

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERÍA

SYLLABUS

Espacio Acad	émico	: Automa													
Obligatorio Básico				Complementario		Código: 171									
Electivo	\boxtimes	Intrínseco		Extrínseco											
Número de Cr	éditos	3		2		Semestre	e: V								
Tipo de Curso):		Teório	co		Práctico		Teórico - Práctico	\boxtimes						
Alternativas Metodo	lógicas:														
Clase Magistral 🗵 Seminario				Seminario-Taller		Taller		Prácticas	\boxtimes						
Proyectos Tutoriados		-	\boxtimes	Otros	Haga cli	ic aquí para escribir texto.									

I. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

El perfil del Ingeniero industrial de la Universidad Francisco José de Caldas esta orienta a la gestión de organizaciones, mediante el pensamiento sistemático y modelamiento de los sistemas productivos, orientados hacia un desarrollo sostenible, mejoramiento de la productividad y la competitividad. La automatización industrial es una integración de diferentes áreas de la ingeniería moderna entre ellas: electrónica, mecánica y sistemas, el objetivo de la automatización es mejorar las condiciones y calidad del trabajo mediante el uso de sistemas con un menor factor de intervención humana. Este proceso requiere un gran porcentaje de trabajo en campo, pero siempre supervisado con una clara visión de los objetivos y consecuencias de la implementación de un proceso automático dentro de la empresa.

El ingeniero Industrial es el único profesional dentro del proceso productivo que se encuentra capacitado para gestionar adecuadamente las estructuras organizacionales, y por ello debe tener conocimientos básicos del proceso de automatización y modelamiento de sistemas. El proceso de automatización inicia en el momento que se busca mejorar un proceso productivo, siendo de completa incumbencia en la ingeniería industrial. Durante el proceso de planeamiento el ingeniero industrial debe poseer la capacidad de intervenir con ideas o parámetros para garantizar los resultados deseados. En el proceso de implementación se debe buscar la priorización y establecer las condiciones de producción para impedir la afectación por la implementación de estos nuevos sistemas automáticos. Finalmente se debe evaluar los resultados obtenidos y orientar los procesos de feedback dentro de la empresa.

Es por ello que pese a que Ingeniero Industrial no va a estar involucrado directamente con la implementación del proceso automatizado (nivel de campo), si debe estar en todo el proceso de diseño, puesta en marcha y verificación (nivel de planeación). Para poder intervenir adecuadamente dentro de esta labor es fundamental que posea los conocimientos básicos de control de procesos y automatización.

El plan curricular de la asignatura Automatización, el estudiante podrá apropiarse de las técnicas básicas de automatización discreta/secuencial (Neumática e Hidráulica, Electroneumática y PLC)

y la tecnología de control continuo (Modelamiento de sistemas dinámicos, control de lazo cerrado y sintonización de controladores). Dentro del curso se podrán hacer prácticas de cada uno de los temas propuestos, en los laboratorios de la sede Tecnológica de la universidad.

Conocimientos Previos: Haga clic aquí para escribir texto.

II. PROGRAMACIÓN DEL CONTENIDO

OBJETIVO GENERAL

Se espera que, al finalizar el curso, el estudiante de ingeniería industrial haya adquirido las habilidades cognoscitivas y manuales, que le permitan tener las competencias básicas en la solución de los problemas productivos reales a través de la aplicación de las tecnologías empleadas para la automatización.

OBJETIVOS ESPECÍFICOS

- Conocer las técnicas de automatización discreta/secuencial Neumática e Hidráulica.
- Determinar cuál tecnología se ajusta mejor a un proceso de producción: automatización discreta/secuencial (Neumática o Hidráulica) o control continuo
- Comprender el funcionamiento y partes principales de un circuito neumático representado en un plano de ingeniería.
- Ser capaz de implementar procesos automáticos discretos/secuenciales de procesos simples, mediante neumática simple, electroneumática o PLC
- Determinar los costos asociados con la implementación de un proceso de automatización y su influencia en la línea productiva.
- Comprender, identificar y buscar soluciones a problemas de automatización en ingeniería, formando las necesidades de investigación y aplicación de criterio de ingeniería.
- Determinar las variables que afectan un sistema automático y como se debe realizar la realimentación para implementar el control continuo sobre una planta.
- Conocer los aspectos básicos del proceso de automatización en sistemas productivos.

