National Institute of Technology, Karnataka

Analysis of Co-Authorship network using Scopus databases

Presented by-

Gavali Deshabhakt Naganath

Mohammad Ahsan

· Mayur Anil Shimpi

Course Instructor:

Subject:

Specialization:

Date:

Dr. Pushparaj Shetty

Big Data Analytics

CDS

14/04/2021

AGENDA

- Downloading Database
- Data Preprocessing
- Generating files necessary for analysis
- Finding answers

DOWNLOADING DATABASE

- Scopus
- Keyword Artificial intelligence
- Document type Article
- Subject area Engineering

Query:

TITLE-ABS-KEY(Artificial Intelligence) AND (LIMIT-TO (DOCTYPE,"ar") OR LIMIT-TO (DOCTYPE,"ENGI") OR LIMIT-TO (DOCTYPE,"Artificial Intelligence"))

DOWNLOADING INDIA'S DATABASE

TITLE-ABS-KEY(Artificial Intelligence) AND (LIMIT-TO (AFFILCOUNTRY, "India")) AND (LIMIT-TO (DOCTYPE, "ar") OR LIMIT-TO (DOCTYPE, "ENGI") OR LIMIT-TO (DOCTYPE, "Artificial Intelligence"))

SETTING PATH OF DATA DIRECTORY

```
1 dir lst = []
         for data file in os.listdir(base dir):
             dir lst.append(os.path.join(base dir,data file))
[] 1 dir lst
    ['/mnt/General Stuff/Study Stuff/Documents/CDS/Sem-II/BigDataAnalytics/BigData-Programs/Mini-Project/Data/Artificial-Intelligence-Australia.csv',
      '/mnt/General Stuff/Study Stuff/Documents/CDS/Sem-II/BiqDataAnalytics/BiqData-Programs/Mini-Project/Data/Artificial-Intelligence-Canada.csv',
      '/mnt/General Stuff/Study Stuff/Documents/CDS/Sem-II/BigDataAnalytics/BigData-Programs/Mini-Project/Data/Artificial-Intelligence-China.csv',
     '/mnt/General Stuff/Study Stuff/Documents/CDS/Sem-II/BigDataAnalytics/BigData-Programs/Mini-Project/Data/Artificial-Intelligence-France.csv',
     '/mnt/General Stuff/Study Stuff/Documents/CDS/Sem-II/BigDataAnalytics/BigData-Programs/Mini-Project/Data/Artificial-Intelligence-Germany.csv',
     '/mnt/General Stuff/Study Stuff/Documents/CDS/Sem-II/BigDataAnalytics/BigData-Programs/Mini-Project/Data/Artificial-Intelligence-India.csv',
     '/mnt/General Stuff/Study Stuff/Documents/CDS/Sem-II/BigDataAnalytics/BigData-Programs/Mini-Project/Data/Artificial-Intelligence-Iran.csv',
     '/mnt/General Stuff/Study Stuff/Documents/CDS/Sem-II/BigDataAnalytics/BigData-Programs/Mini-Project/Data/Artificial-Intelligence-Italy.csv',
     '/mnt/General Stuff/Study Stuff/Documents/CDS/Sem-II/BigDataAnalytics/BigData-Programs/Mini-Project/Data/Artificial-Intelligence-Japan.csv',
     '/mnt/General Stuff/Study Stuff/Documents/CDS/Sem-II/BiqDataAnalytics/BiqData-Programs/Mini-Project/Data/Artificial-Intelligence-Netherlands.csv',
     '/mnt/General Stuff/Study Stuff/Documents/CDS/Sem-II/BigDataAnalytics/BigData-Programs/Mini-Project/Data/Artificial-Intelligence-SouthKorea.csv',
     '/mnt/General Stuff/Study Stuff/Documents/CDS/Sem-II/BigDataAnalytics/BigData-Programs/Mini-Project/Data/Artificial-Intelligence-Spain.csv',
     '/mnt/General Stuff/Study Stuff/Documents/CDS/Sem-II/BiqDataAnalytics/BiqData-Programs/Mini-Project/Data/Artificial-Intelligence-Taiwan.csv',
      '/mnt/General Stuff/Study Stuff/Documents/CDS/Sem-II/BiqDataAnalytics/BiqData-Programs/Mini-Project/Data/Artificial-Intelligence-UK.csv',
     '/mnt/General Stuff/Study Stuff/Documents/CDS/Sem-II/BigDataAnalytics/BigData-Programs/Mini-Project/Data/Artificial-Intelligence-US.csv'l
```

