Introduction to R Software

Introduction to Statistical Functions :::

Bivariate and Three Dimensional Plots

Shalabh

Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Bivariate plots:

Provide first hand visual information about the nature and degree of relationship between two variables.

Relationship can be linear or nonlinear.

We discuss several types of plots through examples.

Plot command:

```
x, y: Two data vectors
plot(x, y)
plot(x, y, type)
```

type	
"p" for p oints	"1" for lines
"b" for b oth	"c" for the lines part alone of "b"
"o" for both 'overplotted'	"s" for stair steps.
"h" for 'histogram' like (or 'high-density') vertical lines	

Plot command:

```
x, y: Two data vectors
plot(x, y)
plot(x, y, type)
```

Get more details from help: help("type")

Other options:

main an overall title for the plot.

suba sub title for the plot.

xlaba title for the x axis.

ylaba title for the y axis.

aspthe y/x aspect ratio.

Example:

Daily water demand in a city depends upon weather temperature.

We know from experience that water consumption increases as weather temperature increases.

Data on 27 days is collected as follows:

Daily water demand (in million litres)

```
water <- c(33710,31666,33495,32758,34067,36069,
37497,33044,35216, 35383,37066,38037,38495,
39895,41311,42849,43038,43873,43923, 45078,
46935,47951,46085,48003,45050,42924,46061)</pre>
```

Temperature (in centigrade)

```
temp <- c(23,25,25,26,27,28,30,26,29,32,33,34,35,38,39,42,43,44, 45,45.5,45,46,44,44,41,37,40)
```

Plot command:

x, y: Two data vectors

Various type of plots are possible to draw.

plot(x, y)

plot(water, temp)

plot(water, temp, "1")

"1" for lines,

plot(water, temp, "b")

"b" for both – line and point


```
plot(water, temp, "o")
```

"o" for both 'overplotted'

plot(water, temp,

"h" for 'histogram'

like (or 'high-density')

vertical lines

10

```
plot(water, temp, "s")
```

"s" for stair steps.

> plot(water, temp, xlab=" Daily Water
Consumption ", ylab=" Day Temperature ", main="
Daily Water Consumption versus Day
Temperature")

Smooth Scatter plot

scatter.smooth(x,y) provides scatter plot with smooth curve

Example: scatter.smooth(water,temp)

Smooth Scatter plot

Other options are available.

```
scatter.smooth(x, y = NULL, span = 2/3, degree =
1, family = c("symmetric", "gaussian"), xlab =
NULL, ylab = NULL, ylim = range(y, pred$y, na.rm
= TRUE), evaluation = 50, ..., lpars = list())
```

Smooth Scatter plot

Example:

```
> scatter.smooth(water, temp, lpars = list(col =
"red", lwd = 3, lty = 3))
```


15

Matrix Scatter plot

The command pairs() allows the simple creation of a matrix of scatter plots.

Matrix Scatter plot

> pairs(cbind(water,temp), labels=c("Daily
Water Demand", "Day Temperature"))

3 Dimensional Scatter Plot:

scatterplot3d() Plots a three dimensional (3D) point cloud

```
> install.packages("scatterplot3d")
 library(scatterplot3d)
> setwd("C:/RCourse/")
> data3d <- read.csv("data-age-height-weight.csv")</pre>
> data3d
       Height..cms.. Weight.kg.. Age.years.
            100
                           28
                                        5
            120
                                        8
                          35
3
            150
                          55
                                       15
            176
                          74
                                       18
5
            180
                                       25
                          85
```

3 Dimensional Scatter Plot:

> scatterplot3d(data3d[,1:3])

3 Dimensional Scatter Plot:

Direction of the figure can be changed.

> scatterplot3d(data3d[,1:3], angle = 120)

More functions

- contour() for contour lines
- dotchart() for dot charts (replacement for bar charts)
- image() pictures with colors as third dimension
- mosaicplot() mosaic plot for (multidimensional) diagrams
 of categorical variables (contingency tables)
- persp() perspective surfaces over the x-y plane

Multiple Bar plots are possible

Death rates in Virginia 1940

Grouped box plots are possible

Net rent per sqm stratified by number of rooms

