Mathematik 1

VL - Slides

Simon Kirchgasser (ITS-B, WIN) und Günther Eibl (ITSB-B) September 19, 2024

Anmerkungen

Farben innerhalb der Slides kennzeichnen Folgendes:

- GRÜN ... mathematische Definition oder Satz
- ROT ... sehr wichtige Aussage
- BLAU ... Hyperlinks zu externen Quellen

Logik

"Die Logik ist die Wissenschaft des Denkens, seiner Bestimmungen und Gesetze"

Georg Wilhelm Friedrich Hegel (1770 - 1831)

Logik

- Ziel:
 - Die Logik lehrte ursprünglich das korrekte Argumentieren.
- Parallele:
 - Die Rhetorik lehrt das überzeugende Argumentieren.
- Ausgangspunkt der europäisch-westlichen Logik ist im Antiken Griechenland:
 - → aristotelisch-scholastischen Logik
- Moderne bzw. mathematische Logik:
 - → ab ca 1847 (Giuseppe Peano)

Logik

- Gegenstand der Logik wie sie in diesem Kurs behandelt werden sind Aussagen und deren Beziehungen
- Für Mathematik ganz wichtig:
 - · logisch korrekte Schlussfolgerungen
 - genaues Herausarbeiten von Voraussetzungen für eine Schlussfolgerung

Warum ist Logik für die Technik wichtig?

- Modellierung von Wissen (Lösen von abstrakten Problemen durch logisches Schlussfolgern)
- Auswertung von Datenbankabfragen
- Kontrollfluss von Computerprogrammen (z.B. if-then-else Konstrukte)
- Logikbausteine in technischen Informatik (Hardware)
- Verifikation von
 - Schaltkreisen
 - Programmen
 - Protokollen (Kommunikation zwischen Systemen)
- ..

Literaturhinweise: Bibliothek

Dieses Kapitel basiert hauptsächlich auf folgender Quelle:

Gerald und Susanne Teschl:
 Mathematik für Informatiker - (Kapitel 1), Springer Vieweg
 http://permalink.obvsg.at/fsa/AC15133693

Aussagen

Aussage

- Eine Aussage A ist eine Behauptung, die (in einem gegebenen Kontext) entweder wahr (w oder 1 oder T) oder falsch (f oder 0 oder F) sein muss.
- Jede Aussage hat also einen Wahrheitswert

$$W(A) \in \{w, f\}$$

oder z.B.

$$W(A) \in \{1, 0\}.$$

Aussageformen

Aussageform

 Eine Aussageform enthält zumindest eine Variable x. Durch die Belegung der Variable(n) ergibt sich eine Aussage A(x), in Abhängigkeit von der Belegung.

Beispiel:

- A(x): x < 100 ist eine Aussageform
- besteht aus zwei Komponenten:
 - a) Variable x
 - b) < 100, dem Prädikat → Übergang zur Prädikatenlogik (Prädikatenlogik wird hier im Kurs nicht vertieft werden!)
- \rightarrow A(1): 1 < 100 eine Aussage

- Welche der folgenden Terme sind Aussagen oder Aussageformen? Welche sind wahr/falsch?
 - 1. Wien ist die Hauptstadt von Österreich.
 - 2. 1+5=6.
 - 3. Ist heute Montag?
 - 4. Heute ist Freitag.
 - 5. x ist eine gerade Zahl.
 - 6. 5 ist kleiner als 3.
 - 7. Guten Abend!
 - 8. x + 5 = 10
 - 9. Dieser Satz ist falsch.
 - 10. Jede gerade Zahl, die größer als 2 ist, ist die Summe zweier Primzahlen.¹

¹ Goldbach'sche Vermutung von 1742 - bisher nur für Zahlen bis 4 · 10¹⁸ *gezeigt*

Erweiterung der Aussagenlogik

Basiskonzept Aussagenlogik:

In der Aussagenlogik werden zusammengesetzte Aussagen daraufhin untersucht, aus welchen einfacheren Aussagen sie zusammengesetzt sind.

- Aussage P: der Fußboden ist blau
- Aussage Q: die Decke ist grün
- P und Q können nicht weiter "zerlegt" werden, daher bezeichnet man P und Q als atomare Aussagen.
- P ∧ Q liefert eine Zusammensetzung! Wie würde diese lauten?

