Devoir à la maison n° 3

À rendre le 23 septembre

L'objectif de ce problème est de déterminer toutes les fonctions $g: \mathbb{R} \to \mathbb{R}$ continues et vérifiant la propriété suivante :

$$\forall x \in \mathbb{R}, \quad g \circ g(x) = 2g(x) - x.$$
 (9)

Dans la suite du problème, on notera g une telle fonction continue, vérifiant la propriété (\mathscr{P}) .

Pour tout entier naturel n, on définit

$$g^n = \underbrace{g \circ g \circ \cdots \circ g}_{n \text{ fois}},$$

avec la convention $g^0 = \mathrm{Id}_{\mathbb{R}}$. Ainsi, la propriété (\mathscr{P}) peut se réécrire :

$$q^2 = 2q - \mathrm{Id}_{\mathbb{R}}.$$

On remarquera que l'on a la relation suivante, valide pour tout $n \in \mathbb{N}$:

$$g^{n+1} = g \circ g^n = g^n \circ g.$$

On commence par montrer qu'une telle fonction g admet nécessairement une réciproque.

- 1) Montrer que, si x et y sont deux réels vérifiant g(x) = g(y), alors x = y.
- 2) On montre maintenant que g est strictement monotone, en raisonnant par l'absurde. Supposons donc dans cette question que g n'est pas strictement monotone.
 - a) Montrer qu'il existe des réels a,b,c,d vérifiant $a < b, c < d, g(a) \le g(b)$ et $g(c) \ge g(d)$.
 - b) En considérant les fonctions

$$\alpha: \left\{ \begin{array}{ccc} [0,1] & \longrightarrow & \mathbb{R} \\ t & \longmapsto & (1-t)a+tc \end{array} \right., \quad \beta: \left\{ \begin{array}{ccc} [0,1] & \longrightarrow & \mathbb{R} \\ t & \longmapsto & (1-t)b+td \end{array} \right.$$

et

$$\varphi: \left\{ \begin{array}{ccc} [0,1] & \longrightarrow & \mathbb{R} \\ t & \longmapsto & g(\alpha(t)) - g(\beta(t)) \end{array} \right.,$$

ainsi qu'en exploitant la continuité de g, montrer qu'il existe $t_0 \in [0, 1]$ vérifiant $\alpha(t_0) = \beta(t_0)$.

- c) En déduire une contradiction et conclure que g est strictement monotone.
- 3) Que peut-on dire quant à la monotonie de g^2 ?
- 4) En déduire que g est strictement croissante.
- 5) Montrer que, pour tout réel x positif, $g(x) \geqslant \frac{g^2(0) + x}{2}$.
- 6) En déduire l'existence et la valeur de la limite de g en $+\infty$.
- 7) Montrer de même que $g(x) \xrightarrow[x \to -\infty]{} -\infty$.

Ainsi, la fonction g vérifie les hypothèses du théorème de la bijection et admet une réciproque $g^{-1}: \mathbb{R} \to \mathbb{R}$. On notera alors pour tout entier naturel n:

$$g^{-n} = (g^{-1})^n = \underbrace{g^{-1} \circ g^{-1} \circ \dots \circ g^{-1}}_{n \text{ fois}}.$$

On remarquera que l'on a la relation suivante, valide pour tout $n, p \in \mathbb{Z}$:

$$g^{n+p} = g^p \circ g^n = g^n \circ g^p.$$

- 8) En évaluant (\mathscr{P}) en un réel judicieusement choisi, montrer que g^{-1} vérifie aussi la propriété (\mathscr{P}) .
- 9) Montrer par récurrence sur n que, pour tout $n \in \mathbb{N}$: « pour tout $x \in \mathbb{R}$, $g^n(x) = ng(x) (n-1)x$ ».
- 10) Montrer que, pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}$,

$$\frac{g^n(x) - g^n(0)}{n} = g(x) - g(0) - x + \frac{x}{n}.$$

- 11) En utilisant notamment la monotonie de g, montrer que pour tout réel x positif $g(x) \ge g(0) + x$ et que pour tout réel x négatif $g(x) \le g(0) + x$.
- **12)** Montrer que, pour tout réel x, $g^{-1}(x) = 2x g(x)$.
- 13) En utilisant le fait que g^{-1} vérifie la propriété (\mathscr{P}) , montrer finalement que pour tout réel x, g(x) = g(0) + x.

On a donc montré que toute fonction solution était forcément de la forme $x\mapsto x+K,$ pour un certain réel K.

14) Montrer réciproquement que, pour tout réel K, la fonction définie sur \mathbb{R} par $f: x \mapsto x + K$ est solution du problème posé.