Übungsblatt 7

Differentialoperatoren

Zweidimensionale Finite Differenzen Methode (FDM)

Hinweis: Verwenden Sie *unbedingt* dünnbesetzte Matrizen, um den Speicherbedarf zu reduzieren und die Rechenzeiten in einem vertretbaren Rahmen zu halten. Beachten Sie, dass die Koordinaten in den Betrachtungen als dimensionslos zu interpretieren sind.

Aufgabe 1. Stationäre Wärmeleitung

Lösen Sie die stationäre Wärmegleichung mit Temperaturrandbedindungen numerisch mit Hilfe der der Finiten Differenzen Methode (FDM). Die zu lösende partielle Differentialgleichung mit Randdaten lautet

$$\operatorname{div}\left(\operatorname{grad}\left(\theta(x,y)\right)\right) = \Delta\theta = 0 \qquad \text{in } \Omega = [0,1] \times [0,1],$$

$$a\left(\sin\left(\omega x\right) + \sin\left(\omega y\right)\right) + 293K = \theta(x,y) \qquad (\omega > 0) \text{ auf } \partial\Omega.$$

Das Symbol ' Δ ' bezeichnet den Laplace Operator. Hierbei sind Programmteile aus der vorigen Übung zu verwenden, um den Programmieraufwand zu reduzieren. Beachten Sie die folgenden Punkte:

- Erstellen Sie zunächst das äquidistante Punktgitter mit frei wählbarer räumlicher Auflösung.
- Berechnen Sie den diskreten Laplace-Operator.
- Setzen Sie zunächst alle diskreten Temperaturwerte zu Null. Passen Sie dann die Werte auf dem Rand an die Randbedingung an.
- Die Berechnung erfolgt nun in zwei Schritten:
 - Schritt 1: Der Vektor der diskreten Temperaturen θ wird additiv zerlegt in θ_{Γ} (Randteile) und $\tilde{\theta}$ (innere Werte). Die diskrete Form der Wärmeleitungsgleichung lautet dann

$$\Delta\theta = \Delta\tilde{\theta} + \Delta\theta_{\varGamma} = 0 \quad \Rightarrow \quad \Delta\tilde{\theta} = -\Delta\theta_{\varGamma}.$$

Die rechte Seite dieser Gleichung kann als Vektor rhs berechnet werden.

1

- Schritt 2: Die Matrix L, die dem diskreten Laplace-Operator entspricht, muss nun modifiziert werden, da sie sonst singul"ar ist. Dafür wird eine Matrix L_{mod} eingeführt, bei der alle Spalten und Zeilen gelöscht werden, die Randpunkten entsprechen. Dabei ist wegen der sparse-Eigenschaften mit großer Sorgfalt

vorzugehen. Zunächst wird die Menge aller von Null verschiedenen Elemente mit Hilfe des find-Befehls ausgelesen (siehe Vorlage). Dann werden aus den Positionen, an denen die entsprechenden Elemente in der originalen Matrix L stehen die Positionen in der neuen Matrix $L_{\rm mod}$ ermittelt, und die Werte werden an der entsprechenden Stelle ergänzt. Analog dazu muss auch der Vektor der rechten Seite angepasst werden. (siehe auch Beispiel in der Übung)

• Das lineare Gleichungssystem

$$L_{\text{mod}}\theta_{\text{mod}} = rhs_{\text{mod}} \tag{1}$$

wird nun mit Hilfe des in Matlab integrierten CG-Verfahrens gelöst (bicg). Vorkonditionierung ist *nicht* notwendig.

- Das diskrete Temperaturfeld wird durch Kombination von $\theta_{\rm mod}$ mit den vorhandenen Randdaten gewonnen. Eine ansprechende Darstellung des Temperaturfeldes wird durch den Befehl surfc ermöglicht (siehe Matlab-Hilfe und Vorlage).
- Aus der Vorlage können Sie den letzten Teil zur Anzeige der Randdaten als Linienzug beibehalten. Dadurch kann die Implementierung gut getestet werden.

Kontakt

Dipl.-Ing. Johannes Ruck M.Sc. Hannes Erdle

Sprechstunde Do. 13:00-14:00 Uhr (Geb. 10.23, Raum 302.3)

johannes.ruck@kit.edu hannes.erdle@kit.edu