Modelo QEE determinístico:

$$C = C_1 \frac{q}{2} + C_3 \frac{r}{q}$$
 $q^* = QEE = \sqrt{\frac{2rC_3}{C_1}}$ $(C_1 = i \cdot b)$

Probabilidade e esperança de quebra (definições):

$$P[DDLT > S] = \int_{S}^{\infty} p(x) dx$$

$$E[DDLT > S] = \int_{S}^{\infty} (x - S)p(x)dx = \int_{S}^{\infty} x \cdot p(x)dx - S \cdot P[DDLT > S]$$

(Obs.1: no caso de distribuições discretas, usar somatórios em vez de integrais)

(Obs.2: no caso do modelo Ciclo de Encomenda, substituir DDLT por DDPP)

Política/modelo Nível de Encomenda (caso de "encomendas em carteira"):

$$C = C_1 \left(\frac{q}{2} + S - \mu_{DDLT}\right) + C_2 \frac{r}{q} E[DDLT > S] + C_3 \frac{r}{q}$$

$$q^* = \sqrt{\frac{2r(C_2 E[DDLT > S] + C_3)}{C_1}} \approx \sqrt{\frac{2rC_3}{C_1}} \qquad P^*[DDLT > S] = \frac{C_1 q^*}{C_2 r}$$

Política/modelo Ciclo de Encomenda (caso de "encomendas em carteira"):

$$C = C_1(S - rl - rt/2) + C_2(1/t)E[DDPP > S] + C_3(1/t)$$

$$t^* \approx \sqrt{\frac{2C_3}{C_1 r}}$$
 $P^*[DDPP > S] = \frac{C_1 t^*}{C_2}$

Caso da Distribuição Normal:

Nível de Encomenda: $S = \mu_{DDLT} + Z\sigma_{DDLT}$ $E[DDLT > S] = 2^{o} integral \times \sigma_{DDLT}$

Ciclo de Encomenda: $S = \mu_{DDPP} + Z\sigma_{DDPP}$ $E[DDPP > S] = 2^o integral \times \sigma_{DDPP}$

Procura dura	inte o prazo de entrega:	Procura durante o período de planeamento:		
$\mu_{\scriptscriptstyle DDLT} = rl$	$\sigma_{DDLT}^2 = l\sigma_r^2 + r^2\sigma_l^2$	$\mu_{DDPP} = r(t+l)$	$\sigma_{DDPP}^2 = (t+l)\sigma_r^2 + r^2\sigma_l^2$	

DISTRIBUIÇÃO NORMAL (0,1) – probabilidade e esperança de quebra

N	1º integral	2º integral	N	1º integral	2º integral
1	0.486684	0.379760	51	0.061658	0.025002
2	0.474728	0.365339	52	0.058030	0.023207
3	0.462794	0.351276	53	0.054568	0.021518
4	0.450892	0.337570	54	0.051266	0.019931
5	0.439032	0.324222	55	0.048122	0.018440
6	0.427226	0.311228	56	0.045129	0.017041
7	0.415484	0.298587	57	0.042283	0.015730
8	0.403815	0.286298	58	0.039580	0.014502
9	0.392230	0.274357	59	0.037014	0.013353
10	0.380739	0.262762	60	0.034580	0.012279
11	0.369350	0.251511	61	0.032275	0.01 1276
12	0.358074	0.240600	62	0.030093	0.010341
13	0.346918	0.230025	63	0.028029	0.009469
14	0.335893	0.219783	64	0.026079	0.008657
15	0.325005	0.209869	65	0.024238	0.007903
16	0.314264	0.200280	66	0.022502	0.007201
17	0.303676	0.191011	67	0.020866	0.006551
18	0.293249	0.182057	68	0.019325	0.005948
19	0.282989	0.173414	69	0.017876	0.005390
20	0.272903	0.165075	70	0.016515	0.004874
21	0.262997	0.157037	71	0.015236	0.004398
22	0.253277	0.149293	72	0.014036	0.003959
23	0.243747	0.141837	73	0.012912	0.003555
24	0.234413	0.134665	74	0.011859	0.003183
25	0.225277	0.127770	75	0.010875	0.002842
26	0.216346	0.121145	76	0.009954	0.002530
27	0.207620	0.114786	77	0.009094	0.002244
28	0.199104	0.108685	78	0.008292	0.001983
29	0.190800	0.102836	79	0.007544	0.001746
30	0.182710	0.097234	80	0.006848	0.001530
31	0.174836	0.091871	81	0.006200	0.001334
32	0.167178	0.086740	82	0.005597	0.001157
33	0.159737	0.081837	83	0.005037	0.000998
34	0.152514	0.077153	84	0.004518	0.000854
35	0.145509	0.0 7 2 <i>6</i> 83	85	0.004036	0.000726
36	0.138721	0.068419	86	0.003590	0.000611
37	0.132150	0.064356	87	0.003177	0.000510
38	0.125793	0.060487	88	0.002795	0.000420
39	0.119651	0.056805	89	0.002443	0.000342
40	0.113720	0.053305	90	0.002117	0.000273
41	0.107999	0.049979	91	0.001817	0.000214
42	0.102485	0.046822	92	0.001540	0.000164
43	0.097175	0.043827	93	0.001286	0.000122
44	0.092068	0.040988	94	0.001051	0.000087
45	0.087158	0.038300	95	0.000836	0.000058
46	0.082443	0.035756	96	0.000638	0.000036
47	0.077920	0.033350	97	0.000457	0.000020
48	0.073584	0.031078	98	0.000291	0.000009
49	0.069431	0.028932	99	0.000139	0.000002
50	0.065457	0.026909	100	0.000000	0.000000

<u>N.B.</u>: Z = 3N/100