					AL13592714, AC007227.3, AC068533.7, AC005071.2, AP001710.1, AC003007.1, AL035402.15, AL35327.4, AC00536.3, AP06876.3, AP06876.3, AP06876.3, AP06876.3, AP06876.3, AP06876.3, AP06876.3, AP060315.1, AL02498.12, AC005319.3, AP060533.1, AL02498.12, AC005319.3, AP060533.1, AL03498.12, AC005319.3, AP060533.1, AL03698.12, AC00400.1, AF056405.1, AC019206.4, AC008403.6, AC00866.5, AB060882.1, AC005329.1, AC002400.1, AF056405.1, AC004867.3, AL068776.3, AC003238.1, AC00710.2, AC003239.1, AC002410.1, AC002405.1, AC00240776.3, AC008406.2, U95742.1, AC007328.1, AC002326.1, AC002410.1, AC00410.1, AC0041
HTPCS72	323	854941	1 - 3421	15 - 3435	AV716024, BF032601, BE884480, BG107409, BE896847, AA534380, BF996760, BE935961, AA625472, BF593809, AI275974, AA758011, AI091865, AA770655, AA876573, AA64248
					AA284480 AA308157 BF316735 AA150601, AI051605, AA1710055, AA620575, AA042456, AA284480 AA308157 BF316735 AA150509 A1338707 H98714 A1085686 A1613457 AW007656

					BE677803, BE092569, AW083271, BF890758, AA156713, BF315290, BF687549, AI079204, R38877, AI561066, AW629504, Z44870, AI638057, AA468549, BF445676, AW771735, BF852685, AW173317, BF882397, BE092420, AA368918, AW969242, AI254739, T80580, AA406249, F07793, R55262, R12721, BE832360, R55263, AW900776, BF357645, F05814, Z40638, F04054, AA321781, AW021358, AA714089 BF886411 BF149465, H01564, AA954780, BF871030, A1640665, BF03660, F07061
				****	AA243079, BF307290, BF835491, BE774931, H90643, N44003, AA307326, BF027559, AA242996, BF757045, AW999558, A1002239, BE567146, D19832, AW672798, BF089866, W73266,
					AF017388, BE932984, BE832354, BE707285, AB040946.1, AL008639.15, AF139898.1, AK027079.1, AF131746. 1.
нтрін83	324	916616	1 - 1467	15 - 1481	BE513091, BE304667, BG164062, AW385836, AW837727, AW837724, BF032123, BF541534,
					AW006504, AI769564, AW837723, AA552647, AW015998, AI343787, AI285131, AA976345, BE048787, A1040846, A1685788, A1053481, AW083020, BE819023, A1262767, AW194732
					AA345499, AA639438, T86266, AI469683, AI244378, AI659323, T86158, BF758311, BG164241,
					A1932964, AV647382, BF104997, A1913916, AF177340.1, AL158821.16, AF250558. 1.
HTSEW17	325	460579	1 - 638	15 - 652	AA779073, A1860913, A1028060, A1024955, BE549714, AW136463, R07163, AW612172, BF773051,
					AF007146.1, AF381980. 1.
HTTBI76	326	637725	1 - 1697	15 - 1711	AA059411, BE568135, BE856883, BF435859, BF977217, AV701624, BE566398, BE856637,
					AA429722, BE564953, BE568948, BF214557, AA196423, AW237471, AA716665, AI377511,
					AA193289, N51319, BF248318, AI796263, AI770155, AA045194, BE380112, BF029088, AI185077,
					AA442760, BF214729, BE865742, AA810811, AI572127, AI494075, BE777718, AA128609,
					AA933879, BF027898, BF691014, BF977570, AV702879, AA421072, N63065, BE866018, AI373224,
					R99289, BG003427, BE568709, AA919169, AI580336, AW024454, BF057794, AA731146, AA128610,
					BF105164, AA062583, BF031391, BE866602, BF238619, AI758175, AA045378, D61992, BF211153,
					R99375, AA420992, AA194235, AA976350, AW135598, AI648675, BF436083, BE392607, AA383499,
					BF368270, AA878813, AA877180, BE379677, AI219249, AA846496, AV760348, AA380012,
					BE866426, AA453722, BF687711, BF213063, H84990, H86604, H86921, AL519369, AA383353,
					BE742087, AA007586, T85467, BE514581, BF573588, BF028113, AL521923, BF091941, BE548812,
					AI244008, H55168, AA379174, BE621508, AI200967, BF346162, AL137861.5, AC005690.8,
HTTBS64	327	1008159	1 - 2044	15 - 2058	AW801486, AL157701.2, AC006356.3, AC079033.12, AC025159.28, AL360078.16,
					ALS90043.7 AC005406.2 AC009069.3
					AL136324.6. AL390800.4. AC073941.5.
					3, AC004988.2, AL359085.14, AC016623.5, AL163213.2, AL359850.7,
					AL133247.1, 1
					AL139090.11, AL354896.16, AC021863.5, AL121577.1, AL049732.11, AC012003.9,

					AL117259.6, AC010144.4, AC068061.5, AC068800.28, AL512452.7, AC010142.4, AC026691.4, AL354802.15, AL359252.17, AL512662.8, AC008506.7, AL022718.1, AC008462.6,
		•			, AL359332.2, AC019196.10, AL138479.4,
					AL450333.13, AF003529.1, AL133444.4, A
					AC005799.1, AL390247.11, AL392087.7,
					AC004216.1, AC007543.4,
					AL138773.4, AC0/9457.14,
					AC002302.1, AL443687.3, AC003873.3, AC023093.7, AL136100.12, AC007214.13, A1162500.15 AC004160.1 AD001533.4 1182828.1 AC073373.0 A1.034369.1 A1.445085.10
					AC002065.1, AC022081.32.
					AL355578.4, AC010534.7, AC005249.1, AC009466. 17.
HTWDF76	328	714344	1 - 949	15 - 963	AL528049, AL043219, AW088366, AW152013, BE779803, BE672597, AW243555, AI818186,
					AI653697, BE251084, AU160597, AU150608, AI871013, AA496891, AA428540, AA349190,
					AW249598, AI701503, AU151739, BE502287, T18883, AI202674, AU152190, AW732070, AI376266,
					AW139928, A1299710, A1888510, A1658535, AW341396, BF976767, BF224111, AA912087,
•					AA694485, A1887614, H17658, AA432221, T33286, A1571236, A1299136, R56443, R51367,
					BF447467, AI367595, AI420610, AI825055, T70333, AA928620, AI681192, AI499499, AI197972,
					AA664995, BE045622, AI961711, AI184815, AA888827, AA768736, AI659770, AA292170, AI383839,
		-			A1888009, R51842, AA973896, AW470342, A1915171, A1989713, BF802487, BE799943, A1275745,
					Al934660, Z39039, AA634437, AW137356, F04023, AI762348, AI253211, AI824874, AL136295.3,
-					BC004159.1, AK001435.1, AF006264. 1.
HTXCV12	329	1352213	1-1120	15 - 1134	A1014551, A1379840, AA928131, AA463863, AA463357, A1360362, A1553741, A1933132, AA682260,
					AA437378, AW612124, BE939238, AC017099. 11.
HTXFL30	330	620001	1 - 1977	15 - 1991	BE891940, BF851322, W28069, AW298651, AA112484, T08083, BF955273.
HTXJM03	331	603918	1 - 2384	15 - 2398	AL518347, BE742019, A1114655, BF514929, AL118845, BF880731, AA236989, A1140989,
					AW813468, BE841331, AW582445, AA252594, AA618239, AI823453, AI280443, BF988837,
					AL042692, BF989072, H15090, AW391644, BG011632, H15570, Z43079, H15630, AW813319,
					H22799, Z39170, AA252414, F07601, F11156, F05157, AA746494, H15091, F08825, W68008,
					AW813329, F03848, F01404, AA804351, AC005829.1, AB033093.1, BC006271. 1.
HTXON32	332	838288	1 - 1491	15 - 1505	AA746911, AA410788, AA704393, AA181917, BG222813, BE301584, AA683069, AA507822,
					A1056177, AA228778, AA084609, BE178231, BE178064, A1678867, AU147162, AV747362,
					A1857836, BF821968, A1754170, AW769654, AA825827, AA468975, AW513071, AW328202,
	-				AW069412, BF950533, AI962030, AI188049, BG250286, AI915075, BG2222564, BG222326,
					AV733824, AV759632, AA584862, BE246405, AK000114.1, AL035088.1, AC003691.1,
					AP001359.4, AC004605.1, Z94056.1, AC010422.7, AC004125.1, AC012157.20, AC007912.6,
					AC005368.1, AL031257.1, AL354680.14, AC079353.5, AF130417.4, AC005011.2, AP001672.1,
					AC003233.1, AL4430/1.14, AL3349//.10, AC000013.3, AP000831.4, AC008943.9,

AC003689.1, AC002288.1, AC006211.1, AP002751.3, AL13391.5, Z98200.8, AF001905.1, AC0065972. AC012450.9, AC005840.2, AC008699.5, AC007436.1, AL590381.4, AC002402.1, AL16281.5, AC009408.3, AC026191.3, AL136992.22, AC007436.1, AL590381.4, AC00840.4, AL008721.1, AC008381.3, AC021325.5, AL451061.8, AL117382.28, AC008511.6, AC004846.2, AL355365.10, AC004531.1, AC007652.1, AP001972.4, AP001727.1, AC087237.14, AC018064.3, AL157877.11, AL355884.11, AC010465.7, AL157877.11, AL355884.11, AC0104017.1, AC02345.3, AC02245.7, AC022457.5, AP001561.4, AP0010081.1, AC003773.1, AC009094.7, AC020286.3, AC022087.8, AC01804.4, AL60274.9, AC01913.4, AC001914.3, AL160274.9, AC01913.1, AC001914.3, AL160274.9, AL161899.21, Z82194.1, AC01911.4, AC01914.3, AL160274.9, AL160274.9, AC01921.1, AL035079.14, AL390239.16, AC008012.8, AP001691.1, AL13819.9, AC004089.25, AL158821.2, AC04089.25, AC005015.1, AL160274.9, AC005012.8, AP001691.1, AL19862.9, AC004992.2, AL158821.2, AC006801.3, AF001551.1, AC012312.8, AL16188.9, AC006801.3, AF001691.1, AC012312.8, AL16189.2, AC006801.3, AC00368.1, AC003680.3, AC00368.1, AC003	AW389141, AW609901, BF374842, BF374845, AW38854, AW389152, BF374846, AW389148, AW389140, AW389140, AW389140, AW389140, AW389140, AW389140, AW389140, AW389140, AW389140, AW389141, AA625286, AW388954, AW271542, AW752222, BF032067, AI953121, BE504740, AW389077, AW38858, AA303053, AI991077, AA303052, AW388926, AA613119, AA297581, AI963985, AW388918, AW388731, AW388759, AA524545, BF513041, AW811008, AL132639. 4.	AL533274, AI741266, AA194264, BF438670, BE855763, AI912191, BF109379, AI815187, AA521107, BE646628, AI911233, AA828445, AA429411, AI912933, AI423970, AI242299, BE042993, AW276617, AA905840, AA464614, AI394374, AW340805, AI096492, AI221797, AW129415, AI554269, AW969178, BG055418, AW029033, AW044596, AA582358, BE882568, AI870051, AA233165, AI933519, AI370473, BE676140, AW292630, AA429458, F03916, AA233241, F03174, AA193481,
	15 - 1193	15 - 868
	1 - 1179	1 - 854
	1352349	638402
	333	334
	HUFBY15	HUFCJ30

AW975015, AW975037, AW971975, AW972292, AW975031, AW975002, AW975037, AW975019, AW975037, AW975017, AW97486, AW975105, AW975012, AW975024, AW976023, AW975013, AW975014, AW975014, AW975014, AW975014, AW975014, AW975014, AW975014, AW976023, AW976023, AW976021, AW976021, AW971313, AW9710176, AW971320, AW971320, AW97608, AW971318, AW977011, AW971318, AW977011, AW977011, AW971318, AW977010, AW977011, AW971318, AW977010, AW977011, AW977010, AW977011, AW970010, AW97000, AW970003, AW970003, AW970010, AW970003, AW9700003, AW970003, AW970003, AW970003, AW970003, AW970003, AW970003, AW970003, AW970003, AW970003, AU970003, AW970003, AU970003, AU97000	AA502331, AA503839, AW592433, AW444616, AW957011, AA568450, AI017393, T85589, T72043, T78178, AW079940, T85588, AI699382, AA299977, BF593574, T86494, AW605240, AW956056, AA335186. AA551860.	BF683736, BE730782, BF792931, BF446001, BF205853, BE734189, BE796114, BG252706, BE560701, BE560444, BE562462, BE869307, BF309461, BE397034, BE560928, BE560121, BF691174, BF204949, BF312317, BE387292, BE856236, BG122978, BE298856, BE792425, BF797657, BE869619, BF312317, BE387292, BF306220, BF306195, AV655974, AW978168, BF305460, BG120823, BE616370, BE616612, BF30620, BF306195, AV655974, AW978168, BF305401, BF203303, BE560047, AW978171, BE882111, BF037530, BE676498, BE251660, BE270241, BF203303, BE312978, BF306475, BE905968, BF446006, BE737387, AW984420, N22768, AA176598, AW984416, BF307029, H95262, AW984415, BF435055, BF979227, BE693917, BE732765, AW984418, AW984423, BF306361, AV753202, AV690488, AA176958, AW984338, AI751645, AI301138, AA315010, AI830086, AW984422, AA176601, BG057361, BE979483, AA779980, AA176961, AW337133, AW189210, AI264229, BF727126, BF573743, BF979483, AA779980, AW984421, AI142549, BF305130, BE931839, BE297623, BF941393, AA451629, BE044637, AW984421, AI142549, BF305130, BF931839, BE297623, BF941399, AA551629, BE044637, AW984421, AU76961, AU76961, AW984421, AU76961, AW984421, AU76961, AW984421, AU76961,
	15 - 853	15 - 2561
	1 - 839	1 - 2547
	1352424	1352367
	335	336
	HUKAHSI	HUSXS50

	AW193265, AV760777, BF914859, BF918590, AF074667, AV763122, BF918640, BE908796,
	BU036331, AW313362, AA491814, AV739362, BF725313, AV762030, AV763334, AW021583, BF919090, A1203955, AA531580, AA613232, AA490183, D82542, AW576391, A1623720, AV739452
	AV728425, BE350475, AW500125, AA521323, AA665330, AV702857, AV730391, BF347791,
	AA610491, T40452, AA584167, AW474160, AI613280, AV762139, BE253048, AI192631, AI732865,
	AW020992, AA938105, AV733830, AF074677, AV652936, AW276817, BE872393, AW088846,
	AW438643, AI434695, AI345654, AW270270, AI610159, AW274346, AW265170, BF680041,
	BF854876, AA469451, AI589230, AA584145, AW833862, BE047069, AI570261, BF347740,
	AI619997, AW264934, AL042420, BF475381, AW518220, BF942454, AV762009, AI708125,
	BF697673, AW148792, BE297262, AW731867, AV759505, AA457542, BF991286, BF806176,
-	AV728410, AU159337, AW089322, BE164494, AA774222, A1345518, AW963497, AV763255,
	A1696962, AL041706, F36273, AA496508, AV764228, AA478355, AV713243, AV761613, BE677379,
	BF736198, BF916517, AW079135, AV735370, R99597, AA652764, AW029038, AV725423,
	AA410828, AW169517, BG250302, AV761786, BE393367, BF872630, AF063563, AV764241,
	AA601294, BF827410, BF812839, AL119691, AV760378, AA177061, BG177715, BF674620,
	AI298710, AW169151, AA502104, AI345681, AI345675, AA633798, AV761925, AA682912,
-	BF965007, AV733710, BF680074, AV762768, AA579362, BE139146, BF217299, AV762111,
	AV764578, AL118559.6, AB038653.1, AC020904.6, AC009497.3, AC006581.16, AF001549.1,
	AC004638.1, AC008267.6, AL121601.13, AL109865.36, AL356915.19, AC018809.4,
	AL163973.1, AC023908.6, AC011465.4, AL160237.4, AP000459.3, AC005081.3, AC044797.5,
	AP001760.1,
	, AC006038.2, AC011455.6,
	AC005911.6, AC008265.15, 1
	AL096701.14,
	, AC020658.6,
	AC005041.2, Z
	AC011811.42,
	, AC006435.7,
	AP001667.1,
	AC006028.3, A
	AC016025.12, AC004906.3,
	AP000338.2,
	AC012377.5, AC025212.5, AC005500.2, AC018751.30, Z93241.11, AL078638.9, AL354993.24,
	AC016769.10, AC005324.1, AL355517.12, AC074121.16, AC012170.6, AC006538.1,

AP000962.2, AC004650.1, AC083884.6, AL354935.23, U52111.2, AC016027.15, AC079363.19, AP00013.1, AP000045.1, AL136123.19, AC07011.1, AL357150.7, AC008753.8, AL121675.36, AC002551.1, AL136123.19, AC009516.19, AC004865.1, AL139230.25, AC00529.7, AL050335.32, AC007216.2, AL049759.10, AP001716.1, AL021546.1, AC00360.35, AP001718.1, AE006639.1, AC02436.2, AL359091.10, AC004940.1, AC00810.1.15, AC003029.2, AL352978.6, AC0204971.3, AL118520.26, AC007272.3, AC00810.1.3, AC030329.2, AL352978.6, AC004977.1, AC068712.6, AL02474.1, AC078878.20, AL136980.5, AC008778.1, AC064971.3, AL159995.8, AC008068.4, AL008778.1, AC0640971.3, AL159995.8, AC00301.1, AC017091.8, AC008068.1, AL158040.13, AL158040.13, AL109971.8, AC005031.1, AC017091.8, AC005031.1, AP001666.1, AL158040.13, AL109797.18, AC004686.1, AL3768.15, AC002300.1, AC007066.4, AL109797.18, AC004686.1, AL3768.15, AC002300.1, AC01759.3, AL117258.4, AC007404.4, AC020550.4, AL003147.1, AP001858.4, AC021203.5, AC011559.3, AL11278.4, AC007620.30, AC016553.6, AP002028.1, AL356575.8, AP000299.1, AL121748.6, AL133174.15, AC008444.6, AL121972.17, AC013264.4, AL162426.20, AC018633.2, AL133174.15, AC008474.7, AC09537.2, AC018635.6, AB023049.1, AC034198.6, AC022211. 5.	BG110964, BF795642, BF338736, BF344299, BF339610, BF344724, BE905985, BG171717, BF663359, BE878057, BF344117, BF797494, BE779728, BG110428, BE548198, BG113392, BE514891, BG105728, BF344895, BF342409, BE731592, BF344700, BF326253, BG107408, BF337274, AA029404, BE873119, BF339289, BE537561, BE546615, BF215522, BF348090, BF341943, BF974666, BG106809, AW517110, BE866817, BF337936, BE312135, BF342571, BF339613, BF795397, BE259965, BG025377, AW328067, AW051360, BF112053, AW467352, AW328066, BF305147, BF338023, BE465948, W38916, AA779337, BF854480, BE045837, W25986, AA973853, AA101157, AW084136, AA181835, AA775283, AA186569, W68073, A1560223, A1147239, A1089340, A1095449, BE670405, AA075273, BF3284, AA775239, AA186569, W68073, A1613463, AA588711, BG176783, A1761003, A1283584, A1434557, W28104, T62574, A1951073, AA782618, A1479881, W47512, N46795, A1985937, N40931, A1039397, A1432803, A1583386, BF802889, BF832903, BF802217, AW956881, W46793, BF802896, W68195, BF805055, W45117, W27429, AA324201, BF876216, AA862278, A1627377, Z43491, W26072, BF802605, A45117, W27429, AA324201, BF876216, AA862278, A1627377, Z43491, W26072, BF804896, A1369040, N46788, A1280551, AW393985, BF33179, A1961956, R54302, AW393954, AA021161, W25922, AA574349, BF819220, BF933082, T08587,
	15 - 2950
	1 - 2936
	768334
	339
	HWABYIO

