MLST PRESENTATION - 08/11/2017

FANNY ROCHE

Basic principle

- Objective : $r = g(f(x)) \approx x$
- BUT $r \neq x$!
 - → no Identity function!
- *f* : encoder function
- *g* : decoder function
- *h* : latent features

How does it work?

- Encoder: extract useful properties of the data
- Decoder : reconstruct the input
- Undercomplete AE

Input Layer Hidden Layer

Output Layer

How does it work?

- Special case of feedforward networks
- Use gradient descent backpropagation
- Comparison to PCA :
 - Linear + MSE
 - → PCA decomposition
 - Nonlinear
 - → more powerful nonlinear generalization

History

• Before :

- Dimensionality reduction
- Feature Learning

• Now:

Generative Models

Variations of Autoencoder

- Denoising Autoencoder (DAE)
 - Add noise to the input
 - o Loss: $\mathcal{L}(x, f(g(\tilde{x})))$
- Sparse Autoencoder (SAE)
 - Sparsity constraint on h

Variations of Autoencoder

- Contractive Autoencoders (CAE)
- Variational Autoencoder (VAE)
 - $\circ h \sim N(\mu, \sigma)$
 - → variational penalty

Deep Autoencoders

(or Stacked Autoencoders)

- Much better compression
- Greedy layer-wise pre-training

Autoencoder Tutorial

(with Keras by François Chollet)

https://blog.keras.io/building-autoencoders-in-keras.html

Examples of applications

(non exhaustive)

- Dimensionality reduction
- Information Retrieval
- Image generation
- Voice conversion
- Instrument interpolation

•

Input

VAE

Bibliography

- [1] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. **Greedy layer-wise training of deep networks**. In *P. B. Schölkopf, J. C. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems* 19, pages 153–160. MIT Press, 2007.
- [2] Kevin Frans. **Variational autoencoders explained.** Blog post, 2016. http://kvfrans.com/variational-autoencoders-explained/.
- [3] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. MIT Press, 2016. http://www.deeplearningbook.org.
- [4] Geoffrey Hinton and Ruslan Salakhutdinov. **Reducing the dimensionality of data with neural networks**. *Science*, 313(5786):504–507, 2006.
- [5] Diederik P. Kingma and Max Welling. **Auto-encoding variational bayes**. *CoRR*, abs/1312.6114, 2013.
- [6] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. **Autoencoding beyond pixels using a learned similarity metric**. In *Proceedings of the 33rd International Conference on International Conference on Machine Learning Volume 48*, ICML'16, pages 1558–1566. JMLR.org, 2016.