Experiment:3

Problem statement:

Implement linear regression using python

```
Aim: †O Implement linear regression using python
```

ALGORITHM:

Step 1: Create Database for Linear Regression

Step 2:Finding Hypothesis of Linear Regression

Step 3:Training a Linear Regression model

Step 4:Evaluating the model

Step 5: Scikit-learn implementation

Step 6: End

PROGRAM:

import numpy as np

import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error, r2_score

generate random data-set

np.random.seed(0)

x = np.random.rand(100, 1) #Generate a 2-D array with 100 rows, each row containing 1 random numbers:

y = 2 + 3 * x + np.random.rand(100, 1)

regression_model = LinearRegression() # Model initialization

regression_model.fit(x, y) # Fit the data(train the model)

y_predicted = regression_model.predict(x) # Predict

model evaluation

rmse = mean_squared_error(y, y_predicted)

r2 = r2 score(y, y predicted)

printing values

print('Slope:' ,regression_model.coef_)

print('Intercept:', regression_model.intercept_)

print('Root mean squared error: ', rmse)

print('R2 score: ', r2)

plotting values # data points

plt.scatter(x, y, s=10)

plt.xlabel('x-Values from 0-1')

plt.ylabel('y-values from 2-5')

predicted values

plt.plot(x, y predicted, color='r')

plt.show()

OUTPUT:

Result: The program has been executed successfully and Linear regression is implemented.