathfrak{D}} \not\models \bot$
- All connectives follow the same rules of First-Order Logic
- Quantification over a variable follow the same rules of First-Order Logic
- $\bullet \ \rho_{\mathfrak{D}} \vDash \exists P_i^n.\phi(P_i^n) \Leftrightarrow \exists S^n \in D_n : \rho_{\mathfrak{D}} \vDash \phi(\overline{S}^n)$

^aBy using this notation, we can handle all types of *predicates* with one rule

Natural Deduction

 We need to add a set of rules that allows to validly derive the new "extended" quantifications

$$\frac{\phi}{\forall P^{n}.\phi} \forall^{2}I$$

$$\frac{\phi^{*}}{\exists P^{n}.\phi} \exists^{2}I$$

$$\frac{\phi^{*}}{\exists P^{n}.\phi} \exists^{2}E$$

$$\frac{\phi^{*}}{\forall P^{n}.\phi} \forall^{2}E$$

$$[\phi]$$

$$\frac{\partial}{\partial P^{n}.\phi} \psi \exists^{2}E$$

- ϕ^* is $\phi[P^n(t_1,\ldots,t_n)/\psi(t_1,\ldots,t_n)]$, where ψ is a generic formula
- No t_i becomes bounded during the substitution above, so ψ cannot quantify any term t_1, \ldots, t_n