## Amendments to the Claims

## Please amend the following claims:

3/1/

Claim 1. (Previously Amended) A compound of Formula (I):

R<sub>3</sub>

N

R<sub>3</sub>

Formula (I)

wherein

Y is selected from the group consisting of a bond, -C(0), -C(0)O-, -C(0)NH- and  $-SO_2-$ ;

 $R_1$  is selected from the group consisting of  $R_7$  and  $R_8$ ;

- 2 -

Fax:7325245889

 $R_2$ ,  $R_3$ ,  $R_4$  and  $R_5$  are independently selected from the group consisting of a bond, hydrogen and  $C_{1.8}$ alkyl; wherein  $C_{1.8}$ alkyl is optionally substituted with one to three substituents independently selected from  $R_9$ , provided that  $R_2$ ,  $R_3$ ,  $R_4$  or  $R_5$  can only be a bond when forming a monocyclic ring wherein the following monocyclic rings may be formed from  $R_2$ ,  $R_3$ ,  $R_4$  and  $R_5$ ;

when  $R_2$  and  $R_3$  comprise a bond and  $C_{1-8}$ alkyl or optionally when both  $R_2$  and  $R_3$  are  $C_{1-8}$ alkyl ,  $R_2$  and  $R_3$  together with the atoms to which each is attached will form a four to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;

when  $R_3$  and  $R_4$  comprise a bond and  $C_{1-8}$ alkyl or optionally when both  $R_3$  and  $R_4$  are  $C_{1-8}$ alkyl,  $R_3$  and  $R_4$  together with the atoms to which each is attached will form a five to seven membered monecyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;

when  $R_3$  and  $R_5$  comprise a bond and  $C_{1-8}$ alkyl or optionally when both  $R_3$  and  $R_5$  are  $C_{1-8}$ alkyl,  $R_3$  and  $R_5$  together with the atoms to which each is attached will form a four to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;

when  $R_4$  and  $R_5$  comprise a bond and  $C_{1-8}$ alkyl, or optionally when both  $R_4$  and  $R_5$  are  $C_{1-8}$ alkyl,  $R_4$  and  $R_5$  together with the atoms to which each is attached will form a four to seven membered monocyclic ring optionally containing one

- 3 -

to two additional heteroatoms independently selected from the group consisting of N, O and S;

- $R_6$  is optionally present and is one to three substituents independently selected from the group consisting of halogen,  $C_{1-8}$ alkoxy,  $R_{10}$ ,  $R_{12}$ ,  $-N(R_{11})C(0)-R_{10}$ ,  $-N(R_{11})C(0)-R_{12}$ ,  $-N(R_{11})SO_3-R_{10}$ ,  $-N(R_{11})SO_2-R_{12}$ ,  $-N(R_{11})C(O_3)-N(R_{11},R_{10})$ ,  $-N(R_{11})C(O)-N(R_{11},R_{13})$ ,  $-N(R_{11})C(O)-N(R_{12},R_{17})$ ,  $-C(O)-N(R_{11},R_{10})$ ,  $-C(0)-N(R_{11},R_{12})$ ,  $-C(0)-N(R_{12},R_{17})$ ,  $-OQ(0)-N(R_{11},R_{10})$ ,  $-OC(O)-N(R_{11},R_{12})$ ,  $-OC(O)-N(R_{12},R_{17})$ ,  $-OC(O)-R_{10}$ ,  $-OC(O)-R_{12}$ , -0- $R_{10}$  and  $R_{10}$ -( $C_{1-8}$ )alkoxy;
- $R_7$ ,  $R_8$   $R_{10}$  and  $R_{14}$  are independently/selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl optionally substituted with one to five substituents independently selected from the group consisting of halogen,  $C_{1-8}$ alkyl,  $C_{2-8}$ alkenyl,  $C_{2-8}$ alkynyl,  $C_{1-8}$ alkoxy, C<sub>1-8</sub>alkylcarbonyl, C<sub>1-8</sub>alkoxycarbonyl, carboxyl, aryl, heteroaryl, arylcarbonyl, heteroarylcarbonyl, arylsulfonyl, amino,  $N-(C_{1-8}alkyl)$  amino,  $\tilde{N}, N-(C_{1-8}dialkyl)$  amino,  $-CF_3$  and -OCF3; wherein cycloalkyl and heterocyclyl are optionally substituted with one to three oxo substituents; and, wherein the aryl and heteroaryl/substituents and the aryl portion of the arylcarbonyl substituent are optionally substituted with one to five substituents independently selected from the group consisting of halogen, C1-8alkyl, C2-8alkenyl,  $C_{2-8}$ alkynyl,  $C_{1-8}$ alkoxy, carboxyl, amino,  $N-(C_{1-8}$ alkyl) amino,  $N, N-(C_{1-8} \text{dialkyl}) \text{ ami}_{n}^{m} \circ, -CF_{3} \text{ and } -OCF_{3};$
- $R_8$ ,  $R_{12}$ ,  $R_{13}$  and  $R_{17}$  are independently selected from the group consisting of C<sub>1-8</sub>alkyl, C<sub>2-8</sub>alkenyl, C<sub>2-8</sub>alkynyl, and  $(halo)_{1-3}(C_{1-8})$  alk 1; wherein  $C_{1-8}$  alkyl,  $C_{2-8}$  alkenyl and C2.salkynyl are optionally substituted on a terminal carbon

with one to three substituents independently selected from  $R_{14}$ ;

E HA

- $R_{11}$  is selected from the group consisting of hydrogen and  $C_{1-8}$ alkyl;
- A is C<sub>1-4</sub>alkylene optionally substituted with one to two substituents independently selected from R<sub>13</sub>;
- when R<sub>3</sub> is C<sub>1-8</sub>alkyl, optionally A and R<sub>3</sub> together with the atoms to which each is attached may form a five to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;
- when R<sub>4</sub> is C<sub>1-8</sub>alkyl, optionally A and R<sub>4</sub> together with the atoms which each is attached may form a five to seven membered monocyclic ring optionally containing one additional heteroatom selected from the group consisting of N, O and S;
- when R<sub>5</sub> is C<sub>1-8</sub>alkyl, optionally A and R<sub>5</sub> together with the atoms which each is attached may form a three to seven membered monocyclic ring optionally containing one to two heteroatoms independently selected from the group consisting of N, O and S; and
- B<sub>1</sub> and B<sub>2</sub> are independently selected from the group consisting of C<sub>1-2</sub>alkylene and C<sub>2</sub>alkenylene optionally substituted with one to two substituents independently selected from the group consisting of halogen, hydroxy, hydroxy(C<sub>1-8</sub>)alkyl, hydroxy(C<sub>1-8</sub>)alkoxy, C<sub>1-8</sub>alkyl, C<sub>2-8</sub>alkenyl, C<sub>2-8</sub>alkynyl, C<sub>1-8</sub>alkoxy, carboxyl, amino, N-(C<sub>1-8</sub>alkyl)amino, N,N-(C<sub>1-8</sub>dialkyl)amino, -CF<sub>3</sub> and -OCF<sub>2</sub>;

and pharmaceutically acceptable salts, racemic mixtures, diastereomers and enantiomers thereof.

