

Giới thiệu tổng quát về Machine Learning. Thư viện TensorFlow

VietAl Teaching Team

Giới thiệu Machine Learning

Nội dung

- Giới thiệu chung
- 2. Định nghĩa
- 3. Các loại bài toán Machine Learning
 - a) Supervised Learning
 - b) Unsupervised Learning
 - c) Reinforcement Learning
- Một số hướng phát triển trong Machine Learning

Face Detection

Object Detection

Face Recognition

Pedestrian Detection

Google Translate

Google's Assistant

Apple's Siri

Microsoft's Cortana

Recommender System

- Thị giác máy tính (computer vision):
 - Image Classification, Image Segmentation
 - Object Detection, Face Detection
- Xử lý ngôn ngữ tự nhiên (natural language processing):
 - Dependency Parsing, Named Entity Recognition
 - Text Classification, Sentiment Analysis
 - Text Summarization, Machine Translation, Question Answering
- Xử lý tín hiệu âm thanh (audio signal processing)
 - Speech2Text, Text2Speech
 - Music generation
- Một số ứng dụng khác: Recommender System, Gaming, ...

Let's watch some videos

Dịnh nghĩa

- Học Máy (Machine Learning) là một lĩnh vực nhỏ của Khoa Học Máy Tính.
- Tạo cho máy khả năng tự học hỏi dựa trên dữ liệu đưa vào mà không cần phải được lập trình cụ thể.

Machine learning

From Wikipedia, the free encyclopedia

For the journal, see Machine Learning (journal).

"Statistical learning" redirects here. For statistical learning in linguistics, see statistical learning in language acquisition.

Machine learning is a subset of artificial intelligence in the field of computer science that often uses statistical techniques to give computers the ability to "learn" (i.e., progressively improve performance on a specific task) with data, without being explicitly programmed.^[1]

Source: Wikipedia

Arthur Samuel (1959)

Định nghĩa

"A computer program is said to learn from **experience E** with respect to some **task T** and some **performance measure P**, if its performance on **T**, as measured by **P**, improves with experience **E**."

Tom Mitchell (1998)

- T: nhiệm vụ/bài toán cần giải quyết
- E: dữ liệu cần sưu tập (collect)
- P: làm sao đánh giá kết quả

Dịnh nghĩa

Một số lý do nên áp dụng thuật toán Machine Learning

- Khó lập trình lời giải theo cách đơn thuần
- Có dữ liệu
- Có pattern tồn tại
- Hệ thống phải thích nghi với sự thay đổi (ví dụ: spam detection, recommender system)
- Mong muốn hệ thống hoạt động tốt hơn lập trình viên

Quá trình Training

Quá trình Inference/Prediction

Các loại bài toán Machine Learning

- Supervised Learning: thuật toán được huấn luyện bởi dữ liệu có gán nhãn (Tuần 3-4-5).
- Unsupervised Learning: thuật toán được huấn luyện với dữ liệu không được gán nhãn (Tuần 6 - Word2Vec).
- Reinforcement Learning: hệ thống (agent) sẽ nhận được "phần thưởng" (reward) khi tương tác với môi trường (environment), nhiệm vụ của nó là cực đại số "phần thưởng" nhận được.

3 Supervised Learning

- Mô hình Supervised Learning
- Úng dụng:
 - Image Recognition
 - Speech Recognition
 - Recommender System

Mô hình Supervised Learning

- Input: $x \in X$
- Output: $y \in Y$
- Hàm mục tiêu (Target Function): $f: X \to Y$
- Data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$
- Hàm giả thuyết (hypothesis): $h: X \to Y$
- Một Machine Learning Model quy định tập giả thuyết (Hypothesis set) H và Learning Algorithm **A**.

Mô hình Supervised Learning

Dữ liệu huấn luyện $(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})$

> Tập giả thuyết (H)

- Nếu Y là liên tục, bài toán được gọi là Regression
- Nếu Y là rời rạc, bài toán được gọi là Classification

Learning

(A)

Supervised Learning - Ung dung **Image Recognition**

Supervised Learning - Ung dung **Image Recognition**

ImageNet Classification with Deep Convolutional Neural Networks (Alex Krizhevsky)

3 Supervised Learning - Ứng dụng **Speech Recognition**

Phonemes/Words

Listening...

