

מחלקה למדעי המחשב

י"ט באדר תשפ"ד 19/03/2025

09:00-12:00

קריפטוגרפיה

מועד ב'

מרצה: ד"ר ירמיהו מילר.

תשפ"ה סמסטר א'

השאלון מכיל 11 עמודים (כולל עמוד זה וכולל דף נוסחאות).

בהצלחה!

הנחיות למדור בחינות שאלוני בחינה

- לשאלון הבחינה יש לצרף מחברת.
- ניתן להשתמש במחשבון מדעי לא גרפי עם צג קטן.

חומר עזר

. אלון. מצורפים לשאלון. (A4) עמודים בפורמט (A4), מצורפים לשאלון.

אחר / הערות יש לענות על השאלות באופן הבא:

- יש לנמק היטב כל שלב של פתרון. תשובה ללא הסבר וללא נימוק, אפילו נכונה, לא תתקבל.
 - יש לפתור 4 מתוך 5 השאלות הבאות. משקל כל שאלה 25 נקודות.
 - סדר התשובות אינו משנה, אך יש לרשום ליד כל תשובה את מספרה.
 - הסבירו היטב את מהלך הפתרון.

שאלה 1 (25 נקודות)

(15 נק') (א

$$P_X\left(\mathbf{q}\right) = \frac{1}{3} \; , \qquad P_X\left(\mathbf{r}\right) = \frac{1}{4} \; , \qquad P_X\left(\mathbf{s}\right) = \frac{5}{12} \; .$$

תהי $k_i \in K$ לכל לכל $P_K(k_i) = \frac{1}{4}$ תהי הסתברות בעלת מפתחות בעלת מפתחות אקבוצת מפתחות לכל אוא קבוצת אוצפן. נגדיר כלל המצפין $Y = \{\mathtt{A},\mathtt{B},\mathtt{C}\}$

$$e_{k_i}(x) = 2x + i \mod 3$$

 $i\in\{1,2,3,4\}$ לכל $x\in\mathbb{Z}_{26}$ לכל

הוכיחו או הפריכו על ידי דוגמה נגדית: לקריפטו-מערכת זו יש סודיות מושלמת.

ב) (5 נק')

 $ab\equiv c\mod\left(rac{m}{\gcd(a,m)}
ight)$ אם ורק אם $ab\equiv ac\mod m$ יהיו הוכיחו כי a,m

(ל נק') (ג

 $\gcd(a,b) = \gcd(a+cb,b)$:יהיו שלמים שלמים a,b,c

שאלה 2 (25 נקודות)

(18 נק') (א

הוכיחו את הטענה הבאה: צפון RSA ניתן לפענוח.

ב) (7 נק')

285s + 89t = d עבורם s, t, d מצאו שלמים

שאלה 3 (25 נקודות)

(ל נק') (א

 $.(a \mod m)(b \mod m) \mod m \equiv ab \mod m$ הטענה הבאה: את הוכיחו את שלמים. הוכיחו את יהיו a,b,mיהיו

ב) (5 נק')

 $a \pmod m^{-1} \mod m \equiv a^{-1} \mod m$ הטענה הבאה: את הוכיחו את שלמים. הוכיחו את יהיו a,m

(ג) (15 נק')

הוכיחו את הטענה הבאה: צופן אל-גמאל ניתן לפענוח.

שאלה 4

(10 נק') (א

אליס את הטקסט המוצפן הבא לבוב: $\mathrm{HIFUWNJITUQF}$. אליס אליס המוצפן הבא לבוב: צופן אפיני עם המפתח ((7,19)). חשבו את הטקסט הגלוי.