Chy M

Claim 2. (Original) The compound of claim 1 wherein Y is selected from the group consisting of -C(0) and  $-SO_2$ .

Claim 3. (Original) The compound of claim 1 wherein Y is selected from -SO<sub>2</sub>-.

Claim 4. (Original) The compound of claim 1 wherein  $R_1$  is selected from  $R_7$ .

Claim 5. (Original) The compound of claim 1 wherein  $R_2$ ,  $R_3$ ,  $R_4$  and  $R_5$  are independently selected from the group consisting of hydrogen and  $C_{1-4}$ alkyl.

Claim 6. (Original) The compound of claim 1 wherein  $R_2$ ,  $R_3$ ,  $R_4$  and  $R_5$  are independently selected from the group consisting of hydrogen and methyl.

Claim 7. (Original) The compound of claim 1 wherein  $R_6$  is optionally present and is one to three substituents independently selected from the group consisting of halogen,  $C_{1-8}$ alkoxy,  $R_{10}$ ,  $R_{12}$ ,  $-N(R_{11})C(O)-R_{10}$ ,  $-N(R_{11})C(O)-R_{12}$ ,  $-N(R_{11})SO_2-R_{10}-,-N(R_{11})C(O)-N(R_{11},R_{12})$ ,  $-N(R_{11})C(O)-N(R_{12},R_{17})$ ,  $-OC(O)-N(R_{11},R_{12})$ ,  $-OC(O)-N(R_{12},R_{17})$ ,  $-OC(O)-R_{10}$  and  $R_{10}-(C_{1-8})$  alkoxy.

Claim 8. (Original) The compound of claim 1 wherein  $R_{\epsilon}$  is optionally present and is one to three substituents independently selected from the group consisting of halogen,

- '6 -

COL

Claim 9. (Original) The compound of claim 1 wherein  $R_6$  is optionally present and is one to two substituents independently selected from the group consisting of  $R_{10}$ ,  $-N(R_{11})C(0)-R_{10}$ ,  $-N(R_{11})C(0)-N(R_{12},R_{12})$ ,  $-N(R_{11})C(0)-N(R_{12},R_{17})$ ,  $-OC(0)-N(R_{11},R_{12})$ ,  $-OC(0)-N(R_{12},R_{17})$  and  $R_{10}$ -methoxy.

Claim 10. (Original) The compound of claim 1 wherein R<sub>7</sub> is selected from the group consisting of aryl and heteroaryl optionally substituted with one to five substituents independently selected from the group consisting of halogen, C<sub>1-8</sub>alkyl, C<sub>2-8</sub>alkenyl, C<sub>2-8</sub>alkynyl, C<sub>1-8</sub>alkoxy, C<sub>1-8</sub>alkylcarbonyl, C<sub>1-8</sub>alkoxycarbonyl, carboxyl, aryl, heteroaryl, arylcarbonyl, heteroarylcarbonyl, arylsulfonyl, amino, N-(C<sub>1-8</sub>alkyl)amino, N, N-(C<sub>1-6</sub>dialkyl)amino, -EF<sub>3</sub> and -OCF<sub>3</sub>; and, wherein the aryl and heteroaryl substituents and the aryl portion of the arylcarbonyl substituent are optionally substituted with one to five substituents independently selected from the group consisting of halogen, C<sub>1-8</sub>alkyl, C<sub>2-8</sub>alkenyl, C<sub>2-8</sub>alkynyl, C<sub>1-8</sub>alkoxy, carboxyl, amino, N-(C<sub>1-8</sub>alkyl)amino, N, N-(C<sub>1-8</sub>dialkyl)amino, -CF<sub>3</sub> and -OCF<sub>3</sub>.

Claim 11. (Original) The compound of claim 1 wherein R<sub>10</sub> is selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl optionally substituted with one to five substituents independently selected from the group consisting of halogen, C<sub>1-8</sub>alkyl, C<sub>1-8</sub>alkoxy, C<sub>1-8</sub>alkoxycarbonyl, carboxyl, arylcarbonyl, arylsulfonyl, -CF<sub>3</sub> and -OCF<sub>3</sub>; wherein cycloalkyl and heterocyclyl are optionally substituted with one to three oxe substituents; and, wherein the aryl portion

of the arylcarbonyl substituent is optionally substituted with one to five substituents independently selected from  $C_{1-8}$ alkoxy.

Const

Claim 12. (Original) The compound of  $/\!\!/$ claim 1 wherein  $R_{10}$  is selected from the group consisting of cyclopropyl, 1,3dihydro-2H-isoindolyl, 2-azabicyclo[2/.2.2]octyl, piperidinyl, morpholinyl, phenyl, naphthalenyl, thienyl, 1H-pyrrolyl and pyridinyl; wherein cyclopropyl, pigeridinyl, morpholinyl, phenyl, naphthalenyl, thienyl, 1H-pyrrolyl and pyridinyl are optionally substituted with one to four substituents independently selected from the group consisting of chlorine, fluorine, bromine, methyl, isopropyl, t-butyl, methoxy, tbutoxycarbonyl, carboxyl, phenylcarbonyl, -CF3 and -OCF3; wherein 1,3-dihydro-2H-isoindolyl is optionally substituted with oxo; wherein 2-azabicycl/p[2.2.2]octyl is optionally substituted with phenylsulfomyl, and, wherein the phenyl portion of the phenylcarbonyl substituent is optionally substituted with one to two substituents independently selected from methoxy.

Claim 13. (Original) The compound of claim 1 wherein  $R_{12}$  is selected from the group consisting of  $C_{1-8}$ alkyl and  $C_{2-8}$ alkynyl optionally substituted on a terminal carbon with  $R_{14}$ .

Claim 14. (Original) The compound of claim 1 wherein  $R_{12}$  is selected from the group consisting of  $C_{1-4}$ alkyl and  $C_{2-4}$ alkynyl optionally substituted on a terminal carbon with  $R_{14}$ .

Claim 15. (Original) The compound of claim 1 wherein  $R_{12}$  is selected from the group consisting of t-butyl and ethynyl; wherein ethynyl is optionally substituted on a terminal carbon with a substituent independently selected from  $R_{14}$ .

