Exercises for Computational Physics (physik760) WS 2019/2020

B. Kostrzewa and C. Urbach

Exercises for the week from 25th to 29th of November 2019.

Autocorrelation

1: We want to study autocorrelation in a time series. As a toy model we use the follwing, one-dimensional random walk

$$X_{i+1} = \alpha X_i + (1 - \alpha) \epsilon_i, \quad \forall i \in \mathbb{N}$$

and $\epsilon_i \sim \mathcal{U}([0,1])$ is uniformly distributed and $\alpha \in [0,1]$.

Imagine we run this forever, which gives a random variable X_{∞} . What are the expectation value and variance of X_{∞} ?

First some theoretical finger exercises

- What are the expectation value and variance of X_{∞} ? As a result for the variance you find $\text{Var}(X_{\infty}) = \frac{1}{12} \frac{1-\alpha}{1+\alpha}$.
- What is the covariance of any two variables X_i , X_k , i, k > 0, in the sequence analytically?
- What is the integrated autocorrelation time τ_{int} ? What happens for $\alpha \to 0$ and $\alpha \to 1$? As a result you will find

$$\tau_{\rm int} = \frac{1}{2} \, \frac{1+\alpha}{1-\alpha} \, .$$

• We want to estimate the mean value with the good old estimator

$$\bar{X}_N = \frac{1}{N} \sum_{m=1}^N X_{\infty+m}$$

What is the variance (or the error, i.e. square root of the variance) of this estimator? You will find

$$Var(X_N) = \frac{1}{N} \frac{1}{12}$$

up to $\mathcal{O}(1/N^2)$.

2: Now let's assume that we do not know the detailed construction of the X_n , i.e. we are only given the sequence X_1, X_2, \ldots without knowing about the ϵ s etc.. So we need to deduce everything from sampling the sequence.

- Implement the sampling and the estimation of $\operatorname{Var}(X_{\infty})$, $\operatorname{Cov}(X_{\infty+m}, X_{\infty})$ and $\tau_{\operatorname{int}}$. As a stopping criterion for the summation of the correlation function use the condition $W_{\max} > \{4 \sim 10\} \tau_{\operatorname{int}}(W_{\max})$.
- We estimate the variance $Var(X_{\infty})$ and the integrated autocorrelation time τ_{int} and get the variance of \bar{X}_N from

$$\operatorname{Var}(\bar{X}_N) = \frac{2}{N} \operatorname{Var}(X_\infty) \tau_{\operatorname{int}}.$$

Does it work out? Compare also the above derived formulas.