

Кто владеет информацией – тот владеет миром
У. Черчилль

Эконометрика

Что такое эконометрика?

Математика в эконометрике

- □ Теория вероятностей
- Математическая статистика
- □ Линейная алгебра
- □ Оптимизация

□ Вероятностная модель

Что такое эконометрика?

Это набор специальных математических методов, основанных на теории вероятности и математической статистике, позволяющих

- верифицировать (или фальсифицировать) различные теоретические предположения об экономических явлениях,
- проверять гипотезы о причинной связи экономических показателей,
- □ строить прогнозы ключевых показателей
- и на основании всего этого выдавать ценные рекомендации по экономической политике, например,
 - как снизить инфляцию,
 - как искоренить безработицу и при этом повысить производительность труда,
 - какими мерами следует поддерживать малый бизнес
 - как и куда инвестировать средства и т.д.

Области приложения эконометрики

Макроэконометрика

основана на анализе временных рядов агрегированных экономических показателей

- Модели международной торговли
- Модели экономического роста
- Анализ и прогноз безработицы и инфляции
- Макроэкономическая структурная модель с рациональными ожиданиями
- Исследование связи экономического роста и неравенства
- Оценка влияния развитости финансового сектора страны на экономический рост
- Анализ длинных волн в экономике

Области приложения эконометрики

Микроэконометрика

Основана на анализе микроданных об индивидах, домохозяйствах, фирмах

- Моделирование поведения потребителей.
 - Анализ структуры расходов на продукты питания
 - □ Прогнозирование спроса на электроэнергию в домохлзяйствах
- Маркетинг
 - □ Реклама и объем продаж
 - □ Построение гедонистических ценовых индексов
- Экономика труда
 - □ Оценивание отдачи от образования
 - □ Измерение дискриминации в оплате труда
- Экономика общественного сектора
 - □ Анализ последствий пенсионной реформы
- Экономика предприятий
 - □ Оценивание производственной функции
 - Объяснение и прогнозирование совокупных инвестиционных расходов.

Преимущества вероятностных (эконометрических) моделей

- Удобство вероятно-статистического подхода для рационального обоснования идей экономической теории, описывающей процессы в рыночной экономике
- Учет особенностей экономических закономерностей, которые не поддаются строгой формулировки так, как законы естествознания
 - в экономике нет мировых констант
 даже зная, что спрос на некое благо (например, кредит)
 линейно падает с ростом цены (ставки %), нельзя указать
 универсальной скорости этого падения: она зависит от места и
 времени и вообще от многого другого.

Преимущества вероятностных (эконометрических) моделей

Детерминистские модели не успевают реагировать своевременными рекомендациями и прогнозами на:

- 1. Усложнение экономической, политической и социальной реальности
- 2. Увеличение разнообразия и неоднородности экономических агентов, процессов и продуктов
- **Ускорение** событий (уменьшение времени между принятием решения и его воплощением)

Усложнение

Разнообразие

потребностей, ценностей, стилей жизни ведет к росту многообразия и усложнению

- □ продукции и сервиса
- профессий и форм занятости
- □ стилей управления
- □ функций и целей экономических агентов
- □ понятий эффективности

Признаки ускорения экономики

- укорачивается жизнь продуктов
- чаще совершаются покупки и продажи
- 🔲 постоянно меняются цены
- недолговечны и изменчивы формы потребления
- быстро меняются контракты, много переговоров и юридической работы
- □ больший оборот труда
- частое переобучение работников (для непрерывного приспособления к новым процедурам)
- □ усиление информационной зависимости

Преимущества эконометрических моделей

- Гибкость
- □ Возможность экспресс-анализа
- Огромное разнообразие запрограммированных методов
- Удобная среда специализированных пакетов эконометрического анализа

Залог успеха применения эконометрики

Успех зависит от ответа на четыре ключевых вопроса:

- Какую зависимость выбрать для исследования?
- □ Каково качество данных?
- Как правильно провести предварительную подготовку данных и выбрать адекватный метод анализа зависимости?
- □ Какие гипотезы интересно проверить?

