# Enhancing Path Selection in Multihomed Nodes

**Bruno Sousa**<sup>1</sup>, Kostas Pentikousis<sup>2</sup>, Marilia Curado<sup>1</sup> bmsousa@dei.uc.pt

 Laboratory of Communications and Telematics, Center for Informatics and Systems University of Coimbra, Portugal
 European Center for Information and Communication Technologies Berlin, Germany

24 September 2013

### Outline

- Introduction
- 2 Related Work
- MADM techniques
- Methodology to evaluate MADM techniques
- Evaluation performed
- 6 Results
- Conclusion and Next Steps

#### Introduction

Path selection in multi-interface nodes (multihomed), multiaccess capable can be a **NP-Hard** problem.









### Related Work

Linear Programming (LP) techniques

- ✓ Support weighting of criteria;
- ✓ Optimal Solution;
- X Require Adaptation.

Multiple Attribute Decision Mechanism (MADM) techniques

- ✓ Not tied to the problem being solved/optimized;
- ✓ Applied in distinct areas (e.g. social sciences, economical);
- ✓ Flexible to include diverse criteria;
- ✓ Support weighting of criteria.

### MADM steps

- Step 1 Decision Matrix For nb benefits and nc costs criteria.
- Step 2 Normalization  $r_{ij} = \frac{x_{ij}}{\sqrt{\sum x_{ij}^2}}$  for  $i=1,\cdots,m; j=1,\cdots,n$ .
- Step 3 Weighting  $v_{ij} = w_j \cdot r_{ij}$ , with  $\sum w_j = 1$
- Step 4 Ideal Solutions Positive-ideal and negative-ideal solutions are determined by  $A^*$  and  $A^-$  terms, respectively:

$$A^* = \{v_1^*, v_2^*, \cdots, v_{nb}^*\}$$
 
$$A^- = \{v_1^-, v_2^-, \cdots, v_{nb}^-\}$$
 Where: 
$$v_j^* = \max(v_{i,j}) \ \forall i = 1, \cdots, m \ j = 1, \cdots, nb$$
 
$$v_j^- = \min(v_{i,j}) \ \forall i = 1, \cdots, m \ j = 1, \cdots, nc$$

# MADM steps (cont'd)

#### Step 5 - Distance

| Step     | TOPSIS <sup>a,c</sup>                        | DiA <sup>a,c</sup>                   | MeTH <sup>a,b,c,d</sup>                                   |
|----------|----------------------------------------------|--------------------------------------|-----------------------------------------------------------|
| Distance | $D_i = \sqrt{Id_j - v_{i,j}}$                | $D_i =  Id_j - v_{i,j} $             | $D_i = \frac{(Id_j - v_{i,j})^2}{ Id_i - Sd_i  + \alpha}$ |
| Score    | $\mathcal{S}_i = rac{D_i^-}{D_i^- + D_i^*}$ | $S_i = \sqrt{(D_i^*)^2 + (D_i^-)^2}$ | $S_i = \sqrt{D_i^* + D_i^-}$                              |
| Rank     | $Best = descend(S_i)$                        | $Best = ascend(S_i)$                 | $Best = ascend(S_i)$                                      |

 $<sup>^{</sup>a}$   $Id_{i}$  is the Ideal solution.

- Step 6 Score
- Step 7 Ranking

These steps apply to MulTiHOming-aware Decision-makIng meChanism for AppLications (MeTHODICAL), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and Distance to Ideal Alternative (DiA) MADM techniques.

<sup>&</sup>lt;sup>b</sup> Benefits:  $Sd_j = \overline{X_j} + Var(X_j)$ ; Costs:  $Sd_j = \overline{X_j} - Var(X_j)$ 

<sup>&</sup>lt;sup>c</sup> Benefits:  $D_i^*$ ; Costs:  $D_i^-$ 

 $<sup>^{</sup>d} \alpha = 0.001$ 

### Evaluating and comparing MADM techniques

#### Common MADM evaluations:

- ✓ Use sub-representative evaluation metrics (e.g. normalization functions);
- ✓ Metrics are tied to a scenario (e.g. number of handovers);
- ✓ Do not promote comparison between MADM techniques.

What is the best MADM technique?

### Methodology to evaluate MADM techniques

#### Based on standardized techniques:

- Design of Experiments (DoE);
- Analysis of Variance Variance (ANOVA)
  - Model interactions;
  - Significance p value < 0.05;
  - Model completeness;
  - Coefficient of determination  $R^2 \to \text{Explains variance of Y (score)}$ ;
  - F-statistic → variance between experiments;
- Factorial Design  $2^k$ ,  $n^k$ .

| ld | <i>x</i> <sub>1</sub> | <i>X</i> 2 | <i>X</i> 3 | Effect                |
|----|-----------------------|------------|------------|-----------------------|
| 1  | -                     | -          | -          | (1)                   |
| 2  | +                     | -          | -          | $x_1$                 |
| 3  | -                     | +          | -          | <i>X</i> <sub>2</sub> |
| 4  | +                     | +          | -          | $x_1x_2$              |
| 5  | -                     | -          | +          | <i>X</i> 3            |
| 6  | +                     | -          | +          | $x_1x_3$              |
| 7  | -                     | +          | +          | $x_2x_3$              |
| 8  | +                     | +          | +          | $x_1x_2x_3$           |

