LONDON HOUSING DATASET ANALYSIS

This dataset is primarily centered around the housing market of London. It contains a lot of additional relevant data:

- Monthly average house prices
- · Yearly number of houses sold
- · Monthly number of crimes committed

The data used here is from year 1995 to 2019 of each different area.

This data is available as a CSV file, downloaded from Kaggle.

I will analyze this data using the Pandas DataFrame.

Here, random sets of questions are given for which I have to find correct results.

In [51]:

```
import pandas as pd
```

In [52]:

data = pd.read_csv(r'C:\Users\harsh\Desktop\Projects\Python\London Housing Dataset Analysis\London Housing Data.csv

In [53]:

data

Out[53]:

	date	area	average_price	code	houses_sold	no_of_crimes
0	1/1/1995	city of london	91449	E09000001	17.0	NaN
1	2/1/1995	city of london	82203	E09000001	7.0	NaN
2	3/1/1995	city of london	79121	E09000001	14.0	NaN
3	4/1/1995	city of london	77101	E09000001	7.0	NaN
4	5/1/1995	city of london	84409	E09000001	10.0	NaN
13544	9/1/2019	england	249942	E92000001	64605.0	NaN
13545	10/1/2019	england	249376	E92000001	68677.0	NaN
13546	11/1/2019	england	248515	E92000001	67814.0	NaN
13547	12/1/2019	england	250410	E92000001	NaN	NaN
13548	1/1/2020	england	247355	E92000001	NaN	NaN

13549 rows × 6 columns

In [54]:

data.count()

Out[54]:

date	13549
area	13549
average_price	13549
code	13549
houses_sold	13455
no_of_crimes	7439
dtype: int64	

```
In [55]:
data.isnull().sum()
Out[55]:
                      0
date
                      0
area
average_price
                      0
code
                      0
houses_sold
                     94
no_of_crimes
                   6110
dtype: int64
In [56]:
import seaborn as sns
In [57]:
import matplotlib.pyplot as plt
In [58]:
sns.heatmap(data.isnull())
plt.show()
  522
1044
                                                                           - 1.0
   1566
  2088
2610
                                                                          - 0.8
   3132
   3654
   4176
   4698
   5220
                                                                          - 0.6
   5742
   6264
   6786
   7308
   7830
                                                                          - 0.4
   8352
   8874
   9396
   9918
 10440
  10962
                                                                          - 0.2
 11484
 12006
12528
  13050
                                average_price
                                                    houses sold
```

Q1) Convert the datatype of "Date" column of Date-Time format.

```
In [59]:
```

data.head()

Out[59]:

	date	area	average_price	code	houses_sold	no_of_crimes
0	1/1/1995	city of london	91449	E09000001	17.0	NaN
1	2/1/1995	city of london	82203	E09000001	7.0	NaN
2	3/1/1995	city of london	79121	E09000001	14.0	NaN
3	4/1/1995	city of london	77101	E09000001	7.0	NaN
4	5/1/1995	city of london	84409	E09000001	10.0	NaN

In [60]:

data.dtypes

Out[60]:

date object area object average_price int64 code object houses_sold no_of_crimes float64 dtype: object

In [61]:

data.date = pd.to_datetime(data.date)

In [62]:

data.head()

Out[62]:

	date	area	average_price	code	houses_sold	no_of_crimes
0	1995-01-01	city of london	91449	E09000001	17.0	NaN
1	1995-02-01	city of london	82203	E09000001	7.0	NaN
2	1995-03-01	city of london	79121	E09000001	14.0	NaN
3	1995-04-01	city of london	77101	E09000001	7.0	NaN
4	1995-05-01	city of london	84409	E09000001	10.0	NaN

In [63]:

data.dtypes

Out[63]:

date datetime64[ns]
area object
average_price int64
code object
houses_sold float64
no_of_crimes float64
dtype: object

Q2-A) Add a new column "year" in the dataframe, which contains years only.

