1 Проективное пространство

1.1 Определение и модели проективного пространства

Пусть V-(n+1)-мерное линейное пространство над полем F. На $V\setminus\{\overrightarrow{0}\}$ через ~ обозначим отношение коллинеарности, то есть $\overrightarrow{x}\sim\overrightarrow{y}\Longleftrightarrow\overrightarrow{x}=\lambda\overrightarrow{y}$ для некоторого $0\neq\lambda\in F$. Отношение ~ будет эквивалентностью.

Опр. Проективным пространством P, порожденным линейным пространством V, называется фактор множество $V \setminus \{0\}/\sim$.

Опр. Размерностью проективного пространства P, порожденного линейным пространством V, называется число $n = \dim V - 1$.

Элементы проективного пространства называют точками. Для проективного пространства P существует каноническая проекция $\pi:V\setminus \{\overrightarrow{0}\}\to P$, ставящая в соответствие всякому вектору класс коллинеарных ему векторов. Если $\pi(\overrightarrow{x})=X$, то говорят, что \overrightarrow{x} порождает точку X.

Опр. Множество \mathscr{P} называется моделью проективного пространства P^n , если существует биекция $\varphi: P^n \to \mathscr{P}$.

Прим 1 (Связка прямых). Пусть $\mathcal{A}^{n+1} - (n+1)$ -мерное аффинное пространство над линейным пространством V^{n+1} и S — некоторая точка \mathcal{A}^{n+1} . Зададим модель для проективного пространства P^n , порожденного V^{n+1} . Обозначим \mathcal{P} связку прямых, проходящих через S, и определим отображение $\varphi: P^n \to \mathcal{P}$, которое каждому классу векторов, порожденному \overrightarrow{x} , из P^n ставит в соответствие прямую из \mathcal{P} с направляющим вектором \overrightarrow{x} .

Прим 2 (Сфера). Пусть дана единичная гиперсфера в (n+1)-мерном евклидовом пространстве \mathcal{A}^{n+1} , связанное с линейным пространством V^{n+1} . Обозначим \mathcal{P} множество всех пар диаметрально противоположных точек гиперсферы. Отображение φ каждому классу коллинеарных векторов ставит в соответствие пару точек пересечения прямой, проходящей через центр гиперсферы параллельно этим векторам, с гиперсферой.

Прим 3 (Расширенная гиперплоскость). Пусть $\mathcal{A}^{n+1} - (n+1)$ -мерное аффинное пространство над линейным пространством V^{n+1} , $S \in \mathcal{A}^{n+1}$ и σ — некоторая гиперплоскость в \mathcal{A}^{n+1} , причем $S \notin \sigma$. Зададим модель для проективного пространства P^n , порожденного V^{n+1} .

Дополним \mathcal{A}^{n+1} элементами, которые называются "бесконечно удаленными точками", так, что каждой прямой в \mathcal{A}^{n+1} соответствует одна такая точка, параллельным прямым — одинаковые, а не параллельным — разные. Каждую прямую, дополненную соответствующей ей "бесконечно удаленной" точкой, называют "расширенной прямой". Гиперплоскость σ , дополненная "бесконечно удаленными" точками лежащих в ней прямых, называется "расширенной гиперплоскостью" (то же касается любых плоскостей). Ее мы обозначим \mathcal{P} .

Определим отображение $\varphi: P^n \to \mathcal{P}$, которое каждому классу векторов, порожденному $\overrightarrow{x} \in P^n$, поставит в соответствие точку пересечения расширенной прямой, проходящая через S параллельно \overrightarrow{x} , и расширенной гиперплоскости \mathcal{P} .

В случае, когда \overrightarrow{x} не принадлежит направляющему пространству σ , то прямая $l = S + L(\overrightarrow{x})$ пересечет σ в точке из \mathcal{A}^{n+1} ; если же прямая l параллельна σ , то расширенная прямая, задаваемая l, пересечет расширенную прямую, параллельную l и лежащую в σ , в бесконечно удаленной точке.

1.2 Проективный репер

Опр. Два базиса (\overrightarrow{u}_i) и (\overrightarrow{v}_i) (n+1)-мерного линейного пространства V называются гомотетичными, если существует такое $\lambda \in F$, что $\overrightarrow{v}_i = \lambda \overrightarrow{u}_i$ для всех $i=1,2,\ldots,n+1$.

Опр. Проективным репером (системой координат) проективного пространства P^n , порожденного линейным пространством V^{n+1} , называется класс гомотетичных базисов линейного пространства V^{n+1} .

