Национальный исследовательский университет информационных технологий, механики и оптики Кофочно в начинительной доминии

Кафедра вычислительной техники Сети ЭВМ и телекоммуникации

Учебно-исследовательская работа №5 «Технологии QoS в компьютерных сетях»

Студентка: Преподаватель: $Шинкарук \ \mathcal{A}.H.$

Цели работы

Цель работы – изучение эффективности приоритезации трафика для управления качеством обслуживания (Quality of Service, QoS) в компьютерных сетях.

Исходные данные

• Пропускная способность: N = 5 Mbps.

 \bullet Размер буфера: S = 7 Kb.

• Приоритеты WFQ: $W_1: W_2 = 7:1, W_1 = 0.86 W_2 = 0.14$

Параметры	Skype	Twitch	
Задержка, ms	100	1000	
Джиттер, ms	50	-	
Потеря пакетов, %	0.1	0.1	

Захват трафика

Захват VoIP трафика происходил следующим образом: определение открытых программой Skype портов, определение, через какой порт и на какой адрес происходит наибольшая активность при звонке, захват трафика с фильтром port PORT and host HOST and udp.

254 7.922	157.56.198.40	192.168.1.26	UDP	79 2002 → 62789 Len=37
255 7.942	157.56.198.40	192.168.1.26	UDP	117 2002 → 62789 Len=75
256 7.962	157.56.198.40	192.168.1.26	UDP	175 2002 → 62789 Len=133
257 7.983	157.56.198.40	192.168.1.26	UDP	176 2002 → 62789 Len=134

Захват VoD трафика происходил следующим образом: определение адреса, через который идёт видео-трафик, с помощью отладочной консоли браузера; захват трафика с фильтром host HOST and tcp.

1 0.000000	52.223.193.247	192.168.1.26	TLSv1.2	841 Application Data
2 1.301596	52.223.193.247	192.168.1.26	TLSv1.2	841 Application Data
3 1.348996	52.223.193.247	192.168.1.26	SSL	1506
4 1.349704	52.223.193.247	192.168.1.26	TLSv1.2	1506 Ignored Unknown Record

Функции распределения интервалов между пакетами

Рис. 1. Skype

Рис. 2. Twitch

Функции распределения размеров пактов

Рис. 3. Skype и Twitch

Эксперименты

Исследование FIFO

Элементарная очередь без приоретизации: каждый класс трафика получает одинаковое количество обслуживания в случае, если считать задержку ожидания в буфере; при учёте задержки при выдаче в канал связи, то равное обслуживание не обеспечивается.

Параметры

Характеристики

```
закон распределения интервалов между поступлениями пакетовагрузка р
Т, мин=0.1, мода=0.2, макс=0.3 мс
Т, мин=0.3, мода=0.4, макс=0.5 мс
Закон распределения размеров пакетов
Т, мин=100, мода=728, макс=200 байт
Т, мин=45, мода=728, макс=1500 байт
Т, мин=45, мода=728, макс=1500 байт
Пропускная способность канала связи С, Кбит/с
5,000
Среднее время пребывания U, мс
4.618 +- 0.233
Текущая длина очереди, пакетов
О
Викость накопителя E, байт
7,000
О,665 +- 0.032
```

При вариации значения пропускной способности не удалось добиться характеристик, соответствующих заданным требованиям. Такое поведение обуславливается большим размером пакетов и малым интервалом между времени между пакетами: заданного в задании размера буфера и пропускной способности недостаточно для данного типа трафика. При попытке увеличить исходные параментры были получены следующие результаты.

