

機器學習模型的簡介

群創光電 智能推進處 idd

貢獻者們: 黃齡誼

張訓漢

盧提文

吳彥霖

發佈日期: 2024/04/12

前言

大家好,我們是群創光電智能推進處 idd 的數據科學團隊。

此份「機器學習模型的簡介」係我們團隊精心編製的繁中說明文件, 旨在希望能藉由白話且簡單的敘述,協助大家能快速理解機器學習的基礎知識,且建立正確的應用概念。

此份文件中,將介紹機器學習的基礎知識,包括:損失函數與評估指標,並進一步探討其重要的概念,接著介紹常見的監督式學習模型,解釋模型如何從有標記的資料中學習且做出預測,包括:線性迴歸、支援向量機、樹模型等,另外,最後將會說明集成學習(Ensemble Learning)的概念,如何結合多個基礎模型,來提高整體模型的表現。

我們由衷希望,此份文件能幫助大家,建立機器學習模型基本的概念, 且探索如何應用機器學習模型,解決真實世界的問題。無論您是這領域的初學者或是已有經驗的專業大大,此文件皆能為您提供有價值的 參考資訊。

機器學習 Machine Learning

Agenda

- ➤ 機器學習的基礎知識 P. 4 11
 Loss Function > Evaluation Metrics
- ➤ 線性迴歸與正則化 P. 12 18
 Linear Regression · Huber Regression · LASSO · Ridge Regression · Elastic Net · Bayesian Ridge Regression
- ➤ 支援向量機 P. 19 24
 Support Vector Classification Support Vector Regression
- ➤ K 近鄰 P. 25 28
 K-nearest Neighbors
- ➤ 梯度下降 P. 29 31

 Batch Gradient Descent · Stochastic Gradient Descent · Mini Batch Gradient Descent
- ➤ 樹模型 P. 32 38

 Decision Tree · Random Forest · Extra Trees · Adaptive Boosting · Gradient Boosting · Extreme Gradient Boosting
- ➤ 集成學習 P. 39 42
 Bagging · Boosting · Stacking

機器學習的基礎知識

- ▶ 損失函數
- ➤ 評價指標

INTELLIGENT DEVELOPMENT DIVISION

損失函數 Loss Function

損失函數 Loss Function

- 在機器學習與深度學習的應用,損失函數用來作為評估預測誤差與表現的 函數。在訓練模型的過程中,透過迭代尋找最佳的模型參數,使得模型在 這組參數中,能達到最小的損失誤差。
- 迴歸問題中,常見的損失函數:

$$MAE = \frac{1}{N} \times \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

$$MSE = \frac{1}{N} \times \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

$$RMSE = \sqrt{\frac{1}{N} \times \sum_{i=1}^{N} (y_i - \hat{y}_i)^2}$$
 均方根誤差 Root Mean Squared Error

平均絕對誤差 Mean Absolute Error

均方誤差 Mean Squared Error

 $Huber Loss = \begin{cases} \frac{1}{2} (y_i - \hat{y}_i)^2, & \text{for } |y_i - \hat{y}_i| \leq \delta, \\ \delta |y_i - \hat{y}_i| - \frac{1}{2} \delta^2, & \text{otherwise.} \end{cases}$ **Huber Loss**

Source: https://github.com/massquantity/Loss-Functions.

損失函數 Loss Function

以預測天氣型態為例

$$-(1\times\ln 0.7+1\times\ln 0.6)$$

+)

 $-(1 \times \ln 0.2)$

 \cong

4.37406

● 分類問題中,常見的損失函數:

$$Cross\ Entropy\ Error = -\sum_{c=1}^{C}\sum_{i=1}^{N}y_{c,i} \times \ln(\hat{y}_{c,i})$$
 交叉熵誤差 Cross Entropy Error

其中,

 $y_{c,i}$ 為真實的類別標籤且以 One-Hot 形式表示, $\hat{y}_{c,i}$ 為模型預測樣本所屬類別的各類別機率值。

說明:

當模型預測正確類別的機率值越大,交叉熵誤差就會越小。

 $\lim_{p \to 1} \ln(p) = 0$

INTELLIGENT DEVELOPMENT DIVISION

評價指標 Evaluation Metrics

迴歸問題的評價指標

● 在機器(/深度)學習的應用,迴歸問題中常見的評價指標有:

