

Universidade Estadual de Campinas Instituto de Física Gleb Wataghin

MD947 - Estágio Supervisionado em Física Médica I

Relatório de Medicina Nuclear MD947

Lucas Afonso Carriel

RA: 182147

l182147@dac.unicamp.br

1. Introdução

O presente relatório apresenta os procedimentos realizados no período de 15/04/2024 a 22/05/2024 no ambiente hospitalar do Hospital das Clínicas (HC).

Os testes e procedimentos realizados foram feitos com a supervisão da professora Edna Marina de Souza, em concordância com o procedimento descrito nos respectivos manuais dos equipamentos e com as Instruções Normativas referentes aos aparelhos utilizados no âmbito da Medicina Nuclear.

Vale ressaltar que este relatório não consta com a presença das atividades desenvolvidas nas datas de 15/05 [uniformidade off-pick e sensibilidade da gama câmera e do SPECT-CT] e de 20/05 [resolução espacial da SPECT-CT para fontes lineares] devido à falta das imagens adquiridas em ambos os dias. No entanto, me encontro à disposição de anexar as análises condizentes a essas datas, caso seja de meu acesso tais imagens.

2. Normalização do Contador Gama de Poços

2.1 Materiais

2.1.1 Equipamento

O aparelho utilizado como objeto de análise no teste de normalização foi o contador 2470 WIZARD Automatic Gamma Counter, o qual é formado por um cintilador de 5 poços de medição, constituído por cristais de tálio ativados com iodetos de sódio.

Imagem 01: contador gama de 5 poços.

2.1.2 Fonte

A fonte utilizada para teste é constituída por iodo-129 (I-129), o qual apresentava, na hora de sua confecção original, uma atividade nominal $A=53\,mCi$; a qual foi preparada por meio da diluição do seu conteúdo original, devido ao seu alto valor de tempo de meia vida $[t_{1/2}(I-129)=15,7\cdot 10^6 anos]$ para o teste.

2.2 Metodologia

As medições foram realizadas seguindo-se o protocolo de normalização do equipamento; ele apresenta estantes em que podem ser colocados *slots* com códigos de barras distintos, cada qual referente a um protocolo de contagem, sendo que todos os *slots* são contabilizados em todos os seus 5 poços de aquisição (iniciando-se do 5º e prosseguindo decrescentemente até o 1º poço de aquisição). O protocolo de normalização apresenta 3 *slots*:

- O primeiro sem fonte, para determinação da radiação de fundo (BKG);
- O segundo possui a fonte, a qual terá sua contagem realizada durante 3min;
- O terceiro apresenta um código de parada.

Foram realizados duas séries de contagem seguindo o protocolo de normalização descrito, a fim de verificar variações quanto às grandezas obtidas em cada um dos 5 poços de aquisição.

2.3 Medições e Cálculos

As grandezas obtidas com o protocolo de normalização podem ser subdivididas quanto à presença ou não de variação:

Invariantes - as grandezas invariantes diante o protocolo foram:

Grandeza	Valor Nominal
Counting time	180,0 s
Peak channel nominal	62,0
Decayed activity	1,0
Detector efficiency	100%
Relative error	0,19%

Tabela 01: grandezas invariantes ao protocolo de normalização

• *Variantes* – as grandezas variantes diante o protocolo, com valores médios (\bar{x}) , desvios padrões (σ) e coeficientes de variação (σ/\bar{x}) , para cada poço, foram:

Grandezas		Poço 01		ı	Poço 02			Poço 03		
Grandezas	\bar{x}	σ	σ/\bar{x}	\bar{x}	σ	σ/\bar{x}	\bar{x}	σ	σ/\bar{x}	
Peak channel	63	0,283	0,45%	62,55	0,071	0,11%	62,1	0,566	0,91%	
Peak deviation	1,65	0,004	21,43%	0,95	0,001	7,44	0,85	0,001	8,32%	
Resolution	31,8	0,001	0,44%	25,9	0	0	31,75	0,004	1,11	
Window low	19,45	0,071	0,36%	20,5	0	0	19,1	0	0	
Window high	47,05	0,212	0,45%	46,5	0	0	47,4	0	0	
Measured counts	223.927	98,288	0,04%	223.065	58,690	0,03%	223.743	274,357	0,12%	

