

Jawahar Education Societys Annasaheb Chudaman Patil College of Engineering, Kharghar, Navi Mumbai

NAME: PRIYUSH BHIMRAO KHOBRAGADE

PRN NO: 211112018

Roll No: 52

SUBJECT: Analysis of Algorithms Lab

EXPERMINT: 09

PAGE NO.:
DATE.: / / 20
Solution vector = 11,2,3,2, 2,33
20121
The idea is to assign colons one by one to different vertices; storning from
the vertex or Betone assisting a logor, we check for the by safety by
considering already anished color to the adjacent vertice. It we time
a closer confirment which is sufe, we want mark to closer
ansignment as part of solution. In backteaching we can represent
Solution space for the problem using state space tees.
· Algorithm!-
Algorithm Gleolosiny (K)
1.1 while (true)
2 Hextcolor (k); Il assign a clotor tok
3: if (x tk) = 0), then return; 11 (oby insufficient
3. if (k==n) then 11 print solution
5. print + X [I n];
(e/2e
7. Greologing (K+1)
· Algorithm: - Hext-color (k)
1.) While (telle)
2) XCK]= (XCK)+1) mod (m+1); 11 Aext highert color
35 ift[K]=0 then return 11 all colors used
42 for 3=1 to n do
5) becak: if (M(K,J) = 0 AND (X[X] = = X []] · 11 same color
7) beens,
7) if (f=n+1) then retem; II distint color.
2
Teachers Signature

Input:

```
1 #include<stdio.h>
2 int G[50][50],x[50]; //G:adjacency matrix;x:colors
3 void next_color(int k){
5 x[k]=1; //coloring vertex with color1
6 for(i=0;i<k;i++){ //checking all
7 M(G[i][k]!=0 \&\& x[k]==x[i])
8 x[k]=x[i]+1; //assign higher color than x[i]
9 }
10 }
11 Int main(){
12 Int n,e,i,j,k,l;
13 printf("Enter no. of vertices: ");
14 scanf("%d",&n); //total vertices
15 printf("Enter no. of edges: ");
16 scanf("%d",&e); //total edges
17 for(i=0;i<n;i++)
18 for(j=0;j<n;j++)
19 G[i][j]=0; //assign 0 to all index of adjacency matrix
20 printf("Enter indexes where value is 1");
21 for(i=0;i<e;i++)
22 {
23 scanf("%d %d",&k,&l);
24 G[k][l]=1;
25 G[I][k]=1;
26 }
27 for(i=0;i<n;i++)
28 next_color(i); //coloring each vertex
29 printf("Colors of vertices -->\n");
30 for(i=0;i<n;i++) //displaying color of each vertex
31 printf("Vertex[%d]: %d\n",i+1,x[i]);
32 return 0;
33 }
```

Output:

```
Enter no. of vertices: 6
Enter no. of edges: 5
Enter indexes where value is 1
0 1
2 3
2 4
1 4
6 5
Colors of vertices -->
Vertex[1]: 1
Vertex[2]: 2
Vertex[3]: 1
Vertex[4]: 2
Vertex[5]: 2
Vertex[6]: 1

Process returned 0 (0x0) execution time: 30.686 s
Press any key to continue.
```

<u>Conclusion</u>: Thus it is observed that the Complexity of Colouring using Backtracking Approach Problem is O(m^v).