

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2008; month=1; day=11; hr=13; min=25; sec=58; ms=728;]

=====

Application No: 10587006 Version No: 1.0

Input Set:

Output Set:

Started: 2007-12-21 16:40:24.931
Finished: 2007-12-21 16:40:25.977
Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 46 ms
Total Warnings: 11
Total Errors: 0
No. of SeqIDs Defined: 11
Actual SeqID Count: 11

Error code	Error Description
W 402	Undefined organism found in <213> in SEQ ID (1)
W 402	Undefined organism found in <213> in SEQ ID (2)
W 402	Undefined organism found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 402	Undefined organism found in <213> in SEQ ID (5)
W 402	Undefined organism found in <213> in SEQ ID (6)
W 402	Undefined organism found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
W 213	Artificial or Unknown found in <213> in SEQ ID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)
W 213	Artificial or Unknown found in <213> in SEQ ID (11)

SEQUENCE LISTING

<110> Genencor International, Inc.
Dunn-Coleman, N.
Shetty, J.
Duan, G.
Sung, A.
Qian, Y.

<120> A Method for the Preparation of a High Purity Rice Protein Concentrate

<130> GC830-PCT

<140> 10587006
<141> 2007-12-21

<150> PCT/US05/05320
<151> 2005-02-17

<150> US 60/547,153
<151> 2004-02-23

<160> 11

<170> PatentIn version 3.2

<210> 1
<211> 2103
<212> DNA
<213> Humicola grisea var. thermoidea

<400> 1

atgcatacac	tctccaagct	cctcgccgt	ggctctgccc	tccagtctgc	cctcgccgt		60
cctcacggc	cttcgcgtct	ccaggaacgc	gctgccgttg	ataccttcat	caacaccgag		120
aagccccatcg	catggAACAA	gctgctcgcc	aacatcgccc	ctaacggcaa	agccgctccc		180
ggtggccccc	ccggcgttgt	gattGCCAGC	ccttccagga	cggaccctcc	ttgtacgtgg		240
tggcatggaa	tggacccaag	agactggttt	tagatggaaag	agagtttctg	ctaaccgcca		300
cacccagact	tcttcacctg	gacccgcgt	gccgcctgg	tcctcaccgg	catcatcgag		360
tcccttggcc	acaactacaa	caccaccctg	cagaccgtca	tccagaacta	cgtcgccgtcg		420
caggcccaagc	tgcagcagg	ctcgaacccc	tcgggaacct	tcgcccacgg	ctcggtctc		480
ggtgaggcca	agttcaatgt	cgacctca	gccttcactg	gcaatgggg	tcgcctctcg		540
agggacggcc	cgcgcctgcg	cgccatcgct	ctcatccagt	acgccaagtg	gctgatcgcc		600
aacggctaca	agagcacggc	caagagcgtc	gtctggccc	tgcgtcaagaa	cgatctcgcc		660
tacacggccc	agtactggaa	cgagaccggc	ttcgatctt	gggaggaggt	ccccggcagc		720
tcgttcttta	ccatcgccag	ctctcacagg	ggtgagtcat	ttattgttca	gtgtttctc		780
attgaataat	taccgaaatg	ccactgacgc	caaacagctc	tgactgaggg	tgcttacctc		840
gccgctcagc	tgcacaccga	gtggcgcc	tgcacgaccg	tcgcctctca	ggttctgtgc		900
ttccagcagg	ccttctggaa	ctccaagggc	aactatgtcg	tctccaacag	taagatccct		960
acaccaacaa	aaaaaatcga	aaaggaacgt	tagctgaccc	ttctagtcaa	cggcggcag		1020
tatcgctccg	gcaaggacgc	caactcgatc	ctggcgcc	tccacaactt	cgaccctcgag		1080
gccggctcgc	acaacctgac	cttccagccc	tgcagcgcgc	gcgcctggc	caaccacaag		1140
gcctatgtcg	actcggtccg	caacctctac	gccatcaaca	aggcatcg	ccaggcgaag		1200
gccgttgccc	tcggccgcta	ctcgaggat	gtctactaca	acggcaaccc	gtggtacctg		1260
gccaactttg	ccggccgcga	gcagctctac	gacgccatct	acgtgtggaa	caagcaggc		1320
tccatcaccc	tgacctcggt	ctccctgccc	ttcttcggcg	accttgcctc	gtcggtcagc		1380
accggcacct	actccaagag	cagctcgacc	ttcaccaaca	tcgtcaacgc	cgtcaaggcc		1440

