

CONSULTORES Y CONTRATISTAS DE GEOLOGIA Y GEOFISICA

Compañía Mexicana de Exploraciones, S. A.

RIO BALSAS 101 89 PISO APDO, POSTAL 5.255

MEXICO 5, D. F.

TELS. 533-62-46

COMPAÑIA MEXICANA AEROFOTO, S. A.

ESPECIALIDADES

Cartegrafia

Catastro urbano y rural-

Categia electrónica.

Diseiso intogramétrico electrónico

de abras de Ingenieria.

Estudios preliminares.

Fotointerpretación.

Fotografia gérea: pascromática, luffaggoia y a color.

Potografia comercial derea

Fotomurales.

Levantamientos lotogramétricos Lucativamén de obras

Mosaicos fotográficos

Programación electronica.

Topografia

132 empleados especializadas

- I Avion Queen Six A-80 Mot. EB-XAE
- I Avison Riday Rocket, Mist. XB-SAR
- | Anjon Seach Citil Mat. XS-VIG
- I Avionas Piper Actes Mos. KR-MOI y NCO
- I Avida Cessag 185 Mar. 88-715
- Unided Central de Proceso ISM, 1(3). Lectors perforadors de teristes (BM, 1447

Unided Impresery, 1814, 1132

- Commerc Foregramatrica Loids MRE.A
- Common Paragrametrica Wild RC-9
- Camara Fotogrametrica Wild RC-8 Comers Folgeremetrics Wild BC-5
- 4 Common nore bringedta ablique
- 6 Common Rectifications

- 4 Compres de Reproducción
- 3 Unidades de Telurimetro MRA-J
- & Taxababiana Wilei T.J.
- I Niveles automáticos Wild HAX-I
- é Consideres doble tracción
- I Autografia Wild A-7 ma Registradora de
- i Cathren metiografe Wild A.4
- | Autograto Wid A-9
- s Anjografia Wild B-6
- i Aprintes 1983, de 7 proyectores
- 2 Keigh K.S. do 4 proyectores 4:4
- 3 Keigh & I. de ? proyectores e u 2 Multiples de 8 proyectores c.s.

DIRECCION

ill de Abrill 169 338 empiles con Perphises Col Escandos Teléfono 516-07-40

Come agropoto, MEXICO : MEXICO : Servicio Aviena da Sarios Dumon Rº 2/2

MEXICO (B, D.F

Schlumberger

SCHLUMBERGER SURENCO, S. A.

AGENCIA EN MEXICO

Bahia de San Hipólito 56 Desp. 302 Tel. 250-62-11

MEXICO 17, D.F.

GEOFISICOS CONSULTORES PARA PETROLEOS MEXICANOS

Seismograph Service Corporation of Mexico

RIO TIBER 50-101 MEXICO 5, D.F. TELEFONOS: 514-47-94 514-47-96

SUBSIDIARIA DE

SEISMOGRAPH SERVICE CORPORATION
6200 East 41st. St. * Box 1590 * Tulsa, Oklahoma, U.S.A.

ESPECIALIZADOS EN :

SERVICIO DE GEOFISICA

Levantamientos:

- Sismológicos
- Gravimetricos
- Magnetométricos
- Procesado de Datos Magnéticos
- LORAC Levantamiento Electrónico

SERVICIO DE REGISTRO DE POZOS

- Registros para Evaluación de Formaciones
- Registros de Pozos de Producción
- Servicio de Terminación Permanente
- Registro Continuo de Velocidad

CAA, S.A.

EXPLORACION Y

PERFORACION

Bruselas No. 10 3er. Piso

Tel. 546-63-77

MEXICO 6, D. F.

BOLETIN

de la

Asociación Mexicana de Geofísicos de Exploración

SUMARIO

"DETERMINACION DE VELOCIDADES A PARTIR DEL ANALISIS
PARA PROCESO DE SECCIONES SISMOLOGICAS"

Por: Ing. Jorge Lazo Peña Alfaro *

^{*} Adscrito a la Gerencia de Exploración de Petróleos Mexicanos.

Comisionado actualmente en el Centro de Procesamiento Geofísico
del Instituto Mexicano del Petróleo.

ASOCIACION MEXICANA DE GEOFISICOS DE EXPLORACION

MESA DIRECTIVA PARA EL PERIODO 1977-1979

Ing. Antonio Deza Suárez Presidente Ing. Alberto Arroyo Pichardo Vicepresidente M.C. Héctor Palafox Rayón Secretario Tesorero Ing. Mario Rosello Guzmán M.C. Rogelio Aspiroz Aguilar Editor Ing. Sergio Figueroa Arias Vocal Poza Rica, Ver. Vocal Coatzacoalcos, Ver. M.C. José Ponce de León Ing. Armando Núñez Núñez Vocal Reynosa, Tam. Vocal Tampico, Tam. Ing. Carlos López Ramírez Vocal Córdoba, Ver. Ing. Serafín Ortega Aguilar Vocal Instituto Mexicano del Petróleo Ing. Rodolfo Marines Campos Vocal Instituto Politécnico Nacional Ing. Jorge Franco Páez Vocal Universidad Nacional M.C. Luis del Castillo de México

Presidente saliente:

Ing. Raúl Silva Acosta

Este boletín no se hace responsable de las ideas emit<u>i</u> das en los artículos que se publiquen, sino sus respectivos autores.

Este boletín se publica cada tres meses y se distribuye gratuitamente a los socios.

Cuota anual para miembros	\$ 300.00
Suscripción anual (no socios)	\$ 350.00
Números sueltos	\$ 120.00

Para todo asunto relacionado con el boletín: manuscritos, asuntos editoriales, suscripciones, descuentos especiales a bibliotecas públicas o Universidades, publicaciones, anuncios, etc., dirigirse a:

M.C. ROGELIO ASPIROZ AGUILAR Apdo. Postal 53-077 México 17, D.F.

Imprenta VERDIGUEL Mar de Japón 39-A México 17, D.F. Tel. 527-42-68

INDICE

INTRODUCCION

- 1. DEFINICION DE VELOCIDADES
- 2. CALCULO DE "Vo" Y DE "Kz"
- 3. CALCULO PARA TABULACION DE LA FUNCION Vz = Vo + Kz
- 4. FACTOR DE CONVERSION DE "Vrms" A "Vm"
- 5.~ COMPARACION DE DATOS OBTENIDOS EN POZOS PROFUNDOS CONTRA DATOS TOMADOS DE ANALISIS DE VELOCIDADES
- 6. CALCULO DE "TO" A PARTIR DE PROFUNDIDADES DE ESTRATOS EN POZOS PROFUNDOS

CONCLUSIONES Y RECOMENDACIONES

INTRODUCCION

El propósito de este trabajo es que el analista de procesos sís micos, y el sismólogo en general, se familiarice y ubique, enmarque o delimite, desde un punto de vista práctico, las velocidades del sub suelo con las que a diario tiene que tratar, y de las cuales depende, principalmente la obtención de una sección óptima.

