Contents

1	Inti	roduction to Vectors	3			
	1.1	Vectors and Linear Combinations	3			
	1.2	Lengths and Dot Products	3			
	1.3		3			
		1.3.1 Linear Equations	3			
		1.3.2 The Inverse Matrix	3			
		1.3.3 Cyclic Differences	3			
2	Solving Linear Equations 5					
	2.1	Vectors and Linear Equations	5			
	2.2	The Idea of Elimination	5			
	2.3	Elimination Using Matrices	5			
	2.4		5			
	2.5	Inverse Matrices	5			
	2.6		5			
	2.7		5			
3	Vector Spaces and Subspaces 7					
	3.1	Spaces of Vectors	7			
	3.2	The Nullspace of A: Solving $Ax = 0$	7			
	3.3	The Rank and the Row Reduced Form	7			
	3.4		7			
	3.5	•	7			
	3.6		7			
4		Dimensions of the Four Subspaces	7 9			
4		Dimensions of the Four Subspaces				
4	Ort	Dimensions of the Four Subspaces	9			
4	Ort 4.1	Dimensions of the Four Subspaces	9			
4	Ort 4.1 4.2	Dimensions of the Four Subspaces	9 9			
4 5	Ort 4.1 4.2 4.3 4.4	Dimensions of the Four Subspaces	9 9 9 9			
	Ort 4.1 4.2 4.3 4.4	Dimensions of the Four Subspaces Chogonality Orthogonality of the Four Subspaces Projections Least Squares Approximations Orthogonal Bases and Gram-Schmidt Cerminants 1	9 9 9 9			

2 CONTENTS

	5.3	Cramer's Rule, Inverse, and Volumes	1			
6	Elgenvalues and Elgenvectors					
	6.1	Introduction to Eigenvalues	3			
	6.2	Diagonalizing a Matrix	3			
	6.3	Applications to Differential Equations				
	6.4	Symmetric Matrices	-			
	6.5	Positive Definite Matrices				
	6.6	Similar Matrices				
	6.7	Singular Value Decomposition				
7	Line	ar Transformations 1	5			
	7.1	The idea of a Linear Transformation	5			
	7.2	The Matrix of a Linear Transformation	5			
	7.3	Diagonalization and the Pseudoinverse	5			
8	Applications 17					
	8.1	Matrices in Engineering	7			
	8.2	Graphs and Networks	7			
	8.3	Markov Matrices, Population, and Economics	7			
	8.4	Linear Programming	7			
	8.5	Fourier Series: Linear Algebra for Functions	7			
	8.6	Linear Algebra for Statistics and Probability	7			
	8.7	Computer Graphics	7			
9	Nun	nerical Linear Algebra	9			
	9.1	Gaussian Elimination in Practice	9			
	9.2	Norms and Condition Numbers	9			
	9.3	Iterative Methods and Preconditioners	9			
10	Con	aplex Vectors and Matrices 2	1			
		Complex Numbers	1			
		Hermitian and Unitary Matrices	1			
		The Fast Fourier Transform				

Introduction to Vectors

- 1.1 Vectors and Linear Combinations
- 1.2 Lengths and Dot Products
- 1.3 Matrices
- 1.3.1 Linear Equations
- 1.3.2 The Inverse Matrix

this part is so hard

1.3.3 Cyclic Differences

Solving Linear Equations

- 2.1 Vectors and Linear Equations
- 2.2 The Idea of Elimination

Second lecture

Elimination

Back substitution

Here, we need to pay attention to the particularity of the matrix

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \times \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix}$$
 (2.1)

- 2.3 Elimination Using Matrices
- 2.4 Rules for Matrix Operations
- 2.5 Inverse Matrices
- 2.6 Elimination = Factorization: A = LU
- 2.7 Transposes and Permutations

Vector Spaces and Subspaces

- 3.1 Spaces of Vectors
- 3.2 The Nullspace of A: Solving Ax = 0
- 3.3 The Rank and the Row Reduced Form
- 3.4 The Complete Solution to Ax = b
- 3.5 Independence, Basis and Dimension
- 3.6 Dimensions of the Four Subspaces

Orthogonality

- 4.1 Orthogonality of the Four Subspaces
- 4.2 Projections
- 4.3 Least Squares Approximations
- 4.4 Orthogonal Bases and Gram-Schmidt

Determinants

- 5.1 The Properties of Determinants
- 5.2 Permutations and Cofactors
- 5.3 Cramer's Rule, Inverse, and Volumes

Elgenvalues and Elgenvectors

- 6.1 Introduction to Eigenvalues
- 6.2 Diagonalizing a Matrix
- 6.3 Applications to Differential Equations
- 6.4 Symmetric Matrices
- 6.5 Positive Definite Matrices
- 6.6 Similar Matrices
- 6.7 Singular Value Decomposition

Linear Transformations

- 7.1 The idea of a Linear Transformation
- 7.2 The Matrix of a Linear Transformation
- 7.3 Diagonalization and the Pseudoinverse

Applications

- 8.1 Matrices in Engineering
- 8.2 Graphs and Networks
- 8.3 Markov Matrices, Population, and Economics
- 8.4 Linear Programming
- 8.5 Fourier Series: Linear Algebra for Functions
- 8.6 Linear Algebra for Statistics and Probability
- 8.7 Computer Graphics

Numerical Linear Algebra

- 9.1 Gaussian Elimination in Practice
- 9.2 Norms and Condition Numbers
- 9.3 Iterative Methods and Preconditioners

Complex Vectors and Matrices

- 10.1 Complex Numbers
- 10.2 Hermitian and Unitary Matrices
- 10.3 The Fast Fourier Transform