Quiz, 10 questions

~	Congratulations! You passed!

Next Item

1.

Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?

 $a^{[3]\{7\}(8)}$

1/1 points

 $a^{[8]\{7\}(3)}$

 $a^{[3]\{8\}(7)}$

Correct

 $a^{[8]\{3\}(7)}$

1/1 points

Which of these statements about mini-batch gradient descent do you agree with?

Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.

One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.

Correct

You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).

1/1 points

Why is the best mini-batch size usually not 1 and not m, but instead something in-between?

If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.

Un-selected is correct

If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.

Correct

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions the mini-batch size is 1, you end up having to process the entire training set before making any progress.

Un-selected is correct

If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.

Correct

1/1 points

4.

Suppose your learning algorithm's $\cos J$

, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

Correct

Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.

5.

Suppose the temperature in Caşablanca over the first three days of January are the same: $\begin{picture}(60,0) \put(0,0){\line(1,0){100}} \put(0,0){$

10/10 points (100%)

Jan 1st: 181 questions

Jan 2nd: $\theta_2 10^{\circ} C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta = 0.5$

to track the temperature: $v_0 = 0$

,
$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$

. If
$$v_2$$

is the value computed after day 2 without bias correction, and $\textit{v}_{2}^{\textit{corrected}}$

is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2 = 7.5$$

$$v_2^{corrected} = 10$$

$$v_2 - 7.5$$
 $v_2^{corrected} = 7.5$

$$v_2 = 10$$

$$v_2^{corrected} = 10$$

$$v_2 = 10$$

$$v_2^{corrected} = 7.5$$

1/1 points

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\alpha = \frac{1}{1+2*t}\alpha_0$$

$$\bigcirc \qquad \alpha = \frac{1}{\sqrt{t}}\alpha_0$$

$$\alpha = 0.95^t \alpha_0$$

Correct

1/1 points

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: \$\$v_{(t)} = \beta v_{(t-1)} + (1-\beta v_{t+1}) + (1-\beta v_

Decreasing β will shift the red line slightly to the right.

Un-selected is correct

Increasing β will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta = 0.9$

. In lecture we had a green line \$\$\beta = 0.98) that is slightly shifted to the right.

Decreasing β will create more oscillation within the red line.

Correc

True, remember that the red line corresponds to $\beta = 0.9$

. In lecture we had a yellow line \$\beta = 0.98 that had a lot of oscillations.

Increasing β will create more oscillations within the red line.

Un-selected is correct

Consider this figure:
Optimization algorithms

10/10 points (100%)

These plots were generated with gradient descent; with gradient descent with momentum (β [Math Processing Error] = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

1/1 points

9.

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $J(W^{[1]}, b^{[1]}, \dots, W^{[L]}, b^{[L]})$

. Which of the following techniques could help find parameter values that attain a small value for J ? (Check all that apply)

Try mini-batch gradient descent

Correct

Try tuning the learning rate α

Correct

Correct Optimization algorithms

10/10 points (100%)

10 questions Try initializing all the weights to zero

Un-selected is correct

Try using Adam

Correct

1/1 points

10.

Which of the following statements about Adam is False?

- We usually use "default" values for the hyperparameters β_1,β_2 and ε in Adam ($\beta_1=0.9$, $\beta_2=0.999$, $\varepsilon=10^{-8}$
- Adam should be used with batch gradient computations, not with mini-batches.

Correct

- The learning rate hyperparameter α in Adam usually needs to be tuned.
- Adam combines the advantages of RMSProp and momentum

ď

