CS 465

Block Cipher Modes

ECB Mode

- Electronic Code Book
- Divide the plaintext into fixed-size blocks
- Encrypt/Decrypt each block independently
- There is a weakness with this approach

"Plain-Tux"

"Cipher-Tux"

"Cipher-Tux2"

Electronic Codebook (ECB) mode encryption

Electronic Codebook (ECB) mode decryption

CBC Mode

- Cipher Block Chaining
- Overcomes the problem with ECB
- XOR the plaintext with the prior ciphertext block
- What about the first block?

Cipher Block Chaining (CBC) mode encryption

Cipher Block Chaining (CBC) mode decryption

Figure 2.7 Cipher Block Chaining (CBC) Mode

Initialization Vector (IV)

- Must be known to both the sender and recipient
- Ideally both IV and key should protected, but the IV may be public
- Common approach: encrypt IV using ECB and send it with the encrypted data
- Most importantly, an IV should never be reused with the same key. Why?

Block Cipher as a Stream Cipher

- The following modes create a stream cipher from a block cipher. How is it done?
- Three modes
 - Counter Mode (CTR)
 - Cipher Feedback Mode (CFB)
 - Output Feedback Mode (OFB)

Counter (CTR) mode encryption

Counter (CTR) mode decryption

Cipher Feedback (CFB) mode encryption

Cipher Feedback (CFB) mode decryption

Output Feedback (OFB) mode encryption

Output Feedback (OFB) mode decryption

Summary

ECB

- Simple
- Don't have to create/manage an IV
- Parallel encryption/decryption
- Reveals patterns in the plaintext should not use

CBC

- Conceals plaintext patterns
- Requires sequential encryption
- Parallel decryption

Summary

- Block cipher as stream cipher
 - No need for padding
 - Only have to implement encrypt function
- CTR
 - Preprocessing
 - Parallel encryption/decryption
- CFB
 - Parallel decryption
- OFB
 - Preprocessing
 - Parallel decryption

Padding

Block Ciphers & Padding

- Block ciphers require that the plaintext be a multiple of the block size (ECB and CBC modes)
- Padding is used to make sure that all blocks are "full"
- Both sides need to know the padding scheme

Padding Scher Scher

- Pad with spaces
- Pad with zero (null) characters
- Pad with zero (null) characters
 - Last byte is equal to the number of padding bytes
- Pad with 0x80 followed by zero (null) characters
- Random padding
- Pad with all bytes of the same value

How would this work?

Other Uses for Padding?

- Disguise identical messages
 - Identical messages encrypted with the same key will always produce the same ciphertext
- Disguise message length
 - Pad the message with a random number of bytes to create a random-sized messages
 - All messages are padded to a preset length
- When is padding not required?