Опр. Пусть M- точка проективного пространства P^n для которой вектор \overrightarrow{m} является порождающим. Проективными (или однородными) координатами точки M в проективном репере $\mathscr R$ называют класс ненулевых наборов, пропорциональных координатам $(x_1, x_2, \dots, x_{n+1})$ вектора \overrightarrow{m} в некотором базисе из $\mathscr R$, обозначаемый $(x_1: x_2: \dots: x_{n+1})_{\mathscr R}$.

Такое определение корректно. Возьмем проективные координаты точки M ($x_1: x_2: ...: x_{n+1}$) $_{\mathscr{R}}$ и ($y_1: y_2: ...: y_{n+1}$) $_{\mathscr{R}}$. Тогда ($x_1, x_2, ..., x_{n+1}$) — координаты какого-то вектора \overrightarrow{x} , порождающего M, в некотором базисе σ из \mathscr{R} , и ($y_1, y_2, ..., y_{n+1}$) — координаты \overrightarrow{y} , порождающего M, в базисе σ' из \mathscr{R} . По определению, $\overrightarrow{x} = \mu \overrightarrow{y}$ для подходящего μ . Расписывая это равенство по базисам σ и σ' , которые пропорциональны с некоторым коэффициентом λ , получаем, что взятые вначале проективные координаты пропорциональны с коэффициентом $\mu\lambda$.

Опр. Точки A_1, A_2, \dots, A_k проективного пространства называют точками общего положения, если порождающие их векторы линейно независимы.

Точки A_1, A_2, \dots, A_{k+1} называют точками почти общего положения, если любые k из низ являются точками общего положения.

Опр. Пусть в проективном пространстве задан репер \mathscr{R} . Говорят, что базис $\overrightarrow{e}_1, \ldots, \overrightarrow{e}_{n+1}$ из \mathscr{R} согласован с последовательностью точек почти общего положения A_1, \ldots, A_{n+2} , если \overrightarrow{e}_i порождает A_i для всех $i=1,\ldots,n+1$, и $\overrightarrow{e}_1+\ldots+\overrightarrow{e}_{n+1}$ порождает A_{n+2} .

Teop 1. В проективном пространстве для любой максимальной последовательности точек почти общего положения существует единственный проективный репер \mathcal{R} такой, что каждый принадлежащий ему базис согласован с данной последовательностью точек.

Док-во. Пусть A_1,\ldots,A_{n+2} — максимальная последовательность точек почти общего положения, и $\overrightarrow{a}_1,\ldots,\overrightarrow{a}_{n+2}$ — порождающие их векторы. Тогда $\overrightarrow{a}_1,\ldots,\overrightarrow{a}_{n+1}$ — базис линейного пространства, и $\overrightarrow{a}_{n+2}=\lambda_1\overrightarrow{a}_1+\ldots\lambda_{n+1}\overrightarrow{a}_{n+1}$ для некоторого ненулевого набора λ_i . Векторы $\overrightarrow{e}_1=\lambda_1\overrightarrow{a}_1,\ldots,\overrightarrow{e}_{n+1}=\lambda_{n+1}\overrightarrow{a}_{n+1}$ также образуют базис, который согласован с точками A_1,\ldots,A_{n+2} . Для любого базиса, гомотетичного рассмотренному, это тоже верно. Получили репер \mathscr{R} .

Пусть $\overrightarrow{v}_1, \dots, \overrightarrow{v}_{n+1}$ — еще один базис, который согласован с последовательностью A_1, \dots, A_{n+2} . Тогда \overrightarrow{v}_i порождает A_i и поэтому $\overrightarrow{v}_i = \mu_i \overrightarrow{e}_i$ для всех $i=1,\dots,n+1$. Кроме того, $\overrightarrow{v}_1+\dots\overrightarrow{v}_{n+1}=\mu_{n+2}(\overrightarrow{e}_1+\dots\overrightarrow{e}_{n+1})$ для некоторого μ_{n+2} . Отсюда $\mu_1 \overrightarrow{e}_1+\dots\mu_{n+1} \overrightarrow{e}_{n+1}=\mu_{n+2} \overrightarrow{e}_1+\dots\mu_{n+2} \overrightarrow{e}_{n+1})$ и, с учетом независимости, $\mu_i-\mu_{n+2}=0$ для всех $i\leqslant n+1$. Таким образом, базис $\overrightarrow{v}_1,\dots,\overrightarrow{v}_{n+1}$ гомотетичен $\overrightarrow{e}_1,\dots,\overrightarrow{e}_{n+1}$. Показано, что любой базис, согласованный с последовательностью A_1,\dots,A_{n+2} принадлежит реперу \mathscr{R} .

