

Schema Refinement and Normal Forms

- Conceptual database design gives us a set of relation schemas and integrity constraints
- Given a design, can we have a machine tell us if it is a good design? And if not, can the machine make it a good design?
 - A design can be evaluated from various perspectives, here our focus is on data redundancy

Redundancy is at the root of several problems associated with relational schemas:

- redundant storage
- Insertion/update/deletion anomalies

Example

- Schema: Hourly_Emps (<u>ssn</u>, name, lot, rating, hrly_wages, hrs_worked)
- Constraints:
 - *ssn* is the primary key
 - 2. If two tuples have the same value on *rating*, they have the same value on *hrly_wages*

SSN	Name	Lot	Rd	W	Н
			d		
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Problems

- Redundant storage: (rating value 8, hourly wage 10) is repeated three times
- Update anomaly: The hourly_wages in the first tuple could be updated without making a similar change in the second tuple
- Insertion anomaly: We cannot insert a tuple for an employee unless we know the hourly wage for the employee's rating value
- Deletion anomaly: If we delete all tuples with a given rating value, we lose the associateion between the rating value and its hourly_wage value

Solution: Decomposition

If we break Hourly_Emps into Hourly_Emps2 and Wages, then we don't have updates, insertion, deletion anomalies.

Hourly_Emps2

<u>S</u>	N	L	R	Н
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

Wages

R	W	
8	10	
5	7	

Decomposition Concerns

- Should a relation be decomposed?
 - If a relation is not in certain form, some problems (e.g., redundancy) will arise, are these problems tolerable?
 - Aforementioned anomalies
 - Potential performance loss: Queries over the original relation may required to join the decomposed relations
- How to decompose a relation? Two properties must be preserved:
 - lossless-join: the data in the original relation can be recovered from the smaller relations
 - dependency-preservation: all constraints on the original relation must still hold by enforcing some constraints on each of the small relations

Functional Dependencies (FDs)

In a relation schema R, a set of attributes X functionally determines another set of attributes Y if and only if whenever two tuples of R agree on X value, they must necessarily agree on the Y value.

$$X \rightarrow Y \iff \forall t_1, t_2 \in r(R),$$

 $t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y]$

where X and Y are R's attributes, r(R) is an instance of R, t1 and t2 are two tuples in r(R)

How to read $X \rightarrow Y$:

- Y is functionally dependent on X, or
- X uniquely determines Y or
- X functionally determines Y, or
- X determines Y

Suppose we have X->Y. Does this data set violate this dependency?

X	Y	Z
X1	Y2	Z 1
X1	Y2	Z 2
X2	Y2	Z3

Does this data set violate Z->Y?

Does this data set violate X->Y?
Does this data set violate XY->Z?
Does this data set violate Z->X?

X	Y	Z
X1	Y1	Z 1
X1	Y1	Z 2
X1	Y2	Z 1

Dependency Reasoning

The challenge of checking dependency preservation stems from the fact that a set of dependencies may imply some additional dependencies.

EMP_DEPT(ENAME, SSN, BDATE, ADDRESS, DNUMBER, DNAME, DMGRSSN)

```
F={SSN->{ENAME,BDATE,ADDRESS,DNUMBER},
DNUMBER->{DNAME,DMGRSSN} }
```

F infers the following additional functional dependencies:

```
F |= {SSN}->{DNAME,DMGRSSN}
F |= {SSN}->{SSN}
F |= {DNUMBER}->{DNAME}
```

Some important questions

- 1. Given a set of attributes X, what attributes can be determined by X
- 2. Given an FD set, what other dependencies are implied
- 3. Given an FD set F, what is the minimum set of dependencies that is equivalent to F

Armstrong's Axiom 1: Reflexivity

Let X and Y be two sets of attributes in R.

If
$$X \supseteq Y$$
, then $X \rightarrow Y$.

PROOF

Let $\{t_1,t_2\}\subseteq r(R)$ such that $t_1[X]=t_2[X]$

Since
$$X \supseteq Y$$
, $t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$

$$\Rightarrow X \rightarrow Y$$
.

TIP: When proving things, the best way is always going back to the basic definition, function dependency

Armstrong's Axiom 2: Augmentation

Let X, Y, and Z be three sets of attributes in R.

If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z.