ב) (5 נק')

יהי a מספר ראשוני. הוכיחו או הפריכו ע"י דוגמה נגדית את הטענה הבאה: לכל שלם a מתקיים

$$a^p \equiv a \mod p \ .$$

(ל נק') (ג

יהיו את הטענה הבאה: a,b,c,m יהיו $a+c\equiv (b+c)\mod m$ אזי אזי $a\equiv b\mod m$ אם

ל) (5 נק')

יהיו את הטענה הבאה: a,m>0 יהיו

$$(-a) \mod m = m - (a \mod m)$$
.

שאלה 5 (25 נקודות)

(13 נק') (א

אליס הצפינה את הטקסט הגלוי dear על ידי צופן היל ושולחת אותו לבוב. הטקסט המוצפן אשר בוב מקבל הוא BVGF. מצאו את המפתח שבאמצעותו אליס הצפינה את הטקסט הגלוי.

- c|a אז $\gcd(b,c)=1$ -וc|ab אי $\gcd(b,c)=1$ ו- ל
- $ab \equiv c \mod m$ אם ורק אם $ab \equiv ac \mod m$ אם ורים. הוכיחו כיa,m אם ורק אם a,m

פתרונות

שאלה 1

(N

K	q	r	S
k_1	A	С	В
k_2	В	А	С
k_3	С	В	А
k_4	А	С	В

$$\begin{split} P_Y(\mathbf{A}) = & P_K(k_1) P_X(\mathbf{q}) + P_K(k_2) P_X(\mathbf{r}) + P_K(k_3) P_X(\mathbf{s}) + P_K(k_4) P_X(\mathbf{q}) \\ = & \left(\frac{1}{4}\right) \left(\frac{1}{3}\right) + \left(\frac{1}{4}\right) \left(\frac{1}{4}\right) + \left(\frac{1}{4}\right) \left(\frac{5}{12}\right) + \left(\frac{1}{4}\right) \left(\frac{1}{3}\right) \\ = & \frac{16}{48} \; . \end{split}$$

$$\begin{split} P_Y(\mathbf{C}) = & P_K(k_1) P_X(\mathbf{r}) + P_K(k_2) P_X(\mathbf{s}) + P_K(k_3) P_X(\mathbf{q}) + P_K(k_4) P_X(\mathbf{r}) \\ = & \left(\frac{1}{4}\right) \left(\frac{1}{4}\right) + \left(\frac{1}{4}\right) \left(\frac{5}{12}\right) + \left(\frac{1}{4}\right) \left(\frac{1}{3}\right) + \left(\frac{1}{4}\right) \left(\frac{1}{4}\right) \\ = & \frac{15}{48} \; . \end{split}$$

$$\begin{split} P_Y(\mathbf{B}) &= P_K(k_1) P_X(\mathbf{s}) + P_K(k_2) P_X(\mathbf{q}) + P_K(k_3) P_X(\mathbf{r}) + P_K(k_4) P_X(\mathbf{s}) \\ &= \left(\frac{1}{4}\right) \left(\frac{5}{12}\right) + \left(\frac{1}{4}\right) \left(\frac{1}{3}\right) + \left(\frac{1}{4}\right) \left(\frac{1}{4}\right) + \left(\frac{1}{4}\right) \left(\frac{5}{12}\right) \\ &= \frac{17}{48} \; . \end{split}$$

$$P(X=\mathbf{q}|Y=\mathbf{A}) = \frac{P(Y=\mathbf{A}|X=\mathbf{q})P(X=\mathbf{q})}{P(Y=\mathbf{A})} = \frac{P_X(\mathbf{q})\left(P_K(k_1) + P_K(k_4)\right)}{P_Y(\mathbf{A})} = \frac{\left(\frac{1}{3}\right)\left(\frac{1}{4} + \frac{1}{4}\right)}{\left(\frac{1}{3}\right)} = \frac{1}{2}$$

דוגמה נגדית:

$$\frac{1}{2} = P(X = q|Y = A) \neq P(X = q) = \frac{1}{3}$$
.

