Detailed Report on Smart City Traffic & Accident Analytics

---- Sayan Das

Note:

There were two files available—*road_traffic_sensor_data.csv* and *traffic_sensor_data.csv*. Both contained sensor information and traffic conditions. However, to generate this report, I only needed one of these datasets. I chose *road_traffic_sensor_data.csv* because the other file (*traffic_sensor_data.csv*) contained questionable data like pollution sensor, giving speed data..

1. Data Loading & Pre-Processing

I began by loading the provided CSV files for sensor and accident data into Python using the Pandas library. This step involved standardizing column names (converted to lower-case) for consistency.

Python Code Snippet:

```
import pandas as pd

# Load CSV files

df_sensor = pd.read_csv('road_traffic_sensor_data.csv')

df_accident = pd.read_csv('traffic_accident_data.csv')

# Standardize column names to lower-case

df_sensor.columns = [col.lower() for col in df_sensor.columns]

df_accident.columns = [col.lower() for col in df_accident.columns]
```

This allowed me to work with a consistent dataset before moving on to the quality and transformation steps.

2. Data Quality Checks & Cleaning

To ensure reliable analytics, I performed several data quality checks: - **Uniqueness Check:** Verified that the primary key columns (sensor_id in sensor data and accident_id in accident data) are unique. - **Missing Data Check:** Assessed the presence of null values. I opted to drop any rows with missing data for simplicity.

```
# Check for primary key uniqueness
if df_sensor['sensor_id'].nunique() != len(df_sensor):
    print("Warning: Duplicate sensor_id values found in sensor data!")
else:
    print("All sensor_id values are unique in sensor data.")

if df_accident['accident_id'].nunique() != len(df_accident):
    print("Warning: Duplicate accident_id values found in accident data!")
else:
    print("All accident_id values are unique in accident data.")

# Check for missing values
print("Missing values in sensor data:")
print(df_sensor.isnull().sum())
```

```
print("\nMissing values in accident data:")
print(df_accident.isnull().sum())

# Drop rows with missing data
df_sensor.dropna(inplace=True)
df_accident.dropna(inplace=True)
```

Additionally, I converted the date_time columns into datetime objects to facilitate further time-based transformations.

```
df_sensor['date_time'] = pd.to_datetime(df_sensor['date_time'])
df_accident['date_time'] = pd.to_datetime(df_accident['date_time'])
```

3. Data Transformation: Creating Dimension and Fact Tables

Following data cleaning, I transformed the raw data into a structured star schema by creating dimension tables and fact tables.

3.1 Creating Dimension Tables

I built the following dimension tables:

dim_time:

I combined unique date_time values from both datasets, extracted additional attributes (year, month, day, hour, day_of_week), and created a surrogate key time_id.

Python Code Snippet:

```
all_times = pd.concat([df_sensor[['date_time']], df_accident[['date_time']]])
all_times = all_times.drop_duplicates().reset_index(drop=True)

all_times['year'] = all_times['date_time'].dt.year
all_times['month'] = all_times['date_time'].dt.month
all_times['day'] = all_times['date_time'].dt.day
all_times['hour'] = all_times['date_time'].dt.hour
all_times['day_of_week'] = all_times['date_time'].dt.dayofweek

all_times.reset_index(inplace=True)
all_times.rename(columns={'index': 'time_id'}, inplace=True)
all_times['time_id'] = all_times['time_id'] + 1

dim_time = all_times[['time_id', 'date_time', 'year', 'month', 'day', 'hour', 'day_of_week']]
```

dim_location:

I consolidated unique locations from both datasets and assigned a surrogate key location id.

```
locations_sensor = df_sensor[['location']].drop_duplicates()
locations_accident = df_accident[['location']].drop_duplicates()
all_locations = pd.concat([locations_sensor,
locations_accident]).drop_duplicates().reset_index(drop=True)
all_locations.reset_index(inplace=True)
all_locations.rename(columns={'index': 'location_id'}, inplace=True)
```

```
all_locations['location_id'] = all_locations['location_id'] + 1
dim_location = all_locations[['location_id', 'location']]
```

• Additional Dimensions (for Accident Data):

I created separate dimensions for vehicle_type, weather_condition, and road_condition with their own surrogate keys (vehicle_id, weather_id, and road_id respectively).

