

BAYES

BY TAUTOLOGY

MADE BY TAUTOLOGY THAILAND
DO NOT PUBLISH WITHOUT PERMISSION

facebook/tautologyai www.tautology.live

Naïve Bayes

Introduction

What is Naïve Bayes?

Pros & Cons

Real World Application

Naïve Bayes เป็นหนึ่งใน algorithm ประเภท supervised learning

ที่ใช้สำหรับแก้ปัญหา classification โดยมีหลักการทำงานคือการ

พิจารณาความน่าจะเป็นซึ่งมีเงื่อนไขว่าทุกตัวแปรต้นเป็นอิสระต่อกัน

work	education	status
active	study	rich
active	not study	rich
lazy	study	rich
lazy	not study	poor
active	not study	poor
lazy	not study	poor

active

study

?

argmax(P(rich|active, study), P(poor|active, study))

$$C = \underset{m}{\operatorname{argmax}} \left(\frac{P(C_m) \prod_{d=1}^{p} P(x_d | C_m)}{P(x_1, x_2, \dots, x_p)} \right)$$

$$C = \underset{m}{\operatorname{argmax}} \left(P(C_m) \prod_{d=1}^{p} P(x_d | C_m) \right)$$

where

- C_m be the m^{th} class
- p be the number of feature

Introduction

What is Naïve Bayes?

Pros & Cons

Real World Application

Pros & Cons

ข้อดี

• เป็น algorithm เพียงตัวเดียว ที่ใช้หลักการความน่าจะเป็น

ข้อเสีย

• ไม่สามารถตีความผลลัพธ์ได้ของ model ได้

ข้อจำกัด

• สมมติฐานความเป็นอิสระต่อกันของตัวแปรต้น

Introduction

What is Naïve Bayes?

Pros & Cons

Real World Application

Real World Application

อ้างอิง : [2018, Dulhare] Prediction System For Heart Disease Using Naive Bayes

วินิจฉัยโรคหัวใจบนเว็บไซต์หนึ่ง

โดยจะพิจารณาจากข้อมูล 15 ประเภท เช่น เพศ อายุ น้ำหนัก ส่วนสูง ความดัน โลหิต ประเภทการเจ็บหน้าอก อัตราการ เต้นของหัวใจสูงสุด เป็นต้น

Real World Application

ตรวจสอบ fake account ใน twitter

โดยพิจารณาจาก ความยาวของ description แต่ละ post จำนวน follower จำนวน following จำนวน tweet ที่กด liked เป็นต้น

อ้างอิง : [2017, Ersahin et al.] Twitter Fake Account Detection

Introduction

What is Naïve Bayes?

Pros & Cons

Real World Application

Naïve Bayes

Naïve Bayes

Naïve Bayes เป็นหนึ่งใน algorithm ประเภท supervised learning

Concept of Supervised Learning

Data ⇒ **Model** ⇒ **Prediction**

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

Assumption

- All Feature are Independent
- No Missing Features

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

Real Face of the Model

Naïve Bayes คือ การจำแนกประเภทของข้อมูล โดยใช้ทฤษฎีความน่าจะเป็นของเบส์ ที่ เพิ่มสมมติฐานว่า คุณลักษณะต่าง ๆ (Feature) ไม่ขึ้นต่อกัน

work	education	status
active	study	rich
active	not study	rich
lazy	study	rich
lazy	not study	poor
active	not study	poor
lazy	not study	poor
notive.	atualsa	h :

active

study

?

argmax(P(rich|active, study), P(poor|active, study))

Real Face of the Model

$$C = \underset{m}{\operatorname{argmax}} \left(\frac{P(C_m) \prod_{d=1}^{p} P(x_d | C_m)}{P(x_1, x_2, \dots, x_p)} \right)$$

$$C = \underset{m}{\operatorname{argmax}} \left(P(C_m) \prod_{d=1}^{p} P(x_d | C_m) \right)$$

where

- C_m be the m^{th} class
- p be the number of feature

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

- ☐ Step 1: หาความน่าจะเป็นจาก dataset
- ☐ Step 2 : เลือกตอบ class ที่ให้ค่าความน่าจะเป็นสูงที่สุด

<u>ตัวอย่างการคำนวณ Naïve Bayes</u>

sex	education	acceptation
female	master	yes
male	bachelor	no
female	bachelor	yes
male	doctor	yes
female	master	no

ตารางแสดงการรับเข้าทำงานของบริษัท

✓ Step 1: หาความน่าจะเป็นจาก dataset

```
sex = female
education = master
```

argmax(P(yes|female, master), P(no|female, master))

✓ Step 1: หาความน่าจะเป็นจาก dataset

P(yes|female, master)

= P(yes)P(female|yes)P(master|yes)

$$=\frac{3}{5}\times\frac{2}{3}\times\frac{1}{3}=\frac{2}{15}$$

P(no|female,master)