tacggccgacg	gttcatcga	ggtggcgccc	aagtacaccc	cgtccaacgg	cgcgctcgcc	1500
gaggcgtacg	accgcaacac	gggcaagccc	gactcgccc	ccgacctgac	gtggtcgtac	1560
tcggccttcc	tctcgccat	cgaccgccc	gccccgtctcg	tcccccggag	ctggcgccc	1620
agcgtggcca	agagccagct	gccgtccacc	tgctcgccca	tcgaggtcgc	ccgcaccc	1680
gtcgccgcca	cgagcacctc	gttcccgtcc	aagcagaccc	cgaacccctc	cgcggcgccc	1740
tccccgtccc	cctaccgac	cgcctgcgcg	gacgctagcg	aggtgtacgt	cacccaaac	1800
gagcgcgtgt	cgaccgcgtg	gggcgagacc	atcaaggtgg	tggcaacgt	gccggcgctg	1860
gggaactggg	acacgtccaa	ggcggtgacc	ctgtcgccca	gccccgtacaa	gtcgaatgat	1920
cccctctgga	gcatcacggt	gccccatcaag	gacgacggct	cggccgtgca	gtacaagtt	1980
atcaaggtcg	gcaccaacgg	gaagattact	tggagtcgg	acccaaacag	gagcattacc	2040
ctgcagacgg	cgtcgctcg	gggcaagtgc	gccgcgcaga	cggtaatga	ttcgtggcgt	2100
taa						2103

<210> 2
<211> 634
<212> PRT
<213> Humicola grisea var. thermoidea

<400>	2					
Met His Thr Phe Ser Lys Leu Leu Val	Leu Gly Ser Ala Val Gln Ser					
1	5	10	15			
Ala Leu Gly Arg Pro His Gly Ser Ser Arg	Leu Gln Glu Arg Ala Ala					
20	25	30				
Val Asp Thr Phe Ile Asn Thr Glu Lys Pro	Ile Ala Trp Asn Lys Leu					
35	40	45				
Leu Ala Asn Ile Gly Pro Asn Gly Lys	Ala Ala Pro Gly Ala Ala Ala					
50	55	60				
Gly Val Val Ile Ala Ser Pro Ser Arg	Thr Asp Pro Pro Tyr Phe Phe					
65	70	75	80			
Thr Trp Thr Arg Asp Ala Ala Leu Val	Leu Thr Gly Ile Ile Glu Ser					
85	90	95				
Leu Gly His Asn Tyr Asn Thr Thr Leu Gln	Thr Val Ile Gln Asn Tyr					
100	105	110				
Val Ala Ser Gln Ala Lys Leu Gln Gln Val	Ser Asn Pro Ser Gly Thr					
115	120	125				
Phe Ala Asp Gly Ser Gly Leu Gly Glu	Ala Lys Phe Asn Val Asp Leu					
130	135	140				
Thr Ala Phe Thr Gly Glu Trp Gly Arg	Pro Gln Arg Asp Gly Pro Pro					
145	150	155	160			
Leu Arg Ala Ile Ala Leu Ile Gln	Tyr Ala Lys Trp Leu Ile Ala Asn					
165	170	175				
Gly Tyr Lys Ser Thr Ala Lys Ser Val Val	Trp Pro Val Val Lys Asn					
180	185	190				
Asp Leu Ala Tyr Thr Ala Gln Tyr Trp	Asn Glu Thr Gly Phe Asp Leu					
195	200	205				
Trp Glu Glu Val Pro Gly Ser Ser Phe	Phe Thr Ile Ala Ser Ser His					
210	215	220				
Arg Ala Leu Thr Glu Gly Ala Tyr	Leu Ala Ala Gln Leu Asp Thr Glu					
225	230	235	240			
Cys Arg Ala Cys Thr Thr Val Ala Pro	Gln Val Leu Cys Phe Gln Gln					
245	250	255				
Ala Phe Trp Asn Ser Lys Gly Asn	Tyr Val Val Ser Asn Ile Asn Gly					
260	265	270				
Gly Glu Tyr Arg Ser Gly Lys Asp Ala Asn	Ser Ile Leu Ala Ser Ile					
275	280	285				
His Asn Phe Asp Pro Glu Ala Gly Cys Asp	Asn Leu Thr Phe Gln Pro					
290	295	300				

