LOGIC AND DISCRETE MATHEMATICS FOR COMPUTER SCIENTISTS

James Caldwell

Department of Computer Science University of Wyoming Laramie, Wyoming

Draft of September 4, 2010

© James Caldwell 1 2007 ALL RIGHTS RESERVED

¹This material is based upon work partially supported by the National Science Foundation under Grant No. 9985239. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Contents

1	Syn	tax and Semantics*
	1.1	Introduction
	1.2	Formal Languages
	1.3	Syntax
		1.3.1 Concrete vs. Abstract Syntax
		1.3.2 Some examples of Syntax
		1.3.3 Definitions
	1.4	Semantics
		1.4.1 Definition by Recursion
	1.5	Possibilities for Implementation
Ι	Lo	m gic 17
2	Pro	positional Logic 21
	2.1	Syntax of Propositional Logic
		2.1.1 Definitions
	2.2	Semantics
		2.2.1 Truth Table Semantics
		2.2.2 Assignments and Valuations
	2.3	Sequents
		2.3.1 Semantics of Sequents
	2.4	Sequent Schemas, Substitutions and Matching
	2.5	Propositional Proof Rules
		2.5.1 Axiom Rules
		2.5.2 Conjunction Rules
		2.5.3 Disjunction Rules
		2.5.4 Implication Rules
		2.5.5 Negation Rules
	2.6	Proofs
	2.7	Some Useful Tautologies
	2.8	Complete Sets of Connectives

ii CONTENTS

3	Boo	lean A	lgebra*	41
S			ar Arithmetic	41
	3.2	Transla	ation from Propositional Logic	43
		3.2.1	Falsity	43
		3.2.2	Variables	43
		3.2.3	Conjunction	43
		3.2.4	Negation	44
		3.2.5	Exclusive-Or	44
		3.2.6	Disjunction	44
		3.2.7	Implication	45
	3.3	· · · · ·	nal Translation	46
	3.4			46
	3.4	notes		40
4	\mathbf{Pre}	dicate	Logic	47
	4.1	Predica	ates	47
	4.2	The Sy	vntax of Predicate Logic	49
		4.2.1	Variables	49
		4.2.2	Terms	49
		4.2.3	Formulas	50
	4.3	Substit	tution	53
		4.3.1	Bindings and Variable Occurrences	53
		4.3.2	Free Variables	55
		4.3.3	Capture Avoiding Substitution*	57
	4.4	Proofs	1	58
	1.1	4.4.1	Proof Rules for Quantifiers	58
		4.4.2	Universal Quantifier Rules	58
		4.4.3	Existential Quantifier Rules	59
		4.4.4	Some Proofs	60
		4.4.5	Translating Sequent Proofs into English	
		4.4.0	Translating Sequent Froois into English	02
		_		
II	S	ets, Ro	elations and Functions	6 9
5	Set	Theory	y	71
	5.1	Introdu	uction	72
		5.1.1	Informal Notation	72
			Membership is primitive	72
	5.2		ty and Subsets	73
		5.2.1	Extensionality	73
		5.2.2	Subsets	74
	5.3		nstructors	75
		5.3.1	The Empty Set	75
		5.3.2	Unordered Pairs and Singletons	77
		5.3.2	Ordered Pairs	80
		5.3.4	Set Union	82
		5.3.4 $5.3.5$	Set Intersection	83

CONTENTS	iii
CONTENTS	iii
CONTENTS	111

6.1 Introduction 91 6.2 Relations 92 6.2.1 Binary Relations 92 6.2.2 n-ary Relations 93 6.2.3 Some Particular Relations 93 6.3 Operations on Relations 94 6.3.1 Inverse 94 6.3.2 Complement of a Relation 95 6.3.3 Composition of Relations 95 6.4 Properties of Relations 98 6.4.1 Reflexivity 99 6.4.2 Irreflexivity 99 6.4.3 Symmetry 99 6.4.4 Antisymmetry 100 6.4.5 Asymmetry 100 6.4.6 Transitivity 100 6.4.7 Connectedness 100 6.5 Closures 100 6.6 Properties of Operations on Relations 103					
5.3.8 Set Difference 86 5.3.9 Cartesian Products and Tuples 87 5.4 Properties of Operations on Sets 88 5.4.1 Idempotency 88 5.4.2 Monotonicity 89 5.4.3 Commutativity 89 5.4.4 Associativity 89 5.4.5 Distributivity 90 6 Relations 91 6.1 Introduction 91 6.2 Relations 92 6.2.1 Binary Relations 92 6.2.2 n-ary Relations 93 6.2.3 Some Particular Relations 93 6.3 Operations on Relations 94 6.3.1 Inverse 94 6.3.2 Complement of a Relation 95 6.4 Properties of Relations 95 6.4 Properties of Relations 98 6.4.1 Reflexivity 99 6.4.2 Irreflexivity 99 6.4.3 Symmetry 100 6.4.5 Asymmetry <td< td=""><td></td><td></td><td></td><td></td><td>-</td></td<>					-
5.3.9 Cartesian Products and Tuples 87 5.4 Properties of Operations on Sets 88 5.4.1 Idempotency 88 5.4.2 Monotonicity 89 5.4.3 Commutativity 89 5.4.4 Associativity 89 5.4.5 Distributivity 90 6 Relations 91 6.1 Introduction 91 6.2 Relations 92 6.2.1 Binary Relations 92 6.2.2 n-ary Relations 93 6.2.3 Some Particular Relations 93 6.3.1 Inverse 94 6.3.2 Complement of a Relation 95 6.3.3 Composition of Relations 95 6.4 Properties of Relations 95 6.4.1 Reflexivity 99 6.4.2 Irreflexivity 99 6.4.3 Symmetry 99 6.4.4 Antisymmetry 100 6.4.5 Asymmetry 100 6.4.6 Transitivity 100 6.4.7 Connectedness 100 6.5 Closures 100 6.6 Properties of Operations on Relations 103 7 Equivalence and Order 105 7.1					-
5.4 Properties of Operations on Sets 88 5.4.1 Idempotency 88 5.4.2 Monotonicity 89 5.4.3 Commutativity 89 5.4.4 Associativity 99 6 Relations 91 6.1 Introduction 91 6.2 Relations 92 6.2.1 Binary Relations 92 6.2.2 n-ary Relations 93 6.3.3 Some Particular Relations 93 6.3.3 Operations on Relations 94 6.3.1 Inverse 94 6.3.2 Complement of a Relation 95 6.3.3 Composition of Relations 95 6.4 Properties of Relations 98 6.4.1 Reflexivity 99 6.4.2 Irreflexivity 99 6.4.3 Symmetry 99 6.4.4 Antisymmetry 100 6.4.5 Asymmetry 100 6.4.6 Transitivity 100 6.4.7 Connectedness 100 6.5 Closures 100 6.6 Properties of Operations on Relations 103 7 Equivalence and Order 105 7.1.1 Equivalence Classes 106 7.1					
5.4.1 Idempotency 88 5.4.2 Monotonicity 89 5.4.3 Commutativity 89 5.4.4 Associativity 90 6 Relations 90 6.1 Introduction 91 6.2 Relations 92 6.2.1 Binary Relations 92 6.2.2 n-ary Relations 93 6.2.3 Some Particular Relations 93 6.3 Operations on Relations 94 6.3.1 Inverse 94 6.3.2 Complement of a Relation 95 6.3 Composition of Relations 95 6.4 Properties of Relations 98 6.4.1 Reflexivity 99 6.4.2 Irreflexivity 99 6.4.3 Symmetry 99 6.4.4 Antisymmetry 100 6.4.5 Asymmetry 100 6.4.6 Transitivity 100 6.4.7 Connectedness 100 6.5 Closures 100 6.6 Properties of Operations on Relations 103 7 Equivalence and Order 105 7.1.1 Equivalence Classes 106 7.1.2 The Quotient Construction* 107 7.1.4 Part				-	
5.4.2 Monotonicity 89 5.4.3 Commutativity 89 5.4.4 Associativity 90 6 Relations 90 6.1 Introduction 91 6.2 Relations 92 6.2.1 Binary Relations 92 6.2.2 n-ary Relations 93 6.2.3 Some Particular Relations 93 6.3 Operations on Relations 94 6.3.1 Inverse 94 6.3.2 Complement of a Relation 95 6.3.3 Composition of Relations 95 6.4 Properties of Relations 98 6.4.1 Reflexivity 99 6.4.2 Irreflexivity 99 6.4.3 Symmetry 100 6.4.5 Asymmetry 100 6.4.5 Asymmetry 100 6.4.6 Transitivity 100 6.4.7 Connectedness 100 6.5 Closures 100 6.6 Properties of Operations on Relations 103 </td <td></td> <td>5.4</td> <td>-</td> <td>-</td> <td></td>		5.4	-	-	
5.4.3 Commutativity 89 5.4.4 Associativity 90 6 Lations 90 6 Relations 91 6.1 Introduction 91 6.2 Relations 92 6.2.1 Binary Relations 92 6.2.2 n-ary Relations 93 6.2.3 Some Particular Relations 93 6.3.3 Coperations on Relations 94 6.3.1 Inverse 94 6.3.2 Complement of a Relation 95 6.3.3 Composition of Relations 95 6.4 Properties of Relations 98 6.4.1 Reflexivity 99 6.4.2 Irreflexivity 99 6.4.3 Symmetry 99 6.4.4 Antisymmetry 100 6.4.5 Asymmetry 100 6.4.6 Transitivity 100 6.4.7 Connectedness 100 6.5 Closures 100 6.6 Properties of Operations on Relations 105			5.4.1	Idempotency	88
5.4.4 Associativity 89 5.4.5 Distributivity 90 6 Relations 91 6.1 Introduction 91 6.2 Relations 92 6.2.1 Binary Relations 92 6.2.2 n-ary Relations 93 6.2.3 Some Particular Relations 93 6.3 Operations on Relations 94 6.3.1 Inverse 94 6.3.2 Complement of a Relation 95 6.3.3 Composition of Relations 95 6.4 Properties of Relations 98 6.4.1 Reflexivity 99 6.4.2 Irreflexivity 99 6.4.3 Symmetry 99 6.4.4 Antisymmetry 100 6.4.5 Asymmetry 100 6.4.6 Transitivity 100 6.5 Closures 100 6.5 Closures of Operations on Relations 103 7 Equivalence and Order 105 7.1.1 Equivalence Classes 106 7.1.2 The Quotient Construction* 107 7.1.4 Partitions 108 7.1.5 Congruence Relations* 111 7.2.1 Partial Orders 111 <td></td> <td></td> <td>5.4.2</td> <td>Monotonicity</td> <td>89</td>			5.4.2	Monotonicity	89
5.4.5 Distributivity 90 6 Relations 91 6.1 Introduction 91 6.2 Relations 92 6.2.1 Binary Relations 92 6.2.2 n-ary Relations 93 6.2.3 Some Particular Relations 93 6.3 Operations on Relations 94 6.3.1 Inverse 94 6.3.2 Complement of a Relation 95 6.3.3 Composition of Relations 95 6.4 Properties of Relations 98 6.4.1 Reflexivity 99 6.4.2 Irreflexivity 99 6.4.3 Symmetry 99 6.4.4 Antisymmetry 100 6.4.5 Asymmetry 100 6.4.6 Transitivity 100 6.5 Closures 100 6.6 Properties of Operations on Relations 103 7 Equivalence and Order 105 7.1.1 Equivalence Classes 106 7.1.2 The Quotient Construction* 107 7.1.3 Q is a Quotient 107 7.1.4 Partitions 108 7.1.5 Congruence Relations* 110 7.2.1 Partial Orders 111			5.4.3	Commutativity	89
6 Relations 91 6.1 Introduction 91 6.2 Relations 92 6.2.1 Binary Relations 92 6.2.2 n-ary Relations 93 6.2.3 Some Particular Relations 93 6.3 Operations on Relations 94 6.3.1 Inverse 94 6.3.2 Complement of a Relation 95 6.3.3 Composition of Relations 95 6.4 Properties of Relations 98 6.4.1 Reflexivity 99 6.4.2 Irreflexivity 99 6.4.3 Symmetry 99 6.4.4 Antisymmetry 100 6.4.5 Asymmetry 100 6.4.6 Transitivity 100 6.4.6 Transitivity 100 6.5 Closures 100 6.5 Closures 100 6.6 Properties of Operations on Relations 103 7 Equivalence and Order 105 7.1.1 Equivalence Relations 105 7.1.1 Equivalence Relations 105 7.1.1 Equivalence Classes 106 7.1.2 The Quotient Construction* 107 7.1.3 ℚ is a Quotient 107 7.1.4 Partitions 108 7.1.5 Congruence Relations* 110 7.2 Order Relations 111 7.2.1 Partial Orders 111			5.4.4	Associativity	89
6.1 Introduction 91 6.2 Relations 92 6.2.1 Binary Relations 92 6.2.2 n-ary Relations 93 6.2.3 Some Particular Relations 93 6.3 Operations on Relations 94 6.3.1 Inverse 94 6.3.2 Complement of a Relation 95 6.3.3 Composition of Relations 95 6.4 Properties of Relations 98 6.4.1 Reflexivity 99 6.4.2 Irreflexivity 99 6.4.3 Symmetry 99 6.4.4 Antisymmetry 100 6.4.5 Asymmetry 100 6.4.6 Transitivity 100 6.4.7 Connectedness 100 6.5 Closures 100 6.6 Properties of Operations on Relations 103 7 Equivalence and Order 105 7.1.1 Equivalence Classes 106 7.1.2 The Quotient Construction* 107 7.1.3 Q is a Quotient 107 7.1.4 Partitions 108 7.1.5 Congruence Relations* 111 7.2.1 Partial Orders 111			5.4.5	Distributivity	90
6.2 Relations 92 6.2.1 Binary Relations 92 6.2.2 n-ary Relations 93 6.2.3 Some Particular Relations 93 6.3 Operations on Relations 94 6.3.1 Inverse 94 6.3.2 Complement of a Relation 95 6.3.3 Composition of Relations 95 6.4 Properties of Relations 98 6.4.1 Reflexivity 99 6.4.2 Irreflexivity 99 6.4.3 Symmetry 99 6.4.4 Antisymmetry 100 6.4.5 Asymmetry 100 6.4.6 Transitivity 100 6.4.7 Connectedness 100 6.5 Closures 100 6.6 Properties of Operations on Relations 103 7 Equivalence and Order 105 7.1.1 Equivalence Classes 106 7.1.2 The Quotient Construction* 107 7.1.3 Q is a Quotient 107 7.1.4 Partitions 108 7.1.5 Congruence Relations* 111 7.2.1 Partial Orders 111	6	Rela	ations		91
6.2.1 Binary Relations 92 6.2.2 n-ary Relations 93 6.2.3 Some Particular Relations 93 6.3 Operations on Relations 94 6.3.1 Inverse 94 6.3.2 Complement of a Relation 95 6.3.3 Composition of Relations 95 6.4 Properties of Relations 98 6.4.1 Reflexivity 99 6.4.2 Irreflexivity 99 6.4.3 Symmetry 99 6.4.4 Antisymmetry 100 6.4.5 Asymmetry 100 6.4.6 Transitivity 100 6.4.7 Connectedness 100 6.5 Closures 100 6.6 Properties of Operations on Relations 103 7 Equivalence and Order 105 7.1 Equivalence Relations 105 7.1.1 Equivalence Classes 106 7.1.2 The Quotient Construction* 107 7.1.4 Partitions 108 7.1.5 Congruence Relations* 110 7.2 Order Relations 111 7.2.1 Partial Orders 111		6.1	Introd	uction	91
6.2.2 n-ary Relations 93 $6.2.3$ Some Particular Relations 93 6.3 Operations on Relations 94 $6.3.1$ Inverse 94 $6.3.2$ Complement of a Relation 95 $6.3.3$ Composition of Relations 95 6.4 Properties of Relations 98 $6.4.1$ Reflexivity 99 $6.4.2$ Irreflexivity 99 $6.4.3$ Symmetry 99 $6.4.4$ Antisymmetry 100 $6.4.5$ Asymmetry 100 $6.4.6$ Transitivity 100 $6.4.7$ Connectedness 100 6.5 Closures 105 7.1 Equivalence and Order 105 $7.1.1$ Equivalence Classes 106 $7.1.2$ The Quotient Construction* 107 $7.1.4$ Partitions 108 $7.1.5$		6.2	Relatio	ons	92
6.2.2 n-ary Relations 93 $6.2.3$ Some Particular Relations 93 6.3 Operations on Relations 94 $6.3.1$ Inverse 94 $6.3.2$ Complement of a Relation 95 $6.3.3$ Composition of Relations 95 6.4 Properties of Relations 98 $6.4.1$ Reflexivity 99 $6.4.2$ Irreflexivity 99 $6.4.3$ Symmetry 99 $6.4.4$ Antisymmetry 100 $6.4.5$ Asymmetry 100 $6.4.6$ Transitivity 100 $6.4.7$ Connectedness 100 6.5 Closures 105 7.1 Equivalence and Order 105 $7.1.1$ Equivalence Classes 106 $7.1.2$ The Quotient Construction* 107 $7.1.4$ Partitions 108 $7.1.5$			6.2.1	Binary Relations	92
6.2.3 Some Particular Relations 93 6.3 Operations on Relations 94 $6.3.1$ Inverse 94 $6.3.2$ Complement of a Relation 95 $6.3.3$ Composition of Relations 95 6.4 Properties of Relations 98 $6.4.1$ Reflexivity 99 $6.4.2$ Irreflexivity 99 $6.4.3$ Symmetry 99 $6.4.4$ Antisymmetry 100 $6.4.5$ Asymmetry 100 $6.4.6$ Transitivity 100 $6.4.7$ Connectedness 100 6.5 Closures 100 6.6 Properties of Operations on Relations 103 Fequivalence and Order 105 7.1 Equivalence Classes 106 $7.1.1$ Equivalence Classes 106 $7.1.2$ The Quotient Construction* 107 $7.1.3$ Q is a Quotient 107 $7.1.4$ Partitions 108 $7.1.5$ Congruence Relations* 110 7.2 Order Relations 111 $7.2.1$ Partial Orders 111			6.2.2	*	93
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			6.2.3	·	93
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6.3	Operat		94
6.3.3 Composition of Relations 95 6.4 Properties of Relations 98 6.4.1 Reflexivity 99 6.4.2 Irreflexivity 99 6.4.3 Symmetry 99 6.4.4 Antisymmetry 100 6.4.5 Asymmetry 100 6.4.6 Transitivity 100 6.5 Closures 100 6.5 Properties of Operations on Relations 103 7 Equivalence and Order 105 7.1 Equivalence Relations 105 7.1.1 Equivalence Classes 106 7.1.2 The Quotient Construction* 107 7.1.3 \mathbb{Q} is a Quotient 107 7.1.4 Partitions 108 7.1.5 Congruence Relations* 110 7.2 Order Relations 111 7.2.1 Partial Orders 111			6.3.1	Inverse	94
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			6.3.2	Complement of a Relation	95
6.4 Properties of Relations 98 6.4.1 Reflexivity 99 6.4.2 Irreflexivity 99 6.4.3 Symmetry 99 6.4.4 Antisymmetry 100 6.4.5 Asymmetry 100 6.4.6 Transitivity 100 6.4.7 Connectedness 100 6.5 Closures 100 6.6 Properties of Operations on Relations 103 7 Equivalence and Order 105 7.1 Equivalence Relations 106 7.1.1 Equivalence Classes 106 7.1.2 The Quotient Construction* 107 7.1.3 Q is a Quotient 107 7.1.4 Partitions 108 7.1.5 Congruence Relations* 110 7.2 Order Relations 111 7.2.1 Partial Orders 111			6.3.3		95
$6.4.2$ Irreflexivity 99 $6.4.3$ Symmetry 99 $6.4.4$ Antisymmetry 100 $6.4.5$ Asymmetry 100 $6.4.6$ Transitivity 100 $6.4.7$ Connectedness 100 6.5 Closures 100 6.6 Properties of Operations on Relations 103 7 Equivalence and Order 105 7.1 Equivalence Relations 105 $7.1.1$ Equivalence Classes 106 $7.1.2$ The Quotient Construction* 107 $7.1.3$ $\mathbb Q$ is a Quotient 107 $7.1.4$ Partitions 108 $7.1.5$ Congruence Relations* 110 7.2 Order Relations 111 $7.2.1$ Partial Orders 111		6.4	Proper	-	98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			6.4.1	Reflexivity	99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			6.4.2	Irreflexivity	99
6.4.5 Asymmetry 100 6.4.6 Transitivity 100 6.4.7 Connectedness 100 6.5 Closures 100 6.6 Properties of Operations on Relations 103 7 Equivalence and Order 105 7.1 Equivalence Relations 105 7.1.1 Equivalence Classes 106 7.1.2 The Quotient Construction* 107 7.1.3 Q is a Quotient 107 7.1.4 Partitions 108 7.1.5 Congruence Relations* 110 7.2 Order Relations 111 7.2.1 Partial Orders 111			6.4.3	Symmetry	99
$6.4.6$ Transitivity 100 $6.4.7$ Connectedness 100 6.5 Closures 100 6.6 Properties of Operations on Relations 103 7 Equivalence and Order 105 7.1 Equivalence Relations 105 $7.1.1$ Equivalence Classes 106 $7.1.2$ The Quotient Construction* 107 $7.1.3$ \mathbb{Q} is a Quotient 107 $7.1.4$ Partitions 108 $7.1.5$ Congruence Relations* 110 7.2 Order Relations 111 $7.2.1$ Partial Orders 111			6.4.4	Antisymmetry	100
6.4.7 Connectedness 100 6.5 Closures 100 6.6 Properties of Operations on Relations 103 7 Equivalence and Order 105 7.1 Equivalence Relations 105 7.1.1 Equivalence Classes 106 7.1.2 The Quotient Construction* 107 7.1.3 Q is a Quotient 107 7.1.4 Partitions 108 7.1.5 Congruence Relations* 110 7.2 Order Relations 111 7.2.1 Partial Orders 111			6.4.5	Asymmetry	100
6.4.7 Connectedness 100 6.5 Closures 100 6.6 Properties of Operations on Relations 103 7 Equivalence and Order 105 7.1 Equivalence Relations 105 7.1.1 Equivalence Classes 106 7.1.2 The Quotient Construction* 107 7.1.3 Q is a Quotient 107 7.1.4 Partitions 108 7.1.5 Congruence Relations* 110 7.2 Order Relations 111 7.2.1 Partial Orders 111			6.4.6	Transitivity	100
6.6 Properties of Operations on Relations 103 7 Equivalence and Order 105 7.1 Equivalence Relations 105 7.1.1 Equivalence Classes 106 7.1.2 The Quotient Construction* 107 7.1.3 Q is a Quotient 107 7.1.4 Partitions 108 7.1.5 Congruence Relations* 110 7.2 Order Relations 111 7.2.1 Partial Orders 111			6.4.7		100
7 Equivalence and Order 105 7.1 Equivalence Relations 105 7.1.1 Equivalence Classes 106 7.1.2 The Quotient Construction* 107 7.1.3 Q is a Quotient 107 7.1.4 Partitions 108 7.1.5 Congruence Relations* 110 7.2 Order Relations 111 7.2.1 Partial Orders 111		6.5	Closur	es	100
7.1 Equivalence Relations 105 7.1.1 Equivalence Classes 106 7.1.2 The Quotient Construction* 107 7.1.3 Q is a Quotient 107 7.1.4 Partitions 108 7.1.5 Congruence Relations* 110 7.2 Order Relations 111 7.2.1 Partial Orders 111		6.6	Proper	rties of Operations on Relations	103
7.1 Equivalence Relations 105 7.1.1 Equivalence Classes 106 7.1.2 The Quotient Construction* 107 7.1.3 Q is a Quotient 107 7.1.4 Partitions 108 7.1.5 Congruence Relations* 110 7.2 Order Relations 111 7.2.1 Partial Orders 111	7	Eau	ivalenc	ce and Order	105
7.1.1 Equivalence Classes 106 7.1.2 The Quotient Construction* 107 7.1.3 Q is a Quotient 107 7.1.4 Partitions 108 7.1.5 Congruence Relations* 110 7.2 Order Relations 111 7.2.1 Partial Orders 111		_			
7.1.2 The Quotient Construction* 107 7.1.3 \mathbb{Q} is a Quotient 107 7.1.4 Partitions 108 7.1.5 Congruence Relations* 110 7.2 Order Relations 111 7.2.1 Partial Orders 111					106
7.1.3 Q is a Quotient 107 7.1.4 Partitions 108 7.1.5 Congruence Relations* 110 7.2 Order Relations 111 7.2.1 Partial Orders 111			7.1.2	-	
7.1.4 Partitions 108 7.1.5 Congruence Relations* 110 7.2 Order Relations 111 7.2.1 Partial Orders 111				•	
7.1.5 Congruence Relations* 110 7.2 Order Relations 111 7.2.1 Partial Orders 111				•	
7.2 Order Relations					110
7.2.1 Partial Orders		7.2		-	-
			7.2.2	Products and Sums of Orders	113

iv CONTENTS

8	Fun	ctions	115
	8.1	Functions	115
	8.2	Extensionality (equivalence for functions)	116
	8.3	Operations on functions	117
		8.3.1 Restrictions and Extensions	117
		8.3.2 Composition of Functions	117
		8.3.3 Inverse	
	8.4	Properties of Functions	
		8.4.1 Injections	
		8.4.2 Surjections	
		8.4.3 Bijections	
	8.5	Exercises	
•	C		105
9		dinality and Counting	127
	9.1	Cardinality	
	9.2	Infinite Sets	
	9.3	Finite Sets	
		9.3.1 Permutations	
	9.4	Cantor's Theorem	
	9.5	Countable and Uncountable Sets	
	9.6	Counting	
		9.6.1 The Pigeonhole Principle	134
II	I I	Induction and Recursion	135
10	Nat.	ural Numbers	139
		Peano Axioms	
		Definition by Recursion	
		Mathematical Induction	
	10.0	10.3.1 An informal justification for the principle	
		10.3.2 A sequent style proof rule	
		10.3.3 Some First Inductive Proofs	
	10.4	Properties of the Arithmetic Operators	
	10.4	10.4.1 Order Properties	
		10.4.2 Iterated Sums and Products	
		10.4.3 Applications	
	10.5	Complete Induction	
	10.5	10.5.1 Applications	
		10.5.1 Applications	190
11	List	\mathbf{s}	159
	11.1		1 50
		Lists	159
		Lists	
	11.2		160

CONTENTS v

vi CONTENTS

Preface

Discrete mathematics is a required course in the undergraduate Computer Science curriculum. In a perhaps unsympathetic view, the standard presentations (and there are many)the material in the course is treated as a discrete collection of so many techniques that the students must master for further studies in Computer Science. Our philosophy, and the one embodied in this book is different. Of course the development of the students abilities to do logic and proofs, to know about naive set theory, relations, functions, graphs, inductively defined structures, definitions by recursion on inductively defined structures and elementary combinatorics is important. But we believe that rather than so many assorted topics and techniques to be learned, the course can flow continuously as a single narrative, each topic linked by a formal presentation building on previous topics. We believe that Discrete Mathematics is perhaps the most intellectually exciting and potentially one of the most interesting courses in the computer science curriculum. Rather than a simply viewing the course as a necessary tool for further, and perhaps more interesting developments to come later, we believe it is the place in the curriculum that an appreciation of the deep ideas of computer science can be presented; the relation between syntax and semantics, how it is that unbounded structures can be defined finitely and how to reason about those structure and how to calculate with them.

Most texts, following perhaps standard mathematical practice, attempt to minimize the formalism, assuming that a students intuition will guide them through to the end, often avoiding proofs in favor of examples ² Mathematical intuition is an entirely variable personal attribute, and even individuals with significant talents can be misguided by intuition. This is shown over and over in the history of mathematics; the history of the characterization of infinity is a prime example, but many others exist like the Tarski-Banach paradox [?]. We do not argue that intuition should be banished from teaching mathematics but instead that the discrete mathematics course is a place in the curriculum to cultivate the idea, useful in higher mathematics and in computer science, that formalism is trustworthy and can be used to verify intuition.

Indeed, we believe, contrary to the common conception, that rather than making the material more opaque, a formal presentation gives the students a way to understand the material in a deeper and more satisfying way. The fact that formal objects can be easily represented in ways that they can be consumed by computers lends a concreteness to the ideas presented in the course. The fact that formal proofs can be sometimes be found by a machine and can aways be checked by a machine give an absolute criteria for what counts as a proof; in our experience, this unambiguous nature of of formal proofs is a comfort to students trying to decide if they've achieved a proof or not. Once the formal criteria for proof has been assimilated, it is entirely appropriate to relax the rigid idea of a proof as a machine checkable structure and to allow more simply

²As an example we cite the pigeonhole principle which is not proved in any discrete mathematics text we know of but which is motivated by example. The proof is elementary once the ideas of injection, surjection and one-to-one mappings have been presented.

CONTENTS vii

rigorous but informal proofs to be presented.

The formal approach to the presentation of material has, we believe, a number of significant advantages, especially for Computer Science students, but also, for more traditional math students who might find their way into the course.

In mathematics departments proofs are typically learned by students through a process of osmosis. Asked to give a proof, students hand in what they might believe is a proof and the professor, as oracle, will either accept it or reject it. If he rejects it he may point out that a particular part of the purported proof is too vague, or that all cases have not been considered or he might identify some other flaw. In any case, the criteria for what counts as a proof is a vague one, students are left in doubt as to what a proof actually is and what might count as one. We are convinced that this process, of learning by example only works for students who have some innate ability to understand the distinctions being made by repeated exposure to examples. But these distinctions are rarely made explicit. Indeed, the successful student must essentially reconstruct for himself a model of proof that has already been completely developed in explicit detail by logicians starting with Frege. Most mathematicians would agree that, in principle, proofs can be formalized – of course this was Hilbert's attempt to answer the paradoxes. But mathematicians, unlike logicians, do not teach proofs in this way because that is not the way they do them in practice.

For computer scientists and software engineers, formalism is their daily bread. Logic is the mathematical basis of computation as calculus and differential equations are the mathematical basis of engineering physical systems. Programs are formal syntactic objects. Computation, whether based on an abstract model; like a Turing machine, the lambda calculus, or register transfer machines; or based on a more realistic model like the Java virtual machine; is a formal manipulation governed by formal rules. We believe that a formal presentation of discrete mathematics is the best (and perhaps earliest) point in the curriculum to make the distinction between syntax and semantics explicit and to make proofs something that all students can learn to do, not only those students who have some natural talent for making such arguments. Also, recursion is the computational dual of induction and students unable to learn how to do inductive proofs are unlikely to be able to consistently and successfully write recursive procedures or to understand the reasons recursion works.

Of course this approach is not new. Dijkstra, Hoare and a hoard of other computer scientists have argued for such an approach. Dijkstra's famous comment "To suggest that computer science is the study of computers is like suggesting that astronomy is the study of the telescope." captures the idea. Following Dijkstra's perhaps radical views, Robert Boyer at the University of Texas at Austin has proposed a Computer Science curriculum entirely based on formalism and relegates the actual use of computers only to later course in the curriculum. We may never know the results of such a radical approach to computer science education because no institution may ever be in a position to carry out such an experiment, but certainly, within the context of the discrete mathematics course such an approach is not radical. And yet, a survey of the most popular texts reveals that it is rarely approached in his way.

viii CONTENTS

The text which closely embodies the approach taken here may be Gries and Schneider's [22]. Gries and Schneider developed an equational approach to logic based principally on the connectives for bi-equivalence and exclusive-or. Our approach differs in that we use a standard form of proofs based on Gentzen's sequent calculus [19].

Another text that is close in style to this one is *The Haskell ROad to Logic*, *Maths and Programming'* by Doets and van Eijck [9]. In that text, they use the functional programming language Haskell as a computational basis for much of the text and present proofs in an informal natural deduction style.

Manna an Waldinger's text *The Logical Basis for Computer Programming* [37] is an excellent presentation of the material presented here and much more. Unfortunately, that two volume work is not out of print.

As computer scientists we care about the reasons we can make a claim about a computational artifact; among these artifacts we include: algorithms, data-structures, programs, systems, and models of systems. Proofs are the means to this end. Proofs tell us why something is true rather than just telling us whether it is true or not. The ability to make such arguments is crucial to the endeavor of the computer scientist and the software engineer. To specify how a computational artifact is supposed to behave requires logic. To be able to prove that a computational artifact has some property, for other than the most trivial properties, requires a proof. As computer scientists and software engineers we must take responsibility for the things we build, to do so requires more than that we simply build them, we must be able to make arguments for their correctness.

Proofs have another advantage; failed proofs of false conjectures usually reveal something about why the conjecture is not true. Proofs in computer science are often not deep, but can be extraordinarily detailed. In this course we learn most of the mathematical structures and proof techniques required to verify properties about computational artifacts. Students who practice with the techniques presented here and will find applications in most aspects of designing, building and testing computational artifacts.

Prerequisites for this course typically include a semester of calculus and at least two semesters of programming. From programming, we assume students know at least one programming language and may have been exposed to two, though we do not assume they are experts. There is no programming in the course as taught at Wyoming, but exposure to these ideas is important. Based on their exposure to a programming language, we assume students have had some experience implementing algorithms, and preferably have had some exposure to a inductively defined data-type, like lists or trees, although that experience may not have emphasized the inductive nature of those types, e.g. they may have been more focused on the mechanics of manipulating pointers if their language is C++. Mathematically, we assume students are already familiar with notations for set membership $(x \in A)$, explicit enumeration of sets (e.g. finite enumerations of the form $\{a,b,c,d\}$ and infinite enumerations of the form $\{0,2,4,\cdots\}$). We also assume that a student has seen notation for functions $(f:A \to B)$ specifying that f is a function from A to B. Of course all the

CONTENTS ix

mathematical prerequisites just mentioned are represented here in some detail in the appropriate chapters.

These notes do not attempt to systematically build the mathematical structures and methods studied here from some absolute or minimal foundation. We certainly attempt to explain things the first time they appear, but often, complex ideas, like the inductive structure of syntax for example, are introduced before a full and precise account can be given. We believe that repeatedly seeing the same methods and constructs a number of times throughout the course and in a number of different guises is the best path to the students learning.

Acknowldegements: Thanks go to Eric Berg, Andrew Blair, John Dumkee, Devan Wagner and other anonymous students in COSC 2300 at the University of Wyoming for being careful readers and for providing feedback on the text. John Cowles has also provided useful comments and has pointed out a couple of real howlers. Of course, all remaining errors in the text are my own.

x CONTENTS

Chapter 1

Syntax and Semantics*

In this section we give a brief overview of syntax and semantics. We describe, without delving to deeply into the details, how to specify abstract syntax using grammars, we will see a mathematical justification of these ideas in the chapter presenting inductively defined sets. We also present simple examples of semantics and recursive functions defined on the abstract syntax in this chapter. A detailed account of the material presented in this chapter would draw heavily on material presented later in these lectures; indeed, we are starting the lectures with an application of discrete mathematics as used in computer science; the interpretation of inductively defined syntax by semantic functions.

1.1 Introduction

Syntax has to do with form and semantics has to do with meaning. Syntax is described by specifying a set of structured terms while semantics associates a meaning to the structured terms. In and of itself syntax does not have meaning, only structure. Only after a semantic interpretation has been specified for the syntax do the structured terms acquire meaning. Of course, good syntax suggests the intended meaning in a way that allows us see though it to the intended meaning but it is an essential aspect of the formal approach, based on the separation of syntax and semantics, that we do not attach these meanings until they have been specified.

The syntax/semantics distinction is fundamental in Computer Science and goes back to the very beginning of the field. Abstractly, computation is the manipulation of formal (syntactic) representation of objects ¹

For example, when compiling a program in written some language (say C++) the compiler first checks the syntax to verify that the program is in the language. If not, a syntax error is indicated. However, a program that is accepted by the

¹The abstract characterization of computation as the manipulation of syntax, was first given by logicians in the 1930's who were the first to try to describe what we mean by the word "algorithm".

compiler is not necessarily correct, to tell if the program is correct we must consider the semantics of the language. One reasonable semantics for programs is its execution. Just because a program is in the language (*i.e.* the compiler produces an executable output) does not guarantee the correctness of the program (*i.e.* that the program means the right thing) with regard to the intended computation.

1.2 Formal Languages

Mathematically, a *formal language* is a (finite or infinite) set of structured terms (think of them as trees.) These terms are of finite size and are defined over a basis of lexical primitives or an alphabet. An *alphabet* is a finite collection of symbols and each term itself is a finite structured collection of these symbols, although there may an infinite number of terms.

Finite languages can (in principle) be specified by enumerating the terms in the language; infinite languages are usually characterized by specifying a finite set of rules for constructing the set of term structures included in the language. Such a set of rules is called a grammar. In 1959 Noam Chomsky, a linguist at MIT, first characterized the complexity of formal languages by characterizing the structure of the grammars used to specify them [5]. Chomsky's characterization of formal languages lead to huge progress in the early development of the theory of programming languages and in their implementations, especially in parser and compiler development. Essentially, his idea for classifying formal languages was to classify them according to the complexity of the devices that can be used to identify if a term was in the language.

The relationship between syntax and semantics goes back to the 1930's at least. The study of formal languages has an extensive literature of it's own [?, 12, 30, 46, ?]. Similarly, the study of mathematical semantics of programming languages is a rich area in its own right [48, 49, 43, 47, 51, 24, 25, 23, 54, 1, 39]

1.3 Syntax

We can finitely describe abstract syntax in a number of ways. A common way is to give a formal grammar for the terms of the language. We give an abstract description of a grammar over an alphabet and then, in later sections we provide examples to make the ideas more concrete.

Definition 1.1 (grammar) A grammar over an alphabet (say Σ) is of the form

$$class_T ::= C_1 \mid C_2 \mid \cdots \mid C_n$$

where

T: is a set which, if empty is omitted from the specification, and class: is the name of the syntactic class being defined, and C_i : are constructors $1 \le i \le n$, n > 0

1.3. SYNTAX 3

The symbol ::= separates the name of the syntactic class being defined from the collection of rules that define it. Note that the vertical bar "|" is read as "or" and it separates the rules (or productions) used to construct the terms of class. The rules separated by the vertical bar are alternatives. The order of the rules does not matter, but in more complex cases it is conventional to write the simpler cases first. Sometimes it is convenient to parametrize the class being defined by some set. We show an example of this below were we simultaneously define lists over some set T all at once, rather than making separate syntactic definitions for each kind of list.

Traditionally, the constructors are also sometimes called *rules* or *productions*. The constructors are either constants from the alphabet, are elements from some collection of sets, or are functions of elements from the alphabet, the sets, and possibly of previously constructed elements of the syntactic class; the constructor functions return new elements of the syntactic class. At least one constructor must not include arguments consisting of previously constructed elements of the class being defined; this insures that the language defined by the grammar is non-empty. These non-recursive alternatives (the ones that do not have subparts which are of the type of structure being defined) are sometimes called the *base cases*.

Two syntactic elements are equal if they are constructed using identical constructors applied to equal arguments. It is never the case that $c_1x = c_2x$ if c_1 and c_2 are different constructors.

Noam Chomsky

Noam Chomsky (1928-)is the father of modern liguistics. In 1959 he characterized formal languages in terms of their generative power and laid the mathematical foundation for the study of formal languages. He is also known as political activist.

1.3.1 Concrete vs. Abstract Syntax

A *text* is a linear sequence of symbols which, on the printed page, we read from left to right² and top to bottom. We can specify syntax *concretely* so that it

²Of course the fact that we read and write from left to right is only an arbitrary convention, Hebrew and Egyptian hieroglyphics are read from right to left. But even the notion of left and right are simply conventions, Herodotus [28] tells us in his book *The History* (written

can be read unambiguously as linear sequence of symbols, or *abstractly* which simply specifies the structure of terms without telling us how they must appear to be read as text. We use parentheses to indicate the order of application of the constructors in a grammar when writing abstract syntax as linear text.

Concrete syntax completely specifies the language in such a way that there is no ambiguity in reading terms in the language as text, *i.e.* as a linear sequence of symbols read from left to right. For example, does the ambiguous arithmetic statement (a*b+c) mean (a*(b+c)) or ((a*b)+c)? In informal usage we might stipulate that multiplication "binds tighter than addition" so the common interpretation would be he second form; however, in specifying a concrete syntax for arithmetic we would typically completely parenthesize statements (e.g. we would write ((a*b)+c) or (a*(b+c))) and perhaps specify conventions that allow us to drop parentheses to make reading the statement easier.

In abstract syntax the productions of the grammar are considered to be constructors for structured terms having tree-like structure. We do not include parentheses in the specification of the language, there is no ambiguity because we are specifying trees which explicitly show the structure of the term without the use of parentheses. When we write abstract syntax as text, we add parentheses as needed to indicate the structure of the term, e.g. in the example above we would write a*(b+c) or (a*b)+c depending on which term we intend.

Abstract syntax can be displayed in tree form. For example, the formula a*(b+c) is displayed by the abstract syntax tree on the left in Fig. ?? and the formula (a*b)+c is displayed by the tree on the right of Fig. ??. Notice that the ambiguity disappears when displayed in tree form since the principle constructor labels the top of the tree. The immediate subterms are at the next level and so on. For arithmetic formulas, you can think of the topmost (or principle) operator as the last one you would evaluate.

1.3.2 Some examples of Syntax

We give some examples of grammars to describe the syntax of the Booleans, the natural numbers, a simple language of Boolean expressions which includes the Booleans and an *if-then-else* construct, and describe a grammar for constructing lists where the elements are selected from some specified set.

about 440 B.C.) that the ancient Egyptians wrote moving from right to left but he reports "they say they are are moving [when writing] to right", i.e. what we (in agreement with the ancient Greeks) call left the ancient Egyptians called right and vice versa.

1.3. SYNTAX 5

Syntax of \mathbb{B}

The $Booleans^3$ consist of two elements. We denote the elements by the alphabet consisting of the symbols \mathbf{T} and \mathbf{F} . Although this is enough, *i.e.* it is enough to say that a Boolean is either the symbol \mathbf{T} or is the symbol \mathbf{F} , we can define the Booleans (denoted \mathbb{B}) by the following grammar:

$$\mathbb{B} ::= \mathbf{T} \mid \mathbf{F}$$

Read the definition as follows:

A Boolean is either the symbol \mathbf{T} or the symbol \mathbf{F} .

The syntax of these terms is trivial, they have no more structure than the individual symbols of the alphabet do. The syntax trees are simply individual nodes labeled either \mathbf{T} or \mathbf{F} . There are no other abstract syntax trees for the class \mathbb{B} .

Syntax of \mathbb{N}

The syntax of the natural numbers (denoted by the symbol \mathbb{N}) can be defined as follows:

Definition 1.2.

$$\mathbb{N} ::= \mathbf{0} \mid \mathbf{s} \, n$$

where the alphabet consists of the symbols $\{0, \mathbf{s}\}$ and n is a variable denoting some previously constructed element of the set \mathbb{N} . $\mathbf{0}$ is a constant symbol denoting an element of \mathbb{N} and \mathbf{s} is a constructor function mapping \mathbb{N} to \mathbb{N} .

The definition is read as follows:

A natural number is either: the constant symbol $\mathbf{0}$ or is of the form s n where n is a previously constructed natural number.

Implicitly, we also stipulate that *nothing else* is in \mathbb{N} , *i.e.* the only elements of \mathbb{N} are those terms which can be constructed by the rules of the grammar.

Thus, $\mathbb{N} = \{\mathbf{0}, s\mathbf{0}, ss\mathbf{0}, sss\mathbf{0}, \cdots\}$ are all elements of \mathbb{N} . Note that the variable "n" used in the definition of the rules never occurs in an element of \mathbb{N} , it is simply a place-holder for an term of type \mathbb{N} , *i.e.* it must be replaced by some term from the set $\{\mathbf{0}, s\mathbf{0}, ss\mathbf{0}, \cdots\}$. Such place-holders are called *meta-variables* and are required if the language has inductive structure, *i.e.* if we define the elements of the language using previously constructed elements of the language.

Although the grammar for \mathbb{N} contains only two rules, the language it describes is far more complex than the language of \mathbb{B} (which also consists of two rules.) There are an infinite number of syntactically well-formed terms in the language of \mathbb{N} . To do so it relies on n being a previously defined element of \mathbb{N} ; thus \mathbb{N} is an inductively defined structure.

³ "Boolean" is eponymous for George Boole, the English mathematician who first formulated symbolic logic in symbolic algebraic form.

Figure 1.1: Syntax trees for terms $s\mathbf{0}$ and $sss\mathbf{0}$

Abstract Syntax Trees for \mathbb{N}

The trees are of one of two forms shown above The subtree for a previously constructed $\mathbb N$ labeled n is displayed by the following figure:

The triangular shape below the n is intended to suggest that n itself is an abstract syntax tree whose exact shape is unknown. Of course, any *actual* abstract syntax tree would not contain any of these triangular forms. For example, the abstract syntax trees for the terms $s\mathbf{0}$ and $sss\mathbf{0}$ are displayed in Fig. 1.1.

Syntax of a simple computational language

We define a simple language PLB (Programming Language Booleans) of Boolean expressions with a semantics allowing us to compute with Booleans. The alphabet of the language includes the symbols {if ,then ,else ,fi }, i.e. the alphabet includes a collection of keywords suitable for constructing if-then-else statements. We use the Booleans as the basis, i.e. the Booleans defined above serve as the base case for the language.

Definition 1.3 (PLB)

$$PLB := b \mid \texttt{if} \ p \ \texttt{then} \ p_1 \ \texttt{else} \ p_2 \ \texttt{fi}$$

where

 $b \in \mathbb{B}$: is a Boolean, and

 p, p_1, p_2 : are previously constructed terms of PLB.

1.3. SYNTAX 7

Terms of the language include:

```
{T,F, if T then T else T fi, if T then T else F fi,
if T then F else T fi, if T then F else F fi,
if F then T else T fi, if F then T else F fi,
if F then F else T fi, if F then F else F fi,
...
if if T then T else T fi then T else T fi,
if if T then T else T fi then T else F fi,
...
if if T then T else T fi then T else F fi,
...
if if T then T else T fi then if T then T else T fi else T fi,
...
}
```

Thus, the language PLB includes the Boolean values $\{\mathbf{T}, \mathbf{F}\}$ and allows arbitrarily nested *if-then-else* statements.

Lists

We can define lists containing elements from some set T by two rules. The alphabet of lists is $\{[], ::\}$ where "[]" is a constant symbol called "nil" which denotes the empty list and "::" is a symbol denoting the constructor that adds an element of the set T to a previously constructed list. This constructor is, for historical reasons, called "cons". Note that although "[]" and "::" both consist of sequences of two symbols, we consider them to be atomic symbols for the purposes of this syntax.

This is the first definition where the use of the parameter (in this case T) has been used.

Definition 1.4 (T List)

```
List_T ::= [] | a :: L
```

where

T: is a set,

[]: is a constant symbol denoting the *empty list*, which is called "nil",

a: is an element of the set T, and

L: is a previously constructed $List_T$.

A list of the form a::L is called a cons. The element a from T in a::L is called the head and the list L in the cons a::L is called the tail.

