Symulacja nieustalonych procesów cieplnych

I Ogólny wstęp teoretyczny

Kolejnym tematem projektu z MES jest symulacja nieustalonych procesów cieplnych. Różni się od procesu stacjonarnego tym, że uwzględniany jest upływ czasu i zmiany jakie to zjawisko niesie. Przez dodanie zależności czasu równanie Fouriera wygląda następująco:

$$div(k(t) \operatorname{qrad}(t)) + Q = c \rho \frac{\partial t}{\partial T}$$

Lub gdy występują anizotropowe własności cieplne:

$$\frac{\partial}{\partial x} \left(k_x(t) \frac{\partial t}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y(t) \frac{\partial t}{\partial y} \right) + \frac{\partial}{\partial z} \left(k_z(t) \frac{\partial t}{\partial z} \right) + \left(Q - c p \frac{\partial t}{\partial T} \right) = 0$$

Można dokonać kilka założeń takich jak uznanie pochodnych temperatury w danej chwili jako funkcje współrzędnych oraz zastąpienie całego ostatniego wyrażenia parametrem Q. Wtedy rozwiązanie równania wykonuje się tak samo jak w ustalonym procesie cieplnym omawianym w poprzednim sprawozdaniu. Otrzymujemy wtedy:

Wartości temperatury w węzłach zależą od czasu. Gdy założymy, że wektor $\{t_0\}$ przedstawia dane w chwili 0 to będzie on wynosił:

$$\{t\} = \{N_0, N_i\} \left\{ \{t_0\} \right\}$$

 $\{N_0\}\{N_1\}$ to funkcje kształtu zależne od czasu

 $\{t_1\}$ temperatury węzłowe po czasie ΔT

Zakładamy, że dla małych kroków czasowych zależność temperatur od czasu jest liniowa to funkcje kształtu przyjmują wzór:

$$N_0 = \frac{\Delta T - T}{\Delta T}$$
 $N_1 = \frac{T}{\Delta T}$

Gdy dodamy zależność $\{t_0\}$ to pochodne wyglądają następująco:

$$\frac{\partial \{t\}}{\partial T} = \left\{\frac{\partial N_0}{\partial T}, \frac{\partial N_1}{\partial T}\right\} \left\{\begin{bmatrix}t_0\\t_1\end{bmatrix}\right\} = \frac{1}{\Delta T} \left\{-1, 1\right\} \left\{\begin{bmatrix}t_0\\t_1\end{bmatrix}\right\} = \frac{\{t_1\} f_0}{\Delta T}$$

Przyjęliśmy, że funkcje kształtu są liniowe to wynik jest zbieżny z wynikiem, który otrzymalibyśmy za pomocą metody różnic skończonych. Tu pojawia się kilka dróg rozwiązania układu równań za pomocą interpolacji, w zależności od chwili, w której będziemy rozpatrywać wektor $\{t\}$ i macierz [H].

1. Przyjmujemy że $\{t\} = \{t_0\}$ i wzór wygląda tak:

Otrzymaliśmy jawny schemat wyznaczania temperatury $\{t_1\}$ w czasie T:

$$d+y = d+o y - \frac{dT}{[c]} ([H]d+oy + dpy)$$

Stosowanie tego schematu jest ograniczone, ponieważ ma słabą stabilność przy różnych ΔT .

2. Przyjmujemy $\{t\} = \{t_1\}$ i wzór jest opisany następująco:

Jest to niejawny schemat wyznaczania temperatury $\{t_1\}$:

Musimy rozwiązać ten układ równań.

3. Przyjmujemy $\{t\}$ jako średnią z temperatur w chwili T=0 i $T=\Delta T:\{t\}=\frac{1}{2}(\{t_0\}+\{t_1\})$

Należy rozwiązać dany układ równań:

Drugie równanie zostaje przekształcone do postaci:

$$\left(\frac{[H]}{2} + \frac{[C]}{\Delta T}\right) \{ H \} + \left(\frac{[H]}{2} - \frac{[C]}{\Delta T}\right) \{ H \} + \{ P \}^* = 0$$

$$\left([H] + \frac{2[C]}{\Delta T}\right) \{ H \} + \left([H] - \frac{2[C]}{\Delta T}\right) \{ H \} + 2\{ P \}^* = 0$$

4. Czas można uwzględnić również przez metodę reszt ważonych. Znamy wektor temperatur węzłowych $\{t_0\}$ to aby scałkować wyrażenie

$$\frac{\partial \{t\}}{\partial T} = \left\{\frac{\partial N_0}{\partial T}, \frac{\partial N_1}{\partial T}\right\} \left\{\frac{\{t_0\}}{\{t_1\}}\right\} = \frac{1}{\Delta T} \left\{-1,1\right\} \left\{\frac{\{t_0\}}{\{t_1\}}\right\} = \frac{\{t_1\} f_0}{\Delta T}$$

względem czasu wprowadzamy jedną ważoną rezydualną $N_1=rac{T}{\Delta T}$ z zależnością:

Uzupełniając wzór o funkcje kształtu otrzymujemy:

Po obliczeniu całki i przekształceniu mamy:

Jest to układ liniowych równań, który pozwala na obliczenie temperatur węzłowych po czasie przy zadanych temperaturach w chwili T=0.

