Théorie de Galois

printemps 2017

Université de Neuchâtel

Enseigné par Ana Khukhro Notes prises par Laurent Hayez

Date de création: 23 février 2017 Dernière modification: 24 février 2017

Table des matières

0	Introduction et histoire	3
1	Rappels et notions basiques	4
	1.1 Critères d'irréductibilité	5
	1.2 Caractéristique d'un corps	6

Chapitre 0

Introduction et histoire

Babylone vers 1600 av. J.-C., solution de l'équation du second degré.

$$ax^{2} + bx + c = 0 \iff x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}.$$

En ~1540 ap. J.-C., Caradano et Ferrari donnent une solution pour les polynômes de degré jusqu'à 4. La question restait ouverte pour les polynômes de degrés plus grands ou égal à 5. « Résolubles par radicaux » ? Évariste Galois (1811-1832) donne la solution.

Si p(x) est un polynôme et E une extension d'un corps $K \stackrel{E}{\underset{K}{\mid}}$, son idée est de construire un groupe à partir de E.

Il y a également des constructions à la règle et au compas (Grèce : Euclide, etc. en 300/400 av. J.-C. environ), par exemple donner l'ensemble des points équidistants à un point A et un point B. Il y a des questions que les grecs n'ont pas réussi à résoudre, par exemple

- la trisection de l'angle (partager un angle en 3);
- la quadrature du cercle;
- la duplication du cube (cube donné, trouver un cube plus grand ayant le double du volume).

Chapitre 1

Rappels et notions basiques

Définition 1.1. Un anneau est un ensemble A muni de deux opérations (lois) de composition appelées respectivement addition et multiplication satisfaisant :

- pour l'addition, A est un groupe commutatif;
- la multiplication est associative et possède un élément neutre (unité);
- la multiplication est distributive par rapport à l'addition.

Dans le reste du cours, tout anneau sera commutatif!

- A^* est le groupe multiplicatif de A, c'est-à-dire l'ensemble des éléments inversibles par rapport à la multiplication.
- Un sous-anneau B de A est une partie de A qui est un sous-groupe additif, qui est stable par multiplication, et contient l'élément neutre. Par exemple, \mathbb{Z} et \mathbb{Q} sont des anneaux, et comme $\mathbb{Z} \subset \mathbb{Q}$, \mathbb{Z} est un sous-anneau de \mathbb{Q} .
- Un **idéal** \mathfrak{a} de A est un sous-groupe du groupe additif de A tel que pour tout $x \in A$ et $a \in \mathfrak{a}$, alors $xa \in \mathfrak{a}$. Par exemple $n\mathbb{Z} \subset \mathbb{Z}$ est un idéal de \mathbb{Z} pour tout $n \in \mathbb{N}$.
- L'idéal principal engendré par $a \in A$ est $Aa = \{xa \mid x \in A\} =: (a)$.
- Un anneau principal est un anneau intègre (si ab = 0, alors a = 0 ou b = 0, i.e., pas de diviseur de 0) où tout idéal est principal.
- Un idéal $p \neq A$ de A est dit **premier** si les conditions équivalentes suivantes sont satisfaites :
 - l'anneau A/p est intègre;
 - pour tous $x, y \in A$ et $xy \in p$, alors $x \in p$ ou $y \in p$.
 - p est le noyau d'un homomorphisme de A dans un corps.
- m est un idéal maximal si $m \neq A$ et $m \subset \mathfrak{a}$ un autre idéal, alors $\mathfrak{a} = m$.
- Si m est maximal, alors m est premier. La réciproque est vraie dans un anneau principal, un idéal non-nul premier est maximal.
- Chaque $\mathfrak{a} \neq A$ est contenu dans un idéal maximal.
- Un anneau $\mathbb{K} \neq 0$ est un **corps** si tout élément non-nul de \mathbb{K} est inversible.
- Soit A un anneau, $\mathfrak a$ un idéal de A. $\mathfrak a$ est premier ssi $A/\mathfrak a$ est intègre et $\mathfrak a$ est maximal ssi $A/\mathfrak a$ est un corps.

- Soit \mathbb{K} un corps. $\mathbb{K}[X]$ est l'anneau des polynômes à coefficients dans \mathbb{K} . $\mathbb{K}[X]$ est un anneau principal.
- Les idéaux premiers de $\mathbb{K}[X]$ sont
 - (0) (car $\mathbb{K}[X]$ est intègre);
 - (f) pour $f \in \mathbb{K}[X]$ est un polynôme irréductible (un élément $a \in A$, $a \neq 0$, anneau intègre, est **irréductible** si a n'est pas inversible et si a = bc, alors b ou c est inversible).
- Un polynôme est irréductible s'il est non-constant et il n'est pas un produit de deux polynômes non-constants de degrés inférieurs.
- Tout idéal premier non-nul de $\mathbb{K}[X]$ est maximal.
- Sont équivalentes pour $f \neq 0 \in \mathbb{K}[X]$:
 - f est irréductible;
 - -(f) est premier;
 - $\mathbb{K}[X]/(f)$ est intègre;
 - (f) est maximal;
 - $\mathbb{K}[X]/(f)$ est un corps.

