Продвинутая статистика

Корреляционный анализ данных (продолжение). Линейная регрессия. Функция потерь. Матрицы ковариаций и корреляций. Правило трех сигм. Центральная предельная теорема. Виды распределений: дискретные и непрерывные распределения. Дискретное равномерное распределение. Логнормальное распределение. Экспоненциальное распределение. Распределение Бернулли. Биноминальное распределение. t-критерий Стьюдента.

Даниил Корбут

Специалист по Анализу Данных

Даниил КорбутDL Researcher
Insilico Medicine, Inc

Окончил бакалавриат ФИВТ МФТИ (Анализ данных) в 2018г Учусь на 2-м курсе магистратуры ФИВТ МФТИ Работал в Statsbot и Яндекс. Алиса.

Сейчас в Insilico Medicine, Inc, занимаюсь генерацией активных молекул и исследованиями старения с помощью DL.

Нахождение зависимости случайных величин

Дисперсия — квадрат среднеквадратичного отклонения от среднего значения (насколько данные разбросаны)

$$\sigma^{2}(x) = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$$

Ковариация — наличие зависимости между величинами

$$\sigma(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x - \mu_x)(y - \mu_y)$$

Ковариация не равна нулю — можно предположить зависимость.

Ковариация показывает разброс величин относительно друг друга. Проблема ковариации: данные могут иметь разный масштаб. **Корреляция** – нормированная ковариация.

Корреляция Пирсона - нормированная ковариация

Корреляция Пирсона — нормированная ковариация, определяет силу зависимости

$$\sigma(x,y) = \frac{Cov(x,y)}{\sqrt{Var(x)}\sqrt{Var(y)}} = \frac{\frac{1}{n}\sum_{i=1}^{n}(x-\mu_x)(y-\mu_y)}{\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_i-\mu_x)^2}\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\mu_y)^2}}$$

Корреляция Пирсона

 $http://economic-definition.com/Exchange_Terminology/Koefficient_korrelyacii_Correlation_coefficient_eto.html$

Примеры корреляции

Линейная регрессия

Линейная регрессия — модель зависимости переменной х от одной или нескольких других переменных (факторов, регрессоров, независимых переменных) с линейной функцией зависимости

Модель:

$$y = f(x, b) + \varepsilon,$$

где arepsilon - случайная ошибка модели

Функция регрессии имеет вид

$$f(x,b) = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

 b_j - параметры (коэффициенты) регрессии x_j - атрибуты

https://neurohive.io/ru/osnovy-data-science/linejnaja-regressija/

Функция потерь

Функция потерь — мера количества ошибок, которые линейная регрессия делает на наборе данных

Метод наименьших квадратов:

$$\sum_i e_i^2 = \sum_i (y_i - f_i(x))^2 o \min_x.$$

https://neurohive.io/ru/osnovy-data-science/linejnaja-regressija/ https://ru.wikipedia.org/wiki/Метод_наименьших_квадратов

Алгоритм построения модели линейной регрессии

Для того, чтобы построить модель линейной регрессии в python, необходимо:

- 1) выбрать предсказываемую величину (у) и независимую величину (х) (х величина может быть многомерной, у только одномерная)
- 2) разделить данные на тренировочные (80%) и тестовые (20%)
- 3) создать модель линейной регрессии (с помощью библиотеки sklearn)
- 4) обучаем модель на тренировочных данных
- 5) посчитать ошибку на тестовых данных (с помощьи функции потерь)
- 6) оценить качество модели
- 7) сделать график

Матрица корреляций

Матрица корреляций подсчитывается с помощью формул, которые показывают как данные зависят друг от друга в пространстве n значений (каждый элемент матрицы равен коэффициенту Пирсона).

$$\Sigma = \begin{bmatrix} \sigma(X_1, X_1) & \sigma(X_1, X_2) & \dots & \sigma(X_1, X_n) \\ \sigma(X_2, X_1) & \sigma(X_2, X_2) & \dots & \sigma(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma(X_n, X_1) & \sigma(X_n, X_2) & \dots & \sigma(X_n, X_n) \end{bmatrix}$$

Свойства матрицы корреляций

Матрица корреляций симметрична.

$$\Sigma = \begin{bmatrix} \sigma(X_1, X_1) & \sigma(X_1, X_2) & \dots & \sigma(X_1, X_n) \\ \sigma(X_2, X_1) & \sigma(X_2, X_2) & \dots & \sigma(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma(X_n, X_1) & \sigma(X_n, X_2) & \dots & \sigma(X_n, X_n) \end{bmatrix}$$

Правило трёх сигм

https://wiki.loginom.ru/articles/3-sigma-rule.html

Центральная предельная теорема (ЦПТ)

Давайте рассматривать выборки из случайных величин.