Przedstawiono tutaj cztery metody na uzyskanie temperatur węzłowych.

<u>II Wyznaczanie nieustalonego rozkładu temperatury we wsadzie o przekroju okragłym.</u> <u>Wstęp teoretyczny</u>

Będziemy analizować proces nieustalonego przewodnictwa ciepła we wsadzie o przekroju okrągłym przy założeniu, że wymiana ciepła zachodzi w sposób osiowo-symetryczny. Na powierzchni zewnętrznej zachodzi konwekcja. Wsad jest w cylindrycznym układzie współrzędnych(później nastąpi zmiana). Dla takiego przypadku funkcjonał wygląda następująco:

Proces minimalizacji funkcjonału został rozpatrzony dla jednego wybranego elementu. Temperatura wewnątrz elementów jest opisana wzorem:

 Δr krok siatki

N_iN_i funkcje kształtu

 $t_i t_i$ temperatury w węzłach elementu

Wyznaczamy pochodną temperatury po r:

Obliczono całki objętościowe funkcjonału. Aby to zrobić wyznaczono parametry całkowania:

L długość wsadu

 r_{max} promień wsadu

Obliczamy pierwszą całkę:

$$\int_{V}^{\frac{k}{2}} \left(\frac{dt}{dx}\right)^{2} dV = \int_{N_{i}}^{N_{i}} \frac{dN_{i}}{dn} t_{i} + \frac{dN_{i}}{dn} t_{j}^{2} \right)^{2} \pi n dn = \pi L \int_{N_{i}}^{N_{i}} k \left(\frac{t_{j}-t_{i}}{dn}\right)^{2} n dn = \pi L \int_{N_{i$$

Det[J] wyznacznik macierzy Jacobiego czyli Jakobian transformacji układu współrzędnych 0r do 0ξ , gdzie element ma długość 2

 ${f w}$ współczynniki wagi w punktach całkowania Gaussa r_p

Dany przypadek nie jest skomplikowany i możemy analitycznie obliczyć całkę. Jeśli problem się rozszerzy musimy użyć całkowania numerycznego.

Transformacja układu współrzędnych jest opisana wzorem:

Powyższe funkcje kształtu są zapisane w układzie lokalnym.

Wartość wyznacznika macierzy Jacobiego obliczymy ze wzoru:

$$dut[I] = dut \left[\frac{dn}{d\xi}\right] = \frac{\partial N_i}{\partial \xi} v_i + \frac{\partial N_j}{\partial \xi} v_j = \frac{v_j - v_i}{2} = \frac{\delta N_j}{2}$$

Po wprowadzeniu zależności do wzoru obliczania całki otrzymujemy:

$$\int_{V} \frac{k}{2} \left(\frac{dt}{\partial x} \right)^{2} dV = \prod_{LK} \left(\frac{t_{1} - t_{i}}{\Delta n} \right) \sum_{p=1}^{2np} \left(n_{p} w_{p} dt \right) = \prod_{LK} \frac{\times n}{2} \left(\frac{t_{1} - t_{i}}{\Delta n} \right)^{2} \sum_{p=1}^{2np} \left(n_{p} w_{p} \right)$$

W pierwszych założeniach ostatni człon równania Fouriera został zastąpiony parametrem Q. Teraz z tego skorzystamy i będziemy mogli uwzględnić niestacjonarność procesu zmiany temperatury.

Gdy to uwzględnimy, wariacyjne sformułowanie:

$$J = \int_{0}^{\frac{1}{2}} \left(\frac{dt}{dv} \right)^{2} dv - \int_{v}^{v} Qt dv + \int_{0}^{\frac{1}{2}} (t - t_{w})^{2} dS$$

będzie równoważne z równaniem Fouriera:

$$\frac{\partial}{\partial x} \left(\frac{1}{4} x(t) \frac{\partial t}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{1}{4} x(t) \frac{\partial t}{\partial y} \right) + \frac{\partial}{\partial z} \left(\frac{1}{4} x(t) \frac{\partial t}{\partial z} \right) + \left(Q - c p \frac{\partial t}{\partial T} \right) = 0$$

