Does there exist a sequence a sequence $\{f_k\}$ of continuous functions on [0,1] which diverges everywhere point-wise, but the corresponding sequence of integrals goes to 0?

Yes. Let us construct such a sequence. Define,

$$t_{n,k}(x) = \max\left\{0, k - k^4 \left| x - \frac{n}{k} \right| \right\}$$
 restricted to $[0,1]$ for $n, k \in \mathbb{N}$

What is this complicated looking $t_{n,k}(x)$? Just the triangle alongside with its base of length $\frac{2}{k^3}$ centered at $\frac{n}{k}$ and a height of k, and 0 everywhere else.

We can immediately make some quick observations about $t_{n,k}(x)$.

- $t_{n,k}(x) \ge 0$, directly from definition.
- $t_{n,k}(x)$ is continuous, maximum of two continuous functions.

•
$$\int_0^1 t_{n,k}(x) \ dx \le \frac{1}{2} \cdot \frac{2}{k^3} \cdot k = \frac{1}{k^2}$$

The " \leq " gets picked in the last bullet because some part of the triangle $t_{n,k}$ might lie outside [0,1]. In this case the area of the triangle lying outside would not contribute to the integral which is restricted within [0,1].

Now we will construct the sequence $f_k(x)$ which will hold the properties desired in the problem. Define,

$$f_k(x) = \sum_{n=1}^k t_{n,,k}(x), \text{ then,}$$

Firstly, $f_k(x)$ is continuous, as it is a "finite" sum of continuous functions. Next,

$$\int_0^1 f_k(x) \ dx = \sum_{n=1}^k \left[\int_0^1 t_{n,k}(x) \ dx \right]$$

$$\leq \sum_{n=1}^k \frac{1}{k^2} = \frac{1}{k},$$
 Or, $\int f_k \to 0$ by comparison with $\frac{1}{k}$.

We will show $f_k(x)$ diverges everywhere by contradiction. That is assume there is an $x \in [0,1]$, for which $f_k(x) \to f(x)$. Fix any $\epsilon > 0$. By convergence, there must exist N, such that,

$$f_k(x) < f(x) + \epsilon$$
 for every $k \ge N$

Now pick $k>\max\left\{\frac{1}{1-x},\ N,\ f(x)+\epsilon\right\}$. This choice enables the following, $(1)\ k>N$, $(2)\ k-[f(x)+\epsilon]>0$, $(3)\ x<1-\frac{1}{k}$.

Thus for some k>N after combining (2) and (3) we have,

$$x < 1 - \frac{1}{k} + \frac{k - [f(x) + \epsilon]}{k^4}$$
 Or,
$$\frac{f(x) + \epsilon}{k^4} < \frac{k}{k^4} + \frac{k - 1}{k} - x$$
 Or,
$$f(x) + \epsilon < k + k^4 \cdot \left| x - \frac{k - 1}{k} \right|$$
 Or,
$$f(x) + \epsilon < t_{k-1,k}(x) < f_k(x)$$

(The last inequality follows as $t_{n,k}>0$ for all $n\leq k$, and therefore, $f_k(x)>t_{k-1,k}(x)$) However, this clearly is a contradiction to our assumption. Hence, such a point x must not exist. \square