PROOF

Assume that the Augmentation rule is not true.

$$\Rightarrow \exists t_1, t_2 \in r(R)$$

$$t_1[X] = t_2[X] \tag{1}$$

$$\mathsf{t}_1[\mathsf{Y}] = \mathsf{t}_2[\mathsf{Y}] \tag{2}$$

$$t_1[XZ] = t_2[XZ] \tag{3}$$

$$t_1[YZ] != t_2[YZ] \tag{4}$$

$$(1)\&(3) \implies t_1[Z] = t_2[Z] \tag{5}$$

$$(2)\&(5) \implies t_1[YZ]=t_2[YZ] \qquad (6)$$

(6) Contradicts (4)

Armstrong's Axiom 3: Transitivity

Let X, Y, and Z be three sets of attributes in R.

If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

PROOF

Let
$$X \rightarrow Y$$
 and (1)
 $Y \rightarrow Z$ (2)

$$\forall t_1, t_2 \in r(R)$$
 such that $t_1[X] = t_2[X]$, (3) we have:

(1)
$$t_1[Y] = t_2[Y]$$
 (4)

$$(2)&(4) t_1[Z]=t_2[Z]$$
 (5)

$$(3)&(5) X \rightarrow Z$$

Properties of Armstrong's Axioms

Soundness

 All dependencies generated by the Axioms are correct

Completeness

 Repeatedly applying these rules can generate all correct dependency (i.e., any FDs in F+ be generated)

Question: Other than Armstrong's axioms, do there exist other axioms which also have these two properties?

Armstrong's Axioms

- If $X \supseteq Y$, then $X \rightarrow Y$.
- If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z.
- If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

Use Armstrong axioms to derive some other useful inference rules

Union

If
$$X \ge \to XY$$
 and then $X \to YZ$.

If $XZ \rightarrow ZY$ and $XX \rightarrow XZ$, then $Y \rightarrow YZ$

Decomposition

If
$$X \rightarrow YZ$$
,
then $X \rightarrow Y$ and $X \rightarrow Z$.

Pseudotransitive Rule

If
$$XW \rightarrow YW$$
 and $WY \rightarrow Z$
then $WX \rightarrow Z$.

Use Armstrong axioms to derive some other useful inference rules

• Union rule: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$.

Given
$$X \rightarrow Y$$
 and (1) $X \rightarrow Z$. (2)

Applying Augmentation rule on (1), we have
$$XX \rightarrow XY \implies X \rightarrow XY$$
. (3)

Applying Augmentation rule on (2), we have
$$XY \rightarrow ZY \Longrightarrow XY \rightarrow YZ$$
. (4)

Applying Transitive rule on (3) and (4), we have $X \rightarrow YZ$.

Use Armstrong axioms to derive some other useful inference rules

• Decomposition rule: If $X \rightarrow YZ$ then $X \rightarrow Y$ and $X \rightarrow Z$.

Given
$$X \rightarrow YZ$$
. (1)
Since $Y \subseteq YZ$, reflexive rule gives $YZ \rightarrow Z$ (2)

Applying Transitive rule on (1) and (2), we have $X \rightarrow Y$. $X \rightarrow Z$ is derived in a similar way.

Use Armstrong axioms to derive some other useful inference rules

• Pseudotransitive rule: If $X \rightarrow Y$ and $WY \rightarrow Z$, then $WX \rightarrow Z$.

Given
$$X \rightarrow Y$$
 (1) and $WY \rightarrow Z$. (2)

Applying Augmentation rule on
$$(1)$$
, we have $WX \rightarrow WY$. (3)

Applying Transitive rule on (3)&(2), we have $WX \rightarrow Z$.

Exercise

Prove or disprove the following inference rules

1.
$$\{WX \rightarrow XY, XY \rightarrow YZ\} \Rightarrow \{WX \rightarrow YZ\}$$

2.
$$\{X \rightarrow X \mid X \rightarrow W, WY \rightarrow Z\} \Rightarrow \{X \rightarrow Z\}$$

2.
$$\{X \rightarrow X, X \rightarrow W, WY \rightarrow Z\} \Rightarrow \{X \rightarrow Z\}$$

