গুণগত রসায়ন QUALITATIVE CHEMISTRY

১ ছায়ী মূল কণিকার বৈশিষ্ট্যঃ

পরমাণুর নাম	0 16	চার্জের	চার্জের পরিমাণ	ব্যাসার্ধ	ol-antolan	Address Charles
শর্মাণুর নাম	ভর 0=16		চাড়ের গার্মাণ	વાગાવ	পরমাণুতে	কণাসমূহ যেভাবে
		প্রকৃতি			অবস্থান	উৎপন্ন হয়
১. ইলেকট্রন	0.000540	ঋণাত্মক ধর্মী	4.60240-19	12	নিউক্লিয়াসের	ডিসচার্জ টিউবে
ડ. રહ્યવહાન	0.000548		1.602×10 ⁻¹⁹ কুলম্ব	$2.5 \times 10^{-12} cm$	-	
প্রতীক: (e)	a.m.u বা	চার্জ	বা		বাইরে বিভিন্ন	(ক্যাথোডে রশ্মি)
40/4. (0)	9.12×10 ⁻		$4.8 \times 10^{-10} e.s.u$		অরবিটাল	
সংকেত: $_{-1}e^o$	²⁸ g =					
√12C√10: ₋₁ e	9.12×10^{-31}					
আবিষ্কার:	$kg^{1}/_{1837}^{th}$ of					
J.J.T hom $son(1897)$	H atom					
২. প্রোটন:	1.007648	ধনাত্মক ধর্মী	1.602×10 ⁻¹⁹ কুলম্ব	$1.2 \times 10^{-12} cm$	পরমাণু	হাইড্রোজেন
	a.m.u	চার্জ	বা	1.2/(10 6/1/	নিউক্লিয়াসে	গ্যাসের ধনাত্মক
প্রতীক: (p)	9.12×10 ⁻		$4.8 \times 10^{-10} e.s.u$			র শ্মি
	²⁴ g =		7.0×10 e.s.u			
সংকেতः $_1H^1$	1.6725×10 ⁻					
	²⁷ kg					
আবিষ্কার:	۸g					
E.Rutherford(1911)						
৩. ইলেকট্ৰন	1.0089	নিরপেক্ষ	0	$1.2 \times 10^{-12} cm$	পরমাণু	আলফাকণা দারা
	a.m.u				নিউক্লিয়াসে	B,Be,Li এর
প্রতীক: (e)	1.675×10 ⁻					উপর আঘাতের
	²⁷ kg					ফলে
সংকেত: $_{-1}e^o$						
আবিষ্কার:						
J.J.T hom son(1897)						
J.J.1 HOHISON(1897)						

অস্থায়ী মূল কণিকা

মেসন (Meson) মেসনের ভর ইলেকট্রনের ভরের 276 গুণ। মেন দুই প্রকার; যথা- পাই মেসন (π) ও মিউ মেসন (μ) । বর্তমানে π মেসনকে পিয়ন (pions) এবং μ মেসকে মিউয়ন (muons) বলা হয়। এরা ধনাত্মক, ঋণাত্মক বা নিরপেক্ষ হতে পারে। যেমন, পাই মেসনকে যথাক্রমে $\pi+$, π^- এবং π^0 দিয়ে সূচিত করা হয়। নিউট্রন ও প্রোটেনের মধ্যকার পরিবর্তনকে নিম্নরূপে দেখানো যায়, $p \Leftrightarrow \pi^+ + n \qquad n \Leftrightarrow \pi+p$

প্রজিট্রন (Positron) ϵ পজিট্রন ধনাত্মক চার্জ বহন করে এবং ভর ইলেকট্রন ভরের সমান। অন্য কথায় এটি হল ধনাত্মক ইলেকট্রন। পজিট্রনকে e^+ দিয়ে প্রকাশ করা হয়।

ক্রেশাজিট কণিকা ঃ স্থায়ী থূল কণিকা ব্যতীত আর এক ধরণের ভারী কণিকা দেখা যায়। এদেরকে কম্পোজিট কণিকা বরে। যেমন- ১. ডিউটেরন কণা ২. আলফা কণা ইত্যাদি।

আইসোটোপের ব্যবহারঃ

- ১. পৃথিবীর বয়স বা জৈব পদার্থসমন্বিত প্রাচীন বস্তু, যথা- জীবাশ্ম প্রাচীন গাছ, ঐতিহাসিক বস্তু ইত্যাদির বয়স নির্ণয় করার জন্য কার্বনের তেজন্ক্রিয় আইসোটোপ
 14

 C ব্যবহৃত হয়।
 6
- ২. চিকিৎসাবিজ্ঞানে ক্যানসার, টিউমার ও গলগন্ড রোগের চিকিৎসায় তেজস্ক্রিয় আইসোটোপ $(^{32}P,\ ^{60}Co,\ ^{131}I$ ইত্যাদি) ব্যবহৃত হয়।

- ৩. রাসায়নিক বিক্রিয়ার ক্রিয়াকৌশল নির্ণয় করতে তেজন্ত্রিয় আইসোটোপ $(^{13}C,\ ^{15}N,\ ^{18}O,\ ^{35}S$ ইত্যাদি) ব্যবহার করা হয়।
- ৪. কৃষিকার্যে তেজন্ত্রিয় আইসোটোপ ব্যবহার করে উদ্ভিদের বৃদ্ধি ও রোগ সম্পর্কে বিভিন্ন তথ্য সংগ্রহ করা হয়।
- ৫. আইসোটোপের সাহায্যে ইঞ্জিনিয়ারিং শিল্পে সৃক্ষ্ম যান্ত্রিক উৎকর্ষের মান পরীক্ষা করা হয়।

আইসোটোপ, আইসোবার ও আইসোটোনের ভরসংখ্যা, প্রোটন সংখ্যা, নিউট্রন সংখ্যা এবং রাসায়নিক ধর্মের তুলনা ঃ

	ভরসংখ্যা (A)	প্রোটন সংখ্যা (Z)	নিউট্রন সংখ্যা (N)	রাসায়নিক ধর্ম	উদাহরণ
আইসোটোপ	ভিন্ন	একই	ভিন্ন	একই	12 C এবং ¹⁴ 6
আইসোবার	একই	ଭିନ୍ନ	୭ନ୍ନ	ভিন্ন	$rac{40}{18} Ar এবং rac{40}{20} Ca$
আইসোটোন	୭ନ୍ନ	୭ନ୍ନ	একই	ভিন্ন	2 H এবং 3 I

<u>নিউক্লিয়াসের আইসোমার (Nuclear Isomers)</u> z যেসব পরমাণুর পারমাণবিক সংখ্যা এবং ভরসংখ্যা একই কিন্তু তেজন্ত্রিয় ধর্ম ভিন্ন, সেগুলিকে পরস্পরের নিউক্লিয়ার আইসোমার বলে। এদের একই সংখ্যক ইলেকট্রেন, প্রোটন ও নিউট্রেন বর্তমান। যেমন- ইউরেনিয়াম- X_2 (অর্ধায়ু =1.14 মিনিট) ও ইউরেনিয়াম -Z (অর্ধায়ু =6.7 ঘন্টা) পরস্পরের নিউক্লিয়ার আইসোমার। উভয়েরই পারমাণবিক সংখ্যা এবং ভরসংখ্যা যথাক্রমে 91ও 234; উভয়েরই প্রোট্যাকটিনিয়াম (Pa) মৌলের পরমাণু।

একই মৌলের যেসব তেজন্ত্রিয় পরমাণুর নিউক্লিয়াস ভিন্ন শক্তিস্তরে অবস্থান করে, তারাই পরস্পরের নিউক্লিয়ার আইসোমার। এরূপ আইসোমারের দুটি উদাহরণ হল-

১.
$$^{69}Zn(t_{1/2}$$
 =13.8 ঘণ্টা) এবং $^{69}Zn(t_{1/2}$ =57 মিনিট)

২.
$$^{80}Br(t_{1/2}=4.4\,$$
 ঘণ্টা) এবং $^{80}Br(t_{1/2}=18$ মিনিট)

<u>আইসোডায়াফার (Isodiapher) १</u> যেসব পরমাণুতে নিউট্রন ও প্রোটন সংখ্যার পার্থক্য সমান, তাদের পরস্পরের আইসোডায়াফার বলে। কোনো নিউক্লিয়াইড এবং সেই নিউক্লিয়াইডটি থেকে একটি lpha — কণা নিঃসরণের ফলে উৎপন্ন পররমাণু পরস্পরের আইসোডায়াফার হয়।

যেমনঃ
$$\frac{238}{92}U \xrightarrow{-\alpha} \frac{234}{90}Th$$

অর্থাৎ, দুটি পরমাণুতেই নিউট্রন ও প্রোটন সংখ্যার পার্থক্য সমান হয়, তাই $\frac{238}{92}U$ এবং $\frac{234}{90}Th$ পরস্পরের আইসোডায়াফার।

<u>আইসোস্টার (Isoster)</u>? সমান সংখ্যক পরমাণু দ্বারা গঠিত এবং সমান সংখ্যক ইলেকট্রনবিশিষ্ট অণুগুলিকে পরস্পরের আইসোস্টার বলে। যেমন- CO_2 এবং N_2O ; এদের প্রত্যেকটিই 3 টি পরমাণু দ্বারা গঠিত এবং প্রত্যেকটির মোট ইলেকট্রন সংখ্যা = 22 ।

ত কক্ষপথের ব্যাসার্ধ, (H বা H এর মত আয়ন যেমন He^+, Li^{2+}, Be^{3+} ইত্যাদি)

নিউক্লিয়াসের প্রোটন সংখ্যা = পারমাণবিক সংখ্যা =Z

প্রতিটি প্রোটনের চার্জ = প্রতিটি ইলেকট্রনের চার্জ = e

নিউক্লিয়াসে মোট ধনাতাক আধান = Ze

কুলম্বের সূত্রানুসারে ইলেকট্রন ও নিউক্লিয়াসের মধ্যে আকর্ষণ বলঃ

$$S.I$$
 এককে কুলম্বের সূত্রঃ $F=rac{1}{4\pi\in_{_{o}}}$ $\qquad rac{q_{_{1}}}{r^{^{2}}}=9 imes10^{9}$ $\qquad rac{q_{_{1}}q_{_{2}}}{r^{^{2}}}$

$$rac{1}{4\pi \in C_0} = 9 \times 10^9 \ Nm^2c^{-2} \; ; \; q_1 =$$
 নিউক্লিয়াসের চার্জ $q_2 =$ ইলেকট্রনের চার্জ $= 1.6 \times 10^{-19}c \; ; \; r =$ কক্ষপথের ব্যসার্ধ

প্লাৎকের ধ্রুবক , h = $6.63 imes 10^{-34} \, Js$; কিন্তু C.G.S এককে কুলম্বের সূত্র , $F = \frac{q_1 \, q_2}{r^2}$

এক্ষেত্রে F এর একক =dyne ; ইলেকট্রনের চার্জ $=4.8\times10^{-10}~e.s.u$; প্লাংকের ধ্রুবক , $h=6.63\times10^{-27}~erg.s$

:. C.G.S এককে , $F = \frac{q_1 \ q_2}{r^2} = \frac{(Ze) \ (e)}{r^2} = \frac{Ze^2}{r^2}$ এই আকর্ষণ বল কেন্দ্রমুখী বল সৃষ্টি করে।

কেন্দ্রমুখী বল = আকর্ষণ বল $\Rightarrow \frac{mv^2}{r} = \frac{Ze^2}{r^2} \Rightarrow v^2 = \frac{Ze^2}{mr^2}$ (i) বোর মডেল হতে $mvr = \frac{nh}{2\pi} \Rightarrow v^2 = \frac{n^2h^2}{4\pi^2m^2r^2}$(ii)

$$(i)$$
 ও (ii) হতে, $\frac{Ze^2}{r^2} = \frac{n^2 \, h^2}{4 \pi^2 m^2 r^2}$ $\therefore r = \frac{n^2 h^2}{4 \pi^2 m z e^2}$ শুধুমাত্র $C.G.S$ একক ব্যবহার করতে হবে

এই সূত্রের সাহায্যে কক্ষপথের ব্যাসার্ধ (cm) নির্ণয় করা যায়।

কুলম্বের সূত্রের S.I রূপ ব্যবহার করলে r এর ফর্মুলা এরকম আসতঃ $r=rac{n^2h^2\in_o}{\pi\,m\,ze^2}$ ভিধুমাত্র S.I একক ব্যবহার করতে হবে।

বোর মডেলের সাহায্যে বিভিন্ন রাশি গণনাঃ

8 প্রথম কক্ষ ও *n* তম কক্ষের ব্যাসার্ধের সম্পর্কঃ

n তম কক্ষের ব্যাসার্থ $(r_n) = \frac{n^2 h^2}{4\pi^2 m Z e^2}$ এবং প্রথম কক্ষের ব্যাসার্থ $(r_1) = \frac{1^2 h^2}{4\pi^2 m Z e^2} = \frac{h^2}{4\pi^2 m Z e^2}$

সুতরাং,
$$\frac{r_n}{r_1} = \frac{n^2 h^2}{4\pi^2 m Z e^2} \times \frac{4\pi^2 m Z e^2}{h^2} = n^2$$
 বা, $r_n = r_1 \times n^2$

হাইড্রোজেন পরমাণুর প্রথম কক্ষের ব্যাসার্ধ নির্ণয়ঃ হাইড্রোজেন পরমাণুর প্রথম কক্ষের ব্যাসার্ধ $(r_1) = \frac{1^2 \times h^2}{4 \pi^2 m o^2}$

[h= প্ল্যাঙ্কের ধ্রুবক $=6.626 imes10^{-27}\ erg.s., m=$ ইলেকট্রনের ভর $=9.1 imes10^{-28}\ g$, e= ইলেকট্রনের আধান $=4.8\times10^{-10}$ esu, $\pi=3.14$]

$$\therefore r_1 = \frac{(6.626 \times 10^{-24})^2}{4 \times (3.14)^2 \times (9.1 \times 10^{-28}) \times (4.8 \times 10^{-10})^2} = 0.53 \times 10^{-8} = 0.53 \mathring{A} \quad [\because 1\mathring{A} = 10^{-8} \text{ cm}]$$

৬ n তম বোর কক্ষের (Orbit) একটি ইলেকট্রনের শক্তি নির্ণয়ঃ

n তম কক্ষে একটি ইলেকট্রনের মোট শক্তি, $E_n=$ ইলেকট্রনের গতি শক্তি + ইলেকট্রনের স্থিতিশক্তি

$$\Rightarrow = \frac{1}{2}mv^2 + (-\frac{Ze^2}{r}) = \frac{1}{2}m \times \frac{Ze^2}{mr} - \frac{Ze^2}{r} [(1)$$
 নং হতে $V^2 = \frac{Ze^2}{mr}]$

$$=\frac{1}{2} \times \frac{Ze^2}{r} - \frac{Ze^2}{r} = -\frac{Ze^2}{2r} = -\frac{Ze^2}{2} \times \frac{4\pi^2 mZe^2}{n^2h^2}$$
 [(3) নং সমীকরণ হতে]

$$\therefore E_n = -\frac{2\pi^2 m Z^2 e^4}{n^2 h^2} \dots (4)$$

বি বোরের সমীকরণ হতে হাইড্রোজেনের (Z=1) রেখা বর্ণালি সম্পর্কীত রিডবার্গের সমীরকণের সাহায্যে বিকিরণ শক্তি (ΔE) এবং এর কম্পাঙ্ক (υ) নির্ণয়।

যখন একটি ইলেকট্রন উচ্চশক্তিস্তর, n_2 হতে নিমু শক্তিস্তর, n_1 এ স্থানান্তর হয় তখন বোরের সমীকরণ অনুসারে,

$$\Delta E = h \upsilon = E_{n2} - E_{n1} = -\frac{2\pi^2 m e^4}{{n_2}^2 h^2} - \left(-\frac{2\pi^2 m e^4}{{n_1}^2 h^2}\right) \left[\because H \text{ as } Z = 1\right] = \frac{2\pi^2 e^4 m}{h^2} \left(\frac{1}{{n_1}^2} - \frac{1}{{n_2}^2}\right)$$

$$\therefore \Delta E = R_H \left(rac{1}{n_1^2} - rac{1}{n_2^2}
ight)$$
এখানে $R_H =$ রিডবার্গের ধ্রুবক। [শক্তির ক্ষেত্রে]

$$\therefore R_H = \frac{2\pi^2 e^4 m}{h^2} \qquad C.G.S \, \, \text{এককে},$$

$$= \frac{2 \times (3.1416)^2 \times (4.8 \times 10^{-10} e.s.u)^4 \times 9.109 \times 10^{-28} g}{(60626 \times 10^{-27} erg - sec)^2}$$
 $\pi = 3.1416$

$$=2.17\times10^{-11} \ erg$$
 $e=4.8\times10^{-10} \ e.s.u$

$$\therefore R_H = 2.17 \times 10^{-18} \ Joule$$
 $\therefore 1 \ Joule = 10^7 \ erg$] $m = 9.109 \times 10^{-28} \ g$
 $h = 6.626 \times 10^{-27} \ erg - \sec$

৮ হাইড্রোজেন বর্ণালীর জন্য কম্পাঙ্ক ও তরঙ্গদৈর্ঘ্য নির্ণয়ঃ

ইলেকট্রন যখন এক শক্তিস্তর থেকে অন্য শক্তিস্তরে স্থানান্তর হয় সেক্ষেত্রে শক্তির পার্থক্য বা বিকিরিত শক্তি বা শোধিত শক্তির মান বের করার জন্য রিডবার্গ ধ্রুবকের এই মান ব্যবহার করা হয়।

$$\Delta E = h\upsilon = \frac{2\pi^2 e^4 m}{h^2} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \text{ at, } \upsilon = \frac{2\pi^2 e^4 m}{h^3} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \text{ at, } \frac{c}{\lambda} = \frac{2\pi^2 e^4 m}{h^3} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \text{ [} \because c = \upsilon \lambda \text{]}$$

ৰা,
$$\frac{1}{\lambda} = \frac{2\pi^2 e^4 m}{ch^3} \left(\frac{1}{{n_1}^2} - \frac{1}{{n_2}^2} \right) \left[\because c =$$
ৰেগ , $\lambda =$ তরঙ্গ দৈখ্য $\right]$ ৰা, $\frac{-}{\upsilon} = \frac{2\pi^2 e^4 m}{ch^3} \left(\frac{1}{{n_1}^2} - \frac{1}{{n_2}^2} \right) \left[\because \frac{1}{\lambda} = \frac{-}{\upsilon} =$ তরঙ্গ সংখ্যা $\left[\frac{1}{\lambda} + \frac{1}{\upsilon} + \frac{1}{\upsilon}$

