Wrap up

Time series decomposition

What is Time Series Decomposition?

- Breaking a time series down into components: trend, seasonality, residual
- Additive:

• Multiplicative:

y(t) = trend(t) x seasonal (t) x residual(t)

Why is decomposition useful?

Exploratory data analysis: To answer questions such as "what was the impact of an ad campaign once we account for seasonality?"

Pre-processing: Useful for identifying outliers and can be used to impute outliers and missing data

Feature engineering: Can derive features from the components to use as inputs in machine learning models

Forecasting: Forecast the components and aggregate to produce the final forecast

Decomposition is not always possible

 Not all time series can be easily broken down into components

Classical Decomposition

- 1. Identify order of seasonality T
- 2. Compute trend using moving averages. T-MA (if odd) or 2 x T-MA (if even)
- 3. De-trend the data:
 - 1. If additive: $y_t trend_t$
 - 2. If multiplicative: y_t / $trend_t$
- Average the de-trended data over each seasonal index to remove noise (e.g., for monthly data average all the May months)

Cycle-subseries

Year-Month	Y_detrended
2011-Jan	112
2011-Feb	146
2011-Mar	80
2011-Apr	90
•••	•••

Note relation to classical decomposition for seasonality:

- 1) De-trend original time series
- 2) Average over seasonal index

Month/Year	2011	2012	2013	•••	Mean
Jan	112	134	156	•••	130
Feb	146	145	151	•••	148
Mar	80	85	86	•••	82
Apr	90	93	98	•••	94
					•••

Limitations: Outliers, edges, rapid changes

Limitations: Outliers, edges, rapid changes

LOWESS

Fit a weighted robust linear regression to this subset of the data

LOWESS

• Evaluate the same process across many x values to obtain a smooth fit

Seasonal and Trend Decomposition using LOESS (STL)

Inner loop summary

ITERATE

- 1. De-trend the data: y(t) trend(t). For the first iteration assume trend(t) = 0.
- 2. Extract seasonal(t) using LOESS on a set of time series derived from y_detrend(t) called cycle-subseries.
- 3. Extract trend(t) by subtracting seasonal(t) from y(t) and smoothing using LOESS.

Cycle-subseries

Year-Month	У
2011-Jan	112
2011-Feb	146
2011-Mar	80
2011-Apr	90
•••	•••

Note relation to classical decomposition for seasonality:

- 1) De-trend original time series
- 2) Average over seasonal index

Month/Year	2011	2012	2013	•••	Mean
Jan	112	134	156	•••	130
Feb	146	145	151	•••	148
Mar	80	85	86	•••	82
Apr	90	93	98	•••	94
•••		•••			•••

Cycle-subseries: Classical Decomposition

Cycle-subseries: STL

Example with outliers

Classical decomposition

Time series can have multiple seasonalities

- This time series of electricity demand has daily, weekly, and yearly seasonality.
- In general, as data becomes more granular we start to see more seasonal patterns.
- We want to be able to decompose it into a trend and multiple seasonal components.

$$y_t = \hat{T}_t + \hat{S}_t^{(1)} + \hat{S}_t^{(2)} + \dots + \hat{S}_t^{(N)} + \hat{R}_t$$
Trend Seasonal Residual component component

MSTL: What is it?

- Mutliple Seasonal-Trend decomposition using Loess (MSTL).
- A method to decompose a time series into a trend component, multiple seasonal components, and a residual component by repeatedly applying STL.

$$y_t = \hat{T}_t + \hat{S}_t^{(1)} + \hat{S}_t^{(2)} + \dots + \hat{S}_t^{(N)} + \hat{R}_t$$
Trend Seasonal Residual component component

- MSTL, like STL, assumes the time series can be broken into an additive decomposition.
- Transform the time series (e.g., using Box Cox) if it is not additive.

MSTL: What is it?

What if you have long or many time series?

- LOWESS and STL are slow to compute as they require fitting a regression model and making predictions.
- For long time series it may be faster to use classical decomposition and accept trade off with impact from outliers.
- Alternatively use moving median or other filtering methods for trend extraction.
- Depends on available computational resource and use case.

Regular vs Irregularly spaced time series

- Many methods assume evenly spaced (i.e., regular) time series (e.g., STL).
- Some methods can handle irregularly spaced time series (e.g., LOWESS).
- Many methods assume regular time series.
- Potential solution is to convert the irregularly timeseries into a regular one (e.g., through aggregating).

Summary

Time series can be decomposed into components: Trend, Seasonal, and Residual.

Classical decomposition using moving averages, LOWESS, and STL are useful methods to decompose a time series.

Decomposition is used in multiple ways including EDA, feature engineering, preprocessing, and forecasting.