Superstar Teams

Lukas Freund

University of Cambridge

June 25, 2024

Barcelona Summer Forum: The Macroeconomics of Labor Markets

Motivation: firms form & organize teams of heterogeneous workers

- Most production processes are too complex for 1 person to perform all tasks well
 - → individuals have heterogeneous, task-specific skills
 - $\circ \rightarrow$ firms assemble & coordinate the division of labor among >1 workers ("team")

Motivation: firms form & organize teams of heterogeneous workers

- Most production processes are too complex for 1 person to perform all tasks well
 - → individuals have heterogeneous, task-specific skills
 - $\circ \rightarrow$ firms assemble & coordinate the division of labor among >1 workers ("team")
- How is production with het. workers organized & what are the macro implications?
 - o classic question [e.g., Kremer, 1993; Garicano, 2000] but literature is theoretical & qualitative

Motivation: firms form & organize teams of heterogeneous workers

- Most production processes are too complex for 1 person to perform all tasks well
 - → individuals have heterogeneous, task-specific skills
 - $\circ \to \text{firms}$ assemble & coordinate the division of labor among >1 workers ("team")
- How is production with het. workers organized & what are the macro implications?
 - o classic question [e.g., Kremer, 1993; Garicano, 2000] but literature is theoretical & qualitative
- This paper:
 - 1 theory that is tractable
 - measurement with micro data
 - 3 quantify macro implications for agg. productivity & labor market inequality

Intuition: skill specificity o complementarities o sorting

• Environment:

- **1 task-based production** \longrightarrow talent \sim absolute advantage
- **2 multi-dim. skill heterogeneity** skill specificity \sim dispersion in individual task-specific skills
- **3 teams**
- **4** search

Intuition: skill specificity o complementarities o sorting

• Environment:

- task-based production
 multi-dim. skill heterogeneity
 talent ~ absolute advantage
 skill specificity ~ dispersion in individual task-specific skills
- 4 search
- Mechanism: when skills are task-specific and tasks are optimally assigned to team members, production features coworker talent complementarities
 - ⇒ incentives for talent sorting: firm-level inequality in productivity & wages

Intuition: skill specificity o complementarities o sorting

• Environment:

- 1 task-based production
 2 multi-dim. skill heterogeneity
 3 teams

 talent ~ absolute advantage
 skill specificity ~ dispersion in individual task-specific skills
- 4 search
- Mechanism: when skills are task-specific and tasks are optimally assigned to team members, production features coworker talent complementarities
 - ⇒ incentives for talent sorting: firm-level inequality in productivity & wages
- Application: skill specificity
 \(\tau \) can explain the "firming up of inequality"

[cf. Card et al., 2013; Bloom et al., 2019; ...]

This paper: theory - measurement - applications

- Develop tractable theory of the firm centered on team production & formation
 - microfound task-based production fn. with endogenous coworker complementarities
 - o tractable enough to endogenize team formation via search
- Confront theory with data
 - $\circ \ \ \textbf{identification} \ with \ micro \ panel \ data \ on \ wages+matches \rightarrow estimate \ \& \ validate \ model$
- 3 Main quantitative application: structural explanation for "firming up inequality"
 - $\circ~\uparrow$ skill specificity explains \approx 25% of \uparrow between-firm wage inequality share in DE since '85
 - o paper: search frictions lower agg. productivity due to costly mismatch

Firm organization: task-based microfoundation for complementarities Firms & teams: Lucas, 1978; Becker & Murphy, 1992; Kremer, 1993; Kremer & Maskin, 1996; Garicano, 2000; Garicano & Rossi-Hansberg, 2006; Porzio, 2017; Jarosch et al., 2021; Kuhn et al., 2023 Task assignment: Costinot & Vogel, 2010; Acemoglu & Restrepo, 2018; Ocampo, 2021

- Multi-dim. skill heterogeneity: parsimonious parametrization for teams model Gathman-Schoenberg, 2010; Lindenlaub, 2017; Guvenen et al., 2020; Baley et al., 2022; Grigsby, 2024
- Frictional labor market sorting: endogenize & measure complementarities

 Shimer & Smith, 2000; Cahuc et al., 2006; Eeckhout & Kircher, 2011/2018; Hagedorn et al., 2017; de Melo, 2018; Lindenlaub & Postel-Vinay, 2023; Herkenhoff et al., 2024
- Wage inequality: structural model of ↑ firm-level inequality due to ↑ specialization
 Technology: Katz & Murphy, 1992; Krusell et al., 2000; Autor et al., 2003; Acemoglu & Restrepo, 2018
 Firms: Card et al., 2013; Barth et al., 2016; Alvarez et al., 2018; Bloom et al., 2019; Sorkin & Wallskog, 2023

- · Continuums of workers & firms, infinitely-lived & risk-neutral
- Ex-ante identical firms
 - ∘ hire $n \in \{0, 1, 2\}$ workers through sequential random search [cf. HLMP, 2024]
 - operate task-based production technology, assigning n workers to produce tasks that are combined into final output [cf. Acemoglu-Restrepo, 2018]
- · Heterogeneous workers have task-specific skills
 - \Rightarrow Analysis:
 - microfound tractable firm-level production function
 - 2 integrate into search environment & analyze who is matched with whom

