Improved Reduction from BDD to uSVP in Lattices

Shi Bai, Damien Stehlé, Weiqiang Wen

AriC Team, LIP, ENS de Lyon

Séminaires Cryptologie et Sécurité, Université de Caen, Oct. 5, 2016

Bounded Distance Decoding (BDD) and unique Shortest Vector Problem (USVP)

Bounded Distance Decoding for $\alpha \geq 0$ (BDD $_{\alpha}$)

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$, a vector $\mathbf{t} \in \mathbb{Q}^n$ such that $\operatorname{dist}(\mathbf{t}, \mathcal{L}(\mathbf{B})) \leq \alpha \cdot \lambda_1(\mathbf{B})$.

Output: a lattice vector $\mathbf{c} \in \mathcal{L}(\mathbf{B})$ closest to \mathbf{t} .

Bounded Distance Decoding (BDD) and unique Shortest Vector Problem (USVP)

Unique Shortest Vector Problem for $\gamma \geq 1 \; (USVP_{\gamma})$

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$ such that $\lambda_2(\mathcal{L}(\mathbf{B})) \geq \gamma \cdot \lambda_1(\mathcal{L}(\mathbf{B}))$.

Output: a non-zero vector $\mathbf{s}_1 \in \mathcal{L}(\mathbf{B})$ of norm $\lambda_1(\mathcal{L}(\mathbf{B}))$.

Main result

Improved reduction from BDD to USVP (ICALP 2016)

For $1 \le \gamma \le poly(n)$, we have

$$\mathrm{BDD}_{1/(\sqrt{2}\gamma)} \leq \mathsf{USVP}_{\gamma}.$$

Road map

- Background
- The Lyubashevsky and Micciancio reduction and its limitation
- New reduction:
 - lattice sparsification.
 - reduction for $\gamma = 1$.
 - sphere packing.
- Open problems

Lattices

A definition of lattice

Given $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\} \subseteq \mathbb{Q}^m$ a set of linear independent vectors, the lattice \mathcal{L} spanned by the $\mathbf{b}_i's$ is

$$\mathcal{L}(\mathbf{B}) = \Big\{ \sum_{i \in [n]} u_i \mathbf{b}_i : \mathbf{u} \in \mathbb{Z}^n \Big\}.$$

Lattice Minima

Lattice minimum

Given a lattice \mathcal{L} , the *i*-th minimum of \mathcal{L} is defined as:

$$\lambda_i(\mathcal{L}) = \inf\{r : \dim(\operatorname{span}(\mathcal{L} \cap \mathcal{B}(\mathbf{0}, r))) \geq i\}.$$

Lattice Minima - first minimum

Lattice minimum

Given a lattice \mathcal{L} , the *i*-th minimum of \mathcal{L} is defined as:

$$\lambda_i(\mathcal{L}) = \inf\{r : \dim(\operatorname{span}(\mathcal{L} \cap \mathcal{B}(\mathbf{0}, r))) \geq i\}.$$

Lattice Minima - second minimum

Lattice minimum

Given a lattice \mathcal{L} , the *i*-th minimum of \mathcal{L} is defined as:

$$\lambda_i(\mathcal{L}) = \inf\{r : \dim(\operatorname{span}(\mathcal{L} \cap \mathcal{B}(\mathbf{0}, r))) \geq i\}.$$

Why is BDD interesting?

In cryptography:

- ► Learning With Error (LWE) problem serves as a security foundation.
- LWE is an average-case variant of BDD.
- In communication theory white Gaussian noise channel:
 - Wifi, mobile phone etc;
 - View message as a lattice point, Gaussian noise is added in channel transmission, decoding is solving BDD.

Why is USVP interesting?

- Best known algorithm (especially in practice) for solving BDD is via solving uSVP:
 - First, reduce BDD to USVP.
 - ► Second, solve **uSVP** by lattice reduction, *e.g.*, LLL and BKZ.

Why is USVP interesting?

- Best known algorithm (especially in practice) for solving BDD is via solving uSVP:
 - First, reduce BDD to ∪SVP.
 - ▶ Second, solve **uSVP** by lattice reduction, *e.g.*, LLL and BKZ.

 $BDD_{\frac{1}{\text{poly}(n)}}$ and $USVP_{\text{poly}(n)}$ are hard;

Best known algorithm takes **exponential** time in dimension *n*.

