MATH 142: Mathematical Modeling, Homework 4

Darren Tsang 405433124

Produced on Wednesday, Apr. 29 2020 @ 02:06:47 PM

Question 1

Part A

$$\frac{dx}{dt} = axk_f - x^2k_b$$

Part B

We set the differential equation equal to 0: $axk_f - x^2k_b = x(ak_f - xk_b) = 0$. Thus, the fixed points are $x^* = 0$, $\frac{ak_f}{k_b}$.

The stability of the fixed points tells use that the concentration of X will always stable out to $\frac{ak_f}{k_b}$ as long as there is some concentration of X to begin with.

Part C

Question 2

Part A

	Opponent	
a. player	Howle	Dove
The state of the s	Hank 6-0	6- 41
	Dove 0	5/2

Part B

Let No total population of organisms

$$x = fraction that are harks$$
 $y = """ Mores$
 $\frac{1}{16} = \frac{1}{16} = \frac{1}{16$

Pluggra in
$$9 - 1 - x$$

$$\frac{\partial k}{\partial t} = \frac{1}{2} \frac{1}{2$$

Part C

(i)

(ii)

(iii)

(iv)

In the case where b < c, the hawks and doves will reach an eqilibrium. When $b \ge c$, the doves will eventually die off.

Question 3

3.
$$\frac{de}{de} = \mu P \left(1 - \frac{P}{N}\right) - \frac{BP^2}{A^2 + P^2}$$
, $P(0) = P_0$

a. Variable dimension powdretur dimension

Propulation

N, A, Po population

time

B population

Here

 $\frac{1}{4me}$

B population

 $\frac{1}{4me}$

B population

 $\frac{1}{4me}$

Adu $\frac{1}{4me}$

Question 4

4.
$$\frac{dv}{dt} = g - \frac{k}{m} v^2$$
 $\frac{d}{dt} = \frac{d}{t^2} = \frac{d}{t^2}$

6. Variable dimension powareter dimension

 $v = \frac{dv}{dt} = \frac{dv}{dt} = \frac{dv}{dt} = \frac{dv}{dt}$
 $\frac{dv}{dt} = \frac{dv}{dt} = \frac{dv}{$