

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

دورة: 2022

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

اختبار في مادة: الرياضيات المدة: 40 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

التمرين الأول: (04 نقاط)

b=124 و a=2022 و معددان طبیعیان حیث a=a

7 على a عين باقى القسمة الإقليدية لكلّ من العددين a و a على a

ما العدد 5^n على المعدد 1 أدرس حسب قيم العدد الطبيعي 1 بواقي القسمة الإقليدية للعدد 1 على 1

7 يقبل القسمة على $a^a + b^b + 4$ بيّن أنّ العدد (3

 $A_n = 2021^n + 2022^n + 2023^n + 2024^n$ ، n عدد طبیعی (4

7 مضاعفا للعدد A_n+1 مضاعفا للعدد $A_n=1+5^n+6^n$ مضاعفا للعدد $A_n=1+5^n+6^n$

التمرين الثاني: (04 نقاط)

أجب بصحيح أو خاطئ مع التبرير في كلّ حالة مما يلي:

مضاعف للعدد 3 من أجل كلّ عدد طبيعي $n(n^2-1)$ ، n

 $]0;+\infty[$ على $]0;+\infty[$ على $]0;+\infty[$ على $]0;+\infty[$ على $]0;+\infty[$ على $]0;+\infty[$ على $]0;+\infty[$

 $f(x)=x+(x-2)e^x$: بالمستقيم ذو المعادلة y=x+e مماس لمنحنى الدالة y=x+e المستقيم ذو المعادلة والمعادلة المعرّفة على المعرّفة على

 $v_n = \ln \frac{n e^n}{n+1}$:ب \mathbb{N}^* بنا المتتالية العددية المعرفة على (u_n) (4

 $S_n = \frac{n(n+1)}{2} - \ln(n+1)$: هي $S_n = v_1 + v_2 + \dots + v_n$ عبارة المجموع $S_n = v_1 + v_2 + \dots + v_n$

التمرين الثالث: (05 نقاط)

 $u_1=2$: كما يلى \mathbb{N}^* كما يلى المعرّفتان العدديتان العدديتان العدديتان المعرّفتان على

 $v_n = n \ u_n + 2$ و من أجل كلّ عدد طبيعي غير معدوم ، n ، n معدوم غير معدوم

 u_3 و u_2 (1

 $\frac{1}{2}$ برهن أنّ المتتالية (v_n) هندسية أساسها (2

n بدلالة u_n بدلالة n ثم استنتج u_n بدلالة v_n

اختبار في مادة: الرياضيات. الشعبة: تقني رياضي. بكالوريا 2022

$$S_n = v_1 + v_2 + \dots + v_n$$
 أحسب، بدلالة n ، المجموع S_n حيث ميث (3

$$w_n = \frac{4n}{v_n - nu_n}$$
 نضع من أجل كلّ عدد طبيعي n غير معدوم، (4

$$S_n' = w_1 + w_2 + \dots + w_n$$
 أحسب، بدلالة n ، المجموع S_n' حيث S_n'

التمرين الرابع: (07 نقاط)

$$f(x) = 1 + (x-1) \ln x$$
: ب $]0;+\infty$ لله المعرّفة على المجال f

$$\|\vec{i}\| = 2\,cm$$
 حيث $(O,\vec{i};\vec{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس (C_f)

$$\ln x$$
 و $\frac{x-1}{x}$ من $\frac{x-1}{x}$ و 1

$$\frac{x-1}{x}$$
 + $\ln x$ الموجب تماما إشارة باعدد الحقيقي العدد الحقيقي باموجب تماما إشارة

$$\lim_{x \to 0} f(x) = \lim_{x \to +\infty} f(x) \quad \text{(2)}$$

- أدرس اتّجاه تغيّر الدّالة f ثمّ شكّل جدول تغيراتها.

$$h(x)=x-2+\ln x$$
 : كما يلي $h(x)=x-2+\ln x$ الدّالة العددية المعرّفة على $h(x)=x-2+\ln x$