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_1 x_2 + \beta_5 x_1 x_3 + \beta_6 x_2 x_3 + \beta_7 x_1 x_2 x_3 + \epsilon$$

# Methodology to evaluate MADM techniques (cont'd)

#### Includes the following steps:

- Step 1 Decision Matrices  $dM_n[m, k]$ , with m measurements for the n paths with k criteria;
- Step 2 Levels IMin corresponds to the minimum level (-) while IMax corresponds to the maximum level (+);

$$IMin_{j} = min(dM_{1}[,j], dM_{2}[,j], \cdots, dM_{n}[,j]) \text{ with } j = 1, \cdots, k \to 2^{k}$$

$$IMax_{j} = max(dM_{1}[,j], dM_{2}[,j], \cdots, dM_{n}[,j]) \text{ with } j = 1, \cdots, k \to 2^{k}$$

$$IMax_{j} = \left[max(dM_{1}[,j]), \cdots, max(dM_{n}[,j])\right] \text{ with } j = 1, \cdots, k \to n^{k}$$

- Step 3 Experiments Matrix  $dW_{sets}[z, k]$  corresponds to matrix with weight sets for z experiments;
- Step 4 Factorial design matrix dF[a, k], with a relying on the factorial design,  $a = 2^k$  or  $a = n^k$ ;

# Methodology to evaluate MADM techniques (cont'd)

• **Step 5** - **Input Matrix** Run MADM techniques has the full set of factors dF[a, k] and weight sets  $dW_{sets}[z, k]$  as input, forming the input matrix, dI[a, k + z];

```
\mathsf{dl}[\mathsf{a},\,\mathsf{k}+\mathsf{z}\,] = \begin{pmatrix} k_1 & \cdots & k_k & \mathsf{z1} & \mathsf{z2} & \cdots & \mathsf{z_z} \\ & \mathsf{level}_{1,1} & \cdots & \mathsf{level}_{1,k} & \mathsf{Score}_{1,k+1} & \mathsf{Score}_{1,k+2} & \cdots & \mathsf{Score}_{1,k+z} \\ 2 & \mathsf{level}_{2,1} & \cdots & \mathsf{level}_{2,k} & \mathsf{Score}_{2,k+1} & \mathsf{Score}_{2,k+2} & \cdots & \mathsf{Score}_{2,k+z} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathsf{a} & \mathsf{level}_{a,1} & \cdots & \mathsf{level}_{a,k} & \mathsf{Score}_{a,k+1} & \mathsf{Score}_{a,k+2} & \cdots & \mathsf{Score}_{a,k+z} \end{pmatrix}
```

- **Step 6 ANOVA** Response variable is Y (score);
- Step 7 Model Validate model regarding ANOVA requirements, normality, homogeneity, independence and significance p-value < 0.05;
- Step 8 Analyse Model Regarding completeness, F-statistic, and coefficient of determination  $R^2$ .

### **Evaluation Scenarios**

#### **Dropbox**



- Outside control (data collected by others);
- Can be reproduced as traces are available.

|       | Ber   | nefits Cri | teria | Costs Criteria |                |         |  |
|-------|-------|------------|-------|----------------|----------------|---------|--|
| Paths | (Sec) | (Cov)      | (BW)  | (Jitter)       | (RTT)          | (Loss)  |  |
| P1    | 1;7   | 0; 250     | 0;300 | 0.20; 575.31   | 62.48; 171.79  | 0; 0.40 |  |
| P2    | 1;7   | 0; 100     | 0; 54 | 1.5; 999.1531  | 46.32; 166.27  | 0; 0.11 |  |
| P3    | 1;3   | 0; 100     | 0; 54 | 0.20; 10105.49 | 75.35; 5141.21 | 0;0     |  |
| P4    | 1;5   | 0; 100     | 0; 54 | 0; 1126.61     | 0; 259.78      | 0; 0.18 |  |

# Evaluation Scenarios (cont'd)

#### Heterogenous



- Under control;
- Metrics measured with One Way Active Measurement Protocol (OWAMP).

|       |                  | Benef    | its Criteria        | Costs Criteria |            |         |  |
|-------|------------------|----------|---------------------|----------------|------------|---------|--|
| Paths | (Sec) (Cov) (BW) |          |                     | (Jitter)       | (RTT)      | (Loss)  |  |
| P1    | 1;7              | 0; 54000 | 0.8821144; 16.81217 | 0.0; 312.0     | 0.0; 202.7 | 0; 0.67 |  |
| P2    | 1;7              | 0; 250   | 32.27258; 56.85376  | 0.1; 6.4       | 1.1; 21.6  | 0;0     |  |
| Р3    | 1;7              | 0; 100   | 89.99288; 91.26333  | 0.0; 3.5       | 0.2; 21.2  | 0;0     |  |