指標之間的關係

$$\frac{MAE}{\sigma} \leq \frac{\sqrt{MSE}}{\sigma} = \sqrt{1-R^2}$$

$$MAE = \frac{1}{N} \times \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

$$MSE = \frac{1}{N} \times \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

$$MAPE = \frac{1}{N} \times \sum_{i=1}^{N} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{N} (\bar{y} - \hat{y}_{i})^{2}}$$

平均絕對誤差 Mean Absolute Error

均方誤差 Mean Squared Error

平均絕對百分比誤差 Mean Absolute Percentage Error

決定係數 Coefficient of Determination

分類問題的評價指標

二元分類的混淆矩陣

		預測		
		Т	Z	
實際	Т	7	4	
	N	1	9	

- $Accuracy = \frac{7+9}{7+9+1+4}$
- $Recall = \frac{7}{7+4}$

● 在機器(/深度)學習的應用,分類問題中常見的評價指標有:

True Positive (TP): 實際為T,預測為T

■ True Negative (TN): 實際為 N ,預測為 N

False Potitive (FP): 實際為 N ,預測為 T

False Negative (FN):實際為T,預測為N

$$Accuracy = rac{TP + TN}{TP + TN + FP + FN}$$
 正確率 Accuracy

$$Precision = \frac{TP}{TP + FP}$$
 精確率 Precision

$$Recall = rac{TP}{TP + FN}$$
 召回率 Recall

$$Specificity = \frac{TN}{TN + FP}$$
 特異度 Specificity

$$F1 \ score = 2 \times \frac{Precision + Recall}{Precision \times Recall}$$

分類問題的評價指標

● 在機器(/深度)學習的應用,分類問題中常見的評價指標有:

三元分類的混淆矩陣

		預測] A 類別的		
		Α	В	С	混淆矩陣		
實際	Α	7	4	5		7	9
	В	1	9	6			
	С	2	3	8		3	26

- Accuracy of $A = \frac{7 + 26}{7 + 26 + 3 + 9}$
- Presision of $A = \frac{7}{7+3}$
- Specificity of $A = \frac{26}{26+3}$

$$Accuracy = rac{TP + TN}{TP + TN + FP + FN}$$
 正確率 Accuracy

$$Precision = \frac{TP}{TP + FP}$$
 精確率 Precision

$$Recall = rac{TP}{TP + FN}$$
 召回率 Recall

$$Specificity = \frac{TN}{TN + FP}$$
 特異度 Specificity

$$F1 \ score = 2 \times \frac{Precision + Recall}{Precision \times Recall}$$

INTELLIGENT DEVELOPMENT DIVISION

線性迴歸 Linear Regression

線性迴歸 Linear Regression

複迴歸

● 線性迴歸是一種基於統計的機器學習演算法,用來處理迴歸預測的問題。

● 基本思維:

用來描述「**隨著某個特徵變數(Feature Variable)** *x* 的增加,目標變數 (Target Variable) *y* 也會增加或減少」的關聯性。若只有一個特徵變數時,線性迴歸模型稱為簡單線性迴歸 Simple Linear Regression,若特徵變數的數量大於 2 個時,則稱為複迴歸 Multiple Regression。

● 優點:

- ▶ 模型結構單純簡單,容易理解與解讀。
- 運算資源需求低,執行速度快。

● 注意事項:

- ▶ 藉由殘差分析 Residual Analysis,可進一步提升線性迴歸的表現。
- 線性迴歸無法解釋變數間的非線性關係。
- 線性迴歸易受離群值 Outlier 的影響,降低預測能力。
- 當特徵變數之間存有共線性(Multicollinearity)的現象時,線性迴歸的權重參數,容易因數據微小的變化,卻產生劇烈的變化,因此, 共線性會大幅降低線性迴歸參數的可信度。

Huber迴歸 Huber Regression

● Huber 迴歸是線性迴歸的一種優化,主要目的係要消弭離群值的影響。

● 核心概念:

相較於線性迴歸最主要的差別,係在於 Huber 迴歸的損失函數採用 <u>Huber</u> <u>Loss</u>,Huber Loss 結合絕對誤差與均方誤差,對於造成預測誤差小的預測值採用均方誤差,對於預測誤差大的預測值採用絕對誤差。

$$Huber Loss = \begin{cases} \frac{1}{2} (y_i - \hat{y}_i)^2, & \text{for } |y_i - \hat{y}_i| \leq \delta, \\ \delta |y_i - \hat{y}_i| - \frac{1}{2} \delta^2, & \text{otherwise.} \end{cases}$$

