

Building the k8s cluster

THAO LUONG 03/2022

Content

- Design a kubernetes cluster
- ☐ Installing k8s master and worker nodes
- ☐ Building a Highly Available k8s cluster
- ☐ Configuring secure cluster communication
- Running end-to-end tests

Design a Kubernetes cluster

- Purpose
- ☐ Cloud or On-prem
- Workload of cluster

Purpose

- Education
 - Minikube, kind / single node
- Developing/Testing
 - Cluster with one master/ multi worker.
 - Cloud resource.
- Production application

Cloud or onPrem

- ☐ Use Kubeadm to install on Prem
- ☐ Use cloud service

Install the K8s cluster

Three-Node Cluster

We will be building a three-node cluster, with one master and two worker nodes.

HA cluster

HA cluster

HA cluster

Installation Requirements

System Requirements	Container Runtime	Networking
Linux - Ubuntu/CentOS	Container Runtime Interface (CRI)	Connectivity between all Nodes
2 CPUs	Docker	
2GB RAM		
Swap Disabled		

Cluster Network Port

Component	Ports (tcp)	Used By
API	6443	All
etcd	2379-2380	API/etcd
Scheduler	10251	Self
Controller Manager	10252	Self
Kubelet	10250	Control Plane
Kubelet	10250	Control Plane
NodePort	30000-32767	All

Getting K8s

Maintained on GitHub

https://github.com/kubernetes/kubernetes

Linux Distribution Repositories yum and apt

Building your cluster

Install Kubernetes

Create Your Cluster

Configure Pod Networking

Join Nodes to your Cluster

Required Package

Configuring secure cluster communication


```
# View the kube config
cat .kube/config | more
# View the service account token
kubectl get secrets
```


Configuring secure cluster communication

Roles and Access

RBAC (role-based access control) is used to prevent unauthorized users from modifying the cluster state.

Service accounts are how a pod authenticates to the API server. A service account represents the identity of the app running in the pod.

Testing the cluster

Testing the Cluster

Testing to make sure the cluster is operating correctly, so when you deploy your application, you don't have any unforeseen problems.

Checklist Verify that: Deployments can run Pods can run Pods can be directly accessed Logs can be collected Commands run from pod Services can provide access Nodes are healthy Pods are healthy

Testing the cluster

- Conformance tests
 - Kubetest.
 - Sonobouy test.
- End to end test

End to end test

kubectl run nginximage=nginx	Run a simple nginx deployment
kubectl get deployments	View the current deployments
kubectl get pods	List the pods in the cluster
kubectl port-forward <pod_name> 8081:80</pod_name>	Forward port 80 to 8081 on pod
curlhead http://127.0.0.1:8081	Get a response from the nginx pod
kubectl logs <pod_name></pod_name>	Get the pod's logs
kubectl exec -it <pod_name> nginx -v</pod_name>	Run a command on the pod nginx
kubectl expose deployment nginxport 80type NodePort	Create a service using our deployment
kubectl get services	List the services in the cluster
curl -I localhost: <node port=""></node>	Get a response from the service
kubectl get nodes	List node status
kubectl describe nodes	Get detailed info about nodes
kubectl describe pods	Get detailed info about pods