IMPORTING AND PREPROCESSING COUNTRY-WISE DATABASE

```
▶ # MI
  country lst = ['Australia','Canada','China','France','Germany','India','Iran','Italy','Japan','Netherlands','South Korea','Spain',
  'Taiwan', 'United Kingdom', 'United States']
  df lst = []
  for data file, country in zip(dir lst, country lst):
           print(country)
           df tmp = pd.read csv(data file)
          df tmp = df tmp.drop(['Author(s) ID' ,'Source title','Volume', 'Issue', 'Art. No.', 'Page start', 'Page end', 'Page count',
  'DOI', 'Link', 'Document Type', 'Publication Stage', 'Open Access', 'Source', 'EID'], axis='columns')
           df tmp = df tmp.fillna(0)
           df tmp['Country'] = country
           df lst.append(df tmp)
Australia
Canada
China
France
Germany
India
Iran
Italy
Japan
Netherlands
South Korea
Spain
Taiwan
United Kingdom
United States
```

FORMING MAIN DATAFRAME

```
▶ ₩ MI
   df = pd.concat(df lst)
▶ # M↓
   df.shape
(67694, 5)
▶ # M↓
   df.head()
                                           Authors
                                                                                             Title Year Cited by
                                                                                                                    Country
0 Soares, J.V.B., Leandro, J.J.G., Cesar Jr., R.... Retinal vessel segmentation using the 2-D Gabo... 2006
                                                                                                           1083.0 Australia
1 Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuch...
                                                                     The graph neural network model 2009
                                                                                                           1031.0 Australia
2 Karantonis, D.M., Narayanan, M.R., Mathie, M.,... Implementation of a real-time human movement c... 2006
                                                                                                            908.0 Australia
                                     Mirjalili, S. Dragonfly algorithm: a new meta-heuristic opti... 2016
3
                                                                                                            865.0 Australia
                                                                                                            768.0 Australia
             Naseem, I., Togneri, R., Bennamoun, M.
                                                   Linear regression for face recognition 2010
```

