LogBook Relativo à Realização do Estudo da Radiação Gamma

A experiência que em seguida se descreve foi realizada no dia 29 de maio de 2023, com início às 8:15 da manhã e fim às 11:30. O nosso grupo é o 1D e é formado pelo Estêvão Gomes (ist1102650), o Pedro Curvo (ist1102716), a Sofia Tété (ist1102633) e o Salvador Torpes (ist1102474). LogBook realizado por Salvador Torpes

1. Estudo de espectros de fontes conhecidas e calibração:

- Começámos por pedir ao docente a fonte de césio e colocámo-la em frente ao cintilador, na primeira raxa;
- Em seguida ligámos o computador, iniciámos o MCA, ligámos o cintilador ao INPUT do amplificador (que já se encontrava ajustado) e o OUTPUT unipolar do amplificador ao computador;
- Ligamos a Fonte de alta tensão, que também já se encontrava ajustada;
- Selecionámos o tempo de aquisição para 2 minutos e iniciamos a aquisição do espetro de emissão da radiação fonte de césio;
- Em seguida, registámos os dados relativos aos picos de emissão do césio que pretendiamos estudar, nomeadamente o pico de raio X, o backscattering, o joelho de Compton e o pico de emissão Gamma, obtendo os seguintes dados :

Dados relativos ao espetro de emissão do Césio

	Valor [Chn]	Valor Calibrado [keV]	FWHM [Chn]	ROI INT	ROI NET
Centróide BackScattering	162.13	-	20.51	26210 ± 162	4561 ± 459
Centróide Joelho de Compton	355	-	-	-	-
Centróide Raios X	33.25	-	3.92	33874 ± 184	25157 ± 259
Centróide Pico Gamma	516.15	-	31.31	67306 ± 259	63023 ± 346

• Fizemos a calibração através de uma regressão linear entre os channels do centróide e as energias tabeladas do pico raio-x e raio gamma, recorrendo a código. Com a calibração,

obtivémos valores para a energia do backscattering e do joelho de compton e comparámos com os valores tabelados;

- Em seguida, retirámos a fonte de césio e colocámos a fonte de cobalto em frente ao detetor de cintilação;
- Limpámos o MCA e iniciámos uma nova aquisição de 2 minutos para a nova fonte.
- Percebemos que nos dados obtidos não conseguiamos visualizar o segundo pico da radiação gamma do cobalto, e para que este pico aparecesse no espetro, foi necessário reduzir o fine gain do amplificador. Para saber quanto tinhamos de reduzir o fine gain, retirámos as fontes do detetor e inciámos recursivamente aquisições de dados no MCA para detetas a radição ambiente de fundo, cada vez reduzindo o valor do fine gain, até que seja possível visualizar o pico de fundo associado à emissão do potássio ambiente (de valor tabelado 1460.830 eV). Fizemos isto porque sabiamos que o pico de radiação gamma do potássio é mais energético que o segundo pico de radiação gamma do cobalto. Tivemos que realizar este processo três vezes até detetar o pico do potássio;
- Concluimos que o ajuste ideal do amplificador seria com o coarse gain em 10x e o fine gain em 0.8x;
- Em seguida, voltámos a colocar a fonte de cobalto e iniciamos a aquisição do seu espetro de energia durante 2 minutos;
- Registámos os dados relativos aos picos de emissão do cobalto que pretendiamos estudar, nomeadamente o pico de raio X e os dois picos de emissão Gamma, obtendo os seguintes dados:

Dados relativos ao espetro de emissão do Cobalto

		Valor Calibrado			
	Valor [Chn]	[keV]	FWHM [Chn]	ROI INT	ROI NET
Centróide Pico Inicial	64.10 ± 0.26	84.46	32.96	9877 ± 99	2909 ± 296
Centróide Pico Gamma 1	760.24 ± 0.32	1172.57	32.42	2592 ± 51	1805 ± 112
Centróide Pico Gamma 2	861.42 ± 0.36	1330.72	36.82	2228 ± 47	1856 ± 84

