II B. Tech I Semester Regular Examinations, February/March 2023

DISCRETE MATHEMATICS (Common to CSE, AIML & DS)

: 3 hours

ODE: GR20A2069

Max Marks: 70

ructions:

Question paper comprises of Part-A and Part-B

Part-A (for 20 marks) must be answered at one place in the answer book.

Part-B (for 50 marks) consists of five questions with internal choice, answer all questions.

PART - A

(Answer ALL questions. All questions carry equal marks)

	10 * 2 = 20 Marks		arks
Write the inverse and contrapositive of the following implication: If triangle ABC is a right angle triangle, then $AB^2+BC^2=AC^2$	[2]	COI	BL1
Find the inference form of the following statements All fathers are males Some students are fathers Hence, some students are males	[2]	COI	BL2
Use the properties of sets to prove $A \cup (B - A) = A \cup B$ for all sets A and B in the universal set U.	[2]	CO2	BL2
Write the properties of Binary relation.	[2]	CO2	BL2
Write 3-combinations of $\{3.a, 2.b, 5.c\}$	[2]	CO3	BL3
Find the number of arrangements of the letters of the word "ENGINEERING".	[2]	CO3	BL4
Define recurrence relation.	[2]	CO4	BL1
Write a short note on substitution method to solve recurrence relation.	[2]	CO4	BL1
Define Spanning tree.	[2]	CO5	BL1
What is the chromatic number of a Cycle?	[2]	CO5	BL4

PART - B

(Answer ALL questions. All questions carry equal marks)

5 * 10 = 50 Marks

[10] CO1 BL3

- (a) Construct the truth table for the following: $\{(p \rightarrow r) \land (q \rightarrow r)\} \rightarrow ((p \lor q) \rightarrow r)$ What can you conclude from the above implication?
- (b) Verify whether the following argument is valid? If Clinton does not live in France then he does not speak French, Clinton does not drive a Datsun. If Clinton lives in France, then he rides a bicycle. Either Clinton speaks French or he drives a Datsun. Hence, Clinton rides a bicycle.

BL4

OR

- 3. (a) Prove or disprove the validity of the following argument.

 Students of average intelligence can do arithmetic. A student without average intelligence cannot pass in the examination. My student cannot do arithmetic. Therefore my student cannot pass in the examination
 - (b) Verify whether the following argument is valid or not?

1-1-

~8

 $t\rightarrow w$

rVs

Then: w

- 4. (a) Let R is reflexive relation on a set A. Show that R is an equivalence relation if (a,b) and (a,c) are in $R \Rightarrow (b,c) \in R$.
 - (b) If 'n' is a positive integer. Let D_n denote the set of positive divisors of 'n' then draw the Hasse diagram of the following posets.

(i) $[D_{12},/]$ (ii) $[I_6,/]$

OR

- 5. (a) Let $[A; \le]$ is a lattice, then prove \forall a,b,c \in A (i) $a \lor (a \land b) = a$ (ii) $a \land (a \lor b) = a$
 - (b) Prove that, In a group of 61 people at least 6 people were born in the same month.
- 6. (a) In a class of 100 students 47 can write a program in C++, 35 in Java and 23 can program in both the languages. How many can program in neither of these languages?
 - (b) How many different plates are possible that involve 1, 2, or 3 letters followed by 1, 2, 3, and 4 digits?

OR

- 7. Find the number of integers that lie between 1 & 1000 that are not divisible by 2, 3 [1 and 5.
- 8. (a) Find the coefficient of X^{14} in $(X + X^2 + X^3 + X^4 + X^5) (X^2 + X^3 + X^4 + ...)^5$
 - (b) Solve the recurrence relation $a_n 9a_{n-1} + 20a_{n-2} = 0$ for $n \ge 2$ where $a_0 = -3$ $a_1 = -10$

Find the (i) homogeneous solution, (ii) particular solution, and (iii) general solution [10] CO4 BL2 to the following inhomogeneous recurrence relation.

$$a_n - 4a_{n-1} + 4a_{n-2} = 2^n$$
, $n \ge 2$, with $a_0 = -5$, $a_1 = 3$.

(a) Find a spanning tree with vertex ordering abcdefghijk using Breadth First Search algorithm for the following non -directed graph G.

[10] CO5 BL4

(b) Test whether the given graphs are isomorphic or not.

G

OR

G'

(a) If G is a connected planar graph then prove that |V| - |E| + |R| = 2.

[10] CO5 BL4

(b) Calculate the minimum weight of the spanning tree for the following graph using Kruskal's Algorithm.
