

SEQUENCE LISTING

<110> Wang, Tongtong
Marnerakis, Margarita
Fanger, Gary R.
Vedvick, Thomas S.
Carter, Darrick
Watanabe, Yoshihiro
Henderson, Robert A.
Peckham, David W.
Fanger, Neil

<120> COMPOSITIONS AND METHODS FOR THE THERAPY
AND DIAGNOSIS OF LUNG CANCER

<130> 210121.455C16

<140> US
<141> 2001-06-28

<160> 467

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 315
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 236, 241
<223> n = A,T,C or G

<400> 1
gcagagacag actgggtggtt gaacctggag gtgcAAAAAA agccagctgc gggcccagga 60
cagctgccgt gagactcccg atgtcacagg cagtctgtgt ggttacagcg cccctcagtg 120
ttcatctcca gcagagacaa cggaggaggc tcccaccagg acggttctca ttatttatat 180
gttaatatgt ttgtaaaactc atgtacagt ttTTTGGGG gggaaAGCAAT gggaaANGTA 240
naaattacaa atagaatcat ttgctgtaat ccttaaatgg caaacggtca ggccacgtga 300
aaaaaaaaaaaa aaaaaa 315

<210> 2
<211> 380
<212> DNA
<213> Homo sapiens

<400> 2
attttaggctt aagattttgt ttacccttgt tactaaggag caaatttagta ttaaagtata 60
atatatataaa acaaatacaa aaagtttga gtgggtcagc ttttttattt ttttaatgg 120

cataacttt aacaacactg ctctgtaatg gggtgaactg tggtaactcg actgagataa 180
 ctgaaatgag tggatgtata gtgttatgc ataattatcc cactatgaag caaaggact 240
 ggataaaattc ccagtctaga ttatttagcct ttgttaacca tcaagcacct agaagaagaa 300
 ttattggaaa ttttgcctc tgtaactggc actttgggt gtgacttatac tttgccttt 360
 gtaaaaaaaa aaaaaaaaaa 380

<210> 3
 <211> 346
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 316, 317, 318, 322, 323, 326, 329, 330, 331, 336, 337, 339,
 340, 342, 343
 <223> n = A,T,C or G

<400> 3
 ttgttaagtat acaattttag aaaggattaa atgttattga tcattttact gaatactgca 60
 catcctcacc atacaccatc cactttccaa taacatttaa tcctttctaa aattgttaatg 120
 atacaatttg actttctttg gatttcata acaaataac catagactgt taattttatt 180
 gaagtttcct taatggaatg agtcattttt gtcttgct tttgaggtta cctttgcttt 240
 gacttccaac aatttgcata tatagtgtt agctgtggaa atctttaagt ttattctata 300
 gcaataattt ctattnnnag annccnggn naaaannann annaaa 346

<210> 4
 <211> 372
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 297, 306, 332
 <223> n = A,T,C or G

<400> 4
 actagtctca ttactccaga attatgctct tgtacctgtg tggctgggt tcttagtcgt 60
 tggtttgggtt tggtttttg aactggatg tagggtgggt cacagttcta atgtaagcac 120
 tctcttctcc aagttgtgct ttgtggggac aatcatttt tgaacattag agaggaaggc 180
 agttcaagct gttaaaaaga ctattgctta tttttgtttt taaagaccta cttgacgtca 240
 tgtggacagt gcacgtgcct tacgctacat cttgtttctt aggaagaagg ggtatgcnggg 300
 aaggantggg tgctttgtga tggataaaac gnctaaataa cacacctta cattttgaaa 360
 aaaacaaaaac aa 372

<210> 5
 <211> 698
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 8, 345, 422, 430, 433, 436, 438, 472, 481, 486, 515, 521,
 536, 549, 553, 556, 557, 559, 568, 593, 597, 605, 611, 613,
 616, 618, 620, 628, 630, 632, 634, 635, 639, 643, 647, 648,

649, 652, 654, 658, 664, 690
<223> n = A, T, C or G

<400> 5
actagtanga tagaaacact gtgtcccgag agtaaggaga gaagctacta ttgatttagag 60
cctaaccagg ttaactgca agaagaggcg ggatacttgc agctttccat gtaactgtat 120
gcataaagcc aatgttagtcc agtttctaaat atcatgttcc aagctaactg aatcccactt 180
caatacacac tcatgaactc ctgatggAAC aataacagggc ccaaggctgt ggtatgtat 240
gcacacttgc tagactcaga aaaaatacta ctctcataaaa tggttggag tattttgggt 300
gacaacctac ttgtcttggc tgagtgaagg aatgatattc atatnttcatttccat 360
gacatttagt tagtgctttt tatataccag gcatgtatgtc gagtgacact ttgtgtata 420
tntccaaatn ttngtncngt cgctgcacat atctgaaatc ctatattaag antttccaa 480
natgangtcc ctggttttc cacgccactt gatcngtcaa ngatctcacc tctgtntgtc 540
ctaaaacctn ctnctnnang gttagacngg acctctcttc tccctcccg aanaatnaag 600
tgtgngaaga nanccncncn cccccctncn tnccnnctng ccngctnnnc cncntgtng 660
qqqngccqcc cccqgqgggg gaccccccnn ttttcccc 698

<210> 6
<211> 740
<212> DNA
<213> Homo sapiens

```
<220>
<221> misc feature
<222> 82, 406, 426, 434, 462, 536, 551, 558, 563, 567, 582, 584,
592, 638, 651, 660, 664, 673, 675, 697, 706, 711, 715, 716,
717, 723, 724, 725, 733
<223> n = A, T, C or G
```

```
<400> 6
actagtcaaa aatgctaaaa taatttggga gaaaatattt tttaagtagt gttatagttt 60
catgtttatc ttttattatg tnttgtgaag ttgtgtcttt tcactaatta cctatactat 120
gccaatattt ccttataatct atccataaca tttatactac atttgtaaga gaatatgcac 180
gtgaaactta acactttata aggtaaaaat gaggtttcca agatttaata atctgatcaa 240
gttcttgtta tttccaaata gaatggactt ggtctgttaa ggggctaagg gagaagaaga 300
agataagggtt aaaagttgtt aatgacccaa cattctaaaa gaaatgc当地 aaaaaattt 360
tttcaagcc ttcaagactat ttaaggaaag caaaatcatt tcctanatgc atatcatgg 420
tgagantttc tcantaatat cctgaatcat tcatttcagc tnaggcttca tggactcg 480
atatgtcattc tagggaaagt ctatttcattt gtccaaacct gttgccatag ttggtnaggc 540
tttcctttaa ntgtgaanta ttnacangaa atttcttctt tnanagttct tnatagggtt 600
aggggtgtgg gaaaagcttca taacaatctg tagtgttncg tggatctgt ncagaaccan 660
aatnacggat cgnangaagg actgggtcta tttacangaa cgaatnatct ngttnnntgt 720
gttnncaact ccngggagcc 740
```

<210> 7
<211> 670
<212> DNA
<213> Homo sapiens

```
<220>
<221> misc_feature
<222> 265, 268, 457, 470, 485, 546, 553, 566, 590, 596, 613, 624,
639, 653, 659, 661
<223> n = A, T, C or G
```

<400> 7

gctggggagc tcggcatggc ggtccccgt gcagccatgg ggccctcgcc gttgggccag 60
 agcggccccc gctcgatggc cccgtggtgc tcagtgagca gcggcccgtc gcgctacgtg 120
 cttggatgc aggagctgtt cggggccac agcaagaccg cgagttctg ggcacagcg 180
 ccaagggtgca ctgggtggcc tggagttgc acgggcgtcg cctacctcg ggtcttcgac 240
 aagacgccac gtcttcttgc tgganaanga ccgttgtca aagaaaacaa ttatcgggga 300
 catgggata gtgtggacca ctttgttgc atccaagtaa tcctgaccta tttgttacgg 360
 cgtctggaga taaaaccatt cgcattctggg atgtgaggac tacaaaatgc attgccactg 420
 tgaacactaa aggggagaac attaatatct gctggantcc tgatggcan accattgctg 480
 tagcnacaag gatgatgtgg tgactttatt gatgccaaga aaccccggtc caaagcaaaa 540
 aaacanttcc aanttcgaag tcaccnaaat ctcttggAAC aatgaacatn aatatnttct 600
 tcctgacaat ggncccttggg tgtntcacat cctcagctnc cccaaaactg aancctgtnc 660
 natccacccc 670

<210> 8

<211> 689

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 253, 335, 410, 428, 448, 458, 466, 479, 480, 482, 483, 485,
 488, 491, 492, 495, 499, 500, 502, 503, 512, 516, 524, 525,
 526, 527, 530, 540, 546, 550, 581, 593, 594, 601, 606, 609,
 610, 620, 621, 622, 628, 641, 646, 656, 673

<223> n = A,T,C or G

<400> 8

acttagtatct aggaatgaac agtaaaagag gagcagttgg ctacttgatt acaacagagt 60
 aaatgaagta ctggatttgg gaaaaacctgg ttttattaga acatatggaa taaaaggcta 120
 cacctagcat tgcctactta gccccctgaa ttaacagacg ccaattgaga caaacccctg 180
 gcaacaggaa attcaaggaa gaaaaagtaa gcaacttggg ctaggatgag ctgactccct 240
 tagagcaaag ganagacacg ccccattacc aaataccatt tttgccttgg gcttgcag 300
 ctggcagtgt tcctgccccca gcatggcacc ttatngttt gatagcaact tcgttgaatt 360
 ttccaccaact tattacttga aattataata tagcctgtcc gtttgctgtt tccaggctgt 420
 gatatatntt cctagtggtt tgactttnaa aataaatnag gtttattttt ctccccccnn 480
 cnntnctncc nntcnctnnn cnntcccccc cnctcngtcc tccnnnnntn gggggggccn 540
 cccccncggn ggacccccc ttggtccctt agtggaggtt natggccctt ggnnttatcc 600
 nggccntann ttccccctn nnnaatgnntt cccctccca ntcccnccac ctcaanccgg 660
 aagcctaagt ttntaccctg ggggtcccc 689

<210> 9

<211> 674

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 602, 632, 639, 668

<223> n = A,T,C or G

<400> 9

gtccactctc ctttgcgtt actgtcttac tgtgcactct gttttcaac tttcttagata 60

```
aaaaaaaaatgc ttgttctata gtggagtaag agtcacaca cccaaggcag caagataact 120
gaaaaaaagcg agcttttt gccaccctgg taaaggccag ttcaactgcta tagaactgct 180
ataagcctga aggaaagtag ctatgagact ttccatttt cttagttctc ccaatagct 240
ccttcatgga aaaaggcttc ctgtataaat tttcacctaa tgaatttagca gtgtgattat 300
ttctgaaata agagacaat tgggccgcag agtcttcctg tgatttaaaa taaacaaccc 360
aaagtttgtt ttggcttca ccaaaggaca tactctaggg ggtatgttgt tgaagacatt 420
caaaaacatt agctgttctg tctttcaatt tcaagttatt ttggagactg cctccatgtg 480
agttaattac ttgcctctgg aactagcatt attgtcatta tcacacatt ctgtcatcat 540
catctgaata atattgtgga tttccccctc tgcttgcatc ttctttgac tcctctggaa 600
anaaatgtca aaaaaaaaaagg tcgatctact cngcaaggnc catctaataca ctgcgctgg 660
aggaccnct gccc 674
```

```
<210> 10  
<211> 346  
<212> DNA  
<213> Homo sapiens
```

```
<220>
<221> misc_feature
<222> 320, 321, 322, 325, 326, 328, 329, 330, 332, 333, 334, 335,
      342
<223> n = A,T,C or G
```

```
<400> 10
actagtcgtc tgatagaaaag cactatacat cctattgtt ctttcttcc aaaatcagcc 60
ttctgtctgt aacaaaaatag tactttatag agatggagga aaaggctaa tactacatag 120
ccttaagtgt ttctgtcatt gttcaagtgt attttctgtt acagaaaacat atttggaaatg 180
tttttctttt ccccttataaa attgttaattc ctgaaataact gctgtttaa aaagtcccac 240
tgtcagatta tattatctaa caattgaata ttgttaatat acttgtctta cctctcaata 300
aaaaggtaact ttcttatttt nnagnngnnn gnnnnataaaa anaaaaa 346
```

```
<210> 11  
<211> 602  
<212> DNA  
<213> Homo sapiens
```

```
<400> 11
actagaaaa agcagcattg ccaaataatc cctaatttc cactaaaaat ataatgaat 60
gatgttaagc ttttgaaaaa gtttaggtt aacctactgt tgtagatta atgtatttgt 120
tgttccctt tatctggaat gtggcattag ctttttatt ttaaccctct ttaattctta 180
ttcaattcca tgacttaagg ttggagagct aaacactggg atttttggat aacagactga 240
cagtttgca taattataat cgccattgtt catagaaagg atatggctac cttttgttaa 300
atctgcactt tctaaatatc aaaaaaggga aatgaagtt taaatcaatt tttgtataat 360
ctgtttgaaa catgagttt attgctta tattagggt ttgcccccctt tctgtaaatgc 420
tcttggatc ctgtgtagaa ctgttctcat taaacaccaa acagttaaat ccattctctg 480
gtactagctt caaattccgtt ttcatattct acttaacaat ttaaataaac taaaatattt 540
cttagatggtc tacttctgtt catataaaaa caaaacttga tttccaaaaaaa aaaaaaaaaa 600
aa
aa
```

<210> 12
<211> 685
<212> DNA
<213> Homo sapiens

```

<220>
<221> misc_feature
<222> 170, 279, 318, 321, 322, 422, 450, 453, 459, 467, 468, 470,
473, 475, 482, 485, 486, 491, 498, 503, 506, 509, 522, 526,
527, 528, 538, 542, 544, 551, 567, 568, 569, 574, 576, 582,
587, 588, 589, 590, 592, 593, 598, 599, 603, 605, 608
<223> n = A,T,C or G

<221> misc_feature
<222> 633, 634, 635, 644, 646, 648, 651, 655, 660, 662, 663, 672,
674, 675, 682, 683
<223> n = A,T,C or G

<400> 12
actagtccctg tgaaagtaca actgaaggca gaaagtgtta ggatttgca tctaattgttc 60
attatcatgg tatttatggc cctaagaaaa taaaatttag actaagcccc caaataagct 120
gcacatgtt gtaacatgtat tagtagattt gaatatatag atgtatgtatn ttgggtatct 180
aggtgtttta tcattatgtt aaggaattaa agttaaaggac tttgtatgtt ttttttattaa 240
atatacgatata agtagatgtc aaaaatatacg caaaaatana aactaaaggat agaaaaggcat 300
tttagatatg ccttaatnta nnaactgtgc caggtggccc tcggaataga tgccaggcag 360
agaccagtgc ctgggtggc cctcccttg tctggccccc tgaagaacct ccctcacgtg 420
angtagtgc ctcgttaggtg tcacgtggan tantgganc aggccgnnc gtnanaagaa 480
ancanngtga nagtttcncc gtngangcng aactgtccct gngccnnnac gctcccanaa 540
cntntccat ngacaatcga gtttccnnnc tccngnaacc tngccgnnnn cnngccnnnc 600
cantntgnta accccgcgcc cggatcgctc tcnnntcgtt ctncncnnaa ngggnttcn 660
cnncgcgcgt cnccnccccc cnnc 685

<210> 13
<211> 694
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 503, 546, 599, 611, 636, 641, 643, 645, 656, 658, 662, 676,
679, 687
<223> n = A,T,C or G

<400> 13
caactgtcac tcatttagcgt tttcaatagg gctcttaagt ccagtagatt acgggttagtc 60
agttgaccaa gatctggttt acaagaacta attaaatgtt tcattgcatt tttgtaaagaa 120
cagaataatt ttataaaatgt tttgtatgtt ataattgcgg aaaataattt aaagacactt 180
tttctctgtg tgtgcaaatgt tttgtttgtg atccattttt tttttttttt taggacacct 240
gtttactagc tagcttaca atatgc当地 aaaggatttc tccctgaccc catccgttgt 300
tcaccctctt ttccccccat gcttttgcctt ctagttata acaaaggaaat gatgatgatt 360
taaaaaatgt ttctgtatct tcagttatctt ggtcttccag aaccctctgg ttggaaaggg 420
gatcatttt tactggtcat ttccctttgg agtgtactac tttaacagat ggaagaact 480
cattggccat ggaaacagcc gangtgttgg gagcagcag tgcacatggcact cgtccggcat 540
ctggcngtcat tggctggct gccgtcatgt tcagcacatg gccatggac atggggaaana 600
ctgactgcac ngccaatgtt tttcatgaag aatacngcat ncncngtcat cacgtnancc 660
angacgctat ggggncana gggccanttg cttc 694

<210> 14
<211> 679

```

<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 29, 68, 83, 87, 94, 104, 117, 142, 145, 151, 187, 201, 211,
226, 229, 239, 241, 245, 252, 255, 259, 303, 309, 359, 387,
400, 441, 446, 461, 492, 504, 505, 512, 525, 527, 533, 574,
592, 609, 610, 618, 620, 626, 627, 633, 639, 645, 654
<223> n = A,T,C or G

<400> 14
cagccgcctg catctgtatc cagcgccang tccccccagt cccagctgcg cgccgggggg 60
agtcccgncac ccgttccggcc cangctnagt tagncctcac catncccggtc aaaggangca 120
ccaagtgcac caaatacactg cngtncggat ntaaattcat cttctgggtt gccgggattg 180
ctgtccntgc cattggacta nggctccgat ncgactctca gaccanganc atcttcganc 240
naganactaa tnatnattnt tccagcttct acacaggagt ctatattctg atccggatccg 300
gcncctcnt gatgctggtg ggcttcctga gctgctgcgg ggctgtgcaa gagtcccant 360
gcatgctggg actgttcttc ggcttcntct tggtgatatn cgcattgaa atacctgcgg 420
ccatctgggg atattccact ncgatnatgt gattaaggaa ntccacggag ttttacaagg 480
acacgtacaa cnacctgaaa accnnngatg ancccccaccc ggaancnctg aangccatcc 540
actatgcgtt gaactgcaat gtttggctg gggnccttga acaatttaat cncatacatc 600
tggcccccann aaaggacntn ctcgannct tcnccgtyna attcngttct gatnccatca 660
cagaagtctc gaacaatcc 679

<210> 15
<211> 695
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 105, 172, 176, 179, 189, 203, 212, 219, 221, 229, 231, 238,
242, 261, 266, 270, 278, 285, 286, 298, 311, 324, 337, 350,
363, 384, 391, 395, 405, 411, 424, 427, 443, 448, 453, 455,
458, 463, 467, 470, 479, 482, 484, 493, 499, 505, 518
<223> n = A,T,C or G

<221> misc_feature
<222> 520, 523, 531, 540, 584, 595, 597, 609, 611, 626, 628, 651,
652, 657, 661, 665, 669, 672, 681, 683, 691, 693
<223> n = A,T,C or G

<400> 15
actagtggat aaaggccagg gatgctgctc aaccccttac catgtacagg gacgtctccc 60
cattacaact acccaatccg aagtgtcaac tgtgtcagga ctaanaaaccc ctgttttga 120
ttaaaaaaagg gcctgaaaaaa agggggagcca caaatctgtc tgcttcntca cttttttttt 180
tggcaaatna gcatttcgtc tcnttggctg cngcctcanc ncaaaaaanc ngtactcnat 240
cngggccagg aatacatctc ncaatnaacn aaattganca aggcnnntggg aaatgccnga 300
tgggattatc ntccgcttgt tgancattca agtttcnttc ctttcattcn accctgcccag 360
ccnagttctg tttagaaaaat ggcngaaatc naacnccgggt ttttttttttactc ngtattttaga 420
tctncanaaa cttccgtggcc acnattcnaa ttnanggnca cgnacanatn ccttccatna 480
ancncacccc acnnttgana gccangacaa tgactgcntn aantgaaggc ntgaaggaan 540
aactttgaaa ggaaaaaaaaa ctttggttcc ggcgccttcc aacncttctg tggtnancac 600

tgccctctng naaccctgga agcccngnga cagtgttaca tgggtttcta nnAACNGAC 660
 ncttnaatnt cnatttccc nanaacgatt ncnc 695

<210> 16
 <211> 669
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 299, 354, 483, 555, 571, 573, 577, 642, 651, 662, 667
 <223> n = A,T,C or G

<400> 16
 cgccgaagca gcagcgcagg ttgtccccgt ttcccctccc cttcccttc tccgggtgcc 60
 ttcccgggcc ctttacactc cacagtcccg gtcccgccat gtcccagaaa caagaagaag 120
 agaaccctgc ggaggagacc ggcgaggaga agcaggacac gcaggagaaa gaaggtattc 180
 tgcctgagag agctgaagag gcaaagctaa aggccaaata cccaagccta ggacaaaagc 240
 ctggaggctc cgacttcctc atgaagagac tccagaaagg gcaaaaagtc tttgactcng 300
 gagactacaa catggccaaa gccaaatcga agaataagca gctgccaagt gcangaccag 360
 acaagaacct ggtgacttgtt gatcacatcc ccacccaca ggatctgcc agagaaagtc 420
 ctcgctcggtc accagcaagc ttgcgggtgg ccaagttgaa tgatgctgcc gggctctgc 480
 canatctgag acgctccct ccctggccca cccgggtctt gtgctggcct ctgcccttcc 540
 tgctttgca gccangggc aggaagtggc ncnggtngt gctggaaagc aaaacccttt 600
 cctgttgggtg tcccacccat ggagccctg gggcgagccc angaacttga nccttttgt 660
 tntcttncc 669

<210> 17
 <211> 697
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 33, 48, 50, 55, 59, 60, 76, 77, 78, 90, 113, 118, 130, 135,
 141, 143, 150, 156, 166, 167, 170, 172, 180, 181, 190, 192,
 194, 199, 201, 209, 212, 224, 225, 226, 230, 233, 234, 236,
 242, 244, 251, 253, 256, 268, 297, 305, 308, 311, 314
 <223> n = A,T,C or G

<221> misc_feature
 <222> 315, 317, 322, 324, 327, 333, 337, 343, 362, 364, 367, 368,
 373, 384, 388, 394, 406, 411, 413, 423, 429, 438, 449, 450,
 473, 476, 479, 489, 491, 494, 499, 505, 507, 508, 522, 523,
 527, 530, 533, 535, 538, 539, 545, 548, 550, 552, 555
 <223> n = A,T,C or G

<221> misc_feature
 <222> 562, 563, 566, 568, 572, 577, 578, 580, 581, 591, 594, 622,
 628, 632, 638, 642, 644, 653, 658, 662, 663, 665, 669, 675,
 680, 686, 689
 <223> n = A,T,C or G

<400> 17

gcaagatatg gacaactaag tgagaaggta atnctctact gctctagntn ctccnggcnn 60
 gacgcgctga ggagannac gctggccan ctgcggcca cacacggga tcntggtnat 120
 gcctgcccnn gggancnnca ncncctggan cccatntcac acccggnncn tncgcccacn 180
 ncctggctcn cnccngcceng nccagctcnc gncccttc gccnnctcn ttncntctc 240
 cnccnccctcc ncnaacnacct cttaccnccg gctccctccc cagccccccc ccgcaancct 300
 ccacnacncc ntcnnncnca ancncnctc gcncnctc cccnccctt gccccccg 360
 cnccnacnncc cgntcccccg cgcncgcngc ctcnccctt cccacnacag ncncacccgc 420
 agncacgcnc tccgcccnc gacgccccnn cccggcgcc tcacccat ggnccnacng 480
 ccccgctcnc ncncnctcnc gccgnccnnng cgcggcgcc cnccngtn cnccnccnng 540
 cccngcngn angcngtgcg cnncangncc gngccgnncn ncaccctccg ncncngccc 600
 cggccgctgg gggctcccgc cnccggnntc antcccncc cntncgcca ctntccgntc 660
 cnncnctcnc gctcngcgn 697

<210> 18
 <211> 670
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 234, 292, 329, 437, 458, 478, 487, 524, 542, 549, 550, 557,
 576, 597, 603, 604, 646, 665
 <223> n = A,T,C or G

<400> 18
 ctctgtgtaaa ggggtgcagta cctaagccgg agcggggtag aggcggggccg gcacccctt 60
 ctgaccccca gtgccggccgg cctcaagatc agacatggcc cagaacttga acgacttggc 120
 gggacggctg cccgcggggc cccggggcat gggcacggcc ctgaagctgt tgctggggc 180
 cggcgccgtg gcctacggtg tgcgcgaatc tgtttcacc gtggaaaggcg ggncnagagc 240
 catcttcttc aatcgatcg gtggagtgcg caggacacta tcctggggc anggcattca 300
 cttcaggatc ttgggttcca gtacccanc atctatgaca ttccggccag acctcgaaaa 360
 aatctcttc ctacaggctc caaagaccta cagatggta atatctccct gcgagtgttq 420
 tctcgaccaa tgctcangaa cttcctaaca tgttccancg cctaagggt ggactacnaa 480
 gaacgantgt tgccgtccat tgtcacgaag tgctcaagaa tttnngtggc caagttcaat 540
 gncctcacnn ctgatcnccc agcggggcca agttancct gggtgatccc cggganctg 600
 acnnaaaagg gccaaggact tccctcatc ctggataatg tggccntcac aaagctcaac 660
 ttanccacc 670

<210> 19
 <211> 606
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 506
 <223> n = A,T,C or G

<400> 19
 actagtgcac acctcagctc ccaggccagt tctctgaatg tcgaggagtt ccaggatctc 60
 tggcctcagt tgcccttggg tattgtggg ggacaaattt gggatggcc gaggcccgag 120
 tgtcgccttg gctcaactgt gttgatttg tctgtgccc gaaagtggg catcattcgt 180
 ccaggctgtg ccctgaaag tactacagcc atcctccaac agaagtacgg actgctcccc 240
 tcacatgcgt cctaccgtg aaactctggg aagcaggaag gcccagacc tggtgctgga 300

tactatgtgt ctgtccactg acgactgtca aggccctcatt tgcataggcc accggagcta 360
 gggcactagc ctgacttttta aggcagtgtg tctttcttag cactgttagac caagcccttg 420
 gagctgctgg tttagccttg cacctgggaa aaggatgtat ttatgttat tttcatatat 480
 cagccaaaag ctgaatggaa aagttnagaa cattccttagg tggccttatt ctaataagtt 540
 tcttcgtct gttttgtttt tcaattgaaa agttattaaa taacagattt agaatctagt 600
 gagacc 606

<210> 20
 <211> 449
 <212> DNA
 <213> Homo sapiens

<400> 20
 actagtaaac aacagcagca gaaacatcag tatcagcagc gtcgccagca ggagaatatg 60
 cagcgccaga gccgaggaga acccccgcgc cctgaggagg acctgtccaa actttcaaa 120
 ccaccacagc cgccctgcccag gatggactcg ctgctcattt caggccagat aaacacttac 180
 tgccagaaca tcaaggagtt cactgccccaa aacttaggca agctcttcat ggcccaggct 240
 cttcaagaat acaacaacta agaaaaggaa gtttccagaa aagaagtta catgaactct 300
 tgaagtccaca ccagggcaac tcttggaga aatatattt catattgaaa agcacagagg 360
 atttctttag tgtcattgcc gattttggct ataacagtgt ctttcttagcc ataataaaat 420
 aaaacaaaat ctgactgct tgctcaaaa 449

<210> 21
 <211> 409
 <212> DNA
 <213> Homo sapiens

<400> 21
 tatcaatcaa ctggtaata attaaacaat gtgtgggtg atcatacaaa gggtaaccact 60
 caatgataaa aggaacaacg tgcctataatg tggacaaca tggatgcatt tcagaaactt 120
 tatgttgagt gaaagaacaa acacggagaa catactatgt ggttcttctt atgttaacatt 180
 acagaaataa aaacagaggc aaccacctt gaggcagtat ggagtggat agactggaaa 240
 aaggaaggaa ggaaactcta cgctgttgc aatgtctgtg tcttcatgg gtggtagtta 300
 tgtgggata tacatttgc aaaatttttta gaactatata ctaaagaact ctgcatttttta 360
 ttggatgta aataatacct caattaaaaa gacaaaaaaaaaaaaaaaaa 409

<210> 22
 <211> 649
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 263, 353, 610, 635, 646
 <223> n = A,T,C or G

<400> 22
 acaattttca ttatcttaag cacattgtac atttctacag aacctgtgat tattctcgca 60
 tgataaggat ggtacttgca tatggtaat tactactgtt gacagttcc gcagaaatcc 120
 tatttcgtg gaccaacatt gtggcatggc agcaaattgc aacattttgtt ggaatagcag 180
 caaatctaca agagaccctg gttggttttt cgttttgtt tctttgtttt ttcccccttc 240
 tcctgaatca gcagggatgg aangagggtt gggaaagttttaatgttcc ttccagtagt 300
 agctctgaag tgtcacattt aatatcgtt ttttttaaac atgattcttag ttnaatgttag 360
 aagagagaag aaagagggaaatgttactttttaatacac tgatttagaa atttgcatttgc 420

ttatatcagt agttctgagg tattgatagc ttgccttatt tctgcctta cgttgacagt 480
 gttgaagca ggtgaataac taggggcata tatattttt tttttgtaa gctgttcat 540
 gatgtttct ttggaatttc cggataaggc cagaaaaaca tctgcatgtt gttatctagt 600
 ctgaagttcn tatccatctc attacaacaa aaacncccag aacggntg 649

<210> 23
 <211> 669
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 642, 661
 <223> n = A,T,C or G

<400> 23

actagtgcc tactggctga aatccctgca ggaccaggaa gagaaccagt tcagactttg 60
 tactctcagt caccagctct gaaatttagat aaattccttg aagatgtcag gaatggatc 120
 tattcctctga cagcctttgg gctgcctcg ccccagcgc cacagcagga ggaggtgaca 180
 tcacacctcg tgccccctc tgtcaagact ccgacacctg aaccagctga ggtggagact 240
 cgcaagggtgg tgctgatgca gtgcaacatt gagtcgggtgg aggagggagt caaacaccac 300
 ctgacacttc tgctgaagtt ggaggacaaa ctgaaccggc acctgagctg tgacactgatg 360
 ccaaattgaga atatccccga gttggcggtc gagctgggtc agctgggctt cattagttag 420
 gctgaccaga gccgggttgac ttctctgcta gaagagactt gaacaaggta aattttgcca 480
 ggaacagtac cctcaactca gccgctgtca ccgtctcctc ttagagctca ctggggccag 540
 gcccctgatct gcgctgtggc tgcctggac gtgctgcacc ctctgtcctt ccccccagtc 600
 agtattacct gtgaagccct tccctcctt attattcagg anggctgggg gggctccttg 660
 nttctaacc 669

<210> 24
 <211> 442
 <212> DNA
 <213> Homo sapiens

<400> 24

actagtacca tcttgacaga ggatacatgc tcccaaaacg tttgttacca cactaaaaaa 60
 tcactgcccattt cattaagcat cagttcaaa attatagcca ttcatgattt actttttcca 120
 gatgactatc attattcttag tccttgaat ttgttaagggg aaaaaaaaaaca aaaacaaaaaa 180
 cttacgatgc actttctcc agcacatcag atttcaaatt gaaaattaaa gacatgctat 240
 ggtaatgcac ttgcttagtac tacacacttt ggtacaacaa aaaacagagg caagaaacaa 300
 cggaaagaga aaagccttcc tttgttggcc cttaaaactga gtcaagatct gaaatgtaga 360
 gatgatctct gacgatacct gtatgttctt attgtgtaaa taaaattgct ggtatgaaat 420
 gacctaaaaaa aaaaaaaaaaaaaga aa 442

<210> 25
 <211> 656
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 330, 342, 418, 548, 579, 608
 <223> n = A,T,C or G

<400> 25
tgcaagtacc acacactgtt tgaattttgc acaaaaagtg actgtaggat caggtgatag 60
ccccggaatg tacagtgtct tggtgtcacca agatgccttc taaaggctga cataccttgg 120
accctaattgg ggcagagagt atagccctag cccagtggtg acatgaccac tccctttggg 180
aggcctgagg tagaggggag tggtagtgtt tttctcagtg gaagcagcac atgagtgggt 240
gacaggatgt tagataaagg ctctagttag ggtgtcattt tcatttgaga gactgacaca 300
ctcctagcgag ctggtaaagg ggtgctggan gccatggagg anctctagaa acattagcat 360
gggctgatct gattacttcc tggcatcccg ctcaattttt tggaaagtct tatttagangg 420
atgggacagt tttccatatac cttgtgtgg agctctggaa cactctctaa attttccctct 480
ataaaaaaatc actgcctcaa ctacacttcc tccttgaagg aatagaaaatg gaactttctc 540
tgacatantt ctggcatgg ggagccagcc acaaatgana atctgaacgt gtccagggtt 600
ctcctganac tcatactacat agaattgggtt aaaccctccc ttggaataag gaaaaaa 656

<210> 26
<211> 434
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 395
<223> n = A,T,C or G

<400> 26
actagttcag actgccacgc caaccccaaga aaataacccca catgccagaa aagtgaagtc 60
ctaggtgttt ccatctatgt ttcaatctgt ccatctacca ggcctcgcga taaaaacaaa 120
acaaaaaaaaac gctgccaggt tttagaagca gttctggctt caaaaccatc aggatcctgc 180
caccagggtt cttttgaaat agtaccacat gtaaaaggaa atttggctt cacttcatct 240
aataactgaa ttgtcaggct ttgattgata atttagaaaa taatggatct tctgtgtgg 300
gaataagtta taatcgttat tcatactcttt gtttttgc actctttctt ctctaattgt 360
gtcatttgcgat ctgtttgaaa aatatttctt ctatnaaattt aaactaacct gccttaaaaa 420
aaaaaaaaaaa aaaa 434

<210> 27
<211> 654
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 505, 533, 563, 592, 613, 635, 638
<223> n = A,T,C or G

<400> 27
actagtccaa cacagtccaga aacattgttt tgaatcctct gtaaaaccaag gcattaatct 60
taataaaacca ggatccattt aggtaccact tgatataaaa aggatatcca taatgaatat 120
tttatactgc atcctttaca tttagccacta aatacgttat tgcttgatga agacctttca 180
cagaatcccta tggattgcag catttcactt ggctacttca tacccatgcc ttaaagaggg 240
gcagttctc aaaagcagaa acatgccgcc agttctcaag ttttccctt aactccattt 300
gaatgttaagg gcagctggcc cccaatgtgg ggaggtccga acatttctg aattccattt 360
ttcttgcgtt cggctaaatg acagttctg tcattactta gattccgatc tttcccaaag 420
gtgttgattt acaaagggc cagctaatacg cagaaatcat gaccctgaaa gagagatgaa 480
attcaagctg tgagccagcc agganctcag tatggcaaag gtcttgagaa tcngccattt 540
ggtacaaaaaa aaattttaaa gcntttatgt tataccatgg aaccatagaa angcaaggg 600

aattgttaag aanaattta agtgtccaga cccanaanga aaaaaaaaaaaa aaaa 654

<210> 28

<211> 670

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 101, 226, 274, 330, 385, 392, 397, 402, 452, 473, 476, 532, 534, 538, 550, 583, 595, 604, 613, 622, 643, 669

<223> n = A,T,C or G

<400> 28

cgtgtgcaca tactgggagg atttccacag ctgcacggc acagccctta cgattgcca 60
 ggaaggggcg aaagatatgt gggataaact gagaaaagaa nccaaaaacc tcaacatcca 120
 aggccagctt ttcgaactct gcggcagcgg caacggggcg ggggggtccc tgctccggc 180
 gttcccggtg ctccctgggt ctctctcgcc agcttagcg acctgnctt ccttctgagc 240
 gtggggccag ctccccccgc ggcgccacc cacnctact ccatgctcc gaaatcgag 300
 aggaagatca tttagttctt gggacgttn gtgattctt gtgatgctga aaaacactca 360
 tatagggaat gtggaaatc ctgancttt tnttatntcg tntgattct ttttttat 420
 ttgccaaat gttaccaatc agtgaccaac cnagcacagc caaaaatcg acntcngctt 480
 tagtccgtct tcacacacag aataagaaaa cggcaaacc accccactt tnattnat 540
 tattactaan tttttctgt tggcaaaag aatctcagga acngccctgg ggccncgta 600
 ctanagttaa ccnagctagt tncatgaaaa atgatggct ccnccctaat gggaaagcca 660
 agaaaaagnc 670

<210> 29

<211> 551

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 336, 474, 504, 511, 522, 523, 524, 540, 547

<223> n = A,T,C or G

<400> 29

actagtccctc cacagcctgt gaatccccct agaccttca agcatagtga gcggagaaga 60
 agatctcagc gtttagccac cttacccatg cctgatgatt ctgtagaaaa gtttcttct 120
 ccctctccag ccactgtatgg gaaagtattc tccatcatgtt ctcaaaatca gcaagaatct 180
 tcagtaccag aggtgcctga tggcacat ttgcacttg agaagctggg accctgtctc 240
 cctcttgact taagtctgg ttcagaagtt acagcacgg tagcctcaga ttcttcttac 300
 cgtaatgaat gtcccaggc agaaaaagag gatacnaga tgcttccaaa tccttcttcc 360
 aaagcaatag ctgatggaa gaggagctcc agcagcagca ggaatatcgaa aacagaaaa 420
 aaaagtgaaa ttggaaagac aaaagctcaa cagcatttg taaggagaaa aganaagatg 480
 aggaaggaag agagaagaga gacnaagatc nctacggacc gnnncgaaag aagaagaagn 540
 aaaaaanaaa a 551

<210> 30

<211> 684

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> 545, 570, 606, 657, 684

<223> n = A, T, C or G

<400> 30

actagttcta	tctggaaaaa	gcccgggttgc	gaagaagctg	tggagagtgc	gtgtcaatgc	60
cgagactcat	ttcttggaaag	catccctggc	aaaaatgcag	ctgagtaaaa	ggttatcaact	120
gtgatagaac	ctggactgct	tttgagata	atagagatgc	tgcagtcgt	agagacttcc	180
agcacccctc	agttgaatga	attaatgatg	gcttcgttgt	caactttact	ggctcaggaa	240
ccacgagaga	tgactgcaga	tgttatcgag	cttaaaggaa	aattcctcat	caacttagaa	300
gggtgtgata	ttcgtgaaga	gtcttcctat	aaagtaatttgc	tcatgccac	tacgaaagaa	360
aaatgcccc	gttggggaa	gtatacagcg	ggagtcattca	gatacactgt	gtcctcgatgt	420
tgcagaagtt	gtcagtggaa	aaatagtatt	aacagctcac	tgcagcaaga	accctctgt	480
cagttactgg	ctagaagttt	ggatggatta	tttacaatat	aggaaagaaa	gccaagaatt	540
aggtnatgag	ttgatgagta	aatgggtggan	gatggggaaat	tcaaattcaga	attatggaaag	600
aagttnttcc	tgttactata	gaaagaatt	atgtttatt	acatgcagaa	aatatanatg	660
tqtqgtgtgt	accgtggatg	gaan				684

<210> 31

211 <211> 654

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> 326, -582, 651

<223> n = A, T, C or G

<400> 31

```

gcgcagaaaa ggaaccaata tttcagaaac aagcttaata ggaacagctg cctgtacatc 60
aacatcttct cagaatgacc cagaagttat catcgctggg gctggcgtgc ttggctctgc 120
tttggcagct gtgtttcca gagatggaag aaagggtgaca gtcattgaga gagacttaaa 180
agagccgtac agaatagttt gagaattcct gcagccgggt gtttatcatg ttctcaaaga 240
ccttggcttt ggagatacacag tggaaaggct tgatgcccag gttgtaaatg gttacatgat 300
tcatgtatcag gggaaagcaaa tcagangttc agattcctta ccctctgtca gaaaacaatc 360
aagtgcagag tggaaagagct ttccatcacg gaagattcat catgagtctc cgaaaaagcag 420
ctatggcaga gcccaatgca aagtttattt aagggttgtt gttacagttt ttagaggaag 480
atgatgttgtt gatgggagtt cagtacaagg ataaagagac tgggagatat caaggaactc 540
catgctccac tgactgttgt tgcagatggg cttttctcca anttcaggaa aagcctggtc 600
tcaataaaat ttctgtatca ctcatgggt tqqcttctta tqaqaatqc nccc 654

```

<210> 32

<211> 673

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> 376, 545, 627

<223> n = A, T, C or G

<400> 32

actagtqaaq aaaaqaaaaat tctqatacgg gacaaaaatg ctcttcaaaa catcattctt 60

tatcacctga caccaggagt tttcatttga aaaggatttg aacctgggt tactaacatt 120
 ttaaagacca cacaaggaag caaaatctt ctgaaaagaag taaatgatac acttctggtg 180
 aatgaattga aatcaaaga atctgacatc atgacaacaa atggtgtaat tcatacgta 240
 gataaactcc tctatccagc agacacacact gttgaaatg atcaactgct ggaataactt 300
 aataaattaa tcaaatacat ccaaattaag tttgttcgtg gtagcaccct caaagaaatc 360
 cccgtgactg tctatnagcc aattattaaa aaatacacca aaatcattga tggagtgcc 420
 tggggaaat aactgaaaaa gagaccgaga agaacgaatc attacagtc ctgaaataaa 480
 ataccttagga tttctactgg aggtggagaa acagaagaac tctgaagaaa ttgttacaag 540
 aagangtccc aaggtcacca aattcattga aggtgggtat ggtcttatt tgaagatgaa 600
 gaaattaaaaa gacgcattcag ggagacnccc catgaaggaa ttgccagcca caaaaaaatt 660
 cagggattag aaa 673

<210> 33
<211> 673
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 325, 419, 452, 532, 538, 542, 571, 600, 616, 651, 653, 672
<223> n = A,T,C or G

<400> 33
actagttatt tacttcctc cgcttcagaa gggtttcag actgagagcc taagcatact 60
ggatctgtt tttctttgg gtctcacctc atcagtgtgc atagtggcag aaattataaa 120
gaaggttcaa aggagcaggg aaaagatcca gaagcatgtt agttcgacat catcatctt 180
tcttgaagta tgatgcataat tgcattatt tatttgc当地 cttaggaattt cagtcgtagg 240
atcatattttaga agggcaagtt caagaggata tgaagattt agaactttt aactattcat 300
tgactaaaaa tgaacattaa tggtnaagac ttaagactt aacctgtgg cagtc当地 360
tgaatttatg caactttgat atcatattcc ttgattt当地 ttgggcttt gtgattgant 420
gaaactttat aaagcatatg gtcagttt当地 tnattaaaaa ggcaaaacctt gaaccacctt 480
ctgcacttaa agaagtctaa cagtc当地 acctatctat ctttagatgga tntatttntt 540
tntattttta aatattgtac tattttatgat nggtggggct ttcttactaa tacacaaatn 600
aatttatcat ttcaangca ttcttatttgg gtttagaagt tgattccaag nantgcatat 660
ttcgctactg tnt 673

<210> 34
<211> 684
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 414, 472, 480, 490, 503, 507, 508, 513, 523, 574, 575, 598,
659, 662, 675
<223> n = A,T,C or G

<400> 34
actagtttat tcaagaaaag aacttactga ttccctctgtt cctaaagcaa gagtggcagg 60
tgatcaggc tggtagca tccggccctt ttagtgcagc taactgcatt tgcactgat 120
gaccaaggag gaaatcacta agacattga gaagcagtgg tatgaacgtt cttggacaag 180
ccacagtttctt gggcccttaac cctgttagttt gcacacaaga acgagctcca cctccccctt 240
ttcaggagga atctgtcgg atagattggc tggactttc aatgggtctg ggttgcaagt 300
gggcactgtt atggctgggt atggagcggc cagccccagg aatcagagcc tcagccccggc 360

tgccctggttg gaaggcacag gtgttcagca ccttcggaaa aaggcataa agtngtgggg 420
 gacaattctc agtccaagaa gaatgcattg accattgctg gctatttgct tncctagtan 480
 gaattggatn cattttgac cangatnnntt ctnctatgtt ttnttgcaat gaaatcaaat 540
 cccgcattat ctacaagtgg tatgaagtcc tgcnncccc agagaggctg ttcaggcnat 600
 gtcttccaag ggcagggtgg gttacaccat tttacctccc ctctcccccc agattatgna 660
 cncagaagga atttnttcc tccc 684

<210> 35
 <211> 614
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 17, 20, 152, 223, 267, 287, 304, 306, 316, 319, 321, 355,
 365, 382, 391, 407, 419, 428, 434, 464, 467, 477, 480, 495,
 499, 505, 515, 516, 522, 524, 527, 542, 547, 549, 567, 572,
 576, 578
 <223> n = A,T,C or G

<400> 35
 actagtccaa cgcgttngcn aatattcccc tggtagccta cttccttacc cccgaatatt 60
 ggtaagatcg agcaatggct tcaggacatg ggttcttctc tcctgtgatc attcaagtgc 120
 tcactgcattg aagactggct tgtctcagtg tntcaacctc accaggcgtg tctcttggtc 180
 cacacctcgc tccctgttag tgccgtatga cagccccat canatgacct tggccaagtc 240
 acggtttctc tgtggtcaat gttggtnngc tgattgggtgg aaagtanggt ggaccaaagg 300
 aagnncncgtg agcagnanc nccagttctg caccagcagc gcctccgtcc tactngggtg 360
 ttccngtttc tcctggccct gnngtggctc nggcttgatt cgggaanatg cctttgcang 420
 gaagggangaa taantggat ctaccaattt attctggcaa aacnatntct aagattnttn 480
 tgctttatgt ggganacana tctanctctc atttnttgct gnanatnaca ccctactcgt 540
 gntcgancnc gtcttcgatt ttcgganaca cnccantnaa tactggcggtt ctgttgtaa 600
 aaaaaaaaaaaaaaaa aaaa 614

<210> 36
 <211> 686
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 222, 224, 237, 264, 285, 548, 551, 628, 643, 645, 665, 674
 <223> n = A,T,C or G

<400> 36
 gtggctggcc cggttctccg cttctcccc tcccctactt tcctccctcc ctccctttcc 60
 ctccctcgctc gactgttgct tgctggtcgc agactccctg accccctccct cacccttccc 120
 taacctcggt gccaccggat tggccctttt ttccctgtgc ccagccccagc cctagtgtca 180
 gggcgggggc ctggagcagc ccgaggcaact gcagcagaag anaaaaaaga cacgacnaac 240
 ctcagctcgc cagtcgggtc gctngcttcc cgccgcattgg caatnagaca gacgcccgtc 300
 acctgctctg ggcacacgcg acccggtgtt gattggcct tcagtggcat cacccttatg 360
 ggtatttctt aatcagcgct tgcaaaagatg gttAACCTT gctacgcacg ggagatacag 420
 gagactggat tggAACATT ttgggggtcta aaggctgttt tgggggtgcaa cactgaataa 480
 gatgccacc aaagcagcta cagcagctgc agatttcaca gcccaagtgt gggatgctgt 540
 ctcagganat naattgataa cctggctcat aacacattgt caagaatgt gatttccccca 600

gcatattttt atttgtttac cggggganag gataactgtt tcncntattt taattgaaca 660
 aactnaaaca aanctaagg aaatcc 686

<210> 37

<211> 681

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 7, 10, 11, 19, 25, 32, 46, 53, 77, 93, 101, 103, 109, 115,
 123, 128, 139, 157, 175, 180, 192, 193, 194, 212, 218, 226,
 227, 233, 240, 241, 259, 260, 267, 289, 296, 297, 298, 312,
 313, 314, 320, 325, 330, 337, 345, 346, 352, 353, 356

<223> n = A,T,C or G

<221> misc_feature

<222> 382, 385, 400, 427, 481, 484, 485, 491, 505, 515, 533, 542,
 544, 554, 557, 560, 561, 564, 575, 583, 589, 595, 607, 619,
 628, 634, 641, 645, 658, 670

<223> n = A,T,C or G

<400> 37

gagacanacn naacgtcang agaanaaaag angcatggaa cacaancag gcncgatggc 60
 caccttcca ccagcanca gcgcgcgcgc gcnccgcgc ngnccggang accangactc 120
 cancctgnat caatctganc tctattcctg gcccattnct acctcgagg tggangccgn 180
 aaaggtcga cnncnacaga agctgctgcc ancaccancc gccccnnccc tgncgggctn 240
 natagggaaac tggtgaccnn gctgcanaat tcatacagga gcacgcgang ggacacnnct 300
 cacactgagt tnnngatgan gcctnaccan ggacctnccc cagcnattg annacnggac 360
 tgcggaggaa ggaagacccc gnacnggatc ctggccgcn tgccacccccc ccacccctag 420
 gattatnccc cttgactgag tctctgaggg gctacccgaa cccgcctcca ttccctacca 480
 natnntgctc natcgggact gacangctgg ggatngggagg ggctatcccc cancatecccc 540
 tnanaccaac agcnacngan natnggggct ccccnngggtc ggngcaacnc tcctncaccc 600
 cggcgcnngc cttecggtnt gtcctccnct aacnaattcc naaanggcgg gcccccnngt 660
 ggactctcn ttgttccctc c 681

<210> 38

<211> 687

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 3, 30, 132, 151, 203, 226, 228, 233, 252, 264, 279, 306,
 308, 320, 340, 347, 380, 407, 429, 437, 440, 445, 448, 491,
 559, 567, 586, 589, 593, 596, 603, 605, 606, 609, 626, 639,
 655, 674, 682

<223> n = A,T,C or G

<400> 38

canaaaaaaaa aaaacatggc cgaaaccagn aagctgcgcg atggcgccac ggcccttctt 60
 ctccccggcct gtgtccggaa gtttccctc cgaggcgccc cggctcccgc aagcgaggaa 120
 gagggcgggaa cttgtccgggg ccggagctca naggccctgg ggccgctctg ctctcccgcc 180
 atcgcaagggg cggcgctaac ctttggccttc cccgcaaagg tccccnangc ggnggcggcg 240

gggggctgtg anaaccgcaa aaanaacgct gggcgcgcnng cgaaccgcgc 300
 aaggananac ttccacagan gcagcgttgc cacagccan agccacnntt ctagggtgat 360
 gcaccccagt aagttctgn cggggaaagct caccgctgtc aaaaaanctc ttcgctccac 420
 cggcgacna agggangan ggcangangc tgccgcccgc acaggtcatc tgatcacgtc 480
 gcccccccta ntctgcttt gtgaatctcc acttggttca accccacccg ccgttctctc 540
 ctccctgcmc cttcctctna ccttaanaac cagttccctc tacccnatng tanttnctct 600
 gcncnnngtna aaattaattc ggtccnccgg aacctttnac ctgtggcaac tgctnaaaga 660
 aactgctgt ctgnttactg cngtccc 687

<210> 39
 <211> 695
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 300, 401, 423, 429, 431, 437, 443, 448, 454, 466, 492, 515,
 523, 524, 536, 538, 541, 552, 561, 566, 581, 583, 619, 635,
 636, 641, 649, 661, 694
 <223> n = A,T,C or G

<400> 39
 actagtctgg cctacaatacg tgtgattcat gtaggacttc tttcatcaat tcaaaacccc 60
 tagaaaaacg tatacagatt atataagtag ggataagatt tctaacattt ctgggctctc 120
 tgaccctgc gctagactgt gaaaaggag tattattata gtataacaaca ctgctgtgc 180
 cttatttagt ataacatgtt aggtgctgaa ttgtgattca caatttaaaa acactgtaat 240
 ccaaactttt ttttttaact gtagatcatg catgtgaatg ttaatgttaa ttgttcaan 300
 gttgttatgg gtagaaaaaa ccacatgcct taaaattta aaaaggcaggg cccaaactta 360
 ttatgtttaaa attagggta tgttccagt ttgttattaa ntggttatag ctctgtttag 420
 aanaaatcna ngaacangat ttngaaantt aagntgacat tatttnccag tgacttggta 480
 atttgaatc anacacggca cttccgtt tggtnctatt ggnnttgaa tccaancngg 540
 ntccaaatct ntntggaaac ngtccnntta actttttac nanatcttat ttttttattt 600
 tggaaatggcc ctatttaang taaaagggg ggggnncac naccattnt gaataaaaact 660
 naatatatat cttggtccc cccaaattta aggng 695

<210> 40
 <211> 674
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 403, 428, 432, 507, 530, 543, 580, 583, 591, 604, 608, 621,
 624, 626, 639, 672
 <223> n = A,T,C or G

<400> 40
 actagtagtc agttggaggt ggttgctata ctttgacttc atttatatga atttccactt 60
 tattaaataa tagaaaagaa aatcccggtg cttgcagtag agttatagga cattctatgc 120
 ttacagaaaa tatagccatg attgaaatca aatagtaaag gctgttctgg ctttttatct 180
 tcttagctca tcttaaataa gtagtacact tggatgcag tgcgtctgaa gtgctaata 240
 gttgtaaaca tagcacaat cgaaccttgg atgtgtttct tctcttctgt gtttcgattt 300
 tgatcaattc tttaattttg ggaacctata atacagttt cctattcttg gagataaaaa 360
 ttaaatggat cactgatatt taagtcatc tgcttctcat ctnaatattc catattctgt 420

attagganaa antacacctccc agcacagccc cctctcaaacc cccacccaaa accaaggcatt 480
 tggaaatgagt ctccttatt tccgaantgt ggatggata acccatatcn ctccaatttc 540
 tgnttgggtt gggtattaat ttgaactgtg catggaaagn ggnaatctt nctttgggtc 600
 aaanttncc gttaatttg nctngncaa tccaatttnc tttaagggtg tctttataaa 660
 atttgctatt cngg 674

<210> 41
 <211> 657
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 243, 247, 251, 261, 267, 272, 298, 312, 315, 421, 432, 434,
 501, 524, 569, 594, 607, 650
 <223> n = A,T,C or G

<400> 41
 gaaaacatgca agtaccacac actgtttgaa tttgcacaa aaagtgactg tagggatcag 60
 gtgatagccc cgaaatgtac agtgtcttgg tgcaccaaga tgccttctaa aggctgacat 120
 accttggac cctaattgggg cagagagtat agccctagcc cagtgggtac atgaccactc 180
 cctttggag gctgaagttt aagggaatgg tatgtgttt ctcatggaa cagcacatga 240
 atnggttnaca ngatgttaaa ntaaggntct anttgggtt tcttgcatt tgaaaaantg 300
 acacactcct ancanctggt aaagggggtgc tggaaagccat ggaagaactc taaaaacatt 360
 agcatgggct gatctgatta cttcctggca tcccgcac ttttatggga agtcttatta 420
 naaggatggg anantttcc atatccttgc tggttggaaact ctggaaacact ctctaaattt 480
 ccctcttatta aaaatcactg nccttactac acttcctcct tganggaata gaaatggacc 540
 tttctctgac ttagtcttgc tcatgganc cagccaaat taaaatctga ctntccggt 600
 ttctccngaa ctcacctact tgaattggta aaacccctt tggaaattagn aaaaacc 657

<210> 42
 <211> 389
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 179, 317, 320
 <223> n = A,T,C or G

<400> 42
 actagtgctg aggaatgtaa acaagttgc tgggccttgc gagacttcac caggttgttt 60
 cgatacgctca cactcctgca ctgtgcctgt caccaggaa tgtctttttt aattagaaga 120
 caggaagaaa acaaaaacca gactgtgtcc cacaatcaga aaccccggtt gtggcagang 180
 ggccttcacc gccaccaggg tgtcccgcca gacaggaga gactccagcc ttctgaggcc 240
 atcctgaaga attcctgttt gggggttgtg aaggaaaatc accccggattt aaaaagatgc 300
 tgttgcctgc ccgcgtngtn gggaaaggac tggttcctg gtgaatttct taaaagaaaa 360
 atattttaag ttaagaaaaaa aaaaaaaaaa 389

<210> 43
 <211> 279
 <212> DNA
 <213> Homo sapiens

<400> 43
actagtgaca agctcctggc cttgagatgt cttctcgta aggagatggg cctttggag 60
gtaaaggata aaatgaatga gttctgtcat gattcaactat tctagaactt gcatgacctt 120
tactgtgtta gctcttgaa tggtcttgcgaa atttagact ttctttgtaa acaaataata 180
tgtccttatac attgtataaa agctgttatg tgcaacagtg tggagatctt tgtctgattt 240
aataaaatac ttaaacactg aaaaaaaaaaaa aaaaaaaaaa 279

<210> 44
<211> 449
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 245, 256, 264, 266, 273, 281, 323, 325, 337, 393
<223> n = A,T,C or G

<400> 44
actagtagca tctttctac aacgttaaaa ttgcagaagt agcttatcat taaaaaaca 60
caacaacaac aataacaata aatcctaagt gtaaatcagt tattctaccc cctaccaagg 120
atatcagcc ttttttccc tttttctcc tggtataat tggggcttc ttccaaattt 180
tctacagcc ttttccctt ctcatgctt agcttccctg tttgcacca tgcgttgc 240
aagantggc tggttngctt ggantncggt ccnagtggaa ncagtcttc cttgttact 300
gttggagaa actcaaaccct tcnanccta ggttncca ttttgcataag tcatactgt 360
attttgcata tggcattaac aaaaaaaaaa atnaaatatt gttccattaa acttataaa 420
aactttaaaa gggaaaaaaaaaaa aaaaaaaaaa 449

<210> 45
<211> 559
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 263
<223> n = A,T,C or G

<400> 45
actagtgtgg gggaaatcacg gacacttaaa gtcaatctgc gaaataattc ttttattaca 60
cactcaactga agtttttgcg tccccagagag ccattctatg tcaaacatcc caagtactct 120
ttgagagccc agcattacat caacatgccg gtgcagttca aaccgaagtc cgccaggcaaa 180
tttgaagctt tgcttgcata tcaaacagat gaaggcaaga gtattgtat tcgactaattt 240
ggtaagctc ttggaaaaaaa ttacttagaa tactttgtt gtttaagttaa ttacataagt 300
tgtatttgtt taactttatc tttctacact acaattatgc ttttgcataat atattttgtt 360
tgatggatat ctataattgt agatttgtt ttacaaagct aataactgaag actcgactga 420
aatattatgt atctagccca tagtattgtt cttaactttt acagggtgaa aaaaaaaaaattc 480
tgtgtttgca ttgattatgtt tattctgaat aaatatggaa atatatttttta atgtgggtaa 540
aaaaaaaaaaa aaaaaggaa 559

<210> 46
<211> 731
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature

<222> 270, 467, 477, 502, 635, 660, 671, 688, 695, 697, 725

<223> n = A,T,C or G

<400> 46

actagttcta gtaccatggc tgtcatagat gcaaccatta tattccattt agtttcttcc 60
 tcaggttccc taacaattgt ttgaaactga atatatatgt ttatgtatgt gtgtgtgttc 120
 actgtcatgt atatggtgta tatgggatgt gtgcagttt cagttatata tatattcata 180
 tatacatatg catatatatg tataatatac atatatacat gcatacactt gtataatata 240
 catatatata cacatatatg cacacatatac atcactgagt tccaaagtga gtctttattt 300
 ggggcaattt tattcttcc ctctgtctgc tcactgggcc tttgcaagac atagcaattt 360
 ctgttcttcc tttggataag agtcttatct tcggcactt tgactcttagc ctttaacttta 420
 gatttcttattt ccagaataacc tctcatatct atctaaaac ctaaganggg taaagangtc 480
 ataagattgt agtatgaaag antttgctta gttaaattat atctcaggaa actcattcat 540
 ctacaaatataa aattgtaaaaa ttagtggttt tttgtatctga aaaaatgttt agaacaagaa 600
 atgttaactgg gtacctgtta tatcaaagaa cctcnattta ttaagtctcc tcataagccan 660
 atccttataat nccctctct gacctgantt aatananact tgaataatga atagttattt 720
 taggnttggg c 731

<210> 47

<211> 640

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 5, 28, 106, 153, 158, 173, 176, 182, 189, 205, 210, 214, 225, 226, 229, 237, 260, 263, 269, 277, 281, 282, 322, 337, 338, 354, 365, 428, 441, 443, 456, 467, 476, 484, 503, 508, 554, 567, 575, 579, 588, 601, 606, 609, 611, 621, 636

<223> n = A,T,C or G

<400> 47

tgcngccgg tttggccctt ctttgtanga cactttcatc cgccctgaaa tcttcccgat 60
 cgttaataac tcctcaggc tcctgcctgca cagggtttt tcttantttt ttgcctaaca 120
 gtacaccaaa tggacatcc tttcaccaat atngattnt tcataccaca tcntcnatgg 180
 anacgactnc aacaattttt tgatnacccn aaanactggg ggctnnana agtacantct 240
 ggagcagcat ggacctgtcn qcnactaang gaacaanagt nntgaacatt tacacaacct 300
 ttggatgtc ttactgaaag anagaaacat gcttctnncc ctagaccacg aggncaaccg 360
 caganattgc caatgccaag tccgagcggt tagatcaggt aatacatcc atggatgcat 420
 tacatacattt gtccccggaa nanaagatgc cctaanggct tcttcanact ggccngaaa 480
 acanctacac ctggtgctt ganaacanac tctttggaag atcatctggc acaagttccc 540
 cccagtgggt tttnccttgg cacctanctt accanatcna ttggaaanc attctttgcc 600
 ntggcnnntt ntgggacca ntcttctcac aactgnaccc 640

<210> 48

<211> 257

<212> DNA

<213> Homo sapiens

<400> 48

actagtatat gaaaatgtaa atatcacttg tgtactcaaa caaaagtgg tcttaagctt 60
 ccacctttag cagccttgg aacctaacct gcctttta gcataatcac attttctaa 120

tgattttctt tgttcctgaa aaagtgattt gtatttagtt tacatttgtt ttttggaga 180
 ttatatttgt atatgtatca tcataaaaata tttaaataaa aagtatctt agagtaaaaa 240
 aaaaaaaaaaaa aaaaaaaaaa 257

<210> 49
 <211> 652
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 410, 428, 496, 571, 647
 <223> n = A,T,C or G

<400> 49
 actagttcg atgagtggt gctgaagggg ccccccgttc attttcattta taacccaattt 60
 tccacttatt tgaactctta agtcataaat gtataatgac ttatgaatta gcacagttaa 120
 gttgacacta gaaactgccc atttctgtat tacactatca aatagggaaac attggaaaga 180
 tggggaaaaaa aatcttattt taaaatggct tagaaagttt tcagattact ttggaaaattc 240
 taaaacttctt tctgtttcca aaaacttgaaa atatgttagat ggactcatgc attaagactg 300
 ttttcaaagc ttccctcaca tttttaaagt gtgattttcc ttttaatata catatttattt 360
 ttctttaaag cagctatatc ccaacccatg accttggaga tatacctatn aaaccaatat 420
 aacagcangg ttattgaagc agctttctca aatgttgctt cagatgtgca agttgcaa 480
 tttattgtat ttgtanaata caattttgtt tttaaaactgt atttcaatct atttctccaa 540
 gatgcttttc atataagatg aaatatccca ngataactgc ttctgtgtcg tcgcatttga 600
 cgcatcaactg cacaatgaa cagtgtatac ctctgggtt tgcattnacc cc 652

<210> 50
 <211> 650
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 237, 270, 311, 443, 454, 488, 520, 535, 539, 556, 567, 594,
 603, 634
 <223> n = A,T,C or G

<400> 50
 ttgcgcctttg attttttag ggcttgcctt ctgtttcaact tataagggtct agaatgctt 60
 tgttgagtaa aaaggagatg cccaatattc aaagctgcta aatgttctt ttgccataaaa 120
 gactccgtgt aactgtgtca acacttggga ttttcttctt ctgtcccgag gtgtcgct 180
 gctttctttt ttgggttctt tctagaagat tgagaaatgc atatgacagg ctgagancac 240
 ctccccaaac acacaagctc tcagccacan gcagcttc cacagccccca gcttcgcaca 300
 ggctcctgga nngctgcctg ggggaggcag acatggagttt gccaagggtgg ccagatggtt 360
 ccaggactac aatgtcttta ttttaactgt tttgccactg ctgccctcac ccctgccccgg 420
 ctctggagta ccgtctgccc canacaagtq ggantgaaat ggggggtgggg gggAACACTG 480
 attcccantt aggggggtgcc taactgaaca gtagggat aaggtgtgaa cctgngaant 540
 gctttataaa attatnttcc ttgttanatt tatttttaa tttaatctt gttnaactgc 600
 ccngggaaaaa ggggaaaaaa aaaaaaaaaat tctntttaaa cacatgaaca 650

<210> 51
 <211> 545
 <212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 66, 159, 195, 205, 214, 243, 278, 298, 306, 337, 366, 375, 382, 405, 446, 477, 492, 495, 503, 507, 508, 521, 537

<223> n = A,T,C or G

<400> 51

tggcgtgcaa ccaggtagc tgaagttgg gtctggact ggagattggc cattaggcct 60
 cctganattc cagctccctt ccaccaagcc cagtcttgc acgtggcaca gggcaaacct 120
 gactcccttt gggcctcagt ttcccctccc cttcatgana tgaaaagaat actactttt 180
 ctttgtggtc taacnttgct ggacncaaag tgtngtcatt attgttgat tgggtgatgt 240
 gtncaaaact gcagaagctc actgcctatg agaggaanta agagagatag tggatganag 300
 ggacanaagg agtcattatt tggtatagat ccaccntcc caaccttct ctccctcagtc 360
 cctgcncctc atgtntctgg tntggtgagt ccttgcgcc accanccatc atgcttgca 420
 ttgctgccat cctggaaagg gggtnatcg tctcacaact tggtgtcatac gttganatg 480
 catgctttct tnatnaaaca aanaaanna tgttgacag ngtttaaaat aaaaaanaaa 540
 caaaa 545

<210> 52

<211> 678

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 98, 119, 121, 131, 136, 139, 140, 142, 143, 163, 168, 172, 176, 184, 189, 190, 191, 200, 201, 205, 207, 221, 223, 229, 230, 237, 240, 241, 255, 264, 266, 267, 276, 280, 288, 289, 291, 297, 301, 306, 308, 314, 315, 326, 332, 335, 337

<223> n = A,T,C or G

<221> misc_feature

<222> 339, 341, 343, 344, 345, 347, 350, 355, 356, 358, 362, 363, 372, 379, 395, 397, 398, 400, 403, 412, 414, 421, 423, 431, 435, 438, 439, 450, 457, 463, 467, 471, 474, 480, 483, 484, 487, 490, 491, 492, 493, 499, 500, 504, 508, 518, 536

<223> n = A,T,C or G

<221> misc_feature

<222> 538, 549, 551, 552, 554, 556, 557, 562, 563, 567, 571, 572, 576, 579, 590, 592, 595, 598, 606, 609, 613, 620, 622, 624, 626, 631, 634, 638, 641, 647, 654, 660, 661, 674

<223> n = A,T,C or G

<400> 52

actagtagaa gaactttgcc gctttgtgc ctctcacagg cgccctaaagt cattgccatg 60
 ggaggaagac gatTTGGGGG gggagggggg gggggcangg tccgtggggc tttccctant 120
 ntatctccat ntccantgnn cnntgtcgcc tcttccctcg tcncatnng anttantccc 180
 tggccccnn nccctctccn ncctncnct cccccctccg ncncctccnn cttttntan 240
 nctccccat ctccntcccc cctnanngtc ccaacnccgn cagcaatnnc ncacttnctc 300
 nctccncncc tccncccggtt cttctnttct cnacntntnc ncnnntnccn tgccnnntnaa 360
 annctctccc cnctgcaanc gattctctcc ctccncnnan ctntccactc ctncttctc 420

ncncgctcct nttcnccncc ccacctctcn ccttcgnccc cantacnctc nccncccttn 480
 cgnntcnttn nnntcctcnn accncccncc tcccttcncc cctcttcncc ccgtntntc 540
 tctctccnc nncnccnccncc cnncnccntt nngcncntt ttccgccccn cnccnccntt 600
 ccttcntcnc cantccatcn cntntnccat nctnccncc nctcacnccc gctnccccn 660
 ntctcttca cacngtcc 678

<210> 53
 <211> 502
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 139, 146, 215, 217, 257, 263, 289, 386, 420, 452, 457, 461,
 466, 482, 486
 <223> n = A,T,C or G

<400> 53
 tgaagatcct ggtgtcgcca tgggccgccc cccgcgggt tgtaaccgtt attgttaagaa 60
 caagccgtac ccaaagtctc gtttctgcgg aggtgtccct gatgcaaaaa ttgcatttt 120
 tgacctgggg cgaaaaaang caaaaantgga tgagtctccg ctttgtggcc acatgggtgc 180
 agatcaatat gagcagctgt cctctgaagc cctgnangt gcccgaattt gtgccaataa 240
 gtacatggta aaaagtngtg gcnaagatgc ttccatatacc gggtgcggncc 300
 cacgtcatcc gcatcaacaa gatgttgcc tggctgggg ctgacagggc cccaaacaggc 360
 atgcgaagtgc ctttggaaa acccanggca ctgtggccag ggttacattt gggcaattt 420
 atcatgttca tccgcaccaa ctgcagaaca angaacntgt naattnaagc cctgcccagg 480
 gncaanttca aatttcccgcc 502

<210> 54
 <211> 494
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> 431, 442, 445
 <223> n = A,T,C or G

<400> 54
 actagtccaa gaaaaatatg cttaatgtat attacaaagg ctttgtatgtt gttaacctgt 60
 tttaatgc当地 aaagtttgct ttgtccacaa tttccttaag acctcttcag aaaggattt 120
 gtttgc当地 atgaataactg ttggaaaaaa acacagtata atgagtgaaa agggcagaag 180
 caagaaattt ctacatctt gcgactccaa gaagaatgatgatccacatt tagatggcac 240
 attatgagga ctttaatctt tccttaaaca caataatgtt ttctttttc ttttattcac 300
 atgatttctt agtatatttt tcatgcagga cagttttca accttgatgt acagtgactg 360
 tggtaaattt ttctttcagttt ggcaacctct ataatctt aaatatggtg agcatcttgc 420
 ctgttttggaa ngggatatga cnatnaatct atcagatggg aaatcctgtt tccaaatgg 480
 aaaaaaaaaaaa aaaa 494

<210> 55
 <211> 606
 <212> DNA
 <213> Homo sapiens

```

<220>
<221> misc_feature
<222> 375, 395, 511, 542, 559, 569, 578, 581
<223> n = A,T,C or G

<400> 55
actagtaaaa agcagcattg ccaaataatc cctaatttc cactaaaaat ataatgaaat 60
gatgttaagc ttttgaaaaa gtttaggtt aacctactgt tgtaggatta atgtatttgt 120
tgctccctt tatctggaat gtggcattag ctttttatt ttaaccctct ttaattctta 180
ttcaattcca tgacttaagg ttggagagct aaacactggg attttggat aacagactga 240
cagtttgca taattataat cgccattgtt catagaaagg atatggctac ctttggtaa 300
atctgcactt tctaaatatc aaaaaaggaa aatgaagttt aatcaattt ttgtataatc 360
tgtttggaaac atganttttta tttgcttaat attanggct tgccctttc tggtagtctc 420
ttgggatcct gtgtaaaact gttctcatta aacaccaaac agttaagtcc attctctgg 480
actagctaca aattccgttt catattctac ntaacaattt aaattaactg aaatatttct 540
anatggtcta cttctgtcnt ataaaaacna aacttgantt nccaaaaaaaaaaaaaaa 600
aaaaaaaaa 606

<210> 56
<211> 183
<212> DNA
<213> Homo sapiens

<400> 56
actagtatat ttaaacttac aggcttattt gtaatgtaaa ccaccattt aatgtactgt 60
aattaacatg gttataatac gtacaatcct tccctcatcc catcacacaa cttttttgt 120
gtgtataaaa ctgattttgg tttgcaataa aacottgaaa aataaaaaaaaaaaaaaaa 180
aaa 183

<210> 57
<211> 622
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 358, 368, 412, 414, 425, 430, 453, 455, 469, 475, 495, 499,
529, 540, 564, 575, 590
<223> n = A,T,C or G

<400> 57
actagtcaact actgtttct cttttagt aatcaatcaa tattcttccc ttgcctgtgg 60
gcagtggaga gtgctgtgg gtgtacgtg cacctgccc ctgagttgg gaaagaggat 120
aatcgtgag cactgttctg ctcagagctc ctgatctacc ccacccctt ggatccagga 180
ctgggtcaaa gctgcatgaa accaggccct ggcagcaacc tggatggc tggaggtgg 240
agagaacctg acttctctt ccctctccct cctccaacat tactggact ctatcctgtt 300
agggatcttc tgagctgtt tccctgtgg gtggacaga agacaaagga gaagganggg 360
tctacaanaa gcagcccttc tttgtcctt ggggttaatg agcttgaccc ananttcatg 420
gaganaccan aagcctctga ttttaattt ccntnaatg tttgaagtnt atatntacat 480
atatatattt ctttnaatnt ttgagtctt gatatgtctt aaaatccant ccctctgcn 540
gaaacctgaa taaaaccat gaanaaaaat gttncctt aagatgttan taattaattt 600
aaacttgaaa aaaaaaaaaaa aa 622

<210> 58

```

<211> 433
<212> DNA
<213> Homo sapiens

<400> 58
gaacaaattc tgattggta tgtaccgtca aaagacttga agaaaattca tgatttgca 60
gtgtgaaagc gttaaaatt gaaagttact gctttccac ttgctcatat agtaaaggga 120
tccttcagc tgccagtgtt gaataatgtt tcatccagag tgatgttatac tgtgacagtc 180
accagctta agctgaacca ttttatgaat accaaataaa tagaccttctt gtactgaaaa 240
catatttgc actttaatcg tgctgcttgg atagaaatat ttttactgg tcttctgaat 300
tgacagtaaa cctgtccatt atgaatggcc tactgttcta ttatgttt tgacttgaat 360
ttatccacca aagacttcat ttgtgtatca tcaataaaagt tgtatgttca aactgaaaaa 420
aaaaaaaaaaa aaa 433

<210> 59
<211> 649
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 22, 190, 217, 430, 433, 484, 544, 550, 577, 583, 594
<223> n = A,T,C or G

<400> 59
actagttatt atctgacttt cnggttataa tcattctaat gagtgtgaag tagcctctgg 60
tgtcatttgg atttgcattt ctctgtatgg tgatgtatc aagcacctt gctgggtctg 120
ttggccatat gtgtatgttc cctggagaag tgtctgtct gaggccttgc ccactttta 180
attaggcgtt tgcattttta ttactgagtt gtaaganttc ttatatatt ctgattctt 240
gacccttatac agatacatgg ttgc当地ataa ttcttctccca ttctgtgggt tgc当地ttca 300
ctttatcgat aatgtcctt gacatataat aaatttgc tat tt当地aaatgtt acttgatttg 360
gctgtgcaa ggtgggctca cgcttgc当地t cccagcactt tgggagactg aggtgggtgg 420
atcatatgan gangcttaga gttcgaggc agcctggcca gcatagcgaa aacttgc当地c 480
tacnaaaaat acaaaaatta gtcaggcatg gtggc当地acg tctgttaatac cagcttctca 540
ggangctgan gcacaaggat cacttgaacc ccagaangaa gangttgc当地 tganctgaag 600
atcatgccag ggcaacaaaa atgagaactt gttaaaaaaa aaaaaaaaaa 649

<210> 60
<211> 423
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 209, 222, 277, 389, 398
<223> n = A,T,C or G

<400> 60
actagttcag gccttccagt tcactgacaa acatgggaa gtgtgccag ctggctggaa 60
acctggcagt gataccatca agcctgtatgt ccaaaagagc aaagaatatt tctccaagca 120
gaagtggcgc ctggctgtt ttatgtccag gctgccc当地t gcagccatga gaacaaaacc 180
tcttctgtat tt当地tttcc cattgtana acacaagact cngattcagc cgaattgtgg 240
tgtcttacaa ggcaggc当地t tcctacaggg ggtgganaaa acagccttcc ttcccttgg 300
aggaatggcc tgatgtggcg ttgtggc当地g gctactggc当地t tgtatgtatgtt atttagtagag 360

caacccatta atctttgtatna aacttgancg gagaccttaa aaaaaaaaaa 420
 aaa 423

<210> 61
 <211> 423
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 195, 285, 295, 329, 335, 340, 347, 367, 382, 383, 391, 396,
 418
 <223> n = A,T,C or G

<400> 61
 cgggactgga atgtaaagt g aagttcgagg ctctgagcac gggctcttcc cgccgggtcc 60
 tccctccccca gaccccgag ggagaggccc acccccgccca gccccgc(ccc agccctgtct 120
 caggctctgag tatggctggg agtcggggc cacaggcctc tagctgtgtct gctcaagaag 180
 actggatcag ggtanctaca agtggccggg cttgcctt gggattctac cctgttccta 240
 atttggtgtt ggggtgcggg gtccctggcc ccctttcca cactncctcc ctccngacag 300
 caacctccct tggggcaatt gggcctggnt ctccnccgn tggtgcnacc ctttgttgg 360
 ttaaggnc ttaaaaatgtt anntttccc ntgcncnggt taaaaaaagga aaaaactnaa 420
 aaa 423

<210> 62
 <211> 683
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 218, 291, 305, 411, 416, 441, 443, 453, 522, 523, 536, 542,
 547, 566, 588, 592, 595, 603, 621, 628, 630, 632, 644, 645,
 648, 655, 660, 672, 674, 676, 677, 683
 <223> n = A,T,C or G

<400> 62
 gctggagagg ggtacggact ttcttgagt tgtcccgagg tggaaatgaga ctgaactcaa 60
 gaagagaccc taagagactg gggaatggtt cctgccttca ggaaagtgtaa agacgcttag 120
 gctgtcaaca cttaaaggaa gtcccttga agcccgagg ggacagacta gaccattga 180
 tggggccact ggccatggc cgtggacaag acattccngt gggcatggc acaccgggg 240
 gatatcaaat gtgtacttgt ggggtctcgc ccctgccaa aaccaaaacca ntcccactcc 300
 tgcnttgaa ctttcttccc attccctcct ccccaaatgc acttcccctc ctccctctgc 360
 ccctcctgtg tttttggaaat tctgtttccc tcaaaaattgt taatttta ntttngacc 420
 atgaacttat gtttgggtc nangttcccc ttnccaatgc atactaatat attaatggtt 480
 atttattttt gaaatatttt ttaatgaact tggaaaaat tnntggaaatt tccttncttc 540
 cttttttttt ggggggggtg gggggntggg ttaaaaatttt tttggaaanc cnatngaaa 600
 ttnttacttg gggcccccct naaaaaantn anttccaatt cttnnatngc ccctnttcen 660
 ctaaaaaaaaaaa ananannaaa aan 683

<210> 63
 <211> 731
 <212> DNA
 <213> Homo sapiens

```

<220>
<221> misc_feature
<222> 237, 249, 263, 288, 312, 317, 323, 326, 337, 352, 362, 370,
377, 400, 411, 414, 434, 436, 446, 457, 473, 486, 497, 498,
502, 512, 531, 546, 554, 563, 565, 566, 588, 597, 608, 611,
613, 615, 627, 632, 640, 641, 644, 654, 660, 663, 665
<223> n = A,T,C or G

<221> misc_feature
<222> 671, 678, 692, 697, 698, 699, 704, 705, 712, 714, 717, 718,
719, 723, 725, 730, 731
<223> n = A,T,C or G

<400> 63
actagtata aagggtgtgc gegtcttcga cgtggcggtc ttggcgccac tgctgcgaga 60
ccccggccctg gacctcaagg tcatccactt ggtgcgtgat ccccgcgcgg tggcgagttc 120
acggatccgc tcgcgccacg gcctcatccg tgagagccta caggtgggtgc gcagccgaga 180
ccgcgagctc accgcatgcc cttcttgag gccgcgggccc acaagctgg cgcccanaaa 240
gaaggcgtn gggggccgca aantaccacg ctctgggcgc tatggaangt cctcttgcaa 300
taatatttgt tnaaaanctg canaanagcc cctgcancct cctgaactgg gntgcagggc 360
cncttacctn gtttggnntgc ggttacaag aacctgtttn ggaaaacccct nccnaaaacc 420
ttccgggaaa attntncaa ttttnttgg ggaattnttgg ggtaaacccc ccnaaaatgg 480
gaaacnttt tgccctnnaa antaaaccat tnggttccgg gggccccccc ncaaaaccc 540
tttttntttt ttntgcccc cantnncccc ccggggcccc ttttttngg ggaaaanccc 600
ccccccctncc nanantttt aaagggnnggg anaattttttn nttncccccc ggnnccccen 660
ggngntaaaaa ngtttcncc ccccccgggg gnggggnnc ctcnnnaaacc cntntcnna 720
ccncntttt n 731

<210> 64
<211> 313
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 240
<223> n = A,T,C or G

<400> 64
actagtgtg caaaccacga ctgaagaaaag acgaaaagtg ggaaataact tgcaacgtct 60
gttagagatg gttgtcacac atgttgggtc tgttagagaaa catcttgagg agcagattgc 120
taaagttgat agagaatatg aagaatgtat gtcagaagat ctctcgaaaa atattaaaga 180
gatttagagat aagtatgaga agaaagctac tctaattaag tcttctgaag aatgaagatn 240
aaatgttgcatgtatata tatccatagt gaataaaatt gtctcagtaa agttgtaaaa 300
aaaaaaaaaaa aaa 313

<210> 65
<211> 420
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

```

<222> 400, 402, 403, 404, 405, 406, 409, 411, 412, 414, 415, 416
 <223> n = A,T,C or G

<400> 65

actagttccc tggcaggcaa gggcttccaa ctgaggcagt gcatgtgtgg cagagagagg 60
 caggaagctg gcagtgccag cttctgtgtc tagggagggg tgtggctccc tcctccctg 120
 tctgggaggt tggagggaaag aatctaggcc tttagcttgc ctcctgcac ccttcccctt 180
 gtagatactg ccttaacact ccctcctctc tcagctgtgg ctgccaccca agccaggtt 240
 ctccgtgctc actaatttat ttccagggaa ggtgtgtgga agacatgagc cgtgtataat 300
 atttgtttta acattttcat tgcaagtattt gaccatcatc cttgggttgt tatcggtgt 360
 acacaaatta atgatattaa aaagcatcca aacaaagccn annnnnnaana nnannngaaa 420

<210> 66

<211> 676

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 328, 454, 505, 555, 586, 612, 636, 641

