CS433 Assignment

Mohana Evuri 23B1017

Shaik Awez Mehtab 23B1080

Spring 2025

1 Task 0

We just used the standard encoding without any optimizations as given in the paper. For k = 2, it gave UNSAT for various values of n. We can also use a lemma in the paper which states:

If the lower bound is $\geq k$ and $D_{r,c,k}$ is not satisfying for some r,c. Then the lower bound is $\geq k+1$.

Here $D_{r,c,k}$ is true iff there's a k color packing of the graph made by nodes i such that $|i| \le r$ and 0 gets color c.

For k = 3, the coloring we found was ..., 3, 1, 2, 1, 3, 1, 2, 1,

2 Task 1

The Variables 2.1

Each vertex v = (x, y) in the grid and each color $c \in \{1, \dots, k\}$ is associated with a Boolean variable $x_{(v,c)}$, which is true iff v has color c.

Grid Construction 2.2

The grid consists of all integer coordinate points (x,y) satisfying $|x|+|y| \le r$, forming a diamond-shaped structure centered at the origin. For example, with r = 2, the grid includes points such as (0,0), (1,0), (0,1), and (-1,0).

Core Constraints 2.3

2.3.1 Unique Color Assignment

Each vertex must be assigned exactly one color. This is enforced by the clause:

$$\bigvee_{c=1}^{k} x_{v,c}$$

Additionally, a vertex cannot have multiple colors simultaneously.

2.3.2 Packing Constraints

For any color c, two vertices assigned this color must be at least c+1 units apart in Manhattan distance. Specifically, for any v_1 and v_2 where $d_{\text{manhattan}}(v_1, v_2) \leq c$, the following constraint applies:

$$\neg x_{v_1,c} \lor \neg x_{v_2,c}$$

Advanced Optimizations for k > 3

Regional Variables

For colors $c \ge 4$, additional "plus"-shaped regions S_v are defined, centered at each vertex v. A regional variable $r_{S,c}$ is introduced, ensuring:

$$r_{S,c} \Rightarrow \bigvee_{v \in S} x_{v,c}$$
$$x_{v,c} \Rightarrow r_{S,c}, \quad \forall v \in S$$

2.4.2 Region Packing Constraints

To maintain proper spacing, active regions for the same color must be at least c + 1 units apart:

$$\neg r_{S_1,c} \lor \neg r_{S_2,c}, \quad \text{if } d(S_1, S_2) < c+1$$

2.4.3 At-Least-One-Distance (ALOD) Condition

Each vertex must have at least one neighbor (including itself) colored with 1:

$$\bigvee_{u \in N(v)} x_{u,1}$$

2.4.4 Symmetry Breaking

To reduce redundant search space, if a color appears uniquely in a symmetric region, its placement is restricted to a single section, such as an upper quadrant.

2.5 Packing Chromatic Number Bounds

2.5.1 Lower Bound

We could show that till k = 12, a finite graph couldn't get colored in the mentioned way.

2.5.2 Upper Bound

For radius 12 and k = 15, we found a satisfiable coloring for a finite graph.