UD 4. Interbloqueos

Concurrencia y Sistemas Distribuidos

Objetivos de la Unidad Didáctica

- Comprender los problemas que se pueden producir con el uso incorrecto de los mecanismos de sincronización.
 - Analizar las situaciones de interbloqueo.
- Conocer las técnicas de gestión de interbloqueos:
 - Prevención
 - Evitación
 - Detección y recuperación
 - No actuación (ignorar el problema)

- Capítulo 4 libro base de la asignatura
- Operating system concepts with Java. Abraham Silberschatz Peter B Galvin; Greg Gagne Hoboken, NJ: John Wiley & Sons cop. 2007 7th ed. ISBN 9780471769071. Chapter 7 Deadlocks.
- Documentos:
 - System Deadlocks. Edward G. Coffman Jr., M. J. Elphick y Arie Shoshani. ACM Comput. Surv., 3(2):67–78, 1971. http://dl.acm.org/citation.cfm?id=356588
 - Richard C. Holt. Some deadlock properties of computer systems. ACM Comput. Surv., 4(3):179–196, 1972. http://dl.acm.org/citation.cfm?id=356607
- ▶ Java concurrency: Liveness → Deadlock; Starvation and Livelock http://docs.oracle.com/javase/tutorial/essential/concurrency/

- Concepto
- Condiciones de Coffman
- Ejemplos de interbloqueo
- Representación gráfica: GAR
- Soluciones
- Estrategias de prevención
- Ejemplos de solución

- **Recurso**: cualquier elemento físico o lógico que solicita un hilo (impresora, semáforo, ...)
 - Un recurso puede tener varias instancias
 - son equivalentes para el hilo
 - ej.- pedimos una impresora y nos sirve cualquiera de ellas
 - Un hilo A espera a otro hilo B cuando
 - solicita un recurso usado por B
 - y dicho recurso no es compartible (no pueden usarlo ambos a la vez)

- Los hilos usan recursos con el siguiente protocolo:
 - Petición: Si no está disponible, el hilo se suspende hasta que lo esté.
 - Uso del recurso.
 - Liberación
- Interbloqueo: existe un conjunto de hilos que no pueden evolucionar porque se esperan mutuamente

- Concepto
- Condiciones de Coffman
- Ejemplos de interbloqueo
- Representación gráfica: GAR
- Soluciones
- Estrategias de prevención
- Ejemplos de solución

Condiciones de Coffman

Condiciones de Coffman:

- Exclusión mutua
 - Mientras un recurso está asignado a un hilo, otros no pueden usarlo
- Retención y espera
 - Los recursos se solicitan a medida que se necesitan, de forma que podemos tener un recurso asignado y solicitar otro no disponible (espera)
- No expulsión
 - Un recurso asignado sólo lo puede liberar su dueño (no se puede expropiar)
- Espera circular
 - En el grupo de hilos interbloqueados, cada uno está esperando un recurso que mantiene otro del grupo, y así sucesivamente hasta cerrar el círculo
- Si todas se cumplen simultáneamente, riesgo de interbloqueo.
- En caso de interbloqueo, se cumplen todas.
- Son condiciones <u>necesarias</u> pero no suficientes.

8

Hormigas

- Las hormigas A y B ocupan celdas vecinas
- A quiere desplazarse donde está B (debe esperar), y B donde está A (debe esperar)

Condiciones de Coffman

- **Exclusión mutua.-** una celda no es compartible
- Retención y espera.- cada una utiliza una celda y espera que quede libre la celda destino
- No expulsión.- una hormiga no puede empujar a otra fuera de su celda
- **Espera circular**.- A espera a B, y B espera a A

5 Filósofos

- Llegan todos a la mesa a la vez
 - ▶ Todos tienen tiempo de coger su tenedor derecho
 - Cuando van a coger el izquierdo, todos tienen que esperar

