

Tarea 1

17 de agosto de 2020

2º semestre 2020 - Profesores G. Diéguez - F. Suárez

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 23:59:59 del 28 de agosto a través del buzón habilitado en el sitio del curso (Canvas).
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template L^AT_FX publicado en la página del curso.
 - Cada solución de cada problema debe comenzar en una nueva hoja. *Hint:* Utilice \newpage
 - Los archivos que debe entregar son el archivo PDF correspondiente a su solución con nombre numalumno.pdf, junto con un zip con nombre numalumno.zip, conteniendo el archivo numalumno.tex que compila su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas.
- Si tiene alguna duda, el foro de Canvas es el lugar oficial para realizarla.

Problemas

Problema 1

a) Considere la siguiente recursión definida para todo $n \in \mathbb{N}$:

$$b_0 = 3$$
$$b_n = 2 \cdot n \cdot b_{n-1}$$

Demuestre por inducción que $b_n = 3 \cdot 2^n \cdot n!$

b) Sea $\mathbb{P} = \{x \in \mathbb{N} \mid x \text{ es par, } x > 0\}$. Dados $n, m \in \mathbb{P}$, decimos que m es un p-factor de n si existe $k \in \mathbb{P}$ tal que $k \cdot m = n$. Además, decimos que $q \in \mathbb{P}$ es un p-primo si no tiene p-factores.

Demuestre por inducción que todo elemento de \mathbb{P} tiene factorización p-prima (i.e. puede ser expresado como un producto de p-primos).

Problema 2

Dado un conjunto A, definimos el conjunto de los A-remolinos \mathcal{R}_A como el menor conjunto que cumple las siguientes reglas:

- 1. $\forall x \in A, x \in \mathcal{R}_A$
- $2. \ \forall x, y \in A$

$$x - y \in \mathcal{R}_A, y - x \in \mathcal{R}_A$$

$$\begin{array}{c|c}
x & y \\
 & \mid & \in \mathcal{R}_A, \mid & \in \mathcal{R}_A \\
y & x & \end{array}$$

Para las siguientes reglas considere que $R \in \mathcal{R}_A$ y que $x, y \in A$.

3. Sea un A-remolino de la forma R — x. Todos los siguientes son A-remolinos:

4. Sea un A-remolino de la forma x - R. Todos los siguientes son A-remolinos:

5. Sea un A-remolino de la forma \mid . Todos los siguientes son A-remolinos:

R

A modo de ejemplo, el siguiente es un N-remolino:

- a) Defina la función $size : \mathcal{R}_A \to \mathbb{N}$, la que recibe un A-remolino y retorna el número de elementos de A que contiene. En el caso del ejemplo anterior, size(R) = 13.
- b) Considere la siguiente definición inductiva para el origen de un A-remolino:

$$origin: \mathcal{R}_A \to A$$

1.
$$\forall x \in A, origin(x) = x$$

$$2. \ \forall x, y \in A$$

•
$$\operatorname{origin} \begin{pmatrix} x \\ | \\ y \end{pmatrix} = x, \operatorname{origin} \begin{pmatrix} y \\ | \\ x \end{pmatrix} = x$$

Para las siguientes reglas considere que $R \in \mathcal{R}_A$ y que $x \in A$.

$$3. \ origin(R - - x) = origin(R).$$

4.
$$origin(x - R) = origin(R)$$
.

5.
$$\operatorname{origin} \begin{pmatrix} R \\ | \\ x \end{pmatrix} = \operatorname{origin}(R)$$
.

6.
$$\operatorname{origin} \begin{pmatrix} x \\ | \\ R \end{pmatrix} = \operatorname{origin}(R).$$

Note que con esta definición, un A-remolino puede tener múltiples orígenes.

Demuestre que el número de orígenes de un A-remolino R es igual a size(R).