Exploring data - graphical summaries

Introduction to Quantitative Ecology Fall 2018 Chris Sutherland csutherland@umass.edu

- 1. Which of the following lines of code is the correct way to read a csy file?
 - A) read.csv("mydata.csv")
 - B) my.data <- read.csv("mydata.csv")</pre>
 - C) r my.data <- read.csv(mydata.csv)</pre>
 - D) read.csv(mydata.csv, row.names = 1)

2. Which of the following symbols is used to represent the mean of a variable?

- A) σ
- B) \bar{x}
- C) s^2
- D) x

- 3. Which plot would be most appropriate for visualizing the running mean?
 - A) box-whisker plot
 - B) line graph
 - C) histogram
 - D) bar chart

- 4. Which plot would be most appropriate for visualizing the relationship between *two continuous variables*?
 - A) histogram
 - B) line graph
 - C) box-whisker plot
 - D) scatter plot

- 5. Which of the following plots would I use to graphically represent the *distribution* of a variable?
 - A) histogram
 - B) line graph
 - C) box-whisker plot
 - D) scatter plot

Why use graphs?

Two main reasons to use graphs:

1. Inform how to analyze the data

2. Presentation of the data

Two main reasons to use graphs:

- 1. Inform how to analyze the data
 - visualization
 - identify patterns
 - choose appropriate statistical test
- 2. Presentation of the data

Two main reasons to use graphs:

- 1. Inform how to analyze the data
 - visualization
 - identify patterns
 - choose appropriate statistical test
- 2. Presentation of the data
 - summarize results
 - communicate results
 - publish results

Types of graphs - Exploratory

Exploratory graphs help understand the distribution of the data:

- ► are the data normally distributed
 - important assumption in statistics
 - determines how data are analyzed
- ▶ what is the central tendency
- ▶ what is the spread
- ▶ general summaries of the data

Exploratory: *Histogram*

- ▶ width of bars are defined data bins or intervals
- \blacktriangleright height of bars represent bin-specific frequencies

hist(values)

Exploratory: *Histogram*

- ▶ width of bars are defined data bins or intervals
- ▶ height of bars represent bin-specific frequencies

```
hist(values)
hist(values, breaks=seq(10,90,2))
```


Exploratory: Histogram + Density Plot

A density plot provides a smooth representation of the histogram:

- ► can overlay the density plot
- ▶ requires that a *probability* version of the histogram is plotted

```
hist(values, probability=TRUE)
lines(density(values))
```


Exploratory: Box-whisker/Box plot

- ▶ distribution
- outliers
- symmetry or skewness

boxplot(values)

Exploratory: Box-whisker/Box plot

► R: boxplot(x) # x is data

Exploratory: Line graph

Line graph is a useful plot for running average or time series data

```
plot(bear.run, type="l") #"l": line, "p": points, "b": both
lines(poop.run)
```


Differences

To visualize differences between groups

- ▶ box-whisker plots
 - compares averages
 - compares distribution
- ▶ bar charts
 - compares averages

Differences: Box-whisker plot

Compare salamander snout-vent lengths be three sexes:

```
boxplot(mander$SVL ~ mander$Sex) #formula notation
```


Differences: Bar chart

Compare salamander snout-vent lengths be three sexes:

bars <- tapply(mander\$SVL,mander\$Sex,mean) #create matrix (like pivot table)
barplot(bars) # plot it</pre>

Differences: Bar chart with associated error

Compare salamander snout-vent lengths be three sexes:

bars <- tapply(mander\$SVL,mander\$Sex,mean)
barplot(bars)</pre>

Links

Two main approaches for relationships between data:

- 1. Correlations
- 2. Associations

Links

Two main approaches for graphing relationships between data:

1. Correlations

- two numeric variables
 - dependent variable (of primary interest: y-axis)
 - *inde*pendent variable (explanatory variable: x-axis)
- how one variable is related to another
- scatter plots

Links: Scatter plot

plot(x,y) # x and y are numeric vectors

Links

Two main approaches for graphing relationships between data:

2. Associations

- categorical data
- summarize categories
 - counts
 - proportions
 - by rows and/or columns of a table
- pie charts for single categories
- bar graphs for several categories

Links: Pie chart

```
pietab <- table(classData$Eyes)
pie(pietab) #(number of people with each eye color)</pre>
```

Eye color

Links: Bar chart

```
bartab <- table(classData$Gender,classData$Eyes)
barplot(pietab, beside=TRUE) #(number of each gender with each eye color)</pre>
```


Some graphics pointers

In summary, graphs are a useful data visualization tool

- summarizing
- understanding
- describing
- ▶ presenting/communicating

Some graphics pointers

In summary, graphs are a useful data visualization tool

- summarizing
- understanding
- describing
- presenting/communicating

BUT we must label the well or they are useless!

- ▶ label both axes
- ▶ provide a main title for your graph
- ▶ avoid clutter
- ▶ make it readable
- ▶ I expect graphs to be propery labeled from now on!

Some graphics pointers

In summary, graphs are a useful data visualization tool

Purpose	Graph Type
Illustrating distribution	Histogram, Density plot
	Box(-whisker) plot
Illustrating differences	Bar chart, Box plot
Illustrating correlations	Scatter plot
Illustrating associations	Pie chart, Bar chart
Illustrating sample size	Line plot of running avg

Beyond graphs, Towards statistics

- ► Graphs are powerful tools that provide insight and understanding of the patterns and relationships in the data.
- ▶ Don't give us the answer though:
 - ▶ are differences *significant*?
 - ightharpoonup are associations significatnt?

Beyond graphs, Towards statistics

- ► Graphs are powerful tools that provide insight and understanding of the patterns and relationships in the data.
- ▶ Don't give us the answer though:
 - ▶ are differences *significant*?
 - ightharpoonup are associations significatnt?

Beyond graphs, Towards statistics

- ► Graphs are powerful tools that provide insight and understanding of the patterns and relationships in the data.
- ▶ Don't give us the answer though:
 - ▶ are differences *significant*?
 - ► are associations *significatnt*?
- ► Statistics is the tool we use to formally answer these questions!
 - ▶ the differences *are/are not* significant!
 - ► are associations *are/are not* significant!

1. Are you sitting with your group?

A) Yes

B) No

Group practical: water vole weights

Ultimately we are interested in comparing sex-specific water vole weights across multiple populations (networks). The data include weight measurements of:

- ▶ 100's voles
- ► from 4 water vole sub-populations
- ▶ from males and females

Group practical: water vole weights

Ultimately we are interested in comparing sex-specific water vole weights across multiple populations (networks). The data include weight measurements of:

- ► 100's voles
- ▶ from 4 water vole sub-populations
- ▶ from males and females

The assignment:

- ▶ download data & empty script
- ► complete the script (in groups)
- ▶ submit to moodle (1 per group)