Para el procesamiento de datos sísmicos es de la mayor importancia el aplicar correctamente las correcciones dinámicas. Estas sufren, dentro de cierto rango, contínuas variaciones tanto en el sentido vertical como en el horizontal a lo largo de una sección sismológica. El trabajo de calidad de un analista consiste, muy en lo especial, hasta donde sea posible, en la exacta determinación de las velocidades existentes.

La microcomputadora (o computadora de bolsillo) programable usada en nuestro trabajo fue la Hewlett-Packard HP-65 de nueve memorias fijas y tres de paso, así como hasta de cien pasos de programa registrables en una cinta magnética de siete centímetros de largo por uno de ancho aproximadamente. Estas características, además de las no mencionadas, y las cinco subrutinas con que cuenta la microcomputadora, hacen posible realizar, en unos cuantos minutos, operaciones que hace unos diez años nos hubiera tomado varias semanas efectuarlas si hubiésemos dispuesto del tiempo suficiente para ello.

Para la programación se usó el lenguaje de teclado polaco que emplea Hewlet-Packard, que es ligeramente diferente del algebraico normal de Texas Instruments y de otras compañías. Sin embargo los dos sistemas de programación son tan simples que cualquier persona que sepa manejar una calculadora común de bolsillo podría ser capaz, también, de llevar a cabo los cálculos efectuados.

1. - DEFINICION DE VELOCIDADES

VELOCIDAD DE APILAMIENTO . -

Vap=
$$\sqrt{\frac{\chi^2}{T\chi^2} + T_{02}}$$

Donde: To = Tiempo de reflexión vertical

Tx = Tiempo de reflexión a la traza extrema

X = Longitud del tendido bilateral

La velocidad de apilamiento es la que se deriva de la información sísmica; es la información que se recaba en los análisis de velocidades; es la determinación fundamental para la obtención de una buena sección sísmica. Se le podría llamar velocidad verdadera por ser la que nos proporciona el verdadero tiempo de corrección por efecto de

tendido. Pero, si se aumenta la longitud del tendido, o si el echado incrementa su pendiente, también se incrementa la velocidad de apilamiento; por esta razón recibe también el nombre de velocidad aparente. Normalmente la velocidad de apilamiento es despreciablemente mayor que la velocidad cuadrática media, y algo mayor (en función de la aceleración) que la velocidad media.

VELOCIDAD CUADRATICA MEDIA. -
$$2\sum_{i=1}^{n} v_i^2$$
 Ti

Donde: Vi = Velocidad de intervalo del estrato
Ti = Tiempo de intervalo del estrato

La velocidad RMS es la que toma en cuenta la variación en las velocidades de intervalo y su mejor determinación es a partir de un pozo profundo. Sin embargo, si la información sísmica a la mano es de buena calidad, podríamos considerarla como bastante confiable para determinación de velocidades medias a partir de dos o tres funciones lineales que aproximadamente las determinen. La gran cantidad de análisis en disponibilidad hacen sumamente interesante tal información desde el punto de vista cuantitativo. El principal objetivo de un análisis de velocidades es encontrar la curva más adecuada para el apilamiento de las trazas de una sección sísmica al efectuar su proceso. Pero otra excelente aplicación podría ser la de una ayuda para definir zonas anómalas como aquellas en las que se encuentran arrecifes, domos, cambios de facies, zonas afalladas, etc., las cuales se detectarían al observarse un cambio en la secuencia lógica de las velocidades a lo largo de la secuención sísmica.

VELOCIDAD MEDIA. -
$$2\sum_{i=1}^{n}$$
 EI Vm = $\frac{1}{To}$

Donde: Ei = Espesor del estrato
To = Tiempo de reflexión

La velocidad media o promedio es la velocidad vertical verdadera del subsuelo, y es la que se usa para conversión a profundidades.

VELOCIDAD HORIZONTAL. -
$$x_2 - x_1$$

 $y_1 = \frac{x_2 - x_1}{t_2}$

Donde: X_2 = Longitud del tendido a la traza extrema X_1 = Longitud del tendido a la traza cercana t_2 = Tiempo de primer arribo en la traza extrema t_1 = Tiempo de primer arribo en la traza cercana

La velocidad horizontal es la que se refiere a la primera o primeras capas consolidadas. Es la mejor referencia para ubicar la velocidad Vrms inicial o de arranque. Los primeros arribos de la sección 100% de los registros de campo nos la proporcionan. Para el fin práctico la velocidad horizontal es del mismo orden que la primera velocidad a considerar en el análisis de velocidades, digamos a 0.1 seg. ó 0.2 seg. de tiempo de reflexión. La imprecisa velocidad final, digamos a 5 seg. es del orden de 4000 a 5500 m/s según sea de bajas o altas velocidades el área, y se determina extrapolando los datos encontrados.

2. - CALCULO DE "Vo" Y DE "Kz"

Se efectuó el cálculo de "Vo" y de "Kz" para la función: Vz ≡ Vo + Kz (Método de Miller) a partir de 2 valores de Vrms; y/o a partir de una gráfica T ~ Z de Pozo Profundo. Condición: El segundo valor de "Vrms" o de "Z" es a un tiempo doble del primero.

$$Vi = \sqrt{\frac{V^2 rms2}{T2 - T1}} = \frac{Vm2}{T2 - T1} = \frac{Z2 - Z1}{T2 - T1}$$

$$Vi1 \approx Vrms 1$$

$$Z1 \approx \frac{Vrms 1}{2} = \frac{T1}{2}$$

$$Vi2 = \sqrt{\frac{V^2 rms2}{T1}} = \frac{(2T1) - V^2 rms1T1}{T1} = \sqrt{2V^2 rms2} - V^2 rms1$$

$$Z2 = Z1 + \frac{Vi2}{2} = \frac{T1}{T1} = \frac{Z2 - Z1}{T1}$$

$$Vo = \frac{KZ1}{(0.5 \text{ K T1}) - 1}$$
En donde: K = Incremento
Vo = Velocidad Inicial
Vrms 1 = Velocidad rms en un tiempo T1
Vrms 2 = Velocidad rms en el tiempo 2 T1
Vm = Velocidad media
Vi = Velocidad de intervalo
Z1 = Profundidad para Vrms 1
Z2 = Profundidad para Vrms 2
T1 = Tiempo de reflexión en Z1

T2 = Tiempo de reflexión en Z2

EJEMPLO
ANALISIS DE VELOCIDADES No. 1

Valores 1 = 2000
T1 = 0.7
Leidos 2 T 1 = 1.4
Vrms 2 = 2500 Función A
$$\begin{cases}
Z1 = 700 \\
Z2 = 1720 \\
X = 1.077 \\
X = 1647
\end{cases}$$
Valores 1 = 2500
Leidos 71 = 1.4
 $2 T 1 = 2.8$
 $2 T 1 = 3200$
 $2 T 1 = 2.8$
 $2 T 1 = 3200$
 $2 T 1 = 3200$

TABULACION CORRESPONDIENTE AL ANALISIS DE VELOCIDADES No. 1

		didaganing and a second didagan			
To	2	Vm	Vrms		
0.7	700	2000	2000		
1.0	1091	2182	2200	Función	(A)
1.2	1389	2315	2348		
1.4	1720	2457	2500		. metrico
1.7	2194	2581	2635	Función	(B)
2.0	2714	2714	2776		- Sections
2.4	3487	2905	2984		
2.8	4361	3115	3200		
3.5	6025	3443	3580		
4.5	8972	3987	4205	Función	(0)
5.6	13189	4710	* 5000		
•		•	• • • • • • • • • • • • • • • • • • • •		

^{*} Valor estimado de aplicación en el área.

