MATH 381 Section 1.4

Olivia Dumitrescu

22 January 2024

Predicates and Quantifiers

Definition Predicates are statements involving equations and inequalities.

$$x > 3$$
 $x = y + 3$ $x + y = z$

Example P(x): the statement "x \(\int \)3" P(4): "4 \(\int \)3" -\(\int \) true P(2): 2 \(\int \)3 -\(\int \)false

Example R(x,y,z): "x + y = z" R(1,2,3): "1 + 2 = 3" -; true R(0,0,1): 0 + 0 = 1 -; false

Definition

- 1. The notation $\forall x P(x)$ denotes the **universal quantifier** of P(x) i.e. "P(x) holds for all x in the domain."
- 2. The notation $\exists x P(x)$ is the **existential quantifier** of P(x) i.e. "there exists an element x in the domain so that P(x) holds."

Remark The domain must always be specified.

- there is x so that P(x)
- there is at least one x so that P(x)
- for some x P(x)

∃! means "there exists a unique element."

Example P(x): statement x + 1 > x

What are the truth values for the quantifications? [domain = \mathbb{R}]

- $\forall x P(x)$ is true.
- $\exists x P(x)$ is true.

When are the universal and existential quantifiers false?

- $\forall x P(x)$ is false when not every x makes P(x) hold.
- $\exists x P(x)$ is true when every x does not make P(x) hold.

Example Q(x): x < 2

What is the truth value for $\forall x Q(x)$ where $x \in \mathbb{R}$? False for e.g. x = 3, x = 4, x = 5

Example P(x) is $x^2 > x$. $[x \in \mathbb{R}]$

- $\forall x P(x)$ is false e.g. x = 1.
- $\exists x P(x)$ is true.

Example What are the truth values for $p: \forall x(x^2 \geq x)$?

- 1. $x \in \mathbb{Z} \implies p \equiv T$
- $2. \ x \in \mathbb{N} \implies p \equiv T$
- $3. \ x \in \mathbb{Q} \implies p \equiv T$

Example Q(x): x = x + 1

Quantifiers over finite domains

$$x \in \{x_1, x_2, \dots, x_n\}$$

$$\forall x P(x) = P(x_1) \land P(x_2) \land \dots \land P(x_n)$$

$$= \bigwedge i = \ln P(x_i)$$

$$\exists x P(x) = P(x_1) \lor P(x_2) \lor \dots \lor P(x_n)$$

$$= \bigvee i = \ln P(x_i)$$

Example P(x): $x^2 < 10$ $x \in \{1, 2, 3, 4\}$

- $\forall x P(x)$ is false e.g. x = 4.
- $\exists x P(x)$ is true e.g. x = 1.

Negation of quantifiers in finite domains

1. Negation of universal quantifier

$$\forall x P(x) = \bigwedge_{i=1}^{n} P(x_i)$$

$$\neg(\forall x P(x)) = \neg(\bigwedge_{i=1}^{n} P(x_i))$$

$$= \bigvee_{i=1}^{n} \neg P(x_i)$$

$$= \neg P(x_1) \lor \neg P(x_2) \lor \dots \lor \neg P(x_n)$$

2. Negation of existential quantifier

$$\exists x P(x) = \bigvee_{i=1}^{n} P(x_i)$$

$$\neg(\exists x P(x)) = \neg(\bigvee_{i=1}^{n} P(x_i))$$

$$= \bigwedge_{i=1}^{n} \neg P(x_i)$$

$$= \neg P(x_1) \land \neg P(x_2) \land \dots \land \neg P(x_n)$$

Negation of quantifiers in finite and infinite domains

1. Negation of universal quantifier

$$\neg(\forall x P(x))$$
 is true if $\exists x \in \text{Domain so that } \neg P(x)$.

2. Negation of existential quantifier

$$\neg(\exists x P(x))$$
 is true if $\forall x \in \text{Domain so that } \neg P(x)$.

Example Show
$$\exists x (P(x) \land \neg Q(X)) \equiv \neg (\forall x P(x) \rightarrow Q(x))$$

Example

$$\neg(\forall x(x^2 > x)) \equiv \exists x(x^2 \le x) = false$$
$$\neg(\exists x(x^2 = 2)) \equiv \forall x(x^2 \ne 2) = false$$