Q.1 Fill in the blanks [14 marks]

Q1.1 [1 mark]

If A = [1 2; 3 -1] then 4A = ...

Answer: (b) [4 8; 12 -4]

Solution:

$$4A=4egin{bmatrix}1&2\3&-1\end{bmatrix}=egin{bmatrix}4&8\12&-4\end{bmatrix}$$

Q1.2 [1 mark]

Order of the matrix [1 1 2; -3 2 3] is ...

Answer: (a) 2×3

Solution:

Matrix has 2 rows and 3 columns, so order is 2×3 .

Q1.3 [1 mark]

If $A = [1 \ 1; \ 1 \ 1]$ then $A^2 = ...$

Answer: (d) [2 2; 2 2]

Solution:

$$A^2 = egin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix} egin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix} = egin{bmatrix} 2 & 2 \ 2 & 2 \end{bmatrix}$$

Q1.4 [1 mark]

If A = [2 -1; 3 4] then adjoint of A = ...

Answer: (c) [4 1; -3 2]

Solution:

For matrix $A = [a \ b; c \ d], adj(A) = [d -b; -c \ a]$ adj(A) = [4 1; -3 2]

Q1.5 [1 mark]

d/dx(tan x) = ...

Answer: (d) sec²x

Solution:

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

Q1.6 [1 mark]

 $d/dx(\sin 5x) = ...$

Answer: (b) 5cos5x

Solution:

 $rac{d}{dx}(\sin 5x)=5\cos 5x$ (using chain rule)

Q1.7 [1 mark]

If function y = f(x) is maximum at x = a then f'(a) = ...

Answer: (c) 0

Solution:

At maximum point, first derivative equals zero: f'(a) = 0

Q1.8 [1 mark]

 $\int \sin x \, dx = ... + C$

Answer: (a) -cos x

Solution:

 $\int \sin x \, dx = -\cos x + C$

Q1.9 [1 mark]

 $\int 1/(x^2+4) dx = ... + C$

Answer: (d) $(1/2)\tan^{-1}(x/2)$

Solution:

$$\int \frac{1}{x^2+4} dx = \frac{1}{2} \tan^{-1} \left(\frac{x}{2}\right) + C$$

Q1.10 [1 mark]

 $\int_{1}^{2} x^{2} dx = ...$

Answer: (a) 7/3

Solution:

$$\int_{1}^{2} x^{2} dx = \left[\frac{x^{3}}{3}\right]_{1}^{2} = \frac{8}{3} - \frac{1}{3} = \frac{7}{3}$$

Q1.11 [1 mark]

Order of differential equation $(d^3y/dx^3)^4 + dy/dx + 5y = 0$ is ...

Answer: (c) 3

Solution:

Order is the highest derivative present = 3

Q1.12 [1 mark]

Integrating factor of dy/dx + y/x = 1 is ...

Answer: (b) x

Solution:

I.F. =
$$e^{\int rac{1}{x} dx} = e^{\ln x} = x$$

Q1.13 [1 mark]

Mean of 39,23,58,47,50,16,61 is ...

Answer: (b) 42

Solution:

Mean =
$$\frac{39+23+58+47+50+16+61}{7} = \frac{294}{7} = 42$$

Q1.14 [1 mark]

Mean of first five natural numbers is ...

Answer: (a) 3

Solution:

Mean =
$$\frac{1+2+3+4+5}{5} = \frac{15}{5} = 3$$

Q.2 Attempt any two [14 marks total]

Q2(A).1 [3 marks]

If A = [1 3 5; -1 0 2; 4 3 6], B = [3 4 5; 5 4 3; 3 5 4], C = [1 2 1; 3 3 3; 4 5 6], find 3A+2B-4C