Теор 2 (формулы преобразования координат). Пусть в проективном пространстве заданы два репера \mathcal{R} и \mathcal{R}' . Тогда для координат $(x_1:x_2:...:x_{n+1})_{\mathcal{R}}$ и $(x_1':x_2':...:x_{n+1}')_{\mathcal{R}'}$ точки M верны формулы

$$\lambda \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n+1} \end{pmatrix} = C \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_{n+1}' \end{pmatrix}$$

где $\lambda \neq 0$ и C- матрица перехода от некоторого базиса из $\mathscr R$ к базису из $\mathscr R'.$

Док-во. Пусть $\sigma \in \mathcal{R}$ и $\sigma' \in \mathcal{R}'$ и вектор \overrightarrow{m} порождает M. Для некоторого μ координаты \overrightarrow{m} в базисе σ можно записать $(\mu x_1, \dots, \mu x_{n+1})$ и, аналогично, $(\mu' x_1, \dots, \mu' x_{n+1})$ — координаты \overrightarrow{m} в σ' . Обозначив C матрицу перехода от σ к σ' и $\lambda = \frac{\mu}{\mu'}$, получаем указанную формулу.

1.3 Плоскости в проективном пространстве

Опр. Пусть P — проективное пространство, порожденное линейным пространством V, и W-(k+1)-мерное подпространство в V. Множество всех точек из P, порожденных векторами из W, называется k-мерной плоскостью.

Одномерные плоскости называют прямыми, двухмерные плоскости — плоскостями, нульмерные плоскости уже названы точками. В n-мерном пространстве плоскости размерности n-1 называют гиперплоскостями.

Теор 3. Пусть \mathcal{R} — репер проективного пространства P^n и k-мерная плоскость α в P^n порождается линейным пространством W, заданным своим базисом $\overrightarrow{a}_1(a_{11},\ldots,a_{n+1,1})_{\sigma},\ldots,\overrightarrow{a}_{k+1}(a_{1,k+1},\ldots,a_{n+1,k+1})_{\sigma}$ для $\sigma\in\mathcal{R}$. Тогда плоскость α задается следующей системой параметрических уравнений:

Док-во. Пусть \overrightarrow{m} порождает M. Точка M принадлежит α тогда и только тогда, когда $\overrightarrow{m} = \lambda_1 \overrightarrow{a}_1 + \ldots + \lambda_{k+1} \overrightarrow{a}_{k+1}$ для некоторых $\lambda_1, \ldots, \lambda_{k+1}$.

Если M имеет проективные координаты $(x_1:x_2:...:x_{n+1})_{\mathscr{R}}$, то вектор \overrightarrow{m} будет иметь координаты $(x_1,x_2,...,x_{n+1})$ в некотором $\sigma'\in \mathscr{R}$. Найдется такое λ , что в базисе $\sigma\in \mathscr{R}$ вектор \overrightarrow{m} будет иметь координаты $(\lambda x_1,...,\lambda x_{n+1})$. Поэтому, если точка M принадлежит плоскости α , то верно следующее равенство $\lambda(x_1,...,x_{n+1})=\lambda_1(a_{11},...,a_{n+1,1})+...+\lambda_{k+1}(a_{1,k+1},...,a_{n+1,k+1})$. То есть, взяв $t_i=\frac{\lambda_i}{\lambda}$, получаем что заказывали.

Аналогично и обратное. Если для $M(x_1:x_2:...:x_{n+1})_{\mathscr{R}}$ верны формулы теоремы, то умножая их на подходящее λ переходим к координатам \overrightarrow{m} в базисе σ , а затем и к векторному равенству.

Teop 4. Пусть \mathcal{R} — репер n-мерного проективного пространства. Всякая k-мерная плоскость α задается β репере β системой линейных уравнений вида:

$$\begin{cases}
b_{11}x_1 + b_{12}x_2 + \dots + b_{1,n+1}x_{n+1} &= 0 \\
b_{21}x_1 + b_{22}x_2 + \dots + b_{2,n+1}x_{n+1} &= 0 \\
\dots & \dots & \dots \\
b_{n-k,1}x_1 + b_{n-k,2}x_2 + \dots + b_{n-k,n+1}x_{n+1} &= 0
\end{cases}$$
(2)

где ранг матрицы (2) равен n-k.

Всякая система (2) задает в репере ${\mathcal R}$ некоторую k-мерную плоскость.