Claim 16. (Original) The compound of claim I wherein  $R_{14}$  is selected from the group consisting of aryl optionally substituted with one to five substituents independently selected from the group consisting of halogen,  $C_{1-8}$ alkyl,  $C_{2-8}$ alkenyl,  $C_{2-8}$ alkynyl,  $C_{1-8}$ alkoxy,  $C_{1-8}$ alkylcarbonyl,  $C_{1-8}$ alkoxycarbonyl, carboxyl, aryl, heteroaryl, arylcarbonyl, heteroarylcarbonyl, arylsulfonyl, amino  $N-(C_{1-8}$ alkyl)amino,  $N,N-(C_{1-8}$ dialkyl)amino,  $-CF_3$  and  $-OCF_3$ ; and, wherein the aryl and heteroaryl substituents and the aryl portion of the arylcarbonyl substituent are optionally substituted with one to five substituents independently selected from the group consisting of halogen,  $C_{1-8}$ alkyl,  $C_{2-8}$ alkenyl,  $C_{2-8}$ alkynyl,  $C_{1-8}$ alkoxy, carboxyl, amino,  $N-(C_{1-8}$ alkyl)amino,  $N-(C_{1-8}$ and  $N-(C_{1-8}$ alkyl)amino,  $N-(C_{1-8}$ alkyl)amino,  $N-(C_{1-8}$ and  $N-(C_{1-8}$ alkyl)amino,  $N-(C_{1-8}$ and  $N-(C_{1-8}$ alkyl)amino,  $N-(C_{1-8}$ and  $N-(C_{1-8}$ a

Claim 17. (Original) The compound of claim 1 wherein  $R_{11}$  is selected from the group consisting of hydrogen and  $C_{1-4}$ alkyl.

Claim 18. (Original) The compound of claim 1 wherein  $R_{11}$  is hydrogen.

Claim 19. (Original) The compound of claim 1 wherein A is selected from the group consisting of methylene and ethylene.

Claim 20. Canceled

Claim 21. (Original) The compound of claim 1 wherein  $B_1$  and  $B_2$  are independently selected from the group consisting of  $-CH_2-$ ,  $-(CH_3)_3-$  and  $-(CH)_2-$  optionally substituted with one to two substituents independently selected from the group consisting of halogen, hydroxy, hydroxy( $C_{1-4}$ ) alkyl, hydroxy( $C_{1-4}$ ) alkexy,  $C_{1-4}$  alkyl,  $C_{2-4}$  alkeyl,  $C_{2-4}$  alkynyl,

- 9 -

 $C_{1-4}$ alkoxy, carboxyl, amino,  $N-(C_{1-4}$ alkyl) amino,  $N-(C_{1-4}$ alkyl) amino,  $N-(C_{1-4}$ dialkyl) amino,  $N-(C_{1-4}$ dialkyl) amino,  $N-(C_{1-4}$ and  $N-(C_{1-4}$ dialkyl) amino,  $N-(C_{1-4}$ and  $N-(C_{1-4}$ alkyl) amino,  $N-(C_{1-4}$ and  $N-(C_{1-4}$ alkyl) amino,  $N-(C_{1-4}$ and  $N-(C_{1-4}$ alkyl) amino,  $N-(C_{1-4}$ alkyl

Claim 22. (Original) The compound of claim 1 wherein  $B_1$  is selected from the group consisting of  $-CH_2-$ ,  $-(CH_2)_2-$  and  $-(CH)_2-$  optionally substituted with one to two substituents independently selected from the group consisting of halogen, hydroxy, hydroxy( $C_{1-4}$ ) alkyl, hydroxy( $C_{1-4}$ ) alkoxy,  $C_{1-4}$ alkyl,  $C_{2-4}$ alkenyl,  $C_{2-4}$ alkynyl,  $C_{1-4}$ alkoxy, carboxyl, amino,  $N-(C_{1-4}$ alkyl) amino,  $N,N-(C_{1-4}$ dialkyl) amino,  $-CF_3$  and  $-CCF_3$ ; and, wherein,  $B_2$  is selected from  $-(CH_2)_2-$ .

Claim 23. (Original) The compound of claim 1 wherein  $B_1$  is selected from the group consisting of  $-CH_2-$ ,  $-(CH_2)_2-$  and  $-(CH)_2-$ .

Claim 24. (Original) The compound of claim 1 wherein the compound of Formula (I) is selected from a compound of the formula:

wherein  $B_1$ ,  $R_1$ ,  $R_3$ ,  $R_5$ , A and  $R_6$  are dependently selected from the group consisting of:

- 10 -

| B <sub>1</sub>                  | R <sub>1</sub> | R <sub>3</sub> | R <sub>s</sub> | A               | R <sub>6</sub>                                         |
|---------------------------------|----------------|----------------|----------------|-----------------|--------------------------------------------------------|
| (CH <sub>3</sub> ) <sub>2</sub> | 4 -            | Н              | Н              | CH₂             | 4-NHC(0)-(2,6-Cl <sub>2</sub> )Ph;                     |
|                                 | Tol            |                |                |                 | /                                                      |
| $(CH_2)_2$                      | 4 -            | н              | H              | CH <sub>2</sub> | 4-NHC(0)-(2,4,6-Cl <sub>3</sub> )Ph;                   |
|                                 | Tol            |                |                |                 | /                                                      |
| (CH <sub>2</sub> ) <sub>3</sub> | 4 -            | Н              | H              | CH3             | 4-NHC(O) - [2,6-(OMe) <sub>3</sub> ] Ph;               |
|                                 | Tol            |                |                |                 |                                                        |
|                                 | Ph             | H              | Н              | CH2             | 4 NHC(O)-(2,6-F <sub>2</sub> )Ph;                      |
| (CH <sub>2</sub> ) <sub>3</sub> | Ph             | Н              | H              | CH₂             | $A - \text{NHC}(0) - (2, 6 - \text{Cl}_2) \text{ Ph};$ |
| $(CH_2)_2$                      | Ph             | H              | H              | CH₂             | $4 - [2, 6 - (OMe)_2] Ph;$                             |
| (CH <sub>2</sub> ) <sub>3</sub> | 4 -            | <b>H</b>       | Н              | CH <sub>2</sub> | 4-NHC(O)-(2-Me)Ph;                                     |
|                                 | Tol            |                |                |                 |                                                        |
| (CH <sub>2</sub> ) <sub>3</sub> | 4 <b>-</b>     | H              | H              | CH <sub>2</sub> | 4-NHC(0)-(2-C1)Ph;                                     |
| (                               | Tol            |                |                |                 |                                                        |
| $(CH_2)_2$                      | 4-<br>Tol      | H              | H              | CĤ₂<br>//       | $4-NHC(0)-(2,6-F_2)Ph;$                                |
| (CH <sub>2</sub> ) <sub>2</sub> | 4-             | Н              | н              | CH <sub>2</sub> | 4-NHO (0) (2 GD ) Ph                                   |
| ( 0112/2                        | Tol            | 11             | 11             | // CH2          | $4 - NHC(0) - (2 - CF_3) Ph;$                          |
| (CH <sub>2</sub> ) <sub>2</sub> | 4 -            | Н              | н              | CH <sub>2</sub> | 4-NHC(0)-(2-OCF <sub>3</sub> )Ph;                      |
|                                 | Tol            |                |                |                 |                                                        |
| (CH <sub>2</sub> ) <sub>2</sub> | 4-             | н              | H.             | CH <sub>2</sub> | 4-NHC(0)-(2-Br)Ph;                                     |
|                                 | Tol            | •              |                |                 |                                                        |
| $(CH_2)_2$                      | Ph             | н              | / н            | CH <sub>2</sub> | 4-NHC(0)-(2,6-F <sub>2</sub> )Ph;                      |
| CH <sub>2</sub>                 | Ph             | н //           | H              | CH2             | 4-NHC(0)-(2,6-Cl <sub>2</sub> )Ph;                     |
| (CH <sub>2</sub> ) <sub>2</sub> | 4 -            | н              | н              | CH <sub>2</sub> | 4-[2,6-(OMe) <sub>2</sub> ]Ph;                         |
|                                 | Tol            |                |                |                 |                                                        |
| CH <sub>2</sub>                 | Ph             | H              | н              | CH <sub>2</sub> | 4-NHC(0)-[2,6-(OMe) <sub>3</sub> ]·Ph;                 |
| $(CH_2)_2$                      | 4-             | Н              | H              | $CH_2$          | 4-CC-(4-t-butyl)Ph;                                    |
|                                 | Tol            | 1              |                |                 |                                                        |
| (CH <sub>3</sub> ) <sub>2</sub> | 4 - //         | Н              | . <b>H</b>     | $CH_2$          | 4-CC-Ph;                                               |
|                                 | - //           |                |                |                 |                                                        |
|                                 | //             |                |                | - 11            | -                                                      |