Python Code Snippet:

```
# Vehicle Dimension
dim vehicle =
df_accident[['vehicle_type']].drop_duplicates().reset_index(drop=True)
dim_vehicle.reset_index(inplace=True)
dim_vehicle.rename(columns={'index': 'vehicle_id'}, inplace=True)
dim vehicle['vehicle id'] = dim vehicle['vehicle id'] + 1
dim vehicle = dim_vehicle[['vehicle_id', 'vehicle_type']]
# Weather Dimension
dim weather =
df accident[['weather condition']].drop duplicates().reset index(drop=True)
dim_weather.reset_index(inplace=True)
dim_weather.rename(columns={'index': 'weather_id'}, inplace=True)
dim_weather['weather_id'] = dim_weather['weather_id'] + 1
dim_weather = dim_weather[['weather_id', 'weather_condition']]
# Road Condition Dimension
dim road = df accident[['road condition']].drop duplicates().reset index(drop=True)
dim road.reset index(inplace=True)
dim_road.rename(columns={'index': 'road_id'}, inplace=True)
dim_road['road_id'] = dim_road['road_id'] + 1
dim_road = dim_road[['road_id', 'road_condition']]
```

3.2 Creating Fact Tables

Next, I built the fact tables by merging the cleaned data with the respective dimensions: - **fact_traffic:** This fact table includes the key measures from sensor data along with foreign keys linking to dim_time and dim_location.

Python Code Snippet: ```python # Merge with dim_time and rename to fk_time_id fact_traffic = df_sensor.merge(dim_time[['time_id', 'date_time']], on='date_time', how='left') fact_traffic.rename(columns={'time_id': 'fk_time_id'}, inplace=True)

Merge with dim_location and rename to fk_location_id fact_traffic = fact_traffic.merge(dim_location, on='location', how='left') fact_traffic.rename(columns={'location_id': 'fk_location_id'}, inplace=True)

Select only the necessary columns fact_traffic = fact_traffic[['sensor_id', 'fk_time_id', 'fk_location_id', 'vehicle_count', 'average_speed', 'congestion_level']] ```

• fact_accident:

This fact table holds accident-specific measures and references dimensions including dim_time, dim_location, dim_vehicle, dim_weather, and dim_road.

```
# Merge with dim_time and rename to fk_time_id
fact accident = df accident.merge(dim time[['time id', 'date time']],
on='date_time', how='left')
fact accident.rename(columns={'time id': 'fk time id'}, inplace=True)
# Merge with dim location and rename to fk location id
fact accident = fact accident.merge(dim location, on='location', how='left')
fact_accident.rename(columns={'location_id': 'fk_location_id'}, inplace=True)
# Merge with additional dimensions
fact_accident = fact_accident.merge(dim_vehicle.rename(columns={'vehicle_id':
'fk_vehicle_id'}),
                                      on='vehicle type', how='left')
fact accident = fact accident.merge(dim weather.rename(columns={'weather id':
'fk weather id'}),
                                      on='weather condition', how='left')
fact_accident = fact_accident.merge(dim_road.rename(columns={'road_id':
'fk road id'}),
                                      on='road condition', how='left')
# Select only the necessary columns
fact_accident = fact_accident[['accident_id', 'fk_time_id', 'fk_location_id',
'fk_vehicle_id', 'fk_weather_id', 'fk_road_id', 'accident_severity', 'number_of_vehicles', 'casualties', 'traffic_density']]
```

4. Loading Transformed Data to MySQL

After the ETL process, I loaded the dimension and fact tables into a MySQL database using SQLAlchemy. I configured the connection parameters and used the to_sql() method with if_exists='replace' to update the tables.

```
from sqlalchemy import create engine
# MySQL connection parameters
username = 'root'
password = '12345'
host = 'localhost'
port = '3306'
database = 'case6'
# Create the SQLALchemy engine
engine = create_engine(f'mysql+pymysql://{username}:{password}@{host}:{port}/{database}')
# Load tables into MySQL
dim_time.to_sql('dim_time', con=engine, index=False, if_exists='replace')
dim location.to sql('dim location', con=engine, index=False, if exists='replace')
dim_vehicle.to_sql('dim_vehicle', con=engine, index=False, if_exists='replace')
dim_weather.to_sql('dim_weather', con=engine, index=False, if_exists='replace')
dim_road.to_sql('dim_road', con=engine, index=False, if_exists='replace')
fact_traffic.to_sql('fact_traffic', con=engine, index=False, if_exists='replace')
fact accident.to sql('fact accident', con=engine, index=False, if exists='replace')
print("\nAll tables have been loaded successfully into MySQL!")
```

5. SQL Queries for Insights

Schema:

USE case6;