Tabela 02.1: grandezas variantes ao protocolo de normalização

Grandezas		Poço 04		Poço 05			
Granuezas	\bar{x}	σ	σ/\bar{x}	\bar{x}	σ	σ/\bar{x}	
Peak channel	62	0	0	62	0	0	
Peak deviation	-0,3	0,001	47,14%	-0,4	0	0	
Resolution	27,95	0,001	0,25	34,8	0,004	1,22%	
Window low	20,25	0,071	0,35%	18,4	0	0	
Window high	46,55	0,071	0,15%	47,55	0,354	0,74%	
Measured counts	222.880	238,295	0,11%	226.188	326,683	0,14%	

Tabela 02.2: grandezas variantes ao protocolo de normalização

2.4 Análise dos Resultados

Assim como exposto anteriormente, as grandezas apresentam estabilidade/instabilidade quanto aos seus valores devido às configurações do equipamento:

• Invariantes:

- Counting time: o tempo de contagem não varia por ser um parâmetro determinado anteriormente à aquisição pelo operador do equipamento;
- Peak channel nominal: assim como o tempo de contagem, o canal corresponde ao pico de aquisição é escolhido anteriormente à aquisição pelo operador;

- Decayed activity: a atividade de decaimento apresenta valor nominal fixo igual a 1,0 devido ao longo tempo de meia-vida da fonte escolhida, de modo que não se consta o seu decaimento ao longo da aquisição;
- Detector efficiency: a eficiência de detecção refere-se à capacidade do equipamento de obter as contagens necessárias, estando atrelada a fatores intrínsecos do equipamento; sendo, pois, invariante ao protocolo;
- o Relative error: o erro relativo, ou o grau de incerteza de aquisição de cada poço, assim como a sua eficiência, é intrínseca ao equipamento.

Variantes:

- Peak channel: devido à janela de energia que envolve o pico máximo de obtenção da fonte, o canal correspondente à escolha nominal dele varia de acordo com as flutuações energéticas no momento da contagem;
- Peak deviation: assim como o canal de máxima contagem, a janela energética permite uma variação no desvio deste valor;
- Resolution: grandeza variante por depender da capacidade de contagem no instante de aquisição, correspondendo à menor energia perceptível das partículas emitidas pela fonte;
- Window low/high: a máxima e mínima janela de obtenção energética
 variam de acordo com a resolução de aquisição do poço em questão;
- Measured counts: como a emissão de partículas por uma fonte radioativa é um processo estatístico que segue a distribuição de Poisson, o número de aquisições a cada poço é variável.

3. Controle de Qualidade do Densitômetro Ósseo

3.1 Materiais

3.1.1 Aparelho

O aparelho utilizado para os testes foi um densitômetro ósseo da marca Horizon, localizado externamente à área de medicina nuclear, a fim de evitar a exposição dos pacientes ao âmbito da medicina nuclear, que tem uma exposição acima dos níveis permitidos às pessoas que não são Indivíduos Ocupacionalmente Expostos (IOE). O aparelho funciona por meio da emissão de dois fótons de raios X de energias distintas (100 e 140 kV), utilizadas para os cálculos promovidos pelo maquinário.

Imagem 02: densitômetro ósseo da Horizon

3.1.2 Fantôma

O fantôma utilizado para teste pertence à marca Hologic, sendo constituído por quatro regiões distintas, correspondentes às quatro vértebras lombares [L1, L2, L3 e L4], regiões mais utilizadas para exames no equipamento; a superfície do fantôma apresenta relevos modelados manualmente a fim de simular a irregularidade característica da medula óssea humana. Além disso, ele apresenta uma composição mineral de modo a simular um paciente, caracterizado pelas seguintes grandezas:

Grandeza	Valor nominal	Variância
Área	54,5 cm ²	0,47%
Composição mineral óssea (BMC)	49,3 <i>g</i>	0,76%
Densidade mineral óssea (BMD)	$0,91 \ g/cm^2$	0,33%

Tabela 03: caracterização do fantôma utilizado no densitômetro ósseo

Imagem 03: fantôma da Hologic utilizado para os testes

3.2 Metodologia

Inicialmente, foram realizadas 3 exposições com o fantôma sem a inserção de um "paciente teste", a fim de determinar a variação dos parâmetros (área, BMC e BMD) em cada região do fantôma, correspondente às 4 vértebras lombares; em seguida, foram comparados tais valores por região com o total, a partir da determinação de seus valores médios, variâncias e coeficientes de variação, analogamente ao processo realizado com o contador gama de poços.

