Sintaxis y Semántica de los lenguajes Cuadro resumen maquinas abstractas

Máquina	Jerarquía de Chomsky	Nombre de la Gramatica	Reglas de producción	Definición Formal	Función de Transición	Configuración inicial (K 0)	Configuración instantánea (\mathbf{K}_{t})	Configuración final (K_f)	Aceptación de palabras y lenguaje
ME				$ME=(\Sigma_{e},\Sigma_{s},Q,f,g)$	$f: Q \times \Sigma_e \to Q$ $g: Q \times \Sigma_e \to \Sigma_s$				
МО				$MO=(\Sigma_{\rm e},\Sigma_{\rm s},{\rm Q},f,g)$	$f: Q \times \Sigma_e \to Q$ $g: Q \to \Sigma_s$				
AFD _r	Tipo 3	Lenguajes Regulares	$S:= \lambda$ $A:= aB/Ba$	$AFD_r = (\Sigma_e, Q, q_0, A, f)$	$f: Q \times \Sigma_e \to Q$	$K_0 = (q_0, \alpha)$	$K_t = (q, \beta)$	$K_f = (q_n, \lambda)$	$L = \{\alpha/(q_0, \alpha) \models *(q_A, \lambda)\}$
AFD _t	Tipo 3	Lenguajes Regulares	$S:= \lambda$ $A:= aB/Ba$	$AFD_t = (\Sigma_e, \Sigma_s, Q, A, q_0, f, g)$	$f: Q \times \Sigma_e \to Q$ $g: Q \times \Sigma_e \to \Sigma_s$	$\mathbf{K}_0 = (\mathbf{q}_0, \mathbf{\alpha})$	$K_t = (q, \beta)$	$K_f = (q_n, \lambda)$	$L = \{\alpha/(q_0, \alpha) \models *(q_A, \lambda)\}$
AFND	Tipo 3	Lenguajes Regulares	$S:= \lambda$ $A:= aB/Ba$	$AFND = (\Sigma_e, Q, q_0, A, f)$	$f: Q \times \Sigma_e \to P(Q)$	$\mathbf{K}_0 = (\mathbf{q}_0, \mathbf{\alpha})$	$K_t = (\{q\}, \beta)$	$K_f = (\{q_n\}, \lambda)$	$L = \{\alpha/(q_0, \alpha) \models *(q_A, \lambda)\}$
AFND-λ	Tipo 3	Lenguajes Regulares	$S:= \lambda$ $A:= aB/Ba$	AFND- $\lambda = (\Sigma_e, Q, q_0, A, f)$	$f: Q \times (\Sigma_e \cup {\lambda}) \to P(Q)$	$K_0 = (q_0, \alpha)$	$K_t = (\{q\}, \beta)$	$K_f = (\{q_n\}, \lambda)$	$L = \{\alpha/(q_0, \alpha) \models *(q_A, \lambda)\}$
AFDB	Tipo 3	Lenguajes Regulares	$S:= \lambda$ $A:= aB/Ba$	AFDB = $(\Sigma_e, \Gamma_c, Q, q_0, A, f)$	$f: Q \times \Gamma \to Q \times \{I, D, N\}$	$K_0 = (q_0, -\alpha - q_0, -\alpha - q_0)$	$K_t = (q, -\alpha - k)$	$K_f = (q, -\alpha - n)$	$L = \{\alpha/(q_0, -\alpha , o) *(q_A, -\alpha , n)\}$
APD	Tipo 2	Independientes del contexto	$S:=\lambda$ $A:=\alpha$	APD= $(\Sigma_e, \Gamma_p, Q, q0, \#, A, f)$	$f \colon Q \times \Sigmae \times \Gamma \to Q \times \Gamma *$	$K_0 = (q_0, \alpha, \#)$	$K_t = (q, \beta, \delta)$	$K_f = (q, \lambda, \#)$	$ \begin{array}{c c} L = \{\alpha/\left(q0, \alpha, \#\right) & \longleftarrow^* (q, \lambda, \#\}) \\ L = \{\alpha/\left(q0, \alpha, \#\right) & \longleftarrow^* (q_A, \lambda, \delta\}) \\ L = \{\alpha/\left(q0, \alpha, \#\right) & \longleftarrow^* (q_A, \lambda, \#\}) \end{array} $