Figure 1: Cobalto

- Verificámos a existência de 2 picos de alta energia, associados à radiação gama. Nas baixas energias existe também um pico associado a radiação de fundo e possível sobreposição de raios-x;
- Guardamos os dados obtidos para o espetro do cobalto na disquete, para posteriormente podermos analisá-los;
- Note-se que tanto nesta aquisição de dados, como em todas as que se realizaram nesta experiência, calcularam-se as incertezas relativamente ao centróide com a fórmula sigma/sqrt(N) onde sigma é variância e é dada por FWHM/2.355 e N é igual ao ROI INT;
- Em seguida retiramos a fonte de cobalto e colocamos a fonte de césio;
- Voltamos a realizar uma aquisição de 2 minutos e, obtivemos os seguintes dados relativos aos picos de emissão do césio que pretendiamos estudar, nomeadamente o pico de raio X, o backscattering, o joelho de Compton e o pico de emissão Gamma:

Dados relativos ao espetro de emissão do Césio

		Valor Calibrado			
	Valor [Chn]	[keV]	FWHM [Chn]	ROIINT	ROI NET
Centróide BackScattering	136.82 ± 0.10	198.13	16.57	26558 ± 163	4602 ± 384
Centróide Joelho de Compton	294	443.81	-	-	-
Centróide Raios X	28.8 ± 0.01	29.28	3.47	42445 ± 206	31578 ± 280
Centróide Pico Gamma	436.07 ± 0.04	665.87	26.89	84454 ± 291	82318 ± 341

Figure 2: Césio

 Verificámos que nas energias mais baixas existe um pico alto e fino, ao qual correpondem raios-x. Posteriormente temos o patamar de Compton, no centro do qual existe um pequeno pico de backscattering. No fim do patamar confirmámos a existência de um joelho de Compton. Por fim, vimos um pico na zona de altas energias, correspondente à radiação gama. Caso o detetor fosse ideal, o pico seria estreito correspondendo apenas a uma energia. No entanto, existe uma dispersão relacionada com a resolução em energia do detetor, a qual torna os picos mais energéticos mais largos. Quanto mais energética for a radiação incidente, mais energéticos são os fotões que entram no cristal. Quanto mais energéticos são os fotões, maior é o número de choques no cristal do detetor, pelo que as flutuações no valor medido são maiores.

- Guardamos os dados obtidos para o espetro do cobalto na disquete, para posteriormente podermos analisá-los;
- Fizemos a calibração através de uma regressão linear entre os channels do centróide e as energias tabeladas do pico raio-x e os raios gamma do cobalto e do césio, recorrendo a código e utilizando quatro pontos. Com a calibração, obtivémos valores para a energia dos picos obtidos anteriormente e comparamos com os valores tabelados. Apenas realizamos a calibração após ter os valores em Chn para os picos gamma do cobalto e os picos gamma e raio X do césio uma vez que a regressão linear fica mais precisa com uma maior quantidade de pontos (reduzimos os erros aleatórios). A energia calibrada é dada em unidades de KeV. A reta de ajuste obtida do tipo E(Chn) (energia em função de channels) e é dada por:

$$E(Chn) = 1.563 * Chn - 15.732$$

• Recoorendo a esta regressão linear, preenchemos as tabelas de dados deste logbook com a energia correspondente a cada centróide medido;

2. Identificação da fonte desconhecida:

- Começamos por sortear online a fonte desconhecida, tendo-nos sido atribuída a fonte vermelha 2;
- Pedimos a fonte ao docente e colocámo-la em frente ao detetor de cintilação;
- Iniciamos a aquisição de dados no MCA que durou 2 minutos e 30 segundos. Após esta aquisição, obtivemos os seguintes dados relativos aos picos de emissão da radiação da fonte desconhecida:

Dados relativos ao espetro de emissão da Fonte Vermelha 2

	Valor [Chn]	Valor Calibrado [keV]	FWHM [Chn]	ROI INT	ROI NET
Centróide Pico 1	34.63 ± 0.01	38.40	4.03	26082 ± 161	22540 ± 188
Centróide Pico 2	68.27 ± 0.09	91.00	8.51	7391 ± 86	1736 ± 179
Centróide Pico 3	90.30 ± 0.03	125.41	6.35	12404 ± 111	8398 ± 154
Centróide Pico 4	168.43 ± 0.14	247.53	13.0	4167 ± 65	1628 ± 127

