<u>江苏大学</u> 硕士研究生入学考试样题

	马: <u>834</u> 尔: 电子	技术		-	满分:	<u>150</u>	分
	单项选择题 答题纸,否则	(本大题共 20 小题 则无效。	,每小题 2 分,	共 40 分) 请	将正确选项前的	り字母连[司题号·
1、半	导体器件	寻电的特点是:	它们受【	】的强烈影响	问 。		
A _N	外加电压;	B、环境温度;	C、外部干技	忧信号; D、	相邻器件工作	乍状况	
2、硅	稳压管焊持	妾时须反接在稳愿	玉电路中,原因	因是它工作在	【 】区。	,	
A_{γ}	正向;	B、反向;	C、过功莉	毛;	D、反向击穿		
3、发	射结正偏、	集电结反偏是为	双极型晶体管	(BJT) 工作和	在【 】区	区的外部	条件。
		B、截止;					
		电路相比,CMO					
		B、速度较快;					
		迁意两个不同的最]。	
		1; C、此两					
6、化	简 $F=f(A,$	$B, C) = \Sigma m(1,$	3, 5, 7) $+\Sigma$	$\Phi(0, 2, 4, 6)$	6)的结果是【]。	
Α, ();	B, 1;	$C \setminus \overline{C};$	D, (
7、用	开集门(C	OC 门)解决了两	「个 TTL 与非 广]输出逻辑函	数不能【	】的问	题。
A, -	亨或 ;	B、线 与 ;	C、相 或 ;	D、线	或		
8、二	-十进制编	码器指的是【	】的电路	o			
A_{γ}	 身二−十进台	制代码转换成 0~	9 共 10 个数字				
B、	身 0~9 共 1⋅	0 个数字信号转打	與成 2 进制代码	马;		1	
		专换; D、8		,			
						×.	
9、若料	子维持-阻塞	選 D 触发器的 D	信号输入端接	其 \overline{Q} ,则此触	发器在 CP 脉流	中信号作	F用下
从Q端输	出的信号》	为【 】分数	须信号?				•
A, 8	;	B、4;	C、2;		D, 10		
		门构成的基本 $RS = 1$;				ľ	

- 11、若测得工作在放大电路中的某一只双极型晶体管(BJT)的三个电极的直流电位为: $U_1 = 12 \text{ V}$ 、 $U_2 = 11.7 \text{ V}$ 、 $U_3 = 6 \text{ V}$, 试问. 据此可判断该管是【 1.
 - A、PNP 型锗管; B、PNP 型硅管; C、NPN 型硅管; D、NPN 型锗管
- 12、共射-共基电路的电压增益与单管共射电路的接近,但前者的优势是:具有较 1
 - A、稳定的增益; B、宽的频带; C、小的输出电阻; D、强的抗干扰能力
 - 13、在带射极恒流源的差放电路中,恒流源代替射极电阻 R_E 的作用是【 1.
 - A、增大差模输入电阻:
- B、提高差模输出电压的幅值:
- C、取得与高阻值 R_E 相同的抑制零漂效果; D、减小差模输出电阻
- 14、简单的硅稳压管稳压电路之所以能稳压,一是利用了器件的稳压性能,二是 】起到了调压作用。
 - A、变压器副边电压 U_2 ; B、稳压管 VD_z ; C、滤波电容 C; D、限流电阻 R
 - 15、在直流稳压电源中把交流电压转换为单向直流电压的环节是【
 - A、降压变压器:
- B、三端稳压器:
- C、整流电路: D、滤波电路
- 16、增益-带宽积(GBP)描述放大电路 A_{usM} 与 f_{BW} 之关系,此乘积应该【

- A、大一些好; B、越小越好; C、小一些好; D、越稳定越好
- 17、已知射极跟随器与基本共射放大电路在同一电压源作用下,且两者选用同一只BJT, 但前者的通频带却比后者的【],
 - A、窄得多;
- B、宽得多;
- C、欠稳定:
- D、略宽一些
- 18、多级放大电路的通频带与组成它的任一级放大电路的通频带相比:【 1.
- A、前者频带宽; B、前者频带窄; C、两者频带等宽; D、无可比性
- 19、由于功放电路的输入和输出信号幅度都较大,所以采用【

