Linear Algebra

Vectors

Interpretations of Vectors	2
Vector Addition and Subtraction	. 2
Vector-Scalar Multiplication	. 3
The Dot Product	3
Properties of the Dot Product	. 3

Vectors

Interpretations of Vectors

- Algebraic vectors $(\mathbf{v}, \overrightarrow{\mathbf{v}})$: an ordered list of numbers.
 - \circ E.g., $\mathbf{v} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$
 - Vectors can be written as rows (seen above) or columns (seen below), but differ only at the level of notation and convention.
 - The order of elements in a vector matters:

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \neq \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

- **Dimensionality**: the number of elements in a vector.
- **Geometric vectors**: a line in geometric space that indicates the magnitude and direction from its start point (tail) to its end point (head).
 - Geometric vectors can start at any point in space, but often represented as starting from the origin—such vectors are in standard position.
 - Coordinates are not the same as vectors, but they do indicate where the head of a vector will land if it is in standard position.

Vector Addition and Subtraction

Algebraically, dimensionality of vectors must be equal. When they are, then addition
or subtraction vectors is done on the corresponding elements of each vector, e.g.:

$$\begin{bmatrix} 1 \\ 0 \\ 4 \\ 5 \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \\ -6 \\ 11 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ -2 \\ 16 \end{bmatrix}$$

- Geometrically, addition can be thought of translating the tail of one vector to the head of the other—resulting in a new vector.
- Geometric interpretations of subtraction can be thought of in two ways:
 - 1. Multiplying one vector by -1, then applying vector addition method above.
 - 2. Placing both vectors in standard position, with the resulting vector between the two heads being the answer.

2

Vectors The Dot Product

Vector-Scalar Multiplication

• **Scalar** (α , β , λ): an element of a field (typically real numbers) used in scalar-multiplication of vectors.

 Algebraically, scalar-multiplication is the multiplication of each element of a vector by a particular scalar.

$$\lambda \mathbf{v} \to 7 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -7 \\ 0 \\ 7 \end{bmatrix}$$

- Geometrically, scalar-multiplication is the extension $(\lambda > 1)$ or compression $(\lambda \in (0,1))$ of a vector.
 - When \(\lambda < 0 \), then it can be thought of inverting its direction with respect to the
 origin.

The Dot Product

- Dot product (scalar product): an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number.
 - The result of a dot product is a scalar, so often it is represented as a such (a lower case Greek letter).
 - \circ It can also be represented as multiplication between two vectors (${m a}\cdot{m b}$).
 - Most commonly it is represented as $\mathbf{a}^T \mathbf{b}$ transpose will be explained in more detail when dealing with matrix products.
 - Algebraically: $\sum_{i=1}^{n} a_i b_i$ where Σ denotes summation and n is the dimension of the vector space, e.g.:

$$\begin{bmatrix} 1 & 3 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix} = (1 \cdot 4) + (3 \cdot -2) + (-5 \cdot -1) = 3$$

Properties of the Dot Product

- \circ \checkmark Distributive: if **a**, **b**, and **c** and real vectors, then $a^T(b+c)=a^Tb+a^Tc$
- **X** Associative: $a^T(b^Tc) \neq (a^Tb)c$ in general the associative property does not hold, as the dot product would most likely produce different scalars.
 - Additionally, \boldsymbol{a} could have a different dimensionality than \boldsymbol{b} and \boldsymbol{c} . I.e., even if \boldsymbol{b} and \boldsymbol{c} had the same dimensionality ($\boldsymbol{a}^T(\boldsymbol{b}^T\boldsymbol{c})$) would be valid scalar-vector multiplication) then $\boldsymbol{a}^T\boldsymbol{b}$ would be invalid.