לכן לקריפטו-מערכת אין סודיות מושלמת

ננית כי $ab \equiv ac \mod m$ ננית כי

$$ab = ac + qm \quad \Rightarrow \quad ab - ac = qm \quad \Rightarrow \quad m \mid a(b-c) \quad \Rightarrow \quad \frac{m}{\gcd(a,m)} \mid \frac{a}{\gcd(a,m)}(b-c) \ .$$

ארים, אז
$$\dfrac{a}{\gcd(a,m)}$$
 -ו $\dfrac{m}{\gcd(a,m)}$ זרים, אז

$$\frac{m}{\gcd(a,m)} \mid (b-c) .$$

לכן

$$b \equiv c \mod \left(\frac{m}{\gcd(a,m)}\right) .$$

מכאן $d=\gcd(a,b)$ אם a,b כאשר a,b שלמים אז קיימים שלמים a,b עבורם

$$sa + tb = d$$

$$s(a+cb) + tb = d + scb$$

$$s(a+cb) + tb - scb = d$$

$$s(a+cb) + (t-sc)b = d$$

לכן קיימים שלמים y=t-cb ו- x=s עבורם

$$x(a+cb) + yb = d$$

$$\gcd(a+cb,b)=d=\gcd(a,b)$$
 ולכן

שאלה 2

$$.ab=1\mod\phi(n)$$
 נתון כי

$$.\phi(n) = \phi(pq) = (p-1)(q-1)$$

ז"א

$$ab=1\mod \phi(n)=1\mod (p-1)(q-1)$$

-לכן קיים
$$t\in\mathbb{Z}$$
 כך ש

$$ab - 1 = t(p - 1)(q - 1)$$
.

לכל
$$z \neq 0 \in \mathbb{Z}$$
 לפי משפט $z \neq 0 \in \mathbb{Z}$ לכל

$$x^{ab-1} = x^{t(p-1)(q-1)} = (x^{t(q-1)})^{p-1} = y^{p-1}$$

$$.x^{ab-1}=1\mod p$$
 מכאן . $y=x^{t(q-1)}$ כאשר

 $.x^{ab-1}=1 \mod q$ משיקולות של סיימטריה באותה מידה

 $x^{ab-1}-1=0 \mod q$ רכן $x^{ab-1}-1=0 \mod p$ לכן

מכיוון ש- p ו- q זרים אז

$$x^{ab-1} - 1 = 0 \mod(pq) .$$

לפיכד

$$x^{ab-1} = 1 \mod(pq) .$$

נכפיל ב-x ונקבל

$$(x^a)^b = x \mod (pq) \ .$$

ז"א הוכחנו כי לכל טקסט גלוי x, אם נצפין אותו ואז אחר כך נפענח את הטקסט מוצפן המתקבל מאלגוריתם RSA, נקבל אותו טקסט גלוי המקורי בחזרה.

.a = 285, b = 89 (2

$$r_0 = a = 285$$
, $r_1 = b = 89$,
 $s_0 = 1$, $s_1 = 0$,
 $t_0 = 0$, $t_1 = 1$.

$q_1 = 3$	$t_2 = 0 - 3 \cdot 1 = -3$	$s_2 = 1 - 3 \cdot 0 = 1$	$r_2 = 285 - 3 \cdot 89 = 18$: k = 1 שלב
$q_2 = 4$	$t_3 = 1 - 4 \cdot (-3) = 13$	$s_3 = 0 - 4 \cdot 1 = -4$	$r_3 = 89 - 4 \cdot 18 = 17$: k = 2 שלב
$q_3 = 1$	$t_4 = -3 - 1 \cdot (13) = -16$	$s_4 = 1 - 1 \cdot (-4) = 5$	$r_4 = 18 - 1 \cdot 17 = 1$	$\cdot k = 3$ שלב
$q_4 = 17$	$t_5 = 13 - 17 \cdot (-16) = 285$	$s_5 = -4 - 17 \cdot 5 = -89$	$r_5 = 17 - 17 \cdot 1 = 0$	$\cdot k = 4$ שלב

$$gcd(a,b) = r_4 = 1$$
, $s = s_4 = 5$, $t = t_4 = -16$.

$$ta + sb = 5(289) - 16(85) = 1$$
.