3. $\{X \rightarrow Y\} \Rightarrow \{X \rightarrow YZ\}$

4. $\{X \geqslant ZY, Z \Rightarrow Y\} \Rightarrow \{XZ \rightarrow Y\}$

4.
$$\{X \ge \rightarrow \nearrow Y, Z Y \Rightarrow \{XZ \rightarrow Y\}$$

- Prove using inference rules
- Disprove by showing a counter example

Solutions

- $\{W \rightarrow Y, X \rightarrow Z\} \Rightarrow \{WX \rightarrow YZ\}$
 - Proof:
 - WX→YX
 - YX**→**YZ
- $\{X \rightarrow Y, X \rightarrow W, WY \rightarrow Z\} \Rightarrow \{X \rightarrow Z\}$
 - Proof
 - $X \rightarrow YW \rightarrow Z$
 - X**→**Z
- $\{X \rightarrow Y\} \Rightarrow \{X \rightarrow YZ\}$
 - Counter example
 - X1 Y1 Z1
 - X1 Y1 Z2
- $\{X \rightarrow Y\} \Rightarrow \{XZ \rightarrow Y\}$
 - XZ→YZ→Y
- $\{X \rightarrow Y, Z \rightarrow Y\} \Rightarrow \{XZ \rightarrow Y\}$
 - Proof
 - $X \rightarrow Y \Rightarrow XZ \rightarrow YZ \rightarrow Y \Rightarrow XZ \rightarrow Y$

X⁺: Closure of Attribute Set X

Let F be a set of functional dependencies on a set of attributes U and let $X \subseteq U$. We define X^+ to be the set of all attributes that are dependent on X (under F).

$$X^+ = \{A \mid X \to A\}$$

 X^+ enables us to tell at a glance whether a dependency $X \rightarrow A$ follows from F.

For example, $X^+=\{ABC\}$, then we have $X \rightarrow ABC \rightarrow A$, so $X \rightarrow A$

Algorithm to determine X⁺ under F

```
X<sup>+</sup>= X;
Repeat until there is no change: {
   if there is an FD A→B in F such that A ⊆X<sup>+</sup>
   then X<sup>+</sup> = X<sup>+</sup> U B
}
```

Example 1

EMP_PROJ(SSN, PNUMBER, HOURS, ENAME, PNAME, PLOCATION)

```
F={ {SSN}->{ENAME},

{PNUMBER}->{PNAME, PLOCATION},

{SSN, PNUMBER}→{HOURS} }
```

(a) Compute {SSN}⁺

```
Initialization:{SSN}<sup>+</sup>={SSN}

1<sup>st</sup> iteration: NEW={ENAME}

{SSN}<sup>+</sup>={SSN, ENAME}

2<sup>nd</sup> iteration:NEW={}

{SSN}<sup>+</sup>={SSN, ENAME}
```

EMP_PROJ(SSN,PNUMBER, HOURS, ENAME, PNAME, PLOCATION)

```
F={ {SSN}->{ENAME},
 {PNUMBER}->{PNAME,PLOCATION},
 {SSN,PNUMBER}→{HOURS} }
```

(b) Compute {PNUMBER}⁺

```
Initialization:{PNUMBER}<sup>+</sup>={PNUMBER}

1<sup>st</sup> iteration: NEW={PNAME, PLOCATION} 
{PNUMBER}<sup>+</sup>={PNUMBER, PNAME, PLOCATION}

2<sup>nd</sup> iteration:NEW={}

{PNUMBER}<sup>+</sup>={PNUMBER, PNAME, PLOCATION}
```

(c) Compute {SSN, PNUMBER}+

Initialization:{SSN, PNUMBER}*={SSN, PNUMBER}

- 1. NEW={ENAME, PNAME, PLOCATION} {SSN, PNUMBER} +={SSN, PNUMBER, ENAME, PNAME, PLOCATION}
- 2. NEW={HOURS} {SSN, PNUMBER} +={SSN, PNUMBER, ENAME, PNAME, PLOCATION, HOURS}

Algorithm to determine X⁺ under F

```
X^+ = X;
Repeat until there is no change: {
    if there is an FD A\rightarrowB in F such that A\subseteq X<sup>+</sup>
    then X^+ = X^+ U B
```

Example 2

$$R(\underline{A,B},C,D,E,F)$$
, $FD=\{A->D,B->E,D\rightarrow B,C->F\}$

- What is $\{A\}^+ = \{A, D, B, E\}$ What is $\{B\}^+ = \{B, E\}$
- What is $\{E\}^+ = \{F\}$

F*: Closure of Functional Dependency Set F

Given a set of functional dependencies F, we define F⁺ to be the set of all functional dependencies that can be inferred from F.

Algorithm for computing F⁺

- 1. $F^+ = \{\};$
- 2. For each attribute set A in R, computing A⁺
- 3. For each $X \rightarrow Y$ implied by A^+ , add $X \rightarrow Y$ to F^+

Computing F⁺

- 1. $F^+ = \{\};$
- 2. For each attribute set A in R, computing A⁺
- 3. For each $X \rightarrow Y$ implied by A^+ , add $X \rightarrow Y$ to F^+

Example. Consider R(A, B, C, D) and F = $\{A \rightarrow B, B \rightarrow C\}$.

