FIZ365 – Fizikte Bilgisayarlı Yöntemler - I

Mimar Sinan Güzel Sanatlar Üniversitesi

Fizik Bölümü

Ar. Gör. Dr. Taygun Bulmuş

06.09.2023

İçerik

- İzlence (Syllabus)
- Ders hakkında bilgi (programlar ve paketler)
- Kullanacağımız programlar
- Bulut sistemleri
- Python: Google Colab / Vs code ile programlama
- Python: Jupyter Notebook

İzlence (Syllabus)

- Dersler mümkün olduğunca yüz yüze yapılacak.
- Tüm ödev, quiz ve sınavlar için **Microsoft Teams** kullanılacak.
- **Ders tarihleri** (2023 Güz): Cuma 13:00-16:00.
- Uygulama/Quiz (2023 Güz): Cuma 16:00 18:00.
- Ofis saatleri (2023 Güz): Cuma 10:00 12:00.
- Quizler: %10, Ödevler: %10, İki Vize: %20 + %20, Final: %40.
- Sadece MS Teams'üzerinden gönderilen ödevler kabul edilecektir.
- İnternetten direkt alınan ödevlerden puan kırılacaktır.
- İstenilen formatta yapılmayan ödevler dikkate alınmayacaktır.
- En az 4 adet quiz, en az 4 adet ödev olacaktır.

İzlence (Syllabus)

Ayrıntılı izlence için MS Teams'e bakınız.

- Çevrim içi programlama
- Python dili ile Programlama
- Python paketleri (Numpy, Scipy, Matplotlib, ...)
- Doğrusal denklem sistemleri
- Eğri uydurma
- Kök bulma
- Türev
- İntegral
- Adi diferansiyel denklemler

Kaynak

- Numerical Methods in Engineering with Python 3, Jaan Kiusalaas, Cambridge University Press, 2013
- Introduction to Engineering and Scientific Computing with Python, David E. Clough, Steven C. Chapra, 1. Baski, 2022,
- Sayısal Analiz ve Mühendislik Uygulamaları, İrfan Karagöz, 5. Baskı, 2019.
- Bu kaynakların dışında referanslar (web sitesi, kitap, video vs.) ders sırasında/sonunda verilecektir.

FIZ365

- Quizlerde ve sınavlarda VS Code programı kullanılacaktır.
- Google Colab'ın bilinmesi tavsiye edilir ancak zorunlu değildir.
- Aksi belirtilmedikçe temel paketler (matris oluşturma vs.) dışında hazır fonksiyonlar kullanmak yasaktır.
- Derslerde yoklama alınacaktır.
- Harf notları aşağıdaki gibi olacaktır.

Ders Başarı Notu	Katsayı	Puan
AA	4,00	90-100
BA	3,75	85-89
BB	3,50	80-84
CB	3,25	75-79
CC	3,00	70-74
DC	2,75	65-69
DD	2,50	60-64
EE	2,00	50-59
FF	0	0-49

Python

- Python, yüksek seviye, her çeşit kullanıma uygun bir programlama dilidir.
- Nesneye dayalı (object oriented) bir dildir.
- Python dili düzen üzerine kuruludur.
 - TAB tuşu yerine 4 boşluk kullanılmalıdır.
 - Python diline uygun düzen kuralları kullanılmaz ise kod çalışmaz.
- Python, çöpü toplanmış (garbage collected) bir dildir.
 - İşaretçi (pointer) kullanmanıza "gerek" yoktur.
- Python dilinin versiyonları vardır. Versiyonlar arası dil değişebilir.
 - Python2 'de
 - print "Merhaba Dünya!"
 - Python3'de
 - print("Merhaba Dünya!")

Python

- Python dili C dili kullanılarak oluşturulmuştur.
- Python düşük seviye programlama dillerine göre "yavaştır" [geeksforgeeks].
 - Python bir tercümana (interpreter) ihtiyaç duyar. Bu tercümanın derleyici, bit kod, sanal makina gibi bileşenleri vardır. Bu bileşenler çöp toplama işi gibi işleri otomatik yapar.
 - Örneğin C++ dilinde yazılan bir programı ayrıca derlemeniz gerekir.
- Python hızlıdır, çünkü yazması kolaydır.
- Popülerliği gün geçtikçe artmaktadır.
- Hesaplamalı fizikte kullanılan bazı paketler:
 - Astropy
 - Biopython
 - Sympy
 - Qutip
 - Pymunk
 - ...

