Série 4

David Wiedemann

12 octobre 2020

1

Il suffit de résoudre le système d'équations.

On résout par substitution.

Si b = 0:

On a donc que $ad = \pm 1$

$$\begin{cases} ax + cy = m \\ bx + dy = n \end{cases} \begin{cases} adx + dcy = dm \\ -bcx - dcy = -cn \end{cases}$$

On peut additionner les deux équations, en simplifiant on obtient

$$x = \frac{dm - cn}{\Delta} = \pm (dm - cn)$$

De même, on obtient que

$$\begin{cases} ax + cy = m \\ bx + dy = n \end{cases} \begin{cases} -abx - bcy = -bm \\ abx + ady = an \end{cases} \text{ et donc } y = \frac{an - bm}{\Delta} = \pm (an - bm)$$

2

Ce résultat suit directement du fait que $\mathbb Z$ est un anneaux, et donc stable par la multiplication, l'addition et la soustraction.

Par hypothèse, $a, b, c, d \in \mathbb{Z}$, donc $\pm (an - bm)$ et $\pm (dm - cn) \in \mathbb{Z}$ et donc $(x, y) \in \mathbb{Z}^2$

3

Celà suit directement de la partie 1, en effet, soit $(m,n) \in \mathbb{Z}^2$, alors, en résolvant le système d'équations de la partie 1, on peut trouver des coefficients $x,y \in \mathbb{Z}$ tel que

$$x(a,b) + y(c,d) = (n,m)$$

Donc tout élément de $(n, m) \in \mathbb{Z}^2$ s'exprime comme combinaison linéaire de (a, b) et (c, d), donc $\langle \{(a, b), (c, d)\} \rangle = \mathbb{Z}^2$

4

Car $\Delta \neq 0,$ on peut toujours encore admettre les solutions données dans la partie 1.

Supposons, par l'absurde que,

$$\langle \{(a,b),(c,d)\} \rangle = \mathbb{Z}^2$$

et que $\Delta = ad - bc \neq \pm 1$.

Donc, $\forall (m,n) \in \mathbb{Z}^2$, il existe $x,y \in \mathbb{Z}$ tel que $x \cdot (a,b) + y \cdot (c,d) = (m,n)$. Par la partie 1, on a que

$$x = \frac{dm - cn}{\Delta}$$
 et $y = \frac{an - bm}{\Delta}$

Pour que $x,y\in\mathbb{Z}$, il faut que $\Delta|dm-cn$ et que $\Delta|an-bm$ et ceci pour toutes les valeurs de m et n, donc en particulier :

$$\Delta | d, \quad (m = 1, n = 0)$$

 $\Delta | c, \quad (m = 0, n = -1)$
 $\Delta | a, \quad (m = 0, n = 1)$
 $\Delta | b, \quad (m = -1, n = 0)$

Donc, il existe $a', b', c', d' \in \mathbb{Z}$ tel que a

$$c = \Delta \cdot c', \quad a = \Delta \cdot a'$$

 $b = \Delta \cdot b', \quad d = \Delta \cdot d'$

Donc

$$\Delta = ad - bc$$

$$\Delta = \Delta^{2}(a'd' - b'c')$$

$$1 = \Delta(a'd' - b'c')$$

$$\frac{1}{\Delta} = (a'd' - b'c')$$

Or, par hypothèse, $\Delta \neq 1, -1, 0$ et donc a'd' - b'c' n'est pas entier. Donc, $\langle \{(a,b),(c,d)\} \rangle$ n'engendre pas \mathbb{Z}^2