<223> n = A,T,C or G

<400> 66

actagttcc tatgatcatt aaactcatc tcagggtaa gaaaqqaatg taaaatttctg 60
 cctcaatttg tacttcatca ataagttttt gaagagtgc gattttttagt caggtcttaa 120
 aaataaaactc acaaactgg atgcatttct aaattctgc aatgtttcctt ggggtgactt 180
 aacaaggaat aatcccacaa tataccttagc tacctaatac atggagctgg ggctcaaccc 240
 actgtttta aggatttgcg cttaacttgcg gctgaggaaa aataaagtatg tccgaggaa 300
 gtagttttta aatgtgagct tatagatnng aaacagaata tcaacttaat tatggaaatt 360
 gttagaaacc tggtctcttg ttatctgaat ctgtattgc attactatt tactggatag 420
 actccagccc attgcaaaagt ctcagatatac ttanctgtgt agttgaattt ctggaaattt 480
 cttttaaga aaaaatttggaa gtttnaaaga aataaaccctt tttgttaat gaagcttggc 540
 ttttggta aaaaanaatca tccccgcaggg ctattgttt aaaaangaa ttttaagcct 600
 ccctggaaaaa anttgttaat taaatgggaa aaatgtggg naaaaattat ccgttagggt 660
 ttaaaggaa aactta 676

<210> 67

<211> 620

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 419, 493, 519, 568, 605, 610

<223> n = A,T,C or G

<400> 67

caccattaaa gctgcttacc aagaacttcc ccagcatttt gacttccttg tttgatagct 60
 gaatttgttag caggtgatag aagagccttt cttagtgaac atacagataa tttgctgaat 120
 acattccatt taatgaaggg gttacatctg ttacaaagct actaagaagg agcaagagca 180
 taggggaaaaaa aaatctgatc agaacgcac tc aaactcacat gtccccctc tactacaaac 240
 agattgttagt gctgtgtgg ttattccgt tgcagaac ttgcagctg agtactaaa 300
 cccaaagaga gaaaaattataa gtttagttaa acattgtaat cccaggaact aagtttaatt 360

cactttgaa gtgtttgtt ttttattttt gggttgtctg atttactttg gggaaaaang 420
 ctaaaaaaaaaa agggatatac atctctaatt cagtgcccac taaaagtgt ccctaaaaag 480
 tccttactgg aanttatggg acttttaag ctccaggtnt tttggtcctc caaattaacc 540
 ttgcattggc cccttaaat tggtgaangg cattcctgcc tctaagttt gggaaaattc 600
 ccccnnnttn aaaatttgg 620

<210> 68
<211> 551
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 286, 464, 480, 501, 502, 518, 528, 533, 536, 537, 538, 539,
540, 541, 543, 544, 545, 547, 548, 549
<223> n = A,T,C or G

<400> 68
actagtagct ggtacataat cactgaggag ctatttctta acatgcttt atagaccatg 60
ctaatgctag accagtattt aagggctaattt ctcacaccc ctttagctgtt agagtctggc 120
ttagaacaga cctctctgtt caataacttg tggccactgg aaatccctgg gccggcattt 180
gtattgggt tgcaatgact cccaaggggcc aaaagaggtt aaggcacac tgggattttct 240
tctgagactg tggtaaaact ctttccaagg ctgaggggggt cagtangtgc tctgggaggg 300
actcgccacc actttgatatt tcaacaagcc acttgaagcc caattataaa attgttattt 360
tacagctgat ggaactcaat ttgaaccttc aaaactttgt tagtttatcc tattatattt 420
ttaaacctaa ttacattgtt ctgcattgg atttggttcc tgcngcatat gttttttcn 480
cctatgtgct cccctcccc nnatcttaat ttaaaccnca attttgcnat tcnccnnnn 540
nannnnnnna a 551

<210> 69
<211> 396
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 235, 310, 323, 381
<223> n = A,T,C or G

<400> 69
cagaaatgga aagcagagtt ttcatttctg tttataaacc tctccaaaca aaaatggaaa 60
gcagagttt cattaaatcc ttttacctt ttttttctt ggtatcccc tcaaataaca 120
gtatgtggga tattgaatgt taaaggata ttttttctt ttatttttt aattgtacaa 180
aattaagcaa atgtaaaag ttttatatgc ttttataatg ttttcaaaag gtatnataca 240
tgtgatacat ttttaagct tcagttgc ttcttgcgtt actttctgtt atgggcttt 300
ggggagccan aaaccaatct acnatcttt tttgtttgcc aggacatgca ataaaattta 360
aaaaataaat aaaaactatt nagaaattga aaaaaaa 396

<210> 70
<211> 536
<212> DNA
<213> Homo sapiens

<220>

```

<221> misc_feature
<222> 388, 446, 455
<223> n = A,T,C or G

<400> 70
actagtgc aa aagcaaata aacatcgaa aaggcgttcc tcacgttagc tgaagatatac 60
cttcgaaaga cccctgtaaa agagccaa acgtgaaaatg tagatatcag cagtgaggaa 120
ggcgtgacag gctgaaagag caaatgctgc tgagcattct cctgttccat cagttgccat 180
ccactacccc gtttctctt cttgctgcaa aataaaccac tctgtccatt tttaactcta 240
aacagatatt tttgtttctc atcttaacta tccaagccac ctatttatt tttttca 300
tctgtgactg cttgctgact ttatcataat tttttcaaa caaaaaaaatg tatagaaaaaa 360
tcatgtctgt gacttcattt ttaaatgnta cttgctcagc tcaactgcatt ttcaatgttt 420
ttatagtcca gttcttatca acattnaaac ctatngcaat catttcaat ctattctgca 480
aattgtataa gaataaaaatg tagaatttaa caattaaaaa aaaaaaaaaa aaaaaaa 536

<210> 71
<211> 865
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 22, 35, 39, 56, 131, 138, 146, 183, 194, 197, 238, 269, 277,
282, 297, 316, 331, 336, 340, 341, 346, 349, 370, 376, 381,
382, 392, 396, 397, 401, 433, 444, 445, 454, 455, 469, 472,
477, 480, 482, 489, 497, 499, 511, 522, 526, 527
<223> n = A,T,C or G

<221> misc_feature
<222> 545, 553, 556, 567, 574, 580, 610, 613, 634, 638, 639, 663,
672, 689, 693, 694, 701, 704, 713, 723, 729, 732, 743, 744,
749, 761, 765, 767, 769, 772, 774, 780, 783, 788, 792, 803,
810, 824, 840, 848
<223> n = A,T,C or G

<400> 71
gacaaagcgt taggagaaga anagaggcag ggaanactnc ccaggcacga tggccncctt 60
cccaccagca accagcgccc cccaccagcc cccaggcccc gacgacgaa actccatcct 120
ggattaatct nacctctntc gcctgnccca ttcctacctc ggaggtggag gccggaaagg 180
tcncaccaag aganaanctg ctgccaacac caaccgcccc agccctggcg ggcacganag 240
gaaactggg accaatctgc agaattctna gaggaanaag cnagggggcc cgcgctnaga 300
cagagctgga tatgangcca gaccatggac nctacncccn ncaatncana cgggactgcg 360
gaagatggan gaccncgac nngatcagggc cngctnncca nccccccacc cctatgaatt 420
attcccgctg aangaatctc tgannggctt ccannaaagc gcctcccnnc cnaacgnaan 480
tncaacatng ggattanang ctgggaactg naaggggcaa ancctnnat atccccagaa 540
acaanctctc ccnaanaaaac tggggcncc catnggtgn accaactatt aactaaaccg 600
cacgccaagn aantataaaa gggggggcccc tccncgggnng accccccttt gtcccttaat 660
ganggttatac cnccttgct accatggtncc cnnttctgt ntgnatgtt ccnctccct 720
ccnctatnt cnagccgaac tcnnatttnc cgggggggtgc natcnantng tncncctttn 780
ttngttgncc cngcccttcc cgnccgaacn cgttcccccg ttantaacgg caccgggn 840
aagggtgntt ggccccctcc ctccc 865

<210> 72
<211> 560

```

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 83, 173, 183, 186, 209, 211, 215, 255, 321, 322, 323, 335, 344, 357, 361, 368, 394, 412, 415, 442, 455, 469, 472, 475, 487, 513, 522, 528, 531, 534, 546

<223> n = A,T,C or G

<400> 72

cctggacttg tcttggttcc agaacctgac gaccggcgaa cggcgacgatc tcttttgcact 60
 aaaagacagt gtcccaatgtct ccngccttagg agtctacggg gaccgcctcc cgccggccca 120
 ccatgcccaa cttctctggc aactggaaaa tcatacgatc ggaaaacttc gangaattgc 180
 tcnaantgct gggggtaat gtatgctna ngaanattgc tgtggctgca gcgtccaagc 240
 cagcagtgga gatcnaacag gagggagaca ctgttctacat caaaacccatcc accaccgtgc 300
 gcaccacaaa gattaacttc nnngttgggg aggantttga ggancaaact gtggatngga 360
 ngcctgttaa aacctggta aatgggagaa tganaataaa atggctgtc ancanaaaact 420
 cctgaaaggaa gaaggcccccc anaactcctg gacngaaaaa actgaccnc cnatngggga 480
 actgtatnctt gaaccctgaa cgggcgggat gancctttt tnttgcncnaangggttc 540
 ttcccnnttc cccaaaaaaaaa 560

<210> 73

<211> 379

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 8, 17, 18, 21, 26, 29, 30, 32, 53, 56, 67, 71, 81, 102, 104, 111, 112, 114, 119, 122, 124, 125, 134, 144, 146, 189, 190, 214, 215, 219, 220, 235, 237, 246, 280, 288, 302, 310, 313, 319, 322, 343, 353, 354

<223> n = A,T,C or G

<400> 73

ctggggancc ggcggtnnngc nccatntcnn gnccgcaagg tggcaataaa aancnctga 60
 aaccgcncaa naaacatgcc naagatatgg acgaggaaga tnngcttc nngnacaanc 120
 gnannngagga acanaacaaa ctcnangagc tctcaagcta atgcccggg gaaggggccc 180
 ttggccacnn gtggattaa gaaatctggc aaanngtann tggccctgt gcctnangag 240
 ataagngacc ctattttca tctgtatatta aacctctctn ttccctgnca taacttcttt 300
 tnccacgtan agntggaant anttgttgc ttggactgtt gtncattta gannaaactt 360
 ttgttcaaaa aaaaaataaa 379

<210> 74

<211> 437

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 145, 355

<223> n = A,T,C or G

```

<400> 74
actagttcag actgccacgc caacccaga aaataccca catgccagaa aagtgaagtc 60
ctaggtgtt ccatctatgt ttcaatctgt ccatctacca ggcctcgca taaaaacaaa 120
acaaaaaaac gctgccaggt tttanaagca gttctggctc caaaaccatc aggatcctgc 180
caccagggtt ctttgaat agtaccacat gtaaaaggga atttggctt cacttcatct 240
aatcaactgaa ttgtcaggct ttgattgata atttagaaaa taagtagcct tctgttgtgg 300
gaataagta taatcagttat tcatctctt gtttttgctc actctttct ctctnattgt 360
gtcatttcta ctgttgaaa aatatttctt ctataaaatt aaactaacct gccttaaaaa 420
aaaaaaaaaaa aaaaaaaaaa 437

<210> 75
<211> 579
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 440, 513, 539, 551
<223> n = A,T,C or G

<400> 75
ctccgtcgcc gccaagatga tgtgcggggc gccctccgcc acgcagccgg ccaccgccga 60
gaccgcac atcgccgacc aggtgaggc ccagcttgaa gagaaagaaa acaaagaagtt 120
ccctgtgtt aaggccgtgt cattcaagag ccaggtggc gcggggacaa actacttcat 180
caaggtgcac gtcggcgcacg aggacttcgt acacctgcga gtgttccaaat ctctccctca 240
tgaaaacaag cccttgacct tatctaacta ccagaccaac aaagccaagc atgatgagct 300
gacctatttc tgatcctgac tttggacaag gcccttcagc cagaagactg acaaagtcat 360
cctccgtcta ccagagcgtg cacttgcgtat cctaaaataa gcttcatctc cgggctgtgc 420
ccttggggtg gaaggggcan gatctgcact gctttgcatt ttctcttcct aaatttcatt 480
gtgttatttc ttcccttcca ataggtgatc tttnattactt tcagaatatt ttccaaatna 540
gatatatattt naaaatcctt aaaaaaaaaa aaaaaaaaaa 579

<210> 76
<211> 666
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 411, 470, 476, 491, 506, 527, 560, 570, 632, 636, 643, 650,
654, 658
<223> n = A,T,C or G

<400> 76
gtttatccta tctctccaac cagattgtca gctccttgag ggcaagagcc acagtatatt 60
tccctgtttc ttccacagtg cctaataata ctgtggaact aggttttaat aatttttaa 120
ttgatgtgt tatggcagg atggcaacca gaccattgtc tcagagcagg tgctggctct 180
ttcctggcta ctccatgttg gctagcctct ggtaacctct tacttattat ctccaggaca 240
ctcaactacag ggaccaggaa tgatgcaaca tccttgcattt tttatgacag gatgtttgt 300
cagttctcc aacaataaaa agcacgtggt aaaacacttg cgatattct ggactgtttt 360
taaaaaatatac acagtttacc gaaaatcata ttatcttaca atgaaaagga ntttatagat 420
cagccagtga acaacctttt cccaccatac aaaaattcct tttcccgaaan gaaaanggct 480
ttctcaataa ncctcaactt cttaanatct tacaagatag ccccganatc ttatcgaaac 540
tcatttttagg caaatatgan ttttattgtn cgttacttgc ttcaaaatgtt ggtattgtga 600

```

atatcaatta ccaccccat ctccatgaa anaaangga aanggtgaan ttcntaancg 660
 cttaaa 666

<210> 77
 <211> 396
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 31, 54, 125, 128, 136, 163, 168, 198
 <223> n = A,T,C or G

<400> 77
 ctgcagcccg gggatccac taatctacca ngtttatttg gcagctaatt ctanattgg 60
 atcattgccccc aaagttcac ttgctggctt cttgggattt ggccttgaa agtatcata 120
 catanganta tgccanaata aattccatatt ttttggaaat canctccntg gggctgggtt 180
 tggcacacag cataacacangc actgcctcct tacctgtgag gaatgcaaaa taaagcatgg 240
 attaagttag aaggagact ctcagccttc agcttcctaa attctgtgtc tgtgactttc 300
 gaagttttt aaacctctga atttgtacac atttaaaatt tcaagtgtac tttaaaataaa 360
 aataacttcta atggaaacaa aaaaaaaaaaaa aaaaaaa 396

<210> 78
 <211> 793
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 309, 492, 563, 657, 660, 703, 708, 710, 711, 732, 740, 748,
 758, 762, 765, 787
 <223> n = A,T,C or G

<400> 78
 gcatccttagc cgccgactca cacaaggcag gtgggtgagg aaatccagag ttgccatgga 60
 gaaaattcca gtgtcagcat tcttgcctt tggcccttc tcctacactc tggccagaga 120
 taccacagtc aaacctggag ccaaaaagga cacaaggac tctcgaccca aactgcccc 180
 gaccctctcc agaggttggg gtgaccaact catctggact cagacatatg aagaagctct 240
 atataaatcc aagacaagca acaaaccctt gatgattatt catcaacttgg atgagtgc 300
 acacagtcna gctttaaaga aagtgttgc tggaaataaa gaaatccaga aattggcaga 360
 gcagtttgc ctccctcaatc tggtttatga aacaactgac aaacacctt ctcctgtatgg 420
 ccagtatgtc ccaggattat gttgttgac ccatctctga cagttgaagc cgatatcctg 480
 ggaagatatt cnaaccgtct ctatgcttac aaactgcaga tacgctotgt tgcttgacac 540
 atgaaaatgc tctcaagttt ctnaaaatga attgttaagaa aaaaaatctc cagccttctg 600
 tctgtcggtc tgaaaattga aaccagaaaa atgtgaaaaa tggctattgt ggaacanatn 660
 gacacctgtat taggtttgg ttatgttac cactatttt aaaaaaan nttttaaaat 720
 ttggttcaat tntctttttaaacaatntg ttttacntt gnganctgat ttctaaaaaa 780
 aataatnttt ggc 793

<210> 79
 <211> 456
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 89, 195, 255, 263, 266, 286, 353, 384, 423, 425, 436, 441
 <223> n = A,T,C or G

<400> 79
 actagtatgg ggtgggaggc cccacccttc tccccttaggc gctgttcttg ctccaaaggg 60
 ctccgtggag agggactggc agagctgang ccacctgggg ctggggatcc cactttctt 120
 gcagctgttgc agcgcaccta accactggtc atgcacccac ccctgctctc cgaccccgct 180
 tcctccgcac cccangacca ggctacttct cccctcctct tgccctccctc ctgccccctgc 240
 tgcctctgtat cgtangaatt gangantgtc ccgcctgtg gctganaatg gacagtggca 300
 ggggctggaa atgggtgtgt gtgtgtgtgt gtgtgtgtgt gcnccccccc 360
 tgcaagaccg agattgaggg aaancatgtc tgctgggtgt gaccatgtt cctctccata 420
 aantnccctgtgacnctca naaaaaaaaaaaaaaaa 456

<210> 80
 <211> 284
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 283
 <223> n = A,T,C or G

<400> 80
 ctttgtacct ctagaaaaga taggtattgt gtcataaacc ttgagtttaa attttatata 60
 taaaactaaa agtaatgctc acttttagcaa cacatactaa aattggaaacc atactgagaa 120
 gaatagcatg acctccgtgc aaacaggaca agcaaattt tgatgtgtt attaaaaaaga 180
 aataaataaaa tgtgtatatg tgtaacttgc atgttatgtt ggaatacaga ttggaaata 240
 aaatgtattt cttactgtga aaaaaaaaaaaaaaaa aana 284

<210> 81
 <211> 671
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 388, 505, 600, 603, 615, 642, 644, 660
 <223> n = A,T,C or G

<400> 81
 gccaccaaca ttccaagcta ccctgggtac ctgtgtcag tagaagctag tgacatgt 60
 agcaagcggt gtgcacacgg agactcatcg ttataattta ctatctgcc agagtagaaa 120
 gaaaggctgg ggatatttgg gttggcttgg ttttgcatttt ttgtttttt gttgtttt 180
 tactaaaaca gtattatctt tgaaatatcg tagggacata agtataataca tggttatccaa 240
 tcaagatggc tagaatggc ctttctgag tgcataaac ttgacacccc tggtaaatct 300
 ttcaacacac ttccactgcc tgcataatga agtttgatt catttttaac cactggattt 360
 tttcaatgcc gtcatttca gtttagatnat tttgcacttt gagattaaaa tgccatgtct 420
 atttgatttag tcttattttt ttattttac aggcttataca gtctcactgt tggctgtcat 480
 tgcataaaag tcaaataaaac ccccnaggac aacacacagt atggatcac atattgttt 540
 acattaagct ttggccaaaa aatgttgcattt gtttttacc tcgacttgct aaatcaatan 600
 canaaaggct ggctnataat gttgggtgt aaataattaa tnantaacca aaaaaaaaaan 660

aaaaaaaaaaa a	671
<210> 82	
<211> 217	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> 35	
<223> n = A,T,C or G	
<400> 82	
ctgcagatgt ttcttgaatg ctttgtcaaa ttaanaaaagt taaagtcaa taatgtttga 60	
agacaataag tggtggtgta tcttgtttct aataagataa acttttttgt ctggctta 120	
tcttattagg gagttgtatg tcagtgtataa aaacataactg tgtggtataa caggcttaat 180	
aaattcttta aaaggaaaaaa aaaaaaaaaa aaaaaaaa 217	
<210> 83	
<211> 460	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> 104, 118, 172, 401, 422, 423, 444, 449	
<223> n = A,T,C or G	
<400> 83	
cgcgagtgcc agcaccagga tctcgccctc ggaacgagac tgcacggatt gtttaagaa 60	
aatggcagac aaaccagaca tggggaaat cgccagcttc gatnaggcca agctgaanaa 120	
aacggagacg caggagaaga acaccctgcc gaccaaagag accattgagc angagaagcg 180	
gagtgaattt tcctaagatc ctggaggatt tcctaccccc gtcctctcg agaccccagt 240	
cgtatgtgg aggaagagcc acctgcaaga tggcacacgag ccacaagctg cactgtgaac 300	
ctgggactc cgccgcgtc ccaccggct gtgggtctct gaagggaccc ccccaatcg 360	
gactgcaaaa ttctccgtt tgccccggta tattatacaa nattatttgt atgaaataatg 420	
annataaaac acacccgtg gcancaaana aaaaaaaaaa 460	
<210> 84	
<211> 323	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> 70, 138, 178, 197, 228, 242, 244, 287, 311	
<223> n = A,T,C or G	
<400> 84	
tgggtggatct tggctctgtg gagctgctgg gacgggatct aaaagactat tctgaaagct 60	
gtggtccaaan gcattttgtct ggcttaacgg gtcccgaaac aaaggacacc agctctctaa 120	
aattgaagtt tacccganat aacaatctt tggcagaga tgccttatttt aacaacncc 180	
gtccctgcgc aacaacnaac aatctctggg aaataccggc catgaacntg ctgtctcaat 240	
cnancatctc tcttagctgac cgatcatatc gtcccgatt actacanatc ataataattg 300	

<pre> atttcctgta naaaaaaaaaaa aaa <210> 85 <211> 771 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> 63, 426, 471, 497, 521, 554, 583, 586, 606, 609, 615, 652, 686, 691, 694, 695, 706, 713, 730, 732, 743, 751 <223> n = A,T,C or G <400> 85 aaactgggta ctcaaacactg agcagatctg ttctttgagc taaaaaccat gtgctgtacc 60 aanagttgc tcctggctgc tttgatgtca gtgctgctac tccacctctg cggcgaatca 120 gaagcaagca actttgactg ctgtcttgc tacacagacc gtattctca tcctaaattt 180 attgtgggct tcacacggca gctggccaat gaaggctgtg acatcaatgc tattcatctt 240 cacacaaaaga aaaagtgtc tgtgtgcgc aatccaaaac agacttggtt gaaatatattt 300 gtgcgtctcc tcagtaaaaaa agtcaagaac atgtaaaaac tgtggcttt ctgaaatgga 360 attggacata gcccagaac agaaagaact tgctggggtt ggaggttca ctgcacatc 420 atgganggtt tagtgcttat cttatTTTgt cctcctggac ttgtccaatt natgaagtt 480 atcatattgc atcatanttt gctttgttta acatcacatt naaattaaac tgtatTTT 540 gttattttata gctntagggtt ttctgtgttt aacttttat acnaanttc ctaaactatt 600 ttggtnrant gcaanttaaa aattatattt ggggggggaa taaatattgg antttctgca 660 gccacaagct tttttaaaaa aaccantaca nccnngttaa atggtnngtc ccnaatgggt 720 tttgcttttta antagaaaaat ttnttagaac nattgaaaaa aaaaaaaaaa a 771 </pre>	<pre> 323 </pre>
---	------------------

<pre> <210> 86 <211> 628 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> 162, 249, 266, 348, 407, 427, 488, 518, 545, 566, 569, 597, 598, 611, 617, 621, 624 <223> n = A,T,C or G <400> 86 actagttgc tttacatttt tgaaaagtat tattttgtc caagtgccta tcaactaaac 60 cttgtgttag gtaagaatgg aatttattaa gtgaatcagt gtgacccttc ttgtcataag 120 attatcttaa agctgaagcc aaaatatgtc tcaaaagaaa angactttat tggcattgt 180 agttcataca ttcaaagcat ctgaactgtc gtttctatag caagccaaat acatccataa 240 gtggagaang aaatagatta atgtcnaagt atgattgggt gagggagcaa ggttgaagat 300 aatctggggt tggaaatttc tagtttcat tctgtacatt tttagtnga catcagattt 360 gaaatattaa tggatTTTtcaatgtgtc gtatcagctg gactcantaa caccccttc 420 ttccctnggg gatgggaaat ggattattgg aaaatggaaa gaaaaaaagta cttaaaggct 480 tccttcnca gtttctggct cttaccctac tgatttanc agaataagaa aacattttat 540 catcntctgc ttatccccca ttaatnaant ttgtatgaat aaatctgctt ttatgcnnac 600 ccaaggaatt nagtggnttc ntcnttg 628 </pre>	<pre> </pre>
--	--------------

<pre> <210> 87 <211> 518 </pre>	<pre> </pre>
---	--------------

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 384, 421, 486
 <223> n = A,T,C or G

<400> 87

ttttttattt ttttttagaga gtagttcagc ttttattttat aaatttatttgc cctgttttat 60
 tataacaaca ttatactgtt tatggtttaa tacatatggt tcaaaaatgtt taatacatca 120
 agtagtacag ttttaaaattt ttatgcttaa aacaagttt gtgtaaaaaa tgcaagataca 180
 ttttacatgg caaatcaattt tttaagtcat cctaaaaattt gatTTTTT tgaaattttaa 240
 aaacacattt aatttcaattt tctctttat ataaccctta ttactatagc atgTTTCCA 300
 ctacagttt acaatgcagc aaaattccca ttacacggta aattgggtt taagcggcaa 360
 ggttaaaatg ctttgaggat cctnaataacc ctttgaactt caaatgaagg ttatgggtgt 420
 naatttaacc ctcatgccat aagcagaagc acaagtttag ctgcattttg ctctaaactg 480
 taaaancgag ccccccggtt aaaaagcaaa agggaccc 518

<210> 88

<211> 1844
 <212> DNA
 <213> Homo sapiens

<400> 88

gagacagtga atcctagttt caaaggattt ttggcctcag aaaaagttgt tgattatTTT 60
 tattttattt tattttcga gactccgtct caaaaaaaaaa aaaaaaaaaa agaatcacaa 120
 ggtatttgc aaagcatttt gagctgctt gaaaaaggaa agtagttgc gtagagttc 180
 ttccatcttc ttgggtctgg gaagccatat atgtgtctt tactcaagct aaggggtata 240
 agcttatgtt ttgaatttgc tacatctata ttacacatat tctcacaata agagaatttt 300
 gaaatagaaaa tatcatagaa catttaagaa agtttagtat aaataatatt ttgtgtgtt 360
 taatcccttt gaaggatct atccaaagaa aatattttac actgagctcc ttctacacg 420
 tctcagtaac agatcctgtt ttagtctttt aaaaatagctc attttttaaa tgtcagttag 480
 tagatgttagc atacatatga ttttataatga cgtgtattt gtttacaatg tctgcagatt 540
 ttgttaggaat acaaaccatg gcctttttta taagcaaaac gggcaatga cttagataaac 600
 acatagggca atctgtaat atgtattata agcagcattt cagaaaaatgtt gtttgtgaaa 660
 taattttcaa gtcaaaaagg gatatggaaa gggattttatg agtaacctt attttttaaag 720
 ccttgctttt aaattaaacg ctacagccat ttacacccat aggataataa agcttgagag 780
 taataatgtt aggttagcaa aggttagat gtatcactt atgcattgtt ccattatgtt 840
 aatgcagctc ttccagtttcat ttctggtcat tcaagatatt cacccttttgc cccatagaaa 900
 gcacccttacc tcacccgtt actgacattt tcttagcttgc tcacaagatc attatcagcc 960
 tccattattt cttactgtat ataaaataca gagtttata ttcccttttgc ttcgtttttc 1020
 accatattca aaaccctaaat ttgttttgc agatggatg caaaatgtt aagtgttgc 1080
 gcttcacccat agaagggtgtt ggtcctgaag gaaagggc ccttaatatc cccacccttgc 1140
 ggtgctcctt ctcccttgc accctgactt ccagaatgtt ggtgcttagat cagctggaga 1200
 agtgcagcag cctgtgttcc cacagatggg ggtgctgttgc caacaaggtt ttcaatgttgc 1260
 ccatttttagg gggagaagctt agatcctgttgc cagcagccat gtaagtcttgc aggagggttcc 1320
 attgtcttcc ctgtgttgc tctttgttcc tcaacggggc tcgtcttaca gtcttagatc 1380
 catgcagcta acttgcgtt ctgtttatgc atgagggttta aattaacaac cataacccttgc 1440
 atttgaagtt caaagggttgc ttccaggatcc tcaaaaggattt ttaacccttgc cgcttaaaac 1500
 ccaatttacc gtgaaatggg aattttgttgc cattgttaaa ctgttagtggaa accatgttgc 1560
 tagtaataaa ggttatataa gagagaaattt gaaattttaaat gtgtttttaa atttcaaaaa 1620
 aaaatcaatc tttaggtatca cttttttttt gatttgcattt gtaaaaatgtt tctgcattttt 1680
 ttacacaaaaaa cttgttttaa gcataaaaaattt ttaaaaactgtt actactgttgc ttattataca 1740

tttgaacca tatgtattaa accataaaca gtataatgtt gttataataa aacaggcaat 1800
 aaattataa ataaaagctg aaaaaaaaaa aaaaaaaaaa aaaa 1844

<210> 89
 <211> 523
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 288, 352, 369, 398, 475, 511, 513
 <223> n = A,T,C or G

<400> 89
 ttttttttttttttagt caatccacat ttattgtat cttattatgtt accaggcact 60
 gggataaaaga tgactgttag tcactcacag taaggaagaa aactagcaaa taagacgatt 120
 acaaatatgtat gttagaaaatg ctaagccaga gatataaaaa ggtecttattg ggtcccttcgt 180
 tcacccctgtc tttccacatc cctacccttc acaggccttc cctccagctt cctggcccccg 240
 ctccccactg cagatcccctt gggattttgc cttagagctaa acgagganat gggcccccctg 300
 gccctggcat gacttgaacc caaccacaga ctggaaagg gagccttcg anagtggatc 360
 actttgatna gaaaacacat aggaaattga agagaaantc cccaaatggc cacccgtgct 420
 ggtgctcaag aaaagtttcg agaatggata aatgaaggat caaggaaattt aatanatgaa 480
 taattgaatg gtggctcaat aagaatgact ncnttgaatg acc 523

<210> 90
 <211> 604
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 563
 <223> n = A,T,C or G

<400> 90
 ccagtgttgtt ggaatgcaaa gattaccccg gaagctttcg agaagctggg attccctgca 60
 gcaaaggaaa tagccaatat gtgtcggttc tatgaaatga agccagaccg agatgtcaat 120
 ctcaccacc aactaaatcc caaagtcaaa agcttcagcc agtttatctc agagaaccag 180
 gggagcccttc aaggccatgt agaaaatccatg ctgttcagat aggcccttcg accacacagc 240
 ctcttcctc tctgatcctt ttcctcttca cggcacaaca ttcatgtttg acagaacatg 300
 ctggaatgca attgttgca acaccgaagg atttcctgcg gtcgcctt cagtaggaag 360
 cactgcattt gtgataggac acggtaattt gattcacatt taacttgcta gttatgtata 420
 aggggtggta cacctgtttt gtaaaatgag aagcctcgaa aacttggag cttctctcct 480
 accactaatg gggagggcag attattactg ggatttctcc tggggtaat taatttcaag 540
 ccctaattgc tgaaattccc ctnggcaggc tccagtttc tcaactgcat tgcaaaattc 600
 cccc 604

<210> 91
 <211> 858
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature

<222> 570, 591, 655, 664, 667, 683, 711, 759, 760, 765, 777, 787,
 792, 794, 801, 804, 809, 817, 820
<223> n = A,T,C or G

<400> 91

ttttttttt tttttttta tgattattat tttttttatt gatcttaca tcctcagtgt 60
 tggcagagtt tctgatgctt aataaacatt tgttctgatc agataagtgg aaaaaattgt 120
 catttcctta ttcaagccat gctttctgt gatattctga tccttagtga acatacagaa 180
 ataaatgtct aaaacagcac ctcgattctc gtctataaca ggactaagtt cactgtgatc 240
 ttaaataagc ttggctaaaa tgggacatga gtggaggttg tcacacttca gcgaagaaaag 300
 agaatctcct gtataatctc accaggagat tcaacgaatt ccaccacact ggactagtgg 360
 atccccggg ctgcaggaat tcgatatacaa gcttatcgat accgtcgacc tcgagggggg 420
 gcccggtacc caattcgccc tatagttagt cgtattacgc ggcgtcaactg gccgtcggtt 480
 tacaacgtcg tgactggaa aaccctggcg ttacccaact taatcgccctt gcagcacatc 540
 ccccttcgc cagctggcgt aatagcgaan agcccgacc gatcgccctt ncaacagttg 600
 cgccgcgtga atggcgaatg ggacgcgccc tgttagcggcg cattaaagcg cggcnggggtg 660
 tggngntcc cccacgtgac cgnatcactt ggcagegcct tacgcccgtc nttcgcttc 720
 ttcccttcct ttctcgacc gttcgccggg tttcccgnn agctnttaat cgggggnntc 780
 cctttanggg tncnaattaa ngnnttacng gacctngan cccaaaaact ttgatttaggg 840
 ggaaggtccc cgaagggg 858

<210> 92

<211> 585

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 317, 319, 320, 321, 325, 327, 328, 330, 331, 332, 460, 462,
 483, 485, 487, 523, 538, 566, 584

<223> n = A,T,C or G

<400> 92

gttgaatctc ctgggtgagat tatacaggag attctcttc ttgcgtgaag tgtgactacc 60
 tccactcatg tcccattta gccaagctta tttaagatca cagtgaactt agtccctgtta 120
 tagacgagaa tcgaggtgct gtttagaca tttattctg tatgttcaac taggatcaga 180
 atatcacaga aaagcatggc ttgaataagg aaatgacaat tttttccact tatctgtatca 240
 gaacaaatgt ttattaagca tcagaaactc tgccaaacact gaggatgtaa agatcaataa 300
 aaaaaataat aatcatnann naaanannan nngaaggcg gcccgcaccg cggtggagct 360
 ccagcttttgc ttccctttag tgagggttaa ttgcgcgtt ggcgttaatc atgtcatag 420
 ctgtttcctg tgtgaaatttgc ttatccggct cacaattccn cncaacatac gagccggaa 480
 gcntnangtg taaaagcctg ggggtgccta attgagttagt gtnactcaca ttaattngnt 540
 tgcgtccac ttgcgcgtt ttccantccg gaaaaacctgt tcgn 585

<210> 93

<211> 567

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 82, 158, 230, 232, 253, 266, 267, 268, 269, 270, 271, 272,
 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284,
 285, 286, 287, 295, 303, 307, 314, 349, 352, 354, 356, 366,

369, 379, 382, 386, 393, 404, 427, 428, 446, 450, 452
 <223> n = A,T,C or G

<221> misc_feature
 <222> 453, 454, 459, 462, 480, 481, 483, 488, 493, 501, 509, 511,
 512, 518, 520, 525, 526, 532, 541, 557
 <223> n = A,T,C or G

<400> 93

cggcagtgtt gctgtctgcg tgtccacctt ggaatctggc tgaactggct gggaggacca 60
 agactgcggc tgggtggc anggaaggga accggggct gctgtgaagg atcttggAAC 120
 ttccctgtac ccaccttccc cttgcttcatt gtttgtaAGA gaaccttgtt ccggccaAGC 180
 ccagtttctt tgggtgataAC actaatgtat ttgtttttt tggaaATAN anaaaaATCA 240
 attaaATTGCTG TANTGTTCTT ttGAANNNNN NNNNNNNNNN NNNNNNNNGGG GGGNCGCC 300
 ccncggngga aacnccccctt tttgtccctt ttaattgaaa ggttaatng cnncntggc 360
 gttaancntt gggccaaanc tngtncccg tgntgaaatt gttnatcccc tcccaaattc 420
 ccccccnncc ttccaaaccc ggaaancctn annntgttna ancccggggg gttgcctaann 480
 ngnaattnaa ccnaaccccc ntttaatng nnttgcnCN ccacnngccc cnctttccca 540
 ntccgggaa aaccctntcc gtgccca 567

<210> 94

<211> 620

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 169, 171, 222, 472, 528, 559, 599

<223> n = A,T,C or G

<400> 94

actagtcaaa aatgctaaaa taatttggga gaaaatattt tttaagtagt gttatagttt 60
 catgtttatc ttttattatg ttttgtgaag ttgtgtcttt tcactaatta cctatactat 120
 gccaaatattt ccttatatact atccataaca tttatactac atttgaana naatatgcac 180
 gtgaaactta acactttata aggtaaaaat gaggtttcca anatttaata atctgatcaa 240
 gttctgtta tttccaaata gaatggactt ggtctgttaa gggctaagga gaagaggaag 300
 ataaggttaa aagttgttaa tgaccaaaca ttctaaaaga aatgcaaaaa aaaagtttat 360
 tttcaagcct tcgaactatt taaggaaagc aaaatcattt cctaaatgca tatcatttgt 420
 gagaatttctt cattaatatc ctgaatcatt catttcacta aggctcatgt tnactccgat 480
 atgtctctaa gaaagtacta tttcatggtc caaacctgggt tgccatantt ggtaaaggc 540
 tttcccttaa gtgtgaaantt attttaaatg aaattttctt ctttttaaaa attctttana 600
 agggttaagg gtgttgggg 620

<210> 95

<211> 470

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 61, 67, 79, 89, 106, 213, 271, 281, 330, 354, 387, 432, 448

<223> n = A,T,C or G

<400> 95

ctgcaccttc tctgcacagc gnatgaaccc tgagcagctg aagaccagaa aagccactat 60
 nactttntgc ttaattcang agcttacang attttcaaa gagtgngtcc agcatccttt 120
 gaaacatgag ttcttaccag cagaaggcaga ccttacccc accacccctcg cttcaacagc 180
 agcaggtgaa acaacccatc cagcctccac ctnaggaaat atttgttccc acaaccaagg 240
 agccatgccca ctcaaagggtt ccacaacctg naaacacaaa nattccagag ccaggctgta 300
 ccaaggtccc tgagccaggg ctgtaccaan gtccctgagc caggttgac caangtccct 360
 gagccaggat gtaccaaggt ccctgancca gtttgcacaa gttccctgag ccaggctaca 420
 ccaaggccct gngccaggca gcatcaangt ccctgaccaa ggcttatcaa 470

<210> 96
 <211> 660
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 299, 311, 360, 426, 538, 540, 542, 553, 563, 565, 592, 603,
 604, 618, 633, 647, 649, 651, 653
 <223> n = A,T,C or G

<400> 96
 tttttttttt tttttttttt ggaattaaaa gcaatttaat gagggcagag cagaaacat 60
 gcattttttt tcattcgaat cttcagatga accctgagca gccgaagacc agaaaagcca 120
 tgaagacttt ctgcttaatt cagggccta caggattctt cagagtgtgt gtgaacaaaa 180
 gctttatagt acgtatTTT aggataaaaa taagagagag actatggctt ggggtgagaa 240
 tgtactgatt acaaggtcta cagacaatta agacacagaa acagatggga agagggtgn 300
 cagcatctgg ngttggctt ctcagggtctt tgctgtgc ccaaattact tctgcttgg 360
 cttctgtgtg gctggcctg gagtggcgt tgaaggacat ggctctggta ctttgtgt 420
 gcctgnaca ggaactttgg tgatccttgc ctcaggaact ttgatggcac ctggctcagg 480
 aaacttgatg aagcttggt caaggaccc ttagtgc tggctcaagg accttggnn 540
 ancctggct canggacctt tgncaacc ttggctcaa gggaccctt gnacatcctg 600
 gnennaggac ctttgggncc aaccctggc tttagggacc ctttggntnc nancttggc 660

<210> 97
 <211> 441
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc feature
 <222> 12, 308
 <223> n = A,T,C or G

<400> 97
 gggaccatac anagtattcc tctttcaca ccaggaccag ccactgttgc agcatgagtt 60
 cccagcagca gaagcagccc tgcattccac cccctcagct tcagcagcag caggtgaaac 120
 agccttgcca gcctccaccc caggaaccat gcatccccaa aaccaaggag ccctggccacc 180
 ccaaggtgcc tgagccctgc caccccaag tgcctgagcc ctgcccggcc aaggttccag 240
 agccatgccca ccccaagggtg cctgagccct gcccttcaat agtcaactcca gcaccagccc 300
 agcagaanac caagcagaag taatgtggtc cacagccatg cccttgagga gcccggccacc 360
 agatgctgaa tccccatcc cattctgtgt atgagtccca ttgccttgc aattagcatt 420
 ctgtctcccc caaaaaaaaaa a 441

<210> 98
 <211> 600
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 295, 349, 489, 496, 583
 <223> n = A,T,C or G

<400> 98
 gtattcctct cttcacacca ggaccagcca ctgttgcagc atgagttccc agcagcagaa 60
 gcagccctgc atcccccccc ctcagcttca gcagcagcag gtgaaaacagc cttgccagcc 120
 tccacctca gAACCATGCA tccccaaaaac caaggagccc tgccacccca aggtgcctga 180
 gccctgccac cccaaagtgc ctgagccctg ccagcccaag gttccagagc catgccaccc 240
 caaggtgcct gagccctgcc cttcaatagt cactccagca ccagcccagc agaanaccaa 300
 gcagaagtaa tgtggtccac agccatgccc ttgaggagcc ggccaccana tgctgaatcc 360
 cctatcccat tctgtgtatg agtcccattt gccttgcaat tagcattctg tctcccccaa 420
 aaaagaatgt gctatgaagc tttctttcct acacactctg agtctctgaa tgaagctgaa 480
 ggtcttaant acaganctag tttcagctg ctcagaattc tctgaagaaa agatttaaga 540
 taaaaggcaa atgattcagc tccttattac cccattaaat tcncttcaa ttccaaaaaaaa 600

<210> 99
 <211> 667
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 345, 562, 635
 <223> n = A,T,C or G

<400> 99
 actagtgact gagttcctgg caaagaaaatt tgacctggac cagttgataa ctcatgtttt 60
 accatttaaa aaaatcagtg aaggatttga gctgctaat tcaggacaaa gcattcgaac 120
 ggtcctgacg ttttgagatc caaagtggca ggaggtctgt gttgtcatgg tgaactggag 180
 tttcttctgt gagagttccc tcatctgaaa tcatgtatct gtctcacaaa tacaagcata 240
 agtagaaatgt ttgttgaaga catagaaccc ttataaaagaa ttattaaacct ttataaacat 300
 tttaaagtctt gtgagcacct gggatttagt ataataacaa ttttnatatt tttgatttac 360
 attttgaag gctataattt tatctttaa gaaaacatac cttggatttc tatgttgaaa 420
 tggagatttt taagagttt aaccagctgc tgcagatata ttactcaaaa cagatatacg 480
 gtataaaagat atagtaaatg catctcctag agtaataattc acttaacaca ttggaaacta 540
 ttatTTTta gatttgaata tnaatgttat tttttaaaca cttgttatga gttacttggg 600
 attacattttt gaaatcagtt cattccatga tgcattttttt tgggattttaga ttaagaaaga 660
 cggaaaaa 667

<210> 100
 <211> 583
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature

<222> 404, 506, 514, 527, 528, 538, 548, 556, 568, 569
 <223> n = A,T,C or G

<400> 100

```
gttttgttg taagatgatc acagtcatgt tacactgatc taaaggacat atatataacc 60
ctttaaaaaa aaaatcactg cctcattttt atttcaagat gaatttctat acagactaga 120
tgttttctg aagatcaatt agacattttg aaaatgattt aaagtgtttt ccttaatgtt 180
ctctgaaaac aagttcttt tgtagttta accaaaaaaag tgccctttt gtcaactggat 240
tctccttagca ttcatgattt tttttcata caatgaaatt aaaattgcta aaatcatgga 300
ctggctttct ggttggattt caggttaagat gtgtttaagg ccagagcttt tctcagtatt 360
tgatttttttt ccccaatatt tgattttttta aaaatataca catnggtgct gcatttat 420
ctgctggttt aaaattctgtt catatttcac ttctagcctt ttagttatgg caaatcatat 480
ttactttta cttaaagcat ttggtnattt ggantatctg gttctannct aaaaaaanta 540
attctatnaa ttgaantttt ggtactcnnc catatttgaa tcc 583
```

<210> 101

<211> 592

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 218, 497, 502, 533, 544, 546, 548, 550, 555

<223> n = A,T,C or G

<400> 101

```
gtggagacgt acaaagagca gccgctcaag acacctggga agaaaaagaa aggcaagccc 60
ggaaaacgca aggagcagga aaagaaaaaa cggcgaactc gctctgcctg gttagactct 120
ggagtgactg ggagtgggct agaaggggac cacctgtctg acacccac aacgtcgctg 180
gagctcgatt cacggaggca ttgaaatttt cagcaganac cttccaagga catattgcag 240
gattctgtaa tagtgaacat atggaaagta ttagaaatat ttattgtctg taaatactgt 300
aaatgcattt gaataaaaact gtctccccca ttgctctatg aaactgcaca ttggtcattt 360
tgaatatttt ttttttgcc aaggctaattt caattattat tatcacattt accataattt 420
attttgtcca ttgatgtatt tattttgtaa atgtatctt gtgctgctga atttctat 480
ttttgtaca taatgcnttt anatataacct atcaagttt ttgataaaatg acncaatgaa 540
gtgnncncnan ttggnggttg aatttaatga atgcctaattt ttattatccc aa 592
```

<210> 102

<211> 587

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 91, 131, 256, 263, 332, 392, 400, 403, 461, 496, 497, 499,

510, 511, 518, 519, 539, 554, 560, 576

<223> n = A,T,C or G

<400> 102

```
cgtcctaagc acttagacta catcaggaa gaacacagac cacatccctg tcctcatgct 60
gcttatgttt tctgaaagaa agtggagacc nagtccctgg cttagggct ccccggtgg 120
gggctgtgca ntccggtcag ggcggaaagg gaaatgcacc gctgcattgt aacttacago 180
ccaggcggat gccccttccc ttagcactac ctggcctctt gcatccctc gcctcatgtt 240
cctccccacct tcaaanaatg aanaacccca tgggcccagc cccttgccctt gggaaaccaa 300
```

ggcagccttc caaaaacttag gggctgaagc anactattag ggcagggct gactttgggt 360
 gacactgccccc attccctctc agggcagctc angtcacccn ggnctctga acccagcctg 420
 ttcccttggaa aaaggcaaa actgaaaagg gctttccta naaaaagaaa aaccaggaa 480
 ctttgccagg gcttcnntt tacccaaacn ncttctcnng gatTTtaat tccccatnng 540
 gcctccactt accnngggcn atgccccaaa attaanaatt tcccatc 587

<210> 103

<211> 496

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 2, 17, 66, 74, 82, 119, 164, 166, 172, 200, 203, 228, 232,
 271, 273, 415, 423, 445, 446, 473

<223> n = A,T,C or G

<400> 103

anaggactgg ccctacntgc tctctctcggt cctacctatac aatgcccac atggcagaac 60
 ctgcancctt tggnactgc anatggaaac ctctcagtgt cttgacatca ccctaccnt 120
 gcggtgggtc tccaccacaa ccactttgac tctgtggtcc ctgnanggtg gnttctcctg 180
 actggcagga tggaccttan ccnacatatac cctctgttcc ctctgctnag anaaagaatt 240
 cccttaacat gatataatcc acccatgcaa ntngctactg gcccagctac catttaccat 300
 ttgcctacag aatttcatc agtctacact ttggcattct ctctggcgt agagtgtggc 360
 tgggctgacc gaaaaagggtg cttacacac tggcccccac cctcaaccgt tgacncatca 420
 gangcttgc tccctcttct gattnncccc catgttggat atcagggtgc tcnaggatt 480
 ggaaaagaaa caaaac 496

<210> 104

<211> 575

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 18, 19, 45, 68, 77, 132, 155, 174, 219, 226, 238, 259, 263,
 271, 273, 306, 323, 339, 363, 368, 370, 378, 381, 382, 436,
 440, 449, 450, 456, 481, 485, 496, 503, 510, 512, 515, 528,
 542, 552

<223> n = A,T,C or G

<400> 104

gcacctgctc tcaatccnnnc tctcaccatg atcctccgccc tgcanaaaact cctctgccaa 60
 ctatggangt ggtttcnggg gtggcttctt ccaactggaa agaaggcgtg gtgtctctac 120
 ctgttcaact cngtttgtt ctgggggatc aactnggggc tatggaagcgt gctnaactgt 180
 tgttttgggt gaagggtctgg taattggctt tgggaagtg cttatngaag ttggcctngg 240
 gaagttgcta ttgaaagtng ccntggaaat ngnttgggtt gggggttttt ctgtggcct 300
 ttgttnaatt tgggtgtttt gttaatggcg gccccctcnc ctgggcaatg aaaaaaatca 360
 ccnatgcngn aaacctcnac nnaacagcct gggcttccct cacctcgaaa aaagttgctc 420
 cccccccaaa aaaggncaan cccctcaann tggaaangttg aaaaaatcct cgaatggga 480
 ncccnaaaac aaaaancccc cnntttcccn gnaanggggg aaataccncc cccccactta 540
 cnaaaaaccct tntaaaaaac cccccgggaa aaaaa 575

<210> 105

<211> 619
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> misc_feature
<222> 260, 527, 560, 564, 566, 585, 599
<223> n = A,T,C or G
```

<400> 105

cactagtagg	atagaaacac	tgtgtcccg	gagtaaggag	agaagctact	attgattaga	60
gcctaacc	ggttaactgc	aagaagaggc	gggatactt	cagcttcca	tgttaactgt	120
tgcataaa	caatgtagtc	cagtttctaa	gatcatgtt	caagctaact	gaatcccact	180
tcaatacaca	ctcatgaact	cctgatggaa	caataaacagg	cccaagcctg	tggtatgtat	240
tgcacacttg	ctagactcan	aaaaaaatact	actctctataa	atgggtggga	gtatttttgt	300
gacaacctac	tttgcttggc	tgagtgaagg	aatgatattt	atatatattat	ttattccatg	360
gacattttagt	tagtgc	tttttataccag	gcatgatgt	gagtgcacact	cttgcgtata	420
tttccaaatt	tttgta	cgctgcacat	atttgaat	atataattaa	acttccaaa	480
aatgaagtcc	ctggttttc	atggcaactt	gatcgtaaa	ggattcnct	ctgtttgt	540
cttaaaacat	ctactatatn	gttnanatga	aattccttt	ccccncctcc	cgaaaaaaana	600
aagtgg	ggaaaaaaa					619

<210> 106

<211> 506

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> 8, 21, 31, 32, 58, 75, 89, 96, 99, 103, 122, 126, 147, 150,
158, 195, 210, 212, 219, 226, 246, 248, 249, 255, 258, 261,
263, 265, 275, 304, 317, 321, 331, 337, 340, 358, 371, 377,
380, 396, 450, 491

<223> n = A, T, C or G

<400> 106

cattggtnct ttcatttgct ntggaagtgt nnatctctaa cagtgacaa agttcccnngt 60
gccttaaact ctgtacact tttgggaant gaaaantng tantatgata gtttattctg 120
angtanagat gttctggata ccattanatn tgccccnngt gtcagaggct catattgtgt 180
tatgtaaatg gtatntcatt cgctactatn antcaatng aaatanggtc tttgggttat 240
gaatantnng cagcncancn nanangctgt ctgtngtatt cattgtggtc atagcacctc 300
acancattgt aacctcnatc nagtgagaca nactagnaan ttcccttagtga tggctcanga 360
ttccaaatgg nctcatntcn aatgttaaa agttantaa gtgtaaagaaa tacagactgg 420
atgttccacc aactagtacc tgtaatgacn ggccgttccc aacacatctc cctttccat 480
gactgtggta ncccgatcg gaaaaaa 506

<210> 107

<211> 452

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature
<222> 289, 317, 37

<223> n = A,T,C or G

<400> 107

```
gttgagtcg tactaaacag taagatatct caatgaacca taaattcaac tttgtaaaaa 60
tctttgaag catagataat attgttttgt aaatgtttct tttgttttgt aaatgtttct 120
tttaaagacc ctcctattct ataaaactct gcatgttagag gcttgttac ctttctctct 180
ctaaggttt caataggagt ggtgatttga aaaatataaa attatgagat tggtttccct 240
gtggcataaa ttgcactact gtatcatttt cttnnttaac cggttaagant ttcaagttgt 300
tggaaagtaa ctgtganaac ccagttccc gtccatctcc cttaggact acccatagaa 360
cataaaagg tccccacnga agcaagaaga taagtcttc atggctgctg gttgcttaaa 420
ccacttaaa accaaaaaat tccccttggaa aa 452
```

<210> 108

<211> 502

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

```
<222> 22, 31, 126, 168, 183, 205, 219, 231, 236, 259, 283, 295,
296, 298, 301, 340, 354, 378, 383, 409, 433, 446, 455, 466,
488
```

<223> n = A,T,C or G

<400> 108

```
atcttcttcc ctaattagt ntattaaatt ttattgcatt tcctggcaaa 60
caaaaagaga tttagattt gcttcggct ccccaaaagc ccataacaga aagtaccaca 120
agaccncaac tgaagcttaa aaaatctatc acatgtataa taccttngaa agaacattaa 180
tanagcatat aaaactttt acatntgctt aatgttgcnc aattataaaa ntaatngaaa 240
aaaatgtccc tttaacatnc aatatcccac atagtttat ttnagggat taccnngnaa 300
naaaaaaagg gtagaaggaa tttaatgaaa actctgctt ccatttctgt ttanaaaacgt 360
ctccagaaca aaaacttntc aantttca gctaaccgca tttgagctna ggcactcaa 420
aaactccatt agnccactt tctaanggtc tctanagctt actaancctt ttgaccctt 480
accctggnta ctccctccctt ca 502
```

<210> 109

<211> 1308

<212> DNA

<213> Homo sapiens

<400> 109