Otrzymujemy po uwzględnieniu wcześniejszych wyprowadzeń:

$$\int Q + dV = \int c p \frac{dt}{dt} + dV = 2\pi L c p \int_{N_i}^{N_i} \frac{dt}{dt} + n dv = \pi L c p \int_{R_i}^{N_i} \left(\frac{dt}{dt} \left(N_i + N_j + j \right) n p u p \Delta n \right)$$

Całka liczona po powierzchni zewnętrznej wynosi:

Po podstawieniu wcześniejszych wzorów do funkcjonału dla elementu e otrzymujemy:

Można zapisać też w postaci:

$$\int_{e} = k \frac{\Delta N}{2} \left(\frac{+j-+i}{\Delta N} \right)^{2} \sum_{p=1}^{np} \left(N_{p} w_{p} \right) + c p \sum_{p=1}^{np} \left(\frac{dt}{dt} \left(N_{i} t_{i} + N_{j} t_{j} \right) N_{p} w_{p} \right) + \gamma m \alpha \times d \left(\frac{+j}{t} - \frac{1}{t^{2}} \right)^{2}$$

Aby wykonać minimalizację funkcjonału korzystamy z warunku ekstremum funkcji:

Gdy zróżniczkujemy równania względem temperatury w węzłach otrzymamy:

 $t_{i0}t_{j0}$ temperatury w danym elemencie w jego węzłach w poprzedniej chwili czasu ΔT przyrost czasu

Po przekształceniu powyższego równania otrzymujemy:

Kolejne przekształcenia:

$$\frac{\partial J_{i}}{\partial t_{i}} = ti \left(\frac{k}{\Delta n} \sum_{p=1}^{np} v_{p} w_{p} + \frac{c_{p} \Delta n}{\Delta T} \sum_{p=1}^{np} N_{i}^{2} v_{p} w_{p} \right) +$$

$$+ tj \left(-\frac{k}{\Delta n} \sum_{p=1}^{np} v_{p} w_{p} + \frac{c_{p} \Delta n}{\Delta T} \sum_{p=1}^{np} N_{i} N_{j} v_{p} w_{p} \right) -$$

$$+ \frac{c_{p} \Delta n}{\Delta T} \sum_{p=1}^{np} \left(N_{i} t_{io} + N_{j} t_{jo} \right) N_{i} v_{p} w_{p} = 0$$

To samo wykonujemy dla t_i :

Otrzymane dwa równania można zapisać w formie macierzowej:

Elementy macierzy [K](lub [H]) i wektora {F}(lub {P}) obliczamy ze wzorów:

$$k_{11} = \frac{k}{\Delta N} \sum_{p=1}^{np} n_p w_p + \frac{c_{p\Delta N}}{\Delta T} \sum_{p=1}^{np} N_1^2 n_p w_p$$

$$k_{12} = -\frac{k}{\Delta N} \sum_{p=1}^{np} n_p w_p + \frac{c_{p\Delta N}}{\Delta T} \sum_{p=1}^{np} N_1^2 n_p w_p$$

$$k_{21} = -\frac{k}{\Delta N} \sum_{p=1}^{np} n_p w_p + \frac{c_{p\Delta N}}{\Delta T} \sum_{p=1}^{np} N_1^2 n_p w_p$$

$$k_{22} = \frac{k}{\Delta N} \sum_{p=1}^{np} n_p w_p + \frac{c_{p\Delta N}}{\Delta T} \sum_{p=1}^{np} N_1^2 n_p w_p + 2d n_m \alpha \lambda$$

$$F_1 = -\frac{c_{p\Delta N}}{\Delta T} \sum_{p=1}^{np} \left(N_1 t_{10} + N_1 t_{10}\right) N_1^2 n_p w_p$$

$$F_2 = -\frac{c_{p\Delta N}}{\Delta T} \sum_{p=1}^{np} \left(N_1 t_{10} + N_1 t_{10}\right) N_1^2 n_p w_p - 2d n_m \alpha \lambda t_{no}$$

Aby otrzymać układ równań dla całego obszaru dodajemy odpowiednie elementy z macierzy lokalnej każdego elementu do siebie.

Drugie rozwiązanie, które opiera się o rozwiązanie ogólne.

Dla dowolnego elementu wcześniej wyprowadzone wzory możemy zapisać tak razem z analogicznymi zależnościami:

Całkujemy numerycznie po r:

Wektor funkcji kształtu zapisujemy następująco:

$$[N] = \begin{pmatrix} N_i \\ N_j \end{pmatrix} = \begin{pmatrix} \frac{N_j - N_j}{\Delta N_j} \\ \frac{N_j - N_j}{\Delta N_j} \end{pmatrix}$$

$$\begin{cases} N_j \\ N_j \end{cases} = \begin{pmatrix} \frac{N_j - N_j}{\Delta N_j} \\ \frac{N_j - N_j}{\Delta N_j} \end{pmatrix}$$

