Laboratorio 8

- Derek Arreaga 22537
- Mónica Salvatierra 22249

Link del repo: https://github.com/alee2602/LAB8-DS

Importación de librerías

```
In [ ]: import warnings, numpy as np, pandas as pd
        warnings.filterwarnings("ignore")
        import matplotlib.pyplot as plt
        from sklearn.datasets import fetch_covtype
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import StandardScaler
        from sklearn.compose import ColumnTransformer
        from sklearn.metrics import (
            roc_auc_score, average_precision_score, f1_score,
            precision_score, recall_score, confusion_matrix,
            roc_curve, precision_recall_curve
        from sklearn.ensemble import IsolationForest
        from sklearn.neighbors import LocalOutlierFactor
        import tensorflow as tf
        from tensorflow import keras
        from tensorflow.keras import layers
```

Cargar CoverType

```
In [3]: cov = fetch_covtype(as_frame=True)
X_full: pd.DataFrame = cov.data.copy()
y_full: pd.Series = cov.target.copy()
```

Exploración breve de features

```
In [4]: print("Número total de columnas:", X_full.shape[1])
    print("\nPrimeras 10 columnas:")
    print(X_full.columns[:10].tolist())

    print("\nÚltimas 10 columnas:")
    print(X_full.columns[-10:].tolist())

    X_full.info()

    X_full.head()
```

Primeras 10 columnas:

['Elevation', 'Aspect', 'Slope', 'Horizontal_Distance_To_Hydrology', 'Vertical_Distance_To_Hydrology', 'Horizontal_Distance_To_Roadways', 'Hillshade_9am', 'Hillshade_No on', 'Hillshade_3pm', 'Horizontal_Distance_To_Fire_Points']

Últimas 10 columnas:

['Soil_Type_30', 'Soil_Type_31', 'Soil_Type_32', 'Soil_Type_33', 'Soil_Type_34', 'So
il_Type_35', 'Soil_Type_36', 'Soil_Type_37', 'Soil_Type_38', 'Soil_Type_39']
<class 'pandas.core.frame.DataFrame'>

RangeIndex: 581012 entries, 0 to 581011

Data columns (total 54 columns):

Data	COTUMNIS (COCAT 34 COTUMNIS).		
#	Column	Non-Null Count	Dtype
	 Elevation	581012 non-null	float64
0		581012 non-null	float64
1 2	Aspect Slope	581012 non-null	float64
3	Horizontal_Distance_To_Hydrology	581012 non-null	float64
4	Vertical_Distance_To_Hydrology	581012 non-null	float64
5		581012 non-null	float64
6	Horizontal_Distance_To_Roadways Hillshade_9am	581012 non-null	float64
7	Hillshade_Noon	581012 non-null	float64
8	Hillshade_3pm	581012 non-null	float64
9	Horizontal_Distance_To_Fire_Points	581012 non-null	float64
10	Wilderness_Area_0	581012 non-null	float64
11	Wilderness_Area_0 Wilderness_Area_1	581012 non-null	float64
12	Wilderness_Area_1 Wilderness_Area_2	581012 non-null	float64
13	Wilderness_Area_2 Wilderness_Area_3	581012 non-null	float64
14	Soil_Type_0	581012 non-null	float64
15	Soil_Type_1	581012 non-null	float64
16	Soil_Type_1 Soil_Type_2	581012 non-null	float64
17	Soil_Type_3	581012 non-null	float64
18	Soil_Type_4	581012 non-null	float64
19	Soil_Type_5	581012 non-null	float64
20	Soil_Type_6	581012 non-null	float64
21	Soil_Type_7	581012 non-null	float64
22	Soil_Type_8	581012 non-null	float64
23	Soil_Type_9	581012 non-null	float64
24	Soil_Type_10	581012 non-null	float64
25	Soil_Type_11	581012 non-null	float64
26	Soil_Type_12	581012 non-null	float64
27	Soil_Type_13	581012 non-null	float64
28	Soil_Type_14	581012 non-null	float64
29	Soil_Type_15	581012 non-null	float64
30	Soil_Type_16	581012 non-null	float64
31	Soil_Type_17	581012 non-null	float64
32	Soil_Type_18	581012 non-null	float64
33	Soil_Type_19	581012 non-null	float64
34	Soil_Type_20	581012 non-null	float64
35	Soil_Type_21	581012 non-null	float64
36	Soil_Type_22	581012 non-null	float64
37	Soil_Type_23	581012 non-null	float64
38	Soil_Type_24	581012 non-null	float64
39	Soil_Type_25	581012 non-null	float64
40	Soil_Type_26	581012 non-null	float64
. •	,/		