এখানেও
$$\dfrac{2\pi^2e^4m}{ch^3}=R_H=$$
 রিডবার্গ ধ্রুবক ধরা হয় $\therefore \dfrac{1}{\lambda}=R_H\,(\dfrac{1}{{n_1}^2}-\dfrac{1}{{n_2}^2})\quad \left[\,n_2>n_1\,
ight]$

$$\vec{v} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$
 $R_H = \frac{2\pi^2 e^4 m}{ch^3}$; $C.G.S$ এককে e, m, c এবং h এবং মান বসিয়ে পাই,

$$R_{H} = \frac{2 \times (3.1416)^{2} \times (4.8 \times 10^{-10} \, e.s.u)^{4} \times (9.109 \times 10^{-28}) g}{(3 \times 10^{10} \, cm/s) \times (6.626 \times 10^{-27} \, erg - sec)^{3}} = 109737 cm^{-1}$$

কিন্তু
$$R_{\scriptscriptstyle H}$$
 এর পরীক্ষামূলক মান = $109678cm^{-1}$ →এটিই অংকে ব্যবহার করা হয়।

• বোর মডেলের সাহায্যে হাইড্রোজেন বণালী: ইলেক্ট্রন উচ্চ কক্ষপথ (n_2) থেকে নিম্ন কক্ষপথে (n_1) ফিরে আসলে বিভিন্ন তরঙ্গ দৈর্ঘ্যের আলোক রশ্মি বিকিরত হয় এদের বর্ণালী বলে। হাইড্রোজেন পরমাণুতে যে বর্ণালী সৃষ্ট হয় তার তরঙ্গ দৈর্ঘ্য বের করার সূত্র,

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$
 এখানে, $n_2 > n_1$

- লক্ষ কর, এই সূত্র শুধুমাত্র হাইড্রোজেন পরমাণুর জন্য প্রযোজ্য
- ullet অন্য পরমাণুর জন্য , $\dfrac{1}{\lambda}\!=\!z^2\,R_H\,(\dfrac{1}{n_1^2}-\dfrac{1}{n_2^2})\quad[\,z=\,$ পরমাণবিক সংখ্যা]

 $R_H=$ রিডবার্গ ধ্রুবক = $109678cm^{-1}$ যেহেতু R_H এর একক cm^{-1} তাই χ এর একক cm এ আসবে।

কম্পাংক (v) বের করতে বললে আগে $v=rac{c}{\lambda}$ প্রয়োগ করে v বের করবে।

হাইড্রোজেন বর্ণালীর বিভিন্ন সিরিজ:

সিরিজ	অঞ্চল	$n_{\scriptscriptstyle 1}$	n_{γ}
১. লাইমেন	অতিবেগুনি	1	2,3,4,5
২. বামার	দৃশ্যমান	2	3,4,5
৩. প্যাশ্চেন	অবলোহিত	3	4,5,6
৪. ব্রাকেট	অবলোহিত	4	5,6,7
৫. ফাভ	<u>অবলোহিত</u>	5	6,7

লক্ষণীয় বিষয়:

যদি লাইমেন সিরিজের জন্য ৩য় রেখার তরঙ্গ দৈর্ঘ্য বের করতে বলে,
সেক্ষেত্রে

কোন সিরিজের জন্য , সেক্ষেত্রে n_1 ঐ সিরিজের জন্য যা আর

যদি সর্বনিমু কম্পাংক/সর্বোচ্চ তরঙ্গদৈর্ঘ্য বের করতে বলে

n₁ = 1 [কারণ লাইমেন]

 $n_2 = n_{1+1}$ এর ঠিক পরেরটা যদি লিমিটিং তরঙ্গ দৈর্ঘ্য বের করতে

 $n_2=n_1+$ যত রেখা দদ= 1+3=4 বলে সেক্ষেত্রে $n_2=\infty$

তাহলে বামার সিরিজের জন্য ৩য় রেখার তরঙ্গ বের করতে বললে, $n_1 = 2$ (কারণ বামার); $n_2 = 2+3=5$

রিড্বার্গ সমীকরণ থেকে হাইড্রোজেন পরমাণুর আয়নিকরণ শক্তি নির্ণয়ঃ

যে পরিমাণ শক্তি প্রয়োগ করে হাইড্রোজেন পরমাণুর প্রথম কক্ষ (n=1) থেকে ইলেকট্রনটিকে অসীম দূরত্বে স্থানান্তর করার ফলে H^+ উৎপন্ন হয় , সেই পরিমাণ শক্তিকে হাইড্রোজেনের আয়নিকরণ শক্তি $(Inonisation\ potential)$ বলে।

৭ নং থেকে , $\Delta E = \frac{2\pi^2 e^4 m}{h^2} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$ এই সমীকরণে n=1 এবং $n_2=\infty$ বসালে হাইড্রোজেন পরমাণুর আয়নিকরণ শক্তি পাওয়া যায়।

১০ । n -তম বোর কক্ষে ঘূর্ণায়মান ইলেকট্রনের প্রতি সেকেন্ডে আবর্তন সংখ্যাঃ

n -তম কক্ষে আবর্তনশীল ইলেকট্রনের গতিবেগ , $\upsilon_{\scriptscriptstyle n} = rac{2\pi\, Ze^2}{nh}$

n -তম কক্ষের ব্যাসার্থ, $r_n = \frac{n^2h^2}{4\pi^2mZe^2}$; n -তম কক্ষের পরিধি, $=2\pi r_n = \frac{2\pi n^2h^2}{4\pi^2mZe^2} = \frac{n^2h^2}{2\pi mZe^2}$

n -তম কক্ষে ঘূর্ণায়মান ইলেকট্রনের প্রতি সেকেন্ডে আবর্তন সংখ্যা , $= \frac{$ বিগ

১১ n -তম কক্ষপথে (Orbit) ইলেকট্রনের বেগ নির্ণয়ঃ

বোরের দ্বিতীয় শ্বীকার্য হতে, $mvr=rac{nh}{2\pi}$ বা, $v=rac{nh}{2\pi mr}$

আবার, $r = \frac{n^2h^2}{4\pi^2Ze^2m}$ [(3) নং সমীকরণ হতে] $\therefore v = \frac{nh}{2\pi m} \times \frac{4\pi^2Ze^2m}{n^2h^2} = \frac{2\pi Ze^2}{nh}$ $\therefore v = \frac{2\pi ze^2}{nh}$

n -তম কক্ষ ও প্রথম কক্ষে আবর্তনশীল ইলেক্ট্রনের গতিবেগের সম্পর্ক st

n -তম কক্ষে আবর্তনশীল গতিবেগ $(v_n) = \frac{2\pi Ze^2}{nh}$ এবং প্রথম কক্ষে আবর্তনশীল ইলেক্ট্রনের গতিবেগ $(v_1) = \frac{2\pi Ze^2}{1 imes h}$

6

সুতরাং, $\frac{v_n}{v_1} = \frac{2\pi Ze^2}{nh} \times \frac{1 \times h}{2\pi Ze^2}$ বা, $v_n = v_1 \times \frac{1}{n}$

গাণিতিক সমস্যা

১। হাইড্রোজেন পরমাণুর ইলেকট্রকনের শক্তি, $E = \frac{-21.7 \times 10^{-12}}{n^2} erg.n = 2$ কক্ষপথ হতে একটি ইলেকট্রনকে সম্পূর্ণ অপসারণ করতে প্রয়োজনীয়

শক্তি হিসাব কর। এই অপসারণ ঘটাতে সবচেয়ে বড় কোন তরঙ্গ দৈর্ঘ্যের (cm-a) আলো ব্যবহার করতে হবে?

n -তম কক্ষপথে ইলেকট্রনের শক্তি,

$$E_n = -rac{2\pi^2 Z^2 m}{n^2 h^2} = rac{21.7 imes 10^{-12}}{n^2} erg$$
 ; यश्रम $n = 2$, $E_2 = -rac{21.7 imes 10^{-12}}{4} erg = -5.4 imes 10^{-12} erg$

যখন $\,n\!=\!\infty\,$ অর্থাৎ ইলেকট্রনটি নিউক্লিয়াসের প্রভাব থেকে সম্পূর্ণরূপে মুক্ত হয় তখন $\,E_{\!\scriptscriptstyle \propto}\!=\!0\,$

$$\Delta E = E_{\infty} - E_2 = 0 - (-5.4 \times 10^{-12}) = 5.4 \times 10^{-12} \, erg.$$

 \therefore ২য় শক্তিন্তর হতে ইলেকট্রন সম্পূর্ণরূপে অপসারন করতে প্রয়োজনীয় শক্তি $5.4 imes 10^{-12}\,erg$

আবার,
$$\Delta E = \frac{hc}{\lambda}$$
বা, $\lambda = \frac{hc}{\Delta E} = \frac{6.626 \times 10^{-27}~erg - \sec \times 3 \times 10^{10}}{5.4 \times 10^{-12}~erg}~cm~\sec^{-1}~= 3.68 \times 10^{-5} cm$ এবং $3.68 \times 10^{2} nm$

২। বোর তত্ত্ব অনুসারে হাইড্রোজেন পরমাণুর ইলেকট্রনীয় শক্তি $E_n = \frac{-21.76 \times 10^{-19}}{n^2} J~He^+$ এর ৩য় কক্ষপথ হতে একটি ইলেকট্রনকে অপসারণ করতে সবচেয়ে বড় কোন তরঙ্গ দৈর্ঘ্য প্রয়োজন? $Ans: 205.4\,nm$ (নিজে কর)

৩। হাইড্রোজেন পরমাণুর অসীম দূরত্বের শক্তিস্তর হতে সবচেয়ে স্থিতিশীল শক্তিস্তরে ইলেকট্রন স্থানান্তরে উৎপন্ন শক্তি এবং তার তরঙ্গ দৈর্ঘ্য হিসাব কর। $R_H=1.09678\times 10^7~m^{-1},~h=6.625\times 10^{-34}J-\sec c,c=2.9979\times 10^8~ms^{-1}$

হাইড্রোজেন বর্ণালির জন্য সাধারণ সমীকরণ , $\stackrel{-}{\upsilon}=\frac{1}{\lambda}=R_H\left(\frac{1}{n_1^2}-\frac{1}{n_2^2}\right)$ এখানে , $n_1=1$ এবং $n_2=\infty$

$$\therefore \frac{1}{\lambda} = 1.0978 \times 10^7 \left(\frac{1}{1^2} - \frac{1}{\infty} \right) \quad \text{ft}, \ \lambda = \frac{1}{1.0967 \times 10^7} = 9.11 \times 10^{-8} \, m = 91.1 nm$$

আবার,
$$E = \frac{hc}{\lambda}$$
 :. $\frac{6.626 \times 10^{-34} J - \sec \times 2.9979 \times 10^8 m \ \sec^{-1}}{9.11 \times 10^{-8} m} = 218 \times 10^{-20} \ \textit{KJ} \ \textit{Ans} : 1 nm \$ এবং $218 \times 10^{-20} \ \textit{KJ}$

৪। হাইড্রোজেন পরমাণুর তৃতীয় কক্ষে আবর্তনশীল ইলেকট্রনের বেগ নির্ণয় করো। নিউক্লিয়াসকে ঘিরে এই ইলেকট্রনটি প্রতি সেকেন্ডে কতবার আবর্তন করে নির্ণয় করো।

হাইড্রোজেন প্রমানুর
$$n$$
 -তম কক্ষে আবর্তনশীল ইলেক্ট্রনের গতিবেগ , $v_n=\frac{2\pi e^2}{nh}\left[\because mvr=\frac{nh}{2\pi},\ r=\frac{n^2h^2}{4\pi^2\,me^2}\right]$

$$\therefore$$
 তৃতীয় কক্ষে আবর্তনশীল ইলেকট্রনের গতিবেগ, $v_2 = \frac{2\pi e^2}{3 \times h} = \frac{2 \times 3.14 \times (4.8 \times 10^{-10})^2}{3 \times (6.627 \times 10^{-27})}$

এখন , হাইড্রোজেনের পরমাণুর $\,n\,$ -তম কক্ষের ব্যাসার্ধ $\,r_{\!\scriptscriptstyle n}\!=\!rac{n^2h^2}{4\pi^2me^2}$

∴ তৃতীয় কক্ষের ব্যাসার্থ,
$$(r_3) = \frac{3^2 h^2}{4\pi^2 me^2} = \frac{9 \times (6.627 \times 10^{-27})^2}{4 \times (3.14)^2 \times (9.108 \times 10^{-28}) \times (4.8 \times 10^{-10})^2}$$

[যেখানে, m= ইলেকট্রনের ভর $=9.108\times10^{-28}\,g$] এখন, তৃতীয় কক্ষের পরিধি $=2\pi r_3=2\times3.14\times4.77\times10^{-8}\,cm$

$$\therefore$$
 তৃতীয় কক্ষে আবর্তনশীল ইলেকট্রনটির প্রতি সেকেন্ডে আবর্তন সংখ্যা = $\frac{ ag{cap}}{ ag{acm}^2} = \frac{3 \times 10^7}{ imes 10^{-7}} = 2.43 \times 10^{14}$

 ϵ । দেখাও যে, হাইড্রোজেন পরমাণুর প্রথম কক্ষে ঘূর্ণায়মান ইলেকট্রনের গতিবেগ আলোর গতিবেগের প্রায় $10^{-2}\,$ গুণ।

বোরের তত্ত্ব অনুযায়ী ,
$$mvr=rac{nh}{2\pi}$$
.....(1)

এবং
$$n$$
 -তম কক্ষের ব্যাসার্ধ, $r = \frac{n^2 h^2}{4\pi^2 m Z e^2}$(2)

$$(1)$$
 ও (2) নং সমীকরণ থেকে π এর মান তুলনা করে পাওয়া যায় , $\frac{nh}{2\pi nv} = \frac{n^2h^2}{4\pi^2mZe^2}$ বা , $\frac{1}{v} = \frac{nh}{2\pi Ze^2}$ বা , $v = \frac{2\pi Ze^2}{nh}$

হাইড্রোজেন পরমাণুর ক্ষেত্রে পারমাণবিক সংখ্যা
$$Z=1$$
; সুতরাং, $v=\frac{2\pi Ze^2}{nh}$(3)

এখন, (3) নং সমীকরণ থেকে আবর্তনশীল ইলেকট্রনের গতিবেগ (v) নির্ণয় করা যায়।

প্রথম কক্ষের ক্ষেত্রে $n=1, e=4.8\times 10^{-10}\,esu$ এবং $h=6.627\times 10^{-27}\,erg.s$

$$\therefore v = \frac{2 \times 3.14 \times (4.8 \times 10^{-10})^2}{1 \times 6.627 \times 10^{-27}} = 2.183 \times 10^8 = (2.183 \times 10^{10}) \times 10^{-2} \text{ cm.s}^{-1}$$

আবার আলোর গতিবেগ $=3 imes 10^{10}\,cm.s^{-1}$ সুতরাং হাইড্রোজেন পরমাণুর প্রথম কক্ষে আবর্তনশীল ইলেকট্রনের গতিবেগ আলোর গতিবেগের প্রায় 10^{-2} গুণ।

৬। প্রথম বোর-কক্ষের শক্তি -13.58eV হলে তৃতীয় বোর কক্ষের শক্তি কত?

হাইড্রোজেন পরমাণুর
$$n$$
 -তম বোর কক্ষের শক্তি , $E_n=rac{2\pi^2me^4}{n^2h^2}$ \therefore প্রথম বোর কক্ষের শক্তি , $E_1=rac{2\pi^2me^4}{1^2 imes h^2}$

এবং তৃতীয় বোর কক্ষের শক্তি ,
$$E_3 = \frac{2\pi^2 \, me^4}{3^2 \times h^2} \therefore \frac{E_3}{E_1} = \frac{2\pi^2 me^4}{9 \times h^2} \times \frac{h^2}{2\pi^2 me^4} = \frac{1}{9}$$

বা,
$$E_3 = \frac{1}{9} \times E_1 = \frac{1}{9} \times (-13.58)eV = -1.509eV$$
 [∵ E1= -13.58 eV]

৭। H -পরমাণুর একটি বোর ইলেকট্রনের বেগ আলোর বেগের $\frac{1}{275}$ অংশ হলে, ইলেক্ট্রনটি কোন কক্ষে ঘুরছে?

