DATA2002

Critical values, rejection regions and confidence intervals

Garth Tarr

Random variables review

Critical values

Confidence intervals

Rejection regions

Random variables

Random variable basics

- A random variable can be thought of as a mathematical object which takes certain values with certain probabilities.
- We have *discrete* and *continuous* random variables, although we can always "approximate" a continuous one with a discrete one (taking values on a suitably fine grid).
- A simple discrete random variable X can be described as a single random draw from a "box" containing tickets, each with numbers written on them.
- In this case,
- $E(X) = \mu$ (the average of the numbers in the box);
- $Var(X) = \sigma^2$ (the *population variance* of the numbers in the box);
- $SD(X) = \sigma$.

Random sample with replacement

- Next, consider taking a random sample of size n with replacement, denote the values X_1, X_2, \ldots, X_n .
- This means, one of *all possible samples of size n* is chosen in such a way that each is equally likely.
- If there are N tickets in the box, how many such samples are there?
- It turns out that these X_i 's are independent and identically distributed. This means
 - \circ each X_i has the same distribution as a single draw;
 - \circ the X_i 's are all mutually independent.
- Consider now taking the total $T = \sum_{i=1}^{n} X_i$.
- What is $\mathrm{E}(T)$?
- What is Var(T)?

Expectation and variance of sums

The **expectation** of a sum is *always* the sum of the expectations. For example,

$$\mathrm{E}(T) = \mathrm{E}(X_1 + \cdots + X_n) = \mathrm{E}(X_1) + \cdots + \mathrm{E}(X_n) = \underbrace{\mu + \cdots + \mu}_{n \ \mathrm{terms}} = n \mu \, .$$

Variance of sum of independent random variables

- The variance of a sum is not always the sum of the variances.
- However, it *is* if the X_i 's are *independent*. So,

$$\operatorname{Var}(T) = \operatorname{Var}(X_1 + \dots + X_n) = \operatorname{Var}(X_1) + \dots + \operatorname{Var}(X_n) = \underbrace{\sigma^2 + \dots + \sigma^2}_{n \text{ terms}} = n\sigma^2 \,.$$

Multiplying by a constant: for any random variable X and any constant c,

$$\mathrm{E}(cX) = c\,\mathrm{E}(X) \quad ext{ and } \quad \mathrm{Var}(cX) = c^2\,\mathrm{Var}(X)\,.$$

Sample mean

Consider the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} T$. What is $\mathrm{E}(\bar{X})$? What is $\mathrm{Var}(\bar{X})$?

• Thus since $\bar{X} = \frac{1}{n}T$,

$$\mathrm{E}(ar{X}) = \mathrm{E}\left(rac{1}{n}T
ight) = rac{1}{n}\mathrm{E}(T) = rac{1}{n}n\mu = \mu\,.$$
 $\mathrm{Var}(ar{X}) = \mathrm{Var}\left(rac{1}{n}T
ight) = \left(rac{1}{n}
ight)^2\mathrm{Var}(T) = rac{1}{n^2}\,n\sigma^2 = rac{\sigma^2}{n}\,.$

Estimating μ

- In many applications, we model data x_1, \ldots, x_n as values taken by such a sample X_1, \ldots, X_n and we are interested in "estimating" or "learning" μ (which is an "unknown population mean").
- In this case the *estimator* is the sample mean \bar{X} (regarded as a *random variable*).
- The *estimate* is $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, the observed value of the mean of the data (this is *conceptually different* to $\bar{X}!!$)
- An important theoretical quantity is the *standard error*, the *standard deviation of the estimator*.

$$\mathrm{SE} = \mathrm{SD}(ar{X}) = \sqrt{\mathrm{Var}(ar{X})} = rac{\sigma}{\sqrt{n}} \,.$$

this is (in general) also an unknown parameter.

