

Fig. 1: Memory interface

Fig. 2: IRAM & configuration cache controller data structures and usage example

Fig. 3: Asynchronous pipeline of the XPP

Fig. 4: State transition diagram for the XPP cache controller

Fig. 5: Adding simultaneous multithreading

Fig. 6: Cache structure example

Fig. 7:Control-flow graph of a piece of program

Fig. 8: Example of control-flow sensitivity

Fig. 9

```
for(j=1;j<=N-1;i++)
  for(j=1;j<=N;j++)
    b[i][j] = 0.25*(a[i-1][j] + a[i][j-1] +
a[i+1][j] + a[i][j+1]);</pre>
```


Fig. 10: Example for array merging

Fig. 11: Global View of the Compiling Process

Fig. 12: Detailed Architecture of the XPP Compiler

Fig. 13: Detailed View of the XPP Loop Optimization

Fig. 14:

Converter modules for conversion from and to shorter data types. The signed versions suffixed with `_sb` do correct sign extension. All modules 16-bit converters must be connected to `101010..` event streams while the `32to8`-converters must be fed with a `10001000...` sequence and the `8to32` must be fed with an a `00010001...` sequence, respectively. All modules output one packet/cycle.

Fig. 15

The main calculation network of the edge3x3 configuration. The MULT-SORT combination does the abs() calculation while the SORT does the min() calculation.

Fig. 16:

Input preparation with shift register synthesis. For each IRAM access one of these modules is generated.

Fig. 17

A sample picture with the size 640×480 pixels. Without precautions loop tiling would miss the pixels on the borders between the tiles.

Fig. 18

Fig. 19

Fig. 20

Fig. 21: The visualized array access sequences.

Fig. 22:

The visualized array access sequences after optimization. Here the improvement is evident, since array B is now read following the cache lines.

Fig. 23:

Dataflow graph of matrix multiplication after unroll-and-jam. Counters and address calculations are omitted.

Fig. 24

Fig. 25: The modified dataflow graph, where unrolling and splitting have been omitted for simplicity

Fig. 26:

Dataflow graph of the MPEG2 inverse quantization for intra coded blocks. The yellow and green blocks were produced by partial unrolling. The difference is that the green block must no account for the special iteration value 0. The blue block does the accumulation which alters the value at iteration 64 if necessary.

Fig. 27

Fig. 28

Fig. 29

Fig. 30: Dataflow Graph of idct column processing

Fig. 31: Data layout transformations in idet configurations

Fig. 32: Dataflow graph of the innermost loop nest.

Fig. 33: Functions of an RDFP

Fig. 34

Fig.35

(1)

Fig. 36

Fig. 38

Fig. 39

()

Fig. 40: General Conditional Statement Template

Fig. 44: While Loop Template

Fig. 42:For Loop Template

Fig. *43*

•

Fig. 45

()

Fig. 46

Fig. 47

Fig. 48

Fig. 49: LEON Architecture Overview

Fig. 50: LEON Pipelined Datapath Structure

Fig. 51: Structure of an XPP device

Fig. 52: Extended Datapath Overview

Fig. 53: LEON-to-XPP dual-clock FIFO

Fig. 54: Extended LEON Instruction Pipeline

Fig. 55: Computation time of IDCT (8x8)

Fig. 56: MPEG-4 Decoder Blockdiagram

Fig. 57: Extended LEON Instruction Pipeline II

48/48

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.