Algorithmen und Wahrscheinlichkeit

Woche 12

Minitest

Minitest

Password: outplayed

Theory Recap

1. Matchings in bipartiten Graphen

$$G = (A \uplus B, E)$$

$$\mapsto N_G = (V', E', 1, s, t)$$

$$\text{mit } V' = A \uplus B \uplus \{s, t\}$$

$$\text{und } E' = \{s\} \times A \quad \cup \quad \{(a, b) \in A \times B \,|\, \{a, b\} \in E\} \quad \cup \quad B \times \{t\}$$

$$\max_{M \text{ Matching in } G} |M| = \max_{f \text{ Fluss in } N_G} \text{val}(f)$$

1. Matchings in bipartiten Graphen

$$G = (A \uplus B, E)$$

$$\mapsto N_G = (V', E', 1, s, t)$$

$$\text{mit } V' = A \uplus B \uplus \{s, t\}$$

$$\text{und } E' = \{s\} \times A \quad \cup \quad \{(a, b) \in A \times B \,|\, \{a, b\} \in E\} \quad \cup \quad B \times \{t\}$$

$$\max_{M \text{ Matching in } G} |M| = \max_{f \text{ Fluss in } N_G} \text{val}(f)$$

2. Kantendisjunkte Pfade

$$G = (V, E), u, v \in V$$

 $\mapsto N_G = (V, \{(x, y), (y, x) \mid \{x, y\} \in E\}, 1, u, v)$

- 1. Finde ganzzahligen maximalen Fluss
- 2. Starte bei *u* und finde einen Pfad nach *v* durch noch nicht besuchte Kanten mit Fluss 1.
- 3. Markiere die Kanten besucht
- 4. Wiederhole val(f) mal

 $\max_{f \ Fluss \ in \ N_G} {\rm val}(f) = \max \# {\rm Kantendisjunkter} \ {\rm Pfade} \ {\rm zwischen} \ u \ {\rm und} \ v \ {\rm in} \ G = \min \# {\rm Kanten}, \ {\rm die} \ u \ {\rm und} \ v \ {\rm trennen}$

Knoten - disjunkte Pfade:

3. Bildsegmentierung

Bild: ein Graph G = (P, E) mit $\chi : P \to F$ arben $\alpha : P \to \mathbb{R}_0^+$ α_p größer \Longrightarrow eher im Vordergrund $\beta : P \to \mathbb{R}_0^+$ β_p größer \Longrightarrow eher im Hintergrund $\gamma : E \to \mathbb{R}_0^+$ γ_e größer \Longrightarrow eher im gleichen Teil

Qualitätsfunktion:
$$q(A,B):=\sum_{p\in A}\alpha_p+\sum_{p\in B}\beta_p-\sum_{e\in E,|e\cap A|=1}\gamma_e$$

Gesucht: eine Vorder-/Hintergrundspartition (A,B) die q(A,B) maximiert

$$\begin{aligned} \max q(A,B) &= \max(\sum_{p \in A} \alpha_p + \sum_{p \in B} \beta_p - \sum_{e \in E, |e \cap A| = 1} \gamma_e) \\ &= \max(\sum_{p \in P} (\alpha_p + \beta_p) - \sum_{p \in A} \beta_p - \sum_{p \in B} \alpha_p - \sum_{e \in E, |e \cap A| = 1} \gamma_e) \\ &= \sum_{p \in P} (\alpha_p + \beta_p) - \min(\sum_{p \in A} \beta_p + \sum_{p \in B} \alpha_p + \sum_{e \in E, |e \cap A| = 1} \gamma_e) \\ &=: \sum_{p \in P} (\alpha_p + \beta_p) - \min q'(A,B) \end{aligned}$$

3. Bildsegmentierung

Bild: ein Graph G = (P, E) mit $\chi : P \rightarrow$ Farben

$$\alpha:P o\mathbb{R}_0^+$$
 α_p größer \Longrightarrow eher im Vordergrund

$$\beta: P \to \mathbb{R}_0^+$$
 β_p größer \Longrightarrow eher im Hintergrund

$$\gamma:E \to \mathbb{R}_0^+$$
 γ_e größer \Longrightarrow eher im gleichen Teil

$$\begin{split} &\mapsto N = (P \cup \{s,t\}, \overrightarrow{E}, c, s, t) \\ &\forall p \in P, \exists (s,p) \in \overrightarrow{E} : c(s,p) = \alpha_p \\ &\forall p \in P, \exists (p,t) \in \overrightarrow{E} : c(p,t) = \beta_p \\ &\forall e = \{p,p'\} \in E, \exists (p,p'), (p',p) \in \overrightarrow{E} : c(p,p') = c(p',p) = \gamma_e \end{split}$$

für $A := S \setminus \{s\}$ und $B := T \setminus \{t\}$, $q'(A, B) = \operatorname{cap}(S, T)$ \to Mithilfe Maxflow Mincut finden!