APND	Tipo 2	Independientes del contexto	$S:= \lambda$ $A:= \alpha$	APND = $(\Sigma_e, \Gamma_p, Q, q0, \#, A, f)$	$f: Q \times (\Sigma_e \cup {\lambda}) \times \Gamma \to P(Q \times \Gamma^*)$	$K_0 = (q_0, \alpha, \#)$	$K_t = (\{q\}, \beta, \delta)$	$\mathbf{K}_{\mathrm{f}} = (\{q\}, \lambda, \#)$	$ \begin{array}{c c} L = \{\alpha/(q0, \alpha, \#) & \longleftarrow^* (q, \lambda, \#\}) \\ L = \{\alpha/(q0, \alpha, \#) & \longleftarrow^* (q_A, \lambda, \delta\}) \\ L = \{\alpha/(q0, \alpha, \#) & \longleftarrow^* (q_A, \lambda, \#\}) \end{array} $
ALA	Tipo 1	Dependientes del contexto	$S:= \lambda \\ \alpha A \beta := \alpha \gamma \beta$	$ALA=(\Sigma_{e}, \Gamma_{c}, Q, q_{0}, A, f)$	$f: Q \times \Gamma \to Q \times \Gamma \times \{I, D, N, P\}$	$K_0 = (q_0, -\alpha - 1)$	$K_t = (q, -\beta_t, k)$	$K_f = (q, -\beta_t, k)$	$ \begin{array}{c c} L = \{\alpha/\left(q_{0}, \begin{array}{c} -\alpha - \\ -\alpha - \end{array}, 1\right) \begin{array}{c}*\left(q_{A}, \begin{array}{c} -\beta_{t} - \\ -k - \end{array}, k\right)\} \\ L = \{\alpha/\left(q_{0}, \begin{array}{c} -\alpha - \\ -\alpha - \end{array}, 1\right) \begin{array}{c}*\left(q_{A}, \begin{array}{c} -\beta_{t} - \\ -k - \end{array}, k\right)\} \end{array} $
MT	Tipo 0	Lenguajes Libres	$\alpha A\beta := \gamma$	$MT = (\Sigma_e, \Gamma_c, Q, q_0, A, f, b)$	$f: Q \times \Gamma \to Q \times \Gamma \times \{I, D, N, P\}$	$K_0 = (q_0, \alpha, 1)$	$K_t = (q, \beta_t, k)$	$K_f = (q, \beta_t, k)$	$ \begin{array}{c c} L = \{\alpha/\left(q_0, \alpha, 1\right) & \longrightarrow^* \left(q_A, \beta_t, k\right)\} \\ L = \{\alpha/\left(q_0, \alpha, 1\right) & \longrightarrow^* \left(q, \beta_t, k\right)\} \end{array} $
MTND	Tipo 0	Lenguajes Libres	$\alpha A\beta := \gamma$	$MTND = (\Sigma_e, \Gamma_c, Q, q_0, A, f, b)$	$f: Q \times \Gamma \to P(Q \times \Gamma \times \{I, D, N, P\})$	$K_0 = (q_0, \alpha, 1)$	$K_t = (\{q\}, \beta_t, k)$	$K_f = (\{q\}, \beta_t, k)$	$ \begin{array}{ c c c c c } L = \{\alpha/\left(q_0, \alpha, 1\right) & & & & & \\ L = \{\alpha/\left(q_0, \alpha, 1\right) & & & & & \\ \end{array} $

Wolf.