Simone Cirelli

Febbraio – Aprile 2021

Progetto Myki

Compensazione disturbi meccanici

Supervisors:

- Christian Cipriani
- Marta Gherardini
- Valerio Ianniciello

Obiettivo

Eliminare errori di rilevazione dovuti allo spostamento della protesi rispetto al braccio

Disturbi meccanici

Se i sensori si muovono, alla protesi sembra che i magneti si stiano muovendo

Effetto dei disturbi meccanici

- posizione reale dei magneti
- posizione rilevata dei magneti
- posizione sensori traslati
- posizione sensori fissi

Approccio alla soluzione

Ogni magnete si muove lungo una traiettoria

Se almeno un magnete si trova fuori dalla sua traiettoria, allora c'è stato un disturbo meccanico

Approccio alla soluzione

L'algoritmo cerca una rototraslazione dei magneti che li riporti tutti all'interno della loro traiettoria

Essendo le traiettorie non parallele tra loro, la soluzione è (salvo rari casi...) unica

Fase di setup

Ottenimento traiettorie

Ottenimento traiettorie

Il programma deve sapere dove si trovano i magneti in situazioni normali

Vengono fatti muovere i magneti senza muovere il mockup e si registrano le posizioni

A livello pratico

Si chiede al paziente di contrarre i muscoli e si registrano le posizioni dei magneti

Si sta attenti che la protesi, nel frattempo, non si muova

LINEAR FIT

Dopodiché, il programma attua un linear fit per ogni magnete

(trova il segmento che meglio approssima le posizioni dei magneti)

Ora, il programma conosce le traiettorie dei magneti

B

ASSUNZIONE

• I magneti percorrono traiettorie approssimabilmente rettilinee

• La validità di questa assunzione va verificata sperimentalmente su pazienti

Iterazione n.36 di 200

Fase di Run

Compensazione Disturbi Meccanici

Fase di Run

Questa parte del programma simula l'effettivo funzionamento della protesi:

- 1.Riceve in input i valori del campo magnetico rilevato dai sensori
- 2.Ottiene la posizione dei magneti
- 3.Controlla se tutti si trovano all'interno della traiettoria
- 4.Se la risposta è NO, cerca la rototraslazione che riporta ogni magnete nella sua traiettoria
- 5. Eliminazione rumore delle misurazioni

1. Input dati

Inizialmente, posizioni dei magneti e disturbi esterni simulati da software

Necessario per:

- 1. capire come e quanto bene il programma stia funzionando
- 2. Capire in che situazioni il programma si comporta meglio

1. Input dati

Poi, una volta pronto l'algoritmo, abbiamo raccolto dati SPERIMENTALMENTE

Apparato sperimentale

1. un mockup di un avambraccio: dei servomotori fanno muovere dei fili su cui sono attaccati dei magneti

2. un mockup della protesi: contente 4 schede con i sensori di campo magnetico (in totale: 128 sensori)

Questa parte del programma simula l'effettivo funzionamento della protesi:

Fase di Run

- 1.Riceve in input i valori del campo magnetico rilevato dai sensori
- 2.Ottiene la posizione dei magneti
- 3. Controlla se tutti si trovano all'interno della traiettoria
- 4.Se la risposta è NO, cerca la rototraslazione che riporta ogni magnete nella sua traiettoria
- 5.Eliminazione rumore delle misurazioni

2. Ottenimento posizione dei magneti

(Lavoro svolto da Federico)

Dai valori del campo magnetico, un algoritmo di ottimizzazione trova la posizione dei magneti

Questa parte del programma simula l'effettivo funzionamento della protesi:

Fase di Run

- 1.Riceve in input i valori del campo magnetico rilevato dai sensori
- 2.Ottiene la posizione dei magneti
- 3. Controlla se tutti si trovano all'interno della traiettoria
- 4.Se la risposta è NO, cerca la rototraslazione che riporta ogni magnete nella sua traiettoria
- 5.Eliminazione rumore delle misurazioni

3. Controllo magneti nelle traiettorie

- Se tutti i magneti sono nelle traiettorie, nessun problema
- Se almeno un magnete si trova al di fuori, allora c'è stato un disturbo meccanico esterno.

Viene quindi attivato l'algoritmo di compensazione

Cos'è una traiettoria?

- errori di misurazione -> non può essere un semplice segmento
- Traiettoria modellizzata come un cilindro con ai capi due emisfere
- Raggio "errMax" = 1 mm (variabile)
- Un magnete si trova nella sua traiettoria se il suo centro si trova all'interno di questa sezione di spazio

Questa parte del programma simula l'effettivo funzionamento della protesi:

Fase di Run

- 1.Riceve in input i valori del campo magnetico rilevato dai sensori
- 2.Ottiene la posizione dei magneti
- 3. Controlla se tutti si trovano all'interno della traiettoria
- 4.Se la risposta è NO, cerca la rototraslazione che riporta ogni magnete nella sua traiettoria
- 5.Eliminazione rumore delle misurazioni

4. Algoritmo di compensazione

- Cerca la rototraslazione che riporta ogni magnete all'interno della propria traiettoria
- Per farlo, utilizza un algoritmo di minimizzazione constrained

Algoritmo di minimizzazione

Algoritmo che, data una funzione, cerca di minimizzarla

Algoritmo di minimizzazione

- Algoritmo che, data una funzione, cerca di minimizzarla
- La funzione da minimizzare si basa sull'unico dato che abbiamo a disposizione: la DISTANZA DALLA TRAIETTORIA