Min-Cut Problem

Gegeben: Ein Multigraph G

Gesucht: $\mu(G) := \text{die Größe minimales Kantenschnitts}$

Kantenschnitt: Eine Kantenmenge C, s.d. $(V, E \setminus C)$ nicht zusammenhängend

Ansatz 1: Mittels Flüsse (Dynamic trees)

$$(n-1)\cdot\mathcal{O}(mn\log n) = \mathcal{O}(mn^2\log n) = \mathcal{O}(n^4\log n)$$

Ansatz 2: Mittels Kantenkontraktion

Kantenkontrakion: Kontrahiere e von $G \rightarrow G/e$

$$-\mu(G/e) \ge \mu(G)$$

$$-e \notin C \Longrightarrow \mu(G/e) = \mu(G)$$

G

Min-Cut Problem

Cut(*G*)

- 1) $G' \leftarrow G$
- 2) while |V(G')| > 2 do
- 3) $e \leftarrow \text{gleichverteilt zufällige Kante in } G'$
- 4) $G' \leftarrow G'/e$
- 5) **return** Größe des eindeutigen Schnitts in G^\prime

Laufzeit: $O(n^2)$ wobei n = |V(G)|

Sei p(G) die Erfolgswahrscheinlichkeit, also

$$p(G) := \Pr[\operatorname{Cut}(G) = \mu(G)]$$

$$p(n) := \min_{G=(V,E),|V|=n} p(G)$$

$$\rightarrow p(G) \ge p(|V(G)|)$$

Lemmas

1) Wenn e gleichverteilt zufällig ist, $\Pr[\mu(G) = \mu(G/e)] \ge 1 - \frac{2}{n}$

2)
$$\forall n \ge 3 : p(n) \ge \left(1 - \frac{2}{n}\right) \cdot p(n-1)$$

3)
$$p(n) \ge \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \dots \frac{1}{3} \cdot p(2) = \frac{2}{n(n-1)} = \frac{1}{\binom{n}{2}}$$

Min-Cut Problem

Monte Carlo Wiederholungen von Cut

- 1) Wir wiederholen $\operatorname{Cut}(G)\lambda\binom{n}{2}$ mal und nehmen den kleinsten Wert
- 2) Laufzeit: $\lambda \binom{n}{2} \cdot O(n^2) = O(\lambda n^4)$
- 3) Fehlerwahrscheinlichkeit: $\left(1 \frac{1}{\binom{n}{2}}\right)^{\lambda \binom{n}{2}} \le e^{-\lambda}$
- 4) Wenn $\lambda = \log n$, ist die Laufzeit $O(n^4 \log n)$ mit Fehlerw-keit $\leq 1/n$

n n-1 n-2 n-3	4 3 2
n n-1 n-2 n-3	4 3 2 $\lambda \binom{n}{2} \text{ mal} \rightarrow \text{F.W-keit} \leq e^{-\lambda}$
	$\frac{\lambda}{2}$
n n-1 n-2 n-3	4 3 2


```
n n-1 n-2 n-3 ...
                                                                                                      ... 4 3 2
n n-1 n-2 n-3 ...
                                                                                                      ... 4 3 2
n n-1 n-2 n-3 ...
n n-1 n-2 n-3 ...
                                                                                                                       t^4 Algo
                                                                                            \vdots \\ \textbf{t} \quad ... \quad \textbf{4 3 2} \quad \rightarrow \textbf{K.W-keit} \geq \frac{t(t-1)}{n(n-1)} \frac{e-1}{e}
```

n n-1 n-2 n-3		t 4 3 2	
		t 4 3 2	
		•	
		t 4 3 2	
n n-1 n-2 n-3		t 432 $n(n-1)$) е
		t 4 3 2 t 4 3 2 $\lambda \frac{n(n-1)}{t(t-1)}$	$\frac{e-1}{e-1}$ mal
		•	
		t 4 3 2 → F.W-ke	eit $\leq e^{-\lambda}$
n n-1 n-2 n-3		t 4 3 2	
		t 4 3 2	
		• • •	
		t 4 3 2	
#Wiederholungen $ \underbrace{\frac{n(n-1)}{e}}_{\text{Laufzeit: }} \underbrace{\frac{n(n-1)}{e}}_{Matter of the entropy of t$	Algo auf t Knoten	a	
Laufzeit: $\lambda \frac{1}{t(t-1)} \frac{1}{e-1} \mathcal{O}(1)$	$n(n-t) + t^4 $	$= \mathcal{O}(\lambda(n^4/t^2 + n^2t^2)) \Longrightarrow_{\min} \mathcal{O}(\lambda n^3) $ w	$t = \sqrt{n}$

Reduktion auf t Knoten

Aufgaben

Code Expert

Aufgabe 1: 2/3 Überdeckung

Sei $G=(A\uplus B,E)$ ein bipartiter Graph. Wir nennen eine Teilmenge der Kanten $U\subseteq E$ eine 2/3 - Überdeckung von G, falls für den Graphen $G'=(A\uplus B,U)$ folgendes gilt: $\deg_{G'}(a)=2$ für alle $a\in A$ und $\deg_{G'}(b)=3$ für alle $b\in B$. Ein perfektes Matching entspricht einer 1/1 - Überdeckung

Aufgabe: beschreibe einen Algorithmus, der, gegeben $G = (A \uplus B, E)$, entscheidet, ob es eine eine 2/3 - Überdeckung von G gibt.

Aufgabe 2: Satz von Hall

Satz von Hall (Heiratssatz)

Ein bipartiter Graph $G = (A \uplus B, E)$ hat ein Matching M der Kardinalität |M| = |A| gdw. $\forall X \subseteq A : |X| \le |\mathcal{N}(X)|$

Aufgabe: Beweise den Satz von Hall mittels Flüsse.

Aufgabe 3: Mincut

Was ist $\Pr[\mu(G/e) = \mu(G)]$ für e zufällig gleichverteilt im folgenden Graphen

- a) 1/4
- b) 1/2
- c) 3/4
- d) 1

Aufgabe 3: Mincut

Was ist $\Pr[\mu(G/e) = \mu(G)]$ für e zufällig gleichverteilt im folgenden Graphen

- a) 1/4
- b) 1/2
- c) 3/4
- d) 1

Man darf die Kante {1,2} nicht kontrahieren

