Introdução

Michael Alexandre Costa

Prof. Dr. André Rauber Du Bois (Orientador)

Mestrado em Computação Centro de Desenvolvimento Tecnológico Universidade Federal de Pelotas macosta@inf.ufpel.edu.br

29 de agosto de 2020

Próximas Atividades

- 1 Introdução
- **2** Memórias Transacionais
- 3 Escalonadores
- 4 Arquiteturas
- **5** Objetivos
- 6 Próximas Atividades
- 7 Cronograma de Atividades

Memórias Transacionais Escalonadores Arquiteturas Objetivos Próximas Atividades Cronograma de Atividades

Introdução

Introdução

Motivação

- Programação Paralela;
- Memórias Transacionais;
- Escalonadores de Transações; e
- Arquiteturas NUMA.

Uso Comercial

- Wyatt Technology;
- Sistema de coleta e análise de dados na biomedicina; e
- Apresentam problemas de desempenho conforme aumentam o paralelismo.

Escalonador de Transações para arquitetura NUMA

Memórias Transacionais Escalonadores

Introdução

Objetivos

- Analisar o comportamento de escalonadores de transações em arquiteturas NUMA; e
- Fornecer um escalonador de transações voltado a arquitetura NUMA.

Próximas Atividades

Memórias Transacionais

Características

Introdução

- Fornece abstração de código;
- Reuso de código; e
- Ausência de deadlocks.

Transações

- Atomicidade;
- Consistência; e
- Isolamento.

Próximas Atividades

Memórias Transacionais

Memórias Transacionais

Controle das transações

- Versionamento de Dados:
 - Adiantado / Tardio.
- Detecção de Conflitos:
 - Adjantado / Tardio.
- Gerenciamento de Contenção:
 - Suicide, Delay, Backoff ou Modular.

Memórias Transacionais

Versionamento Adiantado

- Escreve os dados especulativos direto na memória; e
- Em caso de um cancelamento, a operação deve ser desfeita.

Versionamento Tardio

- Escreve os dados especulativos em um buffer local; e
- Em caso de efetivação, os dados devem ser copiados para a memória.

Introdução

Detecção de Conflitos Adiantada

Detecta conflito no momento do acesso a memória.

Detecção de Conflitos Tardia

Detecta conflito somente na validação.

Introdução

Gerenciador de Contenção

- Possui ação reativa;
- Suicide, Delay, Backoff ou Modular.

Gerenciador de Contenção

- Modular:
 - Suicide, Delay, Aggressive, e Timestamp.

Escalonador de Transações para arquitetura NUMA Seminário de Andamento

Problemas

Introdução

- Somente reinicia a transação conflitante;
- Não evita que conflitos futuros aconteçam; e
- Em ambientes de alta contenção, tende a perder desempenho.

Memórias Transacionais Escalonadores

Introdução

Escalonadores de Transações

- Buscam reduzir os números de conflitos;
- Utilizam diferentes Heurísticas de escalonamento; e
- Serializa as transações conflitantes.

Escalonador de Transações para arquitetura NUMA Seminário de Andamento Memórias Transacionais Escalonadores

Escalonadores

Classificação das técnicas

- Baseado em Heurística:
 - Feedback:
 - Predição;
 - · Reativo: e
 - Heurística Mista.
- Baseado em Modelo:
 - · Aprendizado de Máquina;
 - Modelo Analítico: e
 - Modelo Misto.