Importance of the standard error

- The standard error (standard deviation of the estimator) is important to know, since it tells us the "likely size of the estimation error".
- An estimate on its own is not very useful, we need to also know how accurate or reliable the estimate is.
 - This is what the standard error provides.
- Unfortunately in most contexts the standard error is also unknown;
 - but we can usually (also) estimate the standard error!

Estimating the standard error

• The standard error (at least when estimating a population mean μ) involves the (usually unknown) population variance σ^2 :

$$ext{SE} = rac{\sigma}{\sqrt{n}} \, .$$

• Fortunately, we can usually estimate σ^2 using the *sample variance*

$$S^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - ar{X})^2 \, .$$

• The corresponding estimated standard error is

$$\widehat{
m SE} = s/\sqrt{n}\,,$$

where $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$ is the observed value of the sample variance.

Critical values and confidence intervals

More precise inference

- Usually, we want to know if a given value μ_0 is a "plausible value" for the unknown μ , based on observed data x_1, \ldots, x_n .
- Roughly speaking, we do this by
 - 1. computing the value of the *estimate* \bar{x} ;
 - 2. computing the value of the estimated standard error s/\sqrt{n} ;
 - 3. seeing if the discrepancy $\bar{x} \mu_0$ is "large" compared to the standard error.
- The various procedures we look at:
 - t-tests (with corresponding p-values)
 - confidence intervals
 - rejection regions

are all variations on this single idea.

What kind of discrepancies are of interest?

- We need to have it very clear in our minds which kind of discrepancies $\bar{x}-\mu_0$ we are interested in:
 - positive
 - negative
 - both
- Another way to think about it is, given a fixed μ_0 of interest and an observed sample mean \bar{x} , which of the following questions are we asking:
 - 1. Is \bar{x} significantly *more* than μ_0 ? (*one-sided*)
 - 2. Is \bar{x} significantly *less* than μ_0 ? (*one-sided*)
 - 3. Is \bar{x} significantly *different* to μ_0 ? (*two-sided*)

Beer contents

Beer contents in a pack of six bottles (in millilitres) are:

374.8, 375.0, 375.3, 374.8, 374.4, 374.9

Does the mean beer content differ from the 375 mL claimed on the label?

```
x = c(374.8, 375.0, 375.3, 374.8, 374.4, 374.9)
mean(x)
```

[1] 374.8667

```
sd(x)
```

[1] 0.294392

Beer example

- In the beer example there are different possible points of view.
- For *consumers*, the results will only be "interesting" if \bar{x} is significantly *less* than 375:
 - in this case the company is "ripping consumers off".
- However for the *beer producers*, both positive and negative discrepancies might be of interest:
 - if they are *underfilling*, consumers will be unhappy;
 - if they are *overfilling*, they are "wasting" some of their product.
- Thus both a *one-sided* and *two-sided* point of view are conceivable even for this example.

Two-sided discrepancies of interest

• When two-sided discrepancies are of interest we are basically asking: for a given μ_0 , is the *absolute* value $|\bar{x} - \mu_0|$ large, compared to the standard error s/\sqrt{n} ?

t-test approach: declare μ_0 not plausible if $|\bar{x}-\mu_0|>c\frac{s}{\sqrt{n}}$ for some "suitably chosen" constant c.

Confidence interval approach: the set of plausible values for the unknown μ is

$$ar{x} \pm c rac{s}{\sqrt{n}} \, ,$$

for some "suitably chosen" constant c.

- Note that if the same c is chosen in both approaches, the set of plausible values is the same:
 - $\circ \ \mu_0$ in the confidence interval $\Leftrightarrow |\bar{x} \mu_0| \leq cs/\sqrt{n}$.

How to choose the constant c?

- The constant c can be chosen in a sensible way in each context.
- Testing: control the false alarm rate.
- Confidence intervals: control the coverage probability;
 - the coverage probability is commonly also called the confidence level and expressed as a percentage.