Example 1.1. As an example, let $A = \{a, b\}$, then the set of terms in the class $List_A$ is the following:

```
\{[],a::[],b::[],a::a::[],a::b::[],b::a::[],b::b::[],a::a::a::[],a::a::b::[],\cdots\}
```


Figure 1.2: Syntax tree for the list [a, b, a] constructued as a::(b::(a::[]))

We call terms in the class $List_T$ lists. The set of all lists in class $List_A$ is infinite, but each list is finite because lists must always end with the symbol []. Note that we assume a::b::[] means a::(b::[]) and not (a::b)::[]), to express this we say cons associates to the right. The second form violates the rule for cons because a::b is not well-formed since b is an element of A, it is not a previously constructed $List_A$. To make reading lists easier we simply separate the consed elements with commas and enclose them in square brackets "[" and "]", thus, we write a::[] as [a] and write a::b::[] as [a,b]. Using this notation we can rewrite the set of lists in the class $List_A$ more succinctly as follows:

$$\{[], [a], [b], [a, a], [a, b], [b, a], [b, b], [a, a, a], [a, a, b], \dots \}$$

Note that the set T need not be finite, for example, the class of $List_{\mathbb{N}}$ is perfectly sensible, in this case, there are an infinite number of lists containing only one element e.g.

$$\{[0], [1], [2], [3] \cdots \}$$

Abstract Syntax Trees for Lists

Note that the pretty linear notation for trees in only intended to make them more readable, the syntactic structure underlying the list [a, b, a] is displayed by the following abstract syntax tree:

1.3.3 Definitions

A definition is a way to extend a language to possibly include new symbols but to describe them in terms of existing ones. Adding a definition does not allow anything new to be said that could not already have been; though definitions are extraordinarily useful in making things clear.

Definition 1.5 (definitions) A definition is a template or schematic form that introduces new symbols into an existing language as an abbreviation for another (possibly more complicated) term. Definitions have the form

$$\mathbf{A}[x_1,\cdots,x_k] \stackrel{\text{def}}{=} \mathbf{B}[x_1,\cdots,x_k]$$

1.4. SEMANTICS 9

where $x_i, 1 \leq i \leq k$ are variables standing for terms of the language (defined sofar). An instance of the defined term is the form $\mathbf{A}[t_1, \dots, t_k]$ where the x_i 's are instantiated by terms t_i . This term is an abbreviation (possibly parameterized if k > 0) for the schematic formula $\mathbf{B}[t_1, \dots, t_k]$ i.e. for the term having the shape of \mathbf{B} but where each of the variables x_i is replaced by the term t_i . \mathbf{A} may introduce new symbols not in the language while \mathbf{B} must be a formula of the language defined up tot he point of its introduction, this includes those formulas given by the syntax as well as formulas that may include previously defined symbols.

The symbol " $\stackrel{\text{def}}{=}$ " separates the left side of the definition, the thing being defined, from the right side which contains the definition. The left side of the definition may contain meta-variables which also appear on the right side.

Instances of defined terms can be replaced by their definitions replacing the arguments in the left side of the definition into the right side. The process of "replacement" is fundamental and is called *substitution*. In following chapters, we will carefully define substitution (as an algorithm) for propositional and then predicate logic.

This definition of "definition" is perhaps too abstract to be of much use, and yet the idea of introducing new definitions is one of the most natural ideas of mathematics. A few definitions are given below which should make the idea perfectly transparent.

Example 1.2. In mathematics, we define functions all the time by introducing their names and arguments and giving the right hand side "definition." *e.g.*

$$f(k) = 2^{k} + k$$

$$exp(x) = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad x \in \mathbb{R}$$

The second one is interesting since the variable n is "bound" by the summation operator (\sum). We call operators that "bind" variables binding operators. In the definition of exp, we must be careful when we substitute in something for x – if the term being replaced for x contains the variable n in it, we first must rename n's on the right side of the definition and then go ahead with substitution. This process is called capture avoiding substitution and is covered in some detail in Chapter ??.

1.4 Semantics

Semantics associates meaning to syntax. Formal semantics (the kind we are interested in here) is given by defining a mapping from syntax (think of syntax as a kind of data-structure) to some other mathematical structure. This mapping is called the *semantic function* or *interpretation*; we will use these terms interchangeably.

Before a semantics is given, an element in a syntactic class can only be seen as a meaningless structured term, or if expressed linearly as text, it is simply a meaningless sequence of symbols. Since semantics are intended to present the meanings of the syntax, they are taken from some mathematical domain which is already assumed to be understood or is, by some measure, simpler. In the case of a program, the meaning might be the sequence of states an abstract machine goes through in the evaluation of the program on some input (in this case, meanings would consist of pairs of input values and sequences of states); or perhaps the meaning is described simply as the input/output behavior of the program (in this case the meaning would consist of pairs of input values and output values.) In either case, the meaning is described in terms of (well understood) mathematical structures. Semantics establish the relationship between the syntax and its interpretation as a mathematical structure.

1.4.1 Definition by Recursion

In practice, semantic functions are defined by recursion on the structure of the syntax being interpreted. We expect students have already encountered recursion. To define an interpretation, an equation must be given for possible construct(or) in the grammar; one equation for each alternative. So, it is easy enough to tell if the definition is complete; it must have as many cases as there are constructors. The alternatives that do not contain references to the syntactic class defined by the grammar are base cases and these cases in the definition of the semantic function are not recursive. The alternatives that do contain subparts of the same type as the syntactic class being defined are inductive alternatives. The semantic equations for these cases of the semantic function typically call the semantic function (recursively) on the inductive parts; this is where the recursion comes in. It may appear that a recursive definition is circular, but because we restrict the inductive parts of the structure to be "previously constructed", we guarantee that eventually we will have reduced the complex parts down to one of the base cases. In this way, computation by recursion is guaranteed to terminate.

Semantics of \mathbb{B}

Suppose that we intend the meanings of \mathbb{B} to be among the set $\{0,1\}$. Then, functions assigning the values \mathbf{T} and \mathbf{F} to elements of $\{0,1\}$ count as a semantics. Following the tradition of denotational semantics, if $b \in \mathbb{B}$ we write $\llbracket b \rrbracket$ to denote the meaning of b. Using this notation one semantics would be:

$$[\![\mathbf{T}]\!] = 0$$
$$[\![\mathbf{F}]\!] = 1$$

Thus, the meaning of \mathbf{T} is 0 and the meaning of \mathbf{F} is 1. This interpretation might not be the one you expected (*i.e.* you may think of 1 as \mathbf{T} and 0 as \mathbf{F}) but, an essential point of formal semantics is that the meanings of symbols or terms need not be the one you impose through convention or force of habit.

1.4. SEMANTICS 11

Things mean whatever the semantics say they do ⁴. Before the semantics has been given, it is a mistake to interpret syntax as anything more than a complex of meaningless symbols.

As another semantics for Booleans we might take the domain of meaning to be sets of integers ⁵. We will interpret \mathbf{F} to be the set containing the single element 0 and \mathbf{T} to be the set of all non-zero integers.

$$[\![\mathbf{T}]\!] = \{k \in \mathbb{Z} \mid k \neq 0\}$$
$$[\![\mathbf{F}]\!] = \{0\}$$

This semantics can be used to model the interpretation of integers as Booleans in the C++ programming language where any non-zero number is interpreted as \mathbf{T} and 0 is interpreted as \mathbf{F} as follows. If i is an integer and b is a Boolean then:

(bool)
$$i = b$$
 iff $i \in \llbracket b \rrbracket$

This says: the integer i, interpreted as a Boolean⁶, is equal to the Boolean b if and only if i is in the set of meanings of b; e.g. since $[\![\mathbf{T}]\!] = \{k \in \mathbb{Z} \mid k \neq 0\}$ we know $5 \in [\![\mathbf{T}]\!]$ therefore we can conclude that $(\mathbf{bool})5 = \mathbf{T}$.

Semantics of \mathbb{N}

We will describe the meaning of terms in \mathbb{N} by mapping them onto non-negative integers. This presumes we already have the integers as an understood mathematical domain⁷.

Our idea is to map the term $\mathbf{0} \in \mathbb{N}$ to the actual number $0 \in \mathbb{Z}$, and to map terms having k occurrences of s to the integer k. To do this we define the semantic equations recursively on the structure of the term. This is the standard form of definition for semantic equations over a grammar having inductive structure.

$$\label{eq:continuous} \begin{bmatrix} \mathbf{0} \end{bmatrix} = 0 \\ \llbracket sn \rrbracket = \llbracket n \rrbracket + 1 \qquad \qquad \text{where } n \in \mathbb{N}$$

The equations say that the meaning of the term $\mathbf{0}$ is just 0 and if the term has the form sn (for some $n \in \mathbb{N}$) the meaning is the meaning of n plus one. Note that there are many cases in the recursive definition as there are in the grammar, one case for each possible way of constructing a term in \mathbb{N} . This will always be the case for every recursive definition given on the structure of a term.

⁴Perhaps interestingly, in the logic of CMOS circuit technology, this seemingly backward semantic interpretation is the one used.

⁵We denote the set of integers $\{\cdots, -1, 0, 1, 2, \cdots\}$ by the symbol \mathbb{Z} . This comes from German Zahlen which means number.

⁶A cast in C++ is specified by putting the type to cast to in parentheses before the term to be cast

⁷Because the integers are usually constructed from the natural numbers this may seem to be putting the cart before the horse, so to speak, but it provides a good example here.

Under these semantics we calculate the meaning of a few terms to show how the equations work.

Thus, under these semantics, [s0] = 1 and [sssss0] = 5.

Semantics of PLB

The intended semantics for the language PLB to reflect evaluation of Boolean expressions where *if-then-else* has the normal interpretation. Thus our semantics will map expressions of PLB to values in \mathbb{B} . Recall the syntax of PLB:

$$PLB := b \mid \text{if } p \text{ then } p_1 \text{ else } p_2 \text{ fi}$$

As always, the semantics will include one equation for each production in the grammar. Informally, if a PLB term is already a Boolean, the semantic function does nothing. For other, more complex, terms we explicitly specify the values when the conditional argument is a Boolean, and if it is not we repeatedly reduce it until it is grounded as a Boolean value. The equation for *if-then-else* is given by case analysis (on the conditional argument).

We have numbered the semantic equations so we can refer to them in the example derivations below; we have annotated each step in the derivation with: the equation used, the bindings of the variables used to match the equation, and, in the case of justifications based on equation (2) the case used to match the case of the equation. Note that the equations are applied from top down, i.e. we apply the case $p \notin \mathbb{B}$ only after considering the possibility that $p = \mathbf{T}$ and $p = \mathbf{F}$.

1.4. SEMANTICS 13

Here are some calculations (equational style derivations) that show how the equations can be used to compute meanings.

```
 \begin{split} & \|\mathbf{if} \ \mathbf{T} \ \mathbf{then} \ \mathbf{F} \ \mathbf{else} \ \mathbf{T} \ \mathbf{fi} \| \\ & \langle \langle \mathrm{Equation} : 2 \ p = \mathbf{T}, p_1 = \mathbf{F}, p_2 = \mathbf{T} \ \mathrm{Case} : p = \mathbf{T} \rangle \rangle \\ & = \|\mathbf{F}\| \\ & \langle \langle \mathrm{Equation} : 1 \ b = \mathbf{F} \rangle \rangle \\ & = \mathbf{F} \end{split}   \begin{aligned} & \|\mathbf{if} \ \mathbf{F} \ \mathbf{then} \ \mathbf{F} \ \mathbf{else} \ \mathbf{T} \ \mathbf{fi} \| \\ & \langle \langle \mathrm{Equation} : 2 \ p = \mathbf{F}, p_1 = \mathbf{F}, p_2 = \mathbf{T} \ \mathrm{Case} : p = \mathbf{F} \rangle \rangle \\ & = \|\mathbf{T}\| \\ & \langle \langle \mathrm{Equation} : 1 \ b = \mathbf{T} \rangle \rangle \\ & = \mathbf{T} \end{aligned}
```

Note that in these calculations, it seems needless to evaluate $[\![b]\!]$, the following derivation illustrates an case where the first argument is not a Boolean constant and the evaluation of the condition is needed.

```
 \begin{split} & \| \text{if if } \mathbf{F} \text{ then } \mathbf{F} \text{ else } \mathbf{T} \text{ fi then } \mathbf{F} \text{ else } \mathbf{T} \text{ fi} \| \\ & \langle \langle \text{Equation} : 2 \ p = \text{if } \mathbf{F} \text{ then } \mathbf{F} \text{ else } \mathbf{T} \text{ fi}, p_1 = \mathbf{F}, p_2 = \mathbf{T} \\ & \text{Case} : p \not\in \mathbb{B} \\ & q = [\![ \mathbf{if } \mathbf{F} \text{ then } \mathbf{F} \text{ else } \mathbf{T} \text{ fi} ]\!] \\ & \langle \langle \text{Equation} : 2 \ p = \mathbf{F}, p_1 = \mathbf{F}, p_2 = \mathbf{T} \text{ Case} : p = \mathbf{F} \rangle \rangle \\ & = [\![ \mathbf{T} \mathbf{T} ]\!] \\ & \langle \langle \text{Equation} : 1 \ b = \mathbf{T} \rangle \rangle \\ & = [\![ \mathbf{if } \mathbf{T} \text{ then } \mathbf{F} \text{ else } \mathbf{T} \text{ fi} ]\!] \\ & \langle \langle \text{Equation} : 2 \ p = \mathbf{T}, p_1 = \mathbf{F}, p_2 = \mathbf{T} \text{ Case} : p = \mathbf{T} \rangle \rangle \\ & = [\![ \mathbf{F} \mathbb{]} \!] \\ & \langle \langle \text{Equation} : 1 \ b = \mathbf{F} \rangle \rangle \\ & = \mathbf{F} \end{split}
```

Using terms of PLB, we can define other logical operators.

```
\operatorname{not} p \stackrel{\operatorname{def}}{=} \operatorname{if} p \operatorname{then} \mathbf{F} \operatorname{else} \mathbf{T} \operatorname{fi} \\ (p \operatorname{and} q) \stackrel{\operatorname{def}}{=} \operatorname{if} p \operatorname{then} q \operatorname{else} \mathbf{F} \operatorname{fi} \\ (p \operatorname{or} q) \stackrel{\operatorname{def}}{=} \operatorname{if} p \operatorname{then} \mathbf{T} \operatorname{else} q \operatorname{fi}
```

In the chapter on logic we will prove that these definitions are indeed correct in that the defined operators behave as we expect them to.

Semantics of $List_T$

Perhaps oddly, we do not intend to assign semantics to the class $List_T$. The terms of the class represent themselves, *i.e.* we are interested in lists as lists. But still, semantic functions are not the only functions that can be defined by recursion on the structure of syntax, we can define other interesting functions on lists by recursion on the syntactic structure of one or more of the arguments.

For example, we can define a function that glues two lists together (given inputs L and M where $L, M \in List_T$, L@M is a list in $List_T$). It is defined recursively by on the (syntactic) structure of the first argument as follows:

$$[]@M = M$$

 $a::L@M = a::(L@M)$

The first equation of the definition says: if the first argument is the list [], the result is just the second argument. The second equation of the definition says, if the first argument is a cons of the form a::L, then cons a on the append of L and M. Thus, there are two equations, one for each rule that could have been used to construct the first argument of the function.

We give some example computations with the definition of append.

$$a::b::[]@[]$$

= $a::(b::[]@[]$
= $a::b::([]@[]$
= $a::b::[]$

Using the more compact notation or lists, we have shown (@[a,b],[]) = [a,b]. Using this notation for lists we can rewrite the derivation as follows:

$$[a, b] @ [] = a::([b] @ [] = a::b::([] @ [] = a::b::[] = [a, b]$$

We will use the more succinct notation for lists from now on, but do not forget that this is just a more readable display for the more cumbersome but precise notation which explicitly uses the cons constructor.

Here is another example.

$$[] @ [a, b]$$
$$= [a, b]$$

We will discuss lists and operations on lists as well as ways to prove properties about lists in some depth in later chapters. For example, the rules for append immediately give (@[], M) = M, but the following equation is a theorem as well (@M,[]) = M. For any individual list M we can compute with the rules for append and show this, but currently have no way to assert this in general for all M with out proving it by induction.

1.5 Possibilities for Implementation

A number of programming languages provide excellent support for implementing abstract syntax almost succinctly as it has been presented above. This is especially true of the ML family of languages [38, 34, 40] and the language Haskell [?]. Scheme is also useful in this way [16]. All three, ML, Haskell and Scheme are languages in the family of functional programming languages. Of course we can define term structures in any modern programming language, but the functional languages provide particularly good support for this. Similarly, semantics is typically defined by recursion on the structure of the syntax and these languages make such definitions quite transparent, implementations appear syntactically close to the mathematical notions used above. The approach to implementing syntax and semantics in ML is taken in [?] and a similar approach using Scheme is followed in [16]. The excellent book [9]presents most of the material presented here in the context of the Haskell programming language.

Part I

Logic

Kurt Godel

Kurt Gödel (1906 – 1978) was one of the greatest minds of the 20th century. His famous incompleteness theorem changed, in a deep way, the conception of mathematics.

Chapter 2

Propositional Logic

One of the people present said: 'Persuade me that logic is useful.' – 'Do you want me to prove it to you?' He asked. – 'Yes.' – 'So I must produce a probative argument?' – He agreed. – 'Then how will you know if I produce a sophism?' – He said nothing. – 'You see,' he said, 'you yourself agree that all this is necessary, since without it you cannot even learn whether it is necessary or not.' Epictetus¹ Discourses² II xxv.

In this chapter we present propositional logic: its syntax, semantics, and a formal proof system.

Without further ado, we say give the following definition for propositions.

Definition 2.1 (Proposition) A proposition is a statement that can, in principle, be either true or false.

Of course the true nature of propositions is open to some philosophical debate, we leave this debate to the philosophers and note that we are essentially adopting Wittgenstein's [56] definition of propositions as truth functional.

In the next sections we define the syntax of formulas and then describe their semantics (given an interpretation of the atomic parts.) The primitive vocabulary of symbols from which more complex terms of the language are constructed is called the *lexical* components. *Syntax* specifies the acceptable form or structures of lexical components allowed in the language. We think of the syntactic forms (formulas) as trees (syntax trees) whose shape depended on the grammar for propositional formulas. *Semantics* assigns meaning to the syntactic forms.

¹Epictetus was an ancient philosopher (50–130 A.D.) of the Stoic school in Rome.

²Translated by Jonathan Barnes in his book [3].

2.1 Syntax of Propositional Logic

We use *propositional variables* to stand for arbitrary propositions and we assume there is an infinite supply of these variables.

$$\mathcal{V} = \{p, q, r, p_1, q_1, r_1, p_2, \cdots\}$$

Note that the fact that the set \mathcal{V} is infinite is unimportant since no individual formula will ever require more than some fixed finite number of variables, however it is important that the number of variables we can select from is unbounded. The must always be a way to get another one.

We include the constant symbol \perp (say "bottom").

Complex propositions are constructed by combining simpler ones with *propositional connectives*. For now we leave the meaning of the connectives unspecified and simply present them as one of the symbols \land, \lor, \Rightarrow standing for and, or and *implies* respectively.

Definition 2.2 (Propositional Logic syntax) The syntax of propositional formulas (we denote the set as \mathcal{P}) can be described by a grammar as follows:

$$\mathcal{P} ::= \bot \mid x \mid \neg \phi \mid \phi \land \psi \mid \phi \lor \psi \mid \phi \Rightarrow \psi$$

where

 \perp is a constant symbol,

 $x \in \mathcal{V}$ is a propositional variable, and

 $\phi, \psi \in \mathcal{P}$ are meta-variables denoting previously constructed propositional formulas.

To write the terms of the language \mathcal{P} linearly (i.e. so that they can be written from left-to-right on a page), we insert parentheses to indicate the order of the construction of the term as needed e.g. $p \land q \lor r$ is ambiguous in that we do not know if it denotes a conjunction of a variable and a disjunction $(p \land (q \lor r))$ or it denotes the disjunction of a conjunction and a variable $((p \land q) \lor r)$.

Thus (written linearly) the following are among the terms of \mathcal{P} : \bot , p, q, $\neg q$, $p \land \neg q$, $((p \land \neg q) \lor q)$, and $\neg ((p \land \neg q) \lor r)$.

We use the lowercase Greek letters ϕ and ψ (possibly subscripted) as metavariables ranging over propositional formulas, that is, ϕ and ψ are variables that denote propositional formulas; note that they are not themselves propositional formulas and no actual propositional formula contains either of them.

Other views of syntax Alternatively, you can consider the alternatives in the description of the syntax of propositional logic as constructors.

$$\mathcal{P} ::= \bot \mid x \mid \neg \phi \mid \phi \land \psi \mid \phi \lor \psi \mid \phi \Rightarrow \psi$$

The signatures of the constructors are given as follows:

 $\begin{array}{ccc} mk_bot: & \mathcal{P} \\ mk_var: & \mathcal{V} \to \mathcal{P} \\ mk_not: & \mathcal{P} \to \mathcal{P} \\ mk_and: & (\mathcal{P} \times \mathcal{P}) \to \mathcal{P} \\ mk_or: & (\mathcal{P} \times \mathcal{P}) \to \mathcal{P} \\ mk_implies: & (\mathcal{P} \times \mathcal{P}) \to \mathcal{P} \end{array}$

Thus, mk_bot is a constant of type \mathcal{P} , *i.e.* it is a propositional formula. The constructor mk_var maps variables in \mathcal{V} to propositional formulas and so is labeled as having the type $\mathcal{V} \to \mathcal{P}$. The constructor mk_not maps a previously constructed propositional formula to a new propositional formula (by sticking a *not* symbol in front) and so is labeled as having the type $\mathcal{P} \to \mathcal{P}$. We say it is a *unary connective* since it takes one argument. The constructors for *and*, *or*, and *implies* all take two arguments and so are called *binary connectives*. Their arguments are pairs previously constructed propositional formulas and so they all have the signature $(\mathcal{P} \times \mathcal{P}) \to \mathcal{P}$.

Here are some formulas represented in different ways.

٢	No.	Linear Form	Constructor Form
L	INO.	Linear Form	Collect uctor Form
	i.	上	mk_bot
	ii.	p	$mk_var(p)$
	iii.	$\neg p$	$mk_not(mk_var(p))$
	iv.	$p \wedge \neg p$	$mk_and(mk_var(p), mk_not(mk_var(p)))$
	v.	$\neg \bot \Rightarrow p$	$mk_implies(mk_not(mk_bot), mk_var(p))$
	vi.	$((p \land \bot) \Rightarrow (p \lor \neg q))$	$mk_implies(mk_and(mk_var(p), mk_bot),$
			$mk_or(mk_var(p),$
			$mk_not(mk_var(q))))$

The syntax trees for the last four of these examples are drawn as follows:

2.1.1 Definitions

We can extend the language of propositional logic by allowing for definitions.

If-and-only-if

Definition 2.3 (bi-conditional) The so-called *bi-conditional* or *if-and-only-if* connective is defined as follows:

$$(\phi \Leftrightarrow \psi) \stackrel{\text{def}}{=} ((\phi \Rightarrow \psi) \land (\psi \Rightarrow \phi))$$

True \top

The syntax includes a constant \perp which, when we do the semantics, will turn out to denote *false*; but we do not have a constant corresponding to *true*.

Definition 2.4 (Top) We define a new constant " \top " (say top) as follows: $\top \stackrel{\text{def}}{=} \neg \bot$.

2.2 Semantics

Semantics gives meaning to syntax. The style of semantics presented here was first presented by Alfred Tarski in his paper[50] on truth in formalized languages which was first published in Polish in 1933.

2.2.1 Truth Table Semantics

The semantics for propositional logic maps a formula (a syntax tree) to its meaning. The meaning of a propositional formula depends only on the meaning of its parts. Based on this, we say the semantics of propositional logic are *compositional*. This fact suggests a method for determining the meaning of any propositional formula; *i.e.* consider all the possible values is parts may take. This leads to the idea of truth table semantics, the meaning of each connective is defined in terms of the meaning of each part, since each part can only take the values **T** or **F**, denoting *true* and *false* respectively.

Definition 2.5 (Booleans) The two element set

$$\mathbb{B} = \{\mathbf{T}, \mathbf{F}\}$$

is called the Boolean 3 set, and its elements (Tand F) are called Boolean values.

Thus, complete analysis of the possible values of true and false requires us to consider a only finite number of cases. Truth tables were first formulated by the philosopher Ludwig Wittgenstein. . .

 $^{^3}$ The Booleans are eponymous for George Bool (1815 – 1864) the English mathematician who first presented logic in symbolic or algebraic form.

2.2. SEMANTICS 25

The formula constant \bot is mapped to the constant ${\bf F}$ as the following one row truth table indicates.

Negation is a unary connective (*i.e.* it only has one argument) that toggles the value of it's argument as the following truth table shows.

ϕ	$\neg \phi$
\mathbf{T}	F
\mathbf{F}	\mathbf{T}

The truth functional interpretations of the binary connectives for conjunction, disjunction, implication, and if-and-only-if are summarized in the following truth table.

ϕ	ψ	$(\phi \wedge \psi)$	$(\phi \lor \psi)$	$(\phi \Rightarrow \psi)$	$(\phi \Leftrightarrow \psi)$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	T	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	${f T}$	\mathbf{F}	\mathbf{F}
\mathbf{F}	${f T}$	\mathbf{F}	${f T}$	${f T}$	${f F}$
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	${f T}$

Thus, the truth or falsity of a formula is determined solely by the truth or falsity of its sub-terms:

```
\phi \wedge \psi: is true if both \phi and \phi are true and is false otherwise,
```

 $\phi \vee \psi$: is true if one of ϕ or ϕ is true and is false otherwise,

 $\phi \Rightarrow \psi$: is true if ϕ is false or if ψ is true and is false otherwise, and

 $\phi \Leftrightarrow \psi$: is true if both ϕ and ψ are true or if they are both false and is false otherwise.

We remark that for any element of \mathcal{P} , although the number of cases (rows in a truth table) is finite, the total number of cases is exponential in the number of distinct variables. This means that, for each variable we must consider in a formula, the number of cases we must consider doubles. Complete analysis of a formula having no variables (i.e. its only base term is \bot) has $2^0 = 1$ row; a formula having one distinct variable has $2^1 = 2$ rows, two variables means four cases, three variables means eight, and so on. If the formula contains n distinct variables, there are 2^n possible combinations of true and false that the n variables may take.

Consider the following example of true table for the formula $((p \Rightarrow q) \lor z)$.

ſ	p	\overline{q}	r	$(p \Rightarrow q)$	$((p \Rightarrow q) \lor r)$
ſ	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
İ	${f T}$	${f T}$	\mathbf{F}	\mathbf{T}	\mathbf{T}
	${f T}$	${f F}$	${f T}$	\mathbf{F}	\mathbf{T}
	${f T}$	${f F}$	\mathbf{F}	\mathbf{F}	\mathbf{F}
İ	\mathbf{F}	${f T}$	${f T}$	\mathbf{T}	\mathbf{T}
İ	\mathbf{F}	${f T}$	\mathbf{F}	\mathbf{T}	\mathbf{T}
İ	\mathbf{F}	${f F}$	${f T}$	\mathbf{T}	\mathbf{T}
İ	\mathbf{F}	${f F}$	${f F}$	\mathbf{T}	\mathbf{T}

Since the formula has three distinct variables, there are $2^3=8$ rows in the truth table. Notice that the fourth row of the truth table *falsifies* the formula, *i.e.* if p is true, q is false, and r is false, the formula $((p\Rightarrow q)\vee r)$ is false. All the other rows *satisfy* the formula *i.e.* all the other assignments of true and false to the variables of the formula make it true.

A formula having the same shape (i.e. drawn as a tree it has the same structure), but only having two distinct variables is $((p \Rightarrow q) \lor p)$. Although there are three variable occurrences in the formula, (two occurrences of p and one occurrence of q), the distinct variables are p and q. To completely analyze the formula we only need $2^2 = 4$ rows in the truth table.

p	\overline{q}	$(p \Rightarrow q)$	$((p \Rightarrow q) \lor p)$
\mathbf{T}	${f T}$	\mathbf{T}	${f T}$
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	${f T}$	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	${f T}$

Note that this formula is true for every assignment of Boolean values to the variables p and q.

Definition 2.6 (satisfiable) A propositional formula is *satisfiable* if the column under the principal connective is true in any row of the truth table.

Definition 2.7 (falsifiable) A propositional formula is *falsifiable* if the column under the principal connective is false in any row of the truth table.

Definition 2.8 (valid) A propositional formula is *valid* (or a *tautology*) if the column under the principal connective is true in every row of the truth table.

Definition 2.9 (contradiction) A propositional formula is a *contradiction* (or *unsatisfiable*) if the column under the principal connective is false in every row of the truth table.

A formula having the meaning T

We did not include a constant in the base syntax for the language of propositional logic whose meaning is \mathbf{T} ; however, we defined the constant \top (see

2.2. SEMANTICS 27

Definition 2.4). The following truth table shows that this defined formula always has the meaning **T**.

I	$\neg \bot$
\mathbf{F}	\mathbf{T}

Note that any tautology could serve as our definition of true, but this is the simplest such formula in the language \mathcal{P} .

2.2.2 Assignments and Valuations

Definition 2.10 (assignment) An *assignment* is a function that maps propositional variables to one of the Boolean values \mathbf{T} or \mathbf{F} .

We use the variables $\alpha, \alpha', \hat{\alpha} \cdots$ to denote assignments, $\alpha : \mathcal{V} \to \{\mathbf{T}, \mathbf{F}\}$. Each assignment corresponds to a row in part of a truth table where variables are given values.

Since the meaning of a propositional formula is determined by the meaning of its parts, it is reasonable to assume that an assignment to just the variables is enough to determine the meaning of a formula; it is.

Definition 2.11 (valuation) A valuation is a function that takes an assignment and a propositional formula as input and returns a Boolean value, depending on whether the assignment determines the formulas value to be **T** or **F**.

We define the (recursive) valuation function val by induction on the structure of the formula as follows.

Definition 2.12 (valuation function)

```
\begin{array}{lll} val(\alpha, \bot) & = & \mathbf{F} \\ val(\alpha, x) & = & \alpha(x) & \text{whenever } x \in \mathcal{V} \\ val(\alpha, \neg \phi) & = & \mathbf{not}(val(\alpha, \phi)) \\ val(\alpha, \phi \land \psi) & = & val(\alpha, \phi) \text{ and } val(\alpha, \psi) \\ val(\alpha, \phi \lor \psi) & = & val(\alpha, \phi) \text{ or } val(\alpha, \psi) \\ val(\alpha, \phi \Rightarrow \psi) & = & \mathbf{not}(val(\alpha, \phi)) \text{ or } val(\alpha, \psi) \\ val(\alpha, \phi \Leftrightarrow \psi) & = & val(\alpha, \phi \Rightarrow \psi) \text{ and } val(\alpha, \psi \Rightarrow \phi) \\ \end{array}
```

The definition specifies how to compute the valuation of any propositional formula (under assignment α) by including one equation for each rule in the grammar of \mathcal{P} ..

Definition 2.13 (satisfies) An assignment α satisfies a formula ϕ if and only if $val(\alpha, \phi) = \mathbf{T}$. In this case we write $\alpha \models \phi$ and say " α models ϕ ".

Definition 2.14 (failsifies) An assignment α falsifies a formula ϕ if and only if $val(\alpha, \phi) = \mathbf{F}$. In this case we write $\alpha \not\models \phi$ and say " α does not model ϕ ."

Definition 2.15 (valid) If a formula ϕ is satisfied by every assignment (*i.e.* if it is true in in every row of the truth table, it is *valid*) we write $\models \phi$. In this case we say ϕ is true in all models.

As an example, suppose we define an assignment α as follows⁴

$$\begin{array}{l} \alpha(p) = \mathbf{T} \\ \alpha(q) = \mathbf{F} \\ \alpha(r) = \mathbf{T} \end{array}$$

Then, the valuation of the formula $((p \Rightarrow q) \lor r)$ is computed as follows.

```
\begin{array}{l} val(\alpha,((p\Rightarrow q)\vee r))\\ =val(\alpha,(p\Rightarrow q)) \text{ or } val(\alpha,r)\\ =(\mathbf{not}(val(\alpha,p)) \text{ or } val(\alpha,q)) \text{ or } \alpha(r)\\ =(\mathbf{not}(\alpha(p)) \text{ or } \alpha(q)) \text{ or } \mathbf{T}\\ =(\mathbf{not}(\mathbf{T}) \text{ or } \mathbf{F}) \text{ or } \mathbf{T}\\ =(\mathbf{F} \text{ or } \mathbf{F}) \text{ or } \mathbf{T}\\ =\mathbf{F} \text{ or } \mathbf{T}\\ =\mathbf{T} \end{array}
```

Thus, we have shown $\alpha \models ((p \Rightarrow q) \lor r)$.

Consider the valuation of another formula under same assignment.

```
\begin{array}{l} val(\alpha,((p\Rightarrow q)\vee q))\\ =val(\alpha,(p\Rightarrow q)) \ \text{or} \ val(\alpha,q)\\ =(\mathbf{not}(val(\alpha,p)) \ \text{or} \ val(\alpha,q)) \ \text{or} \ \alpha(q)\\ =(\mathbf{not}(\alpha(p)) \ \text{or} \ \alpha(q)) \ \text{or} \ \mathbf{F}\\ =(\mathbf{not}(\mathbf{T}) \ \text{or} \ \mathbf{F}) \ \text{or} \ \mathbf{F}\\ =(\mathbf{F} \ \text{or} \ \mathbf{F}) \ \text{or} \ \mathbf{F}\\ =\mathbf{F} \ \text{or} \ \mathbf{F}\\ =\mathbf{F} \end{array}
```

We have shown $\alpha \not\models ((p \Rightarrow q) \lor q)$.

⁴Technically, since assignments are functions from the set of propositional variables to Boolean values, we should specify what α does on *all* the propositional variables. But if a propositional variable (say p_{127}) does not occur in a formula (say ϕ), then the value of $\alpha(p_{127})$ will never be used in in the evaluation of $val(\alpha, \phi)$. Thus, we *don't care* what value α assigns to any variable not occurring in the formula and so we don't bother to specify what value they have under α . If partially specified functions bother you, pick your favorite Boolean value and assume all unspecified variables get mapped to that value by α .

2.3 Sequents

Gerhard Gentzen

Gerhard Gentzen (1909–1945) was a German logician who, in his short years, made astounding contributions to the foundations of mathematics, logic and proof theory. In the same paper [19] he invented both natural deduction proof system as well as the sequent proof systems we use here.

Sequents are pairs of formula lists used to characterize a point in a proof. One element of the pair lists the assumptions that are in force at the point in a proof characterized by the sequent and the other lists the goals, one of which we must prove to complete a proof of the sequent. The sequent formulation of proofs, presented below, was first given by the German logician Gerhard Gentzen in 1935 [19].

We will use letters (possibly subscripted) from the upper-case Greek alphabet as meta-variables that range over (possibly empty) lists of formulas. Thus Γ , Γ_1 , Γ_2 , Δ , Δ_1 , and Δ_2 all stand for arbitrary elements of the class $List_{\mathcal{P}}^5$.

Definition 2.16 (Sequent) A sequent is a pair of lists of formulas $\langle \Gamma, \Delta \rangle$. The list Γ is called the *antecedent* of the sequent and the list Δ is called the *succedent* of the sequent.

The standard notational convention is to write the sequent $\langle \Gamma, \Delta \rangle$ as $\Gamma \vdash \Delta$ where the symbol " \vdash " is called *turnstile*.

2.3.1 Semantics of Sequents

The meaning of a propositional sequent can be interpreted to be a Boolean value. We do so by transforming the sequent into a propositional formula and then using truth tables to determine the truth value of the sequent. Since all the formulas in the antecedent Γ are assumed to be true and, if they really are all true, then the conjunction of all of them is as well. Assuming the antecedents really are all true, the sequent is valid if at least one of the formulas in the succedent Δ is true, but this is the case only if the disjunction of all the formulas

⁵The syntax for the class $List_T$, lists over some set T, was defined in Chapter ??.

in Δ is true. We will formalize this idea once we have some operations allowing us to form the conjunction and disjunction of the formulas in a lists.

Conjunctions and Disjunctions of lists of Formulas

Informally, if Γ is the list $[\phi_1, \phi_2, \cdots, \phi_n]$ then

$$\bigwedge_{\phi \in \Gamma} \phi = (\phi_1 \wedge (\phi_2 \wedge (\cdots (\phi_n \wedge (\neg \bot)) \cdots)))$$

Dually, if Δ is the list $[\psi_1, \psi_2, \cdots, \psi_m]$ then

$$\bigvee_{\phi \in \Delta} \phi = (\psi_1 \vee (\psi_2 \vee (\cdots (\psi_m \vee (\bot)) \cdots)))$$

These operations can be formally defined by recursion on the structure of their list arguments as follows:

Definition 2.17 (Conjunction over a list) The function which conjoins all the elements in a list is defined on the structure of the list by the following two recursive equations.

$$\bigwedge_{\phi \in []} \phi = \neg \bot$$

$$\bigwedge_{\phi \in (\psi :: \Gamma)} \phi = (\psi \land (\bigwedge_{\phi \in \Gamma} \phi))$$

The first equation defines the conjunction of formulas in the empty list simply to be the formula $\neg\bot$ (*i.e.* the formula having the meaning **T**). The formula $\neg\bot$ is the right identity for conjunction *i.e.* the following is a tautology $((\phi \land \neg\bot) \Leftrightarrow \phi)$.

Exercise 2.1. Verify that $((\phi \land \neg \bot) \Leftrightarrow \phi)$ is a tautology.

You might argue semantically that this is the right choice for the empty list as follows: the conjunction of the formulas in a list is valid if and only if all the formulas in the list are valid, but there are *no* formulas in the empty list, so all of them (all none of them) are valid.

The second equation in the definition says that the conjunction over a list constructed by a *cons* is the conjunction of the individual formula that is the head of the list with the conjunction over the tail of the list.

Definition 2.18 (Disjunction over a list) The function which creates a disjunction of all the elements in a list is defined by recursion on the structure of the list and is given by the following two equations.

$$\bigvee_{\phi \in [\,]} \phi = \bot$$

$$\bigvee_{\phi \in (\psi :: \Gamma)} \phi = (\psi \vee (\bigvee_{\phi \in \Gamma} \phi))$$

The first equation defines the disjunction of formulas in the empty list simply to be the formula \bot (*i.e.* the formula whose meaning is **F**). The formula \bot is the right identity for disjunction *i.e.* the following is a tautology $((\phi \lor \bot) \Leftrightarrow \phi)$.

Exercise 2.2. Verify that $((\phi \lor \bot) \Leftrightarrow \phi)$ is a tautology.

An informal semantic argument for this choice to represent the empty list might go as follows: The disjunction of the formulas in a list is valid if and only if some formula in the list is valid, but there are *no* formulas in the empty list, so none of them are valid and the disjunction must be false.

The second equation in the definition says that the disjunction over a list constructed by a cons is the disjunction of the individual formula that is the head of the list with the disjunction over the tail of the list.

Semantic interpretation of sequents

Now that we have operators for constructing conjunctions and disjunctions over lists of formulas, we give a definition of sequent validity in terms of the validity of a formula of \mathcal{P} .

Definition 2.19 (Formula interpretation of a sequent)

$$[\![\Gamma\vdash\Delta]\!]=((\bigwedge_{\phi\in\Gamma}\phi)\Rightarrow(\bigvee_{\psi\in\Delta}\psi))$$

Thus $\llbracket\Gamma \vdash \Delta\rrbracket$ is a translation of the sequent $\Gamma \vdash \Delta$ into a formula. Using this translation, we semantically characterize the validity of a sequent as follows.

Definition 2.20 (Sequent validity) A sequent $\Gamma \vdash \Delta$ is *valid* if and only if

$$\models \llbracket \Gamma \vdash \Delta \rrbracket$$

That is, a sequent is valid if and only if

$$\models (\bigwedge_{\phi \in \Gamma} \phi) \Rightarrow (\bigvee_{\psi \in \Delta} \psi)$$

We consider the cases as to whether the antecedent and/or succedent are empty. If $\Gamma = []$ then the sequent $\Gamma \vdash \Delta$ is valid if and only if the disjunction of the formulas in Δ is. If $\Delta = []$ then the sequent $\Gamma \vdash \Delta$ is valid if and only the conjunction of formulas in Γ is a contradiction. If both the antecedent and the succedent are empty, *i.e.* $\Gamma = \Delta = []$, then the sequent $\Gamma \vdash \Delta$ is not valid since

$$(\bigwedge_{\phi \in []} \phi) \Rightarrow (\bigvee_{\psi \in []} \psi)$$
 is equivalent to the formula $(\neg \bot \Rightarrow \bot)$

and $(\neg \bot \Rightarrow \bot)$ is a contradiction. We verify this claim with the following truth table.

	$\neg \bot$	$(\neg\bot\Rightarrow\bot)$
\mathbf{F}	${f T}$	\mathbf{F}

2.4 Sequent Schemas, Substitutions and Matching

Proof rules are schemas used to specify a single step of inference. The proof rule schemas are specified by arranging schematic sequents in particular configurations to indicate which parts of the rule are related to which. For example, the rule for decomposing an implication on the left side of the turnstile is given as:

$$\frac{\Gamma_1, \Gamma_2 \vdash \phi, \Delta \qquad \Gamma_1, \psi, \Gamma_2 \vdash \Delta}{\Gamma_1, (\phi \Rightarrow \psi), \Gamma_2 \vdash \Delta}$$

There are three schematic sequents in this rule.

$$\Gamma_{1}, \Gamma_{2} \vdash \phi, \Delta$$

$$\Gamma_{1}, \psi, \Gamma_{2} \vdash \Delta$$

$$\Gamma_{1}, (\phi \Rightarrow \psi), \Gamma_{2} \vdash \Delta$$

Each of these schematic sequents specifies a pattern that an actual sequent might (or might not) match. By an actual sequent, we mean a sequent that contains no meta-variables (e.g. it contains no Γ 's or Δ 's).

Definition 2.21 (matching) A sequent (call it S) matches a sequent schema (call it \hat{S}) if there is some way of substituting actual formula lists and formulas for meta-variables in the schema \hat{S} (elements of $List_{\mathcal{P}}$ for list meta-variables and elements of \mathcal{P} for formula meta-variables) so the that the resulting sequent is identical to S.

2.5 Propositional Proof Rules

Definition 2.22 (Proof Rule Schemata) Proof rules for the propositional sequent calculus have one of the following three forms:

$$\frac{\mathcal{H}}{\mathcal{C}}(N) \qquad \qquad \frac{\mathcal{H}_1 \, \mathcal{H}_2}{\mathcal{C}}(N)$$

where $C, \mathcal{H}, \mathcal{H}_1$, and \mathcal{H}_2 are all schematic sequents. N is the name of the rule. The \mathcal{H} patterns are the *premises* (or *hypotheses*) of the rule and the pattern C is the *goal* (or *conclusion*) of the rule. Rules having no premises are called *axioms*.

Rules that operate on formulas in the antecedent (on the left side of \vdash) of a sequent are called *elimination rules* and rules that operate on formulas in the consequent (the right side of \vdash) of a sequent are called *introduction rules*.

2.5.1 Axiom Rules

If there is a formula that appears in both the antecedent and the consequent of a sequent then the sequent is valid. The axiom rule reflects this and has the following form:

$$\overline{\Gamma_1, \phi, \Gamma_2 \vdash \Delta_1, \phi, \Delta_2}$$
 (Ax)

Also, since false (\bot) implies anything, if the formula \bot appears in the antecedent of a sequent that sequent is trivially valid.

$$\overline{\Gamma_1, \perp, \Gamma_2 \vdash \Delta}$$
 ($\perp Ax$)

2.5.2 Conjunction Rules

On the right

A conjunction $(\phi \wedge \psi)$ is true when both ϕ is true and when ψ is true. Thus, the proof rule for a conjunction on the right is given as follows:

$$\frac{\Gamma \vdash \Delta_1, \phi, \Delta_2 \quad \Gamma \vdash \Delta_1, \psi, \Delta_2}{\Gamma \vdash \Delta_1, (\phi \land \psi), \Delta_2} \quad (\land R)$$

On the left

On the other hand, if we have a hypothesis that is a conjunction of the form $(\phi \wedge \psi)$, then we know both ϕ and ψ are true.

$$\frac{\Gamma_1, \phi, \psi, \Gamma_2 \vdash \Delta}{\Gamma_1, (\phi \land \psi), \Gamma_2 \vdash \Delta} \ (\land L)$$

2.5.3 Disjunction Rules

A disjunction $(\phi \lor \psi)$ is true when either ϕ is true or when ψ is true. Thus, the proof rule for proving a goal having disjunctive form is the following.

$$\frac{\Gamma \vdash \Delta_1, \phi, \psi, \Delta_2}{\Gamma, \vdash \Delta_1, (\phi \lor \psi), \Delta_2} \ (\lor R)$$

On the other hand, if we have a hypothesis that is a disjunction of the form $(\phi \lor \psi)$, then, since we don't know which of the disjuncts is true (but since we are assuming the disjunction is true, one of them must be), we must continue by cases on ϕ and ψ , showing that the sequent $\Gamma_1, \phi, \Gamma_2 \vdash \Delta$ is true and that the sequent $\Gamma_1, \psi, \Gamma_2 \vdash \Delta$ is as well.

$$\frac{\Gamma_1, \phi, \Gamma_2 \vdash \Delta \qquad \Gamma_1, \psi, \Gamma_2 \vdash \Delta}{\Gamma_1, (\phi \lor \psi), \Gamma_2 \vdash \Delta} \quad (\lorL)$$

2.5.4 Implication Rules

A implication $(\phi \Rightarrow \psi)$ is provable when, assuming ϕ , you can prove ψ . Thus, the proof rule for proving a goal having implicational form is the following.

$$\frac{\Gamma, \phi \vdash \Delta_1, \psi, \Delta_2}{\Gamma \vdash \Delta_1, (\phi \Rightarrow \psi), \Delta_2} \ (\Rightarrow R)$$

If we have a hypothesis that is a implication of the form $(\phi \Rightarrow \psi)$ and we wish to prove some formula in the conclusion Δ , working backward, we must show that adding ψ to the hypotheses proves Δ and also that adding ϕ to the conclusion $(i.e. \phi, \Delta)$ is provable. Structurally, this rule is the most complicated.

$$\frac{\Gamma_1, \Gamma_2 \vdash \phi, \Delta \quad \Gamma_1, \psi, \Gamma_2 \vdash \Delta}{\Gamma_1, (\phi \Rightarrow \psi), \Gamma_2 \vdash \Delta} \ (\Rightarrow L)$$

Note that if ϕ is in Γ then this is just like *Modus Ponens* since the left subgoal becomes an instance of the axiom rule.

2.5.5 Negation Rules

Since a negation $\neg \phi$ can be viewed as an abbreviation for $\phi \Rightarrow \bot$, the proof rule for negation is related to that of implication (see above.)

$$\frac{\Gamma, \phi \vdash \Delta_1, \Delta_2}{\Gamma \vdash \Delta_1, \neg \phi, \Delta_2} \ (\neg R)$$

If you have a negated formula $\neg \phi$ in the antecedent, working backward, you can swap the formula ϕ to the other side of the turnstile and try to prove it directly.

$$\frac{\Gamma_1, \Gamma_2 \vdash \phi, \Delta}{\Gamma_1, \neg \phi, \Gamma_2 \vdash \Delta} \ (\neg L)$$

2.6 Proofs

We have the proof rules, now we define what a proof is. A formal proof is a tree structure where the nodes of the tree are sequents, the leaves of the tree are instances of one of the axiom rules, and there is an edge between sequents if the sequents form an instance of some proof rule. We can formally describe an inductive data-structure for representing sequent proofs.

2.6. PROOFS 35

Definition 2.23 (proof tree) A proof tree having root sequent S is defined inductively as follows:

i.) If the sequent S is an instance of one of the axioms rules whose name is N, then

$$\overline{S}$$
 (N)

is a proof tree whose root is the sequent S.

ii.) If ρ_1 is a proof tree whose root is the sequent S_1 and, if

$$\frac{S_1}{S}$$
 (N)

is an instance of some proof rule having a single premise, then the tree

$$\frac{\dot{\rho}_1}{S}$$
 (N)

is a proof tree whose root is the sequent S.

iii.) If ρ_1 is a proof tree with root sequent S_1 and ρ_2 is a proof tree with root sequent S_2 and, if

$$\frac{S_1}{S} = \frac{S_2}{S} (N)$$

is an instance the proof rule which has two premises, then the tree

$$\frac{\vdots}{\stackrel{}{\rho_1}} \quad \frac{\vdots}{\stackrel{}{\rho_2}} \quad (N)$$

is a proof tree whose root is the sequent S.