Acoustic model	Recog WER	RT03S FSH	Hub5 SWB
Traditional features	1-pass -adapt	27.4	23.6
Deep Learning	1-pass -adapt	18.5 (-33%)	16.1 (-32%)

- Hai phương pháp thường được sử dụng trong Recommender
 System:
 - Collaborative Filtering
 - Content-based Filtering

Ứng dụng:

- Clustering
- Anomaly Detection
- Dimensionality Reduction

Unsupervised Learning - Clustering

- Nhóm những điểm thông tin có sự tương quan cao với nhau.
- Một số thuật toán Clustering thường dùng:
 - K-means
 - DBScan
 - Gaussian Mixtures
- Ứng dụng:
 - Phân khúc khách hàng

3 Unsupervised Learning - Anomaly Detection

- Xác định các điểm thông tin (dữ liệu) hiếm hoặc bất thường
- Ứng dụng:
 - Dư đoán mức đô mao hiếm tín dung
 - Phát hiện gian lân trong thanh toán
 - Phát hiện lỗi của thiết bi

Unsupervised Learning - Dimensionality Reduction

- Úng dụng:
 - Data compression
 - Data Visualization
- Một số thuật toán thường dùng:
 - Principal Component Analysis (PCA)
 - T-distributed Stochastic Neighbor
 Embedding (t-SNE)

4 Hướng phát triển trong ML - Deep Learning

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence - first machine learning, then deep learning, a subset of machine learning - have created ever larger disruptions.

4 Hướng phát triển trong ML - Deep Learning

4 Hướng phát triển trong ML - Deep Learning

Một số hướng khác

- Semi-supervised learning
- One-shot (Few-shot) learning
- Transfer learning
- Multi-task learning
- Generative model
- Các mô hình mang tính scalable và hiệu năng cao

Thư viện TensorFlow

Thư viện TensorFlow

- 1. Khái quát về Deep Learning Frameworks
- 2. Tổng quan về TensorFlow (TF)
- 3. Computational Graph
- 4. TF với Eager Execution

Deep Learning Frameworks

- Mở rộng mô hình cho production với hàng triệu người dùng, đặc biệt phần deployment và development.
- Hỗ trợ việc tự động tính toán đạo hàm (Automatic Differentiation).
- Cho phép việc xử lý song song (parallel processing) với card đồ hoạ (GPU).
- Đặt ra các tiêu chuẩn phát triển các ứng dụng Machine Learning.

Deep Learning Frameworks

K Keras

DEEPLEARNING 4J

Deep Learning Frameworks

Deep Learning Framework Power Scores 2018

2 TensorFlow

- Được phát hành và phát triển bởi Google dưới hình thức mã nguồn mở.
- Tương thích với Python, C++, Java, Go, JavaScript ...

2 TensorFlow

- An entire ecosystem to help you solve challenging, real-world problems with machine learning
- Easy model building: with Eager Execution (TF Eager), Keras API (tf.keras),
 distributed training (tf.distribute), TF Hub ...
- Robust ML production anywhere: TF Extended (TFX), TF Serving, TF Lite,
 Tensorflow.js ...
- Powerful experimentation for research: TF Probability, Tensor2Tensor, TF Ranking, TF Agents ...

(Nguồn: https://www.tensorflow.org/about)

3 Computational Graph

- Ý tưởng chính của TensorFlow là biểu diễn các phép tính số theo dạng đồ thị
 (Computational Graph). Trong đó:
 - Node là các toán tử (Operator)
 - Canh là các tensors
- Nhắc lại, Tensor là các mảng số thực có N chiều.

3 Computational Graph

- Một đồ thị có hướng, mô tả các chỉ dẫn làm thế nào để có thể tính các phép tính
- Có 2 loai (computational) graph:
 - Dynamic Graph
 - Static Graph

TensorFlow Eager Execution


```
import tensorflow as tf
tf.enable eager execution()
```

```
a = tf.constant([[1,2],[3,4]])
b = tf.constant([[3,1],[4,2]])
print(a + b)
print(tf.add(a,b))
print(a - b)
print(tf.subtract(a, b))
print(a*b)
print(tf.multiply(a,b))
print(a@b)
print(tf.matmul(a, b))
c = a@b
c.numpy()
```


TensorFlow Eager Execution


```
w = tf.Variable([1.0, 2.0])
with tf.GradientTape() as tape:
    loss = w * w
grad = tape.gradient(loss, w)
print(grad)
```

3 Computational Graph

- TensorFlow documentation https://www.tensorflow.org/api_docs/
- Lecture 7 CS224D Stanford University
- CS20SI Stanford University
- <u>Deep Learning Coursera Improving Deep Neural Networks</u>:
 Hyperparameter tuning, Regularization and Optimization
- TF Eager Execution Tutorial https://www.tensorflow.org/tutorials/eager