COMS3261: Computer Science Theory

Fall 2013

Mihalis Yannakakis

Lecture 9, 10/2/13

Context-Free Languages

- Defined originally by Chomsky in 1950's along with contextfree grammars for natural language processing
- Then applied to specify programming languages BNF syntax; led to automation of parsing, compilation
- Will talk about two types of representations:
- Context-Free Grammars: Recursive definition of sets of strings
 - (e.g. recall recursive definition of regular expressions)
- Pushdown Automata

Example: Palindromes

- Recursive (inductive) definition of palindromes over alphabet {0,1} (similar for arbitrary alphabet)
- Basis: ε, 0, 1 are palindromes
- Induction (recursion): If w is a palindrome then 0w0 and 1w1 are also palindromes
- (implicit rule: Nothing else is a palindrome)

Context-free Grammar for Palindromes

Derivation of strings

- Start with the symbol S, and derive other strings by using productions as rewriting rules replacing an occurrence of a head by the body of a production, until it is no more possible
- Example: $S \Rightarrow 1S1 \Rightarrow 10S01 \Rightarrow 10001$ $S \rightarrow 0S0$ $S \rightarrow 0$

Example: English fragment

- S → NP VP (Sentence = Noun-Phrase Verb-Phrase)
- NP → A N (Noun-Phrase = Article Noun)
- VP → V NP (Verb-Phrase = Verb Noun-Phrase)
- $A \rightarrow a$ $A \rightarrow the$
- $N \rightarrow child$ $N \rightarrow dog$
- $V \rightarrow likes$ $V \rightarrow sees$
- a child sees a dog
- the child likes the dog

Formal Definition

- Context-free grammar G = (V, T, P, S)
- V = set of variables
- T = set of terminals (= alphabet)
- P = set of productions: rules of form variable → string in (V ∪ T)*
- S = start symbol (in V)
- Notational shorthand convention: can combine productions with same head with a | separating the bodies
- $S \rightarrow \epsilon | 0 | 1 | 0S0 | 1S1$

Typographical conventions

- Variables: capital
- Terminals: lower case in beginning of alphabet, digits
- Strings of variables and terminals: Greek letters
- Terminal strings: English lower case letters towards end of alphabet (x,y,z,w,..)

Derivations of a CFG

- Derivation: Start with start symbol S, and derive other strings by using productions as rewriting rules replacing an occurrence of a head by the body of a production
- Example: $S \Rightarrow 1S1 \Rightarrow 10S01 \Rightarrow 10001$ $S \rightarrow 0S0$ $S \rightarrow 0$

Generally, if α , $\beta \in (V \cup T)^*$ and $A \rightarrow \gamma \in P$ then $\alpha A \beta \Rightarrow_G \alpha \gamma \beta$ ($\alpha A \beta$ derives $\alpha \gamma \beta$) Usually omit subscript G if clear.

Context-free: can replace A regardless of context $\Rightarrow * :$ reflexive transitive closure of $\Rightarrow :$ derives in 0, 1 or more steps

• Example: $S \Rightarrow^* S$, $S \Rightarrow^* 10001$

Language of CFG

- Sentential forms: strings of (V ∪T)* derived from S
- Language of a CFG G:
 L(G) = { w ∈ T* | S ⇒_G* w }

= set of terminal strings that can be derived from start symbol S

Proof of correctness of a CFG

Proof that example grammar G has L(G) = {palindromes}

1. w palindrome \Rightarrow w in L(G)

By induction on length of w:

|w| = 0 or $1 \Rightarrow w = \varepsilon$, 0, 1 and then $S \Rightarrow w$

 $|w| \ge 2 \Rightarrow$ first and last letter are same $\Rightarrow w = 0x0$ or w=1x1 and x also a palindrome.

Since x is shorter, $S \Rightarrow^* x$ by induction hypothesis.

Therefore $S \Rightarrow 0S0 \Rightarrow^* 0x0$ and $S \Rightarrow 1S1 \Rightarrow^* 1x1$.

2. w in $L(G) \Rightarrow$ w palindrome:

Similar, by induction on length of a derivation.

More Examples

- 1. $\{0^n1^n \mid n \ge 0\}$
- $S \rightarrow \epsilon \mid 0S1$
- 2. $\{a^nb^n c^m d^m \mid n,m \ge 0\}$
- $S \rightarrow L|R$
- $L \rightarrow \epsilon \mid aLb$
- $R \rightarrow \epsilon \mid cRd$

More Examples

- 3. All strings over $\{a,b\}$, i.e. $\{a,b\}^*$ $S \rightarrow \varepsilon \mid aS \mid bS$
- 4. All nonempty strings over {a,b,0,1} that start with a letter (cf. identifiers in a programming language)
 i.e., (a+b)(a+b+0+1)*, eg. aab01a
 I → a | b | Ia | Ib | I0 | I1
- Every regular language has a context-free grammar
 i.e. Regular languages ⊆ Context-free languages
 (will do as HW via grammars; will show later via automata)

Example: Arithmetic expressions

- $T = \{a,b,0,1,+,*,(,)\}$
- V={E,I}, S=E
- Productions

$$E \rightarrow I \mid E+E \mid E*E \mid (E)$$

 $I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$

Leftmost, Rightmost Derivations

- A sentential form may have many occurrences of variables, we can replace any one of them
- Leftmost derivation: replace always the leftmost variable
- E \Rightarrow E+E \Rightarrow E*E+E \Rightarrow I*E+E \Rightarrow a*E+E \Rightarrow a*I+E \Rightarrow a*b+E \Rightarrow a*b+I \Rightarrow a*b+a
- Rightmost derivation: replace always the rightmost variable
- $E \Rightarrow E+E \Rightarrow E+I \Rightarrow E+a \Rightarrow E*E+a \Rightarrow E*I+a \Rightarrow E*b+a \Rightarrow I*b+a \Rightarrow a*b+a$
- Left / right sentential form