.

End

|                                 |     |     |                 |                 | /                                             |
|---------------------------------|-----|-----|-----------------|-----------------|-----------------------------------------------|
|                                 | Tol |     |                 |                 | /                                             |
| (CH <sub>3</sub> ) <sub>2</sub> | 4 - | н   | Н               | CH <sub>2</sub> | 4-NHC(O)-Ph;                                  |
|                                 | Tol |     |                 |                 |                                               |
| (CH <sub>2</sub> ) <sub>2</sub> | 4-  | H   | H               | CH2             | 4-NHC(0)-[4-C(0)-[2,5-                        |
|                                 | Tol |     |                 |                 | (QMe) <sub>2</sub> ]Ph]Ph;                    |
| (CH <sub>2</sub> ) <sub>2</sub> | 4 - | H   | Н               | $CH_2$          | 4-NHC(0)-CH2-(2,6-Cl2)Ph;                     |
|                                 | Tol |     |                 |                 |                                               |
| (CH <sub>2</sub> ) <sub>3</sub> | Ph  | H   | Н               | $CH_2$          | 4-NHC(0)-NH-(2,6-Cl <sub>2</sub> )Ph;         |
| (CH <sub>2</sub> ) <sub>3</sub> | Ph  | н   | н               | CH3             | 4-OCH <sub>2</sub> -(2,6-Cl <sub>2</sub> )Ph; |
| (CH <sub>2</sub> ) <sub>2</sub> | 4 - | Н   | H               | CH <sub>2</sub> | 4-OCH <sub>3</sub> -Ph;                       |
|                                 | Tol |     |                 |                 |                                               |
| $(CH_2)_2$                      | 4 - | Н   | Н               | CH₂             | 4-NHC(O)-(2,4,6-                              |
|                                 | Tol |     |                 |                 | isopropyl3) Ph;                               |
| (CH <sub>2</sub> ) <sub>2</sub> | 4 - | Н   | н               | C#2             | 4-(1H-pyrrol-1-yl);                           |
|                                 | Tol |     |                 |                 |                                               |
| (CH <sub>2</sub> ) <sub>2</sub> | 4 - | Н   | Н               | CH <sub>2</sub> | 4-Ph;                                         |
|                                 | Tol |     |                 |                 |                                               |
| (CH <sub>2</sub> ) <sub>2</sub> | Ph  | н   | н               | CH <sub>2</sub> | 4-NHC(0)-NH-(2,6-F <sub>2</sub> )Ph;          |
| (CH <sub>2</sub> ) <sub>2</sub> | 4 - | Н   | н               | CH2             | 3-NHC(O)-(2,6-F <sub>2</sub> )Ph;             |
|                                 | Tol |     |                 |                 |                                               |
| $(CH_2)_2$                      | 4 - | Н   | H/              | CH <sub>2</sub> | 3-NHC(0)-[2,6-(OMe) <sub>2</sub> ]Ph;         |
|                                 | Tol |     |                 |                 |                                               |
| (CH <sub>3</sub> ) 3            | 4 - | H   | // н            | CH2             | 3-NHC(0)-(2,6-Cl <sub>2</sub> )Ph;            |
|                                 | Tol |     |                 |                 |                                               |
| $(CH_2)_2$                      | Ph  | н   | CH <sub>3</sub> | $CH_2$          | 4-OCH <sub>2</sub> -(2,6-Cl <sub>2</sub> )Ph; |
| (CH <sub>2</sub> ) <sub>3</sub> | Ph  | CH3 | Н               | $CH_2$          | 4-NHC(0)-(2,6-Cl <sub>2</sub> )Ph;            |
| (CH) <sub>2</sub>               | Ph  | н   | Н               | CH3             | 4-OCH <sub>2</sub> -(2,6-Cl <sub>2</sub> )Ph; |
| (CH <sub>2</sub> ) <sub>2</sub> | Ph  | H   | Н               | CH <sub>2</sub> | 4-OCH <sub>2</sub> -(2,6-Cl <sub>2</sub> )Ph; |
| (CH) <sub>2</sub>               | Ph  | н   | н               | CH <sub>2</sub> | 4-NHC(0)-(2,6-Cl <sub>2</sub> )Ph;            |
| (CH <sub>2</sub> ) <sub>2</sub> | Ph  | н   | Н               | CH <sub>2</sub> | 4-(2,4,6-F <sub>3</sub> )Ph;                  |

