Mechanics: Assignment 4

Harshdeep Singh (2019115001)

Due: October 20

Question 1: Coupled Oscillators

This question analyzes a system of two masses and two springs.

1. Kinetic Energy, Potential Energy, and Lagrangian

• Kinetic Energy (T): The sum of the kinetic energies of the two masses.

$$T = \frac{1}{2}m_1\dot{x}_1^2 + \frac{1}{2}m_2\dot{x}_2^2$$

• Potential Energy (V): The sum of the potential energies stored in the two springs. The extension of the second spring is $(x_2 - x_1)$.

$$V = \frac{1}{2}k_1x_1^2 + \frac{1}{2}k_2(x_2 - x_1)^2$$

• Lagrangian (L): The Lagrangian is L = T - V.

$$L = \frac{1}{2}m_1\dot{x}_1^2 + \frac{1}{2}m_2\dot{x}_2^2 - \frac{1}{2}k_1x_1^2 - \frac{1}{2}k_2(x_2 - x_1)^2$$

2. Lagrange Equations

The Lagrange equation for a coordinate q_i is $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0$.

• For x_1 :

$$\frac{d}{dt}(m_1\dot{x}_1) - (-k_1x_1 - k_2(x_2 - x_1)(-1)) = 0$$

$$m_1\ddot{x}_1 + (k_1 + k_2)x_1 - k_2x_2 = 0$$

• For x_2 :

$$\frac{d}{dt}(m_2\dot{x}_2) - (-k_2(x_2 - x_1)) = 0$$

$$m_2\ddot{x}_2 + k_2x_2 - k_2x_1 = 0$$

3. Normal Mode Frequencies

We seek oscillatory solutions of the form $x_j(t) = A_j e^{i\omega t}$. Substituting these into the equations of motion yields a matrix equation. For a non-trivial solution, the determinant of the coefficient matrix must be zero.

$$\begin{vmatrix} (k_1 + k_2 - m_1 \omega^2) & -k_2 \\ -k_2 & (k_2 - m_2 \omega^2) \end{vmatrix} = 0$$

Expanding the determinant gives a quadratic equation for ω^2 :

$$m_1 m_2 \omega^4 - (m_1 k_2 + m_2 (k_1 + k_2)) \omega^2 + k_1 k_2 = 0$$

Solving this equation provides the two normal mode frequencies.

Question 2: Simple Pendulum

This question deals with a simple pendulum of mass m and length l.

1. Lagrangian and Generalized Momentum

• Lagrangian (L):

$$L = T - V = \frac{1}{2}ml^2\dot{\theta}^2 + mgl\cos\theta$$

• Generalized Momentum (p_{θ}) :

$$p_{\theta} = \frac{\partial L}{\partial \dot{\theta}} = ml^2 \dot{\theta}$$

2. Hamiltonian $H(p_{\theta}, \theta)$

The Hamiltonian is defined by the Legendre transformation $H = p_{\theta}\dot{\theta} - L$. First, we express $\dot{\theta}$ in terms of p_{θ} : $\dot{\theta} = p_{\theta}/(ml^2)$.

$$H = p_{\theta} \left(\frac{p_{\theta}}{ml^2} \right) - \left[\frac{1}{2} m l^2 \left(\frac{p_{\theta}}{ml^2} \right)^2 + mgl \cos \theta \right]$$
$$H(p_{\theta}, \theta) = \frac{p_{\theta}^2}{2ml^2} - mgl \cos \theta$$

3. Phase Space Trajectories for small θ

For small angles, we use the approximation $\cos \theta \approx 1 - \frac{\theta^2}{2}$. The Hamiltonian becomes:

$$H \approx \frac{p_{\theta}^2}{2ml^2} + \frac{1}{2} mgl\theta^2 - mgl$$

The conserved energy is E = H + mgl. Rearranging the equation for E gives the equation of an ellipse in the phase space $(p_{\theta} \text{ vs. } \theta)$:

$$\frac{p_\theta^2}{2ml^2E} + \frac{\theta^2}{2E/mgl} = 1$$

The trajectories are concentric ellipses centered at the origin.

Question 3: Inverse Square Potential

The motion is on a plane with potential V(r) = -a/r and constant angular momentum A.

1. Generalized Momenta and Bound Orbit Condition

The Lagrangian in polar coordinates is $L = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) + a/r$.

- Generalized Momenta: $p_r = m\dot{r}$ and $p_{\theta} = mr^2\dot{\theta}$. The momentum p_{θ} is the conserved angular momentum, A.
- Bound Orbit Condition: For a bound orbit, the total energy E must be less than the potential energy at infinity. Since $V(r \to \infty) = 0$, the condition is $\mathbf{E} < \mathbf{0}$.

2. Energy and Radius for a Circular Orbit

A circular orbit occurs at a constant radius, which corresponds to the minimum of the effective potential $V_{\rm eff}(r) = \frac{A^2}{2mr^2} - \frac{a}{r}$. We find this by setting $\frac{dV_{\rm eff}}{dr} = 0$.

$$\frac{d}{dr}\left(\frac{A^2}{2mr^2} - \frac{a}{r}\right) = -\frac{A^2}{mr^3} + \frac{a}{r^2} = 0$$

The radius of the circular orbit is $r_c = \frac{A^2}{ma}$. The energy of this orbit is $E_c = V_{\text{eff}}(r_c) = -\frac{ma^2}{2A^2}$.

3. Minimum and Maximum Radius

The minimum (r_{min}) and maximum (r_{max}) radii for a given energy E are the turning points where the radial velocity is zero. This occurs when $E = V_{\text{eff}}(r)$.

$$E = \frac{A^2}{2mr^2} - \frac{a}{r}$$

This is a quadratic equation for 1/r. The two solutions give the inverse of the minimum and maximum radii.

$$\frac{1}{r} = \frac{ma}{A^2} \left(1 \pm \sqrt{1 + \frac{2EA^2}{ma^2}} \right)$$