

Presses feuille Rotatives labeur Rotatives de presse

Standardisation des solutions de mouillage par déminéralisation et reminéralisation contrôlée

L'eau est un bien de plus en plus rare et cher. Son rôle est fondamental dans le procédé offset moderne car c'est un paramètre variable mal maitrisé par l'imprimeur.

L'eau du réseau est potable, mais elle n'est ni optimale ni standard; Eaux trop dures ou trop douces; Eaux trop riches en matière organique; Présence de particules (sables, limons, argiles); Eaux de qualité très variable .

Il y a donc une nécessité de standardiser l'eau à des valeurs optimales pour un gain qualitatif, économique, et écologique.

L'osmose est un phénomène naturel se caractérisant par le passage de l'eau au travers d'une membrane semi-perméable du milieu le moins concentré vers le milieu le plus concentré.

L'osmose inverse consiste à faire exactement le contraire, par le biais d'une pression inverse, l'eau est ainsi totalement déminéralisée.

Cette eau est désormais pure et stable quelles que soient les évolutions du réseau, elle peut donc être reminéralisée puis redosée en additif de mouillage afin d'obtenir une solution stable, optimale, et standardisée

	EAU BRUTE OSMOSE		REMINERALISATION			
Particules	variable	0	0			
Algues	variable	0	0			
Bactéries	variable	0	0			
Conductivité (µS)	150 à 900	<10	300			
PH " ,	6.5 à 9	7.0	5.5			
TH Dureté (°F)	5 à 50	0	15			
TAC calcaire (°F)	5 à 50	0	0			
Pourquoi reminéraliser l'eau?	 rétablir une dureté et une tension superficielle supprimer les propriétés corrosives de l'eau pure 					

Le contrôle du paramètre eau, 97% de la solution de mouillage...

Filtration particulaire, filtration fine, adoucissement, osmose inverse, stockage, reminéralisation...

MODELES	Préfiltration	Adoucisseur	Osmose	Débit (I/h)	Stockage (I)
OS100	2x10"	1	1Mb 4x40	100	500
OS150	2x20"	1	1Mb 4x40	150	500
OS 300	2x20"	2	1Mb 4x40	300	500 - 1500
OS 600	2x20"	2	2Mb 4x40	600	1500 - 3000
OS 800	2x20"	2	3Mb 4x40	800	1500 - 3000
OS1000	2x20"	2	4Mb 4x40	1000	1500 - 3000
ECOS	2x10"	Séquestrant	1Mb 2.5x40	50	300
DEMINE	2x10"	Ech. ions	Ech.ions	<50	Pas de stockage

Appareils entièrement automatiques, montés sur châssis inox, affichage conductivité, pompe de reprise intégrée. Reminéralisation par doseur Dosatron inclus. Dosage additif de mouillage en option.

Vannes de prélèvement en eau osmosée et en eau reminéralisée. Débits donnés à une température de 15°C.

Gain qualitatif:

Utiliser une eau stable afin d'optimiser tous les autres paramètres de l'offset Utiliser une eau présentant une bonne tension superficielle de base Travailler avec moins d'eau afin de stabiliser le mouillage et l'encrage Utiliser une eau propre afin d'optimiser l'action de la solution de mouillage Supprimer les problèmes liés au calcaire

Gain économique:

Diminuer les problèmes d'impression et la gâche papier Augmenter la productivité par la stabilité des paramètres Optimiser les consommations d'additif et d'encre Supprimer/diminuer l'usage de l'alcool isopropylique Réduire les postes maintenance et entretien (calcaires, boues, algues...)

Gain écologique:

Diminuer les vidanges de bacs Optimiser les consommations en chimie et en eau Optimiser les conditions de séchage

