This exam deals with a database that stores information about ballet dancers, shows, and companies.

Company(<u>name</u>, city, country)
Dancer(<u>did</u>, name, birthyear, country)
Show(<u>sid</u>, title, choreographer, composer, year)
Role(<u>did</u>, <u>sid</u>, <u>role</u>, <u>company</u>)

The underlined attributes are keys for each relation. The tables contain the following information:

- Company stores information about dance companies. The attributes name, city, and country are all strings; we assume for this exam that all companies have unique names.

 Examples: ('Bolshoi', 'Moscow', 'Russia'), ('PNB', 'Seattle', 'USA')
- Dancer stores information about individual dancers. did is a unique integer id for each dancer. name is a string with the dancer's name, birthyear is an integer, and the dancer's native country is a string.

Examples: (101, 'Pavlova', 1881, 'Russia'), (108, 'Korbes', 1981, 'Brazil')

• Show stores information about ballet shows (dances). Each show has a unique integer id sid, string attributes for the show title, choreographer, and composer, and an integer year in which the show was created.

Examples: (205, 'Swan Lake', 'Petipa', 'Tchaikovsky', 1895), (204, 'Apollo', 'Balanchine', 'Stravinsky', 1928);

• Role stores information about which dancers have been in which shows, the name of the role (part) they danced, and the company where they danced that part in that particular show. The dancer and show id's are integers, the role and company names are strings. A dancer may have danced multiple roles in the same show at the same company, or danced the same role in the same show for different companies, and so forth.

Examples: (108, 205, 'Black Swan', 'PNB'), (107, 204, 'Apollo', 'NYCB').

Several attributes in *Role* are foreign keys: *did* references *did* in *Dancer*, *sid* references *sid* in *Show*, and *company* references *name* in *Company*.

For this exam, assume that all data values are not null.

The next page contains some sample data for each of these tables, and this data referenced in one of the later questions. The data may be useful in understanding how the information is stored in the tables.

Answer the questions about this database on the following pages. You may remove this page and the next from the test for reference if that is convenient.

Example data. This data is used in a later question, and may also be useful for understanding the data stored in the tables.

select * fro			country		_	
Ballet Russe	St. Peters Moscow Paris New York Seattle		Russia Russia France USA USA			
select * fro	om Dancer; name	b	irthyear		country	
	Pavlova Legnani Gerdt Ulanova Duncan Dumas Ang Boal Korbes	1 1 1 1 1	881 863 884 910 877 994 965 981		Russia Italy Russia Russia USA USA USA Brazil	
select * fro		C	horeographe	er	composer	year
201 202 203 204 205 206 207	The Swan Cinderella Cinderella Apollo Swan Lake Nutcracker Nutcracker	I Z B P B			Saint-Seans Filinhoff Prokofiev Stravinsky Tchaikovsky Tchaikovsky Tchaikovsky	1893 1940 1928
select * fro	om Role; sid	role		compa	nny	
108 106 107 101 102 103 108 108	204 207 204 201 202 202 205 205 203	Terpsi Warrio Apollo Swan Cinder Prince White Black Cinder	r Mouse ella Swan Swan	NYCB PNB NYCB Balle Imper Imper PNB PNB Bolsh	rial	

Reference Information

This information may be useful during the exam. Feel free to use it or not as you wish. You can remove this page from the exam if that is convenient.

Reference for SQL Syntax

```
Outer Joins
```

The WITH Statement

Note: with is not supported in sqlite, but it is supported SQL Server and in postgres.

```
with T as (select * from R where R.K>10) select * from T where T.K<20
```

Reference for Relational Algebra

Name	Symbol		
Selection	σ		
Projection	π		
Join	M		
Group By	γ		
Set Difference	-		
Duplicate Elimination	δ		

Question 1. (12 points) SQL tables. Write the SQL commands needed to create the *Dancer* and *Role* tables described on page 2. Be sure to include the correct names and types for all attributes, and any key or foreign key constraints. (You do *not* need to give SQL commands to create the other tables – just the ones asked for.)

```
CREATE TABLE Dancer (

did int PRIMARY KEY,

name varchar(20),

birthyear int,

country varchar(20)
);

CREATE TABLE Role (

did int references Dancer,

sid int references Show,

role varchar(20),

company varchar(20) references Company,

PRIMARY KEY(did, sid, role, company)
);
```

Question 2. (40 points) SQL queries. Write SQL queries to retrieve the requested information from the dance database tables described previously. The queries you write must be proper SQL that would be accepted by SQL Server or any other SQL implementation. You should not use incorrect SQL, even if sqlite might produce some sort of answer from the buggy SQL.