Параметры

Характеристики

```
закон распределения интервалов между поступлениями паке заврузка р
Т, мин=0.1, мода=0.2, макс=0.3 мс
Т, мин=0.3, мода=0.4, макс=0.5 мс
вакон распределения размеров пакетов
Т, мин=100, мода=728, макс=200 байт
Т, мин=45, мода=728, макс=200 байт
Т, мин=45, мода=728, макс=1500 байт
Т, мин=45, мода=728, макс=200 байт
Т, мин=40, мода=728, макс=1500 байт
Т, мин=40, мода=728, макс=1500 байт
Т, мин=40, мода=728, макс=1500 байт
Т, мин=40, мода=728, мода=728,
```


Параметры

Характеристики

```
закон распределения интервалов между поступлениями пакетовагрузка р
Т. мин=0.1, мода=0.2, макс=0.3 мс
Т. мин=0.3, мода=0.4, макс=0.5 мс
вакон распределения размеров пакетов
Т. мин=100, мода=728, макс=200 байт
Т. мин=45, мода=728, макс=1500 байт
Т. мин=45, мода=728, макс=1500 байт
Пропускная способность канала связи С, Кбит/с
25,000
Строительной пропускная длина очереди, пакетов
Пособность накопителя Е, байт
Текущая длина очереди I, пакетов
То,000
Тедняя длина очереди I, пакетов
```

Графики изменений значений загрузки, вероятности потерь и времени ожидания в зависимости от пропускной способности.

Рис. 4. Слева показатели при объёме 7Kb, справа – 70 Kb.

Из графиков видно, что при объеме буфера в 7Кb при вариации ПС показатели практически не изменились, в то время как при объёме в 70Кb удалось найти пропускную способность (25000 bps), при которой характеристики соответствуют требуемым.

Исследование PQ

Разным классам трафика устанавливается приоритет: трафик низкоприоритетного класса передаётся только в том случае, когда нет пакетов высокоприоритетного класса на передачу. Таким образом обуславливается наилучшее качество обслуживания для высокоприоритетного класса, однако блокирует низкоприоритетный при перегрузках.

Параметры

Характеристики

```
закон распределения интервалов между поступлениями пакетовагрузка р
T, мин=0.1, мода=0.2, макс=0.3 мс
T, мин=0.3, мода=0.4, макс=0.5 мс
                                                                    вероятность потери π
закон распределения размеров пакетов
T, мин=100, мода=728, макс=200 байт
T, мин=45, мода=728, макс=1500 байт
                                                                    среднее время ожидания W, мс
                                                                     0.457 +- 0.026
                                                                                      6.31 +- 0.126
пропускная способность канала связи С, Кбит/с
                                                                    среднее время пребывания U, мс
                                                                     1.202 +- 0.03
                                                                                       9.882 +- 0.142
дисциплина обслуживания ДО
                                                                     текущая длина очереди, пакетов
емкость накопителя Е, байт
                                                                    средняя длина очереди I, пакетов
```

Как и прошлом случае, при вариациии ПС добиться требуемых качеств не удаётся.

Параметры

Характеристики

```
закон распределения интервалов между поступлениями пакетовагрузка р
T, мин=0.1, мода=0.2, макс=0.3 мс
T, мин=0.3, мода=0.4, макс=0.5 мс
                                                                  0.098 +- 0.007
                                                                 вероятность потери π
закон распределения размеров пакетов
                                                                 0.001 +- 6.862E-5
                                                                 среднее время ожидания W, мс
Т, мин=100, мода=728, макс=200 байт
Т, мин=45, мода=728, макс=1500 байт
                                                                 0.026 +- 0.011 1.276 +- 0.121
пропускная способность канала связи С, Кбит/с
                                                                 среднее время пребывания U, мс
                                                                 дисциплина обслуживания ДО
                                                                 текущая длина очереди, пакетов
емкость накопителя Е, байт
                                                                 средняя длина очереди I, пакетов
                                                                 0.133 + - 0.016
```


Графики изменений значений загрузки, вероятности потерь и времени ожидания в зависимости от пропускной способности.

Рис. 5. Слева показатели при объёме 7Кb, справа – 70 Кb.

Из графиков видно, что изменение ПС сильно влияет на низкоприоритетный трафик.

Исследование WFQ

Для каждого трафика устанавливается вес; за каждый цикл работы WFQ из очереди одного класса передаются пакеты суммарным размером равным весу класса. Установка веса даёт гарантии, что класс с большим весом будет получать большее качество обслуживания и что в условиях высокой нагрузки класс будет получает канал за конечное время.

При варьировании весов результаты незначительно улучшились.

