Temporal Data II (Pandas + Analysis) SI370

March 16, 2017 Eytan Adar

Last Time: Temporal data I

- What is temporal data?
- How do we visualize it?
 - Time series
 - Clustering
 - Event-driven analysis
- Manipulation
 - Pandas examples

Case 7

- Abstract task:
 - Find repeating patterns (seasonality) in time series datasets
 - Isolate the periodicity
 - Compare aligned time series

Spiral visualizations Carlis et al., 1998

Figure 2. An indented spiral, with spokes, showing monthly consumption percentages for Baphia Capparidifolia during the period 1980 – 1988.

Spiral visualizations Carlis et al., 1998

https://eagereyes.org/techniques/spirals

Summary

- Identify the different domain goals
- Isolate the tasks (there are many)
 - Select encodings that support the tasks
 - Standard types are a good place to start
 - Additional retinal variables often useful
 - Some less standard types might also be appropriate
- Now for some Pandas...

Today: Temporal data

- What is temporal data?
- How do we visualize it?
 - Time series
 - Clustering
 - Event-driven analysis
- Manipulation
 - Pandas examples
- Analysis
 - Trends and seasonality
 - Cross-correlation
 - Autocorrelation

- "Univariate" time-series
 - We care about how it breaks down

- "Univariate" time-series
 - We care about how it breaks down
 - Seasonality, trend, residuals
 - We care about what value it will take in the future

ARIMA model for sunspots

- "Univariate" time-series
 - We care about how it breaks down
 - Seasonality, trend, residuals
 - We care about what value it will take in the future
 - For example: ARIMA
 - Determine parameters (ACF, PACF)

Auto-correlation

- Is the data noise?
- Compare the data to itself at different lags
 - If we only see one "peak" (basically at lag 0)
 - Random
 - If we see other peaks/hills
 - Indication of seasonality
 - Or that value at t_n "depends on value" t_{n-1}

- "Univariate" time-series
 - We care about how it breaks down
 - Seasonality, trend, residuals
 - We care about what value it will take in the future
 - For example: ARIMA
 - Some assumptions about this: stationary

(a) Dow Jones index on 292 consecutive days; (b) Daily change in Dow Jones index on 292 consecutive days; (c) Annual number of strikes in the US; (d) Monthly sales of new one-family houses sold in the US; (e) Price of a dozen eggs in the US (constant dollars); (f) Monthly total of pigs slaughtered in Victoria, Australia; (g) Annual total of lynx trapped in the McKenzie River district of northwest Canada; (h) Monthly Australian beer production; (i) Monthly Australian electricity production

- "Univariate" time-series
 - We care about how it breaks down
 - Seasonality, trend, residuals
 - We care about what value it will take in the future
 - For example: ARIMA
 - Some assumptions about this: stationary
 - We can make data stationary

- Bi-variate time-series analysis
 - How related are two time series?
 - Cross-correlation
 - A bit like autocorrelation

Cross-Correlation

- Works much the same as standard correlation.
 - $corr(x,y) \rightarrow treats each pair as "point"$
 - $-t1 \rightarrow x1,y1; \overline{t2 \rightarrow x2,y2; ...}$
- One exception:
 - Lags/delays
 - Often one series is in advance of other

Cross-Correlation

- Works much the same as standard correlation.
 - $corr(x,y) \rightarrow treats each pair as "point"$
 - $-t1 \rightarrow x1,y1; t2 \rightarrow x2,y2; ...$
- One exception:
 - Lags/delays
 - Often one series is in advance of other
- We can include a "lag"
 - Often part of utility function... provide min/max lag
 - Find max value (above some critical point)

Summary

- Temporal data sets are ubiquitous
- Need to carefully consider the problem
 - Different ways to structure the data
 - Different ways to do EDA
 - Visual forms and statistical
 - Statistics are wonky... data needs to be "cleaned" differently than other datasets
- Now... more Pandas