1 Section1_入力層~中間層

ニューラルネットワークの構造(2層)は以下のようになる。

入力層 中間層 出力層

入力層 X0,X1,X2 として、中間層へは W00・X0、W01・X1、W02・X2 を渡す。

入力総和 Z0=W00·X0+W01·X1+W02·X2

入力総和 Z1=W10·X0+W11·X1+W12·X2

入力総和 Z2=W20·X0+W21·X1+W22·X2

行列式より

$$\begin{bmatrix} W00 & W01 & W02 \\ W10 & W11 & W12 \\ W20 & W21 & W22 \end{bmatrix} \begin{bmatrix} X0 \\ X1 \\ X2 \end{bmatrix} = \begin{bmatrix} Z0 \\ Z1 \\ Z2 \end{bmatrix}$$

2 Section2_活性化関数

ニューラルネットワークにおける活性化関数とは、あるニューロンから次のニューロンへと出力する際に、あらゆる入力値を別の数値に変換して出力する関数である。

1) ReLU

関数への入力値が0以下の場合は、出力値が常に0、入力値が0より大きい場合は、出力値が入力値と同じになる。

2) Mish

関数への入力値が0以下の場合は、出力値がほぼ0、入力値が0より大きい場合は、出力値が入力値と同じになる。

3)活性化関数一覧

No	活性化関数	概要			
1	ステップ関数	Y=1(x>0)			
		$0(x \leq 0)$			
2	恒等関数	Y=x (順伝播)			
		δ y/δ x = 1 (逆伝播)			
3	Bent Idenntity	$y = 1/2(\sqrt{x^2+1-1})+x$			
4	HardShirink	$Y=x(x<-\lambda \text{ or } \lambda < x)$			
		0			
5	SoftShrink	Y=x+λ(x<-λ) (順伝播)			
		$\mathbf{x} - \lambda (\lambda > \mathbf{x})$			
		0			
		δ y / δ x = 1 (逆伝播)			
		0			
6	Threshold	Y=x (順伝播)			
		0			
		Y=1 (逆伝播)			
		0			
7	シグモイド関数	Y=1/(1+e-x) (順伝播)			
		δ y / δ x = y(1·y) (逆伝播)			
8 HardSigmoid Y=1 0.2x+0.5 0		Y=1			
		0.2x+0.5			
		0			
		$\delta y / \delta x = 0.2$			
		0			
9 logSigmoid Y=log(1/(1+e-x)					
		$\delta y / \delta x = 1/(1 + ex)$			
10	Tanh	Y=tanh(x)=(ex-e-x)/(ex+e-x)			
		$\delta y / \delta x = \operatorname{sech} 2(x) = 1/\cosh 2(x) = 4/(ex + e^{-x})2$			
11	Y=x-tanh(x)				
		$\delta y / \delta x = \tanh 2(x)$			

12	Hardtanh	Y=1			
		-1			
		X			
		$\delta y/\delta x=0$			
		1			
13	ReLU 関数	Y=x(x>0)			
		$0(\mathbf{x} \leq 0)$			
		$\delta y / \delta x = 1(x > 0)$			
		$0(\mathbf{x} \leq 0)$			
14	ReLU6	$Y=0(x\leq 0)$			
		6(x≥6)			
		X			
		$\delta y / \delta x = 0((x \le 0) \text{ or } (x \ge 6))$			
		1			
15	Leak-ReLU	Y=X(X>0)			
		$0.01x(x \leq 0)$			
		$\delta y / \delta x = 1(x > 0)$			
		$0.01(x \le 0)$			
16	ELU	$Y=X \qquad (X \ge 0)$			
		$\alpha \text{ (ex-1) (x<0)}$			
		$\delta y / \delta x = 1$			
		α ex			
17 SELU $Y=\lambda x$		$Y = \lambda x$			
		$\lambda \alpha \text{ (ex-1)}$			
		$\delta y / \delta x = \lambda$			
		λ α ex			
18	CELU	Y=x			
		$\alpha \left(e(x/\alpha) - 1 \right)$			
		$\delta y/\delta x=1$			
		e(x/α)			
19 ソフトマックス関数 Yi=exi/Σexk					
		$\delta y / \delta x = yi(1-yi) \Sigma yiyj = \Sigma yi(\delta ij-yj)$			
20	Softmin	Yi=e-xi/Σe-xk			
$\delta y / \delta x = yi(1-yi) + \Sigma yiyj = \Sigma yi(\delta ij-yj)$		$\delta y / \delta x = yi(1-yi) + \sum yiyj = \sum yi(\delta ij-yj)$			
21 Logsoftmax $Yi=log(exi/\Sigma exk)$		$Yi = log(exi/ \Sigma exk)$			
δ y/δ z		$\delta y / \delta x = \Sigma (\delta ij - eyj)$			
22	Softplus	Y = log(1+ex) = ln(1+ex)			
		$\delta y / \delta x = ex/(1+ex) = 1/(1+e-x)$			
23	Softsign	Y=x/(1+ x)			
		$\delta y / \delta x = 1/(1+ x)2$			

