1

Assignment 20

Venkatesh E AI20MTECH14005

Download latex-tikz codes from

 $https://github.com/venkateshelangovan/IIT-Hyderabad-Assignments/tree/master/Assignment20_Matrix_Theory$

1 Problem

Let **A** be an invertible 4×4 real matrix. Which of the following are NOT true?

- 1) Rank $\mathbf{A} = 4$
- 2) For every vector $\mathbf{b} \in \mathbb{R}$, $\mathbf{A}\mathbf{x} = \mathbf{b}$ has exactly one solution.
- 3) $\dim(\text{nullspace } \mathbf{A}) \ge 1$
- 4) 0 is an eigenvalue of A

2 Solution

Given	A is an invertible real matrix of order 4×4		
Solution	Since given A is an invertible matrix, A has full rank.		
2010011	8.1.00 g. 101 12 10 un 111/02/020 111111111, 12 11110		
	$det(\mathbf{A}) \neq 0$	(2.0.1)	
	$Rank(\mathbf{A}) = 4$	(2.0.2)	
	Let $\lambda_1, \lambda_2, \lambda_3$ and λ_4 be the eigenvalues of matrix A . We know that determinant of matrix A is the product of eigenvalues of A .		
	$\lambda_1 \lambda_2 \lambda_3 \lambda_4 \neq 0$	(2.0.3)	
Statement 1	$Rank(\mathbf{A}) = 4$		
	Since A is an invertible matrix, it has full rank	k as shown in equation (2.0.2).	
	True Statement		
Statement 2	For every vector $\mathbf{b} \in \mathbb{R}$, $\mathbf{A}\mathbf{x} = \mathbf{b}$ has exactly one solution.		
	For every b ,		
	$x=A^{-1}b$		
	\mathbf{x} will be unique solution for every \mathbf{b} .		
	True Statement		
Statement 3	$\dim(\text{nullspace } \mathbf{A}) \geq 1.$		
	Using Rank Nullity Theorem,		
	$Rank(\mathbf{A}) + dim(nullspace\mathbf{A}) = n$		
	$\implies 4 + dim(nullspace \mathbf{A}) = 4$		
	$\implies dim(nullspace \mathbf{A}) = 0 \ngeq 1$	(2.0.4)	

	where n is the number of columns in A	
	Equation (2.0.4) proves that the given statement is NOT True .	
Statement 4	0 is an eigenvalue of A	
	From equation (2.0.3), we could say that no eigenvalue of A could be 0.	
	NOT True Statement	

TABLE 1: Explanation