Condiciones de Coffman

- **Exclusión mutua.-** Un tenedor no se puede usar simultáneamente por 2 filósofos
- Retención y espera.- Usan (retienen) el tenedor de la derecha, y esperan el de la izquierda
- No expulsión.- No se puede robar el tenedor del vecino cuando lo está usando
- Espera circular.- Cada uno del grupo espera al vecino, hasta cerrar el círculo

Transferencias entre cuentas bancarias

Durante la ejecución concurrente de transferencia(a,b) y transferencia(b,a), ambas pueden reservar la cuenta origen antes de que ninguna reserve la cuenta destino

Condiciones de Coffman

- Exclusión mutua.- Cada cuenta debe reservarse antes de su uso
- Retención y espera.- Cada hilo tiene una cuenta reservada, y pide reservar la otra
- No expulsión.- No podemos apropiarnos de una cuenta reservada por otro hilo
- **Espera circular.** Cada hilo espera al otro

- Concepto
- Condiciones de Coffman
- Ejemplos de interbloqueo
- Representación gráfica: GAR
- Soluciones
- Estrategias de prevención
- Ejemplos de solución

• GAR = grafo de asignación de recursos (representación gráfica del estado del sistema)

- Un círculo representa al hilo (o proceso)
- Un rectángulo representa al recurso (y contiene tantos puntos internos como instancias tiene el recurso)
- Arista de asignación: un recurso asignado es una flecha desde una instancia concreta al hilo que la utiliza
- Arista de petición: una solicitud no resuelta (no hay instancias libres del recurso, por lo que el hilo debe esperar) es una flecha que va desde el hilo al recurso (y no a una instancia concreta)

- ▶ En la figura izquierda:
 - Hilos P1, P2 y P3
 - Recursos R1, R2, R3, R4 (con 1,2,1 y 3 instancias respectivamente)
 - La instancia de R1 está asignada a P2, la de R3 a P3, y las de R2 a P1 y P2 (una instancia a cada uno)
 - P1 está esperando una instancia de R1, y P2 una instancia de R3
- ▶ Si P3 solicita R2 (flecha azul), llegamos a la figura derecha

- Un ciclo dirigido en el GAR implica riesgo de interbloqueo
 - Si todos los recursos que participan en el ciclo tienen una única instancia y el ciclo dirigido, entonces tenemos un **interbloqueo.**
- Si existe un interbloqueo, seguro que hay un ciclo dirigido en el GAR
- La figura presenta el camino P1,R1,P2,R3,P3. No hay ciclos, por lo que no hay interbloqueo

- La figura derecha presenta el ciclo P1,R1,P2,R3,P3,R2,P1.
- R2 posee más de una instancia: hay **riesgo** (no certeza) de interbloqueo.
 - Si encontramos un orden en que puedan terminar todos los hilos (secuencia segura), significa que no hay interbloqueo.
 - En este ejemplo no existe una secuencia segura, porque los tres hilos están esperando. Por tanto, sí hay interbloqueo.

- Aparece el ciclo P1,R1,P3,R2,P1
- R1 y R2 tienen más de una instancia: riesgo de interbloqueo
- Encontramos la secuencia segura P2,P1,P3,P4 (hay otras)
 - NO hay interbloqueo

- GAR para el ejemplo de los 5
 Filósofos
- Hay un ciclo y todos los recursos poseen una única instancia:
 - Hay interbloqueo

Pregunta:

Por qué representamos cada tenedor como un recurso con una única instancia en lugar de utilizar un único recurso tenedor con 5 instancias?

- Concepto
- Condiciones de Coffman
- Ejemplos de interbloqueo
- Representación gráfica: GAR
- Soluciones
- Estrategias de prevención
- Ejemplos de solución

De mejor a peor:

I. Prevención

- Diseñar un sistema que rompa alguna Condición de Coffman.
- ▶ El interbloqueo NO es posible.