-- 1. Show traffic congestion by location and time SELECT

```
dl.location,
  dt.date_time,
  ft.congestion_level,
  ft.vehicle_count,
  ft.average_speed
FROM fact_traffic AS ft
JOIN dim_time AS dt
  ON ft.fk_time_id = dt.time_id
JOIN dim_location AS dl
  ON ft.fk_location_id = dl.location_id
ORDER BY dt.date_time;
```

Re	esult Grid 🔢 🔌	Filter Rows:	Export:	Wrap Cell (Content: ‡A
	location	date_time	congestion_level	vehide_count	average_speed
•	Downtown	2024-01-01 00:00:00	High	90	59
	Downtown	2024-01-01 01:00:00	Moderate	324	73
	Highway	2024-01-01 02:00:00	Moderate	61	56
	Highway	2024-01-01 03:00:00	High	90	56
	Residential Zone	2024-01-01 04:00:00	High	72	77
	Downtown	2024-01-01 05:00:00	Moderate	243	61
	Residential Zone	2024-01-0106:00:00	Moderate	353	74
	Industrial Area	2024-01-01 07:00:00	High	475	46
	Highway	2024-01-01 08:00:00	Moderate	61	53
	Suburbs	2024-01-01 09:00:00	Low	375	44
	Downtown	2024-01-01 10:00:00	Moderate	441	21
	Industrial Area	2024-01-01 11:00:00	Moderate	203	76
	Residential Zone	2024-01-01 12:00:00	Moderate	398	70
	Industrial Area	2024-01-01 13:00:00	High	78	50
	Downtown	2024-01-01 14:00:00	Low	420	48
	Suburbs	2024-01-01 15:00:00	Low	337	63
	Highway	2024-01-01 16:00:00	Moderate	430	41

-- 2. Show top 10 accident-prone areas

SELECT

```
dl.location,
    COUNT(*) AS total_accidents

FROM fact_accident AS fa

JOIN dim_location AS dl
    ON fa.fk_location_id = dl.location_id

GROUP BY dl.location

ORDER BY total_accidents DESC

LIMIT 10;
```


-- Example: Top locations with the highest count of 'Fatal' accidents

SELECT dl.location, COUNT(*) AS fatal_accidents FROM fact_accident AS fa JOIN dim_location AS dl ON fa.fk_location_id = dl.location_id WHERE fa.accident_severity = 'Fatal' GROUP BY dl.location ORDER BY fatal_accidents DESC LIMIT 10;

-- 3. Peak hour analysis for accidents

SELECT

dt.hour,

COUNT(*) AS total_accidents

FROM fact_accident AS fa

JOIN dim_time AS dt

ON fa.fk_time_id = dt.time_id

GROUP BY dt.hour

ORDER BY total_accidents DESC;

-- 4. Peak Hour for Traffic Volume

SELECT

dt.hour,

SUM(ft.vehicle_count) AS total_vehicles

FROM fact_traffic AS ft

JOIN dim_time AS dt

ON ft.fk_time_id = dt.time_id

GROUP BY dt.hour

ORDER BY total_vehicles DESC;

-- 5. Average speed by hour

SELECT

dt.hour,
 AVG(ft.average_speed) AS avg_speed
FROM fact_traffic AS ft
JOIN dim_time AS dt
 ON ft.fk_time_id = dt.time_id
GROUP BY dt.hour

-- 4. Peak hour analysis for traffic volume

SELECT dt.hour, SUM(ft.vehicle_count) AS total_vehicles FROM fact_traffic AS ft JOIN dim_time AS dt ON ft.fk_time_id = dt.time_id GROUP BY dt.hour ORDER BY total_vehicles DESC;

Result Grid						
	hour	total_vehicles				
 	18	4295				
	15	4274				
	10	4110				
	2	4063				
	4	3974				
	12	3888				
	1	3721				
	7	3661				
	5	3641				
	6	3603				
	3	3502				
	11	3472				

6. PowerBI Report

Conclusion

- **Focus on High-Congestion Zones/Times:** Implement dynamic traffic signals, ramp metering, or congestion pricing in the hours and locations where congestion is severe and speed is low.
- Improve Road Safety in Hazardous Conditions:
 - o **Icy or Wet Roads:** Deploy salting trucks, improved drainage, or better signage.
 - o **Under Construction Areas:** Enhance signage, set lower speed limits, and ensure construction zones are well-lit.

• Target Vehicle-Specific Interventions:

- o **Buses**: Possibly large casualties due to high passenger count—enforce rigorous driver training and vehicle maintenance.
- Motorcycles: High vulnerability in bad weather—promote protective gear, stricter licensing.