Prior works on BDD to USVP

• Slightly improved for some α , Liu *et al*, 2014; Galbraith; Micciancio, 2015.

Bai, Stehlé, Wen (ENS Lyon)

[[]LM09]: V. Lyubashevsky and D. Micciancio. On bounded distance decoding, unique shortest vectors, and the minimum distance problem, CRYPTO, 2009.

[[]LWXZ14]: M. Liu, X. Wang, G. Xu and X. Zheng. A note on BDD problems with λ_2 -gap. Inf. Process. Lett., 2014. [Ga15]: Private communication. 2015.

[[]Mi15]: Private communication, 2015.

Prior works on BDD to USVP

[Mi15]: Private communication, 2015.

[[]LM09]: V. Lyubashevsky and D. Micciancio. On bounded distance decoding, unique shortest vectors, and the minimum distance problem, CRYPTO, 2009.

[[]LWXZ14]: M. Liu, X. Wang, G. Xu and X. Zheng. A note on BDD problems with λ_2 -gap. Inf. Process. Lett., 2014.

[[]Ga15]: Private communication, 2015.

Comparison with prior works

The Lyubashevsky and Micciancio reduction

For any $\gamma \geq 1$, we have

$$BDD_{1/(2\gamma)} \leq USVP_{\gamma}$$
.

[LM09]: V. Lyubashevsky and D. Micciancio. On bounded distance decoding, unique shortest vectors, and the minimum distance problem, CRYPTO, 2009.

▶ BDD_{1/4} instance: ($\mathcal{L}(\mathbf{b}_1)$, \mathbf{t}).

▶ Lift vector **t** into a higher dimension space by $\lambda_1(\mathcal{L}(\mathbf{b}_1))/4$.

Kannan embedding.

Finally, we obtain a USVP instance with $\lambda_2' = 2\lambda_1'$.

Algorithm for solving BDD

Version 1. The $BDD_{1/(2\gamma)}$ to $\cup SVP_{\gamma}$ reduction.

Input: a basis $\mathbf{B} = \{\mathbf{b}_i\}_{i \in [n]}$, and a target point \mathbf{t} . Output: a lattice point \mathbf{c} such that $\|\mathbf{c} - \mathbf{t}\| = \mathrm{dist}(\mathbf{t}, \mathcal{L})$.

0. Define

$$\mathbf{B}' = \left(egin{array}{cc} \mathbf{B} & \mathbf{t} \\ \mathbf{0} & rac{\lambda_1(\mathcal{L}(\mathbf{B}))}{2\gamma} \end{array}
ight).$$

- 1. Run the $USVP_{\gamma}$ solver on input **B**'. Let $\mathbf{s}' = \begin{pmatrix} \mathbf{s}'_1 \\ s'_2 \end{pmatrix}$ be its output.
- 2. Output $\mathbf{t} \mathbf{s}'_1$.

$$\begin{array}{c|c} \mathrm{BDD}_{\frac{1}{2\gamma}} & \mathrm{USVP}_{\gamma'} \\ \hline \begin{pmatrix} \mathbf{B} & \mathbf{t} \\ (n=1,\,\gamma=2) \end{pmatrix} & \xrightarrow[\mathrm{embedding}]{} \mathbf{B'} = \begin{bmatrix} \mathbf{B} & \mathbf{t} \\ \hline \mathbf{0} & & \\ \hline \end{pmatrix} \\ & (n'=2,\,\gamma'=2) \end{array}$$

▶ BDD_{1/2} instance: $(\mathcal{L}(\mathbf{b}_1), \mathbf{t})$.

▶ Lift vector **t** into a higher dimension space by $\lambda_1(\mathcal{L}(\mathbf{b}_1))/2$.

Kannan embedding.

• We are at the limit: $\lambda'_1 = \lambda'_2$.

This is the best this reduction can achieve

Can we improve it?

Limitation in the Lyubushevsky and Micciancio reduction.

- A simple deterministic sparsification.
- ▶ Lattice $\mathcal{L}(\mathbf{B})$ with $\mathbf{B} = [\mathbf{b}_1]$.

- A simple deterministic sparsification.
- ▶ Lattice $\mathcal{L}(\mathbf{B})$ with $\mathbf{B} = [\mathbf{b}_1]$.

