

Data Structures and Algorithms

Dr. Javad Vahidi Session 01 - Time Complexity October 13, 2023

Exercise 1.

Imagine that you are in a class full of N CS students, you know one of them has the same birthday as you do, define an algorithm to find this person and analyze the "Time Complexity"

Solution 1.

The Answer is to fully search the class and ask one by one so $T(N) \in O(N)$

Θ Notation:

 $\Theta(g(n)) = f(n)$: there exist positive constants c_1, c_2 and n_0 such that $0 \le c_1 * g(n) \le f(n) \le c_2 * g(n)$ for all $n \ge n_0$

note: f(n) could be an algorithm.

Big O Notation:

O(g(n)) = f(n): there exist positive constants c and n_0 such that $0 \le f(n) \le c * g(n)$ for all $n \ge n_0$

Ω Notation:

 $\Omega(g(n)) = f(n)$: there exist positive constants c and n_0 such that $0 \le c * g(n) \le f(n)$ for all $n \ge n_0$

Small-o Notation:

o(g(n)) = f(n): for any positive constants c there exist a constant n_0 such that $0 \le f(n) \le c * g(n)$ for all $n \ge n_0$

also:

$$\lim_{x \to \infty} \frac{f(n)}{g(n)} = 0 \implies f(n) = o(g(n))$$

 ω Notation:

 $\omega(g(n)) = f(n)$: for any positive constants c>0 there exist a constant $n_0>0$ such that $0 \le c * g(n) < f(n)$ for all $n \ge n_0$

$$f(n)\in\omega(g(n))iffg(n)\in o(f(n))$$

$$\lim_{x \to \infty} \frac{f(n)}{g(n)} = \infty \implies f(n) = \omega(g(n))$$

Exercise 2.

Show Transitivity on Big O

Solution 2.

Assume $f(n) \leq c_1 * g(n)$, for all $n \geq k_1$ and $g(n) \leq c_2 * h(n)$ for all $n \geq k_2$, therefore, $f(n) \geq c_1 * g(n) \geq c_1 * c_2 * h(n)$ $c = max(c_1, c_2), k = max(k_1, k_2)$ $f(n) \leq c * h(n)$ for all $n \geq k_1 \implies f(n) \in O(h(n))$

Exercise 3.

Show that if $f(n) = O(s(n), g(n)) = O(r(n)) \implies \frac{f(n)}{g(n)} = O(\frac{s(n)}{r(n)})$

Solution 3.

counter example:

$$f(n) = n^3$$

$$g(n) = n^2$$

Exercise 4.

Show that if $f(n) = O(g(n) \implies g(n) = \Omega(f(n))$

Solution 4.

O(g(n)) = f(n): there exist positive constants c and n_0 such that $0 \le f(n) \le c * g(n)$ for all $n \ge n_0$ $g(n) \ge \frac{1}{c} f(n) \implies g(n) = \Omega(f(n))$

Exercise 5.

Show that if $max(f(n), g(n)) = \Theta(f(n) + g(n))$

Solution 5.

To prove this, we have to show that there exists constants $c_1, c_2, n_0 > 0$ such that for all $n \ge n_0$,

$$0 \le c_1(f(n) + g(n)) \le max(f(n), g(n)) \le c_2(f(n) + g(n))$$

$$\begin{split} f(n) + g(n) &\geq \max(f(n), g(n)) \\ \text{also: } f(n) &\leq \max(f(n), g(n)) \& g(n) \leq \max(f(n), g(n)) \\ &\Longrightarrow f(n) + g(n) \leq 2\max(f(n), g(n)) \\ &\Longrightarrow 0 \leq \frac{1}{2}(f(n) + g(n)) \leq \max(f(n), g(n)) \leq f(n) + g(n), n \geq n_0 \\ &\Longrightarrow \max(f(n), g(n)) = \Theta(f(n) + g(n)) \end{split}$$

Exercise 6.

True or False?

- a) if $f(n) = \Omega(n^2)$ and $g(n) = \Omega(n) \implies f(g(n)) = \Omega(n^3)$ b) $f(g(n)) = \Theta(g(f(n))$ c) $f(n) = \Theta(f(\frac{n}{2}))$

Solution 6.

- a) False! $f(n) = n^2, g(n) = n$
 - b) False! $f(n) = Ln(n), g(n) = n^2$
 - c) False! $f(n) = 4^n$