The area of the planar region bounded by the curves $x = 6y^2 - 2$ and $x = 2y^2$ is

(a)
$$\frac{\sqrt{2}}{3}$$

(b)
$$\frac{2\sqrt{2}}{3}$$
 (d) $\sqrt{2}$

(a)
$$\frac{\sqrt{2}}{3}$$
 (c) $\frac{4\sqrt{2}}{3}$

(d)
$$\sqrt{2}$$

- 13

1) Asiea =
$$\begin{cases} 1/2 & 2y^2 \\ 1 & \\ 1/2$$

=
$$2\int (2-4y^2) dy$$

= $4\sqrt{2}$.

Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be a $f(x) = \int_{-5}^{x} (t-1)^3 dt$. In which

of the following intervals(s), f takes the value 1?

- (a) If $f(x) \le g(x)$ for all $x \in [0, 1]$, then sup $R(f) \le \inf R(g)$
- (b) If $f(x) \le g(x)$ for some $x \in [0, 1]$, then $\inf R(f) \le \sup R(g)$
- (c) If $f(x) \le g(y)$ for some $x, y \in [0, 1]$, then inf $R(f) \le \sup R(g)$
- (d) If $f(x) \le g(y)$ for all $x, y \in [0, 1]$, then sup $R(f) \le \inf R(g)$

2) Here
$$f(x) = \int_{-5}^{x} (t-1)^{3} dt$$

$$\Rightarrow$$
 $\frac{(x-1)^4}{4} - 324$

$$f(x) = 1$$

=) $(x-4)^4 = 1300$

; nut7,-5

Let *C* be the straight line segment from $P(0, \pi)$

to $Q\left(4,\frac{\pi}{2}\right)$, in the *xy*-plane. Then the value of

$$\int_C e^x (\cos y dx - \sin y dy) \text{ is } \underline{\qquad}$$

3) Let $I = \int e^{x} \left(\cos y \operatorname{d}x - \sin y \operatorname{d}y \right)$.

[where c is straight line segment from in x,y, plane].

P(0,x) to θ (4,x̄)

Now, $T = \int d(e^x \cos y) = \left[e^y \cos y\right]_{(0, \overline{x})}^{(4, \overline{x})}$

 $= e^{4} \cos Z - \cos(x)$

-)-(-1)= 1 Anomor.