



# Explanation of Fields in AusAEM Interpretation Text Files

Sebastian Wong

# Contents

| 1.1 AusAEM Interpretation Text File Field Description       3         1.2 Digitised (Type) Field Explanation       5         1.3 Age Boundary Name (BoundaryNm) Field Explanation       5         1.4 Confidence Level Explanations       7         1.4.1 Boundary-related level of confidence (BoundConf)       7         1.4.2 Stratigraphic unit and geological era related levels of confidence (OvrConf, UndConf and WithinConf)       7         1.5 Basis of Interpretation (BasisOfInt) Field Explanation       9 | E | xplanation of Fields in AusAEM Interpretation Text Files | . 1 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------|-----|
| 1.3 Age Boundary Name (BoundaryNm) Field Explanation       5         1.4 Confidence Level Explanations       7         1.4.1 Boundary-related level of confidence (BoundConf)       7         1.4.2 Stratigraphic unit and geological era related levels of confidence (OvrConf, UndConf and WithinConf)       7                                                                                                                                                                                                         |   | 1.1 AusAEM Interpretation Text File Field Description    | . 3 |
| 1.4 Confidence Level Explanations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 1.2 Digitised (Type) Field Explanation                   | . 5 |
| 1.4.1 Boundary-related level of confidence (BoundConf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | 1.3 Age Boundary Name (BoundaryNm) Field Explanation     | . 5 |
| 1.4.2 Stratigraphic unit and geological era related levels of confidence (OvrConf, UndConf and WithinConf)                                                                                                                                                                                                                                                                                                                                                                                                               |   | 1.4 Confidence Level Explanations                        | . 7 |
| and WithinConf)7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 1.4.1 Boundary-related level of confidence (BoundConf)   | . 7 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |                                                          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | ·                                                        |     |

# 1.1 AusAEM Interpretation Text File Field Description

Below are descriptions of the header row and fields within the AusAEM interpretation text files (Table 1):

Table 1: Description of AusAEM interpretation fields

| Field      | Description                                                                                                                                                                                                                |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vertex     | Unique vertex identification number for each vertex of a certain "Type" within a specific "SURVEY_LINE".                                                                                                                   |
| SegmentID  | Defines the line segment that the "Vertex" belongs to. All horizons or features are made up of line segments that have multiple vertices. "SegmentID" links all the vertices of a single line segment via a unique number. |
| X          | Eastings of the "Vertex". (The UTM Grid Zone is given in the file name. E.g. the file "AEMdata_z54_20191129.asc" is for data in zone 54).                                                                                  |
| Y          | Northings of the "Vertex". (The UTM Grid Zone is given in the file name. E.g. the file "AEMdata_z54_20191129.asc" is for data in zone 54).                                                                                 |
| ELEVATION  | Elevation of the "Vertex" in metres above mean sea level.                                                                                                                                                                  |
| PixelX     | X location of the "Vertex" in pixel space on the interpreted JPEG.                                                                                                                                                         |
| PixelY     | Y location of the "Vertex" in pixel space on the interpreted JPEG.                                                                                                                                                         |
| AusAEM_DEM | Ground surface elevation in metres above mean sea level above the location of the "Vertex". (This digital elevation model was acquired during acquisition of the airborne electromagnetic data).                           |
| DEPTH      | Depth of "Vertex" below the "AusAEM_DEM" ground surface. ("DEPTH" equals difference between "AusAEM_DEM" and "ELEVATION").                                                                                                 |
| Туре       | Type of chronostratigraphic boundary or feature. For chronostratigraphic boundaries, "Type" describes overlying and underlying unit ages. (See 1.2 Digitised (Type) Field Explanation for details)                         |
| BoundaryNm | Interpreted age of boundary separating stratigraphy above and below the "Vertex". (See 1.3 Age Boundary Name (BoundaryNm) Field Explanation for details).                                                                  |
| BoundConf  | Confidence level for "BoundaryNm". L (confidence level is low); M (confidence level is moderate); H (confidence level is high). (See 1.4 Confidence Level Explanations for details).                                       |
| BasisOfInt | Data and/or information used to interpret the stratigraphic position of the "Vertex". (See 1.5 Basis of Interpretation (BasisOfInt) Field Explanation for details).                                                        |

