15. Нормално уравнение на права в равнината

Дефиниция.1: Всеки вектор, който е перпендикулярен на дадена права (т.е. перпендикулярен на всички вектори, които са колинеарни с правата) се нарича нормален вектор на правата.

Ще смятаме, че сме фиксирали опртонормирана координатна система K=Oxy, т.е. ще работим в равнината.

Твърдение.1: Нека правата l има уравнение l: Ax + By + C = 0. Тогава векторът N(A, B) е нормален за l.

Доказателство:

Ако N(A, B) е нормален вектор на правата l, то тогава N е перпендикулярен, на който и да е вектор ν , колинеарен на правата.

Знаем, че $\nu(-B,A)$ е колинеарен на l и също така ν е ненулев, защото $(A,B) \neq 0$. Следователно имаме от скаларното произведение на N и ν :

$$< N, \nu > = A(-B) + AB = 0,$$

т.е. N е перпендикулярен на ν и N е нормален верктор на l.

Твърдение.2: Правата l, която минава през т. $P(x_0, y_0)$ и е перпендикулярна на ненулевия вектор N(A, B) има уравнение:

$$l: A(x - x_0) + B(y - y_0) = 0 (1)$$

Доказателство:

Тъй като $P \in l$ и $N \perp l$, то тези условия еднозначно определят правата l.

Нека m е права с уравнение $m: A(x-x_0)+B(y-y_0)=0$ (това е общо уравнение на права, защото $(A,B)\neq 0$ и $N\neq 0$). $P\in m$, тъй като $A(x_0-x_0)+B(y_0-y_0)=0$ и от Тв.1 следва, че $N(A,B)\perp m$. Следователно $m\equiv l$.

Очевидно всички нормални вектори на дадена права l са колинеарни. Ако $N(A,B) \neq 0$ е нормален за l, то единичните вектори $n = \frac{N}{|N|}$ и $-n(N(\frac{A}{\sqrt{A^2+B^2}},\frac{B}{\sqrt{A^2+B^2}}))$ са единични нормални вектори за правата l и те са единствени.

Дефиниция.2: Общо уравнение на правата l спрямо K, в което нормалният вектор с координати коефициентите пред x и y е единичен се нарича нормално уравнение на l спрямо K.

Следователно ако $l: \alpha x + \beta y + \gamma = 0$ е уравнение на правата l, то това уравнение е нормално, тогава и само тогава, когато $\alpha^2 + \beta^2 = 1$.

Твърдение.3: Всяка права l в равнината има точно две нормални уравнения. При това, ако Ax+Bx+C=0 е произволно общо уравнение на l, то нормалните уравнения са $\frac{Ax+Bx+C}{\sqrt{A^2+B^2}}=0$ и $-\frac{Ax+Bx+C}{\sqrt{A^2+B^2}}=0$.

Доказателство:

Нека l: Ax + By + C = 0. Тогава произволно общо уравнение на l ще има вида:

$$l: \lambda(Ax + By + C) = 0, (2)$$

където $\lambda \neq 0$, т.е.

$$l: \lambda Ax + \lambda By + \lambda C = 0. \tag{3}$$

Това е нормално уравнение, тогава и само тогава, когато $(\lambda A)^2 + (\lambda B)^2 = 1$, т.е. $\lambda^2 (A^2 + B^2) = 1$. От тук получаваме

$$\lambda = +\frac{1}{\sqrt{A^2 + B^2}}.$$

Следователно l има точно две уравнения и те са уравненията от условията.

Разстояние от точка до права. Твърдение.4: Нека g е произволна права от равнината с нормално уравнение $g: \alpha x + \beta y + \gamma = 0$ и $P(x_0, y_0)$ е произволна точка. Означаваме $l(x, y) = \alpha x + \beta y + \gamma$. Тогава разстоянието d(P, g) от P до правата g е равно на $|l(x_0, y_0)|$.

Доказатлство:

Нека n е единичният нормален вектор на правата g, т.е. $n(\alpha, \beta)$. Нека m е правата през т.P, която е перпендикулярна на g и $Q = m \cap g$. Тогава $d(P,g) = |\overrightarrow{PQ}|$.

Имаме, че $Q \in m$ и $m \parallel n$, следователно $|\overrightarrow{PQ}| = \lambda n$.

Нека т.Q има координати (x_1, y_1) , следователно

$$x_0 - x_1 = \lambda \alpha, y_0 - y_1 = \lambda \beta,$$

$$x_1 = x_0 - \lambda \alpha, y_1 = y_0 - \lambda \beta.$$

Q принадлежи на g, следователно

$$l(x_1, y_1) = 0,$$

$$\alpha x_1 + \beta y_1 + \gamma = 0,$$

$$\alpha(x_0 - \lambda \alpha) + \beta(y_0 - \lambda \beta) + \gamma = 0,$$

т.е. $-\lambda(\alpha^2+\beta^2)+(\alpha x_0+\beta y_0+\gamma)=0$. $\alpha^2+\beta^2=1$ и $\alpha x_0+\beta y_0+\gamma=l(x_0,y_0)$, следователно $\lambda=l(x_0,y_0)$. Така получихме

3

Числото $\delta(P,g)=l(x_0,y_0)$ се нарича ориентирано разстояние от т.P до l по отношение на нормалния вектор n. Тъй като $\delta(P,g)=l(x_0,y_0)=\lambda$, където $\lambda:\overrightarrow{QP}=\lambda n$, то $\delta(P,g)>0$. $\delta(P,g)>0$, когато P е в полуравнината, към която сочи n. $\delta(P,g)<0$, когато P е в другата полуравнина.

Дефиниция.3: Под ъгъл $\not< (l_1, l_2)$ между две прави l_1 и l_2 се разбира по-малкия от двата ъгъла, които правите сключват.

Нека N_1 и N_2 са нормалните вектори към правите l_1 и l_2 . Ако $\not< (N_1, N_2) \leqslant \pi/2$, то $\not< (l_1, l_2) = \not< (N_1, N_2)$. Ако $nless(N_1, N_2) \geqslant \pi/2$, то $\not< (l_1, l_2) = \pi - \not< (N_1, N_2)$. Следователно $\cos \not< (l_1, l_2) = |\cos \not< (N_1, N_2)|$.

Ако $N_1(\alpha_1, \beta_1)$ и $N_2(\alpha_2, \beta_2)$, то тогава $\cos \not< (N_1, N_2) = \alpha_1\alpha_2 + \beta_1\beta_2$. От тук следва, че $\not< (l_1, l_2) = \arccos |\alpha_1\alpha_2 + \beta_1\beta_2|$.