Teoria da Computabilidade

Subseção 1

Decidibilidade

seção 4.1 Introdução à Teoria da Computação. Michael Sipser. Thomson Learning, 2007.

INF/UFG - TC 2012/2 - Humberto Longo

Decidibilidade (136 – 158 de 759)

Objetivos

- Investigar o poder de algoritmos para a solução de problemas.
- Explorar os limites da possibilidade de solução de problemas por processos algorítmicos.
- Demonstrar que certos problemas podem ser resolvidos por processos algorítmicos e outros não.

Notação

- Entrada para uma Máquina de Turing é sempre uma cadeia definida sobre um alfabeto.
- Se a entrada for outro objeto, o mesmo deve ser representado como uma cadeia.
 - Cadeias podem representar polinômios, grafos, gramáticas, autômatos e combinações de tais objetos.
- Codificação:
 - $\langle O \rangle$ representa o objeto O.
 - $\langle O_1, O_2, \dots, O_k \rangle$ representa os objetos O_1, O_2, \dots, O_k .
- A codificação em si pode ser feita de diversos modos.
 - Uma Máquina de Turing sempre pode traduzir uma codificação para outra qualquer!

Máquina de Turing Universal

- Máquina de Turing capaz de simular qualquer outra máquina de Turing.
- A máquina deve conter na fita:
 - O conjunto de instruções sobre o comportamento da máquina a ser simulada;
 - O conteúdo da fita da máquina a ser simulada.
- Possibilita respotas questões sobre o comportamento de outras máquinas de Turing.
 - Muitas dessas questões são indecidíveis, ou seja, a função em questão não pode ser calculada por nenhuma máquina de Turing.
 - Ex: Problema de determinar se uma máquina de Turing em particular vai parar para uma entrada dada (ou para qualquer entrada) é indecidível.
 - Ex: O teorema de Rice mostra que qualquer questão não-trivial sobre o comportamento ou saída de uma máquina de Turing é indecidível.

Linguagens Regulares

- Problemas decidíveis:
 - Um dado autômato finito aceita uma cadeia em particular?
 - A linguagem de um autômato finito é vazia?
 - Dois autômatos finitos são equivalentes?
- Outros problemas computacionais podem ser formulados como a pertinência a uma certa linguagem.
 - Mostrar que a linguagem é decidível equivale a mostrar que o problema computacional é decidível.

INF/UFG - TC 2012/2 - Humberto Longo

Decidibilidade (140 – 158 de 759)

Problema da aceitação de uma cadeia w por um AFD A Como escrever esse problema em forma de uma linguagem?

Linguagens Regulares

Problema da aceitação para DFA's

- $\mathcal{L}_{DFA} = \{\langle A, w \rangle \mid A \text{ \'e um } DFA \text{ que aceita a cadeia } w\}.$
 - Codificações de todos os DFA's com as cadeias que os mesmos aceitam.
- ► Testar se $\langle A, w \rangle$ pertence à linguagem \mathcal{L}_{DFA} equivale a testar se o DFA A aceita a cadeia w.

Linguagens Regulares

Teorema 3.1

A linguagem \mathcal{L}_{DFA} é decidível.

Esquema da prova.

- ► Máquina de Turing M_1 que decide \mathcal{L}_{DFA} :
 - 1. Simular o DFA A com a cadeia w.
 - 2. Se a simulação termina em um estado que não é final, rejeite.
 - 3. Caso contrário, aceite (parou em um estado de aceitação).

Linguagens Regulares

Teorema 3.1

A linguagem \mathcal{L}_{DFA} é decidível.

Esquema da prova.

- ► Codificação $\langle A, w \rangle$: entrada da máquina M_1 :
 - ► Representação do *DFA A* com a cadeia *w*.
 - A: lista de seus componentes, ou seja, Σ , S, s_0 , δ e F.
 - ▶ w : cadeia de entrada de A.

Linguagens Regulares

Teorema 3.1

A linguagem \mathcal{L}_{DFA} é decidível.

Esquema da prova.

- Comportamento da máquina M₁:
 - ▶ M_1 recebe $\langle A, w \rangle$ e testa a codificação. Se inválida, rejeita.
 - ► Fita é usada para acompanhar o estado corrente do *DFA* e símbolo corrente da cadeia *w*.
 - Inicialmente, s₀ é o estado inicial de A e o símbolo corrente é o símbolo mais a esquerda de w.
 - Estado e símbolo atualizados de acordo com função de transição δ .
 - ► M_1 aceita a entrada $\langle A, w \rangle \Rightarrow M_1$ processa o último símbolo de w e A está em um estado final.
 - ► M_1 rejeita a entrada $\langle A, w \rangle \Rightarrow M_1$ processa o último símbolo de w e A não está em um estado final.

