CURSO DE CURTA DURAÇÃO - 2017

BIOINFORMÁTICA

BIOME - CENTRO MULTIUSUÁRIO DE BIOINFORMÁTICA - UFRN

NEXT GENERATION SEQUENCING

Análise de Dados de Sequenciadores de Segunda Geração

E-mail: jorge@imd.ufrn.br

Chamada de variantes

Bioinformatics Multidisciplinary Environment

Objetivo:

Utilizar ferramentas básicas de chamada de variantes e identificar bases variantes de um sequenciamento.

Comandos Básicos de Linux:

Para trabalhar com nossos dados, vamos precisar saber alguns comandos básicos do Linux. Podem procurar mais informação no site:

http://wiki.ubuntubr.org/ComandosBasicos

Ferramentas:

- 1- Linux.
- 2- WebServer.
- 3- bwa
- 4- samtools
- 5- mpileup
- 6- VarScan
- 7- SnpEff

Inicial:

Login maquina local:

Login:

Senha:

Login no server:

ssh -p 4422 bif@177.20.147.141

Senha: bif0003

Inicial:

Pasta com dados iniciais:

/home/treinamento/NGS/

Pasta servidor WEB:

/home/bif/public_html/

Preparando os dados iniciais:

```
mkdir seu_nome
cd seu_nome
mkdir bwa
cd bwa/
cp /home/treinamento/NGS/NC_012967.1.fa.
bwa index -a is NC_012967.1.fa
samtools faidx NC_012967.1.fa
bwa bwasw -t 4 NC_012967.1.fa
              /home/treinamento/NGS/SRR5714077_1_s.1.fastq
              /home/treinamento/NGS/SRR5714077_2_s.1.fastq -f bwa.sam
```

Perguntas:

Dê uma olhada no primeiro alinhamento:

Quantas sequencias mapeadas para a referência?

Quantas sequencias mapeadas com qualidade?

Quantos pareamento corretos existem?

SAMtools

It is more important tools after the alignment process, it can process aligned sequence reads, and manipulate them with ease.

For example:

- → convert between the two most common file formats (SAM and BAM),
- → sort and index files (for speedy retrieval later),
- → extract specific genomic regions of interest.
- → It also enables quality checking of reads,
- → automatic identification of genomic variants.

Converting SAM to BAM

To convert from SAM to BAM, use the SAMtools view command:

samtools view -b -S -o bwa.bam bwa.sam

- -b: indicates that the output is BAM.
- -s: indicates that the input is SAM.
- specifies the name of the output file.

BAM files are stored in a compressed, binary format, and cannot be viewed directly. However, you can use the same view command to display all alignments. For example, running:

samtools view bwa.bam I more

will display all your reads in the unix more paginated style.

You can also use view to only display reads which match your specific filtering criteria. For example:

samtools view -f 4 bwa.bam | more

• FINT: extracts only those reads which match the specified SAM flag. In this case, we filter for only those reads with flag value of 4 = read fails to map to the reference genome.

https://broadinstitute.github.io/picard/explain-flags.html

or:

samtools view -F 4 bwa.bam | more

F INT: removes reads which match the specified SAM flag.

You can also try out the 🚾 option, which does not output the reads, but rather outputs the number of reads which match your criteria. For example:

samtools view -c -f 4 bwa.bam

indicates that xx of our artificial reads failed to align to the reference genome.

Finally, you can use the 🔄 parameter to indicate a minimal quality mapping filter. For example:

samtools view -c -q 42 bwa.bam

outputs the total number of aligned reads that have a mapping quality score of 42 or higher.

Vamos gerar um Mpileup:

