同济大学课程考核试卷(A卷) 2023 — 2024 学年第 二 学期

命题教师签名:

审核教师签名:

课号:

课名: 数学分析

考试考查: 考试

此卷选为: 期中考试(√)、期终考试()、重考()试卷

1-11	+.11.	受号 2353 (0.5 tr 名) (5 中名) 任课教师						
年级	_ 全亚		子与レジ	处土	6	T	1000	
题号		=	デX	四	五	六	总分	
得分			167					

(注意:本试卷共六大题,四大张,满分100分.考试时间为100分钟。要求写出解题过程,否则不予计分)

1. 设正项级数 $\sum_{n=1}^{\infty} x_n$ 发散 $(x_n > 0, n = 1, 2, ...)$,证明: 必存在发散的 正项级数 $\sum_{n=1}^{\infty} y_n$ 使得 $\lim_{n \to \infty} \frac{y_n}{x_n} = 0$ 。

多/n 埃散

一、简答题(20分)

2.讨论 $S_n(x) = \sin \frac{x}{n}$ 在 $(-\infty, +\infty)$ 与[-A, +A](A > 0)上的一致收敛性。

二、(15 分) 求出 $\frac{e^{x}-1}{x}$ 在x = 0的幂级数展开,并由此求出 $\sum_{n=1}^{\infty} \frac{f_n}{(n+1)!}$ 。

三、(15 分) 将 $f(x) = \begin{cases} -1 & 0 \le x < \frac{\pi}{2} \\ 2 + \frac{x}{\pi} & \frac{\pi}{2} \le x \le \pi \end{cases}$ 展开为 Fourier 正弦级数,并

求出 $x = -\frac{5\pi}{2}$ 该级数收敛的值。

四、(20分)讨论下列级数的敛散性(包括绝对收敛、条件收敛、发散):

1. $\sum_{n=1}^{\infty} \frac{\sin(n+1)x \cdot \cos(n-1)x}{n^p}$

《数学分析》期中考试试卷--3

$$2. \sum_{n=2}^{\infty} \frac{x^n}{n^p \ln^q n}$$

KATEL TO THE STATE OF THE STATE

五、(15 分)设 $U_n(x)$, $V_n(x)$ 在区间(a,b)连续,且 $|U_n(x)| \leq V_n(x)$ 对一切 $n \in N$ 成立,证明:若 $\sum_{n=1}^{\infty} V_n(x)$ 在(a,b)上点态收敛于一个连续函数,则 $\sum_{n=1}^{\infty} U_n(x)$ 也必然收敛于一个连续函数。

六、(15分)证明: 函数 $f(x) = \sum_{n=0}^{\infty} \frac{\cos nx}{n^2+1}$ 在(0,2 π)上有连续的导函数。