প্রদন্ত কক্ষটিতে (ধরি '
$$n$$
' তম) ইলেকট্রনের বেগ $=3\times10^{10} imesrac{1}{275}cm.s^{-1}=1.09\times10^8\,cm.s^{-1}$

আবার, আমরা জানি, 'n' তম কক্ষের বেগ , $V_n=rac{2\pi\pi Z^2}{nh}$; H -পরমাণুর Z=1, $e=4.8\times 10^{-10}$ esu, $h=6.627\times 10^{-27}$ erg.s

$$\therefore V_n = \frac{2 \times 3.14 \times (4.8 \times 10^{-10})^2}{n \times 6.627 \times 10^{-27}} = \frac{2.18 \times 10^8}{1.09 \times 10^8} = 2$$

প্রশানুসারে,
$$\frac{2.18\times10^8}{n}$$
 = 1.09×10^8 বা, $n=\frac{2.18\times10^8}{1.09\times10^8}$ = 2 \therefore ইলেকট্রনটি দ্বিতীয় কক্ষপথে ঘুরছে।

কোয়ান্টাম সংখ্যা

- 1. প্রধান কোয়ান্টাম সংখ্যা (n)
- (i) n এর মান দিয়ে শক্তিন্তর বুঝায়

n =1 মানে ১ম শক্তিন্তর বা k-shell

n=2 মানে ২য় শক্তিস্তরে বা L-shell ইত্যাদি।

(ii) n তম কক্ষপথে সর্বোচ্চ ইলেক্ট্রন ধারণ ক্ষমতা= $2n^2$

2. সহকারী কোয়ান্টাম সংখ্যা (ℓ)

(i) $\ell = 0$ থেকে n-1

 ℓ = 0 মানে s – subshell

 $\ell = 1$ মানে p – subshell

 ℓ = 2 মানে d – subshell

 ℓ = 3 মানে f - subshell

- (ii) ℓ এর মান দিয়ে উপশক্তিস্তরের আকৃতি বুঝানো হয়।
- (iii) ℓ তম উপশক্তিন্তরে সর্বোচ্চ ইলেক্ট্রন ধারণ ক্ষমতা $=2(2\ell+1)$
- 3. চৌম্বক কোয়ান্টাম সংখ্যা (m)

- (i) m=0 সহ $\pm \ell$
- (ii) ℓ এর প্রতিটি মানের জন্য m এর $(2\ell+1)$ সংখ্যক মান পাওয়া যাবে।
- (ii) n এর মান যত বাড়বে কক্ষপথের শক্তি তত বাড়বে।

 $\ell=0$ মানে বর্তুলাকার

 $\ell=1$ মানে ডাম্বেল আকৃতি

 $\ell=2$ মানে ডাবল ডাম্বেল (জটিল)

ℓ = 3 মানে আরো জটিল

(iii) s – subshell এর জন্য m = 0

s – subshell এর জন্য m=0

∴ s – subshell এর জন্য 1টি অরবিটাল।

p-subshell এর জন্য m=-1, 0, 1

 $\therefore p-subshell$ এ 3 টি অরবিটাল (P_x, P_y, P_z)

d - subshell এর জন্য m = -2, -1, 0, 1, 2

∴ d – subshell এ 5 টি অরবিটাল

 $(d_{xy}, d_{yz}, d_{zx}, d_{x^2-y^2}, d_{z^2})$

f - subshell এর জন্য m=-3, -2, -1, 0, 1, 2, 3

 $\therefore f - subshell$ এ 7 টি অরবিটাল

 $(f_{xyz}, f_{yz^2}, f_{xz^2}, f_{x(x^2-3y^2)}, f_{y(y^2-3x^2)}, f_{z(x^2-3y^2)}, f_{z^3})$

ব্যতিক্রম ইলেকট্রন বিন্যাস (Exceptional Electronic Configuration)

$$Cr(24) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$$

$$Cu(29) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$$

$$Nb(41) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^4 5s^1$$

$$Mo(42) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^5 5s^1$$

$$T_c(43) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^5 5s^2$$

$$Ru(44) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^7 5s^1$$

$$Rh(45) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^8 5s^1$$

$$Pd(46) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10}$$

$$Ag(47) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^1$$

$$La(57) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^6 5d^1 6s^2$$

$$Gd(64) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^7 5s^2 5p^6 5d^1 6s^2$$

$$Pt(78) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6 5d^9 6s^1$$

$$Au(79) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6 5d^{10} 6s^1$$

$$Ac(89) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6 5d^{10} 6s^2 6p^6 6d^1 7s^2$$

$$Th(90) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6 5d^{10} 6s^2 6p^6 6d^2 7s^2$$

$$Pa(91) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6 5d^{10} 5f^2 6s^2 6p^6 6d^1 7s^2$$

$$U(92) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6 5d^{10} 5f^3 6s^2 6p^6 6d^1 7s^2$$

$$Np(93) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6 5d^{10} 5f^4 6s^2 6p^6 6d^1 7s^2$$

$$Cm(96) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6 5d^{10} 5f^7 6s^2 6p^6 6d^1 7s^2$$

$$Bk(97) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6 5d^{10} 5f^8 6s^2 6p^6 6d^1 7s^2$$

দ্রবণ, দ্রাব্যতা, দ্রাব্যতা গুণফল বিষয়ক

দ্রবণ = দ্রব +দ্রাবক

আমরা চিনির শরবত বানানোর জন্য গ্লাসের ভিতর যথেষ্ট পানি নিয়ে পরিমিত চিনি যোগ করি। ফলে যে শরবত পাই সেটি পানিতে চিনির দ্রবণ, যেখানে চিনি দ্রব আর পানি দ্রাবক। এখানে একটি ব্যাপার লক্ষ্যনীয়, আমরা পানিতে কিস্তু পরিমিত চিনি যোগ করি কারন বেশি চিনি দিলে তা তলানী পড়ে থাকবে।

তার মানে কি বুঝা গেলো, পানিতে একটি সর্বোচ্চ পরিমাণ চিনি দ্রবীভূত হতে পারবে। যদি ঐ সর্বোচ্চ পরিমাণ থাকে তবে আমরা সেই শরবতকে বলি অনেক মিষ্টি আর রসায়নের পরিভাষায় সেই দ্রবনকে বলে সম্পৃক্ত দ্রবণ। আর দ্রাবকে Highest যতটুকু দ্রব দ্রবীভূত থাকতে পারে তার চেয়ে কম থাকলে দ্রবনটি অসম্পৃক্ত (অপেক্ষাকৃত কম মিষ্টি শরবত) আর ধারনক্ষমতার অতিরিক্ত দ্রবের অধঃক্ষেপ পড়বে।

এবার আসি দ্রাব্যতা কি জিনিস?

একটি সম্প্রক্ত দ্রবণ বিবেচনা করি (অবশ্যই সম্প্রক্ত), যার ভিতর mg দ্রব দ্রবীভূত আছে।

দ্ৰবণ
$$= Mg$$

দ্ৰব =
$$m g$$

$$\therefore$$
 দ্রাবক = $(M-m)g$

 $\therefore (M-m)$ g দ্রাবককে সম্প্রক্ত করতে প্রয়োজনীয় দ্রব =mg

∴ 100
$$g$$
 " " " = $\frac{m \times 100}{(M-m)}$

ইহাই ঐ তাপমাত্রায় ঐ দ্রব্যের দ্রাব্যতা।
$$\therefore$$
 দ্রাব্যতা, $S=rac{m imes 100}{M-m}$

তাহলে লক্ষ্যনীয় বিষয় কি?

- ** তাপমাত্রা নির্দিষ্ট (কারণ তাপমাত্রা Change হলে দ্রাব্যতা Change হবে)
- ** প্রতি লিটার দ্রবণে কত মোল দ্রব দ্রবীভূত আছে সেটি দিয়েও দ্রাব্যতা প্রকাশ করা যায়। তখন দ্রাব্যতার একক $mol\Big/_L=M$
- ** দ্রবনটি সম্পুক্ত। এবার একটি অংক করি দ্রাব্যতা নিয়ে।

প্রশা

30°C ও 50°C তাপমাত্রায় কোন দ্রবের দ্রাব্যতা যথাক্রমে 60 ও 80, 50°C তাপমাত্রার 50g সম্পৃক্ত দ্রবনকে

30°C তাপমাত্রায় শীতল করলে কী পরিমান দ্রব দ্রবন হতে বেরিয়ে আসবে?

ব্যাখ্যাঃ- লক্ষ কর, 50g দ্রবনটি সম্পুক্ত আছে $50^{\circ}\mathrm{C}$ এ, এখন তাপমাত্রা $30^{\circ}\mathrm{C}$ করলে দ্রাব্যতা কমে যাবে, ফলে অতিরিক্ত দ্রব

দ্রবন থেকে বের হয় অধঃক্ষেপ পড়বে। তার মানে 50°C তাপমাত্রায় সম্প্রক্ত দ্রবনের ভর আর 30°C এ সম্প্রক

দ্রবনের ভর Same থাকবে না, কিন্তু কি Same থাকবে? দ্রাবক বা পানির পরিমান একই থাকবে তাই আমরা অংকটি

করব এভাবে যে 50°C এ কতটুকু পানি ছিল আর ঐ পানিতে কতটুকু দ্রব ছিল। আবার 30°C ঐ একই পানিই থাকবে কিন্তু কম দ্রব দ্রবীভূত থাকবে, কতটুকু থাকবে ঐ টা বের করব। তারপর আগেরটা থেকে বিয়োগ করে Extra দ্রব দ্রবন থেকে বের হয়ে যাবে।

তাহলে বের কর.

50°C এ 50g সম্প্রক্ত দ্রবনে কতটুকু পানি আছে আর ঐ পানিতে কতটুকু দ্রব আছে এরপর 30°C এ ঐ পানিতে কতটুকু দ্রব থাকতে পারে।

Let's Start, 50°C এ দ্রাব্যতা =80

তার মানে 100g পানিকে সম্পক্ত করতে দ্রব দরকার 80g

অর্থাৎ 180g সম্পুক্ত দ্রবনে পানি = 100g

সুতরাং
$$50$$
g সম্পৃক্ত দ্রবনে পানি = $\frac{100 \times 50}{180}$ = $27.78g$

তার মানে 50° C তাপমাত্রায় 27.78g পানিতে (50 - 27.78) = 22.22 g দ্রব দ্রবীভূত হয়ে 50g সম্পক্ত দ্রবন তৈরী করবে।

এবার, 30° C এ দ্রাব্যতা = 60

30°C এ 100g পানিতে দ্রব থাকতে পারে =60g

27.78g পানিতে দ্রব থাকতে পারে
$$= \frac{60 \times 27.27}{180} g = 16.668 g$$

সুতরাং দ্রব অবঃক্ষিপ্ত হবে = 22.22-16.668 = 5.552g

দ্রাব্যতার গুনফলঃ

কোন স্বল্প দ্রবনীয় লবন যদি পানিতে দ্রবীভূত কর সেক্ষেত্রে দুটি বিপরীত মুখী প্রক্রিয়া চলতে থাকবে। ধর AgCl লবনকে পানিতে দ্রবীভূতকরলে সেক্ষেত্রে AgCl পানিতে দ্রবীভূত হয়ে আয়নিত হবে,

$$AgCl(S) \longrightarrow Ag^{+}(aq) + Cl^{-}(aq)$$

আবার দ্রবন থেকে Ag^+ ও Cl^- দ্রবন দ্বারা যুক্ত হয়ে অদ্রবীভূত $AgCl\ (S)$ তৈরী করবে $|\ Ag^+(aq)+\ Cl^-(aq)
ightarrow \ AgCl\ (S)$

অর্থাৎ একটি উভমূখী প্রক্রিয়া চলবে এবং একটি পর্যায়ে এসে সাম্যবস্থা অর্জিত হবে। তখন আমরা বলি দ্রবনটি সম্পুক্ত।

$$AgCl(S) \Leftrightarrow Ag+(aq) + Cl^{-}(aq)$$

এবার এই সম্পৃক্ত দ্রবনে (Mind it) যে আয়ন থাকবে তাদের ঘনমাত্রার গুনফলই দ্রাব্যতার গুনফল (Ksp)। তার মানে

AgCl এর সম্পৃক্ত দ্রবনের উপস্থিতে আয়নের ঘনমাত্রার যে গুনফল সেটিই দ্রবতার গুনফল।

* AgCl
$$\Leftrightarrow$$
 Ag⁺ + Cl⁻

$$k_{SD} = [Ag^{\dagger}] [CI^{\overline{}}]$$

ধরি, AgCl এর দ্রাব্যতা x mol/L। তার মানে প্রতি লিটার দ্রবনে x mol AgCl দ্রবীভূত হবে।

্রএখন সমীকরন থেকে দেখা যাচেছ 1 mol AgCl দ্রবীভূত হলে 1 mol Ag ও 1 mol Cl পাওয়া যায়। তার মানে

x mol AgCl দ্রবীভূত হলে x mol Ag de x mol Cl পাওয়া যাবে,

$$[Ag^+] = x mol/L$$

$$[Cl^-] = x mol/L$$

$$K_{SP} = [Ag^+][Cl^-]$$

$$K_{SP} = x^2$$

এক্ষেত্রে AgCl এর দ্রাব্যতা x দেওয়া থাকবে দ্রাব্যতার গুনফল Ksp বের করা যাবে, অথবা Ksp দেওয়া থাকলে দ্রাব্যতা

x বের করা যাবে।

Remember

দ্রাব্যতা অবশ্যই mol/L এককে Use করতে হবে। প্রশ্নে g/L এ দেওয়া থাকলে আনবিক ভর দিয়ে ভাগ করে mol এ Convert করে দ্রাবতার গুনফল

AB2 যৌগের ক্ষেত্রে

$$CaF_2$$
 (s) \Leftrightarrow Ca^{2+} (aq) + $2F^{-}$ (aq)

Ksp =
$$[Ca^{2+}]$$
 $[F^{-}]$ = (x) $(2x)^{2}$ $[Ksp = 4x^{2}]$

$$Ksp = 4x^2$$

AlCl₃
$$\Leftrightarrow$$
 Al³⁺(aq) + 3Cl⁻(aq)

$$K_{sp} = [AI^{3+}][CI^{-}]^{3} = (x)(3x)^{3}$$

$$K_{sp} = 27 \times x^4$$

Type:4

Ca₃ (PO₄)₂ (s)
$$\Leftrightarrow$$
 3Ca²⁺ (aq) + 2PO₄³⁻

$$K_{SD} = [Ca^{2+}]^3 [PO4^{3-}]^2 = (3x)^3 (2x)^2$$

$$K_{sp} = 108x^5$$

আয়নিক গুনফল VS দ্রাব্যতা গুনফলঃ

যে কোন দ্রবনে (সম্পৃক্ত বা অসম্পৃক্ত Doesn't matter) উপস্থিত আয়ন সমূহের ঘনমাত্রার গুনফলই আয়ানিক গুনফল।

মনে রাখবে

"নির্দিষ্ট তাপমাত্রার কোন দ্রবের দ্রাব্যতার গুনফল Fixed" যদি

- (i) আয়নিক গুনফল= দ্রাব্যতার গুনফল হলে, দ্রবনটি সম্পৃক্ত
- (ii) আয়নিক গুনফল < দ্রাব্যতার গুনফল হলে, দ্রবনটি অসম্প্রক
- (iii) আয়নিক গুনফল > দ্রাব্যতার গুনফল হলে, দ্রবটির অবঃক্ষেপ পড়বে

এবার এসো একটি সমস্যা সমাধান করি

একটি পাত্রে $100\text{ml }4.5\times10^{-5}\text{M}$ Na₂S দ্রবন আছে সেখানে $200\text{ml }1.3\times10^{-3}$ M AgNO₃ যোগ করা হলো, অবঃক্ষেত্রে পড়বে কি? $(\text{Ksp=}1.6\times10^{-49})$

ব্যাখ্যাঃ-

এখন তোমার জানতে হবে কোন কোন যৌগ পানিতে দ্রবীভূত হয়না।

যৌগের ধরণ	দ্রবণীয়	অদ্রবনীয়
ক্ষার ধাতু সমূহ (Alkali metals) অ্যামোনিয়াম [Ammonium (NH4+)]	সব	কোনটি না
নাইট্রেট [Nitrate (NO_3^-)] অ্যাসিটেট $[Acetates(C_2H_3O_2^-)]$	সব	কোনটি না
ক্লোরাইডস [Chlorides (CL ⁻)] ব্রোমাইডস [Bromides (Br ⁻)] আয়োডাইডস [Iodides (I ⁻)	অধিকাংশ ধাতু সমূহ	$Pb^2, H{g_2}^{2+}, Ag^+$ দ্বারা গঠিত যৌগসমূহ
সালফেটস [Sulfates (SO4 ⁻)]	প্রায় সবগুলো	বাকী সবগুলো
কার্বনেটস [Carbonates (CO ₃ ²⁻)] ফসফেটস [Phosphates (PO ₄ ³⁻)]	ক্ষার ধাতুসমূহ এবং $N\!H_4^{}$	$Ca^{2+}, Sr^{2+}, Ba^{2+}$ দ্বারা গঠিত যৌগ সমূহ আংশিক দ্রবণীয় এবং যৌগ সমূহ অদ্রবণীয়
হাইড্রোক্সাইডস [Hydroxides (OH ⁻)	ক্ষার ধাতুসমূহ	
সালফাইডস [Sulfides (S ²⁻)]	$N\!H_4^{}$ $I\!A$ এবং $I\!I\!A$ ধাতুসমূহ	বাকি সবগুলো

আমাদের এখানে Na₂S+ 2AgNO₃ ⇔ Ag₂S +2NaNO₃

$$2Na^{+} + S^{2-} + 2Ag^{+} + 2NO_{3}^{-} \Leftrightarrow Ag_{2}S + 2Na^{+} + 2NO_{3}^{-}$$

এখানে অধঃক্ষেপ পড়ার বিক্রিয়াটি

$$2Ag^+ + S^{2-} \Leftrightarrow Ag_2S \downarrow$$

এবার আয়নিক গুণফল, $K_{IP}a = [Ag^+]^2 [S^{2-}]$

তখন মিশ্রনে Ag ⁺ এর ঘনমাত্রা মানে Na2S দ্রবন যোগ করার পর কত হবে?

$$V_1 S_1 = V_2 S_2 \implies S_2 = \frac{V_1 S_1}{V_2} = \frac{1.3 \times 10^{-3} \times 200}{300}$$

অনুরূপভাবেঃ
$$[S^{2-}]=4.5\times10^{-5} imes\frac{100}{300}=1.5\times10^{-5}M$$

$$Q = (8.7 \times 10^{-4})^2 \times (1.5 \times 10^{-5})$$
 $= 1.14 \times 10^{-11}~But,~K_{sp} = 1.6 \times 10^{-40}$ $\therefore~Q > K_{sp}$ \therefore অধ্যক্ষেপ পড়বে ।

সমআয়ন প্রভাবঃ

সমআয়ন বিশিষ্ট মৃদু বিশ্লেষ্য দ্রবনে অন্য একটি সবল তড়িৎ বিশ্লেষ্য দ্রবন যোগ করলে মৃদু বিশ্লেষ্যের আয়নিত হওয়ার ক্ষমতা বা দ্রাব্যতা হ্রাস পায়।

যেমনঃ AgCI এর দ্রবনে NaCI দ্রবন যোগ করলে, AgCI আগের চেয়ে কম দ্রবীভূত হবে। নিচের সম্পৃক্ত দ্রবন বিবেচনা করঃ $Ag_2CrO_4(S) \Leftrightarrow 2Ag^+(Aq) + CrO_4^{2-}$

এ দ্রবনে তুমি যদি AgNO3 যোগ কর তাহলে Common ion ${\rm Ag}^+$ এর কারণে সাম্যবস্থাটি বাম দিকে সরে যাবে, তার মানে অতিরিক্ত ${\rm Ag}_2$ ${\rm CrO}_4$ অদ্রবীভূত বা কঠিন অবস্থায় পাবা, ফলে ${\rm Ag}_2$ ${\rm CrO}_4$ এর অধ্পক্ষেপ পড়বে। ${\rm AgNO}_3$ এর বদলে ${\rm K}_2{\rm CrO}_4$

যোগ করলে একই ঘটনা ঘটবে (তখন CrO4²⁻ সমআয়ন)। এবার চলো সমআয়ন এর প্রভাব নিয়ে অংক করি। তার আগে

গুরুত্বপূর্ন কথা

• সমআয়নের উপস্থিতিতে দ্রাব্যতা হ্রাস পেলেও দ্রাবতার গুনফল Same থাকে মনে করি, একটি মৃদু তড়ি-বিশ্লেষ্য MA এবং এর দ্রাব্যতা S

$$MA \rightleftharpoons M + A^{-}$$
-S S' S

$$\therefore K_{SP} = [M^+] [A^-]$$

এই মৃদু তড়িৎ বিশ্লেষ্যটির মধ্যে C মোলার ঘনমাত্রার অন্য একটি সরল তড়িৎ-বিশ্লেষ্য AB যোগ করি। AB এর উপস্থিতিতে MA এর দ্রাব্যতা ধরি, S'

$$MA \rightleftharpoons M + A^{-}$$

$$-S' \quad S', \quad S'$$

$$BA \rightleftharpoons \quad B^{+} + A^{-}$$

$$-C' \quad C$$

সুতরাং দ্রবণে A^- এর মোট ঘনমাত্রা $[A^-] = (S' + C)$

$$\therefore K_{SP} = [M^+][A^-] = S(S' + C)$$

যেহেতু উভয় দ্রবণই MA এর দ্রাব্যতা গুণফল ধ্রুব।

তাই,
$$K_{SP} = S'(S'+C) = S'^2 + S'C$$

এ সমীকরণের সাহায্যে সমআয়নের দ্রবণের দ্রাব্যতা নির্ণয় করা যাবে। তবে S' এর উচ্চঘাত বিশিষ্ট মানসমুহ বাদ দেয়া হয়।

এবার বলো তো এসিডীয় Cu^{2+} ও Zn^{2+} দ্রবনে H_2S গ্যাস চালনা করলে শুধু CuS অধ্যক্ষিপ্ত হয় কিন্তু ZnS অধ্যক্ষিপ্ত হয় না কেন?

