Matematik A E2020 Uge 37, Forelæsning 1

Afsnit 2.6-2.7 og 3.1-3.6 Ligninger og uligheder

Kort om sidste uge og denne uge

Den første uge

- Grundlæggende begreber i mængdelære og logik
- (Mere abstrakt) Generelle bevistyper og induktion
- Algebra: Potenser, rødder, brøker og sum-notation
 - Husk ekstra video om summer

Denne uge

- I dag: Ligninger og uligheder (3.1-3.6 og 2.6-2.7)
 - Bemærk: Lærebogstoffet dækker også ting, som I bør kunne (fx andengradsligninger) og derfor gennemgås alt ikke i detaljer. Brug selv tid på genopfriskning, hvis nødvendigt!
- Forelæsning 2: Funktioner! Det generelle funktionsbegreb og start på funktioner af en (reel) variabel.

Ligninger (3.1-3.5)

Eksempel:
$$4(x-2) = \frac{1}{3}x + 3$$

Løsning: Find alle værdier af x, der løser ligningen

Forudsætninger (det skal I kunne!):

- Løse lineære ligninger som eksemplet ovenfor
- Løse andengradsligninger som fx $2x^2 + x 1 = 0$
- Følgende regneoperationer på begge sider ændrer ikke løsningerne til en ligning (ækvivalente ligninger):
 - Addere (eller subtrahere) samme tal
 - Multiplicere (eller dividere) med samme tal ≠0

Øvelse: Lign. med parametre

Løs følgende ligninger mht x:

•
$$4(x-2) = \frac{1}{3}x + 3a$$
 (*a* er parameter)

$$(=)$$
 $12x - 24 = x + 9a$

$$(=)$$
 $11x = 9a+24$

$$(=)$$
 $X = \frac{99 + 24}{11}$

•
$$x^2 + A(2x - 3A) = 0$$

$$x^{2} + (2A)x - 3A^{2} = 0$$

•
$$x^2 + A(2x - 3A) = 0$$
 $(A^{76} \text{ param.})$ pingo.coactum.de $(A^{76} \text{ param.})$ pingo.coactum.de

$$X = \frac{-2A + \sqrt{(2A)^2 - 4 \cdot 1 \cdot (-3A^2)^2}}{2}$$

$$=-A + \frac{\sqrt{16A^3}}{2} = -A + 2A$$

Andre ligninger

• Eksempler: $\frac{x}{x-2}+1=\frac{b}{2-x}$ (b er parameter) $z(1+z^4)\sqrt{z+1}=0$ $y^{\frac{2}{3}}-3y^{\frac{1}{3}}+2=0$ $x+2=\sqrt{4-x}$

- Vi har ikke generel metode til sådanne ligninger
- Ved at kigge på eksemplerne ser vi forskellige "angrebsmetoder" (og faldgruber)

$$\frac{x}{x-2} + 1 = \frac{b}{2-x} \quad (b \text{ er parameter}) \xrightarrow{x \neq 2}$$

$$\times + 1 \cdot (x-2) = \frac{b}{2-x} (x-2) = -b$$

$$2x = 2-b$$

$$x = \frac{2-b}{2} = |-\frac{b}{2}|, \quad b \neq -2$$

$$b = -2 : \text{ Tugen losn}$$

$$z(1+z^4)\sqrt{z+1}=0$$
Nulreglen!
$$z=0 \text{ eller } 1+z^4=0 \text{ eller } \sqrt{z+1}=0$$

$$z=0 \text{ eller } 2=-1$$

$$y^{\frac{2}{3}} - 3y^{\frac{1}{3}} + 2 = 0$$

Substitution: U=43

$$0^2 - 30 + 2 = 0$$

$$v = 1$$
 eller $v = 2$

$$y^{\frac{1}{3}} = 1$$
 eller $y^{\frac{1}{3}} = 2$
 $y = 1$ eller $y = 2^3 = 8$

Brug af implikationspile

Lad os løse det sidste eksempel ved brug af implikationspile:

$$x + 2 = \sqrt{4 - x} \qquad x \le 4$$

$$\Rightarrow (x+z)^2 = 4 - x \qquad ("=" galder ikke.")$$

$$\stackrel{(=)}{x^2 + 4x + 4} = 4 - x$$

$$\stackrel{(=)}{x^2 + 5x} = 0$$

$$\stackrel{(=)}{x} \times (x+5) = 0$$

$$\stackrel$$

Vigtige pointer:

 Vær forsigtig! Vær sikker på, at hver enkelt implikation er sand, ikke mindst ved brug af biimplikationer.

