PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS MAT2605 - CÁLCULO CIENTÍFICO I

MAT2605 - CÁLCULO CIENTÍFIC PROFESOR: MANUEL SÁNCHEZ

Ayudantes: Tomás Malfetano (tomas.malfetano@uc.cl)

Diego Vera (dva@uc.cl)

Ayudantía 8

9 de Octubre 2025 Repaso I2

Problemas

Pregunta 1

(a) Probar que si A tiene una base de autovectores v_i , con autovalores λ_i , la matriz

$$B = I + sA, \quad s \in \mathbb{R}$$

tiene los mismos autovectores, con autovalores $\nu_i = 1 + s\lambda_i$.

(b) Sabiendo que los autovalores de la matriz $A \in \mathbb{R}^{(n-1)\times (n-1)}$

$$A = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \ddots & \vdots \\ 0 & -1 & 2 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & -1 & 2 \end{pmatrix}$$

son $\lambda_j = 4\sin\frac{\pi j}{2n}$, $j = 1, \ldots, n-1$, decidir si el método de Jacobi aplicado a Ax = b es convergente o no.

(c) Decidir si el método de Gauss-Seidel resulta convergente. En caso afirmativo, ¿qué método converge más rápido?

Pregunta 2

- (a) Calcular el valor absoluto del determinante de una matriz ortogonal.
- (b) Utilizando una transformación de Householder, calcular la descomposición QR de la matriz

$$A = \begin{pmatrix} 1 & 1 \\ a & 1 \end{pmatrix}$$

y así (y no de otra forma) determinar el valor absoluto del determinante de A. (Hint: para la transformación de Householder considere el vector $w = \frac{1}{2+2a^2+2\sqrt{1+a^2}}(1+\sqrt{1+a^2},a)^T$, y verifique que funciona)

Pregunta 3

Consideremos el método de von Mises (de potencia) para la aproximación del valor propio maximal de la matriz

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}.$$

- (a) Dé condiciones precisas para el vector inicial tal que el método converge (suponiendo aritmética exacta).
- (b) Elija un vector inicial apropiado $x^{(0)}$. ¿Cuántas iteraciones necesita el método para aproximar el valor propio maximal de A a una precisión de 10^{-4} ?

Pregunta 4

Considere la función

$$g(x) = \frac{2}{3}x + \frac{1}{3x}.$$

- (a) Pruebe que g es contracción sobre el intervalo $\left[\frac{1}{2}, \frac{3}{2}\right]$.
- (b) Determine punto fijo de g en $[\frac{1}{2}, \frac{3}{2}]$.
- (c) Considere la función

$$f(x) = (1 - x^2)^{3/2}.$$

Defina el método de Newton para f y verifique que el método coincide con la iteración

$$x_{n+1} = g(x_n), \qquad n = 1, 2, \dots$$

Problemas Propuestos

Métodos Iterativos para Sistemas Lineales

Problema 1. Considere el sistema lineal Ax = b con

$$A = \begin{pmatrix} 2 & -1 & 1 \\ 2 & 2 & 2 \\ -1 & -1 & 2 \end{pmatrix}, \qquad b = \begin{pmatrix} -1 \\ 4 \\ -5 \end{pmatrix}.$$

Determine la convergencia o no de los métodos de Jacobi y Gauss-Seidel.

Problema 2. Dado el sistema lineal Ax = b donde A = (L + D + U) es matriz invertible, D es la parte diagonal y es invertible, y L, U la parte triangular inferior/superior, considere

$$T = -(D+U)^{-1}L,$$
 $c = (D+U)^{-1}b.$

Dado un vector inicial $x^{(0)} \in \mathbb{R}^N$ se define la iteración

$$x^{(n+1)} = T x^{(n)} + c, \qquad n = 0, 1, 2, \dots$$

- (a) Suponiendo $\rho(T) < 1$, demuestre que $\lim_{n \to \infty} x^{(n)} = x$ donde x es la solución de Ax = b.
- (b) Dé condiciones suficientes y necesarias para que $\rho(T) < 1$ si

$$A = \begin{pmatrix} \alpha & \beta \\ \gamma & \alpha \end{pmatrix}.$$

Problema 3. La matriz A de un sistema lineal es

$$A = \begin{pmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{pmatrix}.$$

- a. Estudie la convergencia del método SOR con parámetro $\omega \in \mathbb{R}$.
- b. Encuentre el parámetro ω óptimo.