COMPETENCIAS DE FORMACIÓN

Competencias de Contexto:

Haga clic aquí para escribir texto.

Competencias Básicas:

Haga clic aquí para escribir texto.

Competencias Laborales:

Haga clic aquí para escribir texto.

PROGRAMA SINTÉTICO:

- Introducción a la Automatización.
- Automatización por eventos discretos/secuenciales.
- Neumática, Hidráulica, Electroneumática y PLC.
- Automatización continúa.
- Sistemas dinámicos, control por realimentación y PID.
- Tecnologías de automatización para procesos de producción.

PRACTICAS ESPECIFICAS Y LABORATORIOS

PRACTICA DE LABORATORIO	OBJETIVO	DURACIÓN (horas)	LUGAR	APORTE AL CONOCIMIENTO
NEUMÁTICA	Desarrollar las habilidades cognitivas y manuales sobre la tecnología de la neumática a través de la praxis en los bancos didácticos.	12	Laboratorio de Hidráulica – Edificio Sabio Caldas	Identificación y Manejo de los elementos de aplicación real en la automatización de los procesos industriales a través de los bancos didácticos FESTO del laboratorio de automatización de la Facultad de Tecnología.
ELECTRO- NEUMÁTICA	Desarrollar las habilidades cognitivas y manuales sobre la tecnología de la Electroneumática a través de la praxis en los bancos didácticos.	4	Laboratorio de Hidráulica – Edificio Sabio Caldas	Identificación y Manejo de los elementos de aplicación real en la automatización de los procesos industriales a través de los bancos didácticos FESTO del laboratorio de automatización de la Facultad de Tecnología.
PLC	Comprender y realizar las programaciones de los lenguajes de los PLC de empleo en automatización y control de los procesos industriales a través de la practica en los bancos didácticos.	8	Laboratorio de Hidráulica – Edificio Sabio Caldas	Identificación y programación de los PLC de aplicación real en la automatización de los procesos industriales a través de los PLC existentes en los bancos didácticos FESTO.
SIMULACIÓN SISTEMAS CONTINUOS	Adquirir el conocimiento sobre modelamiento de Sistemas dinámicos y el control por lazo cerrado de procesos.	12	Laboratorio de Hidráulica – Edificio Sabio Caldas	Modelamiento de matemático mediante el uso de software especializado MATLAB/OCTAVE. Sintonización de un sistema de una planta de control continuo virtual o real.

III. ESTRATEGIAS

Metodología Pedagógica y Didáctica:

- Presentación y socialización de trabajos escritos.
- Clase magistral.
- Metodología Autónoma: en la Aplicación del software de simulación FluidSim-P de FESTO
 entiempo fuera de clase por parte del estudiante de ingeniería industrial, en el diseño de los
 circuitos solución para la automatización de casos reales de procesos productivos. Uso del
 software de simulación Matlab/Octave en tiempo fuera de clase para la solución de problemas
 simples de automatización continua.
- Metodología Activa: a través de la práctica del montaje del circuito-solución en el banco didáctico FESTO en automatización de casos reales de procesos productivos. Uso de software simple para la simulación de procesos dinámicos y control por parte del estudiante.

El Trabajo final del curso es la elaboración de un PROYECTO DE AUTOMATIZACIÓN, a través de la aplicación de las tecnologías de programación de controladores lógicos, costos de la implementación, operación, mantenimiento, diagramas de proceso.

		Horas	3	Horas profesor/semana	Horas Estudiante/semana	Horas Estudiante/semestre	Créditos
Tipo de Curso	TD	TC	TA	(TD + TC)	(TD + TC+TA)	X 16 semanas	0
Teórico	2	2	2	4	6	96	2

Trabajo Directo (TD): Haga clic aquí para escribir texto.

Trabajo Cooperativo (TC): Haga clic aquí para escribir texto.

Trabajo Autónomo (TA): Haga clic aquí para escribir texto.

IV. RECURSOS

Medios y Ayudas

Computador y video-beam, tablero, marcadores, fotocopias, bancos didácticos de neumática, electroneumática FESTO, PLCs FESTO y PANASONIC, material de apoyo didáctico, Videos de procesos de automatización a escala industrial.

