

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT

Medieninformatik / Human-Computer Interaction

Grundlagen der Multimediatechnik

Gestenanalyse

28.01.2022, Prof. Dr. Enkelejda Kasneci

Termine und Themen

22.10.2021	Einführung
29.10.2021	Menschliche Wahrnehmung – visuell, akustisch, haptisch,
05.11.2021	Informationstheorie, Textcodierung und -komprimierung
12.11.2021	Bildverbesserung
19.11.2021	Bildanalyse
26.11.2021	Grundlagen der Signalverarbeitung
03.12.2021	Bildkomprimierung
10.12.2021	Videokomprimierung
17.12.2022	Audiokomprimierung
14.01.2022	Videoanalyse
21.01.2022	Dynamic Time Warping
28.01.2022	Gestenanalyse
04.02.2022	Tiefendatengenerierung
11.02.2022	FAQ mit den Tutoren
17.02.2022	Klausur, 14-16 Uhr, N10+N11

<u>Definition:</u> spontane oder bewusst eingesetzte Bewegung **des Körpers** besonders **der Hände** und **des Kopfes**, die jemandes Worte begleitet oder ersetzt und eine bestimmte innere Haltung ausdrückt.[1]

Linguistische Typologie

- Deiktische Gesten werden häufig als ein abstraktes Zeigen auf nicht vorhandene Gegenstände, Orte oder Ideen genutzt
- Ikonische Gesten bilden ein Ikon die Wirklichkeit in übertragener Form ab
- Metaphorische Gesten beschreiben die Konzepte, die keine physikalische Form haben
- Rhythmische Gesten sind kleine rhythmische Bewegungen, die etwas betonen oder korrigieren sollen

Gestenerkennung

- Verfahren, um menschliche Gesten zur Interaktion mit technischen Geräten zu verwenden
- Gesten müssen anhand von Bildsequenzen erkannt und interpretiert werden
- Zu berücksichtigende Aspekte bei der Gestenerkennung:
 - Bewegung
 - Position
 - Geschwindigkeit
 - Richtung

Sensorik zur Gestenerkennung

- Zwei Möglichkeiten
 - Erkennung mittels **am Körper befindlicher Sensorik** (z.B. Datenhandschuh, Wii-Controller)
 - Erkennung mittels **externer Sensorik** (z.B. Kameras, oft gekoppelt mit Tiefendaten, Kinect)
- Gesten sind nun als Bewegung eines oder mehrerer Merkmalspunkte bestimmbar

Anwendungen von Gestenerkennung

Automotive

Smart Home ^[12]

Gaming [11]

> Smartphone [10]

Sign
 Language
 Translation^[13]

Anwendungen von Gestenerkennung

Gestenerkennung

- Vorteile der Gestenerkennung:
 - Intuitive und direkte Anwendung
 - Berührungslose Bedienung möglich
 - Bequeme Bedienung

- Herausforderungen:
 - Hohe Stabilität
 - Hohe Genauigkeit
 - Möglichst geringe Reaktionsverzögerung

Gestenerkennung mittels Körpersensoren

Vorteile:

- Direkter Zugang zu den Merkmalsvektoren durch Auslesen der Daten aus den Beschleunigungssensoren des Geräts
- Hohe Präzision bei der Erkennung

Nachteil:

- Nutzer muss Gerät am Körper tragen
 - Vor allem bei Handschuhen/Controllern oft unbequem
- Im Hinblick auf echte Gestenerkennung durch Maschinen, ist diese Vorgehensweise noch ein **Kompromiss**

Gestenerkennung durch optische Sensorik

Vorteile:

- Der Benutzer kann sich relativ frei im Raum bewegen und ist auch nicht eingeschränkt durch das Tragen von Controllern

Nachteile:

- Bewegungsvektoren der Merkmalspunkte sind nicht direkt verfügbar.
- Es muss zunächst eine Erkennung der wesentlichen menschlichen Merkmalspunkte erfolgen
- Dadurch ist die **Fehlerrate größer** als bei direktem Auslesen dieser Werte aus geeigneten Sensoren

Gestenerkennung durch optische Sensorik

Ablauf:

Bildaufnahme

Vorverarbeitung

Segmentierung

Merkmalsextraktion

Klassifikation

Motion Capture

- Das erste kamerabasierte Verfahren zur Aufzeichnung von menschlichen Bewegungen in einem automatisiert verarbeitbaren Format
- Zum Beispiel eingesetzt bei der Erstellung von Computeranimationen in Filmen
- Verwendung der Bewegungen zur Steuerung → Gestenerkennung

https://medium.com/@patricia.holloway80/3d-motion-capture-market-and-its-key-opportunities-and-challenges-c738ca87bcf

Gestenerkennung – Skelett mit Merkmalspunkten

- Teilkörpergesten
 - Gesten, die nur einen begrenzten Teil des Körpers betreffen,
 z.B. Handgesten
- Ganzkörpergesten
 - Gesten, die mit dem gesamten Körper ausgeführt werden, z.B. Kniebeuge
- Deiktische Gesten
 - Zeigegesten
- Manipulative Gesten
 - Interaktionsgeste mit einem Objekt
- Semaphorische Geste
 - Kommunikationsgeste, durch die Geste wird eine Nachricht codiert

Erkennen des Menschen

- Zunächst muss eine Erkennung des Menschen stattfinden
- Danach müssen auf Grundlage dieser Kontur die Gelenkpositionen zugeordnet werden
- Hierfür gibt es bereits unterstützende Software
- Mittels der relativen Gelenkbewegungen können dann Gesten erkannt und klassifiziert werden

Reyes et. Al., Feature Weighting in Dynamic Time Warping for Gesture Recognition in Depth Data

Rechte Hand wird hochgehoben:

Linke Hand winkt:

Problemstellung

- Frage: Warum funktioniert einfaches Matching der einzelnen Bildframes nicht zur Gestenerkennung?
 - Unterschiedliche Samplingraten
 - Unterschiedliche Ausrichtung des Menschen zur Kamera
 - Unterschiedliche zeitliche Bewegungsausführung

- Wir können Bewegung aufgrund der Handposition in einzelnen Frames erkennen
- Wie kann man diese vergleichen?

Abgleich:

- -((1,1),(2,2),(2,3),(3,4),(4,5),(4,6),(5,7),(6,7),(7,8),(8,9))
- $((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$

· Abgleich:

- -((1,1),(2,2),(2,3),(3,4),(4,5),(4,6),(5,7),(6,7),(7,8),(8,9))
- $((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$

Kosten für die Ausrichtung:

- $cost(s_1, t_1) + cost(s_2, t_2) + \dots + cost(s_m, t_n)$
- **Beispiel:** $cost(si, t_i) \rightarrow$ Euklidischer Abstand zwischen den Positionen
 - cost(3,4) → Euklidischer Abstand zwischen M₃ und Q₄

Möglichkeiten zur Gestenerkennung

- Hidden Markov Models (HMM)
- Graphbasierte Ansätze
- Standard Dynamic Time Warping (DTW)
 - **Feature-Vektoren** s(i), i = 1, 2, ... I und t(j), j = 1, 2, ..., J
 - Warping-Pfad $(i_0, j_0), (i_1, j_1), ..., (i_f, j_f)$
 - Abstandsfunktion d(i, j), z.B. euklidische Distanz
 - Gesamtkosten $D = \sum_{k=0}^{f} d(i_k, j_k)$
- Gewichtetes Dynamic Time Warping
 - Gewichtete Abstandsfunktion, je nach Einfluss eines Merkmalspunktes auf die Geste

Dynamic Time Warping

 Anpassen bzw. Ausrichtung (engl. Alignment) zeitlicher oder geometrischer Sequenzen

Kostenmatrix zweier reellwertiger Sequenzen X, Y

• Kostenmatrix $C^{n \times m} := c(x_i, y_j) = |x_i - y_j|$

· Abgleich:

- -((1,1),(2,2),(2,3),(3,4),(4,5),(4,6),(5,7),(6,7),(7,8),(8,9))
- $((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$

• Regeln für Ausrichtung:

• Darf man (1,5), (2,3), (6,7), (7,1) an einander ausrichten?

· Abgleich:

- -((1,1),(2,2),(2,3),(3,4),(4,5),(4,6),(5,7),(6,7),(7,8),(8,9))
- $((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$

• Regeln für Ausrichtung:

- Darf man (1,5), (2,3), (6,7), (7,1) an einander ausrichten?
- Kommt darauf an, ob es Sinn für unsere Anwendung macht.

