Bachelor of Computer Science (Hons) Year-2 SEP2023

Welcome to Intelligent Systems

CAI3204N

Learning Objectives

- ☐ At the end of the course, students will be able to:
 - □CO1: Identify the types of problem that are amenable to "intelligent" solutions.
 - □CO2: Compare and contrast the various intelligent system techniques to solve such problems.
 - CO3: Select and apply appropriate intelligent techniques to a given problem.
 - ☐ CO4: Critically discuss intelligent system research issues and their applications.

Artificial Neural Networks

Revisit: More Examples

Learning Objectives

- ☐ At the end of the course, students will be able to:
 - □CO1: Identify the types of problem that are amenable to "intelligent" solutions.
 - □CO2: Compare and contrast the various intelligent system techniques to solve such problems.
 - □CO3: Select and apply appropriate intelligent techniques to a given problem.
 - ☐ CO4: Critically discuss intelligent system research issues and their applications.

Neural Networks Problems perspective

Today's Overview

- Connectionism
- Biological Brains
- Artificial Neurons
- The Perceptron
- Learning
- Limits of Learning
- Artificial Neural Networks

http://en.wikipedia.org/wiki/Artificial neural network

Why ANNs

- Artificial Neural Networks are a machine learning technique inspired by the mechanism underpinning human learning
 - Lots of different types
 - Lots of different implementations
 - Lots of different applications
- If they work like humans, maybe they can learn to behave like humans?

Connectionism Cognitive: (Complex Connection between nodes)

- An approach to Artificial Intelligence that seems to challenge the Physical Symbol System Hypothesis
- Provokes lots of interesting philosophical questions
- That we shall ignore
 - http://plato.stanford.edu/entries/connectionis
 m

Brains

- Brains are the dominant organ of the central nervous system that controls all intelligent behaviour.
- Also much unintelligent behaviour: breathing, heart rate, blood pressure, body temperature, etc
- Connected to all senses and muscles throughout the body via spinal cord

Brain Activity

- Human adult brain weighs ~3lb. ie about 2% of total body weight
- But consumes 25% of total energy (60% in babies!)
- Which is why you should wear a hat when its cold
- What is going on in there?

Neurons

- Brains made up of neurons (and supporting glial cells)
- Neurons characterised by short and long branching connections (dendrites and axons)
- Human brain has 100 billion neurons each connected to 10,000 others

Structure of a Typical Neuron

Brain Activity

- Neurons are electrically excitable
- Gather charge from dendrites
 - (Or from sensory nerves, optic nerve, etc)
- When enough charge is gathered, neuron releases an action potential (spike) down the axon
 - ie when charge exceeds a threshold
- Which is transmitted on to other neurons
 - (Or on to muscle fibers)

"Real" Action Potential

Synapses

- The 'intelligence' in the brain lies in the connections
 - Which neurons are connected to which others
 - The strength of the connection (the weight)
- Connections can be excitatory or inhibitory (Serotonin Balance: stable mood)
- Learning takes place by changing the strength and nature of the connections.
- A lot of pschyoactive drugs work by temporarily changing the electro-chemical properties of these connections.

Hebbian Learning (Dog Training Example)

Artificial Neurons

Inputs

- A cartoon model of a real neuron
- Output is a simple function of the inputs
- Exact value determined by weight of each connection, and an (optional) threshold value
- Present inputs in turn and find outputs
- Adjust weights to get behaviour we want

Activation

- Each input receives a value
- The inputs are multiplied by respective weights and added together
- Output (Activation) is a simple function of weighted input

Inputs to Neural Networks

- Inputs
 - Must be numeric
 - In the range [-1,1] (usually)
 - Often requires normalisation

Name	Values	Normalisation	Normalised Input	
Rainfall	0, 5, 50mm	Divide by 100	0, 0.05, 0.5	
Temperature	-5, 0, 20C	Divide by 100	-0.05, 0, .2	
Stock Type	Tech, Oil, Telecoms	1 binary input for each class	(1,0,0), (0,1,0), (0,0,1)	

Activation Functions

 Different types of activation function produce different types of output.

