Corso di

ROBOTICA

Prof.ssa Giuseppina Gini Esercitazioni Anno 2008/2009

Cinematica Diretta

Convenzione di Denavit-Hartenberg (1955)

- 0 Si porta il robot nella sua posizione di riposo (Home Configuration)
- 1 Sdr0 (inerziale) alla base della catena cinematica

Oss1: la terna base può essere posizionata ovunque nella base del robot purché lasse $\mathbf{z_0}$ sia coincidente con l'asse del primo giunto.

(normalmente orientato verso la spalla del robot)

- 2 Ogni link-i possiede un Sdr-i $(x_i y_i z_i)$ ad esso solidale
 - asse z_i coincidente con l'asse del giunto i+1
 - si individua O_i dall'intersezione di z_i con z_{i-1} oppure dall'intersezione di z_i con la normale comune a z_{i-1} e z_i

- asse y_i a completare una terna destrorsa

Sdrn il sdr. deve avere l'asse Z_n con la stessa direzione e verso di Z_{n-1} se non esiste la mano, oppure con la direzione delle dita e asse Y_n lungo l'asse di scorrimento delle dita se esiste una mano

Oss: la convenzione di D-H non fornisce una definizione univoca del Sdri

- Il Sdr₀ non può essere definito univocamente perché in realtà impongo solo la direzione dell'asse z₀
- Se z_{i-1}e z_i sono paralleli la normale non è univoca (io posso definire O_i in modo arbitrario), di solito se il giunto è rotoidale si cerca di annullare d_i

Oss: Se $z_{i-1}e$ z_i sono sghembi la normale passa per il segmento di minima distanza tra $z_{i-1}e$ z_i

Oss2: la rappresentazione di Denavit-Hartemberg dipende da 4 parametri geometrici:

- θ_i angolo fra l'asse \mathbf{x}_{i-1} e \mathbf{x}_i attorno a \mathbf{z}_{i-1} (variabile nel giunto rotoidale).
- \mathbf{d}_{i} distanza fra \mathbf{x}_{i-1} e \mathbf{x}_{i} misurata lungo la direzione di \mathbf{z}_{i-1} (variabile nel giunto prismatico).
- \mathbf{a}_i lunghezza del link, distanza fra \mathbf{z}_{i-1} e \mathbf{z}_i lungo l'asse \mathbf{x}_i . (lunghezza del link)
- α_i angolo fra gli assi z_{i-1} e z_i intorno a x_i (dipende dalla geometria del link), è l'angolo di "twist".

Oss2: La relazione tra due **Sdr** consecutivi può essere rappresentata mediante una matrice di trasformazione omogenea.

Trasformazione dal sdr i-1 al sdr i espressa rispetto al sdr i-1.

- 1) Ruotare x_{i-1} di θ_i attorno a z_{i-1} , in modo da allinearlo con x_i . e Traslare l'origine del sistema Sdr_{i-1} di una quantità d_i lungo Z_{i-1} , fino a sovrapporre x_{i-1} ad x_i
- 2) Traslare l'origine del sistema i' di una quantità a_i lungo x_i , fino a portarla nell'origine del sistema i e Ruotare z'_i attorno ad x_i di un angolo α_i , fino a far coincidere i due sistemi.

Oss3: x'i coincide con xi

$$\mathbf{A}_{i\text{-}1,i}^{i\text{-}1} = \mathbf{Trasl}(\mathbf{0},\mathbf{0},\mathbf{d}_{i}) \cdot \mathbf{Rot}(\mathbf{z}_{i\text{-}1},\theta_{i}) \cdot \mathbf{Rot}(\mathbf{x}_{i},\alpha_{i}) \cdot \mathbf{Trasl}(\mathbf{a}_{i},\mathbf{0},\mathbf{0}) \\ H = \begin{bmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{i-1,i}^{i-1} = \begin{bmatrix} c_{\vartheta_i} & -s_{\vartheta_i} & 0 & 0 \\ s_{\vartheta_i} & c_{\vartheta_i} & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_{i,i}^{i'} = \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & c_{\alpha_i} & -s_{\alpha_i} & 0 \\ 0 & s_{\alpha_i} & c_{\alpha_i} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{i-1,i}^{i-1} = A_{i-1,i}^{i-1} A_{i,i}^{i'} = \begin{bmatrix} (0, 0) & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Giunto di Rotazione e Traslazione

$$\mathbf{A}_{i\text{-}1,i}^{i\text{-}1} = \begin{pmatrix} \boldsymbol{cos}\boldsymbol{\theta}_i & -\cos\boldsymbol{\alpha}_i \operatorname{sen}\boldsymbol{\theta}_i & \boldsymbol{sen}\boldsymbol{\alpha}_i \operatorname{sen}\boldsymbol{\theta}_i & \boldsymbol{a}_i \cos\boldsymbol{\theta}_i \\ \operatorname{sen}\boldsymbol{\theta}_i & \cos\boldsymbol{\alpha}_i \cos\boldsymbol{\theta}_i & -\operatorname{sen}\boldsymbol{\alpha}_i \cos\boldsymbol{\theta}_i & \boldsymbol{a}_i \operatorname{sen}\boldsymbol{\theta}_i \\ 0 & \operatorname{sen}\boldsymbol{\alpha}_i & \cos\boldsymbol{\alpha}_i & \boldsymbol{d}_i \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Algoritmo per la collocazione dei sistemi di riferimento i-esimo

