# STM32H753xI



# 32-bit Arm<sup>®</sup> Cortex<sup>®</sup>-M7 400MHz MCUs, up to 2MB Flash, 1MB RAM, 46 com. and analog interfaces, crypto

Datasheet - production data

#### **Features**

#### Core

32-bit Arm<sup>®</sup> Cortex<sup>®</sup>-M7 core with double-precision FPU and L1 cache: 16 Kbytes of data and 16 Kbytes of instruction cache allowing one cache line to be filled in a single access from the 256-bit embedded Flash memory; frequency up to 400 MHz, MPU, 856 DMIPS/2.14 DMIPS/MHz (Dhrystone 2.1), and DSP instructions

#### **Memories**

- Up to 2 Mbytes of Flash memory with readwhile-write support
- 1 Mbyte of RAM: 192 Kbytes of TCM RAM (inc. 64 Kbytes of ITCM RAM + 128 Kbytes of DTCM RAM for time critical routines), 864 Kbytes of user SRAM, and 4 Kbytes of SRAM in Backup domain
- Dual mode Quad-SPI memory interface running up to 133 MHz
- Flexible external memory controller with up to 32-bit data bus: SRAM, PSRAM, SDRAM/LPSDR SDRAM, NOR/NAND Flash clocked up to 133 MHz in synchronous mode
- · CRC calculation unit

#### Security

 ROP, PC-ROP, active tamper, secure firmware upgrade support, Secure access mode

#### General-purpose input/outputs

- Up to 168 I/O ports with interrupt capability
  - Fast I/Os capable of up to 133 MHz
  - Up to 164 5 V-tolerant I/Os



#### Reset and power management

- 3 separate power domains which can be independently clock gated or switched off to maximize power efficiency:
  - D1: high-performance capabilities for high bandwidth peripherals
  - D2: communication peripherals and timers
  - D3: reset/clock control/power management
- 1.62 to 3.6 V application supply and I/Os
- POR, PDR, PVD and BOR
- Dedicated USB power embedding a 3.3 V internal regulator to supply the internal PHYs
- Embedded regulator (LDO) with configurable scalable output to supply the digital circuitry
- Voltage scaling in Run and Stop mode (5 configurable ranges)
- Backup regulator (~0.9 V)
- Voltage reference for analog peripheral/V<sub>REF+</sub>
- Low-power modes: Sleep, Stop, Standby and V<sub>BAT</sub> supporting battery charging

#### Low-power consumption

Total current consumption down to 4 μA

#### **Clock management**

 Internal oscillators: 64 MHz HSI, 48 MHz HSI48, 4 MHz CSI, 40 kHz LSI

- External oscillators: 4-48 MHz HSE, 32.768 kHz LSE
- 3× PLLs (1 for the system clock, 2 for kernel clocks) with fractional mode

#### Interconnect matrix

- 3 bus matrices (1 AXI and 2 AHB)
- Bridges (5× AHB2-APB, 2× AXI2-AHB)

#### 4 DMA controllers to unload the CPU

- 1× high-speed general-purpose master direct memory access controller (MDMA) with linked list support
- 2× dual-port DMAs with FIFO and request router capabilities
- 1× basic DMA with request router capabilities

#### Up to 35 communication peripherals

- 4× I2C FM+ interfaces (SMBus/PMBus)
- 4× USART/4x UARTs (ISO7816 interface, LIN, IrDA, modem control, up to 12.5 Mbit/s) and 1x LPUART
- 6× SPIs, including 3 with muxed duplex I2S audio class accuracy via internal audio PLL or external clock, 1x I2S in LP domain (up to 133 MHz)
- 4x SAIs (serial audio interface)
- SPDIFRX interface
- SWPMI single-wire protocol master I/F
- · MDIO Slave interface
- 2× SD/SDIO/MMC interfaces (up to 125 MHz)
- 2× CAN controllers: 2 with CAN FD, 1 with time-triggered CAN (TT-CAN)
- 2× USB OTG interfaces (1FS, 1HS/FS)
- Ethernet MAC interface with DMA controller
- HDMI-CEC
- 8- to 14-bit camera interface (up to 80 MHz)

#### 11 analog peripherals

 3× ADCs with 16-bit max. resolution (14 bits 4 MSPS, 16 bits 3.6 MSPS)

- 1× temperature sensor
- 2× 12-bit D/A converters (1 MHz)
- 2× ultra-low-power comparators
- 2× operational amplifiers (8 MHz bandwidth)
- 1× digital filters for sigma delta modulator (DFSDM) with 8 channels/4 filters

#### **Graphics**

- LCD-TFT controller up to XGA resolution
- Chrom-ART graphical hardware Accelerator™ (DMA2D) to reduce CPU load
- Hardware JPEG Codec

#### Up to 22 timers and watchdogs

- 1× high-resolution timer (2.5 ns max resolution)
- 2× 32-bit timers with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input (up to 200 MHz)
- 2× 16-bit advanced motor control timers (up to 200 MHz)
- 10× 16-bit general-purpose timers (up to 200 MHz)
- 5× 16-bit low-power timers (up to 200 MHz)
- 2× watchdogs (independent and window)
- 1× SysTick timer
- RTC with sub-second accuracy & HW calendar

#### Cryptographic acceleration

- AES 128, 192, 256, TDES,
- HASH (MD5, SHA-1, SHA-2), HMAC
- True random number generators (3 oscillators each)

#### **Debug mode**

- · SWD & JTAG interfaces
- 4 Kbyte Embedded Trace Buffer

#### 96-bit unique ID

# All packages are ECOPACK®2 compliant

#### Table 1. Device summary

| Reference   | Part number                                                                  |
|-------------|------------------------------------------------------------------------------|
| STM32H753xI | STM32H753VI, STM32H753ZI, STM32H753II, STM32H753BI, STM32H753XI, STM32H753AI |

STM32H753xl Contents

# **Contents**

| 1 | Intro | luction                                          | 2 |
|---|-------|--------------------------------------------------|---|
| 2 | Desc  | ription                                          | 3 |
| 3 | Func  | ional overview                                   | 8 |
|   | 3.1   | Arm® Cortex®-M7 with FPU                         | 8 |
|   | 3.2   | Memory protection unit (MPU)                     | 8 |
|   | 3.3   | Memories                                         | 9 |
|   |       | 3.3.1 Embedded Flash memory                      | 9 |
|   |       | 3.3.2 Secure Access mode                         | 9 |
|   |       | 3.3.3 Embedded SRAM                              | 0 |
|   | 3.4   | Boot modes                                       | 0 |
|   | 3.5   | Power supply management                          | 1 |
|   |       | 3.5.1 Power supply scheme                        |   |
|   |       | 3.5.2 Power supply supervisor                    |   |
|   |       | 3.5.3 Voltage regulator                          |   |
|   | 3.6   | Low-power strategy                               |   |
|   | 3.7   | Reset and clock controller (RCC)                 |   |
|   |       | 3.7.1 Clock management                           |   |
|   |       | 3.7.2 System reset sources                       |   |
|   | 3.8   | General-purpose input/outputs (GPIOs)            |   |
|   | 3.9   | Bus-interconnect matrix                          |   |
|   | 3.10  | DMA controllers                                  |   |
|   | 3.11  | Chrom-ART Accelerator™ (DMA2D)                   | 6 |
|   | 3.12  | Nested vectored interrupt controller (NVIC)      | 7 |
|   | 3.13  | Extended interrupt and event controller (EXTI) 2 | 7 |
|   | 3.14  | Cyclic redundancy check calculation unit (CRC) 2 | 7 |
|   | 3.15  | Flexible memory controller (FMC)                 | 8 |
|   | 3.16  | Quad-SPI memory interface (QUADSPI)              | 8 |
|   | 3.17  | Analog-to-digital converters (ADCs)              | 8 |
|   | 3.18  | Temperature sensor                               |   |
|   | 3.19  | V <sub>BAT</sub> operation                       | 9 |
|   |       | <del></del>                                      |   |

Contents STM32H753xI

| 3.20 | Digital-t | o-analog converters (DAC)                                            | 30   |
|------|-----------|----------------------------------------------------------------------|------|
| 3.21 | Ultra-lo  | w-power comparators (COMP)                                           | 30   |
| 3.22 | Operati   | onal amplifiers (OPAMP)                                              | 30   |
| 3.23 | Digital f | ilter for sigma-delta modulators (DFSDM)                             | 31   |
| 3.24 | Digital o | camera interface (DCMI)                                              | 32   |
| 3.25 | LCD-TF    | T controller                                                         | 33   |
| 3.26 | JPEG C    | Codec (JPEG)                                                         | 33   |
| 3.27 | Randor    | n number generator (RNG)                                             | 33   |
| 3.28 |           | graphic acceleration (CRYPT and HASH)                                |      |
| 3.29 | Timers    | and watchdogs                                                        | 34   |
|      | 3.29.1    | High-resolution timer (HRTIM1)                                       |      |
|      | 3.29.2    | Advanced-control timers (TIM1, TIM8)                                 | . 37 |
|      | 3.29.3    | General-purpose timers (TIMx)                                        | . 37 |
|      | 3.29.4    | Basic timers TIM6 and TIM7                                           | . 38 |
|      | 3.29.5    | Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5)            | . 38 |
|      | 3.29.6    | Independent watchdog                                                 | . 38 |
|      | 3.29.7    | Window watchdog                                                      | . 38 |
|      | 3.29.8    | SysTick timer                                                        | . 38 |
| 3.30 | Real-tin  | ne clock (RTC), backup SRAM and backup registers                     | 39   |
| 3.31 | Inter-int | regrated circuit interface (I <sup>2</sup> C)                        | 40   |
| 3.32 | Univers   | al synchronous/asynchronous receiver transmitter (USART)             | 40   |
| 3.33 | Low-po    | wer universal asynchronous receiver transmitter (LPUART)             | 41   |
| 3.34 | Serial p  | eripheral interface (SPI)/inter- integrated sound interfaces (I2S) . | 42   |
| 3.35 | Serial a  | udio interfaces (SAI)                                                | 42   |
| 3.36 | SPDIFF    | RX Receiver Interface (SPDIFRX)                                      | 43   |
| 3.37 | Single    | vire protocol master interface (SWPMI)                               | 43   |
| 3.38 | Manage    | ement Data Input/Output (MDIO) slaves                                | 44   |
| 3.39 | SD/SDI    | O/MMC card host interfaces (SDMMC)                                   | 44   |
| 3.40 | Control   | ler area network (FDCAN1, FDCAN2)                                    | 44   |
| 3.41 | Univers   | al serial bus on-the-go high-speed (OTG_HS)                          | 45   |
| 3.42 | Etherne   | et MAC interface with dedicated DMA controller (ETH)                 | 45   |
| 3.43 |           | efinition multimedia interface (HDMI)                                |      |
|      |           | mer electronics control (CEC)                                        |      |
| 3.44 | Debug     | infrastructure                                                       | 46   |

STM32H753xI Contents

| 4 | Mem  | nory ma   | pping                                                  | 47  |
|---|------|-----------|--------------------------------------------------------|-----|
| 5 | Pin  | descript  | ions                                                   | 48  |
| 6 | Elec | trical ch | naracteristics                                         | 95  |
|   | 6.1  | Param     | eter conditions                                        | 95  |
|   |      | 6.1.1     | Minimum and maximum values                             | 95  |
|   |      | 6.1.2     | Typical values                                         | 95  |
|   |      | 6.1.3     | Typical curves                                         | 95  |
|   |      | 6.1.4     | Loading capacitor                                      | 95  |
|   |      | 6.1.5     | Pin input voltage                                      | 95  |
|   |      | 6.1.6     | Power supply scheme                                    | 96  |
|   |      | 6.1.7     | Current consumption measurement                        | 97  |
|   | 6.2  | Absolu    | ite maximum ratings                                    | 97  |
|   | 6.3  | Operat    | ting conditions                                        | 99  |
|   |      | 6.3.1     | General operating conditions                           | 99  |
|   |      | 6.3.2     | VCAP1/VCAP2/VCAP3 external capacitor                   | 100 |
|   |      | 6.3.3     | Operating conditions at power-up / power-down          | 100 |
|   |      | 6.3.4     | Embedded reset and power control block characteristics | 101 |
|   |      | 6.3.5     | Embedded reference voltage                             | 102 |
|   |      | 6.3.6     | Supply current characteristics                         | 103 |
|   |      | 6.3.7     | Wakeup time from low-power modes                       | 116 |
|   |      | 6.3.8     | External clock source characteristics                  | 117 |
|   |      | 6.3.9     | Internal clock source characteristics                  | 121 |
|   |      | 6.3.10    | PLL characteristics                                    | 123 |
|   |      | 6.3.11    | Memory characteristics                                 | 124 |
|   |      | 6.3.12    | EMC characteristics                                    | 126 |
|   |      | 6.3.13    | Absolute maximum ratings (electrical sensitivity)      | 127 |
|   |      | 6.3.14    | I/O current injection characteristics                  | 128 |
|   |      | 6.3.15    | I/O port characteristics                               | 129 |
|   |      | 6.3.16    | NRST pin characteristics                               | 135 |
|   |      | 6.3.17    | FMC characteristics                                    | 136 |
|   |      | 6.3.18    | Quad-SPI interface characteristics                     | 156 |
|   |      | 6.3.19    | Delay block (DLYB) characteristics                     | 158 |
|   |      | 6.3.20    | 16-bit ADC characteristics                             | 158 |
|   |      | 6.3.21    | DAC electrical characteristics                         | 164 |
|   |      | 6.3.22    | Voltage reference buffer characteristics               | 167 |
|   |      |           |                                                        |     |

| 9 | Revi | sion his  | tory                                                                  |
|---|------|-----------|-----------------------------------------------------------------------|
| 8 | Orde | ering inf | ormation                                                              |
|   |      | 7.9.1     | Reference document                                                    |
|   | 7.9  | Therma    | al characteristics                                                    |
|   | 7.8  | TFBGA     | A240+25 package information                                           |
|   | 7.7  | UFBGA     | A176+25 package information 218                                       |
|   | 7.6  | LQFP2     | 08 package information                                                |
|   | 7.5  | LQFP1     | 76 package information                                                |
|   | 7.4  |           | A169 package information                                              |
|   | 7.3  | LQFP1     | 44 package information                                                |
|   | 7.2  |           | A100, 8 x 8 x 0.8 mm thin fine-pitch ball grid array ge information   |
|   | 7.1  |           | 00 package information                                                |
| 7 | Pack | cage info | ormation                                                              |
|   |      | 6.3.33    | JTAG/SWD interface characteristics                                    |
|   |      | 6.3.32    | Communications interfaces                                             |
|   |      | 6.3.31    | Timer characteristics                                                 |
|   |      | 6.3.30    | LCD-TFT controller (LTDC) characteristics                             |
|   |      | 6.3.29    | Camera interface (DCMI) timing specifications 177                     |
|   |      | 6.3.28    | Digital filter for Sigma-Delta Modulators (DFSDM) characteristics 174 |
|   |      | 6.3.27    | Operational amplifiers characteristics                                |
|   |      | 6.3.26    | Comparator characteristics                                            |
|   |      | 6.3.25    | Voltage booster for analog switch                                     |
|   |      | 6.3.24    | V <sub>BAT</sub> monitoring characteristics                           |
|   |      | 6.3.23    | Temperature sensor characteristics                                    |

STM32H753xl List of tables

# List of tables

| Table 2. STM32H753xl features and peripheral counts. Table 3. System vs domain low-power mode. Table 4. DFSDM implementation Table 5. Timer feature comparison. Table 6. USART features Table 7. Legend/abbreviations used in the pinout table Table 8. STM32H753xl pin/ball definition. Table 9. Port A alternate functions. Table 10. Port B alternate functions Table 11. Port C alternate functions Table 12. Port D alternate functions Table 13. Port E alternate functions Table 14. Port F alternate functions Table 15. Port G alternate functions Table 16. Port H alternate functions Table 17. Port I alternate functions Table 18. Port J alternate functions Table 19. Port K alternate functions Table 20. Voltage characteristics Table 21. Current characteristics Table 22. Thermal characteristics Table 23. General operating conditions Table 24. VCAP1/VCAP2/VCAP3 operating conditions Table 25. Operating conditions at power-up / power-down (regulator ON) Table 26. Reset and power control block characteristics Table 27. Embedded reference voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Table 1.   | Device summary                                                      | 2     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------|-------|
| Table 3. System vs domain low-power mode. Table 4. DFSDM implementation Table 5. Timer feature comparison Table 6. USART features Table 7. Legend/abbreviations used in the pinout table. Table 8. STM32H753xl pin/ball definition Table 9. Port A alternate functions Table 10. Port C alternate functions Table 11. Port C alternate functions Table 12. Port D alternate functions Table 14. Port F alternate functions Table 15. Port G alternate functions Table 16. Port A alternate functions Table 17. Port I alternate functions Table 18. Port J alternate functions Table 19. Port I alternate functions Table 19. Port I alternate functions Table 19. Port J alternate functions Table 19. Port I alternate functions Table 20. Voltage characteristics Table 21. Current characteristics Table 22. Thermal characteristics Table 23. General operating conditions Table 25. Operating conditions at power-up / power-down (regulator ON) Table 26. Reset and power control block characteristics Table 27. Embedded reference voltage Table 28. Internal reference voltage calibration values Table 29. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OF, regulator ON. Typical and maximum current consumption in Run mode, regulator ON. Typical and maximum current consumption in Step mode, regulator ON. Typical and maximum current consumption in Step mode, regulator ON. Typical and maximum current consumption in Step mode, regulator ON. Typical and maximum current consumption in Step mode, regulator ON. Typical and maximum current consumption in Step mode, regulator ON. Typical and maximum current consumption in Step mode, regulator ON. Typical and maximum current consumption in Step  | Table 2.   |                                                                     |       |
| Table 4. DFSDM implementation Table 5. Timer feature comparison Table 6. USART features Table 7. Legend/abbreviations used in the pinout table. Table 8. STM32H753xl pin/ball definition Table 9. Port A alternate functions Table 10. Port B alternate functions Table 11. Port C alternate functions Table 12. Port D alternate functions Table 13. Port E alternate functions Table 14. Port F alternate functions Table 15. Port G alternate functions Table 16. Port I alternate functions Table 17. Port I alternate functions Table 18. Port I alternate functions Table 19. Port I alternate functions Table 19. Port I alternate functions Table 19. Port I alternate functions Table 20. Voltage characteristics Table 21. Current characteristics Table 22. Thermal characteristics Table 23. General operating conditions Table 24. Corrent characteristics Table 25. Operating conditions at power-up / power-down (regulator ON) Table 28. Internal reference voltage calibration values Table 29. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON. Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Table 33. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Typical and maximum current consumption in Sleep mode, regulator ON. Typical and maximum current consumption in Sleep mode, regulator ON. Typical and maximum current consumption in Sleep mode, regulator ON. Typical and maximum current consumption in Sleep mode, regulator ON. Typical and maximum current consumption in Sleep mode, regulator ON. Typical and maximum current consumption in Sleep mode, regulator ON. Typical and maximum current consumption in Sleep mode, regulator ON. Typical and maximum current consumption in Sleep mo | Table 3.   |                                                                     |       |
| Table 5. Timer feature comparison. Table 6. USART features Table 7. Legend/abbreviations used in the pinout table Table 8. STM32H753xl pin/ball definition. Table 9. Port A alternate functions Table 10. Port C alternate functions Table 11. Port C alternate functions Table 12. Port D alternate functions Table 14. Port F alternate functions Table 15. Port E alternate functions Table 16. Port I alternate functions Table 17. Port I alternate functions Table 18. Port J alternate functions Table 19. Port J alternate functions Table 19. Port I alternate functions Table 19. Port A alternate functions Table 19. Port A alternate functions Table 20. Voltage characteristics Table 21. Thermal characteristics Table 22. Thermal characteristics Table 23. General operating conditions Table 24. VCAP1/VCAP2/VCAP3 operating conditions Table 25. Operating conditions at power-up / power-down (regulator ON) Reset and power control block characteristics Table 26. Sembedded reference voltage Internal reference voltage Internal reference voltage calibration values Table 29. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON. Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Typical consumption in Run mode and corresponding performance versus code position. Table 33. Typical and maximum current consumption in Step mode, regulator ON. Typical and maximum current consumption in Step mode, regulator ON. Typical and maximum current consumption in Step mode, regulator ON. Typical and maximum current consumption in Step mode, regulator ON. Typical and maximum current consumption in Step mode, regulator ON. Typical and maximum current consumption in Step mode, regulator ON. Typical and maximum current consumption in Step mode, regulator ON. Typical and | Table 4.   |                                                                     |       |
| Table 6. USART features. Table 7. Legend/abbreviations used in the pinout table. Table 8. STM32H753xl pin/ball definition. Table 9. Port A alternate functions Table 10. Port B alternate functions Table 11. Port C alternate functions Table 12. Port D alternate functions Table 13. Port E alternate functions Table 14. Port F alternate functions Table 15. Port G alternate functions Table 16. Port A alternate functions Table 17. Port I alternate functions Table 18. Port J alternate functions Table 19. Port A alternate functions Table 21. Current characteristics Table 22. Thermal characteristics Table 23. General operating conditions Table 24. VCAP1/VCAP2/VCAP3 operating conditions Table 25. Operating conditions at power-up / power-down (regulator ON) Table 26. Reset and power control block characteristics Table 27. Embedded reference voltage Internal reference voltage calibration values Table 28. Internal reference voltage alternating from Flash memory, cache ON, regulator ON. Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON. Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Table 33. Typical and maximum current consumption in Step mode, regulator ON. Table 34. Typical and maximum current consumption in Step mode, regulator ON. Table 35. Typical and maximum current consumption in Step mode, regulator ON. Table 36. Typical and maximum current consumption in Step mode, regulator ON. Table 37. Typical and maximum current consumption in Step mode, regulator ON. Table 38. Propical and maximum current consumption in Step mode, regulator ON. Table 39. Peripheral current consumption in Step mode, regulator ON. Table 39. Peripheral current consumption in Step mode, regulator ON. Table 39. Peripheral current consumption in Step Mode. Table | Table 5.   | ·                                                                   |       |
| Table 7. Legend/abbreviations used in the pinout table. Table 8. STM32H753xl pin/ball definition. Table 10. Port B alternate functions. Table 11. Port C alternate functions. Table 11. Port C alternate functions. Table 13. Port E alternate functions. Table 14. Port D alternate functions. Table 15. Port G alternate functions. Table 16. Port B alternate functions. Table 17. Port I alternate functions. Table 18. Port J alternate functions. Table 19. Port I alternate functions. Table 20. Voltage characteristics. Table 21. Current characteristics. Table 22. Thermal characteristics. Table 23. General operating conditions. VOAP1/VCAP2/VCAP3 operating conditions. Table 24. VCAP1/VCAP2/VCAP3 operating conditions. Table 25. Operating conditions at power-up / power-down (regulator ON). Table 26. Reset and power control block characteristics. Table 27. Embedded reference voltage. Table 28. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON. Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON. Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Table 32. Typical current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Table 33. Typical and maximum current consumption in Step mode, regulator ON. Table 34. Typical and maximum current consumption in Step mode, regulator ON. Table 35. Typical and maximum current consumption in Step mode, regulator ON. Table 36. Typical and maximum current consumption in Step mode, regulator ON. Table 37. Typical and maximum current consumption in Step mode, regulator ON. Table 38. Propie | Table 6.   | ·                                                                   |       |
| Table 8. STM32H753xl pin/ball definition. Table 9. Port A alternate functions. Table 11. Port C alternate functions. Table 12. Port D alternate functions. Table 13. Port E alternate functions. Table 14. Port F alternate functions. Table 15. Port G alternate functions. Table 16. Port H alternate functions. Table 17. Port I alternate functions. Table 18. Port J alternate functions. Table 19. Port A alternate functions. Table 19. Port K alternate functions. Table 19. Port K alternate functions. Table 21. Current characteristics. Table 22. Thermal characteristics. Table 23. General operating conditions. Table 24. VCAP1/VCAP2/VCAP3 operating conditions. Table 25. Operating conditions at power-up / power-down (regulator ON). Table 26. Reset and power control block characteristics. Table 27. Embedded reference voltage. Table 28. Internal reference voltage calibration values. Table 29. Internal maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON. Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Table 33. Typical and maximum current consumption in Sleep mode, regulator ON. Table 34. Typical and maximum current consumption in Sleep mode, regulator ON. Table 35. Typical and maximum current consumption in Sleep mode, regulator ON. Table 36. Typical and maximum current consumption in Sleep mode, regulator ON. Table 37. Typical and maximum current consumption in Stop mode, regulator ON. Table 38. Typical and maximum current consumption in Stop brode, regulator ON. Table 39. Typical and maximum current consumption in Stop Standby and VBAT mode. Table 39. Peripheral current consumption in Stop, Standby and VBAT mode. Table 4 | Table 7.   |                                                                     |       |
| Table 9. Port A alternate functions Table 10. Port B alternate functions Table 11. Port C alternate functions Table 12. Port D alternate functions Table 13. Port E alternate functions Table 14. Port F alternate functions Table 15. Port G alternate functions Table 16. Port H alternate functions Table 17. Port I alternate functions Table 18. Port J alternate functions Table 19. Port I alternate functions Table 19. Port K alternate functions Table 20. Voltage characteristics Table 21. Current characteristics Table 22. Thermal characteristics Table 23. General operating conditions Table 24. VCAP1/VCAP2/VCAP3 operating conditions Table 25. Operating conditions at power-up / power-down (regulator ON) Table 26. Reset and power control block characteristics Table 27. Internal reference voltage calibration values Table 29. Internal reference voltage calibration values Table 29. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON. Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Table 32. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Table 33. Typical consumption in Run mode and corresponding performance versus code position. Table 34. Typical and maximum current consumption in Step mode, regulator ON. Table 35. Typical and maximum current consumption in Step mode, regulator ON. Table 36. Typical and maximum current consumption in Step mode, regulator ON. Table 37. Typical and maximum current consumption in Standby mode Typical and maximum current consumption in VBAT mode Table 38. Typical and maximum current consumption in VBAT mode Table 39. Peripheral current consumption in Stop, Standby and VBAT mode Table 39. Low-power mode wakeup timings Table 41. Low-speed external user clock characteristics Table 42. Low-speed external user clock characteristics                    | Table 8.   | ·                                                                   |       |
| Table 10. Port B alternate functions. Table 11. Port C alternate functions. Table 12. Port D alternate functions. Table 13. Port E alternate functions. Table 14. Port F alternate functions. Table 15. Port G alternate functions. Table 16. Port H alternate functions. Table 17. Port I alternate functions. Table 18. Port J alternate functions. Table 19. Port A laternate functions. Table 19. Voltage characteristics Table 20. Voltage characteristics Table 21. Current characteristics Table 22. Thermal characteristics Table 23. General operating conditions. Table 24. VCAP1/VCAP2/VCAP3 operating conditions. Table 25. Operating conditions at power-up / power-down (regulator ON) Table 26. Reset and power control block characteristics. Table 27. Embedded reference voltage calibration values Table 28. Internal reference voltage calibration values Table 29. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON. Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Table 32. Typical and maximum current consumption in Stop mode, regulator ON. Table 33. Typical and maximum current consumption in Stop mode, regulator ON. Table 34. Typical and maximum current consumption in Stop mode, regulator ON. Table 35. Typical and maximum current consumption in Stop mode, regulator ON. Table 36. Typical and maximum current consumption in Stop mode, regulator ON. Table 37. Typical and maximum current consumption in Stop mode, regulator ON. Table 38. Peripheral current consumption in Stop, Standby and VBAT mode. Table 39. Peripheral current consumption in Stop, Standby and VBAT mode. Low-speed external user clock characteristics. Table 41. Low-speed e | Table 9.   |                                                                     |       |
| Table 12. Port D alternate functions. Table 13. Port E alternate functions. Table 14. Port F alternate functions. Table 15. Port G alternate functions. Table 16. Port H alternate functions. Table 17. Port I alternate functions. Table 18. Port J alternate functions. Table 19. Port K alternate functions. Table 19. Port K alternate functions. Table 20. Voltage characteristics Table 21. Current characteristics. Table 22. Thermal characteristics. Table 23. General operating conditions. Table 24. VCAP1/VCAP2/VCAP3 operating conditions. Table 26. Operating conditions at power-up / power-down (regulator ON). Table 27. Embedded reference voltage. Table 28. Internal reference voltage. Table 29. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON. Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Table 31. Typical consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Table 32. Typical consumption in Run mode and corresponding performance versus code position. Table 33. Typical consumption in Stop mode, regulator ON. Table 34. Typical and maximum current consumption in Stop mode, regulator ON. Table 35. Typical and maximum current consumption in Stop mode, regulator ON. Table 36. Typical and maximum current consumption in Stop mode, regulator ON. Table 37. Typical and maximum current consumption in Stop mode, regulator ON. Table 38. Peripheral current consumption in Run mode Table 39. Peripheral current consumption in Stop, Standby and VBAT mode Table 40. Low-power mode wakeup timings Table 41. Low-speed external user clock characteristics.                                                                                                                                       | Table 10.  | Port B alternate functions                                          |       |
| Table 12. Port D alternate functions. Table 13. Port E alternate functions. Table 14. Port F alternate functions. Table 15. Port G alternate functions. Table 16. Port H alternate functions. Table 17. Port I alternate functions. Table 18. Port J alternate functions. Table 19. Port K alternate functions. Table 19. Port K alternate functions. Table 20. Voltage characteristics Table 21. Current characteristics. Table 22. Thermal characteristics. Table 23. General operating conditions. Table 24. VCAP1/VCAP2/VCAP3 operating conditions. Table 26. Operating conditions at power-up / power-down (regulator ON). Table 27. Embedded reference voltage. Table 28. Internal reference voltage. Table 29. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON. Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Table 31. Typical consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Table 32. Typical consumption in Run mode and corresponding performance versus code position. Table 33. Typical consumption in Stop mode, regulator ON. Table 34. Typical and maximum current consumption in Stop mode, regulator ON. Table 35. Typical and maximum current consumption in Stop mode, regulator ON. Table 36. Typical and maximum current consumption in Stop mode, regulator ON. Table 37. Typical and maximum current consumption in Stop mode, regulator ON. Table 38. Peripheral current consumption in Run mode Table 39. Peripheral current consumption in Stop, Standby and VBAT mode Table 40. Low-power mode wakeup timings Table 41. Low-speed external user clock characteristics.                                                                                                                                       | Table 11.  | Port C alternate functions                                          | 84    |
| Table 13. Port E alternate functions Table 14. Port F alternate functions Table 15. Port G alternate functions Table 16. Port H alternate functions Table 17. Port I alternate functions Table 17. Port I alternate functions Table 18. Port J alternate functions Table 19. Port K alternate functions Table 20. Voltage characteristics Table 21. Current characteristics Table 22. Thermal characteristics Table 23. General operating conditions Table 24. VCAP1/VCAP2/VCAP3 operating conditions Table 25. Operating conditions at power-up / power-down (regulator ON) Table 26. Embedded reference voltage Table 27. Thermal reference voltage calibration values Table 28. Internal reference voltage calibration values Table 29. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON. Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON. Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Table 31. Typical consumption in Run mode and corresponding performance versus code position. Table 33. Typical consumption in Run mode and corresponding performance versus code position. Table 34. Typical and maximum current consumption in Step mode, regulator ON. Table 35. Typical and maximum current consumption in Step mode, regulator ON. Table 36. Typical and maximum current consumption in Step mode, regulator ON. Table 37. Typical and maximum current consumption in Stop mode, regulator ON. Table 38. Peripheral current consumption in Run mode Peripheral current consumption in Run mode Peripheral current consumption in Run mode Deripheral current consumption in Run mode Deripheral current consumption in Run mode Deripheral current consumption in Stop, Standby and VBAT mode Table 40. Low-speed external user clock characteristics. Table 41. High-speed external user clock characteristics.                                      | Table 12.  | Port D alternate functions                                          |       |
| Table 14. Port F alternate functions Table 15. Port G alternate functions Table 16. Port H alternate functions Table 17. Port I alternate functions Table 18. Port J alternate functions Table 18. Port J alternate functions Table 19. Port K alternate functions Table 20. Voltage characteristics Table 21. Current characteristics Table 22. Thermal characteristics Table 23. General operating conditions Table 24. VCAP1/VCAP2/VCAP3 operating conditions Table 25. Operating conditions at power-up / power-down (regulator ON) Table 26. Reset and power control block characteristics Table 27. Embedded reference voltage Table 28. Internal reference voltage calibration values Table 29. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON. Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON. Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Table 32. Typical consumption in Run mode and corresponding performance versus code position. Table 33. Typical consumption in Run mode and corresponding performance versus code position. Table 34. Typical and maximum current consumption in Step mode, regulator ON. Table 35. Typical and maximum current consumption in Step mode, regulator ON. Table 36. Typical and maximum current consumption in Step mode, regulator ON. Table 37. Typical and maximum current consumption in Step mode, regulator ON. Table 38. Peripheral current consumption in Run mode Table 39. Peripheral current consumption in Run mode Table 39. Peripheral current consumption in Stop, Standby and VBAT mode Table 40. Low-power mode wakeup timings Table 41. High-speed external user clock characteristics. Table 42. Low-speed external user clock characteristics. Table 42. Low-speed external user clock characteristics.                                                                                      | Table 13.  | Port E alternate functions                                          |       |
| Table 16. Port H alternate functions. Table 17. Port I alternate functions. Table 18. Port J alternate functions. Table 19. Port K alternate functions. Table 20. Voltage characteristics. Table 21. Current characteristics. Table 22. Thermal characteristics. Table 23. General operating conditions Table 25. Operating conditions at power-up / power-down (regulator ON). Table 26. Reset and power control block characteristics. Table 27. Embedded reference voltage calibration values Table 28. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON. Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON. Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON. Table 32. Typical consumption in Run mode and corresponding performance versus code position Table 33. Typical consumption in Run mode and corresponding performance versus code position Table 34. Typical and maximum current consumption in Sleep mode, regulator ON. Table 35. Typical and maximum current consumption in Stop mode, regulator ON. Table 36. Typical and maximum current consumption in Stop mode, regulator ON. Table 37. Typical and maximum current consumption in Stop mode, regulator ON. Table 38. Typical and maximum current consumption in Stop mode, regulator ON. Table 39. Peripheral current consumption in Run mode Table 39. Peripheral current consumption in Stop, Standby and VBAT mode Table 39. Peripheral current consumption in Stop, Standby and VBAT mode Table 39. Peripheral current consumption in Stop, Standby and VBAT mode Table 40. Low-power mode wakeup timings Table 41. High-speed external user clock characteristics. Table 42. Low-speed external user clock characteristics.                                                                                                                                                                    | Table 14.  | Port F alternate functions                                          | 88    |
| Table 17. Port I alternate functions. Table 18. Port J alternate functions Table 19. Port K alternate functions Table 20. Voltage characteristics Table 21. Current characteristics Table 22. Thermal characteristics Table 23. General operating conditions Table 24. VCAP1/VCAP2/VCAP3 operating conditions Table 25. Operating conditions at power-up / power-down (regulator ON) Table 26. Reset and power control block characteristics Table 27. Embedded reference voltage Table 28. Internal reference voltage calibration values Table 29. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON Table 32. Typical consumption in Run mode and corresponding performance versus code position Table 33. Typical consumption in Run mode and corresponding performance versus code position Table 34. Typical and maximum current consumption in Sleep mode, regulator ON. Table 35. Typical and maximum current consumption in Stop mode, regulator ON. Table 36. Typical and maximum current consumption in Stop mode, regulator ON. Table 37. Typical and maximum current consumption in Stop mode, regulator ON. Table 38. Peripheral current consumption in Run mode Table 39. Peripheral current consumption in Stop, Standby and VBAT mode Table 39. Peripheral current consumption in Stop, Standby and VBAT mode Table 40. Low-power mode wakeup timings Table 41. High-speed external user clock characteristics. Table 42. Low-speed external user clock characteristics.                                                                                                                                                                                                                                                                                   | Table 15.  | Port G alternate functions                                          | 89    |
| Table 18. Port J alternate functions Table 19. Port K alternate functions Table 20. Voltage characteristics Table 21. Current characteristics Table 22. Thermal characteristics. Table 23. General operating conditions Table 24. VCAP1/VCAP2/VCAP3 operating conditions Table 25. Operating conditions at power-up / power-down (regulator ON) Table 26. Reset and power control block characteristics Table 27. Embedded reference voltage Table 28. Internal reference voltage calibration values Table 29. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON Table 31. Typical consumption in Run mode and corresponding performance versus code position Table 32. Typical current consumption batch acquisition mode. Table 33. Typical current consumption batch acquisition mode. Table 34. Typical and maximum current consumption in Sleep mode, regulator ON. Table 35. Typical and maximum current consumption in Stop mode, regulator ON. Table 36. Typical and maximum current consumption in Stop mode, regulator ON. Table 37. Typical and maximum current consumption in Stop mode, regulator ON. Table 38. Peripheral current consumption in Run mode Table 39. Peripheral current consumption in Run mode Table 39. Peripheral current consumption in Run mode Table 40. Low-power mode wakeup timings Table 41. High-speed external user clock characteristics Table 43. 4-48 MHz HSE oscillator characteristics                                                                                                                                                                                                                                                                                                                                       | Table 16.  | Port H alternate functions                                          | 91    |
| Table 19. Port K alternate functions Table 20. Voltage characteristics Table 21. Current characteristics Table 22. Thermal characteristics Table 23. General operating conditions Table 24. VCAP1/VCAP2/VCAP3 operating conditions Table 25. Operating conditions at power-up / power-down (regulator ON) Table 26. Reset and power control block characteristics Table 27. Embedded reference voltage Table 28. Internal reference voltage calibration values Table 29. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON Table 32. Typical consumption in Run mode and corresponding performance versus code position Table 33. Typical current consumption batch acquisition mode Table 34. Typical and maximum current consumption in Steep mode, regulator ON. Table 35. Typical and maximum current consumption in Steep mode, regulator ON. Table 36. Typical and maximum current consumption in Standby mode Table 37. Typical and maximum current consumption in Standby mode Table 38. Peripheral current consumption in Run mode Table 39. Peripheral current consumption in Run mode Table 39. Peripheral current consumption in Stop, Standby and VBAT mode Table 40. Low-power mode wakeup timings Table 41. High-speed external user clock characteristics Table 43. 4-48 MHz HSE oscillator characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                | Table 17.  | Port I alternate functions                                          | 92    |
| Table 20. Voltage characteristics Table 21. Current characteristics Table 22. Thermal characteristics. Table 23. General operating conditions Table 24. VCAP1/VCAP2/VCAP3 operating conditions  Table 25. Operating conditions at power-up / power-down (regulator ON) Table 26. Reset and power control block characteristics Table 27. Embedded reference voltage Table 28. Internal reference voltage calibration values Table 29. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON  Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON  Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON  Table 32. Typical consumption in Run mode and corresponding performance versus code position  Table 33. Typical current consumption batch acquisition mode  Table 34. Typical and maximum current consumption in Step mode, regulator ON  Table 35. Typical and maximum current consumption in Stop mode, regulator ON  Table 36. Typical and maximum current consumption in Standby mode  Table 37. Typical and maximum current consumption in VBAT mode  Table 38. Peripheral current consumption in Run mode  Table 39. Peripheral current consumption in Stop, Standby and VBAT mode  Low-power mode wakeup timings  Table 41. High-speed external user clock characteristics  Table 43. 4-48 MHz HSE oscillator characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Table 18.  | Port J alternate functions                                          | 93    |
| Table 21. Current characteristics Table 22. Thermal characteristics. Table 23. General operating conditions Table 24. VCAP1/VCAP2/VCAP3 operating conditions. Table 25. Operating conditions at power-up / power-down (regulator ON) Table 26. Reset and power control block characteristics Table 27. Embedded reference voltage Table 28. Internal reference voltage calibration values Table 29. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON. Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON. Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Table 32. Typical consumption in Run mode and corresponding performance versus code position. Table 33. Typical current consumption batch acquisition mode Table 34. Typical and maximum current consumption in Sleep mode, regulator ON. Table 35. Typical and maximum current consumption in Stop mode, regulator ON. Table 36. Typical and maximum current consumption in Stop mode, regulator ON. Table 37. Typical and maximum current consumption in VBAT mode Table 38. Peripheral current consumption in Run mode Table 39. Peripheral current consumption in Run mode Table 39. Peripheral current consumption in Stop, Standby and VBAT mode Low-power mode wakeup timings Table 40. Low-speed external user clock characteristics Table 43. 4-48 MHz HSE oscillator characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Table 19.  | Port K alternate functions                                          | 94    |
| Table 22. Thermal characteristics. Table 23. General operating conditions Table 24. VCAP1/VCAP2/VCAP3 operating conditions. Table 25. Operating conditions at power-up / power-down (regulator ON) Table 26. Reset and power control block characteristics Table 27. Embedded reference voltage Table 28. Internal reference voltage calibration values Table 29. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON. Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON. Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Table 32. Typical consumption in Run mode and corresponding performance versus code position. Table 33. Typical current consumption batch acquisition mode Table 34. Typical and maximum current consumption in Sleep mode, regulator ON. Table 35. Typical and maximum current consumption in Stop mode, regulator ON. Table 36. Typical and maximum current consumption in Stop mode, regulator ON. Table 37. Typical and maximum current consumption in VBAT mode Table 38. Peripheral current consumption in Run mode Table 39. Peripheral current consumption in Run mode Table 39. Peripheral current consumption in Stop, Standby and VBAT mode Low-power mode wakeup timings Table 41. High-speed external user clock characteristics. Table 43. 4-48 MHz HSE oscillator characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Table 20.  | Voltage characteristics                                             | 97    |
| Table 23. General operating conditions Table 24. VCAP1/VCAP2/VCAP3 operating conditions. Table 25. Operating conditions at power-up / power-down (regulator ON) Table 26. Reset and power control block characteristics Table 27. Embedded reference voltage Internal reference voltage Table 28. Internal reference voltage calibration values Table 29. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON Table 32. Typical consumption in Run mode and corresponding performance versus code position Table 33. Typical current consumption batch acquisition mode Table 34. Typical and maximum current consumption in Sleep mode, regulator ON Table 35. Typical and maximum current consumption in Stop mode, regulator ON Table 36. Typical and maximum current consumption in Standby mode Table 37. Typical and maximum current consumption in VBAT mode Table 38. Peripheral current consumption in Run mode Table 39. Peripheral current consumption in Stop, Standby and VBAT mode Low-power mode wakeup timings Table 41. High-speed external user clock characteristics. Table 43. 4-48 MHz HSE oscillator characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Table 21.  | Current characteristics                                             | 98    |
| Table 24. VCAP1/VCAP2/VCAP3 operating conditions.  Table 25. Operating conditions at power-up / power-down (regulator ON)  Table 26. Reset and power control block characteristics.  Table 27. Embedded reference voltage  Table 28. Internal reference voltage calibration values  Table 29. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON  Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON  Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON  Table 32. Typical consumption in Run mode and corresponding performance versus code position  Table 33. Typical current consumption batch acquisition mode  Table 34. Typical and maximum current consumption in Sleep mode, regulator ON  Table 35. Typical and maximum current consumption in Stop mode, regulator ON  Table 36. Typical and maximum current consumption in Standby mode  Table 37. Typical and maximum current consumption in VBAT mode  Table 38. Peripheral current consumption in Run mode  Table 39. Peripheral current consumption in Run mode  Table 39. Peripheral current consumption in Stop, Standby and VBAT mode  Table 40. Low-power mode wakeup timings  Table 41. High-speed external user clock characteristics  Table 43. 4-48 MHz HSE oscillator characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Table 22.  | Thermal characteristics                                             | 98    |
| Table 25. Operating conditions at power-up / power-down (regulator ON) Table 26. Reset and power control block characteristics Table 27. Embedded reference voltage Table 28. Internal reference voltage calibration values Table 29. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON Table 32. Typical consumption in Run mode and corresponding performance versus code position Table 33. Typical current consumption batch acquisition mode Typical and maximum current consumption in Sleep mode, regulator ON Table 35. Typical and maximum current consumption in Stop mode, regulator ON Table 36. Typical and maximum current consumption in Standby mode Typical and maximum current consumption in VBAT mode Table 39. Peripheral current consumption in Run mode Peripheral current consumption in Stop, Standby and VBAT mode Table 40. Low-power mode wakeup timings Table 41. High-speed external user clock characteristics Low-speed external user clock characteristics Table 43. 4-48 MHz HSE oscillator characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Table 23.  | General operating conditions                                        | 99    |
| Table 26. Reset and power control block characteristics Table 27. Embedded reference voltage Table 28. Internal reference voltage calibration values Table 29. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON. Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON. Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Table 32. Typical consumption in Run mode and corresponding performance versus code position. Table 33. Typical current consumption batch acquisition mode. Typical and maximum current consumption in Sleep mode, regulator ON. Table 35. Typical and maximum current consumption in Stop mode, regulator ON. Table 36. Typical and maximum current consumption in Standby mode. Typical and maximum current consumption in VBAT mode. Table 37. Typical and maximum current consumption in VBAT mode. Table 38. Peripheral current consumption in Run mode Peripheral current consumption in Stop, Standby and VBAT mode. Low-power mode wakeup timings Table 40. Low-power mode wakeup timings Low-speed external user clock characteristics Low-speed external user clock characteristics Table 43. 4-48 MHz HSE oscillator characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Table 24.  | VCAP1/VCAP2/VCAP3 operating conditions                              | . 100 |
| Table 27. Embedded reference voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Table 25.  | Operating conditions at power-up / power-down (regulator ON)        | . 100 |
| Table 28. Internal reference voltage calibration values Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON. Typical consumption in Run mode and corresponding performance versus code position. Typical current consumption batch acquisition mode. Typical and maximum current consumption in Sleep mode, regulator ON. Typical and maximum current consumption in Stop mode, regulator ON. Typical and maximum current consumption in Standby mode. Typical and maximum current consumption in VBAT mode. Typical and maximum current consumption in VBAT mode. Peripheral current consumption in Stop, Standby and VBAT mode. Table 39. Peripheral current consumption in Stop, Standby and VBAT mode. Table 40. Low-power mode wakeup timings Table 41. High-speed external user clock characteristics. Table 42. Low-speed external user clock characteristics. Table 43. 4-48 MHz HSE oscillator characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Table 26.  | Reset and power control block characteristics                       |       |
| Table 29. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator ON.  Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON.  Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON.  Table 32. Typical consumption in Run mode and corresponding performance versus code position.  Table 33. Typical current consumption batch acquisition mode.  Typical and maximum current consumption in Sleep mode, regulator ON.  Typical and maximum current consumption in Stop mode, regulator ON.  Typical and maximum current consumption in Standby mode.  Typical and maximum current consumption in VBAT mode.  Typical and maximum current consumption in VBAT mode.  Peripheral current consumption in Run mode.  Peripheral current consumption in Stop, Standby and VBAT mode.  Low-power mode wakeup timings.  Table 40. Low-power mode wakeup timings.  Table 41. High-speed external user clock characteristics.  Table 43. 4-48 MHz HSE oscillator characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Table 27.  | Embedded reference voltage                                          | . 102 |
| running from ITCM, regulator ON.  Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON.  Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON.  Table 32. Typical consumption in Run mode and corresponding performance versus code position.  Table 33. Typical current consumption batch acquisition mode.  Typical and maximum current consumption in Sleep mode, regulator ON.  Table 35. Typical and maximum current consumption in Stop mode, regulator ON.  Table 36. Typical and maximum current consumption in Standby mode.  Table 37. Typical and maximum current consumption in VBAT mode.  Table 38. Peripheral current consumption in Run mode  Table 39. Peripheral current consumption in Stop, Standby and VBAT mode.  Table 40. Low-power mode wakeup timings  Table 41. High-speed external user clock characteristics.  Low-speed external user clock characteristics.  Table 43. 4-48 MHz HSE oscillator characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | Internal reference voltage calibration values                       | . 103 |
| Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON.  Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON.  Table 32. Typical consumption in Run mode and corresponding performance versus code position.  Typical current consumption batch acquisition mode.  Typical and maximum current consumption in Sleep mode, regulator ON.  Typical and maximum current consumption in Stop mode, regulator ON.  Typical and maximum current consumption in Standby mode.  Typical and maximum current consumption in VBAT mode.  Typical and maximum current consumption in VBAT mode.  Typical and maximum current consumption in Stop, Standby and VBAT mode.  Low-power mode wakeup timings  Table 40. Low-power mode wakeup timings  High-speed external user clock characteristics.  Low-speed external user clock characteristics.  Table 43. 4-48 MHz HSE oscillator characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Table 29.  |                                                                     |       |
| running from Flash memory, cache ON, regulator ON.  Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON.  Table 32. Typical consumption in Run mode and corresponding performance versus code position.  Table 33. Typical current consumption batch acquisition mode.  Typical and maximum current consumption in Sleep mode, regulator ON.  Typical and maximum current consumption in Stop mode, regulator ON.  Typical and maximum current consumption in Standby mode.  Typical and maximum current consumption in VBAT mode.  Typical and maximum current consumption in VBAT mode.  Peripheral current consumption in Run mode  Peripheral current consumption in Stop, Standby and VBAT mode.  Low-power mode wakeup timings  Table 40. Low-power mode wakeup timings  Table 41. High-speed external user clock characteristics.  Low-speed external user clock characteristics  4-48 MHz HSE oscillator characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                     | . 104 |
| Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON.  Typical consumption in Run mode and corresponding performance versus code position.  Typical current consumption batch acquisition mode.  Typical and maximum current consumption in Sleep mode, regulator ON.  Typical and maximum current consumption in Stop mode, regulator ON.  Typical and maximum current consumption in Standby mode.  Typical and maximum current consumption in VBAT mode.  Typical and maximum current consumption in VBAT mode.  Peripheral current consumption in Run mode  Peripheral current consumption in Stop, Standby and VBAT mode.  Low-power mode wakeup timings  Table 40. Low-power mode wakeup timings  Table 41. High-speed external user clock characteristics.  Low-speed external user clock characteristics.  4-48 MHz HSE oscillator characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Table 30.  |                                                                     |       |
| running from Flash memory, cache OFF, regulator ON Table 32. Typical consumption in Run mode and corresponding performance versus code position Table 33. Typical current consumption batch acquisition mode Typical and maximum current consumption in Sleep mode, regulator ON Typical and maximum current consumption in Stop mode, regulator ON Typical and maximum current consumption in Standby mode Typical and maximum current consumption in VBAT mode Typical and maximum current consumption in VBAT mode Typical and maximum current consumption in Run mode Peripheral current consumption in Run mode Table 39. Peripheral current consumption in Stop, Standby and VBAT mode Low-power mode wakeup timings Table 41. High-speed external user clock characteristics Low-speed external user clock characteristics  4-48 MHz HSE oscillator characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                                                     | . 105 |
| Table 32. Typical consumption in Run mode and corresponding performance versus code position.  Table 33. Typical current consumption batch acquisition mode.  Typical and maximum current consumption in Sleep mode, regulator ON.  Typical and maximum current consumption in Stop mode, regulator ON.  Typical and maximum current consumption in Standby mode.  Typical and maximum current consumption in VBAT mode.  Typical and maximum current consumption in VBAT mode.  Typical and maximum current consumption in VBAT mode.  Peripheral current consumption in Run mode  Peripheral current consumption in Stop, Standby and VBAT mode.  Low-power mode wakeup timings.  Table 40. Low-power mode wakeup timings.  High-speed external user clock characteristics.  Low-speed external user clock characteristics.  4-48 MHz HSE oscillator characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Table 31.  |                                                                     |       |
| versus code position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                                                     | . 105 |
| Table 33. Typical current consumption batch acquisition mode.  Table 34. Typical and maximum current consumption in Sleep mode, regulator ON.  Table 35. Typical and maximum current consumption in Stop mode, regulator ON.  Typical and maximum current consumption in Standby mode.  Typical and maximum current consumption in VBAT mode.  Typical and maximum current consumption in VBAT mode.  Peripheral current consumption in Run mode.  Peripheral current consumption in Stop, Standby and VBAT mode.  Low-power mode wakeup timings.  Table 40. Low-power mode wakeup timings.  Table 41. High-speed external user clock characteristics.  Low-speed external user clock characteristics.  4-48 MHz HSE oscillator characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Table 32.  |                                                                     |       |
| Table 34. Typical and maximum current consumption in Sleep mode, regulator ON.  Table 35. Typical and maximum current consumption in Stop mode, regulator ON.  Typical and maximum current consumption in Standby mode.  Typical and maximum current consumption in VBAT mode.  Typical and maximum current consumption in VBAT mode.  Peripheral current consumption in Run mode.  Peripheral current consumption in Stop, Standby and VBAT mode.  Low-power mode wakeup timings.  Table 40. High-speed external user clock characteristics.  Low-speed external user clock characteristics.  Table 43. 4-48 MHz HSE oscillator characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                                     |       |
| Table 35. Typical and maximum current consumption in Stop mode, regulator ON.  Table 36. Typical and maximum current consumption in Standby mode.  Table 37. Typical and maximum current consumption in VBAT mode.  Table 38. Peripheral current consumption in Run mode.  Table 39. Peripheral current consumption in Stop, Standby and VBAT mode.  Table 40. Low-power mode wakeup timings.  Table 41. High-speed external user clock characteristics.  Table 42. Low-speed external user clock characteristics.  Table 43. 4-48 MHz HSE oscillator characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Table 33.  | Typical current consumption batch acquisition mode                  | . 106 |
| Table 36. Typical and maximum current consumption in Standby mode.  Table 37. Typical and maximum current consumption in VBAT mode.  Table 38. Peripheral current consumption in Run mode.  Table 39. Peripheral current consumption in Stop, Standby and VBAT mode.  Table 40. Low-power mode wakeup timings.  Table 41. High-speed external user clock characteristics.  Table 42. Low-speed external user clock characteristics.  Table 43. 4-48 MHz HSE oscillator characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | Typical and maximum current consumption in Sleep mode, regulator ON | . 106 |
| Table 37. Typical and maximum current consumption in VBAT mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                                                     |       |
| Table 38. Peripheral current consumption in Run mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                                                     |       |
| Table 39. Peripheral current consumption in Stop, Standby and VBAT mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                                                                     |       |
| Table 40. Low-power mode wakeup timings Table 41. High-speed external user clock characteristics.  Table 42. Low-speed external user clock characteristics  Table 43. 4-48 MHz HSE oscillator characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                                                     |       |
| Table 41. High-speed external user clock characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | · · · · · · · · · · · · · · · · · · ·                               |       |
| Table 42. Low-speed external user clock characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | Low-power mode wakeup timings                                       | . 116 |
| Table 43. 4-48 MHz HSE oscillator characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                                     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                     |       |
| lable 44. Low-speed external user clock characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                                                                     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ı abie 44. | Low-speed external user clock characteristics                       | . 120 |



List of tables STM32H753xI

| Table 45. | HSI48 oscillator characteristics                                  |     |
|-----------|-------------------------------------------------------------------|-----|
| Table 46. | HSI oscillator characteristics                                    |     |
| Table 47. | CSI oscillator characteristics                                    |     |
| Table 48. | LSI oscillator characteristics                                    |     |
| Table 49. | Main PLL characteristics                                          |     |
| Table 50. | Flash memory characteristics                                      |     |
| Table 51. | Flash memory programming (single bank configuration nDBANK=1)     |     |
| Table 52. | Flash memory endurance and data retention                         |     |
| Table 53. | EMS characteristics                                               |     |
| Table 54. | EMI characteristics                                               |     |
| Table 55. | ESD absolute maximum ratings                                      |     |
| Table 56. | Electrical sensitivities                                          |     |
| Table 57. | I/O current injection susceptibility                              |     |
| Table 58. | I/O static characteristics                                        |     |
| Table 59. | Output voltage characteristics                                    |     |
| Table 60. | Output timing characteristics (HSLV OFF)                          |     |
| Table 61. | Output timing characteristics (HSLV ON)                           |     |
| Table 62. | NRST pin characteristics                                          |     |
| Table 63. | Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings          |     |
| Table 64. | Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings  |     |
| Table 65. | Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings         |     |
| Table 66. | Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings |     |
| Table 67. | Asynchronous multiplexed PSRAM/NOR read timings                   |     |
| Table 68. | Asynchronous multiplexed PSRAM/NOR read-NWAIT timings             |     |
| Table 69. | Asynchronous multiplexed PSRAM/NOR write timings                  |     |
| Table 70. | Asynchronous multiplexed PSRAM/NOR write-NWAIT timings            |     |
| Table 71. | Synchronous multiplexed NOR/PSRAM read timings                    |     |
| Table 72. | Synchronous multiplexed PSRAM write timings                       |     |
| Table 73. | Synchronous non-multiplexed NOR/PSRAM read timings                |     |
| Table 74. | Synchronous non-multiplexed PSRAM write timings                   |     |
| Table 75. | Switching characteristics for NAND Flash read cycles              |     |
| Table 76. | Switching characteristics for NAND Flash write cycles             |     |
| Table 77. | SDRAM read timings                                                |     |
| Table 78. | LPSDR SDRAM read timings                                          |     |
| Table 79. | SDRAM write timings                                               |     |
| Table 80. | LPSDR SDRAM write timings                                         |     |
| Table 81. | Quad-SPI characteristics in SDR mode                              |     |
| Table 82. | Quad SPI characteristics in DDR mode                              |     |
| Table 83. | Dynamics characteristics: Delay Block characteristics             |     |
| Table 84. | ADC characteristics                                               |     |
| Table 85. | ADC accuracy                                                      |     |
| Table 86. | DAC characteristics                                               |     |
| Table 87. | DAC accuracy                                                      |     |
| Table 88. | VREFBUF characteristics                                           |     |
| Table 89. | Temperature sensor characteristics                                |     |
| Table 90. | Temperature sensor calibration values                             |     |
| Table 91. | V <sub>BAT</sub> monitoring characteristics                       |     |
| Table 92. | V <sub>BAT</sub> charging characteristics                         | 169 |
| Table 93. | Voltage booster for analog switch characteristics                 |     |
| Table 94. | COMP characteristics                                              |     |
| Table 95. | OPAMP characteristics                                             |     |
| Table 96. | DFSDM measured timing 1.62-3.6 V                                  | 174 |



STM32H753xl List of tables

| Table 97.  | DCMI characteristics                                                      | 177 |
|------------|---------------------------------------------------------------------------|-----|
| Table 98.  | LTDC characteristics                                                      | 178 |
| Table 99.  | TIMx characteristics                                                      | 180 |
| Table 100. | Minimum i2c_ker_ck frequency in all I2C modes                             | 181 |
| Table 101. | I2C analog filter characteristics                                         | 181 |
| Table 102. | SPI dynamic characteristics                                               |     |
| Table 103. | I <sup>2</sup> S dynamic characteristics                                  | 185 |
| Table 104. | SAI characteristics                                                       | 187 |
| Table 105. | MDIO Slave timing parameters                                              | 188 |
| Table 106. | Dynamic characteristics: SD / MMC characteristics, VDD=2.7V to 3.6V       | 189 |
| Table 107. | Dynamic characteristics: eMMC characteristics, VDD=1.71V to 1.9V          | 190 |
| Table 108. | USB OTG_FS electrical characteristics                                     | 192 |
| Table 109. | Dynamic characteristics: USB ULPI                                         | 192 |
| Table 110. | Dynamics characteristics: Ethernet MAC signals for SMI                    | 193 |
| Table 111. | Dynamics characteristics: Ethernet MAC signals for RMII                   | 194 |
| Table 112. | Dynamics characteristics: Ethernet MAC signals for MII                    |     |
| Table 113. | Dynamics characteristics: JTAG characteristics                            | 196 |
| Table 114. | Dynamics characteristics: SWD characteristics                             |     |
| Table 115. | LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package               |     |
|            | mechanical data                                                           | 199 |
| Table 116. | TFBGA100, 8 x 8 × 0.8 mm thin fine-pitch ball grid array                  |     |
|            | package mechanical data                                                   | 202 |
| Table 117. | TFBGA100 recommended PCB design rules (0.8 mm pitch BGA)                  |     |
| Table 118. | LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package               |     |
|            | mechanical data                                                           | 206 |
| Table 119. | UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball        |     |
|            | grid array package mechanical data                                        | 209 |
| Table 120. | LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package               |     |
|            | mechanical data                                                           | 211 |
| Table 121. | LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package               |     |
|            | mechanical data                                                           | 215 |
| Table 122. | UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch,                            |     |
|            | ultra fine pitch ball grid array package mechanical data                  | 218 |
| Table 123. | UFBGA 176+25 recommended PCB design rules (0.65 mm pitch BGA)             |     |
| Table 124. | TFBGA240+25 - 265 pin, 14x14 mm, 0.8 mm pitch, fine pitch ball grid array |     |
|            | mechanical data                                                           | 222 |
| Table 125. | TFBGA240+25, 265 pin recommended PCB design rules (0.8 mm pitch)          |     |
| Table 126. | Thermal characteristics                                                   |     |
| Table 127. | STM32H753xI ordering information scheme                                   | 225 |
| Table 128  | Document revision history                                                 | 000 |



List of figures STM32H753xI

# List of figures

| Figure 1.  | STM32H753xl block diagram                                                                    | 17  |
|------------|----------------------------------------------------------------------------------------------|-----|
| Figure 2.  | STM32H753xl bus matrix                                                                       | 25  |
| Figure 3.  | LQFP100 pinout                                                                               |     |
| Figure 4.  | TFBGA100 pinout                                                                              |     |
| Figure 5.  | LQFP144 pinout                                                                               |     |
| Figure 6.  | UFBGA169 ballout                                                                             |     |
| Figure 7.  | LQFP176 pinout                                                                               |     |
| Figure 8.  | UFBGA176+25 ballout                                                                          |     |
| Figure 9.  | LQFP208 pinout                                                                               |     |
| Figure 10. | TFBGA240+25 ballout                                                                          |     |
| Figure 11. | Pin loading conditions                                                                       |     |
| Figure 12. | Pin input voltage                                                                            |     |
| Figure 13. | Power supply scheme                                                                          |     |
| Figure 14. | Current consumption measurement scheme                                                       |     |
| Figure 15. | External capacitor C <sub>EXT</sub>                                                          |     |
| Figure 16. | High-speed external clock source AC timing diagram                                           |     |
| Figure 17. | Low-speed external clock source AC timing diagram                                            |     |
| Figure 18. | Typical application with an 8 MHz crystal                                                    |     |
| Figure 19. | Typical application with a 32.768 kHz crystal                                                |     |
| Figure 20. | VIL/VIH for all I/Os except BOOT0                                                            |     |
| Figure 21. | Recommended NRST pin protection                                                              |     |
| Figure 22. | Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms                                   |     |
| Figure 23. | Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms                                  |     |
| Figure 24. | Asynchronous multiplexed PSRAM/NOR read waveforms                                            |     |
| Figure 25. | Asynchronous multiplexed PSRAM/NOR write waveforms                                           |     |
| Figure 26. | Synchronous multiplexed NOR/PSRAM read timings                                               |     |
| Figure 27. | Synchronous multiplexed PSRAM write timings                                                  |     |
| Figure 28. | Synchronous non-multiplexed NOR/PSRAM read timings                                           |     |
| Figure 29. | Synchronous non-multiplexed PSRAM write timings                                              |     |
| Figure 30. | NAND controller waveforms for read access                                                    |     |
| Figure 31. | NAND controller waveforms for write access                                                   | 151 |
| Figure 32. | NAND controller waveforms for common memory read access                                      | 151 |
| Figure 33. | NAND controller waveforms for common memory write access                                     |     |
| Figure 34. | SDRAM read access waveforms (CL = 1)                                                         | 153 |
| Figure 35. | SDRAM write access waveforms                                                                 |     |
| Figure 36. | Quad-SPI timing diagram - SDR mode                                                           | 157 |
| Figure 37. | Quad-SPI timing diagram - DDR mode                                                           |     |
| Figure 38. | ADC accuracy characteristics                                                                 |     |
| Figure 39. | Typical connection diagram using the ADC                                                     | 162 |
| Figure 40. | Power supply and reference decoupling (V <sub>RFF+</sub> not connected to V <sub>DDA</sub> ) |     |
| Figure 41. | Power supply and reference decoupling (V <sub>REF+</sub> connected to V <sub>DDA</sub> )     |     |
| Figure 42. | 12-bit buffered /non-buffered DAC                                                            |     |
| Figure 43. | Channel transceiver timing diagrams                                                          |     |
| Figure 44. | DCMI timing diagram                                                                          |     |
| Figure 45. | LCD-TFT horizontal timing diagram                                                            |     |
| Figure 46. | LCD-TFT vertical timing diagram                                                              |     |
| Figure 47. | SPI timing diagram - slave mode and CPHA = 0                                                 |     |
| Figure 48  | SPI timing diagram - slave mode and CPHA = 1 <sup>(1)</sup>                                  | 184 |



STM32H753xl List of figures

| Figure 49. | SPI timing diagram - master mode <sup>(1)</sup>                           | 184 |
|------------|---------------------------------------------------------------------------|-----|
| Figure 50. | I <sup>2</sup> S slave timing diagram (Philips protocol) <sup>(1)</sup>   | 186 |
| Figure 51. | I <sup>2</sup> S master timing diagram (Philips protocol) <sup>(1)</sup>  | 186 |
| Figure 52. | SAI master timing waveforms                                               | 188 |
| Figure 53. | SAI slave timing waveforms                                                | 188 |
| Figure 54. | MDIO Slave timing diagram                                                 | 189 |
| Figure 55. | SDIO high-speed mode                                                      |     |
| Figure 56. | SD default mode                                                           | 191 |
| Figure 57. | DDR mode                                                                  |     |
| Figure 58. | ULPI timing diagram                                                       |     |
| Figure 59. | Ethernet SMI timing diagram                                               |     |
| Figure 60. | Ethernet RMII timing diagram                                              | 194 |
| Figure 61. | Ethernet MII timing diagram                                               |     |
| Figure 62. | JTAG timing diagram                                                       |     |
| Figure 63. | SWD timing diagram                                                        |     |
| Figure 64. | LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline       | 198 |
| Figure 65. | LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat                       |     |
|            | recommended footprint                                                     | 200 |
| Figure 66. | LQFP100 marking example (package top view)                                | 201 |
| Figure 67. | TFBGA100, 8 × 8 × 0.8 mm thin fine-pitch ball grid array                  |     |
|            | package outline                                                           | 202 |
| Figure 68. | TFBGA100, 8 x 8 x 0.8 mm thin fine-pitch ball grid array                  |     |
|            | package recommended footprint                                             |     |
| Figure 69. | LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline       | 205 |
| Figure 70. | LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package                |     |
|            | recommended footprint                                                     |     |
| Figure 71. | LQFP144 marking example (package top view)                                | 208 |
| Figure 72. | UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid   |     |
|            | array package outline                                                     |     |
| Figure 73. | LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline       | 210 |
| Figure 74. | LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package               |     |
|            | recommended footprint                                                     |     |
| Figure 75. | LQFP176 marking example (package top view)                                |     |
| Figure 76. | LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package outline       | 214 |
| Figure 77. | LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package               |     |
|            | recommended footprint                                                     |     |
| Figure 78. | LQFP208 marking example (package top view)                                | 217 |
| Figure 79. | UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch,                        |     |
|            | ultra fine pitch ball grid array package outline                          | 218 |
| Figure 80. | UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball  |     |
|            | grid array package recommended footprint                                  |     |
| Figure 81. | UFBGA176+25 marking example (package top view)                            | 220 |
| Figure 82. | TFBGA240+25 - 265 pin, 14x14 mm, 0.8 mm pitch, fine pitch ball grid array |     |
|            | package outline                                                           | 221 |
| Figure 83. | TFBGA240+25 - 265 pin pin, 14x14 mm 0.8 mm pitch                          |     |
|            | recommended footprint                                                     |     |
| Figure 84. | TFBGA240+25 marking example (package top view)                            | 223 |



Introduction STM32H753xI

# 1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32H53xl microcontrollers.

This document should be read in conjunction with the STM32H53xl reference manual (RM0433). The reference manual is available from the STMicroelectronics website <a href="https://www.st.com">www.st.com</a>.

For information on the Arm<sup>®</sup> Cortex<sup>®</sup>-M7 core, please refer to the Cortex<sup>®</sup>-M7 Technical Reference Manual, available from the www.arm.com website.





12/227 DocID030553 Rev 3

STM32H753xI Description

# 2 Description

STM32H753xl devices are based on the high-performance Arm<sup>®</sup> Cortex<sup>®</sup>-M7 32-bit RISC core operating at up to 400 MHz. The Cortex<sup>®</sup>-M7 core features a floating point unit (FPU) which supports Arm<sup>®</sup> double-precision (IEEE 754 compliant) and single-precision data-processing instructions and data types. STM32H753xl devices support a full set of DSP instructions and a memory protection unit (MPU) to enhance application security.

STM32H753xl devices incorporate high-speed embedded memories with a dual-bank Flash memory up to 2 Mbytes, 1 Mbyte of RAM (including 192 Kbytes of TCM RAM, 864 Kbytes of user SRAM and 4 Kbytes of backup SRAM), as well as an extensive range of enhanced I/Os and peripherals connected to APB buses, AHB buses, 2x32-bit multi-AHB bus matrix and a multi layer AXI interconnect supporting internal and external memory access.

All the devices offer three ADCs, two DACs, two ultra-low power comparators, a low-power RTC, a high-resolution timer, 12 general-purpose 16-bit timers, two PWM timers for motor control, five low-power timers, a true random number generator (RNG), and a cryptographic acceleration cell. The devices support four digital filters for external sigma-delta modulators (DFSDM). They also feature standard and advanced communication interfaces.

- Standard peripherals
  - Four I<sup>2</sup>Cs
  - Four USARTs, four UARTs and one LPUART
  - Six SPIs, three I<sup>2</sup>Ss in half-duplex mode. To achieve audio class accuracy, the I<sup>2</sup>S peripherals can be clocked by a dedicated internal audio PLL or by an external clock to allow synchronization.
  - Four SAI serial audio interfaces
  - One SPDIFRX interface
  - One SWPMI (Single Wire Protocol Master Interface)
  - Management Data Input/Output (MDIO) slaves
  - Two SDMMC interfaces
  - A USB OTG full-speed and a USB OTG high-speed interface with full-speed capability (with the ULPI)
  - One FDCAN plus one TT-CAN interface
  - An Ethernet interface
  - Chrom-ART Accelerator<sup>™</sup>
  - HDMI-CEC
- Advanced peripherals including
  - A flexible memory control (FMC) interface
  - A Quad-SPI Flash memory interface
  - A camera interface for CMOS sensors
  - An LCD-TFT display controller
  - A JPEG hardware compressor/decompressor

Refer to *Table 2: STM32H753xI features and peripheral counts* for the list of peripherals available on each part number.

Description STM32H753xI

STM32H753xl devices operate in the -40 to +85 °C temperature range from a 1.62 to 3.6 V power supply. The supply voltage can drop down to 1.62 V by using an external power supervisor (see *Section 3.5.2: Power supply supervisor*) and connecting the PDR\_ON pin to V<sub>SS</sub>. Otherwise the supply voltage must stay above 1.71 V with the embedded power voltage detector enabled.

Dedicated supply inputs for USB (OTG\_FS and OTG\_HS) are available on all packages except LQFP100 to allow a greater power supply choice.

A comprehensive set of power-saving modes allows the design of low-power applications.

STM32H753xl devices are offered in 8 packages ranging from 100 pins to 240 pins/balls. The set of included peripherals changes with the device chosen.

These features make STM32H753xl microcontrollers suitable for a wide range of applications:

- Motor drive and application control
- Medical equipment
- Industrial applications: PLC, inverters, circuit breakers
- · Printers, and scanners
- Alarm systems, video intercom, and HVAC
- Home audio appliances

14/227

- · Mobile applications, Internet of Things
- Wearable devices: smart watches.

*Figure 1* shows the general block diagram of the device family.

Table 2. STM32H753xl features and peripheral counts

| Pe                   | eripherals                  | STM32H<br>753VI | STM32H<br>753ZI | STM32H<br>753AI | STM32H<br>753II | STM32H<br>753BI | STM32H<br>753XI |
|----------------------|-----------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Flash m              | emory in Kbytes             |                 |                 | 2048            |                 |                 |                 |
|                      | SRAM mapped onto<br>AXI bus |                 | 5′              |                 |                 |                 |                 |
| SRAM in              | SRAM1 (D2 domain)           |                 |                 | 128             |                 |                 |                 |
| Kbytes               | SRAM2 (D2 domain)           | 128             |                 |                 |                 |                 |                 |
|                      | SRAM3 (D2 domain)           | 32              |                 |                 |                 |                 |                 |
|                      | SRAM4 (D3 domain)           | 64              |                 |                 |                 |                 |                 |
| TCM RAM in Kbytes    | ITCM RAM<br>(instruction)   |                 |                 | 64              |                 |                 |                 |
| Royles               | DTCM RAM (data)             |                 | 128             |                 |                 |                 |                 |
| Backup SRAM (Kbytes) |                             | 4               |                 |                 |                 |                 |                 |
| FMC                  |                             | Yes             |                 |                 |                 |                 |                 |
| Quad-SPI             |                             | Yes             |                 |                 |                 |                 |                 |
|                      | Ethernet                    | Yes             |                 |                 |                 |                 |                 |

STM32H753xI Description

Table 2. STM32H753xl features and peripheral counts (continued)

| Peripherals            |                           | STM32H<br>753VI                 | STM32H<br>753ZI | STM32H<br>753AI    | STM32H<br>753II          | STM32H<br>753BI | STM32H<br>753XI |
|------------------------|---------------------------|---------------------------------|-----------------|--------------------|--------------------------|-----------------|-----------------|
|                        | High-resolution           |                                 |                 | 1                  |                          |                 |                 |
|                        | General-purpose           |                                 |                 | 10                 |                          |                 |                 |
| Timers                 | Advanced-control<br>(PWM) | 2                               |                 |                    |                          |                 |                 |
|                        | Basic                     | 2                               |                 |                    |                          |                 |                 |
|                        | Low-power                 |                                 |                 | 5                  |                          |                 |                 |
| Random r               | number generator          |                                 |                 | Yes                |                          |                 |                 |
| Cryptogra              | aphic accelerator         |                                 |                 | Yes                |                          |                 |                 |
|                        | SPI / I <sup>2</sup> S    |                                 |                 | 6/3 <sup>(1)</sup> |                          |                 |                 |
|                        | I <sup>2</sup> C          |                                 |                 | 4                  |                          |                 |                 |
|                        | USART/UART/<br>LPUART     |                                 |                 | 4/4<br>/1          |                          |                 |                 |
|                        | SAI                       |                                 |                 | 4                  |                          |                 |                 |
| Communicatio           | SPDIFRX                   | 4 inputs                        |                 |                    |                          |                 |                 |
| n interfaces           | SWPMI                     | Yes                             |                 |                    |                          |                 |                 |
|                        | MDIO                      | Yes                             |                 |                    |                          |                 |                 |
|                        | SDMMC                     | 2                               |                 |                    |                          |                 |                 |
|                        | FDCAN/TT-CAN              | 1/1                             |                 |                    |                          |                 |                 |
|                        | USB OTG_FS                | Yes                             |                 |                    |                          |                 |                 |
|                        | USB OTG_HS                |                                 |                 | Yes                |                          |                 |                 |
| Ethernet an            | nd camera interface       | Yes                             |                 |                    |                          |                 |                 |
| L                      | .CD-TFT                   |                                 |                 | Yes                |                          |                 |                 |
| JP                     | EG Codec                  | Yes                             |                 |                    |                          |                 |                 |
| Chrom-ART A            | ccelerator™ (DMA2D)       |                                 |                 | Yes                |                          |                 |                 |
|                        | GPIOs                     | 82                              | 114             | 131                | 140                      | 16              | 88              |
| 8 to                   | 16-bit ADCs               | 3                               |                 |                    |                          |                 |                 |
| Numb                   | er of channels            | 20                              |                 |                    |                          |                 |                 |
| 12                     | 2-bit DAC                 |                                 |                 | Yes                |                          |                 |                 |
| Number of channels     |                           | 2                               |                 |                    |                          |                 |                 |
| Comparators            |                           | 2                               |                 |                    |                          |                 |                 |
| Operational amplifiers |                           | 2                               |                 |                    |                          |                 |                 |
| DFSDM                  |                           | Yes                             |                 |                    |                          |                 |                 |
| Maximun                | Maximum CPU frequency     |                                 | 400 MHz         |                    |                          |                 |                 |
| Oper                   | ating voltage             | 1.71 to<br>3.6 V <sup>(2)</sup> |                 | 1.6                | 2 to 3.6 V <sup>(3</sup> | )               |                 |

Description STM32H753xI

Table 2. STM32H753xl features and peripheral counts (continued)

| Peripherals            | STM32H                                                | STM32H  | STM32H                      | STM32H                     | STM32H  | STM32H          |  |
|------------------------|-------------------------------------------------------|---------|-----------------------------|----------------------------|---------|-----------------|--|
| . Cooperation          | 753VI                                                 | 753ZI   | 753AI                       | 753II                      | 753BI   | 753XI           |  |
| Operating temperatures | Ambient temperatures: –40 up to +85 °C <sup>(4)</sup> |         |                             |                            |         |                 |  |
| Operating temperatures | Junction temperature: -40 to + 125 °C                 |         |                             |                            |         |                 |  |
| Package                | LQFP100<br>TFBGA100 <sup>(5)</sup>                    | LQFP144 | UFBGA<br>169 <sup>(5)</sup> | LQFP176<br>UFBGA<br>176+25 | LQFP208 | TFBGA<br>240+25 |  |

The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.

- 4. The product junction temperature must be kept within the –40 to +125 °C temperature range.
- 5. This package is under development. Please contact STMicroelectronics for details.

<sup>2.</sup> Since the LQFP100 package does not feature the PDR\_ON pin (tied internally to  $V_{DD}$ ), the minimum  $V_{DD}$  value for this package is 1.71 V.

<sup>3.</sup> V<sub>DD</sub>/V<sub>DDA</sub> can drop down to 1.62 V by using an external power supervisor (see <u>Section 3.5.2: Power supply supervisor</u>) and connecting PDR\_ON pin to V<sub>SS</sub>. Otherwise the supply voltage must stay above 1.71 V with the embedded power voltage detector enabled.

STM32H753xI Description



Figure 1. STM32H753xl block diagram



#### 3 Functional overview

# 3.1 Arm® Cortex®-M7 with FPU

The Arm® Cortex®-M7 with double-precision FPU processor is the latest generation of Arm processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and optimized power consumption, while delivering outstanding computational performance and low interrupt latency.

The Cortex®-M7 processor is a highly efficient high-performance featuring:

- Six-stage dual-issue pipeline
- Dynamic branch prediction
- Harvard architecture with L1 caches (16 Kbytes of I-cache and 16 Kbytes of D-cache)
- 64-bit AXI interface
- 64-bit ITCM interface
- 2x32-bit DTCM interfaces

The following memory interfaces are supported:

- Separate Instruction and Data buses (Harvard Architecture) to optimize CPU latency
- Tightly Coupled Memory (TCM) interface designed for fast and deterministic SRAM accesses
- AXI Bus interface to optimize Burst transfers
- Dedicated low-latency AHB-Lite peripheral bus (AHBP) to connect to peripherals.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

It also supports single and double precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation.

Figure 1 shows the general block diagram of the STM32H753xl family.

Note: Cortex<sup>®</sup>-M7 with FPU core is binary compatible with the Cortex<sup>®</sup>-M4 core.

# 3.2 Memory protection unit (MPU)

The memory protection unit (MPU) manages the CPU access rights and the attributes of the system resources. It has to be programmed and enabled before use. Its main purposes are to prevent an untrusted user program to accidentally corrupt data used by the OS and/or by a privileged task, but also to protect data processes or read-protect memory regions.

The MPU defines access rules for privileged accesses and user program accesses. It allows defining up to 16 protected regions that can in turn be divided into up to 8 independent subregions, where region address, size, and attributes can be configured. The protection area ranges from 32 bytes to 4 Gbytes of addressable memory.

When an unauthorized access is performed, a memory management exception is generated.

18/227 DocID030553 Rev 3

STM32H753xl Functional overview

#### 3.3 Memories

# 3.3.1 Embedded Flash memory

The STM32H753xl devices embed up to 2 Mbytes of Flash memory that can be used for storing programs and data.

The Flash memory is organized as 266-bit Flash words memory that can be used for storing both code and data constants. Each word consists of:

- One Flash word (8 words, 32 bytes or 256 bits)
- 10 ECC bits.

The Flash memory is divided into two independent banks. Each bank is organized as follows:

- A 1 Mbyte user Flash memory block containing eight user sectors of 128 Kbytes(4 K Flash words)
- 128 Kbytes of System Flash memory from which the device can boot
- 2 Kbytes (64 Flash words) of user option bytes for user configuration

#### 3.3.2 Secure Access mode

In addition to other typical memory protection mechanism (RDP, PCROP), STM32H753xl devices introduce the Secure access mode, a new enhanced security feature. This mode allows developing user-defined secure services by ensuring, on the one hand code and data protection and on the other hand code safe execution.

Two types of secure services are available:

- STMicroelectronics Root Secure Services:
  - These services are embedded in System memory. They provide a secure solution for firmware and third-party modules installation. These services rely on cryptographic algorithms based on a device unique private key.
- User-defined secure services:
  - These services are embedded in user Flash memory. Examples of user secure services are proprietary user firmware update solution, secure Flash integrity check or any other sensitive applications that require a high level of protection.
  - The secure firmware is embedded in specific user Flash memory areas configured through option bytes.

Secure services are executed just after a reset and preempt all other applications to guarantee protected and safe execution. Once executed, the corresponding code and data are no more accessible.

The above secure services are available only for Cortex<sup>®</sup>-M7 core operating in Secure Access mode. The other masters cannot access the option bytes involved in Secure access mode settings or the Flash secured areas.

#### 3.3.3 Embedded SRAM

All devices feature:

• 512 Kbytes of AXI-SRAM mapped onto AXI bus on D1 domain.

SRAM1 mapped on D2 domain: 128 Kbytes

SRAM2 mapped on D2 domain: 128 Kbytes

• SRAM3 mapped on D2 domain: 32 Kbytes

SRAM4 mapped on D3 domain: 64 Kbytes

4 Kbytes of backup SRAM

The content of this area is protected against possible unwanted write accesses, and is retained in Standby or  $V_{\text{BAT}}$  mode.

RAM mapped to TCM interface (ITCM and DTCM):

Both ITCM and DTCM RAMs are 0 wait state memories that are accessible from the CPU or the MDMA (even in Sleep mode) through a specific AHB slave of the CPU(AHBP).

- 64 Kbytes of ITCM-RAM (instruction RAM)
   This RAM is connected to ITCM 64-bit interface designed for execution of critical real-times routines by the CPU.
- 128 Kbytes of DTCM-RAM (2x 64 Kbyte DTCM-RAMs on 2x32-bit DTCM ports)
   The DTCM-RAM could be used for critical real-time data, such as interrupt service routines or stack/heap memory. Both DTCM-RAMs can be used in parallel (for load/store operations) thanks to the Cortex<sup>®</sup>-M7 dual issue capability.

#### **Error code correction (ECC)**

Over the product lifetime, and/or due to external events such as radiations, invalid bits in memories may occur. They can be detected and corrected by ECC. This is an expected behavior that has to be managed at final-application software level in order to ensure data integrity through ECC algorithms implementation.

SRAM data are protected by ECC:

- 7 ECC bits are added per 32-bit word.
- 8 ECC bits are added per 64-bit word for AXI-SRAM and ITCM-RAM.

The ECC mechanism is based on the SECDED algorithm. It supports single- and doubleerror correction.

#### 3.4 Boot modes

At startup, the boot memory space is selected by the BOOT pin and BOOT\_ADDx option bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF which includes:

- All Flash address space
- All RAM address space: ITCM, DTCM RAMs and SRAMs
- The System memory bootloader

The boot loader is located in non-user System memory. It is used to reprogram the Flash memory through a serial interface (USART, I2C, SPI, USB-DFU). Refer to *STM32* microcontroller System memory boot mode application note (AN2606) for details.

20/227 DocID030553 Rev 3



STM32H753xI Functional overview

# 3.5 Power supply management

#### 3.5.1 Power supply scheme

V<sub>DD</sub> = 1.62 to 3.6 V: external power supply for I/Os, provided externally through V<sub>DD</sub> pins.

- V<sub>DDLDO</sub> = 1.62 to 3.6 V: supply voltage for the internal regulator supplying V<sub>CORE</sub>
- V<sub>DDA</sub> = 1.62 to 3.6 V: external analog power supplies for ADC, DAC, COMP and OPAMP.
- V<sub>DD33USB</sub> and V<sub>DD50USB</sub>:

 $V_{DD50USB}$  can be supplied through the USB cable to generate the  $V_{DD33USB}$  via the USB internal regulator. This allows supporting a  $V_{DD}$  supply different from 3.3 V.

The USB regulator can be bypassed to supply directly  $V_{DD33USB}$  if  $V_{DD}$  = 3.3 V.

- V<sub>BAT</sub> = 1.2 to 3.6 V: power supply for the V<sub>SW</sub> domain when V<sub>DD</sub> is not present.
- V<sub>CAP1</sub>/V<sub>CAP2</sub>/V<sub>CAP3</sub>: V<sub>CORE</sub> supplies, which values depend on voltage scaling (0.7 V, 0.9 V, 1.0 V, 1.1 V or 1.2 V). They are configured through VOS bits in PWR\_D3CR register. The V<sub>CORE</sub> domain is split into the following power domains that can be independently switch off.
  - D1 domain containing some peripherals and the Cortex<sup>®</sup>-M7 core.
  - D2 domain containing a large part of the peripherals.
  - D3 domain containing some peripherals and the system control.

#### 3.5.2 Power supply supervisor

The devices have an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry:

• Power-on reset (POR)

The POR supervisor monitors  $V_{DD}$  power supply and compares it to a fixed threshold. The devices remain in reset mode when  $V_{DD}$  is below this threshold,

Power-down reset (PDR)

The PDR supervisor monitors  $V_{DD}$  power supply. A reset is generated when  $V_{DD}$  drops below a fixed threshold.

The PDR supervisor can be enabled/disabled through PDR\_ON pin.

Brownout reset (BOR)

The BOR supervisor monitors  $V_{DD}$  power supply. Three BOR thresholds (from 2.1 to 2.7 V) can be configured through option bytes. A reset is generated when  $V_{DD}$  drops below this threshold.

#### 3.5.3 Voltage regulator

The same voltage regulator supplies the 3 power domains (D1, D2 and D3). D1 and D2 can be independently switched off.

Voltage regulator output can be adjusted according to application needs through 5 power supply levels:

- Run mode (VOS1 to VOS3)
  - Scale 1: high performance
  - Scale 2: medium performance and consumption
  - Scale 3: optimized performance and low-power consumption
- Stop mode (SVOS3 to SVOS5)
  - Scale 3: peripheral with wakeup from stop mode capabilities (UART, SPI, I2C, LPTIM) are operational
  - Scale 4 and 5 where the peripheral with wakeup from Stop mode is disabled
     The peripheral functionality is disabled but wakeup from Stop mode is possible through GPIO or asynchronous interrupt.

# 3.6 Low-power strategy

There are several ways to reduce power consumption on STM32H753xI:

- Decrease dynamic power consumption by slowing down the system clocks even in Run mode and individually clock gating the peripherals that are not used.
- Save power consumption when the CPU is idle, by selecting among the available low-power mode according to the user application needs. This allows achieving the best compromise between short startup time, low-power consumption, as well as available wakeup sources.

The devices feature several low-power modes:

- CSleep (CPU clock stopped)
- CStop (CPU sub-system clock stopped)
- DStop (Domain bus matrix clock stopped)
- Stop (System clock stopped)
- DStandby (Domain powered down)
- Standby (System powered down)

CSleep and CStop low-power modes are entered by the MCU when executing the WFI (Wait for Interrupt) or WFE (Wait for Event) instructions, or when the SLEEPONEXIT bit of the Cortex<sup>®</sup>-Mx core is set after returning from an interrupt service routine.

A domain can enter low-power mode (DStop or DStandby) when the processor, its subsystem and the peripherals allocated in the domain enter low-power mode.

If part of the domain is not in low-power mode, the domain remains in the current mode.

Finally the system can enter Stop or Standby when all EXTI wakeup sources are cleared and the power domains are in DStop or DStandby mode.

**177** 

STM32H753xI Functional overview

| System power mode | D1 domain power<br>mode | D2 domain power<br>mode | D3 domain power mode |  |
|-------------------|-------------------------|-------------------------|----------------------|--|
| Run               | DRun/DStop/DStandby     | DRun/DStop/DStandby     | DRun                 |  |
| Stop              | DStop/DStandby          | DStop/DStandby          | DStop                |  |
| Standby           | DStandby                | DStandby                | DStandby             |  |

Table 3. System vs domain low-power mode

# 3.7 Reset and clock controller (RCC)

The clock and reset controller is located in D3 domain. The RCC manages the generation of all the clocks, as well as the clock gating and the control of the system and peripheral resets. It provides a high flexibility in the choice of clock sources and allows to apply clock ratios to improve the power consumption. In addition, on some communication peripherals that are capable to work with two different clock domains (either a bus interface clock or a kernel peripheral clock), the system frequency can be changed without modifying the baudrate.

#### 3.7.1 Clock management

The devices embed four internal oscillators, two oscillators with external crystal or resonator, two internal oscillators with fast startup time and three PLLs.

The RCC receives the following clock source inputs:

- Internal oscillators:
  - 64 MHz HSI clock (1% accuracy)
  - 48 MHz RC oscillator
  - 4 MHz CSI clock
  - 32 kHz LSI clock
- External oscillators:
  - 4-48 MHz HSE clock
  - 32.768 kHz LSE clock

The RCC provides three PLLs: one for system clock, two for kernel clocks.

The system starts on the HSI clock. The user application can then select the clock configuration.

# 3.7.2 System reset sources

Power-on reset initializes all registers while system reset reinitializes the system except for the debug, part of the RCC and power controller status registers, as well as the backup power domain.

A system reset is generated in the following cases:

- Power-on reset (pwr\_por\_rst)
- Brownout reset
- Low level on NRST pin (external reset)
- Window watchdog
- Independent watchdog
- Software reset
- Low-power mode security reset
- Exit from Standby

# 3.8 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

After reset, all GPIOs are in Analog mode to reduce power consumption.

The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

#### 3.9 Bus-interconnect matrix

The devices feature an AXI bus matrix, two AHB bus matrices and bus bridges that allow interconnecting bus masters with bus slaves (see *Figure 2*).

24/227 DocID030553 Rev 3





#### 3.10 DMA controllers

The devices feature four DMA instances to unload CPU activity:

A master direct memory access (MDMA)

The MDMA is a high-speed DMA controller, which is in charge of all types of memory transfers (peripheral to memory, memory to memory, memory to peripheral), without any CPU action. It features a master AXI interface and a dedicated AHB interface to access Cortex<sup>®</sup>-M7 TCM memories.

The MDMA is located in D1 domain. It is able to interface with the other DMA controllers located in D2 domain to extend the standard DMA capabilities, or can manage peripheral DMA requests directly.

Each of the 16 channels can perform single block transfers, repeated block transfers and linked list transfers.

- Two dual-port DMAs (DMA1, DMA2) located in D2 domain, with FIFO and request router capabilities.
- One basic DMA (BDMA) located in D3 domain, with request router capabilities.

The DMA request router could be considered as an extension of the DMA controller. It routes the DMA peripheral requests to the DMA controller itself. This allowing managing the DMA requests with a high flexibility, maximizing the number of DMA requests that run concurrently, as well as generating DMA requests from peripheral output trigger or DMA event.

# 3.11 Chrom-ART Accelerator™ (DMA2D)

The Chrom-Art Accelerator™ (DMA2D) is a graphical accelerator which offers advanced bit blitting, row data copy and pixel format conversion. It supports the following functions:

- Rectangle filling with a fixed color
- Rectangle copy
- Rectangle copy with pixel format conversion
- Rectangle composition with blending and pixel format conversion

Various image format coding are supported, from indirect 4bpp color mode up to 32bpp direct color. It embeds dedicated memory to store color lookup tables. The DMA2D also supports block based YCbCr to handle JPEG decoder output.

An interrupt can be generated when an operation is complete or at a programmed watermark.

All the operations are fully automatized and are running independently from the CPU or the DMAs.

57

STM32H753xI Functional overview

# 3.12 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller which is able to manage 16 priority levels, and handle up to 150 maskable interrupt channels plus the 16 interrupt lines of the Cortex<sup>®</sup>-M7 with FPU core.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving, higher-priority interrupts
- Support tail chaining
- Processor context automatically saved on interrupt entry, and restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

# 3.13 Extended interrupt and event controller (EXTI)

The EXTI controller performs interrupt and event management. In addition, it can wake up the processor, power domains and/or D3 domain from Stop mode.

The EXTI handles up to 89 independent event/interrupt lines split as 28 configurable events and 61 direct events .

Configurable events have dedicated pending flags, active edge selection, and software trigger capable.

Direct events provide interrupts or events from peripherals having a status flag.

# 3.14 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a programmable polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

# 3.15 Flexible memory controller (FMC)

The FMC controller main features are the following:

- Interface with static-memory mapped devices including:
  - Static random access memory (SRAM)
  - NOR Flash memory/OneNAND Flash memory
  - PSRAM (4 memory banks)
  - NAND Flash memory with ECC hardware to check up to 8 Kbytes of data
- Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories
- 8-,16-,32-bit data bus width
- Independent Chip Select control for each memory bank
- Independent configuration for each memory bank
- Write FIFO
- Read FIFO for SDRAM controller
- The maximum FMC\_CLK/FMC\_SDCLK frequency for synchronous accesses is the FMC kernel clock divided by 2.

# 3.16 Quad-SPI memory interface (QUADSPI)

All devices embed a Quad-SPI memory interface, which is a specialized communication interface targeting Single, Dual or Quad-SPI Flash memories. It supports both single and double datarate operations.

It can operate in any of the following modes:

- Direct mode through registers
- External Flash status register polling mode
- Memory mapped mode.

Up to 256 Mbytes of external Flash memory can be mapped, and 8-, 16- and 32-bit data accesses are supported as well as code execution.

The opcode and the frame format are fully programmable.

# 3.17 Analog-to-digital converters (ADCs)

The STM32H753xl devices embed three analog-to-digital converters, which resolution can be configured to 16, 14, 12, 10 or 8 bits. Each ADC shares up to 20 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold

The ADC can be served by the DMA controller, thus allowing to automatically transfer ADC converted values to a destination location without any software action.

28/227 DocID030553 Rev 3

STM32H753xI Functional overview

In addition, an analog watchdog feature can accurately monitor the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM6, TIM8, TIM15, HRTIM1 and LPTIM1 timer.

# 3.18 Temperature sensor

STM32H753xl devices embeds a temperature sensor that generates a voltage ( $V_{TS}$ ) that varies linearly with the temperature. This temperature sensor is internally connected to ADC3\_IN18. The conversion range is between 1.7 V and 3.6 V. It can measure the device ambient temperature ranging from - 40 to +125 °C with a precision of +-2%.

The temperature sensor have a good linearity, but it has to be calibrated to obtain a good overall accuracy of the temperature measurement. As the temperature sensor offset varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the System memory area, which is accessible in read-only mode.

# 3.19 V<sub>BAT</sub> operation

The V<sub>BAT</sub> power domain contains the RTC, the backup registers and the backup SRAM.

To optimize battery duration, this power domain is supplied by  $V_{DD}$  when available or by the voltage applied on VBAT pin (when  $V_{DD}$  supply is not present).  $V_{BAT}$  power is switched when the PDR detects that  $V_{DD}$  dropped below the PDR level.

The voltage on the VBAT pin could be provided by an external battery, a supercapacitor or directly by  $V_{DD}$ , in which case, the  $V_{DD}$  mode is not functional.

V<sub>BAT</sub> operation is activated when V<sub>DD</sub> is not present.

The V<sub>BAT</sub> pin supplies the RTC, the backup registers and the backup SRAM.

Note: When the microcontroller is supplied from  $V_{BAT}$ , external interrupts and RTC alarm/events do not exit it from  $V_{BAT}$  operation.

When PDR\_ON pin is connected to  $V_{SS}$  (Internal Reset OFF), the  $V_{BAT}$  functionality is no more available and  $V_{BAT}$  pin should be connected to  $V_{DD}$ .

# 3.20 Digital-to-analog converters (DAC)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- 8-bit or 12-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channel independent or simultaneous conversions
- DMA capability for each channel including DMA underrun error detection
- external triggers for conversion
- input voltage reference V<sub>RFF+</sub> or internal VREFBUF reference.

The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

# 3.21 Ultra-low-power comparators (COMP)

STM32H753xl devices embed two rail-to-rail comparators (COMP1 and COMP2). They feature programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) as well as selectable output polarity.

The reference voltage can be one of the following:

- An external I/O
- A DAC output channel
- An internal reference voltage or submultiple (1/4, 1/2, 3/4).

All comparators can wake up from Stop mode, generate interrupts and breaks for the timers, and be combined into a window comparator.

# 3.22 Operational amplifiers (OPAMP)

STM32H753xl devices embed two rail-to-rail operational amplifiers (OPAMP1 and OPAMP2) with external or internal follower routing and PGA capability.

The operational amplifier main features are:

- PGA with a non-inverting gain ranging of 2, 4, 8 or 16 or inverting gain ranging of -1, -3,
   -7 or -15
- One positive input connected to DAC
- Output connected to internal ADC
- Low input bias current down to 1 nA
- Low input offset voltage down to 1.5 mV
- Gain bandwidth up to 8 MHz

STM32H753xI Functional overview

The devices embeds two operational amplifiers (OPAMP1 and OPAMP2) with two inputs and one output each. These three I/Os can be connected to the external pins, thus enabling any type of external interconnections. The operational amplifiers can be configured internally as a follower, as an amplifier with a non-inverting gain ranging from 2 to 16 or with inverting gain ranging from -1 to -15.

# 3.23 Digital filter for sigma-delta modulators (DFSDM)

The devices embed one DFSDM with 4 digital filters modules and 8 external input serial channels (transceivers) or alternately 8 internal parallel inputs support.

The DFSDM peripheral is dedicated to interface the external  $\Sigma\Delta$  modulators to microcontroller and then to perform digital filtering of the received data streams (which represent analog value on  $\Sigma\Delta$  modulators inputs). DFSDM can also interface PDM (Pulse Density Modulation) microphones and perform PDM to PCM conversion and filtering in hardware. DFSDM features optional parallel data stream inputs from internal ADC peripherals or microcontroller memory (through DMA/CPU transfers into DFSDM).

DFSDM transceivers support several serial interface formats (to support various  $\Sigma\Delta$  modulators). DFSDM digital filter modules perform digital processing according user selected filter parameters with up to 24-bit final ADC resolution.

The DFSDM peripheral supports:

- 8 multiplexed input digital serial channels:
  - configurable SPI interface to connect various SD modulator(s)
  - configurable Manchester coded 1 wire interface support
  - PDM (Pulse Density Modulation) microphone input support
  - maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
  - clock output for SD modulator(s): 0..20 MHz
- alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution):
  - internal sources: ADC data or memory data streams (DMA)
- 4 digital filter modules with adjustable digital signal processing:
  - Sinc<sup>x</sup> filter: filter order/type (1..5), oversampling ratio (up to 1..1024)
  - integrator: oversampling ratio (1..256)
- up to 24-bit output data resolution, signed output data format
- automatic data offset correction (offset stored in register by user)
- continuous or single conversion
- start-of-conversion triggered by:
  - software trigger
  - internal timers
  - external events
  - start-of-conversion synchronously with first digital filter module (DFSDM0)
- analog watchdog feature:
  - low value and high value data threshold registers
  - dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
  - input from final output data or from selected input digital serial channels
  - continuous monitoring independently from standard conversion

short circuit detector to detect saturated analog input values (bottom and top range):

- up to 8-bit counter to detect 1..256 consecutive 0's or 1's on serial data stream
- monitoring continuously each input serial channel
- break signal generation on analog watchdog event or on short circuit detector event
- extremes detector:
  - storage of minimum and maximum values of final conversion data
  - refreshed by software
- DMA capability to read the final conversion data
- interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial channel clock absence
- "regular" or "injected" conversions:
  - "regular" conversions can be requested at any time or even in continuous mode without having any impact on the timing of "injected" conversions
  - "injected" conversions for precise timing and with high conversion priority

| rable 4. Di ODM Implementation                         |        |  |  |  |  |
|--------------------------------------------------------|--------|--|--|--|--|
| DFSDM features                                         | DFSDM1 |  |  |  |  |
| Number of filters                                      | 4      |  |  |  |  |
| Number of input transceivers/channels                  | 8      |  |  |  |  |
| Internal ADC parallel input                            | X      |  |  |  |  |
| Number of external triggers                            | 16     |  |  |  |  |
| Regular channel information in identification register | Х      |  |  |  |  |

**Table 4. DFSDM implementation** 

# 3.24 Digital camera interface (DCMI)

The devices embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can achieve a data transfer rate up to 140 Mbyte/s using a 80 MHz pixel clock. It features:

- Programmable polarity for the input pixel clock and synchronization signals
- Parallel data communication can be 8-, 10-, 12- or 14-bit
- Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)
- Supports continuous mode or snapshot (a single frame) mode
- Capability to automatically crop the image

STM32H753xI Functional overview

#### 3.25 LCD-TFT controller

The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue) and delivers all signals to interface directly to a broad range of LCD and TFT panels up to XGA (1024x768) resolution with the following features:

- 2 display layers with dedicated FIFO (64x32-bit)
- Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
- Up to 8 input color formats selectable per layer
- Flexible blending between two layers using alpha value (per pixel or constant)
- Flexible programmable parameters for each layer
- Color keying (transparency color)
- Up to 4 programmable interrupt events
- AXI master interface with burst of 16 words

# 3.26 JPEG Codec (JPEG)

The JPEG Codec can encode and decode a JPEG stream as defined in the **ISO/IEC 10918-1** specification. It provides an fast and simple hardware compressor and decompressor of JPEG images with full management of JPEG headers.

The JPEG codec main features are as follows:

- 8-bit/channel pixel depths
- Single clock per pixel encoding and decoding
- Support for JPEG header generation and parsing
- Up to four programmable quantization tables
- Fully programmable Huffman tables (two AC and two DC)
- Fully programmable minimum coded unit (MCU)
- Encode/decode support (non simultaneous)
- Single clock Huffman coding and decoding
- Two-channel interface: Pixel/Compress In, Pixel/Compressed Out
- Support for single greyscale component
- Ability to enable/disable header processing
- Fully synchronous design
- Configuration for high-speed decode mode

# 3.27 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

# 3.28 Cryptographic acceleration (CRYPT and HASH)

The devices embed a cryptographic processor that supports the advanced cryptographic algorithms usually required to ensure confidentiality, authentication, data integrity and non-repudiation when exchanging messages with a peer:

- Encryption/Decryption
  - DES/TDES (data encryption standard/triple data encryption standard): ECB (electronic codebook) and CBC (cipher block chaining) chaining algorithms, 64-, 128- or 192-bit key
  - AES (advanced encryption standard): ECB, CBC, GCM, CCM, and CTR (counter mode) chaining algorithms, 128, 192 or 256-bit key
- Universal HASH
  - SHA-1 and SHA-2 (secure HASH algorithms)
  - MD5
  - HMAC

The cryptographic accelerator supports DMA request generation.

# 3.29 Timers and watchdogs

The devices include one high-resolution timer, two advanced-control timers, ten general-purpose timers, two basic timers, five low-power timers, two watchdogs and a SysTick timer.

All timer counters can be frozen in debug mode.

*Table 5* compares the features of the advanced-control, general-purpose and basic timers.

Max Max **DMA** Capture/ Comple-Counter **Prescaler** interface timer **Timer** Counter Timer request compare mentary resolution type factor clock clock type generation channels output (MHz)<sup>(1)</sup> (MHz) /1 /2 /4 High-(x2 x4 x8 HRTIM1 400 400 resolution 16-bit Up Yes 10 Yes x16 x32, timer with DLL) Any Up, integer Advanced TIM1, 16-bit 100 200 Down, between 1 Yes 4 Yes -control TIM8 Up/down and 65536

Table 5. Timer feature comparison

STM32H753xl Functional overview

Table 5. Timer feature comparison (continued)

| Timer<br>type          | Timer                                              | Counter resolution | Counter type            | Prescaler<br>factor                         | DMA<br>request<br>generation | Capture/<br>compare<br>channels | Comple-<br>mentary<br>output | Max<br>interface<br>clock<br>(MHz) | Max<br>timer<br>clock<br>(MHz) <sup>(1)</sup> |
|------------------------|----------------------------------------------------|--------------------|-------------------------|---------------------------------------------|------------------------------|---------------------------------|------------------------------|------------------------------------|-----------------------------------------------|
| General<br>purpose     | TIM2,<br>TIM5                                      | 32-bit             | Up,<br>Down,<br>Up/down | Any<br>integer<br>between 1<br>and<br>65536 | Yes                          | 4                               | No                           | 100                                | 200                                           |
|                        | TIM3,<br>TIM4                                      | 16-bit             | Up,<br>Down,<br>Up/down | Any<br>integer<br>between 1<br>and<br>65536 | Yes                          | 4                               | No                           | 100                                | 200                                           |
|                        | TIM12                                              | 16-bit             | Up                      | Any<br>integer<br>between 1<br>and<br>65536 | No                           | 2                               | No                           | 100                                | 200                                           |
|                        | TIM13,<br>TIM14                                    | 16-bit             | Up                      | Any<br>integer<br>between 1<br>and<br>65536 | No                           | 1                               | No                           | 100                                | 200                                           |
|                        | TIM15                                              | 16-bit             | Up                      | Any<br>integer<br>between 1<br>and<br>65536 | Yes                          | 2                               | 1                            | 100                                | 200                                           |
|                        | TIM16,<br>TIM17                                    | 16-bit             | Up                      | Any<br>integer<br>between 1<br>and<br>65536 | Yes                          | 1                               | 1                            | 100                                | 200                                           |
| Basic                  | TIM6,<br>TIM7                                      | 16-bit             | Up                      | Any<br>integer<br>between 1<br>and<br>65536 | Yes                          | 0                               | No                           | 100                                | 200                                           |
| Low-<br>power<br>timer | LPTIM1,<br>LPTIM2,<br>LPTIM3,<br>LPTIM4,<br>LPTIM5 | 16-bit             | Up                      | 1, 2, 4, 8,<br>16, 32, 64,<br>128           | No                           | 0                               | No                           | 100                                | 200                                           |

<sup>1.</sup> The maximum timer clock is up to 400 MHz depending on TIMPRE bit in the RCC\_CFGR register and D2PRE1/2 bits in RCC\_D2CFGR register.

#### 3.29.1 High-resolution timer (HRTIM1)

The high-resolution timer (HRTIM1) allows generating digital signals with high-accuracy timings, such as PWM or phase-shifted pulses.

It consists of 6 timers, 1 master and 5 slaves, totaling 10 high-resolution outputs, which can be coupled by pairs for deadtime insertion. It also features 5 fault inputs for protection purposes and 10 inputs to handle external events such as current limitation, zero voltage or zero current switching.

The HRTIM1 timer is made of a digital kernel clocked at 400 MHz The high-resolution is available on the 10 outputs in all operating modes: variable duty cycle, variable frequency, and constant ON time.

The slave timers can be combined to control multiswitch complex converters or operate independently to manage multiple independent converters.

The waveforms are defined by a combination of user-defined timings and external events such as analog or digital feedbacks signals.

HRTIM1 timer includes options for blanking and filtering out spurious events or faults. It also offers specific modes and features to offload the CPU: DMA requests, burst mode controller, push-pull and resonant mode.

It supports many topologies including LLC, Full bridge phase shifted, buck or boost converters, either in voltage or current mode, as well as lighting application (fluorescent or LED). It can also be used as a general purpose timer, for instance to achieve high-resolution PWM-emulated DAC.

477

STM32H753xl Functional overview

### 3.29.2 Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-100%).

The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

TIM1 and TIM8 support independent DMA request generation.

#### 3.29.3 General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32H753xl devices (see *Table 5* for differences).

#### TIM2, TIM3, TIM4, TIM5

The devices include 4 full-featured general-purpose timers: TIM2, TIM3, TIM4 and TIM5. TIM2 and TIM5 are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler while TIM3 and TIM4 are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. All timers feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

TIM2, TIM3, TIM4 and TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.

Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

#### TIM12, TIM13, TIM14, TIM15, TIM16, TIM17

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13, TIM14, TIM16 and TIM17 feature one independent channel, whereas TIM12 and TIM15 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers or used as simple timebases.

Functional overview STM32H753xI

#### 3.29.4 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

TIM6 and TIM7 support independent DMA request generation.

## 3.29.5 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5)

The low-power timers have an independent clock and is running also in Stop mode if it is clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode.

This low-power timer supports the following features:

- 16-bit up counter with 16-bit autoreload register
- 16-bit compare register
- Configurable output: pulse, PWM
- Continuous / one-shot mode
- Selectable software / hardware input trigger
- Selectable clock source:
- Internal clock source: LSE, LSI, HSI or APB clock
- External clock source over LPTIM input (working even with no internal clock source running, used by the Pulse Counter Application)
- Programmable digital glitch filter
- Encoder mode

### 3.29.6 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

#### 3.29.7 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

### 3.29.8 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source.

STM32H753xl Functional overview

## 3.30 Real-time clock (RTC), backup SRAM and backup registers

The RTC is an independent BCD timer/counter. It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
- Two programmable alarms.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy.
- Three anti-tamper detection pins with programmable filter.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to V<sub>BAT</sub> mode.
- 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period.

The RTC and the 32 backup registers are supplied through a switch that takes power either from the  $V_{DD}$  supply when present or from the  $V_{BAT}$  pin.

The backup registers are 32-bit registers used to store 128 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby mode.

The RTC clock sources can be:

- A 32.768 kHz external crystal (LSE)
- An external resonator or oscillator (LSE)
- The internal low-power RC oscillator (LSI, with typical frequency of 32 kHz)
- The high-speed external clock (HSE) divided by 32.

The RTC is functional in  $V_{BAT}$  mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in  $V_{BAT}$  mode, but is functional in all low-power modes.

All RTC events (Alarm, Wakeup Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes.

Functional overview STM32H753xI

## 3.31 Inter-integrated circuit interface (I2C)

STM32H753xI devices embed four I<sup>2</sup>C interfaces.

The I<sup>2</sup>C bus interface handles communications between the microcontroller and the serial I<sup>2</sup>C bus. It controls all I<sup>2</sup>C bus-specific sequencing, protocol, arbitration and timing.

The I2C peripheral supports:

- I<sup>2</sup>C-bus specification and user manual rev. 5 compatibility:
  - Slave and master modes, multimaster capability
  - Standard-mode (Sm), with a bitrate up to 100 kbit/s
  - Fast-mode (Fm), with a bitrate up to 400 kbit/s
  - Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
  - 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
  - Programmable setup and hold times
  - Optional clock stretching
- System Management Bus (SMBus) specification rev 2.0 compatibility:
  - Hardware PEC (Packet Error Checking) generation and verification with ACK control
  - Address resolution protocol (ARP) support
  - SMBus alert

40/227

- Power System Management Protocol (PMBus<sup>TM</sup>) specification rev 1.1 compatibility
- Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming.
- Wakeup from Stop mode on address match
- Programmable analog and digital noise filters
- 1-byte buffer with DMA capability

## 3.32 Universal synchronous/asynchronous receiver transmitter (USART)

STM32H753xl devices have four embedded universal synchronous receiver transmitters (USART1, USART2, USART3 and USART6) and four universal asynchronous receiver transmitters (UART4, UART5, UART7 and UART8). Refer to *Table 6* for a summary of USARTx and UARTx features.

These interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. They provide hardware management of the CTS and RTS signals, and RS485 Driver Enable. They are able to communicate at speeds of up to 12.5 Mbit/s.

USART1, USART2, USART3 and USART6 also provide Smartcard mode (ISO 7816 compliant) and SPI-like communication capability.

The USARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode is enabled by software and is disabled by default.

DocID030553 Rev 3

STM32H753xl Functional overview

All USART have a clock domain independent from the CPU clock, allowing the USARTx to wake up the MCU from Stop mode. The wakeup from Stop mode are programmable and can be done on:

- Start bit detection
- Any received data frame
- A specific programmed data frame
- Specific TXFIFO/RXFIFO status when FIFO mode is enabled.

All USART interfaces can be served by the DMA controller.

Table 6. USART features

| USART modes/features <sup>(1)</sup>              | USART1/2/3/6 | UART4/5/7/8 |
|--------------------------------------------------|--------------|-------------|
| Hardware flow control for modem                  | X            | Х           |
| Continuous communication using DMA               | Х            | Х           |
| Multiprocessor communication                     | X            | Х           |
| Synchronous mode (Master/Slave)                  | Х            | -           |
| Smartcard mode                                   | Х            | -           |
| Single-wire Half-duplex communication            | Х            | Х           |
| IrDA SIR ENDEC block                             | Х            | Х           |
| LIN mode                                         | Х            | Х           |
| Dual clock domain and wakeup from low power mode | Х            | Х           |
| Receiver timeout interrupt                       | Х            | Х           |
| Modbus communication                             | Х            | Х           |
| Auto baud rate detection                         | Х            | Х           |
| Driver Enable                                    | Х            | Х           |
| USART data length                                | 7, 8 and     | d 9 bits    |
| Tx/Rx FIFO                                       | Х            | Х           |
| Tx/Rx FIFO size                                  | 1            | 6           |

<sup>1.</sup> X = supported.

# 3.33 Low-power universal asynchronous receiver transmitter (LPUART)

The device embeds one Low-Power UART (LPUART1). The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

The LPUARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode is enabled by software and is disabled by default.

**Functional overview** STM32H753xI

> The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode. The wakeup from Stop mode are programmable and can be done on:

- Start bit detection
- Any received data frame
- A specific programmed data frame
- Specific TXFIFO/RXFIFO status when FIFO mode is enabled.

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.

LPUART interface can be served by the DMA controller.

#### 3.34 Serial peripheral interface (SPI)/inter-integrated sound interfaces (I2S)

The devices feature up to six SPIs (SPI2S1, SPI2S2, SPI2S3, SPI4, SPI5 and SPI6) that allow communicating up to 50 Mbits/s in master and slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable from 4 to 16 bits. All SPI interfaces support NSS pulse mode, TI mode, Hardware CRC calculation and 8x 8-bit embedded Rx and Tx FIFOs with DMA capability.

Three standard I<sup>2</sup>S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They can be operated in master or slave mode, in simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I<sup>2</sup>S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. All I<sup>2</sup>S interfaces support 16x 8bit embedded Rx and Tx FIFOs with DMA capability.

#### 3.35 Serial audio interfaces (SAI)

The devices embed 4 SAIs (SAI1, SAI2, SAI3 and SAI4) that allow designing many stereo or mono audio protocols such as I2S, LSB or MSB-justified, PCM/DSP, TDM or AC'97. An SPDIF output is available when the audio block is configured as a transmitter. To bring this level of flexibility and reconfigurability, the SAI contains two independent audio sub-blocks. Each block has it own clock generator and I/O line controller.

Audio sampling frequencies up to 192 kHz are supported.

In addition, up to 8 microphones can be supported thanks to an embedded PDM interface. The SAI can work in master or slave configuration. The audio sub-blocks can be either receiver or transmitter and can work synchronously or asynchronously (with respect to the other one). The SAI can be connected with other SAIs to work synchronously.

42/227 DocID030553 Rev 3



STM32H753xl Functional overview

## 3.36 SPDIFRX Receiver Interface (SPDIFRX)

The SPDIFRX peripheral is designed to receive an S/PDIF flow compliant with IEC-60958 and IEC-61937. These standards support simple stereo streams up to high sample rate, and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up to 5.1).

The main SPDIFRX features are the following:

- Up to 4 inputs available
- Automatic symbol rate detection
- Maximum symbol rate: 12.288 MHz
- Stereo stream from 32 to 192 kHz supported
- Supports Audio IEC-60958 and IEC-61937, consumer applications
- Parity bit management
- Communication using DMA for audio samples
- Communication using DMA for control and user channel information
- Interrupt capabilities

The SPDIFRX receiver provides all the necessary features to detect the symbol rate, and decode the incoming data stream. The user can select the wanted SPDIF input, and when a valid signal will be available, the SPDIFRX will re-sample the incoming signal, decode the Manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the CPU decoded data, and associated status flags.

The SPDIFRX also offers a signal named spdif\_frame\_sync, which toggles at the S/PDIF sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms.

## 3.37 Single wire protocol master interface (SWPMI)

The Single wire protocol master interface (SWPMI) is the master interface corresponding to the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The main features are:

- full-duplex communication mode
- automatic SWP bus state management (active, suspend, resume)
- configurable bitrate up to 2 Mbit/s
- automatic SOF, EOF and CRC handling

SWPMI can be served by the DMA controller.

Functional overview STM32H753xI

## 3.38 Management Data Input/Output (MDIO) slaves

The devices embed an MDIO slave interface it includes the following features:

- 32 MDIO Registers addresses, each of which is managed using separate input and output data registers:
  - 32 x 16-bit firmware read/write, MDIO read-only output data registers
  - 32 x 16-bit firmware read-only, MDIO write-only input data registers
- Configurable slave (port) address
- Independently maskable interrupts/events:
  - MDIO Register write
  - MDIO Register read
  - MDIO protocol error
- Able to operate in and wake up from STOP mode

## 3.39 SD/SDIO/MMC card host interfaces (SDMMC)

Two SDMMC host interfaces are available. They support *MultiMediaCard System*Specification Version 4.51 in three different databus modes: 1 bit (default), 4 bits and 8 bits.

Both interfaces support the *SD memory card specifications version 4.1.* and the *SDIO card specification version 4.0.* in two different databus modes: 1 bit (default) and 4 bits.

Each SDMMC host interface supports only one SD/SDIO/MMC card at any one time and a stack of MMC Version 4.51 or previous.

The SDMMC host interface embeds a dedicated DMA controller allowing high-speed transfers between the interface and the SRAM.

## 3.40 Controller area network (FDCAN1, FDCAN2)

The controller area network (CAN) subsystem consists of two CAN modules, a shared message RAM memory and a clock calibration unit.

Both CAN modules (FDCAN1 and FDCAN2) are compliant with ISO 11898-1 (CAN protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0.

FDCAN1 supports time triggered CAN (TTCAN) specified in ISO 11898-4, including event synchronized time-triggered communication, global system time, and clock drift compensation. The FDCAN1 contains additional registers, specific to the time triggered feature. The CAN FD option can be used together with event-triggered and time-triggered CAN communication.

A 10 Kbytes message RAM memory implements filters, receive FIFOs, receive buffers, transmit event FIFOs, transmit buffers (and triggers for TTCAN). This message RAM is shared between the two FDCAN1 and FDCAN2 modules.

The common clock calibration unit is optional. It can be used to generate a calibrated clock for both FDCAN1 and FDCAN2 from the HSI internal RC oscillator and the PLL, by evaluating CAN messages received by the FDCAN1.

577

STM32H753xl Functional overview

## 3.41 Universal serial bus on-the-go high-speed (OTG\_HS)

The devices embed two USB OTG high-speed (up to 480 Mbit/s) device/host/OTG peripheral. OTG-HS1 supports both full-speed and high-speed operations, while OTG-HS2 supports only full-speed operations. They both integrate the transceivers for full-speed operation (12 Mbit/s). OTG-HS1 features a UTMI low-pin interface (ULPI) for high-speed operation (480 Mbit/s). When using the USB OTG-HS1 in HS mode, an external PHY device connected to the ULPI is required.

The USB OTG HS peripherals are compliant with the USB 2.0 specification and with the OTG 2.0 specification. They have software-configurable endpoint setting and supports suspend/resume. The USB OTG controllers require a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator.

#### The main features are:

- Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 8 bidirectional endpoints
- 16 host channels with periodic OUT support
- Software configurable to OTG1.3 and OTG2.0 modes of operation
- USB 2.0 LPM (Link Power Management) support
- Battery Charging Specification Revision 1.2 support
- Internal FS OTG PHY support
- External HS or HS OTG operation supporting ULPI in SDR mode (OTG\_HS1 only)
   The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output.
- Internal USB DMA
- HNP/SNP/IP inside (no need for any external resistor)
- For OTG/Host modes, a power switch is needed in case bus-powered devices are connected

## 3.42 Ethernet MAC interface with dedicated DMA controller (ETH)

The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard medium-independent interface (MII) or a reduced medium-independent interface (RMII). The microcontroller requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.

Functional overview STM32H753xI

The devices include the following features:

- Supports 10 and 100 Mbit/s rates
- Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors
- Tagged MAC frame support (VLAN support)
- Half-duplex (CSMA/CD) and full-duplex operation
- MAC control sublayer (control frames) support
- 32-bit CRC generation and removal
- Several address filtering modes for physical and multicast address (multicast and group addresses)
- 32-bit status code for each transmitted or received frame
- Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes.
- Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input
- Triggers interrupt when system time becomes greater than target time

# 3.43 High-definition multimedia interface (HDMI) - consumer electronics control (CEC)

The devices embed a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).

This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI-CEC controller to wakeup the MCU from Stop mode on data reception.

## 3.44 Debug infrastructure

The devices offer a comprehensive set of debug and trace features to support software development and system integration.

- Breakpoint debugging
- Code execution tracing
- Software instrumentation
- JTAG debug port
- Serial-wire debug port
- Trigger input and output
- Serial-wire trace port
- Trace port
- Arm<sup>®</sup> CoreSight<sup>™</sup> debug and trace components

The debug can be controlled via a JTAG/Serial-wire debug access port, using industry standard debugging tools.

The trace port performs data capture for logging and analysis.

57

STM32H753xl Memory mapping

## 4 Memory mapping

Refer to the product line reference manual for details on the memory mapping as well as the boundary addresses for all peripherals.

## 5 Pin descriptions

Figure 3. LQFP100 pinout



1. The above figure shows the package top view.

Figure 4. TFBGA100 pinout

|   | 1                            | 2                 | 3     | 4       | 5     | 6               | 7                      | 8          | 9                    | 10                   |
|---|------------------------------|-------------------|-------|---------|-------|-----------------|------------------------|------------|----------------------|----------------------|
| А | PC14-<br>OSC32_IN<br>(PC14)  | PC13              | PE2   | PB9     | PB7   | PB4<br>(NJTRST) | PB3(JTDO/<br>TRACESWO) | PA15(JTDI) | PA14(JTCK-<br>SWCLK) | PA13(JTMS-<br>SWDIO) |
| В | PC15-<br>OSC32_OUT<br>(PC15) | VBAT              | PE3   | PB8     | PB6   | PD5             | PD2                    | PC11       | PC10                 | PA12                 |
| С | PH0-<br>OSC_IN(PH0)          | vss               | PE4   | PE1     | PB5   | PD6             | PD3                    | PC12       | PA9                  | PA11                 |
| D | PH1-<br>OSC_OUT<br>(PH1)     | VDD               | PE5   | PE0     | воото | PD7             | PD4                    | PD0        | PA8                  | PA10                 |
| E | NRST                         | PC2_C             | PE6   | vss     | vss   | vss             | VCAP2                  | PD1        | PC9                  | PC7                  |
| F | PC0                          | PC1               | PC3_C | VDDLDO3 | VDD   | VDD33USB        | PDR_ON                 | VCAP1      | PC8                  | PC6                  |
| G | VSSA                         | PA0-<br>WKUP(PA0) | PA4   | PC4     | PB2   | PE10            | PE14                   | PD15       | PD11                 | PB15                 |
| н | VDDA                         | PA1               | PA5   | PC5     | PE7   | PE11            | PE15                   | PD14       | PD10                 | PB14                 |
| J | vss                          | PA2               | PA6   | PB0     | PE8   | PE12            | PB10                   | PB13       | PD9                  | PD13                 |
| к | VDD                          | PA3               | PA7   | PB1     | PE9   | PE13            | PB11                   | PB12       | PD8                  | PD12                 |
|   |                              |                   |       |         |       |                 |                        |            |                      |                      |

1. The above figure shows the package top view.

Figure 5. LQFP144 pinout



1. The above figure shows the package top view.

577

Figure 6. UFBGA169 ballout

|   | 1                      | 2              | 3    | 4       | 5            | 6     | 7    | 8    | 9    | 10      | 11   | 12            | 13            |
|---|------------------------|----------------|------|---------|--------------|-------|------|------|------|---------|------|---------------|---------------|
| Α | PE4                    | PE2            | VDD  | PI6     | PB6          | PI2   | VDD  | PG10 | PD5  | VDD     | PC12 | PC10          | PI0           |
| В | PC15-<br>OSC32_<br>OUT | PE3            | VSS  | VDDLDO3 | PB8          | PB4   | PI3  | PG11 | PD6  | vss     | PC11 | PA14          | PI1           |
| С | PC14-<br>OSC32_<br>IN  | PE6            | PE5  | PDR_ON  | PB9          | PB5   | PG14 | PG9  | PD4  | PD1     | PA15 | VSS           | VDD           |
| D | VDD                    | VSS            | PC13 | PE1     | PE0          | PB7   | PG13 | PD7  | PD3  | PD0     | PA13 | VDDLDO2       | VCAP2         |
| E | PI11                   | PI7            | VBAT | PF1     | PF3          | воото | PG15 | PG12 | PD2  | PA10    | PA9  | PA8           | PA12          |
| F | PI13                   | PI12           | PF0  | PF2     | PF5          | PF7   | PB3  | PG4  | PC6  | PC7     | PC9  | PC8           | PA11          |
| G | VDD                    | VSS            | PF4  | PF6     | PF9          | NRST  | PF13 | PE7  | PG6  | PG7     | PG8  | VDD50_<br>USB | VDD33_<br>USB |
| Н | PH0-<br>OSCIN          | PH1-<br>OSCOUT | PF10 | PF8     | PJ1          | PA4   | PF14 | PE8  | PG2  | PG3     | PG5  | VSS           | VDD           |
| J | PC0                    | PC1            | VSSA | PJ0     | PA0-<br>WKUP | PA7   | PF15 | PE9  | PE14 | PD11    | PD13 | PD15          | PD14          |
| К | PC3_C                  | PC2_C          | PH4  | PA1     | PA6          | PC4   | PG0  | PE13 | PH10 | PH12    | PD9  | PD10          | PD12          |
| L | VDDA                   | VREF+          | PH5  | PA5     | PB1          | PB2   | PG1  | PE12 | PB10 | PH11    | PB13 | VSS           | VDD           |
| М | VDD                    | VSS            | PH3  | VSS     | PB0          | PF11  | VSS  | PE10 | PB11 | VDDLDO1 | VSS  | PD8           | PB15          |
| N | PA2                    | PH2            | PA3  | VDD     | PC5          | PF12  | VDD  | PE11 | PE15 | VCAP1   | VDD  | PB12          | PB14          |
|   |                        |                |      |         |              |       |      |      |      |         |      |               | MSv453        |
|   |                        |                |      |         |              |       |      |      |      |         |      |               | IVISV453      |

1. The above figure shows the package top view.

Figure 7. LQFP176 pinout



1. The above figure shows the package top view.

577

Figure 8. UFBGA176+25 ballout

| 1                      |                                                                                                       |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | 2                                                                                                     | 3                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                                                                                                                                                                                                                                                                                                                                 | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PE3                    | PE2                                                                                                   | PE1                                                                                                                                  | PE0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PB8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PB5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PG14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PG13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PB4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PB3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PD7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PC12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PA15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PA14                                                                                                                                                                                                                                                                                                                               | PA13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PE4                    | PE5                                                                                                   | PE6                                                                                                                                  | PB9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PB7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PB6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PG15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PG12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PG11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PG10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PD6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PD0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PC11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PC10                                                                                                                                                                                                                                                                                                                               | PA12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VBAT                   | PI7                                                                                                   | PI6                                                                                                                                  | PI5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PDR_ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PG9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PD5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PI3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PI2                                                                                                                                                                                                                                                                                                                                | PA11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PC13                   | PI8                                                                                                   | PI9                                                                                                                                  | PI4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | воото                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PD4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PD3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PH15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PI1                                                                                                                                                                                                                                                                                                                                | PA10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PC14-<br>OSC32_<br>IN  | PF0                                                                                                   | PI10                                                                                                                                 | PI11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PH13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PH14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PI0                                                                                                                                                                                                                                                                                                                                | PA9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PC15-<br>OSC32_<br>OUT | VSS                                                                                                   | VDD                                                                                                                                  | PH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VCAP2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PC9                                                                                                                                                                                                                                                                                                                                | PA8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PH0-<br>OSC_IN         | VSS                                                                                                   | VDD                                                                                                                                  | PH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PC8                                                                                                                                                                                                                                                                                                                                | PC7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PH1-<br>OSC_<br>OUT    | PF2                                                                                                   | PF1                                                                                                                                  | PH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VDD<br>33USB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PG8                                                                                                                                                                                                                                                                                                                                | PC6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NRST                   | PF3                                                                                                   | PF4                                                                                                                                  | PH5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PG7                                                                                                                                                                                                                                                                                                                                | PG6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PF7                    | PF6                                                                                                   | PF5                                                                                                                                  | VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PH12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PG5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PG4                                                                                                                                                                                                                                                                                                                                | PG3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PF10                   | PF9                                                                                                   | PF8                                                                                                                                  | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PH11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PH10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PD15                                                                                                                                                                                                                                                                                                                               | PG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VSSA                   | PC0                                                                                                   | PC1                                                                                                                                  | PC2_C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PC3_C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VCAP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PH6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PH8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PH9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PD14                                                                                                                                                                                                                                                                                                                               | PD13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VREF-                  | PA1                                                                                                   | PA0                                                                                                                                  | PA4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PC4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PF13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PG0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PE13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PH7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PD12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PD11                                                                                                                                                                                                                                                                                                                               | PD10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VREF+                  | PA2                                                                                                   | PA6                                                                                                                                  | PA5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PC5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PF12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PF15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PE8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PE9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PE11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PE14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PB12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PB13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PD9                                                                                                                                                                                                                                                                                                                                | PD8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VDDA                   | PA3                                                                                                   | PA7                                                                                                                                  | PB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PB0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PF11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PF14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PE7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PE10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PE12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PE15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PB10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PB11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PB14                                                                                                                                                                                                                                                                                                                               | PB15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (                      | VBAT  PC13  PC14-0SC32- IN  PC15-0SC32- OUT  PH0- OSC_IN  PH1- OSC_ OUT  NRST  PF7  PF10  VSSA  VREF- | VBAT PI7  PC13 PI8  PC14-0SC32- PF0 IN PC15-0SC32- VSS OUT  PH0-OSC_IN PH1-OSC_OUT  NRST PF3  PF7 PF6  PF10 PF9  VSSA PC0  VREF- PA1 | VBAT         PI7         PI6           PC13         PI8         PI9           PC14-<br>OSC32-<br>OUT         PF0         PI10           PC15-<br>OSC32-<br>OUT         VSS         VDD           PH0-<br>OSC_IN         VSS         VDD           PH1-<br>OSC_<br>OUT         PF2         PF1           NRST         PF3         PF4           PF7         PF6         PF5           PF10         PF9         PF8           VSSA         PC0         PC1           VREF-         PA1         PA0           VREF+         PA2         PA6 | VBAT         PI7         PI6         PI5           PC13         PI8         PI9         PI4           PC14-<br>OSC32-<br>OUT         PF0         PI10         PI11           PC15-<br>OSC32-<br>OUT         VSS         VDD         PH2           PH0-<br>OSC_<br>OUT         VSS         VDD         PH3           PH1-<br>OSC_<br>OUT         PF2         PF1         PH4           NRST         PF3         PF4         PH5           PF7         PF6         PF5         VDD           PF10         PF9         PF8         VSS           VSSA         PC0         PC1         PC2_C           VREF-         PA1         PA0         PA4           VREF+         PA2         PA6         PA5 | VBAT         PI7         PI6         PI5         VDD           PC13         PI8         PI9         PI4         VSS           PC14-0SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC32-10SC3 | VBAT         PI7         PI6         PI5         VDD         PDR_ON           PC13         PI8         PI9         PI4         VSS         BOOT0           PC14-<br>OSC32-<br>OUT         PF0         PI10         PI11         II           PC15-<br>OSC32-<br>OUT         VSS         VDD         PH2         VSS           PH0-<br>OSC_IN         VSS         VDD         PH3         VSS           PH1-<br>OSC_OUT         PF2         PF1         PH4         VSS           NRST         PF3         PF4         PH5         VSS           PF7         PF6         PF5         VDD         VSS           PF10         PF9         PF8         VSS         VSS           VSSA         PC0         PC1         PC2_C         PC3_C         PB2           VREF-         PA1         PA0         PA4         PC4         PF13           VREF+         PA2         PA6         PA5         PC5         PF12 | VBAT         PI7         PI6         PI5         VDD         PDR_ON         VDD           PC13         PI8         PI9         PI4         VSS         BOOT0         VSS           PC14-<br>OSC32_<br>OUT         PF0         PI10         PI11         III         III | VBAT         PI7         PI6         PI5         VDD         PDR_ON         VDD         VDD           PC13         PI8         PI9         PI4         VSS         BOOT0         VSS         VSS           PC14-0SC32_IN         PF0         PI10         PI11         IN         IN <td>VBAT         PI7         PI6         PI5         VDD         PDR_ON         VDD         VDD         VDD           PC13         PI8         PI9         PI4         VSS         BOOT0         VSS         VSS         VSS           PC14-0SC32- IN OSC32- IN OUT         PF0         PI10         PI11         IN         IN</td> <td>VBAT         PI7         PI6         PI5         VDD         PDR_ON         VDD         VDD         VDD         PG9           PC13         PI8         PI9         PI4         VSS         BOOTO         VSS         VSS         VSS         PD4           PC14-<br/>OSC32-<br/>OUT         PF0         PI10         PI11         PP11         PP11<td>VBAT         PI7         PI6         PI5         VDD         PDR_ON         VDD         VDD         VDD         PG9         PD5           PC13         PI8         PI9         PI4         VSS         BOOTO         VSS         VSS         VSS         PD4         PD3           PC14-<br/>OSC32-<br/>OUT         PF0         PI10         PI11         III         III</td><td>VBAT         PI7         PI6         PI5         VDD         PDR_ON         VDD         VDD         VDD         PG9         PD5         PD1           PC13         PI8         PI9         PI4         VSS         BOOTO         VSS         VSS         VSS         PD4         PD3         PD2           PC14-OSC32_ IN         PF0         PI10         PI11         III         III</td><td>VBAT PI7 PI6 PI5 VDD PDR_ON VDD VDD VDD PG9 PD5 PD1 PI3  PC13 PI8 PI9 PI4 VSS BOOT0 VSS VSS VSS PD4 PD3 PD2 PH15  PC14- OSC32- IN PC15- OSC32- OUT VSS VDD PH2 VSS VSS VSS VSS VSS VSS VSS VCSP VSS VCSP  PH0- OSC_IN VSS VDD PH3 VSS VSS VSS VSS VSS VSS VSS VCSP  PH0- OSC_IN VSS VDD PH3 VSS VSS VSS VSS VSS VSS VSS VSS VSS VS</td><td>VBAT         PI7         PI6         PI5         VDD         PDR_ON         VDD         VDD         VDD         PG9         PD5         PD1         PI3         PI2           PC13         PI8         PI9         PI4         VSS         BOOTO         VSS         VSS         VSS         PD4         PD3         PD2         PH15         PI1           PC14-0SC32-1N         PF0         PI10         PI11         III         III         PH14         PI0           PC14-0SC32-1N         VSS         VDD         PH2         VSS         VSS         VSS         VSS         VSS         VCAP2         PC9           PH0-0SC32-1N         VSS         VDD         PH3         VSS         VSS         VSS         VSS         VSS         VCAP2         PC9           PH0-0SC2-1N         VSS         VDD         PH3         VSS         VSS</td></td> | VBAT         PI7         PI6         PI5         VDD         PDR_ON         VDD         VDD         VDD           PC13         PI8         PI9         PI4         VSS         BOOT0         VSS         VSS         VSS           PC14-0SC32- IN OSC32- IN OUT         PF0         PI10         PI11         IN         IN | VBAT         PI7         PI6         PI5         VDD         PDR_ON         VDD         VDD         VDD         PG9           PC13         PI8         PI9         PI4         VSS         BOOTO         VSS         VSS         VSS         PD4           PC14-<br>OSC32-<br>OUT         PF0         PI10         PI11         PP11         PP11 <td>VBAT         PI7         PI6         PI5         VDD         PDR_ON         VDD         VDD         VDD         PG9         PD5           PC13         PI8         PI9         PI4         VSS         BOOTO         VSS         VSS         VSS         PD4         PD3           PC14-<br/>OSC32-<br/>OUT         PF0         PI10         PI11         III         III</td> <td>VBAT         PI7         PI6         PI5         VDD         PDR_ON         VDD         VDD         VDD         PG9         PD5         PD1           PC13         PI8         PI9         PI4         VSS         BOOTO         VSS         VSS         VSS         PD4         PD3         PD2           PC14-OSC32_ IN         PF0         PI10         PI11         III         III</td> <td>VBAT PI7 PI6 PI5 VDD PDR_ON VDD VDD VDD PG9 PD5 PD1 PI3  PC13 PI8 PI9 PI4 VSS BOOT0 VSS VSS VSS PD4 PD3 PD2 PH15  PC14- OSC32- IN PC15- OSC32- OUT VSS VDD PH2 VSS VSS VSS VSS VSS VSS VSS VCSP VSS VCSP  PH0- OSC_IN VSS VDD PH3 VSS VSS VSS VSS VSS VSS VSS VCSP  PH0- OSC_IN VSS VDD PH3 VSS VSS VSS VSS VSS VSS VSS VSS VSS VS</td> <td>VBAT         PI7         PI6         PI5         VDD         PDR_ON         VDD         VDD         VDD         PG9         PD5         PD1         PI3         PI2           PC13         PI8         PI9         PI4         VSS         BOOTO         VSS         VSS         VSS         PD4         PD3         PD2         PH15         PI1           PC14-0SC32-1N         PF0         PI10         PI11         III         III         PH14         PI0           PC14-0SC32-1N         VSS         VDD         PH2         VSS         VSS         VSS         VSS         VSS         VCAP2         PC9           PH0-0SC32-1N         VSS         VDD         PH3         VSS         VSS         VSS         VSS         VSS         VCAP2         PC9           PH0-0SC2-1N         VSS         VDD         PH3         VSS         VSS</td> | VBAT         PI7         PI6         PI5         VDD         PDR_ON         VDD         VDD         VDD         PG9         PD5           PC13         PI8         PI9         PI4         VSS         BOOTO         VSS         VSS         VSS         PD4         PD3           PC14-<br>OSC32-<br>OUT         PF0         PI10         PI11         III         III | VBAT         PI7         PI6         PI5         VDD         PDR_ON         VDD         VDD         VDD         PG9         PD5         PD1           PC13         PI8         PI9         PI4         VSS         BOOTO         VSS         VSS         VSS         PD4         PD3         PD2           PC14-OSC32_ IN         PF0         PI10         PI11         III         III | VBAT PI7 PI6 PI5 VDD PDR_ON VDD VDD VDD PG9 PD5 PD1 PI3  PC13 PI8 PI9 PI4 VSS BOOT0 VSS VSS VSS PD4 PD3 PD2 PH15  PC14- OSC32- IN PC15- OSC32- OUT VSS VDD PH2 VSS VSS VSS VSS VSS VSS VSS VCSP VSS VCSP  PH0- OSC_IN VSS VDD PH3 VSS VSS VSS VSS VSS VSS VSS VCSP  PH0- OSC_IN VSS VDD PH3 VSS VSS VSS VSS VSS VSS VSS VSS VSS VS | VBAT         PI7         PI6         PI5         VDD         PDR_ON         VDD         VDD         VDD         PG9         PD5         PD1         PI3         PI2           PC13         PI8         PI9         PI4         VSS         BOOTO         VSS         VSS         VSS         PD4         PD3         PD2         PH15         PI1           PC14-0SC32-1N         PF0         PI10         PI11         III         III         PH14         PI0           PC14-0SC32-1N         VSS         VDD         PH2         VSS         VSS         VSS         VSS         VSS         VCAP2         PC9           PH0-0SC32-1N         VSS         VDD         PH3         VSS         VSS         VSS         VSS         VSS         VCAP2         PC9           PH0-0SC2-1N         VSS         VDD         PH3         VSS         VSS |

1. The above figure shows the package top view.

Figure 9. LQFP208 pinout



1. The above figure shows the package top view.

577

Figure 10. TFBGA240+25 ballout

|   | riguite 10. 11 BOALTO 23 Sanout |                       |      |      |      |             |            |           |      |      |       |             |      |      |      |      |              |
|---|---------------------------------|-----------------------|------|------|------|-------------|------------|-----------|------|------|-------|-------------|------|------|------|------|--------------|
|   | 1                               | 2                     | 3    | 4    | 5    | 6           | 7          | 8         | 9    | 10   | 11    | 12          | 13   | 14   | 15   | 16   | 17           |
| Α | VSS                             | PI6                   | PI5  | PI4  | PB5  | VDD<br>LDO3 | VCAP3      | PK5       | PG10 | PG9  | PD5   | PD4         | PC10 | PA15 | PI1  | PI0  | VSS          |
| В | VBAT                            | VSS                   | PI7  | PE1  | PB6  | VSS         | PB4        | PK4       | PG11 | PJ15 | PD6   | PD3         | PC11 | PA14 | PI2  | PH15 | PH14         |
| С | PC15-<br>OSC32_<br>OUT          | PC14-<br>OSC32_<br>IN | PE2  | PE0  | PB7  | PB3         | PK6        | PK3       | PG12 | VSS  | PD7   | PC12        | VSS  | PI3  | PA13 | VSS  | VDD<br>LDO2  |
| D | PE5                             | PE4                   | PE3  | PB9  | PB8  | PG15        | PK7        | PG14      | PG13 | PJ14 | PJ12  | PD2         | PD0  | PA10 | PA9  | PH13 | VCAP2        |
| Е | NC                              | PI9                   | PC13 | PI8  | PE6  | VDD         | PDR_<br>ON | BOO<br>T0 | VDD  | PJ13 | VDD   | PD1         | PC8  | PC9  | PA8  | PA12 | PA11         |
| F | NC                              | NC                    | PI10 | PI11 | VDD  |             |            |           |      |      |       |             | PC7  | PC6  | PG8  | PG7  | VDD33<br>USB |
| G | PF2                             | NC                    | PF1  | PF0  | VDD  |             | VSS        | VSS       | VSS  | VSS  | VSS   |             | VDD  | PG5  | PG6  | VSS  | VDD50<br>USB |
| Н | PI12                            | PI13                  | PI14 | PF3  | VDD  |             | VSS        | VSS       | VSS  | VSS  | VSS   |             | VDD  | PG4  | PG3  | PG2  | PK2          |
| J | PH0-<br>OSC_<br>OUT             | PH0-<br>OSC_IN        | VSS  | PF5  | PF4  |             | VSS        | VSS       | VSS  | VSS  | VSS   |             | VDD  | PK0  | PK1  | VSS  | VSS          |
| K | NRST                            | PF6                   | PF7  | PF8  | VDD  |             | VSS        | VSS       | VSS  | VSS  | VSS   |             | VDD  | PJ11 | VSS  | NC   | NC           |
| L | VDDA                            | PC0                   | PF10 | PF9  | VDD  |             | VSS        | VSS       | VSS  | VSS  | VSS   |             | VDD  | PJ10 | VSS  | NC   | NC           |
| М | VREF+                           | PC1                   | PC2  | PC3  | VDD  |             |            |           |      |      |       |             | VDD  | PJ9  | VSS  | NC   | NC           |
| N | VREF-                           | PH2                   | PA2  | PA1  | PA0  | PJ0         | VDD        | VDD       | PE10 | VDD  | VDD   | VDD         | PJ8  | PJ7  | PJ6  | VSS  | NC           |
| Р | VSSA                            | PH3                   | PH4  | PH5  | PI15 | PJ1         | PF13       | PF14      | PE9  | PE11 | PB10  | PB11        | PH10 | PH11 | PD15 | PD14 | VDD          |
| R | PC2_C                           | PC3_C                 | PA6  | VSS  | PA7  | PB2         | PF12       | VSS       | PF15 | PE12 | PE15  | PJ5         | PH9  | PH12 | PD11 | PD12 | PD13         |
| Т | PA0_C                           | PA1_C                 | PA5  | PC4  | PB1  | PJ2         | PF11       | PG0       | PE8  | PE13 | PH6   | VSS         | PH8  | PB12 | PB15 | PD10 | PD9          |
| U | VSS                             | PA3                   | PA4  | PC5  | PB0  | PJ3         | PJ4        | PG1       | PE7  | PE14 | VCAP1 | VDD<br>LDO1 | PH7  | PB13 | PB14 | PD8  | VSS          |
|   |                                 |                       |      |      |      |             |            |           |      |      |       |             |      |      |      |      | 0::44044)/4  |

MSv41911V1

<sup>1.</sup> The above figure shows the package top view.

Table 7. Legend/abbreviations used in the pinout table

| Nar               | ne                   | Abbreviation                    | Definition                                                                                  |
|-------------------|----------------------|---------------------------------|---------------------------------------------------------------------------------------------|
| Pin na            | ame                  |                                 | ecified in brackets below the pin name, the pin function during same as the actual pin name |
|                   |                      | S                               | Supply pin                                                                                  |
| Pin t             | vno.                 | I                               | Input only pin                                                                              |
| FIII              | ype                  | I/O                             | Input / output pin                                                                          |
|                   |                      | ANA                             | Analog-only Input                                                                           |
|                   |                      | FT                              | 5 V tolerant I/O                                                                            |
|                   |                      | TT                              | 3.3 V tolerant I/O                                                                          |
|                   |                      | В                               | Dedicated BOOT0 pin                                                                         |
|                   |                      | RST                             | Bidirectional reset pin with embedded weak pull-up resistor                                 |
| I/O stru          | ucture               |                                 | Option for TT and FT I/Os                                                                   |
|                   |                      | _f                              | I2C FM+ option                                                                              |
|                   |                      | _a                              | analog option (supplied by V <sub>DDA</sub> )                                               |
|                   |                      | _u                              | USB option (supplied by V <sub>DD33USB</sub> )                                              |
|                   |                      | _h                              | High Speed Low Voltage                                                                      |
| Not               | Notes                | Unless otherwise spatter reset. | ecified by a note, all I/Os are set as floating inputs during and                           |
| Pin functions     | Alternate functions  | Functions selected the          | hrough GPIOx_AFR registers                                                                  |
| 1 III IUIICIIOIIS | Additional functions | Functions directly se           | elected/enabled through peripheral registers                                                |

Table 8. STM32H753xl pin/ball definition

|         |          |         | Pin/ba   | all nam     |         |         |              | //32F1/33X                               | -        |               |       |                                                                                                                                                                           |                                 |
|---------|----------|---------|----------|-------------|---------|---------|--------------|------------------------------------------|----------|---------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| LQFP100 | TFBGA100 | LQFP144 | UFBGA169 | UFBGA176+25 | LQFP176 | LQFP208 | TFBGA240 +25 | Pin name<br>(function<br>after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                                                                       | Additional<br>functions         |
| 1       | А3       | 1       | A2       | A2          | 1       | 1       | С3           | PE2                                      | I/O      | FT_h          | -     | TRACECLK, SAI1_CK1, SPI4_SCK, SAI1_MCLK_A, SAI4_MCLK_A, QUADSPI_BK1_IO2, SAI4_CK1, ETH_MII_TXD3, FMC_A23, EVENTOUT                                                        | -                               |
| 2       | В3       | 2       | B2       | A1          | 2       | 2       | D3           | PE3                                      | I/O      | FT_h          | -     | TRACEDO, TIM15_BKIN,<br>SAI1_SD_B, SAI4_SD_B,<br>FMC_A19, EVENTOUT                                                                                                        | -                               |
| 3       | С3       | 3       | A1       | B1          | 3       | 3       | D2           | PE4                                      | I/O      | FT_h          | -     | TRACED1, SAI1_D2, DFSDM_DATIN3, TIM15_CH1N, SPI4_NSS, SAI1_FS_A, SAI4_FS_A, SAI4_D2, FMC_A20, DCMI_D4, LCD_B0, EVENTOUT                                                   | -                               |
| 4       | D3       | 4       | С3       | B2          | 4       | 4       | D1           | PE5                                      | I/O      | FT_h          | -     | TRACED2, SAI1_CK2, DFSDM_CKIN3, TIM15_CH1, SPI4_MISO, SAI1_SCK_A, SAI4_SCK_A, SAI4_CK2, FMC_A21, DCMI_D6, LCD_G0, EVENTOUT                                                | -                               |
| 5       | E3       | 5       | C2       | В3          | 5       | 5       | E5           | PE6                                      | I/O      | FT_h          | -     | TRACED3, TIM1_BKIN2,<br>SAI1_D1, TIM15_CH2,<br>SPI4_MOSI, SAI1_SD_A,<br>SAI4_SD_A, SAI4_D1,<br>SAI2_MCK_B,<br>TIM1_BKIN2_COMP12,<br>FMC_A22, DCMI_D7,<br>LCD_G1, EVENTOUT | -                               |
| -       | 1        | -       | M4       | H10         | -       | -       | A1           | VSS                                      | S        | -             | -     | -                                                                                                                                                                         | -                               |
| -       | -        | -       | А3       | -           | -       | -       | -            | VDD                                      | S        | -             | -     | -                                                                                                                                                                         | -                               |
| 6       | B2       | 6       | E3       | C1          | 6       | 6       | B1           | VBAT                                     | S        | -             | -     | -                                                                                                                                                                         | -                               |
| -       | -        | -       | -        | J6          | -       | -       | B2           | VSS                                      | -        | -             | -     | -                                                                                                                                                                         | -                               |
| -       | 1        | -       | -        | D2          | 7       | 7       | E4           | PI8                                      | I/O      | FT            | -     | EVENTOUT                                                                                                                                                                  | RTC_TAMP_2/<br>RTC_TS/<br>WKUP3 |
| 7       | A2       | 7       | D3       | D1          | 8       | 8       | E3           | PC13                                     | I/O      | FT            | -     | EVENTOUT                                                                                                                                                                  | RTC_TAMP_1/<br>RTC_TS/<br>WKUP2 |
| -       | •        | -       | -        | J7          | -       | -       | B6           | VSS                                      | 1        | -             | -     | -                                                                                                                                                                         | -                               |

Table 8. STM32H753xI pin/ball definition (continued)

|         |          |         | Pin/ba   | ıll nam     | е       |         |                   |                                          |          |               |       | ·                                                               |                         |
|---------|----------|---------|----------|-------------|---------|---------|-------------------|------------------------------------------|----------|---------------|-------|-----------------------------------------------------------------|-------------------------|
| LQFP100 | TFBGA100 | LQFP144 | UFBGA169 | UFBGA176+25 | LQFP176 | LQFP208 | TFBGA240 +25      | Pin name<br>(function<br>after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                             | Additional<br>functions |
| 8       | A1       | 8       | C1       | E1          | 9       | 9       | C2                | PC14-<br>OSC32_<br>IN(PC14)              | I/O      | FT            | -     | EVENTOUT                                                        | OSC32_IN                |
| 9       | B1       | 9       | B1       | F1          | 10      | 10      | C1                | PC15-<br>OSC32_<br>OUT(PC1<br>5)         | I/O      | FT            | -     | EVENTOUT                                                        | OSC32_<br>OUT           |
| -       | -        | 1       | -        | D3          | 11      | 11      | E2                | PI9                                      | I/O      | FT_h          | -     | UART4_RX, CAN1_RX,<br>FMC_D30, LCD_VSYNC,<br>EVENTOUT           | -                       |
| -       | -        | -       | -        | E3          | 12      | 12      | F3                | PI10                                     | I/O      | FT_h          | -     | CAN1_RXFD,<br>ETH_MII_RX_ER,<br>FMC_D31, LCD_HSYNC,<br>EVENTOUT |                         |
| -       | -        | -       | E1       | E4          | 13      | 13      | F4                | PI11                                     | I/O      | FT            | -     | LCD_G6,<br>OTG_HS_ULPI_DIR,<br>EVENTOUT                         | WKUP4                   |
| -       | C2       | -       | D2       | F2          | 14      | 14      | A17               | VSS                                      | S        | -             | -     | -                                                               | -                       |
| -       | D2       | -       | D1       | F3          | 15      | 15      | E6                | VDD                                      | S        | -             | -     | -                                                               | -                       |
| -       | -        | 1       | -        | 1           | -       | -       | E1 <sup>(1)</sup> | NC                                       | ı        | -             | -     | -                                                               | -                       |
| -       | -        | ı       | -        | ı           | -       | -       | F1 <sup>(2)</sup> | NC                                       | ı        | -             | -     | -                                                               | -                       |
| -       | -        | -       | -        | ı           | -       | -       | G2 <sup>(3)</sup> | NC                                       | -        | -             | -     | -                                                               | -                       |
| -       | -        | 10      | F3       | E2          | 16      | 16      | G4                | PF0                                      | I/O      | FT_f          | -     | I2C2_SDA, FMC_A0,<br>EVENTOUT                                   | -                       |
| -       | -        | 11      | E4       | Н3          | 17      | 17      | G3                | PF1                                      | I/O      | FT_f          | -     | I2C2_SCL, FMC_A1,<br>EVENTOUT                                   | -                       |
| -       | -        | 12      | F4       | H2          | 18      | 18      | G1                | PF2                                      | I/O      | FT            | -     | I2C2_SMBA, FMC_A2,<br>EVENTOUT                                  | -                       |
| -       | 1        | 1       | F2       | 1           | -       | 19      | H1                | Pl12                                     | I/O      | FT            | -     | ETH_TX_ER,<br>LCD_HSYNC,<br>EVENTOUT                            | -                       |
| -       | -        | -       | F1       | -           | -       | 20      | H2                | PI13                                     | I/O      | FT            | -     | LCD_VSYNC,<br>EVENTOUT                                          | -                       |
| -       | -        | ı       | -        | 1           | -       | 21      | НЗ                | PI14                                     | I/O      | FT_h          | -     | LCD_CLK, EVENTOUT                                               | -                       |
| -       | -        | 13      | E5       | J2          | 19      | 22      | H4                | PF3                                      | I/O      | FT_<br>ha     | -     | FMC_A3, EVENTOUT                                                | ADC3_INP5               |
| -       | 1        | 14      | G3       | J3          | 20      | 23      | J5                | PF4                                      | I/O      | FT_<br>ha     | -     | FMC_A4, EVENTOUT                                                | ADC3_INN5,<br>ADC3_INP9 |
| -       | -        | 15      | F5       | K3          | 21      | 24      | J4                | PF5                                      | I/O      | FT_<br>ha     | -     | FMC_A5, EVENTOUT                                                | ADC3_INP4               |

58/227 DocID030553 Rev 3

Table 8. STM32H753xl pin/ball definition (continued)

|         |          |         | Pin/ba   | all nam     | е       |         |              |                                          |          |               |       | ·                                                                                              |                         |
|---------|----------|---------|----------|-------------|---------|---------|--------------|------------------------------------------|----------|---------------|-------|------------------------------------------------------------------------------------------------|-------------------------|
| LQFP100 | TFBGA100 | LQFP144 | UFBGA169 | UFBGA176+25 | LQFP176 | LQFP208 | TFBGA240 +25 | Pin name<br>(function<br>after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                            | Additional<br>functions |
| 10      | -        | 16      | B10      | G2          | 22      | 25      | C10          | VSS                                      | S        | -             | -     | -                                                                                              | -                       |
| 11      | -        | 17      | G1       | G3          | 23      | 26      | E9           | VDD                                      | S        | -             | -     | -                                                                                              | -                       |
| -       | -        | 18      | G4       | K2          | 24      | 27      | K2           | PF6                                      | I/O      | FT_<br>ha     | -     | TIM16_CH1, SPI5_NSS,<br>SAI1_SD_B, UART7_RX,<br>SAI4_SD_B,<br>QUADSPI_BK1_IO3,<br>EVENTOUT     | ADC3_INN4,<br>ADC3_INP8 |
| -       | -        | 19      | F6       | K1          | 25      | 28      | K3           | PF7                                      | I/O      | FT_<br>ha     | -     | TIM17_CH1, SPI5_SCK, SAI1_MCLK_B, UART7_TX, SAI4_MCLK_B, QUADSPI_BK1_IO2, EVENTOUT             | ADC3_INP3               |
| -       | -        | 20      | H4       | L3          | 26      | 29      | K4           | PF8                                      | I/O      | FT_<br>ha     | -     | TIM16_CH1N, SPI5_MISO, SAI1_SCK_B, UART7_RTS, SAI4_SCK_B, TIM13_CH1, QUADSPI_BK1_IO0, EVENTOUT | ADC3_INN3,<br>ADC3_INP7 |
| -       | -        | 21      | G5       | L2          | 27      | 30      | L4           | PF9                                      | I/O      | FT_<br>ha     | -     | TIM17_CH1N, SPI5_MOSI, SAI1_FS_B, UART7_CTS, SAI4_FS_B, TIM14_CH1, QUADSPI_BK1_IO1, EVENTOUT   | ADC3_INP2               |
| -       | -        | 22      | НЗ       | L1          | 28      | 31      | L3           | PF10                                     | I/O      | FT_<br>ha     | -     | TIM16_BKIN, SAI1_D3,<br>QUADSPI_CLK,<br>SAI4_D3, DCMI_D11,<br>LCD_DE, EVENTOUT                 | ADC3_INN2,<br>ADC3_INP6 |
| 12      | C1       | 23      | H1       | G1          | 29      | 32      | J2           | PH0-<br>OSC_IN<br>(PH0)                  | I/O      | FT            | -     | EVENTOUT                                                                                       | OSC_IN                  |
| 13      | D1       | 24      | H2       | H1          | 30      | 33      | J1           | PH1-<br>OSC_OUT<br>(PH1)                 | I/O      | FT            | -     | EVENTOUT                                                                                       | OSC_OUT                 |
| 14      | E1       | 25      | G6       | J1          | 31      | 34      | K1           | NRST                                     | I/O      | RST           | -     | -                                                                                              | -                       |
| 15      | F1       | 26      | J1       | M2          | 32      | 35      | L2           | PC0                                      | I/O      | FT_a          | -     | DFSDM_CKIN0, DFSDM_DATIN4, SAI2_FS_B, OTG_HS_ULPI_STP, FMC_SDNWE, LCD_R5, EVENTOUT             | ADC123_<br>INP10        |

Table 8. STM32H753xl pin/ball definition (continued)

|           |                   |                   | Pin/ba            | all nam           |                   |                   |                   |                                          |          |               |       | continueu)                                                                                                                              |                                                                |
|-----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------------------------|----------|---------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| LQFP100   | TFBGA100          | LQFP144           | UFBGA169          | UFBGA176+25       | LQFP176           | LQFP208           | TFBGA240 +25      | Pin name<br>(function<br>after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                                     | Additional<br>functions                                        |
| 16        | F2                | 27                | J2                | М3                | 33                | 36                | M2                | PC1                                      | I/O      | FT_<br>ha     | -     | TRACEDO, SAI1_D1, DFSDM_DATINO, DFSDM_CKIN4, SPI2_MOSI/I2S2_SDO, SAI1_SD_A, SAI4_SD_A, SDMMC2_CK, SAI4_D1, ETH_MDC, MDIOS_MDC, EVENTOUT | ADC123_<br>INN10,<br>ADC123_<br>INP11,<br>RTC_TAMP_3/<br>WKUP5 |
| -         | -                 | -                 | -                 | -                 | -                 | -                 | M3 <sup>(4)</sup> | PC2                                      | I/O      | FT_a          | -     | DFSDM_CKIN1, SPI2_MISO/I2S2_SDI, DFSDM_CKOUT, OTG_HS_ULPI_DIR, ETH_MII_TXD2, FMC_SDNE0, EVENTOUT                                        | ADC123_<br>INN11,<br>ADC123_<br>INP12                          |
| 17<br>(5) | E2 <sup>(5)</sup> | 28 <sup>(5)</sup> | K2 <sup>(5)</sup> | M4 <sup>(5)</sup> | 34 <sup>(5)</sup> | 37 <sup>(5)</sup> | R1 <sup>(4)</sup> | PC2_C                                    | ANA      | TT_a          | -     | -                                                                                                                                       | ADC3_INN1,<br>ADC3_INP0                                        |
| -         | -                 | -                 | -                 | -                 | -                 | -                 | M4 <sup>(4)</sup> | PC3                                      | I/O      | FT_a          | -     | DFSDM_DATIN1, SPI2_MOSI/I2S2_SDO, OTG_HS_ULPI_NXT, ETH_MII_TX_CLK, FMC_SDCKE0, EVENTOUT                                                 | ADC12_INN12,<br>ADC12_INP13                                    |
| 18<br>(5) | F3 <sup>(5)</sup> | 29 <sup>(5)</sup> | K1 <sup>(5)</sup> | M5 <sup>(5)</sup> | 35 <sup>(5)</sup> | 38 <sup>(5)</sup> | R2 <sup>(4)</sup> | PC3_C                                    | ANA      | TT_a          | -     | -                                                                                                                                       | ADC3_INP1                                                      |
| -         | F5                | 30                | -                 | G3                | 36                | 39                | E11               | VDD                                      | S        | -             | -     | -                                                                                                                                       | -                                                              |
| -         | E6                | -                 | В3                | J10               | -                 | -                 | C13               | VSS                                      | S        | -             | -     | -                                                                                                                                       | -                                                              |
| 19        | G1                | 31                | J3                | M1                | 37                | 40                | P1                | VSSA                                     | S        | -             | -     | -                                                                                                                                       | -                                                              |
| -         | -                 | 1                 | ı                 | N1                | -                 | 1                 | N1                | VREF-                                    | S        | -             | -     | -                                                                                                                                       | -                                                              |
| 20        | _(6)              | 32                | L2                | P1                | 38                | 41                | M1                | VREF+                                    | S        | -             | -     | -                                                                                                                                       | -                                                              |
| 21        | H1                | 33                | L1                | R1                | 39                | 42                | L1                | VDDA                                     | S        | -             | -     | -                                                                                                                                       | -                                                              |
| 22        | G2                | 34                | J5                | N3                | 40                | 43                | N5 <sup>(4)</sup> | PA0-<br>WKUP<br>(PA0)                    | I/O      | FT_a          | -     | TIM2_CH1/TIM2_ETR, TIM5_CH1, TIM8_ETR, TIM15_BKIN, USART2_CTS_NSS, UART4_TX, SDMMC2_CMD, SAI2_SD_B, ETH_MII_CRS, EVENTOUT               | ADC1_INP16,<br>WKUP0                                           |
| -         | -                 | -                 | -                 | -                 | -                 | -                 | T1 <sup>(4)</sup> | PA0_C                                    | ANA      | TT_a          | -     | -                                                                                                                                       | ADC12_INN1,<br>ADC12_INP0                                      |

60/227 DocID030553 Rev 3

Table 8. STM32H753xl pin/ball definition (continued)

|         |          |         | Pin/ba   | all nam     |         |         |                   |                                          |          |               |       | continued)                                                                                                                                                                   |                           |
|---------|----------|---------|----------|-------------|---------|---------|-------------------|------------------------------------------|----------|---------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| LQFP100 | TFBGA100 | LQFP144 | UFBGA169 | UFBGA176+25 | LQFP176 | LQFP208 | TFBGA240 +25      | Pin name<br>(function<br>after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                                                                          | Additional<br>functions   |
| 23      | H2       | 35      | K4       | N2          | 41      | 44      | N4 <sup>(4)</sup> | PA1                                      | I/O      | FT_<br>ha     | -     | TIM2_CH2, TIM5_CH2,<br>LPTIM3_OUT,<br>TIM15_CH1N,<br>USART2_RTS,<br>UART4_RX,<br>QUADSPI_BK1_IO3,<br>SAI2_MCK_B,<br>ETH_MII_RX_CLK/ETH_<br>RMII_REF_CLK,<br>LCD_R2, EVENTOUT | ADC1_INN16,<br>ADC1_INP17 |
| -       | -        | -       | -        | -           | -       | -       | T2 <sup>(4)</sup> | PA1_C                                    | ANA      | TT_a          | -     | -                                                                                                                                                                            | ADC12_INP1                |
| 24      | J2       | 36      | N1       | P2          | 42      | 45      | N3                | PA2                                      | I/O      | FT_a          | -     | TIM2_CH3, TIM5_CH3,<br>LPTIM4_OUT,<br>TIM15_CH1,<br>USART2_TX,<br>SAI2_SCK_B,<br>ETH_MDIO,<br>MDIOS_MDIO, LCD_R1,<br>EVENTOUT                                                | ADC12_INP14,<br>WKUP1     |
| -       | -        | -       | N2       | F4          | 43      | 46      | N2                | PH2                                      | I/O      | FT_<br>ha     | -     | LPTIM1_IN2, QUADSPI_BK2_IO0, SAI2_SCK_B, ETH_MII_CRS, FMC_SDCKE0, LCD_R0, EVENTOUT                                                                                           | ADC3_INP13                |
| -       | K1       | -       | M1       | -           | -       | -       | F5                | VDD                                      | S        | -             | -     | -                                                                                                                                                                            | -                         |
| -       | J1       | -       | M7       | J8          | -       | -       | C16               | VSS                                      | S        | -             | -     | -                                                                                                                                                                            | -                         |
| -       | -        | -       | M3       | G4          | 44      | 47      | P2                | PH3                                      | I/O      | FT_<br>ha     | -     | QUADSPI_BK2_IO1,<br>SAI2_MCK_B,<br>ETH_MII_COL,<br>FMC_SDNE0, LCD_R1,<br>EVENTOUT                                                                                            | ADC3_INN13,<br>ADC3_INP14 |
| -       | -        | -       | K3       | H4          | 45      | 48      | P3                | PH4                                      | I/O      | FT_fa         | -     | I2C2_SCL, LCD_G5,<br>OTG_HS_ULPI_NXT,<br>LCD_G4, EVENTOUT                                                                                                                    | ADC3_INN14,<br>ADC3_INP15 |
| -       | -        | -       | L3       | J4          | 46      | 49      | P4                | PH5                                      | I/O      | FT_fa         | -     | I2C2_SDA, SPI5_NSS,<br>FMC_SDNWE,<br>EVENTOUT                                                                                                                                | ADC3_INN15,<br>ADC3_INP16 |
| 25      | K2       | 37      | N3       | R2          | 47      | 50      | U2                | PA3                                      | I/O      | FT_<br>ha     | -     | TIM2_CH4, TIM5_CH4,<br>LPTIM5_OUT,<br>TIM15_CH2,<br>USART2_RX, LCD_B2,<br>OTG_HS_ULPI_D0,<br>ETH_MII_COL, LCD_B5,<br>EVENTOUT                                                | ADC12_INP15               |

Table 8. STM32H753xl pin/ball definition (continued)

|         |          |         | Pin/ba   | all nam     |         |         |                   |                                          |          |               | (     | continuea)                                                                                                                                                                             |                                               |
|---------|----------|---------|----------|-------------|---------|---------|-------------------|------------------------------------------|----------|---------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| LQFP100 | TFBGA100 | LQFP144 | UFBGA169 | UFBGA176+25 | LQFP176 | LQFP208 | TFBGA240 +25      | Pin name<br>(function<br>after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                                                                                    | Additional<br>functions                       |
| 26      | -        | 38      | G2       | K6          | -       | 51      | F2 <sup>(3)</sup> | VSS                                      | S        | -             | -     | -                                                                                                                                                                                      | -                                             |
| -       | -        | -       | -        | L4          | 48      | -       | -                 | VSS                                      | S        | -             | 1     | -                                                                                                                                                                                      | -                                             |
| 27      | -        | 39      | -        | K4          | 49      | 52      | G5                | VDD                                      | S        | -             | -     | -                                                                                                                                                                                      | -                                             |
| 28      | G3       | 40      | Н6       | N4          | 50      | 53      | U3                | PA4                                      | I/O      | TT_a          | 1     | TIM5_ETR, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART2_CK, SPI6_NSS, OTG_HS_SOF, DCMI_HSYNC, LCD_VSYNC, EVENTOUT                                                                         | ADC12_INP18,<br>DAC1_OUT1                     |
| 29      | НЗ       | 41      | L4       | P4          | 51      | 54      | Т3                | PA5                                      | I/O      | TT_<br>ha     | -     | TIM2_CH1/TIM2_ETR, TIM8_CH1N, SPI1_SCK/I2S1_CK, SPI6_SCK, OTG_HS_ULPI_CK, LCD_R4, EVENTOUT                                                                                             | ADC12_INN18,<br>ADC12_INP19,<br>DAC1_OUT2     |
| 30      | J3       | 42      | K5       | P3          | 52      | 55      | R3                | PA6                                      | I/O      | FT_a          | -     | TIM1_BKIN, TIM3_CH1,     TIM8_BKIN,     SPI1_MISO/I2S1_SDI,     SPI6_MISO, TIM13_CH1,     TIM8_BKIN_COMP12,     MDIOS_MDC,     TIM1_BKIN_COMP12,     DCMI_PIXCLK, LCD_G2,     EVENTOUT | ADC12_INP3                                    |
| 31      | КЗ       | 43      | J6       | R3          | 53      | 56      | R5                | PA7                                      | I/O      | TT_a          | -     | TIM1_CH1N, TIM3_CH2,<br>TIM8_CH1N,<br>SPI1_MOSI/I2S1_SDO,<br>SPI6_MOSI, TIM14_CH1,<br>ETH_MII_RX_DV/ETH_R<br>MII_CRS_DV,<br>FMC_SDNWE,<br>EVENTOUT                                     | ADC12_INN3,<br>ADC12_INP7,<br>OPAMP1_VINM     |
| 32      | G4       | 44      | K6       | N5          | 54      | 57      | Т4                | PC4                                      | I/O      | TT_a          | -     | DFSDM_CKIN2,<br>I2S1_MCK,<br>SPDIFRX_IN2,<br>ETH_MII_RXD0/ETH_R<br>MII_RXD0, FMC_SDNE0,<br>EVENTOUT                                                                                    | ADC12_INP4,<br>OPAMP1_<br>VOUT,<br>COMP_1_INM |

Table 8. STM32H753xl pin/ball definition (continued)

|         |          |         | Pin/ba   | all nam     |         |         |              |                                          |          |               |       | continueu)                                                                                                                       |                                                          |
|---------|----------|---------|----------|-------------|---------|---------|--------------|------------------------------------------|----------|---------------|-------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| LQFP100 | TFBGA100 | LQFP144 | UFBGA169 | UFBGA176+25 | LQFP176 | LQFP208 | TFBGA240 +25 | Pin name<br>(function<br>after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                              | Additional<br>functions                                  |
| 33      | H4       | 45      | N5       | P5          | 55      | 58      | U4           | PC5                                      | I/O      | TT_a          | -     | SAI1_D3, DFSDM_DATIN2, SPDIFRX_IN3, SAI4_D3, ETH_MII_RXD1/ETH_R MII_RXD1, FMC_SDCKE0, COMP_1_OUT, EVENTOUT                       | ADC12_INN4,<br>ADC12_INP8,<br>OPAMP1_<br>VINM            |
| -       | -        | -       | N4       | -           | -       | 59      | G13          | VDD                                      | S        | -             | -     | -                                                                                                                                | -                                                        |
| -       | -        | -       | H12      | J9          | -       | 60      | G16          | VSS                                      | S        | -             | -     | -                                                                                                                                | -                                                        |
| 34      | J4       | 46      | M5       | R5          | 56      | 61      | U5           | PB0                                      | I/O      | FT_a          | -     | TIM1_CH2N, TIM3_CH3,<br>TIM8_CH2N,<br>DFSDM_CKOUT,<br>UART4_CTS, LCD_R3,<br>OTG_HS_ULPI_D1,<br>ETH_MII_RXD2,<br>LCD_G1, EVENTOUT | ADC12_INN5,<br>ADC12_INP9,<br>OPAMP1_VINP,<br>COMP_1_INP |
| 35      | K4       | 47      | L5       | R4          | 57      | 62      | T5           | PB1                                      | I/O      | TT_u          | -     | TIM1_CH3N, TIM3_CH4, TIM8_CH3N, DFSDM_DATIN1, LCD_R6, OTG_HS_ULPI_D2, ETH_MII_RXD3, LCD_G0, EVENTOUT                             | ADC12_INP5,<br>COMP_1_INM                                |
| 36      | G5       | 48      | L6       | M6          | 58      | 63      | R6           | PB2                                      | I/O      | FT_<br>ha     | -     | SAI1_D1, DFSDM_CKIN1, SAI1_SD_A, SPI3_MOSI/I2S3_SDO, SAI4_SD_A, QUADSPI_CLK, SAI4_D1, ETH_TX_ER, EVENTOUT                        | COMP_1_INP,<br>RTC_OUT                                   |
| -       | 1        | 1       | -        | -           | -       | 64      | P5           | PI15                                     | I/O      | FT            | -     | LCD_G2, LCD_R0,<br>EVENTOUT                                                                                                      | -                                                        |
| -       | -        | -       | J4       | -           | -       | 65      | N6           | PJ0                                      | I/O      | FT            | -     | LCD_R7, LCD_R1,<br>EVENTOUT                                                                                                      | -                                                        |
| -       | -        | -       | H5       | -           | -       | 66      | P6           | PJ1                                      | I/O      | FT            | -     | LCD_R2, EVENTOUT                                                                                                                 | -                                                        |
| -       | -        | -       | -        | -           | -       | 67      | Т6           | PJ2                                      | I/O      | FT            | -     | LCD_R3, EVENTOUT                                                                                                                 | -                                                        |
| -       | -        | -       | -        | -           | -       | 68      | U6           | PJ3                                      | I/O      | FT            | -     | LCD_R4, EVENTOUT                                                                                                                 | -                                                        |
| -       | -        | -       | -        | -           | -       | 69      | U7           | PJ4                                      | I/O      | FT            | -     | LCD_R5, EVENTOUT                                                                                                                 | -                                                        |
| -       | -        | 49      | M6       | R6          | 59      | 70      | Т7           | PF11                                     | I/O      | FT_a          | -     | SPI5_MOSI, SAI2_SD_B,<br>FMC_SDNRAS,<br>DCMI_D12, EVENTOUT                                                                       | ADC1_INP2                                                |

Table 8. STM32H753xl pin/ball definition (continued)

|         |          |         | Pin/ba   | ıll nam     | е       |         |              | -                                        |          |               |       |                                                                                         |                                |
|---------|----------|---------|----------|-------------|---------|---------|--------------|------------------------------------------|----------|---------------|-------|-----------------------------------------------------------------------------------------|--------------------------------|
| LQFP100 | TFBGA100 | LQFP144 | UFBGA169 | UFBGA176+25 | LQFP176 | LQFP208 | TFBGA240 +25 | Pin name<br>(function<br>after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                     | Additional<br>functions        |
| -       | -        | 50      | N6       | P6          | 60      | 71      | R7           | PF12                                     | I/O      | FT_<br>ha     | -     | FMC_A6, EVENTOUT                                                                        | ADC1_INN2,<br>ADC1_INP6        |
| -       | -        | 51      | M11      | M8          | 61      | 72      | J3           | VSS                                      | S        | -             | -     | -                                                                                       | -                              |
| -       | -        | 52      | -        | N8          | 62      | 73      | H5           | VDD                                      | S        | -             | 1     | -                                                                                       | -                              |
| -       | -        | 53      | G7       | N6          | 63      | 74      | P7           | PF13                                     | I/O      | FT_<br>ha     | -     | DFSDM_DATIN6,<br>I2C4_SMBA, FMC_A7,<br>EVENTOUT                                         | ADC2_INP2                      |
| -       | ,        | 54      | H7       | R7          | 64      | 75      | P8           | PF14                                     | I/O      | FT_<br>fha    | 1     | DFSDM_CKIN6,<br>I2C4_SCL, FMC_A8,<br>EVENTOUT                                           | ADC2_INN2,<br>ADC2_INP6        |
| -       | -        | 55      | J7       | P7          | 65      | 76      | R9           | PF15                                     | I/O      | FT_fh         | -     | I2C4_SDA, FMC_A9,<br>EVENTOUT                                                           | -                              |
| -       | -        | 56      | K7       | N7          | 66      | 77      | T8           | PG0                                      | I/O      | FT_h          | -     | FMC_A10, EVENTOUT                                                                       | -                              |
| -       | -        | -       | M2       | F6          | -       | -       | J16          | VSS                                      | S        | -             | -     | -                                                                                       | -                              |
| -       | -        | -       | A10      | 1           | ı       | -       | H13          | VDD                                      | S        | -             | -     | -                                                                                       | -                              |
| -       | ,        | 57      | L7       | M7          | 67      | 78      | U8           | PG1                                      | I/O      | TT_h          | 1     | FMC_A11, EVENTOUT                                                                       | OPAMP2_<br>VINM                |
| 37      | H5       | 58      | G8       | R8          | 68      | 79      | U9           | PE7                                      | I/O      | TT_<br>ha     | 1     | TIM1_ETR, DFSDM_DATIN2, UART7_RX, QUADSPI_BK2_IO0, FMC_D4/FMC_DA4, EVENTOUT             | OPAMP2_<br>VOUT,<br>COMP_2_INM |
| 38      | J5       | 59      | Н8       | P8          | 69      | 80      | Т9           | PE8                                      | I/O      | TT_<br>ha     | 1     | TIM1_CH1N, DFSDM_CKIN2, UART7_TX, QUADSPI_BK2_IO1, FMC_D5/FMC_DA5, COMP_2_OUT, EVENTOUT | OPAMP2_<br>VINM                |
| 39      | K5       | 60      | J8       | P9          | 70      | 81      | P9           | PE9                                      | I/O      | TT_<br>ha     | 1     | TIM1_CH1, DFSDM_CKOUT, UART7_RTS, QUADSPI_BK2_IO2, FMC_D6/FMC_DA6, EVENTOUT             | OPAMP2_VINP,<br>COMP_2_INP     |
| -       | -        | 61      | C12      | M9          | 71      | 82      | J17          | VSS                                      | S        | -             | -     | -                                                                                       | -                              |
| -       | -        | 62      | C13      | N9          | 72      | 83      | J13          | VDD                                      | S        | -             | -     | -                                                                                       | -                              |

Table 8. STM32H753xl pin/ball definition (continued)

|         |          |         | Pin/ba   | all nam     | е       |         |              |                                          |          |               |       | •                                                                                                                                                        |                         |
|---------|----------|---------|----------|-------------|---------|---------|--------------|------------------------------------------|----------|---------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| LQFP100 | TFBGA100 | LQFP144 | UFBGA169 | UFBGA176+25 | LQFP176 | LQFP208 | TFBGA240 +25 | Pin name<br>(function<br>after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                                                      | Additional<br>functions |
| 40      | G6       | 63      | M8       | R9          | 73      | 84      | N9           | PE10                                     | I/O      | FT_<br>ha     | -     | TIM1_CH2N, DFSDM_DATIN4, UART7_CTS, QUADSPI_BK2_IO3, FMC_D7/FMC_DA7, EVENTOUT                                                                            | COMP_2_INM              |
| 41      | Н6       | 64      | N8       | P10         | 74      | 85      | P10          | PE11                                     | I/O      | FT_<br>ha     | -     | TIM1_CH2, DFSDM_CKIN4, SPI4_NSS, SAI2_SD_B, FMC_D8/FMC_DA8, LCD_G3, EVENTOUT                                                                             | COMP_2_INP              |
| 42      | J6       | 65      | L8       | R10         | 75      | 86      | R10          | PE12                                     | I/O      | FT_h          | -     | TIM1_CH3N, DFSDM_DATIN5, SPI4_SCK, SAI2_SCK_B, FMC_D9/FMC_DA9, COMP_1_OUT, LCD_B4, EVENTOUT                                                              | -                       |
| 43      | K6       | 66      | K8       | N11         | 76      | 87      | T10          | PE13                                     | I/O      | FT_h          | -     | TIM1_CH3, DFSDM_CKIN5, SPI4_MISO, SAI2_FS_B, FMC_D10/FMC_DA10, COMP_2_OUT, LCD_DE, EVENTOUT                                                              | -                       |
| -       | -        | -       | L12      | F7          | -       | -       | K15          | VSS                                      | S        | -             | -     | -                                                                                                                                                        | -                       |
| -       | -        | -       | H13      | -           | -       | -       | K13          | VDD                                      | S        | -             | -     | -                                                                                                                                                        | -                       |
| 44      | G7       | 67      | J9       | P11         | 77      | 88      | U10          | PE14                                     | I/O      | FT_h          | -     | TIM1_CH4, SPI4_MOSI,<br>SAI2_MCK_B,<br>FMC_D11/FMC_DA11,<br>LCD_CLK, EVENTOUT                                                                            | -                       |
| 45      | H7       | 68      | N9       | R11         | 78      | 89      | R11          | PE15                                     | I/O      | FT_h          | -     | TIM1_BKIN, HDMITIM1_BKIN, FMC_D12/FMC_DA12, TIM1_BKIN_COMP12, LCD_R7, EVENTOUT                                                                           | -                       |
| 46      | J7       | 69      | L9       | R12         | 79      | 90      | P11          | PB10                                     | I/O      | FT_f          | -     | TIM2_CH3, HRTIM_SCOUT, LPTIM2_IN1, I2C2_SCL, SPI2_SCK/I2S2_CK, DFSDM_DATIN7, USART3_TX, QUADSPI_BK1_NCS, OTG_HS_ULPI_D3, ETH_MII_RX_ER, LCD_G4, EVENTOUT | -                       |

Table 8. STM32H753xl pin/ball definition (continued)

|         |          |         | Pin/ba   | all nam     |         |         |              |                                          |          |               |       | continueu)                                                                                                                          |                         |
|---------|----------|---------|----------|-------------|---------|---------|--------------|------------------------------------------|----------|---------------|-------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| LQFP100 | TFBGA100 | LQFP144 | UFBGA169 | UFBGA176+25 | LQFP176 | LQFP208 | TFBGA240 +25 | Pin name<br>(function<br>after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                                 | Additional<br>functions |
| 47      | K7       | 70      | М9       | R13         | 80      | 91      | P12          | PB11                                     | I/O      | FT_f          | -     | TIM2_CH4, HRTIM_SCIN, LPTIM2_ETR, I2C2_SDA, DFSDM_CKIN7, USART3_RX, OTG_HS_ULPI_D4, ETH_MII_TX_EN/ETH_R MII_TX_EN, LCD_G5, EVENTOUT | -                       |
| 48      | F8       | 71      | N10      | M10         | 81      | 92      | U11          | VCAP1                                    | S        | -             | -     | -                                                                                                                                   | -                       |
| 49      | E4       | ı       | -        | K7          | -       | 93      | L15          | VSS                                      | S        | -             | -     | -                                                                                                                                   | -                       |
| -       | -        | ı       | M10      | -           | -       | -       | U12          | VDDLDO1                                  | S        | -             | -     | -                                                                                                                                   | -                       |
| 50      | -        | 72      | M1       | N10         | 82      | 94      | L13          | VDD                                      | S        | -             | -     | -                                                                                                                                   | -                       |
| -       | -        | -       | -        | -           | -       | 95      | R12          | PJ5                                      | I/O      | FT            | -     | LCD_R6, EVENTOUT                                                                                                                    | -                       |
| -       | -        | 1       | -        | M11         | 83      | 96      | T11          | PH6                                      | I/O      | FT            | -     | TIM12_CH1, I2C2_SMBA, SPI5_SCK, ETH_MII_RXD2, FMC_SDNE1, DCMI_D8, EVENTOUT                                                          | -                       |
| -       | -        | -       | -        | N12         | 84      | 97      | U13          | PH7                                      | I/O      | FT_fa         | -     | I2C3_SCL, SPI5_MISO,<br>ETH_MII_RXD3,<br>FMC_SDCKE1,<br>DCMI_D9, EVENTOUT                                                           | -                       |
| -       | -        | -       | -        | M12         | 85      | 98      | T13          | PH8                                      | I/O      | FT_fh<br>a    | -     | TIM5_ETR, I2C3_SDA,<br>FMC_D16,<br>DCMI_HSYNC, LCD_R2,<br>EVENTOUT                                                                  | -                       |
| -       | -        | -       | -        | F8          | -       | -       | M15          | VSS                                      | S        | -             | -     | -                                                                                                                                   | -                       |
| -       | -        | -       | L13      | -           | -       | -       | M13          | VDD                                      | S        | -             | -     | -                                                                                                                                   | -                       |
| -       | -        | -       | -        | M13         | 86      | 99      | R13          | PH9                                      | I/O      | FT_h          | -     | TIM12_CH2,<br>I2C3_SMBA, FMC_D17,<br>DCMI_D0, LCD_R3,<br>EVENTOUT                                                                   | -                       |
| -       | -        | -       | K9       | L13         | 87      | 100     | P13          | PH10                                     | I/O      | FT_h          | -     | TIM5_CH1, I2C4_SMBA,<br>FMC_D18, DCMI_D1,<br>LCD_R4, EVENTOUT                                                                       | -                       |
| -       | -        | -       | L10      | L12         | 88      | 101     | P14          | PH11                                     | I/O      | FT_fh         | -     | TIM5_CH2, I2C4_SCL,<br>FMC_D19, DCMI_D2,<br>LCD_R5, EVENTOUT                                                                        | -                       |

Table 8. STM32H753xl pin/ball definition (continued)

|         |          |         | Pin/ba   | ıll nam     |         |         |              | •                                        |          |               |       | continued                                                                                                                                                                                      |                         |
|---------|----------|---------|----------|-------------|---------|---------|--------------|------------------------------------------|----------|---------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| LQFP100 | TFBGA100 | LQFP144 | UFBGA169 | UFBGA176+25 | LQFP176 | LQFP208 | TFBGA240 +25 | Pin name<br>(function<br>after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                                                                                            | Additional<br>functions |
| -       | -        | -       | K10      | K12         | 89      | 102     | R14          | PH12                                     | I/O      | FT_fh         | -     | TIM5_CH3, I2C4_SDA,<br>FMC_D20, DCMI_D3,<br>LCD_R6, EVENTOUT                                                                                                                                   | -                       |
| -       | -        | -       | -        | H12         | 90      | -       | N16          | VSS                                      | S        | -             | -     | -                                                                                                                                                                                              | -                       |
| -       | -        | -       | N11      | J12         | 91      | 103     | P17          | VDD                                      | S        | -             | -     | -                                                                                                                                                                                              | -                       |
| 51      | K8       | 73      | N12      | P12         | 92      | 104     | T14          | PB12                                     | I/O      | FT_u          | -     | TIM1_BKIN, I2C2_SMBA,<br>SPI2_NSS/I2S2_WS,<br>DFSDM_DATIN1,<br>USART3_CK, CAN2_RX,<br>OTG_HS_ULPI_D5,<br>ETH_MII_TXD0/ETH_RM<br>II_TXD0, OTG_HS_ID,<br>TIM1_BKIN_COMP12,<br>UART5_RX, EVENTOUT |                         |
| 52      | J8       | 74      | L11      | P13         | 93      | 105     | U14          | PB13                                     | I/O      | FT_u          | -     | TIM1_CH1N, LPTIM2_OUT, SPI2_SCK/I2S2_CK, DFSDM_CKIN1, USART3_CTS_NSS, CAN2_TX, OTG_HS_ULPI_D6, ETH_MII_TXD1/ETH_RM II_TXD1, UART5_TX, EVENTOUT                                                 | OTG_HS_<br>VBUS         |
| 53      | H10      | 75      | N13      | R14         | 94      | 106     | U15          | PB14                                     | I/O      | FT_u          | -     | TIM1_CH2N, TIM12_CH1, TIM8_CH2N, USART1_TX, SPI2_MISO/I2S2_SDI, DFSDM_DATIN2, USART3_RTS, UART4_RTS, SDMMC2_D0, OTG_HS_DM, EVENTOUT                                                            | -                       |
| 54      | G10      | 76      | M13      | R15         | 95      | 107     | T15          | PB15                                     | I/O      | FT_u          | -     | RTC_REFIN, TIM1_CH3N, TIM12_CH2, TIM8_CH3N, USART1_RX, SPI2_MOSI/I2S2_SDO, DFSDM_CKIN2, UART4_CTS, SDMMC2_D1, OTG_HS_DP, EVENTOUT                                                              | -                       |

Table 8. STM32H753xl pin/ball definition (continued)

|         |          |         | Pin/ba   | all nam     | е       |         |              |                                          |          |               |       |                                                                                                                      |                         |
|---------|----------|---------|----------|-------------|---------|---------|--------------|------------------------------------------|----------|---------------|-------|----------------------------------------------------------------------------------------------------------------------|-------------------------|
| LQFP100 | TFBGA100 | LQFP144 | UFBGA169 | UFBGA176+25 | LQFP176 | LQFP208 | TFBGA240 +25 | Pin name<br>(function<br>after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                  | Additional<br>functions |
| 55      | K9       | 77      | M12      | P15         | 96      | 108     | U16          | PD8                                      | I/O      | FT_h          | -     | DFSDM_CKIN3, SAI3_SCK_B, USART3_TX, SPDIFRX_IN1, FMC_D13/FMC_DA13, EVENTOUT                                          | -                       |
| 56      | J9       | 78      | K11      | P14         | 97      | 109     | T17          | PD9                                      | I/O      | FT_h          | -     | DFSDM_DATIN3, SAI3_SD_B, USART3_RX, CAN2_RXFD, FMC_D14/FMC_DA14, EVENTOUT                                            | -                       |
| 57      | Н9       | 79      | K12      | N15         | 98      | 110     | T16          | PD10                                     | I/O      | FT_h          | -     | DFSDM_CKOUT, SAI3_FS_B, USART3_CK, CAN2_TXFD, FMC_D15/FMC_DA15, LCD_B3, EVENTOUT                                     | -                       |
| -       | -        | -       | N7       | -           | -       | -       | N12          | VDD                                      | S        | -             | -     | -                                                                                                                    | -                       |
| -       | -        | -       | -        | F9          | -       | -       | U17          | VSS                                      | S        | -             | -     | -                                                                                                                    | -                       |
| 58      | G9       | 80      | J10      | N14         | 99      | 111     | R15          | PD11                                     | I/O      | FT_h          | -     | LPTIM2_IN2, I2C4_SMBA, USART3_CTS_NSS, QUADSPI_BK1_IO0, SAI2_SD_A, FMC_A16, EVENTOUT                                 | -                       |
| 59      | K10      | 81      | K13      | N13         | 100     | 112     | R16          | PD12                                     | I/O      | FT_fh         | -     | LPTIM1_IN1, TIM4_CH1,<br>LPTIM2_IN1, I2C4_SCL,<br>USART3_RTS,<br>QUADSPI_BK1_IO1,<br>SAI2_FS_A, FMC_A17,<br>EVENTOUT | -                       |
| 60      | J10      | 82      | J11      | M15         | 101     | 113     | R17          | PD13                                     | I/O      | FT_fh         | -     | LPTIM1_OUT, TIM4_CH2, I2C4_SDA, QUADSPI_BK1_IO3, SAI2_SCK_A, FMC_A18, EVENTOUT                                       | -                       |
| -       | -        | 83      | -        | K8          | 102     | 114     | T12          | VSS                                      | S        | -             | -     | -                                                                                                                    | -                       |
| -       | -        | 84      | -        | J13         | 103     | 115     | N11          | VDD                                      | S        | -             | -     | -                                                                                                                    | -                       |
| 61      | H8       | 85      | J13      | M14         | 104     | 116     | P16          | PD14                                     | I/O      | FT_h          | -     | TIM4_CH3, SAI3_MCLK_B, UART8_CTS, FMC_D0/FMC_DA0, EVENTOUT                                                           | -                       |

68/227 DocID030553 Rev 3

Table 8. STM32H753xl pin/ball definition (continued)

|         |          |         | Pin/ba   | ıll nam     | е       |         |                    | -                                        |          |               |       | oonimuou,                                                  |                         |
|---------|----------|---------|----------|-------------|---------|---------|--------------------|------------------------------------------|----------|---------------|-------|------------------------------------------------------------|-------------------------|
| LQFP100 | TFBGA100 | LQFP144 | UFBGA169 | UFBGA176+25 | LQFP176 | LQFP208 | TFBGA240 +25       | Pin name<br>(function<br>after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                        | Additional<br>functions |
| 62      | G8       | 86      | J12      | L14         | 105     | 117     | P15                | PD15                                     | I/O      | FT_h          | ı     | TIM4_CH4, SAI3_MCLK_A, UART8_RTS, FMC_D1/FMC_DA1, EVENTOUT | -                       |
| -       | ,        | -       | -        | -           | -       | 118     | N15                | PJ6                                      | I/O      | FT            | -     | TIM8_CH2, LCD_R7,<br>EVENTOUT                              | -                       |
| -       | -        | -       | -        | 1           | -       | 119     | N14                | PJ7                                      | I/O      | FT            | -     | TRGIN, TIM8_CH2N,<br>LCD_G0, EVENTOUT                      | -                       |
| -       | -        | -       | -        | -           | -       | -       | N10                | VDD                                      | S        |               | -     |                                                            | -                       |
| -       | -        | -       | -        | F10         | -       | -       | R8                 | VSS                                      | S        |               | -     |                                                            | -                       |
| -       | 1        | -       | -        | -           | -       | 120     | N13                | PJ8                                      | I/O      | FT            | -     | TIM1_CH3N, TIM8_CH1,<br>UART8_TX, LCD_G1,<br>EVENTOUT      | -                       |
| -       | 1        | 1       | 1        | ı           | 1       | 121     | M14                | PJ9                                      | I/O      | FT            | 1     | TIM1_CH3, TIM8_CH1N,<br>UART8_RX, LCD_G2,<br>EVENTOUT      | -                       |
| -       | 1        | -       | -        | -           | -       | 122     | L14                | PJ10                                     | I/O      | FT            | 1     | TIM1_CH2N, TIM8_CH2,<br>SPI5_MOSI, LCD_G3,<br>EVENTOUT     | -                       |
| -       | 1        | -       | -        | -           | -       | 123     | K14                | PJ11                                     | I/O      | FT            | 1     | TIM1_CH2, TIM8_CH2N,<br>SPI5_MISO, LCD_G4,<br>EVENTOUT     | -                       |
| -       | -        | -       | -        | -           | -       | 124     | N8                 | VDD                                      | S        |               | -     |                                                            | -                       |
| -       | -        | -       | -        | G6          | -       | 125     | U1                 | VSS                                      | S        | -             | -     | -                                                          | -                       |
| ,       | ,        | -       | -        | -           | -       | -       | N17<br>(1)         | NC                                       | -        | 1             | -     | -                                                          | -                       |
| -       | ,        | -       | -        | -           | -       | -       | M16                | NC                                       | -        | 1             | -     | •                                                          | -                       |
| -       | -        | -       | -        | -           | -       | -       | M17                | NC                                       | -        | -             | -     | -                                                          | -                       |
| -       | -        | -       | -        | -           | -       | -       | L7                 | VSS                                      | S        | -             | -     | -                                                          | -                       |
| -       | -        | -       | -        | -           | -       | -       | L16 <sup>(1)</sup> | NC                                       | 1        | -             | -     | -                                                          | -                       |
| -       | -        | -       | -        | -           | -       | -       | L17 <sup>(1)</sup> | NC                                       | 1        | -             | -     | -                                                          | -                       |
| -       | -        | -       | -        | -           | -       | -       | K16 (1)            | NC                                       | -        | -             | -     | -                                                          | -                       |
| -       | -        | 1       | -        | 1           | -       | 1       | K17                | NC                                       | 1        | -             | - 1   | -                                                          | -                       |
| -       | -        | -       | -        | -           | -       | -       | L8                 | VSS                                      | S        | -             | -     | -                                                          | -                       |

Table 8. STM32H753xl pin/ball definition (continued)

|         |          |         | Pin/ba   | all nam     |         |         |              |                                          |          |               |       | continued)                                                                                           |                         |
|---------|----------|---------|----------|-------------|---------|---------|--------------|------------------------------------------|----------|---------------|-------|------------------------------------------------------------------------------------------------------|-------------------------|
| LQFP100 | TFBGA100 | LQFP144 | UFBGA169 | UFBGA176+25 | LQFP176 | LQFP208 | TFBGA240 +25 | Pin name<br>(function<br>after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                  | Additional<br>functions |
| -       | 1        | -       | -        | -           | -       | 126     | J14          | PK0                                      | I/O      | FT            | -     | TIM1_CH1N, TIM8_CH3,<br>SPI5_SCK, LCD_G5,<br>EVENTOUT                                                | -                       |
| -       | -        | -       | -        | -           | -       | 127     | J15          | PK1                                      | I/O      | FT            | -     | TIM1_CH1, TIM8_CH3N,<br>SPI5_NSS, LCD_G6,<br>EVENTOUT                                                | -                       |
| -       | 1        | -       | -        | -           | -       | 128     | H17          | PK2                                      | I/O      | FT            | -     | TIM1_BKIN, TIM8_BKIN,<br>TIM8_BKIN_COMP12,<br>TIM1_BKIN_COMP12,<br>LCD_G7, EVENTOUT                  | -                       |
| -       | -        | 87      | Н9       | L15         | 106     | 129     | H16          | PG2                                      | I/O      | FT_h          | -     | TIM8_BKIN,<br>TIM8_BKIN_COMP12,<br>FMC_A12, EVENTOUT                                                 | -                       |
| -       | -        | 88      | H10      | K15         | 107     | 130     | H15          | PG3                                      | I/O      | FT_h          | -     | TIM8_BKIN2,<br>TIM8_BKIN2_COMP12,<br>FMC_A13, EVENTOUT                                               | -                       |
| -       | -        | -       | -        | G7          | -       | -       | -            | VSS                                      | S        | -             | -     | -                                                                                                    | -                       |
| -       | -        | -       | -        | -           | -       | -       | N7           | VDD                                      | S        | -             | -     | -                                                                                                    | -                       |
| -       | 1        | 89      | F8       | K14         | 108     | 131     | H14          | PG4                                      | I/O      | FT_h          | -     | TIM1_BKIN2,<br>TIM1_BKIN2_COMP12,<br>FMC_A14/FMC_BA0,<br>EVENTOUT                                    | -                       |
| -       | ,        | 90      | H11      | K13         | 109     | 132     | G14          | PG5                                      | I/O      | FT_h          | -     | TIM1_ETR,<br>FMC_A15/FMC_BA1,<br>EVENTOUT                                                            | -                       |
| -       | 1        | 91      | G9       | J15         | 110     | 133     | G15          | PG6                                      | I/O      | FT_h          | -     | TIM17_BKIN, HRTIM_CHE1, QUADSPI_BK1_NCS, FMC_NE3, DCMI_D12, LCD_R7, EVENTOUT                         | -                       |
| -       | -        | 92      | G10      | J14         | 111     | 134     | F16          | PG7                                      | I/O      | FT_h          | -     | HRTIM_CHE2,<br>SAI1_MCLK_A,<br>USART6_CK, FMC_INT,<br>DCMI_D13, LCD_CLK,<br>EVENTOUT                 | -                       |
| -       | 1        | 93      | G11      | H14         | 112     | 135     | F15          | PG8                                      | I/O      | FT_h          | -     | TIM8_ETR, SPI6_NSS,<br>USART6_RTS,<br>SPDIFRX_IN2,<br>ETH_PPS_OUT,<br>FMC_SDCLK, LCD_G7,<br>EVENTOUT | -                       |
| -       | -        | 94      | -        | G12         | 113     | 136     | -            | VSS                                      | S        | -             | -     | -                                                                                                    | -                       |

Table 8. STM32H753xl pin/ball definition (continued)

|         |          |         | Pin/ba   | all nam     | е       |         |              | -                                        |          |               |       |                                                                                                                                                              |                         |
|---------|----------|---------|----------|-------------|---------|---------|--------------|------------------------------------------|----------|---------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| LQFP100 | TFBGA100 | LQFP144 | UFBGA169 | UFBGA176+25 | LQFP176 | LQFP208 | TFBGA240 +25 | Pin name<br>(function<br>after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                                                          | Additional<br>functions |
| -       | -        | 1       | G12      | -           | 1       | 1       | G17          | VDD50<br>USB                             | S        | -             | -     | -                                                                                                                                                            | -                       |
| -       | F6       | 95      | G13      | H13         | 114     | 137     | F17          | VDD33<br>USB                             | S        | -             | -     | -                                                                                                                                                            | -                       |
| -       | -        | -       | -        | -           | -       | -       | M5           | VDD                                      | S        | -             | -     | -                                                                                                                                                            | -                       |
| 63      | F10      | 96      | F9       | H15         | 115     | 138     | F14          | PC6                                      | I/O      | FT_h          | -     | HRTIM_CHA1, TIM3_CH1, TIM8_CH1, DFSDM_CKIN3, I2S2_MCK, USART6_TX, SDMMC1_D0DIR, FMC_NWAIT, SDMMC2_D6, SDMMC1_D6, DCMI_D0, LCD_HSYNC, EVENTOUT                | SWPMI_IO                |
| 64      | E10      | 97      | F10      | G15         | 116     | 139     | F13          | PC7                                      | I/O      | FT_h          | -     | TRGIO, HRTIM_CHA2, TIM3_CH2, TIM8_CH2, DFSDM_DATIN3, I2S3_MCK, USART6_RX, SDMMC1_D123DIR, FMC_NE1, SDMMC2_D7, SWPMI_TX, SDMMC1_D7, DCMI_D1, LCD_G6, EVENTOUT | -                       |
| 65      | F9       | 98      | F12      | G14         | 117     | 140     | E13          | PC8                                      | I/O      | FT_h          | -     | TRACED1, HRTIM_CHB1, TIM3_CH3, TIM8_CH3, USART6_CK, UART5_RTS, FMC_NE2/FMC_NCE, SWPMI_RX, SDMMC1_D0,DCMI_D2, EVENTOUT                                        | -                       |
| 66      | E9       | 99      | F11      | F14         | 118     | 141     | E14          | PC9                                      | I/O      | FT_fh         | -     | MCO2, TIM3_CH4, TIM8_CH4, I2C3_SDA, I2S_CKIN, UART5_CTS, QUADSPI_BK1_IO0, LCD_G3, SWPMI_SUSPEND, SDMMC1_D1, DCMI_D3, LCD_B2, EVENTOUT                        | -                       |
| -       | -        | 1       | -        | G8          | 1       | 1       | -            | VSS                                      | S        | -             | -     |                                                                                                                                                              | -                       |
| -       | -        | -       | -        | -           | 1       | 1       | L5           | VDD                                      | S        | -             | -     |                                                                                                                                                              | -                       |

Table 8. STM32H753xl pin/ball definition (continued)

|         |          |         | Pin/ba   | all nam     |         |         |              |                                          |          |               |       | continuea)                                                                                                                     |                         |
|---------|----------|---------|----------|-------------|---------|---------|--------------|------------------------------------------|----------|---------------|-------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| LQFP100 | TFBGA100 | LQFP144 | UFBGA169 | UFBGA176+25 | LQFP176 | LQFP208 | TFBGA240 +25 | Pin name<br>(function<br>after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                            | Additional<br>functions |
| 67      | D9       | 100     | E12      | F15         | 119     | 142     | E15          | PA8                                      | I/O      | FT_<br>fha    | 1     | MCO1, TIM1_CH1, HRTIM_CHB2, TIM8_BKIN2, I2C3_SCL, USART1_CK, OTG_FS_SOF, UART7_RX, TIM8_BKIN2_COMP12, LCD_B3, LCD_R6, EVENTOUT | -                       |
| 68      | C9       | 101     | E11      | E15         | 120     | 143     | D15          | PA9                                      | I/O      | FT_u          | 1     | TIM1_CH2, HRTIM_CHC1, LPUART1_TX, I2C3_SMBA, SPI2_SCK/I2S2_CK, USART1_TX, CAN1_RXFD, ETH_TX_ER, DCMI_D0, LCD_R5, EVENTOUT      | OTG_FS_VBUS             |
| 69      | D10      | 102     | E10      | D15         | 121     | 144     | D14          | PA10                                     | I/O      | FT_u          | 1     | TIM1_CH3, HRTIM_CHC2, LPUART1_RX, USART1_RX, CAN1_TXFD, OTG_FS_ID, MDIOS_MDIO, LCD_B4, DCMI_D1, LCD_B1, EVENTOUT               | -                       |
| 70      | C10      | 103     | F13      | C15         | 122     | 145     | E17          | PA11                                     | I/O      | FT_u          | 1     | TIM1_CH4, HRTIM_CHD1, LPUART1_CTS, SPI2_NSS/I2S2_WS, UART4_RX, USART1_CTS_NSS, CAN1_RX, OTG_FS_DM, LCD_R4, EVENTOUT            | -                       |
| 71      | B10      | 104     | E13      | B15         | 123     | 146     | E16          | PA12                                     | I/O      | FT_u          | -     | TIM1_ETR, HRTIM_CHD2, LPUART1_RTS, SPI2_SCK/I2S2_CK, UART4_TX, USART1_RTS, SAI2_FS_B, CAN1_TX, OTG_FS_DP, LCD_R5, EVENTOUT     | -                       |
| 72      | A10      | 105     | D11      | A15         | 124     | 147     | C15          | PA13(JTM<br>S-SWDIO)                     | I/O      | FT            | -     | JTMS-SWDIO,<br>EVENTOUT                                                                                                        | -                       |

STM32H753xl Pin descriptions

Table 8. STM32H753xl pin/ball definition (continued)

|         |          |         | Pin/ba   | all nam     | е       |         |              |                                          |          |               |       | ·                                                                                               |                         |
|---------|----------|---------|----------|-------------|---------|---------|--------------|------------------------------------------|----------|---------------|-------|-------------------------------------------------------------------------------------------------|-------------------------|
| LQFP100 | TFBGA100 | LQFP144 | UFBGA169 | UFBGA176+25 | LQFP176 | LQFP208 | TFBGA240 +25 | Pin name<br>(function<br>after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                             | Additional<br>functions |
| 73      | E7       | 106     | D13      | F13         | 125     | 148     | D17          | VCAP2                                    | S        | -             | -     | -                                                                                               | -                       |
| 74      | E5       | 107     | -        | F12         | 126     | 149     | -            | VSS                                      | S        | -             | -     | -                                                                                               | -                       |
| -       | -        | -       | D12      | -           | -       | -       | C17          | VDDLDO2                                  |          | -             | -     | -                                                                                               | -                       |
| 75      | -        | 108     | -        | G13         | 127     | 150     | K5           | VDD                                      | S        | -             | -     | -                                                                                               | -                       |
| -       | -        | -       | -        | E12         | 128     | 151     | D16          | PH13                                     | I/O      | FT_h          | -     | TIM8_CH1N, UART4_TX,<br>CAN1_TX, FMC_D21,<br>LCD_G2, EVENTOUT                                   | -                       |
| -       | -        | -       | -        | E13         | 129     | 152     | B17          | PH14                                     | I/O      | FT_h          | -     | TIM8_CH2N,<br>UART4_RX, CAN1_RX,<br>FMC_D22, DCMI_D4,<br>LCD_G3, EVENTOUT                       | -                       |
| -       | -        | -       | -        | D13         | 130     | 153     | B16          | PH15                                     | I/O      | FT_h          | -     | TIM8_CH3N,<br>CAN1_TXFD, FMC_D23,<br>DCMI_D11, LCD_G4,<br>EVENTOUT                              | -                       |
| -       | -        | -       | A13      | E14         | 131     | 154     | A16          | PI0                                      | I/O      | FT_h          | -     | TIM5_CH4,<br>SPI2_NSS/I2S2_WS,<br>CAN1_RXFD, FMC_D24,<br>DCMI_D13, LCD_G5,<br>EVENTOUT          | -                       |
| -       | -        | -       | -        | G9          | -       | -       | -            | VSS                                      | S        | -             | -     | -                                                                                               | -                       |
| -       | -        | -       | B13      | D14         | 132     | 155     | A15          | PI1                                      | I/O      | FT_h          | -     | TIM8_BKIN2,<br>SPI2_SCK/I2S2_CK,<br>TIM8_BKIN2_COMP12,<br>FMC_D25, DCMI_D8,<br>LCD_G6, EVENTOUT | -                       |
| -       | -        | -       | A6       | C14         | 133     | 156     | B15          | PI2                                      | I/O      | FT_h          | -     | TIM8_CH4,<br>SPI2_MISO/I2S2_SDI,<br>FMC_D26, DCMI_D9,<br>LCD_G7, EVENTOUT                       | -                       |
| -       | -        | -       | В7       | C13         | 134     | 157     | C14          | PI3                                      | I/O      | FT_h          | -     | TIM8_ETR,<br>SPI2_MOSI/I2S2_SDO,<br>FMC_D27, DCMI_D10,<br>EVENTOUT                              | -                       |
| -       | -        | -       | -        | D9          | 135     | -       | -            | VSS                                      | S        | -             | -     | -                                                                                               | -                       |
| -       | -        | -       | -        | C9          | 136     | 158     | -            | VDD                                      | S        | -             | -     | -                                                                                               | -                       |
| 76      | A9       | 109     | B12      | A14         | 137     | 159     | B14          | PA14<br>(JTCK-<br>SWCLK)                 | I/O      | FT            | -     | JTCK-SWCLK,<br>EVENTOUT                                                                         | -                       |

Pin descriptions STM32H753xI

Table 8. STM32H753xl pin/ball definition (continued)

|         |          |         | Pin/ba   | all nam     | е       |         |              | -                                        |          |               |       | ,                                                                                                                          |                         |
|---------|----------|---------|----------|-------------|---------|---------|--------------|------------------------------------------|----------|---------------|-------|----------------------------------------------------------------------------------------------------------------------------|-------------------------|
| LQFP100 | TFBGA100 | LQFP144 | UFBGA169 | UFBGA176+25 | LQFP176 | LQFP208 | TFBGA240 +25 | Pin name<br>(function<br>after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                        | Additional<br>functions |
| 77      | A8       | 110     | C11      | A13         | 138     | 160     | A14          | PA15<br>(JTDI)                           | I/O      | FT            | -     | JTDI, TIM2_CH1/TIM2_ETR, HRTIM_FLT1, HDMI_CEC, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, SPI6_NSS, UART4_RTS, UART7_TX, EVENTOUT | -                       |
| 78      | В9       | 111     | A12      | B14         | 139     | 161     | A13          | PC10                                     | I/O      | FT_<br>ha     | -     | HRTIM_EEV1, DFSDM_CKIN5, SPI3_SCK/I2S3_CK, USART3_TX, UART4_TX, QUADSPI_BK1_IO1, SDMMC1_D2, DCMI_D8, LCD_R2, EVENTOUT      | -                       |
| 79      | В8       | 112     | B11      | B13         | 140     | 162     | B13          | PC11                                     | I/O      | FT_h          | -     | HRTIM_FLT2, DFSDM_DATIN5, SPI3_MISO/I2S3_SDI, USART3_RX, UART4_RX, QUADSPI_BK2_NCS, SDMMC1_D3, DCMI_D4, EVENTOUT           | -                       |
| 80      | C8       | 113     | A11      | A12         | 141     | 163     | C12          | PC12                                     | I/O      | FT_h          | -     | TRACED3, HRTIM_EEV2, SPI3_MOSI/I2S3_SDO, USART3_CK, UART5_TX, SDMMC1_CK, DCMI_D9, EVENTOUT                                 | -                       |
| -       | -        | -       | -        | G10         | -       | -       | -            | VSS                                      | S        | -             | -     | -                                                                                                                          | -                       |
| 81      | D8       | 114     | D10      | B12         | 142     | 164     | D13          | PD0                                      | I/O      | FT_h          | -     | DFSDM_CKIN6,<br>SAI3_SCK_A,<br>UART4_RX, CAN1_RX,<br>FMC_D2/FMC_DA2,<br>EVENTOUT                                           | -                       |
| 82      | E8       | 115     | C10      | C12         | 143     | 165     | E12          | PD1                                      | I/O      | FT_h          | -     | DFSDM_DATIN6,<br>SAI3_SD_A, UART4_TX,<br>CAN1_TX,<br>FMC_D3/FMC_DA3,<br>EVENTOUT                                           | -                       |
| 83      | В7       | 116     | E9       | D12         | 144     | 166     | D12          | PD2                                      | I/O      | FT_h          | -     | TRACED2, TIM3_ETR,<br>UART5_RX,<br>SDMMC1_CMD,<br>DCMI_D11, EVENTOUT                                                       | -                       |

74/227 DocID030553 Rev 3

STM32H753xl Pin descriptions

Table 8. STM32H753xl pin/ball definition (continued)

|         |          |         | Pin/ba   | all nam     |         |         |              |                                          |          |               |       | continueu)                                                                                                                                                    |                         |
|---------|----------|---------|----------|-------------|---------|---------|--------------|------------------------------------------|----------|---------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| LQFP100 | TFBGA100 | LQFP144 | UFBGA169 | UFBGA176+25 | LQFP176 | LQFP208 | TFBGA240 +25 | Pin name<br>(function<br>after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                                                           | Additional<br>functions |
| 84      | C7       | 117     | D9       | D11         | 145     | 167     | B12          | PD3                                      | I/O      | FT_h          | -     | DFSDM_CKOUT,<br>SPI2_SCK/I2S2_CK,<br>USART2_CTS_NSS,<br>FMC_CLK, DCMI_D5,<br>LCD_G7, EVENTOUT                                                                 | -                       |
| 85      | D7       | 118     | C9       | D10         | 146     | 168     | A12          | PD4                                      | I/O      | FT_h          | -     | HRTIM_FLT3,<br>SAI3_FS_A,<br>USART2_RTS,<br>CAN1_RXFD,<br>FMC_NOE, EVENTOUT                                                                                   | •                       |
| 86      | В6       | 119     | A9       | C11         | 147     | 169     | A11          | PD5                                      | I/O      | FT_h          | 1     | HRTIM_EEV3,<br>USART2_TX,<br>CAN1_TXFD,<br>FMC_NWE, EVENTOUT                                                                                                  | 1                       |
| -       | -        | 120     | -        | D8          | 148     | 170     | R4           | VSS                                      | S        | -             | -     | -                                                                                                                                                             | -                       |
| -       | -        | 121     | ı        | C8          | 149     | 171     | 1            | VDD                                      | S        | -             | -     | -                                                                                                                                                             | -                       |
| 87      | C6       | 122     | B9       | B11         | 150     | 172     | B11          | PD6                                      | I/O      | FT_h          | -     | SAI1_D1, DFSDM_CKIN4, DFSDM_DATIN1, SPI3_MOSI/I2S3_SDO, SAI1_SD_A, USART2_RX, SAI4_SD_A, CAN2_RXFD, SAI4_D1, SDMMC2_CK, FMC_NWAIT, DCMI_D10, LCD_B2, EVENTOUT | -                       |
| 88      | D6       | 123     | D8       | A11         | 151     | 173     | C11          | PD7                                      | I/O      | FT_h          | -     | DFSDM_DATIN4, SPI1_MOSI/I2S1_SDO, DFSDM_CKIN1, USART2_CK, SPDIFRX_IN0, SDMMC2_CMD, FMC_NE1, EVENTOUT                                                          | -                       |
| -       | -        | -       | -        | -           | -       | 174     | D11          | PJ12                                     | I/O      | FT            | -     | TRGOUT, LCD_G3,<br>LCD_B0, EVENTOUT                                                                                                                           | -                       |
| -       | -        | -       | -        | -           | -       | 175     | E10          | PJ13                                     | I/O      | FT            | -     | LCD_B4, LCD_B1,<br>EVENTOUT                                                                                                                                   | -                       |
| -       | -        | -       | -        | -           | -       | 176     | D10          | PJ14                                     | I/O      | FT            | -     | LCD_B2, EVENTOUT                                                                                                                                              | -                       |
| -       | 1        | -       | 1        | -           | 1       | 177     | B10          | PJ15                                     | I/O      | FT            | -     | LCD_B3, EVENTOUT                                                                                                                                              | -                       |
| -       | -        | -       | -        | H6          | -       | -       | -            | VSS                                      | S        | -             | -     | -                                                                                                                                                             | -                       |
| -       | -        | -       | A7       | -           | -       | -       | -            | VDD                                      | S        | -             | -     | -                                                                                                                                                             | -                       |

Pin descriptions STM32H753xI

Table 8. STM32H753xl pin/ball definition (continued)

|         |          |         | Pin/ba   | all nam     |         |         |              |                                          |          |               |       | Continued)                                                                                                                                |                         |
|---------|----------|---------|----------|-------------|---------|---------|--------------|------------------------------------------|----------|---------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| LQFP100 | TFBGA100 | LQFP144 | UFBGA169 | UFBGA176+25 | LQFP176 | LQFP208 | TFBGA240 +25 | Pin name<br>(function<br>after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                                       | Additional<br>functions |
| -       | -        | 124     | C8       | C10         | 152     | 178     | A10          | PG9                                      | I/O      | FT_h          | -     | SPI1_MISO/I2S1_SDI,     USART6_RX,     SPDIFRX_IN3,     QUADSPI_BK2_IO2,     SAI2_FS_B,     FMC_NE2/FMC_NCE,     DCMI_VSYNC,     EVENTOUT | -                       |
| -       | -        | 125     | A8       | B10         | 153     | 179     | A9           | PG10                                     | I/O      | FT_h          | -     | HRTIM_FLT5, SPI1_NSS/I2S1_WS, LCD_G3, SAI2_SD_B, FMC_NE3, DCMI_D2, LCD_B2, EVENTOUT                                                       | -                       |
| -       | -        | 126     | В8       | В9          | 154     | 180     | В9           | PG11                                     | I/O      | FT_h          | -     | HRTIM_EEV4, SPI1_SCK/I2S1_CK, SPDIFRX_IN0, SDMMC2_D2, ETH_MII_TX_EN/ETH_R MII_TX_EN, DCMI_D3, LCD_B3, EVENTOUT                            | -                       |
| -       | -        | 127     | E8       | B8          | 155     | 181     | C9           | PG12                                     | I/O      | FT_h          | -     | LPTIM1_IN1, HRTIM_EEV5, SPI6_MISO, USART6_RTS, SPDIFRX_IN1, LCD_B4, ETH_MII_TXD1/ETH_RM II_TXD1, FMC_NE4, LCD_B1, EVENTOUT                | -                       |
| -       | -        | 128     | D7       | A8          | 156     | 182     | D9           | PG13                                     | I/O      | FT_h          | -     | TRACEDO, LPTIM1_OUT, HRTIM_EEV10, SPI6_SCK, USART6_CTS_NSS, ETH_MII_TXD0/ETH_RM II_TXD0, FMC_A24, LCD_R0, EVENTOUT                        | -                       |
| -       | -        | 129     | C7       | A7          | 157     | 183     | D8           | PG14                                     | I/O      | FT_h          | -     | TRACED1, LPTIM1_ETR, SPI6_MOSI, USART6_TX, QUADSPI_BK2_IO3, ETH_MII_TXD1/ETH_RM II_TXD1, FMC_A25, LCD_B0, EVENTOUT                        | -                       |
| -       | -        | 130     | -        | D7          | 158     | 184     | 1            | VSS                                      | S        | -             | -     | -                                                                                                                                         | -                       |
| -       | -        | 131     | -        | C7          | 159     | 185     | -            | VDD                                      | S        | -             | -     | -                                                                                                                                         | -                       |

STM32H753xl Pin descriptions

Table 8. STM32H753xl pin/ball definition (continued)

|         |          |         | Pin/ba   | all nam     |         |         |              | •                                        |                |               |       | continueu                                                                                                                                                                                 |                         |
|---------|----------|---------|----------|-------------|---------|---------|--------------|------------------------------------------|----------------|---------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| LQFP100 | TFBGA100 | LQFP144 | UFBGA169 | UFBGA176+25 | LQFP176 | LQFP208 | TFBGA240 +25 | Pin name<br>(function<br>after<br>reset) | Pin type       | I/O structure | Notes | Alternate functions                                                                                                                                                                       | Additional<br>functions |
| -       | -        | -       | -        | -           | -       | 186     | C8           | PK3                                      | I/O            | FT            | -     | LCD_B4, EVENTOUT                                                                                                                                                                          | -                       |
| -       | -        | -       | -        | -           | -       | 187     | В8           | PK4                                      | I/O            | FT            | -     | LCD_B5, EVENTOUT                                                                                                                                                                          | -                       |
| -       | -        | 1       | -        | -           | -       | 188     | A8           | PK5                                      | I/O            | FT            | -     | LCD_B6, EVENTOUT                                                                                                                                                                          | -                       |
| -       | -        | -       | -        | -           | -       | 189     | C7           | PK6                                      | I/O            | FT            | -     | LCD_B7, EVENTOUT                                                                                                                                                                          | -                       |
| -       | -        | -       | -        | -           | -       | 190     | D7           | PK7                                      | I/O            | FT            | 1     | LCD_DE, EVENTOUT                                                                                                                                                                          | -                       |
| -       | -        | -       | -        | H7          | -       | -       | -            | VSS                                      | S              | -             | -     | -                                                                                                                                                                                         | -                       |
| 1       | ,        | 132     | E7       | В7          | 160     | 191     | D6           | PG15                                     | I/O            | FT_h          | -     | USART6_CTS_NSS,<br>FMC_SDNCAS,<br>DCMI_D13, EVENTOUT                                                                                                                                      | 1                       |
| 89      | A7       | 133     | F7       | A10         | 161     | 192     | C6           | PB3(JTDO<br>/TRACES<br>WO)               | DO ES I/O FT - |               | 1     | JTDO/TRACESWO, TIM2_CH2, HRTIM_FLT4, SPI1_SCK/I2S1_CK, SPI3_SCK/I2S3_CK, SPI6_SCK, SDMMC2_D2, UART7_RX, EVENTOUT                                                                          | -                       |
| 90      | A6       | 134     | B6       | А9          | 162     | 193     | В7           | PB4(NJTR<br>ST)                          | I/O            | FT            | -     | NJTRST, TIM16_BKIN,<br>TIM3_CH1,<br>HRTIM_EEV6,<br>SPI1_MISO/I2S1_SDI,<br>SPI3_MISO/I2S3_SDI,<br>SPI2_NSS/I2S2_WS,<br>SPI6_MISO,<br>SDMMC2_D3,<br>UART7_TX, EVENTOUT                      | -                       |
| 91      | C5       | 135     | C6       | A6          | 163     | 194     | A5           | PB5                                      | I/O            | FT            | -     | TIM17_BKIN, TIM3_CH2, HRTIM_EEV7, I2C1_SMBA, SPI1_MOSI/I2S1_SDO, I2C4_SMBA, SPI3_MOSI/I2S3_SDO, SPI6_MOSI, CAN2_RX, OTG_HS_ULPI_D7, ETH_PPS_OUT, FMC_SDCKE1, DCMI_D10, UART5_RX, EVENTOUT | -                       |
| -       | -        | -       | -        | Н8          | -       | -       | -            | VSS                                      | S              | -             | -     | -                                                                                                                                                                                         | -                       |

Pin descriptions STM32H753xI

Table 8. STM32H753xl pin/ball definition (continued)

|         |          |         | Pin/ba   | all nam     |         |         |              |                                          |          |               |       | continueu                                                                                                                                                             |                         |
|---------|----------|---------|----------|-------------|---------|---------|--------------|------------------------------------------|----------|---------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| LQFP100 | TFBGA100 | LQFP144 | UFBGA169 | UFBGA176+25 | LQFP176 | LQFP208 | TFBGA240 +25 | Pin name<br>(function<br>after<br>reset) | Pin type | I/O structure | Notes | Alternate functions                                                                                                                                                   | Additional<br>functions |
| 92      | B5       | 136     | A5       | В6          | 164     | 195     | B5           | PB6                                      | I/O      | FT_f          | -     | TIM16_CH1N, TIM4_CH1, HRTIM_EEV8, I2C1_SCL, HDMI_CEC, I2C4_SCL, USART1_TX, LPUART1_TX, CAN2_TX, QUADSPI_BK1_NCS, DFSDM_DATIN5, FMC_SDNE1, DCMI_D5, UART5_TX, EVENTOUT | -                       |
| 93      | A5       | 137     | D6       | B5          | 165     | 196     | C5           | PB7                                      | I/O      | FT_fa         | -     | TIM17_CH1N, TIM4_CH2, HRTIM_EEV9, I2C1_SDA, I2C4_SDA, USART1_RX, LPUART1_RX, CAN2_TXFD, DFSDM_CKIN5, FMC_NL, DCMI_VSYNC, EVENTOUT                                     | PVD_IN                  |
| 94      | D5       | 138     | E6       | D6          | 166     | 197     | E8           | воото                                    | I        | В             | -     | -                                                                                                                                                                     | VPP                     |
| 95      | B4       | 139     | B5       | A5          | 167     | 198     | D5           | PB8                                      | I/O      | FT_fh         | -     | TIM16_CH1, TIM4_CH3, DFSDM_CKIN7, I2C1_SCL, I2C4_SCL, SDMMC1_CKIN, UART4_RX, CAN1_RX, SDMMC2_D4, ETH_MII_TXD3, SDMMC1_D4, DCMI_D6, LCD_B6, EVENTOUT                   | -                       |
| 96      | A4       | 140     | C5       | B4          | 168     | 199     | D4           | PB9                                      | I/O      | FT_fh         | -     | TIM17_CH1, TIM4_CH4, DFSDM_DATIN7, I2C1_SDA, SPI2_NSS/I2S2_WS, I2C4_SDA, SDMMC1_CDIR, UART4_TX, CAN1_TX, SDMMC2_D5, I2C4_SMBA, SDMMC1_D5, DCMI_D7, LCD_B7, EVENTOUT   | -                       |

STM32H753xl Pin descriptions

Table 8. STM32H753xl pin/ball definition (continued)

|         |          |         | Pin/ba   | all nam     |         | . 0111  |              | COXI PIIII D                             | un u     |               | , <u>(</u> | continuea)                                                                                                 |                         |
|---------|----------|---------|----------|-------------|---------|---------|--------------|------------------------------------------|----------|---------------|------------|------------------------------------------------------------------------------------------------------------|-------------------------|
| LQFP100 | TFBGA100 | LQFP144 | UFBGA169 | UFBGA176+25 | LQFP176 | LQFP208 | TFBGA240 +25 | Pin name<br>(function<br>after<br>reset) | Pin type | I/O structure | Notes      | Alternate functions                                                                                        | Additional<br>functions |
| 97      | D4       | 141     | D5       | A4          | 169     | 200     | C4           | PE0                                      | I/O      | FT_h          | -          | LPTIM1_ETR, TIM4_ETR, HRTIM_SCIN, LPTIM2_ETR, UART8_RX, CAN1_RXFD, SAI2_MCK_A, FMC_NBL0, DCMI_D2, EVENTOUT | -                       |
| 98      | C4       | 142     | D4       | А3          | 170     | 201     | B4           | PE1                                      | I/O      | FT_h          | -          | LPTIM1_IN2, HRTIM_SCOUT, UART8_TX, CAN1_TXFD, FMC_NBL1, DCMI_D3, EVENTOUT                                  | -                       |
| -       | -        | -       | -        | -           | -       | -       | A7           | VCAP3                                    | S        | -             | -          | -                                                                                                          | -                       |
| 99      | -        | -       | -        | D5          | -       | 202     | -            | VSS                                      | S        | -             | -          | -                                                                                                          | -                       |
| -       | F7       | 143     | C4       | C6          | 171     | 203     | E7           | PDR_ON                                   | S        | -             | -          | -                                                                                                          | -                       |
| -       | F4       | -       | B4       | -           | -       | -       | A6           | VDDLDO3                                  | S        | -             | -          | -                                                                                                          | -                       |
| 100     | -        | 144     | -        | C5          | 172     | 204     | 1            | VDD                                      | S        | -             | -          | -                                                                                                          | -                       |
| -       | -        | -       | -        | D4          | 173     | 205     | A4           | Pl4                                      | I/O      | FT_h          | -          | TIM8_BKIN, SAI2_MCK_A, TIM8_BKIN_COMP12, FMC_NBL2, DCMI_D5, LCD_B4, EVENTOUT                               | 1                       |
| -       | -        | -       | -        | C4          | 174     | 206     | А3           | PI5                                      | I/O      | FT_h          | -          | TIM8_CH1,<br>SAI2_SCK_A,<br>FMC_NBL3,<br>DCMI_VSYNC, LCD_B5,<br>EVENTOUT                                   | -                       |
| -       | -        | -       | A4       | C3          | 175     | 207     | A2           | PI6                                      | I/O      | FT_h          | -          | TIM8_CH2, SAI2_SD_A,<br>FMC_D28, DCMI_D6,<br>LCD_B6, EVENTOUT                                              | -                       |
| -       | -        | -       | E2       | C2          | 176     | 208     | В3           | PI7                                      | I/O      | FT_h          | -          | TIM8_CH3, SAI2_FS_A,<br>FMC_D29, DCMI_D7,<br>LCD_B7, EVENTOUT                                              | -                       |
| -       | -        | -       | -        | Н9          | -       | -       | -            | VSS                                      | S        | -             | -          | -                                                                                                          | -                       |
| -       | -        | -       | 1        | K9          | -       | -       | 1            | VSS                                      | S        | -             | -          | -                                                                                                          | -                       |
| -       | -        | -       | -        | K10         | -       | -       | -            | VSS                                      | S        | -             | -          | -                                                                                                          | -                       |

<sup>1.</sup> This ball should remain floating.

<sup>2.</sup> This ball should not remain floating. It can be connected to VSS or VDD. It is reserved for future use.

Pin descriptions STM32H753xI

- 3. This ball should be connected to  $V_{SS}$ .
- 4. Pxy\_C and Pxy pins/balls are two separate pads (analog switch open). The analog switch is configured through a SYSCFG register. Refer to the product reference manual for a detailed description of the switch configuration bits.
- 5. There is a direct path between Pxy\_C and Pxy pins/balls, through an analog switch. Pxy alternate functions are available on Pxy\_C when the analog switch is closed. The analog switch is configured through a SYSCFG register. Refer to the product reference manual for a detailed description of the switch configuration bits.
- 6. VREF+ pin, and consequently the internal voltage reference, are not available on the TFBGA100 package. On this package, this pin is double-bonded to VDDA which can be connected to an external reference. The internal voltage reference buffer is not available and must be kept disabled



### **Table 9. Port A alternate functions**

|        |      | AF0            | AF1                                | AF2                             | AF3                                                   | AF4                                                      | AF5                    | AF6                                        | AF7                                            | AF8                                                         | AF9                                                                               | AF10                                                                   | AF11                                                                        | AF12                                                | AF13                       | AF14          | AF15          |
|--------|------|----------------|------------------------------------|---------------------------------|-------------------------------------------------------|----------------------------------------------------------|------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|---------------|---------------|
|        | Port | SYS            | TIM1/2/16/1<br>7/LPTIM1/<br>HRTIM1 | SAI1/TIM3/<br>4/5/12/<br>HRTIM1 | LPUART/<br>TIM8/<br>LPTIM2/3/4/<br>5/HRTIM1/<br>DFSDM | I2C1/2/3/4/<br>USART1/<br>TIM15/<br>LPTIM2/<br>DFSDM/CEC | SPI1/2/3/4/<br>5/6/CEC | SPI2/3/SAI1/<br>3/I2C4/<br>UART4/<br>DFSDM | SPI2/3/6/<br>USART1/2/<br>3/6/UART7/<br>SDMMC1 | SPI6/SAI2/<br>4/UART4/5/<br>8/LPUART/<br>SDMMC1/S<br>PDIFRX | SAI4/<br>FDCAN1/2/<br>TIM13/14/Q<br>UADSPI/F<br>MC/<br>SDMMC2/<br>LCD/<br>SPDIFRX | SAI2/4/<br>TIM8/<br>QUADSPI/<br>SDMMC2/<br>OTG1_HS/<br>OTG2_FS/<br>LCD | I2C4/<br>UART7/<br>SWPMI1/<br>TIM1/8/<br>DFSDM/<br>SDMMC2/<br>MDIOS/<br>ETH | TIM1/8/FMC<br>/SDMMC1/<br>MDIOS/<br>OTG1_FS/<br>LCD | TIM1/DCMI<br>/LCD/<br>COMP | UART5/<br>LCD | SYS           |
|        | PA0  | -              | TIM2_CH1/<br>TIM2_ETR              | TIM5_CH1                        | TIM8_ETR                                              | TIM15_BKIN                                               | -                      | -                                          | USART2_<br>CTS_NSS                             | UART4_TX                                                    | SDMMC2_<br>CMD                                                                    | SAI2_SD_B                                                              | ETH_MII_<br>CRS                                                             | -                                                   | -                          | -             | EVENT-<br>OUT |
|        | PA1  | -              | TIM2_CH2                           | TIM5_CH2                        | LPTIM3_<br>OUT                                        | TIM15_<br>CH1N                                           | -                      | -                                          | USART2_<br>RTS                                 | UART4_RX                                                    | QUADSPI_<br>BK1_IO3                                                               | SAI2_MCK_<br>B                                                         | ETH_MII_<br>RX_CLK/<br>ETH_RMII_<br>REF_CLK                                 | -                                                   | -                          | LCD_R2        | EVENT-<br>OUT |
|        | PA2  | -              | TIM2_CH3                           | TIM5_CH3                        | LPTIM4_<br>OUT                                        | TIM15_CH1                                                | -                      | -                                          | USART2_<br>TX                                  | SAI2_SCK_<br>B                                              | -                                                                                 | -                                                                      | ETH_MDIO                                                                    | MDIOS_<br>MDIO                                      | -                          | LCD_R1        | EVENT-<br>OUT |
|        | PA3  | -              | TIM2_CH4                           | TIM5_CH4                        | LPTIM5_<br>OUT                                        | TIM15_CH2                                                | -                      | -                                          | USART2_<br>RX                                  | -                                                           | LCD_B2                                                                            | OTG_HS_<br>ULPI_D0                                                     | ETH_MII_<br>COL                                                             | -                                                   | -                          | LCD_B5        | EVENT-<br>OUT |
|        | PA4  | -              | =                                  | TIM5_ETR                        | -                                                     | -                                                        | SPI1_NSS/<br>I2S1_WS   | SPI3_NSS/<br>I2S3_WS                       | USART2_<br>CK                                  | SPI6_NSS                                                    | -                                                                                 | -                                                                      | -                                                                           | OTG_HS_<br>SOF                                      | DCMI_<br>HSYNC             | LCD_<br>VSYNC | EVENT-<br>OUT |
|        | PA5  | -              | TIM2_CH1/<br>TIM2_ETR              | -                               | TIM8_<br>CH1N                                         | -                                                        | SPI1_SCK<br>/I2S1_CK   | -                                          | -                                              | SPI6_SCK                                                    | -                                                                                 | OTG_HS_<br>ULPI_CK                                                     | -                                                                           | -                                                   | -                          | LCD_R4        | EVENT-<br>OUT |
| ₹<br>† | PA6  | -              | TIM1_BKIN                          | TIM3_CH1                        | TIM8_BKIN                                             | -                                                        | SPI1_MISO<br>/I2S1_SDI | -                                          | -                                              | SPI6_MISO                                                   | TIM13_CH<br>1                                                                     | TIM8_BKIN<br>_COMP12                                                   | MDIOS_<br>MDC                                                               | TIM1_BKIN<br>_COMP12                                | DCMI_PIX<br>CLK            | LCD_G2        | EVENT-<br>OUT |
| Port   | PA7  | -              | TIM1_CH1N                          | TIM3_CH2                        | TIM8_CH1<br>N                                         | -                                                        | SPI1_MOSI<br>/I2S1_SDO | -                                          | -                                              | SPI6_MOSI                                                   | TIM14_CH<br>1                                                                     | -                                                                      | ETH_MII_<br>RX_DV/<br>ETH_RMII_<br>CRS_DV                                   | FMC_SDN<br>WE                                       | -                          | -             | EVENT-<br>OUT |
|        | PA8  | MCO1           | TIM1_CH1                           | HRTIM_CH<br>B2                  | TIM8_BKIN                                             | I2C3_SCL                                                 | -                      | -                                          | USART1_<br>CK                                  | -                                                           | -                                                                                 | OTG_FS_<br>SOF                                                         | UART7_RX                                                                    | TIM8_BKIN<br>2_COMP12                               | LCD_B3                     | LCD_R6        | EVENT-<br>OUT |
|        | PA9  | -              | TIM1_CH2                           | HRTIM_CH<br>C1                  | LPUART1_<br>TX                                        | I2C3_SMBA                                                | SPI2_SCK/<br>I2S2_CK   | -                                          | USART1_<br>TX                                  | -                                                           | CAN1_RXF<br>D                                                                     | -                                                                      | ETH_TX_<br>ER                                                               | -                                                   | DCMI_D0                    | LCD_R5        | EVENT-<br>OUT |
|        | PA10 | -              | TIM1_CH3                           | HRTIM_CH<br>C2                  | LPUART1_<br>RX                                        | -                                                        | -                      | -                                          | USART1_<br>RX                                  | -                                                           | CAN1_<br>TXFD                                                                     | OTG_FS_ID                                                              | MDIOS_<br>MDIO                                                              | LCD_B4                                              | DCMI_D1                    | LCD_B1        | EVENT-<br>OUT |
|        | PA11 | -              | TIM1_CH4                           | HRTIM_CH<br>D1                  | LPUART1_<br>CTS                                       | -                                                        | SPI2_NSS<br>/I2S2_WS   | UART4_RX                                   | USART1_<br>CTS_NSS                             | -                                                           | CAN1_RX                                                                           | OTG_FS_<br>DM                                                          | -                                                                           | -                                                   | -                          | LCD_R4        | EVENT-<br>OUT |
|        | PA12 | -              | TIM1_ETR                           | HRTIM_CH<br>D2                  | LPUART1_<br>RTS                                       | -                                                        | SPI2_SCK/<br>I2S2_CK   | UART4_TX                                   | USART1_<br>RTS                                 | SAI2_FS_B                                                   | CAN1_TX                                                                           | OTG_FS_<br>DP                                                          | -                                                                           | -                                                   | -                          | LCD_R5        | EVENT-<br>OUT |
|        | PA13 | JTMS-<br>SWDIO | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | -             | EVENT-<br>OUT |

|     |      | AF0            | AF1                                | AF2                             | AF3                                                   | AF4                                                      | AF5                    | AF6                                        | AF7                                            | AF8                                                         | AF9                                                                               | AF10                                                                   | AF11                                                                        | AF12                                                | AF13                       | AF14          | AF15          |
|-----|------|----------------|------------------------------------|---------------------------------|-------------------------------------------------------|----------------------------------------------------------|------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|---------------|---------------|
|     | Port | SYS            | TIM1/2/16/1<br>7/LPTIM1/<br>HRTIM1 | SAI1/TIM3/<br>4/5/12/<br>HRTIM1 | LPUART/<br>TIM8/<br>LPTIM2/3/4/<br>5/HRTIM1/<br>DFSDM | I2C1/2/3/4/<br>USART1/<br>TIM15/<br>LPTIM2/<br>DFSDM/CEC | SPI1/2/3/4/<br>5/6/CEC | SPI2/3/SAI1/<br>3/I2C4/<br>UART4/<br>DFSDM | SPI2/3/6/<br>USART1/2/<br>3/6/UART7/<br>SDMMC1 | SPI6/SAI2/<br>4/UART4/5/<br>8/LPUART/<br>SDMMC1/S<br>PDIFRX | SAI4/<br>FDCAN1/2/<br>TIM13/14/Q<br>UADSPI/F<br>MC/<br>SDMMC2/<br>LCD/<br>SPDIFRX | SAI2/4/<br>TIM8/<br>QUADSPI/<br>SDMMC2/<br>OTG1_HS/<br>OTG2_FS/<br>LCD | I2C4/<br>UART7/<br>SWPMI1/<br>TIM1/8/<br>DFSDM/<br>SDMMC2/<br>MDIOS/<br>ETH | TIM1/8/FMC<br>/SDMMC1/<br>MDIOS/<br>OTG1_FS/<br>LCD | TIM1/DCMI<br>/LCD/<br>COMP | UART5/<br>LCD | sys           |
| t A | PA14 | JTCK-<br>SWCLK | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | -             | EVENT-<br>OUT |
| Por | PA15 | JTDI           | TIM2_CH1/<br>TIM2_ETR              | HRTIM_<br>FLT1                  | -                                                     | HDMI_CEC                                                 | SPI1_NSS/<br>I2S1_WS   | SPI3_NSS/<br>I2S3_WS                       | SPI6_NSS                                       | UART4_<br>RTS                                               | -                                                                                 | -                                                                      | UART7_TX                                                                    | -                                                   | =                          | -             | EVENT-<br>OUT |

### Table 10. Port B alternate functions

|    |      | AF0               | AF1                                | AF2                             | AF3                                                   | AF4                                                          | AF5                    | AF6                                        | AF7                                            | AF8                                                         | AF9                                                                               | AF10                                                                   | AF11                                                                        | AF12                                                | AF13                       | AF14          | AF15          |
|----|------|-------------------|------------------------------------|---------------------------------|-------------------------------------------------------|--------------------------------------------------------------|------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|---------------|---------------|
|    | Port | sys               | TIM1/2/16/1<br>7/LPTIM1/<br>HRTIM1 | SAI1/TIM3/<br>4/5/12/<br>HRTIM1 | LPUART/<br>TIM8/<br>LPTIM2/3/4<br>/5/HRTIM1/<br>DFSDM | I2C1/2/3/4/<br>USART1/<br>TIM15/<br>LPTIM2/<br>DFSDM/<br>CEC | SPI1/2/3/4/5/<br>6/CEC | SPI2/3/SAI1<br>/3/I2C4/<br>UART4/<br>DFSDM | SPI2/3/6/<br>USART1/2/3<br>/6/UART7/S<br>DMMC1 | SPI6/SAI2/<br>4/UART4/5/<br>8/LPUART/<br>SDMMC1/<br>SPDIFRX | SAI4/<br>FDCAN1/2/<br>TIM13/14/<br>QUADSPI/<br>FMC/<br>SDMMC2/<br>LCD/<br>SPDIFRX | SAI2/4/<br>TIM8/<br>QUADSPI/<br>SDMMC2/<br>OTG1_HS/<br>OTG2_FS/<br>LCD | I2C4/<br>UART7/<br>SWPMI1/<br>TIM1/8/<br>DFSDM/<br>SDMMC2/<br>MDIOS/<br>ETH | TIM1/8/FMC<br>/SDMMC1/<br>MDIOS/<br>OTG1_FS/<br>LCD | TIM1/DCM<br>I/LCD/<br>COMP | UART5/<br>LCD | SYS           |
|    | PB0  | -                 | TIM1_CH2N                          | TIM3_CH3                        | TIM8_CH2<br>N                                         | -                                                            | -                      | DFSDM_CK<br>OUT                            | -                                              | UART4_<br>CTS                                               | LCD_R3                                                                            | OTG_HS_<br>ULPI_D1                                                     | ETH_MII_<br>RXD2                                                            | -                                                   | -                          | LCD_G1        | EVENT-<br>OUT |
|    | PB1  | -                 | TIM1_CH3N                          | TIM3_CH4                        | TIM8_CH3<br>N                                         | -                                                            | -                      | DFSDM_<br>DATIN1                           | -                                              | -                                                           | LCD_R6                                                                            | OTG_HS_<br>ULPI_D2                                                     | ETH_MII_<br>RXD3                                                            | -                                                   | -                          | LCD_G0        | EVENT-<br>OUT |
|    | PB2  | -                 | -                                  | SAI1_D1                         | -                                                     | DFSDM_<br>CKIN1                                              | -                      | SAI1_SD_A                                  | SPI3_<br>MOSI/I2S3_<br>SDO                     | SAI4_SD_<br>A                                               | QUADSPI_<br>CLK                                                                   | SAI4_D1                                                                | ETH_TX_<br>ER                                                               | -                                                   | -                          | -             | EVENT-<br>OUT |
|    | PB3  | JTDO/TRA<br>CESWO | TIM2_CH2                           | HRTIM_<br>FLT4                  | -                                                     | -                                                            | SPI1_SCK/<br>I2S1_CK   | SPI3_SCK/<br>I2S3_CK                       | -                                              | SPI6_SCK                                                    | SDMMC2_<br>D2                                                                     | -                                                                      | UART7_RX                                                                    | -                                                   | -                          | -             | EVENT-<br>OUT |
| to | PB4  | NJTRST            | TIM16_<br>BKIN                     | TIM3_CH1                        | HRTIM_EE<br>V6                                        | -                                                            | SPI1_MISO/<br>I2S1_SDI | SPI3_MISO/<br>I2S3_SDI                     | SPI2_NSS/I<br>2S2_WS                           | SPI6_<br>MISO                                               | SDMMC2_<br>D3                                                                     | -                                                                      | UART7_TX                                                                    | -                                                   | -                          | -             | EVENT-<br>OUT |
|    | PB5  | -                 | TIM17_<br>BKIN                     | TIM3_CH2                        | HRTIM_<br>EEV7                                        | I2C1_SMBA                                                    | SPI1_MOSI/<br>I2S1_SDO | I2C4_SMBA                                  | SPI3_MOSI/<br>I2S3_SDO                         | SPI6_<br>MOSI                                               | CAN2_RX                                                                           | OTG_HS_<br>ULPI_D7                                                     | ETH_PPS_<br>OUT                                                             | FMC_<br>SDCKE1                                      | DCMI_D1<br>0               | UART5_<br>RX  | EVENT-<br>OUT |
|    | PB6  | -                 | TIM16_CH1<br>N                     | TIM4_CH1                        | HRTIM_<br>EEV8                                        | I2C1_SCL                                                     | HDMI_CEC               | I2C4_SCL                                   | USART1_<br>TX                                  | LPUART1_<br>TX                                              | CAN2_TX                                                                           | QUADSPI_<br>BK1_NCS                                                    | DFSDM_<br>DATIN5                                                            | FMC_SDNE<br>1                                       | DCMI_D5                    | UART5_<br>TX  | EVENT-<br>OUT |
|    | PB7  | -                 | TIM17_CH1<br>N                     | TIM4_CH2                        | HRTIM_<br>EEV9                                        | I2C1_SDA                                                     | -                      | I2C4_SDA                                   | USART1_<br>RX                                  | LPUART1_<br>RX                                              | CAN2_<br>TXFD                                                                     | -                                                                      | DFSDM_<br>CKIN5                                                             | FMC_NL                                              | DCMI_<br>VSYNC             | -             | EVENT-<br>OUT |
|    | PB8  | -                 | TIM16_CH1                          | TIM4_CH3                        | DFSDM_<br>CKIN7                                       | I2C1_SCL                                                     | -                      | I2C4_SCL                                   | SDMMC1_<br>CKIN                                | UART4_RX                                                    | CAN1_RX                                                                           | SDMMC2_<br>D4                                                          | ETH_MII_<br>TXD3                                                            | SDMMC1_<br>D4                                       | DCMI_D6                    | LCD_B6        | EVENT-<br>OUT |





### Table 10. Port B alternate functions (continued)

| _   |      |               |                                    |                                 |                                                       |                                                              | 0 1011 01              |                                            |                                                |                                                             |                                                                                   | <u>,                                      </u>                         |                                                                             |                                                     |                            |               |               |
|-----|------|---------------|------------------------------------|---------------------------------|-------------------------------------------------------|--------------------------------------------------------------|------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|---------------|---------------|
|     |      | AF0           | AF1                                | AF2                             | AF3                                                   | AF4                                                          | AF5                    | AF6                                        | AF7                                            | AF8                                                         | AF9                                                                               | AF10                                                                   | AF11                                                                        | AF12                                                | AF13                       | AF14          | AF15          |
|     | Port | sys           | TIM1/2/16/1<br>7/LPTIM1/<br>HRTIM1 | SAI1/TIM3/<br>4/5/12/<br>HRTIM1 | LPUART/<br>TIM8/<br>LPTIM2/3/4<br>/5/HRTIM1/<br>DFSDM | I2C1/2/3/4/<br>USART1/<br>TIM15/<br>LPTIM2/<br>DFSDM/<br>CEC | SPI1/2/3/4/5/<br>6/CEC | SPI2/3/SAI1<br>/3/I2C4/<br>UART4/<br>DFSDM | SPI2/3/6/<br>USART1/2/3<br>/6/UART7/S<br>DMMC1 | SPI6/SAI2/<br>4/UART4/5/<br>8/LPUART/<br>SDMMC1/<br>SPDIFRX | SAI4/<br>FDCAN1/2/<br>TIM13/14/<br>QUADSPI/<br>FMC/<br>SDMMC2/<br>LCD/<br>SPDIFRX | SAI2/4/<br>TIM8/<br>QUADSPI/<br>SDMMC2/<br>OTG1_HS/<br>OTG2_FS/<br>LCD | I2C4/<br>UART7/<br>SWPMI1/<br>TIM1/8/<br>DFSDM/<br>SDMMC2/<br>MDIOS/<br>ETH | TIM1/8/FMC<br>/SDMMC1/<br>MDIOS/<br>OTG1_FS/<br>LCD | TIM1/DCM<br>I/LCD/<br>COMP | UART5/<br>LCD | SYS           |
|     | PB9  | -             | TIM17_CH1                          | TIM4_CH4                        | DFSDM_<br>DATIN7                                      | I2C1_SDA                                                     | SPI2_NSS/<br>I2S2_WS   | I2C4_SDA                                   | SDMMC1_<br>CDIR                                | UART4_TX                                                    | CAN1_TX                                                                           | SDMMC2_<br>D5                                                          | I2C4_SMB<br>A                                                               | SDMMC1_<br>D5                                       | DCMI_D7                    | LCD_B7        | EVENT-<br>OUT |
|     | PB10 | -             | TIM2_CH3                           | HRTIM_<br>SCOUT                 | LPTIM2_IN<br>1                                        | I2C2_SCL                                                     | SPI2_SCK/<br>I2S2_CK   | DFSDM_<br>DATIN7                           | USART3_<br>TX                                  | -                                                           | QUADSPI_<br>BK1_NCS                                                               | OTG_HS_<br>ULPI_D3                                                     | ETH_MII_<br>RX_ER                                                           | -                                                   | -                          | LCD_G4        | EVENT-<br>OUT |
|     | PB11 | -             | TIM2_CH4                           | HRTIM_<br>SCIN                  | LPTIM2_<br>ETR                                        | I2C2_SDA                                                     | -                      | DFSDM_<br>CKIN7                            | USART3_<br>RX                                  | -                                                           | -                                                                                 | OTG_HS_<br>ULPI_D4                                                     | ETH_MII_<br>TX_EN/<br>ETH_RMII_<br>TX_EN                                    | -                                                   | -                          | LCD_G5        | EVENT-<br>OUT |
| - 1 | PB12 | -             | TIM1_BKIN                          | 1                               | -                                                     | I2C2_SMBA                                                    | SPI2_NSS/<br>I2S2_WS   | DFSDM_<br>DATIN1                           | USART3_<br>CK                                  | ı                                                           | CAN2_RX                                                                           | OTG_HS_<br>ULPI_D5                                                     | ETH_MII_<br>TXD0/ETH_<br>RMII_TXD0                                          | OTG_HS_<br>ID                                       | TIM1_<br>BKIN_<br>COMP12   | UART5_<br>RX  | EVENT-<br>OUT |
|     | PB13 | -             | TIM1_CH1N                          | -                               | LPTIM2_<br>OUT                                        | -                                                            | SPI2_SCK/<br>I2S2_CK   | DFSDM_CK<br>IN1                            | USART3_<br>CTS_NSS                             | -                                                           | CAN2_TX                                                                           | OTG_HS_<br>ULPI_D6                                                     | ETH_MII_<br>TXD1/ETH_<br>RMII_TXD1                                          | -                                                   | -                          | UART5_<br>TX  | EVENT-<br>OUT |
|     | PB14 | -             | TIM1_CH2N                          | TIM12_CH<br>1                   | TIM8_<br>CH2N                                         | USART1_TX                                                    | SPI2_MISO/<br>I2S2_SDI | DFSDM_<br>DATIN2                           | USART3_<br>RTS                                 | UART4_<br>RTS                                               | SDMMC2_<br>D0                                                                     | -                                                                      | -                                                                           | OTG_HS_<br>DM                                       | -                          | i             | EVENT-<br>OUT |
|     | PB15 | RTC_<br>REFIN | TIM1_CH3N                          | TIM12_CH<br>2                   | TIM8_CH3<br>N                                         | USART1_RX                                                    | SPI2_MOSI/<br>I2S2_SDO | DFSDM_CK<br>IN2                            | -                                              | UART4_<br>CTS                                               | SDMMC2_<br>D1                                                                     | -                                                                      | -                                                                           | OTG_HS_<br>DP                                       | -                          | -             | EVENT-<br>OUT |

Pin descriptions

**Table 11. Port C alternate functions** 

|      |      | AF0     | AF1                                | AF2                             | AF3                                                   | AF4                                                      | AF5                        | AF6                                        | AF7                                            | AF8                                                         | AF9                                                                               | AF10                                                                   | AF11                                                                        | AF12                                                | AF13                       | AF14          | AF15          |
|------|------|---------|------------------------------------|---------------------------------|-------------------------------------------------------|----------------------------------------------------------|----------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|---------------|---------------|
|      | Port | SYS     | TIM1/2/16/1<br>7/LPTIM1/<br>HRTIM1 | SAI1/TIM3/<br>4/5/12/<br>HRTIM1 | LPUART/<br>TIM8/<br>LPTIM2/3/4<br>/5/HRTIM1/<br>DFSDM | I2C1/2/3/4/<br>USART1/<br>TIM15/<br>LPTIM2/<br>DFSDM/CEC | SPI1/2/3/4/<br>5/6/CEC     | SPI2/3/SAI1<br>/3/I2C4/<br>UART4/<br>DFSDM | SPI2/3/6/<br>USART1/2/<br>3/6/UART7/<br>SDMMC1 | SPI6/SAI2/<br>4/UART4/5/<br>8/LPUART/<br>SDMMC1/<br>SPDIFRX | SAI4/<br>FDCAN1/2/<br>TIM13/14/<br>QUADSPI/<br>FMC/<br>SDMMC2/<br>LCD/<br>SPDIFRX | SAI2/4/<br>TIM8/<br>QUADSPI/<br>SDMMC2/<br>OTG1_HS/<br>OTG2_FS/<br>LCD | I2C4/<br>UART7/<br>SWPMI1/<br>TIM1/8/<br>DFSDM/<br>SDMMC2/<br>MDIOS/<br>ETH | TIM1/8/FMC<br>/SDMMC1/<br>MDIOS/<br>OTG1_FS/<br>LCD | TIM1/DCMI<br>/LCD/<br>COMP | UART5/<br>LCD | SYS           |
|      | PC0  | -       | -                                  | -                               | DFSDM_<br>CKIN0                                       | -                                                        | -                          | DFSDM_<br>DATIN4                           | -                                              | SAI2_FS_B                                                   | -                                                                                 | OTG_HS_<br>ULPI_STP                                                    | -                                                                           | FMC_<br>SDNWE                                       | -                          | LCD_R5        | EVENT-<br>OUT |
|      | PC1  | TRACED0 | -                                  | SAI1_D1                         | DFSDM_<br>DATIN0                                      | DFSDM_<br>CKIN4                                          | SPI2_<br>MOSI/I2S2<br>_SDO | SAI1_SD_A                                  | -                                              | SAI4_SD_<br>A                                               | SDMMC2_<br>CK                                                                     | SAI4_D1                                                                | ETH_MDC                                                                     | MDIOS_<br>MDC                                       | -                          | -             | EVENT-<br>OUT |
|      | PC2  | -       | -                                  | -                               | DFSDM_<br>CKIN1                                       | -                                                        | SPI2_<br>MISO/I2S2<br>_SDI | DFSDM_CK<br>OUT                            | -                                              | -                                                           | -                                                                                 | OTG_HS_<br>ULPI_DIR                                                    | ETH_MII_<br>TXD2                                                            | FMC_SDNE<br>0                                       | -                          | -             | EVENT-<br>OUT |
|      | PC3  | -       | -                                  | -                               | DFSDM_<br>DATIN1                                      | -                                                        | SPI2_<br>MOSI/I2S2<br>_SDO | -                                          | -                                              | -                                                           | -                                                                                 | OTG_HS_<br>ULPI_NXT                                                    | ETH_MII_<br>TX_CLK                                                          | FMC_SDCK<br>E0                                      | -                          | -             | EVENT-<br>OUT |
|      | PC4  | -       | -                                  | -                               | DFSDM_<br>CKIN2                                       | -                                                        | I2S1_MCK                   | -                                          | -                                              | -                                                           | SPDIFRX_<br>IN2                                                                   | -                                                                      | ETH_MII_<br>RXD0/ETH_<br>RMII_RXD0                                          | FMC_SDNE<br>0                                       | -                          | -             | EVENT-<br>OUT |
| C    | PC5  | -       | -                                  | SAI1_D3                         | DFSDM_<br>DATIN2                                      | -                                                        | -                          | -                                          | -                                              |                                                             | SPDIFRX_<br>IN3                                                                   | SAI4_D3                                                                | ETH_MII_<br>RXD1/ETH_<br>RMII_RXD1                                          | FMC_SDCK<br>E0                                      | COMP_1_<br>OUT             | -             | EVENT-<br>OUT |
| Port | PC6  | -       | HRTIM_CH<br>A1                     | TIM3_CH1                        | TIM8_CH1                                              | DFSDM_<br>CKIN3                                          | I2S2_MCK                   | -                                          | USART6_<br>TX                                  | SDMMC1_<br>D0DIR                                            | FMC_<br>NWAIT                                                                     | SDMMC2_<br>D6                                                          | -                                                                           | SDMMC1_<br>D6                                       | DCMI_D0                    | LCD_<br>HSYNC | EVENT-<br>OUT |
|      | PC7  | TRGIO   | HRTIM_CH<br>A2                     | TIM3_CH2                        | TIM8_CH2                                              | DFSDM_<br>DATIN3                                         | -                          | 12S3_MCK                                   | USART6_<br>RX                                  | SDMMC1_<br>D123DIR                                          | FMC_NE1                                                                           | SDMMC2_<br>D7                                                          | SWPMI_TX                                                                    | SDMMC1_<br>D7                                       | DCMI_D1                    | LCD_G6        | EVENT-<br>OUT |
|      | PC8  | TRACED1 | HRTIM_CH<br>B1                     | TIM3_CH3                        | TIM8_CH3                                              | -                                                        | -                          | -                                          | USART6_<br>CK                                  | UART5_<br>RTS                                               | FMC_NE2/<br>FMC_NCE                                                               | -                                                                      | SWPMI_RX                                                                    | SDMMC1_<br>D0                                       | DCMI_D2                    | 1             | EVENT-<br>OUT |
|      | PC9  | MCO2    | -                                  | TIM3_CH4                        | TIM8_CH4                                              | I2C3_SDA                                                 | I2S_CKIN                   | -                                          | -                                              | UART5_<br>CTS                                               | QUADSPI_<br>BK1_IO0                                                               | LCD_G3                                                                 | SWPMI_<br>SUSPEND                                                           | SDMMC1_<br>D1                                       | DCMI_D3                    | LCD_B2        | EVENT-<br>OUT |
|      | PC10 | -       | -                                  | HRTIM_<br>EEV1                  | DFSDM_<br>CKIN5                                       | -                                                        | -                          | SPI3_SCK/<br>I2S3_CK                       | USART3_<br>TX                                  | UART4_TX                                                    | QUADSPI_<br>BK1_IO1                                                               | -                                                                      | -                                                                           | SDMMC1_<br>D2                                       | DCMI_D8                    | LCD_R2        | EVENT-<br>OUT |
|      | PC11 | -       | -                                  | HRTIM_<br>FLT2                  | DFSDM_<br>DATIN5                                      | -                                                        | -                          | SPI3_MISO/<br>I2S3_SDI                     | USART3_<br>RX                                  | UART4_RX                                                    | QUADSPI_<br>BK2_NCS                                                               | -                                                                      | -                                                                           | SDMMC1_<br>D3                                       | DCMI_D4                    | -             | EVENT-<br>OUT |
|      | PC12 | TRACED3 | -                                  | HRTIM_<br>EEV2                  | -                                                     | -                                                        | -                          | SPI3_MOSI/<br>I2S3_SDO                     | USART3_<br>CK                                  | UART5_TX                                                    | -                                                                                 | -                                                                      | -                                                                           | SDMMC1_<br>CK                                       | DCMI_D9                    | -             | EVENT-<br>OUT |
|      | PC13 | -       | -                                  | -                               | -                                                     | -                                                        | -                          | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | -             | EVENT-<br>OUT |





### Table 11. Port C alternate functions (continued)

|      | AF0 | AF1                                | AF2                             | AF3                                                   | AF4                                                      | AF5                    | AF6                                        | AF7                                            | AF8                                                         | AF9                                                                               | AF10                                                                   | AF11                                                                        | AF12                                                | AF13                       | AF14          | AF15          |
|------|-----|------------------------------------|---------------------------------|-------------------------------------------------------|----------------------------------------------------------|------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|---------------|---------------|
| Port | SYS | TIM1/2/16/1<br>7/LPTIM1/<br>HRTIM1 | SAI1/TIM3/<br>4/5/12/<br>HRTIM1 | LPUART/<br>TIM8/<br>LPTIM2/3/4<br>/5/HRTIM1/<br>DFSDM | I2C1/2/3/4/<br>USART1/<br>TIM15/<br>LPTIM2/<br>DFSDM/CEC | SPI1/2/3/4/<br>5/6/CEC | SPI2/3/SAI1<br>/3/I2C4/<br>UART4/<br>DFSDM | SPI2/3/6/<br>USART1/2/<br>3/6/UART7/<br>SDMMC1 | SPI6/SAI2/<br>4/UART4/5/<br>8/LPUART/<br>SDMMC1/<br>SPDIFRX | SAI4/<br>FDCAN1/2/<br>TIM13/14/<br>QUADSPI/<br>FMC/<br>SDMMC2/<br>LCD/<br>SPDIFRX | SAI2/4/<br>TIM8/<br>QUADSPI/<br>SDMMC2/<br>OTG1_HS/<br>OTG2_FS/<br>LCD | I2C4/<br>UART7/<br>SWPMI1/<br>TIM1/8/<br>DFSDM/<br>SDMMC2/<br>MDIOS/<br>ETH | TIM1/8/FMC<br>/SDMMC1/<br>MDIOS/<br>OTG1_FS/<br>LCD | TIM1/DCMI<br>/LCD/<br>COMP | UART5/<br>LCD | SYS           |
| PC14 | -   | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | -             | EVENT-<br>OUT |
| PC15 | -   | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | -             | EVENT-<br>OUT |

Pin descriptions

| Table 1 | 12 | Port C | alternate | functions |
|---------|----|--------|-----------|-----------|
|         |    |        |           |           |

|        |      | AF0     | AF1                                | AF2                             | AF3                                                   | AF4                                                      | AF5                        | AF6                                        | AF7                                            | AF8                                                         | AF9                                                                               | AF10                                                                   | AF11                                                                        | AF12                                                | AF13                       | AF14          | AF15          |
|--------|------|---------|------------------------------------|---------------------------------|-------------------------------------------------------|----------------------------------------------------------|----------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|---------------|---------------|
|        |      | AFU     | AFI                                | AFZ                             | AF3                                                   | AF4                                                      | AFS                        | AFO                                        | AF7                                            | AFO                                                         |                                                                                   | AFIU                                                                   |                                                                             | AF 12                                               | AFIS                       | AF14          | AFIS          |
|        | Port | sys     | TIM1/2/16/1<br>7/LPTIM1/<br>HRTIM1 | SAI1/TIM3/<br>4/5/12/<br>HRTIM1 | LPUART/<br>TIM8/<br>LPTIM2/3/4<br>/5/HRTIM1/<br>DFSDM | I2C1/2/3/4/<br>USART1/<br>TIM15/<br>LPTIM2/<br>DFSDM/CEC | SPI1/2/3/4/<br>5/6/CEC     | SPI2/3/SAI1<br>/3/I2C4/<br>UART4/<br>DFSDM | SPI2/3/6/<br>USART1/2/<br>3/6/UART7/<br>SDMMC1 | SPI6/SAI2/<br>4/UART4/5/<br>8/LPUART/<br>SDMMC1/<br>SPDIFRX | SAI4/<br>FDCAN1/2/<br>TIM13/14/<br>QUADSPI/<br>FMC/<br>SDMMC2/<br>LCD/<br>SPDIFRX | SAI2/4/<br>TIM8/<br>QUADSPI/<br>SDMMC2/<br>OTG1_HS/<br>OTG2_FS/<br>LCD | I2C4/<br>UART7/<br>SWPMI1/<br>TIM1/8/<br>DFSDM/<br>SDMMC2/<br>MDIOS/<br>ETH | TIM1/8/FMC<br>/SDMMC1/<br>MDIOS/<br>OTG1_FS/<br>LCD | TIM1/DCMI<br>/LCD/<br>COMP | UART5/<br>LCD | SYS           |
|        | PD0  | -       | =                                  | -                               | DFSDM_<br>CKIN6                                       | -                                                        | -                          | SAI3_SCK_<br>A                             | -                                              | UART4_RX                                                    | CAN1_RX                                                                           | -                                                                      | -                                                                           | FMC_D2/<br>FMC_DA2                                  | -                          | -             | EVENT-<br>OUT |
|        | PD1  | ı       | -                                  | 1                               | DFSDM_<br>DATIN6                                      | -                                                        | -                          | SAI3_SD_A                                  | 1                                              | UART4_TX                                                    | CAN1_TX                                                                           | -                                                                      | ı                                                                           | FMC_D3/<br>FMC_DA3                                  | -                          | -             | EVENT-<br>OUT |
|        | PD2  | TRACED2 | -                                  | TIM3_ETR                        | -                                                     | -                                                        | -                          | -                                          | 1                                              | UART5_RX                                                    | -                                                                                 | -                                                                      | 1                                                                           | SDMMC1_<br>CMD                                      | DCMI_D11                   | -             | EVENT-<br>OUT |
|        | PD3  | ı       | -                                  | 1                               | DFSDM_<br>CKOUT                                       | -                                                        | SPI2_SCK/<br>I2S2_CK       | -                                          | USART2_<br>CTS_NSS                             | ı                                                           | -                                                                                 | -                                                                      | ı                                                                           | FMC_CLK                                             | DCMI_D5                    | LCD_G7        | EVENT-<br>OUT |
|        | PD4  | -       | -                                  | HRTIM_<br>FLT3                  | -                                                     | -                                                        | -                          | SAI3_FS_A                                  | USART2_<br>RTS                                 | -                                                           | CAN1_<br>RXFD                                                                     | -                                                                      | -                                                                           | FMC_NOE                                             | -                          | -             | EVENT-<br>OUT |
|        | PD5  | -       | -                                  | HRTIM_<br>EEV3                  | -                                                     | -                                                        | -                          | -                                          | USART2_<br>TX                                  | -                                                           | CAN1_<br>TXFD                                                                     | -                                                                      | -                                                                           | FMC_NWE                                             | -                          | -             | EVENT-<br>OUT |
|        | PD6  | 1       | -                                  | SAI1_D1                         | DFSDM_<br>CKIN4                                       | DFSDM_<br>DATIN1                                         | SPI3_<br>MOSI/I2S3<br>_SDO | SAI1_SD_A                                  | USART2_<br>RX                                  | SAI4_SD_<br>A                                               | CAN2_<br>RXFD                                                                     | SAI4_D1                                                                | SDMMC2_<br>CK                                                               | FMC_<br>NWAIT                                       | DCMI_D10                   | LCD_B2        | EVENT-<br>OUT |
| Port D | PD7  | -       | -                                  | -                               | DFSDM_<br>DATIN4                                      | -                                                        | SPI1_<br>MOSI/I2S1<br>_SDO | DFSDM_CK<br>IN1                            | USART2_<br>CK                                  | -                                                           | SPDIFRX_<br>IN0                                                                   | -                                                                      | SDMMC2_<br>CMD                                                              | FMC_NE1                                             | -                          | -             | EVENT-<br>OUT |
|        | PD8  | 1       | -                                  | 1                               | DFSDM_<br>CKIN3                                       | -                                                        | -                          | SAI3_SCK_<br>B                             | USART3_<br>TX                                  | 1                                                           | SPDIFRX_<br>IN1                                                                   | -                                                                      | 1                                                                           | FMC_D13/<br>FMC_DA13                                | -                          | -             | EVENT-<br>OUT |
|        | PD9  | 1       | -                                  | 1                               | DFSDM_<br>DATIN3                                      | -                                                        | -                          | SAI3_SD_B                                  | USART3_<br>RX                                  | 1                                                           | CAN2_<br>RXFD                                                                     | -                                                                      | 1                                                                           | FMC_D14/<br>FMC_DA14                                | -                          | -             | EVENT-<br>OUT |
|        | PD10 | -       | -                                  | -                               | DFSDM_<br>CKOUT                                       | -                                                        | -                          | SAI3_FS_B                                  | USART3_<br>CK                                  | -                                                           | CAN2_<br>TXFD                                                                     | -                                                                      | -                                                                           | FMC_D15/<br>FMC_DA15                                | -                          | LCD_B3        | EVENT-<br>OUT |
|        | PD11 | 1       | -                                  | 1                               | LPTIM2_IN 2                                           | I2C4_SMBA                                                | -                          | -                                          | USART3_<br>CTS_NSS                             | ı                                                           | QUADSPI_<br>BK1_IO0                                                               | SAI2_SD_A                                                              | 1                                                                           | FMC_A16                                             | -                          | -             | EVENT-<br>OUT |
|        | PD12 | -       | LPTIM1_IN1                         | TIM4_CH1                        | LPTIM2_IN<br>1                                        | I2C4_SCL                                                 | -                          | -                                          | USART3_<br>RTS                                 | -                                                           | QUADSPI_<br>BK1_IO1                                                               | SAI2_FS_A                                                              | -                                                                           | FMC_A17                                             | -                          | -             | EVENT-<br>OUT |
|        | PD13 | -       | LPTIM1_<br>OUT                     | TIM4_CH2                        | -                                                     | I2C4_SDA                                                 | -                          | -                                          |                                                | -                                                           | QUADSPI_<br>BK1_IO3                                                               | SAI2_SCK_<br>A                                                         | -                                                                           | FMC_A18                                             | -                          | -             | EVENT-<br>OUT |
|        | PD14 | -       | -                                  | TIM4_CH3                        | -                                                     | -                                                        | -                          | SAI3_MCLK<br>_B                            | -                                              | UART8_<br>CTS                                               | -                                                                                 | -                                                                      | -                                                                           | FMC_D0/<br>FMC_DA0                                  | -                          | -             | EVENT-<br>OUT |
|        | PD15 | -       | -                                  | TIM4_CH4                        | -                                                     | -                                                        | -                          | SAI3_MCLK<br>_A                            | -                                              | UART8_<br>RTS                                               | -                                                                                 | -                                                                      | -                                                                           | FMC_D1/<br>FMC_DA1                                  | -                          | -             | EVENT-<br>OUT |





#### **Table 13. Port E alternate functions**

|      |      | AF0          | AF1                                | AF2                             | AF3                                                   | AF4                                                      | AF5                    | AF6                                        | AF7                                            | AF8                                                         | AF9                                                                               | AF10                                                                   | AF11                                                                        | AF12                                                | AF13                       | AF14          | AF15          |
|------|------|--------------|------------------------------------|---------------------------------|-------------------------------------------------------|----------------------------------------------------------|------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|---------------|---------------|
|      | Port | sys          | TIM1/2/16/1<br>7/LPTIM1/<br>HRTIM1 | SAI1/TIM3/<br>4/5/12/<br>HRTIM1 | LPUART/<br>TIM8/<br>LPTIM2/3/4<br>/5/HRTIM1/<br>DFSDM | I2C1/2/3/4/<br>USART1/<br>TIM15/<br>LPTIM2/<br>DFSDM/CEC | SPI1/2/3/4/<br>5/6/CEC | SPI2/3/SAI1<br>/3/I2C4/<br>UART4/<br>DFSDM | SPI2/3/6/<br>USART1/2/<br>3/6/UART7/<br>SDMMC1 | SPI6/SAI2/<br>4/UART4/5/<br>8/LPUART/<br>SDMMC1/<br>SPDIFRX | SAI4/<br>FDCAN1/2/<br>TIM13/14/<br>QUADSPI/<br>FMC/<br>SDMMC2/<br>LCD/<br>SPDIFRX | SAI2/4/<br>TIM8/<br>QUADSPI/<br>SDMMC2/<br>OTG1_HS/<br>OTG2_FS/<br>LCD | I2C4/<br>UART7/<br>SWPMI1/<br>TIM1/8/<br>DFSDM/<br>SDMMC2/<br>MDIOS/<br>ETH | TIM1/8/FMC<br>/SDMMC1/<br>MDIOS/<br>OTG1_FS/<br>LCD | TIM1/DCMI<br>/LCD/<br>COMP | UART5/<br>LCD | sys           |
|      | PE0  | -            | LPTIM1_<br>ETR                     | TIM4_ETR                        | HRTIM_<br>SCIN                                        | LPTIM2_<br>ETR                                           | -                      | -                                          | -                                              | UART8_RX                                                    | CAN1_<br>RXFD                                                                     | SAI2_MCK<br>_A                                                         | -                                                                           | FMC_NBL0                                            | DCMI_D2                    | -             | EVENT-<br>OUT |
|      | PE1  | -            | LPTIM1_IN2                         | -                               | HRTIM_<br>SCOUT                                       | -                                                        | -                      | -                                          | -                                              | UART8_TX                                                    | CAN1_<br>TXFD                                                                     | -                                                                      | -                                                                           | FMC_NBL1                                            | DCMI_D3                    | -             | EVENT-<br>OUT |
|      | PE2  | TRACE<br>CLK | -                                  | SAI1_CK1                        | -                                                     | -                                                        | SPI4_SCK               | SAI1_MCLK<br>_A                            | -                                              | SAI4_<br>MCLK_A                                             | QUADSPI_<br>BK1_IO2                                                               | SAI4_CK1                                                               | ETH_MII_<br>TXD3                                                            | FMC_A23                                             | -                          | -             | EVENT-<br>OUT |
|      | PE3  | TRACED0      | -                                  | -                               | -                                                     | TIM15_BKIN                                               | -                      | SAI1_SD_B                                  | -                                              | SAI4_SD_<br>B                                               | -                                                                                 | -                                                                      | -                                                                           | FMC_A19                                             | -                          | -             | EVENT-<br>OUT |
|      | PE4  | TRACED1      | -                                  | SAI1_D2                         | DFSDM_<br>DATIN3                                      | TIM15_CH1<br>N                                           | SPI4_NSS               | SAI1_FS_A                                  | -                                              | SAI4_FS_A                                                   | -                                                                                 | SAI4_D2                                                                | -                                                                           | FMC_A20                                             | DCMI_D4                    | LCD_B0        | EVENT-<br>OUT |
|      | PE5  | TRACED2      | -                                  | SAI1_CK2                        | DFSDM_<br>CKIN3                                       | TIM15_CH1                                                | SPI4_<br>MISO          | SAI1_SCK_<br>A                             | -                                              | SAI4_SCK<br>_A                                              | -                                                                                 | SAI4_CK2                                                               | -                                                                           | FMC_A21                                             | DCMI_D6                    | LCD_G0        | EVENT-<br>OUT |
|      | PE6  | TRACED3      | TIM1_BKIN<br>2                     | SAI1_D1                         | -                                                     | TIM15_CH2                                                | SPI4_<br>MOSI          | SAI1_SD_A                                  | -                                              | SAI4_SD_<br>A                                               | SAI4_D1                                                                           | SAI2_MCK<br>_B                                                         | TIM1_BKIN<br>2_COMP12                                                       | FMC_A22                                             | DCMI_D7                    | LCD_G1        | EVENT-<br>OUT |
| Щ    | PE7  | -            | TIM1_ETR                           | -                               | DFSDM_<br>DATIN2                                      | -                                                        | -                      | -                                          | UART7_RX                                       | -                                                           | -                                                                                 | QUADSPI_<br>BK2_IO0                                                    | -                                                                           | FMC_D4/<br>FMC_DA4                                  | -                          | -             | EVENT-<br>OUT |
| Port | PE8  | -            | TIM1_CH1N                          | -                               | DFSDM_<br>CKIN2                                       | -                                                        | -                      | -                                          | UART7_TX                                       | -                                                           | -                                                                                 | QUADSPI_<br>BK2_IO1                                                    | -                                                                           | FMC_D5/<br>FMC_DA5                                  | COMP_2_<br>OUT             | -             | EVENT-<br>OUT |
|      | PE9  | -            | TIM1_CH1                           | -                               | DFSDM_<br>CKOUT                                       | -                                                        | -                      | -                                          | UART7_<br>RTS                                  | -                                                           | -                                                                                 | QUADSPI_<br>BK2_IO2                                                    | -                                                                           | FMC_D6/<br>FMC_DA6                                  | -                          | -             | EVENT-<br>OUT |
|      | PE10 | -            | TIM1_CH2N                          | -                               | DFSDM_<br>DATIN4                                      | -                                                        | -                      | -                                          | UART7_<br>CTS                                  | -                                                           | -                                                                                 | QUADSPI_<br>BK2_IO3                                                    | -                                                                           | FMC_D7/<br>FMC_DA7                                  | -                          | -             | EVENT-<br>OUT |
|      | PE11 | -            | TIM1_CH2                           | -                               | DFSDM_<br>CKIN4                                       | -                                                        | SPI4_NSS               | -                                          | -                                              | -                                                           | -                                                                                 | SAI2_SD_B                                                              | -                                                                           | FMC_D8/<br>FMC_DA8                                  | -                          | LCD_G3        | EVENT-<br>OUT |
|      | PE12 | -            | TIM1_CH3N                          | -                               | DFSDM_<br>DATIN5                                      | -                                                        | SPI4_SCK               | -                                          | -                                              | -                                                           | -                                                                                 | SAI2_SCK_<br>B                                                         | -                                                                           | FMC_D9/<br>FMC_DA9                                  | COMP_1_<br>OUT             | LCD_B4        | EVENT-<br>OUT |
|      | PE13 | -            | TIM1_CH3                           | -                               | DFSDM_<br>CKIN5                                       | -                                                        | SPI4_<br>MISO          | -                                          | -                                              | -                                                           | -                                                                                 | SAI2_FS_B                                                              | -                                                                           | FMC_D10/<br>FMC_DA10                                | COMP_2_<br>OUT             | LCD_DE        | EVENT-<br>OUT |
|      | PE14 | -            | TIM1_CH4                           | -                               | -                                                     | -                                                        | SPI4_<br>MOSI          | -                                          | -                                              | -                                                           | -                                                                                 | SAI2_MCK<br>_B                                                         | -                                                                           | FMC_D11/<br>FMC_DA11                                | -                          | LCD_CLK       | EVENT-<br>OUT |
|      | PE15 | -            | TIM1_BKIN                          | -                               | -                                                     | -                                                        | HDMI<br>TIM1_BKIN      | -                                          | -                                              | -                                                           | -                                                                                 |                                                                        | -                                                                           | FMC_D12/<br>FMC_DA12                                | TIM1_BKIN<br>_COMP12       | LCD_R7        | EVENT-<br>OUT |

Pin descriptions

**Table 14. Port F alternate functions** 

|     |      | AF0 | AF1                                | AF2                             | AF3                                                   | AF4                                                      | AF5                    | AF6                                        | AF7                                            | AF8                                                         | AF9                                                                               | AF10                                                                   | AF11                                                                        | AF12                                                | AF13                       | AF14          | AF15          |
|-----|------|-----|------------------------------------|---------------------------------|-------------------------------------------------------|----------------------------------------------------------|------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|---------------|---------------|
|     | Port | SYS | TIM1/2/16/1<br>7/LPTIM1/<br>HRTIM1 | SAI1/TIM3/<br>4/5/12/<br>HRTIM1 | LPUART/<br>TIM8/<br>LPTIM2/3/4<br>/5/HRTIM1/<br>DFSDM | I2C1/2/3/4/<br>USART1/<br>TIM15/<br>LPTIM2/<br>DFSDM/CEC | SPI1/2/3/4/<br>5/6/CEC | SPI2/3/SAI1<br>/3/I2C4/<br>UART4/<br>DFSDM | SPI2/3/6/<br>USART1/2/<br>3/6/UART7/<br>SDMMC1 | SPI6/SAI2/<br>4/UART4/5/<br>8/LPUART/<br>SDMMC1/<br>SPDIFRX | SAI4/<br>FDCAN1/2/<br>TIM13/14/<br>QUADSPI/<br>FMC/<br>SDMMC2/<br>LCD/<br>SPDIFRX | SAI2/4/<br>TIM8/<br>QUADSPI/<br>SDMMC2/<br>OTG1_HS/<br>OTG2_FS/<br>LCD | I2C4/<br>UART7/<br>SWPMI1/<br>TIM1/8/<br>DFSDM/<br>SDMMC2/<br>MDIOS/<br>ETH | TIM1/8/FMC<br>/SDMMC1/<br>MDIOS/<br>OTG1_FS/<br>LCD | TIM1/DCMI<br>/LCD/<br>COMP | UART5/<br>LCD | SYS           |
|     | PF0  | -   | -                                  | -                               | -                                                     | I2C2_SDA                                                 | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | FMC_A0                                              | -                          | -             | EVENT-<br>OUT |
|     | PF1  | -   | -                                  | ı                               | -                                                     | I2C2_SCL                                                 | -                      | -                                          | ı                                              | -                                                           | -                                                                                 | -                                                                      | ı                                                                           | FMC_A1                                              | -                          | ı             | EVENT-<br>OUT |
|     | PF2  | -   | -                                  | -                               | -                                                     | I2C2_SMBA                                                | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | FMC_A2                                              | -                          | -             | EVENT-<br>OUT |
|     | PF3  | -   | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | FMC_A3                                              | -                          | -             | EVENT-<br>OUT |
|     | PF4  | -   | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | FMC_A4                                              | -                          | -             | EVENT-<br>OUT |
|     | PF5  | -   | -                                  |                                 | -                                                     | -                                                        | -                      | -                                          |                                                | -                                                           | -                                                                                 | -                                                                      | -                                                                           | FMC_A5                                              | -                          | -             | EVENT-<br>OUT |
|     | PF6  | -   | TIM16_CH1                          |                                 | -                                                     | -                                                        | SPI5_NSS               | SAI1_SD_B                                  | UART7_RX                                       | SAI4_SD_<br>B                                               | QUADSPI_<br>BK1_IO3                                                               | -                                                                      | -                                                                           | -                                                   | -                          | -             | EVENT-<br>OUT |
| LL. | PF7  | -   | TIM17_CH1                          | -                               | -                                                     | -                                                        | SPI5_SCK               | SAI1_MCLK<br>_B                            | UART7_TX                                       | SAI4_<br>MCLK_B                                             | QUADSPI_<br>BK1_IO2                                                               | -                                                                      | -                                                                           | -                                                   | -                          | -             | EVENT-<br>OUT |
| Por | PF8  | -   | TIM16_<br>CH1N                     |                                 | -                                                     | -                                                        | SPI5_<br>MISO          | SAI1_SCK_<br>B                             | UART7_<br>RTS                                  | SAI4_SCK<br>_B                                              | TIM13_<br>CH1                                                                     | QUADSPI_<br>BK1_IO0                                                    | -                                                                           | -                                                   | -                          | -             | EVENT-<br>OUT |
|     | PF9  | -   | TIM17_<br>CH1N                     |                                 | -                                                     | -                                                        | SPI5_<br>MOSI          | SAI1_FS_B                                  | UART7_<br>CTS                                  | SAI4_FS_B                                                   | TIM14_CH<br>1                                                                     | QUADSPI_<br>BK1_IO1                                                    | -                                                                           | -                                                   | -                          | -             | EVENT-<br>OUT |
|     | PF10 | -   | TIM16_<br>BKIN                     | SAI1_D3                         | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | QUADSPI_<br>CLK                                                                   | SAI4_D3                                                                | -                                                                           | -                                                   | DCMI_D11                   | LCD_DE        | EVENT-<br>OUT |
|     | PF11 | -   | -                                  | -                               | -                                                     | -                                                        | SPI5_<br>MOSI          | -                                          | -                                              | -                                                           | -                                                                                 | SAI2_SD_B                                                              | -                                                                           | FMC_<br>SDNRAS                                      | DCMI_D12                   | -             | EVENT-<br>OUT |
|     | PF12 | -   | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | FMC_A6                                              | -                          | -             | EVENT-<br>OUT |
|     | PF13 | -   | -                                  | -                               | DFSDM_<br>DATIN6                                      | I2C4_SMBA                                                | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | FMC_A7                                              | -                          | -             | EVENT-<br>OUT |
|     | PF14 | -   | -                                  | -                               | DFSDM_<br>CKIN6                                       | I2C4_SCL                                                 | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | FMC_A8                                              | -                          | -             | EVENT-<br>OUT |
|     | PF15 | -   | -                                  | -                               | -                                                     | I2C4_SDA                                                 | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | FMC_A9                                              | -                          | -             | EVENT-<br>OUT |





### **Table 15. Port G alternate functions**

|   |      | AF0     | AF1                                | AF2                             | AF3                                                   | AF4                                                      | AF5                        | AF6                                        | AF7                                            | AF8                                                         | AF9                                                                           | AF10                                                               | AF11                                                                | AF12                                                | AF13                       | AF14          | AF15          |
|---|------|---------|------------------------------------|---------------------------------|-------------------------------------------------------|----------------------------------------------------------|----------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|----------------------------|---------------|---------------|
|   | Port | SYS     | TIM1/2/16/1<br>7/LPTIM1/<br>HRTIM1 | SAI1/TIM3/<br>4/5/12/<br>HRTIM1 | LPUART/<br>TIM8/<br>LPTIM2/3/4<br>/5/HRTIM1/<br>DFSDM | I2C1/2/3/4/<br>USART1/<br>TIM15/<br>LPTIM2/<br>DFSDM/CEC | SPI1/2/3/4/<br>5/6/CEC     | SPI2/3/SAI1<br>/3/I2C4/<br>UART4/<br>DFSDM | SPI2/3/6/<br>USART1/2/<br>3/6/UART7/<br>SDMMC1 | SPI6/SAI2/<br>4/UART4/5/<br>8/LPUART/<br>SDMMC1/<br>SPDIFRX | SAI4/<br>FDCAN1/2/<br>TIM13/14/<br>QUADSPI/<br>FMC/<br>SDMMC2/<br>LCD/SPDIFRX | SAI2/4/TIM8/<br>QUADSPI/<br>SDMMC2/<br>OTG1_HS/<br>OTG2_FS/<br>LCD | I2C4/UART7<br>/SWPMI1/<br>TIM1/8/<br>DFSDM/<br>SDMMC2/<br>MDIOS/ETH | TIM1/8/FMC<br>/SDMMC1/<br>MDIOS/<br>OTG1_FS/<br>LCD | TIM1/<br>DCMI/LCD<br>/COMP | UART5/<br>LCD | SYS           |
|   | PG0  | -       | -                                  | -                               | -                                                     | -                                                        | -                          | -                                          | -                                              | -                                                           | -                                                                             | -                                                                  | -                                                                   | FMC_A10                                             | -                          | -             | EVENT<br>-OUT |
|   | PG1  | -       | -                                  | -                               | -                                                     | -                                                        | -                          | -                                          | -                                              | -                                                           | -                                                                             | -                                                                  |                                                                     | FMC_A11                                             | -                          |               | EVENT<br>-OUT |
|   | PG2  | -       | -                                  | -                               | TIM8_BKIN                                             | -                                                        | -                          | -                                          | -                                              | -                                                           | -                                                                             | -                                                                  | TIM8_BKIN_<br>COMP12                                                | FMC_A12                                             | -                          | -             | EVENT<br>-OUT |
|   | PG3  | -       | -                                  | -                               | TIM8_<br>BKIN2                                        | -                                                        | -                          | -                                          | -                                              | -                                                           | -                                                                             | -                                                                  | TIM8_BKIN2<br>_COMP12                                               | FMC_A13                                             | -                          | -             | EVENT<br>-OUT |
|   | PG4  | -       | TIM1_BKIN<br>2                     | -                               | -                                                     | -                                                        | -                          | -                                          | -                                              | -                                                           | -                                                                             | -                                                                  | TIM1_BKIN2<br>_COMP12                                               | FMC_A14/<br>FMC_BA0                                 | -                          | -             | EVENT<br>-OUT |
|   | PG5  | -       | TIM1_ETR                           | -                               | -                                                     | -                                                        | -                          | -                                          | -                                              | -                                                           | -                                                                             | -                                                                  | -                                                                   | FMC_A15/<br>FMC_BA1                                 | -                          | -             | EVENT<br>-OUT |
|   | PG6  | -       | TIM17_<br>BKIN                     | HRTIM_<br>CHE1                  | -                                                     | -                                                        | -                          | -                                          | -                                              | -                                                           | -                                                                             | QUADSPI_<br>BK1_NCS                                                | -                                                                   | FMC_NE3                                             | DCMI_D1                    | LCD_R<br>7    | EVENT<br>-OUT |
| 0 | PG7  | -       | -                                  | HRTIM_<br>CHE2                  | -                                                     | -                                                        | -                          | SAI1_<br>MCLK_A                            | USART6_<br>CK                                  | -                                                           | -                                                                             | -                                                                  | -                                                                   | FMC_INT                                             | DCMI_D1                    | LCD_<br>CLK   | EVENT<br>-OUT |
|   | PG8  | -       | -                                  | -                               | TIM8_ETR                                              | -                                                        | SPI6_NSS                   | -                                          | USART6_<br>RTS                                 | SPDIFRX_<br>IN2                                             | -                                                                             | -                                                                  | ETH_PPS_<br>OUT                                                     | FMC_<br>SDCLK                                       | -                          | LCD_<br>G7    | EVENT<br>-OUT |
|   | PG9  | -       | -                                  | -                               | -                                                     | -                                                        | SPI1_<br>MISO/I2S1<br>_SDI | -                                          | USART6_<br>RX                                  | SPDIFRX_<br>IN3                                             | QUADSPI_BK<br>2_IO2                                                           | SAI2_FS_B                                                          | -                                                                   | FMC_NE2/<br>FMC_NCE                                 | DCMI_<br>VSYNC             | -             | EVENT<br>-OUT |
|   | PG10 | -       | -                                  | HRTIM_<br>FLT5                  | -                                                     | -                                                        | SPI1_NSS/<br>I2S1_WS       | -                                          | -                                              | -                                                           | LCD_G3                                                                        | SAI2_SD_B                                                          | -                                                                   | FMC_NE3                                             | DCMI_D2                    | LCD_B<br>2    | EVENT<br>-OUT |
|   | PG11 | -       | -                                  | HRTIM_<br>EEV4                  | -                                                     | -                                                        | SPI1_SCK/<br>I2S1_CK       | -                                          | -                                              | SPDIFRX_<br>IN0                                             | -                                                                             | SDMMC2_D2                                                          | ETH_MII_<br>TX_EN/<br>ETH_RMII_<br>TX_EN                            | -                                                   | DCMI_D3                    | LCD_B         | EVENT<br>-OUT |
|   | PG12 | -       | LPTIM1_IN1                         | HRTIM_<br>EEV5                  | -                                                     | -                                                        | SPI6_<br>MISO              |                                            | USART6_<br>RTS                                 | SPDIFRX_<br>IN1                                             | LCD_B4                                                                        | -                                                                  | ETH_MII_<br>TXD1/ETH_<br>RMII_TXD1                                  | FMC_NE4                                             | -                          | LCD_<br>B1    | EVENT<br>-OUT |
|   | PG13 | TRACED0 | LPTIM1_<br>OUT                     | HRTIM_<br>EEV10                 | -                                                     | -                                                        | SPI6_SCK                   | -                                          | USART6_<br>CTS_NSS                             | -                                                           | -                                                                             | -                                                                  | ETH_MII_<br>TXD0/ETH_<br>RMII_TXD0                                  | FMC_A24                                             | -                          | LCD_<br>R0    | EVENT<br>-OUT |

DocID030553 Rev 3

Pin descriptions

Table 15. Port G alternate functions (continued)

|   |      | AF0     | AF1                                | AF2                             | AF3                                                   | AF4                                                      | AF5                    | AF6                                        | AF7                                            | AF8                                                         | AF9                                                                           | AF10                                                               | AF11                                                                | AF12                                                | AF13                       | AF14          | AF15          |
|---|------|---------|------------------------------------|---------------------------------|-------------------------------------------------------|----------------------------------------------------------|------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|----------------------------|---------------|---------------|
|   | Port | SYS     | TIM1/2/16/1<br>7/LPTIM1/<br>HRTIM1 | SAI1/TIM3/<br>4/5/12/<br>HRTIM1 | LPUART/<br>TIM8/<br>LPTIM2/3/4<br>/5/HRTIM1/<br>DFSDM | I2C1/2/3/4/<br>USART1/<br>TIM15/<br>LPTIM2/<br>DFSDM/CEC | SPI1/2/3/4/<br>5/6/CEC | SPI2/3/SAI1<br>/3/I2C4/<br>UART4/<br>DFSDM | SPI2/3/6/<br>USART1/2/<br>3/6/UART7/<br>SDMMC1 | SPI6/SAI2/<br>4/UART4/5/<br>8/LPUART/<br>SDMMC1/<br>SPDIFRX | SAI4/<br>FDCAN1/2/<br>TIM13/14/<br>QUADSPI/<br>FMC/<br>SDMMC2/<br>LCD/SPDIFRX | SAI2/4/TIM8/<br>QUADSPI/<br>SDMMC2/<br>OTG1_HS/<br>OTG2_FS/<br>LCD | I2C4/UART7<br>/SWPMI1/<br>TIM1/8/<br>DFSDM/<br>SDMMC2/<br>MDIOS/ETH | TIM1/8/FMC<br>/SDMMC1/<br>MDIOS/<br>OTG1_FS/<br>LCD | TIM1/<br>DCMI/LCD<br>/COMP | UART5/<br>LCD | SYS           |
| ( | PG14 | TRACED1 | LPTIM1_<br>ETR                     | -                               | -                                                     | -                                                        | SPI6_<br>MOSI          | -                                          | USART6_<br>TX                                  |                                                             | QUADSPI_<br>BK2_IO3                                                           | -                                                                  | ETH_MII_<br>TXD1/ETH_<br>RMII_TXD1                                  | FMC_A25                                             | -                          | LCD_<br>B0    | EVENT<br>-OUT |
|   | PG15 | -       | -                                  | -                               | -                                                     | -                                                        | 1                      | -                                          | USART6_<br>CTS_NSS                             | -                                                           | -                                                                             | -                                                                  | -                                                                   | FMC_<br>SDNCAS                                      | DCMI_<br>D13               | 1             | EVENT<br>-OUT |





### **Table 16. Port H alternate functions**

|        |      | AF0 | AF1                                | AF2                             | AF3                                                   | AF4                                                      | AF5                    | AF6                                        | AF7                                            | AF8                                                         | AF9                                                                               | AF10                                                                   | AF11                                                                        | AF12                                                | AF13                       | AF14          | AF15          |
|--------|------|-----|------------------------------------|---------------------------------|-------------------------------------------------------|----------------------------------------------------------|------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|---------------|---------------|
|        | Port | sys | TIM1/2/16/1<br>7/LPTIM1/<br>HRTIM1 | SAI1/TIM3/<br>4/5/12/<br>HRTIM1 | LPUART/<br>TIM8/<br>LPTIM2/3/4<br>/5/HRTIM1/<br>DFSDM | I2C1/2/3/4/<br>USART1/<br>TIM15/<br>LPTIM2/<br>DFSDM/CEC | SPI1/2/3/4/<br>5/6/CEC | SPI2/3/SAI1<br>/3/I2C4/<br>UART4/<br>DFSDM | SPI2/3/6/<br>USART1/2/<br>3/6/UART7/<br>SDMMC1 | SPI6/SAI2/<br>4/UART4/5/<br>8/LPUART/<br>SDMMC1/<br>SPDIFRX | SAI4/<br>FDCAN1/2/<br>TIM13/14/<br>QUADSPI/<br>FMC/<br>SDMMC2/<br>LCD/<br>SPDIFRX | SAI2/4/<br>TIM8/<br>QUADSPI/<br>SDMMC2/<br>OTG1_HS/<br>OTG2_FS/<br>LCD | I2C4/<br>UART7/<br>SWPMI1/<br>TIM1/8/<br>DFSDM/<br>SDMMC2/<br>MDIOS/<br>ETH | TIM1/8/FMC<br>/SDMMC1/<br>MDIOS/<br>OTG1_FS/<br>LCD | TIM1/DCMI<br>/LCD/<br>COMP | UART5/<br>LCD | sys           |
|        | PH0  | -   | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | -             | EVENT-<br>OUT |
|        | PH1  | -   | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | -             | EVENT-<br>OUT |
|        | PH2  | -   | LPTIM1_IN2                         | -                               | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | QUADSPI_<br>BK2_IO0                                                               | SAI2_SCK_<br>B                                                         | ETH_MII_<br>CRS                                                             | FMC_<br>SDCKE0                                      | -                          | LCD_R0        | EVENT-<br>OUT |
|        | PH3  | -   | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | QUADSPI_<br>BK2_IO1                                                               | SAI2_MCK<br>_B                                                         | ETH_MII_<br>COL                                                             | FMC_<br>SDNE0                                       | -                          | LCD_R1        | EVENT-<br>OUT |
|        | PH4  | -   | -                                  | -                               | -                                                     | I2C2_SCL                                                 | -                      | -                                          | -                                              | -                                                           | LCD_G5                                                                            | OTG_HS_<br>ULPI_NXT                                                    | -                                                                           | -                                                   | -                          | LCD_G4        | EVENT-<br>OUT |
|        | PH5  | -   | -                                  | -                               | -                                                     | I2C2_SDA                                                 | SPI5_NSS               | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | FMC_<br>SDNWE                                       | -                          | -             | EVENT-<br>OUT |
|        | PH6  | -   | -                                  | TIM12_<br>CH1                   | -                                                     | I2C2_SMBA                                                | SPI5_SCK               | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | ETH_MII_<br>RXD2                                                            | FMC_<br>SDNE1                                       | DCMI_D8                    | -             | EVENT-<br>OUT |
| Į      | PH7  | -   | -                                  | -                               | -                                                     | I2C3_SCL                                                 | SPI5_<br>MISO          | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | ETH_MII_<br>RXD3                                                            | FMC_<br>SDCKE1                                      | DCMI_D9                    | -             | EVENT-<br>OUT |
| Port H | PH8  | -   | -                                  | TIM5_ETR                        | -                                                     | I2C3_SDA                                                 | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | FMC_D16                                             | DCMI_<br>HSYNC             | LCD_R2        | EVENT-<br>OUT |
|        | PH9  | -   | -                                  | TIM12_<br>CH2                   | -                                                     | I2C3_SMBA                                                | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | FMC_D17                                             | DCMI_D0                    | LCD_R3        | EVENT-<br>OUT |
|        | PH10 | -   | -                                  | TIM5_CH1                        | -                                                     | I2C4_SMBA                                                | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | FMC_D18                                             | DCMI_D1                    | LCD_R4        | EVENT-<br>OUT |
|        | PH11 | -   | -                                  | TIM5_CH2                        | -                                                     | I2C4_SCL                                                 | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | FMC_D19                                             | DCMI_D2                    | LCD_R5        | EVENT-<br>OUT |
|        | PH12 | -   | -                                  | TIM5_CH3                        | -                                                     | I2C4_SDA                                                 | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | FMC_D20                                             | DCMI_D3                    | LCD_R6        | EVENT-<br>OUT |
|        | PH13 | -   | -                                  | -                               | TIM8_<br>CH1N                                         | -                                                        | -                      | -                                          | -                                              | UART4_TX                                                    | CAN1_TX                                                                           | -                                                                      | -                                                                           | FMC_D21                                             | -                          | LCD_G2        | EVENT-<br>OUT |
|        | PH14 | -   | -                                  | -                               | TIM8_µCH<br>2N                                        | -                                                        | -                      | -                                          | -                                              | UART4_RX                                                    | CAN1_RX                                                                           | -                                                                      | -                                                                           | FMC_D22                                             | DCMI_D4                    | LCD_G3        | EVENT-<br>OUT |
|        | PH15 | -   | -                                  | -                               | TIM8_<br>CH3N                                         | -                                                        | -                      | -                                          | -                                              | -                                                           | CAN1_<br>TXFD                                                                     | -                                                                      | -                                                                           | FMC_D23                                             | DCMI_D11                   | LCD_G4        | EVENT-<br>OUT |

|      |      | A.F.O. | A.E.4                              | 450                             | 450                                                   | A.E.4                                                    | 455                        | 450                                        | A E 7                                          | 450                                                         | 450                                                                               | A.E.4.0                                                                | A E 44                                                                      | AE40                                                | AE40                       | A E 4 4       | A E 4 E       |
|------|------|--------|------------------------------------|---------------------------------|-------------------------------------------------------|----------------------------------------------------------|----------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|---------------|---------------|
|      |      | AF0    | AF1                                | AF2                             | AF3                                                   | AF4                                                      | AF5                        | AF6                                        | AF7                                            | AF8                                                         | AF9                                                                               | AF10                                                                   | AF11                                                                        | AF12                                                | AF13                       | AF14          | AF15          |
|      | Port | SYS    | TIM1/2/16/1<br>7/LPTIM1/<br>HRTIM1 | SAI1/TIM3/<br>4/5/12/<br>HRTIM1 | LPUART/<br>TIM8/<br>LPTIM2/3/4<br>/5/HRTIM1/<br>DFSDM | I2C1/2/3/4/<br>USART1/<br>TIM15/<br>LPTIM2/<br>DFSDM/CEC | SPI1/2/3/4/<br>5/6/CEC     | SPI2/3/SAI1<br>/3/I2C4/<br>UART4/<br>DFSDM | SPI2/3/6/<br>USART1/2/<br>3/6/UART7/<br>SDMMC1 | SPI6/SAI2/<br>4/UART4/5/<br>8/LPUART/<br>SDMMC1/<br>SPDIFRX | SAI4/<br>FDCAN1/2/<br>TIM13/14/<br>QUADSPI/<br>FMC/<br>SDMMC2/<br>LCD/<br>SPDIFRX | SAI2/4/<br>TIM8/<br>QUADSPI/<br>SDMMC2/<br>OTG1_HS/<br>OTG2_FS/<br>LCD | I2C4/<br>UART7/<br>SWPMI1/<br>TIM1/8/<br>DFSDM/<br>SDMMC2/<br>MDIOS/<br>ETH | TIM1/8/FMC<br>/SDMMC1/<br>MDIOS/<br>OTG1_FS/<br>LCD | TIM1/DCMI<br>/LCD/<br>COMP | UART5/<br>LCD | sys           |
|      | PI0  | -      | -                                  | TIM5_CH4                        | =                                                     | ī                                                        | SPI2_NSS/<br>I2S2_WS       | -                                          | -                                              | =                                                           | CAN1_<br>RXFD                                                                     | -                                                                      | -                                                                           | FMC_D24                                             | DCMI_D13                   | LCD_G5        | EVENT-<br>OUT |
|      | PI1  | -      | -                                  | -                               | TIM8_BKIN<br>2                                        | ٠                                                        | SPI2_SCK/<br>I2S2_CK       | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | TIM8_BKIN<br>2_COMP12                                                       | FMC_D25                                             | DCMI_D8                    | LCD_G6        | EVENT-<br>OUT |
|      | PI2  | -      | -                                  | -                               | TIM8_CH4                                              | 1                                                        | SPI2_<br>MISO/I2S2<br>_SDI | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | FMC_D26                                             | DCMI_D9                    | LCD_G7        | EVENT-<br>OUT |
|      | PI3  | -      | -                                  | -                               | TIM8_ETR                                              | -                                                        | SPI2_<br>MOSI/I2S2<br>_SDO | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | FMC_D27                                             | DCMI_D10                   | -             | EVENT-<br>OUT |
|      | PI4  | -      | -                                  | -                               | TIM8_BKIN                                             | 1                                                        | 1                          | -                                          | -                                              | -                                                           | -                                                                                 | SAI2_MCK<br>_A                                                         | TIM8_BKIN<br>_COMP12                                                        | FMC_NBL2                                            | DCMI_D5                    | LCD_B4        | EVENT-<br>OUT |
|      | PI5  | -      | -                                  | -                               | TIM8_CH1                                              | -                                                        | -                          | -                                          | -                                              | -                                                           | -                                                                                 | SAI2_SCK_<br>A                                                         | -                                                                           | FMC_NBL3                                            | DCMI_<br>VSYNC             | LCD_B5        | EVENT-<br>OUT |
|      | PI6  | -      | -                                  | -                               | TIM8_CH2                                              | -                                                        | -                          | -                                          | -                                              | -                                                           | -                                                                                 | SAI2_SD_A                                                              | -                                                                           | FMC_D28                                             | DCMI_D6                    | LCD_B6        | EVENT-<br>OUT |
| Port | PI7  | -      | -                                  | -                               | TIM8_CH3                                              | 1                                                        | 1                          | -                                          | -                                              | -                                                           | -                                                                                 | SAI2_FS_A                                                              | -                                                                           | FMC_D29                                             | DCMI_D7                    | LCD_B7        | EVENT-<br>OUT |
|      | PI8  | -      | -                                  | -                               | -                                                     | 1                                                        | 1                          | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | 1             | EVENT-<br>OUT |
|      | PI9  | -      | -                                  | -                               | -                                                     | 1                                                        | 1                          | -                                          | -                                              | UART4_RX                                                    | CAN1_RX                                                                           | -                                                                      | -                                                                           | FMC_D30                                             | -                          | LCD_<br>VSYNC | EVENT-<br>OUT |
|      | PI10 | -      | -                                  | -                               | -                                                     | 1                                                        | 1                          | -                                          | -                                              | -                                                           | CAN1_<br>RXFD                                                                     | -                                                                      | ETH_MII_<br>RX_ER                                                           | FMC_D31                                             | -                          | LCD_<br>HSYNC | EVENT-<br>OUT |
|      | PI11 | -      | -                                  | -                               | -                                                     | 1                                                        | 1                          | -                                          | -                                              | -                                                           | LCD_G6                                                                            | OTG_HS_<br>ULPI_DIR                                                    | -                                                                           | -                                                   | -                          | 1             | EVENT-<br>OUT |
|      | PI12 | -      | -                                  | -                               | -                                                     | -                                                        | -                          | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | ETH_TX_<br>ER                                                               | -                                                   | -                          | LCD_<br>HSYNC | EVENT-<br>OUT |
|      | PI13 | -      | -                                  | -                               | -                                                     | -                                                        | -                          | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | LCD_<br>VSYNC | EVENT-<br>OUT |
|      | PI14 | -      | -                                  | -                               | -                                                     | -                                                        | -                          | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | LCD_CLK       | EVENT-<br>OUT |
|      | PI15 | -      | -                                  | -                               | -                                                     | -                                                        | -                          | -                                          | -                                              | -                                                           | LCD_G2                                                                            | -                                                                      | -                                                                           | -                                                   | -                          | LCD_R0        | EVENT-<br>OUT |





### Table 18. Port J alternate functions

|     |      | AF0    | AF1                                | AF2                             | AF3                                                   | AF4                                                      | AF5                    | AF6                                        | AF7                                            | AF8                                                         | AF9                                                                               | AF10                                                                   | AF11                                                                        | AF12                                                | AF13                       | AF14          | AF15          |
|-----|------|--------|------------------------------------|---------------------------------|-------------------------------------------------------|----------------------------------------------------------|------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|---------------|---------------|
|     | Port | sys    | TIM1/2/16/1<br>7/LPTIM1/<br>HRTIM1 | SAI1/TIM3/<br>4/5/12/<br>HRTIM1 | LPUART/<br>TIM8/<br>LPTIM2/3/4<br>/5/HRTIM1/<br>DFSDM | I2C1/2/3/4/<br>USART1/<br>TIM15/<br>LPTIM2/<br>DFSDM/CEC | SPI1/2/3/4/<br>5/6/CEC | SPI2/3/SAI1<br>/3/I2C4/<br>UART4/<br>DFSDM | SPI2/3/6/<br>USART1/2/<br>3/6/UART7/<br>SDMMC1 | SPI6/SAI2/<br>4/UART4/5/<br>8/LPUART/<br>SDMMC1/<br>SPDIFRX | SAI4/<br>FDCAN1/2/<br>TIM13/14/<br>QUADSPI/<br>FMC/<br>SDMMC2/<br>LCD/<br>SPDIFRX | SAI2/4/<br>TIM8/<br>QUADSPI/<br>SDMMC2/<br>OTG1_HS/<br>OTG2_FS/<br>LCD | I2C4/<br>UART7/<br>SWPMI1/<br>TIM1/8/<br>DFSDM/<br>SDMMC2/<br>MDIOS/<br>ETH | TIM1/8/FMC<br>/SDMMC1/<br>MDIOS/<br>OTG1_FS/<br>LCD | TIM1/DCMI<br>/LCD/<br>COMP | UART5/<br>LCD | sys           |
|     | PJ0  | ·      | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | LCD_R7                                                                            | -                                                                      | •                                                                           | -                                                   | -                          | LCD_R1        | EVENT-<br>OUT |
|     | PJ1  | -      | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | LCD_R2        | EVENT-<br>OUT |
|     | PJ2  | -      | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | LCD_R3        | EVENT-<br>OUT |
|     | PJ3  | -      | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | LCD_R4        | EVENT-<br>OUT |
|     | PJ4  | -      | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | LCD_R5        | EVENT-<br>OUT |
|     | PJ5  | -      | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | LCD_R6        | EVENT-<br>OUT |
|     | PJ6  | -      | -                                  | -                               | TIM8_CH2                                              | -                                                        | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | LCD_R7        | EVENT-<br>OUT |
| -   | PJ7  | TRGIN  | -                                  | -                               | TIM8_<br>CH2N                                         | -                                                        | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | LCD_G0        | EVENT-<br>OUT |
| tod | PJ8  | -      | TIM1_CH3N                          | -                               | TIM8_CH1                                              | -                                                        | -                      | -                                          | -                                              | UART8_TX                                                    | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | LCD_G1        | EVENT-<br>OUT |
|     | PJ9  | -      | TIM1_CH3                           | -                               | TIM8_<br>CH1N                                         | -                                                        | -                      | -                                          | -                                              | UART8_RX                                                    | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | LCD_G2        | EVENT-<br>OUT |
|     | PJ10 | -      | TIM1_CH2N                          | -                               | TIM8_CH2                                              | -                                                        | SPI5_<br>MOSI          | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | LCD_G3        | EVENT-<br>OUT |
|     | PJ11 | -      | TIM1_CH2                           | -                               | TIM8_<br>CH2N                                         | -                                                        | SPI5_<br>MISO          | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | LCD_G4        | EVENT-<br>OUT |
|     | PJ12 | TRGOUT | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | LCD_G3                                                                            | -                                                                      | -                                                                           | -                                                   | -                          | LCD_B0        | EVENT-<br>OUT |
|     | PJ13 | -      | -                                  | -                               | -                                                     | =                                                        | -                      | =                                          | -                                              | =                                                           | LCD_B4                                                                            | -                                                                      |                                                                             | -                                                   | -                          | LCD_B1        | EVENT-<br>OUT |
|     | PJ14 | -      | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | LCD_B2        | EVENT-<br>OUT |
|     | PJ15 | -      | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | LCD_B3        | EVENT-<br>OUT |

Pin descriptions

| Table | 19 | Port K | alternate | functions |
|-------|----|--------|-----------|-----------|
|       |    |        |           |           |

| $\overline{}$ |      |     | l                                  |                                 |                                                       | l                                                        | l                      |                                            |                                                | l                                                           |                                                                                   |                                                                        |                                                                             | 1                                                   |                            |               |               |
|---------------|------|-----|------------------------------------|---------------------------------|-------------------------------------------------------|----------------------------------------------------------|------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|---------------|---------------|
|               |      | AF0 | AF1                                | AF2                             | AF3                                                   | AF4                                                      | AF5                    | AF6                                        | AF7                                            | AF8                                                         | AF9                                                                               | AF10                                                                   | AF11                                                                        | AF12                                                | AF13                       | AF14          | AF15          |
|               | Port | sys | TIM1/2/16/1<br>7/LPTIM1/<br>HRTIM1 | SAI1/TIM3/<br>4/5/12/<br>HRTIM1 | LPUART/<br>TIM8/<br>LPTIM2/3/4<br>/5/HRTIM1/<br>DFSDM | I2C1/2/3/4/<br>USART1/<br>TIM15/<br>LPTIM2/<br>DFSDM/CEC | SPI1/2/3/4/<br>5/6/CEC | SPI2/3/SAI1<br>/3/I2C4/<br>UART4/<br>DFSDM | SPI2/3/6/<br>USART1/2/<br>3/6/UART7/<br>SDMMC1 | SPI6/SAI2/<br>4/UART4/5/<br>8/LPUART/<br>SDMMC1/<br>SPDIFRX | SAI4/<br>FDCAN1/2/<br>TIM13/14/<br>QUADSPI/<br>FMC/<br>SDMMC2/<br>LCD/<br>SPDIFRX | SAI2/4/<br>TIM8/<br>QUADSPI/<br>SDMMC2/<br>OTG1_HS/<br>OTG2_FS/<br>LCD | I2C4/<br>UART7/<br>SWPMI1/<br>TIM1/8/<br>DFSDM/<br>SDMMC2/<br>MDIOS/<br>ETH | TIM1/8/FMC<br>/SDMMC1/<br>MDIOS/<br>OTG1_FS/<br>LCD | TIM1/DCMI<br>/LCD/<br>COMP | UART5/<br>LCD | SYS           |
|               | PK0  | 1   | TIM1_CH1N                          | -                               | TIM8_CH3                                              | -                                                        | SPI5_SCK               | -                                          | 1                                              | -                                                           | -                                                                                 | 1                                                                      | 1                                                                           | -                                                   | 1                          | LCD_G5        | EVENT-<br>OUT |
|               | PK1  | ı   | TIM1_CH1                           | -                               | TIM8_<br>CH3N                                         | -                                                        | SPI5_NSS               | -                                          | ı                                              | -                                                           | -                                                                                 | ı                                                                      | 1                                                                           | -                                                   | -                          | LCD_G6        | EVENT-<br>OUT |
|               | PK2  | ı   | TIM1_BKIN                          | -                               | TIM8_BKIN                                             | -                                                        | -                      | -                                          | ı                                              | -                                                           | -                                                                                 | TIM8_BKIN<br>_COMP12                                                   | TIM1_BKIN<br>_COMP12                                                        | -                                                   | -                          | LCD_G7        | EVENT-<br>OUT |
| Dort K        | PK3  | ı   | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | ı                                              | -                                                           | -                                                                                 | ı                                                                      | 1                                                                           | -                                                   | -                          | LCD_B4        | EVENT-<br>OUT |
| ٥             | PK4  | -   | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | LCD_B5        | EVENT-<br>OUT |
|               | PK5  | -   | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | 1                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | 1                          | LCD_B6        | EVENT-<br>OUT |
|               | PK6  | -   | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | 1                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | 1                          | LCD_B7        | EVENT-<br>OUT |
|               | PK7  | -   | -                                  | -                               | -                                                     | -                                                        | -                      | -                                          | -                                              | -                                                           | -                                                                                 | -                                                                      | -                                                                           | -                                                   | -                          | LCD_DE        | EVENT-<br>OUT |

### 6 Electrical characteristics

#### 6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V<sub>SS</sub>.

#### 6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of junction temperature, supply voltage and frequencies by tests in production on 100% of the devices with an junction temperature at  $T_J = 25\,^{\circ}\text{C}$  and  $T_J = T_{Jmax}$  (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$ ).

#### 6.1.2 Typical values

Unless otherwise specified, typical data are based on  $T_J$  = 25 °C,  $V_{DD}$  = 3.3 V (for the 1.7 V  $\leq$   $V_{DD}$   $\leq$  3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2σ).

#### 6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

### 6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 11.

#### 6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 12*.



Electrical characteristics STM32H753xI

#### 6.1.6 Power supply scheme



Figure 13. Power supply scheme

1. N corresponds to the number of VDD pins available on the package...

Caution:

Each power supply pair ( $V_{DD}/V_{SS}$ ,  $V_{DDA}/V_{SSA}$  ...) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure good operation of the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect operation of the device.



### 6.1.7 Current consumption measurement

IDD\_VBAT\_VBAT\_VDDA

Figure 14. Current consumption measurement scheme

# 6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 20: Voltage characteristics*, *Table 21: Current characteristics*, and *Table 22: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and the functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

| Symbols                            | Ratings                                                                                                  | Min                  | Max                                                                                                                                                      | Unit     |
|------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| V <sub>DDX</sub> - V <sub>SS</sub> | External main supply voltage (including $V_{DD}$ , $V_{DDLDO}$ , $V_{DDA}$ , $V_{DD33USB}$ , $V_{BAT}$ ) | -0.3                 | 4.0                                                                                                                                                      | V        |
|                                    | Input voltage on FT_xxx pins                                                                             | V <sub>SS</sub> -0.3 | $\begin{array}{c} \text{Min}(\text{V}_{\text{DD}},\text{V}_{\text{DDA}},\\ \text{V}_{\text{DD33USB}},\text{V}_{\text{BAT}})\\ +4.0^{(3)(4)} \end{array}$ | <b>V</b> |
| V <sub>IN</sub> <sup>(2)</sup>     | Input voltage on TT_xx pins                                                                              | V <sub>SS</sub> -0.3 | 4.0                                                                                                                                                      | V        |
|                                    | Input voltage on BOOT0 pin                                                                               | V <sub>SS</sub>      | 9.0                                                                                                                                                      | V        |
|                                    | Input voltage on any other pins                                                                          | V <sub>SS</sub> -0.3 | 4.0                                                                                                                                                      | V        |
| $ \Delta V_{DDX} $                 | Variations between different $V_{DDX}$ power pins of the same domain                                     | -                    | 50                                                                                                                                                       | mV       |
| V <sub>SSx</sub> -V <sub>SS</sub>  | Variations between all the different ground pins                                                         | -                    | 50                                                                                                                                                       | mV       |

Table 20. Voltage characteristics (1)

- All main power (V<sub>DD</sub>, V<sub>DDA</sub>, V<sub>DD33USB</sub>, V<sub>BAT</sub>) and ground (V<sub>SS</sub>, V<sub>SSA</sub>) pins must always be connected to the external power supply, in the permitted range.
- V<sub>IN</sub> maximum must always be respected. Refer to *Table 57* for the maximum allowed injected current values.
- 3. This formula has to be applied on power supplies related to the IO structure described by the pin definition table.
- 4. To sustain a voltage higher than 4V the internal pull-up/pull-down resistors must be disabled.

Electrical characteristics STM32H753xI

**Table 21. Current characteristics** 

| Symbols                      | Ratings                                                                            | Max   | Unit |
|------------------------------|------------------------------------------------------------------------------------|-------|------|
| ΣIV <sub>DD</sub>            | Total current into sum of all V <sub>DD</sub> power lines (source) <sup>(1)</sup>  | 620   |      |
| ΣIV <sub>SS</sub>            | Total current out of sum of all V <sub>SS</sub> ground lines (sink) <sup>(1)</sup> | 620   |      |
| IV <sub>DD</sub>             | Maximum current into each V <sub>DD</sub> power pin (source) <sup>(1)</sup>        | 100   |      |
| IV <sub>SS</sub>             | Maximum current out of each V <sub>SS</sub> ground pin (sink) <sup>(1)</sup>       | 100   |      |
| I <sub>IO</sub>              | Output current sunk by any I/O and control pin                                     |       |      |
| 71                           | Total output current sunk by sum of all I/Os and control pins <sup>(2)</sup>       | 140   | mA   |
| ΣI <sub>(PIN)</sub>          | Total output current sourced by sum of all I/Os and control pins <sup>(2)</sup>    | 140   |      |
| I <sub>INJ(PIN)</sub> (3)(4) | Injected current on FT_xxx, TT_xx, RST and B pins except PA4, PA5                  | -5/+0 |      |
|                              | Injected current on PA4, PA5                                                       | -0/0  |      |
| ΣΙ <sub>ΙΝJ(PIN)</sub>       | Total injected current (sum of all I/Os and control pins) <sup>(5)</sup>           | ±25   |      |

- All main power (V<sub>DD</sub>, V<sub>DDA</sub>, V<sub>DD33USB</sub>) and ground (V<sub>SS</sub>, V<sub>SSA</sub>) pins must always be connected to the external power supplies, in the permitted range.
- This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
- 3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
- A positive injection is induced by V<sub>IN</sub>>V<sub>DD</sub> while a negative injection is induced by V<sub>IN</sub><V<sub>SS</sub>. I<sub>INJ(PIN)</sub> must never be exceeded. Refer also to *Table 20: Voltage characteristics* for the maximum allowed input voltage values.
- When several inputs are submitted to a current injection, the maximum ∑I<sub>INJ(PIN)</sub> is the absolute sum of the
  positive and negative injected currents (instantaneous values).

Table 22. Thermal characteristics

| Symbol           | Ratings                      | Value        | Unit |
|------------------|------------------------------|--------------|------|
| T <sub>STG</sub> | Storage temperature range    | - 65 to +150 | °C   |
| T <sub>J</sub>   | Maximum junction temperature | 125          | C    |



# 6.3 Operating conditions

# 6.3.1 General operating conditions

Table 23. General operating conditions<sup>(1)</sup>

| Symbol               | Paramete                                         | er               | Operating conditions                          | Min                 | Max                                                                                                 | Unit |
|----------------------|--------------------------------------------------|------------------|-----------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------|------|
| $V_{DD}$             | Standard operatin                                | g voltage        | -                                             | 1.62 <sup>(2)</sup> | 3.6                                                                                                 |      |
| V <sub>DDLDO</sub>   | Supply voltage for the in                        | ternal regulator | V <sub>DDLDO</sub> ≤ V <sub>DD</sub>          | 1.62 <sup>(2)</sup> | 3.6                                                                                                 |      |
|                      | Otan dand an anting well-                        | LIOD damasia     | USB used                                      | 3.0                 | 3.6                                                                                                 |      |
| V <sub>DD33USB</sub> | Standard operating volta                         | ge, USB domain   | USB not used                                  | 0                   | 3.6                                                                                                 |      |
|                      |                                                  |                  | ADC or COMP used                              | 1.62                |                                                                                                     |      |
|                      |                                                  |                  | DAC used                                      | 1.8                 | 1                                                                                                   |      |
|                      |                                                  |                  | OPAMP used                                    | 2.0                 |                                                                                                     |      |
| $V_{DDA}$            | Analog operating                                 | yvoltage         | VREFBUF used                                  | 1.8                 | 3.6                                                                                                 | V    |
|                      |                                                  |                  | ADC, DAC, OPAMP,<br>COMP, VREFBUF not<br>used | 0                   |                                                                                                     |      |
|                      |                                                  |                  | TT_xx I/O                                     | -0.3                | V <sub>DD</sub> +0.3                                                                                |      |
|                      |                                                  |                  | воото                                         | 0                   | 9                                                                                                   |      |
| V <sub>IN</sub>      | I/O Input voli                                   | tage             | All I/O except BOOT0<br>and TT_xx             | -0.3                | Min(V <sub>DD</sub> , V <sub>DDA</sub> ,<br>V <sub>DD33USB</sub> )+3.6V<br>< 5.5V <sup>(3)(4)</sup> |      |
|                      |                                                  | TFBGA240+25      | -                                             | -                   | 1093                                                                                                |      |
|                      |                                                  | LQFP208          | -                                             | -                   | 943                                                                                                 |      |
|                      |                                                  | LQFP176          | -                                             | -                   | 930                                                                                                 |      |
| P <sub>D</sub>       | Power dissipation at                             | UFBGA176+25      | -                                             | -                   | 1070                                                                                                |      |
| r <sub>D</sub>       | $T_A = 85 ^{\circ}\text{C}$ for suffix $6^{(5)}$ | UFBGA169         | -                                             | -                   | 1061                                                                                                | mW   |
|                      |                                                  | LQFP144          | -                                             | -                   | 915                                                                                                 |      |
|                      |                                                  | LQFP100          | -                                             | -                   | 889                                                                                                 |      |
|                      |                                                  | TFBGA100         | -                                             | ı                   | 1018                                                                                                |      |
|                      | Ambient temperature for                          | Maximum power    | dissipation                                   | -40                 | 85                                                                                                  |      |
| TA                   | the suffix 6 version                             | Low-power dissi  | pation <sup>(6)</sup>                         | -40                 | 105                                                                                                 | °C   |
| I A                  | Ambient temperature for                          | Maximum power    | dissipation                                   | -40                 | 125                                                                                                 |      |
|                      | the suffix 3 version                             | Low-power dissi  | pation <sup>(6)</sup>                         | -40                 | 130                                                                                                 |      |
| TJ                   | Junction temperature range                       | Suffix 6 version |                                               | -40                 | 125                                                                                                 | °C   |

<sup>1.</sup> TBD stands for "to be defined".

<sup>2.</sup> When RESET is released functionality is guaranteed down to  $V_{\mbox{\footnotesize{BOR0}}}$  min

<sup>3.</sup> This formula has to be applied on power supplies related to the IO structure described by the pin definition table.

Electrical characteristics STM32H753xI

 For operation with voltage higher than Min (V<sub>DD</sub>, V<sub>DDA</sub>, V<sub>DD33USB</sub>) +0.3V, the internal Pull-up and Pull-Down resistors must be disabled.

- 5. If T<sub>A</sub> is lower, higher P<sub>D</sub> values are allowed as long as T<sub>J</sub> does not exceed T<sub>Jmax</sub> (see Section 7.9: Thermal characteristics).
- In low-power dissipation state, T<sub>A</sub> can be extended to this range as long as T<sub>J</sub> does not exceed T<sub>Jmax</sub> (see Section 7.9: Thermal characteristics).

### 6.3.2 VCAP1/VCAP2/VCAP3 external capacitor

Stabilization for the main regulator is achieved by connecting an external capacitor  $C_{\text{EXT}}$  to the VCAP1/VCAP2/VCAP3 pins.  $C_{\text{EXT}}$  is specified in *Table 24*. Two external capacitors can be connected to VCAPx pins.

Figure 15. External capacitor C<sub>EXT</sub>



1. Legend: ESR is the equivalent series resistance.

Table 24. VCAP1/VCAP2/VCAP3 operating conditions<sup>(1)</sup>

| Symbol | Parameter                         | Conditions |
|--------|-----------------------------------|------------|
| CEXT   | Capacitance of external capacitor | 2.2 μF     |
| ESR    | ESR of external capacitor         | < 100 mΩ   |

When bypassing the voltage regulator, the two 2.2 μF V<sub>CAP</sub> capacitors are not required and should be replaced by two 100 nF decoupling capacitors.

#### 6.3.3 Operating conditions at power-up / power-down

Subject to general operating conditions for T<sub>A</sub>.

Table 25. Operating conditions at power-up / power-down (regulator ON)

| Symbol              | Parameter                         | Min | Max | Unit  |
|---------------------|-----------------------------------|-----|-----|-------|
| +                   | V <sub>DD</sub> rise time rate    | 0   | ∞   |       |
| t <sub>VDD</sub>    | V <sub>DD</sub> fall time rate    | 10  | ∞   |       |
| +                   | V <sub>DDA</sub> rise time rate   | 0   | ∞   | μs/V  |
| t <sub>VDDA</sub>   | V <sub>DDA</sub> fall time rate   | 10  | ∞   | μ5/ ν |
| +                   | V <sub>DDUSB</sub> rise time rate | 0   | ∞   |       |
| <sup>T</sup> VDDUSB | V <sub>DDUSB</sub> fall time rate | 10  | ∞   |       |

# 6.3.4 Embedded reset and power control block characteristics

The parameters given in *Table 26* are derived from tests performed under ambient temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 23: General operating conditions*.

Table 26. Reset and power control block characteristics

| Symbol                                 | Parameter                                                                 | Conditions                 | Min  | Тур  | Max   | Unit |
|----------------------------------------|---------------------------------------------------------------------------|----------------------------|------|------|-------|------|
| t <sub>RSTTEMPO</sub> <sup>(1)</sup>   | Reset temporization after BOR0 released                                   | -                          | -    | 377  | -     | μs   |
| V                                      | Brown-out reset threshold 0 -                                             | Rising edge <sup>(1)</sup> | 1.62 | 1.67 | 1.71  |      |
| V <sub>BOR0</sub>                      |                                                                           | Falling edge               | 1.58 | 1.62 | 1.68  |      |
| V                                      | Brown-out reset threshold 1                                               | Rising edge                | 2.04 | 2.10 | 2.15  |      |
| V <sub>BOR1</sub>                      | Brown-out reset timeshold i                                               | Falling edge               | 1.95 | 2.00 | 2.06  |      |
| V                                      | Brown-out reset threshold 2                                               | Rising edge                | 2.34 | 2.41 | 2.47  |      |
| $V_{BOR2}$                             | Brown-out reset threshold 2                                               | Falling edge               | 2.25 | 2.31 | 2.37  |      |
| V                                      | Prown out roset threshold 3                                               | Rising edge                | 2.63 | 2.70 | 2.78  |      |
| VBOR3                                  | V <sub>BOR3</sub> Brown-out reset threshold 3                             | Falling edge               | 2.54 | 2.61 | 2.68  |      |
| V                                      | Programmable Voltage                                                      | Rising edge                | 1.90 | 1.96 | 2.01  |      |
| V <sub>PVD0</sub>                      | Detector threshold 0                                                      | Falling edge               | 1.81 | 1.86 | 1.91  |      |
| V                                      | Programmable Voltage<br>Detector threshold 1                              | Rising edge                | 2.05 | 2.10 | 2.16  | V    |
| V <sub>PVD1</sub>                      |                                                                           | Falling edge               | 1.96 | 2.01 | 2.06  | V    |
| V                                      | Programmable Voltage                                                      | Rising edge                | 2.19 | 2.26 | 2.32  |      |
| V <sub>PVD2</sub>                      | Detector threshold 2                                                      | Falling edge               | 2.10 | 2.15 | 2.21  |      |
| V                                      | Programmable Voltage                                                      | Rising edge                | 2.35 | 2.41 | 2.47  |      |
| V <sub>PVD3</sub>                      | Detector threshold 3                                                      | Falling edge               | 2.25 | 2.31 | 2.37  |      |
| V                                      | Programmable Voltage                                                      | Rising edge                | 2.49 | 2.56 | 2.62  |      |
| V <sub>PVD4</sub>                      | Detector threshold 4                                                      | Falling edge               | 2.39 | 2.45 | 2.51  |      |
| V                                      | Programmable Voltage                                                      | Rising edge                | 2.64 | 2.71 | 2.78  |      |
| V <sub>PVD5</sub>                      | Detector threshold 5                                                      | Falling edge               | 2.55 | 2.61 | 2.68  |      |
| V                                      | Programmable Voltage                                                      | Rising edge                | 2.78 | 2.86 | 2.94  |      |
| V <sub>PVD6</sub>                      | Detector threshold 6                                                      | Falling edge in Run mode   | 2.69 | 2.76 | 2.83  |      |
| V <sub>hyst_BOR_PVD</sub>              | Hysteresis voltage of BOR (unless BOR0) and PVD                           | Hysteresis in Run mode     | -    | 100  | -     | mV   |
| I <sub>DD_BOR_PVD</sub> <sup>(1)</sup> | BOR <sup>(2)</sup> (unless BOR0) and PVD consumption from V <sub>DD</sub> | -                          | -    |      | 0.630 | μА   |

Electrical characteristics STM32H753xI

| Table 26. Reset and | power contro | ol block characte | ristics (co | ntinued) |
|---------------------|--------------|-------------------|-------------|----------|
|                     |              | •                 |             |          |

| Symbol                 | Parameter                                                       | Conditions      | Min  | Тур  | Max  | Unit |
|------------------------|-----------------------------------------------------------------|-----------------|------|------|------|------|
| V                      | Analog voltage detector for                                     | Rising edge     | 1.66 | 1.71 | 1.76 |      |
| V <sub>AVM_0</sub>     | V <sub>DDA</sub> threshold 0                                    | Falling edge    | 1.56 | 1.61 | 1.66 |      |
| V                      | Analog voltage detector for                                     | Rising edge     | 2.06 | 2.12 | 2.19 |      |
| V <sub>AVM_1</sub>     | V <sub>DDA</sub> threshold 1                                    | Falling edge    | 1.96 | 2.02 | 2.08 | V    |
| V                      | Analog voltage detector for                                     | Rising edge     | 2.42 | 2.50 | 2.58 | V    |
| V <sub>AVM_2</sub>     | V <sub>DDA</sub> threshold 2                                    | Falling edge    | 2.35 | 2.42 | 2.49 |      |
| V                      | Analog voltage detector for V <sub>DDA</sub> threshold 3        | Rising edge     | 2.74 | 2.83 | 2.91 |      |
| V <sub>AVM_3</sub>     |                                                                 | Falling edge    | 2.64 | 2.72 | 2.80 |      |
| V <sub>hyst_VDDA</sub> | Hysteresis of V <sub>DDA</sub> voltage detector                 | -               | -    | 100  | -    | mV   |
| I <sub>DD_PVM</sub>    | PVM consumption from V <sub>DD(1)</sub>                         | -               | -    | -    | 0.25 | μΑ   |
| I <sub>DD_VDDA</sub>   | Voltage detector consumption on V <sub>DDA</sub> <sup>(1)</sup> | Resistor bridge | -    | -    | 2.5  | μΑ   |

<sup>1.</sup> Guaranteed by design.

## 6.3.5 Embedded reference voltage

The parameters given in *Table 27* are derived from tests performed under ambient temperature and V<sub>DD</sub> supply voltage conditions summarized in *Table 23: General operating conditions*.

Table 27. Embedded reference voltage

| Symbol                              | Parameter                                                           | Conditions                      | Min   | Тур   | Max   | Unit   |
|-------------------------------------|---------------------------------------------------------------------|---------------------------------|-------|-------|-------|--------|
| V <sub>REFINT</sub>                 | Internal reference voltages                                         | -40°C < TJ < 105°C              | 1.180 | 1.216 | 1.255 | V      |
| t <sub>S_vrefint</sub> (1)(2)       | ADC sampling time when reading the internal reference voltage       | -                               | 4.3   | -     | -     | μs     |
| t <sub>S_vbat</sub> <sup>(1)</sup>  | VBAT sampling time when reading the internal VBAT reference voltage | -                               | 9     | -     | -     | μο     |
| I <sub>refbuf</sub> <sup>(2)</sup>  | Reference Buffer consumption for ADC                                | V <sub>DDA</sub> =3.3 V         | 9     | 13.5  | 23    | μΑ     |
| ΔV <sub>REFINT</sub> <sup>(2)</sup> | Internal reference voltage spread over the temperature range        | -40°C < T <sub>J</sub> < 105°C  | -     | 5     | 15    | mV     |
| T <sub>coeff</sub>                  | Average temperature coefficient                                     | Average temperature coefficient | -     | 20    | 70    | ppm/°C |
| V <sub>DDcoeff</sub>                | Average Voltage coefficient                                         | 3.0V < V <sub>DD</sub> < 3.6V   | -     | 10    | 1370  | ppm/V  |



102/227 DocID030553 Rev 3

<sup>2.</sup> BOR0 is enabled in all modes (except Shutdown) and its consumption is therefore included in the supply current characteristics tables (refer to Section 6.3.6: Supply current characteristics).

|                          |                       |            |     | /   |     |                          |
|--------------------------|-----------------------|------------|-----|-----|-----|--------------------------|
| Symbol                   | Parameter             | Conditions | Min | Тур | Max | Unit                     |
| V <sub>REFINT_DIV1</sub> | 1/4 reference voltage | -          | -   | 25  | -   |                          |
| V <sub>REFINT_DIV2</sub> | 1/2 reference voltage | -          | -   | 50  | -   | %<br>V <sub>REFINT</sub> |
| V <sub>REFINT DIV3</sub> | 3/4 reference voltage | -          | -   | 75  | -   | IXLIIIVI                 |

Table 27. Embedded reference voltage (continued)

- 1. The shortest sampling time for the application can be determined by multiple iterations.
- Guaranteed by design.

Table 28. Internal reference voltage calibration values

| Symbol                 | Parameter                                                           | Memory address      |
|------------------------|---------------------------------------------------------------------|---------------------|
| V <sub>REFIN_CAL</sub> | Raw data acquired at temperature of 30 °C, V <sub>DDA</sub> = 3.3 V | 1FF1E860 - 1FF1E861 |

### 6.3.6 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 14: Current consumption measurement scheme*.

All the run-mode current consumption measurements given in this section are performed with a CoreMark code.

#### Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode.
- All peripherals are disabled except when explicitly mentioned.
- The Flash memory access time is adjusted with the minimum wait states number, depending on the f<sub>ACLK</sub> frequency (refer to the table "Number of wait states according to CPU clock (ACLK) frequency and V<sub>CORF</sub> range" available in the reference manual).
- When the peripherals are enabled, the AHB clock frequency is the CPU frequency divided by 2 and the APB clock frequency is AHB clock frequency divided by 2.

The parameters given in *Table 29* to *Table 37* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 23: General operating conditions*.

Electrical characteristics STM32H753xl

Table 29. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator  $\mathsf{ON}^{(1)}$ 

|                 |                        |                                |      | f                              |     |                       | Ма                       | x <sup>(2)</sup>       |                           |      |     |     |      |   |   |   |   |  |  |  |  |  |  |    |    |    |     |     |     |  |
|-----------------|------------------------|--------------------------------|------|--------------------------------|-----|-----------------------|--------------------------|------------------------|---------------------------|------|-----|-----|------|---|---|---|---|--|--|--|--|--|--|----|----|----|-----|-----|-----|--|
| Symbol          | Parameter              | Conditions                     |      | f <sub>rcc_c_ck</sub><br>(MHz) | Тур | T <sub>J</sub> = 25°C | T <sub>J</sub> =<br>85°C | T <sub>J</sub> = 105°C | T <sub>J</sub> =<br>125°C | unit |     |     |      |   |   |   |   |  |  |  |  |  |  |    |    |    |     |     |     |  |
|                 |                        |                                | VOS1 | 400                            | 71  | 110                   | 210                      | 290                    | 540                       |      |     |     |      |   |   |   |   |  |  |  |  |  |  |    |    |    |     |     |     |  |
|                 |                        |                                | 001  | 300                            | 56  | -                     | -                        | -                      | -                         |      |     |     |      |   |   |   |   |  |  |  |  |  |  |    |    |    |     |     |     |  |
|                 |                        |                                |      | 300                            | 50  | 72                    | 170                      | 230                    | 370                       |      |     |     |      |   |   |   |   |  |  |  |  |  |  |    |    |    |     |     |     |  |
|                 |                        |                                |      |                                |     | VOS2                  | 216                      | 37                     | 58                        | 150  | 210 | 380 |      |   |   |   |   |  |  |  |  |  |  |    |    |    |     |     |     |  |
|                 |                        | All<br>peripherals<br>disabled | All  | All                            | All | All                   | All                      | All                    | All                       | All  |     | 200 | 35.5 | - | - | - | - |  |  |  |  |  |  |    |    |    |     |     |     |  |
|                 |                        |                                |      | 200                            | 33  | 50                    | 130                      | 190                    | 300                       |      |     |     |      |   |   |   |   |  |  |  |  |  |  |    |    |    |     |     |     |  |
|                 | Supply                 |                                | VOS3 | 180                            | 30  | 47                    | 130                      | 180                    | 290                       |      |     |     |      |   |   |   |   |  |  |  |  |  |  |    |    |    |     |     |     |  |
|                 |                        |                                |      | 168                            | 28  | 45                    | 130                      | 180                    | 290                       | A    |     |     |      |   |   |   |   |  |  |  |  |  |  |    |    |    |     |     |     |  |
| I <sub>DD</sub> | current in Run<br>mode |                                |      | 144                            | 25  | 41                    | 120                      | 180                    | 290                       | mA   |     |     |      |   |   |   |   |  |  |  |  |  |  |    |    |    |     |     |     |  |
|                 |                        |                                |      |                                |     |                       |                          |                        |                           |      |     |     |      |   |   |   |   |  |  |  |  |  |  | 60 | 13 | 28 | 110 | 160 | 280 |  |
|                 |                        |                                |      | 25                             | 10  | 24                    | 99                       | 160                    | 270                       |      |     |     |      |   |   |   |   |  |  |  |  |  |  |    |    |    |     |     |     |  |
|                 |                        |                                | VOC4 | 400                            | 165 | 220                   | 400                      | 500 <sup>(3)</sup>     | 840                       |      |     |     |      |   |   |   |   |  |  |  |  |  |  |    |    |    |     |     |     |  |
|                 |                        | All                            | VOS1 | 300                            | 130 | -                     | -                        | -                      | -                         |      |     |     |      |   |   |   |   |  |  |  |  |  |  |    |    |    |     |     |     |  |
|                 | peripherals            | VOCA                           | 300  | 120                            | 170 | 300                   | 390                      | 570                    |                           |      |     |     |      |   |   |   |   |  |  |  |  |  |  |    |    |    |     |     |     |  |
|                 |                        | enabled                        | VOS2 | 200                            | 83  | -                     | -                        | -                      | -                         |      |     |     |      |   |   |   |   |  |  |  |  |  |  |    |    |    |     |     |     |  |
|                 |                        | VO                             | VOS3 | 200                            | 78  | 110                   | 220                      | 300                    | 470                       |      |     |     |      |   |   |   |   |  |  |  |  |  |  |    |    |    |     |     |     |  |

<sup>1.</sup> Data are in DTCM for best computation performance, cache has no influence on consumption in this case.

<sup>2.</sup> Guaranteed by characterization results unless otherwise specified.

<sup>3.</sup> Guaranteed by test in production.

Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON, regulator ON

|                 |                        |                                |            |     |     | , <u></u>             |                       | x <sup>(1)</sup>       |                        |      |
|-----------------|------------------------|--------------------------------|------------|-----|-----|-----------------------|-----------------------|------------------------|------------------------|------|
| Symbol          | Parameter              | Conditio                       | Conditions |     | Тур | T <sub>J</sub> = 25°C | T <sub>J</sub> = 85°C | T <sub>J</sub> = 105°C | T <sub>J</sub> = 125°C | unit |
|                 |                        |                                | VOS1       | 400 | 105 | 160                   | 310                   | 420                    | 750                    |      |
|                 |                        | All<br>peripherals<br>disabled | VUS1       | 300 | 55  | -                     | -                     | -                      | -                      |      |
|                 |                        |                                |            | 300 | 50  | 72                    | 160                   | 230                    | 370                    |      |
|                 |                        |                                | VOS2       | 216 | 38  | -                     | -                     | -                      | -                      |      |
|                 | Supply                 |                                |            | 200 | 36  | -                     | _                     | -                      | -                      |      |
|                 |                        |                                |            | 200 | 33  | 50                    | 130                   | 190                    | 300                    |      |
|                 |                        |                                | VOS3       | 180 | 30  | -                     | _                     | -                      | -                      |      |
|                 |                        |                                |            | 168 | 29  | -                     | _                     | -                      | -                      | A    |
| I <sub>DD</sub> | current in Run<br>mode |                                |            | 144 | 26  | -                     | _                     | -                      | -                      | mA   |
|                 |                        |                                |            | 60  | 14  | -                     | -                     | -                      | -                      |      |
|                 |                        |                                |            | 25  | 14  | -                     | -                     | -                      | -                      |      |
|                 |                        |                                | VOC4       | 400 | 160 | 220                   | 400                   | 500 <sup>(2)</sup>     | 750                    |      |
|                 |                        | All                            | VOS1       | 300 | 130 | -                     | _                     | -                      | -                      |      |
|                 |                        | peripherals                    | VOCA       | 300 | 120 | 160                   | 300                   | 390                    | 560                    |      |
|                 |                        | enabled                        | VOS2       | 200 | 81  | -                     | -                     | -                      | -                      |      |
|                 |                        |                                | VOS3       | 200 | 77  | 110                   | 220                   | 300                    | 460                    |      |

<sup>1.</sup> Guaranteed by characterization results unless otherwise specified.

Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF, regulator ON

|                 |           | Conditions                                         |      | f <sub>rcc_c_ck</sub><br>(MHz) | Тур |                          |                          |                           |                           |      |
|-----------------|-----------|----------------------------------------------------|------|--------------------------------|-----|--------------------------|--------------------------|---------------------------|---------------------------|------|
| Symbol          | Parameter |                                                    |      |                                |     | T <sub>J</sub> =<br>25°C | T <sub>J</sub> =<br>85°C | T <sub>J</sub> =<br>105°C | T <sub>J</sub> =<br>125°C | unit |
|                 |           | All                                                | VOS1 | 400                            | 73  | 110                      | 220                      | 290                       | 540                       |      |
|                 |           | Supply current in Run mode All peripherals enabled | VOS2 | 300                            | 52  | 75                       | 170                      | 230                       | 370                       |      |
|                 |           |                                                    | VOS3 | 200                            | 34  | 52                       | 130                      | 190                       | 300                       | mΛ   |
| I <sub>DD</sub> |           |                                                    | VOS1 | 400                            | 135 | 190                      | 360                      | 470                       | 730                       | mA   |
|                 |           |                                                    | VOS2 | 300                            | 100 | 150                      | 270                      | 370                       | 550                       |      |
|                 |           |                                                    | VOS3 | 200                            | 70  | 100                      | 210                      | 300                       | 460                       |      |

<sup>1.</sup> Guaranteed by characterization results.

<sup>2.</sup> Guaranteed by by test in production.

Electrical characteristics STM32H753xl

Table 32. Typical consumption in Run mode and corresponding performance versus code position

| Symbol          | Parameter                            | Conditi     | ions    | f <sub>rcc_c_c</sub> | Coremar | Tun  | Unit | IDD/     | Unit                |
|-----------------|--------------------------------------|-------------|---------|----------------------|---------|------|------|----------|---------------------|
| Symbol          | Parameter                            | Peripheral  | Code    | <sub>k</sub> (MHz)   | k       | Тур  | Unit | Coremark | Offic               |
|                 |                                      |             | ITCM    | 400                  | 2012    | 71   |      | 35       |                     |
|                 |                                      | All         | FLASH A | 400                  | 2012    | 105  |      | 52       |                     |
|                 | peripherals<br>disabled,<br>cache ON | AXI<br>SRAM | 400     | 2012                 | 105     |      | 52   |          |                     |
|                 |                                      | cache ON    | SRAM1   | 400                  | 2012    | 105  |      | 52       | μΑ/<br>Coremar<br>k |
|                 | Supply current                       |             | SRAM4   | 400                  | 2012    | 105  | mA   | 52       |                     |
| I <sub>DD</sub> | in Run mode                          |             | ITCM    | 400                  | 2012    | 71   | ША   | 35       |                     |
|                 |                                      | All         | FLASH A | 400                  | 593     | 70.5 |      | 119      |                     |
|                 | peripherals<br>disabled<br>cache OFF | AXI<br>SRAM | 400     | 344                  | 70.5    |      | 205  |          |                     |
|                 |                                      | cache OFF   | SRAM1   | 400                  | 472     | 74.5 |      | 158      |                     |
|                 |                                      |             | SRAM4   | 400                  | 432     | 72   |      | 167      |                     |

Table 33. Typical current consumption batch acquisition mode

| Symbol                                              | Parameter | Condition                         | s    | f <sub>rcc_ahb_ck(AHB4)</sub> (MHz) | Тур | unit |
|-----------------------------------------------------|-----------|-----------------------------------|------|-------------------------------------|-----|------|
| Supply current in I <sub>DD</sub> batch acquisition |           | D1Standby,<br>D2Standby,<br>D3Run | VOS3 | 64                                  | 6.5 | mA   |
| DD                                                  | mode      | D1Stop, D2Stop,<br>D3Run          | VOS3 | 64                                  | 12  |      |

Table 34. Typical and maximum current consumption in Sleep mode, regulator ON

|                        |                      |             |      | f <sub>rcc_c_ck</sub><br>(MHz) |      |                       |                          |                        |                           |      |
|------------------------|----------------------|-------------|------|--------------------------------|------|-----------------------|--------------------------|------------------------|---------------------------|------|
| Symbol                 | Parameter Conditions |             | ons  |                                | Тур  | T <sub>J</sub> = 25°C | T <sub>J</sub> =<br>85°C | T <sub>J</sub> = 105°C | T <sub>J</sub> =<br>125°C | unit |
|                        |                      |             | VOS1 | 400                            | 31.0 | 64                    | 220                      | 330                    | 660                       |      |
|                        | Supply               | All         | VO31 | 300                            | 24.5 | 57                    | 210                      | 330                    | 650                       |      |
| I <sub>DD(Sleep)</sub> | current in           | peripherals | VOS2 | 300                            | 22.0 | 48                    | 180                      | 270                    | 500                       | mA   |
| (3.3.1)                | Sleep mode           | disabled    | VU32 | 200                            | 17.0 | 42                    | 170                      | 270                    | 490                       |      |
|                        |                      |             | VOS3 | 200                            | 15.5 | 37                    | 150                      | 230                    | 400                       |      |

<sup>1.</sup> Guaranteed by characterization results.

106/227 DocID030553 Rev 3

Table 35. Typical and maximum current consumption in Stop mode, regulator ON

|                       |                              |                                    |       |                          | -                        | Ma                        | x <sup>(1)</sup>          |      |      |
|-----------------------|------------------------------|------------------------------------|-------|--------------------------|--------------------------|---------------------------|---------------------------|------|------|
| Symbol                | Parameter                    | Conditi                            | Тур   | T <sub>J</sub> =<br>25°C | T <sub>J</sub> =<br>85°C | T <sub>J</sub> =<br>105°C | T <sub>J</sub> =<br>125°C | unit |      |
|                       |                              | Flash                              | SVOS5 | 1.4                      | 7.2                      | 49                        | 75                        | 140  |      |
|                       |                              | memory<br>OFF, no                  | SVOS4 | 1.95                     | 11                       | 66                        | 110                       | 200  |      |
|                       | D1Stop,<br>D2Stop,<br>D3Stop | IWDG                               | SVOS3 | 2.85                     | 16                       | 91                        | 150                       | 240  |      |
|                       |                              | Flash<br>memory ON,<br>no IWDG     | SVOS5 | 1.65                     | 7.2                      | 49                        | 75                        | 140  |      |
|                       |                              |                                    | SVOS4 | 2.2                      | 11                       | 66                        | 110                       | 180  |      |
|                       |                              |                                    | SVOS3 | 3.15                     | 16                       | 91                        | 150                       | 300  |      |
|                       | D1Stop,                      | Flash                              | SVOS5 | 0.99                     | 5.1                      | 35                        | 60                        | 97   |      |
|                       |                              | memory<br>OFF, no<br>IWDG<br>Flash | SVOS4 | 1.4                      | 7.5                      | 47                        | 79                        | 130  |      |
|                       |                              |                                    | SVOS3 | 2.05                     | 12                       | 64                        | 110                       | 170  | mA   |
| I <sub>DD(Stop)</sub> | D2Standby,<br>D3Stop         |                                    | SVOS5 | 1.25                     | 5.5                      | 35                        | 61                        | 98   | IIIA |
|                       |                              | memory ON,                         | SVOS4 | 1.65                     | 7.8                      | 47                        | 80                        | 130  |      |
|                       |                              | no IWDG                            | SVOS3 | 2.3                      | 12                       | 65                        | 110                       | 170  |      |
|                       | D1Standby,                   |                                    | SVOS5 | 0.57                     | 3                        | 21                        | 36                        | 57   |      |
|                       | D2Stop,                      |                                    | SVOS4 | 0.805                    | 4.5                      | 27                        | 47                        | 74   |      |
| _                     | D3Stop                       | Flash OFF,                         | SVOS3 | 1.2                      | 6.7                      | 37                        | 63                        | 99   |      |
|                       | D1Standby,                   | no IWDG                            | SVOS5 | 0.17                     | 1.1                      | 8                         | 13                        | 20   |      |
|                       | D2Standby,                   |                                    | SVOS4 | 0.245                    | 1.5                      | 11                        | 17                        | 26   |      |
|                       | D3Stop                       |                                    | SVOS3 | 0.405                    | 2.4                      | 15                        | 23                        | 35   |      |

<sup>1.</sup> Guaranteed by characterization results.

Table 36. Typical and maximum current consumption in Standby mode

|                 |                   | Conditions     |              | Тур    |       |      |       |                       |                          |                        |                           |      |
|-----------------|-------------------|----------------|--------------|--------|-------|------|-------|-----------------------|--------------------------|------------------------|---------------------------|------|
| Symbol          | Parameter         | Backup<br>SRAM | RTC<br>& LSE | 1.62 V | 2.4 V | 3 V  | 3.3 V | T <sub>J</sub> = 25°C | T <sub>J</sub> =<br>85°C | T <sub>J</sub> = 105°C | T <sub>J</sub> =<br>125°C | Unit |
|                 | Supply current in | OFF            | OFF          | 1.8    | 1.9   | 1.95 | 2.05  | 3                     | 9.1                      | 19                     | 42                        |      |
| I <sub>DD</sub> |                   | ON             | OFF          | 3.4    | 3.4   | 3.5  | 3.7   | 6.8                   | 27                       | 64                     | 96                        |      |
| (Standby) S     | Standby           | OFF            | ON           | 2      | 2.1   | 2.2  | 2.3   | -                     | -                        | -                      | -                         | μA   |
|                 | mode              | ON             | ON           | 3.55   | 3.7   | 3.8  | 4.15  | -                     | -                        | -                      | -                         |      |

<sup>1.</sup> Guaranteed by characterization results.

Electrical characteristics STM32H753xI

|               | Parameter                               | Conditions     |              | Тур   |       |       |       | Max (3 V) <sup>(1)</sup> |                          |                           |                           |      |
|---------------|-----------------------------------------|----------------|--------------|-------|-------|-------|-------|--------------------------|--------------------------|---------------------------|---------------------------|------|
| Symbol        |                                         | Backup<br>SRAM | RTC &<br>LSE | 1.2 V | 2 V   | 3 V   | 3.4 V | T <sub>J</sub> =<br>25°C | T <sub>J</sub> =<br>85°C | T <sub>J</sub> =<br>105°C | T <sub>J</sub> =<br>125°C | Unit |
|               | Cupply                                  | OFF            | OFF          | 0.024 | 0.035 | 0.062 | 0.096 | 0.074                    | 1.5                      | 4.1                       | 11                        |      |
| IDD<br>(VBAT) | Supply<br>current in<br>standby<br>mode | ON             | OFF          | 1.4   | 1.6   | 1.8   | 1.8   | 3.2                      | 19                       | 42                        | 74                        |      |
|               |                                         | OFF            | ON           | 0.225 | 0.23  | 0.25  | 0.31  | -                        | -                        | -                         | -                         | μA   |
|               |                                         | ON             | ON           | 1.95  | 2.15  | 2.2   | 2.35  | -                        | ı                        | -                         | -                         |      |

Table 37. Typical and maximum current consumption in VBAT mode

#### I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

#### I/O static current consumption

All the I/Os used as inputs with pull-up generate a current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 58: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

An additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

#### Caution:

Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid a current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

#### I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 38: Peripheral current consumption in Run mode*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DDx} \times f_{SW} \times C_{L}$$

where

 $I_{SW}$  is the current sunk by a switching I/O to charge/discharge the capacitive load  $V_{DDx}$  is the MCU supply voltage

f<sub>SW</sub> is the I/O switching frequency

 $C_I$  is the total capacitance seen by the I/O pin:  $C = C_{INT} + C_{EXT}$ 

108/227 DocID030553 Rev 3



<sup>1.</sup> Guaranteed by characterization results.

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

## On-chip peripheral current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are in analog input configuration.
- All peripherals are disabled unless otherwise mentioned.
- The I/O compensation cell is enabled.
- f<sub>ACLK</sub> is the system clock. f<sub>PCLK</sub> = f<sub>ACLK</sub>/4, and f<sub>HCLK</sub> = f<sub>ACLK</sub>/2.
   The given value is calculated by measuring the difference of current consumption
  - with all peripherals clocked off
  - with only one peripheral clocked on
  - $f_{ACLK}$  = 400 MHz (Scale 1),  $f_{ACLK}$  = 300 MHz (Scale 2),  $f_{ACLK}$  = 200 MHz (Scale 3)
- The ambient operating temperature is 25 °C and V<sub>DD</sub>=3.3 V.



Table 38. Peripheral current consumption in Run mode

|       | -                    | oneral current | I <sub>DD</sub> (Typ) |      | l lmi4     |
|-------|----------------------|----------------|-----------------------|------|------------|
|       | eripheral            | VOS1           | VOS2                  | VOS3 | Unit       |
|       | MDMA                 | 8.3            | 7.6                   | 7    |            |
|       | DMA2D                | 21             | 20                    | 18   |            |
|       | JPEG                 | 24             | 23                    | 21   |            |
|       | FLASH                | 9.9            | 9                     | 8.3  |            |
|       | FMC registers        | 0.9            | 0.9                   | 0.8  |            |
|       | FMC kernel           | 6.1            | 5.5                   | 5.3  |            |
|       | QUADSPI<br>registers | 1.5            | 1.4                   | 1.3  |            |
| AHB3  | QUADSPI kernel       | 0.9            | 0.8                   | 0.7  |            |
|       | SDMMC1 registers     | 8              | 7.2                   | 6.8  |            |
|       | SDMMC1 kernel        | 2.4            | 2                     | 1.8  |            |
|       | DTCM1                | 5.7            | 5                     | 4.5  |            |
|       | DTCM2                | 5.5            | 4.8                   | 4.3  |            |
|       | ITCM                 | 3.2            | 2.9                   | 2.6  |            |
|       | D1SRAM1              | 7.6            | 6.8                   | 6.1  |            |
|       | Bridge AHB3          | 7.5            | 6.8                   | 6.3  | μΑ/MHz     |
|       | DMA1                 | 1.1            | 1                     | 1    | μΑνίνιι ιΖ |
|       | DMA2                 | 1.7            | 1.4                   | 1.1  |            |
|       | ADC1/2 registers     | 3.9            | 3.2                   | 3.1  |            |
|       | ADC1/2 kernel        | 0.9            | 0.8                   | 0.7  |            |
|       | ART                  | 5.5            | 4.5                   | 4.2  |            |
|       | ETH1MAC              |                |                       |      |            |
|       | ETH1TX               | 16             | 14                    | 13   |            |
| ALIDA | ETH1RX               |                |                       |      |            |
| AHB1  | USB1OTG registers    | 15             | 14                    | 13   |            |
|       | USB1OTG kernel       | -              | 8.5                   | 8.5  |            |
|       | USB1ULPI             | 0.3            | 0.3                   | 0.1  |            |
|       | USB2OTG registers    | 15             | 13                    | 12   |            |
|       | USB2OTG kernel       | -              | 8.6                   | 8.6  |            |
|       | USB2ULPI             | 16             | 16                    | 16   |            |
|       | Bridge AHB1          | 10             | 9.6                   | 8.6  |            |

Table 38. Peripheral current consumption in Run mode (continued)

| _    | No win bo and l  |      | I <sub>DD</sub> (Typ) |      | I I m i f |
|------|------------------|------|-----------------------|------|-----------|
| r    | Peripheral       | VOS1 | VOS2                  | VOS3 | Unit      |
|      | DCMI             | 1.7  | 1.7                   | 1.7  |           |
|      | CRYPT            | 0.1  | 0.1                   | 0.1  |           |
|      | HASH             | 0.1  | 0.1                   | 0.1  |           |
|      | RNG registers    | 1.8  | 1.4                   | 1.2  |           |
|      | RNG kernel       | -    | 9.6                   | 9.6  |           |
| AHB2 | SDMMC2 registers | 13   | 12                    | 11   |           |
|      | SDMMC2 kernel    | 2.7  | 2.5                   | 2.4  |           |
|      | D2SRAM1          | 3.3  | 3.1                   | 2.8  |           |
|      | D2SRAM2          | 2.9  | 2.7                   | 2.5  |           |
|      | D2SRAM3          | 1.9  | 1.8                   | 1.7  |           |
|      | Bridge AHB2      | 0.1  | 0.1                   | 0.1  |           |
|      | GPIOA            | 1.1  | 1                     | 0.9  |           |
|      | GPIOB            | 1    | 0.9                   | 0.9  |           |
|      | GPIOC            | 1.4  | 1.3                   | 1.3  | μΑ/MHz    |
|      | GPIOD            | 1.1  | 1                     | 0.9  |           |
|      | GPIOE            | 1    | 0.9                   | 0.8  |           |
|      | GPIOF            | 0.9  | 0.8                   | 0.8  |           |
|      | GPIOG            | 0.9  | 0.7                   | 0.7  |           |
|      | GPIOH            | 1    | 0.9                   | 0.9  |           |
| AHB4 | GPIOI            | 0.9  | 0.9                   | 0.8  |           |
|      | GPIOJ            | 0.9  | 0.8                   | 0.8  |           |
|      | GPIOK            | 0.9  | 0.8                   | 0.7  |           |
|      | CRC              | 0.5  | 0.4                   | 0.4  |           |
|      | BDMA             | 6.2  | 5.8                   | 5.5  |           |
|      | ADC3 registers   | 1.8  | 1.7                   | 1.7  |           |
|      | ADC3 kernel      | 0.1  | 0.1                   | 0.1  |           |
|      | Backup SRAM      | 1.9  | 1.8                   | 1.8  |           |
|      | Bridge AHB4      | 0.1  | 0.1                   | 0.1  |           |
|      | LCD-TFT          | 12   | 11                    | 10   |           |
|      | WWDG1            | 0.5  | 0.4                   | 0.3  |           |
| APB3 | Bridge APB3      | 0.5  | 0.2                   | 0.1  | μΑ/MHz    |

Table 38. Peripheral current consumption in Run mode (continued)

|      | Davimbaral        |      | I <sub>DD</sub> (Typ) |      | Unit   |
|------|-------------------|------|-----------------------|------|--------|
| r    | Peripheral        | VOS1 | VOS2                  | VOS3 | - Onit |
|      | TIM2              | 3.5  | 3.2                   | 2.9  |        |
|      | TIM3              | 3.4  | 3.1                   | 2.7  |        |
|      | TIM4              | 2.7  | 2.5                   | 1.9  |        |
|      | TIM5              | 3.2  | 2.9                   | 2.5  |        |
|      | TIM6              | 1    | 0.8                   | 0.7  |        |
|      | TIM7              | 1    | 0.9                   | 0.7  |        |
|      | TIM12             | 1.7  | 1.5                   | 1.2  |        |
|      | TIM13             | 1.5  | 1.3                   | 1    |        |
|      | TIM14             | 1.4  | 1.3                   | 0.9  |        |
|      | LPTIM1 registers  | 0.7  | 0.6                   | 0.5  |        |
|      | LPTIM1 kernel     | 2.3  | 2.1                   | 1.9  |        |
|      | WWDG2             | 0.6  | 0.4                   | 0.4  |        |
| APB1 | SPI2 registers    | 1.8  | 1.5                   | 1.2  | μA/MHz |
|      | SPI2 kernel       | 0.6  | 0.5                   | 0.5  |        |
|      | SPI3 registers    | 1.5  | 1.3                   | 1.1  |        |
|      | SPI3 kernel       | 0.6  | 0.5                   | 0.5  |        |
|      | SPDIFRX registers | 0.6  | 0.5                   | 0.3  |        |
|      | SPDIFRX kernel    | 2.9  | 2.4                   | 2.4  |        |
|      | USART2 registers  | 1.4  | 1.3                   | 1    |        |
|      | USART2 kernel     | 4.7  | 4.1                   | 4    |        |
|      | USART3 registers  | 1.4  | 1.3                   | 1    |        |
|      | USART3 kernel     | 4.2  | 3.8                   | 3.5  |        |
|      | UART4 registers   | 1.5  | 1.1                   | 1    |        |
|      | UART4 kernel      | 3.7  | 3.6                   | 3.2  |        |

Table 38. Peripheral current consumption in Run mode (continued)

| D.          | eripheral          |      | I <sub>DD</sub> (Typ) |      | Unit   |
|-------------|--------------------|------|-----------------------|------|--------|
| F           | eriprierai         | VOS1 | VOS2                  | VOS3 |        |
|             | UART5 registers    | 1.4  | 1.4                   | 1    |        |
|             | UART5 kernel       | 3.6  | 3.2                   | 3.1  |        |
|             | I2C1 registers     | 0.8  | 0.8                   | 0.6  |        |
|             | I2C1 kernel        | 2    | 1.8                   | 1.7  |        |
|             | I2C2 registers     | 0.7  | 0.7                   | 0.4  |        |
|             | I2C2 kernel        | 1.9  | 1.7                   | 1.6  |        |
|             | I2C3 registers     | 0.9  | 0.7                   | 0.6  |        |
|             | I2C3 kernel        | 2.1  | 1.9                   | 1.9  |        |
|             | HDMI-CEC registers | 0.5  | 0.3                   | 0.3  |        |
|             | DAC1/2             | 1.4  | 1.1                   | 0.9  |        |
| APB1        | USART7 registers   | 1.9  | 1.8                   | 1.3  |        |
| (continued) | USART7 kernel      | 4    | 3.5                   | 3.3  | μA/MHz |
|             | USART8 registers   | 1.6  | 1.5                   | 1.2  |        |
|             | USART8 kernel      | 4    | 3.6                   | 3.3  |        |
|             | CRS                | 3.4  | 3.1                   | 2.9  |        |
|             | SWPMI registers    | 2.3  | 2                     | 2    |        |
|             | SWPMI kernel       | 0.1  | 0.1                   | 0.1  |        |
|             | OPAMP              | 0.5  | 0.4                   | 0.4  |        |
|             | MDIO               | 2.7  | 2.4                   | 2.3  | 1      |
|             | FDCAN registers    | 16   | 15                    | 14   |        |
|             | FDCAN kernel       | 7.8  | 7.6                   | 7.1  | ]      |
|             | Bridge APB1        | 0.1  | 0.1                   | 0.1  |        |

Table 38. Peripheral current consumption in Run mode (continued)

| D    | eripheral        |      | I <sub>DD</sub> (Typ) |      | Unit   |
|------|------------------|------|-----------------------|------|--------|
| P    | eripnerai        | VOS1 | VOS2                  | VOS3 | - Unit |
|      | TIM1             | 5.1  | 4.8                   | 4.3  |        |
|      | TIM8             | 5.4  | 4.9                   | 4.6  |        |
|      | USART1 registers | 2.7  | 2.6                   | 2.5  |        |
|      | USART1 kernel    | 0.1  | 0.1                   | 0.1  |        |
|      | USART6 registers | 2.6  | 2.5                   | 2.5  |        |
|      | USART6 kernel    | 0.1  | 0.1                   | 0.1  |        |
|      | SPI1 registers   | 1.8  | 1.6                   | 1.6  |        |
|      | SPI1 kernel      | 1    | 0.8                   | 0.6  |        |
|      | SPI4 registers   | 1.6  | 1.5                   | 1.5  |        |
|      | SPI4 kernel      | 0.5  | 0.4                   | 0.4  |        |
|      | TIM15            | 3.1  | 2.8                   | 2.7  |        |
|      | TIM16            | 2.4  | 2.1                   | 2.1  |        |
| APB2 | TIM17            | 2.2  | 2                     | 1.9  | μΑ/MHz |
|      | SPI5 registers   | 1.8  | 1.7                   | 1.7  |        |
|      | SPI5 kernel      | 0.6  | 0.5                   | 0.3  |        |
|      | SAI1 registers   | 1.5  | 1.4                   | 1.4  |        |
|      | SAI1 kernel      | 2    | 1.7                   | 1.5  |        |
|      | SAI2 registers   | 1.5  | 1.5                   | 1.3  |        |
|      | SAI2 kernel      | 2.2  | 1.9                   | 1.8  |        |
|      | SAI3 registers   | 1.8  | 1.6                   | 1.6  |        |
|      | SAI3 kernel      | 2.5  | 2.3                   | 2.1  |        |
|      | DFSDM1 registers | 6    | 5.4                   | 5.2  |        |
|      | DFSDM1 kernel    | 0.9  | 0.8                   | 0.7  |        |
|      | HRTIM            | 40   | 37                    | 35   |        |
|      | Bridge APB2      | 0.1  | 0.1                   | 0.1  |        |

Table 38. Peripheral current consumption in Run mode (continued)

| D    | eripheral         |      | I <sub>DD</sub> (Typ) |      | Unit   |
|------|-------------------|------|-----------------------|------|--------|
| P    | eripherai         | VOS1 | VOS2                  | VOS3 | Onit   |
|      | SYSCFG            | 1    | 0.7                   | 0.7  |        |
|      | LPUART1 registers | 1.1  | 1.1                   | 1.1  |        |
|      | LPUART1 kernel    | 2.6  | 2.4                   | 2.1  |        |
|      | SPI6 registers    | 1.6  | 1.5                   | 1.4  |        |
|      | SPI6 kernel       | 0.2  | 0.2                   | 0.2  |        |
|      | I2C4 registers    | 0.1  | 0.1                   | 0.1  |        |
|      | I2C4 kernel       | 2.4  | 2.1                   | 2    |        |
|      | LPTIM2 registers  | 0.5  | 0.5                   | 0.5  |        |
|      | LPTIM2 kernel     | 2.3  | 2.1                   | 1.8  |        |
|      | LPTIM3 registers  | 0.5  | 0.5                   | 0.5  |        |
| APB4 | LPTIM3 kernel     | 2    | 2.1                   | 1.5  | μΑ/MHz |
|      | LPTIM4 registers  | 0.5  | 0.5                   | 0.5  |        |
|      | LPTIM4 kernel     | 2    | 2                     | 1.9  |        |
|      | LPTIM5 registers  | 0.5  | 0.5                   | 0.5  |        |
|      | LPTIM5 kernel     | 2    | 1.8                   | 1.5  |        |
|      | COMP1/2           | 0.7  | 0.5                   | 0.5  |        |
|      | VREFBUF           | 0.6  | 0.4                   | 0.4  |        |
|      | RTC               | 1.2  | 1.1                   | 1.1  |        |
|      | SAI4 registers    | 1.6  | 1.5                   | 1.4  |        |
|      | SAI4 kernel       | 1.3  | 1.3                   | 1.2  |        |
|      | Bridge APB4       | 0.1  | 0.1                   | 0.1  |        |

Table 39. Peripheral current consumption in Stop, Standby and VBAT mode

| Symbol          | Parameter Conditions          |            | Тур  | Unit    |  |
|-----------------|-------------------------------|------------|------|---------|--|
| Symbol          | r ai ailletei                 | Conditions | 3 V  | O i iii |  |
|                 | RTC+LSE low drive             | -          | 2.32 |         |  |
| laa             | RTC+LSE medium-<br>low drive  | -          | 2.4  | μΑ      |  |
| I <sub>DD</sub> | RTC+LSE medium-<br>high drive | -          | 2.7  | μΛ      |  |
|                 | RTC+LSE High drive            | -          | 3    |         |  |

# 6.3.7 Wakeup time from low-power modes

The wakeup times given in *Table 40* are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

- For Stop or Sleep modes: the wakeup event is WFE.
- WKUP (PC1) pin is used to wakeup from Standby, Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and  $V_{DD}$ =3.3 V.

Table 40. Low-power mode wakeup timings

| Symbol                              | Parameter                | Conditions                                | Typ <sup>(1)</sup>     | Max <sup>(1)</sup> | Unit                   |  |
|-------------------------------------|--------------------------|-------------------------------------------|------------------------|--------------------|------------------------|--|
| t <sub>WUSLEEP</sub> (2)            | Wakeup from Sleep        | -                                         | 9                      | 10                 | CPU<br>clock<br>cycles |  |
|                                     |                          | VOS3, HSI, Flash memory in normal mode    | 4.4                    | 5.6                |                        |  |
|                                     |                          | VOS3, HSI, Flash memory in low-power mode | 12                     | 15                 |                        |  |
|                                     |                          | VOS4, HSI, Flash memory in normal mode    | 15                     | 20                 |                        |  |
|                                     |                          | VOS4, HSI, Flash memory in low-power mode | 23                     | 28                 |                        |  |
|                                     |                          | VOS5, HSI, Flash memory in normal mode    | 30                     | 71                 |                        |  |
| + (2)                               | Wakeup from Stop         | VOS5, HSI, Flash memory in low-power mode | 38                     | 47                 |                        |  |
| twustop <sup>(2)</sup>              |                          | VOS3, CSI, Flash memory in normal mode    | y in normal mode 27 37 |                    |                        |  |
|                                     |                          | VOS3, CSI, Flash memory in low power mode | 36                     | 50                 | μs                     |  |
|                                     |                          | VOS4, CSI, Flash memory in normal mode    | 38                     | 48                 |                        |  |
|                                     |                          | VOS4, CSI, Flash memory in low-power mode | 47                     | 61                 |                        |  |
|                                     |                          | VOS5, CSI, Flash memory in normal mode    | 52                     | 64                 |                        |  |
|                                     |                          | VOS5, CSI, Flash memory in low-power mode | 62                     | 77                 |                        |  |
| <b>.</b> (2)                        | Wakeup from Stop,        | VOS3, HSI, Flash memory in normal mode    | 2.6                    | 3.4                | 1                      |  |
| t <sub>WUSTOP2</sub> <sup>(2)</sup> | clock kept running       | VOS3, CSI, Flash memory in normal mode    | 26                     | 36                 |                        |  |
| t <sub>WUSTDBY</sub> (2)            | Wakeup from Standby mode | -                                         | 390                    | 500                |                        |  |

<sup>1.</sup> Guaranteed by characterization results.

<sup>2.</sup> The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.

### 6.3.8 External clock source characteristics

## High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O.

The external clock signal has to respect the *Table 58: I/O static characteristics*. However, the recommended clock input waveform is shown in *Figure 16*.

Table 41. High-speed external user clock characteristics<sup>(1)</sup>

| Symbol                                                    | Parameter                            | Min                | Тур | Max                | Unit |
|-----------------------------------------------------------|--------------------------------------|--------------------|-----|--------------------|------|
| f <sub>HSE_ext</sub>                                      | User external clock source frequency | 4                  | 25  | 50                 | MHz  |
| V <sub>SW</sub><br>(V <sub>HSEH</sub> -V <sub>HSEL)</sub> | OSC_IN amplitude                     | 0.7V <sub>DD</sub> | -   | V <sub>DD</sub>    | ٧    |
| $V_{DC}$                                                  | OSC_IN input voltage                 | $V_{SS}$           | -   | 0.3V <sub>SS</sub> |      |
| t <sub>W(HSE)</sub>                                       | OSC_IN high or low time              | 7                  | -   | -                  | ns   |

<sup>1.</sup> Guaranteed by design.

Figure 16. High-speed external clock source AC timing diagram



## Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the Table 58: I/O static characteristics. However, the recommended clock input waveform is shown in Figure 17.

Table 42. Low-speed external user clock characteristics<sup>(1)</sup>

| Symbol                                    | Parameter                             | Conditions | Min                    | Тур    | Max                    | Unit |
|-------------------------------------------|---------------------------------------|------------|------------------------|--------|------------------------|------|
| f <sub>LSE_ext</sub>                      | User external clock source frequency  | -          | -                      | 32.768 | 1000                   | kHz  |
| V <sub>LSEH</sub>                         | OSC32_IN input pin high level voltage | -          | 0.7 V <sub>DDIOx</sub> | -      | $V_{DDIOx}$            | V    |
| V <sub>LSEL</sub>                         | OSC32_IN input pin low level voltage  | -          | $V_{SS}$               | -      | 0.3 V <sub>DDIOx</sub> | V    |
| t <sub>w(LSEH)</sub> t <sub>w(LSEL)</sub> | OSC32_IN high or low time             | -          | 250                    | -      | -                      | ns   |

<sup>1.</sup> Guaranteed by design.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

**VLSEH** 90% **VLSEL** tW(LSE) tr(LSE) tf(LSE) LtW(LSE) TLSE fLSE\_ext External OSC32 IN clock source STM32 ai17529b

Figure 17. Low-speed external clock source AC timing diagram

## High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 43*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

| Symbol                         | Parameter                   | Operating conditions <sup>(2)</sup>                       | Min | Тур  | Max | Unit |
|--------------------------------|-----------------------------|-----------------------------------------------------------|-----|------|-----|------|
| F                              | Oscillator frequency        | -                                                         | 4   | -    | 48  | MHz  |
| R <sub>F</sub>                 | Feedback resistor           | -                                                         | -   | 200  | -   | kΩ   |
|                                |                             | During startup <sup>(3)</sup>                             | -   | -    | 4   |      |
|                                |                             | $V_{DD}$ =3 V, Rm=30 Ω $C_L$ =10pF@4MHz                   | -   | 0.35 | -   |      |
|                                | HSE current consumption     | $V_{DD}$ =3 V, Rm=30 Ω $C_L$ =10 pF at 8 MHz              | -   | 0.40 | -   |      |
| I <sub>DD(HSE)</sub>           |                             | $V_{DD}$ =3 V, Rm=30 Ω $C_L$ =10 pF at 16 MHz             | -   | 0.45 | -   | mA   |
|                                |                             | $V_{DD}$ =3 V, Rm=30 Ω<br>C <sub>L</sub> =10 pF at 32 MHz | -   | 0.65 | -   |      |
|                                |                             | $V_{DD}$ =3 V, Rm=30 Ω $C_L$ =10 pF at 48 MHz             | -   | 0.95 | -   |      |
| Gm <sub>critmax</sub>          | Maximum critical crystal gm | Startup                                                   | -   | -    | 1.5 | mA/V |
| t <sub>SU</sub> <sup>(4)</sup> | Start-up time               | V <sub>DD</sub> is stabilized                             | -   | 2    | -   | ms   |

Table 43. 4-48 MHz HSE oscillator characteristics<sup>(1)</sup>

For  $C_{L1}$  and  $C_{L2}$ , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typical), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 18*).  $C_{L1}$  and  $C_{L2}$  are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of  $C_{L1}$  and  $C_{L2}$ . The PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing  $C_{L1}$  and  $C_{L2}$ .

Note:

For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

<sup>1.</sup> Guaranteed by design.

<sup>2.</sup> Resonator characteristics given by the crystal/ceramic resonator manufacturer.

<sup>3.</sup> This consumption level occurs during the first 2/3 of the  $t_{SU(HSE)}$  startup time.

<sup>4.</sup> t<sub>SU(HSE)</sub> is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.



Figure 18. Typical application with an 8 MHz crystal

R<sub>EXT</sub> value depends on the crystal characteristics.

### Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 44*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

| Symbol                         | Parameter                   | Operating conditions <sup>(2)</sup>               | Min | Тур    | Max  | Unit   |
|--------------------------------|-----------------------------|---------------------------------------------------|-----|--------|------|--------|
| F                              | Oscillator frequency        | -                                                 | -   | 32.768 | -    | kHz    |
|                                |                             | LSEDRV[1:0] = 00,<br>Low drive capability         | -   | 290    | -    |        |
|                                | LSE current                 | LSEDRV[1:0] = 01,<br>Medium Low drive capability  | -   | 390    | -    | 2 2    |
| I <sub>DD</sub>                | consumption                 | LSEDRV[1:0] = 10,<br>Medium high drive capability | -   | 550    | -    | - nA   |
|                                |                             | LSEDRV[1:0] = 11,<br>High drive capability        | -   | 900    | -    |        |
|                                |                             | LSEDRV[1:0] = 00,<br>Low drive capability         | -   | -      | 0.5  |        |
| Cm                             | Maximum critical crystal gm | LSEDRV[1:0] = 01,<br>Medium Low drive capability  | -   | -      | 0.75 |        |
| Gm <sub>critmax</sub>          |                             | LSEDRV[1:0] = 10,<br>Medium high drive capability | -   | -      | 1.7  | - μΑ/V |
|                                |                             | LSEDRV[1:0] = 11,<br>High drive capability        | -   | -      | 2.7  |        |
| t <sub>SU</sub> <sup>(3)</sup> | Startup time                | VDD is stabilized                                 | -   | 2      | -    | s      |

Table 44. Low-speed external user clock characteristics<sup>(1)</sup>



Guaranteed by design.

Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers.

t<sub>SU</sub> is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768k Hz oscillation is
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Note:

For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.



Figure 19. Typical application with a 32.768 kHz crystal

1. An external resistor is not required between OSC32\_IN and OSC32\_OUT and it is forbidden to add one.

### 6.3.9 Internal clock source characteristics

The parameters given in *Table 45* and *Table 48* are derived from tests performed under ambient temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 23: General operating conditions*.

### 48 MHz high-speed internal RC oscillator (HSI48)

| Symbol                                | Parameter                                                                  | Conditions                                                       | Min        | Тур                                                                | Max                                                    | Unit |
|---------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------|------------|--------------------------------------------------------------------|--------------------------------------------------------|------|
| f <sub>HSI48</sub> HSI48 frequency    |                                                                            | V <sub>DD</sub> =3.3 V, TJ=30 °C                                 | -          | 48                                                                 | -                                                      | MHz  |
| TRIM <sup>(1)</sup>                   | USER trimming step                                                         | -                                                                | -          | 0.17                                                               | -                                                      | %    |
| USER TRIM<br>COVERAGE <sup>(2)</sup>  | USER TRIMMING Coverage                                                     | ± 32 steps                                                       | -          | ±5.45                                                              | 1                                                      | %    |
| DuCy(HSI48) <sup>(1)</sup>            | Duty Cycle                                                                 | -                                                                | -          | 50                                                                 | -                                                      | %    |
| ACCHSI48_REL <sup>(2)</sup>           | Accuracy of the HSI48 oscillator over temperature (factory calibrated)     | V <sub>DD</sub> =1.62 to 3.6 V,<br>T <sub>J</sub> =-40 to 105 °C | <b>–</b> 5 | 48<br>0.17<br>±5.45<br>50<br>0.025<br>0.05<br>2.1<br>350<br>± 0.15 | 4                                                      | %    |
| DVDD(HSI48) <sup>(2)</sup>            | HSI48 oscillator frequency drift with                                      | V <sub>DD</sub> =3 to 3.6 V                                      | ı          | 0.025                                                              | - 9<br>5 - 9<br>4 9<br>5 0.05<br>0.1<br>3.5 μ<br>400 μ | %    |
| 0000(113146)                          | $V_{DD}^{(3)}$                                                             | V <sub>DD</sub> =1.62 V to 3.6 V                                 | -          | 0.05                                                               |                                                        | /0   |
| t <sub>su(HSI48)</sub> <sup>(1)</sup> | HSI48 oscillator start-up time                                             | -                                                                | -          | 2.1                                                                | 3.5                                                    | μs   |
| I <sub>DD(HSI48)</sub> <sup>(1)</sup> | HSI48 oscillator power consumption                                         | -                                                                | -          | 350                                                                | 400                                                    | μA   |
| N <sub>T</sub> jitter                 | Next transition jitter<br>Accumulated jitter on 28 cycles <sup>(4)</sup>   | -                                                                | ı          | ± 0.15                                                             | ı                                                      | ns   |
| P <sub>T</sub> jitter                 | Paired transition jitter<br>Accumulated jitter on 56 cycles <sup>(4)</sup> | -                                                                | -          | ± 0.25                                                             | -                                                      | ns   |

Table 45. HSI48 oscillator characteristics

<sup>4.</sup> Jitter measurements are performed without clock source activated in parallel.



<sup>1.</sup> Guaranteed by design.

<sup>2.</sup> Guaranteed by characterization.

These values are obtained by using the formula: (Freq(3.6V) - Freq(3.0V)) / Freq(3.0V) or (Freq(3.6V) - Freq(1.62V)) / Freq(1.62V).

# 64 MHz high-speed internal RC oscillator (HSI)

Table 46. HSI oscillator characteristics<sup>(1)</sup>

| Symbol                  | Parameter                                                                | Conditions                                                                          | Min               | Тур   | Max              | Unit |
|-------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------|-------|------------------|------|
| f <sub>HSI</sub>        | HSI frequency                                                            | V <sub>DD</sub> =3.3 V, T <sub>J</sub> =30 °C                                       | -                 | 64    | -                | MHz  |
|                         |                                                                          | Trimming is not a multiple of 32                                                    | -                 | 0.24  | 0.32             |      |
|                         |                                                                          | Trimming is 128, 256 and 384                                                        | -5.2              | -1.8  | -                |      |
| TRIM                    | HSI user trimming step                                                   | Trimming is 64, 192, 320 and 448                                                    | -1.4              | -0.8  | -                | %    |
|                         |                                                                          | Other trimming are a<br>multiple of 32 (not<br>including multiple of 64<br>and 128) | -0.6              | -0.25 | -                |      |
| DuCy(HSI)               | Duty Cycle                                                               | -                                                                                   | 45                | -     | 55               | %    |
| Δ <sub>VDD (HSI)</sub>  | HSI oscillator frequency drift over V <sub>DD</sub> (reference is 3.3 V) | V <sub>DD</sub> =1.62 to 3.6 V                                                      | -0.12             | -     | 0.03             | %    |
| Λ                       | HSI oscillator frequency drift over                                      | T <sub>J</sub> =-20 to 105 °C                                                       | -1 <sup>(2)</sup> | -     | 1 <sup>(2)</sup> | %    |
| Δ <sub>TEMP</sub> (HSI) | temperature (reference is 64 MHz)                                        | T <sub>J</sub> =-40 to T <sub>J</sub> max °C                                        | -2 <sup>(2)</sup> |       | 1 <sup>(2)</sup> |      |
| t <sub>su</sub> (HSI)   | HSI oscillator start-up time                                             | -                                                                                   | -                 | 1.4   | 2                | μs   |
| t <sub>stab</sub> (HSI) | HSI oscillator stabilization time                                        | at 1% of target frequency                                                           | -                 | 3     | 5                | μs   |
| I <sub>DD</sub> (HSI)   | HSI oscillator power consumption                                         | -                                                                                   | -                 | 300   | 400              | μΑ   |

<sup>1.</sup> Guaranteed by design unless otherwise specified.

# 4 MHz low-power internal RC oscillator (CSI)

Table 47. CSI oscillator characteristics<sup>(1)</sup>

| Symbol                                       | Parameter                                                                    | Conditions                                      | Min                 | Тур               | Max                 | Unit  |
|----------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------|---------------------|-------------------|---------------------|-------|
| f <sub>CSI</sub> CSI frequency               |                                                                              | V <sub>DD</sub> =3.3 V, T <sub>J</sub> =30 °C   | 3.96 <sup>(2)</sup> | 4                 | 4.04 <sup>(2)</sup> | MHz   |
| TRIM                                         | Trimming step                                                                | -                                               | -                   | 0.35              | -                   | %     |
| DuCy(CSI)                                    | Duty Cycle                                                                   | -                                               | 45                  | -                 | 55                  | %     |
| $\Delta_{VDD}$ (CSI) + $\Delta_{TEMP}$ (CSI) | CSI oscillator frequency drift over V <sub>DD</sub> & drift over temperature | $V_{DD}$ =1.62 to 3.6 V<br>$T_{J}$ = 0 to 85 °C | -                   | ±1 <sup>(3)</sup> | -                   | %     |
| t <sub>su(CSI)</sub>                         | CSI oscillator startup time                                                  | -                                               | -                   | 1                 | -                   | μs    |
| t <sub>stab(CSI)</sub>                       | CSI oscillator stabilization time (to reach ±3% of f <sub>CSI</sub> )        | -                                               | -                   | -                 | 4                   | cycle |
| I <sub>DD(CSI)</sub>                         | CSI oscillator power consumption                                             | -                                               | -                   | 23                | 30                  | μΑ    |

<sup>1.</sup> Guaranteed by design.

<sup>2.</sup> Guaranteed by characterization.

<sup>2.</sup> Guaranteed by test in production.

<sup>3.</sup> Guaranteed by characterization results.

## Low-speed internal (LSI) RC oscillator

Table 48. LSI oscillator characteristics

| Symbol                                | Parameter                                             | Conditions                                                                                 | Min   | Тур | Max   | Unit |
|---------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------|-------|-----|-------|------|
| f <sub>LSI</sub>                      | LSI frequency                                         | $V_{DD}$ = 3.3 V,<br>$T_{J}$ = 25 °C (after calibration)                                   | 31.4  | 32  | 32.6  | kHz  |
|                                       |                                                       | $T_J = -40 \text{ to } 105 ^{\circ}\text{C},$<br>$V_{DD} = 1.62 \text{ to } 3.6 \text{ V}$ | 29.76 | -   | 33.60 |      |
| t <sub>su(LSI)</sub> <sup>(1)</sup>   | LSI oscillator startup time                           | -                                                                                          | i     | 80  | 130   |      |
| t <sub>stab(LSI)</sub> <sup>(1)</sup> | LSI oscillator stabilization time (5% of final value) | -                                                                                          | -     | 120 | 170   | μs   |
| I <sub>DD(LSI)</sub> <sup>(1)</sup>   | LSI oscillator power consumption                      | -                                                                                          | -     | 130 | 280   | nA   |

<sup>1.</sup> Guaranteed by design.

## 6.3.10 PLL characteristics

The parameters given in *Table 49* are derived from tests performed under temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 23: General operating conditions*.

Table 49. Main PLL characteristics<sup>(1)</sup>

| Symbol                 | Parameter                       | Conditions                         | Min | Тур               | Max                | Unit |
|------------------------|---------------------------------|------------------------------------|-----|-------------------|--------------------|------|
| f                      | PLL input clock                 | -                                  | 2   | -                 | 16                 | MHz  |
| f <sub>PLL_IN</sub>    | PLL input clock duty cycle      | -                                  | 10  | -                 | 90                 | %    |
|                        |                                 | Voltage scaling range 1            | 1.5 | -                 | 400 <sup>(2)</sup> |      |
| f <sub>PLL_P_OUT</sub> | PLL multiplier output clock P   | Voltage scaling range 2            | 1.5 | -                 | 300                |      |
|                        |                                 | Voltage scaling range 3            | 1.5 | -                 | 200                |      |
|                        |                                 | Voltage scaling range 1            | 1.5 | -                 | 400 <sup>(2)</sup> | MHz  |
| f <sub>PLL_Q_OUT</sub> | PLL multiplier output clock Q/R | Voltage scaling range 2            | 1.5 | -                 | 300                |      |
|                        |                                 | Voltage scaling range 3            | 1.5 | -                 | 200                |      |
| f <sub>VCO_OUT</sub>   | PLL VCO output                  | -                                  | 192 | -                 | 836                |      |
|                        |                                 | Normal mode                        | -   | 50 <sup>(3)</sup> | 150 <sup>(3)</sup> |      |
| t <sub>LOCK</sub>      | PLL lock time                   | Sigma-delta mode<br>(CKIN ≥ 8 MHz) | -   | 58 <sup>(3)</sup> | 166 <sup>(3)</sup> | μs   |

Table 49. Main PLL characteristics<sup>(1)</sup> (continued)

| Symbol                              | Parameter                                | Condition                           | ıs                        | Min | Тур  | Max  | Unit |  |
|-------------------------------------|------------------------------------------|-------------------------------------|---------------------------|-----|------|------|------|--|
|                                     |                                          | VCO = 192 MHz                       |                           | -   | 134  | -    |      |  |
|                                     | Cycle-to-cycle jitter                    | VCO = 200 MHz                       |                           | -   | 134  | -    | ±no. |  |
|                                     | Cycle-to-cycle jitter                    | VCO = 400 MHz                       |                           | -   | 76   | -    | ±ps  |  |
| Jitter                              |                                          | VCO = 800 MHz                       |                           | -   | 39   | -    |      |  |
| o.u.o.                              |                                          | Normal mode                         |                           | -   | ±0.7 | -    |      |  |
|                                     |                                          | Sigma-delta mode<br>(CKIN = 16 MHz) |                           | -   | ±0.8 | -    | %    |  |
|                                     |                                          | VCO freq =                          | $V_{DDA}$                 | -   | 590  | 1500 |      |  |
| I <sub>DD(PLL)</sub> <sup>(3)</sup> | PLL power consumption on V <sub>DD</sub> | 836 MHz                             | V <sub>CORE</sub> - 720 - | -   |      |      |      |  |
|                                     | VCO fr                                   | VCO freq =                          | $V_{DDA}$                 | -   | 180  | 600  | μA   |  |
|                                     |                                          | 192 MHz                             | V <sub>CORE</sub>         |     |      | -    |      |  |

<sup>1.</sup> Guaranteed by design unless otherwise specified.

# 6.3.11 Memory characteristics

## Flash memory

The characteristics are given at  $T_J$  = -40 to 125 °C unless otherwise specified.

The devices are shipped to customers with the Flash memory erased.

Table 50. Flash memory characteristics

| Symbol | Parameter      | Conditions                | Min | Тур  | Max | Unit |
|--------|----------------|---------------------------|-----|------|-----|------|
|        |                | Write / Erase 8-bit mode  | -   | 6.5  | -   |      |
| ı      | Supply ourrent | Write / Erase 16-bit mode | -   | 11.5 | -   | mA   |
| IDD    | Supply current | Write / Erase 32-bit mode | -   | 20   | -   | IIIA |
|        |                | Write / Erase 64-bit mode | -   | 35   | -   |      |

<sup>2.</sup> Due to product limitation to 400 MHz.

<sup>3.</sup> Guaranteed by characterization results.

Table 51. Flash memory programming (single bank configuration nDBANK=1)

| Symbol                  | Parameter                   | Conditions                     | Min <sup>(1)</sup> | Тур | Max <sup>(1)</sup> | Unit |
|-------------------------|-----------------------------|--------------------------------|--------------------|-----|--------------------|------|
|                         |                             | Program/erase parallelism x 8  | -                  | 290 | 580 <sup>(2)</sup> |      |
| <b>+</b>                | Word (266 bits) programming | Program/erase parallelism x 16 | -                  | 180 | 360                |      |
| t <sub>prog</sub>       | time                        | Program/erase parallelism x 32 | -                  | 130 | 260                | μs   |
|                         |                             | Program/erase parallelism x 64 | -                  | 100 | 200                |      |
|                         |                             | Program/erase parallelism x 8  | -                  | 2   | 4                  |      |
| t <sub>ERASE128KB</sub> | Sector (128 KB) erase time  | Program/erase parallelism x 16 | -                  | 1.8 | 3.6                |      |
|                         |                             | Program/erase parallelism x 32 | -                  |     |                    |      |
|                         |                             | Program/erase parallelism x 8  | -                  | 13  | 26                 | s    |
| 4                       | Mass erase time             | Program/erase parallelism x 16 | -                  | 8   | 16                 |      |
| t <sub>ME</sub>         | Wass erase time             | Program/erase parallelism x 32 | -                  | 6   | 12                 |      |
|                         |                             | Program/erase parallelism x 64 | -                  | 5   | 10                 |      |
|                         |                             | Program parallelism x 8        |                    |     |                    |      |
| M                       | Drogramming voltage         | Program parallelism x 16       | 1.62               | -   | 3.6                | V    |
| $V_{prog}$              | Programming voltage         | Program parallelism x 32       |                    |     |                    | V    |
|                         |                             | Program parallelism x 64       | 1.8                | -   | 3.6                |      |

<sup>1.</sup> Guaranteed by characterization results.

Table 52. Flash memory endurance and data retention

| Comple of        | Downwater      | Conditions                                                                | Value              | 11      |
|------------------|----------------|---------------------------------------------------------------------------|--------------------|---------|
| Symbol           | Parameter      | Conditions                                                                | Min <sup>(1)</sup> | Unit    |
| N <sub>END</sub> | Endurance      | $T_J = -40 \text{ to } +125 ^{\circ}\text{C} \text{ (6 suffix versions)}$ | 10                 | kcycles |
| +                | Data retention | 1 kcycle at T <sub>A</sub> = 85 °C                                        | 30                 | Years   |
| <sup>T</sup> RET |                | 10 kcycles at T <sub>A</sub> = 55 °C                                      | 20                 | Teals   |

<sup>1.</sup> Guaranteed by characterization results.

<sup>2.</sup> The maximum programming time is measured after 10K erase operations.

#### 6.3.12 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

## Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V<sub>DD</sub> and V<sub>SS</sub> through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 53*. They are based on the EMS levels and classes defined in application note AN1709.

| Symbol            | Parameter                                                                                                                                       | Conditions                                                           | Level/<br>Class |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------|
| V <sub>FESD</sub> | Voltage limits to be applied on any I/O pin to induce a functional disturbance                                                                  | V <sub>DD</sub> = 3.3 V, T <sub>A</sub> = +25 °C,                    | 3B              |
| V <sub>FTB</sub>  | Fast transient voltage burst limits to be applied through 100 pF on V <sub>DD</sub> and V <sub>SS</sub> pins to induce a functional disturbance | UFBGA240, f <sub>rcc_c_ck</sub> = 400 MHz, conforms to IEC 61000-4-2 | 4B              |

Table 53. EMS characteristics

As a consequence, it is recommended to add a serial resistor (1  $k\Omega$ ) located as close as possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm on PCB).

### Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and pregualification tests in relation with the EMC level requested for his application.

#### Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

#### **Prequalification trials**

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

## **Electromagnetic Interference (EMI)**

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Max vs. **Monitored** [f<sub>HSE</sub>/f<sub>CPU</sub>] Symbol **Parameter Conditions** Unit frequency band 8/400 MHz 0.1 to 30 MHz 6 30 to 130 MHz 5 dBµV  $V_{DD}$  = 3.6 V,  $T_A$  = 25 °C, UFBGA240 package, 13 130 MHz to 1 GHz S<sub>EMI</sub> Peak level conforming to IEC61967-2 7 1 GHz to 2 GHz 2.5 EMI Level

Table 54. EMI characteristics

#### 6.3.13 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

### Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse) are applied to the pins of each sample according to each pin combination. This test conforms to the ANSI/ESDA/JEDEC JS-001 and ANSI/ESDA/JEDEC JS-002 standards.

Table 55. ESD absolute maximum ratings

| Symbol                | Ratings                                               | Conditions                                                          | Packages | Class | Maximum<br>value <sup>(1)</sup> | Unit |  |
|-----------------------|-------------------------------------------------------|---------------------------------------------------------------------|----------|-------|---------------------------------|------|--|
| V <sub>ESD(HBM)</sub> | Electrostatic discharge voltage (human body model)    | T <sub>A</sub> = +25 °C conforming to<br>ANSI/ESDA/JEDEC JS-<br>001 | All      | 1C    | 1000                            | V    |  |
| V <sub>ESD(CDM)</sub> | Electrostatic discharge voltage (charge device model) | T <sub>A</sub> = +25 °C conforming to<br>ANSI/ESDA/JEDEC JS-<br>002 | All      | C1    | 250                             | V    |  |

<sup>1.</sup> Guaranteed by characterization results.



### Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with JESD78 IC latchup standard.

Table 56. Electrical sensitivities

| Symbol | Parameter            | Conditions                                   | Class      |
|--------|----------------------|----------------------------------------------|------------|
| LU     | Static latchup class | T <sub>A</sub> = +25 °C conforming to JESD78 | II level A |

## 6.3.14 I/O current injection characteristics

As a general rule, a current injection to the I/O pins, due to external voltage below  $V_{SS}$  or above  $V_{DD}$  (for standard, 3.3 V-capable I/O pins) should be avoided during the normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when an abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during the device characterization.

## Functional susceptibilty to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of  $-5 \mu A/+0 \mu A$  range), or other functional failure (for example reset, oscillator frequency deviation).

The following tables are the compilation of the SIC1/SIC2 and functional ESD results.

Negative induced A negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection.

Table 57. I/O current injection susceptibility<sup>(1)</sup>

| Symbol           |                                                                          | Functional s       |                    |      |
|------------------|--------------------------------------------------------------------------|--------------------|--------------------|------|
|                  | Description                                                              | Negative injection | Positive injection | Unit |
|                  | PA7, PC5, PG1, PB14, PJ7, PA11, PA12, PA13, PA14, PA15, PJ12, PB4        | 5                  | 0                  |      |
| ı                | PA2, PH2, PH3, PE8, PA6, PA7, PC4, PE7, PE10, PE11                       | 0                  | NA                 | m Λ  |
| I <sub>INJ</sub> | PA0, PA_C, PA1, PA1_C, PC2, PC2_C, PC3, PC3_C, PA4, PA5, PH4, PH5, BOOT0 | 0                  | 0                  | mA   |
|                  | All other I/Os                                                           | 5                  | NA                 |      |

Guaranteed by characterization.

## 6.3.15 I/O port characteristics

## General input/output characteristics

Unless otherwise specified, the parameters given in *Table 58: I/O static characteristics* are derived from tests performed under the conditions summarized in *Table 23: General operating conditions*. All I/Os are CMOS and TTL compliant (except for BOOT0).

Table 58. I/O static characteristics

| Symbol                          | Parameter                                         | Condition                                       | Min                            | Тур | Max                          | Unit  |
|---------------------------------|---------------------------------------------------|-------------------------------------------------|--------------------------------|-----|------------------------------|-------|
| V <sub>IL</sub> <sup>(1)</sup>  | I/O input low level voltage except BOOT0          |                                                 | -                              | -   | 0.3xV <sub>DD</sub>          |       |
|                                 | I/O input low level voltage except BOOT0          | 1.62 V <v<sub>DD&lt;3.6 V</v<sub>               | -                              | -   | 0.4xV <sub>DD</sub> -<br>0.1 | V     |
|                                 | BOOT0 I/O input low level voltage                 |                                                 | -                              | ı   | 0.19xV <sub>DD</sub><br>+0.1 |       |
|                                 | I/O input high level voltage except BOOT0         | 1.02 V \ V <sub>DD</sub> \ 3.0 V                | 0.7xV <sub>DD</sub>            | -   | -                            |       |
| V <sub>IH</sub> <sup>(1)</sup>  | I/O input low level voltage except BOOT0          |                                                 | 0.47xV <sub>DD</sub> +<br>0.25 | -   | -                            | V     |
|                                 | BOOT0 I/O input high level voltage                |                                                 | 0.17xV <sub>DD</sub> +<br>0.6  | -   | -                            |       |
| V <sub>HYS</sub> <sup>(1)</sup> | TT_xx, FT_xxx and NRST I/O input hysteresis       | 1.62 V< V <sub>DD</sub> <3.6 V                  | -                              | 250 | -                            | mV    |
|                                 | BOOT0 I/O input hysteresis                        |                                                 | -                              | 200 | -                            |       |
| R <sub>PU</sub>                 | Weak pull-up equivalent resistor <sup>(2)</sup>   | V <sub>IN</sub> =V <sub>SS</sub>                | 30                             | 40  | 50                           | kΩ    |
| R <sub>PD</sub>                 | Weak pull-down equivalent resistor <sup>(2)</sup> | V <sub>IN</sub> =V <sub>DD</sub> <sup>(3)</sup> | 30                             | 40  | 50                           | , V77 |
| C <sub>IO</sub>                 | I/O pin capacitance                               | -                                               | -                              | 5   | -                            | pF    |

<sup>1.</sup> Guaranteed by design.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in *Figure 20*.

<sup>2.</sup> The pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).

<sup>3.</sup> Max(VDDXXX) is the maximum value of all the I/O supplies.



Figure 20. V<sub>IL</sub>/V<sub>IH</sub> for all I/Os except BOOT0

## **Output driving current**

The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ±20 mA (with a relaxed V<sub>OI</sub> /V<sub>OH</sub>).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2. In particular:

- The sum of the currents sourced by all the I/Os on  $V_{\mbox{\scriptsize DD},}$  plus the maximum Run consumption of the MCU sourced on  $V_{DD}$ , cannot exceed the absolute maximum rating ΣI<sub>VDD</sub> (see *Table 21*).
- The sum of the currents sunk by all the I/Os on  $\ensuremath{V_{\text{SS}}}$  plus the maximum Run consumption of the MCU sunk on V<sub>SS</sub> cannot exceed the absolute maximum rating ΣI<sub>VSS</sub> (see Table 21).

## **Output voltage levels**

Unless otherwise specified, the parameters given in *Table 59* are derived from tests performed under ambient temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 23: General operating conditions*. All I/Os are CMOS and TTL compliant.

Table 59. Output voltage characteristics<sup>(1)</sup>

| Symbol                            | Parameter                           | Conditions <sup>(3)</sup>                                                                             | Min                  | Max | Unit |
|-----------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------|-----|------|
| V <sub>OL</sub>                   | Output low level voltage            | CMOS port <sup>(2)</sup> $I_{IO}=8 \text{ mA}$ $2.7 \text{ V} \leq V_{DD} \leq 3.6 \text{ V}$         |                      | 0.4 |      |
| V <sub>OH</sub>                   | Output high level voltage           | CMOS port <sup>(2)</sup> $I_{IO}=-8 \text{ mA}$ $2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}$ | V <sub>DD</sub> -0.4 |     |      |
| V <sub>OL</sub> <sup>(3)</sup>    | Output low level voltage            | TTL port <sup>(2)</sup> $I_{IO}=8 \text{ mA}$ $2.7 \text{ V} \leq V_{DD} \leq 3.6 \text{ V}$          |                      | 0.4 |      |
| V <sub>OH</sub> <sup>(3)</sup>    | Output high level voltage           | TTL port <sup>(2)</sup> $I_{IO}=-8 \text{ mA}$ $2.7 \text{ V} \leq V_{DD} \leq 3.6 \text{ V}$         | 2.4                  |     |      |
| V <sub>OL</sub> <sup>(3)</sup>    | Output low level voltage            | I <sub>IO</sub> =20 mA<br>2.7 V≤ V <sub>DD</sub> ≤3.6 V                                               |                      | 1.3 | V    |
| V <sub>OH</sub> <sup>(3)</sup>    | Output high level voltage           | I <sub>IO</sub> =-20 mA<br>2.7 V≤ V <sub>DD</sub> ≤3.6 V                                              | V <sub>DD</sub> -1.3 |     |      |
| V <sub>OL</sub> <sup>(3)</sup>    | Output low level voltage            | I <sub>IO</sub> =4 mA<br>1.62 V≤ V <sub>DD</sub> ≤3.6 V                                               |                      | 0.4 |      |
| V <sub>OH</sub> <sup>(3)</sup>    | Output high level voltage           | I <sub>IO</sub> =-4 mA<br>1.62 V≤V <sub>DD</sub> <3.6 V                                               | V <sub>DD</sub> 0.4  |     |      |
| V <sub>OLFM+</sub> <sup>(3)</sup> | Output low level voltage for an FTf | I <sub>IO</sub> = 20 mA<br>2.3 V≤ V <sub>DD</sub> ≤3.6 V                                              | -                    | 0.4 |      |
| VOLFM+\\'                         | IO pin in FM+ mode                  | I <sub>IO</sub> = 10 mA<br>1.62 V≤ V <sub>DD</sub> ≤3.6 V                                             | -                    | 0.4 |      |

The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 20:
 Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣIIO.

<sup>2.</sup> TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

<sup>3.</sup> Guaranteed by design.

# **Output buffer timing characteristics (HSLV option disabled)**

The HSLV bit of SYSCFG\_CCCSR register can be used to optimize the I/O speed when the product voltage is below 2.5 V.

Table 60. Output timing characteristics (HSLV OFF)<sup>(1)</sup>

| Speed | Symbol                                         | Parameter                                        | conditions                                       | Min                                    | Max  | Unit  |    |
|-------|------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------|------|-------|----|
|       |                                                |                                                  | C=50 pF, 2.7 V≤ V <sub>DD</sub> ≤3.6 V           | -                                      | 12   |       |    |
|       |                                                |                                                  | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V           | -                                      | 3    |       |    |
|       | F <sub>max</sub> <sup>(2)</sup>                | Maximum fraguanay                                | C=30 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V            | -                                      | 12   | MHz   |    |
|       | 「max`′                                         | Maximum frequency                                | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V           | -                                      | 3    | IVITZ |    |
|       |                                                |                                                  | C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V            | -                                      | 16   |       |    |
| 00    |                                                |                                                  | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V           | -                                      | 4    |       |    |
| 00    |                                                |                                                  | C=50 pF, 2.7 V≤ V <sub>DD</sub> ≤3.6 V           | -                                      | 16.6 |       |    |
|       |                                                |                                                  | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V           | -                                      | 33.3 |       |    |
|       | $t_r/t_f^{(3)}$                                | Output high to low level                         | C=30 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V            | -                                      | 13.3 |       |    |
|       | <sub>Гр</sub> / Г <sub>Б</sub> <sup>°</sup> °′ |                                                  | fall time and output low to high level rise time | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V | -    | 25    | ns |
|       |                                                |                                                  | C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V            | -                                      | 10   | -     |    |
|       |                                                |                                                  | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V           | -                                      | 20   |       |    |
|       |                                                |                                                  | C=50 pF, 2.7 V≤ V <sub>DD</sub> ≤3.6 V           | -                                      | 60   |       |    |
|       |                                                |                                                  | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V           | -                                      | 15   |       |    |
|       | - (2)                                          | Massinas una fina assanas a                      | C=30 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V            | -                                      | 80   | 1     |    |
|       | F <sub>max</sub> <sup>(2)</sup>                | Maximum frequency                                | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V           | -                                      | 15   | – MHz |    |
|       |                                                |                                                  | C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V            | -                                      | 110  |       |    |
| 01    |                                                |                                                  | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V           | -                                      | 20   |       |    |
| 01    |                                                |                                                  | C=50 pF, 2.7 V≤ V <sub>DD</sub> ≤3.6 V           | -                                      | 5.2  |       |    |
|       |                                                |                                                  | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V           | -                                      | 10   |       |    |
|       | t <sub>r</sub> /t <sub>f</sub> (3)             | Output high to low level                         | C=30 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V            | -                                      | 4.2  | 200   |    |
|       | կ-/ կ <sup>-</sup> ՝                           | fall time and output low to high level rise time | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V           | -                                      | 7.5  | ns    |    |
|       |                                                |                                                  | C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V            | -                                      | 2.8  |       |    |
|       |                                                |                                                  | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V           | -                                      | 5.2  |       |    |

Table 60. Output timing characteristics (HSLV OFF)<sup>(1)</sup> (continued)

| Speed | Symbol                                | Parameter                                         | conditions                                            | Min | Max | Unit   |
|-------|---------------------------------------|---------------------------------------------------|-------------------------------------------------------|-----|-----|--------|
|       |                                       |                                                   | C=50 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -   | 85  |        |
|       |                                       |                                                   | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -   | 35  |        |
|       | F <sub>max</sub> <sup>(2)</sup>       | Maximum fraguancy                                 | C=30 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -   | 110 | MHz    |
|       | Fmax` ′                               | Maximum frequency                                 | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -   | 40  | IVITZ  |
|       |                                       |                                                   | C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -   | 166 |        |
| 10    |                                       |                                                   | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -   | 100 |        |
| 10    |                                       |                                                   | C=50 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -   | 3.8 |        |
|       |                                       |                                                   | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -   | 6.9 |        |
|       | $t_r/t_f^{(3)}$                       | Output high to low level fall time and output low | C=30 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -   | 2.8 |        |
|       | l <sub>t</sub> γ/ l <sub>f</sub> ``΄΄ | to high level rise time                           | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -   | 5.2 | ns     |
|       |                                       |                                                   | C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -   | 1.8 |        |
|       |                                       |                                                   | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -   | 3.3 |        |
|       |                                       |                                                   | C=50 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -   | 100 |        |
|       |                                       |                                                   | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -   | 50  |        |
|       | F (2)                                 | F <sub>max</sub> <sup>(2)</sup> Maximum frequency | C=30 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -   | 133 | MHz    |
|       | 「max`´                                | waximum nequency                                  | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -   | 66  | IVIITZ |
|       |                                       |                                                   | C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -   | 220 |        |
| 11    |                                       |                                                   | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -   | 85  |        |
| 11    |                                       |                                                   | C=50 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -   | 3.3 |        |
|       |                                       |                                                   | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -   | 6.6 |        |
|       | t <sub>r</sub> /t <sub>f</sub> (3)    | Output high to low level fall time and output low | C=30 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -   | 2.4 | ne     |
|       | կ <sup>/</sup> <sup>(</sup> f` ′      | to high level rise time                           | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -   | 4.5 | ns     |
|       |                                       |                                                   | C=10 pF, 2.7 V≤V <sub>DD</sub> ≤3.6 V <sup>(4)</sup>  | -   | 1.5 |        |
|       |                                       |                                                   | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -   | 2.7 |        |

<sup>1.</sup> Guaranteed by design.

- 3. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.
- 4. Compensation system enabled.

<sup>2.</sup> The maximum frequency is defined with the following conditions:  $(t_r+t_f) \le 2/3$  T Skew  $\le 1/20$  T 45%<Duty cycle<55%

## Output buffer timing characteristics (HSLV option enabled)

Table 61. Output timing characteristics  $(HSLV\ ON)^{(1)}$ 

| Speed | Symbol                                        | Parameter                | conditions                                            | Min                                    | Max | Unit |
|-------|-----------------------------------------------|--------------------------|-------------------------------------------------------|----------------------------------------|-----|------|
|       |                                               |                          | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V                | -                                      | 10  |      |
|       | F <sub>max</sub> <sup>(2)</sup>               | Maximum frequency        | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V                | -                                      | 10  | MHz  |
| 00    |                                               |                          | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V                | -                                      | 10  |      |
| 00    |                                               | Output high to low level | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V                | -                                      | 11  |      |
|       | $t_r/t_f^{(3)}$                               | fall time and output low | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V                | -                                      | 9   | ns   |
|       |                                               | to high level rise time  | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V                | -                                      | 6.6 |      |
|       |                                               |                          | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V                | -                                      | 50  |      |
|       | F <sub>max</sub> <sup>(2)</sup>               | Maximum frequency        | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V                | -                                      | 58  | MHz  |
| 01    |                                               |                          | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V                | -                                      | 66  |      |
| 01    | t <sub>r</sub> /t <sub>f</sub> <sup>(3)</sup> | Output high to low level | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V                | -                                      | 6.6 |      |
|       |                                               | fall time and output low | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V                | -                                      | 4.8 | ns   |
|       |                                               | to high level            | to high level rise time                               | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V | -   | 3    |
|       | F <sub>max</sub> <sup>(2)</sup>               |                          | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                                      | 55  |      |
|       |                                               | Maximum frequency        | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                                      | 80  | MHz  |
| 10    |                                               |                          | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                                      | 133 |      |
| 10    |                                               | Output high to low level | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                                      | 5.8 |      |
|       | $t_r/t_f^{(3)}$                               | fall time and output low | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                                      | 4   | ns   |
|       |                                               | to high level rise time  | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                                      | 2.4 |      |
|       |                                               |                          | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                                      | 60  |      |
|       | F <sub>max</sub> <sup>(2)</sup>               | Maximum frequency        | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                                      | 90  | MHz  |
| 11    |                                               |                          | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                                      | 175 |      |
| 11    |                                               | Output high to low level | C=50 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                                      | 5.3 |      |
|       | $t_r/t_f^{(3)}$                               | fall time and output low | C=30 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                                      | 3.6 | ns   |
|       |                                               | to high level rise time  | C=10 pF, 1.62 V≤V <sub>DD</sub> ≤2.7 V <sup>(4)</sup> | -                                      | 1.9 |      |

<sup>1.</sup> Guaranteed by design.

3. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.

4. Compensation system enabled.

<sup>2.</sup> The maximum frequency is defined with the following conditions:  $(t_r+t_f) \le 2/3$  T Skew  $\le 1/20$  T 45%-Duty cycle<55%

## 6.3.16 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R<sub>PU</sub> (see *Table 58: I/O static characteristics*).

Unless otherwise specified, the parameters given in *Table 62* are derived from tests performed under the ambient temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 23: General operating conditions*.

| Symbol                               | Parameter                                       | Conditions                       | Min  | Тур | Max | Unit |
|--------------------------------------|-------------------------------------------------|----------------------------------|------|-----|-----|------|
| R <sub>PU</sub> <sup>(2)</sup>       | Weak pull-up equivalent resistor <sup>(1)</sup> | $V_{IN} = V_{SS}$                | 30   | 40  | 50  | kΩ   |
| V <sub>F(NRST)</sub> <sup>(2)</sup>  | NRST Input filtered pulse                       | 1.71 V < V <sub>DD</sub> < 3.6 V | -    | -   | 50  |      |
| V <sub>NF(NRST)</sub> <sup>(2)</sup> | NRST Input not filtered pulse                   | 1.71 V < V <sub>DD</sub> < 3.6 V | 300  | -   | -   | ns   |
|                                      | NKS1 Input not intered pulse                    | 1.62 V < V <sub>DD</sub> < 3.6 V | 1000 | -   | -   |      |

Table 62. NRST pin characteristics

2. Guaranteed by design.



Figure 21. Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V<sub>IL(NRST)</sub> max level specified in Table 62. Otherwise the reset is not taken into account by the device.

<sup>1.</sup> The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

### 6.3.17 FMC characteristics

Unless otherwise specified, the parameters given in *Table 63* to *Table 76* for the FMC interface are derived from tests performed under the ambient temperature, f<sub>rcc\_c\_ck</sub> frequency and V<sub>DD</sub> supply voltage conditions summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output characteristics.

### Asynchronous waveforms and timings

Figure 22 through Figure 25 represent asynchronous waveforms and Table 63 through Table 70 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- AddressSetupTime = 0x1
- AddressHoldTime = 0x1
- DataSetupTime = 0x1 (except for asynchronous NWAIT mode, DataSetupTime = 0x5)
- BusTurnAroundDuration = 0x0
- Capcitive load CL = 30 pF

In all timing tables, the  $T_{\mbox{\scriptsize KERCK}}$  is the fmc\_ker\_ck clock period.





Figure 22. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC\_NADV is not used.

Table 63. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings<sup>(1)</sup>

| Symbol                    | Parameter                             | Min                          | Max                          | Unit |
|---------------------------|---------------------------------------|------------------------------|------------------------------|------|
| t <sub>w(NE)</sub>        | FMC_NE low time                       | 2T <sub>fmc_ker_ck</sub> - 1 | 2 T <sub>fmc_ker_ck</sub> +1 |      |
| t <sub>v(NOE_NE)</sub>    | FMC_NEx low to FMC_NOE low            | 0                            | 0.5                          |      |
| t <sub>w(NOE)</sub>       | FMC_NOE low time                      | 2T <sub>fmc_ker_ck</sub> - 1 | 2T <sub>fmc_ker_ck</sub> + 1 |      |
| t <sub>h(NE_NOE)</sub>    | FMC_NOE high to FMC_NE high hold time | 0                            | -                            |      |
| t <sub>v(A_NE)</sub>      | FMC_NEx low to FMC_A valid            | -                            | 0.5                          |      |
| t <sub>h(A_NOE)</sub>     | Address hold time after FMC_NOE high  | 0                            | -                            |      |
| t <sub>v(BL_NE)</sub>     | FMC_NEx low to FMC_BL valid           | -                            | 0.5                          | ns   |
| t <sub>h(BL_NOE)</sub>    | FMC_BL hold time after FMC_NOE high   | 0                            | -                            | 115  |
| t <sub>su(Data_NE)</sub>  | Data to FMC_NEx high setup time       | 11                           | -                            |      |
| t <sub>su(Data_NOE)</sub> | Data to FMC_NOEx high setup time      | 11                           | -                            |      |
| t <sub>h(Data_NOE)</sub>  | Data hold time after FMC_NOE high     | 0                            | -                            |      |
| t <sub>h(Data_NE)</sub>   | Data hold time after FMC_NEx high     | 0                            | -                            |      |
| t <sub>v(NADV_NE)</sub>   | FMC_NEx low to FMC_NADV low           | -                            | 0                            |      |
| t <sub>w(NADV)</sub>      | FMC_NADV low time                     | -                            | T <sub>fmc_ker_ck</sub> + 1  |      |

<sup>1.</sup> Guaranteed by characterization results.

Table 64. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings<sup>(1)(2)</sup>

| Symbol                    | Parameter                                 | Min                            | Max                         | Unit |
|---------------------------|-------------------------------------------|--------------------------------|-----------------------------|------|
| t <sub>w(NE)</sub>        | FMC_NE low time                           | 7T <sub>fmc_ker_ck</sub> +1    | 7T <sub>fmc_ker_ck</sub> +1 |      |
| t <sub>w(NOE)</sub>       | FMC_NWE low time                          | 5T <sub>fmc_ker_ck</sub> −1    | 5T <sub>fmc_ker_ck</sub> +1 | ns   |
| t <sub>w(NWAIT)</sub>     | FMC_NWAIT low time                        | T <sub>fmc_ker_ck</sub> -0.5   |                             | 113  |
| t <sub>su(NWAIT_NE)</sub> | FMC_NWAIT valid before FMC_NEx high       | 4T <sub>fmc_ker_ck</sub> +11   | -                           |      |
| t <sub>h(NE_NWAIT)</sub>  | FMC_NEx hold time after FMC_NWAIT invalid | 3T <sub>fmc_ker_ck</sub> +11.5 | -                           |      |

<sup>1.</sup> Guaranteed by characterization results.

<sup>2.</sup>  $N_{WAIT}$  pulse width is equal to 1 AHB cycle.



Figure 23. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC\_NADV is not used.

Table 65. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings<sup>(1)</sup>

| Table 60.7.6 yillom endde ffer maitiplexed erd till erd till reck till till et till till ge |                                       |                               |                               |      |  |  |
|---------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------|-------------------------------|------|--|--|
| Symbol                                                                                      | Parameter                             | Min                           | Max                           | Unit |  |  |
| t <sub>w(NE)</sub>                                                                          | FMC_NE low time                       | 3T <sub>fmc_ker_ck</sub> - 1  | 3T <sub>fmc_ker_ck</sub>      |      |  |  |
| t <sub>v(NWE_NE)</sub>                                                                      | FMC_NEx low to FMC_NWE low            | T <sub>fmc_ker_ck</sub>       | T <sub>fmc_ker_ck</sub> + 1   |      |  |  |
| t <sub>w(NWE)</sub>                                                                         | FMC_NWE low time                      | T <sub>fmc_ker_ck</sub> - 0.5 | T <sub>fmc_ker_ck</sub> + 0.5 |      |  |  |
| t <sub>h(NE_NWE)</sub>                                                                      | FMC_NWE high to FMC_NE high hold time | T <sub>fmc_ker_ck</sub>       | -                             |      |  |  |
| t <sub>v(A_NE)</sub>                                                                        | FMC_NEx low to FMC_A valid            | -                             | 2                             |      |  |  |
| t <sub>h(A_NWE)</sub>                                                                       | Address hold time after FMC_NWE high  | T <sub>fmc_ker_ck</sub> - 0.5 | -                             | 20   |  |  |
| t <sub>v(BL_NE)</sub>                                                                       | FMC_NEx low to FMC_BL valid           | -                             | 0.5                           | ns   |  |  |
| t <sub>h(BL_NWE)</sub>                                                                      | FMC_BL hold time after FMC_NWE high   | T <sub>fmc_ker_ck</sub> - 0.5 | -                             |      |  |  |
| t <sub>v(Data_NE)</sub>                                                                     | Data to FMC_NEx low to Data valid     | -                             | T <sub>fmc_ker_ck</sub> + 2.5 |      |  |  |
| t <sub>h(Data_NWE)</sub>                                                                    | Data hold time after FMC_NWE high     | T <sub>fmc_ker_ck</sub> +0.5  | -                             |      |  |  |
| t <sub>v(NADV_NE)</sub>                                                                     | FMC_NEx low to FMC_NADV low           | -                             | 0                             |      |  |  |
| t <sub>w(NADV)</sub>                                                                        | FMC_NADV low time                     | -                             | T <sub>fmc_ker_ck</sub> + 1   |      |  |  |

<sup>1.</sup> Guaranteed by characterization results.



Table 66. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings<sup>(1)(2)</sup>

| Symbol                    | Parameter                                 | Min                            | Max                            | Unit |
|---------------------------|-------------------------------------------|--------------------------------|--------------------------------|------|
| t <sub>w(NE)</sub>        | FMC_NE low time                           | 8T <sub>fmc_ker_ck</sub> - 1   | 8T <sub>fmc_ker_ck</sub> + 1   |      |
| t <sub>w(NWE)</sub>       | FMC_NWE low time                          | 6T <sub>fmc_ker_ck</sub> - 1.5 | 6T <sub>fmc_ker_ck</sub> + 0.5 | ns   |
| t <sub>su(NWAIT_NE)</sub> | FMC_NWAIT valid before FMC_NEx high       | 5T <sub>fmc_ker_ck</sub> + 13  | -                              |      |
| t <sub>h(NE_NWAIT)</sub>  | FMC_NEx hold time after FMC_NWAIT invalid | 4T <sub>fmc_ker_ck</sub> + 13  | -                              |      |

- 1. Guaranteed by characterization results.
- 2.  $N_{WAIT}$  pulse width is equal to 1 AHB cycle.

Figure 24. Asynchronous multiplexed PSRAM/NOR read waveforms



Table 67. Asynchronous multiplexed PSRAM/NOR read timings<sup>(1)</sup>

| Symbol                    | Parameter                                           | Min                           | Max                            | Unit |
|---------------------------|-----------------------------------------------------|-------------------------------|--------------------------------|------|
| t <sub>w(NE)</sub>        | FMC_NE low time                                     | 3T <sub>fmc_ker_ck</sub> - 1  | 3T <sub>fmc_ker_ck</sub> + 1   |      |
| t <sub>v(NOE_NE)</sub>    | FMC_NEx low to FMC_NOE low                          | 2T <sub>fmc_ker_ck</sub>      | 2T <sub>fmc_ker_ck</sub> + 0.5 |      |
| t <sub>tw(NOE)</sub>      | FMC_NOE low time                                    | T <sub>fmc_ker_ck</sub> - 1   | T <sub>fmc_ker_ck</sub> + 1    |      |
| t <sub>h(NE_NOE)</sub>    | FMC_NOE high to FMC_NE high hold time               | 0                             | -                              |      |
| t <sub>v(A_NE)</sub>      | FMC_NEx low to FMC_A valid                          | -                             | 0.5                            |      |
| t <sub>v(NADV_NE)</sub>   | FMC_NEx low to FMC_NADV low                         | 0                             | 0.5                            |      |
| t <sub>w(NADV)</sub>      | FMC_NADV low time                                   | T <sub>fmc_ker_ck</sub> - 0.5 | T <sub>fmc_ker_ck</sub> +1     |      |
| t <sub>h(AD_NADV)</sub>   | FMC_AD(address) valid hold time after FMC_NADV high | T <sub>fmc_ker_ck</sub> + 0.5 | -                              | ns   |
| t <sub>h(A_NOE)</sub>     | Address hold time after FMC_NOE high                | T <sub>fmc_ker_ck</sub> - 0.5 | -                              |      |
| t <sub>h(BL_NOE)</sub>    | FMC_BL time after FMC_NOE high                      | 0                             | -                              |      |
| t <sub>v(BL_NE)</sub>     | FMC_NEx low to FMC_BL valid                         | -                             | 0.5                            |      |
| t <sub>su(Data_NE)</sub>  | Data to FMC_NEx high setup time                     | T <sub>fmc_ker_ck</sub> - 2   | -                              |      |
| t <sub>su(Data_NOE)</sub> | Data to FMC_NOE high setup time                     | T <sub>fmc_ker_ck</sub> - 2   | -                              |      |
| t <sub>h(Data_NE)</sub>   | Data hold time after FMC_NEx high                   | 0                             | -                              |      |
| t <sub>h(Data_NOE)</sub>  | Data hold time after FMC_NOE high                   | 0                             | -                              |      |

<sup>1.</sup> Guaranteed by characterization results.

Table 68. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings<sup>(1)</sup>

|                           | ·                                         |                                |                                |      |
|---------------------------|-------------------------------------------|--------------------------------|--------------------------------|------|
| Symbol                    | Parameter                                 | Min                            | Max                            | Unit |
| t <sub>w(NE)</sub>        | FMC_NE low time                           | 8T <sub>fmc_ker_ck</sub> - 1   | 8T <sub>fmc_ker_ck</sub>       |      |
| t <sub>w(NOE)</sub>       | FMC_NWE low time                          | 5T <sub>fmc_ker_ck</sub> - 1.5 | 5T <sub>fmc_ker_ck</sub> + 0.5 | ns   |
| t <sub>su(NWAIT_NE)</sub> | FMC_NWAIT valid before FMC_NEx high       | 5T <sub>fmc_ker_ck</sub> + 3   | -                              |      |
| t <sub>h(NE_NWAIT)</sub>  | FMC_NEx hold time after FMC_NWAIT invalid | 4T <sub>fmc_ker_ck</sub>       | -                              |      |

<sup>1.</sup> Guaranteed by characterization results.



Figure 25. Asynchronous multiplexed PSRAM/NOR write waveforms

Table 69. Asynchronous multiplexed PSRAM/NOR write timings<sup>(1)</sup>

| Symbol                    | Parameter                                           | Min                            | Max                            | Unit |
|---------------------------|-----------------------------------------------------|--------------------------------|--------------------------------|------|
| t <sub>w(NE)</sub>        | FMC_NE low time                                     | 4T <sub>fmc_ker_c</sub> - 1    | 4T <sub>fmc_ker_ck</sub>       |      |
| t <sub>v(NWE_NE)</sub>    | FMC_NEx low to FMC_NWE low                          | T <sub>fmc_ker_c</sub> - 1     | T <sub>fmc_ker_ck</sub> + 0.5  |      |
| t <sub>w(NWE)</sub>       | FMC_NWE low time                                    | 2T <sub>fmc_ker_ck</sub> - 0.5 | 2T <sub>fmc_ker_ck</sub> + 0.5 |      |
| t <sub>h(NE_NWE)</sub>    | FMC_NWE high to FMC_NE high hold time               | T <sub>fmc_ker_ck</sub> - 0.5  | -                              |      |
| t <sub>v(A_NE)</sub>      | FMC_NEx low to FMC_A valid                          | -                              | 0                              |      |
| t <sub>v(NADV_NE)</sub>   | FMC_NEx low to FMC_NADV low                         | 0                              | 0.5                            |      |
| t <sub>w(NADV)</sub>      | FMC_NADV low time                                   | T <sub>fmc_ker_ck</sub>        | T <sub>fmc_ker_ck</sub> + 1    | ns   |
| t <sub>h(AD_NADV)</sub>   | FMC_AD(address) valid hold time after FMC_NADV high | T <sub>fmc_ker_ck</sub> +0.5   | -                              |      |
| t <sub>h(A_NWE)</sub>     | Address hold time after FMC_NWE high                | T <sub>fmc_ker_ck</sub> +0.5   | -                              |      |
| t <sub>h(BL_NWE)</sub>    | FMC_BL hold time after FMC_NWE high                 | T <sub>fmc_ker_ck</sub> - 0.5  | -                              |      |
| t <sub>v(BL_NE)</sub>     | FMC_NEx low to FMC_BL valid                         | -                              | 0.5                            |      |
| t <sub>v(Data_NADV)</sub> | FMC_NADV high to Data valid                         | -                              | T <sub>fmc_ker_ck</sub> + 2    |      |
| t <sub>h(Data_NWE)</sub>  | Data hold time after FMC_NWE high                   | T <sub>fmc_ker_ck</sub> +0.5   | -                              |      |

<sup>1.</sup> Guaranteed by characterization results.

| Symbol                    | Parameter                                 | Min                            | Max                            | Unit |
|---------------------------|-------------------------------------------|--------------------------------|--------------------------------|------|
| t <sub>w(NE)</sub>        | FMC_NE low time                           | 9T <sub>fmc_ker_ck</sub> – 1   | 9T <sub>fmc_ker_ck</sub>       |      |
| t <sub>w(NWE)</sub>       | FMC_NWE low time                          | 7T <sub>fmc_ker_ck</sub> - 0.5 | 7T <sub>fmc_ker_ck</sub> + 0.5 | ns   |
| t <sub>su(NWAIT_NE)</sub> | FMC_NWAIT valid before FMC_NEx high       | 6T <sub>fmc_ker_ck</sub> + 3   | -                              |      |
| t <sub>h(NE_NWAIT)</sub>  | FMC_NEx hold time after FMC_NWAIT invalid | 4T <sub>fmc_ker_ck</sub>       | -                              |      |

Table 70. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings<sup>(1)</sup>

## Synchronous waveforms and timings

Figure 26 through Figure 29 represent synchronous waveforms and Table 71 through Table 74 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- BurstAccessMode = FMC\_BurstAccessMode\_Enable
- MemoryType = FMC MemoryType CRAM
- WriteBurst = FMC WriteBurst Enable
- CLKDivision = 1
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM

In all the timing tables, the  $T_{fmc\_ker\_ck}$  is the fmc\_ker\_ck clock period, with the following FMC\_CLK maximum values:

- For 2.7 V<V<sub>DD</sub><3.6 V, FMC\_CLK =133 MHz at 20 pF</li>
- For 1.8 V<V<sub>DD</sub><1.9 V, FMC\_CLK =100 MHz at 20 pF</li>
- For 1.62 V<V<sub>DD</sub><1.8 V, FMC\_CLK =100 MHz at 15 pF</li>

<sup>1.</sup> Guaranteed by characterization results.



Figure 26. Synchronous multiplexed NOR/PSRAM read timings



Table 71. Synchronous multiplexed NOR/PSRAM read timings<sup>(1)</sup>

| Symbol                      | Parameter                                    | Min                           | Max | Unit |
|-----------------------------|----------------------------------------------|-------------------------------|-----|------|
| t <sub>w(CLK)</sub>         | FMC_CLK period                               | 2T <sub>fmc_ker_ck</sub> - 1  | -   |      |
| t <sub>d(CLKL-NExL)</sub>   | FMC_CLK low to FMC_NEx low (x=02)            | -                             | 1   |      |
| t <sub>d(CLKH_NExH)</sub>   | FMC_CLK high to FMC_NEx high (x= 02)         | T <sub>fmc_ker_ck</sub> + 0.5 | -   |      |
| t <sub>d(CLKL-NADVL)</sub>  | FMC_CLK low to FMC_NADV low                  | -                             | 1.  |      |
| t <sub>d(CLKL-NADVH)</sub>  | FMC_CLK low to FMC_NADV high                 | 0                             | -   |      |
| t <sub>d(CLKL-AV)</sub>     | FMC_CLK low to FMC_Ax valid (x=1625)         | -                             | 2.5 |      |
| t <sub>d(CLKH-AIV)</sub>    | FMC_CLK high to FMC_Ax invalid (x=1625)      | T <sub>fmc_ker_ck</sub>       | -   |      |
| t <sub>d(CLKL-NOEL)</sub>   | FMC_CLK low to FMC_NOE low                   | -                             | 1.5 | ns   |
| t <sub>d(CLKH-NOEH)</sub>   | FMC_CLK high to FMC_NOE high                 | T <sub>fmc_ker_ck</sub> - 0.5 | -   |      |
| t <sub>d(CLKL-ADV)</sub>    | FMC_CLK low to FMC_AD[15:0] valid            | -                             | 3   |      |
| t <sub>d(CLKL-ADIV)</sub>   | FMC_CLK low to FMC_AD[15:0] invalid          | 0                             | -   |      |
| t <sub>su(ADV-CLKH)</sub>   | FMC_A/D[15:0] valid data before FMC_CLK high | 2                             | -   |      |
| t <sub>h(CLKH-ADV)</sub>    | FMC_A/D[15:0] valid data after FMC_CLK high  | 1                             | -   |      |
| t <sub>su(NWAIT-CLKH)</sub> | FMC_NWAIT valid before FMC_CLK high          | 2                             | -   |      |
| t <sub>h(CLKH-NWAIT)</sub>  | FMC_NWAIT valid after FMC_CLK high           | 2                             | -   |      |

<sup>1.</sup> Guaranteed by characterization results.



Figure 27. Synchronous multiplexed PSRAM write timings



Table 72. Synchronous multiplexed PSRAM write timings<sup>(1)</sup>

| Symbol                      | Parameter                                  | Min                           | Max | Unit |
|-----------------------------|--------------------------------------------|-------------------------------|-----|------|
| t <sub>w(CLK)</sub>         | FMC_CLK period                             | 2T <sub>fmc_ker_ck</sub> - 1  | -   |      |
| t <sub>d(CLKL-NExL)</sub>   | FMC_CLK low to FMC_NEx low (x=02)          | -                             | 1   |      |
| t <sub>d(CLKH-NExH)</sub>   | FMC_CLK high to FMC_NEx high (x= 02)       | T <sub>fmc_ker_ck</sub> + 0.5 | -   |      |
| t <sub>d(CLKL-NADVL)</sub>  | FMC_CLK low to FMC_NADV low                | -                             | 1.5 |      |
| t <sub>d(CLKL-NADVH)</sub>  | FMC_CLK low to FMC_NADV high               | 0                             | -   |      |
| t <sub>d(CLKL-AV)</sub>     | FMC_CLK low to FMC_Ax valid (x=1625)       | -                             | 2   |      |
| t <sub>d(CLKH-AIV)</sub>    | FMC_CLK high to FMC_Ax invalid (x=1625)    | T <sub>fmc_ker_ck</sub>       | -   |      |
| t <sub>d(CLKL-NWEL)</sub>   | FMC_CLK low to FMC_NWE low                 | -                             | 1.5 | ne   |
| t <sub>(CLKH-NWEH)</sub>    | FMC_CLK high to FMC_NWE high               | T <sub>fmc_ker_ck</sub> + 0.5 | -   | ns   |
| t <sub>d(CLKL-ADV)</sub>    | FMC_CLK low to FMC_AD[15:0] valid          | -                             | 2.5 |      |
| t <sub>d(CLKL-ADIV)</sub>   | FMC_CLK low to FMC_AD[15:0] invalid        | 0                             | -   |      |
| t <sub>d(CLKL-DATA)</sub>   | FMC_A/D[15:0] valid data after FMC_CLK low | -                             | 2.5 |      |
| t <sub>d(CLKL-NBLL)</sub>   | FMC_CLK low to FMC_NBL low                 | -                             | 2   |      |
| t <sub>d(CLKH-NBLH)</sub>   | FMC_CLK high to FMC_NBL high               | T <sub>fmc_ker_ck</sub> + 0.5 | -   |      |
| t <sub>su(NWAIT-CLKH)</sub> | FMC_NWAIT valid before FMC_CLK high        | 2                             | -   |      |
| t <sub>h(CLKH-NWAIT)</sub>  | FMC_NWAIT valid after FMC_CLK high         | 2                             | -   |      |

<sup>1.</sup> Guaranteed by characterization results.



Figure 28. Synchronous non-multiplexed NOR/PSRAM read timings

Table 73. Synchronous non-multiplexed NOR/PSRAM read timings<sup>(1)</sup>

| Symbol                     | Parameter                                  | Min                           | Max | Unit |
|----------------------------|--------------------------------------------|-------------------------------|-----|------|
| t <sub>w(CLK)</sub>        | FMC_CLK period                             | 2T <sub>fmc_ker_ck</sub> - 1  | -   |      |
| t <sub>(CLKL-NExL)</sub>   | FMC_CLK low to FMC_NEx low (x=02)          | -                             | 2   |      |
| t <sub>d(CLKH-NExH)</sub>  | FMC_CLK high to FMC_NEx high (x= 02)       | T <sub>fmc_ker_ck</sub> + 0.5 | -   |      |
| t <sub>d(CLKL-NADVL)</sub> | FMC_CLK low to FMC_NADV low                | -                             | 0.5 |      |
| t <sub>d(CLKL-NADVH)</sub> | FMC_CLK low to FMC_NADV high               | 0                             | -   |      |
| t <sub>d(CLKL-AV)</sub>    | FMC_CLK low to FMC_Ax valid (x=1625)       | -                             | 2   |      |
| t <sub>d(CLKH-AIV)</sub>   | FMC_CLK high to FMC_Ax invalid (x=1625)    | T <sub>fmc_ker_ck</sub>       | -   | ns   |
| t <sub>d(CLKL-NOEL)</sub>  | FMC_CLK low to FMC_NOE low                 | -                             | 1.5 |      |
| t <sub>d(CLKH-NOEH)</sub>  | FMC_CLK high to FMC_NOE high               | T <sub>fmc_ker_ck</sub> + 0.5 | -   |      |
| t <sub>su(DV-CLKH)</sub>   | FMC_D[15:0] valid data before FMC_CLK high | 2                             | -   |      |
| t <sub>h(CLKH-DV)</sub>    | FMC_D[15:0] valid data after FMC_CLK high  | 1                             | -   |      |
| t <sub>(NWAIT-CLKH)</sub>  | FMC_NWAIT valid before FMC_CLK high        | 2                             | -   |      |
| t <sub>h(CLKH-NWAIT)</sub> | FMC_NWAIT valid after FMC_CLK high         | 2                             | -   |      |

<sup>1.</sup> Guaranteed by characterization results.



Figure 29. Synchronous non-multiplexed PSRAM write timings

Table 74. Synchronous non-multiplexed PSRAM write timings<sup>(1)</sup>

| Symbol                      | Parameter                                | Min                           | Max | Unit |
|-----------------------------|------------------------------------------|-------------------------------|-----|------|
| t <sub>(CLK)</sub>          | FMC_CLK period                           | 2T <sub>fmc_ker_ck</sub> - 1  | -   |      |
| t <sub>d(CLKL-NExL)</sub>   | FMC_CLK low to FMC_NEx low (x=02)        | -                             | 2   |      |
| t <sub>(CLKH-NExH)</sub>    | FMC_CLK high to FMC_NEx high (x= 02)     | T <sub>fmc_ker_ck</sub> + 0.5 | -   |      |
| t <sub>d(CLKL-NADVL)</sub>  | FMC_CLK low to FMC_NADV low              | -                             | 0.5 |      |
| t <sub>d(CLKL-NADVH)</sub>  | FMC_CLK low to FMC_NADV high             | 0                             | -   |      |
| t <sub>d(CLKL-AV)</sub>     | FMC_CLK low to FMC_Ax valid (x=1625)     | -                             | 2   |      |
| t <sub>d(CLKH-AIV)</sub>    | FMC_CLK high to FMC_Ax invalid (x=1625)  | T <sub>fmc_ker_ck</sub>       | -   | ns   |
| t <sub>d(CLKL-NWEL)</sub>   | FMC_CLK low to FMC_NWE low               | -                             | 1.5 | 115  |
| t <sub>d(CLKH-NWEH)</sub>   | FMC_CLK high to FMC_NWE high             | T <sub>fmc_ker_ck</sub> + 1   | -   |      |
| t <sub>d(CLKL-Data)</sub>   | FMC_D[15:0] valid data after FMC_CLK low | -                             | 3.5 |      |
| t <sub>d(CLKL-NBLL)</sub>   | FMC_CLK low to FMC_NBL low               | -                             | 2   |      |
| t <sub>d(CLKH-NBLH)</sub>   | FMC_CLK high to FMC_NBL high             | T <sub>fmc_ker_ck</sub> + 1   | -   |      |
| t <sub>su(NWAIT-CLKH)</sub> | FMC_NWAIT valid before FMC_CLK high      | 2                             | -   |      |
| t <sub>h(CLKH-NWAIT)</sub>  | FMC_NWAIT valid after FMC_CLK high       | 2                             | -   |      |

<sup>1.</sup> Guaranteed by characterization results.



#### NAND controller waveforms and timings

*Figure 30* through *Figure 33* represent synchronous waveforms, and *Table 75* and *Table 76* provide the corresponding timings. The results shown in this table are obtained with the following FMC configuration:

- COM.FMC\_SetupTime = 0x01
- COM.FMC\_WaitSetupTime = 0x03
- COM.FMC HoldSetupTime = 0x02
- COM.FMC\_HiZSetupTime = 0x01
- ATT.FMC SetupTime = 0x01
- ATT.FMC WaitSetupTime = 0x03
- ATT.FMC\_HoldSetupTime = 0x02
- ATT.FMC HiZSetupTime = 0x01
- Bank = FMC Bank NAND
- MemoryDataWidth = FMC\_MemoryDataWidth\_16b
- ECC = FMC\_ECC\_Enable
- ECCPageSize = FMC\_ECCPageSize\_512Bytes
- TCLRSetupTime = 0
- TARSetupTime = 0
- C<sub>L</sub> = 30 pF

In all timing tables, the T<sub>fmc ker ck</sub> is the fmc\_ker\_ck clock period.



Figure 30. NAND controller waveforms for read access

DocID030553 Rev 3

FMC\_NCEX

ALE (FMC\_A17)
CLE (FMC\_A16)

FMC\_NWE

FMC\_NOE (NRE)

tv(NWE-D)

th(NWE-D)

MS32768V1

Figure 31. NAND controller waveforms for write access







Figure 33. NAND controller waveforms for common memory write access

Table 75. Switching characteristics for NAND Flash read cycles<sup>(1)</sup>

| Symbol                  | Parameter                                  | Min                            | Max                            | Unit |
|-------------------------|--------------------------------------------|--------------------------------|--------------------------------|------|
| t <sub>w(N0E)</sub>     | FMC_NOE low width                          | 4T <sub>fmc_ker_ck</sub> - 0.5 | 4T <sub>fmc_ker_ck</sub> + 0.5 |      |
| t <sub>su(D-NOE)</sub>  | FMC_D[15-0] valid data before FMC_NOE high | 8                              | -                              |      |
| t <sub>h(NOE-D)</sub>   | FMC_D[15-0] valid data after FMC_NOE high  | 0                              | -                              | ns   |
| t <sub>d(ALE-NOE)</sub> | FMC_ALE valid before FMC_NOE low           | -                              | 3T <sub>fmc_ker_ck</sub> + 1   |      |
| t <sub>h(NOE-ALE)</sub> | FMC_NWE high to FMC_ALE invalid            | 4T <sub>fmc_ker_ck</sub> - 2   | -                              |      |

<sup>1.</sup> Guaranteed by characterization results.

Table 76. Switching characteristics for NAND Flash write cycles<sup>(1)</sup>

| Symbol                  | Parameter                             | Min                            | Max                            | Unit |
|-------------------------|---------------------------------------|--------------------------------|--------------------------------|------|
| t <sub>w(NWE)</sub>     | FMC_NWE low width                     | 4T <sub>fmc_ker_ck</sub> - 0.5 | 4T <sub>fmc_ker_ck</sub> + 0.5 |      |
| t <sub>v(NWE-D)</sub>   | FMC_NWE low to FMC_D[15-0] valid      | 0                              | -                              |      |
| t <sub>h(NWE-D)</sub>   | FMC_NWE high to FMC_D[15-0] invalid   | 2T <sub>fmc_ker_ck</sub> - 0.5 | -                              | ns   |
| t <sub>d(D-NWE)</sub>   | FMC_D[15-0] valid before FMC_NWE high | 5T <sub>fmc_ker_ck</sub> - 1   | -                              | 115  |
| t <sub>d(ALE-NWE)</sub> | FMC_ALE valid before FMC_NWE low      | -                              | 3T <sub>fmc_ker_ck</sub> + 0.5 |      |
| t <sub>h(NWE-ALE)</sub> | FMC_NWE high to FMC_ALE invalid       | 2T <sub>fmc_ker_ck</sub> - 1   | -                              |      |

<sup>1.</sup> Guaranteed by characterization results.

#### **SDRAM** waveforms and timings

In all timing tables, the  $T_{fmc\_ker\_ck}$  is the fmc\_ker\_ck clock period, with the following FMC\_SDCLK maximum values:

- For 1.8 V<V<sub>DD</sub><3.6V: FMC\_CLK =100 MHz at 20 pF</li>
- For 1.62 V<<sub>DD</sub><1.8 V, FMC\_CLK =100 MHz at 30 pF</li>

Figure 34. SDRAM read access waveforms (CL = 1) FMC\_SDCLK td(SDCLKL\_AddC) th(SDCLKL\_AddR) td(SDCLKL\_AddR) Row n Col1 Coln Col2 FMC\_A[12:0] th(SDCLKL\_AddC) td(SDCLKL\_SNDE) th(SDCLKL\_SNDE) FMC\_SDNE[1:0] td(SDCLKL\_NRAS) → th(SDCLKL\_NRAS) FMC\_SDNRAS ◆ td(SDCLKL\_NCAS) th(SDCLKL\_NCAS) FMC\_SDNCAS FMC\_SDNWE tsu(SDCLKH\_Data) ← → th(SDCLKH\_Data) Data2 Datan Data1 Datai FMC\_D[31:0] MS32751V2

Table 77. SDRAM read timings<sup>(1)</sup>

| Symbol                         | Parameter              | Min                          | Max                            | Unit |
|--------------------------------|------------------------|------------------------------|--------------------------------|------|
| t <sub>w(SDCLK)</sub>          | FMC_SDCLK period       | 2T <sub>fmc_ker_ck</sub> - 1 | 2T <sub>fmc_ker_ck</sub> + 0.5 |      |
| t <sub>su(SDCLKH _Data)</sub>  | Data input setup time  | 2                            | -                              |      |
| t <sub>h(SDCLKH_Data)</sub>    | Data input hold time   | 1                            | -                              |      |
| t <sub>d(SDCLKL_Add)</sub>     | Address valid time     | -                            | 1.5                            |      |
| t <sub>d(SDCLKL-SDNE)</sub>    | Chip select valid time | -                            | 1.5                            | ns   |
| t <sub>h(SDCLKL_SDNE)</sub>    | Chip select hold time  | 0.5                          | -                              | 115  |
| t <sub>d(SDCLKL_SDNRAS)</sub>  | SDNRAS valid time      | -                            | 1                              |      |
| t <sub>h(SDCLKL_SDNRAS)</sub>  | SDNRAS hold time       | 0.5                          | -                              |      |
| t <sub>d</sub> (SDCLKL_SDNCAS) | SDNCAS valid time      | -                            | 0.5                            |      |
| t <sub>h(SDCLKL_SDNCAS)</sub>  | SDNCAS hold time       | 0                            | -                              |      |

<sup>1.</sup> Guaranteed by characterization results.



Table 78. LPSDR SDRAM read timings<sup>(1)</sup>

| Symbol                         | Parameter              | Min                          | Max                            | Unit |
|--------------------------------|------------------------|------------------------------|--------------------------------|------|
| t <sub>W(SDCLK)</sub>          | FMC_SDCLK period       | 2T <sub>fmc_ker_ck</sub> - 1 | 2T <sub>fmc_ker_ck</sub> + 0.5 |      |
| t <sub>su(SDCLKH_Data)</sub>   | Data input setup time  | 2                            | -                              |      |
| t <sub>h(SDCLKH_Data)</sub>    | Data input hold time   | 1.5                          | -                              |      |
| t <sub>d(SDCLKL_Add)</sub>     | Address valid time     | -                            | 2.5                            |      |
| t <sub>d(SDCLKL_SDNE)</sub>    | Chip select valid time | -                            | 2.5                            | ns   |
| t <sub>h(SDCLKL_SDNE)</sub>    | Chip select hold time  | 0                            | -                              | 113  |
| t <sub>d(SDCLKL_SDNRAS</sub>   | SDNRAS valid time      | -                            | 0.5                            |      |
| t <sub>h(SDCLKL_SDNRAS)</sub>  | SDNRAS hold time       | 0                            | -                              |      |
| t <sub>d</sub> (SDCLKL_SDNCAS) | SDNCAS valid time      | -                            | 1.5                            |      |
| t <sub>h</sub> (SDCLKL_SDNCAS) | SDNCAS hold time       | 0                            | -                              |      |

<sup>1.</sup> Guaranteed by characterization results.

Figure 35. SDRAM write access waveforms



Table 79. SDRAM write timings<sup>(1)</sup>

| Symbol Parameter               |                        | Min                          | Max                            | Unit |
|--------------------------------|------------------------|------------------------------|--------------------------------|------|
| t <sub>w(SDCLK)</sub>          | FMC_SDCLK period       | 2T <sub>fmc_ker_ck</sub> - 1 | 2T <sub>fmc_ker_ck</sub> + 0.5 |      |
| t <sub>d(SDCLKL _Data</sub> )  | Data output valid time | -                            | 3                              |      |
| t <sub>h(SDCLKL _Data)</sub>   | Data output hold time  | 0                            | -                              |      |
| t <sub>d(SDCLKL_Add)</sub>     | Address valid time     | -                            | 1.5                            |      |
| t <sub>d(SDCLKL_SDNWE)</sub>   | SDNWE valid time       | -                            | 1.5                            |      |
| t <sub>h(SDCLKL_SDNWE)</sub>   | SDNWE hold time        | 0.5                          | -                              | ns   |
| t <sub>d(SDCLKL_SDNE)</sub>    | Chip select valid time | -                            | 1.5                            | 115  |
| t <sub>h(SDCLKLSDNE)</sub>     | Chip select hold time  | 0.5                          | -                              |      |
| t <sub>d</sub> (SDCLKL_SDNRAS) | SDNRAS valid time      | -                            | 1                              |      |
| t <sub>h(SDCLKL_SDNRAS)</sub>  | SDNRAS hold time       | 0.5                          | -                              |      |
| t <sub>d</sub> (SDCLKL_SDNCAS) | SDNCAS valid time      | -                            | 1                              |      |
| t <sub>d(SDCLKL_SDNCAS)</sub>  | SDNCAS hold time       | 0.5                          | -                              |      |

<sup>1.</sup> Guaranteed by characterization results.

Table 80. LPSDR SDRAM write timings<sup>(1)</sup>

| Symbol                         | Parameter              | Min                          | Max                            | Unit |
|--------------------------------|------------------------|------------------------------|--------------------------------|------|
| t <sub>w(SDCLK)</sub>          | FMC_SDCLK period       | 2T <sub>fmc_ker_ck</sub> - 1 | 2T <sub>fmc_ker_ck</sub> + 0.5 |      |
| t <sub>d(SDCLKL_Data</sub> )   | Data output valid time | -                            | 2.5                            |      |
| t <sub>h(SDCLKL _Data)</sub>   | Data output hold time  | 0                            | -                              |      |
| t <sub>d(SDCLKL_Add)</sub>     | Address valid time     | -                            | 2.5                            |      |
| t <sub>d</sub> (SDCLKL-SDNWE)  | SDNWE valid time       | -                            | 2.5                            |      |
| t <sub>h(SDCLKL-SDNWE)</sub>   | SDNWE hold time        | 0                            | -                              | ns   |
| t <sub>d(SDCLKL-SDNE)</sub>    | Chip select valid time | -                            | 3                              | 115  |
| t <sub>h(SDCLKL-SDNE)</sub>    | Chip select hold time  | 0                            | -                              |      |
| t <sub>d</sub> (SDCLKL-SDNRAS) | SDNRAS valid time      | -                            | 1.5                            |      |
| t <sub>h(SDCLKL-SDNRAS)</sub>  | SDNRAS hold time       | 0                            | -                              |      |
| t <sub>d(SDCLKL-SDNCAS)</sub>  | SDNCAS valid time      | -                            | 1.5                            |      |
| t <sub>d(SDCLKL-SDNCAS)</sub>  | SDNCAS hold time       | 0                            | -                              |      |

<sup>1.</sup> Guaranteed by characterization results.

#### 6.3.18 Quad-SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 81* and *Table 82* for Quad-SPI are derived from tests performed under the ambient temperature,  $f_{rcc\_c\_ck}$  frequency and  $V_{DD}$  supply voltage conditions summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>
- I/O compensation cell enabled
- HSLV activated when V<sub>DD</sub>≤2.7 V

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output alternate function characteristics.

Table 81. Quad-SPI characteristics in SDR mode

| Symbol                 | Parameter                   | Conditions                                                                          | Min                       | Тур | Max                  | Unit    |
|------------------------|-----------------------------|-------------------------------------------------------------------------------------|---------------------------|-----|----------------------|---------|
| F <sub>ck1/t(CK)</sub> | Quad-SPI clock frequency    | $2.7 \text{ V} \le \text{V}_{DD} < 3.6 \text{ V}$<br>$\text{C}_{L} = 20 \text{ pF}$ | -                         | -   | 133                  | MHz     |
|                        |                             | 1.62 V <v<sub>DD&lt;3.6 V<br/>C<sub>L</sub>=15 pF</v<sub>                           | -                         | 1   | 100                  | 1011 12 |
| t <sub>w(CKH)</sub>    | Quad-SPI clock high and low |                                                                                     | t <sub>(CK)</sub> /2 -0.5 | -   | t <sub>(CK)</sub> /2 |         |
| t <sub>w(CKL)</sub>    | time                        | -                                                                                   | t <sub>(CK)</sub> /2      | -   | $t_{(CK)}/2 + 0.5$   |         |
| t <sub>s(IN)</sub>     | Data input setup time       |                                                                                     | 1.5                       | -   | -                    | ns      |
| t <sub>h(IN)</sub>     | Data input hold time        | -                                                                                   | 2                         | -   | -                    | 115     |
| t <sub>v(OUT)</sub>    | Data output valid time      | -                                                                                   | -                         | 1.5 | 2                    |         |
| t <sub>h(OUT)</sub>    | Data output hold time       | -                                                                                   | 0.5                       | -   | -                    |         |

Table 82. Quad SPI characteristics in DDR mode

| Symbol                                         | Parameter                   | Conditions                                     | Min                        | Тур                      | Max                      | Unit    |
|------------------------------------------------|-----------------------------|------------------------------------------------|----------------------------|--------------------------|--------------------------|---------|
| F <sub>ck1/t(CK)</sub>                         | Quad-SPI clock<br>frequency | 2.7 V <v<sub>DD&lt;3.6 V<br/>CL=20 pF</v<sub>  | -                          | -                        | 100                      | MHz     |
|                                                |                             | 1.62 V <v<sub>DD&lt;3.6 V<br/>CL=15 pF</v<sub> | -                          | -                        | 100                      | IVII IZ |
| t <sub>w(CKH)</sub>                            | Quad-SPI clock high and     |                                                | t <sub>(CK)</sub> /2 - 0.5 | -                        | t <sub>(CK)</sub> /2     |         |
| t <sub>w(CKL)</sub>                            | low time                    | -                                              | t <sub>(CK)</sub> /2       | -                        | t <sub>(CK)</sub> /2+0.5 |         |
| $t_{sr(IN)}, t_{sf(IN)}$                       | Data input setup time       | -                                              | 2                          | -                        | -                        |         |
| $t_{hr(IN)}, t_{hf(IN)}$                       | Data input hold time        | -                                              | 2                          | -                        | -                        |         |
|                                                |                             | DHHC=0                                         | -                          | 3.5                      | 4                        | ns      |
| t <sub>vr(OUT)</sub> ,<br>t <sub>vf(OUT)</sub> | Data output valid time      | DHHC=1<br>Pres=1, 2                            | -                          | t <sub>(CK)</sub> /4+3.5 | t <sub>(CK)</sub> /4+4   |         |
| t <sub>hr(OUT)</sub> , t <sub>hr(OUT)</sub>    |                             | DHHC=0                                         | 3                          | -                        | -                        |         |
|                                                | Data output hold time       | DHHC=1<br>Pres=1, 2                            | t <sub>(CK)</sub> /4+3     | -                        | -                        |         |

Figure 36. Quad-SPI timing diagram - SDR mode



Figure 37. Quad-SPI timing diagram - DDR mode



#### 6.3.19 Delay block (DLYB) characteristics

Unless otherwise specified, the parameters given in *Table 84* for the delay block are derived from tests performed under the ambient temperature,  $f_{rcc\_c\_ck}$  frequency and  $V_{DD}$  supply voltage summarized in *Table 23: General operating conditions*.

Table 83. Dynamics characteristics: Delay Block characteristics

| Symbol            | Parameter     | Conditions | Min  | Тур  | Max  | Unit |
|-------------------|---------------|------------|------|------|------|------|
| t <sub>init</sub> | Initial delay | -          | 1400 | 2200 | 2400 | ps   |
| $t_\Delta$        | Unit Delay    | -          | 35   | 40   | 45   | ρs   |

#### 6.3.20 16-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 84* are derived from tests performed under the ambient temperature, f<sub>PCLK2</sub> frequency and V<sub>DDA</sub> supply voltage conditions summarized in *Table 23: General operating conditions*.

Table 84. ADC characteristics<sup>(1)</sup>

| Symbol                                                              | Parameter                  | Condition                                                                | ons               | Min              | Тур | Max       | Unit   |
|---------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------|-------------------|------------------|-----|-----------|--------|
| $V_{DDA}$                                                           | Analog power supply        | -                                                                        |                   | 1.62             | -   | 3.6       |        |
| V                                                                   | Positive reference voltage | V <sub>DDA</sub> ≥                                                       | 2 V               | 2                | -   | $V_{DDA}$ | V      |
| $V_{REF+}$                                                          | Positive reference voltage | V <sub>DDA</sub> < 2 V                                                   |                   |                  |     |           |        |
| V <sub>REF-</sub>                                                   | Negative reference voltage | -                                                                        |                   | V <sub>SSA</sub> |     |           |        |
| f                                                                   | ADC alook fraguanay        |                                                                          |                   | -                | -   | 36        | MHz    |
| f <sub>ADC</sub>                                                    | ADC Glock frequency        | ADC clock frequency $2 \text{ V} \leq \text{V}_{DDA} \leq 3.3 \text{ V}$ | BOOST = 0         | -                | -   | 20        | IVIIIZ |
|                                                                     |                            | 16-bit resol                                                             | ution             | -                | -   | 3.60      |        |
|                                                                     | Sampling rate for Fast     | 14-bit resol                                                             | 14-bit resolution |                  | -   | 4.00      |        |
| channels,                                                           | channels, BOOST = 1,       | 12-bit resolution                                                        |                   | -                | -   | 4.50      |        |
|                                                                     | f <sub>ADC</sub> = 36 MHz  | 10-bit resolution                                                        |                   | -                | -   | 5.00      |        |
|                                                                     |                            | 8-bit resolution                                                         |                   |                  |     | 6.00      |        |
|                                                                     |                            | 16-bit resolution                                                        |                   | -                | -   | 2.00      |        |
|                                                                     | Sampling rate for Fast     | 14-bit resolution                                                        |                   | -                | -   | 2.20      |        |
| $f_S$                                                               | channels, BOOST = 0,       | 12-bit resol                                                             | ution             | -                | -   | 2.50      | MSPS   |
|                                                                     | f <sub>ADC</sub> = 20 MHz  | 10-bit resolution                                                        |                   | -                | -   | 2.80      |        |
|                                                                     |                            | 8-bit resolution                                                         |                   |                  |     | 3.30      |        |
| Sampling rate for l<br>channels, BOOST<br>f <sub>ADC</sub> = 10 MHz |                            | 16-bit resol                                                             | ution             | -                | -   | 1.00      |        |
|                                                                     | Sampling rate for Fast     | 14-bit resolution                                                        |                   | -                | -   | 1.00      |        |
|                                                                     | channels, BOOST = 0,       | 12-bit resolution                                                        |                   | -                | -   | 1.00      |        |
|                                                                     | f <sub>ADC</sub> = 10 MHz  | 10-bit resol                                                             | ution             | -                | -   | 1.00      |        |
|                                                                     |                            | 8-bit resolution                                                         |                   |                  |     | 1.00      |        |



| Table 84. ADC characteristics <sup>(1)</sup> (c | continued) |
|-------------------------------------------------|------------|
|-------------------------------------------------|------------|

| Symbol                          | Parameter                                       | Conditions                                           | Min                  | Тур                 | Max                         | Unit               |
|---------------------------------|-------------------------------------------------|------------------------------------------------------|----------------------|---------------------|-----------------------------|--------------------|
| f                               | External trigger frequency                      | f <sub>ADC</sub> = 36 MHz                            | -                    | -                   | 3.6                         | MHz                |
| f <sub>TRIG</sub>               | External trigger frequency                      | 16-bit resolution                                    | -                    | -                   | 10                          | 1/f <sub>ADC</sub> |
| V <sub>AIN</sub> <sup>(2)</sup> | Conversion voltage range                        | -                                                    | 0                    | -                   | V <sub>REF+</sub>           |                    |
| V <sub>CMIV</sub>               | Common mode input voltage                       | -                                                    | V <sub>REF</sub> /2- | V <sub>REF</sub> /2 | V <sub>REF</sub> /2+<br>10% | V                  |
| R <sub>AIN</sub>                | External input impedance                        | See Equation 1 for details                           | -                    | -                   | 50                          | kΩ                 |
| C <sub>ADC</sub>                | Internal sample and hold capacitor              | -                                                    | -                    | 4                   | -                           | pF                 |
| t <sub>ADCREG_</sub><br>STUP    | ADC LDO startup time                            | -                                                    | -                    | 5                   | 10                          | μs                 |
| t <sub>STAB</sub>               | ADC power-up time                               | LDO already started                                  |                      | 1                   |                             | conversion cycle   |
| t <sub>CAL</sub>                | Offset and linearity calibration time           | -                                                    | 16384                |                     |                             |                    |
| t <sub>OFF_CAL</sub>            | Offset calibration time                         | -                                                    | 1280                 |                     |                             |                    |
|                                 | Trigger conversion latency                      | CKMODE = 00                                          | 1.5                  | 2                   | 2.5                         |                    |
| t                               | for regular and injected                        | CKMODE = 01                                          | -                    | -                   | 2                           |                    |
| t <sub>LATR</sub>               | channels without aborting the conversion        | CKMODE = 10                                          |                      |                     | 2.25                        | 4.15               |
|                                 | the conversion                                  | CKMODE = 11                                          |                      |                     | 2.125                       | 1/f <sub>ADC</sub> |
|                                 | Trigger conversion latency                      | CKMODE = 00                                          | 2.5                  | 3                   | 3.5                         |                    |
|                                 | for regular and injected                        | CKMODE = 01                                          | -                    | -                   | 3                           |                    |
| t <sub>LATRINJ</sub>            | channels when a regular conversion is aborted   | CKMODE = 10                                          | -                    | -                   | 3.25                        |                    |
|                                 | conversion is aborted                           | CKMODE = 11                                          | -                    | -                   | 3.125                       |                    |
| t <sub>S</sub>                  | Sampling time                                   | -                                                    | 1.5                  | -                   | 640.5                       |                    |
| t <sub>CONV</sub>               | Total conversion time (including sampling time) | N-bit resolution<br>(9 to 648 cycles in 14-bit mode) |                      |                     |                             |                    |

- 1. Guaranteed by design.
- 2. Depending on the package,  $V_{REF+}$  can be internally connected to  $V_{DDA}$  and  $V_{REF-}$  to  $V_{SSA}$ .

Equation 1: 
$$R_{AIN}$$
 max formula 
$$R_{AIN} < \frac{(k-0.5)}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$
 The formula above (Equation 1) is used to determine the maximum

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution).

Table 85. ADC accuracy<sup>(1)(2)(3)</sup>

| Single ended   BOOST = 1   -   ±6   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                  |              |              | 85. ADC acci         |              |              |           | T    |       |   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|--------------|----------------------|--------------|--------------|-----------|------|-------|---|--|
| Total unadjusted error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Symbol             | Parameter    | Condi        | tions <sup>(4)</sup> | Min          | Тур          | Max       | Unit |       |   |  |
| ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |              | Single       | BOOST = 1            | -            | ±6           | -         |      |       |   |  |
| ED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ET                 | unadjusted   | ended        | BOOST = 0            | -            | ±8           | -         |      |       |   |  |
| BOOST = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |              | •            | •                    | •            | Differential | BOOST = 1 | -    | ±10   | - |  |
| Differential linearity error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |              | Dillerential | BOOST = 0            | -            | ±16          | -         |      |       |   |  |
| BOOST = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |              | Single       | BOOST = 1            | -            | 2            | -         |      |       |   |  |
| BOOST = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ED                 |              |              | ended                | BOOST = 0    | -            | 1         | -    | TI 6B |   |  |
| EL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | -            | Differential | BOOST = 1            | -            | 8            | -         | TLOB |       |   |  |
| Integral linearity error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |              | Dillerential | BOOST = 0            | -            | 2            | -         |      |       |   |  |
| El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |              | Single       | BOOST = 1            | -            | ±6           | -         |      |       |   |  |
| BOOST = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>E</b> I         | EL linearity | ended        | BOOST = 0            | -            | ±4           | -         |      |       |   |  |
| BOOST = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |              | error        | error                | Differential | BOOST = 1    | -         | ±6   | -     |   |  |
| Effective number of bits (2 MSPS)  Signal-to-noise and distortion ratio (2 MSPS)  SINAD <sup>(5)</sup> Signal-to-noise ratio (2 MSPS)  Single ended  BOOST = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |              | Dillerential | BOOST = 0            | -            | ±4           | -         |      |       |   |  |
| ENOB(5)   number of bits (2 MSPS)   Differential   BOOST = 0   -   12   -     bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | Effective    | Single       | BOOST = 1            | -            | 11.6         | -         |      |       |   |  |
| SINAD(5)   Differential   BOOST = 1   -   13.3   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ENOP(5)            |              | ended        | BOOST = 0            | -            | 12           | -         | hite |       |   |  |
| Signal-to-noise and distortion ratio (2 MSPS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ENOB               |              |              | BOOST = 1            | -            | 13.3         | -         | Dits |       |   |  |
| SINAD(5)   Noise and distortion ratio (2 MSPS)   Differential   BOOST = 0   -   74   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |              | (2 MSPS)     | Dillerential         | BOOST = 0    | -            | 13.5      | -    |       |   |  |
| SINAD <sup>(5)</sup>   distortion ratio (2 MSPS)   Differential   BOOST = 1   -   81.83   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | Signal-to-   | Single       | BOOST = 1            | -            | 71.6         | -         |      |       |   |  |
| SINR(5)   Differential   BOOST = 1   -   81.83   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CINAD(5)           |              | ended        | BOOST = 0            | -            | 74           | -         |      |       |   |  |
| Signal-to-noise ratio (2 MSPS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SINAD              |              | Differential | BOOST = 1            | -            | 81.83        | -         |      |       |   |  |
| SIgnal-to-noise ratio (2 MSPS)         Signal-to-noise ratio (2 MSPS)         BOOST = 0         -         74         -         -         dB         -         dB         -         dB         -         -         dB         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | (2 MSPS)     | Dillerential | BOOST = 0            | -            | 83           | -         |      |       |   |  |
| SNR <sup>(5)</sup> noise ratio (2 MSPS)         BOOST = 0         82         -           BOOST = 0         -         83         -           Single ended harmonic         BOOST = 1         -         -78         -           THD <sup>(5)</sup> Single ended         BOOST = 0         -         -80         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |              | Single       | BOOST = 1            | -            | 72           | -         |      |       |   |  |
| (2 MSPS)   Differential   BOOST = 1   -   82   -   GB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CND(5)             | _            | ended        | BOOST = 0            | -            | 74           | -         |      |       |   |  |
| BOOST = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SNR                |              | Differential | BOOST = 1            | -            | 82           | -         | dB   |       |   |  |
| The second of t |                    | ,            | Dillerential | BOOST = 0            | -            | 83           | -         |      |       |   |  |
| THD <sup>(5)</sup> harmonic Single BOOST = 0 - $-80$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T-4                | Total        |              | BOOST = 1            | -            | -78          | -         |      |       |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | THD <sup>(5)</sup> |              |              |                      |              | Single       | BOOST = 0 | -    | -80   | - |  |
| -   -90   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | distortion   | ended        | BOOST = 1            | -            | -90          | -         |      |       |   |  |
| Differential BOOST = 095 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |              | Differential | BOOST = 0            | -            | -95          | -         |      |       |   |  |

- 1. Guaranteed by characterization for BGA packages, the values for LQFP packages might differ.
- 2. ADC DC accuracy values are measured after internal calibration.
- 3. The above table gives the ADC performance in 16-bit mode.
- 4. ADC clock frequency  $\leq$  36 MHz, 2 V  $\leq$  V<sub>DDA</sub>  $\leq$ 3.3 V, 1.6 V  $\leq$  V<sub>REF</sub>  $\leq$  V<sub>DDA</sub>, BOOSTEN (for I/O) = 1.
- 5. ENOB, SINAD, SNR and THD are specified for  $V_{DDA}$  =  $V_{REF}$  = 3.3 V.

Note:

ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Any positive injection current within the limits specified for  $I_{INJ(PIN)}$  and  $\Sigma I_{INJ(PIN)}$  in Section 6.3.15 does not affect the ADC accuracy.



Figure 38. ADC accuracy characteristics

- Example of an actual transfer curve.
- 2. Ideal transfer curve.
- 3. End point correlation line.
- 4. E<sub>T</sub> = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point

correlation line.



Figure 39. Typical connection diagram using the ADC

- 1. Refer to *Table 84* for the values of R<sub>AIN</sub>, R<sub>ADC</sub> and C<sub>ADC</sub>.
- C<sub>parasitic</sub> represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high C<sub>parasitic</sub> value downgrades conversion accuracy. To remedy this, f<sub>ADC</sub> should be reduced.

#### General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 40* or *Figure 41*, depending on whether  $V_{REF+}$  is connected to  $V_{DDA}$  or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.



1.  $V_{REF+}$  input is available on all package whereas the  $V_{REF-}$  s available only on UFBGA176+25 and TFBGA240+25. When  $V_{REF-}$  is not available, it is internally connected to  $V_{DDA}$  and  $V_{SSA}$ .



1.  $V_{REF+}$  input is available on all package whereas the  $V_{REF-}$  s available only on UFBGA176+25 and TFBGA240+25. When  $V_{REF-}$  is not available, it is internally connected to  $V_{DDA}$  and  $V_{SSA}$ .

### 6.3.21 DAC electrical characteristics

Table 86. DAC characteristics

| Symbol                             | Parameter                                                                                                                                                                                                | Cond                                                                                | itions                        | Min  | Тур                | Max                       | Unit |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------|------|--------------------|---------------------------|------|
| $V_{DDA}$                          | Analog supply voltage                                                                                                                                                                                    |                                                                                     | -                             | 1.8  | 3.3                | 3.6                       |      |
| V <sub>REF+</sub>                  | Positive reference voltage                                                                                                                                                                               |                                                                                     | -                             | 1.80 | -                  | $V_{DDA}$                 | V    |
| V <sub>REF-</sub>                  | Negative reference voltage                                                                                                                                                                               | -                                                                                   |                               | -    | V <sub>SSA</sub>   | -                         |      |
| $R_{L}$                            | Resistive Load                                                                                                                                                                                           | DAC output                                                                          | connected to V <sub>SSA</sub> | 5    | -                  | -                         |      |
| ΝĹ                                 | Tresistive Loud                                                                                                                                                                                          | buffer ON                                                                           | connected to V <sub>DDA</sub> | 25   | -                  | -                         | kΩ   |
| R <sub>O</sub> <sup>(1)</sup>      | Output Impedance                                                                                                                                                                                         | DAC output                                                                          | buffer OFF                    | 10.3 | 13                 | 16                        |      |
|                                    | Output impedance sample                                                                                                                                                                                  | DAC output                                                                          | V <sub>DD</sub> = 2.7 V       | -    | -                  | 1.6                       |      |
| R <sub>BON</sub>                   | and hold mode, output<br>buffer ON                                                                                                                                                                       | buffer ON                                                                           | V <sub>DD</sub> = 2.0 V       | -    | -                  | 2.6                       | kΩ   |
|                                    | Output impedance sample                                                                                                                                                                                  | DAC output buffer OFF $V_{DD} = 2.7 \text{ V}$ $V_{DD} = 2.0 \text{ V}$             |                               | -    | -                  | 17.8                      |      |
| R <sub>BOFF</sub>                  | and hold mode, output<br>buffer OFF                                                                                                                                                                      |                                                                                     |                               | -    | -                  | 18.7                      | kΩ   |
| C <sub>L</sub> <sup>(1)</sup>      |                                                                                                                                                                                                          | DAC output                                                                          | buffer OFF                    | -    | -                  | 50                        | pF   |
| C <sub>SH</sub> <sup>(1)</sup>     | Capacitive Load                                                                                                                                                                                          | Sample and                                                                          | Hold mode                     | -    | 0.1                | 1                         | μF   |
| V <sub>DAC_OUT</sub>               | Voltage on DAC_OUT output                                                                                                                                                                                | DAC outpu                                                                           | t buffer ON                   | 0.2  | -                  | V <sub>REF+</sub><br>−0.2 | V    |
|                                    | σαιραι                                                                                                                                                                                                   | DAC output                                                                          | buffer OFF                    | 0    | -                  | V <sub>REF+</sub>         |      |
| <sup>t</sup> settling              | Settling time (full scale: for<br>a 12-bit code transition<br>between the lowest and<br>the highest input codes<br>when DAC_OUT reaches<br>the final value of ±0.5LSB,<br>±1LSB, ±2LSB, ±4LSB,<br>±8LSB) | Normal mode, DAC output buffer<br>OFF, ±1LSB C <sub>L</sub> =10 pF                  |                               | -    | 1.7 <sup>(1)</sup> | 2 <sup>(1)</sup>          | μs   |
| t <sub>WAKEUP</sub> <sup>(2)</sup> | Wakeup time from off<br>state (setting the Enx bit in<br>the DAC Control register)<br>until the ±1LSB final value                                                                                        | Normal mode, DAC output buffer<br>ON, C <sub>L</sub> ≤ 50 pF, R <sub>L</sub> = 5 kΩ |                               | -    | 5                  | 7.5                       | μs   |
| V <sub>offset</sub> <sup>(1)</sup> | Middle code offset for 1                                                                                                                                                                                 | V <sub>REF+</sub>                                                                   | = 3.6 V                       | -    | 850                | -                         | μV   |
| v offset` ′                        | trim code step                                                                                                                                                                                           | V <sub>REF+</sub>                                                                   | = 1.8 V                       | -    | 425                | -                         | μν   |



Table 86. DAC characteristics (continued)

| Symbol                 | Parameter                              | Cond                                             | litions                                  | Min | Тур                                                           | Max | Unit |
|------------------------|----------------------------------------|--------------------------------------------------|------------------------------------------|-----|---------------------------------------------------------------|-----|------|
|                        |                                        | DAC output                                       | No load, middle code (0x800)             | -   | 360                                                           | -   |      |
|                        | DAC quiescent                          | buffer ON                                        | No load, worst code (0xF1C)              | -   | 490                                                           | -   |      |
| I <sub>DDA(DAC)</sub>  | consumption from V <sub>DDA</sub>      | DAC output buffer OFF                            | No load,<br>middle/worst<br>code (0x800) | -   | 20                                                            | -   |      |
|                        |                                        | Sample and Hold mode,<br>C <sub>SH</sub> =100 nF |                                          | -   | 360*T <sub>ON</sub> /<br>(T <sub>ON</sub> +T <sub>OFF</sub> ) | -   |      |
|                        |                                        | DAC output                                       | No load, middle code (0x800)             | -   | 170                                                           | -   | μΑ   |
|                        |                                        | buffer ON                                        | No load, worst code (0xF1C)              | -   | 170                                                           | -   |      |
| I <sub>DDV</sub> (DAC) | DAC consumption from V <sub>REF+</sub> | DAC output<br>buffer OFF                         | No load,<br>middle/worst<br>code (0x800) | -   | 160                                                           | -   |      |
|                        |                                        |                                                  | old mode, Buffer<br>nF (worst code)      | -   | 170*T <sub>ON</sub> /<br>(T <sub>ON</sub> +T <sub>OFF</sub> ) | -   |      |
|                        |                                        |                                                  | old mode, Buffer<br>nF (worst code)      | -   | 160*T <sub>ON</sub> /<br>(T <sub>ON</sub> +T <sub>OFF</sub> ) | -   |      |

<sup>1.</sup> Guaranteed by design.

Table 87. DAC accuracy<sup>(1)</sup>

| Symbol  | Parameter                                    | Conditions                                                                      |                                                                  | Min | Тур | Max | Unit |
|---------|----------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------|-----|-----|-----|------|
| DNL     | Differential non                             | DAC outpu                                                                       | it buffer ON                                                     | -   | ±2  | -   | LSB  |
| DINL    | linearity <sup>(2)</sup>                     | DAC output buffer OFF                                                           |                                                                  | -   | ±2  | -   | LOD  |
| INL     | Integral non linearity <sup>(3)</sup>        | DAC output buffer ON, $C_L \le 50 \text{ pF}$ , $R_L \ge 5 \text{ k}\Omega$     |                                                                  | -   | ±4  | -   | LSB  |
| IINE    | integral non linearity (**)                  | DAC output buffer OFF,<br>$C_L \le 50 \text{ pF, no } R_L$                      |                                                                  | 1   | ±4  | -   | LOD  |
|         |                                              | DAC output buffer ON, V <sub>REF+</sub> = 3.6 V                                 |                                                                  | 1   | 1   | ±12 |      |
| Offset  | Offset error at code<br>0x800 <sup>(3)</sup> | $C_L \le 50 \text{ pF},$ $R_L \ge 5 \text{ k}\Omega$ $V_{REF+} = 1.8 \text{ V}$ |                                                                  | -   | -   | ±25 | LSB  |
|         |                                              | DAC output buffer OFF, $C_L \le 50 \text{ pF, no R}_L$                          |                                                                  | -   | -   | ±8  |      |
| Offset1 | Offset error at code<br>0x001 <sup>(4)</sup> | •                                                                               | DAC output buffer OFF, C <sub>L</sub> ≤ 50 pF, no R <sub>L</sub> |     | -   | ±5  | LSB  |

<sup>2.</sup> In buffered mode, the output can overshoot above the final value for low input code (starting from the minimum value).

| Table 87. DAC accuracy <sup>(1)</sup> ( | continued) |
|-----------------------------------------|------------|
|-----------------------------------------|------------|

| Symbol    | Parameter                                           | Cond                                                                                       | itions                                                                                      | Min | Тур  | Max | Unit |
|-----------|-----------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----|------|-----|------|
| OffsetCal | Offset error at code<br>0x800 after factory         | DAC output buffer ON,                                                                      | · REFT SIS                                                                                  |     | -    | ±5  | LSB  |
| Olisetoai | calibration C <sub>L</sub> ≤ 50 pF                  | $C_L \le 50 \text{ pF},$ $R_L \ge 5 \text{ k}\Omega$                                       | V <sub>REF+</sub> = 1.8 V                                                                   | -   | -    | ±7  | LOD  |
| Gain      | Gain error <sup>(5)</sup>                           |                                                                                            | DAC output buffer ON,C <sub>L</sub> $\leq$ 50 pF,<br>R <sub>L</sub> $\geq$ 5 kΩ             |     | -    | ±1  | %    |
| Gairi     | Gairrenoi                                           | DAC output buffer OFF,<br>$C_L \le 50 \text{ pF, no R}_L$                                  |                                                                                             | -   | -    | ±1  | 70   |
| TUE       | Total unadjusted error                              | DAC output buffer OFF,<br>$C_L \le 50 \text{ pF, no R}_L$                                  |                                                                                             | -   | -    | ±12 | LSB  |
| SNR       | Signal-to-noise ratio <sup>(6)</sup>                |                                                                                            | DAC output buffer ON, $C_L \le 50$ pF,<br>$R_L \ge 5 \text{ k}\Omega$ , 1 kHz, BW = 500 KHz |     | 67.8 | -   | dB   |
| SINAD     | Signal-to-noise and distortion ratio <sup>(6)</sup> | DAC output buffer ON, $C_L \le 50$ pF,<br>$R_L \ge 5 \text{ k}\Omega$ , 1 kHz              |                                                                                             | 1   | 67.5 | -   | dB   |
| ENOB      | Effective number of bits                            | DAC output buffer ON,<br>$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega, 1 \text{ kHz}$ |                                                                                             | -   | 10.9 | -   | bits |

- 1. Guaranteed by characterization.
- 2. Difference between two consecutive codes minus 1 LSB.
- 3. Difference between the value measured at Code i and the value measured at Code i on a line drawn between Code 0 and last Code 4095.
- 4. Difference between the value measured at Code (0x001) and the ideal value.
- Difference between the ideal slope of the transfer function and the measured slope computed from code 0x000 and 0xFFF when the buffer is OFF, and from code giving 0.2 V and (V<sub>REF+</sub> - 0.2 V) when the buffer is ON.
- 6. Signal is -0.5dBFS with  $F_{sampling}$ =1 MHz.

Figure 42. 12-bit buffered /non-buffered DAC



The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC\_CR register.

# 6.3.22 Voltage reference buffer characteristics

Table 88. VREFBUF characteristics<sup>(1)</sup>

| Symbol                | Parameter                                       | Conditio                                                    | ns                         | Min                          | Тур          | Max                                                | Unit       |                  |  |
|-----------------------|-------------------------------------------------|-------------------------------------------------------------|----------------------------|------------------------------|--------------|----------------------------------------------------|------------|------------------|--|
|                       |                                                 |                                                             | VSCALE = 000               | 2.8                          | 3.3          | 3.6                                                |            |                  |  |
|                       |                                                 | Nammad madda                                                | VSCALE = 001               | 2.4                          | -            | 3.6                                                |            |                  |  |
|                       |                                                 | Normal mode                                                 | VSCALE = 010               | 2.1                          | -            | 3.6                                                |            |                  |  |
| V                     |                                                 |                                                             | VSCALE = 011               | 1.8                          | -            | 3.6                                                |            |                  |  |
| $V_{DDA}$             | Analog supply voltage                           |                                                             | VSCALE = 000               | 1.62                         | -            | 2.80                                               |            |                  |  |
|                       |                                                 | Degraded mode                                               | VSCALE = 001               | 1.62                         | -            | 2.40                                               |            |                  |  |
|                       |                                                 | VSCALE = 010                                                | VSCALE = 010               | 1.62                         | -            | 2.10                                               |            |                  |  |
|                       |                                                 |                                                             | VSCALE = 011               | 1.62                         | -            | 1.80                                               |            |                  |  |
|                       |                                                 |                                                             | VSCALE = 000               | -                            | 2.5          | -                                                  |            |                  |  |
|                       |                                                 | Normal mode                                                 | VSCALE = 001               | -                            | 2.048        | -                                                  | V          |                  |  |
|                       |                                                 | Normai mode                                                 | VSCALE = 010               | -                            | 1.8          | -                                                  |            |                  |  |
|                       |                                                 |                                                             | VSCALE = 011               | -                            | 1.5          | -                                                  |            |                  |  |
| V <sub>REFBUF</sub>   | Voltage Reference<br>Buffer Output              |                                                             | D # 0 1 1                  |                              | VSCALE = 000 | V <sub>DDA</sub> -<br>150 mV                       | -          | V <sub>DDA</sub> |  |
| _OUT                  |                                                 | Degraded mode <sup>(2)</sup>                                | VSCALE = 001               | V <sub>DDA</sub> -<br>150 mV | -            | $V_{DDA}$                                          |            |                  |  |
|                       |                                                 |                                                             | VSCALE = 010               | V <sub>DDA</sub> -<br>150 mV | -            | V <sub>DDA</sub>                                   |            |                  |  |
|                       |                                                 |                                                             | VSCALE = 011               | V <sub>DDA</sub> -<br>150 mV | -            | $V_{DDA}$                                          |            |                  |  |
| TRIM                  | Trim step resolution                            | -                                                           | -                          | -                            | ±0.05        | ±0.2                                               | %          |                  |  |
| C <sub>L</sub>        | Load capacitor                                  | -                                                           | -                          | 0.5                          | 1            | 1.50                                               | uF         |                  |  |
| esr                   | Equivalent Serial<br>Resistor of C <sub>L</sub> | -                                                           | -                          | -                            | -            | 2                                                  | Ω          |                  |  |
| I <sub>load</sub>     | Static load current                             | -                                                           | -                          | -                            | -            | 4                                                  | mA         |                  |  |
|                       | Line regulation                                 | 291/41/ 4261/                                               | I <sub>load</sub> = 500 μA | -                            | 200          | -                                                  | nnm/\/     |                  |  |
| I <sub>line_reg</sub> | Line regulation                                 | $2.8 \text{ V} \le \text{V}_{\text{DDA}} \le 3.6 \text{ V}$ | I <sub>load</sub> = 4 mA   | -                            | 100          | -                                                  | ppm/V      |                  |  |
| I <sub>load_reg</sub> | Load regulation                                 | 500 μA ≤ I <sub>LOAD</sub> ≤ 4 mA                           | Normal Mode                | -                            | 50           | -                                                  | ppm/<br>mA |                  |  |
| T <sub>coeff</sub>    | Temperature coefficient                         | -40 °C < T <sub>J</sub> < +105 °C                           | -                          | -                            | -            | T <sub>coeff</sub><br>xV <sub>REFINT</sub><br>+ 50 | ppm/       |                  |  |
| ' coeff               | Temperature coemicient                          | 0 °C < T <sub>J</sub> < +50 °C                              | -                          | -                            | -            | T <sub>coeff</sub><br>xV <sub>REFINT</sub><br>+ 50 | °C         |                  |  |
| PSRR                  | Power supply rejection                          | DC                                                          | -                          | -                            | 60           | -                                                  | dB         |                  |  |
| 1 OKK                 | i owei suppiy iejeciloli                        | 100KHz                                                      | -                          | -                            | 40           | -                                                  | UD         |                  |  |

| Table 88. VREFBUF characteristics <sup>(1)</sup> | (continued) |
|--------------------------------------------------|-------------|
|--------------------------------------------------|-------------|

| Symbol                           | Parameter                                                                                          | Condition                  | Conditions |   | Тур | Max | Unit |
|----------------------------------|----------------------------------------------------------------------------------------------------|----------------------------|------------|---|-----|-----|------|
|                                  |                                                                                                    | C <sub>L</sub> =0.5 μF     | -          | - | 300 | -   |      |
| t <sub>START</sub> Start-up time | Start-up time                                                                                      | C <sub>L</sub> =1 μF       | -          | - | 500 | -   | μs   |
|                                  |                                                                                                    | C <sub>L</sub> =1.5 μF     | -          | - | 650 | -   |      |
| I <sub>INRUSH</sub>              | Control of maximum DC current drive on V <sub>REFBUF_OUT</sub> during startup phase <sup>(3)</sup> | -                          |            | - | 8   | -   | mA   |
|                                  | VREFBUF                                                                                            | I <sub>LOAD</sub> = 0 μA   | -          | - | 15  | 25  |      |
| I <sub>DDA(VRE</sub><br>FBUF)    | consumption from                                                                                   | I <sub>LOAD</sub> = 500 μA | -          | - | 16  | 30  | μΑ   |
|                                  | $V_{DDA}$                                                                                          | I <sub>LOAD</sub> = 4 mA   | -          | - | 32  | 50  |      |

- 1. Guaranteed by design.
- 2. In degraded mode, the voltage reference buffer cannot accurately maintain the output voltage ( $V_{DDA}$ -drop voltage).
- 3. To properly control VREFBUF I<sub>INRUSH</sub> current during the startup phase and the change of scaling,  $V_{DDA}$  voltage should be in the range of 1.8 V-3.6 V, 2.1 V-3.6 V, 2.4 V-3.6 V and 2.8 V-3.6 V for VSCALE = 011, 010, 001 and 000, respectively.

#### 6.3.23 Temperature sensor characteristics

Table 89. Temperature sensor characteristics

| Symbol                              | Parameter                                          | Min | Тур  | Max  | Unit  |
|-------------------------------------|----------------------------------------------------|-----|------|------|-------|
| T <sub>L</sub> <sup>(1)</sup>       | V <sub>SENSE</sub> linearity with temperature      |     | -    | 3    | °C    |
| Avg_Slope <sup>(2)</sup>            | Average slope                                      |     | 2    | -    | mV/°C |
| V <sub>30</sub> <sup>(3)</sup>      | Voltage at 30°C ± 5 °C                             |     | 0.62 | -    | V     |
| t <sub>start_run</sub> (1)          | Startup time in Run mode (buffer startup)          |     | -    | 25.2 | 0     |
| t <sub>S_temp</sub> <sup>(1)</sup>  | ADC sampling time when reading the temperature 9 - |     | -    | μs   |       |
| I <sub>sens</sub> <sup>(1)</sup>    | Sensor consumption -                               |     | 0.18 | 0.31 |       |
| I <sub>sensbuf</sub> <sup>(1)</sup> | Sensor buffer consumption                          | -   | 3.8  | 6.5  | μΑ    |

- 1. Guaranteed by design.
- 2. Guaranteed by characterization.
- 3. Measured at  $V_{DDA}$  = 3.3 V  $\pm$  10 mV. The  $V_{30}$  ADC conversion result is stored in the TS\_CAL1 byte.

Table 90. Temperature sensor calibration values

| Symbol  | Parameter                                                                     | Memory address            |
|---------|-------------------------------------------------------------------------------|---------------------------|
| TS_CAL1 | Temperature sensor raw data acquired value at 30 °C, V <sub>DDA</sub> =3.3 V  | 0x1FF1 E820 -0x1FF1 E821  |
| TS_CAL2 | Temperature sensor raw data acquired value at 110 °C, V <sub>DDA</sub> =3.3 V | 0x1FF1 E840 - 0x1FF1 E841 |

## 6.3.24 V<sub>BAT</sub> monitoring characteristics

Table 91. V<sub>BAT</sub> monitoring characteristics

| Symbol                             | Parameter                                             |     | Тур | Max | Unit |
|------------------------------------|-------------------------------------------------------|-----|-----|-----|------|
| R                                  | Resistor bridge for V <sub>BAT</sub>                  | -   | 26  | -   | ΚΩ   |
| Q                                  | Ratio on V <sub>BAT</sub> measurement                 |     | 4   | -   | -    |
| Er <sup>(1)</sup>                  | Error on Q                                            | -10 | -   | +10 | %    |
| t <sub>S_vbat</sub> <sup>(1)</sup> | ADC sampling time when reading V <sub>BAT</sub> input |     |     |     | μs   |

<sup>1.</sup> Guaranteed by design.

Table 92. V<sub>BAT</sub> charging characteristics

| Symbol                                 | Parameter                 | meter Condition    |   | Тур | Max | Unit |
|----------------------------------------|---------------------------|--------------------|---|-----|-----|------|
| D <sub>-</sub> -                       | Battery charging resistor | VBRS in PWR_CR3= 0 | - | 5   | -   | ΚΩ   |
| R <sub>BC</sub> Battery charging resis | Dattery charging resistor | VBRS in PWR_CR3= 1 |   | 1.5 | -   | 1/77 |

### 6.3.25 Voltage booster for analog switch

Table 93. Voltage booster for analog switch characteristics

|                        | <u> </u>             | •                                |      |     |     |      |
|------------------------|----------------------|----------------------------------|------|-----|-----|------|
| Symbol                 | Parameter            | Condition                        | Min  | Тур | Max | Unit |
| $V_{DD}$               | Supply voltage       | -                                | 1.62 | 2-6 | 3.6 | V    |
| t <sub>SU(BOOST)</sub> | Booster startup time | -                                | -    | -   | 50  | μs   |
| I <sub>DD(BOOST)</sub> | Roostor consumption  | 1.62 V ≤ V <sub>DD</sub> ≤ 2.7 V | -    | -   | 125 | μA   |
|                        | Booster consumption  | 2.7 V < V <sub>DD</sub> < 3.6 V  | -    | -   | 250 | μΑ   |

## 6.3.26 Comparator characteristics

Table 94. COMP characteristics<sup>(1)</sup>

| Symbol                         | Parameter                                       | Co                       | onditions                                         | Min  | Тур                   | Max       | Unit |
|--------------------------------|-------------------------------------------------|--------------------------|---------------------------------------------------|------|-----------------------|-----------|------|
| V <sub>DDA</sub>               | Analog supply voltage                           |                          | -                                                 | 1.62 | 3.3                   | 3.6       |      |
| V <sub>IN</sub>                | Comparator input voltage range                  |                          | -                                                 | 0    | -                     | $V_{DDA}$ | V    |
| V <sub>BG</sub> <sup>(2)</sup> | Scaler input voltage                            | -                        |                                                   | Refe | er to V <sub>RI</sub> | EFINT     |      |
| V <sub>SC</sub>                | Scaler offset voltage                           |                          | -                                                 | -    | ±5                    | ±10       | mV   |
| 1                              | Scaler static consumption                       | BRG_EN=                  | 0 (bridge disable)                                | -    | 0.2                   | 0.3       |      |
| IDDA(SCALER)                   | from V <sub>DDA</sub>                           | BRG_EN=                  | -1 (bridge enable)                                | -    | 0.8                   | 1         | μA   |
| t <sub>START_SCALER</sub>      | Scaler startup time                             | -                        |                                                   | -    | 140                   | 250       | μs   |
|                                | Comparator startup time to                      | High-                    | speed mode                                        | -    | 2                     | 5         |      |
| t <sub>START</sub>             | reach propagation delay                         | Med                      | dium mode                                         | -    | 5                     | 20        | μs   |
|                                | specification                                   | Ultra-lo                 | w-power mode                                      | -    | 15                    | 80        |      |
|                                | Propagation delay for                           | High-                    | speed mode                                        | -    | 50                    | 80        | ns   |
|                                | 200 mV step with 100 mV                         | Medium mode              |                                                   | -    | 0.5                   | 1.2       | 116  |
| <b>+</b> _                     | overdrive                                       | Ultra-lo                 | w-power mode                                      | -    | 2.5                   | 7         | μs   |
| t <sub>D</sub>                 | Propagation delay for step                      | High-                    | speed mode                                        | -    | 50                    | 120       | ns   |
|                                | > 200 mV with 100 mV overdrive only on positive | Medium mode              |                                                   | -    | 0.5                   | 1.2       | 116  |
|                                | inputs                                          | Ultra-lo                 | w-power mode                                      | -    | 2.5                   | 7         | μs   |
| V <sub>offset</sub>            | Comparator offset error                         | Full comr                | mon mode range                                    | -    | ±5                    | ±20       | mV   |
|                                |                                                 | No                       | hysteresis                                        | -    | 0                     | -         |      |
| V.                             | Comparator hysteresis                           | Low                      | hysteresis                                        | -    | 10                    | -         | m\/  |
| $V_{hys}$                      | Comparator Hysteresis                           | Medium hysteresis        |                                                   | -    | 20                    | -         | mV   |
|                                |                                                 | High                     | n hysteresis                                      | -    | 30                    | -         |      |
|                                |                                                 |                          | Static                                            | -    | 400                   | 600       |      |
|                                |                                                 | Ultra-low-<br>power mode | With 50 kHz<br>±100 mV overdrive<br>square signal | -    | 800                   | -         | nA   |
|                                |                                                 |                          | Static                                            | -    | 5                     | 7         |      |
| I <sub>DDA</sub> (COMP)        | Comparator consumption from V <sub>DDA</sub>    | Medium mode              | With 50 kHz<br>±100 mV overdrive<br>square signal | -    | 6                     | -         |      |
|                                |                                                 |                          | Static                                            | -    | 70                    | 100       | μA   |
|                                |                                                 | High-speed mode          | With 50 kHz<br>±100 mV overdrive<br>square signal | -    | 75                    | -         |      |

<sup>1.</sup> Guaranteed by design, unless otherwise specified.

<sup>2.</sup> Refer to Table 27: Embedded reference voltage.