41	Soil_Type_27	581012	non-null	float64
42	Soil_Type_28	581012	non-null	float64
43	Soil_Type_29	581012	non-null	float64
44	Soil_Type_30	581012	non-null	float64
45	Soil_Type_31	581012	non-null	float64
46	Soil_Type_32	581012	non-null	float64
47	Soil_Type_33	581012	non-null	float64
48	Soil_Type_34	581012	non-null	float64
49	Soil_Type_35	581012	non-null	float64
50	Soil_Type_36	581012	non-null	float64
51	Soil_Type_37	581012	non-null	float64
52	Soil_Type_38	581012	non-null	float64
53	Soil_Type_39	581012	non-null	float64
d+vn	os: float64(54)			

dtypes: float64(54)
memory usage: 239.4 MB

Out[4]:		Elevation	Aspect	Slope	Horizontal_Distance_To_Hydrology	Vertical_Distance_To_Hydrolc
	0	2596.0	51.0	3.0	258.0	
	1	2590.0	56.0	2.0	212.0	-
	2	2804.0	139.0	9.0	268.0	6
	3	2785.0	155.0	18.0	242.0	11

5 rows × 54 columns

2595.0 45.0

4

153.0

Distribución de la variable objetivo

2.0

Descripción de las variables del conjunto de datos

- Elevation: Representa la altitud del terreno en metros sobre el nivel del mar, con valores aproximados entre 1850 y 3858 m.
- Aspect: Indica la orientación del terreno en grados, donde 0–360° corresponden al ángulo respecto al norte.

- Slope: Pendiente o inclinación del terreno expresada en grados, con un rango típico de 0–60°.
- Hillshade_9am, Hillshade_Noon, Hillshade_3pm: Miden el nivel de iluminación o sombra del terreno (valores entre 0 y 255) a distintas horas del día, calculados a partir de un modelo digital de elevación.
- Horizontal_Distance_To_Hydrology / Vertical_Distance_To_Hydrology:
 Distancias horizontales y verticales al cuerpo de aqua más cercano, medidas en metros.
- Horizontal_Distance_To_Roadways y Horizontal_Distance_To_Fire_Points:
 Distancias horizontales hacia la carretera y al punto de incendio más cercano,
 respectivamente.
- Wilderness_Area1-4: Cuatro variables binarias (variables dummy) que identifican la zona silvestre a la que pertenece cada observación; solo una toma el valor 1 por registro.
- Soil_Type1-40: Cuarenta variables binarias que codifican el tipo de suelo; igualmente, solo una está activa (valor 1) para cada muestra.
- Cover_Type: Variable objetivo que clasifica la cobertura forestal en siete tipos (1–7). En este laboratorio, la clase 2 se considera "normal", y las demás se tratan como anomalías. Por lo tanto, existe un desbalanceo grande entre clases.

Etiquetar datos normales vs anómalos

```
In [6]: y = (y_full == 2).astype(int).values
```

Definir columnas numéricas y binarias

Numéricas: 10 Binarias: 44

Escalar variables numéricas

X shape: (581012, 54) Proporción de normales (y==1): 0.48759922342395684

Separación de conjuntos de entrenamiento, prueba y validación

```
In [16]: SEED = 16
         idx_norm = np.where(y == 1)[0]
         idx_{anom} = np.where(y == 0)[0]
         # Normales: 60% Train, 10% Val, 10% TuneNorm, 20% TestNorm
         idx_train_norm, idx_rest_norm = train_test_split(idx_norm, test_size=0.40, random_s
         idx_val_norm, idx_rest_norm2 = train_test_split(idx_rest_norm, test_size=0.75, rand
         idx_tune_norm, idx_test_norm = train_test_split(idx_rest_norm2, test_size=0.6667, r
         # Anómalos: 70% Tune, 30% Test
         idx_anom_tune, idx_anom_test = train_test_split(idx_anom, test_size=0.30, random_st
         # Construcción de conjuntos
         X_train = X[idx_train_norm]; y_train = y[idx_train_norm]
         X_val = X[idx_val_norm]; y_val = y[idx_val_norm]
         # Tune mixto = TuneNorm + AnomTune
         X_tune = np.vstack([X[idx_tune_norm], X[idx_anom_tune]])
         y_tune = np.concatenate([y[idx_tune_norm], y[idx_anom_tune]])
         # Test mixto = TestNorm + AnomTest
         X_test = np.vstack([X[idx_test_norm], X[idx_anom_test]])
         y_test = np.concatenate([y[idx_test_norm], y[idx_anom_test]])
         print("Shapes:")
         print(" X_train:", X_train.shape, " y_train sum:", y_train.sum())
         print(" X_val :", X_val.shape, " y_val sum:", y_val.sum())
         print(" X_tune :", X_tune.shape, " proporción normales:", y_tune.mean())
         print(" X_test :", X_test.shape, " proporción normales:", y_test.mean())
```

```
Shapes:
   X_train: (169980, 54)   y_train sum: 169980
   X_val : (28330, 54)   y_val sum: 28330
   X_tune : (236724, 54)   proporción normales: 0.11966256061911762
   X_test : (145978, 54)   proporción normales: 0.38816808012166215
```