False alarm rate

- A "false alarm" is when we "reject incorrectly".
- Using our current language it is when we "reject a given value μ_0 " when we shouldn't.
- That is, we declare μ_0 "not plausible" when it is in fact the true value!
- We pick choose small $0 \le \alpha \le 1$ for the desired "false alarm rate" e.g. 0.05, 0.01.
- Choose c such that (if possible)

$$P\left(|ar{X}-\mu_0|>crac{S}{\sqrt{n}}
ight)=lpha\,;$$

- If this is not possible then just try to ensure that this probability does not exceed α !
- The false alarm rate is also called the significance level.

Normal population: use the t-distribution

• Under the special statistical model where the data are modelled as values taken by iid normal random variables, we know that if the true population mean is indeed μ_0 , then the ratio

$$rac{ar{X}-\mu_0}{S/\sqrt{n}}\sim t_{n-1}$$

and we can thus choose c such that

$$P\left(|ar{X}-\mu_0|>crac{S}{\sqrt{n}}
ight)=P\left(rac{|ar{X}-\mu_0|}{S/\sqrt{n}}>c
ight)=P(|t_{n-1}|>c)=lpha\,.$$

R

Finding quantiles in R

In R, we get quantiles using the qDISTRIBUTION() range of functions, e.g. qt(p, n - 1), qnorm(p), qchisq(p, n - 1) for t, normal and χ^2 distributions respectively.

```
qt(0.05, 5)
```

[1] -2.015048

Probability density function for $T \sim t(5)$

qnorm(0.05)

[1] -1.644854

Probability density function for $Z \sim N(0,1)$

Using qt()

• Note that if $P(|t_{n-1}|>c)=lpha$ then

$$P(|t_{n-1}|\leq c)=P(-c\leq t_{n-1}\leq c)=1-\alpha$$

and furthermore

$$P(t_{n-1} < -c) + P(t_{n-1} > c) = 2P(t_{n-1} > c) = \alpha$$

SO

$$P(t_{n-1}>c)=rac{lpha}{2} \quad ext{ or equivalently } \quad P(t_{n-1}\leq c)=1-rac{lpha}{2}$$

• So for e.g.

$$\circ$$
 $lpha=0.05$, we need c such that $P(t_{n-1}\leq c)=1-0.025=0.975$ use c = qt(0.975, df = n-1)

$$\circ \ \alpha = 0.01$$
, we need c such that $P(t_{n-1} \le c) = 1 - 0.005 = 0.995$ use c = qt(0.975, df = n-1).

Beer example

Recall we have observations

```
x = c(374.8, 375.0, 375.3, 374.8, 374.4, 374.9)
```

- Here the sample size n=6 so if
 - $\circ \ lpha = 0.05$ we need c such that $P(t_5 \le c) = 0.975$;
 - $\circ \ lpha = 0.01$ we need c such that $P(t_5 \le c) = 0.995$.
- These are given by

```
qt(0.975,5)
```

[1] 2**.**570582

```
qt(0.995,5)
```

[1] 4.032143

Probability density function for T ~ t(5)

Beer example

• The sample mean is

```
xbar = mean(x)
xbar
```

```
## [1] 374.8667
```

The standard error is

```
se = sd(x)/sqrt(6)
se
```

```
## [1] 0.120185
```

• The discrepancy from the "given value" 375 is

```
discrep=abs(xbar-375)
discrep
```

```
## [1] 0.1333333
```

- This is only slightly more than 1 (estimated) standard error.
- We need it to be at least 2.57 standard errors to "reject at the 0.05 **false alarm rate**":
- Therefore we cannot reject H_0 , so 375 is a plausible value (in this two-sided sense).