Macierz pochodnych funkcji kształtu wyrażamy przez wzór:

$$\left\{\frac{\partial \left(N\right)}{\partial N}\right\} = \left\{\frac{1}{\Delta N}\right\} \qquad \left\{\frac{\partial \left(N\right)}{\partial N}\right\}^{T} = \left\{-\frac{1}{\Delta N}\right\} \frac{1}{\Delta N}\right\}$$

Zapisujemy macierz [C] i [H] i [P] według wcześniejszych wzorów:

Otrzymane wzory wstawiamy do równania na niejawny schemat wyznaczania temperatury:

Po uproszczeniu:

$$\left(\frac{k}{\Delta n} \begin{bmatrix} 1 & -1 \end{bmatrix} \sum_{p=1}^{n} (npwp) + 2d \begin{bmatrix} 0 & 0 \end{bmatrix} n_{max} + \frac{p(\Delta n)}{\Delta T} \sum_{p=1}^{n} (npwp \begin{bmatrix} N_i N_i & N_i N_j \\ N_i N_j & N_j N_j \end{bmatrix}) \right) \left(\frac{p(\Delta n)}{\Delta T} p(\Delta n) \sum_{p=1}^{n} (npwp \begin{bmatrix} N_i N_i & N_i N_j \\ N_i N_j & N_j N_j \end{bmatrix}) \right) \left(\frac{p(\Delta n)}{\Delta T} p(\Delta n) \sum_{p=1}^{n} (npwp \begin{bmatrix} N_i N_i & N_i N_j \\ N_i N_j & N_j N_j \end{bmatrix}) \right) \left(\frac{p(\Delta n)}{\Delta T} p(\Delta n) \sum_{p=1}^{n} (npwp \begin{bmatrix} N_i N_i & N_i N_j \\ N_i N_j & N_j N_j \end{bmatrix}) \right) \left(\frac{p(\Delta n)}{\Delta T} p(\Delta n) \sum_{p=1}^{n} (npwp \begin{bmatrix} N_i N_i & N_i N_j \\ N_i N_j & N_j N_j \end{bmatrix}) \right) \left(\frac{p(\Delta n)}{\Delta T} p(\Delta n) \sum_{p=1}^{n} (npwp \begin{bmatrix} N_i N_i & N_i N_j \\ N_i N_j & N_j N_j \end{bmatrix}) \right) \left(\frac{p(\Delta n)}{\Delta T} p(\Delta n) \sum_{p=1}^{n} (npwp \begin{bmatrix} N_i N_i & N_i N_j \\ N_i N_j & N_j N_j \end{bmatrix}) \right) \left(\frac{p(\Delta n)}{\Delta T} p(\Delta n) \sum_{p=1}^{n} (npwp \begin{bmatrix} N_i N_i & N_i N_j \\ N_i N_j & N_j N_j \end{bmatrix}) \right) \left(\frac{p(\Delta n)}{\Delta T} p(\Delta n) \sum_{p=1}^{n} (npwp \begin{bmatrix} N_i N_i & N_i N_j \\ N_i N_j & N_j N_j \end{bmatrix}) \right) \left(\frac{p(\Delta n)}{\Delta T} p(\Delta n) \sum_{p=1}^{n} (npwp \begin{bmatrix} N_i N_i & N_i N_j \\ N_i N_j & N_j N_j \end{bmatrix}) \right) \left(\frac{p(\Delta n)}{\Delta T} p(\Delta n) \sum_{p=1}^{n} (npwp \begin{bmatrix} N_i N_i & N_i N_j \\ N_i N_j & N_j N_j \end{bmatrix}) \right) \left(\frac{p(\Delta n)}{\Delta T} p(\Delta n) \sum_{p=1}^{n} (npwp \begin{bmatrix} N_i N_i & N_i N_j \\ N_i N_j & N_j N_j \end{bmatrix}) \right) \left(\frac{p(\Delta n)}{\Delta T} p(\Delta n) \sum_{p=1}^{n} (npwp \begin{bmatrix} N_i N_i & N_i N_j \\ N_i N_j & N_j N_j \end{bmatrix}) \right) \left(\frac{p(\Delta n)}{\Delta T} p(\Delta n) \sum_{p=1}^{n} (npwp \begin{bmatrix} N_i N_i & N_i N_j \\ N_i N_j & N_j N_j \end{bmatrix}) \right) \left(\frac{p(\Delta n)}{\Delta T} p(\Delta n) \sum_{p=1}^{n} (npwp \begin{bmatrix} N_i N_i & N_i N_j \\ N_i N_j & N_j N_j \end{bmatrix}) \right) \left(\frac{p(\Delta n)}{\Delta T} p(\Delta n) \sum_{p=1}^{n} (npwp \begin{bmatrix} N_i N_i & N_i N_j \\ N_i N_j & N_j N_j \end{bmatrix}) \right) \left(\frac{p(\Delta n)}{\Delta T} p(\Delta n) \sum_{p=1}^{n} (npwp \begin{bmatrix} N_i N_i & N_i N_j \\ N_i N_j & N_i N_j \end{bmatrix} \right) \right) \left(\frac{p(\Delta n)}{\Delta T} p(\Delta n) \sum_{p=1}^{n} (npwp \begin{bmatrix} N_i N_i & N_i N_j \\ N_i N_j & N_i N_j \end{bmatrix} \right) \right) \left(\frac{p(\Delta n)}{\Delta T} p(\Delta n) \sum_{p=1}^{n} (npwp \begin{bmatrix} N_i N_i & N_i N_j \\ N_i N_j & N_i N_j \end{bmatrix} \right) \right) \left(\frac{p(\Delta n)}{\Delta T} p(\Delta n) \sum_{p=1}^{n} (npwp \begin{bmatrix} N_i N_i & N_i N_j \\ N_i N_j & N_i N_j \end{bmatrix} \right) \right) \left(\frac{p(\Delta n)}{\Delta T} p(\Delta n) \sum_{p=1}^{n} (npwp \begin{bmatrix} N_i N_i & N_i N_j \\ N_i N_j & N_i N_j \end{bmatrix} \right) \right) \left(\frac{p(\Delta n)}{\Delta T} p(\Delta n) \sum_{p=1}^{n} (npwp \begin{bmatrix} N_i N_i & N_i \\ N_i N_j & N_i \end{bmatrix} \right) \right) \left(\frac{p(\Delta n)}{\Delta T} p(\Delta n$$