APPLYING SAME DATA PIPELINE TO DATABASE WITH SPONSORSHIP COLUMN

2 Kristan M., Matas J., Leonardis A., Vojir T., A Novel Performance Evaluation Methodology for Ding C., Choi J., Tao D., Davis L.S. Multi-Directional Multi-Level Dual-Cross Patte Multi-Directional Multi-Level Dual-Cross Patte	▶ #	Mi					
### df_addon.head() ### Authors ### Title Year Cited by ### Bunding Details ### Punding Details ### Data-driven smart manufacturing 2018 375.0 National Natural Science Foundation of China\n ### Cited by ### Punding Details ### National Natural Science Foundation of China\n ### Cited by ### Punding Details ### National Natural Science Foundation of China\n ### Cited by ### Punding Details ### National Natural Science Foundation of China\n ### Punding Details ### National Natural Science Foundation of China\n ### Punding Details ### National Natural Science Foundation of China\n ### Punding Details ### National Natural Science Foundation of China\n ### Punding Details ### National Natural Science Foundation of China\n ### Punding Details ### National Natural Science Foundation of China\n ### Punding Details ### National Natural Science Foundation of China\n ### Punding Details ### National Natural Science Foundation of China\n ### Punding Details ### National Natural Science Foundation of China\n ### Punding Details ### Punding Details ### National Natural Science Foundation of China\n ### Punding Details ### Punding Details ### National Natural Science Foundation of China\n ### Punding Details ### Punding Details	df_a	addon = pd.concat(df_lst)					
Authors Title Year Cited by Funding Details Tao F., Qi Q., Liu A., Kusiak A. Data-driven smart manufacturing 2018 375.0 Zhang K., Gao X., Tao D., Li X. Single image super-resolution with non-local m 2012 362.0 Kristan M., Matas J., Leonardis A., Vojir T., Ding C., Choi J., Tao D., Davis L.S. Multi-Directional Multi-Level Dual-Cross Patte 2016 243.0 National Natural Science Foundation of China\n Multi-Directional Multi-Level Dual-Cross Patte 2016 243.0 National Science Foundation\n\nAustralian Rese	•≡	Mi					
Tao F., Qi Q., Liu A., Kusiak A. Data-driven smart manufacturing 2018 375.0 National Natural Science Foundation of China\n The rear by Tao F., Qi Q., Liu A., Kusiak A. Data-driven smart manufacturing 2018 375.0 National Natural Science Foundation of China\n The rear by National Natural Science Foundation of China\n National Natural Science Foundation of China\n National Natural Science Foundation of China\n Pathonal Natural Science Foundation of China\n National Natural Science Foundation of China\n Pathonal Natural Science Foundation of China\n National Natural Science Foundation of China\n National Natural Science Foundation of China\n National Natural Science Foundation of China\n Pathonal Natural Science Foundation of China\n National Natural Science Foundation of China\n National Natural Science Foundation of China\n Pathonal Natural Science Foundation of China\n National Natural Science Foundation of China\n	df_a	addon.head()					
Thank K., Gao X., Tao D., Li X. Single image super-resolution with non-local m Thank K., Gao X., Tao D., Li X. Single image super-resolution with non-local m A Novel Performance Evaluation Methodology for T., Ding C., Choi J., Tao D., Davis L.S. Multi-Directional Multi-Level Dual-Cross Patte Patte Patte China\n A National Natural Science Foundation of China\n Seventh Framework Programme Patte National Science Foundation\n\nAustralian Rese		Authors	Title	Year		Funding Details	Country
2 Kristan M., Matas J., Leonardis A., Vojir T., A Novel Performance Evaluation Methodology for 2016 264.0 Seventh Framework Programme 3 Ding C., Choi J., Tao D., Davis L.S. Multi-Directional Multi-Level Dual-Cross Patte 2016 243.0 National Science Foundation\n\nAustralian Rese		Tao F., Qi Q., Liu A., Kusiak A.	Data-driven smart manufacturing	2018	375.0		Australia
3 Ding C., Choi J., Tao D., Davis L.S. Multi-Directional Multi-Level Dual-Cross 2016 243.0 National Science Foundation\n\nAustralian Rese		Zhang K., Gao X., Tao D., Li X.	Single image super-resolution with non-local $\ensuremath{\text{m}}$	2012	362.0	National Natural Science Foundation of China\n	Australia
Fatte Rese			A Novel Performance Evaluation Methodology for	2016	264.0	Seventh Framework Programme	Australia
Colohi M.E. Kingravi H.A. Tyatami H		Ding C., Choi J., Tao D., Davis L.S.	Multi-Directional Multi-Level Dual-Cross Patte	2016	243.0	National Science Foundation\n\nAustralian Rese	Australia
4 Cetebi M.E., Kingravi H.A., Tyatomi H., Border detection in dermoscopy images dsing 2008 241.0 National Cancer Institute Asland st		Celebi M.E., Kingravi H.A., Iyatomi H., Asland	Border detection in dermoscopy images using st	2008	241.0	National Cancer Institute	Australia

UPDATING FUNDING DETAILS OF MAIN DATAFRAME

```
▶ # MI
  df['Funding Details'] = 0
  titles old = list(df.Title)
  titles new = list(df addon.Title)
  count = 1
  for i in range(len(titles new)):
      for j in range(len(titles old)):
          if titles new[i]==titles old[j]:
              df.iloc[j,-1] = df addon.iloc[i,-2]
      print(f'{count}\t{titles new[i]}')
      count += 1
```

