TODO ES CUESTIÓN DE MEDIDA

probeta bureta

matraz aforado

APÉNDICE DEL CAPÍTULO 1

La medición

La química es una ciencia experimental, por lo cual para trabajar en ella es esencial efectuar mediciones. Para poder medir correctamente debemos tener en cuenta que las medidas se obtienen por comparación del objeto que se quiere medir con una unidad estándar. Las mediciones siempre contienen una unidad y algún error inherente. Esto significa que en cualquier medición por precisa que sea, siempre hay un error experimental.

Para medir se emplean diferentes instrumentos, según la magnitud que se desee medir. Asl por ejemplo, para medir longitudes se emplea la cinta métrica, la masa se mide con una balanza, la temperatura con un termómetro y los volúmenes con diversos aparatos volumétricos

Los químicos usan en el laboratorio distintos aparatos de vidrio para medir volúmenes, que difieren según el tipo de medición deseada. Los aparatos volumétricos usados más frecuentemente en el laboratorio son:

- Probetas: son tubos cilíndricos graduados, entre 20 y 500 cm³, utilizados para medir volúmenes relativamente grandes, cuando no se requiere gran exactitud.
- Buretas: son tubos cilíndricos y largos, graduados al 0,1 cm³, provistos en su parte inferior de una llave (robinete) que permite dosificar la salida del líquido. Las buretas se usan para medir volúmenes pequeños cuando se requiere cierta precisión en la medida. Las más usadas tienen 10, 25 y 50 cm³ de capacidad.
- Pipetas graduadas: son tubos estrechos graduados con muchas divisiones. Se usan para medir volúmenes muy pequeños. Las más comunes tienen 1, 2, 5 y 10 cm³ de capacidad.
- Matraces aforados: son recipientes en forma de pera y fondo plano. Tienen un cuello largo y delgado con una línea que lo rodea (aforo), que indica el volumen de líquido que contiene. Son utilizados para preparar soluciones. Vienen en distintos tamaños; los más frecuentes son los de 50, 100, 250, y 500 cm³ de capacidad.

La unidad de medida

A los efectos de expresar las mediciones en forma universal debe definirse un sistema de medición. En general, las unidades usadas en la ciencia son unidades del sistema métrico decimal, es decir, que están relacionadas entre sí por potencias de 10.

En la actualidad los científicos de todo el mundo están de acuerdo con el sistema internacional de unidades (SI), propuesto por La Conferencia General de Pesas y Medidas (Francia, 1960). Consiste en un conjunto de unidades y notaciones básicas, de las cuales se pueden derivar las demás unidades necesarias para efectuar mediciones. Este sistema fue adoptado por la Argentina desde 1972 como Sistema Métrico Legal Argentino (SIMELA)

Hay siete unidades SI básicas, que se muestran en la siguiente tabla:

btieones ción,

. Así

, que ente-

olú-

infe-

para

adas

para

uello conentes

na de deci-

ncia, derior la

magnitud	unidad	símbolo	
longitud	metro	m	
masa	kilogramo	kg	
tiempo	segundo	* S	
corriente eléctrica	ampere	Α	
temperatura	kelvin	K	
intensidad luminosa	candela	cd	
cantidad de sustancia	mol	mol	

Tabla 1.1 Las siete unidades básicas del SI.

Debido a que estas unidades básicas no siempre son las más apropiadas para realizar mediciones, se utilizan prefijos que permiten cambiar el tamaño de la unidad, en potencias de 10.

Prefijo	Símbolo	Notación exponencial	valor
exa	E	10 ¹⁸	1.000.000.000.000.000.000
peta	P	10 ¹⁵	1.000.000.000.000.000
tera	T	10 ¹²	1.000.000.000.000
giga	G	10°	1.000.000.000
mega	М	10 ⁶	1.000.000
kilo	k	10 ³	1.000
hecto	h	10 ²	100
deca	da	10¹	10
	- 4	10°	1

El Mundo de la Química

45

Prefijo	Símbolo	Notación exponencial	valor
deci	d	10-1	0,1
centi	С	10-2	0,01
mili	m	10-3	0,001
micro	μ	10-6	0,000 001
nano	n	.10-9	0,000 000 001
pico	p	10-12	0,000 000 000 001
femto	f	10-15	0,000 000 000 000 001
ato	a	10-18	0,000 000 000 000 000 001

Tabla 1.2 Prefijos utilizados en las unidades SI.