```
acccgaggc tcgctaaaat catcatggat tcacttggcg ccgtcagcac tcgacttggg 60
tttgatctt tcaaagagct gaagaaaaca aatgtatggca acatcttctt ttcccctgt 120
ggcatcttga ctgcaattgg catggccttc ctggggaccc gaggagccac cgcttccct 180
ttggaggagg tgtttcaactc tgaaaaagag acgaagagct caagaataaa ggctgaagaa 240
aaagaggtga ttgagaacac agaagcagta catcaacaat tccaaaagtt ttgactgaa 300
ataagcaaac tcactaatga ttatgtactg aacataacca acaggctgtt tggagaaaaa 360
acataacctt tccttcaaaa atacttagat tatgttgaaa aatattatca tgcattctgt 420
gaacctgtt attttgtaaa tgcagccgt gaaagtcgaa agaagatcaa ttccctgggtt 480
gaaagcaaaa caaatgaaaa aatcaaggac ttgttccctg atggctctat tagtagctct 540
accaagctgg tgctgtgaa catggttat tttaaaggc aatgggacag ggagtttaag 600
aaagaaaata ctaagaaga gaaattttgg atgaataaga gcacaagtaa atctgtacag 660
atgatgacac agagccattc cttagcttc actttccctgg aggacttgca ggcacaaattt 720
ctagggattc catataaaaaa caacgaccta agcatgtttg tgcttctgcc caacgacatc 780
```

gatggcctgg agaagataat agataaaata agtcctgaga aattggtaga gtggactagt 840
 ccaggcata tggaaagaaag aaaggtgaat ctgcacttgc cccgggttga ggtggaggac 900
 agttacgatc tagaggcggt cctggctgcc atggggatgg gcgatgcctt cagtgagcac 960
 aaagccgact actcgggaat gtcgtcaggc tccgggttgt acgcccagaa gttcctgcac 1020
 agttcctttg tggcagtaac tgaggaaggc accgaggctg cagctgcac tggcataggc 1080
 ttactgtca catccgcccc aggtcatgaa aatgttcaact gcaatcatcc cttcctgttc 1140
 ttcatcaggc acaatgaatc caacagcatc ctcttcttg gcagattttc ttcccttaa 1200
 gatgatcggtt gccatggcat tgctgctttt agaaaaaaac aactaccagt gttactcata 1260
 tgattatgaa aatcgccat tctttaaat ggtggctcac ttgcattt 1308

<210> 110

<211> 391

<212> PRT

<213> Homo sapiens

<400> 110

Met	Asp	Ser	Leu	Gly	Ala	Val	Ser	Thr	Arg	Leu	Gly	Phe	Asp	Leu	Phe
1									10						15
Lys	Glu	Leu	Lys	Lys	Thr	Asn	Asp	Gly	Asn	Ile	Phe	Phe	Ser	Pro	Val
									25						30
Gly	Ile	Leu	Thr	Ala	Ile	Gly	Met	Val	Leu	Leu	Gly	Thr	Arg	Gly	Ala
									40						45
Thr	Ala	Ser	Gln	Leu	Glu	Glu	Val	Phe	His	Ser	Glu	Lys	Glu	Thr	Lys
									55						60
Ser	Ser	Arg	Ile	Lys	Ala	Glu	Glu	Lys	Glu	Val	Ile	Glu	Asn	Thr	Glu
									70						80
Ala	Val	His	Gln	Gln	Phe	Gln	Lys	Phe	Leu	Thr	Glu	Ile	Ser	Lys	Leu
									85						95
Thr	Asn	Asp	Tyr	Glu	Leu	Asn	Ile	Thr	Asn	Arg	Leu	Phe	Gly	Glu	Lys
									100						110
Thr	Tyr	Leu	Phe	Leu	Gln	Lys	Tyr	Leu	Asp	Tyr	Val	Glu	Lys	Tyr	Tyr
									115						125
His	Ala	Ser	Leu	Glu	Pro	Val	Asp	Phe	Val	Asn	Ala	Ala	Asp	Glu	Ser
									130						140
Arg	Lys	Lys	Ile	Asn	Ser	Trp	Val	Glu	Ser	Lys	Thr	Asn	Glu	Lys	Ile
									145						160
Lys	Asp	Leu	Phe	Pro	Asp	Gly	Ser	Ile	Ser	Ser	Ser	Thr	Lys	Leu	Val
									165						175
Leu	Val	Asn	Met	Val	Tyr	Phe	Lys	Gly	Gln	Trp	Asp	Arg	Glu	Phe	Lys
									180						190
Lys	Glu	Asn	Thr	Lys	Glu	Glu	Lys	Phe	Trp	Met	Asn	Lys	Ser	Thr	Ser
									195						205
Lys	Ser	Val	Gln	Met	Met	Thr	Gln	Ser	His	Ser	Phe	Ser	Phe	Thr	Phe
									210						220
Leu	Glu	Asp	Leu	Gln	Ala	Lys	Ile	Leu	Gly	Ile	Pro	Tyr	Lys	Asn	Asn
									225						240
Asp	Leu	Ser	Met	Phe	Val	Leu	Leu	Pro	Asn	Asp	Ile	Asp	Gly	Leu	Glu
									245						255
Lys	Ile	Ile	Asp	Lys	Ile	Ser	Pro	Glu	Lys	Leu	Val	Glu	Trp	Thr	Ser
									260						270
Pro	Gly	His	Met	Glu	Glu	Arg	Lys	Val	Asn	Leu	His	Leu	Pro	Arg	Phe
									275						285
Glu	Val	Glu	Asp	Ser	Tyr	Asp	Leu	Glu	Ala	Val	Leu	Ala	Ala	Met	Gly
									290						300

Met Gly Asp Ala Phe Ser Glu His Lys Ala Asp Tyr Ser Gly Met Ser
 305 310 315 320
 Ser Gly Ser Gly Leu Tyr Ala Gln Lys Phe Leu His Ser Ser Phe Val
 325 330 335
 Ala Val Thr Glu Glu Gly Thr Glu Ala Ala Ala Ala Thr Gly Ile Gly
 340 345 350
 Phe Thr Val Thr Ser Ala Pro Gly His Glu Asn Val His Cys Asn His
 355 360 365
 Pro Phe Leu Phe Phe Ile Arg His Asn Glu Ser Asn Ser Ile Leu Phe
 370 375 380
 Phe Gly Arg Phe Ser Ser Pro
 385 390

<210> 111

<211> 1419

<212> DNA

<213> Homo sapiens

<400> 111

ggagaactat aaattaagga tcccagctac ttaattgact tatgcttcct agttcggtgc 60
 ccagccacca ccgtctctcc aaaaaccgga ggtctcgcta aaatcatcat ggattcactt 120
 ggccgcgtca gcactcgact tgggttgat ctttcaaag agctgaagaa aacaatgtat 180
 ggcaacatct tctttcccc tggggcatc ttgactgaa ttggcatgtt cttctgggg 240
 acccgaggag ccaccgcctc ccagttggag gaggtgttc actctgaaaa agagacgaag 300
 agctcaagaa taaaggctga agaaaaagag gtggtaagaa taaaggctga agggaaagag 360
 attgagaaca cagaaggcgt acatcaacaa ttccaaaagt ttttgactga aataagcaaa 420
 ctcaactaatg attatgaaact gaacataacc aacaggctgt ttggagaaaa aacataacctc 480
 ttccctcaaa aatacttaga ttatgttcaa aaatattatc atgcacatctt ggaacctgtt 540
 gattttgtaa atgcagccga tggaaagtctga aagaagattha attcctgggt tgaaagcaaa 600
 acaaataaaaaaa aaatcaagga ctgttccca gatggctcta ttagtagctc taccaaagctg 660
 gtgctggta acatggttta tttaaaggg caatggaca gggagttaa gaaagaaaaat 720
 actaaggaag agaaattttg gatgaataag agcacaagta aatctgtaca gatgatgaca 780
 cagagccatt ccttagctt cactttccctg gaggacttgc aggccaaaat tctagggatt 840
 ccatataaaaaa acaacgacat aagcatgttt gtgcctctgc ccaacgcacat cgatggcctg 900
 gagaagataa tagataaaaaat aagtccctgag aaatggtag agtggactag tccaggcat 960
 atgaaagaaaaaa gaaagggtgaa tctgcacttg ccccggttg aggtggagga cagttacgat 1020
 ctagaggccgg tcctggctgc catggggatg ggcgatgcct tcagtggcaca caaagccgac 1080
 tactcgggaa tgcgtcagg ctccgggttg tacgcccaga agttcctgca cagttccctt 1140
 gtggcagtaa ctgaggaagg caccgaggct gcagctgcca ctggcatagg cttaactgtc 1200
 acatccgccc caggtcatga aatgttca ctcataatc cttccctgtt cttcatcagg 1260
 cacaatgaat ccaacagcat cctttcttc ggcagattt ctttcctta agatgtatcgt 1320
 tgccatggca ttgctgcttt tagcaaaaaa caactaccag tgttactcat atgattatga 1380
 aaatcgatcca ttctttaaa tggtggtca cttgcattt 1419

<210> 112

<211> 400

<212> PRT

<213> Homo sapiens

<400> 112

Met Asp Ser Leu Gly Ala Val Ser Thr Arg Leu Gly Phe Asp Leu Phe
 1 5 10 15
 Lys Glu Leu Lys Lys Thr Asn Asp Gly Asn Ile Phe Phe Ser Pro Val

	20	25	30
Gly Ile Leu Thr Ala Ile Gly Met Val	Leu Leu Gly Thr Arg Gly Ala		
35	40	45	
Thr Ala Ser Gln Leu Glu Glu Val Phe His Ser	Glu Lys Glu Thr Lys		
50	55	60	
Ser Ser Arg Ile Lys Ala Glu Glu Lys Glu Val Val Arg Ile Lys Ala			
65	70	75	80
Glu Gly Lys Glu Ile Glu Asn Thr Glu Ala Val His Gln Gln Phe Gln			
85	90	95	
Lys Phe Leu Thr Glu Ile Ser Lys Leu Thr Asn Asp Tyr Glu Leu Asn			
100	105	110	
Ile Thr Asn Arg Leu Phe Gly Glu Lys Thr Tyr Leu Phe Leu Gln Lys			
115	120	125	
Tyr Leu Asp Tyr Val Glu Lys Tyr Tyr His Ala Ser Leu Glu Pro Val			
130	135	140	
Asp Phe Val Asn Ala Ala Asp Glu Ser Arg Lys Lys Ile Asn Ser Trp			
145	150	155	160
Val Glu Ser Lys Thr Asn Glu Lys Ile Lys Asp Leu Phe Pro Asp Gly			
165	170	175	
Ser Ile Ser Ser Thr Lys Leu Val Leu Val Asn Met Val Tyr Phe			
180	185	190	
Lys Gly Gln Trp Asp Arg Glu Phe Lys Lys Glu Asn Thr Lys Glu Glu			
195	200	205	
Lys Phe Trp Met Asn Lys Ser Thr Ser Lys Ser Val Gln Met Met Thr			
210	215	220	
Gln Ser His Ser Phe Ser Phe Thr Phe Leu Glu Asp Leu Gln Ala Lys			
225	230	235	240
Ile Leu Gly Ile Pro Tyr Lys Asn Asn Asp Leu Ser Met Phe Val Leu			
245	250	255	
Leu Pro Asn Asp Ile Asp Gly Leu Glu Lys Ile Ile Asp Lys Ile Ser			
260	265	270	
Pro Glu Lys Leu Val Glu Trp Thr Ser Pro Gly His Met Glu Glu Arg			
275	280	285	
Lys Val Asn Leu His Leu Pro Arg Phe Glu Val Glu Asp Ser Tyr Asp			
290	295	300	
Leu Glu Ala Val Leu Ala Ala Met Gly Met Gly Asp Ala Phe Ser Glu			
305	310	315	320
His Lys Ala Asp Tyr Ser Gly Met Ser Ser Gly Ser Gly Leu Tyr Ala			
325	330	335	
Gln Lys Phe Leu His Ser Ser Phe Val Ala Val Thr Glu Glu Gly Thr			
340	345	350	
Glu Ala Ala Ala Ala Thr Gly Ile Gly Phe Thr Val Thr Ser Ala Pro			
355	360	365	
Gly His Glu Asn Val His Cys Asn His Pro Phe Leu Phe Phe Ile Arg			
370	375	380	
His Asn Glu Ser Asn Ser Ile Leu Phe Phe Gly Arg Phe Ser Ser Pro			
385	390	395	400

<210> 113

<211> 957

<212> DNA

<213> Homo sapiens

<400> 113
 ctcgaccc tctgcacagc gnatgaaccc tgagcagctg aagaccagaa aagccactat 60
 gactttctgc ttaattcagg agcttacagg attttcaaa gagtgtgtcc agcatccttt 120
 gaaacatgag ttcttaccag cagaagcaga ccttacccc accacccctcg cttcaacagc 180
 agcaggtgaa acaacccagc cagcctccac ctcagggaaat atttgttccc acaaccaagg 240
 agccatgccca ctcaaagggtt ccacaacctg gaaacacaaa gattccagag ccaggctgt 300
 ccaaggctccc tgagccagc tgtagccaagg tccctgagcc aggttgtacc aaggtccctg 360
 agccaggatg taccaaggc cctgagccag gtttagccaa ggtccctgag ccaggctaca 420
 ccaaggctccc tgagccagc agcatcaagg tccctgacca aggcttcata aagttccctg 480
 agccaggtgc catcaaagggtt cctgagcaag gatacacaaa agttccctgtg ccaggctaca 540
 caaaggtaacc agagccatgt cttcaacgg tcactccagg cccagctcg cagaagacca 600
 agcagaagta atttggtgca cagacaagcc cttgagaagc caaccaccag atgctggaca 660
 ccctcttccc atctgtttct gtgtcttaat tgtctgtaga cttgttaatc agtacattct 720
 caccccaagc catagtctct ctcttattt tattctaaaa atacggtaact ataaagctt 780
 tgttcacaca cactctgaag aatcctgtaa gcccctgaat taagcagaaa gtcttcatgg 840
 ctttctggc ctccggctgc tcagggttca tctgaagatt cgaatgaaaa gaaatgcatg 900
 tttctgtc tgccttcatt aaattgctt taattccaaa aaaaaaaaaa aaaaaaaaaa 957

<210> 114
 <211> 161
 <212> PRT
 <213> Homo sapiens

<400> 114
 Met Ser Ser Tyr Gln Gln Lys Gln Thr Phe Thr Pro Pro Pro Gln Leu
 1 5 10 15
 Gln Gln Gln Gln Val Lys Gln Pro Ser Gln Pro Pro Pro Gln Glu Ile
 20 25 30
 Phe Val Pro Thr Thr Lys Glu Pro Cys His Ser Lys Val Pro Gln Pro
 35 40 45
 Gly Asn Thr Lys Ile Pro Glu Pro Gly Cys Thr Lys Val Pro Glu Pro
 50 55 60
 Gly Cys Thr Lys Val Pro Glu Pro Gly Cys Thr Lys Val Pro Glu Pro
 65 70 75 80
 Gly Cys Thr Lys Val Pro Glu Pro Gly Cys Thr Lys Val Pro Glu Pro
 85 90 95
 Gly Tyr Thr Lys Val Pro Glu Pro Gly Ser Ile Lys Val Pro Asp Gln
 100 105 110
 Gly Phe Ile Lys Phe Pro Glu Pro Gly Ala Ile Lys Val Pro Glu Gln
 115 120 125
 Gly Tyr Thr Lys Val Pro Val Pro Gly Tyr Thr Lys Val Pro Glu Pro
 130 135 140
 Cys Pro Ser Thr Val Thr Pro Gly Pro Ala Gln Gln Lys Thr Lys Gln
 145 150 155 160
 Lys

<210> 115
 <211> 506
 <212> DNA
 <213> Homo sapiens

<220>

<221> misc_feature
<222> 8, 21, 31, 32, 58, 75, 89, 96, 99, 103, 122, 126, 147, 150,
158, 195, 210, 212, 219, 226, 246, 248, 249, 255, 258, 261,
263, 265, 275, 304, 317, 321, 331, 337, 340, 358, 371, 377,
380, 396, 450, 491
<223> n = A,T,C or G

<400> 115
cattggtnct ttcatttgct ntggaagtgt nnatctctaa cagtggacaa agtcccngt 60
gccttaaact ctgttnacact tttggaaant gaaaantng tantatgata gtttattctg 120
angtanagat gttctggata ccattanath tgccccngt gtcagaggct catattgtgt 180
tatgttaaatg gtatntcatt cgctactatn antcaatng aaatanggtc tttgggttat 240
gaatantnnng cagcncanct nanangctgt ctgtngtatt cattgtgtc atagcacctc 300
acancattgt aacctcnatc nagtgagaca nactagnaan ttccctagta tggctcanga 360
ttccaaatgg nctcatntcn aatgtttaaa agttantaa gtgtaaagaaa tacagactgg 420
atgttccacc aactagtacc tgtaatgacn ggcctgtccc aacacatctc cctttccat 480
gactgtggta ncccgatcg gaaaaaa 506

<210> 116
<211> 3079
<212> DNA
<213> Homo sapiens

<400> 116
ggatccccgg gtttcctaaa ccccccacag agtcctgccc aggccaaaga gcaaggaaaa 60
ggtcaaaaggg cagaaaaaat gctgagttag gaggagctat ggaaggataa acctggcett 120
aaagaggtca aagtgggta tagggggcgc tgagggcttc ccacattctc tggcttaaac 180
cttgaggcca gatctgccc gtgggctctg ggatactgt gccttccta aaaaaaaaaat 240
tgtgcacaaa agatgaaac tctatttcc ctctagcaca taaccaagaa tataaggcta 300
cagattgcct ttcccagagg gaaaaccctg cagcaacctg ctgcctgaa aagtgtaa 360
gcagatcaet gggaatcgt ttgccccccg ctgatggaca gcttcccaa gctccaagg 420
cagggtctca gcatgtaccg tactggatg gttgtcaata ctctggcctc tgtaagagtc 480
ccaggacact gccatgcca tggccctca gttcctggca tccttttg gctgctcaca 540
gccccagcct ctatggtaa gacatacttg cttagcagct caccaactt ttgccaagag 600
atcagtgtc gaaggcaagg ttatttctaa ctgagcagag cctgccagga agaaagcgtt 660
tgcacccac accactgtgc aggtgtgacc ggtgagctca cagctgcccc ccaggcatgc 720
ccagccact taatcatcac agctcgacag ctctctcgcc cagcccagtt ctgaaaggga 780
taaaaagggg cataccgtt cctggtaac agagccacct tctgcgtct gctgagctct 840
gttctctcca gcaccccca acccactagt gcctggttct cttgctccac cagaacaag 900
ccaccatgtc tcgccagtca agtgtgttcc ccggagcggg gggcagtcgt agttcagca 960
ccgcctctgc catcaccccg tctgtctccc gcaccagtt cacccctgt tcccggtccg 1020
gggggtggcgg tgggtggcgc ttccggcagg tcagccttc ggggtctgt ggagtgggtg 1080
gtatggcag ccggagcctc tacaacctgg ggggctccaa gaggatatcc atcagcacta 1140
gtgggtggcag ttccaggaac cggtttgggt ctgggtctgg agggcggctat ggctttggag 1200
gtgggtccgg tagtgatt gtttccggcg gtggagctgg tgggtggctt gggctcggtg 1260
gcggagctgg ctttgagggt ggcttcgggt gccttggctt tcctgtctgc cctcctggag 1320
gtatccaaga ggtcactgtc aaccagatc tcctgactcc cctcaacctg caaatcgacc 1380
ccagcatcca gagggtgagg accgaggagc gcgagcagat caagaccctc aacaataagt 1440
ttgccttcctt catcgacaag gtgcggttcc tggagcagca gaacaagtt ctgaaacaa 1500
agtggaccct gtcgcaggag cagggcacca agactgttag gcagaacctg gagccgttgt 1560
tcgagcagta catcaacaac tcaggaggg agctggacag catcgtgggg gaacggggcc 1620
gcctggactc agagctgaga aacatgcagg acctgggtgaa agacttcaag aacaagtatg 1680
aggatgaaat caacaagcgt accactgtcg agaatgagtt tggatgtcg aagaaggatg 1740
tagatgctgc ctacatgaac aagggtggagc tggaggccaa ggttcatgtca ctgtatggatg 1800

agattaacct	catgaagatg	ttctttgatg	cggagctgtc	ccagatgcag	acgcatagtct	1860
ctgacaccc	agtggccctc	tccatggaca	acaaccgcaa	cctggacctg	gatagcatca	1920
tcgctgagg	caaggcccag	tatgaggaga	ttgccaaccc	cagccggaca	gaagccgagt	1980
cctggtatca	gaccaagtat	gaggagctgc	agcagacagc	tggccggcat	ggcgatgacc	2040
tccgcaacac	caagcatgag	atctctgaga	tgaaccggat	gatccagagg	ctgagagccg	2100
agattgacaa	tgtcaagaaa	cagtgcgcc	atctgcagaa	cgccattgcg	gatgccgagc	2160
agcgtggg	gctggccctc	aaggatgcc	gaaacaagct	ggccgagctg	gaggaggccc	2220
tgcagaaggc	caagcaggac	atggcccg	tgctgcgtg	gtaccaggag	ctcatgaaca	2280
ccaagctggc	cctggacgt	gagatgc	cttaccgc	gctgctggag	ggcgaggaat	2340
gcagactcag	tggagaagga	gttggaccag	tcaacatctc	tgttgtcaca	agcagtgtt	2400
cctctgata	tggcagtgg	agtggctatg	gccccggct	cggggaggt	cttggccgc	2460
gcctcggtgg	aggttgc	ggaggttagc	gttggaaagcta	ctactccagc	agcagtgggg	2520
gtgtcgccct	aggtgggtgg	ctcagtgtgg	ggggctctgg	cttcagtgc	agcagttagcc	2580
gagggctggg	ggggggctt	ggcagtggcg	ggggtagcag	ctccagcgtc	aaatttgtct	2640
ccaccaccc	ctctcccc	aagagctca	agagctaaga	acctgctgc	agtcaactg	2700
ttccaagtgc	agcaacccag	cccatggaga	ttgcctctc	taggcagt	ctcaaggccat	2760
gttttatct	ttctggaga	gtagtcaga	ccaagccaa	tgcagaacca	cattcttgg	2820
ttcccaggag	agccccattc	ccagccctg	gtctccctg	ccgcagttct	atattctgt	2880
tcaaatcagc	cttcagggtt	cccacagcat	ggccccctgt	gacacgagaa	cccaaagt	2940
tcccaaatct	aaatcatcaa	aacagaatcc	ccaccccaat	cccaaattt	gttttgg	3000
taactaccc	cagaatgtgt	tcaataaaat	gtttataat	ataagctgt	gtgcagaatt	3060
gtttttttt	tctacccaa					3079

<210> 117

<211> 6921

<212> DNA

<213> Homo sapiens

<400> 117

gaattctgac tgtccactca aaacttctat tccgatcaaa gctatctgtg actacagaca 60
aattgagata accatttaca aagacatga atgtgtttg gcgaataact ctcatctgc 120
taaatggaaag gtcattagtc ctactggaa tgaggctatg gtcccatctg tlgcttcac 180
cgttcctcca ccaaacaaag aagcgttggc ctttgccaa agaattgagc aacagtatca 240
gaatgtcctg actcttggc atgagtcata catabacatg aagagttag tatcctggca 300
ttatctcatc aatgaaattt atagaattcg agcttagcaat gtggcttcaa taaagacaat 360
gctacctggc gaacatcagc aagttctaaag taatctacaa tctcggtttg aagattttct 420
ggaagatagc caggaatccc aagtctttc aggctcagat ataacacaac tggaaaagga 480
ggttaatgta tgaagcagt attatcaaga acttcttaaa tctgcagaaa gagaggagca 540
agaggaatca gtttataatc tctacatctc tgaagttcga aacatttagac ttcggtttaga 600
gaactgtgaa gatcggtcga ttagacagat tcgaactccc ctggaaagag atgatttgc 660
tgaaagtgtg ttcaaatca cagaacagga gaaactaaag aaagagctgg aacgacttaa 720
agatgatttgc ggaacaatca caaataagtg tgaggagttt ttcaatcagc cagcagocctc 780
ttcatcagtc cttaccctac gatcagagct taatgtggc ttcaagaaca tgaaccaagt 840
ctattctatg tcttccactt acatagataa gttgaaaact gttaaacttgg tggaaaaaaa 900
cactcaagct gcagaagccc tcgtaaaact ctatgaaact aaactgtgtg aagaagaagc 960
agttatagct gacaagaata atattgagaa tctaataagt actttaaagc aatggagatc 1020
tgaagtagat gaaaagagac agtttccatgc tgccttagag gatgaggc agaaagctaa 1080
agccatcagt gatgaaatgt taaaacgtt taaagaacgg gaccttgc ttgactggca 1140
caaagaaaaaa gcagatcaat tagttgaaag gtggcaaaat gttcatgtgc agattgacaa 1200
caggttacgg gacttagagg gcattggcaa atcaactgaag tactacagag acacttacca 1260
tcctttagat gattggatcc agcaggttga aactactcag agaaagattc aggaaaatca 1320
gcctgaaaat agtaaaaccc tagccacaca gttgaatcaa cagaagatgc tgggtccga 1380
aatagaaatg aaacagagca aaatggacga gtgtcaaaaa tatgcagaac agtactcagc 1440
tacagtgaag gactatgaat tacaacaaat gacctaccgg gccatggtag attcacaaca 1500

aaaatctcca gtgaaacgcc gaagaatgca gagttcagca gatctcatta ttcaagagtt 1560
 catggaccta aggactcgat atactgcct ggtcaactctc atgacacaat atattaaatt 1620
 tgctggtgat tcattgaaga ggctggaaga ggaggagatt aaaagggtta aggagacttc 1680
 tgaacatggg gcataattcg atctgcttca gcgtcagaag gcaacagtgc ttgagaatag 1740
 caaacttaca gaaaagataa gtgagttgga aagaatggta gctgaactaa agaaaacaaaa 1800
 gtcccgagta gaggagaac ttccgaaggt cagggaggct gcagaaaatg aattgagaaa 1860
 gcagcagaga aatgtagaag atatctctc gcagaagata agggctgaaa gtgaagccaa 1920
 gcagtaccgc agggacttg aaaccattgt gagagagaag gaagccctg aaagagaact 1980
 ggagcgggtg aggcaagctca ccatagaggc cgaggctaa agagctgccg tggagagaa 2040
 cctcctgaat tttcgcaatc agttggagga aaacaccctt accagacgaa cactggaaga 2100
 tcatcttaaa agaaaagatt taagtctcaa tgatttggag caaaaaaaaaa ataaattaat 2160
 ggaagaattha agaagaaaga gagacaatga ggaagaactc ttgaagctga taaagcagat 2220
 gaaaaaagac cttgcatttc agaaaacaggt agcagagaaa cagttgaaag aaaagcagaa 2280
 aattgaatttgaagcaagaa gaaaataaac tgaaattcg tatacatgtg gaaaaatgc 2340
 attgccatgt tgcgtatca cacaggctac atcatgcagg gcagtaacgg gtctccagca 2400
 agaacatgac aagcagaaag cagaagaact caaacacgac gtagatgaaac taacagctgc 2460
 caatagaaag gctgaacaag acatgagaga gctgacatat gaaacttaatg ccctccagct 2520
 tgaaaaaagc tcatctgagg aaaaggctcg tttgctaaaa gataaactag atgaaaacaaa 2580
 taatacacatc agatgccta agttggagct ggaaaggaag gatcaggccg agaaaggta 2640
 ttctcaacaa ctcagagagc ttggtaggca attgaatcaa accacagta aagctgaaga 2700
 agccatgcaa gaagcttagt atctcaagaa aataaagcgc aattatcagt tagaatttaga 2760
 atctcttaat catgaaaaag ggaaactaca aagagaagta gacagaatca caagggcaca 2820
 tgctgtatc gagaagaata tttagcattt aaattcacaatttattttt ttcgagatgaa 2880
 gaaagaattha gaaagactac aaatctgcca gagaaaatca gatcatctaa aagaacaatt 2940
 tgagaaaagc catgagcagt tgcttcaaaa tatcaaagct gaaaaagaaaa ataatgataa 3000
 aatccaaagg ctcaatgaag aatttggagaa aagtaatgatg tgcagagata tgctaaaaca 3060
 aaaagtatcag gagcttacta ggcagaataa tgaaacccaa ttaatgtatc agagaattca 3120
 ggcagaatca gagaatatac tttagagaa acaaactatc cagcaaagat gtgaagcact 3180
 gaaaatttcag gcagatggtt taaaagatca gctacgcgc acaaatacgtt acattgcataa 3240
 acagacaaaaa acagagcagg attttcaaaag aaaaattttaa tgcttagaaag aagacctggc 3300
 gaaaagtcaa aatttggtaa gtgatatttca gcaaaaatgtt gaccaacaga acattatcat 3360
 ccagaatacc aagaaagaag tttagaaatct gaatgcggaa ctgatgtttt ccaaagaaga 3420
 gaagcgcacgc ggggagcaga aagttcagct acaacaagct caggtgcacg agttaaataa 3480
 caggttggaa aaagtacaag acgaattaca cttaaagacc atagaggagc agatgaccca 3540
 cagaaagatg gttctgtttc aggaagaatc tggtaaatttca aacaatcag cagaggagtt 3600
 tcgaaagaag atggaaaaat taatggagtc caaatcattc actgaaaatg atatttcagg 3660
 cattaggctt gacttgtgt ctcttcaaca agaaaactct agagcccaag aaaatgctaa 3720
 gctttgtgaa acaaacatta aagaacttgc aagacagctt caacagtatc gtgaaacaaat 3780
 gcagcaaggg cagcacatgg aagcaaatca ttaccaaaaaa tgcagaaac ttgaggatgaa 3840
 gctgatagcc cagaagcgtg aggtgaaaaa cctgaagcaa aaaatggacc aacagatcaa 3900
 agagcatgaa catcaattag ttttgcctca gtgtgaaatt caaaaaaaaaa gacagccaa 3960
 agactgtacc ttcaaccatc attttgcattt gacagtgcacg gactgcgcacttgc 4020
 gctgtcctt agaaaactgc gacacccatca cccaaacaccc agatcccctc tggatgtt 4080
 gactcaagaa ccacagccat tggaaagagaa gtggcagcat cgggttggta aacagatacc 4140
 caaagaagtc caattccacgc caccaggggc tccactcgat aaagagaaaaa gacagccatg 4200
 ttactcttagt tactttctc agacaagcac cgagttacatc ataacttttgc atgagacaaa 4260
 cccccattaca agactgtctg aaatttgcattt gataagagac caagccctgc acaattctat 4320
 accacctttt aggtatcaag ataacgcattt gtaaatggaa ctggatgtt ttttgcacc 4380
 ctttagagata gctaagaaca agcgtatgc tatgcataca gaagtcacaa cattaaaaca 4440
 agaaaagaac ccagttccca gtgctgaaagaa atggatgtttt gacagaccccttccac 4500
 tggactcaag aaaggggatt tccttaagaa gggcttagaa ccagagaccc tccac 4560
 tgcgtatgtt catgcgtatgtt cagtcaggaa tgatgtatc aaattccaaag ggcttaggca 4620
 cactgtgact gccaggcgt tggtggaaagc taagttctg gacatgagaa caatttgcac 4680
 gctgcgactc ggtcttaaga ctgttgcataa agttcagaaa actcttaaca agtttctgac 4740

gaaagccacc tcaattgcag ggcttacct agaatctaca aaagaaaaaga tttcatttgc 4800
 ctcagcggcc gagagaatca taatagacaa aatggtggt ttggcattt tagaagctca 4860
 ggctgcaaca ggtttataa ttgatcccatt tcaggtcag acatattctg ttgaagatgc 4920
 agttcttaaa ggagttgtg acccccgaatt cagaatttagg cttcttgagg cagagaaggc 4980
 agctgtggga tattttattt cttctaagac attgtcagt tttcaagcta tgaaaatag 5040
 aatgcttgc acacaaaaag gttaaacat cttgaaagcc cagattgcca gtgggggtgt 5100
 cattgaccct gtgagaggca ttctgttcc tccagaaatt gctctgcagc aggggttgtt 5160
 gaataatgcc atcttacagt ttttacatga gccatccagc aacacaagag tttccctaa 5220
 tcccaataac aagcaagctc tgttattactc agaattactg cgaatgtgtg tatttgcgt 5280
 agagtcggaa tgcttctgt ttccatttgg ggagaggaac atttccaatc tcaatgtcaa 5340
 gaaaacacat agaatttctg tagtagatac taaaacagga tcagaattga ccgtgtatga 5400
 ggcttccag agaaacctga ttgagaaaag tatatatctt gaacttcag ggcagcaata 5460
 tcagtggaa gaagctatgt ttttgaatc ctatggcat tcttctcata tgctgactga 5520
 tactaaaaca ggattacact tcaatattaa tgaggtata gaggcaggaa caattgacaa 5580
 agccttggc aaaaagtatc aggaaggcct catcacactt acagaacttg ctgattctt 5640
 gctgagccgg ttagtccccca agaaagattt gcacagtctt gttcagggtt attggctgac 5700
 tgctagtgaa gaaaggatct otgtactaaa agcctccgt agaaatttgg ttgatcgat 5760
 tactgccc ctagtgcctt aagcccaagt cagtagcagg ggcataattt atcctcttac 5820
 tggcaaaaag taccgggtgg ccgaagctt gcatagaggc ctggttgtatg aggggttgc 5880
 ccagcagctg cgacagtgtg aatttagtaat cacagggatt ggcacatccca tcactaacaa 5940
 aatgatgtca gtgggtggaa ctgtgaatgc aaatattata aataaggaaa tggaaatccg 6000
 atgtttggaa tttcagttact tgacaggagg gttgatagag ccacaggtt actctcggtt 6060
 atcaatagaa gaggtctcc aagtaggtat tataatgtc ctcattgcca caaaactcaa 6120
 agatcaaaaag tcataatgtca gaaatataat atgcctcag acaaaaagaa agttgacata 6180
 taaaagaagcc ttagaaaaaaat ctgattttga tttccacaca ggacttaaac tggatggaa 6240
 atctgagccc ctgatgacag gaatttctat cctctactat tcttcctaaat gggacatgtt 6300
 taaaataactg tgcaaggggt gatgcaggtt gttcatgcc acttttcag agtatgtga 6360
 tatcggttac atatgcagtc tgtgaattat gtaacatact ctatttctt aggctgcaa 6420
 attgctaagt gctaaaaata gagtaagtt taaaattgaaa attacataag attaatgcc 6480
 cttcaatgg tttcatttag ctttggaaat gtttttttga aacttggcca cactaaaatg 6540
 tttttttttt tttacgttata atgtgggata aacttgcgtt actccaatgtt cacagtgtca 6600
 tttcttcaga actcccccttc attgaatagt gatcatttataa taaatgataa attgcactcg 6660
 ctgaaagagc acgtcatgaa gcaccatgga atcaaagaga aagatataaa ttgcgttccca 6720
 cagccttcaa gctgcagtgt ttttagatttgc ttcaaaaaat gaaaaagttt tgccctttc 6780
 gatatagtga ctttcttgc atattaaaat gtttaccaca atgtccattt tcttagttaag 6840
 tcttcgcact tgaaagctaa cattatgaat attatgtt ggaggagggg aaggattttc 6900
 ttcattctgt gtattttccg g 6921

<210> 118
 <211> 946
 <212> DNA
 <213> Homo sapiens

<400> 118
 cttctgactt ggctcaggct gacaggtaga gctcaccatg gtttcttgtc tccttgc 60
 ctccccatca cagctgttgtt gcagtccacc gtctccatgt gctatggcgg tgccagtgtt 120
 gtccggcgtt gcttaggcctt ggggtggaggaa agcagctact cctatggcag tggcttggc 180
 gttggagggtt gtttcagttc cagcagtggc agagccattt ggggtggcct cagctctgtt 240
 ggaggcggca gttccaccat caagttacacc accacccctt cttccacatgtt gaaagatgtat 300
 aagcactaaa gtgcgtctgc tagctctcggtt tccacatgtt ctcaggcccc tctctggctg 360
 cagagccctc tcctcagggtt gcctgtccctc tccttggcctc cagtcctcccc tgctgtccca 420
 ggttagagctt gggatgtatgtt ctttagtgcctt tcacttcttc tctctcttc tataaccatct 480

gagcacccat tgctcaccat cagatcaacc tctgattta catcatgatg taatcaccac 540
 tggagcttca ctgttactaa attattaatt tcttgctcc agtgttctat ctctgaggct 600
 gacgattata agaaaatgac ctctgctct tttcattgca gaaaattgcc aggggcttat 660
 ttcagaacaa cttccactta ctttccactg gctctcaaac tctctaactt ataagtgttg 720
 tgaaccccoa cccaggcagt atccatgaaa gcacaagtga cttagcctat gatgtacaaa 780
 gcctgtatct ctgtgtatgt ttctgtgctc ttcaactgtt gcaattgcta aataaagcag 840
 attataata catatattct tttactttgc cttgcttgg ggccaaagtt ttgggcttaa 900
 actttttat ctgataagtg aatagttgtt tttaaaagat aatcta 946

<210> 119

<211> 8948

<212> DNA

<213> Homo sapiens

<400> 119

tcaacagccc ctgctccttgc ggcccctcca tgccatgccc taatctctcc caccggacca 60
 acaccaacac ccagctccga cgcagctct ctgcgcctt gcccgcctcc gagccacagc 120
 ttccctcccg ctccctcccc cggcccgctcg ccgtctccgc gctcgacgc gcctcgggag 180
 ggcccaggtt gcgaggcagcg acctcgcgag cttccgcac tcccgccgg ttcccccggcc 240
 gtccgcctat cttggcccc ctccgccttc tccgcgcggg cccgcctcgc ttatgcctcg 300
 gcgctgagcc gctctcccgat tgccgcgg acatgagctg caacggaggc tcccacccgc 360
 gatatcaacac tctggccgc atgatccgcg ccgagctggg cccggacctg cgctacgagg 420
 tgaccagcgg cggcggggggc accagcagga tgtactattc tcggcgcggc gtgatcaccg 480
 accagaactc ggacggctac tgtcaaaccg gcacgatgtc caggcaccag aaccagaaca 540
 ccatccagga gctgtgcag aactgctcg actgcttgc gcgagcagag ctcatcgtgc 600
 agcctgaatt gaagtatgga gatgaaatac aactgactcg gagtcgagaa ttggatgagt 660
 gttttggcca gccaatgac caaatggaaa tcctcgacag cttgatcaga gagatgcggc 720
 agatggggcca gcccgtgtat gcttaccaga aaagcttct tcagctcaa gagcaaatgc 780
 gagcccttta taaagccatc agtgccttc gactccgcg ggcagctcc aagggtggg 840
 gaggctacac ttgtcagagt ggctctggct gggatgagtt cacaaacat gtcaccagtg 900
 aatgtttggg gtggatgagg cagcaaaggg cggagatgga catggtgcc tgggtgtgg 960
 acctggcctc agtggagcag cacattaaca gccaccgggg catccacaac tccatcgccg 1020
 actatcgctg gcagctggac aaaatcaaag ccgacctgcg cgagaaatct gcgatctacc 1080
 agttggagga ggagtatgaa aacctgctga aagcttctt tgagaggatg gatcacctgc 1140
 gacagctgca gaacatcatt caggccacgt ccaggagat catgtggatc aatgactg 1200
 aggaggagga gctgtgtac gactggagcg acaagaacac caacatcgct cagaacacagg 1260
 aggccttctc catacgcatg agtcaactgg aagttaaaga aaaagagtc aataagctga 1320
 aacaagaaag tgaccaactt gtcctcaatc agcatccagc ttcagacaaa attgaggcct 1380
 atatggacac tctgcagacg cagtgaggtt ggattttca gatcaccaag tgcattgtat 1440
 ttcatctgaa agaaaatgtt gcctactttc agtttttga agaggcgcag tctactgaag 1500
 catabctgaa ggggtccag gactccatca ggaagaagta cccctgcgc aagaacatgc 1560
 ccctgcgcgca cctgctggaa cagatcaagg agctggagaa agaacagagag aaaatcttgc 1620
 aataacaagcg tcaggtgcag aacttggtaa acaagtctaa gaagattgtt cagctgaagc 1680
 ctcgtaccc agactacaga agcaataaac ccattattct cagagctctc tgcgtactaca 1740
 aacaagatca gaaaatcgatc cataaggggg atgagtgtat cctgaaggac aacaacgagc 1800
 gcagcaagtg gtacgtgacg gggccgggg ggcgtgacat gcttggccc tctgtggggc 1860
 tgcgtatccc tcctccgaac ccactggccg tggacctctc ttgcaagatt gagcagatct 1920
 acgaagccat cttggctctg tggaccaggc tctacatcaa catgaagagc ctgggtgtct 1980
 ggcactactg catgattgac atagagaaga tcaggccat gacaatcgcc aagctgaaaa 2040
 caatgcggca ggaagattac atgaagacga tagccgaccc tgagttacat taccaaagat 2100
 tcatcagaaa tagccaaaggc tcagagatgt ttggagatga tgacaaggcg aaaatacagt 2160
 ctcagttcac cgatgcccag aagcattacc agaccctggt cattcagctc cctggctatc 2220
 cccagcacca gacagtgacc acaactgaaa tcactcatca tggAACCTGC caagatgtca 2280
 accataataa agtaattgaa accaacagag aaaatgacaa gcaagaacaca tggatgctga 2340

tggagctgca gaagattcgc aggcagatag agcactgcga gggcaggatg actctcaaaa 2400
 acctccctct agcagaccag gggtcttc accacatcac agtaaaaatt aacgagctta 2460
 agagtgtgca gaatgattca caagcaattg ctgaggttct caaccagctt aaagatatgc 2520
 ttgccaacct cagaggttct gaaaagtact gctatttaca gaatgaagta tttggactat 2580
 ttcagaaact ggaaaataatc aatggtgtt aagatggcta cttaaatagc ttatgcacag 2640
 taagggcact gctccaggct attctccaaa cagaagacat gttaaaggtt tatgaagcca 2700
 ggctcaactga ggagggaaact gtctgcctgg acctggatata agtggaaact taccgctgtg 2760
 gactgaagaa aataaaaaat gacttgaact tgaagaagtc gttgttgcc actatgaaga 2820
 cagaactaca gaaagcccag cagatccact ctcagacttc acagcagttt ccactttatg 2880
 atctggactt gggcaagttc ggtaaaaaag tcacacagct gacagacgc tggcaaagga 2940
 tagataaaca gatcgacttt agattatggg acctggagaa acaaataaag caattgagga 3000
 attatctgtga taactatcag gctttctgca agtggctcta tgatcgtaaa cgccgcccagg 3060
 attccttaga atccatgaaa tttggagatt ccaacacagt catgcggttt ttgaatgagc 3120
 agaagaactt gcacagtgaa atatctggca aacgagacaa atcagaggaa gtacaaaaaaa 3180
 ttgctgaact ttgcgccaat tcaattaagg attatgagct ccagctggcc tcatacacct 3240
 caggactgga aactctgctg aacataccta tcaagaggac catgattcag tccccttctg 3300
 gggtgattct gcaagaggct gcagatgttc atgctcggtt cattgaacta cttacaagat 3360
 ctggagacta ttacaggttc ttaagtgaga tgctgaagag tttggaaagat ctgaagctga 3420
 aaaataccaa gatcgaaat ttggaagagg agctcagact gccccgagat gccaactcgg 3480
 aaaactgtaa taagaacaaa ttccctggatc agaacctgca gaaataccag gcagagtgtt 3540
 cccagttcaa agcgaagctt gcgagcctgg aggagctgaa gagacagct gagctggatg 3600
 ggaagtccggc taagcaaaaat cttagacaatg gctacggcca aataaaagaa ctcaatgaga 3660
 agatcaccctg actgacttat gagattgaag atgaaaagag aagaagaaaaa tctgtggaag 3720
 acagatttga ccaacagaag aatgactatg accaactgca gaaagcaagg caatgtgaaa 3780
 aggagaacct tggggcag aaatttagat ctgagaaagc catcaaggag aaggagtacg 3840
 agattgaaag gttgagggtt ctactgcagg aagaaggcac ccggaagaga gaatatgaaa 3900
 atgagctggc aaaggtaaga aaccactata atgaggagat gagtaattt aggaacaagt 3960
 atgaaacaga gattaacatt acgaagacca ccatcaagga gatatccatg caaaaagagg 4020
 atgattccaa aaatcttaga aaccagctt atagacttca aaggaaaaat cgagatctga 4080
 agatgaaat tgcaggctc aatgacagca tcttcaggc cactgagcag cgaaggcgg 4140
 ctgaagaaaaa cgcccttcag caaaaaggcct gtggctctga gataatgcag aagaagcgc 4200
 atctggagat agaactgaag caggtcatgc agcagcgctc tgaggacat gccccgcaca 4260
 agcagtccct ggaggaggct gccaagacca ttccaggacaa aaataaggag atcggagagac 4320
 tcaaagctga gtttcaggag gaggccaagc gccgctggga atatgaaaat gaactgagta 4380
 aggtaaagaaa caattatgat gaggagatca tttagctaaa aaatcagttt gagaccgaga 4440
 tcaacatcac caagaccacc atccaccaggc tcaccatgca gaaggaagag gataccagtg 4500
 gctaccgggc tcagatagac aatctcaccc gagaaaacag gagcttatct gaagaaataa 4560
 agaggctgaa gaacactcta acccagacca cagagaatct caggagggtg gaagaagaca 4620
 tccaaacagca aaaggccact ggctctgagg tgtctcagag gaaacagcag ctggaggttg 4680
 agctgagaca agtcaactcag atgcgaacag aggagagcgt aagatataag caatctctt 4740
 atgatgctgc caaaaaccatc caggataaaa acaaggagat agaaaggatc aaacaactga 4800
 tcgacaaaga aacaaatgac cggaaatgcc tggaaagatga aaacgcgaga ttacaaagg 4860
 tccagttatgat cctgcagaaaa gcaaacagta gtgcgcacgg gacaataaac aaactgaagg 4920
 ttccaggagca agaactgaca cgcctgagga tcgactatga aagggttcc caggagagga 4980
 ctgtgaagga ccaggatatc acgcgggttcc agaactctct gaaagagctg cagctgcaga 5040
 agcagaagggt ggaagaggag ctgaatcgcc tgaagaggac cgcgtcagaa gactcctgca 5100
 agaggaagaaa gctggaggaa gagctggaaag gcatgaggag gtcgctgaag gagcaagcca 5160
 tcaaaaatcac caacctgacc cagcagctgg agcaggcatc cattgttaag aagaggagt 5220
 agatgaccc ctggcagcag agggacgtgc tggatggca cctgaggaa aagcagagga 5280
 cccaggaaga gctgaggagg ctctttctg aggtcgaggc cctgaggcgg cagttactcc 5340
 aggaacagga aagtgtcaaa caagctcaact tgaggaaatga gcatttcag aaggcgatag 5400
 aagataaaaag cagaagctta aatgaaagca aaatagaaat tgagaggctg cagtcctca 5460
 cagagaacct gaccaaggag cacttgcgt tagaagaaga actgcggaaac ctgaggctgg 5520
 agtacgatga cctgaggaga ggcacgacag aagcggacag tgataaaaaat gcaaccatct 5580

tggaactaag gagccagctg cagatcagca acaaccggac ccttggaaactg caggggctga 5640
 ttaatgatt acagagagag agggaaaatt tgagacagga aattgagaaa ttccaaaagc 5700
 aggctttaga ggcataat aggattcagg aatcaaagaa tcagtgtact caggtggta 5760
 agggaaagaga gggccttctg gtgaaaatca aagtcttgg acaagacaag gcaaggctgc 5820
 agaggctgga ggatgagctg aatcgtgca aatcaactct agaggcagaa accagggtga 5880
 aacagcgccct ggagtgtgag aaacagcaa ttcagaatga cctgaatcatg tggaaagactc 5940
 aatattcccg caaggaggag gctatttaga agatagaatc gggaaagagaa aagagtgaga 6000
 gagagaagaa cagtcttagg agttagatcg aaagactcca agcagagatc aagagaattg 6060
 aagagaggtg caggcgtaag ctggaggatt ctaccaggga gacacagatc cagttagaaa 6120
 cagaacgctc ccgatatacg agggagattg ataaactcatg acagcgccca tatgggtccc 6180
 atcgagagac ccagactgag tgtgagtgaa ccgttgacac ctccaaagctg gtgtttgatg 6240
 ggctgaggaa gaaggtgaca gcaatgcagc tctatgagtg tcagctgatc gacaaaacaa 6300
 ctttggacaa actattgaag gggagaagaatc cagttggaga agttgtctt gaaatccagc 6360
 cattccttcg gggtgagga tctatcgctg gagcatctgc ttctcttaag gaaaaatact 6420
 ctttggtaga ggc当地ag aagaaattaa tcagcccaga atccacatgc atgttctgg 6480
 aggcccaggc agtacaggt ggtataattg atccccatcg gaatgagaag ctgactgtcg 6540
 acagtgcctt agctcgccat ctcatttgcact tcgatgaccg tcagcagata tatgcagcag 6600
 aaaaagctat cactgtttt gatgatccat tttcaggca gacagtatct gtttcagaag 6660
 ccatcaagaa aaatttgatt gatagagaaa ccgaatgcg cctgctgaa gcccagattg 6720
 cttcagggggg tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt 6780
 cccggggggct gattgataga gatttgttac gatccctgaa tgatccccga gatagtca 6840
 aaaactttgt ggatccatgc accaaaaaaa aggtcagttt cgtgcagctg aagaacgg 6900
 gcagaatcga accacatact ggtctgtct tgctttcagt acagaagaga agcatgtct 6960
 tccaaggaat cagacaacctt gtgaccgtca ctgagctagt agattctgtt atattgagac 7020
 cgtccactgt caatgaactg gaatctggtc agatttctt tgacgaggtt ggtgagagaa 7080
 ttaaggactt cttccagggt tcaagctgca tagcaggcat atacaatgag accacaaaac 7140
 agaagcttgg cattttatgag gccatgaaa ttggcttagt ccgacctgtt actgctctgg 7200
 agttgcttgg agcccaagca gctactggct ttatgttgg tcctgttagc aacttgggt 7260
 taccagtgg ggaaggctac aagagaggtc tggtggcat tgagttcaaa gagaagctcc 7320
 tgtctgcaga acgagctgtc actgggtata atgatcctga aacaggaaac atcatcttt 7380
 ttttccaagc catgaataag gaactcatcg aaaaggccca cggatttcgc ttattagaag 7440
 cacagatcgc aaccgggggg atcattgacc caaaggagag ccattcgatccca 7500
 tagcatataa gaggggcttat ttcaatgagg aactcagtga gattctctca gatccaagtg 7560
 atgataccaa aggattttt gaccccaaca ctgaagaaaa ttcttacccat ctgcaactaa 7620
 aagaaagatg cattaaggat gaggaaacag ggctctgtct tctgcctctg aaagaaaaga 7680
 agaaacaggt gcagacatca caaaaagaata ccctcaggaa gcgttagagtg gtcataatgg 7740
 accccagaaac caataaaagaa atgtctgttc aggaggccata caagaaggcc 7800
 atgaaacctt caaagaactg tttttttttt gttttttttt gttttttttt gttttttttt 7860
 gatcagatgg ctccaccagg gtggctctgg tagatagaaa gacaggcagt cagatgtata 7920
 ttcaagatgc tattgacaag ggccttggc acaggaagtt ctgttgcattt taccgatccg 7980
 gcagcctcag cctcactcaa ttttgcata tgatctctt gaaaaatggt gtcggcacca 8040
 gcagcagcat gggcgttgcgtt gtcagcgtat atgtttttttag cagctcccgatcataatgg 8100
 taagtaagat ttccaccata tccagcgtca ggaatttaac cataaggagc agtctttttt 8160
 cagacaccctt ggaagaatcg agcccccattt cagccatctt tgacacagaa aacccggaga 8220
 aaatctccat tacagaaggt atagagcggg gcatcgatca cagcatcactt ggtcagaggc 8280
 ttctggaggc tcaggcctgc acaggtggca tcatccaccat aaccacggcc cagaagctgt 8340
 cacttcaggc cgcgtctcc cagggtgtga ttgaccaaga catggccacc agcgtgaagc 8400
 ctgtctcagaat agccttcata ggcttcagggtt gttttttttt gttttttttt gttttttttt 8460
 cagaggcagt gaaagaaaaa tggctccctt atgaggctgg ccagcgccctt ctggagttcc 8520
 agtacctcac gggaggctt gttttttttt gttttttttt gttttttttt gttttttttt 8580
 ccatccggaa ggggttcata gatggcccgcc ccgcacagag gctgcaagac accaggcagct 8640
 atgccaaaat cctgacccat cccaaaacca aattaaaaat atccctataag gatgccataa 8700
 atcgctccat ggttagaagat atcactggc tgcgccttctt ggaagccccc tccgtgtcg 8760
 ccaaggcgtt acccccgccct tacaacatgtt cttccggctcc ggggtcccgcc tccggctccc 8820

gctcgggatc tcgctccgga tctcgctccg ggtccccag tgggtcccg agaggaagct 8880
 ttgacgccac agggattct tcctactttt attctactc atttagcagt agttctattg 8940
 ggcaactag 8948

<210> 120
 <211> 587
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 91, 131, 256, 263, 332, 392, 400, 403, 461, 496, 497, 499,
 510, 511, 518, 519, 539, 554, 560, 576
 <223> n = A,T,C or G

<400> 120
 cgtcctaagc acttagacta catcaggaa gaacacagac cacatccctg tcctcatgcg 60
 gcttatgttt tctgaaagaa agtggagacc nagtccttgg cttagggct ccccggtgg 120
 gggctgtgca ntccgggtcag ggcgggaagg gaaatgcacc gctgcatttg aacttacagc 180
 ccaggcggat gccccttccc tttagcactac ctggcccttgc atcccctc gcctcatgtt 240
 cctcccacct tcaaanaatg aanaaccca tgggcccagc cccttgcctt gggaaaccaa 300
 ggcagccttc caaaaacttag gggctgaagc anactattag ggcaggggct gactttgggt 360
 gacactgcccttccatc agggcagctc angtcacccn ggncttgcgacc 420
 ttcccttggaa aaaggcaaa actgaaaagg gctttcttaaaaaaagaaaa aaccaggaa 480
 cttagccagg gcttcnnntt taccaaaacn ncttctcnng gattttaat tcccatnng 540
 gcctccactt accnngggcn atgccccaaa attaanaatt tcccatc 587

<210> 121
 <211> 619
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 260, 527, 560, 564, 566, 585, 599
 <223> n = A,T,C or G

<400> 121
 cactagtagg atagaaaacac tgggtcccgagtaaggag agaagctact attgattaga 60
 gcctaaccac ggttaactgc aagaagggc gggatacttt cagctttcca tgtaactgtt 120
 tgcataaagc caatgttagtc cagttctaa gatcatgttcaagactaactt 180
 tcaatacaca ctcataact cctgatggaa caataacagg cccaaagcctg tggatgtatg 240
 tgcacacttg ctagactcan aaaaaataact acttcataa atgggtggta gtatttgggt 300
 gacaacctac ttgcgttggc tgagtgaagg aatgatattc atatattcat ttattccatg 360
 gacattttagt tagtgcattt tatataccag gcatgatgtt gagtgacact ctgtgtata 420
 tttccaaattttt tttgtacagt cgctgcacat atttggaaatc atatattaag acttccaaaa 480
 aatgaagtcc ctgggttttc atggcaactt gatcgtaaa ggattcnctt ctgtttggta 540
 cttaaaacat ctactatatn gttnanatga aattcctttt ccccnccctc cgaaaaaana 600
 aagtgggtggg gaaaaaaaaaaaaa 619

<210> 122
 <211> 1475

<212> DNA

<213> Homo sapiens

<400> 122

tccacctgtc cccgcagcgc cggctcgocg cctcctgccg cagccaccga gccggcgct 60
 agcgcggcga cctcgccacc atgagagccc tgctggcgcg cctgcttctc tgcgtcctgg 120
 tcgtgagcga ctccaaaggc agcaatgaac ttcatcaagt tccatcgaaac tgtactgtc 180
 taaaatggagg aacatgtgtc tccaacaagt acttctccaa cattcactgg tgcaactgcc 240
 caaagaaaatt cgagggcag cactgtgaaa tagataagtc aaaaacctgc tatgagggga 300
 atggtaacctt ttaccgagga aaggccagca ctgacaccat gggccggccc tgctgtccct 360
 ggaactctgc cactgtcctt cagcaaacgt accatgcccc cagatctgtat gctttcago 420
 tgggcctggg gaaacataat tactgcagga acccagacaa ccggaggcga ccctggtgct 480
 atgtgcagggt gggcttaaag ccgcttgcctt aagagtgcatt ggtgcattgac tgccagatg 540
 gaaaaaaagcc ctccttcctt ccagaagaat taaaatttca gtgtggccaa aagactctga 600
 ggccccgctt taagattatt gggggagaat tcaccaccat cgagaaccag ccctggtttg 660
 cggccatcta caggaggcac cgggggggct ctgtcaccta cgtgtgttgg ggcagcctca 720
 tcagcccttg ctgggtgatc agcgcacac actgttcat tgattacca aagaaggagg 780
 actacatcgatc ctacccgggt cgctcaaggc ttaactccaa cacgcaaggg gagatgaagt 840
 ttgaggtgga aaacccatc ctacacaagg actacagcgc tgacacgctt gctcaccaca 900
 acgacattgc cttgtgaag atccgttcca aggagggcag gtgtgcgcag ccatcccgaa 960
 ctatacagac catctgcctt ccctcgatgt ataacgatcc ccagtttgc acaagctgt 1020
 agatcactgg ctttggaaaa gagaatttca ccgactatct ctatccggag cagtcgaaga 1080
 tgactgttgtt gaagctgttattt tcccacccggg agtgcagca gccccactac tacggctctg 1140
 aagtaccac caaaatgtcg tgcgtgtcg acccacatgt gaaaacagat tcctgcccagg 1200
 gagactcagg gggacccttc gtctgttccc tccaaggccg catgactttt actggattt 1260
 tgagctgggg ccgtggatgt gccctgaagg acaagccagg cgtctacac agagtctcac 1320
 acttcttacc ctggatccgc agtcacacca aggaagagaa tggcctggcc ctctgagggt 1380
 cccccaggag gaaacgggca ccacccgtt tcttgcgtt tgcattttt gcagtagagt 1440
 catctccatc agctgttcaaaa agagactggg aagat 1475

<210> 123

<211> 2294

<212> DNA

<213> Homo sapiens

<400> 123

cagcgccggc tcgcgcctc ctgcccgcagc caccgagccg ccgtctagcg cccgcaccc 60
 gcccacatga gagccctgct ggcgcgcctg cttctctgcg tcctggctgt gagcgactcc 120
 aaaggcagca atgaacttca tcaagttcca tcgaactgtg actgtctaaa tggaggaaca 180
 tgtgtgtcca acaagtactt ctccaacatt cactggcgtca actgcccggaa gaaattcgga 240
 gggcagcact gtgaaataga taagtcaaaa acctgtctatg agggaaatgg tcacttttac 300
 cgagggaaagg ccagcactga caccatgggc cggccctgccc tgccctggaa ctctgccact 360
 gtccttcagc aaacgttacca tgcacacaga tctgtatgtc ttctgttggg cctggggaaa 420
 cataattact gcagggaaaccc agacaaacccg aggccggccctt ggtgttatgtt gcaggtggc 480
 ctaaaggccgc ttgttcaaga gtgcattgggtt catgacttgcg cagatggaaa aaagccctcc 540
 ttccttcagc aagaattttt atttgcgtgtt ggccaaaaga ctctgaggcc ccgtttaag 600
 atttattgggg gagaatttacac caccatcgatg aaccacccctt ggtttggggc catctacagg 660
 aggccacccggg ggggtctgtt cacctacgtt tgcgttggggc gcctcatcgg cccttgcgtt 720
 gtgtatcgtcg ccacacactg cttcatgtt taccggaaagg aggaggacta catcgcttac 780
 ctgggtcgctt caaggcttac ctccaaacacg caagggggaa tgaagtttgc ggtggaaaac 840
 ctaatccctac acaaggacta cagcgctgac acgttgcctt accacaaacga cattgcctt 900
 ctgaagatcc gtttcaagga gggcagggtt ggcgcagccat cccggactat acagaccatc 960
 tgcctgcctt cgatgtataa cgatccccag tttggcacaat gctgtgttgc cactggctt 1020
 gaaaaagaga atttaccga ctatcttat ccggagcgc tgaaaatgac tgcgttgc 1080

ctgatttccc accgggagtg tcagcagccc cactactacg gctctgaagt caccacaaa 1140
 atgctgtgtg ctgctgaccc acagtggaaa acagattctt gccaggaga ctcaggggaa 1200
 cccctcgctt gttccctcca aggccgcattt actttgactg gaattgtgag ctggggccgt 1260
 ggatgtgccc tgaaggacaa gccaggcgctc tacacgagag tctcacactt cttaccctgg 1320
 atcccgagtc acaccaagga agagaatggc ctggccctctt gagggtcccc agggagggaaa 1380
 cgggcaccac ccgctttctt gctgggtgtt atttgcagt agagtcatct ccatcagctg 1440
 taagaagagc tggaatata ggctctgcac agatggattt gcctgtgcca ccaccagggc 1500
 gaacgacaat agcttaccc tcaggcatag gcctgggtgc tggctgccc gaccctctg 1560
 gccaggatgg aggggtggc ctgactcaac atgttactga ccagcaacctt gtcttttct 1620
 ggactgaagc ctgcaggagt taaaaaggc agggcatctc ctgtgcattt gctcgaaggg 1680
 agagccagct ccccccaccc gttggcattt gtgaggccca tgggtgagaa atgaataatt 1740
 tcccaattttttagt gaagtgttaag cagctgaggt ctcttgagg agcttagcca atgtggagc 1800
 agcggttgg ggagcagaga cactaacgac ttcaaggcag ggctctgata ttccatgaat 1860
 gtatcaggaa atatatatgt gtgtgtatgt ttgcacactt gtgtgtggc tggatgtta 1920
 agtgtgagta agagctggc tctgattttt aagtctaaat atttccttaa actgtgtgga 1980
 ctgtgatgcc acacagatg gtcttctgg agaggtata ggtcactctt gggccttt 2040
 gggccccca cgtgacagtg ctggaaatg tattattctt cagcatgacc tggaccage 2100
 actgtcttag tttcactttc acatagatgt ccctttctt ggcagttatc cttcccttt 2160
 agcctagttc atccaatccct cactgggtgg ggtgaggacc actcctgtac actgaatatt 2220
 tatatttcac tatttttattt tatatttttga taattttaaa taaaagtgtat caataaaaatg 2280
 tgattttctt gatg 2294

<210> 124

<211> 956

<212> DNA

<213> Homo sapiens

<400> 124

gatgagttcc gcaccaagtt tgagacagac caggccctgc gcctgagttt ggaggccgac 60
 atcaatggcc tgcgcagggt gctggatgag ctgaccctgg ccagagccgaa cctggagatg 120
 cagattgaga acctaagga ggagctggcc tacctgaaga agaaccacga ggaggagatg 180
 aacgcccctgc gaggccagggt ggggtggtagt atcaatgtgg agatggacgc tgccccaggc 240
 gtggacctga gccgcatttcaacgagatg cgtgaccagt atgagaagat ggcagagaag 300
 aaccgcaagg atgcccggaa ttgggttcttca agcaagacag aggaactgaa ccgcgagggt 360
 gcccacaaca gtgagcttgtt gcagagtggc aagagtggaa tctcggagct ccggccgacc 420
 atgcaggccctt tggagataga gctgcagttcc cagtcagca tggaaagcatc cctggagggc 480
 aacctggcgg agacagagaa ccgcattttgc gtgcagctgtt cccagatcca gggctgtatt 540
 ggcagctgg aggacgactt ggcccagttt cgctgcgaga tggagcagca gaaccaggaa 600
 tacaaaatcc tgctggatgtt gaagacgcgg ctggagcagg agattgcccac ctaccgcccgc 660
 ctgctggagg gagaggatgc ccacctgactt cagttacaaga aagaaccgtt gaccacccgt 720
 caggtgcgtt ccattttggaa agaggtccag gatggcaagg tcatctcctt ccgcgaggcag 780
 gtccaccaga ccaccccgctt aggactcaggc taccggccgc ggccacccag gaggcaggaa 840
 ccgcagccgcc ccatttgcctt cacagtcttcc ggcctcttca gcctcagccc cctgctttag 900
 tccctccccc atgcttcctt gcctgatgac aataaaagct tggactca gctatg 956

<210> 125

<211> 486

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 16

<223> n = A,T,C or G

```
<400> 125
aaattatata tagtgnntca gctcccatgg tgggtttcat agtcttcttag gaacagataa 60
acttaagtat tcaattcact cttggcattt tttcttaat ataggcttt tagccttattt 120
ttggaaaact gctttcttc tgagaacctt attctgaatg tcataactt taccaaacct 180
tctaagtcca gagctaactt agtactgttt aagttactat tgactgaatt ttcttcattt 240
tctgttttagc cagtgttacc aaggtaagct ggggaatgaa gtataccaac ttcttcaga 300
gcatttttagg acattatggc agcttttagaa ggctgtcttg tttcttagcca agggagagcc 360
agcgcaggtt ttggatacta gagaaagtca ttgtgttgc ctattgccat tttagaaagc 420
tctgtatgtga attcaaattt tacctctgtt actttaaagcc aacaatttta aggcaagtgt 480
tttact 486
```

<210> 126

<211> 3552

<212> DNA

<213> Homo sapiens

<400> 126

gggtagca ctgctttt ctgtattgct aacttttagta tggaggttt ttggcaac 2220
 taaaggaaa cgtttcctg aagatttagc acagcaaaac ttaatttat caaacacaga 2280
 agcacctgga gacgatagag tggctctgc caatggatt atgacccaa ctaccaacaa 2340
 ctctagccaa gttttgtg gtactatggg atcaggaatg aaaaatggag ggaggaaac 2400
 cattgaaatg atgaaaggag gaaaccagac cttgaatcc tgccgggggg ctggcatca 2460
 tcataccctg gactcctgca ggggaggaca cacggagggt gacaactgca gataactta 2520
 ctcggagtgg cacagttta ctcaaccccg tctcgtgaa aaattgcatt gatgtaatca 2580
 gaatgaagac cgcattccat cccaagatta tgtcctact tataactatg aggaagagg 2640
 atctccagct gtttctgtgg gctgctgcag tgaaaagcag gaagaagatg gccttgactt 2700
 tttaataat ttggAACCA aatttattac attagcagaa gcatgcacaa agagataatg 2760
 tcacagtgc acaatttaggt ctttgtcaga cattctggag gtttccaaaa ataattattgt 2820
 aaagttcaat ttcaacatgt atgtatatga tgattttttt ctcaattttt aattatgcta 2880
 ctcaccaatt tatattttt aagcaagttt tgcttattct ttccaaaaaa gtggggatg 2940
 ttAAAACAGA caactggtaa atctcaaact ccagcaactgg aattaagtc tctaaagcat 3000
 ctgctttttt ttttttttac agatattttt gtaataaaata tgctggataa atattatgtcc 3060
 aacaatagct aagttatgct aatatcacat tattatgtat tcacttaag tgatagttt 3120
 aaaaataaaac aagaatattt gagttatcaat atgtgaagaa agttttggaa aagaaacaat 3180
 gaagactgaa taaaattaaa aatgttgcaag ctcataaaga attggactca cccctactgc 3240
 actaccaaat tcatttgact ttggaggcaaa aatgtgtga agtgccttat gaagtagcaa 3300
 ttttctataag gaatataatggtt gaaataaaat gtgtgtgtgt atattatttt taatcaatgc 3360
 aatattttaa tgaaatgaga acaaagagga aaatggtaaa aacttgaat gaggtgggg 3420
 tatagtttgtt cctacaatag aaaaaagaga gagttcccta ggcctggct cttaaatgct 3480
 gcattataac tgagtctatg aggaaatagt tcctgtccaa ttgtgttaat ttgtttaaaa 3540
 ttgttaataa at 3552

<210> 127
 <211> 754
 <212> DNA
 <213> Homo sapiens

<400> 127
 tttttttttt ttgtcattgt tcattgattt taatgagaaa gctaagagag gaaataagta 60
 gccttcaaa ggtcacacag aagtaagtga cagatccagg attcatatcc aacattctg 120
 gctctagtgtt ccatgcttcc caaccattat gaccaatatt tcaaccaat caatactgaa 180
 ggacacgtga aatgtatccg gtatTTTACT attacaaaca aaaatccaaat gaacattttt 240
 gaagacatac acaaaaataa tggttacaat agaagttact ggaattggaa ttttggttca 300
 acctatatta aaatgttaagg cttttgatatt agctaataaga tttttgaaat gatcagtctt 360
 aacgtttgtt ggggagcaca ctccgtcatg gggaaaagat tcactgtgaa gcacagagca 420
 cctttatgggt tggatcatct tgcattttt gttcaggcgt tatctatcc ttaatgtggca 480
 gaatcaagac tgcaatatcg cctgcttttc tttttaactc atgtttttcc ttgactacac 540
 tggcctcaa agtaaaaaccc ctgtgtcagt gtactattca tggaaatact tgcattata 600
 accacccctt aatacttttta ataccaatc aaaatttattt atacatatgt atcatagata 660
 ctcatctgtt aagctgtgtt tcaaaatagt gatctttcc caacattaca atatattata 720
 atgatgtcga acctgccccgg gggccgctc gaag 754

<210> 128
 <211> 374
 <212> DNA
 <213> Homo sapiens

<400> 128
 aggttttgat taaaaaggca aatgattttt tgggtcgata atctttaaa aaaataagag 60
 gaaggagtaa aattaaagat gaaagatgtat ttttatttcc ttgtgacctc tataatcccc 120
 ttcccctgccc ctggtaagt aactcttgcgtt ggagaaagga ttaaagactc ttatattacc 180

aaaaaacaga gccagcta atttccaaa ggttagtac tccctgctga cctttcttt 240
 ggtttaattg aataaaacta tatgttcata tatgtattaa aacaactcag aataacatct 300
 ttcttcctt agttaaggca ttataaggc tatactatca tccataataa ccaaggcaat 360
 aacttaaaaa gctg 374

<210> 129

<211> 546

<212> DNA

<213> Homo sapiens

<400> 129

agtgtatgg atatctgcag aattcgggct aagcgtggc gcggcccgag gtctggaact 60
 tcccagcacy tgaaaaggag ctcctgagc tgactcggt aaagccccac tttcgctcct 120
 ctcatttct gcctactgtat ttcctggag cattcatctg aatattaccg tttgctgtgt 180
 aacctggtaac atacatagca tgactccctg gaatagagtggctggg 240
 gagagtgatt gacatgcact ttcaagctat atctaccatt tgccagcaag gaaaaaaat 300
 acctcgagta aattccatca tttttataa catcagcacc tgctccatca tcaaggagtc 360
 tcagcgtaac aggatctcca gtctctggct caactgtggc agtgacagtg gcattaagaa 420
 tgggataaaaa tccctgttca acattggcat aaatcatcac aggtatgggaa aatggaggc 480
 tgtcttttc cacaaaggct tccacagttggctggg 540
 tcgaaa 546

<210> 130

<211> 5156

<212> DNA

<213> Homo sapiens

<400> 130

accaaccgag ggcggggca ggcggccctg cagcggagac agagactgag cggccggca 60
 cccatgcc tgcgtctgg ctgggctgt gcctctgtt gtcgtcttc ctggcccgac 120
 cccggccac ctccaggagg gaagtctgtt attgcaatgg gaagtccagg cagtgtatct 180
 ttgatcgaaa acttacacaga caaaactggta atggattccg ctgcctcaac tgcataatgaca 240
 acactgtgg cattcaactgc gagaagtgcg agaatggctt ttaccggcac agagaaagg 300
 accgctgttt gcccgtcaat tgtaactcca aaggttctt tagtgcgtca tgcataatgaca 360
 ccggacgggt cagctgtaaa ccagggtgtga caggagccag atgcgaccga tgcgtccac 420
 gcttccacat gtcacggat gcccgggtca cccaaagacca gagactgcta gactccaagt 480
 gtgactgtga cccagctggc atcgcaggc cctgtgacgc gggccgtgt gtctgcaagc 540
 cagctgtcac tggagaacgc tgcgtatggt gtcgtatcagg ttactataat ctggatgggg 600
 ggaaccctga gggctgtacc cagttttctt gctatggca ttcagccagc tgcccgac 660
 ctgcagaata cagttccat aagatcacct ctaccttca tcaagatgtt gatggctgg 720
 aggctgtcca acgaaatggg tctctgtcaa agctccaatg gtcacagcgc catcaagatg 780
 tgtttagctc agcccaacga cttagccctg tctatggatggt ggctctgtcc aaatttctt 840
 ggaatcaaca ggtgagctat ggtcaaaaggcc tgcgttttgc tgcgtgtg gacagagg 900
 gcagacaccc atctgcccattt gatgtgattc tggaaagggtgc tggctacgg atcacagctc 960
 ccttgcgtcc acttggcaag acactgcctt gtgggtcac caagacttac acattcagg 1020
 taaatgagca tccaaacat aattggagcc cccagcttagt ttactttgtt gatggctgg 1080
 tactgcggaa tctcacagcc ctccgcatttcc gagtacata tggagaatac agtactggg 1140
 acattgacaa tgcgttccat atttcagccc gcccgtctc tggagccca gcaccctgg 1200
 ttgaacagtg tataatgttcc tgggggtaca agggggcaattt ctgcgttccat tgcgttctg 1260
 gctacaagag agattcagcg agactggggc cttttggcac ctgttccat tgcgttccat 1320
 aagggggagg ggcgtgtat ccagacacag gagattgtt ttcagggtat gagaatccctg 1380
 acattgagtg tgcgtactgc ccaattgggtt tctacaacgc tccgcacac ccccgccagct 1440
 gcaaggccatg tccctgtcat aacgggttca gctgtcagt gatgcccggag acggaggagg 1500
 tggtgtgcaa taactgcctt cccgggggtca ccgggtcccg ctgtgagtc tgcgttccat 1560

gctactttgg ggacccttt ggtgaacatg gccagtgag gccttgcag ccctgtcaat 1620
 gcaacaacaa tggacccccc agtgcctctg ggaattgtga ccggctgaca ggcagggttt 1680
 tgaagtgtat ccacaacaca gcccgcacact actgcgacca gtgaaagaca ggctacttcg 1740
 gggaccatt ggctcccaac ccagcagaca agtgcgagc ttgcaactgt aacccatgg 1800
 gctcagagcc tgttaggatgt cgaagtgtat gcacccgtgt ttgcaagcca ggatttggg 1860
 gcccccaactg tgagcatgga gcattcagct gtccagcttg ctataatcaa gtgaagattc 1920
 agatggatca gtttatgcag cagttcaga gaatggaggc cctgattca aaggctcagg 1980
 gtggtgatgg agtagtacct gatacagac tggaaaggcag gatgcagcag gctgagcagg 2040
 cccttcagga cattctgaga gatgccaga tttcagaagg tgcttagcaga tccttggtc 2100
 tccagttggc caagtgagg agccaagaga acagctacca gagccgcctg gatgaccta 2160
 agatgactgt gaaaagagtt cgggctctgg gaagtca gcaagaaccga gttcgggata 2220
 ctcacaggt catactcag atgcagctga gcctggcaga aagtgaagct tccttggaa 2280
 acactaacat tcctgcctca gaccactacg tggggccaaa tggctttaaa agtctggctc 2340
 aggaggccac aagattagca gaaagccacg ttgagtcagc cagtaacatg gagcaactga 2400
 caaggaaac tgagactat tccaaacaag ccctctact ggtgcgaag gccctgcatt 2460
 aaggagtccg aagcggaaac ggtagcccg acgggtctgt ggtcaaggg ctttgtggaaa 2520
 aattggagaa aaccaagtcc ctggcccaacg agttgacaag ggaggccact caagcggaaa 2580
 ttgaagcaga tagtcttat cagcacagtc tccgcctct ggattcagtg tctcggcttc 2640
 agggagtcag tgatcagtc ttccagggtgg aagaagcaaa gaggatcaaa caaaaagcgg 2700
 attcactctc aagccctgta accaggcata tggatgagtt caagcgtaca cagaagaatc 2760
 tggaaactg gaaagaagaa gcacagcagc tcttacagaa tggaaaagt gggagagaga 2820
 aatcagatca gctgtttcc cgtgcaatc ttgctaaaag cagagcacaa gaagcactga 2880
 gtatggccaa tgccacttt tatgaagttt agagcatct taaaaacctc agagagttt 2940
 acctgcaggt ggacaacaga aaagcagaag ctgaagaagc catgaagaga ctctcctaca 3000
 tcagccagaa gtttcagat gccagtgaca agacccagca agcagaaaaga gcoctggga 3060
 gcgctgtgc tgatcagcag agggcaaaa atggggccgg ggaggccctg gaaatctcca 3120
 gtgagattga acaggagatt gggagtcagc acttggcagc caatgtgaca gcagatggag 3180
 ctttggccat ggaaaaggga ctggcctctc tgaagagtga gatgaggaga gtgaaaggag 3240
 agctggaaag gaaggagctg gagtttgcg cgaatatggc tgcaatcag atgtgatta 3300
 cagaagccca gaagggttgcg accagagccca agaacgcctgg gtttacaatc caagacacac 3360
 tcaacacatt agacggcctc ctgcattctgat tggaccagcc tctcagtgta gatgaagagg 3420
 ggctggctt actggagcag aagcttccg gagccaagac ccagatcaac agccaactgc 3480
 gcccattgtat gtcagagctg gaagagaggg cacgtcagca gaggggccac ctccatttgc 3540
 tggagacaag catagatggg attctggctg atgtgaagaa cttggagaac attaggaca 3600
 acctgccccc aggctgtac aatacccagg ctcttgagca acagtgaagc tgccataaat 3660
 atttctcaac tgagggttctt gggatacaga tctcagggtc cgggagccat gtcatgttag 3720
 tgggtggat gggacattt gaacatgttt aatgggtatg ctcaatcactt ctgcatttgc 3780
 cccattcctg atcccatggc caggtgggt tcttatttgc ccataactct tgcttctga 3840
 tgctggccaa tgaggcagat agcactgggt gtgagaatga tcaaggatct ggaccccaaa 3900
 gaatagactg gatggaaaga caaactgcac aggcatgtt ttgcctcata atagtcgtaa 3960
 gtggagtcct ggaatttggc caagtgcgtt tggatatacg tcaacttatt ctttgatggaa 4020
 tgtgactaaa ggaaaaaaact ttgactttgc ccaggcatga aattcttccct aatgtcagaa 4080
 cagagtgc当地 cccagtcaca ctgtggccag taaaatacta ttgcctcata ttgcctctg 4140
 caagcttctt gctgtacgaa gttccctcta cttacaaccc aggggtgtgaa catgttctcc 4200
 atttcaagc tggaaagaatg gagcagtgtt ggagtgagga cctgtaaaggc agggccattc 4260
 agagctatgg tgcttgcgtt tgcctgcac cttcaatgc tggacctggg catgacatcc 4320
 tttcttttaa tgatgccatg gcaacttgcg gattgcattt ttattaaagc atttcctacc 4380
 agcaaagcaa atgttggaa agtatttact ttttcgggtt caaagtgcata gaaaagtgtg 4440
 gcttggccat tggaaagaggt aaaattcttctt agatttattt gtcctaaatc aatcctactt 4500
 tttagaacacc aaaaatgtatc cgcatcaatg tattttatct tattttctca attcctctc 4560
 ttttccctcc acccataata agagaatgtt cttactcaca cttcagctgg gtacatccca 4620
 tccctccatt catccctcca tccatcttc catccattac ctccatccat cttccaaca 4680
 tatattttt gatgtacccatc tttgtggccag gggctgggtgg gacagtgtg acatgtctc 4740
 tgccctcata gagttgattt tcttagtgcgg aagacaagca tttttaaaaa ataaatttaa 4800

acttacaaac tttgtttgtc acaagtgggt tttattgcaa taaccgccttg gtttgcaacc 4860
 tctttgctca acagaacata tggttgcaga ccctcccatg ggggcacttg agttttggca 4920
 aggctgacag agctctgggt tggcacatt tctttgcatt ccagctgtca ctctgtgcct 4980
 ttctacaact gattgcaaca gactgttgag ttatgataac accagtggga attgctggag 5040
 gaaccagagg cacttccacc ttggctggga agactatggt gctgccttc ttctgtattt 5100
 ccttggattt tcctgaaaat gtttttaaat aaagaacaat tgtagaaaa aaaaaa 5156

<210> 131
 <211> 671
 <212> DNA
 <213> Homo sapiens

<400> 131
 aggtctggag ggcccacagc cgatgtggg acaccggaa aaagtggtca tagcacacat 60
 tttgcatcc cggttgcagt gtgttgcaga cgaagtgcctc ttgctcgta ccccacactt 120
 cctgggcagc caycacgagg atcatgactc ggaaaataaa gatgactgtg atccacacct 180
 tcccgatgtc ggtggagtgt ttgttgcac ccccgatgaa agtgtgcagc gtcccccaat 240
 ccattgcgtc ggtttatccc tgagtccgtt ttccaacgc tgccagtttgc 300
 agaatgaggg caagatccct ctgcgagggt ttcaacgc cccactggag 360
 tgcctagaag ccaatgggt cacagtgtatc atacgaatgt caatcttgc tcggtcagt 420
 aggtatgtcgc ctggatatatt caaaattgtat tacagatgca tgaagagggc gtacaagtt 480
 gaatttttctt ttgcctatac agaaattgtt tagccagatc ttctgtactt ctttccttc 540
 cctgaccctt cctgctcccc aggaaggag gtcagccccg ttgcggaaaac acaggatgcc 600
 cgtgacaccc gagacaggc ttcttcaccg acaggaagtg ccttctggc ctcgcacgtt 660
 ttaactgcta t 671

<210> 132
 <211> 590
 <212> DNA
 <213> Homo sapiens

<400> 132
 ctgaatggaa aagcttatgg ctctgtgatg atattagtga ccagcggaga tgataagctt 60
 ctggcaatt gcttacccac tggctcagc agtgttcaa caattcactc catggccctg 120
 ggttcatctg cagccccaaa tctggaggaa ttatcacgtc ttacaggagg tttaaagtcc 180
 tttgttccag atatatcaaa ctccaataagc atgattgtat ctttcagtag aatttcctct 240
 ggaactggag acatttcca gcaacatatt cagctgaaa gtacaggtga aaatgtcaaa 300
 cctcaccatc aattgaaaaa cacagtgtatc gtggataata ctgtggccaa cgacactatg 360
 tttctagtta cgtggcaggc cagttgtcct cctgagatta tattatttgc tcctgtatgg 420
 cggaaaataact acacaaataa ttttatcacc aatctaactt ttccggacagc tagtctttgg 480
 attccaggaa cagctaaagcc tggcactgg acttacaccc tgaacaatac ccatcattct 540
 ctgcaagccc tgaaagtgac agtgcacctt cgcgcctcca actcagaccc 590

<210> 133
 <211> 581
 <212> DNA
 <213> Homo sapiens

<400> 133
 aggtcctgtc cggggcact gagaactccc tctggattc ttggggggtg ttggggagag 60
 actgtgggccc tggagataaa acttgtctcc tctaccacca ccctgtaccc tagcctgcac 120
 ctgtcctcat ctctgcaaaat ttcagcttcc ttcccaaggt ctctgtgcac tctgtcttgg 180

atgctctggg gagctcatgg gtggaggagt ctccaccaga gggaggctca gggactgg 240
 tgggccaggg atgaatattt gagggataaa aattgtgtaa gagccaaga attggtagta 300
 gggggagaac agagaggagc tgggctatgg gaaatgattt gaataatgg acttgggata 360
 tggctggata tctggacta aaaaagggtc tttaagaacc tacttcctaa tctttcccc 420
 aatccaaacc atagctgtct gtccagtgt ctcttcctgc ctccagctct gcccaggct 480
 cctccttagac tctgtccctg ggctaggca gggaggagg gagagcaggg ttggggaga 540
 ggctgaggag agtgtgacat gtggggagag gaccagacct c 581

<210> 134

<211> 4797

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 135, 501, 4421, 4467, 4468, 4698

<223> n = A,T,C or G

<400> 134

cctgggacca aagtgtgcc cagagctgag ggtcctggag ccacatgaga aggcttctcc 60
 ctgtgtacct gtgcagcaca gggtagggtg agtccactca gctgtctagg agaggaccca 120
 ggagcagca agacncgcca agccttact cataccatat tctgatcctt ttccagcaaa 180
 ttgtggctac taatttgcctt cctgaagatc aagatggctc tggggatgac tctgacaact 240
 tctccggctc aggtgcagggt gaggttgcata tggggggcccc ccccacccaa gacggcaaca 300
 ggtcatgcct gggggcagtg gtcaggcagt ctccctgttt tactgagcat gtactgagtg 360
 caccctgcct gcctgtctc cacccagctg gctccaaagg gcaatgtga ggagaggaat 420
 ggggtcgta gctgtgtta aggagagctc atgcttggag gtgaggtgaa ggctgtgagc 480
 tccagaaggc cccaggggcgc nctgtgcac gcaggtctcat attcactagg aatagcttta 540
 ctcactaaga aacctcttga accccccttca gaagttatt tgactcctga gcctcttattt 600
 ttcatctgc aaaatggaa taataccttgc acctgataag cttgtggagc tgtaaggcag 660
 cacagagcca gctggggtgt agcttgcac tccaaagctcc ctcccttact tccctttcc 720
 tgtggggact gggggagaga agtccctgag ctggagggtgg tcagggaaagc ttacagagg 780
 aggtggctct tgagtggacc tcaggaagag gggtagagaa gctaaggaag gaggtgagg 840
 tcataccctgg ggaagtgacc tagcggaggc ctgagagctg caaggttagga tatctgttgc 900
 tggaaagtgtc tgggttggaa agtggggggcc ttttttttag ggaggggtgg gccagagaag 960
 tgtgtccct gggataaagt gataaccac agtagttatg cccctaaggg atgcccaccc 1020
 cacccctgtg gtcacagaaa agcttccca ggtggcttag gcacctgtct cgtggctcca 1080
 gagacaggct gcacctgaca cacacaatgg aaggacagct ctccctgtcc attttccaag 1140
 gagcttagcc tcaagtgcct tggcctaggta ctggctccc tcatagcctg agcttggcca 1200
 gcccagggtgc tctggagctt ccccccggacc acccaacaca ctctgttct ggtccctcccc 1260
 acccccccacc tcccaaacac actctgttcc tggcctgtca ggtgtttgc aagatatcac 1320
 ctgttcacag cagacccctt ccacttggaa ggacacgcag ctccgtacgg ctattccac 1380
 gtctccagaaa cccacccggcc tggaggctac agtgcctcc acctccaccc tgccggctgg 1440
 agagggggccc aaggaggagg aggctgttagt cctggccagaa gtggagcctg gcctcaccgc 1500
 cccggagcag gaggccaccc cccgaccctg ggagaccaca cagctcccgaa ccactcatca 1560
 ggcctcaacg accacagcca ccacggccca ggagcccgcc acctccaccc cccacaggaa 1620
 catgcagccct ggccacccatg agacctcaac ccctgcagga cccagccaa ctgacccatca 1680
 cactccccac acagaggatg gaggtccctc tgccaccggag aggctgtct aggtggagc 1740
 ctccagtcag ctcccaagcag cagagggtctc tggggagcag gtgagtgcc tctgcattcc 1800
 ttggaaatt gagtggttgc tgcctaatgc ctggcacttg gcaggcccta cacctgtgcc 1860
 ctgcgcgatc tcgttattcc taccaggaa acaggccaca gggggccct tcccttaccc 1920
 ccagggcctc gcagagcagg acagactaac tatgagatca gagcagaagc acccttaaag 1980
 atcaccctaaag agagggctcc caaactcaca atccaaactt gcagccctcg tcgaagagtg 2040
 aacgttataac cagtcattttt atttatagtc tcgtggattt acgcttacac taaatagtct 2100

gctattcata caaaatgtgt gctttgtatc actttttgtg atatccatgc catggtccag 2160
 ccagggtccg gagttgtatgt ggcaagaagg cctggcttc gggccctgtg cgatccttgt 2220
 ttgggtgcat ctgagtgggt ggtggcaaag atcaggagg caggagctgc ttctgggtct 2280
 gtagtggagc tgggtgctgc tgctggcggt gacctggcca acccaatctg cccctgccc 2340
 cccacaggac ttcacctttg aaacctcggt ggagaatacg gctgtatgtt ccgtggagcc 2400
 tgaccgcccc aaccagtccc cagtggatca gggggccacg ggggcctcac agggcctcct 2460
 ggacaggaaa gaggtgctgg gaggtgagtt ttctttcagg gggtagttt ggggtgaatt 2520
 gctgtgtgg ggtcagggtg gggctgacca cagccaaggc cactgttttggaggtctg 2580
 cacgagagcc caaggagccg ctgagctgag ctggccccgt ctacctgccc taggggtcat 2640
 tgccggaggc ctcgtggggc tcatcttgc tigtgcctg gtgggttca tgctgtaccg 2700
 catgaagaag aaggacgaag gcagctactc cttggaggag ccgaaacaag ccaacggccg 2760
 ggcctaccag aagccacca aacaggagga attctatgcc tgacgcggga gccatgcgcc 2820
 ccctccgccc tgccactcac tagggccca cttgcctt ccttgaagaa ctgcaggccc 2880
 tggctcccc tgccaccagg ccacccccc agcattccag cccctcttgt cgctcctgccc 2940
 cacggagtctg tgggtgtctt gggagctcca ctctgttttctt ctgacttctg cctggagact 3000
 tagggcacca ggggtttctc gcataggacc tttccaccac agccagcacc tggcatcgca 3060
 cattctgac tcgggttctc caaactgaag cagcctctcc ccaggtccag ctctggaggg 3120
 gagggggatc cgactgctt ggacctaattt ggctcatgt ggcttggaa tccctgcgggt 3180
 ggggcttggg gctcacacac ctgttagact tactgttagg accaagcatc ttgggggggt 3240
 ggcgcgttag tggcaggggc caggagtac tttgtttctt ggggaggtct aatctagata 3300
 tcgacttgtt tttgcacatg ttcctcttag ttctttgttcc atagcccaatg agaccttg 3360
 acttctgagg taagtttaatg aagtgtatcc ggtatcccccc catcttgcctt ccctaatact 3420
 tggtcgggag acagcatcag ggttaagaag actttttttttttttttaa actaggagaa 3480
 ccaaatactgg aagccaaaat gtaggcttag tttgtgtttt gtccttgcag tttgtcgctc 3540
 atgtgtgcaa cagggtatgg actatctgtc tgggtggccc gttctgtgg tctgtggca 3600
 ggctggccag tccaggctgc cgtggggccg ccgcctctt caagcagtgc tgctgtgtc 3660
 catgcgtca gggccatgtc gaggcctggg ccgcgtccac gttggagaag cccgtgttag 3720
 aagtgaatgc tgggacttag ctttcagaca gagaggactg tagggaggcc ggcaggggcc 3780
 tggagatcct ctcgcaggct cacccccgtc ctcctgtggc ccgcgtccca gggctgtctt 3840
 cctcctggaa attgacgagg ggtgttttttgc gcaagactgg ctctgagccg ctcacatccaa 3900
 ggccagggttc tccgttagct cctgtggccc caccctggc cctggctgg aatcaggaat 3960
 attttccaaa ggtgtatgtt cttttgcattt tggcaaaactt ctacttaatc caatgggttt 4020
 ttccctgtac agtagattttt ccaaataatgaa taaaattttataa taaaatgtt tctgtgaatg 4080
 ccactgcctt cgcttcttgc ctctgtgtc tttgtgtacgt gaccggactt ttctgcac 4140
 accaacaatgt tggaaactt ggctcgaatc tctgtgcctt cgtttttcc atggggaggg 4200
 attctgttttcc cagggtccct ctgtgtatattt gctttttgtt tttggcttattt attctctgtt 4260
 aggtcggtat gttcagccaa gtttttataa ggctgtatgtc aattttctgtt ttggcaagct 4320
 ccaagcccat cttctaaatg gcaaaggaaat gtggatggcc ccagcacagc ttgacacttag 4380
 gctgtgttca cagcggaggt gtggagccgaa ggccttcccccc ncagacacctt tggacatctt 4440
 cctcccccggcc ggctgcagag gccaganncc agcccaagggt cctgcactt cttgttttattt 4500
 tgacaacgtt tcagcgtactc cgttggccac tccgagatgtt ggccagttctg tggatcagag 4560
 atgcaccacc aagccaaaggg aacctgtgtc cggatttgcg tactgtgtact ttctgcctgg 4620
 agtgttatgac tgcacatgac tgggggggtt gggaaagggtt cggctgacca tgctcatctg 4680
 ctggccgttgg gggccgttcc caagccagag gttgggttcat ttgtgttaacg acaataaaacg 4740
 gtacttgcata ttccggccaa cggctgttgtt ggtgggtttt ggtctcttc ttggcct 4797

<210> 135

<211> 2856

<212> DNA

<213> Homo sapiens

<400> 135

tagtcgcggg tccccgagtg agcacgcccag ggagcaggag accaaacgac gggggtcgga 60
 gtcagactcg cagtggagttt ccccgacccg gaggcacgacg ctgagcggga gagcggccgt 120

cgcacgcccc tcgccaccccg cgtacccggc gcagccagag ccaccagcgc agcgtgcc 180
 tggagcccaag cagcaagaag ctgacgggtc gcctcatgt ggctgtgggaa ggagcagtgc 240
 ttggctccct gcagtttggc tacaacactg gagtcataa tgccccccag aaggtgatcg 300
 aggagttcta caaccagaca tgggtccacc gctatgggaa gagcatctg cccaccacgc 360
 tcaccacgt ctggccctc tcagtggcca tctttctgt tggggcatg attggctct 420
 tctctgtggg cctttcgtt aaccgcttg gccggcgaa ttcaatgtc atgatgaacc 480
 tgctggcctt cgtgtccgccc gtgctcatgg gcttctcgaa actgggcaag tcctttgaga 540
 tgctgatcctt gggccgctt atcatcggtg tgtactgcgg cctgaccaca ggcttcgtgc 600
 ccatgtatgt gggtaagtgc tcaccacag ccttcgtgg ggcctggc accctgcacc 660
 agctggcat cgctcgccg atcctcatcg cccaggttt cgccctggac tccatcatgg 720
 gcaacaaggaa cctgtggccc ctgctgtga gcatcatctt catcccgcc ctgctgcagt 780
 gcatcggtctt gcccttcgc cccgagagtc cccgcttcct gctcatcaac cgcaacgagg 840
 agaaccgggc caagagtgtg ctaaagaagc tgccgggac agctgacgtq acccatgacc 900
 tgcaggagat gaaggaagag agtcggcaga tgatgcgggaa gaagaaggc accatctgg 960
 agctgttccg ctcccccgc taccgcacg ccatttcatt cgctgtgtg ctgcagctgt 1020
 cccagcagct gtctggcatc aacgctgtct tctattactc cacgagcatc ttcgagaagg 1080
 cgggggtgca gcagcctgtg tatgccacca ttggctccgg tatcgtaaac acggccttca 1140
 ctgtcgtgtc gctgttgtg gtggagcgag caggccggcg gaccctgcac ctcataggcc 1200
 tcgctggcat ggcgggttgtt gccatactca tgaccatgcg gctagcaactg ctggagcagc 1260
 taccctggat gtcctatctg agcatcggtt ccattttgg ctttgtggcc ttctttgaag 1320
 tgggtcctgg cccatccca tggttcatcg tggctgaact cttcagccag ggtccacgtc 1380
 cagctgccat tgccgttgca ggcttcctca actggaccc aaatttcatt gtgggcatgt 1440
 gcttccagta tgtggagcaa ctgtgtggc cctacgtttt catcatctt actgtgtcc 1500
 tggttctgtt cttcatcttca acctacttca aagtccctga gactaaaggc cggaccttcg 1560
 atgagatcgcc ttccggcttc cggcaggggg gagccagcca aagtgataag acacccgagg 1620
 agctgttcca tcccctgggg gctgattccc aagtgtgagt cgccccagat caccagcccg 1680
 gcctgctccc agcagcccta aggtacttc aggagcacag gcagctggat gagacttcca 1740
 aacctgacag atgtcagccg agccggcctt gggctcatt tctccagcca gcaatgtatgt 1800
 ccagaagaat attcaggact taacggctcc aggattttaa caaaagcaag actgttgctc 1860
 aaatctattt agacaagcaa caggttttat aattttttt ttactgattt tttttttttt 1920
 atatcagctt gagtctcctg tgcccacatc ccaggcttca ccctgaatgg ttccatgcct 1980
 gaggggtggag actaagccct gtcgagacac ttgccttctt caccctgacta atctgttaggg 2040
 ctggacctat gtcctaagga cacactaatc gaactatgaa ctacaaagct tctatcccag 2100
 gaggtggcta tggccaccccg ttctgtggc ctggatctcc ccactcttgg ggtcaggctc 2160
 cattaggatt tgcccttcc catctttcc tacccaacca ctcaaattaa tctttttta 2220
 ccttaggacca gttggagca ctggagtgc gggaggagag gggaaaggcc agtctggct 2280
 gccgggttct agtctcctt gcactgaggg ccacactatt accatgagaa gagggctgt 2340
 gggagcctgc aaactcaactg ctcaagaaga catggagact cctgcctgt tttgtataga 2400
 tgcaagatattttttttttt ttttggttcaatattaaa tacagacact aagttatagt 2460
 atatctggac aagccaaactt gtaaatacac cacccactc ctgttactta cctaaacaga 2520
 tataaatggc tggtttttag aaacatgggtt ttgaaatgtc tttggatgtg ggtaggg 2580
 tttggatggg agtgagacag aagtaagtgg gtttgcacc actgcaacgg cttagacttc 2640
 gactcaggat ccagtcctt acacgtaccc ttcatttcg tccctttgtt caaaaatctg 2700
 tttgatccct gttaccaga gaatatatac attctttatc ttgacattca aggcatttct 2760
 atcacatatt tgatagttgg tttttttttttt aacacttagtt ttgtgccagc cgtgtatgtc 2820
 aggctgaaa tcgcattatt ttgaatgtga agggaa 2856

<210> 136

<211> 356

<212> DNA

<213> Homo sapiens

<400> 136

ggtggagcca aatgaagaaaa atgaagatga aagagacaga cacctcagtt tttctggatc 60

aggcattgat gatgatgaag attttatctc cagcaccatt tcaaccacac cacgggctt 120
 tgaccacaca aaacagaacc aggactggac tcagtggac ccaagccatt caaatccgga 180
 agtgctactt cagacaacca caaggatgac tcatgttagac agaaatggca ccactgctta 240
 tgaaggaaac tggAACCCAG aagcacaccc tccctctt caccatgagc atcatgagga 300
 agaagagacc ccacattcta caagcacaat ccaggcaact cctagtagta caacgg 356

<210> 137

<211> 356

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 254, 264, 279, 281, 290, 328, 342

<223> n = A,T,C or G

<400> 137

gcaggtggag aagacatTTT attgttcctg gggTCTCTGG aggcccATTG gtggggctgg 60
 gtcactggct gccccggaa cagggcgctg ctccatggct ctgcttGTgg tagtctgtgg 120
 ctatgtctcc cagcaaggac agaaaACTCAg aaaaATCAat cttcttatcc tcattcttgt 180
 ccttttctc aaagacatcg gcgaggtaat ttgtgcctt tttacctcgg cccgcacca 240
 cgctaaggcc aaantccag acanayggcc gggccggtnC natagggan cccaacttgg 300
 ggacccaaac tctggcgCgg aaacacangg gcataagctt gnttcctgtg gggaaa 356

<210> 138

<211> 353

<212> DNA

<213> Homo sapiens

<400> 138

aggTCCAGTC ctccacttgg CCTGATGAGA gtggggagtg gcaaggGACg tttctcctgc 60
 aatAGACACT tagatttctc tcttGTTGGA agaaACCACC TGTCCATCCA ctgactcttc 120
 tacattGATG tggAAATTGc tgctGCTACC ACCACCTCT gaagaggCtt ccTGATGCC 180
 aATGCCAGCC ATCTTGGCAT CCTGGCCCTC gagcaggctg CGGTAAAGTAG CGATCTCTG 240
 CTCCAGCCGT GTCTTATGT CAAGCAGCAT CTTGACTCC TGGTCTGAG CCTCCATCTC 300
 gcatcgGAGC TCACTCAGAC CTCGSCCGSG mssmcgctam gccgaattcc agc 353

<210> 139

<211> 371

<212> DNA

<213> Homo sapiens

<400> 139

agcgtggTCg CGGCCGAGGT CCAATCCGAAG CAAGATTGCA GATGGCAGTG TGAAGAGAGA 60
 agacatattc tacacttcaa agcttggTg caattccat cgaccAGAGT TGGTCCGACC 120
 agcTTGGAA aggtcactGA AAAATCTCA ATTGGATTAT GTTGACCTCT ACCTTATTCA 180
 ttttccAGTG tctgtAAAGC caggtgagGA agtGATCCC AAAGATGAAA ATGAAAAAAT 240
 actatttGAC acagtggATC tctgtGCCAC gtggGAGGCC gtggAGAGT gtaaAGATGC 300
 aggatttggAC ctgcccGGGC ggccgctGA aagccGAATT ccAGCACACT ggccggccTT 360
 actagtggat C 371

<210> 140

<211> 370

<212> DNA

<213> Homo sapiens

<400> 140

```
tagcgtggtc gcggccgagg tccatctccc tttgggaact agggggctgc tggtggaaa 60
tgggagccag ggcagatgtt gcattcctt gtgtccctgt aaatgtggta ctacaagaag 120
aggagctgcc tgagtggta cttctcttcc tgtaatcct ctggccacg ctcatggcag 180
aatagaggtt ttttaggct attttgtaa tatggcttct ggtcaaaatc cctgtgttagc 240
tgaattccca agccotgcat tgtacagccc cccactcccc tcaccaccta ataaaggaat 300
agttAACACT caaaaaaaa aaaaaacctg cccggcgcc cgctcgaaag ccgaattcca 360
gcacactggc 370
```

<210> 141

<211> 371

<212> DNA

<213> Homo sapiens

<400> 141

```
tagcgtggtc gcggccgagg tcctctgtgc tgcctgtcac agcccgatgg taccagcgca 60
gggtgttaggc agtgccaggag ccctcatcca gtggcaggga acaggggtca tcactatccc 120
aaggagcttc agggtcctgg tactcctcca cagaatactc ggagtattca gagtactcat 180
catcctcagg gggtaaccgc tcttcctctt ctgcattgaga gacgcggagc acaggcacag 240
catggagctg ggagccggca gtgtctgcag cataactagg gaggggtcgat gatccagatg 300
cgatgaactg gcccctggcag gcacagtgtt gactcatctc ttggcgacct gcccggcg 360
ccgctcgaaag c 371
```

<210> 142

<211> 343

<212> DNA

<213> Homo sapiens

<400> 142

```
gcgttttagg gccaatggtg taaaaggaaa tatttcaca taaaaactag atgaaagcat 60
tgtcagaaac ctctttgtga tgtttgctt caactcacag agttgaacat tcctttcat 120
agagcagttt tgaaacactc ttttgtagaa tttgcaagcg gatgatttga tcgctatgag 180
gtcttcattt gaaacggat acctttacat aaaaactaga cagtagcatt ctcagaattt 240
tctttggat gtgggcattt aacccacaga ggagaacttc atttgataga gcagtttga 300
aacacccttt ttgtagaatc tacaggtgga catttagagt gct 343
```

<210> 143

<211> 354

<212> DNA

<213> Homo sapiens

<400> 143