Memórias Transacionais Escalonadores Arquiteturas Objetivos Próximas Atividades Cronograma de Atividades

Escalonadores

Escalonador de Transações para arquitetura NUMA

Introdução

Trabalhos Relacionados

Tabela: Algoritmos e técnicas de escalonamento

Escalonador	Técnica				
ATS	Feedback				
Probe	Feedback				
F2C2	Feedback				
Shrink	Predição				
SCA	Predição				
CAR-STM	Reativo				
ReISTM	Reativo				
LUTS	Heurística Mista				
ProVIT	Heurística Mista				
SAC-STM	Aprendizado de Máquina				
CSR-STM	Modelo Analítico				
MCATS	Modelo Analítico				
AML	Modelo Misto				

UF3

Seminário de Andamento

Memórias Transacionais **Escalonadores** Próximas Atividades

Escalonadores

Trabalhos Relacionados

Tabela: Algoritmos que estamos trabalhando

Escalonador	Técnica			
Probe	Feedback			
F2C2	Feedback			
Shrink	Predição			
MCATS	Modelo Analítico			

Escalonador de Transações para arquitetura NUMA

Próximas Atividades

Escalonadores

Shrink

- Bloom filter: Utiliza os dados de leitura e escrita por thread:
 - Conjunto de leitura: Localidade temporal; e
 - Conjunto de escrita: Ocorre apenas nos aborts.
- Serialization affinity: Serializa uma thread de acordo com a contenção do sistema; e
- O escalonador é ativado com base no número de contenção existente.

Memórias Transacionais Escalonadores

UMA

Introdução

- Uniform Memory access;
- Possui um único barramento de acesso à memória; e
- Único custo de acesso à memória.

NUMA

- Non-uniform Memory access;
- Possui mais de um barramento de acesso à memória; e
- O custo de acesso à memória é diferente conforme o núcleo utilizado.

Memórias Transacionais **Escalonadores**

Introdução

Objetivos

- Estudar o comportamento dos escalonadores na arquitetura NUMA;
- Inserir as novas regras de escalonamento para arquitetura NUMA.

Memórias Transacionais Escalonadores

Introdução

Ferramentas utilizadas

- Shrink;
- TinySTM;
- Hwloc; e
- STAMP.

Escalonador de Transações para arquitetura NUMA

Seminário de Andamento 18

Memórias Transacionais Escalonadores

Introdução

O que foi feito

- Foi implementado um escalonador com filas de threads para cada núcleo:
- Foi feito um escalonador que migra threads;
- Foram estudados os algoritmos de escalonamentos atuais; e
- Foi desenvolvido um novo fluxo de execução para o Shrink.

Memórias Transacionais Escalonadores

Introdução

O que será feito

- Modificar a implementação de threads do Shrink para utilizar filas;
- Coletar informações da latência de acordo com o Bloom Filter; e
- Adicionar a migração de threads ao Shrink.

20

Escalonador de Transações para arquitetura NUMA

Memórias Transacionais Escalonadores

Introdução

Modificações e nomenclatura

- Cada núcleo possuirá uma fila de threads que chamamos de Qn;
- O escalonador possuirá uma fila de threads inicial chamada de Pt; e
- Uma Thread (Tn) pode ter n transações que chamamos de Tr.

Metodologia

Introdução

Figura: Shrink

Metodologia

Introdução

Arquiteturas

Figura: Modificações

Arquiteturas

Introdução

Atividades a serem realizadas

- Modificar o escalonador Shrink;
- Executar os testes;
- Analisar resultados: e
- Escrever a Dissertação.

Cronograma

Memórias Transacionais

- Modificações no Shrink coletando informações sobre a arquitetura;
- 2 Modificações no método de escalonamento do Shrink;
- Validação do novo método de escalonamento;
- 4 Execução de testes em arquitetura NUMA e UMA;
- 6 Coleta de resultados obtidos por meio dos testes;
- 6 Escrita da dissertação; e
- Tentrega e apresentação da dissertação.

Cronograma

Tabela: Cronograma de atividades mensal para o restante do mestrado

Ano			2021				
Mês	Ago	Set	Out	Nov	Dez	Jan	Fev
1							
2							
3							
4							
5							
6							
7							

26

Introdução

Michael Alexandre Costa

Prof. Dr. André Rauber Du Bois (Orientador)

Mestrado em Computação Centro de Desenvolvimento Tecnológico Universidade Federal de Pelotas macosta@inf.ufpel.edu.br

29 de agosto de 2020