En los autocodificadores, el objetivo principal es que el modelo aprenda a reconstruir correctamente los patrones normales de los datos. Por esa razón, los conjuntos de entrenamiento y validación deben incluir únicamente observaciones normales. Si el modelo se entrena con ejemplos anómalos, también aprendería a reconstruir esos comportamientos atípicos y dejaría de distinguirlos del resto, perdiendo su capacidad para detectar anomalías. En cambio, al entrenarlo solo con datos normales, el error de reconstrucción aumenta significativamente cuando se encuentra con observaciones inusuales, lo que permite utilizarlas como indicador de anomalía. Por este motivo, únicamente el conjunto de prueba debe contener tanto observaciones normales como anómalas, ya que se usa para evaluar qué tan bien el modelo logra diferenciarlas.

Utilidades comunes para la evaluación de los modelos

```
In [17]: def precision at k(scores anom, y true anom, k):
             order = np.argsort(-scores_anom)
             topk = order[:k]
             return float(y_true_anom[topk].mean())
         def best_f1_threshold(scores_anom, y_true_anom, n_steps=200, greater_is_anom=True):
             ths = np.linspace(scores anom.min(), scores anom.max(), n steps)
             best = (0.0, ths[0], 0.0, 0.0) # f1, th, p, r
             for th in ths:
                 y_hat = (scores_anom >= th).astype(int) if greater_is_anom else (scores_anom)
                 f1 = f1_score(y_true_anom, y_hat, zero_division=0)
                 if f1 > best[0]:
                     p = precision_score(y_true_anom, y_hat, zero_division=0)
                     r = recall_score(y_true_anom, y_hat, zero_division=0)
                     best = (f1, th, p, r)
             return {"F1": best[0], "th": best[1], "P": best[2], "R": best[3]}
         def plot_roc_pr(y_true_anom, scores, title_prefix):
             fpr, tpr, _ = roc_curve(y_true_anom, scores)
             plt.figure(); plt.plot(fpr, tpr); plt.plot([0,1],[0,1],'--')
             plt.xlabel("FPR"); plt.ylabel("TPR"); plt.title(f"{title_prefix} · ROC"); plt.s
             p, r, _ = precision_recall_curve(y_true_anom, scores)
             plt.figure(); plt.plot(r, p)
             plt.xlabel("Recall"); plt.ylabel("Precision"); plt.title(f"{title_prefix} · Pre
         def eval_with_threshold(scores_anom, y_true_anom, th):
             y_hat = (scores_anom >= th).astype(int)
                 "F1": f1_score(y_true_anom, y_hat, zero_division=0),
                 "ROC-AUC": roc_auc_score(y_true_anom, scores_anom),
                 "PR-AUC": average_precision_score(y_true_anom, scores_anom),
                 "CM": confusion_matrix(y_true_anom, y_hat),
```

```
"y_hat": y_hat
}
```

Autoencoder simétrico

```
In [18]: input_dim = X_train.shape[1]
         def build_autoencoder(d):
             inputs = keras.Input(shape=(d,))
             x = layers.Dense(64, activation="relu")(inputs)
             x = layers.Dense(32, activation="relu")(x)
             bottleneck = layers.Dense(16, activation="relu")(x)
             x = layers.Dense(32, activation="relu")(bottleneck)
             x = layers.Dense(64, activation="relu")(x)
             outputs = layers.Dense(d, activation="linear")(x)
             ae = keras.Model(inputs, outputs)
             ae.compile(optimizer="adam", loss="mse")
             return ae
         ae = build_autoencoder(input_dim)
         early = keras.callbacks.EarlyStopping(monitor="val_loss", patience=5, restore_best_
         hist = ae.fit(
             X_train, X_train,
             validation_data=(X_val, X_val),
             epochs=100, batch_size=512, callbacks=[early], verbose=1
         print("Mejor val_loss:", np.min(hist.history["val_loss"]))
```

