A Tiny Example

Andrew Mertz and William Slough

June 15, 2005

Suppose we have an (infinite) collection of sets \mathcal{F} . We define a shatter function $\pi_{\mathcal{F}}(n)$

$$\pi_{\mathcal{F}}(n) = \max\{\# \text{ of atoms in boolean algebra generated by } S$$

$$\mid S \subset \mathcal{F} \text{ with } |S| = n\}$$

Example: Let $\mathcal F$ consist of all discs on a plane.

$$\pi_{\mathcal{F}}(1)=2$$
 $\pi_{\mathcal{F}}(2)=4$ $\pi_{\mathcal{F}}(3)=8$ $\pi_{\mathcal{F}}(4)=14$
$$\pi_{\mathcal{F}}(n)=n^2-n+2$$

More examples:

- 1. Lines on a plane $\pi_{\mathcal{F}}(n) = n^2/2 + n/2 + 1$
- 2. Disks on a plane $\pi_{\mathcal{F}}(n) = n^2 n + 2$
- 3. Balls in \mathbb{R}^3 $\pi_{\mathcal{F}}(n) = n^3/3 n^2 + 8n/3$
- 4. Intervals on a line $\pi_{\mathcal{F}}(n) = 2n$
- 5. Half-planes on a plane $\pi_{\mathcal{F}}(n) = n(n+1)/2 + 1$
- 6. Finite subsets of \mathbb{N} $\pi_{\mathcal{F}}(n) = 2^n$
- 7. Polygons in a plane $\pi_{\mathcal{F}}(n) = 2^n$

Theorem (Sauer-Shelah)

Shatter function is either 2^n or bounded by a polynomial.

Definition

Suppose growth of shatter function for \mathcal{F} is polynomial. Let r be the smallest real such that

$$\pi_{\mathcal{F}}(n) = O(n^r)$$

We define such r to be the vc-density of \mathcal{F} . If shatter function grows exponentially, we let vc-density to be infinite.

Applications

- VapnikChervonenkis Theorem in probability
- Computability
- NIP theories