= P(no)P(female|no)P(master|no)

$$= \frac{2}{5} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{10}$$

☑ Step 2 : เลือกตอบ class ที่ให้ค่าความน่าจะเป็นสูงที่สุด

argmax(P(yes|female, master), P(no|female, master))

$$= \operatorname{argmax}\left(\frac{2}{15}, \frac{1}{10}\right)$$

$$= yes$$

☑ Step 2 : เลือกตอบ class ที่ให้ค่าความน่าจะเป็นสูงที่สุด

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

How to Create Model (Code)

ตัวอย่าง Code สำหรับ Naïve Bayes

sex	education	acceptation
О	1	yes
1	0	no
0	0	yes
1	2	yes
0	1	no

ตารางแสดงการรับเข้าทำงานของบริษัท

How to Create Model (Code)

• Code สำหรับสร้าง model จากข้อมูลของเราโดยที่

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \\ 1 & 2 \\ 0 & 1 \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} yes \\ no \\ yes \\ yes \\ no \end{bmatrix}$$

```
1 clf = GaussianNB()
```

2 clf.fit(X, y)

GaussianNB()

How to Create Model (Code)

Code for this section

Open File

Model Creation.ipynb

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

Further Reading

Bayes' Theorem

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

Naïve Bayes

Prediction

Naïve Bayes คือ การจำแนกประเภทของข้อมูล โดยใช้ทฤษฎีความน่าจะเป็นของเบส์ ที่ เพิ่มสมมติฐานว่า คุณลักษณะต่าง ๆ (Feature) ไม่ขึ้นต่อกัน

work	education	status
active	study	rich
active	not study	rich
lazy	study	rich
lazy	not study	poor
active	not study	poor
lazy	not study	poor
_	10.0.0	

active

study

?

argmax(P(rich|active, study), P(poor|active, study))

Prediction

1-Sample

Multi-Sample

Code

1-Sample

<u>ตัวอย่างการคำนวณ \widehat{y} </u>

sex	education
0	1

$\widehat{m{y}}$
?

1-Sample

sex	education
0	1

$\widehat{oldsymbol{y}}$
yes

argmax(P(yes|female, master), P(no|female, master))

$$= \operatorname{argmax}\left(\frac{2}{15}, \frac{1}{10}\right)$$

$$= yes$$

Prediction

1-Sample

Multi-Sample

Code

<u>ตัวอย่างการคำนวณ $\hat{\mathbf{y}}$ </u>

sex	education
0	1
0	2
1	0
1	1

ŷ	
?	
?	
?	
?	

sex = female education = master

argmax(P(yes|female, master), P(no|female, master))

$$= \operatorname{argmax}\left(\frac{2}{15}, \frac{1}{10}\right)$$

$$= yes$$

sex	education
0	1
0	2
1	0
1	1

$\hat{\mathbf{y}}$	
yes	
?	
?	
?	

sex = female education = doctor

argmax(P(yes|female, doctor), P(no|female, doctor))

- $= \operatorname{argmax}\left(\frac{2}{15}, 0\right)$
- = yes

sex	education
0	1
0	2
1	0
1	1

ŷ	
yes	
yes	
?	
?	

sex	education
0	1
0	2
1	0
1	1

$\hat{\mathbf{y}}$	
yes	
yes	
no	
no	

Prediction

Code

ตัวอย่าง code สำหรับการคำนวณ $\hat{\mathbf{y}}$

sex	education
0	1
0	2
1	0
1	1

ŷ	
?	
?	
?	
?	

• Code สำหรับสร้าง model จากข้อมูลของเราโดยที่

$$X = \begin{bmatrix} 0 & 1 \\ 0 & 2 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

1 clf.predict(X)

array(['yes', 'yes', 'no', 'no'], dtype='<U3')</pre>

<u>ดังนั้น</u> เราจะได้ ŷ สำหรับข้อมูลชุดนี้คือ

sex	education
0	1
0	2
1	0
1	1

ŷ
yes
yes
no
no

Code for this section

Open File

Model Creation.ipynb

Prediction

Naïve Bayes

AI in Agriculture

- Abstract
- Why this project important?
- Who this project for?
- Plant Disease Dataset
- What we learn from this project?

Abstract

สร้าง model เพื่อจำแนกว่าพืชเป็นโรคหรือไม่ โดยพิจารณาจากใบพืช

Why this project important?

- สามารถสร้างระบบตรวจโรคพืชที่ทำงานได้อย่างทันท่วงที
- 🔷 สามารถนำความรู้ไปต่อยอดเพื่อสร้าง smart farm
- สามารถนำไปต่อยอดตรวจโรคในพืชชนิดอื่น ๆ

Who this project is for?

- เกษตรกรที่สนใจ AI กับการเกษตร
- ผู้ควบคุม/วางแผนการผลิต
- นักวิเคราะห์ข้อมูล

Plant Disease Dataset

http://archive.ics.uci.edu/ml/datasets/Leaf?ref=datanews.io#

Plant Disease Dataset

Feature

Target

• target : การเป็นโรคของพืช (healthy, unhealthy)

What we learn from this project?

Data Preparation

02. PLANT DISEASE

dataset

plant_disease_mc.ipynb

plant_disease_md.ipynb

plant_disease_model.pickle

Naïve Bayes

