INTRODUCTION

State-Aware TrueSkill For Tennis Prediction

Hin Hong TAM (Ryan) *Imperial College London*

September 15, 2016

► Comprehensive Overview Of TrueSkill

- ► Comprehensive Overview Of TrueSkill
- ▶ Use TrueSkill To Model Tennis

- ► Comprehensive Overview Of TrueSkill
- ▶ Use TrueSkill To Model Tennis
- ► Forumulate And Experiment *State-Aware* TrueSkill

- Comprehensive Overview Of TrueSkill
- ▶ Use TrueSkill To Model Tennis
- ► Forumulate And Experiment *State-Aware* TrueSkill
- ► Use State-Aware TrueSkill To Model Tennis

► Uses Factor Graph

INTRODUCTION

- ► Uses Factor Graph
- $Pr(\vec{s}, \vec{r}) = Pr(\vec{r} \mid \vec{s})Pr(\vec{s})$

- Uses Factor Graph
- $Pr(\vec{s}, \vec{r}) = Pr(\vec{r} \mid \vec{s})Pr(\vec{s})$
- ► Factorising Priors

$$Pr(\vec{s}) \triangleq \prod_{i=1}^{n} Pr(s_i)$$

- ► Uses Factor Graph
- $Pr(\vec{s}, \vec{r}) = Pr(\vec{r} \mid \vec{s}) Pr(\vec{s})$
- ► Factorising Priors

$$Pr(\vec{s}) \triangleq \prod_{i=1}^{n} Pr(s_i)$$

► Factorising Likelihood

$$Pr(\vec{r}|s_1, s_2) \triangleq Pr(p_1|s_1)Pr(p_2|s_2)Pr(d|p_1, p_2)Pr(\vec{r}|d)$$

► Gaussian Skill Priors

$$p(s_i) = \mathcal{N}(s_i \mid \mu_i, \sigma_i^2 + \tau^2)$$

► Gaussian Skill Priors

$$p(s_i) = \mathcal{N}(s_i \mid \mu_i, \sigma_i^2 + \tau^2)$$

► Skill-Performance Factors

$$p(p_i \mid s_i) = \mathcal{N}(p_i \mid s_i, \beta^2)$$

► Gaussian Skill Priors

$$p(s_i) = \mathcal{N}(s_i \mid \mu_i, \sigma_i^2 + \tau^2)$$

▶ Skill-Performance Factors

$$p(p_i \mid s_i) = \mathcal{N}(p_i \mid s_i, \beta^2)$$

► Performance-Differencing Factor $p(d \mid p_1, p_2) = \mathbb{I}(d = p_1 - p_2)$

► Gaussian Skill Priors $p(s_i) = \mathcal{N}(s_i \mid \mu_i, \sigma_i^2 + \tau^2)$

► Skill-Performance Factors
$$p(p_i \mid s_i) = \mathcal{N}(p_i \mid s_i, \beta^2)$$

- ► Performance-Differencing Factor $p(d \mid p_1, p_2) = \mathbb{I}(d = p_1 - p_2)$
- ► Outcome-Truncation Factor $p(r \mid d) = \mathbb{I}(d > 0)$ if player 1 won $p(r \mid d) = \mathbb{I}(d < 0)$ if player 2 won

TRUESKILL

00000

$$p(b) = \sum_{a} \sum_{c} \sum_{d} \sum_{e} f_1(a, b) f_2(b, c) f_3(c, d) f_4(c, e)$$

$$p(b) = \sum_{a} \sum_{c} \sum_{d} \sum_{e} f_1(a, b) f_2(b, c) f_3(c, d) f_4(c, e)$$

$$\implies p(b) = \sum_{a} f_1(a,b) \times \left[\sum_{c} \sum_{d} \sum_{e} f_2(b,c) f_3(c,d) f_4(c,e)\right]$$

$$p(b) = \sum_{a} \sum_{c} \sum_{d} \sum_{e} f_1(a, b) f_2(b, c) f_3(c, d) f_4(c, e)$$

$$\implies p(b) = \sum_{a} f_1(a,b) \times \left[\sum_{c} \sum_{d} \sum_{e} f_2(b,c) f_3(c,d) f_4(c,e)\right]$$

$$m_{f_2 \to b}(b) = \sum_{c} \sum_{d} \sum_{e} f_2(b, c) f_3(c, d) f_4(c, e)$$

$$m_{f_2 \to b}(b) = \sum_{c} \sum_{d} \sum_{e} f_2(b, c) f_3(c, d) f_4(c, e)$$

$$\implies m_{f_2 \to b}(b) = \sum_{c} [f_2(b,c)[\sum_{c} \sum_{c} f_3(c,d)f_4(c,e)]]$$

$$m_{f_2 \to b}(b) = \sum_{c} \sum_{d} \sum_{e} f_2(b, c) f_3(c, d) f_4(c, e)$$

$$\implies m_{f_2 \to b}(b) = \sum_{c} [f_2(b,c)[\sum_{c} \sum_{d} f_3(c,d)f_4(c,e)]]$$

$$m_{f_2 \to b}(b) = \sum_{c} \sum_{d} \sum_{e} f_2(b, c) f_3(c, d) f_4(c, e)$$

$$\implies m_{f_2 \to b}(b) = \sum_{c} [f_2(b,c)[\sum_{d} f_3(c,d)][\sum_{e} f_4(c,e)]]]$$