| (CH <sub>2</sub> ) <sub>2</sub> | Ph  | H   | Н      | CH <sub>2</sub>                 | 4-(2,3,5,6-F <sub>4</sub> )Ph;                     |
|---------------------------------|-----|-----|--------|---------------------------------|----------------------------------------------------|
| (CH <sub>2</sub> ) <sub>2</sub> | Ph  | н   | Н      | CH3                             | 4-0-t-butoxy;                                      |
| (CH <sub>2</sub> ) <sub>2</sub> | Ph  | H   | H      | (CH <sub>2</sub> ) <sub>2</sub> | ;                                                  |
| (CH <sub>2</sub> ) <sub>3</sub> | Ph  | н   | Н      | CH <sub>2</sub>                 | 4-(#,3-dihydro-1,3-dioxo-                          |
|                                 |     |     |        |                                 | 2Hrisoindol-2-yl);                                 |
| (CH <sub>2</sub> ) <sub>2</sub> | Ph  | н   | H      | CH <sub>2</sub>                 | 4/ NHC (O) - (2 - CO₂H) Ph;                        |
| (CH <sub>2</sub> ) <sub>2</sub> | Ph  | н   | Н      | CH <sub>2</sub>                 | 4-(2,5-diMe-1H-pyrrol-1-                           |
|                                 |     |     |        | //                              | /yl);                                              |
| (CH <sub>2</sub> ) <sub>2</sub> | Ph  | Н   | н      | CH <sub>2</sub>                 | 4-NHC(O)-4-pyridinyl;                              |
| (CH <sub>3</sub> ) <sub>3</sub> | Ph  | H   | H      | CH₂/                            | 4-NHSO <sub>2</sub> -(2,6-Cl <sub>3</sub> )Ph;     |
| (CH <sub>2</sub> ) <sub>2</sub> | Ph  | H   | Н      | CH,                             | 4-OC(O)-N(CH <sub>3</sub> ) <sub>a</sub> ;         |
| (CH <sub>2</sub> ) <sub>3</sub> | Ph  | H   | н      | CH <sub>2</sub>                 | 4-NHC(O)-(1-t-                                     |
| ٠                               | •   |     |        |                                 | butoxycarbonyl)4-                                  |
|                                 |     | •   | //     | //                              | piperidinyl;                                       |
| (CH <sub>3</sub> ) <sub>3</sub> | 4 - | н   | н //   | CH <sub>2</sub>                 | 4-NHC(0)-(2,6-Cl <sub>2</sub> )Ph;                 |
|                                 | FPh |     |        |                                 |                                                    |
| (CH <sub>2</sub> ) <sub>2</sub> | 4 - | н   | #<br># | CH2                             | 4-NHC(O)-[2,6-(OMe) <sub>2</sub> ]Ph;              |
|                                 | FPh |     | //     |                                 |                                                    |
| (CH <sub>2</sub> ) <sub>2</sub> | Ph  | н   | H      | CH <sub>2</sub>                 | 4-OC(O)-4-morpholinyl;                             |
| $(CH_2)_2$                      | Ph  | н   | н      | CH <sub>3</sub>                 | 4-OC(O)N(1so-propyl)2;                             |
| (CH <sub>2</sub> ) <sub>2</sub> | Ph  | н// | Н      | CH <sub>2</sub>                 | 4-t-butyl;                                         |
| (CH <sub>2</sub> ) <sub>2</sub> | Ph  | H   | Н      | CH₂                             | 4-NHC(0)-4-piperidinyl;                            |
| (CH <sub>2</sub> ) <sub>2</sub> | Ph  | Ян  | H      | CH <sub>2</sub>                 | 4-NHC(0)-(3,5-Cl <sub>2</sub> )4-                  |
|                                 |     | /   |        |                                 | pyridinyl;                                         |
| (CH <sub>2</sub> ) <sub>2</sub> | Ph  | Н   | н      | CH <sub>2</sub>                 | 4-NHC(O)-NMe <sub>2</sub> ;                        |
| (CH <sub>2</sub> ) <sub>2</sub> | Ph  | H   | H      | CH <sub>3</sub>                 | 3-F-4-[OCH <sub>2</sub> (2,6-Cl <sub>2</sub> )Ph]; |
| (CH <sub>2</sub> ) <sub>2</sub> | 2/- | H   | Н      | CH <sub>2</sub>                 | 4-OC(O)-NMe2;                                      |
|                                 | Thi |     |        |                                 |                                                    |
| (CH <sub>2</sub> ) <sub>2</sub> | Ph  | н   | н      | CH₂                             | 4-NHC(0)-t-butyl;                                  |
| //                              |     |     |        |                                 |                                                    |
| //                              |     |     |        |                                 |                                                    |

- 13 -

Chal

| Sei | cial No                         | 09/8       | 91,60 | 2        |                 | /                                  |
|-----|---------------------------------|------------|-------|----------|-----------------|------------------------------------|
|     | (CH3) 3                         | Ph         | н     | Ħ        | CH <sub>2</sub> | 4-NHC(0)-(2-OMe)1-                 |
|     |                                 |            |       |          |                 | naphthalenyl;                      |
|     | (CH <sub>2</sub> ) <sub>2</sub> | 2-         | Н     | Н        | $CH_2$          | 4-NHC(0)-(2,6-Cl2)Ph;              |
|     |                                 | Thi        |       |          |                 |                                    |
|     | (CH <sub>2</sub> ) <sub>2</sub> | Ph         | Н     | н        | CH <sub>2</sub> | 4-NHC(0)-cyclopropyl;              |
|     | (CH <sub>2</sub> ) <sub>2</sub> | Ph         | Н     | Н        | CH3             | 4-NHC(0)-(2,2,3,3-                 |
|     | •                               |            |       |          |                 | Me <sub>4</sub> )cyclopropyl;      |
|     | (CH <sub>2</sub> ) <sub>2</sub> | Ph         | Н     | Н        | CH <sub>2</sub> | A-NHC(0)-iso-propyl;               |
|     | (CH <sub>2</sub> ) <sub>2</sub> | Ph         | H     | Н        | $CH_2$          | 4-NHC(0)-(2-SO <sub>2</sub> Ph)-2- |
|     |                                 |            |       |          | A               | azabicyclo[2.2.2]oct-3-yl;         |
|     | (CH <sub>2</sub> ) <sub>2</sub> | 2-         | H     | Ħ        | CH <sub>2</sub> | 4-NHC(0)-(3,5-Cl <sub>2</sub> )4-  |
|     |                                 | Thi        |       |          |                 | <pre>pyridinyl;</pre>              |
|     | (CH <sub>2</sub> ) <sub>2</sub> | Ph         | Н     | H        | CH <sub>2</sub> | 4-NHC(0) - (2-                     |
|     |                                 |            |       |          |                 | Me)cyclopropyl;                    |
|     | (CH <sub>2</sub> ) <sub>2</sub> | Ph         | Н     | н        | CH₂             | 4-(2,6-diMe)Ph;                    |
|     | (CH <sub>2</sub> ) <sub>2</sub> | Ph         | Н     | н        | CH3             | 4-(2,6-Cl <sub>2</sub> )Ph;        |
|     | (CH <sub>2</sub> ) <sub>2</sub> | 2-         | Н     | н        | CH3             | 4-(2,6-Cl <sub>2</sub> )Ph;        |
|     |                                 | Thi        |       |          |                 | ·                                  |
|     | (CH <sub>2</sub> ) <sub>2</sub> | 2-         | Н     | //<br>/H | CH2             | 4-(2,6-diMe)Ph;                    |
|     |                                 | Thi        | ,     |          |                 |                                    |
|     | (CH <sub>2</sub> ) <sub>3</sub> | 2 -        | н     | н        | CH2             | 4-[2,6-(OMe) <sub>2</sub> ]Ph;     |
|     |                                 | Thi        |       |          |                 |                                    |
|     | $(CH_2)_2$                      | 2 -        | H     | H        | $CH_2$          | 4-(4-fluoro-1,3-dihydro-           |
|     |                                 | Thi        |       |          |                 | 1,3-dioxo-2H-isoindol-2-           |
|     | •                               | 1          |       |          |                 | yl);                               |
|     | (CH <sub>2</sub> ) <sub>3</sub> | 2-         | Н     | Н        | $CH_2$          | 4-NHC(O)-NMe <sub>2</sub> ;        |
|     |                                 | Thi        |       |          |                 |                                    |
|     | (CH <sub>2</sub> ) <sub>2</sub> | 2-         | Н     | Н        | CH <sub>2</sub> | 4-OC(O)-NMe2;                      |
|     |                                 | TH         |       |          |                 |                                    |
|     | (CH <sub>2</sub> ) <sub>2</sub> | 24         | Н     | н        | CH3             | 4-OC(0)-(4-morpholinyl);           |
|     |                                 | - <b>!</b> |       |          |                 |                                    |