Solution:

$$3A = egin{bmatrix} 3 & 9 & 15 \ -3 & 0 & 6 \ 12 & 9 & 18 \end{bmatrix}$$

Solution:
$$3A = \begin{bmatrix} 3 & 9 & 15 \\ -3 & 0 & 6 \\ 12 & 9 & 18 \end{bmatrix}$$
$$2B = \begin{bmatrix} 6 & 8 & 10 \\ 10 & 8 & 6 \\ 6 & 10 & 8 \end{bmatrix}$$

$$4C = \begin{bmatrix} 4 & 8 & 4 \\ 12 & 12 & 12 \\ 16 & 20 & 24 \end{bmatrix}$$

$$3A + 2B - 4C = \begin{bmatrix} 5 & 9 & 21 \\ -5 & -4 & 0 \\ 2 & -1 & 2 \end{bmatrix}$$

Q2(A).2 [3 marks]

If A = [7 5; -1 2], B = [1 -1; 3 2], show that $(A+B)^T = A^T + B^T$

$$A+B=egin{bmatrix} 8 & 4 \ 2 & 4 \end{bmatrix}$$

$$(A+B)^T = \begin{bmatrix} 8 & 2 \\ 4 & 4 \end{bmatrix}$$
 $A^T = \begin{bmatrix} 7 & -1 \\ 5 & 2 \end{bmatrix}$, $B^T = \begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}$ $A^T + B^T = \begin{bmatrix} 8 & 2 \\ 4 & 4 \end{bmatrix}$

Hence proved: $(A + B)^T = A^T + B^T$

Q2(A).3 [3 marks]

Solve the differential equation xy dy = (x+1)(y+1)dx

Solution:

Separating variables:

$$rac{y}{y+1}dy = rac{x+1}{x}dx \ \left(1 - rac{1}{y+1}
ight)dy = \left(1 + rac{1}{x}
ight)dx$$

Integrating:

$$|y - \ln |y + 1| = x + \ln |x| + C$$

Final answer: $y-x=\ln|y+1|+\ln|x|+C$

Q2(B).1 [4 marks]

Find the inverse of matrix [3 1 2; 2 -3 -1; 1 2 1]

Solution:

Let
$$A = \begin{bmatrix} 3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & 2 & 1 \end{bmatrix}$$

$$|A| = 3(-3 - (-2)) - 1(2 - (-1)) + 2(4 - (-3)) = 3(-1) - 1(3) + 2(7) = -3 - 3 + 14 = 8$$

Cofactors:

•
$$C_{11} = -1$$
, $C_{12} = -3$, $C_{13} = 7$

•
$$C_{31} = 5$$
, $C_{32} = 7$, $C_{33} = -11$

$$adj(A) = egin{bmatrix} -1 & 3 & 5 \ -3 & 1 & 7 \ 7 & -5 & -11 \end{bmatrix}$$

$$A^{-1} = rac{1}{8} egin{bmatrix} -1 & 3 & 5 \ -3 & 1 & 7 \ 7 & -5 & -11 \end{bmatrix}$$

Q2(B).2 [4 marks]

Solve 3x - 2y = 8, 5x + 4y = 6 using matrix method

Solution:

$$\begin{bmatrix} 3 & -2 \\ 5 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ 6 \end{bmatrix}$$

$$|A| = 3(4) - (-2)(5) = 12 + 10 = 22$$

$$A^{-1} = \frac{1}{22} \begin{bmatrix} 4 & 2 \\ -5 & 3 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{22} \begin{bmatrix} 4 & 2 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} 8 \\ 6 \end{bmatrix} = \frac{1}{22} \begin{bmatrix} 44 \\ -22 \end{bmatrix}$$

Answer: x = 2, y = -1

Q2(B).3 [4 marks]

If A = [1 2 1; 2 3 1; 1 2 2], find A·adj(A)

Solution:

$$|A| = 1(6-2) - 2(4-1) + 1(4-3) = 4-6+1 = -1$$

For any matrix A: $A \cdot adj(A) = |A| \cdot I$

$$A \cdot adj(A) = (-1) egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} = egin{bmatrix} -1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & -1 \end{bmatrix}$$