註: 當 δ 越小,Huber 迴歸受離群值的影響越小。

● 優點:

➤ 對於有離群值的資料, Huber 迴歸不會像線性迴歸過於敏感。

● 注意事項:

➤ 雖然,Huber 迴歸對離群值的處理,有相當程度的穩健性(Robustness),但是,針對極端的離群值,Huber 迴歸的處理能力仍有限,建議仍須從 資料的理解與清理著手,以排除極端離群值的影響。

正則化迴歸 Regularized Regression

- > 係一種預防過擬合的建模技巧。
- > 降低模型的複雜度。
- ➤ 常見的三種正則化技巧: LASSO、Ridge、Elastic Net。

正則化迴歸 Regularized Regression

正則化迴歸係一種優化擬合過程的機器學習技巧。

● 核心概念:

在機器學習模型的訓練過程中,目的係要逐漸降低且收斂損失函數的值(預測值與實際值的誤差),從中尋找出一組模型的最佳參數,使得模型在套入這組參數時會得到最小的損失。

正規化迴歸係在模型的損失函數中,添加一個懲罰項(Penalty Term)來限制模型的參數,對於訓練過程「參數變大,損失也會變大」的情況給予懲罰,藉此抑制模型參數,以降低模型的複雜度。

正則化的主要方法有下列三種:

(1) L1 正則化: LASSO

(2) L2 正則化: 嶺迴歸 Ridge Regression

(3) 彈性網絡 Elastic Net

● 優點:

▶ 能有效降低模型的複雜度,降低過擬合(Overfitting)的情況發生。

▶ 能提升模型的泛化能力(Generalization Ability)。

正則七迴歸 Regularized Regression

正則化損失函數

L1 正則化

LASSO

Least Absolute Shrinkage and Selection Operation

$$\sum_{i=1}^{N} (y_i - \hat{y})^2 + \alpha \sum_{j=1}^{p} |\omega_j|$$

L2 正則化

嶺迴歸

Ridge Regression

$$\sum_{i=1}^{N} (y_i - \hat{y})^2 + \alpha \sum_{j=1}^{p} \omega_j^2$$

L1+L2 正則化

彈性網絡

Elastic Net

$$\sum_{i=1}^{N} (y_i - \hat{y})^2 + \alpha_1 \sum_{j=1}^{p} |\omega_j| + \alpha_2 \sum_{j=1}^{p} \omega_j^2$$

p 為特徵欄位的數量 N 為樣本資料的筆數

■ 當 α 越大時,模型更簡化且參數更加縮小,
 但,過大的 α 會使模型過於簡單,導致欠擬合(Underfitting)的發生。

延伸閱讀:

■ Allen Tzeng. Sep. 6, 2020. <u>L1 , L2 Regularization 到底正則化了什麼?</u>

貝氏嶺迴歸 Bayesian Ridge Regression

貝氏嶺迴歸為複線性迴歸的一種衍生,結合正則化與貝氏機率的思維,藉由 事前機率(Prior Probability)來估計線性迴歸的參數,常應用於當特徵變數高 度相關的情況。

核心概念:

貝氏嶺迴歸須先**假設複迴歸的各項參數服從某種先驗分佈**,再藉由樣本資 料的數據與貝氏定理,計算各項參數的事後機率(Posterior Probability)。

$$Prob(\omega|y) = rac{Prob(y|\omega) imes Prob(\omega)}{Prob(y)}$$
事後機率 事前機率

優點:

相較於複迴歸,貝氏嶺迴歸能**降低共線性(Multicollinearity)的影響**, 更佳的泛化能力(Generalization Ability)。

注意事項:

參數的估計易受主觀事前機率的假設所影響。因此,當樣本蒐集不易或 樣本數不足時,如果我們已對各特徵變數有高度的了解與掌握,則貝氏 嶺迴歸適合被應用。

INTELLIGENT DEVELOPMENT DIVISION

支援向量機 Support Vector Machine

- ▶ 將樣本映射至更高維度的空間,在此空間中尋找一個能完美分割樣本的超平面。
- ▶ 善於處理高維度與非線性的複雜資料。

支援向量機 Support Vector Machine

- 支援向量機是一種監督式的機器學習演算法,可用來處理迴歸與分類問題。
- 當支援向量機在處理迴歸問題時,則也可稱為支援向量迴歸 Support Vector Regression, SVR,同樣地,當運用在分類問題時,支援向量機則可稱為支援向量分類 Support Vector Classification, SVC。