Coverage probability

- For a **confidence interval**, the **coverage probability** is simply the probability that the "true" value of the unknown parameter lies inside (is "covered by") the **confidence interval**.
- This is a *long run property* and should be interpreted in the context of *repeated experiments*.
- We choose a (small) non-coverage probability α , say 0.05 or 0.01;
 - then the coverage probability is 1α .
- Thus, under some statistical model we choose c so that the **coverage probability** under the model satisfies (with μ the true population mean):

$$P\left(ar{X}-crac{S}{\sqrt{n}}\leq \mu \leq ar{X}+crac{S}{\sqrt{n}}
ight)=P\left(|ar{X}-\mu|\leq crac{S}{\sqrt{n}}
ight)=1-lpha\,.$$

Equivalent to false alarm rate condition for t-test

- The coverage probability condition on the previous slide is an equivalent statement to the false alarm rate condition for the t-test (for the same α).
- Thus if the desired coverage probability is
 - $\circ~$ 0.95 (i.e. non-coverage probability lpha=0.05) then we need c such that

$$P(t_{n-1} \le c) = 1 - 0.025 = 0.975;$$

 $\circ~$ 0.99 (i.e. non-coverage probability lpha=0.01) then we need c such that

$$P(t_{n-1} \le c) = 1 - 0.005 = 0.995$$
.

Beer example

• For a 95% **confidence interval** for μ we thus choose c via

```
c_95 = qt(0.975,5)
c_95
```

```
## [1] 2.570582
```

giving

```
xbar + c(-1,1) * c_95 * se
```

```
## [1] 374.5577 375.1756
```

 Note that this includes the "special value"
 375 and so is consistent with our 0.05 falsealarm rate test earlier. • For a 99% confidence interval for μ we thus choose c via

```
c_99 = qt(0.995,5)
c_99
```

```
## [1] 4.032143
```

giving

```
xbar + c(-1,1)*c_99*se
```

```
## [1] 374.3821 375.3513
```

• As we'd expect, this CI is wider, and also includes 375.

Using t.test()

- Compare our "manual" computations above with the output of the R function t.test():
- First the default.

374.8667

```
t.test(x, mu = 375)
```

```
##
       One Sample t-test
##
##
## data: x
## t = -1.1094, df = 5, p-value = 0.3177
## 95 percent confidence interval:
## 374.5577 375.1756
## sample estimates:
## mean of x
```

• Setting conf.level=0.99:

```
t.test(x, mu = 375, conf.level = 0.99)
```

```
##
                                                             One Sample t-test
                                                      ##
                                                      ##
                                                      ## data: x
                                                      ## t = -1.1094, df = 5, p-value = 0.3177
## alternative hypothesis: true mean is not equal to 3#5 alternative hypothesis: true mean is not equal to
                                                      ## 99 percent confidence interval:
                                                      ## 374.3821 375.3513
                                                      ## sample estimates:
                                                      ## mean of x
                                                      ## 374.8667
```

Note the default in R is two-sided.

One-sided discrepancies of interest

- The "two-sided" approach just outlined would be of interest to the beer producers, but not necessarily the beer consumers.
- Let us consider the point of view of the consumers now.
- *t*-test approach: declare
 - $\circ \ \mu_0$ not plausible if $\bar{x} \mu_0 < -c rac{s}{\sqrt{n}} \Leftrightarrow \bar{x} < \mu_0 c rac{s}{\sqrt{n}}$ for some "suitably chosen" constant c.
- Confidence interval approach: set of plausible values for the unknown μ are those "not too much bigger than \bar{x} ", i.e.

$$\left(-\infty, ar{x} + crac{s}{\sqrt{n}}
ight]$$

for a "suitably chosen" constant c.

- the upper endpoint is sometimes called an "upper confidence limit"
- o it can be interpreted as "the largest value consistent with the data".