Production with a single team of given composition: task assignment

• Firm employs n workers to produce output from **unit continuum of tasks** $\mathcal T$

$$\ln \mathsf{Y} = \int_{\mathcal{T}} \ln q(\tau) d\tau \tag{1}$$

• Task-level aggregation for task τ :

$$q(\tau) = \sum_{i=1}^{n} y_i(\tau) \tag{2}$$

• Task production: i has task-specific skill $z_i(\tau)$, supplies 1 time unit

$$y_i(\tau) = \mathbf{z}_i(\tau)l_i(\tau) \tag{3}$$

$$1 = \int_{\mathcal{T}} l_i(\tau) d\tau \tag{4}$$

- Firm solves mini-planner problem: $\max_{\mathbf{q},\{y_i\},\{\mathbf{l}_i\}}$ Y s.t. (1)-(4)
- Preview: derive & characterize reduced-form team production function f

$$f(\mathbf{z}_1, ..., \mathbf{z}_n) = \max Y$$

s.t. (1)-(4)

• Firm solves mini-planner problem: max Y s.t. (1)-(4)

$$\mathcal{L}(\cdot) = \mathbf{Y} + \lambda \left[\underbrace{\left(\int_{\mathcal{T}} \ln q(\tau) d\tau \right) - \ln \mathbf{Y}}_{\text{tasks} \to \text{output}} \right] + \int_{\mathcal{T}} \lambda(\tau) \left(\underbrace{\sum_{i=1}^{n} y_{i}(\tau) - q(\tau)}_{\text{task aggregation}} \right) d\tau$$

$$+ \sum_{i=1}^{n} \lambda_{i}^{L} \underbrace{\left(\int_{\mathcal{T}} \frac{y_{i}(\tau)}{\mathbf{z}_{i}(\tau)} d\tau - 1 \right)}_{\text{time constraint} + \text{task production}} + \text{non-negativity constraints}$$

• Firm solves mini-planner problem: max Y s.t. (1)-(4)

$$\mathcal{L}(\cdot) = \mathbf{Y} + \lambda \left[\underbrace{\left(\int_{\mathcal{T}} \ln q(\tau) d\tau \right) - \ln \mathbf{Y}}_{\text{tasks} \to \text{output}} \right] + \int_{\mathcal{T}} \lambda(\tau) \left(\underbrace{\sum_{i=1}^{n} y_{i}(\tau) - q(\tau)}_{\text{task aggregation}} \right) d\tau$$

$$+ \sum_{i=1}^{n} \lambda_{i}^{L} \underbrace{\left(\int_{\mathcal{T}} \frac{y_{i}(\tau)}{\mathbf{z}_{i}(\tau)} d\tau - 1 \right)}_{\text{time constraint} + \text{task production}} + \text{non-negativity constraints}$$

• FOCs imply

shadow cost of
$$\tau$$
 $\lambda(\tau) = \min_{i} \left\{ \frac{\lambda_{i}^{L}}{z_{i}(\tau)} \right\}$ opportunity cost of i 's time

• Firm solves mini-planner problem: max Y s.t. (1)-(4)

$$\mathcal{L}(\cdot) = \mathsf{Y} + \lambda \left[\underbrace{\left(\int_{\mathcal{T}} \ln q(\tau) d\tau \right) - \ln \mathsf{Y}}_{\mathsf{tasks} \, \to \, \mathsf{output}} \right] + \int_{\mathcal{T}} \lambda(\tau) \left(\underbrace{\sum_{i=1}^n y_i(\tau) - q(\tau)}_{\mathsf{task \, aggregation}} \right) d\tau \\ + \sum_{i=1}^n \lambda_i^L \underbrace{\left(\int_{\mathcal{T}} \frac{y_i(\tau)}{z_i(\tau)} d\tau - 1 \right)}_{\mathsf{time \, constraint \, * \, task \, production} + \mathsf{non-negativity \, constraints}$$

FOCs imply task assignment by comparative advantage

$$\lambda(\tau) = \min_{i} \left\{ \frac{\lambda_{i}^{L}}{z_{i}(\tau)} \right\}$$

Assumption: Multivariate Fréchet dist.

$$\Pr\left[z_1(\tau) \leq z_1, z_2(\tau) \leq z_2\right] = \exp\left[-\left(\sum_{i=1}^{n=2} \left(\left(\frac{z_i}{\iota X_i}\right)^{-\frac{1}{\chi}}\right)^{\frac{1}{\xi}}\right)^{\frac{\xi}{\xi}}\right]$$

Parametrized distribution of task-specific skills: marginal dist.

$$\mathsf{P}\left[\mathsf{z}_i(au) \leq \mathsf{z}_i\right] = \mathsf{exp}\left(-\left(\mathsf{z}_i/(\iota \; \mathsf{x}_i) \;\right)^{-rac{1}{\chi}}\;\right)$$

Tasks (ordered by descending z)

Parametrized distribution of task-specific skills: copula

$$\Pr\left[z_1(\tau) \leq z_1, z_2(\tau) \leq z_2\right] = \exp\left[-\left(\sum_{i=1}^{n=2} \left(\left(\frac{z_i}{\iota x_i}\right)^{-\frac{1}{\chi}}\right)^{\frac{1}{\xi}}\right)^{\frac{\xi}{\xi}}\right]$$

team-specific 'distance' between coworkers' task-specific skills: $\varepsilon \in (0,1]$

Proposition: Reduced-form production function

Talent types ${\bf x}$ and coworker distance ξ are sufficient statistics for team output Y given parameter χ :

$$Y = f(x_1, \cdots, x_n, \xi; \chi)$$

• Fréchet max-stability property allows closed-form characterization of key objects, e.g. distribution of $\lambda(\tau) \to \text{integrate over } continuum$ of tasks