Q.3 Attempt any two [14 marks total]

Q3(A).1 [3 marks]

If $y = \log(\sin x/(1+\cos x))$, find dy/dx

Solution:

$$y = \log(\sin x) - \log(1 + \cos x)$$

$$\frac{dy}{dx} = \frac{1}{\sin x} \cdot \cos x - \frac{1}{1 + \cos x} \cdot (-\sin x)$$

$$=\frac{\cos x}{\sin x}+\frac{\sin x}{1+\cos x}$$

$$=\cot x + \frac{\sin x}{1+\cos x}$$

Using identity: $\frac{\sin x}{1+\cos x} = \tan(\frac{x}{2})$

Answer: $\frac{dy}{dx} = \cot x + \tan(\frac{x}{2})$

Q3(A).2 [3 marks]

If $y = \sin(x+y)$, find dy/dx

Differentiating both sides:

$$\frac{dy}{dx} = \cos(x+y) \cdot \left(1 + \frac{dy}{dx}\right)$$

$$\frac{dy}{dx} = \cos(x+y) + \cos(x+y) \cdot \frac{dy}{dx}$$

$$\frac{dy}{dx} - \cos(x+y) \cdot \frac{dy}{dx} = \cos(x+y)$$

$$\frac{dy}{dx}[1-\cos(x+y)] = \cos(x+y)$$

Answer: $\frac{dy}{dx} = \frac{\cos(x+y)}{1-\cos(x+y)}$

Q3(A).3 [3 marks]

Obtain ∫x²log x dx

Solution:

Using integration by parts: ∫u dv = uv - ∫v du

Let
$$u = log x$$
, $dv = x^2 dx$

Then du = (1/x) dx, $v = x^3/3$

$$\int x^2 \log x \, dx = \log x \cdot \frac{x^3}{3} - \int \frac{x^3}{3} \cdot \frac{1}{x} dx$$

$$=rac{x^3\log x}{3}-\intrac{x^2}{3}dx$$

$$= \frac{x^3 \log x}{3} - \frac{x^3}{9} + C$$

Answer: $\frac{x^3}{3}(\log x - \frac{1}{3}) + C$

Q3(B).1 [4 marks]

Motion equation $s = 2t^3 - 3t^2 - 12t + 7$. Find s and t when acceleration is zero

Solution:

$$s = 2t^3 - 3t^2 - 12t + 7$$

Velocity:
$$v=rac{ds}{dt}=6t^2-6t-12$$

Acceleration:
$$a = \frac{dv}{dt} = 12t - 6$$

When acceleration = 0:

$$12t - 6 = 0$$

$$t = \frac{1}{2}$$

At
$$t = 1/2$$
:

$$s = 2(\frac{1}{2})^3 - 3(\frac{1}{2})^2 - 12(\frac{1}{2}) + 7 = \frac{1}{4} - \frac{3}{4} - 6 + 7 = \frac{1}{2}$$

Answer: t = 1/2, s = 1/2

Q3(B).2 [4 marks]

If $y = 2e^{3x} + 3e^{-2x}$, prove $d^2y/dx^2 - dy/dx - 6y = 0$

$$\begin{split} y &= 2e^{3x} + 3e^{-2x} \\ \frac{dy}{dx} &= 6e^{3x} - 6e^{-2x} \\ \frac{d^2y}{dx^2} &= 18e^{3x} + 12e^{-2x} \\ \text{Now: } \frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y \\ &= (18e^{3x} + 12e^{-2x}) - (6e^{3x} - 6e^{-2x}) - 6(2e^{3x} + 3e^{-2x}) \\ &= 18e^{3x} + 12e^{-2x} - 6e^{3x} + 6e^{-2x} - 12e^{3x} - 18e^{-2x} \\ &= (18 - 6 - 12)e^{3x} + (12 + 6 - 18)e^{-2x} = 0 \end{split}$$