Постановка задачи

- Внятная, интересная и осуществимая постановка задачи является залогом успешного анализа.
- Хороший эконометрист не будет тратить время на решение плохо поставленной или безнадежной задачи.
- Интерес представляет и просто изучение описательных статистик, однако исследователи социально-экономических явлений, как правило, хотят знать, что есть причина, а что следствие.
- Знание причинно-следственной связи необходимо для предсказания результатов в новых обстоятельствах или при новой политике.
- Это знание позволяет нам понять, каков может быть альтернативный мир.

Выбор зависимости

Пример набора показателей для стратегического анализа деятельности предприятия (Айвазян С.А., Мхитарян В.С.)

Результат (У) Состояние (Х Поведение (Х)

(полностью или частично управляемые показатели) Внешняя среда (Х)

(геополитические социо-экономические демографические факторы)

<u>Показатели состояния</u>

- Юридическая форма фирмы
- Направление деятельности
- Возраст фирмы
- Число работников
- Основные фонды
- Занимаемая площадь (качество и количество)
- Уровень технической и информационной обеспеченности
- Уровень квалификации сотрудников
- Моральный климат (экспертная оценка)

Факторы внешней среды

- Макро- характеристики общей экономической ситуации
- Характеристики конкурентной среды (число и рейтинг подобных фирм)
- Социо-демографические и экономические характеристики клиентов
- Характеристики фактических и потенциальных поставщиков
- Инвестиционная привлекательность данного направления деятельности в регионе

Поведение (управляемые факторы)

- Инвестиции в развитие основных фондов (в долях от оборота)
- Инвестиции в службы маркетинга (в долях от оборота)
- Доля оборота, приходящаяся на самого крупного заказчика
- Доля поставок, приходящаяся на самого крупного поставщика
- Характеристики системы материального стимулирования сотрудников
- Характеристики участия в спонсорской и благотворительной деятельности

Результирующие показатели

- Объем продаж
- Оборот
- Прибыль
- Соотношение быстрых активов и текущих пассивов
- Соотношение прибыли и процентных ставок
- Задержки платежей
- Другие конфликтные ситуации
- Репутация фирмы (Googwill) (экспертная оценка)

Популярные показатели для анализа фондового рынка США

(по данным опросов Merril Lynch)

- □ Показатели, влияющие на выбор акции
 - Неожиданная прибыль на акцию
 - Рентабельность акционерного капитала
 - Соотношение «цена/денежные потоки»
 - Предполагаемый рост прибылей за 5 лет
 - Коэффициент «долг/акционерный капитал.
 - Коэффициент «рыночная цена/балансовая стоимость»
 - Коэффициент «цена/объем продаж»
 - Величина бэта
 - Размер компании
 - Чувствительность к изменению ставки %

Популярные показатели для анализа фондового рынка США

(по данным опросов Merril Lynch)

- □ Показатели, влияющие на цену акции
 - Цена барреля нефти
 - Курс доллара
 - Значение индекса S&P500
 - Доходность по американским

3-х месячным казначейским векселям

- Лаговая цена
- Календарные эффекты
- Эффект конца недели
- Волатильность цены

Некоторые показатели макроструктурной модели экономики России

(Вржещ В.П., Жукова А.А., Пильник Н.П., Поспелов И.Г., ВЦ РАН)

- Суммарные кредиты экономических агентов
- Суммарные депозиты экономических агентов
- □ Обязательные резервы ЦБ
- ВВП в текущих и базовых ценах
- □ Агрегированное потребление домохозяйств
- □ Агрегированные доходы от заработной платы д/х
- □ Государственные расходы
- □ Экспорт и импорт
- □ Агрегированные инвестиции
- □ Объем эффективных основных фондов

Источники статистических данных в экономике и бизнесе

🔲 Первичные –

данные финансовой отчетности предприятий, данные о биржевых торгах, специальные выборочные обследования, опросы потенциальных клиентов

□ Вторичные –

публично доступные данные, собранные вне конкретной связи с задачей аналитика (данные Росстата, Банка России, Мирового банка, РМЭЗ, агентства «Эксперт», Блумберга и т.п.)