▶ Lattice $\mathcal{L}(\widetilde{\mathbf{B}})$ with $\widetilde{\mathbf{B}} = [2\mathbf{b}_1]$.

• Recall the limitation: $\lambda_2' = \lambda_1'$

Limitation is circumvented (for this example): $\lambda_2' > \lambda_1'$ now!

Road map

- Background
- The Lyubashevsky and Micciancio's reduction and its limitation
- New reduction:
 - lattice sparsification.
 - example for $\gamma = 1$.
 - sphere packing.
- Open problems

Main idea

Deterministic sparsification leads to a combinatorial explosion.

- But we want more...
 - keep only 1 closest vector to target t.
 - remove all other somewhat close N vectors to t.

Lattice Sparsification

Khot's Lattice Sparsification [K03]

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{
ho,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 \bmod
ho\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

[K03]: S. Khot. Hardness of approximating the shortest vector problem in high L_p norms. FOCS'03, 2003.

Sparsification on lattice

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{
ho,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 mod
ho\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

▶ 1st sparsification:

$$p = 5, \mathbf{z} = (0, 0).$$

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{
ho,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 mod
ho\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

- 2nd sparsification:
- $p = 5, \mathbf{z} = (0, 1).$

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{
ho, \mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1} \mathbf{x} \rangle = 0 \bmod
ho\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

- 3rd sparsification:
- $p = 5, \mathbf{z} = (0, 2).$

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{
ho,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 mod
ho\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

4th sparsification:

 $p = 5, \mathbf{z} = (0,3).$

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{
ho,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 mod
ho\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

5th sparsification: $p = 5, \mathbf{z} = (0, 4).$

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{
ho,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 \bmod
ho\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

▶ 6th sparsification:

$$p = 5, \mathbf{z} = (1, 0).$$

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{p,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 \bmod p\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

▶ 7th sparsification:

$$p = 5, \mathbf{z} = (1, 1).$$

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{p,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 \bmod p\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

▶ 8th sparsification:

$$p = 5, \mathbf{z} = (1, 2).$$

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{p,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 \bmod p\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

▶ 9th sparsification:

$$p = 5, \mathbf{z} = (1,3).$$

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{p,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 \bmod p\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

▶ **10**th sparsification: p = 5, z = (1, 4).

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{
ho,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 mod
ho\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

▶ **11**th sparsification:

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{
ho,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 mod
ho\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

▶ **12**th sparsification: p = 5, z = (2, 1).

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{p,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 \bmod p\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

▶ **13**th sparsification: p = 5, z = (2, 2).

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{p,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 \bmod p\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

▶ 14th sparsification:

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{p,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 \bmod p\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

▶ **15**th sparsification: p = 5, z = (2, 4).

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{
ho,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 mod
ho\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

▶ **16**th sparsification: p = 5, z = (3, 0).

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{p,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 \bmod p\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

▶ **17**th sparsification:

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{p,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 \bmod p\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

▶ **18**th sparsification: p = 5, z = (3, 2).

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{p,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 \bmod p\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

▶ **19**th sparsification: p = 5, z = (3,3).

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{p,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 \bmod p\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

20th sparsification:

$$\rho = 5, \mathbf{z} = (3,4).$$

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{
ho,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 mod
ho\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

▶ 21st sparsification:

$$p = 5$$
, $z = (4, 0)$.

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{
ho,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 mod
ho\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

▶ **22**nd sparsification: p = 5, z = (4, 1).

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{
ho,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 mod
ho\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

23rd sparsification:

$$p = 5, \mathbf{z} = (4, 2).$$

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{p,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 \bmod p\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

▶ **24**th sparsification:

$$p = 5$$
, $z = (4,3)$.

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{p,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 \bmod p\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

25th sparsification:

$$p = 5, \mathbf{z} = (4, 4).$$

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{
ho,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 mod
ho\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

In the overall 25 sparsifications:

- ▶ \mathbf{p}_1 is in: $\underline{5}$ times; prob. $\frac{1}{5}$.
- **p**₂ is out: <u>20</u> times; prob. $1 \frac{1}{5}$.

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a sparsified sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{
ho,\mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}\mathbf{x} \rangle = 0 mod
ho\},$$

where p is a prime integer and $\mathbf{z} \in \mathbb{Z}_p^n$.

- ► Each individual point is **kept** with probability $\frac{1}{p}$;
- ▶ and is **removed** with probability $1 \frac{1}{\rho}$.
- Two issues:
 - The origin 0 is never removed.
 - There are dependencies among some points.

