CS 580: Algorithm Design and Analysis

Upper and Lower Bounds for Sorting Algorithms

Merge Sort: O(n * log(n))

Q: Can we do better?

Answer: It depends on the model of computation. Comparisons counted as the expensive operation

Which is which?

Credit to Mary Wooters for lower bound slides

Comparison-based sorting

Want to sort these items.

There's some ordering on them, but we don't know what it is.

bigger than

?

The algorithm's job is to output a correctly sorted list of all the objects.

There is a genie who knows what the right order is.

The genie can answer YES/NO questions of the form: is [this] bigger than [that]?

Merge Sort and many other sorting algorithms work like this.

etc.

Lower bound of $\Omega(n \log(n))$.

- Theorem:
 - Any deterministic comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps.

This covers all the sorting algorithms we know!!!

- How might we prove this?
 - 1. Consider all comparison-based algorithms, one-by-one, and analyze them.

Lower bound of $\Omega(n \log(n))$.

- Theorem:
 - Any deterministic comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps.

This covers all the sorting algorithms we know!!!

- How might we prove this?
 - 1. Consider all comparison-based algorithms, one-by-one, and analyze them.
 - 2. Don't do that.

Instead, argue that all comparison-based sorting algorithms give rise to a decision tree.

Then analyze decision trees.

Decision trees

All comparison-based algorithms have an associated decision tree.

What's the runtime on a particular input?

What's the worst-case runtime?

At least Ω (length of the longest path).

We want a statement: in all such trees, the longest path is at least _____

We want a statement: in all such trees, the longest path is at least _____

This is a binary tree with at least____leaves.

We want a statement: in all such trees, the longest path is at least _____

- This is a binary tree with at least <u>n!</u> leaves.
- The shallowest tree with n! leaves is the completely balanced one, which has depth ____

We want a statement: in all such trees, the longest path is at least _____

- This is a binary tree with at least <u>n!</u> leaves.
- The shallowest tree with n! leaves is the completely balanced one, which has depth logn!
- So in all such trees, the longest path is at least log(n!).
- n! is about (n/e)ⁿ (Stirling's formula).
- $\log(n!)$ is about $n \log(n/e) = \Omega(n \log(n))$.

Conclusion: the longest path has length at least $\Omega(n \log(n))$.

Lower bound of $\Omega(n \log(n))$.

• Theorem:

• Any deterministic comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps.

• Proof:

- Any deterministic comparison-based algorithm can be represented as a decision tree with n! leaves.
- The worst-case running time is at least the depth of the decision tree.
- All decision trees with n! leaves have depth $\Omega(n \log(n))$.
- So any comparison-based sorting algorithm must have worst-case running time at least $\Omega(n \log(n))$.