- 1. To compute F^+ , we enumerate all attribute sets and computes their closure
 - $\{A\}^+ = \{AB\}^+ = \{AC\}^+ = \{ABC\}^+ = \{A, B, C\}$
 - $\{B\}^+ = \{BC\}^+ = \{B, C\}$
 - $\{C\}^+ = \{C\}$
 - $\{D\}^+ = \{D\}$
 - $\{AD\}^+ = \{A, D\}$
 - $\{BD\}^+ = \{CD\}^+ = \{BCD\}^+ = \{B, C, D\}$
 - $\{ABD\}^+ = \{ABCD\}^+ = \{A, B, C, D\}$
 - $\{ACD\}^+ = \{A, C, D\}$
- 2. For each closure, generate all of its FDs and add to F⁺

Equivalence of Sets of Functional Dependencies

Let E and F be two sets of functional dependencies.

- F covers E if $E \subseteq F^+$.
- E and F are equivalent if $E^+ = F^+$.
- E⁺=F⁺ if and only if E covers F and F covers E.

Note: Equivalence means that every FD in E can be inferred from F, and every FD in F can be inferred from E.

Determine whether F covers E:

For each FD X \rightarrow Y in E, calculate X $^+$ with respect to F, then check whether X $^+$ \supseteq Y.

EXAMPLE:

Check whether or not F is equivalent to G.

$$F={A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H}$$

 $G={A \rightarrow CD, E \rightarrow AH}$

To show if G is covered by F, we need to prove that every FD in G can be implied by F

- 1. Does F imply $A \rightarrow CD$?
 - Compute A⁺ wrt F
- 2. Does F imply $E \rightarrow AH$?
 - Compute E⁺ wrt F

To show if F is covered by G, we need to prove that every FD in F can be implied by G

- 1. Does G imply $A \rightarrow C$?
- 2. Does G imply $AC \rightarrow D$?
- 3. Does G imply $E \rightarrow AD$? \uparrow
- 4. Does G imply $E \rightarrow H$? \uparrow

App1: Checking if $X \rightarrow Y$

- Steps of checking if an FD X→Y is in the closure of a set of FDs F:
 - 1. Compute X^{+} wrt E
 - 2. Check if Y is in X^{+} .
 - 3. $Y \in X^+ \Leftrightarrow X \rightarrow Y$ is in F^+

- Does $F = \{A \rightarrow B, B \rightarrow C, CD \rightarrow E\} \text{ imply } A \rightarrow E$?
 - i.e, is $A \rightarrow E$ in F^+ ? Equivalently, is E in A^+ ?
 - A^+ (w.r.t. F)={A, B, C}
 - E is not in A⁺, thus, A \rightarrow E is not in F⁺.

Minimal Cover of Functional Dependencies

A set of functional dependencies F is minimal if it satisfies the following three conditions:

- Every FD in F has a single attribute for its right-hand side. (This is a standard form, not a requirement.)
- We cannot replace any dependency X→A in F with a dependency Y→A, where Y is a proper subset of X, and still have a set of dependencies that is <u>equivalent</u> to F.
- We cannot remove any dependency from F and still have a set of dependencies that is equivalent to F.

There can be several minimal covers for a set of functional dependencies!

Minimal Cover

$F=\{X1 \rightarrow Y1, X2 \rightarrow Y2, ..., Xn \rightarrow Yn\}$ is a minimum cover

- 1) Any Yi is a single attribute
- 2) For any $Xi \rightarrow Yi$, it is impossible that $X' \rightarrow Y$ and X' is a subset of X
- 3) No Xi \rightarrow Yi can be taken out
 - $F' = F \{Xi \rightarrow Yi\}$ is not equivalent to F

Minimal Cover

<u>Definition</u>: A minimal cover of a set of FDs F is a minimal set of functional dependencies F_{min} that is equivalent to F.

<u>Procedure</u>: Find a minimal cover F_{min} for F.

1. Set $F_{min} = F$

/*put every FD in a standard form, i.e., it has a single attribute as its right-hand side*/

2. Replace each FD $X \rightarrow A_1$, A_2 , ..., A_n in F_{min} by the n FDs $X \rightarrow A_1$, ..., $X \rightarrow A_n$.

