Relazione prima esercitazione

Causa Lorenzo, Vigna Riccardo

1 Slew Rate A.O. 741

1.1 Configurazione non invertente

Per studiare lo slew rate dell' amplificatore operazionale 741 partiamo da una configurazione di tipo amplificatore non invertente con un fattore di guadagno teorico $Av=1+\frac{R1}{R2}=4.3$. Nella realizzazione in laboratorio abbiamo ottenuto un guadagno reale $Av\sim 4.16$ (Vin = 1V , Vout = 4.16V).

Tale discostamento dal valore calcolato è dovuto sopratutto alle alte tolleranze delle resistenze del circuito (10%).

Figure 1: Circuito amplificatore non invertente

1.2 Studio Slew Rate con onda quadra

Per calcolare lo slew rate abbiamo applicato un'onda quadra in ingresso con f=40kHz e visualizzato l'uscita amplificata sull'oscilloscopio.

Per osservare correttamente gli effetti dello slew rate si regolano le scale orizzontali e verticali, così da poter osservare la retta di massima variazione di tensione nel tempo.

I risultati ottenuti in salita sono:

$$\begin{split} \Delta V &= 2V \\ \Delta t &= 3.8 \mu s \\ S.R._{salita} &= 0.52 V/\mu s \end{split}$$

I risultati ottenuti in discesa sono:

$$\begin{split} \Delta V &= 2V \\ \Delta t &= 4\mu s \\ S.R._{discesa} &= 0.5V/\mu s \end{split}$$

Confrontando i valori ottenuti con il valore nominale dello slew rate del 741 abbiamo verificato che i valori sono pressochè equivalenti.

Nonostante i nostri risultati si discostino di poco dal valore di datasheet, utilizzando un diverso circuito integrato del 741 gli slew rate potrebbero discostarsi di più a causa delle tolleranze di fabbricazione:

$$S.R._{datasheet} = \Delta V/\Delta t = 0.5 V/\mu s$$

1.3 Effetti dello Slew Rate su onde sinusuoidali

Applicando in ingresso una sinusoide di ampiezza di picco Vin=2V,abbiamo,partendo da pochi hertz, aumentato gradualmente la frequenza. A una frequenza di circa 20kHz si nota l'inizio di una distorsione causata dallo slew rate dell'operazionale.Non riuscendo a seguire le variazioni dell'onda in input la variazione dell'uscita si assesta al valore di slew rate portando la Vout a una forma distorta.Aumentando ulteriormente la frequenza la distorsione diventa sempre più importante finchè l'onda si assesta ad una forma triangolare(nel nostro caso a circa una frequenza di 30kHz).Da questo punto in poi si apprezza uno sfasamento dovuto al non raggiungimento del picco di tensione.

1.4 Banda A.O.

Misurata una Vout di 9.36V e preso come riferimento uno slew rate di $0.5\mathrm{V}/\mu$ s applicando la formula:

$$f_{max} = \frac{S.R.}{2\pi V_{max}} \tag{1}$$

Si ottiene una larghezza di banda di 17kHz.

Sperimentalmente la banda risultava a pochi kHz di distanza(20kHz vedi paragrafo 1.3).

2 Prodotto Banda-Guadagno 741

2.1 Configurazione a Buffer

Per lo studio del prodotto banda-guadagno costruiamo un buffer (amplificatore con guadagno unitario) con segnale di ingresso abbastanza piccolo da evitare lo slew rate anche a frequenze importanti: $V_{in} = 0.1 \text{V}$.

Abbiamo a questo punto calcolato la banda a 3dB osservando la frequenza per cui $Vout = Vout_{3dB} = 0.707 Vout_{centroBanda} (= 0.707 Vin)$.

Il risultato ottenuto è

 $f_{max} \sim 1.3 MHz$

Figure 2: Circuito inseguitore di tensione

2.2 Configurazione ad amplificatore

Si costruisce un amplificatore non invertente con guadagno $Av \sim 10$ mantenendo $V_{in} = 0.1V$. Notiamo poi che aumentando il guadagno del circuito la banda a 3dB diminuisce (si veda figura 1 con $R1 \sim 10k\Omega$).

2.3 Tabella Bande e Guadagni

Costruiamo una tabella con le misure trovate nel punto precedente:

Guadagno	Banda	Banda x Guadagno
1	$\sim 1.3 MHz$	1.3M
12	$\sim 80kHz$	960k
100	$\sim 8.4kHz$	840k

Nel campo di frequenze da noi osservato, nel diagramma di bode dell'operazionale, interviene un solo polo che introduce nel modulo un'attenuazione di 20dB per decade (pendenza -1).Dunque il prodotto Banda-Guadagno dovrebbe essere costante.Nella realtà si osserva una leggera diminuzione all'aumentare del guadagno a causa dell'intervento dello slew rate.Quest'ultimo è favorito dal fatto che con guadagni maggiori si ha una variazione di tensione nel tempo più grande(a parità di Vin).