| OvrStrtUnt  | Name of stratigraphic unit overlying the "Vertex".                                                                                                                                                                                                               |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OvrStrtCod  | Stratigraphic number assigned to stratigraphy above the "Vertex". Number field, with value derived from GA's Stratigraphic Units Database.                                                                                                                       |
| OvrConf     | Confidence that the stratigraphy above the "Vertex" is that given in the "OvrStrtUnt" and "OvrStrtCod" fields. L (confidence level is low); M (confidence level is moderate); H (confidence level is high). (See 1.2 Confidence Level Explanations for details). |
| UndStrtUnt  | Name of stratigraphic unit underlying the "Vertex".                                                                                                                                                                                                              |
| UndStrtCod  | Stratigraphic number assigned to stratigraphy below the "Vertex". Number field, with value derived from GA's Stratigraphic Units Database.                                                                                                                       |
| UndConf     | Confidence that the stratigraphy above the "Vertex" is that given in the "UndStrtUnt" and "UndStrtCod" fields. L (confidence level is low); M (confidence level is moderate); H (confidence level is high). (See 1.2 Confidence Level Explanations for details). |
| WithinType  | Within geological era. For a boundary or feature that is within a stratigraphic unit.                                                                                                                                                                            |
| WithinStrt  | Name of stratigraphic unit that the boundary or feature lies within.                                                                                                                                                                                             |
| WithinStNo  | Stratigraphic unit number used if boundary or feature is located within a stratigraphic unit.  Value derived from GA's Stratigraphic Units Database.                                                                                                             |
| WithinConf  | Confidence that the unit containing the "Vertex" is that given in the "WithinStNo" field. L (confidence level is low); M (confidence level is moderate); H (confidence level is high). See 1.2 Confidence Level Explanations.                                    |
| InterpRef   | Reference to paper/data used to interpret the stratigraphic position of the "Vertex".                                                                                                                                                                            |
| Comment     | Additional comments.                                                                                                                                                                                                                                             |
| Annotation  | During interpretation, notable observations that could be visually identified could be marked with this category. (This field is used as a visual aid for the interpreters only. This field can be removed from or disregarded by any further analysis).         |
| NewObs      | This field documents if the chronostratigraphic boundary or feature is a new (previously undocumented) observation or discoveries derived during this study.                                                                                                     |
| Operator    | Full name of the person performing the interpretation.                                                                                                                                                                                                           |
| SURVEY_LINE | AusAEM survey line number.                                                                                                                                                                                                                                       |

### 1.2 Digitised (Type) Field Explanation

The digitised field is attached to the 'Type' attribute. This field has been selected as the digitised field, as it has adequate general information to inform the interpreter or user what the interpretation lines are delineating. This is also the information that is stored with the lines when the lines are converted to 3-dimensional space.

The table below (Table 2) identifies the different categories and associated colour scheme for the 'Type' field. These colours are maintained during the conversion from 2-dimensional to 3-dimensional space.

Table 2: Categories and associated colours for the digitised 'Type' field.