- NOTA. Para el cálculo de profundidades en tiempos menores al menor específicado se considerará a Vrms = Vm.
 - Zl y Z2 son valores de una gráfica T-Z, si se tienen.
 - 21 será el valor 22 de la primer función si se requiere una segunda.

Función (A)
$$Vz1 = 1647 + 1.077 \rightarrow 0.7 \le T \le 1.4$$

Función (B) $Vz2 = 1968 + 0.612 \rightarrow 1.4 \le T \le 2.8$

Función (B) Vz2 = 1968 + 0.612
$$\rightarrow$$
 1.4 < T < 2.8

Función (C)
$$Vz3 = 2145 + 0.504 - 2.8 \le T \le 5.6$$

3. - CALCULO PARA TABULACION DE LA FUNCION: Vz = Vo + Kz

$$Z = \frac{V_0}{K} \left(e^{0.5} \text{ To } k - 1 \right) = \text{Profundidad}$$

$$V_{\rm m} = \frac{2Z}{T_{\rm O}} = Velocidad Media$$

$$Vi = \frac{Vm2}{T2} \frac{T2}{-} \frac{Vm1}{T1} = Velocidad de Intervalo$$

$$Vrms = \sqrt{\frac{2 \text{ Vi}^2 \text{ Ti}}{\text{To}}} = \text{Velocidad Cuadrática Media}$$

$$Z = \frac{Vo}{K} \quad \left(\begin{array}{c} 0.5 \text{ To } \text{k} - 1 \right) = \text{Profundidad} \\ Vm = \frac{2Z}{To} = \text{Velocidad Media} \\ Vi = \frac{Vm2}{T2} \frac{T2}{-} \frac{Vm1}{T1} = \text{Velocidad de Intervalo} \\ Vrms = \sqrt{\frac{2 \text{ Vi}^2 \text{ Ti}}{To}} = \text{Velocidad Cuadrática Media} \\ \Delta t = \sqrt{\frac{X}{Vrms} + \text{ To}^2} - \text{To} = \text{Diferencia en tiempo. (según tendido)} \\ \end{array}$$

En donde:

Ti = Tiempo de intervalo

To = Tiempo de reflexión

X = Longitud del tendido bilateral

Vm2 T2 = Contacto actual

Vm1 T1 = Contacto anterior

TABLAS COMPARATIVAS PARA DIFERENTES VALORES EN LA FUNCION Vz = Vo + Kz

En donde:

Vz = Velocidad Instantánea

Vo = Velocidad Inicial

Kz = Incremento

X = Doble longitud en metros al detector

To = Tiempo de reflexión en segundos

Z = Profundidad en metros

Vm = Velocidad media en m/s

Vi = Velocidad de intervalo

Vrms = Velocidad cuadrática media

Δt = Diferencia entre el tiempo de reflexión vertical y el de un detector situado a

una distancia 2X.

NOTA. - El valor de "Vm" a partir del cual esta velocidad se debe tomar como un valor constante es discutible, pero, aproximadamente, puede suponérsele entre 6500 y 7000 metros por segundo.

Vo	#	500 m/s	**************************************	X	= 1,000 m	
To	2	Vm	V İ munnamanının	Vrms	Δt	*
0.2 1.0 2.0 3.0 4.0 5.0	152 789 1661 2624 3689 4865	1515 1578 1661 1749 1844	1515 1593 1743 1927 2129 2353	1515 1578 1663 1755 1856	0.490 0.184 0.088 0.054 0.036 0.026	. ₩
0.2 1.0 2.0 3.0 4.0 5.0	153 830 1844 3083 4596 6444	1530 1661 1844 2055 2298 2577	1530 1693 2028 2477 3026 3696	1530 1662 1854 2083 2354 2677	0.483 0.167 0.071 0.038 0.022 0.014	† 0 + x
0.2 1.0 2.0 3.0 4.0 5.0	155 875 2055 3649 5800 8704	1546 1749 2055 2433 2900 3482	1546 1800 2361 3187 4303 5808	1546 1752 2079 2504 3054 3770	0.477 0.151 0.057 0.026 0.013 0.007	9.0
0.2 1.0 2.0 3.0 4.0 5.0	156 922 2298 4350 7412 11979	1562 1844 2298 2900 3706 4782	1562 1915 2751 4105 6123 9135	1562 1850 2344 3046 4042 5475	0.471 0.137 0.045 0.018 0.008 0.003	0 ∥ ×
0.2 1.0 2.0 3.0 4.0 5.0	158 973 2577 5223 9584 16774	1578 1946 2577 3482 4792 6709	1578 2033 3209 5290 8722 14380	1578 1955 2657 3746 5436 8062	0.465 0.123 0.035 0.012 0.004 0.002	©
0.2 1.0 2.0 3.0 4.0 5.0	159 1028 2900 6312 12529 23857	1594 2025 2900 4208 6264 9543	1594 2171 3745 6824 12434 22656	1594 2068 3025 4650 7407 12106	0.459 0.111 0.027 0.008 0.002 0.001	× ×

