

- Subject Physical Chemistry
- Chapter Ionic Equilibrium

By – Amit Mahajan Sir

In a mixture of a weak acid and its salt, the ratio of concentration of acid to salt is

increased tenfold. The pH of the solution

Decreases by one

Increases by one-tenth

Increases by one

Increases ten-fold

Increases ten-fold

$$\frac{\sum \text{Salt J}}{\sum \text{Acid J}} = \frac{1}{10}$$

$$\frac{\sum \text{Falt J}}{\sum \text{Acid J}} = \frac{1}{10}$$

$$\frac{\sum \text{Acid J}}{\sum \text{Acid J}} = \frac{1}{10}$$

$$\frac{\sum$$

Acidic Buffer

$$E$$
 Salt $J = J$

$$= p K_0$$

$$=$$
 P^{k}

sult of w.A.

How many moles of HCOONa must be added to 1 L of 0.1M HCOOH to prepare a buffer solution with a pH of 3.4? (Given: K_a for HCOOH = 2×10^{-4})

1)
$$0.01 \text{ N } \text{ N} \text$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.07$$

$$0.05$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

$$0.07$$

Ans. (2)

$$\frac{1}{8} = \frac{1}{80} \left[\frac{1}{1} \left(\frac{1}{1} \right) \right] = \frac{1}{8} = 0.05 = \frac{1}{1} \left[\frac{1}{1} \left(\frac{1}{1} \right) \right] = \frac{1}{8} = 0.05 = \frac{1}{1} \left[\frac{1}{1} \left(\frac{1}{1} \right) \right] = \frac{1}{1} \left[\frac{1}{1} \left[\frac{1}{1} \left(\frac{1}{1} \right) \right] = \frac{1}{1} \left[\frac{1}{1} \left[\frac{1}{1} \left(\frac{1}{1} \right) \right] = \frac{1}{1} \left[\frac{1}{1} \left[\frac{1}{1} \left(\frac{1}{1} \right) \right] = \frac{1}{1} \left[\frac{1}{1} \left[\frac{1}{1} \left(\frac{1}{1} \right) \right] = \frac{1}{1} \left[\frac{1}{1} \left[\frac{1}{1} \left(\frac{1}{1} \right) \right] = \frac{1}{1} \left[\frac{1}{1} \left[\frac{1}{1} \left[\frac{1}{1} \left[\frac{1}{1} \left(\frac{1}{1} \right) \right] = \frac{1}{1} \left[\frac{1}{1} \left$$

To 1.0 L solution containing 0.1 mol each of NH₃ and NH₄Cl, 0.05 mol HCl is added.

The change in pOH will be $(pK_b \text{ for } NH_3 = 4.74)$

$$4 -0.48$$
 old $p^{OH} = 4.74$

WA. + Sattef WA.

The pH of blood is maintained by the balance between H_2CO_3 and $NaHCO_3$. If the amount of CO_2 in the blood is increased, how will it effect the pH of blood?

Acidic buffer

- 2 pH will be 7
- (3) pH will increase
- (4) pH will decrease

The pH of buffer of NH₄OH + NH₄Cl- type is given by

$$wB + Sult of wB with SA$$

$$pOH = pK_b$$

$$pOH = pK_b + ly LSult$$

$$LBose$$

- pH = 1/2pK_b 1/2 log[salt]/[base] $\rho h = 14 \rho 0 H$
- = 14 PKb Log [Salt]
 TRue 7 $pH = 14 - pK_b - log[salt]/[base]$
 - $pH = pOH pK_b + [salt]/[base]$

Addition of sodium acetate solution to acetic acid causes the following change

- $\frac{1}{2} \text{ pH decreases} \qquad \frac{1}{2} \text{ CH}_3 \text{ CooH} \rightarrow \text{WA} \rightarrow \text{Soil} \text{ acidic PH}_3 \rightarrow \text{PH}_3 \rightarrow \text{PH}$
- 3) pH remains unchanged CH3Coo(Nat) X
- 4) pH becomes 7 $CH_3Coo + H_2O \rightarrow CH_3Coo H + OH T)$

In a buffer solution of a weak acid and its salt, if the ratio of concentration of salt

to acid is raised 10 times then pH of the solution will

- 1 Increase ten times
- (2) Decrease by one unit
- (3) Decrease ten times

Increase by one unit

For preparing a buffer solution of pH 6 by mixing sodium acetate and acetic acid, the ratio of the concentration of salt and acid should be $(K_a = 10^{-5})$

1) 1:10
$$PH=6$$
 $CH_3(00 Non + CH_3(00))$ $T salt = ?$
 $Ka=10^{-5} \Rightarrow PKa = -lgKa = 5$
 $A = 5$
 $A = 5$
 $A = 6$
 $A =$

Which of the following pairs constitutes a buffer?

