Week 15 Limits and differentiation Lecture note

Notebook: Computational Mathematics

Created: 2020-04-21 2:48 PM **Updated:** 2020-07-23 4:58 PM

Author: SUKHJIT MANN

URL: https://www.coursera.org/learn/uol-cm1015-computational-mathematics/home/week/13

Topic:

Limits and differentiation

Course: BSc Computer Science

Class: Computational Mathematics[Lecture]

Date: July 23, 2020

Essential Question:

Cornell Notes

What are limits and derivatives and how do they relate to the notion of continuity of a function?

Questions/Cues:

- What is the definition of a limit for a sequence?
- What is the definition of a limit and continuity for a function?
- What is the slope of a straight line?
- What is the definition of the derivative?

Notes

Definition of Limit for a sequence

n=0 1 2 3 4 5 6 7 8100..... Examples a_n=n/(n+1) 0, 1/2, 2/3, 3/4, 4/5, 5/6, 6/7, 7/8, 8/9.......100/101....

In general: $\lim_{n\to\infty} a_n = L$ if $\forall \epsilon > 0 \exists N : \text{for } n > N = |a_n - L| < \epsilon$

If limit exists finite, the sequence is convergent a_n=n/(n+1) converges to 1

Definition of Limit for a sequence

If limit doesn't exist the sequence is said to be <u>divergent</u>. Examples:

$$n=0$$
 1 2 3 4 5 6 7....
2) $a_n = \sin(\pi n/2) = 0$, 1, 0, -1, 0, 1, 0, -1...does not converge

Definitions of limit and continuity for a function

$$\lim_{x\to x0} f(x)=L$$

if
$$\forall \ \epsilon > 0 \ \exists \ \delta > 0$$
 ; for $|x-x_0| < \delta \ \rightarrow |f(x)-L| < \epsilon$

If limit exists finite and coincides with the value of the function in \mathbf{x}_0 , i.e. if

$$f(x_0)=\lim_{x\to x_0} f(x)=L$$

→ the function is said to be <u>continuous</u> in x₀

Example

 $f(x)=4-3x^2$ calculate $\lim_{x\to 1} f(x)$

x=0.5	0.9	0.99	0.999	1	1.001	1.01	1.1
f(x)=9.25	1.57	1.06	1.000	2	0.993	0.94	0.37

Left and right limits:

left limit: $\lim f(x)$ (blu arrow/numbers)

right limit: $\lim_{x \to \infty} f(x)$ (green arrow/numbers)

Limit exists if and only if $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^+} f(x) = L$ in our case $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} f(x) = 1 = \lim_{x \to 1} f(x)$

f(1)=4-3=1 → function is continuous in x=1

Discontinuous functions

Example
$$y=f(x) = \begin{cases} x & x \ge 0 \\ 1-x & x < 0 \end{cases}$$
 $\lim_{x \to 0} f(x)$?

Kn-1	-0.5	-0.1	-0.01	0	0.01	0.1	0.5
f(x)=2	1.5	1.1	1.01	2	0.01	0.1	0.5

$$\lim_{x \to 0} f(x) = 1 \qquad \lim_{x \to 0} f(x) = 0$$

Left and right limits are different

→ limit does not exist, → f not continuous in x=0

Discontinuous functions

$$y=f(x) = \begin{cases} x^2 & x < 1 \\ 1 + 2x - x^2 & x \ge 1 \end{cases}$$
 $\lim_{x \to 1} f(x)$?

x=0	0.5	0.9	0.99	1	1.01	1.1	1.5
f(x)=0	0.25	0.81	0.98	25	1.99	1.9	1.75

$$\lim_{x \to \infty} f(x) = 1$$

$$\lim_{x\to 1^+} f(x)=2$$

Left and right limits are different

→ limit does not exist, → f not continuous in x₀=1

Discontinuous functions

$$y=f(x) = \begin{cases} x^2 & x < 0 \\ 1 & x = 0 \\ x^2 & x > 0 \end{cases} \quad \lim_{x \to 0} f(x)?$$

x=-1	-0.5	-0.1	-0.01	0	0.01	0.1	0.5
f[x]=1	0.25	0.01	0.0001	?	0.0001	0.01	0.25

$$\lim_{x \to 0} f(x) = 0 = \lim_{x \to 0} f(x) \neq f(0) = 1$$

Left and right limits are equal

- → limit exists but different from f(0)
- → f not continuous in x₀=0

1)
$$f(x) = \begin{cases} |x| \times +0 \\ 0 \\ x = 0 \end{cases}$$
 $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} -x = 0$
 $\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} x = 0 = 0$
 $\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} x = 0 = 0$
 $\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} x = 0 = 0$