24	Swish	$Y=x/(1+e^{-}\beta x)$			
		$\delta y / \delta x = \beta y + (1 - \beta y) / (1 + e - \beta x)$			
25	hardSwish	Y=0			
		X(x+3)/6			
		X			
		$\delta y/\delta x=0$			
		(2x+3)/6			
		1			
26	ACON				
27	Mish				
28	tanhExp	Y=xtanh(ex)			
		$\delta y / \delta x = \tanh(ex) - xex(\tanh 2(ex) - 1)$			

3 Section3_出力層

出力層では、活性化関数を使用して非線形変換を行う。 出力層の設計

- 1) ニューラルネットワークは分類、回帰の両方に用いられる。
- 2) どちらの問題を解決するかで、活性化関数を変更する必要がある。
- 3)回帰問題では恒等関数を、分類問題ではソフトマックス関数を用いる。
- 4) クラス分類では、出力層のニューロンの数はクラス数

4 Section4_勾配降下法

モデルに対してコストが最小になるようにパラメータを少しづつ変化させて、トレーニングに適合したパラメータを算出するアルゴリズムである。

 $x = x - \eta$ (d f (x) /d x)

1)連鎖律

手法	利用データ	計算時間	メリット	デメリット
バッチ勾配	全てのデータ	大	・解への到達が早い	・メモリの使用量が多い
降下法			・結果が安定	・局所解にはまりやすい
SGD	1つのデータ	小	・メモリの使用量が少ない	・解への到達が遅いことがある
			・オンライン学習が可能	・はづれ値の影響を大きく受け
			・局所解を回避する可能性が	る
			ある	
ミニハ゛ッチ勾配	一部のデータ	中	・バッチ勾配降下法と SGD	それぞれのデメリットがある
降下法			のそれぞれのメリットがある	

5 Section5_誤差逆伝播法

(1) 誤差逆伝播法の概要

$$\nabla E = \frac{\partial E}{\partial \mathbf{w}} = \left[\frac{\partial E}{\partial w_1} \dots \frac{\partial E}{\partial w_M} \right]$$

【誤差逆伝播法】

算出された誤差を、出力層側から順に微分し、前の層前の層へと伝播させる。 最小限の計算で各パラメータでの微分値を解析的に計算する手法である。

計算結果(=誤差)から微分を逆算することで、不要な再帰的計算を避けて微分を算出する。

計算結果 (=誤差) から微分を逆算することで、不要な再帰的計算を避けて微分を算出できる。

(1) 誤差勾配の計算について

$$E(y) = \frac{1}{2} \sum_{j=1}^{J} (y_j - d_j)^2 = \frac{1}{2} ||y - d||^2$$
 : 誤差関数 = 二乗誤差関数

$$\mathbf{y} = \mathbf{u}^{(L)}$$
 : 出力層の活性化関数 $=$ 恒等写像

$$\mathbf{u}^{(l)} = \mathbf{w}^{(l)} \mathbf{z}^{(l-1)} + \mathbf{b}^{(l)}$$
 : 総入力の計算

$$\frac{\partial E}{\partial w_{ji}^{(2)}} = \frac{\partial E}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial w_{ji}^{(2)}}$$

$$\frac{\partial E(y)}{\partial y} = \frac{\partial}{\partial y} \frac{1}{2} \| y - d \|^2 = y - d$$

$$\frac{\partial y(u)}{\partial u} = \frac{\partial u}{\partial u} = 1$$

$$\frac{\partial \mathbf{u}(\mathbf{w})}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} \left(\mathbf{w}^{(l)} \mathbf{z}^{(l-1)} + \mathbf{b}^{(l)} \right) = \frac{\partial}{\partial w_{ji}} \left(\begin{bmatrix} w_{11}z_1 + \dots + w_{1i}z_i + \dots w_{1l}z_I \\ \vdots \\ w_{j1}z_1 + \dots + w_{ji}z_i + \dots w_{jl}z_I \\ \vdots \\ w_{j1}z_1 + \dots + w_{ji}z_i + \dots w_{jl}z_I \end{bmatrix} + \begin{bmatrix} b_1 \\ \vdots \\ b_j \\ \vdots \\ b_J \end{bmatrix} \right) = \begin{bmatrix} 0 \\ \vdots \\ z_i \\ \vdots \\ 0 \end{bmatrix}$$

$$\frac{\partial E}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial w_{ji}^{(2)}} = (\mathbf{y} - \mathbf{d}) \cdot \begin{bmatrix} 0 \\ \vdots \\ z_i \\ \vdots \\ 0 \end{bmatrix} = (y_j - d_j) z_i$$