 $[0;+\infty]$ متزايدة تماما على $[0;+\infty]$

 $\ln(\alpha) = 2 - \alpha$ ثم بيّن أنّ المعادلة h(x) = 0 تقبل حلاّ وحيدا α حيث α حيث h(x) = 0

$$lpha$$
 معادلة لـ (C_f) مماس (T) معادلة لـ $y=\frac{-lpha^2+3lpha-1}{lpha}$ معادلة لـ ج- بيّن أنّ

$$(\frac{-\alpha^2 + 3\alpha - 1}{\alpha} \simeq 0.8)$$
 فنشئ (1) و (C_f) على (C_f) على (1)

$$f(x)-x=(x-1)(-1+\ln x)$$
 أ- بيّن أنّه من أجل كلّ عدد حقيقي x موجب تماما، (5

f(x)-x أدرس حسب قيم العدد الحقيقي x الموجب تماما إشارة

$$K(x) = -\frac{3}{4}x^2 + 2x + \left(\frac{1}{2}x^2 - x\right) \ln x$$
 :ب (6)

$$K'(x) = f(x) - x$$
 موجب تماما عدد حقیقی x عدد حقیقی از من أجل كل عدد حقیقی

x=e و x=1 ، y=x: أحسب مساحة حيز المستوي المحدد بـ (C_f) والمستقيمات التي معادلاتها

السّابق. وي المعلم السياني في المعرّفة على
$$]-2;+\infty$$
 الدّالة المعرّفة على $]-2;+\infty$ الدّالة المعرّفة على g

$$g(x) = f(x+2) - 1$$
 ، $]-2;+\infty[$ من أجل كلّ عدد حقيقي x من أجل كلّ عدد حقيقي

استنتج أنّ
$$(C_g)$$
 صورة (C_f) بانسحاب يطلب تعيين شعاعه. (C_g) صورة (C_g) استنتج أنّ

الموضوع الثانى

التمرين الأول: (04 نقاط)

c=9n+2 ، b=n+1 ، a=5n+2 : n نضع من أجل كلّ عدد طبيعي $d'=p\gcd(b;c)$ ، $d=p\gcd(a;b)$ و

- $p\gcd(a;b;c)$ عيّن القيم الممكنة لكلّ من d' و d' و d'
 - a العدد الطبيعي b عيّن قيم العدد الطبيعي م حتى يكون العدد (2
- (2) نعتبر المعادلة: $(E) \cdots (E) \cdots (E)$ حيث x و y عددان صحيحان. (E) بيّن أنّه إذا كانت الثنائية (x;y) حلا للمعادلة (E) فإنّ (E) ثم حل المعادلة المعادلة عندان الثنائية والمعادلة المعادلة الم
 - xy < 279 عين الثنائيات (x;y) حلول المعادلة (E) عين الثنائيات (4

التمرين الثاني: (04 نقاط)

عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة في كلّ حالة من الحالات التالية مع التبرير.

$$S = \{e^{-2}; e^{3}\}$$
 (\Rightarrow $S = \{-2; 3\}$ (\Rightarrow $S = \{e^{3}\}$ (\Rightarrow

5 (**ج**

- $oldsymbol{2}$ باقي القسمة الإقليدية للعدد 9^{2023} على 7 هو: 3
 - : يساوي $\int_0^{\ln 4043} \frac{1}{1 + e^{-x}} dx$ يساوي (3

 $F(x)=(x+2)\sqrt{x}$: الدالة العددية المعرّفة على]0 ; $+\infty[$ على المعرّفة على F (4 : عبارة الدالة f على المجال F دالة أصلية للدالة f على المجال F

$$f(x) = \frac{2x+3}{2x}\sqrt{x}$$
 (\Rightarrow $f(x) = \frac{3x+2}{2x}\sqrt{x}$ (\Rightarrow $f(x) = \frac{3x+2}{2x}$ (\Rightarrow

التمرين الثالث: (05 نقاط)