Powyższy wzór możemy zapisać jako:

Składowe macierzy i wektora wyliczamy ze wzoru:

III Własne zagadnienie

Jako własne zagadnienie będę badać rozkład temperatury w doniczkach z różnych mniej lub bardziej popularnych materiałów. Rośliny potrzebują odpowiedniej temperatury, aby nie uległy uszkodzeniu, więc doniczki powinny zapewniać pewną ochronę przed ujemnymi temperaturami otoczenia. Doniczkę wynosimy z pomieszczenia o temperaturze 293K na zewnątrz, gdzie panuje temperatura 253K. Zostawiamy na około 5 i pół godziny.

Dane stałe:

Minimalny promień	0m	
Maksymalny promień	0.08m	
Współczynnik konwekcyjnej wymiany ciepła	$7\frac{W}{m^2K}$	
Temperatura początkowa	293K	
Temperatura otoczenia	253K	
Czas procesu	~5,5h	

Dane materiałów:

Nazwa	Współczynnik przewodzenia $rac{W}{mK}$	Gęstość $rac{kg}{m^4}$	Efektywne ciepło właściwe $\frac{J}{kgK}$
Drewno dąb	0.4	800	2510
Szkło mozaika szklana	1.2	2000	840
Tworzywo sztuczne	0.2	1000	250
Marmur	3.5	2800	920
Kamień sztuczny	1.3	1750	1000
Ceramika	1.0	2000	800
Glina	0.85	1800	840
Gleba	0.9	1800	1200

Węzły będą się znajdować co 2cm. Będziemy mogli zobaczyć jak zmienia się temperatura na powierzchni doniczki i w głąb gleby. $_{0.08m}$

Wyniki I	\longrightarrow
v v y i i i i i i	

	Ziemia				Doniczka
Nazwa	t1	t2	t3	t4	t5
Drewno dąb	259,86	259,71	259,40	258,90	257,45
Szkło mozaika szklana	262,70	262,46	261,90	261,05	260,26
Tworzywo sztuczne	263,84	263,59	263,04	262,17	258,16
Marmur	264,25	263,99	263,42	262,63	262,21
Kamień sztuczny	262,80	262,55	262,00	261,15	260,40
Ceramika	262,72	262,48	261,93	261,07	260,13
Glina	262,73	262,48	261,93	261,08	259,98

IV Wnioski I

Zbadaliśmy siedem rodzajów materiałów, z których można stworzyć doniczkę. Na wykresie możemy zauważyć 4 elementy, które warto omówić. Pierwsza z nich to doniczka marmurowa, która utrzymała najwyższą temperaturę wewnątrz oraz sama nie przejęła w tak dużym stopniu jak pozostałe temperaturę otoczenia. 264K to najwyższa temperatura, którą udało się uzyskać, ale to nadal ujemna. Kolejnym punktem jest doniczka z tworzywa sztucznego. Wyraźnie widać skok na wykresie w miejscu przejścia z doniczki do ziemi. To tworzywo przejęło niską temperaturę 256K bliską temperaturze otoczenia-253K. Chłód nie przeszedł dalej i w rdzeniu jest temperatura 263K. Jest to drugi wynik w najwyższych temperaturach. Doniczki marmurowe i z tworzywa sztucznego są dobrym pomysłem dla ogrodników. Ze względu na cenę marmuru i jego wagę wygodniejsze są doniczki plastikowe, które są najczęściej spotykane

