Analysis of Neural Networks Internal Representations During Transfer Learning

Gritsaev Timofei Grigorievich under Ildus Sadrtdinov supervision

Faculty of Computer Science

SNAPSHOT ENSEMBLES (SSE): TRAIN 1, GET M FOR FREE

"To Stay or Not to Stay in the Pre-train Basin: Insights on Ensembling in Transfer Learning"

More local vs Semi-local

Faculty of Computer Science

Methodology

- ResNet50
- CIFAR-100
- Following the protocol from
 "To Stay or Not to Stay in the Pre-train Basin: Insights on Ensembling in Transfer Learning"

Analysis of Neural Networks Internal

Representations During Transfer

Learning

Faculty of Computer Science

Average accuracy, diversity, ensemble accuracy

Algorithm		worst 5%	best 5%
	avg.acc.	85.91±0.04	85.95±0.05
StarSSE	div.	67.11 ± 0.78	$67.44{\scriptstyle\pm0.6}$
	ens. acc.	87.24 ± 0.03	87.62±0.03

SSE regularization motivation

Faculty of Computer Science

Regularized SSE results

Learning

Algorithm	avg. acc.	div.	ens. acc.	
SSE	85.52 ± 0.34	$71.57{\scriptstyle\pm5.94}$	87.11±0.06	
StarSSE	$85.88{\scriptstyle\pm0.25}$	$68.12{\scriptstyle\pm1.15}$	87.41 ±0.12	
SSE-RTD	85.71 ± 0.07	68.04 ± 5.78	87.36±0.09	
SSE-MSE	85.81 ± 0.221	$67.62{\scriptstyle\pm5.95}$	$87.37{\scriptstyle\pm0.02}$	

Analysis of StarSSE internal representations

Learning

Analysis of Neural Networks Internal

Representations During Transfer

Pairwise diversity

Faculty of Computer Science

Random ensemble

Applied Mathematics & Computer Science 2024

	I	II	III	IV	V
Ι	0.0	73.26	70.83	69.58	70.76
\mathbf{II}	73.26	0.0	70.93	72.06	74.49
III	70.83	70.93	0.0	71.07	71.14
IV	69.58	72.06	71.07	0.0	71.57
\mathbf{V}	70.76	73.26 0.0 70.93 72.06 74.49	71.14	71.57	0.0

StarSSE—WO

Analysis of Neural Networks Internal

Representations During Transfer

Learning

Analysis of Neural Networks Internal

Representations During Transfer

Learning

StarSSE—CE

The modifications of StarSSE results

Algorithm	avg. acc.	div.	ens. acc.
SSE	85.52 ± 0.34	$71.57{\scriptstyle\pm5.94}$	87.11±0.06
StarSSE	85.88 ± 0.25	$68.12{\scriptstyle\pm1.15}$	87.41 ±0.12
StarSSE-WO	85.83 ± 0.24	$67.31{\scriptstyle\pm1.77}$	87.4 ± 0.16
StarSSE-CE (2)	85.4 ± 0.49	$75.21{\scriptstyle\pm3.79}$	87.44 ± 0.2

StarSSE with Parameter efficient Fine-tuning (PeFt)

Learning

Analysis of Neural Networks Internal

Representations During Transfer

ResNet50 Model Architecture Padding Block **Block** Block **Batch Norm Conv Block** Input Output Flattening Block Block Max Pool Block Block **Avg Pool** CONV ReLu Conv Conv \Box Zero Stage 1 Stage 2 Stage 3 Stage 5 Stage 4

StarSSE with PeFt results

Faculty of Computer Science

Algorithm	avg. acc.	div.	ens. acc.
StarSSE	85.88 ± 0.25	$68.12{\scriptstyle\pm1.15}$	87.41 ±0.12
StarSSE (1) x0.74 time		$71.37{\scriptstyle\pm2.02}$	87.26±0.06
StarSSE (2) x0.6 time	85.94 ± 0.225	60.94 ± 1.25	87.1 ± 0.14
StarSSE (3) x0.55 time	86.01 ± 0.195	17.38 ± 1.02	$86.09{\scriptstyle\pm0.22}$

Applied Mathematics & Computer Science 2024

Conclusion

- Individual quality and diversity are the key
- Increasing StarSSE individual quality reduces ensemble performance
- Increasing StarSSE diversity corrupts individual models, but it is possible

Analysis of Neural Networks Internal

Representations During Transfer

Learning

• StarSSE is the best algorithm, gives the best diversity with insignificant individual quality decrease