Hence proved

Q3(B).3 [4 marks]

Find maximum and minimum values of $f(x) = x^3 - 3x + 11$

Solution:

$$f(x) = x^3 - 3x + 11$$

 $f'(x) = 3x^2 - 3 = 3(x^2 - 1) = 3(x - 1)(x + 1)$

Critical points: x = 1, x = -1

$$f''(x) = 6x$$

At
$$x = 1$$
: $f''(1) = 6 > 0 \rightarrow Local minimum$
At $x = -1$: $f''(-1) = -6 < 0 \rightarrow Local maximum$

$$f(1)=1-3+11=9$$
 (minimum) $f(-1)=-1+3+11=13$ (maximum)

Answer: Maximum = 13 at x = -1, Minimum = 9 at x = 1

Q.4 Attempt any two [14 marks total]

Q4(A).1 [3 marks]

Obtain ∫sin 5x sin 6x dx

Solution:

Using identity:
$$\sin A \sin B = \frac{1}{2} [\cos(A-B) - \cos(A+B)]$$

 $\sin 5x \sin 6x = \frac{1}{2} [\cos(5x-6x) - \cos(5x+6x)]$
 $= \frac{1}{2} [\cos(-x) - \cos(11x)] = \frac{1}{2} [\cos x - \cos(11x)]$
 $\int \sin 5x \sin 6x \, dx = \frac{1}{2} \int [\cos x - \cos(11x)] dx$
 $= \frac{1}{2} [\sin x - \frac{\sin(11x)}{11}] + C$

Answer: $\frac{1}{2}\sin x - \frac{\sin(11x)}{22} + C$

Q4(A).2 [3 marks]

Obtain $\int (1+x)e^{x}/\cos^{2}(xe^{x}) dx$

Solution:

Let $u=xe^x$, then $du=(1+x)e^xdx$

The integral becomes:

$$\int \frac{du}{\cos^2 u} = \int \sec^2 u \, du = \tan u + C$$

Substituting back:

$$=\tan(xe^x)+C$$

Answer: $tan(xe^x) + C$

Q4(A).3 [3 marks]

Find standard deviation for data: 6,7,10,12,13,4,8,12

Solution:

Data: 6, 7, 10, 12, 13, 4, 8, 12

n = 8

Mean =
$$\frac{6+7+10+12+13+4+8+12}{8} = \frac{72}{8} = 9$$

х	x-9	(x-9) ²
6	-3	9
7	-2	4
10	1	1
12	3	9
13	4	16
4	-5	25
8	-1	1
12	3	9

$$\Sigma(x-9)^2 = 74$$

Standard deviation =
$$\sqrt{rac{\sum (x-ar{x})^2}{n}}=\sqrt{rac{74}{8}}=\sqrt{9.25}=3.04$$

Answer: $\sigma = 3.04$

Q4(B).1 [4 marks]

Obtain $\int (2x+1)/[(x+1)(x-3)] dx$

Using partial fractions:
$$\frac{2x+1}{(x+1)(x-3)} = \frac{A}{x+1} + \frac{B}{x-3}$$

$$2x + 1 = A(x - 3) + B(x + 1)$$

When x = -1:
$$2(-1)+1=A(-4)\Rightarrow -1=-4A\Rightarrow A=\frac{1}{4}$$

When x = 3:
$$2(3)+1=B(4)\Rightarrow 7=4B\Rightarrow B=rac{7}{4}$$

$$\int \frac{2x+1}{(x+1)(x-3)} dx = \frac{1}{4} \int \frac{1}{x+1} dx + \frac{7}{4} \int \frac{1}{x-3} dx$$

$$= \frac{1}{4} \ln |x+1| + \frac{7}{4} \ln |x-3| + C$$

Answer: $\frac{1}{4} \ln |x+1| + \frac{7}{4} \ln |x-3| + C$

04(B).2 [4 marks]

