1. (Amended) A chemical vapor deposition method of forming a barium strontium titanate comprising dielectric layer, comprising:

positioning a substrate within a chemical vapor deposition reactor; and

simultaneously a) providing gaseous barium and strontium within the reactor by flowing at least one metal organic precursor to the reactor, b) providing gaseous titanium within the reactor, and c) flowing at least one gaseous oxidizer comprising H₂O to the reactor under conditions effective to deposit a barium strontium titanate comprising dielectric layer on the substrate, the a ratio of barium relative to strontium within the dielectric layer being non-homogenous.

- 2. The method of claim 1 comprising flowing another inorganic oxidizer to the reactor during the deposit.
- 3. The method of claim 1 wherein the conditions comprise receipt of the substrate by a susceptor, the susceptor having a temperature of less than or equal to 550°C.
 - 4. (Cancelled)
 - 5. (Cancelled)

6. (Amended) A chemical vapor deposition method of forming a barium strontium titanate comprising dielectric layer, comprising:

positioning a substrate within a chemical vapor deposition reactor; and

simultaneously a) providing gaseous barium and strontium within the reactor by flowing at least one metal organic precursor to the reactor, b) providing gaseous titanium within the reactor, and c) flowing at least one gaseous oxidizer comprising H_2O_2 to the reactor under conditions effective to deposit a barium strontium titanate comprising dielectric layer on the substrate, the dielectric layer having a first portion comprising a first ratio of barium relative to strontium, and a second portion having a second ratio of barium relative to strontium, the first ratio differing from the second ratio.

- 7. The method of claim 6 comprising flowing another inorganic oxidizer to the reactor during the deposit.
- 8. The method of claim 6 wherein the conditions comprise receipt of the substrate by a susceptor, the susceptor having a temperature of less than or equal to 550°C.
 - 9. (Cancelled)
 - 10. (Cancelled)

11. (Amended) A chemical vapor deposition method of forming a barium strontium titanate comprising dielectric layer, comprising:

positioning a substrate within a chemical vapor deposition reactor; and

simultaneously a) providing gaseous barium and strontium within the reactor by flowing at least one metal organic precursor to the reactor, b) providing gaseous titanium within the reactor, and c) flowing gaseous oxidizers to the reactor under conditions effective to deposit a barium strontium titanate comprising dielectric layer on the substrate, the oxidizers comprising H_2O and at least another oxidizer selected from the group consisting of O_2 , O_3 , NO_x , and N_2O , where "x" is at least 1, an amount of titanate incorporated into the dielectric layer differing from an amount that would be incorporated in the absence of the H_2O under otherwise identical conditions.

- 13. The method of claim 11 wherein the another oxidizer comprises O₃.
- 14. The method of claim 11 wherein the another oxidizer comprises NO_x, where "x" is at least 1.
 - 15. The method of claim 11 wherein the another oxidizer comprises N_2O .

16. (Amended) The method of claim 11 wherein the oxidizers further comprise

- 17. The method of claim 11 the oxidizers comprise at least two of the another oxidizers.
- 18. (Amended) A chemical vapor deposition method of forming a barium strontium titanate comprising dielectric layer, comprising:

positioning a substrate within a chemical vapor deposition reactor; and

simultaneously a) providing gaseous barium and strontium within the reactor by flowing at least one metal organic precursor to the reactor, one or more of the at least one metal organic precursors comprising a β -diketonate ligand selected from the group consisting of thd, methd, and dmp, b) providing gaseous titanium within the reactor, and c) flowing gaseous oxidizers to the reactor under conditions effective to deposit a barium strontium titanate comprising dielectric layer on the substrate, the oxidizers comprising H_2O_2 and at least another oxidizer selected from the group consisting of O_2 , O_3 , NO_x , and N_2O_1 , where "x" is at least 1, wherein the presence of H_2O_2 during deposition of the dielectric layer influences the amount of Ti incorporated into the dielectric layer.

- 20. The method of claim 18 wherein the another oxidizer comprises O₃.
- 21. The method of claim 18 wherein the another oxidizer comprises NO_x, where "x" is at least 1.

- 22. The method of claim 18 wherein the another oxidizer comprises N₂O.
- 24. The method of claim 18 the oxidizers comprise at least two of the another oxidizers.
- 25. The method of claim 1 wherein the at least one metal organic precursor comprises a member selected from the group consisting of Ba(thd)₂, Sr (thd)₂, Ba(methd)₂, Sr(methd)₂, Ba(dpm)₂, and Sr(dpm)₂.
- 26. The method of claim 1 wherein the providing gaseous titanium within the reactor comprises flowing at least one member of the group consisting of Ti(dmae)₄, Ti(thd)₂ (O-i-Pr)₂, TiO(dpm)₂, Ti(t-BuO)₂(dpm)₂, and Ti(OCH₃)₂(dpm)₂
- 27. The method of claim 6 wherein the at least one metal organic precursor comprises a member selected from the group consisting of Ba(thd)₂, Sr (thd)₂, Ba(methd)₂, Sr(methd)₂, Ba(dpm)₂, and Sr(dpm)₂.
- 28. The method of claim 6 wherein the providing gaseous titanium within the reactor comprises flowing at least one member of the group consisting of Ti(dmae)₄, Ti(thd)₂ (O-i-Pr)₂, TiO(dpm)₂, Ti(t-BuO)₂(dpm)₂, and Ti(OCH₃)₂(dpm)₂.

- 29. The method of claim 11 wherein the at least one metal organic precursor comprises a member selected from the group consisting of Ba(thd)₂, Sr (thd)₂, Ba(methd)₂, Sr(methd)₂, Ba(dpm)₂, and Sr(dpm)₂.
- 30. The method of claim 11 wherein the providing gaseous titanium within the reactor comprises flowing at least one member of the group consisting of Ti(dmae)₄, Ti(thd)₂ (O-i-Pr)₂, TiO(dpm)₂, Ti(t-BuO)₂(dpm)₂, and Ti(OCH₃)₂(dpm)₂.
- 31. The method of claim 18 wherein the conditions comprise receipt of the substrate by a susceptor, the susceptor having a temperature from 440°C to 700°C.