SÍNTESE DE CIRCUITOS SEQUENCIAIS

Profa Letícia Rittner

Projeto de lógica sequencial

- Descrição do problema: saída em função das entradas e do estado
- Máquina de Estados Finita (FSM)
- Atribuição dos estados e escolha do tipo de elemento de memória
- 4. Tabela de estados do circuito
- Equações booleanas
- Minimização das equações (Mapa de Karnaugh)
- Circuito com portas lógicas

Construindo uma FSM

- Liste todos os possíveis estados
- Declare todas as variáveis
- Para cada estado, liste as transições possíveis com condições associadas
- Cheque que há uma única transição possível, dados estado + condições

Máquina de Moore

A saída só depende do estado atual

Máquina de Mealy

A saída depende do estado atual e das entradas

Exemplo

Síntese circuito sequencial

Deseja-se obter um circuito que identifique a ocorrência da sequência '0101' na sua única entrada w. Quando a saída for detectada a saída y deve ser igual a 1. Considerar a possibilidade de sobreposição, ou seja:

entrada: w ... 0 1 0 1 0 1

saída: y ... 0 0 0 1 0 1

Máquina de estados finita (FSM)

- A será o estado inicial e os estados B, C, D e/ou E representarão a detecção do 1º, 2º, 3º e/ou 4º bits da sequência
- Na máquina de Mealy, uma vez detectado o 3º bit, não é necessário aguardar o pulso de clock para a deteção do 4º, sendo necessário um estado a menos.
- Logo, utilizaremos 2 FFs para o projeto na máquina de Mealy e 3
 FFs para realizar o mesmo projeto com a máquina de Moore.
- Utilizaremos a codificação binária mais simples descrita a seguir :

Máquina de Moore

Estados	Q_2	Q_1	Q_0
Α	0	0	0
В	0	0	1
С	0	1	0
D	0	1	1
E	1	0	0

Máquina de Mealy

Estados	Q_1	Q_0
Α	0	0
В	0	1
С	1	0
D	1	1

Máquina de Mealy

 Para cada estado, as transições representam as condições possíveis da entrada w, e a saída correspondente: w/y.

Máquina de Mealy

Tabela de transição

Estado atual		Próximo estado				
LSta	iuo atuai	w = 0		w =	= 1	
Q_1	Q_0	Q_1^* Q_0^*		Q_1^*	Q_0^*	
0	0	0	1	0	0	
0	1	0	1	1	0	
1	0	1	1	0	0	
1	1	0	1	1	0	

Tabela de saída

Estado atual		Saída		
Estado atual		w = 0	w=1	
Q_1	Q_0	y	y	
0	0	0	0	
0	1	0	0	
1	0	0	0	
1	1	0	1	

Tabela de Excitação

Estado atual		Próximo estado				
LSta	iuo atuai	w = 0		w =	= 1	
Q_1	Q_0	D_1 D_0		D_1	D_0	
0	0	0	1	0	0	
0	1	0	1	1	0	
1	0	1	1	0	0	
1	1	0	1	1	0	

Obtenção das equações

Equações de excitação

$$D_1 = w \cdot Q_0 + \overline{w} \cdot Q_1 \cdot \overline{Q}_0$$

$$D_0 = \overline{w}$$

Equação de saída

$$y = w \cdot Q_1 \cdot Q_0$$

Circuito resultante

Máquina de Moore

 Para cada estado, as transições representam as condições possíveis da entrada w, e a saída está apresentada junto aos estados: Estado/y.

Máquina de Moore

Tabela de transição

Estado atual		Próximo estado						
LSU	auo a	Luai	w = 0		w=1			
Q_2	Q_1	Q_0	Q_2^* Q_1^* Q_0^*			Q_2^*	Q_1^*	Q_0^*
0	0	0	0	0	1	0	0	0
0	0	1	0	0	1	0	1	0
0	1	0	0	1	1	0	0	0
0	1	1	0	0	1	1	0	0
1	0	0	0	1	1	0	0	0

Tabela de saída

Esta	ado a	Saída	
Q_2	Q_1	Q_0	y
0	0	0	0
0	0 1		0
0	1	0	0
0	1	1	0
1	0	0	1

Tabela de Excitação

Estado atual		Próximo estado $w = 0 \qquad w = 1$						
Q_2	Q_1	Q_0	D_2 D_1 D_0		D_2	D_1	D_0	
0	0	0	0	0	1	0	0	0
0	0	1	0	0	1	0	1	0
0	1	0	0	1	1	0	0	0
0	1	1	0	0	1	1	0	0
1	0	0	0	1	1	0	0	0

Obtenção das equações

Equações de excitação

$$D_2 = w \cdot Q_1 \cdot Q_0$$

$$D_1 = \overline{w} \cdot Q_2 + \overline{w} \cdot Q_1 \cdot \overline{Q}_0 + w \cdot \overline{Q}_1 \cdot Q_0$$

$$D_0 = \overline{w}$$

Equação de saída

$$y = Q_2 \cdot \overline{Q}_1 \cdot \overline{Q}_0$$

Circuito resultante

Escolha do modelo

- A escolha do modelo (Mealy ou Moore) depende da aplicação.
- As respostas de ambos no tempo são diferentes

Para casa

Projete uma máquina de refrigerante que devolva uma lata de refrigerante (saída = 1) cada vez que o usuário insere R\$1,50. A máquina aceita apenas moedas de R\$0,50