Exemples 1.2. •
$$\mathbb{K} = \mathbb{R}$$
, $f(X) = X^2 + 1$. Alors $\mathbb{R}[X]/(f) \simeq \mathbb{C}$.

• $\mathbb{K} = \mathbb{F}_2$, $f(X) = X^2 + X + 1$, alors $\mathbb{F}_2[X]/(f) \simeq \mathbb{F}_4$.

• Un anneau A est dit **factoriel** si A est intègre et tout élément $a \neq 0 \in A$ s'écrit comme produit

$$a = u \prod_{i \in I} p_i$$

où $u \in A^*$ et $\{p_i \mid i \in I\}$ est un ensemble fini d'éléments irréductibles (unique à multiplication près).

- Tout anneau principal est factoriel (\mathbb{Z} , $\mathbb{K}[X]$, ...).
- Si A est factoriel, alors A[X] l'est aussi.
- Les éléments irréductibles de A[X] sont les éléments irréductibles de A et les polynômes non-constant avec pgdc des coefficients égal à 1, qui restent irréductibles dans $\mathbb{K}[X]$, où \mathbb{K} est le corps de fractions de A.
- Dans un anneau factoriel, un élément irréductible p engendre un idéal premier $\mathfrak{p}=(p).$

1.1 Critères d'irréductibilité

Soit A un anneau factoriel et soit $\mathbb K$ son corps de fractions.

Critère d'Eisenstein : soit $f(X) = a_n X^n + \dots + a_0$ un polynôme de degré $n \ge 1$ dans A[X]. Soit p un élément irréductible de A. Si $a_n \not\equiv 0 \pmod{p}$, $a_i \equiv 0 \pmod{p}$ pour tout i < n et $a_0 \not\equiv 0 \pmod{p^2}$, alors f(X) est irréductible dans $\mathbb{K}[X]$.

Exemple 1.3. Soit $f(X) = \frac{2}{9}X^5 + \frac{5}{3}X^4 + X^3 + \frac{1}{3} \in \mathbb{Q}[X]$. En multipliant par 9, on obtient un polynôme dans $\mathbb{Z}[X]$. Ainsi f(X) est irréductible si et seulement si $9f(X) = 2X^5 + 15X^4 + 9X^3 + 3$ est irréductible. Par le critère d'Eisenstein pour p = 3, f(X) est irréductible dans $\mathbb{Q}[X]$.

Réduction: soit $f(X) = a_n X^n + \dots + a_0$ monique $(a_n = 1)$ et soit $p \in A$ irréductible. Soit \overline{f} l'image de f dans A/(p)[X]. Si \overline{f} est irréductible dans A/(p)[X], il l'est aussi dans A[X] (et aussi $\mathbb{K}[X]$).

Exemple 1.4. Soit $f(X) = X^3 + 2X^2 + X + 5 \in \mathbb{Q}[X]$. On prend p = 2. $\overline{f}(X) = X^3 + X + 1 \in \mathbb{Z}/2\mathbb{Z}[X]$. On remarque que s'il existait une factorisation non triviale de \overline{f} , alors l'un des polynôme serait de la forme $(X - \xi)$, i.e., il admettrait une racine. Comme on vérifie facilement qu'il n'en possède pas, \overline{f} est irréductible, et donc f aussi.

Dérivation et racines multiples : Soit A un anneau. On définit la dérivation par $D: A[X] \to A[X], \ a_n X^n + \dots + a_0 \mapsto n a_n X^{n-1} + \dots + a_1$.

- D est A-linéaire.
- D(fg) = D(f)g + fD(g).
- $D((X-a)^m) = m(X-a)^{m-1}$.

Définition 1.5. Soit \mathbb{K} un corps et soit $f \in \mathbb{K}[X]$. Soit $a \in \mathbb{K}$ une racine de f. On peut écrire $f(X) = (X - a)^m g(X)$ où g(X) est premier avec (X - a), et m est appelée la **multiplicité** de a et on dit que a une **racine multiple** si m > 1.

Proposition 1.6. Un élément $a \in \mathbb{K}$ est une racine multiple de f ssi a est une racine de f et D(f)(a) = 0.

Preuve. Exercice.

1.2 Caractéristique d'un corps

Soit K un corps. On considère l'homomorphisme d'anneau

$$\eta: \mathbb{Z} \to \mathbb{K}$$

$$n \mapsto \operatorname{sgn}(n) \cdot (\underbrace{1+1+\dots+1}_{n \text{ fois}})$$

 $\ker(\eta)$ est un idéal premier de \mathbb{Z} , car $\mathbb{Z}/\ker(\eta) \simeq \operatorname{Im}(\eta) \subset \mathbb{K}$ est un anneau intègre. Il y a deux cas :

- $\ker(\eta) = \{0\}$ et donc η est injective, \mathbb{Z} est un sous-anneau de \mathbb{K} , et \mathbb{K} contient le corps de fractions de \mathbb{Z} . Dans ce cas, on dit que \mathbb{K} est de **caractéristique** 0.
- $\ker(\eta) = p\mathbb{Z}$, p premier. p est la **caractéristique** de \mathbb{K} . Dans ce cas, \mathbb{F}_p est un sous-corps de \mathbb{K} et $\underbrace{1+1+\cdots+1}_{p \text{ fois}} = 0$ dans \mathbb{K} .