p-adic Rieman-Hilbert correspondence over the Robba ring Ruochuan Liu

Recall k/lep fin, X/k Sm rig-ana var.

Sap-loc sys | Liu-Zhy | filtered flat connections on XBAR |

on Xet | + Gala-action + transversality |

S | Fil*

Star-loc sys | Gao-Min-Warg | flat "t-connection" on X3th |

on Xproof | + Gala-action

Punk . The functor il 1 → RH(II) := RH*(I ⊗ OBOR)

= H*(I ⊗ OBOR)

D: ×prott/x_G → ×_{et}

The connection is "mod t nilp"

Artim of arith fundamental grap forces

the Jeon manulromy to be quasi-unipotent.

Motivation · Box ~ Off. . Want to extend it to the FF curve.

(-)/ & ~ (-)/ Gp.

Main result · $U = Spa(R, R^{\dagger})$ affinoid perf'd /G. $I = [r, s] \subset (0, \infty).$

Us Spa ($\tilde{c}^{I}(u)$, $\tilde{c}^{I,+}(u)$) ratil localization of u wiret. $|Ip^{b}| \in p^{I}$.

Use period sheaf \tilde{c}^{I} (\tilde{c}^{I} = Rubba ring).

Let X p-adic sm formal sch $/ O_{Gp}$. Suppose it admits a flat lift \widetilde{X} to Ainf. $\widetilde{X}^{I} =$ the base change of \widetilde{X} to \widetilde{C}^{I} (1 \in I). \widetilde{X} = the base change of \widetilde{X} to \widetilde{S}_{up} .

Thm A (Chen-Liu-Warg-2hu) $I c(\frac{1}{p-1}, p)$.

(1) $\exists \text{ period Sheaf } O \overset{\text{I}}{C}^{\text{I}} \text{ on X proof}$ $k d: O \overset{\text{I}}{C}^{\text{I}} \longrightarrow O \overset{\text{I}}{C}^{\text{I}} \overset{\text{I}}{O} \overset{\text{I}}{C}^{\text{I}} \overset{\text{I}}{I} - i \overset{\text{I}}{S}$ $\vdash \text{ PoinCare len}$. t - connection.

(2) $Small \ C^{2}-loc \ Sys \left(\sim \right) Small \ flat connections (
on <math>\chi_{proct}$ on χ^{2} IL $\longrightarrow (M, \nabla)$ The functor: $\coprod \longrightarrow \mathbb{R} D_{\chi} (\coprod \otimes \mathbb{G}^{\mathbb{Z}}) = D_{\chi} (\coprod \otimes \mathbb{G}^{\mathbb{Z}})$.

(3) $\mathbb{R}^{1/2}(\mathbb{L}) \simeq \mathbb{D}^{\mathbb{R}}(\mathbb{M}, \nabla)$ $\hookrightarrow \mathbb{R}^{\mathbb{R}}(\mathbb{X}_{protl}, \mathbb{L}) \simeq \mathbb{R}^{\mathbb{R}}(\mathbb{X}_{sl}, \mathbb{D}^{\mathbb{R}}(\mathbb{M}, \nabla)).$

Rock (i) If I is Faltings-Small, then ÎL & E is small in our setup.

- (ii) Smallness is used for ranishing of higher cohom.
- (iii) Where is the Frob on Connections?

Thin B (CLWZ) Same X.

- (1) I overconnergent de period Sheef 6 Bdx & d
- (a) | Small Bix-local $> \sim$ | Small flat Connections(on $\tilde{\chi}$).
- (3) Similar for coh.

(a) Compatible W/ Feltings's p-adic Simpson.

& RH for Small CI-local System.

Rome · 6 c cannot be mapped to OBda.

· Add more "analytic structure" to take smallness into account.

(In Tuperg Warg's thesis: 60 ~ 60)

(ocally polynomial locally + radius of conv
ring condition.

Sketch of OCT U = Spal S, St) & Xproet.

 $y \in \Sigma_u \longrightarrow O_y : \Re \widehat{\otimes}_{hinf} A_{inf}(u) \longrightarrow S^{+}$ (if to Ainf (p.3)-complete tensor product

Fact ker Oy is finitely gen'd.

Tet \$ \$ 1.(1) & 21.(1) & 21.(1) (W).

Tix 1 < 人 < 行列.

Take limit for $\lambda \rightarrow 1^{+}$ & Sheafification.

Locally $\xi = Spf R$, $\psi : O_{ep} < T_1^{\pm 1}, ..., T_d^{\pm 1} > \longrightarrow R^{ehole}$ $O_{ep}^{ehole} < T_1^{\pm 1}, ..., \frac{\gamma_d}{\lambda} > , \quad \psi_i := \frac{T_i - [T_i^b]}{\xi T_i}$

Applications e.g. (Le Bras) $X = \mathbb{A}_{\mathbb{Q}_p}^n$, $L = \mathbb{B}_{dp}^{\dagger}$. $\mathbb{R}^n (\mathbb{A}_{\mathbb{Q}_p}^n, \mathbb{B}_{dp}^{\dagger}) \simeq \mathbb{R}^n (\mathbb{O}_{\widehat{X}} \to \Omega_{\widehat{X}_p}^{\dagger} \{-1\} \to \Omega_{\widehat{X}_p}^{\dagger} \{-2\} \to \cdots)$. $\Rightarrow H^i(X_{prot}, \mathbb{B}_{dp}^{\dagger}) \simeq H^i(\mathbb{O}_{\widehat{X}_p}(\widehat{X}) \to \Omega_{\widehat{X}_p}^{\dagger}(\widehat{X}) \{-1\} \to \cdots)$ $\simeq \ker(\Omega^i(X) \overset{d}{\to} \Omega^{in}(X))$ $(\mathbb{O}_{\widehat{X}_p}(\widehat{X}) \to \Omega_{\widehat{X}_p}^{\dagger}(\widehat{X}) \to \Omega_{\widehat{X}_p}^{\dagger}(\widehat{X}) \to \cdots ; 5 \text{ exact})$.

Work in progress w Yu, Wary, Ehu:

X = X. 8 6 6, 6 , k/G, finite unramified.

Hi (XA, Ly, Rux EI) = Hi (OxI -> D' -> D' -> ...)

= EI & Hir (Xb)

crosse - Klönne.

- A'-invariance of H'(Xot, L9+Rux EI).