Subdivision Surfaces (Mini-Exkursion)

Matthias B. Hullin
Institut für Informatik II, Universität Bonn

Mit Material von Steve Seitz (U.Washington)

Fragestellung

 Wie kann man selbst aus groben Dreiecksnetzen glatte Oberflächen gewinnen?

Corner Cutting (Chaikin 1974)

Unterteilen und mitteln (Lane-Riesenfeld 1980)

Kanten unterteilen (neue Punkte einfügen)

Punkte verschieben (Mittelung mit Nachbarn)

Kurvenverfeinerung nach Lane-Riesenfeld

B-spline

(überall C2-stetig!)

Corner Cutting nach Chaikin (1974) - revisited

 Asymmetrische Mittelungsregel – mittle jeden Punkt mit seinem Nachbarn im Uhrzeigersinn

Loop Subdivision (1987)

• Strategie: Unterteilen und mitteln

Gewichte für außerordentliche Vertices

Diese Wahl der Gewichte garantiert C2-stetige Grenzfläche fast überall! (an außerordentlichen Vertices nur C1).

Loop Subdivision

 Quelle: Simon Fuhrmann, CC BY-SA 3.0, <u>https://commons.wikimedia.org/w/index.php?curid=7476233</u>

(für Dreiecksnetze)

Catmull-Clark Subdivision

(für Vierecksnetze)

Fragestellung

Wie kann man selbst aus groben Dreiecksnetzen glatte Oberflächen gewinnen? -> Subdivision surfaces universitätbonn