数学实践 项目作业

凌子恒 信息与计算科学 3200102551 2023 年 8 月 18 日

实现细节及解释

画图见 plot.py, 主函数为 main.cpp。

矩阵

迭代法的复杂度只和矩阵非0元素个数有关,且待求解的矩阵为稀疏矩阵,因此在 matrix.h 中实现了稀疏矩阵乘法和迭代。迭代参数w固定为 $\frac{2}{3}$ 。

多重网格

实现在 multigrid.h 中。由于不同维度的多重网格处理不同,分别实现每个维度的情况。 reset size 将 ϕ 通过 restriction 和 interpolation 调整为指定大小。

restriction 使用的是 2^D 个超立方体的平均值, interpolation 直接将一个超立方体分为 2^D 个值相等的超立方体。这两个函数都暴露在类外,便于 reset size 调用。

multigrid 类的构造函数传入一个获得矩阵的函数、一个获得等式右边项的函数和初始估计以及各种参数。构造后自动求解,可以调用:

- get residual 获得余项(误差)
- get times 获得迭代次数 (便于调整参数)
- get result 获得结果

有限体积法

设 $N=\frac{1}{h}$,用一个向量 ϕ 表示 ϕ 在每个大小为 h^D 的超立方体中的函数平均值。其中,左下角为 (x_1,x_2,\cdots,x_D) 的超立方体平均值为 $\phi_{\sum x_iN^{D-i}}$ 。

注意到对于每个 s,通过枚举求和符号中的 j 可以计算出矩阵 A 和列向量 b。由于系数计算较为复杂,且需要递归地处理,在类内实现 equations 类处理。

系数计算完成后,可以使用多重网格法求解 $A\phi^{(s)}=b$ 。

多重网格法需要对每个 s 不同的 N 计算 A_N, b_N ,其中许多计算是重复的。因此可以考虑记忆化,如 在 lhspool[g] 存储 $N=2^g$ 时的 A_N ,需要时直接传参而不需要重复计算。

由于多重网格法得到 A 后并不会进行修改,因此只需要传 pool 一个元素的常量引用即可,可以减少 复制,提高效率。

特别的,对于时间无关的情况,A 对每个 s 甚至每轮迭代都是相同的,每个 N 都只需要计算一次。由于需要计算的数据量较大,为提高效率,代码复用率较低。

结果分析

由于代码用时极长,不建议完整复现。

1.1 Traveling sinusoidal waves

2 维

调用函数 task 1, 实现类为 FVMOL 1。

输出文件和图片开头为 1.1。由于图片相似,只选 N=512 的进行展示:

	N	$ E _2$	$ E _{\infty}$	p_2	p_{∞}
	64	2.83×10^{-5}	8.12×10^{-5}	4.0	4.0
			5.08×10^{-6}		
2	256	1.14×10^{-7}	3.17×10^{-7}	4.0	4.0
5	512	7.19×10^{-9}	1.98×10^{-8}		

计算收敛阶为 p=4。

3 维

调用函数 task 1 3d, 实现类为 FVMOL 1 3d。

输出文件开头为 1.1.2, 未作图。

N	$ E _2$	$ E _{\infty}$	p_2	p_{∞}			
16	2.32×10^{-1}	6.73×10^{-1}	0.9	1.0			
		3.45×10^{-1}					
64	6.30×10^{-2}	1.78×10^{-1}	1.0	1.0			
128	3.16×10^{-2}	8.97×10^{-2}					
计算收敛阶为 $n=1$ 。							

1.2

调用函数 task 2, 实现类为 FVMOL 2。

输出文件和图片开头为 1.2。由于图片相似,只选 N=512 的进行展示:

N	$ E _2$	$ E _{\infty}$	p_2	p_{∞}			
64	8.97×10^{-5}	2.96×10^{-4}	1.0	1.1			
128	3.97×10^{-5}	1.22×10^{-1}	1.0	1.0			
256	1.32×10^{-2}	4.01×10^{-2}					
计算收敛阶为 $p=1$ 。							

1.3

调用函数 task 3, 未完成。