Bitcoin Energy Use

An alternative approach estimate

by Steven Black October 2023

Introduction

Bitcoin mining uses a Proof-of-Work (POW) consensus mechanism. This is controversial because that requires a lot of electrical energy. We see claims the Bitcoin network "uses as much electricity as a small country", or "requires as much electricity as Belgium, or Chile."

This study tests that notion by using the following economic test: **presuming Bitcoin mining is marginally profitable**, **how much energy can be used compared to mining block rewards and fees?**

Bitcoin price, block rewards, and fees

This paper uses Canadian dollars, partly because that's my fiat currency, and because Canada publishes particularly good statistics about electricity generation and costs.

Bitcoin Price

For the purpose of discussion, what is the current price of Bitcoin in Canadian dollars?

Bitcoin Block Rewards

Bitcoin miners are compensated with the block reward for blocks they successfully mine, plus all the transaction fees in that block. In the current epoch (2020 - 2024) the block reward is 61/4 BTC.

```
In[536]:=
       blockreward = Quantity[6.25, "BTC"]
Out[536]=
        B6.25
       ASSUMPTION: the average of transaction fees per block is 0.08 BTC.
In[537]:=
       blockfees = Quantity[0.08, "BTC"]
Out[537]=
        B0.08
       Therefore, the total Bitcoin paid to miners for an average block.
In[538]:=
       blockRewardPlusFees = (blockreward + blockfees)
Out[538]=
        B6.33
```

Block Rate

Bitcoin blocks land every 10-minutes, give or take. That's 6-blocks per hour.

```
In[557]:=
       blockRewardPlusFeesPerHour = blockRewardPlusFees * Quantity[6, "per hour"]
Out[557]=
```

₿37.98 per hour

Hourly Economics

Global Revenue Per Hour

The value, in Canadian Dollars, of all Bitcoin mined globally, per hour.

```
In[540]:=
      blockCADperHour = CurrencyConvert blockRewardPlusFeesPerHour, C$1.00
         Quantity[1, "Hours"] // IntegerPart
Out[540]=
```

C\$1456345 per hour

Electricity Cost, Per Hour

See: https://www.hydroquebec.com/business/customer-space/rates/comparison-electricityprices.html

The figures below show a comparison of electricity average prices for four consumption levels in major Nort American cities.

Average prices for electricity (¢/kWh)

Consumption: 10,000 kWh/month

Power demand: 40 kW

Let's presume that nobody in their right mind would want to mine Bitcoin in New York or Boston.

Business Cost Assumption

Let's presume 85% of revenue is available to pay electricity cost.

In[542]:= availableForElectricity = 0.85 Out[542]= 0.85

Energy Economically Sustainable

```
In[543]:=
                    blockCADperHour * availableForElectricity // UnitSimplify
       btcPower =
                                electricityInputCost
Out[543]=
        (1.03 \pm 0.17) \times 10^7 \text{ kW}
```

Cognitively we can say, Bitcoin's power consumption is in the order of 10 GW.

```
AnnualEnergyConsumption = UnitConvert[
btcPower * Quantity[365 * 24, "Hours"], "Hours Terawatts"] // IntegerPart

90 h TW
```

Comparisons

Let's compare the energy that can be economically used by the Bitcoin network with various things.

Robert-Bourassa generating station — a.k.a. "LG-2"

```
See https://en.wikipedia.org/wiki/Robert-Bourassa_generating_station
```

```
RobertBourassaDam = 5616 MW // UnitSimplify // N

Out[545]=

5.616 GW

What is Bitcoin's global energy use in terms of LG-2?

In[546]:=
btcPower / RobertBourassaDam

Out[546]=
```

Province of Québec

 (1.84 ± 0.31)

In 2019 the Province of Québec produced 212.9 TWh of electricity.

What is Bitcoin's global energy use as a proportion of Québec's electricity production in 2019?

Alternate calculation:

```
In[550]:=
```

AnnualEnergyConsumption / Québec2019 // PercentForm

Out[550]//PercentForm=

42.27%

Province of Ontario

See https://www.cer-rec.gc.ca/en/data-analysis/energy-markets/provincial-territorial-energyprofiles/provincial-territorial-energy-profiles-ontario.html

In 2019, annual electricity consumption per capita in Ontario was 9.6 megawatt-hours (MWh).

In[551]:=

```
Ontario2019PerCapita = Quantity[9.6, "Hours" * "Megawatts" / "People"];
                                 Quantity[24 * 354, "Hours"]
Ontario2019PerCapita = UnitConvert[Ontario2019PerCapita, kW / people]
```

Out[552]=

1.12994 kW/person

In[553]:=

(btcPower / Ontario2019PerCapita) // IntegerPart

Out[553]=

9 155 403 people

United States

See https://www.worlddata.info/america/usa/energy-consumption.php

In[554]:=

```
USAPerCapita = Quantity[11.757, "Hours" * "Megawatts" / "People"];
                          Quantity[24 * 354, "Hours"]
USAPerCapita = UnitConvert[USAPerCapita, kW / people]
```

Out[555]=

1.38383 kW/person

In[556]:=

(btcPower / USAPerCapita) // IntegerPart

Out[556]=

7475705 people