An argument of this probability result

A probabilistic argument on Khot's sparsification [S14]

Given a basis **B**, vectors \mathbf{x} , $\mathbf{v}_1, \cdots, \mathbf{v}_N \in \mathcal{L}(\mathbf{B})$, s.t. $\mathbf{B}^{-1}\mathbf{x} \notin \{\mathbf{B}^{-1}\mathbf{v}_i\}_{i \leq N}$, for any prime p, we have

$$\Pr_{\mathbf{z} \leftarrow U(\mathbb{Z}_q^n)} \left[\begin{array}{cc} \langle \mathbf{z}, \mathbf{B}^{-1}(\mathbf{x} + \mathbf{w}) \rangle &= 0 \bmod p \\ \forall i, & \langle \mathbf{z}, \mathbf{B}^{-1}(\mathbf{v}_i + \mathbf{w}) \rangle &\neq 0 \bmod p \end{array} \right] \geq \frac{1}{p} - \frac{N}{p^2} - \frac{N}{p^{n-1}},$$

where $\mathbf{w} = \mathbf{B}\mathbf{u}$ for $\mathbf{u} \hookleftarrow \mathit{U}(\mathbb{Z}_q^n)$.

$$\frac{1}{p}-\frac{N}{p^2}\approx\frac{1}{p}\cdot(1-\frac{1}{p})^N.$$

- The latter formula is the (approximate) probability we get to
 - keep 1 point;
 - ▶ remove N points.

New reduction for $\gamma = 1$

▶ BDD_{1/ $\sqrt{2}$} instance: ($\mathcal{L}(\mathbf{B})$, t).

New reduction for $\gamma = 1$

Remove annoying points around the shifted target t + w.

New reduction for $\gamma = 1$

Sparsify it!

$$\mathcal{L}_{
ho, \mathbf{z}} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1} \mathbf{x} \rangle = 0 mod
ho \}$$

Choose p a prime, $\mathbf{z} \hookleftarrow \mathbb{Z}_p^n$; compute $\mathbf{w} = \mathbf{B}\mathbf{u}$ for $\mathbf{u} \hookleftarrow U(\mathbb{Z}_q^n)$; hope the following conditions hold.

$$\left\{ \begin{array}{ll} \langle \mathbf{z}, \mathbf{B}^{-1}(\mathbf{c} + \mathbf{w}) \rangle = 0 \bmod p \\ \forall i, \quad \langle \mathbf{z}, \mathbf{B}^{-1}(\mathbf{p}_i + \mathbf{w}) \rangle \neq 0 \bmod p, \end{array} \right.$$

Equivalently, we have

$$\left\{ \begin{array}{c} \mathbf{c} + \mathbf{w} \in \mathcal{L}_{\rho, \mathbf{z}} \\ \forall i, \quad \mathbf{p}_i + \mathbf{w} \not\in \mathcal{L}_{\rho, \mathbf{z}}. \end{array} \right.$$

Algorithm for solving BDD

Version 2. The $\mathrm{BDD}_{1/(\sqrt{2}\gamma)}$ to $\mathrm{USVP}_{\gamma'}$ reduction.

Input: a basis $\mathbf{B} = \{\mathbf{b}_i\}_{i \in [n]}$, and a target point \mathbf{t} . Output: a lattice point \mathbf{c} such that $\|\mathbf{c} - \mathbf{t}\| = \mathrm{dist}(\mathbf{t}, \mathcal{L})$.

- 0. Choose p > N to be prime; sample $\mathbf{z}, \mathbf{u} \leftarrow \mathbb{Z}_p^n$; compute $\mathbf{w} = \mathbf{B}\mathbf{u} \in \mathcal{L}$. Let $\mathbf{B}_{p,\mathbf{z}}$ denote the basis of $\mathcal{L}_{p,\mathbf{z}}$.
- 1. Define

$$\mathbf{B}' = \left(\begin{array}{cc} \mathbf{B}_{\rho, \mathbf{z}} & \mathbf{t} + \mathbf{w} \\ \mathbf{0} & \frac{\lambda_1(\mathcal{L}(\mathbf{B}))}{2\gamma} \end{array} \right).$$

- 2. Run the $\cup SVP_{\gamma'}$ solver on input **B**'. Let $\mathbf{s}' = \begin{pmatrix} \mathbf{s}'_1 \\ s'_2 \end{pmatrix}$ be its output.
- 3. Output $\mathbf{t} \mathbf{s}'_1$.