Proposition: Reduced-form production function

Talent types ${\bf x}$ and coworker distance ξ are sufficient statistics for team output Y given parameter χ :

$$Y = f(x_1, \cdots, x_n, \xi; \chi)$$

- Fréchet max-stability property allows closed-form characterization of key objects, e.g. distribution of $\lambda(\tau) \to \text{integrate over } continuum$ of tasks
- **Benchmark** without division of labor: $Y = n \times (\frac{1}{n} \sum_{i=1}^{n} x_i)$

Gains from team production are increasing in skill specificity

Proposition: Reduced-form production function

$$f(\mathbf{x}, \xi; \chi) = \underbrace{n^{1+\chi\xi}}_{\text{efficiency gains}} \times \left(\frac{1}{n} \sum_{i=1}^{n} (x_i)^{\frac{1}{1+\chi\xi}}\right)^{1+\chi\xi}$$

1 Value of team production increasing in skill specificity (χ)

► Intuition

Proposition: Reduced-form production function

$$f(\mathbf{x}, \xi; \chi) = \underbrace{n^{1+\chi\xi}}_{\text{efficiency gains}} \times \left(\frac{1}{n} \sum_{i=1}^{n} (x_i)^{\frac{1}{1+\chi\xi}}\right)^{1+\chi\xi}$$

• Value of **team production** increasing in skill specificity (χ)

► Intuition

 \circ realized team advantage greater when coworkers are good at different tasks (ξ)

Skill specificity implies that productivity is lowered by talent dispersion

Proposition: Reduced-form production function

$$f(\mathbf{x}, \xi; \chi) = \underbrace{n^{1+\chi\xi}}_{\text{efficiency gains}} \times \underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} (x_i)^{\frac{1}{1+\chi\xi}}\right)^{1+\chi\xi}}_{\text{talent complementarity}},$$

lacktriangledown Value of team production increasing in skill specificity (χ)

▶ Intuition

- \circ realized team advantage greater when coworkers are good at different tasks (ξ)
- **2** Coworker talent complementarities increasing in skill specificity (χ)

► Intuition

$$\circ \frac{\partial \left(\partial f(\cdot)/\partial x_i \partial x_{-i}\right)}{\partial \chi} > 0$$

Roadmap & key takeaways

Theory

- f 0 Under the optimal task assignment, skill specificity endogenously generates coworker complementarities igtharpoonup team composition matters
- Next: so what teams are formed in equilibrium?

Endogenous team composition: frictional matching

- Integrate $f(\cdot)$ with search-frictional dynamic matching into teams
- Main features of search block: [similar to Herkenhoff-Lise-Menzio-Phillips, 2024]
 - o random search with multi-worker firms
 - o employment states: unemp., employed alone, employed with one coworker
 - Nash wage bargaining with continuous renegotiation
- But introduce **multi-dim. skills** in tractable fashion:
 - o microfoundation: if $\chi >$ 0, both talent composition **x** and differentiation ξ matter for Y
 - \circ ξ is a **match-specific shock** observed by firms + workers before match decision
- Stationary equilibrium

Surplus max. determines which teams are formed

• Joint value of firm with worker x, $\Omega_1(x)$, satisfies:

$$\begin{split} \rho\Omega_{1}(x) &= f(x) + \delta\big[-\Omega_{1}(x) + V_{u}(x) + V_{f.o} \big] \\ &+ \lambda_{v.u} \int \int \frac{d_{u}(\tilde{x}')}{u} \max\big\{ \underbrace{-\Omega_{1}(x) + V_{e.2}(x|\tilde{x}',\tilde{\xi}) + V_{f.2}(x,\tilde{x}',\tilde{\xi})}_{(1-\omega)S(\tilde{x}'|x,\tilde{\xi})}, o\big\} dH(\tilde{\xi}) d\tilde{x}' \end{split}$$

- \circ $V_u(x)$: value for unemp. worker; $V_{f.o}$: value for vacant firm; $d_u(x)$: density of unemployed workers of type x; $u=\int d_u(x)dx$; ω : worker bargaining wgt; δ : sep. rate; $\lambda_{v.u}$: rate of vacancy meeting unmatched worker
- Surplus $S(x|x',\xi)$ reflects production complementarities

$$S(x|x',\xi)(\rho+2\delta) = f(x,x',\xi) - \rho(V_u(x) + V_u(x') + V_{f.o}) + \delta S(x) - (\rho+\delta)S(x')$$

Equilibrium properties: conditional matching probabilities for given χ

• Team composition determined by tradeoff between **match quality vs. search costs** \Rightarrow matching probabilities $h(x'|x) = P\{S(x'|x,\xi) > 0\}$

Comparative 'statics': more positive assortative matching as $\chi\uparrow$

Roadmap & key takeaways

Theory

- **Skill specificity** *endogenously* generates **coworker complementarities**
- **Talent complementarities** lead to **positive assortative matching**

Next: confront theory with data

Taking the model to the data: overview

- Data: SIEED matched-employer employee panel for W Germany
- Taking the model to the data: mapping & estimation
 - o worker i's talent type $\hat{x}_i \approx \text{rank in wage FE dist.}$

▶ Details▶ Details

- o "representative coworker type" \hat{x}_{-it} : avg. \hat{x} of workers in same estab.-yr.
- \circ some parameters are taken from literature (e.g. discount rate ρ , bargaining weight ω) or estimated offline (e.g. job separation hazard δ)
- o indirect inference: meeting rate, unemp. flow benefit, production
 - o targets: total wage variance, avg. wage level, replacement rate, job finding rate
- Focus today: structural identification of χ in theory & practice

