Essentials of OFDM and MIMO

Presented by: Ben Zarlingo, Agilent Technologies

This Presentation

Intuitive Explanation of OFDM and MIMO in Digital Communications

Non-Mathematical Approach to Explain How they Work

Measurement & Display Implications

How & Why OFDM & MIMO Often Used Together

Agenda

OFDM Signal Overview

Fundamental characteristics

Benefits of OFDM

Creating OFDM

OFDM measurements

MIMO & Other Smart Antenna Techniques Overview

Benefits of MIMO

How MIMO works

MIMO and OFDM combined

Single and multi-channel MIMO measurements

Custom OFDM measurements and signal generation

OFDM Overview

OFDM: Orthogonal Frequency-Division Multiplexing

OFDM is a modulation format that achieves:

- <u>high data throughput</u> by transmitting on hundreds or thousands of carriers simultaneously.
- <u>high spectral efficiency</u> by spacing the carriers very closely.
- <u>high data integrity</u> by transmitting at a relatively slow symbol rate.

Orthogonal Subcarriers

Overlapping Carriers But No Inter-Carrier Interference (Ideally!)

Frequency domain analog of zero inter-symbol interference

OFDM Symbols & Subcarriers

Simplified view

OFDM Symbols & Subcarriers

Real world view

OFDM vs. Single Carrier Modulation Frequency Domain View

OFDM vs. Single Carrier Modulation

Time Domain View

Sharing the Resource: OFDMA

"Multiple-Access"

User1 (low rate): 112 subcarriers

User2 (med-rate): 280 subcarriers

User3 (hi-rate): 448 subcarriers

840 subcarrier signal

OFDMA Resource Map

- Shows allocation of subcarriers by time <u>and</u> frequency.
- Subcarriers are usually grouped into logical channels.
- Each channel can have different modulation, power level, coding, etc.

Pilot Structure

No pilot

Data subcarrier

Continuous pilot

- pilot subcarrier
- Data subcarrier

Scattered pilot

- pilot subcarrier
- Data subcarrier

Continuous pilot and scattered pilot

OFDM Symbol Structure: Extending Symbol Length

 $N_{pre} = DFTSize \times Gi$, where Gi is defined as the guard interval in parameter GuardInterval.

Summary: How OFDM Achieves its Goals

1.High throughput:

 An 800-subcarrier system with 64QAM mapped to each subcarrier can transmit 800 x 8 = 6400 bits per symbol.

2.Bandwidth efficiency:

 With DSP techniques (FFT and IFFT), subcarrier spacing can be reduced to theoretical minimum, i.e. mathematically *orthogonal* (don't expect to see individual subcarriers!)

3. Data integrity: Multi-subcarrier symbol structure has advantages

- Symbol is long relative to most impulse noise.
- Single-freq interferer only disturbs 1-2 subcarriers, not entire signal.
- Built-in amplitude and phase references (pilots) allow signal to be resynchronized and/or equalized for each symbol.
- Symbol can be cyclically extended for multipath immunity

OFDM Signal Analysis

- Isolate waveform for 1 symbol; synchronize in Freq, Time, Phase
- 2. Perform FFT
- Map subcarrier I-Q values back to QAM constellations
- 4. Compute standard constellation metrics (EVM, SNR, etc.) for each subcarrier in each symbol

How to Display OFDM Signals

Measuring Modulation Quality

Measurement & Display Examples

Amplitude & Phase Drift

Typical measurements & displays

Effect of pilot tracking

Combining Vector & Demodulation Displays

OFDM Impairments Example

Amplitude & Phase Drift

Pilot Tracking Compensates for or Hides Impairments

Common Pilot Error Display Shows the Defect Removed

~1 dB ampl. droop in 240 uSec

EVM looks fine with pilot tracking ON.

OFDMA--Spectrogram & Power Envelope

MIMO Overview

MIMO is the Science of Getting From

THIS THIS to Increased capacity from a The "channel" given spectrum occupancy

System & Antenna Configurations, Terms

"Input" and "Output" Refer to the Transmission Channel

SISO

SIMO

MIMO

Why MIMO?

MIMO is a Capacity Enhancement Scheme

- Evading Shannon's limit!
- Can Trade Capacity for more range or ??

CDMA, OFDM, etc. are Multiplexing Schemes

- Dividing capacity among users, frequencies
- Better operation in impaired conditions
- "Shannon Limit" still applies!

