Modifying MED for Model Selection

Kristyn Pantoja

6 February 2020

MED Overview

Sequential Modified MED

Case 1: Quadratic true model

Case 2: Cubic

Gaussian Process Application

Sequential M-MED for GP

Gaussian vs. Matern: How do the different input cases compare?

Matern vs. Periodic: How do the different cases compare?

MED Overview

Minimum Energy Design

Design $\mathbf{D} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$ is a MED if it minimizes the total potential energy, given by:

$$\sum_{i\neq j}\frac{q(\mathbf{x}_i)q(\mathbf{x}_j)}{d(\mathbf{x}_i,\mathbf{x}_j)}$$

Theorem: If $q = \frac{1}{f^{1/2p}}$, the **limiting** distribution¹ of the design points is target distribution, f.

Figure 1: Sampling the "Banana" function

¹"Sequential Exploration of Complex Surfaces Using Minimum Energy Designs," Joseph et. al. 2015, Result 1

MED for Model Selection

Goals

A design $\mathbf{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ to gather data that will

- 1. help distinguish these two slopes
- 2. allow adequate estimation of β

Define q in terms of $f_D(x)$, a normalized Wasserstein distance between $y|H_0, X$ and $y|H_1, X$, assuming a bounded design space.

Modified Objective

$$q = \frac{1}{f_D^{1/2p}}$$

where $f_D(\mathbf{x}) = \text{Wasserstein}(\phi_{0,\mathbf{x}}, \phi_{1,\mathbf{x}})$,

- ► Here, the regions that are important for distinguishing the two models have high density.
- A tuning parameter α adjusts the space-filling aspect: $q_{\alpha} = 1/f_{D}^{\alpha/2p}$

Original Motivating Example

Limiting Distribution

Cautionary Example

Suppose we want to consider a linear model and quadratic model:

$$H_0: \beta \sim N((0,0)^T, \nu^2 I_2)$$

$$H_1: \beta \sim N((0,0,0)^T, \nu^2 I_3)$$

Consider the case where the true model is quadratic:

$$\beta_T = (-0.2, -0.4, 0.4)$$

D-Optimal and Space-filling Designs

Posterior Probabilities

Points for Estimation

Points in the middle do not show large difference between the two models, but are importaint for constraining the models to be $distinguished^2$

²"Designing Test Information and Test Information in Design", Jones & Meng

Sequential Modified MED

Sequential Design

If an experiment setting allows for data to be gathered sequentially, the modified MED (M-MED) can be adjusted to take into account data from previous experiments.

Currently, we have
$$q_{\alpha}=1/f_{D}^{\alpha/2p}$$
, where $f_{D}(\mathbf{x})=$ Wasserstein $(\phi_{0,\mathbf{x}},\phi_{1,\mathbf{x}})$

▶ M-MED: $\phi_{\ell,\mathbf{x}}$ is the marginal distribution of $y|H_{\ell},X$

Taking data into account

Sequential M-MED: $\phi_{\ell,\mathbf{x}}$ is the posterior predictive distribution³ of $y|H_{\ell},X$.

³See appendix

Case 1: Quadratic true model

Hypothesized and True Models

Consider the cautionary example again.

$$H_0: \beta \sim N((0,0)^T, \nu^2 I_2)$$

 $H_1: \beta \sim N((0,0,0)^T, \nu^2 I_3)$

Consider the case where the true model is quadratic:

$$\beta_T = (-0.2, -0.4, 0.4)$$

Sequential M-MED (using data)

A sequence of 10 steps, generating 10 points in each step, resulting in 100 points:

Linear and Quadratic Fits

High Density Areas

Hypothesis Testing

Parameter Estimation: MSE(Bn)

Prediction: MSE(y-hat)

Case 2: Cubic

f0, f1, true f

Suppose we want to consider a linear model and quadratic model:

$$H_0: \beta \sim N((0,0)^T, V_0)$$

 $H_1: \beta \sim N((0,0,0)^T, V_0)$

and suppose $\beta_T = (0, -0.75, 0, 1)$

Sequential M-MED With Data

A sequence of 10 steps, generating 10 points in each step, resulting in 100 points:

Sequential M-MED (with data)

Linear, Quadratic, Cubic Fits

Hypothesis Testing

Prediction: MSE(y-hat)

Gaussian Process Application

Applying MED to Gaussian Process Model Selection

- ► Several covariance function options for Gaussian Process⁴. How to choose between two good options?
 - ▶ Squared Exponential: infinitely differentiable, standard choice
 - ► Matern: more reasonable smoothness assumptions
 - non-stationary options to capture structure in data

Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from Gaussian processes with Matérn covariance functions, eq. (4.14), for different values of ν , with $\ell=1$. The sample functions on the right were obtained using a discretization of the x-axis of 2000 equally-spaced points.

⁵ "Gaussian Processes for Machine Learning" Rasmussen et. al. 2005

Applying M-MED to Gaussian Process Model Selection

- Goal: Choose a design that will distinguish the two gaussian process models.
- Distinguishing functions vs. distributions over functions:
 - For regression models, we use $f_D(\mathbf{x}) = \text{Wasserstein}(\phi_{0,\mathbf{x}},\phi_{1,\mathbf{x}})$. What is the distance function now? What are $\phi_{0,\mathbf{x}},\phi_{0,\mathbf{x}}$?
 - Key Question: Do we need to consider the predictive distribution for each GP model?
 - **Doing so would give us an option for** $\phi_{0,x}, \phi_{0,x}$.
 - We would need to have at least some data in order to model each Gaussian Process (training set) and use M-MED to select points for comparing them.

Sq Exponential vs. Matern (f generated from Matern)

Matern vs. Periodic (f generated from Periodic)

Sequential M-MED for GP

Simulations Set-Up

To generate points sequentially with MMED:

- 1. Start with 6 input data
- 2. Use SMMED to sequentially gather 15 new data points in 3 steps (5 new points at each step)
- Metrics:
 - RSS0/RSS1 (prediction)

$$\frac{\sum_{i \in \mathbf{D}} (y_i^{\mathsf{pred}_0} - y_i^{\mathsf{new}})^2}{\sum_{i \in \mathbf{D}} (y_i^{\mathsf{pred}_1} - y_i^{\mathsf{new}})^2}$$

 $ightharpoonup P(H_1|X,Y)$ (model selection)

$$\frac{P(Y|H_1,X)\pi_1}{P(Y|H_0,X)\pi_0 + P(Y|H_1,X)\pi_1}$$

Metrics are used to compare MMED to space-filling and random designs.

Inputs

We consider 4 cases which use different input points for each of the 2 hypothesis tests and 3 designs:

- Extrapolation
- Increasing spread
- Even coverage
- Random

Gaussian vs. Matern: How do the different input cases compare?

RSS Ratio (01)

Posterior Probability of H1

Compare the median $P(H_1|X,Y)$ for each case and design

Matern vs. Periodic: How do the different cases compare?

RSS Ratio (01)

Compare the median $P(H_1|X,Y)$ for each case and design

Posterior Probability of H1

Compare the median $P(H_1|X, Y)$ for each case and design