Same set of plausible values

- Again, note that for the same c these two approaches give the same set of plausible values for μ :
 - $\circ \;\; \mu_0$ is in the (one-sided) **confidence interval** $\Leftrightarrow ar{x} \geq \mu_0 c rac{s}{\sqrt{n}}.$

Controlling the (one-sided) false alarm rate

- We use a similar approach to the two-sided case, but with a crucial difference!
- We again know that under the iid normal model with population mean μ , $T=rac{X-\mu}{S/\sqrt{n}}\sim t_{n-1}.$
- We thus choose c so that if μ_0 is the true value,

$$P\left(ar{X}<\mu_0-crac{S}{\sqrt{n}}
ight)=P\left(rac{ar{X}-\mu_0}{S/\sqrt{n}}<-c
ight)=P(t_{n-1}<-c)=lpha\,.$$

By symmetry we must also have

$$P(t_{n-1}>c)=lpha \quad ext{ or } \quad P(t_{n-1}\leq c)=1-lpha$$
 .

- Thus for false alarm rate
 - $\circ~$ 0.05 we need c such that $P(t_{n-1} \leq c) = 1 0.05 = 0.95$;
 - \circ 0.01 we need c such that $P(t_{n-1} \le c) = 1 0.01 = 0.99$.

Beer example

For the lpha=0.05 false alarm rate, since n=6 we need

```
c_05 = qt(.95, 5)
c_05
```

```
## [1] 2.015048
```

Note this is *smaller* than the two-sided version.

 We have already seen that the discrepancy is only slightly more than 1 standard error:

```
c(xbar - 375, se)
```

```
## [1] -0.1333333 0.1201850
```

so in this one-sided sense, 375 is a plausible value.

For the $\alpha=0.01$ false alarm rate, since n=6 we need

```
c_01 = qt(.99, 5)
c_01
```

```
## [1] 3.36493
```

- Note that this is also smaller than the twosided version.
- This makes the one-sided tests "more sensitive" than the two-sided versions.

One-sided confidence intervals

• Again we fix the **coverage probability** $1 - \alpha$:

$$P\left(\mu_0 \leq ar{X} + crac{S}{\sqrt{n}}
ight) = P\left(rac{ar{X} - \mu_0}{S/\sqrt{n}} \geq -c
ight) = P(t_{n-1} \geq -c) = P(t_{n-1} \leq +c) = 1-lpha$$
 .

which is again the same as the corresponding false alarm rate condition.

- Thus for non-coverage probability
 - $\circ \ \ 0.05$ we need c such that $P(t_{n-1} \leq c) = 1 0.05 = 0.95$;
 - \circ 0.01 we need c such that $P(t_{n-1} \le c) = 1 0.01 = 0.99$.

Beer example

- We can use c_05 and c_01 already obtained.
- The 95% "upper confidence limit" is thus

```
xbar + c_05*se
```

[1] 375.1088

which gives the one-sided confidence interval

```
c(-Inf, xbar + c_05*se)
```

```
## [1] -Inf 375.1088
```

• For 99%,

```
c(-Inf, xbar + c_01*se)
```

These both include 375!

Using t.test()

• We need to explicitly ask for a one-sided analysis:

```
t.test(x, mu = 375, alternative = "less")

##

## One Sample t-test

##

## data: x

## t = -1.1094, df = 5, p-value = 0.1589

## alternative hypothesis: true mean is less than 375

## 95 percent confidence interval:

## -Inf 375.1088

## sample estimates:

## mean of x

## 374.8667
```

```
t.test(x, mu = 375, alternative = "less", conf.level = 0.99)

##

## One Sample t-test

##

## data: x

## t = -1.1094, df = 5, p-value = 0.1589

## alternative hypothesis: true mean is less than 375

## 99 percent confidence interval:

## -Inf 375.2711

## sample estimates:

## mean of x

## 374.8667
```

Observed significance level: the p-value

- Finally, to tie all of this together we relate it all to the p-value.
- The *observed signficance level* (or *p-value*) is the value of α for which the observed data is "right on the edge".
- More precisely that is
 - the smallest **false alarm rate** for which we would "reject" a given value μ_0 ;
 - the *non-coverage probability* (i.e. 1- confidence level) for which μ_0 is on the boundary of the **confidence interval**.

