Typessellting itesit
$$\sum_i^n \neq 60 \pm \infty \pi \triangle \neg \approx \sqrt{j} \int h \leq 2\pi$$
 replies $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ PP $\mathrm{d}x$

$$\alpha(x) = \begin{cases} x \\ \frac{1}{1 + e^{-kx}} \\ \frac{e^x - e^{-x}}{e^x + e^{-x}} \end{cases}$$

$$\begin{split} \langle x \rangle \\ \chi_{\rho}(ghg^{-1}) &= \operatorname{Tr}(\rho_{ghg^{-1}}) = \operatorname{Tr}(\rho_{g} \circ \rho_{h} \circ \rho_{g}^{-1}) = \operatorname{Tr}(\rho_{h}) \overset{\operatorname{Tr}(AB) = \operatorname{Tr}(BA)}{=} \chi_{\rho}(h) \oplus_{x \in X} \\ \operatorname{Mat}(\rho_{g}) &= (a_{ij}(g))_{\substack{1 \leq i \leq d \\ 1 \leq j \leq d}} \text{ et } \operatorname{Mat}(\rho_{g}') = (a'_{ij}(g))_{\substack{1 \leq i' \leq d' \\ 1 \leq j' \leq d'}} \\ \int_{a}^{b} \mathbb{R}^{2} g(u, v) \, \mathrm{d}P_{XY}(u, v) = \iint_{g(u, v)} g(u, v) \, \mathrm{d}\lambda(u) \, \mathrm{d}\lambda(v) \\ \lim_{x \to \infty} f(x) \\ \iiint_{V} \mu(t, u, v, w) \, dt \, du \, dv \, dw \\ \sum_{1 \leq j \leq n} 2^{-n} = 1 \end{split}$$

 $l^2(\mathbb{N}) = 12n$

Chapitre 1

cha

1.1 sec

Exemple 1. $l^2(\mathbb{N}) = \{ n \in \mathbb{N} \mapsto f(n) \in \mathbb{C} \text{ t.q. } \sum_{n \geq 0} |f(n)|^2 < \infty \}$ $l^2(\mathbb{N})$ est \mathbb{C} espace. $\forall f, g \in l^2(\mathbb{N})$:

$$(f|g)_{l^2(\mathbb{N})} \stackrel{\text{def}}{=\!\!\!=\!\!\!=} \sum_{n>0} f(n)\overline{g(n)}.$$

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de Cauchy dans $l^2(\mathbb{N})$:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > p \ge N : \quad ||f_n - f_p||_{l^2(\mathbb{N})} < \varepsilon.$$
 (*)

Question. $\exists f \in l^2(\mathbb{N})$ telle que $\lim_{n \to \infty} f_n = f$?

$$(*) \Leftrightarrow \forall \varepsilon > 0 \ \exists N \ t.q. \ \forall n > p \ge N \ ||f_n - f_p||^2 = \sum_{j \ge 0} |f_n(j) - f_p(j)|^2 \le \varepsilon^2$$

 $\Rightarrow |f_n(j) - \overline{f_p(j)}| \le \varepsilon \ \forall j \in \mathbb{N}.$

 $\Rightarrow \forall j \in \mathbb{N} \ (f_n(j))_{n \in \mathbb{N}}$ est de Cauchy dans \mathbb{C} qui est complet, donc $\exists f(j) \in \mathbb{C}$ telle que $\lim_{n\to\infty} |f_n(j) - f(j)| = 0.$

Il faut montrer que
$$f$$
 est la limite dans $l^2(\mathbb{N})$ de la suite f_n . $\forall \varepsilon > 0 \ \exists N \ \text{t.q.} \ \forall n > p \geq N \sum_{j \geq 0} |f_n(j) - f_p(j)|^2 \leq \varepsilon^2$

$$\Rightarrow \forall J \in \mathbb{N} \underbrace{\sum_{j=0}^{J} |f_n(j) - f_p(j)|^2}_{\text{somme partielle}} \leq \varepsilon^2, \text{ par passage à la limite sur } p : \sum_{j=0}^{J} |f_n(j) - f(j)|^2 \leq \varepsilon^2$$

Conclusion : $\forall \varepsilon > 0 \; \exists N \; \text{telle que} \; \forall n \geq N \; ||f_n - f|| < \varepsilon \Longrightarrow \lim_{n \to \infty} f_n = f.$

Mais $f \stackrel{?}{\in} l^2(\mathbb{N})$.

Vérifions que $f \in l^2(\mathbb{N})$:

$$(\sum_{j\geq 0} |f(j)|^2)^{1/2} = (\sum_{j\geq 0} |f_n(j) - f(j) + f(j)|^2)^{\frac{1}{2}} = ||\underbrace{f - f_n}_{\in l2n} + \underbrace{f_n}_{\in l2n}|| \leq ||f - f_n|| + \underbrace{f_n}_{\in l2n}|| + \underbrace{f_n}$$

$$||f_n|| < +\infty.$$

Theorem 1 (Projection orthogonale). Soit H un espace de Hilbert et C une partie convexe fermée et non vide de H. Alors $\forall x \in H \exists ! y_0 \in C \ t.q$.