```
aggctgtatg gcagaaaaac tcagactgtc tgcaacttta cagatggtgc attggttcag 60
catcaggagt gggatggaa ggaaagcaca ataacaagaa aattgaaaga tggaaatta 120
gtggtgagggt gtgtcatgaa caatgtcacc tgcactcgaa tctatggaaa agtagaataa 180
aaattccatc atcactttgg acaggagtta attaagagaa tgaccaact cagttcaatg 240
agcaaatctc catactgtttt ctttctttt ttttcattt ctgtgttcaa ttatctttat 300
cataaacatt ttacatgcag ctattcaaa gtgtgttgaa ttaatttagga tcat 354
```

<210> 144

<211> 353

<212> DNA

<213> Homo sapiens

<400> 144

ggtaaggac ctggggacc cccaggtcca gcagccacat gattctgcag cagacaggga 60
 ccttagagcac atctggatct cagccccacc cctggcaacc tgcctgccta gagaactccc 120
 aagatgacag actaagttagg attctgccat ttagaataat tctggtatcc tggcggtgc 180
 gttaagttgc ttaacttca ttctgtctt cgatagtctt cagaggtggg aacagatgaa 240
 gaaaccatgc cccagagaag gttaagtgc ttcctcttta tggagccagt gttccaacct 300
 aggtttgcct gataccagac ctgtggcccc acctccatg caggtctctg tgg 353

<210> 145

<211> 371

<212> DNA

<213> Homo sapiens

<400> 145

caggtctgtc ataaacttgt ctggagttc tgacgactcc ttgttcacca aatgcaccat 60
 ttcctgagac ttgctggcct ctccgttgag tccacttggc tttctgtcct ccacagctcc 120
 attgccactg ttgatcacta gcttttctt ctgcccacac cttcttcgac tggactgc 180
 aatgcaaact gcaagaatca aagccaaggc caagaggat gccaagatga tcagccattc 240
 tggaaatttgg ggtgtccttta taggaccaga ggttggttt gctccacattt cttgactccc 300
 atgtgagacc tcggccgcga ccacgctaag ccgaattcca gcacactggc ggccggtac 360
 tagtggatcc g 371

<210> 146

<211> 355

<212> DNA

<213> Homo sapiens

<400> 146

ggtcctccgt cctttccca gaggtgtcgg ggcttggccc cagcctccat cttcgctct 60
 caggatggcg agtagcagcg gctccaaggc tgaattcattt gtcggaggaa aatataaact 120
 ggtacggaag atcgggtctg gtccttcgg ggacatctat ttggcgatca acatcacca 180
 cggcgaggaa gtggcagtga agctagaatc tcagaaggcc aggcattcccc agttgtgt 240
 cgagagcaag ctctataaga ttcttcaagg tgggttggc atccccaca tacgggtgta 300
 tggtcaggaa aaagactaca atgtactagt catggatctt ctgggaccta gcctc 355

<210> 147

<211> 355

<212> DNA

<213> Homo sapiens

<400> 147

ggtctgttac aaaatgaaga cagacaacac aacatttact ctgtggagat atcctactca 60
 tactatgcac gtgctgtat ttgtacata actcgccca aaaacttgtc acgatcatcc 120
 tgacttttta ggtggctga tccatcaatc ttgcactcaa ctgttacttc tttcccgatg 180
 ttgttaggag caaagctgac ctgaacagca accaatggct gtagataccc aacatgcagt 240
 ttttcccat aatatggaa atatTTTAAG tctatcattc cattatgagg ataaaactgct 300
 acatttggta tatttcattt ctgttacaa caatctatcc ttggcactcc tttag 355

<210> 148

<211> 369

<212> DNA

<213> Homo sapiens

<400> 148

aggtctctc ccccctctcc ctctcctgcc agccaagtga agacatgctt acttcccctt 60
 caccttcctt catgatgtgg gaagagtgtc gcaaccaggc cctagccaac accgcattag 120
 agggagtgtg ccgaggggctt ctgagaaggt ttctctcaca tctagaaaga agcgcttaag 180
 atgtggcagc ccctcttctt caagtggctc ttgtcctgtt gccctggag ttctcaaatt 240
 gctgcagcag cctccatcca gcctgaggat gacatcaata cacagagaa gaagagtcag 300
 gaaaagatga gagaagttac agactctcct gggcaccgc gagagcttac cattccttag 360
 acttcttca 369

<210> 149

<211> 620

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> 169, 171, 222, 472, 528, 559, 599

<223> n = A,T,C or G

<400> 149

actagtcaaa aatgctaaaa taatttgaaa gaaaatattt tttaagtagt gttatagttt 60
 catgtttatc ttttattatg ttttgtaaag ttgtgtctt tcactaatta cctatactat 120
 gccaatattt ctttatatct atccataaca tttatactac atttgaana naatatgcac 180
 gtgaaactta acactttata aggtaaaaat gaggttcca anatttaata atctgatcaa 240
 gttcttgtaa tttccaaata gaatggactt ggtctgttaa gggctaagga gaagaggaag 300
 ataaggttaa aagtgttaa tgaccaaaca ttctaaaaga aatgcaaaaa aaaagtttat 360
 tttcaagcct tcgaactatt taaggaaagc aaaatcattt cctaaatgca tatcattttgt 420
 gagaatttct cattaatatc ctgaatcatt catttcacta aggctcatgt tnactccgat 480
 atgtctctaa gaaagtacta tttcatggtc caaacctggt tgccatantt gggtaaaggc 540
 tttcccttaa gtgtgaaant atttaaatg aaattttcct cttttaaaaa attcttana 600
 agggtaagg gtgtgggga 620

<210> 150

<211> 371

<212> DNA

<213> Homo sapiens

<400> 150

ggtccgatca aaacctgcta cctccccaaag actttactag tgccgataaaa ctttctcaaa 60
 gagcaaccag tatcacttcc ctgtttataa aacctctaac catctctttg ttctttgaac 120
 atgctgaaaa ccacctggtc tgcatgtatg cccgaatttg yaattcttt ctctcaaattg 180
 aaaatttaat tttagggatt catttctata ttttcacata tgttagtatta ttatttcctt 240
 atatgtgtaa ggtgaaattt atggatattt agtgtgcaag aaaatataatt tttaaagctt 300
 tcatttttcc cccagtgaat gatttagaat ttttatgta aatatacaga atgtttttc 360
 ttacttttat a 371

<210> 151

<211> 4655

<212> DNA

<213> Homo sapiens

<400> 151

gggacttgag ttctgttatac ttcttaagta gattcatatt gtaagggtct cgggggtgggg 60

gggttggcaa aatcctggag ccagaagaaa ggacagcgcg attgatcaat cttacagcta 120
 acatgttcta cctggaaaac aatgcccgaa ctcaatttag tgagccacag tacacgaacc 180
 tggggctcct gaacagcatg gaccaggcaga ttccagaacgg ctcctcgccc accagtccct 240
 ataacacaga ccacgcgcg aacagcgtca cgccgcgcctc gccctacgca cagcccagct 300
 ccacccctcgta tgctctctc ccatcacccg ccatccccctc caacaccgac taccaggc 360
 cgcacagttt cgacgtgtcc ttccagcagt cgagcaccgc caagtcggcc acctggacgt 420
 attcactga actgaagaaa ctctactgccc aaattgcaaa gacatgcccc atccagatca 480
 aggttatgac cccacccctc cagggagctg ttatccgcgc catgcctgtc tacaaaaaag 540
 ctgagcacgt cacggaggtg gtgaagcggt gcccccaacca tgagctgagc cgtgaattca 600
 acgagggaca gattccccct yctagtcatt tgattcgagt agagggaaac agccatgccc 660
 agtatgtaga agatccccatc acaggaagac agagtgtgt ggtacccctt gagccacccc 720
 aggttggcac tgaatttcacg acagtcttgt acaatttcat tgtaacacgc agttgtgtg 780
 gagggatgaa ccgcgcgtcca attttaatca ttgttactct ggaaaccaga gatgggcaag 840
 tcctggggcc acgtgtctt gaggccccgga tctgtgttgc cccaggaaga gacaggaagg 900
 cgatgaaga tagcatcaga aagcagcaag tttccggacag tacaagaaac ggttatggta 960
 cgaagcgcgc gtttgcgtca aacacacatg gtatccagat gacatccatc aagaaacgaa 1020
 gatccccaga tgatgtactg gtatacttac cagtgggggg ccgtgagact tatgaaatgc 1080
 tggtaagat caaagagtcctc ctggaaactca tgcagtaccc tcttcagcac acaattgaaa 1140
 cgtacagggca acagcaacag cagcagcacc agcaactact tcagaaacag acctcaatac 1200
 agtctccatc ttcatatggt aacagctccc cacctctgaa caaatgaac agcatgaaca 1260
 agctgccttc tggacttgcag cttatcaacc ctcagcagcg caacgcgcctc actcctacaa 1320
 ccattccatc tggcatgggaa gccaacatcc ccatgatggg cacccacatg ccaatggctg 1380
 gagacatgaa tggactcagc cccacccagg cactccctcc cccactctcc atgccatcca 1440
 cctcccaactg cacacccca cctccgtatc ccacagattg cagcattgtc agttcttag 1500
 cgaggttggg ctgttcatca tggacttgcact atttcacgac ccaggggctg accaccatct 1560
 atcagattga gcattactcc atggatgatc tggacttgcact gaaaatccct gagcaatttc 1620
 gacatgcgt ctggaaaggc atcctggacc accggcagct ccacgaattc tcctccctt 1680
 ctcatctcc tggacccca agcagttgcct ctacagttag tggacttgcact agtgagaccc 1740
 ggggtgagcg tggacttgcact gtttacttgc tggacttgcact ccacgttgcact tggacttgcact 1800
 cccgagatga tggacttgcact tggacttgcact gtttacttgc tggacttgcact 1860
 gcatcaaaga ggagggggag tggacttgcact tggacttgcact gtttacttgc tggacttgcact 1920
 tggcagcccc ctaaaagcac tggacttgcact tggacttgcact gtttacttgc tggacttgcact 1980
 ttcctcttgc tggacttgcact tggacttgcact gtttacttgc tggacttgcact 2040
 atctgacccgt gcatctaatt tggacttgcact tggacttgcact gtttacttgc tggacttgcact 2100
 actgtatgtt gggacttgcact tggacttgcact gtttacttgc tggacttgcact 2160
 tggacttgcact tggacttgcact tggacttgcact gtttacttgc tggacttgcact 2220
 atataaaatgtt ataaatatac agtataatgtt tggacttgcact tggacttgcact 2280
 aatgtatgtt aatataatgtt aatataatgtt tggacttgcact tggacttgcact 2340
 ttttggatgg ctgttgcact tggacttgcact tggacttgcact tggacttgcact 2400
 tagagcttgcact tggacttgcact tggacttgcact tggacttgcact tggacttgcact 2460
 ctaaaatatac gggacttgcact tggacttgcact tggacttgcact tggacttgcact 2520
 aagactgttag atatgttgcact tggacttgcact tggacttgcact tggacttgcact 2580
 tcttagtgcact tggacttgcact tggacttgcact tggacttgcact tggacttgcact 2640
 ctttggatgg ctgttgcact tggacttgcact tggacttgcact tggacttgcact 2700
 ccaggatgtt aatataatgtt tggacttgcact tggacttgcact tggacttgcact 2760
 tggacttgcact tggacttgcact tggacttgcact tggacttgcact tggacttgcact 2820
 ttttggatgg ctgttgcact tggacttgcact tggacttgcact tggacttgcact 2880
 gaattctgtt tggacttgcact tggacttgcact tggacttgcact tggacttgcact 2940
 actgtatgtt aatataatgtt tggacttgcact tggacttgcact tggacttgcact 3000
 ctttggatgg ctgttgcact tggacttgcact tggacttgcact tggacttgcact 3060
 aatataatgtt tggacttgcact tggacttgcact tggacttgcact tggacttgcact 3120
 ttttggatgg ctgttgcact tggacttgcact tggacttgcact tggacttgcact 3180
 agtggatgtt tggacttgcact tggacttgcact tggacttgcact tggacttgcact 3240
 actgtatgtt aatataatgtt tggacttgcact tggacttgcact tggacttgcact 3300

aaccaggttt cccgtccatc tcccttaggg actacccata gacatgaaag gtccccacag 3360
 agcaagagat aagtcttc a tggctgcgt tgcttaaacc acttaaacga agagttccct 3420
 tgaaaacttg ggaaaacatg ttaatgacaa tattccagat ct当地tcaaaaataacacat 3480
 tttttgcacat gcatgcaat gagctctgaa atcttccat gcattctgtt caaggctgt 3540
 cattgcacat aagttccat tttaattta aagtgcaaaa gggccagcgt ggctctaaaa 3600
 ggtatgtgt ggattgcctc tgaaaagtgt gtatataattt tttgtgaaat tgcataactt 3660
 gtattttgcat tattttttt ttcttctgg gatagtggaa ttccagaac cacactgaa 3720
 acctttttt atcgttttt tattttcattt aaaaatccat ttagtaagaa taccacatca 3780
 aataagaat aatgctacaa tttaagagg ggagggagg gaaagttttt ttttttatta 3840
 ttttttaaa attttgtatg ttaaagagaa tgagtcttg atttcaaagt tttgttgtac 3900
 ttaaatggta ataagactg taaactctg caacaagcat gcagcttgc aaaccattt 3960
 aggggaagaa tgaagctgt tccttggcc tagtaagaag acaaactgt tcccttactt 4020
 tgctgagggt ttgaataaac ctaggactc cgagctatgt cagtaactt cagtaacac 4080
 tagggccttgc gaaatccctg tactgtgtt catggatttgc gcaactagcca aagcaggca 4140
 ccccttacttgc gcttacctcc tcatggcagc ctactctcct tgagtgtatg agtagccagg 4200
 gtaagggtta aaaggatagt aagcatagaa accactagaa agtgggctt atggagttct 4260
 tgtggcctca gctcaatgc gtttagctgaa gaattggaaa gttttgtttt ggagacgttt 4320
 ataaacagaa atggaaagca gagttttcat taaatccctt tacctttttt ttttcttgg 4380
 aatcccctaa aataacagta tttttttttt tttttttttt tttttttttt tttttttttt 4440
 tttttataat ttgtacaaaat taagcaatgt ttaaaaagttt tatatgtttt attaatgttt 4500
 tcaaaaaggtt ttatacatgt gatacatttt ttaagcttca gttgcttgc ttcttggact 4560
 ttcttggatg ggcttttggg gagccagaag ccaatctaca atctttttt gtttggcagg 4620
 acatgcaata aaatttaaaa aataaataaaa aacta 4655

<210> 152

<211> 586

<212> PRT

<213> Homo sapiens

<400> 152

Met	Leu	Tyr	Leu	Glu	Asn	Asn	Ala	Gln	Thr	Gln	Phe	Ser	Glu	Pro	Gln
1				5					10				15		
Tyr	Thr	Asn	Leu	Gly	Leu	Leu	Asn	Ser	Met	Asp	Gln	Gln	Ile	Gln	Asn
								20		25			30		
Gly	Ser	Ser	Ser	Thr	Ser	Pro	Tyr	Asn	Thr	Asp	His	Ala	Gln	Asn	Ser
								35		40		45			
Val	Thr	Ala	Pro	Ser	Pro	Tyr	Ala	Gln	Pro	Ser	Ser	Thr	Phe	Asp	Ala
								50		55		60			
Leu	Ser	Pro	Ser	Pro	Ala	Ile	Pro	Ser	Asn	Thr	Asp	Tyr	Pro	Gly	Pro
								65		70		75		80	
His	Ser	Phe	Asp	Val	Ser	Phe	Gln	Gln	Ser	Ser	Thr	Ala	Lys	Ser	Ala
								85		90		95			
Thr	Trp	Thr	Tyr	Ser	Thr	Glu	Leu	Lys	Lys	Leu	Tyr	Cys	Gln	Ile	Ala
								100		105		110			
Lys	Thr	Cys	Pro	Ile	Gln	Ile	Lys	Val	Met	Thr	Pro	Pro	Pro	Gln	Gly
								115		120		125			
Ala	Val	Ile	Arg	Ala	Met	Pro	Val	Tyr	Lys	Lys	Ala	Glu	His	Val	Thr
								130		135		140			
Glu	Val	Val	Lys	Arg	Cys	Pro	Asn	His	Glu	Leu	Ser	Arg	Glu	Phe	Asn
								145		150		155		160	
Glu	Gly	Gln	Ile	Ala	Pro	Ser	Ser	His	Leu	Ile	Arg	Val	Glu	Gly	Asn
								165		170		175			
Ser	His	Ala	Gln	Tyr	Val	Glu	Asp	Pro	Ile	Thr	Gly	Arg	Gln	Ser	Val
								180		185		190			

Leu Val Pro Tyr Glu Pro Pro Gln Val Gly Thr Glu Phe Thr Thr Val
 195 200 205
 Leu Tyr Asn Phe Met Cys Asn Ser Ser Cys Val Gly Gly Met Asn Arg
 210 215 220
 Arg Pro Ile Leu Ile Ile Val Thr Leu Glu Thr Arg Asp Gly Gln Val
 225 230 235 240
 Leu Gly Arg Arg Cys Phe Glu Ala Arg Ile Cys Ala Cys Pro Gly Arg
 245 250 255
 Asp Arg Lys Ala Asp Glu Asp Ser Ile Arg Lys Gln Gln Val Ser Asp
 260 265 270
 Ser Thr Lys Asn Gly Asp Gly Thr Lys Arg Pro Phe Arg Gln Asn Thr
 275 280 285
 His Gly Ile Gln Met Thr Ser Ile Lys Lys Arg Arg Ser Pro Asp Asp
 290 295 300
 Glu Leu Val Tyr Leu Pro Val Arg Gly Arg Glu Thr Tyr Glu Met Leu
 305 310 315 320
 Val Lys Ile Lys Glu Ser Leu Glu Leu Met Gln Tyr Leu Leu Gln His
 325 330 335
 Thr Ile Glu Thr Tyr Arg Gln Gln Gln Gln His Gln His Leu
 340 345 350
 Leu Gln Lys Gln Thr Ser Ile Gln Ser Pro Ser Ser Tyr Gly Asn Ser
 355 360 365
 Ser Pro Pro Leu Asn Lys Met Asn Ser Met Asn Lys Leu Pro Ser Val
 370 375 380
 Ser Gln Leu Ile Asn Pro Gln Gln Arg Asn Ala Leu Thr Pro Thr Thr
 385 390 395 400
 Ile Pro Asp Gly Met Gly Ala Asn Ile Pro Met Met Gly Thr His Met
 405 410 415
 Pro Met Ala Gly Asp Met Asn Gly Leu Ser Pro Thr Gln Ala Leu Pro
 420 425 430
 Pro Pro Leu Ser Met Pro Ser Thr Ser His Cys Thr Pro Pro Pro Pro
 435 440 445
 Tyr Pro Thr Asp Cys Ser Ile Val Ser Phe Leu Ala Arg Leu Gly Cys
 450 455 460
 Ser Ser Cys Leu Asp Tyr Phe Thr Thr Gln Gly Leu Thr Thr Ile Tyr
 465 470 475 480
 Gln Ile Glu His Tyr Ser Met Asp Asp Leu Ala Ser Leu Lys Ile Pro
 485 490 495
 Glu Gln Phe Arg His Ala Ile Trp Lys Gly Ile Leu Asp His Arg Gln
 500 505 510
 Leu His Glu Phe Ser Ser Pro Ser His Leu Leu Arg Thr Pro Ser Ser
 515 520 525
 Ala Ser Thr Val Ser Val Gly Ser Ser Glu Thr Arg Gly Glu Arg Val
 530 535 540
 Ile Asp Ala Val Arg Phe Thr Leu Arg Gln Thr Ile Ser Phe Pro Pro
 545 550 555 560
 Arg Asp Glu Trp Asn Asp Phe Asn Phe Asp Met Asp Ala Arg Arg Asn
 565 570 575
 Lys Gln Gln Arg Ile Lys Glu Glu Gly Glu
 580 585

<210> 153

<211> 2007

<212> DNA

<213> Homo sapiens

<400> 153

gaattcgtcg ctgctccagg gaaagttctg ttactccact gactctctct tttcctgata 60
 acatggccag caagaaaagta attacagtgt ttggagcaac aggagctcaa ggtggctctg 120
 tggccaggc aattttggag agcaaaaaat ttgcagttag agcagtgacc agggatgtga 180
 cttgaccaaa tgccctggag ctccagcgcc ttggagctga ggtggtcaaa ggtgacctga 240
 atgataaaagc atcgtggac agtgccttaa aagggtgtcta tggggcccttc ttggtgacca 300
 acttctggga ccctctcaac caagataaagg aagtgtgtcg ggggaagctg gtggcagact 360
 ccgccaagca cctgggtctg aagcacgtgg tgtacagcgg cctggagaac gtcaagcgac 420
 tgacggatgg caagctggag gtgccgcaact ttgacagcaa gggcgaggtg gaggagtaact 480
 tctggtccat tggcatcccc atgaccagt tccgcgtggc ggcctacttt gaaaactttc 540
 tcgcggcgtg gcggcccgtg aaagcctctg atggagatta ctacacccctg gctgtaccga 600
 tgggagatgt accaatggat ggtatctctg ttgctgatat tggagcagcc gtctctagca 660
 ttttaattc tccagaggaa tttttaggca aggccgtggg gctcagtgcga gaagcactaa 720
 caatacagca atatgctgat gtttgtcca aggctttggg gaaagaagtc cgagatgcaa 780
 agattacccc ggaagctttc gagaagctgg gattccctgc agcaaagaa atagccaata 840
 tgtgtcgtt ctatgaaatg aagccagacc gagatgtcaa tctcaccacca caactaaatc 900
 ccaaagtcaa aagttcago cagtttatct cagagaacca gggagccctc aagggcatgt 960
 agaaaaatcag ctgttcagat aggccctctgc accacacacgc ctcttcctc tctgatcctt 1020
 ttccttttca cggcacaaca ttcatgttga cagaacatgc tggaatgcaat ttgtttgcaa 1080
 caccgaagga tttcctgcgg tgcctcttc agtaggaagc actgcattgg tgataggaca 1140
 cggtaatttgc attcacattt aacttgcgtt ttagtgataa gggtggtaca actgtttgg 1200
 aaaatgagaa gcctcggAAC ttggagcttc tctcctacca ctaatggag ggcagattat 1260
 actgggattt ctccctgggtg agtaatttca agccctaattg ctgaaatcc cctaggcagc 1320
 tccagtttc tcaactgcat tgcaaaatc ccagtgaaact tttaagtaact tttaacttaa 1380
 aaaaatgaac atctttgttag agaattttctt gggaaacatg gtgttcaatg aacaagcaca 1440
 agcattggaa atgctaaaat tcaagtttgc ctcaagattt gaaagtattt ttctgactca 1500
 ttcatgaagt catctattga gccaccatc aattattcat ctattaattc cttgatcctt 1560
 catttatcca ttctgcaaac ttttcttgag caccagcagc ggtggccatt tggacttc 1620
 tcttcatttc tatgtgtttt cttatcaaag tgatccactc tcgaaaggct ccttccagt 1680
 ctgtgggtgg gttcaagtca tgccaggccc agggggccca tctcctcggt tagctctagg 1740
 caaaatccag gggatctgca gtggggagcg gggcaggaa gctggagggaa aggcctgtga 1800
 agggtaggaa tgtggaaaga caaggtgaca gaaggaccca ataggaccc ttatatatc 1860
 tggcttagca ttttctacat catattgtaa tcgtcttatt tgctagttt cttccttact 1920
 gtgagtgact aacagtcatc ttatcccag tgcctggatc ataataagtg atcaataaaat 1980
 gttgattgacaaaaaaaaaaaaaaa 2007

<210> 154

<211> 2148

<212> DNA

<213> Homo sapiens

<400> 154

gaattcgtcg ctgctccagg gaaagttctg ttactccact gactctctct tttcctgata 60
 acatggccag caagaaaagta attacagtgt ttggagcaac aggagctcaa ggtggctctg 120
 tggccaggc aattttggag agcaaaaaat ttgcagttag agcagtgacc agggatgtga 180
 cttgaccaaa tgccctggag ctccagcgcc ttggagctga ggtggtcaaa ggtgacctga 240
 atgataaaagc atcgtggac agtgccttaa aaggggaaagc tggggcaga ctccgccaag 300
 cacctgggtc tgaagcacgt ggtgtacagc ggcctggaga acgtcaagcg actgacggat 360
 ggcaagctgg aggtgccgca ctttgacagc aaggccgagg tggaggagta cttctggtcc 420
 attggcatcc ccatgaccag tgcctggatc gcccctact ttggaaaactt tctcggcg 480
 tggcggcccg tggatggat tactacacct tggctgtacc gatgggagat 540

gtaccaatgg atgttatctc tgttgctgat attggagcag ccgtctctag cattttaat 600
 tctccagagg aatttttagg caaggccgtg gggctcagtg cagaagact aacaatacag 660
 caatatgctg atgtttgtc caaggcttg gggaaagaag tccgagatgc aaagactatc 720
 tgtgctatacg atgaccagaa aacagtggaa gaaggttca tggaaagacgt gggcttgagt 780
 tggtccttga ggaaacatga ccatgtatag acagaggagg catcaagaag gctggcctgg 840
 ctaattctgg aataaacacg acaaaccaga ggcagttacgg gaaggaggca aattctggct 900
 ctgcctctat ccttgattac cccggaagct ttccgagaagc tggattccc tgcagcaaag 960
 gaaatagcca atatgtgtcg tttctatgaa atgaagccag accgagatgt caatctcacc 1020
 caccaactaa atcccaaagt caaaagctc agccattta tctcagagaaa ccagggagcc 1080
 ttcaagggca ttagaaaaat cagctgttca gataggcctc tgccacac agccttttc 1140
 ctctctgatc cttttcctct ttacggcaca acattcatgt tgacagaaca tgctggaatg 1200
 caattgtttg caacaccgaa ggatttcctg cggtgcctc ttccgttagga agcactgcat 1260
 tggtgatagg acacggtaat ttgattcaca tttaacttgc tagttgtga taagggttgt 1320
 acaactgttt ggtaaaatga gaagcctcgg aacttggagc ttctctccta ccactaatgg 1380
 gagggcagat tatactggaa tttctcctgg gtgagtaatt tcaagcccta atgctgaaat 1440
 tccccttaggc agctccagtt ttctcaactg cattgcaaaa ttcccagtgta acttttaagt 1500
 acttttaact taaaaaaatg aacatcttg tagagaattt tctggggAAC atggtgttca 1560
 atgaacaagc acaagcattt gaaatgctaa aattcagttt tgccctcaaga ttgaaagttt 1620
 attttctgac tcattcatga agtcatctat tgagccacca ttcaatttattt catctattaa 1680
 tcccttgatc cttcatttat ccattctgca aacttttctt gagcaccagc acgggtggcc 1740
 atttgtggac ttctcttcat tcctatgtgt tttcttataa aagtgtatcca ctctcgaaag 1800
 gctcccttcc agtctgtggt tgggttcaag tcatgccagg gccagggggc ccacatctc 1860
 gtttagctct aggcaaaatc caggggatct gcagtggga gcggggccag gaagctggag 1920
 ggaaggcctg tgaagggttag ggtatgtggaa agacaagggtg acagaaggac ccaataggac 1980
 ctttctatat ctctggctt gcattttcta catcatattt taatcgctt atttgctagt 2040
 tttcttcctt actgtgagtg actaacagtc atctttatcc cagtgcctgg tacataataa 2100
 gtgatcaata aatgttgatt gactaaatga aaaaaaaaaa aaaaaaaaaa 2148

<210> 155

<211> 153

<212> PRT

<213> Homo sapiens

<400> 155

Met	Thr	Ser	Val	Arg	Val	Ala	Ala	Tyr	Phe	Glu	Asn	Phe	Leu	Ala	Ala
1					5				10					15	
Trp	Arg	Pro	Val	Lys	Ala	Ser	Asp	Gly	Asp	Tyr	Tyr	Thr	Leu	Ala	Val
					20				25				30		
Pro	Met	Gly	Asp	Val	Pro	Met	Asp	Gly	Ile	Ser	Val	Ala	Asp	Ile	Gly
					35			40				45			
Ala	Ala	Val	Ser	Ser	Ile	Phe	Asn	Ser	Pro	Glu	Glu	Phe	Leu	Gly	Lys
					50			55			60				
Ala	Val	Gly	Leu	Ser	Ala	Glu	Ala	Leu	Thr	Ile	Gln	Gln	Tyr	Ala	Asp
					65			70		75			80		
Val	Leu	Ser	Lys	Ala	Leu	Gly	Lys	Glu	Val	Arg	Asp	Ala	Lys	Ile	Thr
					85			90				95			
Pro	Glu	Ala	Phe	Glu	Lys	Leu	Gly	Phe	Pro	Ala	Ala	Lys	Glu	Ile	Ala
					100			105				110			
Asn	Met	Cys	Arg	Phe	Tyr	Glu	Met	Lys	Pro	Asp	Arg	Asp	Val	Asn	Leu
					115			120				125			
Thr	His	Gln	Leu	Asn	Pro	Lys	Val	Lys	Ser	Phe	Ser	Gln	Phe	Ile	Ser
					130			135			140				
Glu	Asn	Gln	Gly	Ala	Phe	Lys	Gly	Met							
					145			150							

<210> 156
<211> 128
<212> PRT
<213> Homo sapiens

<400> 156
Met Thr Ser Val Arg Val Ala Ala Tyr Phe Glu Asn Phe Leu Ala Ala
1 5 10 15
Trp Arg Pro Val Lys Ala Ser Asp Gly Asp Tyr Tyr Thr Leu Ala Val
20 25 30
Pro Met Gly Asp Val Pro Met Asp Gly Ile Ser Val Ala Asp Ile Gly
35 40 45
Ala Ala Val Ser Ser Ile Phe Asn Ser Pro Glu Glu Phe Leu Gly Lys
50 55 60
Ala Val Gly Leu Ser Ala Glu Ala Leu Thr Ile Gln Gln Tyr Ala Asp
65 70 75 80
Val Leu Ser Lys Ala Leu Gly Lys Glu Val Arg Asp Ala Lys Thr Ile
85 90 95
Cys Ala Ile Asp Asp Gln Lys Thr Val Glu Glu Gly Phe Met Glu Asp
100 105 110
Val Gly Leu Ser Trp Ser Leu Arg Glu His Asp His Val Ala Gly Ala
115 120 125

<210> 157
<211> 424
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 320, 322
<223> n = A,T,C or G

<400> 157
ctgcagcccc gggatccac tagtccagtg tggtggaatt cattggctt tacaagactt 60
ggatacatta cagcagacat gaaaatataa tttaaaaaaa tttctctcca acctccttca 120
aattcagtca ccactgttat attaccttct ccaggaaccc tccagtgggg aaggctgcga 180
tattagattt cttgttatgc aaagtttttg ttgaaagctg tgctcagagg agtgagagg 240
agaggaagga gaaaactgca tcataacttt acagaattga atctagagtc ttccccgaaa 300
agcccagaaa cttctctgcn gnatctggct tgtccatctg gtctaagggtg gctgcttctt 360
ccccagccat cgagtcagtt tgtgccatg aataatacac gacctgctat ttcccatgac 420
tgtct 424

<210> 158
<211> 2099
<212> DNA
<213> Homo sapiens

<400> 158
ccgcggtaa aaggcgcagc aggtggagc cggggccttc acccgaaacc cgacgagagc 60
ccgacagccg gcggcgcccc agccccaccc gcctgcccag ccggagcgaa gggcgccgccc 120

ccgcgcagag cccgcgcccag ggccgcggc cgcaagacag ttaaaacgtg caggcaccag 180
 aaggcacttc ctgtcggtga agaagacctg tctccgggtgt cacgggcac tcgtgttttg 240
 caaacggggc tgacctccct tcctggggag caggaagggt cagggaaagga aaagaagtac 300
 agaagatctg gctaaacaat ttctgtatgg cgaaagaaaa attctaactt gtacgcctc 360
 ttcatgcac ttaattcaa tttgaatatt ccaggcgaca tcctcactga ccgagcaaag 420
 attgacattc gtatcatcac tgtgcaccat tggcttctag gcactccagt ggggtaggag 480
 aaggaggtct gaaaccctcg cagaggatc ttgcctcat tctttgggtc taaaacactg 540
 gcagtcgtg gaaacaggac tcagggataa accagcgcaa tggattgggg gacgctgcac 600
 actttcatcg ggggtgtcaa caaacactcc accagcatcg ggaagggtgt gatcacagtc 660
 atctttatatt tccgagtcat gatcctcgat gtggctgcc aggaagtgtg gggtagcag 720
 caagaggact tcgtctgcaa cacactgcaa ccgggatgca aaaatgtgt ctatgaccac 780
 ttttccccgg tgcgtccacat ccggctgtgg gccctccagc tgatcttcgt ctccacccca 840
 gcgctgtgg tggccatgca tggccatgt tacaggcagc aaaccactcg caagttcagg 900
 cgaggagaga agaggaatga tttcaaaagac atagaggaca tttaaaagca gaaggttcgg 960
 atagagggtt cgctgtgtt gacgtacacc accagcatct ttttccgaat catcttgaa 1020
 gcagcctta tgcgtatgtt ttacttcctt tacaatgggt accacactgc ctgggtgtt 1080
 aaatgtggga ttgacccctg ccccaacattt gttgactgct ttatttctag gccaacagag 1140
 aagaccgtgt ttaccatttt tatgattttc gctgtgtga tttgcattgt gcttaacgtg 1200
 gcagagttgt gctacactgt gctgaaagtg tggatggat gatcaaagag agcacagacg 1260
 caaaaaaaatc accccaatca tgcctctaaag gagagtaagc agaatgaaat gaatgagctg 1320
 atttcagata gtggcaaaaa tgcataatcaca ggttccaaag ctaaacattt caaggtaaaa 1380
 tggtagctgcg tcataaggag acttctgtct tctccagaag gcaataccac cctgaaagtt 1440
 ccttcgttag cctgaagagt ttgtaaatga ctttcataat aaatagacac ttgagttac 1500
 tttttgttagg atacttgcct cattcataca caacgtaaatc aaatatgtgg tccatctctg 1560
 aaaacaagag actgcttgac aaaggagcat tgcagtactt ttgacagttt ccttttaagt 1620
 ggactctctg acaaagtggg tactttctga aaatttatataactgtgtt gataaggaac 1680
 atttatccag gaattgatac gtttatttagg aaaagatatt tttatagct tggatgttt 1740
 tagttctgac tttgaattta tataaagtat ttttataatg actggcttc cttacctgga 1800
 aaaacatgcg atgttagtt tagaattaca ccacaagttt ctaaatttgg aacttacaaa 1860
 gggcttatct tggtaaatatt gtttgcatt gtctgtggc aaatttggta actgtcatga 1920
 tacgcttaag gtggaaagtg ttcatgtcac aatataat tttactgttc tgaatgtaga 1980
 cggAACAGTG TGGAAAGCAGA AGGCTTTT AACTCATCCG TTTGCCAATC ATTGCAAACA 2040
 actgaaatgt ggtatgttattt gcctcaataa agctcgccc cattgcttaa aaaaaaaaaa 2099

<210> 159

<211> 291

<212> PRT

<213> Homo sapiens

<400> 159

Met	Asp	Trp	Gly	Thr	Leu	His	Thr	Phe	Ile	Gly	Gly	Val	Asn	Lys	His
1									10					15	
Ser	Thr	Ser	Ile	Gly	Lys	Val	Trp	Ile	Thr	Val	Ile	Phe	Ile	Phe	Arg
									25					30	
Val	Met	Ile	Leu	Val	Val	Ala	Ala	Gln	Glu	Val	Trp	Gly	Asp	Glu	Gln
									40					45	
Glu	Asp	Phe	Val	Cys	Asn	Thr	Leu	Gln	Pro	Gly	Cys	Lys	Asn	Val	Cys
											60				
Tyr	Asp	His	Phe	Phe	Pro	Val	Ser	His	Ile	Arg	Leu	Trp	Ala	Leu	Gln
														80	
Leu	Ile	Phe	Val	Ser	Thr	Pro	Ala	Leu	Leu	Val	Ala	Met	His	Val	Ala
														95	
Tyr	Tyr	Arg	His	Glu	Thr	Thr	Arg	Lys	Phe	Arg	Arg	Gly	Glu	Lys	Arg
														110	
									105						

Asn Asp Phe Lys Asp Ile Glu Asp Ile Lys Lys Gln Lys Val Arg Ile
 115 120 125
 Glu Gly Ser Leu Trp Trp Thr Tyr Thr Ser Ser Ile Phe Phe Arg Ile
 130 135 140
 Ile Phe Glu Ala Ala Phe Met Tyr Val Phe Tyr Phe Leu Tyr Asn Gly
 145 150 155 160
 Tyr His Leu Pro Trp Val Leu Lys Cys Gly Ile Asp Pro Cys Pro Asn
 165 170 175
 Leu Val Asp Cys Phe Ile Ser Arg Pro Thr Glu Lys Thr Val Phe Thr
 180 185 190
 Ile Phe Met Ile Ser Ala Ser Val Ile Cys Met Leu Leu Asn Val Ala
 195 200 205
 Glu Leu Cys Tyr Leu Leu Lys Val Cys Phe Arg Arg Ser Lys Arg
 210 215 220
 Ala Gln Thr Gln Lys Asn His Pro Asn His Ala Leu Lys Glu Ser Lys
 225 230 235 240
 Gln Asn Glu Met Asn Glu Leu Ile Ser Asp Ser Gly Gln Asn Ala Ile
 245 250 255
 Thr Gly Ser Gln Ala Lys His Phe Lys Val Lys Cys Ser Cys Val Ile
 260 265 270
 Arg Arg Leu Leu Ser Ser Pro Glu Gly Asn Thr Asn Leu Lys Val Pro
 275 280 285
 Ser Val Ala
 290

<210> 160
 <211> 3951
 <212> DNA
 <213> Homo sapiens

<400> 160
 tctgcatcca tattgaaaac ctgacacaat gtagtcagca ggctcagtgt gagtgaactg 60
 gaggcttctc tacaacatga cccaaaggag cattgcaggt cctatttgca acctgaagtt 120
 tgtgactctc ctgggtgcct taagttcaga actccccatc ctggggagctg gagtacagct 180
 tcaagacaat gggtataatg gattgctcat tgcaattaat cctcaggatc ctgagaatca 240
 gaacctcatc tcaaacatttta agggaaatgt aactgaagct tcattttacc tatttaatgc 300
 taccaagaga agagtattttt tcagaaaatataa aagatttta atacctgccatggaaagc 360
 taataataaac agcaaaataaa aacaagaatc atatgaaaag gcaaatgtca tagtgactga 420
 ctggtatggg gcacatggag atgatccata caccctacaa tacagaggggt gtggaaaaga 480
 gggaaaatac attcatttca cacctaattt cctactgaat gataactaa cagctggcta 540
 cggatcacgaa ggccgagtgt ttgtccatga atggggccac ctccgttggg gtgtgttcga 600
 tgagtataaac aatgacaaac ctttctacat aaatgggcaa aatcaaattta aagtgacaag 660
 gtgttcatct gacatcacag gcatttttgtt gtgtaaaaaa ggtccttgcc cccaaagaaaa 720
 ctgttattttt agtaagcttt ttaaagaagg atgcacctt atctacaata gcacccaaaa 780
 tgcaactgca tcaataatgt tcatgcaaaat tttatcttct gtggttgaat tttgtatgc 840
 aagtacccac aaccaagaag caccCAAACCT acagaaccag atgtgcagcc tcagaagtgc 900
 atgggatgtatc acacagact ctgctgactt tcaccacagc tttcccatga acgggactga 960
 gcttccacat cctccacat tctcgcttgtt agaggctggat gacaaagtttgc tctgttttgt 1020
 gctggatgttgc tccagcaaga tggcagagggc tgacagactc cttcaactac aacaagccgc 1080
 agaattttat ttgtatgcaga ttgttgaat tcataccatc gtgggcatttgc ccagttcga 1140
 cagcaaaagga gagatcagag cccagctaca ccaaatttaac agcaatgtatc atcgaaagtt 1200
 gctgggttca tatctgcccac ccactgtatc agctaaaaca gacatcagca tttgttcagg 1260
 gcttaagaaa ggatttgagg ttgttgaatc actgaatggaa aaagcttatgc gctctgtatc 1320

gatatttagt accagcggag atgataagct tcttgcaat tgcttaccca ctgtgctca 1380
 cagtggcca acaattcaact ccattgcct gggttcatct gcagccccaa atctggagga 1440
 attatcacgt cttacaggag gtttaaagtt ct当地tcca gatataatcaa actccaatag 1500
 catgattgtat gcttcagta gaatttcctc tggaactgga gacattttcc agcaacatat 1560
 tcagcttcaa agtacaggtg aaaatgtcaa acctcaccat caattgaaaa acacagtgac 1620
 tgtggataat actgtggca acgacactat gtttctagtt acgtggcagg ccagtggcc 1680
 tcctgagatt atattatttgc atcctgatgg acgaaaatac tacacaata attttatcac 1740
 caatctaact ttccggacag ctatgtttg gattccagga acagctaagc ctgggcactg 1800
 gacttacacc ctgaacaata cccatcatc tctgcaagcc ctgaaagtga cagtgaccc 1860
 tcgcgcctcc aactcagctg tgcccccagc cactgtggaa gcctttgtgg aaagagacag 1920
 cctccatccc cctcatccctg tgatgattt tgccaatgtg aaacaggat tttatccat 1980
 tcttaatgcc actgtcaact ccacagttg gccagagact ggagatcctg ttacgctgag 2040
 actccttgc gatggagcag gtgctgatgt tataaaaaat gatggattt actcgaggt 2100
 tttttctcc ttgctgaa atggtagata tagcttggaa gtgcattgtca atcactctcc 2160
 cagcataagc accccagccc actctattcc agggagtcat gctatgtatg taccaggta 2220
 cacagcaaac ggtaatattc agatgaatgc tccaaaggaa tcagtaggca gaaatgagga 2280
 ggagcggaaag tggggcttta gccgagtca ctcaggaggc tccttttcag tgctggaggt 2340
 tccagctggc ccccccacctg atgtgtttcc accatgcaaa attattgacc tgaaagctgt 2400
 aaaagtagaa gaggaattga ccctatctt gacagcacct ggagaagact ttgatcaggg 2460
 ccaggctaca agctatgaaa taagaatgag taaaagtcta cagaatatcc aagatgactt 2520
 taacaatgct atttttagtaa atacatcaaa gcgaaatcct cagcaagctg gcatcaggga 2580
 gatatttacg ttctcaccccc aaatttccac gaatggacct gaacatcagc caaatggaga 2640
 aacacatgaa agccacagaa ttatgttgc aatacgagca atggatagga actccttaca 2700
 gtctgctgta tctaacattt cccaggcgcc tctgttatt ccccccattt ctgatcctgt 2760
 acctgccaga gattatctt tattgaaaagg agtttaaca gcaatgggt tgataggaat 2820
 catttgcattt attatagtt tgacacatca tacttaaagc aggaaaaga gagcagacaa 2880
 gaaagagaat ggaacaaaat tattataaat aaatatccaa agtgtctcc ttcttagata 2940
 taagacccat ggccttcgac tacaaaaaca tactaacaat gtcaaattaa catcaaaaact 3000
 gtattaaaat gcattgagtt ttgttacaat acagataaga tttttacatg gtagatcaac 3060
 aaattctttt tggggtaga tttagaaaacc cttacactt ggctatgaac aaataataaa 3120
 aattattctt taaagtaatg tctttaaagg caaaggaaag ggtaaagtgc gaccagtgtc 3180
 aaggaaaatgt tgtttattt aggtggaaa atagcccaa gcagagaaaa ggagggttagg 3240
 tctgcattat aactgtctgt gtgaagcaat catttagtta ct当地gatataa tttttctttt 3300
 ctcccttatct gtgcagaaca gtttgcttgc ttacaactga agatcatgct atatttcata 3360
 tatgaagccc ctaatgcaaa gctctttacc tcttgcttatt ttgttatata tattacagat 3420
 gaaatctcac tgctaattgtc cagagatctt ttttactgt aagaggttac cttaacaat 3480
 atgggttata cctttgtctc ttcataccgg ttttatgaca aaggcttattt gaattttttt 3540
 gtttgcgtt atctactccc atcaaagcag ct当地taatg tattgcctt gtttattatgg 3600
 atgatagtta tagcccttat aatgccttaa ctaaggaaga aaagatgtt ttctgagtt 3660
 gttttaatac atatatgaac atatagttt attcaattaa accaaagaag aggtcagcag 3720
 ggagatacta accttggaa atgattagct ggctctgtt ttgggtaaa taagagtctt 3780
 taatccttcc tccatcaaga gttacttacc aaggcaggg gaagggggat atagaggtcc 3840
 caagggaaataaaaatcatct ttcatcttta atttactcc ttcccttattt ttgtttaaaa 3900
 gattatcgaa caataaaaatc atttgcctt ttaattaaaa acataaaaaaa a 3951

<210> 161

<211> 943

<212> PRT

<213> Homo sapiens

<400> 161

Met Thr Gln Arg Ser Ile Ala Gly Pro Ile Cys Asn Leu Lys Phe Val

1

5

10

15

Thr Leu Leu Val Ala Leu Ser Ser Glu Leu Pro Phe Leu Gly Ala Gly

	20	25	30
Val Gln Leu Gln Asp Asn Gly Tyr Asn Gly Leu Leu Ile Ala Ile Asn			
35	40	45	
Pro Gln Val Pro Glu Asn Gln Asn Leu Ile Ser Asn Ile Lys Glu Met			
50	55	60	
Ile Thr Glu Ala Ser Phe Tyr Leu Phe Asn Ala Thr Lys Arg Arg Val			
65	70	75	80
Phe Phe Arg Asn Ile Lys Ile Leu Ile Pro Ala Thr Trp Lys Ala Asn			
85	90	95	
Asn Asn Ser Lys Ile Lys Gln Glu Ser Tyr Glu Lys Ala Asn Val Ile			
100	105	110	
Val Thr Asp Trp Tyr Gly Ala His Gly Asp Asp Pro Tyr Thr Leu Gln			
115	120	125	
Tyr Arg Gly Cys Gly Lys Glu Gly Lys Tyr Ile His Phe Thr Pro Asn			
130	135	140	
Phe Leu Leu Asn Asp Asn Leu Thr Ala Gly Tyr Gly Ser Arg Gly Arg			
145	150	155	160
Val Phe Val His Glu Trp Ala His Leu Arg Trp Gly Val Phe Asp Glu			
165	170	175	
Tyr Asn Asn Asp Lys Pro Phe Tyr Ile Asn Gly Gln Asn Gln Ile Lys			
180	185	190	
Val Thr Arg Cys Ser Ser Asp Ile Thr Gly Ile Phe Val Cys Glu Lys			
195	200	205	
Gly Pro Cys Pro Gln Glu Asn Cys Ile Ile Ser Lys Leu Phe Lys Glu			
210	215	220	
Gly Cys Thr Phe Ile Tyr Asn Ser Thr Gln Asn Ala Thr Ala Ser Ile			
225	230	235	240
Met Phe Met Gln Ser Leu Ser Ser Val Val Glu Phe Cys Asn Ala Ser			
245	250	255	
Thr His Asn Gln Glu Ala Pro Asn Leu Gln Asn Gln Met Cys Ser Leu			
260	265	270	
Arg Ser Ala Trp Asp Val Ile Thr Asp Ser Ala Asp Phe His His Ser			
275	280	285	
Phe Pro Met Asn Gly Thr Glu Leu Pro Pro Pro Pro Thr Phe Ser Leu			
290	295	300	
Val Glu Ala Gly Asp Lys Val Val Cys Leu Val Leu Asp Val Ser Ser			
305	310	315	320
Lys Met Ala Glu Ala Asp Arg Leu Leu Gln Leu Gln Gln Ala Ala Glu			
325	330	335	
Phe Tyr Leu Met Gln Ile Val Glu Ile His Thr Phe Val Gly Ile Ala			
340	345	350	
Ser Phe Asp Ser Lys Gly Glu Ile Arg Ala Gln Leu His Gln Ile Asn			
355	360	365	
Ser Asn Asp Asp Arg Lys Leu Leu Val Ser Tyr Leu Pro Thr Thr Val			
370	375	380	
Ser Ala Lys Thr Asp Ile Ser Ile Cys Ser Gly Leu Lys Lys Gly Phe			
385	390	395	400
Glu Val Val Glu Lys Leu Asn Gly Lys Ala Tyr Gly Ser Val Met Ile			
405	410	415	
Leu Val Thr Ser Gly Asp Asp Lys Leu Leu Gly Asn Cys Leu Pro Thr			
420	425	430	
Val Leu Ser Ser Gly Ser Thr Ile His Ser Ile Ala Leu Gly Ser Ser			
435	440	445	
Ala Ala Pro Asn Leu Glu Glu Leu Ser Arg Leu Thr Gly Gly Leu Lys			

450	455	460
Phe Phe Val Pro Asp Ile Ser Asn Ser Asn Met Ile Asp Ala Phe		
465	470	475
Ser Arg Ile Ser Ser Gly Thr Gly Asp Ile Phe Gln Gln His Ile Gln		480
485	490	495
Leu Glu Ser Thr Gly Glu Asn Val Lys Pro His His Gln Leu Lys Asn		
500	505	510
Thr Val Thr Val Asp Asn Thr Val Gly Asn Asp Thr Met Phe Leu Val		
515	520	525
Thr Trp Gln Ala Ser Gly Pro Pro Glu Ile Ile Leu Phe Asp Pro Asp		
530	535	540
Gly Arg Lys Tyr Tyr Thr Asn Asn Phe Ile Thr Asn Leu Thr Phe Arg		
545	550	555
560		
Thr Ala Ser Leu Trp Ile Pro Gly Thr Ala Lys Pro Gly His Trp Thr		
565	570	575
Tyr Thr Leu Asn Asn Thr His His Ser Leu Gln Ala Leu Lys Val Thr		
580	585	590
Val Thr Ser Arg Ala Ser Asn Ser Ala Val Pro Pro Ala Thr Val Glu		
595	600	605
Ala Phe Val Glu Arg Asp Ser Leu His Phe Pro His Pro Val Met Ile		
610	615	620
Tyr Ala Asn Val Lys Gln Gly Phe Tyr Pro Ile Leu Asn Ala Thr Val		
625	630	635
640		
Thr Ala Thr Val Glu Pro Glu Thr Gly Asp Pro Val Thr Leu Arg Leu		
645	650	655
Leu Asp Asp Gly Ala Gly Ala Asp Val Ile Lys Asn Asp Gly Ile Tyr		
660	665	670
Ser Arg Tyr Phe Phe Ser Phe Ala Ala Asn Gly Arg Tyr Ser Leu Lys		
675	680	685
Val His Val Asn His Ser Pro Ser Ile Ser Thr Pro Ala His Ser Ile		
690	695	700
Pro Gly Ser His Ala Met Tyr Val Pro Gly Tyr Thr Ala Asn Gly Asn		
705	710	715
720		
Ile Gln Met Asn Ala Pro Arg Lys Ser Val Gly Arg Asn Glu Glu		
725	730	735
Aro Lys Trp Gly Phe Ser Arg Val Ser Ser Gly Gly Ser Phe Ser Val		
740	745	750
Leu Gly Val Pro Ala Gly Pro His Pro Asp Val Phe Pro Pro Cys Lys		
755	760	765
Ile Ile Asp Leu Glu Ala Val Lys Val Glu Glu Leu Thr Leu Ser		
770	775	780
Trp Thr Ala Pro Gly Glu Asp Phe Asp Gln Gly Gln Ala Thr Ser Tyr		
785	790	795
800		
Glu Ile Arg Met Ser Lys Ser Leu Gln Asn Ile Gln Asp Asp Phe Asn		
805	810	815
Asn Ala Ile Leu Val Asn Thr Ser Lys Arg Asn Pro Gln Gln Ala Gly		
820	825	830
Ile Arg Glu Ile Phe Thr Phe Ser Pro Gln Ile Ser Thr Asn Gly Pro		
835	840	845
Glu His Gln Pro Asn Gly Glu Thr His Glu Ser His Arg Ile Tyr Val		
850	855	860
Ala Ile Arg Ala Met Asp Arg Asn Ser Leu Gln Ser Ala Val Ser Asn		
865	870	875
880		
Ile Ala Gln Ala Pro Leu Phe Ile Pro Pro Asn Ser Asp Pro Val Pro		

885	890	895
Ala Arg Asp Tyr Leu Ile Leu Lys Gly Val Leu Thr Ala Met Gly Leu		
900	905	910
Ile Gly Ile Ile Cys Leu Ile Ile Val Val Thr His His Thr Leu Ser		
915	920	925
Arg Lys Lys Arg Ala Asp Lys Lys Glu Asn Gly Thr Lys Leu Leu		
930	935	940

<210> 162
<211> 498
<212> DNA
<213> Homo sapien

<400> 162
tggagaacca cgtggacagc accatgaaca tggggcggtggaggcagt gctggccgga 60
agcccctcaa gtcgggtatg aaggagctgg ccgtgttccggagaaggtc actgagcagc 120
accggcagat gggcaagggt ggcaagcatc accttgcctggaggagccc aagaagctgc 180
gaccaccccc ttgcaggact ccctgccaac aggaactggg ccaggctctggagcgatct 240
ccaccatgcg cttccggat gagcggggcc ctctggagca cctctactcc ctgcacatcc 300
ccaactgtga caagcatggc ctgtacaacc tcaaacagtg gcaagatgtc tctgaacggg 360
cagcgtgggg agtgtgttgc tgtgaacccc aacaccgggaa gctgtatcca gggagccccc 420
accatccggg gggaccccgat gtgtcatctc ttctacaatg agcagcagga ggctcgccgg 480
gtgcacaccc caqcqgat 498

<210> 163
<211> 1128
<212> DNA
<213> *Homo sapiens*

<400> 163
 gccacctggc cctcctgatc gacgacacac gcacttgaaa cttgttctca gggtgtgtgg 60
 aatcaacttt ccggaagcaa ccagccacc agaggaggtc ccgagcgcga gcggagacga 120
 tgcagcgag actggttcag cagtggagcg tcgcgtgtt cctgctgagc tacgcgtgc 180
 cctcctgccc ggcgtcggtg gagggctca gccgcgcct caaaagagct gtgtctgaac 240
 atcagctctt ccatgacaag gggaaagtcca tccaagattt acggcgcacga ttcttcctt 300
 accatctgtat cgcaaaaatc cacacagctg aaatcagagc tacctcgaggtgtccccc 360
 actccaaagcc ctctcccaac acaaagaacc accccgtccg atttgggtct gatgtgagg 420
 gcagataacct aactcaggaa actaacaagg tggagacgta caaagagcag cgcctcaaga 480
 cacctggaa gaaaaagaaa ggcaagcccg gggaaacgca ggagcagggaa aagaaaaaaac 540
 ggcaactcg ctctgcctgg ttagactctg gagtgaactgg gagtggctg gaaggggacc 600
 acctgtctga caccctccaca acgtcgttgg agtctgattt acggaggcat tgaaattttc 660
 agcagagacc ttccaaggac atattgcagg attctgtat agtgaacata tgaaaggat 720
 tagaaatatt tattgtctgt aaatactgtt aatgcattgg aataaaaactg tctccccat 780
 tgctctatgt aactgcacat tggtcattgt gaatattttt tttttgtcca aggctaattcc 840
 aattattattt atcacattt ccataattt ttttgtccat tgatgtattt atttgtaaa 900
 tgttatctgg tgctgctgaa ttcttatatt ttttgcataa taatgcactt tagatataca 960
 tatcaagtat gttgataaat gacacaatgtt agtgtctca ttttgtgggtt gattttatgt 1020
 aatgcctaaa tataattatc caaattgtt ttcccttggc catgtaaaaaa taacagtatt 1080
 ttaaatttgtt aaagaatgtt taataaaaata taatctaattt acatcatgtt 1128

<210> 164
<211> 1310
<212> DNA

<213> Homo sapiens

<400> 164

gggcctggtt cgcaaagaag ctgacttcag agggggaaac tttcttctt taggaggcgg 60
ttagccctgt tccacgaacc caggagaact gctggccaga ttaatttagac attgctatgg 120
gagacgtgta aacacactac ttatcattga tgcataatata aaaccatttt atttcgcta 180
ttatccaga ggaagcgccc ctgattgtt tctttttcc ctttttgctc tttctggctg 240
tgtggtttgg agaaagcaca gttggagtag ccgggttgcta aataagtccc gagcgcgagc 300
ggagacgatg cagcggagac tggttcagca gtggagcgtc gcgggttcc tgctgagcta 360
cgcgggtgccc tcctgcgggc gtcgggtgga gggctcagc cgccgcctca aaagagctgt 420
gtctgaacat cagctcctcc atgacaaggg gaagtccatc caagatttac ggcgacgatt 480
cttccttcac catctgatcg cagaatcca cacagctgaa atcagagcta cctcggaggt 540
gtccccctaac tccaaggccct ctcccaacac aaagaaccac cccgtccgat ttgggtctga 600
tgatgagggc agatacctaa ctcagggaaac taacaaggtg gagacgtaca aagagcagcc 660
gctcaagaca cctgggaaga aaaagaaaagg caagccccggg aaacgcgaagg agcagggaaa 720
aaaaaaacgg cgaactcgct ctgcctggtt agactctgga gtgactgggaa gtgggctaga 780
aggggaccac ctgtctgaca cctccacaac gtcgtggag ctcgattcac ggaggcattg 840
aaatttcag cagagacacctt ccaaggacat attgcaggat tctgtaatag tgaacatagt 900
gaaagtatta gaaatattta ttgtctgtaa atactgtaaa tgcattggaa taaaactgtc 960
tccccccattt ctctatgaaa ctgcacattt gtcattgtga atatttttt ttttgccaaag 1020
gctaattccaa ttatttttat cacatttacc ataattttt ttgtccattt atgtatttt 1080
tttgttaatg tatcttgggtt ctgctgaatt tctatatttt ttgttaacata atgcacttta 1140
gatatacata tcaagtatgt tgataaatga cacaatgaag tgtctctatt ttgtgggttga 1200
ttttaatgaa tgcttaaata taattatcca aattgatttt ctttggcc cgtaaaaata 1260
acagtatttt aaatttggtaa agaatgtcta ataaaaatata atctaattac 1310

<210> 165

<211> 177

<212> PRT

<213> Homo sapiens

<400> 165

Met	Gln	Arg	Arg	Leu	Val	Gln	Gln	Trp	Ser	Val	Ala	Val	Phe	Leu	Leu
1				5					10				15		
Ser	Tyr	Ala	Val	Pro	Ser	Cys	Gly	Arg	Ser	Val	Glu	Gly	Leu	Ser	Arg
				20					25				30		
Arg	Leu	Lys	Arg	Ala	Val	Ser	Glu	His	Gln	Leu	Leu	Hi's	Asp	Lys	Gly
				35			40					45			
Lys	Ser	Ile	Gln	Asp	Leu	Arg	Arg	Arg	Phe	Phe	Leu	His	His	Leu	Ile
				50			55				60				
Ala	Glu	Ile	His	Thr	Ala	Glu	Ile	Arg	Ala	Thr	Ser	Glu	Val	Ser	Pro
				65		70				75					80
Asn	Ser	Lys	Pro	Ser	Pro	Asn	Thr	Lys	Asn	His	Pro	Val	Arg	Phe	Gly
					85				90					95	
Ser	Asp	Asp	Glu	Gly	Arg	Tyr	Leu	Thr	Gln	Glu	Thr	Asn	Lys	Val	Glu
				100				105					110		
Thr	Tyr	Lys	Glu	Gln	Pro	Leu	Lys	Thr	Pro	Gly	Lys	Lys	Lys	Lys	Gly
				115			120					125			
Lys	Pro	Gly	Lys	Arg	Lys	Glu	Gln	Glu	Lys	Lys	Lys	Arg	Arg	Thr	Arg
				130		135			140						
Ser	Ala	Trp	Leu	Asp	Ser	Gly	Val	Thr	Gly	Ser	Gly	Leu	Glu	Gly	Asp
				145		150			155						160
His	Leu	Ser	Asp	Thr	Ser	Thr	Thr	Ser	Leu	Glu	Leu	Asp	Ser	Arg	Arg
					165				170					175	

His

<210> 166
<211> 177
<212> PRT
<213> Homo sapiens

<400> 166

Met	Gln	Arg	Arg	Leu	Val	Gln	Gln	Trp	Ser	Val	Ala	Val	Phe	Leu	Leu
1				5					10				15		
Ser	Tyr	Ala	Val	Pro	Ser	Cys	Gly	Arg	Ser	Val	Glu	Gly	Leu	Ser	Arg
						20			25				30		
Arg	Leu	Lys	Arg	Ala	Val	Ser	Glu	His	Gln	Leu	Leu	His	Asp	Lys	Gly
						35			40			45			
Lys	Ser	Ile	Gln	Asp	Leu	Arg	Arg	Phe	Phe	Leu	His	His	Leu	Ile	
					50			55			60				
Ala	Glu	Ile	His	Thr	Ala	Glu	Ile	Arg	Ala	Thr	Ser	Glu	Val	Ser	Pro
						65		70		75			80		
Asn	Ser	Lys	Pro	Ser	Pro	Asn	Thr	Lys	Asn	His	Pro	Val	Arg	Phe	Gly
						85			90			95			
Ser	Asp	Asp	Glu	Gly	Arg	Tyr	Leu	Thr	Gln	Glu	Thr	Asn	Lys	Val	Glu
						100			105			110			
Thr	Tyr	Lys	Glu	Gln	Pro	Leu	Lys	Thr	Pro	Gly	Lys	Lys	Lys	Gly	
						115		120			125				
Lys	Pro	Gly	Lys	Arg	Lys	Glu	Gln	Glu	Lys	Lys	Lys	Arg	Arg	Thr	Arg
						130		135			140				
Ser	Ala	Trp	Leu	Asp	Ser	Gly	Val	Thr	Gly	Ser	Gly	Leu	Glu	Gly	Asp
						145		150		155			160		
His	Leu	Ser	Asp	Thr	Ser	Thr	Thr	Ser	Leu	Glu	Leu	Asp	Ser	Arg	Arg
						165			170			175			

His

<210> 167
<211> 3362
<212> DNA
<213> Homo sapiens

<400> 167

cacaatgtat	gcagcaggct	cagtgtgagt	gaactggagg	cttctctaca	acatgaccca	60
aaggagcatt	gcaggtccta	tttgcaacct	gaagtttgt	actctccctgg	ttgccttaag	120
ttcagaactc	ccattcctgg	gagctggagt	acagttcaa	gacaatgggt	ataatggatt	180
gctcattgca	attaatcctc	aggtacctga	gaatcagaac	ctcatctcaa	acattaagga	240
aatgataact	gaagcttcat	tttacctatt	taatgctacc	aagagaagag	tatTTTTCAG	300
aaatataaaag	atTTtaatac	ctgccacatg	gaaaagctaat	aataacagca	aaataaaaaca	360
agaatcatat	gaaaaggcaa	atgtcatagt	gactgactgg	tatggggcac	atggagatga	420
tccatacacacc	ctacaataaca	gagggtgtgg	aaaagaggga	aaatacattc	atttcacacc	480
taatttccta	ctgaatgata	acttaacagc	tggctacgga	tcacgaggcc	gagtgtttgt	540
ccatgaatgg	gcccacctcc	gttgggggtgt	gttcgatgag	tataacaatg	acaaaccttt	600
ctacataaaat	ggcAAAATC	aaattaaagt	gacaagggtgt	tcatctgaca	tcacaggcat	660
tttTGTGTG	aaaaaaggc	cttggccccca	agaaaactgt	attattagta	agcttttaa	720

agaaggatgc accttttatct acaatagcac cccaaatgca actgcatcaa taatgttcat 780
 gcaaagtta tcttcgtgg ttgaatttg taatgcaagt acccacaacc aagaagcacc 840
 aaacctacag aaccagatgt gcagcctcag aagtgcattg gatgtaatca cagactctgc 900
 tgactttcac cacagcttc ccatgaacgg gactgagctt ccacccctc ccacattctc 960
 gctttagag gctggtgaca aagtggctg ttttagtgcgt gatgtgtcca gcaagatggc 1020
 agaggctgac agactccccc aactacaaca agcccgagaa ttttatttga tgcagattgt 1080
 taaaaattcat accttcgtgg gcattgccag tttcgacagc aaaggagaga tcagagccca 1140
 gctacaccaa attaacagca atgatgatcg aaagttgctg gtttcatatc tgcccaccac 1200
 tgtatcagct aaaacagaca tcagcatttgc ttcaggcctt aagaaaggat ttgaggttgt 1260
 taaaaaactg aatggaaaag cttatggctc tttgtatgata ttagtgacca gcggagatga 1320
 taagcttctt ggcaattgtt taccctactgt gctcagcagt gtttcaacaa ttcaactccat 1380
 tgccctgggt tcatctgcag ccccaaatct ggaggaatta tcacgtctt caggaggctt 1440
 aaagttctt gttccagata tatcaaactc caatagcatg attgtatgtt tcagtagaat 1500
 ttcctctgga actggagaca ttttccagca acatattcag ctggaaagta cagtgaaaa 1560
 tgc当地 caccatcaat taaaaaacac agtgcactgt gataatactg tggcaacga 1620
 cactatgttt ctatgttgc ggcaggccag tggctctt gagattatat tatttgcatt 1680
 tgc当地 aaataactaca caaataattt tatcaccat ctaacttttgc ggacagctag 1740
 tctttggatt ccaggaacag ctaaggctgg gcactggact tacaccctga tttgtttcca 1800
 ccatgcaaaa ttatttgcctt ggaagctgta aaagtagaaag aggaatttgc cctatcttgg 1860
 acagcacctg gagaagactt tgc当地 caggctacaa gctatgaaat aagaatgagt 1920
 aaaagtctac agaatatcca agatgacttt aacaatgcta ttttagttaaa tacatcaaag 1980
 cgaaatcctc agcaagctgg catcaggag atatttgcgt tctcaccctt aatttccacg 2040
 aatggacctg aacatcagcc aatggagaa acacatgaaa gcccacaaat ttatgttgca 2100
 atacgagcaa tggataggaa ctccttacag tctgtgtat ctaacatgc ccaggcgcct 2160
 ctgtttattt ccccaattt tgatcctgta cctgccagag attatcttatttgc当地 2220
 gttttaacag caatgggttt gataggaatc atttgcctt ttatgttgc当地 gacacatcat 2280
 actttaagca gaaaaagag agcagacaaag aaagagaatg gaacaaaattt attataaata 2340
 aatatccaaa gtgtttctt tctttagatattt aagacccatg gccttcgact aaaaaacat 2400
 actaacaag tcaaatttacatc atcaaaaactg tatttttttttgc当地 2460
 cagataagat ttttacatgg tagatcaaca aatttttttttgc当地 2520
 ttacactttt gctatgaaaca aataataaaa atttttttttgc当地 2580
 aaaggaaagg gtaaaatgc当地 accagtgtca aggaaagttt gttttagtgc当地 2640
 tagccccaaag cagagaaaag gagggtaggt ctgcattata actgtgttgc当地 2700
 atttagttac tttgatttttgc当地 ttttttttgc当地 tgc当地 2760
 tacaactgaa gatcatgcta tatttcatat atgaagcccc taatgcaag ctcttaccc 2820
 ctgtcttattt tgtttatattt attacagatg aaatctcact gctaattgtc agagatctt 2880
 ttttactgtt gaggtaacc tttaacaata tgggtatttgc当地 ctgtcttgc当地 2940
 ttttatgacaa aggtcttatttgc当地 atttttttttgc当地 tctactccca tcaaagcagc 3000
 ttttcttatttgc当地 atttgc当地 ttattatgta tgatgttgc当地 agccctata atgc当地 3060
 taagggaaagg aagatgttgc当地 tcttagtttgc当地 ttttaataca tataatgaaataca 3120
 ttcaatttttgc当地 cccaaagaa ggtcaggcagg gagataactaa cctttggaaa tgatgttgc当地 3180
 gctctgtttt ttggatttttgc当地 aagagtctt aatccttgc当地 ccatcaagag ttacttacca 3240
 agggcagggg aagggggata tagaggtcac aagggaaataa aatcatctt tc当地 3300
 ttttactcctt tcccttatttgc当地 ttttttttgc当地 attatcgaac aataaaatca tttgc当地 3360
 tt 3362

<210> 168

<211> 2784

<212> DNA

<213> Homo sapiens

<400> 168

tctgc当地 tattgaaaac ctgc当地 ctttgc当地 gtttgc当地 gtttgc当地 60
 gaggcttctc tacaacatgca cccaaaggag ctttgc当地 ctttgc当地 acctgaagtt 120

tgtgactctc ctgggtgcct taagttcaga actcccatc ctgggagctg gaggacatc 180
tcaagacaat ggttataatg gattgctcat tgcaattaat cctcaggtac ctgagaatca 240
gaaccctatc tcaaacatta aggaatgtat aactgaagct tcattttacc tatttaatgc 300
taccaagaga agagtatttt tcagaaatataa aaagatttta atacctgcca catggaaagc 360
taataataac agcaaaaataa aacaagaatc atataaaaag gcaaatgtca tagtgactga 420
ctggtatggg gcacatggag atgatccata caccctacaa tacagagggt gtggaaaaga 480
gggaaaatac attcatttca cacctaattt octactgaat gataacttaa cagctggcta 540
cgatcacga gggcgagttgt ttgtccatga atggggccac ctccggttggg gtgtgttcga 600
tgagtataac aatgacaaac ctttctacat aaatgggcaa aatcaaatta aagtgacaag 660
gtgttcatct gacatcacag gcattttgt gtgtaaaaaa gtccttgcc cccaaagaaaa 720
ctgttattt agtaagctt ttaaagaagg atgcacctt atctacaata gcacccaaaa 780
tgcaactgca tcaataatgt tcatgcaaag tttatcttct gtgggtgaat ttgtatgc 840
aagtaccac aaccaagaag caccacccct acagaaccag atgtcagcc tcagaagtgc 900
atgggatgtt atcacagact ctgctgactt tcaccacagc tttccatga acgggactga 960
gcttccacccct cctccacat tctcgcttgt agaggctggt gacaaagtgg tctgttagt 1020
gctggatgtt tccagcaaga tggcagaggc tgacagactc cttcaactac aacaagccgc 1080
agaattttat ttgatgcaga ttgttgaat tcataccttc gtgggcattt ccagtttcga 1140
cagcaaaagga gagatcagag cccagctaca ccaaatttaac agcaatgtat atcgaaagtt 1200
gctggttca tatctgccccca ccactgtatc agctaaaaca gacatcagca ttgttccagg 1260
gcttaagaaa ggatttgagg tggttaaaaa actgaatggaa aaagctttagt gctctgtat 1320
gatatttagt accagcggag atgataagct tcttggcaat tgcttacca ctgtgctcag 1380
cagtggttca acaatttcaact ccattggccct gggttcatct gcagccccaa atctggagga 1440
attatcacgt ctacaggag gtttaagtt ctttggttcca gatatatcaa actccaatag 1500
catgatgtat gctttcagta gaatttcctc tggaaactgga gacattttcc agcaacatata 1560
tcagctgaa agtacagggtg aaaatgtcaa acctcaccat caattggaaaa acacagtgc 1620
tgtggataat actgtggggca acgacactat gtttctagtt acgtggcagg ccagtggtcc 1680
tcctgagatt atattttttg atccctgatgg acgaaaatac tacacaaata 1740
caatctaaact ttcggacag cttagtcttgc gattccagga acagctaagc
gacttacacc ctgaacaata cccatcatc tctgcaagcc ctgaaaagtga
tcgcgcctcc aactcagctg tgcccccage cactgtggaa gccttgg
cctccatccccctt cctcatctgt tgatgattta tgccaatgtg aaacaggat
tcttaatgcc actgtcactg ccacagttga gccagagact ggagatcctg
actccttgat gatggagcag gtgctgatgt tataaaaaat gatgaaatt
ttttttctcc ttgtctgcata atggtagata tagttggaaa gtgcatgtca
cagcataaagc accccagccc actctattcc agggagtcat gctatgtat
cacagcaaaac ggtaatattc agatgaatgc tccaaggaaa tcagtaggc
ggagcggaaag tggggcttta gccgagtcag ctcaggaggc tcctttcag
tccagctggc ccccacccctg atgtgtttcc accatgcataa attattgacc
aaatagaaga ggaatttgacc ctatcttgcg cagcacctgg agaagacttt
aggctacaag ctatgaaataa agaatgagta aaagtctaca gaatatccaa
acaatgtat tttagtaaat acatcaaagc gaaatcctca gcaagctggc
tatttacgtt ctcaccccaa atttccacga atggacctga acatcagcca
cacatgaaag ccacagaatt tatgttgcaat tacgagcaat ggataggaac
ctgctgtatc taacattgccc caggccctc tgtttattcc ccccaattct
ctgccagaga ttatcttata ttga 2784

<210> 169
<211> 592
<212> PRT
<213> *Homo sapien*

<400> 169
Met Thr Gln Arg Ser Ile Ala Gly Pro Ile Cys Asn Leu Lys Phe Val
1 5 10 15

Thr Leu Leu Val Ala Leu Ser Ser Glu Leu Pro Phe Leu Gly Ala Gly
 20 25 30
 Val Gln Leu Gln Asp Asn Gly Tyr Asn Gly Leu Leu Ile Ala Ile Asn
 35 40 45
 Pro Gln Val Pro Glu Asn Gln Asn Leu Ile Ser Asn Ile Lys Glu Met
 50 55 60
 Ile Thr Glu Ala Ser Phe Tyr Leu Phe Asn Ala Thr Lys Arg Arg Val
 65 70 75 80
 Phe Phe Arg Asn Ile Lys Ile Leu Ile Pro Ala Thr Trp Lys Ala Asn
 85 90 95
 Asn Asn Ser Lys Ile Lys Gln Glu Ser Tyr Glu Lys Ala Asn Val Ile
 100 105 110
 Val Thr Asp Trp Tyr Gly Ala His Gly Asp Asp Pro Tyr Thr Leu Gln
 115 120 125
 Tyr Arg Gly Cys Gly Lys Glu Gly Lys Tyr Ile His Phe Thr Pro Asn
 130 135 140
 Phe Leu Leu Asn Asp Asn Leu Thr Ala Gly Tyr Gly Ser Arg Gly Arg
 145 150 155 160
 Val Phe Val His Glu Trp Ala His Leu Arg Trp Gly Val Phe Asp Glu
 165 170 175
 Tyr Asn Asn Asp Lys Pro Phe Tyr Ile Asn Gly Gln Asn Gln Ile Lys
 180 185 190
 Val Thr Arg Cys Ser Ser Asp Ile Thr Gly Ile Phe Val Cys Glu Lys
 195 200 205
 Gly Pro Cys Pro Gln Glu Asn Cys Ile Ile Ser Lys Leu Phe Lys Glu
 210 215 220
 Gly Cys Thr Phe Ile Tyr Asn Ser Thr Gln Asn Ala Thr Ala Ser Ile
 225 230 235 240
 Met Phe Met Gln Ser Leu Ser Ser Val Val Glu Phe Cys Asn Ala Ser
 245 250 255
 Thr His Asn Gln Glu Ala Pro Asn Leu Gln Asn Gln Met Cys Ser Leu
 260 265 270
 Arg Ser Ala Trp Asp Val Ile Thr Asp Ser Ala Asp Phe His His Ser
 275 280 285
 Phe Pro Met Asn Gly Thr Glu Leu Pro Pro Pro Pro Thr Phe Ser Leu
 290 295 300
 Val Glu Ala Gly Asp Lys Val Val Cys Leu Val Leu Asp Val Ser Ser
 305 310 315 320
 Lys Met Ala Glu Ala Asp Arg Leu Leu Gln Leu Gln Gln Ala Ala Glu
 325 330 335
 Phe Tyr Leu Met Gln Ile Val Glu Ile His Thr Phe Val Gly Ile Ala
 340 345 350
 Ser Phe Asp Ser Lys Gly Glu Ile Arg Ala Gln Leu His Gln Ile Asn
 355 360 365
 Ser Asn Asp Asp Arg Lys Leu Leu Val Ser Tyr Leu Pro Thr Thr Val
 370 375 380
 Ser Ala Lys Thr Asp Ile Ser Ile Cys Ser Gly Leu Lys Lys Gly Phe
 385 390 395 400
 Glu Val Val Glu Lys Leu Asn Gly Lys Ala Tyr Gly Ser Val Met Ile
 405 410 415
 Leu Val Thr Ser Gly Asp Asp Lys Leu Leu Gly Asn Cys Leu Pro Thr
 420 425 430
 Val Leu Ser Ser Gly Ser Thr Ile His Ser Ile Ala Leu Gly Ser Ser
 435 440 445

Ala Ala Pro Asn Leu Glu Glu Leu Ser Arg Leu Thr Gly Gly Leu Lys
 450 455 460
 Phe Phe Val Pro Asp Ile Ser Asn Ser Asn Ser Met Ile Asp Ala Phe
 465 470 475 480
 Ser Arg Ile Ser Ser Gly Thr Gly Asp Ile Phe Gln Gln His Ile Gln
 485 490 495
 Leu Glu Ser Thr Gly Glu Asn Val Lys Pro His His Gln Leu Lys Asn
 500 505 510
 Thr Val Thr Val Asp Asn Thr Val Gly Asn Asp Thr Met Phe Leu Val
 515 520 525
 Thr Trp Gln Ala Ser Gly Pro Pro Glu Ile Ile Leu Phe Asp Pro Asp
 530 535 540
 Gly Arg Lys Tyr Tyr Thr Asn Asn Phe Ile Thr Asn Leu Thr Phe Arg
 545 550 555 560
 Thr Ala Ser Leu Trp Ile Pro Gly Thr Ala Lys Pro Gly His Trp Thr
 565 570 575
 Tyr Thr Leu Met Cys Phe His His Ala Lys Leu Leu Thr Trp Lys Leu
 580 585 590

<210> 170
 <211> 791
 <212> PRT
 <213> Homo sapiens

<400> 170
 Met Thr Gln Arg Ser Ile Ala Gly Pro Ile Cys Asn Leu Lys Phe Val
 1 5 10 15
 Thr Leu Leu Val Ala Leu Ser Ser Glu Leu Pro Phe Leu Gly Ala Gly
 20 25 30
 Val Gln Leu Gln Asp Asn Gly Tyr Asn Gly Leu Leu Ile Ala Ile Asn
 35 40 45
 Pro Gln Val Pro Glu Asn Gln Asn Leu Ile Ser Asn Ile Lys Glu Met
 50 55 60
 Ile Thr Glu Ala Ser Phe Tyr Leu Phe Asn Ala Thr Lys Arg Arg Val
 65 70 75 80
 Phe Phe Arg Asn Ile Lys Ile Leu Ile Pro Ala Thr Trp Lys Ala Asn
 85 90 95
 Asn Asn Ser Lys Ile Lys Gln Glu Ser Tyr Glu Lys Ala Asn Val Ile
 100 105 110
 Val Thr Asp Trp Tyr Gly Ala His Gly Asp Asp Pro Tyr Thr Leu Gln
 115 120 125
 Tyr Arg Gly Cys Gly Lys Glu Gly Lys Tyr Ile His Phe Thr Pro Asn
 130 135 140
 Phe Leu Leu Asn Asp Asn Leu Thr Ala Gly Tyr Gly Ser Arg Gly Arg
 145 150 155 160
 Val Phe Val His Glu Trp Ala His Leu Arg Trp Gly Val Phe Asp Glu
 165 170 175
 Tyr Asn Asn Asp Lys Pro Phe Tyr Ile Asn Gly Gln Asn Gln Ile Lys
 180 185 190
 Val Thr Arg Cys Ser Ser Asp Ile Thr Gly Ile Phe Val Cys Glu Lys
 195 200 205
 Gly Pro Cys Pro Gln Glu Asn Cys Ile Ile Ser Lys Leu Phe Lys Glu
 210 215 220

H. pylori 2D gel protein profile

Gly	Cys	Thr	Phe	Ile	Tyr	Asn	Ser	Thr	Gln	Asn	Ala	Thr	Ala	Ser	Ile
225				230					235						240
Met	Phe	Met	Gln	Ser	Leu	Ser	Ser	Val	Val	Glu	Phe	Cys	Asn	Ala	Ser
					245				250						255
Thr	His	Asn	Gln	Glu	Ala	Pro	Asn	Leu	Gln	Asn	Gln	Met	Cys	Ser	Leu
					260				265						270
Arg	Ser	Ala	Trp	Asp	Val	Ile	Thr	Asp	Ser	Ala	Asp	Phe	His	His	Ser
					275				280						285
Phe	Pro	Met	Asn	Gly	Thr	Glu	Leu	Pro	Pro	Pro	Pro	Thr	Phe	Ser	Leu
					290				295						300
Val	Glu	Ala	Gly	Asp	Lys	Val	Val	Cys	Leu	Val	Leu	Asp	Val	Ser	Ser
					305				310			315			320
Lys	Met	Ala	Glu	Ala	Asp	Arg	Leu	Leu	Gln	Leu	Gln	Gln	Ala	Ala	Glu
						325				330					335
Phe	Tyr	Leu	Met	Gln	Ile	Val	Glu	Ile	His	Thr	Phe	Val	Gly	Ile	Ala
						340				345					350
Ser	Phe	Asp	Ser	Lys	Gly	Glu	Ile	Arg	Ala	Gln	Leu	His	Gln	Ile	Asn
						355				360					365
Ser	Asn	Asp	Asp	Arg	Lys	Leu	Leu	Val	Ser	Tyr	Leu	Pro	Thr	Thr	Val
						370				375					380
Ser	Ala	Lys	Thr	Asp	Ile	Ser	Ile	Cys	Ser	Gly	Leu	Lys	Lys	Gly	Phe
						385				390			395		400
Glu	Val	Val	Glu	Lys	Leu	Asn	Gly	Lys	Ala	Tyr	Gly	Ser	Val	Met	Ile
						405				410					415
Leu	Val	Thr	Ser	Gly	Asp	Asp	Lys	Leu	Leu	Gly	Asn	Cys	Leu	Pro	Thr
						420				425					430
Val	Leu	Ser	Ser	Gly	Ser	Thr	Ile	His	Ser	Ile	Ala	Leu	Gly	Ser	Ser
						435				440			445		
Ala	Ala	Pro	Asn	Leu	Glu	Glu	Leu	Ser	Arg	Leu	Thr	Gly	Gly	Leu	Lys
						450				455			460		
Phe	Phe	Val	Pro	Asp	Ile	Ser	Asn	Ser	Asn	Ser	Met	Ile	Asp	Ala	Phe
						465				470			475		480
Ser	Arg	Ile	Ser	Ser	Gly	Thr	Gly	Asp	Ile	Phe	Gln	Gln	His	Ile	Gln
							485				490				495
Leu	Glu	Ser	Thr	Gly	Glu	Asn	Val	Lys	Pro	His	His	Gln	Leu	Lys	Asn
							500				505				510
Thr	Val	Thr	Val	Asp	Asn	Thr	Val	Gly	Asn	Asp	Thr	Met	Phe	Leu	Val
							515				520				525
Thr	Trp	Gln	Ala	Ser	Gly	Pro	Pro	Glu	Ile	Ile	Leu	Phe	Asp	Pro	Asp
							530				535				540
Gly	Arg	Lys	Tyr	Tyr	Thr	Asn	Asn	Phe	Ile	Thr	Asn	Leu	Thr	Phe	Arg
						545				550			555		560
Thr	Ala	Ser	Leu	Trp	Ile	Pro	Gly	Thr	Ala	Lys	Pro	Gly	His	Trp	Thr
							565				570				575
Tyr	Thr	Leu	Asn	Asn	Thr	His	His	Ser	Leu	Gln	Ala	Leu	Lys	Val	Thr
							580				585				590
Val	Thr	Ser	Arg	Ala	Ser	Asn	Ser	Ala	Val	Pro	Pro	Ala	Thr	Val	Glu
							595				600				605
Ala	Phe	Val	Glu	Arg	Asp	Ser	Leu	His	Phe	Pro	His	Pro	Val	Met	Ile
							610				615				620
Tyr	Ala	Asn	Val	Lys	Gln	Gly	Phe	Tyr	Pro	Ile	Leu	Asn	Ala	Thr	Val
							625				630				640
Thr	Ala	Thr	Val	Glu	Pro	Glu	Thr	Gly	Asp	Pro	Val	Thr	Leu	Arg	Leu
							645				650				655

<210> 171
<211> 1491
<212> DNA
<213> *Homo sapiens*

<210> 172
<211> 364

<212> PRT

<213> Homo sapiens

<400> 172

Met	Trp	Gln	Pro	Leu	Phe	Phe	Lys	Trp	Leu	Leu	Ser	Cys	Cys	Pro	Gly
1					5				10					15	
Ser	Ser	Gln	Ile	Ala	Ala	Ala	Ala	Ser	Thr	Gln	Pro	Glu	Asp	Asp	Ile
						20			25					30	
Asn	Thr	Gln	Arg	Lys	Lys	Ser	Gln	Glu	Lys	Met	Arg	Glu	Val	Thr	Asp
						35		40				45			
Ser	Pro	Gly	Arg	Pro	Arg	Glu	Leu	Thr	Ile	Pro	Gln	Thr	Ser	Ser	His
						50		55			60				
Gly	Ala	Asn	Arg	Phe	Val	Pro	Lys	Ser	Lys	Ala	Leu	Glu	Ala	Val	Lys
						65		70		75				80	
Leu	Ala	Ile	Glu	Ala	Gly	Phe	His	His	Ile	Asp	Ser	Ala	His	Val	Tyr
						85			90			95			
Asn	Asn	Glu	Glu	Gln	Val	Gly	Leu	Ala	Ile	Arg	Ser	Lys	Ile	Ala	Asp
						100		105				110			
Gly	Ser	Val	Lys	Arg	Glu	Asp	Ile	Phe	Tyr	Thr	Ser	Lys	Leu	Trp	Ser
						115		120			125				
Asn	Ser	His	Arg	Pro	Glu	Leu	Val	Arg	Pro	Ala	Leu	Glu	Arg	Ser	Leu
						130		135			140				
Lys	Asn	Leu	Gln	Leu	Asp	Tyr	Val	Asp	Leu	Tyr	Leu	Ile	His	Phe	Pro
						145		150		155				160	
Val	Ser	Val	Lys	Pro	Gly	Glu	Glu	Val	Ile	Pro	Lys	Asp	Glu	Asn	Gly
						165			170			175			
Lys	Ile	Leu	Phe	Asp	Thr	Val	Asp	Leu	Cys	Ala	Thr	Trp	Glu	Ala	Met
						180		185			190				
Glu	Lys	Cys	Lys	Asp	Ala	Gly	Leu	Ala	Lys	Ser	Ile	Gly	Val	Ser	Asn
						195		200			205				
Phe	Asn	His	Arg	Leu	Leu	Glu	Met	Ile	Leu	Asn	Lys	Pro	Gly	Leu	Lys
						210		215			220				
Tyr	Lys	Pro	Val	Cys	Asn	Gln	Val	Glu	Cys	His	Pro	Tyr	Phe	Asn	Gln
						225		230		235			240		
Arg	Lys	Leu	Leu	Asp	Phe	Cys	Lys	Ser	Lys	Asp	Ile	Val	Leu	Val	Ala
						245			250			255			
Tyr	Ser	Ala	Leu	Gly	Ser	His	Arg	Glu	Glu	Pro	Trp	Val	Asp	Pro	Asn
						260		265			270				
Ser	Pro	Val	Leu	Leu	Glu	Asp	Pro	Val	Leu	Cys	Ala	Leu	Ala	Lys	Lys
						275		280			285				
His	Lys	Arg	Thr	Pro	Ala	Leu	Ile	Ala	Leu	Arg	Tyr	Gln	Leu	Gln	Arg
						290		295			300				
Gly	Val	Val	Val	Leu	Ala	Lys	Ser	Tyr	Asn	Glu	Gln	Arg	Ile	Arg	Gln
						305		310		315			320		
Asn	Val	Gln	Val	Phe	Glu	Phe	Gln	Leu	Thr	Ser	Glu	Glu	Met	Lys	Ala
						325			330			335			
Ile	Asp	Gly	Leu	Asn	Arg	Asn	Val	Arg	Tyr	Leu	Thr	Leu	Asp	Ile	Phe
						340		345			350				
Ala	Gly	Pro	Pro	Asn	Tyr	Pro	Phe	Ser	Asp	Glu	Tyr				
						355		360							

<210> 173

<211> 1988

<212> DNA

<213> Homo sapiens

<400> 173

cgggagccgc ctccccgcgg cctcttcgt tttgtggcg cgccccgcgt cgcaaggccac 60
 tctctgtgt cgcccgtccc gcgcgcctt ccgaccgcgt ccgcctccgt ccgcctggcc 120
 ccgcgcgcgc cgtcaacatg atccgcgtcg gcctggcctg cgagcgcgtc cgctggatcc 180
 tgcccctgtct cctactcagc gccatgcgc tcgacatcat cgcgctggcc ggccgcggct 240
 ggttgcagtc tagcgaccac ggccagacgt cctcgcgtgt gtggaaatgc tcccaagagg 300
 gcggcggcag cgggtcctac gaggaggcgt gtcagagcct catggagtagc gcgtgggta 360
 gacgcggc tgccatgctc ttctgtggct tcatacatct ggtatgtt ttcattctct 420
 ccttcttcgc cctctgtgga ccccagatgc ttgttctct gagagtgatt ggaggctcc 480
 ttgccttgcc tgctgtgttc cagatcatct ccctggtaat ttacccctgt aagtagacacc 540
 agaccttcac ctttcatgcc aaccctgcgt tcacttacat ctataactgg gcctacggct 600
 ttgggtgggc agccacgatt atcctgatcg gctgtgcctt cttcttcgc tgcctccca 660
 actacgaaga tgacccctcg ggcaatgcga agcccaggta cttctacaca tctgcctaac 720
 ttggaaatga atgtgggaga aaatcgctgc tgctgagatg gactccagaa gaagaaactg 780
 ttctccagg cgactttgaa cccatttttt ggcagtgttc atattattaa actagtcaaa 840
 aatgctaaaa taatttggga gaaaatattt tttaagttagt gttatagttt catgtttatc 900
 ttttattatg ttttgtgaag ttgtgtctt tcactaatta cctataactat gccaatattt 960
 ctttatatatc atccataaca ttatatactac atttgtttaa gaatatgcac gtggaaactta 1020
 acactttata aggtaaaaat gaggtttcca agatttaata atctgatcaa gttcttgta 1080
 tttccaaataa gaatggactt ggtctgttaa gggctaagga gaagaggaag ataaggtaa 1140
 aagttgttaa tgacccaaaca ttctaaaaga aatgcaaaaaa aaaagtttat tttcaaggct 1200
 tcgaactatt taaggaaagc aaaatcattt cctaaatgc tatcatttgt gagaatttct 1260
 cattaaatattc ctgaatcattt catttcagct aaggcttcat gttgactcga tatgtcatct 1320
 agggaaagtac tatttcatgg tccaaacctg ttgcctatgt tggtaaggct ttcccttaag 1380
 tgtgaaatat ttagatgaaa ttttctctt taaagttctt tatagggta ggggtgggaa 1440
 aaatgctata ttaataaaatc tggatgttt tggatgttt tggatgtttata tggatgtttata 1500
 tggatgtaaa gatggactgg gtctaaattt tcatgactga tagatctggtaa tggatgtttata 1560
 agttaaagcat taggagggtc attcytgcata caaaagtgc actaaaaacag cctcaggaga 1620
 ataaatgact tgctttcta aatctcaggt ttatctggc tctatcatat agacaggctt 1680
 ctgatagttt gcarctgtaa gcagaaacctt acatataatggat tggatgtttata tggatgtttata 1740
 taaacagatt ttaaatgtct gatataaaatc atgcccacagg agaattcggg gatttgagtt 1800
 tctctgaata gcatatatat gatgcatttgcg ataggtcattt atgatgtttt accatttcga 1860
 ctacataat gaaaaccaat tcatatggat tttatgttata agtggatgtttata 1920
 aaagctaattt gtagtttca ttatgttataa accaggtattt ctaaaaaaaaaa 1980
 aaaaaaaaaa 1988

<210> 174

<211> 238

<212> PRT

<213> Homo sapiens

<400> 174

Gly	Ala	Ala	Ser	Pro	Arg	Pro	Leu	Arg	Phe	Cys	Gly	Gly	Ala	Arg	Ala
1															
													10		15
Arg	Arg	Pro	Leu	Ser	Ala	Val	Ala	Arg	Pro	Ala	Arg	Ser	Ser	Asp	Pro
													20		25
Leu	Arg	Ser	Ala	Pro	Leu	Gly	Pro	Ala	Pro	Pro	Val	Asn	Met	Ile	Arg
													35		40
Cys	Gly	Leu	Ala	Cys	Glu	Arg	Cys	Arg	Trp	Ile	Leu	Pro	Leu	Leu	
													50		55
Leu	Ser	Ala	Ile	Ala	Phe	Asp	Ile	Ile	Ala	Leu	Ala	Gly	Arg	Gly	Trp

65	70	75	80
Leu Gln Ser Ser Asp His Gly Gln Thr Ser Ser Leu Trp Trp Lys Cys			
85	90	95	
Ser Gln Glu Gly Gly Ser Gly Ser Tyr Glu Glu Gly Cys Gln Ser			
100	105	110	
Leu Met Glu Tyr Ala Trp Gly Arg Ala Ala Ala Met Leu Phe Cys			
115	120	125	
Gly Phe Ile Ile Leu Val Ile Cys Phe Ile Leu Ser Phe Phe Ala Leu			
130	135	140	
Cys Gly Pro Gln Met Leu Val Phe Leu Arg Val Ile Gly Gly Leu Leu			
145	150	155	160
Ala Leu Ala Ala Val Phe Gln Ile Ile Ser Leu Val Ile Tyr Pro Val			
165	170	175	
Lys Tyr Thr Gln Thr Phe Thr Leu His Ala Asn Pro Ala Val Thr Tyr			
180	185	190	
Ile Tyr Asn Trp Ala Tyr Gly Phe Trp Ala Ala Thr Ile Ile Leu			
195	200	205	
Ile Gly Cys Ala Phe Phe Phe Cys Cys Leu Pro Asn Tyr Glu Asp Asp			
210	215	220	
Leu Leu Gly Asn Ala Lys Pro Arg Tyr Phe Tyr Thr Ser Ala			
225	230	235	

<210> 175

<211> 4181

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 3347, 3502, 3506, 3520, 3538, 3549, 3646, 3940, 3968, 3974,
4036, 4056, 4062, 4080, 4088, 4115

<223> n = A,T,C or G

<400> 175

