Fourth Semester B. E. (Computer Science and Engineering) Examination

THEORETICAL FOUNDATIONS OF COMPUTER SCIENCE

Time: 3 Hours [Max. Marks: 60

Instructions to Candidates :—

- (1) All questions carry marks as indicated against them.
- (2) Assume suitable data and answer with neat diagrams wherever necessary.
- 1. (a) Compute the reflexive transitive closure (R*) for given R. $R = \{(a,a), \ (b,b), \ (b,c), \ (c,a), \ (a,d), \ (b,d)\}$ 2(CO1)
 - (b) Describe the Chomsky Hierarchy along with grammar and accepting device. Also Consider the given grammar. Identify the type, name of grammar, Language the grammar can recognize and the accepting device : Sa→abc | AaB bB→Bb 2+2(CO1)
 - (c) Prove the following theorem by principle of mathematical induction : 1+4+7+.....+(3n-2) = [n(3n-1)/2 4(CO1)

 \mathbf{OR}

- (d) Prove the following theorem by principle of mathematical induction that $3^{n}-1$ a multiple of 2. 4(CO1)
- 2. (a) Compute the equivalent DFA for the given NFA with ϵ by first computing NFA without ϵ .

NFA = [{q0, q1, q2, q3}, {a, b, c,
$$\epsilon$$
}, δ , q0,{q3}] δ =

State	a	b	С	3
→q0	q2,q3	q2	_	q1
q1	q2	_	q3	q2
q2	_	_	q2	q3
*q3	_	_	q3	_

7(CO2)

KOLP/RW-19 / 9509 Contd.

(b) Convert the given Mealy machine to Moore machine :

Present	a=0		a=1	
state	State	Output	State	Output
→ q1	q1	1	q3	1
q2	q2	1	q1	1
q3	q2	0	q3	0

3(CO2)

OR

- (c) Construct a DFA for the following on $\Sigma = \{a, b\}$:
 - (1) Which accept set of all strings on starting with prefix ab.
 - (2) Which accept set of all strings with no more than three a's. Also show the acceptance of valid string as per the DFA constructed.

 3(CO2)
- 3. (a) Design a CFG for the regular language:

(1)
$$L = \{0^m \ 1^n \ 0^{m+n} | \ m,n > = 1\}$$

(2)
$$L = \{a^n \ b^m \mid n! = m\}$$

Also show that the designed grammar can derive correct string. 3(CO1)

(b) State how to identify ambiguous grammars.

Also remove left recursion from the following grammar:

 $S \rightarrow aBDh \mid bGa$

 $B \rightarrow Bb \mid c$

 $D\rightarrow EF$

 $E \rightarrow g \mid \epsilon$

 $F \rightarrow f \mid \epsilon$

$$G \rightarrow Gb \mid Gt \mid a$$
 3(CO1)

(c) Prove that the language is not regular using Pumping Lemma:

$$L = \{a^n b^n c^n \mid n > = 1\}$$
 3(CO1)

(d) Convert given Context Free Grammar to its equivalent Greibach Normal Form(GNF).

$$S \rightarrow AB \mid b$$

 $A \rightarrow SB \mid c$

4. (a) Solve any **Two**:

Design Push Down Automata for the given language. Also show string acceptance for each language. Consider any valid string of length greater than 5.

(1) $L = \{a^nb^{2n} \mid n > = 1\}$

 $B \rightarrow AB \mid a$

(2) $L = \{(a, b)^* \mid \text{number of } a > \text{number of } b\}$

(3)
$$L = \{a^{2n}c \ b^n \mid n > = 1\}$$
 5(CO3)

(b) Convert the given Push Down Automata to Context Free Grammar (CFG).

 $M=(\{q0,q1\},\{0,1\},\{Z0,X\},\delta,q0,Z0,\Phi\}$ where δ is given below :

$$\delta\{q0,1,Z0) \rightarrow \{(q0,XZ0)\}$$

$$\delta(q0,1,X) \rightarrow \{(q0,XX)\}$$

$$\delta(q0,0,X) \rightarrow \{(q1,X)\}$$

$$\delta(q0,\epsilon,Z0) \rightarrow \{(q0,\epsilon)\}$$

$$\delta(q1,1,X) \rightarrow \{(q1,\epsilon)\}$$

$$\delta(q1,0,Z0) \rightarrow \{(q0,Z0)\}$$

Also find the reduced grammar.

5(CO3)

4(CO1)

5. (a) Design a Turing machine for the regular expression: aba*ba. Show that the string "abab" is valid. 3(CO3)

KOLP/RW-19 / 9509 3 Contd.

(b) Design a Turing machine to perform the function f(x,y) = x*y. 4(CO3)

OR

- (c) Design a Turing machine that performs mod operation as follows: n mod 5. 4(CO3)
- (d) Write short note on Halting Problem of Turning Machine. 3(CO3)
- 6. (a) Explain Ackerman function and find : A[2,2] 3(CO4)
 - (b) Infer whether the following functions are primitive recursive or not(any **Two**).
 - $(1) \quad f(x, y) = x*y$
 - $(2) \quad f(x, y) = xy$
 - (3) $f(x, y) = m^{2n}$ 4(CO4)
 - (c) Apply the post correspondence problem to find the solution for the given lists.
 - $(1) \quad A = \{001, 0011, 11, 101\}$

 $B = \{01, 111, 111, 010\}$

 $(2) \quad A = \{0, 01000, 01\}$

 $B = \{000, 01, 1\}$ 3(CO4)