CASA0011:Agent-Based Modelling for Spatial Systems

Dr Thomas OLÉRON EVANS Dr Sarah WISE

thomas.evans. I I @ucl.ac.uk s.wise@ucl.ac.uk

Centre for Advanced Spatial Analysis, 90 Tottenham Court Road

Session Objectives

I. Understand the structure and focus of the course.

2. Understand what is meant by the term "complexity"

3. Be able to define an agent-based model

Course Objectives

You should...

- I. understand the principles of agent-based modelling (ABM)
- 2. be able to describe the type and range of systems to which ABM can be profitably and appropriately applied

- **3.** be able to conceptualise and model urban systems with complex dynamics
- **4.** show evidence of being able to translate these understandings into the practical methodology of modelling

Week I: Introduction to ABMs

Week 2: Cellular Automata

Week 3: ABM Methodology

Week 4: Agent Behaviours

Week 5: ABMs as Research Tools

READING WEEK

Week 6: Testing ABMs

Week 7: Presenting Results

Week 8: Forecasting & Prediction

Week 9: Verification and Validation

Week 10: Transportation Modelling

The ABM
Course

Course Communication

Email

 Moodle Feedback – submit anonymous questions/comments for us to address in the next lecture.

 Slack – join channel name #0011-agent-basedmodelling to discuss material and collaborate with other students.

What do we mean when we say "complexity"?

The whole is more than the sum of the parts

"complexity arises when the dependencies among the elements [of a system] become important. In such a system, removing one such element destroys system behavior to an extent that goes well beyond what is embodied by the particular element that is removed"

- Miller and Page, Complex Adaptive Systems

Complex Systems

Driven by Individual Behaviour: complex phenomena are best understood as a function of the behaviour of all interacting parts

- How does each individual play a part in the system?
- How does individual behaviour change reflect in the system?
- How do individuals and systems interact to cause change?
- How do interactions vary in respect to other conditions?

Macroscopic phenomena **emerge** through microscopic actions and interactions

Complexity # Complicated

Behaviours can emerge from simple, lower-level rules, rather than from many different or complicated rules.

System behaviour is characterised by **non-linear** actions and interactions

System contains nonequilibrium processes

Responses to actions may be disproportionate, not easily predicted through examination of macroscopic dynamics only

e.g.

- movement
- heterogeneity
- interaction
- individuals with limited information
- social networks
- emotion

Why does this idea matter?

not reducible, and
hard to decompose doing so can ruin
 the system

we can't study parts in isolation

Complex systems show patterns of function that have a much higher robustness to failure and error and a higher adaptability than conventional human engineered systems

Yaneer Bar-yam,Unifying Principles in Complex Systems

we can't predict how our interactions with the system will influence it

What is a model?

- "A model can be a precise and economical statement of a set of relationships that are sufficient to produce the phenomenon in question." - Schelling, Micromotives and Macrobehaviour
 - "it is a 'model' because it reproduces the **essential features** of those other behaviors in a transparent way"
 p 83
- theory: "a cohesive set of testable propositions about a phenomenon" Miller and Page, Complex Adaptive Systems

A model "will yield interesting results only if the model behaves in the same way as the human system" - Gilbert

Modelling: Key Principles

SO...WHAT MAKES A MODEL "AGENT-BASED"?

Agent-based models

Models in which **individual entities interact** with their environment and one
another, such that their actions produce higherlevel dynamics

These entities:

- Have internal states (e.g. wealth, speed, knowledge)
- Have rules of behaviour (e.g. trading, movement, sharing)
- Are autonomous (or semi-autonomous)

Specifying an ABM

- Determine what you want to measure about the system
- Identify the kinds of agents present
- Identify the environment in which the agents are situated,
 and any dynamics affecting it
- Implement each kind of agent as a specific **object**, with instance variables
- Identify and implement the interactions between
 - agents of various kinds
 - agents and the environment (including activation order!)
- Instantiate the model with agents and environment, either drawn randomly from a distribution or from a data source

Advantages of ABM

- Heterogeneous agents replace representative agents, focus on distribution of behaviour instead of average behaviour
- Bounded rationality possibility to include decision-making,
 limited information in an intuitive and accessible fashion
- 'Local' interactions agent-agent interactions mediated by inhomogeneous topology (e.g., graph, social network, space)
- Focus on dynamics paths to equilibrium and non-equilibrium processes
- Nonlinear dynamics ease in incorporating trends which elude closed solutions

Each realisation exists as its own sufficiency theorem

Disadvantages of ABM

- Robustness of results
 - Artefacts spurious correlation resulting from coding peculiarities; requires careful coding and extensive debugging to avoid!
 - Dependence on parameters parameter sweeps and the 'curse of dimensionality'
- The problem of standards
 - More later on the challenges of code availability & docs
 - Docking with existing models
 - Publication of results
 - People are going to ask you to build one

TAKE A BREATHER!!!

Tutorial Session!

GETTING STARTED WITH NETLOGO

Step I: Download NetLogo

https://ccl.northwestern.edu/netlogo/download.shtml

Also see

Lecture and Workshop Material > General tab

A Few Examples of ABMs

- Flocking pure interaction, basically no environment
- Traffic Grid movement, behaviour
- Virus on a Network it doesn't have to be physical space!

EXPLORE ON YOUR OWN A BIT!

MUSHROOM HUNT!