/* minimize the left side of each FD, i.e., every attribute is needed */

- 3. For each FD X \rightarrow A in F_{min}
 - For each $B \in X$,
 - Let $T=(F_{min}-\{X\rightarrow A\})U\{(X-\{B\})\rightarrow A\}$
 - Check whether T is equivalent to F_{min} (1)
 - If (1) is true, then set $F_{min} = T$.

/* delete redundant FDs, i.e., No redundant FDs remain in Fmin. */

4. For each FD X \rightarrow A in F_{min} Let $T=F_{min}-\{X\rightarrow A\}$ Check whether T is equivalent to F_{min} . (2) If (2) is true, set $F_{min}=T$.

Example:

Find the minimal cover of the set

$$F = \{ABCD \rightarrow E, E \rightarrow D, A \rightarrow B, AC \rightarrow D\}$$

- 1) Make sure the right hand side is minimum
- 2) Make sure the left hand side is minimum
- 3) Make sure the whole set of dependencies is minimum

Example:

```
Find the minimal cover of the set
F = \{ABCD \rightarrow E, E \rightarrow D, A \rightarrow B, AC \rightarrow D\}.
Step 2: F_{min} = \{ABCD \rightarrow E, E \rightarrow D, A \rightarrow B, AC \rightarrow D\}
Step 3:
    Replace AC \rightarrow D with A \rightarrow D;
    T = \{ABCD \rightarrow E, E \rightarrow D, A \rightarrow B, A \rightarrow D\}
                                                                          Is T equivalent to F_{min}?
       Compute \{A\}^+ wrt to F, \{A\}^+=\{A,B\}
       Compute \{A\}^{\dagger} wrt to T, \{A\}^{\dagger} = \{A,B,D\}
                                                                          Can Fmin Cover T?
                                                                          No, keep AC \rightarrow D
       Cannot replace F_{min} with T.
      Replace ABCD\rightarrowE with ACD\rightarrowE,
      T = \{ACD \rightarrow E, E \rightarrow D, A \rightarrow B, AC \rightarrow D\}
      Compute \{ACD\}^{\dagger} wrt to F, \{ACD\}^{\dagger} = \{A,C,D,B,E\}
      Compute {ACD}<sup>+</sup> wrt to T,{ACD}<sup>+</sup>={A,C,D,E,B}
      Replace F_{min} with T.
```

```
Step 3: (cont'd)
Replace ACD \rightarrow E with AC \rightarrow E,
T=\{AC \rightarrow E, E \rightarrow D, A \rightarrow B, AC \rightarrow D\}
Compute \{AC\}^+ wrt to F, \{AC\}^+=\{ACDBE\}
Compute \{AC\}^+ wrt to T, \{AC\}^+=\{ACEDB\}
Replace F_{min} with T.
```

Step 4:

Consider
$$T=\{AC \rightarrow E, E \rightarrow D, AC \rightarrow D, A \rightarrow B\}$$
 (take out $AC \rightarrow D$) $\{AC\}^+=\{A,C,E,D,B\}$ with respect to T; $\{D\} \subseteq \{AC\}^+$; we don't have to include $AC \rightarrow D$

The minimal cover of F is: $\{AC \rightarrow E, E \rightarrow D, A \rightarrow B\}$

App2: Finding a key K for relational schema R based on a set F of FDs

```
Set K=R
For each attribute A in K
Compute (K-A)+ w.r.t. F
If (K-A)+ contains all the attributes in R then set
K= K-A
```

Examples

- 1. $R=\{A, B, C, D\}$ $F=\{A \rightarrow B, B \rightarrow C, AB \rightarrow D\}$; find a key of R.
- 1. $R=\{A, B, C, D, E, F\}$ $F=\{A->C, A->D, B->C, E->F\}$; find a key of R
 - The algorithm returns only one key out of the possible candidate keys for R.
 - The key returned depends on the order in which attributes are removed from R.

Quick Review: Important Concepts

- X⁺: Closure of an attribute set X
 - The set of all attributes that are determined by X
- F⁺: Closure of a dependency set F
 - The set of all dependencies that are implied from F
- F_{min}: a minimum cover of a dependency set F
 - A minimum set of FDs that is equivalent to F
- K: a key
 - A minimum set of attributes that determines all attributes

Questions

- $AB \rightarrow C \Rightarrow ?A \rightarrow C$
- $A \rightarrow C \Rightarrow ?AB \rightarrow C$

Reading

• https://en.wikipedia.org/wiki/Functional_dependency