HWADJ89	340	799506	1 - 1755	15 - 1769	A186469, BF432394, AA910718, BF832997, BF833048, R60251, AI272714, A1662434, AW351625, AA3106469, BF432394, WA1511, AA366238, AA1016, AW394019, BF814966, BF080042, BF155712, A1870945, AA870945, AA870946, BF832005, R53946, AA870946, AA870947, AR50945, BF834825, AA870946, AW0033094, AA840404, AA870949, BF834825, AA870946, AW007707, A1050954, AA840404, AA870949, BF834825, AA870946, AW003956, BER87414, T61397, A4050914, BF831259, BE82097, T03318, T30046, AW002956, BER87414, T61397, A4050914, AW508391, AC0733473, AA11620081, AR57157, AA026160, AA628683, AL1360017, AR005391, AA0733473, AC0732373, AL11620081, AR005611, BC0008741, AL1559921, AR005991, AW508391, AC0733473, AC0732373, AA11620081, AA1648896, AA8708983, AA524553, A1094628, AA870846, BE83082, AA870849, BE831773, BF157115, AA026161, BC0008741, AL1559921, AA78044, BR88707733, AA1090874, AW0033998, AA524553, A1994626, A1860486, A1860486, AW0052951, AW508391, AW509574, AW004480, AW004480, AW009495, A10008884, A1421190, A1693729, AW8712703, AA164896, AA688416, AA68846, AA43266, AA68846, AA43266, AA68846, AA43266, AA68846, AA43266, AA
HWBCB89	341	1093347	1 - 1303	15-1317	Al431751, BE672627, AL042729, AL045494, AL042655, BE672626, AL042523, AL042519, AL042853, AL031296.1, AK026719.1, AB007922.2, AF052104.1, AF064854.1, AL133082. 1. BE383506, AW957082, BF965615, AA749209, BE314194, BE856755, AW959644, AA406605,

	BF673639, AI635816, AI332841, AW576111, AI925364, AA599283, BE646653, AA815259, AI093865,
	AA557291, AA992639, AI199140, AI094047, AA778372, AA777994, BF110030, AA700564,
	AW236389, AW405247, AI376136, AW195935, AA418750, AA418959, AA809375, AI378198,
	W47086, AA258421, AA833614, AA722806, AW135756, AI312116, N26019, AI401448, BE047114,
	A1004747, N36650, AA297567, AA975019, AA369324, F32728, AW592186, AA298693, AA248246,
	AA214511, AA298744, AA248186, R01364, AA651996, A1382499, AA215364, AW241153,
	AW167882, A1038732, AL514627, AL514919, AV681857, AL513907, AA421957, AV756703,
	AL514473, AL513597, AL514791, AV682351, AI567360, AL135661, AI679916, AV756477,
	AL513803, AW087445, AV726951, BF904180, AL514691, BF792469, AV682330, BF726603,
	AV710479, AV706777, AV682266, BE965432, BE966388, AV758179, BG105099, BG257535,
	BE879906, AI499381, AW162071, AV717725, BG179993, BG112879, BF681080, BE964614,
	A1349772, AV682222, AL514155, AV757598, AL120854, BG036846, BF969484, BF971016,
	AV755207, AA640779, AV729334, AI633419, AI282903, AW301409, AI569616, AI433976,
	BF925729, AV682249, AV755581, BE963035, BG110517, BG109270, BG120816, BF343241,
	A1537677, BF970449, AW827289, BF883916, AL514935, BF724691, BE965481, BG122481,
	AL079963, AW103371, BG110684, AL513763, A1799199, AL036802, BF812933, A1868831,
	AV723953, BE048071, A1857296, BF904258, BF882343, BF795712, AV721967, A1678357, AL119863,
	A1521012, BF055737, BE964812, BG260037, A1498579, AV756560, AL045500, AW071349,
	BG105078, AW088899, BF344652, BF054789, BE964700, BG168696, AL048871, A1696626,
	AW068845, AI612913, AI572418, AI783792, AW238730, N80094, AI802240, BG180996, BG256950,
	AV757455, AL040243, AV681668, AI610645, AW983783, AI250663, BE876038, AI538085, AI620287,
	BF970162, AI702433, AL119791, AL045903, AI567351, AI280661, BE621256, AI537617, BF342070,
	AV682792, A1872914, BF034349, BG027082, BG108324, AA572758, AL036146, AV733824,
	AV681987, AV757096, AV758806, AI538716, AV755613, BF694790, AW268253, AI591316,
	BF726160, A1636456, AV682326, BF981774, AL121328, A1312428, A1281779, A1584140, BF673434,
	BG031815, AI950664, AV729890, AI680498, AV686346, AI682743, AW071417, BF792961, AI349004,
-	BE881155, AV714975, BE966443, AI648663, AW148320, AI340582, BG250190, AI500077, AI349645,
	AV682051, AW149236, A1224992, A1289937, A1906328, AV716613, AV699193, A1564719, A1922676,
	BF343172, AW074993, AI349614, BG032208, BE781369, BE172767, BF793644, AK027683.1,
	AF091092.1, AL133640.1, S78214.1, AK025339.1, AF078844.1, AK000137.1, AB060908.1,
	BC008387.1, AF090943.1, AF090934.1,
	AL512733.1, AL050393.1, AF090901.1, AL157431.1, AL133016.1,
	AF090900.1, AK000614.1, AL049938.1, BC007021.1, AL136586.1, A
	AK025958.1, AK026741.1, AL050146.1, BC008485.1, AK027164.1,
	AL137550.1, AL049382.1, BC008365.1, AK000652.1, BC003683.1,
	AB055303.1, AL136799.1, BC008417.1, AK026504.1,
	AK000212.1, AL390167.1, AL117457.1, AF111847.1, AL080060.1, AB048953.1, AK026045.1,

AB063070.1, AL442082.1, AL137527.1, AL136749.1, AK000432.1, AL122098.1, AL442072.1, AB063070.1, AF207829.1, AF099093.1, AK026452.1, AL050116.1, AB05336.1, AL110196.1, AL096744.1, AB063046.1, AL136845.1, AL136928.1, AF097996.1, AL122050.1, AL12050.1, AL1096.1, AL1096744.1, AB063046.1, AL136842.1, AL13682.1, AL137682.1, AL13785.1, AR025084.1, AR0250896.1, AL13785.1, AR0250896.1, AL13785.1, AR026809.1, AL13785.1, AR02788.1, AR02788.1, AR0278.1, AL13785.1, AR02788.1, AL13788.1, AR02685.1, AR02653.1, AL13309.1, AL13309.1, AL136786.1, BC00495.11, AL136091.1, AL138092.1, AB060883.1, AR02694.1, AR026528.1, AR026528.1, AL136091.1, AL138092.1, AL136091.1, AL136091.1, AL138092.1, AL136091.1, AL136091.1, AL16200.1, AL186098.1, AR02698.1, AR02698.1, AR02698.1, AR02698.1, AR02698.1, AR02698.1, AR02698.1, AR02698.1, AL13210.1, AL13360.1, AL13360.1, AR02698.1, AL13218.1, AR02698.1, AL13218.1, AR02698.1, AL13218.1, AR02698.1, AL13218.1, AR02698.1, AL1328.1, AL1328.1, AL1328.1, AL1328.1, AL1328.1, AR02698.1, AL1328.1, AL1328.1	H93613, N75773, N22551, AA884923, AW873751, H93612, AC039057. 8.	AA410788, AU147162, AW069227, AW805539, AI278089, AW578373, BF769368, AW054995, AI733856, AI890324, AW849032, AI923052, AA547979, AU144540, AI634187, AI056177, AA847499, BF681619, AW861303, AW800029, AA916430, AV762633, AI457313, AA228778, BG250286, AI732389, AI754653, BE138594, BF675251, AI537020, AW973992, AA158190, AI679002, AW168433, AI891080, AW514662, AL079734, BE062159, AA515728, AA491423, BF832074, AA832145, BE897079, AW074631, AW798093, BF725178, AI049630, AW068596, AA579179, BG115297, AW004884, AW084445, AI923050, AW575000, AI282479, AU152561, AL120282,
	15 - 1677	15 - 1604
	1 - 1663	1 - 1590
	799427	1028519
	342	343
	HWBFX31	нwDAH38

	AW338179, AA669155, AA502991, BG222875, A1279417, AA491955, AA236867, AA640710,
	AW872575, AI254770, AA223174, BE042511, AI821714, AI791913, AV756491, AI284126, AI792133,
	A1821785, BE139139, A1251034, AA176604, AW302315, AA569648, BG236628, AV759518,
	AA714110, AI133164, AC008481.7, AE006639.1, AC006057.5, AL049776.3, AC004846.2,
	AC008687.4,
	AC011449.6,
	•
-	
	AC004531.1, /
	, AC005015.2,
	AL118520.26,
	AC008395.6, 4
	AC008543.7, AL354735.14, AC005079.6, AF243527.1, A
	AL033518.14, AL354760.11,
	, AC079177.21, AC005488.2, AC020917.4, AC008812.7,
	•
	AC011740.7, AL024498.12, AJ251973.1, AP001717.1, U95742.1, A
	AL157823.9, AC005746.1, AP000113.1, AP000045.1, AP001716.1,
	, AF131215.1, AL139099.2,
	AC008753.8, AL078461.38, Z
	, AC005695.1, AC011811.42, AC008018.20,
	AC011484.4, AL121949.13, AL139396.17,
	AC005291.1, AL513008.14, AC006530.4, AF001549.1, A
	, AL049869.6, AC011487.5, AC016830.5, AC069262.24,
	AL034405.16, AB023049.1, AL354798.13, AC009228.4,
	AF024533.1, AL353616.13, AP000557.2, AL080243.21,
	AC068799.14, AC084865.2, AC011718.2, AC004821.3
	AL450325.5, AC007450.1, AL512883.5, AC011471.6, A
	AC003098.1, AP001753.1, AC010530.7, AC009412.6,
	, AC004812.1, AC004020.1, AP001693.1, AP001667.1, AL355833.4,
	AL035072.16, AP001725.1,
	AL033529.25, AP000116.1, AC027644.9, AL137818.3, AC073593.13, AL080242.11,

				AC009154.5, AF235097.1, Z83826.12, AP001710.1, AC007371.16, AF219991.1, AP000043.1, AP0001111 AC007151.2 AL1362953 AC0055193 AC005020 5 AL4493054 AC01602512
				AL163281.2,
				Arvoi/14.1, 5.
HWHGZ51 344	886212	1 - 1685	15 - 1699	BE735965, AW372956, BF826018, BE735558, AW007721, A1955624, N30735, BF842481, AA531286, BE735660, AA77660, AA77
				BE733030, AA470901, AA479003, AA709137, IN29329, BF813297, AI080020, BF814081, W72299, AW450151, BF349121, AI342682, BE713111, AI207356, BE713103, BE7131065, AA459897, AI206356,
				W23589, BF349122, BE939515, BE714549, W76325, W35267, AW272943, AA158001, AA442947,
				BE713172, BG012569, T69460, AA321599, AW135072, AA369339, BE713162, AI202455, AA369441,
	-			N57021, W68131, BE713086, BE713074, T69437, BE713165, A1301772, T70492, T70513, BF738317,
				AW389438, BE717812, D29356, BE717821, AA127911, AA846442, AA127966, BF842499, BF739402, 1
				DE140441, DE046026, A V036363, ALO3/362, ALO3/002, DO1/3993, A1002342, A V /4132/, A1638117 BF18431 N36377 AI 040341 AW070673 BF813060 BF703641 AV741663 BC114433
				A1020337, BE104331, N23277, AE040241, AW073312, BF012300, BF72201, AV743202, BC114432, A1469505, AL042745, AV757865, AL079963, BF970768, A1698391, BG110684, A1499285, BF968711.
				BF751302, AI570807, AI345416, AI345612, BF726183, AI824576, BF724420, AI345415, BE789764,
-				F37323, AI627988, BG256090, AL043355, BG113188, BF856052, AV658845, AI884318, AI491775,
				AV656595, BF924855, AI886594, BG104927, AW051088, BF032768, BG111560, AV713305,
				BF526020, AI540458, AA287231, AW880037, AV733448, AI288285, AW983832, BF725534,
				BE047852, BG029086, BF970652, AA580663, BE963838, BG167986, A1538850, A1580436,
				AW673679, BF055899, AI440239, AI685005, AI687295, BG058150, AA833760, AA225339, AI241923,
				Als68138, BE018334, BG033723, BF054877, BG115626, BF338002, AL042744, AW303152,
				BG001235, A16/3363, BG030364, AW090393, A1/8399/, AL042191, BF812938, BF/52245,
				BF/2/091, AI6/0009, AV/18258, AW020561, AI43315/, AI818358, AI/02073, AI473536, BF911521, AV757057 BF868489 AV68717 A1687708 T05813 BF817061 A1570066 A1 036714 A1345778
				A1932794, AW163834, BE879108, AW827206, A1564259, BG110682, BG058398, AA641818,
				AI633125, AI866040, BE535384, AI538564, AI638798, AW161156, AI915291, AW152182, BG117375,
				AW051059, BF811804, AV681993, BG166654, AI866770, AL041150, AW104141, AI800440,
				BE877904, BF086116, AI433590, BE069120, AA806720, BE778453, BG180605, AL036673,
				BG112456, Al969655, AV733734, AL514887, AW827103, BG028116, BE964614, Al539847,
				AI863191, AI254727, AL039086, AI445992, BF885081, AI345608, BG029667, AI345688, AW083573,
				AI572717, AL036631, BF816037, AI613038, AW834302, BF909758, AW026882, AL038445,
			_	AI868931, R36271, BF872365, BG110517, BG257547, BG164558, AI267454, AI581033, AI623941,
				AI568114, AW167918, AA743354, AV714798, AV757035, AW983829, BF794478, AJ223603.2,
				AF082889.1, AC018758.2, AL353940.1, BC006472.1, AF132676.1, AF061836.1, AL137533.1,
				AL137294.1, AB055352.1, AF262032.1, AL137271.1, AL137480.1, AF056191.1, AL117435.1,
				ALU80154.1, X/2889.1, AK024558.1, BC0045/0.1, AB04/941.1, AL389955.1, AL11/460.1,

						AL136845.1,	BC006103.1,	AL389939.1,	AB050431.1,	Z82022.1, Al	AL512733.1,
						AL122093.1,	AB052191.1,	AK026762.1,	AL110221.1,	AL049430.1,	AL359583.1,
-					AF217982.1, A	AF146568.1,	_	AB062750.1,	AL137476.1,	AL137557.1,	AB060873.1,
					BC001655.1, X	X65873.1, AI	AL512718.1, Al	AB055371.1, A	AL137463.1, A	AB056427.1, A	AK027144.1,
					BC008282.1, A	_		_	AF285167.1,	AL122050.1,	AB050410.1,
					AK026642.1, E	BC004925.1,	AK025414.1,	AB060908.1,	AK025435.1,		
					-	AL080148.1,	AL512719.1,	AL512750.1,	AK026480.1,		AL390154.1,
					•	AB056421.1,	BC007053.1,	AK026593.1,	AK024594.1,	X82434.1, A	$\overline{}$
					AB047904.1, ⊿	AB060929.1,	AK027146.1,	AL133665.1,	AF104032.1,	BC005007.1,	BC008673.1,
					AB060826.1, A	AK026583.1,	BC009395.1,	AL359596.1,	AB049758.1,	AL137658.1,	AL080137.1,
						AF090934.1,	AF358829.1,	AL137478.1,	AB055370.1,	BC004899.1,	AK026613.1,
					BC000090.1, A	AK026506.1,	BC002733.1,	AF321617.1,	AB062978.1,	AL137479.1,	S61953.1,
					BC005858.1, A	AF218031.1,	AK026885.1,	BC002523.1,	BC000348.1,	AF061795.1,	AF151685.1,
					AY034001.1, A	AK026542.1,	AF320073.1,	AF026816.2,	AK024992.1,	AK027081.1,	AJ299431.1,
					AK026626.1, E	BC008417.1,	AL137550.1,	AK025491.1,	AL359601.1,	AL117578.1,	AL136893.1,
					AL359618.1, U	U80742.1, AI	AF111112.1, BC008387.1,		AK027096.1, AL133640.1,		AF225424.1,
					AL137459.1, A		BC004958.1,	AB048975.1,	AB063079.1,	AB056809.1,	AB052200.1,
					_	AF061943.1,	AL096744.1,	AF090901.1,	AF057300.1,	AF057299.1,	X98834.1,
					AL133067.1, Y	Y16645.1, AI	AL133558.1, Al	AK026528.1, A	AB063070.1, A	AK027161.1, B	BC006440.1,
	-				AF177336.1, A	_		_		AK027164.1,	AL136843.1,
						AL133075.1,	AK025312.1,	AF125948.1,	AL583915.1,	AL157431.1,	AK025484.1,
					BC008078.1, B	BC008893.1,	AK025465.1,	AL137548.1,	AL137521.1,	AL136784.1,	AL050366.1,
					AK027868.1, A	AF230496.1,	•	AB060905.1,	AB060837.1,	AL096720.1,	AK026462.1,
						BC004349.1,	X69819.1, Bo	BC004951.1, B(BC004362.1, B	BC009212.1, Y	14314.1,
					7	AL110225.1,	AL122098.1,	AL136892.1,	AL389982.1,	₹,	< <
					•	AK025391.1,	AK027121.1,	AB048953.1,	AC021325.5,		
	_					AL080234.1,	AL162062.1,	AL359620.1,	AB063100.1,	BC001844.1,	•
						BC008983.1,	AL359941.1,	AB060912.1,	BC003683.1,	AB060897.1,	
					•	AK026744.1,	AL117416.1,	BC004195.1,	AK026784.1,	AL122100.1,	AL122118.1,
						AY033593.1,	BC007499.1,	AL110280.1,	AL133560.1,	AL080124.1,	AK026647.1,
					BC009033.1, A	AK024588.1,	AK026086.1,	AL049283.1,	BC008899.1,	AB048919.1,	AK026959.1,
					AK000647.1, /	AB048974.1,	AL136792.1,	Z37987.1, AL137529.1,		BC007680.1, BC006525.	C006525.1,
						AL050116.1,	BC003684.1,	AL137558. 1.			
HWLIH65	345	793713	1-817	15 - 831	AW663887, AA702920, A1042498, BF981980, AA661749, AW401902, A1286001, AW237708,	702920, A104	2498, BF98198	80, AA661749,	AW401902, A	1286001, AW2	37708,
					AA512902, AW503623, BE645601, AW405179, AW973049, Z39825, AA129086, AL134524,	503623, BE6	45601, AW405	179, AW97304	9, Z39825, AA	129086, AL13	4524,
					AW972845, AW975037, AW979204, AW975032, AW976024, AW979127, AW972292, AW975002,	7975037, AW	979204, AW97	'5032, AW9760	24, AW97912'	7, AW972292,	AW975002,
					AW975965, AW975628, AW970942, AW861944, AW969988, AW971403, AW979098, AW975105	75628, AW	970942, AW86	1944, AW9699	88, AW97140	3, AW979098,	AW975105,

03313, A10158	246 908264 1 787 15-801				AW975031, AW971017, AW971020, AW971020, AW971017, AW975031, AW975023, AW975023, AW975020, AW975024, AW975023, AW975023, AW975023, AW975024, AW975024, AW975023, AW975023, AW975023, AW975024, AW975024, AW975024, AW975023, AW975023, AW975023, AW975024, AW9775024, AW9775024, AW9775024, AW9775024, AW9775024, AW9775024, AW9775024, AW977224,
346 898364 1 - 787 15 - 801	1 246 000264 1 787 18 201			-	Z69719.1, ÁE006462. 1.
AA3X774 A14197 A15072227, AA302011,	100 - 61 101 - 11 100 000 000	 898364	1 - 787	٩	AA693501, AI990639, AW003313, AI015821, AI990561, AA435707, AI203905, AA398805, AA387530 AI341921 AI867558. AA382529. AA382827.

Description of Table 4

5

10

Table 4 provides a key to the tissue/cell source identifier code disclosed in Table 1B.2, column 8. Column 1 provides the tissue/cell source identifier code disclosed in Table 1B.2, Column 8. Columns 2-5 provide a description of the tissue or cell source. Note that "Description" and "Tissue" sources (i.e. columns 2 and 3) having the prefix "a_" indicates organs, tissues, or cells derived from "adult" sources. Codes corresponding to diseased tissues are indicated in column 6 with the word "disease." The use of the word "disease" in column 6 is non-limiting. The tissue or cell source may be specific (e.g. a neoplasm), or may be disease-associated (e.g., a tissue sample from a normal portion of a diseased organ). Furthermore, tissues and/or cells lacking the "disease" designation may still be derived from sources directly or indirectly involved in a disease state or disorder, and therefore may have a further utility in that disease state or disorder. In numerous cases where the tissue/cell source is a library, column 7 identifies the vector used to generate the library.

