"OPTIMIZATION TECHNIQUES FOR REAL-WORLD PROBLEMS"

"Healthcare, Agriculture, Water Resource Management, and Carbon Sequestration"

Presented by SAHIL

Example: Ensuring equitable and efficient distribution of vaccines across regions, especially during health crises like a pandemic, is a critical challenge. This requires balancing limited vaccine supply with population needs, prioritizing high-risk areas, and minimizing transportation costs.

Objective: To maximize population coverage while minimizing costs and adhering to vaccine supply constraints.

Decision Variables:

x1 = Vaccines allocated to Region A

x2 = Vaccines allocated to Region B

x3 = Vaccines allocated to Region C

Objective Function:

Minimize total cost: Z=c1x1+c2x2+c3x3

Constraints:

Total Supply Constraint:

x1+x2+x3≤S(Total vaccine supply)

Demand Constraints for Each Region:

x1≤P1(Region A demand)

x2≤P2(Region B demand)

x3≤P3(Region C demand)

Non-Negativity Constraints:x1,x2,x3≥0x1,x2,x3≥0

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$2	SOLUTION Region A	400	0	5	1E+30	1
\$C\$2	SOLUTION Region B	350	0	7	1E+30	3
\$D\$2	SOLUTION Region C	250	0	4	1	4
onstrair	nts					
onstrair	nts	Final	Shadow	Constraint	Allowable	Allowable
Constrair Cell	Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease
						Decrease
Cell	Name	Value	Price	R.H. Side	Increase	Decrease 250
Cell \$E\$5	Name Constraint 1 (Vaccine Supply: Total ≤ 1000) LHS	Value 1000	Price 4	R.H. Side 1000	Increase 50	Decrease 250 50

Objective Cell (Max)

Cell	Name	Original Value	Final Value
\$E\$2 SOLUTION Z		0	5450

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$B\$2	SOLUTION Region A	0	400	Contin
\$C\$2	SOLUTION Region B	0	350	Contin
\$D\$2	SOLUTION Region C	0	250	Contin

Cell	Name	Cell Value	Formula	Status	Slack
\$E\$5	Constraint 1 (Vaccine Supply: Total ≤ 1000) LHS	1000	\$E\$5<=\$G\$5	Binding	0
\$E\$6	Constraint 2 (Population Demand for A) LHS	400	\$E\$6<=\$G\$6	Binding	0
\$E\$7	Constraint 3 (Population Demand for B) LHS	350	\$E\$7<=\$G\$7	Binding	0
\$E\$8	Constraint 4 (Population Demand for C) LHS	250	\$E\$8<=\$G\$8	Not Binding	50

- The solver found an optimal solution where:
 - Region A receives 400 vaccines
 - Region B receives 350 vaccines
 - Region C receives 250 vaccines
- The total cost (Z) is 5450.
- The supply constraint (1000 vaccines) is fully used, meaning we cannot distribute more without increasing supply.
- Key takeaway: The vaccines were distributed efficiently, and supply was the biggest limiting factor.

Sensitivity Report Explanation

- Shadow price for total supply = 4
- \rightarrow If we get one more vaccine, cost increases by 4 units.
- Region C's constraint is not binding (50 extra vaccines could go there without affecting the solution).
- Allowable increase/decrease shows how much we can change the transportation cost per region before it impacts the allocation.
- Wey takeaway: Supply constraints limit distribution, and increasing vaccines slightly would help some regions without increasing costs too much.

- If we increase supply beyond 1000 vaccines, cost efficiency will change.
- If the transportation cost of Region B increases, it could shift vaccine allocation to Region A or C.
- Key takeaway: We should monitor changes in transportation costs because they affect optimal distribution.

Example: Farmers practicing organic farming must optimize land use, fertilizer distribution, and crop selection to maximizing yields.

Objective: To maximize yields of organic crops while minimizing costs and adhering to environmental constraints.