| Boundary identified in 'Type' field       | Red | Green | Blue | Hex     |
|-------------------------------------------|-----|-------|------|---------|
| BASE_Cenozoic_TOP_Mesozoic                | 255 | 250   | 195  | #FFFAC3 |
| BASE_Cenozoic_TOP_Paleozoic               | 255 | 230   | 155  | #FFE69B |
| BASE_Cenozoic_TOP_Neoproterozoic          | 255 | 180   | 105  | #FFB469 |
| BASE_Cenozoic_TOP_Pre-Neoproterozoic      | 175 | 110   | 45   | #B06F2E |
| BASE_Mesozoic_TOP_Paleozoic               | 0   | 205   | 255  | #00CDFF |
| BASE_Mesozoic_TOP_Neoproterozoic          | 50  | 155   | 255  | #329BFF |
| BASE_Mesozoic_TOP_Pre-Neoproterozoic      | 50  | 100   | 205  | #3264CD |
| BASE_Paleozoic_TOP_Neoproterozoic         | 50  | 205   | 50   | #32CD32 |
| BASE_Paleozoic_TOP_Pre-Neoproterozoic     | 0   | 130   | 0    | #008200 |
| BASE_Neoproterozoic_TOP_Pre-Neoproterozic | 255 | 100   | 255  | #FF64FF |
| WITHIN_Cenozoic                           | 255 | 255   | 205  | #FFFFCD |
| WITHIN_Mesozoic                           | 205 | 255   | 255  | #CDFFFF |
| WITHIN_Paleozoic                          | 100 | 255   | 100  | #64FF64 |
| WITHIN_Neoproterozoic                     | 255 | 155   | 205  | #FF9BCD |
| WITHIN_Pre-Neoproterozoic                 | 255 | 115   | 255  | #FF73FF |
| Major_conductor                           | 255 | 205   | 205  | #FFCDCD |
| Major_resistor                            | 155 | 205   | 255  | #9BCDFF |
| Major_fault                               | 255 | 0     | 0    | #FF0000 |
| Minor_fault                               | 255 | 80    | 80   | #FF5051 |
| Annotations                               | 0   | 0     | 0    | #000000 |

## 1.3 Age Boundary Name (BoundaryNm) Field Explanation

The age boundary name (BoundaryNm) field is used to describe the type of boundary that is being interpreted. This field is similar to the 'Type' field; however, the 'BoundaryNm' field is mandatory for upload into the EGGS database. This field identifies if the interpretation line is delineating the base of the overlying geological era, or if it is within a geological era. The main difference between the 'BoundaryNm' and the 'Type' fields is that the 'BoundaryNm' field identifies the geological era above the line only, or which geological era the line falls within; whereas, the 'Type' field identifies the geological era above and below the line, or which geological era the line falls within.

Despite the similarities, the 'Type' field was created as the field the interpreter digitises, as it assist the interpreter by identifying the geological eras above and below the line. The 'BoundaryNm' field is a requirement for the EGGS database and must also be populated.

Below is an explanation of the 'BoudaryNm' codes (Table 3).

Table 3: Explanation of age boundary codes to be entered into the 'BoundaryNm' field. These fields are from the EGGS database, and must be entered during the interpretation.

| Age Boundary        | 'Type' field equivalent(s)                | Description              |
|---------------------|-------------------------------------------|--------------------------|
| Codes (to be        |                                           |                          |
| entered into        |                                           |                          |
| 'BoundaryNm' field) |                                           |                          |
| CEN-B               | BASE_Cenozoic_TOP_Mesozoic                | Base of Cenozoic         |
|                     | BASE_Cenozoic_TOP_Paleozoic               |                          |
|                     | BASE_Cenozoic_TOP_Neoproterozoic          |                          |
|                     | BASE_Cenozoic_TOP_Pre-Neoproterozoic      |                          |
| CEN-W               | WITHIN_Cenozoic                           | Within Cenozoic          |
| MES-B               | BASE_Mesozoic_TOP_Paleozoic               | Base of Mesozoic         |
|                     | BASE_Mesozoic_TOP_Neoproterozoic          |                          |
|                     | BASE_Mesozoic_TOP_Pre-Neoproterozoic      |                          |
| MES-W               | WITHIN_Mesozoic                           | Within Mesozoic          |
| PAL-B               | BASE_Paleozoic_TOP_Neoproterozoic         | Base of Paleozoic        |
|                     | BASE_Paleozoic_TOP_Pre-Neoproterozoic     |                          |
| PAL-W               | WITHIN_Paleozoic                          | Within Paleozoic         |
| NPR-B               | BASE_Neoproterozoic_TOP_Pre-Neoproterozic | Base of Neoproterozoic   |
| NPR-W               | WITHIN_Neoproterozoic                     | Within Neoproterozoic    |
| MPR-B               | N/A                                       | Base of Mesoproterozoic  |
| MPR-W               | WITHIN_Pre-Neoproterozoic                 | Within Mesoproterozoic   |
| PPR-B               | N/A                                       | Base of Paleoproterozoic |
| PPR-W               | WITHIN_Pre-Neoproterozoic                 | Within Paleoproterozoic  |
| ARC-B               | N/A                                       | Base of Archean ©        |
| ARC-W               | WITHIN_Pre-Neoproterozoic                 | Within Archean           |

