SUTD 50.039 Theory and Practice of Deep Learning (2024)

HW2 - Part 2

Last update: 26-Feb, 2024

Answer all questions.

Q1: Filtering

Given the following 5x5 image and the 3x3 filter kernel (both are two channels), calculate the output of the filtering in the following settings:

• horizontal stride = vertical stride = 1

• horizontal stride = vertical stride = 2

Assume no boundary padding is used.

Image:

#### Channel 1:

| 2  | 3  | 4  | 5 | 6 |
|----|----|----|---|---|
| 14 | 15 | 16 | 1 | 1 |
| 6  | 7  | 8  | 0 | 0 |
| 8  | 10 | 12 | 1 | 2 |
| 22 | 24 | 26 | 3 | 3 |

#### Channel 2:

| 22 | 23 | 24 | 12 | 14 |
|----|----|----|----|----|
| 14 | 15 | 16 | 0  | 0  |
| 6  | 7  | 8  | 0  | 0  |
| 8  | 10 | 12 | 1  | 2  |
| 22 | 24 | 26 | 5  | 5  |

Filter kernel:

### Channel 1:

| 1 | 0 | 0 |
|---|---|---|
| 1 | 0 | 0 |
| 1 | 0 | 0 |

## Channel 2:

| 0 | 0 | 0 |
|---|---|---|
| 1 | 0 | 0 |
| 0 | 0 | 0 |

## Q2: Softmax and cross entropy loss

Given the following deep neural network classification system (three classes):



For a training sample x, the activation h before the softmax layer is given by:  $h = [-0.5, 0.3, 0.2]^T$ 

Suppose the ground-truth class of this training sample is the second class.

Compute *L*.

(Note: Use natural logarithm, i.e., logarithm to the base of e)

# Q3: CNN architecture

In the following CNN, 5x5 convolutions are used throughout the network, with horizontal stride = vertical stride = 1 and no padding.



Calculate the number of parameters in this CNN.