Package 'mlspatial'

August 26, 2025

Title Machine Learning and Mapping for Spatial Epidemiology

Version 0.1.0

Description

Provides tools for the integration, visualisation, and modelling of spatial epidemiological data using the method described in Azeez, A., & Noel, C. (2025). 'Predictive Modelling and Spatial Distribution of Pancreatic Cancer in Africa Using Machine Learning-Based Spatial Model' <doi:10.5281/zenodo.16529986> and <doi:10.5281/zenodo.16529016>. It facilitates the analysis of geographic health data by combining modern spatial mapping tools with advanced machine learning (ML) algorithms. 'mlspatial' enables users to import and preprocess shapefile and associated demographic or disease incidence data, generate richly annotated thematic maps, and apply predictive models, including Random Forest, 'XGBoost', and Support Vector Regression, to identify spatial patterns and risk factors. It is suited for spatial epidemiologists, public health researchers, and GIS analysts aiming to uncover hidden geographic patterns in health-related outcomes and inform evidence-based interventions.

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, tidyr, kernlab, writexl, testthat (>= 3.0.0)

VignetteBuilder knitr

Depends R (>= 4.1)

Imports sf, readxl, dplyr, ggplot2, randomForest, xgboost, e1071, caret, tmap, spdep, ggpubr, stats, methods

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Config/testthat/edition 3

NeedsCompilation no

Author Adeboye Azeez [aut, cre], Colin Noel [aut]

Maintainer Adeboye Azeez <azizadeboye@gmail.com>

Repository CRAN

Date/Publication 2025-08-26 19:40:02 UTC

2 africa_shp

Contents

Index		15
	train_xgb	14
	train_svr	
	train_rf	12
	plot_single_map	1.
	plot_obs_vs_pred	1
	plot_map_grid	10
	panc_prevalence	Ģ
	panc_incidence	8
	pancre_mort	- 7
	model_evaluation_examples	(
	load_shapefile	(
	load_incidence_data	4
	join_data	4
	global_variables_eval	4
	eval_model	2
	compute_spatial_autocorr	3
	africa_shps	3
	africa_shp	- 2

africa_shp

Africa shapefile data

Description

A dataset containing spatial polygons of Africa.

Usage

africa_shp

Format

An sf object with spatial features.

Source

Your data source

africa_shps 3

africa_shps

Africa shapefile data 2

Description

A dataset containing spatial polygons of Africa.

Usage

```
africa_shps
```

Format

An sf object with spatial features.

Source

Your data source

```
compute_spatial_autocorr
```

Compute Moran's I & LISA, classify clusters

Description

Computes global and local Moran's I to assess spatial autocorrelation and classifies observations into spatial cluster types (e.g., High-High).

Usage

```
compute_spatial_autocorr(sf_data, values, signif = 0.05)
```

Arguments

sf_data	An sf object containing spatial features.
values	A numeric vector or column name with the variable to test.
signif	Numeric significance level threshold for clusters (default 0.05).

Value

A named list with elements:

- data: An sf object with added columns for standardized values, spatial lag, local Moran's I values, z-scores, p-values, and cluster classification.
- moran: An object of class htest with global Moran's I test results.

4 eval_model

Examples

```
library(sf)
library(spdep)
library(dplyr)

#Load and prepare spatial data
mapdata <- st_read(system.file("shape/nc.shp", package="sf"), quiet = TRUE)
mapdata <- st_make_valid(mapdata)

#Variable to analyze
values <- rnorm(nrow(mapdata))

#Run function
result <- compute_spatial_autocorr(mapdata, values, signif = 0.05)

#Inspect results
head(result$data)
result$moran</pre>
```

eval_model

Get RMSE/MAE/R² metrics on training data

Description

Evaluate Model Performance by calculating RMSE, MAE, and R² metrics.

Usage

```
eval_model(model, data, formula, model_type = c("rf", "xgb", "svr"))
```

Arguments

model A trained model
data A data frame
formula A formula object

model_type Character string: one of "rf", "xgb", or "svr"

Value

A numeric value representing the model's accuracy

global_variables_eval 5

global_variables_eval Declare known global variables to suppress R CMD check NOTE
Global variables used in evaluation functions

Description

This is to suppress R CMD check notes about undefined global variables.

join_data

Join spatial and incidence datasets

Description

Join spatial and incidence datasets

Usage

```
join_data(sf_data, tbl_data, by)
```

Arguments

sf_data sf object

tbl_data tibble of incidence by Column name to join on

Value

sf object with joined attributes

Description

Load incidence data from Excel

Usage

load_incidence_data(xlsx_path)

Arguments

xlsx_path Path to Excel file

Value

tibble of data

load_shapefile

Load shapefile as sf + *optionally convert to sp*

Description

Load shapefile as sf + optionally convert to sp

Usage

```
load_shapefile(shp_path, to_sp = FALSE)
```

Arguments

shp_path Path to shapefile (.shp)

to_sp logical: also return Spatial object?

Value

list with sf and optionally sp object

```
model_evaluation_examples
```

Examples for model evaluation functions

Description

Examples for model evaluation functions

```
library(randomForest)
library(caret)
data(panc_incidence)
mapdata <- join_data(africa_shp, panc_incidence, by = "NAME")
rf_model <- randomForest(incidence ~ female + male + agea + ageb + agec + fagea + fageb + fagec +
magea + mageb + magec + yrb + yrc + yrd + yre, data = mapdata, ntree = 500,
importance = TRUE)

rf_preds <- predict(rf_model, newdata = mapdata)
rf_metrics <- postResample(pred = rf_preds, obs = mapdata$incidence)
print(rf_metrics)</pre>
```

pancre_mort 7

pancre_mort

Pancreatic Cancer Mortality Data

Description

This dataset contains pancreatic cancer incidence rates across African countries.

Usage

data(pancre_mort)

Format

A data frame with the following variables:

NAME Character. Name of the country.

mortality Numeric. Mortality rate per 100,000 population.

female Numeric. Female pancreatic cancer patients.

male Numeric. Male pancreatic cancer patients.

ageb Numeric. Patients age between 20-54 years.

agec Numeric. Patients age above 55 years.

agea Numeric. Patients age below 20 years.

fageb Numeric. Female patients age between 20-54 years.

fagec Numeric. Female patients age above 55 years.

fagea Numeric. Female patients age below 20 years.

mageb Numeric. Male patients age between 20-54 years.

magec Numeric. Male patients age above 55 years.

magea Numeric. Male patients age below 20 years.

yra Numeric. Incidence rate in year 2017.

yrb Numeric. Incidence rate in year 2018.

yrc Numeric. Incidence rate in year 2019.

yrd Numeric. Incidence rate in year 2020.

yre Numeric. Incidence rate in year 2021.

Source

Global Burden of Disease (GBD) 2021 estimates, https://vizhub.healthdata.org/gbd-results/

8 panc_incidence

panc_incidence

Pancreatic Cancer Incidence Data

Description

This dataset contains pancreatic cancer incidence rates across African countries.

Usage

```
data(panc_incidence)
```

Format

A data frame with the following variables:

NAME Character. Name of the country.

incidence Double. Incidence rate per 100,000 population.

female Double. Female pancreatic cancer patients.

male Double. Male pancreatic cancer patients.

ageb Double. Patients age between 20-54 years.

agec Double. Patients age above 55 years.

agea Double. Patients age below 20 years.

fageb Double. Female patients age between 20-54 years.

fagec Double. Female patients age above 55 years.

fagea Double. Female patients age below 20 years.

mageb Double. Male patients age between 20-54 years.

magec Double. Male patients age above 55 years.

magea Double. Male patients age below 20 years.

yra Double. Incidence rate in year 2017.

yrb Double. Incidence rate in year 2018.

yrc Double. Incidence rate in year 2019.

yrd Double. Incidence rate in year 2020.

yre Double. Incidence rate in year 2021.

Source

Global Burden of Disease (GBD) 2021 estimates, Seattle, United States https://vizhub.healthdata.org/gbd-results/

panc_prevalence 9

panc_prevalence

Pancreatic Cancer Prevalence Data

Description

This dataset contains pancreatic cancer incidence rates across African countries.

Usage

```
data(panc_prevalence)
```

Format

A data frame with the following variables:

NAME Character. Name of the country.

prevalence Numeric. Prevalence rate per 100,000 population.

female Numeric. Female pancreatic cancer patients.

male Numeric. Male pancreatic cancer patients.

ageb Numeric. Patients age between 20-54 years.

agec Numeric. Patients age above 55 years.

agea Numeric. Patients age below 20 years.

fageb Numeric. Female patients age between 20-54 years.

fagec Numeric. Female patients age above 55 years.

fagea Numeric. Female patients age below 20 years.

mageb Numeric. Male patients age between 20-54 years.

magec Numeric. Male patients age above 55 years.

magea Numeric. Male patients age below 20 years.

yra Numeric. Incidence rate in year 2017.

yrb Numeric. Incidence rate in year 2018.

yrc Numeric. Incidence rate in year 2019.

yrd Numeric. Incidence rate in year 2020.

yre Numeric. Incidence rate in year 2021.

Source

Global Burden of Disease (GBD) 2021 estimates, Seattle, United States https://vizhub.healthdata.org/gbd-results/

10 plot_map_grid

plot_map_grid

Arrange Multiple tmap Plots in a Grid

Description

Arrange a list of tmap objects into a grid layout.

