Effective Programming Practices for Economists

Data Analysis in Python

Working with statsmodels' results objects

Janoś Gabler, Hans-Martin von Gaudecker, and Tim Mensinger

Example

Model and Results Objects

```
>>> model = smf.ols(
... data=df,
... formula="fraction_using_computer_at_work ~ fraction_with_tertiary_education",
... )
>>> model
<statsmodels.regression.linear_model.OLS at 0x7fb56c905250>
>>> all_results = model.fit(cov_type="nonrobust")
>>> all_results
<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x7f84b22e7490>
```

RegressionResultsWrapper contains methods and attributes for all results

- Coefficient estimates
- Predictions / Residuals
- Variance-covariance matrix of estimates
- Many tests

Summarising Regression Results

>>> all_results.summary()

Dep. Variable:	fraction_using_computer_at_work R-squared:			0.628			
Model:	OLS				Adj. R-s	squared:	0.505
Method:	Least Squa	res			F-:	statistic:	5.074
No. Observations:	5				Df Re	3	
		coef	std err	t	P> t	[0.025	0.975]
	Intercept	0.4445	0.126	3.541	0.038	0.045	0.844
fraction_with_tertiary_	education	0.9399	0.417	2.253	0.110	-0.388	2.268

Add Mean Prediction to Data

```
>>> df["predicted"] = all_results.predict(df)
>>> df
```

country	fraction_with_tertiary_education	fraction_using_computer_at_work	predicted
Slovak Republic	0.172	0.534	0.606
Austria	0.206	0.737	0.638
Germany	0.314	0.712	0.74
United Kingdom	0.371	0.754	0.793
Norway	0.38	0.842	0.802

Plot the Regression Line

```
>>> line_fig = df.plot(x="fraction_with_tertiary_education", y="predicted")
>>> line_fig.show()
```


Add Regression Line to Scatter Plot

Data Points and Regression Line