- Challenge: skill specialization χ not directly observable
 - o literature doesn't offer cardinal measures of specificity [exception: Grigsby, 2024]
 - \circ could infer χ from sorting, but v indirect & liable to misattribution
- **Theory guides measurement:** Proposition 1 ties χ to $\frac{\partial^2 f(\cdot)}{\partial x \partial x'}$, which given prior measures of x and x' & accounting for selection on ξ , we can recover from w(x|x')

$$\frac{\partial^2 f(x, x', \xi)}{\partial x \partial x'} \propto \frac{\partial^2 w(x|x', \xi)}{\partial x \partial x'}.$$

$$\Rightarrow \frac{\partial^2 \bar{f}(x, x')}{\partial x \partial x'} \propto \frac{\partial^2 \bar{w}(x|x', \xi)}{\partial x \partial x'}.$$
can measure this

• Approximate $\frac{\partial^2 \overline{w}(x|x')}{\partial x \partial x'}$ using **regression with interaction term**

$$\frac{w_{it}}{\bar{w}_{t}} = \beta_{0} + \beta_{1}\hat{\mathbf{x}}_{i} + \beta_{11}\hat{\mathbf{x}}_{i}^{2} + \beta_{2}\hat{\mathbf{x}}_{-it} + \beta_{22}\hat{\mathbf{x}}_{-it}^{2} + \beta_{c}\left(\hat{\mathbf{x}}_{i} \times \hat{\mathbf{x}}_{-it}\right) + \psi_{j(it)} + \nu_{o(i)t} + \xi_{s(i)t} + \epsilon_{it}$$

	\hat{eta}_{c}	Non-parametric FD method
Coworker complementarity	0.0058***	0.0075
Obs. (1000s)	4,410	4,410

Notes. Regressions include FEs for employer; occupation-year; industry-year. Employer-clustered standard errors in parentheses. Observations weighted by the inverse employment share of the respective type and (rounded) coworker type cell. FD: finite differences.

Reduced-form regression to identify χ (2010-2017)

• Approximate $\frac{\partial^2 \bar{w}(x|x')}{\partial x \partial x'}$ using regression with interaction term

$$\frac{w_{it}}{\bar{w}_{t}} = \beta_{0} + \beta_{1}\hat{\mathbf{x}}_{i} + \beta_{11}\hat{\mathbf{x}}_{i}^{2} + \beta_{2}\hat{\mathbf{x}}_{-it} + \beta_{22}\hat{\mathbf{x}}_{-it}^{2} + \beta_{c}\left(\hat{\mathbf{x}}_{i} \times \hat{\mathbf{x}}_{-it}\right) + \psi_{j(it)} + \nu_{o(i)t} + \xi_{s(i)t} + \epsilon_{it}$$

	\hat{eta}_{c}	Non-parametric FD method
Coworker complementarity	0.0058***	0.0075
Obs. (1000s)	4,410	4,410

Notes. Regressions include FEs for employer; occupation-year; industry-year. Employer-clustered standard errors in parentheses. Observations weighted by the inverse employment share of the respective type and (rounded) coworker type cell. FD: finite differences.

• **Estimation of structural model:** replicate semi-structural regression with model-generated data, infer χ from matching empirical $\hat{\beta}_c$

Quantitative properties of estimated model: untargeted moments

Parameter values & discussion

Match talent sorting patterns

•
$$\rho_{xx} = 0.43$$
 (vs. 0.62 in data)

- Match between-firm wage inequality
 - o between-share 0.48 (vs. 0.57 in data)

⇒ Model endogenously generates ex-post firm differences

Validation of core model mechanisms

• Team-production functions in science [cf. Ahmadpoor-Jones, 2019]

▶ Details

✓talent complementarities stronger *precisely* when teamwork more valuable

Cross-sectional variation across occupations/industries

▶ Details

 \checkmark task-based proxy for $\chi \uparrow$ → estimated talent complementarity \uparrow

 \checkmark estimated talent complementarity $\uparrow \rightarrow$ coworker talent sorting \uparrow

• **Direction of EE moves:** non-wage implications of complementarities

▶ Details

 \checkmark \triangle coworker talent positively correlated with own talent

Heterogeneous effects of coworker deaths [cf. Jaeger-Heining, 2022]

▶ Details

 \checkmark wage gains from coworker death if coworker specialized in different tasks ($\xi \uparrow$)

Roadmap & key takeaways

Theory

- 1 Skill specificity endogenously generates coworker complementarities
- Talent complementarities lead to positive assortative matching

Model Meets Data

The model, estimated on German micro data, implies large ex-post differences across firms that emerge endogenously

Next: application(s)

- Today: structural explanation for the "firming up of inequality"
 - o caveat: revision in progress, so numbers are preliminary

Wage inequality has risen – and firms appear to play a key role

"the variance of firm [wages] explains an increasing share of total inequality in a range of countries"

[Song-Price-Guvenen-Bloom-von Wachter, 2019]

German matched employer-employee data—

Applied question: what is/are the causal driver(s)? implications?

