Ecuaciones Diferenciales Ordinarias

L. Fridman

UNAM

Matemáticas Avanzadas

Outline

- 1 Definiciones Básicas
- 2 Clasificación
- 3 Teoremas de Existencia
- 4 Desigualdades Diferenciales, Extensión y Unicidad
- Dependencia continua sobre un parámetro o condiciones iniciales
- 6 Diferenciabilidad de Soluciones y Ecuación de Sensibilidad
- 7 Principio de Comparación

Definiciones Básicas

Definition (Espacio métrico de funciones continuas)

Colección de funciones x(t) continuas en t_1 , t_2 con métrica

$$d(x_1(t), x_2(t)) = \max_{t \in [t_1, t_2]} ||x_1(t) - x_2(t)||.$$

Se denota como

$$\mathbb{C}_{[t_1,t_2]}$$

Bola alrededor de x_0

$$B_r(x_0) = \{ x \in \mathcal{X} | d(x, x_0) \le r \}$$

Clases de ODE

 Funciones que satisfacen la Ecuación Diferencial Ordinaria (ODE)

$$\dot{x}(t) = f(t,x(t))$$
 para casi todo $t \in [t_0,t_0+ heta]$ $x(t_0) = x_0$ $f: \mathbb{R} imes \mathcal{X} o \mathcal{X}$

- f es una función no lineal.
- lacksquare $\mathcal X$ es un espacio de Banach

— Clasificación

Definition

Un espacio de Banach es un espacio lineal, normado y completo

Problema de Cauchy Consiste en resolver la ODE. Encontrar x(t) que satisfaga la ODE.

Clasificación de las ODE

- **Regulares** Si f(x,t) es una función continua tanto en x como en t. La x(t) que satisface la ODE debe ser: Continuamente diferenciable; i.e. x(t) existe para casi todo $t \in [t_0, t_0 + \theta]$, $x(t) \in \mathbb{C}^1_{[t_0,t_0+\theta]}$
- **Carathedory** Si f(t,x) es medible en t y continua en x.
- **Lado derecho discontinuo** Si f(x,t) es continua en t y discontinua en x. Estan relacionadas con una inclusión diferencial

$$\dot{x}(t) \in F(t, x(t))$$

donde $F(t,x)\subset \mathbb{R}\times \mathcal{X}$. Si este conjunto consiste de un punto para un par (t,x) entonces F(t,x)=f(t,x).

Theorem (Existencia y Unicidad Local)

Sea f(x,t) una función continua en t sobre un intervalo $t_0,t_0+\theta]$ y para cualquier $t\in[t_0,t_0+\theta]$ la función f(x,t) satisface la condición de Lipschitz en x, esto es, existen constantes $c,L_f>0$ tales que

$$||f(x,t)|| \le c$$

 $d(f(t,x_1), f(t,x_2)) \le L_f d(x_1, x_2)$

para toda $t \in [t_0, t_0 + \theta]$ y toda $x, x_1, x_2 \in B_r(x_0)$ donde

$$B_r(x_0) = \{x \in \mathcal{X} | d(x, x_0) \le r\}$$

Teoremas de Existencia

Theorem (Existencia y Unicidad Local (Continuación))

Entonces, el problema de Cauchy tiene una solución única en el intervalo de tiempo $t \in [t_0, t_0 + \theta_1]$ donde

$$\theta_1 < \min\{r/c, L_f^{-1}, \theta\}$$

1) Primero mostraremos que el problema de Cauchy es equivalente a encontrar una solución continua a la siguiente ecuación integral

$$x(t) = x_0 + \int_{s=t_0}^{t} f(s, x(s))ds$$

Ciertamente, si x(t) es una solución de la ODE, entonces obviamente es una función diferenciable en $[t_0,t_0+\theta_1]$. Por integración de la ODE sobre $[t_0,t_0+\theta]$ obtenemos esta ecuación integral. Inversamente, suponga que x(t) es una función continua satisfaciendo la ecuación integral.