```

ggatggatcg tttgggttgt agctaggctt tttctttct ttctctttta aaacacatct 60
agacaaggaa aaaacaagcc tcggatctga ttttcactc ctcgttcttg tgcttggttc 120
ttactgtgtt tgtgtatttt aaaggcgaga agacgagggg aacaaaacca gctggatcca 180
tccatcaccc tgggtggttt taattttctg tttttctcg ttatttttt ttaaacaacc 240
actcttcaca atgaacaaac tgtatatcgg aaacctcagc gagaacgccc cccctcgga 300
cctagaaagt atcttcaagg acgccaagat cccgggtgtcg ggacccttcc tggtaagac 360
tggctacgcg ttcgtggact gccccggacga gagctggcc ctcaaggcca tcgaggcgct 420
ttcaggtaaa atagaactqc acgggaaacc catagaagtt gagcactcgg tccaaaaaag 480
gcaaaggatt cgaaaaacttc agatacgaaa tatccccct catttacagt gggaggtgct 540
ggatagttt ctagtccagt atggagtggt ggagagctgt gagcaagtga acactgactc 600
ggaaaactgca gttgtaaatg taaccttatic cagtaaggac caagctagac aagcactaga 660
caaactgaat ggatttcagt tagagaattt cacctgaaa gtgcctata tccctgtatga 720
aatggccgcc cagaaaaacc cttgcagca gccccgaggt cgccggggc ttgggcagag 780
gggctctca aggcagggtt ctccaggatc cgtatccaag cagaaaccat gtgatttgcc 840
tctgcgcctg ctggttccca cccaaattgt tggagccatc atagaaaaag aaggtgccac 900
cattcggAAC atcaccAAAC agacccagtc taaaatcgat gtccaccgt aagaaaaatgc 960
gggggctgtct gagaagtgcg tactatctt ctctactctt gaaggcacct ctgcggcttg 1020
taagtctatt ctggagatta tgcataagga agctcaagat ataaaattca cagaagagat 1080
ccccctgtaa attttagctc ataataactt tggatgtt aagaaggaag 1140

```

aaatctaaa aaaattgagc aagacacaga cactaaaatc acgatatctc cattgcagga 1200
 atgacgctg tataatccag aacgcactat tacagtaaa ggcaatgtt agacatgtc 1260
 caaagctgag gaggagatca tgaagaaaat cagggagtct tatgaaaatg atattgttc 1320
 tatgaatctt caagcacatt taattccctgg attaaatctg aacgccttgg gtctgttccc 1380
 acccacttca gggatgccac ctccccaccc tcagccatga ctccctcccta 1440
 ccccgagttt gagcaatcag aaacggagac tgttcatcag tttatccag ctctatcagt 1500
 cggtgccatc atcggcaagc agggccagca catcaagcag ctttctcgct ttgtggagc 1560
 ttcaattaag attgctccag cggaaagcacc agatgtaaa gtgaggatgg tgattatcac 1620
 tggaccacca gaggcactg tcaaggctca gggagaatt tatgaaaaaa ttaaagaaga 1680
 aaactttgtt agtcccaaag aagaggtgaa acttgaagct catatcagag tgccatcctt 1740
 tgctgtggc agagttattt gaaaaggagg caaaacggtg aatgaacttc agaatttgc 1800
 aagtgcagaa gttgtgtcc ctcgtgacca gacacctgat gagaatgacc aagtgggtt 1860
 caaaaataact ggtcacttct atgcttgcca gtttgcggc agaaaaattc agggaaattct 1920
 gactcaggtt aagcagcacc aacaacagaa ggctctgcaa agtggaccac ctcaatcag 1980
 acggaagtaa aggctcagga aacagccac cacagaggca gatgccaac caaagacaga 2040
 ttgtttaacc aacagatggg cgctgacccc ctatccagaa tcacatgcac aagttttac 2100
 cttagccagg ttttctgagg accaggcaac ttttgaactc ctgtctctgt gagaatgtat 2160
 actttatgtt ctctgaaatg tatgacaccc agctttaaaa caaacaaca aacaacaaaa 2220
 aaaagggtgg gggaggggagg gaaagagaag agctctgcac ttcccttgc ttagtctca 2280
 cagtataaca gatattctaa ttcttcttaa tattccccc taatgccaga aattggctta 2340
 atgatgcttt cactaaattc atcaaataaga ttgctcctaa atccaatgt taaaattgga 2400
 tcagaataat tatcacagga acttaaatgt taagccatta gcatagaaaa actgttctca 2460
 gttttatttt tacctaacad taacatgaat aacctaaggg aagtgtgaa tgggtgtggc 2520
 aggggttatta aacgtgcatt tttactcaac tacctcaggt attcagtaat acaatgaaaa 2580
 gcaaaaattgt tcctttttt tgaaaatttt atatactta taatgataga agtccaaccg 2640
 ttttttaaaa aataaattta aattttaaca gcaatcagct aacaggccaa ttaagatttt 2700
 tacttctggc tggtgacagt aaagctggaa aattaatttcc agggttttt gaggctttt 2760
 acacagttat tagttaaattc aatgttcaa aaatacggag cagtgcctag tatctggaga 2820
 gcagcactac catttattct ttcatttata gttggaaag ttttgcgg tactaacaaa 2880
 gtggtcgcag gagattttgg aacggctgtt ttaaatggct tcaggagact tcagttttt 2940
 gtttagctac atgatgttgcataataaa tgcttgc ttctgactat caatacctaa 3000
 agaaaagtgc a tagtgaaga gatgcagac tttcaactga ctggcaaaaa gcaagctta 3060
 gttgtctta taggatgctt agtttgcac tacacttcg accaatggg cagtcataga 3120
 tggtgtgaca gtgtttaaac gcaacaaaag gctacatttcc catggggcca gcactgtcat 3180
 gagcctcaact aagctatttt gaagattttt aagcaactgat aaattaaaaaa aaaaaaaaaa 3240
 aaatttagact ccacctaag tagtaaagta taacaggatt tctgtataact gtcaatcag 3300
 ttctttgaaa aaaaagtcaa aagatagaga atacaagaaa agttttnggg atataatttgc 3360
 aatgactgtg aaaacatatg acctttgata acgaactcat ttgctcaactc cttgacagca 3420
 aagcccgatc cgtacaattt tggtgggtt gggtggctc caaggccacg ctgtctctg 3480
 aattgatttt tgagttttg gnttgnaga tgatcacagn catgttacac tgatcttnaa 3540
 ggacatatnt tataaccctt aaaaaaaaaa atccctgccc tcattcttat ttggatgtga 3600
 atttcgataac agactagatg tctttctgaa gatcaatttgc acatntgaa aatgattttaa 3660
 agtgtttcc ttaatgttct ctgaaaacaa gtttctttt tagtttaac caaaaaagtg 3720
 ccctttttgtt cactggttcc ttcttagcatt catgattttt ttttccacaca atgaattaaa 3780
 attgctaaaaa tcatgactg gctttctgtt tggtttcag gtaagatgtt tttaaggcca 3840
 gagctttctt cagttttga ttttttccc caatatttgc ttttttaaaa atatacacat 3900
 agagactgca tttaaacctt gctggttttaa attctgtcan atttcacttc tagcctttta 3960
 gtatggcnaa tcanattta cttttactta agcatttgc atttggatgtt tctggacta 4020
 gctaagaaat aattcnataa ttgagttttg tactcnccaa anatgggtca ttccatcgn 4080
 ataatgtnc cccaatgcag cttcattttc caganacctt gacgcaggat aaatttttc 4140
 atcatttagg tccccaaaaa aaaaaaaaaa aaaaaaaaaa a 4181

<210> 176

<211> 579

<212> PRT
<213> Homo sapiens

<400> 176

Met	Asn	Lys	Leu	Tyr	Ile	Gly	Asn	Leu	Ser	Glu	Asn	Ala	Ala	Pro	Ser
1					5				10					15	
Asp	Leu	Glu	Ser	Ile	Phe	Lys	Asp	Ala	Lys	Ile	Pro	Val	Ser	Gly	Pro
					20				25				30		
Phe	Leu	Val	Lys	Thr	Gly	Tyr	Ala	Phe	Val	Asp	Cys	Pro	Asp	Glu	Ser
					35				40			45			
Trp	Ala	Leu	Lys	Ala	Ile	Glu	Ala	Leu	Ser	Gly	Lys	Ile	Glu	Leu	His
					50				55			60			
Gly	Lys	Pro	Ile	Glu	Val	Glu	His	Ser	Val	Pro	Lys	Arg	Gln	Arg	Ile
					65				70		75		80		
Arg	Lys	Leu	Gln	Ile	Arg	Asn	Ile	Pro	Pro	His	Leu	Gln	Trp	Glu	Val
					85				90			95			
Leu	Asp	Ser	Leu	Leu	Val	Gln	Tyr	Gly	Val	Val	Glu	Ser	Cys	Glu	Gln
					100				105			110			
Val	Asn	Thr	Asp	Ser	Glu	Thr	Ala	Val	Val	Asn	Val	Thr	Tyr	Ser	Ser
					115				120			125			
Lys	Asp	Gln	Ala	Arg	Gln	Ala	Leu	Asp	Lys	Leu	Asn	Gly	Phe	Gln	Leu
					130				135			140			
Glu	Asn	Phe	Thr	Leu	Lys	Val	Ala	Tyr	Ile	Pro	Asp	Glu	Met	Ala	Ala
					145				150		155		160		
Gln	Gln	Asn	Pro	Leu	Gln	Gln	Pro	Arg	Gly	Arg	Arg	Gly	Leu	Gly	Gln
					165				170			175			
Arg	Gly	Ser	Ser	Arg	Gln	Gly	Ser	Pro	Gly	Ser	Val	Ser	Lys	Gln	Lys
					180				185			190			
Pro	Cys	Asp	Leu	Pro	Leu	Arg	Leu	Leu	Val	Pro	Thr	Gln	Phe	Val	Gly
					195				200			205			
Ala	Ile	Ile	Gly	Lys	Glu	Gly	Ala	Thr	Ile	Arg	Asn	Ile	Thr	Lys	Gln
					210				215			220			
Thr	Gln	Ser	Lys	Ile	Asp	Val	His	Arg	Lys	Glu	Asn	Ala	Gly	Ala	Ala
					225				230		235		240		
Glu	Lys	Ser	Ile	Ile	Thr	Ile	Leu	Ser	Thr	Pro	Glu	Gly	Thr	Ser	Ala
					245				250			255			
Cys	Lys	Ser	Ile	Leu	Glu	Ile	Met	His	Lys	Glu	Ala	Gln	Asp	Ile	Lys
					260				265			270			
Phe	Thr	Glu	Glu	Ile	Pro	Leu	Lys	Ile	Leu	Ala	His	Asn	Asn	Phe	Val
					275				280			285			
Gly	Arg	Leu	Ile	Gly	Lys	Glu	Gly	Arg	Asn	Leu	Lys	Lys	Ile	Glu	Gln
					290				295			300			
Asp	Thr	Asp	Thr	Lys	Ile	Thr	Ile	Ser	Pro	Leu	Gln	Glu	Leu	Thr	Leu
					305				310		315		320		
Tyr	Asn	Pro	Glu	Arg	Thr	Ile	Thr	Val	Lys	Gly	Asn	Val	Glu	Thr	Cys
					325				330			335			
Ala	Lys	Ala	Glu	Glu	Ile	Met	Lys	Lys	Ile	Arg	Glu	Ser	Tyr	Glu	
					340				345			350			
Asn	Asp	Ile	Ala	Ser	Met	Asn	Leu	Gln	Ala	His	Leu	Ile	Pro	Gly	Leu
					355				360			365			
Asn	Leu	Asn	Ala	Leu	Gly	Leu	Phe	Pro	Pro	Thr	Ser	Gly	Met	Pro	Pro
					370				375			380			
Pro	Thr	Ser	Gly	Pro	Pro	Ser	Ala	Met	Thr	Pro	Pro	Tyr	Pro	Gln	Phe
					385				390			395			400

Glu Gln Ser Glu Thr Glu Thr Val His Gln Phe Ile Pro Ala Leu Ser
 405 410 415
 Val Gly Ala Ile Ile Gly Lys Gln Gly Gln His Ile Lys Gln Leu Ser
 420 425 430
 Arg Phe Ala Gly Ala Ser Ile Lys Ile Ala Pro Ala Glu Ala Pro Asp
 435 440 445
 Ala Lys Val Arg Met Val Ile Ile Thr Gly Pro Pro Glu Ala Gln Phe
 450 455 460
 Lys Ala Gln Gly Arg Ile Tyr Gly Lys Ile Lys Glu Glu Asn Phe Val
 465 470 475 480
 Ser Pro Lys Glu Glu Val Lys Leu Glu Ala His Ile Arg Val Pro Ser
 485 490 495
 Phe Ala Ala Gly Arg Val Ile Gly Lys Gly Gly Lys Thr Val Asn Glu
 500 505 510
 Leu Gln Asn Leu Ser Ser Ala Glu Val Val Val Pro Arg Asp Gln Thr
 515 520 525
 Pro Asp Glu Asn Asp Gln Val Val Val Lys Ile Thr Gly His Phe Tyr
 530 535 540
 Ala Cys Gln Val Ala Gln Arg Lys Ile Gln Glu Ile Leu Thr Gln Val
 545 550 555 560
 Lys Gln His Gln Gln Lys Ala Leu Gln Ser Gly Pro Pro Gln Ser
 565 570 575
 Arg Arg Lys

<210> 177
 <211> 401
 <212> DNA
 <213> Homo sapiens

<400> 177
 atgccccgt aatgtcttca gtgttcttca ggtagttgg gatctaaaaa gatttgttc 60
 agatccaaac aaatacacat tctgtgttt agctcagtgt tttctaaaaa aagaaaactgc 120
 cacacagcaa aaaattgttt actttgttg acaaaccaaa tcagttctca aaaaatgacc 180
 ggtgcttata aaaaggttata aatatcgagt agctctaaaa caaacccacct gccaagagg 240
 gaagtgagct tgtgcttagt atttacatgg gatgccagtt ttgtaatcac tgacttatgt 300
 gcaaaactggt gcagaaaattc tataaactct ttgctgttt tgataacctgc tttttgttc 360
 attttgtttt gtttgtaaa aatgataaaa cttcagaaaa t 401

<210> 178
 <211> 561
 <212> DNA
 <213> Homo sapiens

<400> 178
 acgcctttca agggtgtacg caaagcactc attgataccc ttttggatgg ctatgaaaaca 60
 gccccctatg ggacaggggt ctggccag aatgagtacc tacgctatca ggaggccctg 120
 agtgagctgg ccactgcggt taaagcacga attggagct ctcagcgaca tcaccagtc 180
 gcagccaaag acctaactca gtcggctgag gtctccccaa caaccatcca ggtgacatac 240
 ctccccctcca gtcagaagag taaacgtgcc aagcaactcc ttgaattgaa gagctttaag 300
 gataactata acacattgga gагtactctg tgacggagct gaaggactct tgccgttagat 360
 taagccagtc agttgcaatg tgcaagacag gctgctgcc gggccgcct cgaaacatct 420
 ggcccagcag gcccagactc tatccatcca agttcccggtt gtatccagag ttcttagagc 480

ttgtgtctaa aggtaattc cccaaccctt cttatgagc attttagaa catggctaa 540
 gactatttc ccccaagtagc g 561

<210> 179

<211> 521

<212> DNA

<213> Homo sapiens

<400> 179

cccaacgcgt ttgcaaata tcccctggta gcctacttcc ttaccccgaa atattggtaa 60
 gatcgagcaa tggcttcagg acatgggttc tcttctcttg tgatcattca agtgctca 120
 gcatgaagac tggctgtct cagtgttca acctcaccag ggctgtctct tggccacac 180
 ctgcgtccct gttatgtccg tatgacagcc cccatcaaata gaccttggcc aagtacacgg 240
 ttctctgtgg tcaagggtgg ttggctgatt ggtggaaagt aagggtggacc aaaggaggcc 300
 acgtgagcag tcagcaccag ttctgcacca gcagcgcctc cgtccttagtg ggttccctg 360
 tttctcctgg ccctgggtgg gctagggcct gattcggaa gatgcctttc cagggagggg 420
 aggataagtggatctacca attgattctg gcaaaaacaat ttctaagatt ttttgcattt 480
 atgtggaa cagatctaaa tctcattttt tgctgtattt t 521

<210> 180

<211> 417

<212> DNA

<213> Homo sapiens

<400> 180

ggtggatttccgcgaagatgcggagggtgc aggtcctgggt gcttgcattgtt cgaggccatc 60
 tcctggccgcctggcgccatcggttgcataaacaggactgctggccgg aagggtggtgg 120
 tcgtacgctgtgaaggcatc aacatttctg gcaatttcta cagaaacaag ttgaagtacc 180
 tggcttcctccgcgaagcggatgtacacca acccttcccg aggccccatc cacttccggg 240
 ccccccagccgcatcttctgg cggaccgtgc gaggtatgtt gccccacaaa accaagcgg 300
 gcccggccgcctctggaccgttcaagggtgttgcggcatcccaccggcc tacgacaaga 360
 aaaagcgat ggtggttcttgcctca aggtcgatcgatctgaaggctt acaagaa 417

<210> 181

<211> 283

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 35

<223> n = A,T,C or G

<400> 181

gatttcttctaaataggatgtaaaacttctttcanattac tcttcctcag tcctgcctgc 60
 caagaactca agtgaactgtgataaaaata accttccca ggtatattgg caggtatgtg 120
 tggatctca gaatacacatgtgacataga tatgatatga caactggtaa tggggattc 180
 attacattgttacacttc tatgaccagg ccttaaggaa aggtcagttttaaaaaac 240
 caagtagtgttctcctacatctccagat acatgtcaaa aaa 283

<210> 182

<211> 401

<212> DNA

<213> Homo sapiens

<400> 182

atattcttgc tgcttatgca gctgacattg ttgccctccc taaagcaacc aagtagcctt 60
 tatttcccac agtgaardaa aacgctggcc tatcagttac attacaaaag gcagattca 120
 agaggattga gtaagttagtt ggatggctt cataaaaaca agaattcaag aagaggattc 180
 atgcttaag aaacatttgttatacattcc tcacaaatta tacctggat aaaaactatg 240
 tagcaggcgag tgtgtttcc ttccatgtct ctctgcacta cctgcagtgt gtccctgag 300
 gctgcaagtc tgcctatct gaattcccg cagaagcact aagaagctcc accctatcac 360
 ctagcagata aaactatggg gaaaacttaa atctgtcat a 401

<210> 183

<211> 366

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 325

<223> n = A,T,C or G

<400> 183

accgtgtcca agttttaga acccttggta gccagaccga ggtgtcctgg tcaccgtttc 60
 accatcatgc tttgatgttc ccctgtctt ctctttctg ctctcaagag caaaggtaa 120
 tttaggaca aagatgaagt cactgtaaac taatctgtca ttgttttac cttccctttc 180
 ttttcagtg cagaattaa aagtaagtat aaagcaccgt gattggaggt gttttgcgt 240
 gtgtcgaaat cactggtaaa tggctgtga gaacaatccc tccccttgc cttgtgaaaa 300
 cactttgagc gcttaagag attancctga gaaataatta aatatcttt ctcttcaaaa 360
 aaaaaa 366

<210> 184

<211> 370

<212> DNA

<213> Homo sapiens

<400> 184

ttttacttca aaagaaaaat aaacataaaa aataagttgc tggttctaa cagaaaaat 60
 ttaataatt gtactgagag aaactgctt cgtacacatt gcagatcaaa tatttggagt 120
 taaaatgtta gtctacatag atgggtgatt gtaactttat tgccattaaa agatttcaaa 180
 ttgcattcat gcttcgtgt acacataatg aaaaatggc aaataatgaa gatctctcct 240
 tcagtctgtctgatgttatt ctgctgtctg ctctctcta atgctgcgtc cctaattgt 300
 cacagtttag tgatatctag gagtataaag ttgtcgccca tcaataaaaa tcacaaagtt 360
 gttttaaaaa 370

<210> 185

<211> 107

<212> DNA

<213> Homo sapiens

<400> 185

ctcatattat ttcccttttggaaatggaa aactctttct gttgcttata tattaataaa 60
 gttgggtttt atttctgtt agtcacccatcccattaaa aaaaaaaa 107

<210> 186

<211> 309

<212> DNA

<213> Homo sapiens

<400> 186

gaaaggatgg ctctgggtgc cacagagctg ggacttcatg ttcttctaga gagggccaca 60
 agagggccac aggggtggcc gggagttgtc agctgatgcc tgctgagagg caggaattgt 120
 gccagtgagt gacagtcatg agggagtgtc tcttcttggg gaggaaagaa ggttagagcct 180
 ttctgtctga atgaaaggcc aaggctacag tacagggccc cgccccagcc agggtgttaa 240
 tgcccacgta gtggaggcct ctggcagatc ctgcattcca aggtcaactgg actgtacgtt 300
 tttatggtt 309

<210> 187

<211> 477

<212> DNA

<213> Homo sapiens

<400> 187

ttcagtccta gcaagaagcg agaattctga gatcctccag aaagtcgagc agcacccacc 60
 tccaacctcg ggccagtgtc ttcaggctt actggggacc tgcgagctgg cctaatgtgg 120
 tggcctgcaa gccaggccat ccctggcgcc cacagacgag ctccgagcca ggtcaggctt 180
 cggaggccac aagctcagcc tcaggcccag gcactgattt tggcagaggg gccactaccc 240
 aaggcttagc taggcccag acctagttac ccagacagtg agaagccctt ggaaggcaga 300
 aaagttggga gcatggcaga cagggaaaggg aaacatttc agggaaaaga catgtatcac 360
 atgtcttcag aagcaagtca ggtttcatgt aaccgagtgt cctcttgcgt gtccaaaagt 420
 agcccagggc tgttagcacag gttcacagt gattttgtgt tcagccgtga gtcacac 477

<210> 188

<211> 220

<212> DNA

<213> Homo sapiens

<400> 188

taaatatggt agatattaaat attcctctta gatgaccagt gattccaatt gtcccaagtt 60
 ttaaataagt accctgtgag tatgagataa attagtgaca atcagaacaa gtttcagtat 120
 cagatgttca agaggaagtt gctattgcat tgattttaat atttgtacat aaacactgat 180
 tttttgagc attatttgtt atttgttgc cttaatacc 220

<210> 189

<211> 417

<212> DNA .

<213> Homo sapiens

<220>

<221> misc_feature

<222> 76, 77

<223> n = A,T,C or G

<400> 189

accatcttga cagaggatac atgctccaa aacgtttggt accacactta aaaatcactg 60
 ccatcattaa gcatcnntt caaaattata gccattcatg atttacttt tccagatgac 120
 tattcattatt cttagtcctt gaatttggtaa gggaaaaaaa aacaaaaaca aaaacttacg 180
 atgcactttt ctccagcaca tcagatttca aattgaaaat taaagacatg ctatggtaat 240
 gcacttgcata gtactacaca ctttgcataaa caaaaaacag aggcaagaaa caacggaaag 300
 agaaaagcct tccttgcgtt gcccattaaac tgagtcaga tctgaaatgt agagatgatc 360

tctgacgata cctgtatgtt cttatttgtt aaataaaatt gctggtatga aatgaca 417

<210> 190
<211> 497
<212> DNA
<213> Homo sapiens

<400> 190
gcactgcggc gctctccgt cccgcgggtgg ttgctgctgc tgccgctgct gctgggcctg 60
aacgcaggag ctgtcattga ctggcccaca gaggagggca aggaagtatg ggattatgtg 120
acggtccgca aggatgccta catgttctgg tggctctatt atgccaccaa ctccgtcaag 180
aacttctcag aactgcggct ggtcatgtgg cttcaggcg gtccaggcg ttcttagcact 240
ggatttggaa acttgagga aattgggccc cttgacagtg atctcaaaacc acggaaaacc 300
acctggctcc aggctgccag tctccttattt gtggataatc ccgtggcac tgggttcagt 360
tatgtgaatg gtatgtggc ctagccaag gacctggcta tgggtggcttc agacatgatg 420
gttctcctga agaccttctt cagttgccac aaagaattcc agacagttcc attctacatt 480
ttctcagagt cctatgg 497

<210> 191
<211> 175
<212> DNA
<213> Homo sapiens

<400> 191
atgttgaata ttttgcttat taactttgtt tattgtcttc tccctcgatt agaatattag 60
ctacttgagt acaaggattt gagcctgtta cattcactgc tgaattttag gtcctggaa 120
gatacccaagc attcaataga gaccacacaa taaatatatg tcaaataaaa aaaaa 175

<210> 192
<211> 526
<212> DNA
<213> Homo sapiens

<400> 192
agtaaacatt attatttttt ttatatttgc aaaggaaaca tatctaattcc ttcctataga 60
aagaacagta ttgtgtaat tcctttctt ttcttcctca ttccctctgc cccttaaaaag 120
attgaagaaa gagaacttg tcaactcata tccacgttat ctagcaaagt acataagaat 180
ctatcaactaa gtaatgtatc cttcagaatg tgggtttta ccagtgcac cccatattca 240
tcacaaaatt aaagcaagaa gtccatagta atttatttgc taatagtggta ttttaatgc 300
tcagagttc tgaggtcaaa ttttatctt tcacttacaa gctctatgtatc cttaaataat 360
ttacttaatg tattttgggtg tattttcctc aaattaatat tgggtttcaaa gactatatct 420
aattcctctg atcaacttga gaaacaaact ttattaaat gtaaggcact tttctatgaa 480
tttaataat aaaaataaat attgttctga ttattactga aaaaaaa 526

<210> 193
<211> 553
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 290, 300, 411, 441
<223> n = A, T, C or G

<400> 193
tccattgtgg tggattcgc tctctggtaa aggctgcag gtgtggccg cggcctctga 60
gctggatga gccgtgcctcc cggtggaaagc aaggagccc agccggagcc atggccagta 120
cagtggtagc agttggactg accattgctg ctgcaggatt tgcaggccgt tacgaaaaatgc 180
aagccatgaa gcataatggag cctcaagttaa aacaagttt tcaaagccta cccaaaatctg 240
ccttcagg tggctattat agaggtgggt ttgaacccaa aatgacaaan cggaagcan 300
cattaatact aggtgtaagc cctactgcctca ataaaggaa aataagagat gctcatcgac 360
gaattatgc tttaaatcat cctgacaaag gaggatctcc ttatatagca nccaaaatca 420
atgaagctaa agatttacta naaggtaaag ctaaaaaatg aagtaatgt atgatgaatt 480
ttaagttcg attagtttat gtatatgagt actaagttt tataataaaa tgccctcagag 540
ctacaatttt aaa 553

<210> 194
<211> 320
<212> DNA
<213> Homo sapiens

<400> 194
ccctccccaa tccatcagta aagaccccat ctgccttgctc catgccgtt cccaacagg 60
atgtcaactt atatgagaat ctcaaatctc aatgccttat aagcattct tcctgtgtcc 120
attaagactc tgataattgt ctcccctcca taggaattc tcccaggaaa gaaatatatac 180
cccatctccg tttcatatca gaactaccgt ccccgatatt cccttcagag agattaaaga 240
ccagaaaaaaaaa gtgagccctt tcatactgcac ctgtaatagt ttcaagttctt attttcttcc 300
attgacccat atttataacct 320

<210> 195
<211> 320
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 203, 218
<223> n = A,T,C or G

<400> 195
aagcatgacc tggggaaatg gtcagacctt gtattgtgtt tttggccctt aaagtagcaa 60
gtgaccagaa tctgcccattgg caacaggctt taaaaaagac ccttaaaaag acactgtctc 120
aactgtgggt ttagcaccag ccagctctt gtacatttgc tagctttagt ttttctaaga 180
ctgagtaaac ttcttatttt tanaaagggg aggctggntt gtaacttcc ttgtacttaa 240
ttgggtaaaa gtctttcca caaaccacca tctattttgt gaacttggt agtcatctt 300
tatttggtaa attatgaact 320

<210> 196
<211> 357
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 36
<223> n = A,T,C or G

<400> 196

atataaaata atacgaaact taaaaagca ttggantgtc agtatgtga atcagtagtt 60
 tcacttaac tgtaaacaat ttcttaggac accattggg ctagttctg tgtaagtgt 120
 aatactacaa aaacttattt atactgttct tatgtcattt gttatattca tagattata 180
 tcatgtatcg acatctggct aaaaagaaat tattgcaaaa ctaaccacta tgtactttt 240
 tataaatact gtatggacaa aaaatggcat ttttatattt aaattgttta gctctggcaa 300
 aaaaaaaaaa tttaagagc tggtaactaat aaaggattat tatgactgtt aaaaaaa 357

<210> 197

<211> 565

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 27

<223> n = A,T,C or G

<400> 197

tcaagctgagt accatcagga tatttanccc tttaagtgtc gttttgggag tagaaaacta 60
 aagcaacaat acttcctctt gacagcttg attggaatgg ggttattttaga tcattcacct 120
 tggccctaca ctttttagga tgcttggtga acataacacc acttataatg aacatccctg 180
 gttcctataat tttgggttat gtgggttagga attgttactt gttactgcag cagcagccct 240
 agaaaagtaag cccagggtctt cagatctaag ttagtccaaa agctaaatgtt tttaaagtca 300
 agttgtatcg cttaggcataa gcactctata atacattaaa ttataggccg agcaattttagg 360
 gaatgtttctt gaaacattaa acttgttattt atgtcactaa aattctaaaca caaacttaaa 420
 aaatgtgtct catacatatg ctgtacttagg cttcatcatg catttcttaaa tttgtgtatg 480
 atttgaatat atgaaagaat ttatacaaga gtgttatttta aaatttattaa aaataaatgt 540
 atataatttgc tacctattgt aaaaaa 565

<210> 198

<211> 484

<212> DNA

<213> Homo sapiens

<400> 198

tatgttaagta ttgggtgtctg cttaaaaaaa ggagacccag acttcacctg tccttttaa 60
 acatttgaga acagtgttac tctgagcagt tgggccacct tcacccatc cgacagctga 120
 ctgttggatg tgcatttgtt cgcgcattttt gctgttgcgg ggacaggaca ggacccat 180
 tgggcgcagc agcagggtggc aggggtgtgg cttgaggtgg gtggcagcgt ctgtcctcc 240
 tctctgtgc tttctgagag ggtctctaaa gcagagtgtg gttggcctgg gggaggcag 300
 agcacgtatt tctccctct agtacctctg catttgtgag tgcattctct ggcttctga 360
 agggcagcag actcttgagt atactgcaga ggacatgctt tatcagtagg tcctgaggc 420
 tccaggggctt caactgacca agtaacacag aagtgggtt atgtggctt tttgggtcg 480
 aaac 484

<210> 199

<211> 429

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 77, 88, 134, 151, 189, 227, 274, 319

<223> n = A,T,C or G

<400> 199
gcttatgttt tttgttttaa cttttgtttt ttaacattta gaatattaca ttttgtatta 60
tacagtacct ttctcanaca tttgtanaa ttcatttcgg cagctacta ggatttgct 120
gaacattaaa aagngtgata gcgatattag ngccaatcaa atggaaaaaa ggtagtctta 180
ataaaacaana cacaacgtt ttatacaaca tactttaaaa tattaanaaa actcccttaat 240
attgtttcct attaagtatt attcttggg caanatttc tgatgtttt gattttctct 300
caathtagca tttgcttng gttttttct ctathtagca ttctgttaag gcacaaaaac 360
tatgtactgt atggaaatg ttgtaaatat tacctttcc acattttaaa cagacaactt 420
tgaatccaa 429

<210> 200
<211> 279
<212> DNA
<213> Homo sapiens

<400> 200
gctttttga ggaattacag ggaagctcct ggaattgtac atggatatct ttatccctag 60
ggggaaatca aggagctggg cacccctaattt tctttatgga agtgtttaaa actatttaa 120
ttttattaca agtattacta gagtagtggt tctactctaa gatttcaaaa gtgcattttaa 180
aatcatacat gttcccgctt gcaaataatat ttttattttt gtggagaaaa aaatagtata 240
ttctacataa aaaattaaag atattaacta agaaaaaaaaa 279

<210> 201
<211> 569
<212> DNA
<213> Homo sapiens

<400> 201
taggtcaagtttttagaaaa ctcttaatag ctcatactct tgataccaaa agcagccctg 60
attgttaaag cacacacctg cacaagaagc agtgtatggt gcatttacat ttcttggtt 120
cacaaaaaaa aattctcaaa aagcaaggac ttacgcttt tgcaaaagcct ttgagaagtt 180
actggatcat aggaagctta taacaagaat ggaagattct taaataactc actttctttg 240
gtatccagta acagtagatg ttcaaaaatgt gtagctgatt aataccagca ttgtgaacgc 300
tgtacaacct tgggttatt actaaggcaag ttactactag cttctgaaaa gtagcttcat 360
aattaatgtt atttatacac tgccttccat gactttact ttgccttaag ctaatctcca 420
aaatctgaaa tgctactcca atatcagaaaa aaaaggggaa ggtggattttatccctgt 480
gattttaaaga gtacagagaa tcatgcacat ctctgatttttcatatatg tctagtgtgt 540
aataaaaatgc aaagatgaac tctcaaaaaa 569

<210> 202
<211> 501
<212> DNA
<213> Homo sapiens

<400> 202
attaataaggc ttaataatttgg tggcaagga tcctttgtt ttcttggca tgcaagctcc 60
tagcatctgg cagtggggcc aagaaaataa ggtttatgca tgtatgtatgg ttttcttctt 120
gagcaacatg attgagaacc agtgtatgtc aacaggtgca tttgagataa cttaaatgaa 180
tgtacctgtg tggctcaagc tggaaatctgg tcaccttcca tccatgcaac aacttggc 240
aattcttgac aatgaaatgtt agctcaatgtt gcatatggat tcaatcccc accatcgatc 300
atagcaccac ctatcagcac tggaaactct ttgcattaa gggatcatttgc caagagc 360
gtgactgaca ttatgaaggc ctgtactgaa gacagcaagc tgtagtaca gaccagatgc 420
tttcttgca ggctcggtt acctcttggaa aacactcaat gcaagatagt gtttcagtg 480

tggcatattt	tggaattctg	c	501				
<210>	203						
<211>	261						
<212>	DNA						
<213>	Homo sapiens						
<220>							
<221>	misc_feature						
<222>	36, 96						
<223>	n = A,T,C or G						
<400>	203						
gacaagctcc	tggtcttgag	atgtcttc	gttaangaga	tgggccttt	ggaggtaaag	60	
gataaaatga	atgagttctg	tcatgattca	ctatntata	acttgc	catga	cctttactgt	120
gttagctctt	tgaatgtct	tgaatttta	gactttctt	gtaaacaaaat	gatatgtcct	180	
tatcattgt	taaaagctgt	tatgtgcaac	agtgtggaga	ttccttgct	gatthaataaa	240	
aatacttaaa	cactgaaaaaa	a				261	
<210>	204						
<211>	421						
<212>	DNA						
<213>	Homo sapiens						
<400>	204						
agcatctttt	ctacaacgtt	aaaattgcag	aagttagctt	tcattaaaaa	acaacaacaa	60	
caacaataac	aataaatcct	aagtgtaaat	cagttattct	accccc	tacc	aaggatatac	120
gcctgttttt	tccctttttt	ctcctggaa	taattgtgg	cttcttcca	aatttctaca	180	
gcctcttcc	tcttc	catg	cttgagctc	cctgttgc	cgc	atgcgtg	240
gcttgtgtgc	ttggactcg	ctccaggtgg	aagcatgctt	tcccttggta	ctgttggaga	300	
aactcaaacc	ttcaagccct	aggtgttagcc	atttgtcaa	gtcatcaact	gtat	ttttgt	360
actggcatta	acaaaaaaag	aagataaaat	attgtaccat	taaactttaa	taaaacttta	420	
a						421	
<210>	205						
<211>	460						
<212>	DNA						
<213>	Homo sapiens						
<400>	205						
tactctcaca	atgaaggacc	tggaatgaaa	aatctgtgtc	taaacaagtc	ctcttttagat	60	
tttagtgcaa	atccagagcc	agcgtcggtt	gcctcgagta	attcttccat	gggtacctt	120	
ggaaaagctc	tcaggagacc	tcaccttagat	gcctattcaa	gctttggaca	gccatcagat	180	
tgtcagccaa	gagcctttta	tttgaagct	cattttccc	cagacttgg	ctctgggtca	240	
gaggaagatg	ggaaaagaaaag	gacagattt	caggaagaaa	atcacat	tacctttaaa	300	
cagactttag	aaaactacag	gactccaaat	tttcaagtctt	atgacttgg	cacatagact	360	
gaatgagacc	aaaggaaaag	cttaacatac	tacctaagg	tgaacttta	tttaaaagag	420	
agagaatctt	atgttttta	aatggagtta	tgaatttta			460	
<210>	206						
<211>	481						
<212>	DNA						
<213>	Homo sapiens						

<400> 206

tgtggtgaa ttcgggacgc ccccagaccc tgacttttc ctgcgtggc cgctctcc 60
 tgcggaagca gtgacctctg acccctggtg accttcgctt tgagtgcctt ttgaacgctg 120
 gtcccgccgg acttgggttt ctcaagctct gtctgtccaa agacgctccg gtcgagggtcc 180
 cgccctgcct gggtggatac ttgaacccca gacccccctc tgtgctgctg tgtccggagg 240
 cggccttccc atctgcctgc ccacccggag ctcttccgc cggcgcaggg tcccaagccc 300
 acctcccgcc ctcagtcctg cggtgtgcgt ctggcacgt cctgcacaca caatgcaagt 360
 cctggcctcc gcgcggccccc gcccacgcga gccgtacccg ccgccaactc tgttatttat 420
 ggtgtgaccc cctggaggtg ccctcgcccc accggggcta ttattttttt aatttatttg 480
 t 481

<210> 207

<211> 605

<212> DNA

<213> Homo sapiens

<400> 207

acccttttg gattcagggc tcctcacaat taaaatgagt gtaatgaaac aaggtgaaaa 60
 tatagaagca tccctttgtt tactgttttgc ctacttacag tgtacttggc attgctttat 120
 ctcaactggat tctcacggta ggatttctga gatcttaatc taagctccaa agttgtctac 180
 tttttgtatc ctagggtgct cctttgttt tacagagcag ggtcacttga ttgtcttagct 240
 ggtggcagaa ttggcaccat tacccaggtc tgactgacca ccagtcagag gcactttatt 300
 tgtatcatga aatgatttga aatcatttga aagcagcga gtctgataat gaatgccagc 360
 tttccttgcgtt ctgtataaac aaagactcca aatattctgg agaaccttga taaaagttt 420
 aagggtttaga ttgggattttg aagacaaaat tgttaggaaat cttacattt tgcaataaca 480
 aacattaatg aaagcaaaac attataaaaat taattttat tcaccacata cttatcaatt 540
 tcttgatgtt tccaaatgac atctaccaga tatgttttg tggacatctt ttctgttta 600
 cataaa 605

<210> 208

<211> 655

<212> DNA

<213> Homo sapiens

<400> 208

ggcgttgttc tggattccccg tcgtaactta aaggaaact ttcacaatgt ccggagccct 60
 tcatgtcctg caaatgaagg aggaggatgt ccttaagttc cttgcagcag gaacccactt 120
 aggtggcacc aatctgact tccagatgaa acatgacatc tataaaagga aaagtgtatgg 180
 catctataatc ataaatctca agaggacctg ggagaagctt ctgctggcag ctctgtcaat 240
 tggccattt gaaaacccctg ctgatgtca gtttatatcc tccaggaata ctggccagag 300
 ggctgtgctg aagtttgctg ctgccactgg agccactcca attgtgcctt gcttcactcc 360
 tggAACCTTC actaaccaga tccaggcage cttccggag ccacggcttc ttgtggttac 420
 tgaccccagg gctgaccacc agcctctcac ggaggcatct tatgttaacc tacctaccat 480
 tgcgtgtgtt aacacagatt ctctctgcg ctatgtggac attgccatcc catgcaacaa 540
 caagggagct cactcagtgg gtttgatgtg gtggatgtg gctcggaaag ttctgcgcatt 600
 gctggcacc atttcccggtt aacacccatg ggaggtcatg cctgatctgt acttc 655

<210> 209

<211> 621

<212> DNA

<213> Homo sapiens

<400> 209

cattttagaac atggttatca tccaagacta ctctaccctg caacattgaa ctcccaagag 60

caaatccaca ttcctcttga gttctgcagc ttctgtgtaa ataggcagc tgcgtctat 120
 gccgtagaat cacatgatct gaggaccatt catggaaagct gctaaatagc ctatgtctggg 180
 gagtcctcca taaagtttg catggagcaa acaaacagga ttaaacttagg tttggttcct 240
 tcagccctct aaaagcatag ggcttagct gcaggcttcc ttgggcttcc tctgtgtgtg 300
 tagtttgtaa aacactatacg catctgttaa gatccagtgt ccatggaaac cttccacat 360
 gccgtactc tggactatat cagttttgg aaagcagggt tcctctgcct gctaacaagc 420
 ccacgtggac cagtcgtaat gtcttcctt tacacctatg ttttaataa gtcaaacttc 480
 aagaaacaat ctaaacaagt ttctgttgca tatgtgttg tgaacttgta tttgtattta 540
 gtaggctct atattgcatt taacttgttt ttgttaactcc tgattctcc tttcggata 600
 ctattgatga ataaagaaaat t 621

<210> 210

<211> 533

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 20, 21, 61

<223> n = A,T,C or G

<400> 210

cgcccttgggg agccggcggn ngagtccggg acgtggagac ccggggtccc ggcagccggg 60
 nggccccggg gcccagggtg gggatgcacc gccgcggggt gggagctggc gccatcgcca 120
 agaagaaaact tgcagaggcc aagtataagg agcgaggac ggtcttggct gaggaccagc 180
 tagcccatgt gtcaaaggcag ttggacatgt tcaagaccaa cctggaggaa tttgccagca 240
 aacacaagca ggagatccgg aagaatccctg agtccgtgt gcagttccag gacatgtgtg 300
 caaccattgg cgtggatccg ctggcctctg gaaaaggatt ttggtctgag atgtggggcg 360
 tggggactt ctattacgaa ctaggtgtcc aaattatcga agtgcgcctg gcgctgaagc 420
 atcgaatgg aggtctgtata actttggagg aactacatca acaggtgttg aagggaaagg 480
 gcaagttcgc ccaggatgtc agtcaagatg acctgatcag agccatcaag aaa 533

<210> 211

<211> 451

<212> DNA

<213> Homo sapiens

<400> 211

ttagctttag ccgagaacga ggcgagaaag ctggagaccg aggagaccgc ctagagcgga 60
 gtgaacgggg aggggaccgt ggggaccggc ttgatcggtgc gcggacacct gctaccaagc 120
 ggagcttcag caaggaagtg gaggagcggg gtagagaacg gcccctccag cctgaggggc 180
 tgcgcaggc agctagcctc acggaggatc gggaccgtgg gcgggatgcc gtgaagcgag 240
 aagctgcctt acccccagtg agccccctga aggccgctct ctctgaggag gagttagaga 300
 agaaatccaa ggctatcatt gaggaatatc tccatctcaa tgacatgaaa gaggcagtcc 360
 agtgcgtgca ggagctggcc tcaccctct tgcttcat ctttgcgtcg catgggtgtcg 420
 agtctacgct ggagcgcagt gccattgctc g 451

<210> 212

<211> 471

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 54

<223> n = A,T,C or G

<400> 212

```

gtgattattc ttgatcaggg agaagatcat ttagatttg tttgcattcc ttanaatgga 60
ggcaacatt ccacagctgc cctggctgtg atgagtgtcc ttgcaggggc cgagtagga 120
gcactgggtt gggggcgaa ttgggttac tcgatgtaa ggattcctt tggtgtgtt 180
gagatccagt gcagttgtga tttctgtgga tcccagctg gttccagggaa tttgtgtga 240
ttggcttaaa tccagtttc aatcttcgac agctggctg gaacgtgaac tcagtagctg 300
aacctgtctg acccggtcac gttcttgat cctcagaact ctgtctt gtgggttgg 360
gggtgggaaac tcacgtgggg agcgggtggct gagaaaatgt aaggattctg gaatacatat 420
tccatgggac tttccttccc tctcctgctt cctctttcc tgctccctaa c 471

```

<210> 213

<211> 511

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 27, 63, 337, 442

<223> n = A,T,C or G

<400> 213

```

ctaatttagaa acttgctgta cttttnttt tcttttaggg gtcaaggacc ctctttata 60
ctnccatttg cctacaataa attattgcag cagttgcaa tactaaaata tttttata 120
actttatatt tttccctttt ataaaggat gctgcatagt agagttggta taattaaact 180
atctcagccg tttccctgtt ttccatctg ctccatatgc ctcatgtcc ttccagggag 240
ctctttaaat cttaaagttc tacatttcat gctcttagtc aaattctgtt accttttaa 300
taactcttcc cactgcataat ttccatctg aattggngt tcttaattct gaaactgttag 360
ttgagataaca gctatttaat atttctggga gatgtgcatt cctcttctt gtgttgccc 420
aagggtgtt tgcgttaactg anactcctt atatgttca gagaatttag gcaaacaactg 480
gccatggccg tggagactt gggagtaaaa t 511

```

<210> 214

<211> 521

<212> DNA

<213> Homo sapiens

<400> 214

```

agcattgcc aataatccct aattttccac taaaaatata atgaaatgtt gttaagctt 60
ttgaaaagtt taggttaaac ctactgttgt tagattaatg tatttgttgc ttcccttat 120
ctggaatgtg qcattagctt ttttattttt accctcttta attcttattt aattccatga 180
cttaaggttg gagagctaaa cactggatt tttggataac agactgacag tttgcataa 240
ttataatcg cattgtacat agaaaaggata tggctacatt ttgttaatc tgactttct 300
aaatatcaa aaaggaaat gaagtataaa tcaattttt tataatctgt ttgaaacatg 360
agtttattt gcttaatatt agggcttgc ccctttctg taagtctttt gggatcctgt 420
gtagaagctg ttctcattaa acaccaaaca gttaagtcca ttctctggta ctagctacaa 480
attcggttca atattctact taacaattta aataaaactga a 521

```

<210> 215

<211> 381

<212> DNA

<213> Homo sapiens

```

<220>
<221> misc_feature
<222> 17, 20, 60, 61, 365
<223> n = A,T,C or G

<400> 215
gagcggagag cggaccngtn agagccctga gcagccccac cgccgcgcgc ggcctagtt 60
ncatcacacc ccgggaggag ccgcagctgc cgcagccgc cccagtcaacc atcaccgcaa 120
ccatgagcag cgaggccgag acccagcagc cgccgcgcgc cccccccgcc gccccgcgc 180
tcagcgcgc cgcacaccaag cccggcacta cgggcagcgg cgcaggagc ggtggcccg 240
gcggcctcac atcggcggcg cctgccggcg gggacaagaa ggtcatcgca acgaaggttt 300
tgggaacagt aaaatggttc aatgttaagga acggatatgg tttcatcaac aggaatgaca 360
ccaangaaga tgtatttgta c 381

<210> 216
<211> 425
<212> DNA
<213> Homo sapiens

<400> 216
ttactaacta ggtcattcaa ggaagtcaag ttaactaaa catgtcacct aaatgcactt 60
gatggtgtttg aaatgtccac cttcttaaat ttttaagatg aacttagttc taaagaagat 120
aacaggccaa tcctgaaggt actccctgtt tgctgcagaa tgtcagatata ttggatgtt 180
gcataagagt cctatttgcc ccagtttaatt caactttgt ctgcctgtt tgtggactgg 240
ctggctctgt tagaactctg tccaaaaagt gcatgaaata taacttgtaa agttccac 300
aattgacaat atatatgcat gtgtttaaac caaatccaga aagcttaaac aatagagctg 360
cataatagta ttattnaaag aatcacaact gtaaacatga gaataactt aggattctag 420
tttag 425

<210> 217
<211> 181
<212> DNA
<213> Homo sapiens

<400> 217
gagaaaccaa atgataagggtt gtagagcctg atgactccaa acaaagccat cacccgcatt 60
cttcctcctt cttctggc tacagctcca agggcccttc accttcatgt ctgaaatgga 120
actttggctt ttcaagtggaa agaatatgtt gaagtttca ttttgttcta gaaaaaaaaa 180
a 181

<210> 218
<211> 405
<212> DNA
<213> Homo sapiens

<400> 218
caggccttcc agttcaactga caaacatggg gaagtgtgcc cagctggctg gaaacctggc 60
agtgatacca tcaaggctga tgtccaaaag agcaaagaat atttctccaa gcagaagtga 120
gcgctggct gtttagtgc caggctgcgg tgggcagcca tgagaacaaa acctcttctg 180
tatttttttt ttccatttagt aaaacacaag acttcagatt cagccgatt gtgtgttctt 240
acaaggcagg ctttcctac aggggggtgga gagaccagcc tttcttcctt tggtaggaat 300
ggcctgagtt ggcgtgtgg gcaggctact gggttgtatg atgtatttagt agagcaaccc 360
attaatctt tgtagttgtt attaaacttg aactgagaaa aaaaa 405

```

<210> 219
<211> 216
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 207, 210
<223> n = A,T,C or G

<400> 219
actccaagag ttagggcagc agagtggagc gatttagaaa gaacattta aaacaatcag 60
ttaatttacc atgtaaaatt gctgtaaatg ataatgtgtc cagatttctt gttcaaataat 120
tcaattgtaa acttottgtt aagactgtta cgtttctatt gctttgtat gggatattgc 180
aaaaataaaaa aggaaagaac cctcttnaan aaaaaa 216

<210> 220
<211> 380
<212> DNA
<213> Homo sapiens

<400> 220
cttacaaatt gccccatgt ttagggaca cagaaccctt tgagaaaact tagatttttg 60
tctgtacaaa gtcttgcct ttttccttct tcattttttt ccagtacatt aaatttgc 120
atttcatctt tgagggaaac tgatttagatg gggttgtttt gtgttctgtat ggagaaaaaca 180
gcaccccaag gactcagaag atgatTTAA cagttcagaa cagatgtgtc caatattgg 240
gcatgtataa atgtttagtg gcagtcaaaa gtcatgattt ttatcttagt tcttcattac 300
tgcattgaaa aggaaaacctt gtctgagaaa atgcctgaca gtttaattta aaactatgg 360
gtaagtctttt gacaaaaaaaaa 380

<210> 221
<211> 398
<212> DNA
<213> Homo sapiens

<400> 221
ggtagtaag ctgtcgactt tgtaaaaaaatga aaaaaaaaaagg aaaaatgaat 60
tgtatattta atgaatgaac atgtacaatt tgccactggg aggaggttcc tttttgtgg 120
gtgagtctgc aagtgaattt cactgatgtt gatattcatt gtgtgttagtt ttatTCGTT 180
cccagccccg tttccctttta ttttggagct aatgccagct gcgtgtctag ttttggatgc 240
agtaaaaatag aatcagcaaa tcactttat ttttcatttc tttccggat ttttgggtt 300
gtttctgtgg gagcagtgtc caccaactct tcctgtatat tgccttttg ctggaaaatg 360
ttgtatgttg aataaaattt tctataaaaa ttaaaaaaaaa 398

<210> 222
<211> 301
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 49, 64
<223> n = A,T,C or G

<400> 222

ttcgataatt gatctcatgg gctttccctg gagggaaaggt ttttttnt gtttattttt 60
taanaacttg aaacttgtaa actgagatgt ctgttagctt ttgcacatc tggatgttat 120
gtgaagatt caaaaacctga gaggacttt tcttgcattt gaattatgag aaaggcacta 180
gatgacttta ggatttgcattt ttgcctcat ttcttgcac gccttgcgttgg 240
ggagggaaat ctgttttattt ttcctacaa ataaaaagct aagattctat atcgcaaaaa 300
a 301

<210> 223

<211> 200

<212> DNA

<213> Homo sapiens

<400> 223

gtaagtgcgtt aggaagaaaac tttgcaaaca tttaatgagg atacactgtt cattttaaa 60
attccttcac actgttaattt aatgtgttt atattctttt gtagtaaaac aacataactc 120
agatttctac aggagacagt ggttttattt ggattgtctt ctgtaatagg tttcaataaa 180
gctggatgaa cttaaaaaaaaa 200

<210> 224

<211> 385

<212> DNA

<213> Homo sapiens

<400> 224

gaaaggttt atccggactc aaagaaaagca aaggagggtgtt agccgcccattc tgctggagca 60
gctgttaactt caagacctgg acaagagatt cgtcagcgaa ctgcagctca aagaaacctt 120
tctccaacac cagcaagccc taaccaggcc cctccctccac aagttccagt attccttgg 180
ccaccaaaagg acagttctgc ccctgggtggc cccccagaaa ggactgttac tccagcccta 240
tcatcaaattt tgttaccaag acatcttggc tcccctgtca cttcagtgcc tggaaatgggt 300
aaacagagca cttaatgtta ttacagttt atattgtttt ctctgggtac caataaaaacg 360
ggccatttttcc aggtggtaaa aaaaa 385

<210> 225

<211> 560

<212> PRT

<213> Homo sapiens

<400> 225

Met	Glu	Cys	Leu	Tyr	Tyr	Phe	Leu	Gly	Phe	Leu	Leu	Ala	Ala	Arg
1				5			10					15		

Leu	Pro	Leu	Asp	Ala	Ala	Lys	Arg	Phe	His	Asp	Val	Gly	Asn	Glu
				20			25					30		

Arg	Pro	Ser	Ala	Tyr	Met	Arg	Glu	His	Asn	Gln	Leu	Asn	Gly	Trp	Ser
					35		40				45				

Ser	Asp	Glu	Asn	Asp	Trp	Asn	Glu	Lys	Leu	Tyr	Pro	Val	Trp	Lys	Arg
					50		55			60					

Gly	Asp	Met	Arg	Trp	Lys	Asn	Ser	Trp	Lys	Gly	Gly	Arg	Val	Gln	Ala
					65		70			75			80		

Val	Leu	Thr	Ser	Asp	Ser	Pro	Ala	Leu	Val	Gly	Ser	Asn	Ile	Thr	Phe
					85				90			95			

Ala	Val	Asn	Leu	Ile	Phe	Pro	Arg	Cys	Gln	Lys	Glu	Asp	Ala	Asn	Gly
					100			105			110				

Asn Ile Val Tyr Glu Lys Asn Cys Arg Asn Glu Ala Gly Leu Ser Ala
 115 120 125
 Asp Pro Tyr Val Tyr Asn Trp Thr Ala Trp Ser Glu Asp Ser Asp Gly
 130 135 140
 Glu Asn Gly Thr Gly Gln Ser His His Asn Val Phe Pro Asp Gly Lys
 145 150 155 160
 Pro Phe Pro His His Pro Gly Trp Arg Arg Trp Asn Phe Ile Tyr Val
 165 170 175
 Phe His Thr Leu Gly Gln Tyr Phe Gln Lys Leu Gly Arg Cys Ser Val
 180 185 190
 Arg Val Ser Val Asn Thr Ala Asn Val Thr Leu Gly Pro Gln Leu Met
 195 200 205
 Glu Val Thr Val Tyr Arg Arg His Gly Arg Ala Tyr Val Pro Ile Ala
 210 215 220
 Gln Val Lys Asp Val Tyr Val Val Thr Asp Gln Ile Pro Val Phe Val
 225 230 235 240
 Thr Met Phe Gln Lys Asn Asp Arg Asn Ser Ser Asp Glu Thr Phe Leu
 245 250 255
 Lys Asp Leu Pro Ile Met Phe Asp Val Leu Ile His Asp Pro Ser His
 260 265 270
 Phe Leu Asn Tyr Ser Thr Ile Asn Tyr Lys Trp Ser Phe Gly Asp Asn
 275 280 285
 Thr Gly Leu Phe Val Ser Thr Asn His Thr Val Asn His Thr Tyr Val
 290 295 300
 Leu Asn Gly Thr Phe Ser Leu Asn Leu Thr Val Lys Ala Ala Ala Pro
 305 310 315 320
 Gly Pro Cys Pro Pro Pro Pro Pro Arg Pro Ser Lys Pro Thr
 325 330 335
 Pro Ser Leu Gly Pro Ala Gly Asp Asn Pro Leu Glu Leu Ser Arg Ile
 340 345 350
 Pro Asp Glu Asn Cys Gln Ile Asn Arg Tyr Gly His Phe Gln Ala Thr
 355 360 365
 Ile Thr Ile Val Glu Gly Ile Leu Glu Val Asn Ile Ile Gln Met Thr
 370 375 380
 Asp Val Leu Met Pro Val Pro Trp Pro Glu Ser Ser Leu Ile Asp Phe
 385 390 395 400
 Val Val Thr Cys Gln Gly Ser Ile Pro Thr Glu Val Cys Thr Ile Ile
 405 410 415
 Ser Asp Pro Thr Cys Glu Ile Thr Gln Asn Thr Val Cys Ser Pro Val
 420 425 430
 Asp Val Asp Glu Met Cys Leu Leu Thr Val Arg Arg Thr Phe Asn Gly
 435 440 445
 Ser Gly Thr Tyr Cys Val Asn Leu Thr Leu Gly Asp Asp Thr Ser Leu
 450 455 460
 Ala Leu Thr Ser Thr Leu Ile Ser Val Pro Asp Arg Asp Pro Ala Ser
 465 470 475 480
 Pro Leu Arg Met Ala Asn Ser Ala Leu Ile Ser Val Gly Cys Leu Ala
 485 490 495
 Ile Phe Val Thr Val Ile Ser Leu Leu Val Tyr Lys Lys His Lys Glu
 500 505 510
 Tyr Asn Pro Ile Glu Asn Ser Pro Gly Asn Val Val Arg Ser Lys Gly
 515 520 525
 Leu Ser Val Phe Leu Asn Arg Ala Lys Ala Val Phe Phe Pro Gly Asn
 530 535 540

Gln Glu Lys Asp Pro Leu Leu Lys Asn Gln Glu Phe Lys Gly Val Ser
 545 550 555 560

<210> 226

<211> 9

<212> PRT

<213> Homo sapiens

<400> 226

Ile Leu Ile Pro Ala Thr Trp Lys Ala
 1 5

<210> 227

<211> 9

<212> PRT

<213> Homo sapiens

<400> 227

Phe Leu Leu Asn Asp Asn Leu Thr Ala
 1 5

<210> 228

<211> 9

<212> PRT

<213> Homo sapiens

<400> 228

Leu Leu Gly Asn Cys Leu Pro Thr Val
 1 5

<210> 229

<211> 10

<212> PRT

<213> Homo sapiens

<400> 229

Lys Leu Leu Gly Asn Cys Leu Pro Thr Val
 1 5 10

<210> 230

<211> 10

<212> PRT

<213> Homo sapiens

<400> 230

Arg Leu Thr Gly Gly Leu Lys Phe Phe Val
 1 5 10

<210> 231

<211> 9

<212> PRT

<213> Homo sapiens

<400> 231

Ser Leu Gln Ala Leu Lys Val Thr Val
1 5

<210> 232

<211> 20

<212> PRT

<213> Homo sapiens

<400> 232

Ala Gly Ala Asp Val Ile Lys Asn Asp Gly Ile Tyr Ser Arg Tyr Phe
1 5 10 15
Phe Ser Phe Ala
20

<210> 233

<211> 21

<212> PRT

<213> Homo sapiens

<400> 233

Phe Phe Ser Phe Ala Ala Asn Gly Arg Tyr Ser Leu Lys Val His Val
1 5 10 15
Asn His Ser Pro Ser
20

<210> 234

<211> 20

<212> PRT

<213> Homo sapiens

<400> 234

Phe Leu Val Thr Trp Gln Ala Ser Gly Pro Pro Glu Ile Ile Leu Phe
1 5 10 15
Asp Pro Asp Gly
20

<210> 235

<211> 20

<212> PRT

<213> Homo sapiens

<400> 235

Leu Gln Ser Ala Val Ser Asn Ile Ala Gln Ala Pro Leu Phe Ile Pro
1 5 10 15

Pro Asn Ser Asp
20

<210> 236
<211> 20
<212> PRT
<213> Homo sapiens

<400> 236
Ile Gln Asp Asp Phe Asn Asn Ala Ile Leu Val Asn Thr Ser Lys Arg
1 5 10 15
Asn Pro Gln Gln
20

<210> 237
<211> 21
<212> PRT
<213> Homo sapiens

<400> 237
Arg Asn Ser Leu Gln Ser Ala Val Ser Asn Ile Ala Gln Ala Pro Leu
1 5 10 15
Phe Ile Pro Pro Asn
20

<210> 238
<211> 20
<212> PRT
<213> Homo sapiens

<400> 238
Thr His Glu Ser His Arg Ile Tyr Val Ala Ile Arg Ala Met Asp Arg
1 5 10 15
Asn Ser Leu Gln
20

<210> 239
<211> 20
<212> PRT
<213> Homo sapiens

<400> 239
Arg Asn Pro Gln Gln Ala Gly Ile Arg Glu Ile Phe Thr Phe Ser Pro
1 5 10 15
Gln Ile Ser Thr
20

<210> 240
<211> 21

<212> PRT
<213> Homo sapiens

<400> 240
Gly Gln Ala Thr Ser Tyr Glu Ile Arg Met Ser Lys Ser Leu Gln Asn
1 5 10 15
Ile Gln Asp Asp Phe
20

<210> 241
<211> 20
<212> PRT
<213> Homo sapiens

<400> 241
Glu Arg Lys Trp Gly Phe Ser Arg Val Ser Ser Gly Gly Ser Phe Ser
1 5 10 15
Val Leu Gly Val
20

<210> 242
<211> 20
<212> PRT
<213> Homo sapiens

<400> 242
Gly Ser His Ala Met Tyr Val Pro Gly Tyr Thr Ala Asn Gly Asn Ile
1 5 10 15
Gln Met Asn Ala
20

<210> 243
<211> 20
<212> PRT
<213> Homo sapiens

<400> 243
Val Asn His Ser Pro Ser Ile Ser Thr Pro Ala His Ser Ile Pro Gly
1 5 10 15
Ser His Ala Met
20

<210> 244
<211> 20
<212> PRT
<213> Homo sapiens

<400> 244
Ala Val Pro Pro Ala Thr Val Glu Ala Phe Val Glu Arg Asp Ser Leu
1 5 10 15

His Phe Pro His
20

<210> 245
<211> 20
<212> PRT
<213> Homo sapiens

<400> 245
Lys Pro Gly His Trp Thr Tyr Thr Leu Asn Asn Thr His His Ser Leu
1 5 10 15
Gln Ala Leu Lys
20

<210> 246
<211> 20
<212> PRT
<213> Homo sapiens

<400> 246
Asn Leu Thr Phe Arg Thr Ala Ser Leu Trp Ile Pro Gly Thr Ala Lys
1 5 10 15
Pro Gly His Trp
20

<210> 247
<211> 20
<212> PRT
<213> Homo sapiens

<400> 247
Leu His Phe Pro His Pro Val Met Ile Tyr Ala Asn Val Lys Gln Gly
1 5 10 15
Phe Tyr Pro Ile
20

<210> 248
<211> 20
<212> PRT
<213> Homo sapiens

<400> 248
Pro Glu Thr Gly Asp Pro Val Thr Leu Arg Leu Leu Asp Asp Gly Ala
1 5 10 15
Gly Ala Asp Val
20

<210> 249
<211> 20

<212> PRT
<213> Homo sapiens

<400> 249
Gly Phe Tyr Pro Ile Leu Asn Ala Thr Val Thr Ala Thr Val Glu Pro
1 5 10 15
Glu Thr Gly Asp
20

<210> 250
<211> 20
<212> PRT
<213> Homo sapiens

<400> 250
Phe Asp Pro Asp Gly Arg Lys Tyr Tyr Thr Asn Asn Phe Ile Thr Asn
1 5 10 15
Leu Thr Phe Arg
20

<210> 251
<211> 20
<212> PRT
<213> Homo sapiens

<400> 251
Leu Gln Ala Leu Lys Val Thr Val Thr Ser Arg Ala Ser Asn Ser Ala
1 5 10 15
Val Pro Pro Ala
20

<210> 252
<211> 153
<212> PRT
<213> Homo sapiens

<400> 252
Met Ala Ser Val Arg Val Ala Ala Tyr Phe Glu Asn Phe Leu Ala Ala
1 5 10 15
Trp Arg Pro Val Lys Ala Ser Asp Gly Asp Tyr Tyr Thr Leu Ala Val
20 25 30
Pro Met Gly Asp Val Pro Met Asp Gly Ile Ser Val Ala Asp Ile Gly
35 40 45
Ala Ala Val Ser Ser Ile Phe Asn Ser Pro Glu Glu Phe Leu Gly Lys
50 55 60
Ala Val Gly Leu Ser Ala Glu Ala Leu Thr Ile Gln Gln Tyr Ala Asp
65 70 75 80
Val Leu Ser Lys Ala Leu Gly Lys Glu Val Arg Asp Ala Lys Ile Thr
85 90 95
Pro Glu Ala Phe Glu Lys Leu Gly Phe Pro Ala Ala Lys Glu Ile Ala
100 105 110

Asn	Met	Cys	Arg	Phe	Tyr	Glu	Met	Lys	Pro	Asp	Arg	Asp	Val	Asn	Leu
							115		120					125	
Thr	His	Gln	Leu	Asn	Pro	Lys	Val	Lys	Ser	Phe	Ser	Gln	Phe	Ile	Ser
							130		135				140		
Glu	Asn	Gln	Gly	Ala	Phe	Lys	Gly	Met							
							145		150						

<210> 253

<211> 462

<212> DNA

<213> Homo sapiens

<400> 253

atggccagtg tccgcgtggc ggcctacttt gaaaaacttc tcgcggcgtg gcggcccg 60
aaaggcctctg atggagatta ctacacctt gctgtaccga tggagatgt accaatggat 120
gttatctctg ttgctgatat tggagcagcc gtctcttagca ttttaattc tccagaggaa 180
tttttaggca aggcgcgtggg gtcagtgca gaagcactaa caatacagca atatgctgat 240
tttttgtcca aggcttggg gaaagaagtc cgagatgcaa agattacccc ggaagctttc 300
gagaagctgg gattccctgc accaaaggaa atagccaata tgtgtcggtt ctatgaaatg 360
aagccagacc gagatgtcaa tctcaccac caactaaatc ccaaagtcaa aagcttcagc 420
cagtttatct cagagaacca gggagccttc aaggcatgt ag 462

<210> 254

<211> 8031

<212> DNA

<213> Homo sapiens

<400> 254

tggcaatgg gacgcgcctt gtagcggcgc attaagcgcg gcgggtgtgg tggtaacgcg 60
cagcgtgacc gctacacttgc ccagcgcctt agcgcgcgt ccttcgcctt tctcccttc 120
ctttctcgcc acgttcgcgc gtttccccg tcaagctcta aatcgggggc tccctttagg 180
gttccgattt agtgcatttac ggcacctcga ccccaaaaaa cttgatttagg gtatggttc 240
acgttagtggg ccatgcgcctt gatagacggt ttttcgcctt ttgacgttgg agtccacggtt 300
cttaatagt ggactcttgc tccaaactgg aacaacactc aaccctatct cggcttattc 360
ttttgattta taaggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420
acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtgcacttt 480
tcggggaaat gtgcgcggaa cccctatttg tttattttc taaatacatt caaatatgta 540
tccgctcatg aattaattct tagaaaaact catcgagcat caaatgaaac tgcaatttat 600
tcatatcagg attatcaata ccatattttt gaaaaagccg tttctgtat gaaggagaaa 660
actcaccgag gcagttccat aggtggcaa gatcctggta tcggctgcg attccgactc 720
gtccaacatc aataacaacctt attaattttc cctcgtcaaa aataaggta tcaagtgaga 780
aatcaccatg agtgacgact gaatccgggt agaatggcaa aagtttatgc atttcttcc 840
agacttggtc aacaggccag ccattacgct cgtcatcaaa atcaactcgca tcaaccaaac 900
cgttattcat tcgtgattgc gcctgagcga gacgaaatac gcgatcgcgt taaaaggac 960
aattacaaac aggaatcgaa tgcaaccggc gcagaaacac tgccagcga tcaacaatat 1020
ttcacctga atcaggatatttcttcaata cctgaaatgc tggttcccg gggatcgcag 1080
tggtagtaa ccatgcata tcaggagttt ggttttttttgc ggaagaggca 1140
taaattccgt cagccagttt agtctgacca tctcatctgt aacatcattt gcaacgcgtac 1200
ctttgccatg ttccagaaac aactctggcg catcgggctt cccatataat cgatagattt 1260
tcgcacactga ttgcccggaca ttatcgcgag cccatttata cccatataaa tcagcatcca 1320
tggtagtaa taatcgccgc ctagagcaag acgtttcccg ttgaaatatgg ctcataacac 1380
ccctgttattt actgtttatg taagcagaca gttttattgt tcatgaccaa aatcccttaa 1440
cgtgagttt cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga 1500

gatcctttt ttctgcgcgt aatctgctgc ttgcaaaca aaaaaccacc gctaccagcg 1560
 gtggttgtt tgccggatca agagctacca actcttttc cgaaggtaac tggcttcagc 1620
 agagcgcaga taccaaatac tgtccttcta gtgtagccgt agttaggcca ccacttcaag 1680
 aactctgtag caccgcctac atacctcgct ctgctaattcc ttttaccagt ggctgctgcc 1740
 agtggcgata agtcgtgtct taccgggtt gactcaagac gatagttacc ggataaggcg 1800
 cagcggtcg gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac 1860
 accgaactga gataacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga 1920
 aaggccgaca ggtatccggt aagccgcagg gtcggaacag gagagcgcac gagggagctt 1980
 ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgcccaccc ctgacttgag 2040
 cgtcgatttt tggatgtctc gtcagggggg cgaggcctat gaaaaaacgc cagcaacgcg 2100
 gccttttac ggttccctggc cttttgctgg cctttgctc acatgttctt tcctgcgtta 2160
 tccccgtatt ctgtggataa ccgtattacc gccttgagt gagctgatac cgctcgccgc 2220
 agccgaacga ccgagcgcag cgagtcaagt agcagaggaag cggaagagcg cctgatgcgg 2280
 tattttctcc ttacgcattt gtgcgttatt tcacaccgc tatatggtc actctcagta 2340
 caatctgctc tggatgcccga tagttaaagcc agtatacact ccgctatcgc tacgtgactg 2400
 ggtcatggct gcgcggccac acccgccaaac acccgctgac gcgcctgac gggcttgtct 2460
 gtcggccgca tccggttaca gacaagctgt gaccgtctcc gggagctgca tggatgtcagag 2520
 gttttcaccc tcatcaccga aacgcgcgag gcagctgcgg taaagctcat cagcgtggc 2580
 gtgaagcgat tcacagatgt ctgcctgttc atccgcgtcc agtcgttga gtttctccag 2640
 aagcgtaat gtctggcttc tgataaaagcg gccatgtta agggcggtt tttctgttt 2700
 ggtcaactgat gcctccgtgt aaggggatt tctgttcatg gggtaatga taccgatgaa 2760
 acgagagagg atgctcacga tacgggttac tggatgtgaa catgcccgt tactggaaacg 2820
 ttgtgagggt aaacaactgg cgttatggat gcccgggac cagagaaaaa tcactcaggg 2880
 tcaatgccag cgcttcgtta atacagatgt aggtgttcca cagggttagcc agcagcatcc 2940
 tgcgtgcag atccggaaca taatggtgca gggcgtgac ttccgcgtt ccagacttta 3000
 cggaaacacgg aaaccgaaga ccattcatgt tggatgtcag gtcgcagacg tttgcagca 3060
 gcagtcgctt cacgttcgtc cgcgtatogg tgattcattc tgctaaccag taaggcaacc 3120
 ccgcgcgcct agccgggtcc tcaacgcacag gagcacgatc atgcgcaccc gtggggccgc 3180
 catgcggcg ataatggct gtttctcgcc gaaacgtttt gttggccggac cagtgacgaa 3240
 ggcttggcg agggcgtgca agattccgaa taccgcacgc gacaggccga tcatcgctgc 3300
 gctccagcga aaggcggttcc cggcgaaaat gaccgcacgc gtcgcggca cctgtcttac 3360
 gagttgcattt ataaagaaga cagtcataag tgcggcgacg atagtcatgc cccgcgcaca 3420
 ccggaaaggag ctgactgggt tgaaggctct caaggcattc ggtcgagatc ccggtgccca 3480
 atgatgtgac taacttacat taattgcgtt ggcgtcactg cccgcttcc agtccggaaa 3540
 cctgtcggtc cagctgcattt aatggatcgg ccaacgcgcg gggagaggcg gtttgcgtat 3600
 tggggcccg ggtgggtttt cttttcacca gtgagacggg caacagctga ttggccctca 3660
 ccgcctggcc ctgagagagt tgcagcaagc ggtccacgct ggtttgcggcc agcaggcgaa 3720
 aatccctgttt gatgggtggt aacggcgga tataacatga gctgtcttcg gtatcgctgt 3780
 atcccactac cgagatatacc gcacccaacgc gcagccggaa ctggtaatg gcgcgcattt 3840
 cgcccagcgc catctgatcg ttggcaacca gcatcgactt gggaaacgtat ccctcattca 3900
 gcatttgcatt ggtttgtga aaaccggaca tggacttca gtcgccttcc cgttccgcta 3960
 tcggctgaat ttgattgcgtt gtgagatatt tatgccagcc agccagacgc agacgcgcgg 4020
 agacagaact taatggccc gctaacagcg cgatttgcgtt gtgacccaat gcgaccagat 4080
 gctccacgcc cagtcgcgtt ccgttccat gggagaaaaat aatactgtt gatgggtgtct 4140
 ggtcagagac atcaagaaaat aacgcggaa cattagtgc ggcagctcc acagcaatgg 4200
 catcctggtc atccagcggaa tagttaaatgc tcagccact gacgcgttgc gcgagaagat 4260
 tggatgcaccgc cgcttacatg gtttgcacgc cgcttcgttcc taccatgcac accaccacgc 4320
 tggcaccgcg tggatgcgtt ccgttccat gggagaaaaat aatactgtt gatgggtgtct 4380
 gggccagact ggaggtggca acgccaatca gcaacgactt tttgcggcc agtgggtgtt 4440
 ccacgcgggtt gggaaatgtaa ttcaatgcgtt ccatcgccgc ttccactttt tcccggttt 4500
 tcgcagaaac gtggctggcc tggatgcgtt ccgttccat gacgcgttgc gcgagaagat 4560
 catactctgc gacatcgat aacgttactg gtttgcacatt caccaccctg aattgactt 4620
 ctccggccg ctatcatgcc ataccgcgaa aggtttgcgtt ccattgcgtt gtcgcggaa 4680
 ttcgcacgtt ctcccttacatg cagtcgttccat gggagaaaaat aatactgtt gatgggtgtct 4740

ccgttgagca ccgcccgc aaggaatggt gcatgcaagg agatgggcc caacagtccc 4800
 cggccacgg ggcctgcccc catacccacg ccgaaacaag cgctcatgag cccgaagtgg 4860
 cgagcccgat ctccccatc ggtgatgtcg gcgatatagg cgccagcaac cgcacctgtg 4920
 gcccggta tgccggccac gatgcgtccg gcgttagagga tcgagatctc gatcccgcga 4980
 aattaatacg actcaactata ggggaattgt gagcggataa caattccct ctagaaataa 5040
 tttgtttaa cttaagaag gagatataca tatgcagcat caccaccatc accacggagt 5100
 acagcttcaa gacaatgggt ataatggatt gctattgca attaatcctc aggtacctga 5160
 gaatcagaac ctcatctcaa acattaagga aatgataact gaagcttcat ttacctatt 5220
 taatgctacc aagagaagag tattttcag aaatataaag atttaatac ctgccacatg 5280
 gaaagctaataa aataacagca aaataaaaaca agaatcatat gaaaaggcaatgt 5340
 gactgactgg tatggggcac atggagatga tccatacacc ctacaataca gagggtgtgg 5400
 aaaagagggaa aataacattc atttcacacc taatttccta ctgaatgata acttaacagc 5460
 tggctacgta tcacgaggcc gagtttgtt ccatgaatgg gcccacccctc gttgggtgt 5520
 gttcgtatgag tataacaatg acaaaccctt ctacataat gggcaaaatc aaattaaagt 5580
 gacaaggtgt tcatctgaca tcacaggcat ttttgtgtg gaaaaaggc cttgccccca 5640
 agaaaaactgt attattatgta agcttttaa agaaggatgc acctttatct acaatagcac 5700
 caaaaatgca actgcatcaa taatgttcat gcaaagttt tcttctgtgg ttgaattttg 5760
 taatgcaagt accccacaacc aagaagcacc aaacctacag aaccagatgt gcagcctcag 5820
 aagtgcattgg gatgtatca cagactctgc tgactttcac cacagcttc ccatgaacgg 5880
 gactgagctt ccacccctc ccacattctc gctttagag gctgtgtaca aagtggctg 5940
 tttagtgtcg gatgtgtcca gcaagatggc agaggctgac agactccctc aactacaaca 6000
 agccgcagaa ttttatttga tgcagattgt taaaattcat acttcgtgg gcattgcccag 6060
 tttcgacagc aaaggagaga tcagagccca gctacaccaa attaacagca atgatgatcg 6120
 aaagttgtcg gtttcatatc tgccaccac tgtatcagct aaaacagaca tcagcattt 6180
 ttcagggttt aagaaaggat ttgaggtgt tgaaaaactg aatggaaaag cttatggctc 6240
 tgtgtatgata ttagtgacca gcggagatga taagtttctt ggcaattgt tacccactgt 6300
 gctcagcagt ggttcaacaa ttcaactccat tgccctgggt tcacatgtcag ccccaaatct 6360
 ggaggaattt tcacgtctt caggaggtt aaagttctt gttccagata tataaaactc 6420
 caatagcatg attgtatgctt tcagtagaaat ttcctctgaa actggagaca tttccagca 6480
 acatattcag ctgaaaagta caggtaaaaa tgtaaaacact caccatcaat tgaaaaacac 6540
 agtgcactgtg gataatactg tggcaacga cactatgtt ctatgtcag ggcaggccag 6600
 tggcctctt gagattatat tatttgatcc tgatggacga aaataactaca caaataattt 6660
 tattcaccaat ctaacttttgc gacagctgatcc tctttggatt ccaggaacag ctaagcctgg 6720
 gcactggact tacaccctga acaataccca tcattctctg caagccctga aagtgcacgt 6780
 gacccctcgc gctccaact cagctgtgcc cccagccact gtggaaagct ttgtggaaag 6840
 agacagccctc cattttccctc atcctgtgt gatttatgcc aatgtgaaac aggattttt 6900
 tcccattttt aatgccactg tcactgcccc acgttggccaa gagactggag atccgtttac 6960
 gctgagactc cttgtatgtg gacgggtgc tgatgttata aaaaatgtg gaatttactc 7020
 gaggtatttt ttctcccttgc ctgcaaatgg tagatatacg ttgaaagtgc atgtcaatca 7080
 ctctcccagc ataagcaccc cagccactc tattccaggg agtcatgcta tgtatgtacc 7140
 aggttacaca gcaaaacggta atattcagat gaatgtccaa aggaaatcag taggcagaaa 7200
 tgaggaggag cgaaaatgggg gcttttagccg agtcaagctca ggaggctct tttcgtgtct 7260
 gggagttcca gctggcccccc accctgatgt gtttccacca tgcaaaatggat 7320
 agctgtaaaaa gtggaaaggaa aattgacccct atcttggaca gcacccctgg aagactttga 7380
 tcagggccag gctacaagct atgaaataag aatgatgtt aatgtcataca atatccaaga 7440
 tgacttttac aatgtcattt tagtaaaatc atcaaaagcga aatccctcagc aagctggcat 7500
 cagggagata ttacgttct caccccaat ttccacgaat ggacccctgg aatcagccaa 7560
 tggagaaaca catggaaagcc acagaattta tggttgcataa cgacccctgg ataggaactc 7620
 cttacagtct gctgtatcta acattgcccc ggcgcctctg tttattccctt ccaattctga 7680
 tcctgtaccc gccagagatt atcttataatt gaaaggagtt ttaacagacaa tgggtttgt 7740
 aggaatcatc tgccttataa tagttgtgac acatcataact ttaacagacaa aaaagagagc 7800
 agacaagaaa gagaatggaa caaaattattt ataatgaatt ctgcagatct ccatcacact 7860
 ggcggccgct cgagcaccac caccaccacc actgagatcc ggctgtcaac aaagccgaa 7920
 aggaagctga gttggctgtc gccaccgcgtc agcataactt acgtataacccttggccct 7980

ctaaacgggt cttgaggggt ttttgctga aaggaggaac tatatccgga t 8031

<210> 255
<211> 401
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 9, 67, 247, 275, 277, 397
<223> n = A,T,C or G

<400> 255
gtggccagn actagaaggc gaggcgccgc gggaccatgg cggcggcggc ggacgagcgg 60
agtccanagg acggagaaga cgaggaagag gaggagcagt tggttctgggt ggaatttatca 120
gaaatttattt attcagactt cctctcaaaa tgtgaaaata aatgcaaggt ttggggcatt 180
gacactgaga ggcccattct gcaagtggac agctgtgtct ttgctgggga gtatgaagac 240
actctangga cctgtgttat atttgaagaa aatgntnaac atgctgatac agaaggcaat 300
aataaaacag tgctaaaata taaatgccat acaatgaaga agtcagcat gacaagaact 360
ctcctgacag agaagaagga aggagaagaa aacatangtg g 401

<210> 256
<211> 401
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 7, 37, 51, 79, 96, 98, 103, 104, 107, 116, 167, 181, 183,
194, 206, 276, 303, 307, 308, 310, 323, 332, 341, 353, 374,
376
<223> n = A,T,C or G

<400> 256
tggtggncct gggatgggga accgcggtgg cttccngga gtttcggca ntggcatccg 60
ggccgggggt cgccggccng gacggggccg gggccnangc cgnnganctc gcggangcaa 120
ggccgaggat aaggagtggc tgccccgtcac caacctggc cgcttgncca aggacatgaa 180
nancaagccc ctgnaggaga tctatntctt cttccctgcc ccattaagga atcaagagat 240
catttgattt cttcctgggg gcctctctca aggatnaggt ttttgaagat tatgccagtg 300
canaaannan accccgttgc cnngtccatc tncacccaac ncttccaagg gcnatTTTg 360
tttaggcctc attncngggg ggaaccttaa cccaaTTTg g 401

<210> 257
<211> 401
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 382, 387
<223> n = A,T,C or G

<400> 257
atgtatgtaa aacacttcat aaaatgtaaa gggctataaac aaatatgtta taaagtgatt 60
ctctcagccc tgaggtatac agaatcattt gcctcagact gctgttggat tttaaaattt 120
ttaaaatatac tgctaagtaa tttgctatgt cttctccac actatcaata tgccctgcttc 180
taacaggctc cccactttct tttaatgtgc tggttatgagc tttggacatg agataaccgt 240
gcctgttcag agtgtctaca gtaagagctg gacaaactct ggagggacac agtcttttag 300
acagctctt tgttgtttt ccactttct gaaagggttca cagtaacacctt cttagataata 360
gaaactcccc gttaaaggctt angctancaa ttttttttag t 401

<210> 258
<211> 401
<212> DNA
<213> Homo sapiens

<400> 258
ggagcgctag gtcgggtgtac gaccgagatt agggtgcgtg ccagctccgg gaggccgcgg 60
tgagggggccg ggcccaagct gccgaccgcga gccgatcgctc agggtcgcca ggcgcctcagc 120
tctgtggagg agcagcagta gtcggagggt gcaggatatt agaaaatggct actccccagt 180
caatttcat ctttgcatac tgcattttaa tgataacaga attaattctg gcctcaaaaa 240
gctactatga tatcttaggt gtgcggaaat cggcatcaga ggcgcggaaatc aagaaggcct 300
ttcacaagtt ggcatgaag taccaccctg acaaaaataa gaccaggatg ctgaagcaaa 360
attcagagat attgcagaag catatgaaac actctcagat g 401

<210> 259
<211> 401
<212> DNA
<213> Homo sapiens

<400> 259
atggggtttg gagggaggat gatgacagag gaatgccctt tggccatcac gtttttgatt 60
ctccagaata ttgtgggtt gatcatcaat gcagtcgtt taggctgcat tttcatgaaa 120
acagctcagg ctcacagaag ggcggaaact ttgattttca gccgcctatgc tgtgattgcc 180
gtccgaaatg gcaagctgtg cttcatgtt cggatgggtg acctgaggaa aagcatgatc 240
attagtgcct ctgtgcgcattt ccaggtggtc aagaaaacaa ctacacctga agggggaggtg 300
gttccttattt accaacttggc cattccgtt gataacccaa tcgagagcaa taacattttt 360
ctggtggccc ctttgatcat ctgcacatgtt attgacaagc g 401

<210> 260
<211> 363
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 7, 9, 19, 41, 63, 73, 106, 111, 113, 116, 119, 156, 158,
162, 187, 247, 288, 289, 290, 292, 298, 299, 300, 340
<223> n = A,T,C or G

<400> 260
aggaganang gagggggana tgaataggga tggagagggaa natagtggat gagcaggca 60
canggagagg aancagaaaag gagaggcaag acagggagac acacancaca nangangana 120
caggtggggg ctgggggtggg gcatggagag cctttnangt cncccaggcc accctgctct 180
cgctggncgt ttgaaaccca ctccatggct tcctgcact gcagttggc ccaggctgg 240
cttatnctg gaatgcaagt ggctgtggct tggagcctcc cctctggnnn angggaaannnn 300

attgctccct tatctgcttg gaatatctga gttttccan cccggaaata aaacacacac 360
 aca 363

<210> 261
 <211> 401
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 114, 152
 <223> n = A,T,C or G

<400> 261
 cggctctccg ccgctctccc ggggttccg ggcacttggg tcccacagtc tggcctgct 60
 tcaccttccc ctgacctgag tagtcgccc ggcacagggtt ctcagaggca ctgngactga 120
 cttccctgga tttatgagc gggctgatgc anaaaactctt cggaaaggcta tgaaaggctt 180
 gggcacagat gaggagagca tcctgactct gttgacatcc cgaagtaatg ctcagcgcca 240
 gaaaaatctct gcagctttta agactctgtt tggcaggat cttctggatg acctgaaatc 300
 agaactaact ggaaaatttg aaaaattaat tgtggctctg atgaaacctt ctcggcttta 360
 ttagtgcattt gaactgaaac atgccttggaa gggagctgga a 401

<210> 262
 <211> 401
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 7, 26, 258, 305, 358, 373, 374, 378
 <223> n = A,T,C or G

<400> 262
 agtctanaac atttctaata ttttgngctt tcatatatca aaggagatata tgtgaaacta 60
 tttttaata ctgttaaatg acatataatgata tttctgtaca gtagagaaag 120
 agtttataac atgaagaata ttgttaccatt atacattttc attctcgatc tcataagaaa 180
 ttcaaaagaa taatgataga ggtgaaaata tgtttacttt ctctaaatca agcttagttg 240
 tcaactcaaa aattatgntg catagttta ttttgaattt aggttttggg actactttt 300
 tccancttca atgagaaaat aaaatctaca actcaggagt tactacagaa gttctaaanta 360
 ttttttgct aannagcnaa aaatataaac atatgaaaat g 401

<210> 263
 <211> 401
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 232, 290, 304, 326, 383
 <223> n = A,T,C or G

<400> 263
 ctgtccgacc aagagaggcc ggccgagccc gaggcttggg cttttgcctt ctggcggagg 60
 gatctgcggc ggtttaggag gcggcgctga tcctgggagg aagaggcagc tacggcggcg 120

gcggcggtgg cggttagggc ggccggcaat aaaggggccg ccggcggtg atgcggtgac 180
 cactgcggca ggcggcaggag ctgagtgccc cccggccctc agcccgcccc gnccgaccgg 240
 ctttcctcaa ctctccatct tctcctgccc accgagatcg ccgaggcggn ctcaggctcc 300
 ctanccctt ccccgccct tccccncccc cgtccccgcc ccggggccg ccgcacccg 360
 cctcccacca tggctctgaa ganaatccac aaggaaattga a 401

<210> 264

<211> 401

<212> DNA

<213> Homo sapiens

<400> 264

aacaccagcc actccaggac ccctgaaggc ctctaccagg tcaccagtgt tctgcgccta 60
 aagccacccc ctggcagaaa cttcagctgt gtgttctgga atactcaactt gagggaaactt 120
 actttggcca gcattgaccc tcaaagtccag atgaaacccca ggaccatcc aacttggctg 180
 cttcacattt tcatccccctc ctgcatcattt gcttcattt tcatagccac agtatacc 240
 ctaagaaaac aactctgtca aaagctgtat tcttcaaaag acacaacaaa aagacctgtc 300
 accacaacaa agaggaaatg gaacagtgtc gtgaatctga acctgtggtc ttggagcca 360
 gggtgacccg atatgacatc taaagaatgt tctggactct g 401

<210> 265

<211> 271

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 59

<223> n = A,T,C or G

<400> 265

gccacttcct gtggacatgg gcagagcgct gctgccagtt cctggtagcc ttgaccacna 60
 cgctgggggg tcttgtat ggtcatgggt ctcatggca cttgggggtg tggattcaa 120
 gtttagatgt tcttagatctg gccgggcgca gtggctcaca cctgtaatcc cagcacttta 180
 ggaggcttag gcaggcgat catgaggatca ggagatcgag accgtctgg ctaacacagt 240
 gaaaccccgat ctctactaaa aataaaaaaa a 271

<210> 266

<211> 401

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 45

<223> n = A,T,C or G

<400> 266

attcataaaat ttagctgaaa gatactgatt caatttgtat acagngaata taaatgagac 60
 gacagcaaaa ttttcatgaa atgtaaaata tttttatagt ttgttcatac tatatgaggt 120
 tctattttaa atgactttct ggattttaaa aaatttcttt aaataacaatc atttttgtaa 180
 tattttatgtt atgcttatgt tcttagataat tgccagaatat cattttatct gactctgtct 240
 tcataagaga gctgtggccg aattttgaac atctgttata gggagtgatc aaatttagaag 300
 gcaatgtgaa aaaacaatc tgggaaagat ttctttatat gaagtccctg ccactagcca 360

ccatcctaa ttgatgaaag ttatcttgc acaggcctgc a 401
<210> 267
<211> 401
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 116, 247, 277, 296, 307, 313, 322, 323, 336, 342, 355, 365,
377, 378, 397
<223> n = A,T,C or G

<400> 267
gaagaggcat cacctgatcc cgagacctt tggagttaag aggccggcga agcgagggcc 60
tgtggagtcg gatcctttc ggggtgagcc agggtcgcc cgccggctg tctcanaact 120
catgcagctg ttccccgag gcctgttga gacgcgcgtg ccgcctatcg tgctgagag 180
ccaggtgtac agcttgcgtc ctgacaggac cgtggccgac cggcagctga aggagctca 240
agagcanggg gagacaaaat cgtccagctg ggcttcnact tggatgccc a tggaaanttat 300
tcttcnctt ganggactta cnngggaccc aagaancct tncaaggggc ccttnctgga 360
tgggnccga aaccnnnta tttgccttg ggggggncca a 401

<210> 268
<211> 223
<212> DNA
<213> Homo sapiens

<400> 268
tcgccccatgtt ggcaggctg gtcttgaact cctgacttta agtcatccac ccgcctcaac 60
ctcccaaagt gctggattt caggtgttag ccaccgcgc tggcctgata catacttta 120
gaatcaagta gtcacgcact ttttctgttc attttctaa aaagtaata tacaaatgtt 180
ttgttttttg tttttttgtt ttgtttgtt ctgttttttt ttt 223

<210> 269
<211> 401
<212> DNA
<213> Homo sapiens

<400> 269
actatgtaaa ccacattgtt cttttttta ctttggcaac aaatattttt acataaca 60
tgcttagttca ttgttattt tctcccaact tatccaaggta tctccagctc taacaaaatg 120
gttttattttt atttaaatgtt caatagttgtt tttttttttt ccaaatacgaa ggtgcaggcc 180
accagttaaa tgccgtctat caggtttgtt gccttaagag actacagagt caaagctcat 240
ttttaaagga gttaggacaaa gttgtcacag gttttgtt ttgtttttat tgcccccaaa 300
attacatgtt aatttccatt tatatcagggtt attctattttt cttgaagact gtgaagttgc 360
cattttgtct cattgttttc tttgacataaa ctaggatcca t 401

<210> 270
<211> 401
<212> DNA
<213> Homo sapiens

<220>
<221> misc feature

<222> 240, 382

<223> n = A,T,C or G

<400> 270

tggctgttga ttcacccatg cactgcttgg tatctgcacc ctacccctct ttagaggctg 60
 ccttgtcaac tgaaaaatgc acctgactc gagcaagact ctttccttag gttctggatc 120
 tggggagcc ccatggactc gagctggaa ctgagggtct tggccaagg atgtatgat 180
 gtgggagaat gttcttgaa agagcagaaa tccagtctgc atggaaacag cctgttagagn 240
 agaagttcc agtgataagt gttcactgtt ctaaggaggt acaccacagc tacctgaatt 300
 ttccccaaat gagtgcttct gtgcgttaca actggcctt gtacttgact gtgtatgactt 360
 tggtttttct tttcaattct anatgaacat gggaaaaaat g 401

<210> 271

<211> 329

<212> DNA

<213> Homo sapiens

<400> 271

ccacagcctc caagtcaagg ggggtggagt cccagagctg cacagggtt gcccaagtt 60
 tctaagggag gcacttcctc ccctcgccca tcagtgcagg cccctgctgg ctgtgcctg 120
 agcccccctcag acagccccct gccccgcagg cctgccttct cagggacttc tgccgggcct 180
 gaggcaagcc atggagttag acccaggagc cgacacttc tcagggaaatg gctttccca 240
 accccccagcc cccaccccggt gttcttctt gttctgtac tgtgtatagt gccaccacag 300
 cttatggcat ctcattgagg aaaaaaaaaa 329

<210> 272

<211> 401

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 1, 7, 12, 21, 61, 62, 66, 72, 78, 88, 90, 92, 98, 117, 119,
 128, 130, 134, 142, 144, 151, 159, 162, 164, 168, 169, 177,
 184, 185, 188, 194, 202, 204, 209, 213, 218, 223, 231, 260,
 272, 299, 300, 306, 321, 322, 323, 331, 335, 336, 338

<223> n = A,T,C or G

<221> misc_feature

<222> 341, 342, 343, 345, 346, 351, 358, 360, 362, 363, 387, 390,
 392

<223> n = A,T,C or G

<400> 272

nggctntaa cncggaggt nacttcctgg actatcctgg agacccctc cgcttccacg 60
 nnccatnatat cnctcatngc tgggcccnn angacacnat cccactccaa cacctgnng 120
 atgctggncn cctnggaacc ancnctcagaa ngaccctgnt ctnntgnnt ccgcaanctg 180
 aagnnaangc gggntacacc tncntgcant ggnccacnct gcngggact ntacacacct 240
 acgggatgtg gctgcgccan gagccaagag cttcttgaa tgattccca gccttgcnn 300
 agggantcta caacattgtt nnntacctt ntccnnncngc nnntnntgga ntacaggnng 360
 tnntaacact acatcttt tactgcncn tnctgggg g 401

<210> 273

<211> 401

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 399
 <223> n = A,T,C or G

<400> 273

cagcaccatg aagatcaaga tcatcgacc cccagagcgc aagtactcgg tgtggatcgg 60
 tggctccatc ctggcctcac tgtccaccc ttccagcagatg tggatttagca agcaggagta 120
 cgacgagtcg ggcccctcca tcgtccaccc caaatgcttc taaacggact cagcagatgc 180
 gtagcatttg ctgcattgggt taattgagaa tagaaaattt cccctggcaa atgcacacac 240
 ctcatgctag cctcacgaaa ctggaataag ctttcgaaaa gaaattgtcc ttgaagctt 300
 tatctgatat cagcactgga ttgtagaact tggtgctgtat ttgcaccc ttgtgaagtt 360
 aactgttccc ctggattt acgtgtcagg gctgagtnt c 401

<210> 274

<211> 401
 <212> DNA
 <213> Homo sapiens

<400> 274

ccacccacac ccaccgcgcc ctcgttcgccc tcttctccgg gagccagtcc gcgccaccgc 60
 cggcccccag gccatcgcca ccctccgcag ccatgtccac caggtccgtg tcctcgctct 120
 cctaccgcag gatgttcggc ggccccggca ccgcgcgcgc gcccgcgcgc agccggagct 180
 acgtgactac gtccacccgc acctacagcc tgggcgcgcgc gctgcgcgcgc agcaccagcc 240
 gcagcctcta cgcctcgccc ccggcgccgc tgatgcccac gcgcctctgc gcgcgtgcgc 300
 tgcggagcag cgtgcccggg gtgcggctcc tgcaggactc ggtggacttc tcgcgtggcc 360
 acgcccataa caccgagttc aagaacaccc gcaccaacga g 401

<210> 275

<211> 401
 <212> DNA
 <213> Homo sapiens

<400> 275

ccacttccac cactttgtgg agcagtgcct tcagcgcaac ccggatgcca ggtatccctg 60
 ctggcctggg cctggcttc gggagagcag agggtgctca ggagggttaag gccagggtgt 120
 gaaggggactt acctccaaa gttctgcag gggatctgg agctacacac aggagggtac 180
 agctcctggg tgcgtcagag gccagcctgg ggagctctgg ccactgccttc ccatgagctg 240
 agggagaggg agaggggacc cgaggctgag gcataagtgg caggattcg ggaagctggg 300
 gacacggcag tgcgtcgtcg gtctctccct cccttcctt ccaggcccag tgccagcacc 360
 ctccctgaacc actctttctt caagcagatc aagcgcacgtc c 401

<210> 276

<211> 401
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 11
 <223> n = A,T,C or G

<400> 276

tctgatattg ntacccttga gccacctaag ttagaagaaa ttggaaatca agaagttgtc 60
 attgttgaag aagcacagag ttcagaagac tttaacatgg gctcttcctc tagcagccag 120
 tatactttct gtcatccaga aactgtatcc tcatctcagc ctatgtatca tgaatcaagt 180
 agtcatgaaa ccagaatca gcccagtct gccttagac gacgcccgtgc taggaagaag 240
 acccgtttctg cttcagaatc tgaagaccgg ctatgttg aacaagaaac tgaaccttct 300
 aaggaggatgtga gttaaacgtca gttcagtagt ggtctcaata agtgtgttat acttgctttg 360
 gtgattgcaa tcagcatggg atttggccat ttctatggca c 401

<210> 277

<211> 401

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 227, 333

<223> n = A,T,C or G

<400> 277

aactttggca acatatctca gcaaaaacta cagctatgtt attcatgccaa aaataaaagc 60
 tgtgcagagg agtggctgca atgaggtcac aacgggtggtg gatgtaaaag agatcttcaa 120
 gtcctcatca cccatccctc gaactcaagt cccgctcatt acaaatttctt ctggccagtg 180
 tccacacatc ctgccccatc aagatgttct catcatgtgt tacgagnngc gctcaaggat 240
 gatgcttctt gaaaattgct tagttgaaaa atggagagat cagcttagta aaagatccat 300
 acagtgggaa gagaggctgc aggaacagcg ganaacagtt caggacaaga agaaaacagc 360
 cgggcgcacc agtcgtatca atccccccaa accaaaggaa a 401

<210> 278

<211> 401

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 322, 354

<223> n = A,T,C or G

<400> 278

aatgagtgtg agaccacaaa tgaatgccgg gaggatgaaa tgtgttgaa ttatcatggc 60
 ggcttccgtt gttatccacg aaatccttgt caagatccct acattctaac accagagaac 120
 cgatgtgttt gcccagtctc aaatgccatg tgccgagaac tgccccagtc aatagtctac 180
 aaatacatga gcatccgatc tgataggctc gtgcctatcg acatcttcca gatacaggcc 240
 acaactattt atgccaacac catcaatact tttcgattaa aatctggaaa taaaaatgga 300
 gagtctaccc acgacaacaa anccctgtaa gtgcaatgct tgtgctcgta aagnattat 360
 caggaccaag agaacatatac gtggacctgg agatgctgac a 401

<210> 279

<211> 401

<212> DNA

<213> Homo sapiens

<220>

