Name: Righow Mahashupasa
Kolinio: 53
Panel: A
Lab Assignment -2 (PP)
* bubblem Statement:
whether a company lost large vertor addition, combine
social voctor addition program to parallel voctor
allition was the later logical up parallel vertor
addition for various sizes of computation. Plot a graph
addition you various sizes of computation that is specific.
of execution times (To and To) to identify thoushold for which
you start getting speed up.
L A EAR
* AIM:
To write a Cprogram to add two large vectors and
sur fragern on a multi-core parallel system.
* OBJECTIVE:
To undorstand correspon of social code to parallel work-
* THEORY:
white complexity analysis of vector addition and parallel
vactor addition.
Vector addition systems are an impositant model in theorifical
computer science and have been used in a valuety of
area. for these systems, we are interested in standard
golden, we god interested in standard

notion of computational time complexity i.e. use want to
undecestand length of largest towns job a fixed vector
addition system with states depending on Size of initial
configuration. We show that assumptatic country of a
configuration. We show that asymptotic completity of a given vector addition system with states is either of NK
Jos some computable integer to whole in is size of
territal configuration or at least exponential
mody we show that ISR 5 2m whom in the dimension
of considered vector addition system.
+ Ca > 10 > 1
* CONCLUSION:
Successfully implemented serviced to possible composition of vertor addition code and analyze speedup and efficiency.
action addition code and analyze speedup and alicioner
A FAQ
1) Name the box 1
1) Name the top there current super computer of the would
All Cation.
And o Pugalen.
Chu corol -7 622 0401
ClV color -7,630, 848 (158,976 x48 cone fujtsu Abylin @
Accelerates cores - 0
Interconnect - Ton 51
Interconnect - Topy interconnect ID. OS - Linux (RMFL)
Model - Sugar (KNEL)
Model - Super computer fugalen

in Summit: (11/ colos - 202, 752 (9,216 x22- cose IBM lowfk9@ 3.07G) Accelerator cores - 27,648 x80 Nvilia Testa V100. Interconnect - InjiniBand EDR DS- Linux (RHEL 7.4) Model - IBM Paver System AC922 iii) Sierora CPU cores - 190,000 (8,640x 22 core Ism POWER 29 @ 316 Accelerator cores - 172,80 x80 Nuidia Tesla VIOO. Interconnect - Infinisand FOR OS - Linux (RHEL) Model - IBM Power System 5922LC-2) What is Moore's Test? Ans Moore's Feet Law states that number of teransistore on a microship doubles about every two years, thou cost of computers is haved.

Code:

```
#include <stdio.h>
#include <omp.h>
#include <stdlib.h>
double parallel(int n){
int *a,*b,*c;
a = (int *)malloc(sizeof(int)*n);
b = (int *)malloc(sizeof(int)*n);
c = (int *)malloc(sizeof(int)*n);
for(int i=0; i<n;i++)
{
a[i] = rand()%n;
b[i] = rand()%n;
}
double t_startp = omp_get_wtime();
#pragma omp parallelfor private(i)
for(int i=0; i<n; i++)
{
c[i]=a[i]+b[i];
}
double t_endp = omp_get_wtime();
double timep = t_endp - t_startp;
return timep;
double serial(int n){
int *a,*b,*c;
```

```
a = (int *)malloc(sizeof(int)*n);
b = (int *)malloc(sizeof(int)*n);
c = (int *)malloc(sizeof(int)*n);
for(int i=0; i<n;i++)
{
a[i] = rand()%n;
}
for(int i=0; i<n;i++)
{
b[i] = rand()%n;
}
double t_starts = omp_get_wtime();
for(int i=0; i<n; i++)
{
c[i]=a[i]+b[i];
}
double t_ends = omp_get_wtime();
double times = t ends - t starts;
return times;
}
int main()
{
int t;
printf("Enter the number of tests:");
scanf("%d",&t);
int n[t];
```

```
for(int i=0;i<t;i++){
printf("Enter the value:");
scanf("%d",&n[i]);
}
printf("Data Point \t Time taken for Serial Approach \t Time taken for
Parallel Approach\n");
for(int i=0;i<t;i++){
printf("%d\t\t\t\f\t\t\t\f\n",n[i],serial(n[i]),parallel(n[i]));
}
}</pre>
```

Output:

```
inter the number of tests:5
Enter the value:100
Enter the value:200
Enter the value:300
Enter the value:400
Enter the value:500
Data Point
                  Time taken for Serial Approach
                                                               Time taken for Parallel Approach
                          0.000000
                                                                      0.000001
                          0.000001
                                                                      0.000001
300
                          0.000001
                                                                       0.000002
                                                                       0.000002
400
                          0.000002
                          0.000002
                                                                       0.000003
```