1 Lecture Review

1.1 Lengths and Dot Products

1. Let $v = (v_1, \ldots, v_n)$ and $w = (w_1, \ldots, w_n)$. The dot product of v and w is

$$v \cdot w = \sum_{i=1}^{n} v_i w_i = v^T w = w^T v.$$

2. The length of a vector $v = (v_1, \ldots, v_n)$ is

$$||v|| = \sqrt{v_1^2 + \dots + v_n^2} = \sqrt{v \cdot v} = \sqrt{v^T v}.$$

1.2 QR Decomposition

- 1. If $m \ge n$, a real $m \times n$ square matrix A may be factored into the form A = QR where Q is $m \times n$ satisfying $Q^TQ = I$ and R is $n \times n$ upper triangular.
- 2. Given $b \in \mathbb{R}^n$, it is possible that Ax = b has no solution. However, $x = R^{-1}Q^Tb$ is the "closest" to a solution in the sense that it minimizes ||Ax b||.

2 Problems

1. True or False. If false, give an example.

(a) If Q is square and orthogonal then Q^T is square and orthogonal.

(b) If Q is $m \times n$ with $Q^T Q = I$, then $QQ^T = I$.

(c) If $Q^TQ = I = QQ^T$, then Q is square.

(d) If $Ax_1 = y_1$ and $Ax_2 = y_2$, then $A(x_1 x_2) = (y_1 y_2)$ where $(x_1 x_2)$ is the matrix with column vectors x_1, x_2 and likewise for $(y_1 y_2)$.

Solution. (a) True. This is because $(Q^T)^T = Q$ so that $Q^T(Q^T)^T = I = (Q^T)^T Q^T$.

(b) False. Consider $Q = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Then $Q^TQ = 1$ (the 1×1 identity matrix), but $QQ^T = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

(c) True. This is because the inverse of Q is then Q^T and inverses exist only for square matrices.

(d) True. This follows from the definition of matrix-vector product.

2. Let Q be an orthogonal matrix with column vectors q_1, \ldots, q_n . Show that $||q_i|| = 1$ and $q_i \cdot q_j = 0$ if $i \neq j$. Then check that this the case for the rotation matrix

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Solution. We have that Q^TQ is the matrix whose (i,j) entry is $q_i^Tq_j$. Since Q^TQ is the identity matrix, this means that $q_i^Tq_j=0$ whenever $i\neq j$ and $q_i^Tq_i=1$.

For the rotation matrix, this follows from computing and using $\cos^2 \theta + \sin^2 \theta = 1$.

3. Let

$$A = \begin{pmatrix} 0 & 3 \\ 2 & 4 \\ 0 & 4 \end{pmatrix}.$$

(a) Suppose we want the QR decomposition for A and we are given that

$$Q = \begin{pmatrix} 0 & 3/5 \\ 1 & 0 \\ 0 & 4/5 \end{pmatrix}.$$

What condition should we check that Q satisfies?

(b) Solve for R so that A = QR.

(c) Show that there is no solution to

$$Ax = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

(d) Find the best fit x which solves the equation above; i.e. the solution which minimizes $||Ax - \begin{pmatrix} 1 \\ 0 \end{pmatrix}||$.

Solution. (a) We must check that $Q^TQ = I$.

(b) We want to find $R = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ so that

$$\begin{pmatrix} 0 & 3 \\ 2 & 4 \\ 0 & 4 \end{pmatrix} = A = QR = \begin{pmatrix} 0 & 3/5 \\ 1 & 0 \\ 0 & 4/5 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} 0 & c\frac{3}{5} \\ a & b \\ 0 & c\frac{4}{5} \end{pmatrix}.$$

Then a = 2, b = 4, c = 5 so that

$$R = \begin{pmatrix} 2 & 4 \\ 0 & 5 \end{pmatrix}.$$

(c) Let $x = (x_1, x_2)$. By definition of matrix-vector product, any solution satisfies

$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} x_2 \frac{3}{5} \\ x_1 \\ x_2 \frac{4}{5} \end{pmatrix}.$$

However, it is impossible to have

$$x_2 \frac{3}{5} = 1 = x_2 \frac{4}{5}$$

so a solution cannot exist.

(d) Given our QR decomposition, the best fit x is given by

$$R^{-1}Q^T \begin{pmatrix} 1\\0\\1 \end{pmatrix} = \begin{pmatrix} 1/2 & -2/5\\0 & 1/5 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0\\3/5 & 0 & 4/5 \end{pmatrix} \begin{pmatrix} 1\\0\\1 \end{pmatrix} = \begin{pmatrix} 1/2 & -2/5\\0 & 1/5 \end{pmatrix} \begin{pmatrix} 0\\7/5 \end{pmatrix} = \boxed{\begin{pmatrix} -14/25\\7/25 \end{pmatrix}}.$$

4. Let A be an $m \times n$ with m < n and $b \in \mathbb{R}^n$. Use QR decomposition to find $x \in \mathbb{R}^m$ which best fits the equation

$$x^T A = b^T;$$

i.e. find x which minimizes $(x^TA - b^T)(x^TA - b^T)^T$. Hint: Which matrix should be QR factored?

Solution. Since A is $m \times n$ with m < n, we cannot do QR decomposition on A. However, we can for A^T . Let $A^T = QR$ be this decomposition. We may rewrite our equation as

$$A^T x = b.$$

We want to minimize

$$(x^T A - b^T)(x^T A - b^T)^T = (A^T x - b)^T (A^T x - b) = ||A^T x - b||^2$$

which is the same as minimizing $||A^Tx - b||$. This is given by

$$x = R^{-1}Q^Tb$$

where Q, R come from the QR decomposition of A^T (not A).