Типы данных

□ Пространственные или пообъектные выборки:

набор показателей, характеризующих некоторое множество объектов в конкретные моменты времени (cross-section)

🛘 Временные ряды

набор показателей, характеризующий динамику поведения одного конкретного объекта во времени (time series)

□ Панельные данные

пространственные выборки, прослеживаемые во времени (panel data)

Экспериментальные данные

Что такое идеальный эксперимент?

- □ Пример: измерение эффекта образования: идеально было бы проследить дальнейшую судьбу выборки бывших студентов, часть из которых успешно завершила образование, а часть была отчислена. Причем и сама выборка и обе ее части – результат случайного отбора.
- □ Пример: измерение эффекта обретения страной независимости:

идеально иметь информацию о структурах государственной власти в период до и после обретения независимости.

Наблюдаемые данные

- □ Идеальный эксперимент затруднителен в реальной жизни
 - по причине бюджетных ограничений исследователя,
 - по причине принципиальной недоступности некоторых важных показателей.

(конфиденциальность данных о социально незащищенных слоях населения, закрытая отраслевая статистика)

- □ На практике результат генерируют из
 - скромных бюджетных ограничений и
 - не экспериментальных опросов.

Конструировать идеальный эксперимент все же полезно, чтобы понять, в чем ограниченность данных и как ее можно компенсировать

О возможности идеального эксперимента

Существуют вопросы, на которые нельзя получить ответ даже в идеальном эксперименте — фундаментально неидентифицируемые параметры

□ Пример: влияние пола (национальности) работника на его зарплату или пола руководителя на прибыль компании

Вы не можете в ходе эксперимента поменять пол, чтобы понять его эффект при прочих равных.

Однако исследователи рынка труда все время интересуются расовой или гендерной дискриминацией, полагая при этом, что человек может быть одновременно и белым, и черным, и мужчиной, и женщиной.

О возможности идеального эксперимента

Фундаментально неидентифицируемые параметры

□ Пример: исследование зависимости успеваемости детей в начальной школе от возраста поступления в школу.

Тестируются все 7-летние дети. Интересующий эффект невозможно отделить от влияния адаптированности к школе: даже если 6-летние дети психологически не были готовы к занятиям в школе, то к 7-ми годам у них происходит адаптация, а у психологически зрелых только что поступивших в школу 7-ми леток такой адаптации еще не произошло.

□ Пример: исследование эффекта санкций и контрсанкций на доходы и расходы потребителей.

Неясно, как разделить шоки от санкций, падения цен на нефть и девальвации рубля в 2014 году

Выбор стратегии идентификации

Стратегия идентификации — это средства, с помощью которых исследователь приспосабливает имеющиеся в его распоряжении данные под идеальный эксперимент, и метод оценивания параметров зависимости.

Пример: как выбрать стратегию учета сильной неоднородности данных?

Использовать технику фиктивных переменных.

Пример: при изучении эффекта образования в США отслеживается месяц рождения респондента выборки (есть закон, запрещающий бросать школу до достижения определенного возраста).

 Пронормировать данные на переменную, в наибольшей мере ответственную за неоднородность.

Пример: при анализе ценообразования на квартиры брать цену за квадратный метр, в региональных исследованиях брать показатели в долях от ВРП

Выбор стратегии идентификации

- □ Выбор метода анализа часть стратегии идентификации
- Методы эконометрического анализа особые статистические методы, позволяющие анализировать данные не статистической (по своей сути) природы
- □ Выбор метода зависит от
 - Природы результирующего показателя
 - Природы объясняющих факторов

Классификация методов анализа данных в зависимости от природы изучаемых показателей

Природа результирующих показателей	Природа объясняющих переменных	Название обслуживающих разделов эконометрики и многомерного стат. анализа
Количественная	Количественная	Регрессионный анализ: одно уравнение и системы уравнений
Количественная	Единственная количественная переменная, интерпретируемая как «время»	Анализ временных рядов
Количественная	Качественная	Дисперсионный анализ
Количественная	Смешанная (количественные и неколичественные переменные)	Ковариационный анализ, модели типологической регрессии
Качественная	Качественная	Анализ ранговых корреляций и таблиц сопряженности
Качественная	Количественная	Дискриминантный анализ, логит- и пробит-модели, кластер-анализ,
No. of the control of	Смешанная (количественные и неколичественные переменные)	Data Mining

Выбор стратегии идентификации

□ Беспорядочное использование модных эконометрических техник может сводить на нет хорошую постановку задачи.

