Name:	Key
-------	-----

Instructions: You must <u>show your work</u> and put your final answers in the blanks. If you round a numerical answer, **you must give at least 3 significant digits**.

1) Two compliers are used to compile the same benchmark program with the same instruction set architecture (ISA) for the same computer (clock rate=1GHz). There are three classes of instructions in this ISA, and each of them takes different numbers of clock cycles to finish. Class A instruction takes 2 clock cycles to finish, Class B instruction takes 3 clock cycles to finish, and Class C instruction takes 4 clock cycles to finish. The numbers of instructions generated by complier 1 and complier 2 are listed below.

	# of Inst. Generated by Compiler 1	# of Inst. Generated by Compiler 2
Class A (CPI = 2)	5 Millions	1 Millions
Class B (CPI = 3)	2 Millions	2 Millions
Class C (CPI = 4)	1 Millions	4 Millions

The following equations might be helpful:

$$\frac{\text{seconds}}{\text{program}} = \frac{\text{Instructions}}{\text{program}} \times \frac{\text{cycles}}{\text{Instructions}} \times \frac{\text{seconds}}{\text{cycle}}$$
$$= Instruction Count \times CPI \times Clock Cycle Time$$

Which compiler makes faster machine code (You must write down your calculation)? [5 pts]

Compiler 1:
$$[(2 \times 5) + (3 \times 2) + (4 \times 1)] \times \frac{10^6}{10^9} = 0.02$$
 second

Compiler 2:
$$[(2 \times 1) + (3 \times 2) + (4 \times 4)] \times \frac{10^6}{10^9} = 0.024$$
 second

Compiler 1 is faster

$Final\ Answer = \underline{\textbf{Compiler 1 is faster}}$

2) Knowing, $Power = Capacitive\ load \times Voltage^2 \times Frequency$, Suppose we have developed new versions of a processor with the following characteristics.

_	Version	Voltage	Clock Rate
a.	Version 1	1.75 V	1.5 GHz
	Version 2	1.2 V	2 GHz
b.	Version 1	1.1 V	3 GHz
	Version 2	0.8 V	4 GHZ

How much has the capacitive load varied between versions for each case if the dynamic power has been reduced by 10%. [5 pts]

a.
$$\frac{C_2}{C_1} = \frac{0.9 \times 1.75^2 \times 1.5 \times 10^9}{1.2^2 \times 2 \times 10^9} = 1.43$$
b.
$$\frac{C_2}{C_1} = \frac{0.9 \times 1.1^2 \times 3 \times 10^9}{0.8^2 \times 4 \times 10^9} = 1.27$$

Final Answer =
$$\frac{c_2}{c_1}$$
 for (a) is 1.43 and for (b) is 1.27

Name:	Key

Instructions: You must <u>show your work</u> and put your final answers in the blanks. If you round a numerical answer, **you must give at least 3 significant digits**.

3) Two compliers are used to compile the same benchmark program with the same instruction set architecture (ISA) for the same computer (clock rate=1GHz). There are three classes of instructions in this ISA, and each of them takes different numbers of clock cycles to finish. Class A instruction takes 2 clock cycles to finish, Class B instruction takes 3 clock cycles to finish, and Class C instruction takes 4 clock cycles to finish. The numbers of instructions generated by complier 1 and complier 2 are listed below.

	# of Inst. Generated by Compiler 1	# of Inst. Generated by Compiler 2
Class A ($CPI = 2$)	5 Millions	1 Millions
Class B (CPI = 3)	2 Millions	2 Millions
Class C ($CPI = 4$)	1 Millions	4 Millions

The following equation might be helpful:

$$\frac{\text{seconds}}{\text{program}} = \frac{\text{Instructions}}{\text{program}} \times \frac{\text{cycles}}{\text{Instructions}} \times \frac{\text{seconds}}{\text{cycle}}$$
$$= Instruction Count \times CPI \times Clock Cycle Time$$

Which compiler makes faster machine code (You must write down your calculation)? [5 pts]

Compiler 1:
$$[(2 \times 5) + (3 \times 2) + (4 \times 1)] \times \frac{10^6}{10^9} = 0.02$$
 second

Compiler 2:
$$[(2 \times 1) + (3 \times 2) + (4 \times 4)] \times \frac{10^6}{10^9} = 0.024$$
 second

Compiler 1 is faster

 $Final\ Answer = \underline{\qquad} Compiler\ 1 \text{ is faster}$

4) Base on the same assumption in question (1), which compiler generates machine code run at higher MIPS (millions instruction per second) (You must write down your calculation)? [5 pts]

Compiler 1:
$$\frac{8}{0.02} = 400 \text{ MIPS}$$

Compiler 2:
$$\frac{7}{0.024}$$
 = 291 MIPS