DEMONSTRATION: Live 2x2 Channel

Two sources generate multi-tone signals with 1 MHz spacing, offset by 500Khz to identify each source at receiver (2-ch. VSA) antennas

Movements in the environment near the antennas show how the four independent radio paths (color coded) can be identified

Frequency Response Example

Antenna 1: 5 dB Ripple

Antenna 2: 25 dB Null

MIMO exposed (The 2 x 2 Instance)

The real channel (complicated)

The channel for one OFDM sub-carrier during the course of a packet

Solving the equations

Output

MIMO – Data & Spatial Streams, Channels 2x2 Example

relate to the original data payload.

relate to the actual transmitted signals.

curves for each TX-RX path.

MIMO Measurement Types

All the Basics, Plus More, Including Linked Channels

All Traditional Spectrum, Network, Power, Timing

Basic Modulation Quality

Isolation/Coupling/Crosstalk

Frequency Responses (multiple)

General Modulation Impairments

Proper MIMO Operation, Signal Content

MIMO Signal Separation

Optimization: Cost, signal quality, size, power consumption, complexity, antenna configuration

Analysis Approaches

Switch Off One Channel

- Simple, generally less expensive
- Use established equipment, approaches
- Results with limited applicability

Single-Input Measurements of 2 - 4 Transmitters

- Transmitters combined deliberately or incidentally
- Some signals can be separated by frequency or time
- No Matrix decoder

Multi-Channel Measurements, Two or More

- Signal processing to restore 40+ dB measurements
- Measure cross-channel parameters and how they vary with configuration changes

MIMO Signal Recovery: Measuring Matrix Coefficients

Recovering the channel coefficients (WiMAX Wave 2 example)

In WiMAX and LTE, more subcarriers are allocated as pilots

Pilot location changes from symbol to symbol

Pilot power is boosted to ensure errors from recovering the training signal do not dominate the demodulator performance

MIMO Signal Recovery – Spectrum View

The traces in this LTE signal show how the Reference Signals (pilots) are on different frequencies at any instant in time

Spectrograms on left show spectrum versus time (time is vertical axis)

Unlike 802.16 OFDMA, the LTE RS (pilots) not present on all symbols

Frequency vs. Power in Burst: 802.11n (draft ver.)

Channel Training Varies with Technology

3GPP LTE	WiMAX	11n Wireless LAN
Reference signals (pilots) use different subcarriers for each transmitter The QPSK Reference signals are	BPSK Pilot subcarriers use different frequencies. Their positions vary symbol by symbol within a subframe, but are constant from frame to frame.	A preamble is used for training. The same subcarriers are used for all transmitters. Signals are separated by a CDMA code
transmitted every 3 rd or 4 th symbol, mixed with data	Subcarrier coverage builds over several symbols, allowing interpolation Details depend on the zone type (e.g. PUSC, AMC)	4 orthogonal QPSK pilots are used (6 for 40MHz), sharing the same subcarriers. They are never transmitted without data

HSPA+ uses code channels on the Common Pilot Channel, CPICH, with unique symbol bit patterns having different locations in the OVSF code domain

VSA MIMO Signal Analysis

Conceptual Model--Only 2x2 shown for clarity

Demodulation Results: Const, Time, Spectrum, Tabular

Some Cross Channel Measurements Can Be Made With a Single Input Analyzer

Applies to LTE, WiMAX

Using a power combiner removes ANY uncertainty due to timing

jitter or calibration

The demodulation process recovers the time and phase relationship between the transmitters at the power combiner input

Cable calibration may still be required

Demodulation Results

Detected Signal Content

Measurements by Transmitter

4x4 Channel Matrix & Condition Number

MIMO Condition Number

What it is:

- a) A way to see if your MIMO system is functioning correctly
- b) A short term indication of the SNR you need to recover a MIMO signal

How you calculate it: Find the singular values of the channel matrix, and take the ratio of the highest / lowest

Matrix condition number

Ratio of max/min singular values of a matrix. Value always ≥1 (or ≥ 0 dB). If this value is greater than signal SNR it is likely the MIMO separation of data streams will not work correctly.

Frequency Response by Channel & Stream

Channel frequency responses

Shows the transfer functions (mag & phase) for each channel. Available for all data streams.