2. Evitación

- El sistema, usando un GAR, considera cada solicitud y decide si es seguro atenderla en ese momento.
- Si una solicitud crea un ciclo (riesgo de interbloqueo), deniega esa solicitud (algoritmo del banquero).
- No puede llegar a interbloqueo, pero requiere comprobar cada solicitud.

De mejor a peor (cont.):

3. Detección y recuperación

- Monitoriza periódicamente el sistema (detección).
- Si hemos llegado a una situación de interbloqueo, aborta alguna(s) de las actividades involucradas (proceso de recuperación).

4. Ignorar el problema

- No resuelve nada, pero es una postura cómoda y frecuente.
- Ej. muchos Sistemas Operativos utilizan esta solución, como Unix y Windows.

- Concepto
- Condiciones de Coffman
- Ejemplos de interbloqueo
- Representación gráfica: GAR
- Soluciones
- Estrategias de prevención
- Ejemplos de solución

La prevención implica que se rompa alguna de las condiciones de Coffman.

Exclusión mutua

 Depende del sistema, pero en muchos casos la mayor parte de recursos deben usarse en exclusión mutua por definición (recursos no compartibles)

Retención y espera

- La forma normal de trabajar es solicitar recursos a medida que los necesitamos, lo que conduce a retención y espera.
- Solución 1.- Pedir desde el principio todo lo que podemos llegar a necesitar.
- > Solución 2.- Solicitar recursos de forma no bloqueante
 - Si el recurso está en uso, el hilo no se bloquea, sino que recibe un valor que indica dicha situación
 - Si un hilo no puede obtener todos los recursos que necesita, libera aquellos que ha retenido.

- Retención y espera (cont.):
 - Ambas soluciones...
 - ...reducen drásticamente la concurrencia.
 - muchos hilos tienen que esperar, o bien hay que reintentar repetidamente las reservas.
 - ...suponen una baja utilización de los recursos.
 - Pueden provocar inanición de los hilos que necesiten muchos recursos solicitados con frecuencia por otros hilos.

No expulsión

- Permitimos que un hilo expropie recursos de otro
- El hilo expropiado tendría que volver a solicitar recursos (mayor coste)
- Podríamos tener a varios hilos que no avanzan porque se están expropiando mutuamente recursos y nadie llega a tener todo el conjunto que necesita (livelock)

Espera circular

- Establecemos un orden total entre los recursos, y obligamos a solicitar los recursos en orden
- Suele ser la condición más fácil de romper

Solución a los ejemplos

- Soluciones al problema de los 5 filósofos (prevención de interbloqueos)
 - Asimetría: rompe "espera circular"
 - Todos igual excepto el último (todos cogen primero el tenedor derecho y luego el izquierdo, excepto el último, que utiliza el orden contrario)
 - Pares e impares (los pares cogen primero el tenedor derecho y luego el izquierdo, y los impares justo en orden contrario)
 - Cada filósofo coge ambos tenedores a la vez, o ninguno
 - Rompe "retener y esperar"
 - Comedor (máximo 4 filósofos sentados simultáneamente a la mesa):
 - Rompe "retener y esperar" (al menos un filósofo dispone de ambos tenedores) y "espera circular"

26

Solución a los ejemplos

- Solución a la transferencia entre cuentas
 - Existe un orden total en las cuentas (numeradas 0..N)
 - Modificamos el código de las transferencias
 - > se reserva primero la cuenta de menor índice, y posteriormente la de mayor índice, etc.
 - Se rompe la "espera circular" (prevención)

Resultados de aprendizaje de la Unidad Didáctica

- Al finalizar esta unidad, el alumno deberá ser capaz de:
 - Identificar los problemas que puede originar un uso incorrecto de los mecanismos de sincronización.
 - En concreto, se identificará el problema de interbloqueo.
 - Caracterizar las situaciones de interbloqueo.
 - ldentificar las técnicas de gestión de interbloqueos.
 - Describir ejemplos de solución de estrategias de prevención de interbloqueos.

CSD 28