Which graph belongs to which description?

- 1. No main effect of A or B but an interaction
- A main effect of A and B and an interaction
- A main effect of A, no main effect of B and no interaction
 - * It may be obvious but the two different levels of B are indicated by the red dot (for one level of B) and the open circle (second level of B).

- o A factor is a categorical variable
- ANOVAs can be generalized to look a more than one categorical variable at a time
 - o Same principles as one-way ANOVA
 - o partitioning of variance
 - o Same assumptions as one-way ANOVA
 - o Equal variances
 - o Equal sizes
- Not only can we ask whether each categorical variable affects a numerical variable, but also do they interact in affecting the numerical variable

One-way ANOVA:

 1 continuous dependent variable

- 1 categorical independent variable (≥ 2 groups)
- ie. Girls vs boys in hours of tv watched

Multi-Factor ANOVA:

- 1 continuous dependent variable
- ≥ 2 categorical independent variables
- ie. Girls vs boys in hours of tv watched in four regions of the United States

o 1 dependent variable and ≥ 2 (independent) categorical variables

o Produces 2 interesting results:

o Main effects

o Interaction effects

- One dependent variable and ≥ 2 categorical variables
- o Produces 2 interesting results:
 - o Main effects
 - 1 F-value for each category
 - Similar to the results if used one-way ANOVA but with one glorious difference:
 - Control for (partial out the effects of) the other independent variable(s)

o Interaction effects

The most important aspect of multi-factor ANOVA is that we can determine whether or not groups differ on some dependent variable while controlling for the effects of the other independent variables

* Similar to ANCOVA but ANCOVA is more general

Fixed Factorial Designs:

- Effects of factors (treatments) and their interactions on a response variable
 - All combinations of the two (or more) explanatory variables are investigated
- Fixed, repeatable factors
 - Interaction term: if it equals 0, there is no interaction
 - Main effects:
 - Factor 1 and Factor 2 since they represent the effects of that factor alone when averaged over the other factor, ie. Marginal values

Response = Constant + Factor 1 + Factor 2 + Factor 1* Factor 2

- F-test

General Linear Models

Fixed Factorial Designs:

Response = Constant + Factor 1 + Factor 2 + Factor 1* Factor 2

- F-test:
 - contribution of each main effect and their interaction to the fit of the model to the data
- Three sets of null/alternate hypotheses to test:
- 1. H₀: Factor 1

```
F-test= Constant + Factor 1 + Factor 2 + Factor 1*Factor 2

Constant + Factor 2 + Factor 1*Factor 2
```

2. H_0 : Factor 2

```
F-test= Constant + Factor 1 + Factor 2 + Factor 1*Factor 2

Constant + Factor 1 + Factor 1*Factor 2
```

3. H_0 : Factor 1*Factor 2

```
F-test= Constant + Factor 1 + Factor 2 + Factor 1*Factor 2

Constant + Factor 1 + Factor 2
```

General Linear Models

Fixed Factorial Designs:

Response = Constant + Factor 1 + Factor 2 + Factor 1* Factor 2

- Three sets of null/alternate hypotheses to test:
- 1. H₀: Main effect: Factor 1

2. H₀: Main effect: Factor 2

3.

H₀:Interaction effect: Factor 1*Factor 2

Source of Variation	Sum of Squares	df	Mean Square	F	P
Factor 1					
Factor 2					
Interaction					
<u>Residual</u>					
Total					

Example: Herbivores affect on red algae in an intertidal zone: exclusion and presence. Two locations variables, low tide mark and middle mark.

Multi- factor ANOVA:

Testing three hypothesis pairs:

Herbivory (main effect):

H₀: **No difference between** herbivory treatments in mean algal cover

H_A:There is a difference between herbivory treatments in mean algal cover

Height (main effect):

H₀: **No difference** between height treatments in mean algal cover

H_A:There is a difference between height treatments in mean algal cover

Herbivory*Height (interaction effect):

H₀: The effect of herbivory on algal cover **does not** depend on height in the intertidal region

H_A: The effect of herbivory on algal cover **does** depend on height in the intertidal region

Multi- factor ANOVA:

Sources of variation	Sum of Sc	uares	<u>df</u>	<u>Mean Squa</u>	ares	<u>F</u> <u>P</u>
Herbivory	1512.18	1		1512.18	6.36	0.014
Height	88.97	1		88.97	0.37	0.543
Herbivory*Height	2616.96	1		2616.96	11.00	0.002
Residual	14270.52	60		237.842		
Total	18488.63	63				

Multi- factor ANOVA:

Sources of variation	Sum of Squares	<u>df</u>	Mean Squares		<u>F</u> <u>P</u>
Herbivory	1512.18	1	1512.18	6.36	0.014
Height	88.97	1	88.97	0.37	0.543
Herbivory*Height	2616.96	1	2616.96	11.00	0.002
Residual	14270.52	60	237.842		
Total	18488.63	63			

	<u>Df</u>	Sum Sq	Mean Sq	F value	Pr(>F)
herbivores	1	1512.2	1512.18	5.5227	0.02197
Residuals	62	16976.5	273.81		

	<u>Df</u>	Sum Sq	Mean Sq	F value	Pr(>F)
height	1	89	88.973	0.2998	0.586
Residuals	62	18400	296.769		

Three F ratios in the table; two of them are significant.

No interaction between height and herbivory is rejected

No effect of herbivory is rejected