Machine Learning

Lecture 2: Empirical Risk Minimization

王浩

信息科学与技术学院

Email: wanghao1@shanghaitech.edu.cn

本节内容

- Hypothesis class
- Joint Distribution of Data
- Expected Risk Minimization
- Empirical Risk Minimization

Components of learning

Components of learning

Two solution components of the learning problem:

• The Hypothesis Set:

$$\mathcal{H} = \{h\}, \quad g \in \mathcal{H}$$

• The learning algorithm ${\mathscr A}$

Together, they are referred to as the learning model.

Data and Labels

- In learning we seek a mapping from the initial data \mathcal{X} (the domain of abstract input objects) to some label set \mathcal{Y} (anything we want to predict)
- Hypothesis: $h: \mathcal{X} \to \mathcal{Y}$
- Example: in character recognition, \mathcal{X} consists of possible images of letters and \mathcal{Y} consists of the twenty-six letters of the Latin alphabet.
- Note: For simplicity we will use binary labels $\{+1, -1\}$. Whether something is the letter "G" (+1) or not the letter "G" (-1), or whether given image contains a face (+1) or does not contain a face (-1).

Training Set and Test Set

- A training set is a set data used to discover potentially predictive relationship.
- A test set is a set of data used to assess the strength and utility of a predictive relationship
- Random split

1	-1	5	7	14	19	39	40	51	63	67	73	74	76
2	-1	3	6	17	22	36	41	53	64	67	73	74	76
3	-1	5	6	17	21	35	40	53	63	71	73	74	76
4	-1	2	6	18	19	39	40	52	61	71	72	74	76
5	-1	3	6	18	29	39	40	51	61	67	72	74	76
6	-1	4	6	16	26	35	45	49	64	71	72	74	76
7	1	5	7	17	22	36	40	51	63	67	73	74	76
8	1	2	6	14	29	39	42	52	64	67	72	75	76
9	1	4	6	16	19	39	40	51	63	67	73	75	76
10	1	3	6	18	20	37	40	51	63	71	73	74	76
11	1	2	11	15	19	39	40	52	63	68	73	74	76
12	-1	1	6	15	19	39	42	55	62	67	72	74	76
13	-1	2	6	17	24	38	42	50	64	71	73	74	76
14	1	3	6	15	25	38	40	48	63	68	73	74	76
15	-1	1	7	16	22	36	42	56	62	67	73	74	76
16	-1	2	6	16	22	36	42	54	66	67	73	74	76
17	-1	3	6	14	21	35	40	50	63	67	73	74	76
18	1	4	7	18	29	39	41	51	66	67	72	74	76
19	1	3	6	16	32	39	40	52	63	67	73	74	76
20	-1	5	6	18	22	36	43	49	66	71	72	74	76
21	-1	3	9	14	26	35	40	56	63	71	73	74	76
22	1	5	10	17	19	39	40	47	63	67	73	74	76
23	-1	1	6	16	22	36	42	48	62	67	73	74	76
24	1	5	16	20	37	40	63	68	73	74	76	82	93
25	-1	3	6	18	22	36	41	51	64	67	73	74	76
26	-1	4	6	16	22	36	40	48	63	67	73	74	76
27	-1	1	10	16	24	38	42	59	64	67	73	74	76
28	-1	1	6	18	20	37	42	50	62	71	73	74	76
29	-1	4	6	18	19	39	41	51	62	67	73	74	77
30	-1	2	9	14	20	37	40	55	62	67	73	74	76
31	-1	1	11	18	20	37	40	49	63	71	73	74	76
32	-1	4	6	17	21	35	42	54	66	67	73	74	76
33	-1	1	6	17	20	37	42	54	62	67	73	74	76
34	-1	1	6	18	22	36	46	55	61	67	72	74	76
35	1	2	6	14	20	37	40	50	63	67	73	74	76
36	-1	4	7	18	24	38	40	52	63	67	73	74	76
37	-1	2	6	18	26	35	40	54	63	67	73	74	76

Joint Distribution

- Joint distribution $p_{X,Y}(x,y)$
- Future data is coming from some unknown source joint distribution $p_{X,Y}$ over input objects and their corresponding labels, which we write as the joint distribution $p_{X,Y}$, where $X \in \mathcal{X}, Y \in \mathcal{Y}$
- Example: Character recognition source distribution would assign much more probability to ("image containing a circular shape", "O") than to ("image containing a circular shape", "T"). (why?)