- 1. $\operatorname{dist}(x,C) := \inf\{d(x,y), y \in C\} = \inf\{||x-y||_H, y \in C\} = ||x-y_0||_H$
- 2. $\forall y \in C \ \text{Re}(x y_0 | y y_0) \le 0$!?

 y_0 est la projection orthogonale de x sur C.

Remarque.

- 1. C est convexe $si \ \forall x, y \in C \ [x, y] = \{tx + (1 t)y, t \in [0, 1]\} \in C$
- 2. $H = \mathbb{R}^2 : [x, y] \in C$
- 3. $si \ x_0 \in C \ dans \ le \ cas \ y_0 = x_0 \ et \ dist(x_0, C) = 0 = ||x_0 x_0||_H$

Démonstration. Notons par d=d(x,C)>0 $(x\in H\setminus C)$. Soit $y,z\in C$ on pose $b=x-\frac{1}{2}(y+z),\ c=\frac{1}{2}(y-z)$: $||b||=||x-\frac{1}{2}\underbrace{(y+z)}||\geq d$. On a aussi b-c=x-y et

 $b+c = x-z \Rightarrow ||x-y||^2 + ||x-z||^2 = ||b-c||^2 + ||b+c||^2 = (b-c|b-c) + (b+c|b+c) = ||b||^2 + ||c||^2 - (b|c) - (c|b) + ||b||^2 + ||c||^2 + (b|c) + (c|b).$

 $||x-y||^2 + ||x-z||^2 = 2(||b||^2 + ||c||^2) \ge 2d^2 + 2\frac{1}{4}||y-z||^2 \Rightarrow ||y-z||^2 \le 2(||x-y||^2 - d^2) + 2(||x-z||^2 - d^2).$ Pour $n \in N$ $C_n = \{y \in C ||x-y||^2 \le d^2 + \frac{1}{n}\}$ est fermée dans H (boule fermée).

Puisque C est fermé, $C_n = \{y \in H | |x-y||^2 \le d^2 + \frac{1}{n}\} \cap C$ est fermé dans C. De plus : $\delta(n) := \sup\{||y-z||, (y,z) \in C_n \times C_n\} \le \sup\{[2(||x-y||^2 - d^2) + 2(||x-z||^2 - d^2)]^{\frac{1}{2}}, y, z \in C_n \Rightarrow \delta(n) \le \frac{2}{\frac{1}{n}} \to 0 \text{ quand } n \to +\infty.$

H est complet et $C \subset H_x$ c est fermé. C est un espace métrique complet. Il satisfait le critère de Cantor : $\bigcap C_n = \{y_0\}$.

 $|y_0 \in \bigcup_n C_n |d^2 \le ||x - y_0||^2 \le d^2 + \frac{1}{n} \ \forall n \in \mathbb{N}^* = \mathbb{N}$

 $\{0\} \Rightarrow ||x - y_0|| = d^2.$

 $\begin{array}{l} \text{Aadff ii)} : \forall t \in [0,1], \ \forall \in H \ \phi(t) = ||\underbrace{y_0 + t(y - y_0)}_{\in C} - x||^2 = ||y_0 - x||^2 + 2tRe(y_0 - y_0) + 2tRe(y_0 - y_$

 $x|y - y_0| + t^2||y - y_0||^2. \ \phi(0) = d^2 \le \phi(t) \ \forall t \in (0, 1] \Rightarrow \phi'(0) \ge 0. \ \phi'(t) = 2Re(y_0 - x|y - y_0) + 2t||y - y_0||^2. \ \phi'(0) \le 0 \Rightarrow 2Re(y_0 - x|y - y_0) \le 0 \Rightarrow (i).$

Theorem 2 (corollaire). Soit F un sous-espace FERMÉ de H alors : $H = F \bigoplus F^{\perp}$.

Démonstration. — F est convexe puisque $\forall \alpha, \beta \in \mathbb{C} \forall x, y \in F \ \alpha x + \beta y \in F \Rightarrow$ Celaeitvnai.. $\alpha = t, \ \beta = 1 - t \ t \in [0, 1]$.

On peut lu applieuer le Thm 1:

— On a tanga.. $F + F^{\perp} \subset H$ et $F + F^{\perp} = F \bigoplus F^{\perp}$ onu si $x \in F \cap F^{\perp} \Rightarrow (x|x) = 0 = ||x||^2 \Rightarrow x = 0_H$

Soit $x \in H$, et $y_0 \in F$ sa projection an Thegerale : $\forall d \in \mathbb{C}, y \in F, y_0 + dy \in F$ et donc $Re(x - y_0|y_0 + dy - y_0) \le 0 \Rightarrow Re(x - y_0|dy) \le 0$

 $d = (x - y_0|y) \Rightarrow (x - y_0) \dots$

Conclusion $Re(x - y_0|dy)$.. donc $H = F \bigoplus F^{\perp}$.