samtools view -bS bwa.sam -o bwa.bam

samtools sort bwa.bam -o bwa.sort.bam

samtools rmdup bwa.sorted.bam bwa.rmd.bam

samtools mpileup -f NC_012967.1.fa bwa.rmd.bam | less

samtools mpileup -f NC_012967.1.fa bwa.rdm.bam > ecoli.mpileup

			Bitvise xterm - ex	xterno.bscp - bif@177.20.147.141:442	2 - bif@zurique:~/jorge2/bwa	
NC 012967	417	G	21		bF2 <G1C9FG1F@G7GG;F</td <td>^</td>	^
NC 012967	418	C	20		[730ACC2C7DDG85FGCGF	
NC_012967	419	C	20		8@CF<6FCFGG?GG?2GE <c< td=""><td></td></c<>	
NC_012967	420	Α	19	, . , . , . ,	QC:FFG9GCGGFC6GGGF9	
NC_012967	421	G	20	,,,,,T,,,.	b86GFCFBFGGG;GG2GG6;	
NC_012967	422	G	17	.A,	i.525CF:BGCGGGGGG	
NC_012967	423	C	20	, . , . , . , , .	`288CC:F<:G5G1FGGGFD	
NC_012967	424	Α	15	, h95FCGG	5GFFGGCF	
NC_012967	425	G	19	, , , , , , , , , , , , , ,	c0:E5:GGG8E/FC/CGCD	
NC_012967	426	G	16	,	Z/.=5GFG:8;EC@G/	
NC_012967	427	G	17	.T,.,,,.	i2::=F>FG:;@FFG6:	
NC_012967	428	G	20	, . , . , . , , , .	k891ECF>FGFE8@G6CCEF	
NC_012967	429	C	20	, , , , , , , . , , . , .	eC/7E>1GGDGC <fgcefff< td=""><td></td></fgcefff<>	
NC_012967	430	Α	19	^~.	g/:E:2FGGG:GG <egfc6< td=""><td></td></egfc6<>	
NC_012967	431	G	23		V2;:C2E8F5FGGF8GG3GCGEA	
NC_012967	432	G	18	\$, , . , . ,	`:=CEE <dge5ggeeec8< td=""><td></td></dge5ggeeec8<>	
NC_012967	433	Τ	18	,.,.,.,	i95FF3GCGF8GFCFEFA	
NC_012967	434	G	21		d2EA2E<3GGE?2GG/@GEG<	
NC_012967	435	G	19	, . , . , ,	XG;C52>6EGGFGG@GGG<	
NC_012967	436	C	17	.\$T.,.,a,.	UGC80 <fcg8gg1@ged< td=""><td></td></fcg8gg1@ged<>	
NC_012967	437	C	20	GGGGGGggGggGGgGG	C7/C:;E@GGCGGG/@GE@6	
NC_012967	438	Α	17	,,.,.,	/85FGCG::GGGCGGCB	
NC_012967	439	C	20	,.,.,.,.,.,	7E8<>1GFE=8GEE/FGEFF	
NC_012967	440	C	19	.G,.,.,.,	7/C <f=ge>F=GCG@GCGF</f=ge>	
NC_012967	441	G	20	,.,.,.,.,.,.,.	C9E=BEFG:B4GFD;FG;GG	V

Marking PCR duplicates

Map Reads

Picard MarkDuplicates:

java -Xmx4g -Djava.io.tmpdir=/tmp
-jar picard/MarkDuplicates.jar
INPUT=input.bam
OUTPUT=input.marked.bam
METRICS_FILE=metrics
CREATE_INDEX=true
VALIDATION_STRINGENCY=LENIENT

SamTools rmdup

samtools rmdup input.bam out.rmdup.bam

Perguntas:

- 1- O que você observa sobre a saída?
- 2- Olhando para os dados, qual é a profundidade da cobertura para sua amostra?
- 3- A cobertura é consistente em todo o genoma? Isso varia? Há lugares onde ela varia mais?
- 4- Você pode detectar qualquer potencial SNP?

NEXT

Vamos fazer a chamada de variantes:

varscan mpileup2snp ecoli.mpileup
--output-vcf --strand-filter 0 > ecoli.vcf

VCF files

Determine Variants

```
##fileformat=VCFv4.0
##fileDate=20090805
##source=mvImputationProgramV3.1
##reference=1000GenomesPilot-NCBI36
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=., Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GO, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=AD, Number=., Type=Integer, Description="Allelic depths for the ref and alt alleles in the order listed">
#CHROM POS
                                      QUAL FILTER INFO
              ID
                               ALT
                                                                                      FORMAT
                                                                                                     NA00001
                                                                                                                        NA00002
20
      14370 rs6054257 G
                                            PASS NS=3; DP=14; AF=0.5; DB; H2
                                                                                     GT:GO:DP:AD
                                                                                                    0|0:48:102:51,51 1|0:48:102:51,51
                                                                                     GT:GQ:DP:AD
                                                                                                    0|0:49:108:58,50 0|1:3:68:65,3
20
      17330 .
                                             α10
                                                   NS=3;DP=11;AF=0.017
      1110696 rs6040355 A
                               G.T 67
                                            PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:AD
                                                                                                    1|2:21:50:23,27 2|1:2:20:18,2
20
                                             PASS NS=3;DP=13;AA=T
20
       1230237 .
                                                                                                     0|0:54:106:56,50 0|0:48:102:51,51
                                                                                      GT:GQ:DP:AD
```

