

#### Olympic Birds

# Problemas da Semana 8 Física

#### 1 Questão Curta: Aterramento de placa deformada

Escrito por Guilherme Rodrigues

Considere uma placa aterrada com uma deformidade no formato de uma calota de raio R, a uma distância a ortogonalmente acima do plano da placa e da calota se encontra uma partícula de carga q positiva. Determine a força que a carga sente da placa.

**OBS**: Tome como referencial forças atrativas como positivas.

### 2 Questão Média: Cubo relativo

Escrito por Heitor Chaves

Um cubo de concreto passa por um referencial R em  $\Delta t = 35 \ ns$ . Olhando pelo referencial do cubo, o tempo do mesmo trajeto foi medido como  $\Delta t = 45 \ ns$ . Sabendo disso, qual o volume de concreto no cubo?

## 3 Questão Longa: Universo gelatinoso

Escrito por William Alves

Suponha que o Universo esteja cheio de alguma substância gelatinosa que gera uma força de arrasto. Uma partícula de massa *m* experimentará uma força de frenagem (que também chamaremos de força de arrasto)

$$F = -ka$$

onde k é uma constante positiva e a é a aceleração da partícula. Para as seguintes questões, suponha que a partícula se mova em uma única dimensão para simplificar.

a) Suponha que não haja outras forças na partícula. Descreva a posição da partícula x(t) para qualquer tempo  $t \ge 0$ , assumindo velocidade inicial  $v(0) = v_o$  e posição inicial  $x(0) = x_o$ .

- b) Agora suponha que a partícula experimente uma força externa constante  $F_{ext} > 0$  iniciando em t = 0. Descreva a posição da partícula x(t) para qualquer tempo  $t \ge 0$ , assumindo velocidade inicial  $v(0) = v_o$  e posição inicial  $x(0) = x_o$ .
- c) Qual o trabalho total realizado pela partícula no intervalo de tempo  $0 \le t \le T$  devido esta força constante aplicada ?( inclua o trabalho feito pela força aplicada e a força de arrasto. )
- d) Analise a implicação física da força de arrasto F para a partícula. Em particular, descreva como essa força de arrasto difere do atrito cinético (uma força de frenagem constante) e do arrasto viscoso de baixa velocidade (uma força de frenagem proporcional à velocidade da partícula).
- e) Suponha que a partícula seja lançada perto da superfície da Terra, onde há um campo gravitacional g. Quanto tempo  $(\Delta t)$  leva para uma partícula cair de uma altura h?
- f) É possível recuperar o mesmo resultado da parte e) para o movimento da partícula removendo força de arrasto F e substituindo g por um campo gravitacional efetivo  $g_{ef}$ , encontre este campo efetivo para um dado valor de k e m. Considere os limites que  $m \longrightarrow 0$  e  $m \longrightarrow \infty$ . Analise se as respostas fazem sentido.
- g) No eletromagnetismo, a força de Abraham-Lorentz é uma força de frenagem que depende da derivada da aceleração da partícula:

$$F_{AL} = mq \frac{da}{dt}$$

onde q é alguma constante e m é a massa da partícula, incluída por conveniência. Incluindo uma força externa variante no tempo  $F_{ext}(t)$  a equação do movimento é

$$F_{ext}(t) + mq \frac{da(t)}{dt} = ma(t)$$

Nós podemos integrar esta expressão para encontrar a solução para a(t)

$$a(t) = \frac{1}{mq} \int_{t}^{\infty} e^{-\frac{t'-t}{q} F_{ext}(t')} dt'$$

Suponha que uma força externa constante  $F_{ext}(t) = F_{ext}$  é "ligada" em algum tempo distante t = T > 0 e dura para qualquer tempo  $t \ge 0$ . Qual é a aceleração a(t) da partícula para  $t \ge 0$  de acordo com a solução para a(t) dada acima? O que há de estranho nessa situação?