Ciencias de Datos con R: Fundamentos Estadísticos

Ana M. Bianco, Jemina García y Mariela Sued.

Estimación.

Estadística

- Cuándo hacemos estadística no conocemos a F ni el valor del parámetro poblacional de interés.
- Cuándo hacemos estadística queremos hacer una cuenta con la muestra que nos permita estimar el valor θ de interes.

Estimador:
$$\widehat{\theta}_n = \widehat{\theta}_n(X_1 \dots, X_n)$$

Estimación:
$$\widehat{\theta}_{n, \text{obs}} = \widehat{\theta}_n(x_1 \dots, x_n),$$

donde x_1, \ldots, x_n representan datos. Valores observados.

Muestra - Datos (Observaciones)

Muestra (aleatoria simple):

$$X_1, \ldots, X_n$$
 Variables aleatorias iid.

• Datos - Observaciones - Valores observados x_1, \ldots, x_n : Números.

Datos-Observaciones: son realizaciones de las variables aleatorias

Datos-Observaciones: son los resultados obtenidos al realizar el "experimento"

Estadística

$POBLACION \leftrightarrow F$	MUESTRA $X_1, \ldots X_n$ i.i.d. $X_i \sim F$
Parámetro: Valor asociado de F	Estimador:estadístico para estimar $ heta$
$\theta = \theta(F)$	$\widehat{\theta}_n = \widehat{\theta}_n(X_1, \dots, X_n)$
heta: valor poblacional	$\widehat{ heta}_n$ nueva variable aleatoria

Estadística

	5 /		,
Parámetro	Parámetro	Estimador	estimación
(en palabras)	(en matemática)	Var. Alea	(en R)
		•	
tita	θ	$\widehat{ heta}_n$	$\widehat{\theta}_{n,obs}$
esperanza	$\mu = \mathbb{E}(X)$	$\widehat{\mu}_n = \overline{X}_n$	mean(datos)
desvío	$\sigma = \sqrt{V(X)}$	$\sqrt{S_n^2}$	sd(datos)
probabilidad	$p = \mathbb{P}(X \le 3)$	$\frac{1}{n}\sum_{i=1}^{n}I_{(X_i\leq 3)}$	mean(datos<=3)
mediana	$F^{-1}(0.5)$	$X_{(n/2)}$	median(datos)
p-quantil	$F^{-1}(p)$	$X_{(pn)}$	quantile(datos, p)

Estimación de F(t)- LA empírica

La LGN demuestra que la frecuencia relativa converge a la probabilidad.

$$(X_i)_{i\geq 1}$$
 i.i.d., $X_i\sim F$

$$\mathsf{LGN}\colon \ \frac{1}{n}\sum_{i=1}^n I_{\{X_i\leq 3\}} \stackrel{p}{\longrightarrow} \mathbb{E}(I_{\{X_1\leq 3\}}) = \mathbb{P}(X_1\leq 3) = F(3).$$

$$\widehat{F}_n(3) := \frac{1}{n} \sum_{i=1}^n I_{\{X_i \le 3\}}$$

Estimación de F(t)- LA empírica

La LGN demuestra que la frecuencia relativa converge a la probabilidad.

$$(X_i)_{i\geq 1}$$
 i.i.d., $X_i\sim F$

$$\mathsf{LGN}\colon \ \frac{1}{n}\sum_{i=1}^n I_{\{X_i\leq 3\}} \xrightarrow{p} \mathbb{E}(I_{\{X_1\leq 3\}}) = \mathbb{P}(X_1\leq 3) = F(3).$$

$$\widehat{F}_n(3) := \frac{1}{n} \sum_{i=1}^n I_{\{X_i \le 3\}}$$

$$\widehat{F}_n(t) := \frac{1}{n} \sum_{i=1}^n I_{\{X_i \le t\}}$$

LGN:
$$\widehat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n I_{\{X_i \le t\}} \xrightarrow{p} \mathbb{E}(I_{\{X_1 \le t\}}) = \mathbb{P}(X_1 \le t) = F(t).$$

Manos a la obra

Mediciones de gas - Equipo 1

Considere n = 100 datos obtenidos al utilizar el equipo 1.