Thi

| $(CH_2)_2$                      | 2-   | н   | Н    | CH <sub>2</sub> | 4-0C(0)-(4-Me-1-                              |
|---------------------------------|------|-----|------|-----------------|-----------------------------------------------|
|                                 | Thi  |     |      |                 | piperazinyl);                                 |
| $(CH_2)_2$                      | Ph   | H   | н    | CH <sup>3</sup> | 4-0C(0)-(4-Me-1-                              |
|                                 |      |     | ,    |                 | piperazinyl);                                 |
| (CH2)3                          | Ph   | Н   | Ħ    | $CH_2$          | 4 N (Me) C (O) - (2,6-Cl <sub>2</sub> ) Ph;   |
| (CH <sub>3</sub> ) 3            | Ph   | H   | H    | CH <sub>2</sub> | 4-N(Me)C(O)-(3,5-Cl <sub>2</sub> )4-          |
|                                 |      |     |      | •               | pyridinyl;                                    |
| (CH <sub>3</sub> ) <sub>2</sub> | 2-   | Н   | н    | CH2             | 4-N(Me)C(O)-(3,5-Cl <sub>3</sub> )4-          |
|                                 | Thi  |     |      |                 | <pre>pyridinyl;</pre>                         |
| $(CH_2)_2$                      | 2-   | н   | Н    | CH <sub>2</sub> | 4-N(Me)C(0)-(2,6-Cl <sub>2</sub> )Ph;         |
|                                 | Thi  |     |      |                 |                                               |
| (CH3)3                          | 2 -  | H   | Н    | JCH2            | 4-OCH <sub>2</sub> -(2,6-Cl <sub>2</sub> )Ph; |
|                                 | Thi  | •   | A    | //              |                                               |
| (CH <sub>2</sub> ) <sub>2</sub> | 2 -  | H   | н // | CH2             | 4-(1,3-dihydro-1,3-dioxo-                     |
|                                 | Thi  |     |      |                 | 2H-isoindol-2-yl);                            |
| (CH <sub>3</sub> ) 3            | Ph   | н   | H    | CH <sub>2</sub> | 4-(1,3-dihydro-4,7-                           |
|                                 |      |     | Ø .  | •               | dimethyl-1,3-dioxo-2H-                        |
|                                 |      | J.  | 7    |                 | isoindol-2-yl);                               |
| (CH <sub>2</sub> ) <sub>2</sub> | 2 -  | н 🥖 | H    | CH <sub>2</sub> | 4-(1,3-dihydro-4,7-                           |
|                                 | Thi  | J)  |      |                 | dimethyl-1,3-dioxo-2H-                        |
|                                 |      | Ø.  |      |                 | isoindol-2-yl);                               |
| CH <sub>2</sub>                 | 2- / | ″ н | Н    | CH <sub>2</sub> | 4-NHC(0)-(3,5-Cl <sub>2</sub> )4-             |
|                                 | Thi  |     |      |                 | pyridinyl;                                    |
| CH <sub>2</sub>                 | 2-// | H   | H    | $CH_2$          | 4-NHC(0)-(2,6-Cl <sub>2</sub> )Ph;            |
|                                 | Thi  |     |      | ·               |                                               |
| $(CH_2)_2$                      | /Ph  | H   | H    | $CH_2$          | 4-(1,1-dioxido-3-oxo-1,2-                     |

CAR

**y**1);

benzisothiazol-2(3H)-yl);

1,3-dioxo-2H-isoindol-2-

CH<sub>2</sub> 4-(4-chloro-1,3-dihydro-

and,

(CH<sub>2</sub>)<sub>2</sub> Ph H H CH<sub>2</sub>

4-(7,8-dioxo-8-

azaspiro[4.5]dec-8-yl);

and pharmaceutically acceptable salts, racemic mixtures, diastereomers and enantiomers thereof.

Claim 25. (Previously Amended) (II):

A compound having Formula

 $R_6$   $R_5$   $R_5$   $R_5$   $R_4$   $R_5$   $R_7$   $R_7$   $R_7$   $R_8$   $R_8$   $R_8$   $R_8$   $R_8$   $R_8$   $R_8$   $R_8$   $R_8$   $R_8$ 

wherein

Y is selected  $f_{H}^{\cancel{N}}$  om the group consisting of -C(0) - and -SO<sub>2</sub>-;

 $R_1$  is selected from the group consisting of  $R_7$  and  $R_8$ ;

**-** 16 -

R<sub>3</sub>, R<sub>3</sub>, R<sub>4</sub> and R<sub>5</sub> are independently selected from the group consisting of a bond, hydrogen and C<sub>1-8</sub>alkyl; wherein C<sub>1-8</sub>alkyl is optionally substituted with one to three substituents independently selected from R<sub>9</sub>; provided that R<sub>2</sub>, R<sub>3</sub>, R<sub>4</sub> and R<sub>5</sub> can only be a bond when forming a monocylic ring wherein the following monocylic rings may be formed from R<sub>3</sub>, R<sub>3</sub>, R<sub>4</sub> and R<sub>5</sub>:

when  $R_2$  and  $R_3$  comprise a bond and  $C_{1-B}$ alkyl or optionally when both  $R_2$  and  $R_3$  are  $C_{1-B}$ alkyl,  $R_2$  and  $R_3$  together with the atoms to which each are attached form a four to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;

when  $R_3$  and  $R_4$  comprise a bond and  $C_{1-8}$ alkyl or optionally when both  $R_3$  and  $R_4$  are  $C_{1-8}$ alkyl,  $R_3$  and  $R_4$  together with the atoms to which each are attached form a five to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;

when R<sub>3</sub> and R<sub>5</sub> comprise a bond and C<sub>1-8</sub>alkyl or optionally when both R<sub>3</sub> and R<sub>5</sub> are C<sub>1-8</sub>alkyl, R<sub>3</sub> and R<sub>5</sub> together with the atoms to which each are attached form a four to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;

when  $R_4$  and  $R_5$  comprise a bond and  $C_{1-8}$ alkyl or optionally when both  $R_4$  and  $R_5$  are  $C_{1-8}$ alkyl,  $R_4$  and  $R_5$  together with the atoms to which each are attached form a four to seven membered monocyclic ring optionally containing one to two



additional heteroatoms independently selected from the group consisting of N, O and S;

