Technische Universität Berlin

Fakultät II – Institut für Mathematik Ferus/Grigorieff/Renesse WS 06/07 19. Februar 2007

Februar – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:	Vorna	ime:				
MatrNr.:	Studi	engang	;			
Neben einem handbeschriebenen A4 zugelassen.	Blatt 1	nit No	tizen s	sind ke	ine Hi	lfsmittel
Die Lösungen sind in Reinschrift au geschriebene Klausuren können nicht				ıgeben.	Mit	Bleistift
Dieser Teil der Klausur umfasst die Ver Rechenaufwand mit den Kenntnissen a wenn nichts anderes gesagt ist, immer	aus der	Vorles	ung lö	sbar se	in. Ge	0
Die Bearbeitungszeit beträgt eine St u	ınde.					
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 1				*	•	
Korrektur						
	1	2	3	4	5	Σ

1. Aufgabe 8 Punkte

Welche der folgenden Aussagen sind wahr, welche sind falsch? Notieren Sie Ihre Lösungen **ohne** Begründung auf einem separaten Blatt. Für eine richtige Antwort bekommen Sie einen Punkt, für eine falsche verlieren Sie einen Punkt. Die minimale Punktzahl dieser Aufgabe beträgt 0.

- a) Potenzreihen mit endlichem Konvergenzradius konvergieren auch am Rand.
- b) Wird ein einzelner Punkt einer abgeschlossenen Menge entnommen, so bleibt diese abgeschlossen.
- c) Die Einträge von Funktionalmatrizen sind partielle Ableitungen.
- d) Stetige Abbildungen auf abgeschlossenen Mengen nehmen Extrema an.
- e) Der Gradient ist für alle skalaren Felder $f: \mathbb{R} \to \mathbb{R}$ definiert.
- f) Für Vektorfelder \vec{v} mit stetigen 2. partiellen Ableitungen gilt:

$$\operatorname{div}\operatorname{rot}\vec{v}=0.$$

- g) Ein Vektorfeld \vec{v} hat genau dann ein Potential, wenn für jede geschlossene Kurve $\vec{\gamma}$ gilt: $\int_{\vec{\gamma}} \vec{v} \cdot \vec{ds} = 0$.
- h) Kann eine glatte Fläche F in glatte Flächenstücke zerlegt werden, so berechnet sich jedes Flussintegral über F als Summe der Flussintegrale über die Flächenstücke.

2. Aufgabe 8 Punkte

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} \frac{x^2 - y}{x^2 + y^2} & \text{für } \binom{x}{y} \neq \binom{0}{0} \\ 0 & \text{für } \binom{x}{y} = \binom{0}{0} \end{cases}.$$

- a) Ist f in $\binom{0}{0}$ stetig?
- b) Ist f in $\binom{0}{0}$ partiell nach x differenzierbar?
- c) Ist f in $\binom{0}{0}$ total difference is the contract of t

3. Aufgabe 8 Punkte

Nutzen Sie den Satz von Gauß um folgende Gleichheit zu zeigen:

$$\iint_{S} \vec{v} \cdot d\vec{O} = \frac{2}{3}\pi,$$

wobei S die Oberfläche der Halbkugel $H=\{(x,y,z)|x^2+y^2+z^2\leq 1, z\geq 0\}$ ist und

$$\vec{v}(x,y,z) = \begin{pmatrix} x \\ x^2 \\ x^3 \end{pmatrix}.$$

4. Aufgabe 9 Punkte

a) Es sei $f: \mathbb{R}^2 \supset D \to \mathbb{R}$ eine differenzierbare Funktion. Dann kann der Graph als glatte Fläche im Raum interpretiert werden. Geben Sie eine mögliche Parametrisierung der Fläche an.

- b) Skizzieren und parametrisieren Sie das kürzere Bogenstück der Ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ zwischen den Punkten $\binom{2}{0}$ und $\binom{0}{3}$.
- c) Parametrisieren Sie den ausgefüllten Kreis, der parallel zur xy-Achse im Raum liegt und den Punkt $(0,0,1)^T$ beinhaltet.
- d) Geben Sie eine Parametrisierung einer in der Ebene liegenden '8' (die '8' soll aus zwei Kreisen bestehen, die sich nur im Punkte 0 berühren). Begründen Sie, dass das Kurvenintegral eines beliebigen Potentialfelds über Ihre '8' gleich Null ist.

5. Aufgabe 7 Punkte

Geben Sie Beispiele für

- a) eine Potenzreihe mit Konvergenzradius 2,
- b) zwei Mengen A und B, so dass B gerade das Innere von A ist,
- c) $f: \mathbb{R}^2 \to \mathbb{R}$, f ist nicht stetig,
- d) $f: \mathbb{R}^2 \to \mathbb{R}$ ohne globales Maximum,
- e) ein Vektorfeld \vec{v} mit div $\vec{v} \neq 0$,
- f) ein Vektorfeld $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$, dessen Kurvenintegral nicht wegunabhängig ist,
- g) einen Integrationsbereich D und eine Funktion $f: \mathbb{R}^2 \supset D \to \mathbb{R}$ mit $\iint_D f(x,y) \, dx dy = 1$,
- h) eine Stammfunktion eines Vektorfeldes.

Von den 8 möglichen Beispielen müssen Sie nur 7 bearbeiten. Begründungen für die Richtigkeit Ihrer Beispiele sind nicht nötig. Für jedes richtige Beispiel bekommen Sie einen Punkt.