



### Partial Boosting of Deep Stacked Networks

Manuel Montoya-Catalá, Ricardo F. Alvear-Sandoval, Aníbal R. Figueiras-Vidal UC3M / RAIng



#### Contents



- 1. Deep Stacked Networks
- 2. Boosting
- 3. Boosted Aggregated Deep Stacked Networks
- 4. Experiments
- 5. Algorithm properties
- 6. Conclusions



# WILDS IN

#### 1. Deep Stacked Networks (DSNs)

Deep Learning architecture.

Each unit consists of a MLP whose input is:

- The observed features and
- the outputs of all previously trained learners.

The output of the DSN is the output of the last unit.







#### 2. Boosting

- Ensemble method in which weak learners are sequentially trained using information from the aggregation of all previously trained units.
  - Samples are weighted using a emphasis function.
- The output of the ensemble is a linear combination of all unit outputs.
- Resistant to overfitting.





## THE REPORT OF THE PARTY OF THE

#### 3. Boosted Aggregated Deep Stacked Networks

Combination of DSNs and Boosting by means of an aggregated output injection and a flexible emphasis function. Each unit has 2 additional sources of information:

- Injection of the aggregated output of all previously trained units
- Emphasis function

 $\alpha, \beta$ : CV

$$p(\mathbf{x}^{(n)}) = \frac{\alpha}{N} + \frac{1-\alpha}{Z_l} \left[ \beta \left( t^{(n)} - \overline{f_l}(\mathbf{x}^{(n)}) \right)^2 / 4 + (1-\beta) \left( 1 - \overline{f_l}(\mathbf{x}^{(n)})^2 \right) \right]$$





# TO STATE OF THE PARTY OF THE PA

#### 4. Experiments

Experiments performed over a set of modetate size binary problems.

Units are MLP sequentially trained using Online Back-Propagation.

Explored values of the non-trainable elements in the CV-search are:

- Number of hidden neurons from 2 to 30.
- Number of epochs from 25 to 200.

|     | B1-ADSN        | B2-ADSN        | ADSN           | B1             | B2             |
|-----|----------------|----------------|----------------|----------------|----------------|
| aba | $18.4 \pm 0.2$ | $18.5 \pm 0.2$ | $18.6 \pm 0.2$ | $19.1 \pm 0.1$ | $19.0 \pm 0.1$ |
| ima | $2.9 \pm 0.3$  | $2.9 \pm 0.4$  | $3.0 \pm 0.3$  | $3.2 \pm 0.5$  | $3.2 \pm 0.2$  |
| hep | $6.6 \pm 0.0$  | $6.7 \pm 0.4$  | $8.0 \pm 0.4$  | $6.6 \pm 0.5$  | $6.7 \pm 0.5$  |

TABLE II

<sup>%</sup> Average error rate  $\pm$  standard deviation for the considered architectures



# ALOS HIS

#### 5. Properties of the B-ADSNs

- Performance varies smoothly with  $\alpha$ ,  $\beta$  (some discontinuity for extreme values of alpha).
- Harder problems require extreme values of  $\alpha$ .
- Smaller problems (hep) requiere an intermediate  $\alpha$  which seems to fighthe the initial overfitting.
- The value of  $\beta$  is problem dependent.



Fig. 2.  $\,\%\,$  average accuracy rate for the Ima dataset with respect to  $\,\alpha\,$  and  $\,\beta\,$ .



Fig. 3. % average accuracy rate for the Hep dataset with respect to  $\alpha$  and  $\beta$ .

### 6. Conclusions



- The combination of the expressivity of DSNs and the resistance to overfitting of boosting can be succesfull.
- A flexible emphasis function is required to modetate the boosting contribution.
- There are many other possible combination of boosting and deep learning.