Résumé

Nous poursuivons notre éternelle nécessité d'agrandir le catalogues de fonctions à notre disposition. Nous en avons plus que besoin pour dériver ou intégrer...

1 Composition de deux fonctions

Définition | Fonction composée

Soient f une fonction définie sur I et g une fonction définie sur f(I), l'ensemble des images f(x) pour tout $x \in I$.

On peut construire une fonction $g \circ f$, appelée **fonction composée de** f **par** g, définie sur I par :

$$g \circ f(x) = g(f(x)).$$

Exemples Soit f définie sur \mathbf{R}_+ par $f(x) = 2 + \sqrt{x}$. Notons que $f(\mathbf{R}_+) = [2; +\infty[$.

Ainsi, en prenant g définie sur $[2;+\infty[$ par $g(x)=\frac{1}{x},$ on peut donner l'expression de $g\circ f$ définie sur $[2;+\infty[$.

$$g \circ f(x) = g(f(x)) = g(2 + \sqrt{x}) = \frac{1}{2 + \sqrt{x}}.$$

► Soit f définie sur \mathbf{R} par $3 - x^2$ et g définie sur \mathbf{R} par $2x^2$. $g \circ f$ est définie sur \mathbf{R} par :

$$g \circ f(x) = g(3-x^2) = 2(3-x^2)^2$$
.

2 Dérivation de composées

Théorème | Dérivation d'une composée

Soient f une fonction dérivable sur I et g une fonction dérivable sur f(I). $g \circ f$ est dérivable sur I et on a :

$$(g \circ f)' = f' \times (g' \circ f).$$

Propriété | Composée affine

Soient a, b deux réels et I un intervalle. Notons $J = \{ax + b | x \in I\}$ et soit f une fonction dérivable sur J.

La fonction g définie par g(x) = f(ax + b) pour tout $x \in I$ est dérivable sur I et :

$$g'(x) = a \times f'(ax + b).$$

Exemple Soit f définie sur $[2; +\infty[$ par $f(x) = \sqrt{4x - 8}$. f est dérivable sur $[2; +\infty[$ et pour tout $x \in]2; +\infty[$, $f'(x) = 4 \times \frac{1}{2\sqrt{4x - 8}} = \frac{2}{\sqrt{4x - 8}}$.

Propriété | Composée puissance

Soient $n \in \mathbb{N}^*$ et f dérivable sur I (et ne s'annulant pas sur I si n < 0). f^n est dérivable sur I et $(f^n)' = nf'(f)^{n-1}$.

Exemple Soit f définie sur \mathbf{R} par :

$$f(x) = \cos(x)^3.$$

f est dérivable sur ${\bf R}$ et :

$$f'(x) = \cos'(x) \times 3\cos(x)^2 = -3\sin(x)\cos^2(x).$$

Propriété | Composée racine carrée

Soit f strictement positive et dérivable sur I.

 \sqrt{f} est dérivable sur I et $(\sqrt{f})' = \frac{f'}{2\sqrt{f}}$.

Exemple Soit f définie sur \mathbf{R} par :

$$f(x) = \sqrt{1 + x^2}.$$

f est dérivable sur ${\bf R}$ et :

$$f'(x) = \frac{2x}{2\sqrt{1+x^2}} = \frac{x}{\sqrt{1+x^2}}.$$

Propriété | Composée exponentielle

Soit f dérivable sur I.

 $\exp(f)$ est dérivable sur I et $(\exp(f))' = f' \exp(f)$.

Exemple Soit f définie sur \mathbf{R} par :

$$f(x) = e^{8x^2}.$$

f est dérivable sur \mathbf{R} et :

$$f'(x) = 16x \times e^{8x^2} = 16xe^{8x^2}$$
.

Propriété | Composée logarithmique

Soit f strictement positive et dérivable sur I.

 $\ln f$ est dérivable sur I et $(\ln f)' = \frac{f'}{f}$.

Exemple Soit f définie sur \mathbf{R} par :

$$f(x) = \ln(e^x + 1).$$

f est dérivable sur \mathbf{R} et :

$$f'(x) = \frac{\mathrm{e}^x}{\mathrm{e}^x + 1}.$$