· Limitierung:

 Kompliziertere Aussagen k\u00f6nnen nur schwer formuliert werden, da jede Aussage mit "Wahr" oder "Falsch" beantwortet werden muss!

- Basiskonzept Prädikatenlogik:
 - Zerlege atomare Aussagen (stark vereinfacht dargestellt) in einzelne "Eigenschaften" (Prädikate).
 - Mit Hilfe von Quantoren können die Prädikate einzelner "Individuen" wieder miteinander verbunden werden. Dadurch können präzisere sowie allgemeinere Aussagen getroffen werden.

Beispiele:

- "Alle Menschen sind sterblich."
 - → Ohne den Allquantor ∀ wäre diese Aussage nicht möglich.
- "Es gibt mindestens einen weißen Tiger."
 - ightarrow Ohne den Existenzquantor \exists wäre diese Aussage nicht möglich.

Allaussagen

- \forall macht aus einer Aussageform A(x) eine Allaussage.
- Dies bedeutet, dass für alle Werte x, die Aussage A(x) wahr ist:

$$\forall x : A(x)$$
 oder Alternativ $\forall x : W(A(x)) = w$

- Beispiele:
 - Alle Student:innen sind anwesend.
 - $\forall x \in \mathbb{N} : x \in \mathbb{Z}$

Existenzaussagen

- \exists macht aus einer Aussageform A(x) eine Existenzaussage.
- Dies bedeutet, dass es einen Wert x gibt, für den die Aussage A(x) wahr ist:

$$\exists x : A(x)$$
 oder Alternativ $\exists x : W(A(x)) = w$

- Beispiele:
 - Eine Person wird gewinnen.
 - $\exists x \in \mathbb{N} : x \notin \mathbb{Z}$
- Anmerkung:
 - Bei Verneinungen wird ∀ zu ∃ und umgekehrt.

Logische Operationen

Seien P und Q Aussagen:

Bezeichnung	symbolisch	gelesen:
Negation:	P̄ oder ¬P	"nicht P"
Konjunktion:	$P \wedge Q$	"P und Q"
		ightarrow "und" im Sinne von "sowohl als auch"
Disjunktion:	$P \lor Q$	"P oder Q"
		→ "oder" NICHT im Sinne von "entweder oder"
Implikation:	$P \Rightarrow Q$	"aus P folgt Q"
		→ "wenn P, so Q" oder "wenn P, dann Q"
Äquivalenz:	$P \Leftrightarrow Q$	"P genau dann, wenn Q"
		ightarrow "P dann und nur dann, wenn Q"

Logisches Verknüpfen von Aussagen - "Konjunktion" A

- Die Zahl sechs ist durch drei teilbar und die Zahl sechs ist durch zwei teilbar.
 - Sprachlich: beide Aussagen gelten gleichberechtigt
 - Mathematisch:
 - Aussage P: Zahl sechs ist durch drei teilbar
 - Aussage Q: Zahl sechs ist durch zwei teilbar
 - Verknüpfung: P ∧ Q

- Petra ist Professorin oder Studentin.
 - Sprachlich: Petra ist Professorin oder Studentin oder beides.
 - Mathematisch:
 - Aussage P: Petra ist Professorin
 - Aussage Q: Petra ist Studentin
 - Verknüpfung: P ∨ Q
 - Wenn man "oder beides" ausschließen möchte (XOR) müsste man z.B. "Petra ist entweder Professorin oder Studentin." schreiben. Noch besser ist es, wenn man "Aber nicht beides." hinzufügt.
- "Um eine Prüfung zu bestehen, muss man viel lernen <u>oder</u> gut schummeln."

Logisches Verknüpfen von Aussagen - 1.Teil "Negation" ¬

Gesucht ist die Verneinung von:

- "Der Fußboden ist blau."
 - Sprachlich: Der Fußboden ist nicht blau.
 - · Mathematisch:
 - Aussage P wird formal zu ¬P

 Achtung: "Der Fußboden ist gelb." liefert keine Verneinung der Aussage.

