Autonomous First-Order Differential Equations

We previously divided the class of ordinary differential equations: linear and nonlinear. We now consider briefly another kind of classification of ordinary differential equations, a classification that is of particular importance in the qualitative investigation of differential equations. An ordinary differential equation in which the independent variable does not appear explicitly is said to be *autonomous*. If the symbol x denotes the independent variable, then an autonomous first-order differential equation can be written as f(y, y') = 0 or

$$\frac{dy}{dx} = f(y)$$

For example, the ordinary differential equation

$$\frac{dy}{dx} = 1 + y^2$$

is autonomous and the equation

$$\frac{dy}{dx} = 0.2xy$$

is non-autonomous.

Many differential equations encountered in applications or equations that are models of physical laws that do not change over time are autonomous. If t represents the time and t represents the independent variable,

$$\frac{dA}{dt} = kA \qquad \frac{dx}{dt} = kx(n+1-x) \qquad \frac{dT}{dt} = k(T-T_m) \qquad \frac{dA}{dt} = 6 - \frac{1}{100}A$$

where k, n and T_m are all constants, shows that each equation is time independent. Indeed, all of the first-order differential equations here are autonomous.

Critical Points

The zeros of the function f(y) are of special importance. We say that a real number α is a critical point of the autonomous differential equation if it is a zero of f, that is $f(\alpha) = 0$. A critical point is also called an equilibrium point or stationary point. Now when we substitute the constant function $y(x) = \alpha$, then both sides of the equation are zero. Then this implies that if α is a critical point, then $y(x) = \alpha$ is a constant solution of the autonomous differential equation.

Example 1. The differential equation

$$\frac{dP}{dt} = P(a - bP)$$

where a and b are positive constants, then the normal form $\frac{dP}{dt} = f(P)$ with t and P playing the parts x and y, is autonomous.

From f(P) = P(a - bP) = 0, we see that 0 and $\frac{a}{b}$ are critical points of the equation, so the equilibrium solutions are P(t) = 0 and $P(t) = \frac{a}{b}$. By putting the critical points on a vertical line, we divide the line into three intervals defined by $P \in (-\infty, 0)$, $P \in (0, \frac{a}{b})$ and $P \in (\frac{a}{b}, \infty)$. The table below explains the diagram.

Interval	Sign of $f(P)$	P(t)	Arrow
$(-\infty,0)$	_	DEC	Down
$(0,\frac{a}{b})$	+	INC	Up
$\left(\frac{a}{b,\infty}\right)$	_	DEC	Down

Solution Curves

Without solving an autonomous differential equation, we can usually say a great deal about its solution curves. Since the function f is independent of the variable x, we may consider f defined for $x \in \mathbb{R}$, or for $0 \le x < \infty$. Also, since f and f' are continuous functions of g on some interval g of the g-axis, the fundamental result in Section 1.2 hold in some horizontal strip or a region g in the g-plane corresponding to g, and so through any point g-axis, there passes only one solution curve.

The graphs of the equilibrium solutions $y(x) = \alpha_1$ and $y(x) = \alpha_2$ are horizontal lines, and these lines partition the region R into three subregions R_1 , R_2 and R_3 .

Here are some conclusions that we can draw about a nonconstant solution y(x):

- If (x_0, y_0) is in a subregion R_i for i = 1, 2, 3, and y(x) is a solution whose graph passes through this point, then y(x) remains in the subregion R_i for all x. The solution y(x) in R_2 is bounded below by α_1 and bounded above by α_2 , that is, $y(x) \in (\alpha_1, \alpha_2)$ for all x. The solution curve stays within R_2 for all x because the graph of a nonconstant solution cannot cross the graph of either equilibrium solution.
- By continuity of f we must have either f(y) > 0 or f(y) < 0 for all x in a subregion R_i . In other words, f(y) cannot change signs in a subregion.
- Since $\frac{dy}{dx} = f(y(x))$ is either positive or negative in a subregion R_i a solution y(x) is strictly monatomic, i.e. y(x) is either increasing or decreasing in the subregion R_i . Therefore, y(x) cannot be oscillatory, nor can it have a relative extremum.
- If y(x) is bounded above by a critical point α_1 , then the graph of y(x) must approach the graph of the equilibrium solution $y(x) = \alpha_1$. If y(x) is bounded, then its graph y(x) must approach the graphs of the equilibrium solutions $y(x) = \alpha_1$ and $y(x) = \alpha_2$. If y(x) is bounded below by a critical point then the graph of y(x) must approach the graph of the equilibrium solution $y(x) = \alpha_2$.