Although proof trees were just defined by starting with the leaves and building them toward the root, the proof rules are typically applied in the reverse order, *i.e.* the goal sequent is scanned to see if it is an instance of an axiom rule, if so we're done. If the sequent is not an instance of an axiom rule and it contains some non-atomic formula on the left or right side, then the rule for the principle connective of that formula is matched against the sequent. The resulting substitution is applied to the schematic sequents in the premises of the rule. The sequents generated by applying the matching substitution to the premises

are placed in the proper positions relative to the goal. This process is repeated on incomplete leaves of the tree (leaves that are not instances of axioms) until all leaves are either instances of an axiom rule, or until all the formulas in the sequents at the leaves of the tree are atomic and are not instances of an axiom rule. In this last case, there is no proof of the goal sequent.

As characterized in [44], the goal directed process of building proofs, *i.e.* working backward from the goal, is a reductive process as opposed to the deductive process which proceeds forward from the axioms.

We present some examples.

Example 2.1. Consider the sequent $(p \lor q) \vdash (p \lor q)$. The following substitution verifies the match of the sequent against the goal of the axiom rule as follows:

$$\sigma_1 = \begin{cases} \Gamma_1 = [] \\ \Gamma_2 = [] \\ \Delta_1 = [] \\ \Delta_2 = [] \\ \phi = (p \lor q) \end{cases}$$

Thus, the following proof tree proves the sequent.

$$\overline{(p \lor q) \vdash (p \lor q)}$$
 (Ax)

Example 2.2. Consider the sequent $(p \lor q) \vdash (q \lor p)$. It is not an axiom, since $(p \lor q)$ is distinct from $(q \lor p)$. The sequent matches both the \lor L-rule and the \lor R-rule. We match sequent against the \lor R-rule which results in the following substitution:

$$\sigma_1 = \begin{cases} \Gamma := [(p \lor q)] \\ \Delta_1 := [] \\ \Delta_2 := [] \\ \phi := q \\ \psi := p \end{cases}$$

The sequent that results from applying this substitution to the schematic sequent in the premise of the rule $\vee R$ results in the sequent $(p \vee q) \vdash q, p$.

Thus far we have constructed the following partial proof:

$$\frac{(p \lor q) \vdash q, p}{(p \lor q) \vdash (q \lor p)} (\lor R)$$

Now we match the sequent on the incomplete branch of the proof against the \vee L-rule. This is the only rule that matches since the sequent is not an axiom and only contains one non-atomic formula, namely the $(q \vee p)$ on the left side. The match generates the following substitution.

$$\sigma_2 = \begin{cases} \Gamma_1 := [] \\ \Gamma_2 := [] \\ \Delta := [q, p] \\ \phi := q \\ \psi := p \end{cases}$$

Applying this substitution to the premises of the \vee L-rule results in the sequents $p \vdash q, p$ and $q \vdash q, p$. Placing them in their proper positions results in the following partial proof tree.

$$\frac{p \vdash q, p \qquad q \vdash q, p}{(p \lor q) \vdash q, p} (\lor L)$$
$$\frac{(p \lor q) \vdash (q \lor p)}{(p \lor q) \vdash (q \lor p)}$$

In this case, both incomplete branches are instances of the axiom rule. The matches are:

$$\sigma_{3} = \begin{cases} \Gamma_{1} := [] \\ \Gamma_{2} := [] \\ \Delta_{1} := [q] \\ \Delta_{2} := [] \\ \phi := p \end{cases} \qquad \sigma_{4} = \begin{cases} \Gamma_{1} := [] \\ \Gamma_{2} := [] \\ \Delta_{1} := [] \\ \Delta_{2} := [p] \\ \phi := q \end{cases}$$

These matches verify that the incomplete branches are indeed axioms and the final proof tree appears as follows:

$$\frac{\overline{p \vdash q, p} \text{ (Ax)} \quad \overline{q \vdash q, p} \text{ (Ax)}}{\frac{(p \lor q) \vdash q, p}{(p \lor q) \vdash (q \lor p)} \text{ (\lorR)}}$$

2.7 Some Useful Tautologies

The reader should try to prove the following tautologies. Recall that the symbol \top is an abbreviation for the true formula $\neg \bot$.

i.
$$\neg \neg \phi \Leftrightarrow \phi$$

ii.
$$\neg \phi \Leftrightarrow (\phi \Rightarrow \bot)$$

iii.
$$(\phi \Rightarrow \psi) \Leftrightarrow \neg \phi \lor \psi$$

iv.
$$\neg(\phi \land \psi) \Leftrightarrow (\neg \phi \lor \neg \psi)$$

v.
$$\neg(\phi \lor \psi) \Leftrightarrow (\neg \phi \land \neg \psi)$$

vi.
$$(\phi \lor \psi) \Leftrightarrow (\psi \lor \phi)$$

vii.
$$(\phi \land \psi) \Leftrightarrow (\psi \land \phi)$$

viii. $((\phi \lor \psi) \lor \varphi) \Leftrightarrow (\phi \lor (\psi \lor \varphi))$
ix. $((\phi \land \psi) \land \varphi) \Leftrightarrow (\phi \land (\psi \land \varphi))$
x. $(\phi \lor \bot) \Leftrightarrow \phi$
xi. $(\phi \land \top) \Leftrightarrow \phi$
xii. $(\phi \land \top) \Leftrightarrow \top$
xiii. $(\phi \land \bot) \Leftrightarrow \bot$
xiv. $(\phi \lor \neg \phi) \Leftrightarrow \top$
xv. $(\phi \land \neg \phi) \Leftrightarrow \bot$
xvi. $(\phi \land (\psi \lor \varphi)) \Leftrightarrow (\phi \land \psi) \lor (\phi \land \varphi)$
xvii. $(\phi \lor (\psi \land \varphi)) \Leftrightarrow (\phi \lor \psi) \land (\phi \lor \varphi)$
xviii. $(\phi \Rightarrow q) \lor (q \Rightarrow p)$

2.8 Complete Sets of Connectives

Definition 2.24 (Complete set) A set of connectives, C,

$$\mathcal{C} \subseteq \{\bot, \neg, \lor, \land, \Rightarrow, \Leftrightarrow\}$$

is *complete* if those connectives not in the set C can be defined in terms of the connectives that are in the set C.

Example 2.3. The following definitions show that the set $\{\neg, \lor\}$ is complete.

1.) $\bot \stackrel{\text{def}}{=} \neg(\phi \lor \neg \phi)$ 2.) $(\phi \land \psi) \stackrel{\text{def}}{=} \neg(\neg \phi \lor \neg \psi)$ 3.) $(\phi \Rightarrow \psi) \stackrel{\text{def}}{=} \neg \phi \lor \psi$ 4.) $(\phi \Leftrightarrow \psi) \stackrel{\text{def}}{=} \neg(\neg(\neg \phi \lor \psi) \lor \neg(\neg \psi \lor \phi))$

To verify that these definitions are indeed correct, you could verify that the columns of the truth table for the defined connective match (row-for-row) the truth table for the definition. Alternatively, you could replace the symbol " $\stackrel{\text{def}}{=}$ " by " \Leftrightarrow " and use the sequent proof rules to verify the resulting formulas, e.g. to prove the definition for \bot given above is correct, prove the sequent $\vdash \bot \Leftrightarrow \neg(\phi \lor \neg \phi)$. Another method of verification would be to do equational style proofs starting with the left-hand side of the definition and rewriting to the right hand side.

Here are example verifications using the equational style of proof. We label each step in the proof by the equivalence used to justify it or, if the step follows from a definition we say which one.

1.)
$$\bot \stackrel{\langle i \rangle}{\Longleftrightarrow} \neg \neg \bot \stackrel{\langle \top def \rangle}{\Longleftrightarrow} \neg \top \stackrel{\langle xiv \rangle}{\Longleftrightarrow} \neg (\phi \lor \neg \phi)$$

2.)
$$(\phi \land \psi) \stackrel{\langle i \rangle}{\Longleftrightarrow} \neg \neg (\phi \land \psi) \stackrel{\langle i v \rangle}{\Longleftrightarrow} \neg (\neg \phi \lor \neg \psi)$$

3.)
$$(\phi \Rightarrow \psi) \stackrel{\langle iii \rangle}{\Longleftrightarrow} \neg \phi \lor \psi$$

4.)
$$(\phi \Rightarrow \psi) \longleftrightarrow \psi \lor \psi$$

$$(\phi \Leftrightarrow \psi) \overset{\langle \Leftrightarrow def. \rangle}{\iff} (\phi \Rightarrow \psi) \land (\psi \Rightarrow \phi)$$

$$\overset{\langle iii \rangle}{\iff} (\neg \phi \lor \psi) \land (\psi \Rightarrow \phi)$$

$$\overset{\langle iii \rangle}{\iff} (\neg \phi \lor \psi) \land (\neg \psi \lor \phi)$$

$$\overset{\langle 2 \rangle}{\iff} \neg (\neg (\neg \phi \lor \psi) \lor \neg (\neg \psi \lor \phi))$$

Chapter 3

Boolean Algebra*

Propositional logic has an algebraic form first investigated by George Boole in 1840's. Arguably, Boole's algebraic and symbolic approach to logic was the first truly significant step forward in the development of logic since Aristotle; Boole's algebra was symbolic.

George Boole

George Boole (1815-1864) was an English mathematican and logician. His father was a shoemaker and George was largely self-taught. He became a schoolmaseter at age 16 and published his first mathematical paper at age 23. See [?] in [10] for more on Boole's life.

In the previous chaper we have presented propositional logic syntax and have give semantics (meaning) based on truth tables over the set of truth values $\{T, F\}$. An alternative meaning can be assigned to propositional formulas by translating them into algebraic form over the natural numbers and then looking at the congruences modulo 2, *i.e.* by claiming they're *congruent* to 0 or 1 depending on whether they're even or odd.

Such an interpretation is correct if it makes all the same formulas true.

3.1 Modular Arithmetic

Congruence (of which modular arithmetic is one kind) is an interesting topic of discrete mathematics in its own right. We will only present enough mate-

rial here to make the association between propositional logic and its algebraic interpretation.

Remark 3.1. Recall that for every integer a and every natural number m > 0, there exists a integers q and r where $0 \le r < m$ such that the following equation holds:

$$a = qm + r$$

We call q the quotient and r the remainder If r = 0 (there is no remainder) them we say m divides a e.g. $a \div m = q$.

Definition 3.1. Two integers are *congruent modulo 2*, if and only if they have the same remainder when divided by 2. In this case we write

$$a \equiv b \pmod{2}$$

Example 3.1.

$$\begin{array}{ll} 0\equiv 0 (\bmod{\,2}) & a=0, k=0, r=0 \\ 1\equiv 1 (\bmod{\,2}) & a=1, k=0, r=1 \\ 2\equiv 0 (\bmod{\,2}) & a=2, k=1, r=0 \\ 3\equiv 1 (\bmod{\,2}) & a=3, k=1, r=1 \\ 4\equiv 0 (\bmod{\,2}) & a=4, k=2, r=0 \\ 5\equiv 1 (\bmod{\,2}) & a=5, k=2, r=1 \end{array}$$

Theorem 3.1. The following three properties hold¹.

- i.) $a \equiv a \pmod{2}$
- ii.) If $a \equiv b \pmod{2}$ then $b \equiv a \pmod{2}$
- iii.) If $a \equiv b \pmod{2}$ and $b \equiv c \pmod{2}$ then $a \equiv c \pmod{2}$

Theorem 3.2. If $a \in \mathbb{Z}$ is even, then $a \equiv 0 \pmod{2}$ and if a is odd, then $a \equiv 1 \pmod{2}$.

Theorem 3.3. If $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$ then

$$a + b \equiv c + d \pmod{n}$$

 $a \cdot b \equiv c \cdot d \pmod{n}$

Example 3.2. Since $5 \equiv 3 \pmod{2}$ and $10 \equiv 98 \pmod{2}$

$$5 + 10 \equiv 3 + 98 \pmod{2}$$
 and $5 \cdot 10 \equiv 3 \cdot 98 \pmod{2}$

To see this note the following:

$$5+10=15$$
 and $15=7\cdot 2+1$, so $5+10\equiv 1 \pmod{2}$
 $3+98=101$ and $101=50\cdot 2+1$, so $3+98\equiv 1 \pmod{2}$
 so by properties (ii) and (iii) of Theorem 1.1
 $5+10\equiv 3+98 \pmod{2}$

Prove to yourself that $5 \cdot 10 \equiv 3 \cdot 98 \pmod{2}$.

 $^{^{1}\}mathrm{We}$ will see later in Chapter 7 that relations having these properties are called equivalence relations

Definition 3.2. We will write $n \pmod{2}$ to denote the remainder of $n \div 2$. So, $5 \pmod{2} = 1$ and $28 \pmod{2} = 0$.

Theorem 3.4. The following identities hold.

$$2p \equiv 0 \pmod{2}$$
$$p^2 \equiv p \pmod{2}$$

3.2 Translation from Propositional Logic

In this section we define a function that maps propositional formulas to algebraic formulas.

We define the translation (denoted $\mathcal{M}[\![\phi]\!]$) which maps propositional formulas to algebraic formulas by recursion on the structure of the formula ϕ .

We start the translation with falsity (\bot) and conjunction. Conjunction is easily seen to correspond to multiplication. Negation is defined next, and then using DeMorgan's laws, translations for disjunction and implication are given.

3.2.1 Falsity

We interpret \perp as 0, so the translation function maps \perp to 0, no matter what the assignment is.

$$\mathcal{M}[\![\bot]\!] = 0$$

3.2.2 Variables

Propositional variables are just mapped to variables in the algebraic language

$$\mathcal{M}[\![x]\!] = x$$

3.2.3 Conjunction

Consider the following tables for multiplication and the table for conjunction.

a	b	ab	a	b	$a \wedge b$
1	1	1	Τ	Τ	Т
1	0	0	Τ	\mathbf{F}	F
0	1	0	F	\mathbf{T}	F
0	0	0	F	F	F

This table is identical to the truth table for conjunction (\land) if we replace 1 by T, 0 by F and the symbol for multiplication (\cdot) by the symbol for conjunction (\land) . Thus, we get the following translation.

$$\mathcal{M}\llbracket\phi\wedge\psi\rrbracket = \mathcal{M}\llbracket\phi\rrbracket\cdot\mathcal{M}\llbracket\psi\rrbracket$$

3.2.4 Negation

Notice that addition by 1 modulo 2 toggles values.

$$1 + 1 = 2$$
 and $2 \equiv 0 \pmod{2}$ and $0 + 1 = 1$

The following tables show addition by 1 modulo 2 and the truth table for negation to illustrate that the translating negations to addition by 1 give the correct results.

a	$a+1 \pmod{2}$
1	0
0	1

a	$\neg a$
T	F
F	Γ

The translation is defined as follows:

$$\mathcal{M}\llbracket \neg \phi \rrbracket = (\mathcal{M}\llbracket \phi \rrbracket + 1)$$

3.2.5 Exclusive-Or

We might hope that disjunction would be properly modeled by addition ... "If wishes were horses, beggars would ride." Consider the table for addition modulo 2 and compare it with the table for disjunction – clearly they do not match.

a	b	$a + b \pmod{2}$
1	1	0
1	0	1
0	1	1
0	0	0

a	b	$a \lor b$
Т	Τ	Т
Τ	\mathbf{F}	${ m T}$
F	\mathbf{T}	${ m T}$
F	F	F

The problem is that $1+1 \equiv 0 \pmod{2}$ while we want that entry to be 1, *i.e.* if p and q are both T, $p \vee q$ should be T as well.

But the addition table does correspond to a useful propositional connective (one we haven't introduced so far) – $exclusive\ or$ – often written as $(p\oplus q)$ and which is true if one of the p or q is true $but\ not\ both$. It's truth table is given as follows:

a	b	$a \oplus b$
Т	Τ	F
Γ	\mathbf{F}	Γ
F	\mathbf{T}	${ m T}$
F	\mathbf{F}	F

3.2.6 Disjunction

We can derive disjunction using the following identity of propositional logic and the translation rules we have defined so far.

$$(p \vee q) \Leftrightarrow \neg(\neg p \wedge \neg q)$$

Exercise 3.1. Verify this identity by using a truth table.

By the translation we have so far

$$\begin{split} \mathcal{M} & \llbracket \neg (\neg p \wedge \neg q) \rrbracket \\ &= \mathcal{M} \llbracket (\neg p \wedge \neg q) \rrbracket + 1 \\ &= (\mathcal{M} \llbracket \neg p \rrbracket \cdot \mathcal{M} \llbracket \neg q \rrbracket) + 1 \\ &= ((\mathcal{M} \llbracket p \rrbracket + 1) \cdot (\mathcal{M} \llbracket q \rrbracket + 1)) + 1 \\ &= ((p+1) \cdot (q+1)) + 1 \\ &= pq + p + q + 1 + 1 \\ &= pq + p + q + 2 \end{split}$$

Since $2 \equiv 0 \pmod{2}$, we can cancel the 2 and end up with the term pq + p + q. Here are the tables (you might check for yourself that the entries are correct.)

a	b	$ab + a + b \pmod{2}$
1	1	1
1	0	1
0	1	1
0	0	0

a	b	$a \lor b$
Т	Т	Т
Τ	\mathbf{F}	T
F	\mathbf{T}	Т
F	F	F

So, we define the translation of disjunctions as follows.

$$\mathcal{M}\llbracket\phi\vee\psi
rbracket = pq + p + q$$
 where $p = \mathcal{M}\llbracket\phi
rbracket$ and $q = \mathcal{M}\llbracket\psi
rbracket$

3.2.7 Implication

The following propositional formula holds.

$$(p \Rightarrow q) \Leftrightarrow (\neg p \lor q)$$

Thus, implication can be reformulated in terms of negation and disjunction. Using the translation constructed so far, we get the following

$$\mathcal{M}[\![\neg p \lor q]\!] = \mathcal{M}[\![\neg p]\!] \cdot \mathcal{M}[\![q]\!] + \mathcal{M}[\![\neg p]\!] + \mathcal{M}[\![q]\!] = (\mathcal{M}[\![p]\!] + 1) \cdot q + (\mathcal{M}[\![p]\!] + 1) + q$$
$$= (p+1)q + (p+1) + q$$
$$= (pq + q + (p+1) + q$$
$$= (pq + 2q + (p+1)$$

Since $2q \equiv 0 \pmod{2}$, we can cancel the 2q term and the final formula for the translation of implication is pq + p + 1. And we get the following tables.

a	b	$ab + a + 1 \pmod{2}$
1	1	1
1	0	0
0	1	1
0	0	1

a	b	$a \Rightarrow b$
T	Τ	Т
T	\mathbf{F}	F
F	\mathbf{T}	Т
F	\mathbf{F}	Т

Thus,

$$\mathcal{M}[\![\phi \Rightarrow \psi]\!] = pq + p + 1$$
 where $p = \mathcal{M}[\![\phi]\!]$ and $q = \mathcal{M}[\![\psi]\!]$

3.3 The Final Translation

The following function recursively translates a propositional formula into an algebraic formula.

$$\begin{array}{rcl} \mathcal{M}[\![\bot]\!] &=& 0 \\ \mathcal{M}[\![x]\!] &=& x \\ \mathcal{M}[\![\neg\phi]\!] &=& \mathcal{M}[\![\phi]\!] + 1 \\ \mathcal{M}[\![\phi \wedge \psi]\!] &=& (\mathcal{M}[\![\phi]\!] \cdot \mathcal{M}[\![\psi]\!]) \\ \mathcal{M}[\![\phi \vee \psi]\!] &=& (\mathcal{M}[\![\phi]\!] \cdot \mathcal{M}[\![\psi]\!]) + \mathcal{M}[\![\phi]\!] + \mathcal{M}[\![\psi]\!] \\ \mathcal{M}[\![\phi \Rightarrow \psi]\!] &=& (\mathcal{M}[\![\phi]\!] \cdot \mathcal{M}[\![\psi]\!]) + \mathcal{M}[\![\phi]\!] + 1 \\ \end{array}$$

Example 3.3. Consider the formula $(p \lor q) \Rightarrow p$.

```
\begin{split} \mathcal{M}[\![(p \lor q) \Rightarrow p]\!] &= (\mathcal{M}[\![p \lor q]\!] \cdot \mathcal{M}[\![p]\!]) + \mathcal{M}[\![p \lor q]\!] + 1 \\ &= (((\mathcal{M}[\![p]\!] \cdot \mathcal{M}[\![q]\!]) + \mathcal{M}[\![p]\!] + \mathcal{M}[\![q]\!]) \cdot p) + ((\mathcal{M}[\![p]\!] \cdot \mathcal{M}[\![q]\!]) + \mathcal{M}[\![p]\!] + \mathcal{M}[\![q]\!]) + 1 \\ &= (((p \cdot q) + p + q) \cdot p) + ((p \cdot q) + p + q) + 1 \\ &= (((pq) + p + q)p) + ((pq) + p + q) + 1 \\ &= (p^2q + p^2 + pq) + pq + p + q + 1 \\ &= pq + p + pq + pq + p + q + 1 \\ &= 2(pq) + 2p + pq + q + 1 \\ &= pq + q + 1 \end{split}
```

We can check this for all combinations of values for p and q. Instead, we notice that the final formula is the same as the translation for implication of $q \Rightarrow p$. To check our work we could check that:

$$((p \lor q) \Rightarrow p) \Leftrightarrow (q \Rightarrow p)$$

We have presented propositional logic syntax and have give semantics (meaning) based on truth tables over the set of truth values $\{T,F\}$. An alternative meaning can be assigned to propositional formulas by translating them into algebraic form over the natural numbers and then looking at the congruences modulo 2, *i.e.* by claiming they're *congruent* to 0 or 1 depending on whether they're even or odd.

Such an interpretation is correct if it makes all the same formulas true.

3.4 Notes

In modern times, the Boolean algebras have been investigated abstractly [26].

Chapter 4

Predicate Logic

Since by the aid of speech and such communication as you receive here you must advance to perfection, and purge your will and correct the faculty which makes use of the appearances of things; and since it is necessary also for the teaching (delivery) of theorems to be effected by a certain mode of expression and with a certain variety and sharpness, some persons captivated by these very things abide in them, one captivated by the expression, another by syllogisms, another by sophisms, and still another by some other inn $(\pi \alpha \nu \delta \delta \kappa \epsilon o \nu)$ of this kind; and there they stay and waste away as if they were among the Sirens. Epictetus Discourses [13] II xxiii

In this section we extend propositional logic presented in the previous chapter to allow for *quantification* of the form:

```
for all things x, \cdots
for every x, \cdots
there exists a thing x such that \cdots
for some thing x, \cdots
```

Where " \cdots " is some statement referring to the thing denoted by the variable x that specifies a property of the thing denoted by x. The first two forms are called *universal quantifications*, they are different ways of asserting that everything satisfies some specified property. The second two forms are called *existential quantifications*, they assert that something exists having the specified property.

Symbolically, we write "for all things x, \cdots " as $(\forall x.\cdots)$ and "there exists a thing x such that \cdots " as $(\exists x.\cdots)$.

4.1 Predicates

To make this extension to our logic we add truth-valued functions called predicates which map elements from a *domain of discourse* to the values in \mathbb{B} .

Definition 4.1 (arity) A function is called n-ary if it takes n arguments, $0 \le n$. If a function is n - ary, we say it has arity n. A function of arity 0, i.e. a function that takes no arguments, is called a constant. We say a 0-ary function is nullary, 1-ary function is unary. We say a 2-ary function is binary and, although we could say 3-ary, 4-ary and 5-ary functions ternary, quaternary and quintary respectively, we do not insist on carrying this increasingly tortured nomenclature any further.

For example, consider the following functions:

$$\begin{aligned} &\text{i.)} & &f()=5\\ &\text{ii.)} & &g(x)=x+5\\ &\text{iii.)} & &h(x,y)=(x+y)-1\\ &\text{vi.)} & &f_1(x,y,z)=x*(y+z)\\ &\text{v.)} & &g_1(x,y,z,w)=f_1(x,y,w)-z \end{aligned}$$

The first function is nullary, it takes *no* arguments. Typically, we will drop the parentheses and write f instead of f(). The second function takes one argument and so is a *unary function*. The third function is *binary*. The fourth and fifth are 3-ary and 4-ary functions respectively.

Definition 4.2 (Boolean valued function) A function is *Boolean-valued* if its range is the set \mathbb{B} .

Definition 4.3 (predicate) A *predicate* is a n-ary Boolean-valued function over some domain of input.

Example 4.1. In ordinary arithmetic, the binary predicates include *less than* (written <) and *equals* (written =). Typically these are written in infix notation *i.e.* instead of writing =(x,y) and <(x,y) we write x=y and x<y; do not let this infix confuse you, they are still binary predicates. We can define other predicates in terms of these two. For example we can define a binary predicate *less-than-or-equals* as:

$$i \le j \stackrel{\text{def}}{=} ((i = j) \lor (i < j))$$

We could define a unary predicate which is true when its argument is equal to 0 and is false otherwise:

$$=_0 (i) \stackrel{\text{def}}{=} i = 0$$

We could define a 3-ary predicate which is true if k is strictly between i and j:

$$\mathtt{between}(i,j,k) \ \stackrel{\mathrm{def}}{=} \ ((i < k) \land (k < j))$$

Note that predicate constants act just like propositional variables.

Gottlob Frege

Gottlob Frege (1948 -1925) was a German mathematician, logician philosopher. He made the largest advance in logic since Aristotle by his discovery of the notion of and formalization of quantified variables. Frege was also a founder of analytic philosophy and the philosophy of language. A fundamental contribution there is that words obtain meanings in the context of their usages.

4.2 The Syntax of Predicate Logic

Predicate logic formulas are constructed from two sorts of components: terms and formulas which may contain terms.

- i.) parts that refer to objects and functions on those objects in the domain of discourse. These components of the formula are called *terms*.
- ii.) parts of a formula that denote truth values, these include predicates over the domain of discourse and formulas constructed inductively by connecting previously constructed formulas.

4.2.1 Variables

The definitions of the syntactic classes of terms and formulas (both defined below) depend on an unbounded collection of variable symbols, we call this set \mathcal{V} .

$$\mathcal{V} = \{x, y, z, w, x_1, y_1, z_1, w_1, x_2, \cdots \}$$

Unlike propositional variables, which denoted truth-values, these variables will range over individual elements in the domain of discourse. Like propositional variables, we assume the set \mathcal{V} is fixed (and so we do not include it among the parameters of the definitions that use it.)

4.2.2 Terms

The syntax of terms (the collection of which we will write as \mathcal{T}) is determined by a set of n-ary function symbols, call this set \mathcal{F} . We assume the arity of a function symbol can be determined.

Definition 4.4 (Terms) Terms are defined over a set of function symbols \mathcal{F} are given by the following grammar:

$$\mathcal{T}_{[\mathcal{F}]} ::= x \mid f(t_1, \dots t_n)$$

where:

 \mathcal{F} is a set of function symbols,

 $x \in \mathcal{V}$ is a variable,

 $f \in \mathcal{F}$ is a function symbol for a function of arity n, where $n \geq 0$ and $t_i \in \mathcal{T}_{[\mathcal{F}]}$ denote previously constructed terms, $1 \leq i \leq n$.

The syntax tree for a function application might appear as follows.

where the figure displayed as:

denotes the syntax tree for the term t_i .

Note that the definition of terms is parameterized by the set of function symbols. The set of terms in $\mathcal{T}_{[\mathcal{F}]}$ is determined by the set of function symbols in \mathcal{F} and by the arities of those symbols. Also, note that if n = 0, the term f() is a constant and we will write it simply as f.

Example 4.2. Let $\mathcal{F} = \{a, b, f, g\}$ where a and b are constants, f is a unary function symbol and g is a binary function symbol. In this case, \mathcal{T} includes:

$$\{a, x, f(a), f(x), g(a, a), g(a, x), g(a, f(a)), g(a, f(x)), g(x, a), g(x, x), g(x, f(a)), g(x, f(x)), b, y, f(b), f(y), f(f(a)), f(f(x)), f(g(a, a)), \cdots$$

4.2.3 Formulas

Definition 4.5 (Predicate Logic Formula) Formulas of predicate logic are defined over a set of function symbols \mathcal{F} and a set of predicate symbols \mathcal{P} and are given by the following grammar.

$$\mathcal{PL}_{[\mathcal{F},\mathcal{P}]} ::= \bot \mid P(t_1,\cdots,t_n) \mid \neg \phi \mid \phi \land \psi \mid \phi \lor \psi \mid \phi \Rightarrow \psi \mid \forall x.\phi \mid \exists x.\phi$$

where:

```
\mathcal{F} is set of function symbols,
```

 \mathcal{P} is set of predicate symbols,

 \perp is a constant symbol,

 $P \in \mathcal{P}$ is a predicate symbol for a predicate of arity n, where $n \geq 0$,

 $t_i \in \mathcal{T}_{[\mathcal{F}]}$ are terms, $1 \leq i \leq n$,

 $\phi, \psi \in \mathcal{PL}_{[\mathcal{F},\mathcal{P}]}$ are previously constructed formulas, and

 $x \in \mathcal{V}$ is a variable.

This definition is parameterized by the set of function symbols (\mathcal{F}) and the set of predicate symbols (\mathcal{P}) . As remarked above, a predicate symbol denoting a constant is the equivalent of a propositional variable presented in the previous chapter. Thus, predicate symbols are a generalization of propositional variables; when actual values are substituted for their variables, they denote truth values.

Predicate Logic extends Propositional Logic

Given a rich enough set of predicate symbols \mathcal{P} *i.e.* one that includes one constant symbol for each propositional variable, the language of predicate logic extends the language of propositional logic. Specifically, every formula of propositional logic is a formula of predicate logic. To see this note that: the constant symbol bottom (\bot) is included in both languages; the propositional variables are all included in \mathcal{P} as predicate symbols of arity 0. Also, every connective of propositional logic is also a connective of predicate logic. Thus, we conclude that every formula of propositional logic can be identified with a syntactically identical formula of predicate logic.

We will see in later sections that not only is the syntax preserved, both the semantics and the proof system are also preserved.

Some Examples

In the following examples we show uses of the quantifiers to formally encode some theorems of arithmetic.

Example 4.3. The *law of trichotomy* in the language of arithmetic says:

For all integers i and j, either: i is less than j or i is equal to j or j is less than i.

We can formalize this statement, making explicit that *less-than* and *equals* are binary predicates by writing them as lt(i, j) and eq(i, j) respectively:

$$\forall i. \forall j. (\mathtt{lt}(i,j) \lor (\mathtt{eq}(i,j) \lor \mathtt{lt}(j,i)))$$

We can rewrite the same statement as follows using the ordinary notation of arithmetic (which perhaps makes the fact that *less-than* and *equals* are predicates less obvious.)

$$\forall i. \forall j. (i < j \lor (i = j \lor j < i))$$

Example 4.4. As another example in the natural numbers.

For every natural number i either: i = 0 and there is no number less that i, or $i \neq 0$ and there exists a natural number j such that j < i.

We can formalize this statement as

$$\forall i. (i = 0 \land \forall j. \neg (j < i)) \lor (\neg (i = 0) \land \exists j. j < i))$$

Note that if the domain of discourse (the set from which the variables i and j take their values) is the natural numbers, the statement is a theorem. but it is false if the domain of discourse is the integers or reals. If we consider the integers and i=0 the first disjunct is false because, for example -1 is an integer less than zero. The second disjunct is false because i=0. Thus, if i=0 the formula is false.

Example 4.5. A version of the symmetric property for le on numbers can be stated as follows.

For all integers n and m, if $n \le m \le n$ then n = m.

This is formalized as follows:

$$\forall n. \forall m. (n \leq m \land m \leq n) \Rightarrow n = m$$

Note that the commonly used notation $(i \le j \le k)$ means $((i \le j) \land (j \le k))$.

Example 4.6. Consider the following statement:

For every natural number n which is greater than 1, either n is a prime number or there are two integers, both greater than 1 and less than n, whose product is n.

Let P be a unary predicate that is true if and only if its single argument is a prime number. Let \mathtt{mul} be a binary function symbol denoting multiplication. Then we formalize this statement as follows:

$$\forall n.n > 1 \Rightarrow (P(n) \lor \exists i. \exists j. \mathtt{between}(1, n, i) \land \mathtt{between}(1, n, j) \land \mathtt{mul}(i, j) = n)$$

We can rewrite this using standard mathematical notion as follows:

$$\forall n.n > 1 \Rightarrow (P(n) \lor \exists i. \exists j. (1 < i \land i < n) \land (1 < j \land j < n) \land i \cdot j = n)$$

Remark 4.1. The fact that these statements are true when the symbols are interpreted in the ordinary way we think of numbers is a fact that is external to logic. The predicates *less-than* and *equals* are particular predicates that have particular values when interpreted in ordinary arithmetic. If we swapped the interpretations of the symbols (*i.e.* if we interpreted i < j to be true

whenever i and j are equal numbers and interpreted i < j to be false otherwise; and similarly interpreted i = j to be true whenever i was less than j and false otherwise) we would still have well formed formulas in the language of arithmetic, but would interpret the meanings of the predicates differently. So the interpreted meaning of the predicate symbols and function symbols may have a bearing on the truth or falsity of a formula. We discuss this later in the section on semantics. Note that there are also formulas of predicate logic which do not depend on the meanings of the predicate and function symbols, we will give examples of such formulas in a later section.

4.3 Substitution

Substitution is the process of replacing a variable by some more complex piece of syntax such as a term or a formula. Readers are already familiar with this process, though there are is some added complexity that results from notations that bind variables e.g. summation $(\sum_{i=j}^k f(i))$, product $(\Pi_i = j^k f(i))$, integral $(\int_a^b f(x)dx)$, and the quantifiers of predicate logic $(\forall x.\phi(x))$ and $\exists x.\phi(x)$.

As an example of a simple substitution (without considerations related to bindings) consider the following example.

Example 4.7. If we consider the polynomial $2x^2-3x-1$ and say $x=y^2+2y+1$ then, by substitution we know

$$2x^{2} - 3x - 1 = 2(y^{2} + 2y + 1)^{2} - 3(y^{2} + 2y + 1) - 1$$

Here, we simply replaced *all* the occurrences of x in the polynomial $2x^2 - 3x - 1$ by the polynomial $y^2 + 2y + 1$. Of course, the rules of algebra would allow us to simplify the resulting expression further; but the process of substitution is one of replacing all the x's by $y^2 + 2y + 1$.

Summation is

4.3.1 Bindings and Variable Occurrences

Variable Occurrences

Definition 4.6 (occurs (in a term)) A variable x occurs in term t if and only if $x \in \mathsf{occurs}(t)$ where occurs is defined by recursion on the structure of the term as follows:

$$\operatorname{occurs}(z) = \{z\}$$
 $\operatorname{occurs}(f(t_1, \dots, t_n)) = \bigcup_{i=1}^n \operatorname{occurs}(t_i)$

Thus, the variable z occurs in a term which is simply a variable of the form z. Otherwise, a variable occurs in a term of the form $f(t_1, \dots, t_n)$ if and only

if it occurs in one of the terms t_i , $1 \le i \le n$. To collect them, we simply union all the sets of variables occurring in each t_i .

Definition 4.7 (occurs (in a formula)) A variable x occurs in formula ϕ if and only if $x \in \mathtt{occurs}(\phi)$ where occurs is defined by recursion on the structure of ϕ as follows.

```
\begin{array}{rcl} \operatorname{occurs}(P(t_1,\cdots,t_n)) &=& \bigcup_{i=1}^n \operatorname{occurs}(t_i) \\ & \operatorname{occurs}(\neg \phi) &=& \operatorname{occurs}(\phi) \\ & \operatorname{occurs}(\phi \land \psi) &=& \operatorname{occurs}(\phi) \cup \operatorname{occurs}(\psi) \\ & \operatorname{occurs}(\phi \lor \psi) &=& \operatorname{occurs}(\phi) \cup \operatorname{occurs}(\psi) \\ & \operatorname{occurs}(\phi \Rightarrow \psi) &=& \operatorname{occurs}(\phi) \cup \operatorname{occurs}(\psi) \\ & \operatorname{occurs}(\forall z.\phi) &=& \operatorname{occurs}(\phi) \cup \{z\} \\ & \operatorname{occurs}(\exists z.\phi) &=& \operatorname{occurs}(\phi) \cup \{z\} \end{array}
```

Thus, a variable x occurs in a formula of the form $P(t_1, \dots, t_n)$ if and only if x occurs in one of the terms $t_i, 1 \leq i \leq n$. The variable x occurs in $\neg \phi$ iff it occurs in ϕ . Similarly, it occurs in $\phi \land \psi$, $\phi \lor \psi$, and $\phi \Rightarrow \psi$ iff it occurs in ϕ or it occurs in ψ . The variable x occurs in $\forall x.\phi$ and $\exists x.\phi$ regardless of whether it occurs in ϕ .

Definition 4.8 (binding operator) In formulas of the form $\forall x.\phi$ and $\exists x.\phi$: the quantifier symbols " \forall " and " \exists " are binding operators, the occurrence of the variable x just after the quantifier is called the binding occurrence. The partial syntax tree of the formula ϕ , where sub-trees corresponding to sub-formulas of the form $\forall x.\psi$ and $\exists x.\psi$ have been removed, is called the scope of the binding. In the linear notation of formulas, we mark the missing sub-formulas by replacing them with the symbol " \Box ."

The idea of variable scope is a familiar one to programmers. In programming languages, the scope of a variable declaration specifies what part of the program text refers to which variable declaration. Different languages have different scoping rules, but the modern standard of *lexical scoping* (or *local scoping*) essentially follow the rules given for logic. These are very close to the rules used in C++ for example [11].

Example 4.8 () The scope of the leftmost binding occurrence of the variable x in the formula

$$\forall x. (P(x) \land \exists x. Q(x,y))$$
 is $(P(x) \land \Box)$

Where, \Box blocks out the part of the formula not in the scope of the first binding occurrence of x. The scope of the rightmost binding occurrence of x in the same formula is Q(x,y).

¹If n = 0, (i.e. if the arity of the function symbol is 0) then $\bigcup_{i=1}^{0} \mathsf{occurs}(t_i) = \{\}$

4.3.2 Free Variables

Definition 4.9 (free occurrence (in a term)) A variable x occurs free in term t if and only if $x \in FV(t)$ where FV is defined as follows:

$$\begin{array}{lcl} \mathtt{FV}(z) & = & \{z\} \\ \mathtt{FV}(f(t_1,\cdots,t_n)) & = & \bigcup_{i=1}^n \mathtt{FV}(t_i) \end{array}$$

Thus, a variable x occurs free in a term which is simply a variable of the form z if and only if x = z. Otherwise, x occurs in a term of the form $f(t_1, \dots, t_n)$ if and only if x occurs in one of the terms $t_i, 1 \le i \le n$.

Definition 4.10 (free occurrence (in a formula)) A variable x occurs free in formula ϕ if and only if $x \in FV(\phi)$ where:

$$\begin{array}{rcl} \mathrm{FV}(P(t_1,\cdots,t_n)) &=& \bigcup_{i=1}^n \mathrm{FV}(t_i) \\ & \mathrm{FV}(\neg\phi) &=& \mathrm{FV}(\phi) \\ & \mathrm{FV}(\phi \wedge \psi) &=& \mathrm{FV}(\phi) \cup \mathrm{FV}(\psi) \\ & \mathrm{FV}(\phi \vee \psi) &=& \mathrm{FV}(\phi) \cup \mathrm{FV}(\psi) \\ & \mathrm{FV}(\phi \Rightarrow \psi) &=& \mathrm{FV}(\phi) \cup \mathrm{FV}(\psi) \\ & \mathrm{FV}(\forall z.\phi) &=& \mathrm{FV}(\phi) - \{z\} \\ & \mathrm{FV}(\exists z.\phi) &=& \mathrm{FV}(\phi) - \{z\} \end{array}$$

Thus, a variable x occurs free in a formula iff it occurs in the formula and it is not in the scope of any binding of the variable x.

Bound Variables

Bound variables can only occur in formulas; this is because there are no binding operators in the language of terms.

Definition 4.11 (bound occurrence) A variable x occurs bound in formula ϕ if and only if $x \in BV(\phi)$ where BV is defined as follows:

```
\begin{array}{rcl} \operatorname{BV}(P(t_1,\cdots,t_n)) & = & \{\} \\ \operatorname{BV}(\neg\phi) & = & \operatorname{BV}(\phi) \\ \operatorname{BV}(\phi \wedge \psi) & = & \operatorname{BV}(\phi) \cup \operatorname{BV}(\psi) \\ \operatorname{BV}(\phi \vee \psi) & = & \operatorname{BV}(\phi) \cup \operatorname{BV}(\psi) \\ \operatorname{BV}(\phi \Rightarrow \psi) & = & \operatorname{BV}(\phi) \cup \operatorname{BV}(\psi) \\ \operatorname{BV}(\forall z.\phi) & = & \operatorname{BV}(\phi) \cup \{z\} \\ \operatorname{BV}(\exists z.\phi) & = & \operatorname{BV}(\phi) \cup \{z\} \end{array}
```

Thus, a variable x occurs bound in a formula ψ iff it contains a sub-formula of the form $\forall x.\phi$ or $\exists x.\phi$.

Discussion

The algorithms for computing the free variables and bound variables of a formula are given by recursion on the structure of the formula. By drawing a syntax tree,

it is easy to see which variables are free and which are bound. Choose a variable in the tree. It is bound if it is the left child of a quantifier or if, traversing the tree to its root a quantifier is encountered having the same variable as a left child. A variable is free if it is not the left child of a quantifier or if the path from the variable to the root of the syntax tree does not include a quantifier whose left child matches the variable.

Example 4.9. Consider the formula

$$(\forall x. \exists y. Q(x,y) \lor R(z)) \Rightarrow \forall z. R(x) \land Q(a,z)$$

The syntax tree appears as follows:

We can refer to variables by their left to right position in the formula. The leftmost x in the formula is bound because, in the syntax tree, it is a left child of the quantifier \forall . Similarly, the same holds for the leftmost y. The second occurrence of x in the formula is bound because on the path to the root of the syntax tree passes a \forall quantifier whose left child is also x. The second y in the formula is bound because the path to the root passes an \exists quantifier whose left child is a y. The first occurrence of the variable z in the formula is free because no quantifier on the path to the root has a z as a left child. The second z occurring in the formula is bound because it is the left child of an \exists quantifier. The third x is free. The constant symbol a is not a variable and so is neither free nor bound. The last z in the formula is bound by the \exists quantifier above it in the syntax tree.

Remark 4.2. Note that there are formulas where a variable may occur both free *and* occur bound, *e.g.* x in the example above. As another example where this happens, consider the formula $P(x) \wedge \forall x. P(x)$. The first occurrence of x is free and the second and third occurrences of x are bound.

4.3.3 Capture Avoiding Substitution*

Substitution is perhaps the most basic operation in mathematics and it is often performed without mention. But to actually specify capture avoiding substitution correctly reveals a sad history of error. Hilbert got it wrong in the first edition of his logic book with Ackermann [29], Quine got it wrong in the first edition of his logic book [45], and almost every automated theorem prover in existence has experienced bugs in their implementations of substitution at some time. Capture avoiding substitution is hard to get right.

More evidence for the pivotal role substitution plays: the only computation mechanism in Church's² lambda calculus [6] is substitution, and anything we currently count as algorithmically computable can be computed by a term of the lambda calculus.

For terms, there are no binding operators so capture avoiding substitution is just ordinary substitution -i.e. we just search for the variable to be replaced by a term and when one that matches is found, it is replaced.

Definition 4.12 (substitution (for terms)) Substitution is defined as follows:

$$x[x:=t] = t$$

$$z[x:=t] = z \text{ if } (x \neq z)$$

$$f(t_1, \dots, t_n)[x:=t] = f(t_1[x:=t], \dots t_n[x:=t])$$

The first clause of definition says that if you are trying to substitute the term t for free occurrences of the variable x in the term that consists of the single variable x, then go ahead and do it -i.e. replace x by t and that is the result of the substitution.

The second clause of the definition says that if you're looking to substitute t for x, but you're looking at a variable z where z is different from x, do nothing – the result of the substitution is just the variable z.

The third clause of the definition follows a standard pattern of recursion. The result of substituting t for free occurrences of x in the term $f(t_1, \dots, t_n)$, is the term obtained by substituting t for x in each of the n arguments $t_i, 1 \le i \le n$, and then returning the term assembled from these parts by placing the substituted argument terms in the appropriate places.

Note that substitution of term t for free occurrences of the variable x can never affect a function symbol (f) since function symbols are not variables.

²Alonzo Church was an American mathematician and logician who taught at Princeton University. Among other things, he is known for his development of λ -calculus, a notation for functions that serves as a theoretical basis for modern programming languages.

Definition 4.13 (Capture Avoiding Substitution) Capture avoiding substitution for formulas is defined as follows:

$$\begin{array}{rcl}
\bot[x:=t] &=& \bot \\
P(t_1,\cdots,t_n)[x:=t] &=& P(t_1[x:=t],\cdots,t_n[x:=t]) \\
(\neg\phi)[x:=t] &=& \neg(\phi[x:=t]) \\
(\phi\wedge\psi)[x:=t] &=& (\phi[x:=t]\wedge\psi[x:=t]) \\
(\phi\vee\psi)[x:=t] &=& (\phi[x:=t]\vee\psi[x:=t]) \\
(\phi\Rightarrow\psi)[x:=t] &=& (\phi[x:=t]\Rightarrow\psi[x:=t]) \\
(\forall x.\phi)[x:=t] &=& (\forall x.\phi) \\
(\forall y.\phi)[x:=t] &=& (\forall y.\phi[x:=t]) \\
&&&& \text{if } (x\neq y,y\not\in FV(t)) \\
(\forall y.\phi)[x:=t] &=& (\forall z.\phi[y:=z][x:=t]) \\
&&&& \text{if } (x\neq y,y\in FV(t),z\not\in (FV(t)\cup FV(\phi)\cup \{x\})) \\
(\exists x.\phi)[x:=t] &=& (\exists x.\phi) \\
(\exists y.\phi)[x:=t] &=& (\exists x.\phi) \\
(\exists y.\phi)[x:=t] &=& (\exists x.\phi[y:=z][x:=t]) \\
&&&& \text{if } (x\neq y,y\notin FV(t)) \\
(\exists y.\phi)[x:=t] &=& (\exists z.\phi[y:=z][x:=t]) \\
&&&& \text{if } (x\neq y,y\in FV(t),z\not\in (FV(t)\cup FV(\phi)\cup \{x\}))
\end{array}$$

4.4 Proofs

4.4.1 Proof Rules for Quantifiers

4.4.2 Universal Quantifier Rules

On the right

If we have a formula with the principle constructor \forall (say $\forall x.\phi$) on the right of a sequent then it is enough to prove the sequent where $\forall x.\phi$ has been replaced by the formula $\phi[x:=y]$, where y is a new variable not occurring free in any formula of the sequent. Choosing a new variable not occurring free anywhere in the sequent, to replace the bound variable x has the effect of selecting an arbitrary element from the domain of discourse i.e. by choosing a completely new variable, we know nothing about it — except that it stands for some element of the domain of discourse.

$$\frac{\Gamma \vdash \Delta_1, \phi[x := y], \Delta_2}{\Gamma \vdash \Delta_1, \forall x. \phi, \Delta_2} \quad (\forall \mathbf{R}) \qquad \text{where variable } y \text{ is not free in any formula of } (\Gamma \cup \Delta_1 \cup \{\forall x. \phi\} \cup \Delta_2).$$

Since y is not free in any formula of the sequent, y represents an arbitrary element of the domain of discourse.

