SOLUTIONS

QUESTION 1

$$x = \ln x$$

(a)
$$u = \log x$$

$$du = \frac{1}{x} dx$$

 $x=e^2, u=2$ x = e, u = I

$$\int_{-\pi}^{\pi} \frac{1}{u} du$$

$$= \lfloor \log u \rfloor_1^2$$
$$= \log 2 - \log 1$$

$$= \log 2$$

$$(2-x)(x+2)$$

$$\frac{5}{(2-x)(x+2)} - 1 > 0$$

$$\frac{5-(4-x^2)}{(2-x)(x+2)} > 0$$

$$\frac{x^2+1}{(2-x)(x+2)} > 0$$

i.e.
$$(2-x)(x+2) > 0$$

Test x = 0, true

$$\therefore$$
 Solution is $-2 < x < 2$

(c) Line
$$PQ$$
 has equation $\frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1}$

$$\frac{y+3}{x+3} = \frac{5+3}{1+3}$$

$$y + 3 = 2(x + 3)$$

 $y = 2x + 3$

$$y=2x+3$$

A lies on
$$PQ$$
 since, when $x = \frac{1}{2}$, $y = 2(\frac{1}{2}) + 3$

$$x_{A} = \frac{mx_{Q} + nx_{P}}{m + n}$$

 $\frac{1}{2} = \frac{m(1) + n(-3)}{m + n}$

m+n=2m-6n

m=7n

$$y_{A} = \frac{my_{Q} + ny_{P}}{m + n}$$

 $4 = \frac{m(5) + n(-3)}{n}$

$$4m + 4n = 5m - 3n$$

$$m = 7n$$

$$m = 7n$$

$$\frac{m}{n} = 7$$

$$m: n = 7: 1$$

i.e. A divides the line segment
$$PQ$$
 in the ratio $7:1$

i.e. m : n = 7 : 1

7= <u>m</u> --

(d) Let $\tan^{-1} x = \alpha$

$$\therefore \tan \alpha = x \qquad \text{for } -\frac{\pi}{2} < \alpha < \frac{\pi}{2}$$

and α can be represented as a first quadrant angle.

Then
$$\cos \alpha = \frac{1}{\sqrt{1+x^2}}$$

so that
$$\cos^{-1} \frac{1}{\sqrt{1+x^2}} = \alpha$$

$$\therefore \tan^{-1} x = \cos^{-1} \frac{1}{\sqrt{1 + x^2}}$$

(e) Remainder =
$$P(-4) = -64 + 16 + 2$$

QUESTION 2

(a) $7! \times {}^4C_2$

(b)
$$(1-2x)^6 = \sum_{k=0}^6 {n \choose k} (-2x)^k$$

$$(1-3x+2x^3)(1-2x)^6$$

$$= (1 - 3x + 2x^{3})[1 + {\binom{6}{1}}(-2x) + {\binom{6}{2}}(-2x)^{2} + {\binom{6}{3}}(-2x)^{3} + {\binom{6}{4}}(-2x)^{4} + {\binom{6}{3}}(-2x)^{5} + {\binom{6}{6}}(-2x)^{6}]$$

The x5 terms arise from

$$1 \times {\binom{6}{3}}(-2x)^5 - 3x[\binom{6}{4}(-2x)^4] + \frac{1}{2}x^3[\binom{6}{4}(-2x)^2]$$

$$=-192x^5-720x^5+120x^5$$

$$=-797 r^{5}$$

$$\therefore$$
 Coefficient of x^5 term is -792

(c) $\cos 54^{\circ} \cos \alpha + \sin 54^{\circ} \sin \alpha = \sin 2\alpha$

$$cos(54^{\circ} - \alpha) = cos(90^{\circ} - 2\alpha)$$

$$\therefore 54^{\circ} - \alpha = \pm (90^{\circ} - 2\alpha) + 360^{\circ}n$$

$$54^{\circ} - \alpha = 90^{\circ} - 2\alpha + 360^{\circ}n$$
 $| 54^{\circ} - \alpha = -(90^{\circ} - 2\alpha) + 360^{\circ}n$