Vo		000 m/s		X :	= 1,000 m	
To	2.	Vm 	uminomentum V	Vrms	A t	**************************************
0.2 1.0 2.0 3.0 4.0 5.0	202 1052 2214 3499 4918 6487	2020 2103 2214 2332 2459 2595	2020 2124 2325 2569 2839 3138	2020 2104 2217 2340 2474 2621	0.334 0.107 0.050 0.030 0.020 0.015	2°0 1
0.2 1.0 2.0 3.0 4.0 5.0	204 1107 2459 4111 6128 8591	2041 2214 2459 2740 3064 3437	2041 2257 2704 3303 4034 4927	2041 2216 2472 2777 3139 3569	0.329 0.097 0.040 0.022 0.013 0.008	4.0 1.0
0.2 1.0 2.0 3.0 4.0 5.0	206 1166 2740 4865 7734 11606	2061 2332 2740 3244 3867 4642	2061 2400 3148 4250 5737 7744	2061 2336 2772 3338 4073 5026	0.325 0.088 0.032 0.015 0.008 0.004	\$ 0 11
0.2 1.0 2.0 3.0 4.0 5.0	208 1230 3064 5800 9883 15973	2082 2459 3064 3867 4941 6389	2082 2553 3669 5473 8165 12180	2082 2466 3126 4062 5389 7273	0.320 0.079 0.025 0.010 0.004 0.002	
0.2 1.0 2.0 3.0 4.0 5.0	210 1297 3437 6963 12778 22365	2103 2595 3437 4642 6389 8946	2103 2718 4278 7054 11629 19174	2103 2606 3542 4995 7247 10749	0.316 0.071 0.020 0.007 0.002 0.001	0
0.2 1.0 2.0 3.0 4.0 5.0	212 1370 3867 8416 16705 31809	2125 2740 3867 5611 8353 12724	2125 2894 4993 9098 16578 30208	2125 2758 4033 6200 9876 16141	0.311 0.064 0.015 0.004 0.001 0.000	2 ·

Vo	= 2,500	m/s		X	1,000 m	
TO		VIII	Vi	Vrms	Δt	K
0.2 1.0 2.0 3.0 4.0 5.0	253 1315 2768 4373 6148 8109	2525 2629 2768 2915 3074 3244	2525 2655 2906 3211 3549 3922	2525 .2630 2771 2925 3093 3276	0.244 0.070 0.032 0.019 0.013 0.009	ж в о
0.2 1.0 2.0 3.0 4.0 5.0	255 1383 3074 5138 7660 10739	2551 2768 3074 3425 3830 4296	2551 2822 3380 4129 5043 6159	2551 2770 3090 3471 3923 4461	0.240 0.063 0.026 0.014 0.008 0.005	7.0 m X
2.0 1.0 2.0 3.0 4.0 5.0	258 1458 3425 6082 9667 14507	2577 2915 3425 4054 4834 5803	2577 3000 3935 5312 7171 9680	2577 2920 3465 4173 5091 6283	0.237 0.057 0.021 0.010 0.005 0.003	ж 9.0
0.2 1.0 2.0 3.0 4.0 5.0	260 1537 3830 7250 12353 19966	2603 3074 3830 4834 6177 7986	2603 3192 4586 6841 10206 15225	2603 3083 3907 5077 6736 9092	0.233 0.051 0.016 0.006 0.003 0.001	80 0 1 ×
0.2 1.0 2.0 3.0 4.0 5.0	263 1622 4296 8704 15973 27956	2629 3244 4296 5803 7986 11182	2629 3397 5348 8817 14537 23967	2629 3258 4428 6244 9059 13437	0.230 0.046 0.013 0.004 0.002 0.001	× .
0.2 1.0 2.0 3.0 4.0 5.0	266 1713 4834 10520 20882 39762	2656 3425 4834 7013 10441 15905	2656 3618 6242 11373 20723 37760	2656 3447 5042 7750 12345 20176	0.226 0.041 0.010 0.003 0.001 0.000	N 36

Vo	= 300	0 m/s		X	æ],000 m	***************************************
To	dengangangangangangangangangangangangangan	VIII	VI	Vrms	Δt	K
0.2 1.0 2.0 3.0 4.0 5.0	303 1578 3321 5248 7377 9731	3030 3155 3321 3499 3689 3892	3030 3186 3487 3854 4259 4707	3030 3156 3325 3510 3712 3931	0.186 0.049 0.022 0.013 0.009 0.006	1 ×
0.2 1.0 2.0 3.0 4.0 5.0	306 1661 3689 6166 9192 12887	3061 3321 3689 4111 4596 5155	3061 3386 4056 4954 6051 7391	3061 3324 3708 4165 4708 5353	0.183 0.044 0.018 0.010 0.006 0.003	4.0 = X
0.2 1.0 2.0 3.0 4.0 5.0	309 1749 4111 7298 11601 17408	3092 3499 4111 4865 5800 6963	3092 3600 4723 6375 8605	3092 3504 4158 5007 6109 7539	0.180 0.040 0.014 0.007 0.003 0.002	4 0 1
0.2 1.0 2.0 3.0 4.0 5.0	312 1844 4596 8700 14824 23959	3123 3689 4595 5800 7412 9584	3123 3830 5503 8209 12247 18270	3123 3700 4689 6093 8083 10910	0.178 0.036 0.011 0.004 0.002 0.001	00 0 11
0.2 1.0 2.0 3.0 4.0 5.0	316 1946 5155 10445 19167 33547	3155 3892 5155 6963 9584 13419	3155 4077 6417 10580 17444 28761	3155 3910 5310 7493 10871 16124	0.175 0.032 0.009 0.003 0.001 0.000	0, , Il
0.2 1.0 2.0 3.0 4.0 5.0	319 2055 5800 12624 25058 47714	3187 4111 5800 8416 12529 19086	3187 4341 7490 13648 24868 45312	3187 4136 6050 9300 14814 24212	0.172 0.029 0.007 0.002 0.001 0.000	

٧	= 3,500	m/s		X =	1,000 in	
То	Z	Vm	Vi	Vrms	Δt	К
0.2	354	3535	3535	3535	0.146	
1.0 2.0	1840 3875	3681 3875	3717 4068	3682 3880	0.036 0.017	0.2
3.0 4.0	6123 8607	4082 4303	4496 4969	4095 4330	0.010 0.007	N
5.0	11353	4541	5491	4586	0.005	×
1.0	357 1937	3571 3875	3571 3950	3571 3878	0.144 0.033	4.0
2.0 3.0	4303 7194	4303 4796	4732 5780	4326 4859	0.013 0.007	
4.0 5.0	10723 15035	5362 6014	7060 8623	5493 6246	0.004 0.003	¥
0.2	361 2041	3607 4082	3607 4200	3607 4089	0.142	9.0
2.0 3.0	4796 8514	4697 5676	5510 7437	4851 5842	0.011 0.005	0
4.0 5.0	13534 20310	6767 8124	10039 13552	7127 8796	0.002 0.001	×
0.2	364 2152	3644 4303	4633 4468	3644 4316	0.140 0.026	0.8
2.0 3.0	5362 10151	5362 6767	6420 9578	5470 7108	0.008 0.003	
4.0 5.0	17295 27952	8647 11181	14288 21315	9430 12728	0.001 0.001	×
0.2	368 2271	3681 4541	3681 4756	3681 4561	0.137 0.024	0.1
2.0	6014 12186	6014 8124	7487 12344	6199 8741	0.006	_ u
4.0 5.0	22362 39139	11181 15655	20352 33554	12683 18811	0.001	×
0.2	372 2398	3719 4796	3719 5065	3719 4826	0.135 0.021	1.2
2.0	6767 14728	6767 9819	8738 15922	7059 10850	0.005	
4.0 5.0	29234 55666	14617 22266	29012 52864	17283 28247	0.000	_ <u>_</u>

