# Probe Weak Lensing Cosmology with Scattering Transform

Sijin Chen (USM) with Stella Seitz & Zhengyangguang (Laurence) Gong







### **Traditional Statistics using Fourier Transform**

#### Traditional statistics

- Measuring 2- or 3-point correlation function
- Computing Fourier transform of these n-point correlation functions (power spectrum, bispectrum) might be computationally expensive
- Gaining information in frequency space but no spatial information







### **Operation:**



wavelet convolution

- + modulus
- + mean

(S. Cheng et al. 2020, A new approach to observational cosmology using the scattering transform)



### **Operation:**

$$S = \langle |I_{\star}\psi^{j,l}| \rangle$$

# **Scattering transform=**

- wavelet convolution
- modulus
- mean

#### Wavelet: localized oscillating wave

Morlet wavelets:

In real space:



$$egin{aligned} \sqrt{|\Sigma|} \ |k_0| = rac{3\pi}{4 imes 2^j} \end{aligned}$$

 $\Sigma$ : the covariance of matrix describing the size and shape of the Gaussian envelope  $k_0$ : the frequency of the modulated oscillation



#### **Morlet Wavelets**

### **Operation:**

$$S = \langle |I \star \psi^{j,l}| \rangle$$

 $L=4, \ell=0, 1, 2, 3$ 

ℓ : orientation

#### Wavelets for scales j and orientation $\ell$





 $j = 5, \ell = 1$ 







wavelet convolution

- modulus
- mean

$$J=8, j=0, 1, ..., 7$$

$$ilde{\psi}(oldsymbol{k})\!=\!rac{1}{\sqrt{\Sigma}}e^{-(oldsymbol{k}-oldsymbol{k}_0)^T\Sigma(oldsymbol{k}-oldsymbol{k}_0)/2}$$

$$|k_0| = rac{3\pi}{4 imes 2^j}$$

j: size (logarithmic spacing)



 $j = 4, \ \ell = 0$ 









$$j=6$$
,  $\ell=1$ 



$$j=7$$
,  $\ell=1$ 







$$j = 7$$
,  $\ell = 2$ 

$$j=6$$
,  $\ell=3$ 





### **Operation:**

$$S = \langle |I \star \psi^{j,l}| \rangle$$

Scattering transform= wavelet convolution

- + modulus
- + mean

Modulus: convert selected fluctuations into their local strength





### **Operation:**

$$S = \langle |I_{\star}\psi^{j,l}| \rangle$$

Scattering transform= wavelet convolution

- + modulus
- + mean

#### Mean: spatial average of the field



$$egin{align} S_0 \equiv & ra{I_0} \ S_1^{j_1,l_1} \equiv & ra{I_1^{j_1,l_1}} = ra{|I_0 \star \psi^{j_1,l_1}|} \ S_2^{j_1,l_1,j_2,l_2} \equiv & ra{I_2^{j_1,l_1,j_2,l_2}} = ra{||I_0 \star \psi^{j_1,l_1}| \star \psi^{j_2,l_2}|} \ \end{pmatrix}$$

$$egin{aligned} s_0 \, &\equiv \, S_0 \ s_1 \, (j_1) \, &\equiv \, raket{S_1^{j_1, l_1}}_{l_1} \ s_2 \, (j_1, j_2) \, &\equiv \, raket{S_2^{j_1, l_1, j_2, l_2}}_{l_1, l_2} \ \end{pmatrix}_{l_1, l_2} \end{aligned}$$



### **Fisher Forecast**

#### De-correlated 2nd order coefficients:

 $\frac{s_2}{s_1}$ 





# **Preliminary result of constraints**

$$\kappa_{mock} = (1+m) (\kappa_{sim} + A_{IA} \cdot \kappa_{IA}) + shape \ noise$$

#### • The prior of MCMC

| Parameter    | Fiducial Value | Prior Distribution           |
|--------------|----------------|------------------------------|
| $\Omega_m$   | 0.26           | $\mathcal{U}(0.10, 0.50)$    |
| $\sigma_8$   | 0.84           | $\mathcal{U}(0.40, 1.40)$    |
| $w_0$        | -1.00          | $\mathcal{U}(-2.00, -0.33)$  |
| $n_s$        | 0.9649         | U(0.87, 1.07)                |
| $\Omega_b$   | 0.0493         | $\mathcal{U}(0.03, 0.06)$    |
| $H_0$        | 67.30          | U(64, 82)                    |
| $A_{ m IA}$  | 0              | $\mathcal{U}(-5,5)$          |
| $\Delta z^1$ | 0.0            | $\mathcal{N}(0.0, 0.018)$    |
| $\Delta z^2$ | 0.0            | $\mathcal{N}(0.0, 0.015)$    |
| $\Delta z^3$ | 0.0            | $\mathcal{N}(0.0, 0.011)$    |
| $\Delta z^4$ | 0.0            | $\mathcal{N}(0.0, 0.017)$    |
| $m_1$        | -0.006         | $\mathcal{N}(-0.006, 0.009)$ |
| $m_2$        | -0.020         | $\mathcal{N}(-0.020, 0.008)$ |
| $m_3$        | -0.024         | $\mathcal{N}(-0.024, 0.008)$ |
| $m_4$        | -0.037         | $\mathcal{N}(-0.037, 0.008)$ |



Gatti et al. 2023



### **Future Work**

- Tune hyperparameters and improve the accuracy of emulators
- Apply ST on DES data
  - operate on masked maps
  - try ST on DES Y3 shear maps

Sijin Chen