4.4. PROOFS 59

On the left

The rule for a \forall on the left says, to prove a sequent with a \forall occurring as the principle connective of a formula on the left side (say $\forall x.\phi$) it is enough to prove the sequent obtained by replacing $\forall x.\phi$ by the formula $\phi[x:=t]$ where t is any term 3 .

 $\frac{\Gamma_1, \phi[x := t], \Gamma_2 \vdash \Delta}{\Gamma_1, \forall x. \phi, \Gamma_2 \vdash \Delta} \quad (\forall \mathbf{L}) \quad \text{where } t \in \mathcal{T}.$

We justify this by noting that if we assume $\forall x.\phi$ (this is what it means to be on the left) then it must be the case that $\phi[x:=t]$ is true for any term t what-so-ever.

4.4.3 Existential Quantifier Rules

On the right

To prove a formula of the form $\exists x. \phi$ it is enough to find a term t such that $\phi[x:=t]$ can be proved.

$$\frac{\Gamma \vdash \Delta_1, \phi[x := t], \Delta_2}{\Gamma \vdash \Delta_1, \exists x. \phi, \Delta_2} \ (\exists \mathbf{R}) \quad \text{where } t \in \mathcal{T}.$$

Note that the choice of t may require some creative thought.

Definition 4.14 (existential witness) The term t substituted for the bound variables in an $\exists R$ -rule is called the *existential witness*.

On the left

The rule for a \exists on the left says, to prove a sequent with a \exists occurring as the principle connective of a formula on the left side, it is enough to prove the sequent obtained by replacing the bound variable of the forall by an arbitrary variable y where y is not free in any formula of the sequent.

$$\frac{\Gamma_1, \phi[x := y], \Gamma_2 \vdash \Delta}{\Gamma_1, \exists x. \phi, \Gamma_2 \vdash \Delta} \quad (\exists L) \qquad \text{where variable } y \text{ is not free in any formula of } (\Gamma_1 \cup \Gamma_2 \cup \{\exists x. \phi\} \cup \Delta).$$

Since we know $\exists x.\phi$, we know something (call it y) exists which satisfies $\phi[x:=y]$, but we can not assume anything about y other than that it has been arbitrarily chosen from the domain of discourse.

 $^{^3}$ If you further constrain that the only variables you use to construct t are among the free variables occuring in the sequent, then your proof is valid in every domain of discourse, including the empty one. Logics allowing the empty domain of discourse are called Free Logics \cite{T} ?

4.4.4 Some Proofs

The mechanisms for checking whether a labeled tree of sequents is a proof is the same here as presented in Chap. 2 on propositional logic. But in the presence of quantifiers, finding proofs is no longer a strictly mechanical process. Creativity may be required.

Example 4.10. Consider the sequent $\vdash (\forall x.P(x)) \Rightarrow (\exists y.P(y))$. Surely if everything satisfies property P, then something satisfies property P.

Initially, the only rule that applies is the propositional \Rightarrow R-rule. It matches this sequent by the following substitution:

$$\sigma_1 = \begin{cases} \Gamma := []\\ \Delta_1 := []\\ \Delta_2 := []\\ \phi := (\forall x. P(x))\\ \psi := (\exists y. P(y)) \end{cases}$$

The result of applying this substitution to the to premise of the \Rightarrow R-rule results in the partial proof tree of the following form:

$$\frac{\forall x. P(x) \vdash \exists y. P(y)}{\vdash \forall x. P(x) \Rightarrow \exists y. P(y)} (\Rightarrow R)$$

Now, to continue developing the incomplete branch, we examine the $\forall L$ -rule and the $\exists R$ -rule. Both require the prover to select a term to substitute into the scope of the bound variable. In this case, any term will do, as long as we use the same one on both sides. All variables are terms, so just use z, and we arbitrarily choose to apply the $\forall L$ -rule first.

The match of the sequent against the goal of the rule is given by the substitution:

$$\sigma_2 = \begin{cases} \Gamma := []\\ \Delta_1 := []\\ \Delta := [\exists y.P(y)]\\ \phi := P(x)\\ x := x\\ t := z \end{cases}$$

The term t we have chosen is the variable z. Applying the substitution to the premise of the rule results in the sequent $P(x)[x:=z] \vdash \exists y. P(y)$. Note that P(x)[x:=z] = P(z), thus the resulting partial proof is:

$$\frac{P(z) \vdash \exists y. P(y)}{\forall x. P(x) \vdash \exists y. P(y)} (\forall L)$$
$$\vdash \forall x. P(x) \Rightarrow \exists y. P(y)$$

4.4. PROOFS 61

Now, the only rule that applies is the $\exists R$ -rule. We choose t to be z and match by the following substitution.

$$\sigma_{3} = \begin{cases} \Gamma := [P(z)] \\ \Delta_{1} := [] \\ \Delta_{2} := [] \\ \phi := P(y) \\ x := y \\ t := z \end{cases}$$

The partial proof generated by applying this rule with this substitution is as follows:

$$\frac{P(z) \vdash P(z)}{P(z) \vdash \exists y. P(y)} (\exists R)$$
$$\frac{\forall x. P(x) \vdash \exists y. P(y)}{\forall x. P(x) \Rightarrow \exists y. P(y)} (\Rightarrow R)$$

Now, the incomplete branch of the proof is an instance of an axiom, where the substitution verifying the match is given as follows:

$$\sigma_4 = \begin{cases} \Gamma_1 := [] \\ \Gamma_2 := [] \\ \Delta_1 := [] \\ \Delta_2 := [] \\ \phi := P(z) \end{cases}$$

Finally, we have the following complete proof tree.

$$\frac{-\frac{-P(z) \vdash P(z)}{P(z) \vdash \exists y. P(y)} (\exists R)}{P(z) \vdash \exists y. P(y)} (\forall L)$$
$$\frac{-\forall x. P(x) \vdash \exists y. P(y)}{\vdash \forall x. P(x) \Rightarrow \exists y. P(y)} (\Rightarrow R)$$

Example 4.11. Consider the sequent

$$(\forall x.P(x)) \Rightarrow S \vdash \exists x.(P(x) \Rightarrow S)$$

Both $\Rightarrow L$ and $\exists R$ rules apply. The rule of thumb says to wait to apply $\exists R$ until as late as possible so we apply the $\Rightarrow R$ rule first.

$$\frac{ \vdash \forall x. P(x), \exists x. (P(x) \Rightarrow S) \qquad S \vdash \exists x. (P(x) \Rightarrow S)}{(\forall x. P(x)) \Rightarrow S \vdash \exists x. (P(x) \Rightarrow S)} \ (\Rightarrow L)$$

On the left branch, still avoiding the $\exists R$ rule, we apply $\forall R$ using the variable x which is not free in the sequent.

$$\frac{ \vdash P(x), \exists x. (P(x) \Rightarrow S)}{\vdash \forall x. P(x), \exists x. (P(x) \Rightarrow S)} (\forall R) \\ \frac{}{(\forall x. P(x)) \Rightarrow S \vdash \exists x. (P(x) \Rightarrow S)} (\Rightarrow L)$$

Now, on the left branch, the only rule that applies is $\exists R$ so we apply it using x. as the witness.

$$\frac{ - \vdash P(x), P(x) \Rightarrow S}{\vdash P(x), \exists x. (P(x) \Rightarrow S)} (\exists R)
\vdash \forall x. P(x), \exists x. (P(x) \Rightarrow S)
(\forall R)
S \vdash \exists x. (P(x) \Rightarrow S)
(\forall x. P(x)) \Rightarrow S \vdash \exists x. (P(x) \Rightarrow S)$$
(\$\Rightarrow\$L\$)

Now, $\Rightarrow R$ and then the axiom rule finish off this branch.

$$\frac{P(x) \vdash P(x), S}{\vdash P(x), P(x) \Rightarrow S} \Rightarrow R$$

$$\vdash P(x), \exists x. (P(x) \Rightarrow S) (\exists R)$$

$$\vdash \forall x. P(x), \exists x. (P(x) \Rightarrow S) (\forall R)$$

$$(\forall x. P(x)) \Rightarrow S \vdash \exists x. (P(x) \Rightarrow S)$$

$$(\Rightarrow L)$$

On the unfinished right branch, the oly rule that applies is $\exists R$. Notice that it does not really matter which term we choose as the witness.

$$\frac{P(x) \vdash P(x), S}{\vdash P(x), P(x) \Rightarrow S} \xrightarrow{\Rightarrow R} \\
\vdash P(x), P(x) \Rightarrow S \xrightarrow{} (\exists R) \\
\vdash P(x), \exists x. (P(x) \Rightarrow S) \xrightarrow{} (\forall R) \xrightarrow{} S \vdash P(z) \Rightarrow S \xrightarrow{} (\exists R) \\
\vdash \forall x. P(x), \exists x. (P(x) \Rightarrow S) \xrightarrow{} (\exists R) \xrightarrow{} (\forall x. P(x)) \Rightarrow S \vdash \exists x. (P(x) \Rightarrow S) \xrightarrow{} (\Rightarrow L)$$

Now, applying $\Rightarrow R$ and the axiom rule completes the proof.

$$\frac{P(x) \vdash P(x), S}{\vdash P(x), P(x) \Rightarrow S} \xrightarrow{\Rightarrow R} (AX)$$

$$\frac{\vdash P(x), \exists x. (P(x) \Rightarrow S)}{\vdash \forall x. P(x), \exists x. (P(x) \Rightarrow S)} (\forall R)$$

$$\frac{\vdash \forall x. P(x), \exists x. (P(x) \Rightarrow S)}{(\forall x. P(x)) \Rightarrow S} (\forall R)$$

$$\frac{\vdash \forall x. P(x), \exists x. (P(x) \Rightarrow S)}{(\forall x. P(x)) \Rightarrow S} (\exists R)$$

$$\frac{\vdash \forall x. P(x), \exists x. (P(x) \Rightarrow S)}{(\forall x. P(x)) \Rightarrow S} (\Rightarrow L)$$

4.4.5 Translating Sequent Proofs into English

Gentzen⁴ devised the sequent proof system to reflect how proofs are done in ordinary mathematics. The formal sequent proof is a tree structure and we

⁴Gentzen, Gerhard

4.4. PROOFS 63

could easily write and algorithm that would recursively translate sequent proofs into English. The rules for such a transformation are given in the following sections.

Axiom Rules

The axiom rule has the form:

$$\Gamma_1, \phi, \Gamma_2 \vdash \Delta_1, \phi, \Delta_2$$
 (Ax)

To translate an instance of the axiom rule, we say:

"But we know ϕ is true since we have assumed it."

or

" ϕ holds since we assumed ϕ to be true and so we are done."

The \perp on the left axiom is formally given as follows:

$$\Gamma_1, \bot, \Gamma_2 \vdash \Delta$$
 ($\bot Ax$)

We say:

"But now we have assumed false and the theorem is true."

or

"But now, we have derived a contradiction and the theorem is true."

Conjunction Rules

The right conjunction rule is:

$$\frac{\Gamma \vdash \Delta_1, \phi, \Delta_2 \quad \Gamma \vdash \Delta_1, \psi, \Delta_2}{\Gamma \vdash \Delta_1, (\phi \land \psi), \Delta_2} \ (\land R)$$

We say:

"To show $\phi \wedge \psi$ there are two cases, (case 1.) $\langle \langle insert\ translated\ proof\ of\ the\ left\ branch\ here \rangle \rangle$ (case 2.) $\langle \langle insert\ translated\ proof\ of\ the\ right\ branch\ here. \rangle \rangle$."

Or we say:

"To show $\phi \wedge \psi$ we must show ϕ and we must show ψ . To see that ϕ holds: $\langle\langle insert\ translated\ proof\ of\ left\ branch\ here \rangle\rangle$ This completes the proof of ϕ . To see that ψ holds: $\langle\langle insert\ translated\ proof\ of\ right\ branch\ here. \rangle\rangle$ This completes the proof of $\phi \wedge \psi$."

The left conjunction rule is stated as follows:

$$\frac{\Gamma_1, \phi, \psi, \Gamma_2 \vdash \Delta}{\Gamma_1, (\phi \land \psi), \Gamma_2 \vdash \Delta} \ (\land L)$$

To translate this rule, we say:

"Since we have assumed $\phi \wedge \psi$, we assume ϕ and we assume ψ . $\langle \langle Insert\ translated\ proof\ of\ the\ premise\ here. \rangle \rangle$ "

Disjunction

The formal rule for a disjunction on the right is:

$$\frac{\Gamma \vdash \Delta_1, \phi, \psi, \Delta_2}{\Gamma, \vdash \Delta_1, (\phi \lor \psi), \Delta_2} \ (\lor R)$$

To translate, we say:

"To show $\phi \lor \psi$ we must either show ϕ or show ψ . $\langle\langle Insert\ translated\ proof\ of\ the\ premise\ here. \rangle\rangle$ "

The sequent proof rule for disjunction on the left is:

$$\frac{\Gamma_1, \phi, \Gamma_2 \vdash \Delta \quad \Gamma_1, \psi, \Gamma_2 \vdash \Delta}{\Gamma_1, (\phi \lor \psi), \Gamma_2 \vdash \Delta} \ (\lor L)$$

To translate, we say:

"Since we know $\phi \lor \psi$ we proceed by cases: assume ϕ , then $\langle \langle insert\ translated\ proof\ from\ the\ left\ branch\ here \rangle \rangle$. On the other hand, if we assume ψ : $\langle \langle insert\ translated\ proof\ from\ right\ branch\ here. \rangle \rangle$ "

or, we say:

"Since $\phi \lor \psi$ holds, we proceed consider the two cases: (case 1. assume ϕ :) $\langle \langle insert\ translated\ proof\ from\ the\ left\ branch\ here \rangle \rangle$. (case 2. assume ψ :) $\langle \langle insert\ translated\ proof\ from\ right\ branch\ here. \rangle \rangle$

Implication Rules

The formal rule for an implication on the right is:

$$\frac{\Gamma, \phi \vdash \Delta_1, \psi, \Delta_2}{\Gamma \vdash \Delta_1, (\phi \Rightarrow \psi), \Delta_2} \ (\Rightarrow R)$$

We say:

4.4. PROOFS 65

"To prove $\phi \Rightarrow \psi$, assume ϕ and show ψ , $\langle\langle insert\ translated\ proof\ of\ the\ subgoal\ here.\rangle\rangle$."

or simply say:

"Assume ϕ and show one of Δ , $\langle\langle insert\ translated\ proof\ of\ the\ subgoal\ here. \rangle\rangle$."

The formal rule for an implication on the left is:

$$\frac{\Gamma_{1}, \Gamma_{2} \vdash \phi, \Delta \quad \Gamma_{1}, \psi, \Gamma_{2} \vdash \Delta}{\Gamma_{1}, (\phi \Rightarrow \psi), \Gamma_{2} \vdash \Delta} \ (\Rightarrow L)$$

We say:

"Since we have assumed $\phi \Rightarrow \psi$, if we show ϕ we can assume ψ to show one of Δ . To see that ϕ holds: $\langle\langle insert\ translated\ proof\ of\ left\ branch\ here. \rangle\rangle$ Now, we assume ψ . $\langle\langle Insert\ translated\ proof\ of\ right\ branch\ here. \rangle\rangle$ "

Negation

The formal rule for a negation on the right is:

$$\frac{\Gamma, \phi \vdash \Delta_1, \Delta_2}{\Gamma \vdash \Delta_1, \neg \phi, \Delta_2} \ (\neg R)$$

To translate, we say:

"Assume ϕ . $\langle\langle Insert\ translated\ proof\ of\ premise\ here. \rangle\rangle$ "

or we say

"Since we must show $\neg \phi$, assume ϕ . $\langle \langle Insert\ translated\ proof\ of\ premise\ here. \rangle \rangle$ "

The formal rule for a negation on the left is:

$$\frac{\Gamma_1, \Gamma_2 \vdash \phi, \Delta}{\Gamma_1, \neg \phi, \Gamma_2 \vdash \Delta} \ (\neg L)$$

To translate, we say:

"Since we have assumed $\neg \phi$, we show ϕ . $\langle \langle Insert\ translated\ proof\ of\ premise\ here. \rangle \rangle$ "

or, we say:

"Since we know $\neg \phi$, we prove ϕ . $\langle \langle Insert\ translated\ proof\ of\ the\ premise\ here. \rangle \rangle$ "

 $^{^5 {\}rm If} \; \Delta$ is a single formula drop the phrase "one of". If Δ is empty say "False" instead.

Universal Quantifier

The sequent proof rule for a \forall on the right is:

$$\frac{\Gamma \vdash \Delta_1, \phi[x := y], \Delta_2}{\Gamma \vdash \Delta_1, \forall x. \phi, \Delta_2} \ (\forall \mathbf{R}) \qquad \text{where variable } y \text{ is not free in any formula of } (\Gamma \cup \Delta_1 \cup \{\forall x. \phi\} \cup \Delta_2).$$

We say:

"To prove $\forall x. \phi$, choose an arbitrary y and show $\phi[x := y]^{-6}$. $\langle\langle Insert\ translated\ proof\ of\ the\ premise\ here. \rangle\rangle$ "

or, we simply say:

"Pick an arbitrary y and show $\phi[x:=y]$. $\langle\langle Insert\ translated\ proof\ of\ the\ premise\ here.\rangle\rangle$ "

The formal rule for \forall on the left says:

$$\frac{\Gamma_1, \phi[x := t], \Gamma_2 \vdash \Delta}{\Gamma_1, \forall x. \phi, \Gamma_2 \vdash \Delta} \ (\forall \mathbf{L}) \qquad \text{where } t \in \mathcal{T}.$$

To translate this rule, we say:

" Since we know that for every x, ϕ is true, assume $\phi[x:=t]$. $\langle\langle Insert\ translated\ proof\ of\ premise\ here. \rangle\rangle$ "

or, we say:

"Assume $\phi[x := t]$."

Existential Quantifiers

The rule for \exists on the right is:

$$\frac{\Gamma \vdash \Delta_1, \phi[x := t], \Delta_2}{\Gamma \vdash \Delta_1, \exists x. \phi, \Delta_2} \ (\exists \mathbf{R}) \quad \text{where } t \in \mathcal{T}.$$

We say:

"Let t be the witness for x in $\exists x.\phi$. We must show $\phi[x:=t].\langle\langle Insert\ translated\ proof\ of\ the\ premise\ here.\rangle\rangle$ "

or, we say

"To show $\exists x.\phi$, we choose the witness t and show $\phi[x:=t]$. $\langle\langle Insert\ translated\ proof\ of\ the\ premise\ here. \rangle\rangle$ "

⁶In this rule, and those that follow, we say $\phi[x := y]$ to be the formula that results from the substitution of y for x in phi, i.e. actually do the substitution before writing the formula in your proof.

4.4. PROOFS 67

The rule for \exists on the left is:

$$\frac{\Gamma_1, \phi[x := y], \Gamma_2 \vdash \Delta}{\Gamma_1, \exists x. \phi, \Gamma_2 \vdash \Delta} (\exists L) \qquad \text{where variable } y \text{ is not free in any formula of } (\Gamma \cup \Delta_1 \cup \{\exists x. \phi\} \cup \Delta_2).$$

We say:

"Since we know $\exists x.\phi$, pick an arbitrary element of the domain of discourse, call it y, and assume $\phi[x:=y]$. $\langle\langle Insert\ translated\ proof\ of\ the\ premise\ here.\rangle\rangle$ "

or, we say:

"we know ϕ , holds for arbitrate x, so assume $\phi[x := y]$. $\langle\langle Insert\ translated\ proof\ of\ the\ premise\ here. \rangle\rangle$ "

Examples We follow this discussion with a couple of examples.

Example 4.12. Consider the following sequent proof from **Example** 4.10.

$$\frac{\frac{P(z) \vdash P(z)}{P(z) \vdash \exists y. P(y)} (\exists R)}{\frac{\forall x. P(x) \vdash \exists y. P(y)}{\forall x. P(x) \Rightarrow \exists y. P(y)} (\Rightarrow R)}$$

We apply the translation algorithm step by step working from the bottom up. Since the first rule is the $\Rightarrow R$ rule, we start as follows:

To prove $\forall x. P(x) \Rightarrow \exists y. P(y)$ assume $\forall x. P(x)$ and show $\exists y. P(y)$. $\langle \langle Insert\ translated\ proof\ here. \rangle \rangle$

Since the next rule in the proof (working toward the top) is $\forall R$ we extend the translation as follows.

To prove $\forall x. P(x) \Rightarrow \exists y. P(y)$ assume $\forall x. P(x)$ and show $\exists y. P(y)$. Since we know $\forall x. P(x)$ is true, we assume P(z). $\langle \langle More\ translation\ qoes\ here \rangle \rangle$

Now we apply the $\exists R$ translation rule, filling in more of the proof.

To prove $\forall x. P(x) \Rightarrow \exists y. P(y)$ assume $\forall x. P(x)$ and show $\exists y. P(y)$. Since we know $\forall x. P(x)$ is true, we assume P(z). Let z be the witness for y in $\exists y. P(y)$. We must show P(z). $\langle\langle More\ translation\ goes\ here.\rangle\rangle$

Finally, we finish the translation by inserting the translation of the axiom rule.

To prove $\forall x. P(x) \Rightarrow \exists y. P(y)$ assume $\forall x. P(x)$ and show $\exists y. P(y)$. Since we know $\forall x. P(x)$ is true, we assume P(z). Let z be the witness for y in $\exists y. P(y)$. We must show P(z). P(z) holds since we assumed P(z) to be true and so we are done.

Example 4.13. Consider the proof from **Example** 4.11.

$$\frac{P(x) \vdash P(x), S}{\vdash P(x), P(x) \Rightarrow S} \xrightarrow{\Rightarrow R} (AX)$$

$$\frac{\vdash P(x), \exists x. (P(x) \Rightarrow S)}{\vdash \forall x. P(x), \exists x. (P(x) \Rightarrow S)} (\forall R)$$

$$\frac{\vdash \forall x. P(x), \exists x. (P(x) \Rightarrow S)}{\vdash \forall x. P(x), \exists x. (P(x) \Rightarrow S)} (\forall R)$$

$$\frac{\vdash \forall x. P(x), \exists x. (P(x) \Rightarrow S)}{\vdash \exists x. (P(x) \Rightarrow S)} (\Rightarrow L)$$

Here is the resulting English translation.

Since we have assumed $(\forall x.P(x)) \Rightarrow S$, we show $(\forall x.P(x))$ and separately assume S to show $\exists x.(P(x) \Rightarrow S)$. To see that $\forall x.P(x)$ holds: Pick an arbitrary x and show P(x). Let x be the witness for x in $\exists x.(P(x) \Rightarrow S)$. We must show $P(x) \Rightarrow S$. Assume P(x) and show one of S, P(x). But we know P(x) is true since we have assumed it.

Now, we assume S. To show $\exists x.(P(x) \Rightarrow S)$, we choose the witness z and show $P(z) \Rightarrow S$. Assume P(z) and show S. Be we know S is true because we have assumed it.

Part II Sets, Relations and Functions

Chapter 5

Set Theory

Georg Cantor

Georg Cantor (1845-1918) was a German mathematician and logician who created set theory. See [15]. To many, set theory is is the universal language of mathematics. Using set theory Cantor was able to characterize much of the known mathematics at the time and proved many fundamental theorems about set theoretic structures.

In this chapter we present elementary set theory. Set theory serves as a foundation for mathematics¹, i.e. in principle, we can describe all of mathematics using set theory.

Our presentation is based on Mitchell's [39]. A classic presentation can be found in Halmos' [27] Naive Set Theory.

 $^{^{1}}$ We say it is "a foundation" since alternative approaches to the foundations of mathematics exist e.g. category theory [33, 42] or type theory [?] can also serve as the foundations of mathematics. Set theory is the foundational theory accepted by most working mathematicians.

5.1 Introduction

Set theory is the mathematical theory of collections. A set is a collection of abstract objects where the order and multiplicity of the elements is not taken into account. This is in contrast to other structures like lists or sequences, where both the order of the elements and the number of times they occur (multiplicity) are taken into account when determining if two are equal. For equality on sets, all that matters is membership. Two sets are considered equal if they have the same elements.

5.1.1 Informal Notation

From given objects we can form *sets* by collecting together some or all of the given objects.

We write down small sets by enclosing the elements in curly brackets "{" and "}". Thus, the following are sets.

$$\{a, 1, 2\}$$

 $\{a\}$
 $\{1, 2, a\}$
 $\{a, a, a\}$

Sometimes, if a pattern is obvious, we use an informal notation to indicate larger sets without writing down the names of all the elements in the set. For example, we might write:

$$\begin{cases} \{0,1,2,...,10\} \\ \{0,2,4,...,10\} \end{cases}$$

$$\{2,3,5,7,\cdots,23,29\}$$

$$\{0,1,2,...\}$$

$$\{...,-1,0,1,2,...\}$$

These marks denote: the set of natural numbers from zero to ten; the set of even numbers from zero to ten; the set consisting of the first 10 prime numbers, the set of natural numbers; and the set of integers. The sequence of three dots ("...") notation is called an *ellipsis* and indicates that the some material has been omitted intensionally. In describing sets, the cases of the form $\{...,\Gamma\}$ or $\{\Gamma,...\}$ indicate some pattern (which should be obvious from Γ) repeats indefinitely. We present more formal ways of concisely writing down these sets later in this chapter.

5.1.2 Membership is primitive

The objects included in a set are called the *elements* or *members* of the set.

Membership is a primitive notion in set theory, as such it is not formally defined. Rather, it should be thought of as an undefined primitive relation; it is used in set theory to characterize the properties of sets.

We indicate an object x is a member of a set A by writing

$$x \in A$$

We sometimes will also say, "A contains x" or "x is in A".

The statement $x \in A$ is a true proposition if x actually is in A. We read the symbol " \notin " as not in and define it by negating the membership proposition:

$$x \not\in A \stackrel{\mathrm{def}}{=} \neg (x \in A)$$

Evidently, the following are all true propositions.

$$a \in \{a, 1, 2\}$$

 $1 \notin \{a\}$
 $1 \in \{1, 2, a\}$
 $2 \notin \{a, a, a\}$

Note that sets may contain other sets as members. Thus,

$$\{1,\{1\}\}$$

is a set and the following propositions are true.

$$1 \in \{1, \{1\}\}$$

$$\{1\} \in \{1, \{1\}\}$$

Consider the following true proposition.

$$1 \notin \{\{1\}\}$$

Now this last statement can be confusing².

$$\{1\} \not\in \{1\}$$

5.2 Equality and Subsets

Throughout mathematics and computer science, whenever a new notion or structure is introduced (sets in this case) we must also say when instances of the objects are equal or when they are subsets.

5.2.1 Extensionality

Sets are determined by their members or elements. This means, the only property significant for determining when two sets are equal is the membership relation. Thus, in a set, the order of the elements is insignificant and the number of times an element occurs in a set (its *multiplicity*) is also insignificant. This equality (*i.e.* the one that ignores multiplicity and order) is called *extensionality*.

²Indeed there are some serious philosophers who reject it as senseless [21].

Definition 5.1.

$$A = B \stackrel{\text{def}}{=} \forall x. (x \in A \Leftrightarrow x \in B)$$

We write $A \neq B$ for $\neg (A = B)$. Consider the following sets.

$$\begin{cases} a, 1, 2 \\ \{a\} \\ \{1, 2, a\} \\ \{a, a, a\} \end{cases}$$

The first and the third are equal as sets and the second and the fourth are equal. It is not unreasonable to think of these equal sets as different descriptions (or names) of the same mathematical object.

Note that the set $\{1,2\}$ is not equal³ to the set $\{1,\{2\}\}$, this is because $2 \in \{1,2\}$ but $2 \notin \{1,\{2\}\}$.

5.2.2 Subsets

Definition 5.2 (Subset) A set A is a subset of another set B if every element of A is also an element of B. Formally, we write:

$$A \subseteq B \stackrel{\text{def}}{=} \forall x. (x \in A \Rightarrow x \in B)$$

Thus, the set of even numbers (call this set $2\mathbb{N}$) is a subset of the natural numbers \mathbb{N} , in symbols $2\mathbb{N}\subseteq\mathbb{N}$.

Theorem 5.1. For every set $A, A \subseteq A$

Proof:

$$\frac{\frac{x \in A \vdash x \in A}{\vdash x \in A \Rightarrow x \in A} \Rightarrow R}{\vdash x \in A \Rightarrow x \in A} \Rightarrow R$$

$$\frac{\vdash \forall x. (x \in A \Rightarrow x \in A)}{\vdash \forall x. (x \in A \Rightarrow x \in A)} (\subseteq def)$$

$$\frac{\vdash A \subseteq A}{\vdash \forall A. A \subseteq A} (\forall R)$$

Differences between the membership and subset relations.

The reader should not confuse the notions $x \in A$ and $x \subset A$.

³It may be interesting to note that some philosophers with *nominalist* tendencies[20, 21] deny the distinction commonly made between these sets, they say that the "don't understand" the distinction being made between these sets.

Equality via subsets

We can prove the following theorem which relates extensionality with subsets.

Theorem 5.2 (subset extensionality) For every set A and every set B,

$$A = B \Leftrightarrow ((A \subseteq B) \land (B \subseteq A))$$

Proof: Since the theorem is an if and only if, we must show two cases; we label them below as (\Rightarrow) and (\Leftarrow) .

def. of \Leftrightarrow and $(\land R)$

 $(\Rightarrow R)$ and $(\land R)$

 (\Rightarrow) Assume A=B, we must show that $A\subseteq B$ and that $B\subseteq A$. By definition, if A = B, then $\forall x. (x \in A \Leftrightarrow x \in B)$. First, to show that $A \subseteq B$, we must show that $\forall x. (x \in A \Rightarrow x \in B)$. Pick an arbitrary thing, call it y and we must show that $y \in A \Rightarrow y \in B$, but we assumed A = B, this means (by the definition of equality $y \in A \Leftrightarrow y \in B$. Since the definition of equality is an iff, we may assume $y \in A \Rightarrow y \in B$ and $y \in B \Rightarrow y \in A$. But then we have show $(\forall L)$ and $(\land L)$ $y \in A \Leftrightarrow y \in B$ as was desired. The for argument to show the case $B \subseteq A$ is similar.

 (\Leftarrow) Assume $((A \subseteq B) \land (B \subseteq A))$, i.e. that $A \subseteq B$ and $B \subseteq A$, we must $(\land L)$ show that A = B. By definition, this is true if and only if $\forall x.x \in A \Leftrightarrow x \in B$. Pick an arbitrary thing, call it y and show $y \in A \Leftrightarrow y \in B$, i.e. show $y \in A \Rightarrow y \in B$ and $y \in B \Rightarrow y \in A$. Using y in the assumption $A \subseteq B$ def. of \Leftrightarrow and $(\land R)$ gives the first case and using y in the assumption that $B \subseteq A$ gives the second. $(\forall L)$ twice

This theorem gives us another way to prove sets are equal; instead of proving that every element in both, show that the two sets are subsets of one another. In the same way we labeled the cases of the proof of an (\Leftrightarrow) by (\Rightarrow) and (\Leftarrow) we sometimes label the cases of a proof that two set are equal by (\subseteq) and (\supseteq) .

5.3 Set Constructors

Although we have been discussing sets as if they exist, we need to provide various means to construct them.

5.3.1The Empty Set

There exists a set containing no elements. We can write this fact as follows:

Axiom 5.1 (Empty Set)

$$\exists A. \forall x. x \notin A$$

The axiom says that there exists a set A which, for any thing whatsoever (call it x), that thing is not in the set A.

Definition 5.3 (Uniqueness) Consider a property (say P) if, no matter what two things we pick (say A and B), if whenever P(A) and P(B) hold then A = B, we say that the property P is unique.

$$unique(P) \stackrel{\text{def}}{=} \forall A, B.(P(A) \land P(B)) \Rightarrow (A = B)$$

We can prove that the empty set is unique i.e. we can prove the following theorem which says that any two sets having the property that they contain no elements are equal. In this case the property is emptiness and is defined as $E(z) = \forall x. x \notin z.$

Theorem 5.3.

That is, for every set A and every set B, if $\forall x.x \notin A$ and $\forall x.x \notin B$, then A = B.

Proof: We give a formal sequent proof.

$$\frac{x \in A \vdash x \in B, x \in A, x \in B}{(x \in A) \times (x \in A \Rightarrow x \in B)} (\Rightarrow R) \qquad \frac{x \in B \vdash x \in B, x \in A, x \in A}{(x \in B \Rightarrow x \in A)} (\Rightarrow R) \qquad (\Rightarrow R)$$

$$\frac{\vdash x \in B, x \in A, (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)}{\neg (x \in B) \vdash x \in A, (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)} (\Rightarrow R) \qquad (\land R)$$

$$\frac{\vdash x \in B, x \in A, (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)}{\neg (x \in B) \vdash x \in A, (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)} (\Rightarrow R) \qquad (\neg L)$$

$$\frac{\neg (x \in A), \neg (x \in B) \vdash (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)}{\neg (x \in A), x \notin B \vdash (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)} (\Rightarrow R) \qquad (\forall R)$$

$$\frac{x \notin A, x \notin B \vdash (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)}{\neg (x \in A, x \in B) \land (x \in B \Rightarrow x \in A)} (\Rightarrow R) \qquad (\forall R)$$

$$\frac{\neg (x \in A), x \notin B \vdash (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)}{\neg (x \in A, x \notin B) \vdash (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)} (\Rightarrow R)$$

$$\frac{\neg (x \in A), x \notin B \vdash (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)}{\neg (x \in A, x \in B) \land (x \in B \Rightarrow x \in A)} (\Rightarrow R)$$

$$\frac{\neg (x \in A), x \notin B \vdash (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)}{\neg (x \in A, x \in B) \land (x \in B \Rightarrow x \in A)} (\Rightarrow R)$$

$$\frac{\neg (x \in A), x \notin B \vdash (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)}{\neg (x \in A, x \in B) \land (x \in B \Rightarrow x \in A)} (\Rightarrow R)$$

$$\frac{\neg (x \in A), x \notin B \vdash (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)}{\neg (x \in A, x \in B) \land (x \in B \Rightarrow x \in A)} (\Rightarrow R)$$

$$\frac{\neg (x \in A), x \notin B \vdash (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)}{\neg (x \in A, x \in B) \land (x \in B \Rightarrow x \in A)} (\Rightarrow R)$$

$$\frac{\neg (x \in A), x \notin B \vdash (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)}{\neg (x \in A, x \in B) \land (x \in B \Rightarrow x \in A)} (\Rightarrow R)$$

$$\frac{\neg (x \in A), x \notin B \vdash (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)}{\neg (x \in A, x \in B) \land (x \in B \Rightarrow x \in A)} (\Rightarrow R)$$

$$\frac{\neg (x \in A), x \notin B \vdash (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)}{\neg (x \in A, x \in B) \land (x \in B \Rightarrow x \in A)} (\Rightarrow R)$$

$$\frac{\neg (x \in A), x \notin B \vdash (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)}{\neg (x \in A, x \in B) \land (x \in B \Rightarrow x \in A)} (\Rightarrow R)$$

$$\frac{\neg (x \in A), x \notin B \vdash (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)}{\neg (x \in A, x \in B) \land (x \in B \Rightarrow x \in A)} (\Rightarrow R)$$

$$\frac{\neg (x \in A), x \notin B \vdash (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)}{\neg (x \in A, x \in B) \land (x \in B \Rightarrow x \in A)} (\Rightarrow R)$$

$$\frac{\neg (x \in A), x \notin A, x \notin B \vdash (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)}{\neg (x \in A, x \in B) \land (x \in B \Rightarrow x \in A)} (\Rightarrow R)$$

$$\frac{\neg (x \in A, x \notin B \vdash (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)}{\neg (x \in A, x \in B)$$

Since the set is unique we can give it a name, we denote this unique set by the constant⁴ symbol \emptyset (and sometimes by just writing empty brackets $\{\}$).

Using this new notation, we can restate the empty set axiom in a simpler form as follows.

⁴Do not confuse the symbol \emptyset with the Greek letter ϕ .

77

Corollary 5.1 (Empty Set)

$$\forall x.x \notin \emptyset$$

With this fact, we can easily prove the following theorem:

Theorem 5.4 (Empty Subset) For every set $A, \emptyset \subseteq A$.

Exercise 5.1. Prove Theorem 5.5.

Corollary 5.2 (All sets have a subset)

$$\forall A. \exists B. B \subset A$$

Exercise 5.2. Prove Corollary 5.3.

Theorem 5.5 (Empty Subset) For every set $A, \emptyset \subseteq A$.

Exercise 5.3. Prove Theorem 5.5.

Corollary 5.3 (All sets have a subset)

$$\forall A. \exists B. B \subset A$$

Exercise 5.4. Prove Corollary 5.3.

5.3.2 Unordered Pairs and Singletons

Definition 5.4 (unordered pair) A set having exactly two elements is called an *unordered pair*.

The following axiom asserts that given any two things, there is a set whose elements are those two things and only those elements.

Axiom 5.2 (Pairing)

$$\forall x. \forall y. \exists A. \forall z. \ z \in A \Leftrightarrow (z = x \lor z = y)$$

Note that although we might believe such a set exists, (i.e. the set A containing just the elements x and y) without recourse to the pairing axiom, we would have no justification for asserting such a set exists.

Note that the set constructed by the pairing axiom for particular x and y is unique *i.e.* if we fix x and y, and we claim that A and B are sets having the property claimed for sets whose existence is asserted by the pairing axiom, then A = B. This is made precise by the following lemma.

Lemma 5.1 (Pairing Unique)

$$\forall x. \forall y. \ unique(P_{x,y})$$

where $P_{x,y}$ is the property of sets defined as follows:

$$P_{x,y}(C) \stackrel{\text{def}}{=} \forall z. \ z \in C \Leftrightarrow (z = x \lor z = y)$$

Proof: Choose arbitrary x, y, and show that $P_{x,y}$ is unique. Specifically, show that

$$\forall A. \forall B. P_{x,y}(A) \land P_{x,y}(B) \Rightarrow A = B$$

Choose arbitrary sets A and B and assume $P_{x,y}(A)$ and $P_{x,y}(B)$.

$$\begin{array}{ll} P_{x,y}(A): & \forall z. \ z \in A \Leftrightarrow (z=x \vee z=y) \\ P_{x,y}(B): & \forall z. \ z \in B \Leftrightarrow (z=x \vee z=y) \end{array}$$

To show A = B we show that $w \in A \Leftrightarrow w \in B$ for arbitrary w.

case 1: Assume $w \in A$ and show $w \in B$. But by $P_{x,y}(A)$ (using w for z) if $w \in A$ then we know $(w = x \lor w = y)$. Now, using w for z in $P_{x,y}(B)$ this gives us the fact that $w \in B$ which is what we were to show.

case 2: Assume $w \in B$ and show $w \in A$. Use $P_{x,y}(B)$ (using w for z) similarly to we did in case 1 and this case holds as well.

Now, since any unordered pair composed of elements x and y is unique, we will write $\{x,y\}$ (or $\{y,x\}$) to denote this set. As a corollary, we restate the pairing axiom as follows:

Corollary 5.4 (Pairing)

$$\forall x. \forall y. \forall z. \ z \in \{x, y\} \Leftrightarrow (z = x \lor z = y)$$

From now on we will use this form of the pairing axiom instead of the form having the existential quantifier in its statement.

Singletons

By choosing x and y in the paring axiom to be the same element we get a singleton, a set having exactly one element.

Lemma 5.2 (Singleton Exists)

$$\forall x. \exists A. \forall z. \ z \in A \Leftrightarrow z = x$$

Proof: To prove the theorem, choose an arbitrary element (call it w) and show

$$(*) \quad \exists A. \forall z. z \in A \Leftrightarrow z = w$$

Now, by the pairing axiom, we know

$$\forall x. \forall y. \forall z. \ z \in \{x,y\} \Leftrightarrow (z = x \lor z = y)$$

Let both x and y be w, then we know, $\forall z.z \in \{w, w\} \Leftrightarrow (z = w \lor z = w)$. Since $(P \lor P) \Leftrightarrow P$ we can simplify this as $\forall z. z \in \{w, w\} \Leftrightarrow (z = w)$. Use $\{w, w\}$ as the witness for A in (*) giving $\forall z. z \in \{w, w\} \Leftrightarrow (z = w)$ which we have just shown to be true.

79

Like pairs, singletons are unique.

Corollary 5.5 (Singleton Unique)

$$\forall x. \ unique(S_x)$$

where S_x is the property of sets defined as follows:

$$S_x(C) \stackrel{\text{def}}{=} \forall z. \ z \in C \Leftrightarrow (z=x)$$

Proof: Singletons are just pairs where the elements are not distinct. Note that the proof uniqueness for pairs (Lemma 5.1) does not depend in any way on distinctness of the elements in the pair and so singletons are also unique.

Note that by extensionality, $\{x, x\} = \{x\}$, and since singletons are unique, we will write $\{x\}$ for the singleton containing x. Note that the singleton set $\{x\}$ is distinguished from its element x, *i.e.* $x \neq \{x\}$. Because the set that is claimed to exist in Lemma 5.2 is unique, we can restate that lemma more simply as follows.

Corollary 5.6 (Simplified Singleton Exists)

$$\forall x. \forall z. \ z \in \{x\} \Leftrightarrow z = x$$

Corollary 5.7 (Singleton Member)

$$\forall w.w \in \{w\}$$

Proof: To prove this, choose an arbitrary w and show $w \in \{w\}$. By Corollary 5.6, we know $\forall x. \forall z. z \in \{x\} \Leftrightarrow z = x$. In this formula, choose both x and z to be w, yielding the fact $w \in \{w\} \Leftrightarrow w = w$. Since w = w is always true, we have shown $w \in \{w\}$.

Lemma 5.3 (Singleton Equality)

$$\forall x, y. \{x\} = \{y\} \Leftrightarrow x = y$$

Exercise 5.5. Prove the singleton equality lemma.

5.3.3 Ordered Pairs

Kazimierz Kuratowski (1896 – 1980) was a Polish mathematician who was active in the early development of topology and axiomatic set theory.

Kazimierz Kuratowski

The pair $\{a,b\}$ and the pair $\{b,a\}$ are identical as far as we can tell using set equality. They are indistinguishable if we only consider their members. What if we want to be able to distinguish pairs by the order in which their elements are listed, is it possible using only sets? The following encoding of ordered pairs was first given by Kuratowski.

Definition 5.5 (ordered pair)

$$\langle a,b\rangle \ \stackrel{\mathrm{def}}{=} \ \{\{a\},\{a,b\}\}$$

Note that the angled brackets (" \langle " and " \rangle ") are used here to denote ordered pairs.

Under this definition $\langle 1,2 \rangle = \{\{1\},\{1,2\}\}$ and $\langle 2,1 \rangle = \{\{2\},\{1,2\}\}$. As sets, $\langle 1,2 \rangle \neq \langle 2,1 \rangle$. Also, not that the pair consisting of two of the same elements is encoded as the set containing the set containing that element.

$$\langle 1,1\rangle = \{\{1\},\{1,1\}\} = \{\{1\},\{1\}\} = \{\{1\}\}$$

Theorem 5.6 (characteristic property of ordered pairs) For sets A and B and for every $a, a' \in A$ and $b, b' \in B$,

$$\langle a, b \rangle = \langle a', b' \rangle \Leftrightarrow (a = a' \land b = b')$$

Exercise 5.6. Prove theorem 5.6.

Definition 5.6 (projections) We define the *projection* functions⁵ which map

⁵After we introduce relations and functions below, it will be possible to prove that the projections, which technically are defined here as relations between a pair and its first or second element, really are functions.

pairs (say p) to their first and second components.

$$\pi_1 p = x$$
 $\stackrel{\text{def}}{=}$ $\{x\} \in p$
 $\pi_2 p = b$ $\stackrel{\text{def}}{=}$ $\{\pi_1 p, b\} \in p$

Thus, to prove that for a pair p, $\pi_1 p = x$, it is enough to show that $\{x\} \in p$. Similarly, to show that $\pi_2 p = b$ show that $\{\pi_1 p, b\} \in p$.

Lemma 5.4. For every a and b the identities following hold.

- i.) $\pi_1 \langle a, b \rangle = a$
- ii.) $\pi_2 \langle a, b \rangle = b$

Proof: Choose arbitrary a and b.

- **i.**) By definition $\pi_1 \langle a, b \rangle = a$ if and only if $\{a\} \in \langle a, b \rangle$. By definition, $\langle a, b \rangle = \{\{a\}, \{a, b\}\}, \text{ and } \{a\} \text{ is in this set so this case holds.}$
- **ii.)** By definition $\pi_2 \langle a, b \rangle = a$ if and only if $\{\pi_1 \langle a, b \rangle, b\} \in \langle a, b \rangle$. We just saw (in the proof of i.) that $\pi_1 \langle a, b \rangle = a$, so we must check whether $\{a, b\} \in \{\{a\}, \{a, b\}\}$, which is true and so this case holds as well.

Lemma 5.5.

$$\forall a.\pi_1 \langle a, a \rangle = \pi_2 \langle a, a \rangle$$

Proof: Choose arbitrary a. By definition, $\langle a, a \rangle = \{\{a\}, \{a, a\}\}$, thus $\pi_1 \langle a, a \rangle = a$ iff $\{a\} \in \{\{a\}, \{a, a\}\}$ which is true. Similarly, $\pi_2 \langle a, a \rangle = a$ iff $\{a, a\} \in \{\{a\}, \{a, a\}\}$ which is also true and so the theorem holds.

Norbert Weiner

Norbert Wiener (1894 – 1964) was a U.S. mathematician who taught at MIT and founded the field of cybernetics.

Exercise 5.7. An alternative definition of ordered pairs (this was the first definition) was given by Norbert Wiener in 1914.

$$\langle x, y \rangle \stackrel{\text{def}}{=} \{ \{ \{x\}, \emptyset\}, \{ \{y\} \} \}$$

Prove that this definition satisfies the characteristic property of ordered pairs as stated in Thm.5.6..

5.3.4 Set Union

Since we distinguish sets by their members, we can define operations on sets that construct new sets by indicating when an element is a member of the constructed set.

Definition 5.7 (union) Union is the operation of putting two collections together. If A and B are sets, we write $A \cup B$ for the set consisting of the members of A and of B.

Axiom 5.3 (union membership axiom) We characterize the membership in a union as follows:

$$x\in (A\cup B)\ \stackrel{\rm def}{=}\ (x\in A\vee x\in B)$$
 Thus if $A=\{1,2,3\}$ and $B=\{2,3,4\}$ then $A\cup B=\{1,2,3,4\}.$

The empty set acts as an identity element for the union operation (in the same way 0 is the identity for addition and 1 is the identity for multiplication.) This idea is captured by the following theorem.

Theorem 5.7. For every set $A, A \cup \emptyset = A$.