German matched employer-employee data—

Preview of argument

- The set of tasks any one worker can perform well has narrowed: skill specificity ↑
- ② Coworker complementarities ↑
- Individuals of similar talent increasingly work together
- This generates greater between-firm wage dispersion

- Method: estimate reduced-form coefficient β_c for 5 sample periods
 ⇒ re-estimate structural model
- Estimate: skill specificity $\chi \uparrow$

- **Grigsby (2024) estimates for US:** within-type var. of task-specific skills \sim 50% \uparrow since '80
- **2** Evidence on \triangle task composition: fewer routine, more complex tasks

► DE evidence

- \circ routine tasks \sim low- χ
- Related trends: rise of team production in science due to the "burden of knowledge" [Jones, 2009] & growing importance of social skills [Deming, 2017]

Model matches changes in firm-level wage distribution

- Model replicates untargeted rise of between-share in data
 - \circ ~ 2/3 of ↑ between-share in data, ('85-'92) \rightarrow ('10-'17)

Skill specificity $\chi\uparrow$ explains \approx 25-40% of observed between-share \uparrow

• **Q:** How much of \uparrow between-firm share of wage var. is due to $\chi \uparrow$?

Skill specificity $\chi\uparrow$ explains pprox 25-40% of observed between-share \uparrow

- **Q:** How much of \uparrow between-firm share of wage var. is due to $\chi \uparrow$?
- **Counterfactual:** between-firm share in 2010s absent $\chi \uparrow$ since '85-'92

- **Q:** How much of \uparrow between-firm share of wage var. is due to $\chi \uparrow$?
- **Counterfactual:** between-firm share in 2010s absent $\chi \uparrow$ since '85-'92
- A: $\chi \uparrow$ accounts for 58% of model-predicted $\Delta \leftrightarrow \approx$ 38% of empirical Δ
- Robustness exercises: 25-40%

	△ model	Implied % Δ model due to Δ parameter		
Model	0.15			
Cf.: $\chi^{'85-'92}$	0.065	58		

Roadmap & key takeaways

Theory

- Skill specificity endogenously generates coworker complementarities
- Talent complementarities lead to positive assortative matching

<u>Model Meets Data</u>

Estimated model endogenously generates realistic ex-post firm heterogeneity

Applications

- **⑤** Enhanced sorting crucial to realize productivity gains from ↑ skill specialization

Conclusion

- Main idea: if workers have specialized skills, firms assemble teams of complementary coworkers, with macro implications for productivity & inequality
- Today:
 - a task-based firm-level production fn. with endog, skill complementarities \Rightarrow skill specificity + teams \rightarrow production complementarities
 - **measurement** combining reduced-form micro evidence with model structure ⇒ endogenously generated between-firm differences in productivity & pay
 - **3 quantitative** application to explain macro implications
 - ⇒ rising skill specificity contributed to the "firming up" of inequality

Thank You!

Extra Slides

What's the value-added of the micro-founded production function?

- **Concern:** the microfoundation isn't used for measurement i.e. measure $z_i(\tau)$'s directly and then 'aggregate up' to recover complementarities so what's the point?
- Value-added #1: very tractable formalization of team production with multi-dimensional skills
 - it's not obvious ex ante that team production with multi-dim. skills can be represented in this way, nor how this can be incorporated into a search framework
- **Value-added #2**: relative to a reduced-form CES function with talent *x* (1-dimensional) [e.g. Herkenhoff et al., 2024]
 - offers explanation for why talent complementarities may vary & change over time in
 - 2 the two models are not observationally equivalent
 - \circ benefit from team production is also increasing with χ , hence this term co-moves with talent complementarities (and it affects sorting differently)
 - selection effects due to ξ: when we observe low and high x workers together, they are likely to be a good match in terms of their task-specific skills [cf. Borovickova-Shimer, 2024]

Lemma

Lemma: Lemma

Implied task share and shadow-cost index equal

$$\pi_{i} = \frac{\left(\mathbf{x}_{i} / \lambda_{i}^{L}\right)^{\frac{1}{\chi\xi}}}{\sum_{k=1}^{n} \left(\mathbf{x}_{i} / \lambda_{i}^{L}\right)^{\frac{1}{\chi\xi}}} \quad \mathbf{x}_{i} \lambda = \left(\sum_{i=1}^{n} \left(\frac{\mathbf{x}_{i}}{\lambda_{i}^{L}}\right)^{\frac{1}{\chi\xi}}\right)^{-\chi\xi}$$

Intuition: features of optimal organization

- What is the intuition for these properties?
- · Solution of firm's mini-planner problem implies:
 - Complete division of labor, with tasks assigned by comparative advantage

$$\circ \ \textit{i's} \ \mathsf{task} \ \mathsf{set} \ \mathcal{T}_{\textit{i}} = \left\{ \tau \in \mathcal{T} : \frac{\mathsf{z}_{\textit{i}}(\tau)}{\lambda_{\textit{i}}^{\mathsf{L}}} \geq \mathsf{max}_{k \neq \textit{i}} \, \frac{\mathsf{z}_{\textit{k}}(\tau)}{\lambda_{\textit{k}}^{\mathsf{L}}} \right\}$$

- o classic source of efficiency gains
- 2 i's share of tasks \uparrow in i's talent, \downarrow in coworkers' talent

• *i*'s task share
$$\pi_i = (x_i^{\frac{1}{1+\chi\xi}})(\sum_{k=1}^n (x_k)^{\frac{1}{1+\chi\xi}})^{-1}$$

Intuition: comparative statics for task shares

- Suppose that $x_i > x_i$. Then
 - $oldsymbol{1}$ i performs a strictly larger share of tasks than j for $\chi < \infty$