Док-во. Для плоскости α можно составить параметрические уравнения (1). Ранг матрицы (1), как системы относительно t_i , равен k+1. Поэтому можно выбрать k+1 уравнений в новую систему так, чтобы эта система была однозначно разрешима относительно t_i . Будем считать, что выбраны первые k+1 уравнений, так как этого можно добиться перестановкой уравнений и временным переименованием неизвестных. Решая эту подсистему, получим выражения t_1, \ldots, t_{k+1} через x_1, \ldots, x_{k+1} . Подставляя полученные выражения t_i в оставшиеся неиспользованными (n+1)-(k+1)=n-k уравнений (1), запишем систему вида (2), которая будет иметь ранг n-k, так как в каждом из ее уравнений будет только одна из неизвестных $x_{k+2}, x_{k+3}, \ldots, x_n$ и матрица системы

имеет вид:

Эта система (2) будет задавать плоскость α .

Пусть теперь дана система (2). Ранг n-k максимально возможный, поэтому есть решения. Как известно, множество решений однородной системы линейных уравнений образует линейное пространство, размерность которого совпадает с числом свободных неизвестных (n+1)-(n-k)=k+1.

Это пространство будет подпространством в пространстве векторов из F^{n+1} , где F — поле над которым все рассматривается. Но оно очевидно изоморфно (k+1)-мерному подпространству в линейном пространстве V, которым порождается проективное пространство: изоморфизм сопоставляет вектору (x_1, \ldots, x_{n+1}) из F^{n+1} вектор в V, имеющий координаты (x_1, \ldots, x_{n+1}) .

Это линейное пространство по определению порождает k-мерную плоскость в нашем проективном пространстве. \Box

Teop 5. Множество общих точек двух плоскостей плоскостей образует плоскость.

Опр. Проективной оболочкой плоскостей называют наименьшую по включению плоскость, в которой содержатся все данные плоскости.

Teop 6. Проективной оболочкой плоскостей α и β , порожденных линейными пространствами V и W соответственно, является плоскость, порожденная пространством V+W.

1.4 Сложное отношение четырех точек

Опр. Пусть A, B, C и D — четыре различные точки проективного пространства, лежащие на одной прямой, и \vec{a} , \vec{b} , \vec{c} , \vec{d} — порождающие их векторы. Пусть также $\vec{c} = \alpha \vec{a} + \beta \vec{b}$, $\vec{d} = \gamma \vec{a} + \delta \vec{b}$. Элемент $\omega = \frac{\beta \gamma}{\alpha \delta}$ называется сложным (двойным) отношением точек A, B, C, D.

Сложное отношение четырех точек A, B, C, D обозначается (AB, CD).

Определение корректно. Точки A, B, C, D прямой различны, а поэтому порождающие их векторы $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}$ попарно линейно независимы и принадлежат двухмерному линейному пространству. Так можно записать $\overrightarrow{c} = \alpha \overrightarrow{a} + \beta \overrightarrow{b}, \overrightarrow{d} = \gamma \overrightarrow{a} + \delta \overrightarrow{b}$ для $\alpha, \beta, \gamma, \delta$, причем $\alpha, \delta \neq 0$. Отсюда сложное отношение существует. Если векторы $\overrightarrow{a}', \overrightarrow{b}', \overrightarrow{c}', \overrightarrow{d}'$ порождают те же точки, то $\overrightarrow{a} = \lambda_a \overrightarrow{a}', \overrightarrow{b} = \lambda_b \overrightarrow{b}', \overrightarrow{c} = \lambda_c \overrightarrow{c}', \overrightarrow{d} = \lambda_d \overrightarrow{d}'$. Подставляя, $\lambda_c \overrightarrow{c}' = \alpha \lambda_a \overrightarrow{a}' + \beta \lambda_b \overrightarrow{b}', \lambda_d \overrightarrow{d}' = \gamma \lambda_a \overrightarrow{a}' + \delta \lambda_b \overrightarrow{b}'$ или $\overrightarrow{c}' = \frac{\alpha \lambda_a}{\lambda_c} \overrightarrow{a}' + \frac{\beta \lambda_b}{\lambda_c} \overrightarrow{b}', \overrightarrow{d}' = \frac{\gamma \lambda_a}{\lambda_d} \overrightarrow{a}' + \frac{\delta \lambda_b}{\lambda_d} \overrightarrow{b}'$. Теперь

запишем новое сложное отношение $\frac{\beta \lambda_b \gamma \lambda_a}{\alpha \lambda_a \delta \lambda_b} = \frac{\beta \gamma}{\alpha \delta}$, то есть сложное отношение определено однозначно.

Теор 7 (Свойства).

$$1. (AB, CD) = (CD, AB)$$

2.
$$(AB, DC) = (BA, CD) = \frac{1}{(AB, CD)}$$

3.
$$(AC, BD) = (DB, CA) = 1 - (AB, CD)$$

Док-во. Непосредственно по определению.

