MGMTMSA 408 – Operations Analytics – Spring 2024

Final Exam – Answer Sheet - Q1

rvame	S: Alliav daig UID: 900310041	
Please follow all instructions on the Final Exam question sheet.		
Q1 - Medical waste disposal		
Part 1: Understanding the data		
a) Th	ne hospital farthest from the depot is Antelope Valley Hospital with a distance of 90167.00 units.	
	to hospital farthout from the depet to / titlelope valley hospital with a distance of our or los diffic.	
b)		
/	ne hospital farthest from the depot is Mission Community Hospital with a distance of 2141.00 units.	
c) Th	ne cost of the route produced by this heuristic is \$94553.9.	
d) [
Th	e average cost of this heuristic over the 100 simulations is \$488934.474	
Th	e best (= lowest) cost that this heuristic attains over the 100 simulations is \$438397.5	

$$\begin{array}{lll} \text{minimize} & \sum_{i=1}^n \sum_{\substack{j=1 \\ j \neq i}}^n d_{i,j} x_{i,j} & \text{[Objective Function]} \\ \\ \text{subject to} & \sum_{\substack{j=1 \\ j \neq i}}^n x_{i,j} = 1, \quad \forall \ i \in \{1,\dots,n\} & \text{[Each hospital has exactly one outgoing path]} \\ & \sum_{\substack{j=1 \\ j \neq i}}^n x_{j,i} = 1, \quad \forall \ i \in \{1,\dots,n\} & \text{[Each hospital has exactly one incoming path]} \\ & \sum_{i \in S} \sum_{\substack{j \in S \\ j \neq i}} x_{i,j} \leq |S| - 1, \quad \forall \ S \subsetneq \{1,\dots,n\}, & \text{[Subtour Elimination Constraint]} \\ & x_{i,j} \in \{0,1\}, \quad \forall \ i,j \in \{1,\dots,n\}, \ i \neq j. & \text{[Binary Constraint]} \end{array}$$

where decision variables are given as follows:

 d_{ij} is the travel distance from hospital i to hospital j.

 $x_{ij}=1$ if if the path from hospital i to hospital j is included in the tour

 $x_{ij}=0$ otherwise

to minimize total distance travelled.

't 2	2: An optimization formulation
The	optimal cost is \$77578.9
The	first five hospitals that are visited in the optimal route are (depot), Mission Community Hospital, Mission City
Con	nmunity Network Inc, Northridge Hospital Medical Center, West Hills Hospital and Medical Center, Kaiser manente - Woodland Hills Medical Center