$$\alpha = 36^{n} + 360^{\circ}n$$

 $54^{\circ} - \alpha = -90^{\circ} + 2\alpha + 360^{\circ}n$

$$3\alpha = 144^{\circ} - 360^{\circ}n$$
$$\alpha = 48^{\circ} - 120^{\circ}n$$

(d)
$$\frac{d}{dx} \left[\frac{\tan^2 x}{x} \right]$$

$$= \frac{2x \tan x \sec^2 x - \tan^2 x}{x^2}$$

(e)
$$f(x) = 2x^2 + x$$

$$f^{\dagger}(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

$$= \lim_{h \to 0} \frac{2(a+h)^2 + a + h - (2a^2 + a)}{h}$$

$$= \lim_{h \to 0} \frac{2a^2 + 4ah + 2h^2 + a + h - 2a^2 - a}{h}$$

$$=\lim_{h\to 0}\frac{4ah+2h^2+h}{h}$$

$$= \lim_{h \to 0} 4a + 2h + 1$$

$$= \lim_{h \to 0} 4a + 2h$$
$$= 4a + 1$$

QUESTION 3

(a)
$$y = x^2 - 4x - 1$$

$$y+1=x^2-4x$$

$$x^2 - 4x + 4 = y + 5$$

$$(x-2)^2 = y+5$$

$$(x-2)^2 = 4(\frac{1}{4})(y+5)$$

Focal length =
$$\frac{1}{4}$$

$$\therefore$$
 Focus is $(2, -4\frac{3}{4})$

Directrix has equation
$$y = -5\frac{1}{4}$$

(b) With one digit: 6

With two digits: $^6P_2 = 30$

With three digits: $3 \mid 5 \mid 4 \mid = 60$

Total = 96

(c) (i) Let $\angle BAF = x$

$$\therefore \angle FAC = x (AF \text{ bisects } \angle BAC)$$

$$\therefore \angle AOD = 2x (DA = DO)$$

$$\therefore \angle ABF = x$$

(angle at centre = $2 \times \text{angle at circumference}$)

$$\therefore \angle BAF = \angle ABE = x$$

$$\therefore GA = GB$$

(ii)
$$\angle AGE = 2x$$
 (Exterior \angle of $\triangle GAB$)

$$\therefore \angle AGE = \angle AOD = 2x$$

 $\therefore AOGE$ is a cyclic quadrilateral (angles subtended by AE proved equal)

(iii)
$$\angle BEC = \angle BAC$$
 (angles subtended by BC)

$$\therefore ZBEC = ZAGE = 2x$$

 $\therefore BC || FA$ (alternate $\angle s$ proved equal)

QUESTION 4

Mathematics Extens: 1 HSC 2004

(a)
$$\sum_{r=1}^{n} \frac{r^2}{(2r-1)(2r+1)} = \frac{1^2}{1\times 3} + \frac{2^2}{3\times 5} + \dots + \frac{n^2}{(2n-1)(2n+1)}$$

If
$$n = 1$$
, LHS = $\frac{1^2}{1 \times 3} = \frac{1}{3}$
RHS = $\frac{1(2)}{2(3)} = \frac{1}{3}$

 \therefore The statement is true for n=1

Assume that the statement is true for n = k, a positive integer.

i.e.
$$\frac{1^2}{1\times 3} + \frac{2^2}{3\times 5} + \dots + \frac{k^2}{(2k-1)(2k+1)} = \frac{k(k+1)}{2(2k+1)}$$

So, when n = k + 1

LHS =
$$\frac{1^2}{1 \times 3} + \frac{2^2}{3 \times 5} + \dots + \frac{k^2}{(2k-1)(2k+1)} + \frac{(k+1)^2}{(2k+1)(2k+3)}$$

$$= \frac{k(k+1)}{2(2k+1)} + \frac{(k+1)^2}{(2k+1)(2k+3)}$$
 by assumption

$$=\frac{k(k+1)(2k+3)+2(k+1)^2}{2(2k+1)(2k+3)}$$
$$=\frac{(k+1)(2k^2+3k+2k+2)}{2(2k+1)(2k+3)}$$

$$\frac{(k+1)(2k^2+5k+2)}{2(2k+1)(2k+3)}$$

$$=\frac{(k+1)(2k+1)(k+2)}{2(2k+1)(2k+3)}$$

$$= \frac{(k+1)(k+2)}{2(2k+3)} = RHS$$

: If the statement is true for n = k, then it is true for n = k + 1.

But it is true for n = 1, and so true for n = 2, and hence by induction it is true for all positive integers.

(b) (i) Let O be the centre of the semi-circle and join OC.