שאלה 3 (25 נקודות)

-ש כך q_1,r_1 שלמים a,m לכל

$$a = q_1 m + r_1 \quad \Rightarrow \quad r_1 \equiv a \mod m$$
.

-באותה מידה לכל b,m לכל מים באותה באותה באותה של לכל

$$b = q_2 m + r_2 \quad \Rightarrow \quad r_2 \equiv b \mod m$$
.

המכללה האקדמית להנדסה סמי שמעון

קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי 84, 77245 | www.sce.ac.il | קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי

לכן

$$ab=(q_1m+r_1)(q_2m+r_2)=(q_1q_2m+r_1q_2+r_2q_1)m+r_1r_2=Qm+r_1r_2$$
לכן $B=Qm+r_1r_2$ -טער פער שלם $Ab=Qm+r_1r_2$

ולכן

 $ab \equiv r_1r_2 \mod m \qquad \Rightarrow \qquad r_1r_2 \equiv ab \mod m \qquad \Rightarrow \qquad (a \mod m)(b \mod m) \equiv ab \mod m$

נסמן m שמי $a \mod m$ מודולר $a \mod m$ נסמן $a \mod m$ נסמן $a \mod m$ אזי $a \mod m$ מודולר $a \mod m$ נסמן $a \mod m$ מודולר $a \mod m$.

מכאן מנובע

 $ax \equiv 1 \mod m$

ולכן

 $x = a^{-1} \mod m \quad \Rightarrow \quad \left(a \mod m\right)^{-1} \mod m \equiv a^{-1} \mod m \ .$

ג) לפי ההגדרה של צופן El-Gamal, הכלל מצפיון הוא

$$e_k(x) = (y_1, y_2) \quad y_1 \alpha^d \mod p \ , \quad y_2 = \beta^d x \mod p \ ,$$

כאשר p ראשוני ו- d שלם, והכלל מעפנח הוא

$$d_k(y_1, y_2) = (y_1^a)^{-1} y_2 \mod p$$
.

לפיכך:

$$\begin{aligned} d_k\left(e_k(x)\right) = &d_k\left(y_1,y_2\right) \\ &= \left(y_1{}^a\right)^{-1}y_2 \mod p \\ &= \left[\left(\alpha^d \mod p\right)^a\right]^{-1}\left(x\beta^d \mod p\right) \mod p \\ &= \left(\alpha^{da} \mod p\right)^{-1}\left(x\beta^d \mod p\right) \mod p \end{aligned} \qquad \text{(Coth field of the proof of th$$

המכללה האקדמית להנדסה סמי שמעון

קמפוס באר שבע ביאליק פינת בזל 84100 | **קמפוס אשדוד** ז'בוטינסקי 84, 77245 | www.sce.ac.il | חיי**ג: ≋כוסבוסס**

שאלה 4 (25 נקודות)

- (11 נק') (א
- ב) (10 נק') נוכיח באינדוקציה.

בסיס:

עבור $a=0 \mod p$ מתקיימת.

:מעבר

a נניח כי הטענה מתקיימת עבור

$$(a+1)^p = a^p + pa^{p-1} + \frac{p(p-1)}{2}a^{p-2} + \dots + pa + 1 \equiv a^p + 1 \mod p$$

לכן $a^p \equiv a \mod p$ -שומרת אומרת האינדוקציה אומרת

$$(a+1)^p \mod p \equiv a^p + 1 \mod p \equiv (a+1) \mod p$$

כנדרש.

