HO CHI MINH UNIVERSITY OF TECHNOLOGY FACULTY OF COMPUTER SCIENCE AND ENGINEERING

OPERATING SYSTEM LAB (CO2018)

LAB 8: MEMORY ALLOCATION

Teacher: Tran Truong Tuan Phat Student: Thai Phuc Hiep - 1812227

Ho Chi Minh University of Technology Faculty of Computer Science and Engineering

Contents

1	PROBLEM 1:	2
	1.1 First-Fit algorithm	2
	1.2 Best-Fit algorithm	2
	1.3 Worst-Fit algorithm	2
2	PROBLEM 2:	2

Operating System Lab Page 1/3

1 PROBLEM 1:

1.1 First-Fit algorithm

Process Number	Process Size	Block Number	Block Size
1	115	1	300
2	500	2	600
3	358	5	750
4	200	3	350
5	375	5	392 (initial 750)

1.2 Best-Fit algorithm

Process Number	Process Size	Block Number	Block Size
1	115	6	125
2	500	2	600
3	358	5	750
4	200	4	200
5	375	5	392 (initial 750)

1.3 Worst-Fit algorithm

Process Number	Process Size	Block Number	Block Size
1	115	5	750
2	500	5	635 (intial 750)
3	358	2	600
4	200	3	350
5	375	Not Allocated (must wait)	

Ranking:

- Only Worst-Fit does not allow a request to be satisfied.
- Best-Fit is most efficient as it leaves the largest holes after allocation.
- However, Best-Fit runs at time O(n) and First-Fit runs in constant time O(1).

2 PROBLEM 2:

First-Fit Algorithm:

Advantages: Fastest algorithm because it searches as little as possible.

Disadvantages: The remaining unused memory areas left after allocation become waste if it is too smaller. Thus request for larger memory requirement cannot be accomplished.

Best-Fit Algorithm:

Advantages: Memory utilization is much better than first fit as it searches the smallest free partition first available.

Operating System Lab Page 2/3

Ho Chi Minh University of Technology Faculty of Computer Science and Engineering

Disadvantages: It is slower and may even tend to fill up memory with tiny useless holes.

Worst-Fit Algorithm:

Advantages: Reduces the rate of production of small gaps.

Disadvantages: If a process requiring larger memory arrives at a later stage then it cannot be

accommodated as the largest hole is already split and occupied.

Operating System Lab Page 3/3