Entonces, según las suposiciones del teorema tendríamos que

$$\begin{aligned} &d\{f(s,x(s)),f(s_0,x(s_0))\} \leq \\ &d\{f(s,x(s)),f(s,x(s_0))\} + d\{f(s,x(s_0)),f(s_0,x(s_0))\} \leq \\ &L_fd(x(s),x(s_0)) + d\{f(s,x(s_0)),f(s_0,x(s_0))\} \end{aligned}$$

esto implica que si $s,s_0\in[t_0,t_0+\theta]$ y $s\to s_0$ entonces el lado derecho de la última desigualdad tiende a cero y, por lo tanto, f(s,x(s)) es continua en cada punto del intervalo $[t_0,t_0+\theta]$. Y mas aún, también concluimos que x(t) es diferenciable en este intervalo, que satisface la ODE y que $x(t_0)=x_0$.

2) Usando la equivalencia anterior, introduzca un espacio métrico de funciones continuas \mathcal{X} y $x(t) \in \mathcal{X}$. Note que el operador no lineal $\Phi: \mathcal{X} \to \mathcal{X}$ definido como

$$\Phi(x) = x_0 + \int_{s=t_0}^t f(s, x(s))ds$$

transforma una bola $B_r(x_0)$ en $B_r(x_0)$ dado que

$$\|\Phi(x) - x_0\| = \max_{t \in [t_0, t_0 + \theta]} \left\| \int_{s = t_0}^t f(s, x(s)) ds \right\| \le$$

$$\max_{t \in [t_0, t_0 + \theta]} \int_{s = t_0}^t \|f(s, x(s))\| ds \le \theta_1 c < r$$

Mas aún, el operador Φ es una contracción sobre $B_r(x_0)$. Ciertamente, por la condición local de Lipschitz sigue que

$$\|\Phi(x_1) - \Phi(x_2)\| = \max_{t \in [t_0, t_0 + \theta]} \left\| \int_{s=t_0}^t \left[f(s, x_1(s)) - f(s, x_2(s)) \right] ds \right\| \le$$

$$\max_{t \in [t_0, t_0 + \theta]} \int_{s = t_0}^{t} \|f(s, x_1(s)) - f(s, x_2(s))\| ds \le \theta_1 L_f d(x_1, x_2)$$

donde $\theta_1 L_f < 1$ para una ficientemente pequeña. Entonces, por el Principio de Contracción, concluimos que la ecuación integral tiene una solución única $x \in \mathbb{C}_{[t_0,t_0+\theta_1]}$.

Desigualdad de Gronwall-Bellman

Lemma

Sea $\lambda:[a,b]\to\mathbb{R}$ una función continua y $\mu:[a,b]\to\mathbb{R}$ función continua y no negativa. Si la función continua $y:[a,b]\to\mathbb{R}$ satisface

$$y(t) \le \lambda(t) + \int_{a}^{t} \mu(s)y(s)ds$$

para $a \le t \le b$, entonces en el mismo intervalo

$$y(t) \leq \lambda(t) + \int_{a}^{t} \lambda(s)\mu(s) \exp\left[\int_{s}^{t} \mu(\tau)d\tau\right] ds$$

Lemma

En particular, si $\lambda(t) \equiv \lambda$ es una constante, entonces

$$y(t) \le \lambda \exp\left[\int_{a}^{t} \mu(\tau)d\tau\right]$$

Si, además, $\mu(t) \equiv \mu > 0$ es una constante, entonces

$$y(t) \le \lambda \exp\left[\mu(t-a)\right]$$

Sea
$$z(t) = \int_a^t \mu(s)y(s)ds$$
 y $v(t) = z(t) + \lambda(t) - y(t) \ge 0$.

Entonces, z es diferenciable y

$$\dot{z} = \mu(t)y(t) = \mu(t)z(t) + \mu(t)\lambda(t) - \mu(t)v(t)$$

Esta es una ecuación lineal de estado escalar con función de transición de estados

$$\phi(t,s) = \exp\left[\int_{s}^{t} \mu(\tau)d\tau\right]$$

Como z(a) = 0, tenemos

$$z(t) = \int_{a}^{t} \phi(t, s) \left[\mu(s) \lambda(s) - \mu(s) v(s) \right] ds$$

El término

$$\int_{a}^{t} \phi(t,s)\mu(s)v(s)ds$$

es no negativo.