Algorithm for solving BDD

Version 2. The $\mathrm{BDD}_{1/(\sqrt{2}\gamma)}$ to $\mathrm{USVP}_{\gamma'}$ reduction.

Input: a basis $\mathbf{B} = \{\mathbf{b}_i\}_{i \in [n]}$, and a target point \mathbf{t} . Output: a lattice point \mathbf{c} such that $\|\mathbf{c} - \mathbf{t}\| = \mathrm{dist}(\mathbf{t}, \mathcal{L})$.

- 0. Choose p > N to be prime; sample $\mathbf{z}, \mathbf{u} \leftarrow \mathbb{Z}_p^n$; compute $\mathbf{w} = \mathbf{B}\mathbf{u} \in \mathcal{L}$. Let $\mathbf{B}_{p,\mathbf{z}}$ denote the basis of $\mathcal{L}_{p,\mathbf{z}}$.
- Define

$$\mathbf{B}' = \left(\begin{array}{cc} \mathbf{B}_{\rho,\mathbf{z}} & \mathbf{t} + \mathbf{w} \\ \mathbf{0} & \frac{\lambda_1(\mathcal{L}(\mathbf{B}))}{2\gamma} \end{array} \right).$$

- 2. Run the $USVP_{\gamma'}$ solver on input **B**'. Let $\mathbf{s}' = \begin{pmatrix} \mathbf{s}'_1 \\ s'_2 \end{pmatrix}$ be its output.
- 3. Output $\mathbf{t} \mathbf{s}'_1$.

How sparse can the sublattice $\mathcal{L}_{p,z}$ be?

How sparse?

Recall the probability to keep 1 point and remove N points:

$$\frac{1}{\rho} - \frac{N}{\rho^2}.$$

How sparse?

Recall the probability to keep $\boxed{1}$ point and **remove** \boxed{N} points:

$$\frac{1}{p} - \frac{N}{p^2}.$$

- ▶ We want it to be at least $\frac{1}{\text{poly}(n)}$;
- ▶ thus, $p \ge N$ and both should be \le poly(n).

We can sparsify the lattice by removing polynomially many points.

So what is the worst list decoding radius?

Approaching the limit

Within $\lambda_1/\sqrt{2}$, adapted from [MG02, Th. 5.2]

For any *n*-dimensional lattice \mathcal{L} and any vector $\mathbf{t} \in \operatorname{Span}(\mathcal{L})$, we have $\#\mathcal{L} \cap \mathcal{B}(\mathbf{t}, \lambda_1(\mathcal{L})/\sqrt{2}) \leq \frac{2n}{n}$.

[MG02]: D. Micciancio and S. Goldwasser. Complexity of lattice problem: A cryptography perspective. Kluwer, 2009.

Approaching the limit

Within $\lambda_1/\sqrt{2}$, adapted from [MG02, Th. 5.2]

For any *n*-dimensional lattice \mathcal{L} and any vector $\mathbf{t} \in \operatorname{Span}(\mathcal{L})$, we have $\#\mathcal{L} \cap \mathcal{B}(\mathbf{t}, \lambda_1(\mathcal{L})/\sqrt{2}) \leq \frac{2n}{n}$.

Extremely dense lattice, adapted from [MG02, Lem. 4.1]

For any $\alpha > 1/\sqrt{2}$, there exists $\epsilon > 0$ such that for any sufficiently large n we can find an n-dimensional lattice \mathcal{L} and a vector $\mathbf{t} \in \mathrm{Span}(\mathcal{L})$, such that $\#\mathcal{L} \cap \mathcal{B}(\mathbf{t}, \alpha \cdot \lambda_1(\mathcal{L})) \geq 2^{n^{\epsilon}}$.

Recall the last embedded lattice we got.

Decrease embedding height

Decrease embedding height –> focus on the original lattice.

Decrease embedding height –> focus on the original lattice.

Accumulate embedding height – sparsify sufficiently many balls.

Accumulate embedding height – sparsify sufficiently many balls.

Accumulate embedding height – sparsify sufficiently many balls.