কারণ জলীয় দ্রাবনে H_2S গ্যাস চালনা করলে গ্যাসটি খুবই সামন্য পরিমাণে দ্রবীভূত হয়ে থাকে। দ্রবীভূত H_2S এর সামান্য অংশ বিয়োজিত হয়ে H^+ ও S^{2-1} আয়ন উৎপাদন করে। $H_2S = 2$ $H^+ + S^{2-1}$ এসিড জলীয় দ্রবণে H^+ দান করে থাকে। এসিড মিশ্রিত দ্রবনে সম আয়ন H^+ এর মৃদু তড়িৎ বিশ্লেষ্য H_2S এর বিয়োজন মাত্রা অধিক হারে হাস ঘটে। ফলে দ্রবণে S^{2-1} আয়নের ঘনামত্রা খুব কম হয়। এ অবস্থায় Cu^{2+1} ও Cu^{2+1} এর এসিডিয় দ্রবনে Cu^{2+1} গ্রাস চালনা করলে Cu^{2+1} আয়তনের ঘনমাত্রা এতই কম হয় যে, কেবলমাত্র Cu^{2+1} আয়নের ঘনমাত্রার গুনফল Cu^{2+1} অয়ন ও Cu^{2+1} আয়নের ঘনমাত্রা ওক্তম করেথাকে। কিন্তু Cu^{2+1} আয়ন ও Cu^{2+1} আয়নের ঘনমাত্রা ওক্তমত করতে পারে না। ফলে দ্রবণ হতে শুধুমাত্র Cu^{2+1} অধ্যঞ্জিপ্ত হয়।

এবার বলো তো ক্ষারীয় মাধ্যমে H₂S চালনা করলে ZnS অধ্যক্ষিপ্ত হয় কেন?

$$H_2S \Leftrightarrow 2H^+ + S^{2-}$$

ক্ষারীয় মাধ্যমে OH^- বেশি ফলে OH^- কর্তৃক H^+ প্রশমিত হবে এবং সাম্যবস্থা ডন দিকে সরে গিয়ে S^{2-} এর ঘনমাত্রা বেড়ে যাবে , ফলে ZnS এর আয়নিক গুণফল বেড়ে যাবে যা দ্রাব্যতার গুণফলকে অতিক্রম করবে , ফলে ZnS অধ্যক্ষিপ্ত হবে।

দ্রাব্যতার উপর বিভিন্ন নিয়ামকের প্রভাবঃ

তরল - কঠিন দ্রবণ

(i) তাপমাত্রাঃ

দ্রব (কঠিন) + তাপ শোষণ ⇔ দ্রব (আয়নিত)

এক্ষেত্রে তাপমাত্রা বৃদ্ধি করলে সাম্য ডানদিকে যাবে ফলে দ্রাব্যতা বৃদ্ধি পাবে

দ্রব (কঠিন) ⇔ দ্রব (আয়নিত) + তাপ

এক্ষেত্রে তাপমাত্রা বৃদ্ধি করলে সাম্য বাম দিকে যাবে ফলে দ্রাব্যতা হ্রাস পাবে

(ii) চাপঃ No effect

তরল - গ্যাস দ্রবন

(ii) তাপমাত্রারঃ একটি দ্রবীভূত গ্যাসের দ্রাব্যতা তাপমাত্রা বৃদ্ধির সাথে সাথে হ্রাস পায়। একটি উষ্ণ পানীয় থেকে একটি ঠান্ডা পানীয়তে অধিক কার্বন ডাই অক্সাইড দ্রবীভূত থাকে। তুমি লক্ষ্য করে থাকবে সেভেন-আপ বা অন্য কোন পানীয় বোতল ফ্রিজে রেখে ঠান্ডা হওয়ার পর বোতলের মুখ খুলে পানীয় তরলের গ্যাসীয় পদার্থ CO2 সজোরে বেরিয়ে আসে না। কিন্তু পানীয় বোতলটি রোদে রেখে গরম হওয়ার পর বোতলের মুখ খুলে গ্যাসীয় পদার্থ সজোরে বেরিয়ে আসে। এর কারণ ঠান্ডা অবস্থায় তরলের মধ্যে গ্যাসীয় পদার্থ বেশি দ্রবীভূত থাকে অর্থাৎ দ্রাব্যতা বেশি এবং গরম অবস্থায় দ্রাব্যতা কম তাই সজোরে বেরিয়ে আসে। গ্যাসীয় পদার্থের আজ্ঞঅণবিক আকর্ষণ নেই। কিন্তু গ্যাসীয় পদার্থ যখন তরলে দ্রবীভূত হয় তখন গ্যাস অণুর সাথে তরল অণুর আজ্ঞআণবিক আকর্ষন সৃষ্টি হয়। ফলে তাপশক্তি নির্গত হয় এবং প্রক্রিয়াটি হয় তপোৎপাদী। অর্থাৎ তরলের মধ্যে গ্যাসীয় পদার্থ দ্রবীভূত হওয়া তপোৎপাদী প্রক্রিয়া। তাই তাপমাত্রা বৃদ্ধি পেলে দ্রাব্যতা হ্রাস পায়। গ্রীষ্মকালের চেয়ে শীতকালের পানিতে দ্রবীভূত অক্সিজেন বেশি থাকে তাই শীতকালের পানিতে দ্রবীভূত অক্সিজেন কম থাকে তাই মাছ বা অন্যান্য জলজ প্রানী বসবাসের অনুপযুক্ত হয়।

চাপঃ তরল দ্রাবকে গ্যাসীয় দ্রব দ্রবীভূত হওয়ার ক্ষেত্রে চাপের প্রভাব পরিলক্ষিত হয়। বিজ্ঞানী হেনরীর সূত্রানুসারে ছির তাপমাত্রা নির্দিষ্ট আয়তনের কোন তরল পদার্থে কোন গ্যাসের দ্রাব্যতা এর উপর প্রযুক্ত চাপের সমানুপাতিক। তবে এ ক্ষেত্রে ঐ গ্যাস ও তরল দ্রাবকের মধ্যে কোনরূপ রাসায়নিক বিক্রিয়া ঘটবেনা। উধাহরণসরূপ তরল পানীয় বা সোডা ওয়াটারের বোতলে উচ্চ চাপে CO2 গ্যাস দ্রবীভূত থাকে। বোতলের মুখ খোলার সাথে সাথে বোতলের ভিতরের চাপ কমে যায় এবং অতিরিক্ত CO2 গ্যাস বুদবুদ আকারে বিরিয়ে আসে। চাপ হ্রাসের সাথে সাথে CO2 এর দ্রাব্যতার হ্রাস ঘটে থাকে তাই এমনটি হয়ে থাকে।

দাব্যতা লেখ (Solubility curve) 8 তাপমাত্রার পরিবর্তনে কঠিন দ্রব্যের দ্রাব্যতার পরিবর্তন দ্রাব্যতা লেখ নামে লেখচিত্র দ্বারা সহজে ও সুস্পষ্টভাবে বোঝানো যায়। X -অক্ষ বরাবর তাপমাত্রা এবং Y -অক্ষ বরাবর দ্রাব্যতা ধরে ছক কাগজে বিভিন্ন তাপমাত্রা-দ্রাব্যতা নির্দেশক বিন্দুগুলি স্থাপন করে বিন্দুগুলিকেরেখা দ্বারা যুক্ত করলে যে লেখচিত্র পাওয়া যায় তাকে দ্রাব্যতা লেখ বলে।

দ্রাব্যতা লেখ এর প্রকৃতি এবং তাৎপর্য (Nature and Significant of Solubility Curve) ঃ

- ১. কতকগুলি কঠিন পদার্থ আছে যাদের দ্রাব্যতা তাপমাত্রা বৃদ্ধিতে নিয়মিতভাবে বৃদ্ধি পায়। এই সমস্ত কঠিন পদার্থের ক্ষেত্রে হয় $\Delta H>0$ । এরূপ পদার্থের কতকগুলি উদাহরন হল $KNO_3, NaNO_3, NaClO_3$ ইত্যাদি।
- ২. কতকগুলি কঠিন পদার্থ আছে যাদের দ্রাব্যতা তাপমাত্রা বৃদ্ধিতে ক্রমশ হ্রাস পায়। এই সমস্ত কঠিন পদার্থের ক্ষেত্রে $\Delta H < 0$ হয়। এরপ পদার্থের কতকগুলি উদাহরণ হল Li_2SO_4 , $CaSO_4$ এবং অনার্দ্র লবণ যেমন- $CuSO_4$, Na_2SO_4 ইত্যাদি।
- ৩. কতকগুলি কঠিন পদার্থ আছে যাদের দ্রাব্যতা তাপমাত্রার পরিবর্তনে নিয়মিতভাবে বৃদ্ধি বা হ্রাস পায না । উদাহরণস্বরূপ- Na_2SO_4 , $10H_2O$ এর পানিতে দ্রবীভূত হওয়ার প্রক্রিয়াটি হল তাপশোষক প্রক্রিয়া কিন্তু Na_2SO_4 এর পানিতে দ্রবীভূত হওয়ার প্রক্রিয়াটি হল তা পউৎপাদক প্রক্রিয়া । দেখা গেছে $34^{o}C$ তাপমাত্রায় সোদক Na_2SO_4 . $10H_2O$ অনার্দ্র Na_2SO_4 এ পরিণত হয় । এজন্য $34^{o}C$ তাপমাত্রা পর্যন্ত Na_2SO_4 . $10H_2O$ এর দ্রাব্যতা ক্রমশ বাড়তে থাকে । এরপর তাপমাত্রা বৃদ্ধি করলে Na_2SO_4 . $10H_2O$ থেকে উৎপন্ন অনার্দ্র Na_2SO_4 এর দ্রাব্যতা ক্রমশ কমতে থাকে । যে তাপমাত্রায় দ্রাব্যতার ওই প্রকার বৈপরীত্য লক্ষ্য করা হয় , সেই তাপমাত্রাকে ট্রানজিসান তাপমাত্রা (Transition temperature) বলে ।

দ্রাব্যতার গুণফল সম্পর্কিত গাণিতিক সমস্যাঃ

১। $CaSO_4$ এর দ্রাব্যতা $0.67\,g\,/\,L$ হলে এর $\,K_{SP}$ নির্ণয় কর।

মনে করি, $CaSO_4$ পানিতে নিম্নরূপে দ্রবীভূত হয় এবং এর মোলার দ্রাব্যতা $s \; mol/L$

$$CaSO_4 \iff Ca^{2^+}{}_{(aq)} + SO_4^{\ 2^+}{}_{(aq)}$$
 প্রাথমিক অবস্থায় $(M):O$ O O দ্রবীভূত অবস্থায় $(M):-S$ $+S$ $+S$ সাম্যাবস্থায় $(M):$ S S

 $CaSO_4$ এর দ্রাব্যতা গুণফল K_{SP} = $[Ca^{2+}][SO_4^{\ 2-}]$ = s^2

প্রথমে 1L দ্রবণে দ্রবীভূত $CaSO_4$ এর মোলসংখ্যা বের করতে হবে যা মোলার দ্রাব্যতা হিসেবে পরিচিত।

$$S = \frac{\frac{0.67g}{136.2g} mol}{\frac{1}{1}} = 4.9 \times 10^{-3} mol/L$$

দ্রাব্যতা সাম্যাবস্থা হতে দেখা যায় প্রতি মোল $CaSO_4$ দ্রবীভূত হয়ে 1 মোল Ca^{2+} এবং 1 মোল SO_4^{2-} আয়ন উৎপন্ন করে।

সুতরাং,
$$[Ca^{2+}] = 4.9 \times 10^{-3} M$$
 এবং $[SO_4^{\ 2^-}] = 4.9 \times 10^{-3} M$

সুতরাং
$$K_{SP}$$
 = $[Ca^{2+}]$ $[SO_4^{2-}]$ = (4.9×10^{-3}) (4.9×10^{-3}) = 2.4×10^{-3}

২। $Pb_3(PO_4)_2$ এর দ্রাব্যতা গুণফল 1.5×10^{-22} । লবণটির দ্রাব্যতা গুণফল গ্রাম/ লিটারে হিসাব কর। [Pb=207, P=31, O=16] মনে করি, $Pb_3(PO_4)_2$ এর মোলার দ্রাব্যতা $S\ mol/L$

$$Pb_3 (PO_4)_{2(s)} \Leftrightarrow 3Pb^{2+}_{(aq)} + 2PO_4^{3-}_{(aq)}$$

 $-S$ 3S 2S
∴ $K_{SP} = [Pb^{2+}]^3 [PO_4^{3-}]^2 = (3S)^3 (2S)^2 = 108S^5$
जा, $108S^5 = 1.5 \times 10^{-22}$ [∴ $K_{SP} = 1.5 \times 10^{-22}$]

$$\P, S^5 = \frac{1.5 \times 10^{-22}}{108} = 1.39 \times 10^{-24}$$

উভয় পক্ষে \log নিয়ে পাই, $5\log S = \log(1.39 \times 10^{-24})$

$$\exists 1, \log S = \frac{1}{5} (\log 1.39 - 24 \log 10) = \frac{1}{5} (0.1430 - 24) = -4.771$$

 $\therefore S = \log^{-1}(-4.771) = 1.698 \times 10^{-5} \text{ mole/litre}$

 $Pb_3(PO_4)_2$ এর আণবিক ভর = $(3 \times 207) + 2(31 + 62) = 811 g / mol.$

$$\therefore S = (1.698 \times 10^{-5} \times 811) g/L = 13.77 \times 10^{-3} g/L \quad (Ans)$$

৩। 298K তাপমাত্রায় পানিতে CaF_2 এর দ্রাব্যতা $1.7 \times 10^{-3}~g/100cm^3$ । একই তাপমাত্রায় CaF_2 এর দ্রাব্যতা গুণফল বের কর। [$Ca=40,\,F=19$]

 CaF_2 এর আণবিক ভর $=(40+2\times19)=78\,g\,/\,mol$

মনে করি, CaF_2 এর দ্রাব্যতা S

$$CaF_{2(s)} \Leftrightarrow Ca^{2+}_{(aq)} + 2F^{-}_{(aq)}$$

$$-S$$
 S $2S$

$$\therefore K_{SP} = [Ca^{2+}][F^{-}]^{2}$$
 এখানে,
$$= S(2S)^{2} \qquad S = 1.7 \times 10^{-3} \ g / 100cm^{3}$$

$$= 4S^{2} \qquad \qquad = \frac{1.7 \times 10^{-3} \times 1000}{100} \ g / L = \frac{1.7 \times 10^{-3} \times 1000}{100 \times 78} mol/L$$

$$=4(2.2\times10^{-4})^{3} =2.2\times10^{-4} \ mol/L$$

 $=4.259\times10^{-11}$

 $Ans: CaF_2$ এর দ্রাব্যতা গুণফল 4.259×10^{-11}

8। $Ag_2C_2O_4$ একটি সম্পৃক্ত দ্রবণে Ag^+ এর ঘনমাত্রা $2.2 imes10^{-4}$ mole/L । $Ag_2C_2O_4$ এর দ্রাব্যতা গুণফল নির্ণয় কর।

$$Ag_{2}C_{2}O_{4(s)} \Leftrightarrow 2Ag^{+}_{(aq)} + C_{2}O_{4}^{2-}_{(aq)}$$

$$\therefore K_{SP} = [Ag^{+}]^{2} [C_{2}O_{4}^{2-}] = (2.2 \times 10^{-4})^{2} (1.1 \times 10^{-4}) = 5.3 \times 10^{-12}$$

 $Ans:Ag_2C_2O_4$ এর দ্রাব্যতা গুণফল $5.3{ imes}10^{-12}$

৫। $PbBr_2$ এর দ্রাব্যতা গুণফল 8×10^{-5} । লবণটি এর সম্পৃক্ত দ্রবণে 80% বিয়োজিত হলে লবণটির দ্রাব্যতা হিসাব কর । মনে করি , $PbBr_2$ সম্পূর্ণরূপে বিয়োজিত হলে এর দ্রাব্যতা $S\ mole/L$

$$PbBr_{2(s)} \Leftrightarrow \frac{Pb^{2+}}{S}(aq) + \frac{2Br^{-}}{2S}(aq)$$

$$K_{SP} = [Pb^{2+}][2Br^{-}]^{2}$$

$$=(S)(2S)^2 = 4S^3 = 8 \times 10^{-5} \ [\because K_{SP} = 8 \times 10^{-5}]$$

প্রশ্নমতে, $PbBr_2$ এর 100% বিয়োজিত হলে দ্রাব্যতা $2.714 imes 10^{-2} \ mol/L$

 $PbBr_2$ এর 80% বিয়োজিত হলে দ্রাব্যতা $\frac{2.714\times10^{-2}\times80}{100}$ $=2.1712\times10^{-2}~mol/L~Ans:2.1712\times10^{-2}~mol/L$

৬। $CuCO_3(K_{SP}=2.5\times 10^{-10})$ এবং $Ag_2CO_3(K_{SP}=8.2\times 10^{-12})$ এর মধ্যে কোনটি অধিক দ্রবণীয়?