Let O be the centre of the semi-circle and join OC.

$$\angle OCB = \alpha$$
. $(OC = OB)$

.. Area of segment cut off by CB $= \frac{1}{2}(1)^{2} \left[\pi - 2\alpha - \sin \left(\pi - 2\alpha \right) \right]$

 $=\frac{1}{2}\left(\pi-2\alpha-\sin 2\alpha\right)$

(ii) Area of segment = $\frac{1}{2}$ (area of semi-circle)

 $\frac{1}{2}(\pi - 2\alpha - \sin 2\alpha) = \frac{1}{2}(\frac{1}{2}\pi)$

 $\pi - 2\alpha - \sin 2\alpha = \frac{\pi}{2}$

 $2\pi - 4\alpha - 2\sin 2\alpha = \pi$

 \therefore 2 sin 2 α + 4 α = π

(iii) Let $f(\alpha) = 2 \sin 2\alpha + 4\alpha - \pi$

f(0.4) = -0.106 < 0f(0.5) = +0.541 > 0 Change in sign proves that a root lies between $\alpha=0.4$ and $\alpha=0.5$

(iv) Taking $\alpha = 0.45, f(0.45) = 0.225 > 0$

But A(0.4) < 0

.: Root lies closer to 0.4 than 0.5

QUESTION 5

(a) (i) $T = T_O + Ae^{-k}$

 $\therefore Ae^{-k} = T - T_0$

Now $T = T_O + Ae^{-k}$

 $\frac{dT}{dt} = -kAe^{-kt}$

 $-k(7-T_0)$

(ii) When t = 0, T = 100

When t = 3, T = .70

 $T = T_O + Ae^{-kt}$

 $100 = 25 + Ae^{o}$

Now $T = 25 + 75e^{-kt}$ ∴ A = 75

 $70 = 25 + 75e^{-34}$

-3k = ln(0,6)

 $k = \frac{ln0.6}{-3}$

(iii) $T = 25 + 75e^{-0.1704}$

T = 50

 $50 = 25 + 75e^{-0.1704}$

 $e^{-0.170v} = \frac{25}{75}$

 $-0.170t = ln(\frac{1}{2})$

 $t = \frac{ln(\frac{1}{3})}{-0.170}$

 $t = 6.45 \, \text{min}$

(b) (i) Applying cosine rule to

triangle ABC:

urangse
$$ABC$$
:
 $y^2 = x^2 + y^2 - 2xy \cos \alpha$
 $2xy \cos \alpha = x^2$

$$\cos \alpha = \frac{x^2}{2xy}$$

 $=\frac{x}{2y}$

(ii)
$$\angle BAC = \alpha$$
 ($\triangle ABC$ isosceles)

$$\therefore$$
 Z4CB = 180° -- 2 α (angles of \triangle ABC)

$$\angle ADC = 90^{\circ}$$
 (angle in a semi-circle)

In
$$\triangle ADC$$
; $\cos(180 - 2\alpha) = \frac{DC}{y}$

$$-\cos 2\alpha = \frac{DC}{y}$$

$$\therefore DC = -y \cos 2\alpha$$

$$=-y(\frac{2x^2}{4y^2}-1)$$

 $=-y(2\cos^2\alpha-1)$

i.e.
$$DC = y - \frac{x^2}{2y}$$

QUESTION 6

Mathematics Extensive 1 HSC 2004

(a) 11.00 a.m.
$$\rightarrow 5.20 \text{ p.m.} = 6\frac{1}{3} \text{ h}$$

... Period
$$T = 12\frac{2}{3} = \frac{38}{3}$$
 h

$$\therefore n = \frac{2\pi}{T} = \frac{2\pi}{\frac{3\pi}{3}} = \frac{3\pi}{19}$$

Mean tide = 4 m and 4 m and 4 m

Let x = the number of metres by which the water depth differs from 4 m at time tавет 11.00 а.т.

$$So x = -2 \cos \frac{3\pi t}{19}$$

The yacht may enter safely when $x \ge -0.5$

Consider x = -0.5

$$-2\cos\frac{3\pi}{19} = -0.5$$

$$3\pi$$

$$\cos \frac{3\pi t}{19} = 0.25$$

$$\frac{3\pi t}{19} = 1.318$$
 or $\frac{3\pi t}{19} = 2\pi - 1.318$

t = 10.00 h

$$= 2 h 40 min$$

.. The yacht may safely cross the lagoon between 1.40 p.m. and 9.00 p.m.

.. With no restrictions, number of arrangements = (9-1)!

$$= 40320$$

(ii) Suppose that host and hostess do sit next to each other.

Then they may be arranged in 2! ways while the guests may be arranged in 7!

