GISH et al.

Application No.: 09/930,020

Page 5

Please insert the accompanying paper copy of the Sequence Listing, page numbers 1 to 4, at the end of the application.

REMARKS

Applicants request entry of this amendment in adherence with 37 C.F.R. §§1.821 to 1.825. This amendment is accompanied by a floppy disk containing the above named sequences, SEQ ID NOS:1-3, in computer readable form, and a paper copy of the sequence information which has been printed from the floppy disk.

The information contained in the computer readable disk was prepared through the use of the software program "PatentIn" and is identical to that of the paper copy. This amendment contains no new matter.

Attached hereto is a marked-up version of the changes made to the Specification and Abstract by the current Amendment. The attached pages are captioned "VERSION WITH MARKINGS TO SHOW CHANGES MADE."

If the Examiner believes a telephone conference would expedite prosecution of this application, please telephone the undersigned at 415-576-0200.

Respectfully submitted,

Reg. No. 34,774

TOWNSEND and TOWNSEND and CREW LLP Two Embarcadero Center, 8th Floor

San Francisco, California 94111-3834

Tel: (415) 576-0200 Fax: (415) 576-0300

KLB:dmw

GISH et al.

Application No.: 09/930,020

Page 6

VERSION WITH MARKINGS TO SHOW CHANGES MADE

In the Specification:

Paragraph [45] beginning at line 23 of page 6 has been amended as follows:

[45] The extracellular domains of transmembrane proteins are diverse; however, conserved motifs are found repeatedly among various extracellular domains. Conserved structure and/or functions have been ascribed to different extracellular motifs. For example, cytokine receptors are characterized by a cluster of cysteines and a WSXWS (SEQ ID NO:3) (W= tryptophan, S= serine, X=any amino acid) motif. Immunoglobulin-like domains are highly conserved. Mucin-like domains may be involved in cell adhesion and leucine-rich repeats participate in protein-protein interactions.

GISH et al.

Application No.: 09/930,020

Page 7

Paragraph (TABLE 2) beginning at line 5 of page 96 has been amended as follows:

TABLE 2 CBF9 DNA and Protein Sequences

CBF9 DNA sequence (SEQ ID NO:1)

Gene name: ESTs
Unigene number: Hs.157601
Probeset Accession #: W07459
Nucleic Acid Accession #: AC005383

Coding Sequence: 328-2751 (underlined sequences correspond to start

and stop codons)