Beer example: two-sided

```
t.test(x, mu = 375, conf.level = 1 - 0.3177)

##

## One Sample t-test

##

## data: x

## t = -1.1094, df = 5, p-value = 0.3177

## alternative hypothesis: true mean is not equal to 375

## 68.23 percent confidence interval:

## 374.7333 375.0000

## sample estimates:

## mean of x

## 374.8667
```


Beer example: one-sided

```
##
## One Sample t-test
##
## data: x
## t = -1.1094, df = 5, p-value = 0.1589
## alternative hypothesis: true mean is less than 375
## 84.11 percent confidence interval:
## -Inf 375
## sample estimates:
## mean of x
## 374.8667
```

Rejection regions

Decision rules

- To test a hypothesis, we previously defined a **decision rule** to reject H_0 . That is when the p-value is less than certain fixed preassigned levels, say p-value $\leq \alpha$ where $\alpha = 0.05$, 0.10, etc.
- In other words, we reject or do not reject H_0 according to whether the p-value is less than α or greater than α .
- The α is called the significance level of the test, which is the boundary between rejecting and not rejecting H_0 .

Notation

Let $t_{n-1}(\alpha)$ be the **critical value** (or quantile) given by

$$P(t_{n-1} \le t_{n-1}(\alpha)) = \alpha,$$

or if we are using the standard normal distribution $Z\sim N(0,1)$ then $z(\alpha)$ is defined by $P(Z\leq z(\alpha))=\alpha.$

Critical value decision rule

The critical value depends on the level of significance, α , and the distribution of T under H_0 , t_{n-1} .

1

Decision rule

For a test of H_0 : $\mu = \mu_0$ vs H_1 : $\mu > \mu_0$, the **decision rule** at level α is:

• reject H_0 if $t_0 \geq t_{n-1}(1-lpha)$ or equivalently reject H_0 if $t_0 \geq |t_{n-1}(lpha)|$

For a test of H_0 : $\mu = \mu_0$ vs H_1 : $\mu < \mu_0$, the **decision rule** at level α is:

• reject H_0 if $t_0 \leq t_{n-1}(\alpha)$

For a test of H_0 : $\mu = \mu_0$ vs H_1 : $\mu \neq \mu_0$, the **decision rule** at level α is:

- reject H_0 if $|t_0| \geq |t_{n-1}(lpha/2)|$
- ullet do not reject H_0 if $|t_0|<|t_{n-1}(lpha/2)|$

Rejection region for two-sided test, H_1 : $\mu eq \mu_0$

Rejection region for test statistics

- Hypothesis: H_0 : $\mu=\mu_0$ vs H_1 : $\mu>\mu_0,\ \mu<\mu_0,\ \mu\neq\mu_0$
- Assumptions: X_i are iid $\mathcal{N}(\mu, \sigma^2)$, where σ^2 is unknown.
- Test statistic: $T=rac{ar{X}-\mu_0}{S/\sqrt{n}}\sim t_{n-1}$
- Observed test statistic: $t_0 = rac{ar{x} \mu_0}{s/\sqrt{n}}$
- Rejection region:
- H_1 : $\mu \leqslant \mu_0$: $t_0 \leq t_{n-1}(\alpha)$ or $t_0 \geq |t_{n-1}(\alpha)|$
- H_1 : $\mu \neq \mu_0$: $|t_0| \geq |t_{n-1}(\alpha/2)|$
- **Decision:** We reject H_0 if t_0 is in the rejection region.

- Hypothesis: H_0 : $\mu=\mu_0$ vs H_1 : $\mu>\mu_0,\ \mu\neq\mu_0$
- Assumptions: X_i are iid $\mathcal{N}(\mu, \sigma^2)$, where σ^2 is known.
- Test statistic: $Z=rac{ar{X}-\mu_0}{\sigma/\sqrt{n}}\sim \mathcal{N}(0,1)$
- Observed test statistic: $z_0 = rac{ar{x} \mu_0}{\sigma/\sqrt{n}}$
- Rejection region:
- H_1 : $\mu \leqslant \mu_0$: $z_0 \leq z(\alpha)$ or $z_0 \geq |z(\alpha)|$
- H_1 : $\mu \neq \mu_0$: $|z_0| \geq |z(\alpha/2)|$
- **Decision:** We reject H_0 if z_0 is in the rejection region.