Cys Ser Glu Arg Ala Leu Ala Asn His Lys Ala Tyr Val Asp Ser Phe
305 310 315 320
Arg Asn Leu Tyr Ala Ile Asn Lys Gly Ile Ala Gln Gly Lys Ala Val
325 330 335
Ala Val Gly Arg Tyr Ser Glu Asp Val Tyr Tyr Asn Gly Asn Pro Trp
340 345 350
Tyr Leu Ala Asn Phe Ala Ala Ala Glu Gln Leu Tyr Asp Ala Ile Tyr
355 360 365
Val Trp Asn Lys Gln Gly Ser Ile Thr Val Thr Ser Val Ser Leu Pro
370 375 380
Phe Phe Arg Asp Leu Val Ser Ser Val Ser Thr Gly Thr Tyr Ser Lys
385 390 395 400
Ser Ser Ser Thr Phe Thr Asn Ile Val Asn Ala Val Lys Ala Tyr Ala
405 410 415
Asp Gly Phe Ile Glu Val Ala Ala Lys Tyr Thr Pro Ser Asn Gly Ala
420 425 430
Leu Ala Glu Gln Tyr Asp Arg Asn Thr Gly Lys Pro Asp Ser Ala Ala
435 440 445
Asp Leu Thr Trp Ser Tyr Ser Ala Phe Leu Ser Ala Ile Asp Arg Arg
450 455 460
Ala Gly Leu Val Pro Pro Ser Trp Arg Ala Ser Val Ala Lys Ser Gln
465 470 475 480
Leu Pro Ser Thr Cys Ser Arg Ile Glu Val Ala Gly Thr Tyr Val Ala
485 490 495
Ala Thr Ser Thr Ser Phe Pro Ser Lys Gln Thr Pro Asn Pro Ser Ala
500 505 510
Ala Pro Ser Pro Ser Pro Tyr Pro Thr Ala Cys Ala Asp Ala Ser Glu
515 520 525
Val Tyr Val Thr Phe Asn Glu Arg Val Ser Thr Ala Trp Gly Glu Thr
530 535 540
Ile Lys Val Val Gly Asn Val Pro Ala Leu Gly Asn Trp Asp Thr Ser
545 550 555 560
Lys Ala Val Thr Leu Ser Ala Ser Gly Tyr Lys Ser Asn Asp Pro Leu
565 570 575
Trp Ser Ile Thr Val Pro Ile Lys Ala Thr Gly Ser Ala Val Gln Tyr
580 585 590
Lys Tyr Ile Lys Val Gly Thr Asn Gly Lys Ile Thr Trp Glu Ser Asp
595 600 605
Pro Asn Arg Ser Ile Thr Leu Gln Thr Ala Ser Ser Ala Gly Lys Cys
610 615 620
Ala Ala Gln Thr Val Asn Asp Ser Trp Arg
625 630