• "Gør prøve", dvs check om de mulige løsninger faktisk er løsninger! Strengt nødvendigt med mindre alle "skridt" er biimplikationer. Og altid en god ide!!

To ligninger med to ubek. (3.6)

Anne og Bo køber slik. Anne køber 5 vingummimus og 3 lakridshjul for ialt 18 kr. Bo køber 3 vingummimus og 6 lakridshjul for ialt 15 kr.

Hvor meget koster hhv vingummimus og lakridshjul pr stk? Opstil problemet som 2 ligninger m 2 ubekendte.

$$5x + 3y = 18$$

 $3x + 6y = 15$

$$5x + 3y = 18$$
 (1)
 $3x + 6y = 15$ (2)

• Løsning ved "substitutionsmetoden"

Isolér y i (1):
$$-7y = \frac{18-5x}{3}$$

Sæfindi (2): $3x + 6\left(\frac{18-5x}{3}\right) = 15$
 $3x + 36 - 10x = 15$
 $-7x = -21$
 $x = 3$

12

$$5x + 3y = 18$$

 $3x + 6y = 15$

• Løsning ved "lige store koefficienters metode"

$$-\frac{3}{3} \times + 6y = 36$$

$$3 \times + 6y = 15$$

$$7 \times = 21 \qquad \Rightarrow x = 3$$
Set x-vard: ind i en of de to light: $y=1$

NB: Generel løsning i bogen (s. 85), men typisk nemmere at bruge en af de to metoder direkte

Uligheder (2.6)

Eksempel:
$$4(x-2) > \frac{1}{3}x + 3$$

$$(=)$$
 $/2x - 24 > x + 9$

$$(=)$$
 /(x > 33

$$(=)$$
 $x > 3$

Generelle regler for uligheder (s. 44):

$$a > b \text{ og } b \ge c \quad \Rightarrow \quad a > c$$

$$a > b \text{ og } c \ge d \implies a + c > b + d$$

$$a > b \text{ og } c > 0 \implies ac > bc$$

$$a > b \text{ og } c < 0 \implies ac < bc$$

Løsning vha "fortegnsdiagram"

$$\frac{(x+1)(3-x)}{x-1} > 0 \qquad (x \neq 1)$$

$$\frac{(x+1)(3-x)}{x-1} \rightarrow x$$

$$\frac{(x+1)(3$$

Nummerisk værdi (2.7)

Den nummeriske (absolutte) værdi af reelt tal a er:

$$|a| = \begin{cases} a & \text{hvis } a \ge 0 \\ -a & \text{hvis } a < 0 \end{cases}$$

Som fkt:

(standard-eksempel på kont fkt, der ikke er differentiabel)

Ligning og ulighed med numm. værdi

$$|2x - 1| = 4$$

(=)
$$2x-1=-4$$
 eller $2x-1=4$

$$(=)$$

$$X = -\frac{3}{2} \quad \text{eller} \quad X = \frac{5}{2}$$

$$|2x - 1| \ge 4$$

$$(=) \qquad \times \leq -\frac{3}{2} \qquad \text{eller} \qquad \times \geq \frac{5}{2}$$

Uligh. er opfyldt for alle
$$x \in (-\infty, -\frac{3}{2}] \cup [\frac{5}{2}, \infty)$$

Intervaller - notation (s. 50)

$$(a,b)=\{x\in\mathbb{R}\ |\ a< x< b\}$$
 — Åbent interval
$$[a,b]=\{x\in\mathbb{R}\ |\ a\leq x\leq b\}$$
 — Lukket interval
$$[a,b)=\{x\in\mathbb{R}\ |\ a\leq x< b\}$$

$$(a,b)=\{x\in\mathbb{R}\ |\ a< x\leq b\}$$
 Halv-åbne intervaller
$$(a,b]=\{x\in\mathbb{R}\ |\ a< x\leq b\}$$