- $R_7$   $R_9$ ,  $R_{10}$  and  $R_{14}$  are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl optionally substituted with one to five substituents independently selected from the group consisting of halogen,  $C_{1-8}$ alkyl,  $C_{2-8}$ alkenyl,  $C_{2-8}$ alkynyl,  $C_{1-8}$ alkoxy, C1-galkylcarbonyl, C1-galkoxycarbonyl, carboxyl, aryl, heteroaryl, arylcarbonyl, heteroarylcarbonyl, arylsulfonyl, amino,  $N-(C_{1-8}alkyl)$  amino,  $N-(C_{1-8}dialkyl)$  amino,  $-CF_3$  and -OCF3; wherein cycloalkyl and heterocyclyl are optionally substituted with one to three oxo substituents; and, wherein the aryl and Meteroaryl substituents and the aryl portion of the arylcarbonyl substituent are optionally substituted with one to five substituents independently selected from the group consisting of halogen, C1-salkyl,  $C_{2-8}$ alkenyl,  $C_{2-8}$ alk $\frac{1}{2}$ nyl,  $C_{1-8}$ alkoxy, carboxyl, amino,  $N-(C_{1-8}alkyl)$  amino  $\iint N, N-(C_{1-8}dialkyl)$  amino,  $-CF_3$  and  $-OCF_3$ ;
- $R_8$ ,  $R_{12}$ ,  $R_{13}$  and  $R_{17}$  are independently selected from the group consisting of  $C_1$  alkyl,  $C_{2-8}$  alkenyl,  $C_{2-8}$  alkynyl, and  $(halo)_{1-3}(C_{1-8})$  alkyl; wherein  $C_{1-8}$  alkyl,  $C_{2-8}$  alkenyl and  $C_{2-8}$  alkynyl are optionally substituted on a terminal carbon

- 18 -

with one to three substituents independently selected from  $R_{14}$ ;

 $R_{11}$  is selected from the group consisting of hydrogen and  $C_{1-8}$ alkyl;

A is C<sub>1.4</sub>alkylene optionally substituted with one to two substituents independently selected from R<sub>13</sub>;

when R<sub>3</sub> is C<sub>1-8</sub>alkyl, optionally A and R<sub>3</sub> together with the atoms to which each is attached form a five to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;

when R<sub>4</sub> is C<sub>1-8</sub>alkyl, optionally A and R<sub>4</sub> together with the atoms to which each is attached form a five to seven membered monocyclic ring optionally containing one additional heteroatom selected from the group consisting of N, O and S;

when R<sub>5</sub> is C<sub>1-8</sub>alkyl, optionally A and R<sub>3</sub> together with the atoms to which each is attached form a three to seven membered monocyclic ring optionally containing one to two heteroatoms independently selected from the group consisting of N, O and S;

B is selected from the group consisting of C<sub>1-2</sub>alkylene and C<sub>2</sub>alkenylene optionally substituted with one to two substituents independently selected from the group consisting of halogen, hydroxy, hydroxy(C<sub>1-8</sub>)alkyl, hydroxy(C<sub>1-8</sub>)alkoxy, C<sub>1-8</sub>alkyl, C<sub>3-8</sub>alkenyl, C<sub>2-8</sub>alkynyl, C<sub>1-8</sub>alkoxy, carboxyl, amino, N-(C<sub>1-8</sub>alkyl)amino, N,N-(C<sub>1-8</sub>dialkyl)amino, -CF<sub>3</sub> and -OCF<sub>3</sub>; and,

- 19 -

n is an integer from 1 to 2;

and pharmaceutically acceptable salts racemic mixtures, diastereomers and enantiomers thereof.

Claim 26. (Previously Amended) A process for preparing a compound of Formula (III):

wherein

 $R_1$  is selected from the group consisting of  $R_7$  and  $R_8$ ;

 $R_7$ ,  $R_{10}$ , and  $R_{14}$  are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl

- 20 -

0cf 14 2003 18:00 P.21

Fax:7325245889

optionally substituted with one to five substituents independently selected from the group consisting of halogen,  $C_{1-8}$ alkyl,  $C_{2-8}$ alkenyl,  $C_{2-6}$ alkynyl,  $C_{1-8}$ alkoxy,  $C_{1-\delta}$ alkylcarbonyl,  $C_{1-\delta}$ alkoxycarbonyl, carboxyl, aryl, heteroaryl, arylcarbonyl, heteroary/carbonyl, arylsulfonyl, amino,  $N-(C_{1-8}alkyl)$  amino,  $N,N-(C_{1-8}\betaialkyl)$  amino,  $-CF_3$  and -OCF3; wherein cycloalkyl and heterocyclyl are optionally substituted with one to three ox substituents; and, wherein the aryl and heteroaryl substituents and the aryl portion of the arylcarbonyl sugstituent are optionally substituted with one to five substituents independently selected from the group consi $\frac{1}{2}$ sting of halogen,  $C_{1-8}$ alkyl,  $C_{2-8}$ alkenyl,  $C_{2-8}$ alkynyl,  $C_{1-8}$ alkoxy, carboxyl, amino,  $N-(C_{1-8}alkyl)$  amino,  $N,N-(C_{1-8}alkyl)$  amino,  $-CF_3$  and  $-OCF_3$ ;

 $R_{8},\ R_{12}$  and  $R_{17}$  are independently selected from the group consisting of  $C_{1-8}$ alkyl,  $C_{2-8}$ alkenyl,  $C_{2-8}$ alkynyl, and  $(halo)_{1-3}(C_{1-8})$  alkyl; whenein  $C_{1-8}$  alkyl,  $C_{2-8}$  alkenyl and  $C_{2-8}$ alkynyl are optional y substituted on a terminal carbon with one to three substituents independently selected from R<sub>14</sub>;

 $R_{150}$  is selected from the group consisting of hydroxy, amino, NO2 and R6;