Формулировка статистических гипотез

- □ В простейшем случае проверяются гипотезы о статистической значимости изучаемой зависимости и значимости влияния отдельных показателей на объясняемую переменную
- □ В более продвинутых случаях проверяются более сложные гипотезы.

Например, оценивая производственную функцию Кобба-Дугласа, можно проверить гипотезу о наличии постоянной отдачи от масштаба, которая математически сводится к проверке равенства суммы коэффициентов при логарифмах труда и капитала единице.

 Отдельный набор гипотез формулируется для выяснения адекватности выбранных модели и метода имеющимся данным.

Например: использование взвешенного МНК при наличии гетероскедастичности или использование обобщенного метода моментов при наличии эндогенности.

Пример: тестирование гипотезы о слабой эффективности фондового рынка

$$H_{0}: E(p_{t+1} | p_{t}, p_{t-1}) = \beta_{0} + \beta_{1}p_{t} + \beta_{2}p_{t-1}$$

$$\beta_{0} = 0$$

$$\beta_{1} = 1 + r_{t}$$

$$\beta_{2} = 0$$

где *r* – безрисковая ставка %, р – цена акции

Основные этапы эконометрического анализа

- Выбор теоретической модели явления
- Конструирование эконометрического аналога теоретической модели
- Выбор спецификации и метода оценивания параметров эконометрической модели
- □ Тестирование адекватности модели
- Статистическая проверка содержательных гипотез
- Интерпретация результатов
- Прогнозирование и рекомендации по экономической политике

Формулировка теоретической модели явления

С нее начинается эконометрический анализ

Если модели нет, и поиск идет наугад от данных, которые оказались в распоряжении, можно бесконечно получать зависимости разного характера, противоречащие друг другу или вообще не интерпретируемые.

Эконометрические методы имеют смысл **только** при наличии теоретической модели явления.

Пример 2: финансовый сектор и издержки инфляции

В простейшем случае модель – это

- набор гипотез
 - например, гипотеза о взаимодействии инфляции и финансового сектора: с ростом инфляции объемы кредитов частному сектору и капитализации фондового рынка по отношению к ВВП сокращаются,
- и уравнений для их проверки

$$CRED_{n} = \alpha + \beta p_{n,n} + \gamma g dp_1 1995_{n} + \varepsilon_{n}$$
,
 $FD_{n} = \alpha + \beta p_{n,n} + \gamma g dp_1 1995_{n} + \varepsilon_{n}$,

где CREDit — сумма кредитов частному сектору по отношению к ВВП за год t для страны i;

FDit — сумма кредитов частному сектору и капитализации фондового рынка по отношению к ВВП за год t для страны i;

pit – годовой темп прироста ИПЦ за год t для страны i;

gdp_1995*i* – на душу населения в 1995 г. (тыс. долл. по текущему курсу) для страны *i*.

В продвинутом случае модель – уравнение (в частных производных)

$$\frac{\partial \left(\frac{\Pi}{(1-\gamma)D}\right)}{\partial \pi} = \frac{\partial i_l}{\partial \pi} - \frac{\partial i_d}{\partial \pi} \frac{1}{(1-\gamma)}$$

- В этой модели участвуют банковская прибыль (П), объем депозитов (D), ставки по кредитам (i₁) и по депозитам (i₄), инфляция (π).
- Из модели следует, что если эластичность номинальной ставки процента по кредитам не меньше соответствующей эластичности ставки процента по депозитам, то доходность от финансового посредничества будет увеличиваться с ростом инфляции.

Далее для теоретической модели выписывается эконометрический аналог, который оценивается на основании реальных статистических данных.