SAVING DATABASE TO CSV FILE

\triangleright	▶≣ M↓							
	df.head()						
	Unnamed:	0	Authors	Title	Year	Cited by	Country	Funding Details
0	(0	Soares, J.V.B., Leandro, J.J.G., Cesar Jr., R	Retinal vessel segmentation using the 2-D Gabo	2006	1083.0	Australia	0
1		1	Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuch	The graph neural network model	2009	1031.0	Australia	0
2	:	2	Karantonis, D.M., Narayanan, M.R., Mathie, M.,	Implementation of a real-time human movement $c\dots$	2006	908.0	Australia	0
3	:	3	Mirjalili, S.	Dragonfly algorithm: a new meta-heuristic opti	2016	865.0	Australia	0
4		4	Naseem, I., Togneri, R., Bennamoun, M.	Linear regression for face recognition	2010	768.0	Australia	0

▶ # M#	
<pre>df.to_csv('Complete_database.csv')</pre>	

	_ ' ' _ '				
Authors	Title	Year	Cited by	Country	Funding_Details
Soares, J.V.B., Leandro, J.J.G., Cesar Jı	Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification	2006	1083	Australia	0
Scarselli, F., Gori, M., Tsoi, A.C., Hage	The graph neural network model	2009	1031	Australia	0
Karantonis, D.M., Narayanan, M.R., M	Implementation of a real-time human movement classifier using a triaxial accelerometer for	2006	908	Australia	0
Mirjalili, S.	Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective	2016	865	Australia	0
Naseem, I., Togneri, R., Bennamoun,	Linear regression for face recognition	2010	768	Australia	0
Geng, X., Zhou, ZH., Smith-Miles, K.	Automatic age estimation based on facial aging patterns	2007	675	Australia	0
Chen, Y., Zhao, X., Jia, X.	Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network	2015	599	Australia	0
Phung, S.L., Bouzerdoum, A., Chai, D.	Skin segmentation using color pixel classification: Analysis and comparison	2005	594	Australia	0
Li, X., Yao, X.	Cooperatively coevolving particle swarms for large scale optimization	2012	508	Australia	0
Dissanayake, S.D., Armstrong, J.	Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD systems	2013	427	Australia	0
Ong, YS., Lim, MH., Zhu, N., Wong,	Classification of adaptive memetic algorithms: A comparative study	2006	425	Australia	0
Mian, A.S., Bennamoun, M., Owens, F	An efficient multimodal 2D-3D hybrid approach to automatic face recognition	2007	403	Australia	0
Tao, F., Qi, Q., Liu, A., Kusiak, A.	Data-driven smart manufacturing	2018	373	Australia	National Natural Science
Mian, A.S., Bennamoun, M., Owens, F	Three-dimensional model-based object recognition and segmentation in cluttered scenes	2006	364	Australia	0
Zhang, K., Gao, X., Tao, D., Li, X.	Single image super-resolution with non-local means and steering kernel regression	2012	362	Australia	National Natural Science
Hong, C., Yu, J., Wan, J., Tao, D., Wang	Multimodal Deep Autoencoder for Human Pose Recovery	2015	354	Australia	0

GENERATING FILES NECESSARY FOR FURTHER ANALYSIS

SEPARATING AUTHOR NAMES

```
set_authors = ['Jayadeva', 'Khemchandani, R.', 'Chandra, S.']
for i in range(len(authors_lst)):
    authors_sub_lst = authors_lst[i].split(',')
    authors_sub_lst_mod = []
    if authors_sub_lst == 'Jayadeva, Khemchandani, R., Chandra, S.'.split(','):
        continue
    for j in range(0,len(authors_sub_lst)-1,2):
        authors_sub_lst_mod.append(authors_sub_lst[j].strip()+','+authors_sub_lst[j+1])
    for author in authors_sub_lst_mod:
        if(author not in set_authors):
            set_authors.append(author)
            print(f'{i}\t{author}')
```

STORING AUTHOR NAMES TO TEXT FILE

```
with open('Authors_list.txt','w') as filehandle:
    filehandle.writelines("%s\n" % author for author in set_authors)
filehandle.close()
```

READING AUTHOR NAMES FROM TEXT FILE

```
set_authors = []
with open('Authors_list.txt','r') as filehandle:
    filecontents = filehandle.readlines()

for line in filecontents:
    # remove linebreak which is the last character of the string
    author = line[:-1]

# add item to the list
    set_authors.append(author)

> *= Mi
len(set_authors)
120158
```

