Slide 3: Linear Systems and Matrices III MAT2040 Linear Algebra

SSE, CUHK(SZ)

Definition 3.1 (Consistence) A system of linear equations is **consistent** if it has at least one solution. Otherwise, the system is called **inconsistent**.

Recall:

$$[A|\mathbf{b}] \xrightarrow{\text{elementary row operations}} \begin{bmatrix} \boxed{1} & 0 & 0 & | & -3 \\ 0 & \boxed{1} & 0 & 5 \\ 0 & 0 & \boxed{1} & 2 \end{bmatrix}$$

The corresponding linear system $A\mathbf{x} = \mathbf{b}$ is consistent.

$$[A|\mathbf{b}] \xrightarrow{\text{elementary row operations}} \begin{bmatrix} \boxed{1} & 0 & 1 & 3 \\ 0 & \boxed{1} & -1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The corresponding linear system $A\mathbf{x} = \mathbf{b}$ is consistent.

$$[A|\mathbf{b}] \xrightarrow{\text{elementary row operations}} \begin{bmatrix} \boxed{1} & 1 & 4 & -5 & 2 \\ 0 & \boxed{1} & 1 & -3 & 2 \\ 0 & 0 & 0 & 0 & \boxed{-5} \end{bmatrix}$$

The corresponding linear system $A\mathbf{x} = \mathbf{b}$ is inconsistent, $\mathbf{a} = \mathbf{b} = \mathbf{b} = \mathbf{b}$

Fact 3.2

A linear system is inconsistent

- \Leftrightarrow the echelon form of the augmented matrix contains a row of the form $[0, \cdots, 0|b]$ with b nonzero.
- ⇔ the rightmost column of the augmented matrix is a pivot column.

A linear system is consistent

 \Leftrightarrow the rightmost column of the augmented matrix is not a pivot column.

Fact 3.3 (Solution set for consistent linear systems)

Assume $A_{m \times n} \mathbf{x} = \mathbf{b}$ is consistent. Suppose

 $[A|\mathbf{b}] \xrightarrow{\text{elementary row operations}} [B|\mathbf{c}](RREF)$ and B has r nonzero rows (B has r pivot columns). Then $r \leq n$.

- (1) r = n, the system has a unique solution.
- (2) r < n, the system has infinitely many solutions and the solution set can be described by n r free/independent variables (corresponding to the nonpivot columns in B).

Note: r is the number of "true equations" of the linear system, and there are m-r redundant equations.

Example: for the case:

$$[A|\mathbf{b}] \xrightarrow{\text{elementary row operations}} \begin{bmatrix} \boxed{1} & 0 & 0 & | & -3 \\ 0 & \boxed{1} & 0 & 5 \\ 0 & 0 & \boxed{1} & 2 \end{bmatrix}$$

r = n = 3, the system has a unique solution.

Example: for the case:

$$[A|\mathbf{b}] \xrightarrow{\text{elementary row operations}} \begin{bmatrix} \boxed{1} & 0 & 1 & 3 \\ 0 & \boxed{1} & -1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The solution can be described by

$$x_1=3-x_3,$$

$$x_2 = 2 + x_3$$
.

where x_3 is the **free variable** (**independent variable**) corresponding to nonpivot column in B, while x_1, x_2 are **dependent variables** corresponding to pivot columns in B.

Example 3.4 Find the solution of the following system:

$$2x_1 + x_2 + 7x_3 - 7x_4 = 8$$
$$-3x_1 + 4x_2 - 5x_3 - 6x_4 = -12$$
$$x_1 + x_2 + 4x_3 - 5x_4 = 4$$

$$\begin{bmatrix} 2 & 1 & 7 & -7 & 8 \\ -3 & 4 & -5 & -6 & -12 \\ 1 & 1 & 4 & -5 & 4 \end{bmatrix} \xrightarrow{\text{elemental row operations}} \begin{bmatrix} \boxed{1} & 0 & 3 & -2 & 4 \\ 0 & \boxed{1} & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The last column is not a pivot column, so it is a consistent system. Columns 1 and 2 are the pivot columns while columns 3 and 4 are non-pivot columns.

Thus, x_1, x_2 are dependent variables while x_3, x_4 are independent variables. In fact, $x_1 = -3x_3 + 2x_4 + 4$, $x_2 = -x_3 + 3x_4$

4D > 4A > 4E > 4E > E 990

Theorem 3.5 (Possible Solution Sets for Linear Systems) For a system of linear equations $A\mathbf{x} = \mathbf{b}$, it can can have

- a unique solution
- infinitely many solutions
- no solution

Definition 3.6 (Homogeneous System) A system of linear equations Ax = b is called homogeneous if b = 0 (the zero vector).

A homogeneous system looks like this:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = 0,$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = 0,$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = 0,$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = 0.$$

0 is a solution to such a system, i.e., all variables equal to zero $(x_1 = x_2 = \cdots = x_n = 0)$ is a solution. This solution is called the **trivial** solution.

Property 3.7 (Homogeneous systems are always consistent)
Any homogeneous linear system is consistent.

Theorem 3.8 (Underdetermined homogeneous systems have infinite solutions)

An underdetermined homogeneous linear system has infinite solutions.

For underdetermined homogeneous linear system (m < n):

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = 0,$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = 0,$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = 0,$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = 0.$$

Suppose $[A_{m \times n} | \mathbf{0}] \xrightarrow{\text{elementary row operations}} [B_{m \times n} | \mathbf{0}] (RREF)$ and B has r nonzero rows, also B both have r pivot columns.

of pivot columns in B = # of nonzero rows in $B = r \le m < n$.

4D + 4B + 4B + B + 900

Example 3.9 Find the solution for the following homogeneous system.

$$2x_1 + x_2 + 7x_3 - 7x_4 = 0$$
$$-3x_1 + 4x_2 - 5x_3 - 6x_4 = 0$$
$$x_1 + x_2 + 4x_3 - 5x_4 = 0$$

m = 3 < n = 4, thus the above homogeneous linear system must have infinitely many solutions. In fact

$$\begin{bmatrix} 2 & 1 & 7 & -7 \\ -3 & 4 & -5 & -6 \\ 1 & 1 & 4 & -5 \end{bmatrix} \xrightarrow{\text{elementary row operations}} \begin{bmatrix} \boxed{1} & 0 & 3 & -2 \\ 0 & \boxed{1} & 1 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus

$$x_1 = -3x_3 + 2x_4$$
, $x_2 = -x_3 + 3x_4$

Theorem 3.10 (Underdetermined consistent systems have infinite solutions)

An **underdetermined consistent** linear system has **infinite** solutions. Proof is similar to theorem 3.8.