 $0 \le r < m$ -ו $0 \le q < a$ ו- $0 \le q < a$ ו- (4 נק') לפי משפט החילוק של אוקליד קיימים שלמים

$$a = qm + r$$

מכאן $r=a \mod m$

$$(-a) = (-q)m - r = -(q+1)m + m - r = \bar{q}m + \bar{r}$$

כאשר
$$ar r=-(q+1)$$
 , $ar r=m-r$ כאשר

$$(-a) = \bar{q}m + \bar{r}$$

לכן $ar{r}=(-a) \mod m$ כאשר

$$(-a) \mod m = m-r = m-\left(a \mod m\right) \, .$$

שאלה 5 (25 נקודות)

(3) (א) (א)

d	е	a	r
3	4	0	17
В	V	G	F
1	21	6	5

$$X = \begin{pmatrix} 3 & 4 \\ 0 & 17 \end{pmatrix} , \qquad Y = \begin{pmatrix} 1 & 21 \\ 6 & 5 \end{pmatrix} .$$

$$|X| \mod 26 = 51 \mod 26 = 25 \qquad \Rightarrow \quad |X|^{-1} \mod 26 = 25^{-1} \mod 26 = 25 \ .$$

לכן
$$C=\begin{pmatrix}17&0\\-4&3\end{pmatrix}\mod 26=\begin{pmatrix}17&0\\22&3\end{pmatrix}$$
 איא א היא לפן של א קופקטורים של א היא

$$X^{-1} = |X|^{-1}C^t \mod 26 = 25 \begin{pmatrix} 17 & 22 \\ 0 & 3 \end{pmatrix} \mod 26 = \begin{pmatrix} 425 & 550 \\ 0 & 75 \end{pmatrix} \mod 26 = \begin{pmatrix} 9 & 4 \\ 0 & 23 \end{pmatrix}$$

לכן

$$k = X^{-1}Y = \begin{pmatrix} 9 & 4 \\ 0 & 23 \end{pmatrix} \begin{pmatrix} 1 & 21 \\ 6 & 5 \end{pmatrix} = \begin{pmatrix} 33 & 209 \\ 138 & 115 \end{pmatrix} \mod 26 = \begin{pmatrix} 7 & 1 \\ 8 & 11 \end{pmatrix} \ .$$

 $.c \nmid b \Leftarrow \gcd(b,c) = 1$ בי (6 נק') ראשית נציין כי

 $.srac{b}{c}+t=rac{1}{c}:c$ -בר: לפי משפט איוקלידס קיימים שלמים .sb+tc=1:s,t נחלק ב-

טתירה!). $sq+t=rac{1}{c}$ שלם ולכן שלם $rac{b}{c}=q$ אז אם פול $c\mid b$ אז אם מיירה!

c = ab = q לכן קיים שלם ab כך ש- $c \mid ab$

. שלם או $\frac{a}{c}$ שלם או הצד שמאל שלם, לכן לכן

 $a\mid c$ שלם ולכן $rac{a}{c}$ שלם אז בהכרח לא שלם $rac{b}{c}$ שלם ישלם

(6 נק')

 $ab \equiv ac \mod m$ נית כי

$$ab \equiv ac \mod m \quad \Rightarrow \quad ab = ac + qm \quad \Rightarrow \quad ab - ac = qm \quad \Rightarrow \quad a(b-c) = qm \; .$$

 $a \mid qm$ מכאן

a=ak אלם עבורו $a \nmid q$ לכן $a \nmid m$ לכן ז"א איים לכן $a \nmid m$ לפיכך

$$a(b-c) = qm \quad \Rightarrow \quad a(b-c) = akm \quad \Rightarrow \quad b-c = km \quad \Rightarrow \quad b = c+km \quad \Rightarrow \quad b \equiv c \mod m \ .$$

נניח כי $b \equiv c \mod m$ אז

$$b = qm + c \quad \Rightarrow \quad ab = aqm + ac \quad \Rightarrow \quad ab \equiv ac \mod m \ .$$