Let's do this way!

- Can picture activation function as a graph of output against input sum
- The type of activation function depends on what kind of output we want
 - Binary (1 or 0, yes or no, A or B)
 - Continuous (any number)
 - Continuous range (any number 0-1)

Binary Step Function

- Produces binary output (0 or 1)
- Good for yes/no type questions
- Output = 1 if sum > 0, 0 otherwise

Bipolar Step Function

- Or bipolar output: -1 or 1
- output = +1 if sum > 0, -1 otherwise
- (Very similar to binary, but occasionally learns better)

Identity Function

- Produces continuous output in a wide range
- output = sum

Sigmoidal (Squashing) Function

- Produces continuous output in a limited range (0,1)
- Two asymptotes:
 - $output \rightarrow 1 \ as \ sum \rightarrow \infty$
 - $output \rightarrow 0$ as $sum \rightarrow -\infty$

Thresholded Step Function

- Often useful to add a threshold
- $output = 1 if sum > \theta$, 0 otherwise, or
- output =1 if sum- θ >0, 0 otherwise

Example Networks

Age	P/E	Туре	Buy/Sell?
12	20	Tech	Buy
3	15	Oil	Sell
5	30	News	Buy
20	10	News	Sell
10	50	Telecoms	Sell

Previous Weather			Future Weather		
Temp	Rain	Wind	Temp	Rain	Sun
10C	5mm	20mph	12C	0mm	3hrs
12C	0mm	10mph	15C	2mm	0hrs
2C	15mm	45mph	5C	4mm	12hrs
-3C	2mm	5mph	0C	15mm	5hrs
8C	1mm	15mph	-4C	4mm	6hrs

 f_1 , f_2 = linear function f_3 = sigmoidal function

The Perceptron

- The simplest form of neural network
- Developed by Rosenblatt, 1957
- Used as a decision system
 - *ie* a two-class classifier
- Thresholded step activation function
- Binary (or sometimes bipolar) output
- http://en.wikipedia.org/wiki/Perceptron

Perceptron Thresholds

Threshold can be represented as a weighted input

Perceptron Thresholds

• Threshold can be represented as a weighted input

Perceptron Example

Perceptron Example

Perceptron Learning

- How do we get a perceptron to learn to classify examples correctly?
- Present each of the examples in the training set
- See what output you get
- Adjust the weights to get the output 'more right'
- Until it does what you want

Training a Perceptron

- 1. Start weights at random
- 2. Present inputs and calculate outputs
- 3. Find error compared with desired output
- 4. Adjust weights
- 5. Repeat 2-4 until:
 - Either got the outputs you want
 - Or results not getting any better
- 6. Then use network to make predictions

Learning Rule

- How to adjust the weights?
 - If input > 0:
 - If the answer is too big, reduce the weight
 - If too small, increase it
 - *but if input < 0*:
 - If the answer is too big, increase the weight
 - If too small, reduce it
 - Only increase/decrease by a little bit at a time

Learning Rule

$$error = output - target$$
 $rate = 0.2$ (for example)
$$W_{new} = W_{old} - (error \times input \times rate)$$

Learning Example - Error

I_1	I_2	I_3	Sum-θ	out	target	error
0.0	1.0	0.5	0.1	1	1	0
0.2	-0.5	0.2	0.2	1	0	1
-0.2	0.0	-1.0	-1.3	0	1	-1
-0.8	0.2	-0.6	-1.44	0	0	0