Python Hiz

- Python dilinin yavaşlığı ile ilgili video:
 Youtube: The Fastest Way to Loop in Python An Unfortunate Truth
- Bu videoda 1'den 100 milyona kadar sayıların toplamını hesaplamış.
- 1) "While" loop'u ile: **15.26 saniye** (python-ic)
- 2) "For" loop'u ile: **9.40 saniye** (C)
- 3) "sum(range)" ile: **6.37 saniye** (python-ic, built-in)
- 4) Numpy ile: **0.80 saniye** (Saf C)
- 5) "n*(n+1)/2" ile: ~ **10^(-6) saniye** (Matematik)

Python vs Octave/MATLAB

Python	Octave / Matlab
Bedava	Bedava / Paralı
Büyük bir program yüklenmesine gerek yoktur.	Program ile çalışır.
Tüm işletim sistemlerinde çalışır.	Tüm işletim sistemlerinde çalşır.
Öğrenmesi kolaydır.	Öğrenmesi kolaydır.
Websitesi, bilimsel hesap gibi birçok iş için kullanılır.	Hesaplama ve analiz için özelleştirilmiştir.

Python Kurulum

- Windows'a python yüklemek için https://www.python.org/ adresine gidin.
- https://www.python.org/downloads/windows/ bağlantısını kullanarak python'un son sürümünü indirin.
- İndirilen dosyayı çalıştırın ve python'u sisteminize yükleyin.
- Linux ve Mac sistemleri için python'u yüklemenize gerek yoktur. Bu işletim sistemleri varsayılan olarak python kurar.
- Python paketlerini (numpy, scipy, ...) yüklemek için iki yol vardır.
- 1) Pip: Linux ve Mac işletim sistemleri için yüklemesi kolay bir paket sistemidir. Windows'a kurulum için tıklayınız.
- 2) Anaconda (tavsiye edilmez): https://www.anaconda.com/

Python Paketleri

- Bilimsel hesaplamalar gibi birçok iş için Python paketleri bulunmaktadır.
- Biz bu paketlerin bazılarını kullanacağız. Bu dersin amacı sayısal yöntem metodlarının algoritmasını öğrenmektir.
- 1) math, cmath
 - Faktöriyel, mutlak değer, eksponansiyel, logaritma, kökünü alma, kuvvetini alma, trigonmetrik fonksiyonlar, pi sayısı, e sayısı, ...
- 2) os, time, datetime, shutil
- 3) numpy
 - Diziler, matrisler, matris işlemleri, sanal sayı işlemleri, ... (X Lineer cebir işlemleri X)
- 4) scipy
 - X Kök bulma, integral alma, türev alma, diferansiyel denklem çözme, ... X
- 5) matplotlib
- 6) pandas, ...

Kullanacağımız Programlar

Visual Studio Code (vscode, code)

- Websitesi : https://code.visualstudio.com/
- Metin düzenleyicisi (notebook gibi)
- Sisteminizde Python yüklüyse vscode üzerinden programınızı tek tuşla çalıştırabilirsiniz.
- Terminal açabilir, hata ayıklama modunu çalıştırabilirsiniz (debugging.)
- Yazdığınız dilin ne olduğunu anlar ve size yardım eder.
- Çok sayıda eklenti (extensions) yüklenebilir. Örn. Python eklentisi.
- Github gibi sitelerle konuşur.
- Uzaktaki bilgisayarınıza bağlanır. (SSH Eklentisi)
- Pdf açar. Bazı web uygulamalarını açar. (Jupyter Eklentisi)
- X Yazacağınız kod için önerilerde bulunur. Yani Al yardımı ile sizin yerinize kod yazar X. (Github Copilot Eklentisi)
- **DİKKAT!** Visual Studio ile Visual Studio Code'u karıştırmayınız.

