

11.1 Introduction

Tabular and graphical methods (chapter 10)

- to summarize data
- effective in written reports and as visual aids for presentations to individuals or groups

several numerical methods of descriptive statistics that provide additional alternatives for summarizing data

Mean

your dat ar

Measure of location is the measures that describe the center of a distribution.

Let x is an arbitrary measurement of a data set.

The population mean:
$$\mu = \frac{x_1 + x_2 + x_3 + \dots + x_N}{N} = \frac{\sum_{i=1}^{N} x_i}{N}$$

where N is the population size.

Mean

The Properties of the Arithmetic Mean

- 1. Every set of interval-level and ratio-level data has a mean.
- 2. A set of data has only one mean.
- 3. The mean is a useful measure for comparing two or more populations.
- 4. The sum of the deviations of each value from the mean will always be zero, that is $\sum (x \overline{x}) = 0$

Mean

$$\frac{-}{x} = \frac{\sum x_i}{n} = \frac{12 + 8 + 17 + \dots + 10 + 8}{10}$$

$$=\frac{111}{10}=11.1$$

Median

The median is the midpoint in the data set that has been ranked in increasing order.

The calculation of the median:-

- 1. Rank the given data set in increasing order.
- 2. Find the position of the middle term = $\frac{n+1}{2}$. The value of this term is the median. If the given data set represents a population, replace n by N.
- (a) For an odd number of observations, the median is the middle value.
- (b) For an even number of observations, the median is the average of the two middle value.

Median

curh

the position of median =
$$\frac{n+1}{2} = \frac{10+1}{2} = 5.5$$

the median is
$$\frac{10+11}{2} = 10.5$$

Mode

The mode is the value that occurs with the highest frequency in a data set.

the mode is 8 because it appears more often (3 times) than any other numbers

Trimmed Mean

The k% trimmed mean is obtained by dropping k% of the smallest values and k% of the largest values from the given data and then calculating the mean of the remaining (100 – 2k)% of the values.

the 10% trimmed mean - exclude 10% of largest & 10% smallest values, therefore compute mean for remaining 80%

First, find the number of data is deleted to be equal (2k)% of n = 2(10/100)(10) = 2 values which is the value 6 and 17.

Thus the 10% trimmed mean is
$$\frac{\sum x - 6 - 17}{10 - 2} = \frac{111 - 6 - 17}{8} = \frac{88}{8} = 11$$

Weighted Mean

The weighted mean is founded by multiplying each observation by its corresponding weight is computed by:

weighted mean
$$\overline{x}_{w} = \frac{w_{1}x_{1} + w_{2}x_{2} + w_{3}x_{3} + \dots + w_{k}x_{k}}{w_{1} + w_{2} + w_{3} + \dots + w_{k}} = \frac{\sum_{i=1}^{k} x_{i}w_{i}}{\sum_{i=1}^{k} w_{i}}$$

where x_i is the value of the observation i w_i is the weight of the observation i k is the number of category

Weighted Mean

The Carter Construction Company pays its hourly employees \$6.50, \$7.50, or \$8.50 per hour. There are 26 hourly employees,

- 14 are paid at the \$6.50 rate,
- 10 at the \$7.50 rate, and
- 2 at the \$8.50 rate.

i=1

What is the mean hourly rate paid the 26 employees?

$$\bar{x}_{w} = \frac{\sum_{i=1}^{3} x_{i} w_{i}}{\sum_{i=1}^{3} w_{i}} = \frac{14(\$6.50) + 10(\$7.50) + 2(\$8.50)}{14 + 10 + 2} = \frac{\$183}{26} = \$7.038$$
The weighted mean

The weighted mean hourly wage is rounded to \$7.04.

The population mean:

$$\mu = \frac{\sum_{i=1}^{k} f_i M_i}{\sum_{i=1}^{k} f_i}, \quad N = \sum_{i=1}^{k} f_i$$

The sample mean:

$$\overline{x} = \frac{\sum_{i=1}^{k} f_i M_i}{\sum_{i=1}^{k} f_i}, \quad n = \sum_{i=1}^{k} f_i$$

where

 M_i is the midpoint of each class.

 f_i is the frequency in each class.

N is the total number of frequencies or the population size.

k is the number of class.

 M_i is the midpoint of each class.

 f_i is the frequency in each class.

n is the total number of frequencies or the sample size.

k is the number of class.

Median

The sample median:

median =
$$L + \frac{(i)\left[\frac{n}{2} - CF\right]}{f}$$

where L is the lower class boundaries of the class containing the median.

f is the frequency of the class containing the median.

n is the total number of frequencies or sample size.

CF is the cumulative frequency in all the classes preceding the class containing the median.

i is the width of the class.

Mode

The sample mode:

$$mode = L + i \left[\frac{d_1}{d_1 + d_2} \right]$$

where L is the lower class boundaries of the class containing the mode.

d₁ is the difference of the frequency between the mode class and the connecting class which has the smaller scores.

d₂ is the difference of the frequency between the mode class and the connecting class which has the higher scores.

i is the width of the class.

The following data is a sample data of the number of hours for reading per student in a week. Estimate the mean, the median, and the modal of the data and interpret its meaning.

