import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

df = pd.read_csv('hierarchical-clustering-with-python-and-scikit-lear
df.head()

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

df.shape

(200, 5)

df.describe()

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75 %	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

df.dtypes

CustomarTD

in+6/

×

```
Age
     Annual Income (k$)
     Spending Score (1-100)
     dtype: object
data = df.iloc[:, 3:5].values
data
     array([[ 15,
                     39],
                     81],
               15,
             [ 16,
                      6],
               16,
                     77],
               17,
                     40],
               17,
                     76],
             [ 18,
                      6],
               18,
                     94],
               19,
                      3],
             [ 19,
                     72],
                     14],
               19,
               19,
                     99],
             [ 20,
                     15],
               20,
                     77],
               20,
                     13],
                     79],
               20,
                     35],
               21,
               21,
                     66],
             [ 23,
                     29],
             [ 23,
                     98],
               24,
                     35],
               24,
                     73],
               25,
                      5],
               25,
                     73],
               28,
                     14],
             [ 28,
                     82],
               28,
                     32],
               28,
                     61],
               29,
                     31],
                     87],
               29,
               30,
                      4],
               30,
                     73],
               33,
                      4],
               33,
                     92],
               33,
                     14],
               33,
                     81],
               34,
                     17],
             [ 34,
                     73],
               37,
                     26],
             [ 37,
                     75],
             [ 38,
                     35],
```

2 of 8 14/09/23, 16:16

int64

int64

int64

```
[ 38,
        92],
 39,
        36],
 39,
        61],
[ 39,
        28],
[ 39,
        65],
 40,
        55],
 40,
        47],
 40,
        42],
 40,
        42],
[ 42,
        52],
[ 42,
        60],
 43,
        54],
[ 43,
        60],
[ 43,
        45],
        41],
[ 43,
[ 44,
        50],
[ 44,
        46],
```

import scipy.cluster.hierarchy as shc

```
plt.figure(figsize=(15, 7))
plt.title("Customer Dendograms")
dend = shc.dendrogram(shc.linkage(data, method='ward'))
```


from sklearn.cluster import AgglomerativeClustering

cluster = AgglomerativeClustering(n_clusters=5, affinity='euclidean',
labels_=cluster.fit_predict(data)

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_agglome
warnings.warn(

labels

```
array([4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4,
3, 4, 3,
     4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4,
3, 4, 1,
     1, 1, 1,
     1, 1, 1,
     1, 1, 1,
     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 0,
2, 0, 2,
     1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 0,
2, 0, 2,
     0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0,
2, 0, 2,
     0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0,
2, 0, 2,
     0, 2])
```

plt.figure(figsize=(10, 7))
plt.scatter(data[:,0], data[:,1], c=cluster.labels , cmap='rainbow')

<matplotlib.collections.PathCollection at 0x7e379a227940>

OUTLIER

```
data.shape
      (200, 2)

new = np.array([[55,122]])
new = np.concatenate((data,new), axis = 0)

new.shape
      (201, 2)

import scipy.cluster.hierarchy as shc

plt.figure(figsize=(15, 7))
plt.title("Customer Dendograms")
dend = shc.dendrogram(shc.linkage(new, method='ward'))
Customer Dendograms
```


from sklearn.cluster import AgglomerativeClustering

cluster = AgglomerativeClustering(n_clusters=5, affinity='euclidean',
labels_=cluster.fit_predict(new)

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_agglome
warnings.warn(

labels

```
array([4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3,
```