● 核心概念:

> 線性支援向量機:

在訓練學習的過程中,分類問題以最大化問距(Margin)為目標,尋找一超平面(Hyperplane)使得不同類別之間的問距最大化,另外,迴歸問題以最大化決策邊界(容忍誤差 ε)內的樣本數,且最小化決策邊界間外樣本的預測誤差為基礎。

➤ Kernel 法的支援向量機:

藉由核函數 Kernel Function,將樣本資料投影至更高維度的空間中例如:把兩個特徵變數從二維平面轉換到三維空間,在更高維度的空間中,尋找一個最佳的超平面將樣本數據明確地區隔開,同時,滿足在這超平面的訓練預測誤差能達最小化。

● 優點:

可處理高維度的複雜資料。

● 注意事項:

➤ 支援向量機的訓練結果,對於超參數的設定敏感,尤其是核函數 Kernel Function 的選擇。

SVC 與 SVR 的基本概念

以線性支援向量機為例

- ▶ 藉由超平面將隸屬於不同類別的樣本區隔開。
- ightharpoons 最大化超平面到最近樣本的距離 δ 。
- ➤ 上面圖例的情況稱**硬性間距(Hard-Margin)**, 即在決策邊界內不容許有資料在其當中。

SVR 迴歸問題

- ▶ 計算損失殘差時,決策邊界內(小於過容忍誤差)的樣本不列入計算。
- ▶ 最大化決策邊界內的樣本數,同時,最小化決策邊界外的預測殘差。

支援向量機的重要超參數

SVC with linear kernel

SVC with RBF kernel

sepal width (cm)

sepal length (cm)

LinearSVC (linear kernel)

sepal length (cm)

SVC with polynomial (degree 3) kernel

sepal length (cm)

說明:上圖為 SVC 搭配不同的核函數,應用在鳶尾花資料集 Iris Dataset 中, 所產生不同的決策邊界結果。

註: 鳶尾花資料集 Iris Dataset

- 4個花卉特徵欄位,分別為:花萼長寬、花瓣長寬;
- ▶ 3 種花卉的屬種,分別為: 'setosa'、'versicolor'、'virginica';
- ▶ 屬於分類問題的資料集。

Source:

Plot different SVM classifiers in the iris dataset.

Kernel Function

- ➤ 核函數 Kernel Function 係將樣本數據從原始空間中,映射 到更高維度空間的一種技巧,目的係要**使得在原始空間中無** 法以線性分割的資料,在更高維度的空間變成線性可分割。
- > SVM 中可使用的核函數有:
 - (1) 線性 Linear
 - ◆ 適合用來處理線性可分割的樣本數據;
 - ◆ 無法處理非線性的樣本數據。
 - (2) 多項式 Polynomial
 - ◆ 將樣本數據映射至更高維度的空間,例如:兩特 徵欄位經由 2 次多項式核函數,可將其映射至三 維空間中;
 - ◆ 能處理非線性的樣本數據。
 - (3) 徑向核函數 Radial Basis Function, RBF
 - ◆ 將樣本數據映射至更高維度的空間,
 - ◆ 能處理更複雜的非線性樣本數據。

支援向量機的重要超參數

gamma=10^-1, C=10^-2

gamma=10^-1, C=10^0

gamma=10^-1, C=10^2

gamma=10^0, C=10^-2

gamma=10^0, C=10^0

gamma=10^0, C=10^2

gamma=10^1, C=10^-2

gamma=10^1, C=10^0

gamma=10^1, C=10^2

Gamma

- ➤ 當核函數 Kernel Function 係選用 poly、rbf 或 sigmoid 三者其中之一時,才須設定 Gamma。
- ➤ Gamma 表示每個單一樣本對於超平面的影響力;
- **當 Gamma 越大時**,則距離超平面越近的樣本,其影響力 越大,**越能勾勒出複雜的決策邊界**。

Penalty Coefficient (C)

- ▶ Penalty Coefficient 表示預測誤差的容忍程度;
- **當 C 越大時,決策邊界的寬度越窄**,容許訓練誤差的條件 越嚴苛,越無法接受訓練時的預測誤差。

● 注意事項:

- ightharpoonup 當 Gamma = 'auto' 時,表示 Gamma = 1/特徵欄位的數量。
- ➢ 當 Gamma 或 Penalty Coefficient 設定過大時,易造成 過擬合(Overfitting)的發生。

Source: RBF SVM parameters.