Class	Number of hours	Number of Students
1	70 - 79	3
2	80 - 89	7
3	90 - 99	18
4	100 - 109	20
5	110 - 119	12
Total		60

Mean

number of hours

number of students

$$\frac{\sum_{i=1}^{k} f_i M_i}{x} = \frac{\sum_{i=1}^{k} f_i M_i}{\sum_{i=1}^{k} f_i}$$

Class (i)	Class Limit	$Midpoint(M_i)$	f_i	$f_i M_i$
1	70 - 79	74.5	3	223.5
2	80 - 89	84.5	7	591.5
3	90 - 99	94.5	18	1,701.0
4	100 - 109	104.5	20	2,090.0
5	110 - 119	114.5	12	1,374.0
Total			60	5,980

$$=\frac{5,980}{60}$$
 = 99.67

So, the mean number of hours for reading per student in a week is about 99.67 hours

$$= 99.5 + 1 = 100.5$$

So, the median number of hours for reading per student in a week is about 100.5 hours.

Mode

$$mode = L + i \left[\frac{d_1}{d_1 + d_2} \right]$$

$$= 99.5 + 10 \left[\frac{2}{2+8} \right]$$

Class(i)	Class Limit	Class Boundaries	f_i		
1	70 - 79	69.5 - 79.5	3]	
2	80 - 89	79.5 - 89.5	7		
3	90 - 99	89.5 - 99.5	18	l	$d_1 = 20 - 18 = 2$
4	100 - 109	99.5 - 109.5	20 (has the mode)	ſς	
5	110 - 119	109.5 - 119.5	12	}	$d_2 = 20 - 12 = 8$
Total			60		

= 101.5

So, the mode number of hours for reading per student in a week is about 101.5 hours.

11.4 Relationship between Mean, Median, and Mode

mode = 3 medium - 2 mean

mode = mean - 3(mean - median)

11.5 Selecting an Average for Data in a Frequency Distribution

For a symmetric distribution (bell-shaped distribution), the mode, median, and mean are located at the center and are always equal.

11.5 Selecting an Average for Data in a Frequency Distribution

For a skewed distribution, the relationship among the three averages changes.

mean mode median

Positively skewed distribution

Skewed right distribution

Negatively skewed distribution

Skewed left distribution

If the distribution is highly skewed, the mean would not be a good average to use because the mean is influenced more than the median and mode. Hence, the median or mode would be more representative

N=21)

59, 65, 61, 62, 53, 55, 60, 70, 64, 56, 58, 58, 58, 62, 62, 68, 65, 56, 59, 68, 61, 67

Ungrouped

mean

59 + 65 + 61 + 62 + 53 + 55 + 60 + 70 + 64 + 56 + 58 + 58 + 62 + 62 + 68 + 65 + 56 + 59 + 68 + 61 + 67 21

=61.38095

median

bushing media = $\frac{n+1}{2} = \frac{21+1}{2}$

53, 55, 56, 56, 58, 58, 59, 59, 60, 61, <mark>61</mark>, 62, 62, 62, 64, 65, 65, 67, 68, 68, 70

mode

53, 55, 56, 56, 58, 58, 59, 59, 60, 61, 61, 62, 62, 62, 62, 64, 65, 65, 67, 68, 68, 70

Grouped

Estimate mean

$$\frac{1288}{21} = 61.333...$$

			Midpoint × Frequency
Seconds	Frequency	Midpoint	fx
51 - 55	2	53	106
56 - 60	7	58	406
61 - 65	8	63	504
66 - 70	4	68	272
			1288

Calss bound

50.5 - 55.5

55.5 – 60.5

60.5 – **65.5**

65.5 - 70.5

Estimate median

= 60.5 + 0.9375

= 61.4375

Seconds	Frequency	CF
51 - 55	2	2
56 - 60	7	9
61 - 65	8	17
66 - 70	4	21

Estimate	mode
	mode

 $= 60.5 + 2 \frac{8-7}{(8-7)+(8-4)} \times 5$

 $= 60.5 + (1/5) \times 5$

= 61.5

Sec	conds	Freq	luency	Cals	ss bound
51	- 55		2	50.	5 - 55.5
× 56	- 60	15	7	55.	5 – 60.5
61	- 65		8	60.	5 - 65.5
66	- 70	72 }	4	65.	5 – 70.5

Grouped Data

Example:

The ages of the 112 people who live in a small village are grouped as follows:

		Midpoint	
Age	Number	X	fx
0 - 9	20	5	100
10 - 19	21	15	315
20 - 29	23	25	575
30 - 39	16	35	560
40 - 49	11	45	495
50 - 59	10	55	550
60 - 69	7	65	455
70 - 79	3	75	225
80 - 89	1	85	85

Totals:

3360

Mean =
$$\frac{3360}{112}$$
 = 30

Median =
$$20 + \frac{(112/2) - 41}{23} \times 10$$

= $20 + 6.52...$
= 26.5 (to 1 decimal)

Mode =
$$20 + \frac{23 - 21}{(23 - 21) + (23 - 16)} \times 10$$

= $20 + 2.22...$
= 22.2 (to 1 decimal)

Assignment

Deadline for submission: Monday, September 20, 2021

- Exercises 11
- Example Obtain mean, median and mode of both ungrouped and grouped data

12	14	19	18	15	15	18	17	20	27
22	23	22	21	33	28	14	18	16	13

Class	Class	Class	Class Midpoint Frequency		Relative	
	Limit	Boundary		(f)	Frequency (%)	
1	12 - 16	11.5 - 16.5	14	7	35.0	
2	17 - 21	16.5 - 21.5	19	7	35.0	
3	22 - 26	21.5 - 26.5	24	3	15.0	
4	27 - 31	26.5 - 31.5	29	2	10.0	
5	32 - 36	31.5 - 36.5	34	1	5.0	
Total				20	100.0	