Exam 3: 2013 mean 71 5-year mean 73 2014 mean 77 median 80

Vesterday Recap:

Avomatic: cyclic, contiguosis, planar arrays porbs, 4n+2

Autiaromatic = BAD, 4n

Et: Dt (D2504)

Ott (C12, A1C13)

Brt (Br2, FeBr3)

Not (HNO3, H2503)

Electrophilic Aromatic Substitution:

Nitration and Sulfonation

How can we replace a hydrogen (H⁺) with a nitro group (NO₂⁺)?

How can we replace a hydrogen (H+) with a sulfonic acid group (SO₃H+)?

How can we replace a hydrogen (H+) with a sulfonic acid group (SO₃H+)?

$$SO_3 + H_2SO_4 \rightarrow O_3 + O_4 + O_4 + O_5 + O_6 + O$$

Electrophilic Aromatic Substitution: Alkylation

How can we replace a hydrogen (H⁺) with an alkyl group (R⁺, a carbocation)? This reaction is known as *Friedel-Crafts Alkylation*.

Friedel-Crafts Alkylation
What are the significant problems with Friedel-Crafts alkylation?

1) Carbocations Bearrange 2) ct must stable

... only usable for 3°, (2° if no rearrangements are possible

3) Overalkylothon

+Cl

AICL

Reading: Section 16.4

10

Electrophilic Aromatic Substitution: Acylation

Reading: Section 16.4

Avoiding problems of FC Alkylation Nasty, Neott PBr3 J. Hz, Pd/c

Electron Donating & Withdrawing Groups

Match the chemical shifts with the highlighted protons in the compounds shown.

Why are these trends observed? 1,0 R_2N-CH_3 $RO-CH_3$ $R-CH_3$ 3.8 2,5 3.8 6.9 most whielded Cause deshielding: "Electron withdrawing grow EWG, inductive or Electron donating goodps by resonance

12

Reading: Section 16.5

W= withdrawing, D donating

July 15, 2014

Inductive vs. Resonance Effects

Complete the following table, indicating the relative magnitude of the various effects.

Functional Group	Inductive Effect	Resonance Effect	EDG, o/p-dir
-NMe ₂	W	DDDD	Oct
-OH	WW	DDD	1L (H)
-CH ₃		\mathcal{D}	P
-ci	WW	D	hyperonjugation
Roft -C(=0)OEt	W	W	deactivators op directs
}-C≡N -CN	W	W	op directs
← N — Me – N+Me ₃	W		
Me -NO ₂ \bigoplus	WW	WW	

Week 4

Week 402N H Octet res. Structures, 50 NO TXN

Octet res. Structures, July 15, 2014

Electrophilic Aromatic Substitution:

Directing Effects ("Regioselectivity")

When anisole is nitrated, the ortho and para products predominate. Why?

OCH₃

$$0CH_3$$

$$0CH_3$$

$$0CH_3$$

$$0CH_3$$

$$0OCH_3$$

When acetophenone is nitrated, the meta product predominates. Why?

Reading: Section 16.5 ENGS -> direct "Metal"

EDGS -> direct ortho/para

Electrophilic Aromatic Substitution: Activating Effects

Explain the observed trend in the rate of nitration of the following compounds:

Energy of Hono of Nu: What's the E HOMO here. EDG: raise E HOMO ENG: lower Homo poorer nucleophiles faster shows

In general, ortho/para-directing groups are activating, while meta-directing groups are deactivating. Why?

EDG: 0/p-directing, activating EWG: m-directing, deactivating

However, halogen substituents are deactivating, but are o/p-directors. Why?

EN by induction -> deartimators ED by resonance -> op directors

Reading: Section 16.5

Application of Substituent Effects: The Acidity of Phenols

Explain the observed trends in the pK_a values of the following compounds:

Application of Substituent Effects:

The Acidity of Phenols, cont.

Explain the observed trends in the pK_a values of the following compounds:

121

Week 4 July 15, 2014

Reactivity of Vinylic Halides

Draw an example of a vinylic halide.

Vinyl NoT

Sp² carbon

Cl

Sp² carbon

Vinyl chooride

PVC

Why does that halide not usually exhibit S_N2 reactivity? Nu lp \rightarrow oc-cl

Nuit oc-cl

* backside attack blocked

inversion requires tons of E

At Sp² Carbon

Why does that halide not usually exhibit S_N1 or E1 reactivity?

H

Sp nythridized

No vinyl carbozations!

What product would be formed from an E2 reaction of that halide?

+8) H H == H

Alkyne

July 15, 2014

Reactivity of Aryl Halides

Draw an example of an aryl halide; how is it different from a benzylic halide?

Why are S_N1 reactions of aryl halides (very nearly) impossible?

Are there any leaving groups that can provide S_N1 reactivity by forming an aryl cation?

$$(1)^{2}N \longrightarrow (1)^{2} + N_{2}(g)$$

$$(3)^{3}H \xrightarrow{3}^{3}He \qquad (4)^{2}He \qquad (4)^{4}He \qquad (5)^{4}He \qquad (6)^{4}He \qquad (7)^{4}He \qquad (7)^{4}He$$

Reading: Section 18.1-18.3

Week 4

19

Nucleophilic Aromatic Substitution: Addition-Elimination

When an *aryl halide* has *nitro groups* in o/p positions, then nucleophilic substitution can take place **IF** you have a good nucleophile. This reaction is referred to as "Nucleophilic aromatic substitution (S_NAr) by the addition-elimination mechanism."

Consider the following reaction:

$$O_2N$$
 SF
 NO_2
 $SLp \rightarrow O_{CF}$
 O_2N
 SCH_3
 SCH_3

Provide a complete curved-arrow mechanism for this transformation.

Why does substitution replace the fluoride, but not the bromide?

Nucleophilic Aromatic Substitution: Elimination-Addition ("The Benzyne Mechanism")

When an *aryl halide* does **not** have EWGs in *o/p* positions, and it is treated with a *very* strong base, then nucleophilic substitution can take place via an intermediate known as a *benzyne*. Substitution by this mechanism is referred to as

"Nucleophilic aromatic substitution (S_NAr) by the elimination-addition mechanism."

Provide a curved-arrow mechanism for the following reaction; this mechanism *must* account for why a *mixture* of products is formed!

21

Reading: Section 18.5

Structure and Reactivity of Benzyne

Benzyne is a very unstable species. How can we think about bonding in benzynes?

Provide a complete curved-arrow mechanism for the following transformation:

Reading: Section 18.5

Week 4

carbonyl: C=0 1 carbonyl carbon July 15, 2014

Electrophilic π**-Bonds**: Carbonyl Chemistry

What functional groups contain a carbonyl group?

RIR RIGHT RION'
Ketones aldehyde carboxylic ester
and color Rion Richards

RINRR' RICI RION R

What distinguishes some carbonyl-containing compounds from others?

1) # of bonds to heteroatoms (not H,C)

2) Resonance structures

Reading: Section 19.1 & 19.4

0x state: hypothetical charge. +8 € 050y € -2 July 15, 2014 Week 4 Oxidation Levels in Organic Chemistry # of bonds to Oxidation **Examples** e-neg atoms "level" 0=0=0 carbon dioxide 4 carbondtes Chloroformates carboxylic acid carbacids, esters, amides, animalist 3

