

XIRAF - Ultimate Forensic Querying

Ву

Wouter Alink, Raoul Bhoedjang, Peter Boncz and Arjen de Vries

Presented At

The Digital Forensic Research Conference

DFRWS 2006 USA Lafayette, IN (Aug 14th - 16th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to help drive the direction of research and development.

http:/dfrws.org

XIRAF Ultimate Forensic Querying

DFRWS - August 15, 2006

Wouter Alink, Raoul Bhoedjang Netherlands Forensic Institute

Peter Boncz, Arjen de Vries Centrum voor Wiskunde en Informatica

Introduction

XIRAF

"An XML Information Retrieval Approach to Digital Forensics"

Collect, manage, and query information extracted from digital evidence

NETHERL ANDSEOR ENSICIOUTINE TITUTE

- Problem statement
- XIRAF approach
- XIRAF architecture
- Forensic application areas
- Initial experiments
- Conclusion

Typical investigation steps

- 1. Media capture
- 2. Feature extraction
- 3. Analysis
- 4. Reporting

Problem identification

- Large amounts of data
 - Investigation restricted by deadlines
 - Too much information to track manually
- Diversity of data and tools
 - Many different formats
 - Many stand-alone forensic tools

Approach

- Clean separation between feature extraction and analysis
- A single, XML-based output format for tools
- XML database technology to analyze extracted features
- Use of existing forensic analysis tools

XIRAF architecture

Tool wrapper

<photo> <camera>Canon<camera> <taken-on> <date>15-12-2005</date> </taken-on>

</photo>

metadata (features/traces) //file[mime="image/jpeg"]

Tool

new view of the original data

- data from evidence files `Photo03.jpg'
- Optional: additional metadata

Tool repository

- Feature extraction tools
- Gain knowledge about an 'object':
 - volume
 - file-system
 - image
 - email
- Some of the wrapped tools:
 - file-system dissector
 - windows registry analyzer
 - EXIF-data parser
 - carving tool
 - IE-history parser
 - Hashing tool

XIRAF architecture

Feature extraction framework

Feature extraction framework

Feature extraction

XIRAF architecture

Virtual BLOB and XML

Storage subsystem

- Virtual BLOB mapping
 - evidence files
 - alternative representations
- Single XML document
 - extracted features
 - references to layout

XIRAF architecture

XQuery language

- Database language:
 - large XML documents
 - sorting/grouping/selecting/(updating)
- Example: timeline
 - different tools produce date-elements

```
for $i in doc("case.xml")//date
order by $i
where $i > $lowerbound
  and $i < $upperbound
return $i</pre>
```


Forensic application areas

search for keywords, MD5s, URLs

```
for $i in doc("case.xml")//file
for $j in doc("CP-hashes.xml")//md5
where $i/md5 = $j
return <file> { $i/@name } </file>
```

```
let $word_list :=
        doc("terrorism-words.xml")//word
for $i in doc("case.xml")//*
where some $i in $word_list
        satisfies blob-contains($i,$j)
return element { name($i) } { $i/@* }
```


Benefits

- Exploit exhaustive runs of tools
- Use knowledge from previous investigations
- Integrated data schema

- Added functionality:
 - XQuery extensions to relate XML to Virtual BLOB content

20

XIRAF architecture

22

Initial Experiments

- Evidence: 2 hard disks
 - (2 x 120GB)
- ~200MB XML
 - ~2.5M elements
- Recognized ~90000 files
 - file-systems / unallocated space
- ~500000 timestamps
 - file-system, registry, EXIF, .LNK, logentry, cookie, etc

Conclusion

- Separation of feature extraction and analysis seems a viable approach
- Integrated querying of multiple tools becomes possible

Status & Future Work

- Prototype implementation (Java/Python)
- Make system production-ready
- More tools, query patterns
- Connect XIRAF to existing knowledgebases

25

More information

- xiraf-info@holmes.nl
- http://www.forensischinstituut.nl/
- http://monetdb.cwi.nl/

26

