Due date: Friday, February 19, 2016 (before class).

- 1. Prove or disprove the following statements:
 - (a) For all positive integers n, if n is a perfect square then n+3 is not a perfect square. (Recall the definition of a *perfect square*: an integer n is a perfect square if and only if there exists an integer a such that $a^2 = n$.)
 - (b) For every real number x, there is a nonzero real number y such that $x \cdot y = x + y$.
 - (c) There is a real number x such that for every integer n we have $\frac{n}{x} > 0$.
 - (d) The following statements are equivalent for all nonnegative integers a and b:
 - a < b
 - $(a+b)^2 < 4b^2$
 - $4a^2 < (a+b)^2$
- 2. List all the elements of the following sets:
 - (a) $S = \{i \mid i \in \mathbb{Z} \land i^2 \le 4\}$
 - (b) $S = \{ p \mid p \in \mathbb{Q}, \ 0$
 - (c) $S = \{x \mid x \in \mathbb{C}, x \text{ is a root of } x^4 1\}$
- 3. What are the cardinalities of the following sets?
 - (a) Ø
 - (b) $\{\emptyset, 1\}$
 - (c) $\{1, 2, \{3, 4\}, \emptyset\}$
 - (d) $\{\mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{N}\}$
 - (e) $\mathcal{P}(\emptyset)$
- 4. Let $A = \{1, 2, 4, 6, 7\}$ and $B = \{3, 4, 5\}$, and let our universe be $U = \{n \mid n \in \mathbb{Z}, 1 \le n \le 10\}$.
 - (a) List the elements of $A \cup B$.
 - (b) List the elements of $A \cap \overline{B}$.
 - (c) List the elements of $\overline{A} B$.
 - (d) List the elements of $\overline{A} (A \cup \overline{B})$.
 - (e) List the elements of $\mathcal{P}(B)$.
 - (f) List the elements of $A \times B$.
 - (g) List the elements of $B \times A$.

- 5. Let A and B be sets.
 - (a) Use a venn diagram to show that $A \cap B \subseteq A$.
 - (b) Use a venn diagram to show that $A \cap B \subseteq B$.
 - (c) Use a venn diagram to show that $(A \cup \overline{B}) = \overline{(\overline{A} \cap B)}$
 - (d) Use a venn diagram to show that $B \subseteq \overline{(A-B)}$
- 6. Let A and B be two sets. Define the symmetric difference of A and B as $A \oplus B = \{s \mid s \text{ is in } A \text{ or } B \text{ but not both}\}$ Prove that $A \oplus B = (A B) \cup (B A)$. (Hint: show that each side is a subset of the other side).
- 7. Let $f: \mathbb{R} \to \mathbb{R}$. Given the following definitions of f, state whether or not it is a function. If it is a function, state the domain, codomain, and range. If it is not a function, state which domain (if any) will make it a function.
 - (a) f(x) = 1/x.
 - (b) $f(x) = x^2 + 1$.
 - (c) f(x) = 0
 - (d) $f(x) = \pm \sqrt{x}$
 - (e) $f(x) = \log_e(x)$, where e is Euler's Number.
- 8. Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be functions.
 - (a) If $f(x) = x^2 + 1$ and g(x) = 2x + 3, find (f + g)(x) and (fg)(x).
 - (b) If $f(x) = x^3 + 2x$ and g(x) = -x + 2, find $(fg + f^2)(x)$.
 - (c) If f(x) = 2x and $g(x) = 3x^2$, find $(f+g)^2(x)$.
- 9. Let f be a function with domain and codomain defined below. For each f, show whether f is injective, surjective, both, or neither.
 - (a) $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ and f(x) = x + 1. (Note: \mathbb{Z}^+ is the set of all positive integers.)
 - (b) $f: \mathbb{R} \to \mathbb{Z}$ and $f(x) = \lfloor x \rfloor$.
 - (c) $f: \mathbb{R} \to \mathbb{R}$ and f(x) = x + 1.
 - (d) $f: \mathbb{Z}^+ \to \{0, 1, 2\}$ and $f(x) = (x \mod 2) + 1$. (Note: $x \mod n$ is the remainder of x when divided by n.)
- 10. For each of the following f and g, give f^{-1} (if it exists), g^{-1} (if it exists), $f \circ g$ (if it exists), and $g \circ f$ (if it exists), otherwise state that it does not exist (Note: f^{-1} denotes f inverse, not 1/f):
 - (a) $f(x) = x^3$, g(x) = x + 2, where $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$

CS182 Spring 2016: Homework 3

- (b) f(x) = x/2, g(x) = x + 3, where $f: \mathbb{Q} \to \mathbb{Q}$ and $g: \mathbb{Q} \to \mathbb{Q}$
- (c) $f(x) = x^2$, $g(x) = \lceil x \rceil + 1$, where $f: \mathbb{R}^+ \to \mathbb{R}^+$ and $g: \mathbb{R}^+ \to \mathbb{Z}$