Usage

```
plot_map_grid(maps, ncol = 2)
```

Arguments

maps A list of tmap objects.

ncol Number of columns in the grid (default is 2).

Value

A tmap object representing arranged maps.

```
library(sf)
library(tmap)

# Load sample spatial data
nc <- st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE)

# Add mock variables to map
nc$var1 <- runif(nrow(nc), 0, 100)
nc$var2 <- runif(nrow(nc), 10, 200)

# Create individual maps
map1 <- tm_shape(nc) + tm_fill("var1", title = "Variable 1")
map2 <- tm_shape(nc) + tm_fill("var2", title = "Variable 2")

# Arrange the maps in a grid using your function
plot_map_grid(list(map1, map2), ncol = 2)</pre>
```

plot_obs_vs_pred 11

plot_obs_vs_pred	Plot observed vs predicted values with correlation

Description

Creates a scatterplot of observed vs predicted values, with a 1:1 reference line and Pearson's R².

Usage

```
plot_obs_vs_pred(observed, predicted, title = "")
```

Arguments

observed Numeric vector of observed values.

predicted Numeric vector of predicted values.

title String for the plot title (default: "").

Value

No return value; called for side effect of displaying a plot.

Examples

```
observed <- c(10, 20, 30, 40)
predicted <- c(12, 18, 33, 39)
plot_obs_vs_pred(observed, predicted, title = "Observed vs Predicted")</pre>
```

plot_single_map

Build a tmap for a single variable

Description

Creates a thematic map using the tmap package for a single variable in an sf object.

Usage

```
plot_single_map(sf_data, var, title, palette = "reds")
```

Arguments

sf_data	An sf object containing spatial data.
var	Variable name as a string to map.
title	Legend title for the fill legend.

palette Color palette for the map (default is "reds").

12 train_rf

Value

A tmap object representing the thematic map.

Examples

```
library(sf)
# Create example sf object
nc <- st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE)
nc$incidence <- runif(nrow(nc), 0, 100)
# Plot
p1 <- plot_single_map(nc, "incidence", "Incidence")</pre>
```

train_rf

Train Random Forest model

Description

Trains a Random Forest regression model.

Usage

```
train_rf(data, formula, ntree = 500, seed = 123)
```

Arguments

A data frame containing the training data.

formula A formula describing the model structure.

ntree Number of trees to grow (default 500).

seed Random seed for reproducibility (default 123).

Value

A trained randomForest model object.

```
library(randomForest)
data(mtcars)
rf_model <- train_rf(mtcars, mpg ~ cyl + hp + wt, ntree = 100)
print(rf_model)</pre>
```

train_svr 13

train_svr

Train Support Vector Regression (SVR) model

Description

Train Support

Usage

```
train_svr(data, formula)
```

Arguments

data A data frame containing the training data.

formula A formula specifying the model.

Details

Trains an SVR model using the radial kernel.

Value

A trained svm model object from the e1071 package.

```
# Load required package
library(e1071)

# Use built-in dataset
data(mtcars)

# Define regression formula
svr_formula <- mpg ~ cyl + disp + hp + wt

# Train SVR model
svr_model <- train_svr(data = mtcars, formula = svr_formula)

# Print model summary
print(svr_model)

# Predict on the same data (for illustration)
preds <- predict(svr_model, newdata = mtcars)
head(preds)</pre>
```

14 train_xgb

rai		

Train XGBoost model

Description

Train XGBoost model

Usage

```
train_xgb(data, formula, nrounds = 100, max_depth = 4, eta = 0.1)
```

Arguments

data A data frame with the training data.

formula A formula defining the model structure.

nrounds Number of boosting iterations.

max_depth Maximum tree depth.

eta Learning rate.

Details

Trains an XGBoost regression model.

Value

A trained xgboost model object.

```
# Load required package
library(xgboost)

# Use built-in dataset
data(mtcars)

# Define regression formula
xgb_formula <- mpg ~ cyl + disp + hp + wt

# Train XGBoost model
xgb_model <- train_xgb(data = mtcars, formula = xgb_formula, nrounds = 50)

# Print model summary
print(xgb_model)</pre>
```

Index

```
* datasets
    africa_shp, 2
    africa\_shps, 3
    panc_incidence, 8
    panc_prevalence, 9
    pancre_mort, 7
africa_shp, 2
africa_shps, 3
compute_spatial_autocorr, 3
eval_model, 4
{\tt global\_variables\_eval}, {\tt 5}
join_data, 5
load_incidence_data, 5
load_shapefile, 6
\verb|model_evaluation_examples|, 6
panc_incidence, 8
\verb"panc_prevalence", 9
pancre_mort, 7
{\tt plot\_map\_grid}, \, \underline{10}
plot_obs_vs_pred, 11
plot_single_map, 11
train_rf, 12
train_svr, 13
train\_xgb, 14
```