Em seguida, foram utilizados 3 "pacientes testes" para a aquisição no fantôma, os quais são caracterizados por:

Paciente	Sexo	Cor	Altura (cm)	Massa corpórea (kg)	Idade (anos)
01	Feminino	Branca	170	70	39
02	Masculino	Preto	150	150	84
03	Masculino	Amarelo	150	50	24

Tabela 04: "pacientes teste" utilizados para o controle de qualidade

A partir destes pacientes, foram determinados os valores de BMC (para comparação com os dados do fantôma) e duas outras grandezas: o *T-score* (risco de fraturação óssea) e o *Z-score* (fator de comparação aos pertencentes ao mesmo grupo étnico), para fins de comparação entre distintas característica de cada paciente.

3.3 Medições e Cálculos

Primeiramente, sem pacientes configurados, foram determinados os seguintes valores médios (\bar{x}) , desvios padrões (σ) e coeficientes de variação (σ/\bar{x}) para cada região do fantôma e para uma perspectiva geral:

Grandeza		L1			L2			L3	
Granasza	\bar{x}	σ	σ/\bar{x}	\bar{x}	σ	σ/\bar{x}	\bar{x}	σ	σ/\bar{x}
Área (cm²)	13,30	0,225	1,69%	13,54	0,470	3,47%	14,38	0,248	1,73%
BMC (g)	10,65	0,137	0,40%	12,02	0,335	2,79%	13,29	0,219	1,65%
$BMD\;(g/cm^2)$	0,80	0,003	3,47%	0,89	0,006	0,70%	0,92	0,001	0,11%

Tabela 05.1: dados de cada região do fantôma sem pacientes

Grandeza		L4		Total		
Orana oza	\bar{x}	σ	σ/\bar{x}	\bar{x}	σ	σ/\bar{x}
Área (cm²)	13,54	0,411	3,04%	54,76	0,116	0,21%
BMC (g)	13,72	0,306	2,23%	49,68	0,050	0,10%
$BMD\ (g/cm^2)$	1,01	0,009	0,84%	0,91	0,001	0,11%

Tabela 05.2: dados de cada região do fantôma sem pacientes

Posteriormente, por meio das configurações dos pacientes anteriormente descritos, foram obtidos os mesmos parâmetros anteriores para as grandezas BMC, T-score e Z-score:

Grandeza	Paciente 01			Paciente 02			Paciente 03		
Granacza	$\bar{\chi}$	σ	σ/\bar{x}	$\bar{\chi}$	σ	σ/\bar{x}	\bar{x}	σ	σ/\bar{x}
BMC (g)	49,78	0,159	0,32%	50,18	0,239	0,48%	49,68	0,255	0,51%
T-score	-1,23	0,060	4,68%	-2,53	0,060	2,28%	-1,63	0,060	3,53%
Z-score	-1,03	0,060	5,59%	-1,13	0,060	5,09%	-1,53	0,060	3,77%

Tabela 06: dados totais no fantôma com pacientes pré-definidos

3.4 Análise dos Resultados

A partir dos dados obtidos, foram realizadas três comparações distintas:

• Total sem pacientes x Fantôma - com os dados do fantôma sem pacientes prédefinidos, foram comparados os valores de área, BMC e BMD totais com os presentes no fantôma:

- Área: o valor total de área apresenta um desvio de 0,87% com o valor previsto pelo fantôma, estando dentro de um limiar de aceitabilidade de 2% de variação;
- o BMC: o valor total de BMC apresenta um desvio de 1,79% com o valor previsto pelo fantôma, de modo a também estar dentro de um limiar de aceitabilidade de 2% de variação; tal variação é decorrente das irregularidades presentes na composição do fantôma utilizado;
- BMD: assim como os valores de área e BMC, o BMD está dentro do limiar de acessibilidade, possuindo uma variação de 1,28% em decorrência, também, da composição do fantôma;
- **BMC com pacientes x Fantôma** os valores de BMC obtidos para os "pacientes teste" apresentam uma variação pequena com o valor nominal do fantôma (0,87%; 0,18% e 0,77% respectivamente), o que era esperado, uma vez que, como o fantôma se manteve inalterado durante a aquisição, os valores de BMC deveriam coincidir com o previsto pelo material de teste;
- Entre pacientes a comparação entre os pacientes foi realizada com base dos valores dos parâmetros T-score e Z-score:
- Sexo: nota-se que os valores dos parâmetros são menores para pacientes do sexo feminino quando em comparação com os pacientes de sexo masculino, em decorrência das variações fisiológicas atreladas ao sexo;
- Raça/cor: nota-se que os valores são mais proeminentes para indivíduos de cor preta, em decorrência do fenótipo desta categoria de população; outra observação pertinente é que indivíduos de cor amarela apresentam um maior Z-score, uma vez que a variabilidade genética deles, quando em comparação com pacientes de coloração branca ou preta, é menor;
- Altura: pacientes que apresentam uma maior altura possuem parâmetros com maior valor nominal, em decorrência da maior quantia de composição óssea, atrelada ao tamanho dos ossos;
- Massa corporal: pacientes que apresentam uma maior massa possuem Tscores maiores, pois a comorbidade da obesidade está diretamente atrelada com o risco de fratura óssea;
- Idade: assim como a massa corpórea, pacientes de idade mais avançada possuem maior risco de fraturação óssea; possuindo, pois, maiores T-scores quando em comparação com pacientes mais novos.