 $u_{n+1} = \frac{1}{2} \left(u_n - 2 \right)$ ، n عدد طبيعي ، n عدد طبيعي $u_0 = 0$ حيث $u_0 = 0$ حيث $u_0 = 0$

- $u_n > -2$ ، n برهن بالتراجع أنّه من أجل كلّ عدد طبيعي (1
- . أدرس اتجاه تغيّر المتتالية (u_n) ثم إستنتج أنّ (u_n) متقاربة (u_n)
- $v_n = \frac{1}{u_{n+1} u_n}$ يلي كما يلي المتتالية العددية المعرّفة على \mathbb{N} المتتالية العددية المعرّفة على (v_n)

n برهن أنّ المتتالية (v_n) هندسية أساسها 2 ثم أكتب أ

$$S_n = \frac{1}{v_0} + \frac{1}{v_1} + \dots + \frac{1}{v_n}$$
 حيث S_n المجموع S_n المجموع المجموع المجموع أحسب، بدلالة

$$\lim_{n\to+\infty}u_n$$
 ثم احسب ثم الميعي ، $u_n=2\left(\frac{1}{2^n}-1\right)$ ، n عدد طبيعي عدد طبيعي (4

$$S_n' = u_0 + u_1 + \dots + u_n$$
 حيث S_n' المجموع S_n' المجموع S_n'

التمرين الرابع: (07 نقاط)

- $\left(O; \vec{i}, \vec{j}
 ight)$ المستوي منسوب إلى المعلم المتعامد المتجانس (I
 - التمثيل ($C_{_g}$) التمثيل البياني للدالة e^{-x} : الدالة (Γ)

$$g(x) = \frac{x^2 + 2x - 1}{(x^2 + 1)^2}$$
 ب بالدالة g المعرفة على g المعرفة على

 $\left(\Gamma
ight)$ و $\left(C_{g}
ight)$ فاصلة نقطة تقاطع lpha

(كما هو مبيّن في الشكل المقابل)

- $g(x)-e^{-x}$ بقراءة بيانية، حدّد حسب قيم العدد الحقيقى x إشارة (1
 - $0,7 < \alpha < 0.8$ تحقّق حسابیا أنّ (2
- . ستجامد متعامد في معلم البياني المعرّفة على \mathbb{R} بالدالة العددية المعرّفة على \mathbb{R} بالدالة العددية المعرّفة على $f\left(\Pi\right)$
 - . النتيجة بيانيا أحسب $\lim_{x \to +\infty} f(x)$ أحسب أ $\lim_{x \to -\infty} f(x)$ أحسب (1
 - $f'(x) = g(x) e^{-x}$ ، x عدد حقیقی عدد کلّ عدد (2

 $oldsymbol{\psi}$ اتجاه تغیر الداله f وشکل جدول تغیراتها.

انتيجة بيانيا. $\lim_{x \to \infty} [f(x) - e^{-x}]$ وفسّر النتيجة بيانيا. (3

 (Γ) و (C_f) أدرس الوضعية النسبية للمنحنيين

0 أ- أكتب معادلة لـ T) مماس النقطة ذات الفاصلة (4

$$(f(\alpha) \simeq -0.6)$$
 و (C_f) و (Γ) و (Γ)

f(x)-m=0 عدد وإشارة حلول المعادلة ، عدم الوسيط الحقيقي m عدد وإشارة حلول المعادلة

 $\frac{1}{2}x+1 \le \frac{1}{x^2+1} \le \frac{5}{4(1-x)}$: [-1;0] علما أنّه من أجل كلّ عدد حقيقي x من المجال (5

$$I = \int_{-1}^{0} \frac{dx}{x^2 + 1}$$
: حين حصرا للعدد I حين حصرا للعدد

ب- أحسب J حيث : $J=\int_{-1}^{0}\frac{x}{x^{2}+1}dx$ ثم استنتج حصراً لـ A ، مساحة الحيز المستوي المحدّد

$$x=0$$
 و $x=-1$ و المستقيمين اللذين معادلتاهما: $\left(C_{f}
ight)$ و $\left(\Gamma
ight)$