- 1. Realice un histograma.
- 2. Calcule el promedio de los datos.
- 3. Calcule el percentil 0.9 de los datos.
- 4. Estime la probabilidad de que una medición realizada con este equipo diste de 70 en más de 2 unidades.
- 5. Repita los ítems anteriores utilizando ahora los primeros $n=5\,$ y $n=30\,$ datos

Sigue amasando, sigue amasando

Duración de lámparas

Considere los datos de la duración de n lámparas (en meses), para $n \in \{5, 30, 100\}$. En cada caso,

- 1. realice un histograma.
- 2. calcule el promedio y el percentil 0.9.
- 3. estime la probabilidad de que la lámpara dure a lo sumo un año (12 meses).

Mediciones de Gas - Con otro lenguaje

Consideremos las mediciones de gas realizadas por el equipo 1. Sea X_i el resultado de la i-ésima medición, para $i=1,\ldots,n$.

Asumiremos que X_1, \ldots, X_n son v.a.i.i.d. 1. Indicar cuál cuenta hay que hacer con la muestra

$$(X_1,\ldots,X_n)$$
 para estimar $\mu=\mathbb{E}(X_1).$ Es decir, proponer un estimador $\widehat{\mu}_n$ para $\mu.$

- 2. Considerar n=5 datos correspondientes al equipo 1 y calcular la estimación de μ correspondiente a estos datos. Repetir considerando n=30 y n=100.
- 3. Sea $q = F^{-1}(0.9)$ con $X_i \sim F$. Indicar cuál cuenta hay que hacer con la muestra (X_1, \ldots, X_n) para estimar q. Es decir, proponer un estimador \widehat{q}_n para q.
- 4. Sea $p = \mathbb{P}(|X 70| > 2)$ con $X \sim X_1$. Indicar cuál cuenta hay que hacer con la muestra (X_1, \dots, X_n) para estimar p. Es decir, proponer un estimador \widehat{p}_n para p.
- 5. Considerar n=5 datos duraciones de lámparas y calcular la estimación de p correspondiente a estos datos. Repetir considerando n=30 y n=100.

Duración de lámparas - Con otro lenguaje

Consideremos las duraciones de lámparas en meses. Sea X_i la duración de la i-ésima lámpara, para $i=1,\ldots,n$. Asumiremos que X_1,\ldots,X_n son v.a.i.i.d.

- 1. Indicar cuál cuenta hay que hacer con la muestra (X_1,\ldots,X_n) para estimar $\mu=\mathbb{E}(X_1)$. Es decir, proponer un estimador $\widehat{\mu}_n$ para μ .
- 2. Considerar n=5 datos de duraciones de lámparas y calcular la estimación de μ correspondiente a estos datos. Repetir considerando n=30 y n=100.
- 3. Sea $p = \mathbb{P}(X \leq 12)$ con $X \sim X_1$. Indicar cuál cuenta hay que hacer con la muestra (X_1, \dots, X_n) para estimar p. Es decir, proponer un estimador \widehat{p}_n para p.
- 4. Considerar n=5 datos duraciones de lámparas y calcular la estimación de p correspondiente a estos datos. Repetir considerando n=30 y n=100.

¿Cuánto mide la mesa?

¿Cuánto mide la mesa?

Estas son las n=5 primeras observaciones:

$$1.17, \quad 1.36, \quad 0.15, \quad 2.52, \quad 0.21, \quad 1.78, \quad 2.67$$

¿Qué hacemos?

