

## PGE 383 Feature Imputation

Lecture outline . . .

Feature Imputation



### Motivation for Feature Imputation

- Most spatial, subsurface datasets are not complete, missing values from the database.
- Data analytics and machine learning require complete data
- Dealing with missing data is an essential part of feature / data engineering, prerequisite for data analytics and machine learning



## PGE 383 Feature Imputation

Lecture outline . . .

Feature Imputation

## Missing Data Bias

- Missing at random (MAR) is not common and is not evaluated
  - Global random omission may not result in data bias and bias in the resulting models
  - This is typically not the case as missing data often has a confounding feature, e.g. cost, rock rheology, project goals / prioritization, sampling to reduce uncertainty and maximize profitability instead of statistical representativity
- Missing data consequences
  - More than reducing the amount of training and testing data,
     missing data, if not completely at random will result in:
  - Biased sample statistics resulting in biased model training and testing
  - Biased models with biased predictions with potentially no indication of the bias!

### **Missing Data on Calculation**

- Samples with Missing Features Cannot be Applied in Many Data Analytics and Machine Learning Methods
- Inferential Machine Learning: PCA, MDS, Cluster Analysis require all the features,  $x_{1,i}, ..., x_{m,i}$  for each of the data samples i = 1, ..., n.
  - We cannot calculate distance / dissimilarity, projects etc. without placing each sample in the m dimensional space
- Predictive Machine Learning: require all features to train and test the model.

$$\widehat{Y} = \widehat{f}(X_1, \dots, X_m)$$



### **Likewise Deletion**

## Most Common / Default Approach in Data Analytics and Machine Learning

- Removal of any sample with any missing feature likewise deletion
- Missing at Random (MAR)
  - Should not result in biased (or increased bias)
  - Caution: MAR is rare
  - Will result in a decrease in the effective data size and increase in model uncertainty



### **Likewise Deletion**

## Most Common / Default Approach in Data Analytics and Machine Learning



- Data completeness, coverage for each feature
  - Missing records in  $X_{10}$  may not all be in  $X_{11}$  etc.
  - May result in loss of much more than the largest proportion of missing
- If missing not at random (MNAR), sample bias is increased
  - Missing data diagnosis best method fill in missing data, practical method is to evaluate the conditional statistics of missing samples over other features.



### **Likewise Deletion**

# Most Common / Default Approach in Data Analytics and Machine Learning

- conservative approach, avoids estimation of missing values
- maximize removal of data, loss of information.



Heat map of data coverage (white = missing feature).



### **Feature Selection**

#### Removal of features low data completeness

 Reduces missing data severity, treat data completeness as feature reliability for feature selection



- Removing the features with low coverage
  - Removal of  $X_{11}$  and likewise deletion fortunately resulted in a 18% reduction in samples, fortunately missing  $X_6$ ,  $X_8$ ,  $X_{10}$ ,  $X_{12}$  and  $X_{13}$  coincide (same samples) in this case
  - Often not the case, missing features' samples don't perfectly overlap.

## What is a Feature Imputation?

Estimating missing values in the data set / DataFrame

#### 2 Primary Goals

- Maximize model accuracy
- Avoid model bias
- Provide fair measure of model uncertainty



### Hot and Cold Deck Methods

#### **Hot Deck Imputation**

- Random selection from a similar record in the current dataset
- One implementation is last observation carried forward (LOCF). After sorting the dataset over features of interest (ordering to maximize similarity of adjacent records)

#### **Cold Deck Imputation**

Like hot deck, but from another, analog dataset

#### Issues:

Likely introduce bias, disrupt correlations



## Traditional Alternatives to Likewise Deletion

#### Substitute the Global Mean

- Optimum estimate (minimizes the L2 loss function) given no other information
- Do not do this:
  - Cause conditional bias in the model in the presence of other features, systematic shift in the expectation of the substituted predictor feature over combinatorials of the other features.
  - Reduce variance of the substituted predictor feature limiting the training and testing data coverage



## Mean Value Methods

#### Mean Value Imputation

- Replace the missing value with the global mean of the feature  $x_i = E\{X_i\}$
- Designed to avoid global bias in the specific feature

#### **Conditional Mean Value Imputation**

Replace the missing value with the conditional mean of the feature

$$x_i = E\{X_i | X_{j=1,\dots,m,j\neq i}\}$$

Designed to avoid global and conditional bias

#### Issues:

This method will attenuate correlations





## **Estimation / Regression Methods**

#### **Regression Imputation**

- Replace the missing value with a model-based estimate of the feature  $x_i = \hat{f}(X_{i=1,...,m,i\neq i})$
- Reduce the global and local bias, but prediction models often have conditional bias.
- The full range / variance of the response feature(s) is not represented.
- Conditional bias can be checked and improved with model training and tuning (more later).

#### Issues:

- The imputed values are represented as hard data and fail to represent the uncertainty associated with their estimation
- This method will underestimate the uncertainty models



Scatter plot of regression predictions  $(Y^*)$  vs. withheld testing values (Y).



**Geo-imputation / Geographical Imputation**: by spatial analog, similar locations

**General Interpolation**: a wide variate of interpolation methods including geostatistics for spatial and temporal problems

**Censoring / Indicator Coding**: include a bound / constraint on the missing value, for subsequent methods that integrate soft data

### **Multiple Imputation**

#### **Multiple Imputation**

 Replace the missing value with a suite of realizations, with multiple model-based estimates (and even scenarios) of the feature

$$x_i^{\ell} = \hat{f}^{\ell}(X_{j=1,\dots,m,j\neq i})$$

Subsequent workflows must now integrate data realizations to integrate uncertainty

#### Alternatives:

Bootstrap, Geostatistics / Spatial Bootstrap



### **Multiple Imputation**

## Multiple Imputation by Chained Equations (MICE) Approach:

- 1. Substitute placeholder (constant, random values from  $F_{X_{i=1,...,m}}(X_{i=1,...,m})$ ) for missing values
- Sequentially predict missing values for one feature at a time with all other features
  - set placeholders in one feature to missing and predict with all values (actual and placeholders) for the other features.
- 3. Repeat for multiple realizations of the dataset

Iterative until
convergence
criteria is met,
usually multivariate
statistics



#### Super Secondary Approach (Deutsch and Zanon, 2004)

- 1. Transform the selected property to Gaussian
- 2. Spatial Primary Information: Calculate prior through kriging estimate and variance and the Gaussian assumption
- 3. Multivariate Secondary Information: Calculate the likelihood through multivariate relationship with other collocated features
- **4. Bayesian Updating to Combine Spatial and Multivariate**: Update to calculate the Gaussian distributed posterior
- 5. Back transform the property to Gaussian
- 6. Visualize diagnostics on the impact of the spatial and multivariate on informing the local estimate.

## Super Secondary Demonstration

#### **Super Secondary Approach Demonstration – 2D Map**

 Prior from well data primary feature, likelihood from multivariate mapped features and posterior.



Example of multivariate and spatial estimation of uncertainty distributions.



## PGE 383 Feature Imputation

Lecture outline . . .

Feature Imputation