মনে করি, $CuCO_3$ এবং Ag_2CO_3 এর মধ্যে দ্রাব্যতা যথাক্রমে S_1 এবং S_2 ।

$$CuCO_{3(s)} \Leftrightarrow Cu^{2+}_{(aq)} + CO_3^{2-}_{(aq)}$$
$$-S_1 \qquad S_1 \qquad S_1$$

 $\therefore K_{SP} = [Cu^{2+}][CO_3^{2-}] = (S_1)(S_1) = S_1^{2}$

 $:: S_1 = \sqrt{K_{SP}} = \sqrt{2.5 \times 10^{-10}} \quad [::K_{SP} = 2.5 \times 10^{-10}] = 1.58 \times 10^{-5} \ mol/L$

 $Ag_{2}CO_{3(S)} \Leftrightarrow 2Ag^{+}_{(aq)} + CO_{3}^{2-}_{(aq)} - S_{2} \qquad 2S_{2} \qquad S$

$$\therefore K_{SP} = [Ag^+]^2 [CO_3^{2-}] = (2S_2)^2 (S_2) = 4S_2^3 \text{ at}, S_2 = \left(\frac{K_{SP}}{4}\right)^{\frac{1}{3}} \quad [\because K_{SP} = 8.2 \times 10^{-12}]$$
$$= 1.27 \times 10^{-4} \, mol/L$$

 $CuCO_3$ এবং Ag_2CrO_4 এবং দ্রাব্যতার মান থেকে দেখা যায় $CuCO_3$ এর চেয়ে Ag_2CO_3 অধিক দ্রবণীয়।

৭। Ag_2CrO_4 এবং AgBr এর দ্রাব্যতা গুণফল যথাক্রমে $Ag_2CrO_4=1.2 imes10^{-12}$ এবং $AgBr=4.9 imes10^{-13}$ এদের সম্পৃক্ত দ্রবণে মোলারটির অনুপাত হিসাব কর।

মনে করি, Ag_2CrO_4 এবং AgBr এর দ্রাব্যতা যথাক্রমে S_1 এবং S_2 ।

$$Ag_2CrO_{4(S)} \Leftrightarrow 2Ag^+_{(aq)} + CrO_4^{2-}_{(aq)}$$

$$K_{SP} = [Ag^{+}]^{2} [CrO_{4}^{2-}] = (2S_{1})^{2} S_{1} = 4S_{1}^{3}$$

ब,
$$S_1 = \left(\frac{K_{SP}}{4}\right)^{\frac{1}{3}} = \left(\frac{1.2 \times 10^{-12}}{4}\right)^{\frac{1}{3}}$$
] = 6.69 × 10⁻⁵ mole/L [∴ K_{SP} = 1.2 × 10⁻¹²

আবার, $AgBr_{(S)} \Longleftrightarrow Ag^{+}_{(aq)} + Br^{-}_{(aq)}$

$$-S_2$$
 S_2 S_2

$$\therefore K_{SP} = [Ag^+]^2 [Br^-] = (S_2 \times S_2) = S_2^{-2} \text{ dift}, S_2 = \sqrt{K_{SP}} = \sqrt{4.9 \times 10^{-13}} \text{ [} \because K_{SP} = 4.9 \times 10^{-13} \text{]}$$

∴ দ্রবণ দুটিতে মোলারিটির অনুপাত,

$$S_1: S_2 = \frac{6.69 \times 10^{-5} \, mole/L}{7 \times 10^{-7} \, mole/L} = 95.6$$

৮। $25^{\circ}C$ তাপমাত্রায় $Ca(OH)_2$ এর দ্রাব্যতা গুণফল $4.42 imes 10^{-5}$ । $Ca(OH)_2$ এর 500~mL সম্পৃক্ত দ্রবণের সাথে সমআয়তন

 $0.4\,M$ NaOH দ্রবণ মিশ্রিত করা হল। $Ca(OH)_2$ এর কত মিলিগ্রাম অধ্যক্ষিপ্ত হবে?

মনে করি, $Ca(OH)_2$ এর দ্রাব্যতা $S \ mol/L$

$$Ca(OH)_{2(S)} \stackrel{\Leftrightarrow}{c} Ca^{2+} \atop S \stackrel{(aq)}{=} + \frac{2O^{-}}{2S} H_{(aq)}$$

∴
$$K_{SP} = [Ca^{2+}][OH^{-}]^2 = S(2S)^2 = 4S^3$$
 at, $4S^3 = 4.42 \times 10^{-5}$ [∴ $K_{SP} = 4.42 \times 10^{-5}$]

 $\therefore 1000 \, mL$ এ Ca^{2+} আছে $2.223 \times 10^{-2} \, mol/L$

$$\therefore 500 \quad \text{"} \quad 4 \quad Ca^{2+} \quad \text{"} \quad \frac{2.223 \times 10^{-2} \times 500}{1000} = 0.01115 \, mol$$

যখন $500mL\ Ca(OH)_2$ এর সাথে সমআয়তন $0.4M\ NaOH$ দ্রবণ মিশ্রিত করা হয় তখন মোট আয়তন দ্বিগুণ হয়ে যায় এবং NaOH হতে প্রাপ্ত OH^- এর ঘনমাত্রা $[OH^-]=0.2\ M$ হয়।

$$NaOH \longrightarrow Na^+ + \overline{O} H$$

-0.2 0.2 0.2

 \therefore দুবণে এর মোট ঘনমাত্রা, $[OH^-] = (2s' + 0.2) \therefore K_{SP} = [Ca^{2+}] [OH^-]^2$

ৰা,
$$[Ca^{2+}] = \frac{K_{SP}}{[\overline{O}H]^2} = \frac{4.42 \times 10^{-5}}{(2s'+0.2)^2} = \frac{4.42 \times 10^{-5}}{4s'^2 + 0.8s' + 0.04}$$

S' খুবই ক্ষুদ্র তাই ${S'}^2$ এবং 0.8S' কে বাদ দেয়া যায়।

$$\therefore [Ca^{2+}] = \frac{4.42 \times 10^{-5}}{0.04} = 0.001105 \, mole/litre$$

মিশ্রণের পরে দ্রবণে থাকে $Ca(OH)_2$ থাকে 0.001105 mole

- \therefore অধ্যক্ষিপ্ত $Ca(OH)_2$ এর মোল সংখ্যা= (0.01115-0.001105) mole = 0.010045 mole
- \therefore অধঃক্ষিপ্ত $Ca(OH)_2$ এর ভর $=0.010045 \times 74)g$

=0.7433g =743.3 mg [::Ca(OH)₂ এর আণবিক ভর 74 g / mol]

Practice Problem

Written

প্রশ্নঃ ১ । $35^{\circ}C$ তাপমাত্রায় Pbl_2 এর $Ksp=1.55\times10^{-8}$ ।

- (ক) তড়িৎ চুম্বকীয় বর্ণালি কী?
- (খ) দেখাও যে, কোনো একটি অরবিটালে দুটির অধিক ইলেকট্রন থাকতে পারে না।
- (গ) 1নং পাত্রে $NO_3^{\,-}$ এর ঘনমাত্রা নির্ণয় কর।
- (ঘ) 1 নং পাত্রের দ্রবণের মধ্যে \parallel নং পাত্রের দ্রবণকে সম্পূর্ণভাবে মিশালে PbI_2 এর অধ্বংক্ষেপ পড়বে কি-না বিশ্লেষণ কর \parallel

প্রশ্নঃ ২। নিচের উদ্দীপকটি পর্যবেক্ষণ কর-

$_{7}A$	$_8B$	₂₄ C	$_{26}D$

- (ক) নোড বলতে কী বুঝ?ং
- (খ) $Cr_{(24)}^{2+}$ এর ইলেকট্রন বিন্যাস দেখাও এবং অযুগ্ম ইলেকট্রনের সংখ্যা নির্ণয় কর।
- (গ) উদ্দীপকের A ও B মৌল দুটির ক্ষেত্রে হুন্ডের নীতি প্রয়োগ ব্যাখ্যা কর।
- (ঘ) উদ্দীপকের $extit{C}$ ও $extit{D}^{2+}$ আয়নের ইলেকট্রন সংখ্যা অভিন্ন হলেও বিন্যাস ভিন্ন যুক্তিসহ কারণ উপস্থাপন কর।

প্রশ্নঃ ৩। হাইড্রোজেন পরমাণুর চতুর্থতম কক্ষের ব্যাসার্ধ $8.5 \times 10^{-10} m$ । পরমাণুটির দ্বিতীয় ও তৃতীয় বোর কক্ষে একটি ইলেকট্রনের শক্তি যথাক্রমে $5.42 \times 10^{-12} erg$ এবং $2.41 \times 10^{-12} erg$ । আমরা জানি, ইলেকট্রনের ভর, $9.1 \times 10^{-3} kg$ এবং $h = 6.625 \times 10^{-27} erg - \sec$ । (ক) কোয়ান্টাম তত্ত্ব কী?

- (খ) রাদারফোর্ডের প্রমাণু মডেলকে সৌর মডেল বলা হয় কেন?
- (গ) চতুর্থতম কক্ষে ইলেকট্রনটির গতিবেগ নির্ণয় কর।
- (ঘ) পরমাণুটি ৩য় কক্ষ থেকে দ্বিতীয় কক্ষে একটি ইলেকট্রন নেমে আসার ফলে যে শক্তির বিকিরণ হয় তার তরঙ্গ দৈর্ঘ্য হিসাব কর।

প্রশ্নঃ 8। নিচের চিত্রটি লক্ষ কর-

- (ক) জীম্যান প্রভাব কী?
- (খ) একটি পরমাণুতে ইলেকট্রনের স্থায়ী শক্তিস্তর বলতে কী বুঝ?
- (গ) উদ্দীপকের ইলেকট্রনটির অবস্থানের সময় তার আবর্তনশীল বেগ নির্ণয় কর।
- (ঘ) উদ্দীপকের মৌলের পরমাণুতে একটি ইলেকট্রন থাকা সত্ত্বেও পারমাণবিক বর্ণালিতে 5 টি রেখা বর্ণালি পাওয়া সম্ভব-উক্তিটি বিশ্লেষণ কর।

প্রশ্নঃ ৫। নিচের উদ্দীপকটি লক্ষ কর-

- (ক) হাইজেনবার্গের অনিশ্চয়তা নীতি কী?
- (খ) ইলেকট্রনের কীভাবে ধাপান্তর ঘটে-ব্যাখ্যা কর।
- (গ) উদ্দীপকের ইলেকট্রনটি শক্তিকে শোষণ করে যে কক্ষপথে উন্নীত হয়েছে ঐ কক্ষপথের ব্যাসার্ধ নির্ণয় কর।
- (ঘ) ইলেকট্রনের ধাপান্তরের ফলে বিকিরিত ফোটনের আলোর বর্ণ র্নিধারণ কর।

প্রশ্নঃ৬। বোর পরমাণু মডেলে ইলেকট্রনকে কণারূপে বর্ণনা করা হয়েছে। 1924 সালে ডি. ব্রগলি মত প্রকাশ করেন যে, আবর্তনশীল ইলেকট্রনের ককণা ও তরঙ্গ উভয় ধর্ম আছে। প্লাঙ্কের সমীকরণ মতে, একটি ফোটনের শক্তি, $E\!=\!hv$ । আবার আইনস্টানের বস্তুকণার ভর ও শক্তির সমতুলতা অনুসারে, $E\!=\!me^2$, এখানে 'm'হলো বস্তুকণার ভর , $c\!=\!$ আলোর গতিবেগ , $E\!=\!$ ফোটনের শক্তি। উভয় সম্পর্ক থেকে ডি. ব্রগলির সমীকরণটি প্রতিষ্ঠিত করা হয়।

- (ক) ডি. ব্রগলির সমীকরণটি লেখ ও পদসমূহের পরিচয় দাও।
- (খ) বোর পরমাণু মডেলের ইলেকট্রনের কৌণিক ভরবেগের ধারণার সমীকরণটি লেখ ও পদসমূহের পরিচয় দাও।
- (গ) উদ্দীপক অনুসারে একটি ইলেকট্রন তৃতীয় শক্তিন্তরে পূর্ণ আবর্তন বলতে কয়টি পূর্ণ তরঙ্গ সৃষ্টি করবে তা গণনা কর।
- ্ঘ) উদ্দীপক অনুসারে ৩য় শক্তিস্তরে মোট উপশক্তি স্তর ও অরবিটাল সংখ্যা বিশ্লেষণ কর।

প্রশ্নঃ ৭। শাফায়াতের বাবা মাথায় প্রচন্ড ব্যাথা নিয়ে হঠাৎ অসুস্থ হয়ে পড়লে তাকে হাসপাতালে নেওয়া হয়। ডাক্তার পরীক্ষা নিরীক্ষা করে শাফায়েতকে MRI পরীক্ষা করতে পরামর্শ দিলেন। শাফায়েত MRI রিপোর্ট নিয়ে ডাক্তারকে দেখালেন। ডাক্তার MRI রিপোর্ট দেখে চিকিৎসার প্রয়োজনীয় ব্যবস্থা গ্রহণ করলেন।

- (ক) পারমাণবিক বর্ণালি কাকে বলে?
- (খ) ব্যান্ড বর্ণালি ব্যাখ্যা কর।
- (গ) উদ্দীপকের পরীক্ষাটির মূলনীতি বর্ণনা কর।
- (ঘ) উদ্দীপকে ডাক্তার X-ray এর পরিবর্তে MRI করার পরামর্শ দিলেন কেন-বিশ্লেষণ কর।

১০। একটি জলীয় নমুনা পরীক্ষা করে দুটি লাবণের উপস্থিতি পাওয়া গেল। পানিতে লবণ দুটির দ্রাব্যতা ভিন্ন ভিন্ন। লবণ AB এর দ্রাব্যতা 45 এবং AC এর দ্রাব্যতা 35g/100g।

- (ক) লবণ AB এবং AC কী?
- (খ) দ্রাব্যতার মান থেকে AB এবং AC এর দ্রবণের মোলার ঘনমাত্রা হিসেব করে দেখাও।
- (গ) জলীয় নমুনাটি থেকে AB এবং AC কে কীভাবে পৃথক করে সংগ্রহ করা যায় ব্যাখ্যা কর।
- (ঘ) সমীকরণ দিয়ে AB এবং AC এর শনাক্তকরণ বুঝিয়ে লিখ।

প্রশ্নঃ ১১। A

- (ক) হুন্ডের নিয়ম কী?
- (খ) তোমার রান্নাঘরে ব্যবহৃত মাইক্রোওভেনটি 1.20cm তরঙ্গদৈর্ঘ্যের তাপশক্তি বিকিরণ করে। ঐ বিকিরণের একটি ফোটনের শক্তি কত হবে?
- (গ) উদ্দীপকের A দ্রবণটির ক্যাটায়নে $3s^2$ $3p^6$ $3d^9$ ইলেকট্রন বিন্যাস আছে। এ দ্রবণটিতে উদ্দীপকের বিকারক যোগ করলে কী পরিবর্তন লক্ষ করবে তা সমীকরণসহ লেখ।
- (ঘ) উদ্দীপকের B দ্রবণটিতে 26 পারমাণবিক সংখ্যাবিশিষ্ট ধাতুর ক্যাটায়ন আছে। ঐ ধাতুটির দু'প্রকার ক্যাটায়ন সম্ভব। তুমি উদ্দীপকের বিকারক ব্যবহার করে ঐ ধাতুর ক্যাটায়নের শনাক্তকরণ কীভাবে নিশ্চিত করবে তা সমীকরণসহ লেখ।

প্রশ্নঃ১২। নিচের চিত্রের বিকারে লঘু $HCl, ZnCl_2$ ও $CuCl_2$ এর মিশ্র দ্রবণ রয়েছে। এ উদ্দীপক সংশ্লিষ্ট নিচের প্রশ্নের উত্তর দাওः

- (ক) কোয়ান্টাম সংখ্যা কাকে বলে?
- (খ) শিখা পরীক্ষায় গাঢ় HCl এসিড ব্যবহারের কারণ ব্যাখ্যা কর।
- (গ) উদ্দীপকের মিশ্র দ্রবণে $H_{\gamma}S$ গ্যাস চালনা করলে কিসের অধ্যক্ষেপ পড়বে তা বিক্রিয়াসহ ব্যাখ্যা কর।
- (ঘ) উদ্দীপকের দ্রবণে উভয় ক্যাটায়নের পৃথকীকরণে অম্লীয় ও ক্ষারীয় মাধ্যমের গুরুত্বের ব্যাখ্যা কর।

প্রশ্নঃ১১। নিচের সমীকরণগুলো লক্ষ কর-

- 1. $AgCl(s) \Leftrightarrow Ag^+(aq) + Cl^-(aq); K_{SP}(AgCl) = [Ag^+][Cl^-]$
- $2.CaF_2(s) \Leftrightarrow Ca^{2+}(aq) + 2F^{-}(aq)$
- $3.Bi_2S_3(s) \Leftrightarrow 2Bi^{3+}(aq) + 3S^{2-}(aq)$
- (ক) তড়িৎ চৌম্বক বর্ণালি কী?
- (খ) ক্রোমোটোগ্রাফি বলতে কী বোঝ?
- (গ) 1নং অনুসারে 2, 3নং এর জন্য K_{SP} কত হবে?
- (ঘ) 1 নং সাম্যাবস্থায় Cl^- আয়ন যোগে $AgCl_-$ এর দ্রবণীয়তা পরিবর্তিত হবে কী? যৌক্তিকভাবে বিশ্লেষণ কর।

প্রশ্নঃ ১২ । $30^{\circ}C$ এবং $80^{\circ}C$ তাপমাত্রায় কোণ দ্রবের দ্রাব্যতা যথাক্রমে 40 এবং 60 ।

- (ক) দ্রাব্যতা কী?
- (খ) K এর ১৯তম ইলেকট্রন 3d তে না যেয়ে 4s এ যায় কেন?
- (গ) $30^{\circ}C$ তাপমাত্রায় 100গ্রাম সম্প্রক্ত দ্রবণে দ্রবের পরিমাণ নির্ণয় কর।
- ্বি) "উদ্দীপকের তপ্ত দ্রবণের 1kg কে শীতল $(30^{o}C)$ করলে কিছু দ্রব কেলাসিতে হবে"-উক্তিটির যথার্থতা গাণিতিকভাবে প্রমাণ কর।