Proof: We give a formal sequent proof of the theorem.

$$\frac{x \in \emptyset \vdash x \in \emptyset, x \in A}{\neg (x \in \emptyset), x \in \emptyset \vdash x \in A} (\neg -L)}{\neg (x \in \emptyset), x \in \emptyset \vdash x \in A} (\neg -L)} (\text{def of } \notin)$$

$$\frac{x \notin \emptyset, x \in \emptyset \vdash x \in A}{\forall x . x \notin \emptyset, x \in \emptyset \vdash x \in A} (\forall -L)} (\neg -L)$$

$$\frac{x \in A \vdash x \in A}{x \in A \lor x \in \emptyset \vdash x \in A} (\Rightarrow -L)} (\neg -L)$$

$$\frac{x \in A \lor x \in \emptyset \vdash x \in A}{x \in (A \cup \emptyset) \vdash x \in A} (\Rightarrow -R)} (\Rightarrow -R)$$

$$\frac{x \in A \vdash x \in A \lor x \in \emptyset}{x \in (A \cup \emptyset) \Rightarrow x \in A} (\Rightarrow -R)$$

$$\frac{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A) \land (x \in A \Rightarrow A \cup \emptyset)}{\vdash x \in (A \cup \emptyset) \Rightarrow x \in A} (\Rightarrow -R)$$

$$\frac{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A) \land (x \in A \Rightarrow A \cup \emptyset)}{\vdash x \in (A \cup \emptyset) \Rightarrow x \in A} (\Rightarrow -R)$$

$$\frac{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A) \land (x \in A \Rightarrow A \cup \emptyset)}{\vdash x \in (A \cup \emptyset) \Rightarrow x \in A} (\Rightarrow -R)$$

$$\frac{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A) \land (x \in A \Rightarrow A \cup \emptyset)}{\vdash x \in (A \cup \emptyset) \Rightarrow x \in A} (\Rightarrow -R)$$

$$\frac{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A) \land (x \in A \Rightarrow A \cup \emptyset)}{\vdash x \in (A \cup \emptyset) \Rightarrow x \in A} (\Rightarrow -R)$$

$$\frac{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A) \land (x \in A \Rightarrow A \cup \emptyset)}{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A)} (\Rightarrow -R)$$

$$\frac{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A) \land (x \in A \Rightarrow A \cup \emptyset)}{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A)} (\Rightarrow -R)$$

$$\frac{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A) \land (x \in A \Rightarrow A \cup \emptyset)}{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A)} (\Rightarrow -R)$$

$$\frac{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A) \land (x \in A \Rightarrow A \cup \emptyset)}{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A)} (\Rightarrow -R)$$

$$\frac{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A) \land (x \in A \Rightarrow A \cup \emptyset)}{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A)} (\Rightarrow -R)$$

$$\frac{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A) \land (x \in A \Rightarrow A \cup \emptyset)}{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A)} (\Rightarrow -R)$$

$$\frac{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A) \land (x \in A \Rightarrow A \cup \emptyset)}{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A)} (\Rightarrow -R)$$

$$\frac{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A) \land (x \in A \Rightarrow A \cup \emptyset)}{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A)} (\Rightarrow -R)$$

$$\frac{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A) \land (x \in A \Rightarrow A \cup \emptyset)}{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A)} (\Rightarrow -R)$$

$$\frac{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A) \land (x \in A \Rightarrow A \cup \emptyset)}{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A)} (\Rightarrow -R)$$

$$\frac{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A) \land (x \in A \Rightarrow A \cup \emptyset)}{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A)} (\Rightarrow -R)$$

$$\frac{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A) \land (x \in A \Rightarrow A \cup \emptyset)}{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A)} (\Rightarrow -R)$$

$$\frac{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A) \land (x \in A \Rightarrow A \cup \emptyset)}{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A)} (\Rightarrow -R)$$

$$\frac{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A) \land (x \in A \Rightarrow A \cup \emptyset)}{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A)} (\Rightarrow -R)$$

$$\frac{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A) \land (x \in A \Rightarrow A \cup \emptyset)}{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A)} (\Rightarrow -R)$$

$$\frac{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A) \land (x \in A \Rightarrow A \cup \emptyset)}{\vdash (x \in (A \cup \emptyset) \Rightarrow x \in A)}$$

The following theorem asserts that the order of arguments to a union operation do not matter.

Theorem 5.8 (union commutes) For sets A and B, $A \cup B = B \cup A$.

Proof: Choose arbitrary sets A and B. By extensionality, $A \cup B = B \cup A$ is true if $\forall x.x \in (A \cup B) \Leftrightarrow x \in (B \cup A)$. Choose an arbitrary x, assume $x \in (A \cup B)$. Now, by the definition of membership in a union, $x \in (A \cup B)$ iff $x \in A \lor x \in B$. $(x \in A \lor x \in B) \Leftrightarrow (x \in B \lor x \in A \text{ and, again by the union membership property, } (x \in B \text{ or } x \in A) \Leftrightarrow x \in (B \cup A)$. \Box

By this theorem, $A \cup \emptyset = \emptyset \cup A$ which, together with Thm 5.7 yields the following corollary.

Corollary 5.8. For every set $A, \emptyset \cup A = A$.

Theorem 5.9. For all sets A and B, $A \subseteq (A \cup B)$.

Proof: Choose arbitrary sets A and B. By the definition of subset, $A \subseteq A \cup B$ is true if $\forall x.x \in A \Rightarrow x \in (A \cup B)$. Choose an arbitrary x, assume $x \in A$. Now, $x \in (A \cup B)$ if $x \in A$ or $x \in B$. Since we have assumed $x \in A$, the theorem holds.

By Thm ??, we have the following:

Corollary 5.9. For all sets A and B, $A \subseteq (B \cup A)$.

5.3.5 Set Intersection

Another way of constructing new sets form existing ones is to take their intersection.

Definition 5.8 (intersection) We define the operation of collecting the elements in common with two sets and call it the *intersection*.

Membership in an intersection is defined as follows:

Axiom 5.4 (intersection membership axiom)

$$x \in (A \cap B) \stackrel{\text{def}}{=} (x \in A \land x \in B)$$

Thus if $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$ then $A \cap B = \{2, 3\}$.

Theorem 5.10. For every set $A, A \cap \emptyset = \emptyset$.

Proof: By extensionality, $A \cap \emptyset = \emptyset$ is true iff $\forall x.x \in (A \cap \emptyset) \Leftrightarrow x \in \emptyset$. Choose an arbitrary x. We must show

$$i.) \quad x \in (A \cap \emptyset) \Rightarrow x \in \emptyset$$
$$ii.) \quad x \in \emptyset \Rightarrow x \in (A \cap \emptyset)$$

- i.) Assume $x \in (A \cap \emptyset)$, then, by the membership property of intersections, $x \in A \land x \in \emptyset$. And now, by the empty set axiom (Axiom ??, the second conjunct is a contradiction, so the implication in the left to right direction holds.
- ii.) Assume $x \in \emptyset$. Again, by the empty set axiom, this is false so the right to left implication holds vacuously.

Theorem 5.11 (intersection commutes) For every pair of sets A and B, $A \cap B = b \cap A$.

Exercise 5.8. Prove Theorem 5.11.

5.3.6 Power Set

Definition 5.9 (power set) Consider the collection of all subsets of a given set, this collection is itself a set and is called the *power set*. We write the power set of a set S as $\rho(S)$.

Axiom 5.5 (power set) The axiom characterizing membership in the power-set says:

$$x \in \rho(\mathcal{S}) \stackrel{\text{def}}{=} x \subseteq \mathcal{S}$$

Consider the following examples:

$$\begin{array}{ll} A_0 = \{\} & \rho A_0 = \{\{\}\} \\ A_1 = \{1\} & \rho A_1 = \{\{\}, \{1\}\} \\ A_2 = \{1, 2\} & \rho A_2 = \{\{\}, \{1\}, \{2\}, \{1, 2\}\} \\ A_3 = \{1, 2, 3\} & \rho A_1 = \{\{\}, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\} \end{array}$$

Notice that the size of the power set is growing exponentially (as powers of $2, 2^0 = 1, 2_1 = 2, 2^2 = 4, 2^3 = 8$)

Fact 5.1. If a set A has n elements, then the power set ρA has 2^n elements.

5.3.7 Comprehension

If we are given a set and a predicate $\phi(x)$ (a property of elements of the set) we can create the set consisting of those elements that satisfy the property. We write the set created by the operation by instantiating the following schema.

Axiom 5.6 (Comprehension) If S is a meta-variable denoting an arbitrary set, x is a variable and $\phi(x)$ is a predicate, then the following denotes a set.

$$\{x \in \mathcal{S} \mid \phi(x)\}$$

This is a powerful mechanism for defining new sets.

Note that we characterize membership in sets defined by comprehension as follows.

$$y \in \{x \in \mathcal{S} | \phi(x)\} \stackrel{\text{def}}{=} (y \in \mathcal{S} \land \phi(y))$$

Lets consider a few examples of how to use comprehension. We assume the natural numbers $(\mathbb{N} = \{0, 1, 2, \dots\})$ has already been defined.

Example 5.1. The set of natural numbers greater than 5 can be defined using comprehension as:

$${n \in \mathbb{N} \mid \exists m. \ m \in \mathbb{N} \land m + 6 = n}$$

Example 5.2. We can define the set of even numbers as follows.

First, note that a natural number n is even if and only if there is another natural number (say m), such that n=2m. (e.g. if n is 0 (an even natural number), then if m=0, 2m=n. If n is 2, then m=1 gives 2m=n, etc.) Thus, n is even if and only if $\exists m.m \in \mathbb{N} \land 2m=n$. Using this predicate of n, we can define the set of even natural numbers as follows.

$$\{n \in \mathbb{N} \mid \exists m.m \in \mathbb{N} \land 2m = n\}$$

Here, the set $\mathcal S$ from the schema is the set of natural numbers $\mathbb N$ and the predicate ϕ is:

$$\phi(n) = \exists m.m \in \mathbb{N} \land 2 * m = n$$

Substitution into Comprehensions*

Just like the quantifiers \forall and \exists , the notation for a set defined by comprehension binds a variable. This makes substitutions into sets defined by comprehension interesting in the same way substitutions into quantified formulas can be. In the comprehension $\{x:\mathcal{S}\mid\phi\}$, free occurrences of x in the formula ϕ are bound by the declaration of x on the left side of "]." The following definition extends Def. 4.13 from chapter 4 to include sets defined by comprehension.

Definition 5.10 (capture avoiding substitution over a comprehension)

Bertrand Russell

Bertrand Russell (1888 – 1972) was an English born philosopher and logician.

Remark 5.1 (Russell's Paradox) In our definition of comprehension we insisted that elements of sets defined by comprehension come from some preexisting set. In Cantor's original theory, this constraint was not stipulated and in (1900??) Bertrand Russell noticed the following problem.

Consider the set S consisting of those sets that do not contain themselves as elements. Without the constraint on comprehensions, this set is easily defined as follows.

$$S = \{x | x \not\in x\}$$

Now, by the law of excluded middle of propositional logic, we know either $S \in S$ or $S \notin S$.

(Case 1) $S \in S$ iff $S \in \{x | x \notin x\}$. By the rule for membership in comprehensions, this is true iff $S \notin S$. But then we have shown that $S \in S \Leftrightarrow \neg(S \in S)$ which is a contradiction.

(Case 2) $S \notin S$ iff $S \notin \{x | x \notin x\}$ i.e. $S \notin \{x | x \notin x\}$ which is true iff $\neg (S \notin S)$ But the definition of $x \notin y$ simply is $\neg (x \in y)$ so we have $\neg \neg (S \in S)$. By double negation elimination, this is true iff $S \in S$. Thus, we have show that $S \notin S \Leftrightarrow S \in S$ which again is a contradiction.

5.3.8 Set Difference

Definition 5.11 (difference) Given a set A and a set B, the difference of A and B, (write A-B) is the set of elements in A that are not in the set B. More formally:

$$A - B = \{x : A \mid x \notin B\}$$

Example 5.3. If Even is the set of even natural numbers, $\mathbb{N} - Even = Odd$.

Theorem 5.12. For every set A, $A - \emptyset = A$.

Theorem 5.13. For every set A, $A - A = \emptyset$.

Theorem 5.14. For all sets A and B, $A - B = \emptyset \Leftrightarrow A \subseteq B$.

Definition 5.12 (disjoint sets) Two sets A and B are *disjoint* if they share no members in common, *i.e.* if the following holds:

$$A \cap B = \emptyset$$

Theorem 5.15. For all sets A and B, A and B are disjoint sets iff A - B = A.

5.3.9 Cartesian Products and Tuples

Definition 5.13 (Cartesian product) The *Cartesian product* of sets A and B is the set of all ordered pairs having a first element from A and second element from B. We write $A \times B$ to denote the Cartesian product.

$$A \times B \stackrel{\text{def}}{=} \{z \in \rho(\rho(A \cup B)) | \exists a : A. \exists b : B.z = \langle a, b \rangle \}$$

Note that, by Def 5.5. $z = \langle a, b \rangle$ means z is a set of the form $\{\{a\}, \{a, b\}\}\}$. Evidently, the Cartesian product of two sets is a set of pairs.

Example 5.4. If $A = \{a, b\}$ and $B = \{1, 2, 3\}$

$$A \times A = \{\langle a, a \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle b, b \rangle\}$$

$$A \times B = \{\langle a, 1 \rangle, \langle a, 2 \rangle, \langle a, 3 \rangle, \langle b, 1 \rangle, \langle b, 2 \rangle, \langle b, 3 \rangle\}$$

$$B \times A = \{\langle 1, a \rangle, \langle 2, a \rangle, \langle 3, a \rangle, \langle 1, b \rangle, \langle 2, b \rangle, \langle 3, b \rangle\}$$

$$B \times B = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 1 \rangle, \langle 3, 2 \rangle, \langle 3, 3 \rangle\}$$

Theorem 5.16. For any set A,

$$\begin{array}{ll} i.) & A \times \emptyset = \emptyset \\ ii.) & \emptyset \times A = \emptyset \end{array}$$

Proof: (of i) Choose an arbitrary x.

 (\Rightarrow) : Assume $x \in (A \times \emptyset)$, but this is true only if there exists an $a, a \in A$ and a $b, b \in \emptyset$ such that $x = \langle a, b \rangle$. But by the empty set axiom there is no such b so this case holds vacuously.

(\Leftarrow): We assume $x \in \emptyset$ which, by the empty set axiom, is a contradiction so this case holds vacuously as well.

So theorem 5.16 says that \emptyset is both a left and right identity for Cartesian product.

Lemma 5.6 (pair lemma) If A and B are arbitrary sets,

$$\forall x \colon A \times B. \, \exists y \colon A. \, \exists z \colon B. \, x = \langle y, z \rangle$$

Remark 5.2 (Membership in Comprehensions defined over Products) To be syntactically correct, a set defined by comprehension over a Cartesian product appears as follows:

$$\{y \in A \times B | P[y] \}$$

In practice, we often need to refer to the parts of the pair y to express the property P. If so, to be formally correct, we should write:

$$\{y: A \times B \mid \forall z: A. \ \forall w: B. \ y = \langle z, w \rangle \Rightarrow P(z, w)\}$$

So,

$$x \in \{y : A \times B \mid \forall z : A. \ \forall w : B. \ y = \langle z, w \rangle \Rightarrow P(z, w)\}$$

$$\Leftrightarrow x \in A \times B \land \forall z : A. \ \forall w : B. \ x = \langle z, w \rangle \Rightarrow P(z, w)$$

By lemma 5.6, we know there exist $z \in A$ and $w \in B$ such that $\langle z, w \rangle$. So, to prove membership of x it is enough to show that $x \in A \times B$ and then assume there are $z \in A$ and $w \in B$ such that $x = \langle z, w \rangle$ and show P[z, w]. A more readable syntactic form allows the "destructuring" of the pair to occur on the left side in the place of the variable.

$$\{\langle x, y \rangle \in A \times B \mid P[x, y]\}$$

Under the rule for proof just described, to show membership

$$z \in \{\langle x,y \rangle \in A \times B \mid P[x,y]\}$$

Show $z \in A \times B$ and then, assume $z = \langle x, y \rangle$ (for new variables x and y) and show P[x, y]. More specifically, to show

$$\langle z, w \rangle \in \{ \langle x, y \rangle \in A \times B \mid P[x, y] \}$$

Show $z \in A$ and $w \in B$ and then, show P[z, w].

5.4 Properties of Operations on Sets

A set operator is a mapping from sets to a set. For example, the union operator maps two sets to the set whose elements are those coming from either set. The number of set arguments (inputs) an operator takes is called the *arity* of the operator. A unary operator maps a single set to a new set. A binary operator maps two sets to set. In general, if an operator take k arguments, we say is it a k-ary operation..

5.4.1 Idempotency

Definition 5.14 (Idempotence) A unary operation or function is called *idem-potent* if whenever it is applied to its own output it produces the same value.

A binary operation (say \star) is *idempotent* if for every x, $x \star x = x$.

An idempotent element for a binary operation (say \star) is an element x such that $x \star x = x$.

Example 5.5. The absolute value function on integer and real numbers is idempotent. For the operation of ordinary multiplication, 0 and 1 are (the only) idempotent elements. For the operation of addition, 0 (but not 1) is an idempotent element.

The following lemma shows that every set intersections and unions are idempotent.

Lemma 5.7 (Intersection Idempotent) $\forall A. A \cap A = A$.

Lemma 5.8 (Union Idempotent) $\forall A. A \cup A = A$.

5.4.2 Monotonicity

Monotonicity is a property of a unary operators. In the context of sets it essentially says that the operator preserves the subset relation. As we will see in Chapter 7, the subset relation is an partial order relation. In general, an operator is monotone if it is order preserving.

Definition 5.15 (Monotone) A unary set operator (say X) is *monotone* if for all sets A and B, $A \subseteq B \Rightarrow X(A) \subseteq X(B)$.

Theorem 5.17. For an arbitrary sets A and B, the powerset operation is monotone i.e.

$$A \subseteq B \to \rho(A) \subseteq \rho(B)$$

5.4.3 Commutativity

Definition 5.16 (Commutative) A binary set operator (say \circ) is *commutative* if for all sets A, B

$$(A \circ B) = (B \circ A)$$

Lemma 5.9 (Intersection commutative) Set intersection is commutative:

$$A \cap B = B \cap A$$

Lemma 5.10 (Union commutative) Set union is commutative.

$$A \cup B = B \cup A$$

5.4.4 Associativity

Definition 5.17 (Associative) A binary set operator (say \circ) is associative if for all sets A, B, and C,

$$A \circ (B \circ C) = (A \circ B) \circ C)$$

Lemma 5.11 (Intersection associative) Set intersection is associative.

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Lemma 5.12 (Union associative) Set union is associative.

$$A \cup (B \cup C) = (A \cup B) \cup C$$

5.4.5 Distributivity

The distributive property relates pairs of operators.

Definition 5.18 (Distributive) For binary set operators (say \circ and \square), we say \circ distributes over \square if all sets A, B, and C,

$$A \circ (B \square C) = (A \square B) \circ (a \square C)$$

Lemma 5.13 (Union distributes over intersection)

$$\forall A, B, C. \ A \cup (B \cap C) = (A \cap B) \cup (A \cap C)$$

Lemma 5.14 (Intersection distributes over union)

$$\forall A, B, C. \ A \cap (B \cup C) = (A \cup B) \cap (A \cup C)$$

Chapter 6

Relations

Alfred Tarski

Alfred Tarski (1902–1983) was born in Poland and came to the US at the outbreak of WWII. Tarski was the youngest person to ever earn a Ph.D. for the University of Warsaw and throughout his career he made many many contributions to logic and mathematics - though he may be best know for his work in semantics and model theory. Tarski and his students developed the theory of relations as we know it. See [14] for a complete and and rather personal biography of Tarski's life and work.

6.1 Introduction

Relations establish a correspondence between the elements of sets thereby imposing structure on the elements. In keeping with the principle that all of mathematics can be described using set theory, relations (and functions) themselves can be characterized as sets (having a certain kind of structure).

For example, familial relations can be characterized mathematically using the relational structures and/or functions. Thus, if the set \mathcal{P} is the set of

all people living and dead, the relationship between a (biological) father and his offspring could be represented by a set of pairs F of the form $\langle x, y \rangle$ to be interpreted as meaning that x is the father of y if $\langle x, y \rangle \in F$. We will write xFy to denote the fact that x is the father of y instead of $\langle x, y \rangle \in F$. Using this notation, the paternal grandfather relation can be characterized by the set

$$\{\langle x, y \rangle \in \mathcal{P} \times \mathcal{P} | \exists z. \ xFz \wedge zFy \}$$

A function is a relation that satisfies certain global properties; most significantly, the functionality property. A relation R is functional if together $\langle x,y\rangle\in R$ and $\langle x,z\rangle\in R$ imply y=z. This is a mathematical way of specifying the condition that there can only be one pair in the relation R having x as its first entry. We discuss this in more detail below. Now, if we consider the father-of relation given above, it clearly is not a function since one father can have more than one child e.g. if Joe has two children (say Tommy and Susie) then there will be two entries in F with Joe as the first entry. However, if we take the inverse relation (we might call it has father), we get a function since each individual has only one biological father. Mathematically, we could define this relation as $yF^{-1}x \stackrel{\mathrm{def}}{=} xFy$. We discuss functions further in Chapter 8.

Relations and functions play a crucial role in both mathematics and computer science. Within computer science, programs are usefully thought of as functions. Relations and operations on them form the basis of most modern database systems, so-called relational databases.

6.2 Relations

6.2.1 Binary Relations

Definition 6.1 (Binary Relation)

A (binary) relation is a subset of a Cartesian product. Given sets A, B and R, if $R \subseteq A \times B$ we say R is a binary relation on A and B.

Thus, a (binary) relation is a set of pairs. A relation is a set of pairs. Say it to yourself three times and do not forget it. Every time you get in the shower for a week, repeat this as your mantra.

Definition 6.2 (domain and co-doman)

If $R \subseteq A \times B$ then we say A is the domain of R and B is the codomain of R.

Example 6.1. Let A and B be sets. Any subset R, $R \subseteq A \times B$ is a relation. Thus $A \times B$ itself is a relation. This one is not very interesting since every element of A is related to every element of B.

6.2. RELATIONS 93

Example 6.2. The empty set is a relation. Recall that the empty set is a subset of every set and so it is a subset of every Cartesian product (even the empty one). Again, this is not a terribly interesting relation but, by the definition, it clearly is one.

Example 6.3. Less-than (<) is a relation on ($\mathbb{Z} \times \mathbb{Z}$).

$$< = \{ \langle x, y \rangle \in \mathbb{Z} \times \mathbb{Z} \mid x \neq y \land \exists k : \mathbb{N}. \ y = x + k \}$$

To aid readability, binary relations are often written in infix notation e.g. $\langle x,y\rangle \in R$ will be written xRy. So, for example, an instance of the less-than relation will be written 3<100 instead of the more pedantic $\langle 3,100\rangle \in <$.

Definition 6.3. If $R \subseteq A \times A$ we say R is a relation on A.

Thus, < is a relation on \mathbb{Z} .

6.2.2 n-ary Relations

6.2.3 Some Particular Relations

Definition 6.4 (Diagonal Relation (Identity Relation)) The diagonal relation over a set A is the relation

$$\Delta_A = \{ \langle x, y \rangle \in A \times A | x = y \}$$

This relation is called the "diagonal" in analogy with the matrix presentation of a relation R, where $\langle x,y \rangle$ in the matrix is labeled with a 0 if $\langle x,y \rangle \notin R$ and $\langle x,y \rangle = 1$ if $\langle x,y \rangle \in R$.

Example 6.4. Suppose $A = \{0, 1, 2\}$ and $R = \{\langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle\}$ then the matrix representation appears as follows:

R	0	1	2
0	1	0	0
1	0	1	1
2	0	1	0

Under this matrix representation, the so-called diagonal relation Δ_A appears as the follows:

Δ_A	0	1	2
0	1	0	0
1	0	1	0
2	0	0	1

Notice that is it the matrix consisting of a diagonal of ones ¹. One problem with the matrix representation is that you must order the elements of the underlying

¹Students familiar with linear algebra will know that this is the identity matrix and might consider the relationship between composition of relations and matrix multiplication – in particular – if you consider ordinary matrix multiplication where addition become \lor , multiplication is \land , 0 is *False* and 1 is *True*; we can show the isomorphism between composition of relations and Boolean matrix multiplication.

set to be able to write them down across the top and bottom of the matrix – this choice may have to be arbitrary if there is no natural order for the elements.

6.3 Operations on Relations

Note that since relations are sets (of pairs) all the ordinary set operations are defined on them. In particular, unions, intersections, differences and comprehensions are all valid operations to perform on relations. Also, because relations inherit their notion of equality from the fact that they are sets, relations are equal when they are equal sets.

Definition 6.5 (subrelation) If $R, S \subseteq A \times B$ and $R \subseteq S$ then we say R is a subrelation of S.

We define a number of operations that are specifically defined on relations – mainly owing to the fact that they are sets but also have additional structure in that they are sets of pairs.

6.3.1 Inverse

Definition 6.6 (inverse) If $R \subseteq A \times B$, then the *inverse* of R is

$$R^{-1} = \{ \langle y, x \rangle \in B \times A | xRy \}$$

Thus, to construct the inverse of a relation, just turn every pair around *i.e.* swap the elements in the pairs of R by making the first element of each pair the second and the second element of each pair the first. The following useful lemma says that swapping the order of the elements from a pair in a relation R puts the new pair into the relation R^{-1} .

Remark 6.1. If we consider the 0-1 table representing a finite relation as a matrix, in linear algebra terms, the inverse of a relation is the transpose of the 0-1 matrix representing the relation. *transpose*.

Exercise 6.1. Prove that $\Delta_A^{-1} = \Delta_A$.

Lemma 6.1. If $R \subseteq A \times B$, then $aRb \Leftrightarrow bR^{-1}a$.

Proof: (\Rightarrow) Assume aRb, i.e. $\langle a,b\rangle \in R$. We must show that $\langle b,a\rangle \in R^{-1}$. By the definition of inverse, we must show that $\langle b,a\rangle \in \{\langle y,x\rangle \in B\times A | \langle x,y\rangle \in R\}$. Now, since $\langle a,b\rangle \in R$ we know (since $R\subseteq A\times B$) that $\langle b,a\rangle \in B\times A$ and we assumed $\langle a,b\rangle \in R$ so this case is proved.

 (\Leftarrow) Assume $bR^{-1}a$ and show aRb. If $bR^{-1}a$, then $\langle b,a\rangle \in \{\langle y,x\rangle \in B \times A | \langle x,y\rangle \in R\}$, i.e. $b \in B$, $a \in A$ and $\langle a,b\rangle \in R$ which is what we were to show.

Example 6.5. The inverse of the less-than relation (<) is greater-than (>).

6.3.2 Complement of a Relation

Definition 6.7 (complement) If $R \subseteq A \times B$, then the *complement* of R is the relation

$$\overline{R} = \{ \langle x, y \rangle \in A \times B | \langle x, y \rangle \notin R \}$$

Corollary 6.1. For every relation $R \subseteq A \times B$ and for every $a \in A$ and $b \in B$,

$$a\overline{R}b \Leftrightarrow \neg(aRb)$$

Exercise 6.2. Prove that if $R \subseteq A \times B$, then $\overline{R} = (A \times B) - R$

Example 6.6. The complement of the less-than relation (<) is the greater-than-or-equal-to relation (\geq) .

6.3.3 Composition of Relations

Given relations whose codomain and domains match-up in the proper way, we can construct a new relation which is the composition of the two.

Definition 6.8 (composition) If $R \subseteq A \times B$ and $S \subseteq B \times C$, then the *composition* of R and S is the relation defined as follows:

$$S \circ R \stackrel{\text{def}}{=} \{ \langle x, y \rangle \in A \times C \mid \exists z : B. \ xRz \wedge zSy \}$$

Remark 6.2. To some, it may seem backward to write $S \circ R$ instead of $R \circ S$. In fact, both conventions do appear in the mathematical literature – though the convention adopted here is the most common one – it is not the only one. The reason for adopting this convention might be more clear when we get to functions.

Example 6.7. Suppose we had a relation (say R) that paired names with social security numbers and another relation that paired social security numbers with the state they were issued in (call this relation S), then ($S \circ R$) is the relation pairing names with the states where their social security numbers were assigned.

Theorem 6.1 (Composition is associative) For arbitrary sets A, B, C and D if $R \subseteq A \times B$, $S \subseteq B \times C$ and $T \subseteq C \times D$ then

$$T \circ (S \circ R) = (T \circ S) \circ R$$

Proof: First, note by the defintion of composition that

$$(T \circ (S \circ R)) \subseteq A \times D$$
 and $((T \circ S) \circ R) \subseteq A \times D$

For arbitrary $\langle x, y \rangle \in A \times D$ we show

$$\langle x, y \rangle \in (T \circ (S \circ R)) \Leftrightarrow \langle x, y \rangle \in ((T \circ S) \circ R)$$

Starting on the left, by the definition of composition we know the following.

$$\langle x, y \rangle \in (T \circ (S \circ R)) \Leftrightarrow \exists z : C. \langle x, z \rangle \in (S \circ R) \land \langle z, y \rangle \in T$$

So we assume there is such a z, i.e so far we know

$$\begin{array}{ll} i.) & \langle x,y\rangle \in (T\circ (S\circ R)) \\ ii.) & \langle x,z\rangle \in (S\circ R) \\ iii.) & \langle z,y\rangle \in T \end{array}$$

$$(iii.)$$
 $(z,y) \in T$

Then (by the definition of composition) and (ii.) we obtain two more facts which hold for some arbitrary element $w \in B$.

$$iv.$$
) $\langle x, w \rangle \in R$
 $v.$) $\langle w, z \rangle \in S$

From (v.) and (iii.) and the definition of composition we obtain the following.

$$vi.$$
) $\langle w, y \rangle \in (T \circ S)$

But then (iv.) and (vi.) together mean $\langle x, y \rangle \in ((T \circ S) \circ R)$ which completes the proof.

Theorem 6.2 (Composition inverse lemma) For all relations $R \subseteq A \times B$ and $S \subseteq B \times C$, the following identity holds.

$$(S \circ R)^{-1} = R^{-1} \circ S^{-1}$$

Proof: Let A, B and C be arbitrary sets and $R \subseteq A \times B$ and $S \subseteq B \times C$ be arbitrary relations. Note that $(S \circ R) \subseteq A \times C$ and so the inverse relation $(S \circ R)^{-1} \subseteq C \times A$. So, by extensionality, we must show for arbitrary $a \in A$ and $c \in C$ that $c(S \circ R)^{-1}a \Leftrightarrow c(R^{-1} \circ S^{-1})a$.

We reason equationally. Starting on the left side with $c(S \circ R)^{-1}a$ and show the right side $c(R^{-1} \circ S^{-1})a$ holds. By Lemma 6.1,

$$c(S \circ R)^{-1}a \Leftrightarrow a(S \circ R)c$$

Now, by definition of composition, $a(S \circ R)c$ if and only if there is some $b \in B$ such that both aRb and bSc hold. But then (by two applications of Lemma 6.1) we know $cS^{-1}b$ and $bR^{-1}a$ also hold. By the definition of composition this

 $c(R^{-1} \circ S^{-1})a$, which was to be shown.

Recall the definition of the diagonal relation Δ_A (Def. 6.4).

Lemma 6.2. If R is any relation on A, then $(R \circ \Delta_A) = R$.

Proof: The theorem says Δ_A is a right identity for composition. To see that the relations (sets of pairs) $(R \circ \Delta_A)$ and R are equal, we apply Thm 5.5.2, *i.e.* we show (\subseteq) : $R \circ \Delta_A \subseteq R$ and (\supseteq) : $R \subseteq R \circ \Delta_A$.

(\subseteq): Assume $\langle x,y\rangle \in (R \circ \Delta_A)$. Then, by the definition of composition, there exists a $z \in A$ such that $\langle x,z\rangle \in R$ and $\langle z,y\rangle \in \Delta_A$. But by the definition of Δ_A , z=y and so, replacing z by y we get $\langle x,y\rangle \in R$ which is what we are to show.

(\supseteq): Assume $\langle x,y\rangle \in R$. Then, to see that $\langle x,y\rangle \in R \circ \Delta_A$ we must show there exists a $z \in A$ such that $\langle x,z\rangle \in R$ and $\langle z,y\rangle \in R$. Let z be y. Clearly, $\langle y,y\rangle \in \Delta_A$ and also, by our assumption $\langle x,y\rangle \in R$.

Exercise 6.3. Prove the following lemma.

Lemma 6.3. If R is any relation on $A \times B$, then $(\Delta_B \circ R) = R$.

Note that in rational arithmetic the reciprocal of $\frac{1}{x}$ of x is the multiplicative inverse: $x*\frac{1}{x}=1$. So, the multiplication of a number with it's inverse gives the identity element for the operation of multiplication. We have just shown that the identity for composition of relations is Δ_A (where A depends on the domain and codomain of the relation.) Based on this we might make the following false conjecture.

Conjecture 6.1 (False) For relations $R \subseteq A \times B$:

$$R^{-1} \circ R = \Delta_A$$

Exercise 6.4. For $A = \{a, b, c\}$ and $R = \{\langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle, \langle c, b \rangle\}$ show that the conjecture is false.

Exercise 6.5. For $A = \{a, b\}$ and $R = \{\langle a, b \rangle\}$ show that the conjecture is false.

We will see in chapter 8 that the conjecture is true when we consider functions which are a restricted form of relations.

Definition 6.9 (iterated composition) We define the *iterated composition* of a relation R on a set A with itself as follows.

$$R^0 = \Delta_A$$
$$R^{k+1} = R \circ R^k$$

Corollary 6.2. For all relations R on a set A, $R^1 = R$, since, by the definition of iterated composition and by Lemma 6.2 we have: $R^1 = R \circ R^0 = R \circ \Delta_A = R$.

Typically, we only consider the case where $R \subseteq A \times A$, but the definition is still sensible if the relation R is a binary relation on $A \times B$, so long as $B \subseteq A$.

Example 6.8. Suppose R is the relation on natural number associating each number with its successor, $R = \{\langle x, y \rangle \in \mathbb{N} \times \mathbb{N} \mid x+1=y\}$. Then R^k is the relation associating each number with its k^{th} successor; $R^k = \{\langle x, y \rangle \in \mathbb{N} \times \mathbb{N} \mid x+k=y\}$.

Exercise 6.6. Let R be the successor relation as defined in example 6.8. Prove that

$$(\leq \circ R) = <$$

For each $k \in \mathbb{N}$, R^k is the relation that takes you directly to the places reachable in R by following k steps. The following two definitions collect together $R^{k'}s$ where k ranges over \mathbb{N}^+ (the strictly positive natural numbers²) and \mathbb{N} .

Definition 6.10 (reachability in R)

$$R^+ = \bigcup_{i \in \mathbb{N}^+} R^i$$

Definition 6.11 (connectivity of R)

$$R^* = \bigcup_{i \in \mathbb{N}} R^i$$

So, R^+ contains all the pairs $\langle x, y \rangle \in A \times A$ such that y is reachable from x by following one or more edges of R. Similarly, R^* contains all the pairs $\langle x, y \rangle \in A \times A$ such that y is reachable from x by following zero or more edges of R. As we will see below; R^+ is the so-called transitive closure of R (Thm 6.6) and R^* is the reflexive transitive closure of R (Thm 6.7).

You may be familiar with regular expression languages from a text editor or languages like Perl. In Perl "'+" means match one or more times, "*" means match zero or more times.

6.4 Properties of Relations

A relation may satisfy certain structural properties. The properties all say something about the "shape" of the relation.

A relation $R \subset A \times A$ is

- 1.) reflexive $\forall a : A. \ aRa$
- 2.) irreflexive $\forall a : A. \neg (aRa)$
- 3.) symmetric $\forall a, b : A. \ aRb \Rightarrow bRa$
- 4.) antisymmetric $\forall a, b : A. (aRb \land bRa) \Rightarrow a = b$
- 5.) asymmetric $\forall a, b : A. (aRb \Rightarrow b \not Ra$
- 6.) transitive $\forall a, b, c : A. (aRb \land bRc) \Rightarrow (aRc)$
- 7.) connected $\forall a, b : A. \ a \neq b \Rightarrow (aRb \lor bRa)$

We discuss each of these properties individually below.

 $^{{}^{2}\}mathbb{N}^{+} \stackrel{\text{def}}{=} \mathbb{N} - \{0\}.$

99

6.4.1 Reflexivity

Definition 6.12.

$$Rel f_A(R) \stackrel{\text{def}}{=} \forall a : A. \ aRa$$

If we think of xRy as meaning we can get from x to y by following one edge in R, then saying R is a reflexive relation means that there is an edge (or really a loop) in R from every point to itself.

Lemma 6.4. For all relations $R \subseteq A \times A$, if R is reflexive, and Δ_A is the diagonal relation on A, then $\Delta_A \subseteq R$.

Lemma 6.5. For all relations $R, S \subseteq A \times A$, if R and S are reflexive, then $R \cap S$ is reflexive.

Examples of reflexive relations include equality (=), less-than-or-equal (\leq) and greater-than-or-equal (\geq), the proper subset relation (\subset) and, for propositions, iff (\Leftrightarrow).

6.4.2 Irreflexivity

Definition 6.13.

$$Irref_A(R) \stackrel{\text{def}}{=} \forall a : A. \ a \not Ra$$

Irreflexivity means than no element of the set is connected directly to itself.

Remark 6.3. Note that a relation can fail to be both reflexive and irreflexive. Let $A = \{0, 1, 2\}$ and $R = \{\langle 0, 1 \rangle, \langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 0 \rangle\}$ Then, R is not reflexive because $\langle 0, 0 \rangle \notin R$. But it also fails to be irreflexive since $\langle 1, 1 \rangle \in R$.

Lemma 6.6. For all relations $R, S \subseteq A \times A$, if R and S are irreflexive, then $R \cap S$ and $R \cup R$ are both irreflexive.

Examples of irreflexive relations include inequality (\neq) , less-than (<), greaterthan (>) and the proper subset relation (\subset) .

6.4.3 Symmetry

Definition 6.14.

$$Sym(R) \stackrel{\text{def}}{=} \forall a, b : A. \ aRb \Rightarrow bRa$$

A relation R is symmetric if every point reachable in one step in R can be returned to by taking a single step also in R.

Lemma 6.7. The diagonal relation Δ_A is symmetric.

Lemma 6.8. If $R \subseteq A \times A$ then $R = R^{-1} \Leftrightarrow Sym(R)$.

Lemma 6.9. If $R \subseteq A \times A$ then $R = R^{-1} \Leftrightarrow R \subseteq R^{-1}$.

6.4.4 Antisymmetry

Definition 6.15.

$$AntiSym(R) \stackrel{\text{def}}{=} \forall a, b : A. \ (aRb \land bRa) \Rightarrow a = b$$

Antisymmetry means that if you can get from one point to another and back in one step, then those points must have been equal.

Lemma 6.10. The diagonal relation Δ_A is antisymmetric.

6.4.5 Asymmetry

Definition 6.16.

$$Asym(R) \stackrel{\text{def}}{=} \forall a, b : A. \ (aRb \Rightarrow b \not Ra$$

Asymmetry means that there is no way to get from any point to itself in two steps.

Lemma 6.11. For all relations $R \subseteq A \times A$, if R is asymmetric then R is irreflexive.

6.4.6 Transitivity

Definition 6.17.

$$Trans(R) \stackrel{\text{def}}{=} \forall a, b, c : A. \ (aRb \land bRc) \Rightarrow (aRc)$$

A relation is transitive if every place you can get in two steps, you can get by taking a single step.

6.4.7 Connectedness

Definition 6.18.

$$Connected(R) \stackrel{\text{def}}{=} \forall a, b : A. \ a \neq b \Rightarrow (aRb \lor bRa)$$

A relation is connected if there is an edge between every pair of points (going one direction or the other.)

6.5 Closures

The idea of "closing" a relation with respect to a certain property is the idea of adding just enough to the relation to make it satisfy the property (if it doesn't already) and to get the "smallest" such extension.

6.5. CLOSURES 101

Example 6.9. Consider A and R as just presented in remark 6.3. We can "close" R under the reflexive property by unioning the set $E = \{\langle 0, 0 \rangle, \langle 2, 2 \rangle\}$ with R. This is the minimal extension of R that makes it reflexive. Adding, for example, $\langle 2, 1 \rangle$ does not contribute to the reflexivity of R and so it is not added. Also note that even though $E \neq \Delta_A$, $R \cup E = R \cup \Delta_A$ since $\langle 1, 1 \rangle \in R$.

Thus, the closure is the minimal extension to make a relation satisfy a property. For some properties (like irreflexivity) there may be no way add to the relation to make it satisfy the property – in which case we say the closure "does not exist". To make R satisfy irreflexivity, we would have to $remove \langle 1, 1 \rangle$.

Definition 6.19 (Closure) Given a relation $R \subseteq A \times B$ and a property P of the relation, the *closure* of R with respect to P is the set of relations S such that P(S) and $R \subseteq S$ and S is the smallest such relation,

$$S \in closure(R,P)$$
 iff $(P(S) \land R \subseteq S) \land \forall T : T \subseteq A \times B \Rightarrow ((P(T) \land R \subseteq T) \Rightarrow S \subseteq T)$

If we close a relation with respect to a property P that the relation already enjoys, the result is just the relation R itself. The reader is invited to verify this fact by proving the following lemma.

Lemma 6.12. Given a relation $R \subseteq A \times B$ and a property P of the relation, if P(R) holds, then closure(R, P) = R.

We now show that membership in a closure is unique.

Theorem 6.3 (Uniqueness of Closures) If $R \subseteq A \times A$ and P is a property of relations then, the property of being a member in closure(R, P) is unique.

Proof: Let R and P be arbitrary. The property (call it M) that we are showing is unique is membership in a closure i.e.

$$M(S) = S \in closure(R, P)$$

We recall the definition of uniqueness (Def. 5.5.3) which says

$$unique(M) \stackrel{\text{def}}{=} \forall R_1, R_2.(M(R_1) \land M(R_2)) \Rightarrow (R_1 = R_2)$$

To show this, we assume $M(R_1)$ and $M(R_2)$ for arbitrary relations $R_1, R_2 \subseteq A \times A$ and show $R_1 = R_2$. By our assumption, we know:

$$M(R_1): R_1 \in closure(R, P)$$

 $M(R_2): R_2 \in closure(R, P)$

Since R_1 and R_2 are in the closure of R by P, we know

 $\begin{array}{ll} i.) & R \subseteq R_1 \\ ii.) & P(R_1) \\ iii.) & \forall T \subseteq A \times A. \, (R \subseteq T \wedge P(T)) \Rightarrow R_1 \subseteq T \\ iv.) & R \subseteq R_2 \\ v.) & P(R_2) \\ vi.) & \forall T \subseteq A \times A. \, (R \subseteq T \wedge P(T)) \Rightarrow R_2 \subseteq T \\ \end{array}$

Using R_2 for T in (iii.) yields the following

$$(R \subseteq R_2 \land P(R_2)) \Rightarrow R_1 \subseteq R_2$$

By (iv.) and (v.) We get that $R_1 \subseteq R_2$. Similarly, using R_1 for T in (vi.) yields the following.

$$(R \subseteq R_1 \land P(R_1)) \Rightarrow R_2 \subseteq R_1$$

By (i.) and (ii.) We get that $R_2 \subseteq R_1$. But then by subset extensionality (Thm. 5.5.2) $R_1 = R_2$.

Since closures are unique, from now on we will simply write S = closure(R, P) instead of $S \in closure(R, P)$. Also, since closures are unique, any relation which has the property of being a closure must be the only one that is the closure *i.e.* to prove S = closure(R, P) we simply need to show that S has the three properties that make it the closure of R by P.

Theorem 6.4. If $R \subseteq A \times A$ then the reflexive closure of R is the relation $R \cup \Delta_A$

Proof: More formally, the theorem says

$$closure(R, Refl_A) = R \cup \Delta_A$$

Thus, to show that the $R \cup \Delta_A$ is the reflexive closure, (by the definition of closure) we must show three things:

- i.) $Refl_A(R \cup \Delta_A)$
- ii.) $R \subseteq (R \cup \Delta_A)$
- iii.) $\forall T: T \subseteq A \times A \Rightarrow ((R \subseteq T \subseteq Refl_A(T)) \Rightarrow (R \cup \Delta_A) \subseteq T)$
- i.) More particularly, we must show that $\forall x: A. \langle x, x \rangle \in (R \cup \Delta_A)$. Choose an arbitrary $x \in A$. Then, by the membership property of unions, we must show that $\langle x, x \rangle \in R$ or $\langle x, x \rangle \in \Delta_A$. But by the definition of membership in a comprehension, $\langle x, x \rangle \in \Delta_A$ iff $\langle x, x \rangle \in A \times A$ (which is obviously true since x was arbitrarily chosen from the set A) and if x = x. So, we conclude that (i) holds.
- ii.) We must show that $R \subseteq (R \cup \Delta_A)$. But this is true by Thm 5.9 from Chapter 5.
- iii.) Finally, we must show that $R \cup \Delta_A$ is the least such set, *i.e.* that

$$\forall T: T \subseteq A \times A \Rightarrow ((R \subseteq T \land Refl_A(T)) \Rightarrow (R \cup \Delta_A) \subseteq T)$$

To see this, choose an arbitrary relation $T \subseteq A \times A$. Assume $R \subseteq T$ and $Refl_A(T)$. We must show that $(R \cup \Delta_A) \subseteq T$. Let x be an arbitrary element of $(R \cup \Delta_A)$. Then, there are two cases: $x \in R$ or $x \in \Delta_A$. If $x \in R$, since we have assumed $R \subseteq T$, we know $x \in T$. In the other case, $x \in \Delta_A$, that is, x is of the form $\langle y, y \rangle$ for some y in A. But since we assumed $Refl_A(T)$, we know that $\forall z : A : \langle z, z \rangle \in T$ so, in particular, $\langle y, y \rangle \in T$, i.e. $x \in T$.

Definition 6.20 (Symmetric) The predicate Sym(R) means $R \subseteq A \times A$ is symmetric.

$$Sym(R) \stackrel{\text{def}}{=} \forall x, y : A. \ xRy \Rightarrow yRx$$

Note that unlike reflexivity, symmetry does not require us to know what the full set A is, it only requires us to know what pairs are in the relation R.

Example 6.10. For any set A, the empty relation is symmetric, though the empty relation is reflexive if and only if $A = \emptyset$.

Theorem 6.5 (Symmetric Closure) If $R \subseteq A \times A$ then the symmetric closure of R is the relation $R \cup R^{-1}$

Example 6.11. Let $A = \{0, 1, 2, 3\}$ and $R = \{(0, 1), (1, 2), (2, 3), (3, 0)\}$. Then

$$\begin{split} R^1 &= R = \{\langle 0, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 0 \rangle\} \\ R^2 &= R \circ R = \{\langle 0, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 0 \rangle, \langle 3, 1 \rangle\} \\ R^3 &= R \circ R^2 = \{\langle 0, 3 \rangle, \langle 1, 0 \rangle, \langle 2, 1 \rangle, \langle 3, 2 \rangle\} \\ R^4 &= R \circ R^3 = \{\langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle\} \\ R^5 &= R \circ R^4 = \{\langle 0, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 0 \rangle\} \end{split}$$

Note that $R^5 = R$. The transitive closure of R is the union

$$R \cup R^2 \cup R^3 \cup R^4$$

Theorem 6.6 (Transitive Closure) If $R \subseteq A \times A$ then the transitive closure of R is the relation

$$R^+ = \bigcup_{i>0} R^i$$

Theorem 6.7. The reflexive transitive closure of a relation $R \subseteq A \times A$ is the relation

$$R^* = \bigcup_{i \in \mathbb{N}} R^i$$

Remark 6.4. The notation R^* to denote the reflexive transitive closure of a relation R is borrowed from the theory of strings and regular languages. It was first introduced by Stephen Cole Kleene (1909-1994) and, in the context of regular languages, is called the *Kleene Closure* of R.

6.6 Properties of Operations on Relations

Just as we had properties that may or may not hold for relations, we can consider properties of the operations on relations. This idea of properties of operations is a "higher order" concept.

Definition 6.21 (Involution) A unary operator $A': A \to A$ is an involution if it is its own inverse, *i.e.* if A'' = x for all $A' \in A$.