TABLE 4

Γ.	Π	<u> </u>	Γ		Ι				Г	Γ		Г	Γ	_	Γ	Г	Γ	Γ-	Γ.			<u> </u>	I –	Г	Г	Τ	Γ	
Vector																										2		
Disease																												
Cell Line																												
Organ																												
Tissue	a Heart	a_Liver	a_mammary gland	a_Prostate	a_small intestine	a_Stomach	Blood B cells	Blood B cells activated	Blood B cells resting	Blood T cells activated	Blood T cells resting	brain	breast	breast cancer	Cell Line CAOV3	cell line PA-1	cell line transformed	colon	colon (9808co65R)	colon (9809co15)	colon cancer	colon cancer (9808co64R)	colon cancer 9809co14	Donor II B Cells 24hrs	Donor II B Cells 72hrs	Donor II B-Cells 24 hrs.	Donor II B-Cells 72hrs	Donor II Resting B Cells
Description	a Heart	a_Liver	a_mammary gland	a Prostate	a small intestine	a_Stomach	Blood B cells	Blood B cells activated	Blood B cells resting	Blood T cells activated	Blood T cells resting	brain	breast	breast cancer	Cell Line CAOV3	cell line PA-1	cell line transformed	colon	colon (9808co65R)	colon (9809co15)	colon cancer	colon cancer (9808co64R)	colon cancer 9809co14	Donor II B Cells 24hrs	Donor II B Cells 72hrs	Donor II B-Cells 24 hrs.	Donor II B-Cells 72hrs	Donor II Resting B
Code	AR022	AR023	AR024	AR025	AR026	AR027	AR028	AR029	AR030	AR031	AR032	AR033	AR034	AR035	AR036	AR037	AR038	AR039	AR040	AR041	AR042	AR043	AR044	AR050	AR051	AR052	AR053	AR054

AR055 Heart AR056 Human Lung AR057 Human Mammary (clonetech) AR058 Human Mammary (clonetech) AR059 Jurkat (unstimulated) AR060 Kidney AR061 Liver AR061 Liver AR062 Liver (Clontech) AR064 Lymphocytes chronic Iymphocytes diffuse Lymphocytes diffuse AR064 Lymphocytes follicular Iymphoma AR065 Lymphoma AR066 Normal Ovarian AR066 Normal Ovary AR068 Normal Ovary AR068 Normal Ovary AR069 Normal Ovary AR069 Normal Ovary AR069 Normal Ovary AR069 Normal Ovary AR060 Normal Ovary	ch) tech) (ech)
Human Lung (clonetech) Human Mammary (clontech) Human Thymus (clonetech) Jurkat (unstimulated) Kidney Liver Liver Liver Lymphocytes chronic lymphocytes diffuse large B cell lymphoma Lymphocytes follicular lymphoma normal breast Normal Ovarian (4004901) Normal Ovary	ch) tech) (ech)
Human Mammary (clontech) Human Thymus (clonetech) Jurkat (unstimulated) Kidney Liver Liver Liver Lymphocytes chronic lymphocytes diffuse large B cell lymphoma Lymphocytes follicular lymphoma Normal Ovarian (4004901) Normal Ovary 9508G045	tech) (ech) (b)
Human Thymus (clonetech) Jurkat (unstimulated) Kidney Liver Liver Liver (Clontech) Lymphocytes chronic lymphocytes diffuse large B cell lymphoma Lymphocytes follicular lymphoma normal breast Normal Ovarian (4004901) Normal Ovary 9508G045	(b)
Aidney Kidney Liver Liver Liver (Clontech) Lymphocytes chronic lymphocytes diffuse large B cell lymphoma Lymphocytes follicular lymphoma normal breast Normal Ovarian (4004901) Normal Ovary 9508G045	
Kidney Liver Liver (Clontech) Lymphocytes chronic lymphocytic leukaemia Lymphocytes diffuse large B cell lymphoma Lymphocytes follicular lymphoma normal breast Normal Ovarian (4004901) Normal Ovary 9508G045	
Liver Liver (Clontech) Lymphocytes chronic lymphocytic leukaemia Lymphocytes diffuse large B cell lymphoma Lymphocytes follicular lymphoma normal breast Normal Ovarian (4004901) Normal Ovary 9508G045	
Liver (Clontech) Lymphocytes chronic lymphocytic leukaemia Lymphocytes diffuse large B cell lymphoma Lymphocytes follicular lymphoma normal breast Normal Ovarian (4004901) Normal Ovary 9508G045	
Lymphocytes chronic lymphocytic leukaemia Lymphocytes diffuse large B cell lymphoma Lymphoma normal breast Normal Ovarian (4004901) Normal Ovary 9508G045	
Lymphocytic feuraeinia Lymphocytes diffuse large B cell lymphoma Lymphocytes follicular lymphoma normal breast Normal Ovarian (4004901) Normal Ovary 9508G045	91
Lymphocytes diffuse large B cell lymphoma Lymphocytes follicular lymphoma normal breast Normal Ovarian (4004901) Normal Ovary 9508G045	11.0
Lymphocytes follicular lymphoma normal breast Normal Ovarian (4004901) Normal Ovary 9508G045	lge B
Normal breast Normal Ovarian (4004901) Normal Ovary 9508G045	lar
Normal Ovarian (4004901) Normal Ovary 9508G045	
Normal Ovary 9508G045	901)
Normal Overy	945
	808
AR070 Normal Ovary Normal Ovary 9806G005 9806G005	5005
AR071 Ovarian Cancer Ovarian Cancer	
AR072 Ovarian Cancer Ovarian Cancer (9702G001) (9702G001)	(100)
	(029)
AR074 Ovarian Cancer Ovarian Cancer (9804G011)	(011)

	(00040011)		
AR075	Ovarian Cancer (9806G019)	Ovarian Cancer (9806G019)	
AR076		Ovarian Cancer (9807G017)	
AR077	Ovarian Cancer (9809G001)	Ovarian Cancer (9809G001)	
AR078	ovarian cancer 15799	ovarian cancer 15799	
AR079	Ovarian Cancer 17717AID	Ovarian Cancer 17717AID	
AR080	,	Ovarian Cancer 4004664B1	
AR081	Ovarian Cancer 4005315A1	Ovarian Cancer 4005315A1	
AR082	ovarian cancer 94127303	ovarian cancer 94127303	
AR083	Ovarian Cancer 96069304	Ovarian Cancer 96069304	
AR084	Ovarian Cancer 9707G029	Ovarian Cancer 9707G029	
AR085	Ovarian Cancer 9807G045	Ovarian Cancer 9807G045	
AR086	ovarian cancer 9809G001	ovarian cancer 9809G001	
AR087	Ovarian Cancer 9905C032RC	Ovarian Cancer 9905C032RC	
AR088	Ovarian cancer 9907 C00 3rd	Ovarian cancer 9907 C00 3rd	
AR089	Prostate	Prostate	
AR090	Prostate (clonetech)	Prostate (clonetech)	
AR091	prostate cancer	prostate cancer	
AR092	prostate cancer #15176	prostate cancer #15176	
AR093	prostate cancer #15509	prostate cancer #15509	

prostate cancer #15673	Small Intestine (Clontech)	Spleen	Thymus T cells activated	Thymus T cells resting	Tonsil	Tonsil geminal center	Tonsil germinal center B cell		Tonsil lymph node	Tonsil memory B cell	Whole Brain	Xenograft ES-2	Xenograft SW626	002 : Monocytes untreated	(1hr)	002 : Monocytes untreated (5hrs)	004 : Monocytes untreated	(5hrs)	004: Monocytes untreated	lhr	005: Placebo (48hrs)	006: pC4 (24hrs)	006: pC4 (48hrs)	007: PHA(1hr)	007: PHA(6HRS)	007: PMA(6hrs)	008: 1449_#2
AR094 prostate cancer #15673	AR095 Small Intestine (Clontech)	AR096 Spleen		-	1	_	AR101 Tonsil germinal center	-	AR102 Tonsil lymph node	AR103 Tonsil memory B cell	AR104 Whole Brain	AR105 Xenograft ES-2	AR106 Xenograft SW626	AR124 002 : Monocytes	untreated (1hr)	AR125 002 : Monocytes	AR135 004: Monocytes	untreated (5hrs)	AR136 004: Monocytes	untreated 1hr	AR139 005: Placebo (48hrs)	AR140 006: pC4 (24hrs)	AR141 006: pC4 (48hrs)	AR152 007: PHA(1hr)	AR153 007: PHA(6HRS)	AR154 007: PMA(6hrs)	ARI55 008: 1449 #2

3T3P10 1.0uM insulin		3T3P10 10uM insulin	3T3P10 No Insulin	3T3P4	Adipose (41892)	Adipose Diabetic (41611)		Adipose Diabetic (41661)	Adipose Diabetic (41689)		Adipose Diabetic (41706)	Adipose Diabetic (42352)		Adipose Diabetic (42366)	Adipose Diabetic (42452)		Adipose Diabetic (42491)	Adipose Normal (41843)		Adipose Normal (41893)	Adipose Normal (42452)		Adrenal Gland	Adrenal Gland + Whole	Brain	B7(1hr)+ (inverted)	Droget (19775 A 7B)
3T3P10 1.0uM insulin	3T3P10 10nM Insulin	3T3P10 10uM insulin	3T3P10 No Insulin	3T3P4	Adipose (41892)	Adipose Diabetic	(41611)	Adipose Diabetic (41661)	Adipose Diabetic	(41689)	Adipose Diabetic (41706)	Adipose Diabetic	(42322)	Adipose Diabetic (42366)	Adipose Diabetic	(42452)	Adipose Diabetic (42491)	Adipose Normal	(41843)	Adipose Normal (41893)	Adipose Normal	(42452)	Adrenal Gland	Adrenal Gland + Whole	Brain	B7(1hr)+ (inverted)	1 2
AR168	+	AR170	=	t	AR173	 		AR175	AR176		ARI77	AR178	-+	AR179	AR180		AR181	AR182		AR183	AR184		AR185	AR186	-	AR187	╀

Breast (4004199)	Breast (4004399)	Breast (4004943B7)	Breast (4005570B1)	Breast Cancer (4004127A30)	Breast Cancer (400443A21)	Breast Cancer (4004643A2)	Breast Cancer (4004710A7)	Breast Cancer (4004943A21)	Breast Cancer (400553A2)	Breast Cancer (9805C046R)	Breast Cancer (9806C012R)	Breast Cancer (ODQ 45913)	Breast Cancer (ODQ45913)	Breast Cancer (ODQ4591B)	Colon Cancer (15663)	Colon Cancer (4005144A4)	Colon Cancer (4005413A4)	Colon Cancer (4005570B1)
AR189 Breast (4004199)	AR190 Breast (4004399)	AR191 Breast (4004943B7)	╁─	-	AR194 Breast Cancer (400443A21)	AR195 Breast Cancer (4004643A2)	AR196 Breast Cancer (4004710A7)	AR197 Breast Cancer (4004943A21)	AR198 Breast Cancer (400553A2)	AR199 Breast Cancer (9805C046R)	AR200 Breast Cancer (9806C012R)	AR201 Breast Cancer (ODQ 45913)	AR202 Breast Cancer (ODQ45913)	AR203 Breast Cancer (ODQ4591B)	AR204 Colon Cancer (15663)	-	AR206 Colon Cancer (4005413A4)	AR207 Colon Cancer (4005570B1)

						_																				
																			-							
					ļ																					
		plue)	(Red)	ırs	ells	ulin	(nilı	(1	l) (I				-	in		1	3)	(((3)	(1	2)	(9	(5)	2R)
rol RNA #1	Control RNA #2	eadipocyte (eadipocyte (Red)	B-Cells 24hrs	Resting B-Cells	2 10nM Insulin	H114EP12 (10nM insulin)	P12 (2.6ug/ul)	P12 (3.6ug/ul)	UVEC#1	HUVEC #2	L6 undiff.	L6 Undifferentiated	10nM Insulin	SH + 8d97	10nM Insulin	00-06-A007B)	(96-02-A075)	(96-03-A144)	96-04-A138	Liver (97-10-A074B)	Liver (98-09-A242A)	Liver Diabetic (1042)	Liver Diabetic (41616)	Liver Diabetic (41955)	Liver Diabetic (42352R)
Contr	Contr	Cultured Preadipocyte (blue)	Cultured Pr	Donor II	Donor II	H114EP12	H114EP12	H114EP	H114EP	HU	JH.	PC	L6 Unc	T6P8+	9T	L6P8 1	Liver (0	Liver (Liver (Liver (Liver (9	Liver (9	Liver D	Liver Di	Liver Di	Liver Dia
	2	ipocyte	ipocyte	ls 24hrs	g B-	M	Mu	(ln/gn	(ln/gn				iated	nsulin		sulin	007B)	075)	144)	138)	074B)	242A)	(1042)	(41616)	(41955)	(42352R)
Control RNA #1	Control RNA #2	Cultured Preadipocyte (blue)	Cultured Preadipocyte (Red)	Donor II B-Cells 24hrs	Donor II Resting B- Cells	H114EP12 10nM Insulin	H114EP12 (10nM insulin)	H114EP12 (2.6ug/ul)	H114EP12 (3.6ug/ul)	HUVEC #1	HUVEC #2	L6 undiff.	L6 Undifferentiated	L6P8 + 10nM Insulin	T6P8 + HS	L6P8 10nM Insulin	ver (00-06-A	Liver (96-02-A075)	Liver (96-03-A144)	Liver (96-04-A138)	Liver (97-10-A074B)	Liver (98-09-A242A)	Liver Diabetic (1042)	Liver Diabetic (41616)	Liver Diabetic (41955)	Liver Diabetic (42352R)
AR208 C	AR209 Cc	AR210 Cu	AR211 CL	AR212 De	AR213 De	AR214 H	AR215 H	AR216 H	AR217 H	AR218 HI	├	AR221 L6	AR222 L6	AR223 L6	AR224 L6		AR226 Li		AR228 Li	AR229 Li	 	AR231 Li	AR232	AR233 Li	AR234 Li	AR235 Li

1 : Diabatic (17366)	Liver Diabetic (42306)	Liver Diabetic (42483)	Liver Diabetic (42491)	Liver Diabetic (99-09-	A281A)	Lung	Lung (27270)	Lung (2727Q)	Lung Cancer (4005116A1)	Lung Cancer (4005121A5)	Lung Cancer (4005121A5))	Lung Cancer (4005340A4)	Mammary Gland	Monocyte (CT)	Monocyte (OCT)	Monocytes (CT)	Monocytes (INFG 18 hr)	Monocutes (INEC 18hr)	Monocytes (INFG 8-11)	Monocytes (O CT)	Muscle (91-01-A105)	Muscle (92-04-A059)	Muscle (97-11-A056d)	Muscle (99-06-A210A)	Muscle (99-07-A203B)	Muscle (99-7-A203B)
-	┰	-+-	AR238 Liver Diabetic (42491)	AR239 Liver Diabetic (99-09-	A281A)	AR240 Lung	AR241 Lung (27270)	AR242 Lung (2727Q)	AR243 Lung Cancer (4005116A1)	AR244 Lung Cancer (4005121A5)	AR245 Lung Cancer (4005121A5))	AR246 Lung Cancer (4005340A4)	AR247 Mammary Gland	AR248 Monocyte (CT)	AR249 Monocyte (OCT)	AR250 Monocytes (CT)	AR251 Monocytes (INFG 18	AB252 Monocytes (INEG 18hr)	+	AR254 Monocytes (O CT)	AR255 Muscle (91-01-A105)	AR256 Muscle (92-04-A059)	AR257 Muscle (97-11-A056d)	AR258 Muscle (99-06-A210A)	AR259 Muscle (99-07-A203B)	AR260 Muscle (99-7-A203B)

				•						(0												
	Muscle Diabetic (42366)	NK-19 Control	NK-19 IL Treated 72hrs	NK-19 UK Treated 72 hrs.	Omentum Normal (94-08- B009)	Omentum Normal (97-01-A039A)	Omentum Normal (97-04- A114C)	Omentum Normal (97-06- A117C)	Omentum Normal (97-09- B004C)	Ovarian Cancer (17717AID)	Ovarian Cancer (9905C023RC)	Ovarian Cancer (9905C032RC)	Ovary (9508G045)	Ovary (9701G208)	Ovary 9806G005	Pancreas	Placebo	rIL2 Control	RSS288L	RSS288LC	Salivary Gland	Skeletal Muscle
(42352R)	Muscle Diabetic (42366)	NK-19 Control	NK-19 IL Treated 72hrs	NK-19 UK Treated 72 hrs.	Omentum Normal (94- 08-B009)	Omentum Normal (97- 01-A039A)	Omentum Normal (97- 04-A114C)	Omentum Normal (97- 06-A117C)	Omentum Normal (97- 09-B004C)	Ovarian Cancer (17717AID)	Ovarian Cancer (9905C023RC)	Ovarian Cancer (9905C032RC)	Ovary (9508G045)	Ovary (9701G208)	Ovary 9806G005	Pancreas	Placebo	rIL2 Control	RSS288L	RSS288LC	Salivary Gland	Skeletal Muscle
	AR262	AR263	AR264	AR265	AR266	AR267	AR268	AR269	AR270	AR271	AR272	AR273	AR274	AR275	AR276	AR277	AR278	AR279	AR280	AR281	AR282	AR283

Skeletal Muscle (91-01- A105)	Skeletal Muscle (42180)	Skeletal Muscle (42386)	Skeletal Muscle (42461)	Skeletal Muscle (91-01-	A105)	Skeletal Muscle (92-04-	A059)	Skeletal Muscle (96-08- A171)	Skeletal Muscle (97-07-	A190A)	Skeletal Muscle Diabetic	(42352)	Skeletal Muscle Diabetic	(42366)	Skeletal Muscle Diabetic	(42395)	Skeletal Muscle Diabetic	Skeletal Muscle Diabetic		Skeletal Muscle Diabetic	4232	Skeletal Musie (42461)	Small Intestine	Stomach	T-Cell + HDPBQ71.fc 1449	16hrs	T-Cell + HDPBQ71.fc 1449	OIIIS	T-Cell + IL.2 16hrs
AR284 Skeletal Muscle (91- 8	AR285 Skeletal Muscle (42180)	AR286 Skeletal Muscle (42386)	Skeletal Muscle (42461)	AR288 Skeletal Muscle (91-01-		al Muscle (92-04-	A059)	AR290 Skeletal Muscle (96-08- A171)	AR291 Skeletal Muscle (97-07-	A190A)	AR292 Skeletal Muscle	Diabetic (42352)		Diabetic (42366)		Diabetic (42395)	AR295 Skeletal Muscle S		Diabetic (42491)	6)	Diabetic 42352	Skeletal Musie (42461)	-+	AR300 Stomach	AR301 T-Cell + HDPBQ71.fc T-	1449 16hrs	AR302 T-Cell + HDPBQ71.fc T-	+	AR303 T-Cell + 1L2 16hrs

										6	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Uni-CAP XK	Uni-ZAP XR	Uni-ZAP XR	GV 0 4 5 . 11	Uni-CAP AR	Uni-ZAP XK	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	Lambda ZAP II	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
											ne	u				ey	yo		adder	adder	. <u>u</u>		50	Node			enta	ate
T-Cell + IL2 6hrs	T-Cell Untreated 16hrs	T-Cell Untreated 6hrs	T-Cells 24 hours	T-Cells 24 hrs	T-Cells 24 hrs.	T-Cells 24hrs	T-Cells 4 days	Thymus	TRE	TREC	Human Adult Spleen Spleen	Human Cerebellum Brain				Human Fetal Kidney Kidney	Human 8 Week Old Embryo		Human Gall Bladder Gall Bladder	Human Gall Bladder Gall Bladder	Human Hippocampus Brain	T-Cell Line	Human Fetal Lung Lung	Human Adult Lymph Node Lymph Node	Namalwa B-Cell Line, EBV immortalized		Human Placenta Placenta	Human Prostate Prostate
AR304 T-Cell + IL2 6hrs	AR306 T-Cell Untreated 16hrs			AR309 T-Cells 24 hrs	AR310 T-Cells 24 hrs.	AR311 T-Cells 24hrs	-	AR313 Thymus	AR314 TRE	AR315 TREC	H0004 Human Adult Spleen	+	+-	Embryo	H0009 Human Fetal Brain	+	Human 8 Week Whole	Embryo	H0014 Human Gall Bladder	H0015 Human Gall Bladder,	H0020 Human Hippocampus	+-	+-	Human Adult Lymph	lwa Cells	H0030 Human Placenta	╁	+

Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Uni-ZAP XR	Uni-ZAP XR		Uni-ZAP XR		Uni-ZAP XR		Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Uni-ZAP XR				
			disease	disease					disease		disease									disease		disease					disease		
																							Cell Line						Cell Line
	Small Int.	Testis	Pancreas	Testis	Bone	Lung		eye	Esophagus		Uterus		Liver	Heart	Brain	Brain	Umbilical vein			Uterus	Thymus	Skin	Blood		Pancreas	Adrenal gland	Muscle		Blood
Human Pituitary	Human Adult Small Intestine	Human Testes	Human Pancreas Tumor	Human Testes Tumor	Human Fetal Bone	Human Adult Pulmonary		Human Cornea	Human Esophagus, cancer		Human Endometrial Tumor		Human Fetal Liver	Human Fetal Heart	Human Hippocampus	Human Cerebellum	Human Umbilical Vein	Endothelial Cells		Human Uterine Cancer	Human Thymus	Human Skin Tumor	Activated T-Cells		Human Pancreas	Human Infant Adrenal Gland	Human Leiomyeloid	Carcinoma	Activated T-Cells
Human Pituitary	Human Adult Small Intestine	Human Testes	Human Pancreas Tumor	Human Testes Tumor	Human Fetal Bone	Human Adult	Pulmonary	Human Cornea	Human Esophagus,	Cancer	Human Endometrial	Tumor	Human Fetal Liver	Human Fetal Heart	Human Hippocampus	Hunnan Cerebellum	Human Umbilical Vein,	Endo. remake	Human Fetal Spleen	Human Uterine Cancer	Human Thymus	Human Skin Tumor	Human Activated T-	Cells	Human Pancreas	Human Infant Adrenal Gland	Human Leiomyeloid	Carcinoma	Human Activated T- Cells (II)
H0033	H0036	H0038	H0039	H0040	H0041	H0042		H0044	H0045		H0046		H0047	H0050	H0051	H0052	9500H		H0057	H0059	H0063	8900H	6900H		H0070	H0071	H0073		H0075

disease Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	disease Uni-ZAP XR	pBluescript	disease Uni-ZAP XR	disease Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	pBluescript	Uni-ZAP XR	Uni-ZAP XR	pBluescript	pBluescript	Uni-ZAP XR	Uni-ZAP XR	IIni-ZAP XR
dis				dis		dis	dis										
Thymus	Skin			Sk Muscle		T-Cell	Parotid	Liver	Embryo	Embryo	Brain	Lymph Node	Placenta	Parathyroid	Spleen	eye	Sk Muscle
Human Thymus Tumor	Human Fetal Skin	Jurkat Cells	Human Colon	Epithelioid Sarcoma, muscle	Human Thymus	T-Cell Lymphoma	Human Parotid Cancer	Human Adult Liver	Human Whole Six Week Old Embryo	Human Whole Six Week Old Embryo	Human Fetal Brain	Human Adult Lymph Node	Human Placenta	Human Parathyroid Tumor	Human Adult Spleen	Human Cornea	Human Skeletal Muscle
Human Thymus Tumor	Human Fetal Epithelium (Skin)	HUMAN JURKAT MEMBRANE BOUND POLYSOMES	Human Colon	Human epithelioid	Human Thymus	Human T-Cell	Lymphoma Human Parotid Cancer	Human Adult Liver, subtracted	Human Whole Six Week Old Embryo	Human Whole 6 Week Old Embryo (II), subt	Human Fetal Brain, subtracted	Human Adult Lymph Node, subtracted	Human Placenta, subtracted	Human Parathyroid Tumor, subtracted	Human Adult Spleen, subtracted	Human Cornea, subtracted	Human Adult Skeletal
H0077	H0081	Н0083	H0085	9800H	H0087	Н0090	9600H	8600H	H0100	H0102	H0103	H0108	H0111	H0112	H0120	H0121	H0122

Human Fetal Dura Mater	Human Fetal Dura Mater	Brain		7	Uni-ZAP XR
Human ·F	Human Rhabdomyosarcoma	Sk Muscle		disease	Uni-ZAP XR
Cyclohe, Jurka	Cyclohexamide Treated Cem, Jurkat, Raji, and Supt	Blood	Cell Line		Uni-ZAP XR
LN	LNCAP Cell Line	Prostate	Cell Line		Uni-ZAP XR
LN	LNCAP Cell Line	Prostate	Cell Line		Uni-ZAP XR
TV	LNCAP Cell Line	Prostate	Cell Line		Uni-ZAP XR
Cyclohea Jurka	Cyclohexamide Treated Cem, Jurkat, Raji, and Supt	Blood	Cell Line		Uni-ZAP XR
Human	Human Synovial Sarcoma	Synovium			Uni-ZAP XR
Cyclohex	Cyclohexamide Treated Cem,	Blood	Cell Line		Uni-ZAP XR
Aci	Activated T-Cells	Blood	Cell Line		Uni-ZAP XR
Act	Activated T-Cells	Blood	Cell Line	والمراجعة	Uni-ZAP XR
Act	Activated T-Cells	Blood	Cell Line		Uni-ZAP XR
9 Wk Old	9 Wk Old Early Stage Human	Embryo			Uni-ZAP XR
Human	nan Adult Liver	Liver			Uni-ZAP XR
Human	Human Whole 7 Week Old Embryo	Embryo			Uni-ZAP XR
	Epididymis	Testis			Uni-ZAP XR
Hu	Human Fetal Liver	Liver			Uni-ZAP XR
Human A	Human Adrenal Gland Tumor	Adrenal Gland		disease	Uni-ZAP XR
Ac	Activated T-Cells	Blood	Cell Line		Uni-ZAP XR
Ac	Activated T-Cells	Blood	Cell Line		Uni-ZAP XR

Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	11: 7 A D VD
			disease	disease		disease								disease	disease	disease	disease			
Cell Line	Cell Line				Cell Line					Cell Line	Cell Line		Cell Line					Cell Line		Callline
Blood	Blood	Synovium	Prostate	Prostate	Blood	Prostate	Embryo	Embryo	Brain	Breast	Breast	Brain	Blood	Breast	Breast	Breast	Colon	Blood	Breast	Blood
Activated T-Cells	Activated T-Cells	Human Synovium	Human Prostate Cancer, stage B2	Human Prostate Cancer, stage B2	Activated T-Cells	Human Prostate Cancer, stage C	Twelve Week Old Early Stage Human	Twelve Week Old Early Stage Human	Human Fetal Brain	CAMA1Ee Cell Line	CAMA1Ee Cell Line	Human Fetal Brain	Human Neutrophil	Human Primary Breast Cancer	Human Primary Breast Cancer	Human Primary Breast Cancer	Human Colon Cancer	T-Cells	Human Normal Breast	Llumon
Activated T-Cells, 12 hrs., ligation 2	Activated T-Cells, 24 hrs., ligation 2	Human Synovium	Human Prostate Cancer, Stage B2	Human Prostate Cancer, Stage B2 fraction	Activated T-Cells, 24 hrs.	Human Prostate Cancer, Stage C fraction	12 Week Old Early Stage Human	12 Week Old Early Stage Human, 11	Human Fetal Brain, random primed	CAMA1Ee Cell Line	CAMA I Ee Cell Line	Human Fetal Brain	Human Neutrophil	Human Primary Breast Cancer	Human Primary Breast Cancer	Human Primary Breast Cancer	Human Colon Cancer	Resting T-Cell	Human Normal Breast	Human Besting
H0160	H0161	H0163	H0165	H0166	H0167	6910H	H0170	H0171	H0172	H0176	H0177	H0178	H0179	H0180	H0181	H0182	H0183	H0187	H0188	H0180

	Uni-ZAP XR		pBluescript	Uni-ZAP XR		Uni-ZAP XR	Uni-ZAP XR	ay are . II	Uni-ZAP XK			Uni-ZAP XR			pBluescript	pBluescript		pBluescript	nBluescript	discount	pBluescript			pBluescript	Uni-ZAP XR
	Cell Line											Cell Line						Cell Line		-					
	Blood		Brain	Heart		Liver	Liver		peritoneum			Blood			Colon	Colon		Prostate	2	gund	Prostate			Prostate	
Macrophage/Monocytes	Cyclohexamide Treated Cem,	Jurkat, Raji, and Supt	Human Cerebellum	Human Cardiomyopathy		Human Fetal Liver	Human Fetal Liver		Human Greater Omentum			Cyclohexamide Treated Cem,	Jurkat, Raji, and Supt		Human Colon Cancer	Human Colon Cancer		LNCAP Cell Line	11-7-4	Human retal Lung	Human Prostate			Human Prostate	Human Pituitary
Macrophogo	Cem Cells,	cyclohexamide treated, subtra	Human Cerebellum, subfracted	Human	Cardiomyopathy, subtracted	Human Fetal Liver, subfracted	Human Fetal Liver,	subtracted, neg clone	Human Greater	Omentum, fract II	remake,	Jurkat Cells,	cyclohexamide treated,	subtraction	Human Colon Cancer, subtracted	Human Colon Cancer,	differential	LNCAP, differential	expression	Early Stage Human	Human	Prostate, differential	expression	Human Prostate,	Subtracted Human Pituitary,
	H0192		H0194	9610H		H0197	H0199		H0200			H0202			H0204	H0205		H0207	00001	H0208	H0211			H0212	H0213

	subtracted				
H0214	Raji cells, cyclohexamide treated, subtracted	Cyclohexamide Treated Cem, Jurkat, Raji, and Supt	Blood	Cell Line	pBluescript
H0216	Supt cells, cyclohexamide treated, subtracted	Cyclohexamide Treated Cem, Jurkat, Raji, and Supt	Blood	Cell Line	pBluescript
H0217	Supt cells, cyclohexamide treated, differentially expressed	Cyclohexamide Treated Cem, Jurkat, Raji, and Supt	Blood	Cell Line	pBluescript
H0218	Activated T-Cells, 0hrs, subtracted	Activated T-Cells	Blood	Cell Line	Uni-ZAP XR
H0219	Activated T-Cells, 0hrs, differentially expressed	Activated T-Cells	Blood	Cell Line	Uni-ZAP XR
H0220	Activated T-Cells, 4 hrs, subtracted	Activated T-Cells	Blood	Cell Line	Uni-ZAP XR
H0222	Activated T-Cells, 8 hrs, subtracted	Activated T-Cells	Blood	Cell Line	Uni-ZAP XR
H0224	Activated T-Cells, 12 hrs, subtracted	Activated T-Cells	Blood	Cell Line	Uni-ZAP XR
H0225	Activated T-Cells, 12hrs, differentially expressed	Activated T-Cells	Blood	Cell Line	Uni-ZAP XR
H0229	Early Stage Human Brain, random primed	Early Stage Human Brain	Brain		Lambda ZAP II
H0231	Human Colon, subtraction	Human Colon			pBluescript
H0233	Human Fetal Heart, Differential (Adult- Specific)	Human Fetal Heart	Heart		pBluescript
H0234	human colon cancer, metastatic to liver, differentially expressed	Human Colon Cancer, metasticized to liver	Liver		pBluescript

pBluescript	Uni-ZAP XR	Uni-ZAP XR	pBluescript	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR
	disease		·			disease	disease							disease		
		Cell Line									Cell Line	Cell Line				Cell Line
Liver	Kidney	Breast	Heart	Embryo		Cartilage	Bone	Testis	Lymph Node	Lymph Node	Blood	Blood	Brain	Colon	Tonsil	Blood
Human Colon Cancer, metasticized to liver	Human Kidney Tumor	C7MCF7 Cell Line, estrogen treated	Human Fetal Heart	Human 8 Week Old Embryo	Human Monocytes	Human Chondrosarcoma	Human Osteosarcoma	Human Adult Testis	Breast Lymph Node	Breast Lymph Node	Human HL-60 Cells, unstimulated	HL-60 Cells, PMA stimulated 4H	Human Cerebellum	Human Colon Cancer	Human Tonsil	T-Cells
Human colon cancer, metaticized to liver, subtraction	Human Kidney Tumor	C7MCF7 cell line, estrogen treated, subtraction	Human Fetal Heart, Differential (Fetal- Specific)	Human 8 Week Whole Embryo, subtracted	Human Activated Monocytes	Human Chondrosarcoma	Human Osteosarcoma	Human adult testis, large inserts	Breast Lymph node cDNA library	breast lymph node CDNA library	HL-60, unstimulated	HL-60, PMA 4H	H. cerebellum, Enzyme subtracted	human colon cancer	human tonsils	Activated T-Cell (12hs)/Thiouridine
H0235	H0239	H0241	H0242	H0244	H0250	H0251	H0252	H0253	H0254	H0255	H0256	H0257	H0261	H0263	H0264	H0265

	labelledEco				
H0266	Human Microvascular Endothelial Cells, fract. A	НМЕС	Vein	Cell Line	Lambda ZAP II
H0267	Human Microvascular Endothelial Cells, fract. B	НМЕС	Vein	Cell Line	Lambda ZAP II
Н0268	Human Umbilical Vein Endothelial Cells, fract. A	HUVE Cells	Umbilical vein	Cell Line	Lambda ZAP II
H0269	Human Umbilical Vein Endothelial Cells, fract. B	HUVE Cells	Umbilical vein	Cell Line	Lambda ZAP II
H0270	HPAS (human pancreas, subtracted)	Human Pancreas	Pancreas		Uni-ZAP XR
H0271	Human Neutrophil, Activated	Human Neutrophil - Activated	Blood	Cell Line	Uni-ZAP XR
H0272	HUMAN TONSILS, FRACTION 2	Human Tonsil	Tonsil		Uni-ZAP XR
H0274	Human Adult Spleen, fractionII	Human Adult Spleen	Spleen		Uni-ZAP XR
H0275	Human Infant Adrenal Gland, Subtracted	Human Infant Adrenal Gland	Adrenal gland		pBluescript
H0280	K562 + PMA (36 hrs)	K562 Cell line	cell line	Cell Line	ZAP Express
H0282	HBGB"s differential consolidation	Human Primary Breast Cancer	Breast		Uni-ZAP XR
H0284	Human OB MG63 control fraction I	Human Osteoblastoma MG63 cell line	Bone	Cell Line	Uni-ZAP XR
H0286	Human OB MG63 treated (10 nM E2) fraction I	Human Osteoblastoma MG63 cell line	Bone	Cell Line	Uni-ZAP XR
H0288	Human OB HOS control fraction I	Human Osteoblastoma HOS cell line	Bone	Cell Line	Uni-ZAP XR

Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	ZAP Express	ZAP Express	Uni-ZAP XR	Uni-ZAP XR	pBluescript	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Lambda ZAP II	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
								disease		disease		disease			disease	disease		disease	disease	disease		
Cell Line	Cell Line		Cell Line	Cell Line	Cell Line																	Cell Line
Bone	Bone		Placenta	Placenta	Breast	Cord Blood	Cord Blood	Synovium	Brain		Stomach	Lymph Node	Brain	Brain	Ovary	Skin		Liver	Blood vessel	Kidney		Bone Marrow
Human Osteoblastoma HOS cell line	Human Osteoblastoma HOS cell line		Amniotic Cells - TNF induced	Amniotic Cells - Primary Culture	CAMA1Ee Cell Line	CD34 Positive Cells	CD34 Depleted Buffy Coat (Cord Blood)	Synovium, Chronic Synovitis/ Osteoarthritis	Brain	pleural cancer	Human Stomach	Human B Cell Lymphoma	Human Frontal Cortex	Human Corpus Callosum	Ovarian Cancer	Dermatofibrosarcoma	Protuberans	Hepatocellular Tumor	Hemangiopericytoma	Kidney Cancer	Duodenum	Bone Marrow Cell Line RS4;11
Human OB HOS treated (1 nM E2) fraction I	Human OB HOS treated (10 nM E2) fraction I	WI 38 cells	Amniotic Cells - TNF induced	Amniotic Cells - Primary Culture	HCBB"s differential consolidation	CD34 positive cells (Cord Blood)	CD34 depleted Buffy Coat (Cord Blood)	Human Chronic Synovitis	human caudate nucleus	human pleural cancer	HUMAN STOMACH	HUMAN B CELL LYMPHOMA	Human frontal cortex	human corpus colosum	human ovarian cancer	Dermatofibrosarcoma	Protuberance	Hepatocellular Tumor	Hemangiopericytoma	Kidney cancer	Duodenum	Bone Marrow Cell Line (RS4;11)
	H0292	H0293	H0294	H0295	H0298	H0305	H0306	H0309	H0310	H0313	H0316	H0318	H0320	H0327	H0328	H0329		H0331	H0333	H0334	H0339	H0341

Uni-Zap XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pCMVSport 1	pCMVSport 1	pCMVSport 1	Uni-ZAP XR	ZAP Express	pBluescript	pSport1	ZAP Express	Uni-ZAP XR	Uni-ZAP XR		pCMVSport 1	pCMVSport 1	pCMVSport 1	pCMVSport 1	pCMVSport 1	pSport1	pSport1	Uni-ZAP XR	Uni-ZAP XR
	disease	disease		disease	disease						disease			-	disease									disease	
						Cell Line																			
Brain		Brain	Liver	Brain		Blood		Kidney	Liver								Testis	Heart			Spleen				
Lingual Gyrus	Stomach Cancer - 5383A (human)	Brain (Medulloblastoma)- 9405C006R	Human Fetal Liver, mixed 10&14 Week	Glioblastoma	Wilm"s Tumor	Human Leukocytes	Human Liver, normal Adult	Human Kidney	Human Fetal Liver	KMH2	Human Rejected Kidney	HELA CELL LINE	L428	Atrophic Endometrium and	Lymph node with Met. Breast	Cancer	Human Testes	Human Adult Heart	Human Brain	Human Lung	Human Adult Spleen	Human Tongue	Human Tongue	Bone Cancer	Human Prostate BPH
Lingual Gyrus	stomach cancer (human)	Brain-medulloblastoma	Human Fetal Liver, mixed 10 & 14 week	Glioblastoma	wilm"s tumor	Human Leukocytes	Human Liver	Human Kidney	H. Normalized Fetal Liver, II	KMH2 cell line	Human rejected kidney	HeLa cell line	L428 cell line	H. Atrophic Endometrium	H. Lymph node breast	Cancer	Human Testes	Human Heart	Human Brain	Human Lung	Human Spleen	Human Tongue, frac 1	Human Tongue, frac 2	Bone Cancer	Human Prostate BPH, re-excision
H0342	H0343	H0346	H0350	H0351	H0352	H0354	H0355	H0356	H0357	H0359	H0361	H0362	H0366	H0369	H0370		H0372	H0373	H0374	H0375	H0376	H0379	H0380	H0381	H0383

pCMVSport 1	pCMVSport 1	pBluescript	pBluescript	pSport1	pSport1	pBluescript	ZAP Express	ZAP Express	ZAP Express	Lambda ZAP II	Lambda ZAP II		ZAP Express	Uni-ZAP XR	Uni-ZAP XR		pBluescript	Uni-ZAP XR		pBluescript
		disease	disease																	
	Cell Line													Cell Line	Cell Line			:		
	Blood			brain	brain	Liver					Brain		Cord Blood	Umbilical vein	Umbilical vein					
Human Brain	Human Leukocytes	Human Rejected Kidney	Human Amygdala Depression	Human Meningima		Human Fetal Liver	Redd-Sternberg cell	Redd-Sternberg cell	Redd-Sternberg cell	Human Kidney Cortex	Human Brain Striatum	Depression	CD34 Depleted Buffy Coat (Cord Blood)	HUVE Cells	HUVE Cells		Human Pituitary	Human Amygdala Depression		Human Kidney Cortex
Brain, Kozak	Leukocyte and Lung; 4 screens	Human Rejected Kidnev. 704 re-excision	Human Amygdala	H. Menjingima, M6	H. Meningima, M1	Fetal Liver, subtraction	A-14 cell line	AI-CELL LINE	L1 Cell line	Human Kidney Cortex,	Human Striatum	Depression, re-rescue	CD34 depleted Buffy Coat (Cord Blood), re-	H. Umbilical Vein Endothelial Cells, 1L4	H. Umbilical Vein	endothelial cells, uninduced	Human Pituitary,	H Amygdala	Depression, subtracted	Human kidney Cortex, subtracted
H0384	H0386	H0388	H0390	H0391	H0392		H0394	H0395	 	H0399	חטעטח	110400	H0402	H0403	H0404		H0405	H0406		H0408

pBluescript	pSport1	pSport1	pSportl	pSporti	pCMVSport 2.0	pBluescript	pBluescript	pBluescript	Uni-ZAP XR	pBluescript	pSport1	pSport1	pBluescript	pSport1	pSport1	ZAP Express	pBluescript
					disease												
			Cell Line	Cell Line		Cell Line					Cell Line	Cell Line				Cell Line	
Brain	Bladder	Bladder	Umbilical vein	Umbilical vein	Ovary	Blood					Blood	Blood			Ovary	cell line	Kidney
Human Brain, Striatum Depression	H Male Bladder, Adult	Human Female Adult Bladder	HUVE Cells	HUVE Cells	Ovarian Tumor, OV5232	Human Neutrophil - Activated	Human Pituitary	Human Pituitary	Bone Cancer	Bone Marrow	T-Cells	T-Cells	Human Pituitary	Human Adipose, lest hiplipoma	Human Ovary Tumor	K562 Cell line	Kidney medulla
H. Striatum Depression, subtracted	H. Male bladder, adult	H Female Bladder, Adult	Human umbilical vein endothelial cells, IL-4 induced	Human Umbilical Vein Endothelial Cells, uninduced	H. Ovarian Tumor, II, OV5232	Human Neutrophils, Activated, re-excision	Human Pituitary, subtracted VIII	Human Pituitary, subtracted VII	Bone Cancer, re- excision	Human Bone Marrow, re-excision	T-Cell PHA 16 hrs	T-Cell PHA 24 hrs	Human Pituitary, subt IX	Human Adipose	Human Ovary	K562 + PMA (36 hrs),re-excision	H. Kidney Medulla, re-
H0409	H0410	H0411	H0412	H0413	H0415	H0416	H0417	H0418	H0419	H0421	H0422	H0423	H0424	H0427	H0428	H0429	H0431