Пример 3: анализ банковского сектора страны (региона)

Исследование эффективности российских банков с точки зрения минимизации издержек

(С.В. Головань, О.Ю. Костюрина, Е.В. Пастухова, А.М. Карминский, А.А.Пересецкий)

Уравнение регрессионной модели:

```
In(операционные расходы банка іt) =
```

- $= B_0 + B_1*In(кредиты физическим лицам іt) +$
 - + B₂*In(кредиты юридическим лицам іt) +
 - + В₃*In(кредиты другим банкам іt) +
 - + B₄*In(проценты по депозитам ф.л. it) +
 - + B₅*In(проценты по депозитам ю.л. іt) +
 - + B₆*In(проценты по кредитам it) +
 - + B₇*In(расходы по ценным бумагам іt) + uit

Результаты оценивания модели

оценки коэффициентов при объясняющих переменных и их значимость

кредиты физическим лицам	0.138***
кредиты юридическим лицам	0.541***
кредиты другим банкам	0.0162***
проценты по депозитам ф.л.	0.00043
проценты по депозитам ю.л.	0.0012
проценты по кредитам	0.0802***
расходы по ценным бумагам	0.621***

Проверка статистических гипотез

Пример проверки гипотезы о значимости влияния отдельного показателя

H₀: B₄ = 0 (изменение процента по депозитам не оказывает влияния на величину издержек)

Рассчитывается тестовая статистика t*, которая подчиняется tраспределению Стьюдента:

t * = оценка В4 / оценка стандартной ошибки В4

Вычисляется вероятность события: $P(t > t * | H_0: B_4 = 0 - верна)$

Если вероятность P($t > t * | H_0$: B₄ = 0 – верна) > 5%, то показатель не оказывает значимого влияния на издержки

Проверка статистических гипотез

Согласно приведенным выше оценкам

 $P(t > t * | H_0: B_4 = 0 - \text{верна}) > 5\%,$

проценты по депозитам ф.л. B₄ = 0.00043 (без ***)

и, следовательно, изменение процента по депозитам не оказывает влияния на величину издержек

Однако в нашем анализе не учтено, что банки сильно различаются по своему размеру. Если это учесть в стандартных ошибках, значимость оценок может измениться

Проверка статистических гипотез

Эконометрическое хайку:

T-stat looks too good.

Use robust standard errors

Significance gone.

1.Предмет эконометрики. Методология эконометрического исследования

Предмет

эконометрики. Методология эконометрического исследования.

Теоретическая и эконометрическая модель.

Условия успешности эконометрического анализа. Источники данных.

Типы экономических данных.

Примеры наборов показателей для моделирования.

Основные этапы эконометрического анализа.

2. Методы подгонки зависимости	Понятие функции регрессии. Функция потерь. Оценивание параметров линейной регрессионной модели. Преимущества и недостатки различных методов оценивания. Метод наименьших квадратов (МНК). Медианная регрессия. Квантильная регрессия.
3. Классическая линейная регрессионная модель и метод наименьших квадратов	Свойства оценок метода наименьших квадратов при отсутствии предположения о случайном характере ошибок. Роль гипотезы о включении в регрессию свободного члена. Анализ вариации зависимой переменной в регрессии. Коэффициент множественной детерминации и его свойства.

4. КЛРМ и МНК

Классическая линейная регрессия в предположении о случайном характере ошибок. Статистические характеристики ошибок, остатков, МНК-оценок параметров. Теорема Гаусса-Маркова. Несмещенная оценка дисперсии ошибок.

Гипотеза о нормальном распределении случайной ошибки. Законы распределения оценок регрессионных параметров. Т-статистика для оценок коэффициентов регрессии, доверительные интервалы для теоретических значений коэффициентов и прогнозного значения зависимой переменной, доверительный интервал для дисперсии ошибки. F-статистика для проверки общей линейной гипотезы о коэффициентах регрессии.

Техника фиктивных переменных и тест Чау для исследования структурной стабильности регрессионной модели

5. Регрессионный анализ при нарушении предпосылок КЛРМ

Мультиколлинеарность и ее теоретические предпосылки. Внешние признаки, методы диагностики, методы устранения. Гребневая оценка. Метод главных компонент. Невложенные регрессионные модели. Тестирование невложенности: J-тест Дэвидсона-Мак Киннона

Ошибки спецификации. Виды ошибок спецификации и их последствия. Диагностика ошибок спецификации. Диагностика нормальности распределения случайного возмущения. Выбор оптимального набора регрессоров (F-тест, тест Рамсея) и функциональной формы регрессионной зависимости (тесты Бокса-Кокса и Ре-тест Дэвидсона-Мак Киннона)

Нелинейные регрессионные модели. Нелинейный МНК.

