Университет ИТМО

Отчёт по лабораторной работе №3 «Определение момента инерции крестовины при различном расположении грузов»

Выполнил: Федюкович С. А.

Факультет: МТУ "Академия ЛИМТУ"

Группа: S3100

Проверил: Пшеничников В. Е.

Цель работы

Измерить момент инерции крестовины при заданном расположении грузов на спицах относительно оси вращения.

Теоретические основы лабораторной работы

Момент инерции вращающейся системы зависит от распределения массы относительно оси вращения. Эта зависимость имеет вид $I \sim R^2$. В данной работе R — расстояние от центра груза на спице до оси вращения. Положение груза на первой риске соответсвует R=67 мм, расстояние между рисками 25 мм.

Основное уравнение динамики вращательного движения в проекции на ось вращения для вращающейся крестовины записывается следующим образом:

$$M_{\scriptscriptstyle \rm H} - M_{\scriptscriptstyle
m TP} = I, \varepsilon$$
 (1)

где $M_{\scriptscriptstyle \rm H}$ – момент силы натяжения нити, вызывающей вращение; $M_{\scriptscriptstyle
m TP}$ – момент сил трения; ε – угловое ускорение, I – момент инерции системы.

Вращение крестовины вызвано поступательным движение каретки с шайбами. Это движение описывается следующим уравнениям динамики:

$$mg - F_{\rm H} = ma, \tag{2}$$

Здесь m – масса каретки с шайбами, $F_{\rm \scriptscriptstyle H}$ – сила натяжения нити.

Сила натяжения из уравнения (2):

$$F_{\rm H} = mg - ma \tag{3}$$

Считая движение каретки равноускоренным, можно вычислить ускорение по формуле:

$$a = \frac{2h}{t^2}. (4)$$

Подстановка выражения (4) в формулу (3) даёт:

$$F_{\rm H} = m(g - \frac{2h}{t^2}). {(5)}$$

Соотвественно момент силы натяжения:

$$M_{\rm H} = F_{\rm H} r,\tag{6}$$

Где r – радиус ступицы.

Выражая радиус ступицы через её диаметр $r=\frac{d}{2}$ и учитывая формулу (5), получаем:

$$M_{\rm H} = \frac{md}{2}(g - \frac{2h}{t^2}). \tag{7}$$

При отсутствии проскальзывания нити, угловое ускорение, с которым вращается система, связано с линейным ускорением через радиус:

$$a = \varepsilon r = \varepsilon \frac{d}{2},\tag{8}$$

где d – диаметр ступицы, d=46,0 мм.

Объединение формул (4) и (8) даёт расчётную формулу для углового ускорения:

$$\varepsilon = \frac{4h}{dt^2}. (9)$$

Из уравнения динамики (1) вращающий момент силы натяжения

$$M_{\rm H} = M_{\rm TP} + I\varepsilon. \tag{10}$$

График функции $M_{\mbox{\tiny H}}=f(arepsilon)$ представляет собой прямую линию.