Conditional Probability

- Conditional distribution $p_{Y|X}(y|x)$
- We can define course joint distribution as really having two components

$$p_{XY}(x, y) = p_{Y|X}(y \mid x) \cdot p_X(x)$$

- $p_{Y|X}(y|x)$ is the conditional probability of the label random variable Y given the appearance random variable and $p_X(x)$ is marginal probability of the input image.
- Example: In character recognition we may have

$$p_{Y|X}(Y = \text{"A"} \mid X = \cancel{+}) = 0.9$$

 $p_{Y|X}(Y = \text{"O"} \mid X = \bigcirc) = 0.6$
 $p_{Y|X}(Y = \text{"a"} \mid X = \bigcirc) = 0.4$

Hypothesis and loss (cost/risk) function

- Hypothesis h: A hypothesis (a predictor) h is a function from \mathcal{X} to \mathcal{Y} , $h:\mathcal{X}\to\mathcal{Y}$
- Loss function loss(h(x), y): How we can measure the performance of h on a given (input, label) pair (x, y)
- Example: If the label h(x) does not match the provided label y, we incur a loss of 1 and if the prediction h(x) does match the provided label y, we incur 0 loss.
- The loss function that represents this measure of performance is called the 01 loss and defined as

$$loss(h(x), y) = \begin{cases} 1 & \text{if } h(x) \neq y \\ 0 & \text{if } h(x) = y \end{cases}$$

Hypothesis class/set/space

- Define \mathcal{H} as a set of predictors, written as $\mathcal{H} = \{h : \mathcal{X} \to \mathcal{Y}\}.$
- Example: Consider binary labels, so the label set is $\mathcal{Y} = \{+1, -1\}$. In addition, we may consider $\mathcal{X} = \mathbb{R}^2$
- Some specific examples of hypothesis classes:

$$\mathcal{H} = \{ \underset{2}{\operatorname{sign}} (w^T x + b) \mid w \in \mathbb{R}^2, b \in \mathbb{R} \}$$

$$\mathcal{H} = \{ \sum_{i=1}^2 x_i \le \theta \mid \theta \in \mathbb{R}_+ \}$$

• In a learning problem, we restrict hypotheses in a certain class.

Expected risk/loss/cost

- Expected Risk R[h]
- How well we expect to do (on average) over the entire (admittedly known) source joint distribution $p_{X,Y}(x,y)$?
- The expected risk R[h] of a hypothesis h on that distribution, measures the performance of this hypothesis by evaluating its expected loss over pairs (x, y) drawn from the distribution

$$R[h] = \mathbb{E}_{(X,Y) \sim p_{X,Y}}[loss(h(x), y)] = \sum_{X,Y} p(x, y) loss(h(x), y)$$

- Note that the randomness comes from the data...
- Other terms with the same meaning are expected loss, generalization error, or source-distribution risk

Additional property of expected risk

- A predictor h is "good" on a particular source joint distribution if it has low risk R[h] on that distribution
- The expected risk R[h] is the probability that the predictor h will incorrectly predict the label for any pair (x, y) drawn at random from the source joint distribution:

$$R[h] = \mathbb{E}_{(X,Y) \sim p_{X,Y}}[loss(h(x), y)] = \mathbb{P}_{(X,Y) \sim p_{X,Y}}\{h(X) \neq Y\}$$

- This equivalence between the risk and the probability of incorrect label prediction holds only for this 0,1 loss
- We will be assuming that the source joint distribution is fixed, samples are i.i.d.

The Learning Process (Ideal Case)

Learning from a function from examples! Given

- Domain \mathcal{X} , \mathcal{Y}
- The target function *f*. (unknown)
- \mathcal{H} : Hypothesis set; the set of all possible hypotheses
- Extrapolated observed ys over all $x \in \mathcal{H}$
- Final hypothesis (your predictor/model): $g \approx f$
- Ideal case: g is obtained by minimizing R[h]

$$g = \underset{h}{\operatorname{arg\,min}} R[h], h \in \mathcal{H}$$

Expected risk minimizer

$$g = \arg\min_{h \in \mathcal{H}} \quad \mathbb{E}_{(X,Y) \sim p_{X,Y}}[\mathsf{loss}(h(x), y)]$$

- We want to find a predictor that minimizes the expected loss on the true joint distribution, but…
- We do not have complete knowledge of the true source joint distribution
- We should choose our predictor to minimize the expected loss on what we do have access to
- We hope that this predictor will do well on the true source joint distribution (However…)