Kullanacağımız Programlar

Visual Studio Code

Bulut Sistemleri

- Bulut (cloud), bulut hesaplama (cloud computing) internet aracılığı ile erişilen bilgisayarlardır.
- Bulut teknolojileri sihirli bir yapı değildir. Karmaşık bilgisayar sistemleridir.
 - Website sunucuları: server, web hosting
 - Depoloma alanları: Onedrive, drive, dropbox
 - Bilimsel hesaplama yapılan sunucular: TRUBA
 - ...
- Bazı sunucular
 - Kendi sunucunuz,
 - Google Cloud,
 - TÜBİTAK ULAKBİM TRUBA
 - Microsoft Azure,
 - Amazon AWS,
 - ..

- Website: https://colab.research.google.com/
 - Basit kodları çalıştırabildiğimiz bir arayüz.
 - Jupyter defteri (notebook) açılmaktadır.
 - Jupyter defteri, basit python kodlarını yazmak ve yazılan kodu açıklamak için idealdir.
 - Markdown yazı kurallarını kullanır. Bu kurallar basittir.
 - Grafik gibi görselleri açabilir.
 - Web tabanlı bir programdır.
 - Kodlar otomatik olarak Google Drive'a kaydedilir.
 - Bulut üzerinden çalışır. Bilgisayar, tablet veya telefon üzerinden bağlanabilirsiniz.
 - Uzun ve hızlı işlemler için paralıdır.

Kullanacağımız Programlar

- Google Colab ile ilk programızı yazalım.
 - https://colab.research.google.com/ sayfasına gidin.
 - Google hesabınızla devam edin. Eğer hesabınız yoksa hesap oluşturun.
 - Yeni defter (new notebook) açın.
 - Açılan sayfada iki çeşit işlem yapabilirsiniz.
 - Code: Python kodunuzu yazıp çalıştırısınız.
 - Text: Buraya metin girişi yapabilirsiniz.
 - Eğer satırınızın yanında oynat (play) imgesi varsa kod ekranındasınızdır.
 - Kod modunda iken "print("Merhaba Dunya")" yazın ve oynat imgesine basın. Kısayol için shift+Enter kombinasyonunu kullanabilirsiniz.
 - İlk programınız biraz yavaş çalışacaktır.

- Google Colab ile kod ve metin karışık metinler yazabiliriz.
 - Text kısmına basınız. Açılan ekrana "Bu kod ekrana "Merhaba Dünya yazdırır" yazınız.
 - Code kısmına basınız ve ekrana "print ("Merhaba Dunya") " yazın.
 - Üst kısımdaki menüden "**Runtime**" 'a tıklayın. "**Run all**" tusuna basarak tüm defteri çalıştırabilirsiniz.

Google Colab / Linux Komutları

- Google Colab arka planda Linux işletim sistemi kullanmaktadır.
- Defter içerisinde Linux komutları çalıştırabiliriz.
- Linux komutlarının başına! koyarak çalıştırabiliriz.
 - Yeni bir kod bloğu açın.
 - Aşağıdaki komutları alt alta yazın ve çalıştırın.

```
! pwd
!ls
!mkdir Hello
!ls
```


Google Colab / Betik Kaydetme

- Yazdığınız defterler Google Drive içerisine otomatik olarak kaydedilmektedir.
 - https://drive.google.com/
- Yazdığınız defteri, yerele birçok şekilde kaydedebilirsiniz.
 - 1) Menüden "File -> Download -> Download .ipynb" Jupyter defteri şeklinde kaydeder.
 - 2) Menüden "File -> Download -> Download .py" python çalıştırılabilir formatta kaydeder.

ÖNEMLİ! Quiz, ödev ve sınavlarda sadece ".py" formatı kabul edilecektir. Hata veren (çalışmayan) kodlardan puan kırılacaktır.

Google drive'da da yazdığınız kodu görebilirsiniz.

https://drive.google.com/drive/

Vs Code ile Python Kodu Çalıştırma

- Masaüstüne gelin ve sağ tıklayıp "merhaba.py" adında bir dosya yaratın.
- Bu dosyayı **Vs Code ile açın** veya başlattan code'u çalıştırın ve masaüstündeki "merhaba.py" dosyasını açın.
- Açılan dosyanın içerisine "print("Merhaba Dunya!")" yazın ve kaydedin.
- Python dosyasını çalıştırmak 2 çeşit yöntem vardır.
 - 1) Birinci yol: Sağ üstte bulunan oynat (play) imgesine tıklayın. Alttan terminal çıkacak ve otomatik olarak python kodunuz çalıştırılacaktır.
 - 2) İkinci yol: Vscode içerisinde terminal açın (menu -> Terminal -> New Terminal veya ctrl+`). Terminalde dosyanın konumuna gidin ve "python3 merhaba.py" yazıp çalıştırın.
- Prensipte iki yol da aynıdır.
- Birinci metodu kullanmak için Vs Code içerisinde python eklentisi yüklü olmak zorundadır.