i używane. Teraz kolej na omówienie grupy kilku materiałów z prawie takimi samymi wynikami. Szkło, sztuczny kamień, ceramika i glina uzyskały wewnątrz doniczki temperaturę 263K, a na powierzchni 260K. Temperatura łagodnie spada w kierunku środka. Nie jest to najlepszy wynik, ale można uznać za zadawalający w porównaniu do następnego materiału. Najgorzej wypadła drewniana doniczka. Doniczka miała temperaturę 257K a wnętrze 259K. Ten materiał nie nadaje się na doniczkę, którą chcemy trzymać w ogródku przez cały rok. Lepiej wybrać doniczkę z tworzywa sztucznego lub marmuru. Drewniana doniczka może przebywać na zewnątrz latem.

Spróbujmy dodać izolację do doniczek. Wykorzystanym materiałem będzie płyta z trzciny.

Nazwa	Współczynnik przewodzenia ciepła $\frac{W}{mK}$	Gęstość $rac{kg}{m^4}$	Efektywne ciepło właściwe $\frac{J}{kgK}$
Płyta z trzciny	0.07	250	1460

0.08m

Wyniki II

	Ziemia			Izolacja	Doniczka
Nazwa	t1	t2	t3	t4	t5
Drewno dąb	270,84	270,52	269,80	259,76	258,07
Szkło mozaika szklana	268,57	268,26	267,57	257,92	257,42
Tworzywo sztuczne	267,31	267,05	266,46	258,14	255,89
Marmur	270,45	270,13	269,39	259,14	258,93
Kamień sztuczny	268,70	268,39	267,70	257,99	257,52
Ceramika	268,48	268,18	267,49	257,91	257,31
Glina	270,16	269,84	269,12	259,04	258,24

V Wnioski II

Gdy zastosujemy izolację wszystkie materiały zachowują się podobnie- temperatura wewnątrz doniczki wzrosła. Zastosowanie płyty z trzciny spowodowało, że doniczka może być wykonana z każdego materiału. Drewno, które wypadło najgorzej teraz jest najlepszym materiałem w połączeniu z izolacją. Wewnątrz panuje temperatura 270K czyli niewiele poniżej 0°C. W takim układzie jest to idealna doniczka do ogrodu. Marmur utrzymał swoje drugie miejsce, natomiast tworzywo sztuczne z izolacją nie dało dużej zmiany wartości temperatury. Widać, że wystarczające jest użycie samego tworzywa. Glina uzyskała podobne wartości jak marmur, a wcześniej była w grupie materiałów, które można używać, ale są lepsze zamienniki. Kamień sztuczny i ceramika zwiększyły temperaturę wewnątrz o 7K. Na wykresach porównano temperatury poszczególnych materiałów z i bez izolacji. W każdym przypadku widać wzrost temperatury wewnątrz.

Porównanie wyników

VI Wnioski- podsumowanie

Sprawdzono dwa warianty doniczek- z i bez izolacji. W kategorii bez izolacji najlepszym materiałem na doniczki, które znajdują się w temperaturze poniżej zera, jest marmur. Z spadkiem o 1K drugim materiałem jest tworzywo sztuczne. Utrzymały one najwyższą temperaturę w rdzeniu. Jednak te wyniki były niewystarczające i zbadano co się stanie gdy dodamy warstwę izolacji. Wyniki były zaskakujące i drewniana doniczka stała się najlepszą. W środku była temperatura bliska 0°C. Doniczka z tworzywa sztucznego nie wykazała dużych zmian jak inne. Można stwierdzić, że jest to dobry materiał na doniczkę bez korzystania z kolejnych warstw izolacji. Być może dlatego plastikowe doniczki są najpopularniejsze.