Empirical risk minimizer

• The expected loss of a predictor h on a particular observed sample data set $\mathcal{D} = \{(x_1, y_1), ..., (x_m, y_m)\}$ could also be referred to as the empirical risk

$$\hat{R}_{\mathcal{D}}[h] = \frac{1}{m} \sum_{i=1}^{m} [loss(h(x_i), y_i)] = \frac{1}{m} \sum_{i=1}^{m} \{h(x_i) = y_i\}$$

Usually, the target predictor is found by

$$\hat{h} = \arg\min_{h} \ \hat{R}_{\mathcal{D}}[h], \qquad h \in \mathcal{H}$$

• Parameterize $h(\cdot;\theta) \iff \theta$

$$\hat{\theta} = \arg\min_{\theta} \ R_{\mathcal{D}}[\theta], \qquad \theta \in \ \Theta$$

Goal of Machine Learning

- The core of machine learning deals with representation and generalization:
- Representation (Explanation) of data instances and functions evaluated on these instances are part of all machine learning systems
- Generalization (Prediction) is the property that the system will perform well on unseen data instances

Notes:

- Are we done with Empirical Risk Minimization?
- Remember the ultimate goal is <u>Expected Risk Minimization</u>
- In Empirical Risk Minimization, we use

$$\sum_{i=1}^m \mathsf{loss}(h(x_i),y_i; heta)$$
 to approximate $\mathbb{E}[\mathsf{loss}(h(x),y)]$

- When is this a good approximation (good generalization)?
- What if it's not a good approximation (bad generalization)?

These are key questions we are to answer in this class!!!

Machine Learning Procedures

Hypothesis (Prediction function): $h_{\theta}(x) = \operatorname{sign}(x - \theta)$, parameterize by θ

Training set

$$h_{30}(x) = \operatorname{sign}(x - 30)$$

$$h_{30}(x) = sign(x - 30)$$
 $h_{200}(x) = sign(x - 200)$

Loss Function: $loss(h(x), y) = (h(x) - y)^2$

On average over training set: $loss(h(x), y) = \frac{1}{m} \sum_{i=1}^{m} (h(x_i) - y_i)^2$ (training error, empirical risk, in-sample error)

$$loss(h_{30}(x), y) = 0 \quad loss(h_{200}(x), y) = 1/6$$

Sample Space p(x,y)

$$\theta = 200, \quad h_{200}(x) = sign(x - 200)$$

Expected loss on the entire sample space:

$$\mathbb{E}[\mathsf{loss}(h(X),\,Y)] = \int \mathsf{loss}(h(x),\,y) \, \cdot \, p(x,\,y) \ d(x,\,y)$$

(generalization error, expected risk, out-of-sample error)

What is our Hypothesis Set?

$$\mathcal{H} = \{ h(x; \theta) \mid 0 \le \theta \le 500 \}$$

What is the best (optimal) θ value?

- The "key (ultimate) goal" in machine learning is to answer this question.
- ▶ Obviously, the "best θ " should be the value minimizing $\mathbb{E}[\mathsf{loss}(h(X;\theta), Y)]$.
- This is called expected risk minimization

Expected Risk Min v.s. Empirical Risk Min

Expected Risk Minimization

$$\begin{split} & \min_h \ \mathbb{E}[\mathsf{loss}(h(X), \, Y)] \quad \mathsf{s.t.} \ h \in \mathcal{H} \quad \to \quad \mathsf{parameterize...} \\ & \min_{\theta} \ \mathbb{E}[\mathsf{loss}(h(X; \theta), \, Y)] = \min_{\theta} \int \mathsf{loss}(h(x; \theta), \, y) \cdot p(x, y) \ d(x, y) \end{split}$$

However, generally we can't do this....why?

• Empirical Risk Minimization

$$\begin{split} & \min_{h} \ \frac{1}{m} \sum_{i=1}^{m} [\mathsf{loss}(h(x_i), y_i)] \quad \mathsf{s.t.} \ h \in \mathcal{H} \quad \to \quad \mathsf{parameterize...} \\ & \min_{\theta} \ \frac{1}{m} \sum_{i=1}^{m} [\mathsf{loss}(h(X; \theta), Y)] \quad \mathsf{s.t.} \ 0 \leq \theta \leq 500 \end{split}$$