Fundamentos de analítica 2: Modelos de pronósticos basados en series de tiempo.

Temas del día

- Introducción
- Modelo ARIMA
- Evaluación de pronósticos
- Consideraciones finales

Introducción a las series de tiempo

- Ya hemos visto como encontrar un pronóstico por medio de:
 - Media móvil
 - Suavización Exponencial
 - Simple
 - Holt
 - Holt-Winters
 - Tendencias + variables dummy estacionales
- Ahora veremos otra manera de explicar el comportamiento de una serie.

Modelos ARIMA

• Como lo habíamos mencionado.....

• En algunas ocasiones la historia puede afectar el valor presente y futuro de una serie ...

• Esta idea fue popularizada por Box-Jenquins a principios de los 70.

Modelos ARIMA

• Pero históricamente estos modelos no han sido ampliamente empleados en la empresas

Porque:

- 1. Dificultad en la identificación del modelo
- 2. El reto de explicar como se obtiene el modelo definitivo.

El primer problema se ha resuelto automatizando los cálculos El segundo es inherente al método

ARIMA Vs Suavización Exponencial

Similitudes

- son métodos de extrapolación
- Más peso a los datos recientes
- Prácticos al momento de generar pronósticos
- En algunos casos generan pronósticos similares

ARIMA Vs Suavización Exponencial

Diferencias

- Los modelos ARIMA se basan en autocorrelaciones
- Suavización Exponencial estima la tendencia
- ARIMA trata de eliminar la tendencia antes de modelar las autocorrelaciones

Estos modelos son construidos para procesos estacionarios Es decir:

- Con media constante
- Con varianza constante
- Autocovarianza no depende del tiempo

Pero la mayoría de las series empleadas en las empresas son no estacionarias porque:

Tienen tendencia o Cambios de niveles aleatorios

Por tanto las series son transformadas para convertirlas en estacionarias:

- Lo más común es sacar diferencias (quita la tendencia) Xt –Xt-1
- Calcular el logaritmo de la serie (Quita la varianza no constante)

Por tanto las series son transformadas para convertirlas en estacionarias:

- Lo más común es sacar diferencias (quita la tendencia) Xt –Xt-1
- Calcular el logaritmo de la serie (Quita la varianza no constante)

$$y_t = \delta + \sum_{i=1}^p \phi_i y_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i} + \varepsilon_{t-i}$$

Cuadro 8.1 Características de los procesos AR(p) y MA(q).

	1 (1/5 (1/	
AR(p)	MA(q)	
$\phi_p(L)y_t = \varepsilon_t$	$y_t = \theta_q(L) \varepsilon_t$	

Estacionariedad Todas las raíces de $\phi_p(z) = 0$ No existe restricción están por fuera del circulo unitario

ACF
$$\rho_s \to 0$$
 exponencialmente u $\rho_s \neq 0$ para $s \leq q$ oscilante $\rho_s = 0$ para $s > q$

PACF
$$rho_s^* \neq 0$$
 para $s \leq p$ $\rho_s^* \rightarrow 0$ exponencialmente u oscilante

Invertivilidad No existe restricción para Todas las raíces de $\theta_a(z) = 0$

Ahora podemos usar la fuerza bruta:

• criterio de Akaike (Hirotugu AKAIKE, 1981) (AIC, por su sigla en inglés):

$$AIC(p,q) = \ln(\hat{\sigma}^2) + \frac{2(p+q)}{T}$$

• criterio Bayesiano de Schwarz (Schwarz, 1978) (SBC, por su sigla en inglés):

$$SBC(p,q) = \ln(\hat{\sigma}^2) + \frac{\ln(T)2(p+q)}{T}$$

Pero nada garantiza que los errores cumplan los supuestos:

- No Autocorrelación
- No comportamiento GARCH o ARCH
- Normalidad?

En algunos casos las series no son estacionarias:

Podemos integrar (l(1))

Procesos ARIMA

- ARIMA =
- Modelo compuesto por
- AR = procesos Autoregresivos
- MA = Procesos de media móvil
- I = # de veces que se diferencia la serie para obtener un proceso estacionario

$$\Delta^d y_t = \delta + \sum_{i=1}^p \phi_i \Delta^d y_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i} + \varepsilon_t$$

Como comparar la capacidad de predicción de varios modelos:

Ventana Fija:

Ventana Recursiva:

Rolling window:

Metricas

■ *RMSE* (Raíz media cuadrada del error):

$$RMSE = \sqrt{\frac{1}{h} \sum_{t=T-H}^{T} (\hat{y}_t - y_t)^2}$$

■ *MAE* (error absoluto promedio):

$$MAE = \frac{1}{h} \sum_{t=T-H}^{T} |\hat{y}_t - y_t|$$

MAPE (error absoluto porcentual promedio):

$$MAPE = \frac{1}{h} \sum_{t=T-H}^{T} \frac{|\hat{y}_t - y_t|}{\hat{y}_t}$$

Consideraciones finales

Autocorrelación

- Box-Pierce Ljung-Box
- Prueba de rachas
- Gráficos ACF y PACF

Errores son ruido blanco

No comportamiento ARCH o GARCH (homoscedasticidad)

- Ljung-Box (residuales al cuadrado)
- Gráficos ACF y PACF (residuales al cuadrado)

Normalidad

- Jarque Bera y Shapiro-Wilk
- q-q plot

