How Computers Work Lecture 13 Details of the Pipelined Beta

Page 1

Review: Pipeline Stages GOAL: Maintain (nearly) 1.0 CPI, but increase clock speed. APPROACH: structure processor as 4-stage pipeline: Instruction Fetch stage: Maintains PC, fetches one instruction per cycle and passes it to Register File stage: Reads source operands from register file, passes them to ALU stage: Performs indicated operation, passes result to Write-Back stage: writes result back into register file.

Page 3

Page 4

Page 5

Page 6

Page 7

BRANCH DELAY SLOTS

PROBLEM: One (or more) following instructions have been pre-fetched by the time a branch is taken.

POSSIBLE SOLUTIONS:

- 1. "Program around it". Either
 - 1a. Follow each BR with 2 NOP instructions; or
 - 1b. Make your compiler clever enough to move USEFUL instructions following branches.
- 2. Make pipeline "annul" instructions following branches which are taken, eg by disabling

WERF and WEMEM and PCSEL.

How Computers Work Lecture 13 Page 15

Can we shorten the number of delay slots? A: Yes (by 1)

Page 9

Load Delays - II

Load Timing Problems:

LD(r1, 0(r4)) Problem 1

ADD(r1(r4, r5)) Problem 2

XOR(r3(r4, r5))

Can relegate both problems to Compiler.

Alternatively, fix Problem 2 using

Bypass Paths

and fix Problem 1 using

NOPs / Stalls

- How Computers Work Lecture 13 Page 19

Load Problems - III

But, but, what about FASTER processors?

FACT: Processors will become fast relative to memories!

Do we just lengthen the cycle time?

ALTERNATIVE: Longer pipelines.

- Add "MEMORY WAIT" stages between START of read operation & return of data.
- 2. Build pipelined memories, so that multiple (say, N) memory transactions can be in progress at once.
- 3. (Optional). Stall pipeline when the N limit is exceeded.
- 4-Stage pipeline requires 1 instruction's delay.
- 5-Stage pipeline requires 2 instruction's delay.

Page 11

What Have We Learned Today?

- Pipelining improves throughput by lowering clock period
- Pipelining cannot improve latency
- · Data Hazards can be fixed with
 - Re-Programming, NOPs, Bypass Paths
- Branch Hazards can be fixed with
 - Re-Programming, NOPs, Annulment
- · Memory Hazards can be fixed with
 - Re-Programming, NOPs, (1) Bypass Path
- As in Karate, balance is important ... too much pipelining is BAD

- How Computers Work Lecture 13 Page 23

Next Time:

- Implicit Multiple Issue
- Automatic Out-of-Order Execution