

本科实验报告

喇叭天线的幅射特性测量及 CST 仿真

课程名称: 电磁场与电磁波

姓 名: 姚桂涛

学院: 信息与电子工程学院

专业: 信息工程

学 号: 3190105597

指导老师: 王子立

2021年6月24日

浙江大学实验报告

专业:信息工程姓名:姚桂涛学号:3190105597日期:2021 年 6 月 24 日地点:东 4-221

矩形波导馈电的角锥喇叭天线 CST 仿真

一、 实验目的

- (1) 了解并掌握波导喇叭天线的常用参数指标和分析方法.
- (2) 了解熟悉 CST 软件的基本使用方法, 学会运用其进行建模、仿真。

二、 实验任务

用 CST 软件对特定的巨型波导喇叭天线进行建模、仿真,分析其辐射特性,并与喇叭天线辐射特性测量实验进行比较。

三、 实验过程与结果

1. 模型建立

1.1 建立工程

图 1

图 2

1.2 参数设置

Parameter	List				×
$\ensuremath{\mathbb{V}}$ Name	Expression	Value	Description	Туре	
a	= 22.86	22.86		None	~
t	= 1	1		None	~
b	= 10.16	10.16		None	~
Lambda	= 29.1	29.1		None	~
DH	= 80	80		None	~
DE	= 38	38		None	~
L	= 80	80		None	~

图 3

1.3 创建矩形

图 4

图 5

1.4 建立喇叭模型

建立喇叭口径面

图 6

图 7

图 8

设置喇叭口径面的空间位置

图 9

图 10

创建喇叭侧壁

图 11

图 12

掏空

图 13

图 14

2. 仿真分析

2.1 仿真条件设置 仿真频率

图 15

仿真边界条件

图 16

图 17

端口设置

图 18

设置监视器

图 19

图 20

图 21

2.2 模式分析

图 22

图 23

由于仿真最高频率为 12.4GHz, 所以在这种结构的喇叭天线中只传输 1 种模式的波,设置的吸收的模式数只要大于 1 就可以了。

2.3 仿真设置

图 24

3. 仿真结果

3.1 S₁₁ 曲线

图 25

3.2 驻波曲线

图 26

3.3 方向图

图 27

图 28

3.4 增益图

图 29

图 30

3.5 E-field, H-field, surface current 图

图 31 e-field

图 32 h-field

图 33 surface current

4. 分析结论

从仿真结果来看,该矩形波导馈电的角锥喇叭天线的主瓣方向为 $\varphi=0^\circ$, $\theta=0^\circ$, 主瓣宽度为 37.4°,主瓣的最大增益为 15dB,最大增益的仿真值与理论估计值相近。同时,该天线输入端口的反射系数在工作频段内均在 20dB 以下,能够较好的工作。

四、 实验收获与体会

喇叭天线的幅射特性测量

一、 实验目的

揭示喇叭天线的幅射特性。 覆盖的基本概念:

- 天线辐射方向图
- 波東宽度
- 天线的极化特性
- 电磁波在空间传播中与距离的关系

二、实验过程与结果

1. 电磁波在空间传播中与距离的关系测量

表 1 天线距离与接收功率关系

距离 R(m)	实验测量值 (dB)	相对归一化数值 (dB)
1	-40.0	0.0
1.1	-41.8	-1.8
1.2	-43.6	-3.6
1.3	-45.3	-5.3
1.4	-46.8	-6.8

2. 极化测量

2.1 天线极化测量

表 2 发射天线喇叭极化特性

发射喇叭天线角度	实验测量值 (dB)	相对归一化数值 (dB)	相对归一化功 (dB)
0°	-40.00	0.00	1.00
10°	-40.39	-0.39	0.96
20°	-41.12	-1.12	0.88
30°	-42.89	-2.89	0.72
40°	-45.01	-5.01	0.56
50°	-47.92	-7.92	0.40
60°	-52.40	-12.40	0.24
70°	-58.20	-18.20	0.12
80°	-69.20	-29.20	0.03
90°	-76.20	-36.20	0.02

2.2 极化栅网特性测量

表 3 极化栅网极化特性

极化栅网角度	实验测量值 (dB)	相对归一化功率 (dB)	相对归一化功率
0°	-40.0	0.0	1.00
90°	-69.3	-29.3	0.00
45°	-44.5	-4.5	0.01