4. - FACTOR DE CONVERSION DE "Vrms" a "Vm"

CALCULO PARA TABULACION DEL FACTOR DE CONVERSION DE Vrms a Vm SEGUN UN INCREMENTO "K" DETERMINADO Y UNA VELOCIDAD INICIAL "Vo" --CUALQUIERA EN LA FUNCION: Vz = Vo + Kz.

$$Z = \frac{Vo}{K} \qquad e \left(0.5 \text{ Tok} - 1\right) = \text{Profundidad}$$

$$Vm = \frac{2 Z}{To} = \text{Velocidad Media}$$

$$Vi = \frac{Vm_2}{T_2} \frac{T_2 - Vml Tl}{Tl} = \text{Velocidad de intervalo}$$

$$Vrms = \sqrt{\frac{2\sum V_1^2}{T_0}} = \text{Velocidad cuadrática media}$$

$$FACTOR = \frac{100 \text{ Vm}}{Vrms} = \% \text{ de aproximación}$$

NOTA. - Inficiese el cálculo en el To inicial o de arranque. Los valores de To serán función del número supuesto de capas reflectoras.

EJEMPLOS DE TABLAS PARA CONVERSION DE VELOCIDADES CUADRATICAS MEDIAS.

De donde:

Vm = Vrms por FACTOR

To = Tiempo de reflexión

Vo = Velocidad de arranque cualquiera

Número de capas = Tantas como tiempos de reflexión considerados

Factor = % de aproximación

FACTOR PARA 28 CAPAS

To	K=0.2	K=0.3	K=0.4	K=0.5	K=0.6	K=0.7	K=0.8	K=0.9	K=1.0
0.2	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
0.3	100.00	99.99	99.99	98.98	99.98	99.97	99.96	99.95	99.94
0.4	99.99	99.99	99.98	99.96	99.95	99.93	99.91	99.89	99.86
0.5	99.99	99.98	99.96	99.94	99.91	99.88	99.85	99.81	99.76
0.6 0.7 0.8 0.9	99.99 99.98 99.97 99.97 99.96	99.97 99.96 99.94 99.93 99.91	99.94 99.92 99.90 99.87 99.84	99.91 99.88 99.84 99.79 99.74	99.87 99.82 99.77 99.70 99.63	99.83 99.76 99.68 99.60 99.50	99.77 99.69 99.59 99.48 99.35	99.71 99.60 99.48 99.34 99.18	99.65 99.51 99.36 99.18 98.99
The transmission of the tr	99.95	99.89	99.80	99.69	99.56	99.40	99.21	99.01	98.78
	99.94	99.87	99.76	99.63	99.47	99.28	99.07	98.82	98.55
	99.93	99.84	99.72	99.57	99.38	99.16	98.91	98.62	98.31
	99.92	99.82	99.68	99.50	99.28	99.02	98.73	98.41	98.05
	99.91	99.79	99.63	99.42	99.17	98.88	98.55	98.18	97.77
.67.8	99.89	99.76	99.58	99.34	99.06	98.73	98.35	97.93	97.47
	99.88	99.73	99.52	99.26	98.94	98.57	98.15	97.68	97.16
	99.87	99.70	99.47	99.17	98.82	98.40	97.93	97.41	96.84
	99.85	99.66	99.41	99.08	98.68	98.23	97.71	97.13	96.50
	99.83	99.63	99.34	98.98	98.55	98.04	97.47	96.84	96.15
2.2	99.80	99.55	99.21	98.77	98.25	97.65	96.97	96.22	95.41
2.4	99.76	99.47	99.06	98.55	97.83	97.22	96.43	95.56	94.63
2.6	99.72	99.38	98.90	98.30	97.59	96.77	95.86	94.87	93.81
2.8	99.68	99.28	98.73	98.04	97.22	96.29	95.26	94.14	92.95
3.0	99.63	99.17	98.55	97.76	96.84	95.79	94.63	93.38	92.05
3.5	99.50	98.88	98.05	97.01	95.81	94.45	92.98	91.43	89.80
4.0	99.35	98.55	97.48	96.17	94.66	92.99	91.20	89.34	87.43
4.5	99.17	98.18	96.85	95.24	93.41	91.42	89.32	87.17	84.99
5.0	98.98	97.77	96.16	94.24	92.09	89.78	87.39	84.97	82.57

FACTOR PARA 6 CA	FACTOR	PARA	6	CAPAS
------------------	--------	------	---	-------

То	K = 0.2	K = 0.3	K = 0.4	K = 0.5	***************************************
0.2	100.00%	100.00%	100.00%	100.00%	
1.0	99.98	99.96	99.92	99.88	
2.0	99.87	99.70	99.48	99.19	
3.0	99.96	99.25	98.69	97.99	
4.0	99.38	98.63	97.61	96.38	
5.0	99.02	97.84	96.29	94.44	
To	K ≈0.6	K = 0.7	K = 0.8	K.= 0.9	K = 1.0
0.2	100.00%	100.00%	100,00%	100.00%	100.00%
1.0	99.83	99.77	99,71	99.63	99.55
2.0	98.85	98.46	98,02	97.53	97.01
3.0	97.16	96.23	95,20	94.10	92.94
4.0	94.95	93.38	91,70	89.95	88.16
5.0	92.36	90.14	87,84	85.52	83.22

NOTA. - Obsérvese que la diferencia contra el ejemplo anterior de 28 capas es menor del uno por ciento. Sin embargo, este ejemplo de reducido número de capas se aproxima más a la realidad.

5. - COMPARACION DE DATOS OBTENIDOS EN POZOS PROFUNDOS CONTRA DATOS TOMADOS DE ANALISIS DE VELOCIDADES

Para fines de localización el área estudiada y comprendida entre los pozos profundos Samaria No. 1 y Juliva No. 1 es, burdamente, la que se encuentra entre la ciudad de Villahermosa, Tab. y la costa del Goldo de México al Norte. Entre los pozos mencionados hay una distancia aproximada de 40 kilómetros.

Obsérvese la similitud de valores entre la tabulación del Pozo Juliva No. I y el Punto de Tiro sismológico No. 291 muy próximos entre sí. Asimismo, el grado de aproximación, bastante aceptable, entre los valores del Pozo Samaria No. I y el Punto de Tiro sismológico No. 76 más cercano.

POZO JULIVA # I

Sobre PT - 281 de la LINEA 49 Brigada SS-5 Area: AYAPA, TAB.

Prospecto: GUERRERO.

LINEA SISMOLOGICA 49

ANALISIS EN PUNTOS DE TIRO 291, 223, 157 Tendido: 0 - 240 - 1620 m.

