Résistances et sources

- ${f Au}$ programme -

Savoirs

- ♦ Connaître les relations entre l'intensité et la tension.
- \diamond Exprimer la puissance dissipée par effet Joule dans une résistance.

Savoir-faire

- ♦ Remplacer une association série ou parallèle de deux résistances par une résistance équivalente.
- ♦ Établir et exploiter les relations des diviseurs de tension ou de courant.
- ♦ Modéliser une source en utilisant la représentation de Thévenin.

Sommaire

John Marie	
I Généralité sur les dipôles	2
A Caractéristique d'un dipôle	2
B Classification de dipôles	2
II Résistance	2
A Définition et schéma	2
B Association de résistances en série	3
C Association de résistances en parallèle	4
III Sources	5
A Sources de tension	5
B Sources de courant	6
IV Les ponts diviseurs	6
A Pont diviseur de tension	7
B Pont diviseur de courant	7
C Entraı̂nements	7

I | Généralité sur les dipôles

A Caractéristique d'un dipôle

Caractéristique -

On appelle **caractéristique** d'un dipôle la fonction I = f(U) (ou U = g(I) selon la convention). Sauf indication contraire, elle est déterminée **en régime continu**.

Cas particuliers

- ♦ Court-circuit (fil branché aux bornes) \Rightarrow U = 0, et ce pour tout I.
- \diamond Un dipôle qui n'est **pas relié à un circuit fermé** a pour intensité I=0.

$oxed{B}$

Classification de dipôles

Actif ou passif, linéaire ou non, symétrique ou non

Passif

- ♦ Pas alimenté.
- \diamond Passe par (0,0).
- ♦ Convention récepteur.

Actif

- ♦ Est alimenté.
- \diamond Passe pas par (0,0).
- Convention générateur.

Linéaire

Un dipôle est dit **linéaire** si sa caractéristique est une **droite**.

Non-linéaire

Un dipôle est dit **non-linéaire** si sa caractéristique n'est **pas une droite**.

Symétrique

Asymétrique

Asymétrique si sa caractéristique n'est pas impaire.

II | Résistance

Définition et schéma

Lorsqu'un courant circule dans un matériau conducteur, les électrons sont freinés par les atomes de celui-ci. Cet effet est maximal dans certains dipôles que l'on appellera des conducteurs ohmiques ou résistors. Par abus de langage, on désignera le composant par le même nom que la grandeur physique qui le caractérise : la résistance.

Résistance

Une résistance est un dipôle **récepteur**, dont la caractéristique en convention récepteur suit la **loi d'Ohm** :

$$\boxed{U = RI} \Leftrightarrow \boxed{GU = I}$$

Unités

- \diamond Résistance en Ohm (Ω) avec R > 0.
- ♦ Conductance G = 1/R en Siemens (S).

Puissance

En utilisant la caractéristique de la résistance et l'expression de la puissance d'un dipôle, on a

$$P_{\text{reçue}} = RI^2 = \frac{U^2}{R} = GU^2$$

Qui est positive. Dans le cas de la résistance, cette puissance est entièrement **dissipée** par effet Joule.

Caractéristique _

FIGURE 2.1 – Caractéristique d'une résistance.

Association de résistances en série

Association en série

Deux résistances R_1 et R_2 en série forment un dipôle équivalent de résistance

$$R_{\rm eq} = R_1 + R_2$$

On dit qu'en série, les résistances s'ajoutent.

Association en série

À partir du schéma précédent, on écrit la loi d'additivité des tensions, puis on applique la loi d'Ohm et on factorise :

$$U = U_1 + U_2$$

$$U = R_1 I + R_2 I$$

$$U = (R_1 + R_2)I$$

On a bien l'expression d'un unique conducteur ohmique de résistance $R_{eq} = R_1 + R_2$.

Association de résistances en parallèle

Association en parallèle

Deux résistances R_1 et R_2 en dérivation forment un dipôle équivalent de résistance

$$\boxed{\frac{1}{R_{\rm eq}} = \frac{1}{R_1} + \frac{1}{R_2}} \Leftrightarrow \boxed{G_{\rm eq} = G_1 + G_2}$$

On dit qu'en parallèle, l'inverse des résistances s'ajoutent.

Association en parallèle

On applique la loi des nœuds :

$$I = I_1 + I_2$$

On utilise ensuite la loi d'Ohm:

$$I = \frac{U}{R_1} + \frac{U}{R_2}$$

On trouve $R_{\rm eq}$ en exprimant la caractéristique du dipôle équivalent sous la forme $I=G_{\rm eq}U$, puis $G_{\rm eq}=1/R_{\rm eq}$, d'où ici

$$I = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)U$$

On a bien l'expression d'un unique conducteur ohmique de résistance

$$\boxed{\frac{1}{R_{\rm eq}} = \frac{1}{R_1} + \frac{1}{R_2}} \Leftrightarrow \boxed{R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}}$$

Exercice d'application

Exprimer en fonction de R la résistance équivalente entre A et B pour l'association ci-dessous.

$$R_{\rm eq} = R + R + R_{\rm eq,2}$$

$$\Leftrightarrow R_{\rm eq} = 2R + \frac{R \times R_{\rm eq,1}}{R + R_{\rm eq,1}}$$

$$\Leftrightarrow R_{\rm eq} = 2R + \frac{R \times 2R}{R + 2R}$$

$$\Leftrightarrow R_{\rm eq} = 2R + \frac{2R^{2}}{3R}$$

$$\Leftrightarrow R_{\rm eq} = \frac{8R}{3}$$

III Sources

A Sources de tension

Générateur idéal de tension

Il impose une tension, le courant débité est lui imposé par le reste du circuit électrique. Il est dit **idéal** si la tension imposée est constante quel que soit le courant débité.