支援向量機的資料前處理

- 特徵縮放(Scaling)對於支援向量機的結果,有顯著的影響。
- 特徵縮放的必要性有二:
 - 避免因特徵尺度的不同,而導致較大數值範圍的特徵支配較小數值範圍的特徵,例如:特徵 A 的範圍介於 0~1,特徵 B 的範圍介於 1,000~10,000,則,支援向量機對於特徵 B 的關注將遠遠超過特徵 A。換句話說,特徵尺度間的差異,會影響到支援向量的選擇,進而影響模型的泛化能力。
 - ▶ 可提升模型的收斂速度。
- 左圖係以<u>紅酒資料集</u>為範例,以 8:2 隨機切分成訓練集與測試集, 在訓練集中訓練 SVC,且在測試集中檢視 SVC 的分類能力。
 - 當沒有對特徵進行縮放時,SVC 在測試集的整體準確率 (Accuracy)約 0.722,且決策邊界主要取決於數值較大的特 徵 Proline。
 - 在對特徵進行標準化縮放後,SVC 的整體準確率提升到約0.833,且決策邊界的選擇不會因尺度的差異而造成偏頗。

衍生閱讀:

- When using SVMs, why do I need to scale the features?. Stack Exchange.
- Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin.
 May 19, 2016. <u>A Practical Guide to Support Vector Classification</u>.
- Dave Sotelo. Jul 26, 2017. <u>Effect of Feature Standardization on Linear Support Vector Machines.</u>

INTELLIGENT DEVELOPMENT DIVISION

K近鄰 K-nearest Neighbors, KNN

▶ 基於樣本間彼此的距離進行預測。

K近鄰 K-nearest Neighbors

K近鄰二元分類的示意圖

► K 近鄰是一種監督式的機器學習演算法,可用來處理迴歸與分類問題。

● 基本概念:

相較於其他的監督式演算法,K 近鄰演算法最特別的地方,在於它並沒有經由學習訓練資料尋找出最佳參數,在預測新的測試樣本之前,完全不會進行任何的運算。

對於新的測試樣本,先計算新樣本與每個訓練集樣本之間的距離,且找出與新樣本最近的 K 個訓練樣本(近鄰的意思),最後,以這些近鄰 K 個訓練樣本的平均(或投票)來求得預測結果。

● 優點:

- ▶ 運算邏輯簡單易懂。
- ▶ 不須經訓練學習過程,非常適合應用在即時產出的數據。
- 適合應用在樣本數據量較少或特徵較少的資料。

● 注意事項:

- 若樣本數據量龐大,計算新樣本與訓練樣本彼此的距離將會非常耗時, 此時建議改採用其他的演算法。
- ▶ 預測結果對於超參數 K 的選擇敏感,建議先多方嘗試不同的 K ,再選 擇一個最適的 K 值。

KNN的重要超參數 n_neighbors

- 超參數 n_neighbors 為近鄰樣本的數量 K,預設為 5。
- 超參數 n_neighbors 會影響決策邊界的形狀,過小的 n_neighbors 易導致過擬合(Overfitting), 另外,過大的 n_neighbors 易造成決策邊界過於平滑寬鬆,導致欠擬合(Underfitting)。
- 上圖係以紅酒資料集為範例,以 8:2 對目標類別分層抽樣成訓練集與測試集:
 - ightharpoonup 當 n_neighbors = 1 時,存在幾個孤島般的決策邊界;
 - ➤ 當 n_neighbors = 110 時,決策邊界太過簡單且平滑。

KNN的資料前處理

- 特徵縮放(Scaling)對於 KNN 的結果,有顯著的影響。
- 特徵縮放的必要性:
 - ➤ 在計算樣本彼此之間的距離時,距離的大小易受較大尺度的特徵所決定,另外,就幾何觀點而言,鄰近的 K 個訓練樣本在較大尺度特徵中的分布,相較於在較小尺度特徵中來得廣泛,因此,在沒有對各個特徵進行縮放的情況下,KNN 的決策邊界往往取決於尺度相對大的特徵,進而影響模型的泛化能力。
- 左圖係以<u>紅酒資料集</u>為範例,以 8:2 對目標類別分層抽樣成訓練集與測試集,且在測試集中評量 KNN 的分類能力。
 - ➤ 當沒有對特徵進行縮放時,KNN 在測試集的整體準確率 (Accuracy)約 0.667,且決策邊界主要取決於數值較大的 特徵 Proline 做分割。
 - 在對特徵進行標準化縮放後,KNN 在測試集的整體準確率 提升到約 0.833,且決策邊界的選擇不會因尺度的差異而 造成偏頗。

衍生閱讀:

- Why do you need to scale data in KNN. Stack Exchange.
- Mario Filho. March 25, 2023. <u>Is Feature Scaling Required for the KNN Algorithm?</u>.