This is called a removable discontinuity

2)
$$f(z) = \begin{cases} 65x & 260 \\ 2 & 230 \end{cases}$$

$$\lim_{x \to 0^{-}} f(z) = \lim_{x \to 0^{-}} \cos x = 1$$

$$\lim_{x \to 0^{-}} f(z) = \lim_{x \to 0^{-}} x = 0$$

$$\lim_{x \to 0^{+}} f(z) = \lim_{x \to 0^{+}} x = 0$$

• This is a jump discontinuity

3)
$$f(x) = \frac{1}{x-1}$$

 $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{1}{x-1} = \frac{1}{0}$
 $\lim_{x \to 1^{+}} f(x) = \frac{1}{0} = 10$

o This is called an essential singularity or infinite discontinuity

Defining the slope (or gradient)

$$\begin{array}{ll} P(x,y) & C'(x+\Delta x',y+\Delta y') \\ y = f(x) & y + \Delta y' = f(x+\Delta x') \rightarrow \Delta y' = f(x+\Delta x') - f(x) \end{array}$$

Δy'-Δx' tan α' -+ tan α'-Δy'/Δx'

for $Q(x + \Delta x, y + \Delta y) \rightarrow \Delta y = f(x + \Delta x) - f(x)$ $\Delta y = \Delta x \tan \alpha \implies \tan \alpha = \Delta y / \Delta x$

Slope tangent in P (red line) →

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$f'(x) = \frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$\begin{aligned}
f'(x) &= k \\
f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} &= \frac{x+h - x}{h} = 1
\end{aligned}$$

$$f'(x) = \frac{d(x)}{dx} - 1$$

$$f(x) = \frac{1}{x} \qquad f'(x) = \lim_{h \to \infty} \frac{f(x+h) - f(x)}{h}$$

$$f(x+h) = \frac{1}{2x+h}$$
 $f(x+h)-f(x) = \frac{1}{2xh} - \frac{1}{2x}$

$$\frac{(x-(x+h))}{(x+h)} = \frac{-1}{xx(x+h)} = -\frac{1}{x(x+h)}$$

$$\lim_{y\to 0} -\frac{1}{2(x+y)} = -\frac{1}{x^2} = 0$$
 $\left(\frac{1}{x}\right) = -\frac{1}{x^2}$

$$y = f(x) = x^{n}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \frac{(x+h)^{n} - f(x)^{n}}{h}$$

$$(x+h)^{n} = (x^{n} + mx^{n} + h + C_{n}x^{n} +$$

$$f'(x) = \log x$$

$$f'(x) = \lim_{h \to 0} \frac{\{(x+h) - f(x)\}}{h} = \lim_{h \to 0} \frac{\{x+h\} - f(x)\}}{h}$$

$$= \lim_{h \to 0} \frac{\{(x+h) - f(x)\}}{h} = \lim_{h \to 0} \frac{\{x+h\} - f(x)\}}{h}$$

$$= \lim_{h \to 0} \frac{\{(x+h) - f(x)\}}{h} = \lim_{h \to 0} \frac{\{x+h\} - f(x)\}}{h}$$

$$= \lim_{h \to 0} \frac{\{(x+h) - f(x)\}}{h} = \lim_{h \to 0} \frac{\{(x+h) - f(x)\}}{h}$$

$$= \lim_{h \to 0} \frac{\{(x+h) - f(x)\}}{h} + \lim_{h \to 0} \frac{\{(x+h) - f(x)\}}{h} = \lim_{h$$

Summary

In this week, we learned about limit of a sequence, the limit/continuity of a function, discontinuous functions, the slope of a straight, the derivative and the derivative from first principles of some common functions.