```

<221> misc_feature
<222> 30, 35, 81, 88, 180, 212, 378, 384, 391
<223> n = A,T,C or G

<400> 279
aaattattgc ctctgataca tacctaagtn aacanaacat taatacctaa gtaaacataa 60
cattacttgg agggttgcag nttctaantg aaactgtatt tgaaactttt aagtatactt 120
taggaaacaa gcatacgttgc cagtctagaa taccagaaac atctacttgg gtagcttgn 180
gccattatcc tgtgaatct gatatgtctg gnagcatgtc attgtatggg catgaagaca 240
tctttggaaa tgatgagatt atttcctgtt taaaaaaa aaaaaatctt aaattcctac 300
aatgtgaaac tgaaactaat aattttgatc ctgatgtatg ggacagcgta tctgtaccag 360
gctctaaata acaaaagnta gggngacaag nacatgttcc t 401

<210> 280
<211> 326
<212> DNA
<213> Homo sapiens

<400> 280
gaagtggaaat tgtataattc aattcgataa ttgatctcat gggctttccc tggaggaaag 60
gttttttttg ttgtttttt ttaagaact tgaaacttgtt aaactgagat gtctgttagct 120
tttttgccta tctgttagtgtt atgtgaagat ttcaaaacctt gagagcactt tttctttgtt 180
tagaatttatg agaaaggcac tagatgactt taggatttgc attttcctt ttattgcctc 240
atttcttgcgtt acgccttgc ggggagggaa atctgtttat ttttcctac aaataaaaag 300
ctaagattct atatcgcaaa aaaaaa 326

<210> 281
<211> 374
<212> DNA
<213> Homo sapiens

<400> 281
caacgcgtt gcaaataattc ccctggtagc ctacttcctt accccccgaat attggtaaga 60
tcgagcaatg gcttcaggac atgggttctc ttctccctgt atcattcaag tgctcactgc 120
atgaagactg gcttgtctca gtgttcaac ctcaccaggc ctgtcttttgc gtcccacacct 180
cgctccctgt tagtgccgtt tgacagcccc catcaaatacg cttggccaa gtcacggttt 240
ctctgtggtc aagggtgggtt ggctgattgg tggaaatggat ggtggaccac aggaggccac 300
gtgagcagtc agcaccagtt ctgcaccacg acgcctccg tcctagtggtt tggttcctgtt 360
tctcctggcc ctgg 374

<210> 282
<211> 404
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 26, 27, 51, 137, 180, 222
<223> n = A,T,C or G

<400> 282
agtgtggtgg aattcccgca tcctannncgc cgactcacac aaggcagagt ngccatggag 60
aaaattccag tgtcagcatt cttgctcctt gtggccctct cctacactct ggccagagat 120
accacagtca aacctgnagc caaaaaggac acaaaggact ctcgaccacaa actgccccan 180

```

```

accctctcca gaggttgggg tgaccaactc atctggactc anacatatga agaagctcta 240
tataaatcca agacaagcaa caaacccctg atgattattc atcacttgga tgagtgccca 300
cacagtcaag cttaaaagaa agtgtttgtct gaaaataaag aaatccagaa attggcagag 360
cagtttgtcc tcctcaatct gtttatgaa acaactgaca aaca 404

<210> 283
<211> 184
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 26
<223> n = A,T,C or G

<400> 283
agtgtggtgg aattcacttg cttaaanttg gggcaaaaga gaaaaagaag gattgatcag 60
agcattgtgc aatacagttt cattaactcc ttccctcgct ccccaaaaaa tttgaatttt 120
ttttcaaca ctcttacacc tgttatggaa aatgtcaacc tttgttaagaa aaccaaaaata 180
aaaa 184

<210> 284
<211> 421
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 147, 149
<223> n = A,T,C or G

<400> 284
ctattaatcc tgccacaata ttttaatcca cgtacaaaga tctgacatgt cacccaggga 60
cccatttcac ccactgctct gtttggccgc cagtttttgc tctctctt cagcaatgg 120
gaggcggata cccttcctc ggggaanana aatccatggt ttgttgcct tgcataaac 180
aaaaatgttg gaaagtgcag tggcaaaagct gttgccattt gcatcttca cgtgaaccac 240
gtcaaaagat ccagggtgcc tctctctgtt ggtgatcaca ccaattttc ctaggttagc 300
acctccagtc accatacaca gtttaccagt gtcgaacttg atgaaatcag taatcttgcc 360
agtctctaaa tcaatctgaa tggtatcatt caccttgatg aggggatcgg ggtagcggat 420
g 421

<210> 285
<211> 361
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 34, 188
<223> n = A,T,C or G

<400> 285
ctgggtggta actctttatt tcattgtccg gaanaaagat gggagtggga acagggtgg 60
cactgtgcag gcttcagtt ccactccggg caggatttcg gctatctggg accgcaggga 120

```

ctgccaggc cacagccctg gctcccggagg caggcaggca aggtgacggg actggaagcc 180
 cttttcanag ccttgagga gctggtcgt ccacaagcaa tgagtgcac tctgcagttt 240
 gcaggggatg gataaacagg gaaacactgt gcattcctca cagccaacag tgttaggtctt 300
 ggtgaagccc cggcgctgag ctaagctcag gctgttccag ggagccacga aactgcaggt 360
 a 361

<210> 286

<211> 336

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 40, 68, 75, 127, 262

<223> n = A,T,C or G

<400> 286

tttgagtggc agcccttta ttgtgggg ccttcaaggn agggtcggtgg gggcagcgg 60
 ggaggaanag ccganaaaact gtgtgaccgg ggcctcaggt ggtgggcatt ggggctctt 120
 cttgcanatg cccattggca tcaccgggtgc accatttgtt ggcagcgggt accggtcctt 180
 tcttgttcaa catagggttag gtggcagcca cgggtccaac tcgcttgagg ctggccctg 240
 ggcgctccat ttgtgttcc angagcatgt gtttctgtgg cgggagcccc acgcaggccc 300
 tgaggatgtt ctcgatgcag ctgcgctggc ggaaaa 336

<210> 287

<211> 301

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 15, 33, 44, 53, 76, 83, 107, 117, 154, 166, 192, 194, 207,
 215, 241, 246

<223> n = A,T,C or G

<400> 287

tgggtaccaa attnttttat ttgaaggaat ggnacaaatc aaanaactta agnggatgtt 60
 ttggtacaac ttatanaaaa gnnaaaggaa accccaacat gcatgcncgt cttggngac 120
 cagggaaatc accccacggc tatggggaaa ttanccgag gcttanctt cattatcact 180
 gtctcccagg gngngcttgt caaaaanata ttccnccaag ccaaattcgg ggcgtcccat 240
 ntgcncaag ttggtcacgt ggtcacccaa ttcttgatg gctttcacct gtcattcag 300
 g 301

<210> 288

<211> 358

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 39, 143, 226

<223> n = A,T,C or G

<400> 288

aagtttttaa acttttatt tgcattttaa aaaaatttng cattccaata attaaaatca 60
 tttgaacaaa aaaaaaaatg gcactctgat taaactgcat tacagcctgc aggacacctt 120
 gggccagctt gggtttactc tanatttcac tgtcgccc ccccaacttct tccaccccac 180
 ttcttccttc accaacatgc aagttcttc cttccctgcc agccanatag atagacagat 240
 gggaaaggca ggcgcggcct tcggtgttag tagttcttg atgtgaaagg ggcagcacag 300
 tcatttaaac ttgatccaac ctcttgcat cttacaaagt taaacagcta aaagaagt 358

<210> 289

<211> 462

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 87, 141, 182, 220, 269, 327

<223> n = A,T,C or G

<400> 289

ggcatcagaa atgctgtta tttctctgct gctcccaagc tggctggcct ttgcagagga 60
 gcagacaaca gatgcatagt tgggganaaa gggaggacag gttccaggat agagggtgca 120
 gtgcgtggaa ggaagggtaa naggaaggaa ggccatcctg gatccccaca tttcagtctc 180
 anatgaggac aaaggactc ccaagcccc aaatcatcan aaaacaccaa ggagcaggag 240
 gagcttgagc aggccccagg gacccctana gccataccag ccactgtcta cttccatcc 300
 tcctctcca ttcctgtct gcttcanacc acctcccaagc taagccccag ctccattccc 360
 ccaatcctgg cccttgcag cttgacagtc acagtgcctg gaattccacc actgaggctt 420
 ctcccagttt gattaggacg tcgcccgtt agcatgctgc cc 462

<210> 290

<211> 481

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 44, 57, 122, 158, 304, 325, 352, 405

<223> n = A,T,C or G

<400> 290

tactttccta aactttatta aagaaaaaaag caataagcaa tggnggtaaa tctctanaac 60
 atacccaatt ttctgggctt cctccccga gaatgtgaca ttttGatttc caaacatgcc 120
 anaagtgtat ggttcccaac tgtactaaag taggtganaa gctgaagtcc tcaagtgttc 180
 atcttccaaac ttttcccagt ctgtggctg tctttggatc agcaataatt gcctgaacag 240
 ctactatggc ttctgtgatt tttgtctgta gctcttgag ctccctatg tgcaagcaatc 300
 gcanaatttg agcagttca ttaanaactg catctcctgt gtcaaaacca anaatatgtt 360
 tgtctaaagc aacagtaag cccttctttg tttgatttgc cttancaact gcatcctgtg 420
 tcaggcgctc ctgaacccaa atccgaatttgc ctttaagcat taccaggtaa tcatcatgac 480
 g 481

<210> 291

<211> 381

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature
 <222> 79, 166, 187, 208, 219, 315
 <223> n = A,T,C or G

<400> 291
 tcatagtaat gtaaaaccat ttgttaatt ctaaatcaa tcactttcac aacagtgaaa 60
 attagtgact ggttaaggng tgccactgta catatcatca ttttctgact ggggtcagga 120
 cctggtccta gtccacaagg gtggcaggag gagggtgagg gctaanaaca cagaaaaacac 180
 acaaaaanaaa ggaaagctgc cttggcanaa ggatgaggg gtgagcttc cgaaggatgg 240
 tgggaaggng gtcctgtt gggcccgagc caggagtccc aagtca gtc tcctgcctta 300
 cttagctcct ggcanaagggt gagtgggac ctacgagggt caaaaatcaa tggcatttgg 360
 ccagcctgac tttactaaca g 381

<210> 292
 <211> 371
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 32, 55, 72, 151, 189, 292
 <223> n = A,T,C or G

<400> 292
 gaaaaaataa tccgttaat taaaaaacct gnaggatact attccactcc cccanatgag 60
 gaggctgagg anaccaaacc cctacatcac ctctgatcca cttctgatac tcttcacgag 120
 gcagcaggca aagacaattc ccaaaacctc nacaaaagca attccaagg ctgtgcagc 180
 taccaccanc acattttcc tcagccagcc cccaatcttc tccacacagc cttcttatg 240
 gatcgcccttc tcgttgaat taatcccaca gcccacagta acattaatgc ancaggagtc 300
 ggggactcgg ttcttcgaca tggaaaggat tttctccaa tctgtgttgt tagcagcccc 360
 acagcactta a 371

<210> 293
 <211> 361
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 75, 196, 222
 <223> n = A,T,C or G

<400> 293
 gatttaaaag aaaacacttt attgttcagc aattaaaagt tagccaaata tgtattttc 60
 tccataattt attngatgt tatcaacatc aagtaaaatg ctcattttca tcatttgctt 120
 ctgttcatgt tttctgtac acgtcttcaa tttccttcc aaaatgctgc atgccacact 180
 tgaggtaacg aagcanaagt atttttaac atgacagcta anaacattca tctacagcaa 240
 cctatatgct caatacatgc cgctgtatcc tagtagttt ttcacaacct tctacaagtt 300
 ttggaaaac atctgttatg atgactttca tacacccatca cctcaaaaggc tttcttgac 360
 c 361

<210> 294
 <211> 391
 <212> DNA

```

<213> Homo sapiens

<220>
<221> misc_feature
<222> 26, 77, 96, 150, 203, 252, 254, 264, 276
<223> n = A,T,C or G

<400> 294
tattttaaag tttaattatg attcanaaaa aatcgagcga ataaacttct ctgaaaaaat 60
atattgactc tgtatanacc acagttattg gggganaagg gctggtaggt taaattatcc 120
tattnnnat tctaaaaatg atattaatan aaagtccgt ttccagtcg attataaaga 180
tacatatgcc caaaatggct ganaataaat acaacaggaa atgcaaagc tgtaaagcta 240
agggcatgca anaaaaatc tcanaatacc caaagnggca acaaggaacg tttggctgga 300
atttgaagtt atttcagtca tctttgtctt tggctccatg tttcaggatg cgtgtgaact 360
cgatgttaatttccca ttttatcaa t 391

<210> 295
<211> 343
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 145, 174, 205, 232
<223> n = A,T,C or G

<400> 295
ttctttgtt ttattgataa cagaaactgt gcataattac agatttgatg aggaatctgc 60
aaataataaa gaatgtgtct actgccagca aaatacaatt attccatgcc ctctcaacat 120
acaaatataag agtttccac accanatggc tctggtgtaa caaagccatt ttanatgttt 180
aatttgtctt ctacaaaacc ttcanagcat gaggtagttt ctttaccta cnatatttc 240
cacatttcca ttattacact ttttagtgagc taaaatcctt ttaacatagc ctgcggatga 300
tctttcacaa aagccaagcc tcatttacaa agggttatt tct 343

<210> 296
<211> 241
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 96, 98, 106, 185
<223> n = A,T,C or G

<400> 296
ttcttgata ttgggtgttt ttgtaaaaaa gttttgttt ttcttctcag tcaactgaat 60
tatttctcta cttingccctc ctgatgccca catgananaa cttaanataa tttctaacag 120
cttccacttt ggaaaaaaaaaaa aaaaacctgtt ttccctatgg aaccccagga gttgaaagtg 180
gatanatcgc tctcaaaatc taaggctctg ttcagctta cattatgtta cctgacgttt 240
t 241

<210> 297
<211> 391
<212> DNA

```

<213> Homo sapiens

<220>

<221> misc_feature

<222> 12, 130

<223> n = A,T,C or G

<400> 297

gttgtggctg anaatgctgg agatgctcg ttctctccct cacaaggtag gccacaaaatt 60
 ctgggtggtg ccctcacatc tgggtcttc aggaccagc catgcctgcc gaggagtgt 120
 gtcaggacan accatgtccg tgctaggccc aggacacagcc caaccactcc tcataccaagt 180
 ctctcccagg tttctggtcc cgatgggcaa ggatgacccc tccagtggct ggtacccac 240
 catcccaacta cccctcacat gctctcactc tccatcaggt ccccaatcct ggcttccctc 300
 ttcacgaact ctcaaagaaa aggaaggata aaacctaaat aaaccagaca gaagcagctc 360
 tggaaaagta caaaaagaca gccagaggtg t 391

<210> 298

<211> 321

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 14, 30, 76, 116, 201, 288, 301

<223> n = A,T,C or G

<400> 298

caagccaaac tgtntccagc tttattaaan atactttcca taaacaatca tggtatttca 60
 ggcaggacat gggcanacaa tcgttaacag tatacaacaa ctttcaaact cccttnttca 120
 atggactacc aaaaatcaaa aagccactat aaaacccaaat gaagtcttca tctgatgctc 180
 tgaacaggga aagtttaaag ngagggttga catttcacat ttagcatgtt gtttaacaac 240
 ttttcacaag ccgaccctga ctttcaggaa gtgaaatgaa aatggcanaa tttatctgaa 300
 natccacaat ctaaaaatgg a 321

<210> 299

<211> 401

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 104, 268, 347

<223> n = A,T,C or G

<400> 299

tatcataaaag agtgttgaag tttattttt atagcaccat tgagacattt taaaatttgg 60
 attggtaaaa aaataaaaca aaaagcattt gaattgtatt tggnggaaca gaaaaaaaaag 120
 agaagtatca tttttcttg tcaaattata ctgttccaa acattttgg aataaataac 180
 tggaaattttgc tcggtaactt gcactggttg acaagattt aacaagagga acacatatgg 240
 agttaaatttt tttttgttgg gatttcanat agatgttgg ttataaaaaag caaacaggc 300
 caacgtccac accaaattct tcatcaggac caccaatgtc ataggngca atatctacaa 360
 taggttagtct cacagccttg cgtgttcgtt attcaaagac t 401

<210> 300

<211> 188
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 48
<223> n = A,T,C or G

<400> 300
tgaatgcttt gtcatattaa gaaagttaaa gtgcataat gtttgaanac aataagtgg 60
ggtgttatctt gtttctaata agataaaactt ttttgtctt gctttatctt attagggagt 120
tgtatgtcag tgtataaaac atactgtgtg gtataacagg cttataataat tctttaaaag 180
aaaaaaa 188

<210> 301
<211> 291
<212> DNA
<213> Homo sapiens

<400> 301
aagattttgt tttatTTTtat tatggctaga aagacactgt tatAGCCAA atcgcaatg 60
acactaaaga aatccctctgt ctTTTcaat atgcaaataat atttcttcca agagttgccc 120
tggtgtgact tcaagagttc atgttaacctt ctTTCTGGA aactTCCTT tcttagttgt 180
tgtattcttg aagagcctgg gccatgaaga gcttcctaa gtttggca gtgaactcct 240
tgatgttctg gcagtaagtg tttatctggc ctgcaatgag cagcgatcc a 291

<210> 302
<211> 341
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 25
<223> n = A,T,C or G

<400> 302
tgatTTTca taattttatt aaATnatcac tggaaaact aatggttcgc gtatcacaca 60
attacaactac aatctgatag gagtgtaaa accagccaat ggaatccagg taaagtacaa 120
aaACGCCACC ttTTattgtc ctgtcttatt tctcggaaag gagggTTcta ctTACACAT 180
ttcatgagcc agcagtggac ttgagttaca atgtgttagt tccttgggt tatagctgca 240
gaagaagcca tcaaattctt gaggactga catctctcg aaagaagcaa actagtgat 300
ccccgggct gcaggaattc gatatcaagc ttatcgatac c 341

<210> 303
<211> 361
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 15, 27, 92, 124, 127, 183, 198, 244, 320
<223> n = A,T,C or G

<400> 303

tgcagacagt aaatnaattt tatttngtt cacagaacat actaggcgat ctgcacagtc 60
 gctccgtgac agcccaccaa ccccccaaccc tntacctcgc agccacccta aaggcgactt 120
 caanaanatg gaaggatctc acggatctca ttcctaattgg tccgcccgaag tctcacacag 180
 tanacagacg gagttganat gctggaggat gcagtcacct cctaaactta cgaccaccca 240
 ccanacttca tcccagccgg gacgtcctcc cccacccgag tcctcccat ttcttctcct 300
 actttgccgc agttccaggn gtcctgcttc caccagtccc acaaagctca ataaatacca 360
 a 361

<210> 304

<211> 301

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 23, 104, 192

<223> n = A,T,C or G

<400> 304

ctctttacaa cagccttat ttnccgcct tgatcctgct cggatgctgg tggaggccct 60
 tagctccgcc cgccaggctc tgtgcccct ccccgccaggc gcanattcat gaacacggtg 120
 ctcaggggct tgaggccgta ctcccccagc gggagctggt cctccagggg ctccccctcg 180
 aaggtcagcc anaacaggc gtcctgcaca ccctccagcc cgctcacttg ctgcttcagg 240
 tggccacgg tctgcgtcag ccgcacctcg taggtgctgc tgccgcctt gttattcctc 300
 a 301

<210> 305

<211> 331

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 3, 36, 60, 193, 223

<223> n = A,T,C or G

<400> 305

ganaggctag taacatcagt tttattgggt tggggnggca accataggct ggctgggggn 60
 ggggctggcc ctcacagggtt gttgagttcc agcagggtct ggtccaagggt ctggtgaatc 120
 tcgacgttct cctccttggc actggccaag gtctttctta ggtcatcgat ggtttctcc 180
 aactttgcca canacctctc ggcaaactct gtcgggtct cancctcctt cagttctcc 240
 tccaacaggt tgatctcctc ttcatattta tcttctttgg gggataactc ctccctgag 300
 gccatcaggg acttgagggc ctggtccatg g 331

<210> 306

<211> 457

<212> DNA

<213> Homo sapiens

<400> 306

aatatgtaaa ggtaataact tttattatat taaagacaat gcaaacgaaa aacagaattg 60
 agcagtgc当地 aatttaaagg actgttttgt tctcaaagtt gcaagttca aagccaaaag 120

aattatatgt atcaaata taagtaaaaa aaagtttagac tttcaaggcct gtaatcccag 180
 cactttggga ggctgaggca ggtggatcac taacattaaa aagacaacat tagattttgt 240
 cgatttatacg caattttata aatatataac tttgtcactt ggatcctgaa gcaaaataat 300
 aaagtgaatt tgggattttt gtacttgta aaaagttaa caccctaaat tcacaactag 360
 tggatcccccc gggctgcagg aattcgatat caagcttac gataccgtcg acctcgaggg 420
 ggggccccgggt acccaattcg ccctatagtg agtcgta 457

<210> 307

<211> 491

<212> DNA

<213> Homo sapiens

<400> 307

gtgcttggac ggaacccggc gctcgttccc cacccggcc ggccgcccat agccagccct 60
 ccgtcacctc ttcacccgac cctcgactg ccccaaggcc cccgcccggc ctccagcgcc 120
 ggcgcagccac cgccgcccggcc gcccgccttc cttagtcgccc gccatgacga ccgcgtccac 180
 ctcgcagggtg cgccagaact accaccagga ctcagaggcc gccatcaacc gccagatcaa 240
 cctggagctc tacgcctcct acgtttacct gtccatgtct tactactttg accgcgtatga 300
 tgtggctttg aagaactttg ccaaatactt tcttcaccaa tctcatgagg agagggaaaca 360
 tgctgagaaa ctgatgaagc tgcagaacca acgaggtggc cgaatctcc ttcaggatata 420
 caagaaaccca gactgtgatg actgggagag cgggctgaat gcaatggagt gtgcattaca 480
 tttggaaaaa a 491

<210> 308

<211> 421

<212> DNA

<213> Homo sapiens

<400> 308

ctcagcgctt cttctttctt ggtttgcattc tgactgctgt catggcgtgc cctctggaga 60
 aggccctgga tgtgtgggtg tccaccttcc acaagtactc gggcaaagag ggtgacaagt 120
 tcaagctcaa caagtcaagaa ctaaaggagc tgctgaccgg ggagctgccc agttcttgg 180
 ggaaaaggac agatgaagct gcttccaga agctgatgag caacttggac agcaacaggg 240
 acaacgaggt ggacttccaa gagtaactgtg tcttcctgtc ctgcattcgcc atgatgtgt 300
 acgaattctt tgaaggcttc ccagataagc agcccaggaa gaaatgaaaa ctcctctgat 360
 gtgggtgggg ggtctgcccag ctggggccct ccctgtcgcc agtgggact ttttttttc 420
 c 421

<210> 309

<211> 321

<212> DNA

<213> Homo sapiens

<400> 309

accaaatggc ggatgacgcc ggtgcagcgg gggggcccg gggccctgggt ggccctggga 60
 tggggaaaccg cgggtggcttc cgcggagggt tcggcagtgg catccggggc cggggtcgca 120
 gccgtggacg gggccggggc cgaggccgcg gagctcgcgg aggcaaggcc gaggataagg 180
 agtggatgcc cgtcacaag ttggggccgt tggtaagga catgaagatc aagtccctgg 240
 aggagatcta tctcttctcc ctgcccattt aggaatcaga gatcattgtat ttcttcctgg 300
 gggcctctctt caaggatgag g 321

<210> 310

<211> 381

<212> DNA

<213> Homo sapiens

<400> 310

```
ttaaccagcc atattggctc aataaatgc ttcggttaagg agttaatttc cttctagaaa 60
tcagtgccta tttttcctgg aaactcaatt ttaaatagtc caattccatc tgaagccaag 120
ctgttgtcat tttcattcgg tgacattctc tcccattgaca cccagaaggg gcagaagaac 180
cacattttc atttataatgt gtttgcattcc tttgttattaa aattattttg aagggggtgc 240
ctcattggat ggctttttt tttttcctcc agggagaagg ggagaaatgt acttggaaat 300
taatgttatgt ttacatctct ttgcaaattc ctgtacatag agatataattt tttaagtgtg 360
aatgtaacaa catactgtga a 381
```

<210> 311

<211> 538

<212> DNA

<213> Homo sapiens

<400> 311

```
tttgaattta caccaagaac ttctcaataaa aagaaaaatca tgaatgctcc acaatttcaa 60
cataccacaa gagaagttaa tttcttaaca ttgtgttcta tgattatttg taagaccttc 120
accaagttct gatatctttt aaagacatag ttcaaaaattt ctttgaaaaa tctgtattct 180
tgaaaatatac cttgtgtgtt attaggtttt taaataccag ctaaaggatt acctcactga 240
gtcatcgtt ccctcctatt cagctccccca agatgtatgt ttttgctta ccctaagaga 300
ggttttcttc ttatttttag ataattcaag tgcttagata aattatgtt tcttaagtg 360
tttatgttaa actcttttaa agaaaattta atatgttata gctgaatctt tttggtaact 420
ttaaatcttt atcatagact ctgtacatat gttcaaattt gctgcttgcc tgatgtgtg 480
atcatcggtt ggatgacaga acaaacatat ttatgatcat gaataatgtg ctttggtaa 538
```

<210> 312

<211> 176

<212> DNA

<213> Homo sapiens

<400> 312

```
ggaggagcag ctgagagata gggtcagtga atgcggttca gcctgctacc tctcctgtct 60
tcatagaacc attgccttag aattatttgc tgacacgttt tttgttggtt aagctgtaa 120
gtttgttct ttgtgaacat gggatatttgc agggaggggt ggagggaggtt gggaaag 176
```

<210> 313

<211> 396

<212> DNA

<213> Homo sapiens

<400> 313

```
ccagcaccccc caggccctgg gggacctggg ttctcagact gccaaagaag ccttgccatc 60
tggcgctccc atggctcttgc caacatctcc ctttcgttt tgaggggttc atgccgggg 120
agccaccagc ccctcaactgg gttcgagggaa gagtcaggaa gggccaagca cgacaaagca 180
gaaacatcgat ttttggggaa cgcgtgtcaa tcccttgc cgcagggtc ggcggggagag 240
actgttctgt tccttgcata actgtgttgc taaaagacta cctcggttgc gtcttgcgt 300
gtcaccgggg caactgcctg gggggggggaa tggggggcagg gtggaaacggg ctccccattt 360
tataccaaag gtgctacatc tatgtatgtt gtgggg 396
```

<210> 314

<211> 311

<212> DNA

<213> Homo sapiens

<400> 314

```
cctcaacatc ctcagagagg actggaagcc agtccttacg ataaaactcca taatttatgg 60
cctgcagtat ctcttcttgg agcccaaccc cgaggaccca ctgaacaagg aggccgcaga 120
gtcctgcag aacaaccggc ggctgtttga gcagaacgtg cagcgctcca tgcgggggtgg 180
ctacatcgcc tccacctact ttgagcgtg cctgaaatag gttggcgcata caccacccc 240
cgccacggcc acaagccctg gcatccctg caaatattta ttgggggcca tggtagggg 300
tttggggggc g 311
```

<210> 315

<211> 336

<212> DNA

<213> Homo sapiens

<400> 315

```
tttagaacat gtttatcatc caagactact ctaccctgca acattgaact cccaaagagca 60
aatccacatt cctcttgagt tctgcagctt ctgtgttaat agggcagctg tcgtctatgc 120
cgtagaatca catgatctga ggaccattca tggaagctgc taaatagct agtctgggaa 180
gtcttcata aagtttgca tggagcaaac aaacaggatt aaactaggtt tggttccttc 240
agccctctaa aagcataggg cttagcctgc aggcttcctt gggcttctc tgtgtgtgta 300
ttttgtaaa cactatagca tctgttaaga tccagt 336
```

<210> 316

<211> 436

<212> DNA

<213> Homo sapiens

<400> 316

```
aacatggct gcgtgcctta agagagacgc ttcctgcaga acaggacctg actacaaaga 60
atgttccat tggaattgtt ggttaagact tggagttac aatctatgtat gatgatgtatg 120
tgtctccatt cctggaaaggc cttgaagaaa gaccacagag aaaggcacag cctgctcaac 180
ctgctgtatc acctgcagaa aaggctgtatc aaccaatggc acattaatgt ataagccagt 240
ctatatatgtt attatcaaattt atgttaagaat acaggccatc catactgtatc acaataatct 300
atactttgaa cccaaatgtt cagagtgggtt gaatgtatc ttttaggaat cagtccatgt 360
gtgagttttt tccaaagcaac ctcactgaaa cctataataat ggaatacatt ttttttgaa 420
agggtctgtatc taatca 436
```

<210> 317

<211> 196

<212> DNA

<213> Homo sapiens

<400> 317

```
tattccttgt gaagatgata tactatttt gttaagctgt tctgtatc tttgtgtgatgg 60
gctgctggct tgcgtgcgc gtgcacgtgg agagctgtgtt cccggagatt ggacggcctg 120
atgctccctc ccctgccctg gtccaggaa gctggccgag ggtcctgtgtt cctgaggggc 180
atctgccccctt ccccca 196
```

<210> 318

<211> 381

<212> DNA

<213> Homo sapiens

```

<220>
<221> misc_feature
<222> 8, 9, 102, 122, 167, 182, 193, 235, 253, 265, 266, 290, 321,
378
<223> n = A,T,C or G

<400> 318
gacgcttnng ccgtaacgat gatcgagac atcctgctgt tcggacgtt gctgatgaat 60
gccggggcg  tgctgaactt taagctgaaa aagaaggaca cncaggcgtt tgggaggag 120
tncaaggagc ccaacacagg tgacaacatc cgaaattct tgctgancct cagatacttt 180
cnaatctca tcncctgtg gaacatctc atgatgttct gcatgattgt gctgntcggc 240
tcttgaatcc cancgatgaa accannaact cacttcccg ggatgccgan tctccattcc 300
tccattcctg atgacttcaa naatgtttt gaccaaaaaa ccgacaacct tcccagaaag 360
tccaagctcg tggggngg a 381

<210> 319
<211> 506
<212> DNA
<213> Homo sapiens

<400> 319
ctaagctta cgaatgggt gacaacttat gataaaaact agagctagt aattagccta 60
tttgtaaata cctttttat aattgatagg atacatctt gacatggaa tgttaagcca 120
cctctgagca gtgtatgtca ggactgttc attaggttg cagcagaggg gcagaaggaa 180
ttatacagg agagatgtat gcagatgtgt ccatatatgt ccatatttac atttgatag 240
ccattgatgt atgcatctt tggctgtact ataagaacac attaattcaa tggaaataca 300
cttgctaat atttaatgg tatagatctg ctaatgaatt ctctaaaaa catactgtat 360
tctgttgctg tgtgttcat tttaatgg gcattaaggg aatgcagcat ttaatcaga 420
actctgcca tgcttttac tagaggcgtg ttgcatttt tgtcttat gaaatttctg 480
tcccaagaaa ggcaggatta cattt 506

<210> 320
<211> 351
<212> DNA
<213> Homo sapiens

<400> 320
ctgacctgca ggacgaaacc atgaagagcc tgatccttct tgccatcctg gccgccttag 60
cggttagtaac tttgtttat gaatcacatg aaagcatgga atcttatgaa cttaatccct 120
tcattaaacag gagaaatgca aataccttca tattccctca gcagagatgg agagctaaag 180
tccaagagag gatccgagaa cgctctaagc ctgtccacga gctcaataagg gaagcctgtg 240
atgactacag actttgcgaa cgctacgcca tggtttatgg atacaatgt gcctataatc 300
gctacttcag gaagcgcgaa gggacccaaat gagactgagg gaagaaaaaa a 351

<210> 321
<211> 421
<212> DNA
<213> Homo sapiens

<400> 321
ctcgaggaggc ttcaagatgaa gctgaacatc tccttccag ccactggctg 60
ccagaaactc attgaagtgg acgatgaacg caaacttcgt actttctatg agaagcgtat 120
ggccacagaa gttgtgtgt acgctctggg tgaagaatgg aagggttatg tggccgaat 180
cagtggggg aacgacaaac aaggttccc catgaagcag ggtgtctga cccatggccg 240

```

tgtccgcctg ctactgagta agggcattc ctgttacaga ccaaggagaa ctggagaaa 300
 aaagagaaaa tcagttcgta gttgcattgt ggatgcaa at ctgagcgttc tcaacttggt 360
 tattgtaaaa aaaggagaga agatattcc tggactgact gatactacag tgctcgccg 420
 c 421

<210> 322

<211> 521

<212> DNA

<213> Homo sapiens

<400> 322

acgagctctc ctgccacagc tcctcacccc ctgaaaatgt tcgcctgctc caagttgtc 60
 tccactccct ccttggtaa gagcaccta cagctgctga gccgtccgt atctgcagt 120
 gtgctgaaac gaccggagat actgacagat gagagccta gcagcttggc agtctcatgt 180
 ccccttacct cacttgtctc tagccgcac ttccaaacca gcccatttc aaggacatc 240
 gacacagcag ccaagttcat tggagctgg gctgccacag ttgggggtggc tgggtctggg 300
 gctgggattt gaactgtgtt tgggagccctc atcattgtt atgccagaa cccttctctg 360
 aagcaacagc tcttctccta cgccattctg ggcttgccc tctcgaggc catggggctc 420
 ttttgtctga tggtagccctt tctcatectc tttgccatgt gaaggagccg tctccacctc 480
 ccatagttct cccgcgtctg gttggccccg tttgttccctt t 521

<210> 323

<211> 435

<212> DNA

<213> Homo sapiens

<400> 323

ccgagggtcgc acgcgtgaga cttctccgcc gcagacgccc ccgcgatgct ctacgtcgcc 60
 tcctacctgc tggctgccc agggggcaac tcctccccc gccaaggaa catcaagaag 120
 atcttggaca gcgtggatcg cgaggccggac gacgaccggc tcaacaagg tatcagttag 180
 ctgaatggaa aaaacattga agacgtcatt gccaggta ttggcaagct tgccagtgt 240
 cctgctgggtt gggctgttagc cgtctctgtt gcccaggct ctgcagcccc tgctgtgg 300
 tctgcccctg ctgcagcaga ggagaagaaa gatgagaaga aggaggagtc tgaagagtca 360
 gatgatgaca tgggattttgg cttttttgtt taaattcctg ctccctgca aataaagcct 420
 ttttacacat ctcaa 435

<210> 324

<211> 521

<212> DNA

<213> Homo sapiens

<400> 324

aggagatcga ctttcggcgc ccgcaagacc agggctggaa cggccgagatc acgctgcaga 60
 tggtcagta caagaatcgt caggccatcc tggcggtcaa atccacgcgg cagaaggcagc 120
 agcacctgtt ccagcagcag cccccctcgc agccgcagcc gcagccgcag ctccagcccc 180
 aaccccccagcc tcagcctcag ccgcaacccc agcccaatc acaaccccg cctcagcccc 240
 aaccccaagcc tcagccccag cagtcaccc cgtatccgca tccacatcca catccacact 300
 ctcatcctca ctcgcaccca caccctcacc cgcacccgca tccgcaccaa ataccgcacc 360
 cacacccaca gccgcactcg cagccgcacg ggcacccgct tctccgcagc acctccaact 420
 ctgcctgaaa gggcagctc ccgggcaaga caaggttttgg aggacttgag gaagtggac 480
 gagcacattt ctattgttctt cacttggatc aaaagcaaaa c 521

<210> 325

<211> 451

<212> DNA

<213> Homo sapiens

<400> 325

attttcattt ccattaacct ggaagcttcc atgaatattc tcttctttta aaacatttta 60
 acatttatttta aacagaaaaaa gatgggctct ttctggtag ttgttacatg atagcagaga 120
 tattttact tagattactt tggaatgag agattgttg ctgttactct ggcactgtac 180
 agtgaatgtg tctgttagttg tgtagttt cattaaggcat gtataacatt caagtatgtc 240
 atccaaataaa gaggcatata cattgaattt ttttaatcc tctgacaagt tgactctcg 300
 acccccaccc ccacccaaga catttaata gtaaatagag agagagagaa gagttaatga 360
 acatgaggtt gtgttccact ggcaggatga ctttcaata gctcaaata atttcagtgc 420
 ctttatcact tgaatttta acttaatttg a 451

<210> 326

<211> 421

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 296

<223> n = A,T,C or G

<400> 326

cgcggctgta agggctgagg atttttggtc cgcacgctcc tgctcttgac tcaccgctgt 60
 tcgctctcgcc gaggaaacaa gtcggtcagg aagccccgcgc gcaacagcca tggcttttaa 120
 ggataccgga aaaacaccccg tggagccgga ggtggcaatt caccgaattt gaatcacccct 180
 aacaagccgc aacgtaaaat ctttgaaaaa ggtgtgtct gacttgataa gagggcgaaaa 240
 agaaaagaat ctcaaagtga aaggaccgt tcgaatgcct accaagactt tgagantcac 300
 tacaagaaaaa actccttgcgt gtgaagggtt taagacgtgg gatcgttcc agatgagaat 360
 tcacaagcga ctcatgtact tgcacagtttcc ttctgagatt gttaagcaga ttacttccat 420
 C 421

<210> 327

<211> 456

<212> DNA

<213> Homo sapiens

<400> 327

atcttgacga ggctgcgggtg tctgtgtcta ttctccgagc ttgcgaatgc cgccataagga 60
 cgacaagaag aagaaggacg ctggaaagtc ggccaagaaaa gacaaagacc cagtgaacaa 120
 atccgggggc aaggccaaaa agaagaagtg gtccaaaggc aaagttcggtt acaagctcaa 180
 taacttagtc ttgtttgaca aagctaccta tgataaactc tgtaaggaag ttcccaacta 240
 taaaacttata accccagctg tggctctgaa gagactgaag attcgagct ccctggccag 300
 ggcagccctt caggagctcc ttagtaaagg acttatcaaa ctggttcaa agcacagagc 360
 tcaagtaatt tacaccagaa ataccaaggg tggagatgtt ccagctgtg gtgaagatgc 420
 atgaataggtt ccaaccagct gtacattttgg aaaaat 456

<210> 328

<211> 471

<212> DNA

<213> Homo sapiens

<400> 328

gtggaagtga catgtcttt aaaccctgcg tggcaatccc tgacgcaccc ccgtgatgcc 60
 cagggaaagac agggcgacct ggaagtccaa ctacttcctt aagatcatcc aactattgga 120
 tgattatccg aaatttca ttgtgggagc agacaatgtg ggctccaagc agatgcagca 180
 gatccgcattc tcccttcgcg ggaaggctgt ggtgctgatg ggcaagaaca ccatgatgca 240
 caaggccatc cgagggcacc tggaaaacaa cccagctctg gagaaactgc tgcctcatat 300
 ccggggaaat gtgggctttg tggcaccaa ggaggaccc actgagatca gggacatgtt 360
 gctggccaat aaggtgccag ctgctgccc tgctggtgcc attgccccat gtgaagtac 420
 tgtgccagcc cagaacactg gtctcgggcc cgagaagacc tccttttcc a 471

<210> 329
 <211> 278
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 154, 204
 <223> n = A,T,C or G

<400> 329
 gtttaaactt aagcttgta ccgagctcg atccactagt ccagtgttgt ggaattctag 60
 aaattttagat gcccccccaag gccagcaaat gttcctttt gttcaaaatc tatttttatt 120
 cttgtatatt tttctttttt tttttttttt ttgnngatgg ggacttgtga atttttctaa 180
 aggtgctatt taacatggaa gganagcgtg tgcggctcca gcccagcccg ctgctcaatt 240
 tccaccctct ctccacactgc ctctggcttc tcaggcct 278

<210> 330
 <211> 338
 <212> DNA
 <213> Homo sapiens

<400> 330
 ctcaggcttc aacatcgaat acggcccgagg ccccttcgccc ctattcttca tagccgata 60
 cacaaacatt attataataa acaccctcac cactacaatc ttcttaggaa caacatatga 120
 cgcactctcc cctgaactct acacaacata ttttgcacc aagaccctac ttctaaccctc 180
 cctgttctta tgaattcgaa cagcatacc ccgattccgc tacgaccaac tcatacacct 240
 cctatgaaaa aacttcctac cactcacccct agcattactt atatgatatg tctccatacc 300
 cattacaatc tccagcattc cccctcaaac cttttttttt 338

<210> 331
 <211> 2820
 <212> DNA
 <213> Homo sapiens

<400> 331
 tggcaaaatc ctggagccag aagaaaggac agcagcattt atcaatctt cagctaacat 60
 gtgtacctg gaaaacaatg cccagactca atttagtgag ccacagtaca cgaacctggg 120
 gctcctgaac agcatggacc agcagattcg gaacggctcc tcgtccacca gtcctataa 180
 cacagaccac gcgcagaaca gcgtcacggc gcccggcc tacgcacagc ccagccccac 240
 cttcgatgct ctctctccat caccggccat cccctccaa accgactacc cagggccgca 300
 cagttccgac gtgtccttcc agcagtcgag caccgccaag tcggccaccc ggacgtattc 360
 cactgaactg aagaaactct actgccaat tgcaaagaca tgcccccattcc agatcaaggt 420
 gatgacccca cctcctcagg gagctgttat ccgcggccatg cctgtctaca aaaaagctga 480
 gcacgtcaccg gaggttgtga agcggtgccc caaccatgag ctgagccgtg agttcaacga 540

<210> 332
<211> 2270
<212> DNA
<213> Homo sa