# **Evaluation Methodology**

### Weights sets and Input matrix dI[a, k + z]

| Set | $W_{Sec}$ | $W_{Cov}$ | $W_{BW}$ | $W_{Jitter}$ | $W_{RTT}$ | $W_{Loss}$ |
|-----|-----------|-----------|----------|--------------|-----------|------------|
| 1   | 0.33      | 0.33      | 0.33     | 0.33         | 0.33      | 0.33       |
| 2   | 0.33      | 0.33      | 0.33     | 0.6          | 0.2       | 0.2        |
| 3   | 0.33      | 0.33      | 0.33     | 0.2          | 0.6       | 0.2        |
| 4   | 0.33      | 0.33      | 0.33     | 0.2          | 0.2       | 0.6        |
| 5   | 0.6       | 0.2       | 0.2      | 0.33         | 0.33      | 0.33       |
| 6   | 0.6       | 0.2       | 0.2      | 0.6          | 0.2       | 0.2        |
| 7   | 0.6       | 0.2       | 0.2      | 0.2          | 0.6       | 0.2        |
| 8   | 0.6       | 0.2       | 0.2      | 0.2          | 0.2       | 0.6        |
| 9   | 0.2       | 0.6       | 0.2      | 0.33         | 0.33      | 0.33       |
| 10  | 0.2       | 0.6       | 0.2      | 0.6          | 0.2       | 0.2        |
| 11  | 0.2       | 0.6       | 0.2      | 0.2          | 0.6       | 0.2        |
| 12  | 0.2       | 0.6       | 0.2      | 0.2          | 0.2       | 0.6        |
| 13  | 0.2       | 0.2       | 0.6      | 0.33         | 0.33      | 0.33       |
| 14  | 0.2       | 0.2       | 0.6      | 0.6          | 0.2       | 0.2        |
| 15  | 0.2       | 0.2       | 0.6      | 0.2          | 0.6       | 0.2        |
| 16  | 0.2       | 0.2       | 0.6      | 0.2          | 0.2       | 0.6        |

DropBox scenario  $dI_{Drop}[4^6, 6+16]$ 

Heterogeneous scenario  $dI_{Het}[3^6, 6+16]$ 

### Results DropBox scenario

#### Statistical Models

 $Y_{lmMeth} = BW + RTT + Jitter + Loss + Cov + BW:Cov +$ 

BW:RTT:Cov + BW:Jitter:Cov +

 $BW{:}Loss{:}Cov + BW{:}RTT{:}Jitter{:}Cov + \\$ 

BW:RTT:Loss:Cov + BW:Jitter:Loss:Cov

#### **ANOVA** metrics

| method | model  | signif | interactions | $R^2$  | F-statistic |
|--------|--------|--------|--------------|--------|-------------|
| TOPSIS | ImTOP  | yes    | no           | 0.5274 | 14624.2727  |
| DiA    | ImTOP  | yes    | no           | 0.4452 | 10518.2098  |
| MeTH   | ImTOP  | yes    | no           | 0.7240 | 34376.5185  |
| TOPSIS | ImMeth | no     | yes          | 0.5274 | 6093.3300   |
| DiA    | ImMeth | no     | yes          | 0.4452 | 4382.2384   |
| MeTH   | ImMeth | yes    | yes          | 0.7413 | 15649.5765  |

 $Y_{ImTOP} = BW + RTT + Jitter + Loss + Cov$ 

# Results DropBox scenario (cont'd)

### Normality



### Results Heterogenous scenario

#### Statistical Models

```
\begin{split} &Y_{lmMeTH} = BW + RTT + Jitter + Loss + Cov + BW: Jitter + BW: Loss + BW: Cov + BW: RTT: Cov + BW: Jitter: Cov + BW: Loss: Cov + BW: RTT: Jitter: Cov + BW: RTT: Loss: Cov + BW: Jitter: Loss: Co
```

 $Y_{ImTOP} = BW + RTT + Jitter + Loss + Cov$ 

#### **ANOVA** metrics

| method | model  | signif | interactions | $R^2$  | F-statistic |
|--------|--------|--------|--------------|--------|-------------|
| TOPSIS | ImTOP  | yes    | no           | 0.5352 | 2684.5152   |
| DiA    | ImTOP  | yes    | no           | 0.4313 | 1768.3257   |
| MeTH   | ImTOP  | yes    | no           | 0.7514 | 7046.4885   |
| TOPSIS | ImMeth | no     | yes          | 0.5352 | 958.0181    |
| DiA    | ImMeth | no     | yes          | 0.4313 | 631.0595    |
| MeTH   | ImMeth | yes    | yes          | 0.7963 | 3253.4246   |

# Results Heterogenous scenario (cont'd)

### Normality













# Conclusions & Next Steps

#### **Conclusions:**

- Easy to use evaluation methodology;
- Evaluation based on statistical analysis;
- Sevaluation that promotes comparison between MADM techniques;
- Evaluation that considers all the steps of MADM.

### **Next Steps:**

 Apply the evaluation methodology to compare with several techniques (GRA, AHP, ELECTRE, VIKOR, etc). http://mcoa.dei.uc.pt/doe/index.html

Thank You