Unsupervised Dimension Reduction	
onsupervised bimension Reduction	
1.1 Introduction	_
1.2 Principal component analysis	
1.3 Variable Clustering	
1	
1	
1	
1	
1	
1 Objectives	
Objectives	
Objectives – Describe variable clustering.	_
Objectives	
Objectives – Describe variable clustering. – Explain how to use variable clustering in	
Objectives - Describe variable clustering. - Explain how to use variable clustering in in SAS.	
Objectives - Describe variable clustering. - Explain how to use variable clustering in in SAS. - Discuss advantages and disadvantages with	
Objectives - Describe variable clustering. - Explain how to use variable clustering in in SAS. - Discuss advantages and disadvantages with	

Variable Clustering

- Target used or not?
 - Not used
- Original or constructed variables as output?Original or constructed variables

Variable Clustering: Main **Features**

- The Variable Clustering node/procedure in SAS divides the input variables into hierarchical clusters.
- The main idea is to select one variable (or the cluster component) from each cluster as a cluster representative.
- The representative variables (or components) are used as input variables in successor nodes.
- The other input variables are rejected.

4

Variable Clustering

 X_1 X₂ X₃ X₄ X₅ X₆ X₇ X₈ X₉

5

Variable Clustering

What Is a Cluster Component?

- Each cluster can be described as a linear combination of the variables in the cluster.
- This is the first principal component of the cluster.
- In this context, it is called the *cluster component*.

10

Variable Clustering Algorithm – a K-Mean Approach (Partitional)

- Step 1 -- Set K (the number of groups)
- Step 2 -- Choose randomly K variables as latent variable for each group. This variable is the first latent component of the group
- Step 3

Step 3

DO WHILE no convergence

FOR EACH variable

Assign the variable to the closest latent component (r²)

END FOR

Update the latent component for each group (the 1st PC)

END DO

11

Variable Clustering Algorithm – the SAS Approach (Hierarchical)

- The algorithm is divisive; at the start, all variables are in one single cluster.
- The following steps are repeated until convergence:
- 1. A cluster is chosen for splitting.
- 2. The chosen cluster is split into two clusters.
- 3. The variables are iteratively (re)assigned to the clusters.

Variable Clustering Algorithm – SAS Approach

- The following steps are repeated until convergence:
- 1. A cluster is chosen for splitting.
 - Variation Proportion Property
 - 2) Maximum Eigen Value Property
- The chosen cluster is split into two clusters.
 According to the first two principal components and their rotation.
- 3. The variables are iteratively (re)assigned to the clusters.
 - 1. Nearest component sorting phase
 - 2. Search phase (alternate assignment)

13

13

Variable Clustering Algorithm – SAS Approach

- Stop Criteria:
 - The maximum number of clusters is reached, or
 - Both of the following:
 - For each cluster, the % of variance explained > the pre-set value
 - All clusters have a 2nd eigegnvalue < the pre-set value (defacult is 1)

14

14

Variable Clustering Algorithm – SAS Approach

- Summary

VARCLUS (L variables)
PCA with the L variables
Rotation (QUARTIMAX) on the 2 first components
IF (stopping criteria is not met) THEN
Subdivision according to " r² " of the variables with the components (L1 and L2)
VARCLUS (L1 variables)
VARCLUS (L2 variables)
END IF
RETURN

26

Additional Comments

- Nominal Variables
 - Need dummy variables
 - Dummy for different levels of the **same** nominal variable can be put into different clusters
 - By default, EM passes all the nominal variables to successor nodes as inputs
- Clustering Source:
 - By default, the correlation matrix
 - The alternative is to use the covariance matrix

Large Data Sets

- Computationally efficient if the data set has fewer than 100 variables and fewer than 100,000 observations.
- If you have more than 100 variables:
 - Use two-stage variable clustering.
- If you have more than 100,000 observations:
 - Sample the data.

28

Methods for Reducing Processing Time (Only in Enterprise Miner™)

- If the data set has more than 30 variables:
 - If the number of clusters is known, specify the number of clusters.

Maximum Clusters

- Set the Keep Hierarchies property to Yes.

Keeps Hierarchies

- Set the Two Stage Clustering property to Yes.

Two Stage Clustering Yes

29

Two-Stage Variable Clustering

- This four-step approach is used to speed up variable clustering with more than 100 input variables.
 Calculate the correlation matrix for all variables.

 - 2. Initialize the Global Clusters -- # of clusters = K = (# of variables/100 + 2.

 3. Perform variable clustering on each of the global clusters.
 - Cluster components are calculated for each of the global clusters and are then used to reconstruct hierarchy clusters
- - Generate the global clusters (k-mean or hierarchical)
 - Hierarchical approach on each global cluster

among the global clusters

Discussion

 Variable clustering is related to PCA, but the results can be very different. Which would you use in the presence of a large number of inputs? Why?

31

Variable Clustering: Pros

- Reduction of collinearity
- Redundancy reduction with low information loss
- Identification of underlying data structure
- Interpretation of original input variables can be kept in successor nodes.

32

Variable Clustering: Cons

- One-stage clustering is not computationally efficient if more than 100 input variables.
- Node cannot be used on data with more than 100,000 observations.
- Method is not so well-known. You need to explain it.
- Levels of categorical variables can be located in different clusters.

Poll	
PCA and variable clustering are both forms of supervised dimension reduction?	
O True	
O False	
34	
34	
Doll Commont American	
Poll – Correct Answer	
PCA and variable clustering are both forms of supervised dimension reduction?	
◯ True	
O False	
35	
35	•
	1
Simple Variable	
Clustering	
This demonstration illustrates how to use the Variable Clustering node for dimension	
reduction.	

Questions?

37

References

- Advanced Predictive Modeling Using SAS® Enterprise Minter™ Course Notes.
- SAS/STAT® User's Guide, The VARCLUS Procedure.