In [64]:

data.head()

Out[64]:

	date	area	average_price	code	houses_sold	no_of_crimes
0	1995-01-01	city of london	91449	E09000001	17.0	NaN
1	1995-02-01	city of london	82203	E09000001	7.0	NaN
2	1995-03-01	city of london	79121	E09000001	14.0	NaN
3	1995-04-01	city of london	77101	E09000001	7.0	NaN
4	1995-05-01	city of london	84409	E09000001	10.0	NaN

In [65]:

data['Year'] = data.date.dt.year

In [66]:

data

Out[66]:

	date	area	average_price	code	houses_sold	no_of_crimes	Year
0	1995-01-01	city of london	91449	E09000001	17.0	NaN	1995
1	1995-02-01	city of london	82203	E09000001	7.0	NaN	1995
2	1995-03-01	city of london	79121	E09000001	14.0	NaN	1995
3	1995-04-01	city of london	77101	E0900001	7.0	NaN	1995
4	1995-05-01	city of london	84409	E09000001	10.0	NaN	1995
		***			•••	•••	
13544	2019-09-01	england	249942	E92000001	64605.0	NaN	2019
13545	2019-10-01	england	249376	E92000001	68677.0	NaN	2019
13546	2019-11-01	england	248515	E92000001	67814.0	NaN	2019
13547	2019-12-01	england	250410	E92000001	NaN	NaN	2019
13548	2020-01-01	england	247355	E92000001	NaN	NaN	2020

13549 rows × 7 columns

Q2-B) Add a new column "month" as 2nd column in the dataframe, which contains month only.

In [67]:

data.head()

Out[67]:

	date	area	average_price	code	houses_sold	no_of_crimes	Year
0	1995-01-01	city of london	91449	E09000001	17.0	NaN	1995
1	1995-02-01	city of london	82203	E09000001	7.0	NaN	1995
2	1995-03-01	city of london	79121	E09000001	14.0	NaN	1995
3	1995-04-01	city of london	77101	E09000001	7.0	NaN	1995
4	1995-05-01	city of london	84409	E09000001	10.0	NaN	1995

```
In [68]:
```

data.insert(1, 'month', data.date.dt.month)

In [69]:

data

Out[69]:

	date	month	area	average_price	code	houses_sold	no_of_crimes	Year
0	1995-01-01	1	city of london	91449	E09000001	17.0	NaN	1995
1	1995-02-01	2	city of london	82203	E09000001	7.0	NaN	1995
2	1995-03-01	3	city of london	79121	E09000001	14.0	NaN	1995
3	1995-04-01	4	city of london	77101	E09000001	7.0	NaN	1995
4	1995-05-01	5	city of london	84409	E09000001	10.0	NaN	1995
			•••					
13544	2019-09-01	9	england	249942	E92000001	64605.0	NaN	2019
13545	2019-10-01	10	england	249376	E92000001	68677.0	NaN	2019
13546	2019-11-01	11	england	248515	E92000001	67814.0	NaN	2019
13547	2019-12-01	12	england	250410	E92000001	NaN	NaN	2019
13548	2020-01-01	1	england	247355	E92000001	NaN	NaN	2020

13549 rows × 8 columns

Q3) Remove the columns 'year' and 'month' from the dataframe.

In [70]:

data

Out[70]:

	date	month	area	average_price	code	houses_sold	no_of_crimes	Year
0	1995-01-01	1	city of london	91449	E09000001	17.0	NaN	1995
1	1995-02-01	2	city of london	82203	E09000001	7.0	NaN	1995
2	1995-03-01	3	city of london	79121	E09000001	14.0	NaN	1995
3	1995-04-01	4	city of london	77101	E09000001	7.0	NaN	1995
4	1995-05-01	5	city of london	84409	E09000001	10.0	NaN	1995
13544	2019-09-01	9	england	249942	E92000001	64605.0	NaN	2019
13545	2019-10-01	10	england	249376	E92000001	68677.0	NaN	2019
13546	2019-11-01	11	england	248515	E92000001	67814.0	NaN	2019
13547	2019-12-01	12	england	250410	E92000001	NaN	NaN	2019
13548	2020-01-01	1	england	247355	E92000001	NaN	NaN	2020

13549 rows × 8 columns

In [71]:

data.drop(['month','Year'], axis = 1, inplace = True)