Teop 8. Сложное отношение сохраняется при центральном проектировании.

Док-во. Пусть точки A, B, C, D принадлежат проективной прямой l и A', B', C', D' — их проекции из центра O на прямую l'. Возьмем точку E на прямой OC отличную от O, C и C'. Рассмотрим проективные реперы плоскости R и R', согласованные с точками (A, B, O, E) и (A', B', O, E) соответственно.

В репере R имеем A'(1:0:a), B'(0:1:b), O(0:0:1) и E(1:1:1). Запишем формулы преобразования координат при переходе от R к R':

для некоторого базиса $(\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3) \in R$ векторы $\overrightarrow{e}_1' = \overrightarrow{e}_1 + a\overrightarrow{e}_3, \overrightarrow{e}_2' = \overrightarrow{e}_2 + b\overrightarrow{e}_3, \overrightarrow{e}_3' = \overrightarrow{e}_3$ порождают точки A', B', O; подберем k_1, k_2, k_3 так, чтобы $k_1 \overrightarrow{e}_1' + k_2 \overrightarrow{e}_2' + k_3 \overrightarrow{e}_3'$ порождал E, то есть базис $(k_1 \overrightarrow{e}_1', k_2 \overrightarrow{e}_2', k_3 \overrightarrow{e}_3')$ был согласован с (A', B', O, E) и поэтому принадлежал R'

$$\lambda \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} k_1 & 0 & 0 \\ 0 & k_2 & 0 \\ k_1 a & k_2 b & k_3 \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix}$$

Для согласованности столбцов $\begin{pmatrix} k_1 & 0 & 0 & 1 \\ 0 & k_2 & 0 & 1 \\ k_1 a & k_2 b & k_3 & 1 \end{pmatrix}$ берем k_1 = 1, k_2 = 1, k_3 = 1-a-b.

Формулы превращаются в

$$\begin{cases} \lambda x_1 = x_1' \\ \lambda x_2 = x_2' \\ \lambda x_3 = ax_1' + bx_2' + (1 - a - b)x_3' \end{cases}$$

Пусть в репере R точка D будет иметь координаты $(d_1:d_2:0)$, а в $R'-D(d_1':d_2':d_3')$. Тогда $\frac{d_1}{d_2}=\frac{d_1'}{d_2'}$ с одной стороны.

Теперь покажем, что в репере на прямой l, согласованном с точками (A, B, C), точка D будет иметь координаты $(d_1:d_2)$. Действительно, точка C лежит на l с уравнением $x_3=0$, а еще на прямой OE с уравнением $x_1-x_2=0$, поэтому $C(1:1:0)_R$. Для некоторого базиса из R обозначим \overrightarrow{a} , \overrightarrow{b} его векторы, порождающие A, B. Тогда вектор $\overrightarrow{c}=\overrightarrow{a}+\overrightarrow{b}$ порождает C. Кроме того, $\overrightarrow{d}=d_1\overrightarrow{a}+d_2\overrightarrow{b}$ порождает D. Это означает, что в согласованном с (A,B,C) базисе $(\overrightarrow{a},\overrightarrow{b})$ точка D имеет координаты (d_1,d_2) . Отсюда $(AB,CD)=\frac{d_1}{d_2}$.

Аналогично, в репере на прямой l', согласованном с (A', B', C'), точка D' будет иметь координаты $(d'_1:d'_2)$. Поэтому $(A'B', C'D') = \frac{d'_1}{d'_2}$. Таким образом, (AB, CD) = (A'B', C'D').

Teop 9. Если в проективном репере на прямой известны координаты точек $A(a_1:a_2)$, $B(b_1:b_2)$, $C(c_1:c_2)$, $D(d_1:d_2)$, то

$$(AB, CD) = \frac{\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} \begin{vmatrix} d_1 & b_1 \\ d_2 & b_2 \end{vmatrix}}{\begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix} \begin{vmatrix} a_1 & d_1 \\ a_2 & d_2 \end{vmatrix}}$$