Lemma 6.13 (complement involutive) For every pair of sets A and B and every relation R, $R \subseteq A \times B$ the following identity holds.

$$\overline{\overline{R}} = R$$

Proof: By extensionality. Choose arbitrary $a \in A$ and $b \in B$ and show $a\overline{R}b \Leftrightarrow aRb$. We reason equationally.

$$a\overline{\overline{R}}b \Leftrightarrow \neg(a\overline{R}b) \Leftrightarrow \neg\neg(aRb) \Leftrightarrow aRb$$

Theorem 6.8 (Inverse involutive) For every pair of sets A and B, and for every $R \subseteq A \times B$

$$R = (R^{-1})^{-1}$$

Proof: Note that since $R \subseteq A \times B$ is a set, we must show (by extensionality) that for arbitrary z, that $z \in R \Leftrightarrow z \in (R^{-1})^{-1}$. Since $R \subseteq A \times B$, z is of the form $\langle a, b \rangle$ for some $a \in A$ and some $b \in B$, thus, we must show $aRb \Leftrightarrow a(R^{-1})^{-1}b$. Two applications of Lemma 6.1 give the following.

$$aRb \Leftrightarrow bR^{-1}a \Leftrightarrow a(R^{-1})^{-1}b$$

Chapter 7

Equivalence and Order

Equivalence Relations 7.1

Equivalence relations generalize of the notion of what it means for two elements of a set to be equal.

Definition 7.1 (equivalence relation) A relation on a set A that is reflexive (on A), symmetric and transitive is called an equivalence relation on A. We will sometimes write $Equiv_A(R)$ to mean R is an equivalence relation on A.

$$Equiv_A(R) \stackrel{\text{def}}{=} Refl_A(R) \wedge Sym(R) \wedge Trans(R)$$

Example 7.1. Ordinary equality on numbers is an equivalence relation.

Example 7.2. In propositional logic, the if-and-only-if connective [Def. 2.2.3] is an equivalence on propositions. To see this we must show three things:

- $\forall P.P \Leftrightarrow P$ (Reflexive)
- ii.) $\forall P, Q.(P \Leftrightarrow Q) \Rightarrow (Q \Leftrightarrow P)$ (Symmetric) iii.) $\forall P, Q, Q.(P \Leftrightarrow Q) \land (Q \Leftrightarrow R) \Rightarrow (P \Leftrightarrow R)$ (Transitive)

But these theorems have all been proved previously as exercises, so \Leftrightarrow is an equivalence on propositions.

Example 7.3. The reflexive closure of the sibling relation is an equivalence relation. To see this, by the reflexive closure, everyone is related to him or herself by this relation, because we explicitly stated it is closed under reflection. If A is the sibling of B, then B is the sibling of A so the relation is symmetric. And finally, if A is the sibling of B and B is the sibling of C, then A is the sibling of C so the relation is transitive.

Note that, under this relation, if an individual has no brothers or sisters, there is no other person (except herself by virtue of the reflexive closure) related to her.

Lemma 7.1. For any set A,, the diagonal relation Δ_A is an equivalence relation on A.

This is the so-called "finest" equivalence (see Definition 7.3 below) on any set A and is defined by real equality on the elements of the set A. To see this recall that $\Delta_A = \{\langle x,y \rangle \mid x=y\}$

Lemma 7.2. For any set A, the complete relation $A \times A$ is an equivalence relation on A.

This equivalence is rather uninteresting, it says every element in A is equivalent to every other element in A. It is the "coarsest" equivalence relation on the set A.

7.1.1 Equivalence Classes

It is often useful to define the set of all the elements from a set A equivalent to some particular element under an equivalence relation $R \subseteq A \times A$.

Definition 7.2 (equivalence class) If A is a set, R is an equivalence relation on A and x is an element of A, then the *equivalence class of* x *modulo* R (we write $[x]_R$) is defined as follows.

$$[x]_R = \{ y \in A \mid xRy \}$$

Example 7.4. If S is the reflexive closure of the sibling relation, then for any individual x, $[x]_S$ is the set consisting of x and of his or her brothers and sisters.

Theorem 7.1. If A is a set, R is an equivalence relation on A, and x and y are elements of A, then the following statements are equivalent.

- i. xRy
- ii. $[x]_R \cap [y]_R \neq \emptyset$
- iii. $[x]_R = [y]_R$

Proof: To prove these statements are equivalent, we will show, $(i) \Rightarrow (ii)$ and $(ii) \Rightarrow (iii)$ and finally, $(iii) \Rightarrow (i)$.

 $[(i) \Rightarrow (ii)]$ Assume xRy. Then, by the definition of $[x]_R$, $y \in [x]_R$. Also, by reflexivity of R (recall it is an equivalence relation) yRy and so $y \in [y]_R$. But then, y is in both $[x]_r$ and y is in $[y]_R$, hence the intersection is not empty and we have shown $[x]_R \cap [y]_R \neq \emptyset$.

 $[(ii) \Rightarrow (iii)]$ Assume $[x]_R \cap [y]_R \neq \emptyset$. Then, there must be some element (say z) (such that $z \in [x]_R$ and $z \in [y]_R$. We show $[x]_R = [y]_R$, *i.e.* we show that $\forall w.w \in [x]_R \Leftrightarrow x \in [y]_R$. Choose an arbitrary w. But then $w \in [x]_R \Leftrightarrow xRw$. By the symmetry of R, we know wRx. Now, since $z \in [x]_R$, xRz and by transitivity of R, wRz holds as well. Now, since $z \in [y]_R$, yRz and by symmetry we have zRy and by transitivity we get wRy. Finally, another application of symmetry allows us to conclude yRw and we have shown that $w \in [x]_R \Leftrightarrow w \in [y]_R$ for arbitrary w, thus $[x]_R = [y]_R$ if their intersection is non-empty.

 $[(iii) \Rightarrow (i)]$ Assume $[x]_R = [y]_R$. Then, every element of $[x]_R$ is in $[y]_R$ and vice-versa. But, because R is reflexive, $x \in [x]_R$ and since $y \in [y]_R$, $y \in [x]_R$. But this is true only if xRy holds.

Definition 7.3 (Fineness of an Equivalence) An equivalence relation $\equiv_1 \subseteq A \times A$ is *finer* than the equivalence relation $\equiv_2 \subseteq A \times A$ if,

$$\forall x : A. [x]_{\equiv_1} \subseteq [x]_{\equiv_2}$$

7.1.2 The Quotient Construction*

In higher mathematics a quotient is a structure induced by an equivalence relation.

Definition 7.4 (Quotient) If \equiv is an equivalence relation on the set A, then we define

$$A/\equiv \ \stackrel{\mathrm{def}}{=} \ \{[x]_{\equiv}|x\in A\}$$

This set of sets is called the the quotient of A modulo \equiv .

Lemma 7.3. For every set A, $A/\Delta_A = \{\{x\} | x \in A\}$.

Lemma 7.4. For every set $A, A/A^2 = \{A\}.$

7.1.3 \mathbb{Q} is a Quotient

Consider the fractions \mathcal{F} defined as follows.

Definition 7.5.

$$\mathcal{F} = \mathbb{Z} \times \mathbb{Z}^{\{\neq 0\}}$$

where $\mathbb{Z}^{\{\neq 0\}}$ is the set of non-zero integers.

You may recognize \mathcal{F} as the fractions, e.g. we can think of the first number as the numerator and the second as the denominator, so $\langle a, b \rangle$ is the fraction $\frac{a}{\hbar}$.

Now, note that the equality on fractions (*i.e.* the equality on pairs $-\langle a,b\rangle = \langle c,d\rangle \Leftrightarrow a=c \wedge b=d$) is not the equality for rational numbers (usually denoted \mathbb{Q} .) Notice that, for example,

$$\langle 1, 2 \rangle \neq \langle 2, 4 \rangle$$

but of course, for rational numbers

$$\frac{1}{2} = \frac{2}{4}$$

We define an equivalence relation on pairs of fractions that does reflect equality on rationals as follows:

Definition 7.6.

$$\equiv_{\mathbb{Q}} \stackrel{\text{def}}{=} \{ \langle \langle x, y \rangle, \langle z, w \rangle \rangle \in \mathcal{F} \times \mathcal{F} \mid xw = yz \}$$

Less pedantically we might write

$$\langle x, y \rangle \equiv_{\mathbb{Q}} \langle z, w \rangle \stackrel{\text{def}}{=} xw = yz$$

This is the ordinary cross-multiplication rule you learned in grade school for determining if two rational numbers are equal.

Exercise 7.1. Prove that $\equiv_{\mathbb{Q}}$ is indeed an equivalence relation on fractions *i.e.* you must show that it is (i.) reflexive, (ii.) symmetric and (iii.) transitive.

i.
$$\forall \langle a, b \rangle \in \mathcal{F}$$
. $\langle a, b \rangle \equiv_{\mathbb{Q}} \langle a, b \rangle$

ii.
$$\forall \langle a, b \rangle, \langle c, d \rangle \in \mathcal{F}$$
. $\langle a, b \rangle \equiv_{\mathbb{Q}} \langle c, d \rangle \Rightarrow \langle c, d \rangle \equiv_{\mathbb{Q}} \langle a, d \rangle$

iii.
$$\forall \langle a, b \rangle, \langle c, d \rangle, \langle e, f \rangle \in \mathcal{F}.$$
 $(\langle a, b \rangle \equiv_{\mathbb{Q}} \langle c, d \rangle \land \langle c, d \rangle \equiv_{\mathbb{Q}} \langle e, f \rangle) \Rightarrow \langle a, b \rangle \equiv_{\mathbb{Q}} \langle e, f \rangle$

Exercise 7.2. Describe the equivalence class $[\langle 2, 4 \rangle]_{\equiv_{\mathbb{Q}}}$

Exercise 7.3. Describe the equivalence class $[\langle x, y \rangle]_{\equiv_{\mathbb{Q}}}$

The rational numbers are defined by a quotient construction.

Definition 7.7 (Rational Numbers)

$$\mathbb{Q} \stackrel{\mathrm{def}}{=} \mathcal{F}/\equiv_{\mathbb{Q}}$$

This conception of the rational numbers is perhaps confusing. It leads to the following dialog.

Question: "What is a rational number?"

Answer: "A rational number is an equivalence class of fractions."

Question: "But then what does it mean to add two rational numbers."

Answer: "Addition is an operation that maps a pair of rational

numbers (equivalence classes of fractions) to a rational number (another equivalence class of fractions.)."

7.1.4 Partitions

Definition 7.8 (Partition) A partition of a set A is a set of non-empty subsets of A (we refer to these sets as A_i where $i \in I, I \subseteq \mathbb{N}$). Each A_i is called a block (or a component) and a collection of such A_i is a partition if it satisfies the following two properties:

109

- i.) For all $i \in I$, $A_i \neq \emptyset$
- ii.) the sets in the blocks are pairwise disjoint, i.e.

$$\forall i, j : I. \ i \neq j \Rightarrow (A_i \cap A_j = \emptyset)$$

and,

iii.) the union of the sets $A_i, i \in I$ is the set A itself:

$$\bigcup_{i \in I} A_i = A$$

Example 7.5. If $A = \{1, 2, 3\}$ then the following are all the partitions of A.

$$\begin{array}{l} \{\{1,2,3\}\} \\ \{\{1\},\{2,3\}\} \\ \{\{1,2\},\{3\}\} \\ \{\{1,3\},\{2\}\} \\ \{\{1\},\{2\},\{3\}\} \end{array}$$

Theorem 7.2. For any set A, $R \subseteq A \times A$ is an equivalence relation if and only if the set of its equivalence classes form a partition i.e.

$$Equiv_A(R) \Leftrightarrow Partition(\bigcup_{x \in A} \{[x]_R\})$$

Exercise 7.4. Prove Thm. 7.2.

Counting Partitions

Definition 7.9 (k-partition) A k-partition of a set A is a partition of A into k subsets.

So for example, $\{\{1,2,3\}\}$ is a 1-partition of $\{1,2,3\}$, $\{\{1\},\{2,3\}\}$, $\{\{1,2\},\{3\}\}$, and $\{\{1,3\},\{2\}\}$ are all 2-partitions while $\{\{1\},\{2\},\{3\}\}$ is a 3-partition.

Definition 7.10 (Counting k-partitions) The numbers computed by the following recurrence relation are called Stirling Numbers of the second kind. They compute the number of k-partitions of a set of size n.

$$\begin{split} S(n,1) &= 1 \\ S(n,n) &= 1 \\ S(n,k) &= S(n-1,k-1) + k \cdot S(n-1,k) \end{split}$$

Definition 7.11 (Counting Equivalence Relations) There are as many equivalence relations on a set of size n as there are k-partitions for each $k \in \{1 \cdots n\}$.

$$\sum_{k=1}^{n} S(n,k)$$

7.1.5 Congruence Relations*

It is all well and good to define equivalence relations on a set, but usually we consider sets together with operations on them, for many applications, we expect the equivalence to, in some sense, respect those operations. This is the idea of the *congruence relation* – a congruence is an equivalence that respects operators or is *compatible* with one or more operators. In ordinary situations with equality, we expect the substitution of "equals" for "equals" to not change anything. So, if x = y, then x can be replaced with y in any context e.g. if x and y are equal, we expect f(x) = f(y).

The idea of congruence is to ensure that substitution of equivalent for equivalent in an operator results in equivalent elements.

Definition 7.12. If f is an k-ary operation on the set A and \equiv is an equivalence relation on A then \equiv is a *congruence* for f if

$$\forall x_1, \dots, x_k, y_1, \dots, y_k : A.(\forall i : \{1..k\}. x_i \equiv y_i) \Rightarrow f(x_1, \dots, x_k) \equiv f(y_1, \dots, y_k)$$

This may look pretty complicated, but is the general form for an arbitrary k-ary operation. Here's the restatement for a binary operator.

Definition 7.13. If f is an binary operation on the set A and \equiv is an equivalence relation on A then \equiv is a *congruence* for f if

$$\forall x_1, x_2, y_1, y_2 : A.(x_1 \equiv y_1 \land x_2 \equiv y_2) \Rightarrow f(x_1, x_2) \equiv f(y_1, y_2)$$

We will sometimes write $Cong(\equiv, f)$ to indicate that the equivalence relation \equiv is compatible with the operator f.

Operations on Rational Numbers

Consider the following operations on fractions (Def. 7.5).

Definition 7.14 (Multiplication of fractions) We define multiplication of fractions point-wise as follows:

$$\langle a, b \rangle *_{\mathcal{F}} \langle c, d \rangle \stackrel{\text{def}}{=} \langle ac, bd \rangle$$

where ac and bd denote ordinary multiplication of integers.

Definition 7.15 (Addition of fractions) We define addition of fractions as follows.

$$\langle a, b \rangle +_{\mathcal{F}} \langle c, d \rangle \stackrel{\text{def}}{=} \langle ad + bc, bd \rangle$$

Exercise 7.5. Prove that the multiplication and addition of of fractions both result in fractions *i.e.*

i.)
$$\forall \langle a, b \rangle, \langle c, d \rangle : \mathcal{F}. (\langle a, b \rangle *_{\mathcal{F}} \langle c, d \rangle) \in \mathcal{F}$$

ii.) $\forall \langle a, b \rangle, \langle c, d \rangle : \mathcal{F}. (\langle a, b \rangle +_{\mathcal{F}} \langle c, d \rangle) \in \mathcal{F}$

Lemma 7.5. The relation $\equiv_{\mathbb{Q}}$ is compatible with the operation $*_{\mathcal{F}}$ *i.e.* $\equiv_{\mathbb{Q}}$ is congruent with respect to $*_{\mathcal{F}}$.

Proof: We must show that

$$\begin{split} \forall \langle a,b\rangle, \langle c,d\rangle, \langle e,f\rangle, \langle g,h\rangle : \mathcal{F}. \\ (\langle a,b\rangle \equiv_{\mathbb{Q}} \langle e,f\rangle \wedge \langle c,d\rangle \equiv_{\mathbb{Q}} \langle g,h\rangle) \\ \Rightarrow \ \langle a,b\rangle *_{\mathcal{F}} \langle e,f\rangle \equiv_{\mathbb{Q}} \langle c,d\rangle *_{\mathcal{F}} \langle g,h\rangle \end{split}$$

Assume that $\langle a,b\rangle, \langle c,d\rangle, \langle e,f\rangle, \langle g,h\rangle \in \mathcal{F}$ are arbitrary. Then, since these pairs are fractions, we know that $b \neq 0$, $d \neq 0$, $f \neq 0$ and $h \neq 0$. Also, assume $\langle a,b\rangle \equiv_{\mathbb{Q}} \langle c,d\rangle$ and $\langle e,f\rangle \equiv_{\mathbb{Q}} \langle g,h\rangle$. Then, by the definition of $\equiv_{\mathbb{Q}}$ we know ad = bc and eh = fg. We must show

$$\langle a, b \rangle *_{\mathcal{F}} \langle e, f \rangle \equiv_{\mathbb{Q}} \langle c, d \rangle *_{\mathcal{F}} \langle g, h \rangle$$

By definition of $*_{\mathcal{F}}$ we know $\langle a,b\rangle *_{\mathcal{F}} \langle e,f\rangle$ is the pair $\langle ae,bf\rangle$ and $\langle c,d\rangle *_{\mathcal{F}} \langle g,h\rangle$ is the pair $\langle cg,dh\rangle$. We must show that these results are equivalent *i.e.* $(\langle ae,bf\rangle \equiv_{\mathbb{Q}} \langle cg,dh\rangle)$. To show this, we must show that aedh=bfcg. Now, since ad=bc and since $d\neq 0$ we can divide both sides by d yielding the equality $a=\frac{bc}{d}$. Using this fact together with eh=fg we show aedh=bfcg as follows.

$$aedh = \frac{bc}{d}(edh) = \frac{bcedh}{d} = bceh = bcfg = bfcg$$

The significance of the lemma is that the operation $*_{\mathcal{F}}$ respects the equivalence $\equiv_{\mathbb{Q}} i.e.$ even though it is defined as an operation on fractions, substitution of $\equiv_{\mathbb{Q}}$ -equivalent elements yield $\equiv_{\mathbb{Q}}$ -equivalent results.

Lemma 7.6. The relation $\equiv_{\mathbb{Q}}$ is compatible with the operation $+_{\mathcal{F}}$ *i.e.* $\equiv_{\mathbb{Q}}$ is congruent with respect to $+_{\mathcal{F}}$.

Exercise 7.6. Prove Lemma 7.6

7.2 Order Relations

Equivalence relations abstract the notion of equality while order relations abstract the notion of order. We are all familiar with orderings on the integers, less-than (<) and less-than-or-equal (\leq) .

7.2.1 Partial Orders

Partial orders generalize the ordinary notions of ordering on numbers.

Definition 7.16 (Partial Order)

If $R \subseteq A \times A$ is a relation that is reflexive, antisymmetric and transitive we call it a partial order.

Partial order relations are usually denoted by symbols of the form \leq , \subseteq , \sqsubseteq or \preceq and are written in infix notation.

Definition 7.17 (Poset) A set A paired with a partial order (say \sqsubseteq) on A is called a *poset*. We write posets in the form $\langle A, \sqsubseteq \rangle$.

Theorem 7.3. For any set $A, \langle \rho(A), \subseteq \rangle$ is a poset **Proof:**

First, recall that $\rho(A)$ is powerset of A (see Def. 5.5.9). We must show that the subset relation is a partial order on the power set of A *i.e.* we must show that the subset relation is: (i.) reflexive, (ii.) antisymmetric and (iii.) transitive with respect to the elements of $\rho(A)$.

- i.)In general, we know that for an arbitrary set $S \subseteq S$ (see Thm. 5.5.1), thus $\forall a \in \rho A. \ a \subseteq a$ and reflexivity holds.
- ii.) Antisymmetry holds by Thm. 5.5.2.
- iii.) To see that transitivity holds for the \subseteq relation, assume that $a, b, c \in \rho(A)$ and that $a \subseteq b$ and $b \subseteq c$. We argue that $a \subseteq c$ as follows: Clearly, since every element of a is in b and every element of b is in c, every element of a is in c i.e. $a \subseteq c$ holds.

Definition 7.18 (Strict Partial Order)

If $R \subseteq A \times A$ is a relation that is irreflexive and transitive we call it a *strict partial order*.

Theorem 7.4 (Reduction of a partial order to a strict partial order) If \sqsubseteq is a (non-strict) partial order, then the relation (\sqsubset) defined below is a strict partial order:

$$x \sqsubset y \stackrel{\mathrm{def}}{=} (x \sqsubseteq y \land x \neq y)$$

Remark 7.1. We say the strict partial order \square given in Theorem 7.4 is the strict partial order induced by \square .

Theorem 7.5 (Reflexive closure of a strict partial order is a partial order) If \sqsubseteq is a strict partial order, then the following relation (\sqsubseteq) is (non-strict) partial order.

$$x \sqsubseteq y \stackrel{\text{def}}{=} (x \sqsubseteq y \lor x = y)$$

Remark 7.2. We say the partial order \sqsubseteq given in Theorem 7.5 is the *partial* order induced by \sqsubseteq .

Definition 7.19 (Total Order) A set S is totally ordered by \sqsubseteq if for every pair of elements $x, y \in S$, either $x \sqsubseteq y$ or $y \sqsubseteq x$. A partial order having this property is called a total order.

Example 7.6. Ordinary less-than relation on integers is total. In Thm. 7.3 the subset relation was shown to be a partial order. To see that it is not total, consider the set $A = \{a, b\}$. Since $\{a\} \in \rho(A)$ and $\{b\} \in \rho(A)$ and neither $\{a\} \subseteq \{b\}$ nor $\{b\} \subseteq \{a\}$ holds, the subset relation on $\rho(A)$ is not a total ordering.

7.2.2 Products and Sums of Orders

We can construct new partial orders from existing ones by a various kinds of compositions.

Cartesian Product

Given two posets, we can order their Cartesian product point-wise as the following theorem shows.

Theorem 7.6 (Ordered product) If $\langle A, \sqsubseteq_A \rangle$ and $\langle B, \sqsubseteq_B \rangle$ are posets, then $\langle A \times B, \sqsubseteq \rangle$ is a poset, where

$$\langle x, y \rangle \sqsubseteq \langle z, w \rangle \stackrel{\text{def}}{=} x \sqsubseteq_A z \land y \sqsubseteq_B w$$

Definition 7.20. The ordering given in Thm 7.6 is called the *point-wise ordering* on $A \times B$.

Exercise 7.7. Prove Theorem 7.6 by showing that the ordered product is indeed a partial order.

Lexicographic Product

A dictionary ordering is another way to order Cartesian products.

Theorem 7.7 (Lexicographic Ordering) If If $\langle A, \sqsubseteq_A \rangle$ and $\langle B, \sqsubseteq_B \rangle$ are posets, then $\langle A \times B, \sqsubseteq \rangle$ is a poset where \sqsubseteq is defined as follows:

$$\langle x, y \rangle \sqsubseteq \langle z, w \rangle \stackrel{\text{def}}{=} x \sqsubseteq_A z \lor (x = z \land y \sqsubseteq_B w)$$

Here, \sqsubseteq_A is the strict partial order induced by \sqsubseteq_A .

Definition 7.21. The ordering given in Theorem 7.7 is called the *lexicographic ordering* on $A \times B$.

Exercise 7.8. Prove Theorem 7.7 showing that the lexicographic ordering is a partial order.

Exercise 7.9. Given posets $\langle A, \sqsubseteq_A \rangle$, $\langle B, \sqsubseteq_B \rangle$ and $\langle C, \sqsubseteq_C \rangle$ define a lexicographic ordering on the product $A \times (B \times C)$.

Exercise 7.10. Give posets $\langle A, \sqsubseteq_A \rangle$, $\langle B, \sqsubseteq_B \rangle$ such that the point-wise ordering of $A \times B$ is different from the lexicographic ordering on $A \times B$. Are they always different?

Exercise 7.11. Prove that if the posets $\langle A, \sqsubseteq_A \rangle$, $\langle B, \sqsubseteq_B \rangle$ are total then so is the point-wise ordering of $A \times B$.

Exercise 7.12. Prove that if the posets $\langle A, \sqsubseteq_A \rangle$, $\langle B, \sqsubseteq_B \rangle$ are total then so is the lexicographic ordering of $A \times B$.

Chapter 8

Functions

Some relations have the special property that they are functions. A relation $R \subseteq A \times B$ is a function if each element of the domain A gets mapped to one element and only one element of the codomain B.

8.1 Functions

Definition 8.1 (function) A function from A to B is a relation $(f \subseteq A \times B)$ satisfying the following properties,

$$\begin{array}{ll} i.) & \forall x:A.; \exists y:B. \ \langle x,y\rangle \in f \\ ii.) & \forall x:A. \ \forall y,z:B. \ (\langle x,y\rangle \in f \land \langle x,z\rangle \in f) \Rightarrow y=z \end{array}$$

Relations having the first property are said to be total and relations satisfying the second property are said to be functional or to satisfy the functionality property .

Remark 8.1. Since we usually write f(x) = y for functions instead of $\langle x, y \rangle \in f$, we can restate these properties in the more familiar notation as follows.

$$\begin{array}{ll} i.) & \forall x:A.\exists y:B.f(x)=y\\ ii.) & \forall x:A.\ \forall y,z:B.(f(x)=y \land f(x)=z) \Rightarrow y=z \end{array}$$

There is some danger in using the notation f(x) = y if we do not know that f is a function.

Definition 8.2. For $f, g: A \to B$ and $x \in A$ we define

$$f(x) = g(x) \stackrel{\text{def}}{=} \exists y : B. f(x) = y \land g(x) = y$$

We denote the set of all functions from A to B as $A \to B$, so if $f \subseteq A \times B$ is a function we write $f: A \to B$ or $f \in A \to B$.

Definition 8.3 (domain, codomain, range) If $f: A \to B$, we call the set A the *domain* of f and the set B the *codomain* of f. The set

$$rng(f, A, B) \stackrel{\text{def}}{=} \{ y \in B | \exists x : A.f(x) = y \}$$

is called the range of f. We write dom(f) to denote the set which is the domain of f, codom(f) to denote the codomain and simply rng(f) to denote it range if A and B are clear from the context.

It is worth considering what it means if the domain and or codomain of a function are empty.

Lemma 8.1. [Empty Domain] For every set A, $\forall f.f \in \emptyset \rightarrow A \Leftrightarrow f = \emptyset$ **Proof:** Choose an arbitrary set A and show both directions:

 (\Rightarrow) Suppose f is a function in $emptyset \to A$, then $f \subseteq A \times \emptyset$, so $f = \emptyset$.

(\Leftarrow) Assume $f = \emptyset$ and show $f \in \emptyset \to A$ We must show three things: i.) $f \subseteq \emptyset$ but $f = \emptyset$ so this is trivially true; ii.) f is functional – which is vacously true since the domain is empty; and iii.) that f is total, which is also vacously true.

Lemma 8.2 (Empty Codomain) For every set A

$$\forall f: A \rightarrow \emptyset, A = \emptyset$$

Proof: Suppose f is a function in $A \to \emptyset$, then $f \subseteq A \times \emptyset$ and since $A \times \emptyset = \emptyset$, $f \subseteq \emptyset$, *i.e.* $f = \emptyset$. But also, f is a function so it is both functional and total. The emptyset is trivially functional. But notice, that for f to be total to following property must hold.

$$\forall x : A. \exists y : \emptyset. \langle x, y \rangle \in f$$

More specifically, since $f = \emptyset$ we must show

$$\forall x : A.\exists y : \emptyset. \langle x, y \rangle \in \emptyset$$

This is vacously true if $A = \emptyset$ and is false otherwise, thus it must be the case that $A = \emptyset$.

П

Corollary 8.1. $\forall f :\in \emptyset \to \emptyset$. $f = \emptyset$

8.2 Extensionality (equivalence for functions)

Equality on functions is inherited from the equality on sets. It turns out that the intuitive idea, that functions $f, g: A \to B$ are equal if they produce the same outputs for all inputs in A is exactly the equality that they inherit from the fact that they are sets of pairs of a certain form.

Theorem 8.1 (extensionality) For functions $f, g : A \rightarrow B$,

$$f = g \iff \forall x : A. f(x) = g(x)$$

Thus, functions are equal if they are the same set of pairs. Since they are, by definition functional, this amounts to checking that they agree on every input.

Remarks on Extensional Equivalence

The definition of equality for functions is based on the so-called extensional view of functions i.e. functions as sets of pairs. Within computer science, we might be interested in notions of equivalence that take into account other properties besides simply the input-output behavior of functions. For example, programs (say \mathcal{P}_1 and \mathcal{P}_2) that sort lists of numbers are functions from lists to lists. When we think of \mathcal{P}_a and \mathcal{P}_2 as sets $\mathcal{P}_1 = \mathcal{P}_2$ must be true if they both actually implement sorting correctly. So for example $\langle [2;1;4], [1;2;4] \rangle$ is a pair in both \mathcal{P}_1 and in \mathcal{P}_2 . However, the two programs may have significantly different runtime complexities, so this is a way in which they are not equal. Program \mathcal{P}_1 may implement the merge sort algorithm which has $O(n \log n)$ time complexity while program \mathcal{P}_2 may implement insertion sort which has time complexity $O(n^2)$. So, if we consider their run-time complexities, the two are clearly not equivalent. Many other proprieties are not accounted for by extensional equality; indeed, the only property that is accounted for is the input-output behavior. Properties such as run time or length of a program that make distinctions other than the one made by extensionality are called intensional properties.

8.3 Operations on functions

Since functions are relations, and thus are sets of pairs, all the operations on sets and relations make sense as operations on functions.

8.3.1 Restrictions and Extensions

Definition 8.4. If $f \in A \to B$ and $A' \subseteq A$, then $f \cap (A' \times B)$ is called the restriction of f to A' and is sometimes written f/A' or $f \downarrow A'$.

Exercise 8.1. Prove functions are closed under restricitons, *i.e.* if $f \downarrow A'$ is a restriciton of $f: A \to B$ to A' where $A' \subseteq A$, then $f \downarrow A'$ is a function.

Definition 8.5. If $g \in A' \to B$ is the restriction of $f \in A \to B$ then we say f is the extension of g.

Lemma 8.3. $f \in A \to B$ is an extension of $g \in A' \to B$ iff $g \subseteq f$.

8.3.2 Composition of Functions

Recall that functions are simply relations that are both functional and total. This means the operation of composition for relations (Def. 6.6.8) can be applied to functions as well. Given functions $f:A\to B$ and $g:b\to C$, their composition is the function $g\circ f$ which is simply calculated by applying f and then applying f.

Right away we must ask ourselves whether the relation obtained by composing functions results in a relation that is also a function.

Lemma 8.4 (function composition) Consider functions $f: A \to B$ and $g: B \to C$, the following picture illustrates the situation.

$$A \xrightarrow{f} B \xrightarrow{g} C$$

By composition of relations, we know there is a relation $(g \circ f) \subseteq A \times C$ which we claim is also a function *i.e.*

$$(g \circ f) \in A \to C$$

Proof: To show $(g \circ f) \in A \to C$, we must show

- $i.) \quad \forall x: A. \ \forall y,z: C. \ \langle x,y\rangle \in (g\circ f) \land \langle x,z\rangle \in (g\circ f) \Rightarrow y=z$
- ii.) $\forall x : A. \exists y : C. \langle x, y \rangle \in (g \circ f)$
- (i.) Assume $x \in A$ and $y, z \in C$ for arbitrary x, y and z. Also, assume $\langle x, y \rangle \in (g \circ f)$ and $\langle x, z \rangle \in (g \circ f)$ and show y = z. By the definition of composition, we know there is a $w \in B$ such that f(x) = w and g(w) = y. Similarly we know there is a $\hat{w} \in B$ such that $f(x) = \hat{w}$ and $g(\hat{w}) = z$. Now, since f is a function we know $w = \hat{w}$ and similarly, since g is a function $g(w) = g(\hat{w})$ so x = y and we have shown that $(g \circ f)$ is functional.
- (ii.) Assume $x \in A$ and show $(*) \exists y : C. \langle x, y \rangle \in (g \circ f)$. Now, since f is a function in $A \to B$ it is total and so there is a $w \in B$ such that f(x) = w. Similarly, since g is a function in $B \to C$ there is a $z \in C$ such that g(w) = z. But then $\langle x, z \rangle \in (g \circ f)$ and so use z as the witness for y in (*).

Remark 8.2. Having proved this theorem we say, functions are closed under composition. That is, we preserve the property of being a function when we compose two functions.

In general, this question is rather fundamental and can be asked in many contexts.

When is a mathematical structure closed with respect to some operation on it?

By "closed with respect to", we mean that applying the operation preserves the property of having a particular structure. In the case of functions and the composition operation, the property we are considering is whether a relation is a function and the question "When is the composition of functions also a function?" is answered by the previous lemma, Always.

Thus, function composition is a binary operator on pairs of functions analogous to the way addition is a binary operation on pairs of integers. The analogy goes deeper. Addition is associative e.g. if a,b and c are numbers, a+(b+c)=(a+b)+c. Function composition is associative as well.

Remark 8.3. Note that because the composition of relations is associative (see Thm. 6.6.1.) the associativity of function composition is obtained for free. We have included a direct proof of the associativity for function composition here to illustrate the difference in the proofs. This is a case where the proof for the special case (function composition) is easier than the more general case (relation composition.)

Theorem 8.2 (Associativity of function composition) If $f:A\to B,g:B\to C$ and $h:C\to D$ then

$$h \circ (g \circ f) = (h \circ g) \circ f$$

Proof: To show two functions are equal, we must apply extensionality. To show

$$h \circ (g \circ f) = (h \circ g) \circ f$$

we must show that for every $x \in A$,

$$(h \circ (g \circ f))(x) = ((h \circ g) \circ f)(x)$$

Pick an arbitrary x. The following sequence of equalities (derived by unfolding the definition of composition and then folding it back up) shows the required equality holds.

$$(h \circ (g \circ f))(x)$$

$$= h((g \circ f)(x))$$

$$= h(g(f(x)))$$

$$= (h \circ g)(f(x))$$

$$= ((h \circ g) \circ f)(x))$$

Zero (0) is both a left and right identity for addition *i.e.* 0 + a = a and a + 0 = a. Similarly, the identity function Id(x) = x is a left and right identity for the operation of function composition.

Lemma 8.5 (Identity function) If A is a set, Δ_A is the identity function on A *i.e.* Δ_A is a function and $\forall x : A.\Delta_A(x) = x$.

Exercise 8.2. Prove Lemma 8.5.

Remark 8.4. We will sometimes write Id_A for Δ_A when we are thinking of the relation as the identity function on A.

Theorem 8.3 (Left Right identity lemma) For any sets A and B, and any function $f: A \to B$, Id_A is a left identity for f and Id_B is a right identity for f.

$$Id_B \circ f = f$$
 and $f \circ Id_A = f$

Proof: To show two functions are equal, we apply extensionality, choosing an arbitrary x.

$$(f \circ Id_A)(x) = f(Id_A(x)) = f(x)$$

Thus Id_A is a right identity for \circ . Similarly,

$$(Id_B \circ f)(x) = Id_B(f(x)) = f(x)$$

Thus $(f \circ Id_A) = f$ and $Id_B \circ f = f$ and the theorem has been shown.

8.3.3 Inverse

Given a relation $R \subseteq A \times A$, recall Definition 6.6.6 of the inverse relation

$$R^{-1} = \{ \langle y, x \rangle \in B \times A \mid xRy \}$$

Now, consider a function $f: A \to B$. Since f is a relation, the relation f^{-1} exists; but is it a function?

We ask the question, "When are functions closed under the inverse operation? *i.e.* when is the inverse of a function still a function. We can try to begin to answer the question by considering cases where the inverse might fail to be a function.

Example 8.1. Let $f: A \to B$ be a function. Suppose that for some $x, y \in A$, where $x \neq y$, that for some z, f(x) = z and f(y) = z. But then, $\langle z, x \rangle \in f^{-1}$ and $\langle z, y \rangle \in f^{-1}$ so, in this case, f^{-1} is not a function since it violates the functionality condition. We conclude that if any two elements of A get mapped to the same element of B, then f^{-1} is not a function.

Example 8.2. Let $f: A \to B$ be a function. Suppose that for some $z \in B$, there is no x such that f(x) = z. But then, there is no pair in f^{-1} whose first element is z. This violates the totality condition and so f^{-1} is not a function if there is some element of B not mapped onto by f.

Functions that rule out the behavior described in Example 8.1 are said to be *one-to-one* or are called *injections*. Functions that rule out the behavior described in Example 8.2 are the *onto* functions which are also called *surjections*.

8.4 Properties of Functions

In the previous section we have analyzed what conditions might rule out the possibility that a the inverse of a functions is itself a function. In this section, we formalize those conditions as logical properties. Functions that satisfy these properties have, in some sense, more structure than functions that don't.

8.4.1Injections

Definition 8.6 (injection, one-to-one) A function $f: A \to B$ is an *injection* (or one-to-one) if every element of B is mapped to my at most one element of A. Formally, we write:

$$\forall x, y : A. \ f(x) = f(y) \Rightarrow x = y$$

We will write Inj(f, A, B) to mean f is an injection with domain A and codomain B.

The definition says that if f maps x and y to the same element, then it must be that x and y are one in the same i.e. that x = y. Injections are also called one-to-one functions.

Theorem 8.4 (Composition of injections) For sets A, B and C, and functions $f: A \to B$ and $g: B \to C$, then

- a.) if f and g are injections, then $g \circ f$ is an injection, and
- b.) If $g \circ f$ is an injection then f is an injection.

Proof:

Proof of part (a): Since f and g are injections we know

$$i.) \quad \forall x,y: A.f(x) = f(y) \Rightarrow x = y$$

$$ii.) \quad \forall x,y: B.g(x) = g(y) \Rightarrow x = y$$

$$ii.$$
) $\forall x, y : B.q(x) = q(y) \Rightarrow x = y$

We must show that $(q \circ f)$ is an injection, *i.e.* that:

$$\forall x, y : A. (g \circ f)(x) = (g \circ f)(y) \Rightarrow x = y$$

We choose arbitrary x and y from the set A and assume $(g \circ f)(x) = (g \circ f)(y)$ to show x = y. Now, by definition of function composition $(g \circ f)(x) = g(f(x))$ and $(g \circ f)(y) = g(f(y))$. Using f(x) for x and f(y) for y in (ii.) we get that f(x) = f(y), but then, by the fact that f is an injection (i.) we know x = y.

Proof of part (b): Left as an exercise.

8.4.2 Surjections

Definition 8.7 (surjection, onto) A function $f: A \to B$ is an surjection (or onto) if every element of B is mapped to by some element of A under f.

$$\forall y : B. \ \exists x : A. \ f(x) = y$$

We sometimes write Surj(f, A, B) to indicate that $f \in A \to B$ is a surjection.

Corollary 8.2 (surjection characerization lemma) A function is a surjection if and only if codom(f) = rng(f).

Exercise 8.3. Prove Corollary 8.2.

Theorem 8.5 (Composition of surjections) For sets A, B and C, and functions $f: A \to B$ and $g: B \to C$,

- a.) if f and g are surjections, then $g \circ f$ is a surjection, and
- b.) If $g \circ f$ is a surjection then g is a surjection.

Proof:

Proof of part (a): Since f and g are surjections we know

$$i.)$$
 $\forall y: B.\exists x: A. \ f(x) = y$
 $ii.)$ $\forall y: C.\exists x: B. \ g(x) = y$

We must show that $(g \circ f)$ is an surjection, *i.e.* that:

$$\forall y : C. \exists x : A. (q \circ f)(x) = y$$

Choose an arbitrary $y \in C$ and show that there exists an $x \in A$ such that $(g \circ f)(x) = y$. By (ii.), there is some $z \in B$ such that g(z) = y. Using z for y in (i.), we get that there is an $x \in A$ such that f(x) = z. Now, we have that f(x) = z and g(z) = y so we know that g(f(x)) = y, in particular, we know that $(g \circ f)(x) = y$. Thus, we have shown that, if you choose an arbitrary $y \in C$ there exists an $x \in A$ such that $(g \circ f)(x) = y$.

Proof of part (b): Left as an exercise.

8.4.3 Bijections

Definition 8.8 (bijection) A function $f: A \to B$ is a bijection if it is both an injection and a surjection. Bijective functions are also said to be one-to-one and onto.

Now, going back to the question of when the inverse of a function is a function, we state the following theorem which perfectly characterizes the situation.

Lemma 8.6 (Inverse Characterization) For every function $f \in A \to B$, f is a bijection if and only if the inverse f^{-1} is a function.

Proof: Let f be an arbitrary function in $A \to B$. There are two cases:

 (\Rightarrow) Assume f is a bijection and show f^{-1} is a function.

If f is a bijection, then it is both an injection and a surjection, *i.e.* we assume the following about f.

$$\forall x, y : A. \ f(x) = f(y) \Rightarrow x = y \quad \text{(injection)}$$

 $\forall y : B. \ \exists x : A. \ f(x) = y \quad \quad \text{(surjection)}$

Now, to show f^{-1} is a function from B to A, we must show that it is both total and functional¹.

i.)
$$\forall x : B. \exists y : A. \langle x, y \rangle \in f^{-1}$$
 (total)

ii.)
$$\forall x : B. \ \forall y, z : A. \ \langle x, y \rangle \in f^{-1} \land \langle x, z \rangle \in f^{-1} \Rightarrow y = z$$
 (functional)

- (i.) We prove that f^{-1} is total as follows: Choose an arbitrary element of B, call it z and show that $\exists y: A.\langle z,y\rangle \in f^{-1}$. Now, since f is surjective, we know that $\exists x: A.f(x)=z$, so we assume there is an x such that $x\in A$ and such that that f(x)=z. Then, $\langle x,z\rangle \in f^{-1}$. Thus, let y in $\exists y: A.f^{-1}(z)=y$ be x. Since we have just argued that $\langle z,x\rangle \in f^{-1}$ and since $x\in A$ we have finished the proof that f^{-1} is total.
- (ii.) To see that f^{-1} is functional, consider the following argument. Choose an arbitrary element of B, call it x and let y and z be arbitrary elements of A. We must show $\langle x,y\rangle \in f^{-1} \wedge \langle x,z\rangle \in f^{-1} \Rightarrow y=z$ so we assume $\langle x,y\rangle \in f^{-1}$ and $\langle x,z\rangle \in f^{-1}$ and show y=z. But since $\langle x,y\rangle \in f^{-1}$, we know (by the definition of f^{-1}) that f(y)=x and similarly f(z)=x. Now, since we started by assuming f is an injection, it must be that y=z.

This completes the proof that if f is a bijection then f^{-1} is a function.

 (\Leftarrow) Assume f^{-1} is a function and show f is a bijection.

The proof is left as an exercise.

Remark 8.5. Note that we used the fact that f was surjective to prove that f^{-1} was total and we used the fact that f was injective to prove that f^{-1} was functional. Looking at the formulas for these properties above, we see the similarity of their forms – so it makes perfect sense that we can use them in this way.

Exercise 8.4. Prove the (\Leftarrow) direction of Theorem 8.6.

Lemma 8.7 (inverse-bijection) For every function $f \in A \to B$, if f is a bijection then f^{-1} is a bijection as well.

Exercise 8.5. Prove Lemma 8.7.

¹Since we are trying to prove that f^{-1} is a function, and we do not know that it is yet, we use the relational notation to avoid confusion *e.g.* the notation $f^{-1}(x) = y$ suggests that there is a unique y such that $\langle x, y \rangle \in f^{-1}$; however, until we have shown f^{-1} is a function we do not know this to be true.

Exercise 8.6. Prove that Δ_A is a function and is bijective. We call this the identity function.

Lemma 8.8 (Inverse) For every function $f \in A \to B$, f is a bijection if and only if the inverse f^{-1} is a function.

Theorem 8.6 (Schröder-Bernstein) If A and B are sets and $f:A\to B$ and $g:B\to A$ are injections, then there exists a function $h\in A\to B$ that is a bijection.

See [4] for a proof.

Note that if f and g are bijections then both f and g are surjections and both are injections. Since composition preserves these properties (see Lemma 8.4and Lemma 8.5) we have the following.

Corollary 8.3 (Composition of bijections) For sets A, B and C, and functions $f: A \to B$ and $g: B \to C$, if f and g are bijections, then so is $g \circ f$.

The proof of following theorem shows how to lift bijections between pairs of sets to their Cartersian product.

Theorem 8.7. For arbitrary sets A, B, A' and B' the following holds:

$$A \sim A' \wedge B \sim B' \Rightarrow (A \times B) \sim (A' \times B')$$

Proof: Assume $A \sim A'$ and $B \sim B'$ are witnessed by the bijections $g: A \to A'$ and $h: B \to B'$. We must construct a bijection (say f) from $(A \times B) \to (A' \times B')$. We define f as follows:

$$f(\langle x, y \rangle) = \langle g(x), h(y) \rangle$$

f **injective:** Now, to see that f is an injection, we must show that for arbitrary pairs $\langle a, b \rangle, \langle c, d \rangle \in A \times B$ that:

$$f(\langle a, b \rangle) = f(\langle c, d \rangle) \Rightarrow \langle a, b \rangle = \langle c, d \rangle$$

Assume $f(\langle a,b\rangle)=f(\langle c,d\rangle)$ and show $\langle a,b\rangle=\langle c,d\rangle$. But by the defintion of f we have assumed $\langle g(a),h(b)\rangle=\langle g(c),h(d)\rangle$. Thus, by equality on ordered pairs, we know g(a)=g(c) and h(b)=h(d). Now, since g and h are both injections we know a=c and b=d and so we have shown that $\langle a,b\rangle=\langle c,d\rangle$.

f surjective: To see that f is a surjection, we must show that

$$\forall \langle c, d \rangle : A' \times B' . \exists \langle a, b \rangle : (A \times B) . f(\langle a, b \rangle) = \langle c, d \rangle$$

Choose an arbitrary pair $\langle c, d \rangle \in A' \times B'$. Then we claim the pair $\langle g^{-1}(c), h^{-1}(d) \rangle$ is the witness for the existential. To see that it is we must show that $f(\langle g^{-1}(c), h^{-1}(d) \rangle) = \langle c, d \rangle$. Here is the argument.

8.5. EXERCISES 125

$$f(\langle g^{-1}(c), h^{-1}(d) \rangle)$$

$$= \langle g(g^{-1}(c)), h(h^{-1}(d)) \rangle$$

$$= \langle (g \circ g^{-1})(c), (h \circ h^{-1})(d) \rangle$$

$$= \langle Id_{A'}(c), Id_{B'}(d) \rangle$$

$$= \langle c, d \rangle$$

8.5 Exercises

1. Write down the formal definitions of injection, surjection and bijection using the notation $\langle x,y\rangle\in f$ instead of the abbreviated form f(x)=y. Note that you will need to include a new variable (say z) to account for f(x)=f(y) in this more primitive notation.

Chapter 9

Cardinality and Counting

9.1 Cardinality

The term *cardinality* refers to the relative "size" of a set.

Definition 9.1 (equal cardinality) Two sets A and B have the same cardinality iff there exists a bijection $f: A \to B$. In this case we write |A| = |B| or $A \sim B$.

Although the usage is less common, sometimes sets of equal cardinality are said to be *equipollent* or *equipotent*.

Exercise 9.1. Prove that the relation of equal cardinality is an equivalence relation. Specifically, show for arbitrary sets A, B, and C that the following hold:

- i.) |A| = |A|
- ii.) $|A| = |B| \Rightarrow |B| = |A|$
- iii.) $(|A| = |B| \land |B| = |C|) \Rightarrow |B| = |A|$

This is easy if you study the theorems related to bijections their inverses and compositions.

Next, we use the theorem to show a (perhaps) rather surprising result, that \mathbb{N} has the same cardinality as the set of *Even* numbers, even though half the numbers are not there in *Even*.

Definition 9.2 (even) $Even = \{x : \mathbb{N} | \exists y : \mathbb{N}. \ x = 2y\}.$

Theorem 9.1. $|\mathbb{N}| = |Even|$.

Proof: To show these sets have equal cardinality we must find a bijection between them. Let f(n) = 2n, we claim $f: \mathbb{N} \to Even$ is a bijection. To see this, we must show it is both: (i.) one-to-one and (ii.) onto.

