Semaine du 14/10 au 18/10

1 Cours

Applications

Définitions Ensembles d'arrivée et de départ, graphe, image.

Composition Définition, associativité, application identité.

Injectivité Définition. Composition et injectivité.

Surjectivité Définition. Composition et surjectivité.

Bijectivité Définition. Bijection réciproque. Si $f : E \to F$ et $g : F \to G$ sont bijectives, alors $g \circ f$ est bijective et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. $f : E \to F$ est bijective **si et seulement si** il existe $g : F \to E$ telle que $g \circ f = \operatorname{Id}_E$ et $f \circ g = \operatorname{Id}_F$ et dans ce cas, $f^{-1} = g$.

Image directe et réciproque Définitions. Image directe et réciproque d'une union, d'une intersection.

Restriction et prolongement Définitions. Bijection induite.

Fonction indicatrice Définition. Fonction indicatrice de l'union, de l'intersection, du complémentaire.

Fonctions d'une variable réelle

Généralités Ensemble de définition. Représentation graphique. Fonctions associées $(x \mapsto f(x) + a, x \mapsto f(x + a), x \mapsto \lambda f(x), x \mapsto f\left(\frac{x}{\lambda}\right)$. Parité, périodicité. Monotonie. Fonctions majorées, minorées, bornées. Minimum et maximum d'une fonction.

Continuité Continuité et opérations (continuité d'une composée). Théorème des valeurs intermédiaires et son corollaire pour les fonctions strictement monotones. Théorème de la bijection.

2 Méthodes à maîtriser

- ► Savoir prouver l'injectivité en pratique : «Soit (x, x') tel que f(x) = f(x')» puis montrer que x = x'.
- ► Savoir prouver la surjectivité en pratique : recherche d'un antécédent (résolution d'une équation).
- ► Savoir prouver la bijectivité en pratique :
 - Existence et unicité d'une solution de l'équation y = f(x) où y est fixé et x est l'inconnue.
 - Déterminer g telle que $g \circ f = \text{Id}$ et $f \circ g = \text{Id}$.
 - Montrer que f est injective et surjective.
- ► Automatismes :
 - $y \in f(A) \iff \exists x \in A, \ y = f(x)$
 - $x \in f^{-1}(B) \iff f(x) \in B$
- ▶ Majorer, minorer, borner (majorer en valeur absolue) une fonction.
- ► Savoir déterminer le minimum ou le maximum éventuel d'une fonction par une étude de cette fonction.
- ▶ Justifier la continuité d'une composée.
- ▶ Déterminer le nombre de solutions d'une équation par étude de fonctions.
- ► Savoir prouver une inégalité par étude de fonction.

3 Questions de cours

▶ Soit $f \in F^E$. Montrer que f est injective si et seulement si

$$\forall (A, B) \in \mathcal{P}(E)^2, f(A \cap B) = f(A) \cap f(B)$$

▶ Soit $f \in F^E$. Montrer que f est injective si et seulement si

$$\forall A \in \mathcal{P}(E), f^{-1}(f(A)) = A$$

► Soit $f \in F^E$. Montrer que f est surjective si et seulement si

$$\forall B \in \mathscr{P}(F), f(f^{-1}(B)) = B$$

▶ Retour sur le DS n°2 : formule d'inversion de Pascal

Soient k, ℓ, n des entiers naturels tels que $\ell \le k \le n$.

1. Montrer que
$$\binom{n}{k}\binom{k}{\ell} = \binom{n}{\ell}\binom{n-\ell}{k-\ell}$$
.

2. En déduire que si
$$\ell < n$$
, $\sum_{k=\ell}^{n} (-1)^k \binom{n}{k} \binom{k}{\ell} = 0$.

3. Soit (a_n) et (b_n) deux suites réelles vérifiant :

$$\forall n \in \mathbb{N}, \ b_n = \sum_{k=0}^n \binom{n}{k} a_k$$

Montrer que

$$\forall n \in \mathbb{N}, \ a_n = (-1)^n \sum_{k=0}^n (-1)^k \binom{n}{k} b_k$$