Vs Code ile Python Kodu Çalıştırma

VS Code / Jupyter

- Vscode eklentilerinde Jupyter yüklü olduğuna emin olun.
- Masaüstünde "merhaba.ipynb" dosyası oluşturun. Oluşturduğunuz bu dosyayı vscode aracılığı ile açın.
- Google collab'den farklı olarak Vscode Jupyter'de kod ve markdown modları vardır. Burada markdown ile text aynı moddur.
- Kod moduna geçip "print ("Merhaba Dunya!") " yazın.
- Hemen üstteki run all komutuna basarak veya shift+Enter kısayolunu kullanarak çalıştırın.
- Eklentiler sürekli güncellendiği için arayüzde farklılıklar olabilir.

VS Code / Jupyter

Markdown

- Markdown, html dilinin basit halidir.
- Markdown kuralları: https://www.markdownguide.org/basic-syntax/

```
Başlıklar: #, ##, ###, ...
- Kalın (**Kalın**), italik (*italik*)
- Liste: 1., 2., - Yazı, * Yazı
Satır içi kod ` ` (Bu " veya ' değildir, "alt + ," basın.)

    Kod bloğu

  ```python
 Kod buraya
 [Link] (www.example.com)
- Fotoğraf: ![Foto] (foto.jpg)
- Latex: $ \alpha $ (her zaman çalışmayabilir.),
- Tablo
```



### Yararlı Bağlantılar

- Google Colab SSS: https://research.google.com/colaboratory/faq.html
- Google Cloud Terminali: https://shell.cloud.google.com/
- Azure Notebooks (MSGSU Email Giriş): https://notebooks.azure.com/
- Kagle Jupyter Defteri: https://www.kaggle.com/code



### **VS Code + Google Cloud**

- Google cloud (colab değil) üzerinde de vscode-umsu çalıştırabilirsiniz.
- Bu hizmet paralidir.
- Website: https://shell.cloud.google.com/



### Yararlı Bağlantılar

- Açık yazılımların olduğu alanlar:
  - Github: https://github.com/
  - Gitlab: https://gitlab.com
- Github vscode arayüzü: https://github.dev/github/dev
- Github Education: https://education.github.com/pack/offers
  - Kurslar, seminerler
  - Onlarca uygulamaya ücretsiz erişim
- Online Python dersleri:
  - 1) https://python-istihza.yazbel.com/YazbelPythonProgramlamaDiliBelgeleri .pdf
  - 2) https://www.w3schools.com/python/
  - 3) https://www.freecodecamp.org/learn/scientific-computing-with-python/



### Kaynaklar

- https://en.wikipedia.org/wiki/Python\_(programming\_language)
- https://en.wikipedia.org/wiki/Cloud\_computing
- https://www.geeksforgeeks.org/difference-between-python-and-c/

#### Bazı Al (YZ, Yapay Zeka) ekipmanları:

- https://chat.openai.com/
- https://bard.google.com/



### Alıştırma

## Vs code programını açın.

- github.com sitesine gidin ve kendi adınıza bir hesap açın.
- Vs code içerisinde terminali açın. "pwd" komutu ile nerede olduğunuzu öğrenin. Ardından "cd" kullanarak masaüstü klasörüne geçin.
- Ekrana "Merhaba Dunya" yazdıran bir betik dosyası yazdırın. O dosyanın adı "betik1.py" olsun.
- Ekrana aşağıdakileri yazdıran betik dosyası hazırlayın "betik2.py".

```
Merhaba Dünya
Biz fizikçiyiz.
```

Bu iki betik dosyasını MS Teams'te FIZ365 dersi için açılan ödeve veya kendi githup reposuna yükleyin.