Learning Example

error =1 *ie* output is too large

- I_1 =0.2, so decrease W_1
- I_2 =-0.5, so increase W_2
- I_3 =0.2, so decrease W_3
- I_{θ} =-1, so increase θ

$$W_{1new} = 0.5 - (1 \times 0.2 \times 0.2) = 0.46$$

 $W_{2new} = -0.2 - (1 \times -0.5 \times 0.2) = -0.1$
 $W_{3new} = 1 - (1 \times 0.2 \times 0.2) = 0.96$
 $\theta_{new} = 0.2 - (1 \times -1 \times 0.2) = 0.4$

<i>I</i> ₁	l ₂	<i>I</i> ₃	Sum	out	target	error
0.2	-0.5	0.2	-0.066	0	0	0

	user/file	film1	film2	film3	film4	film5	film6	film7	film8	film9	film10	film11	film12	2		-		-		-	-					· · · <u>-</u>				
	user1		1	1 (<u>-</u>	1 -	1 0) 0	1		-1		1 1																	
_	user2		1 -	1 () .	1	1 -1	1 1	-1	() 0		1 0																	
l g	user3	-	1	1 () -	1 -	1 -	1 -1	1 0		1 -1		1 1																	
survey(Original data)	user4		1 0				<u>-</u>	1 -	-1	-	1 1		-1																	
<u> </u>	user5	-	1 .	1 (,	1 -	1 0	1 0	(-1		1																	
ļ ģ	user6		,	1	1 .	1 .	1 -	1 0	 -1	-	1 1	-																		
୍ଚ	user7	-	1 0	il (il c)	1 0	-	1 1		1 0		il o																	
e e	user8		1 -	1	1	il .	1 0		-1	-	1 1	-	1 -1																	
<u> </u>	изег9		j .	il -	il -	il -	il c	1 -	1 1		<u>.</u>	-	<u>il i</u>																	
, ,	user10			1	il r	il .	il r	il r	il -1		<u>il n</u>	-	il i																	
Class	user11	-	<u>1</u>	il -	il -	<u>1</u>	il č	il r	il i	(il -1																			
0	user12	 	1 -	1 1	il .	il	1 0	1 -	1 -1	ì	_	-																		
	GOOTIE		•	,	1	1		1	'	,	, ,		· ·																	
	user/file	film1	film2	film3	film4	film5	film6	film7	film8	film9	film10	film11	w1	₩2	w 3	w4	w5	₩6	w7	w8 v	v9 v	v10 w	11 th	res su	ım film12-	c film12	?-a erro	ЭГ	rate	0.1
	user1	-) -			_		(1 0		n		n	0		0	η.	Ω	0	n	-1 -	-	1	-2	1410	
	user4		i (i i) (_	-1				-0.2	0.2	ñ	-0.2	-0	ñ	_	0.2	ñ	-0 0	0.2	0 -1	•		-1	_		
	user5		1	1 (1 1	1 0	'	(-0.2		n	-0.2	-0	ñ		0.2	ñ		0.2	0 -			1			
	user6		· 1 -	1	1	1 .	1 -	_	_	-		-			n	-0.2	-0	Ö		0.2	ñ		0.2	0 -			-1			
	user8		1 -	1	1 .	1 .	1 0) 0				-			n		-0	ň	_	0.2	ñ		0.2	0 (1	-1			
	user9	1 0	<u>'</u>	1 -	1 -	1 -	1 0	1 -1			1 -1		-0.2		0	-0.2	-0	n		0.2	0		0.2	0 -		1	1			
	user1		1 .	1 1	<u>'</u>	1 -	1 0) 0		(1 -1		-0.2		0	-0.2	-0	0		0.2	0		0.2	0 -			1			
	user4	ļ .	1 r	1 () () c	1 -1		1 -1	-					0	-0.2	-0	0		0.2	0		0.2	0 -1		•	-1			
	user5	-	1 .	1 () () .) .	1 1	i n) -i						n		-0	0		0.2	0		0.2	0 -			1			
	user6			1	1 .	1 .	1 -							0.2	_ ~		-0	0	_	0.2	0		0.2	0 -			-1			
	user8	٠ :	1 -	'	1 .	1 .	1 0) 0		-					ň	-0.2	-0	0		0.2	0		0.2	0 1		•	-1			
	user9		•	1 -	1 -	1 -	1 0) -1			1 -1		-0.2		0	-0.2	-0	0		0.2	0		0.2	0 -		•	1			
_		-		1 -	1 -		1 0) -					1 -0.2		0		-0	0		0.2	0		0.2	0 -			1			