```
<400> 332
tcgttgatat caaagac
acagtactgc cctgacc
aaagaagaattt attaccg
ccagaggttt tccagca
attgacttga actttgt
agcatgact gtatccg
acgaacctgg ggctctt
agtccctata acacaga
```

cccagctcca ctttcgatgc tctctctcca tcacccgcca tccccctccaa caccgactac 540
ccaggcccgc acagttcga cgtgtccttc cagcagtgcg gcaccgccaa gtcggccacc 600
tggacgtatt ccactgaact gaagaaaactc tactgccaa ttgcaaaagac atgccccatc 660
cagatcaagg tgatgacccc acctcctcg ggagctgtta tccgcgccat gcctgtctac 720
aaaaaaagctg agcacgtcac ggaggtggtg aagcgggtgcc ccaaccatga gctgagccgt 780
gaattcaacg aggacagat tgccccctcct agtcatttga ttgcagtaga ggggaacagc 840
catgcccgat atgtagaaga tcccatcaca ggaagacaga gtgtgctggt accttatgag 900
ccaccccgagg ttggcactga attcacgaca gtcttgtaca atttcatgtg taacagcagt 960
tgtgttgag ggatgaaccg ccgtccaatt ttaatcatttgc ttactctgga aaccagagat 1020
gggcaagtcc tggggccgacg ctgcttttag gcccggatct gtgctgccc aggaagagac 1080
aggaaggcgg atgaagatag catcagaaag cagcaagttt cggacagtac aaagaacggt 1140
gatggtacga agccccgtt tcgtcagaac acacatggta tccagatgac atccatcaag 1200
aaacgaagat ccccagatga tgaactgtt tacttaccag tgaggggccc tgagacttat 1260
gaaatgtgt tgaagatcaa agagtccctg gaactcatgc agtaccttcc tcagcacacaca 1320
attgaaacgt acaggcaaca gcaacacgac cagcaccacg acttacttca gaaacagac 1380
tcaatacagt ctccatcttc atatggtaac agtccccac ctctgaacaa aatgaacagc 1440
atgaacaagc tgccttctgt gagccagctt atcaaccctc agcagcgca cgcctcact 1500
cctacaacca ttccctgatgg catgggagcc aacattccca tggatggcac ccacatgcca 1560
atggctggag acatgaatgg actcagcccc acccaggcac tccctcccc actctccatg 1620
ccatccaccc cccactgcac accccccaccc cctgtatccaa cagattgcag cattgtcggt 1680
ttcttagcga ggttgggctg ttcatcatgt ctggactatt tcacgacccca ggggctgacc 1740
accatctatc agattgagca ttactccatg gatgatctgg caagtcgtaa aatccctgag 1800
caatttcgac atgcgatctg gaagggcaccc ctggaccaccc ggcagtcac cgaattctcc 1860
tcccccttctc atctcctgcg gaccccaagc agtgcctcta cagtcagtgt gggctccagt 1920
gagaccgggg gtgagcgtgt tattgtatgt gtgcgattca ccctccgcca gaccatctc 1980
ttcccccccccc gagatgagtg gaatgacttc aactttgaca tggatgtcg ccgcaataag 2040
caacagcgca tcaaagagga gggggagtgaa gcctcaccat gtgagcttt cctatccctc 2100
tcctaactgc cagccccctc aaagcactcc tgcattatct tcaaagcctt ctcccttagt 2160
cctcccccttc ctttgtctg atttctttagg ggaaggagaa gtaagaggct acctttaacc 2220
taacatctga cctggcatct aattctgttatttgc ctggctttaa gccttcaaaa 2270

<210> 333

<211> 2816

<212> DNA

<213> Homo sapiens

<400> 333

tcgttgatataaaagacagt tgaaggaaat gaattttgaa acttcacggt gtgccaccct 60
acagtactgc cctgaccctt acatccagcg tttcgtagaa acccagctca tttctctgg 120
aaagaaaagtt attaccgatc caccatgtcc cagagcacac agacaaaatga attcctcagt 180
ccagagggtt tccagcatat ctgggatttt ctggAACAGC ctatATGTT agttcagccc 240
attgacttga actttgtgga tgaaccatca gaagatggg cgacaaaacaa gattgagatt 300
agcatggact gtatccgcat gcaggactcg gacctgatgtg accccatgtg gccacagttac 360
acgaacctgg ggctcctgaa cagcatggac cagcagattc agaacggctc ctcgtccacc 420
agtccctata acacagacca cgcgcagaac agcgtcacgg cgccctcgcc ctacgcacag 480
cccagctcca ccttcgtatgc tctctcttca tcaccccgcca tcccctccaa caccgactac 540
ccaggccccgc acagtttgcg cgtgtccttc cagcagtcga gcacccgccaa gtcggccacc 600
tggacgtatt ccactgaact gaagaaactc tactgccaat ttgcaaagac atgccccatc 660
cagatcaagg tgatgacccc acctccttag ggagctgtta tccgcgccat gcctgtctac 720
aaaaaaagctg agcacgtcac ggaggtggg aagcgggtcc ccaaccatga gctgagccgt 780
gaattcaacg agggacagat tccccctctt agtcatttga ttgcgttgc gggaaacacgc 840
catgccccagt atgtagaaga tcccatcaca ggaagacaga gtgtgctggt accttatgag 900
ccacccccagg ttggcactga attcacgaca gtcttgtaca atttcattgtg taacagcagt 960
tgttggag qgatgaaccq ccgtccaatt ttaatcattq ttactcttggaa aaccqaqat 1020

gggcaagtcc tggggccgacg ctgcttttag gccccgatct gtgcttgcgg aggaagagac 1080
 aggaaggcgg atgaagatag catcagaaag cagaagttt cgacatgtac aaagaacgg 1140
 gatggtaacga agcgcccgtt tcgtcagaac acacatggta tccagatgac atccatcaag 1200
 aaacgaagat ccccatgta tgaactgtta tacttaccag tgagggccg tgagacttat 1260
 gaaatgctgt tgaagatcaa agagtccctg gaactcatgc agtaccttc tcagcacaca 1320
 attgaaacgt acaggcaaca gcaacagcag cagcaccagc acttacttca gaaacatctc 1380
 cttdcagcct gcttcaggaa tgagcttgcg gagccccgga gagaacttcc aaaacaatct 1440
 gacgtcttctt ttagacattc caagccccca aaccgtatcg tgtaccata gagccctatc 1500
 tctatatttt aagtgtgtgt gttgtatttc catgtgtata tgtgagtg tggtgtgt 1560
 tgggtgtcg tgggtatcta gcccataa acaggactt aagacactt ggctcagaga 1620
 cccaaactgt caaaggcaca aagccactag tgagagaatc ttttgaaggg actcaaacct 1680
 ttacaagaaa ggatgttttgcagattt gtatccttag accggccatt ggtgggtgag 1740
 gaaccactgt gtttgtctgt gagcttctg ttgttctg ggagggaggg gtcaggtggg 1800
 gaaaggggca ttaagatgtt tatttggaaacc cttdtctgtc ttcttctgtt gttttctaa 1860
 aattcacagg gaagcttttgcaggtctc aaacttaaga tgggttttta agaaaaggag 1920
 aaaaaagttt tatttgtctg tgcataagta agttgttagt gactgagaga ctcagtcaga 1980
 cccttttaat gctggtcatg taataatatt gcaagtagta agaaacgaag gttcaagt 2040
 tactgctggg cagcgaggtg atcattacca aaagtaatca actttgtggg tggagagttc 2100
 tttgtgagaa ctgcatttttgcatttttgcctc ccctcatgtg taggtagaac atttcttaat 2160
 gctgtgtacc tgcctctgcc actgtatgtt ggcattgtt atgctaaagt ttttctgt 2220
 catgaaaccc tggaaagacct actacaaaaa aactgttggg tggccccat agcaggtgaa 2280
 ctcattttgt gcttttaata gaaagacaaaa tccaccccg taatatttgc cttacgtatg 2340
 tgtttaccat tatttcaaaagc tcaaaataga atttgaagcc ctctcacaatc atctgttatt 2400
 aatttgcattt attagagctt ctatccctca agcctaccta ccataaaacc agccatatta 2460
 ctgatactgt tcagtcatt tagccaggag acttacgtt tgtagtaatg agatccaagc 2520
 agacgtgtta aaatcagcac tcctggactg gaaattaaag attgaaaggg tagactactt 2580
 ttctttttt tactcaaaag ttttagagaat ctctgtttct ttccattttta aaaaatatt 2640
 ttaagataat agcataaaaga cttaaaaaat gttccctcccc tccatcttcc cacacccagt 2700
 caccagcaact gtattttctg tcaccaagac aatgatttct tggttattgag gctgttgctt 2760
 ttgtggatgt gtgattttaa tttcaataa acttttgcatttggatgtt aagaaa 2816

<210> 334

<211> 2082

<212> DNA

<213> Homo sapiens

<400> 334

agatgctaca gcgactgcac acccaggctg tatgatacag cctattgtc ccgggctgca 60
 aacctgtcca gcatgtatg tgggtggata ctgaattgaa taccgaatac tgtaggcaat 120
 tgtaacacag tggtaagtct ttgtgtatct aaacatagct aaacacccaa aggtatagta 180
 agaatatggt attataatct tatgaaacta tcattgtata tgggtttgtt caaccagaat 240
 gtagttatac agcacaggac tggctttagt atgtccaaag cacagcttc agtactaact 300
 ccttaatct tcataatcaac cctaggaggt aacttcttaa gtagattcat attgtaaagg 360
 tctcggggtg ggggggttgg caaaaatctg gagccagaag aaaggacagc agcattgtac 420
 aatcttacag ctaacatgtt gtacctggaa aacaatgccc agactcaatt tagtgagcca 480
 cagtagacga acctggggct cctgaacagc atggaccagc agattcagaa cggtccctcg 540
 tccaccagtc cctataaacac agaccacgcg cagaacagcg tcacggcgcc ctgccttac 600
 gcacagccca gctccacctt cgatgtctc tctccatcac ccggccatccc ctccaacacc 660
 gactacccag gccccacag ttgcacgtg tcctccagc agtcgagcac cgccaaatgc 720
 gccacctggta cgtattccac tgaactgaag aaactctact gccaaatgc aaagacatgc 780
 cccatccaga tcaagggtat gacccacact cctcaggag ctgttattccg cgccatgcct 840
 gtctacaaaaa aagctgagca cgtcacggag gtggtaagc ggtgccccaa ccatgagctg 900
 agccgtgaat tcaacgaggg acagattgcc cctccatgtc atttgattcg agtagaggg 960
 aacagccatg cccagatgtt agaagatccc atcacagggaa gacagagtg gctgttac 1020

tatgagccac cccaggttgg cactgaattc acgacagtct tgtacaattt catgtgtaac 1080
 agcagttgtg ttggaggat gaaccgcgt ccaatttaa tcattgttac tctggaaacc 1140
 agagatggc aagtctggg ccgacgctgc tttgaggccc ggatctgtgc ttgcccagga 1200
 agagacaga aggcggatga agatagcatc agaaagcage aagtttcgga cagtacaaag 1260
 aacggtgatg gtacgaagcg cccgtctcgt cagaacacac atggtatcca gatgacatcc 1320
 atcaagaaac gaagatcccc agatgatgaa ctgttatact taccagttag gggccgttag 1380
 acttatgaaa tgctgtgaa gatcaaagag tccctggaac tcatgcagta ccttcctcag 1440
 cacacaattt aaacgtacag gcaacagcaa cagcagcagc accagcaett acttcagaaa 1500
 cagttagtgt atcaacgtgt catttttagga ggcattgatgt acggtagtt tatttggatc 1560
 agcaatagg tgattgtga gcaatgtgaa acataatggg agatagcaga ttgtcataga 1620
 ttcagatgac ctggatggc aaccctctt cagttgcaac cttttttagt tgccttatta 1680
 taaccttccc ttcagaattt cacttatgtt ctgaaattaa atacaacca ttctggtaga 1740
 attacaaaga aactcacact aacagtttc ttctctatata gcctggtcca tacacactaa 1800
 cagtagtac acactctatt tggtagttagt gtgtatattt gaaaacatga aatctttct 1860
 catccaaatg gattgtctta taaatctcct gggatgcaca ctatccactt ttggaaataa 1920
 cactgttagac cagggatagc aaataggctt tactataata taaagttagtact tggtagatg 1980
 ctgtaatgag aagaattctg agaccttagt catgataatt gggaaatat ctgggtgcag 2040
 aaggataagg tagcatcatg ttgccgtatt ttagcatctc tg 2082

<210> 335

<211> 4849

<212> DNA

<213> Homo sapiens

<400> 335

cgttgatatac aaagacagtt gaaggaaatg aattttgaaa cttcacggtg tgccacccta 60
 cagtagtgc ctgaccctta catccagctt ttcgtagaaa ccccagctca tttcttctgg 120
 aaagaaagtt attaccgatc caccatgtcc cagagcacac agacaaatga attcctcagt 180
 ccagaggttt tccagcatat ctgggatttt ctgaaacagc ctatatgttc agttcagccc 240
 attgacttga actttgtgaa tgaaccatca gaagatggtg cgacaaacaa gattgagatt 300
 agcatggact gtatccgatc gcaggactcg gacctgatgt accccattgt gccacagtagc 360
 acgaacctgg ggctctgaa cagcatggac cagcagattc agaacggctc ctgtccacc 420
 agtccctata acacagacca cgcgcagaac agcgtcacgg cgccctcgcc ctacgcacag 480
 cccagctcca cttcgatgc tctctctca tcacccgcca tccccctcaa caccgactac 540
 ccaggccccgc acagtttgcg cgtgtccctc cagcagtcga gcaccgcca gtcggccacc 600
 tggacgtatt ccactgaact gaagaaaactc tactgccaaa ttgcaagac atgccccatc 660
 cagatcaagg ttagtacccac acctcctcag ggagctgtta tccgcgcatt gcctgtctac 720
 aaaaaagctg agcacgtcac ggagggtggg aagcggtgcc ccaaccatga gctgagccgt 780
 gaattcaacg agggacagat tggccctcct agtcatgttga ttgcgtttaga gggaaacagc 840
 catgcccagt atgtagaaga tccccatcaca ggaagacaga gtgtgtctgtt acctttagag 900
 ccaccccccagg ttggcactga attcagcaca gtctgtaca atttcatgtg taacagcagt 960
 tgggttggag ggtgaaccg cctgtccatt ttaatcatttgc ttactctggta aaccagagat 1020
 gggcaagtcc tggccgacg ctgttttgag gcccggatct gtgcgttggcc aggaagagac 1080
 aggaaggcgg atgaagatag catcagaaag cagcaagttt cggacagtagc aaagaacgggt 1140
 gatggtagca agcgcggcgtt tcgtcagaac acacatggta tccagatgac atccatcaag 1200
 aaacgaagat ccccaatgtca tgaactgtta tacttaccag tgagggggccg tgagacttat 1260
 gaaaatgtgt tgaagatcaa agagttccctg gaactcatgc agtaccttcc tcagcacaca 1320
 attgaaacgt acaggcaaca gcaacagcag cagcaccagc acttacttca gaaacagacc 1380
 tcaatacagt ctccatcttc atatggtaac agtccccac ctctgaacaa aatgaacagc 1440
 atgaacaagg tgcctctgt gagccagctt atcaaccctc agcagcgtaa cgccctcact 1500
 cctacaacca ttctgtatgg catggggagcc aacattccca tgatgggcac ccacatgcca 1560
 atggctggag acatgaatgg actcagccccc acccaggcac tccctcccccc actctccatg 1620
 ccatccaccc cccagtgac acccccaacct cctgtatccca cagattgcag cattgtcagt 1680
 ttcttagcga ggttggctgt ttcatcatgt ctggactatt tcacgaccca gggctgacc 1740

accatctatc agattgagca ttactccatg gatgatctgg caagtctgaa aatccctgag 1800
 caatttcgac atgcgatctg gaagggcate ctggaccacc ggcagctcca cgaattctcc 1860
 tccccttctc atctcctgcg gaccccaagc agtcctcta cagtcagtgt gggctccagt 1920
 gagaccggg gtgagcgtgt tattgtatgt gtgcgattca ccctccgcca gaccatctct 1980
 ttcccacccc gagatgagtg gaatgacttc aactttgaca tggatgctcg ccgcaataag 2040
 caacagcgca tcaaagagga gggggagtgta gcctcaccat gtgagcttt cctatccctc 2100
 tcctaactgc cagcycccta aaagcactcc tgcttaatct tcaaagcctt ctcccttagct 2160
 cctcccttc ctcttgtctg atttcttagg ggaaggagaa gtaagaggt acctcttacc 2220
 taacatctga cctggcatct aattctgatt ctggctttaa gccttcaaaa ctatagcttg 2280
 cagaactgtg gctccatgg ctaggtagaa gtgagcaaaa aagagttggg tgcctccctta 2340
 agctgcagag atttctcatt gactttata aagcatgttc acccttatag tctaagacta 2400
 tatataaaaaa tgtataaaata tacagtatag atttttgggt gggggcatt gagtattgtt 2460
 taaaatgtaa tttaaatgaa agaaaatgaa gttgcactta ttgaccattt tttaatttac 2520
 ttgttttggg tggctgtct atactccttc ccttaagggg tatcatgtat ggtgataggt 2580
 atctagagct taatgctaca tgtgagtgac gatgatgtac agattcttc agttcttgg 2640
 attctaaata catgccacat caaacctttg agtagatcca ttccatgc ttattatgt 2700
 ggttaagactg tagatatgtt ttcttttctc agtgggttata tattttatatactgacatt 2760
 tcttctagtg atgatggttc acgttgggtt gatttaatcc agttataaga agaagttcat 2820
 gtccaaacgt cctctttagt ttttgggtt gaaatggagaa aattcttaaa aggcccata 2880
 cagccagttc aaaaacaccc gacgtcatgt atttggcat atcgttaacc cccttaaatt 2940
 taataaccaga taccttatct tacaatattt attggggaaaaa catttgcgc cattacagag 3000
 gtattaaaac taaatttcac tactagattt actaactcaa atacacattt gctactgtt 3060
 taagaattctt gattgatttg attgggatgtt atgccccatcta tctagttcta acagtgaagt 3120
 tttaactgtct attaatattt agggtttttt ggaatcattt agaaatgtt agtctgtact 3180
 aaacagtaag atatctcaat gaaccataaa ttcaactttt taaaaatctt ttgaagcata 3240
 gataatattt tttggtaat gtttctttt tttggtaat gtttctttt aagaccctcc 3300
 tattctataa aacttgcattt gtagaggctt gtttacctt ctctctctaa ggtttacaat 3360
 aggagtgggtt atttggaaaaa tataaaatgtt tgagattttt tttcctgtgg cataaattgc 3420
 atcactgtat cattttctttt ttaaccggta aagagttca gtttgggtt aagtaactgt 3480
 gagaaccccaag tttccgtcc atctccctt gggactaccc atagacatgtt aaggtccccca 3540
 cagagcaaga gataagtctt tcatggctgc tggttcttacc accacttaaa cgaagagttc 3600
 ctttggaaact ttggggaaaac atgttaatgtt caatatttca gatctttcag aaatataaca 3660
 catttttttgc catgcatttca aatgagctt gaaatcttcc catgcatttctt ggtcaaggc 3720
 tgcatttgcataa catttttgcataa ttaaagtgcataa aagggccag cgtggctcta 3780
 aaaggtaatg tggatgttgc ctctgaaaatg tggatgttata ttttgggtt aattgcata 3840
 tttgtatattt gattttttt ttttcttctt tggatgttata gatgttccatg aaccacactt 3900
 gaaacccctttt tttatcgttt ttttcttctt atgaaaatatac cattttgttataa gaataccaca 3960
 tcaaataaga aataatgtca caatttttaag aggggggggaa agggaaaatgtt tttttttttt 4020
 atttttttaa aattttgtat gttttttttt gttttttttt gttttttttt gttttttttt 4080
 cttaaatgtt aataagcact gtaaaacttctt gcaacaagca tgcagtttgc caaaccctt 4140
 aaggggaaaga atgaaagctg ttccttggcc tctggatgtt gttttttttt gttttttttt 4200
 ttgttggatgtt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt 4260
 cttagggccctt ggaaatttccctt gttttttttt gttttttttt gttttttttt gttttttttt 4320
 acccttacttgc gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt 4380
 gtaaggggtaaa aaggatgtt aagcatgtt accactgtt gttttttttt gttttttttt 4440
 tggatgttgc gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt 4500
 ataaaacagaa atggaaagca gttttttttt gttttttttt gttttttttt gttttttttt 4560
 aatccccctaa aataacagta tggatgttgc gttttttttt gttttttttt gttttttttt 4620
 attttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt 4680
 ttcaaaaagggtt attatacatgtt gttttttttt gttttttttt gttttttttt gttttttttt 4740
 ttctgttat gggcttttgg gggccagaa gttttttttt gttttttttt gttttttttt 4800
 gacatgttgcataa aaaaatgtt aaaaatgtt aaaaatgtt aaaaatgtt aaaaatgtt 4849

<211> 1386

<212> DNA

<213> Homo sapiens

<400> 336

atgttgtacc tgaaaaacaa tgcccagact caathtagt agccacagta cacgaacctg 60
gggctcctga acagcatgga ccagcagatt cagaacggct cctcgccac cagtccctat 120
aacacagacc acgcgcagaa cagcgtcagc gcgcctcgc cctacgcaca gcccagctcc 180
accttcgatg ctctctctcc atcacccgcc atccccctcca acaccgacta cccaggcccg 240
cacagttcg acgtgtcctt ccagcagtcg agcaccgcca agtcggccac ctggacgtat 300
tccactgaac tgaagaaact ctactgccaa attgcaaaga catgccccat ccagatcaag 360
gtgatgaccc cacccctca gggagctgtt atccgcgcca tgcctgtcta caaaaagct 420
gagcacgtca cggaggtggt gaagcgggtc cccaaaccatg agctgagccg tgaattcaac 480
gagggacaga ttgcctcctcc tagtcattt attcgagtag aggggaacag ccatgcccag 540
tatgtagaag atcccatcac aggaagacag agtgtgtgg taccttatga gccaccccg 600
gttggactg aattcacgac agtcttgta aatttcattgt gtaacagcag ttgtgttgg 660
gggatgaacc gccgtccaat ttaatcatt gttactctgg aaaccagaga tggcaagtc 720
ctggccgac gctgcttga ggcccggatc tgcgttgc caggaagaga caggaaggcg 780
gatgaagata gcatcagaaa gcagcaagtt tcggacagta caaagaacgg tgcgttacg 840
aagcgcggcgt ttcgtcagaa cacacatggt atccagatga catccatcaa gaaacgaaga 900
tccccagatg atgaactgtt atacttacca gtgagggggcc gtgagactta tgaatgctg 960
ttgaagatca aagagtccct ggaactcatg cagtacctc ctcagcacac aattgaaacg 1020
tacaggcaac agcaacagca gcagcaccag cacttactc agaaacagac ctaataacag 1080
tctccatctt catatgttaa cagctccca cctctgaaca aaatgaacag catgaacaag 1140
ctgccttctg tgagccagct tatcaaccct cagcagcgc acgcctc ac tcctacaacc 1200
attcctgtatg gcatggggc caacattccc atgatggca cccacatgcc aatggcttgg 1260
gacatgaatg gactcagccc caccaggca ctccctcccc cactctccat gccatccacc 1320
tcccactgca cacccccacc tccgtatccc acagattgca gcattgtcag gatctggcaa 1380
gtctga 1386

<210> 337

<211> 1551

<212> DNA

<213> Homo sapiens

<400> 337

atgtcccaga gcacacagac aaatgaattt ctcagtccag aggttttcca gcatatctgg 60
gattttctgg aacagcttat atgttcagtt cagccattt acttgaactt tgcgttgc 120
ccatcagaag atggtgcgac aaacaagatt gagatttagca tggactgtat ccgcacatgc 180
gactcggacc tgagtgcacc catgtggcca cagtacacga acctggggct cctgaacagc 240
atggaccaggc agattcagaa cggctcctcg tccaccatgc cctataacac agaccacgc 300
cagaacagcg tcacggccgc ctgccttac gcacagccca gctccacccat cgatgtctc 360
tctccatcac cgcctatccc ctccaaacacc gactaccccg gcccgcacag ttgcacgtg 420
tccttccagc agtcgagcac cggcaagtcg gccaccttgc cgtattccac tgaactgaag 480
aaactctact gccaaatttc aaagacatgc cccatccaga tcaagggtat gacccaccc 540
cctcagggag ctgttatccg cggcatgcgt gtctacaaaa aagctgagca cgtcacggag 600
gtggtaagc ggtcccccaa ccatgagctg agccgtaat tcaacgggg acagattgcc 660
cctccttagtc atttgcatttgc agtagagggg aacagccatg cccagttatgt agaagatccc 720
atcacaggaa gacagagtgt gctggatct tatgagccac cccaggttgg cactgaattc 780
acgacagtct tgcataattt catgtgttaac agcagttgtt ttggaggat gaaccggcg 840
ccaaatttta tcattgttac tctggaaacc agagatggc aagtcttggg ccgcacgtgc 900
tttggggccc ggtctgtgc ttggccagga agagacagga aggcggatga agatagcatc 960
agaaagcagc aagtttcgga cgtacaaag aacgggtatg gtacgaagcg cccgttctgt 1020
cagaacacac atggtatcca gatgacatcc atcaagaaac gaagatcccc agatgtatgaa 1080

ctgttatact taccagttag gggccgttag acttatgaaa tgctgttaga gatcaaagag 1140
 tccctggAAC tcatacgtagt ctttcctcAG cacacaATTG aaacgtacAG gcaacAGCAA 1200
 cagcagcAGC accAGCACTT acTTcAGAAA cAGACCTCAA tacAGTCTCC atCTTCATAT 1260
 ggtaacAGCT ccccACCTCT gaACAAAATG AACAGCATGA aCAAGCTGCC ttCTGTGAGC 1320
 cagtttatca accCTCAGCA gCGCAACGCC CTCACTCCTA caACCATTCC tGATGGCATG 1380
 ggAGCCAACA ttcccATGAT gggCACCCAC atGCCATGG CTGGAGACAT gaATGGACTC 1440
 agCCCCACCC aggCACTCCC tCCCCACTC TCCATGCCAT CCACCTCCCA CTGCACACCC 1500
 ccACCTCCGT atCCCCACAGA ttGAGCATT GTCAGGATCT ggCAAGTCTG A 1551

<210> 338

<211> 586

<212> PRT

<213> Homo sapiens

<400> 338

Met	Leu	Tyr	Leu	Glu	Asn	Asn	Ala	Gln	Thr	Gln	Phe	Ser	Glu	Pro	Gln
1				5					10					15	
Tyr	Thr	Asn	Leu	Gly	Leu	Leu	Asn	Ser	Met	Asp	Gln	Gln	Ile	Arg	Asn
								20		25				30	
Gly	Ser	Ser	Ser	Thr	Ser	Pro	Tyr	Asn	Thr	Asp	His	Ala	Gln	Asn	Ser
								35		40				45	
Val	Thr	Ala	Pro	Ser	Pro	Tyr	Ala	Gln	Pro	Ser	Pro	Thr	Phe	Asp	Ala
								50		55				60	
Leu	Ser	Pro	Ser	Pro	Ala	Ile	Pro	Ser	Asn	Thr	Asp	Tyr	Pro	Gly	Pro
								65		70		75		80	
His	Ser	Ser	Asp	Val	Ser	Phe	Gln	Gln	Ser	Ser	Thr	Ala	Lys	Ser	Ala
								85		90				95	
Thr	Trp	Thr	Tyr	Ser	Thr	Glu	Leu	Lys	Lys	Leu	Tyr	Cys	Gln	Ile	Ala
								100		105				110	
Lys	Thr	Cys	Pro	Ile	Gln	Ile	Lys	Val	Met	Thr	Pro	Pro	Pro	Gln	Gly
								115		120				125	
Ala	Val	Ile	Arg	Ala	Met	Pro	Val	Tyr	Lys	Lys	Ala	Glu	His	Val	Thr
								130		135				140	
Glu	Val	Val	Lys	Arg	Cys	Pro	Asn	His	Glu	Leu	Ser	Arg	Glu	Phe	Asn
								145		150		155		160	
Glu	Gly	Gln	Ile	Ala	Pro	Pro	Ser	His	Leu	Ile	Arg	Val	Glu	Gly	Asn
								165		170				175	
Ser	His	Ala	Gln	Tyr	Val	Glu	Asp	Pro	Ile	Thr	Gly	Arg	Gln	Ser	Val
								180		185				190	
Leu	Val	Pro	Tyr	Glu	Pro	Pro	Gln	Val	Gly	Thr	Glu	Phe	Thr	Thr	Val
								195		200				205	
Leu	Tyr	Asn	Phe	Met	Cys	Asn	Ser	Ser	Cys	Val	Gly	Gly	Met	Asn	Arg
								210		215				220	
Arg	Pro	Ile	Leu	Ile	Ile	Val	Thr	Leu	Glu	Thr	Arg	Asp	Gly	Gln	Val
								225		230		235		240	
Leu	Gly	Arg	Arg	Cys	Phe	Glu	Ala	Arg	Ile	Cys	Ala	Cys	Pro	Gly	Arg
								245		250				255	
Asp	Arg	Lys	Ala	Asp	Glu	Asp	Ser	Ile	Arg	Lys	Gln	Gln	Val	Ser	Asp
								260		265				270	
Ser	Thr	Lys	Asn	Gly	Asp	Gly	Thr	Lys	Arg	Pro	Phe	Arg	Gln	Asn	Thr
								275		280				285	
His	Gly	Ile	Gln	Met	Thr	Ser	Ile	Lys	Lys	Arg	Arg	Ser	Pro	Asp	Asp
								290		295				300	
Glu	Leu	Leu	Tyr	Leu	Pro	Val	Arg	Gly	Arg	Glu	Thr	Tyr	Glu	Met	Leu

305	310	315	320
Leu Lys Ile Lys Glu Ser Leu Glu Leu Met Gln Tyr Leu Pro Gln His			
325	330	335	
Thr Ile Glu Thr Tyr Arg Gln Gln Gln Gln Gln His Gln His Leu			
340	345	350	
Leu Gln Lys Gln Thr Ser Ile Gln Ser Pro Ser Ser Tyr Gly Asn Ser			
355	360	365	
Ser Pro Pro Leu Asn Lys Met Asn Ser Met Asn Lys Leu Pro Ser Val			
370	375	380	
Ser Gln Leu Ile Asn Pro Gln Gln Arg Asn Ala Leu Thr Pro Thr Thr			
385	390	395	400
Ile Pro Asp Gly Met Gly Ala Asn Ile Pro Met Met Gly Thr His Met			
405	410	415	
Pro Met Ala Gly Asp Met Asn Gly Leu Ser Pro Thr Gln Ala Leu Pro			
420	425	430	
Pro Pro Leu Ser Met Pro Ser Thr Ser His Cys Thr Pro Pro Pro Pro			
435	440	445	
Tyr Pro Thr Asp Cys Ser Ile Val Ser Phe Leu Ala Arg Leu Gly Cys			
450	455	460	
Ser Ser Cys Leu Asp Tyr Phe Thr Thr Gln Gly Leu Thr Thr Ile Tyr			
465	470	475	480
Gln Ile Glu His Tyr Ser Met Asp Asp Leu Ala Ser Leu Lys Ile Pro			
485	490	495	
Glu Gln Phe Arg His Ala Ile Trp Lys Gly Ile Leu Asp His Arg Gln			
500	505	510	
Leu His Glu Phe Ser Ser Pro Ser His Leu Leu Arg Thr Pro Ser Ser			
515	520	525	
Ala Ser Thr Val Ser Val Gly Ser Ser Glu Thr Arg Gly Glu Arg Val			
530	535	540	
Ile Asp Ala Val Arg Phe Thr Leu Arg Gln Thr Ile Ser Phe Pro Pro			
545	550	555	560
Arg Asp Glu Trp Asn Asp Phe Asn Phe Asp Met Asp Ala Arg Arg Asn			
565	570	575	
Lys Gln Gln Arg Ile Lys Glu Glu Gly Glu			
580	585		

<210> 339
<211> 641
<212> PRT
<213> Homo sapiens

<400> 339

Met Ser Gln Ser Thr Gln Thr Asn Glu Phe Leu Ser Pro Glu Val Phe			
1	5	10	15
Gln His Ile Trp Asp Phe Leu Glu Gln Pro Ile Cys Ser Val Gln Pro			
20	25	30	
Ile Asp Leu Asn Phe Val Asp Glu Pro Ser Glu Asp Gly Ala Thr Asn			
35	40	45	
Lys Ile Glu Ile Ser Met Asp Cys Ile Arg Met Gln Asp Ser Asp Leu			
50	55	60	
Ser Asp Pro Met Trp Pro Gln Tyr Thr Asn Leu Gly Leu Leu Asn Ser			
65	70	75	80
Met Asp Gln Gln Ile Gln Asn Gly Ser Ser Ser Thr Ser Pro Tyr Asn			

	85	90	95												
Thr	Asp	His	Ala	Gln	Asn	Ser	Val	Thr	Ala	Pro	Ser	Pro	Tyr	Ala	Gln
			100				105						110		
Pro	Ser	Ser	Thr	Phe	Asp	Ala	Leu	Ser	Pro	Ser	Pro	Ala	Ile	Pro	Ser
			115				120						125		
Asn	Thr	Asp	Tyr	Pro	Gly	Pro	His	Ser	Phe	Asp	Val	Ser	Phe	Gln	Gln
			130				135						140		
Ser	Ser	Thr	Ala	Lys	Ser	Ala	Thr	Trp	Thr	Tyr	Ser	Thr	Glu	Leu	Lys
			145				150			155				160	
Lys	Leu	Tyr	Cys	Gln	Ile	Ala	Lys	Thr	Cys	Pro	Ile	Gln	Ile	Lys	Val
			165				170						175		
Met	Thr	Pro	Pro	Gln	Gly	Ala	Val	Ile	Arg	Ala	Met	Pro	Val	Tyr	
			180				185						190		
Lys	Lys	Ala	Glu	His	Val	Thr	Glu	Val	Val	Lys	Arg	Cys	Pro	Asn	His
			195				200						205		
Glu	Leu	Ser	Arg	Glu	Phe	Asn	Glu	Gly	Gln	Ile	Ala	Pro	Pro	Ser	His
			210				215						220		
Leu	Ile	Arg	Val	Glu	Gly	Asn	Ser	His	Ala	Gln	Tyr	Val	Glu	Asp	Pro
			225				230						235		240
Ile	Thr	Gly	Arg	Gln	Ser	Val	Leu	Val	Pro	Tyr	Glu	Pro	Pro	Gln	Val
			245				250						255		
Gly	Thr	Glu	Phe	Thr	Thr	Val	Leu	Tyr	Asn	Phe	Met	Cys	Asn	Ser	Ser
			260				265						270		
Cys	Val	Gly	Gly	Met	Asn	Arg	Arg	Pro	Ile	Leu	Ile	Val	Thr	Leu	
			275				280						285		
Glu	Thr	Arg	Asp	Gly	Gln	Val	Leu	Gly	Arg	Arg	Cys	Phe	Glu	Ala	Arg
			290				295						300		
Ile	Cys	Ala	Cys	Pro	Gly	Arg	Asp	Arg	Lys	Ala	Asp	Glu	Asp	Ser	Ile
			305				310						315		320
Arg	Lys	Gln	Gln	Val	Ser	Asp	Ser	Thr	Lys	Asn	Gly	Asp	Gly	Thr	Lys
			325				330						335		
Arg	Pro	Phe	Arg	Gln	Asn	Thr	His	Gly	Ile	Gln	Met	Thr	Ser	Ile	Lys
			340				345						350		
Lys	Arg	Arg	Ser	Pro	Asp	Asp	Glu	Leu	Leu	Tyr	Leu	Pro	Val	Arg	Gly
			355				360						365		
Arg	Glu	Thr	Tyr	Glu	Met	Leu	Leu	Lys	Ile	Lys	Glu	Ser	Leu	Glu	Leu
			370				375						380		
Met	Gln	Tyr	Leu	Pro	Gln	His	Thr	Ile	Glu	Thr	Tyr	Arg	Gln	Gln	
			385				390						395		400
Gln	Gln	Gln	His	Gln	His	Leu	Leu	Gln	Lys	Gln	Thr	Ser	Ile	Gln	Ser
			405				410						415		
Pro	Ser	Ser	Tyr	Gly	Asn	Ser	Ser	Pro	Pro	Leu	Asn	Lys	Met	Asn	Ser
			420				425						430		
Met	Asn	Lys	Leu	Pro	Ser	Val	Ser	Gln	Leu	Ile	Asn	Pro	Gln	Gln	Arg
			435				440						445		
Asn	Ala	Leu	Thr	Pro	Thr	Thr	Ile	Pro	Asp	Gly	Met	Gly	Ala	Asn	Ile
			450				455						460		
Pro	Met	Met	Gly	Thr	His	Met	Pro	Met	Ala	Gly	Asp	Met	Asn	Gly	Leu
			465				470						475		480
Ser	Pro	Thr	Gln	Ala	Leu	Pro	Pro	Pro	Leu	Ser	Met	Pro	Ser	Thr	Ser
			485				490						495		
His	Cys	Thr	Pro	Pro	Pro	Tyr	Pro	Thr	Asp	Cys	Ser	Ile	Val	Gly	
			500				505						510		
Phe	Leu	Ala	Arg	Leu	Gly	Cys	Ser	Ser	Cys	Leu	Asp	Tyr	Phe	Thr	Thr

515	520	525													
Gln	Gly	Leu	Thr	Thr	Ile	Tyr	Gln	Ile	Glu	His	Tyr	Ser	Met	Asp	Asp
530							535					540			
Leu	Ala	Ser	Leu	Lys	Ile	Pro	Glu	Gln	Phe	Arg	His	Ala	Ile	Trp	Lys
545							550				555				560
Gly	Ile	Leu	Asp	His	Arg	Gln	Leu	His	Glu	Phe	Ser	Ser	Pro	Ser	His
							565			570				575	
Leu	Leu	Arg	Thr	Pro	Ser	Ser	Ala	Ser	Thr	Val	Ser	Val	Gly	Ser	Ser
							580			585			590		
Glu	Thr	Arg	Gly	Glu	Arg	Val	Ile	Asp	Ala	Val	Arg	Phe	Thr	Leu	Arg
							595			600			605		
Gln	Thr	Ile	Ser	Phe	Pro	Pro	Arg	Asp	Glu	Trp	Asn	Asp	Phe	Asn	Phe
							610			615			620		
Asp	Met	Asp	Ala	Arg	Arg	Asn	Lys	Gln	Gln	Arg	Ile	Lys	Glu	Glu	Gly
625							630			635			640		
Glu															

<210> 340
<211> 448
<212> PRT
<213> Homo sapiens

<400> 340															
Met	Ser	Gln	Ser	Thr	Gln	Thr	Asn	Glu	Phe	Leu	Ser	Pro	Glu	Val	Phe
1							5			10			15		
Gln	His	Ile	Trp	Asp	Phe	Leu	Glu	Gln	Pro	Ile	Cys	Ser	Val	Gln	Pro
										20	25		30		
Ile	Asp	Leu	Asn	Phe	Val	Asp	Glu	Pro	Ser	Glu	Asp	Gly	Ala	Thr	Asn
							35			40			45		
Lys	Ile	Glu	Ile	Ser	Met	Asp	Cys	Ile	Arg	Met	Gln	Asp	Ser	Asp	Leu
							50			55			60		
Ser	Asp	Pro	Met	Trp	Pro	Gln	Tyr	Thr	Asn	Leu	Gly	Leu	Leu	Asn	Ser
							65			70			75		80
Met	Asp	Gln	Gln	Ile	Gln	Asn	Gly	Ser	Ser	Ser	Thr	Ser	Pro	Tyr	Asn
							85			90			95		
Thr	Asp	His	Ala	Gln	Asn	Ser	Val	Thr	Ala	Pro	Ser	Pro	Tyr	Ala	Gln
							100			105			110		
Pro	Ser	Ser	Thr	Phe	Asp	Ala	Leu	Ser	Pro	Ser	Pro	Ala	Ile	Pro	Ser
							115			120			125		
Asn	Thr	Asp	Tyr	Pro	Gly	Pro	His	Ser	Phe	Asp	Val	Ser	Phe	Gln	Gln
							130			135			140		
Ser	Ser	Thr	Ala	Lys	Ser	Ala	Thr	Trp	Thr	Tyr	Ser	Thr	Glu	Leu	Lys
							145			150			155		160
Lys	Leu	Tyr	Cys	Gln	Ile	Ala	Lys	Thr	Cys	Pro	Ile	Gln	Ile	Lys	Val
							165			170			175		
Met	Thr	Pro	Pro	Pro	Gln	Gly	Ala	Val	Ile	Arg	Ala	Met	Pro	Val	Tyr
							180			185			190		
Lys	Lys	Ala	Glu	His	Val	Thr	Glu	Val	Val	Lys	Arg	Cys	Pro	Asn	His
							195			200			205		
Glu	Leu	Ser	Arg	Glu	Phe	Asn	Glu	Gly	Gln	Ile	Ala	Pro	Pro	Ser	His
							210			215			220		
Leu	Ile	Arg	Val	Glu	Gly	Asn	Ser	His	Ala	Gln	Tyr	Val	Glu	Asp	Pro

225	230	235	240
Ile Thr Gly Arg Gln Ser Val Leu Val Pro Tyr Glu Pro Pro Gln Val			
245	250	255	
Gly Thr Glu Phe Thr Thr Val Leu Tyr Asn Phe Met Cys Asn Ser Ser			
260	265	270	
Cys Val Gly Gly Met Asn Arg Arg Pro Ile Leu Ile Ile Val Thr Leu			
275	280	285	
Glu Thr Arg Asp Gly Gln Val Leu Gly Arg Arg Cys Phe Glu Ala Arg			
290	295	300	
Ile Cys Ala Cys Pro Gly Arg Asp Arg Lys Ala Asp Glu Asp Ser Ile			
305	310	315	320
Arg Lys Gln Gln Val Ser Asp Ser Thr Lys Asn Gly Asp Gly Thr Lys			
325	330	335	
Arg Pro Phe Arg Gln Asn Thr His Gly Ile Gln Met Thr Ser Ile Lys			
340	345	350	
Lys Arg Arg Ser Pro Asp Asp Glu Leu Leu Tyr Leu Pro Val Arg Gly			
355	360	365	
Arg Glu Thr Tyr Glu Met Leu Leu Lys Ile Lys Glu Ser Leu Glu Leu			
370	375	380	
Met Gln Tyr Leu Pro Gln His Thr Ile Glu Thr Tyr Arg Gln Gln Gln			
385	390	395	400
Gln Gln Gln His Gln His Leu Leu Gln Lys His Leu Leu Ser Ala Cys			
405	410	415	
Phe Arg Asn Glu Leu Val Glu Pro Arg Arg Glu Thr Pro Lys Gln Ser			
420	425	430	
Asp Val Phe Phe Arg His Ser Lys Pro Pro Asn Arg Ser Val Tyr Pro			
435	440	445	

<210> 341
<211> 356
<212> PRT
<213> Homo sapiens

<400> 341			
Met Leu Tyr Leu Glu Asn Asn Ala Gln Thr Gln Phe Ser Glu Pro Gln			
1	5	10	15
Tyr Thr Asn Leu Gly Leu Leu Asn Ser Met Asp Gln Gln Ile Gln Asn			
20	25	30	
Gly Ser Ser Ser Thr Ser Pro Tyr Asn Thr Asp His Ala Gln Asn Ser			
35	40	45	
Val Thr Ala Pro Ser Pro Tyr Ala Gln Pro Ser Ser Thr Phe Asp Ala			
50	55	60	
Leu Ser Pro Ser Pro Ala Ile Pro Ser Asn Thr Asp Tyr Pro Gly Pro			
65	70	75	80
His Ser Phe Asp Val Ser Phe Gln Gln Ser Ser Thr Ala Lys Ser Ala			
85	90	95	
Thr Trp Thr Tyr Ser Thr Glu Leu Lys Leu Tyr Cys Gln Ile Ala			
100	105	110	
Lys Thr Cys Pro Ile Gln Ile Lys Val Met Thr Pro Pro Pro Gln Gly			
115	120	125	
Ala Val Ile Arg Ala Met Pro Val Tyr Lys Lys Ala Glu His Val Thr			
130	135	140	
Glu Val Val Lys Arg Cys Pro Asn His Glu Leu Ser Arg Glu Phe Asn			

145	150	155	160
Glu	Gly	Ile	Asn
Gln	Ile	Ala	Pro
165	170	175	
Ser	His	Ala	Gln
Tyr	Val	Glu	Asp
180	185	190	
Leu	Val	Pro	Tyr
Glu	Pro	Pro	Gly
195	200	205	
Leu	Tyr	Asn	Phe
Met	Cys	Asn	Ser
210	215	220	
Arg	Pro	Ile	Leu
Ile	Ile	Val	Thr
225	230	235	240
Leu	Gly	Arg	Arg
Cys	Phe	Glu	Ala
245	250	255	
Asp	Arg	Lys	Ala
Asp	Glu	Asp	Ser
260	265	270	
Ser	Thr	Lys	Asn
Gly	Asp	Gly	Thr
275	280	285	
His	Gly	Ile	Gln
Gln	Met	Thr	Ser
290	295	300	
Glu	Leu	Leu	Tyr
305	310	315	320
Leu	Lys	Ile	Lys
Glu	Ser	Leu	Glu
325	330	335	
Thr	Ile	Glu	Thr
Tyr	Arg	Gln	Gln
340	345	350	
Leu	Gln	Lys	Gln
355			

<210> 342
<211> 680
<212> PRT
<213> Homo sapiens

<400> 342																
Met	Asn	Phe	Glu	Thr	Ser	Arg	Cys	Ala	Thr	Leu	Gln	Tyr	Cys	Pro	Asp	
1		5			10					15						
Pro	Tyr	Ile	Gln	Arg	Phe	Val	Glu	Thr	Pro	Ala	His	Phe	Ser	Trp	Lys	
20					25					30						
Glu	Ser	Tyr	Tyr	Arg	Ser	Thr	Met	Ser	Gln	Ser	Thr	Gln	Thr	Asn	Glu	
35					40					45						
Phe	Leu	Ser	Pro	Glu	Val	Phe	Gln	His	Ile	Trp	Asp	Phe	Leu	Glu	Gln	
50					55					60						
Pro	Ile	Cys	Ser	Val	Gln	Pro	Ile	Asp	Leu	Asn	Phe	Val	Asp	Glu	Pro	
65					70					75					80	
Ser	Glu	Asp	Gly	Ala	Thr	Asn	Lys	Ile	Glu	Ile	Ser	Met	Asp	Cys	Ile	
					85					90					95	
Arg	Met	Gln	Asp	Ser	Asp	Leu	Ser	Asp	Pro	Met	Trp	Pro	Gln	Tyr	Thr	
					100					105					110	
Asn	Leu	Gly	Leu	Leu	Asn	Ser	Met	Asp	Gln	Gln	Ile	Gln	Asn	Gly	Ser	
					115					120					125	
Ser	Ser	Thr	Ser	Pro	Tyr	Asn	Thr	Asp	His	Ala	Gln	Asn	Ser	Val	Thr	
					130					135					140	
Ala	Pro	Ser	Pro	Tyr	Ala	Gln	Pro	Ser	Ser	Thr	Phe	Asp	Ala	Leu	Ser	

145	150	155	160
Pro Ser Pro Ala Ile Pro Ser Asn Thr Asp Tyr Pro Gly Pro His Ser			
165	170	175	
Phe Asp Val Ser Phe Gln Gln Ser Ser Thr Ala Lys Ser Ala Thr Trp			
180	185	190	
Thr Tyr Ser Thr Glu Leu Lys Lys Leu Tyr Cys Gln Ile Ala Lys Thr			
195	200	205	
Cys Pro Ile Gln Ile Lys Val Met Thr Pro Pro Pro Gln Gly Ala Val			
210	215	220	
Ile Arg Ala Met Pro Val Tyr Lys Lys Ala Glu His Val Thr Glu Val			
225	230	235	240
Val Lys Arg Cys Pro Asn His Glu Leu Ser Arg Glu Phe Asn Glu Gly			
245	250	255	
Gln Ile Ala Pro Pro Ser His Leu Ile Arg Val Glu Gly Asn Ser His			
260	265	270	
Ala Gln Tyr Val Glu Asp Pro Ile Thr Gly Arg Gln Ser Val Leu Val			
275	280	285	
Pro Tyr Glu Pro Pro Gln Val Gly Thr Glu Phe Thr Thr Val Leu Tyr			
290	295	300	
Asn Phe Met Cys Asn Ser Ser Cys Val Gly Gly Met Asn Arg Arg Pro			
305	310	315	320
Ile Leu Ile Ile Val Thr Leu Glu Thr Arg Asp Gly Gln Val Leu Gly			
325	330	335	
Arg Arg Cys Phe Glu Ala Arg Ile Cys Ala Cys Pro Gly Arg Asp Arg			
340	345	350	
Lys Ala Asp Glu Asp Ser Ile Arg Lys Gln Gln Val Ser Asp Ser Thr			
355	360	365	
Lys Asn Gly Asp Gly Thr Lys Arg Pro Phe Arg Gln Asn Thr His Gly			
370	375	380	
Ile Gln Met Thr Ser Ile Lys Lys Arg Arg Ser Pro Asp Asp Glu Leu			
385	390	395	400
Leu Tyr Leu Pro Val Arg Gly Arg Glu Thr Tyr Glu Met Leu Leu Lys			
405	410	415	
Ile Lys Glu Ser Leu Glu Leu Met Gln Tyr Leu Pro Gln His Thr Ile			
420	425	430	
Glu Thr Tyr Arg Gln Gln Gln Gln Gln His Gln His Leu Leu Gln			
435	440	445	
Lys Gln Thr Ser Ile Gln Ser Pro Ser Ser Tyr Gly Asn Ser Ser Pro			
450	455	460	
Pro Leu Asn Lys Met Asn Ser Met Asn Lys Leu Pro Ser Val Ser Gln			
465	470	475	480
Leu Ile Asn Pro Gln Gln Arg Asn Ala Leu Thr Pro Thr Thr Ile Pro			
485	490	495	
Asp Gly Met Gly Ala Asn Ile Pro Met Met Gly Thr His Met Pro Met			
500	505	510	
Ala Gly Asp Met Asn Gly Leu Ser Pro Thr Gln Ala Leu Pro Pro Pro			
515	520	525	
Leu Ser Met Pro Ser Thr Ser Gln Cys Thr Pro Pro Pro Pro Tyr Pro			
530	535	540	
Thr Asp Cys Ser Ile Val Ser Phe Leu Ala Arg Leu Gly Cys Ser Ser			
545	550	555	560
Cys Leu Asp Tyr Phe Thr Thr Gln Gly Leu Thr Thr Ile Tyr Gln Ile			
565	570	575	
Glu His Tyr Ser Met Asp Asp Leu Ala Ser Leu Lys Ile Pro Glu Gln			

580	585	590
Phe Arg His Ala Ile Trp Lys Gly Ile Leu Asp His Arg Gln Leu His		
595	600	605
Glu Phe Ser Ser Pro Ser His Leu Leu Arg Thr Pro Ser Ser Ala Ser		
610	615	620
Thr Val Ser Val Gly Ser Ser Glu Thr Arg Gly Glu Arg Val Ile Asp		
625	630	635
Ala Val Arg Phe Thr Leu Arg Gln Thr Ile Ser Phe Pro Pro Arg Asp		
645	650	655
Glu Trp Asn Asp Phe Asn Phe Asp Met Asp Ala Arg Arg Asn Lys Gln		
660	665	670
Gln Arg Ile Lys Glu Glu Gly Glu		
675	680	

<210> 343
<211> 461
<212> PRT
<213> Homo sapiens

<400> 343			
Met Leu Tyr Leu Glu Asn Asn Ala Gln Thr Gln Phe Ser Glu Pro Gln			
1	5	10	15
Tyr Thr Asn Leu Gly Leu Leu Asn Ser Met Asp Gln Gln Ile Gln Asn			
20	25	30	
Gly Ser Ser Ser Thr Ser Pro Tyr Asn Thr Asp His Ala Gln Asn Ser			
35	40	45	
Val Thr Ala Pro Ser Pro Tyr Ala Gln Pro Ser Ser Thr Phe Asp Ala			
50	55	60	
Leu Ser Pro Ser Pro Ala Ile Pro Ser Asn Thr Asp Tyr Pro Gly Pro			
65	70	75	80
His Ser Phe Asp Val Ser Phe Gln Gln Ser Ser Thr Ala Lys Ser Ala			
85	90	95	
Thr Trp Thr Tyr Ser Thr Glu Leu Lys Leu Tyr Cys Gln Ile Ala			
100	105	110	
Lys Thr Cys Pro Ile Gln Ile Lys Val Met Thr Pro Pro Pro Gln Gly			
115	120	125	
Ala Val Ile Arg Ala Met Pro Val Tyr Lys Lys Ala Glu His Val Thr			
130	135	140	
Glu Val Val Lys Arg Cys Pro Asn His Glu Leu Ser Arg Glu Phe Asn			
145	150	155	160
Glu Gly Gln Ile Ala Pro Pro Ser His Leu Ile Arg Val Glu Gly Asn			
165	170	175	
Ser His Ala Gln Tyr Val Glu Asp Pro Ile Thr Gly Arg Gln Ser Val			
180	185	190	
Leu Val Pro Tyr Glu Pro Pro Gln Val Gly Thr Glu Phe Thr Thr Val			
195	200	205	
Leu Tyr Asn Phe Met Cys Asn Ser Ser Cys Val Gly Gly Met Asn Arg			
210	215	220	
Arg Pro Ile Leu Ile Ile Val Thr Leu Glu Thr Arg Asp Gly Gln Val			
225	230	235	240
Leu Gly Arg Arg Cys Phe Glu Ala Arg Ile Cys Ala Cys Pro Gly Arg			
245	250	255	
Asp Arg Lys Ala Asp Glu Asp Ser Ile Arg Lys Gln Gln Val Ser Asp			

260	265	270
Ser Thr Lys Asn Gly Asp Gly	Thr Lys Arg Pro Phe Arg Gln Asn Thr	
275	280	285
His Gly Ile Gln Met Thr Ser Ile Lys Lys Arg Arg Ser Pro Asp Asp		
290	295	300
Glu Leu Leu Tyr Leu Pro Val Arg Gly Arg Glu Thr Tyr Glu Met Leu		
305	310	315
Leu Lys Ile Lys Glu Ser Leu Glu Leu Met Gln Tyr Leu Pro Gln His		
325	330	335
Thr Ile Glu Thr Tyr Arg Gln Gln Gln Gln His Gln His Leu		
340	345	350
Leu Gln Lys Gln Thr Ser Ile Gln Ser Pro Ser Ser Tyr Gly Asn Ser		
355	360	365
Ser Pro Pro Leu Asn Lys Met Asn Ser Met Asn Lys Leu Pro Ser Val		
370	375	380
Ser Gln Leu Ile Asn Pro Gln Gln Arg Asn Ala Leu Thr Pro Thr Thr		
385	390	395
Ile Pro Asp Gly Met Gly Ala Asn Ile Pro Met Met Gly Thr His Met		
405	410	415
Pro Met Ala Gly Asp Met Asn Gly Leu Ser Pro Thr Gln Ala Leu Pro		
420	425	430
Pro Pro Leu Ser Met Pro Ser Thr Ser His Cys Thr Pro Pro Pro Pro		
435	440	445
Tyr Pro Thr Asp Cys Ser Ile Val Arg Ile Trp Gln Val		
450	455	460

<210> 344
<211> 516
<212> PRT
<213> Homo sapiens

<400> 344		
Met Ser Gln Ser Thr Gln Thr Asn Glu Phe Leu Ser Pro Glu Val Phe		
1	5	10
Gln His Ile Trp Asp Phe Leu Glu Gln Pro Ile Cys Ser Val Gln Pro		
20	25	30
Ile Asp Leu Asn Phe Val Asp Glu Pro Ser Glu Asp Gly Ala Thr Asn		
35	40	45
Lys Ile Glu Ile Ser Met Asp Cys Ile Arg Met Gln Asp Ser Asp Leu		
50	55	60
Ser Asp Pro Met Trp Pro Gln Tyr Thr Asn Leu Gly Leu Leu Asn Ser		
65	70	75
Met Asp Gln Gln Ile Gln Asn Gly Ser Ser Ser Thr Ser Pro Tyr Asn		
85	90	95
Thr Asp His Ala Gln Asn Ser Val Thr Ala Pro Ser Pro Tyr Ala Gln		
100	105	110
Pro Ser Ser Thr Phe Asp Ala Leu Ser Pro Ser Pro Ala Ile Pro Ser		
115	120	125
Asn Thr Asp Tyr Pro Gly Pro His Ser Phe Asp Val Ser Phe Gln Gln		
130	135	140
Ser Ser Thr Ala Lys Ser Ala Thr Trp Thr Tyr Ser Thr Glu Leu Lys		
145	150	155
Lys Leu Tyr Cys Gln Ile Ala Lys Thr Cys Pro Ile Gln Ile Lys Val		

	165	170	175
Met Thr Pro Pro Gln Gly Ala Val Ile Arg Ala Met Pro Val Tyr			
180	185	190	
Lys Lys Ala Glu His Val Thr Glu Val Val Lys Arg Cys Pro Asn His			
195	200	205	
Glu Leu Ser Arg Glu Phe Asn Glu Gly Gln Ile Ala Pro Pro Ser His			
210	215	220	
Leu Ile Arg Val Glu Gly Asn Ser His Ala Gln Tyr Val Glu Asp Pro			
225	230	235	240
Ile Thr Gly Arg Gln Ser Val Leu Val Pro Tyr Glu Pro Pro Gln Val			
245	250	255	
Gly Thr Glu Phe Thr Thr Val Leu Tyr Asn Phe Met Cys Asn Ser Ser			
260	265	270	
Cys Val Gly Gly Met Asn Arg Arg Pro Ile Leu Ile Ile Val Thr Leu			
275	280	285	
Glu Thr Arg Asp Gly Gln Val Leu Gly Arg Arg Cys Phe Glu Ala Arg			
290	295	300	
Ile Cys Ala Cys Pro Gly Arg Asp Arg Lys Ala Asp Glu Asp Ser Ile			
305	310	315	320
Arg Lys Gln Gln Val Ser Asp Ser Thr Lys Asn Gly Asp Gly Thr Lys			
325	330	335	
Arg Pro Phe Arg Gln Asn Thr His Gly Ile Gln Met Thr Ser Ile Lys			
340	345	350	
Lys Arg Arg Ser Pro Asp Asp Glu Leu Leu Tyr Leu Pro Val Arg Gly			
355	360	365	
Arg Glu Thr Tyr Glu Met Leu Leu Lys Ile Lys Glu Ser Leu Glu Leu			
370	375	380	
Met Gln Tyr Leu Pro Gln His Thr Ile Glu Thr Tyr Arg Gln Gln Gln			
385	390	395	400
Gln Gln Gln His Gln His Leu Leu Gln Lys Gln Thr Ser Ile Gln Ser			
405	410	415	
Pro Ser Ser Tyr Gly Asn Ser Ser Pro Pro Leu Asn Lys Met Asn Ser			
420	425	430	
Met Asn Lys Leu Pro Ser Val Ser Gln Leu Ile Asn Pro Gln Gln Arg			
435	440	445	
Asn Ala Leu Thr Pro Thr Thr Ile Pro Asp Gly Met Gly Ala Asn Ile			
450	455	460	
Pro Met Met Gly Thr His Met Pro Met Ala Gly Asp Met Asn Gly Leu			
465	470	475	480
Ser Pro Thr Gln Ala Leu Pro Pro Pro Leu Ser Met Pro Ser Thr Ser			
485	490	495	
His Cys Thr Pro Pro Pro Pro Tyr Pro Thr Asp Cys Ser Ile Val Arg			
500	505	510	
Ile Trp Gln Val			
515			

<210> 345

<211> 1800

<212> DNA

<213> Homo sapiens

<400> 345

gcgcctcatt gccactgcag tgactaaagc tggaaagacg ctggtcagtt cacctgcccc 60

actggttgtt ttttaaacaa attctgatac aggcgacatc ctcaactgacc gagcaaagat 120
 tgacattcgat atcatcaactg tgccaccatg gcttcttaggc actccagtgg ggttaggagaa 180
 ggaggctctga aaccctcgca gagggatctt gccctcattt tttgggtctg aaacactggc 240
 agtcgttggaa aacaggactc agggataaac cagcgcaatg gattggggaa cgctgcacac 300
 tttcatcgaa ggtgtcaaca aacactccac cagcatcgaa aagggtgtggaa tcacagtcat 360
 ctttattttc cgagtcatac tcctagtggt ggctgcccag gaagtgtggg gtgacgagca 420
 agaggacttc gtctgcaaca cactgcaacc gggatgcaaa aatgtgtgtct atgaccactt 480
 tttcccggtt tccccatcc ggctgtggc cctccagctg atcttcgtct ccaccccgac 540
 gctgctgggtt gccatgcatg tggcctacta cagggcacaa accactcgca agttcaggcg 600
 aggagagaag aggaatgatt tcaaagacat agaggacatt aaaaagcaca agttcggat 660
 agaggggtcg ctgtgggtt cgtacaccag cagcatctt ttccgaatca tctttgaagc 720
 agccttatg tatgtgtttt acttcctta caatgggtac cacctgcctt ggggtttgaa 780
 atgtgggatt gaccctgcc ccaaccttgt tgactgctt atttcttaggc caacagagaa 840
 gaccgtgtt accatttttta tgatttctgc gtctgtgatt tgcatgctgc ttaacgtggc 900
 agagttgtgc tacctgctgc taaaagtgtg ttttaggaga tcaaagagag cacagacgca 960
 aaaaaatcac cccaatcatg ccctaaagga gagtaagc aatgaaatga atgagctgat 1020
 ttcagatagt ggtcaaaatg caatcacagg tttccaagc taaacatcc aaggtaaaat 1080
 gtagctgcgt cataaggaga cttctgtctt ctccagaagg caataccaaac ctgaaagttc 1140
 ctctctgtgc ctgaagagtt tgtaaatgac tttcataata aatagacact tgagttact 1200
 tttttaggaa tacttgctcc attcatacac aacgtaatca aatatgtgtt ccacatctga 1260
 aaacaagaga ctgctgaca aaggagcatt gcagtcactt tgacaggttc ctttaagtg 1320
 gactctctga caaagtgggt actttctgaa aatttatata actgttgggataaaggaaca 1380
 tttatccagg aattgatacg ttatttagga aaagatattt ttataggctt ggatgtttt 1440
 agttccgact ttgaatattt ataaagtattt ttataatga ctggcttcc ttacctggaa 1500
 aaacatgcga tgtagttt agaattacac cacaagtatc taaatttcca acttacaaag 1560
 ggtcctatct tgtaaatattt gtttgcatt gtctgtggc aaatttgtga actgtcatga 1620
 tacgcttaag gtggaaagt gttcattgca caatatattt ttactgctt ctgaatgtag 1680
 acggaacagt gtggaaagcag aaggctttt taactcatcc gtttggccga tcgttgcaga 1740
 ccactggag atgtggatgt ggttgcctcc ttttgcgtt cccctggct taacccttct 1800

<210> 346
 <211> 261
 <212> PRT
 <213> Homo sapiens

<400> 346
 Met Asp Trp Gly Thr Leu His Thr Phe Ile Gly Gly Val Asn Lys His
 1 5 10 15
 Ser Thr Ser Ile Gly Lys Val Trp Ile Thr Val Ile Phe Ile Phe Arg
 20 25 30
 Val Met Ile Leu Val Val Ala Ala Gln Glu Val Trp Gly Asp Glu Gln
 35 40 45
 Glu Asp Phe Val Cys Asn Thr Leu Gln Pro Gly Cys Lys Asn Val Cys
 50 55 60
 Tyr Asp His Phe Phe Pro Val Ser His Ile Arg Leu Trp Ala Leu Gln
 65 70 75 80
 Leu Ile Phe Val Ser Thr Pro Ala Leu Leu Val Ala Met His Val Ala
 85 90 95
 Tyr Tyr Arg His Glu Thr Thr Arg Lys Phe Arg Arg Gly Glu Lys Arg
 100 105 110
 Asn Asp Phe Lys Asp Ile Glu Asp Ile Lys Lys His Lys Val Arg Ile
 115 120 125
 Glu Gly Ser Leu Trp Trp Thr Tyr Thr Ser Ser Ile Phe Phe Arg Ile

130	135	140
Ile Phe Glu Ala Ala Phe Met Tyr Val Phe Tyr Phe Leu Tyr Asn Gly		
145	150	155
Tyr His Leu Pro Trp Val Leu Lys Cys Gly Ile Asp Pro Cys Pro Asn		160
165	170	175
Leu Val Asp Cys Phe Ile Ser Arg Pro Thr Glu Lys Thr Val Phe Thr		
180	185	190
Ile Phe Met Ile Ser Ala Ser Val Ile Cys Met Leu Leu Asn Val Ala		
195	200	205
Glu Leu Cys Tyr Leu Leu Lys Val Cys Phe Arg Arg Ser Lys Arg		
210	215	220
Ala Gln Thr Gln Lys Asn His Pro Asn His Ala Leu Lys Glu Ser Lys		
225	230	235
Gln Asn Glu Met Asn Glu Leu Ile Ser Asp Ser Gly Gln Asn Ala Ile		240
245	250	255
Thr Gly Phe Pro Ser		
260		

<210> 347
<211> 1740
<212> DNA
<213> Homo sapiens

<400> 347

atgaacaaac	tgtatatcg	aaacctcagc	gagaacgccc	ccccctcgga	cctagaaa	60
atcttcaagg	acgccaagat	cccggtgtcg	ggacccttcc	tggtaaagac	tggctacgcg	120
ttcgtggact	gccccggacqa	gagctgggcc	ctcaaggcca	tcgaggcgct	ttaggtaaa	180
atagaactgc	acgggaaacc	catagaagt	gagcaactcg	tccaaaaa	gcaaaggatt	240
cgaaaacttc	agatacgaaa	tatcccgct	cattacagt	gggaggtgt	ggatagttt	300
ctagtcagg	atggagtgg	ggagagctgt	gagcaagtga	acactgactc	ggaaactgca	360
gttgtaaatg	taaccttattc	cagtaaggac	caagctagac	aagcaactaga	caaactgaat	420
ggatttcagt	tagagaattt	caccttggaa	gtacccata	tccctgtatga	aacggccgccc	480
cagaaaacc	ccttgccagca	gccccggaggt	cgccgggggc	ttggccagag	gggctccca	540
aggcagggg	ctccaggatc	cttatccaag	cagaaaccat	gtgatttgcc	tctgcgcctg	600
ctggttccca	cccaatttgt	tggagccatc	ataggaaa	aagggtgcac	cattcggAAC	660
atcaccaaac	agaccagg	taaaatcgat	gtccaccgt	aagaaaatgc	gggggctgt	720
gagaagtgc	ttactatcct	ctctactcct	gaaggcacct	ctgcggctt	taagtctatt	780
ctggagatta	tgcataagga	agctcaagat	ataaaattca	cagaagagat	ccccttgaag	840
attttagctc	ataataactt	tgttgacgt	cttattggta	aagaaggaag	aaatctaaa	900
aaaatttgagc	aagacacaga	cactaaaatc	acgatatctc	cattgcagga	attgacgctg	960
tataatccag	aacgcactat	tacagttaa	ggcaatgtt	agacatgtgc	caaagctgag	1020
gaggagatca	tgaagaaaat	cagggagatct	tatgaaaatg	atattgcctc	tatgaatctt	1080
caagcacatt	taattcctgg	attaaatctg	aacgccttgg	gtctgttccc	accacttca	1140
gggatgccac	ctccccacctc	agggccccc	tcagccatga	ctccctccca	cccgcagtt	1200
gagcaatcg	aaacggagac	tgttcatctg	tttatcccag	ctctatcagt	cggtgccatc	1260
atcggcaagc	agggccagca	catcaagcag	ctttctcgct	ttgtggagc	ttaattaag	1320
attgctccag	cggaagcacc	agatgctaa	gtgaggatgg	tgattatcac	tggaccacca	1380
gaggctcagt	tcaaggtca	gggaagaatt	tatggaaaaa	ttaaaaaga	aaactttgtt	1440
agtccctaaag	aagaggtgaa	acttgaagct	catacagag	tgccatcct	tgctgctggc	1500
agagtttattg	gaaaaggagg	caaaacggtg	aatgaacttc	agaatttgc	aagtgcagaa	1560
gttgttgc	ctcggtacca	gacacctgtat	gagaatgacc	aagtgggtgt	caaaaataact	1620
ggtcacttct	atgcttgcca	ggttgcggcag	agaaaaattc	aggaattct	gactcaggta	1680
aagcagcacc	aacaacagaa	ggtctctgca	agtgaccac	ctcagtcaag	acggaagtaa	1740

<210> 348
<211> 579
<212> PRT
<213> Homo sapiens

<400> 348

Met	Asn	Lys	Leu	Tyr	Ile	Gly	Asn	Leu	Ser	Glu	Asn	Ala	Ala	Pro	Ser
1								5		10				15	
Asp	Leu	Glu	Ser	Ile	Phe	Lys	Asp	Ala	Lys	Ile	Pro	Val	Ser	Gly	Pro
								20		25			30		
Phe	Leu	Val	Lys	Thr	Gly	Tyr	Ala	Phe	Val	Asp	Cys	Pro	Asp	Glu	Ser
							35		40		45				
Trp	Ala	Leu	Lys	Ala	Ile	Glu	Ala	Leu	Ser	Gly	Lys	Ile	Glu	Leu	His
						50		55		60					
Gly	Lys	Pro	Ile	Glu	Val	Glu	His	Ser	Val	Pro	Lys	Arg	Gln	Arg	Ile
						65		70		75		80			
Arg	Lys	Leu	Gln	Ile	Arg	Asn	Ile	Pro	Pro	His	Leu	Gln	Trp	Glu	Val
						85		90		95					
Leu	Asp	Ser	Leu	Leu	Val	Gln	Tyr	Gly	Val	Val	Glu	Ser	Cys	Glu	Gln
						100		105		110					
Val	Asn	Thr	Asp	Ser	Glu	Thr	Ala	Val	Val	Asn	Val	Thr	Tyr	Ser	Ser
						115		120		125					
Lys	Asp	Gln	Ala	Arg	Gln	Ala	Leu	Asp	Lys	Leu	Asn	Gly	Phe	Gln	Leu
						130		135		140					
Glu	Asn	Phe	Thr	Leu	Lys	Val	Ala	Tyr	Ile	Pro	Asp	Glu	Thr	Ala	Ala
						145		150		155		160			
Gln	Gln	Asn	Pro	Leu	Gln	Gln	Pro	Arg	Gly	Arg	Arg	Gly	Leu	Gly	Gln
						165		170		175					
Arg	Gly	Ser	Ser	Arg	Gln	Gly	Ser	Pro	Gly	Ser	Val	Ser	Lys	Gln	Lys
						180		185		190					
Pro	Cys	Asp	Leu	Pro	Leu	Arg	Leu	Leu	Val	Pro	Thr	Gln	Phe	Val	Gly
						195		200		205					
Ala	Ile	Ile	Gly	Lys	Glu	Gly	Ala	Thr	Ile	Arg	Asn	Ile	Thr	Lys	Gln
						210		215		220					
Thr	Gln	Ser	Lys	Ile	Asp	Val	His	Arg	Lys	Glu	Asn	Ala	Gly	Ala	Ala
						225		230		235		240			
Glu	Lys	Ser	Ile	Thr	Ile	Leu	Ser	Thr	Pro	Glu	Gly	Thr	Ser	Ala	Ala
						245		250		255					
Cys	Lys	Ser	Ile	Leu	Glu	Ile	Met	His	Lys	Glu	Ala	Gln	Asp	Ile	Lys
						260		265		270					
Phe	Thr	Glu	Glu	Ile	Pro	Leu	Lys	Ile	Leu	Ala	His	Asn	Asn	Phe	Val
						275		280		285					
Gly	Arg	Leu	Ile	Gly	Lys	Glu	Gly	Arg	Asn	Leu	Lys	Lys	Ile	Glu	Gln
						290		295		300					
Asp	Thr	Asp	Thr	Lys	Ile	Thr	Ile	Ser	Pro	Leu	Gln	Glu	Leu	Thr	Leu
						305		310		315		320			
Tyr	Asn	Pro	Glu	Arg	Thr	Ile	Thr	Val	Lys	Gly	Asn	Val	Glu	Thr	Cys
						325		330		335					
Ala	Lys	Ala	Glu	Glu	Ile	Met	Lys	Lys	Ile	Arg	Glu	Ser	Tyr	Glu	
						340		345		350					
Asn	Asp	Ile	Ala	Ser	Met	Asn	Leu	Gln	Ala	His	Leu	Ile	Pro	Gly	Leu
						355		360		365					

Asn Leu Asn Ala Leu Gly Leu Phe Pro Pro Thr Ser Gly Met Pro Pro
 370 375 380
 Pro Thr Ser Gly Pro Pro Ser Ala Met Thr Pro Pro Tyr Pro Gln Phe
 385 390 395 400
 Glu Gln Ser Glu Thr Glu Thr Val His Leu Phe Ile Pro Ala Leu Ser
 405 410 415
 Val Gly Ala Ile Ile Gly Lys Gln Gly Gln His Ile Lys Gln Leu Ser
 420 425 430
 Arg Phe Ala Gly Ala Ser Ile Lys Ile Ala Pro Ala Glu Ala Pro Asp
 435 440 445
 Ala Lys Val Arg Met Val Ile Ile Thr Gly Pro Pro Glu Ala Gln Phe
 450 455 460
 Lys Ala Gln Gly Arg Ile Tyr Gly Lys Ile Lys Glu Glu Asn Phe Val
 465 470 475 480
 Ser Pro Lys Glu Val Lys Leu Glu Ala His Ile Arg Val Pro Ser
 485 490 495
 Phe Ala Ala Gly Arg Val Ile Gly Lys Gly Gly Lys Thr Val Asn Glu
 500 505 510
 Leu Gln Asn Leu Ser Ser Ala Glu Val Val Val Pro Arg Asp Gln Thr
 515 520 525
 Pro Asp Glu Asn Asp Gln Val Val Val Lys Ile Thr Gly His Phe Tyr
 530 535 540
 Ala Cys Gln Val Ala Gln Arg Lys Ile Gln Glu Ile Leu Thr Gln Val
 545 550 555 560
 Lys Gln His Gln Gln Lys Ala Leu Gln Ser Gly Pro Pro Gln Ser
 565 570 575
 Arg Arg Lys

<210> 349
 <211> 207
 <212> DNA
 <213> Homo sapiens

<400> 349
 atgtggcagc ccctttctt caagtggctc ttgtcctgtt gccctgggag ttctcaaatt 60
 gctgcagcag cctccaccca gcctgaggat gacatcaata cacagagaa gaagagtcag 120
 gaaaaagatga gagaagttac agactctcct gggcgaccgc gagagcttac cattccttag 180
 acttcttcac atggtgctaa cagattt 207

<210> 350
 <211> 69
 <212> PRT
 <213> Homo sapiens

<400> 350
 Met Trp Gln Pro Leu Phe Phe Lys Trp Leu Leu Ser Cys Cys Pro Gly
 1 5 10 15
 Ser Ser Gln Ile Ala Ala Ala Ser Thr Gln Pro Glu Asp Asp Ile
 20 25 30
 Asn Thr Gln Arg Lys Lys Ser Gln Glu Lys Met Arg Glu Val Thr Asp
 35 40 45
 Ser Pro Gly Arg Pro Arg Glu Leu Thr Ile Pro Gln Thr Ser Ser His

50	55	60
Gly	Ala	Asn
Arg	Phe	
65		

<210> 351
<211> 1012
<212> DNA
<213> Homo sapiens

<400> 351
ccctctagaa ataattttgt ttaactttaa gaaggagata tacatatgca tcaccatcac 60
catcacacgg ccgcgtccga taacctccag ctgtcccagg gtgggcaggg attcgccatt 120
ccgatcgggc aggcgatggc gatcgccggc cagatcaagc ttcccacccgt tcatatcggg 180
cctaccgcct tcctcggctt gggtgttgtc gacaacaacg gcaacggcgc acgagtccaa 240
cgctgtgtcg ggagcgtctc ggcggcaagt ctcggcatct ccaccggcga cgtgatcacc 300
gcggtcgacg ggcgtccgat caactcgcc accgcgttg cgacgcgtt taacgggcat 360
catcccggtg acgtcatctc ggtgacctgg caaaccaagt cggggccac gcgtacagg 420
aacgtgacat tggccgaggg acccccggcc gaattcatgg attgggggac gctgcacact 480
ttcatcgaaa gtgtcaacaa acactccacc agcatcgaa aggtgtggat cacagtcatc 540
tttattttcc gagtcatgtat cctcgtggg gctgcccagg aagtgtgggg tgacgagcaa 600
gaggacttcg tctgcaacac actgcaaccg ggtgcaaaa atgtgtgcta tgaccactt 660
ttcccggtgt cccacatccg gctgtgggccc ctccagctga tcttcgtctc caccccgacg 720
ctgctgtgtgg ccatgcatgt ggcctactac aggacacgaaa ccactcgcaa gttcaggcga 780
ggagagaaga ggaatgatt caaagacata gaggacatta aaaagcagaa ggttcggata 840
gagggggtgac tcgagcacca ccaccaccac cactgagatc cggctgctaa caaagccgaa 900
aaggaagctg agttggctgc tgccaccgct gagcaataac tagcataacc ccttggggcc 960
tctaaacggg ttttggtctt aaaggaggaa ctatatccgg 1012

<210> 352
<211> 267
<212> PRT
<213> Homo sapiens

<400> 352
Met His His His His His Thr Ala Ala Ser Asp Asn Phe Gln Leu
1 5 10 15
Ser Gln Gly Gly Gln Gly Phe Ala Ile Pro Ile Gly Gln Ala Met Ala
20 25 30
Ile Ala Gly Gln Ile Lys Leu Pro Thr Val His Ile Gly Pro Thr Ala
35 40 45
Phe Leu Gly Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val
50 55 60
Gln Arg Val Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr
65 70 75 80
Gly Asp Val Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr
85 90 95
Ala Met Ala Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser
100 105 110
Val Thr Trp Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr
115 120 125
Leu Ala Glu Gly Pro Pro Ala Glu Phe Met Asp Trp Gly Thr Leu His
130 135 140
Thr Phe Ile Gly Gly Val Asn Lys His Ser Thr Ser Ile Gly Lys Val

145	150	155	160
Trp Ile Thr Val Ile Phe Ile Phe Arg Val Met Ile Leu Val Val Ala			
165	170	175	
Ala Gln Glu Val Trp Gly Asp Glu Gln Glu Asp Phe Val Cys Asn Thr			
180	185	190	
Leu Gln Pro Gly Cys Lys Asn Val Cys Tyr Asp His Phe Phe Pro Val			
195	200	205	
Ser His Ile Arg Leu Trp Ala Leu Gln Leu Ile Phe Val Ser Thr Pro			
210	215	220	
Ala Leu Leu Val Ala Met His Val Ala Tyr Tyr Arg His Glu Thr Thr			
225	230	235	240
Arg Lys Phe Arg Arg Gly Glu Lys Arg Asn Asp Phe Lys Asp Ile Glu			
245	250	255	
Asp Ile Lys Lys Gln Lys Val Arg Ile Glu Gly			
260	265		

<210> 353

<211> 900

<212> DNA

<213> Homo sapiens

<400> 353

atgcatcacc atcaccatca cacggccgca tccgataact tccagctgtc ccagggtggg 60
 cagggattcg ccattccgat cgggcaggcg atggcgatcg cgggccagat caagcttccc 120
 accgttcata tcgggcctac cgccttcctc ggcttgggtg ttgtcgacaa caacggcaac 180
 ggcgcacgag tccaacgcgt ggtcgggagc gctccggcgg caagtctcg catctccacc 240
 ggcgcacgtga tcaccgcgtt cgacggcgct ccgatcaact cggccacccg gatggcggac 300
 ggcgttaacg ggcacatcatcc cggtgacgatc atctcggtga cctggcaaac caagtcggc 360
 ggcacgcgtt caggaaacgt gacattggcc gagggacccc cggccgaatt ccacgaaacc 420
 actcgcaagt tcaggcgagg agagaagagg aatgatttca aagacataga ggacattaaa 480
 aagcagaagg ttcgataga ggggtcgctg tggttggacgt acaccagcag catcttttc 540
 cgaatcatct ttgaagcgc ctatgtat gtgtttact tcctttacaa tgggtaccac 600
 ctgccttggg tggatatacg tggattgac ccctgccccca accttggatc ctgttttatt 660
 tctaggccaa cagagaagac cgtgtttacc atttttatga tttctgcgtc tggatattgc 720
 atgctgctt acgtggcaga gttgtgtac ctgtgtgtca aagtgtgtt taggagatca 780
 aagagagcac agacgcaaaa aaatcacccc aatcatgccc taaaggagag taagcagaat 840
 gaaatgaatg agctgatttc agatagtgtt caaaatgca tcacaggtt cccaaatcaa 900

<210> 354

<211> 299

<212> PRT

<213> Homo sapiens

<400> 354

Met His His His His His Thr Ala Ala Ser Asp Asn Phe Gln Leu			
1	5	10	15
Ser Gln Gly Gly Gln Gly Phe Ala Ile Pro Ile Gly Gln Ala Met Ala			
20	25	30	
Ile Ala Gly Gln Ile Lys Leu Pro Thr Val His Ile Gly Pro Thr Ala			
35	40	45	
Phe Leu Gly Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val			
50	55	60	

Gln Arg Val Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr
 65 70 75 80
 Gly Asp Val Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr
 85 90 95
 Ala Met Ala Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser
 100 105 110
 Val Thr Trp Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr
 115 120 125
 Leu Ala Glu Gly Pro Pro Ala Glu Phe His Glu Thr Thr Arg Lys Phe
 130 135 140
 Arg Arg Gly Glu Lys Arg Asn Asp Phe Lys Asp Ile Glu Asp Ile Lys
 145 150 155 160
 Lys Gln Lys Val Arg Ile Glu Gly Ser Leu Trp Trp Thr Tyr Thr Ser
 165 170 175
 Ser Ile Phe Phe Arg Ile Ile Phe Glu Ala Ala Phe Met Tyr Val Phe
 180 185 190
 Tyr Phe Leu Tyr Asn Gly Tyr His Leu Pro Trp Val Leu Lys Cys Gly
 195 200 205
 Ile Asp Pro Cys Pro Asn Leu Val Asp Cys Phe Ile Ser Arg Pro Thr
 210 215 220
 Glu Lys Thr Val Phe Thr Ile Phe Met Ile Ser Ala Ser Val Ile Cys
 225 230 235 240
 Met Leu Leu Asn Val Ala Glu Leu Cys Tyr Leu Leu Leu Lys Val Cys
 245 250 255
 Phe Arg Arg Ser Lys Arg Ala Gln Thr Gln Lys Asn His Pro Asn His
 260 265 270
 Ala Leu Lys Glu Ser Lys Gln Asn Glu Met Asn Glu Leu Ile Ser Asp
 275 280 285
 Ser Gly Gln Asn Ala Ile Thr Gly Phe Pro Ser
 290 295

<210> 355
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> PCR primer

<400> 355
 ggagtagacgc ttcaagacaa tggg

24

<210> 356
 <211> 31
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> PCR primer

<400> 356
 ccatggaaat tcattataat aattttgttc c

31

<210> 357
<211> 920
<212> PRT
<213> Homo sapiens

<400> 357

Met	Gln	His	His	His	His	His	Gly	Val	Gln	Leu	Gln	Asp	Asn	Gly	
1								10						15	
Tyr	Asn	Gly	Leu	Leu	Ile	Ala	Ile	Asn	Pro	Gln	Val	Pro	Glu	Asn	Gln
					20			25						30	
Asn	Leu	Ile	Ser	Asn	Ile	Lys	Glu	Met	Ile	Thr	Glu	Ala	Ser	Phe	Tyr
					35			40						45	
Leu	Phe	Asn	Ala	Thr	Lys	Arg	Arg	Val	Phe	Phe	Arg	Asn	Ile	Lys	Ile
					50			55						60	
Leu	Ile	Pro	Ala	Thr	Trp	Lys	Ala	Asn	Asn	Ser	Lys	Ile	Lys	Gln	
					65			70						80	
Glu	Ser	Tyr	Glu	Lys	Ala	Asn	Val	Ile	Val	Thr	Asp	Trp	Tyr	Gly	Ala
					85			90						95	
His	Gly	Asp	Asp	Pro	Tyr	Thr	Leu	Gln	Tyr	Arg	Gly	Cys	Gly	Lys	Glu
					100			105						110	
Gly	Lys	Tyr	Ile	His	Phe	Thr	Pro	Asn	Phe	Leu	Leu	Asn	Asp	Asn	Leu
					115			120						125	
Thr	Ala	Gly	Tyr	Gly	Ser	Arg	Gly	Arg	Val	Phe	Val	His	Glu	Trp	Ala
					130			135						140	
His	Leu	Arg	Trp	Gly	Val	Phe	Asp	Glu	Tyr	Asn	Asn	Asp	Lys	Pro	Phe
					145			150						160	
Tyr	Ile	Asn	Gly	Gln	Asn	Gln	Ile	Lys	Val	Thr	Arg	Cys	Ser	Ser	Asp
					165			170						175	
Ile	Thr	Gly	Ile	Phe	Val	Cys	Glu	Lys	Gly	Pro	Cys	Pro	Gln	Glu	Asn
					180			185						190	
Cys	Ile	Ile	Ser	Lys	Leu	Phe	Lys	Glu	Gly	Cys	Thr	Phe	Ile	Tyr	Asn
					195			200						205	
Ser	Thr	Gln	Asn	Ala	Thr	Ala	Ser	Ile	Met	Phe	Met	Gln	Ser	Leu	Ser
					210			215						220	
Ser	Val	Val	Glu	Phe	Cys	Asn	Ala	Ser	Thr	His	Asn	Gln	Glu	Ala	Pro
					225			230						240	
Asn	Leu	Gln	Asn	Gln	Met	Cys	Ser	Leu	Arg	Ser	Ala	Trp	Asp	Val	Ile
					245			250						255	
Thr	Asp	Ser	Ala	Asp	Phe	His	His	Ser	Phe	Pro	Met	Asn	Gly	Thr	Glu
					260			265						270	
Leu	Pro	Pro	Pro	Pro	Thr	Phe	Ser	Leu	Val	Glu	Ala	Gly	Asp	Lys	Val
					275			280						285	
Val	Cys	Leu	Val	Leu	Asp	Val	Ser	Ser	Lys	Met	Ala	Glu	Ala	Asp	Arg
					290			295						300	
Leu	Leu	Gln	Leu	Gln	Gln	Ala	Ala	Glu	Phe	Tyr	Leu	Met	Gln	Ile	Val
					305			310						320	
Glu	Ile	His	Thr	Phe	Val	Gly	Ile	Ala	Ser	Phe	Asp	Ser	Lys	Gly	Glu
					325			330						335	
Ile	Arg	Ala	Gln	Leu	His	Gln	Ile	Asn	Ser	Asn	Asp	Asp	Arg	Lys	Leu
					340			345						350	
Leu	Val	Ser	Tyr	Leu	Pro	Thr	Thr	Val	Ser	Ala	Lys	Thr	Asp	Ile	Ser
					355			360						365	
Ile	Cys	Ser	Gly	Leu	Lys	Lys	Gly	Phe	Glu	Val	Val	Glu	Lys	Leu	Asn
					370			375						380	

Gly Lys Ala Tyr Gly Ser Val Met Ile Leu Val Thr Ser Gly Asp Asp
 385 390 395 400
 Lys Leu Leu Gly Asn Cys Leu Pro Thr Val Leu Ser Ser Gly Ser Thr
 405 410 415
 Ile His Ser Ile Ala Leu Gly Ser Ser Ala Ala Pro Asn Leu Glu Glu
 420 425 430
 Leu Ser Arg Leu Thr Gly Gly Leu Lys Phe Phe Val Pro Asp Ile Ser
 435 440 445
 Asn Ser Asn Ser Met Ile Asp Ala Phe Ser Arg Ile Ser Ser Gly Thr
 450 455 460
 Gly Asp Ile Phe Gln Gln His Ile Gln Leu Glu Ser Thr Gly Glu Asn
 465 470 475 480
 Val Lys Pro His His Gln Leu Lys Asn Thr Val Thr Val Asp Asn Thr
 485 490 495
 Val Gly Asn Asp Thr Met Phe Leu Val Thr Trp Gln Ala Ser Gly Pro
 500 505 510
 Pro Glu Ile Ile Leu Phe Asp Pro Asp Gly Arg Lys Tyr Tyr Thr Asn
 515 520 525
 Asn Phe Ile Thr Asn Leu Thr Phe Arg Thr Ala Ser Leu Trp Ile Pro
 530 535 540
 Gly Thr Ala Lys Pro Gly His Trp Thr Tyr Thr Leu Asn Asn Thr His
 545 550 555 560
 His Ser Leu Gln Ala Leu Lys Val Thr Val Thr Ser Arg Ala Ser Asn
 565 570 575
 Ser Ala Val Pro Pro Ala Thr Val Glu Ala Phe Val Glu Arg Asp Ser
 580 585 590
 Leu His Phe Pro His Pro Val Met Ile Tyr Ala Asn Val Lys Gln Gly
 595 600 605
 Phe Tyr Pro Ile Leu Asn Ala Thr Val Thr Ala Thr Val Glu Pro Glu
 610 615 620
 Thr Gly Asp Pro Val Thr Leu Arg Leu Leu Asp Asp Gly Ala Gly Ala
 625 630 635 640
 Asp Val Ile Lys Asn Asp Gly Ile Tyr Ser Arg Tyr Phe Phe Ser Phe
 645 650 655
 Ala Ala Asn Gly Arg Tyr Ser Leu Lys Val His Val Asn His Ser Pro
 660 665 670
 Ser Ile Ser Thr Pro Ala His Ser Ile Pro Gly Ser His Ala Met Tyr
 675 680 685
 Val Pro Gly Tyr Thr Ala Asn Gly Asn Ile Gln Met Asn Ala Pro Arg
 690 695 700
 Lys Ser Val Gly Arg Asn Glu Glu Glu Arg Lys Trp Gly Phe Ser Arg
 705 710 715 720
 Val Ser Ser Gly Gly Ser Phe Ser Val Leu Gly Val Pro Ala Gly Pro
 725 730 735
 His Pro Asp Val Phe Pro Pro Cys Lys Ile Ile Asp Leu Glu Ala Val
 740 745 750
 Lys Val Glu Glu Glu Leu Thr Leu Ser Trp Thr Ala Pro Gly Glu Asp
 755 760 765
 Phe Asp Gln Gly Gln Ala Thr Ser Tyr Glu Ile Arg Met Ser Lys Ser
 770 775 780
 Leu Gln Asn Ile Gln Asp Asp Phe Asn Asn Ala Ile Leu Val Asn Thr
 785 790 795 800
 Ser Lys Arg Asn Pro Gln Gln Ala Gly Ile Arg Glu Ile Phe Thr Phe
 805 810 815

Ser Pro Gln Ile Ser Thr Asn Gly Pro Glu His Gln Pro Asn Gly Glu
 820 825 830
 Thr His Glu Ser His Arg Ile Tyr Val Ala Ile Arg Ala Met Asp Arg
 835 840 845