1	11	21	31	41	51	
	1	†	1			
	GCGGCTGCAC					60
	AGACCTGGGC					120
	GTTCCTCCGA					180
	GTCCCACGTG					240
	CGAGCCGCGC					300
	CCTTCCGTTA					360
	TTTCCAGAGT					420
	GGAAGATTTC					480
	TGTTAGATGG					540
	TCACAGTCTG					600
	TCAGTTCCAC					660
	AGGCAAGAAT					720
	AATACCTTCT					780
	TCATCGTCAC					840
	AAAGGGGTGT					900
GAGCTGCATG	CACTGGCCAG	CGAGCCTAGA	GGGCAGCACG	TGCTGTTGGC	TGAGCAGGTG	960
	CCAACGGCCT					1020
ACGCCAGACT	GCAGGGTCGA	GGCTCACCCC	TGTGAGCACA	GGACGCTGGA	GATGGTCCGG	1080
	GCAATGCCCC					1140
	CCTTCTACAG					1200
AGGACCACCT	GCCCAGGCCC	CTGTGACTCG	CAGCCCTGCC	AGAATGGAGG	CACATGTGTT	1260
CCAGAAGGAC	TGGACGGCTA	CCAGTGCCTC	TGCCCGCTGG	CCTTTGGAGG	GGAGGCTAAC	1320
TGTGCCCTGA	AGCTGAGCCT	GGAATGCAGG	GTCGACCTCC	TCTTCCTGCT	GGACAGCTCT	1380
GCGGGCACCA	CTCTGGACGG	CTTCCTGCGG	GCCAAAGTCT	TCGTGAAGCG	GTTTGTGCGG	1440
GCCGTGCTGA	GCGAGGACTC	TCGGGCCCGA	GTGGGTGTGG	CCACATACAG	CAGGGAGCTG	1500
CTGGTGGCGG	TGCCTGTGGG	GGAGTACCAG	GATGTGCCTG	ACCTGGTCTG	GAGCCTCGAT	1560
GGCATTCCCT	TCCGTGGTGG	CCCCACCCTG	ACGGGCAGTG	CCTTGCGGCA	GGCGGCAGAG	1620
CGTGGCTTCG	GGAGCGCCAC	CAGGACAGGC	CAGGACCGGC	CACGTAGAGT	GGTGGTTTTG	1680
CTCACTGAGT	CACACTCCGA	GGATGAGGTT	GCGGGCCCAG	CGCGTCACGC	AAGGGCGCGA	1740
GAGCTGCTCC	TGCTGGGTGT	AGGCAGTGAG	GCCGTGCGGG	CAGAGCTGGA	GGAGATCACA	1800
GGCAGCCCAA	AGCATGTGAT	GGTCTACTCG	GATCCTCAGG	ATCTGTTCAA	CCAAATCCCT	1860
GAGCTGCAGG	GGAAGCTGTG	CAGCCGGCAG	CGGCCAGGGT	GCCGGACACA	AGCCCTGGAC	1920
CTCGTCTTCA	TGTTGGACAC	CTCTGCCTCA	GTAGGGCCCG	AGAATTTTGC	TCAGATGCAG	1980
	GAAGCTGTGC					2040
CTGGTGGTGT	ATGGCAGCCA	GGTGCAGACT	GCCTTCGGGC	TGGACACCAA	ACCCACCCGG	2100
GCTGCGATGC	TGCGGGCCAT	TAGCCAGGCC	CCCTACCTAG	GTGGGGTGGG	CTCAGCCGGC	2160
ACCGCCCTGC	TGCACATCTA	TGACAAAGTG	ATGACCGTCC	AGAGGGGTGC	CCGGCCTGGT	2220

PATENT

GISH et al.

Application No.: 09/930,020

Page 8

GTCCCCAAAG CTGTGGTGG	GCTCACAGGC	GGGAGAGGCG	CAGAGGATGC	AGCCGTTCCT	2280
GCCCAGAAGC TGAGGAACA	A TGGCATCTCT	GTCTTGGTCG	TGGGCGTGGG	GCCTGTCCTA	2340
AGTGAGGGTC TGCGGAGGC	TGCAGGTCCC	CGGGATTCCC	TGATCCACGT	GGCAGCTTAC	2400
GCCGACCTGC GGTACCACC	GGACGTGCTC	ATTGAGTGGC	TGTGTGGAGA	AGCCAAGCAG	2460
CCAGTCAACC TCTGCAAACC	CAGCCCGTGC	ATGAATGAGG	GCAGCTGCGT	CCTGCAGAAT	2520
GGGAGCTACC GCTGCAAGT	TCGGGATGGC	TGGGAGGGCC	CCCACTGCGA	GAACCGTGAG	2580
TGGAGCTCTT GCTCTGTAT	TGTGAGCCAG	GGATGGATTC	TTGAGACGCC	CCTGAGGCAC	2640
ATGGCTCCCG TGCAGGAGG	G CAGCAGCCGT	ACCCCTCCCA	GCAACTACAG	AGAAGGCCTG	2700
GGCACTGAAA TGGTGCCTA	CTTCTGGAAT	GTCTGTGCCC	CAGGTCCT <u>TA</u>	<u>G</u> AATGTCTGC	2760
TTCCCGCCGT GGCCAGGAC	CACTATTCTCA	CTGAGGGAGG	AGGATGTCCC	AACTGCAGCC	2820
ATGCTGCTTA GAGACAAGA	AGCAGCTGAT	GTCACCCACA	AACGATGTTG	TTGAAAAGTT	2880
TTGATGTGTA AGTAAATAC	CACTTTCTGT	ACCTGCTGTG	CCTTGTTGAG	GCTATGTCAT	2940
CTGCCACCTT TCCCTTGAG	ATAAACAAGG	GGTCCTGAAG	ACTTAAATTT	AGCGGCCTGA	3000
CGTTCCTTTG CACACAATC	A ATGCTCGCCA	GAATGTTGTT	GACACAGTAA	TGCCCAGCAG	3060
AGGCCTTTAC TAGAGCATC	TTTGGACGGC	GAAGGCCACG	GCCTTTCAAG	ATGGAAAGCA	3120
GCAGCTTTTC CACTTCCCC	A GAGACATTCT	GGATGCATTT	GCATTGAGTC	TGAAAGGGGG	3180
CTTGAGGGAC GTTTGTGAC	TCTTGGCGAC	TGCCTTTTGT	GTGTGGAAGA	GACTTGGAAA	3240
GGTCTCAGAC TGAATGTGAG	CAATTAACCA	GCTTGGTTGA	TGATGGGGGA	GGGGCTGAGT	3300
TGTGCATGGG CCCAGGTCT	GAGGGCCACG	TAAAATCGTT	CTGAGTCGTG	AGCAGTGTCC	3360
ACCTTGAAGG TCTTC					