Problema 4. Considere la matriz pentadiagonal

$$A = \text{pentadiag}_n(-1, -1, 10, -1, -1).$$

Suponga n=10 y que A=M+N+D, con $D=\mathrm{diag}(8,\ldots,8)\in\mathbb{R}^{10\times 10}, M=\mathrm{pentadiag}_{10}(-1,-1,1,0,0)$ y $N=M^{\top}$. Para resolver Ax=b, analice la convergencia de los siguientes métodos iterativos:

- (a) $(M+D)x^{(k+1)} = -N x^{(k)} + b$,
- (b) $D x^{(k+1)} = -(M+N) x^{(k)} + b$,
- (c) $(M+N) x^{(k+1)} = -D x^{(k)} + b$.

Solución (dada): Denotando por ρ_a , ρ_b , ρ_c los radios espectrales de las matrices de iteración de los tres métodos, se tiene $\rho_a = 0.1450$, $\rho_b = 0.5$ y $\rho_c = 12.2870$, lo que implica convergencia para los métodos (a) y (b), y divergencia para el método (c).

3

Valores Propios

Problema 1. Sea

$$A = \begin{pmatrix} 12 & 0 & 2 & 0 \\ 2 & 1 & 1 & 1 \\ -1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}.$$

¿Cuál(es) de las siguientes afirmaciones es(son) verdadera(s)? (No es preciso justificar).

- (a) Existe un valor propio λ con $|\lambda 12| \le 2$.
- (b) Existe un valor propio λ con $\lambda = 15$.
- (c) Existe un valor propio λ con $\lambda = 1$.
- (d) No existe un valor propio λ con $|\lambda 1| \le 4$.
- (e) Existe un valor propio λ con Re(λ) < -4.
- (f) No existe valor propio λ con Re(λ) \in (5, 10).

Problema 2.

(a) Sea $A \in \mathbb{R}^{N \times N}$, $A = A^{\top}$, con valores propios $\lambda_1, \dots, \lambda_N$. Muestre que, si

$$||Ax - \lambda x||_2 < \varepsilon$$

para algún $x \in \mathbb{R}^N$ con $||x||_2 = 1$ y $\lambda \in \mathbb{R}$, entonces

$$\min_{1 \le j \le N} |\lambda_j - \lambda| < \varepsilon.$$

(b) Use la parte (a) con el vector $x = (1,0)^{\mathsf{T}}$ para aproximar un valor propio de la matriz

$$A = \begin{pmatrix} 4 & -2 \\ -2 & 4 \end{pmatrix}.$$

Compare con la cota obtenida por el teorema de Gershgorin.

Problema 3. Sea

$$A = \begin{pmatrix} 2 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ -\frac{1}{2} & 5 & \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 1 & \frac{1}{2} & 1 \\ -\frac{1}{2} & 0 & \frac{1}{2} & 10 & 1 \\ 0 & 0 & 1 & 1 & 9 \end{pmatrix}.$$

- (a) Muestre que cerca de 5 hay un valor propio real simple λ^* de A, y que verifica $|\lambda^* 5| \le 1$.
- (b) Proponga un método numérico para la aproximación de λ^* .
- (c) Sin calcular los valores y vectores propios exactos de A, ¿cuántas iteraciones a lo más se necesitan asintóticamente para reducir el error por el factor 1/10?

Hint. Si $\{\lambda_n\}$ es la sucesión que converge a λ^* , buscamos el número entero más pequeño ℓ tal que

4

$$|\lambda_{n+\ell} - \lambda^*| \le \frac{1}{10} |\lambda_n - \lambda^*|$$
 cuando $n \to \infty$.

Problema 4. Sea

$$A = \begin{pmatrix} 1 & 1 \\ a & 2 \end{pmatrix}, \qquad a \in \mathbb{R}.$$

(a) Para la aproximación de los valores propios de A, calcule un paso del método QR. Hint. En $\mathbb{R}^{2\times 2}$ una matriz ortogonal se escribe como

$$Q = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}, \qquad \alpha^2 + \beta^2 = 1.$$

Trabaje con esta matriz; no es preciso utilizar transformaciones de Householder.

(b) Estudie la convergencia del método QR en el caso a=0. Explique el efecto.

Problema 5.

- (a) Demuestre que toda matriz ortogonal $A \in \mathbb{R}^{n \times n}$ es el producto de n matrices de reflexión de Householder. Hint: Use la "unicidad" de la factorización QR de A.
- (b) Sea $H \in \mathbb{R}^{n \times n}$ una matriz de reflexión de Householder. Demuestre que H tiene valores propios $\lambda_1 = 1$ y $\lambda_2 = -1$ con multiplicidades n-1 y 1, respectivamente. Deduzca que det H = -1. Hint: Encuentre por inspección los vectores propios de H.

