Protocolos de Roteamento

Prof. Sergio Johann Filho sergio.filho@pucrs.br

Protocolos de Roteamento

- Existem duas principais formas de roteamento:
 - –Algoritmo de estado de enlace: link-state (LS)
 - –Algoritmo de vetor-distância: distance-vector (DV)
- Algoritmos são implementados através de protocolos de roteamento:
 - -Routing Information Protocol (RIP) DV
 - —Open Shortest Path First (OSPF) LS
 - –Border Gateway Protocol (BGP) DV

RIP

- Foi um dos primeiro protocolos de roteamento intra-AS da Internet (AS = sistemas autônomos)
 - Foi amplamente adotado, entre outros motivos, por ter sido incluído no Unix/BSD
 - -Ainda é utilizado
- Versões:
 - -RIPv1 (RFC 1058) 1988
 - -RIPv2 (RFC 1723) 1994
 - -RIPng (RFC 2080) RIP next generation (suporte a IPv6) 1997

RIP

- Usa o algoritmo vetor-distância (DV)
 - O custo do enlace é sempre 1, ou seja, escolhe caminho mais curto
- Usa o termo salto (hop) para determinar o caminho de menor custo até o destino
- O custo máximo de um caminho é 15 saltos
 - Limita que o SA tenha no máximo 15 roteadores de diâmetro

Funcionamento RIP

- RIP define dois tipos de mensagens:
 - -RIP request message
 - -RIP response message

 v_i = v_i

- Quando um novo roteador inicia, ele envia um RIP request para todas as suas interfaces
 - Os roteadores vizinhos responde com uma RIP response message (carregando as suas tabelas de roteamento)
- A cada 30 segundos os roteadores anúnciam suas tabelas de roteamento para os vizinhos
 - -Se algo mudou, recalcula tabela e envia para os

Implementação

- RIP normalmente é implementado na camada de aplicação (porta UDP 520)
- No Linux: pacote quagga (deamon ripd)

Formato pacote RIP

- Command: 1 para request, 2 para response
- Version: 1 para RIPv1, 2 para RIPv2
- AFI (Address Family ID): 2 para IP
- Até 25 entradas de rotas

Exemplo de configuração dos roteadores:

- usando CLI (command-line interface) padrão Cisco
- Configurar as máquinas host com *no ip routing* (ver tutorial GNS3) e as interfaces

Configuração roteador R1:

enable

configure terminal

router rip

network 192.168.1.0

network 200.200.200.0

exit

exit

copy running-config startup-config

Configuração roteador R2:

enable

configure terminal

router rip

network 200.200.200.0

network 201.200.200.0

exit

Exit

copy running-config startup-config

Configuração roteador R3:

enable

configure terminal

router rip

network 201.200.200.0

network 10.10.10.0

exit

exit

copy running-config startup-config

Para verificar as rotas nos roteadores:

R1# show ip route

Para verificar a rota utilizada em entre os hosts:

Host1# traceroute 10.10.10.2

Exemplo de configuração dos roteadores:

• usando CLI (command-line interface) padrão Cisco

Configuração roteador R1:

enable configure terminal router rip

network 192.168.1.0

network 200.200.200.0

network 202.200.200.0

exit

exit

copy running-config startup-config

Configuração roteador R2:

enable

configure terminal

router rip

network 200.200.200.0

network 201.200.200.0

exit

Exit

copy running-config startup-config

Configuração roteador R3:

enable

configure terminal

router rip

network 201.200.200.0

network 10.10.10.0

network 202.200.200.0

exit

exit

copy running-config startup-config

Para verificar as rotas nos roteadores:

R1# show ip route

Para verificar a rota utilizada em entre os hosts:

Host1# traceroute 10.10.10.2

OSPF

- Open Shortest Path First (OSPF)
- Utilizado em roteamento Intra-AS
- Concebido como sucessor do RIP
- Algoritmo de estado de enlace
 - -Broadcasting de informação de estado de enlace
 - -Algoritmo de caminho de menor custo de Dijkstra

OSPF

- Introduz o conceito de Área:
 - -divide a rede em áreas numeradas
 - diminuir a complexidade e minimizar a comunicação entre roteadores
- Área 0 (backbone):
 - –é a área principal;
 - –atua como elo de ligação com as demais áreas existentes;
 - -comunicação entre as demais áreas deve ser feita obrigatoriamente através da área 0