Example 2. In Example 1, the three examples determined on the P-axis or phase line by the critical points 0 and $\frac{a}{h}$ now correspond in the tP-plane to three subregions defined by

$$R_1: P \in (-\infty, 0)$$
 $R_2: P \in \left(0, \frac{a}{b}\right)$ $R_3: P \in \left(\frac{a}{b}, \infty\right)$

where $t \in \mathbb{R}$.

If $P(0) = P_0$ is an initial value, then in R_1 , R_2 , and R_3 we have, respectively, the following:

- For $P_0 < 0$, P(t) is bounded above. Since P(t) is decreasing, P(t) decreases without bound for increasing t, and so $P(t) \to 0$ as $t \to -\infty$. This means that the negative t-axis, the graph of the equilibrium solution P(t) = 0, is a horizontal asymptote for a solution curve.
- For $P_0 \in (0, \frac{a}{b})$, P_0 is bounded. Since P(t) is increasing, $P(t) \to \frac{a}{b}$ as $t \to \infty$ and $P(t) \to 0$ as $t \to -\infty$. The graphs of the two equilibrium solutions, P(t) = 0 and $P(t) = \frac{a}{b}$, are horizontal lines that are horizontal asymptotes for any solution curve starting in this subregion.
- For $P_0 \in \left(\frac{a}{b}, \infty\right)$, P(t) is bounded below. Since P(t) is decreasing, $P(t) \to \frac{a}{b}$ as $t \to \infty$. The graph of the equilibrium solution $P(t) = \frac{a}{b}$ is a horizontal asymptote for the solution curve.

Example 3. The autonomous equation $\frac{dy}{dx} = (y-1)^2$ possesses the single critical point 1. From the phase portrait shown below,

and we can conclude that a solution y(x) is an increasing function in the subregions defined by $y \in (-\infty, 1)$ and $y \in (1, \infty)$, where $x \in \mathbb{R}$. For an initial condition $y(0) = y_0 < 1$ a solution y(x) is increasing and bounded by 1, and so $y(x) \to 1$ as $x \to \infty$; for $y(0) = y_0 > 1$ a solution y(x) is increasing and unbounded.

Now $y(x) = 1 - \frac{1}{x+c}$ is a one-parameter family of solutions of the differential equation. A given initial condition determines a missing value for c. For the initial conditions, say y(0) = -1 < 1 and y(0) = 2 > 1, we find in turn that $y(x) = 1 - \frac{1}{x+\frac{1}{2}}$ and $y(x) = 1 - \frac{1}{x-1}$. As shown below, the graph of each of these rational function possesses a vertical asymptote.

Note that the solutions of the initial value problems

$$\frac{dy}{dx} = (y-1)^2, y(0) = -1$$
 $\frac{dy}{dx} = (y-1)^2, y(0) = 2$

are defined on special intervals. The two solutions are, respectively,

$$y(x) = 1 - \frac{1}{x + \frac{1}{2}}, -\frac{1}{2} < x < \infty$$
 $y(x) = 1 - \frac{1}{x - 1}, -\infty < x < 1$

Attractors and Repellers

Suppose that y(x) is a nonconstant solution of the autonomous differential equation and that α is a critical point of the differential equation. There are basically three types of behavior that y(x) can exhibit near α : asymptotically stable, unstable, or semi-stable.