Entonces,

$$z(t) \le \int_{a}^{t} \exp\left[\int_{s}^{t} \mu(\tau)d\tau\right] \mu(s)\lambda(s)ds$$

Como $y(t) \leq \lambda(t) + z(t)$, esto completa la prueba en el caso general. En el caso general cuando $\lambda(t) \equiv \lambda$, tenemos

$$\int_{a}^{t} \mu(s) \exp\left[\int_{s}^{t} \mu(\tau) d\tau\right] ds = -\int_{a}^{t} \frac{d}{ds} \left\{ \exp\left[\int_{s}^{t} \mu(\tau) d\tau\right] \right\} ds$$
$$= -\left\{ \exp\left[\int_{s}^{t} \mu(\tau) d\tau\right] \right\} \Big|_{s=a}^{s=t}$$
$$= -1 + \exp\left[\int_{a}^{t} \mu(\tau) d\tau\right]$$

lo que prueba el lema cuando λ es una constante. La prueba cuando tanto λ como μ son constantes se sigue por integración.

Dependencia continua sobre un parámetro o condiciones iniciales

$\mathsf{Theorem}$

Sea f(t,x) continua a pedazos en t y Lipschitz en x sobre $[t_0,t_1] \times \mathcal{W}$ con constante L donde $\mathcal{W} \subset \mathbb{R}^n$ es un conjunto abierto conexo. Sea y(t) y z(t) las soluciones de

$$\dot{y}(t) = f(t, y), \quad y(t_0) = y_0$$

У

$$\dot{z}(t) = f(t, z) + g(t, z), \quad z(t_0) = z_0$$

 $\dot{z}(t)=f(t,z)+g(t,z),\quad z(t_0)=z_0$ tal que y(t),z(t) para toda $t\in[t_0,t_1].$

Theorem

Suponga que

$$||g(t,x)|| \le \mu, \forall (t,x) \in [t_0,t_1] \times \mathcal{W}$$

para algún $\mu > 0$. Entonces

$$||y(t) - z(t)|| \le ||\underline{y_0 - z_0}|| \exp[L(t - t_0)] + \sum_{L}^{\mu} {\{\exp[L(t - t_0) - 1]\}}$$

 $\forall t \in [t_0, t_1].$

Las soluciones y(t) y z(t) están dadas por

$$y(t) = y_0 + \int_{t_0}^{t} f(s, y(s))ds$$

$$z(t) = z_0 + \int_{t_0}^{t} \left[f(s, z(s)) + g(s, z(s)) \right] ds$$

Restando ambas ecuaciones y sacando su métrica queda

$$||y(t) - z(t)|| \le ||y_0 - z_0|| + \int_{t_0}^t ||f(s, y(s)) - f(s, z(s))|| ds$$

$$+ \int_{t_0}^t ||g(s, z(s))|| ds$$

$$\le \gamma + \underline{\mu(t - t_0)} + \int_{t_0}^t L||y(s) - z(s)|| ds$$

donde
$$\gamma = ||y_0 - z_0||$$
.

Aplicando la desigualdad de Gronwall-Bellman a la función $\|y(t)-z(t)\|$ resulta en:

$$||y(t) - z(t)|| \le \gamma + \mu(t - t_0) + \int_{t_0}^t L[\gamma + \mu(s - t_0)] \exp[L(t - s)] ds$$

Integrando la parte derecha por partes, se obtiene

$$||y(t) - z(t)|| \le \gamma + \mu(t - t_0) - \gamma - \mu(t - t_0) + \gamma \exp[L(t - t_0)]$$

$$+ \int_{t_0}^t \mu \exp[L(t - s)] ds$$

$$= \gamma \exp[L(t - t_0)] + \frac{\mu}{L} \{\exp[L(t - t_0)] - 1\}$$

lo que completa la prueba

$\mathsf{Theorem}$

Sea $f(t, x, \lambda)$ continua sobre (t, x, λ) y localmente Lipschitz en x(uniforme en t y lambda) sobre $[t_0, t_1] \times \mathcal{D} \times \{\|\lambda - \lambda_0\| < c\}$ donde $\mathcal{D} \subset \mathbb{R}^n$ es un conjunto abierto conexo. Sea $y(t, \lambda_0)$ una solucin de

$$\dot{x} = f(t, x, \lambda_0)$$

 $\dot{x} = f(t, x, \lambda_0)$ con $y(t_0, \lambda_0) = y_0 \in \mathcal{D}$. Suponga que $y(t, \lambda_0)$ esta definida y pertenece a \mathcal{D} para todo $t \in [t_0, t_1]$. Entonces, dada una $\epsilon > 0$ existe una $\delta > 0$ tal que si

$$||z_0 - y_0|| < \delta$$
 y $||\lambda - \lambda_0|| < \delta$

Theorem

entonces existe una única solución $z(t,\lambda)$ para

$$\dot{x} = f(t, x, \lambda)$$

definida en $[t_0,t_1]$, con $z(t_0,\lambda)=z_0$ y además $z(t,\lambda)$ satisface.