Data	user1	ļ .	1 1 (1 1	, -	, -	1 -1		1 1						n		-0	0		0.2	0		0.2	0 -1			-1			
<u>_</u>	user4	-	1 .	1 () (1 .	, -	1 0	1 -1	- 0			-0.2		0	-0.2	-0	0		0.2	0		0.2	0 -			-1			
Training	user5 user6	-	1	1	1 .	, -	1 -	-	_				-0.2		0	-0.2	-0	0		0.2	0		0.2	0 -		•	-1			
<u> </u>			, - 1 ·	1	1 .	1 .	1 -								0	-0.2	-0	0		0.2	0		0.2	0 1			-1			
-	user8 user9	1 .	1 -	1	1 .	1 .	1 0) -1			1 1	-	1 -0.2		n		-0	0		0.2	0		0.2	0 -			-1			
				1 7) -		1 0) -		0	1 -1		1 -0.2		0	-0.2	-0	0		0.2	0		0.2	0 -			1			
	user1		1 0	1 (ין ס (כ		-	_					-0.2		0	-0.2	-0	0		0.2	0		0.2	0 -			-1			+
	user4	-	1 L) (1 0	- 0	- (. O	-0.2	-0 -0	0		0.2	0).2).2	0 -			1			
	user5	-		1	7 L	1 -	1 1	1 0					1 -0.2 1 -0.2		0		-0	0		0.2	0		0.2	0 -			-1			1
	user6	٠ .	1 .	1	1 .	1 .	1 0					-			0		-0	0		0.2	0		0.2	0 1			-1 -1			+
	user8	, ا	1 -	1	1 .	1 .	1 0) -1			1 1	-	1 -0.2 1 -0.2		0	-0.2	-0	0		0.2	0		0.2	0 -			1			+
	user9	٠ :	1 .	1 7	<u>'</u>		1 0) -) -1		1 -0.2 1 -0.2		0		-0	0		0.2	0		0.2	0 -		•	1			+
	user1	ļ .	1 0	1 0	י ר ט (כ) -) u	_	' ' 1 -1					0.2				0		0.2	0		0.2	0 -1			_1			+
	user4		1 L) (1 0		-	1 -1		-0.2			-0.2					_						1			+
	user5				7 L	7 - 1 -			_												0	-0 0		0 -			1			
	user6	9] -	1	1 .	1 .	1 -1			-		-		0.2				0		0.2	0	-0 0 -0 0	0.2	0 -			-1 -1			
	user8	, ا	1 -	1	1 .	1 .	1 0			-				0.2				0		0.2	0		0.2			1	1			
	user9	(1 -	1 -		1 0	-1			1 -1	-	-0.2			-0.2		0		0.2	0			0 -		1	1			
Task Dak	user10			1	1 (1 0	1 0	1 -1	-1	_					-0.2		0		0.2		-0 0		0 -:			1			
i est Dat	user11		1	J -	1 -		0	1	0		-1		-0.2			-0.2		0				-0 0		0 -			1			
	user12		-	ų (יי	ų	ų t	'	-1		U U	-	-0.2	0.2	U	-0.2	-0	U	U	0.2	이	-0 0	J.Z	0	.0	4				
< →	S	heet1		\oplus																								1		

Training Regimes

- Suppose there are three examples in training set
 - {A,B,C}
 - Present each example repeatedly until successful on each
 - Or Present complete set in turn until successful on all?
- Which training regime would be best?
- The latter, since by the time we have trained on B and C, may have 'forgotten' how to do A

```
AX
A×
A ×
                      C V
A \times
                      ΑV
\mathbf{A} \sqrt{\phantom{a}}
                      BX
B×
                      C V
B ×
             OR
                      Δ×
\mathbf{B} \sqrt{\phantom{a}}
                      B×
C×
                      C V
C \times
C \times
C √
                      B V
                      C V
```

Limits of the Perceptron

- Perceptron was invented in 50s
- Seemed to promise much
- •But in 1969 Minsky and Papert proved there were limits on what it could learn...

