# Lecture 24

# **Multiple Testing**

STAT 8010 Statistical Methods I October 18, 2019 CLEMS N

Whitney Huang Clemson University

## Why Multiple Testing?

• Recall the overall F-test in (one-way) ANOVA

 $H_0: \mu_1 = \mu_2 = \cdots = \mu_J$  $H_a:$  at least a pair  $\mu$ 's differ

• If we reject  $H_0$  in the overall F-test, then we need to perform multiple  $\binom{J}{2} = \frac{J \times (J-1)}{2}$  pairwise t-tests:

$$\begin{split} & H_0: \mu_1 = \mu_2 \text{ vs. } H_a: \mu_1 \neq \mu_2 \\ & H_0: \mu_1 = \mu_3 \text{ vs. } H_a: \mu_1 \neq \mu_3 \\ & \vdots \\ & H_0: \mu_{J-1} = \mu_J \text{ vs. } H_a: \mu_{J-1} \neq \mu_J \end{split}$$

 In this lecture we will learn how to conduct multiple testing while controlling the family-wise type I error



\_\_\_

Notes

Notes

...

#### Review: Type I and II Errors

| True State             | Decision              |                      |  |  |
|------------------------|-----------------------|----------------------|--|--|
| Tue State              | Reject H <sub>0</sub> | Fail to reject $H_0$ |  |  |
| H <sub>0</sub> is true | Type I error          | Correct              |  |  |
| H₀ is false            | Correct               | Type II error        |  |  |

Errors in a single hypothesis test:

- ullet The probability of a type I error is denoted by  $\alpha$
- $\bullet$  The probability of a type II error is denoted by  $\beta$

In multiple testing, we have an  $\alpha$  chance of making a type I error **on each test**. However we would like to control the family-wise type I error rate

|   | Multiple Testing |  |   |   |    |    |   |   |   |
|---|------------------|--|---|---|----|----|---|---|---|
| ( |                  |  | Ē | λ | 43 | St | ď | 1 | V |
| U | N                |  | ٧ | ε | R  | S  |   | T | Y |

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

#### Family-Wise Error Rate (FWER)

Family-Wise Error Rate (FWER)  $\bar{\alpha}$ : the probability of making 1 or more type I errors in a set of hypothesis tests

For m independent tests, each with individual type I error rate  $\alpha$ , then we have

$$\bar{\alpha} = 1 - (1 - \alpha)^m$$

Suppose we are comparing 3 treatment groups (i.e. J=3) and if we reject  $H_0: \mu_1=\mu_2=\mu_3$ , then we need to perform  $\binom{3}{2}=3$  hypotheses tests (m=3). Then we will have

$$\bar{\alpha} = 1 - (1 - 0.05)^3 = 0.1426$$

if we use  $\alpha = \text{0.05}$  for each test



| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

#### FWERs for m Independent Tests Each at $\alpha$ Level

|    |       | $\alpha$ |       |
|----|-------|----------|-------|
| m  | 0.1   | 0.05     | 0.01  |
| 1  | 0.100 | 0.050    | 0.010 |
| 3  | 0.271 | 0.143    | 0.030 |
| 6  | 0.469 | 0.265    | 0.059 |
| 10 | 0.651 | 0.401    | 0.096 |
| 15 | 0.794 | 0.537    | 0.140 |
| 21 | 0.891 | 0.659    | 0 190 |

 $\bar{\alpha}$  increases fairly quickly with J, the number of treatment groups



Notes

24.5

### The Bonferroni Correction

If we would like to control the FWER to be  $\alpha$ , then we adjust the significant level for each of the m tests to be  $\frac{\alpha}{m}$ 

$$\textit{FWER} = \mathbb{P}(\cup_{i=1}^{m} p_i \leq \frac{\alpha}{m}) \leq \sum_{i=1}^{m} \mathbb{P}(p_i \leq \frac{\alpha}{m}) = m\frac{\alpha}{m} = \alpha$$

For example, if we have 4 treatment groups (m=6), then we will need to set the significant level for each individual pairwise t-test, to be  $\frac{0.05}{6}=0.0083$  to ensure that FWER is less than 0.05



Notes

#### The Bonferroni Correction Cont'd

Me and the significant boys



Me and the significant boys a **Bonferroni** correction





| fter |      |  |  |
|------|------|--|--|
|      |      |  |  |
|      |      |  |  |
|      |      |  |  |
|      |      |  |  |
|      | 24.7 |  |  |

Notes

# Example

A researcher who studies sleep is interested in the effects of ethanol on sleep time. She gets a sample of 20 rats and gives each an injection having a particular concentration of ethanol per body weight. There are 4 treatment groups, with 5 rats per treatment. She records Rapid eye movement (REM) sleep time for each rat over a 24-period.

| Treatment | Control | 1g/kg | 2g/kg | 4g/kg |
|-----------|---------|-------|-------|-------|
| Mean      | 82.2    | 81.0  | 73.8  | 65.7  |
| Std       | 9.6     | 5.3   | 9.4   | 7.9   |

Recall in last lecture we reject  $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$ 



| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

### **Example: Multiple Testing**



| P-value    | $\mu_1, \mu_2$ | $\mu_1, \mu_3$ | $\mu_1, \mu_4$ | $\mu_2, \mu_3$ | $\mu_2, \mu_4$ | $\mu_3, \mu_4$ |
|------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Pooled     | 0.816          | 0.202          | 0.018          | 0.175          | 0.007          | 0.179          |
| Non-pooled | 0.818          | 0.202          | 0.019          | 0.185          | 0.009          | 0.180          |



CLEMS#N

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |