MT241P FINITE MATHEMATICS

1. Assignment

Attempt all questions and submit your solutions to the indicated problems by 4pm, Friday, 14.10.2022: Q.1.1(1), Q.1.2, Q.1.4, Q.1.5(1), Q.1.6

Question 1.1. Use induction to show that

(1)
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
, for all integers $n \ge 1$

(2) $n^2 < 2^n$, for all integers $n \ge 5$.

Question 1.2. Let f be a function in two variables such that for all positive integers m, n

- (1) f(1,1) = 2
- (2) f(m+1,n) = f(m,n) + 2(m+n)
- (3) f(m, n+1) = f(m, n) + 2(m+n-1)

Prove that for all positive integers m, n

$$(\star) \ f(m,n) = (m+n)^2 - (m+n) - 2n + 2$$

Steps: (1) Verify (\star) for (m,n)=(1,1). (2) Use induction on m to show that (\star) holds for all pairs (m,1), where $m \in \mathbb{N}$. (3) Given a fixed $m \in \mathbb{N}$, use induction on n to verify show that (\star) holds for all pairs (m,n), where $n \in \mathbb{N}$.

Question 1.3. Recall the Lucas Sequence from the lectures given by $T_1 = 1, T_2 = 3$ and $T_n = T_{n-1} + T_{n-2}$, for $n \ge 3$. In class we have shown that

$$T_n < \left(\frac{7}{4}\right)^n$$
, for all $n \ge 1$.

Find a rational number x < 7/4 such that $T_n < x^n$, for all $n \ge 1$.

Question 1.4. Let $a, b, c \in \mathbb{Z}$. Prove that

- (1) If $a \mid b$ and $b \mid c$, then $a \mid c$.
- (2) If $a \mid b$ and $a \mid c$ and $u, v \in \mathbb{Z}$, then $a \mid (ub + vc)$.

Question 1.5.

- (1) Show that 2003 divides $4007^n 1$, for all integers $n \ge 0$.
- (2) Show that $2002^n + 2003^n$ is divisible by 4005, for all odd integers n > 1.

1

Question 1.6. Show that 5 divides $n^5 - n$, for any $n \in \mathbb{Z}$.