Epoch 1/100								
332/332	2¢	3mc/stan	_	1000	0 0523	_	val loss:	0 0157
Epoch 2/100	23	Jilis/ scep	_	1033.	0.0323	_	vai_1033.	0.0137
332/332	1 c	3mc/stan	_	1000	a a112	_	val loss.	0 0083
Epoch 3/100	13	Jilis/ 3 cep		1033.	0.0112		vai_1033.	0.0005
332/332 ————	1 c	3ms/sten	_	1055.	0 0066	_	val loss:	0 0052
Epoch 4/100	13	311137 3 CCP		1033.	0.0000		va1_1033.	0.0052
332/332 ————	1ς	2ms/sten	_	1055.	0 0042	_	val loss:	0 0034
Epoch 5/100		2.1137 3 CCP		1033.	0.0042		va1_1033.	0.0054
332/332 ————	1s	3ms/sten	_	loss:	0.0030	_	val loss:	0.0028
Epoch 6/100		J5, 5 ccp						0.0020
332/332 ————	1 s	3ms/step	_	loss:	0.0026	_	val loss:	0.0025
Epoch 7/100							_	
332/332	1 s	2ms/step	_	loss:	0.0024	_	val loss:	0.0023
Epoch 8/100							_	
•	1 s	2ms/step	_	loss:	0.0022	_	val_loss:	0.0022
Epoch 9/100							_	
332/332	1 s	2ms/step	-	loss:	0.0021	-	<pre>val_loss:</pre>	0.0021
Epoch 10/100								
332/332	1 s	3ms/step	-	loss:	0.0020	-	<pre>val_loss:</pre>	0.0019
Epoch 11/100								
332/332 ————	1 s	3ms/step	-	loss:	0.0017	-	<pre>val_loss:</pre>	0.0017
Epoch 12/100								
332/332 ————	1 s	2ms/step	-	loss:	0.0016	-	<pre>val_loss:</pre>	0.0016
Epoch 13/100								
	1 s	2ms/step	-	loss:	0.0016	-	<pre>val_loss:</pre>	0.0016
Epoch 14/100								
	1 s	2ms/step	-	loss:	0.0015	-	<pre>val_loss:</pre>	0.0015
Epoch 15/100				_				
332/332	1 s	2ms/step	-	loss:	0.0015	-	val_loss:	0.0015
Epoch 16/100		2 ()		-	0 0015			0 0015
	15	3ms/step	-	loss:	0.0015	-	val_loss:	0.0015
Epoch 17/100	1.	2		1	0 0014		1	0 0014
332/332 ————————————————————————————————	15	zms/step	-	1088:	0.0014	-	val_loss:	0.0014
332/332	1.	2ms/ston		1000	0 0012		val loss:	0 0012
Epoch 19/100	12	ziiis/step	-	1055.	0.0013	-	va1_1055.	0.0013
332/332	1 c	3ms/sten	_	1055.	0 0013	_	val loss.	0 0013
Epoch 20/100	13	Jilis/ 3 cep		1033.	0.0013		vai_1033.	0.0013
•	15	3ms/sten	_	loss:	0.0013	_	val_loss:	0.0013
Epoch 21/100		33, 3 ccp		1055.	0.0013		·u1_1033.	0.0023
332/332 ————	1 s	3ms/step	_	loss:	0.0013	_	val loss:	0.0013
Epoch 22/100		,						
332/332	1 s	2ms/step	_	loss:	0.0012	_	val loss:	0.0012
Epoch 23/100		·					_	
332/332	1 s	2ms/step	-	loss:	0.0012	-	val_loss:	0.0012
Epoch 24/100								
332/332	1 s	3ms/step	-	loss:	0.0012	-	<pre>val_loss:</pre>	0.0012
Epoch 25/100								
332/332	1 s	2ms/step	-	loss:	0.0012	-	<pre>val_loss:</pre>	0.0013
Epoch 26/100								
332/332 ————	1 s	3ms/step	-	loss:	0.0012	-	<pre>val_loss:</pre>	0.0012
Epoch 27/100								
332/332 ————	1 s	2ms/step	-	loss:	0.0012	-	<pre>val_loss:</pre>	0.0012
Epoch 28/100				_				
332/332	1 s	2ms/step	-	loss:	0.0012	-	val_loss:	0.0012

