. Q2 Explain the steepest (gradient) descent algorith	m and NR algorithm.
SD iterative 1-st order opti to find local min : I Eq: $X_{k+1} = X_k + \alpha_k d_k$, where: $X_0 \rightarrow Start$ point, $X_k = X_k + \alpha_k d_k$, where: $X_0 \rightarrow Start$ point, $X_k \in arg \min \alpha \ge 0$ $f(x_k + \alpha_k d_k)$, $d_k = -\nabla f(x_k)$	f confused see video "
Line search = Exact line search you update X 1c+1 if 1100 kdk11 (& or k = max_item output: X'= X 1c+1, fcx')	
NR: only change: $d_k = -H_f(x)^{\frac{1}{2}} \nabla f(x_k)$ slide 19"; if $H_f(x_k)$ not PD make it PD -> several methods. Why Hessian? Rate of Change of the $\nabla f(x_k)$, $H_f(x_k)^{-1}$ adjust the stepsize by large stepsize if small change (flat). Invose = bad computation	
Line search: Golden section search, backtracking (inexact) (SS: See sticle or victo Backtrade:	for out where MR performs better the closer you are to minime
OP = Optimization Problem NR = Newton Rhagson, SD = Steepest du	Condition number 1 fast $r = \frac{\min p(H_f(x_k))}{\max p(H_f(x_k))} \stackrel{\sim}{\sim} 0 \text{ slow}$ I $p(H_f(x_k)) = \text{eigenvalues} V$ Hessian Converge for SD