$$||z(t,\lambda) - y(t,\lambda_0)|| < \epsilon \quad \forall t \in [t_0, t_1]$$

Por la continuidad de $y(t,\lambda_0)$ en t y la compacticidad de $[t_0,t_1]$, sabemos que $y(t,\lambda_0)$ esta acotada sobre $[t_0,t_1]$. Defina un tubo U alrededor de la solución $y(t,\lambda_0)$ por

$$U = \{(t, x) \in [t_0, t_i] \times \mathbb{R}^n_{\lambda} | ||x - y(t, \lambda_0)|| \le \epsilon \}$$

Suponga que $U\subset [t_0,t_1] imes \mathcal{D}$; si no, reemplace ϵ por $\epsilon_1<\epsilon$ que es suficientemente pequeo para que $U\subset [t_0,t_1] imes \mathcal{D}$ y continúe con la prueba usando ϵ_1 . El conjunto U es compacto y, por ello, $f(t,x,\lambda)$ es Lipschitz en x sobre U con una constante L determinada. Por la continuidad de f en λ , para cualquier $\alpha>0$ existe $\beta>0$ (con $\beta< c$) tal que

$$||f(t,x,\lambda) - f(t,x,\lambda_0)|| < \alpha, \quad \forall (t,x) \in U, \forall ||\lambda - \lambda_0|| < \beta$$

Elija $\alpha < \epsilon$ y $\|z_0 - y_0\| < \alpha$. Por el teorema de existencia y unicidad local existe una solución única $z(t,\lambda)$ en algún intervalo de tiempo $[t_0,t_0+\Delta]$. La solución inicia dentro del tubo U y, mientras permanezca dentro del tubo U, esta puede ser extendida. Mostraremos que al escoger una α suficientemente pequea, la solución permanece en U para todo $t \in [t_0,t_1]$. En particular, sea τ la primera vez que la solución sale del tubo y muestre que podemos hacer que $\tau > t_1$ En el intervalo de tiempo $[t_0,\tau]$, las condiciones del teorema anterior se cumplen con $\mu = \alpha$. Por ello,

$$||z(t,\lambda) - \underline{y(t,\lambda_0)}|| < \alpha \exp[L(t-t_0)] + \frac{\alpha}{L} \{\exp[L(t-t_0)] - 1\}$$

$$< \alpha \left(1 + \frac{1}{L}\right) \exp[L(t-t_0)]$$

Escogiendo

$$\alpha \le \epsilon L \frac{\exp[-L(t_1 - t_0)]}{1 + L}$$

se asegura que la solucin $z(t,\lambda)$ no pueda dejar el tubo durante el intervalo de tiempo $[t_0,t_1]$. Por ello $z(t,\lambda)$ esta definida sobre $[t_0,t_1]$ y satisface

$$\|\underline{\underline{x}}(t,\lambda) - y(t,\lambda_0)\| < \epsilon.$$

Tomando $\delta = \min\{\alpha, \beta\}$ se completa la prueba del teorema.

Diferenciabilidad de Soluciones y Ecuación de Sensibilidad

Suposiciones sobre $f(t, x, \lambda)$

- Continua en (t, x, λ)
- Derivadas parciales con respecto a x y λ continuas
- Sea λ_0 el valor nominal de λ y suponga que la ecuación diferencial nominal

$$\dot{x} = f(t, x, \lambda_0), \quad \text{con} \quad x(t_0) = x_0$$

tiene una única solución $x(t, \lambda_0)$ sobre $[t_0, t_1]$.

Por el teorema anterior sabemos:

■ Para toda λ suficientemente cercana a λ_0 , la ODE

$$\dot{x} = f(t, x, \lambda), \quad \text{con} \quad x(t_0) = x_0$$

tiene una única solución $x(t,\lambda)$ sobre $[t_0,t_1]$ que es cercana a la solución nominal $x(t,\lambda_0)$.

