

파이썬 - HW1

임베디드스쿨1기 Lv1과정 2020. 07. 27 박하늘

1. 정적분

정적분의 개념을 다시 정리를 해보자.

닫힌구간[a,b]에서 연속인 함수 y = f(x)를 생각하고, f(X) >= 0으로 가정하자. n등분 한 후 직사각형의 넓이의 합을 극한의 정적분으로 정의할 수 있다.

- 1. 구하고자 하는 부분의 밑변을 n등분하고,n개 직사각형 만든다.
- 2. k번째 넓이를 만들어 시그마를 이용해 모든 직사각형의 총합을 구한다.
- 3. n을 무한대로 보내어 곡선을 포함한 도형의 넓이의 극한 값을 구한다. (극한으로 보내면 Sn의 값이 S으로 수렴한다.)

$$S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=1}^n f(x_k) dx$$

1. 정적분

이처럼 넓이의 합을 한줄로 표현했는데도 너무 복잡하다. 이것을 인테그랄을 사용해서 한줄로 표현한 것이 정적분이며, 정적분 식은 아래와 같다.

$$\int_{a}^{b} f(x) dx$$

이처럼 수열, 시그마가 아닌 인테그랄의 개념을 처음 사용 사람은 누구일까? 라이츠니츠

2. Leibniz's Integral Rule

라이프니츠 법칙은 적분과 미분이 조우하는 식이다. 뉴턴과 양대산맥이며, 둘은 독립적이다.

뉴턴은 미적분학 연구에서 무한급수를 많이 사용했다면, 라이프니츠는 미적분학에서 인테그랄을 개념을 처음 사용하여 미적분학을 연구했다. 이제 라이프니츠의 법칙을 살펴보자.

Leibniz's Integral Rule

For $-\infty < a(x), b(x) < \infty$, the derivative of the integral $\int_{a(x)}^{b(x)} f(x,t) dt$ is

$$\frac{d}{dx} \left(\int_{a(x)}^{b(x)} f\left(x,t\right) dt \right) = f\left(x,b\left(x\right)\right) \cdot \frac{d}{dx} \, b\left(x\right) - f\left(x,a\left(x\right)\right) \cdot \frac{d}{dx} \, a\left(x\right) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f\left(x,t\right) dt$$

As a corollary, if a and b are constants differentiation and integral can be swapped

$$\frac{d}{dx}\left(\int_{a}^{b}f\left(x,t\right)dt\right)=\int_{a}^{b}\frac{\partial}{\partial x}f\left(x,t\right)dt$$

라이프니츠 법칙으로 적분하는데 속미분, 편미분 개념이 나온다. 저기 식에서 보면 a,b상수에 대해서 속미분 하는 개념이니까 0이 된다. 그럼 결국 앞은 다 사라지고 아래의 식 (편미분)형태만 남게 된다.

$$\int_{a}^{b} \frac{\partial}{\partial x} f(x,t) dt$$