(a) (10 points) For every dancer who has performed the role 'Black Swan' in the show 'Swan Lake' for one or more companies, list the name of the dancer and the company name(s), sorted by dancer name. If the dancer has performed that role for more than one company, there should be one line of output for each dancer, company pair. The companies can be listed in any order.

```
SELECT distinct dancer.name, role.company
FROM role, show, dancer
WHERE role.sid = show.sid
  AND role.did = dancer.did
  AND role.role = "Black Swan"
  AND show.title = "Swan Lake"
ORDER BY dancer.name;
```

(b) (10 points) List the dancer ids (did) and names of all dancers who have danced in a show choreographed by 'Fosse' but have not danced in a show choreographed by 'Robbins'. Each did/name pair should only appear once in the output.

(continued next page)

Question 2. (cont.) (c) (10 points) List the dancer ids (did) and names of all dancers born on or before 1950 and who have danced in at least three different shows. If a dancer has danced different roles in the same show, it still only counts once in the total number of shows. Each dancer/did pair should only be listed once.

```
SELECT dancer.did, dancer.name

FROM dancer, role

WHERE dancer.birthyear <= 1950

AND dancer.did = role.did

GROUP BY dancer.did, dancer.name

HAVING count(DISTINCT role.sid) >= 3;
```

(d) (10 points) For every dancer who has danced for one or more companies in a different country than where they were born, list the name of the dancer and the names of those companies.

```
SELECT distinct dancer.name, company.name
FROM dancer, role, company
WHERE dancer.did = role.did
   AND role.company = company.name
   AND company.country <> dancer.country;
```

Question 3. (16 points) Relational algebra, queries, and indexes. Consider the following SQL query:

```
SELECT d.did, d.name, count(*)
FROM dancer d, role r, show s
WHERE d.did=r.did AND r.sid=s.sid AND s.composer='Tchaikovsky'
GROUP BY d.did, d.name;
```

(a) (6 points) Give a relational algebra tree that corresponds to this query.

A different relational algebra tree that produced the correct results would also receive full credit.

(b) (6 points) If we execute this query using the data on page 3, what output is produced?

did	name	count(*)
106	Dumas Ang	1
108	Korbes	2

Question 3. (cont.) (c) (4 points) Here is a list of possible indexes that might be useful in processing the query given in part (a). Pick **up to** *three* indexes that collectively would be most useful in speeding up processing of that query. Assume that there are no existing indexes and that the data in all tables is not clustered. Circle your answers. Hint: There might be more than one possible correct (i.e., "best") answer to this question.

Question 4. (16 points) Relational calculus and datalog. Suppose we want the following information: Give the names of all dancers that have danced with exactly one company.

(a) (8 points) Write this query using relational calculus.

Q(n) =
$$\exists$$
 b, ctry, d. Dancer(d, n, b, ctry) $\land \exists$ s1, r1, c1. Role(d, s1, r1, c1) \land \forall c2. (\exists s2, r2. Role (d, s2, r2, c2) \Rightarrow (c1 = c2))

There are other possible solutions to this and similar questions. Any solution that produces the correct result should receive full credit.

(b) (8 points) Write this query in datalog with negation. (You can use your answer from part (a) to help with this part of the question, but you are not required to do so.)

Companies (d, c) :- Role(d, -, -, c)

MultipleCompanies (d):- Companies(d, c1), Companies(d, c2), c1!= c2

OneCompany (n):- Dancer(d, n, -,-), Companies(d, -), not MultipleCompanies(d)

Question 5. (16 points) Relational calculus and algebra. Suppose we want the following information: List the names of all Companies whose dancers are from only one single country. (Note: this may not be true of any of the Companies in the sample data.) If it matters, you can assume that all Companies in the database have employed at least one dancer.

(a) (8 points) Write this query using relational calculus.

Q(n) =
$$\exists$$
 d, dn, y, ctry, s1, r1 . Role(d, s1, r1, n) \land Dancer(d, dn, y, ctry) \land \forall d2 (\exists r2, s2 . Role(d2, s2, r2, n) \Rightarrow \exists dn2, y2 . Dancer(d2, dn2, y2, ctry))

(b) (8 points) Draw a relational algebra tree for this query. (Hint: your answer to part (a) may be helpful, but you are not required to use it.)