A continuación presentamos algunas unidades SI derivadas, que pueden obtenerse de las unidades básicas.

M	agnit	u d	U	nida	d
Nombre	Simbolo	Dimensión	Nombre	Símbolo	SI
aceleración	a	velocidad /tiempo			m s ⁻²
actividad radiactiva		tiempo-1	becquerel	Bq	s ⁻¹
área	А	long. × long.			m ²
carga	q	corriente × tiempo	coulomb	С	A×s
densidad	δ	masa / volumen			kg m ⁻³
potencial eléctrico	V	potencia / corriente	volt	V	W A-1
energía, trabajo, calor	E, W, Q	fuerza × distancia	joule	J	Nm
fuerza	F	masa × aceleración	newton	N	kg m s ⁻²

	Magnit	u d	U	nida	d
Nombre	Símbolo	Dimensión	Nombre	Símbolo	SI
frecuencia	ν	ciclos / tiempo	hertz	Hz	s ⁻¹
potencia		energía / tiempo	watt	W	J s ⁻¹
presión	Р	fuerza /área	pascal	Pa	N m ⁻²
resistencia	R	potencial / corriente	ohm	Ω	V A-1
velocidad	v	long / tiempo			m s ⁻¹
volumen	V	long. \times long. \times long.			m³

Tabla 1.3 Unidades SI derivadas

Existen además algunas unidades que no son del SI, pero son muy utilizadas en Química:

icas.

-3

Unidad	Símbolo	Tipo de unidad	Conversión al SI
angstrom	A	longitud	$1 \text{ A} = 10^{-10} \text{ m}$
atmósfera	atm	presión	1 atm = 1013 hPa
caloría	cal	calor	1 cal = 4,186 J
litro	L	volumen	$1L = 1 \text{ dm}^3$
masa atómica	u	masa	$1 \text{ u} = 1,66054 \times 10^{-27} \text{ kg}$

Tabla 1.4 Unidades de uso frecuente en Química.

Constantes Universales

Finalmente en la tabla siguiente indicamos algunas constantes fundamentales, de validez universal, de uso frecuente:

Constante	símbolo	valor
carga del electrón	е	1,602 × 10 ⁻¹⁹ C
constante de Avogadro	N _A	$6,022 \times 10^{23} \text{ mol}^{-1}$
constante de Coulomb	K ₀	$8,98.7 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$
constante de Faraday	F.	9,6485 × 10 ⁴ C mol ⁻¹
constante de masa atómica	m _u	1,6605 × 10 ⁻²⁷ kg
constante de Planck	h	6,626 × 10 ⁻³⁴ J s
constante de Rydberg	R _H	$1,097 \times 10^7 \mathrm{m}^{-1}$
constante gravitatoria	G	$6,673 \times 10^{-11} \text{N m}^2 \text{ kg}^{-2}$
constante de los gases	R	8,3145 J K ⁻¹ mol ⁻¹
masa del electrón	me	9,109 × 10 ⁻³¹ kg
masa del neutrón	m _n	1,675 × 10 ⁻²⁷ kg
masa del protón	m _p	1,673 × 10 ⁻²⁷ kg
velocidad de la luz en el vacío	С	2,998 × 10 ⁻⁸ m s ⁻¹
volumen molar (gas ideal)	V _m	$2,2414 \times 10^{-2} \text{ m}^3 \text{ mol}^{-1}$

Tabla 1.5 Constantes universales.

LA IUPAC

La sigla significa International Union of Pure and Applied Chemistry (IUPAC) o en castellano, Unión Internacional de Química Pura y Aplicada. Bajo este nombre se constituyó en 1920 una comisión internacional, destinada a establecer reglas acerca de definiciones, nomenclaturas y unidades usadas en Química. Desde esa fecha, la IUPAC viene recomendando sistemáticamente diversas reglas destinadas a que el lenguaje de la Química sea universal.