CREATING AUTHOR: DATABASE DICTIONARY

```
# '''
dct_author_database = {}
count=0
for author in set_authors:
    print(f'{count}\t{author}')

    df_auth = pd.DataFrame(columns = ['Authors', 'Title', 'Year', 'Cited_by','Funding Details'] )

    filt= df_without_countries['Authors'].str.contains(author, na=False)
    df_auth= df_without_countries.loc[filt,'Authors':].reset_index(drop=True)

    dct_author_database[author] = df_auth
    count += 1
# '''
```

```
print(set_authors[10])
  dct_author_database[set_authors[10]]
Tsoi, A.C.
```

Tsoi, A.C.			
Authors	Title Year	Cited_by	Funding Details
O Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuch	The graph neural network model 2009	1031.0	0
1 Shilton, A., Palaniswami, M., Ralph, D., Tsoi, Increme	ntal training of support vector machines 2005	159.0	0
2 Scarselli, F., Tsoi, A.C., Hagenbuchner, M., N Solving g	raph data issues using a layered arch 2013	10.0	0
3 Scarselli, F., Tsoi, A.C., Hagenbuchner, M. The Vapni	k—Chervonenkis dimension of graph and 2018	4.0	0
4 Pucci, A., Gori, M., Hagenbuchner, M., Scarsel Investiga	tions into the application of Graph N 2006	3.0	0

ALTERNATIVE CODE

```
▶ # M↓
  dct author database = {}
  count = 0
  for author in set authors:
      print(f'{count}\t{author}')
      df auth = pd.DataFrame(columns = ['Authors', 'Title', 'Year', 'Cited by'] )
      for authors in authors lst:
          if author in authors:
              df tmp = df without countries[df without countries.Authors==authors]
              df auth = df auth.append(df tmp,ignore index=True)
      dct author database[author] = df auth
      count += 1
```

STORING DICTIONARY TO TEXT FILE

```
with open('Author_database_dictonary.txt','wb') as file:
    file.write(pickle.dumps(dct_author_database))
file.close()
```

READING DICTIONARY FROM TEXT FILE

```
dct_author_database_from_file = {}
with open('Author_database_dictonary.txt','rb') as file:
    dct_author_database_from_file = pickle.load(file)
file.close()|

> FI MA
print(type(dct_author_database_from_file))
<class 'dict'>
```

SEPARATING INDIAN AUTHORS NAMES

```
▶ # M↓
  authors from ind database = list(df[df.Country=='India']['Authors'].unique())
  set of authors from indian database = ['Jayadeva', 'Khemchandani, R.', 'Chandra, S.']
  count = 0
  for authors in authors from ind database:
      authors sub lst = authors.split(',')
      if authors sub lst == 'Jayadeva, Khemchandani, R., Chandra, S.'.split(','):
          continue
      authors sub lst mod = []
      for i in range(0,len(authors sub lst)-1,2):
              authors sub lst mod.append(authors sub lst[i].strip()+','+authors sub lst[i+1])
      for author in authors sub lst mod:
          if(author not in set of authors from indian database):
              set of authors from indian database.append(author)
      print(f'{count}\t{authors}')
      count += 1
```

SEPARATING FOREIGN AUTHORS NAMES

```
set_of_foreign_authors = []

count = 0
for author in set_authors:
    if author not in set_of_indian_authors_from_file:
        set_of_foreign_authors.append(author)
        print(f'{count}\t{author}')
        count += 1
```

GENERATING AUTHOR : PUBLICATION COUNT WITH INDIAN AUTHORS DICTIONARY

1. HIGHEST CITED AUTHOR AND HIS H-INDEX (FROM THE WORLD)

```
▶ # M↓
  author with highest citations = ""
  max citations = 0
  for author in set authors:
       cites = dct author database[author]['Cited by'].sum()
       if max citations<cites:</pre>
          author with highest citations = author
          max citations = cites
▶ # M↓
  df of highest cited author = dct author database[author with highest citations]
   rows, cols = df of highest cited author.shape
  avg citations of author with highest citations = max citations/rows
   h index = min(rows,avg citations of author with highest citations)
▶≡ M¹
  print(f'Max cited author
                              = {author with highest citations}')
                              = {max citations}')
  print(f'Total cited by
   print(f'His h-index
                              = {h index}')
Max cited author
                   = Hassabis. D.
Total cited by = 17466.0
His h-index
                   = 13
```