Comentario

La diferenciabilidad continua de f con respecto a x y λ implica que la solucin $x(t,\lambda)$ es diferenciable con respecto a λ cerca de λ_0 .

Por qué?

$$x(t,\lambda) = x_0 + \int_{t_0}^t f(s, x(s,\lambda), \lambda) ds$$

Tomando la derivada parcial con respecto a λ

$$x_{\lambda}(t,\lambda) \neq \int_{t_0}^{t} \left[\frac{\partial f(s,x(s,\lambda),\lambda)}{\partial x} x_{\lambda}(s,\lambda) + \frac{\partial f(s,x(s,\lambda),\lambda)}{\partial \lambda} \right] ds$$

Derivando con respecto a t se puede observar que $x_{\lambda}(t,\lambda)$ satisface la ecuación diferencial

$$\frac{\partial}{\partial t}x_{\lambda}(t,\lambda) = A(t,\lambda)x_{\lambda}(t,\lambda) + B(t,\lambda), \quad x_{\lambda}(t_0,\lambda) = 0$$

donde

$$A(t,\lambda) = \frac{\partial f(t,x,\lambda)}{\partial x}\Big|_{x=x(t,\lambda)}, \quad B(t,\lambda) = \frac{\partial f(t,x,\lambda)}{\partial \lambda}\Big|_{x=x(t,\lambda)},$$

- Para λ suficientemente cercano a λ_0 , las matrices $A(t,\lambda)$ y $B(t,\lambda)$ estan definidas en $[t_0,t_1]$. Por lo tanto también $x_\lambda(t,\lambda)$.
- Si $\lambda=\lambda_0$ el lado derecho de la ecuación solo depende de la solución nominal $x(t,\lambda_0)$.
- Sea $S(t) = x_{\lambda}(t, \lambda_0)$, entonces S(t) es la única solución de la ecuación

$$\dot{S}(t) = A(t, \lambda_0)S(t) + B(t, \lambda_0), \quad S(t_0) = 0$$

■ La función S(t) se denomina **función de sensibilidad** y su ODE asociada se denomina **ecuación de sensibilidad**

Utilidad de la ecuación de sensibilidad

- Las funciones de sensibilidad dan estimados de primer order de los efectos de las variaciones en los parámetros de las soluciones.
- Se pueden usar para aproximar la solución cuando λ esta suficientemente cerca al valor nominal λ_0 .
- Expansión en series de Taylor alrededor de la solución nominal $x(t,\lambda_0)$

$$x(t,\lambda) = x(t,\lambda_0) + S(t)(\lambda - \lambda_0) + \text{high-order-terms}$$

Si se desprecián los términos de alto orden.

$$x(t,\lambda) = x(t,\lambda_0) + S(t)(\lambda - \lambda_0)$$

Procedimiento para calcular las funciones de sensibilidad

- Resuelva las ecuaciones nominales para la solución nominal $x(t, \lambda_0)$
- Evalúe las matrices Jacobianas

$$A(t,\lambda) = \frac{\partial f(t,x,\lambda)}{\partial x} \Big|_{x=x(t,\lambda),\lambda=\lambda_0},$$

$$B(t,\lambda) = \frac{\partial f(t,x,\lambda)}{\partial \lambda} \bigg|_{x=x(t,\lambda),\lambda=\lambda_0},$$

Resuelva las ecuaciones de sensibilidad para S(t)

Example

Considere el modelo

$$\dot{x}_1 = x_2
\dot{x}_2 = -c\sin(x_1) - (a + b\cos(x_1))x_2$$

suponga que los parámetros a,b y c tienen valores nominales $a_0=1$, $b_0=0$ y $c_0=1$. Encuentre y resuelva las ecuaciones de sensibilidad.

Principio de Comparación

Características

- Sirve para encontrar cotas en la solución x(t) de la ODE sin necesidad de encontrar la solución explícitamente.
- lacksquare Se aplica cuando la derivada de la función diferencial escalar v(t) satisface una desigualdad de la forma

$$\dot{v}(t) \le f(t, v(t))$$

para todo t en algún intervalo.

Compara la solución de la desigualdad diferencial

$$\dot{v}(t) \le f(t, v(t))$$

con la de la ecuación diferencial

$$\dot{u}(t) = f(t, u)$$

Se puede aplicar incluso si v(t) no es diferenciable, pero tiene una derivada superior derecha acotada $D^+v(t)$, que satisface la desigualdad diferencial.