H0433 Human Umbilical Vein Endothelial cells, frac B, re-excision H0435 Ovarian Tumor 10-3-9 H0436 Resting T-Cell Library,II Library,II H0437 H Umbilical Vein Endothelial Cells, frac A, re-excision H0438 H. Whole Brain #2, re-excision Excision H0439 Human Eosinophils H0441 H. Kidney Cortex.	Human Umbilical Vein Endothelial cells, frac B, re-excision Ovarian Tumor 10-3-95 Resting T-Cell Library,II H Umbilical Vein Endothelial Cells, frac A, re-excision H. Whole Brain #2, re-excision Human Eosinophils H. Kidney Cortex,	HUVE Cells Ovarian Tumor, OV350721 T-Cells HUVE Cells	Umbilical vein	Cell Line		pBluescript
 	mor 10-3-95 Sell Il Vein Cells, frac ion Srain #2, re- sinophils Cortex,	Ovarian Tumor, OV350721 T-Cells HUVE Cells				
 	Jell I Vein Cells, fraction Stain #2, resinophils Cortex,	T-Cells HUVE Cells	Ovary			pCMVSport 2.0
 	I Vein Cells, frac Ion Srain #2, re- sinophils Cortex,	HUVE Cells	Blood	Cell Line		pSport1
-}	Srain #2, resimpophils		Umbilical vein	Cell Line		Lambda ZAP II
+-+-	inophils Cortex,	Human Whole Brain #2				ZAP Express
+	Cortex,	Eosinophils				pBluescript
		Kidney cortex	Kidney			pBluescript
H0443 H. Adipose,	H. Adipose, subtracted	Human Adipose, left hiplipoma				pSport1
H0444 Spleen metastic melanoma	astic	Spleen, Metastic malignant melanoma	Spleen		disease	pSport1
H0445 Spleen, Chronic Iymphocytic leukemia	ronic c leukemia	Human Spleen, CLL	Spleen		disease	pSport1
H0449 CD34+ cell,		CD34 positive cells				pSport1
H0455 H. Striatum	H. Striatum Depression, subt	Human Brain, Striatum Depression	Brain			pBluescript
H0457 Human Eosinophils	sinophils	Human Eosinophils				pSport1
H0458 CD34+ cell, I, frac II	I, I, frac II	CD34 positive cells				pSport1
H0459 CD34+cells, II, FRACTION 2	s, II,	CD34 positive cells				pCMVSport 2.0
H0461 H. Kidney Medulla, subtracted	Medulla,	Kidney medulla	Kidney			pBluescript
H0462 H. Amygdala Depression, st	H. Amygdala Depression, subtracted		Brain			pBluescript
H0477 Human Tonsil, Lib 3	nsil, Lib 3	Human Tonsil	Tonsil			pSport1

H0478	Salivary Gland, Lib 2	Human Salivary Gland	Salivary gland			pSport1
H0483	Breast Cancer cell line,	Breast Cancer Cell line,				pSport1
7	MDA 36	MDA 36				
H0484	Breast Cancer Cell line,	Breast Cancer Cell line,				pSport1
H0485	Anglogemic Hodokin"s I vmnhoma I	Anglogemic, 3013 Hodakin"e I vmnhoma I			disease	nCMVSnort 2.0
H0486	Hodgkin"s Lymphoma	Hodgkin"s Lymphoma II			disease	pCMVSport 2.0
H0487	Human Tonsils, lib I	Human Tonsils				pCMVSport 2.0
H0488	Human Tonsils, Lib 2	Human Tonsils				pCMVSport 2.0
H0489	Crohn"s Disease	Ileum	Intestine		disease	pSport1
H0490	HI-60, untreated,	Human HL-60 Cells,	Blood	Cell Line		Uni-ZAP XR
H0/101	HI - 60 DM A AH	Unistillidated	Blood	Cell Line		IIni_7AP XR
	subtracted	4H	2000			
H0492	HL-60, RA 4h,	HL-60 Cells, RA stimulated	Blood	Cell Line	Į.	Uni-ZAP XR
	Subtracted	for 4H				
H0494	Keratinocyte	Keratinocyte				pCMVSport 2.0
H0497	HEL cell line	HEL cell line		HEL 92.1.7		pSporti
H0505	Human Astrocyte	Human Astrocyte				pSport1
H0506	Ulcerative Colitis	Colon	Colon			pSport1
6050Н	Liver, Hepatoma	Human Liver, Hepatoma, patient 8	Liver		disease	pCMVSport 3.0
H0510	Human Liver, normal	Human Liver, normal, Patient # 8	Liver			pCMVSport 3.0
H0512	Keratinocyte, lib 3	Keratinocyte				pCMVSport 2.0
H0518	pBMC stimulated w/	pBMC stimulated with poly I/C				pCMVSport 3.0
H0519	NTERA2, control	NTERA2, Teratocarcinoma cell line				pCMVSport 3.0
Н0520	NTERA2 + retinoic acid, 14 days	NTERA2, Teratocarcinoma cell line				pSport1
H0521	Primary Dendritic Cells,	Primary Dendritic cells				pCMVSport 3.0

	1:1-1				
H0522	Primary Dendritic	Primary Dendritic cells			pCMVSport 3.0
303011	Cells, Irac 2	aBMC ctimulated with nolv			PCRII
HU323	PCK, pbiMC I/C treated	pbivic stimurated with poly I/C			
H0529	Myoloid Progenitor Cell Line	TF-1 Cell Line; Myoloid progenitor cell line			pCMVSport 3.0
H0530	Human Dermal Endothelial	Human Dermal Endothelial Cells; untreated			pSport1
H0537		Primary Dendritic cells			pCMVSport 2.0
H0538	Merkel Cells	Merkel cells	Lymph node		pSport1
H0539	Pancreas Islet Cell Tumor	Pancreas Islet Cell Tumour	Pancreas	disease	pSport1
H0542	T Cell helper I	Helper T cell			pCMVSport 3.0
H0543	T cell helper II	Helper T cell			pCMVSport 3.0
H0544	Human endometrial	Human endometrial stromal	-		pCMVSport 3.0
H0545		Human endometrial stromal			pCMVSport 3.0
C+CO11		cells-treated with proge			
H0546		Human endometrial stromal cells-treated with estra			pCMVSport 3.0
H0547	NTERA2	NTERA2, Teratocarcinoma			pSport1
	teratocarcinoma cell line+retinoic acid (14 davs)	cell line			
H0549	+	Human Epididiymus, caput			Uni-ZAP XR
H0550	H. Epididiymus, cauda	Human Epididiymus, cauda			Uni-ZAP XR
H0551	Human Thymus Stromal	Human Thymus Stromal			pCMVSport 3.0

	Cells	Cells				
H0553	Human Placenta	Human Placenta				pCMVSport 3.0
H0555	Rejected Kidney, lib 4	Human Rejected Kidney	Kidney		disease	pCMVSport 3.0
Н0556	Activated T-cell(12h)/Thiouridinere-cexcision	T-Cells	Blood	Cell Line		Uni-ZAP XR
H0559	HL-60, PMA 4H, re- excision	HL-60 Cells, PMA stimulated 4H	Blood	Cell Line		Uni-ZAP XR
H0560	KMH2	KMH2				pCMVSport 3.0
H0561	L428	L428				pCMVSport 3.0
H0562	Human Fetal Brain, normalized c5-11-26	Human Fetal Brain				pCMVSport 2.0
H0563	Human Fetal Brain, normalized 50021F	Human Fetal Brain				pCMVSport 2.0
H0564	Human Fetal Brain, normalized C5001F	Human Fetal Brain				pCMVSport 2.0
9950Н	Human Fetal Brain,normalized c50F	Human Fetal Brain				pCMVSport 2.0
H0567	Human Fetal Brain, normalized A5002F	Human Fetal Brain				pCMVSport 2.0
H0569	Human Fetal Brain, normalized CO	Human Fetal Brain				pCMVSport 2.0
H0570	Human Fetal Brain, normalized C500H	Human Fetal Brain				pCMVSport 2.0
H0571	Human Fetal Brain, normalized C500HE	Human Fetal Brain				pCMVSport 2.0
H0572	Human Fetal Brain, normalized AC5002	Human Fetal Brain				pCMVSport 2.0
H0574	Hepatocellular Tumor; re-excision	Hepatocellular Tumor	Liver		disease	Lambda ZAP II
H0575	Human Adult Pulmonary;re-excision	Human Adult Pulmonary	Lung			Uni-ZAP XR
H0576	Resting T-Cell; re-	T-Cells	Blood	Cell Line		Lambda ZAP II

	pSport1	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0	Uni-ZAP XR		Uni-ZAP XR		pCMVSport 3.0	0 2 7 - 3/8/ 40	pCIM V Sport 3.0		ZAP Express		Uni-ZAP XR		Uni-ZAP XR		pCMVSport 3.0		pCMVSport 3.0		Lambda ZAP II		Uni-ZAP XR		Lambda ZAP II		
				disease					disease	:-	disease						disease		disease				disease		disease				
					Cell Line		Cell Line								_														
	Thymus		Bone Marrow	B Cell	Blood		Blood		groin	-	groin		Cord Blood		Small Int.		T-Cell						Lung				Colon		
	Fetal Thymus	Pooled dendritic cells	Human Bone Marrow	B Cell Lymphoma	Activated T-Cells		Activated T-Cells		healing groin wound, 6.5	nours post incision - 2/	Groin-2/19/97		CD34 Positive Cells		Human Adult Small Intestine		T-Cell Lymphoma		HGS wound healing project;	abdomen	Olfactory epithelium from	roof of left nasal cacit	Human Lung Cancer		Stomach Cancer - 5383A	(human)	Human Colon Cancer		
excision	Human Fetal Thymus	Dendritic cells, pooled	Human Bone Marrow, treated	B Cell lymphoma	Activated T-cells, 24	hrs,re-excision	Activated T-Cells, 12	hrs,re-excision	Healing groin wound,	6.5 nours post incision	Healing groin wound;	7.5 hours post incision	CD34 positive cells	(cord blood),re-ex	Human adult small	intestine, re-excision	Human T-cell	lymphoma;re-excision	Healing groin wound -	zero hr post-incision	Olfactory	epithelium;nasalcavity	Human Lung Cancer;re-	excision	Stomach cancer	(human);re-excision	Human Colon	Concerna excision	Called, 15-57 Called
	H0578	H0580	H0581	H0583	H0584		H0585		H0586		H0587		H0589		H0590		H0591		H0592		H0593		H0594		H0595		H0596		

		<u> </u>		т		—-т		$ \tau$			T	— Т	$\neg \tau$	$\neg \neg$
Uni-ZAP XR	Uni-ZAP XR	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0	pBluescript	Uni-ZAP XR	pCMVSport 1	pCMVSport 1	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
		disease	disease	disease		disease			disease		disease			
Stomach	Heart					Breast			Ovary	Testis	Breast	Testis	Heart	Kidney
Human Stomach	Human Adult Heart	Abdomen	Abdomen	Abdomen	Human Pituitary	Human Primary Breast Cancer	H.Leukocytes	H.Leukocytes	Ovarian Cancer	Human Testes	Human Primary Breast Cancer	Human Adult Testis	Human Fetal Heart	Human Fetal Kidney
Human Stomach;re- excision	Human Adult Heart;re- excision	Healing Abdomen wound;70&90 min post incision	Healing Abdomen Wound; 15 days post incision	Healing Abdomen Wound;21&29 days	Human Pituitary, re- excision	Human Primary Breast Cancer:re-excision	H.Leukocytes,	H. Leukocytes, normalized cot 500 A	Human Ovarian Cancer Reexcision	Human Testes, Reexcision	Human Primary Breast Cancer Reexcision	Human Adult Testes, Large Inserts,	Fetal Heart	Human Fetal Kidney; Reexcision
H0598	H0599	0090Н	H0601	Н0602	H0604	9090H	H0613	H0614	H0615	H0616	H0617	H0618	H0619	Н0620

Uni-ZAP XR		Uni-ZAP XR	Uni-ZAP XR	D.Crout1	populti	pSport	pSport		Uni-ZAP XK		nSport 1	papolei	Lambda ZAP II		pSport1		Uni-ZAP XK	47.47.2.11	Uni-ZAP XK	pSport1	pSport1	-		Other		pSport	0460
disease															disease		disease										
																			Cell Line								
Pancreas		Umbilical vein	Embryo										Liver				Testis		Blood								
Human Pancreas Tumor		Human Umbilical Vein Endothelial Cells	Twelve Week Old Early	Stage Human	Ku 812F Basophils	Saos2 Cell Line; Untreated	Saos2 Cell Line; Vitamin D3	Treated	Human Pre-Differentiated	Adipocytes		Saos2 Cell Line; Dexamethosome Treated	Hepatocellular Tumor		TNFalpha activated A549	Lung Carcinoma	Human Testes Tumor		Activated T-Cells	Dentritic cells from CD34	CD40 cotimated monocite	dendridio celle	מפוומו ומוכ כפווס	Ficolled Human Stromal	Cells, Untreated	LPS activated monocyte	derived defidrific cells
Human Pancreas	Tumor; Reexcision	Human Umbilical Vein;	12 Week Early Stage	Human II; Reexcision	Ku 812F Basophils Line	Saos2 Cells; Untreated	Saos2 Cells; Vitamin	D3 Treated	Human Pre-	Differentiated Adinocytes	car fandini	Saos2, Dexamethosome	Hepatocellular	Tumor;re-excision	Lung Carcinoma A549	TNFalpha activated	Human Testes Tumor,	re-excision	Human Activated T- Cells, re-excision	Dendritic Cells From	CD34 Cells	CD40 activated	monocyte dendriaic	Ficolled Human Stromal	Cells, Untreated	LPS activated derived	dendritic cells
H0622		H0623	H0624		H0625	H0626	H0627		H0628			H0631	H0632		H0633		H0634		H0635	H0637	000011	800H		H0640		H0641	

	library					
H0643	Hep G2 Cells, PCR library	Hep G2 Cells				Other
H0644	Human Placenta (re- excision)	Human Placenta	Placenta			Uni-ZAP XR
H0645	Fetal Heart, re-excision	Human Fetal Heart	Heart			Uni-ZAP XR
H0646	Lung, Cancer (4005313	Metastatic squamous cell				pSport1
	A3): Invasive Poorly	lung carcinoma, poorly di				
	Differentiated Lung Adenocarcinoma,					
H0647	Lung, Cancer (4005163	Invasive poorly differentiated			disease	pSport1
	B7): Invasive, Poorly	lung adenocarcinoma				
	Diff. Adenocarcinoma, Metastatic					
H0648	Ovary, Cancer:	Papillary Cstic neoplasm of			disease	pSport1
	(4004562 B6) Papillary					
	Serous Cystic					
	Neoplasm, Low					
	Malignant Pot					
H0649	Lung, Normal: (4005313 B1)	Normal Lung				pSport1
H0650	B-Cells	B-Cells				pCMVSport 3.0
H0651	Ovary, Normal:	Normal Ovary				pSport1
	(9000C040R)					
H0652	Lung, Normal: (4005313 B1)	Normal Lung				psport
H0653	Stromal Cells	Stromal Cells				pSport1
H0654	Lung, Cancer: (4005313	Metastatic Squamous cell		1		Other
	A3) Invasive Poorly-	lung Carcinoma poorly dif				
	differentiated Metastatic					
	lung adenoc					
H0656	B-cells (unstimulated)	B-cells (unstimulated)				pSport1
H0657	B-cells (stimulated)	B-cells (stimulated)				pSport1

11.	r1	rt]	rtl	rtl	rt l	תן	rtl	rt l	rtl	rt1	ıtl	π!		ıt l
pSport1	pSport1	pSportl	pSport1	pSport1	pSport1	pSport1	pSport1	pSport1	pSport1	pSport1	pSport1	pSport1		pSport1
disease	disease	disease	disease		disease	disease		disease						
Ovary & Fallopian Tubes	Ovary			Breast	Breast	Breast					Breast			
9809C332- Poorly differentiate	Grade II Papillary Carcinoma, Ovary	Poorly differentiated carcinoma, ovary	Breast cancer	Normal Breast - #4005522(B2)	Breast Cancer - #4005522(A2)	Breast Cancer	Stromal cells 3.88	Ovarian Cancer, Sample #4004332A2	Stromal cell(HBM 3.18)	stromal cell clone 2.5	Breast Cancer (4005385A2)	Ovarian Cancer - 4004650A3		Breast Cancer- Sample # 9802C02OE
Ovary, Cancer (9809C332): Poorly differentiated adenocarcinoma	Ovary, Cancer (15395A1F): Grade II Papillary Carcinoma	Ovary, Cancer: (15799A1F) Poorly differentiated carcinoma	Breast, Cancer: (4004943 A5)	Breast, Normal: (4005522B2)	Breast, Cancer: (4005522 A2)	Breast, Cancer: (9806C012R)	Stromal cells 3.88	Ovary, Cancer: (4004332 A2)	Stromal cells(HBM3.18)	stromal cell clone 2.5	Breast, Cancer: (4005385 A2)	Ovary, Cancer(4004650 A3): Well- Differentiated	Micropapillary Serous Carcinoma	Breast, Cancer: (9802C02OE)
H0658	Н0659	0990Н	H0661	H0662	H0663	H0664	H0665	9990H	1990Н	8990H	6990H	Н0670		H0671