#### 1.4 Confidence Level Explanations

As the interpretation is being performed, the interpreter must integrate and interrogate a range of datasets to support their interpretation. The availability of these data in the area being interpreted will affect the level of confidence. An area with a large amount of useful data will give the interpreter a higher level of confidence than an area that is lacking supporting data. In order to reduce the subjective nature of ascribing a level of confidence to certain features, lists of what constitutes low to high levels of confidences have been compiled.

#### 1.4.1 Boundary-related level of confidence (BoundConf)

This level of confidence category applies to the boundary that is being identified, therefore, it is related to the 'Type' and 'BoundaryNm' fields. This level of confidence is attached to the actual boundary line that is being interpreted/drawn, and is an important component of the interpretation, as this is intended to be used in Cover Thickness Mapping. This level of confidence is captured in the 'BoundConf' field.

# 1.4.2 Stratigraphic unit and geological era related levels of confidence (OvrConf, UndConf and WithinConf)

This level of confidence category applies to the stratigraphic units and geological era. This level of confidence field stores the interpreters level of confidence of the within geological era, and the overlying, underlying and within stratigraphic units fields. This level of confidence is related to the 'OvrStrtUnt', 'OvrStrtCod', 'UndStrtUnt', 'UndStrtCod', 'WithinType', 'WithinStrt' and 'WithinStNo' fields. This level of confidence is captured in the 'OvrConf', 'UndConf' and 'WithinConf' fields.

There are three confidence levels related to the above (Table 4):

Table 4: Level of confidence codes

| Level of confidence code Description |                              |
|--------------------------------------|------------------------------|
| L                                    | Confidence level is low      |
| M                                    | Confidence level is moderate |
| Н                                    | Confidence level is high     |

The table below (Table 5) identifies what mandatory or available information/data constitutes a L, M or H confidence level for both the boundary-related, and the geological era or stratigraphic unit related levels of confidences. These values must be completed in the 'BoundConf' field for all interpretation lines, or the 'OvrConf', 'UndConf' and 'WithinConf' fields for all interpretations of within geological era or for stratigraphic units.

Table 5: Mandatory or available data that constitutes a L (low), M (moderate) or H (high) level of confidence for the interpretation of boundary features. These values must be completed in the 'BoundConf' field for all interpretation lines, or the 'OvrConf', 'UndConf' and 'WithinConf' fields for all interpretations of within geological era or for stratigraphic units.