প্রশ্নঃ ১৩।

- $20^{\circ}C$ তাপমাত্রায় AY এর $K_{SP} = 3.5 \times 10^{-4}$, XB এর $K_{SP} = 2.5 \times 10^{-2}$
- (Φ) pH কাকে বলে?
- (খ) দেখাও অক্সিজেনের ইলেক্ট্রন বিন্যাস হুন্ডের নীতি মেনে চলে।
- (গ) AB দ্রবণটি সম্পুক্ত হলে $20^{\circ}C$ তাপমাত্রায় AB এর দ্রাব্যতা গুণফল নির্ণয় কর।
- (ঘ) দ্রবণ দুটিকে মিশ্রিত করলে কোন অধ্যক্ষেপ পাওয়ার সম্ভাবনা ব্যাখ্যা কর। প্রশ্নঃ ১৪। নিচের উদ্দীপকটি পর্যবেক্ষণ কর-

মৌল	পর্যায়	শ্রেণি
Х	3	II
Υ	3	III

- $(ar{\phi}) \; R_{_f} \; \widehat{\Phi}$?
- (খ) প্রধান শক্তিন্তর ও উপশক্তি ন্তরের মধ্যে পার্থক্য লিখ।
- (গ) উদ্দীপকের 'X' মৌলের পূর্ববর্তী গ্রুপের একই পর্যায়ের মৌলকে দ্রবণে কিভাবে শনাক্ত করবে?
- (ঘ) উদ্দীপকের X ও Y মৌলের হাইড্রোক্সাইডের দ্রাব্যতা গুণফল যথাক্রমে 1.2×10^{-11} ও 1.8×10^{-33} হলে কোনটির দ্রাব্যতা বেশি g/L এককে প্রকাশ কর।
- প্রশ্ন ১৫ P=3x-1, Q=7x+1; x= প্রোটন সংখ্যা =4.
- (ক) আংশিক পাতন কী?
- (খ) CCl_4 পানিতে অদ্রবণীয় কেন?
- (গ) "P" মৌলের শেষ ইলেকট্রনটি কোনো কক্ষপথে স্থানান্তরিত হলে জাল টাকা শনাক্তকারী রশ্মি সৃষ্টি হবে? গাণিতিকভাবে ব্যাখ্যা কর।
- (ঘ) উদ্দীপকের মৌল দুটির কোনটির ইলেকট্রন বিন্যাস আউফবাউ নীতি সমর্থন করে-কোনটি করে না? কারণ বিশ্লেষণ কর।

প্রশ্নঃ ১৬। নিচের পাত্র তিনটি লক্ষ কর-

- (ক) দ্রাব্যতা গুণফল বলতে কী বোঝ?
- (খ) HCl এর উপস্থিতিতে Cu^{2+} ও ZnS উভয়েই অধ্যক্ষিপ্ত হবে কী?
- (গ) B পাত্রের ধনাত্মক আয়নকে কীভাবে শনাক্ত করবে?
- (ঘ) $Fe(OH)_2$ এর $K_{SP}=8 imes 10^{-16}$ হলে C পাত্রের মিশ্রণে $Fe(OH)_2$ অধ্যক্ষিপ্ত হবে কী?

প্রশ্নঃ ১৭।

$$X = \dots \dots (n-1)d^6ns^2$$

 $Y = \dots ns^2 np^4$

- (ক) আইসোটোপ কী?
- (খ) কোন চলমান কণার দ্বৈত ধর্ম ব্যাখ্যা কর।
- (গ) 'n' এর সর্বনিম্ন মানের জন্য পর্যায় সারণিতে মৌলদ্বয়ের অবস্থান নির্ণয় কর।
- (ঘ) উদ্দীপকে উল্লেখিত মৌলদ্বয় দ্বারা সৃষ্ট স্থিতিশীল আয়নের ইলেকট্রন বিন্যাস হুন্ডের নীতি মেনে চলে কিনা ব্যাখ্যা কর।

Objective

১। $\frac{56}{26}Fe^{2+}$, $\frac{52}{24}Cr$, $\frac{59}{27}Co^{3+}$ এর মধ্যে রয়েছে-

i. সমান সংখ্যক ইলেকট্রন ii. একই ইলেকট্রন বিন্যাস iii. ভিন্ন প্রোটন সংখ্যা

নিচের কোনটি সঠিক?

 $(\mathfrak{P}) \ i \qquad \qquad (\mathfrak{P}) \ ii \qquad \qquad (\mathfrak{P}) \ i, ii \qquad \qquad (\mathfrak{P}) \ i, ii, iii$

নিচের উদ্দীপকটি পড় এবং ২ ও ৩ নং প্রশ্নের উত্তর দাও:

শিক্ষক ব্যবহারিক ক্লাসে ওয়াচ গ্লাসে HCl নিয়ে প্লাটিনাম তারের সাহায্যে যথাক্রমে Na^+, K^+ ও Ca^{2+} ধাতব আয়নের শিখা পরীক্ষা দেখালেন।

- ২। i. প্রথম আয়নের ক্ষেত্রে খালি চোখে সোনালি কিন্তু নীল কাচের মধ্য দিয়ে বেগুনি বর্ণ
 - ii. দ্বিতীয় আয়নের ক্ষেত্রে খালি চোখে বেগুনি কিন্তু নীল কাচের মধ্য দিয়ে নীলাভ বেগুনি

iii. তৃতীয় আয়নের ক্ষেত্রে খালি চোখে ইটের ন্যায় লাল কিন্তু নীল কাচের মধ্য দিয়ে বেগুনি

নিচের কোনটি সঠিক?

 $(\overline{\Phi})$ i

- ----
- (গ) i, ii (ঘ) i, ii, iii
- ৩। এক্ষেত্রে গাঢ় HCl ব্যবহার করার কারণ-
 - (ক) *HCl* লবণকে দ্রুত দ্রবীভূত করে
- (খ) গাঢ় HCl অনুদায়ী বলে
- (গ) এটি প্লাটিনাম তারকে পরিষ্কার করে
- (ঘ) এটি অনুদ্বায়ী কার্বনেট ও সালফাইড লবণকে উদ্বায়ী ক্লোরাইড লবণে পরিণত করে

নচের চিত্রটি লক্ষ কর এবং ৪ ও ৫ নং প্রশ্নের উত্তর দাও:

(খ) ii

- ৪। ইলেকট্রন উচ্চতর শক্তিন্তর হতে নিমুন্তর শক্তিন্তরে ফিরে এলে বিকিরিত বর্ণালি
 - i. C থেকে B তে ফিরে এলে বামার সিরিজ
 - ii. D থেকে C তে ফিরে এলে প্যাশ্চেন সিরিজ
 - iii. F থেকে E তে ফিরে এলে ব্রাকেট সিরিজ

নিচের কোনটি সঠিক?

- $(\overline{\Phi})$ i, ii
- (খ) *i*, *iii*
- (গ) *ii*, *iii*
- (ঘ) i, ii, iii
- - (ক) ৩
- (খ) 8
- (গ) ৯
- (ঘ) ১৬

৬।	আউফবাউ নীতি লঙ্খিত হয়েছে-
	$2s 2p_x 2p_y 2p_z$
	す)1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	_{ก)} 1 1
٩١	A (দ্রাব্যতা ২৫), B (দ্রাব্যতা ৬২) এবং C (দ্রাব্যতা ১২) বিশিষ্ট ৩টি কঠিন পদার্থের মিশ্রণ থেকে উপাদানগুলোকে কীভাবে পৃথক করা যায়? $($ ক $)$ দ্রাবক নিষ্কাশন $($ খ $)$ কেলাসন $($ গ $)$ আংশিক কেলাসন $($ ঘ $)$ আংশিক পাতন
لا ا	M মৌলের আয়ন M^{\pm} সম্ভব , M^{\pm} সম্ভব নয়। মৌলটির পরমাণুর বহিঃস্তরের ইলেকট্রনীয় কাঠামো কোনটি?
	(학) np^1 (학) ns^1 (학) $(n-1)d^{10} s^1$ (학) $(n-1)d^1 ns^2$
৯।	I_2 উদ্বায়ী ও পানিতে অদ্রবণীয় , কিন্তু $NaCl$ অনুযায়ী ও পানিতে দ্রবণীয়। I_2 ও $NaCl$ এর মিশ্রণ থেকে কোন প্রক্রিয়ায় তাদের পৃথক করা যায়?
	(ক) আংশিক কেলাসন (খ) উর্ধ্বপাতন (গ) দ্রাবক নিষ্কাশন (ঘ) আংশিক পাতন
५ ० ।	গ্নিসারিন এর স্ফুটনাংক $296^\circ C$ অবিশুদ্ধ গ্নিসারিনকে বিশোধনের উদ্দেশ্যে আংশিক পাতন করতে গেলে তার স্ফুটনাঙ্কে পৌঁছানোর অনেক আগেই
	তা তাপে বিয়োজিত হয়ে যায়। তাহলে কীভাবে গ্লিসারিন বিশোধন করা যায়?
	(ক) স্টিম পাতন (খ) নিম্ন পাতন (গ) দ্রাবক নিষ্কাশন (ঘ) কোমোটোগ্রাফি
77	একটি তরল জৈব যৌগকে তাপ দিলে দেখা যায় যে এটি $78.3^{\circ}C$ তাপমাত্রা ফুটে। এর সঙ্গে সামান্য ইথানল মিশ্রিত করে তাপ দিলে দেখা যায় যে
	মিশ্র তরলটিও $78.3^{\circ}C$ উন্নতায় ফুটেছে। মূল তরলটি কী?
	(ক) অবিশুদ্ধ ইথানল (খ) বিশুদ্ধ ইথানল (গ) ইথানলের সমগোত্রক (ঘ) কোনোটিই নয়
५ २ ।	অধিশোষণের মাত্রা এবং সচল দশায় দ্রাব্যতা হারের ভিন্নতা থাকলে কোন মিশ্রণের উপাদানগুলোকে কোন পদ্ধতিতে পরস্পার থেকে পৃথক করা যায়?
San I	ক) দ্রাবক নিষ্কাশন (খ) ক্রোমোটাগ্রাফি (গ) আংশিক কেলাসন (ঘ) আংশিক পাতন মস্তিষ্কের টিউমার নির্পয়ে সর্বাধিক ব্যবহৃত হয় কোন পদ্ধতি?
५७ ।	
\$ 8 I	(ক) IR (খ) UV (গ) MRI (ঘ) NIR জাল নোট শনাক্তকরণে তুমি কোন পদ্ধতির সাহায্য নিবে?
•01	(ক) DOT (খ) UV (গ) MRI (ঘ) NMR
১ ৫ ।	ব্রেনের চিকিৎসায় কার্যকর থেরাপি কোনটি?
	(ক) MRI থেরাপি (খ) IRথেরাপি (গ) Xথেরাপি (ঘ) UVথেরাপি
১৬।	CaF_2 এর জলীয় সম্পৃক্ত দ্রবণে ফ্লোরাইড আয়নের গাঢ়ত্ব $0.0078g/L$ হলে CaF_2 এর দ্রাব্যতা গুণাঙ্ক কত?
	(ক) 3.2×10^{-10} (খ) 3.2×10^{11} (গ) 3.2×10^{-11} (ঘ) 3.2×10^{10}
۱ ۹۷	বেগুনি রশ্মির তরঙ্গ দৈর্ঘ্য $4100 \stackrel{o}{A}$ হলে ফ্রিকুয়েন্সি কত?
	(학) $2.439 \times 10^6 \ m^{-1}$ (학) $2.439 \times 10^6 \ Hz$
	(1) $7.317 \times 10^{-14} m^{-1}$ (1) $7.317 \times 10^{14} Hz$
3 b 1	IR অঞ্চলে একটি যৌগের তরঙ্গ দৈর্ঘ্য $2.5{ imes}10^{-5}m$ হলে স্পন্দন সংখ্যা কত?
	(4) $400cm^{-1}$ (4) $3100cm^{-1}$ (7) $2500cm^{-1}$ (8) $4000cm^{-1}$
১৯।	কোয়ান্টাম শক্তি বিকিরিত শক্তির কম্পাঙ্কের সাথে কীভাবে সম্পর্কিত?
2 1	The state of the s

(ক) সমানুপাতিক

(খ) ব্যম্ভানুপাতিক

(গ) সমান

(ঘ) বর্গমূলের সমানুপাতিক

নিচের উদ্দীপকের আলোকে ২০-২২ নং প্রশ্নের উত্তর দাও:

ধাতব আয়ন	বিকারক	অধঃক্ষেপের বর্ণ
X^{2+}	$K_4 Fe(CN)_6$	সাদা
Y^{2+}		বাদামি
Z^{3+}		গাঢ় নীল

Y মৌলটি হবে-२०।

- (ক) *Fe*
- (학) Zn
- (গ) *Cu*
- (ঘ) *Ca*

কোনটি পরিবর্তনশীল জারণমান প্রদর্শন করে? २५ ।

- (ক) X.Y (খ) Y.Z (গ) Z.X (ঘ) X,Y,Z

i. স্থায়িত্বের ক্ষেত্রে $Z^{3+} > Z^{2+}$ २२ ।

ii. X ও Y এর যৌগসমূহ রঙিন হয়

iii. Y ও Z অবস্থান্তর ধাতৃ

নিচের কোনটি সঠিক?

- (ক) iওii
- (খ) iiওiii
- (গ) i ওiii (ঘ) i ii ওiii

 $M_2 X_3$ লবণের দ্রাব্যতা $1.1 { imes} 10^{-2} \, mol \; L^{-1}$ হলে এর K_{sp} হবে-২৩।

- $(\texttt{4}) \ \ 2.1 \times 10^{6} \qquad (\texttt{4}) \ \ 6.10 \times 10^{-7} \ \ (\texttt{1}) \ \ 1 \times 10^{-10} \qquad (\texttt{1}) \ \ 1.74 \times 10^{-8}$

বুনসেন শিখায় Mg ধাতু কোনো বর্ণালি সৃষ্টি করে না; এর কারণ হলো-**२**8।

i. এর ব্যাসার্ধ কম হওয়ায় নিউক্লিয়াস দ্বারা যোজ্যতা ইলেকট্রন অধিক আকৃষ্ট হয়

ii. বুনসেন শিখার তাপমাত্রায় $\,Mg\,$ এর ইলেকট্রন উদ্দীপ্ত হয় না

iii. শিকার তাপে Mg পরমাণুর যোজ্যতা ইলেকট্রন অসীম দূরত্বে চলে যায়

নিচের কোনটি সঠিক?

- (ক) iওii
- (খ) iiওiii
- (গ) iওiii
- (ঘ) i iiওiii

Si এর ক্ষেত্রে ত্রয়োদশ ইলেক্ট্রনের জন্য গ্রহণযোগ্য কোয়ান্টাম সংখ্যার সেট: २७ ।

i.
$$n = 3, l = 1, m = +1, S = +\frac{1}{2}$$

ii.
$$n = 3, l = 1, m = 0, S = -\frac{1}{2}$$

iii.
$$n = 3, l = 0, m = 0, S = -\frac{1}{2}$$

নিচের কোনটি সঠিক?

- (ক) iওii
- (খ) iওiii
- (গ) iiওiii (ঘ) i iiওiii

কোনটি উর্ধ্বপাতন প্রক্রিয়ায় বিশোধন হয়? ২৬।

- (**▼**) *NaCl*
- (খ) বেনজয়িক এসিড
- (গ) HCl
- (ঘ) চিনি

२१। দ্রাবক নিষ্কাশনে সবচেয়ে বেশি কোনটি ব্যবহৃত হয়?

	(ক) <i>HCl</i> খে) <i>HNO</i> 3 (গ	of) NaCl ₂	(ঘ) ইথক্সি ইথেন
২৮।	নিচের কোন কোয়ান্টাম সংখ্যার সেটটি সম্ভব নয়	- য?	
	n / m s		
		र्ष) 4 0	$0 + \frac{1}{2}$
	(a) 3 2 -2 $+\frac{1}{2}$ (b) 3 2 -3 $+\frac{1}{2}$ (c)	3	$0 + \frac{1}{2}$
২৯।	তড়িৎ চুম্বকীয় বিকিরণের তরঙ্গ দৈর্ঘ্যের কোন ত্র		
	(ক) মাইক্রোওয়েভ > রেডিওওয়েভ > অবলোর্	ইত > এক্সরে	
	(খ) অবলোহিত > মাইক্রোওয়েভ > দৃশ্যমান :	> এক্সরে	
	(গ) মাইক্রোওয়েভ > অবলোহিত > দৃশ্যমান >	> অতিবেগুনি	
	(ঘ) মাইক্রোওয়েভ > দৃশ্যমান > অবলোহিত >	> অতিবেগুনি	
७०।	কোন রশ্মির তরঙ্গ দৈর্ঘ্য বেশি?		
	(ক) দৃশ্যমান (খ) অবলোহিত		
	(ঘ) গাম্বা (ঘ) মহাজাগতিক		
৩১। নীল	ল বর্ণের তরঙ্গদৈর্ঘ্য 520nmএর শক্তি কত?		
	$(\Phi) \ 0.038 \times 10^{-17} J$ (4) 3.82>	×10 ¹⁵ J (গ) 3	$.8 \times 10^{-10} J$ (v) $3.88 \times 10^{-11} J$
৩২।	লাল আলোর তরঙ্গ দৈর্ঘ্য কত nm ?		
	(₹) 380-424nm (₹) 500ni	m (গ) 590	nm (घ) 780nm
७७।	বেগুনি রশ্মির তরঙ্গ দৈর্ঘ্য কত ন্যানোমিটার?		
	(ক) 380–425 (খ) 451–	500	
	(গ) 576–590 (ঘ) 648–	780	
৩৪।	মানবদেহের বিভিন্ন organএর ত্রিমাত্রিক ডিজি	টাল ছবি ধারণে কো	ন রশ্মিটি ব্যবহৃত হয়?
	(ক) Radio frequency (খ) Ir-i	ray (গ) UV-	ray (ঘ) X-ray
৩৫।	ক্যান্সার চিকিৎসায় নিচের কোন মৌলটি ব্যবহৃত	হয়?	
	(ক)Ra (খ) Fr (গ	f)Th	(ঘ) Rn
৩৬।	শরীরের ভেতর টিউমার জাতীয় কোনো কিছুর উ	উপস্থিতি শ নাক্ত করা	হয় কিসের মাধ্যমে?
	(ক)Laser থেরাপি (খ)X-ray থেরাপি	(গ) Ir থেরাপি	(ঘ) MRI থেরাপি
৩৯।	MRI পরীক্ষায় নিচের কোন বিকিরণ ব্যবহার ব	করা হয়?	
	(ক) রঞ্জন রশ্মি (খ) IRরশ্মি (গ	া) মাইক্রোওয়েভ	(ঘ) রেডিও ওয়েভ
৩৭।	NMR মেশিনে ব্যবহৃত হয়-		
	(ক) হিলিয়াম (খ) নিয়ন (গ	ণ) আৰ্গন	(ঘ) জেনন
৩৮।	MRI পদ্ধতি প্ৰতিষ্ঠিত-		
	(ক) নিউক্লিয়ার চৌম্বকীয় অনরণন এর উপর		
	(খ) মেডিকেল অবলোহিত থার্মাগ্রাফির উপর		
	(গ) রেডিও ফ্রিকুয়েন্সির উপর		