Док-во. Пусть $\overrightarrow{c} = \alpha \overrightarrow{a} + \beta \overrightarrow{b}$, $\overrightarrow{d} = \gamma \overrightarrow{a} + \delta \overrightarrow{b}$ для α , β , γ , δ . Выписывая координаты векторов в некотором общем базисе из проективного репера, получаем $\begin{cases} \lambda_c c_1 = \alpha \mu a_1 + \beta \nu b_1 \\ \lambda_c c_2 = \alpha \mu a_2 + \beta \nu b_2 \end{cases}$ и $\begin{cases} \lambda_d d_1 = \gamma \mu a_1 + \delta \nu b_1 \\ \lambda_d d_2 = \gamma \mu a_2 + \delta \nu b_2 \end{cases}$. Решения по формулам Крамера $\alpha = \frac{\lambda_c \nu \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}}{\begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}}$, $\beta = \frac{\lambda_c \mu \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}}$, $\gamma = \frac{\lambda_d \nu \begin{vmatrix} d_1 & b_1 \\ d_2 & b_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}}$. Соотношение $\frac{\beta \gamma}{\alpha \delta}$ дает

В модели проективной прямой называемой расширенной прямой сложное отношение можно представить следующим образом через простое отношение:

След 1. Если в аффинном репере на расширенной прямой даны четыре точки A(a), B(b), C(c), D(d), то сложное отношение этих точек по вычисляется формуле:

$$(AB, CD) = \frac{(AB, C)}{(AB, D)}.$$

Док-во. Пусть $(O, \overrightarrow{e}_1)$ — аффинный система координат на той прямой, которая вместе с бесконечно удаленной точкой P_{∞} образует расширенную

прямую. Заметим, что в модели расширенной прямой точку P_{∞} порождает \overrightarrow{e}_{1} . Обозначим $E = O + \overrightarrow{e}_{1}$. Зададим согласованный с точками (P_{∞}, O, E)

проективный репер \mathscr{R} , который определяется базисом \overrightarrow{e}_1 , \overrightarrow{e}_2 . В репере \mathscr{R} точка A имеет проективные координаты $(a:1)_{\mathscr{R}}$, так как порождается вектором $\overrightarrow{e}_2 + a\overrightarrow{e}$, и, аналогично, $B(b:1)_{\mathscr{R}}$, $C(c:1)_{\mathscr{R}}$, $D(d:1)_{\mathscr{R}}$. По Teop. 9

$$(AB, CD) = \frac{\begin{vmatrix} a & c & d & b \\ 1 & 1 & 1 & 1 \\ c & b & a & d \\ 1 & 1 & 1 & 1 \end{vmatrix}}{\begin{vmatrix} c & b & a & d \\ 1 & 1 & 1 & 1 \end{vmatrix}} = \frac{(a-c)(d-b)}{(c-b)(a-d)} = \frac{a-c}{c-b} : \frac{a-d}{d-b}.$$

Но если простое отношение (AB,C) равно λ , то $\overrightarrow{AC} = \lambda \overrightarrow{CB}$. Поэтому $(c-a)\overrightarrow{e}_1 = \lambda(b-c)\overrightarrow{e}_1$, а значит и $\lambda = \frac{c-a}{b-c}$. Аналогично $(AB,D) = \frac{d-a}{b-d}$.

Опр. Говорят, что пара (A, B) разделяет пару (C, D), если (AB, CD) < 0 и не разделяет, если (AB, CD) > 0.

Опр. Говорят, что пара точек (A, B) разделяет пару точек (C, D) гармонически, если сложное отношение (AB, CD) = -1. В этом случае упорядоченную четверку точек A, B, C, D называют гармонической четверкой точек.

След 2. Гармоническая разделенность двух пар точек не зависит ни от порядка пар точек, ни от порядка точек в каждой паре.

1.5 Полный четырехвершинник

Опр. Полным четырехвершинником называют фигуру, состоящая из четырех точек почти общего положения и шести прямых, которые задаются всевозможными парами этих точек.

Эти четыре точки называют вершинами, а прямые называют сторонами. Две стороны полного четырехвершинника называются смежными, если они имеют общую вершину, и противоположными в противном случае.

Точка пересечения двух противоположных сторон называется диагональной точкой.

Прямая, проходящая через две диагональные точки, называются диагональю полного четырехвершинника.

Teop 10 (Фано). Диагональные точки полного четырехвершинника не лежат на одной прямой.

Док-во. Рассмотрим четырехвершинник ABCD. Найдем координаты диагональных точек $P = AB \cap CD$, $Q = BC \cap AD$ и $R = BD \cap AC$ в репере, согласованном с точками A, B, C, D. Составим уравнения сторон четырехвершинника и из уравнений найдем их пересечения.

Уравнение прямой на проективной плоскости имеет вид $ax_1 + bx_2 + cx_3 = 0$ по Теор. 4. Вершины в выбранном репере будут иметь координаты A(1:0:0), B(0:1:0), C(0:0:1), D(1:1:1). Поэтому прямая AB задается уравнением $x_3=0$, а прямая CD уравнением $x_1+x_2=0$. Выберем одно из решений полученной системы в качестве проективных координат точки P(1:1:0). Так же находим Q(0:1:1) и R(1:0:1).

