1.3 SEQUENCES IN GENERAL - SERIES

◆ SEQUENCE

A <u>sequence</u> is just an ordered list of numbers (**terms** in a definite order). For example

2, 5, 13, 5, -4, ...

$$\uparrow$$
 \uparrow \uparrow \uparrow
 1^{st} 2^{nd} 3^{rd} 4^{th} 5^{th}
 $term$ $term$ $term$ $term$

Usually, the terms of a sequence follow a specific pattern, for example

We use the notation u_n to describe the n-th term. Thus, the terms of the sequence are denoted by

$$U_1$$
, U_2 , U_3 , U_4 , U_5 , ...

♦ SERIES

A series is just a sum of terms:

$$S_n = u_1 + u_2 + u_3 + \dots + u_n$$
 (the sum of the first n terms)
 $S_\infty = u_1 + u_2 + u_3 + \dots$ (the sum of all terms, ∞ terms)

We say that S_{∞} is an infinite series, while the finite sums $S_{1}, S_{2}, S_{3},...$ are called **partial sums**.

EXAMPLE 1

Consider the sequence

Some of the terms are the following

$$u_1=1$$
, $u_2=3$, $u_3=5$, $u_6=11$, $u_{10}=19$

Also,

$$S_1 = 1$$
,

$$S_2 = 1 + 3 = 4$$

$$S_3 = 1 + 3 + 5 = 9$$

Finally,

$$S_{\infty} = 1 + 3 + 5 + 7 + \cdots$$

 $S_{\infty} = 1 + 3 + 5 + 7 + \cdots$ (in this case the result is $+\infty$)

• SIGMA NOTATION $(\sum_{k=1}^{k})$

Instead of writing

$$u_1 + u_2 + u_3 + u_4 + u_5 + u_6 + u_7 + u_8 + u_9$$

we may write

$$\sum_{n=1}^{q} u_n$$

It stands for the sum of all terms u_n , where n ranges from 1 to 9. In general,

expresses the sum of all terms u_n , where n ranges from 1 to k.

We may also start with another value for n, instead of 1, e.g. $\sum_{n=1}^{\infty} u_n$

EXAMPLE 2

•
$$\sum_{n=1}^{3} 2^n = 2^1 + 2^2 + 2^3 = 2+4+8 = 14$$

•
$$\sum_{n=1}^{4} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{12+6+4+3}{12} = \frac{25}{12}$$

•
$$\sum_{k=1}^{3} \frac{1}{2^k} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{4+2+1}{8} = \frac{7}{8}$$

•
$$\sum_{n=3}^{6} (2n+1) = 7+9+11+13 = 40$$

•
$$\sum_{x=3}^{20} \frac{x}{x+2} = \frac{3}{5} + \frac{4}{6} + \frac{5}{7} + \dots + \frac{20}{22} = \dots$$
 whatever that is, I don't mind!!!

We can also express an infinite sum as follows

•
$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots$$
 (it never finishes!)

The result is 1. (I know it looks strange, but believe me, it is right!)

♦ NOTICE

There are two basic ways to describe a sequence

A) by a GENERAL FORMULA

We just describe the general term u_n in terms of n.

For example, $u_n = 2n$ (It gives $u_1 = 2$, $u_2 = 4$, $u_3 = 6$, ...)

It is the sequence 2,4,6,8,10,...

EXAMPLE 3

$$u_n = n^2$$
 is the sequence $1^2, 2^2, 3^2, 4^2, 5^2, ...$

$$u_n = 2^n$$
 is the sequence 2, 4, 8, 16, 32, ...

B) by a RECURSIVE RELATION (mainly for Math HL)

Given: u_1 , the first term

 u_{n+1} in terms of u_n

For example,

$$u_1 = 10$$

$$u_{n+1} = u_n + 2$$

This says that the first term is 10 and then

$$u_2 = u_1 + 2$$

$$u_3 = u_2 + 2$$

 $u_4 = u_3 + 2$ and so on.

In simple words, begin with 10 and keep adding 2 in order to find the following term.

It is the sequence 10, 12, 14, 16, 18, ...

EXAMPLE 4

$$u_1 = 3$$
 $u_{n+1} = 2u_n + 5$

It is the sequence 3, 11, 27, 59, ...

EXAMPLE 5

Sometimes, we are given the first two terms u_1, u_2 and then a recursive formula for u_{n+1} in terms of u_n and u_{n-1} .

The most famous sequence of this form is the Fibonacci sequence

$$u_1 = 1$$
, $u_2 = 1$

$$u_{n+1} = u_n + u_{n-1}$$

In other words,

we add u_1, u_2 in order to obtain u_3 ,

we add u_2 , u_3 in order to obtain u_4 , and so on.

It is the sequence