Bibliografía

Textos Guías

- SERRANO, Neumática, 1999.
- FESTO, Fundamentos de neumática y electroneumática Básica, 2003.
- OGATA, Ingeniería de Control Moderna, 2003.
- FESTO, Fundamentos de neumática Avanzada, 2003.
- CREUS SOLÉ. Neumática e hidráulica, Marcombo, S.A, 2007.
- GROOVER, Automation, Production Systems and CIM, 2007.
- PETRUZELLA, Programmable logic controllers, 2011.

Textos Complementarios

Haga clic aquí para escribir texto.

Revistas

Haga clic aquí para escribir texto.

Direcciones de Internet

Haga clic aquí para escribir texto.

ORGANIZACIÓN / TIEMPOS

Espacios, Tiempos, Agrupamientos

Haga clic aquí para escribir texto.

TEMA	ТЕМА А						SF	MAN	AS A	CAE	ÉМІ	CAS					
No.	DESARROLLAR	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	Introducción Automatización Antecedentes históricos, fundamentos de la automatización, automatismo secuencial/discret o, modelo estructural de un sistema automatizado, clasificación tecnológica, lógica cableada, lógica programada, niveles de automatización	\boxtimes															
2	Neumática/Hidrá ulica, fundamentos Físicos y producción/trata miento de fluido de trabajo. Ecuación de Bernoulli, presión, fuerza, caudal, velocidad, área, volumen. Modelos de compresores/bom bas, tratamiento del aire.		×														
3	Válvulas reguladoras, direccionales y especiales. Tipos principales de válvulas, esquema, uso y método de conexión.			×													
4	Actuadores neumáticos/hidr áulicos, simbología e interpretación de planos. Tipos principales de cilindros, esquema, uso y método de conexión. Simbología normalizada e interpretación de planos				×												
5	Diseño intuitivo					\boxtimes	\boxtimes										

	y sistemático de											
	circuitos											
	Neumáticos/Hidr áulicos.											
	Introducción al											
	software											
	FluidSIM-P,											
	Técnicas de											
	solución de problemas de											
	automatización											
	discreta/secuenci											
	al. Solución de											
	problemas en automatización y											
	cálculo de											
	dimensionamiento											
	Electroneumátic											
	a/hidráulica. Aplicación de											
	señales eléctricas											
	para el control de											
6	sistemas				\boxtimes							
	hidráulicos o											
	neumáticos. Técnicas de											
	diseño											
	sistemático.											
	Introducción a											
	los PLC y programación.											
	Estructura interna											
	de los											
	controladores											
	lógicos programables.											
7	Lenguajes de					\boxtimes	\boxtimes					
	programación.											
	Solución de											
	problemas de automatización											
	mediante PLC y											
	programación											
<u> </u>	Ladder.											
	Instrumentación. Introducción a											
	sensores.											
	Características											
8	dinámicas y							\boxtimes				
	estáticas. Clasificación											
	básica. Método de											
	selección.											
	Introducción control continuo											
	de procesos y											
	modelamiento de											
9	sistemas								\boxtimes	\boxtimes		
	dinámicos. Procesos de											
	manufactura											
	continuos en la											

	industria. Sistemas dinámicos lir y modelamien matemático. Simulación sistemas dinámicos MatLAB/Oct	to su de con																
10	Control procesos realimentado Sistemas control por de realimenta Respuesta sistemas de cerrado. Estabilidad sistemas.	por de sión. de lazos tación. de e lazo												⊠	⊠			
11	Sintonizacio sistemas Control continuo. Control realimentaci PID, caracterizac respuestas, sintonización reguladores.	con ón ión de														×		
12	Proyecto fil automatizad Aplicación de técnicas control contidiscreto/sectal, en problema automatizac planteado profesor.	nal de ción. de las de inuo o uenci un de															×	
		TIE	O DI	F F\			VALI IÓN	JAC	ION	F	ECH	Δ		POR	CEN	ITAJ	F	
PRIMER	Haga	_				_		Sen		8 de		ses	. 5.1	%				
SEGUNI	texto. Haga		aquí	para	esc	ribir	\perp	Semana 16 de clases					%					
texto.				clic aquí para escribir							a 17 lases		de	%				
ASPECT	OS A EVAL	•		CUR	SO													

- 1. Evaluación del desempeño docente.
- 2. Evaluación de los aprendizajes de los estudiantes en sus dimensiones: individual/grupo, teórica/práctica, oral/escrita.
- 3. Autoevaluación.
- 4. Coevaluación del curso: de forma oral entre estudiantes y docente.