<210> 3
<211> 604
<212> PRT
<213> Humicola grisea var. thermoidea

<400> 3
Ala Ala Val Asp Thr Phe Ile Asn Thr Glu Lys Pro Ile Ala Trp Asn
1 5 10 15
Lys Leu Leu Ala Asn Ile Gly Pro Asn Gly Lys Ala Ala Pro Gly Ala
20 25 30
Ala Ala Gly Val Val Ile Ala Ser Pro Ser Arg Thr Asp Pro Pro Tyr
35 40 45
Phe Phe Thr Trp Thr Arg Asp Ala Ala Leu Val Leu Thr Gly Ile Ile
50 55 60

Glu Ser Leu Gly His Asn Tyr Asn Thr Thr Leu Gln Thr Val Ile Gln
65 70 75 80
Asn Tyr Val Ala Ser Gln Ala Lys Leu Gln Gln Val Ser Asn Pro Ser
85 90 95
Gly Thr Phe Ala Asp Gly Ser Gly Leu Gly Glu Ala Lys Phe Asn Val
100 105 110
Asp Leu Thr Ala Phe Thr Gly Glu Trp Gly Arg Pro Gln Arg Asp Gly
115 120 125
Pro Pro Leu Arg Ala Ile Ala Leu Ile Gln Tyr Ala Lys Trp Leu Ile
130 135 140
Ala Asn Gly Tyr Lys Ser Thr Ala Lys Ser Val Val Trp Pro Val Val
145 150 155 160
Lys Asn Asp Leu Ala Tyr Thr Ala Gln Tyr Trp Asn Glu Thr Gly Phe
165 170 175
Asp Leu Trp Glu Glu Val Pro Gly Ser Ser Phe Phe Thr Ile Ala Ser
180 185 190
Ser His Arg Ala Leu Thr Glu Gly Ala Tyr Leu Ala Ala Gln Leu Asp
195 200 205
Thr Glu Cys Arg Ala Cys Thr Thr Val Ala Pro Gln Val Leu Cys Phe
210 215 220
Gln Gln Ala Phe Trp Asn Ser Lys Gly Asn Tyr Val Val Ser Asn Ile
225 230 235 240
Asn Gly Gly Glu Tyr Arg Ser Gly Lys Asp Ala Asn Ser Ile Leu Ala
245 250 255
Ser Ile His Asn Phe Asp Pro Glu Ala Gly Cys Asp Asn Leu Thr Phe
260 265 270
Gln Pro Cys Ser Glu Arg Ala Leu Ala Asn His Lys Ala Tyr Val Asp
275 280 285
Ser Phe Arg Asn Leu Tyr Ala Ile Asn Lys Gly Ile Ala Gln Gly Lys
290 295 300
Ala Val Ala Val Gly Arg Tyr Ser Glu Asp Val Tyr Tyr Asn Gly Asn
305 310 315 320
Pro Trp Tyr Leu Ala Asn Phe Ala Ala Glu Gln Leu Tyr Asp Ala
325 330 335
Ile Tyr Val Trp Asn Lys Gln Gly Ser Ile Thr Val Thr Ser Val Ser
340 345 350
Leu Pro Phe Phe Arg Asp Leu Val Ser Ser Val Ser Thr Gly Thr Tyr
355 360 365
Ser Lys Ser Ser Ser Thr Phe Thr Asn Ile Val Asn Ala Val Lys Ala
370 375 380
Tyr Ala Asp Gly Phe Ile Glu Val Ala Ala Lys Tyr Thr Pro Ser Asn
385 390 395 400
Gly Ala Leu Ala Glu Gln Tyr Asp Arg Asn Thr Gly Lys Pro Asp Ser
405 410 415
Ala Ala Asp Leu Thr Trp Ser Tyr Ser Ala Phe Leu Ser Ala Ile Asp
420 425 430
Arg Arg Ala Gly Leu Val Pro Pro Ser Trp Arg Ala Ser Val Ala Lys
435 440 445
Ser Gln Leu Pro Ser Thr Cys Ser Arg Ile Glu Val Ala Gly Thr Tyr
450 455 460
Val Ala Ala Thr Ser Thr Ser Phe Pro Ser Lys Gln Thr Pro Asn Pro
465 470 475 480
Ser Ala Ala Pro Ser Pro Ser Pro Tyr Pro Thr Ala Cys Ala Asp Ala
485 490 495
Ser Glu Val Tyr Val Thr Phe Asn Glu Arg Val Ser Thr Ala Trp Gly
500 505 510
Glu Thr Ile Lys Val Val Gly Asn Val Pro Ala Leu Gly Asn Trp Asp