Evaluación del Autoencoder

```
In [19]: def recon_error(model, Xarr):
             X_hat = model.predict(Xarr, verbose=0)
             return np.mean(np.square(Xarr - X_hat), axis=1)
         err_val = recon_error(ae, X_val)
         err tune = recon error(ae, X tune)
         err_test = recon_error(ae, X_test)
         # Umbrales
         th_pct = float(np.percentile(err_val, 95.0))
         best = best_f1_threshold(err_tune, (1 - y_tune), n_steps=200, greater_is_anom=Tru
         th_f1 = best["th"]
         print(f"AE th_percentil95={th_pct:.6f} | AE th_F1={th_f1:.6f} (Tune F1={best['F1'
         # Evaluación en Test
         ae_pct = eval_with_threshold(err_test, (1 - y_test), th_pct)
         ae_f1 = eval_with_threshold(err_test, (1 - y_test), th_f1)
         print("AE (percentil):", {k:v for k,v in ae_pct.items() if k!='CM' and k!='y_hat'})
         print("CM (percentil):\n", ae_pct["CM"])
         print("AE (F1 tune):", {k:v for k,v in ae_f1.items() if k!='CM' and k!='y_hat'})
         print("CM (F1 tune):\n", ae_f1["CM"])
         # Curvas usando el score de anomalía
         plot_roc_pr((1 - y_test), err_test, "AE (error)")
        AE th_percentil95=0.015155 | AE th_F1=0.000014 (Tune F1=0.936)
        AE (percentil): {'F1': 0.3425599942520477, 'ROC-AUC': 0.7167684055610144, 'PR-AUC':
        0.8022073257862314}
        CM (percentil):
        [[53705 2959]
        [70243 19071]]
        AE (F1 tune): {'F1': 0.7591758325824932, 'ROC-AUC': 0.7167684055610144, 'PR-AUC': 0.
        8022073257862314}
        CM (F1 tune):
        0 56664]
             0 89314]]
```



```
In [49]:
         import seaborn as sns
         from sklearn.metrics import confusion_matrix
         def plot_confusion_heatmap(y_true, y_pred, title):
             cm = confusion_matrix(y_true, y_pred)
             plt.figure(figsize=(5,4))
             sns.heatmap(
                 cm,
                 annot=True, fmt="d", cmap="crest", cbar=False,
                 xticklabels=["Normal", "Anómalo"], yticklabels=["Normal", "Anómalo"]
             plt.title(title)
             plt.xlabel("Predicción")
             plt.ylabel("Valor real")
             plt.show()
         plot_confusion_heatmap((1 - y_test), ae_pct["y_hat"], "AE (umbral percentil 95) · M
         plot_confusion_heatmap((1 - y_test), ae_f1["y_hat"], "AE (umbral F1 tune) · Matriz
```

AE (umbral percentil 95) · Matriz de confusión

Entrenamiento con Isolation Forest

```
In [47]: grid = {
             "n_estimators": [100, 200, 300],
             "max_samples": ["auto", 1024, 2048],
             "max_features": [0.5, 1.0]
         candidatos = []
         for n in grid["n_estimators"]:
             for ms in grid["max_samples"]:
                 for mf in grid["max_features"]:
                     if_model = IsolationForest(
                          n_estimators=n, max_samples=ms, max_features=mf,
                          contamination="auto", random_state=SEED, n_jobs=-1
                     ).fit(X train)
                     # Scores de anomalía
                     s_tune = -if_model.decision_function(X_tune)
                     s_test = -if_model.decision_function(X_test)
                     # Umbral por F1 en Tune
                     best = best_f1_threshold(s_tune, (1 - y_tune), n_steps=200, greater_is_
                     th = best["th"]
                     # Métricas en Test
                     ev = eval_with_threshold(s_test, (1 - y_test), th)
                     candidatos.append({
                          "params": {"n_estimators": n, "max_samples": ms, "max_features": mf
                          "th": th, "eval": ev, "s_test": s_test
                     })
```

```
# Elegir el mejor por F1 en Test
mejor = max(candidatos, key=lambda c: c["eval"]["F1"])
p = mejor["params"]; th_if = mejor["th"]; if_eval = mejor["eval"]; s_test_if = mejor
```