Obtain $\int_0^{\pi/2} \sqrt{(\cot x)} / (\sqrt{(\cot x)} + \sqrt{(\tan x)}) dx$

Solution:

Let
$$I=\int_0^{\pi/2}rac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}dx$$

Using property:
$$\int_0^a f(x)dx = \int_0^a f(a-x)dx$$

$$I=\int_0^{\pi/2}rac{\sqrt{\cot(\pi/2-x)}}{\sqrt{\cot(\pi/2-x)}+\sqrt{\tan(\pi/2-x)}}dx$$

Since
$$\cot(\pi/2 - x) = \tan x$$
 and $\tan(\pi/2 - x) = \cot x$:

$$I=\int_0^{\pi/2}rac{\sqrt{ an x}}{\sqrt{ an x}+\sqrt{\cot x}}dx$$

Adding both expressions:
$$2I=\int_0^{\pi/2} rac{\sqrt{\cot x}+\sqrt{\tan x}}{\sqrt{\cot x}+\sqrt{\tan x}} dx=\int_0^{\pi/2} 1\, dx=rac{\pi}{2}$$

Answer: $I = \frac{\pi}{4}$

O4(B).3 [4 marks]

Find mean deviation for grouped data

X _i	4	8	11	17	20	24	32
f _i	3	5	9	5	4	3	1

Solution:

$$N = \Sigma f_i = 3+5+9+5+4+3+1 = 30$$

Mean =
$$\frac{\sum f_i x_i}{N} = \frac{3(4) + 5(8) + 9(11) + 5(17) + 4(20) + 3(24) + 1(32)}{30}$$

$$=\frac{12+40+99+85+80+72+32}{30}=\frac{420}{30}=14$$

$$\Sigma f_i | x_i - 14 | = 174$$

Mean deviation =
$$\frac{\sum f_i |x_i - \bar{x}|}{N} = \frac{174}{30} = 5.8$$

Answer: Mean deviation = 5.8

Q.5 Attempt any two [14 marks total]

Q5(A).1 [3 marks]

Find mean deviation for grouped data

Class	30-40	40-50	50-60	60-70	70-80	80-90	90-100
Freq	3	7	12	15	8	3	2

Solution:

Class	Mid-value	f _i	f _i x _i
30-40	35	3	105
40-50	45	7	315
50-60	55	12	660
60-70	65	15	975
70-80	75	8	600
80-90	85	3	255
90-100	95	2	190

$$N = 50$$
, $\Sigma f_i x_i = 3100$

$$Mean = 3100/50 = 62$$

50-60 55 12 7	84	
60-70 65 15 3	45	
70-80 75 8 13	104	
80-90 85 3 23	69	
90-100 95 2 33	66	

Mean deviation = 568/50 = 11.36

Answer: Mean deviation = 11.36

Q5(A).2 [3 marks]

Find standard deviation for given data

Class	60	61	62	63	64	65	66	67	68
Freq	2	1	12	29	25	12	10	4	5

Solution:

N = 100, Mean = $(2 \times 60 + 1 \times 61 + ... + 5 \times 68)/100 = 6380/100 = 63.8$

x _i	f _i	(x _i -63.8)	(x _i -63.8) ²	f _i (x _i -63.8) ²
60	2	-3.8	14.44	28.88
61	1	-2.8	7.84	7.84
62	12	-1.8	3.24	38.88
63	29	-0.8	0.64	18.56
64	25	0.2	0.04	1.00
65	12	1.2	1.44	17.28
66	10	2.2	4.84	48.40
67	4	3.2	10.24	40.96
68	5	4.2	17.64	88.20

 $\Sigma f_i(x_i - \bar{x})^2 = 290$

Standard deviation = $\sqrt{(290/100)} = \sqrt{2.9} = 1.70$

Answer: $\sigma = 1.70$

Q5(A).3 [3 marks]