Intuition: comparative statics for task shares

- Suppose that $x_i > x_j$. Then
 - **1** *i* performs a strictly larger share of tasks than *j* for $\chi < \infty$
 - $oldsymbol{2}$ the difference in task shares is decreasing in χ

⇒ Greater skill specialization implies a larger share of tasks is performed by relatively less talented team members – more talented coworkers can't easily compensate

Surplus sharing protocol

• The wage of a worker of type x employed alone satisfies

$$(1 - \omega)(V_{e.1}(x) - V_u(x)) = \omega(V_{f.1}(x) - V_{f.0}),$$
(5)

• The wage $w(x|x',\xi)$ of a type-x worker with a coworker of type x' given shock ξ satisfies

$$(1-\omega)\big(V_{e.2}(x|x',\xi)-V_{u}(x)\big)=\omega\big(V_{e.2}(x'|x,\xi)+V_{f.2}(x,x',\xi)-V_{e.1}(x')-V_{f.1}(x')\big). \quad (6)$$

HJB: unmatched

· Unmatched firm:

$$\rho V_{f.o} = (1 - \omega) \lambda_{v.u} \int \frac{d_u(x)}{u} S(x)^+ dx, \tag{7}$$

· Unmatched worker:

$$\rho V_u(x) = b(x) + \lambda_u \omega \left[\frac{d_{f.O}}{v} S(x)^+ + \int \int \frac{d_{m.1}(\tilde{x}')}{v} S(x|\tilde{x}',\tilde{\xi})^+ dH(\tilde{\xi}) d\tilde{x}' \right]$$
(8)

Joint values

• Joint value of firm with x and x', ξ

$$\rho\Omega_2(\mathbf{x}, \mathbf{x}', \xi) = f_2(\mathbf{x}, \mathbf{x}', \xi) - \delta S(\mathbf{x}|\mathbf{x}', \xi) - \delta S(\mathbf{x}'|\mathbf{x}, \xi)$$
(9)

Joint value of firm with x

$$\rho\Omega_{1}(x) = f_{1}(x) + \delta\left[-\Omega_{1}(x) + V_{u}(x) + V_{f,0}\right]$$

$$+ \lambda_{v.u} \int \int \frac{d_{u}(\tilde{x}')}{u} \left(\underbrace{-\Omega_{1}(x) + V_{e,2}(x|\tilde{x}',\tilde{\xi}) + V_{f,2}(x,\tilde{x}',\tilde{\xi})}_{(1-\omega)S(\tilde{x}'|x,\tilde{\xi})}\right)^{+} dH(\tilde{\xi})d\tilde{x}'.$$
(10)

HJB: surpluses

• Surplus of coalition of firm with worker x

$$(\rho + \delta)S(x) = f_1(x) - \rho(V_u(x) + V_{f.o}) + \lambda_{v.u}(1 - \omega) \int \frac{d_u(\tilde{x}')}{u} S(\tilde{x}'|x,\tilde{\xi})^+ dH(\tilde{\xi})\tilde{x}'. \tag{11}$$

Surplus from adding x to x' with xi

$$S(x|x',\xi)(\rho+2\delta) = f_2(x,x',\xi) - \rho(V_u(x) + V_u(x') + V_{f,o}) + \delta S(x) - (\rho+\delta)S(x').$$
 (12)

KFE: unemployed

$$\delta\bigg(d_{m.1}(x) + \int d_{m.2}(x,\tilde{x}')d\tilde{x}'\bigg) = d_u(x)\lambda_u\bigg(\int \frac{d_{f.o}}{v}h(x,\tilde{y}) + \int \frac{d_{m.2}(\tilde{x}')}{v}h(x|\tilde{x}')d\tilde{x}'\bigg). \tag{13}$$

KFE: one-worker matches

$$d_{m.1}(x)\left(\delta + \lambda_{v.u} \int \frac{d_u(\tilde{x}')}{u} h(\tilde{x}'|x) d\tilde{x}'\right) = d_u(x) \lambda_u \frac{d_{f.o}}{v} h(x) + \delta \int d_{m.2}(x, \tilde{x}') d\tilde{x}'. \tag{14}$$

KFE: two-worker matches

$$2\delta d_{m.2}(x,x') = d_u(x)\lambda_u \frac{d_{m.1}(x')}{v}h(x|x') + d_u(x')\lambda_u \frac{d_{m.1}(x)}{v}h(x'|x). \tag{15}$$

Matching – stationary equilibrium

• HJ-Bellman equations \rightarrow values & matching policies

► HJBs

• Flows between/**distribution** over types \times employment states

► KFEs

Definition: Stationary equilibrium

A stationary eqm. consists of a production function, value functions & a distribution of agents, s.t.

- the production function is consistent with the optimal assignment of tasks;
- the value functions satisfy the HJB equations given the distribution;
- 3 the distribution is stationary given the policy fn's implied by the value fn's.

Mapping theory to data: worker & coworker types

- **Theory:** wage monotonically \uparrow in x, so can measure using panel dimension
- Implementation: standard methods
 - pragmatic approach: AKM fixed effect (FE) wage regressions [Abowd et al., 1999] with pre-est. k-means clustering to address limited mobility bias [Bonhomme et al., 2019]
 - \circ theory-consistent: non-param. ranking algo [Hagedorn et al., 2017] ightarrow similar ranking
 - \Rightarrow Worker i's talent type \hat{x}_i : decile rank of i's FE within 2d-occupation
- "Representative coworker type" \hat{x}_{-it} : avg. \hat{x} of workers in same estab.-yr.