2. HIGHEST PUBLICATION AUTHOR

```
▶ # M↓
  author with highest publication = ""
  max publication count = 0
  for author in set authors:
       rows, columns = dct author database[author].shape
      if rows>max publication count:
          max publication count=rows
          author with highest publication = author
          # print(f'{author}
                                                 \t{rows}')
▶ # M↓
  print(f'Author \t = {author with highest publication} nPublications \t = {max publication count}')
Author
                = Wang, Y.
Publications
               = 439
```

3. HIGHEST CITED AUTHORS AVERAGE CITATIONS, AND THE COUNTRY NAME

```
rows, cols = dct_author_database[author_with_highest_citations].shape

avg_citations_of_author_with_highest_citations = max_citations/rows
print(f'Highest Cited Author \t= {author_with_highest_citations}')
print(f'His Average Citations \t= {avg_citations_of_author_with_highest_citations}')
print(f'His Total Publications \t= {rows}')

Highest Cited Author = Hassabis, D.
His Average Citations = 1343.5384615384614
His Total Publications = 13
```

A google search with above author's name tells us that he's from 'United Kingdom' and doing research on 'Artificial Intelligence'

4. TOTAL NUMBER OF PUBLICATIONS OF THE HIGHEST CITED AUTHOR

```
print(f'Highest Cited Author \t= {author_with_highest_citations}')
print(f'Total Publications \t= {rows}')
dct_author_database[author_with_highest_citations]

Highest Cited Author = Hassabis, D.
Total Publications = 13
```

5. TOTAL PUBLICATION IN YEAR

```
primul
    year_lst = sorted(list(df['Year'].unique()))
    country_lst = list(df['Country'].unique())

primul
    df_without_duplicates = df.drop_duplicates(subset=['Authors','Title'],keep='first')

primul
    dct_df_per_year_publications = {}
    for year in year_lst:
        dct_df_per_year_publications[year], cols = df_without_duplicates[df_without_duplicates.Year==year].shape

primul
    dct_df_per_year_publications = sort_dict(dct_df_per_year_publications,'Values','reverse')
    dct_df_per_year_publications
```

		_		
	1991: 394,		2006: 1464,	{2020: 6222,
1981: 11,	1992: 357,		2007: 1401,	2019: 4688,
	1987: 351,		2003: 1357,	2018: 4122,
1974: 8,	1986: 165,		2005: 1346,	2016: 3341,
1975: 8,	1985: 117,		2000: 793,	2014: 3159,
1976: 8,	1984: 70,		1989: 734,	2015: 3117,
1971: 7,	1983: 25,		1999: 730,	2017: 3049,
1972: 6,	1982: 23,		2001: 726,	2021: 2688,
1970: 3,	1977: 17,		1997: 718,	2013: 2277,
1962: 1,	1980: 13,		1996: 713,	2004: 2191,
1963: 1,	1973: 12,		1994: 703,	2012: 2010,
1964: 1,	1978: 12,		2002: 702,	2008: 1933,
1965: 1,	1979: 12,		1998: 697,	2009: 1565,
1968: 1,	,		1995: 601,	2011: 1559,
1969: 1}	1993: 485,		·	,
	1990: 457,		1988: 531,	2010: 1542,

