Topology of Piecewise-Linear Manifolds

Jim Fowler

Lecture 2 Summer 2010

Definitions?

A **simplicial complex** K is a collection of finite sets (called the "simplexes"), with the property that

if $\sigma \in K$, and $\tau \subset \sigma$, then $\tau \in K$.

A **simplicial complex** K is a collection of finite sets (called the "simplexes"), with the property that

if
$$\sigma \in K$$
, and $\tau \subset \sigma$, then $\tau \in K$.

This definition is pure combinatorics, but we will think of this as a geometric object.

$$=\{\varnothing,\{0\},\{1\},\{0,1\}\}$$

$$I = \{\varnothing, \{0\}, \{1\}, \{0, 1\}\}$$

```
I = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}\= \{\emptyset, \{0\}, \{1\}\}\
```

```
I = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}S^0 = \{\emptyset, \{0\}, \{1\}\}
```

```
I = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}\
S^{0} = \{\emptyset, \{0\}, \{1\}\}\
= \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}\
```

```
I = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}
S^{0} = \{\emptyset, \{0\}, \{1\}\}\}
S^{1} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}\}
```

```
I = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\} 
S^{0} = \{\emptyset, \{0\}, \{1\}\} 
S^{1} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\} 
= \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}
```

```
I = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\} 
S^{0} = \{\emptyset, \{0\}, \{1\}\} 
S^{1} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\} 
V = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}
```

Shouldn't $V \cong I$?

```
I = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\} 
S^{0} = \{\emptyset, \{0\}, \{1\}\} 
S^{1} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\} 
V = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}
```

Non-examples

Non-examples

 $\{\varnothing,\{0\},\{0,1\}\}$

Non-examples

```
\{\varnothing, \{0\}, \{0, 1\}\}
\{\{0\}, \{1\}, \{0, 1\}\}
```

The *n*-simplex Δ^n is a complex: label the n+1 vertices of Δ^n using the set $V = \{0, 1, 2, ..., n\}$, then the simplexes of Δ^n are all 2^{n+1} subsets of V.

The *n*-sphere S^n consists of all simplexes in Δ^n , except for the top dimensional simplex $\{0, 1, \dots, n\}$.

The *n*-simplex Δ^n is a complex: label the n+1 vertices of Δ^n using the set $V = \{0, 1, 2, ..., n\}$, then the simplexes of Δ^n are all 2^{n+1} subsets of V.

The *n*-sphere S^n consists of all simplexes in Δ^n , except for the top dimensional simplex $\{0, 1, \dots, n\}$.

Problem Calculate $\chi(S^n)$.

A **simplicial map** $f: K \to L$ is a function $f: \text{vert}(K) \to \text{vert}(L)$ so that, whenever $\sigma \in K$, then $f(\sigma) \in L$.

A **simplicial map** $f: K \to L$ is a function $f: \text{vert}(K) \to \text{vert}(L)$ so that, whenever $\sigma \in K$, then $f(\sigma) \in L$.

This can crush simplexes

A **simplicial map** $f: K \to L$ is a function $f: \text{vert}(K) \to \text{vert}(L)$ so that, whenever $\sigma \in K$, then $f(\sigma) \in L$.

This can crush simplexes (e.g., a trivial example?)

A **simplicial map** $f: K \to L$ is a function $f: \text{vert}(K) \to \text{vert}(L)$ so that, whenever $\sigma \in K$, then $f(\sigma) \in L$.

This can crush simplexes (e.g., a trivial example?)

Problem

Find a simplicial map $f: T^2 \to S^2$ which doesn't crush any edges (i.e., edges are sent to edges, not to vertices).

A **simplicial map** $f: K \to L$ is a function $f: \text{vert}(K) \to \text{vert}(L)$ so that, whenever $\sigma \in K$, then $f(\sigma) \in L$.

This can crush simplexes (e.g., a trivial example?)

Problem

Find a simplicial map $f: T^2 \to S^2$ which doesn't crush any edges (i.e., edges are sent to edges, not to vertices).

Think "4-color the vertices of T^2 ."

Conversely...

Problem

Find a simplicial map $f: S^2 \to T^2$ which doesn't crush any edges.

Conversely...

Problem

Find a simplicial map $f:S^2\to T^2$ which doesn't crush any edges.

Think "Skewer and fold."

Do there exist simplicial maps $f: T^2 \to S^2$ and $g: S^2 \to T^2$ which are inverses of each other?

Do there exist simplicial maps $f: T^2 \to S^2$ and $g: S^2 \to T^2$ which are inverses of each other? No. **And why not?**

Do there exist simplicial maps $f: T^2 \to S^2$ and $g: S^2 \to T^2$ which are inverses of each other?

No. And why not?

► Euler characteristic.

Do there exist simplicial maps $f: T^2 \to S^2$ and $g: S^2 \to T^2$ which are inverses of each other?

No. And why not?

- Euler characteristic.
- Separation via curves.

Suppose $f: S^1 \to S^2$ is an injective simplicial map (i.e., distinct vertices are sent to distinct vertices). Does the image of f necessarily separate S^2 into two pieces?

Suppose $f: S^1 \to S^2$ is an injective simplicial map (i.e., distinct vertices are sent to distinct vertices). Does the image of f necessarily separate S^2 into two pieces?

Yes.

Suppose $f: S^1 \to S^2$ is an injective simplicial map (i.e., distinct vertices are sent to distinct vertices). Does the image of f necessarily separate S^2 into two pieces?

