Lecture 4: Priority Queues, Heaps and Heapsort

Prof. Aleksander Mądry

Reading: CLRS 6.1-6.4

Priority Queue (PQ)

An *abstract data structure* (aka *data type*) maintaining a set *S* of **elements**, each associated with a **key**, supporting the following operations:

insert(S, x): insert element x into set S

 $\max(S)$: return element of S with largest key

extract max(S): return element of S with largest key and

remove it from S

increase_key(S, x, k): increase value of x's key to new value k

(assumed to be \geq the current key value)

Think: All the operations you would need to organize triage in an emergency room → key value = severity of patient's condition

(Tons of applications in algorithms and across the whole CS too.)

Priority Queue (PQ)

An *abstract data structure* (aka *data type*) maintaining a set *S* of **elements**, each associated with a **key**, supporting the following operations:

insert(S, x): insert element x into set S

 $\max(S)$: return element of S with largest key

extract max(S): return element of S with largest key and

remove it from S

increase key(S, x, k): increase value of x's key to new value k

(assumed to be \geq the current key value)

This abstraction specifies desired functionality/interface, but how to implement it?

Naïve way: Use an (unsorted) array and scan all elements to find max

- \rightarrow each insert and increase key takes $\Theta(1)$ time
- \rightarrow all the other operations take $\Theta(n)$ (worst-case) time Can we do better?

(Max) Heap

- Data structure implementing a priority queue
- It is an **array** that:
 - → we visualize as a (nearly complete) binary tree
 - → satisfies Max Heap Property (MHP):

Key of a node is \geq than the keys of its children

• (Min Heap defined analogously)

Mapping Tree to a Heap

root: first element in the array (i=1)

parent(i): floor(i/2) returns index of node's parent

left(i): 2i returns index of node's *left* child

right(i): 2i+1 returns index of node's right child

(Note: No pointers needed!)

Important detail: We index elements starting from i=1 here

Why Heaps?

Key consequence of Max Heap Property:

Root/first element is always the max \rightarrow can do max(S) in $\Theta(1)$ time! (Note: the array is not sorted though!)

But: How to maintain the Max Heap Property property after insert/extract max/increase key?

Key Primitive

max_heapify(A[i]): Corrects a **single** violation of Max Heap Property in a subtree rooted at **i only**

How to implement it?

- \rightarrow Assume that the trees rooted at left(i) and right(i) are Max Heaps
- → If element A[i] violates the MHP, correct violation by "trickling" this element down the tree, making the subtree rooted at i a Max Heap (Important: Always swap with the <u>larger</u> of two children. Why?)

Key Primitive

max_heapify(A[i]): Corrects a **single** violation of Max Heap Property in a subtree rooted at **i only**

In other words:

- \rightarrow Assume that the trees rooted at left(i) and right(i) are Max Heaps
- → If element A[i] violates the MHP, correct violation by "trickling" this element down the tree, making the subtree rooted at i a Max Heap (Important: Always swap with the <u>larger</u> of two children)

Key Primitive

max_heapify(A[i]): Corrects a single violation of Max Heap Property in a subtree rooted at i only

In other words:

- \rightarrow Assume that the trees rooted at left(i) and right(i) are Max Heaps
- → If element A[i] violates the MHP, correct violation by "trickling" this element down the tree, making the subtree rooted at i a Max Heap (Important: Always swap with the <u>larger</u> of two children)

• Swap the root with the last element of the heap

- Swap the root with the last element of the heap
- Now we can remove it from the heap (decrease the heap size by one)
- To fix MHP:

 Max heapify the root

- Swap the root with the last element of the heap
- Now we can remove it from the heap (decrease the heap size by one)
- To fix MHP:

 Max heapify the root

- Swap the root with the last element of the heap
- Now we can remove it from the heap (decrease the heap size by one)
- To fix MHP:

 Max_heapify the root

- Swap the root with the last element of the heap
- Now we can remove it from the heap (decrease the heap size by one)
- To fix MHP:

 Max heapify the root

- Swap the root with the last element of the heap
- Now we can remove it from the heap (decrease the heap size by one)
- To fix MHP:

 Max_heapify the root
- Done!

Run time?

- \rightarrow $\Theta(1)$ (swapping) + $\Theta(1)$ (removal) + $O(\log n)$ (max_heapify)
- \rightarrow total: $\Theta(\log n)$ (worst case)

(in a sense: "reversing" the extract max)

(in a sense: "reversing" the extract_max)

(in a sense: "reversing" the extract_max)

(in a sense: "reversing" the extract_max)

Run time?

- \rightarrow $\Theta(1)$ (addition) + O (log n) (promotion up the tree)
- \rightarrow total: $\Theta(\log n)$ (worst case)

(Similar to Insert)

(Similar to Insert)

(Similar to Insert)

- Increase the key value
 - To fix MHP:

Again, "promote" the new element up the tree

(Similar to Insert)

- Increase the key value
- To fix MHP:

Again, "promote" the new element up the tree Done!

Run time?

- \rightarrow $\Theta(1)$ (key value increase) + $O(\log n)$ (promotion up the tree)
- \rightarrow total: $\Theta(\log n)$ (worst case)

How to build a heap from a scratch?

Simple way:

- → Start with an empty heap
- → Insert all the **n** elements into it
- \rightarrow Total time: $\Theta(n \log n)$ (worst-case)

Better way:

- → Use divide & conquer! (see blackboard)
- \rightarrow T(n) = 2 T(n/2) (conquer) + O(log n) (in-place divide & combine)
- \rightarrow Total time: $\Theta(n)$ (by Master Theorem)

Iterative (and in-place) way:

build_max_heap(A):

for i=n downto 1

do $\max_{heapify}(A,i)$

O(n log n)

Actually: Θ(n) (see blackboard)

Cool application: Sorting

Heapsort: Sorting using a heap/priority queue

- → Build a heap out of all elements
- → Extract_max all elements one-by-one in an (inversely) sorted order!
- \rightarrow Total time: $\Theta(n \log n)$ (worst-case)

This is a different algorithm than Merge sort!

In particular: Heapsort is actually an in-place algorithm (once we unravel the implementation of the heap)