Trigonometry (5/5): Inverse Trigonometric Functions

Introduction to Engineering Mathematics

Prof. Joris Vankerschaver

Overview

- 1 Definition of the inverse trigonometric functions
- 2 Examples

Inverting the sine function

- The sine function turns angles into sine values.
- The **inverse sine** turns sine values back into angles.
- Notation: $\sin^{-1}(x)$, $\arcsin x$

Problem: Many values in the range correspond to the same angle!

Restricting the domain

Solution: restrict the domain of the sine function so that there is exactly one angle corresponding to each value.

This gives us a meaningful way to define the inverse sine.

The inverse sine function

- Domain: [-1,1], range: $[-\pi/2,\pi/2]$
- Cancellation properties:
 - $\sin(\arcsin(y)) = y$ for all $y \in [-1, 1]$
 - $\arcsin(\sin(\theta)) = \theta$ for all $\theta \in [-\pi/2, \pi/2]$.

The inverse cosine function

- Domain: [-1, 1], range: $[0, \pi]$
- Cancellation properties:
 - $\cos(\arccos(y)) = y$ for all $y \in [-1, 1]$
 - $\arccos(\cos(\theta)) = \theta$ for all $\theta \in [0, \pi]$

The inverse tangent function

- Domain: all of \mathbb{R} , range: $[-\pi/2, \pi/2]$
- Cancellation properties:
 - $\tan(\arctan(y)) = y$ for all $y \in \mathbb{R}$
 - $\arctan(\tan\theta) = \theta$ for all $\theta \in [-\pi/2, \pi/2]$

Notation (warning)

Don't confuse

$$\sin^k \theta = (\sin \theta)^k$$
, for $k \ge 0$

with

$$\sin^{-1} x = \arcsin x.$$

Example

Simplify the following expression: $\tan\left(\sin^{-1}\frac{2}{3}\right)$.

Example

Show that $\arccos x = \frac{\pi}{2} - \arcsin x$.