Ko-Active Learning

Jaeyoeng Lee, Mose Park

Department of Statistical Data Science
University of Seoul

Index

1 Introduction

2 Problem

3 Methodology

4 Experiment

Introduction

Main concepts

Our Task

- ► KoBERT → KcBERT, Because it was trained on online news comments.
- ▶ User review texts are similar to online news comments.

Problem

Problem

* rating ratio

Population

- ► Label imbalance
- ▶ There are many high scores and few low scores.

S Methodology

Benchmark Paper

Class-Balanced Active Learning for Image Classification

Javad Zolfaghari Bengar^{1,2} Joost van de Weijer^{1,2} Laura Lopez Fuentes¹
Bogdan Raducanu^{1,2}

Computer Vision Center (CVC)¹, Univ. Autònoma of Barcelona (UAB)²

{jzolfaghari, joost, llopez, bogdan}@cvc.uab.es

Active Learning

- ► Label imbalance
- ▶ There are many high scores and few low scores.

Sampling method - Random

▶ Random sampling selects samples purely at random without considering the data imbalance.

Sampling method - Entropy

 P^Tz : The distribution of the sampled data

 $||\Omega(c) - P^T z||_1$:L1 norm

- ▶ Only entropy → Not penalty term in objective function.
- \blacktriangleright Imbalance + Entropy \rightarrow There is a penalty term in the objective function.

Experiment

Evaluation

► There was a very slight improvement.

Random vs Entropy

- ▶ Random: Maintain a balanced distribution of data across all classes.
- ▶ Entropy: Focus on samples where the model is uncertain.

Entropy vs Imbalance Entropy

▶ Imbalance + Entropy : Effective at reducing model uncertainty while maintaining data balance.