Définition 1. Dans ces condition, l'application $P: x \in H, x = x_1 + x_2, x_1 \in F, x_2 \in F^{\perp} \stackrel{P}{\mapsto} x_1 \in F$. est le Projection Orthogonal sur F.

Exemple 1.1.1. Montrer que P est linéaire continue et satisfait $P^2 = P$.

Définition 2. Une partie A de H est dite TOTALE si le plus petit sous espace fermé contenant A et H.

H est Séparable si H admet une famille totale dénombrable.

Exemple 2. $H = l^2(\mathbb{N}) : \mathcal{F} = \{e_0, e_1, ...\}$ avec $e_j(i) = \delta_{ij} \to (0, 0, ..., 0, 1, 0, ...0)$. \mathcal{F} est totale. Elle est dénombrable, l2n est séparable.

Theorem 3. Soit H un espace de Hilbert et $A \subset H$:

- 1. $\overline{vect(A)} = (A^{\perp})^{\perp}$
- 2. A est on sous-espace alors $(A^{\perp})^{\perp} = \bar{A}$
- 3. A est totale $\Leftrightarrow A^{\perp} = \{0_H\}$

1.2 Séries dans un espace vectoriel normé

Soit $(E, ||\cdot||_E)$ un espace vectoriel normé (e.v.n).

Définition 3. On appelle SÉRIE de terme général $u_n \in E$ la suite $(S_N)_{N \in \mathbb{N}}$ de E t.q. $S_N = \sum_{n=0}^N u_n$. La série est CONVERGENTE dans $(E, ||\cdot||_E)$ si le suite $(S_N)_{N \in \mathbb{N}}$ admet une limite dans E: S — toute la somme de la somme la série.

Définition 4. Une série $\sum u_n$ est dite Absolument Convergente (AC) si la série $\sum ||u_n||_E$ est convergente dans \mathbb{R}^+ .

Theorem 4. Si E est complet (espace de Banach/Hilbert) Alors toute série AC est convergente et $||\sum_{n=0}^{\infty}|| \le \sum_{n=0}^{\infty}||u_n||$. !?

Démonstration. $J_n = \sum_{n=0}^{N} ||u_n||$ et convergente $\Leftrightarrow (J_n)_{N \in \mathbb{N}}$ est de Cauchy $\forall \varepsilon > 0 \; \exists K \; t.q. \; \forall N > 1$ $P \geq K \; \Rightarrow \; |J_n - J_p| \leq \varepsilon. \; \sum_{j=p+1}^{N} ||u_j|| \leq \varepsilon. \; \text{meus} \; ||S_n - S_p|| = ||\sum_{j=p+1}^{N} u_j|| \leq \varepsilon.$

convergente.

D'au the peut $||S_n|| = ||\sum_{j=0}^n u_j|| \le \sum_{j=0}^n \le \sum_{j=0} ||u_j|| \Rightarrow ||\sum_{j=0} u_j|| \le \sum_{j=0} ||u_j||$. Cqfd.

Définition 5. Une suite $(x_n)_{n\in\mathbb{N}}$ de H est dite Orthogonal si $(x_i|x_j)=0 \ \forall i\neq j$.

Theorem 5. Soit $(a_n)_{n\in\mathbb{Z}}$ une suite orthogonal dans un espace de Hilbert H. Alors le série $\sum x_n$ est convergente $\iff \sum_{n>0} ||x_n||_H^2$ est convergente et

$$||\sum_{n\geq 0} x_n||_H^2 = \sum_{n\geq 0} ||x_n||_H^2.$$

Démonstration. $\forall l > p$ on a $||\sum_{n=l}^{p}||^2 = (\sum_n = e^p x_n | \sum_n = e^p x_n) = \sum_n, n' = l(x_n | x'_n) = \sum_n = l^p ||x_n||^2$ Alors $(x_n)_{n \in \mathbb{N}}$ est de Cauchy $\Leftrightarrow (||x_n||^2)_{n \in \mathbb{N}}$ est de Couchy dans \mathbb{R} .

dans \mathbb{R} .

D'aute peut $S_N = \sum_{n\geq 0}^N x_n = > ||S_N||^2 = \sum_{n\geq 0}^N ||x_n||^2$. Alors $S = \lim S_N = \sum x_n ||S||^2 = ||\lim NS_N||^2 = \lim ||S_N||^2$ par continite de la $||\cdot||$ et donc $||S||^2 = \lim N\sum_n \geq 0^N ||x_n||^2 = \sum_{n\geq 0} ||x_n||^2$

1.3 Sases hilberienes