Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет ИТМО»

VİTMO

ЛАБОРАТОРНАЯ РАБОТА №С ПРЕДМЕТ «ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ» ТЕМА «СЛЕЖЕНИЕ И КОМПЕНСАЦИЯ: ФРАНКИС, ДЭВИСОН И НАБЛЮДАТЕЛИ»

Вариант №2

Преподаватель: Пашенко А. В.

Выполнил: Румянцев А. А.

Факультет: СУиР Группа: R3341

Поток: ТАУ R22 бак 1.1.1

Содержание

	Характер внешнего возмущения
1.2	D
	Генератор задающего воздействия
1.3	Схема моделирования системы
1.4	Синтез компоненты обратной связи
1.5	Общий вид матричных уравнений Франкиса-Дэвисона
1.6	Синтез компоненты слежения
1.7	Синтез компоненты компенсации по входу
1.8	Компьютерное моделирование
1.9	Сравнение результатов

Задание 1. Слежение и компенсация: матричные уравнения

Рассмотрим систему

$$\begin{cases} \dot{x} = Ax + Bu + B_f f, \\ y = Cx + Du + D_f f, \end{cases} \quad x(0) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

генератор внешнего возмущения

$$\begin{cases} \dot{w} = \Gamma_f w_f, \\ f = Y_f w_f, \end{cases} \quad w_f(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

и генератор задающего воздействия

$$\begin{cases} \dot{w}_g = \Gamma_g w_g, \\ g = Y_g w_g, \end{cases} \quad w_g(0)$$

при параметрах объекта управления

$$A = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix}, B = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}, B_f = \begin{bmatrix} -4 & -1 \\ 0 & 0 \\ 4 & 0 \end{bmatrix}, C = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}^T, D = 2, D_f = \begin{bmatrix} 8 \\ 3 \end{bmatrix}^T$$

и параметрах генератора

$$\Gamma_f = \begin{bmatrix} 25 & 6 & -20 & 11 \\ 14 & 3 & -10 & 4 \\ 40 & 11 & -31 & 17 \\ 6 & 4 & -4 & 3 \end{bmatrix}, \ Y_f = \begin{bmatrix} 8 & -20 \\ 2 & -6 \\ -6 & 16 \\ 4 & -9 \end{bmatrix}^T, \ g(t) = 4\sin(t) - 1;$$

Программа для задания 1 находится в приложении А на листинге 1

Характер внешнего возмущения

Найдем собственные числа матрицы Γ_f , чтобы определить характер внешнего возмущения

$$\sigma(\Gamma_f) = \{\pm i, \pm 3i\}$$

Спектр состоит только из мнимых чисел. Характер возмущения – гармоники без роста и затухания амплитуды с течением времени.

Генератор задающего воздействия

$$\Gamma_g = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ Y_g = \begin{bmatrix} 4 & 0 & -1 \end{bmatrix}, \ w_g(0) = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix};$$

Схема моделирования системы

• • •

Синтез компоненты обратной связи

Исследуем систему на стабилизируемость

$$\sigma(A) = \{-2, 2 \pm i\}, \ A_{J_r e} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & -1 & 2 \end{bmatrix}, \ B_{J_r e} = \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix};$$

Система не полностью управляема, стабилизируема. Максимальная степень устойчивости $\alpha=2$.

Синтезируем компоненту обратной связи K с помощью матричного уравнения типа Риккати

$$A^{T}P + PA + Q - \nu PBR^{-1}B^{T}P + 2\alpha P = 0, K = -R^{-1}B^{T}P$$
:

при $Q = I, \nu = 2, R = 1, \alpha = 2$. Получаем

$$K = \begin{bmatrix} 2.1111 & -13.4448 & 1.6787 \end{bmatrix},$$

$$\sigma(A + BK) = \{-2, -2.3951 \pm 4.3138i\};$$

Желаемая степень устойчивости достигнута – регулятор синтезирован корректно.

Общий вид матричных уравнений Франкиса-Дэвисона

Матричные уравнения Франкиса-Дэвисона в общем виде представляются системой

$$\begin{cases} AP + BK + Y_1 = P\Gamma, \\ CP + DK + Y_2 = 0; \end{cases}$$

Решение относительно P и K для произвольных Y_1 и Y_2 существует, если

$$\operatorname{rank} \begin{bmatrix} A - I\lambda_{i\Gamma} & B \\ C & D \end{bmatrix} =$$
 число строк

 $\lambda_{i\Gamma}$ – собственные числа Γ .

Синтез компоненты слежения

...

Синтез компоненты компенсации по входу

• • •

Компьютерное моделирование

. . .

Сравнение результатов

• • •

Приложение А

```
\% plant parameters
A = [5 \ 2 \ 7;
   2 1 2;
  -2 -3 -4];
B = [3;1;-1];
Bf = [-4 -1;
   0 0;
    4 0];
C = [2 \ 0 \ 3];
D=2;
Df = [8 3];
Gf = [25 6 -20 11;
    14 3 -10 4;
    40 11 -31 17;
    6 4 -4 3];
Yf = [8 \ 2 \ -6 \ 4;
   -20 -6 16 -9];
Gg = [0 \ 1 \ 0;
     -1 0 0;
      0 0 0];
Yg = [4 \ 0 \ -1];
wg0 = [0;1;1];
% A eigenvalues
A_{eig} = eig(A)
% Jordan matrix
[P1, J] = jordan(A);
Pjre(:,1) = P1(:,1);
Pjre(:,2) = imag(P1(:,2));
Pjre(:,3) = real(P1(:,3))
Pjre_inv = Pjre^-1
Aj_re = Pjre_inv * A * Pjre
B_{jre} = Pjre_{inv} * B
% G eigenvalues
Gf_eig = eig(Gf)
Gg_eig = eig(Gg)
\% solving Riccati: feedback comp
Q = eye(3);
v = 2;
R = 1;
a = 2;
Aa = A + eye(3) * (a-0.0000000000001);
[Pk,K,e]=icare(Aa,sqrt(v)*B,Q,R);
K = -inv(R) *B *Pk
eK = eig(A+B*K)
% check Frankis-Davison: Kg
check_Kg1 = [A-eye(3)*Gg_eig(1) B; C D]
rank(check_Kg1)
```

```
check_Kg2 = [A-eye(3)*Gg_eig(2) B; C D]
rank(check_Kg2)
check_Kg3 = [A-eye(3)*Gg_eig(3) B; C D]
rank(check_Kg3)
% solving Frankis-Davison: Kg
cvx_begin sdp
variable Pg(3,3)
variable Kg(1,3)
Pg*Gg-A*Pg == B*Kg;
Yg-C*Pg == D*Kg;
cvx_end
Pg=Pg
Kg = Kg
% check Frankis-Davison: Kf
check_Kf1 = [A-eye(3)*Gf_eig(1) B; C D]
rank(check_Kf1)
check_Kf2 = [A-eye(3)*Gf_eig(2) B; C D]
rank(check_Kf2)
check_Kf3 = [A-eye(3)*Gf_eig(3) B; C D]
rank(check_Kf3)
check_Kf4 = [A-eye(3)*Gf_eig(4) B; C D]
rank(check_Kf4)
\% solving Frankis-Davison: Kf
cvx_begin sdp
variable Pf(3,4)
variable Kf(1,4)
Pf*Gf-A*Pf-Bf*Yf == B*Kf;
-C*Pf == D*Kf;
cvx_end
Pf=Pf
Kf = Kf
```

Листинг 1: Программа для задания 1