VII Program

```
#include <iostream>
#include <cstdlib>
using namespace std;
struct wezel
       double r0; //wspolrzedna
       int stan; //0 brak, lub tylko 2 koniec
       int ID; //indeks elementu w siatce
       int waga; //waga wezla =1
};
struct element
       double k; //wspolczynnik
       double alfa; //warunek 2
       double tot; //temperatura otoczenia
       double c; //cieplo wlasciwe
       double deltar; //skok r
       double rmax; //maksymalny promien
       double ro; //gestosc
       double deltatau;
       double temperaturapoczatkowa1;
       double temperaturapoczatkowa2;
       wezel wezly[2]; //wezly dwa
       double H[2][2]; //macierz pojemnosci cieplnej
       double P[2]; // macierz obciazen
       void oblicz macierze lokalne()
       {
              //macierz H
              for (int i = 0; i < 2; i++)
              for (int j = 0; j < 2; j++)
                    H[i][j] = 0;
              double ksi = 0.5573;
              //funkcje ksztaltu
              double Ni[2];
              double Nj[2];
              Ni[0] = 0.5*(1 - ksi);
              Ni[1] = 0.5*(1 - (-ksi));
              Nj[0] = 0.5*(1 + ksi);
              Nj[1] = 0.5*(1 + (-ksi));
              //r
              double r[2];
              r[0] = (Ni[0] * wezly[0].r0) + (Nj[0] * wezly[1].r0);
              r[1] = (Ni[1] * wezly[0].r0) + (Nj[1] * wezly[1].r0);
```

```
H[0][0] = ((k / deltar)*((r[0] * wezly[0].waga) + (r[1] *
wezly[1].waga))) + ((c*ro*deltar) / deltatau)*((Ni[0] * Ni[0] * r[0] * wezly[0].waga)
+ (Ni[1] * Ni[1] * r[1] * wezly[1].waga));
             H[0][1] = ((-(k / deltar))*((r[0] * wezly[0].waga) + (r[1] *
wezly[1].waga))) + ((c*ro*deltar) / deltatau)*((Ni[0] * Nj[0] * r[0] * wezly[0].waga)
+ (Ni[1] * Nj[1] * r[1] * wezly[1].waga));
             H[1][0] = ((-(k / deltar))*((r[0] * wezly[0].waga) + (r[1] *
wezly[1].waga))) + ((c*ro*deltar) / deltatau)*((Ni[0] * Nj[0] * r[0] * wezly[0].waga)
+ (Ni[1] * Nj[1] * r[1] * wezly[1].waga));
             if( wezly[1].stan==2)
             H[1][1] = ((k / deltar)*((r[0] * wezly[0].waga) + (r[1] *
wezly[1].waga))) + ((c*ro*deltar) / deltatau)*((Nj[0] * Nj[0] * r[0] * wezly[0].waga)
+ (Nj[1] * Nj[1] * r[1] * wezly[1].waga))+2*alfa*rmax;
             else
             H[1][1] = ((k / deltar)*((r[0] * wezly[0].waga) + (r[1] *
wezly[1].waga))) + ((c*ro*deltar) / deltatau)*((Nj[0] * Nj[0] * r[0] * wezly[0].waga)
+ (Nj[1] * Nj[1] * r[1] * wezly[1].waga));
             //macierz P
             for (int i = 0; i < 2; i++)
                    P[i] = 0;
             Nj[0] * temperaturapoczatkowa2)*Ni[0] * r[0] * wezly[0].waga) + ((Ni[1] *
temperaturapoczatkowa1 + Nj[1] * temperaturapoczatkowa2)*Ni[1] * r[1] *
wezly[1].waga));
             if (wezly[1].stan == 2)
                    P[1] = ((-(c*ro*deltar)) / deltatau)*((Ni[0])
*temperaturapoczatkowa1 + Nj[0] *temperaturapoczatkowa2)*Nj[0] * r[0] * wezly[0].waga)
+ ((Ni[1] *temperaturapoczatkowa1 + Nj[1] * temperaturapoczatkowa2)*Nj[1] * r[1] *
wezly[1].waga)) - 2 * alfa*rmax*tot;
             else
                    P[1] = ((-(c*ro*deltar)) / deltatau)*(((Ni[0]))
*temperaturapoczatkowa1 + Nj[0] *temperaturapoczatkowa2)*Nj[0] * r[0] * wezly[0].waga)
+ ((Ni[1] * temperaturapoczatkowa1 + Nj[1] *temperaturapoczatkowa2)*Nj[1] * r[1] *
wezly[1].waga));
       }
};
struct siatka
{
      int ne; //liczba elementow
      int nh; //liczba wierzcholkow
      double **GH; //globalna
      double *GP;
      double *Gt; //wynik
      element *elementy;
      void stworz macierze()
      {
             //macierz GH
             GH = new double*[nh];
             for (int i = 0; i < nh; i++)</pre>
             {
                    GH[i] = new double[nh];
             }
```

```
for (int i = 0; i < nh; i++)</pre>
                      for (int j = 0; j < nh; j++)
                             GH[i][j] = 0;
                      }
              }
              //macierz GP Gt
              GP = new double[nh];
              Gt = new double[nh];
              for (int i = 0; i < nh; i++)</pre>
              {
                      GP[i] = 0;
                      Gt[i] = 0;
              }
              //sumowanie macierz
              //GH
              for (int i = 0; i < ne; i++)</pre>
              {//ustalanie miejsca w duzej macierzy