## 6.3.27 Operational amplifiers characteristics

Table 95. OPAMP characteristics<sup>(1)</sup>

| Symbol                          | Parameter                            | Conditions                                                                            | Min | Тур  | Max       | Unit  |  |
|---------------------------------|--------------------------------------|---------------------------------------------------------------------------------------|-----|------|-----------|-------|--|
| V <sub>DDA</sub>                | Analog supply voltage<br>Range       | -                                                                                     | 2   | 3.3  | 3.6       | V     |  |
| CMIR                            | Common Mode Input<br>Range           | -                                                                                     | 0   | -    | $V_{DDA}$ |       |  |
|                                 |                                      | 25°C, no load on output                                                               | -   | -    | ±1.5      |       |  |
| VI <sub>OFFSET</sub>            | Input offset voltage                 | All voltages and temperature, no load                                                 | -   | -    | ±2.5      | mV    |  |
| ΔVI <sub>OFFSET</sub>           | Input offset voltage drift           | -                                                                                     | -   | ±3.0 | -         | μV/°C |  |
| TRIMOFFSETP<br>TRIMLPOFFSETP    | L common input voltage I             |                                                                                       | -   | 1.1  | 1.5       | - mV  |  |
|                                 |                                      |                                                                                       | -   | 1.1  | 1.5       | IIIV  |  |
| I <sub>LOAD</sub> Drive current |                                      | -                                                                                     | -   | -    | 500       | μА    |  |
| I <sub>LOAD_PGA</sub>           | Drive current in PGA mode            | -                                                                                     | -   | -    | 270       | '0    |  |
| C <sub>LOAD</sub>               | Capacitive load                      | -                                                                                     | -   | -    | 50        | pF    |  |
| CMRR                            | Common mode rejection ratio          | -                                                                                     | -   | 80   | -         | dB    |  |
| PSRR                            | Power supply rejection ratio         | $C_{LOAD} \le 50 pf /$ $R_{LOAD} \ge 4 k\Omega^{(2)} at 1 kHz,$ $V_{com} = V_{DDA}/2$ | -   | 66   | -         | dB    |  |
| GBW                             | Gain bandwidth for high supply range | -                                                                                     | -   | 7.3  | -         | MHz   |  |
| SR                              | Slew rate (from 10% and              | Normal mode                                                                           | -   | 3    | -         | V/µs  |  |
| Six                             | 90% of output voltage)               | High-speed mode                                                                       | -   | 30   | -         | ν/μ5  |  |
| AO                              | Open loop gain                       | -                                                                                     | -   | 90   | -         | dB    |  |
| φm                              | Phase margin                         | -                                                                                     | -   | 55   | -         | ٥     |  |
| GM                              | Gain margin                          | -                                                                                     | -   | 12   | -         | dB    |  |

Table 95. OPAMP characteristics<sup>(1)</sup> (continued)

| Symbol               | Parameter                                         | Conditions             |                                                                                         | Min                         | Тур    | Max | Unit   |
|----------------------|---------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------|-----------------------------|--------|-----|--------|
| V <sub>OHSAT</sub>   | High saturation voltage                           |                        | or $R_{LOAD}$ =min <sup>(2)</sup> , put at $V_{DDA}$                                    | V <sub>DDA</sub><br>-100 mV | -      | -   | mV     |
| V <sub>OLSAT</sub>   | Low saturation voltage                            | I <sub>load</sub> =max | or R <sub>LOAD</sub> =min <sup>(2)</sup> , nput at 0 V                                  | -                           | -      | 100 |        |
|                      | Wake up time from OFF                             | Normal<br>mode         | $C_{LOAD} \le 50 pf$ ,<br>$R_{LOAD} \ge 4 k\Omega^{(2)}$ ,<br>follower<br>configuration | -                           | 0.8    | 3.2 |        |
| t <sub>WAKEUP</sub>  | state                                             | High<br>speed          | $C_{LOAD} \le 50 pf$ ,<br>$R_{LOAD} \ge 4 k\Omega^{(2)}$ ,<br>follower<br>configuration | -                           | 0.9    | 2.8 | - µs   |
|                      |                                                   |                        | -                                                                                       | -                           | 2      | -   | -      |
|                      | Non inverting gain value                          | -                      |                                                                                         | -                           | 4      | -   | -      |
|                      | TWOIT IIIVEITING Gain value                       | -                      |                                                                                         | -                           | 8      | -   | -      |
| PGA gain             |                                                   |                        | -                                                                                       | -                           | 16     | -   | -      |
| i Ortgani            |                                                   |                        | -                                                                                       | -                           | -1     | -   | -      |
|                      | Inverting gain value                              | -                      |                                                                                         | -                           | -3     | -   | -      |
|                      | involuing gain value                              |                        | -                                                                                       | -                           | -7     | -   | -      |
|                      |                                                   |                        | -                                                                                       | -                           | -15    | -   | -      |
|                      |                                                   | Р                      | GA Gain=2                                                                               | -                           | 10/10  | -   |        |
|                      | R2/R1 internal resistance values in non-inverting | PGA Gain=4             |                                                                                         | -                           | 30/10  | -   | -      |
|                      | PGA mode <sup>(3)</sup>                           | PGA Gain=8             |                                                                                         | -                           | 70/10  | -   |        |
|                      |                                                   | PC                     | GA Gain=16                                                                              | -                           | 150/10 | -   | kΩ/    |
| R <sub>network</sub> |                                                   | P                      | GA Gain=-1                                                                              | -                           | 10/10  | -   | kΩ     |
|                      | R2/R1 internal resistance                         | P                      | GA Gain=-3                                                                              | -                           | 30/10  | -   | 1      |
|                      | values in inverting PGA mode <sup>(3)</sup>       | P                      | GA Gain=-7                                                                              | -                           | 70/10  |     | 1      |
|                      |                                                   |                        | GA Gain=-15                                                                             | -                           | 150/10 | -   |        |
| Delta R              | Resistance variation (R1 or R2)                   | -                      |                                                                                         | -15                         | -      | 15  | %      |
|                      |                                                   |                        | Gain=2                                                                                  | -                           | GBW/2  | -   |        |
| DCA DIA              | PGA bandwidth for                                 |                        | Gain=4                                                                                  | -                           | GBW/4  | -   | NA! !- |
| PGA BW               | different non inverting gain                      | Gain=8                 |                                                                                         | -                           | GBW/8  | -   | MHz    |
|                      |                                                   |                        | Gain=16                                                                                 |                             | GBW/16 | -   | 1      |

Table 95. OPAMP characteristics<sup>(1)</sup> (continued)

| Symbol                  | Parameter              | Conditions             |                             | Min | Тур | Max  | Unit |
|-------------------------|------------------------|------------------------|-----------------------------|-----|-----|------|------|
| en                      | Voltage noise density  | at<br>1 KHz            | output loaded               | -   | 140 | -    | nV/√ |
|                         | voitage noise density  | at<br>10 KHz           | with 4 kΩ                   | -   | 55  | -    | Hz   |
| I <sub>DDA(OPAMP)</sub> | OPAMP consumption from | Normal<br>mode         | mode no Load,               | -   | 570 | 1000 |      |
|                         | $V_{DDA}$              | High-<br>speed<br>mode | quiescent mode,<br>follower | -   | 610 | 1200 | μA   |

<sup>1.</sup> Guaranteed by design, unless otherwise specified.

<sup>2.</sup>  $R_{LOAD}$  is the resistive load connected to VSSA or to VDDA.

<sup>3.</sup> R2 is the internal resistance between the OPAMP output and th OPAMP inverting input. R1 is the internal resistance between the OPAMP inverting input and ground. PGA gain = 1 + R2/R1.

#### 6.3.28 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics

Unless otherwise specified, the parameters given in *Table 96* for DFSDM are derived from tests performed under the ambient temperature,  $f_{PCLKx}$  frequency and  $V_{DD}$  supply voltage summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output alternate function characteristics (DFSDMx\_CKINx, DFSDMx\_DATINx, DFSDMx\_CKOUT for DFSDMx).

Table 96. DFSDM measured timing 1.62-3.6 V

| Symbol                                      | Parameter                         | Conditions                                                                                                 | Min | Тур | Max                              | Unit |
|---------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------|-----|-----|----------------------------------|------|
| f <sub>DFSDMCLK</sub>                       | DFSDM clock                       | 1.62 V < V <sub>DD</sub> < 3.6 V                                                                           | -   | -   | f <sub>SYSCLK</sub>              |      |
|                                             |                                   | SPI mode (SITP[1:0]=0,1),<br>External clock mode<br>(SPICKSEL[1:0]=0),<br>1.62 V < V <sub>DD</sub> < 3.6 V | -   | -   | 20<br>(f <sub>DFSDMCLK</sub> /4) |      |
| <sup>f</sup> CKIN<br>(1/T <sub>CKIN</sub> ) |                                   | SPI mode (SITP[1:0]=0,1),<br>External clock mode<br>(SPICKSEL[1:0]=0),<br>2.7 < V <sub>DD</sub> < 3.6 V    | -   | -   | 20<br>(f <sub>DFSDMCLK</sub> /4) |      |
|                                             | Input clock<br>frequency          | SPI mode (SITP[1:0]=0,1),<br>Internal clock mode<br>(SPICKSEL[1:0] $\neq$ 0),<br>1.62 < $V_{DD}$ < 3.6 V   | -   | -   | 20<br>(f <sub>DFSDMCLK</sub> /4) | MHz  |
|                                             |                                   | SPI mode (SITP[1:0]=0,1),<br>Internal clock mode<br>(SPICKSEL[1:0]≠0),<br>2.7 < V <sub>DD</sub> < 3.6 V    | -   | -   | 20<br>(f <sub>DFSDMCLK</sub> /4) |      |
| f <sub>СКОИТ</sub>                          | Output clock frequency            | 1.62 < V <sub>DD</sub> < 3.6 V                                                                             | -   | -   | 20                               |      |
| DuCy <sub>CKOUT</sub>                       | Output clock frequency duty cycle | 1.62 < V <sub>DD</sub> < 3.6 V                                                                             | 45  | 50  | 55                               | %    |

Table 96. DFSDM measured timing 1.62-3.6 V (continued)

| Symbol                                         | Parameter                                             | Conditions                                                                                                         | Min                                  | Тур                  | Max                                   | Unit |
|------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|---------------------------------------|------|
| t <sub>wh(CKIN)</sub><br>t <sub>wl(CKIN)</sub> | Input clock high and low time                         | SPI mode (SITP[1:0]=0,1),<br>External clock mode<br>(SPICKSEL[1:0]=0),<br>1.62 < V <sub>DD</sub> < 3.6 V           | TCKIN/2 - 0.5                        | T <sub>CKIN</sub> /2 | -                                     |      |
| t <sub>su</sub>                                | Data input setup<br>time                              | SPI mode (SITP[1:0]=0,1),<br>External clock mode<br>(SPICKSEL[1:0]=0),<br>1.62 < V <sub>DD</sub> < 3.6 V           | 4                                    | -                    | -                                     |      |
| t <sub>h</sub>                                 | Data input hold time                                  | SPI mode (SITP[1:0]=0,1),<br>External clock mode<br>(SPICKSEL[1:0]=0),<br>1.62 < V <sub>DD</sub> < 3.6 V           | 0.5                                  | -                    | -                                     | ns   |
| T <sub>Manchester</sub>                        | Manchester data<br>period (recovered<br>clock period) | Manchester mode<br>(SITP[1:0]=2,3),<br>Internal clock mode<br>(SPICKSEL[1:0]≠0),<br>1.62 < V <sub>DD</sub> < 3.6 V | (CKOUTDIV+1) * T <sub>DFSDMCLK</sub> | -                    | (2*CKOUTDIV)  * T <sub>DFSDMCLK</sub> |      |



Figure 43. Channel transceiver timing diagrams



#### 6.3.29 Camera interface (DCMI) timing specifications

Unless otherwise specified, the parameters given in *Table 97* for DCMI are derived from tests performed under the ambient temperature,  $f_{\text{rcc\_c\_ck}}$  frequency and  $V_{\text{DD}}$  supply voltage summarized in *Table 23: General operating conditions*, with the following configuration:

- DCMI\_PIXCLK polarity: falling
- DCMI VSYNC and DCMI HSYNC polarity: high
- Data formats: 14 bits
- Capacitive load C=30 pF
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>

Table 97. DCMI characteristics<sup>(1)</sup>

| Symbol                                         | Parameter                                         | Min | Max | Unit |
|------------------------------------------------|---------------------------------------------------|-----|-----|------|
| -                                              | Frequency ratio DCMI_PIXCLK/f <sub>rcc_c_ck</sub> | -   | 0.4 | -    |
| DCMI_PIXCLK                                    | Pixel clock input                                 | -   | 80  | MHz  |
| D <sub>Pixel</sub>                             | Pixel clock input duty cycle                      | 30  | 70  | %    |
| t <sub>su(DATA)</sub>                          | Data input setup time                             | 1   | -   |      |
| t <sub>h(DATA)</sub>                           | Data input hold time                              | 1   | -   |      |
| $t_{su(HSYNC)} \ t_{su(VSYNC)}$                | DCMI_HSYNC/DCMI_VSYNC input setup time            | 1.5 | -   | ns   |
| t <sub>h(HSYNC)</sub><br>t <sub>h(VSYNC)</sub> | DCMI_HSYNC/DCMI_VSYNC input hold time             | 1   | -   |      |

<sup>1.</sup> Guaranteed by characterization results.

1/DCMI PIXCLK DCMI\_PIXCLK  $t_{h(HSYNC)}$ t<sub>su(HSYNC)</sub> DCMI\_HSYNC t<sub>su(VSYNC)</sub> DCMI\_VSYNC DATA[0:13] MS32414V2

Figure 44. DCMI timing diagram

#### 6.3.30 LCD-TFT controller (LTDC) characteristics

Unless otherwise specified, the parameters given in *Table 98* for LCD-TFT are derived from tests performed under the ambient temperature,  $f_{rcc\_c\_ck}$  frequency and  $V_{DD}$  supply voltage summarized in *Table 23: General operating conditions*, with the following configuration:

- LCD\_CLK polarity: high
- LCD\_DE polarity: low
- LCD\_VSYNC and LCD\_HSYNC polarity: high
- Pixel formats: 24 bits
- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C=30 pF
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>
- I/O compensation cell enabled

Table 98. LTDC characteristics (1)

| Symbol                                                                                          | Parameter                        | Conditions                                | Min                        | Max                        | Unit |
|-------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------|----------------------------|----------------------------|------|
| f <sub>CLK</sub>                                                                                | LTDC clock output frequency      | 2.7 V < V <sub>DD</sub> < 3.6 V,<br>20 pF | -                          | 150                        | MHz  |
|                                                                                                 |                                  | 2.7 V < V <sub>DD</sub> < 3.6 V           | -                          | 133                        |      |
|                                                                                                 |                                  | 1.62 V < V <sub>DD</sub> < 3.6 V          | -                          | 90                         |      |
| D <sub>CLK</sub>                                                                                | LTDC clock output duty cycle     | -                                         | 45                         | 55                         | %    |
| t <sub>w(CLKH),</sub><br>t <sub>w(CLKL)</sub>                                                   | Clock High time, low time        |                                           | t <sub>w(CLK)</sub> /2-0.5 | t <sub>w(CLK)</sub> /2+0.5 |      |
| t <sub>v(DATA)</sub>                                                                            | Data output valid time           |                                           | -                          | 0.5                        |      |
| t <sub>h(DATA)</sub>                                                                            | Data output hold time            |                                           | 0                          | -                          |      |
| $\begin{array}{c} t_{\text{V(HSYNC)},} \\ t_{\text{V(VSYNC)},} \\ t_{\text{V(DE)}} \end{array}$ | HSYNC/VSYNC/DE output valid time |                                           | -                          | 0.5                        | ns   |
| $\begin{array}{c} t_{h(\text{HSYNC}),} \\ t_{h(\text{VSYNC})}, \\ t_{h(\text{DE})} \end{array}$ | HSYNC/VSYNC/DE output hold time  |                                           | 0.5                        | -                          |      |

<sup>1.</sup> Guaranteed by characterization results.



Figure 45. LCD-TFT horizontal timing diagram





#### 6.3.31 Timer characteristics

The parameters given in *Table 99* are guaranteed by design.

Refer to *Section 6.3.15: I/O port characteristics* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Table 99. TIMx characteristics<sup>(1)(2)</sup>

| Symbol                 | Parameter                                    | Conditions <sup>(3)</sup>                                            | Min | Max                     | Unit                 |
|------------------------|----------------------------------------------|----------------------------------------------------------------------|-----|-------------------------|----------------------|
| t <sub>res(TIM)</sub>  | Timer resolution time                        | AHB/APBx prescaler=1<br>or 2 or 4, f <sub>TIMxCLK</sub> =<br>200 MHz | 1   | -                       | t <sub>TIMxCLK</sub> |
|                        |                                              | AHB/APBx<br>prescaler>4, f <sub>TIMxCLK</sub> =<br>100 MHz           | 1   | -                       | t <sub>TIMxCLK</sub> |
| f <sub>EXT</sub>       | Timer external clock frequency on CH1 to CH4 | f <sub>TIMxCLK</sub> = 200 MHz                                       | 0   | f <sub>TIMxCLK</sub> /2 | MHz                  |
| Res <sub>TIM</sub>     | Timer resolution                             |                                                                      | -   | 16/32                   | bit                  |
| t <sub>MAX_COUNT</sub> | Maximum possible count with 32-bit counter   | -                                                                    | -   | 65536 ×<br>65536        | t <sub>TIMxCLK</sub> |

<sup>1.</sup> TIMx is used as a general term to refer to the TIM1 to TIM17 timers.

<sup>2.</sup> Guaranteed by design.

<sup>3.</sup> The maximum timer frequency on APB1 or APB2 is up to 200 MHz, by setting the TIMPRE bit in the RCC\_CFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = rcc\_hclk1, otherwise TIMxCLK =  $4x F_{rcc\_pclkx\_d2}$ .

## 6.3.32 Communications interfaces

## I<sup>2</sup>C interface characteristics

The I<sup>2</sup>C interface meets the timings requirements of the I<sup>2</sup>C-bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s.
- Fast-mode Plus (Fm+): with a bit rate up to 1Mbit/s.

The I<sup>2</sup>C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to RM0433 reference manual) and when the i2c\_ker\_ck frequency is greater than the minimum shown in the table below:

| Symbol                     | Parameter | Condition                 |                            | Min | Unit |
|----------------------------|-----------|---------------------------|----------------------------|-----|------|
|                            |           | Standard-mode             |                            | 2   |      |
| f(I2CCLK) I2CCLK frequency | Fast-mode | Analog filter ON<br>DNF=0 | 8                          |     |      |
|                            |           | rast-mode                 | Analog filter OFF<br>DNF=1 | 9   | MHz  |
|                            |           | Fast-mode Plus            | Analog filter ON<br>DNF=0  | 17  |      |
|                            |           | Analog fi                 |                            | 16  |      |

Table 100. Minimum i2c\_ker\_ck frequency in all I2C modes

The SDA and SCL I/O requirements are met with the following restrictions:

- The SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V<sub>DD</sub> is disabled, but is still present.
- The 20 mA output drive requirement in Fast-mode Plus is not supported. This limits the maximum load C<sub>load</sub> supported in Fm+, which is given by these formulas:

$$t_{r(SDA/SCL)}$$
=0.8473xR<sub>p</sub>xC<sub>load</sub>  
R<sub>p(min)</sub>= (V<sub>DD</sub>-V<sub>OL(max)</sub>)/I<sub>OL(max)</sub>

Where  $R_p$  is the I2C lines pull-up. Refer to *Section 6.3.15: I/O port characteristics* for the I2C I/Os characteristics.

All I<sup>2</sup>C SDA and SCL I/Os embed an analog filter. Refer to *Table 101* for the analog filter characteristics:

| Symbol | Parameter                                                              | Min               | Max                | Unit |
|--------|------------------------------------------------------------------------|-------------------|--------------------|------|
|        | Maximum pulse width of spikes that are suppressed by the analog filter | 50 <sup>(2)</sup> | 260 <sup>(3)</sup> | ns   |

- 1. Guaranteed by design.
- 2. Spikes with widths below t<sub>AF(min)</sub> are filtered.
- 3. Spikes with widths above  $t_{\mathsf{AF}(\mathsf{max})}$  are not filtered.



Electrical characteristics STM32H753xl

## **SPI** interface characteristics

Unless otherwise specified, the parameters given in *Table 102* for the SPI interface are derived from tests performed under the ambient temperature,  $f_{PCLKx}$  frequency and  $V_{DD}$  supply voltage conditions summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>
- I/O compensation cell enabled
- HSLV activated when VDD ≤ 2.7 V

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Table 102. SPI dynamic characteristics<sup>(1)</sup>

| Symbol                                             | Parameter             | Conditions                                                             | Min                   | Тур               | Max                   | Unit |
|----------------------------------------------------|-----------------------|------------------------------------------------------------------------|-----------------------|-------------------|-----------------------|------|
|                                                    |                       | Master mode<br>1.62 V≤V <sub>DD</sub> ≤3.6 V                           |                       |                   | 90                    |      |
|                                                    |                       | Master mode<br>2.7 V≤V <sub>DD</sub> ≤3.6 V<br>SPI1,2,3                | -                     |                   | 133                   |      |
|                                                    |                       | Master mode<br>2.7 V≤V <sub>DD</sub> ≤3.6 V<br>SPI4,5,6                |                       |                   | 100                   |      |
| f <sub>SCK</sub> 1/t <sub>c(SCK)</sub> SPI clock f | SPI clock frequency   | Slave receiver mode<br>1.62 V≤V <sub>DD</sub> ≤3.6 V<br>SPI1,2,3       | -                     | -                 | 150                   | MHz  |
|                                                    |                       | Slave receiver mode<br>1.62 V≤V <sub>DD</sub> ≤3.6 V<br>SPI4,5,6       |                       |                   | 100                   |      |
|                                                    |                       | Slave mode transmitter/full<br>duplex<br>2.7 V≤V <sub>DD</sub> ≤3.6 V  |                       |                   | 31                    |      |
|                                                    |                       | Slave mode transmitter/full<br>duplex<br>1.62 V≤V <sub>DD</sub> ≤3.6 V | -                     |                   | 25                    |      |
| t <sub>su(NSS)</sub>                               | NSS setup time        | Slave mode                                                             | 2                     | -                 | -                     |      |
| t <sub>h(NSS)</sub>                                | NSS hold time         | Slave Illoue                                                           | 1                     | -                 | -                     | ns   |
| $t_{w(SCKH)}, \ t_{w(SCKL)}$                       | SCK high and low time | Master mode                                                            | T <sub>PLCK</sub> - 2 | T <sub>PLCK</sub> | T <sub>PLCK</sub> + 2 |      |

182/227 DocID030553 Rev 3

Table 102. SPI dynamic characteristics<sup>(1)</sup> (continued)

| Symbol               | Parameter                | Conditions                                | Min | Тур  | Max | Unit |
|----------------------|--------------------------|-------------------------------------------|-----|------|-----|------|
| t <sub>su(MI)</sub>  | Data input setup time    | Master mode                               | 1   | -    | -   |      |
| t <sub>su(SI)</sub>  | Data input setup time    | Slave mode                                | 2   | -    | -   |      |
| t <sub>h(MI)</sub>   | Data input hold time     | Master mode                               | 2   | -    | -   |      |
| t <sub>h(SI)</sub>   | Data input hold time     | Slave mode                                | 1   | -    | -   |      |
| t <sub>a(SO)</sub>   | Data output access time  | Slave mode                                | 9   | 13   | 27  |      |
| t <sub>dis(SO)</sub> | Data output disable time | Slave mode                                | 0   | 1    | 5   | ns   |
| +                    |                          | Slave mode, 2.7 V≤V <sub>DD</sub> ≤3.6 V  | -   | 11.5 | 16  |      |
| t <sub>v(SO)</sub>   | Data output valid time   | Slave mode 1.62 V≤V <sub>DD</sub> ≤3.6 V  | -   | 13   | 20  |      |
| t <sub>v(MO)</sub>   |                          | Master mode                               | -   | 1    | 3   |      |
| t <sub>h(SO)</sub>   | Data output hold time    | Slave mode, 1.62 V≤V <sub>DD</sub> ≤3.6 V | 9   | -    | -   |      |
| t <sub>h(MO)</sub>   | Data output noid time    | Master mode                               | 0   | -    | -   |      |

<sup>1.</sup> Guaranteed by characterization results.

Figure 47. SPI timing diagram - slave mode and CPHA = 0



Electrical characteristics STM32H753xI



Figure 48. SPI timing diagram - slave mode and CPHA = 1<sup>(1)</sup>

1. Measurement points are done at  $0.5V_{DD}$  and with external  $C_L$  = 30 pF.



1. Measurement points are done at  $0.5V_{DD}$  and with external  $C_L$  = 30 pF.

## I<sup>2</sup>S interface characteristics

Unless otherwise specified, the parameters given in *Table 103* for the  $I^2S$  interface are derived from tests performed under the ambient temperature,  $f_{PCLKx}$  frequency and  $V_{DD}$  supply voltage conditions summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>
- I/O compensation cell enabled

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS).

Table 103. I<sup>2</sup>S dynamic characteristics<sup>(1)</sup>

| Symbol                 | Parameter               | Conditions                             | Min    | Max    | Unit    |
|------------------------|-------------------------|----------------------------------------|--------|--------|---------|
| f <sub>MCK</sub>       | I2S Main clock output   | -                                      | 256x8K | 256xFs | MHz     |
| f                      | I2S clock frequency     | Master data                            | -      | 64xFs  | MHz     |
| f <sub>CK</sub>        | 123 Clock frequency     | Slave data                             | -      | 64xFs  | IVII IZ |
| t <sub>v(WS)</sub>     | WS valid time           | Master mode                            | -      | 3.5    |         |
| t <sub>h(WS)</sub>     | WS hold time            | Master mode                            | 0      | -      |         |
| t <sub>su(WS)</sub>    | WS setup time           | Slave mode                             | 1      | -      |         |
| t <sub>h(WS)</sub>     | WS hold time            | Slave mode                             | 1      | -      |         |
| t <sub>su(SD_MR)</sub> | Data input actua timo   | Master receiver                        | 1      | -      |         |
| t <sub>su(SD_SR)</sub> | Data input setup time   | Slave receiver                         | 1      | -      | ns      |
| t <sub>h(SD_MR)</sub>  | Data input hald time    | Master receiver                        | 4      | -      | 115     |
| t <sub>h(SD_SR)</sub>  | Data input hold time    | Slave receiver                         | 2      | -      |         |
| t <sub>v(SD_ST)</sub>  | Data output valid time  | Slave transmitter (after enable edge)  | -      | 20     |         |
| t <sub>v(SD_MT)</sub>  | Data output valid time  | Master transmitter (after enable edge) | -      | 3      |         |
| t <sub>h(SD_ST)</sub>  | Data output hold time   | Slave transmitter (after enable edge)  | 9      | -      |         |
| t <sub>h(SD_MT)</sub>  | Data output Hold tillle | Master transmitter (after enable edge) | 0      | -      |         |

<sup>1.</sup> Guaranteed by characterization results.

**Electrical characteristics** STM32H753xI



Figure 50. I<sup>2</sup>S slave timing diagram (Philips protocol)<sup>(1)</sup>

LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first



Figure 51. I<sup>2</sup>S master timing diagram (Philips protocol)<sup>(1)</sup>

LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

#### **SAI** characteristics

Unless otherwise specified, the parameters given in *Table 104* for SAI are derived from tests performed under the ambient temperature, f<sub>PCLKx</sub> frequency and VDD supply voltage conditions summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C=30 pF
- Measurement points are performed at CMOS levels: 0.5V<sub>DD</sub>

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output alternate function characteristics (SCK,SD,WS).

Table 104. SAI characteristics<sup>(1)</sup>

| Symbol                   | Parameter                          | Conditions                                                           | Min                     | Max    | Unit  |
|--------------------------|------------------------------------|----------------------------------------------------------------------|-------------------------|--------|-------|
| f <sub>MCK</sub>         | SAI Main clock output              | -                                                                    | 256 x 8K                | 256xFs | MHz   |
| Г                        | SAI clock frequency <sup>(2)</sup> | Master data: 32 bits                                                 | - 128xFs <sup>(3)</sup> |        | MHz   |
| F <sub>CK</sub>          | SAI clock frequency.               | Slave data: 32 bits                                                  | -                       | 128xFs | IVITZ |
|                          | FS valid time                      | Master mode                                                          |                         | 15     |       |
| t <sub>v(FS)</sub>       | ro vallu time                      | Master mode<br>1.71≤VDD≤3.6V                                         | -                       | 20     |       |
| t <sub>su(FS)</sub>      | FS setup time                      | Slave mode                                                           | 7                       | -      |       |
| 4                        | FS hold time                       | Master mode                                                          | 1                       | -      | ns    |
| t <sub>h(FS)</sub>       | rs noid time                       | Slave mode                                                           | 1                       | -      |       |
| t <sub>su(SD_A_MR)</sub> | Data input actus time              | Master receiver                                                      | 0.5                     | -      |       |
| t <sub>su(SD_B_SR)</sub> | Data input setup time              | Slave receiver                                                       | 1                       | -      |       |
| t <sub>h(SD_A_MR)</sub>  | Data input hold time               | Master receiver                                                      | 3.5                     | -      |       |
| t <sub>h(SD_B_SR)</sub>  | Data iriput riolu tirrie           | Slave receiver                                                       | 2                       | -      |       |
| 4                        | Data output valid time             | Slave transmitter (after enable edge)<br>2.7≤V <sub>DD</sub> ≤3.6V   | -                       | 17     |       |
| t <sub>v(SD_B_ST)</sub>  | Data output valid time             | Slave transmitter (after enable edge)<br>1.62≤V <sub>DD</sub> ≤3.6V  | -                       | 20     |       |
| t <sub>h(SD_B_ST)</sub>  | Data output hold time              | Slave transmitter (after enable edge)                                | 7                       | -      |       |
| t <sub>v(SD_A_MT)</sub>  | Data output valid time             | Master transmitter (after enable edge)<br>2.7≤V <sub>DD</sub> ≤3.6V  | -                       | 17     | ns    |
|                          | Data output vallu tillle           | Master transmitter (after enable edge)<br>1.62≤V <sub>DD</sub> ≤3.6V | -                       | 20     |       |
| t <sub>h(SD_A_MT)</sub>  | Data output hold time              | Master transmitter (after enable edge)                               | 7.55                    | -      |       |

- 1. Guaranteed by characterization results.
- 2. APB clock frequency must be at least twice SAI clock frequency.
- 3. With  $F_S$ =192 kHz.



Electrical characteristics STM32H753xl

1/fsck SAI\_SCK\_X **t**h(FS) SAI\_FS\_X (output) <sup>t</sup>v(SD\_MT)◀ t<sub>v</sub>(FS) → th(SD\_MT) SAI\_SD\_X Slot n Slot n+2 (transmit) **▶**¦ <sup>t</sup>h(SD\_MR) <sup>t</sup>su(SD\_MR) ₩ SAI\_SD\_X Slot n (receive) MS32771V1

Figure 52. SAI master timing waveforms





## **MDIO** characteristics

Table 105. MDIO Slave timing parameters

| Symbol                | Parameter                                      | Min | Тур | Max | Unit |
|-----------------------|------------------------------------------------|-----|-----|-----|------|
| F <sub>sDC</sub>      | Management data clock                          | -   | -   | 40  | MHz  |
| t <sub>d(MDIO)</sub>  | Management data input/output output valid time | 7   | 8   | 20  |      |
| t <sub>su(MDIO)</sub> | Management data input/output setup time        | 4   | i   | ı   | ns   |
| t <sub>h(MDIO)</sub>  | Management data input/output hold time         | 1   | ı   | ı   |      |

The MDIO controller is mapped on APB2 domain. The frequency of the APB bus should at least 1.5 times the MDC frequency:  $F_{PCLK2} \ge 1.5 * F_{MDC}$ .

188/227 DocID030553 Rev 3



Figure 54. MDIO Slave timing diagram

## SD/SDIO MMC card host interface (SDMMC) characteristics

Unless otherwise specified, the parameters given in *Table 106* for the SDIO/MMC interface are derived from tests performed under the ambient temperature,  $f_{PCLK2}$  frequency and  $V_{DD}$  supply voltage conditions summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>
- I/O compensation cell enabled
- HSLV activated when VDD ≤ 2.7 V

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output characteristics.

Table 106. Dynamic characteristics: SD / MMC characteristics,  $V_{DD}$ =2.7V to 3.6V<sup>(1)(2)</sup>

| Symbol                                                          | Parameter                                                      | Conditions               | Min | Тур  | Max | Unit |  |  |
|-----------------------------------------------------------------|----------------------------------------------------------------|--------------------------|-----|------|-----|------|--|--|
| f <sub>PP</sub>                                                 | Clock frequency in data transfer mode                          | -                        | 0   | -    | 125 | MHz  |  |  |
| t <sub>W(CKL)</sub>                                             | Clock low time                                                 | f -50 MHz                | 9.5 | 10.5 | -   | no   |  |  |
| t <sub>W(CKH)</sub>                                             | Clock high time                                                | f <sub>PP</sub> =50 MHz  | 8.5 | 9.5  | -   | ns   |  |  |
| CMD, D inp                                                      | CMD, D inputs (referenced to CK) in MMC and SD HS/SDR/DDR mode |                          |     |      |     |      |  |  |
| t <sub>ISU</sub>                                                | Input setup time HS                                            |                          | 2   | -    | -   |      |  |  |
| t <sub>IH</sub>                                                 | Input hold time HS                                             | f <sub>PP</sub> ≥ 50 MHz | 1.5 | -    | -   | ns   |  |  |
| t <sub>IDW</sub> (3)                                            | Input valid window (variable window)                           |                          | 3   | -    | -   |      |  |  |
| CMD, D outputs (referenced to CK) in MMC and SD HS/SDR/DDR mode |                                                                |                          |     |      |     |      |  |  |
| t <sub>OV</sub>                                                 | Output valid time HS                                           | f > FO MU                | -   | 3.5  | 5   | 20   |  |  |
| t <sub>OH</sub>                                                 | Output hold time HS                                            | f <sub>PP</sub> ≥ 50 MHz | 2   | -    | -   | ns   |  |  |
|                                                                 |                                                                |                          |     |      |     |      |  |  |



Electrical characteristics STM32H753xI

Table 106. Dynamic characteristics: SD / MMC characteristics,  $V_{DD}$ =2.7V to 3.6V<sup>(1)(2)</sup>

| Symbol                                              | Parameter                                            | Conditions              | Min | Тур | Max | Unit |  |
|-----------------------------------------------------|------------------------------------------------------|-------------------------|-----|-----|-----|------|--|
| CMD, D inputs (referenced to CK) in SD default mode |                                                      |                         |     |     |     |      |  |
| t <sub>ISUD</sub>                                   | Input setup time SD                                  | f =25 MH=               | 2   | -   | -   |      |  |
| t <sub>IHD</sub>                                    | Input hold time SD                                   | f <sub>PP</sub> =25 MHz | 1.5 | -   | -   | ns   |  |
| CMD, D out                                          | CMD, D outputs (referenced to CK) in SD default mode |                         |     |     |     |      |  |
| t <sub>OVD</sub>                                    | Output valid default time SD                         | f -25 MU-7              | -   | 1   | 2   |      |  |
| t <sub>OHD</sub>                                    | Output hold default time SD                          | f <sub>PP</sub> =25 MHz | 0   | -   | -   | ns   |  |

<sup>1.</sup> Guaranteed by characterization results.

Table 107. Dynamic characteristics: eMMC characteristics,  $V_{DD}$ =1.71V to 1.9V<sup>(1)(2)</sup>

| Symbol                                         | Parameter                                     | Conditions               | Min | Тур  | Max | Unit |  |
|------------------------------------------------|-----------------------------------------------|--------------------------|-----|------|-----|------|--|
| f <sub>PP</sub>                                | Clock frequency in data transfer mode         | -                        | 0   | -    | 120 | MHz  |  |
| t <sub>W(CKL)</sub>                            | Clock low time                                | f =50 MH=                | 9.5 | 10.5 | -   | no   |  |
| t <sub>W(CKH)</sub>                            | Clock high time                               | f <sub>PP</sub> =50 MHz  | 8.5 | 9.5  | -   | ns   |  |
| CMD, D inp                                     | CMD, D inputs (referenced to CK) in eMMC mode |                          |     |      |     |      |  |
| t <sub>ISU</sub>                               | Input setup time HS                           |                          | 1.5 | -    | -   |      |  |
| t <sub>IH</sub>                                | Input hold time HS                            | f <sub>PP</sub> ≥ 50 MHz | 2   | -    | -   | ns   |  |
| t <sub>IDW</sub> (3)                           | Input valid window (variable window)          |                          | 3.5 | -    | -   |      |  |
| CMD, D outputs (referenced to CK) in eMMC mode |                                               |                          |     |      |     |      |  |
| t <sub>OV</sub>                                | Output valid time HS                          | f > FO MU                | -   | 5    | 7   | no   |  |
| t <sub>OH</sub>                                | Output hold time HS                           | f <sub>PP</sub> ≥ 50 MHz | 3   | -    | -   | ns   |  |

<sup>1.</sup> Guaranteed by characterization results.

190/227 DocID030553 Rev 3

<sup>2.</sup> Above 100 MHz,  $C_L = 20 pF$ .

<sup>3.</sup> The minimum window of time where the data needs to be stable for proper sampling in tuning mode.

<sup>2.</sup>  $C_L = 20 pF$ .

<sup>3.</sup> The minimum window of time where the data needs to be stable for proper sampling in tuning mode.

tW(CKH) tW(CKL) CK tov <sup>t</sup>OH D, CMD (output) tisu D, CMD (input) ai14887

Figure 55. SDIO high-speed mode

Figure 56. SD default mode



Figure 57. DDR mode  $t_{(CK)}$  $t_{w(CKL)}$  $t_{f(CK)}$ Clock  $t_{vf(OUT)}$  $t_{\text{hr}(\text{OUT})}$ t<sub>hf(OUT)</sub> tvr(OUT) Data output D0 D1 D2 D3 D4 D5  $t_{sf(IN)} t_{hf(IN)}$  $t_{sr(IN)}t_{hr(IN)}$ Data input D0 D1 D2 D3 D4 D5 MSv36879V1

## CAN (controller area network) interface

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output alternate function characteristics (FDCANx\_TX and FDCANx\_RX).

Electrical characteristics STM32H753xI

## **USB OTG\_FS characteristics**

The USB interface is fully compliant with the USB specification version 2.0 and is USB-IF certified (for Full-speed device operation).

| Table 108. USB OTG_ | FS electrical characteristics |
|---------------------|-------------------------------|
|                     |                               |

|                      | <del>_</del>                                   |                     |                    |      |      |      |
|----------------------|------------------------------------------------|---------------------|--------------------|------|------|------|
| Symbol               | Parameter                                      | Condition           | Min                | Тур  | Max  | Unit |
| V <sub>DD33USB</sub> | USB transceiver operating voltage              | -                   | 3.0 <sup>(1)</sup> | -    | 3.6  | V    |
| R <sub>PUI</sub>     | Embedded USB_DP pull-up value during idle      | -                   | 900                | 1250 | 1600 |      |
| R <sub>PUR</sub>     | Embedded USB_DP pull-up value during reception | -                   | 1400               | 2300 | 3200 | Ω    |
| Z <sub>DRV</sub>     | Output driver impedance <sup>(2)</sup>         | Driver high and low | 28                 | 36   | 44   |      |

The USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7 to 3.0 V voltage range.

## **USB OTG\_HS characteristics**

Unless otherwise specified, the parameters given in *Table 109* for ULPI are derived from tests performed under the ambient temperature,  $f_{\text{rcc\_c\_ck}}$  frequency and  $V_{\text{DD}}$  supply voltage conditions summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 20 pF
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>.

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output characteristics.

Table 109. Dynamic characteristics: USB ULPI<sup>(1)</sup>

| Symbol                           | Parameter                                  | Conditions                                                                | Min | Тур | Max | Unit |
|----------------------------------|--------------------------------------------|---------------------------------------------------------------------------|-----|-----|-----|------|
| t <sub>SC</sub>                  | Control in (ULPI_DIR, ULPI_NXT) setup time | -                                                                         | 0.5 | -   | -   |      |
| t <sub>HC</sub>                  | Control in (ULPI_DIR, ULPI_NXT) hold time  | -                                                                         | 6.5 | -   | -   |      |
| t <sub>SD</sub>                  | Data in setup time                         | -                                                                         | 2.5 | -   | -   |      |
| t <sub>HD</sub>                  | Data in hold time                          | -                                                                         | 0   | -   | -   |      |
|                                  |                                            | $2.7 \text{ V} < \text{V}_{DD} < 3.6 \text{ V},$<br>$C_L = 20 \text{ pF}$ | -   | 6.5 | 8.5 | ns   |
| t <sub>DC</sub> /t <sub>DD</sub> | Data/control output delay                  | -                                                                         | -   |     |     |      |
|                                  |                                            | $1.7 \text{ V} < \text{V}_{DD} < 3.6 \text{ V},$ $C_L = 15 \text{ pF}$    | -   | 6.5 | 13  |      |

<sup>1.</sup> Guaranteed by characterization results.



<sup>2.</sup> No external termination series resistors are required on USB\_DP (D+) and USB\_DM (D-); the matching impedance is already included in the embedded driver.

Clock <sup>t</sup>HC t<sub>SC</sub> Control In (ULPI\_DIR, ULPI\_NXT) tSD+ tHD data In (8-bit) t<sub>DC</sub> <sup>t</sup>DC Control out (ULPI\_STP) t<sub>DD</sub> data out (8-bit) ai17361c

Figure 58. ULPI timing diagram

## **Ethernet characteristics**

Unless otherwise specified, the parameters given in *Table 110*, *Table 111* and *Table 112* for SMI, RMII and MII are derived from tests performed under the ambient temperature,  $f_{rcc\_c\_ck}$  frequency summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 20 pF
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>.

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output characteristics.

*Table 110* gives the list of Ethernet MAC signals for the SMI and *Figure 59* shows the corresponding timing diagram.

Table 110. Dynamics characteristics: Ethernet MAC signals for SMI<sup>(1)</sup>

| Symbol                | Parameter               | Min | Тур | Max | Unit |
|-----------------------|-------------------------|-----|-----|-----|------|
| $t_{MDC}$             | MDC cycle time(2.5 MHz) | 400 | 400 | 403 |      |
| T <sub>d(MDIO)</sub>  | Write data valid time   | 1   | 1.5 | 3   | ne   |
| t <sub>su(MDIO)</sub> | Read data setup time    | 8   | -   | -   | ns   |
| t <sub>h(MDIO)</sub>  | Read data hold time     | 0   | -   | -   |      |

<sup>1.</sup> Guaranteed by characterization results.

**Electrical characteristics** STM32H753xI



Figure 59. Ethernet SMI timing diagram

Table 111 gives the list of Ethernet MAC signals for the RMII and Figure 60 shows the corresponding timing diagram.

Table 111. Dynamics characteristics: Ethernet MAC signals for RMII<sup>(1)</sup>

| Symbol               | Parameter                        | Min                           | Тур | Max  | Unit |  |
|----------------------|----------------------------------|-------------------------------|-----|------|------|--|
| t <sub>su(RXD)</sub> | Receive data setup time          | 2                             | -   | -    |      |  |
| t <sub>ih(RXD)</sub> | Receive data hold time           | 3                             | -   | -    |      |  |
| t <sub>su(CRS)</sub> | Carrier sense setup time         | 2.5                           | -   | -    | ne   |  |
| t <sub>ih(CRS)</sub> | Carrier sense hold time          | 2                             | -   | -    | ns   |  |
| t <sub>d(TXEN)</sub> | Transmit enable valid delay time | enable valid delay time 4 4.5 |     |      |      |  |
| t <sub>d(TXD)</sub>  | Transmit data valid delay time   | 7                             | 7.5 | 11.5 |      |  |

<sup>1.</sup> Guaranteed by characterization results.

RMII\_REF\_CLK  $t_{d(TXEN)}$ t<sub>d</sub>(TXD) RMII TX EN RMII\_TXD[1:0] t<sub>su(RXD)</sub> tih(RXD) t<sub>su(CRS)</sub> tih(CRS) RMII\_RXD[1:0] RMII\_CRS\_DV ai15667b

Figure 60. Ethernet RMII timing diagram

Table 112 gives the list of Ethernet MAC signals for MII and Figure 61 shows the corresponding timing diagram.

194/227 DocID030553 Rev 3

| Symbol               | Parameter                        | Min | Тур | Max | Unit |
|----------------------|----------------------------------|-----|-----|-----|------|
| t <sub>su(RXD)</sub> | Receive data setup time          | 2   | -   | -   |      |
| t <sub>ih(RXD)</sub> | Receive data hold time           | 3   | -   | -   |      |
| t <sub>su(DV)</sub>  | Data valid setup time            | 1.5 | -   | -   |      |
| t <sub>ih(DV)</sub>  | Data valid hold time             | 1   | -   | -   | ne   |
| t <sub>su(ER)</sub>  | Error setup time                 | 1.5 | -   | -   | ns   |
| t <sub>ih(ER)</sub>  | Error hold time                  | 0.5 | -   | -   |      |
| t <sub>d(TXEN)</sub> | Transmit enable valid delay time | 4.5 | 6.5 | 11  |      |
| t <sub>d(TXD)</sub>  | Transmit data valid delay time   | 7   | 7.5 | 15  |      |

Table 112. Dynamics characteristics: Ethernet MAC signals for MII<sup>(1)</sup>

<sup>1.</sup> Guaranteed by characterization results.



Figure 61. Ethernet MII timing diagram

## 6.3.33 JTAG/SWD interface characteristics

Unless otherwise specified, the parameters given in *Table 113* and *Table 114* for JTAG/SWD are derived from tests performed under the ambient temperature,  $f_{rcc\_c\_ck}$  frequency and  $V_{DD}$  supply voltage summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 0x10
- Capacitive load C=30 pF
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>

Refer to Section 6.3.15: I/O port characteristics for more details on the input/output characteristics.

Electrical characteristics STM32H753xl

Table 113. Dynamics characteristics: JTAG characteristics

| Symbol                | Parameter                          | Conditions                         | Min Typ |   | Max  | Unit   |
|-----------------------|------------------------------------|------------------------------------|---------|---|------|--------|
| F <sub>pp</sub>       |                                    | 2.7 V <v<sub>DD&lt; 3.6 V</v<sub>  | -       | - | 37   |        |
| 1/t <sub>c(TCK)</sub> | T <sub>CK</sub> clock<br>frequency | 1.62 V <v<sub>DD&lt; 3.6 V</v<sub> | -       | - | 27.5 |        |
| ti <sub>su(TMS)</sub> | TMS input setup time               | -                                  | 2       | - | -    |        |
| ti <sub>h(TMS)</sub>  | TMS input hold time                | -                                  | 1       | - | -    | MHz    |
| ti <sub>su(TDI)</sub> | TDI input setup time               | -                                  | 1.5     | - | -    | IVITIZ |
| ti <sub>h(TDI)</sub>  | TDI input<br>hold time             | -                                  | 1       | - | -    |        |
|                       | TDO output                         | 2.7 V <v<sub>DD&lt; 3.6 V</v<sub>  | -       | 8 | 13.5 |        |
| t <sub>ov (TDO)</sub> | valid time                         | 1.62 V <v<sub>DD&lt; 3.6 V</v<sub> | -       | 8 | 18   |        |
| t <sub>oh(TDO)</sub>  | TDO output hold time               | -                                  | 7       | - | -    |        |

Table 114. Dynamics characteristics: SWD characteristics

| Symbol                  | Parameter                    | Conditions                         | Min | Тур | Max  | Unit |
|-------------------------|------------------------------|------------------------------------|-----|-----|------|------|
| F <sub>pp</sub>         |                              | 2.7 V <v<sub>DD&lt; 3.6 V</v<sub>  | -   | -   | 71   |      |
| 1/t <sub>c(SWCLK)</sub> | SWCLK<br>clock<br>frequency  | 1.62 V <v<sub>DD&lt; 3.6 V</v<sub> | -   | -   | 55.5 |      |
| ti <sub>su(SWDIO)</sub> | SWDIO input setup time       | -                                  | 2.5 | -   | -    |      |
| ti <sub>h(SWDIO)</sub>  | SWDIO input hold time        | -                                  | 1   | -   | -    | MHz  |
| •                       | SWDIO output valid           | 2.7 V <v<sub>DD&lt; 3.6 V</v<sub>  | -   | 8.5 | 14   |      |
| t <sub>ov</sub> (SWDIO) | time                         | 1.62 V <v<sub>DD&lt; 3.6 V</v<sub> | -   | 8.5 | 18   |      |
| t <sub>oh(SWDIO)</sub>  | SWDIO<br>output hold<br>time | -                                  | 8   | -   | -    |      |

 $t_{\text{c}(\mathsf{TCK})}$ TCK t<sub>h(TMS/TDI)</sub>  $t_{\text{su}(\text{TMS/TDI})}$ t<sub>w(TCKL)</sub> t<sub>w(TCKH)</sub> TDI/TMS → t<sub>ov(TDO)</sub> t<sub>oh(TDO)</sub>

Figure 62. JTAG timing diagram TDO MSv40458V1



# 7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK<sup>®</sup> specifications, grade definitions and product status *are available at www.st.com*. ECOPACK<sup>®</sup> is an ST trademark.

## 7.1 LQFP100 package information



1. Drawing is not to scale.

Table 115. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data

| Compleal |        | millimeters |        | inches <sup>(1)</sup> |        |        |
|----------|--------|-------------|--------|-----------------------|--------|--------|
| Symbol   | Min    | Тур         | Max    | Min                   | Тур    | Max    |
| А        | -      | -           | 1.600  | -                     | -      | 0.0630 |
| A1       | 0.050  | -           | 0.150  | 0.0020                | -      | 0.0059 |
| A2       | 1.350  | 1.400       | 1.450  | 0.0531                | 0.0551 | 0.0571 |
| b        | 0.170  | 0.220       | 0.270  | 0.0067                | 0.0087 | 0.0106 |
| С        | 0.090  | -           | 0.200  | 0.0035                | -      | 0.0079 |
| D        | 15.800 | 16.000      | 16.200 | 0.6220                | 0.6299 | 0.6378 |
| D1       | 13.800 | 14.000      | 14.200 | 0.5433                | 0.5512 | 0.5591 |
| D3       | -      | 12.000      | -      | -                     | 0.4724 | -      |
| E        | 15.800 | 16.000      | 16.200 | 0.6220                | 0.6299 | 0.6378 |
| E1       | 13.800 | 14.000      | 14.200 | 0.5433                | 0.5512 | 0.5591 |
| E3       | -      | 12.000      | -      | -                     | 0.4724 | -      |
| е        | -      | 0.500       | -      | -                     | 0.0197 | -      |
| L        | 0.450  | 0.600       | 0.750  | 0.0177                | 0.0236 | 0.0295 |
| L1       | -      | 1.000       | -      | -                     | 0.0394 | -      |
| k        | 0.0°   | 3.5°        | 7.0°   | 0.0°                  | 3.5°   | 7.0°   |
| ccc      | -      | -           | 0.080  | -                     | -      | 0.0031 |

<sup>1.</sup> Values in inches are converted from mm and rounded to 4 decimal digits.



Figure 65. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.\*

47/

## **Device marking for LQFP100**

The following figure gives an example of topside marking versus pin 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.



Figure 66. LQFP100 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

# 7.2 TFBGA100, 8 x 8 x 0.8 mm thin fine-pitch ball grid array package information

O SEATING PLANE ppp С Ā **4**2 A1 ball index В A1 ball area D1 identifier 0000000A 000000000B 0 0 0 0 0 0 0 0 0 0 C 0000<u>0000</u>E П Ш 00000000F 0 0 0 0 0 0 0 0 0 0 G Α 000000000H -0000<u>0|0000ф</u>|к 10 9 8 7 6 5 4 3 2 1 **BOTTOM VIEW TOP VIEW** Ø b(100 BALLS) øeee M C A B øfff (M) C A08Q ME V1

Figure 67. TFBGA100, 8 × 8 × 0.8 mm thin fine-pitch ball grid array package outline

1. Drawing is not to scale.

Table 116. TFBGA100, 8 x 8 × 0.8 mm thin fine-pitch ball grid array package mechanical data

| 1      |       |             |             |        |                       |        |  |
|--------|-------|-------------|-------------|--------|-----------------------|--------|--|
| Symbol |       | millimeters | nillimeters |        | inches <sup>(1)</sup> |        |  |
| Symbol | Min   | Тур         | Max         | Min    | Тур                   | Max    |  |
| Α      | -     | -           | 1.100       | -      | -                     | 0.0433 |  |
| A1     | 0.150 | -           | -           | 0.0059 | -                     | -      |  |
| A2     | -     | 0.760       | -           | -      | 0.0299                | -      |  |
| b      | 0.350 | 0.400       | 0.450       | 0.0138 | 0.0157                | 0.0177 |  |



202/227 DocID030553 Rev 3

STM32H753xl Package information

Table 116. TFBGA100, 8 x 8 × 0.8 mm thin fine-pitch ball grid array package mechanical data (continued)

| Symbol |       | millimeters |       | inches <sup>(1)</sup> |        |        |  |
|--------|-------|-------------|-------|-----------------------|--------|--------|--|
| Symbol | Min   | Тур         | Max   | Min                   | Тур    | Max    |  |
| D      | 7.850 | 8.000       | 8.150 | 0.3091                | 0.3150 | 0.3209 |  |
| D1     | -     | 7.200       |       | -                     | 0.2835 | -      |  |
| E      | 7.850 | 8.000       | 8.150 | 0.3091                | 0.3150 | 0.3209 |  |
| E1     | -     | 7.200       | -     | -                     | 0.2835 | -      |  |
| е      | -     | 0.800       | -     | -                     | 0.0315 | -      |  |
| F      | -     | 0.400       | -     | -                     | 0.0157 | -      |  |
| G      | -     | 0.400       | -     | -                     | 0.0157 | -      |  |
| ddd    | -     | -           | 0.100 | -                     | -      | 0.0039 |  |
| eee    | -     | -           | 0.150 | -                     | -      | 0.0059 |  |
| fff    | -     | -           | 0.080 | -                     | -      | 0.0031 |  |

<sup>1.</sup> Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 68. TFBGA100, 8 x 8 x 0.8 mm thin fine-pitch ball grid array package recommended footprint



<sup>1.</sup> Dimensions are expressed in millimeters.

Table 117. TFBGA100 recommended PCB design rules (0.8 mm pitch BGA)

| Dimension         | Recommended values                                              |
|-------------------|-----------------------------------------------------------------|
| Pitch             | 0.8                                                             |
| Dpad              | 0.400 mm                                                        |
| Dsm               | 0.470 mm typ (depends on the soldermask registration tolerance) |
| Stencil opening   | 0.400 mm                                                        |
| Stencil thickness | Between 0.100 mm and 0.125 mm                                   |
| Pad trace width   | 0.120 mm                                                        |

#### 7.3 LQFP144 package information

SEATING P<u>LAN</u>E С 0.25 mm □ ccc C GAUGE PLANE D D1 D3 109 E3 E1 37 PIN 1 **IDENTIFICATION** 1A\_ME\_V4

Figure 69. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 118. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package mechanical data

| Symbol |        | millimeters |        | inches <sup>(1)</sup> |        |        |  |
|--------|--------|-------------|--------|-----------------------|--------|--------|--|
| Symbol | Min    | Тур         | Max    | Min                   | Тур    | Max    |  |
| Α      | -      | -           | 1.600  | -                     | -      | 0.0630 |  |
| A1     | 0.050  | -           | 0.150  | 0.0020                | -      | 0.0059 |  |
| A2     | 1.350  | 1.400       | 1.450  | 0.0531                | 0.0551 | 0.0571 |  |
| b      | 0.170  | 0.220       | 0.270  | 0.0067                | 0.0087 | 0.0106 |  |
| С      | 0.090  | -           | 0.200  | 0.0035                | -      | 0.0079 |  |
| D      | 21.800 | 22.000      | 22.200 | 0.8583                | 0.8661 | 0.8740 |  |
| D1     | 19.800 | 20.000      | 20.200 | 0.7795                | 0.7874 | 0.7953 |  |
| D3     | -      | 17.500      | -      | -                     | 0.6890 | -      |  |
| Е      | 21.800 | 22.000      | 22.200 | 0.8583                | 0.8661 | 0.8740 |  |
| E1     | 19.800 | 20.000      | 20.200 | 0.7795                | 0.7874 | 0.7953 |  |
| E3     | -      | 17.500      | -      | -                     | 0.6890 | -      |  |
| е      | -      | 0.500       | -      | -                     | 0.0197 | -      |  |
| L      | 0.450  | 0.600       | 0.750  | 0.0177                | 0.0236 | 0.0295 |  |
| L1     | -      | 1.000       | -      | -                     | 0.0394 | -      |  |
| k      | 0°     | 3.5°        | 7°     | 0°                    | 3.5°   | 7°     |  |
| ccc    | -      | -           | 0.080  | -                     | -      | 0.0031 |  |

<sup>1.</sup> Values in inches are converted from mm and rounded to 4 decimal digits.



Figure 70. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

## **Device marking for LQFP144**

The following figure gives an example of topside marking versus pin 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.



Figure 71. LQFP144 marking example (package top view)

57

<sup>1.</sup> Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

## 7.4 UFBGA169 package information

Figure 72. UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline



1. Drawing is not in scale.

Table 119. UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data

| Symbol | millimeters |       |       | inches <sup>(1)</sup> |        |        |
|--------|-------------|-------|-------|-----------------------|--------|--------|
| Symbol | Min.        | Тур.  | Max.  | Min.                  | Тур.   | Max.   |
| А      | 0.460       | 0.530 | 0.600 | 0.0181                | 0.0209 | 0.0236 |
| A1     | 0.050       | 0.080 | 0.110 | 0.0020                | 0.0031 | 0.0043 |
| A2     | 0.400       | 0.450 | 0.500 | 0.0157                | 0.0177 | 0.0197 |
| A3     | -           | 0.130 | -     | -                     | 0.0051 | -      |
| A4     | 0.270       | 0.320 | 0.370 | 0.0106                | 0.0126 | 0.0146 |
| b      | 0.230       | 0.280 | 0.330 | 0.0091                | 0.0110 | 0.0130 |
| D      | 6.950       | 7.000 | 7.050 | 0.2736                | 0.2756 | 0.2776 |
| D1     | 5.950       | 6.000 | 6.050 | 0.2343                | 0.2362 | 0.2382 |
| Е      | 6.950       | 7.000 | 7.050 | 0.2736                | 0.2756 | 0.2776 |
| E1     | 5.950       | 6.000 | 6.050 | 0.2343                | 0.2362 | 0.2382 |
| е      | -           | 0.500 | -     | -                     | 0.0197 | -      |

Table 119. UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data (continued)

| 0      | millimeters |       |       | inches <sup>(1)</sup> |        |        |
|--------|-------------|-------|-------|-----------------------|--------|--------|
| Symbol | Min.        | Тур.  | Max.  | Min.                  | Тур.   | Max.   |
| F      | 0.450       | 0.500 | 0.550 | 0.0177                | 0.0197 | 0.0217 |
| ddd    | -           | -     | 0.100 | -                     | -      | 0.0039 |
| eee    | -           | -     | 0.150 | -                     | -      | 0.0059 |
| fff    | -           | -     | 0.050 | -                     | -      | 0.0020 |

<sup>1.</sup> Values in inches are converted from mm and rounded to 4 decimal digits.

## 7.5 LQFP176 package information

Figure 73. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline



1. Drawing is not to scale.

Table 120. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package mechanical data

|                  |        |             | inechanicai ua | ııa    | mechanical data       |        |  |  |  |  |  |
|------------------|--------|-------------|----------------|--------|-----------------------|--------|--|--|--|--|--|
|                  |        | Dimensions  |                |        |                       |        |  |  |  |  |  |
| Ref.             |        | Millimeters |                |        | Inches <sup>(1)</sup> |        |  |  |  |  |  |
|                  | Min.   | Тур.        | Max.           | Min.   | Тур.                  | Max.   |  |  |  |  |  |
| Α                | -      | -           | 1.600          | -      | -                     | 0.0630 |  |  |  |  |  |
| A1               | 0.050  | -           | 0.150          | 0.0020 | -                     | 0.0059 |  |  |  |  |  |
| A2               | 1.350  | -           | 1.450          | 0.0531 | -                     | 0.0571 |  |  |  |  |  |
| b                | 0.170  | -           | 0.270          | 0.0067 | -                     | 0.0106 |  |  |  |  |  |
| С                | 0.090  | -           | 0.200          | 0.0035 | -                     | 0.0079 |  |  |  |  |  |
| D                | 23.900 | -           | 24.100         | 0.9409 | -                     | 0.9488 |  |  |  |  |  |
| HD               | 25.900 | -           | 26.100         | 1.0197 | -                     | 1.0276 |  |  |  |  |  |
| ZD               | -      | 1.250       | -              | -      | 0.0492                | -      |  |  |  |  |  |
| E                | 23.900 | -           | 24.100         | 0.9409 | -                     | 0.9488 |  |  |  |  |  |
| HE               | 25.900 | -           | 26.100         | 1.0197 | -                     | 1.0276 |  |  |  |  |  |
| ZE               | -      | 1.250       | -              | -      | 0.0492                | -      |  |  |  |  |  |
| е                | -      | 0.500       | -              | -      | 0.0197                | -      |  |  |  |  |  |
| L <sup>(2)</sup> | 0.450  | -           | 0.750          | 0.0177 | -                     | 0.0295 |  |  |  |  |  |
| L1               | -      | 1.000       | -              | -      | 0.0394                | -      |  |  |  |  |  |
| k                | 0°     | -           | 7°             | 0°     | -                     | 7°     |  |  |  |  |  |
| ссс              | -      | -           | 0.080          | -      | -                     | 0.0031 |  |  |  |  |  |
|                  |        |             |                |        |                       |        |  |  |  |  |  |

<sup>1.</sup> Values in inches are converted from mm and rounded to 4 decimal digits.

<sup>2.</sup> L dimension is measured at gauge plane at 0.25 mm above the seating plane.



Figure 74. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

57

## **Device marking for LQFP176**

The following figure gives an example of topside marking versus pin 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.



Figure 75. LQFP176 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

# 7.6 LQFP208 package information

Figure 76. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package outline

1. Drawing is not to scale.

PIN 1

208

IDENTIFICATION

UH\_ME\_V2

Table 121. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package mechanical data

| Symbol |        | millimeters |        | inches <sup>(1)</sup> |        |        |
|--------|--------|-------------|--------|-----------------------|--------|--------|
| Symbol | Min    | Тур         | Max    | Min                   | Тур    | Max    |
| Α      | -      | -           | 1.600  | -                     | -      | 0.0630 |
| A1     | 0.050  | -           | 0.150  | 0.0020                | -      | 0.0059 |
| A2     | 1.350  | 1.400       | 1.450  | 0.0531                | 0.0551 | 0.0571 |
| b      | 0.170  | 0.220       | 0.270  | 0.0067                | 0.0087 | 0.0106 |
| С      | 0.090  | -           | 0.200  | 0.0035                | -      | 0.0079 |
| D      | 29.800 | 30.000      | 30.200 | 1.1811                | 1.1732 | 1.1890 |
| D1     | 27.800 | 28.000      | 28.200 | 1.1024                | 1.0945 | 1.1102 |
| D3     | -      | 25.500      | -      | -                     | 1.0039 | -      |
| Е      | 29.800 | 30.000      | 30.200 | 1.1811                | 1.1732 | 1.1890 |
| E1     | 27.800 | 28.000      | 28.200 | 1.1024                | 1.0945 | 1.1102 |
| E3     | -      | 25.500      | -      | -                     | 1.0039 | -      |
| е      | -      | 0.500       | -      | -                     | 0.0197 | -      |
| L      | 0.450  | 0.600       | 0.750  | 0.0177                | 0.0236 | 0.0295 |
| L1     | -      | 1.000       | -      | -                     | 0.0394 | -      |
| k      | 0°     | 3.5°        | 7°     | 0°                    | 3.5°   | 7°     |
| ccc    | -      | -           | 0.080  | -                     | -      | 0.0031 |

<sup>1.</sup> Values in inches are converted from mm and rounded to 4 decimal digits.



Figure 77. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

57

## **Device marking for LQFP208**

The following figure gives an example of topside marking versus pin 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.



Figure 78. LQFP208 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

## 7.7 UFBGA176+25 package information

Figure 79. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package outline



1. Drawing is not to scale.

Table 122. UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package mechanical data

| Symbol |       | millimeters |        |        | inches <sup>(1)</sup> |        |  |
|--------|-------|-------------|--------|--------|-----------------------|--------|--|
| Symbol | Min.  | Тур.        | Max.   | Min.   | Тур.                  | Max.   |  |
| Α      | -     | -           | 0.600  | -      | -                     | 0.0236 |  |
| A1     | -     | -           | 0.110  | -      | -                     | 0.0043 |  |
| A2     | -     | 0.130       | -      | -      | 0.0051                | -      |  |
| A3     | -     | 0.450       | -      | -      | 0.0177                | -      |  |
| A4     | -     | 0.320       | -      | -      | 0.0126                | -      |  |
| b      | 0.240 | 0.290       | 0.340  | 0.0094 | 0.0114                | 0.0134 |  |
| D      | 9.850 | 10.000      | 10.150 | 0.3878 | 0.3937                | 0.3996 |  |
| D1     | -     | 9.100       | -      | -      | 0.3583                | -      |  |
| E      | 9.850 | 10.000      | 10.150 | 0.3878 | 0.3937                | 0.3996 |  |
| E1     | -     | 9.100       | -      | -      | 0.3583                | -      |  |
| е      | -     | 0.650       | -      | -      | 0.0256                | -      |  |
| Z      | -     | 0.450       | -      | -      | 0.0177                | -      |  |
| ddd    | -     | -           | 0.080  | -      | -                     | 0.0031 |  |

218/227 DocID030553 Rev 3

STM32H753xl Package information

Table 122. UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package mechanical data (continued)

| Symbol | millimeters |      |       | inches <sup>(1)</sup> |      |        |
|--------|-------------|------|-------|-----------------------|------|--------|
| Symbol | Min.        | Тур. | Max.  | Min.                  | Тур. | Max.   |
| eee    | -           | -    | 0.150 | -                     | -    | 0.0059 |
| fff    | -           | -    | 0.050 | -                     | -    | 0.0020 |

<sup>1.</sup> Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 80. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package recommended footprint



Table 123. UFBGA 176+25 recommended PCB design rules (0.65 mm pitch BGA)

|                   | • • • • • • • • • • • • • • • • • • • •                          |
|-------------------|------------------------------------------------------------------|
| Dimension         | Recommended values                                               |
| Pitch             | 0.65 mm                                                          |
| Dpad              | 0.300 mm                                                         |
| Dsm               | 0.400 mm typ. (depends on the soldermask registration tolerance) |
| Stencil opening   | 0.300 mm                                                         |
| Stencil thickness | Between 0.100 mm and 0.125 mm                                    |
| Pad trace width   | 0.100 mm                                                         |

## **Device marking for UFBGA176+25**

The following figure gives an example of topside marking versus pin 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.



Figure 81. UFBGA176+25 marking example (package top view)



<sup>1.</sup> Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

## 7.8 TFBGA240+25 package information

TFBGA265 package information is preliminary information which are subject to change.

Figure 82. TFBGA240+25 - 265 pin, 14x14 mm, 0.8 mm pitch, fine pitch ball grid array package outline



1. Dimensions are expressed in millimeters.

Table 124. TFBGA240+25 - 265 pin, 14x14 mm, 0.8 mm pitch, fine pitch ball grid array mechanical data

|          | millimeters |        |        | inches <sup>(1)</sup> |        |        |
|----------|-------------|--------|--------|-----------------------|--------|--------|
| Symbol   | Timiniotoro |        | ee     |                       |        |        |
| - Cymbol | Min         | Тур    | Max    | Min                   | Тур    | Max    |
| А        | -           | -      | 1.100  | -                     | -      | 0.0433 |
| A1       | 0.150       | -      | -      | 0.0059                | -      | -      |
| A2       | -           | 0.760  | -      | -                     | 0.0299 | -      |
| b        | 0.350       | 0.400  | 0.450  | 0.0138                | 0.0157 | 0.0177 |
| D        | 13.850      | 14.000 | 14.150 | 0.5453                | 0.5512 | 0.5571 |
| D1       | -           | 12.800 | -      | -                     | 0.5039 | -      |
| E        | 13.850      | 14.000 | 14.150 | 0.5453                | 0.5512 | 0.5571 |
| E1       | -           | 12.800 | -      | -                     | 0.5039 | -      |
| е        | -           | 0.800  | -      | -                     | 0.0315 | -      |
| F        | -           | 0.600  | -      | -                     | 0.0236 | -      |
| G        | -           | 0.600  | -      | -                     | 0.0236 | -      |
| ddd      | -           | -      | 0.100  | -                     | -      | 0.0039 |
| eee      | -           | -      | 0.150  | -                     | -      | 0.0059 |
| fff      | -           | -      | 0.080  | -                     | -      | 0.0031 |

<sup>1.</sup> Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 83. TFBGA240+25 - 265 pin pin, 14x14 mm 0.8 mm pitch recommended footprint



1. Dimensions are expressed in millimeters.

222/227 DocID030553 Rev 3

Table 125. TFBGA240+25, 265 pin recommended PCB design rules (0.8 mm pitch)

| Dimension         | Recommended values                                               |
|-------------------|------------------------------------------------------------------|
| Pitch             | 0.8 mm                                                           |
| Dpad              | 0.325 mm                                                         |
| Dsm               | 0.425 mm typ. (depends on the soldermask registration tolerance) |
| Stencil opening   | 0.250 mm                                                         |
| Stencil thickness | 0.100 mm                                                         |

## **Device marking for TFBGA240+25**

The following figure gives an example of topside marking versus pin 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

Product identification(1)

STM32H753XIHL

Revision code

Ball A1identifier

MSv46115V1

Figure 84. TFBGA240+25 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

## 7.9 Thermal characteristics

The maximum chip-junction temperature,  $T_J$  max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$ 

#### Where:

- T<sub>A</sub> max is the maximum ambient temperature in °C,
- Θ<sub>JA</sub> is the package junction-to-ambient thermal resistance, in °C/W,
- $P_D$  max is the sum of  $P_{INT}$  max and  $P_{I/O}$  max ( $P_D$  max =  $P_{INT}$  max +  $P_{I/O}$ max),
- P<sub>INT</sub> max is the product of I<sub>DD</sub> and V<sub>DD</sub>, expressed in Watts. This is the maximum chip internal power.

P<sub>I/O</sub> max represents the maximum power dissipation on output pins where:

$$\mathsf{P}_\mathsf{I/O} \; \mathsf{max} = \Sigma \; (\mathsf{V}_\mathsf{OL} \times \mathsf{I}_\mathsf{OL}) + \Sigma ((\mathsf{V}_\mathsf{DD} - \mathsf{V}_\mathsf{OH}) \times \mathsf{I}_\mathsf{OH}),$$

taking into account the actual  $V_{OL}$  /  $I_{OL}$  and  $V_{OH}$  /  $I_{OH}$  of the I/Os at low and high level in the application.

| Symbol        | Parameter                                                                   | Value | Unit   |
|---------------|-----------------------------------------------------------------------------|-------|--------|
|               | Thermal resistance junction-ambient<br>LQFP100 - 14 x 14 mm /0.5 mm pitch   | 45.0  |        |
|               | Thermal resistance junction-ambient TFBGA100 - 8 x 8 mm /0.8 mm pitch       | 39.3  |        |
|               | Thermal resistance junction-ambient<br>LQFP144 - 20 x 20 mm /0.5 mm pitch   | 43.7  |        |
| 0             | Thermal resistance junction-ambient UFBGA169 - 7 x 7 mm /0.5 mm pitch       | 37.7  | °C/W   |
| $\Theta_{JA}$ | Thermal resistance junction-ambient<br>LQFP176 - 24 x 24 mm /0.5 mm pitch   | 43.0  | - C/VV |
|               | Thermal resistance junction-ambient<br>LQFP208 - 28 x 28 mm /0.5 mm pitch   | 42.4  |        |
|               | Thermal resistance junction-ambient UFBGA176+25 - 10 x 10 mm /0.65 mm pitch | 37.4  |        |
|               | Thermal resistance junction-ambient TFBGA240+25 - 14 x 14 mm / 0.8 mm pitch | 36.6  |        |

**Table 126. Thermal characteristics** 

## 7.9.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

224/227 DocID030553 Rev 3

# 8 Ordering information

Table 127. STM32H753xl ordering information scheme



TR = tape and reel

No character = tray or tube

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

Revision history STM32H753xI

# 9 Revision history

Table 128. Document revision history

| Date        | Revision | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22-Jun-2017 | 1        | Initial release.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 27-Sep-2017 | 2        | Updated list of features. Changed datasheet status to "production data". Added UFBGA169 and TFBGA100 packages as well as notes related to TFBGA100 and UFBGA169 status on cover page and in Table 2: STM32H753xl features and peripheral counts. Differentiated number of GPIOs for each package in Table 2: STM32H753xl features and peripheral counts. Updated Error code correction (ECC) in Section 3.3.3: Embedded SRAM. Change PWR_CR3 into PWR_D3CR in Section 3.5.1: Power supply scheme. Updated Section 3.12: Nested vectored interrupt controller (NVIC). Added Table 4: DFSDM implementation in Section 3.23: Digital filter for sigma-delta modulators (DFSDM). Changed PC2/3 to PC2/3_C and VDD33USB to VDD in Figure 3: LQFP100 pinout. Changed PC2/3 to PC2/3_C in Figure 5: LQFP144 pinout. Changed PC2/3 to PC2/3_C in Figure 5: LQFP144 pinout. Changed PC2/3 to PC2/3_C in Figure 9: LQFP100 pinout. Changed PC2/3 to PC2/3_C in Figure 9: LQFP100 pinout. Table 8: STM32H753xl pin/ball definition:  Modified PA7, PC4, PC5, PB1, PG1, PE7, PE8 and PE9 I/O structure  TFBGA240 +25: removed duplicate occurrence of F1, F2 and P17 pin; added notes related to F1, F2, G2 pin connection; added note on E1, L16, L17, M16, M17, K16, K17, N17.  UFBGA176+25: changed G10 pin name to VSS.  Added note to VREF+ pin. Added current consumption corresponding to 125 °C ambient temperature in Section 6.3.6: Supply current characteristics. Replaced FMC_CLK by FMC_SDCLK in Section: SDRAM waveforms and timings. Updated t <sub>LATRINJ</sub> in Table 84: ADC characteristics. For TFBGA100, TFBGA240+25 and UFBGA169, updated thermal resistance power-junction in Table 126: Thermal characteristics as well as power dissipation in Table 23: General operating conditions. |
| 23-Oct-2017 | 3        | Total current consumption changed to 4 µA minimum in <i>Features</i> . Updated <i>Figure 6: UFBGA169 ballout</i> . Updated dpad and dsm in <i>Table 125: TFBGA240+25, 265 pin recommended PCB design rules (0.8 mm pitch)</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

