

Fiete Lab 2020 March Checkpoint

Rylan Schaeffer, Dr. Leenoy Meshulam, Professor IIa Fiete March 24, 2020

Research Goals

- 1. Reverse engineer how neurally-plausible mechanistic models solve IBL task
- 2. Leverage understanding to direct exploration/analysis of biological circuit data

IBL Task

IBL Task

IBL Task

Figure 1: Generative Model of the IBL Task.

$$I_n \sim p(I|I_{n-1})$$

 $b_n \sim p(b|b_{n-1},I_n)$
 $t_n \sim p(t|b_n)$
 $o_n \sim p(o|t_n)$

Research Questions

What mechanisms(s) do plausible neural models use to solve the IBL task?

- 1. Which of these three distributions do networks learn, and over what timescales?
- 2. How do networks encode current trial side and current block side?
- 3. How do networks use block side to influence trial side?
- 4. How do networks use previous stimulus, previous action and the ensuing feedback to update the block side?
- 5. How do networks use block duration statistics to update block side?
- 6. How consistent is the learnt mechanism across network design choices?

Implementation Details - Task

Implementation Details - Model Input/Outputs per dt

Implementation Details - Within-Trial Stimuli

Implementation Details - Task Timescales

Implementation Details - Model, Loss, Etc.

- Supervised Classification (Binary Cross Entropy)
- Networks: RNN (tanh), LSTM, GRU
- Number of stacked layers: 1
- Hidden dimension: 10, 50, 100, 200
- Optimizer: SGD with LR=0.01, no momentum
- Optional weight initialization and connectivity constraints

Code online at https://github.com/int-brain-lab/ann-rnns

Preliminary Results - Performance

Figure 3: Loss, Avg Reward/Trial, Avg RNN Steps/Trial vs Grad Step

Preliminary Results - Within-Trial Behavior

Figure 4: P(Left), Left Stimulus, Right Stimulus vs dt within trial

Preliminary Results - Within-Trial Behavior

Figure 5: P(Left), Left Stimulus, Right Stimulus vs *dt* within trial

Preliminary Results - Within-Block Behavior

Figure 6: Avg P(Correct Choice) vs Trial within Block (Incorrect Block Duration i.e. mean 60, truncated to [60, 100])

Preliminary Results - Fraction of Variance Explained

Figure 7: Cumulative Fraction of Variance in RNN state vs Principal Component Number

Preliminary Results - PCA-projected RNN State Within-Block

Figure 8: PCA-projected RNN state within block 1 (post-training)

Preliminary Results - PCA-projected RNN State Within-Block

Figure 9: PCA-projected RNN state within blocks 1-4 (post-training)

Preliminary Results - PCA-projected RNN State Within-Block

Figure 10: PCA-projected RNN state within blocks 1-12 (post-training)

Preliminary Results - Block and Trial Encoding Mechanism

Figure 11: Idealized state space for encoding block side and trial side

Preliminary Results - Predicted Effect of Rotating Readout

Preliminary Results - RNN State Movement

Figure 12: RNN state movement in response to strong left, ambiguous and strong right stimuli. Color: $||h_t - RNN(h_t, o_t)||_2$

Preliminary Results - Circuit for Bistable Attractor Dynamics

Figure 13: Correlation of RNN state units (left) and Recurrent Weights (right) reveal two self-excitatory, mutually-inhibitory populations

Questions?