梯度下降 Gradient Descent

- ▶ 係用來尋找最小(或最大)損失的一種演算法。
- ▶ 藉由迭代調整參數,逐步達到損失最小化。
- ▶ 梯度下降常見的三種型態:
 - (1) 批量梯度下降 Batch Gradient Descent
 - (2) 隨機梯度下降 Stochastic Gradient Descent
 - (3) 小批量梯度下降 Mini Batch Gradient Descent

梯度下降 Gradient Descent

- 在機器學習的領域中,梯度下降係一種常用於找尋最小損失的演算法。
- 核心思維:

在訓練模型的過程中,損失函數 f 係用來評估模型當下的學習表現,透過 迭代更新參數 ω 的機制,如下列公式,從中找尋最小損失的模型參數。

$$\omega_{t+1} = \omega_t - \alpha \times \nabla f(\omega_t) \qquad t$$

t 為迭代次數

更新參數 ω:

損失函數的負梯度方向 -Vf · 即為損失降幅最大最陡峻的路徑方向。 參數的更新係依循著損失函數負梯度的方向進行,使得每次更新參數 後的損失能更小,且不斷重複這迭代更新的步驟,直到損失達到收斂 條件才停止。

 \triangleright 學習率 Learning Rate, α :

控制每次更新參數的下降步伐大小,過大或太小的學習率,皆容易造 成參數更新無法收斂的情況。

梯度下降的三種型態

批量梯度下降

隨機梯度下降

小批量梯度下降

損失函數的等高線示意圖

● 批量梯度下降 Batch Gradient Descent

- ▶ 運用所有的訓練集樣本來計算損失,且沿著損失遞減 最迅速劇烈的方向,進行下一次的迭代計算。
- ▶ 當訓練樣本數很大量時,運算成本將會很高。

● 隨機梯度下降 Stochastic Gradient Descent

- ▶ 在每一次迭代計算損失時,皆只藉由單一個樣本進行 計算,損失函數的曲面會隨著迭代動態變化,可避免 陷入局部最小的情況。
- ▶ 相較於批量梯度下降,SGD計算複雜度較低,訓練速度較快,但是,損失下降收斂的過程也較為震盪,穩定性較差。
- 當訓練樣本數很大量時,迭代次數也會隨著變很大。

● 小批量梯度下降 Mini Batch Gradient Descent

▶ 在每一次迭代計算損失時,皆從所有樣本中取出部分 (非單一個)的樣本進行計算。

INTELLIGENT DEVELOPMENT DIVISION

樹模型 Tree-Based Model

➤ 利用條件式分割(Conditional Branch),逐步切分出越來越低雜亂度的 子資料集,且將這一序列的分割過程,建立成一顆樹狀結構的決策過程。

決策樹 Decision Tree

決策樹的樹狀結構

● 決策樹是一種監督式的機器學習演算法,可用來處理迴歸與分類問題。

● 基本概念:

將複雜的資料集,按照一系列的規則,分割成越來越單純的子資料集, 這一系列分割的過程從而形成一個樹狀的結構。其中,建構決策樹的 重要關鍵,在於如何選擇最適合的特徵作為分割的依據。

另外,衡量子資料集單純程度的指標有:

- ➤ 資訊增益 <u>Information Gain</u>, IG
- ➤ 資訊增益比 Gain Ratio
- ▶ 吉尼不純度 Gini Impurity

● 優點:

- ▶ 數值型與類別型特徵皆可適用於決策樹。
- 決策樹易理解且解釋性高,可從中觀察決策的過程。
- ▶ 決策樹能處理非線性的關係。
- ▶ 簡單的資料前處理:特徵不要求須標準化 Standardization。

● 注意事項:

- ➤ 若樹的結構太過複雜,易造成過擬合(Overfitting)的情況。
- ▶ 當特徵的類別過多時,易建構出不平衡的偏差樹結構。

隨機森林 Random Forest

● 隨機森林係一種採用集成學習裝袋法 Bagging 的演算法,可用來處理迴歸與 分類問題。

● 核心概念:

基於樹的集成學習,從**多顆決策樹中綜合預測結果**來提高準確性,主要的基本概念有二:

- (1) 結合多個弱學習器,建構一個強學習器: 預測結果係由多棵決策樹所綜合而來,一般而言,迴歸問題採用平 均機制,分類問題採用投票機制。
- (2) <u>Bootstrapping</u> **隨機抽樣**: 在建構每棵樹時,會隨機抽樣部分樣本與特徵,每棵樹皆只會看到 訓練資料集的一部分。

● 優點:

- ➤ 相較於決策樹,隨機森林較不易過擬合(Overfitting)。
- ▶ 相較於決策樹,隨機森林的泛化能力(Generalization Ability)較高,避免只因依賴單一顆決策樹所發生的偏差。

● 注意事項:

- ▶ 相較於決策樹,隨機森林需要更多的運算資源。
- 因為每一棵樹皆是基於訓練資料集中的一部分所建立,因此,隨機森林的預測能力易受限於訓練資料集的範圍。

極限隨機樹 Extra Trees

● 極限隨機樹可用來處理迴歸與分類問題。

▶ 核心概念:

與隨機森林相似,同樣係基於樹的集成學習,從多顆決策樹中綜合預測結果來提高準確性,與隨機森林的主要差別有二:

(1) 使用完整的訓練資料集:

隨機森林採用 Bagging 的訓練機制,每一顆樹皆只從部分的訓練資料中所建立,然而,極限隨機樹中的每一棵樹,皆使用完整的訓練資料來進行訓練。

(2) 節點特徵的選擇:

隨機森林會從部分特徵中,選擇一個最佳的分割特徵,而,極限隨機樹在分類問題中,係從所有的特徵中隨機尋找到一個特徵進行分割(註:隨機先挑 k 個,再從 k 個中挑選最佳分割的特徵),另一方面,在迴歸問題中,先在每個特徵中隨機選擇一個分割點,再從其挑選出能使預測效果最佳(選擇均方誤差最低)之特徵進行分割。

● 注意事項:

➤ 雖然極限隨機樹的隨機性機制,能有效抑制過擬合的發生,但是,在節點的特徵選擇上,若隨機選擇了過多不相關的特徵,則也容易造成方差 (Variance)過高的情況。

自適應提升 Adaptive Boosting

● 自適應提升係一種採用集成學習提升法 Boosting 的演算法,可用來處理迴歸與分類問題。

● 核心思維:

採用序列化的方式,逐一訓練每個弱學習器,最後,綜合這多個弱學習器的預測結果,從而建構出一個強學習器,訓練自適應提升模型的基本概念為:

樣本權重的調整:

在每一個新的弱學習器的訓練中,著重於前一個弱學習器預測失效的 樣本,調整這些樣本的權重,使得每一個新的弱學習器能更重視前一 個弱學習器預測失效的樣本。

● 注意事項:

▶ 在自適應提升的訓練過程中,因為會不斷更新樣本權重,提高較難以預 測的樣本權重,所以,自適應提升易受離群值(或異常值)的影響,須格外 重視離群值(或異常值)的資料預處理。

梯度提升 Gradient Boosting

誤差

弱學習器 的數量

● 梯度提升係一種採用集成學習<u>提升法 Boosting</u> 的演算法,可用來處理迴歸 與分類問題。

● 核心概念:

採用序列化的方式,逐一訓練每個弱學習器,在訓練每一個新的弱學習器時,嘗試修正前一個弱學習器的預測殘差,最後,綜合這多個弱學習器的預測結果,從而建構出一個強學習器。梯度提升模型的基本概念為:

▶ 透過分布算法 (Stagewise Additive Modeling)輔以梯度下降 (Gradient Descent),逐步最小化損失函數:

分布算法係假設理論且完美的模型,由多個基底函數(i.e.,弱學習模型)組合而成,而且,在訓練每一個基底函數時,其參數係藉由梯度下降法來最小化每一次的訓練誤差。

● 注意事項:

➤ 當弱學習器採用 CART (Classification and Regression Tree)決策樹時, 則這樣的梯度提升稱為梯度提升決策樹 Gradient Boosting Decision Tree, 簡稱 GBDT。

