# UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA

INF01017 Aprendizado de Máquina

Trabalho 2: Redes Neurais com backpropagation

Augusto Bennemann

Fabrício Martins Mazzola

Porto Alegre, 21 de Junho de 2018

# Introdução

Neste trabalho, exploramos a técnica de aprendizado de máquina por meio de redes neurais. Para treinar o algoritmo e analisar seu desempenho utilizamos os quatro *datasets* propostos.

Inicialmente, fizemos um pré-processamento nos conjuntos de dados para padronizá-los de acordo com o formato de entrada que especificamos para nosso programa. Essas alterações foram, basicamente, incluir o nome das colunas na primeira linha e mover a coluna da classe para a última posição.

O algoritmo foi desenvolvido na linguagem Python 3. Junto a este relatório há a versão final do código (*t2.py*) e o verificador de *backpropagation*, que pode ser executado com a linha de comando *python3 backpropagation.py network.txt initial\_weights.txt dataset.txt* 

#### Estruturas de dados

Para implementar a rede neural, criamos três classes diferentes: Neuron, Layer e Network. Essas classes definem, respectivamente, um neurônio, uma camada da rede e a rede neural completa.

Um objeto Neuron armazena informações do delta, da função de ativação e os pesos que chegam nesse neurônio. Tanto os pesos como os deltas são armazenados em listas. A classe Layer é composta por uma lista de objetos Neuron. Já a classe Network é composta por uma lista de objetos Layer. Além disso, a classe Neuron armazena informações de fator de regularização ( $\lambda$ ) e do passo de atualização ( $\alpha$ ). A classe Network implementa os métodos de backtracking, cálculo de erros da rede, função de ativação e atualização de pesos.

```
class Neuron:
    delta = 0
    activation = 0
    weights = []

def __init__(self, initialWeights):
    self.weights = initialWeights
    self.delta = 0
    self.activation = 0

def setDelta(self, delta):
    self.delta = delta

def getDelta(self):
    return self.delta

def __str__(self):
    return " ".join("%.5f" % w for w in self.weights)
```

Definição da classe Neuron

```
class Layer:
  neurons = []

def __init__(self, weights):
    self.neurons = []
  for w in weights:
       self.neurons.append(Neuron(w))

def __str__(self):
    msg = ""
  for i, n in enumerate(self.neurons):
    msg += "\t%s\n" % n
  return msg
```

Definição da classe Layer

```
class Network:
    regularizationFactor = 0
    alpha = 0
    layers = []

def __init__(self, regularizationFactor, layersWeights, inputSize, alpha=0.0001):
    print("Inicializando rede com a seguinte estrutura de neuronios por camadas: [%d %s]" % (inputSize, " ".join("%d" % len(a) for a in la
    self.regularizationFactor = regularizationFactor
    self.layers = []
    for lw in layersWeights:
        self.layers.append(Layer(lw))

def __str__(self):
    msg = "Parametro de regularizacao lambda=%.3f\n" % self.regularizationFactor
    for i, l in enumerate(self.layers):
        msg += ("\nTheta%d inicial (pesos de cada neuronio, incluindo bias, armazenados nas linhas):\n" % (i+1))
        return msg
```

Definição da classe Network

## Características Gerais da Implementação

A implementação desenvolvida foi feita utilizando diversas técnicas para aumentar o desempenho das redes neurais, como uso de vetorização, validação cruzada e a metodologia *mini-batch*. A técnica de vetorização permite que os cálculos, tanto dos gradientes como dos erros de cada neurônio, sejam feitos de maneira muito mais rápida quando comparada à tradicional, pois utiliza operações de matrizes que são mais eficientes.

A validação cruzada estratificada foi realizada com k = 10 folds, conforme sugerido. Essa técnica permite que a rede neural seja generalizável. Além disso, foi utilizada a metodologia de treinamento de *mini-batch*. O *mini-batch* desenvolvido permite a escolha do valor do *batch* (K) por parâmetro, ao chamar a função de abertura do dataset escolhido. Para o treinamento das redes neurais aqui apresentadas, utilizamos o tamanho do *batch* como K = 20.

A técnica mini-batch reúne as vantagens presentes na metodologia estocástica e na técnica de batch. Essa otimização evita que os pesos da rede sejam alterados a cada instância de treinamento que passa pela rede (batch) ou que os pesos somente sejam atualizados uma única vez (estocástica), diminuindo consideravelmente o tempo de convergência.

# Análise de desempenho

Para avaliar o desempenho da rede neural, testamos os quatro conjuntos de dados. Como métrica, foi utilizada a F1-measure para todos os datasets.

#### 1. Diabetes

| F1 \ Rede Neural | [821] | [841] | [881] |
|------------------|-------|-------|-------|
| Média            | 0.66  | 0.71  | 0.69  |
| Desvio           | 0.07  | 0.05  | 0.05  |



Variação da estrutura da rede

Esse conjunto de dados foi executado com os parâmetros  $\alpha$  = 0.05,  $\lambda$  = 0.1 e com 700 iterações. Os mesmos parâmetros foram utilizados nas três redes avaliadas.