(i.) f is one-to-one, *i.e.* we must show:

$$\forall x, y : \mathbb{N}, f(x) = f(y) \Rightarrow x = y$$

Choose arbitrary $x, y \in \mathbb{N}$. Assume f(x) = f(y) and we show x = y. But by the definition of f, if f(x) = f(y) then 2x = 2y and so x = y as we were to show. (i.) f is onto, *i.e.* we must show:

$$\forall x : Even. \exists y : \mathbb{N}. \ x = f(y)$$

Choose an arbitrary x and assume $x \in Even$. Then, $x \in \{x : \mathbb{N} | \exists y : \mathbb{N}. \ x = 2y\}$ is true so we know, $x \in \mathbb{N}$ and $\exists y : \mathbb{N}. \ x = 2y$. To see that $\exists y : \mathbb{N}. \ x = f(y)$, note that f(y) = 2y.

This theorem may be rather surprising, it says that the set of natural numbers is the "same size" as the set of even numbers. Clearly there are only half as many evens as there are naturals, but somehow these sets are the same size. This is one of the unintuitive aspects of infinite sets. This seeming paradox, that a proper subset of an infinite set can be the same size, was first noticed by Galileo [17] and is sometimes called Galileo's paradox [53] after the Italian scientist Galileo Galilei (1564 – 1642).

Definition 9.3. $Squares = \{x : \mathbb{N} \mid \exists y : \mathbb{N}. \ x = y^2\}.$

Exercise 9.2. Prove that $|\mathbb{N}| = |Squares|$.

Definition 9.4 (less equal cardinality) The cardinality of a set A is at most the cardinality of B iff there exists an injection $f:A\to B$. In this case we write $|A|\leq |B|$.

Definition 9.5 (strictly smaller cardinality) The cardinality of a set A is less than the cardinality of B iff there exists an injection $f: A \to B$ and there is no bijection from A to B. In this case we write |A| < |B|. Formally,

$$|A|<|B| \ \stackrel{\mathrm{def}}{=} \ |A| \leq |B| \wedge |A| \neq |B|$$

The following theorem is a corollary of Thm. 8.8.6.

Theorem 9.2 (Schröder Bernstein) For all sets A and B, if $|A| \le |B|$ and $|B| \le |A|$ then |A| = |B|.

9.2 Infinite Sets

Richard Dedekind (1831-1916) was a German mathematician who made numerous contributions in establishing the foundations of arithmetic and number theory

Richard Dedekind

The following definition of infinite is sometimes called Dedekind infinite after the mathematician Richard Dedekind (1831-1916) who first formulated it. This characterization of infinite sets may be somewhat surprising because it does not mention natural numbers or the notion of finiteness.

Definition 9.6 (Dedekind infinite) A set A is *infinite* iff there exists a function $f: A \to A$ that is one-to-one but not onto.

Lemma 9.1. \mathbb{N} is infinite.

Proof: Consider the function f(n) = n + 1. Clearly, f is one-to-one since if f(x) = f(y) for arbitrary x and y in \mathbb{N} , then x + 1 = y + 1 and so x = y. However, f is not onto since there is no element of \mathbb{N} that is mapped to 0 by f. \square

Theorem 9.3. If a set A is infinite then, for any set B, if $A \sim B$, then B is infinite.

Proof: If A is infinite, then we know there is a function $f: A \to A$ that is one-to-one but no onto. Also, since $A \sim B$, there is a bijection $g: A \to B$. To show that B is infinite, we must show that there is a function $h: B \to B$ that is one-to-one but not onto. We claim $h = g \circ f \circ g^{-1}$ is such a function.

Now, to show that h is an injection (one-to-one) we recall (Theorem 8.8.4)that the composition of injections is an injection. We assumed that f and g were both injections and to see that g^{-1} is an injection as well, we cite Lemma 8.?? that says that if g is a bijection then g^{-1} is a bijection as well. Since bijections are also injections, we have shown that h is an injection.

To show that h is not a surjection it is enough to show that

 $i.) \exists y : B. \forall x : Bh(x) \neq y$

We assumed f is not onto, thus,

$$\exists y' : A. \forall x : A. f(x) \neq y'$$

i.e. there is at least one y' in A such that

$$ii.) \forall x : A.f(x) \neq y'$$

Not that since g is a bijection we know the inverse g^{-1} is a function of type $B \to A$. Now, to show i.) use g(y') as the witness. We must show:

$$\forall x : Bh(x) \neq g(y)$$

Choose an arbitrary $x \in B$ and show $h(x) \neq g(y)$. But to show $\neg(h(x) = g(y))$ we assume h(x) = g(y) and derive a contradiction.

$$h(x) = (g \circ f \circ g^{-1})(x) = g(f(g^{-1}(x))) = g(y')$$

Now, since g is an injection, we know $f(g^{-1}(x)) = y'$. But this is impossible because by ii.) we know $f(g^{-1}(x)) \neq y'$.

This last theorem provides us an alternative method of showing a set is infinite, specifically, show it has the same cardinality as some set already known to be infinite.

9.3 Finite Sets

A set is finite if we can, in a very explicit sense, count the elements in the set i.e. we can put the elements of the set in one-to-one correspondence with some initial prefix of the natural numbers.

It will be useful to have a more general notion of a segment of the integers.

Definition 9.7 (Integer Segment)

$$\{i..j\} \stackrel{\text{def}}{=} \{k : \mathbb{N} \mid i \le k < j\}$$

Note that the upper bound j is not included in the set. If the segment begins at 0 then we say it is an initial prefix of the natural numbers.

Definition 9.8.

$$\{0..n\} \stackrel{\text{def}}{=} \{k : \mathbb{N} \mid 0 \le k < n\}$$

Remark 9.1. Note that $\{0..0\} = \emptyset$ and so has 0 elements. $\{0..1\} = \{0\}$ and so has one element. In general $\{0..k\} = \{0, 1, \dots, k-1\}$ and so has k elements.

Definition 9.9 (finite) A set A is finite iff there exists a natural number n such that $|A| = |\{0..n\}|$. In this case we write |A| = n.

$$finite(A) \stackrel{\text{def}}{=} \exists n : \mathbb{N}. |A| = |\{0..n\}|$$

The definition says that for a set A to be finite, there must be a natural number k and a bijection (call it f, from A to $\{0..k\}$. Since the mapping is a bijection, it has an inverse mapping $\{0..k\} \to A$ which is also a bijection. Then f^{-1} can be used to enumerate the elements of A.

In particular, note that if f is the bijection witnessing the finiteness of A (showing that it has k elements), the following identities hold:

$$f A = \{0 ... k - 1\}$$
 and $A = f^{-1}\{0 ... k - 1\}$

Lemma 9.2. For every set A, $|A| = 0 \Leftrightarrow A = \emptyset$ **Proof:**

(\Rightarrow) Assume |A|=0, then, there is a bijection $c:A\to\{0..0\}$. But by definition $\{0..0\}=\emptyset$ since there are no natural numbers between 0 and -1. This means $c:A\to\emptyset$ which, by Thm. 8.8.2 $A=\emptyset$.

(\Leftarrow) Assume $A = \emptyset$ and show |A| = 0. By definition, we must show a bijection from $A \to \{0..0\}$ *i.e.* a bijection $c : \emptyset \to \emptyset$. By Lemma 8.8.1 $c = \emptyset$ is a function in $\emptyset \to \emptyset$ and it is vacuously a bijection. □

Now, the bijection f witnessing the fact that A is finite assigns to each element of A a number between 0 and k. Also, the inverse f^{-1} maps numbers between 0 and k to unique elements of A i.e. since f^{-1} is itself a bijection, and so is one-to-one, we know that no $i, j \in \{0..k-1\}$ such that $i \neq j$ map to the same element of A. We could enumerate (list) the elements of the set by the following bit of pseudo-code.

for
$$i \in \{0..k-1\}$$
 do Print $(f^{-1}(i))$

To make sure that there is nothing "between" the finite and infinite sets (i.e. that there is no set that is neither finite nor infinite) we would expect the following theorem holds.

Theorem 9.4. A set A is Dedekind infinite iff A is not finite.

Interestingly, it can be shown that proofs of this theorem require the use of the axiom of choice – whose use is beyond the scope of these notes.

Given a finite set A, and injection $B \to A$ shows B is finite.

Theorem 9.5.

$$\forall A, B.finite(A) \land |B| \leq |A| \Rightarrow finite(B)$$

As an example use of the this theorem is to show the following.

Lemma 9.3.

$$\forall A.finite(A \times A) \Rightarrow finite(A)$$

Proof: Choose an arbitrary set A. Assume $finite(A \times A)$ and show finite(A). We show $|A| \leq |A \times A|$ by the following injection.

$$g(x) = \langle x, x \rangle$$

To see that g is an injection show that $g(x) = g(y) \Rightarrow x = y$ for arbitrary $x, y \in A$. But if g(x) = g(y) then $\langle x, x \rangle = \langle y, y \rangle$ and by Lemma 5.6, x = y and so g is an injection.

9.3.1 Permutations

Definition 9.10. A bijection from a finite set A to itself is called a *permutation*.

If a set A is finite, there exists a $k \in \mathbb{N}$ such that there is a bijection $A \to \{0..k\}$. Call this function \sharp , then for each $x \in A$, $\sharp x = i$ for some $i \in \{0..k\}$.

9.4 Cantor's Theorem

Typically, it is harder to prove a set A has strictly smaller cardinality that a set B because it is harder to prove that no function in $A \to B$ is a bijection. To prove this we usually assume there is a bijection and derive a contradiction. Cantor's¹ theorem which says that the power set of every set is strictly larger than the set itself.

Theorem 9.6 (Cantor's Theorem) For every set A, $|A| < |\rho(A)|$.

Proof: Let A be an arbitrary set. To show $|A| < |\rho(A)|$ we must show that (i.) there is an injection $A \to B$ and (ii) there is no bijection from A to B.

(i.) Let $f(x) = \{x\}$. We claim that this is a injection form A to $\rho(A)$ (the set of all subsets of A. Clearly, for each $x \in A$, $f(x) \in \rho(A)$. To see that f is an injection we must show:

$$\forall x, y : A. \ f(x) = f(y) \Rightarrow x = y$$

Choose arbitrary x and y from A. Assume f(x) = f(y), *i.e.* that $\{x\} = \{y\}$, we must show x = y. But, by Theorem 5.5.3, $\{x\} = \{y\} \Leftrightarrow x = y$, thus f is an injection as was claimed.

(ii.) To see that there is no bijection, we assume $f:A\to B$ is an arbitrary function and show that it can not be onto.

Now, if f is onto then every subset of A must be mapped to from some element of A. Consider the set

$$B = \{ y : A \mid y \not\in f(y) \}$$

Clearly $B \subseteq A$, so $B \in \rho(A)$. Now, if f is onto, there is some $z \in A$ such that f(z) = B. Also, it must be the case that $z \in B \lor z \notin B$.

¹Georg Cantor (1845–1918) was a German mathematician who developed set theory and established the importance of the ideas of injection, and bijection for counting.

(case 1.) Assume $z \in B$. Then, $z \in \{y : A \mid y \notin F(y)\}$, that is, $z \in A$ (as we assumed) and $z \notin f(z)$. Since we assumed f(z) = B, we have $z \notin B$. But we started by assuming $z \in B$ so this is absurd.

(case 2.) Assume $z \notin B$. Then, $\neg(z \in \{y : A \mid y \notin f(y)\})$. By the definition of membership in a set defined by comprehension, $\neg(z \in A \land z \notin f(z))$. By DeMorgan's law, $(z \notin A \lor \neg(z \notin f(z)))$. Since we know $z \in A$ it must be that $\neg(z \notin f(z))$, *i.e.* that $z \in f(z)$. Since f(z) = B we have $z \in B$. But again, this is absurd because we started this argument by assuming $z \notin f(z)$.

Since we have arrived at a contradiction in both cases, we conclude that the function f can not be a bijection.

Cantor's theorem gives a way to take any set and use it to construct a set of strictly larger cardinality. Thus, we can construct a hierarchy of non-equivalent infinities. Start with the set $\mathbb N$ (which we proved was infinite) and take the power set. By Cantor's theorem, $|\mathbb N|<|\rho(\mathbb N)|$. Similarly, $|\rho(\mathbb N)|<|\rho(\rho(\mathbb N))|$ and so on.

Corollary 9.1 (Infinity of infinities) There is an unbounded hierarchy of strictly distinct infinite sets.

9.5 Countable and Uncountable Sets

By the corollary 9.1, there are many different infinities and we distinguish infinite sets that are, in some sense, small by classifying them as countable sets and the large sets as being *uncountable*.

Definition 9.11 (Countable) A set A is *countable* iff A is finite or $A \sim \mathbb{N}$. Countable sets are also sometimes said to be *denumerable*.

Trivially, it follows that the set of natural numbers $\mathbb N$ is countable. We have the following lemma characterizing countable sets.

Lemma 9.4. For all sets A, A is countable if and only if there exists a surjection $f: \mathbb{N} \to A$.

The proof in the (\Rightarrow) direction is trivial following almost directly from the definition of countable. The proof in the \Leftarrow) direction assumes the existence of the surjection and requires us to show it is a bijection, or to use it to construct a mapping from A onto an initial segment of \mathbb{N} .

The following theorems may be surprising.

Theorem 9.7 (\mathbb{Q} countable) The set \mathbb{Q} (of rational numbers) is countable.

Theorem 9.8 (\mathbb{R} uncountable) The set \mathbb{R} (of real numbers) is uncountable.

The proofs are originally due to Cantor.

9.6 Counting

We saw with the notion of cardinality that it is possible to compare the sizes of sets without actually counting them. By counting, we mean the process of sequentially assigning a number to each element of the set -i.e creating a bijection between the elements of the set some set $\{0..k\}$. This is precisely the purpose of the bijection that witnesses the finiteness of a set A – it counts the elements of the set A. Thus, counting is "finding a function of a certain kind."

Lemma 9.5 (Counting Lemma)

$$\forall j, k : \mathbb{N}. (\{0..j\} \sim \{0..k\} \Rightarrow j \leq k$$

The following lemma shows that counting is unique, *i.e.* that it does not matter how you count a finite set, it always has the same cardinality.

Theorem 9.9.

$$\forall A. \forall n, m : \mathbb{N}. (|A| = n \land |A| = m) \Leftrightarrow n = m$$

A corollary is

Corollary 9.2.

$$\forall i, j : \mathbb{N}. \{0..i\} \sim \{0..j\} \Leftrightarrow i = j$$

9.6.1 The Pigeonhole Principle

A concept related to the one of uniqueness of counting is the *pigeonhole principle*. In formally, it says that if you have m pigeons and k boxes to put them into, if m > k then at least one of the k boxes must contain more than one pigeon.

There are a few ways to state this theorem. A rather explicit statement is given by the following.

Theorem 9.10 (Pigeonhole Principle)

$$\forall m,n: \mathbb{N}. \, \forall f: \{0..m\} \rightarrow \{0..n\}. \\ m>n \Rightarrow \exists i,j: \{0..m\}. \, i\neq j \land f(i)=f(j) \Rightarrow f(i)=f(j) \Rightarrow f(i)=f(j) \Rightarrow f(i)=f(j) \Rightarrow f(i)=f(j) \Rightarrow f(i)=f(j) \Rightarrow f(i)=f(j) \Rightarrow f(i)=f(j) \Rightarrow f(i)=f(j) \Rightarrow f(i)=f(j) \Rightarrow f(i)=f(j) \Rightarrow f(i)=f(j) \Rightarrow f(i)=f(j) \Rightarrow f(i)=f(j) \Rightarrow f(i)=f(j) \Rightarrow f(i)=f(j)=f(j) \Rightarrow f(i)=f(j)=f(j) \Rightarrow f(i)=f(j)=f(j)=f(j)$$

But this is merely saying that at least two elements from the domain must get mapped to the same element (pigeon hole) of the codomain. Recall the definition of injection Chap.8 Definition ??. A more abstract statement is that if i < j then there is no injection from $\{0..j\} \rightarrow \{0..i\} - i.e.$ for every function there are always at least a pair of elements from the domain mapped to some single element in the codomain, then there certainly can be no injection.

Theorem 9.11 (Pigeonhole Principle 1)

$$\forall m, n : \mathbb{N}. \ m > n \Rightarrow \forall f : \{0..m\} \rightarrow \{0..n\}. \neg Inj(f, \{0..m\}, \{0..n\})$$

²See Stuart Allen's formalization [2] of discrete math materials, the proofs here are the ones formalized by Allen.

Part III Induction and Recursion

Stephen Cole Kleene

Stephen Cole Kleene (1909–1994) was an American mathematic an and logician who made fundamental early developments in recursion theory, mathematical logic and metamathematics. He was a student of Alonzo Church's at Princeton in the 1930's and went on to the department of Mathematics at the University of Wisconsin in Madison where he staved until his retirement.

Introduction

The mathematical structures studied in Part II (sets, relations and functions) are formed by building certain kinds of sets and then imposing constraints on those structures e.g. we have defined relations as subsets of Cartesian products, we defined functions as a constrained form of Cartesian products, they are relations that satisfy the properties of functionality and totality.

An alternative form of definition³ definition are those given inductively, meaning that the structures are defined by giving base cases (instances of the structure that do not refer to substructures of the kind being defined, and by combining previously constructed instances of the structure being defined. Examples of mathematical structures having inductive structure are the natural numbers, lists, trees, formulas, and even programs.

Inductive structures are ubiquitous in Computer Science and they go hand in hand with definitions by recursion and inductive proofs. There are many forms of induction (mathematical induction, Notherian induction, well-founded induction [36] and structural induction [55]. In this part of the text, we concentrate on presenting inductive definitions in a style that allows students to define recursive functions and to generate a structural induction principle directly from the definition of the type. Ordinary mathematical induction is often the focus of in discrete mathematics courses but we see it here as simply a special case of structural induction.

In the following sections we present a number of individual inductively defined structures and then follow with a chapter giving the recipie for rolling

³In keeping with the foundational idea that all mathematical structures are definable as sets, there is, of course, a purely set theoretic form of definition for inductive structures.

your own inductive defintions, we show how to define functions by recursion on those definitions and show how to syunthesize an induction principle for the new inductive structure.

Readers who may have skipped Chapter 1 (which is labelled as optional) might read Section 1.3 about the form of inductive definitions used here.

Chapter 10

Natural Numbers

This memoir can be understood by any one possessing what is usually call good common sense; no technical philosophic, or mathematical, knowledge is in the least degree required. But I feel conscious that many a reader will scarcely recognize in the shadowy forms which I bring before him his numbers which all his life long have accompanied him as faithful and familiar friends; he will be frightened by the long series of simple inferences corresponding to our step-by-step understanding, by the matter-of-fact dissection of the chains of reasoning on which the laws of numbers depend, and will become impatient at being compelled to follow out proofs for truths which to his supposed inner consciousness seem at once evident and certain.

Richard Dedekind from the Preface to the First Edition of *The Nature and Meaning of Numbers*, translated by Wooster Woodruff Beman, in *Essays on the Theory of Numbers*, Open Court Publishing, Chicago, 1901.

Leopold Kronecker (1823 - 1891)

Leopold Kronecker

The German mathematician Leopold Kronecker famously remarked:

God made the natural numbers; all else is the work of man.

Kronecker was saying the natural numbers are absolutely primitive and that the other mathematical structures have been constructed by men. Similarly, the philosopher Immanuel Kant (1742 – 1804) and mathematician Luitzen Egbertus Jan Brouwer (1881 - 1966) both believed that understanding of natural numbers is somehow innate; that it arises from intuition about the human experience of time as a sequence of moments. 1 In any case, it would be difficult to argue against the primacy of the natural numbers among mathematical structures.

¹Interestingly, Kant also believed that geometry was similarly primitive and our intuition of it arises from our experience of three dimensional space. The discovery in the 19th century of non-Euclidean geometries [?, 35] makes this idea seem quaint by modern standards.

10.1 Peano Axioms

Giuseppe Peano (1858–1932), an Italian mathematician and philosopher who, among other accomplishments, gave an axiomatic presentation of arithmetic.

Giuseppe Peano

The *Peano axioms* are named for Giuseppe Peano (1858–1932), an Italian mathematician and philosopher. Peano first presented his axioms [41] of arithmetic in 1889, though in a later paper Peano credited Dedekind [7] with the first presentation of the axioms. We still know them as Peano's axioms.

Definition 10.1 (Peano axioms) Let \mathbb{N} be a set and $\mathbf{0}$ be a constant symbol, let \mathbf{s} be a function symbol of type $\mathbb{N} \to \mathbb{N}$ (call it the successor function) and P be a predicate symbol denoting is a property of natural numbers. The following are Peano's axioms.

- i.) $\mathbf{0} \in \mathbb{N}$
- ii.) $\forall k : \mathbb{N}. \mathbf{s}k \in \mathbb{N}$
- iii.) $\forall k : \mathbb{N}. \ \mathbf{0} \neq \mathbf{s}k$
- iv.) $\forall j, k : \mathbb{N}. \mathbf{s}j = \mathbf{s}k \Rightarrow j = k$
- $v.) \quad (P[\mathbf{0}] \land \forall k : \mathbb{N}. \ P[k] \Rightarrow P[\mathbf{s}k]) \Rightarrow \forall n : \mathbb{N}. \ P[n]$

Axioms (i.) and (ii.) say $\mathbf{0}$ is a natural number and if k is a natural number then so is $\mathbf{s}k$. We call \mathbf{s} the successor function and $\mathbf{s}k$ is the successor of k. Axiom (iii.) says that $\mathbf{0}$ is not the successor of any natural number and axiom iv is a kind of monotonicity property for successor, it says the successor function preserves equality. Axiom (v.) is the induction principle which is the main topic of discussion of this chapter, see Section 10.3.

So, there are two ways to construct a natural number, either you write down the constant symbol $\mathbf{0}$ or, you write down a natural number (say k) and then you apply the successor function \mathbf{s} which has type $\mathbb{N} \to \mathbb{N}$ to the k to get the number $\mathbf{s}k$.

Thus, $\mathbb{N} = \{\mathbf{0}, \mathbf{s0}, \mathbf{ss0}, \mathbf{sss0}, \cdots\}$ are the elements of \mathbb{N} . Note that the variable "n" used in the definition of the rules never occurs in an element of \mathbb{N} , it

is simply a place-holder for an term of type \mathbb{N} , *i.e.* it must be replaced by some previously term from the set $\{\mathbf{0}, \mathbf{s0}, \mathbf{ss0}, \cdots\}$.

We typically write natural numbers in decimal notation.

$$0 = 0$$

 $1 = s 0$
 $2 = s s 0$
 $3 = s s s 0$
:

You should think of 3 as a (better) notation for the natural number sss0.

10.2 Definition by Recursion

We have defined functions by recursion earlier in these notes (e.g. the val function given in Chapter 2 Def. 2.12). The idea of defining functions by recursion on the structure of one of its arguments presented here is the same. To make a definition by recursion "on the structure" of the natural numbers, we must specify the behavior of the function on inputs by considering the possible cases: the input (or one of them) is $\mathbf{0}$ or it is of the form $\mathbf{s}k$ for some previously constructed natural number k.

As an example, consider the definition of addition over the natural numbers by recursion on the structure of the first argument.

Definition 10.2 (Addition)

$$add(\mathbf{0}, k) = k$$

 $add(\mathbf{s}n, k) = \mathbf{s}(add(n, k))$

We will use ordinary infix notation for addition with the symbol +; thus add(m,n) will be written m+n. Using this standard notation we take the chance that the reader will assume + has all the properties expected for addition. It turns out that it does, but until we prove a property is true for *this* definition we can not use the property. In the infix notation, the definition would appear as follows:

$$\mathbf{0} + k = k$$
$$\mathbf{s}n + k = \mathbf{s}(n+k)$$

Example 10.1. To add 2+3 using the definition, we compute as follows:

$$\mathbf{ss0} + \mathbf{sss0} = \mathbf{s(s0+sss0)} = \mathbf{ss(0+sss0)} = \mathbf{ss(sss0)} = \mathbf{sssss0}$$

Multiplication is defined as iterated addition by recursion on the structure of the first argument.

Definition 10.3 (Multiplication)

$$mult(\mathbf{0}, k) = \mathbf{0}$$

 $mult(\mathbf{s}n, k) = mult(n, k) + k$

We will use ordinary infix notation for multiplication with the symbol \cdot ; thus mult(m,n) will be written $m \cdot n$. We will also sometimes just write mn omitting the symbol \cdot . In the infix notation, the definition appears as follows:

$$\mathbf{0} \cdot k = k$$
$$\mathbf{s}n \cdot k = (n \cdot k) + k$$

Example 10.2. So, to multiply $2 \cdot 3$,

$$\begin{array}{ll} {\rm ss0\cdot sss0} &= ({\rm s0\cdot sss0}) + {\rm sss0} \\ &= (({\rm 0\cdot sss0}) + {\rm sss0}) + {\rm sss0} \\ &= ({\rm 0+ sss0}) + {\rm sss0} \\ &= {\rm sss0} + {\rm sss0} \\ &= {\rm ssssss0} \end{array}$$

We define exponentiation by recursion on the structure of the exponent.

Definition 10.4 (exponentiation)

$$n^{\mathbf{0}} = \mathbf{s} \, \mathbf{0}$$
$$n^{(\mathbf{s} \, k)} = n^k \cdot n$$

The definitions of addition, multiplication and exponentiation are all instances of a syntactic pattern of definition that is called *definition by recursion*. It turns out that any definition that follows this pattern is guaranteed to be a function. This might be seen as an early example of a design pattern [18].

Theorem 10.1 (Definition by Recursion) Given a set A and a function $g \in (\mathbb{N} \times A) \to A$, and an element $a \in A$, definitions having the following form:

$$f(\mathbf{0}) = a$$

$$f(\mathbf{s}k) = g(k, f(k))$$

result in well-defined functions, $f \in \mathbb{N} \to A$.

The proof of the theorem justifying definition by recursion is beyond the scope of these notes (See [31] or [32, pp.45]); however, the theorem justifies definitions of the kind just given for addition, multiplication and exponentiation.

The theorem says that if a definition follows a particular syntactic form, you are justified in claiming you have defined a function; definitions that follow the pattern are guaranteed to be functional and total. Pretty good stuff, no need to prove that each new definition is a function in $\mathbb{N} \to A$, just follow the pattern specified by the theorem and you are guaranteed your definition is a function. And note that the property of being total (*i.e.* that every input gets

mapped to some output) guarantees that definitions which match the pattern are guaranteed to halt on all inputs. In [32] Mac Lane notes that one work the other way around, one can take the definition by recursion as an axiom and derive the Peano axioms as theorems.

The arithmetic functions we defined above all take two arguments. We state a corollary of the Theorem 11.1 for binary functions defined by recursion on the structure of their first arguments.

Corollary 10.1 (Definition by recursion (for binary functions)) Given sets A and B and a function $g \in (\mathbb{N} \times A) \to A$, and a function $h \in B \to A$, and an element $h \in B$, definitions of the following form:

$$f(\mathbf{0}, b) = h(b)$$

$$f(\mathbf{s}n, b) = g(n, f(n, b))$$

result in well-defined functions, $f \in (\mathbb{N} \times B) \to A$.

Using the corollary, we prove that the definitions given above for addition, multiplication and exponentiation of natural numbers are indeed functions.

Theorem 10.2 (Addition is a function) Addition as given by Definition 10.2 is a function of type $(\mathbb{N} \times \mathbb{N}) \to \mathbb{N}$.

Proof: Recall the definition

$$\mathbf{0} + k = k$$
$$\mathbf{s}n + k = \mathbf{s}(n+k)$$

To prove that addition is a function of the specified type we show how it fits the pattern given by Corollary 10.1. To do so we must specify the sets A and B and the functions h and g and the element $b \in B$. In this case, let $A = \mathbb{N}$ and $B = \mathbb{N}$. Let b = k. Since $B = \mathbb{N}$ and $k \in \mathbb{N}$ it is an acceptable choice for b. The function $h: \mathbb{N} \to \mathbb{N}$ is just the identity function, h(k) = k. The function $g \in (\mathbb{N} \times \mathbb{N}) \to \mathbb{N}$ is the function $g(j, k) = \mathbf{s}k$. Thus, the operation of addition is, by Corollary 10.1 a function in $(\mathbb{N} \times \mathbb{N}) \to \mathbb{N}$.

Theorem 10.3 (Multiplication is a function) Multiplication as given by Definition 10.3 is a function of type $(\mathbb{N} \times \mathbb{N}) \to \mathbb{N}$.

Proof: Recall the definition:

$$\mathbf{0} \cdot k = \mathbf{0}$$
$$\mathbf{s}n \cdot k = (n \cdot k) + k$$

Multiplication fits the pattern of Corollary 10.1 as follows: let $A=\mathbb{N}$ and $B=\mathbb{N}$ and $k=\mathbf{0}$. The function $h:\mathbb{N}\to\mathbb{N}$ is just the constant function $h(k)=\mathbf{0}$. The function $g\in\mathbb{N}\to\mathbb{N}$ is the function that adds k to the input of g, so g(m,n)=n+k. We have just proved that addition is a function and so $g\in(\mathbb{N}\times\mathbb{N})\to\mathbb{N}$. Thus, by Corollary 10.1 multiplication is a function in $(\mathbb{N}\times\mathbb{N})\to\mathbb{N}$.

Theorem 10.4 (Exponentiation is a function) Exponentiation as given by Definition 10.4 is a function of type $(\mathbb{N} \times \mathbb{N}) \to \mathbb{N}$.

Exercise 10.1. Prove Theorem 10.4

Exercise 10.2. The Fibonacci function is defined as follows:

$$F(0) = 0$$

$$F(s0) = 1$$

$$F(ssk) = F(sk) + F(k)$$

Can this be defined using definition by recursion? If so how? If not, why not?

You may have convinced yourself that these definitions look like they "do the right thing" but we will be able to *prove* that they behave in the ways we expect them to using mathematical induction.

10.3 Mathematical Induction

We already know one way to prove statements of the form $\forall n : \mathbb{N}$. ϕ e.g. choose an arbitrary natural number (call it i) and assume $i \in \mathbb{N}$ and show $\phi[k := i]$. But it is not always enough to just choose an arbitrary element, the argument may depend on the structure of the type being quantified over, in this case the natural numbers. Mathematical induction is a principle of proof that takes the structure of the natural numbers into account in the proof.

Peano's axiom (v.) (see Definition 10.1) is known as the principle of mathematical induction.

Definition 10.5 (Principle of Mathematical Induction) For a property P of natural numbers we have the following axiom.

$$(P[\mathbf{0}] \land \forall k : \mathbb{N}. \ P[k] \Rightarrow P[\mathbf{s}k]) \Rightarrow \forall n : \mathbb{N}. \ P[n]$$

10.3.1 An informal justification for the principle

Suppose you wished to justify the principle of mathematical induction.

$$(P[\mathbf{0}] \land \forall k : \mathbb{N}. \ P[k] \Rightarrow P[\mathbf{s}k]) \Rightarrow \forall n : \mathbb{N}. \ P[n]$$

It says, for a property P of natural numbers, to show that P[n] holds for every natural number n, it is enough to show two things:

i.)
$$P[\mathbf{0}]$$
 and ii.) $\forall k : \mathbb{N}.P[k] \Rightarrow P[\mathbf{s}k]$

So, suppose you have accepted proofs of (i.) and (ii.) but somehow still believe that there might be some $n \in \mathbb{N}$ such that $\neg P[n]$ holds. Since $n \in \mathbb{N}$ it is constructed by n applications of the successor function to 0. You can construct an argument that P[n] must hold in 2n+1 steps. The argument is constructed using (i.) and (ii.) as follows²:

```
1. P[\mathbf{0}] you accepted this as (i.)

2. P[\mathbf{0}] \Rightarrow P[s\mathbf{0}] instantiate (ii.) with \mathbf{0}

3. P[\mathbf{s0}] modus ponens using 1 and 2

4. P[\mathbf{s0}] \Rightarrow P[\mathbf{ss0}] instantiate (ii.) with s\mathbf{0}

5. P[\mathbf{ss0}] modus ponens using 3 and 4

\vdots \vdots

2n. P[\mathbf{s}^{(n-1)}] \Rightarrow P[s^n\mathbf{0}] instantiate (ii.) with \mathbf{s}^{(n-1)}

2n+1. P[\mathbf{s}^n\mathbf{0}] modus ponens using 2n and 2n+1
```

Thus, no matter which n is chosen, we can prove P[n] holds in 2n + 1 steps using the base case (i.) and the induction step (ii.).

10.3.2 A sequent style proof rule

We give a sequent style rule for mathematical induction³.

Proof Rule 10.1 (Mathematical Induction)

$$\frac{\Gamma \vdash P[\mathbf{0}] \qquad \Gamma, k \in \mathbb{N}, P[k] \vdash P[\mathbf{s}\,k]}{\Gamma \vdash \forall m : \mathbb{N}. P[m]} \quad (\mathbb{N} \text{Ind}) \quad \text{where } k \text{ is fresh.}$$

The justification for the proof rule is as follows: if you are trying to prove a sequent of the form $\Gamma \vdash \forall m : \mathbb{N}. P[m]$, you can add an instance of the principle of mathematical induction to the left side; this is because it is an axiom. After one application of $\forall L$ rule, on the left branch you will be required to show two things: The left branch will be of the form,

$$\Gamma \vdash P[\mathbf{0}] \land \forall k : \mathbb{N}. \ P[k] \Rightarrow P[\mathbf{s}k]$$

and the right branch will be an instance of an axiom of the form:

$$\forall m : \mathbb{N}. P[m], \Gamma \vdash \forall m : \mathbb{N}. P[m]$$

We can further refine the left branch by applying the $\land R$ rule which gives two subgoals: One to show P[0] and the other to show $\forall k : \mathbb{N}$. $P[k] \Rightarrow P[\mathbf{s}k]$. This sequent can further be refined by applying $\forall R$ and then $\Rightarrow R$.

²Recall that modus ponens is the rule that says that P and $P \Rightarrow Q$ together yield Q.

 $^{^3}$ We have omitted the contexts Δ_1 and Δ_2 on the right side for readability

10.3.3 Some First Inductive Proofs

We have suggested that for k a natural number, $\mathbf{s}k$ (the successor of k) is the same as k+1 where 1 is just the decimal representation of $\mathbf{s}\mathbf{0}$. We state this as a theorem and present it as the first proof using mathematical induction.

Lemma 10.1 (Successor is add one.)

$$\forall k : \mathbb{N}. \ \mathbf{s}k = k+1$$

Proof: By mathematical induction on k. The property of k we are to prove is defined as follows:

$$P[k] \stackrel{\text{def}}{=} \mathbf{s}k = k+1$$

In general, for a formula of the form $\forall k : \mathbb{N}$. ϕ , the property P can be written as $P[k] \stackrel{\text{def}}{=} \phi$.

As in all proofs by mathematical induction there are two things to show, the base case and the induction step. The forms of these two subgoals are given by the proof rule $\mathbb{N}Ind$ shown above in Def. 10.3.

Base Case: We must show $P[\mathbf{0}]$. We get $P[\mathbf{0}]$ by replacing all free occurrences of k with $\mathbf{0}$ in the body of the definition of P. Thus

$$P[\mathbf{0}] = (\mathbf{s}k = \mathbf{0} + 1)[k := \mathbf{0}] = \mathbf{s}\mathbf{0} = \mathbf{0} + 1$$

So, at this stage, we must show the following equality holds: $\mathbf{s0} = \mathbf{0} + 1$. To continue the proof, we use the definition of addition and 1 to simplify the right side as follows: $\mathbf{0} + 1 = 1 = \mathbf{s0}$. Thus the left and right sides of the equality are the same and so the base case holds.

Induction Step: To show the induction step holds we assume that for some arbitrary k that $k \in \mathbb{N}$ and furthermore assume that P[k] holds. P[k] is called the induction hypothesis.

$$\mathbf{s}k = k + 1$$
 (Ind.Hyp.)

We must show $P[\mathbf{s}k]$. To get $P[\mathbf{s}k]$ carefully replace all free occurrences of k in the body of P by $\mathbf{s}k$. The result of the substitution is the following equality:

$$\mathbf{ss}k = \mathbf{s}k + 1 \tag{A}$$

To show this, we proceed by computing with the right side using the definition of addition.

$$\mathbf{s}k + 1 = \mathbf{s}(k+1) \tag{B}$$

By the induction hypothesis, $\mathbf{s}k = k+1$ so we replace k+1 by $\mathbf{s}k$ in the right side of (B), this gives

$$\mathbf{s}k + 1 = \mathbf{s}(k+1) = \mathbf{s}\mathbf{s}k$$

But now we have show (A) and so the induction step is completed.

We have show that both that both the base case and the induction step hold, this completes the proof.

148

Since we proved in Thm. 10.2 that addition is a function in $(\mathbb{N} \times \mathbb{N}) \to \mathbb{N}$ and by the previous lemma that sk = k + 1 we know the successor operation defines a function in $\mathbb{N} \to \mathbb{N}$.

Corollary 10.2 (sucessor is a function)

$$\mathbf{s} \in \mathbb{N} \to \mathbb{N}$$

This proof justifies restating the principle of mathematical induction in the following (perhaps) more familiar form.

Definition 10.6 (Principle of Mathematical Induction (modified)) For a property P of natural numbers we have the following axiom.

$$(P[\mathbf{0}] \land \forall k : \mathbb{N}. \ P[k] \Rightarrow P[k+1]) \Rightarrow \forall n : \mathbb{N}. \ P[n]$$

The following lemma is useful in a number of proofs.

Lemma 10.2 (addition by zero)

$$\forall n, k : \mathbb{N}. \ k = k + n \Rightarrow n = 0$$

Proof: : Choose an arbitrary $n \in \mathbb{N}$ and do induction on k.

$$P[k] \stackrel{\text{def}}{=} k = k + n \Rightarrow n = 0$$

Base Case: Show P[0], *i.e.* that $0 = 0 + n \Rightarrow 0 = n$. Assume 0 = 0 + n and show 0 = n. By the definition of addition 0 + n = n, so the base case holds. **Induction Step:** Assume $k \in \mathbb{N}$, assume P[k] holds and show P[sk].

$$P[k]: \quad k = k + n \Rightarrow n = 0$$

We must show

$$\mathbf{s}k = \mathbf{s}k + n \Rightarrow n = 0$$

Assume $\mathbf{s}k = \mathbf{s}k + n$ and show n = 0. By definition of addition, from the right side of the equality we have: $\mathbf{s}k + n = s(k+n)$ so we know that $\mathbf{s}k = \mathbf{s}(k+m)$. Applying Peano axiom (iv.) to this fact we see that k = k+m. This formula is the antecedent of the induction hypothesis so we know that n = 0 which is what we were to show.

П

Often, we would like to do case analysis on natural numbers, *i.e.* given an assumption that $n \in \mathbb{N}$, we'd like break the proof into two cases, either $n = \mathbf{0}$ or n is a successor $(\exists j : \mathbb{N}. \ n = \mathbf{s}j)$. In some way the induction principle says as much and in fact to prove this theorem we need to use induction however, we do not need to utilize the induction hypothesis in the proof! In general, when an induction proof does not use the induction hypothesis, it can be done by case analysis; here we establish this weaker principle using induction.

Lemma 10.3 (Case analysis)

$$\forall n : \mathbb{N}. \ n = 0 \lor \exists j : \mathbb{N}. \ n = \mathbf{s}j$$

Proof: By mathematical induction on n. The property P[n] is defined as follows:

$$P[n] \stackrel{\text{def}}{=} n = 0 \lor \exists j : \mathbb{N}. \ n = \mathbf{s}j$$

Base Case: Show P[0] *i.e.* that $0 = 0 \vee \exists j : \mathbb{N}$. $n = \mathbf{s}j$. By reflexivity of equality 0 = 0 so the base case holds.

Induction Step: For arbitrary $k \in \mathbb{N}$ assume P[k] and show $P[\mathbf{s}k]$. We do not show the induction hypothesis P[k] because we do not need it. Instead we show $P[\mathbf{s}k]$:

$$\mathbf{s}k = 0 \vee \exists j : \mathbb{N}. \ \mathbf{s}k = \mathbf{s}j$$

By symmetry of equality and by Peano axiom (iii.) we know $\mathbf{s}k \neq 0$ so we show $\exists j : \mathbb{N}. \ \mathbf{s}k = \mathbf{s}j.$ Use k as the witness and show $\mathbf{s}k = \mathbf{s}k.$ To show this we apply Peano axiom (iv.) show k = k which is true by the reflexivity of equality.

Using this lemma theorem we can derive the following proof rule.

Proof Rule 10.2 (Case Analysis on N)

$$\frac{\Gamma_1, k \in \mathbb{N}, k = 0, \Gamma_2 \vdash \Delta \qquad \Gamma_1, k \in \mathbb{N}, j \in \mathbb{N}, k = \mathbf{s}j, \Gamma_2 \vdash \Delta}{\Gamma_1, k \in \mathbb{N}, \Gamma_2 \vdash \Delta} \quad \text{(NCases) } j \text{ fresh.}$$

In cases where induction is not required, case analysis can be used.

Exercise 10.3. Derive Rule 10.2 using Lemma 10.3.

10.4 Properties of the Arithmetic Operators

In Section 10.2 we defined addition, multiplication and exponentiation by recursion on the structure of one of the arguments. We also proved that they are functions. Properties of functions defined by recursion on their structure are invariably established by proofs using mathematical induction. In this section we preset a number of proofs to establish that the arithmetic operators do indeed behave as we expect them to.

The laws for addition and multiplication are given as follows where m, n and k are arbitrary natural numbers.

```
0 right identity for +
                              m+0=m
+ commutative
                              m+n=n+m
+ associative
                              m + (n+k) = (m+n) + k
                              m \cdot 0 = 0
0 annihilator for \cdot
1 right identity for ·
                              m \cdot 1 = m
\cdot commutative
                              m \cdot n = n \cdot m
\cdot associative
                              m \cdot (n \cdot c) = (m \cdot n) \cdot c
                              m \cdot (n+k) = (m \cdot n) + (m \cdot k)
distributive law
```

The fact that $\mathbf{0}$ is a left identity for addition falls out of the definition for free. That $\mathbf{0}$ is a right identity requires mathematical induction.

Theorem 10.5 (0 right identity for +)

$$\forall n: \mathbb{N} \, n + 0 = n$$

Proof: By mathematical induction on n. The property P of n is given as:

$$P[n] \stackrel{\text{def}}{=} n + 0 = n$$

Base Case: We must show P[0], *i.e.* that 0+0=0 but this follows immediately from the definition of + so the base case holds.

Induction Step: Assume $n \in \mathbb{N}$ and that P[n] holds and show $P[\mathbf{s}n]$. P[n] is the induction hypothesis.

$$P[n]: n+0=n$$

Show that $\mathbf{s}n + 0 = \mathbf{s}n$ But by definition of + we know that $\mathbf{s}n + 0 = \mathbf{s}(n+0)$. By the induction hypothesis n + 0 = n so $\mathbf{s}(n+0) = \mathbf{s}n$ and the induction step holds.

Theorem 10.6 (+ is commutative)

$$\forall m, n : \mathbb{N}. \ m+n=n+m$$

Theorem 10.7 (+ is associative)

$$\forall m, n, k : \mathbb{N}. \ m + (n+k) = (m+n) + k$$

Theorem 10.8 (1 right identity for \cdot)

$$\forall n: \mathbb{N} \, n \cdot 0 = 0$$

Theorem 10.9 (· is commutative)

$$\forall m, n : \mathbb{N}. \ m \cdot n = n \cdot m$$

Theorem 10.10 (\cdot is associative)

$$\forall m, n, k : \mathbb{N}. \ m \cdot (n \cdot k) = (m \cdot n) \cdot k$$

10.4.1 Order Properties

The natural numbers are ordered. Consider the following definition of less than.

Definition 10.7 (Less Than)

$$m < n \stackrel{\text{def}}{=} \exists j : \mathbb{N}. \ j \neq 0 \land n = m + j$$

We'd like to establish that less than as defined here behaves as expected *i.e.* that it is a strict partial order. Recall the definition from Chap. 7, Def 7.18 that the relation must be irreflexive (Def. 6.6.13) and transitive (Definition 6.6.17).

Theorem 10.11 (< is irreflexive)

$$\forall n : \mathbb{N}. \ \neg (n < n)$$

Proof: Choose an arbitrary $n \in \mathbb{N}$ and show $\neg (n < n)$. We assume n < n and derive a contradiction. If n < then, by definition of less than we know the following:

$$\exists j : \mathbb{N}. \ j \neq 0 \land n = n + j$$

Let $i \in \mathbb{N}$ be such that $i \neq 0$ and n = n + i. By Lemma ?? i = 0 and we have a contradiction with the assumption $i \neq 0$.

Theorem 10.12 (< is transitive)

$$\forall k, n, m : \mathbb{N}. \ k < n \land n < m \Rightarrow k < m$$

Exercise 10.4. Prove Thm. 10.11 and Thm. 10.12.

Theorem 10.13 (Addition Monotone)

$$\forall k, m, n : \mathbb{N}. \ m < n \Rightarrow m + k < n + k$$

Proof:

Choose an arbitrary $k \in \mathbb{N}$ and do induction on m.

$$P[m] \stackrel{\text{def}}{=} \forall n : \mathbb{N}. \ m < n \Rightarrow m + k < n + k$$

Base Case: Show P[0], i.e. that

$$\forall n : \mathbb{N}. \ 0 < n \Rightarrow 0 + k < n + k$$

Choose arbitrary $n \in \mathbb{N}$ and assume 0 < n. Note that by the definition of addition 0 + k = k, so we must show that k < n + k. By definition of less than, we must show:

$$\exists j : \mathbb{N}. \ j \neq 0 \land n + k = k + j$$

Use the witness n (for j) and show two things, i.) $n \neq 0$ and ii.) n+k=k+n. Since we assumed 0 < n, by definition of less than we know that there is some $j \in \mathbb{N}$ such that $j \neq 0$ and n = 0 + j. By the definition of addition we know that n = j and hence that $n \neq 0$. By associativity of addition (Thm. 10.7) the second condition holds as well.

Induction Step: Assume P[m] for some $m \in \mathbb{N}$ and show P[m+1].

$$P[m] : \forall n : \mathbb{N}. \ m < n \Rightarrow m + k < n + k$$

Show

$$\forall n : \mathbb{N}. \ m+1 < n \Rightarrow (m+1) + k < n+k$$

Choose arbitrary $n \in \mathbb{N}$. Assume m+1 < n and show (m+1) + k < n+k. By the induction hypothesis (using n for n) we get,

$$m < n \Rightarrow m + k < n + k$$

Since we assumed m+1 < n we know m < n (if j is a witness for m+1 < n then j+1 is a witness for m < n.) Now, since m < n we know (m+1) + k < n + k. To know m+k < n+k. To show (m+1) + k < n+k we must show the following.

$$\exists i : \mathbb{N}. \ i \neq 0 \land n+k = (m+1)+k+i$$

Theorem 10.14 (Exp monotone)

$$\forall n : \mathbb{N}. \ 1 < n \Rightarrow \forall k : \mathbb{N}. \ n^k < n^{k+1}$$

Proof: Choose arbitrary $n \in \mathbb{N}$ and assume 1 < n. We must show

$$\forall k : \mathbb{N}. \ n^k < n^{k+1}$$

We proceed by induction on k.

$$P[k] \stackrel{\text{def}}{=} n^k < n^{k+1}$$

Base Case: Show P[0], *i.e.* that $n^0 < n^1$. By definition $n^0 = 1$ and

$$n^1 = n^0 \cdot n = 1 \cdot n = n$$

Since we assumed 1 < n the base case holds.

Induction Step: Assume P[k] for some $k \in \mathbb{N}$ and show P[k+1].

$$P[k] : n^k < n^{k+1}$$

We must show $n^{k+1} < n^{(k+1)+1}$. Staring on the left side of the inequality we compute as follows:

$$n^{k+1} = n^k + n$$

By the induction hypothesis, $n^k < n^{k+1}$ so, using Theorem ?? we get the following.

$$n^{k+1} = n^k + n < n^{k+1} + n = n^{(k+1)+1}$$

This shows the induction step holds and completes the proof.