515	520	525
Thr Ser Lys Ala Val Thr Leu Ser Ala Ser Gly Tyr Lys Ser Asn Asp		
530	535	540
Pro Leu Trp Ser Ile Thr Val Pro Ile Lys Ala Thr Gly Ser Ala Val		
545	550	555
Gln Tyr Lys Tyr Ile Lys Val Gly Thr Asn Gly Lys Ile Thr Trp Glu		
565	570	575
Ser Asp Pro Asn Arg Ser Ile Thr Leu Gln Thr Ala Ser Ser Ala Gly		
580	585	590
Lys Cys Ala Ala Gln Thr Val Asn Asp Ser Trp Arg		
595	600	

<210> 4
<211> 10739
<212> DNA
<213> Artificial Sequence

<220>
<223> pTrex3g_N13 plasmid

<400> 4	
aagcttacta gtacttctcg agctctgtac atgtccggtc ggcacgtacg cgtatcgatg	60
gcccgcaggctg caggcggccg cctgcagcca cttgcagtcc cgtggattc tcacggtaaa	120
tgttaggcctt ttgttagggta ggaatttgtca ctcaagcacc cccaacctcc attacgcctc	180
ccccatagag ttcccaatca gtgagtcatg gcactgttct caaatagatt ggggagaagtt	240
tgacttccgc ccagagctga aggtcgacaca accgcattatgat atagggtcg gcaacggcaaa	300
aaagcacgtg gctcaccgaa aagcaagatg tttgcataatc aacatccagg aacctggata	360
catccatcat cacgcacgac cactttgatc tgctggtaaa ctcgtattcg ccctaaaccg	420
aagtgcgtgg taaaatctaca cgtggggcccc tttcggtata ctgcgtgtgt cttctctagg	480
tgcattttt ttcccttcct ctatgtttga attgtttgtg ttggagtccg agctgttaact	540
acctctgaat ctctggagaa tgggtggacta acgactaccg tgcacctgca tcattgttat	600
aatagtgtatc ctgagaaggg ggggtttggag caatgtggaa ctttgatgtt catcaaacaa	660
agaacgaaga cgcctttttt gcaaaagtttt gtttcggcta cggtaagaa ctggatactt	720
gttgtgtctt ctgtgtatcc ttgtggcaac aagaggccag agacaatcta ttcaaacacc	780
aagcttgctc tttttagcta caagaacctg tgggtatat atctagatgt gtgaagtcgg	840
taatcccgt gtatagtaat acgagtcgca tctaaatact ccgaagctgc tgcgaaccgg	900
gagaatcgag atgtgttggaa aagcttctag cgacggctaa aattagcatg aaaggctatg	960
agaaaattctg gagacggctt gttgaatcat ggcgttccat tttcgacaa gcaaaagcggt	1020
ccgtcgcaatc agcaggcact cattcccgaa aaaactcgga gattcctaag tagcgatgg	1080
accggaaataa tataataggc aatacattga gttgcctgca cgggttgcataat gcaggggtac	1140
tgagcttggaa cataactgtt ccgtacccca cctcttctca acctttggcg tttccctgtat	1200
tcagcgtacc cgtacaagtc gtaatcacta ttaaccaga ctgacccggac gtgttttgc	1260
cattttgg agaaataatg tcattgcgtat gtgtatccat cctgttttgc acgtggggc	1320
tgttgcgttccgg ccgaatgttgc gattgttccat cgaactctgc tcgttagggc atgttgcgtt	1380
tctgtgttccgg gcaggacacg cctcgaagggt tcacggcaag gggaaaccacc gatagcgtt	1440
tcttagtagca acctgtaaag ccgaatgtca gcatcactgg aaaataaaaa ccaatggctt	1500
aaagtagatac agttaatgcc taaaaggatgtt atataccaggc ggctataat tgcataatca	1560
agtggctaaa cgtaccgtaa ttggccaaacg gcttgggggg ttgcagaagc aacggcaaa	1620
ccccacttcc ccacgtttgt ttcttcactc agtccaaatct cagctggta tcccccaatt	1680
gggtcgctt tttgttccgg tgaagtggaaa gaagacagag gtaagaatgt ctgactcgaa	1740
gcgttttgcataaccaag ggcgttgcgtatc gaaatgttgcac attcaaggag	1800
tatccatgttccgg gggatgttgcgtt agtgtatcgt gtaaggatgtt ttgttgcgttccgg atacgcacaa	1860
tactgtatag tcacttctga tgaagtggtc catattggaaa tggtaaaggatgt gcactgttgcac	1920
ggccaaatggat tgagtggaaa ctgcctaaaga tctcgccccc tcggggcttc ggcctttggg	1980
tgtacatgtt tttgttccgg gcaaaatgtca agtgtgttgc gatcgttgcac actgtgttgcct	2040
ttaccaagca gctgagggtt tttgttgcgttccgg aatgttgcgtt gggccactgc atgggttgc	2100
atagaaaagag aagcttagcc aagaacaata ggcgataaaag atagcctcat taaacggaaat	2160