 \therefore Number of ways = 2! × 7!

$$= 10.080$$

.. Number of ways if host and hostess are separated

$$=40320-10080$$

$$= 30240$$

(iii) Probability =
$$\frac{29}{32}C_{13}$$

 $= 2.23 \times 10^{-4}$

QUESTION 7

(a)
$$v = \sqrt{8x - x^2}$$

$$v^2 = 8x - x^2$$

$$\frac{1}{2}v^2 = 4x - \frac{x^2}{2}$$

$$\frac{1}{2}v^2 = 4x - \frac{x}{2}$$
$$a = \frac{d}{dx} \left(\frac{1}{2}v^2\right) = 4 - x$$

.. When x = 3, a = 1

(b) (i) Substituting
$$t = \frac{x}{V \cos \alpha}$$
 into $y = Vt \sin \alpha - \frac{1}{2}gt^2$

gives
$$y = x \tan \alpha - \frac{gx^2}{2V^2 \cos^2 \alpha}$$

i.e. $y = x \tan \alpha - \frac{gx^2 \sec^2 \alpha}{2V^2}$

(ii)
$$y = Vt \sin \alpha - \frac{1}{2}gt^2$$

$$\dot{y} = V \sin \alpha - gt$$

The ball reaches its maximum height when y = 0.

i.e. when
$$t = V \sin \alpha$$

Substitution into y = Vt sin $\alpha - \frac{1}{2}gt^2$ yields

$$h = \frac{V^2 \sin^2 \alpha}{g} - \frac{1 V^2 \sin^2 \alpha}{2 g}$$

i.e.
$$h = \frac{V^2 \sin^2 \alpha}{2g}$$

(iii) Substituting
$$\frac{g}{V^2} = \frac{\sin^2 \alpha}{2h}$$
 into

$$y = x \tan \alpha - \frac{gx^2}{2y^2} \sec^2 \alpha$$
 yields

$$y = x \tan \alpha - \frac{x^2}{2} \cdot \frac{\sec^2 \alpha \sin^2 \alpha}{2h}$$

$$= x \tan \alpha - \frac{x^2 \sin^2 \alpha}{4h \cos^2 \alpha}$$

=
$$x \tan \alpha - \frac{x^2 \tan^2 \alpha}{4h}$$

=
$$x \tan \alpha (1 - \frac{x \tan \alpha}{4h})$$

(iv)
$$1.6 = \frac{10}{\sqrt{3}} \left(1 - \frac{10}{4\sqrt{3}h}\right)$$

$$h = 1.99$$

(c)
$$(1+x)^{2n} = {}^{2n}C_0 + {}^{2n}C_1x + {}^{2n}C_2x^2 + \dots + {}^{2n}C_nx^n + \dots + {}^{2n}C_{2n-2}x^{2n-2} + {}^{2n}C_{2n-1}x^{2n-1} + {}^{2n}C_{2n}x^{2n-1}$$

Put
$$x=1$$

 $\therefore 2^{2n} = {}^{2n}C_0 + {}^{2n}C_1 + {}^{2n}C_2 + \dots {}^{2n}C_n + \dots {}^{2n}C_{2n-2} + {}^{2n}C_{2n-1} + {}^{2n}C_{2n}$

$$=2^{2n}C_0+2^{2n}C_1+2^{2n}C_2+\ldots+2^{2n}C_{n-1}+^{2n}C_n$$

since
$${}^nC_r = {}^nC_{n-r}$$

= $2^{2n}C_0 + 2^{2n}C_1 + 2^{2n}C_2 + ... + 2^{2n}C_{n-r} + 2^{2n}C_n - {}^{2n}C_n$

$$\therefore 2^{2n} + {}^{2n}C_n = 2({}^{2n}C_0 + {}^{2n}C_1 + {}^{2n}C_2 + \dots + {}^{2n}C_n)$$

$$\frac{2^{2n}}{2} + \frac{{}^{2n}C_{\mu}}{2} = {}^{2n}C_0 + {}^{2n}C_1 + {}^{2n}C_2 + \dots + {}^{2n}C_n$$

$$2^{2n-1} + \frac{(2n)!}{2n!n!} = \sum_{r=0}^{n} 2^{r}C_{r}$$

$$2^{2n-1} + \frac{(2n)!}{2(n!)^{\frac{1}{2}}} = \sum_{r=0}^{n} {}^{2n}C_r$$

Mathematics Extension 1 Trial Examination Marking Guidelines

Answer Answer Cosine ratio in AADC Solving for cos α (ii) 1 Value of angles Reasons Cosine ratio in AADC Solution Beriod Value of n Value of
6 (a) 6 (b) (i) 7 (a) (ii) 7 (b) (ii) (iii) (iii)
£ £ £ £
es 8 3
3 8 8