| Code | Level of confidence | Mandatory or available data                                                                                  |
|------|---------------------|--------------------------------------------------------------------------------------------------------------|
| L    | Low                 | AEM data                                                                                                     |
|      |                     | <ul> <li>AEM data is poor to moderate quality. Signal is noisy and</li> </ul>                                |
|      |                     | boundaries are not easily discernible                                                                        |
|      |                     | Interpretation is at depth away from surface geology maps                                                    |
|      |                     | No stratigraphic borehole or water bore data nearby                                                          |
|      |                     | OR                                                                                                           |
|      |                     | Regional understanding without constraining data of the geology                                              |
|      |                     | and with correlation with additional data (e.g. magnetics, gravity,                                          |
|      |                     | literature, seismic)                                                                                         |
| М    | Moderate            | AEM data                                                                                                     |
|      |                     | <ul> <li>AEM data is moderate to good quality. Signal noise may</li> </ul>                                   |
|      |                     | be present, but boundaries can still be discerned                                                            |
|      |                     | Interpretation is nearby boreholes with moderate to good quality                                             |
|      |                     | stratigraphic or lithological data. Electromagnetic data must be good                                        |
|      |                     | quality and continuous between borehole and interpretation                                                   |
|      |                     | Interpretation with a good quality surface geology map nearby, with:                                         |
|      |                     | Well mapped geology     Structural data are at tilks and dis direction folds foults.                         |
|      |                     | <ul> <li>Structural data, e.g. strike and dip direction, folds, faults<br/>and plunges and trends</li> </ul> |
|      |                     | <ul> <li>Usable cross-section parallels or nearby AEM section</li> </ul>                                     |
|      |                     | Optional                                                                                                     |
|      |                     | Some additional data (e.g. magnetics, gravity, literature, seismic)                                          |
|      |                     | consistent with AEM signal may be used to guide interpretation                                               |
| Н    | High                | AEM data                                                                                                     |
|      |                     | <ul> <li>AEM data is good quality with minimal signal noise and</li> </ul>                                   |
|      |                     | boundaries are easily discernible                                                                            |
|      |                     | Interpretation intersects or is nearby boreholes with good quality                                           |
|      |                     | stratigraphic or lithological data                                                                           |
|      |                     | Interpretation is near the surface, with good quality surface geology                                        |
|      |                     | map nearby, with:                                                                                            |
|      |                     | <ul> <li>Well mapped geology</li> </ul>                                                                      |
|      |                     | <ul> <li>Structural data, e.g. strike and dip direction, folds, faults</li> </ul>                            |
|      |                     | and plunges and trends                                                                                       |
|      |                     | <ul> <li>Geological cross-sections parallels AEM section</li> </ul>                                          |
|      |                     | Optional                                                                                                     |
|      |                     | Useful seismic data available e.g. depth surfaces, cross-section                                             |
|      |                     | interpretation                                                                                               |
|      |                     | Some additional data (e.g. magnetics, gravity, literature, seismic)                                          |
|      |                     | consistent with AEM signal may be used to guide interpretation                                               |

## 1.5 Basis of Interpretation (BasisOfInt) Field Explanation

The basis of interpretation (BasisOfInt) field is used to identify the data that the interpretation line was based on. This field is to be filled in using the Interpretation Basis Codes table described below (Table 6). This field allows for multiple codes to be entered based on the number of datasets used to support the interpretation. If multiple datasets are used, the codes for these must be separated by a semicolon (;).

Table 6: Interpretation Basis Codes table.

| Interpretation Basis Codes | Description                                   |
|----------------------------|-----------------------------------------------|
| NW                         | Nearby wells                                  |
| IMI                        | Interpretation of magnetic imagery            |
| IRS                        | Interpretation of reflection seismic          |
| IAEM                       | Interpretation of AEM                         |
| IOGD                       | Interpretation of other geophysical data      |
| GIOG                       | Geological inference based on outcrop geology |
| RGI                        | Regional geological inference                 |
| SGI                        | Solid geology interpretation                  |
| IAP                        | Interpretation of aerial photography          |
| UNK                        | Unknown                                       |

Example 1: if an interpretation line was based on (1) interpretation of the AEM data, (2) nearby wells and (3) surface geology mapping, the 'BasisOfInt' field would read as below (Table 7):

Table 7: Basis of interpretation field ('BaseOfInt') Example 1

| BasisOfInt   |  |
|--------------|--|
| IAEM;NW;GIOG |  |

Example 2: if an interpretation line was based on (1) interpretation of the AEM data, (2) interpretation of other geophysical data, (3) solid geology interpretation and (4) surface geology mapping, the 'BasisOfInt' field would read as below (Table 8):

Table 8: Basis of interpretation field ('BaseOfInt') Example 2

| BasisOfInt         |
|--------------------|
| IAEM;IOGD;SGI;GIOG |