OSPF

Funcionamento

- Cada roteador constrói um grafo representando a rede (topologia completa)
- O roteador então roda localmente o algoritmo de caminho mais curto de Dijkstra
 - Determina uma árvore de caminho mais curto para todas as sub-redes, sendo ele mesmo a raiz da árvore
- O custo dos enlaces são definidos pelo administrador:
 - Se configurar tudo como 1, funciona como roteamento de salto mínimo (similar ao RIP)
 - Inversamente proporcional à capacidade do link

Funcionamento

- Os roteadores enviam informações de estado de enlace para todos os roteadores da sua área
 - Diferente do RIP que envia informações apenas para os vizinhos
- Informações são enviadas sempre que houver uma mudança no estado de um enlace
 - -Exemplo: mudança de custo, mudança up/down
- Também transmite o estado de um enlace periodicamente, mesmo sem mudança
 - -Pelo menos a cada 30 minutos

Funcionamento

- Mensagem OSPF s\u00e3o enviadas diretamente sobre IP
 - -Número do protocolo 89
- Tipos de mensagens:
 - -1 Hello
 - −2 Descrição da base de dados
 - −3 Requisição do estado do link
 - −4 Atualização do estado do link
 - −5 ACK do estado do link

Formato pacote OSPF

- 5 tipos de pacote
 - Hello
 - Database descriptor (DBD)
 - Link state request (LSR)
 - Link state update (LSU)
 - Link state acknowledgement (LSAck)

Exemplo de configuração dos roteadores:

• usando CLI (command-line interface) padrão Cisco

Configuração roteador R1:

enable
configure terminal
router ospf 1
network 192.168.1.0 0.0.0.255 area 0
network 200.200.200.0 0.0.0.255 area 0
exit
exit
copy running-config startup-config

Configuração roteador R2:

enable
configure terminal
router ospf 1
network 200.200.200.0 0.0.0.255 area 0
network 201.200.200.0 0.0.0.255 area 0
exit
exit
copy running-config startup-config

Configuração roteador R3:

enable
configure terminal
router rip
network 201.200.200.0 0.0.0.255 area 0
network 10.10.10.0 0.0.0.255 area 0
exit
exit
copy running-config startup-config

Para verificar as rotas nos roteadores:

R1# show ip route

Para verificar a rota utilizada em entre os hosts:

Host1# traceroute 10.10.10.2

OSPF x RIP

- Convergência rápida e sem loops
- Suporta métricas mais precisas e se necessário várias métricas
- Suporta múltiplos caminhos para um mesmo destino
- Suporta separação em múltiplas áreas
- Adiciona segurança (autenticação)

- Até agora estudamos os algoritmos de roteamento LS e DV
 - A rede foi considerada como uma coleção de roteadores interconectados
 - Todos os roteadores rodam o mesmo algoritmo de roteamento
- Esse modelo possui dois problemas
 - Escala
 - Autonomia administrativa

- •Solução: agrupar os roteadores em sistemas autônomos (AS)
- Um AS consiste em um grupo de roteadores sobre a mesma administração
 - Exemplo: mesmo ISP ou rede corporativa
- Todos os roteadores dentro de um determinado
 AS rodam o mesmo algoritmo de roteamento.
 - Protocolo de roteamento intra-AS
 - Um ou mais roteadores são encarregados de rotear pacotes para fora do AS - roteador de borda ou gateway router

- •Quando um AS possuir mais de um roteador de borda, como saber para qual roteador encaminhar um determinado pacote?
 - Protocolo de roteamento inter-AS
 - Todos os ASs devem rodar o mesmo protocolo inter-AS para se comunicarem

Protocolos de Roteamento

- Intra-AS:
 - -Routing Information Protocol (RIP) DV
 - —Open Shortest Path First (OSPF) LS
- Inter-AS:
 - -Border Gateway Protocol (BGP) DV

Referências

- Kurose, James F.; Ross, Keith W., Redes de Computadores e a Internet - Uma Abordagem Topdown.
- https://ipcisco.com/single-area-ospf-configuration/