See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/264315790

A smart copper(II)-responsive binuclear gadolinium(III) complex-based magnetic resonance imaging contrast agent

ARTICLE in RSC ADVANCES · JULY 2014

Impact Factor: 3.84 · DOI: 10.1039/C4RA04526B

CITATION

1

READS

9

7 AUTHORS, INCLUDING:

Jingwei Xu

HERE

51 PUBLICATIONS **676** CITATIONS

SEE PROFILE

Zhao Guiyan

Yangtze River Pharmaceutical Group

11 PUBLICATIONS 59 CITATIONS

SEE PROFILE

A smart copper (II) responsive binuclear gadolinium (III) complex based magnetic resonance imaging contrast agent

Yan-meng Xiao, a,b Gui-yan Zhao, a,b Xin-xiu Fang, a,b Yong-xia Zhao, a,b Guan-hua Wange, Wei Yang*a and Jing-wei Xu*a

^aState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022, China. Fax: 86 431 85262649; Tel: 86 431 85262643;

^cGuangdong Provincial Public Laboratory of Analysis and Testing Technology, Guangdong Institute of Analysis, Guangzhou 510070, P. R. China.

Fig. S1 ¹H NMR spectrum of Compound 3 in DMSO (600 MHz).

^bUniversity of Chinese Academy of Sciences, Beijing, 100039

P.R. China. E-mail: jwxu@ciac.ac.cn; yangwei@ciac.ac.cn;

Fig. S2 13 C NMR spectrum of Compound 3 in CDCl₃ (151 MHz).

Fig. S3 HRMS (ESI) spectrum and expanded view of **Compound 3**. The peaks at m/z = 661.92584, 672.91690, and 683.90682 correspond to $[M + 2H]^{2+}$ (calc. 661.92650), $[M + H + Na]^{2+}$ (calc. 672.91747), and $[M + 2Na]^{2+}$ (calc. 683.90844) respectively.

Fig. S4 ¹H NMR spectrum of Compound 4 in DMSO (600 MHz).

Fig. S5 ¹³C NMR spectrum of Compound 4 in D₂O (151 MHz).

Fig. S6 MALDI-TOF-MS spectrum of **Compound 4**. The peak at m/z = 984.7 correspond to [M - H] (calc. 984.46).

Fig. S7 MALDI-TOF-MS spectrum of $[Gd_2(DO3A)_2BMPNA]$. The peak at m/z = 1281.4 correspond to $[M + H]^+$ (calc. 1281.46).

Fig. S8 MALDI-TOF-MS spectrum of $[Tb_2(DO3A)_2BMPNA]$. The peak at m/z = 1284.4 correspond to $[M + H]^+$ (calc. 1284.3).

Fig. S9 (a) Luminescence decay of [**Tb₂(DO3A)₂BMPNA**] in H₂O and D₂O without addition of Cu²⁺;

(b) Luminescence decay of $[Tb_2(DO3A)_2BMPNA]$ in H_2O and D_2O with addition of Cu^{2+} .

Fig. S10 Luminescence spectra of $[Tb_2(DO3A)_2BMPNA]$ (20 μ M) upon addition of different concentrations of Cu^{2+} (0-2 equiv.) in HEPES-buffered (pH 7.4, 100 mM) aqueous solutions. Excitation wavelength: 295 nm. Inset shows the luminescence at 545 nm as a function of Cu^{2+} concentration suggesting a 1:1 binding ratio between $[Tb_2(DO3A)_2BMPNA]$ and Cu^{2+} .

Fig. S11 ¹H NMR spectrum of Compound 1 in CDCl₃ (600 MHz).

Fig. S12 ¹H NMR spectrum of Compound 2 in CDCl₃ (600 MHz).

Fig. S13 MALDI-TOF-MS spectrum of $[Gd_2(DO3A)_2BMPNA]$ in the presence of Zn^{2+} at room temperature after 7 days. No metal-ion exchange was observed.

Fig. S14 Luminescence decay of $[Tb_2(DO3A)_2BMPNA]$ in H_2O (black) and D_2O (red) with addition of Cu^{2+} and phosphate.