Per i=1, ..., n-1 si ripetono i passi 1-4

- 1. Si stabilisce l'asse z_i sull'asse del giunto i+1
- 2. Si posiziona l'origine O_i nell'intersezione di z_i con z_{i-1} oppure dall'intersezione di z_i con la normale comune a z_{i-1} e z_i (se sono sghembi nel punto di intersezione tra z_i e il segmento di minima distanza fra gli assi stessi).
- 3. Si determina $\mathbf{x_i} = \mathbf{z_{i-1}} \mathbf{x} \ \mathbf{z_i} / || \mathbf{z_{i-1}} \mathbf{x} \ \mathbf{z_i} ||$ oppure lungo la normale comune a $\mathbf{z_{i-1}}$ e $\mathbf{z_i}$ con verso positivo dal giunti **i-1** al giunto **i** se sono paralleli.
- 4. Si determina l'asse y_i con la regola della mano destra.

$$sen(\alpha \pm \beta) = sen\alpha \cdot \cos\beta \pm \cos\alpha \cdot sen\beta$$
$$\cos(\alpha \pm \beta) = \cos\alpha \cdot \cos\beta \mp sen\alpha \cdot sen\beta$$

$$\boldsymbol{T}_{3}^{0}(\boldsymbol{q}) = \boldsymbol{A}_{1}^{0}\boldsymbol{A}_{2}^{1}\boldsymbol{A}_{3}^{2} = \begin{bmatrix} c_{1}c_{23} & -c_{1}s_{23} & s_{1} & c_{1}(a_{2}c_{2} + a_{3}c_{23}) \\ s_{1}c_{23} & -s_{1}s_{23} & -c_{1} & s_{1}(a_{2}c_{2} + a_{3}c_{23}) \\ s_{23} & c_{23} & 0 & a_{2}s_{2} + a_{3}s_{23+d1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$m{T}_3^0(m{q}) = m{A}_1^0 m{A}_2^1 m{A}_3^2 = egin{bmatrix} c_1 c_{23} & -c_1 s_{23} & s_1 & c_1 (a_2 c_2 + a_3 c_{23}) \ s_1 c_{23} & -s_1 s_{23} & -c_1 & s_1 (a_2 c_2 + a_3 c_{23}) \ s_{23} & c_{23} & 0 & a_2 s_2 + a_3 s_{23} + d_1 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\vec{P}_0 = T_3^0 \cdot \vec{P}_3$$

$$\begin{pmatrix} \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \end{pmatrix}$$

 \mathbf{y}_0

Es1: θ_1 =0, θ_2 =0, θ_3 =0 trovare la posizione del polso nello spazio di lavoro

$$T_{3}^{0}(q) = A_{1}^{0}A_{2}^{1}A_{3}^{2} = \begin{bmatrix} c_{1}c_{23} & -c_{1}s_{23} & s_{1} & c_{1}(a_{2}c_{2} + a_{3}c_{23}) \\ s_{1}c_{23} & -s_{1}s_{23} & -c_{1} & s_{1}(a_{2}c_{2} + a_{3}c_{23}) \\ s_{23} & c_{23} & 0 & a_{2}s_{2} + a_{3}s_{23} + d1 \end{bmatrix} \leftarrow$$

$$\begin{bmatrix} A & \Diamond & \Diamond & \Diamond & \downarrow & \downarrow & \downarrow \\ 0 & \Diamond & -A & \Diamond & \downarrow & \downarrow \\ 0 & \Diamond & A & \Diamond & A & \downarrow & \downarrow \\ 0 & \Diamond & A & \Diamond & A & \downarrow & \downarrow \\ 0 & \Diamond & A & \Diamond & A & \downarrow & \downarrow \\ 0 & \Diamond & A & \Diamond & A & \downarrow & \downarrow \\ 0 & \Diamond & A & \Diamond & A & \downarrow & \downarrow \\ 0 & \Diamond & A & \Diamond & A & \Diamond & A & \downarrow \\ 0 & \Diamond & A & \Diamond & A & \Diamond & A & \downarrow \\ 0 & \Diamond & A & \Diamond & A & \Diamond & A & \downarrow \\ 0 & \Diamond & A & \Diamond & A & \Diamond & A & \downarrow \\ 0 & \Diamond & A & \Diamond & A & \Diamond & A & \downarrow \\ 0 & \Diamond & A & \Diamond & A & \Diamond & A & \Diamond & A & \downarrow \\ 0 & \Diamond & A & \Diamond & A$$

Es1: θ_1 =0°, θ_2 =0°, θ_3 =90° trovare la posizione del polso nello spazio di lavoro

$$T_3^0(q) = A_1^0 A_2^1 A_3^2 = \begin{bmatrix} c_1 c_{23} & -c_1 s_{23} & s_1 & c_1 (a_2 c_2 + a_3 c_{23}) \\ s_1 c_{23} & -s_1 s_{23} & -c_1 & s_1 (a_2 c_2 + a_3 c_{23}) \\ s_{23} & c_{23} & 0 & a_2 s_2 + a_3 s_{23+d1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