Точки лежат на прямой в том и только том случае, когда порождающие их векторы линейно зависимы. Но для матрицы координат этих векторов

$$egin{bmatrix} |1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}
eq 0$$
, поэтому точки на одной прямой не лежат. \Box

Teop 11. На каждой диагонали полного четырехвершинника четверка точек, состоящая из пары диагональных точек и пары точек пересечения этой диагонали со сторонами, проходящими через третью диагональную точку, является гармонической.

Док-во. Рассмотрим четырехвершинник ABCD с диагональными точками $P = AB \cap CD$, $Q = BC \cap AD$ и $R = BD \cap AC$. Проверим утверждение для диагонали PQ и точек $M = PQ \cap AC$, $N = PQ \cap BD$.

Построим проекции P,Q и M,N на прямую AC из центра B и из центра D. По Теор. 8 получаем (PQ,MN)=(CA,MR) и (PQ,MN)=(AC,MR). Так как

 $(CA, MR) = \frac{1}{(AC, MR)}$, получаем $(PQ, MN)^2 = 1$. Но (PQ, MN) = 1 влечет M = N, а значит совпадают прямые BD и AC что невозможно. Поэтому (PQ, MN) = -1.

Teop 12. На каждой стороне полного четырехвершинника четверка точек, состоящая из пары вершин этой стороны, диагональной точки этой стороны и точки пересечения этой стороны с диагональю, проходящей через две другие диагональные точки, является гармонической.

Док-во. Доказательство аналогично Теор. 11.

Например, сразу имеем -1 = (PQ, MN) = (AC, MR), то есть на стороне AC точки A, C, M, R образуют гармоническую четверку. Дальше можно пользоваться проектированием этих точек и Teop. 8.

1.6 Принцип двойственности

Опр. Говорят, что плоскости α и β инцидентны, если одна и только одна из плоскостей строго содержится в другой.

Опр. Плоскости n-мерного проективного пространства размерностей k и n – k – 1 называются двойственными.

Утв 1 (Принцип двойственности). Если для проективного пространства верна теорема, утверждение которой касается инцидентности плоскостей, то справедлива двойственная ей теорема, в которой все понятия заменены на двойственные.

Прим 4. «Через пару точек на проективной плоскости проходит единственная прямая» двойственно «Любая пара прямых на проективной плоскости пересекается в единственной точке».

Покажем действие принципа двойственности для двухмерного пространства. Установим на проективной плоскости соответствие между прямыми и точками: точке с координатами (α_1 , α_2 , α_3) соответствует прямая $\alpha_1x_1+\alpha_2x_2+\alpha_3x_3=0$. Это соответствие является биекцией. Оно и обратное к нему сохраняет инцидентность: если точка (a_1 , a_2 , a_3) принадлежит плоскости $b_1x_1+b_2x_2+b_3x_3=0$, то двойственная прямая $a_1x_1+a_2x_2+a_3x_3=0$ содержит двойственную точку (b_1 , b_2 , b_3). Поэтому, если верно некоторое утверждение об инцидентности прямых и точек, то будет верно и двойственное ему утверждение о точках и прямых.

Нетрудно проверить то же и для трехмерного пространства, в котором двойственными будут точки и плоскости, а прямые двойствены прямым: точки сопоставляются плоскостям как и выше, а каждой прямой с общим

уравнением
$$\begin{cases} \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 &= 0 \\ \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 &= 0 \end{cases}$$
 соответствует прямая, проходящая через точки $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ и $(\beta_1, \beta_2, \beta_3, \beta_4)$.

1.7 Теорема Дезарга

Опр. Трехвершинником называют фигуру, состоящая из трех точек общего положения и трех прямых, которые задаются всевозможными парами этих точек.

Эти три точки называют вершинами, а прямые называют сторонами.

Опр. Два трехвершинника ABC и $A_1B_1C_1$ называются перспективными, если прямые AA_1 , BB_1 , CC_1 проходят через одну точку.

Эту точку называют центром перспективы.

Teop 13 (Дезарг). Если два трехвершинника ABC и A'B'C' перспективны, то их соответственные стороны пересекаются в трех точках, которые лежат на одной прямой.

Док-во. Если центр перспективы O лежит на одной из прямых трехвершинника ABC, то с той прямой совпадает соответствующая ей из A'B'C'. Значит она пересекается с прямой, соединяющей два других пересечения соответствующих сторон и условие выполнено. Предположим поэтому, что это не так.