Beer contents

We have n=6, $\bar{x}=374.87$, s=0.29, $t_0=-1.11$. Hypothesis test using critical value.

- **Hypothesis:** H_0 : $\mu = 375$ vs H_1 : $\mu < 375$
- **Assumptions:** X_i are *iid* rv and follow $N(\mu, \sigma^2)$.
- Test statistic: $T=rac{ar{X}-\mu_0}{S/\sqrt{n}}.$ Under H_0 , $T\sim t_{n-1}.$
- Observed test statistic:

$$t_0 = rac{374.87 - 375}{0.29/\sqrt{6}} = -1.11$$

- Critical value: $t_5(0.05) = -2.015$. l.e. reject if t_0 is less than -2.015
- **Decision:** the observed test statistic, $t_0=-1.11$ is greater than -2.015, so do not reject H_0 .

Rejection region on the data scale

Smoking

Blood samples from 11 individuals before and after they smoked a cigarette are used to measure aggregation of blood platelets.

```
before = c(25, 25, 27, 44, 30, 67, 53, 53, 52, 60, 28)

after = c(27, 29, 37, 36, 46, 82, 57, 80, 61, 59, 43)

df = data.frame(before, after, difference = after-before)
```

This is a match-pair sample. We reduce the data to one sample by considering the aggregation difference.

Let X_i and Y_i be the blood platelet aggregation levels for the i^{th} person before and after smoking, respectively. Define the change in person i's platelet aggregation levels as $D_i = Y_i - X_i$ and the population mean change in platelet aggregation levels as μ_d .

Is blod platelet aggregation affected by smoking?

The paired sample t-test on whether the aggregation is affected by smoking.

- Hypothesis: H_0 : $\mu_d=0$ vs H_1 : $\mu_d
 eq 0$.
- Assumptions: $D_i \sim \mathcal{N}(\mu, \sigma^2)$ where σ^2 is unknown. The symmetric boxplot shows that the normal assumption is at least approximately satisfied.
- Test statistic: $T=rac{ar{D}-\mu_d}{S_d/\sqrt{n}}.$ Under H_0 , $T\sim t_{10}.$
- Observed test statistic: $t_0=rac{ar{d}}{s_d/\sqrt{n}}=rac{8.45}{9.65/\sqrt{11}}=2.9$
- **Rejection region:** Large value of $|t_0|$ argue against H_0 in favour of H_1 . Specifically, the critical value is, $|t_{n-1}(\alpha/2)|=|t_{10}(0.025)|=2.228$
- **Decision:** Since $|t_0|=2.9>|t_{10}(0.025)|=2.2$, there is strong evidence against H_0 . Hence we reject H_0 and conclude that the aggregation is affected by smoking at the $\alpha=0.05$ level of significance.

```
n = length(df$difference)
dbar = mean(df$difference)
s_d = sd(df$difference)
t0 = dbar/(s_d/sqrt(n))
c(n, dbar, s_d, t0) %>% round(2)

## [1] 11.00 8.45 9.65 2.91

alpha = 0.05
qt(1-alpha/2, n - 1)
```

```
## [1] 2.228139
```

Rejection region for sample mean

The rejection regions for the test using test statistic

$$t_0=rac{ar{x}-\mu_0}{s/\sqrt{n}}\geq t_{n-1}(lpha)$$

on the standardized scale can be transformed to the measurement scale.

