PageRank

6030478021 นายเมวิน มาคารานัส

ภาควิชาวิศวกรรมคอมพิวเตอร์, คณะวิศวกรรมศาสตร์, จุฬาลงกรณ์มหาวิทยาลัย

PageRank หรือ PR อัลกอริทึมที่ใช้โดย Google Search เพื่อจัดอันดับเว็บเพจที่แสดงในผลลัพธ์ของการ ค้นหา โดยตั้งชื่อตาม Larry Page หนึ่งในผู้ก่อตั้ง Google และร่วมคิดค้นอัลกอริทึมนี้สมัยเรียนอยู่มหาวิทยาลัย สแตนฟอร์ด โดยมีสมมติฐานพื้นฐานคือเว็บไซต์ที่สำคัญมาก มักจะถูกโยงลิงก์มาจากเว็บอื่นมากตามกันไป ซึ่งนอกจากจะ เป็นอัลกอริทึมที่ใช้โดยเสิร์ชเอนจินชื่อดังอย่าง Google แล้ว มันยังเป็นอัลกอริทึมแรกที่ถูกใช้โดยบริษัทเอกชน และเป็นที่ รู้จักอย่างกว้างขวางมากที่สุดอีกด้วย โดยเพจแรงก์จะแสดง เป็นค่าตัวเลขบ่งบอกถึงความสำคัญของข้อมูลในกลุ่มของชุด ข้อมูลตัวเลขของเพจแรงก์ของกูเกิ้ลในปัจจุบัน จะมีค่า ระหว่าง 0 ถึง 10 ซึ่งถูกคำนวณค่าในลักษณะลอการิทึม เพื่อแสดงถึงความสำคัญของหน้านั้นบนตัวค้นหาของ Google

1. หลักการทำงาน

PageRank Algorithm ให้ผลลัพธ์ออกมาเป็นการแจก แจงความน่าจะเป็นที่แสดงถึงความเป็นไปได้ที่คนหนึ่งจะ คลิกลิงก์แบบสุ่มแล้วจะไปโผล่ที่หน้าใดหน้าหนึ่ง

จำลองค่าเว็บเพจสี่หน้า A B C และ D ค่าเริ่มต้นของ PageRank (PR) ในแต่ละหน้าจะมีค่าเท่ากันคือ 0.25 (เอา ความน่าจะเป็นทั้งหมดคือ 1 หารด้วยจำนวนเว็บทั้งหมดคือ 4 ได้หน้าละ 0.25 ในตอนเริ่มต้น) ถ้าหน้า B C และ D ลิงก์ ไปยังหน้า A จะเป็นการให้คะแนน 0.25 PR ต่อหน้า A ซึ่ง ค่า PR เขียนว่า PR() ในระบบจะกลายเป็น

PR(A) = PR(B) + PR(C) + PR(D) ซึ่งมีค่าเป็น 0.75

และถ้าหน้า B ยังคงลิงก์ไปยังหน้า C ขณะที่หน้า D ลิงก์ไป ยังทุกหน้า ทำให้คะแนนจากหน้า B ถูกแบ่งออกสำหรับ A และ C เหลือเพียง 0.125 ขณะที่คะแนนจาก D จะเหลือให้ แต่ละหน้าเป็นหนึ่งในสาม (ประมาณ 0.083)

$$PR(A) = (1-D) + D * (\frac{PR(B)}{2} + \frac{PR(C)}{1} + \frac{PR(D)}{3})$$

ซึ่งสามารถเขียนเป็นสมการได้ว่า เพจแรงก์ที่ให้คะแนนต่อ หน้าอื่นนับตามลิงก์ที่ชี้ไปยังหน้าอื่น L() มีค่าเท่ากับ คะแนนเพจแรงก์ของหน้านั้นหารด้วยจำนวนลิงก์ที่ชื้ออกไป

$$PR(A) = \frac{PR(B)}{L(B)} + \frac{PR(C)}{L(C)} + \frac{PR(D)}{L(D)}$$

และสมการในลักษณะทั่วไปสำหรับหน้าใดๆ คือ

$$PR(u) = \sum \frac{PR(v)}{L(v)}$$

รูปที่ 1 : ตัวอย่างเพจแรงก์สำหรับเครือข่ายอย่างง่าย โดย B มีค่าเพจแรงก์สูงสุดเพราะมีจำนวนหน้าที่ลิงก์เข้าหามากสุด และแม้ว่าจะมีหน้าที่ลิงก์มาหา E มากกว่า C แต่น้ำหนักของ หน้าที่ลิงค์มาหา C สูงกว่าจึงทำให้ C มีค่าเพจแรงก์สูงกว่า E