- "Der Fußboden ist blau und die Decke ist grün."
 - · Sprachlich:
 - Der Fußboden ist nicht blau und die Decke ist nicht grün.
 - → stimmt das wirklich??
 - Mathematisch:
 - Aussage P: der Fußboden ist blau
 - Aussage Q: die Decke ist grün
 - Formal: $P \wedge Q$
 - · Verneinung:

"Der Fußboden ist <u>nicht</u> blau <u>oder</u> die Decke ist <u>nicht</u> grün."

Formal: $\neg P \lor \neg Q$

Logisches Verknüpfen von Aussagen - 2.Teil "Negation" ¬

- "Die Zahl 3 ist eine Primzahl oder die Zahl 4 ist eine Primzahl."
 - · Sprachlich:
 - Die Zahl 3 ist keine Primzahl und die Zahl 4 ist keine Primzahl.
 - · Mathematisch:
 - Aussage P: die Zahl 3 ist eine Primzahl
 - Aussage Q: die Zahl 4 ist eine Primzahl
 - Formal: $P \lor Q$
 - Verneinung (formal):

$$\neg P \land \neg Q$$
$$\neg (P \lor Q) = \neg P \land \neg Q$$

Logisches Verknüpfen von Aussagen - 2.Teil "Negation" ¬

- Doppelte Negationen fallen weg!
 - Sprachlich:
 - Wale sind nicht keine Säugetiere.
 Wale sind Säugetiere.
 - Mathematisch:
 - Aussage P: Wale sind nicht keine Säugetiere.
 - Verneinung: $\neg(\neg P) = P$

Äquivalenz

- Äquivalenz bedeutet: $P \Leftrightarrow Q$
 - P gilt genau dann, wenn auch Q gilt.
 - P gilt dann und nur dann, wenn auch Q gilt.
 - P ist äquivalent zu P
 - Aus P folgt Q und aus Q folgt P
 - P ist notwendig und hinreichend für Q

Anmerkung:

 Jeder mathematische Satz hat im Prinzip die Gestalt einer Implikation P ⇒ Q oder einer Äquivalenz P ⇔ Q.

Interpretation der Äquivalenz

- Eine quadratische Matrix A ist invertierbar $\Leftrightarrow det(C) \neq 0$
- Äquivalenzumformungen
 - Beispiele:
 - 1. x + 3 = 7 ... Lösung erhält man durch Subtraktion von drei auf beiden Seiten der Gleichung.
 - 2. $x^2 4 = 0$... Lösung erhält man durch Addition von vier auf beiden Seiten; gefolgt vom Ziehen der quadratischen Wurzel.
 - 3. Welche von den durchgeführten Umformungen stellt keine Äquivalenzumformung dar?

Implikation (Schlussfolgerung)

- Formal: $P \Rightarrow Q$
- In mathematischer Hinsicht vielleicht der "wichtigste Operator"!
- Die Aussage P stellt die Voraussetzung, die Prämisse dar.
- Die Aussage Q stellt die auf Basis der Prämisse aufgestellte Behauptung, die Konklusion dar.
 - Aus P folgt Q.
 - Wenn P gilt, so gilt auch Q.
 - P ist also hinreichend für Q.
 - Q ist notwendig für P.
 - P gilt nur dann, wenn auch Q gilt.

Beispiele: Implikation

- 1. Wenn du zu viel isst, wird dir schlecht.
- 2. Wenn es einen "overflow" gibt, stürzt das Programm ab.
- $3. x > 3 \Rightarrow x > 1$
- 4. $x^2 4 = 0 \Rightarrow x = \{-2, 2\}$
- 5. $x + y = 2 \Rightarrow$ Die Lösungsmenge ist

$$L = \{(x, y) \in \mathbb{R}^2 : (x, y) = (\tau, 2 - \tau), \tau \in \mathbb{R}, \text{ beliebig}\}\$$

Anwendungen Implikation: Gleichungen

- Fallunterscheidungen bei Gleichungen mit unbekannten Variablen:
 - z.B.: $x \cdot (2x 1) = 0 \Rightarrow x = 0 \lor x = \frac{1}{2}$
- 2. Es seien a, b, c beliebige, unbekannte, reelle Zahlen. Suche eine reelle Zahl x, so dass die folgende Aussage ax + c = bwahr ist.
 - $ax + c = b \Rightarrow x = \frac{b-c}{a}$