انتهى الموضوع الثاني

ä	العلام	(1 \$1 a : 11) I 1 \$11 a 1 a			
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)			
	الموضوع الأول				
		التمرين الأول: (04 نقاط)			
01	0.5	$a \equiv 6[7]$	(1		
	0.5	$b \equiv 5[7]$	(-		
		بواقي القسمة الإقليدية للعدد 5^n على 7 :			
01.5	0.75	$5^6 \equiv 1[7], 5^5 \equiv 3[7], 5^4 \equiv 2[7], 5^3 \equiv 6[7], 5^2 \equiv 4[7], 5^1 \equiv 5[7], 5^0 \equiv 1[7]$	(2		
01.3		n 6k 6k+1 6k+2 6k+3 6k+4 6k+5	(2		
	0.75	7 على 7 بواقي قسمة ⁶ على 7 على 7			
		$a^a + b^b + 4 \equiv (-1)^{2022} + 5^{6 \times 20 + 4} + 4[7]$,,		
01	0.5x2	$a^a + b^b + 4 \equiv 0[7]$	(3		
	0.25	تبيان أن :			
0.5	0.25	$A_{n} = 2021^{n} + 2022^{n} + 2023^{n} + 2024^{n} [7]$	(4		
	0.25	تمنح 0.25 لكل محاولة	(+		
	0.20	قیم n هي $k+2$ أو $k+3$ حيث k عدد طبيعي			
		التمرين الثاني: (04 نقاط)			
	0.5	صحيحة لأن			
0.4			(1		
01	0.5	$\frac{3}{2}$ بواقي قسمة n^2-1 على 3			
	0.5	على 3 على $n(n^2-1)$ على 0 على 0			
	0.5				
01	0.5	$F''(x) = 2 + \frac{1}{x}$ نجد $F(x) = x^2 + 2x + x \ln x$ نجد لأن:بفرض أن	(2		
	0.5	$f'(x) = 1 + (x-1)e^x$ خاطئة لأن			
01	0.5	$x_0 = 1$ معناه $f'(x_0) = 1$	(3		
	0.3	معادلة لمماس المنحى عند النقطة ذات الفاصلة $y=x-e$			
	0.5	صحيحة لأن:			
		$S_n = (1+2+\dots+n) + \ln \frac{1 \times 2 \times \dots \times n}{2 \times 3 \times \dots \times (n+1)}$			
01	0.5	n(n+1)	(4		
		$\frac{2}{2}$	`		

	التمرين الثالث: (05 نقاط)			
01	0.5 0.5	$u_3 = -\frac{1}{3}$ o $u_2 = 0$	(1	
	0.75	$v_{n+1} = (n+1)\left(\frac{n}{2n+2} \frac{v_n - 2}{n} - \frac{1}{n+1}\right) + 2 = \frac{1}{2}v_n - 1$		
	0.5	$rac{1}{2}$ ومنه ${oldsymbol{(V_n)}}$ متتالية هندسية اساسها		
2.25	0.5	$v_n = 4\left(\frac{1}{2}\right)^{n-1} \qquad -4$	(2	
	0.50	$u_n = \frac{2}{n} \left[2 \left(\frac{1}{2} \right)^{n-1} - 1 \right]$		
0.75	0.75	$S_n = 8 \left[1 - \left(\frac{1}{2} \right)^n \right]$	(3	
01	0.50	$w_n = \frac{4n}{v_n - nu_n} = 2n$ $S'_n = 2 + 4 + 6 + \dots + 2n = n(n+1)$ $S'_n = w_1 + w_2 + \dots + w_n$	(4	
01	0.50			
		التمرين الرابع: (07 نقاط)	ı	
01	0.50	x 0 $1+\infty$ $x-1$ x $x-1$ و $x-1$ x x $x-1$ اشارة کل من $x-1$ x x $x-1$ x		
	0.25	$\frac{x}{x}$ + $\ln x$ ب - اشارة $\frac{x-1}{x}$ + $\ln x$ اشارة $\frac{x-1}{x}$	(1	
	0.25	$\lim_{\substack{x \to 0}} f(x) = +\infty \lim_{\substack{x \to +\infty}} f(x) = +\infty -1$		
	0.25	2 70		
1.25	0.25 0.25	$f'(x) = \ln x + \frac{x-1}{x}$	(2	
	0.25	$f'(x)$ $ 0$ $+$ $+\infty$ $+\infty$ $+\infty$ $f(x)$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$	(2	