In [72]:

data

Out[72]:

	date	area	average_price	code	houses_sold	no_of_crimes
0	1995-01-01	city of london	91449	E09000001	17.0	NaN
1	1995-02-01	city of london	82203	E0900001	7.0	NaN
2	1995-03-01	city of london	79121	E09000001	14.0	NaN
3	1995-04-01	city of london	77101	E09000001	7.0	NaN
4	1995-05-01	city of london	84409	E09000001	10.0	NaN
13544	2019-09-01	england	249942	E92000001	64605.0	NaN
13545	2019-10-01	england	249376	E92000001	68677.0	NaN
13546	2019-11-01	england	248515	E92000001	67814.0	NaN
13547	2019-12-01	england	250410	E92000001	NaN	NaN
13548	2020-01-01	england	247355	E92000001	NaN	NaN

¹³⁵⁴⁹ rows × 6 columns

Q4) Show all the records where 'No. of Crimes' is 0. And, how many such records are there?

In [73]:

data.head(2)

Out[73]:

	date	area	average_price	code	houses_sold	no_of_crimes
0	1995-01-01	city of london	91449	E09000001	17.0	NaN
1	1995-02-01	city of london	82203	E09000001	7.0	NaN

In [77]:

data[data.no_of_crimes == 0]

Out[77]:

	date	area	average_price	code	houses_sold	no_of_crimes
72	2001-01-01	city of london	284262	E09000001	24.0	0.0
73	2001-02-01	city of london	198137	E09000001	37.0	0.0
74	2001-03-01	city of london	189033	E09000001	44.0	0.0
75	2001-04-01	city of london	205494	E09000001	38.0	0.0
76	2001-05-01	city of london	223459	E09000001	30.0	0.0
178	2009-11-01	city of london	397909	E09000001	11.0	0.0
179	2009-12-01	city of london	411955	E09000001	16.0	0.0
180	2010-01-01	city of london	464436	E0900001	20.0	0.0
181	2010-02-01	city of london	490525	E09000001	9.0	0.0
182	2010-03-01	city of london	498241	E09000001	15.0	0.0

104 rows × 6 columns

```
In [78]:
```

```
len(data[data.no_of_crimes == 0])
```

Out[78]:

104

Q5) What is the maximum & minimum 'average_price' per year in England?

```
In [79]:
```

```
data['Year'] = data.date.dt.year
```

In [81]:

data.head(2)

Out[81]:

	date	area	average_price	code	houses_sold	no_of_crimes	Year
0	1995-01-01	city of london	91449	E09000001	17.0	NaN	1995
1	1995-02-01	city of london	82203	E09000001	7.0	NaN	1995

In [84]:

```
df1 = data[data.area == "england"]
df1
```

Out[84]:

	date	area	average_price	code	houses_sold	no_of_crimes	Year
13248	1995-01-01	england	53203	E92000001	47639.0	NaN	1995
13249	1995-02-01	england	53096	E92000001	47880.0	NaN	1995
13250	1995-03-01	england	53201	E92000001	67025.0	NaN	1995
13251	1995-04-01	england	53591	E92000001	56925.0	NaN	1995
13252	1995-05-01	england	53678	E92000001	64192.0	NaN	1995
13544	2019-09-01	england	249942	E92000001	64605.0	NaN	2019
13545	2019-10-01	england	249376	E92000001	68677.0	NaN	2019
13546	2019-11-01	england	248515	E92000001	67814.0	NaN	2019
13547	2019-12-01	england	250410	E92000001	NaN	NaN	2019
13548	2020-01-01	england	247355	E92000001	NaN	NaN	2020

301 rows × 7 columns

In [86]:

```
df1.groupby('Year')
```

Out[86]:

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x0000002A57BD018B0>

```
In [89]:
df1.groupby('Year').average_price.max()
Out[89]:
Year
1995
         53901
1996
         55755
1997
         61564
         65743
1998
1999
         75071
2000
         84191
2001
         95992
2002
        119982
        138985
2003
2004
        160330
2005
        167244
2006
        182031
2007
        194764
        191750
2008
2009
        174136
2010
        180807
2011
        177335
2012
        180129
2013
        188544
2014
        203639
2015
        219582
2016
        231922
2017
        242628
2018
        248620
2019
        250410
2020
        247355
Name: average_price, dtype: int64
In [90]:
df1.groupby('Year').average_price.min()
Out[90]:
Year
1995
         52788
1996
         52333
1997
         55789
1998
         61659
1999
         65522
2000
         75219
2001
         84245
2002
         96215
        121610
2003
2004
        139719
2005
        158572
2006
        166544
2007
        181824
        165795
2008
2009
        159340
        174458
2010
2011
        173046
2012
        174161
2013
        176816
2014
        188265
2015
        202856
2016
        220361
2017
        231593
        240428
2018
2019
        243281
2020
        247355
Name: average_price, dtype: int64
```

Q6) What is the maximum & minimum No. of Crimes recorded per area?

In [93]:

```
data.groupby("area").no_of_crimes.max().sort_values(ascending = True)
```

Out[93]:

area	
city of london	10.0
kingston upon thames	1379.0
sutton	1425.0
richmond upon thames	1551.0
merton	1623.0
harrow	1763.0
bexley	1914.0
havering	1956.0
barking and dagenham	2049.0
redbridge	2560.0
bromley	2637.0
hammersmith and fulham	2645.0
kensington and chelsea	2778.0
enfield	2798.0
lewisham	2813.0
hounslow	2817.0
hillingdon	2819.0
greenwich	2853.0
barnet	2893.0
brent	2937.0
waltham forest	2941.0
wandsworth	3051.0
haringey	3199.0
croydon	3263.0
tower hamlets	3316.0
islington	3384.0
ealing	3401.0
hackney	3466.0
newham southwark	3668.0 3821.0
camden	4558.0
lambeth	4701.0
westminster	7461.0
east midlands	NaN
east of england	NaN
england	NaN
inner london	NaN
london	NaN
north east	NaN
north west	NaN
outer london	NaN
south east	NaN
south west	NaN
west midlands	NaN
yorks and the humber	NaN
Name: no_of_crimes, dtype	
<u></u>	

In [94]:

```
data.groupby("area").no_of_crimes.min().sort_values(ascending = True)
Out[94]:
```

area city of london 0.0 kingston upon thames 692.0 700.0 richmond upon thames 787.0 sutton merton 819.0 bexley 860.0 harrow 937.0 havering 1130.0 barking and dagenham 1217.0 hammersmith and fulham 1323.0 kensington and chelsea 1347.0 bromley 1441.0 hillingdon 1445.0 redbridge 1487.0 greenwich 1513.0 hounslow 1529.0 haringey 1536.0 waltham forest 1575.0 wandsworth 1582.0 enfield 1635.0 tower hamlets 1646.0 lewisham 1675.0 barnet 1703.0 brent 1850.0 hackney 1870.0 1871.0 ealing islington 1871.0 2031.0 croydon camden 2079.0 newham 2130.0 southwark 2267.0 lambeth 2381.0 westminster 3504.0 east midlands NaN east of england NaN england NaN inner london NaN london NaN NaN north east north west NaN outer london NaN NaN south east south west NaN west midlands NaN yorks and the humber Name: no_of_crimes, dtype: float64

Q7) Show the total count of records of each area, where average price is less than 100000.

In [95]:

data[data.average_price < 100000].area.value_counts()</pre>

Out[95]:

north east 112 north west 111 yorks and the humber 110 east midlands 96 west midlands 87 england barking and dagenham 85 south west 78 east of england 76 newham 72 bexley 64 waltham forest 64 lewisham 62 havering 60 south east 59 greenwich 59 croydon 57 enfield 54 sutton 54 hackney 53 redbridge 52 48 southwark tower hamlets 47 outer london 46 hillingdon 44 41 lambeth hounslow 41 brent 40 39 london merton 35 haringey 33 33 bromley inner london 31 ealing 31 kingston upon thames 30 harrow 30 wandsworth 26 barnet 25 islington 19 city of london 11 Name: area, dtype: int64