10.4.2 Iterated Sums and Products

Definition 10.8 (Sum)

$$\sum_{i=k}^{j} f(i) = 0 \qquad \text{if } j < k$$

$$\sum_{i=k}^{j+1} f(i) = f(j+1) + \sum_{i=k}^{j} f(i) \quad \text{if } (j+1) \ge k$$

Some properties of Sums and Products

Theorem 10.15 (Gauss' identity) For every natural number n, the following identity holds

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Proof: Our proof is by mathematical induction on n. The predicate we will prove is

$$P[n] \stackrel{\text{def}}{=} \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

We must show the base case and the induction step both hold.

Base Case: We must show P[0], *i.e.*

$$\sum_{i=1}^{0} i = \frac{0(0+1)}{2}$$

But notice, by the definition of summation,

$$\sum_{i=1}^{0} i = 0$$

and also,

$$\frac{0(0+1)}{2} = \frac{0}{2} = 0$$

so the base case holds.

Induction Step: Choose an arbitrary natural number, call it k. We assume P[k] (the induction hypothesis)

$$\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$$
 induction hypothesis

and we must show and must show P[k+1] holds.

$$\sum_{i=1}^{(k+1)} i = \frac{(k+1)((k+1)+1)}{2}$$

Starting with the left side, by the definition of summation operator we get the following.

$$\sum_{i=1}^{(k+1)} i = (k+1) + \sum_{i=1}^{(k)} i$$

By the induction hypothesis, we have.

$$(k+1) + \sum_{i=1}^{(k)} i = (k+1) + \frac{k(k+1)}{2}$$

Algebraic reasoning gives us the following sequence of equalities completing the proof.

$$(k+1) + \frac{k(k+1)}{2} = \frac{2k+2}{2} + \frac{k^2+k}{2} = \frac{k^2+3k+2}{2} = \frac{(k+1)(k+2)}{2}$$

10.4.3 Applications

In Chapter 9 the pigeonhole principle was presented (without proof) as Theorem 9.11. We prove this theorem here using mathematical induction.

Recall, by Definition 9.9.8 that

$$\{0..n\} \stackrel{\text{def}}{=} \{k : \mathbb{N} \mid 0 \le k < n\}$$

So note that $\{0..0\} = \{\}$ and if n > 0 then $\{0..m\} = \{0, 1, \dots m - 1\}$.

Theorem 10.16 (Pigeonhole Principle 1)

$$\forall m, n : \mathbb{N}. \ m > n \Rightarrow \forall f : \{0..m\} \rightarrow \{0..n\}. \neg Inj(f, \{0..m\}, \{0..n\})$$

Proof: By mathematical induction on m. The property we will prove is

$$P(m) \stackrel{\text{def}}{=} \forall n : \mathbb{N}. \ m > n \Rightarrow \forall f : \{0..m\} \rightarrow \{0..n\}. \neg Inj(f, \{0..m\}, \{0..n\})$$

(Base Case:) We must show P(0) holds, i.e.

$$\forall n : \mathbb{N}. \ 0 > n \Rightarrow \forall f : \{0..0\} \rightarrow \{0..n\}. \neg Inj(f, \{0..0\}, \{0..n\})$$

Choose an arbitrary $n \in \mathbb{N}$ and assume 0 > n. But this assumption is not possible, there is no natural number less than 0, and so the base case holds by contradiction.

(**Induction Step**:) For arbitrary $m \in \mathbb{N}$ we assume P(m) (the induction hypothesis) and show P(m+1).

ind.hyp:
$$\forall n : \mathbb{N}. \ m > n \Rightarrow \forall f : \{0..m\} \rightarrow \{0..n\}. \ \neg Inj(f, \{0..m\}, \{0..n\})$$

We must show.

$$\forall n : \mathbb{N}. \ m+1 > n \Rightarrow \forall f : \{0..m+1\} \to \{0..n\}. \neg Inj(f, \{0..m+1\}, \{0..n\})$$

Choose an arbitrary $n \in \mathbb{N}$ and assume m+1 > n. Then choose an arbitrary function $f \in \{0..m+1\} \to \{0..n\}$ and show that it is not an injection. To complete this case we assume $Inj(f,\{0..m+1\},\{0..n\})$ and derive a contradiction e.g. we assume:

(A)
$$\forall i, j : \{0..m+1\}. \ f(i) = f(j) \Rightarrow i = j$$

Now, consider the possibilities for $n \in \mathbb{N}$, either n = 0 or n > 0.

Case n = 0. In this case, our assumption that $f \in \{0..m+1\} \to \{0..0\}$ can be used to give a contradiction. The domain $\{0..m+1\}$ has at least 0 in it, even if m = 0. This means $f(0) \in \{0..0\}$. But $\{0..(\}0) = \emptyset$ and so $f(0) \in \emptyset$. This contradicts the corollary of the emptyset axiom Corollary 5.5.1 from Chapter 5. Case n > 0. In this case, our assumption that m+1 > n means that m > n-1 (subtracting one from n is justified because n > 0. Use n - 1 for n in the induction hypothesis to get the the following:

$$m > n-1 \Rightarrow \forall f : \{0..m\} \rightarrow \{0..n-1\}. \ \neg Inj(f, \{0..m\}, \{0..n-1\})$$

Since we know m > n - 1 we assume:

(B)
$$\forall f : \{0..m\} \rightarrow \{0..n-1\}. \neg Inj(f, \{0..m\}, \{0..n-1\})$$

Now, consider the injective function $f \in \{0..m+1\} \rightarrow \{0..n\}$ from the hypothesis labeled (A) above.

There are two cases, f(m) = n - 1 or f(m) < n - 1.

Case f(m) = n - 1. In this case, since f is an injection in $\{0..m + 1\} \rightarrow \{0..n\}$, removing m from the domain also removes n - 1 from the co-domain and so $f \downarrow \{0..m\}$ a function of type $\{0..m\} \rightarrow \{0..n - 1\}$. Use this restricted f as a witness to the assumption labeled B and we assume

$$\neg Inj(f, \{0..m\}, \{0..n-1\})$$

If we can show that $Inj(f, \{0..m\}, \{0..n-1\})$ we have completed this case. But we already know that f is an injection on the larger domain $\{0..m+1\}$ so it is an injection on the smaller one.

Case f(m) < n-1. In this case, since f is an injection with codomain $\{0..n\}$, at most one element of the domain $\{0..m+1\}$ gets mapped by f to n-1 if it exists, call it k. Using f we will construct a new function (call it g) by having g behave just like f except on input k (the one such that f(k) = n-1) we set g(k) = f(m). Since we assumed f(m) < n-1 we know $g(k) \in \{0..n-1\}$ and because f is an injection we know that no other element of the domain was mapped by f to f(m). So, g is defined as follows:

$$g(i) = \text{ if } f(i) = n - 1 \text{ then } f(m) \text{ else } f(i)$$

Use g for f in (B) and we have the assumption that

$$\neg Inj(q, \{0..m\}, \{0..n-1\})$$

To prove this case we show $Inj(g,\{0..m\},\{0..n-1\})$. But we constructed g using the injection f to be an injection as well.

10.5 Complete Induction

In the justification for mathematical induction given above in Sect 10.3.1 it can be seen that, given an number n the process of building a justification that P(n) holds, justifications for each P(k), where k < n are constructed along the way.

This suggests a stronger induction hypothesis may be possible, not to just assume that the property holds for the preceding natural number but that it holds for all proceeding natural numbers. Indeed, we can prove the following theorem.

Theorem 10.17 (Principle of Complete Induction)

$$\forall n : \mathbb{N}. (\forall k : \mathbb{N}. \ k < n \Rightarrow P(k)) \Rightarrow P(n)$$

$$\Rightarrow \forall n : \mathbb{N}. \ P(n)$$

This is provable by using ordinary mathematical induction. We do not prove it here. A sequent style proof rule⁴ for complete induction is given as follows:

Proof Rule 10.3 (Complete Induction)

$$\frac{\Gamma, n \in \mathbb{N}, \forall k : \mathbb{N}, k < n \Rightarrow P[k] \vdash P[n]}{\Gamma \vdash \forall m : \mathbb{N}. P[m]}$$
 (CompNInd) where n is fresh.

10.5.1 Applications

Complete induction is especially useful in proving properties of functions defined by recursion but which do not follow the structure of the natural numbers. The Fibonacci numbers provide an excellent example of such a function.

Definition 10.9. Fibonacci numbers

$$F(0) = 0$$

$$F(1) = 1$$

$$F(k+2) = F(k+1) + F(k)$$

Theorem 10.18 (Fibonacci grows slower that Exp)

$$\forall n : \mathbb{N}. \ F(n) < 2^n$$

Proof: By complete induction on n. The property is $P[n] \stackrel{\text{def}}{=} F(n) < 2^n$. We assume that $n \in \mathbb{N}$ and our induction hypothesis becomes

Induction Hypothesis
$$\forall k : \mathbb{N}. \ k < n \Rightarrow F(k) < 2^k$$

We must show that $F(n) < 2^n$. We assert the following leaving the proof to the reader.

$$\forall m : \mathbb{N}. \ m = 0 \lor m = 1 \lor \exists k : \mathbb{N}. \ m = k + 2$$

Using n for m in the assertion we have three cases to consider.

case[n=0]: Assume n=0 and show $F(0) < 2^0$. By definition, F(0) = 0 and $2^0 = 1$ so this case holds.

case[n = 1]: Assume n = 1 and show $F(1) < 2^1$. By definition F(1) = 1 and also $2^1 = 2$ so this case holds.

⁴We have omitted the contexts Δ_1 and Δ_2 on the right sides of the sequents for readability.

case[$\exists k : \mathbb{N}. \ n = k+2$]: Assume $\exists k : \mathbb{N}. \ n = k+2$. Let $k \in \mathbb{N}$ be such that n = k+2. We must show $F(k+2) < 2^{k+2}$. By definition F(k+2) = F(k+1) + F(k). Since we have assumed n = k+2, we know that k+1 < n and k < n. Using k+1 and k in induction hypothesis we get the following facts $F(k+1) < 2^{k+1}$ and $F(k) < 2^k$. We use two instances of Thm. 10.13 to get the following:

$$F(k+1) + F(k) < 2^{k+1} + F(k) < 2^{k+1} + 2^k$$

Note that by Thm. 10.14 we know $2^k < 2^{k+1}$ so, by definition of exponentiation, $2^k < 2 \cdot 2^k$. This justifies the following:

$$2^{k+1} + 2^k = 2 \cdot 2^k + 2^k < 2 \cdot 2^k + 2 \cdot 2^k = 2 \cdot 2^k = 2^{k+1}$$

This string of inequalities and equalities shows that $F(k+2) < 2^{k+2}$ and so this case is complete.

By these three cases we have shown that for all $n\in\mathbb{N}$ the theorem holds. \square

Definition 10.10 (Divisibility) For $m, n \in \mathbb{N}$ we say m|n (read: "m divides n") if there is a $k \in \mathbb{N}$ such that $n = m \cdot k$.

$$m|n \stackrel{\text{def}}{=} \exists k : \mathbb{N}.n = k \cdot m$$

Definition 10.11 (Prime Numbers)

$$Prime(n) \stackrel{\text{def}}{=} n > 1 \land \forall k : \{2..n\}. \ \neg(k|n)$$

Corollary 10.3 (2 is the first Prime)

Proof: 2 > 1 so the first condition holds. Also, note that $\{2..2\} = \emptyset$ and so the second condition is vacuously true. The only other natural numbers less than 2 are 1 and 0 but neither of these is greater than 1 and so 2 is the first prime.

Thus the set of prime numbers is $\{2, 3, 5, 7, 11, 13, 17, \dots\}$.

Lemma 10.4 (Not Prime Composite)

$$\forall n. \mathbb{N}. \neg Prime(n) \Leftrightarrow \exists i, j : \{2..n\}. \ n = i \cdot j$$

Chapter 11

Lists

11.1 Lists

Lists are a ubiquitous datatype in computer science. Functional programming languages like LISP, Scheme, ML and Haskell support lists in significant ways that make them a goto data-structure. The can be used to model many collection classes (multisets or bags come to mind) as well as relations (as list of pairs) and finite functions.

We define lists containing elements from some set T using two constructors. Nil (written as "[]") is a constant symbol denoting the empty list and "::" is a symbol denoting the constructor that adds an element of the set T to a previously constructed list. This constructor is, for historical reasons, called "cons". Note that although "[]" and "::" both consist of sequences of two symbols, we consider them to be atomic symbols for the purposes of this syntax.

This is the first definition where a parameter (in this case T) has been used.

Definition 11.1 ($List_A$)

$$List_A ::= [] | a :: L$$

where

T: is a set,

[]: is a constant symbol denoting the *empty list*, which is called "nil",

a: is an element of the set T, and

L: is a previously constructed $List_A$.

A list of the form a::L is called a cons. The element a from T in a::L is called the head and the list L in the cons a::L is called the tail.

Example 11.1. As an example, let $A = \{a, b\}$, then the set of terms in the class $List_A$ is the following:

$$\{[],a{::}[],b{::}[],a{::}a{::}[],a{::}b{::}[],b{::}a{::}[],a{::}a{::}a{::}[],a{::}a{::}b{::}[],\cdots\}$$

Figure 11.1: Syntax tree for the list [a, b, a] constructed as a::(b::(a::[]))

We call terms in the class $List_A$ lists. The set of all lists in class $List_A$ is infinite, but like the representation of each natural number (say k) the representation of each list is finite because lists are constructed by consing some value from A onto a previously constructed list. Note that we assume a::b::[] means a::(b::[]) and not (a::b)::[]), to express this we say cons associates to the right. The second form violates the rule for cons because a::b is not well-formed since b is an element of A, it is not a previously constructed $List_A$. To make reading lists easier we simply separate the consed elements with commas and enclose them in square brackets "[" and "]", thus, we write a::[] as [a] and write a::b::[] as [a,b]. Using this notation we can rewrite the set of lists in the class $List_A$ more succinctly as follows:

$$\{[\,], [a], [b], [a, a], [a, b], [b, a], [b, b], [a, a, a], [a, a, b], \dots\}$$

Note that the set A need not be finite, for example, the class of $List_{\mathbb{N}}$ is perfectly sensible, in this case, there are an infinite number of lists containing only one element e.g.

$$\{[0],[1],[2],[3]\cdots\}$$

Abstract Syntax Trees for Lists

Note that the pretty linear notation for trees in only intended to make them more readable, the syntactic structure underlying the list [a, b, a] is displayed by the abstract syntax tree: shown in Fig 11.1.

11.2 Definition by recursion

In the same way that in Chapter 10 we defined functions by recursion on the structure of an argument of type \mathbb{N} , we can define functions of type $List_A \to B$ by recursion on the structure of list arguments.

For example, we can define the append function that glues two lists together (given inputs L and M where $L, M \in List_A$, append(L, M) is a list in $List_A$). We use the infix symbol @ to denote append and write L@M instead

of append(L, M). Append is defined by recursion on the structure of the first argument as follows:

Definition 11.2 (List append)

$$[] @ M \stackrel{\text{def}}{=} M$$

$$(a::L) @ M \stackrel{\text{def}}{=} a::(L @ M)$$

The first equation of the definition says: if the first argument is the list [], the result is just the second argument. The second equation of the definition says, if the first argument is a cons of the form a::L, then cons a on the append of L and M. Thus, there are two equations, one for each rule that could have been used to construct the first argument of the function.

We give some example computations with the definition of append.

$$(a::b::[]) @ (c::[])$$

= $a::((b::[]) @ (c::[])$
= $a::b::([]] @ (c::[])$
= $a::b::c::[]$

Using the more compact notation or lists, we have shown [a,b]@[]=[a,b]. Using this notation for lists we can rewrite the derivation as follows:

$$[a, b] @ [c]$$

$$= a :: ([b] @ [c])$$

$$= a :: b :: ([] @ [c])$$

$$= a :: b :: [c]$$

$$= [a, b, c]$$

We will use the more succinct notation for lists from now on, but do not forget that this is just a more readable display for the more cumbersome but precise notation which explicitly uses the cons constructor.

We would like to know that append really is a function of type $(List_A \times List_A) \to List_A$. In Chapter 10 we presented a theorem justifying recursive definitions of a particular form (Thm. 11.1). That theorem and its Corollary (Corollary ??) guaranteed that definitions that followed a syntactic pattern were guaranteed to be functions. Similar results hold for lists and indeed there is a general form of the theorem for any inductive type.

Theorem 11.1 (Definition by recursion for list functions) Given sets A and B and an element $b \in B$ and a function $g \in (A \times B) \to B$, definitions having the following form:

$$f([]) = b$$

$$f(x :: xs) = g(x, f(xs))$$

result in well-defined functions, $f \in List_A \to B$.

The corollary for functions of two arguments is given as:

Corollary 11.1 (Definition by recursion (for binary functions)) Given sets A, B and C and a function $g \in (A \times C) \to C$, and a function $h \in B \to C$, and an element $h \in B$, definitions of the following form:

$$f([],b) = h(b)$$

 $f((x::xs),b) = g(x, f(xs,b))$

result in well-defined functions, $f \in (List_A \times B) \to C$.

Theorem 11.2 (append $\in (List_A \times List_A) \to List_A$) Recall the definition of append

$$[] @ M \stackrel{\text{def}}{=} M$$

$$(a::L) @ M \stackrel{\text{def}}{=} a::(L @ M)$$

We apply Corollary 11.1. Let A be an arbitrary set and let $B = List_A$ and $C = List_A$. Let h be the identity function on $List_A \to List_A$ and g(x,m) = x::m. Then $g \in (A \times List_A) \to List_A$. This fits the pattern and shows that append is a function of type $(List_A \times List_A) \to List_A$.

In general, there is no need to apply the theorem or corollary, if a definition is given for an operator where the definition is presented by cases on a list argument and where the [] case is not recursive, that operator can be shown to be a function. The idea is that at each recursive call, the length of the list argument is getting shorter and eventually will become [], at that point the base case is invoked and there is no more recursion so it terminates.

Here are a few more functions on lists.

Definition 11.3 (List length)

$$|[]| \stackrel{\text{def}}{=} 0$$
$$|x::xs| \stackrel{\text{def}}{=} 1 + |xs|$$

Definition 11.4 (List member)

$$y \in [] \stackrel{\text{def}}{=} false$$

 $y \in (x::xs) \stackrel{\text{def}}{=} y = x \lor y \in xs$

Definition 11.5 (List reverse)

$$rev([]) \stackrel{\text{def}}{=} []$$

 $rev(x::xs) \stackrel{\text{def}}{=} rev(xs)@[x]$

Exercise 11.1. Show that length, member and reverse are all functions by applying Thm. 11.1 or Corollary 11.1.

11.3 List Induction

The induction principle for lists is given as follows:

Definition 11.6 (Principle of List Induction) For a set A and a property P of $List_A$ we have the following axiom.

$$(P[[]] \land \forall x : A. \ \forall xs : List_A. \ P[xs] \Rightarrow P[x::xs]) \Rightarrow \forall ys : List_A. \ P[ys]$$

The corresponding proof rule is given as follows:

Proof Rule 11.1 (List Induction)

$$\frac{\Gamma \vdash P[[]] \qquad \qquad \Gamma, x \in A, , xs \in List_A, P[xs] \vdash P[x::xs]}{\Gamma \vdash \forall ys : List_A. P[ys]} \qquad (List_A \text{Ind}) \qquad x, xs \text{ fresh.}$$

11.3.1 Some proofs by list induction

Consider the definition of the append function.

$$[] @ M \stackrel{\text{def}}{=} M$$

$$(a::L) @ M \stackrel{\text{def}}{=} a::(L @ M)$$

The definition shows directly that [] is a left identity for @, is it a right identity as well? The following theorem establishes this fact.

Theorem 11.3 ([] right identity for @)

$$\forall ys : List_A. \ ys@[] = ys$$

Proof: By list induction on ys. The property P of ys is given as:

$$P[ys] \stackrel{\text{def}}{=} ys@[] = ys$$

Base Case: Show P([]), *i.e.* that []@[] = []. This follows immediately from the definition of append.

Induction Step: Assume P[xs] (the induction hypothesis) and show P[x::xs] for arbitrary $x \in A$ and arbitrary $xs \in List_A$. The induction hypothesis is:

$$xs@[] = xs$$
 (IH)

We must show (x::xs)@[]=(x::xs). Starting with the left side of the equality we get the following:

$$(x::xs)@[] \stackrel{\langle\langle @ def \rangle\rangle}{=} x::(xs@[]) \stackrel{\langle\langle IH \rangle\rangle}{=} x::xs$$

So the induction step holds and the proof is complete.

The next theorem shows that append is associative.

Theorem 11.4 (Append is associative)

$$\forall ys, zs, xs : List_A. \ xs@(ys@zs) = (xs@ys)@zs$$

Proof: Choose arbitrary $ys, zs \in List_A$. We continue by list induction on xs. The property P of xs is given as:

$$P[ys] \stackrel{\text{def}}{=} xs@(ys@zs) = (xs@ys)@zs$$

Base Case: Show P[[]], *i.e.* that

$$[]@(ys@zs) = ([]@ys)@zs$$

On the left side:

$$[]@(ys@zs) \stackrel{\langle\langle @ def \rangle\rangle}{=} (ys@zs)$$

On the right side:

$$([]@ys)@zs \stackrel{\langle\!\langle @\ def \rangle\!\rangle}{=} (ys@zs)$$

So the base case holds.

Induction Step: For arbitrary $x \in A$ and $xs \in List_A$ we assume P[xs] (the induction hypothesis) and show P[x::xs].

$$xs@(ys@zs) = (xs@ys)@zs$$
 (IH)

We must show

$$(x::xs)@(ys@zs) = ((x::xs)@ys)@zs$$

Starting on the left side:

$$(x::xs)@(ys@zs)\overset{\langle (@def)\rangle}{=}x::(xs@(ys@zs))\overset{\langle (IH)\rangle}{=}x::((xs@ys)@zs)$$

On the right side:

$$((x::xs)@ys)@zs \overset{\langle (@\ def)\rangle}{=} (x::(xs@ys))@zs \overset{\langle (@\ def)\rangle}{=} x::((xs@ys)@zs)$$

So the left and right sides are equal and this completes the proof.

Remark 11.1. In abstract algebra, a *semigroup* is a structure $\langle A, \otimes \rangle$ where A is a set and \otimes is an associative operator on A. A *monoid* is triple $\langle A, \otimes, e \rangle$ where $\langle A, \otimes \rangle$ is a semigroup and $e \in A$ is a left and right identity for \otimes , *i.e.*

$$\forall a \in A. \ a \otimes e = a = e \otimes a$$

By these definitions, $\langle List_A,@,[]\rangle$ is a monoid. Monoids are everywhere, we have seen lots of other structures that are monoids as well; relations with composition and the diagonal relation form a monoid as do functions with function composition and the identity function. In propositional logic, conjunction (\land) with \triangle is a monoid and disjunction (\lor) with \bot is a monoid as well.

Here's an interesting theorem about reverse. We've seen this pattern before regarding the composition of the inverse of relations.

Theorem 11.5 (Reverse of append)

$$\forall ys, xs : List_A. \ rev(xs@ys) = rev(ys)@rev(xs)$$

Proof: Choose an arbitrary $ys \in List_A$ and proceed by list induction on xs. Choose arbitrary $xs \in List_A$. The property P of xs is given as:

$$P[xs] \stackrel{\text{def}}{=} rev(xs@ys) = rev(ys)@rev(xs)$$

Base Case: Show $P[[\]]$ i.e. that

$$rev([]@ys) = rev(ys)@rev([])$$

We start with the left side and reason as follows:

$$rev([\,]@ys) \stackrel{\langle\langle @\,def \rangle\rangle}{=} rev(ys)$$

On the right side,

$$rev(ys)@rev([]) \overset{(\langle rev \ def \rangle)}{=} rev(ys)@[] \overset{(\langle Thm \ 11.3 \rangle)}{=} rev(ys)$$

So the left and right sides are equal and the base case holds.

Induction Step: For arbitrary $xs \in List_A$ assume P[xs] and show P[x::xs] for some arbitrary $x \in A$.

$$rev(xs@ys) = rev(ys)@rev(xs)$$
 (IH)

We must show:

$$rev((x::xs)@ys) = rev(ys)@rev((x::xs))$$

We start with the left side.

$$\begin{array}{l} rev((x::xs)@ys) \\ \stackrel{\langle \langle @ \ def \rangle \rangle}{=} rev(x::(xs@ys)) \\ \stackrel{\langle \langle rev \ def \rangle \rangle}{=} rev(xs@ys)@[x] \\ \stackrel{\langle \langle IH \rangle \rangle}{=} (rev(ys)@rev(xs))@[x] \end{array}$$

On the right side:

$$\begin{array}{l} rev(ys)@rev((x::xs)) \\ \stackrel{\langle\langle rev\, def\,\rangle\rangle}{=} rev(ys)@(rev(xs)@[x]) \\ \stackrel{\langle\langle Thm\ 11.4\rangle\rangle}{=} (rev(ys)@rev(xs))@[x] \end{array}$$

The following fact follows directly from the rules for reverse and append.

Lemma 11.1 (Reverse singleton)

$$\forall x : A.rev([x]) = [x]$$

Theorem 11.6 (Reverse reverse)

$$\forall xs : List_A. \ rev(rev(xs)) = xs$$

Proof: By list induction on xs. Choose arbitrary $xs \in List_A$. The property P of xs is given as:

$$P[xs] \stackrel{\text{def}}{=} rev(rev(xs)) = xs$$

Base Case:

$$rev(rev([])) \! \stackrel{\langle\!\langle rev\, def \rangle\!\rangle}{=} \! rev([]) \! \stackrel{\langle\!\langle rev\, def \rangle\!\rangle}{=} \! []$$

So P[[]] holds.

Induction Step: For arbitrary $x \in A$ and $xs \in List_A$ we assume P[xs] and show P[x::xs]. The induction hypothesis P[xs] is

$$rev(rev(xs)) = xs$$
 (IH)

Now, consider the following string of equalities.

$$\begin{array}{c} rev(rev(x::xs)) \\ \stackrel{\langle\langle rev\ def\rangle\rangle}{=} rev(rev(xs)@[x]) \\ \stackrel{\langle\langle Thm.\ 11.5\rangle\rangle}{=} rev([x])@rev(rev(xs)) \\ \stackrel{\langle\langle Lem.\ 11.1\rangle\rangle}{=} [x]@rev(rev(xs)) \\ \stackrel{\langle\langle IH\rangle\rangle}{=} [x]@xs \\ \stackrel{\langle\langle @\ def\rangle\rangle}{=} x::xs \end{array}$$

Bibliography

- [1] Martín Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.
- [2] Stuart Allen. Discrete math lessons http://www.cs.cornell.edu/Info/People/sfa/Nuprl/eduprl/Xcounting% underscoreintro.html.
- [3] Jonathan Barnes. Logic and the Imperial Stoa, volume LXXV of Philosophia Antiqua. Brill, Leiden · New York · Koln, 1997.
- [4] Garrett Birkhoff and Saunders Mac Lane. A Survey of Modern Algebra. Macmillan, New York, 2nd edition, 1965.
- [5] Noam Chomsky. Syntactic Structures. Number 4 in Janua Linguarum, Minor. Mouton, The Hague, 1957.
- [6] Alonzo Church. The Calculi of Lambda-Conversion, volume 6 of Annals of Mathematical Studies. Princeton University Press, Princeton, 1951.
- [7] Richard Dedekind. Was sind and was sollen die Zahlen? 1888. English translation in [8].
- [8] Richard Dedekind. Essays on the Theory of Numbers. Dover, 1963.
- [9] Kees Doets and Jan van Eijck. The Haskell Road to Logic, Maths and Programming, volume 4 of Texts in Computing. Kings College Press, London, 2004.
- [10] Paul Edwards, editor. The Encyclopedia of Philosophy, Eight volumes published in four, unabridged, New York \cdot London, 1972. Collier Macmillan & The Free Press.
- [11] M. A. Ellis and B. Stroustrup. *The Annotated C++ Reference Manual.* Addison-Wesley, Reading, MA, 1990.
- [12] E. Engeler. Formal Languages: Automata and Structures. Markham, Chicago, 1968.
- [13] Discourses of Epictetus. D. Appleton and Co., New Youk, 1904. Translated by George Long.

168 BIBLIOGRAPHY

[14] Anita Burdman Feferman and Solomon Feferman. Alfred Tarski: Life and Logic. Cambridge University Press, 2004.

- [15] Abraham A. Frankel. Georg Cantor. In Edwards [10], pages 20–22.
- [16] D. P. Friedman, M. Wand, and C. T. Haynes. Essentials of Programming Languages. MIT Press, 1992.
- [17] Galileo Galilei. Two New Sciences. University of Wisconsin Press, 1974. Translated by Stillman Drake.
- [18] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.
- [19] Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The collected papers of Gerhard Gentzen, pages 68–131. North-Holland, 1969.
- [20] Nelson Goodman. The Structure of Appearance, Third ed., volume 107 of Synthese Library. D. Reidel, Dordrecht, 1977.
- [21] Nelson Goodman and W. V. Quine. Steps toward a constructive nominalism. *Journal of Symbolic Logic*, 12:105 122, 1947.
- [22] David Gries and Fred B. Schneider. A Logical Approach to Discrete Math. Springer-Verlag, New York, 1993.
- [23] C. A. Gunter. Semantics of Programming Languages: Structures and Techniques. Foundations of Computing Series. MIT Press, 1992.
- [24] C. A. Gunter and J. C. Mitchell, editors. Theoretical Aspects of Object-Oriented Programming, Types, Semantics and Language Design. Types, Semantics, and Language Design. MIT Press, Cambridge, MA, 1994.
- [25] C. A. Gunter and D. S. Scott. Semantic domains. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, pages 633–674. North-Holland, 1990.
- [26] Paul R. Halmos. Boolean Algebra. Nan Nostrand Rienholt, New York, 1968.
- [27] Paul R. Halmos. Naive Sert Theory. Springer Verlag, New York · Heidelberg · Berlin, 1974.
- [28] Herodotus. *The History*. University of Chicago, 1987. Translated by David Green.
- [29] D. Hilbert and W. Ackermann. *Mathematical Logic*. Chelsea Publishing, New York, 1950.

BIBLIOGRAPHY 169

[30] John E. Hopcroft and Jeffrey D. Ullman. Formal Languages and Their Relation to Automata. Addison-Wesley, Reading, Massachusetts, 1969.

- [31] Stephen C. Kleene. Introduction to Metamathematics. van Nostrand, Princeton, 1952.
- [32] Saunders Mac Lane. *Mathematics: Form and Function*. Springer Verlag, New York, Berlin, Heidelberg, Tokyo, 1986.
- [33] F. William Lawvere and Stephen Schanuel. Conceptual Mathematics: A First Introduction to Categories. Cambridge University Press, 1997.
- [34] Xavier Leroy. The Objective Caml system release 1.07. INRIA, France, May 1997.
- [35] Nicholas Lobachevski. Geometrical Researches on The Theory of Parallels. Open Court Publishing Co., La Salle, Illinois, 1914. Originally published in German, Berlin in 1840, translated by George Bruce Halsted.
- [36] Zohar Manna. Theory of Computation. Addison-Wesley, 1978.
- [37] Zohar Manna and Richard Waldinger. The Logical Basis for Computer Programming: Deductive Reasoning. Addison-Wesley, 1985. Published in 2 Volumes.
- [38] R. Milner, M. Tofte, and R. Harper. *The Definition of Standard ML*. The MIT Press, 1991.
- [39] John C. Mitchell. Foundations of Programming Languages. MIT Press, 1996.
- [40] L. C. Paulson. Standard ML for the Working Programmer. Cambridge University Press, 1991.
- [41] Giuseppe Peano. Arithmetices principia, nova methodo exposita, 1899. English translation in [52], pp. 83–97.
- [42] Benjamin Pierce. Basic Category Theory for COmputer Scientists. MIT Press, 1991.
- [43] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI-FN-19, Aarhus University, Aarhus University, Computer Science Dept., Denmark, 1981.
- [44] David J. Pym and Eike Ritter. Reductive Logic and Proof-search: Proof Theory, Semantics and Contol, volume 45 of Oxford Logic Guides. Clarendon Press, Oxford, 2004.
- [45] W.V.O. Quine. Methods of Logic. Holt, Rinehart and Winston, 1950.
- [46] Arto Salomaa. Formal Languages. ACM Monograph Series. Academic Press, 1973.

170 BIBLIOGRAPHY

[47] S. A. Schmidt. *Denotational Semantics*. W. C. Brown, Dubuque, Iowa, 1986.

- [48] D. Scott and C. Strachey. Towards a mathematical semantics for computer languages. In J. Fox, editor, *Proceedings Symposium on Computers and Automata*, pages 19–46. Polytechnic Inst. of Brooklyn Press, New York, 1971.
- [49] J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. MIT Press, Cambridge, MA, 1977.
- [50] A. Tarski. Logic, Semantics, Metamathematics, Papers from 1923 to 1938. Clarendon Press, Oxford, 1956.
- [51] R. D. Tennent. Semantics of Programming Languages. Prentice-Hall International, London, 1991.
- [52] Jan van Heijenoort, editor. From Frege to Gödel: A sourcebook in mathematical logic, 1879 1931. Harvard University Press, 1967.
- [53] Wikipedia. Galileo's paradox wikipedia, the free encyclopedia, 2005.
- [54] G. Winskel. Formal Semantics of Programming Languages. MIT Press, Cambridge, 1993.
- [55] Glen Winskel. The Formal Semantics of Programming Languages. Foundations of Computing. MIT Press, 1993.
- [56] Ludwig Wittgenstein. Tractatus Logico-Philosophicus. Routledge and Kegan Paul Ltd., London, 1955.

Index

Cong, 110	scope, 54
rational number, 108	binding operator, 9, 85
k-partitions	block, 108
counting, 109	of a partition, 108
	Bool, George, 24
abstract syntax, 1, 4, 15	Boole, George, 41
Ackermann, 57	Boolean
addition, 142	expressions, 6
is monotone, 151	semantics, 10
of fractions, 110	Boolean expression
alphabet, 2	syntax, 5
antecedent, 29	Boolean valued, 48
AntiSym, 100	Booleans, 24
antisymmetric, 98, 100	bottom, 22
append, 161	identity for disjunction, 31
arity, 48, 88	semantics, 25
assignment, 27	\perp , 22
falsifying, 27	bound occurrence, 55
satisfying, 27	
valid, 28	Cantor, 132
associative, 89	Cantor's theorem, 132
associativity	Cantor, Georg, 71, 132
of addition, 118	capture avoiding substitution, see sub-
of function composition, 119	stitution
ASym, 100	cardinality, 127
asymmetric, 100	less than or equal, 128
Axioms	of the empty set, 131
Peano, 141	strictly less than, 128
	Cartesian product, 87
bi-conditional, 24	bijection between, 124
definition of, 24	of partial orders, 113
semantics, 25	category theory, 71
bijection, 122–124	Chomsky, Noam, 2, 3
of Cartesian products, 124	Church, Alonzo, 57
binary, 48	circular reasoning, see
binding	vicious circle principle
operator, 54	closure, 100, 101

of functions under compostion, 118	power set, 84
reflexive, 102	size of truth tables, 25
reflexive transitive, 103	equivalence relations, 109
symmetric, 103	uniqueness of, 134
transitive, 103	
uniqueness of, 101	Dedekind infinite, 129
with respect to an operation, 118	Dedekind, Richard, 129
codomain, 92, 116	$\stackrel{\text{def}}{=}$, 9
commutativity	definition, 8
of intersection, 84	by recursion for 2 arguments, 144
of union, 83	by recursion, 143, 144
complement	by recursion on lists, 161, 162
is involutive, 104	$\Delta_A,93$
of a relation, 95	denumerable, 133
complete	diagonal, 106
relation, 106	diagonal relation, 93
complete induction, 156	difference, 86
component, 108	disjoint, 87
of a partition, 108	disjunction, 22
composition, 95	over a formula list, 30
associative, 95	proof rule for, 33
inverse of, 96	semantics, 25
iterated, 97	syntax, 22
of relations, 95	distributive, 90
is associative, 95	divides, 42
compositional, 24	divisibility, 157
comprehension, 85	domain, 92, 116
concrete syntax, 4	domain of discourse, 47
congruence, 41, 42, 110	
conjunction, 22	empty set, 75, 82
over a formula list, 30	is a relation, 93
proof rule for, 33	uniqueness of, 76
semantics, 25	empty set axiom, 75, 77
syntax, 22	emptyset, 83
Connected, 100	Epictetus, 21
connected, 98, 100	equality
connectives	f(x) = g(x), 115
complete set, 38	of syntax, 3
connectivity, 98	equivalence, 105
constant, 48	class, 106
nullary function as, 50	fineness of, 107
contradiction, 26	relation, 105, 106
countable, 133	equivalence relation
rational numbers, 133	counting, 109
counting, 134, 154	for \mathbb{Q} on \mathcal{F} , 108
k-partitions, 109	Even numbers, definition of, 127
-	•

	Cadal Variation
exclusive or, 44	Godel, Kurt, 19
existential quantifier, 47	grammar, 2
proof rule for, 59	alternative constructs of, 3
existential witness, 59	base cases, 3
exponentiation, 143	constructors, 2
extension, 117	inductive alternatives, 10
extensionality, 74, 75	productions of, 3
for functions, 116	rules of, 3
for sets, 74	schematic form of, 2
subset characterization, 75	Hilbort David 57
falsifiable, 26	Hilbert, David, 57
•	idempotence, 88
falsifies, 27	idempotent, 88
Fibonacci	intersection, 89
growth, 156	
Fibonacci numbers, 156	union, 89
finite, 130	identity for composition 07
from finite, 131	for composition, 97
formal language, 2	for composition of relations, 97
formula, 49, 50	function, 119
predicate logic, 50	left, 97
foundations of mathematics, 71	matrix, 93
fractions, 107	relation, 93
addition of, 110	right, 97
multiplication of, 110	Δ_A , 119
free occurrence, 55	if and only if, see bi-conditional
Frege, Gottlob, 49	iff, see bi-conditional
function, 115	implication, 22
addition, 144	proof rule for, 34
Boolean valued, 48	semantics, 25
composition of, 118	syntax, 22
equivalence of, 116	induction, 145, 148, 163
exponentiation, 145	on \mathbb{N} , 145, 148, 163
extension of, 117	inductively defined sets, 1
extensionality, 116	infinite, 129
inverse, 120, 122–124	infinity of infinities, 133
multiplication, 144	initial prefix, 130
f(x) = g(x), 115	injection, 121
restriction of, 117	integer segment, 130
symbols for terms of predicate logic,	intensional properties, 117
50	interpretation, 9
functionality, 115	intersection
V /	commutativity of, 84
Galileo, Galilei, 128	of sets, 83
Gauss' identity, 153	zero for, 83
Gentzen, Gerhard, 29	inverse
· · · · · · · · · · · · · · · · · · ·	

bijection	propositional, 21
lemma, 124	reductive, 36
lemma, 123	
composition of, 96	matching, 32
function, 120	sequents, 36
characterization lemma, 122	mathematical induction, 145, 148
is involutive, 104	complete, 156
relation, 94	matrix, 93
involution, 104	identity, 93
complement, 104	multiplication, 93
inverse, 104	membership, 72
$Irref_A$, 99	in Comprehensions, 88
irreflexive, 98, 99	vs. subset, 74
, ,	meta variable, 22
k partition, 109	formula list, 29
Kleene, Stephen Cole, 103, 137	in sequents, 29
Kronecker, Leopold, 140	propositional, 22
Kuratowski, Kazimierz, 80	ML, 15
	models, 27
language	\models , 27
finite, 2	monoid, 165
formal, 2	monotone, 89
lemma:function-composition, 118	addition, 151
less than, 93, 150	multiplication, 143
irreflexive, 150	of fractions, 110
transitive, 151	,
lexical scope, 54	n-ary, 48
lexicographic ordering, 113	N, 5
lexicographic product	natural numbers, 5
of partial orders, 113	semantics, 11
list, 7, 159	syntax for, 5
syntax trees for, 8, 160	negation, 22
$\cos, 7, 159$	proof rule for, 34
empty, 7, 159	semantics, 25
formula, 29	syntax, 22
head, 7, 159	truth table for, 25
over a type, 7, 159	nullary, 48
parameterized by element type, 7	number
parametrized by element type, 159	prime, 157
recursion on, 30	numbers
semantics, 14	rational, 108
tail, 7, 159	,
list induction, 163	one-to-one, see injection
local scope, 54	one-to-one and onto, see bijection
logic	onto, see surjection
deductive, 36	operator, 88

k-ary, 88	$\mathcal{T}_{[}\mathcal{F}], 50$
arity of, 88	term syntax, 50
associative, 89	predicate symbols, 50, 51
binary, 88	prime number, 157
distributive, 90	product, 87
unary, 88	finiteness of, 131
ordered pairs, 80	Programming Language Booleans, 6
characteristic property of, 80	proof, 34
existence lemma, 87	inductively defined, 35
Kuratowski's definition of, 80	predicate logic, 60
notation for, 80	rules, 32
projections, 80	strategies for building, 35
Weiner's definition of, 82	tree, 35
ordered product, 113	proof rule, 32, 58
Cartesian, 113	⇒L, 34
point-wise, 113	⇒R, 34
point wise, 119	⊥ Ax, 33
pair, 77	¬L, 34
unordered, 77	¬R, 34
pairing axiom, 77, 78	∨L, 33
pairing unique, 77	∨R, 33
partial order, 111	for quanitifers, 58
Cartesian product of, 113	\wedge L, 33
lexicographic product of, 113	∧R, 33
strict, 112	Ax, 33
subset is, 112	
partition, 108	axiom form, 32
block of, 108	by cases, 149
	conclusion of, 32
component of, 108	disjunction, 33
Peano Axioms, 141	elimination rules, 32
Peano, Giuseppe, 141	∃L, 59
permutation, 132	$\exists R, 59$
$\pi_1, \pi_2, 80$	for conjunction, 33
pigeonhole principle, 134, 154	for disjunction, 33
PLB, 6	for implication, 34
semantics, 12	for negation, 34
syntax, 6	∀L, 59
point-wise ordering, 113	∀R, 58
poset, 112	introduction rules, 32
power set, 84, 132	left rules, 32
size of, 84	list induction, 163
axiom, 84	mathematical induction, 146, 156
predicate, 47, 48	premise of, 32
predicate logic	right rules, 32
$\mathcal{PL}_{[\mathcal{F},\mathcal{P}]}, 50$	schematic form of, 32
formula syntax, 50	proposition, 21

propositional	reflerive 08 00
propositional assignment, 27	reflexive, 98, 99 closure, 102
connectives, 22	reflexive transitive closure, 103
constants, 22	relation, 92
formula, 22	antisymmetric, 98, 100
contradiction, 26	
•	asymmetric, 98, 100
falsifiable, 26	binary, 92
satisfiable, 26	infix notation for, 93
valid, 26	closure
formulas, 21	uniqueness of, 101
meta variable, 22	closure of, 100, 101
semantics, 24	reflexive, 102
sequent, 29	symmetric, 103
tautology, 26	codomain, 92
valuation, 27	complement of, 95
variables, 22	complete, 106
propositional logic	composition
constructors, 23	inverse of, 96
semantics, 24	iterated, 97
syntax, 22	composition of, 95
syntax trees, 23	associative, 95
	congruence, 110
quantification, 47	connected, 98, 100
quantifier	connectivity of, 98
existential, 47	diagonal, 93, 106
universal, 47	domain, 92
Quine, W. V. O., 57	empty set, 93
quotient, 42, 107	equality, 94
	equivalence, 105, 106
range, 116	fineness of, 107
rational numbers	functional, 115
countable, 133	inverse, 94
rationals, 108	inverse of, 94
reachability, 98	irreflexive, 98, 99
recursion, 143, 144, 161, 162	less than, 93
base case, 10	partial order, 111
definition by, 10	partial order, strict, 112
definition of addition by, 142	reachability, 98
definition of exponentiation by, 143	reflexive, 98, 99
definition of multiplication by, 143	reflexive transitive closure, 103
definition of summation by, 152	representation
on $List_A$, 161, 162	matrix, 93
on \mathbb{N} , 143	smallest, 101
recursive call, 10	symmetric, 98, 99
termination, 10	total, 115
recursion theorem, 143	transitive, 98, 100

transitive closure of, 103	membership in, 72
transpose, 94	membership vs. subset, 74
$Relf_A, 99$	notations for, 72
remainder, 42	operator, 88
restriction, 117	arity of, 88
Russell, Bertrand, 86	idempotent, 88
	monotone, 89
satisfiable, 26	unary, 88
satisfies, 27	ordered pairs, 80
scheme, 15	pair, 77
Schröder Bernstein theorem, 124, 128	pairing axiom, 77, 78
scope, 54	pairing unique, 77
lexical, 54	power set, 84
local, 54	power set axiom, 84
semantic, 1	product, 87
semantic function, 9	singleton exists, 78
semantics, 9, 24	singleton exists, simplified, 79
of sequents, 29	singleton unique, 79
semigroup, 165	subset, 83
sequent, 29	union, 82, 83
antecedent, 29	axiom, 82
formula translation of, 31	commutativity of, 83
matching, 32, 36	unordered pair, 77
root, 35	set theory, 71
schematic, 32	singleton
semantics, 31	exists, 78
succedent, 29	exists, simplified, 79
valid, 31	singleton member, 79
set, 72	singleton unique, 79
comprehension, 85	Squares, definition of, 128
membership in, 88	Stirling Numbers, 109
countable, 133	second kind, 109
denumerable, 133	strict partial order, 112
difference, 86	subrelation, 94
disjoint, 87	subset, 74
elements of, 72	is a partial order, 112
empty set, 75 , 82	subset-reflexive, 74
empty set axiom, 75, 77	substitution, 9, 32, 57
equality, 74	into a comprehension, 85
extensionality, 74	in a formula, 57
finite, 130	in a term, 57
inductively defined, 1	succedent, 29
infinite, 129	sum, 152
intersection, 83	\sum , 152
axiom, 83	surjection, 121
commutativity of, 84	Sym, 99, 103

symmetric, 98, 99 closure, 103 syntactic class, 2 syntax, 1	of relational closures, 101 of singletons, 79 of unordered pairs, 77 universal quantifier, 47
abstract, 2, 4, 15 concrete, 3, 4	proof rule for, 58, 59 unordered pair, 77
syntax tree, 50	1.07
for propositional logic, 23	val, 27
Tanal: Alfred 01	valid, 26, 28, 31 valuation, 27
Tarski, Alfred, 91	computation of, 28
tautology, 26	variable, 49
term, 4, 49, 50 as trees, 2	binding occurrence, 54
predicate logic, 50	bound, 55, 56
syntax of, 50	in a term, 55
variables, 49	free, 55, 56
$T_{ \mathcal{F} }$, 50	in a formula, 55
terms	in a term, 55
structured, 2	occurrence, 53, 54
text, 3	in a formula, 54
top, 24	in a term, 53
definition of, 24	vicious circle principle, see
identity for conjunction, 30 semantics, 27	circular reasoning
⊤, 24	Weiner, Norbert, 81
total, 115	witness, 59
Trans, 100	Wittgenstein, Ludwig, 21, 24
transitive, 98, 100	
transitive closure, 103	
transpose, 94	
trichotomy, 51	
truth table, 24	
⊢, 29	
turnstile $(vdash)$, 29	
type theory, 71	
unary, 48	
uncountable	
reals are, 133	
union, 82	
axiom, 82	
commutativity of, 83	
identity for, 82	
uniqueness, 76	
of counting, 134	
of empty set, 76	