		1 .	
	0.25	$h'(x) = 1 + \frac{1}{x} - \mathfrak{f}$	
1.75	0.25	$x\in \left]0;+\infty ight[$ من اجل كل $x\in \left]0;+\infty ight[$ ومنه h متزايدة تماما على $h'(x)>0$ ، $x\in \left]0;+\infty ight[$	
	0.5	ب- مبرهنة القيم المتوسطة	
	0.25	$\ln(lpha)$ = $2-lpha$ معناه $h(lpha)=0$	(3
	0.5	$y = f'(\alpha)(x-\alpha) + f(\alpha) = \left(\ln \alpha + \frac{\alpha - 1}{\alpha}\right)(x-\alpha) + 1 + (\alpha - 1)\ln \alpha -\Rightarrow$	
		$(T): \ \ y = \frac{-\alpha^2 + 3\alpha - 1}{\alpha}x$	
	0.25	انشاء (C_f) و (C_f) انشاء (C_f) انشا	
0.75	0.5		(4
	0.25	$(x-1)(-1+\ln x) = -x + x \ln x + 1 - \ln x = (x-1)\ln x + 1 - x = f(x) - x \qquad -1$	(5
01	0.75	$f(x)-x$ ب- إشارة x 0 1 e $+\infty$ $x-1$ $-$ 0 $+$ $+$ $x-1+Lnx$ $-$ 0 $+$ $(x-1)(-1+Lnx)$ $+$ 0 $-$ 0 $+$	
0.75	0.25	$K'(x) = -\frac{3}{2}x + 2 + (x - 1)\ln x + \frac{1}{2}x - 1 = f(x) - x$: أحتبيان أن	(6
0.75	0.5	$S = \int_{1}^{e} (x - f(x)) dx = \left[-k(x) \right]_{1}^{e} = \left(\frac{5}{4} + \frac{1}{4}e^{2} - e \right) u.a$:	U
0.50	0.25	$g\left(x\right)=f\left(x+2\right)-1$ ، $\left]-2;+\infty\right[$ من x من أجل كلّ عدد حقيقي x من أجل كلّ عدد حقيقي	(7
	0.25	$\overrightarrow{u}inom{-2}{-1}$ صورة (C_f) بانسحاب ذي الشعاع (C_g) –	(*