- 2) (NaOH and NaCl
- $3 \times \frac{\text{HNO}_3}{\text{S}^4 \text{A}}$ and $\text{NH}_4 \text{NO}_3$
- $\begin{array}{c}
 4 \\
 6 \\
 \hline
 6
 \end{array}$ HCl and KCl

1 w.B. S. Acid

0.1 mol of CH_3NH_2 ($K_b = 5 \times 10^{-4}$) is mixed with 0.08 mol of HCl and the solution diluted to one litre. The H ion concentration in the solution will be

- 1.6 × 10⁻¹¹
- $2) 8 \times 10^{-11}$
- 3×10^{-3}
- (4) 8 × 10⁻²

Ans. (2)

$$PH = 10.1 = -\log EH^{\dagger} I$$

$$\log EH^{\dagger} I = -10.1$$

$$EH^{\dagger} I = \operatorname{antilog} (-10.1)$$

$$= \operatorname{antilog} II.9$$

$$= 7.9 \times 10^{11}$$

Which of the following mixtures is/are buffer?

- $\frac{10 \text{ml } 0. 1 \text{M } \text{NH}_{4} \text{Cl} + 10 \text{ml } 0. 08 \text{M } \text{NaOH}}{\text{milligive}_{3} \cdot \text{loxoix}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} + 30 \text{ml } 0.18 \text{M } \text{NaOH}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} + 30 \text{ml } 0.18 \text{M } \text{NaOH}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} + 30 \text{ml } 0.18 \text{M } \text{NaOH}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} + 30 \text{ml } 0.18 \text{M } \text{NaOH}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} + 30 \text{ml } 0.18 \text{M } \text{NaOH}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} + 30 \text{ml } 0.18 \text{M } \text{NaOH}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} + 30 \text{ml } 0.18 \text{M } \text{NaOH}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} + 30 \text{ml } 0.18 \text{M } \text{NaOH}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} + 30 \text{ml } 0.18 \text{M } \text{NaOH}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} + 30 \text{ml } 0.18 \text{M } \text{NaOH}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} + 30 \text{ml } 0.18 \text{M } \text{NaOH}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} + 30 \text{ml } 0.18 \text{M } \text{NaOH}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} + 30 \text{ml } 0.18 \text{M } \text{NaOH}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} + 30 \text{ml } 0.18 \text{M } \text{NaOH}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} + 30 \text{ml } 0.18 \text{M } \text{NaOH}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} + 30 \text{ml } 0.18 \text{M } \text{NaOH}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} + 30 \text{ml } 0.18 \text{M } \text{NaOH}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} + 30 \text{ml } 0.18 \text{M } \text{NaOH}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} + 30 \text{ml } 0.18 \text{M } \text{NaOH}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} + 30 \text{ml } 0.18 \text{M } \text{NaOH}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} + 30 \text{ml } 0.18 \text{M } \text{NaOH}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} + 30 \text{ml } 0.18 \text{M } \text{NaOH}} = 0.22 \text{M } \text{CH}_{3} \text{COOH} = 0.22 \text{M } \text{CH}_{3} \text{COOH$
 - NaoHislirx
 - $(3)^{\times}$ 25ml 0. 22M H₂SO₄ + 25ml 0. 15M NaOH
- 15ml 0. 12M CH₃NH₂ + 10ml 0. 12M HCl

 W.A.

 CH₃ (00 H + Na0H) South + L.R. is Na0H

 CH₃ (00 H + Na0H) Soxot + H₃ (00 Nat + H₃ 0

 milliger, 20 x 0. 22 x 1

 = 41.4 = 5.4

Milligreg. 15 x 0 12 x 1

milligreg. 15 x 0 12 x 1

1-8

S.A. > salt + L.R. is HCe

CH3 N H3 CT

10x0 12 x 1

12

12 HU 18 L. R.