(ঘ) চৌম্বকীয় অনুরণন প্রতিচ্ছবির উপর

	(季)H	(খ) F	(গ) P	(ঘ) C	
80	NMR -এর ক্ষেত্রে	কোনটি ঘটে-			
	(ক) চৌম্বকীয় অনুর্	ণন	(খ) প্রোটন ট্রান্সলেশ	ন	
	(গ) রেডিও তরঙ্গের	বিকিরণ	(ঘ) নিউক্লিয় স্পিন-ং	ধাপান্তর	
82	MRI এর পূর্ণরূপ রে	কানটি?			
	(季)Magnetic R	educe Imaging			
	(খ)Magnetic R	enarce Imaging			
	(গ)Magnetic R	esonance Imagin	g		
	(ঘ)Magnetic R	emark limaging			
8ই ।	Cr^{3+} আয়নে অযুগ্	া বা বিজোড় ইলেকট্রন	সংখ্যা কতটি?		
	(ক) 6টি	(খ) 5টি	(গ) 4 টি	(ঘ) 3টি	
৪৩।	আয়ন $+ BaNO_3$	→ সাদা অধঃক্ষেপ—	\xrightarrow{HCl} দ্ৰবণ $+CC$	🤈 গ্যাস। আ	য়নটির নাম কী?
	(ক) সোডিয়াম		গ) নাইট্রেট	-	
88	` '	ন্তু স্টীম ও উদ্বায়ী জৈব		` /	
	(ক) বাষ্প পাতন		(গ) কেলাসন	(ঘ) পাতন	
8¢ I	` /	` '	` /	` /	ক কিভাবে আলাদা করা হয় ?
	(ক) পাতন		(গ) বাষ্পপাতন	,	
8७ ।	কোনটি সঠিক? পাত	ন =			
	(ক) বাষ্পীভবন + ঘ	যনীভবন	(খ) বাষ্পীভবন + ক	চঠিনীভবন	
	(গ) বাষ্পীভবন + ত	চরলীভবন	(ঘ) বাষ্পীভবন + বে	কলাসন	
89 ।	পেপার ক্রোমাটোগ্রাফি	ফর স্থির মাধ্যম ও চলন	শীল মাধ্যম হলো-		
	(ক) কঠিন, তরল		(খ) তরল, গ্যাস		
	(গ) তরল, তরল		(ঘ) কঠিন, গ্যাস		
8४।	পেপার ক্রোমটোগ্রাযি	ন্র স্থির দশা কোনটি?			
	(ক) পানি (খ	া) সেলুলোজ অণু	(গ) দ্রাবক	(ঘ) মিশ্র	
Nume	erical Problei	m Set-01			
১। এক ভ	গল্ব থেকে নিৰ্গত আৰু	াার ফ্রিকুয়েন্সি 2.5×1	। 0 ¹³ s ⁻¹ । এ আলো	র তরঙ্গ দৈর্ঘ্য	কত nm ?
$\exists \mid pt$	তারের শিখা পরীক্ষায়	Ba ²⁺ লবণের আপে	ল গ্রিন শিখায় ফোটনের	র তরঙ্গদৈর্ঘ্য	485nm হলে এক মোল ফোটনের শক্তি কত জুল?
৩। হাইট্র	ছ্রাজেন পরমাণু থেকে	ইলেকট্রনটি বিচ্ছিন্ন হরে	1.2×10^7 cm. s	⁻¹ বেগে ধাৰি	বৈত হলে ইলেকট্রনের তরঙ্গদৈর্ঘ্য গণনা কর।
8। হাইড্রোজেন পরমাণুর ইলেকট্রনটি শক্তি শোষণ করে ২য় শক্তি স্তরে অবস্থান করে $1.2 \times 10^7cm.\ s^{-1}$ বেগে নিউক্লিয়াসকে ঘিরে পরিভ্রমণ করে। এ					
অবস্থায় ইলেকট্রনের তরঙ্গ দৈর্ঘ্য নির্ণয় কর।					
৫। একটি	He পরমাণু ভর 6	$6.6{ imes}10^{-24}g$ এবং এ	এটি $2.4 \times 10^6 cm$.	s^{-1} বেগে \overline{v}	তরঙ্গ আকারে পথ অতিক্রম করলে সৃষ্ট তরঙ্গ দৈর্ঘ্য নির্ণয় কর।

MRI এর কোন নিউক্লিয়াসটি সচরাচর ব্যবহৃত হয়?

৩৯।

৬। কোনো একটি তড়িৎ চুম্বকীয় বিকিরণের তরঙ্গ সংখ্যা $1.80{ imes}10^6\,m^{-1}$ হলে তার তরঙ্গদৈর্ঘ্য ও ফ্রিকুয়েঙ্গি নির্ণয় কর।

৭। একটি দৃশ্যমান তড়িৎ চুম্বকীয় বিকিরনের তরঙ্গদৈর্ঘ্য 475 nmহলে তার ফ্রিকুয়েন্সি ও তরঙ্গ সংখ্যা নির্ণয় কর।

- ৮। ভোর বেলা সূর্য থেকে বিকিরিত অতি বেগুনি রশ্মির ফ্রিকুয়েন্সি $857 imes 10^6 MH_Z$ হলে এর তরঙ্গদৈর্ঘ্য ও তরঙ্গ সংখ্যা নির্ণয় কর।
- ৯। বিমান বন্দরের রানওয়ের দুটি আলোর ফ্রিকুয়েন্সি যথাক্রমে $5.46 imes 10^{14} Hz$ ও $4.4117 imes 10^8 MHz$ আলো দুটির বর্ণ নির্ধারণ কর এবং তাদের তরঙ্গদৈর্ঘ্যের পার্থক্য নির্ণয় কর।
- ১০। ঢাকা মেডিকেল কলেজের MRI মেশিনের তড়িৎ চুম্বকীয় বিকিরনের ফ্রিকুয়েন্সি $8.25{ imes}10^{11}MH_Z$ হলে তার তরঙ্গ দৈর্ঘ্য নির্ণয় কর।
- ১১। রাস্তার ট্রাফিক সিগনালের সবুজ আলোর তরঙ্গ দৈর্ঘ্য 525nm. এর ফ্রিকুয়েন্সি ও তরঙ্গ সংখ্যা নির্ণয় কর।
- ১২। একটি দৃশ্যমান আলোর তরঙ্গদৈর্ঘ্য 500 nm হলে তার ফ্রিকুয়েন্সি নির্ণয় কর। দৃশ্যমান আলোর গতিবেগ $3 imes 10^8 ms^{-1}$ ।
- ১৩। একটি রেডিয়েশনের তরঙ্গ দৈর্ঘ্য 450 nm. হলে এর তরঙ্গ সংখ্যা নির্ণয় কর।
- ১৪। একটি অতিবেগুনি রশ্মির তরঙ্গ দৈর্ঘ্য 390 nm হলে এর ফ্রিকুয়েন্সি এবং তরঙ্গ সংখ্যা নির্ণয় কর। (শূন্য মাধ্যমে আলোর বেগ $3 imes 10^8 ms^{-1}$)
- ১৫। রাস্তায় ট্রাফিক সিগন্যালের লাল আলোর তরঙ্গ দৈর্ঘ্য যদি 675mm. হয় তবে এর ফ্রিকুয়েন্সি এবং তরঙ্গ সংখ্যা নির্ণয় কর।
- ১৬। একটি মহাজাগতিক রশার তরঙ্গদৈর্ঘ্য $450{ imes}10^{-7}\,nm$ হলে এর ফ্রিকুয়েন্সি কত MH_Z নির্ণয় কর।

Numerical Problem Set-02

- ১। হাইড্রোজেন পরমাণুর বোরের দ্বিতীয় কক্ষে কৌণিক ভরবেগ নির্ণয় কর।
- ২। হাইড্রোজেন পরমাণুর M সেলে আবর্তনশীল ইলেকট্রনের গতিবেগ নির্ণয় কর। নিউক্লিয়াস থেকে M সেলের দূরত্ব $47.61986 imes 10^{-5} nm$.
- ৩। হাইড্রোজেন পরমাণুর K সেলের ব্যাসার্ধ $52.9102 imes 10^{-3} nm$.। এ কক্ষে ইলেকট্রনটি কত বেগে পরিভ্রমণ করে?
- 8। হাইড্রোজেন পরমাণুর তৃতীয় প্রধান শক্তিস্তরে বা M সেলে আবর্তনশীল ইলেকট্রনের গতিবেগ নির্ণয় কর।
- ϵ । হাইড্রোজেন পরমাণুর প্রথম শক্তিন্তরে বা K সেলে ঘূর্ণায়মান ইলেকট্রনের গতিবেগ নির্ণয় কর।
- ৬। Na পরমাণুর তৃতীয় শক্তিন্তরের ঘূর্ণায়মান ১১ তম ইলেকট্রনের গতিবেগ নির্ণয় কর।
- ৭। হাইড্রোজেন পরমাণুর K সেলের স্থায়ী কক্ষপথে ইলেকট্রন যে দূরত্বে অবস্থান করে তা নির্ণয় কর।
- ৮। হাইড্রোজেন পরমাণুর M সেলের স্থায়ী কক্ষপথে ইলেকট্রন যে দূরত্বে অবস্থান করে তা নির্ণয় কর।
- ৯। হাইড্রোজেন পরমাণুর K সেলের স্থায়ী কক্ষপথে ঘূর্ণায়মান ইলেকট্রনের গতিবেগ যেকোনো তড়িৎ চুম্বকীয় তরঙ্গের গতিবেগের কত গুণ?
- ১০। H পরমাণুর ইলেকট্রনটি যখন K সেলে অবস্থান করে নিউক্লিয়াসকে পরিভ্রমণ করে তখন তার শক্তির মান নির্ণয় কর।
- ১১। হাইড্রোজেন পরমাণুর তৃতীয় কক্ষে আবর্তনশীল ইলেকট্রনের বেগ নির্ণয় কর। নিউক্লিয়াসকে ঘিরে এ ইলেকট্রনটি প্রতি সেকেন্ডে কতবার আবর্তন করে নির্ণয়
- ১২। হাইড্রোজেন পরমাণুর দ্বিতীয় কক্ষে আবর্তনশীল ইলেকট্রনের বেগ নির্ণয় কর। নিউক্লিয়াসকে ঘিরে এ ইলেকট্রনটি প্রতি সেকেন্ডে কতবার আবর্তন করে নির্ণয় কর।
- ১৩। স্বাভাবিক অবস্থায় H-পরমাণুর ঘূর্ণায়মান ইলেকট্রনটি নিউক্লিয়াস হতে কত nm দূরতেু পরভ্রমণ করে গণনা কর।
- ১৪। স্বাভাবিক অবস্থায় Na পরমাণুর ১১ তম ইলেকট্রনটি নিউক্লিয়াস হতে কত nm দূরত্বে অবস্থান করে ঘূর্ণায়মানরত থাকে নির্ণয় কর।
- ১৫। H-পরমাণুর সক্রিয় অবস্থায় K সেলের ইলেকট্রনটি প্রয়োজনীয় তাপ শোষণ করে N-সেলের স্থায়ী কক্ষপথে আবর্তন করতে থাকে। এ অবস্থায় ইলেকট্রনের মোট শক্তি গণনা কর।
- ১৬। H-পরমাণুর ইলেকট্রনটি অসীম থেকে সর্বনিম্ন শক্তিস্তরে ধাপান্তর হলে যে শক্তি বিকিরিত হয়, তার তরঙ্গদৈর্ঘ্য নির্ণয় কর। ($R_{\scriptscriptstyle H}=1.09678{ imes}10^7\,m^{-1}$)।
- ১৭। H- পরমাণুর ২য় ও ৩য় শক্তিন্তরের বোর কক্ষে অবস্থিত ইলেকট্রনের শক্তি যথাক্রমে $-5.475 \times 10^{-12} erg$ ও $-2.465 \times 10^{-12} erg$ ইলেকট্রনটি যখন শক্তি বিকিরণ করে ৩য় কক্ষপথ থেকে ২য় কক্ষপথে লাফিয়ে পড়ে তখন বিকিরত শক্তির তরঙ্গদৈর্ঘ্য নির্ণয় কর।
- ১৮। Ca^{2+} আয়নের শিখা পরীক্ষায় নির্গত লাল আলের তরঙ্গদৈর্ঘ্য 680nm। এ আলোক রশ্মির একটি ফোটনের শক্তি গণনা কর।
- ১৯। Cu^{2+} আয়নের শিখা পরীক্ষায় নির্গত নীল আলোর তরঙ্গদৈর্ঘ্য 440nm। এ আলোক রশ্মির একটি ফোটনের শক্তি গণনা কর।
- ২০। আজকাল শহর, উপশহর এমনকি গ্রামেও ইলেকট্রিক ওয়েল্ডিং এর কাজ চোখে পড়ে। একজন ওয়েল্ডারম্যান সুরক্ষিত কালো কাচের মধ্য দিয়ে ওয়েল্ডিং এর সময় 400nm তরঙ্গদৈর্ঘ্যের বেগুনি আলো দেখতে পায়। একজন পথচারি ঐ একই আলোর স্ফুলিঙ্গকে দেখতে পায় 700nm তরঙ্গ বিশিষ্ট উজ্জ্বল লাল বর্ণের আলো হিসেবে। এ দুই দৃশ্যমান আলোর শক্তির পার্থক্য নির্ণয় কর।

Numerical Problem Set-03

- ১। হাইড্রোজেন পরমাণুর ইলেকট্রনটি তৃতীয় কক্ষ থেকে প্রথম কক্ষে লাফিয়ে পড়ল। সৃষ্ট বর্ণালির আলোকরেখার কম্পাঙ্ক এবং তরঙ্গদৈর্ঘ্য ন্যানোমিটার এককে (nm)প্রকাশ কর। ($R=1.09678 imes 10^7 \, m^{-1}$)
- ২। হাইড্রোজেন পরমাণুর একটি ইলেকট্রন ২য় বোর কক্ষপথ থেকে প্রথম বোর কক্ষে লাফিয়ে পড়লে বিকীর্ণ ফোটনের তররঙ্গদৈর্ঘ্য অ্যাংস্ট্রম এককে হিসাব কর।
- ৩। হাইড্রোজেন পরমাণুর ইলেকট্রনটি $\,N$ সেলে থেকে $\,L$ সেলে ধাপান্তর হলে তা থেকে বিকিরিত ফোটনের তরঙ্গ দৈর্ঘ্য নির্ণয় কর। এ প্রক্রিয়ায় বিকিরিত আলো বর্ণ ও সিরিজ নির্ধারণ কর।
- ৪। He^+ আয়নের ইলেকট্রনটি O সেল থেকে M সেলে ধাপান্তর হলে তা থেকে বিকিরিত ফোটনের তরঙ্গদৈর্ঘ্য নির্ণয় কর। এ প্রক্রিয়ায় বিকিরিত আলোর বর্গ ও সিরিজ নির্ধারণ কর।
- c। Li^{+2} আয়নের ইলেকট্রনটি N সেলে থেকে K সেলে ধাপান্তর হলে তা থেকে বিকিরিত ফোটনের তরঙ্গদৈর্ঘ্য নির্ণয় কর। এ প্রক্রিয়ায় বিকিরিত আলো খালি চোখে দেখা যাবে কী?
- ৬। বামার সিরিজে একটি বিকিরিত দৃশ্যমান রশ্মির তরঙ্গ দৈর্ঘ্য 550nm হলে এর ফ্রিকুয়েন্সি এবং তরঙ্গ সংখ্যা নির্ণয় কর। (শূন্য মাধ্যমে আলোর বেগ $3 \times 10^8 ms^{-1}$)
- ৭। He^+ আয়নের পারমাণবিক বর্ণালির লিম্যান সিরিজে রেখা সৃষ্টিকারী চতুর্থ শক্তিস্তর থেকে আগত ইলেকট্রনের বিকিরিত শক্তির তরঙ্গদৈর্ঘ্য নির্ণয় কর। $(R=1.09678\times 10^7\,m^{-1})$
- ৮। Li^{2+} আয়নের ইলেকট্রন যখন ৪র্থ শক্তিন্তর থেকে ২য় শক্তিন্তরে পতিত হয়, তখন সৃষ্ট বর্ণালি রেখার তরঙ্গদৈর্ঘ্য নির্ণয় কর। এ বর্ণালি রেখার বর্ণ কিরূপ হতে পারে?
- ৯। Li^{2+} আয়নের দুটি শক্তিস্তরের শক্তির পার্থক্য $42.75 \times 10^{-12} erg$ হয়, তবে উচ্চতর শক্তিস্তর থেকে নিমুতর শক্তিস্তরে ইলেক্ট্রনের পতন ঘটলে বিকিরিত আলোক রশ্যির ক্রমাঙ্ক নির্ণয় কর।
- ১০। হাইড্রোজেন পরমাণুর প্রথম ও দ্বিতীয় বোর কক্ষের মধ্যে শক্তির পার্থক্য নির্ণয় কর।
- ১১। হাইড্রোজেন পরমাণুর ইলেকট্রনটি স্বাভাবিক অবস্থা হতে শক্তি শোষণ করে চতর্থ কক্ষে গমন করলে কক্ষপথের ব্যাসার্থ কতগুণ বদ্ধি পাবে?
- ১২। হাইড্রোজেন পরমাণুর প্রথম ও তৃতীয় কক্ষে আবর্তনশীল ইলেকট্রনের বেগ নির্ণয় কর। কোন কক্ষের গতিবেগ বেশি?