Гетероскедастичность случайного возмущения и ее причины. Внешние признаки, методы диагностики, методы устранения. Поправки Уайта. ОМНК.

Автокорреляция случайной ошибки и ее причины. Внешние признаки, методы диагностики, методы устранения. Поправки Ньюи-Уэста. ОМНК.

6. Оценивание моделей по временным рядам

Начальные об сведения анализе временных рядов: декомпозиция, выделение тренда, сезонные индексы. Примеры использования сезонных индексов. Стационарность временного ряда. Тестирование наличия единичного корня: тест Дики-Фуллера и его модификации. Методология Бокса-Дженкинса. Подбор модели ARIMA. Коррелограмма, автокорреляционная функция и частная автокорреляционная функция. Статитика Q (Бокса-Пирса). Особенности Бокса-Льюнга vчета гетероскедастичности (кластеров волатильности) ДЛЯ временных рядов. Модели ARCH и GARCH.

Динамические модели со стационарными переменными и методы их оценивания. Тест Гренджера на причинно-следственную зависимость. Ложная регрессия. Понятие коинтеграции. Примеры моделей с лаговыми переменными. (Модель частичного приспособления, модель адаптивных ожиданий, модель коррекции ошибок, модель векторной авторегрессии) [2, стр.266-275].

7. Оценивание регрессионных моделей в условиях эндогенности

Несостоятельность оценок МНК в случае коррелированности ошибки. Выявление случайной регрессоров И несостоятельности оценок МНК в моделях с пропущенной существенной переменной, с ошибками измерения регрессоров, с условной одновременностью регрессоров и регрессанта, при наличии самоотбора, в динамических авторегрессионных моделях с автокорреляцией ошибок. [Вербик, стр.115-123]. Инструментальные переменные. Метод инструментальных переменных, двухшаговый МНК, свойства оценок. Сильные и слабые инструменты. Где искать инструменты? Тестирование экзогенности регрессоров (тест Хаусмана) [2, стр.212-218]. Двойственность интерпретации результатов теста Хаусмана. Альтернативный метод тестирования экзогенности регрессоров, когда нарушаются предпосылки теста Хаусмана.

Приложение: оценивание отдачи от образования [Вербик, стр.130-134].

8. Обобщенный метод моментов

Обобщенный метод моментов. Генеральные моменты выборочные моменты. Точная идентификация ограничений на моменты и классический метод моментов (КММ) [Green, W.H., стр.526-533]. Понятие моментного тождества. Теоретические и Ј-функционал. эмпирические моментные тождества. Оптимизационная задача для ОММ. Асимптотические свойства ОММ-оценок. Эффективный ОММ и доступный эффективный ОММ. Сверхидентифицирующие ограничения на моменты. Тест сверхидентифицирующие ограничения (Ј-тест Хансена) [Green, W.H., стр.534-550]. Ковариационная матрица оценок ОММ случае отсутствия аналитического решения задачи оптимизации Ј-функционала.

9. Метод максимального правдоподобия

Оценка максимального правдоподобия: примеры и формальный подход ММП для многомерного нормального распределения. Свойства оценок ММП: инвариантность, состоятельность, асимптотическая нормальность, асимптотическая эффективность [2, стр. 245-249].

ММП для линейной регрессионной модели. ММП для моделей с гетероскедастичными ошибками при различных гипотезах об источниках гетероскедастичности. ММП для моделей с автокоррелированными ошибками при различных гипотезах о виде автокорреляции. ММП для моделей с бинарной зависимой переменной. Информационная матрица Фишера. Оценивание стандартных ошибок оценок ММП параметров моделей. Критерии для тестирования гипотез в линейной модели. Тесты Вальда, отношения правдоподобий и множителей Лагранжа для проверки общих ограничений в классической регрессионной модели [1, стр. 250-260].