Выборка из
$$X \sim F(x)$$
: $X^n = (X_1, X_2, ..., X_n)$

Выборочное среднее:
$$ar{X}_n = rac{1}{n} \sum_{i=1}^n X_i$$

У выборочного среднего пишем нижний индекс n, просто чтобы понимать с выборкой какого размера мы работаем. Давайте подумаем, как связано выборочное среднее с исходным распределением?

Центральная предельная теорема (ЦПТ)

Будем работать с таким "странным" распределением. Давайте будем семплировать выборки объёма n, считать по ним выборочные средние и повторять так много-много раз. И давайте построим гистограмму этих выборочных средних.

На плотность какого распределения похожи полученные графики?

Центральная предельная теорема

$$X \sim F(x),$$
 $X^n = (X_1, X_2, ..., X_n) \Rightarrow$
 $\bar{X}_n \approx \sim N(\mathbb{E}X, \frac{\mathbb{D}X}{n})$

С ростом n точность аппроксимации увеличивается

Интересно, что это справедливо не только для абсолютно непрерывных распределений, но и для дискретных.

Центральная предельная теорема

Когда распределение $m{X}$ не слишком скошено, распределение $m{ar{X}}_n$ хорошо описывается нормальным при $n\geq 30$.

Виды распределений

Дискретные и непрерывные распределения

Дискретной случайной величиной называется случайная величина, которая в результате испытания принимает отдельные значения с определёнными вероятностями. Число возможных значений дискретной случайной величины может быть конечным и бесконечным. Примеры дискретной случайной величины: запись показаний спидометра или измеренной температуры в конкретные моменты времени.

Непрерывной случайной величиной называют случайную величину, которая в результате испытания принимает все значения из некоторого числового промежутка. Число возможных значений непрерывной случайной величины бесконечно. Пример непрерывной случайной величины: измерение скорости перемещения любого вида транспорта или температуры в течение конкретного интервала времени.

http://edu.tltsu.ru/er/book_view.php?book_id=1cec&page_id=19444

Распределение Бернулли

Случайная величина— переменная, значения которой представляют собой исходы какого-нибудь случайного феномена или эксперимента.
Простыми словами: это численное выражение результата случайного события.

$$y = X(\omega)$$

Случайная величина **X** имеет **распределение Бернулли**, если она принимает всего два значения: 1 и 0 с вероятностями р и q=1-р соответственно.

$$F_{\xi}(x) = \mathsf{P}(\xi < x) = egin{cases} 0, & x \leqslant 0; \\ 1-p, & 0 < x \leqslant 1 \\ 1, & x > 1. \end{cases}$$

$$\mathbb{P}(X=1) = p,$$

$$\mathbb{P}(X=0) = q.$$

Принято говорить, что событие $\{X=1\}$ соответствует «успеху», а $\{X=0\}$ «неудаче». Эти названия условные, и в зависимости от конкретной задачи могут быть заменены на противоположные.

Биномиальное распределение

Случайная величина ξ имеет **биномиальное распределение** (англ. binomial distribution) с параметрами $n \in \mathbb{N}$ и $p \in (0,1)$ и пишут: $\xi \in \mathbb{B}_{n,p}$ если ξ принимает значения $k=0,1,\ldots,n$ с вероятностями $P(\xi=k)=\binom{n}{k}\cdot p^k\cdot (1-p)^{n-k}$.

Случайная величина с таким распределением имеет смысл числа успехов в n испытаниях схемы Бернулли с вероятностью успеха p.

Таблица распределения ξ имеет вид

ξ	0	1		k	•••	n
P	$(1-p)^n$	$n \cdot p \cdot (1-p)^{n-1}$	•••	$\binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$		p^n

Логнормальное распределение

Логнормальное распределение задается плотностью вероятности:

$$p(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{-\frac{(\ln(x) - \mu)^2}{2\sigma^2}}$$

Где μ - это среднее значение, σ - стандартное отклонение

Пример:

$$\mu = 3$$

$$\sigma = 0.9$$

Экспоненциальное распределение

Экспоненциальное распределение задается плотностью вероятности:

$$f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta})$$

если x>=0, иначе $f(x; \frac{1}{\beta}) = 0$

где β - это параметр

Пример:

$$\beta = 5$$

t-критерий Стьюдента

Случайная величина тимеет распределение Стьюдента с n^{-1} степенями свободы, где n- размер выборки.

$$t=rac{\overline{X}-m}{s_X/\sqrt{n}}$$

Данный критерий был разработан Уильямом Госсетом для оценки качества пива в компании Гиннесс. В связи с обязательствами перед компанией по неразглашению коммерческой тайны (руководство Гиннесса считало таковой использование статистического аппарата в своей работе), статья Госсета вышла в 1908 году в журнале «Биометрика» под псевдонимом «Student» (Студент).

Спасибо за внимание!

