EE530

Terciero exercício prático de eletrônica básica

Primeiro Semestre de 2010

PROFESSOR: CELSO

TIAGO CHEDRAOUI SILVA RA: 082941

21 de maio de 2010

1 Transistores MOSFET

Transistores MOSFET são dispositivos de três terminais que podem ser utilizados em aplicações que vão desde amplificação de sinais até o porjeto de circuito lógico digitais e de memória. Uma das suas características de funcioanamento é o controle de fluxo de corrente em um terceiro terminal devido a aplicação de tensão entre dois terminais.

Utilizando o programa Pspice, defimos um transistor MOSFET com os seguintes parâmetros:

Parâmetro	Valor		
L	10μm		
W	100μm		
k_p	$100 \frac{\mu A}{V^2}$		
V_A	100 V		
V_{tn}	1.941 V		
V_{DS}	0 até 10 V		
V_{GS}	2 até 3.941 V		

Tabela 1.1: Parâmetros MOSFET

Figura 1.1: Circuito - Transistor MOSFET

Para um MOSFET tipo enriquecimnto canal n , existem três caracterísitcas d operação:

- $V_{GS} \leq V_t$: Região de corte
- $V_{GS} \geq V_t$
 - $V_{DS} \le V_{GS} V_T$: Região de triodo
 - $V_{DS} \ge V_{GS} V_T$: Região de saturação

A corrente no dreno será dada por:

•
$$i_D = K_n \frac{W}{L} \left[(V_{GS} - V_t) V_{DS} - \frac{V_{DS}^2}{2} \right]$$
: Região de triodo

•
$$i_D = K_n \frac{W}{L} \left[(V_{GS} - V_t)^2 \right]$$
: Região de saturação

Obtivemos o seguinte gráfico 1.2 em qual encontramos com a teoria os valores de i_D em relação ao valor de V_{DS} sendo cada curva a variação de V_{GS} . Ajustando a curva de $V_{DS} = V_{GS} - V_t$ obtivemos o gráfico 1.3, que comparado ao gráfico teórico 1.4 apresenta a mesma característica.

Figura 1.2: Valor de V_{DS} separando região de triodo e saturação para cada curva do gráfico $I_D X V_{DS}$

Figura 1.3: Aproximação da curva $V_{DS} = V_{GS} - V_t$

Figura 1.4: Gráfico teórico

Amplificador fonte comum (FC)

Modelos de amplificador operacional baseados na tecnologia MOSFET, são amplamente utilizados na indústria eletrônica. Existindo três tipos de amplificadores que usam transistorres MOSFET:

- Fonte comum
- · Porta comum
- · Dreno comum

Sendo o amplificador fonte comum (ou fonte aterrada) a mais empregada (ver circuito 2.1).

Através do circuito podemos escrever que: $\frac{V_{gs}}{V_{sig}} = \frac{R_G}{R_G + R_{sig}}$, $Vo = -g_m v_{gs} (R_D \parallel ro \parallel R_L)$. Normalmente, escolhese $R_G \gg R_{sig}$, tal que $\frac{V_{gs}}{V_{sig}} = 1$, e portanto: $A_v = \frac{V_0}{V_{sig}} = -g_m v_{gs} (R_D \parallel ro \parallel R_L)$.

A resistência de entrada é dada por R_G .

Para obter a resistência de saída, eliminamos a resistência de $carga(R_L)$, colocamos uma fonte de tensão na saída e curto-circuitamos a entrada do amplificador. Resultando, nesse caso, em $R_{out} = R_D \parallel r_o$.

Para o circuito utilizamos os seguintes dados:

Dados	Valores		
R_L	100ΚΩ	Dados	Valores
V_{DD}	10 V	λ	0,01
V_{SS}	-10 V	k_p	$100 \frac{\mu A}{V^2}$
V_{SIG}	0.1V	W	100 μm
C_{c2}	100nF	L	10 μm
C_{c2}	100nF	V_{to}	1.941 V
C_S	100nF	V_A	100 V
R_{SIG}	100Ω	(b)	
((a)		

Tabela 2.1: Valores iniciais

$$r_o = \frac{V_A}{I_D} = 51,52 \, K\Omega$$

 $r_o = \frac{V_A}{I_D} = 51,52\,K\Omega$ Como queremos que I_D seja igual a 1.941 mA e que V_d (tensão no dreno) seja igual a 4,0V , fazendo uma análise DC do circuito temos que $V_{DD} - V_D = I_D * R_D, R_D = \frac{(10-4)*1000}{1.941} = 3,091\,K\Omega$. Escolhemos $R_G = 1M\Omega$ de forma que $R_G \gg R_{sig}$.