· Abgleich:

- -((1,1),(2,2),(2,3),(3,4),(4,5),(4,6),(5,7),(6,7),(7,8),(8,9))
- $((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$

· Warping-Pfad-Regeln: Randbedingung

- $s_1 = 1$, $t_1 = 1$
- $s_p = m \rightarrow \text{Länge der ersten Sequenz}$
- $t_p = n \rightarrow \text{Länge der zweiten Sequenz}$

Erstes Element passt Letztes Element passt

- Illegale Ausrichtung (verletzt Monotonität):
 - (..., (3,5), (4,3), ...)
 - $((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$
- · Warping-Pfad-Regeln: Monotonität
 - $-0 \le (s_{t+1} s_t)$
 - $-0 \le (t_{t+1} t_t)$

Keine Rückwärtsausrichtung

- Illegale Ausrichtung (Verletzt Kontinuität)
 - (..., (3,5), (6,7), ...).
 - $((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$
- Warping-Pfad-Regeln: Kontinuität (Schrittweitenbedingung)
 - $(s_{t+1} s_t) \le 1$
 - $(t_{t+1} t_t) \le 1$

Ausrichtung überspringt keine Elemente

- · Abgleich:
 - -((1,1),(2,2),(2,3),(3,4),(4,5),(4,6),(5,7),(6,7),(7,8),(8,9))
 - $((s_1, t_1), (s_2, t_2), ..., (s_p, t_p))$
- Dynamic-Time-Warping-Regeln: Monotonität, Kontinuität (Schrittweitenbed.)
 - $0 \le (s_{t+1} s_t) \le 1$
 - $0 \le (t_{t+1} t_t) \le 1$

Ausrichtung überspringt keine Elemente und geht nicht rückwärts

Dynamic Time Warping

- Dynamic Time Warping (DTW) ist ein Distanzmass zwischen Sequenzen von Punkten
- Die DTW Distanz sind die Kosten für eine optimale Ausrichtung zwischen zwei Bewegungen
 - Die Ausrichtung muss die DTW Regeln aus den vorherigen Folien berücksichtigen

Gestenerkennung (Beispiel)

Reyes et. al., Feature Weighting in Dynamic Time Warping for Gesture Recognition in Depth Data

DTW über Teilsequenzen

Gewichtete DTW

- Für jede Geste spielen die einzelnen Merkmalspunkte unterschiedlich große Rollen
- Daher: Definiere die Kostenfunktion so, dass eine Gewichtung enthalten ist
- Z.B. $w_j = \sum_{n=2}^N Dist^j(s_n, s_{n-1})$ für j = Merkmalspunkt und n = Framenummer.
- Dies wird dann für jede Geste einzeln ermittelt.

Beispiel: Gestenerkennung mit gewichteten DTW-Verfahren

	R push up	L push up	R pull down	L pull down	R swipe L	L swipe R
R push up	65	0	0	30	5	0
L push up	15	40	0	0	45	0
R pull down	0	0	85	15	0	0
L pull down	15	0	0	75	10	0
R swipe L	0	0	0	30	70	0
L swipe R	15	0	0	5	55	25

	R push up	L push up	R pull down	L pull down	R swipe L	L swipe R
R push up	100	0	0	0	0	0
L push up	0	100	0	0	0	0
R pull down	0	0	100	0	0	0
L pull down	0	0	0	85	15	0
R swipe L	0	0	0	0	100	0
L swipe R	0	0	0	0	5	95

Trefferrate mit ungewichteten DTW

Trefferrate mit gewichteten DTW

- Gehört ein aufgenommener Merkmalsvektor zu einer Gestenklasse?
- Kostenfunktion einer Klasse (z.B. "Hand hoch")

$$d(i_k, j_k) = \sum_{j} Dist^{j} (r_{i_k}, t_{j_k}) w_j$$

- Danach ganz normale DTW-Kostenmatrix und Warping-Pfad bestimmen
- Existiert ein Pfad, dessen Gesamtkosten unterhalb eines definierten Werts liegen, wird das Muster als erkannt gewertet