H0672	Ovary, Cancer:	Ovarian Cancer(4004576A8)	Ovary		pSport1
H0673	(40045 / 0 A8) Human Prostate Cancer,	Human Prostate Cancer, stage	Prostate		Uni-ZAP XR
	Stage B2; re-excision	B2			
H0674	Human Prostate Cancer,	Human Prostate Cancer, stage	Prostate		Uni-ZAP XR
7290H	Colon Cancer	Colon Cancer 0808C064B			nCMVSnort 3.0
	(9808C064R)	COIOII CAIICEI 7808CV041X			
H0677	TNFR degenerate oligo	B-Cells			PCRII
H0678	screened clones from	Placenta	Placenta		Other
	placental library				
H0682	Serous Papillary	serous papillary			pCMVSport 3.0
	Adenocarcinoma	adenocarcinoma			
		(9606G304SPA3B)			
H0683	Ovarian Serous	Serous papillary	-		pCMVSport 3.0
	Papillary	adenocarcinoma, stage 3C			
	Adenocarcinoma	(9804G01			
H0684	Serous Papillary	Ovarian Cancer-9810G606	Ovaries		pCMVSport 3.0
	Adenocarcinoma				
H0685	Adenocarcinoma of	Adenocarcinoma of Ovary,			pCMVSport 3.0
	Ovary, Human Cell	Human Cell Line, # OVCAR-			
	Line, # OVCAR-3				
9890H	Adenocarcinoma of	Adenocarcinoma of Ovary,			pCMVSport 3.0
	Ovary, Human Cell	Human Cell Line, # SW-626			
H0687	Human normal	Human normal	Ovary		pCMVSport 3.0
	ovary(#9610G215)	ovary(#9610G215)	•		
H0688	Human Ovarian	Human Ovarian			pCMVSport 3.0
	Cancer(#9807G017)	cancer(#9807G017),mRNA from Maura Ru			
6890H	Ovarian Cancer	Ovarian Cancer, #9806G019			pCMVSport 3.0
0690Н	Ovarian Cancer, # 9702G001	Ovarian Cancer, #9702G001			pCMVSport 3.0
				The second secon	

pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0					Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	pCDNA	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
											disease		disease			disease					
										Cell Line											
	B Cell		prostate gland						Brain	poold	bone	Prostate				pone	nrostate	Kidnev	Kidnev	Kidney	
normal ovary, #9710G208	B Cell Lymphoma	Normal Prostate Tissue # ODQ3958EN	Prostate gland, adenocarcinoma, mod/diff, gleason	mononucleocytes from patient at Shady Grove Hospit	Human Fetal Brain	Human Fetal Brain	Human Hippocampus	Human Hippocampus	Brain frontal cortex	Monocyte-activated	Osteoclastoma	Prostate BPH	Human Neural Blastoma	Human Fetal Brain	Amygdala	Osteoclastoma	Proctate	Kidney cortex	Kidney medulla	Kidney pyramids	Osteoclastoma Stromal Cells
Normal Ovary, #9710G208	BLyS Receptor from Expression Cloning	Normal Prostate #ODQ3958EN	Prostate gland adenocarcinoma	mononucleocytes from patient	Human Fetal Brain	Human Fetal Brain	Human Hippocampus	Human Hippocampus, prescreened	Brain frontal cortex	Monocyte activated	Human Osteoclastoma	Prostate	Neuroblastoma	Early Stage Human Brain	Human Amygdala	STROMAL -	Droctate	Kidney Cortex	Kidney medulla	Kidney Pyramids	Human Osteoclastoma Stromal Cells -
1690H	H0692	H0693	H0694	S690H	N0003	9000N	N0007	6000N	S0001	S0002	S0003	S0004	9000S	S0007	S0010	S0011	20013	2001	S0015	S0016	S0022

		Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	ZAP Express	Uni-ZAP XR	Uni-ZAP XR	ZAP Express	e Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	e Uni-ZAP XR	Uni-ZAP XR	e Uni-ZAP XR	A I I I I I I I I I I I I I I I I I I I
														disease			disease		disease	disease
		Cell Line	Cell Line	Cell Line			Cell Line		Cell Line						Cell Line	Cell Line				
		Bone marrow	Pulmanary artery	Pulmanary artery	brain	spinal cord	Pulmanary artery		Pulmanary artery		Brain			Prostate	endothelial cell- lung	endothelial cell- lung				
	Human Kidney Medulla	stromal cell	Smooth muscle	Smooth muscle	Brain stem	Spinal cord	Smooth muscle	Human Substantia Nigra	Smooth muscle	Human Whole Brain #2	Hypothalamus	Human Adipocytes from Osteoclastoma	Human Testes	prostate BPH	Endothelial cell	Endothelial cell	Human Hypothalamus, Alzheimer"s	Human Brain, Striatum	Human Frontal Cortex, Schizophrenia	Uman Hynothalamic
unamplified	Human Kidney Medulla - unamplified	Stromal cell TF274	Smooth muscle, serum treated	Smooth muscle, control	brain stem	Spinal cord	Smooth muscle-ILb	Human Substantia Nigra	Smooth muscle, IL1b	Human Whole Brain #2	Hynothalamis	Adipocytes	Testes	Prostate BPH	Endothelial cells-control	Endothelial-induced	Human Hypothalamus, Alzheimer"s	Human Brain. Striatum	Human Frontal Cortex, Schizophrenia	Uman
	S0024	S0026	S0027	S0028	S0029	S0031	S0032	S0036	S0037	S0038	\$0039	S0040	S0042	S0044	S0045	S0046	S0048	S0049	80050	15000

	Uni-ZAP XR	Uni-ZAP XR		se Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	-	Uni-ZAP XR		Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR		Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR Uni-ZAP XR Uni-ZAP XR	Uni-ZAP XR Uni-ZAP XR Uni-ZAP XR	Uni-ZAP XR Uni-ZAP XR Uni-ZAP XR	Uni-ZAP XR Uni-ZAP XR Uni-ZAP XR Uni-ZAP XR	Uni-ZAP XR Uni-ZAP XR Uni-ZAP XR Uni-ZAP XR Dni-ZAP XR
	Cell Line	Cell Line	disease	disease		Cell Line		disease	Cell Line		Cell Line		Cell Line	Cell Line	Cell Line	Cell Line					Cell Line	l Line	l Line	1 Line
	blood	blood	BRAIN	Brain	Brain		Bone marrow	bone	ý	artery	Knee Cell		Cel	Bone marrow Cell	lung Cell				Prostate	Prostate prostate				
	human neutrophils	human neutrophil induced				Anergic T-cell			Smooth muscle		Osteoblasts	Airway Epithelial	apoptotic cells		eosinophil	macrophage-oxidized LDL	Doing:	Macrophage (GM-CSF treated)	Macrophage (GM-CSF treated)	Macrophage (GM-CSF treated) prostate BPH Prostate	Macrophage (GM-CSF treated) prostate BPH Prostate LNCAP Cell Line	Macrophage (GM-CSF treated) prostate BPH Prostate LNCAP Cell Line	Macrophage (GM-CSF treated) prostate BPH Prostate LNCAP Cell Line PC3 prostate cell line	Macrophage (GM-CSF treated) prostate BPH Prostate LNCAP Cell Line PC3 prostate cell line PC3 prostate cell line
enia	neutrophils control	Neutrophils IL-1 and LPS induced	STRIATUM DEPRESSION	Brain Amygdala	Depression	Anergic T-cell	Bone marrow	Osteoclastoma- normalized A	Smooth muscle-edited	A	Osteoblasts	Epithelial-TNFa and INF induced	Apoptotic T-cell	PERM TF274	eosinophil-IL5 induced	Macrophage-oxLDL		Macrophage (GM-CSF treated)	Macrophage (GM-CSF treated)	Macrophage (GM-CSF treated) prostate-edited Normal Prostate	Macrophage (GM-CSF treated) prostate-edited Normal Prostate LNCAP prostate cell	Macrophage (GM-CSF treated) prostate-edited Normal Prostate LNCAP prostate cell line	Macrophage (GM-CSF treated) prostate-edited Normal Prostate LNCAP prostate cell line PC3 Prostate cell line	Macrophage (GM-CSF treated) prostate-edited Normal Prostate LNCAP prostate cell line PC3 Prostate cell line Prostate/LNCAP, subtraction I
	S0052 T	-	9010S	80110	S0112	╁	╁		80124		S0126 (S0132	S0134	T-	╁	+		S0144	+	 	 	 	 	

	subtraction I				Ē	
80180	Bone Marrow Stroma,	Bone Marrow Stroma, TNF			disease	Uni-ZAP XR
	TNF&LPS ind	& LPS induced				
S0182	Human B Cell 8866	Human B- Cell 8866				Uni-ZAP XR
S0190	Prostate BPH, Lib 2,	Human Prostate BPH				pSport1
00100	Submerce Commissing Education	Comment Library				"Sport1
26105	Synovial Fibroblasts (control)	Synovial Fibroblasts				popolet
S0194	Synovial hypoxia	Synovial Fibroblasts				pSport1
9610S	Synovial IL-1/TNF stimulated	Synovial Fibroblasts				pSport1
S0206	Smooth Muscle-	Smooth muscle	Pulmanary	Cell Line		pBluescript
	HASTE normalized		artery			-
S0208	Messangial cell, frac 1	Messangial cell				pSport1
S0210	Messangial cell, frac 2	Messangial cell				pSport1
S0212	Bone Marrow Stromal	Bone Marrow Stromal				pSport1
	Cell, untreated	Cell,untreated				
S0214	Human Osteoclastoma,	Osteoclastoma	bone		disease	Uni-ZAP XR
	re-excision					
80216	Neutrophils IL-1 and LPS induced	human neutrophil induced	poold	Cell Line		Uni-ZAP XR
S0218	Apoptotic T-cell, re- excision	apoptotic cells		Cell Line		Uni-ZAP XR
S0220	H. hypothalamus, frac A:re-excision	Hypothalamus	Brain			ZAP Express
S0222	H. Frontal	H. Brain, Frontal Cortex,	Brain		disease	Uni-ZAP XR
_	cortex, epileptic; re- excision	Epileptic				
S0242	Synovial Fibroblasts (III/TNF), subt	Synovial Fibroblasts				pSport1
S0250	Human Osteoblasts II	Human Osteoblasts	Femur		disease	pCMVSport 2.0
S0260	Spinal Cord, re-excision	Spinal cord	spinal cord			Uni-ZAP XR
S0276	Synovial hypoxia-RSF	Synovial fobroblasts	Synovial tissue			pSport1

	subtracted	(rhenmatoid)			
S0278	H Macrophage (GM- CSF treated), re- excision	Macrophage (GM-CSF treated)			Uni-ZAP XR
S0280	Human Adipose Tissue, re-excision	Human Adipose Tissue			Uni-ZAP XR
S0282	Brain Frontal Cortex, re-excision	Brain frontal cortex	Brain		Lambda ZAP II
S0292	Osteoarthritis (OA-4)	Human Osteoarthritic Cartilage	Bone	disease	pSporti
S0294	Larynx tumor	Larynx tumor	Larynx,vocal cord	disease	pSporti
80298	Bone marrow stroma, treated	Bone marrow stroma, treatedSB	Bone marrow		pSport1
80300	Frontal lobe, dementia; re-excision	Frontal Lobe dementia/Alzheimer's	Brain		Uni-ZAP XR
80306	Larynx normal #10 261- 273	Larynx normal			pSport1
S0308	Spleen/normal	Spleen normal			pSport1
S0310	Normal trachea	Normal trachea			pSport1
S0312	Human osteoarthritic;fraction II	Human osteoarthritic cartilage		disease	pSport1
S0314	Human osteoarthritis;fraction I	Human osteoarthritic cartilage		disease	pSport1
S0316	Human Normal Cartilage, Fraction I	Human Normal Cartilage			pSport1
80318	Human Normal Cartilage Fraction II	Human Normal Cartilage			pSport1
S0328	Palate carcinoma	Palate carcinoma	Uvula	disease	pSport1
S0330	Palate normal	Palate normal	Uvula		pSport1
S0332	Pharynx carcinoma	Pharynx carcinoma	Hypopharynx		pSport1
S0334	Human Normal	Human Normal Cartilage			pSport1

	Cartilage Fraction III					
S0336	Human Normal	Human Normal Cartilage				pSport1
	Cartilage Fraction IV					
S0338	Human Osteoarthritic	Human osteoarthritic			disease	pSport1
20340	Human Osteoarthritic	Human osteoarthritic			disease	pSport1
2	Cartilage Fraction IV	cartilage				
S0342	Adipocytes;re-excision	Human Adipocytes from Osteoclastoma				Uni-ZAP XR
S0344	Macrophage-oxLDL; re-excision	macrophage-oxidized LDL treated	poold	Cell Line		Uni-ZAP XR
S0346	Human Amygdala;re- excision	Amygdala				Uni-ZAP XR
S0348	Cheek Carcinoma	Cheek Carcinoma			disease	pSport1
80350	Pharynx Carcinoma	Pharynx carcinoma	Hypopharynx		disease	pSport1
S0354	Colon Normal II	Colon Normal	Colon			pSport1
S0356	Colon Carcinoma	Colon Carcinoma	Colon		disease	pSport1
S0358	Colon Normal III	Colon Normal	Colon			pSport1
S0360	Colon Tumor II	Colon Tumor	Colon		disease	pSport1
S0362	Human Gastrocnemius	Gastrocnemius muscle				pSport1
S0364	Human Quadriceps	Quadriceps muscle				pSport1
S0366	Human Soleus	Soleus Muscle				pSport1
80368	Human Pancreatic	Islets of Langerhans				pSport1
	Langerhans					
S0370	Larynx carcinoma II	Larynx carcinoma			disease	pSport1
S0372	Larynx carcinoma III	Larynx carcinoma			disease	pSport1
S0374	Normal colon	Normal colon				pSport1
S0376	Colon Tumor	Colon Tumor			disease	pSport1
S0378	Pancreas normal PCA4 No	Pancreas Normal PCA4 No				pSport1
S0380	Pancreas Tumor PCA4 Tu	Pancreas Tumor PCA4 Tu			disease	pSport1
S0382	Larynx carcinoma IV	Larynx carcinoma			disease	pSport1

ZAP Express	Uni-ZAP XR	Uni-ZAP XR	pSporti	pSport1	pSport1	pSport1	pSport1	pSport1	pSport1	pSport1	pSport1	Other	Other	0 0 7 - 37110	pCMVSport 3.0	pSport1	pCMVSport 3.0	pSport1	Uni-ZAP XR	Uni-ZAP XR	nSport1
	disease											disease									
		Cell Line																	Cell Line	Cell Line	
Brain		Pulmanary artery																	poold	poold	
Whole brain	Human Hypothalamus, Schizophrenia	Smooth muscle	Salivary gland; normal	Stomach; normal	Testis; normal	Brain; normal	Adrenal gland; normal	Rectum, normal	Rectum tumour	Colon, normal	Colon, tumour	Temporal cortex, alzheimer	Hippocampus, Alzheimer	Subliacieu	CHME Cell Line; treated	CHME Cell line, untreatetd	Mo7e Cell Line GM-CSF treated (Ing/ml)	TF-1 Cell Line GM-CSF Treated	Monocyte-activated	human neutrophils	Arvepiglottis Normal
Human Whole Brain, re-excision	Human Hypothalamus, schizoph renia, re-excision	Smooth muscle, control; re-excision	Salivary Gland	Stomach; normal	Testis; normal	Brain; normal	Adrenal Gland, normal	Rectum normal	Rectum tumour	Colon, normal	Colon, tumour	Temporal cortex- Alzheizmer; subtracted	Hippocampus,	Alzhenner Subtracted	CHME Cell Line;treated 5 hrs	CHME Cell Line,untreated	Mo7e Cell Line GM- CSF treated (Ing/ml)	TF-1 Cell Line GM- CSF Treated	Monocyte activated; re- excision	Neutrophils control; re- excision	Arvepiglottis Normal
S0386	80388	S0390	S0392	S0394	S0398	S0400	S0402	S0404	S0406	S0408	S0410	S0412	S0414	3	S0418	S0420	S0422	S0424	S0426	S0428	S0430

Sinus piniformis Tumour	Sinus piniformis Tumour				pSport1
Stomach Normal	Stomach Normal			disease	pSport1
Stomach Tumour	Stomach Tumour			disease	pSport1
Liver Normal Met5No	Liver Normal Met5No				pSport1
Liver Tumour Met 5 Tu	Liver Tumour				pSport1
Colon Normal	Colon Normal				pSport1
Colon Tumor	Colon Tumour			disease	pSport1
Tongue Tumour	Tongue Tumour				pSport1
Larynx Normal	Larynx Normal				pSport1
Larynx Tumour	Larynx Tumour			400	pSport1
Thymus	Thymus				pSport1
Placenta	Placenta	Placenta			pSport1
Tongue Normal	Tongue Normal			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	pSport1
Thyroid Normal (SDCA2 No)	Thyroid normal				pSport1
Thyroid Tumour	Thyroid Tumour				pSport1
Thyroid Thyroiditis	Thyroid Thyroiditis				pSport1
Larynx Normal	Larynx Normal				pSport1
Ea.hy.926 cell line	Ea.hy.926 cell line				pSport1
Adenocarcinoma	PYFD			disease	pSport1
Human blood platelets	Platelets	Blood platelets		77 9000	Other
Human Amygdala; re- excission	Amygdala		-		Uni-ZAP XR
Smooth Muscle Serum	Smooth muscle	Pulmanary	Cell Line		pBluescript
Treated, Norm		artery			•
Smooth muscle, serum	Smooth muscle	Pulmanary	Cell Line		pBluescript
induced,re-exc		artery			
H. hypothalamus, frac A	Hypothalamus	Brain			ZAP Express
H. Frontal Cortex, Epileptic	H. Brain, Frontal Cortex, Epileptic	Brain		disease	Uni-ZAP XR
H. Adipose Tissue	Human Adipose Tissue				Uni-ZAP XR

Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pBluescript SK-	pBluescript SK-	pBluescript SK-	pBluescript SK-	pBluescript SK-	Other	pBluescript SK-	DI. Contint CV	pBluescript SK-	pBluescript SK-	pBluescript SK-	pBluescript SK-	pBluescript SK-	pBluescript SK-	pBluescript SK-	pBluescript SK-	pBluescript SK-	pBluescript SK-	pBluescript SK-	pBluescript SK-	pBluescript SK-	pBluescript SK-
disease		disease					disease		disease															
			Cell Line																					
Brain	Brain	Brain	Blood																					
Alzheimer"s/Spongy change	Frontal Lobe dementia/Alzheimer"s	Human Manic depression tissue	Activated T-Cell, PBL fraction	Human Fetal Lung	Human White Fat	Human Pinneal Gland	Colorectal Tumor	Human Infant Brain	Human Pancreatic Carcinoma	22:1 112. CF t A 31111		SA172 Cells	Jurkat T-cell	Jurkat T-Cell Line	Human Aortic Endothilium	Aorta endothelial cells	Human White Fat	Human Thyroid	Normal Ovary,	Human Uterus, normal	Human Bone Marrow	Human Adult Retina		
Alzheimers, spongy change	Frontal Lobe, Dementia	Human Manic Depression Tissue	Activated T-cells	Human Fetal Lung	Human White Fat	Human Pineal Gland	Colorectal Tumor	Human Infant Brain	Human Pancreatic	Carcinoma	HSA 1/2 Cells	HSC172 cells	Jurkat T-cell G1 phase	Jurkat T-Cell, S phase	Human Aortic Endothelium	Aorta endothelial cells + TNF-a	Human White Adipose	Human Thyroid	Normal Ovary, Premenonalisal	Human Uterus, normal	Human Bone Marrow	Human Adult Retina	Human colon carcinoma (HCC) cell line	HCC cell line metastisis
S6024	S6026	S6028	T0002	T0003	T0004	T0006	T0008	T0010	T0023	T0020	10039	T0040	T0041	T0042	T0048	T0049	T0060	T0067	T0068	T0069	T0071	T0082	T0103	T0104

	+ 1::::				
00.01	IO IIVET				
60101	Human (HCC) cell line liver (mouse)				pBluescript SK-
	metastasis, remake				
T0110	Human colon carcinoma				pBluescript SK-
T0112	Himan (Case 2) sell				715
71101	line, adenocarcinoma,				pbluescript SK-
	colon				
T0114	Human (Caco-2) cell				pBluescript SK-
	line, adenocarcinoma,				
	colon, remake				
T0115	Human Colon				pBluescript SK-
	Carcinoma (HCC) cell				•
	line				
L0002	Atrium cDNA library				
	Human heart				
L0005	Clontech human aorta				
	polyA+ mRNA (#6572)				
L0015	Human				
L0018	Human (M.Lovett)				
L0021	Human adult (K.Okubo)				
L0022	Human adult lung 3"				
	directed Mbol cDNA				
L0040	Human colon mucosa				
L0041	Human epidermal				
	keratinocyte				
L0045	Human keratinocyte				
	differential display	-,			
	(B.L.III)				
L0053	Human pancreatic		-		
	tumor				
L0055	Human promyelocyte				