 $R_6$  is optionally present and is one to three substituents independently selected from the group consisting of halogen,  $C_{1-8}$ alkoxy,  $R_{10}$ ,  $R_{12}$ ,  $/\!\!/-N(R_{11})C(0)-R_{10}$ ,  $-N(R_{11})C(0)-R_{12}$ ,  $-N(R_{11})SO_{3}-R_{10}$ ,  $-N(R_{11}')SO_{3}-R_{12}$ ,  $-N(R_{11})C(O)-N(R_{11},R_{10})$ ,  $-N(R_{11})C(0)-N(R_{11},R_{12})$ ,  $-N(R_{11})C(0)-N(R_{12},R_{17})$ ,  $-C(0)-N(R_{11},R_{10})$ ,  $-C(0) -N(R_{12}, R_{17})$ ,  $-C(0) -N(R_{11}, R_{12})$ ,  $-OC(0) -N(R_{11}, R_{10})$ ,  $-OC(O) - N(R_{11}, R_{12}) / -OC(O) - N(R_{12}, R_{17}), -OC(O) - R_{10}, -OC(O) - R_{12},$ -0- $R_{10}$  and  $R_{10}$ -( $\vec{g}_{1-8}$ ) alkoxy;

 $R_{11}$  is selected from the group consisting of hydrogen and  $C_{1-8}$ alkyl; and,

B<sub>1</sub> and B<sub>2</sub> are independently selected from the group consisting of C<sub>1-2</sub>alkylene and C<sub>2</sub>alkenylene optionally substituted with one to two substituents independently selected from the group consisting of halogen, hydroxy, hydroxy(C<sub>1-8</sub>)alkyl, hydroxy(C<sub>1-8</sub>)alkoxy, C<sub>1-8</sub>alkyl, C<sub>1-8</sub>alkenyl, C<sub>2-8</sub>alkynyl, C<sub>1-8</sub>alkoxy, carboxyl, amino, N-(C<sub>1-8</sub>alkyl)amino, N,N-(C<sub>1-8</sub>dialkyl)amino, -CF<sub>3</sub> and -OCF<sub>3</sub>;

and pharmaceutically acceptable salts, racemic mixtures, diastereomers and enantiomers thereof;

comprising reacting a compound of Formula (IV)

**-** 22 -

wherein

R<sub>16</sub> is selected from the group consisting of halogen, mixed anhydride and hydroxy;

with a compound of Formula (V)

 $R_{15}$ OMe

O • HCl

Formula (V);

in the presence of appropriate coupling agents, bases and solvents to form the compound of Formula (II).

Claim 27. (Original) The process of claim 25 wherein  $R_{15}$  is selected from the group consisting of hydroxy, iodine, bromine and  $NO_2$ 

Claim 28. (Original) The compound of claim 1 wherein the compound of Formula (I) is selected from a compound of the formula:

Gyd Can

## N OH

Claim 29. (Original) The compound of claim 1 wherein the compound of Formula (I) is selected from a compound of the formula:

Claim 30. (Original) The compound of claim 1 wherein the compound of formula (I) is selected from a compound of the formula:

- 24 -

## CH<sub>3</sub>

Claim 31. (Original) The compound of claim 1 wherein the compound of Formula (I) is selected from a compound of the formula:

Claim 32. (Original) The compound of claim 1 wherein the compounds are effective antagonists of an integrin receptor.

Claim 33. (Original) The compound of claim 32 wherein the compound is a selective antagonist of an  $\alpha 4$  integrin receptor.

- 25 -

Claim 34. (Original) The compound of claim 33 wherein the  $\alpha4$  integrin receptor is selected from the group consisting of the  $\alpha4\beta1$  and  $\alpha4\beta7$  integrin receptor.

Claim 35. (Original) The compound of claim 32 wherein the compound is an antagonist of at least two  $\alpha 4$  integrin receptors.

Claim 36. (Original) The compound of claim 35 wherein the two  $\alpha4$  integrin receptors are selected from the group consisting of the  $\alpha4\beta1$  and  $\alpha4\beta7$  integrin receptor.

Claims 37-43 (Canceled)

Claim 44. (Original) A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.

Claim 45. (Original) A pharmaceutical composition made by mixing a compound of claim 1 and a pharmaceutically acceptable carrier.

Claim 46. (Original) A method for the treatment of an integrin mediated disorder ameliorated by inhibition of an  $\alpha 4$  integrin receptor comprising administering to a subject in need thereof a therapeutically effective amount of a compound of claim 1.

Claim 47. (Canceled)

Claim 48. (Original) The method of claim 47 wherein the  $\alpha 4$  integrin receptor is selected from the group consisting of the  $\alpha 4\beta 1$  and  $\alpha 4\beta 7$  integrin receptor.

- 26 -

Claim 49. (Original) The method of claim 46 wherein the compound inhibiting the  $\alpha4$  integrin receptor is selected from the group consisting of a selective antagonist of the  $\alpha4\beta1$  integrin receptor, a selective antagonist of the  $\alpha4\beta7$  integrin receptor and an antagonist of the  $\alpha4\beta1$  and  $\alpha4\beta7$  integrin receptors.

Claim 50. (Original) The method of claim 46 wherein the integrin mediated disorder is selected from the group consisting of inflammatory disorders, autoimmune disorders and cell-proliferative disorders.

Claim 51. (Original) The method of claim 46 wherein the integrin mediated disorder is selected from the group consisting of inflammation disorders, autoimmunity disorders, asthma, bronchoconstriction, restenosis, atherosclerosis, psoriasis, rheumatoid arthritis, inflammatory bowel disease, irritable bowel disease, irritable bowel disease irritable bowel syndrome, transplant rejection and multiple sclerosis.

Claim 52. (Currently Amended) The <u>method compound</u> of claim 46 wherein the integrin mediated disorder is selected from the group consisting of asthma, bronchoconstriction, restenosis, atherosclerosis, psoriasis, rheumatoid arthritis, inflammatory bowel disease, irritable bowel disease, irritable bowel syndrome, transplant rejection and multiple sclerosis.

Claim 53. Currently Amended) The <u>method compound</u> of claim 46 wherein the integrin mediated disorder is selected from the group consisting of asthma, bronchoconstriction, restenosis, atherosclerosis, irritable bowel syndrome and multiple sclerosis.

Claim 54. (Original) The method of claim 46 wherein the therapeutically effective amount of the compound of claim 1 is from about 0.01 mg/kg/day to about 300 mg/kg/day.

Claim 55. (Currently Amended) The method of claim 46 further comprising administering to a subject in need thereof a therapeutically effective amount of the pharmaceutical composition of claim 44 compound of claim 1 and a pharmaceutically acceptable excipient.

Claim 56. (Currently Amended) The method of claim 55 wherein the therapeutically effective amount of the pharmaceutical composition of claim 44 compound of claim 1 and a pharmaceutically acceptable excipient is from about 0.01 mg/kg/day to about 300 mg/kg/day.

Claim 57. (Original) The compound of claim 1 wherein  $R_7$  is selected from the group consisting tolyl, phenyl and thienyl.

Claim 58. (Currently Amended) The method of claim 46 wherein the integrin mediated disorder is a cell-proliferation disorders disorders.

