Evaluación del rendimiento del software: Diagramas de colaboración y composición con máquinas de estados

Autor: Aitor Acedo

Directores: José Merseguer

Elena Gómez

- Introducción
- Objetivos
- ArgoSPE
- Conclusiones

- Introducción
 - Contexto
 - Estado del arte
 - LGSPN
- Objetivos
- ArgoSPE

Conclusiones

Contexto

Ingeniería del Software

• Ingeniería de Prestaciones

• Redes de Petri: LGSPN's

[Introducción]

LGSPN

Estado del arte l

- Gran cantidad de usuarios
- Creciente exigencia
- Escasa atención a las prestaciones

Resultados insatisfactorios

Estado del arte II

- Solución: Integrar el análisis de prestaciones en el desarrollo
- UML transformado en modelos formales
- DIIS:Traducción de diagramas UML a RdP
- J.J. Merseguer: "Software Performance Modeling based on UML Petri Nets"

- Introducción
- Objetivos
 - Diagrama de colaboración
 - XMI y árbol DOM
 - Traducción
 - Operador Composición
- ArgoSPE

Objetivos

- Principal
 - Añadir la evaluación cuantitativa y cualitativa de escenarios en ArgoSPE.
- Secundarios
 - Traducción diagramas de colaboración
 - Composición con las máquinas de estados
 - Consulta de prestaciones

Diagrama de colaboración

XMI y árbol DOM I

XMI

- <Behavioral_Elements.Collaborations.Message xmi.id="xmi.5" xmi.uuid="-101--46--101-59--6791832f:105a47b76d3:-7ff0">
 - <Foundation.Core.ModelElement.name>ml
 - <Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
 - <Behavioral_Elements.Collaborations.Message.interaction>
 - <Behavioral Elements.Collaborations.Interaction xmi.idref="xmi.15"/>
 - </Behavioral Elements.Collaborations.Message.interaction>
 - <Behavioral_Elements.Collaborations.Message.sender>
 - <Behavioral Elements.Collaborations.ClassifierRole xmi.idref="xmi.4"/>
 - </Behavioral Elements.Collaborations.Message.sender>
 - <Behavioral Elements.Collaborations.Message.receiver>
 - <Behavioral_Elements.Collaborations.ClassifierRole xmi.idref="xmi.7"/>
 - </Behavioral Elements.Collaborations.Message.receiver>
 - <Behavioral Elements.Collaborations.Message.communicationConnection>
 - <Behavioral Elements.Collaborations.AssociationRole xmi.idref="xmi.9"/>
 - </Behavioral Elements.Collaborations.Message.communicationConnection>
- </Behavioral_Elements.Collaborations.Message>

XMI y árbol DOM II

Traducción

p1 | startCoD

t1

p2

р3

p4

p5

t3

Diagrama de colaboración

Servidor <<PAstep>> m1:met1() {PAsize=(8,Kb)} Proxy <<PAstep>> {PAsize=(20,B)} m2:met2() Cliente

LGSPN

Operador Composición

- Introducción
- Objetivos
- ArgoSPE
 - Estado previo
 - Arquitectura
 - Trabajo desarrollado
 - Composición con SM
 - Response Time

Estado previo

- Traducción de los diagramas de estados y de actividad
- Composición de las RdP de las máquinas de estados
- Anotación de los diagramas de clases, de despliegue, de estados y de actividad
- Consultas: Time in state, Stay Time,
 Transmission speed, Message Delay

Arquitectura

Trabajo desarrollado I

- Traducción de los diagramas de colaboración
- Composición de las RdP de las máquinas de estados con las RdP de los diagramas de colaboración
- Consulta de prestaciones: Response Time
- Corrección de errores encontrados

Trabajo desarrollado II

Composición con SM

Response Time

- El tiempo medio de duración de una ejecución particular del sistema
- Aplicación de la Ley de Little:

Marcado Inicial / Throughput (Transición de

- Introducción
- Objetivos
- ArgoSPE
- Conclusiones
 - Valoración personal
 - Trabajo futuro

Valoración Personal

- Práctica en el desarrollo de un proyecto de gran tamaño
- Aumento del conocimiento de la gestión de aplicaciones de software libre
- Adquisición de experiencia en un entorno colaborativo (CollabNet)
- Profundización en conceptos estudiados durante mi formación: UML, RdP

Trabajo futuro

- Adoptar las modificaciones expuestas en "Performance Evaluation of UML Models using GSPN" Submitted to IEEE Transactions on Software Engineering
- Aumentar las consultas de prestaciones
- PNML
- Soporte a otras herramientas CASE

Evaluación del rendimiento del software: Diagramas de colaboración y composición con máquinas de estados

Autor: Aitor Acedo

Directores: José Merseguer

Elena Gómez