We can do this because...

$$egin{aligned} lpha &= P\left(rac{ar{x} - \mu_0}{s/\sqrt{n}} \geq t_{n-1}(lpha)
ight) \ &= P\left(ar{x} - \mu_0 \geq t_{n-1}(lpha)s/\sqrt{n}
ight) \ &= P\left(ar{x} \geq t_{n-1}(lpha)s/\sqrt{n} + \mu_0
ight) \end{aligned}$$

Which means we can define a rejection region on the measurement scale

$$\{ar{x}: ar{x} \geq k_0 = \mu_0 + t_{n-1}(lpha)s/\sqrt{n}\} \quad ext{for} \quad H_1: \;\; \mu > \mu_0.$$

We have n=11, $ar{d}=8.45$, $s_d=9.65$, $t_0=2.91$

- Observed test statistic:
$$t_0=rac{ar{d}}{s_d/\sqrt{n}}=rac{8.45}{9.65/\sqrt{11}}=2.91$$

ullet Rejection region: $\left|rac{ar{d}-\mu_d}{s_d/\sqrt{n}}
ight|>t_{10}(0.025)=2.228$, rearranging,

$$egin{aligned} ar{d} &< \mu_d - t_{n-1}(0.025) \, s_d / \sqrt{n} \ ar{d} &< 0 - 2.228 imes 9.65 / \sqrt{11} \ ar{d} &< -6.48 \end{aligned}$$

and

$$egin{aligned} ar{d} &> \mu_d + t_{n-1}(0.025)\,s_d/\sqrt{n} \ ar{d} &> 0 + 2.228 imes 9.65/\sqrt{11} \ ar{d} &> 6.48 \end{aligned}$$

• **Decision:** If $\bar{d}<-6.48$ or $\bar{d}>6.48$ then reject H_0 . In this case, $\bar{d}=8.45>6.48$ so we reject H_0 .


```
before = c(25, 25, 27, 44, 30, 67, 53, 53, 52, 60, 28)
 after = c(27, 29, 37, 36, 46, 82, 57, 80, 61, 59, 43)
 df = data.frame(before, after, difference = after-before)
 (s_d = sd(df$difference))
## [1] 9.647421
 n=nrow(df); mu0=0
 (crit_val=qt(0.975,n-1))
## [1] 2.228139
 rrlower=mu0-crit_val*s_d/sqrt(n)
 rrupper=mu0+crit_val*s_d/sqrt(n)
 c(rrlower,rrupper) %>% round(2)
```

[1] -6.48 6.48

Beer contents

We have n=6, $\bar{x}=374.87$, s=0.29, $t_0=-1.11$. Hypothesis test using rejection region with $\alpha=0.05$.

- Hypothesis: H_0 : $\mu=375$ vs H_1 : $\mu<375$
- Assumptions: X_i are *iid* rv and follow $N(\mu, \sigma^2)$.
- ullet Test statistic: $T=rac{ar{X}-\mu_0}{S/\sqrt{n}}.$ Under H_0 , $T\sim t_{n-1}.$

Rejection region (on the data scale):

$$egin{aligned} rac{ar{X} - \mu}{s/\sqrt{n}} < t_{n-1}(0.05) \ ar{X} < \mu + t_{n-1}(0.05) \, s/\sqrt{n} \ ar{X} < 375 - 2.015 imes 0.29/\sqrt{6} \ ar{X} < 374.74 \end{aligned}$$

I.e. reject if \bar{x} is less than 374.74.

• **Decision:** the observed sample mean, $\bar{x}=374.9$ is greater than 374.74, so do not reject H_0 .

Confidence intervals

To link decision rules with **confidence intervals**:

- if the population parameter is inside the **confidence interval** then it is within the range of plausible values
- do not reject H_0 at the α level if significance if the value of the population parameter under the null hypothesis is inside the $100(1-\alpha)\%$ confidence interval

References

For further details see Larsen and Marx (2012), sections 6.1, 6.2 and 6.4.

Larsen, R. J. and M. L. Marx (2012). *An Introduction to Mathematical Statistics and its Applications*. 5th ed. Boston, MA: Prentice Hall. ISBN: 978-0-321-69394-5.