MIMO 4x4 Frequency Response 802.11n Example: One Weak Channel

Matrix Decoder & Crosstalk

Measurements Made Without Matrix Decoder

- Effects of crosstalk are included in measurement
- Crosstalk degrades EVM
- Error due to crosstalk can hide other errors

Measure Both Ways to Understand Error Contribution of Crosstalk

Signal Analysis Solutions, Comparisons

Standards-Based and Proprietary OFDM

Vector Signal Analysis Software

Spectrum/Signal Analyzers

Digital Oscilloscopes

Modular PXI

Logic Analyzers

Design & Simulation Software

- Agilent SystemVue or ADS
- MATLAB

Analyzing Proprietary OFDM signals

Demodulator needs to know

- basic time, freq and FFT parameters.
- which subcarriers are pilots?
- which subcarriers are preambles?
- what are the expected I-Q values for each preamble and pilot subcarrier?
- what is the expected modulation format for each data subcarrier?

Analyzing Proprietary OFDM Signals (cont)

Configuration Files for Analyzing Custom OFDM

Configuration Files

- Resource Modulation.txt Describes modulation format for each subcarrier.
- Preamble I-Q.txt expected IQ value for each preamble subcarrier.
- Pilot I-Q.txt expected IQ value for each pilot.

Features to simplify configuration

- Auto-detect pilot I-Q can eliminate Pilot I-Q file
- Auto-detect data subcarrier modulation format simplify Resource Mod file
- Loop continuously through last N symbols shorter config files
- Modulation format table modify all data subcarrier modulation formats simultaneously, by changing one value in table.

Custom OFDM for Simulation or Hardware Test

Measurements & Number of Inputs

	Number of measurement inputs required		
Measurement objective	1	2	> 2
SISO & MISO errors due to phase	Y		
noise, timing errors and amplitude			
clipping			
Spectrum Mask, Harmonics and	Y		
Spurious			
RF Phase and Baseband Timing	Using a power	No combiner needed but	
Alignment, using pilot-based	combiner.	errors from second	
measurements		analyzer input will	
		contribute to result	
Cross Channel Isolation. Using	Y	Similar measurements	
RS-based measurement		to single input. Can	
Interference, Grounding,	Y	connect to two	
Transient settling		transmitters at the same	
Transmit Diversity Space Time	Y	time	
Coding (Specific channels)			
MIMO Spatial Multiplexing (with	Individual (Direct	Y	If > 2 streams
unwanted coupling) and coding	Mapped) streams		
verification			

Test Types & Number of Sources

Issue	1 Channel	2 Channels
Input Sensitivity (BER or PER) due to noise	Y	
floor, phase noise, RF signal Interference		
Signal Path response matching Amplifier characterization	Y	
Interference, Grounding, Transient settling, dynamic performance, e.g. AGC operation	Y	Y
Cross Channel Isolation	(Y)	Y
MIMO operation and Interoperability Full Channel model Testing		Y

Poster, Webcast- Useful MIMO Information

At Agilent.com Search:

"Ten Things You Should Know about MIMO"

For More Information

More Information on OFDM, Flexible OFDM

- App note "Making Custom OFDM Measurements" http://cp.literature.agilent.com/litweb/pdf/5990-6824EN.pdf
- App note: http://cp.literature.agilent.com/litweb/pdf/5990-6998EN.pdf

For more information about Agilent SystemVue

- OFDM demonstration: http://www.youtube.com/watch?v=IFtCuKKi8Jw
- SystemVue for OFDM: http://www.agilent.com/find/eesof-systemvue-ofdm

For more information about Agilent VSA

http://www.agilent.com/find/89600B

For more information about MIMO

- www.agilent.com/find/mimo
- Webcast slides: Ten Things You Should Know About MIMO
 http://www.home.agilent.com/upload/cmc_upload/All/MIMO-10-Things-Webcast-Oct08.pdf
- Poster: Ten Things You Should Know About MIMO http://cp.literature.agilent.com/litweb/pdf/5989-9618EN.pdf
- Webcast slides: MIMO RF Measurements: Choosing and Using Tools
 http://www.home.agilent.com/upload/cmc_upload/All/MIMO-Choosing-Using-Tools-webcast-Jan-2009.pdf
- MIMO WLAN PHY layer Operation and Measurement AN1509 http://cp.literature.agilent.com/litweb/pdf/5989-3443EN.pdf
- Video: Single-channel measurements for WiMAX matrix A and B http://wireless.agilent.com/vcentral/viewvideo.aspx?vid=366