 Asn Ser Leu Gln Ser Ala Val Ser Asn Ile Ala Gln Ala Pro Leu Phe
 850 855 860
 Ile Pro Pro Asn Ser Asp Pro Val Pro Ala Arg Asp Tyr Leu Ile Leu
 865 870 875 880
 Lys Gly Val Leu Thr Ala Met Gly Leu Ile Gly Ile Ile Cys Leu Ile
 885 890 895
 Ile Val Val Thr His His Thr Leu Ser Arg Lys Lys Arg Ala Asp Lys
 900 905 910
 Lys Glu Asn Gly Thr Lys Leu Leu
 915 920

<210> 358

<211> 2773

<212> DNA

<213> Homo sapiens

<400> 358

catatgcagc atcaccacca tcaccacgga gtacagcttc aagacaatgg gtataatgga 60
 ttgcttattt caattaatcc tcaggtacct gagaatcaga acctcatctc aaacattaag 120
 gaaatgataa ctgaagcttc attttaccta tttaatgcta ccaagagaag agtattttc 180
 agaaaatataa agatttaat acctgccaca tggaaagcta ataataacag caaaataaaa 240
 caagaatcat atgaaaaggc aatgtcata gtgactgact ggtatgggc acatggagat 300
 gatccataca ccctacaata cagagggtgt ggaaaagagg gaaaatacat tcatttcaca 360
 cctaatttcc tactgaatga taacttaaca gctggctacg gatcacgagg ccgagtgttt 420
 gtccatgaat gggcccacct ccgttggggt gtgtcgatg agtataacaa tgacaaaccc 480
 ttctacataa atgggcaaaa tcaaattaaa gtgacaaggt gttcatctga catcacaggc 540
 atttttgtt gtgaaaaagg tccttgcccc caagaaaact gtattattag taagctttt 600
 aaagaaggat gcaccccttat ctacaatagc accccaaaatg caactgcac aataatgttc 660
 atgcaaagtt tatcttctgt ggtgaattt tgtaatgca gtacccacaa ccaagaagca 720
 ccaaacctac agaaccagat gtgcagccctc agaagtgcac gggatgtaat cacagactct 780
 gctgactttc accacagctt tcccatgaac gggactgagc ttccacccatcc tcccacatcc 840
 tcgctttagt taggctgtga caaagtggc tggtagtgc tggatgtgtc cagcaagatg 900
 gcagaggctg acagactcct tcaactacaa caagccgcag aattttatgtt gatgcagatt 960
 gttgaaattt atacccctgt gggcattgcc agttcgaca gcaaaggaga gatcagagcc 1020
 cagctacacc aaattaacag caatgatgat cgaaagtgc tggttcata tctgcccacc 1080
 actgtatcag ctaaaacaga catcagcatt tggtaggtgc ttaagaaagg atttgaggtg 1140
 gttgaaaaac tgaatggaaa agcttatggc tctgtatgtatgtgac cagcgagat 1200
 gataagcttc ttggcaattt ottacccact gtgcacgca gtggttcaac aattcactcc 1260
 attgccctgg gttcatctgc agcccaaat ctggaggaat tatcactgc tacaggaggt 1320
 ttaaaagttt ttgttccaga tatatcaaac tccaatagca tgattgtgc tttcagtaga 1380
 atttcctctg gaactggaga cattttccag caacatattc agcttggaaag tacaggtgaa 1440
 aatgtcaaacc ctcacccatca attgaaaaac acagtgcac tggataatac tggggcaac 1500
 gacactatgt ttctagttac gtggcaggcc agtggcttc ctgagattat attatttgat 1560
 cctgatggac gaaaatacta cacaataat tttatccca atctaacttt tcggacagct 1620
 agtctttggg ttccaggaac agctaaagcct gggactgga cttacccctt gaaacaatacc 1680
 catcattctc tgcaagccct gaaagtgcac gtgcacccctc ggcctccaa ctcagctgtg 1740
 ccccccagcca ctgttggaaagc ctttggaa, agagacagcc tccattttcc tcattctgtg 1800
 atgattttatg ccaatgtgaa acagggattt tatcccatcc ttaatgcccac tggactgtcc 1860
 acagttgagc cagagactgg agatcctgtt acgctgagac tccttgatga tggagcagggt 1920

gctgatgtta taaaaaatga tggaaattac tcgaggatt ttttctcctt tgctgcaa 1980
 gtagatata gctgaaaat gcatgtcaat cactctccca gcataagcac cccagccac 2040
 tctattccag ggagtcatgc tatgtatgtt ccaggttaca cagcaaacgg taatattcg 2100
 atgaatgctc caaggaaatc agtaggcaga aatgaggagg agcggaaatg gggctttagc 2160
 cgagttagt caggaggctc ctttcagtg ctgggagttc cagctggccc ccaccctgat 2220
 gtgttccac catgaaaat tattgacctg gaagctgtaa aagttagaaga ggaattgacc 2280
 ctatcttggc cagcacctgg agaagacttt gatcaggggcc aggctacaag ctatgaaata 2340
 agaatgagta aaagtctaca gaatatccaa gatgacttta acaatgctat tttagtaat 2400
 acatcaaagc gaaatcctca gcaagctggc atcaggaga tatttacgtt ctcaccccaa 2460
 attccacga atggaccta acatcagcca aatggagaaa cacatgaaag ccacagaatt 2520
 tatgttgcaa tacgagcaat ggataggaac tccttacagt ctgctgtatc taacattgcc 2580
 caggcgccctc tgtttattcc ccccaattct gatcctgtac ctgcccagaga ttatcttata 2640
 ttgaaaggag tttaaacagc aatgggtttt ataggaatca tttgccttat tatagttgtg 2700
 acacatcata cttaaagcag gaaaaagaga gcagacaaga aagagaatgg aacaaaatta 2760
 ttataatgaa ttc 2773

<210> 359

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 359

tggcagcccc tcttcttcaa gtggc

25

<210> 360

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 360

cgccagaatt catcaaacaa atctgttagc acc

33

<210> 361

<211> 77

<212> PRT

<213> Homo sapiens

<400> 361

Met Gln His His His His Trp Gln Pro Leu Phe Phe Lys Trp

1 5 10 15

Leu Leu Ser Cys Cys Pro Gly Ser Ser Gln Ile Ala Ala Ala Ser

20 25 30

Thr Gln Pro Glu Asp Asp Ile Asn Thr Gln Arg Lys Lys Ser Gln Glu

35 40 45

Lys Met Arg Glu Val Thr Asp Ser Pro Gly Arg Pro Arg Glu Leu Thr

50 55 60

Ile Pro Gln Thr Ser Ser His Gly Ala Asn Arg Phe Val

65 70 75

<210> 362
<211> 244
<212> DNA
<213> Homo sapiens

<400> 362
catatgcagc atcaccacca tcaccactgg cagccccctct tcttcaagtg gctcttgcc 60
tgttgcctcg ggagttctca aattgctgca gcagcctcca cccagcctga ggatgacatc 120
aatacacaga ggaagaagag tcaggaaaag atgagagaag ttacagactc tcctgggcga 180
ccccgagagc ttaccattcc tcagacttct tcacatggtg ctaacagatt tgtttcatga 240
attc 244

<210> 363
<211> 20
<212> PRT
<213> Homo sapiens

<400> 363
Met Trp Gln Pro Leu Phe Phe Lys Trp Leu Leu Ser Cys Cys Pro Gly
1 5 10 15
Ser Ser Gln Ile
20

<210> 364
<211> 60
<212> DNA
<213> Homo sapiens

<400> 364
atgtggcagc ccctcttctt caagtggctc ttgtcctgtt gccctggag ttctcaaatt 60

<210> 365
<211> 20
<212> PRT
<213> Homo sapiens

<400> 365
Gly Ser Ser Gln Ile Ala Ala Ala Ser Thr Gln Pro Glu Asp Asp
1 5 10 15
Ile Asn Thr Gln
20

<210> 366
<211> 60
<212> DNA
<213> Homo sapiens

<400> 366
ggagttctc aaattgctgc agcagcctcc acccagcctg aggatgacat caatacacag 60

<210> 367
<211> 20
<212> PRT
<213> Homo sapiens

<400> 367
Lys Pro Gly His Trp Thr Tyr Thr Leu Asn Asn Thr His His Ser Leu
1 5 10 15
Gln Ala Leu Lys
20

<210> 368
<211> 2343
<212> DNA
<213> Homo sapiens

<400> 368
atccggagc gtttgcggct tcgcttcatg gccgctctcc cgccccctcct gggatctgtg 60
gggagctggg gagcccgca gggcccgagg ccggagctgg cgagccgagc ggagacctgt 120
gcgcgcgcgc tctgaggcgc agcatgtgaa gcggagacgg catccagtg gggcgagcc 180
tctcagccgg cccggatggc taccacggcc gagctctcg aggagccctt tgtggcagat 240
aatatatattt aacgttttgt atggagaacc ccaggaggag gctctagagg tggacctgaa 300
gtttttgatc ctaaaaagatt attagaagaa ttgttaatc atattcagga actccagata 360
atggatgaaa ggattcagag gaaagttagag aaactagagc aacaatgtca gaaagaagcc 420
aaggaattt ccaagaaggt acaagagctg cagaaaagca atcagggtgc ctccaacat 480
ttccaagaac tagatgagca cattagctat gtagcaacta aagtctgtca cttggagac 540
cagtttagagg gggtaaacac acccagacaa cggcgagtgg aggctcagaa attgatgaaa 600
tactttaatg agtttctaga tggagaattt aaatctgtat ttttacaaa ttctgaaaag 660
ataaaaggaag cagcagacat cattcagaag ttgacaccaa ttgcccaga gttacctttt 720
gatagatttt cagaagttaa atccaaaatt gcaagtaat accatgatt agaatgccag 780
ctgattcagg agtttaccag tgctcaaaga agaggtgaaa tctccagaat gagagaagta 840
gcagcagtt tacttcattt taagggttat tccattgtg ttgatgtta tataaagcag 900
tgcaggagg gtgcttattt gagaaatgtt atatttgaag acgctggat actctgtcaa 960
agagtgaaca aacaagttgg agatatctc agtaatccag aaacagtcct ggctaaactt 1020
attcaaaaatg tatttgaat caaactacag agtttgtga aagagcgtt agaagaatgt 1080
aggaagtccg atgcagagca atatctcaa aatctctatg atctgtatac aagaaccacc 1140
aatctttcca gcaagctgtat ggagttaat ttagtactg ataaacagac tttcttgct 1200
aagcttatac aatccatttt catttcctat ttggagaact atatttgcgtt atatttgcgtt 1260
tatttggaaa gcagaagtgc tatgtaccta cagcgtatt atgattcgtt aaaccatcaa 1320
aagagatcca ttggcacagg aggtattcaa gatttgcgtt aaagaatttgcgtt 1380
aacttaccac ttgggccaag tatcgatact catggggaga cttttctatc ccaagaagtg 1440
gtggtaatc ttttacaaga aaccaaacaa gccttggaa gatgtcatag gctctctgtat 1500
ccttctgact taccaggaa tgccttcaga attttacca ttcttgcgtt attttgcgtt 1560
attgagcata ttgattatgc ttggaaaca ggacttgcgtt gaattccctc ttcatgtt 1620
aggaatgcaa atcttattt ttggacgtt gtgcacagg ccaataactat ttttcatctt 1680
tttgacaaac agtttaatga tcacccatgt ccactaataa gctcttcctt taagttatct 1740
gaatgccttc agaagaaaaa agaaataatt gaacaaatgg agatgaaatt ggatactggc 1800
atgatagga cattaaattt tatgattgaa cagatgaaatc atatttgcgtt tgacaaacag 1860
aagaaaaacag attttaagcc agaagatgaa aacaatgttt tgattcaata tactaatgcc 1920
tgtgtaaaag tctgtgccta cgtaagaaaa caagtggaga agattaaaaa ttccatggat 1980
ggaagaatgtt tggatacagt ttgtatggaa ctggagatc gttttcatcg acttatctat 2040

<210> 369
<211> 708
<212> PRT
<213> *Homo sapiens*

<400> 369
 Met Ala Thr Thr Ala Glu Leu Phe Glu Glu Pro Phe Val Ala Asp Glu
 1 5 10 15
 Tyr Ile Glu Arg Leu Val Trp Arg Thr Pro Gly Gly Gly Ser Arg Gly
 20 25 30
 Gly Pro Glu Ala Phe Asp Pro Lys Arg Leu Leu Glu Glu Phe Val Asn
 35 40 45
 His Ile Gln Glu Leu Gln Ile Met Asp Glu Arg Ile Gln Arg Lys Val
 50 55 60
 Glu Lys Leu Glu Gln Gln Cys Gln Lys Glu Ala Lys Glu Phe Ala Lys
 65 70 75 80
 Lys Val Gln Glu Leu Gln Lys Ser Asn Gln Val Ala Phe Gln His Phe
 85 90 95
 Gln Glu Leu Asp Glu His Ile Ser Tyr Val Ala Thr Lys Val Cys His
 100 105 110
 Leu Gly Asp Gln Leu Glu Gly Val Asn Thr Pro Arg Gln Arg Ala Val
 115 120 125
 Glu Ala Gln Lys Leu Met Lys Tyr Phe Asn Glu Phe Leu Asp Gly Glu
 130 135 140
 Leu Lys Ser Asp Val Phe Thr Asn Ser Glu Lys Ile Lys Glu Ala Ala
 145 150 155 160
 Asp Ile Ile Gln Lys Leu His Leu Ile Ala Gln Glu Leu Pro Phe Asp
 165 170 175
 Arg Phe Ser Glu Val Lys Ser Lys Ile Ala Ser Lys Tyr His Asp Leu
 180 185 190
 Glu Cys Gln Leu Ile Gln Glu Phe Thr Ser Ala Gln Arg Arg Gly Glu
 195 200 205
 Ile Ser Arg Met Arg Glu Val Ala Ala Val Leu Leu His Phe Lys Gly
 210 215 220
 Tyr Ser His Cys Val Asp Val Tyr Ile Lys Gln Cys Gln Glu Gly Ala
 225 230 235 240
 Tyr Leu Arg Asn Asp Ile Phe Glu Asp Ala Gly Ile Leu Cys Gln Arg
 245 250 255
 Val Asn Lys Gln Val Gly Asp Ile Phe Ser Asn Pro Glu Thr Val Leu
 260 265 270
 Ala Lys Leu Ile Gln Asn Val Phe Glu Ile Lys Leu Gln Ser Phe Val
 275 280 285
 Lys Glu Gln Leu Glu Glu Cys Arg Lys Ser Asp Ala Glu Gln Tyr Leu
 290 295 300
 Lys Asn Leu Tyr Asp Leu Tyr Thr Arg Thr Thr Asn Leu Ser Ser Lys
 305 310 315 320
 Leu Met Glu Phe Asn Leu Gly Thr Asp Lys Gln Thr Phe Leu Ser Lys

	325	330	335
Leu Ile Lys Ser Ile Phe Ile Ser Tyr	Leu Glu Asn Tyr	Ile Glu Val	
340	345	350	
Glu Thr Gly Tyr Leu Lys Ser Arg	Ser Ala Met Ile Leu Gln Arg Tyr		
355	360	365	
Tyr Asp Ser Lys Asn His Gln Lys Arg Ser Ile Gly Thr Gly Gly Ile			
370	375	380	
Gln Asp Leu Lys Glu Arg Ile Arg Gln Arg Thr Asn Leu Pro Leu Gly			
385	390	395	400
Pro Ser Ile Asp Thr His Gly Glu Thr Phe Leu Ser Gln Glu Val Val			
405	410	415	
Val Asn Leu Leu Gln Glu Thr Lys Gln Ala Phe Glu Arg Cys His Arg			
420	425	430	
Leu Ser Asp Pro Ser Asp Leu Pro Arg Asn Ala Phe Arg Ile Phe Thr			
435	440	445	
Ile Leu Val Glu Phe Leu Cys Ile Glu His Ile Asp Tyr Ala Leu Glu			
450	455	460	
Thr Gly Leu Ala Gly Ile Pro Ser Ser Asp Ser Arg Asn Ala Asn Leu			
465	470	475	480
Tyr Phe Leu Asp Val Val Gln Gln Ala Asn Thr Ile Phe His Leu Phe			
485	490	495	
Asp Lys Gln Phe Asn Asp His Leu Met Pro Leu Ile Ser Ser Ser Pro			
500	505	510	
Lys Leu Ser Glu Cys Leu Gln Lys Lys Glu Ile Ile Glu Gln Met			
515	520	525	
Glu Met Lys Leu Asp Thr Gly Ile Asp Arg Thr Leu Asn Cys Met Ile			
530	535	540	
Gly Gln Met Lys His Ile Leu Ala Ala Glu Gln Lys Lys Thr Asp Phe			
545	550	555	560
Lys Pro Glu Asp Glu Asn Asn Val Leu Ile Gln Tyr Thr Asn Ala Cys			
565	570	575	
Val Lys Val Cys Ala Tyr Val Arg Lys Gln Val Glu Lys Ile Lys Asn			
580	585	590	
Ser Met Asp Gly Lys Asn Val Asp Thr Val Leu Met Glu Leu Gly Val			
595	600	605	
Arg Phe His Arg Leu Ile Tyr Glu His Leu Gln Gln Tyr Ser Tyr Ser			
610	615	620	
Cys Met Gly Gly Met Leu Ala Ile Cys Asp Val Ala Glu Tyr Arg Lys			
625	630	635	640
Cys Ala Lys Asp Phe Lys Ile Pro Met Val Leu His Leu Phe Asp Thr			
645	650	655	
Leu His Ala Leu Cys Asn Leu Leu Val Val Ala Pro Asp Asn Leu Lys			
660	665	670	
Gln Val Cys Ser Gly Glu Gln Leu Ala Asn Leu Asp Lys Asn Ile Leu			
675	680	685	
His Ser Phe Val Gln Leu Arg Ala Asp Tyr Arg Ser Ala Arg Leu Ala			
690	695	700	
Arg His Phe Ser			
705			

<210> 370

<211> 60

<212> DNA

<213> Homo sapiens

<400> 370
gtcaatcaact ctcccgcat aagcaccca gccactcta ttccagggag tcatgctatg 60

<210> 371

<211> 60

<212> DNA

<213> Homo sapiens

<400> 371

agtagaatt cctctggaac tggagacatt ttccagcaac atattcagct tgaaagtaca 60

<210> 372

<211> 60

<212> DNA

<213> Homo sapiens

<400> 372

ccagagactg gagatcctgt tacgctgaga ctccttgatg atggaggcagg tgctgatgtt 60

<210> 373

<211> 60

<212> DNA

<213> Homo sapiens

<400> 373

ttacagtctg ctgtatctaa cattgccag gcgcctctgt ttattcccc caattctgat 60

<210> 374

<211> 60

<212> DNA

<213> Homo sapiens

<400> 374

gctgtcccc cagccactgt ggaagcctt gtggaaagag acagcctcca tttcctcat 60

<210> 375

<211> 60

<212> DNA

<213> Homo sapiens

<400> 375

aaaaaacacag tgactgtgga taatactgtg ggcaacgaca ctatgttct agttacgtgg 60

<210> 376

<211> 20

<212> PRT

<213> Homo sapiens

<400> 376

Leu Gln Ser Ala Val Ser Asn Ile Ala Gln Ala Pro Leu Phe Ile Pro
1 5 10 15
Pro Asn Ser Asp
20

<210> 377

<211> 20

<212> PRT

<213> Homo sapiens

<400> 377

Val Asn His Ser Pro Ser Ile Ser Thr Pro Ala His Ser Ile Pro Gly
1 5 10 15
Ser His Ala Met
20

<210> 378

<211> 20

<212> PRT

<213> Homo sapiens

<400> 378

Pro Glu Thr Gly Asp Pro Val Thr Leu Arg Leu Leu Asp Asp Gly Ala
1 5 10 15
Gly Ala Asp Val
20

<210> 379

<211> 20

<212> PRT

<213> Homo sapiens

<400> 379

Ala Val Pro Pro Ala Thr Val Glu Ala Phe Val Glu Arg Asp Ser Leu
1 5 10 15
His Phe Pro His
20

<210> 380

<211> 20

<212> PRT

<213> Homo sapiens

<400> 380

Ser Arg Ile Ser Ser Gly Thr Gly Asp Ile Phe Gln Gln His Ile Gln
1 5 10 15
Leu Glu Ser Thr

20

<210> 381
<211> 20
<212> PRT
<213> Homo sapiens

<400> 381
Lys Asn Thr Val Thr Val Asp Asn Thr Val Gly Asn Asp Thr Met Phe
1 5 10 15
Leu Val Thr Trp
20

<210> 382
<211> 20
<212> PRT
<213> Homo sapiens

<400> 382
Lys Pro Gly His Trp Thr Tyr Thr Leu Asn Asn Thr His His Ser Leu
1 5 10 15
Gln Ala Leu Lys
20

<210> 383
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 383
cggcgaattc atggattggg ggacgctgc 29

<210> 384
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 384
cggcctcgag tcaccctct atccgaacct tctgc 35

<210> 385
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 385
cggcgaattc cacgaaccac tcgcaaggta ag 32

<210> 386
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer
<400> 386
cggctcgagt tagttggc ctgtgattgc 30

<210> 387
<211> 20
<212> PRT
<213> Homo sapiens
<400> 387
Phe Phe Lys Trp Leu Leu Ser Cys Cys Pro Gly Ser Ser Gln Ile Ala
1 5 10 15
Ala Ala Ala Ser
20

<210> 388
<211> 19
<212> PRT
<213> Homo sapiens
<400> 388
Leu Ser Cys Cys Pro Gly Ser Ser Gln Ile Ala Ala Ala Ser Thr Gln
1 5 10 15
Pro Glu Asp

<210> 389
<211> 20
<212> PRT
<213> Homo sapiens
<400> 389
Ala Ala Ala Ala Ser Thr Gln Pro Glu Asp Asp Ile Asn Thr Gln Arg
1 5 10 15
Lys Lys Ser Gln
20

<210> 390

<211> 20
<212> PRT
<213> Homo sapiens

<400> 390
Thr Gln Pro Glu Asp Asp Ile Asn Thr Gln Arg Lys Lys Ser Gln Glu
1 5 10 15
Lys Met Arg Glu
20

<210> 391
<211> 20
<212> PRT
<213> Homo sapiens

<400> 391
Asp Ile Asn Thr Gln Arg Lys Lys Ser Gln Glu Lys Met Arg Glu Val
1 5 10 15
Thr Asp Ser Pro
20

<210> 392
<211> 20
<212> PRT
<213> Homo sapiens

<400> 392
Arg Lys Lys Ser Gln Glu Lys Met Arg Glu Val Thr Asp Ser Pro Gly
1 5 10 15
Arg Pro Arg Glu
20

<210> 393
<211> 20
<212> PRT
<213> Homo sapiens

<400> 393
Glu Lys Met Arg Glu Val Thr Asp Ser Pro Gly Arg Pro Arg Glu Leu
1 5 10 15
Thr Ile Pro Gln
20

<210> 394
<211> 20
<212> PRT
<213> Homo sapiens

<400> 394
Val Thr Asp Ser Pro Gly Arg Pro Arg Glu Leu Thr Ile Pro Gln Thr

1
Ser Ser His Gly
20

<210> 395
<211> 19
<212> PRT
<213> Homo sapiens

<400> 395
Gly Arg Pro Arg Glu Leu Thr Ile Pro Gln Thr Ser Ser His Gly Ala
1 5 10 15
Asn Arg Phe

<210> 396
<211> 19
<212> PRT
<213> Homo sapiens

<400> 396
Met Asn Lys Leu Tyr Ile Gly Asn Leu Ser Glu Asn Ala Ala Pro Ser
1 5 10 15
Asp Leu Glu

<210> 397
<211> 20
<212> PRT
<213> Homo sapiens

<400> 397
Ser Glu Asn Ala Ala Pro Ser Asp Leu Glu Ser Ile Phe Lys Asp Ala
1 5 10 15
Lys Ile Pro Val
20

<210> 398
<211> 20
<212> PRT
<213> Homo sapiens

<400> 398
Ser Ile Phe Lys Asp Ala Lys Ile Pro Val Ser Gly Pro Phe Leu Val
1 5 10 15
Lys Thr Gly Tyr
20

<210> 399

<211> 20
<212> PRT
<213> Homo sapiens

<400> 399
Ser Gly Pro Phe Leu Val Lys Thr Gly Tyr Ala Phe Val Asp Cys Pro
1 5 10 15
Asp Glu Ser Trp
20

<210> 400
<211> 20
<212> PRT
<213> Homo sapiens

<400> 400
Ala Phe Val Asp Cys Pro Asp Glu Ser Trp Ala Leu Lys Ala Ile Glu
1 5 10 15
Ala Leu Ser Gly
20

<210> 401
<211> 20
<212> PRT
<213> Homo sapiens

<400> 401
Ala Leu Lys Ala Ile Glu Ala Leu Ser Gly Lys Ile Glu Leu His Gly
1 5 10 15
Lys Pro Ile Glu
20

<210> 402
<211> 20
<212> PRT
<213> Homo sapiens

<400> 402
Lys Ile Glu Leu His Gly Lys Pro Ile Glu Val Glu His Ser Val Pro
1 5 10 15
Lys Arg Gln Arg
20

<210> 403
<211> 20
<212> PRT
<213> Homo sapiens

<400> 403
Val Glu His Ser Val Pro Lys Arg Gln Arg Ile Arg Lys Leu Gln Ile

1
Arg Asn Ile Pro
5
20

<210> 404
<211> 20
<212> PRT
<213> Homo sapiens

<400> 404
Ile Arg Lys Leu Gln Ile Arg Asn Ile Pro Pro His Leu Gln Trp Glu
1 5 10 15
Val Leu Asp Ser
20

<210> 405
<211> 20
<212> PRT
<213> Homo sapiens

<400> 405
Ala Val Val Asn Val Thr Tyr Ser Ser Lys Asp Gln Ala Arg Gln Ala
1 5 10 15
Leu Asp Lys Leu
20

<210> 406
<211> 20
<212> PRT
<213> Homo sapiens

<400> 406
Asp Gln Ala Arg Gln Ala Leu Asp Lys Leu Asn Gly Phe Gln Leu Glu
1 5 10 15
Asn Phe Thr Leu
20

<210> 407
<211> 20
<212> PRT
<213> Homo sapiens

<400> 407
Asn Gly Phe Gln Leu Glu Asn Phe Thr Leu Lys Val Ala Tyr Ile Pro
1 5 10 15
Asp Glu Thr Ala
20

<210> 408

<211> 20
<212> PRT
<213> Homo sapiens

<400> 408
Lys Val Ala Tyr Ile Pro Asp Glu Thr Ala Ala Gln Gln Asn Pro Leu
1 5 10 15
Gln Gln Pro Arg
20

<210> 409
<211> 20
<212> PRT
<213> Homo sapiens

<400> 409
Ala Gln Gln Asn Pro Leu Gln Gln Pro Arg Gly Arg Arg Gly Leu Gly
1 5 10 15
Gln Arg Gly Ser
20

<210> 410
<211> 20
<212> PRT
<213> Homo sapiens

<400> 410
Gly Arg Arg Gly Leu Gly Gln Arg Gly Ser Ser Arg Gln Gly Ser Pro
1 5 10 15
Gly Ser Val Ser
20

<210> 411
<211> 20
<212> PRT
<213> Homo sapiens

<400> 411
Ser Arg Gln Gly Ser Pro Gly Ser Val Ser Lys Gln Lys Pro Cys Asp
1 5 10 15
Leu Pro Leu Arg
20

<210> 412
<211> 20
<212> PRT
<213> Homo sapiens

<400> 412
Lys Gln Lys Pro Cys Asp Leu Pro Leu Arg Leu Leu Val Pro Thr Gln

1
Phe Val Gly Ala
20

<210> 413
<211> 20
<212> PRT
<213> Homo sapiens

<400> 413
Leu Leu Val Pro Thr Gln Phe Val Gly Ala Ile Ile Gly Lys Glu Gly
1 5 10 15
Ala Thr Ile Arg
20

<210> 414
<211> 20
<212> PRT
<213> Homo sapiens

<400> 414
Ile Ile Gly Lys Glu Gly Ala Thr Ile Arg Asn Ile Thr Lys Gln Thr
1 5 10 15
Gln Ser Lys Ile
20

<210> 415
<211> 20
<212> PRT
<213> Homo sapiens

<400> 415
Asn Ile Thr Lys Gln Thr Gln Ser Lys Ile Asp Val His Arg Lys Glu
1 5 10 15
Asn Ala Gly Ala
20

<210> 416
<211> 20
<212> PRT
<213> Homo sapiens

<400> 416
Asp Val His Arg Lys Glu Asn Ala Gly Ala Ala Glu Lys Ser Ile Thr
1 5 10 15
Ile Leu Ser Thr
20

<210> 417

<211> 20
<212> PRT
<213> Homo sapiens

<400> 417
Ala Glu Lys Ser Ile Thr Ile Leu Ser Thr Pro Glu Gly Thr Ser Ala
1 5 10 15
Ala Cys Lys Ser
20

<210> 418
<211> 20
<212> PRT
<213> Homo sapiens

<400> 418
Pro Glu Gly Thr Ser Ala Ala Cys Lys Ser Ile Leu Glu Ile Met His
1 5 10 15
Lys Glu Ala Gln
20

<210> 419
<211> 20
<212> PRT
<213> Homo sapiens

<400> 419
Ile Leu Glu Ile Met His Lys Glu Ala Gln Asp Ile Lys Phe Thr Glu
1 5 10 15
Glu Ile Pro Leu
20

<210> 420
<211> 455
<212> DNA
<213> Homo sapiens

<400> 420
gaagacatgc ttacttcccc ttcacccccc ttcatgtatgt gggaaagagtg ctgcaaccca 60
gccctagcca acgcccgtatc agaggggatgt tgccgagggc ttctgagaag gtttctctca 120
catctagaaa gaagcgctta agatgtggca gccctcttc ttcaagtggc tcttgtcctg 180
ttgccctggg agttctcaa ttgctgcagc agcctccacc cagcctgagg atgacatcaa 240
tacacagagg aagaagagtc aggaaaagat gagagaagtt acagactctc ctggcgacc 300
ccgagagctt accattccctc agacttcttc acatggtgct aacagatttgc ttctaaag 360
taaagctcta gaggccgtca aattggcaat agaagccggg ttccaccata ttgattctgc 420
acatgtttac aataatgagg agcaggttgg actgg 455

<210> 421
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 421
actagtgcc gcgtggcgcc ctac 24

<210> 422
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 422
catgagaatt catcacatgc ccttgaaggc tccc 34

<210> 423
<211> 161
<212> PRT
<213> Homo sapiens

<400> 423
Met Gln His His His His His His Thr Ser Val Arg Val Ala Ala
1 5 10 15
Tyr Phe Glu Asn Phe Leu Ala Ala Trp Arg Pro Val Lys Ala Ser Asp
20 25 30
Gly Asp Tyr Tyr Thr Leu Ala Val Pro Met Gly Asp Val Pro Met Asp
35 40 45
Gly Ile Ser Val Ala Asp Ile Gly Ala Ala Val Ser Ser Ile Phe Asn
50 55 60
Ser Pro Glu Glu Phe Leu Gly Lys Ala Val Gly Leu Ser Ala Glu Ala
65 70 75 80
Leu Thr Ile Gln Gln Tyr Ala Asp Val Leu Ser Lys Ala Leu Gly Lys
85 90 95
Glu Val Arg Asp Ala Lys Ile Thr Pro Glu Ala Phe Glu Lys Leu Gly
100 105 110
Phe Pro Ala Ala Lys Glu Ile Ala Asn Met Cys Arg Phe Tyr Glu Met
115 120 125
Lys Pro Asp Arg Asp Val Asn Leu Thr His Gln Leu Asn Pro Lys Val
130 135 140
Lys Ser Phe Ser Gln Phe Ile Ser Glu Asn Gln Gly Ala Phe Lys Gly
145 150 155 160
Met

<210> 424
<211> 489
<212> DNA
<213> Homo sapiens

<400> 424

atgcagcatc accaccatca ccaccacact agtgtccgcg tggccgccta ctttgaaaac 60
 tttctcgccg cgtggccgcg cgtgaaagcc tctgatggag attactacac cttggctgta 120
 ccgatggag atgtaccaat ggatggatc tctgttgctg atattggagc agccgtctct 180
 agcatttttta attctccaga ggaatttttta ggcaaggccg tggggctcag tgccagaagca 240
 ctaacaatac agcaatatgc tgatgttttgc tccaaggcgtt tggggaaaga agtccgagat 300
 gcaaagatta ccccgaaagc tttcgagaag ctgggattcc ctgcagcaaa gaaatagcc 360
 aatatgtgtc gtttctatga aatgaagccg gaccgagatg tcaatctcac ccaccaacta 420
 aatccccaaag tcaaaaagctt cagccagttt atctcagaga accagggagc cttcaaggc 480
 atgtatga 489

<210> 425
 <211> 32
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> PCR primer

<400> 425
 aacaaactgt atatcgaaaa cctcagcgag aa 32

<210> 426
 <211> 33
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> PCR primer

<400> 426
 ccatagaatt cattacttcc gtcttgactg agg 33

<210> 427
 <211> 586
 <212> PRT
 <213> Homo sapiens

<400> 427
 Met Gln His His His His Asn Lys Leu Tyr Ile Gly Asn Leu
 1 5 10 15
 Ser Glu Asn Ala Ala Pro Ser Asp Leu Glu Ser Ile Phe Lys Asp Ala
 20 25 30
 Lys Ile Pro Val Ser Gly Pro Phe Leu Val Lys Thr Gly Tyr Ala Phe
 35 40 45
 Val Asp Cys Pro Asp Glu Ser Trp Ala Leu Lys Ala Ile Glu Ala Leu
 50 55 60
 Ser Gly Lys Ile Glu Leu His Gly Lys Pro Ile Glu Val Glu His Ser
 65 70 75 80
 Val Pro Lys Arg Gln Arg Ile Arg Lys Leu Gln Ile Arg Asn Ile Pro
 85 90 95
 Pro His Leu Gln Trp Glu Val Leu Asp Ser Leu Leu Val Gln Tyr Gly
 100 105 110
 Val Val Glu Ser Cys Glu Gln Val Asn Thr Asp Ser Glu Thr Ala Val
 115 120 125

Val Asn Val Thr Tyr Ser Ser Lys Asp Gln Ala Arg Gln Ala Leu Asp
 130 135 140
 Lys Leu Asn Gly Phe Gln Leu Glu Asn Phe Thr Leu Lys Val Ala Tyr
 145 150 155 160
 Ile Pro Asp Glu Thr Ala Ala Gln Gln Asn Pro Leu Gln Gln Pro Arg
 165 170 175
 Gly Arg Arg Gly Leu Gly Gln Arg Gly Ser Ser Arg Gln Gly Ser Pro
 180 185 190
 Gly Ser Val Ser Lys Gln Lys Pro Cys Asp Leu Pro Leu Arg Leu Leu
 195 200 205
 Val Pro Thr Gln Phe Val Gly Ala Ile Ile Gly Lys Glu Gly Ala Thr
 210 215 220
 Ile Arg Asn Ile Thr Lys Gln Thr Gln Ser Lys Ile Asp Val His Arg
 225 230 235 240
 Lys Glu Asn Ala Gly Ala Ala Glu Lys Ser Ile Thr Ile Leu Ser Thr
 245 250 255
 Pro Glu Gly Thr Ser Ala Ala Cys Lys Ser Ile Leu Glu Ile Met His
 260 265 270
 Lys Glu Ala Gln Asp Ile Lys Phe Thr Glu Glu Ile Pro Leu Lys Ile
 275 280 285
 Leu Ala His Asn Asn Phe Val Gly Arg Leu Ile Gly Lys Glu Gly Arg
 290 295 300
 Asn Leu Lys Lys Ile Glu Gln Asp Thr Asp Thr Lys Ile Thr Ile Ser
 305 310 315 320
 Pro Leu Gln Glu Leu Thr Leu Tyr Asn Pro Glu Arg Thr Ile Thr Val
 325 330 335
 Lys Gly Asn Val Glu Thr Cys Ala Lys Ala Glu Glu Glu Ile Met Lys
 340 345 350
 Lys Ile Arg Glu Ser Tyr Glu Asn Asp Ile Ala Ser Met Asn Leu Gln
 355 360 365
 Ala His Leu Ile Pro Gly Leu Asn Leu Asn Ala Leu Gly Leu Phe Pro
 370 375 380
 Pro Thr Ser Gly Met Pro Pro Pro Thr Ser Gly Pro Pro Ser Ala Met
 385 390 395 400
 Thr Pro Pro Tyr Pro Gln Phe Glu Gln Ser Glu Thr Glu Thr Val His
 405 410 415
 Leu Phe Ile Pro Ala Leu Ser Val Gly Ala Ile Ile Gly Lys Gln Gly
 420 425 430
 Gln His Ile Lys Gln Leu Ser Arg Phe Ala Gly Ala Ser Ile Lys Ile
 435 440 445
 Ala Pro Ala Glu Ala Pro Asp Ala Lys Val Arg Met Val Ile Ile Thr
 450 455 460
 Gly Pro Pro Glu Ala Gln Phe Lys Ala Gln Gly Arg Ile Tyr Gly Lys
 465 470 475 480
 Ile Lys Glu Glu Asn Phe Val Ser Pro Lys Glu Glu Val Lys Leu Glu
 485 490 495
 Ala His Ile Arg Val Pro Ser Phe Ala Ala Gly Arg Val Ile Gly Lys
 500 505 510
 Gly Gly Lys Thr Val Asn Glu Leu Gln Asn Leu Ser Ser Ala Glu Val
 515 520 525
 Val Val Pro Arg Asp Gln Thr Pro Asp Glu Asn Asp Gln Val Val Val
 530 535 540
 Lys Ile Thr Gly His Phe Tyr Ala Cys Gln Val Ala Gln Arg Lys Ile
 545 550 555 560

Gln Glu Ile Leu Thr Gln Val Lys Gln His Gln Gln Gln Lys Ala Leu
 565 570 575
 Gln Ser Gly Pro Pro Gln Ser Arg Arg Lys
 580 585

<210> 428
<211> 1764

<212> DNA

<213> Hom

400 428
atgaggat

atgcagccattt accaccatcc ccacacaada ctgtatacg gaaacctcag cgagaacccc 60
gccccctcgg acctagaaaat tatcttcagg gacgccaaga tcccggtgtc gggacccttc 120
ctgggtgaaga ctggctacgc gttcgtggac tgccccggacg agagctggc cctcaaggcc 180
atcgaggcgc tttcaggtaa aatagaactg cacgggaaac ccatagaagt tgagcactcg 240
gtccccaaaaa ggcaaaaggat tcggaaactt cagatacggaa atatcccgcc tcatttacag 300
tgggaggtgc tgatagttt actagtccag tatggagtggtgg tggagagctg tgagcaagt 360
aacactgact cgaaaactgc agttgtaaat gtaacctatt ccagtaagga ccaagctaga 420
caaggacttag acaaactgaa tggatttcag tttagagaatt tcaccttggaa agtagccat 480
atccctgtatc aaacggccgc ccagcaaaac cccttgcagc agccccgagg tcgcccgggg 540
cttgggcaga ggggtcttc aaggcagggg tctccaggat ccgtatccaa gcagaaaacca 600
tgtgatttgc ctctgcgcct gctgggtccc acccaatttg ttggagccat catagggaaa 660
gaagggtgcca ccattcgaa catcaccaaa cagacccagt ctaaaatcga tgtccaccgt 720
aaagaaaaatg cgggggctgc tgagaagtcg attactatcc tctctactcc tgaaggcacc 780
tctgcgctt gtaagtctat tctggagatt atgcataagg aagctcaaga tataaaattc 840
acagaagaga tccccttggaa gattttagct cataataact ttgttgacg tcttatttgg 900
aaagaaggaa gaaatcttaa aaaaatttggag caagacacag acactaaaat cacgatatct 960
ccattgcagg aatttgcgt gtataatcca gaacgcacta ttacagttaa aggcaatgtt 1020
gagacatgtg ccaaagctga ggaggagatc atgaagaaaa tcagggagtc ttatgaaaat 1080
gatattgttt ctatgaatct tcaagcacat ttaattccctg gattaaatct gaacgccttg 1140
ggtctgttcc cacccttc agggatgcca cctcccacct cagggcccccc ttcaaggccatg 1200
actcctccct acccgcatgtt tgagcaatca gaaacggaga ctgttcatct gtttatccca 1260
gctctatcag tgggtgccat catcgcaag cagggccacg acatcaagca gctttctcgc 1320
tttgcgtggag ctcaattaa gattgttcca gcggaaagcac cagatgttcaa agtgaggatg 1380
gtgattatca ctggaccacc agaggctcag ttcaaggctc agggaaagaat ttatgaaaaa 1440
attaaagaag aaaactttgt tagtcctaaa gaagaggtga aacttgaagc tcatatcaga 1500
gtgccatct ttgctgtgg cagagttatt gaaaaaggag gcaaaacgggt gaatgaactt 1560
cagaatttgt caagtgcaga agttgttgc cctcgtaacc agacacctga tgagaatgac 1620
caagtgttg tcaaaaataac tggtcaacttc tatgcttgcc aggttgccca gagaaaaatt 1680
cagggaaattc tgactcaggtaa aagcagcac caacaacaga aggctctgca aagtggacca 1740
cctcaatcaa qacqqaagta atqa 1764

<210> 429

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 429

ccatggaaatt cattatttca atataaagata atctc

<210> 430
<211> 881
<212> PRT
<213> Homo sapiens

<400> 430

Met	Gln	His	His	His	His	His	Gly	Val	Gln	Leu	Gln	Asp	Asn	Gly	
1								10						15	
Tyr	Asn	Gly	Leu	Leu	Ile	Ala	Ile	Asn	Pro	Gln	Val	Pro	Glu	Asn	Gln
					20			25						30	
Asn	Leu	Ile	Ser	Asn	Ile	Lys	Glu	Met	Ile	Thr	Glu	Ala	Ser	Phe	Tyr
					35			40						45	
Leu	Phe	Asn	Ala	Thr	Lys	Arg	Arg	Val	Phe	Phe	Arg	Asn	Ile	Lys	Ile
					50			55						60	
Leu	Ile	Pro	Ala	Thr	Trp	Lys	Ala	Asn	Asn	Ser	Lys	Ile	Lys	Gln	
					65			70						80	
Glu	Ser	Tyr	Glu	Lys	Ala	Asn	Val	Ile	Val	Thr	Asp	Trp	Tyr	Gly	Ala
					85			90						95	
His	Gly	Asp	Asp	Pro	Tyr	Thr	Leu	Gln	Tyr	Arg	Gly	Cys	Gly	Lys	Glu
					100			105						110	
Gly	Lys	Tyr	Ile	His	Phe	Thr	Pro	Asn	Phe	Leu	Leu	Asn	Asp	Asn	Leu
					115			120						125	
Thr	Ala	Gly	Tyr	Gly	Ser	Arg	Gly	Arg	Val	Phe	Val	His	Glu	Trp	Ala
					130			135						140	
His	Leu	Arg	Trp	Gly	Val	Phe	Asp	Glu	Tyr	Asn	Asn	Asp	Lys	Pro	Phe
					145			150							160
Tyr	Ile	Asn	Gly	Gln	Asn	Gln	Ile	Lys	Val	Thr	Arg	Cys	Ser	Ser	Asp
					165			170						175	
Ile	Thr	Gly	Ile	Phe	Val	Cys	Glu	Lys	Gly	Pro	Cys	Pro	Gln	Glu	Asn
					180			185						190	
Cys	Ile	Ile	Ser	Lys	Leu	Phe	Lys	Glu	Gly	Cys	Thr	Phe	Ile	Tyr	Asn
					195			200						205	
Ser	Thr	Gln	Asn	Ala	Thr	Ala	Ser	Ile	Met	Phe	Met	Gln	Ser	Leu	Ser
					210			215						220	
Ser	Val	Val	Glu	Phe	Cys	Asn	Ala	Ser	Thr	His	Asn	Gln	Glu	Ala	Pro
					225			230							240
Asn	Leu	Gln	Asn	Gln	Met	Cys	Ser	Leu	Arg	Ser	Ala	Trp	Asp	Val	Ile
					245			250						255	
Thr	Asp	Ser	Ala	Asp	Phe	His	His	Ser	Phe	Pro	Met	Asn	Gly	Thr	Glu
					260			265						270	
Leu	Pro	Pro	Pro	Pro	Thr	Phe	Ser	Leu	Val	Glu	Ala	Gly	Asp	Lys	Val
					275			280						285	
Val	Cys	Leu	Val	Leu	Asp	Val	Ser	Ser	Lys	Met	Ala	Glu	Ala	Asp	Arg
					290			295						300	
Leu	Leu	Gln	Leu	Gln	Gln	Ala	Ala	Glu	Phe	Tyr	Leu	Met	Gln	Ile	Val
					305			310						320	
Glu	Ile	His	Thr	Phe	Val	Gly	Ile	Ala	Ser	Phe	Asp	Ser	Lys	Gly	Glu
					325			330						335	
Ile	Arg	Ala	Gln	Leu	His	Gln	Ile	Asn	Ser	Asn	Asp	Asp	Arg	Lys	Leu
					340			345						350	
Leu	Val	Ser	Tyr	Leu	Pro	Thr	Thr	Val	Ser	Ala	Lys	Thr	Asp	Ile	Ser
					355			360						365	
Ile	Cys	Ser	Gly	Leu	Lys	Lys	Gly	Phe	Glu	Val	Val	Glu	Lys	Leu	Asn
					370			375						380	

Gly Lys Ala Tyr Gly Ser Val Met Ile Leu Val Thr Ser Gly Asp Asp
 385 390 395 400
 Lys Leu Leu Gly Asn Cys Leu Pro Thr Val Leu Ser Ser Gly Ser Thr
 405 410 415
 Ile His Ser Ile Ala Leu Gly Ser Ser Ala Ala Pro Asn Leu Glu Glu
 420 425 430
 Leu Ser Arg Leu Thr Gly Gly Leu Lys Phe Phe Val Pro Asp Ile Ser
 435 440 445
 Asn Ser Asn Ser Met Ile Asp Ala Phe Ser Arg Ile Ser Ser Gly Thr
 450 455 460
 Gly Asp Ile Phe Gln Gln His Ile Gln Leu Glu Ser Thr Gly Glu Asn
 465 470 475 480
 Val Lys Pro His His Gln Leu Lys Asn Thr Val Thr Val Asp Asn Thr
 485 490 495
 Val Gly Asn Asp Thr Met Phe Leu Val Thr Trp Gln Ala Ser Gly Pro
 500 505 510
 Pro Glu Ile Ile Leu Phe Asp Pro Asp Gly Arg Lys Tyr Tyr Thr Asn
 515 520 525
 Asn Phe Ile Thr Asn Leu Thr Phe Arg Thr Ala Ser Leu Trp Ile Pro
 530 535 540
 Gly Thr Ala Lys Pro Gly His Trp Thr Tyr Thr Leu Asn Asn Thr His
 545 550 555 560
 His Ser Leu Gln Ala Leu Lys Val Thr Val Thr Ser Arg Ala Ser Asn
 565 570 575
 Ser Ala Val Pro Pro Ala Thr Val Glu Ala Phe Val Glu Arg Asp Ser
 580 585 590
 Leu His Phe Pro His Pro Val Met Ile Tyr Ala Asn Val Lys Gln Gly
 595 600 605
 Phe Tyr Pro Ile Leu Asn Ala Thr Val Thr Ala Thr Val Glu Pro Glu
 610 615 620
 Thr Gly Asp Pro Val Thr Leu Arg Leu Leu Asp Asp Gly Ala Gly Ala
 625 630 635 640
 Asp Val Ile Lys Asn Asp Gly Ile Tyr Ser Arg Tyr Phe Phe Ser Phe
 645 650 655
 Ala Ala Asn Gly Arg Tyr Ser Leu Lys Val His Val Asn His Ser Pro
 660 665 670
 Ser Ile Ser Thr Pro Ala His Ser Ile Pro Gly Ser His Ala Met Tyr
 675 680 685
 Val Pro Gly Tyr Thr Ala Asn Gly Asn Ile Gln Met Asn Ala Pro Arg
 690 695 700
 Lys Ser Val Gly Arg Asn Glu Glu Glu Arg Lys Trp Gly Phe Ser Arg
 705 710 715 720
 Val Ser Ser Gly Gly Ser Phe Ser Val Leu Gly Val Pro Ala Gly Pro
 725 730 735
 His Pro Asp Val Phe Pro Pro Cys Lys Ile Ile Asp Leu Glu Ala Val
 740 745 750
 Lys Val Glu Glu Glu Leu Thr Leu Ser Trp Thr Ala Pro Gly Glu Asp
 755 760 765
 Phe Asp Gln Gly Gln Ala Thr Ser Tyr Glu Ile Arg Met Ser Lys Ser
 770 775 780
 Leu Gln Asn Ile Gln Asp Asp Phe Asn Asn Ala Ile Leu Val Asn Thr
 785 790 795 800
 Ser Lys Arg Asn Pro Gln Gln Ala Gly Ile Arg Glu Ile Phe Thr Phe
 805 810 815

Ser Pro Gln Ile Ser Thr Asn Gly Pro Glu His Gln Pro Asn Gly Glu
 820 825 830
 Thr His Glu Ser His Arg Ile Tyr Val Ala Ile Arg Ala Met Asp Arg
 835 840 845
 Asn Ser Leu Gln Ser Ala Val Ser Asn Ile Ala Gln Ala Pro Leu Phe
 850 855 860
 Ile Pro Pro Asn Ser Asp Pro Val Pro Ala Arg Asp Tyr Leu Ile Leu
 865 870 875 880
 Lys

<210> 431
 <211> 2646
 <212> DNA
 <213> Homo sapiens

<400> 431
 atgcagcatc accaccatca ccacggagta cagcttcaag acaaatggta taatggattg 60
 ctcatcgaaa ttaatcctca ggtaccttag aatcagaacc tcatactcaaa cattaaggaa 120
 atgataactg aagcttcatt ttaccttattt aatgctacca agagaagagt atttttcaga 180
 aatataaaga tttaataacc tgccacatgg aaagctaata ataacagcaa aataaaacaa 240
 gaatcatatg aaaaggcaaa tgcataatgg actgactggt atggggcaca tggagatgt 300
 ccatacaccc tacaatacag agggtgtgga aaagaggaa aatacatca tttcacacct 360
 aatttcctac tgaatgataa cttAACAGCT ggctacggat cacgaggccg agtgtttgtc 420
 catgaatggg cccacctccg ttgggggtgt ttcgatgagt ataacaatga caaaccttc 480
 tacataaatg ggcaaaatca aattaaatgt acaaggtgtt catctgacat cacaggcatt 540
 tttgtgtgtg aaaaagggtcc ttggccccaa gaaaactgtt ttatttagtaa gctttttaaa 600
 gaaggatgca ccttatcta caatagcacc caaaatgcaa ctgcataat aatgttcatg 660
 caaagtttat cttctgttgt tgaatttgt aatgcaagta cccacaacca agaagcacca 720
 aacctacaga accagatgtg cagcctcaga agtgcattt atgtaatcac agactctgt 780
 gactttcacc acagcttcc catgaacggg actgagttt cacccctcc cacattctcg 840
 ctttagagg ctggtgacaa agtggctgt tttagtgcgtt atgtgtccag caagatggca 900
 gaggctgaca gactcctca actacaacaa gccgcagaat ttatTTGAT gcagattgtt 960
 gaaattcata cttcggtggg cattgccagt ttgcacagca aaggagagat cagagccag 1020
 ctacacccaa ttaacagcaa tgatgatcga aagtgtctgg tttcatatct gcccaccact 1080
 gtatcagcta aaacagacat cagcatttgt tcaggcctt agaaaggatt tgaggtgg 1140
 gaaaaactga atggaaaagc ttatggctt gtgatgatat tagtgcacca cggagatgt 1200
 aagttcttg gcaattgtt acccactgtg ctcagcagtg gttcaacaat tcactccatt 1260
 gcccgggtt catctgcagc cccaaatctg gagaaattt cacgtcttac aggaggttt 1320
 aagttcttg ttccagatat atcaaactcc aatagcatga ttgatgcattt cagtagaatt 1380
 tcctctggaa ctggagacat tttccagcaa catattcagc ttgaaagttc aggtgaaat 1440
 gtcaaaccctc accatcaatt gaaaaacaca gtgactgtgg ataataactgt gggcaacgac 1500
 actatgtttc tagttacgtg gcaggccagt ggtcccttg agattatatt atttgatct 1560
 gatggacgaa aataactacac aaataatttt atcaccacat taactttcg gacagctgt 1620
 ctttggattc caggaacagc taagcctgg cactggactt acaccctgaa caataccat 1680
 cattctctgc aagccctgaa agtgcacagt acctctcgcc cctccaactc agctgtgccc 1740
 ccagccactg tgaaagcctt tggaaagaa gacagccctt atttccctca tcctgtatg 1800
 atttatgcctt atgtgaaaca gggattttat cccattctt atgcccactgt cactgccaca 1860
 gttgagccag agactggaga tcctgttacg ctgagactcc ttgatgatgg agcaggtgt 1920
 gatgttataa aaaatgtgg aatttactcg aggtatTTT tctcccttgc tgcaaatgg 1980
 agatatacgct tgaaagtgc tgcataatcac tctccagca taagcacccc agccactct 2040
 attccaggg gtcatactat gtatgtacca gttacacag caaacggtaa tattcagatg 2100
 aatgctccaa gggaaatcagt aggcagaaat gaggaggagc gaaagtgggg ctttagccga 2160

gtcagctcag gaggctcctt ttcaagtgcgt ggagttccag ctggccccca ccctgatgtg 2220
 tttccaccat gcaaaaattat tgacctggaa gctgtaaaag tagaagagga attgacccta 2280
 tcttggacag cacctggaga agactttgtat cagggccagg ctacaagcta taaaataaga 2340
 atgagtaaaa gtctacagaa tatccaagat gactttaaca atgctatccc agtaaatata 2400
 tcaaagcgaa atcctcagca agctggcatc agggagatat ttacgttctc accccaaatt 2460
 tccacgaatg gacctgaaca tcagccaaat ggagaaacac atgaaagcca cagaatttat 2520
 gttgcaatac gagcaatgga taggaactcc ttacagtctg ctgtatctaa cattgccag 2580
 gcgcctctgt ttattccccca caattctgtat cctgtacctg ccagagatta tcttatattg 2640
 aaataaa 2646

<210> 432
 <211> 36
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> PCR primer

<400> 432
 cgccctgctcg agtcattaaat attcatcaga aaatgg 36

<210> 433
 <211> 371
 <212> PRT
 <213> Homo sapiens

<400> 433		
Met Gln His His His His His Trp Gln Pro Leu Phe Phe Lys Trp		
1 5 10 15		
Leu Leu Ser Cys Cys Pro Gly Ser Ser Gln Ile Ala Ala Ala Ser		
20 25 30		
Thr Gln Pro Glu Asp Asp Ile Asn Thr Gln Arg Lys Lys Ser Gln Glu		
35 40 45		
Lys Met Arg Glu Val Thr Asp Ser Pro Gly Arg Pro Arg Glu Leu Thr		
50 55 60		
Ile Pro Gln Thr Ser Ser His Gly Ala Asn Arg Phe Val Pro Lys Ser		
65 70 75 80		
Lys Ala Leu Glu Ala Val Lys Leu Ala Ile Glu Ala Gly Phe His His		
85 90 95		
Ile Asp Ser Ala His Val Tyr Asn Asn Glu Glu Gln Val Gly Leu Ala		
100 105 110		
Ile Arg Ser Lys Ile Ala Asp Gly Ser Val Lys Arg Glu Asp Ile Phe		
115 120 125		
Tyr Thr Ser Lys Leu Trp Ser Asn Ser His Arg Pro Glu Leu Val Arg		
130 135 140		
Pro Ala Leu Glu Arg Ser Leu Lys Asn Leu Gln Leu Asp Tyr Val Asp		
145 150 155 160		
Leu Tyr Leu Ile His Phe Pro Val Ser Val Lys Pro Gly Glu Glu Val		
165 170 175		
Ile Pro Lys Asp Glu Asn Gly Lys Ile Leu Phe Asp Thr Val Asp Leu		
180 185 190		
Cys Ala Thr Trp Glu Ala Met Glu Lys Cys Lys Asp Ala Gly Leu Ala		
195 200 205		
Lys Ser Ile Gly Val Ser Asn Phe Asn His Arg Leu Leu Glu Met Ile		

210	215	220
Leu Asn Lys Pro Gly Leu Lys Tyr Lys Pro Val Cys Asn Gln Val Glu		
225	230	235
Cys His Pro Tyr Phe Asn Gln Arg Lys Leu Leu Asp Phe Cys Lys Ser		
245	250	255
Lys Asp Ile Val Leu Val Ala Tyr Ser Ala Leu Gly Ser His Arg Glu		
260	265	270
Glu Pro Trp Val Asp Pro Asn Ser Pro Val Leu Leu Glu Asp Pro Val		
275	280	285
Leu Cys Ala Leu Ala Lys Lys His Lys Arg Thr Pro Ala Leu Ile Ala		
290	295	300
Leu Arg Tyr Gln Leu Gln Arg Gly Val Val Val Leu Ala Lys Ser Tyr		
305	310	315
Asn Glu Gln Arg Ile Arg Gln Asn Val Gln Val Phe Glu Phe Gln Leu		
325	330	335
Thr Ser Glu Glu Met Lys Ala Ile Asp Gly Leu Asn Arg Asn Val Arg		
340	345	350
Tyr Leu Thr Leu Asp Ile Phe Ala Gly Pro Pro Asn Tyr Pro Phe Ser		
355	360	365
Asp Glu Tyr		
370		

<210> 434
<211> 1119
<212> DNA
<213> Homo sapiens

<400> 434

atgcagcatc accaccatca ccactggcag cccctttct tcaagtggct cttgtcctgt	60
tgcctggga gttctcaa at tgctcgacca gcctccaccc agcctgagga tgacatcaat	120
acacagagga agaagagtca ggaaaagatg agagaagttt cagactctcc tggcgaccc	180
cggagactta ccatttcctca gacttcttca catggtgcta acagatttgt tcctaaaaat	240
aaagctctag aggccgtcaa attggcaata gaagccgggt tccaccatat tgattctgca	300
catgtttaca ataatgagga gcagggttggc ctggccatcc gaagcaagat tgcagatggc	360
agtgtgaaga gagaagacat attctacact tcaaagctt ggagcaattt ccatcgacca	420
gagtttgtcc gaccagcattt ggaaagggtca ctgaaaaatc ttcaatttggc ctatgttgc	480
ctctatctta ttcatttcc agtgtctgtt aagccagggtt aggaagtgtat cccaaaagat	540
gaaaatggaa aaatactatt tgacacagt gatctctgtt ccacatggc ggcacatggag	600
aagtgtaaat atgcaggatt gccaagttcc atcggttgtt ccaacttcaa ccacaggctg	660
ctggagatga tcctcaacaa gccagggttc aagtacaagc ctgtctgca ccaggtggaa	720
tgtcatcattt acttcaacca gagaaaactg ctggattttct gcaagtcaaa agacattttt	780
ctgggttgcct atagtgtctt gggatcccattt cgagaagaac catgggtggc cccgaactcc	840
ccgggtcttctt tggaggaccc agtcctttgtt gccttggcaa aaaagcacaa gcgaacccca	900
gccctgttgcctt ccctgcgttcc ctagctgtttt cgtgggggtt tggtccttggc caagagctac	960
aatgagcagc gcatcagaca gaacgtgtttt gtgtttttt tccagtttgc ttcaaggag	1020
atgaaagcca tagatggcctt aaacagaaaat gtgcgtatatt tgacccttga tatttttgc	1080
ggccccccctta attatccattt ttctgtatgaa tattatgtt	1119

<210> 435
<211> 36
<212> DNA
<213> Artificial Sequence

<220>		
<223> Primer		
<400> 435		
ggatccgccc ccaccatgac atccattcga gctgta		36
<210> 436		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 436		
gtcgactca g ctggaccaca gccgcag		27
<210> 437		
<211> 37		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 437		
ggatccgccc ccaccatgga ctcctggacc ttctgct		37
<210> 438		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 438		
gtcgactca g aaatcctt tc tttgac		27
<210> 439		
<211> 933		
<212> DNA		
<213> Homo sapiens		
<400> 439		
atggactcct ggaccttctg ctgtgtgtcc ct tttgcattcc tggtagcaaa gcacacagat		60
gctggaggta tccagtca ccggcacgag gtgacagaga tgggacaaga agtactctg		120
agatgtaaac caatttcagg acacgactac ct tttcttgtt acagacagac catgatgcgg		180
ggactggagt tgctcattta cttaacaac aacgttccga tagatgattc aggatgccc		240
gaggatcgat tctcagctaa gatgccta at gcatattctt ccactctgaa gatccagccc		300
tca gaaaccca gggactcagc tttgtacttc tttgtccagca gtttagtgg agcaaacact		360
gaagctttctt ttggacaagg caccagactc acaggtagttag aggacctgaa caagggttcc		420
ccacccgagg tcgctgtgtt tgagccatca gaaggagaga tctcccacac ccaaaaggcc		480
acactgggtt gctggccac aggcttcttc cctgaccacg tggagctgag ctggtggtt		540

aatgggaagg	aggtgcacag	tggggtcagc	acggaccgc	agccccta	aa	ggagcagccc	600
gccctcaatg	actccagata	ctgcctgagc	agccgcctga	gggtctcg	gc	caccttctgg	660
cagaaccccc	gcaaccactt	ccgctgtcaa	gtccagttct	acgggc	tctc	ggagaatgac	720
gagtggaccc	aggataggc	caaaccgc	acccagatcg	tcagcgc	cg	ggcctgggt	780
agagcagact	gtggcttac	ctcggtgtcc	taccagcaag	gggtc	ctgtc	tgccaccatc	840
ctctatgaga	tcctgctagg	gaaggccacc	ctgtatgctg	tgctgg	tcag	cgcccttgtg	900
tttatggcca	ttgtcaagag	aaaggatttc	tga				933

<210> 440

<211> 822

<212> DNA

<213> Homo sapiens

<400> 440

atgacatcca	ttcgagctgt	atttatattc	ctgtggctgc	agctggactt	ggtgaatg	ga	60	
gagaatgtgg	agcagcatcc	ttcaaccctg	agtgtccagg	agggagacag	cgctgttac	t	120	
aagtgtactt	attcagacag	tgcctcaaac	tacttccctt	ggtataa	gca	agaacttgg	180	
aaaagacctc	agcttattat	agacattcgt	tcaa	aatgtgg	g	cgaaaagaa	240	
attgctgtta	cattgaacaa	gacagccaaa	catttctccc	tgcacatcac	agagacccaa	300		
cctgaagact	cggctgtcta	tttctgtgca	gcaagtatac	tgaacaccgg	taacc	agttc	360	
tat	tttggga	cagggacaag	tttgacggtc	attccaaata	tccaga	accc	tgaccctg	420
gtgttaccagc	tgagagactc	taaaatccagt	gacaagtctg	tctgcctatt	caccgat	ttt	480	
gattctcaaa	caa	atgtgtc	acaaagtaag	gattctgat	tgtat	atcac	agaca	540
gtgctagaca	tgaggtctat	g	gacttcaag	agcaacagt	ctgtgg	cctg	gagaac	600
tctgactttt	catgtgc	aaa	cgccttcaac	aacagcatta	ttcc	cagaaga	cac	660
cccagccca	aaagtcc	ctg	atgtcaag	ctgg	tcgaga	aaag	cttga	720
aaccta	aaact	ttcaaa	ac	gtc	agtgt	gatt	gggtccgaa	780
gggtttaatc	tg	ctcatgac	g	tgcgg	gt	gg	tgccagct	822

<210> 441

<211> 2311

<212> DNA

<213> Homo sapiens

<400> 441

gatttaatcc	tatgacaaac	taagttgg	ctgtcttcac	ctgtttgg	gagg	ttgtgt	60	
aagagttgg	gtttgctc	ag	gaagagatt	aagcatg	cttacc	actc	agagaa	120
gtctccctgt	tctgtcctag	ctatgtt	cct	gtgtt	gtgt	catt	tc	180
aaccgc	cc	atgg	aaagatctgg	ctcacc	gtt	catttt	tgcattat	240
aaacactcca	cc	agc	ttgg	ctt	catt	ttt	tgcattat	300
atccctcg	ttgg	ctt	ggagg	gtt	ggag	atg	gac	360
accctgc	agg	gtt	gtt	gtt	ggat	gac	tttgc	420
cggttatgg	cc	cttgc	at	gtt	ccc	at	ccacatc	480
gtggcctacc	gg	gac	atg	at	cc	ctt	gttgc	540
ttaaggaca	tc	gagg	at	gg	cc	at	gggtgg	600
ac	ttt	ttt	ttt	ttt	ttt	ttt	tttgc	660
tatgtcatgt	ac	gac	gg	ctt	cc	at	tttgc	720
cccaacactg	tt	gg	act	gtt	cc	at	tttgc	780
atgattgc	tg	gact	gtt	tgt	cc	at	tttgc	840
attagatatt	tt	tc	ttt	ttt	cc	at	tttgc	900
taagaaatag	ac	agc	atg	at	cc	at	tttgc	960
gccc	cc	ac	at	ttt	cc	at	tttgc	1020
ccctc	cc	ac	at	ttt	cc	at	tttgc	1080

ggcctaattc tatgcctgtc ttaatttct ttcacttaag ttagttccac tgagacccca 1140
 ggctgttagg ggttatttgtt gtaaggtaact ttcatatTTT aaacagagga tatcggcatt 1200
 tgTTTCTTTC tctgaggaca agagaaaaaa gccaggttcc acagaggaca cagagaagg 1260
 ttgggtgtcc tcctggggTTT ctTTTGCca actttccccca cgTTAAAGGT gaacatttgtt 1320
 tctttcattt gctttggaaag tttaatctc taacagtggaa caaagttaacc agtgccttaa 1380
 actctgttac acttttgga agtggaaaact ttgttagtatg ataggttatt ttgtatgtaaa 1440
 gatgttctgg ataccattat atgttccccca tgTTTCAGAG gctcagatttga taatatgtaa 1500
 atggtatgtc attcgctact atgatttaat ttgaaatatg gtcttttgtt tatgaataact 1560
 ttgcagcaca gctgagagag gctgtctgtt gtattcattt tggtcatagc acctaacaac 1620
 attgttagcct caatcgagt agacagacta gaagttccta gttggcttat gatagcaaat 1680
 ggcctcatgt caaatattag atgttaattt gtgtaaagaaa tacagactgg atgtaccacc 1740
 aactactacc tgtaatgaca ggcctgtcca acacatctcc ctTTTCCATG CTGGTAGC 1800
 cagcatcgga aagaacgctg atttaaagag gtgagcttgg gaattttattt gacacagtac 1860
 catttaatgg ggagacaaaaa atgggggcca ggggagggag aagtttctgt cgTTAAAAC 1920
 gagtttggaa agactggact ctaaattctg ttgattaaag atgagcttgc tctaccttca 1980
 aaagtttggtt tggcttaccc ctttcagcct ccaattttt aagtggaaataataactaata 2040
 acatgtgaaa agaatagaag ctaaggTTTA gataaatattt gagcagatct ataggaagat 2100
 tgaacctgaa tattgccattt atgcttgaca tggttccaa aaaatggtac tccacatact 2160
 tcagtgaggg taagtattt cctgttgcata agaataagcat tgtaaaagca ttttgcata 2220
 ataaagaata gcttaatgaa tatgcttgcata actaaaataa ttttgcata tataactaata 2280
 atttaaaaca ttAAAATATA atctctataa t 2311

<210> 442

<211> 226

<212> PRT

<213> Homo sapiens

<400> 442

Met	Asp	Trp	Gly	Thr	Leu	Gln	Thr	Ile	Leu	Gly	Gly	Val	Asn	Lys	His
					5				10				15		

Ser	Thr	Ser	Ile	Gly	Lys	Ile	Trp	Leu	Thr	Val	Leu	Phe	Ile	Phe	Arg
						20			25				30		

Ile	Met	Ile	Leu	Val	Val	Ala	Ala	Lys	Glu	Val	Trp	Gly	Asp	Glu	Gln
					35			40				45			

Ala	Asp	Phe	Val	Cys	Asn	Thr	Leu	Gln	Pro	Gly	Cys	Lys	Asn	Val	Cys
						50		55				60			

Tyr	Asp	His	Tyr	Phe	Pro	Ile	Ser	His	Ile	Arg	Leu	Trp	Ala	Leu	Gln
						65			70				75		80

Leu	Ile	Phe	Val	Ser	Ser	Pro	Ala	Leu	Leu	Val	Ala	Met	His	Val	Ala
						85			90				95		

Tyr	Arg	Arg	His	Glu	Lys	Lys	Arg	Lys	Phe	Ile	Lys	Gly	Glu	Ile	Lys
							100		105				110		

Ser	Glu	Phe	Lys	Asp	Ile	Glu	Glu	Ile	Lys	Thr	Gln	Lys	Val	Arg	Ile
						115			120			125			

Glu	Gly	Ser	Leu	Trp	Trp	Thr	Tyr	Thr	Ser	Ser	Ile	Phe	Phe	Arg	Val
						130		135				140			

Ile Phe Glu Ala Ala Phe Met Tyr Val Phe Tyr Val Met Tyr Asp Gly
 145 150 155 160

Phe Ser Met Gln Arg Leu Val Lys Cys Asn Ala Trp Pro Cys Pro Asn
 165 170 175

Thr Val Asp Cys Phe Val Ser Arg Pro Thr Glu Lys Thr Val Phe Thr
 180 185 190

Val Phe Met Ile Ala Val Ser Gly Ile Cys Ile Leu Leu Asn Val Thr
 195 200 205

Glu Leu Cys Tyr Leu Leu Ile Arg Tyr Cys Ser Gly Lys Ser Lys Lys
 210 215 220

Pro Val
 225

<210> 443
 <211> 23
 <212> PRT
 <213> Homo sapiens

<400> 443
 Val Lys Leu Cys Gly Ile Asp Pro Cys Pro Asn Leu Val Asp Cys Phe
 5 10 15

Ile Ser Arg Pro Gly Cys Gly
 20

<210> 444
 <211> 36
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> PCR primer

<400> 444
 caatcaggca tgcacaacaa actgtataatc ggaaac

36

<210> 445
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> PCR primer

<400> 445
 cgtcaagatc ttcattactt ccgtcttgac 30

<210> 446
 <211> 579
 <212> PRT
 <213> Homo sapiens

<400> 446
 Met Asn Lys Leu Tyr Ile Gly Asn Leu Ser Glu Asn Ala Ala Pro Ser
 5 10 15

Asp Leu Glu Ser Ile Phe Lys Asp Ala Lys Ile Pro Val Ser Gly Pro
 20 25 30

Phe Leu Val Lys Thr Gly Tyr Ala Phe Val Asp Cys Pro Asp Glu Ser
 35 40 45

Trp Ala Leu Lys Ala Ile Glu Ala Leu Ser Gly Lys Ile Glu Leu His
 50 55 60

Gly Lys Pro Ile Glu Val Glu His Ser Val Pro Lys Arg Gln Arg Ile
 65 70 75 80

Arg Lys Leu Gln Ile Arg Asn Ile Pro Pro His Leu Gln Trp Glu Val
 85 90 95

Leu Asp Ser Leu Leu Val Gln Tyr Gly Val Val Glu Ser Cys Glu Gln
 100 105 110

Val Asn Thr Asp Ser Glu Thr Ala Val Val Asn Val Thr Tyr Ser Ser
 115 120 125

Lys Asp Gln Ala Arg Gln Ala Leu Asp Lys Leu Asn Gly Phe Gln Leu
 130 135 140

Glu Asn Phe Thr Leu Lys Val Ala Tyr Ile Pro Asp Glu Thr Ala Ala
 145 150 155 160

Gln Gln Asn Pro Leu Gln Gln Pro Arg Gly Arg Arg Gly Leu Gly Gln
 165 170 175

Arg Gly Ser Ser Arg Gln Gly Ser Pro Gly Ser Val Ser Lys Gln Lys
 180 185 190

Pro Cys Asp Leu Pro Leu Arg Leu Leu Val Pro Thr Gln Phe Val Gly
 195 200 205

Ala Ile Ile Gly Lys Glu Gly Ala Thr Ile Arg Asn Ile Thr Lys Gln
 210 215 220

Thr Gln Ser Lys Ile Asp Val His Arg Lys Glu Asn Ala Gly Ala Ala
 225 230 235 240

Glu Lys Ser Ile Thr Ile Leu Ser Thr Pro Glu Gly Thr Ser Ala Ala

245	250	255
Cys Lys Ser Ile Leu Glu Ile Met His Lys Glu Ala Gln Asp Ile Lys 260	265	270
Phe Thr Glu Glu Ile Pro Leu Lys Ile Leu Ala His Asn Asn Phe Val 275	280	285
Gly Arg Leu Ile Gly Lys Glu Gly Arg Asn Leu Lys Lys Ile Glu Gln 290	295	300
Asp Thr Asp Thr Lys Ile Thr Ile Ser Pro Leu Gln Glu Leu Thr Leu 305	310	315
Tyr Asn Pro Glu Arg Thr Ile Thr Val Lys Gly Asn Val Glu Thr Cys 325	330	335
Ala Lys Ala Glu Glu Glu Ile Met Lys Lys Ile Arg Glu Ser Tyr Glu 340	345	350
Asn Asp Ile Ala Ser Met Asn Leu Gln Ala His Leu Ile Pro Gly Leu 355	360	365
Asn Leu Asn Ala Leu Gly Leu Phe Pro Pro Thr Ser Gly Met Pro Pro 370	375	380
Pro Thr Ser Gly Pro Pro Ser Ala Met Thr Pro Pro Tyr Pro Gln Phe 385	390	395
Glu Gln Ser Glu Thr Glu Thr Val His Leu Phe Ile Pro Ala Leu Ser 405	410	415
Val Gly Ala Ile Ile Gly Lys Gln Gly Gln His Ile Lys Gln Leu Ser 420	425	430
Arg Phe Ala Gly Ala Ser Ile Lys Ile Ala Pro Ala Glu Ala Pro Asp 435	440	445
Ala Lys Val Arg Met Val Ile Ile Thr Gly Pro Pro Glu Ala Gln Phe 450	455	460
Lys Ala Gln Gly Arg Ile Tyr Gly Lys Ile Lys Glu Glu Asn Phe Val 465	470	475
Ser Pro Lys Glu Glu Val Lys Leu Glu Ala His Ile Arg Val Pro Ser 485	490	495
Phe Ala Ala Gly Arg Val Ile Gly Lys Gly Gly Lys Thr Val Asn Glu 500	505	510
Leu Gln Asn Leu Ser Ser Ala Glu Val Val Val Pro Arg Asp Gln Thr 515	520	525
Pro Asp Glu Asn Asp Gln Val Val Val Lys Ile Thr Gly His Phe Tyr		

530 535 540

Ala	Cys	Gln	Val	Ala	Gln	Arg	Lys	Ile	Gln	Glu	Ile	Leu	Thr	Gln	Val
545					550				555					560	
Lys	Gln	His	Gln	Gln	Lys	Ala	Leu	Gln	Ser	Gly	Pro	Pro	Gln	Ser	
				565				570					575		
Arg	Arg	Lys													

<210> 447

<211> 1743

<212> DNA

<213> Homo sapiens

<400> 447

atgaacaaac tgtatatcg aaacctcagc gagaacgccc cccctcgga cctagaaaat 60
 atcttcaagg acgccaagat cccgggtgcg ggacccttcc tggtaagac tggctacgcg 120
 ttcgtggact gccccggacga gagctggcc ctcaaggcca tcgaggcgct ttcaaggtaaa 180
 atagaactgc acggggaaacc catagaagt gagaactcg cgccaaaaag gcaaaggatt 240
 cggaaaacttc agatacggaaa tatccgcct cattacagt gggaggtgt ggatagttt 300
 ctagtccagt atggagtggg ggagagctgt gagcaagtga acactgactc ggaaactgca 360
 gttgtaaatg taaccttattc cagtaaggac caagcttagac aagcaactaga caaactgaat 420
 ggatttcagt tagagaattt caccttggaa gtacccata tccctgtatga aacggccgccc 480
 cagaaaaacc cttgcagca gccccggaggt cgccgggggc ttggcagag gggctctca 540
 aggcagggggt ctccaggatc cgtatccaag cagaaaccat gtgatttgc tctgcgcctg 600
 ctggttccca cccaaatttgt tggagccatc ataggaaaag aaggtgcac cattcggAAC 660
 atcaccaaac agaccaggatc taaaatcgat gtccaccgt aagaaaatgc gggggctgt 720
 gagaagtcga ttactatcct ctctactcct gaaggcacct ctgcggcttgaatgttatt 780
 ctggagatatta tgcataggaa agctcaagat ataaaattca cagaagagat ccccttgaag 840
 atttagctc ataataactt tggggacgt cttattggta aagaaggaaat aaatcttaaa 900
 aaaatttgagc aagacacaga cactaaaatc acgatatctc cattgcagga attgacgctg 960
 tataatccag aacgcactat tacagttaa ggcaatgtt agacatgtgc caaagctgag 1020
 gaggagatca tgaagaaaat cagggagatc tatggaaaatg atattgcctt tatggatctt 1080
 caagcacatt taattcctgg attaaatctg aacgccttgg gtctgtttcc acccaacttca 1140
 gggatgccac ctcccacccctt aggggccccc tcagccatga ctccctcccta cccgcagttt 1200
 gagcaatcg aaacggagac tggatcgatctg tttatcccag ctctatcagt cggtgccatc 1260
 atcggcaagc agggccagca catcaaggcag ctgttcgtc ttgctggagc ttcaattaaag 1320
 attgctccag cggaagcacc agatgttaaa gtgaggatgg tgattatcac tggaccacca 1380
 gaggctcaatgtca gggagaattt tatggaaaaaa taaaagaaga aaactttgtt 1440
 agtcctaaag aagagggtgaa acttgaatgtt catttcaggat tgccatcatt tgctgtggc 1500
 agagttattt gaaaaggagg caaaaacgggt aatgaacttc agaatttgc aagtgcagaa 1560
 gttgttgcctt ctcgtgacca gacacctgtt gagaatgacc aagtgggtgt caaaaataact 1620
 ggtcacttctt atgctgcca gttggccctt agaaaaatttcc agggaaatttctt gactcaggta 1680
 aagcagcacc aacaacagaa ggctctgcaaa agtggaccac ctcagtcagaa acgaaagtaa 1740
 tga 1743

<210> 448

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 448

cgtactagca tatgaacaaa ctgtatatcg gaaac

35

<210> 449

<211> 579

<212> PRT

<213> Homo sapiens

<400> 449

Met	Asn	Lys	Leu	Tyr	Ile	Gly	Asn	Leu	Ser	Glu	Asn	Ala	Ala	Pro	Ser
								5						10	

210	215	220
Thr Gln Ser Lys Ile Asp Val His Arg Lys Glu Asn Ala Gly Ala Ala		
225	230	235
240		
Glu Lys Ser Ile Thr Ile Leu Ser Thr Pro Glu Gly Thr Ser Ala Ala		
245	250	255
Cys Lys Ser Ile Leu Glu Ile Met His Lys Glu Ala Gln Asp Ile Lys		
260	265	270
Phe Thr Glu Glu Ile Pro Leu Lys Ile Leu Ala His Asn Asn Phe Val		
275	280	285
Gly Arg Leu Ile Gly Lys Glu Gly Arg Asn Leu Lys Lys Ile Glu Gln		
290	295	300
Asp Thr Asp Thr Lys Ile Thr Ile Ser Pro Leu Gln Glu Leu Thr Leu		
305	310	315
320		
Tyr Asn Pro Glu Arg Thr Ile Thr Val Lys Gly Asn Val Glu Thr Cys		
325	330	335
Ala Lys Ala Glu Glu Glu Ile Met Lys Lys Ile Arg Glu Ser Tyr Glu		
340	345	350
Asn Asp Ile Ala Ser Met Asn Leu Gln Ala His Leu Ile Pro Gly Leu		
355	360	365
Asn Leu Asn Ala Leu Gly Leu Phe Pro Pro Thr Ser Gly Met Pro Pro		
370	375	380
Pro Thr Ser Gly Pro Pro Ser Ala Met Thr Pro Pro Tyr Pro Gln Phe		
385	390	395
400		
Glu Gln Ser Glu Thr Glu Thr Val His Leu Phe Ile Pro Ala Leu Ser		
405	410	415
Val Gly Ala Ile Ile Gly Lys Gln Gly Gln His Ile Lys Gln Leu Ser		
420	425	430
Arg Phe Ala Gly Ala Ser Ile Lys Ile Ala Pro Ala Glu Ala Pro Asp		
435	440	445
Ala Lys Val Arg Met Val Ile Ile Thr Gly Pro Pro Glu Ala Gln Phe		
450	455	460
Lys Ala Gln Gly Arg Ile Tyr Gly Lys Ile Lys Glu Glu Asn Phe Val		
465	470	475
480		
Ser Pro Lys Glu Glu Val Lys Leu Glu Ala His Ile Arg Val Pro Ser		
485	490	495
Phe Ala Ala Gly Arg Val Ile Gly Lys Gly Gly Lys Thr Val Asn Glu		
500	505	510

Leu Gln Asn Leu Ser Ser Ala Glu Val Val Val Pro Arg Asp Gln Thr
 515 520 525

Pro Asp Glu Asn Asp Gln Val Val Val Lys Ile Thr Gly His Phe Tyr
 530 535 540

Ala Cys Gln Val Ala Gln Arg Lys Ile Gln Glu Ile Leu Thr Gln Val
 545 550 555 560

Lys Gln His Gln Gln Lys Ala Leu Gln Ser Gly Pro Pro Gln Ser
 565 570 575

Arg Arg Lys

<210> 450

<211> 1743

<212> DNA

<213> Homo sapiens

<400> 450

atgaacaaac tgtatatcg aaacctcagc gagaacgccc cccctcgga cctagaaaagt 60
 atcttcaagg acgccaagat cccgggtcg ggacccttcc tggtaagac tggctacgcg 120
 ttcgtggact gccccggacga gagctgggcc ctcaaggcca tcgaggcgt ttcaggtaaa 180
 atagaactgc acgggaaacc catagaagtt gagcactcg tccaaaaag gcaaaggatt 240
 cgaaaaacttc agatacgaaa tatcccgcct cattacagt gggaggtgt ggatagttt 300
 ctagtccagt atggagtgtt ggagagctgt gagcaagtga acactgactc ggaaactgca 360
 gttgtaaatg taaccttattc cagtaaggac caagctagac aagcactaga caaactgaat 420
 ggatttcagt tagagaattt caccttggaa gtgcctata tccctgtatga aacggccgcc 480
 cagcaaaacc cttgcagca gccccggaggt cgccgggggc ttgggcagag gggctcctca 540
 aggccagggtt ctccaggatc cgtatccaag cagaaaccat gtgatttgc tctgcgcctg 600
 ctggttccca cccaaattgtt tggagccatc atagaaaaag aagggtgcac cattcggAAC 660
 atcaccaaac agaccaggatc taaaatcgat gtccaccgt aagaaaaatgc gggggctgt 720
 gagaagtcga ttactatcct ctctactcct gaaggcacct ctgcggcttgaatgtctatt 780
 ctggagatattt tgcataagga agctcaagat ataaaaatttca cagaagagat ccccttgaag 840
 atttttagctc ataataactt tttttggacgt cttattggta aagaaggaaag aaatcttaaa 900
 aaaatttgagc aagacacaga cactaaaaatc acgatatctc cattgcagga attgacgctg 960
 tataatccag aacgcactat tacagttaaa ggcaatgttg agacatgtgc caaagctgag 1020
 gaggagatca tgaagaaaaat cagggagatct tatggaaatgt atattgcctc tatgaatctt 1080
 caagcacatt taattcctgg attaaatctg aacgccttgg gtctgttccc acccaattca 1140
 gggatgccac ctcccacctc agggccccct tcagccatga ctccctcccta cccgcagttt 1200
 gagcaatcg aaacggagac ttttcatctg tttatcccag ctctatcaatc cggtgccatc 1260
 atcggcaagc agggccagca catcaaggcag ctttctcgat ttgctggagc ttcaattaag 1320
 attgctccag cgaaaggcacc agatgttaaa gtgaggatgg tgattatcac tggaccacca 1380
 gaggctcagt tcaaggctca gggagaatt tatggaaaaaa ttaaagaaga aaactttgtt 1440
 agtcctaaag aagaggtgaa acttgaagct catatcagag tgccatcctt tgctgctggc 1500
 agagttattt gaaaaaggagg caaaacgggtt aatgaacttc agaatttgtc aagtgcagaa 1560
 gttgttgtcc ctgcgtgacca gacacctgat gagaatgacc aagtgggtgt caaaaataact 1620
 ggtcacttct atgcgtgcca gtttgccca agaaaaatttca agggaaatttct gactcaggta 1680
 aagcagcacc aacaacagaa ggctctgcaa agtggaccac ctcagtcagaa acgaaagtaa 1740
 tga 1743

<210> 451
<211> 25
<212> PRT
<213> Homo sapiens

<400> 451
Leu Gly Lys Glu Val Arg Asp Ala Lys Ile Thr Pro Glu Ala Phe Glu
5 10 15

Lys Leu Gly Phe Pro Ala Ala Lys Glu
20 25

<210> 452
<211> 25
<212> PRT
<213> Homo sapiens

<400> 452
Lys Ala Ser Asp Gly Asp Tyr Tyr Thr Leu Ala Val Pro Met Gly Asp
5 10 15

Val Pro Met Asp Gly Ile Ser Val Ala
20 25

<210> 453
<211> 16
<212> PRT
<213> Homo sapiens

<400> 453
Pro Asp Arg Asp Val Asn Leu Thr His Gln Leu Asn Pro Lys Val Lys
5 10 15

<210> 454
<211> 20
<212> PRT
<213> Homo sapiens

<400> 454
Lys Ile Ala Pro Ala Glu Ala Pro Asp Ala Lys Val Arg Met Val Ile
5 10 15

Ile Thr Gly Pro
20

<210> 455
<211> 20
<212> PRT
<213> Homo sapiens

<400> 455

Pro Asp Glu Thr Ala Ala Gln Gln Asn Pro Leu Gln Gln Pro Arg Gly
5 10 15

Arg Arg Gly Leu
20

<210> 456

<211> 20

<212> PRT

<213> Homo sapiens

<400> 456

Arg Thr Ile Thr Val Lys Gly Asn Val Glu Thr Cys Ala Lys Ala Glu
5 10 15

Glu Glu Ile Met
20

<210> 457

<211> 20

<212> PRT

<213> Homo sapiens

<400> 457

Ala Phe Val Asp Cys Pro Asp Glu Ser Trp Ala Leu Lys Ala Ile Glu
5 10 15

Ala Leu Ser Gly
20

<210> 458

<211> 20

<212> PRT

<213> Homo sapiens

<400> 458

Ile Arg Lys Leu Gln Ile Arg Asn Ile Pro Pro His Leu Gln Trp Glu
5 10 15

Val Leu Asp Ser
20

<210> 459

<211> 20

<212> PRT

<213> Homo sapiens

<400> 459

Ala Gln Gln Asn Pro Leu Gln Gln Pro Arg Gly Arg Arg Gly Leu Gly
5 10 15

Gln Arg Gly Ser
20

<210> 460
<211> 20
<212> PRT
<213> Homo sapiens

<400> 460
Asp Val His Arg Lys Glu Asn Ala Gly Ala Ala Glu Lys Ser Ile Thr
5 10 15

Ile Leu Ser Thr
20

<210> 461
<211> 20
<212> PRT
<213> Homo sapiens

<400> 461
Leu Tyr Asn Pro Glu Arg Thr Ile Thr Val Lys Gly Asn Val Glu Thr
5 10 15

Cys Ala Lys Ala
20

<210> 462
<211> 20
<212> PRT
<213> Homo sapiens

<400> 462
Glu Glu Glu Ile Met Lys Lys Ile Arg Glu Ser Tyr Glu Asn Asp Ile
5 10 15

Ala Ser Met Asn
20

<210> 463
<211> 20
<212> PRT
<213> Homo sapiens

<400> 463
Leu Asn Ala Leu Gly Leu Phe Pro Pro Thr Ser Gly Met Pro Pro Pro
5 10 15

Thr Ser Gly Pro

20

<210> 464
<211> 20
<212> PRT
<213> Homo sapiens

<400> 464
Lys Ile Ala Pro Ala Glu Ala Pro Asp Ala Lys Val Arg Met Val Ile
5 10 15
Ile Thr Gly Pro
20

<210> 465
<211> 18
<212> PRT
<213> Homo sapiens

<400> 465
Thr Gly Tyr Ala Phe Val Asp Cys Pro Asp Glu Ser Trp Ala Leu Lys Ile
5 10 15
Glu

<210> 466
<211> 11
<212> PRT
<213> Homo sapiens

<400> 466
Phe Val Asp Cys Pro Asp Glu Ser Trp Ala Leu
5 10

<210> 467
<211> 33
<212> DNA
<213> Homo sapiens

<400> 467
ttcgtggact gcccgacga gagctggcc ctc