Pode-se perceber que independente do número de neurônios presentes na camada intermediária, o desempenho do algoritmo variou pouco para esse conjunto de dados. Uma rede neural com duas camadas intermediárias foi testada e obteve resultado similar aos mostrados no gráfico acima, e por isso, seus resultados foram omitidos. Além da baixa variação de desempenho, pode-se observar que essa variação

ocorreu sem seguir uma progressão. Por esse motivo, não está evidente se a variância de rede neural teve alguma relevância estatística ou se as diferenças são apenas efeitos da estrutura da rede neural.



Variação do fator de regularização



Erro da rede (J)

# 2. Ionosphere

| F1 \ Rede Neural | [3441] | [3461] | [3481] | [34421] |
|------------------|--------|--------|--------|---------|
| Média            | 0.84   | 0.64   | 0.81   | 0.67    |
| Desvio           | 0.08   | 0.08   | 0.13   | 0.0     |



Variação da estrutura da rede

Esse conjunto de dados foi executado com os parâmetros  $\alpha$  = 0.05,  $\lambda$  = 0.1 e com 700 iterações. Os mesmos parâmetros foram utilizados nas três redes avaliadas.

O dataset lonosphere apresentou a maior variação de desempenho entre as diferentes redes avaliadas. Pode-se perceber que o desempenho variou de acordo com o número de neurônios presentes na camada intermediária. A rede que possui 4 neurônios na sua única camada intermediária apresentou o melhor desempenho em relação às demais. Já a versão com 6 neurônios na sua única camada intermediária apresentou o pior desempenho. Além disso, é possível observar que a adição de uma nova camada intermediárias não traz grandes ganhos de performance, em relação às redes com camada intermediária única.



Variação do fator de regularização



Erro da rede (J)

#### 3. Wine

| F1 / Rede Neural | [1351] | [ 13 10 1 ] | [ 13 15 1 ] | [13 4 2 1] |
|------------------|--------|-------------|-------------|------------|
| Média            | 0.83   | 0.83        | 0.79        | 0.17       |
| Desvio           | 0.14   | 0.08        | 0.10        | 0.00       |



Variação da estrutura da rede

Esse conjunto de dados foi executado com os parâmetros  $\alpha$  = 0.05,  $\lambda$  = 0 e com 800 iterações. Os mesmos parâmetros foram utilizados nas três redes avaliadas.

O dataset Wine apresentou uma variação praticamente negligível de desempenho entre as diferentes redes com uma única camada intermediária avaliadas. Pode-se perceber que o desempenho é inversamente proporcional ao número de neurônios presentes na camada intermediária. A rede que possui duas camadas intermediárias apresentou o pior desempenho em relação às demais, com um escore F-1 até quatro vezes menor quando comparado com redes que possuem uma única camada oculta.

Acreditamos que essa queda de desempenho se dá pelas características do dataset. Dado que o conjunto de dados possui poucas entradas, a adição de uma nova camada oculta, com mais neurônios adiciona uma quantidade não otimizada de *features* na rede, o que acaba prejudicando o desempenho.



Variação do fator de regularização



Erro da rede (J)

### 4. Breast Cancer (Extra)

| F1 \ Rede Neural | [ 30 5 1 ] | [ 30 10 1 ] | [ 30 15 1 ] |
|------------------|------------|-------------|-------------|
| Média            | 0.92       | 0.92        | 0.92        |
| Desvio           | 0.04       | 0.03        | 0.05        |



Variação da estrutura da rede

Esse conjunto de dados foi executado com os parâmetros  $\alpha$  = 0.05,  $\lambda$  = 0.1 e com 700 iterações. Os mesmos parâmetros foram utilizados nas três redes avaliadas.

O dataset Breast Cancer não apresentou uma variação de desempenho entre as diferentes redes neurais avaliadas. Acreditamos que isso aconteceu pois, independente do número de neurônios na camada oculta, a rede irá possuir um bom desempenho dadas as características de fácil aprendizado do dataset.

#### Conclusão

Neste trabalho, foi realizada a implementação, o treinamento e a avaliação de redes neurais para quatro conjuntos de dados distintos. Para tornar a rede mais eficiente e correta, foram utilizadas técnicas de vetorização, validação cruzada e a metodologia *mini-batch*.

Pôde-se perceber uma grande influência da estrutura da rede neural nos resultados, de forma mais acentuada para alguns datasets. Isso mostra que a escolha da rede adequada deve passar por um processo de experimentação extensivo.

Durante a avaliação das redes neurais, para os diferentes conjuntos de dados, foi esperado que o desempenho seria superior à técnica de florestas aleatórias desenvolvida no primeiro trabalho. No geral, essa hipótese mostrou-se verdadeira.

Ademais, esperava-se que a variação de parâmetros influenciasse bastante na rede final obtida. No entanto, para alguns casos a diferença de desempenho foi muito pouco perceptível.

Realizar esse trabalho foi bastante interessante e também importante, pois contribuiu para compreendermos mais a fundo vários conteúdos vistos em sala de aula.