	Bluescript SK-	Bluescript SK-	Bluescript SK-	Bluescript SK-	Bluescript SK-	Bluescript SK-	Bluescript SK-	Bluescript SK-	Bluescript SK-	Bluescript SK-	Bluescript SK-	Bluescript SK-	Bluescript SK-	Bluescript SK-	Bluescript SK-	Bluescript SK-	Bluescript SK-	Bluescript SK-	Bluescript SK-	Bluescript SK-	Bluescript SK-	Bluescript SK-	Bluescript SK-	gt11	Lafmid BA	Lafmid BA
							adrenal gland	brain	breast	colon	colon	colon	kidney	larynx	lung	pharynx	prostate	prostate	prostate	stomach	tongue	toneil				
	germ cell tumor	germ cell tumor	pheochromocytoma	schizophrenic brain S-11	Schwannoma tumor	synovial sarcoma	adrenal adenoma	pooled frontal lobe	breast tumor	colon tumor	tumor	tumor	kidney tumor	larynx	lung tumor	squamous cell carcinoma	epithelium (cell line)	invasive tumor (cell line)	prostate tumor	gastric tumor	squamous cell carcinoma	rom base of tongue	normal gingiva (cell line from immortalized kerati			
cancer (#937219)	NCI CGAP GC2	NCI CGAP GCS	NCI CGAP Phe1	Stratagene schizo brain	NCI CGAP Sch1	NCI CGAP SSI	NCI CGAP AAI	Johnston frontal cortex	NCI CGAP Br3	NCI CGAP Co12	NCI CGAP Coll	NCI CGAP Co2	NCI CGAP Kid6	NCI CGAP Larl	NCI CGAP Lu1	NCI CGAP HN4	NCI CGAP Pr25	NCI CGAP Pr24	NCI CGAP Pr23	NCI CGAP Gas1	NCI_CGAP_HN3	NCI CCAD GCB0	NCI_CGAP_HN6	H, Human adult Brain	I-NIB	b4HB3MA Cot8-HAP-
	L0363	L0364	L0365	L0366	L0367	L0368	L0369	L0370	L0371	L0372	L0373	L0374	L0375	L0376	L0378	L0381	L0382	L0383	L0384	L0385	L0386	1.0297	L0388	L0394	10411	L0415

s total brain brai	L0428	Cot1374Ft-4HB3MA					I ofmid DA
array of Dr. M. Soares array of Dr. M. Soares INIB brain Soares infant brain whole brain INIB whole brain INIB whole brain INIB cloud brain INIB cloud brain INIB cloud brain INIB cloud brain Inibition cloud brain Human retina cDNA retina Human retina cDNA retina sublibrary cye sublibrary charmed wATMI brain ketal brain cDNA brain sublibrary charmed wATMI brain ketal brain cDNA brain ketal brain cDNA brain Lambda ZAP Express ketal brain, stratagene cart#37212 (1992) closs-tolder brain stratagene cart#37212 (1992) closs-tolder brain skeletal muscle Human panceatic islet leg muscle Human panceatic islet leg muscle Sreadeal muscle cDNA	L0435	╂					Lallilly DA
Normalized infant brain Lotal brain Lo						-	lalimid bA
Soares infant brain	L0438		total brain	brain			lafmid BA
NaHB3MK	L0439	Soares infant brain INIB		whole brain			Lafmid BA
Clontech adult human Clontech adult human fat cell library HLI 108A HLI 108A retina Human retina cDNA retina randomly primed eye sublibrary eye Human retina cDNA retina watch-fragment prooled watch brain watch brain brain cDNA brain Human fetal heart, brain Lambda ZAP Express KGI-a Eetal brain, Stratagene KGI-a Express cDNA library Fetal brain, Stratagene Fetal brain, Stratagene KGI-a CD34+DIRECTIONAL CD34+DIRECTIONAL Human pancreatic islet skeletal muscle cDNA skeletal muscle cDNA leg muscle	L0446	-					Lafmid BK
Human retina cDNA radiomly primed sublibrary retina eye Human retina cDNA Tetina retina eye Tsp509l-cleaved sublibrary multi-tissue pooled pooled short-fragment wATM brain WATM brain brain WATM brain brain WATM kG1-a kG1-a Eatal brain cDNA brain kG1-a Human fetal heart, Lambda Zap kG1-a kG1-a Lambda Zap kG1-a Lambda Zap kG1-a Express cDNA library Fetal brain, Stratagene cC034+DIRECTIONAL Stratagene cat#937212 cC034+DIRECTIONAL cC034+DIRECTIONAL Human pancreatic islet skeletal muscle cDNA leg muscle	L0454						lambda gt10
Human retina cDNA retina eye Tsp5091-cleaved sublibrary multi-tissue pooled pooled multi-tissue normalized short-fragment multi-tissue pooled pooled WATMI brain brain Human fetal heart, Lambda ZAP Express KGI-a Lambda ZAP Express cDNA library KGI-a Lambda ZAP Express cDNA library Fetal brain, Stratagene Stratagene cat#937212 CD34+DIRECTIONAL Human pancreatic islet leg muscle STRATAGENE Human skeletal muscle STRATAGENE Human skeletal muscle	L0455	Human retina cDNA randomly primed sublibrary	retina	eye			lambda gt10
multi-tissue normalized short-fragment multi-tissue pooled pooled short-fragment WATM I fetal brain cDNA brain brain Human fetal heart, Lambda ZAP Express KG1-a KG1-a Express cDNA library Fetal brain, Stratagene KG1-a Stratagene cat#937212 Stratagene cat#937212 CD34+DIRECTIONAL Human pancreatic islet STRATAGENE Human skeletal muscle leg muscle	L0456	Human retina cDNA Tsp5091-cleaved sublibrary	retina	eye			ambda gt 10
WATM1 brain brain fetal brain cDNA brain brain Human fetal heart, Lambda ZAP Express KG1-a Lambda ZAP Express KG1-a KG1-a Express cDNA library Fetal brain, Stratagene KG1-a Stratagene cat#937212 CD34+DIRECTIONAL CD34+DIRECTIONAL Human pancreatic islet leg muscle leg muscle STRATAGENE Human skeletal muscle leg muscle	L0457	multi-tissue normalized short-fragment	multi-tissue	pooled			ambda gt10
fetal brain cDNA brain brain Human fetal heart, Lambda ZAP Express KG1-a Lambda Zap KG1-a Express cDNA library Fetal brain, Stratagene Stratagene cat#937212 KG1-a (1992) CD34+DIRECTIONAL Human pancreatic islet skeletal muscle STRATAGENE Human skeletal muscle skeletal muscle cDNA leg muscle	L0462	WATMI					ambda et 11
Human fetal heart, Lambda ZAP Express KG1-a Lambda Zap KG1-a Express cDNA library KG1-a Fetal brain, Stratagene KG1-a Stratagene cat#937212 CD34+DIRECTIONAL Human pancreatic islet leg muscle STRATAGENE Human skeletal muscle leg muscle skeletal muscle cDNA leg muscle	L0463	fetal brain cDNA	brain	brain			ambda gt11
KG1-a Lambda Zap KG1-a Express cDNA library Fetal brain, Stratagene Stratagene cat#937212 CD34+DIRECTIONAL Human pancreatic islet leg muscle STRATAGENE Human skeletal muscle leg muscle	L0471	Human fetal heart, Lambda ZAP Express					Lambda ZAP Express
Fetal brain, StratageneStratageneStratagene cat#937212(1992)CD34+DIRECTIONALHuman pancreatic isletSTRATAGENE Humanskeletal muscle cDNA	L0475	KGI-a Lambda Zap Express cDNA library			KG1-a		Lambda Zap Express Stratagene)
Stratagene cat#937212 (1992) CD34+DIRECTIONAL Human pancreatic islet STRATAGENE Human skeletal muscle leg muscle leg muscle	L0476	Fetal brain, Stratagene					ambda ZAP II
CD34+DIRECTIONAL Human pancreatic islet STRATAGENE Human skeletal muscle cDNA	L0480	Stratagene cat#937212 (1992)					Jambda ZAP,
Human pancreatic islet STRATAGENE Human skeletal muscle leg muscle skeletal muscle cDNA skeletal muscle leg muscle	L0481	CD34+DIRECTIONAL					ambda ZAPII
STRATAGENE Human skeletal muscle leg muscle skeletal muscle cDNA	L0483	Human pancreatic islet					ambda ZAPII
	L0485	STRATAGENE Human skeletal muscle cDNA	skeletal muscle	leg muscle			ambda ZAPII

alveolar rhabdomyosarcoma Ewing"s sarcoma
veolar rhabdomyosarcon Ewing"s sarcoma kidney liposarcoma

pAMP10	pAMP10	pAMP10	pAMP10	pAMP10	pAMP10		pAMP10	pAMP10	pAMP10		pAMP10	MAMPIO		pAMP10		pAMP10	pAMP10		pAMP10	pAMP10	pAMP10	pAMP10	pAMP10	pAMP10
										10.00														
					brain		placenta	prostate	prostate		prostate	prostate		prostate		prostate					colon	ovary	ovary	tongue
ovary	prostate	prostate	prostate	thyroid	brain			invasive prostate tumor	normal prostatic epithelial	CellS	normal prostatic epithelial cells	prostatic intraenithelial	neoplasia - high grade	prostatic intraepithelial	neoplasia - high grade	tumor	carcinoma in situ from	retromolar trigone	normal squamous epithelium from retromolar trigone	normal squamous epithelium, floor of mouth	colonic adenocarcinoma	endometrioid ovarian metastasis	papillary serous ovarian metastasis	moderate to poorly differentiated invasive carcino
NCI CGAP Ov2	NCI CGAP Pr5	NCI CGAP Pr6	NCI CGAP Pr8	NCI CGAP Thy1	Chromosome 7 Fetal	Brain cDNA Library	Chromosome 7 Placental cDNA Library	NCI CGAP Pr10	NCI_CGAP_PrI1		NCI_CGAP_Pr9	NCI CGAP Pr4	ı	NCI_CGAP_Pr4.1		NCI CGAP Pr16	NCI_CGAP_HN10		NCI_CGAP_HN9	NCI_CGAP_HN7	NCI CGAP Co22	NCI_CGAP_Ov40	NCI_CGAP_Ov39	NCI_CGAP_HN12
L0527	L0528	L0529	L0530	L0532	L0534		L0539	L0540	L0542	_	L0543	L0544		L0545		L0547	L0549		L0550	L0551	L0553	L0558	L0559	L0560

L0561	NCI CGAP HN11	normal squamous enithelium	tongue		DAMP10
L0562	Chromosome 7 HeLa		0	HeLa cell line;	pAMP10
	cDNA Library			ATCC	
L0564	Jia bone marrow stroma	bone marrow stroma			pBluescript
L0565	Normal Human Trabecular Bone Cells	Bone	Hip		pBluescript
L0581	Stratagene liver		liver		pBluescript SK
1.0586	(#93/224) HTCDL1				nBluescrint SK(-)
L0587	Stratagene colon HT29 (#937221)				pBluescript SK-
L0588	Stratagene endothelial cell 937223				pBluescript SK-
L0589	Stratagene fetal retina 937202				pBluescript SK-
L0590	Stratagene fibroblast (#937212)				pBluescript SK-
L0591	Stratagene HeLa cell s3 937216				pBluescript SK-
L0592	Stratagene hNT neuron (#937233)				pBluescript SK-
L0593	Stratagene neuroepithelium (#937231)				pBluescript SK-
L0594	Stratagene neuroepithelium NT2RAMI 937234				pBluescript SK-
L0595	Stratagene NT2 neuronal precursor 937230	neuroepithelial cells	brain		pBluescript SK-
T0596	Stratagene colon (#937204)		colon		pBluescript SK-
L0597	Stratagene corneal		cornea		pBluescript SK-

	stroma (#937222)				TOTAL .	
L0598	Morton Fetal Cochlea	cochlea	ear		pBluescript SK-	SK-
L0599	Stratagene lung (#937210)		gunl		pBluescript SK-	SK-
T0600	Weizmann Olfactory Epithelium	olfactory epithelium	nose		pBluescript SK-	SK-
L0601	Stratagene pancreas (#937208)		pancreas		pBluescript SK-	SK-
L0602	Pancreatic Islet	pancreatic islet	pancreas		pBluescript SK-	SK-
L0603	Stratagene placenta (#937225)		placenta		pBluescript SK-	SK-
L0604	Stratagene muscle 937209	muscle	skeletal muscle		pBluescript SK-	SK-
L0605	Stratagene fetal spleen (#937205)	fetal spleen	spleen		pBluescript SK-	SK-
F0606	NCI CGAP Lym5	follicular lymphoma	lymph node		pBluescript SK-	SK-
L0607	NCI CGAP Lym6	mantle cell lymphoma	lymph node		pBluescript SK-	SK-
F0608	Stratagene lung carcinoma 937218	lung carcinoma	gunl	NCI-H69	pBluescript SK-	SK-
F0907	Schiller astrocytoma	astrocytoma	brain		pBluescript SK-	SK-
L0611	Schiller meningioma	meningioma	brain		pBluescript SK-	SK-
L0612	Schiller oligodendroglioma	oligodendroglioma	brain		pBluescript SK-	SK-
L0615	22 week old human fetal liver cDNA library				pBluescriptII SK(-)	I SK(-)
L0617	Chromosome 22 exon				pBluescriptIIKS+	IKS+
L0622	HMI				pcDNAII (Invitrogen)	vitrogen)
	HM3	pectoral muscle (after mastectomy)			pcDNAII (Invitrogen)	vitrogen)
\neg	NCI CGAP ARI	bulk alveolar tumor			pCMV-SPORT2	RT2
L0626	NCI CGAP GCI	bulk germ cell seminoma			pCMV-SPORT2	3T2

NCI CGAP Ovi	ovary bulk tumor	ovary	pCMV-SPORT2
	metastatic melanoma to bowel	bowel (skin primary)	pCMV-SPORT4
	substantia nigra	brain	pCMV-SPORT4
_	hepatic adenoma	liver	pCMV-SPORT4
ᆚ	small cell carcinoma	lung	pCMV-SPORT4
	serous adenocarcinoma	ovary	pCMV-SPORT4
	dorsal root ganglion	peripheral nervous system	pCMV-SPORT4
<u> </u>	four pooled pituitary	brain	pCMV-SPORT6
<u>L</u>	three pooled meningiomas	brain	"CMV_CDODTK
	tumor, 5 pooled (see	brain	pCMV-SPORT6
]	description)		
	tumor, 5 pooled (see description)	brain	pCMV-SPORT6
_ =	four pooled high-grade tumors, including two prima	breast	pCMV-SPORT6
	juvenile granulosa tumor	colon	DCMV-SPORT6
	moderately differentiated	colon	pCMV-SPORT6
	adenocarcinoma		
	moderately differentiated adenocarcinoma	colon	pCMV-SPORT6
	moderately differentiated adenocarcinoma	colon	pCMV-SPORT6
l .	moderately differentiated adenocarcinoma	colon	pCMV-SPORT6
1	moderately-differentiated adenocarcinoma	colon	pCMV-SPORT6
ı	five pooled sarcomas,	connective	DCMV-SPORT6
	including myxoid liposarcoma	tissue	
	squamous cell carcinoma	esophagus	pCMV-SPORT6

		_	_																	
pCMV-SPORT6	pCMV-SPORT6	pCMV-SPORT6	pCMV-SPORT6		DCMV-SPORT6		pCMV-SPORT6	pCMV-SPORT6	DCMV-SPORT6	pCMV-SPORT6	pCMV-SPORT6	DCMV-SPORT6	pCMV-SPORT6	pCMV-SPORT6	pCMV-SPORT6	pCMV-SPORT6	pCMV-SPORT6	pCMV-SPORT6		pCMV-SPORT6
											i i									
genitourinary tract	kidney	kidney	lung		lung		lung, cell line	lymph node	ovary	ovary	ovary	pancreas	skin	stomach	uterus	uterus	uterus	uterus		whole blood
2 pooled high-grade transitional cell tumors	2 pooled Wilms" tumors, one primary and one metast	renal cell tumor	four pooled poorly-	differentiated	two pooled squamous cell	carcinomas		lymphoma, follicular mixed small and large cell	normal epithelium	tumor, 5 pooled (see description)	tumor, 5 pooled (see description)	adenocarcinoma	malignant melanoma, metastatic to lymph node	poorly differentiated adenocarcinoma with signet r	moderately-differentiated endometrial adenocarcino	poorly-differentiated endometrial adenocarcinoma.	serous papillary carcinoma, high grade, 2 pooled t	well-differentiated	endometrial adenocarcinoma,	myeloid cells, 18 pooled
	NCI_CGAP_Kid13	NCI CGAP Kid8	NCI_CGAP_Lu27		NCI_CGAP_Lu28		NCI CGAP Lu31	NCI_CGAP_Lym12	NCI CGAP Ov38	NCI_CGAP_Ov23	NCI_CGAP_Ov35	NCI CGAP Pan1	NCI_CGAP_Mel15	NCI_CGAP_Gas4	NCI_CGAP_Ut2	NCI_CGAP_Ut3	NCI_CGAP_Ut4	L0666 NCI_CGAP_Ut1		NCI CGAP CML1
	L0650	L0651	L0652		L0653		\rightarrow	L0655	F0656	L0657	L0658		L0661	L0662	F0903	L0664	T0665	P09907		L09907

	pCR2.1-TOPO	pCR2.1-TOPO	PGFM 57f(+)	pOTB7	pOTB7	pOTB7	pSPORTI	pSPORTI	pT7T3-Pac	pF7T3D	pT7T3D (Pharmacia)	with a modified	polylinker	pT7T3D (Pharmacia)	with a modified	polylinker	pT7T3D (Pharmacia)	with a modified	polylinker	pT7T3D (Pharmacia)	with a modified	polylinker	pT7T3D (Pharmacia)	with a modified	polylinker	pT7T3D (Pharmacia)	with a modified	DOIVINKE
						MGC3																				·		
	brain	brain		muscle	placenta	lung			uterus					brain			brain			breast			breast			eye		
CML cases, BCR/ABL rearra	frontal lobe (see description)	frontal lobe (see description)		rhabdomyosarcoma	choriocarcinoma	small cell carcinoma					melanocyte	•														retina		
	Stanley Frontal NS pool 2	Stanley Frontal SN pool	Testis 2	NIH MGC 17	NIH MGC 21	NIH MGC 7	Gessler Wilms tumor	Testis 5	Soares_pregnant_uterus_NbHPU	Human colorectal	Soares melanocyte	2NbHM		Soares adult brain	1 CC04HD201		Soares adult brain	N 202HB33 Y		Soares breast 2NbHBst			Soares breast 3NbHBst			Soares retina N2b4HR		
	L0683	9890T	R0698	L0708	-	-	L0717	L0718	L0731	L0738	L0740		╅	L0741		╁	L0/42		┿	LU/43			L0/44		\dashv	L0/45		

Soares retina N2b5HR	retina	eye	pT7T3D (Pharmacia)
			 with a modified polylinker
Soares_fetal_heart_NbH H19W		heart	pT7T3D (Pharmacia) with a modified
			polylinker
Soares fetal liver spleen		Liver and	pT7T3D (Pharmacia)
		uaaide	with a modified polylinker
Soares_fetal_liver_splee		Liver and	pT7T3D (Pharmacia)
		Spleen	with a modified
Soares_fetal_lung_NbH		lung	pT7T3D (Pharmacia)
			with a modified
Soares ovary tumor	ovarian tumor	ovary	pT7T3D (Pharmacia)
			with a modified
Soares parathyroid tum	parathyroid tumor	narathuroid	TTTTO CEL
or_NbHPA		gland	p1/13U (Fnarmacia) with a modified
			polylinker
Soares_pineal_gland_N		pineal gland	pT7T3D (Pharmacia)
			 with a modified
Soares placenta Nb2HP		placenta	pT7T3D (Pharmacia)
			with a modified
			polylinker
Soares_placenta_8to9w		placenta	 pT7T3D (Pharmacia)
cers_zivorir@109 W			 with a modified
-			polylinker
Soares_multiple_scieros	multiple sclerosis lesions		pT7T3D (Pharmacia)
S ZINDHINDF			 with a modified
			 polylinker V TYPE

pT7T3D (Pharmacia) with a modified polvlinker V TYPE	pT7T3D-Pac (Pharmacia) with a	pT7T3D-Pac (Pharmacia) with a	pT7T3D-Pac (Pharmacia) with a modified polylinker	pT7T3D-Pac (Pharmacia) with a modified polylinker	pT7T3D-Pac (Pharmacia) with a modified polVlinker	pT7T3D-Pac (Pharmacia) with a				
		-								
senescent fibroblast			B-cell, chronic lymphotic leukemia	breast	breast	colon	colon	germinal center B cell	pooled germ cell tumors	pooled germ cell tumors
Soares_senescent_fibro blasts_NbHSF	Soares_testis_NHT	Soares_total_fetus_Nb2 HF8_9w	NCI_CGAP_CLL1	NCI_CGAP_Br1.1	NCI_CGAP_Br2	NCI_CGAP_Co3	NCI_CGAP_Co4	NCI_CGAP_GCB1	NCI_CGAP_GC3	NCI_CGAP_GC4
L0757	L0758	L0759	L0761	L0762	L0763	L0764	L0765	P0766	L0767	L0768

| pT7T3D-Pac
(Pharmacia) with a
modified polylinker |
|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | |
| | | | | | | | | | | |
| brain | brain | colon | colon | uoloo | kiquey | kidney | gunl | mixed (see
below) | poloed | polod |
| anaplastic oligodendroglioma | glioblastoma (pooled) | adenocarcinoma | colon tumor RER+ | colon tumor RER+ | | 2 pooled tumors (clear cell type) | carcinoid | Pooled human melanocyte,
fetal heart, and pregnant | | |
| L0769 NCI_CGAP_Brn25 | NCI_CGAP_Bm23 | NCI_CGAP_Co8 | NCI_CGAP_Co10 | NCI_CGAP_Co9 | NCI_CGAP_Kid3 | NCI_CGAP_Kid5 | NCI_CGAP_Lu5 | Soares_NhHMPu_S1 | Soares_NFL_T_GBC_S | Soares_NSF_F8_9W_O
T_PA_P_S1 |
| F0769 | L0770 | L0771 | L0772 | L0773 | L0774 | L0775 | L0776 | L0777 | L0779 | L0780 |

pT7T3D-Pac (Pharmacia) with a modified polylinker	pT7T3D-Pac (Pharmacia) with a modiffed polylinker	pT7T3D-Pac (Pharmacia) with a modified polylinker								
prostate	prostate	soft tissue	spleen	whole brain						
normal prostate	normal prostate	leiomyosarcoma								
L0782 NCI_CGAP_Pr21	NCI_CGAP_Pr22	NCI_CGAP_Lei2	Barstead spleen HPLRB2	Soares_NbHFB	NCI_CGAP_Sub1	NCI_CGAP_Sub2	NCI_CGAP_Sub3	NCI_CGAP_Sub4	NCI_CGAP_Sub5	NCI_CGAP_Sub6
L0782	L0783	L0784	L0785	L0786	L0787	L0788	L0789	L0790	L0791	L0792