INF/UFG - TC 2012/2 - Humberto Longo

Decidibilidade (144 – 158 de 759)

Linguagens Regulares

 $\mathcal{L}_{NFA} = \{\langle N, w \rangle \mid N \text{ \'e um } NFA \text{ que aceita a cadeia } w\}.$

Teorema 3.2

A linguagem \mathcal{L}_{NFA} é decidível.

Esquema da prova.

- ▶ Máquina de Turing M_2 que decide \mathcal{L}_{NFA} :
 - 1. M_2 converte o NFA N em um equivalente DFA A.
 - 2. M_2 chama a máquina M_1 com a codificação $\langle A, w \rangle$.
 - Máquina de Turing M_2 pode usar a máquina M_1 como subrotina!!!
 - 3. Se M_1 aceita, M_2 aceita. Caso contrário, rejeita.

Linguagens Regulares

 $\mathcal{L}_{ER} = \{\langle \mathcal{R}, w \rangle \mid \text{Cadeia } w \text{ \'e gerada pela expressão regular } \mathcal{R} \}.$

Teorema 3.3

A linguagem \mathcal{L}_{ER} é decidível.

Esquema da prova.

- ▶ Máquina de Turing M_3 que decide \mathcal{L}_{ER} :
 - 1. M_3 converte a expressão regular \mathcal{R} em um equivalente DFAA.
 - 2. M_3 chama a máquina M_1 com a codificação $\langle A, w \rangle$.
 - 3. Se M_1 aceita, M_3 aceita. Caso contrário, rejeita.

Linguagens Regulares

 $\mathcal{L}_{\emptyset} = \{ \langle A \rangle \mid A \text{ \'e um } DFA \text{ e } \mathcal{L}(A) = \emptyset \}.$

Teorema 3.4

A linguagem \mathcal{L}_{\emptyset} é decidível.

Esquema da prova.

- ► Um *DFA* aceita uma cadeia se e somente se é possível alcançar, a partir do estado inicial, um estado final.
- ► Máquina de Turing M_4 que decide \mathcal{L}_{\emptyset} :
 - 1. Marque o estado inicial de A.
 - 2. Repita o passo 3 enquanto possível:
 - 3. Para cada estado marcado, marque aqueles alcançáveis com a função de transição.
 - 4. Se nenhum estado final está marcado, aceite. Caso contrário, rejeite.

П

Linguagens Regulares

 $\mathcal{L}_{AB} = \{ \langle A, B \rangle \mid A \in B \text{ são } DFA \text{'s e } \mathcal{L}(A) = \mathcal{L}(B) \}.$

Teorema 3.5

A linguagem \mathcal{L}_{AB} é decidível.

Esquema da prova.

- ▶ DFA C aceita cadeias aceitas só por A ou só por B.
- $\mathcal{L}(A) = \mathcal{L}(B) \Rightarrow \mathcal{L}(C) = \emptyset.$
- $\mathcal{L}(C) = \left(\mathcal{L}(A) \cap \overline{\mathcal{L}(B)}\right) \cup \left(\overline{\mathcal{L}(A)} \cap \mathcal{L}(B)\right).$

Linguagens Regulares

 $\mathcal{L}_{AB} = \{ \langle A, B \rangle \mid A \in B \text{ são } DFA \text{'s e } \mathcal{L}(A) = \mathcal{L}(B) \}.$

Teorema 3.5

A linguagem \mathcal{L}_{AB} é decidível.

Esquema da prova.

▶ Diferença simétrica de $\mathcal{L}(A)$ e $\mathcal{L}(B)$:

Linguagens Regulares

 $\mathcal{L}_{AB} = \{ \langle A, B \rangle \mid A \in B \text{ são } DFA \text{'s e } \mathcal{L}(A) = \mathcal{L}(B) \}.$

Teorema 3.5

A linguagem \mathcal{L}_{AB} é decidível.

Esquema da prova.

- Construção do DFA C:
 - Idéia usada para mostrar que linguagens regulares são fechadas para as operações de complementação, união e interseção.
- ▶ Máquina de Turing M_5 que decide \mathcal{L}_{AB} :
 - 1. Construir o *DFA C* como descrito.
 - 2. M_5 chama a máquina M_4 com a codificação $\langle C \rangle$.
 - 3. Se M_4 aceita, M_5 aceita. Caso contrário, rejeita.

INF/UFG - TC 2012/2 - Humberto Longo

Decidibilidade (150 – 158 de 759)

Linguagens Livres de Contexto

Codificações de todas as Gramáticas com as cadeias que as mesmas geram.

 $\mathcal{L}_{GLC} = \{ \langle G, w \rangle \mid G \text{ \'e uma } GLC \text{ que gera a cadeia } w \}.$

Teorema 3.6

A linguagem \mathcal{L}_{GLC} é decidível.