Variable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$2	SOLUTION (Crop A)	0	-1	3	1	1E+30
\$C\$2	SOLUTION (Crop B)	500	0	4	1E+30	1
\$D\$2	SOLUTION (Crop C)	0	-1.5	2.5	1.5	1E+30

Constraints

Cell	Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	
\$E\$5	Constraint 1 Land Constraint LHS	500	4	500	1E+30	500
\$E\$6	Constraint 2 Fertilizer Constraint LHS	0	0	2000	1E+30	2000

Objective Cell (Max)

Cell	Name	Original Value	Final Value
\$E\$2	SOLUTION Z	0	2000

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$B\$2	SOLUTION (Crop A)	0	0	Contin
\$C\$2	SOLUTION (Crop B)	0	500	Contin
\$D\$2	SOLUTION (Crop C)	0	0	Contin

Cell	Name	Cell Value	Formula	Status	Slack
\$E\$5	Constraint 1 Land Constraint LHS	500	\$E\$5<=\$G\$5	Binding	0
\$E\$6	Constraint 2 Fertilizer Constraint LHS	0	\$E\$6<=\$G\$6	Not Binding	2000

x1 = Acres allocated to Crop A

x2 = Acres allocated to Crop B

x3 = Acres allocated to Crop C

Objective Function:

Maximize total yield: Z=y1x1+y2x2+y3x3

Constraints:

Land Availability Constraint: x1+x2+x3≤L(Total available land)

Fertilizer Supply Constraint: f1x1+f2x2+f3x3≤F

where f1,f2,f3f1,f2,f3 are fertilizer requirements per acre, and FF is the total fertilizer available.

Non-Negativity and Integer Constraints: x1,x2,x3≥0,x1,x2,x3∈Z+(Integer acres)

Answer Report Explanation

- The solver found an optimal solution where:
 - 500 acres are allocated to Crop B.
 - Crops A and C receive 0 acres.
- Total yield = 2000 units
- Land constraint (500 acres) is fully used, but fertilizer is not a constraint.
- Key takeaway: Crop B is the most productive. Crops A and C were not selected due to lower yield per acre.

Sensitivity Report Explanation

- Shadow price for land = 4
- \rightarrow If we get one more acre of land, yield increases by 4 units.
- Crop A has a reduced cost of -1
- \rightarrow Crop A would need at least 1 more unit of yield per acre to be included.
- Wey takeaway: Land is the most valuable resource. Expanding land would improve yields, but fertilizer constraints don't matter right now.

- If land increases beyond 500 acres, we might see Crop A or C included in the allocation.
- Crop B remains the best choice until its cost or yield changes.
- Key takeaway: Investing in land expansion benefits the farm the most.

WATER RESOURCE MANAGEMENT: HOUSEHOLD WATER USAGE

Example: Households must manage water usage efficiently for activities like drinking,

cooking, laundry, and cleaning while staying within local supply limits and maintaining basic hygiene standards.

Objective: To minimize water consumption while fulfilling household requirements.

WATER RESOURCE MANAGEMENT: HOUSEHOLD WATER USAGE

Decision Variables:

x1 = Water used for drinking (liters/day)

x2 = Water used for cooking (liters/day)

x3 = Water used for laundry (liters/day)

Objective Function:

Minimize total water usage: Z=x1+x2+x3

Constraints:

Total Water Allowance:

x1+x2+x3≤W(Household's daily water limit)

Minimum Water Requirements: x1≥d,x2≥c,x3≥lx1≥d,x2≥c,x3≥l

where d,c,ld,c,l are the minimum water needs for drinking, cooking, and laundry.

Non-Negativity Constraints: x1,x2,x3≥0x1,x2,x3≥0

WATER RESOURCE MANAGEMENT: HOUSEHOLD WATER USAGE

Variable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$2	SOLUTION DRINKING	10	0	1	1E+30	1
\$C\$2	SOLUTION COOKING	15	0	1	1E+30	1
\$D\$2	SOLUTION LAUNDRY	0	0	1	1E+30	1

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$E\$5	Constraint 1 Water Allowance LHS	25	0	50	1E+30	25
\$E\$6	Constraint 2 Drinking Minimum LHS	10	1	10	25	10
\$E\$7	Constraint 3 Cooking Minimum LHS	15	1	15	25	15
\$E\$8	Constraint 4 Laundry Minimum LHS	0	1	0	25	0

Objective Cell (Min)

Cell	Name	Original Value	Final Value
\$E\$2 S	SOLUTION Z	0	25

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$B\$2	SOLUTION DRINKING	0	10	Contin
\$C\$2	SOLUTION COOKING	0	15	Contin
\$D\$2	SOLUTION LAUNDRY	0	0	Contin

Cell	Name	Cell Value	Formula	Status	Slack
cen	ivame	cen value	rormula	Status	SIACK
\$E\$5	Constraint 1 Water Allowance LHS	25	\$E\$5<=\$G\$5	Not Binding	25
\$E\$6	Constraint 2 Drinking Minimum LHS	10	\$E\$6>=\$G\$6	Binding	0
\$E\$7	Constraint 3 Cooking Minimum LHS	15	\$E\$7>=\$G\$7	Binding	0
\$E\$8	Constraint 4 Laundry Minimum LHS	0	\$E\$8>=\$G\$9	Binding	0
\$E\$8	Constraint 4 Laundry Minimum LHS	0	\$E\$8>=\$G\$9	Binding	