CBF9 Protein sequence (SEQ ID NO:2)

Protein Accession #: none found

Gene name:

ESTs

Unigene number:

Hs.157601

Signal sequence: 1-17 Transmembrane domains:

none found

VGW domains:

49-223; 341-518; 529-706

EGF domains:

298-333; 715-748

Cellular Localization:

plasma membrane

1	11	21	31	41	51	
1	1	1 .	1	1	1	
MPPFLLLEAV	CVFLFSRVPP	SLPLQEVHVS	KETIGKISAA	SKMMWCSAAV	DIMFLLDGSN	60
SVGKGSFERS	KHFAITVCDG	LDISPERVRV	GAFQFSSTPH	LEFPLDSFST	QQEVKARIKR	120
MVFKGGRTET	ELALKYLLHR	GLPGGRNASV	PQILIIVTDG	KSQGDVALPS	KQLKERGVTV	180
FAVGVRFPRW	EELHALASEP	RGQHVLLAEQ	VEDATNGLFS	TLSSSAICSS	ATPDCRVEAH	240
PCEHRTLEMV	REFAGNAPCW	RGSRRTLAVL	AAHCPFYSWK	RVFLTHPATC	YRTTCPGPCD	300
SQPCQNGGTC	VPEGLDGYQC	LCPLAFGGEA	NCALKLSLEC	RVDLLFLLDS	SAGTTLDGFL	360
RAKVFVKRFV	RAVLSEDSRA	RVGVATYSRE	LLVAVPVGEY	QDVPDLVWSL	DGIPFRGGPT	420
LTGSALRQAA	ERGFGSATRT	GQDRPRRVVV	LLTESHSEDE	VAGPARHARA	RELLLLGVGS	480
EAVRAELEEI	TGSPKHVMVY	SDPQDLFNQI	PELQGKLCSR	QRPGCRTQAL	DLVFMLDTSA	540
SVGPENFAQM	QSFVRSCALQ	FEVNPDVTQV	GLVVYGSQVQ	TAFGLDTKPT	RAAMLRAISQ	600
APYLGGVGSA	GTALLHIYDK	VMTVQRGARP	GVPKAVVVLT	GGRGAEDAAV	PAQKLRNNGI	660
SVLVVGVGPV	LSEGLRRLAG	PRDSLIHVAA	YADLRYHQDV	LIEWLCGEAK	QPVNLCKPSP	720
CMNEGSCVLQ	NGSYRCKCRD	GWEGPHCENR	EWSSCSVCVS	QGWILETPLR	HMAPVQEGSS	780
RTPPSNYREG	LGTEMVPTFW	NVCAPGP				