Yes.

Proof

A problem with our definitions: we want to talk about S^2 , but there are so many simplicial complexes which deserve to be called S^2 .

Our notion of simplicial complex is too rigid to be the right notion topologically.

Example

Let *K* be a circle with three arcs and *L* be a circle with four arcs (i.e., the boundary of a square). Then *K* and *L* are not simplicially isomorphic.

Fixing the theory

Need to define a few things first...

- star
- closure
- ▶ link
- subdivision

Star

Definition

Let K be a complex, and $\sigma \in K$ a simplex. The **star** of σ in K, written $\operatorname{st}(\sigma, K)$, is defined by

$$\mathsf{st}(\sigma, \mathsf{K}) = \{ \tau \in \mathsf{K} : \sigma < \tau \},\$$

i.e., the star of σ includes all the simplexes having σ as a face.

Star

Definition

Let K be a complex, and $\sigma \in K$ a simplex. The **star** of σ in K, written $\operatorname{st}(\sigma, K)$, is defined by

$$\mathsf{st}(\sigma, \mathsf{K}) = \{ \tau \in \mathsf{K} : \sigma < \tau \},\$$

i.e., the star of σ includes all the simplexes having σ as a face.

Problem

Is the star of a simplex a complex?

Closure

Definition

Let S be a collection of simplexes in K. The **closure** of S, written as cl(S), is the smallest subcomplex of K containing the simplexes in S.

Closure

Definition

Let S be a collection of simplexes in K. The **closure** of S, written as cl(S), is the smallest subcomplex of K containing the simplexes in S.

Problem

Relate cl(cl(S)) and cl(S).

Link

Definition

Let K be a complex, and $\sigma \in K$ a simplex.

The **link** of $\sigma \in K$, written $lk(\sigma, K)$,

consists of those simplexes in K which are in $cl(st(\sigma, K))$ but not touching σ ; in other words,

$$lk(\sigma, K) = \{ \tau \in cl(st(\sigma, K)) : \tau \cap \sigma = \emptyset \}.$$

Link

Definition

Let K be a complex, and $\sigma \in K$ a simplex.

The **link** of $\sigma \in K$, written $lk(\sigma, K)$,

consists of those simplexes in K which are in $cl(st(\sigma, K))$ but not touching σ ; in other words,

$$lk(\sigma, K) = \{ \tau \in cl(st(\sigma, K)) : \tau \cap \sigma = \emptyset \}.$$

Problem

Is the link of a simplex a complex?

Definition

Let K be a complex, and $\sigma \in K$ a simplex.

The **stellar subdivision** of K at σ is a new complex K_{σ} with:

- ▶ the vertices of K along with a brand new vertex v.
- ▶ the simplexes of K not in $st(\sigma, K)$, along with the simplexes in $v * (\partial \sigma) * lk(\sigma, K)$.

We might say:

$$K_{\sigma} := (K - \operatorname{st}(\sigma, K)) \cup (v * (\partial \sigma) * \operatorname{lk}(\sigma, K))$$

Definition

Let K be a complex, and $\sigma \in K$ a simplex.

The **stellar subdivision** of K at σ is a new complex K_{σ} with:

- ▶ the vertices of K along with a brand new vertex v.
- ▶ the simplexes of K not in $st(\sigma, K)$, along with the simplexes in $v * (\partial \sigma) * lk(\sigma, K)$.

We might say:

$$K_{\sigma} := (K - \operatorname{st}(\sigma, K)) \cup (v * (\partial \sigma) * \operatorname{lk}(\sigma, K))$$

Problem

Stellar subdivision of a complex is a complex?

subdivision = repeated stellar subdivision

Definition

Let K, L be complexes. If K can be produced through a (possibly empty) sequence of stellar subdivisions of L, we say that K is a **subdivision** of L, and write $K \triangleleft L$

subdivision = repeated stellar subdivision

Definition

Let K, L be complexes.

If K can be produced through a (possibly empty) sequence of stellar subdivisions of L, we say that K is a **subdivision** of L, and write $K \triangleleft L$.

As we will see, the *real* definition of subdivision is more general than this.

Piecewise linear maps

Definition

Let K, K', L, L' be complexes, with $K' \triangleleft K$ and $L' \triangleleft L$. If $f: K' \to L'$ is a simplicial map, we call $f: K \to L$ a piecewise linear map (or a PL map for short). We call $f: K' \to L'$ an underlying simplicial map.

Piecewise linear maps

Definition

Let K, K', L, L' be complexes, with $K' \triangleleft K$ and $L' \triangleleft L$. If $f: K' \to L'$ is a simplicial map, we call $f: K \to L$ a **piecewise linear map** (or a **PL map** for short). We call $f: K' \to L'$ an **underlying simplicial map**. We write $f: K \to L$ for a PL map, but such a map

does not send simplexes in K to simplexes in L

Piecewise linear maps

Definition

Let K, K', L, L' be complexes, with $K' \triangleleft K$ and $L' \triangleleft L$. If $f : K' \rightarrow L'$ is a simplicial map, we call $f : K \rightarrow L$ a **piecewise linear map** (or a **PL map** for short). We call $f : K' \rightarrow L'$ an **underlying simplicial map**.

The *real* definition of PL map is more general than this.

Going back, rethinking everything...

Are S^2 and T^2 the same?

Going back, rethinking everything...

Are S^2 and T^2 the same?

We will check that χ is well-defined.