lineare Abbildung

V, W K-Vektorräume

Eine Abbildung $f: v \to w$ heißt Homomorphismus

falls gilt: $\forall \lambda \in K \ \forall v, w \in V$:

$$\left. \begin{array}{rcl} f(\lambda v) & = & \lambda f(v) \\ f(v+w) & = & f(v)+f(w) \end{array} \right\} \Leftrightarrow f(\lambda v+w) = \lambda f(v)+f(w)$$

- $f: v \to w$ linear, $f: w \to u$ linear $\Rightarrow g \circ f$ linear
- $f: v \to w \text{ linear } \Rightarrow f(0) = 0$
- $f: v \to w$ linear und bijektiv $\Rightarrow f^{-1}: w \to v$

Bild und Kern

 $f: V \to W$ linear.

$$\begin{array}{llll} ker(f) & = & \{v \in V \mid f(v) = 0\} & \leq V & | & dim(ker(f)) & = & def(f) \\ Bild(f) & = & \{f(v) \mid v \in V\} & \leq W & | & dim(Bild(f)) & = & rg(f) \end{array}$$

Dimensionsformel

 $f: v \to w$ linear

$$dim(V) = def(f) + rg(f)$$

$$f$$
 injektiv $\Leftrightarrow ker(f) = \{0\}$

finjektiv $\Leftrightarrow f$ surjektiv $\Leftrightarrow f$ bijektiv

Koordinatenvektoren

V endliche dimensionaler K-Vektorraum mit Basis (v_1, \ldots, v_n) geornete Basis

 $v \in V \Rightarrow \exists_1 \text{ Darstellung}$

$$v = \underbrace{\lambda_1 v_1 + \ldots + \lambda_n v_n}_{v_1, \dots, v_n} \to V_{Bahhhhh} = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$