- A、微变等效电路; B、相量法; C、最大值估算; D、图解分析
- 20、在功放电路中,直流电源提供的平均功率 P_{VCC} 一部分转换为交流输出功率 P_{o} , 其 余的就是管耗 P_V 。这说明了功率放大电路的实质是【 】的作用。
 - A、电压跟随:

B、电压和电流控制:

C、互补对称功放:

D、以小的 P_{V} 换取大的 P_{o}

二、图 1 为 TTL 逻辑门电路,图中 R_1 =0.5 k Ω , R_2 = R_3 =5 k Ω 。要求在给定输入逻辑 变量 $A \times B$ 的条件下,将电压表读数填入表 1 中,请转移表 1 至答题纸。(本题 8 分)

A	B	V_1	V_2
0	0		
0	1		•.
1	0		,

表 1

科目代码: 834 科目名称: 电子技术 第2页 共6页

- 三、设计一个 8421BCD 检码电路,当输入 ABCD 组成的二进制原码小于 3 或大于 7 时,电路输出 Y 为高电平,否则输出 Y 为低电平。要求: (18 分)
- 1)写出 *Y* 的最简**与或**式及 **与非-与非**表达式:
- 2)用 8 选 1 数据选择器 CT74LS151 实现,数据端 $D_0 \sim D_7$ 只允许输入 0 或 1,不允许输入变量。请将图 2 转画上答题纸后连线答题。

四、设图 3 中触发器的初始状态 Q=0,试画出在 CP 连续信号作用下触发器 Q 端的电压波形图。请将图 3b 转画上答题纸。 (本题 12 分)

图 3

- 五、MSI 同步 8421 码 10 进制加法计数器 CT74LS160 功能见表 2。 (本题 14分)
- 1) 试分析下页图 4 电路为多少进制计数器?
- 2) 将该电路用反馈法改接成 24 进制计数器,仍用两片 CT74LS160 芯片,试问如何改接? 画出改接的 24 进制计数器连线图,请转移上答题纸;又: 24 分频信号从何处引出?

表 2 MSI 同步 10 进制加法计数器 CT74LS160 功能表

输入							输 出					
\overline{CR} \overline{LD} CT_{P} CT_{T} CP D_{0} D_{1} D_{2} D_{3}							Q_0	Q_1	Q_2	Q_3		
0	φ	φ	φ	ϕ	φ	φ	φ	φ	0	0	0	0
1	Ó	ϕ		1		d_1	d_2	d_3	d_0	d_1	d_2	d_3
1	1	1	1	1	$oldsymbol{\phi}$	$oldsymbol{\phi}$	ϕ	ϕ	8421 #	马10 i	进制加	1法计数
1	1	0	$\boldsymbol{\phi}$	$\boldsymbol{\phi}$	$oldsymbol{\phi}$	$oldsymbol{\phi}$	$oldsymbol{\phi}$	$oldsymbol{\phi}$		保	持	
1	1	φ	0	φ	φ	ϕ	ϕ	$oldsymbol{\phi}$		保	持	

图 4

六、放大电路见图 5,已知 $U_{\mathrm{BE}}=0.7\,\mathrm{V}$, $r_{\mathrm{bb'}}=400\Omega$,其它参数如图标注。(18 分)

- 1) 这是何种组态的放大电路;
- 2) 估算 BJT 的静态工作点参数;
- 3) 求电路 R_i 、 R_o 、 A_u 和 A_{us} ;
- 4) 说明电路中 C_1 、 C_2 和 C_e 的作用。

图 5

七、分析下页图 6 中各电路引入的整体交流反馈的极性,若是交流负反馈,指出其组态。注意:请在各电路图(转移上答题纸)上标注瞬时电位极性。 (本题 15 分)

八、应用电路如图 7 所示,已知各集成运放理想,要求: (本题 13 分)

- 1) 指出电路中各个运放的功能;
- 2) 列写输出电压表达式: $u_0 = f(u_{i1}, u_{i2}, u_{i3})$;
- 3) 简述电阻 R_1 的作用是什么? 阻值应如何选取?

图 7

九、分析下页图 8 所示的 3 个电路,判断各电路是否能够产生振荡,标出瞬时电位极性或作扼要判断说明;如果能够振荡,写出电路的振荡频率 f_0 的表达式。 (本题 12 分)