gagctagtag gcaaagtca	cgaatgtta	tatataaagg	ttcgaggc	gtgcctcc	2220	
catgctctcc	ccatctactc	atcaactca	atcctccagg	agacttgtac	accatcttt	2280
gaggcacaga	aacccaatag	tcaaccatca	caagttgt	aaaaaaagca	ggctccgccc	2340
ccgccccctt	caacatgc	accttctcca	agctcctcgt	cctgggctct	gccgtccagt	2400
ctgcccctcg	gcggcctcac	ggcttgc	gtctccagga	acgcgcgtcc	gttgataacct	2460
tcatcaacac	cgagaagccc	atcgcatgga	acaagctgct	cgcacatc	ggccctaacc	2520
gcaaagccgc	tcccgtgc	gccgcggcg	ttgtgattgc	cagcccttcc	aggacggacc	2580
ctccttgtac	gtggggcat	ggaatggacc	caagagactg	gttttagatg	aaagagagtt	2640
tctgctaacc	gccacaccca	gacttctca	cctggaccccg	cgatgccgc	ctggcctca	2700
ccggcatcat	cgagtccctt	ggccacaact	acaacaccac	cctgcagacc	gtcatccaga	2760
actacgtcgc	gtcgaggc	aagctgc	aggctcgaa	cccctcg	accttcgc	2820
acggctcg	tctcggtgag	gccaagttca	atgtcgac	cactgc	actggc	2880
ggggtcgccc	tcaagggac	ggcccgcccc	tgcgcgc	cgc	ctc	2940
agtggctgat	cgcacggc	tacaagagca	cggccaagag	cgtcg	ctgg	3000
agaacgatct	cgcctacacg	gcccagtact	ggaacgagac	cggcttc	gtat	3060
agg	cagtcgttc	tttaccatcg	ccagctctca	cagggt	tcatttatt	3120
ttcagtgtt	tctcattgaa	taattaccgg	aatgccactg	acgc	ccaaaca	3180
agggtgctt	cctcggc	cagtcgaca	ccgagtgc	cgc	ctgcac	3240
ctcaggttct	gtgctccag	caggc	ttct	ggaactccaa	ggcaactat	3300
acagtaagat	ccctacacca	acaaaaaaaaa	tcgaaaagga	acgttagctg	acccttctag	3360
tcaacg						