Das Hooksche Gesetz

Eine Feder mit der Federkonstanten D wird durch eine Kraft F um die Strecke Δx ausgelenkt. Es gilt:

$$F = D \cdot \Delta x \tag{1}$$

Der Versuch Das Hooksche Gesetz ist ein 'interaktives Bildschirmexperiment' der Uni Duisburg-Essen. Sie finden es unter dem Link

http://kallisto.didaktik.physik.uni-due.de/IBEs/Hooke.php

- Beschreiben Sie den Versuch in knappen Worten
- Schreiben Sie eine kurze Versuchsdurchführung (2-3 Sätze sind ausreichen)
- \bullet Bestimmen Sie die Federkonstante D der Feder aus
 - a) einer Mittelwertsbildung
 - b) einer linearen Ausgleichsrechnung

nehmen Sie hierzu 10 Messwerte auf.

Datum: 10.11.73

Versuchsgruppe: 17

F=D.2x E>D=F

	$\Delta x \text{ [cm]}$	F [N]	D[#)
	2,5	0,07	28
	4,5+95	0,13+00	28,89
	9,0+0,5	0,27+0,0	30
	13,5 tos	0,39.	28,89
	27,0+05	0,62	29,52
	23,5+08	0,691	29,36
	29,0+0,5	0,261	29,66
	34,5+05	1,03	29,86
	38,0400	1,13 .	29,74
	42, Stor	1,26:	29,65
\triangle	x=21,8	F=6,18	D=29,357

$$\Delta D = \sqrt{\left(\frac{G}{OE}\left(\frac{E}{E_{F}}\right)\right)^{2} \cdot \left(\triangle F\right)^{2} + \left(\frac{G}{OE}\left(\frac{E}{E_{F}}\right)\right)^{2} \cdot \left(OE\right)^{2}}$$

$$= \sqrt{\left(\frac{A}{27.8}\right)^{2} \cdot \left(OO_{1}\right)^{2} + \left(-\frac{G_{1}A_{F}}{(27.8)^{2}}\right)^{2} \cdot \left(OE\right)^{2}}$$

$$= 6.5791.10^{-3}$$