Modelo y Estimadores

Hacemos los puntos 1 y 2 de la Parte 3 de la Guía de actividades

Juan cada vez con más datos. $\widehat{\theta}_n = 2 \overline{X}_n$

Juan y Andrea, cada vez con más datos. $\widehat{\theta}_n = 2 \overline{X}_n$

Varios, cada vez con más datos. $\widehat{\theta}_n = 2 \overline{X}_n$

Cada uno con lo suyo. $\widehat{\theta}_n = 2 \overline{X}_n$

	Nombre	n=5	n=30	n=50
1	Juan	1.08	3.2	2.96
2	Andrea	2.87	2.95	2.88
3	Flor	3.47	3.2	3.18
4	Gonzalo	3.88	3.23	3.18
5	Paula	3.79	2.93	2.81
6	Agustin	3.01	2.9	2.59
7	Julieta	3.55	3.03	3.01
8	Marina	2.09	2.79	3.1
9	Pablo	4.14	3.41	3.01
10	Enrique	2.65	3.29	3.11
			•	•
				•
				•
			•	

Histogramas de $\widehat{\theta}_n = 2\overline{X}_n$ (empirical) Sampling Distribution of $\widehat{\theta}_n$

Histogramas de $\widehat{\theta}_n = 2\overline{X}_n$ (empirical) Sampling Distribution of $\widehat{\theta}_n$

Histogramas de $\widehat{\theta}_n = 2\overline{X}_n$ (empirical) Sampling Distribution of $\widehat{\theta}_n$

Estimación

Point estimation refers to providing a single "best guess" of some quantity of interest.

All of statistics. Wasserman

Estimación

Point estimation refers to providing a single "best guess" of some quantity of interest.

All of statistics. Wasserman

- translate(some quantity of interest)= Objeto de interés.
- some quantity of interest: large de la mesa (θ)
- best guess: Estimador: cuenta hecha con la muestra
- best guess: Estimador: Función de la muestra

$$\widehat{\theta}_n \equiv \widehat{\theta}_n(X_1, \dots, X_n)$$

Estimación

Point estimation refers to providing a single "best guess" of some quantity of interest.

All of statistics. Wasserman

- translate(some quantity of interest)= Objeto de interés.
- ullet some quantity of interest: largo de la mesa (heta)
- best guess: Estimador: cuenta hecha con la muestra
- best guess: Estimador: Función de la muestra

$$\widehat{\theta}_n \equiv \widehat{\theta}_n(X_1, \dots, X_n)$$

• Estimación: Valor del estimador en un conjunto de datos:

$$\widehat{\theta}_n(x_1,\ldots,x_n)$$

Notemos que el estimador ...

$$\widehat{\theta}_n \equiv \widehat{\theta}_n(X_1, \dots, X_n)$$

- ullet $\widehat{\theta}_n$ es una variable aleatoria.
- $\widehat{\theta}_n$ tiene distribución (siempre).

Sampling distribution of
$$\widehat{\theta}_n$$
: $f_{\widehat{\theta}_n}$

ullet $\widehat{ heta}_n$ tiene (en general) esperanza: $\mathbb{E}(\widehat{ heta}_n)$

Notemos que el estimador ...

$$\widehat{\theta}_n \equiv \widehat{\theta}_n(X_1, \dots, X_n)$$

- \bullet $\widehat{\theta}_n$ es una variable aleatoria.
- $\widehat{\theta}_n$ tiene distribución (siempre).

Sampling distribution of
$$\widehat{\theta}_n$$
: $f_{\widehat{\theta}_n}$

- $\widehat{\theta}_n$ tiene (en general) esperanza: $\mathbb{E}(\widehat{\theta}_n) = \int u f_{\widehat{\theta}_n}(u) du$
- ullet $\widehat{ heta}_n$ tiene (en general) varianza: $\mathbb{V}(\widehat{ heta}_n)$
- $\widehat{\theta}_n$ tiene (en general) desvío estandar.

$$\operatorname{se} = \operatorname{se}(\widehat{\theta}_n) = \sqrt{\mathbb{V}(\widehat{\theta}_n)}$$
 Standard error of $\widehat{\theta}_n$.