                      GH[elementy[i].wezly[0].ID - 1][elementy[i].wezly[0].ID - 1] +=
elementy[i].H[0][0];
                      GH[elementy[i].wezly[1].ID - 1][elementy[i].wezly[1].ID - 1] +=
elementy[i].H[1][1];
                      GH[elementy[i].wezly[1].ID - 1][elementy[i].wezly[0].ID - 1] +=
elementy[i].H[1][0];
                      GH[elementy[i].wezly[0].ID - 1][elementy[i].wezly[1].ID - 1] +=
elementy[i].H[0][1];
              }
              //GP
              for (int i = 0; i < ne; i++)</pre>
              {
                      GP[elementy[i].wezly[0].ID - 1] += elementy[i].P[0];
                      GP[elementy[i].wezly[1].ID - 1] += elementy[i].P[1];
              }
              cout.precision(15);
              cout << "Macierz GH" << endl;</pre>
       //
              for (int i = 0; i < nh; i++)</pre>
                      for (int j = 0; j < nh; j++)
                      {
                             cout << GH[i][j] << " ";
              //
              //
                      cout << endl;</pre>
              }
              cout << endl;</pre>
              cout << "Macierz GP" << endl;</pre>
       //
       //
              for (int i = 0; i < nh; i++)
       //
       //
              cout << GP[i] << " ";
                      cout << endl;</pre>
              //
       //
              }
              cout << endl;</pre>
       }
       void gauss()
```

```
for (int i = 0; i < nh - 1; i++)</pre>
              for (int j = i + 1; j < nh; j++)</pre>
                      double q = -GH[j][i] / GH[i][i];
                      for (int k = i; k <= nh; k++)</pre>
                             GH[j][k] += q* GH[i][k];
                      GP[j] += q*GP[i];
              }
       }
       Gt[nh] = GP[nh - 1] / GH[nh - 1][nh - 1];
       for (int i = nh - 1; i >= 0; i--)
              double pom = 0;
              for (int j = i + 1; j<nh; j++)</pre>
                      pom += GH[i][j] * Gt[j];
              Gt[i] = (GP[i] - pom) / GH[i][i];
       for (int i = 0; i < nh; i++)</pre>
       {
              Gt[i] *= -1;
       }
       cout << "Macierz Gt" << endl;</pre>
       for (int i = 0; i < nh; i++)</pre>
              cout << "Gt " << i + 1 << " = " << Gt[i] << endl;</pre>
       }
}
};
int main()
       wezel * listawezlow = new wezel[5];
for (int i = 0; i < 5; i++)
       listawezlow[i].r0 = 0.02*i;
       listawezlow[i].stan = 0;
       listawezlow[i].ID = i+1;
       listawezlow[i].waga = 1;
listawezlow[4].stan = 2;
element *listaelementow = new element[4];
for (int i = 0; i < 4; i++)
```

```
listaelementow[i].wezly[0] = listawezlow[i];
              listaelementow[i].wezly[1] = listawezlow[i+1];
              listaelementow[i].rmax = 0.08;
              listaelementow[i].deltar = 0.02;
              listaelementow[i].alfa = 7;
              listaelementow[i].deltatau = 50;
              listaelementow[i].tot = 253;
              listaelementow[i].temperaturapoczatkowa1 = 293;
              listaelementow[i].temperaturapoczatkowa2 = 293;
       }
       //ziemia
      for (int i = 0; i < 2; i++)
              listaelementow[i].ro = 1800;
              listaelementow[i].c = 1200;
              listaelementow[i].k = 0.9;
       }
       //izolacja
      listaelementow[2].ro = 250;
       listaelementow[2].c = 1460;
      listaelementow[2].k = 0.07;
       //doniczka
       listaelementow[3].ro = 1800;
       listaelementow[3].c = 1200;
      listaelementow[3].k = 0.85;
       for (int i = 0; i < 4; i++)
       listaelementow[i].oblicz_macierze_lokalne();
       siatka Siatka;
      Siatka.ne = 4;
      Siatka.nh = 5;
       Siatka.elementy = listaelementow;
       Siatka.stworz macierze();
      Siatka.gauss();
       for (int j = 0; j < 400; j++)
              for (int i = 0; i < 4; i++)
                    Siatka.elementy[i].temperaturapoczatkowa1 =
Siatka.Gt[Siatka.elementy[i].wezly[0].ID - 1];
                    Siatka.elementy[i].temperaturapoczatkowa2 =
Siatka.Gt[Siatka.elementy[i].wezly[1].ID - 1];
                    Siatka.elementy[i].oblicz_macierze_lokalne();
              }
              Siatka.stworz_macierze();
              Siatka.gauss();
       }
              system("PAUSE");
              return 0;
       }
```

VIII Załączniki

Tablice z danymi do programu.