Exponential Random Graph Models Statistical Modelling of Political Networks

Marc Schalberger July 6, 2022

Outline

ERGM

- > Idea
- > Model
- **Estimation**
- Limitations

Application

- Data
- > ERGM
- > GOF

Exponential Random Graph Model (ERGM)

ERGM

Exponential Family Random Graph Model (ERGM) is one of the most popular approaches in statistical network analysis

Also known as p* models

First introduced by Ove Frank and David Strauss in 1986 in connection with the paper "Markov Graphs"

Widespread also in non-statistical circles such as social or political studies

ERGM Idea

Basic objective: construct a probability distribution which can be used generate network

Idea: Rather than the ties being the dependent variable, the network as a whole is the dependent variable

> model tries to estimate what the most likely network configuration is

The independent variables can be exogenous or endonegnous effects

- Exogenous effects are those occurring outside the outcome network (e.g. age, wage)
- ➤ Endogenous effects are those occurring within the outcome network (e.g. number of ties, reciprocity)

ERGM Model

The probability of observing network N over all possible networks we could have observed

$$P(N,\theta) = \underbrace{\frac{exp\{\theta'h(N)\}}{\sum_{N^* \in \mathcal{N}} \exp\{\theta'h(N^*)\}}}_{k}$$

 \mathcal{N} set of all possible networks

 θ vector of parameters

h(N) vector of network statistics (exogenous or endogenous)

 N^* element of \mathcal{N}

k normalizing constant

ERGM Assumptions

Assumptions:

- 1. equal probability of observing any two networks with the same values for the vector of statistics *h*
 - > no omitted variables
- 2. given a set of observed network statistics h, the observed network exhibits the average value of those statistics over the networks that could have been observed

ERGM Specification

Endogenous Dependencies:

Total Number of Ties

$$h(N) = \sum_{i < j} N_{ij}$$

Reciprocity

$$h(N) = \sum_{i < j} N_{ij} N_{ji}$$

Transitivity

$$h(N) = \sum_{i < j < k} N_{ij} N_{jk} N_{ik}$$

Exogenous Dependencies:

Node Factor

$$h(N,X) = \sum_{ij} N_{ij} X_{ij}$$

ERGM Interpretation

Edge-Level Interpretation:

Odds
$$odds (N_{ij} = 1 | N_{ij}^c) = \frac{\exp\{\theta' h(N^+)\}/k}{\exp\{\theta' h(N^-)\}/k} = \exp\{\theta' \delta^{(ij)}(N)\}$$

$$\delta^{(ij)} = h(N^+) - h(N^-)$$

$$logit (N_{ij} = 1 | N_{ij}^c) = log \left(\frac{\exp\{\theta' h(N^+)\}/k}{\exp\{\theta' h(N^-)\}/k}\right) = \theta' \delta^{(ij)}(N)$$

$$\delta^{(ij)} = h(N^+) - h(N^-)$$

ERGM Estimation

Estimation of θ is difficult because the likelihood is intractable

Markov Chain Monte Carlo (MCMC)

Default for most software packages

Normalisation constant *k* is approximated using a series of sample networks

Maximum Pseudolikelihood

Analytic approximation

Maximum pseudolikelihood computed by using hill-climbing algorithm to find parameters that maximize

$$\log(\prod_{i=2}^{n}\prod_{j=1}^{i}p_{ij}^{N_{ij}}(1-p_{ij})^{1-N_{ij}})$$

ERGM Limitations

Limitations:

Tendency to be numerically unstable in estimation

Degeneracy

Deciding which endogenous effects to include in the model requires strong theoretical knowledge

ERGM cannot model longitudinally observed networks

➤ Temporal ERGM (TERGM)

ERGM unable to accommodate weighted networks

➤ Valued ERGM

Application

"Networks of Violence: Predicting Conflict in Nigeria" by Cassy Dorff, Max Gallop and Shahryar Minhas (2020)

Raw data comes from the Armed Conflict Location and Event Data Project (ACLED)

Nodes: societal groups in Nigeria

Ties: armed conflict between actors in a given year (non-directed)

ERGM Specification

Endogenous Effects:

- Total number of ties
- Geometrically-weighted degrees

Exogenous Effects:

- Violent events against civilians
- Actor categories
- Riots/Protests
- Geographic spread

ERGM Results

	2004	2009	2016
Covariates			
Number of Edges	-5.22 (0.001) **	-7.48 (0.005) **	-13.96 (0.0006) ***
G-W Degrees	-1.70 (0.03) *	0.76 (0.58)	4.32 (0.02) *
Violence Against Civ.	0.73 (0.01) *	0.23 (0.24)	0.04 (0.004) **
Match Ethnic	1.92 (0.12)	0.64 (0.64)	7.29 (0.003) **
Match Religious	4.88 (0.0004) ***	4.50 (0.002) **	NA
Riots/Protests	-1.40 (0.02) *	NA	0.05 (0.12)
Geo Spread	1.11 (0.01) *	1.08 (0.04) *	2.43 (0.03) *

ERGM GoF 2004

ERGM GoF 2009

ERGM GoF 2016

Simulation 2004

Tarok

Simulation 2009

Simulation 2016

Simulated

Questions?

Code Repository

Replication files are available on Github under the following link: https://github.com/mschalberger/conflict_network_nigeria.git

Refrences

Dorff, C., Gallop, M., & Minhas, S. (2020). Networks of Violence: Predicting Conflict in Nigeria. In The Journal of Politics (Vol. 82, Issue 2, pp. 476–493). University of Chicago Press. https://doi.org/10.1086/706459

Cranmer, S. J., Desmarais, B. A., & Morgan, J. W. (2020). Inferential Network Analysis (pp. 35–66). Cambridge University Press. https://doi.org/10.1017/9781316662915

Cranmer, S. J., & Desmarais, B. A. (2011). Inferential network analysis with exponential random graph models. *Political Analysis*, 19(1), 66-86. https://doi.org/10.1093/pan/mpq037

Hunter, D. R., Krivitsky, P. N., & Schweinberger, M. (2012). Computational Statistical Methods for Social Network Models. In Journal of Computational and Graphical Statistics (Vol. 21, Issue 4, pp. 856–882). Informa UK Limited. https://doi.org/10.1080/10618600.2012.732921

Robins, G., Pattison, P., Kalish, Y., & Lusher, D. (2007). An introduction to exponential random graph (p*) models for social networks. In Social Networks (Vol. 29, Issue 2, pp. 173–191). Elsevier BV. https://doi.org/10.1016/j.socnet.2006.08.002