		Valor Calibrado			
	Valor [Chn]	[keV]	FWHM [Chn]	ROI INT	ROI NET
Centróide Pico 5	233.11 ± 0.11	348.63	17.48	6429 ± 80	4490 ± 141
Centróide Pico 6	509.49 ± 0.14	780.63	8.06	1742 ± 42	629 ± 108
Centróide Pico 7	625.37 ± 0.54	961.76	27.84	1147 ± 34	472 ± 85
Centróide Pico 8	711.47 ± 0.35	1096.34	18.92	1322 ± 36	523 ± 90
Centróide Pico 9	910.53 ± 0.30	1407.48	15.68	760 ± 20	485 ± 65

Figure 3: Fonte_Vermelha2

• Guardamos os dados obtidos para o espetro do cobalto na disquete, para posteriormente podermos analisá-los;

3. Identificação de fontes de radioactividade ambiente

- Retiramos as fontes radioativas das proximidades do detetor e iniciamos uma aquisição de dados durante 20 minutos com o objetivo de estudar a radiação proveniente do ambiente (erros sistemáticos);
- Após a aquisição, verificámos que existem 2 picos/estruturas mais relevantes. O primeiro encontra-se nas baixas energias e representa a radiação de fundo, associada a sucessivas

perdas de energia. Para o segundo (mais energético) confirmámos, pelo cálculo da energia através da calibração, que corresponde ao pico de emissão gamma do potássio-40. Os dados obtidos foram os seguintes:

Dados relativos ao espetro de emissão da Radiação de Fundo

	Valor [Chn]	Valor Calibrado [keV]	FWHM [Chn]	ROI INT	ROI NET
Centróide Pico de baixas energias	69.15 ± 0.11	92.35	60.60	96736±311	54923 ± 1036
Centróide Pico de altas energias	943.57 ± 0.37	1459.12	26.63	1397 ± 37	923 ± 87

Figure 4: Fundo

• Verificámos que existem 2 picos mais relevantes. O primeiro encontra-se nas baixas energias e representa a radiação de fundo, associada a sucessivas perdas de energia. O

segundo, mais energético, confirmámos que pelo cálculo da energia através da calibração que corresponde ao potássio-40.

4. Atenuação da radiação gama na matéria:

- Para atenuação dos raios gamas usou-se duas placas de chumbo, uma de espessura 0.250 inches e 7200 mg/cm2 de espessura mássica e outra de 0.062 inches de espessura e 1200 mg/cm2 de espessura mássica. Para saber a espessura das placas é necessário o multiplicar valor escrito na caixa pela densidade do chumbo que é 11.34 g/cm3. As unidades de espessura mássica são úteis pois definem a atenuaçãocausada pela placa. Efetivamente, observa-se no osciloscópio que a atenuação é maior (observam-se menos picos de alta energia) quando se usa a placa de chumbo mais espessa.
- Colocou-se a placa de chumbo mais espessa entre o detetor e a fonte radioativa (Cs 137).
- Foram registado no MCA durante 150s o espetro de amissão da fonte com a placa de chumbo colocada.
- Repetiu-se o procedimento para a placa de chumbo mais fina.
- Para a placa de chumbo muito espesso, obtivemos os seguintes dados:

Figure 5: Chumbo Muito Espesso

Dados relativos ao espetro de emissão do césio com a Placa de Chumbo muito espesso

		Valor Calibrado			
	Valor [Chn]	[keV]	FWHM [Chn]	ROIINT	ROI NET
Centróide Pico 1	59.59 ± 0.06	77.41	5.83	9364 ± 97	1552 ± 223
Centróide Pico 2	136.56 ± 0.17	197.72	20.98	15112 ± 123	2604 ± 354
Centróide Pico 3	434.90 ± 0.09	664.04	27.87	21091 ± 145	19023 ± 215

• Para a placa de chumbo pouco espessa, obtivemos os seguintes dados:

Figure 6: Chumbo Pouco Espesso

Dados relativos ao espetro de emissão do césio com a Placa de Chumbo pouco espesso

		Valor Calibrado			
	Valor [Chn]	[keV]	FWHM [Chn]	ROI INT	ROI NET
Centróide Pico 1	59.56 ± 0.07	77.36	6.98	11724 ± 108	1778 ± 251
Centróide Pico 2	137.09 ± 0.12	198.55	16.24	19906 ± 141	3317 ± 400
Centróide Pico 3	435.15 ± 0.06	664.43	27.63	35637 ± 189	33958 ± 237

Todos os ficheiros de dados estão guardados na pasta Data_Files