Mapping model to data: coworker types

• Defining $S_{-it} = \{k : j(kt) = j(it), k \neq i\}$ as the set of *i*'s coworkers in year *t*, compute the average type of *i*'s coworkers in year *t* as $\hat{x}_{-it} = \frac{1}{|S_{-it}|} \sum_{k \in S_{-it}} \hat{x}_k$.

· Coworker group:

- o alternative: same establishment-occupation-year cell
- but CC arise precisely when workers are differentiated in their task-specific productivities

Averaging step:

- o equally-weighted averaging ignores non-linearity in coworker aggregation
- paper: show using non-linear averaging method that baseline results in bias, but it's minor in magnitude
- Firm size variation: averaging ensures that a single move will induce a smaller change in the average coworker quality in a large team than in a small one

Mapping theory to data: talent sorting in the data

• Measures of \hat{x}_i and \hat{x}_{-it} sufficient to measure empirical talent sorting

Measurement: a useful identification result

- **Q:** How to quantify $\frac{\partial^2 f(x,x')}{\partial x \partial x'}$?
- Proposition: production complementarities are proportional to wage compl.
- Proof sketch: wage level for worker x with coworker x'

$$w(x|x',\xi) = \omega f(x,x',\xi) + g(x) - h(x')$$

where $g:[0,1]\to\mathbb{R}$ and $h:[0,1]\to\mathbb{R}$ are strictly increasing

⇒ outside options are separable: affect level of wage but not the cross-partial

Identification validation exercise 1

Notes. This figure plots the targeted moment against the relevant parameter, holding constant all other parameters.

Identification validation exercise 2

Notes. This figure plots the distance function $\mathcal{G}(\psi_i, \psi_{-i}^*)$ when varying a given parameter ψ_i around the estimated value ψ_i^* . The remaining parameters are allowed to adjust to minimize \mathcal{G} .

Robustness: reduced-form coworker complementarity

- Types from non-parametric ranking algorithm instead of AKM-based
- Schooling as a non-wage measure of types
- Lagged types
- Small teams
- Movers
- Non-parametric, finite-differences approximation
- Excluding managers
- Log specification

▶ Jump

▶ Jump

▶ Jump

▶ Jump

▶ Jump

▶ lump

▶ lump

▶ lump

Estimation results (2010-2017)

Parameter	Description	Target	Value	m	m
χ	Specialization	\hat{eta}_{c}	0.67	0.0058	0.0058
a_{o}	Production, constant	Avg. wage (norm.)	0.29	1	1
a_1	Production, scale	Var. log wage	1.71	0.241	0.241
b_1	Replacement rate, scale	Replacement rate	0.60	0.63	0.63
λ_u	Meeting hazard	Job finding rate	0.22	0.162	0.162
δ	Separation hazard	Job loss rate	0.008	0.008	0.008
ω	Worker bargaining weight	External	0.50		
ī	Effective team size	External	25		

Validation: Production functions estimated by Ahmadpoor-Jones (2019)

Notes. Source data from Ahmadpoor and Jones (2019, PNAS). Own calculations. Binscatter plot for subsample with complementarity <= 5.

Validation: Structural interpretation of Jaeger-Heining (2022)

Dissimilarity in task specialization relative to separated worker

X-sectional validation (occ's): tasks ⇒ complementarity

- ↑ Non-routine abstract task intensity
 ⇒ ↑ coworker talent complementarity
- $\hat{\beta}_c$ estimated separately for each occupation 0.03 0.025 Coworker complementarity ↓Health professionals[○] 0.02 Electrical & electr 0.005 Non-routine abstract task intensity: proxy for χ Correlation:0.638 Protective services worker 0.1 0.3 0.5 0.6 Non-routine abstract task intensity

Notes. Quadros de Pessoal microdata. Analysis at ISCO-08-2d level.

X-sectional validation (occ's): tasks \Rightarrow complementarity \Rightarrow sorting

↑ Non-routine abstract task intensity
 ⇒ ↑ coworker talent complementarity

↑ Coworker talent complementarity
 ⇒ ↑ coworker sorting

Industries: coworker importance \Rightarrow complementarity \Rightarrow sorting

- ↑ Teamwork [Bombardini et al., 2012]
 ⇒ ↑ coworker wage complementarity
- 0.035 Coworker complementarity 0.02 Correlation:0 319 0.5 1.5 O*NET complementarity z-score

Notes. Horizontal axis measures the industry-level weighted mean score of an occupation-level index constructed from O*NET measuring the importance of: teamwork. impact on coworker output. Communication. and contact.

↑ Coworker wage complementarity
 ⇒ ↑ coworker sorting

Notes. NACE-4-digit industries.

- Theoretical prediction: EE transitions move workers in surplus-maximizing direction $\Rightarrow \Delta \hat{x}_{-it} = \hat{x}_{-i,t} \hat{x}_{-i,t-1}$ should be *positively* correlated with \hat{x}_i
 - o $h_{2.1}(x, x''|x') = 1$ worker x in a two-worker firm with coworker x'' would move to an employer that currently has one employee of type x' if S(x|x') S(x|x'') > 0
- **Empirical analysis**: use SIEED *spell* data to create worker-originMonth-destinationMonth-originJob-destinationJob panel, with information on characteristics of origin and destination job
 - o subsample period 2008-2013 (huge panel at monthly frequency)
 - o count as "EE" if employer change between two adjacent months
- **Regression analysis:** regress $\Delta \hat{x}_{-it}$, scaled by std. σ_{Δ} of coworker quality changes, on *own* type and *origin* coworker type

$$\frac{\Delta \hat{\mathbf{x}}_{-it}}{\sigma_{\mathbf{A}}} = \beta_{\mathbf{O}} + \frac{\beta_{\mathbf{1}}}{\beta_{\mathbf{1}}} \hat{\mathbf{x}}_{i} + \beta_{\mathbf{2}} \hat{\mathbf{x}}_{-i,t-1} + \epsilon_{it}$$