Veamos el shiny

Consistencia

A medida que aumenta el tamaño n de la muestra, el estimador se aproxima al objeto de interés.

$$\widehat{\theta}_n \longrightarrow \theta$$
 , cuando $n \to \infty$

Error cuadrático medio (ECM)

$$\mathsf{ECM} : \mathbb{E}\left\{(\widehat{\theta}_n - \theta)^2\right\}.$$

Lema: Si el ECM de un estimador converge a cero entonces vale la consistencia:

$$\mathbb{E}\left\{(\widehat{\theta}_n - \theta)^2\right\} \longrightarrow 0 \quad \text{implica que} \quad \widehat{\theta}_n \longrightarrow \theta \ .$$

Exactitud (In - Sesgado) - Precisión (Varianza)

Sesgo - Bias

$$\mathsf{Sesgo}: \mathbb{E}(\widehat{\theta}_n) - \theta.$$

Insesgado: El estimador $\widehat{\theta}_n$ se dice insesgado si su sesgo vale cero

Insesgado :
$$\mathbb{E}(\widehat{\theta}_n) - \theta = 0$$

En otras palabras, el estimador $\widehat{\theta}_n$ se dice insesgado si su esperanza coincide con el valor de interés que queremos estimar:

Insesgado :
$$\mathbb{E}(\widehat{\theta}_n) = \theta$$

Propidades

Lema: El error cuadrático medio de un estimador se descompone de la siguiente manera:

$$\mathsf{ECM}(\widehat{\theta}_n) = \mathbb{V}(\widehat{\theta}_n) + \left\{ \mathbb{E}(\widehat{\theta}_n) - \theta \right\}^2$$

En particular... Si

$$\mathbb{V}(\widehat{\theta}_n) \to 0 \quad \mathsf{y} \quad \mathbb{E}(\widehat{\theta}_n) \to \theta$$

tenemos que ECM converge a cero, y por lo tanto el estimador es consistente:

$$\widehat{\theta}_n \longrightarrow \theta$$

Miremos todo en el ejemplo: $\widehat{\theta}_n = 2\bar{X}_n$

- $(X_i)_{i\geq 1}$ i.i.d., $X_i \sim \mathcal{U}[0,\theta]$
- Objeto de interés: θ
- Estimador: $\widehat{\theta}_n = 2\bar{X}_n$
- Distribución de $\widehat{\theta}_n$?
- $\mathbb{E}(\widehat{\theta}_n) = \theta$: Es insesgado
- $\mathbb{V}(\widehat{\theta}_n) = \mathbb{V}(2\bar{X}_n) = 4\mathbb{V}(\bar{X}_n) = 4\frac{\mathbb{V}(X_1)}{n} = 4\frac{\theta^2/12}{n}$
- $\bullet \ \mathsf{ECM}(\widehat{\theta}_n) = 0^2 + 4 \frac{\theta^2/12}{n}$

Histogramas de $\widetilde{\theta}_n=\max\{X_1,\ldots,X_n\}$ (empirical) Sampling Distribution of $\widetilde{\theta}_n$

Histogramas de $\widetilde{\theta}_n = \max\{X_1,\ldots,X_n\}$ (empirical) Sampling Distribution of $\widetilde{\theta}_n$

Histogramas de $\widetilde{\theta}_n=\max\{X_1,\ldots,X_n\}$ (empirical) Sampling Distribution of $\widetilde{\theta}_n$

Miremos todo ahora para $\widetilde{ heta}_n = \max\{X_1,\dots,X_n\}$

- $(X_i)_{i\geq 1}$ i.i.d., $X_i \sim \mathcal{U}[0,\theta]$
- ullet Objeto de interés: heta
- ullet Estimador: $\widetilde{ heta}_n = \max\{X_1,\dots,X_n\}$
- Distribución de $\widetilde{\theta}_n$?
- $\mathbb{E}(\widetilde{\theta}_n)$?
- $\mathbb{V}(\widetilde{\theta}_n)$?
- ECM $(\widetilde{\theta}_n)$

Histogramas de $\widehat{\theta}_n=2\overline{X}_n$ y de $\widetilde{\theta}_n=\max\{X_1,\dots,X_n\}$

Estadístico: Cuenta hecha con la muestra

$$h(X_1,\ldots,X_n)$$

Estadística

$POBLACION \leftrightarrow F$	MUESTRA $X_1, \ldots X_n$ i.i.d. $X_i \sim F$
Parámetro: Valor asociado de F	Estimador:estadístico para estimar $ heta$
$\theta = \theta(F)$	$\widehat{\theta}_n = \widehat{\theta}_n(X_1, \dots, X_n)$
heta: valor poblacional	$\widehat{ heta}_n$ nueva variable aleatoria