極限梯度提升 Extreme Gradient Boosting

● 極限梯度提升屬於集成學習(Ensemble Learning)的一種演算法,可用來處理 迴歸與分類問題,簡稱 XGBoost。

● 核心概念:

主要基於<u>梯度提升決策樹 GBDT</u> 的思維,逐一訓練每個弱學習器 – 決策樹,且組合這些弱學習器成一個強學習器,此外,極限梯度提升還有下列二項重要的改進與優化:

(1) 損失函數加入正則項:

損失函數添加正則懲罰項,主要目的係在避免模型過度複雜,降低過擬合(Overfitting)的風險。在訓練模型時,若模型結構過度複雜,則易受雜訊干擾而導致過擬合。

(2) 隨機採樣:

在訓練每棵樹時,會隨機抽樣部分樣本與特徵,每棵樹皆只用部分的訓練資料來進行訓練。

● 優點:

- ➤ 泛化能力(Generalization Ability)佳。
- ▶ 可平行運算進行訓練,減少運算資源的耗費。

弱學習器 的數量

集成學習 Ensemble Learning

- ▶ 係一種結合多個弱學習器,產生一個較強學習器的建模技巧。
- ▶ 能有效提升泛化能力,且降低過擬合的風險。
- ▶ 三種集成的方法:裝袋法、提升法、堆疊法。

集成學習-裝袋法 Bagging

- 裝袋法 Bagging (全名為 Bootstrap Aggregating) 是一種集成學習的方法。
- 基本概念:

藉由取後放回的隨機抽樣方式 - <u>Bootstrapping</u>,從原始訓練資料集中取出多個子訓練資料集,且在每個子訓練資料集中獨立訓練一個弱學習器,最終,透過機制綜合每個弱學習器的預測,例如:平均(迴歸問題)、投票(分類問題)等,將這些弱學習器組合成一個強學習器。

- 採用裝袋法的機器學習模型:
 - 隨機森林 Random Forest

Reference:

AVI CHAWLA. Oct 18 2023. An Animated Guide to Bagging and Boosting in Machine Learning.

集成學習-提升法 Boosting

● 提升法 Boosting 是一種集成學習的方法。

● 基本概念:

以串聯的方式依序生成多個弱學習器,每個弱學習器皆會與前一個弱學習器有關聯,每個弱學習器會關注前一個弱學習器預測錯誤的樣本,給予更大的權重改進前一個弱學習器的錯誤,嘗試逐步提升後續的弱學習器表現,最終,透過綜合每個弱學習器的預測機制,例如:平均(迴歸問題)、投票(分類問題)等,將這些弱學習器組合成一個強學習器。

● 採用提升法的機器學習模型:

- ➤ 梯度提升 Gradient Boosting
- ➤ 自適應提升 Adaptive Boosting, AdaBoost
- 極限梯度提升 Extreme Gradient Boosting, XGBoost

Reference:

AVI CHAWLA. Oct 18 2023. An Animated Guide to Bagging and Boosting in Machine Learning.

集成學習-堆疊法 Stacking

- 堆疊法 Stacking 是一種集成學習的方法。
- 相較於裝袋法 Bagging 與提升法 Boosting, 堆疊法 Stacking 的架構更複雜, 但也較常表現得更好。

● 基本概念:

首先,訓練多個弱學習器,例如:決策樹、支持向量機等,再將這多個弱學習器的預測結果作為新的特徵,最後,藉由這新的特徵用其訓練一個元模型Meta Model 作為最終的預測模型。

● 堆疊法的訓練過程:

Step 1: 將訓練資料集分成兩個子資料集;

Step 2: 在第一個子資料集中,訓練多個弱學習器;

Step 3: 在第二個子資料集中,取得每個弱學習器的預測結果, 日期为新的特徵:

且視為新的特徵;

Step 4: 在新的特徵中,訓練元模型 Meta Model,

通常元模型是一個簡單的模型,例如:線性迴歸。

Reference:

Ageel Anwar. Jan 28, 2021. What are Ensemble methods in Machine Learning?.

機器學習 的極限取決於 數據 與 特徵,

而,模型和演算法僅是逼近極限的方法。

了解如何將 **數據分析** 與 **機器學習** 應用於您的業務! **請立即與我們聯繫,發掘數據資料中的無限可能!!**

CONTACT US