Как и прошлом случае, при вариациии ПС добиться требуемых качеств не удаётся.

Параметры

Характеристики

Параметры

Характеристики

```
закон распределения интервалов между поступлениями пакетовагрузка р
T, мин=0.1, мода=0.2, макс=0.3 мс
T, мин=0.3, мода=0.4, макс=0.5 мс
                                                                     0.335 +- 0.018
                                                                    вероятность потери π
закон распределения размеров пакетов
                                                                           +- 0
                                                                                       0.007 +- 0.004
T, мин=100, мода=728, макс=200 байт
T, мин=45, мода=728, макс=1500 байт
                                                                    среднее время ожидания W, мс
                                                                     0.681 +- 0.144
                                                                                      7.319 +- 0.646
пропускная способность канала связи С, Кбит/с
                                                                    среднее время пребывания U, мс
                                                                     0.737 +- 0.152
                                                                                      9.705 +- 0.73
дисциплина обслуживания ДО
                                                                     текущая длина очереди, пакетов
емкость накопителя Е, байт
                                                                    средняя длина очереди I, пакетов
                                                                     0.113 +- 0.023
                                                                                      1.608 +- 0.129
```

Наименьшее значение ПС удалось достичь при 23000 bps. При варьировании весов на данной пропускной способности и на ряде значений ниже не удалось добиться значительно лучших результатов.

Графики изменений значений загрузки, вероятности потерь и времени ожидания в зависимости от пропускной способности.

Рис. 6. Слева показатели при объёме 7Kb, справа – 70 Kb.

В сравнении с PQ в режиме перегрузки (S=7Kb, N=2Mbps).

ДО	w_1	u_1	w_2	u_2	p	π_1	π_2
PQ	0.9	1.5	300	314	1	0.6	-
WFQ(0.86, 0.14)	33.2	34.1	148	151	1	0.4	0.89
WFQ(0.14, 0.86)	198.9	201	30	32	1	0.89	0.75
WFQ(0.5, 0.5)	51.6	52.4	57.1	58.3	1	0.6	0.8

Вывод

В ходе проведения учебно-исследовательской работы было подмечено следующее:

- 1. Выданная для проведения исследований модель содержала ошибку: при выборе ДО WFQ значения времени ожидания и времени пребывания в очереди не обновлялись. Баг обусловлен тем, что при выходе из источников (source) не устанавливалось свойство объекта (entity.priority), которое влияет на изменение обозначенных выше показателей.
- 2. При захвате трафика VoD обнаружилось, что размер пойманных TCP-пакетов не соответствует размеру MTU. Скорее всего, это происходит из-за механихма GSO (generic segmentation offload), при котором фрагментация и дефрагментация пакетов происходит в обход CPU на сетевых интерфейсах. Однако настроить получение пакетов без этого мехнизма не получилось, из-за чего проявились изложенные в работе аномалии с размером пакетов.

В итоге.

- 1. Исходная конфигурация не удовлетворяет требованиям из-за того, что максимальный размер пакета VoD трафика равен порядка 60 Kb и среднее значение 12 Kb при начальном объёме буфера в 7 Kb. Проблему удалось избежать повышением исходного объёма до 70 Kb.
- 2. При увеличении ΠC канала харакетристики уменьшаются, однако до некоторого порога, после которого увеличение ΠC не оказывает вляния.
- 3. ДО FIFO не предоставляет механизмы управления трафиком.
- 4. ДО PQ предоставляет элементарный механизм управления, который, однако, не может обработать случаи перегрузки.
- 5. ДО WFQ предоставляет механизм управления трафиков путём назначения весов классам, на которые делится трафик; он более гибкий, чем два предыдущих, и лучше справляется с перегрузками, чем PQ.
- 6. Для исходной конфигурации лучшие показатели характеристик дала ДО FIFO.
- 7. Для новой конфигурации наименьшую ПС канала (23 Mbps) удалось достичь при ДО WFQ.
- 8. В условиях, когда необходимо добиться разделения качества обслуживания и минимальную ПС, то хорошим вариантом будет WFQ, в ином случае сгодится FIFO.