

A Really Brief Introduction to Pattern Classification for Acousticians

Colin Jemmott February 2008 December 2019

Hypothesis Testing

Who is speaking?

Was there an earthquake? Where?

Is that a bad sensor?

Is that a car or a tank driving down the road?

Is that a good weld?

When will this gearbox fail?

Is the recording a marine mammal or a cargo ship?

Pattern Classification Overview

Automation of these decisions for cost or repeatability Also known as Decision Theory, Hypothesis Testing, Machine Learning, etc.

Speaker Recognition

Receive Data – digitized acoustic time series (audio file) Extract Features – Formant frequencies, speaking rate, etc.

Assign to a class – Based on the values of the features, pick the most likely candidate speaker

"Application of sensor fusion and signal classification techniques in a distributed condition monitoring system"

Karl Reichard, Mike Van Dyke, Ken Maynard

Is the recording a marine mammal or a cargo ship?

Hypothesis 1:

Marine Mammal

Hypothesis 2: Cargo Ship

Histograms

If $x[n] \le 0.8$ then guess H_1 marine mammal If x[n] > 0.8 then guess H_2 cargo ship

Histograms are very sensitive to bin location and width

There is a rigorous way to test hypotheses

$$p(H_1 \mid x)$$
 Probability that H_1 is true, given that x has happened

$$p(H_2 \mid x)$$
 Probability that H_2 is true, given that x has happened

We want to know which hypothesis is more likely

If
$$p(H_1 | x) > p(H_2 | x)$$
 guess H_1 is true

If
$$p(H_1 | x) < p(H_2 | x)$$
 guess H_2 is true

We write this as
$$p(H_1 | x) > p(H_2 | x)$$

If we assume both hypotheses are equally likely,

$$p(H_1) = p(H_2) = \frac{1}{2}$$

We can find

$$\left| p(x | H_1) > p(x | H_2) \right|$$

 $p(x | H_1)$ Probability of event x happening, given that H_1 is true

 $p(x | H_2)$ Probability of event x happening, given that H_2 is true

Assume $p(x|H_{1,2})$ follows a Gaussian Distribution (aka: normal distribution, bell curve)

Correct Marine Mammal Classification

Error, you called a marine mammal a cargo ship! Cost is C_{12}

Correct Cargo Ship Classification

Cost is C_{22}

Error, you called a cargo ship a marine mammal!

If all errors are not equally important, you can assign minimum cost rather than minimum error

$$\frac{p(x|H_1) > (C_{12} - C_{22})}{p(x|H_2) < (C_{21} - C_{11})} \frac{P(H_2)}{P(H_1)}$$

If Gaussian distributions are assumed we can solve for a closed form classifier

$$\frac{\left(x-m_1\right)^2}{\sigma_1^2} - \frac{\left(x-m_2\right)^2}{\sigma_2^2} > \gamma$$

Minimum Cost

The classification error is higher than predicted!

Because the underlying distributions are not Gaussian!

So we put the threshold in the wrong place

One way to estimate distributions: Kernel Density Estimates

One way to estimate distributions: Kernel Density Estimates

One way to estimate distributions: Kernel Density Estimates

Kernel Density Estimates Results

Kernel density method is optimal given infinite data...

Why are we are able to classify marine mammal versus cargo ship much better than any of these methods?

Because we don't just listen to the amplitude!

$$p(x, y) \neq p(x)p(y)$$

Hypothesis 1: Marine Mammal

Hypothesis 2: Cargo Ship

Likelihood Ratio Test

Minimum Error Linear Classifier

(SVM, Neural Net, etc)

Nearest Neighbor

Over fitting - poor generalization

Implementation Issues:

- Dimensionality & Computational Complexity
- Need for labeled data
- Choosing a feature set
 - Best features come from physics or domain specific knowledge
 - There are automated tools
 - All these methods really do is divide up feature space

Conclusions

- Many powerful techniques exist for automatic pattern classification
- The math / jargon should not scare you off!
- Many potential applications in acoustic signal processing

Richard O. Duda Peter E. Hart David G. Stork

Pattern Classification

Second Edition