Find mean for grouped data

Class	0-20	20-40	40-60	60-80	80-100	100-120
Freq	26	31	35	42	82	71

Class	Mid-value	f _i	f _i x _i
0-20	10	26	260
20-40	30	31	930
40-60	50	35	1750
60-80	70	42	2940
80-100	90	82	7380
100-120	110	71	7810

$$N = 287$$
, $\Sigma f_i x_i = 21070$

Mean =
$$\frac{\sum f_i x_i}{N} = \frac{21070}{287} = 73.42$$

Answer: Mean = 73.42

Q5(B).1 [4 marks]

Solve differential equation $(x + y + 1)^2 dy/dx = 1$

Solution:

Let
$$z = x + y + 1$$
, then $dz/dx = 1 + dy/dx$

So
$$dy/dx = dz/dx - 1$$

Substituting:
$$z^2(dz/dx-1)=1$$

$$z^2dz/dx - z^2 = 1$$

$$z^2 dz/dx = 1 + z^2$$

$$rac{z^2}{1+z^2}dz=dx$$

Integrating:
$$\int rac{z^2}{1+z^2} dz = \int dx$$

$$\int \left(1 - rac{1}{1 + z^2}
ight) dz = x + C$$

$$z - \tan^{-1} z = x + C$$

Substituting back z = x + y + 1:

$$(x+y+1) - \tan^{-1}(x+y+1) = x+C$$

Answer:
$$y + 1 = \tan^{-1}(x + y + 1) + C$$

Q5(B).2 [4 marks]

Solve $dy/dx + y/x = e^x$, y(0) = 2

Solution:

This is a linear differential equation of the form dy/dx + P(x)y = Q(x)

Here
$$P(x) = 1/x$$
, $Q(x) = e^{x}$

Integrating factor:
$$I. \, F. = e^{\int \frac{1}{x} dx} = e^{\ln |x|} = |x| = x$$
 (for x > 0)

Multiplying the equation by x:

$$x\frac{dy}{dx} + y = xe^x$$

$$\frac{d}{dx}(xy) = xe^x$$

Integrating both sides:

$$xy = \int xe^x dx$$

Using integration by parts for ∫xex dx:

Let
$$u = x$$
, $dv = e^x dx$

Then du = dx, $v = e^x$

$$\int xe^{x}dx = xe^{x} - \int e^{x}dx = xe^{x} - e^{x} = e^{x}(x-1)$$

So:
$$xy=e^x(x-1)+C$$
 $y=rac{e^x(x-1)+C}{x}$

Using initial condition y(0) = 2:

As $x \rightarrow 0$, we need to use L'Hôpital's rule or series expansion.

From the original equation at x = 0: $dy/dx = e^x - y/x$

This suggests we need to be more careful with the initial condition.

Alternative approach: Since the equation has a singularity at x = 0, we solve in the neighborhood where $x \neq 0$.

Answer: $y=rac{e^x(x-1)+C}{x}$ where C is determined by boundary conditions.

Q5(B).3 [4 marks]

Solve y dy/dx = $\sqrt{(1 + x^2 + y^2 + x^2y^2)}$

Solution

$$y \frac{dy}{dx} = \sqrt{1 + x^2 + y^2 + x^2 y^2}$$

$$yrac{dy}{dx}=\sqrt{(1+x^2)(1+y^2)}$$

$$\frac{ydy}{\sqrt{1+y^2}} = \sqrt{1+x^2}dx$$

Integrating both sides:

$$\int \frac{ydy}{\sqrt{1+y^2}} = \int \sqrt{1+x^2} dx$$

For the left side, let $u = 1 + y^2$, then du = 2y dy:

$$\int rac{y dy}{\sqrt{1+y^2}} = rac{1}{2} \int rac{du}{\sqrt{u}} = \sqrt{u} = \sqrt{1+y^2}$$

For the right side:

$$\int \sqrt{1+x^2} dx = \frac{x\sqrt{1+x^2}}{2} + \frac{1}{2} \ln|x + \sqrt{1+x^2}| + C$$