* Non si può utilizzare la distanza dalla posizione reale, essendo questa l'incognita del problema! *

- La traiettoria è un cilindro
- Si vuole imporre innanzitutto che il magnete rientri nella traiettoria
- Dopodiché, se il magnete è già nella traiettoria, cerchiamo di farlo avvicinare all'asse. Questo è però già meno necessario

(non dobbiamo penalizzare errori derivanti dalla misurazione)

Per questo distinguiamo due casi:

Distanza <= errMax:

La distanza contribuisce linearmente alla funzione costo

2. Distanza > errMax:

La distanza contribuisce quadraticamente alla funzione costo

Per questo distinguiamo due casi:

Distanza <= errMax:

La distanza contribuisce linearmente alla funzione costo

2. Distanza > errMax:

La distanza contribuisce quadraticamente alla funzione costo

$$Cost = \sum_{1}^{nMag} \begin{cases} di & if \ (di \le errMax) \\ di + (di - errMax)^2 & if \ (di \ge errMax) \end{cases}$$

Per questo distinguiamo due casi:

Distanza <= errMax:

La distanza contribuisce linearmente alla funzione costo

2. Distanza > errMax:

La distanza contribuisce quadraticamente alla funzione costo

Problema: minimi locali

Il problema principale degli algoritmi di minimizzazione è la presenza di minimi locali della funzione

Risoluzione .1

CONTINUITA' DEI MOVIMENTI:

- Come posizione di partenza dell'algoritmo viene utilizzata la posizione precedente
- La frequenza di rilevazione è infatti di circa 20Hz
- La differenza tra una rilevazione e la successiva è dunque limitata

Risoluzione .2

ELIMINAZIONE RILEVAZIONI EVIDENTEMENTE ERRATE

- Dato che ogni misurazione si basa sulla precedente, un errore in una misurazione rischia di propagarsi anche nelle misurazioni successive
- Vengono eliminate le misurazioni che:
- 1. Si discostano troppo dalla precedente
- 2. Mostrano magneti esterni al mockup
- 3. Costo eccessivamente alto

Risoluzione .3

ALGORITMO "FMINCON" = FUNCTION MINIMUM CONSTRAINED

- Questo algoritmo ignora tutti i minimi che non rispettano un determinato vincolo
- Vincolo: "magneti all'interno delle traiettorie"

Risoluzione .3

ALGORITMO "FMINCON" = FUNCTION MINIMUM CONSTRAINED

- Questo algoritmo ignora tutti i minimi che non rispettano un determinato vincolo
- Vincolo: "magneti all'interno delle traiettorie"

Constrain: $\{d_i < errMax, \forall i \in [1, nMag]\}$

Questa parte del programma simula l'effettivo funzionamento della protesi:

Fase di Run

- 1.Riceve in input i valori del campo magnetico rilevato dai sensori
- 2.Ottiene la posizione dei magneti
- 3. Controlla se tutti si trovano all'interno della traiettoria
- 4.Se la risposta è NO, cerca la rototraslazione che riporta ogni magnete nella sua traiettoria
- 5.Eliminazione rumore delle misurazioni

5. Eliminazione rumori di misurazione

- Media mobile sui valori ottenuti
- Questo permette di eliminare i rumori delle misurazioni

Figure 3 - 0 × <u>File Edit View Insert Tools Desktop Window Help</u> 🖺 🖨 📓 🎍 🖫 🖺 Posizioni assunte dal magnete 1 25 Posizioni con correzione Posizioni senza correzione 20 Posizione reale 15 10 100 120 160 80 140 180 200 Posizioni assunte dal magnete 2 Posizioni con correzione Posizioni senza correzione Posizione reale 10 80 100 120 140 160 180 200 Posizioni assunte dal magnete 3 25 Posizioni con correzione Posizioni senza correzione 20 Posizione reale 15 10

Posizioni assunte dal magnete 1 Posizioni con correzione
Posizioni senza correzione Posizioni assunte dal magnete 2 Rotazioni attorno a y Posizioni assunte dal magnete 3

Figure 3 – 🗇 X <u>File Edit View Insert Tools Desktop Window Help</u> 🖺 🖨 🔒 🍃 🖪 🖺 🔁 Posizioni assunte dal magnete 1 Posizioni con correzione Posizioni senza correzione 🗹 Posizione reale 100 120 160 80 140 180 200

Figure 3 – 🗇 X File Edit View Insert Tools Desktop Window Help Posizioni assunte dal magnete 1 Posizioni con correzione Posizioni senza correzione Posizione reale Posizioni assunte dal magnete 2 Posizioni con correzione Posizioni senza correzione Posizione reale Posizioni assunte dal magnete 3 Posizioni con correzione Posizioni senza correzione Posizione reale

Figure 3 5 × File Edit View Insert Tools Desktop Window Help Posizioni assunte dal magnete 1 Posizioni con correzione 10 Posizioni senza correzione Posizione reale 160 40 100 120 140 180 200 Posizioni assunte dal magnete 2 15 Posizioni con correzione Posizioni senza correzione - Posizione reale 20 40 60 80 100 120 140 160 180 200 Posizioni assunte dal magnete 3 15 Posizioni con correzione Posizioni senza correzione - Posizione reale

Grazie per l'attenzione