Если пара соответствующих точек совпадает, то в ней будут пересекаться две пары сторон и утверждение теоремы выполняется. Предположим, что соответствующие точки различны.

Зададим проективный репер, согласованный с точками (A, B, C, O).

Точка A' лежит на прямой OA с уравнением $x_2 - x_3 = 0$ и отлична от A(1:0:0), поэтому A'(a:1:1). Также B'(1:b:1) и C'(1:1:c).

Пусть прямые AB и A'B', AC и A'C', BC и B'C' пересекаются в точках X, Y, Z соответственно. Точка X лежит на прямой AB с уравнением $x_3=0$ и на прямой A'B' с уравнением $(1-b)x_1+(1-a)x_2+(ab-1)x_3=0$, а значит имеет координаты X(a-1:1-b:0). Для остальных, Y(a-1:0:1-c) и Z(0:1-b:c-1). Так

как
$$\begin{vmatrix} a-1 & 1-b & 0 \\ a-1 & 0 & 1-c \\ 0 & 1-b & c-1 \end{vmatrix} = 0$$
, точки X,Y,Z лежат на одной прямой. \square

По принципу двойственности верна

Teop 14 (обратная теорема Дезарга). Пусть даны два трехвершинника ABC и A'B'C'. Если точки пересечения сторон $X \in AB \cap A'B'$, $Y \in AC \cap A'C'$ и $Z \in BC \cap B'C'$ лежат на одной прямой, то эти трехвершинники перспективны.

1.8 Проективные отображения и преобразования

Пусть проективные пространства P и P' порождаются линейными пространствами V и V' соответственно, с каноническими проекциями $\pi:V\setminus \{\overrightarrow{0}\} \to P$ и $\pi':V'\setminus \{\overrightarrow{0}\} \to P'$.

Опр. Проективным отображением проективного пространства P на проективное пространство P' называют всякое биективное отображение $f: P \to P'$, для которого существует линейное биективное отображение $\varphi: V \to V'$, такое, что для любого $X \in P$ и любого порождающего X вектора $\overrightarrow{x} \in V$, верно $\pi' \circ \varphi(\overrightarrow{x}) = f(X)$.

В этом случае говорят, что линейное отображение φ порождает проективное отображение f.

Таким образом любое линейное биективное отображение $\varphi:V\to V'$ порождает проективное отображение. Действительно, если для заданного φ проективное отображение f задать по определению выше, то f будет биекцией.

Для проверки однозначности возьмем $X \in P$ и \overrightarrow{x} , \overrightarrow{y} порождающие точку X. Тогда $\overrightarrow{y} = \lambda \overrightarrow{x}$ для подходящего λ и $\pi'(\varphi(\lambda \overrightarrow{x})) = \pi'(\lambda \varphi(\overrightarrow{x}))$.

Проверим инъективность. Пусть f(X) = f(Y) для точек $X = \pi(\overrightarrow{x})$ и $Y = \pi(\overrightarrow{y})$ из P. По определению, $\pi'(\varphi(\overrightarrow{x})) = \pi'(\varphi(\overrightarrow{y}))$, для некоторого λ будет $\varphi(\overrightarrow{x}) = \lambda \varphi(\overrightarrow{y}) = \varphi(\lambda \overrightarrow{y})$ и $\overrightarrow{x} = \lambda \overrightarrow{y}$. Значит X = Y.

Для любого $Y \in P'$ и порождающего его $\overrightarrow{y} \in V'$ существует \overrightarrow{x} , $\varphi(\overrightarrow{x}) = \overrightarrow{y}$, который будет порождать прообраз Y при f.

1.9 Кривые второго порядка

В проективном пространстве, если множество точек удовлетворяет уравнению $F(x_1, \dots, x_{n+1}) = 0$ для некоторого многочлена F, то это условие может

быть записано в виде системы однородных многочленов. Так, если координаты точки $(a_1:\ldots:a_{n+1})$ удовлетворяет уравнению, то и координаты $(\lambda a_1:\ldots:\lambda a_{n+1})$ тоже должны. Поэтому, разбив многочлен F на однородные многочлены F_k степени k, получаем равенство $F(\lambda a_1,\ldots,\lambda a_{n+1})=\sum_{k=0}^n F_k(\lambda a_1,\ldots,\lambda a_{n+1})=\sum_{k=0}^n \lambda^k F_k(a_1,\ldots,a_{n+1})=0$ для всех $\lambda\neq 0$. Так как многочлены $1,x,x^2,\ldots,x^n$ линейно независимы, то отсюда $F_k(a_1,\ldots,a_{n+1})=0$ для всех k.