Numerical Problem Set-04

- ১। $35^{\circ}C$ তাপমাত্রায় একটি লবণের দ্রাব্যতা 60। এ তাপমাত্রায় 15g লবণ দ্বারা সম্পূক্ত দ্রবণ প্রস্তুতিতে কি পরিমাণ পানির প্রয়োজন?
- ২। $30^{\circ}C$ তাপমাত্রায় 8.5g লবণ 25g পানিতে দ্রবীভূত হয়ে সম্পৃক্ত দ্রবণ উৎপন্ন করে। এ তাপমাত্রায় লবণের দ্রাব্যতা নির্ণয় কর।
- ৩। $30^{\circ}C$ তাপমাত্রায় এর দ্রবণকে নেওয়া হলো। এ দ্রবণকে বাষ্পীভূত করে 5.295g শুষ্ক NaCl এর অবশেষ পাওয়া গেল। $30^{\circ}C$ তাপমাত্রায় NaCl এর দ্রাব্যতা নির্ণয় কর।
- ৪। $35^{\circ}C$ তাপমাত্রায় 1.25 আপেক্ষিক গুরুত্বের 50mL দ্রবণে কোনো দ্রবের 12.5g দ্রবীভূত আছে। এ তাপমাত্রায় দ্রবের দ্রাব্যতা নির্ণয় কর।
- e। $35^{\circ}C$ তাপমাত্রায় 50ml সম্পৃক্ত দ্রবণে 30g ভরের একটি লবণ দ্রবীভূত আছে। দ্রবণটির আপেক্ষিক গুরুত্ব 1.25হলে উক্ত তাপমাত্রায় লবণটির দ্রাব্যতা নির্ণয় কর।
- ৬। $85^{\circ}C$ তাপমাত্রায় প্রস্তুত কোনো লবণের সম্পৃক্ত দ্রবণকে $30^{\circ}C$ তাপমাত্রায় শীতল করা হলো। যদি $85^{\circ}C$ ও $30^{\circ}C$ তাপমাত্রায় লবণের দ্রাব্যতা যথাক্রমে 150ও 85 হয় তবে 70mL পানিতে প্রস্তুত ঐ লবণের সম্পৃক্ত দ্রবণ হতে কত গ্রাম লবণ অধ্যক্ষিপ্ত হবে হিসাব কর।
- ৭। $30^{\circ}C$ তাপমাত্রায় কোনো লবণের দ্রাব্যতা 80. এ তাপমাত্রায় 80g দ্রবণের মধ্যে 30g লবণ দ্রবীভূত আছে । এ অবস্থায় দ্রবণটিকে সম্পৃক্ত করতে প্রয়োজনীয় লবণের পরিমাণ নির্ণয় কর।
- ৮। 200g ভরের একটি দ্রবকে 300mL ফুটন্ত পানিতে দ্রবীভূত করে সম্পৃক্ত দ্রবণ প্রন্তুত করা হলো। এ দ্রবণকে $25^{\circ}C$ তাপমাত্রায় শীতল করলে কত গ্রাম দ্রব দ্রবণ হতে পৃথক হয়ে বেরিয়ে আসবে। $25^{\circ}C$ তাপমাত্রায় দ্রবটির দ্রাব্যতা 54.4।
- ৯। $30^{\circ}C$ ও $50^{\circ}C$ তাপমাত্রায় কোনো দ্রবের দ্রাব্যতা যথাক্রমে 60 ও 80। $50^{\circ}C$ তাপমাত্রার 50g সম্পৃক্ত দ্রবণকে $30^{\circ}C$ তাপমাত্রায় শীতল করলে কী পরিমাণ দ্রব দ্রবণ হতে বেড়িয়ে আসবে?
- ১০। $30^{\circ}C$ তাপমাত্রায় পানিতে কোনো লবণের দ্রাব্যতা 25। এ দ্রবণের 50 গ্রামের সাথে আরো 50g পানি মিশিয়ে দ্রবণকে লঘু করা হলো। দ্রবণে লবণের

- শতকরা পরিমাণ কত?
- ১১। $65^{\circ}C$ তাপমাত্রায় $12.5g\ NaCl$ পানিতে দ্রবীভূত হয়ে 60g সম্পৃক্ত দ্রবণ উৎপন্ন করে। $20\ g\ NaCl$ ঐ তাপমাত্রায় কী পরিমাণ পানির সাথে সম্পৃক্ত দ্রবণ উৎপন্ন করবে?
- ১২। $30^{\circ}C$ তাপমাত্রায় 90mL সম্পৃক্ত জলীয় দ্রবণে 1.2 আপেক্ষিক গুরুত্ব কোনো দ্রবের 10g দ্রবীভূত আছে। ঐ তাপমাত্রায় দ্রবের দ্রাব্যতা নির্ণয় কর।
- ১৩। $100g\ Pb(NO_3)_2$ কে $150g\$ ফুটন্ত পানিতে দ্রবীভূত করে সম্পৃক্ত দ্রবণ প্রস্তুত করা হলো। $30^{\circ}C$ তাপমাত্রায় $Pb(NO_3)_2$ এর দ্রাব্যতা 56 হলে প্রস্তুতকৃত দ্রবণকে $30^{\circ}C$ তাপমাত্রায় শীতল করলে কত গ্রাম দ্রব পৃথক হয়ে পড়বে?
- ১৪। $40^{\circ}C$ তাপমাত্রায় তুঁতের দ্রাব্যতা 25 হলে এ তাপমাত্রায় 250g তুঁতের সম্পুক্ত দ্রবণ প্রস্তুত করতে কত গ্রাম তুঁতের প্রয়োজন?
- ১৫। $85^{\circ}C$ তাপমাত্রায় দ্রব, KCl কে 250g পানিতে দ্রবীভূত করে সম্পৃক্ত দ্রবণ প্রস্তুত করা হলো। এ দ্রবণকে $25^{\circ}C$ তাপমাত্রায় শীতল করলে কী পরিমাণ KCl দ্রবণ থেকে বেড়িয়ে আসবে। $85^{\circ}C$ ও $25^{\circ}C$ তাপমাত্রায় KCl এর দ্রাব্যতা যথাক্রমে 51.1 ও 34.0।
- ১৬। $30^{\circ}C$ তাপমাত্রায় 25g অসম্পৃক্ত দ্রবণকে বাষ্পীভূত করলে 5g দ্রব অবশেষ হিসেবে পাওয়া যায়। এ তাপমাত্রায় একই নমুনার 100g অসম্পৃক্ত দ্রবণকে সম্পৃক্ত করতে উহাতে আর কত গ্রাম লবণ যোগ করার প্রয়োজন? $30^{\circ}C$ তাপমাত্রায় লবণের দ্রাব্যতা 40।
- ১৭। $30^{\circ}C$ তাপমাত্রায় পানিতে গ্যাস দ্রবীভূত হওয়ার ক্ষেত্রে হেনরীয় ধ্রুবক $4.325 \times 10^{-3}\,g\,/100g\,H_2O/atm.30^{\circ}C$ তাপমাত্রা ও 1.05atm চাপে অক্সিজেন গ্যাসের দ্রাব্যতা নির্ণয় কর ।
- ১৮। $20^{\circ}C$ তাপমাত্রায় পানিতে N_2 গ্যাস দ্রবীভূত হওয়ার ক্ষেত্রে হেরনীয় ধ্রুবক $2.539 \times 10^{-6}~g/100g~H_2O/atm.20^{\circ}C$ তাপমাত্রায় ও 1.25~atm চাপে N_2 গ্যাসের দ্রাব্যতা নির্ণয় কর ।
- ১৯। $25^{\circ}C$ তাপমাত্রায় CO_2 পানিতে গ্যাস দ্রবীভূত হওয়ার ক্ষেত্রে হেনরীয় ধ্রুবক $0.8725\,g\,/100g\,H_2O/atm$ । $25^{\circ}C$ তাপমাত্রা ও $15.5\,atm\,$ চাপে CO_2 গ্যাসের দ্রাব্যতা নির্ণয় কর।
- ২০। $20^{\circ}C$ তাপমাত্রা ও 0.95~atm চাপে N_2 গ্যাসের দ্রব্যেতা নির্ণয় কর। $20^{\circ}C$ তাপমাত্রায় N_2 গ্যাসের হেরনীয় ধ্রুবক $9.07 \times 10^{-7}~M~/~atm$.
- ২১। $20^{\circ}C$ তাপমাত্রা ও 0.99atmচাপে CO_2 গ্যাসের দ্রাব্যতা নির্ণয় কর। $20^{\circ}C$ তাপমাত্রায় CO_2 গ্যাসের হেরনীয় ধ্রুবক
- $1.71 \times 10^{-2} M / atm$.
- ২২। $20^{\circ}C$ তাপমাত্রায় HCl(g) এর হেরনীয় ধ্রুবকের মান $1.73 \times 10^4 M \ / mm(Hg)$ হলে, $20^{\circ}C$ তাপমাত্রায় ও $0.99 \ atm$ চাপে HCl(g) এর দ্রাব্যতা নির্ণয় কর।
- ২৩। $20^{\circ}C$ তাপমাত্রায় $NH_3(g)$ এর হেরনীয় ধ্রুবকের মান $60.09 \times 10^4 M$ / atm হলে, $20^{\circ}C$ তাপমাত্রায় ও 0.88 atm চাপে $NH_3(g)$ এর দ্রাব্যতা নির্ণয় কর।
- ২৪। $20^{\circ}C$ তাপমাত্রায় চাপে 1.5~atm একটি বোতলে রক্ষিত সম্পৃক্ত NH_3 দ্রবণকে ছিপি খুলে 0.99~atm চাপে নেয়া হলে প্রতিলিটার দ্রবণ থেকে কত মোল NH_3 বেরিয়ে আসবে। $20^{\circ}C$ তাপমাত্রায় হেরনীর ধ্রুবক $4.56684 \times 10^4 M/atm$.
- ২৫। একটি কোমল পানীয় এর মধ্যে $25^{\circ}C$ তাপমাত্রায় ও $2.56\,atm$ চাপে CO_2 গ্যাস দ্রবীভূত আচে। বোতলের ছিপি খুললে চাপ $1.05\,atm$ হলে $250\,mL$ দ্রবণ থেকে কত মোল CO_2 বেরিয়ে আসবে। $25^{\circ}C$ তাপমাত্রায় CO_2 এর হেরনীয় ধ্রুবকের মান $1.75 \times 10^{-2}\,M$ / atm.

Numerical Problem Set-05

- ১। $25^{\circ}C$ তাপমাত্রায় কপার $\it II$ সালফাইড এর দ্রাব্যতা গুণফল $6.3{ imes}10^{-36}mol^2.L^{-2}$ হলে এর দ্রাব্যতা নির্ণয় কর।
- ২। $25^{\circ}C$ তাপমাত্রায় MgF_2 এর দ্রাব্যতা $1.22 imes 10^{-3} mol.L^{-1}$ হলে এ তাপমাত্রায় উহার দ্রাব্যতা গুণফল নির্ণয় কর।
- ৩। $25^{\circ}C$ তাপমাত্রায় AgCl এর দ্রাব্যতা এর দ্রাব্যতার $2.25{ imes}10^{-3}\,g.L^{-1}$ গুণফল নির্ণয় কর।
- 8। $30^{\circ}C$ তাপমাত্রায় চকের দ্রাব্যতার গুণফল $8.85{ imes}10^{-8}$. $g.L^{-1}$ ও $mol.L^{-1}$ এ চকের দ্রাব্যতা নির্ণয় কর।
- e। $25^{\circ}C$ তাপমাত্রায় ক্যালসিয়াম অক্সালেটের CaC_2O_4) দ্রাব্যতা গুণফল $2.34 \times 10^{-9}\,mol^2.L^{-2}$ হলে প্রতি $100\,ml$ সম্পৃক্ত দ্রবণে কত গ্রাম ক্যালসিয়াম অক্সালেট দ্রবীভূত আছে নির্ণয় কর ।
- ৬। $25^{\circ}C$ তাপমাত্রায় $10.04g~NH_4Cl$ কে 27g~পানিতে দ্রবীভূত করে সম্পুক্ত দ্রবণ প্রস্তুত করা হলো। $25^{\circ}C$ তাপমাত্রায় NH_4Cl এর দ্রাব্যতা

- নির্ণয় কর।
- ৭। $15^{\circ}C$ তাপমাত্রায় $Fe(OH)_3$ এর দ্রাব্যতা গুণফল $4.5 \times 10^{-22} \, mol^4.L^4$ এর সম্পৃক্ত দ্রবণে Fe^{3+} আয়ন ও OH^- আয়নের ঘনমাত্রা $g.L^{-1}$ এককে নির্ণয় কর।
- ৮। CaF^2 এর জলয়ি দ্রবণে F^- আয়নের ঘনমাত্রা $6.55 \times 10^{-3}\,gL^{-1}.CaF_2$ এর দ্রাব্যতার গুণফল নির্ণয় কর। (Ca=40,F-19)
- ৯। $35^{\circ}C$ তাপমাত্রায় Agcl এর দ্রাব্যতা গুণফল $2.458 \times 10^{-10} mol^2 L^{-2}.Agcl$ এর সম্পৃক্ত দ্রবণে Ag^+ ও Cl^- এর ঘনমাত্রা এবং Agcl এর দ্রাব্যতা গণনা কর।
- ১০। $25^{\circ}C$ তাপমাত্রায় $Al(OH)_3$ এর দ্রাব্যতা গুণফল $3.7 \times 10^{-15} mol^4 L^{-4}. Al(OH)_3$ এর সম্পৃক্ত দ্রবণে Al^{3+} আয়ন ও OH^- আয়নের ঘনমাত্রা এবং $Al(OH)_3$ এর দ্রাব্যতা গণনা কর।
- ১১। $25^{\circ}C$ তাপমাত্রায় $Fe(OH)_3$ এর দ্রাব্যতা গুণফল $1.09 \times 10^{-36} mol^4L^4$ হলে প্রতি সম্পৃক্ত দ্রবণে কত গ্রাম $Fe(OH)_3$ দ্রবীভূত আছে নির্ণয় কর।
- ১২। $Fe(OH)_3$ এর সম্পৃক্ত দ্রবণে OH^- আয়নের গাড়ত্ব $9.843 imes 10^{-9}\, gL^{-1}$. $Fe(OH)_3$ এর দ্রাব্যতার গুণফল নির্ণয় কর।
- ১৩। $30^{\circ}C$ তাপমাত্রায় $Mg(OH)_2$ এর দ্রাব্যতা $8.25 \times 10^{-3} \, gL^{-1}$. হলে এ তাপমাত্রায় $Mg(OH)_2$ এর দ্রাব্যতা গুণফল নির্ণয় কর। (Mg=24.3).
- ১৪। $35^{\circ}C$ তাপমাত্রায় Pbl_2 এর দ্রাব্যতার গুণফল $1.55 \times 10^{-8} \, mol^3 L^{-3}$ এ তাপমাত্রায় দ্রবণে Pbl_2 এর 80% বিয়োজিত হলে Pbl_2 এর দ্রাব্যতা নির্ণয় কর।
- ১৫। $25^{\circ}C$ তাপমাত্রায় AgCl ও $PbCl_2$ এর দ্রাব্যতা গুণফল যথাক্রমে $1.6\times10^{-10}mol^2L^{-2}$ ও $1.6\times10^{-5}mol^3L^{-3}$ হলে কোন লবণটির সম্পুক্ত দ্রবণে Cl^- এর ঘনমাত্রা অধিক?
- ১৬। $25^{\circ}C$ তাপমাত্রায় Zns, PbS, CdS ও HgS এর দ্রাব্যতা গুণফল যথাক্রমে $1.6 \times 10^{-24}, 8.0 \times 10^{-28}, 8.0 \times 10^{-27}$ ও $3.0 \times 10^{-29} mol^2 L^{-2}$ স্ব-স্থ দ্রবের সম্পৃক্ত দ্রবণে উহার ধাতব আয়নের ঘনমাত্রা উচ্চ হতে নিম্ন ক্রমানুসারে সাজাও।
- ১৭। $25^{\circ}C$ তাপমাত্রায় $BaSO_4$ এর দ্রাব্যতা গুণফল $1.1 \times 10^{-10} mol^2L^{-2}$ হলে (১) বিশুদ্ধ পানিতে এর দ্রাব্যতা ও (২) 0.1M $Bacl_2$ দ্রবণে এর দ্রাব্যতা নির্ণয় কর।
- ১৮। AgI এর দ্রাব্যতা গুণফল $2.8 \times 10^{-10} mol^2.L^{-2}$ হলে, (১) বিশুদ্ধ পানিতে এবং (২) 0.05MKI দ্রবণে AgI এর দ্রাব্যতা নির্ণয় কর। (৩) ১ম ক্ষেত্রের দ্রাব্যতা হয় ক্ষেত্রের দ্রাব্যতার কত গুণ?
- ১৯। CaF_2 এর $Ksp=4 imes 10^{-11} mol^3.L^{-3}$ ১) বিশুদ্ধ পানিতে CaF_2 এর দ্রাব্যতা এবং (২) 0.05M $CaCl_2$ দ্রবণে দ্রাব্যতা নির্ণয় কর।
- ২০। $BaCO_3$ এর দ্রাব্যতা গুণফল $5.5 \times 10^{-10} mol^2.L^{-2}$ । যদি সম আয়তনের $1.0 \times 10^{-4} M~Na_2CO_3$ দ্রবণকে $5.0 \times 10^{-5} M~BaCl_2$ দ্রবণের সাথে মিশানো হয়। তবে $BaCO_3$ এর অধ্যক্ষেপ পড়বে কি-না গণনা কর।
- ২১ + $25^{\circ}C$ তাপমাত্রায় $1.0\times10^{-6}M~BaCl_2$ দ্রবণের 200mL এর সাথে $1.2\times10^{-6}M~Na_2CO_3$ দ্রবণের 1L কে মিশ্রিত করলে $BaCO_3$ এর অধ্যক্ষেপ পড়বে কি-না? $K_{sp}(BaCO_3)=8.1\times10^{-9}mol^2L^{-2}$
- ২২। $25^{\circ}C$ তাপমাত্রায় $2.0\times10^{-3}M~CaCl_2$ দ্রবণের 500mL এর সাথে $1.5\times10^{-2}M~Na_2CO_3$ দ্রবণের 1L কে মিশ্রিত করলে $CaCO_3$ এর অধ্যক্ষেপ পড়বে কি-না? $K_{sp}(CaCO_3)=9.0\times10^{-9}mol^2L^{-2}$
- ২৩। $25^{\circ}C$ তাপমাত্রায় প্রতি লিটার দ্রবণে 58.5g ইথানয়িক এসিড দ্রবীভূত আছে। দ্রবণের ঘনত্ব $1.005g.mL^{-1}$ হলে দ্রবণে ইথানয়িক এসিডের শতকরা পরিমাণ নির্ণয় কর।
- ২৪। একটি নমুনা ভিনেগার দ্রবণের প্রতি 125mL দ্রবণে 7.85g ইথানয়িক এসিড দ্রবীভূত আছে। দ্রবণের ঘনত্ব $1.007g.mL^{-1}$ হলে দ্রবণে ইথানয়িক এসিডের শতকরা পরিমাণ নির্ণয় কর।