4. Uniformidade de Fonte Pontual no SPECT-CT

4.1 Materiais

4.1.1 Equipamento

O equipamento utilizado como objeto de testes foi o Single-Photon Emission Computed Tomography (SPCT-CT) da marca Siemens, caracterizado por 2 cabeçotes de aquisição (compostos por cristais cintiladores e fotomultiplicadoras esféricas) atrelados a uma CT, a fim de realizar conformação anatômica entre a imagem de cintilação e o CT.

Imagem 04: SPECT-CT da marca Siemens

4.1.2 Fontes

As fontes utilizadas para teste foram produzidas com o radioisótopo Tc-99m, cada qual com uma atividade inicial distinta $(A_0 \ [mCi])$ e produzida em um tempo específico $(t_0 \ [h])$, como consta na tabela abaixo:

Fonte	$A_0 (\mu Ci)$	$t_{0}\left(h\right)$
01	713	19:59
02	482	20:05
03	499	20:12

Tabela 07: fontes utilizadas para o teste de uniformidade no SPECT-CT

4.2 Metodologia

Primeiramente, foram produzidas as fontes na sala quente (radiofarmácia) por meio da dissolução com uso de soro fisiológico de uma fonte de Tc-99m de atividade total nominal A = 24,6mCi, colocando-as em uma ponta de agulha. Concomitante a esse processo, foi obtida a contagem de background no equipamento, por meio do posicionamento dos cabeçotes do maquinário com uma angulação de 90º entre si.

A fim de garantir uma fonte pontual, os cabeçotes foram posicionados com angulações de 129,8º e 39,8º respectivamente e a fonte colocada a uma distância fonte-isocentro de 5x o FOV do equipamento. Assim, foram obtidas 3 imagens por fonte, cada qual com um tamanho de matriz de imagem distinta (1024 x 1024; 512 x 512 e 256 x 256), apresentando como parâmetro de parada uma contagem total de 20.000 kconts.

O objetivo deste teste é a análise do valor de uniformidade das imagens (obtida pela sequência de passos expressos na IAEA nº 06 [vide referências]) em relação à atividade da fonte no momento de aquisição e em relação ao tamanho de grade da imagem.

4.3 Medições e Cálculos

Temos que A_f , a atividade da fonte no momento de aquisição, é obtida por:

$$A_f = A_0 e^{-\frac{\log 2}{\tau_{1/2}} t}$$

onde $\tau_{1/2}=6h=360min$ é o tempo de meia-vida do radioisótopo Tc-99m, t é a diferença de tempo entre a produção da fonte e a aquisição da imagem e denotando-se $\#m\acute{a}x$ e $\#m\acute{n}n$ como os valores máximos e mínimos, respectivamente, de pixel das imagens obtidas [obtidas por meio do programa ImageJ], teremos que a uniformidade das imagens [U(%)] são:

Fonte	Grade da imagem	t(min)	$A_f(\mu Ci)$	# m ín	# m á x	U (%)
	256	23	699,42	201	243	9,46
01	512	29	695,92	199	242	9,75
	1024	33	693,59	202	243	9,21
	256	38	466,93	199	243	9,95
02	512	42	465,36	203	247	9,78
	1024	60	458,41	203	242	8,76
	256	45	480,57	202	241	8,80
03	512	49	478,97	204	245	9,13
	1024	53	477,37	200	242	9,50

Tabela 08: resultados de uniformidade para as imagens obtidas

4.4 Análise dos Resultados

A partir dos dados obtidos, pode-se realizar duas comparações distintas quanto aos valores de uniformidade percentual (também denominada de integral):

- Uniformidade x Atividade: como as grades de 512 x 512 aparentam possuir os melhores valores de uniformidade, podemos notar que as atividades para cada fonte, apresentam uma relação inversamente proporcional com a uniformidade calculada: quanto maior a atividade da fonte, menor será a uniformidade presente na imagem analisada;
- Uniformidade x Grade: tomando-se a fonte 01 como referência, nota-se a presença de um limiar de qualidade do valor de uniformidade com a grade: o valor da uniformidade integral aumenta da grade de 256 para 512, no entanto costuma ser menor para grades de 1024, de modo que a grade de 512, de acordo com os dados obtidos, é o tamanho ótimo para obtenção de valores de testes de uniformidade no equipamento.