Figura 2.1: Circuito amplificador fonte comum

Realizando a análise de polarização do circuito obtivemos $I_D=1.941 mA$ e $V_d=4,0V$, como queríamos.

(a) Voltagem - análise de polarização

(b) Corrente - análise de polarização

Para o cáculo de
$$g_m$$
, temos que : $g_m = K_n \frac{W}{L} \left[(V_{GS} - V_t) = 0,0001 * (0 - (-10) - 1,941) \right] = 8,059 m_{\overline{V}}^{\underline{A}}$. E o $A_v = \frac{V_0}{V_{sig}} = -g_m v_{gs} (R_D \parallel ro \parallel R_L) = -22,28 \frac{V}{V}$ e $Gm = \frac{R_G}{R_G - R_{sig}} A_v = -22,8$

Figura 2.2: Função de transferência

3 Inversor lógico digital CMOSm

O inversor básico utiliza dois transistores MOSFETS (ver figura 3.1) sendo um com um canal n e outro com canal p, o corpo de cada dispositivo está conectado à sua fonte, assim nenhum efeito de corpo será considerado.

Devemos considerar que quando Vi estiver em nivel lógico 0 o circuito atuará conforme a figura 3.2a e quando estiver em nível lógico 1 atuará conforme a figura 3.2b. Ou seja, quando a entrada for 0V a saída será V_{DD} e quando a entrada for $V_{DD}V$ a saída será 0.

O nosso circuito confirma tal caracteristica pelo gráfico 3.4, no qual apresenta valor V_{DD} quando a entrada é zero, e 0 quando a entrada é V_{DD} .

Figura 3.1: Circuito inversor lógico

Figura 3.2: Tensão de saída do circuito

Figura 3.3: Tensão de entrada do circuito

Figura 3.4: Voltagem de saída para transição de entrada alta para baixa.

Quando o inversor é chaveado (QN e QP estarão conduzindo, $V_{tn} < v_i < V_{dd} - |V_{tp}|$), flui corrente pela associação em série dos transistores CMOS (vide figura 3.5).O pico da figura ocorre quando $V_{th} = v_i = v_o = \frac{V_{dd}}{2}$. Essa corrente gera a dissipação de energia no ciclo completo dada por CV_{DD}^2 .

Pois, quando a saída do inversor variar de $V_c = V_{DD}$ para $V_c = 0$, a energia armazenada no capacitor varia de $\int \delta EC = \int C_V \delta V_C$ ou seja:

$$\Delta EC = \frac{-CV_{DD}^2}{2}$$

Assim, toda esta energia é dissipada em QN.

Por outro lado, quando a saída variar de $V_c = 0$ a $V_c = V_{DD}$, a energia do capacitor varia

$$\Delta EC = \frac{CV_{DD}^2}{2}$$

Como o capacitor se carrega, toda a energia vem da fonte de alimentação através de QP. Assim, a energia retirada da fonte é dada por:

$$\Delta EC = CV_{DD}^2$$

Assim, como a energia no capacitor no final do período é de $\frac{CV_{DD}^2}{2}$, $\frac{CV_{DD}^2}{2}$ foi dissipada em QP.A dissipação total é CV_{DD}^2 .

Figura 3.5: Corrente na bateira enquanto variação na tensão de entrada

Para t próximo a 0, a corrente de bateria se comporta conforme o gráfico 3.6, assim a área do gráfico é numericamente igual a carga fornecida pela bateria. Portanto, aproximando a figura a um triangulo $Q = \int i\delta t$ Logo, a energia fornecida pela bateria durante o carregamento do capacitor vale $4.8*10^{-08}J$.

Figura 3.6: Corrente fornecida pela bateria em t proximo a zero