Digital Circuits and Systems Lab

Laboratory report submitted for the partial fulfillment of the requirements for the degree of

Bachelor in Electronics and Communication Engineering

by

Nehil sood -19uec036

Course Coordinator Dr. Kusum Lata

Department of Electronics and Communication Engineering The LNM Institute of Information Technology, Jaipur

August 2020

Copyright **§** The LNMIIT 2017 All Rights Reserved

Contents

Cl	napter			Page
1	Expe	eriment	- 1	1
2	Exp	eriment	- 2	2
3	Expe	eriment	- 3	3
4	Expe	eriment	- 4	4
5	Expo	eriment	- 5	5
6	Expe	eriment	- 6	6
	6.1		of the Experiment	
	6.2	Theory	1	6
	6.3	Codin	g Techniques used	6
	6.4	Simula	ation and Results	6
		6.4.1	Implement D latch using dataflow modeling	6
		6.4.2	Implement D flip flop using behavioral modeling	8
		6.4.3	Implement JK flip flop using structural modeling	10
		6.4.4	Implement RS flip flop using behavioral modeling	12
		6.4.5	Implement T flip flop using behavioral modeling.	14
	6.5	Summ	ary	16

List of Figures

gure		Page
6.1	Schematic of D latch using dataflow modeling	7
6.2	Project Summary of D latch using dataflow modeling	7
6.3	Simulation of D latch using dataflow modeling	8
6.4	Schematic of D flip flop using behavioral modeling	9
6.5	Project Summary of D flip flop using behavioral modeling	9
6.6	Simulation of D flip flop using behavioral modeling	10
6.7	Schematic of JK flip flop using structural modeling	11
6.8	Project Summary of JK flip flop using structural modeling	
6.9	Simulation of JK flip flop using structural modeling	12
6.10	Schematic of RS flip flop using behavioral modeling	13
6.11	Project Summary of RS flip flop using behavioral modeling	13
6.13	Schematic of T flip flop using behavioral modeling	15
6.14	Project Summary of T flip flop using behavioral modeling	15
6.15	Simulation of T flip flop using behavioral modeling	16
	6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13	6.1 Schematic of D latch using dataflow modeling

List of Tables

Гable		Page
6.1	Comparison of Area and power requirements for different kinds of adders	16

Chapter 6

Experiment - 6

6.1 Name of the Experiment

Design D latch, D flip flop, JK flip flop, RS flip flop and T flip flop using dataflow and behavioral and structural modeling.

6.2 Theory

Latches and flip-flops are the basic elements for storing information. One latch or flip-flop can store one bit of information. The main difference between latches and flip-flops is that for latches, their outputs are constantly affected by their inputs as long as the enable signal is asserted. In other words, when they are enabled, their content changes immediately when their inputs change. Flip-flops, on the other hand, have their content change only either at the rising or falling edge of the enable signal. This enable signal is usually the controlling clock signal. After the rising or falling edge of the clock, the flip-flop content remains constant even if the input changes. There are basically four main types of latches and flip-flops: SR, D, JK, and T. The major differences in these flip-flop types are the number of inputs they have and how they change state. For each type, there are also different variations that enhance their operations. In this chapter, we will look at the operations of the various latches and flip-flops.

6.3 Coding Techniques used

We use all of the coding techniques, which are: Dataflow, Behavioral and Structural.

6.4 Simulation and Results

6.4.1 Implement D latch using dataflow modeling.

Figure 6.1 Schematic of D latch using dataflow modeling

Figure 6.2 Project Summary of D latch using dataflow modeling

Figure 6.3 Simulation of D latch using dataflow modeling

6.4.2 Implement D flip flop using behavioral modeling.

Figure 6.4 Schematic of D flip flop using behavioral modeling

Figure 6.5 Project Summary of D flip flop using behavioral modeling

Figure 6.6 Simulation of D flip flop using behavioral modeling

6.4.3 Implement JK flip flop using structural modeling.

Figure 6.7 Schematic of JK flip flop using structural modeling

Figure 6.8 Project Summary of JK flip flop using structural modeling

Figure 6.9 Simulation of JK flip flop using structural modeling

6.4.4 Implement RS flip flop using behavioral modeling.

Figure 6.10 Schematic of RS flip flop using behavioral modeling

Figure 6.11 Project Summary of RS flip flop using behavioral modeling

Figure 6.12 Simulation of RS flip flop using behavioral modeling

6.4.5 Implement T flip flop using behavioral modeling.

Figure 6.13 Schematic of T flip flop using behavioral modeling

Figure 6.14 Project Summary of T flip flop using behavioral modeling

Figure 6.15 Simulation of T flip flop using behavioral modeling

6.5 Summary

Name of the Entity	No. of LUT used	Total On Chip Power
D latch using dataflow modeling	1	0.578W
D flip flop using behavioral modeling.	1	0.618W
JK flip flop using structural modeling	1	1.251W
RS flip flop using behavioral modeling	2	0.393W
T flip flop using behavioral modeling	1	2.102W

Table 6.1 Comparison of Area and power requirements for different kinds of adders.