	الموضوع الثاني				
		التمرين الأول: (04 نقاط)			
1.75	0.75	: d' ومنه $d \setminus (5b-a)$ القيم الممكنة $d \setminus (ab-a)$ الي $ab = b$ ومنه $ab = b$ ومنه $ab = b$	/1		
	0.75	$d' \in \{1;7\}$ ومنه $d' \setminus 7$ اي $d' \setminus (9b-c)$ ومنه $\begin{cases} d' \setminus b \\ d' \setminus c \end{cases}$	(1		
	0.25	$p \gcd(a;b;c)=1$ الاستنتاج:			
0.50	0.50	n تعيّين قيم العدد الطبيعي n $n \in \{0;2\}$ معناه $n \in \{0;2\}$ اي $n \in \{0;2\}$ معناه $n \in \{0;2\}$ معناه $n \in \{0;2\}$	(2		
01	0.50	$x\equiv 1$ ي $[4]$ اي $[x;y]$ حلا للمعادلة $[x;y]$ فإن $[x;y]$ اي $[x;y]$	(3		
	0.50	$S = \left\{ (4k+1; 17k-3) / k \in \mathbb{Z} \right\}$	`		
0.75	0.50	$(4k+1)(17k-3) < 279 $ $\begin{cases} 17x-4y=29 \\ xy<279 \end{cases} \begin{cases} 17x-4y=29 \\ xy<279 \end{cases} \begin{cases} 17x-4y=29 \\ xy<279 \end{cases}$ $k \in \{-2;-1;0;1\}$	(4		
	0.25	$S' = \{(-7; -37), (-3; -20), (1; -3), (5; 14)\}$ اذن			
		التمرين الثاني: (04 نقاط)	T		
01	0.50 0.50	الاقتراح الصحيح هو ج) $x \in \left\{e^{-2}; e^{3}\right\}$ الاقتراح الصحيح هو ج $e^{(\ln x)^{2}-6} = x$ يأن $e^{(\ln x)^{2}-6} = x$	(1		
01	0.50	الاقتراح الصحيح هو أ.) $2^{3k+1} \equiv 2[7] \equiv 1[7]$	(2		
	0.50	$2^{2023}\equiv 2$ [7] فإن $2023=3 imes674+1$ وبما ان			
01	0.50 0.50	$\int_0^{\ln 4043} \frac{1}{1 + e^{-x}} dx = \left[\ln(e^x + 1) \right]_0^{\ln 4043} = \ln 2022$ الاقتراح الصحيح هو أ.) لأن:	(3		
01	0.50 0.50	$F'(x) = \frac{(3x+2)\sqrt{x}}{2x}$:الاقتراح الصحيح هو ب) لأن	(4		
	التمرين الثالث: (05 نقاط)				
01	+0.25 0.75	$u_n>-2$ ، n عدد طبیعي البرهان بالتراجع أنّه من أجل كلّ عدد طبیعي	(1		

01	0.75	$u_{n+1}-u_n=-rac{1}{2}\left(u_n+2 ight)$ ، n عدد طبیعي عدد طبیعي (u_n) : من أجل كل عدد $u_{n+1}-u_n<0$ من n من أجل كل n من أجل كل n من n من أجل كل أبل	(2
	0.25	ومنه (u_n) متناقصة تماما التقارب: (u_n) متقاربة لأنها محدودة من الأسفل و متناقصة تماما	, and the second
	0.50 0.50	$v_{n+1} = \frac{1}{u_{n+2} - u_{n+1}} = \frac{1}{\frac{1}{2}(u_{n+1} - u_n)} = 2v_n$ هندسية أساسها 2 : من أجل كل n من n	
1 75		$v_n = -2^n$ سن أجل كل n من أجل كل v_n	/3
1.75	0.75	$S_n = -rac{\left(rac{1}{2} ight)^{n+1}-1}{-rac{1}{2}} = 2igg[\left(rac{1}{2} ight)^{n+1}-1igg]$ ين المجموع S_n من أجل كل n من أجل كل من n	(3
	0.5	$: u_n = 2\left(rac{1}{2^n}-1 ight)$ أن أنّ	
		$S_n = (u_1 - u_0) + (u_2 - u_1) + \dots + (u_n - u_{n-1}) + \frac{1}{v_n}$	
		$S_n = u_n - u_0 + \frac{1}{v_n}$	
1.25		$u_n = S_n - \frac{1}{v_n} = 2\left(\frac{1}{2^n} - 1\right)$	(4
	0.25	$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} 2 \left[\frac{1}{2^n} - 1 \right] = -2$	
	0.50	$S'_n = u_0 + u_1 + \dots + u_n = 4 \left[1 - \left(\frac{1}{2} \right)^{n+1} \right] - 2(n+1)$ $S'_n = 2 - 2n - \frac{1}{2^{n-1}}$: S'_n	
		التمرين الرابع: (07 نقاط)	
		$g(x) - e^{-x}$ إشارة	
0.50	0.50	$x -\infty \alpha +\infty$	(I
0.30	0.30	$\begin{array}{c cccc} x & -\infty & \alpha & +\infty \\ \hline g(x)-e^{(-x)} & - & 0 & + \\ \hline \end{array}$	(1
0.50	0.50	$0,7 < lpha < 0,8:$ التحقّق أنّ $x \mapsto g(x) - e^{-0.7}$ الدالـة $x \mapsto g(x) - e^{-x}$ مستمرة على $x \mapsto g(x)$	(2
	0.25	$\lim_{x o +\infty} f(x) = 0$ $\lim_{x o -\infty} f(x) = +\infty$: حساب النّهايتين	(II)
0.75	0.25	$x \rightarrow +\infty$ $x \rightarrow -\infty$	(1
			· ·