► Variable Node To Factor Node

$$m_{x_m \to f_s}(x_m) = \prod_{l \in ne(x_m) \setminus f_s} (m_{f_l \to x_m}(x_m))$$

► Variable Node To Factor Node

TRUESKILL

000000

$$m_{x_m \to f_s}(x_m) = \prod_{l \in ne(x_m) \setminus f_s} (m_{f_l \to x_m}(x_m))$$

Factor Node To Variable Node

$$m_{f_s \to x}(x) = \sum_{x_1} \cdots \sum_{x_M} \left(f_s(x, x_1, \dots, x_M) \prod_{i \in ne(f_s) \setminus x} \left(m_{x_i \to f_s}(x_i) \right) \right)$$

Variable Node To Factor Node

TRUESKILL

000000

$$m_{x_m \to f_s}(x_m) = \prod_{l \in ne(x_m) \setminus f_s} (m_{f_l \to x_m}(x_m))$$

Factor Node To Variable Node

$$m_{f_s \to x}(x) = \sum_{x_1} \cdots \sum_{x_M} \left(f_s(x, x_1, \dots, x_M) \prod_{i \in ne(f_s) \setminus x} \left(m_{x_i \to f_s}(x_i) \right) \right)$$

Marginal

$$p(x) = \prod_{f_i \in ne(x)} m_{f_i \to x}(x)$$

► Variable Node To Factor Node

$$m_{x_m \to f_s}(x_m) = \prod_{l \in ne(x_m) \setminus f_s} (m_{f_l \to x_m}(x_m))$$

► Factor Node To Variable Node

$$m_{f_s \to x}(x) = \sum_{x_1} \cdots \sum_{x_M} \left(f_s(x, x_1, \dots, x_M) \prod_{i \in ne(f_s) \setminus x} \left(m_{x_i \to f_s}(x_i) \right) \right)$$

► Marginal

$$p(x) = \prod_{f_i \in ne(x)} m_{f_i \to x}(x)$$

$$\implies p(x) = m_{f \to x}(x) \prod_{f_i \in ne(x) \setminus f} m_{f_i \to x}(x) \quad \forall f \in ne(x)$$

Variable Node To Factor Node

$$m_{x_m \to f_s}(x_m) = \prod_{l \in ne(x_m) \setminus f_s} (m_{f_l \to x_m}(x_m))$$

Factor Node To Variable Node

$$m_{f_s \to x}(x) = \sum_{x_1} \cdots \sum_{x_M} \left(f_s(x, x_1, \dots, x_M) \prod_{i \in ne(f_s) \setminus x} \left(m_{x_i \to f_s}(x_i) \right) \right)$$

Marginal

$$p(x) = \prod_{f_i \in ne(x)} m_{f_i \to x}(x)$$

$$\implies p(x) = m_{f \to x}(x) \prod_{f_i \in ne(x) \setminus f} m_{f_i \to x}(x) \quad \forall f \in ne(x)$$

RESULTS ON SEPERATE TEST SET

Data Granularity	Selection Based On	Brier Score	Error Rate
Match	Brier	0.199784	0.312693
Match	Error	0.202965	0.319917
Point	Brier	0.249268	0.477656
Point	Error	0.249284	0.477803

Table: Performance On A Separate Test Set Of Naïve Models

FACTOR GRAPH REPRESENTATION

STATE-AWARE TRUESKILL

POINT LEVEL RESULTS ON ATP DATASET

▶ Selection Of β : 21 → 10

▶ Selection Of β : 21 → 10

► Brier Score : 0.249268 → 0.225575

▶ Selection Of β : 21 \rightarrow 10

▶ Brier Score : $0.249268 \rightarrow 0.225575$

► Error Rate: 0.477656 → 0.349461

FUTURE WORK

► Extending The Model To Cover Multiplayer Games

CONCLUSION

- ► Extending The Model To Cover Multiplayer Games
- ► Elegantly Deal With Continuous Features

FUTURE WORK

- Extending The Model To Cover Multiplayer Games
- ► Elegantly Deal With Continuous Features
- ► Include Other Features Of Tennis

FUTURE WORK

- Extending The Model To Cover Multiplayer Games
- ► Elegantly Deal With Continuous Features
- ► Include Other Features Of Tennis
- ▶ Dissociation Of Features