Enfaticemos en que el estimador ... (si, ya la vimos!)

$$\widehat{\theta}_n \equiv \widehat{\theta}_n(X_1, \dots, X_n)$$

- ullet $\widehat{ heta}_n$ es una variable aleatoria.
- $\widehat{\theta}_n$ tiene distribución (siempre)
- ullet $\widehat{ heta}_n$ tiene (en general) esperanza: $\mathbb{E}(\widehat{ heta}_n)$
- ullet $\widehat{ heta}_n$ tiene (en general) varianza: $\mathbb{V}(\widehat{ heta}_n)$

Consistencia

- $(X_i)_{i\geq 1}$ i.i.d., $X_i\sim F$, $F\in\mathcal{F}$
- \mathcal{F} : modelo estadístico.
- ullet heta(F) objeto de interés definido para cada posible $F\in \mathcal{F}$
- estimador $\widehat{\theta}_n = \widehat{\theta}_n(X_1, \dots, X_n)$.
- Consistencia:

$$\widehat{\theta}_n(X_1,\ldots,X_n)\longrightarrow \theta(F)$$

cuando $n \to \infty$, $X_i \sim F$, cualquiera sea $F \in \mathcal{F}$

A medida que aumenta el tamaño n de la muestra, el estimador se aproxima al objeto de interés.

$$\widehat{\theta}_n \longrightarrow \theta$$
 , cuando $n \to \infty$

Estimación: ejemplo

- X_1, \ldots, X_n i.i.d. $X_i \sim X$.
- Parámetro de interés; $\sigma^2 = \mathbb{E}\{(X-\mu)^2\} = \mathbb{V}(X)$
- ¿Estimador?

Estimación: ejemplo

- X_1, \ldots, X_n i.i.d. $X_i \sim X$.
- Parámetro de interés; $\sigma^2 = \mathbb{E}\{(X-\mu)^2\} = \mathbb{V}(X)$
- ¿Estimador?

$$\widehat{\sigma}_n = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n}$$

Estimación: ejemplo

- X_1, \ldots, X_n i.i.d. $X_i \sim X$.
- Parámetro de interés; $\sigma^2 = \mathbb{E}\{(X \mu)^2\} = \mathbb{V}(X)$
- ¿Estimador?

$$\widehat{\sigma}_n = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n}$$

- $\mathbb{E}(\widehat{\sigma}_n) = (n-1)n^{-1}\sigma^2$
- Estimador (insesgado) de la varianza: $S^2 = S_n^2$

$$S^2 = S_n^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n-1}$$
.

- $\mathbb{E}[S^2] = \sigma^2$ (insesgado)
- ullet $S^2
 ightarrow \sigma^2$ en probabilidad (consistencia)

Propiedades - si, de nuevo!, pero todas juntas.

Consistencia

$$\widehat{\theta}_n(X_1,\ldots,X_n) o \theta(F)$$
 en probabilidad, cuando $X_i \sim F$ abreviado: $\widehat{\theta} o \theta$

- Error cuadratico medio: ECM= $\mathbb{E}\{(\widehat{\theta}_n \theta)^2\}$
- Lema: Si $\mathbb{E}\{(\widehat{\theta}_n \theta)^2\} \to 0$, entonces $\widehat{\theta}_n \to \theta$
- Sesgo: $\mathbb{E}(\widehat{\theta}_n) \theta$.
- Estimador insesgado: Sesgo=0: $\mathbb{E}(\widehat{\theta}_n) \theta$
- ullet Lema: $\mathbb{E}\left\{(\widehat{ heta}_n- heta)^2
 ight\}=\mathbb{V}(\widehat{ heta}_n)+\left\{\mathbb{E}(\widehat{ heta}_n)- heta
 ight\}^2$
- ullet Si $\mathbb{V}(\widehat{ heta}_n) o 0$ y $\mathbb{E}(\widehat{ heta}_n) o heta$, entonces

$$\mathbb{E}\{(\widehat{\theta}_n - \theta)^2\} \to 0$$