	0.25		
	0.25	$y=0$ التفسير البياني: $\left(C_f ight)$ يقبل مستقيم مقارب معادلته	
	0.50	$f'(x)=g(x)-e^{-x}$ ، x عدد حقیقی اً - بیّن أنّه من أجل كلّ عدد حقیقی	
	0.30		
	0.50	ب- إستنتاج اتجاه تغير الدالة: $-$ الدالة f متناقصة تماما على $-\infty$; α ومتزايدة تماما على α ; α	
1.05	0.50	الدالة المستطلة للما على المراقع المر	(2
1.25		$x \mid -\infty \alpha +\infty$	(2
		f'(x) - 0 +	
		$f(x)$ $+\infty$ 0	
	0.25	$f(\alpha)$	
	0.50	$\lim_{x \to -\infty} \left[f(x) - e^{-x} \right] = 0 - 1$	
	0.25	$+\infty$ التفسّير (C_f) و (Γ) متقاربان بجوار $+\infty$	
		x $-\infty$ -1 $+\infty$ (Γ) و (C_f) و (C_f) الوضعية النسبية للمنحنيين $-\infty$	
1.25			(3
	0.50	-x-1 + 0 -	
		الوضعية (Γ) ندت (C_f) الوضعية (C_f) الوضعية (C_f)	
		$(C_f) \cap (\Gamma) = \{A(-1;e)\}$	
	0.50	y = -2x : (T) أ- معادلة لـ	
		$\left(C_{f} ight)$ و $\left(\Gamma ight)$ و $\left(\Gamma ight)$	
		3	
		2.5	
		2	
	0.25X3	1.5	
02			(4
02			(-
		-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 -0.5	
		(C_f)	
	0.25	 ج- المناقشة البيانية : 	
	0.25	اذا کان $m < f(lpha)$ فإن المعادلة لا تقبل حلا اذا کان $m < f(lpha)$ اذا کان $m < f(lpha)$	
	0.25	اذا كان $m=f(lpha)$ فإن للمعادلة حلا موجبا تماما اذا كان $m=0$ فإن للمعادلة حلا معدوما	
	0.25	اذا كان $m>0$ فإن للمعادلة حلا سالبا تماما $m>0$	
	1		

		اذا كان $f(lpha) < m < 0$ فإن للمعادلة حلين موجبين تماما	
		 ا - حصرا العدد I ا - حصرا العدد I 	
	0.25	$\int_{-1}^{0} \left(\frac{1}{2} x + 1 \right) dx \le \int_{-1}^{0} \left(\frac{1}{x^2 + 1} \right) dx \le \int_{-1}^{0} \left(\frac{5}{4(1 - x)} \right) dx$	(5
		$\frac{3}{4} \le I \le \frac{5}{4} \ln 2$	
	0.25	رب-حساب J بــــــــــــــــــــــــــــــــــ	
0.75		$J = \int_{-1}^{0} \frac{x}{x^2 + 1} dx = \frac{1}{2} \left[\ln(x^2 + 1) \right]_{-1}^{0} = \frac{-\ln 2}{2}$	
		حصر المساحة	
	0.25	$\frac{3}{4} - \frac{\ln 2}{2} \le I + J \le \frac{5}{4} - \frac{\ln 2}{2}$ ومنه $A = \int_{-1}^{0} \frac{x+1}{x^2+1} dx = I + J$ u.a	
		$\frac{3-2\ln 2}{4} \le A \le \frac{3}{4}\ln 2$ اي	