- Si v(t) es diferenciable en t. Entonces $D^+v(t)=\dot{v}(t)$
- Si

$$\frac{1}{h}[v(t+h) - v(t)] \le g(t,h), \quad \forall h \in (0,h]$$

У

$$\lim_{h \to 0^+} g(t, h) = g_0(t)$$

entonces
$$D^+v(t) \leq g_0(t)$$

Lemma (Principio de Comparación)

Considere la ecuación diferencial escalar

$$\dot{u} = f(t, u), \quad u(t_0) = u_0$$

donde f(t,u) es continua en t y localmente Lipschitz en u, para todo $t \geq 0$ y todo $u \in J \subset \mathbb{R}$. Sea $[t_0,T)$ (T puede ser infinito) el intervalo máximo de existencia de la solución u(t), y suponga $u(t) \in J$ para todo $t \in [t_0,T)$. Sea v(t) una función continua cuya derivada superior derecha satisface la desigualdad

$$D^+v(t) \le f(t, v(t)), \quad v(t_0) \le u_0$$

con $v(t) \in J$ para todo $t \in [t_0, T)$. Entonces, $v(t) \le u(t)$ para todo $t \in [t_0, T)$.

La derivada superior derecha $D^+v(t)$ se define como

$$D^+v(t) = \lim \sup_{h \to 0^+} \frac{v(t+h) - v(t)}{h}$$

donde lím $\sup_{n\to\infty}$ de una secuencia de números reales $\{x_n\}$ es un número real y que satisface las siguientes condiciones

- Para todo $\epsilon > 0$, existe un entero N tal que n > N implica $x_n < y + c$
- Dado $\epsilon>0$ y m>0, existe un entero n>m tal que $x_n>y-\epsilon$

Considere la ecuación diferencial

donde $\lambda>0$. En cualquier intervalo compacto $[t_0,t_1]$, podemos concluir que para cualquier $\epsilon>0$, existe $\delta>0$ tal que si $\lambda<\delta$, entonces la ecuación diferencial tiene una única solución en $[t_0,t_1]$ y

$$||z(t,\lambda) - u(t)|| < \epsilon, \forall t \in [t_0, t_1]$$

1) $v(t) \leq z(t,\lambda)$, para todo $t \in [t_0,t_1]$. Esta aseveración se puede probar por contradicción. Existe tiempos $[a,b] \in [t_0,t_1]$ tales que $v(a)=z(a,\lambda)$ y $v(t)>z(t,\lambda)$ para $a< t \leq b$. Consecuentemente,

$$v(t) - v(a) > z(t, \lambda) - z(a, \lambda), \quad \forall t \in [a, b]$$

lo que implica

$$D^+v(a) \ge \dot{z}(a,\lambda) = f(a,z(a,\lambda)) + \lambda > f(a,v(a))$$

lo que contradice la desigualdad $D^+v(t) \leq f(t,v(t))$

2) $v(t) \leq u(t)$, para todo $t \in [t_0, t_1]$. De nuevo lo podemos mostrar por contradicción. Existe $a \in (t_0, t_1]$ tal que v(a) > u(a). Tomando $\epsilon = [v(a) - u(a)]/2$ y utilizando * obtenemos

$$v(a) - z(a, \lambda) = v(a) - u(a) + u(a) - z(a, \lambda) \ge \epsilon$$

lo que contradice 1).

Entonces, hemos mostrado que $v(t) \leq u(t)$ para todo $t \in [t_0, t_1]$. Como esto es cierto en cualquier intervalo compacto, podemos concluir que se mantiene si $t \geq t_0$. Si este no fuera el caso, sea $T < \infty$ el primer tiempo para el cual la desigualdad no se cumple. Tenemos $v(t) \leq u(t)$ para todo $t \in [t_0, T)$ y, por continuidad, v(T) = u(T). Por lo tanto, podemos extender la desigualdad al intervalo $[T, T + \Delta]$ para algún $\Delta > 0$, lo que contradice el hecho de que T es el primer tiempo en que la desigualdad no se cumple.

Example

$$\dot{x} = f(x) = -(1+x^2)x, \quad x(0) = a, \quad t \in [0, t_1)$$

$$\dot{x} = f(t, x) = -(1 + x^2)x + e^t, \quad x(0) = a, \quad t \in [0, t_1)$$