ECE M148

Homework 3

Introduction to Data Science Due: May 03, 12:00 PM Instructor: Lara Dolecek TAs: Harish GV, Jayanth Shreekumar

Please upload your homework to Gradescope by May 03, 12:00 PM. You can access Gradescope directly or using the link provided on BruinLearn. You may type your homework or scan your handwritten version. Make sure all the work is discernible.

- 1. Assume you have a dataset \mathcal{D} with n samples. You want to create bootstrapped datasets of size k using sampling with replacement.
 - (a) Assume you create one bootstrapped dataset of size k. Additionally, assume that we fix a data point $x \in \mathcal{D}$. What is the probability that x does not appear in the bootstrapped dataset?
 - (b) Now, assume that k = n. What does the probability converge to as n goes to infinity? What does this limit imply about the percentage of the original dataset that will not be sampled at n gets large?
 - (c) Assume that you create r bootstrapped datasets of size k each. Additionally, assume that we fix a data point $x \in \mathcal{D}$. What is the probability that x does not appear in any bootstrapped dataset?

- 2. In this question, let us consider the difference between lasso and ridge regularization. Recall that the lasso regularization of a vector β is $\lambda \sum_{i=1}^k |\beta_i|$ and that the ridge regularization is $\lambda \sum_{i=1}^k \beta_i^2$. Consider two vectors $x_1 = [4, 5]$ and $x_2 = [-2, 2]$. Additionally, set $\lambda = 1$.
 - (a) What is the lasso regularization of x_1 and x_2 ? What is the change in the lasso regularization when going from x_1 to x_2 ?
 - (b) What is the ridge regularization of x_1 and x_2 ? What is the change in the ridge regularization when going from x_1 to x_2 ?
 - (c) In your own words, explain the effects of ridge vs lasso regularization.

3. Coding Question - Plot the Voronoi regions for k = 1, 2, 3, 4 using the k-nearest neighbours classifier on the points: [[1, 1], [4, 1], [2, 3], [3, 3], [3, 4], [5, 4], [6, 5], [4, 5]]. The first 4 points are in class 0 and the rest are in class 1. A .ipynb file has been provided with starter code to get you started. Did you find anything curious about the plots? How do you explain them?

- 4. Coding Question Plot the logistic function $\frac{1}{1+e^{-(\beta_0+\beta_1\times x)}}$ for $x\in[-10,10]$ and the following parameter values:
 - (a) $\beta_0 = 2 \text{ and } \beta_1 = 1$
 - (b) $\beta_0 = 10 \text{ and } \beta_1 = 2$
 - (c) $\beta_0 = 1 \text{ and } \beta_1 = 10$
 - (d) $\beta_0 = 1 \text{ and } \beta_1 = 5$

For what choices of β_0 , β_1 does the function become steeper?

5. Recall the problem of ridge linear regression with n points and k features:

$$L_{Ridge}(oldsymbol{eta}) = rac{1}{n} \sum_{i=1}^n (y_i - oldsymbol{eta}^T oldsymbol{x}_i)^2 + \lambda \sum_{j=1}^k eta_j^2$$

where λ is a hyper-parameter. The goal is to minimize $L_{Ridge}(\boldsymbol{\beta})$ in terms of $\boldsymbol{\beta}$ for a fixed training dataset (y_i, \boldsymbol{x}_i) and parameter λ .

- (a) In your own words, explain the purpose of using ridge regression over standard linear regression.
- (b) As λ gets larger, how will this affect $\boldsymbol{\beta}$? What value do we expect $\boldsymbol{\beta}$ to converge on?
- (c) Consider parameters β_{λ} that were trained using ridge linear regression with a specific lambda. Let us consider the test MSE using β_{λ} . Note that the test MSE is the following formula for the test data

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \boldsymbol{\beta}_{\lambda}^T \boldsymbol{x}_i)^2$$

and does not include regularization.

Sketch a plot of how you expect the Test MSE to change as a function of λ . Your sketch should be a smooth curve that shows how the test MSE changes as λ goes from 0 to ∞ . Provide justification for your plot. Assume that the right most edge of the graph is where λ is at ∞ . Additionally, assume that the linear regression without regularization is overfitting.

- 6. True of False questions. For each statement, decide whether the statement is True or False and provide justification (full credit for the correct justification).
 - (a) In L_2 regularization of linear regression, many coefficients will generally be zero.
 - (b) In the leave one out cross validation over the data set of size N, we create and train N/2 models.
 - (c) 95% confidence interval refers to the interval where 95% of the training data lies.
 - (d) If K out of J features have already been selected in Stepwise Variable Selection, then we will train J K new models to select the next feature to add.
 - (e) P(A|B) = P(B|A) if P(A) = P(B) and P(A) is not zero.