Model Performance Report

Andrew Peng

October 18, 2025

Contents

L	Summary	2
2	Enforced bound of 2 (lconst_mult = 100); Epoch 200	3
3	No bound (lconst_mult = 0); Epoch 200	19
1	Epoch 50 (bounded, 2, 100)	21
5	Epoch 100 (bounded, 2, 100)	23
3	Epoch 150 (bounded, 2, 100)	2 5
7	Epoch 300 (bounded, 2, 100)	27
3	Epoch 400 (bounded, 2, 100)	29
)	Epoch 500 (bounded, 2, 100)	31
L 0	Epoch 700 (bounded, 2, 100)	33
11	Epoch 1000 (bounded, 2, 100)	35

1 Summary

forcing the output to be within range seems to prevent overfitting from occurring at any epoch. if output is unregulated, significant overfitting occurs at 200 epoch. best models are [256]*4 and [32, 64, 128]

2 Enforced bound of 2 (lconst_mult = 100); Epoch 200

 $hidden_layers = [64]$

• Validation R^2 : -0.3502

$hidden_layers = [128,\, 128]$

Validation R^2 : 0.4786

${\rm hidden_layers} = [256,\, 256,\, 256]$

Validation R^2 : 0.5965

$hidden_layers = [256]*4$

• Validation R^2 : 0.5307

$hidden_layers = [256]*5$

Validation \mathbb{R}^2 : 0.3263

$hidden_layers = [512]*8$

• Validation R^2 : -0.0845

$hidden_layers = [128, 64, 32]$

• Validation R^2 : -0.0857

$\mathrm{hidden_layers} = [32,\,64,\,128]$

Validation R^2 : 0.5169

3 No bound (lconst_mult = 0); Epoch 200

$hidden_layers = [128, 128]$

OVERFITTING!!!

- Validation R^2 : 0.8972
- \bullet Validation RMSE: 0.0948
- \bullet Final Gap (val train): 0.0115
- REL Final Gap ((val train) / train): 22.2216

4 Epoch 50 (bounded, 2, 100)

 $hidden_layers = [128,\,128]$

• Validation R^2 : 0.0722

5 Epoch 100 (bounded, 2, 100)

 $hidden_layers = [128,\,128]$

• Validation R^2 : 0.3874

6 Epoch 150 (bounded, 2, 100)

 $hidden_layers = [128,\,128]$

• Validation R^2 : 0.5083

7 Epoch 300 (bounded, 2, 100)

 $hidden_layers = [128,\,128]$

• Validation R^2 : 0.5454

8 Epoch 400 (bounded, 2, 100)

 $hidden_layers = [128,\,128]$

• Validation R^2 : 0.7863

9 Epoch 500 (bounded, 2, 100)

$hidden_layers = [128,\,128]$

• Validation R^2 : 0.8595

• Validation RMSE: 0.1105

 \bullet ABS Final Gap (val - train): 0.0013

• REL Final Gap ((val - train) / train): 1.6534

$10 \quad \text{Epoch } 700 \text{ (bounded, 2, 100)}$

$hidden_layers = [128,\,128]$

• Validation \mathbb{R}^2 : 0.6510

• Validation RMSE: 0.1736

• Final Gap (val - train): 0.0052

 \bullet REL Final Gap ((val - train) / train): 4.7052

11 Epoch 1000 (bounded, 2, 100)

$hidden_layers = [128,\,128]$

• Validation R^2 : 0.8496

• Validation RMSE: 0.1152

 \bullet Final Gap (val - train): 0.0035

 $\bullet\,$ REL Final Gap ((val - train) / train): 4.7446