6. TOTAL CITATION PER YEAR

```
▶ # M↓
  dct citations per year = {}
  for year in year lst:
     dct citations per year[year] = df without duplicates[df without duplicates.Year==year]['Cited by'].sum()
  dct citations per year = sort dict(dct citations per year, 'Values', 'reverse')
{2008: 86548.0,
                    2010: 61118.0,
                                          1995: 18774.0.
                                                                1985: 1930.0,
                                                                                     1970: 83.0,
2016: 85426.0,
                     2012: 56435.0,
                                          1994: 18694.0.
                                                                1977: 1644.0,
                                                                                     1981: 76.0.
2015: 81343.0,
                     2011: 55280.0,
                                          1996: 16943.0.
                                                                2021: 1568.0,
                                                                                     1972: 49.0,
2005: 78325.0,
                     2019: 42281.0.
                                          1989: 12072.0.
                                                                1979: 997.0,
                                                                                     1974: 33.0,
2004: 75544.0,
                     2000: 36085.0,
                                          1992: 10540.0.
                                                                1984: 812.0,
                                                                                     1963: 17.0,
2007: 73896.0,
                     2003: 32783.0,
                                          1990: 9800.0,
                                                                1971: 446.0,
```

1962: 16.0, 2006: 73652.0, 1999: 28128.0, 1993: 8807.0. 1973: 256.0, 1969: 4.0, 2014: 69065.0, 1998: 26193.0, 1978: 252.0, 1991:8453.0. 1964: 2.0, 2002: 25418.0, 2009: 68433.0, 1988: 8385.0, 1976: 215.0, 1965: 2.0, 2018: 66871.0, 2001: 25176.0, 1987: 5439.0, 1983: 208.0, 1968: 0.0} 2013: 63245.0, 1997: 21638.0, 1982: 202.0, 1986: 3652.0, 2017: 61390.0, 2020: 21386.0, 1980: 2616.0, 1975: 186.0,

7. AUTHOR(COUNTRY) HAVING HIGHEST CO-AUTHORSHIP WITH INDIAN AUTHORS

```
mx_pubs_with_indian_authors = 0
foreign_auth_corr_to_mx_pubs_with_indian_authors = ""
for author in set_of_foreign_authors:
    pubs = dct_foreign_author_coauth_count[author]
    if mx_pubs_with_indian_authors < pubs:
        mx_pubs_with_indian_authors = pubs
        foreign_auth_corr_to_mx_pubs_with_indian_authors = author

> Fig. M4

print(f'Foreign author with Highest Co-authorship with Indian Authors = {foreign_auth_corr_to_mx_pubs_with_indian_authors}')
print(mx_pubs_with_indian_authors)

Foreign author with Highest Co-authorship with Indian Authors = Nicolaides, A.
```

A google search with above authors name tells us that he is from "Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia, Cyprus"

8. HIGHEST CITED AUTHOR FROM INDIA AND THE UNIVERSITY

```
▶ # M↓
  max cites of indian author = 0
  highest cited indian author = ""
  for author in set of indian authors:
       cites = dct author database[author]['Cited by'].sum()
       if max cites of indian author < cites:</pre>
           max cites of indian author = cites
           highest cited indian author = author
▶ # M↓
  print(f'Highest Cited Author from India = {highest cited indian author}')
  print(f'His Total Citations = {max cites of indian author}')
Highest Cited Author from India = Raghava, G.P.
His Total Citations = 3132.0
```

Raghava G.P. is a Professor & Head at Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi), India

9. COMPARATIVE YEAR WISE ARTICLE PUBLICATION ANALYSIS OF INDIA, CHINA AND USA

ROUGH LINE PLOT

SMOOTH LINE PLOT

BAR PLOT

10. TOTAL NUMBER OF GRANTS GIVEN TO THE FIELD

```
print(f'Grants given to field = {grants}')
grants, cols = df_without_duplicates[df_without_duplicates['Funding_Details']!='0'].shape
print(f'Grants given to field = {grants}')
Grants given to field = 4771
```

11. COUNTRY WISE TOTAL NUMBER OF PUBLICATION

dct country publications

```
{'United Kingdom': 8994,
 'China': 6401,
 'United States': 6104,
 'India': 5383,
 'Germany': 5186,
 'Spain': 4759,
 'Canada': 4486,
 'Japan': 4324,
 'Italy': 4214,
 'France': 4133,
 'Australia': 3361,
 'South Korea': 3026,
 'Iran': 2720,
 'Taiwan': 2430,
 'Netherlands': 2173}
```

REFERENCES

- Scopus
- Pandas Documentation
- Numpy Documentation
- Matplotlib Documentation
- GeeksForGeeks
- StackOverFlow

THANK YOU