Determine Variants

```
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=AD, Number=., Type=Integer, Description="Allelic depths for the ref and alt alleles in the order listed">
```

FORMAT	NA00001	NA00002
GT:GQ:DP:AD	0 0:48:102:51,51	1 0:48:102:51,51
GT:GQ:DP:AD	0 0:49:108:58,50	0 1:3:68:65,3
GT:GQ:DP:AD	1 2:21:50:23,27	2 1:2:20:18,2
GT:GQ:DP:AD	0 0:54:106:56,50	0 0:48:102:51,51

NEXT

Run snpEff.

Annotate variants

Download Database:

snpEff download Escherichia_coli_B_REL606_uid58803

Annotate SNP:

snpEff eff Escherichia_coli_B_REL606_uid58803 ecoli.vcf > ecoli.eff.vcf

Tag in VCF file:

```
Efft ( Effect_Impact | Codon_Change | Amino_Acid_change | Gene Name | Gene BioType | Coding | Transcript | Rank [ | ERRORS | WARNINGS ] )
```

NON_SYNONYMOUS_CODING(MODERATE|MISSENSE|Aag/Gag|K1222E|2240|PDE4DIP||CODING|NM_001198832.1|29|1)

Туре	What is means	Example
SNP	Single-Nucleotide Polymorphism	Reference = 'A', Sample = 'C'
Ins	Insertion	Reference = 'A', Sample = 'AGT'
Del	Deletion	Reference = 'AC', Sample = 'C'
MNP	Multiple-nucleotide polymorphism	Reference = 'ATA', Sample = 'GTC'
MIXED	Multiple-nucleotide and an InDel	Reference = 'ATA', Sample = 'GTCAGT'

Effect	Note & Example	Impact
Classic		
CDS	The variant hits a CDS.	MODIFIER
CHROMOSOME_LARGE DELETION	A large parte (over 1%) of the chromosome was deleted.	HIGH
CODON_CHANGE	One or many codons are changed	MODERATE
	e.g.: An MNP of size multiple of 3	
CODON_INSERTION	One or many codons are inserted	MODERATE
	e.g.: An insert multiple of three in a codon boundary	
CODON_CHANGE_PLUS CODON_INSERTION	One codon is changed and one or many codons are inserted	MODERATE
CODON_INSERTION	e.g.: An insert of size multiple of three, not at codon boundary	
CODON_DELETION	One or many codons are deleted	MODERATE
	e.g.: A deletion multiple of three at codon boundary	
CODON_CHANGE_PLUS CODON_DELETION	One codon is changed and one or more codons are deleted	MODERATE
OODON_BEEE HOW	e.g.: A deletion of size multiple of three, not at codon boundary	
DOWNSTREAM	Downstream of a gene (default length: 5K bases)	MODIFIER
EXON	The vairant hits an exon.	MODIFIER
EXON_DELETED	A deletion removes the whole exon.	HIGH
FRAME_SHIFT	Insertion or deletion causes a frame shift	HIGH
	e.g.: An indel size is not multple of 3	
GENE	The variant hits a gene.	MODIFIER
INTERGENIC	The variant is in an intergenic region	MODIFIER
INTERGENIC_CONSERVED	The variant is in a highly conserved intergenic region	MODIFIER
INTRAGENIC	The variant hits a gene, but no transcripts within the gene	MODIFIER
INTRON	Variant hits and intron. Technically, hits no exon in the transcript.	MODIFIER

CURSO DE CURTA DURAÇÃO - 2017

BIOINFORMÁTICA

BIOME - CENTRO MULTIUSUÁRIO DE BIOINFORMÁTICA - UFRN

Obrigado.

E-mail: jorge@imd.ufrn.br