POZO SAMARIA # 1

En el campo SAMARIA sobre LINEA 53 A la altura del PT - 40 Brigada: SS-15 Area: SITIO GRANDE, TAB.

LINEA SISMOLOGICA 53

ANALISIS EN PUNTOS DE TIRO 1, 76, 152, 194, 442, 490 Tendido: 0 - 134 1 1675 m
Calidad de los Análisis: Buena

POZO JULIVA # 1

VALORES LEIDOS EN TABLA T - Z

To: 0.3; 0.6; 1.2; 2.4; Z: 250; 550: 1215; 2970

FUNCTONES

 $Vz1 = 1519 + 1.215 \rightarrow 0.3 \le T \le 0.6$

 $Vz2 = 1670 + 0.623 \rightarrow 0.6 \le T \le 2.4$

TABULACION

**************************************	Z	٧m	Vrms
0.25	205 444	1640	1640
0.50	705	1775	1780
0.75		1881	1890
1.00	980	1959	1971
1.25	1276	2042	2057
1.50	1597	2129	2150
1.75	1943	2221	2249
2.00	2317	2317	2355
2.25	2722	2420	2469
2.50	3160	2528	2591
2.75	3633	2642	2721
3.00	4144	2763	2860

ANALISIS PT - 291; LINEA 49

VALORES LEIDOS

To ;		0.7;	1.4;	2.8
Vrms	2	1800;	2200;	2700

FUNCTONES

٧z١	38	1509	*	0.981	media	0.7	\$	T	≤	1,4
Vz2	88	1798	*	0.520	- months	1.4	<	7	<	2.8

To	Z	Vm	Vrms
0.5	428	1710	1710
1.0	974	1948	1962
1.5	1649	2199	2236
2.0	2358	2358	2400
2.5	3166	2533	2587
3.0	4085	2723	2799

ANALISIS PT -223; LINEA -49

VALORES LEIDOS

To: 0.75; 1.5; 3.0 Vrms: 1800; 2200; 3000

FUNCIONES

 $Vz1 = 1509 + 0.916 \rightarrow 0.75 \le T \le 1.5$ $Vz2 = 1659 + 0.686 \rightarrow 1.5 \le T \le 3.0$

TABULACION

То	Z	Vm	Vrms
0.5	424	1696	1696
1.0	957	1914	1926
1.5	1627	2170	2207
2.0	2384	2384	2438
2.5	3282	2626	2709
3.0	4349	2899	3024

ANALISIS PT - 157: LINEA - 49

VALORES LEIDOS

To: 0.9; 1.8; 3.6 Vrms: 1950; 2450; 3300

FUNCIONES

 $Vz1 = 1599 + 0.854 \rightarrow 0.9 \le T \le 1.8$ $Vz2 = 1854 + 0.557 \rightarrow 1.8 \le T \le 3.6$

То	Z	Vm	Vrms
0.5	446	1783	1783
1.0	997	1995	2006
1.5	1680	2240	2274
2.0	2481	2481	2538
2.5	3349	2679	2751
3.0	4347	2898	2993

POZO SAMARIA # 1

VALORES LEIDOS EN TABLA T - Z

To: 0.55; 1.1; 2.2 Z: 560; 1230; 2900

FUNCIONES

 $Vz1 = 1859 + 0.652 \rightarrow 0.55 \le T \le 1.1$ $Vz2 = 1912 + 0.556 \rightarrow 1.1 \le T \le 2.2$

TABULACION

To	Z		Vrms
0.25	242	1937	1937
0,50	505	2019	2021
0.75	790	2106	2111
1.00	1099	2198	2207
1.25	1429	2286	2300
1.50	1779	2376	2391
1.75	2155	2463	2488
2.00	2557	2557	2621
2.25	2989	2657	2700
2.50	3452	2761	2816
2.75	3948	2871	2939
3.00	4479	2986	3070

ANALISIS PT - 1: LINEA - 53

VALORES LEIDOS

To: 0.75; 1.5; 3.0 Vrms: 2000; 2300; 3500

<u>FUNCTONES</u>

 $Vz1 = 1761 + 0.664 \rightarrow 0.75 \le T \le 1.5$ $Vz2 = 1618 + 0.870 \rightarrow 1.5 \le T \le 3.0$

To	Z	Vm	Vrms
0.5	479	1916	1916
1.0	1044	2089	2096
1.5	1712	2282	2300
2.0	2579	2579	2644
2.5	3658	2926	3052
3.0	4998	3332	3542

ANALISIS PT - 76; LINEA - 53

VALORES LEIDOS

To: 0.65; 1.3; 2.6 Vrms: 2000; 2400; 2800

FUNCTONES

 $Vz1 = 1701 + 0.971 - 0.65 \le T \le 1.3$ $Vz2 = 2050 + 0.437 - 1.3 \le T \le 2.6$

TABULACION

To	Z	Vm	Vrms
0.5	481	1925	1925
1.0	1095	2190	2206
1.5	1819	2426	2458
2.0	2571	257	2606
2.5	3409	2727	2772
3.0	4344	2896	2955

ANALISIS PT - 152: LINEA - 53

VALORES LEIDOS

To: 0.85; 1.7; 3.4 Vrms: 2000; 2400; 3800

FUNCIONES

 $Vz1 = 1701 + 0.743 - 0.85 \le T \le 1.7$ $Vz2 = 1630 + 0.832 - 1.7 \le T \le 3.4$

То	Z	Vm	Vrms
0.5	467	1869	1869
1.0	1030	2060	2069
1.5	1708	2277	2303
2.0	2543	2543	2601
2.5	3584	2867	2980
3.0	4865	3244	3432

LINEA - 53 ANALISIS PT - 194 VALORES LEIDOS To: 0.65: 1.6; 3.2 2050; 2500; 3600 Vrms: **FUNCIONES** ≤ 1.6 $1721 + 0.850 \rightarrow 0.8 \leq T$ Vz1 = $1812 + 0.734 \rightarrow 1.6 \le T \le 3.2$ Vz2 = TABULACION Z Vrms Vm To 1918 479 1918 0.5 1072 2145 2157 1.0 2443 2407 1.5 1806 2738 2675 2.0 2675 3071 3710 2968 2.5 3463 3.0 4955 3303 ANALISIS PT - 442; LINEA - 53 VALORES LEIDOS 0.425; 0.85; 1.7: 3.4 To: 3400 1950; 2500; Vrms: 1850; FUNCIONES $1759 + 0.472 \rightarrow 0.425$ T ≤ 0.850 Vz1 1571 + 0.972 - 0.85Т ≤ 1.7 Vz2 < 3.4 1869 + 0.609 → 1.7 < Vz3 = TABULACION Vrms To Ζ ٧m 1867 467 1867 0.5 2031 2025 1013 1.0 2356 1737 2316 1.5