5. Resolução e Linearidade na Gama Câmara

5.1 Materiais

5.1.1 Equipamento

O equipamento utilizado como objeto de testes foi uma gama câmara [contador de gamas] da marca Millenium, formado por dois cabeçotes (H1 e H2) constituídos por cristais cintiladores com fotomultiplicadoras quadrangulares, o que diminui a cintilação (devido a interferências de campo pelas arestas).

Imagem 05: gama câmara da marca Millenium

5.1.2 Fantôma

A fim de se determinar e analisar a resolução do equipamento, assim como a sua linearidade quanto à aquisição, foram utilizados fantômas planos de barra de chumbo, as quais delimitam faixas nas imagens produzidas, que são relacionadas com a resolução do equipamento, como expostos no IAEA nº 06 [vide referências]

5.1.3 Fonte

A fonte utilizada na aquisição das imagens é formada pelo radioisótopo Tc-99m, com atividade nominal A = 1,59mCi, diluído e produzido em t = 19:59h.

5.2 Metodologia

Primeiramente, foram obtidas as contagens de background sem os colimadores em cada cabeçote do equipamento, com o intuito de normalizar a taxa de contagens do equipamento.

Posteriormente, foram obtidas uma série de imagens: em cada cabeçote, foram obtidas duas imagens do fantôma de barras em duas posições distintas (normal e de "ponta-cabeça", ou seja, $\theta=0^{\circ}$ e $\theta=180^{\circ}$) a fim de determinar a sua resolução e linearidade; cada imagem é composta por 4 quadrantes, cada qual correspondente a uma análise distinta.

A resolução é obtida a partir da largura à meia altura (FWHM), que é calculada a partir da menor separação observável entre as grades presentes no fantôma; já a linearidade, de acordo com o IAEA nº 06, é verificada por meio da análise do perfil de intensidade de pixels em cada quadrante da imagem, que deve ser linear e uniforme.

5.3 Medições e Cálculos

Assim, por meio das imagens obtidas e consequente análise pelo programa ImageJ, sendo $L\left(mm\right)$ a menor largura observável entre barras no fantôma e R(mm) a resolução calculada, foram obtidos os seguintes resultados:

Angulação	Quadrante	L (mm)	FWHM (mm)	R(mm)	Linearidade
	1	4,23	3,72	6,51	Sim
00	2	3,18	3,23	5,65	Sim
	3	2,54	3,04	5,32	Sim
	4	2,12	2,98	5,22	Sim
	1	4,23	3,74	6,55	Sim
180°	2	3,18	3,2	5,60	Sim
100	3	2,54	3,03	5,30	Sim
	4	2,12	2,98	5,22	Sim

Tabela 09: resultados da análise do fantôma das imagens de H1

Angulação	Quadrante	L (mm)	FWHM (mm)	R (mm)	Linearidade
00	1	4,23	3,89	6,81	Sim
	2	3,18	3,22	5,64	Sim
	3	2,54	3,09	5,41	Sim
	4	2,12	2,99	5,23	Sim
	1	4,23	3,80	6,65	Sim
180°	2	3,18	3,24	5,67	Sim
100	3	2,54	3,13	5,48	Sim
	4	2,12	2,96	5,18	Sim

Tabela 10: resultados da análise do fantôma das imagens de H2

5.4 Análise dos Resultados

Os dados obtidos revelam uma resolução média para cada cabeçote de valores iguais a: $\bar{R}_{H1} \approx 5,67mm$ e $\bar{R}_{H2} \approx 5,76mm$.

Considerando-se que as imagens presentes no âmbito da medicina nuclear apresentam uma resolução espacial com limite superior de 9,5 mm, os valores obtidos são altamente satisfatórios para o equipamento; além disso, a presença de linearidade de resposta em todos os quadrantes, em ambos os cabeçotes, demonstra que o equipamento está operando no espectro de taxa de contagens esperado (20 a 25 kconts/min).

6. Referências

- a) Manual de referência do contador de poços [Link]
- **b)** Artigo: "Controle de qualidade de rotina na instrumentação clínica da medicina nuclear" [Link]
- **c)** IAEA: "Dual energy x ray absorptiometry for bone mineral density and body composition assessment" [Link]
- d) IAEA no 06: "Quality Assurance for SPECT Systems" [Link]