Caractéristique -

 $\begin{tabular}{ll} {\bf FIGURE} & {\bf 2.2} - {\bf Caract\'eristique} & {\bf d'une} & {\bf tension} \\ {\bf id\'eale}. \end{tabular}$

Générateur réel de tension

À cause des effets résistifs, la tension imposée et le courant débité sont liés :

 $U = E_0 - ri$

On parle de **générateur de Thévenin**, et E_0 est la force électromotrice.

Caractéristique -

Figure 2.3 — Caractéristique d'une tension réelle.

Résistance de sortie

Un générateur réel branché sur une résistance R est générateur idéal si

Résistance de sortie -

On applique la formule du pont diviseur de tension pour avoir la tension U:

$$U = \frac{R}{R+r}E_0$$

 $U \neq E_0$ en général, mais si $R \gg r$ on a tout de même $U \approx E_0$.

Sources de courant

Générateur idéal de courant

Il impose un courant, la tension à ses bornes est lui imposé par le reste du circuit électrique.

Il est dit **idéal** si le courant débité est constant quelle que soit la tension à ses bornes.

Caractéristique

FIGURE 2.4 – Caractéristique d'un courant idéal.

Générateur réel de courant

À cause des effets résistifs, on utilise le générateur de Norton.

$$I = I_0 - \frac{U}{r_N}$$

Caractéristique

FIGURE 2.5 - Caractéristique d'un courant réel.

Résistance de sortie

Un générateur réel branché sur une résistance R est générateur idéal si

Résistance de sortie -

On applique la formule du pont diviseur de courant pour avoir le courant I:

$$I = \frac{r_N}{r_N + R}I$$

 $I \neq I_0$ en général, mais si $R \ll r_N$ on a tout de même $I \approx I_0$.

IV Les ponts diviseurs

Les ponts diviseurs sont des relations permettant de trouver des courants ou des tensions dans certains cas particuliers, sans repasser par l'écriture des lois des nœuds, des mailles et d'Ohm.

A Pont diviseur de tension

Pont diviseur de tension

U, R_1 et R_2 sont connus. On cherche U_1 ou U_2 . On a

$$U_k = \frac{R_k}{R_1 + R_2} U_{\text{brch}}$$

et avec R_{brch} la résistance de toute la branche, on généralise en

$$U_k = \frac{R_k}{R_{\text{brch}}} U_{\text{brch}}$$

Pont diviseur de tension

Avec une loi des mailles et la loi d'Ohm pour les résistances, on trouve

$$I = \frac{U_{\text{brch}}}{R_1 + R_2}$$

En réappliquant la loi d'Ohm pour R_2 par exemple, on trouve

$$U_1 = R_1 I = \frac{R_1}{R_1 + R_2} U_{\text{brch}}$$

Le calcul est tout à fait similaire pour le cas avec plus de résistances dans la branche.

B Pont diviseur de courant

Pont diviseur de courant

 $I,\,R_1$ et R_2 sont connus. On cherche I_1 ou $I_2.$ On a

$$I_k = \frac{G_k}{G_1 + G_2} I_{\text{parr}}$$

Avec R_{parr} la résistance équivalente entre A et B, ceci se généralise en

$$I_k = \frac{G_k}{G_{\text{parr}}} I_{\text{parr}} \Leftrightarrow I_k = \frac{R_{\text{parr}}}{R_k} I_{\text{parr}}$$

Pont diviseur de courant

Avec la loi des nœuds, on a

$$I_{\text{parr}} = I_1 + I_2$$

Avec la loi d'Ohm pour les résistances et par égalité des tensions dû au montage parallèle, on a

$$I_{\text{parr}} = \frac{U}{R_1} + \frac{U}{R_2} = \frac{U}{R_{\text{eq}}} = G_{\text{eq}}U$$

D'où, pour I_1 par exemple,

$$I_1 = \frac{U}{R_1} = \frac{R_{\rm eq}}{R_1} I_{\rm parr}$$

011

$$I_1 = G_1 U = \frac{G_1}{G_{\text{eq}}} I_{\text{parr}}$$

Le calcul est tout à fait similaire pour le cas avec plus de résistances en parallèle.

C Entraînements

Donner les expressions de U_1 , U_2 , U_3 et U_4 en fonction de E pour les schémas suivants.

Application: pont diviseur de courant

Exprimer I selon I_0 .

En premier lieu,

$$I = \frac{\frac{2r}{3}}{r}I_d = \frac{2}{3}I_d$$

Ensuite,

$$I_d = \frac{\frac{2r}{5}}{\frac{2r}{3}}I_0 = \frac{3}{5}I_0$$

Ainsi,

$$I = \frac{2}{5}I_0$$

Utilisation des ponts -

Attention aux conditions d'application de ces formules : résistances en série pour le pont diviseur de tension, et en parallèle pour le pont diviseur de courant.

Si non, simplifier le circuit pour se ramener à cette forme. Vérifier également le sens d'orientation des tensions et intensités.