3. 喇叭天线辐射方向图测量

表 4 天线水平方向图测量数据

天线水平方向转角(°)	-90	-80	-70	-60	-50	-40	-30	-20	-10	0	10	20	30	40	50	60	70	80	90
实验测量值 (dB)	∞	∞	-80.0	-73.8	-74.0	-66.8	-57.8	-49.8	-43.0	-40.0	-44.2	-52.6	-61.0	-63.4	-66.8	-70.5	-77.5	-74.4	∞
相对归一化数值 (dB)	∞	∞	-40.0	-33.8	-34.0	-26.8	-17.8	-9.8	-3.0	0.0	-4.2	-12.6	-21.0	-23.4	-26.8	-30.5	-37.5	-34.4	∞
相对归一化功率	∞	∞	0.01	0.02	0.02	0.05	0.13	0.32	0.71	1.00	0.62	0.23	0.09	0.07	0.05	0.03	0.01	0.02	∞

表 5 天线垂直方向测量数据

天线垂直方向转角 (°)	-60	-50	-40	-30	-20	-10	0	10	20	30	40	50	60
实验测量值 (dB)	-68.6	-66.2	-65.5	-65.2	-58.6	-51.5	-50.0	-51.5	-57.2	-65.0	-66.0	-66.2	-69.0
相对归一化数值 (dB)	-18.6	-16.2	-15.5	-15.2	-8.6	-1.5	0.0	-1.5	-7.2	-15.0	-16.0	-16.2	-19.0
相对归一化功率	0.12	0.15	0.17	0.17	0.37	0.84	1.00	0.84	0.44	0.18	0.16	0.15	0.11

三、 实验结果分析

1. 电磁波传播与距离的关系曲线如下图

图 1 电磁波传播与距离的关系曲线

- 2. 从图中可以看出电磁波传播和距离曲线的关系更接近 $\frac{1}{R}$,由于测得的数据较少,所以不是很明显。
- 3. 发射喇叭天线极化曲线如下图

图 2 发射喇叭天线极化曲线

4. 问题回答

4.1 从下图可以看出,接收喇叭天线所接收到的功率与发射喇叭天线极化角度 θ 的关系更符合 $\cos^2\theta$ 关系。

图 3 发射喇叭天线极化曲线比较

4.2 发射的信号经过极化器分解成与极化器平行、垂直的两路等幅信号,最终接收喇叭收到一般的 信号。

5. 远区场条件

实验中: $R = 1.2m, D_E = 3.7cm, D_H = 8.2cm, \frac{2D_E D_H}{\lambda} = 18.96cm, \therefore R \gg \frac{2D_E D_H}{\lambda}$ 所以符合远区场条件。

6. 理论增益、半功率波束宽度计算

6.1 发射喇叭

最佳增益:

$$\lambda = \frac{c}{f} = 3.2cm$$

$$G = 0.51 \frac{4\pi A_P}{\lambda^2} = 0.51 \frac{4\pi \times 3.7 \times 8.2}{3.2^2} = 18.99$$

喇叭天线半功率波束宽度:

H 面:
$$2\theta_{0.5} \approx 1.18 \frac{\lambda}{D_H} = 1.18 \frac{3.2}{8.2} = 0.46 \text{(rad)}$$

E 面: $2\theta_{0.5} \approx 0.89 \frac{\lambda}{D_E} = 0.89 \frac{3.2}{3.7} = 0.77 \text{(rad)}$

E
$$\overline{\mathbf{m}}$$
: $2\theta_{0.5} \approx 0.89 \frac{\lambda}{D_E} = 0.89 \frac{3.2}{3.7} = 0.77 \text{(rad)}$

6.2 接收喇叭

最佳增益:

$$\lambda = \frac{c}{f} = 3.2cm$$

$$G = 0.51 \frac{4\pi A_P}{\lambda^2} = 0.51 \frac{4\pi \times 10.5 \times 14.1}{3.2^2} = 92.66$$

喇叭天线半功率波束宽度:

H 面:
$$2\theta_{0.5} \approx 1.18 \frac{\lambda}{D_H} = 1.18 \frac{3.2}{14.1} = 0.27 \text{(rad)}$$

E 面: $2\theta_{0.5} \approx 0.89 \frac{\lambda}{D_E} = 0.89 \frac{3.2}{10.5} = 0.27 \text{(rad)}$

E
$$\overline{\mathbf{m}}$$
: $2\theta_{0.5} \approx 0.89 \frac{\lambda}{D_{\rm p}} = 0.89 \frac{3.2}{10.5} = 0.27 \text{(rad)}$

结论:喇叭口的面积 A, 越大, 增益越大, 斑驳功率波束宽度越小。

7. 方向图

图 4 水平方向图

图 5 垂直方向图

8.

9.

四、实验收获与体会

通过本次实验,我对理论课上学到的有关天线的知识更加熟悉了。同时也通过实验验证电磁场与电磁波的理论。

实验时我们发现周围环境对实验的干扰很大,所以我们尽量减少走动,以减少实验误差。