Week 3 Quiz

for longer.

TOTAL POINTS 8

1. Let f(x) be the probability that a person with feature x dies within 5 years. 1 / 1 point Let $S_x(t)$ be the survival function of a person with feature x. Assume t is measured in years. Which of the following is true? $\bigcap f(x) = S_x(5)$ $f(x) = S_x(0)$ (a) $f(x) = 1-S_x(5)$ Correct Recall that S(t) is the probability that you live at least t years or more. Therefore, $S_x \mathbf{5}$ is the probability that you live past 5 years. f(x) is the complement of that (probability of dying within 5 years). So it is 1 - S_x(5). 2. The survival function is always: 1 / 1 point Decreasing Increasing Linear The survival function is always decreasing. As time moves forward, it is less likely that you live

3.	Which	of the following is a difference between survival data and classification datasets?	1 / 1 point		
	Survival data can be used to build prognostic models				
	In	survival data the labels are amounts of time and in classification data the labels are binary			
	O C	assification dataset contain information on other features			
	~	Correct Both survival data and classification data can be used to build prognostic models (we did this last week!).			
		Both types of data can contain feature information.			
		Survival data includes time, and is therefore not binary, unlike classification datasets.			
4.	Which	of the following is an example of censoring?	0.667 / 1 point		
	✓ Pa	atient does not have the event by the end of the study period.			
	~	Correct			
		If a patient does not have the event by the time the study ends, that is an example of right censoring.			
		Are the other options examples of right censoring?			
	✓ Th	ne patient withdraws from a study before having an event, and before the study ends.			
	~	Correct If a patient withdraws from a study before the study ends, their data is right censored.			
		Are the other options examples of right censoring?			
		The control options complete or right consorring.			
	_ D	eath due to other, unrelated causes (such as an automobile accident)			
	,	/au didn't coloct all the correct appuars			

5. Estimate P(T>2|T>=2) from the following dataset:

i	T_i
1	3
2	5
3	4+
4	2

Hint: P(T > 2|T >= 2) = (1 - P(T = 2|T >= 2)).

- 0 1/2
- 0
- 3/4
- 0 1/4

✓ Correct

Recall that P(T > 2|T >= 2) = (1 - P(T = 2|T >= 2)).

There are 4 individuals who we know live at least 2 years, and 1 of them dies at 2 years. The

1/1 point

6. Compute the probability of surviving up to 4 years S(4) given the following dataset using the Kaplan Meier estimate:

i	τj	
1	3	
2	5	
3	4+	
4	2	

The Kaplan Meier Estimator is

$$S(t) = \prod_{i=0}^{N} \left(1 - \frac{d_i}{n_i}\right)$$

- 1/2
- 0 1/4
- 0
- 3/4

✓ Correct

We write out the formula:

7. Compute S(5) given the following dataset using the Kaplan Meier estimate (note, it's the same dataset as in the previous question).

i	ŢĴ
1	3
2	5
3	4+
4	2

The Kaplan Meier Estimator is

$$S(t) = \prod_{i=0}^{N} \left(1 - \frac{d_i}{n_i}\right)$$

Hint: since we're using the same dataset as in the previous question, you may notice that

$$S(5) = S(4) \times \left(\frac{d_5}{n_5}\right)$$

- 0
- 3/4
- 1/2
- 1/4

/	Correc

 $\mathcal{O}(\mathcal{E}) = - (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega) \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T} - \Omega) \mathcal{T} + - \Omega \cdot (1 - \mathcal{D}/\mathcal{T}$

8. True or False: If t is larger than the longest survival time recorded in the dataset, then S(t)=0 according to the Kaplan-Meier estimate.

The Kaplan Meier Estimator is

$$S(t) = \prod_{i=0}^{N} \left(1 - \frac{d_i}{n_i}\right)$$

- False
-) True

Correct

This is true only if the last observation is not censored. If the last observation is censored, and if all the other the terms in the Kaplan-Meier estimate are greater than 0, then S(t) will be greater than 0 as well.