Esquema da prova.

- Usar G para listar todas as derivações e determinar se alguma leva a w.
 - Infinitas derivações podem ter de ser verificadas.
 - Se G não gera w, o algoritmo nunca termina.
 - Gera máquina de Turing que reconhece \mathcal{L}_{GLC} , mas não a decide.

П

Linguagens Livres de Contexto

 $\mathcal{L}_{GLC} = \{ \langle G, w \rangle \mid G \text{ \'e uma } GLC \text{ que gera a cadeia } w \}.$

Teorema 3.6

A linguagem \mathcal{L}_{GLC} é decidível.

Esquema da prova.

- ► G na forma normal de Chomsky \Rightarrow derivação de w é feita em 2.|w| 1 passos.
- ▶ Máquina de Turing M_6 que decide \mathcal{L}_{GLC} :
 - 1. Converter G para a forma normal de Chomsky.
 - 2. Se |w| > 0, listar todas as derivações com 2.|w| 1 passos, senão listar todas com 1 passo.
 - 3. Se qualquer de tais derivações gera w, M_6 aceita. Caso contrário, rejeita.

INF/UFG - TC 2012/2 - Humberto Longo

Decidibilidade (152 – 158 de 759)

Linguagens Livres de Contexto

 $\mathcal{L}_{LC_{\emptyset}} = \{\langle G \rangle \mid G \text{ \'e uma } GLC \text{ e } \mathcal{L}_{G} = \emptyset\}.$

Teorema 3.7

A linguagem $\mathcal{L}_{LC_{\emptyset}}$ é decidível.

Esquema da prova.

- Usar máquina de Turing M₆ para verificar se G gera alguma cadeia w?
 - Para determinar que $\mathcal{L}_{LC_{\emptyset}} = \emptyset$, todas as possíveis cadeias w devem ser testadas.
 - Processo pode não terminar, dado o número infinito de possíveis cadeias w.

Linguagens Livres de Contexto

 $\mathcal{L}_{LC_{\emptyset}} = \{\langle G \rangle \mid G \text{ \'e uma } GLC \text{ e } \mathcal{L}_{G} = \emptyset\}.$

Teorema 3.7

A linguagem $\mathcal{L}_{LC_{\emptyset}}$ é decidível.

Esquema da prova.

- Testar se variável inicial pode gerar uma cadeia de símbolos terminais.
- Determinar quais variáveis podem gerar cadeias de terminais.
- Marcar tais variáveis.
- No final verificar se a variável inicial está marcada.

Linguagens Livres de Contexto

 $\mathcal{L}_{LC_{\emptyset}} = \{\langle G \rangle \mid G \text{ \'e uma } GLC \text{ e } \mathcal{L}_{G} = \emptyset\}.$

Teorema 3.7

A linguagem $\mathcal{L}_{LC_{\emptyset}}$ é decidível.

Esquema da prova.

- ▶ Máquina de Turing M_7 que decide \mathcal{L}_{LC_0} :
 - 1. Marcar todos os símbolos terminais de *G*.
 - 2. Repetir o passo 3 enquanto possível.
 - 3. Marcar as variáveis A tais que a regra $A \to U_1 U_2 \dots U_k$ pertence a G e cada símbolo $U_1 U_2 \dots U_k$ já está marcado.
 - 4. Se o símbolo inicial não está marcado, aceite. Caso contrário, rejeite.

INF/UFG – TC 2012/2 – Humberto Longo

Decidibilidade (155 – 158 de 759)

Linguagens Livres de Contexto

 $\mathcal{L}_{GH} = \{ \langle G, H \rangle \mid G \in H \text{ são } GLC \text{ 's e } \mathcal{L}(G) = \mathcal{L}(H) \}.$

Teorema 3.8

A linguagem \mathcal{L}_{GH} não é decidível.

Esquema da prova.

- A classe de linguagens livres de contexto não é fechada para as operações de complementação e interseção.
- Demonstração do teorema será abordada no tópico Reduções.

Linguagens Livres de Contexto

Teorema 3.9

Toda linguagem livre de contexto é decidível.

Esquema da prova.

- Considerar uma LLC arbitrária \mathcal{L}_{llc} .
- Mostrar que \mathcal{L}_{llc} é decidível.
- ▶ Considerar uma $GLC G_{llc}$ para \mathcal{L}_{llc} .
- Máquina de Turing M_9 que decide \mathcal{L}_{llc} :
 - 1. M_9 chama a máquina M_6 com a codificação $\langle G_{llc}, w \rangle$.
 - 2. Se M_6 aceita, M_9 aceita. Caso contrário, rejeita.

Relação entre Classes de Linguagens

