Exercises (with Solutions) · Chapter 2

1. Problem

Let P(A)=0 and show mathematically that in this case A is independent of every other event B.

Solution

To show that A is independent of B, we need to show that

$$P(AB) = P(A)P(B)$$

The right hand side of this equation is zero, since $P(A)P(B) = 0 \cdot P(B) = 0$. Thus, it remains to show that P(AB) = 0. For this, observe that

$$AB \subset A$$

and, therefore,

which shows that P(AB) = 0 since

$$0 \le P(AB) \le P(A) = 0.$$

2. Problem

Suppose we toss a fair coin until we get exactly two Heads (H). Examples: $\omega = TTTTTTHH$, $\omega = HTTH$, $\omega = HH$, $\omega = THTTTTH$, etc.

- (a) Describe formally the corresponding sample space Ω .
- (b) Let $X(\omega)=m$ denote the random variable that gives the number of coin tosses m for each $\omega\in\Omega$. What is the probability mass function P(X=m) for $m=0,1,2,\ldots$?

Solution

(a) Sample space of tossing a fair coin until one gets exactly two H:

$$\Omega = \{\omega = (\omega_1, \omega_2, \dots, \omega_m) \in \{H, T\}^m \mid (\omega_1, \dots, \omega_{m-1}) \text{ contains exactly one } H \text{ and } \omega_m = H\}$$

(b) The probability of stopping after m tosses is the probability of obtaining exactly one head H in the first m-1 tosses (i.e., $(m-1)/2^{m-1}$) times the probability of getting a H in the mth toss (i.e., 1/2):

$$P(X=m) = \frac{m-1}{2^{m-1}} \frac{1}{2}$$
 for all $m=2,3,\ldots,$

and where P(X=0)=0 and P(X=1)=0 since you need at least two coin tosses to fulfill the stopping criterion.

Explanation of the probability of obtaining exactly one head H in the first m-1 tosses: In total, there are 2^{m-1} combinations when tossing a coin m-1 times (denominator: 2^{m-1}), but there are only m-1 combinations that the m-1 tosses contain only one H (numerator: m-1).

2

3. Problem

Consider a univariate, continuous random variable $X \in \mathbb{R}$ with density function f_X , where

- f_X has a compact support $[0,1]\subset\mathbb{R}$, i.e., $f_X(x)>0$ for all $x\in[0,1]$ and $f_X(x)=0$ for all $x\notin[0,1]$, and
- f_X is bounded, i.e., $\max_{x \in [0,1]} f_X(x) \le c$, for some constant $0 < c < \infty$.
- (a) Show that the kth moment $E(X^k)$ is finite for each $k = 1, 2, \ldots$
- (b) What is the value of $\lim_{k\to\infty} E(X^k)$?

Solution

(a) Since $X^k \in [0,1]$ for all $k=1,2,\ldots$, $E(X^k) \geq 0$ for all $k=1,2,\ldots$. The kth moment $E(X^k)$ can be bounded from above by

$$\mathbb{E}(X^k) = \int_0^1 x^k f_X(x) dx \le c \int_0^1 x^k dx$$

$$= c \left[\frac{1}{k+1} x^{k+1} \right]_0^1$$

$$= \frac{c}{k+1} \left(1^{k+1} - 0^{k+1} \right) = \frac{c}{k+1}$$

That is, $0 \leq \mathbb{E}(X^k) \leq \frac{c}{k+1} < \infty$ for all $k = 1, 2, \dots$

(b) $\mathbb{E}(X^k)$ is bounded from below by zero and

$$0 \le \lim_{k \to \infty} \mathbb{E}(X^k) \le \lim_{k \to \infty} \frac{c}{k+1} \to 0.$$

Thus $\mathbb{E}(X^k)$ converges to zero as $k \to \infty$.

Side-Note:

What we applied here is called the Sandwich Theorem or Squeeze Theorem: If (a_n) , (b_n) , and (c_n) are three real-valued sequences satisfying $a_n \leq b_n \leq c_n$ for all n, and if furthermore $a_n \to \ell$ and $c_n \to \ell$, then $b_n \to \ell$ as $n \to \infty$.