Straight Line in the Plane

But this form of the equation cannot describe a vertical line!

Or, more generally

Linear Separation

Linear Perceptron

Equation for the line:

•
$$ax + by - c = 0$$

- Two regions
 - ax + by c > 0
 - ax + by c < 0

Equation for the perceptron:

- $w_1 i n_1 + w_2 i n_2 \vartheta = sum$
- Two possible outputs
 - $w_1 i n_1 + w_2 i n_2 \vartheta > 0$
 - $w_1 i n_1 + w_2 i n_2 \vartheta < 0$

→ out

ie They are of the same form!
(And this applies to >2 inputs/dimensions)

Linear Perceptron

- A single perceptron can learn to solve a problem if it is linearly seperable
- *ie* if the two classes can be seperated by a single straight line (or hyperplane)

Example Problems

- Logical AND
- Linearly separable?

X	у	AND
0	0	0
0	1	0
1	0	0
1	1	1

Example Problem

- Logical OR
- Linearly separable?

X	у	OR
0	0	0
0	1	1
1	0	1
1	1	1

Example Problem

- Logical XOR
- Linearly separable?

X	у	XOR
0	0	0
0	1	1
1	0	1
1	1	0

Logical XOR

XOR (and many other problems like it) are not linearly separable.

This scuppered research into neural networks for 20 years

Artificial Neural Networks

- Solution: combine neurons into a network
- By combining many neurons into a network can solve a wider range of more complex problems
 - Feedforward, multilayer networks
 - Recurrent (feedback) networks
 - Dynamic neural networks
- More powerful (in general), but harder to train

Multilayer Feedforward Networks

- Comprised of *layers* of simple neurons, each layer feeds into the next
- Can calculate any arbitrary function
- Well understood and can be trained using backpropagation
- Now applied to just about any machine learning problem

Multilayer Perceptron Example

• This 2-layer perceptron can solve the non-linearly seperable XOR problem.

Backpropagation

• Invented in 1986, and made neural nets popular again.

• Problem:

- Can use *error* to adjust input weights w₁ and w₂ for unit A
- But what error do we use to adjust w₃₋₆ for the hidden layers?

• Solution:

- 'backpropagate' the error to update the hidden weights
- en.wikipedia.org/wiki/Backpropagation

Elman Net

Input

- Very simple *recursive* (feedback) network
- Previous state of neuron is fed back in at next time step
- Allows for simple memory or state
- Can distinguish order in sequences of inputs
- Eg simple natural language processing
 - 'dog is dead'
 - 'is dog dead'
- Or predicting time series
 - Stock markets
 - Weather
 - Sales

Dynamic (Real Time) Neural Network

- Continuous real inputs, activation equations and outputs
- Can be used for real time control problems
 - Robotics
 - Chemical plants
 - Jet engines

Recurrent Dynamic Neural Nets

- A lot more like the real brains that control our intelligent behaviour
- Continuous, real-time inputs and outputs (eg robot motors and sensors)
- Very complex dynamics don't know how to make them do what we want
- Cannot reliably train them so use evolution

Summary

- Biological Brains
- Artificial Neurons
- The Perceptron
- Learning
- Limits of Learning
- Artificial Neural Networks

Stretch Break!

Second Half (NEXT WEEK)

- Human Learning
- Machine Learning
 - Supervised Learning
 - Examples
- Data Mining
 - Examples

Thank you