2574

3502

4582

5840

2.0

2.5

3.0

3.5

2639

2885

3170

3498

2574

2801

3055

3337

ANALISIS PT - 490; LINEA - 53

Management La Inc. Pra			ACTA III	
	VALORES LE	<u>IDOS</u>		
To: Vrms:	0.75; 1.5 2000; 2150;	3.0 3000		
	<u>FUNCTONES</u>			
Vzl = Vz2 =	1845 + 0.42 1621 + 0.73		≤ T ≤ 1.5 ≤ T ≤ 3.0	
	TABULAC	LON		
To	Z	Vm	Vrms	
0.5 1.0 1.5 2.0 2.5 3.0	486 1027 1626 2397 3327 4445	1945 2053 2169 2397 2661 2963	1945 2056 2177 2434 2740 3097	
	TABULACION T -	Z EN LINE	A + 49	
	JULIVA - 1	PT-291	PT-223	PT-157
To	Z	Z	Z	Z
0.5 1.0 1.5 2.0 2.5 3.0	444 980 1597 2317 3160 4144	428 974 1649 2358 3166 4085	424 957 1627 2384 3282 4349	446 997 1680 2481 3349 4347
	TABULACION T -	Z EN LINE	A - 53	
	SAMARIA - 1	PT-I	PT -76	PT-152
То	Z	Z	Z	Z
0.5 1.0 1.5 2.0 2.5 3.0	505 1099 1779 2557 3452 4479	479 1044 1712 2579 3658 4998	481 1095 1819 2571 3409 4344	467 1030 1708 2543 3584 4865

TABULACION T - Z EN LINEA - 53 (CONTINUACION)

	PT-194	PT-442	PT-490
То	Z	2	Z
0.5	479	467	486
1.0	1072	1013	1027
1.5	1806	1737	1626
2.0	2675	2574	2397
2.5	3710	3502	3327
3.0	4955	4582	4445

TABULACION T - Z PROMEDIO PARA EL AREA ENTRE EL POZO SAMARIA # I Y EL JULIVA # 1

	SAMARIA - 1 JULIVA - 1	LINEA - 53	
То	2 p	Z p	% de Variaci ó n
0.5 1.0	475 1040 1688	455 1012 1694	- 4.2 - 2.7 + 0.4
2.0 2.5 3.0	2437 3331 4363	2483 3399 4479	+ 1.9 + 2.0 + 2.7

NOTA. - Esta es una comparación regional únicamente para - fines de una rápida visualización global de los resultados obtenidos.

6. - CALCULO DE TO A PARTIR DE PROFUNDIDADES DE ESTRATOS EN POZOS PROFUNDOS.

Con frecuencia se requiere incorporar a una sección sismológica los datos de profundidades de los pozos profundos como son: contactos entre formaciones, horizontes productores o con manifestaciones importantes, profundidad total, etc.

Teniendo estos valores de Z y conociendo la función a aplicar: Vz = Vo + Kz se pueden conocer los tiempos de reflexión To correspondientes de la sección sísmica a la que se desea agregar los datos del pozo profundo. Si las profundidades del pozo están referidas al kelly bushing o a la mesa rotaria hay que hacer la corrección para quedar al nivel del terreno; después hay que ajustar la diferencia en tiempo existente entre la elevación del terreno y el nivel de referencia de la sección sísmica de acuerdo a la función en disponibilidad. Si la ley aplicada es la correcta la diferencia entre el valor verdadero y el calculado deberá ser despreciable.

A partir de la fórmula:
$$Z = \frac{Vo}{K}$$
 (e 0.5 To K - 1)

Obtenemos:
$$To = \frac{2}{K} - \ln \left(2 \frac{K}{VO} + 1 \right)$$

En donde: Z = Profundidad

To = Tiempo de reflexión

K = Incremento

Vo = Velocidad Inicial

CONCLUSIONES Y RECOMENDACIONES

Los análisis de velocidades para proceso son plenamente utilizables para determinación de profundidades. Esta utilización, como cualquier información sísmica, está condicionada a la buena calidad del dato obtenido y a su correcta interpretación.

Se recomienda usar el Análisis de Velocidades Constantes por su mayor resolución y por ser menos influenciado por el echado existente y por toda clase de ruidos. Sin embargo las gráficas impresas tabuladas (Prints), o las de líneas contínuas (Plots), teóricamente deben dar el mismo resultado. Si se requiere ser cuidadoso en el examen de los datos analizados deberán usarse simultáneamente las tres presentaciones mencionadas.

La confiabilidad de este procedimiento será por lo menos igual a la que se tiene cuando el punto de referencia es un pozo profundo lejano.

Asociación Mexicana de Geofisicos de Exploración, A. C. APARTADO POSTAL 53-077 TELS: 545-74-69 EXTS. 3713, 3075, 3398 Y 567-82-61 MEXICO 17. D. F.

México, D.F., julio 10 de 1978.

MESA DIRECTIVA

1977-1979

Presidente: Ing. Antonio Deza Suárez

Vicepresidente:

Ing. Alberto Arroyo Pichardo

M. C Héctor Palafox Rayón

Tesorera

Ing. Mario Rosello Guzmán

Editor:

M. C. Rogelio Aspiroz Aguitar

Vocales:
M. C. José Ponce de León

Contincontens, Ver.

lng. Armando Núñez Núñez Beynesa, Tam.

Ing. Carlos López Ramírez
Tampico, Tam

Ing. Sergio Figueroa Arias

Poza Rica

Ing. Rodolfo Marines Campos Vocal I.M.P.

Ing. Serafin Ortega Aguilar Cirdoba, Ver.

Ing. Jorge France Páez Vocal I.P.N.

M. C. Luis del Castillo Vocal U.N.A.M.

Proidense Saliente: Ing. Raúl Silva Acosta Con esta fecha y estando presentes los señores ingenieros Alberto Arroyo Pichardo, Héctor Palafox Rayon y Mario Rossello Guzmán, Vicepresi dente, Secretario y Tesorero, respectivamente, de la Asociación Mexicana de Geofísicos de Exploración y el señor Leonardo Rodríguez Dávila, representante de La Nacional, Compañía de Sequ ros, se hizo entrega a la señora Elsy del Soco rro Monroy de Durán de la cantidad de \$200,000.00 (DOSCIENTOS MIL PESOS, 00/100 M.N.), por concep to de indemnización del seguro de Grupo de que esta Asociación suscribe con la compañía de Se guros antes anotada y de la que el señor Fernando Durán Lara era miembro. La señora Elsy del Socorro Monroy de Durán, en su calidad de beneficiaria recibe el monto de la indemnización.

Fueron testigos de esta entrega los señores in genieros Marcelo Hernández Pastrana y Jorge Ug canga Uscanga.