2. โปรแกรม

ในส่วนของโปรแกรมนั้น ตัวอย่างจะขอใช้ภาษา python ในการเขียน

```
import numpy as np
def pagerank(M, eps=1.0e-8, d=0.85):
   N = M.shape[1]
   v = np.random.rand(N, 1)
   v = v / np.linalg.norm(v, 1)
   last_v = np.ones((N, 1), dtype=np.float32) *
100
   while np.linalg.norm(v - last_v, 2) > eps:
      last v = v
      v = d * np.matmul(M, v) + (1 - d) / N
   return v
M = np.array([[0, 0, 0, 0, 1],
          [0.5, 0, 0, 0, 0],
          [0.5, 0, 0, 0, 0],
          [0, 1, 0.5, 0, 0].
          [0, 0, 0.5, 1, 0]])
v = pagerank(M, 0.001, 0.85)
```

รหัสที่ 1 ตัวอย่างฟังก์ชั่น PageRank ในภาษา python สำหรับหน้า 5 หน้า โดยใช้ numpy ฟังก์ชั่นเพจแรงก์จะรับค่าทั้งหมด 3 ตัวคือ

-เมทริกซ์ M ซึ่งเป็น adjacency matrix โดย M(I,j) แสดง ถึงลิงค์จาก j ไป I โดยที่ผลรวมของ I และ M(I,j) จะเท่ากับ 1 เสมอ

-eps quadratic error สำหรับ v โดยมีค่ามาตรฐานคือ 1.0e-8

-damping factor โดยมีค่ามาตรฐานคือ 0.85

โดยฟังก์ชั่นนี้จะคืนค่าเป็นเวกเตอร์ v ที่เก็บค่าเพจแรงก์ของ แต่ละหน้า ซึ่งจะมีค่าตั้งแต่ 0 ถึง 1

3. ประสิทธิภาพการทำงาน

มีการเดินแบบสุ่มที่ง่ายและเร็วสำหรับคำนวณค่า เพจแรงก์ของแต่ละปมในเครือข่าย โดยอัลกอริทึมแบบง่าย นั้นทำงาน $O(\log n/\epsilon)$ รอบพร้อมความน่าจะเป็นที่สูง สำหรับทุกกราฟ (ทั้งแบบ directed และ undirected) โดย n คือขนาดของเครือข่าย และ ϵ คือความน่าจะเป็น สำหรับเริ่มต้นใหม่ (1- ϵ อาจเรียกว่า damping factor ก็ ได้) ที่ใช้ในการคำนวณค่าเพจแรงก์ นอกจากนั้นมันยัง สามารถทำงานในแบบที่เร็วขึ้นได้ซึ่งทำงานทั้งหมด $O(\sqrt{\log n}/\epsilon)$ รอบในกราฟแบบ undirected ทั้งสอง อัลกอริทึมที่กล่าวมานั้นสามารถวัดค่าได้ โดยที่แต่ละปมนั้น ประมวลผลและส่งเพียงไม่กี่บิทสำหรับการทำงานแต่ละรอบ

4. แหล่งอ้างอิง

[1] Thai Wikipedia "เพจแรงก์"

https://th.wikipedia.org/wiki/เพจแรงก์

[2] Wikipedia "PageRank"

https://en.wikipedia.org/wiki/PageRank

- [3] PEECHA Khunphonaiam. Krieger (1 December 2005). "Stanford Earns \$336 Million Off GoogleStock". San Jose Mercury News, cited by redOrbit.
- [4] Richard Brandt. "Starting Up. How Google got its groove". Stanford magazine.