10. Модели дискретного выбора

Представление об обобщенных линейных моделях (GLM). Модели бинарного выбора как частный случай обобщенной линейной модели. Спецификация моделей в терминах латентной зависимой переменной. Причины некорректности модели линейной вероятности: нарушение гипотезы нормальности ошибок, гетероскедастичность, проблемы вероятностной интерпретации оценки прогноза. Probit и Logit модели как альтернатива модели линейной вероятности. Метод максимального правдоподобия для оценки параметров моделей Probit и Logit. Информационная матрица и оценки стандартных ошибок для оценок параметров моделей Probit и Logit. Интерпретация коэффициентов в моделях бинарного выбора[1, стр.318-336]. Ошибки спецификации в моделях бинарного выбора. Критерии качества моделей. Приложение: от чего зависит решение о принятии закладной? [Green, W.H., стр. 768-771].

Дискретные зависимые переменные: номинальные, ранжированные, количественные. Модель множественного выбора. Применение моделей множественного выбора для моделирования рейтингов банков.

Эконометрика НИУ ВШЭ Ратникова Т А 2019

11. Модели анализа панельных данных

Преимущества использования панельных данных: увеличение размера выборки, снижение остроты проблемы мультиколлинеарности, возможность учета некоторых типов пропущенных переменных, облегчение задачи поиска инструментов в случае эндогенности, доступность индивидуальной истории объектов, учет неоднородности объектов. Трудности, возникающие при работе с панельными данными: смещение неоднородности, самоотбора, смещение смещение истощения, проблемы с оцениванием для панелей с короткими ошибок временными проблемы автокорреляции рядами, нестационарности в панелях с длинными временными рядами [7, стр.267-277]. Обыкновенная (Pool) регрессионная модель. Модель с эффектами (FE-модель). детерминированными индивидуальными Модель со случайными индивидуальными эффектами (RE-модель)... Оценка ММП RE-модели.

Сравнительный анализ свойств оценок [7, стр.277-295]. Тестирование спецификации в моделях панельных данных. Критика Мундлака спецификации модели со случайным эффектом. Тестирование существенности различий RE-модели и модели Мудлака: тест Хаусмана для выявления коррелированности регрессоров и случайного эффекта. Тест множителя Лагранжа Бройша-Пагана на наличие случайного индивидуального эффекта. Тест на наличие детерминированного индивидуального эффекта [Растика 295-302].

Понятие ӣе́рар∞и́9еских моделей. Модели со случайными эффектами на коэффициенты наклона..

Цели занятий

Цель курса

сформировать систему знаний о принципах и методах эконометрического анализа реальных данных

Учебная задача курса

В результате изучения курса слушатели должны:

- изучить основные методы статистического и эконометрического анализа данных
- уметь их применять на практике
- иметь представление о пределах применимости основных методов и о том, какими инструментами следует пользоваться, когда основные методы не работают
- □ обладать навыками работы в статистических и эконометрических пакетах (Stata)

Рекомендуемая литература

- а) основная литература:
- Greene, W.H. (2003), Econometric Analysis, 5th edition, Prentice Hall.
- Verbeek M.(2003), A Guide to Modern Econometrics, John Wiley and Sons
- □ Вербик М.. Путеводитель по современной эконометрике. Пер. с англ. М., Научная книга, 2008
- Магнус Я.Р., Катышев П.К., Пересецкий А.А. (2004) Эконометрика. Начальный курс. – М.: «Дело».

Рекомендуемая литература

- б) дополнительная литература:
- □ Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики. –М.: «ЮНИТИ», 1998.
- □ Берндт Э.. Практика эконометрики. Классика и современность. Пер. с англ. М., Юнити, 2005
- □ Доугерти К.. Введение в эконометрику. 2-е изд. Пер. с англ. М., ИНФРА-М, 2004
- □ Канторович Г.Г. Лекции: Анализ временных рядов. Экономический журнал ВШЭ, 6(1-4), 7(1), 2002, 2003.
- □ Ратникова Т.А., Фурманов К.К. Анализ панельных данных и данных о длительности состояний. М.: Издательский дом НИУ ВШЭ, 2014.
- Cameron A. C., Trivedi P. K. Microeconometrics Using Stata, Stata.
 Press, College Station, TX. 1. (CT). 2009.

Интернет источники

- □ Программа курса сайт НИУ ВШЭ личная страничка Ратниковой Т.А.
- Система LMS

Спасибо за внимание!