UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DEPARTAMENTO DE QUIMICA

QUIM 4101-010 LABORATORIO DE QUIMICA FISÍCA I

Experimento:	Solubilidad	como	tuncion	de	temperat	ura y	calor	diferenc	cial
		d	e disolu	cion	l				

Profesor: Astrid Cruz Nombres: Edvin Alvarado Velez

March 20,2016 Edgard Lebron

1 Objetivo

Determinar la solubilidad de ácido oxálico en agua a diferentes temperaturas y calcular el calor diferencial de disolución.

2 Data experimental y calculos

V_{HCl}	20 mL
$M_{HCl, \ valorado}$	0.1061 g/mol
$V_{NaOH, \ consumed}$	3.53 mL
$M_{NaOH, exp}$	0.601133 M
$Mm_{ac.oxalico}$	90.03488 g/mol

$$M_{NaOH} = \frac{M_{HCl} \times V_{HCl}}{V_{NaOH}} = \frac{0.1061 \times 20.0}{3.53} = 0.601133 M$$

$$n_{ac. \ oxalico} = 2 \times V_{NaOH} \times M_{NaOH} = 2 \times \frac{10.50}{1000} \times 0.601133 = 1.262 \times 10^{-2} \ mol$$

Table 1: Add caption

 $m_{ac.oxalico} = n_{ac.oxalico} \times Mm_{ac.oxalico}$

muestra	temp °C	peso de	V NaOH	peso del	peso de ac.	moles de	molalidad (m)
		la soln	(mL)	agua (g)	oxalico (g)	ac. oxalico	
		(g)				(mol)	
1	6.0	5.0828	10.50	3.9462	1.13658	1.262E-02	3.199E-03
2	6.0	5.0511	10.70	3.8929	1.15823	1.286E-02	3.305E-03
3	15.9	5.0328	10.45	3.9016	1.13117	1.256E-02	3.220E-03
4	15.9	5.0549	10.40	3.9291	1.12576	1.250E-02	3.182E-03
5	26.0	5.0693	10.40	3.9435	1.12576	1.250E-02	3.171E-03
6	26.0	5.0674	10.45	3.9362	1.13117	1.256E-02	3.192E-03
7	35.0	5.0487	10.50	3.9121	1.13658	1.262E-02	3.227E-03
8	35.0	5.0576	10.41	3.9308	1.12684	1.252E-02	3.184E-03

3 Datos para la construccion de la grafica

Table 2: Add caption

Temp. (K)	molalidad (m)	1/T	ln(m)
279.15	3.199E-03	3.582E-03	-5.74492933
279.15	3.305E-03	3.582E-03	-5.71244957
289.05	3.220E-03	3.460E-03	-5.73833945
289.05	3.182E-03	3.460E-03	-5.75016236
299.15	3.171E-03	3.343E-03	-5.75382059
299.15	3.192E-03	3.343E-03	-5.74716845
308.15	3.227E-03	3.245E-03	-5.7362506
308.15	3.184E-03	3.245E-03	-5.74961288

Grafique vs 1/T y obtenga el calor diferencial de disolución a cada una de las temperaturas estudiadas. Complete la siguiente tabla:

Table 3: Add caption

Temp (K)	molalidad (m)	ΔH
279.15	3.262E-03	-8.3408E+07
289.05	3.176E-03	-8.0561E+07
299.15	3.209E-03	-7.7850E+07
308.15	3.184E-03	-7.5583E+07

$$f'(x) = -2.7 \times 10^9 x^2 + 2 \times 10^7 x - 34.759$$

$$\Delta H_{diff} = -Rf'(\frac{1}{T_i})$$

$$\Delta H_{diff, 6.0 C} = -8.3145 f'(\frac{1}{298.15 k}) = -8.3145 \times 10^7 J$$

4 Datos Teoricos

Table 4: Add caption

Τ	m	1/T	ln(m)
280.15	6.68E-04	3.57E-03	-7.31074
285.15	8.88E-04	3.51E-03	-7.02701
299.15	1.32E-03	3.34E-03	-6.62971
318.15	1.85E-03	3.14E-03	-6.29522
323.45	2.29E-03	3.09E-03	-6.08029
338.15	3.01E-03	2.96E-03	-5.80629
351.25	4.39E-03	2.85E-03	-5.4275
		I	1

no se
pudo
conseguir
datos
iguales
so cogi
los data
points
mas cer-

Table 5: Add caption

T(k)	1/T	$\Delta H(J)$
280.15	3.570E-03	-7.373E+06
285.15	3.507E-03	-7.167E+06
299.15	3.343E-03	-6.626E+06
318.15	3.143E-03	-5.969E+06
323.45	3.092E-03	-5.799E+06
338.15	2.957E-03	-5.356E+06
351.25	2.847E-03	-4.993E+06

5 Discusion de resultados

6 Conclusion

References

- "Oxalic Acid | C2H2O4 Pubchem". *Pubchem.ncbi.nlm.nih.gov.* N.p., 2016. Web. 8 Mar. 2016. https://pubchem.ncbi.nlm.nih.gov/compound/oxalic_acid#section=Top
- "CHEMISTRY 122 LAB: CORRECTIONS, SUGGESTIONS, PRELAB AND RE-PORT QUESTIONS EXP 15". *Chemistry.osu.edu.* N.p., 2016. Web. 18 Mar. 2016. https://chemistry.osu.edu/~rzellmer/chem122/lab/exp15.pdf