Asistentes

Ing. Alberto Arroyo Pichardo Ing. Héctor Palafox Rayón

Ing. Mario Rossello Guzmán

Sr. Leonardo Rodríguez Dávila

Ing. Marcelo Hernández P.

Ing. Jorge Uscanga Uscanga

Recibí de conformidad

Elsy del Socorro Monroy de Durán

)H-

EXPLORACIONES DEL SUBSUELO, S.A.

- OCEANOGRAFIA
- GEOFISICA
- GEOLOGIA
- PERFORACIONES
- REPRESENTANTE EN MEXICO DE DECCA SURVEY (LATIN AMERICA) INC.

PASEO DE LA REFORMA 393-401 MEXICO 5.D.F. TEL 811-87-88

SOCIOS PATROCINADORES

PETROLEOS MEXICANOS

COMPAÑIA MEXICANA DE EXPLORACIONES, S.A.

CAASA

DUPONT

SERCEL INC.

WESTERN GEOPHYSICAL

GEOPHYSICAL SERVICE DE MEXICO, S.A. DE C.V.

PETTY GEOPHYSICAL ENGINEERING DE MEXICO

El equipo digital de campo SUM-IT VII es un sistema completo para emplearse en el re-gistro sísmico de datos con cualquier técnica de campo: Vibroseis, Dinoseis, Dinamita y - otros generadores de energía.

El formato empleado es SEG-A de 9 pistas -- en cinta de $\frac{1}{2}$ ".

SUM-IT VII

Para mayor información dirigirse a : Electro-Technical Labs Div., Mandrel Industries, Inc. P. O. Box 36306, Houston, Texas 77036

ELECTRO-TECHNICAL LABOR

Com * Mand. LO MAXIMO !

TANTO EN ASISTENCIA PARA CENTROS DE PROCESADO.

COMO LA GRAN AYUDA INMEDIATA EN EL CAMPO.

EL SISTEMA COMMINICALES DE FACIL INSTALACION EN EL CAMPO O COMO UNA EXTENSION DE UN CENTRO DE PROCESADO ESTABLECIDO, DEBIDO A SU POCA SENSIBILIDAD A LAS CONDICIONES CLIMATOLOGICAS. EL SISTEMA Com #Mand PUEDE BER INSTALADO EN TRAILERS, CAMPOS PORTATILES O EN UNIDADES MOBILES AUTONOMAS. EL SISTEMA COM * Mand PROPORCIONA UNA CAPACIDAD TOTAL DE PROCEBADO A COSTOS LO SUFICIENTEMENTE BAJOS COMO PARA SER ASIGNADO A UNA BOLA BRIGADA. LA RAPIDEZ DEL PROCESADO PERMITE QUE LA CALIDAD DE LOS REGISTROS Y LAS TECNICAS DE REGISTRO DE CAMPO PUEDAN SER EVALUADAS INMEDIATAMENTE Y, DE SER NECESARIO, QUE SEAN MODIFICADAS SIN COSTOSAS DEMORAS. EN EL CAMPO O COMO EXTENSION

EN EL CAMPO O COMO EXTENSION
DE UN CENTRO DE PROCESADO,
EL SISTEMA COM*MAND ES UN
INSTRUMENTO DE GEOFISICA CON
UNA PROPORCION DE COSTOS A
RESULTADOS SIMPLEMENTE
INIGUALABLE.

Para mayor información comuniquese a:

Petty-Ray

Petry-Ray Geophysical, Inc.
no. sox Selice
Houston, Texas Tel. 713-774-7581

Petty-Rey

Party-Ray Geophysical, Inc.

Se México, S. A. de C.V.

AV. JUAREZ 97, DEEP. 408

MEXICO 1, D.F. TEL. \$21-08-34

WESTERN en Mexico

La exploración geofísica, encuentra la riqueza del subsuelopara el desarrollo del país, sin destruir la belleza del paísaje.

WESTERN GEOPHYSICAL Post Office Box 2469 Houston, Texas 77001, E.E.U.U.

EN EL TRABAJO

. . . para ayudar a resolver sus problemas en exploracion sismica

Sistema de registrado digital (DFS-IV*) montado en camión usado por GSI para reunir la información

Los vibradores GSI combinan potencia y frecuencia para proveer información sísmica de alta relación señal-ruido.

Los programas de procesamiento de GSI combinados con Texas Instruments Multiple Applications Processor (TIMAP*) producen información sísmica muy efectiva en costo, rapidez y alta fidelidad.

Para mayores informes comuniquese a GSI de Mexico, S. A. de C. V., Av. Juárez 119, Despacho 42, Mexico 1, D. F. Telefono 566-92-44.

GSI de MEXICO, S.A. de C.V.

SUBSIDIARIA DE

TEXAS INSTRUMENTS

Du Pont, S. A. de C. V.

Morelos Nº 98-5º Piso México 6, D.F. Tel. 546-90-20

DEPARTAMENTO DE EXPLOSIVOS

Fábrica Ubicada en: DINAMITA DURANGO

DINAMITAS
GEOMEX*60% (Gelatina Sismográfica)
SUPER MEXAMON*
TOVEX*EXTRA
DETOMEX*
FULMINANTES
ESTOPINES ELECTRICOS
ESTOPINES SISMOGRAFICOS "SSS"

ACCESORIOS DEL RAMO

OFICINAS EN: TORREON, COAH. Edificio Banco de México Desp. 305 Tel. 2 09 55

REPRESENTANTE EN: GUADALAJARA, JAL. Juan Manuel No. 1184 Tels: 25 56 82 y 25 56 08

. MARCA REGISTRADA DE DU PONT

Operación con unidades Vibroseis*

Aplicada a la tecnologia de campo

- Diseño de vehículo adaptado al terreno.
- · Correlación digital de campo.
- Diseño específico de campo.

Adecuada para el proceso de datos

TVAC

hiormal correlation and deconvolution

Adamtiva

 Técnica de pulsos compresionales para el contenido de información traza por traza.

- Deconvolución apropiada a la mezcla de fases, característica del Vibroseis.
- Apilamiento vertical con la consiguiente supresión de ruido de gran amplitud.

ANSAC

computed statics

ANSAC statics

técnica de Vibroseis requiere una continua evaluación de los rámetros de campo y su rela-n con una cuidadosa planeación i proceso de datos. Y esta es función del Seiscom/Delta en

Esta técnica está diseñada para determinar y aplicar correcciones estáticas inherentes al sistema CDP basada en las siguientes consideraciones.

- Correcciones por fuente de energia.
- Correcciones por detección
- Dinámicas residuales

las operaciones Vibroseis. Efi-ciencia en el trabajo de campo, calidad en el centro de proceso. Mayor información con el repre-sentante beiscom/Delta.

Della Exploration Company inc P. O. Box 36789 Houston, Texas 77036 713/785-4080

*Registered trademark and service mark of Continental Oil Company