Therefore:

$$\sqrt{1+y^2} = \frac{x\sqrt{1+x^2}}{2} + \frac{1}{2}\ln|x+\sqrt{1+x^2}| + C$$

Answer: $\sqrt{1+y^2}=rac{x\sqrt{1+x^2}}{2}+rac{1}{2}\ln|x+\sqrt{1+x^2}|+C$

Formula Cheat Sheet

Matrix Operations

- $\bullet \quad (A+B)^T = A^T + B^T$
- $(AB)^T = B^T A^T$
- $A \cdot adj(A) = |A| \cdot I$
- For 2×2 matrix $[a \ b; c \ d]$: $adj = [d \ -b; -c \ a]$

Differentiation Formulas

- $\frac{d}{dx}(\sin x) = \cos x$
- $\frac{d}{dx}(\cos x) = -\sin x$
- $\frac{d}{dx}(\tan x) = \sec^2 x$
- $\frac{d}{dx}(\log x) = \frac{1}{x}$
- $\frac{d}{dx}(e^x) = e^x$
- Chain rule: $\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$

Integration Formulas

- $\int \sin x \, dx = -\cos x + C$
- $\bullet \quad \int \cos x \, dx = \sin x + C$
- $\int \sec^2 x \, dx = \tan x + C$
- $\bullet \quad \int \frac{1}{x} dx = \ln|x| + C$
- $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C$

Differential Equations

- Linear DE: $rac{dy}{dx} + P(x)y = Q(x)$
- Integrating Factor: $I.\,F.=e^{\int P(x)dx}$
- ullet Variable Separable: $rac{dy}{dx}=f(x)g(y)\Rightarrowrac{dy}{g(y)}=f(x)dx$

Statistics

- ullet Mean: $ar{x}=rac{\sum x_i}{n}$ (ungrouped), $ar{x}=rac{\sum f_i x_i}{\sum f_i}$ (grouped)
- Mean Deviation: $M.\,D.=rac{\sum |x_i-ar{x}|}{n}$
- Standard Deviation: $\sigma = \sqrt{rac{\sum (x_i ar{x})^2}{n}}$

Problem-Solving Strategies

Matrix Problems

- 1. Always check dimensions before operations
- 2. For inverse: Calculate determinant first, then adjoint
- 3. For system of equations: Use $X=A^{-1}B$ where AX=B

Differentiation Problems

- 1. Identify the type: Chain rule, product rule, quotient rule
- 2. For implicit differentiation: Differentiate both sides, collect dy/dx terms
- 3. For parametric: Use $rac{dy}{dx}=rac{dy/dt}{dx/dt}$

Integration Problems

- 1. Try substitution if you see function and its derivative
- 2. **Use integration by parts** for products (LIATE rule)
- 3. For definite integrals: Check for symmetry properties

Differential Equations

- 1. **Identify type**: Separable, linear, exact
- 2. For linear DE: Find integrating factor first
- 3. Always verify your solution by substitution

Statistics Problems

- 1. Find mean first for deviation calculations
- 2. Use grouped data formulas when data is in classes
- 3. Create frequency table to organize calculations

Common Mistakes to Avoid

- 1. **Matrix multiplication**: Order matters (AB ≠ BA generally)
- 2. Chain rule: Don't forget to multiply by derivative of inner function
- 3. Integration by parts: Choose u and dv carefully using LIATE
- 4. **Differential equations**: Don't forget the constant of integration

5. Statistics: Use correct formula for grouped vs ungrouped data

Exam Tips

- 1. Read questions carefully especially for OR questions
- 2. Show all steps partial marks are awarded
- 3. **Check units and signs** in your final answers
- 4. Verify solutions when possible by substitution
- 5. Manage time wisely attempt questions you're confident about first
- 6. Use standard formulas memorize the formula sheet content
- 7. For fill-in-blanks: Eliminate obviously wrong options first