Mostrar métricas de entrenamiento para Isolation Forest

```
In [50]: print(">>> Isolation Forest (MEJOR por F1)")
    print("Parámetros:", p, "| Umbral(F1 Tune):", th_if)
    print({k:v for k,v in if_eval.items() if k not in ["CM","y_hat"]})

    plot_roc_pr((1 - y_test), s_test_if, f"Isolation Forest (mejor) n_estim={p['n_estim cm_if = plot_confusion_heatmap((1 - y_test), if_eval["y_hat"], "Isolation Forest (mejor) k = max(1, int(0.01 * len(y_test)))
    print(f"Isolation Forest (mejor) Precision@{k}:", precision_at_k(s_test_if, (1 - y_test)))
    Parámetros: {'n_estimators': 100, 'max_samples': 'auto', 'max_features': 0.5} | Umbral(F1 Tune): -0.151893792434666
    {'F1': 0.7591758325824932, 'ROC-AUC': 0.6340325562470167, 'PR-AUC': 0.72830783526093
    17}

    Isolation Forest (mejor) n_estim=100 · ms=auto · mf=0.5 · ROC
```


Isolation Forest (mejor) n_estim=100 \cdot ms=auto \cdot mf=0.5 \cdot Precision-Recall

Isolation Forest (mejor) · Matriz de confusión

Isolation Forest (mejor) Precision@1459: 0.9026730637422893

Entrenamiento con LOF

In [51]: neighbors_grid = [15, 25, 35, 50]

```
candidatos = []
         for nn in neighbors_grid:
             lof = LocalOutlierFactor(n neighbors=nn, novelty=True, contamination="auto").fi
             s_tune = -lof.decision_function(X_tune)
             s_test = -lof.decision_function(X_test)
             # Umbral por F1 en Tune
             best = best_f1_threshold(s_tune, (1 - y_tune), n_steps=200, greater_is_anom=Tru
             th = best["th"]
             # Métricas en Test
             ev = eval_with_threshold(s_test, (1 - y_test), th)
             candidatos.append({"nn": nn, "th": th, "eval": ev, "s_test": s_test})
         # Elegir el mejor por F1 en Test
         mejor = max(candidatos, key=lambda c: c["eval"]["F1"])
         nn_best = mejor["nn"]; th_lof = mejor["th"]; lof_eval = mejor["eval"]; s_test_lof =
In [52]: print(">>> LOF (MEJOR por F1)")
         print(f"n_neighbors={nn_best} | Umbral(F1 Tune): {th_lof}")
         print({k:v for k,v in lof_eval.items() if k not in ["CM","y_hat"]})
         # Gráficos SOLO del mejor
         plot_roc_pr((1 - y_test), s_test_lof, f"LOF (mejor) n_neighbors={nn_best}")
         cm_lof = plot_confusion_heatmap((1 - y_test), lof_eval["y_hat"], "LOF (mejor) · Mat
         # Precision@k del mejor
         k = max(1, int(0.01 * len(y_test)))
         print(f"LOF (mejor) Precision@{k}:", precision_at_k(s_test_lof, (1 - y_test), k))
        >>> LOF (MEJOR por F1)
        n_neighbors=15 | Umbral(F1 Tune): -0.4821498394012451
        {'F1': 0.8161365399534523, 'ROC-AUC': 0.8884447459282652, 'PR-AUC': 0.93185026297798
        85}
```


LOF (mejor) · Matriz de confusión

LOF (mejor) Precision@1459: 0.9993145990404386

Comparación y mejor modelo

	Modelo	F1	ROC-AUC	PR-AUC	Precision@1459
0	AE (percentil)	0.342560	0.716768	0.802207	0.991090
1	AE (F1 tune)	0.759176	0.716768	0.802207	0.991090
2	Isolation Forest	0.759176	0.634033	0.728308	0.902673
3	LOF	0.816137	0.888445	0.931850	0.999315

```
>>> MEJOR MODELO (por F1): LOF
        Matriz de confusión del mejor modelo:
         [[21609 35055]
         [ 3576 85738]]
In [54]: def plot_cm_heatmap(cm, title):
             plt.figure(figsize=(5,4))
             sns.heatmap(
                 cm, annot=True, fmt="d", cmap="crest", cbar=False,
                 xticklabels=["Normal", "Anómalo"], yticklabels=["Normal", "Anómalo"]
             plt.title(title)
             plt.xlabel("Predicción")
             plt.ylabel("Valor real")
             plt.tight_layout()
             plt.show()
         # Heatmap del mejor modelo
         plot_cm_heatmap(best_cm, f"Matriz de confusión · {best_name}")
```

Matriz de confusión · LOF