Problema 6. Sea $A \in \mathbb{R}^{N \times N}$ una matriz con coeficientes $a_{ij} \geq 0$ y tal que

$$\sum_{i=1}^{N} a_{ij} = 1, \quad j = 1, \dots, N.$$

- (a) Demuestre que todos los valores propios λ_j satisfacen $|\lambda_j| \leq 1$.
- (b) Pruebe que hay (al menos) un valor propio $\lambda = 1$. (Nota: Considere A^T y el vector $x = (1, \dots, 1)^T$.)
- (c) Sea $d \in (0,1)$. Dado $b \in \mathbb{R}^N$ y el sistema Ax = b, considere la iteración

$$x^{(n+1)} = (1 - d)Ax^{(n)} + b.$$

Demuestre que la sucesión $(x^{(n)})_{n\in\mathbb{N}}$ converge para cualquier vector inicial $x^{(0)}\in\mathbb{R}^N$.

(d) Realice 5 iteraciones del método de potencia para encontrar una aproximación del valor propio dominante de las matrices

$$A = \begin{pmatrix} \frac{1}{3} & \frac{4}{5} \\ \frac{2}{3} & \frac{1}{5} \end{pmatrix}, \qquad A = \begin{pmatrix} \frac{1}{3} & \frac{3}{5} & \frac{1}{2} \\ \frac{2}{3} & \frac{1}{5} & \frac{1}{8} \\ 0 & \frac{1}{5} & \frac{3}{9} \end{pmatrix}.$$

Problema 7. Sea

$$A = \begin{pmatrix} -9 & * & * & * & * \\ * & 0 & * & * & * \\ * & * & 1 & * & * \\ * & * & * & 4 & * \\ * & * & * & * & 21 \end{pmatrix}$$

una matriz real, simétrica, donde "*" indica elementos con valor absoluto $\leq 1/4$.

- i. Estime los valores propios de A.
- ii. Muestre que el método de potencia con vector inicial $e_5 = (0, 0, 0, 0, 1)^{\top}$ funciona para la aproximación del valor propio con valor absoluto maximal.

5

iii. Estime cuántos dígitos decimales se ganan en 5 iteraciones.

Problema 8. Queremos estimar el radio espectral de

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

usando el método de las potencias.

a) Determine las aproximaciones para el vector propio y valor propio que corresponden a las primeras 3 iteraciones del método de las potencias con condición inicial

$$x^{(0)} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

b) Use aceleración de Aitken para mejorar la primera aproximación del valor propio encontrada en la parte (a).

Ecuaciones No Lineales

Problema 1. Realice 5 iteraciones de los métodos de Bisección y Regula Falsi para aproximar la solución de las siguientes ecuaciones:

- $x^3 2x^2 5 = 0, [1, 4].$
- $-x \cos x = 0, [0, \pi/2].$
- $x 0.8 0.2 \sin x = 0, [0, \pi/2].$

Problema 2. La función $f(x) = \tan(\pi x) - 6$ tiene una raíz en $\frac{1}{\pi} \arctan(6) \approx 0.447431543$. Sea a = 0 y b = 0.48. Realice 10 iteraciones de cada uno de los siguientes métodos para aproximar esta raíz. ¿Cuál método es el más exitoso y por qué?

- (a) Método de Bisección.
- (b) Método de Regula Falsi.

Problema 3. Se quiere resolver la ecuación $e^x = 2$ por el método de Newton.

- (a) Transforme el problema en uno de buscar la raíz de una función y que cumpla con las condiciones de convergencia de Newton.
- (b) Verifique estas condiciones de convergencia.
- (c) Desarrolle una estimación de error que muestre la convergencia.

Problema 4. Se busca la raíz positiva de $f(x) = x^3 - x - 1$ y, para tal efecto, se consideran las iteraciones de Picard para las funciones

$$g(x) = x^3 - 1,$$
 $h(x) = (x+1)^{1/3}.$

- (a) Determinar si estas funciones son apropiadas para la iteración.
- (b) Para la(s) que sí lo es/son:
 - \blacksquare Determinar un intervalo inicial I en el cual el método converge a la raíz de f (muéstrelo).
 - Dar un valor inicial $x_0 \in I$ y la cantidad de iteraciones necesarias para aproximar la raíz de f con error menor que 10^{-5} .

Problema 5. Usar el método de bisección para hallar una raíz positiva de la ecuación $2x = \tan(x)$. ¿Cuántos pasos hay que hacer para garantizar que el error sea menor que 10^{-5} ? Verificar la respuesta numéricamente.

Problema 6. Considere el método de Newton con valor inicial $x_0 = 0$ para aproximar la raíz de la función $f(x) = |1 - x|^{\alpha}$.

(a) Pruebe que el método de Newton es convergente si $\alpha > 1$ y determine el tipo de convergencia (lineal, cuadrática, cúbica, . . .).

7

- (b) Analice convergencia si $\alpha = 1$.
- (c) Analice convergencia si $\alpha \in (0, 1)$.