

	_	A CONTRACTOR OF THE PARTY OF TH	
1)~r	\cap	101 71	\mathbf{I} $\mathbf{D} \cap \mathbf{U} \mathbf{X} \mathbf{I}$
		1οι Δυ	ı heiß!

Aufgabennummer: B_009		
Technologieeinsatz:	möglich ⊠	erforderlich

Susanne und Samuel trinken zum Frühstück aus zwei unterschiedlich geformten Tassen Tee. Die Temperatur des Tees in beiden Tassen beträgt um 6:00 Uhr 90 Grad Celsius (°C). Die Umgebungstemperatur beträgt 24 °C.

- a) Die Abkühlung des Tees in der Tasse von Susanne kann n\u00e4herungsweise durch eine exponentielle Abklingfunktion beschrieben werden. Die Temperatur des Tees nimmt nach 27 Minuten (min) um 50 % ab.
 - Skizzieren Sie den Temperaturverlauf w\u00e4hrend der ersten 30 min in ein Koordinatensystem.
 - Lesen Sie aus der Grafik ab, welche Temperatur der Tee von Susanne um 6:15 Uhr erreicht hat.
- b) Susanne ist der Ansicht: "Der Tee ist zu heiß!" Ihre Mutter gießt um 6:10 Uhr kalten Apfelsaft in den Tee, aufgrund dessen die Temperatur um 11 °C fällt.
 - Erklären Sie, warum die folgende Grafik diesen Temperaturverlauf nicht korrekt beschreibt.

Der Tee ist zu heiß!

c) Der Tee von Samuel kühlt in seiner Tasse in 15 min von 90 °C auf 50,5 °C ab. Dieser Abkühlungsvorgang lässt sich durch folgende Funktion beschreiben:

$$g(t) = (g_A - g_U) \cdot e^{-k \cdot t} + g_U$$

- t ... Zeit nach Beobachtungsbeginn in min
- g_A ... Anfangstemperatur in °C
- ϑ_{U} ... Umgebungstemperatur in °C
- k ... Zeitkonstante des Abkühlungskörpers (Tasse) in min-1
- $\vartheta(t)$... Temperatur des Tees in °C t min nach Beobachtungsbeginn
- Berechnen Sie k.
- Erstellen Sie diejenige Funktionsgleichung, die die Temperatur des Tees in Abhängigkeit von der Zeit beschreibt.
- Erklären Sie die Bedeutung des Differenzialquotienten $\frac{d\theta(t)}{dt}$ in Bezug auf die Abkühlung.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Der Tee ist zu heiß!

Möglicher Lösungsweg

a)

Die Tasse Tee von Susanne hat nach 15 min eine Temperatur von ca. 59 °C erreicht.

Eine angemessene Ungenauigkeit beim Ablesen der Werte wird toleriert.

b) Aus der Grafik kann man ablesen, dass die Temperatur des Tees auf unter 24 °C fällt.

Auch andere, gleichwertige Argumentationen sind zulässig.

c)
$$50.5 = (90 - 24) \cdot e^{-k \cdot 15} + 24$$

 $\frac{26.5}{66} = e^{-k \cdot 15}$
 $\ln(\frac{26.5}{66}) = -k \cdot 15 \cdot \ln(e)$
 $k \approx 0.061 \text{ min}^{-1}$

$$\vartheta(t) = 66 \cdot e^{-0.061 \cdot t} + 24$$

Der Differenzialquotient $\frac{d\theta(t)}{dt}$ beschreibt die Abkühlungsgeschwindigkeit des Tees (momentane Temperaturänderung pro Minute) in der Tasse.

Der Tee ist zu heiß!

Klassifikation

□ Teil A ⊠ Teil B

Wesentlicher Bereich der Inhaltsdimension:

- a) 3 Funktionale Zusammenhänge
- b) 3 Funktionale Zusammenhänge
- c) 4 Analysis

Nebeninhaltsdimension:

- a) —
- b) —
- c) 2 Algebra und Geometrie

Wesentlicher Bereich der Handlungsdimension:

- a) A Modellieren und Transferieren
- b) D Argumentieren und Kommunizieren
- c) B Operieren und Technologieeinsatz

Nebenhandlungsdimension:

- a) C Interpretieren und Dokumentieren
- b) —
- c) C Interpretieren und Dokumentieren, A Modellieren und Transferieren

Schwierigkeitsgrad:

Punkteanzahl:

a) leicht

a) 2

b) mittel

b) 1

c) leicht

c) 3

Thema: Alltag

Quellen: -