Empirical coworker sorting changes due to EE moves

- EE transitions push toward greater coworker sorting: for given origin, higher x-workers move to places with better coworkers than lower-x workers do
- Limitation: empirically, EE transitions "move up" low types more than theory predicts
- "Coworker job ladder" with both absolute and type-specific dimension?
- **Next:** change in the job ladder [e.g., Haltiwanger-Spetzler, 2021]

Evidence that EE increasingly reallocate toward PAM: in data & model

	Data		Model	
Change in coworker type	'85-'92	'10-'17	Period-1	Period-2
Own type	0.0883 *** (0.000799)	0.118 *** (0.000918)	0.214	0.270
Controls	Year FEs, Origin	Year FEs, Origin	Origin	Origin
N	196,098	282,718	∞	∞
adj. R²	0.284	0.204		

Table 1: Change in coworker type due to EE moves positively related to own type – increasingly so

Notes. For the data columns, individual-level clustered standard errors are given in parentheses. Model counterparts are computed simulation-free in population. Dependent variable is scaled throughout by the standard deviation of the change in coworker type.

Fact #1: ↑ between-firm share of wage inequality

- Large empirical literature: "firming up inequality" [e.g., Card et al., 2013; Song et al., 2019]
 - o "superstar firms" [e.g., Autor et al., 2020]
- Fact 1: ↑ wage inequality primarily due to between-component
- Robust pattern

Notes. Model-free statistical decomposition, where the "between" component corresponds to the person-weighted variance of est.-level avg. log wage.

Fact #2: talented workers increasingly collaborate

To what extent do talented workers tend to have talented coworkers?

Fact 2: + assortative coworker sorting \(\)

o
$$\rho_{xx} = \operatorname{corr}(\hat{x}_i, \hat{x}_{-it})$$
: 0.43 ('85-'92) \nearrow 0.62 ('10-'17)

· Robust pattern

```
► Table ► Within-occ. nonlinear

► Hakanson et al. (2021)
```


 The most talented within each occupation – the best engineer, PA, economist, manager, ... – tend to work together, and increasingly so

Task composition changes

- Task complexity ↑: "extensive margin" of χ
 - o DE longitudinal task survey
 - "complex": cognitive non-routine
 - "complex": cognitive non-routine (e.g., organizing, researching)

• \(\sqrt{Workers move to jobs with similar tasks, rather than randomly \)

Comparison

• Q: are workers becoming more likely to perform similar tasks across jobs, over time?

- **Yes:** distribution of moves in ('04-'09) is stochastically dominated by that in ('85-'92)
 - \circ uncond. average: 0.253 ightarrow 0.227: 10% decline
- Robust in regression design
 - o quantile regressions: ✓at different quantiles

Examples: rising specialization

• Deepening medical specialization

Notes. Data from American Board of Medical Specialities. For each year, it shows the number of unique speciality or sub-speciality certificates that have been approved and issued at least once by that year and which are are still beine issued.

• Rise of research teams [Jones, 2021]

Overview of model robustness checks

- Declining search frictions
- · Within-industry calibration
- Economy-wide vs. within-occupation analysis
- OJS
- Increased talent dispersion

- ▶ Jump
- ▶ Jump
- ▶ Jump
- ► Jump
- ▶ Jump

$$\ln w_{it} = \beta_0 + \beta_1 \hat{x}_i + \frac{\beta_2}{2} \hat{x}_{-it} + \psi_{j(it)} + \nu_{o(i)t} + \xi_{s(i)t} + \epsilon_{it}$$

Notes. Specifications vary by ranking method – within-economy (spec. 1) vs. within-occupation (spec. 2/spec.3) and coworker group definition – establishment-year (spec. 1/spec.2) vs. establishment-occupation-year (spec. 3).

Implications for aggregate productivity

 Production complementarities imply sorting matters for agg productivity, but search frictions induce misallocation

Implications for aggregate productivity

- Production complementarities imply sorting matters for agg productivity, but search frictions induce misallocation
- **Quantify** mismatch costs: compare eqm outcome to productivity under pure talent-PAM and different values of ξ given param's for 2010s

- Production complementarities imply sorting matters for agg productivity, but search frictions induce misallocation
- **Quantify** mismatch costs: compare eqm outcome to productivity under pure talent-PAM and different values of ξ given param's for 2010s

	Labor productivity
Baseline (norm.)	100
PAM + $\xi = 1$	102.6
PAM	101.1
$\xi=1$	101.4

• Eliminating mismatch would yield **productivity gains** but of **limited magnitude**

Reaping benefits of specialization requires well-functioning labor markets

"The benefits of the division of labor are limited by the functioning of the labor market"

Key takeaways

- Skill specialization endogenously generates coworker talent complementarities
- Talent complementarities lead to + assortative coworker matching
- This fosters ex-post heterogeneity across firms
- ② Deepening specialization leading to intensified complementarities and, hence, sorting explains a substantial share of ↑ between-firm wage inequality share
- **s** Enhanced talent sorting is crucial to realize the productivity gains from deepening skill specialization