Algorithm for solving BDD

Version 3. The $\mathrm{BDD}_{1/(\sqrt{2}\gamma)}$ to USVP_{γ} reduction.

Input: a basis $\mathbf{B} = \{\mathbf{b}_i\}_{i \in [n]}$, and a target point \mathbf{t} . Output: a lattice point \mathbf{c} such that $\|\mathbf{c} - \mathbf{t}\| = \mathrm{dist}(\mathbf{t}, \mathcal{L})$.

- 0. Choose $p \geq \gamma n \cdot 2n$ to be prime; sample $\mathbf{z}, \mathbf{u} \leftarrow \mathbb{Z}_p^n$; compute $\mathbf{w} = \mathbf{B}\bar{\mathbf{u}} \in \mathcal{L}$. Let $\mathbf{B}_{p,\mathbf{z}}$ denote the basis of $\mathcal{L}_{p,\mathbf{z}}$.
- 1. Define

$$B' = \left(\begin{array}{cc} B_{\rho,z} & t+w \\ 0 & \frac{\lambda_1(\mathcal{L}(B))}{\sqrt{2}\gamma n} \end{array} \right).$$

- 2. Run the $USVP_{\gamma}$ solver on input **B**'. Let $\mathbf{s}' = \begin{pmatrix} \mathbf{s}'_1 \\ \mathbf{s}'_2 \end{pmatrix}$ be its output.
- 3. Output $\mathbf{t} \mathbf{s}'_1$.

Algorithm for solving BDD

Version 3. The $\mathrm{BDD}_{1/(\sqrt{2}\gamma)}$ to USVP_{γ} reduction.

Input: a basis $\mathbf{B} = \{\mathbf{b}_i\}_{i \in [n]}$, and a target point \mathbf{t} . Output: a lattice point \mathbf{c} such that $\|\mathbf{c} - \mathbf{t}\| = \mathrm{dist}(\mathbf{t}, \mathcal{L})$.

- 0. Choose $p \geq \gamma n \cdot 2n$ to be prime; sample $\mathbf{z}, \mathbf{u} \leftarrow \mathbb{Z}_p^n$; compute $\mathbf{w} = \mathbf{B}\bar{\mathbf{u}} \in \mathcal{L}$. Let $\mathbf{B}_{p,\mathbf{z}}$ denote the basis of $\mathcal{L}_{p,\mathbf{z}}$.
- 1. Define

$$\mathbf{B}' = \left(egin{array}{cc} \mathbf{B}_{
ho,\mathbf{z}} & \mathbf{t} + \mathbf{w} \ \mathbf{0} & rac{\lambda_1(\mathcal{L}(\mathbf{B}))}{\sqrt{2}\gamma n} \end{array}
ight).$$

- 2. Run the $USVP_{\gamma}$ solver on input **B**'. Let $\mathbf{s}' = \begin{pmatrix} \mathbf{s}'_1 \\ \mathbf{s}'_2 \end{pmatrix}$ be its output.
- 3. Output $\mathbf{t} \mathbf{s}'_1$.

Reduction is efficient for $\gamma \leq \text{poly}(n)$.

Our result

The reduction algorithm also works for any γ with $\gamma \leq \text{poly}(n)$.

This algorithm actually works for any $\gamma \geq$ 1, thanks Stephens-Davidowitz for the observation.

Intuition of extension for any $\gamma > 1$

A tighter view on the reduction.

Intuition of extension for any $\gamma > 1$

A tighter view on the reduction.

Intuition of extension for any $\gamma > 1$

Intuition of the improvement.

Road map

- Background
- The Lyubashevsky and Micciancio reduction and its limitation
- New reduction:
 - lattice sparsification.
 - example for $\gamma = 1$.
 - sphere packing.
- Open problems

Open problems

- ▶ The sparsification in our reduction heavily relies on randomness.
 - Problem 1. Remove the sparsification randomness.

- In practice, randomly chosen lattice is sparse enough such that there is almost no point within $\lambda_1/\sqrt{2}$ -radius.
 - Problem 2. Is sparsification just an artifact?

Open problems

Conjecture: BDD and USVP are computationally identical.

$$\begin{array}{c} \mathsf{BDD}_{\frac{1}{c \cdot \gamma}} = \mathsf{uSVP}_{\gamma} \\ c \in [1, \sqrt{2}] \end{array}$$

• Problem 3. What is the constant c? Is $c = \sqrt{2}$?