WATER RESOURCE MANAGEMENT: HOUSEHOLD WATER USAGE

Answer Report Explanation

- The solver found an optimal solution where:
 - Drinking = 10 liters
 - Cooking = 15 liters
 - Laundry = 0 liters
- Total water used (Z) = 25 liters, meaning we minimized usage while meeting basic needs.
- Key takeaway: Drinking and cooking are prioritized over laundry due to constraints.

Sensitivity Report Explanation

- Shadow price for drinking water = 1
- \rightarrow If we increase drinking water by 1 liter, total water usage increases by 1 liter.
- Laundry has a shadow price of 1
- \rightarrow If more water is available, laundry would be the first activity to get extra allocation.
- **▼** Key takeaway: If extra water is available, laundry is the first place it will go.

- If water allowance increases, it will be allocated to laundry first, then cooking, then drinking.
- If we reduce the allowance below 25 liters, drinking or cooking will be negatively affected.
- Key takeaway: If we conserve more water, it should go to laundry first.

Example: Carbon sequestration involves capturing and storing atmospheric carbon dioxide (CO2) to mitigate climate change. Optimizing land allocation and sequestration techniques is crucial for maximizing impact.

Objective: To minimize carbon footprint by maximizing sequestration capacity.

ENVIRONMENTAL IMPACT: CARBON SEQUESTRATION

x1x1 = Acres allocated to afforestation projects

x2x2 = Acres allocated to soil carbon sequestration

x3x3 = Acres allocated to mangrove restoration

Maximize carbon sequestration: Z=s1x1+s2x2+s3x3

Constraints:

Total Land Availability:

x1+x2+x3≤L(Total available land)

Budget Constraint: c1x1+c2x2+c3x3≤Bc1x1+c2x2+c3x3≤B

where c1,c2,c3c1,c2,c3 are costs per acre, and BB is the total budget available.

Non-Negativity and Integer Constraints: x1,x2,x3≥0,x1,x2,x3∈Z.

ENVIRONMENTAL IMPACT: CARBON SEQUESTRATION

Variable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$2	SOLUTION AFFORESTATION	0	0	10	2	0.4
\$C\$2	SOLUTION SOIL CARBON	0	-1	8	1	1E+30
\$D\$2	SOLUTION MANGROVES	1000	0	12	0.5	2

Constraints

Cell	Name	Final Value	Shadow Price	Constraint R.H. Side		Allowable Decrease
\$E\$5	Constraint 1 LAND LHS	1000	2	1000	250	0
\$E\$6	Constraint 2 BUDGET LHS	500000	0.02	500000	0	100000

Objective Cell (Max)

Cell Name		Original Value	Final Value	
\$E\$2 SOLU	JTION Z	0	12000	

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$B\$2	SOLUTION AFFORESTATION	0	0	Contin
\$C\$2	SOLUTION SOIL CARBON	0	0	Contin
\$D\$2	SOLUTION MANGROVES	0	1000	Contin

Cell	Name	Cell Value	Formula	Status	Slack
\$E\$5	Constraint 1 LAND LHS	1000	\$E\$5<=\$G\$5	Binding	0
\$E\$6	Constraint 2 BUDGET LHS	500000	\$E\$6<=\$G\$6	Binding	0

ENVIRONMENTAL IMPACT: CARBON SEQUESTRATION

Answer Report Explanation

- The solver found an optimal solution where:
 - 1000 acres are allocated to mangrove restoration.
 - Afforestation and soil sequestration were not included.
- Total carbon sequestration = 12,000 tons CO_2 .
- Key takeaway: Mangroves provide the best sequestration efficiency.

Sensitivity Report Explanation

- Shadow price for land = 2
- \rightarrow If we increase land by 1 acre, sequestration increases by 2 tons CO₂.
- Afforestation and soil sequestration have reduced costs
- \bullet They are not part of the solution unless sequestration efficiency increases.
- Key takeaway: Mangroves are the best choice. Land expansion would improve carbon capture.

- If land or budget increases, we can expect more sequestration through mangroves first.
- If afforestation sequestration rate improves, it might become viable.
- Wey takeaway: Mangroves should be the focus, but afforestation could become competitive with better technology.