L0793	NCI_CGAP_Sub7			pT7T3D-Pac	O-Pac
				(Pharm	(Pharmacia) with a
				modifie	modified polylinker
L0794	NCI_CGAP_GC6	pooled germ cell tumors		pT7T3D-Pac	J-Pac
				(Pharm	(Pharmacia) with a
				modifie	modified polylinker
F0796	NCI_CGAP_Brn50	medulloblastoma	brain	pT7T3D-Pac	J-Pac
				(Pharm	(Pharmacia) with a
				 modifie	modified polylinker
L0800	NCI_CGAP_Co16	colon tumor, RER+	colon	pT7T3D-Pac	J-Pac
				(Pharm	(Pharmacia) with a
				modifie	modified polylinker
L0803	NCI_CGAP_Kid11		kidney	pT7T3D-Pac	J-Pac
				 (Pharm	(Pharmacia) with a
				modifie	modified polylinker
L0804	NCI_CGAP_Kid12	2 pooled tumors (clear cell	kidney	pT7T3D-Pac	J-Pac
		type)		(Pharm	(Pharmacia) with a
		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		modifie	modified polylinker
L0805	NCI_CGAP_Lu24	carcinoid	lung	pT7T3D-Pac	J-Pac
				(Pharm	(Pharmacia) with a
				modifie	modified polylinker
F0806	NCI_CGAP_Lu19	squamous cell carcinoma,	gunl	pT7T3D-Pac	J-Pac
		poorly differentiated (4		(Pharm	(Pharmacia) with a
				modifie	d polylinker
L0807	NCI_CGAP_Ov18	fibrotheoma	ovary	pT7T3I	pT7T3D-Pac
				(Pharm	(Pharmacia) with a
				modifie	modified polylinker
F0800	NCI_CGAP_Pr28		prostate	pT7T3D-Pac)-Pac
				(Pharm	(Pharmacia) with a
				 modifie	modified polylinker
L0811	BATM2			PTZ18	
L0946	BT0333		breast	puc18	
L1446	CT0254		colon	puc18	

L1819	HT0268		head neck	puc18
L1942	HT0452		head_neck	puc18
L2138	ST0186		stomach	puc18
L2174	ST0240		stomach	puc18
L2251	Human fetal lung	Fetal lung		
L2252	Human placenta	placenta		
L2255	OLC	corresponding non cancerous		pBluescript sk(-)
L2257	NIH MGC 65	adenocarcinoma	colon	pCMV-SPORT6
L2258	NIH MGC 67	retinoblastoma	eye	pCMV-SPORT6
L2259	NIH MGC 68	large cell carcinoma	lung	pCMV-SPORT6
L2260	NIH_MGC_69	large cell carcinoma,	gunl	pCMV-SPORT6
		undifferentiated		
L2261	NIH MGC 70	epithelioid carcinoma	pancreas	pCMV-SPORT6
L2262	NIH MGC 72	melanotic melanoma	skin	pCMV-SPORT6
L2263	NIH MGC 66	adenocarcinoma	ovary	pCMV-SPORT6
L2264	NIH MGC 71	leiomyosarcoma	uterus	pCMV-SPORT6
L2265	NIH MGC 39	adenocarcinoma	pancreas	pOTB7
L2270	Lupski_dorsal_root_gan	dorsal root ganglia		pCMV-SPORT6 (Life
	glion			Technologies)
L2289	BT0757		breast	puc18
L2333	CT0417		colon	puc18
L2338	CT0432		colon	puc18
L2346	CT0483	. 100	colon	puc18
L2367	UT0039		uterus tumor	puc18
L2380	NN0068		nervous_normal	puc18
L2400	NN0116		nervous_normal	puc18
L2412	NN0136		nervous normal	puc18
L2439	NN1022		nervous_normal	puc18
L2477	HT0408		head neck	puc18
L2490	HT0545		head_neck	puc18
L2495	HT0594		head_neck	puc18

L2504 HT0636		head neck	1010	81
HT0697		head_neck	puc18	81
HT0704		head_neck	puc18	81
HT0727		head neck	puc18	81
HT0728		head neck	puc18	81
HT0734		head_neck	puc18	81
HT0760		head_neck	puc18	81
HT0771		head_neck	puc18	81
HT0872		head neck	puc18	81
HT0877		head_neck	puc18	81
HT0894		head neck	puc18	81
NIH MGC 20	melanotic melanoma	skin	pOTB7	'B7
-+	hypernephroma	kidney	ANDa	pDNR-LIB (Clontech)
L2654 NIH MGC 9	adenocarcinoma cell line	ovary	pOTB7	'B7
L2655 NIH_MGC_55	from acute myelogenous leukemia	bone marrow	PDNR	pDNR-LIB (Clontech)
L2657 NIH_MGC_54	from chronic myelogenous leukemia	bone marrow	PDDM	pDNR-LIB (Clontech)
NT0098		nervous tumor	puc18	8
GN0049		placenta_normal	puc18	8
FT0077		prostate tumor	puc18	8
FT0096		prostate tumor	puc18	8
FT0103		prostate_tumor	puc18	8
FT0162		prostate_tumor	puc18	8
UM0091		uterus	puc18	8
AN0027		amnion normal	puc18	8
AN0041		amnion_normal	puc18	8
BN0047		breast normal	puc18	8
BN0070	77.00	breast normal	puc18	8
BN0098		breast_normal	puc18	8
BN0264		breast normal	puc18	8
BN0273		breast_normal	puc18	8

9/70N9		breast normal	puc18
		breast normal	puc18
		lung normal	puc18
		lung tumor	puc18
		lung_tumor	puc18
		marrow	puc18
		marrow	puc18
		ovary	puc18
		ovary	puc18
		ovary	puc18
		prostate_normal	puc18
		prostate_normal	puc18
		prostate_normal	puc18
		testis_normal	puc18
	hepatocellular carcinoma		pBluescript sk(-)
NIH MGC 53	carcinoma, cell line	bladder	pDNR-LIB (Clontech)
		colon	puc18
		colon	puc18
		prostate_tumor	puc18
		placenta_normal	puc18
		placenta_normal	puc18
		placenta_normal	puc18
		head_neck	puc18
		head neck	puc18

L3516	HT0913		head neck	puc 18
L3521	HT0919		head_neck	puc18
L3562	TN0030		testis_normal	puc18
\dashv	UM0093		uterus	puc18
L3612	UT0011		uterus_tumor	puc18
\dashv	UT0050		uterus tumor	puc18
-1	UT0074		uterus_tumor	puc18
	NIH MGC 73		brain	pDNR-LIB (Clontech)
\dashv	ADA	Adrenal gland		pBluescript sk(-)
L3643	ADB	Adrenal gland		pBluescript sk(-)
	ADC	Adrenal gland		pBluescript sk(-)
L3645	Cu	adrenal cortico adenoma for		pBluescript sk(-)
+		Cushing"s syndrome		
\dashv	DCA			pTriplEx2
	DCB			pTriplEx2
-	НТВ	Hypothalamus		pBluescript sk(-)
+	HTC	Hypothalamus		pBluescript sk(-)
_	HTF	Hypothalamus		pBluescript sk(-)
_	cdA	pheochromocytoma		pTriplEx2
-		cord blood		pBluescript
\dashv	NIH MGC 79		placenta	pDNR-LIB (Clontech)
\dashv	GN0079		placenta_normal	puc18
-	HT0945		head_neck	puc18
\dashv	TN0136		testis_normal	puc18
\dashv	UT0077		uterus_tumor	puc18
	UT0078		uterus tumor	puc18
	NPC	pituitary		pBluescript sk(-)
\dashv	NPD	pituitary		pBluescript sk(-)
\dashv	ВМ	Bone marrow		pTriplEx2
	MDS	Bone marrow		pTriplEx2
-	HEMBAI	whole embryo, mainly head		pME18SFL3
L3817	HEMBBI	whole embryo, mainly body		pME18SFL3

p[1C19F1.3	pME18SFL3	pME18SFL3	pME18SFL3	pME18SFL3	pME18SFL3	pME18SFL3	pME18SFL3	pME18SFI.3	pCMV-SPORT6	pCMV-SPORT6	pCMV-SPORT6	pCMV-SPORT6	"T7T7D D."	p1/13D-rac	(Pharmacia) with a modified nolylinker	pAMP10	DCMV-SPORT6	DCMV-SPORT6	DCMV-SPORT6	pT7T3D-Pac	(Pharmacia) with a	modified polylinker	pAMPI	pCMV-SPORT6	7 VEROUS AND	pCMV-SPORT6.ccdb
NT2	NT2	NT2	NT2	NT2																						
									skin, normal, 4 pooled sa	brain	brain	breast				thyroid	tongue	uterus	ovary	brain	-		normal hand/noole tigging	brain	4	brain
					ovary, tumor tissue	placenta	placenta	placenta		glioblastoma with EGFR amplification	anaplastic oligodendroglioma with 1p/19q loss	invasive ductal carcinoma, 3 pooled samples				follicular adenoma (benign lesion)	squamous cell carcinoma	tumor	serous papillary tumor	oligodendroglioma				glioblastoma with probably	anaplastic oligodendroglisma	anapiastic ongodendrognoma
NT2RM1	NT2RM4	NT2RP2	NT2RP3	NT2RP4	OVARCI	PLACEI	PLACE2	PLACE3	NCI_CGAP_Skn1	NCI_CGAP_Brn64	NCI_CGAP_Brn67	NCI_CGAP_Br22	NCI CGAP Sub8			NCI_CGAP_Thy7	NCI CGAP HN13	NCI CGAP Ut7	NCI CGAP 0v41	NCI_CGAP_Brn41			LSS64 NCI_CGAP_HN20	NCI_CGAP_Brn66	NCI CGAP Rm70	יייונט ורטט וטוו
L3823	L3825	L3827	L3828	L3829	L3831	L3832	L3833	L3834		L3904	L3905	L4497	L4501			L4537	Н		$\overline{}$	L4747			L5564 	L5565	1.5566	

L5568	L5568 NCI CGAP HN21	nasopharyngeal carcinoma	head/neck	pAMP1
L5569	L5569 NCI CGAP HN17	normal epithelium	nasopharynx	pAMP10
L5574	L5574 NCI CGAP HN19	normal epithelium	nasopharynx	pAMP10
L5575	LSS75 NCI_CGAP_Bm65	glioblastoma without EGFR amplification	brain	 pCMV-SPORT6
L5622	L5622 NCI CGAP Skn3		skin	pCMV-SPORT6
L5623	L5623 NCI CGAP Skn4	squamous cell carcinoma	skin	pCMV-SPORT6

Description of Table 5

Table 5 provides a key to the OMIM reference identification numbers disclosed in Table 1B.1. OMIM reference identification numbers (Column 1) were derived from Online Mendelian Inheritance in Man (Online Mendelian Inheritance in Man, OMIM. McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine, (Bethesda, MD) 2000. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/). Column 2 provides diseases associated with the cytologic band disclosed in Table 1B.1, as determined using the Morbid Map database.

TABLE 5

5

10

OMIM Reference	Description
101000	Meningioma, NF2-related, sporadic Schwannoma, sporadic
101000	Neurofibromatosis, type 2
101000	Neurolemmomatosis
101000	Malignant mesothelioma, sporadic
102200	Somatotrophinoma
102578	Leukemia, acute promyelocytic, PML/RARA type
102770	Myoadenylate deaminase deficiency
102772	[AMP deaminase deficiency, erythrocytic]
103050	Autism, succinylpurinemic
103050	Adenylosuccinase deficiency
103600	[Dysalbuminemic hyperthyroxinemia]
103600	[Dysalbuminemic hyperzincemia], 194470
103600	Analbuminemia
103850	Aldolase A deficiency
104150	[AFP deficiency, congenital]
104150	[Hereditary persistence of alpha-fetoprotein]
104500	Amelogenesis imperfecta-2, hypoplastic local type
104770	Amyloidosis, secondary, susceptibility to
106100	Angioedema, hereditary
106165	Hypertension, essential, 145500
106210	Peters anomaly
106210	Cataract, congenital, with late-onset corneal dystrophy
106210	Foveal hypoplasia, isolated, 136520
106210	Aniridia
107271	CD59 deficiency
107300	Antithrombin III deficiency
107670	Apolipoprotein A-II deficiency
107741	Hyperlipoproteinemia, type III
107777	Diabetes insipidus, nephrogenic, autosomal recessive, 222000
108725	Atherosclerosis, susceptibility to
109270	Renal tubular acidosis, distal, 179800
109270	Spherocytosis, hereditary
109270	[Acanthocytosis, one form]
109270	[Elliptocytosis, Malaysian-Melanesian type]

100270	[Handada and Andrews and Andr
109270	Hemolytic anemia due to band 3 defect
109560	Leukemia/lymphoma, B-cell, 3
109700	Hemodialysis-related amyloidosis
110100	Blepharophimosis, epicanthus inversus, and ptosis, type 1
110700	Vivax malaria, susceptibility to
112261	Fibrodysplasia ossificans progressiva
113100	Brachydactyly, type C
113900	Heart block, progressive familial, type I
114550	Hepatocellular carcinoma
114835	Monocyte carboxyesterase deficiency
115500	Acatalasemia
116800	Cataract, Marner type
116806	Colorectal cancer
116860	Cavernous angiomatous malformations
117700	[Hypoceruloplasminemia, hereditary]
117700	Hemosiderosis, systemic, due to aceruloplasminemia
118485	Polycystic ovary syndrome with hyperandrogenemia
120070	Alport syndrome, autosomal recessive, 203780
120131	Alport syndrome, autosomal recessive, 203780
120131	Hematuria, familial benign
120140	Osteoarthrosis, precocious
120140	SED congenita
120140	SMED Strudwick type
120140	Stickler syndrome, type I
120140	Wagner syndrome, type II
120140	Achondrogenesis-hypochondrogenesis, type II
120140	Kniest dysplasia
120150	Osteogenesis imperfecta, 4 clinical forms, 166200, 166210, 259420, 166220
120150	Osteoporosis, idiopathic, 166710
120150	Ehlers-Danlos syndrome, type VIIA1, 130060
120220	Bethlem myopathy, 158810
120240	Bethlem myopathy, 158810
120260	Epiphyseal dysplasia, multiple, type 2, 600204
120435	Muir-Torre syndrome, 158320
120435	Colorectal cancer, hereditary, nonpolyposis, type 1 Ovarian cancer
120550	C1q deficiency, type A
120570	C1q deficiency, type B
120575	Clq deficiency, type C
120700	C3 deficiency
120950	C8 deficiency, type I
120960	C8 deficiency, type II
121800	Corneal dystrophy, crystalline, Schnyder
122720	Nicotine addiction, protection from
122720	Coumarin resistance, 122700
123000	Craniometaphyseal dysplasia
123580	Cataract, congenital, autosomal dominant
123620	Cataract, cerulean, type 2, 601547
123940	White sponge nevus, 193900
124030	Parkinsonism, susceptibility to
124030	Debrisoquine sensitivity
124200	Darier disease (keratosis follicularis)
126060	Anemia, megaloblastic, due to DHFR deficiency

126090	Hyperphenylalaninemia due to pterin-4a-carbinolamine dehydratase
	deficiency, 264070
126337	Myxoid liposarcoma
126340	Xeroderma pigmentosum, group D, 278730
126391	DNA ligase I deficiency
126600	Doyne honeycomb retinal dystrophy
126600	Drusen, radial, autosomal dominant
129010	Neuropathy, congenital hypomyelinating, 1
129900	EEC syndrome-1
130410	Glutaricaciduria, type IIB
130500	Elliptocytosis-1
131100	Multiple endocrine neoplasia I
131100	Prolactinoma, hyperparathyroidism, carcinoid syndrome
131100	Carcinoid tumor of lung
131210	Atherosclerosis, susceptibility to
131400	Eosinophilia, familial
133171	[Erythrocytosis, familial], 133100
133200	Erythrokeratodermia variabilis
133530	Xeroderma pigmentosum, group G, 278780
133701	Exostoses, multiple, type 2
133780	Vitreoretinopathy, exudative, familial
134790	Hyperferritinemia-cataract syndrome, 600886
135300	Fibromatosis, gingival
135940	Ichthyosis vulgaris, 146700
136132	[Fish-odor syndrome], 602079
136435	Ovarian dysgenesis, hypergonadotropic, with normal karyotype, 233300
136530	Male infertility, familial
136836	Fucosyltransferase-6 deficiency
138030	[Hyperproglucagonemia]
138140	Glucose transport defect, blood-brain barrier
138570	Non-insulin dependent diabetes mellitus, susceptibility to
138760	[Glyoxalase II deficiency]
138981	Pulmonary alveolar proteinosis, 265120
139350	Epidermolytic hyperkeratosis, 113800
139350	Keratoderma, palmoplantar, nonepidermolytic
140100	[Anhaptoglobinemia]
140100	[Hypohaptogloginemia]
142600	Hemolytic anemia due to hexokinase deficiency
143200	Wagner syndrome
143200	Erosive vitreoretinopathy
145001	Hyperparathyroidism-jaw tumor syndrome
145260	Pseudohypoaldosteronism, type II
145981	Hypocalciuric hypercalcemia, type II
146760	[IgG receptor I, phagocytic, familial deficiency of]
146790	Lupus nephritis, susceptibility to
147050	Atopy
147030	Leukemia, acute lymphoblastic
147141	Growth retardation with deafness and mental retardation
148040	
	Epidermolysis bullosa simplex, Koebner, Dowling-Meara, and Weber-Cockayne types, 131900, 131760, 131800
148041	Pachyonychia congenita, Jadassohn-Lewandowsky type, 167200
148043	Meesmann corneal dystrophy, 122100

140065	102000
148065	White sponge nevus, 193900
148070	Liver disease, susceptibility to, from hepatotoxins or viruses
148080	Epidermolytic hyperkeratosis, 113800
148370	Keratolytic winter erythema
148900	Klippel-Feil syndrome with laryngeal malformation
150210	Lactoferrin-deficient neutrophils, 245480
151385	Leukemia, acute myeloid
151390	Leukemia, acute T-cell
151670	Hepatic lipase deficiency
152445	Vohwinkel syndrome, 124500
152445	Erythrokeratoderma, progressive symmetric, 602036
152780	Hypogonadism, hypergonadotropic
152780	Male pseudohermaphroditism due to defective LH
152790	Precocious puberty, male, 176410
152790	Leydig cell hypoplasia
153454	Ehlers-Danlos syndrome, type VI, 225400
153700	Macular dystrophy, vitelliform type
154275	Malignant hyperthermia susceptibility 2
154276	Malignant hyperthermia susceptibility 3
154545	Chronic infections, due to opsonin defect
154550	Carbohydrate-deficient glycoprotein syndrome, type Ib, 602579
155555	[Red hair/fair skin]
155555	UV-induced skin damage, vulnerability to
157147	Abetalipoproteinemia, 200100
157170	Holoprosencephaly-2
158590	Spinal muscular atrophy-4
159000 .	Muscular dystrophy, limb-girdle, type 1A
159001	Muscular dystrophy, limb-girdle, type 1B
160760	Cardiomyopathy, familial hypertrophic, 1, 192600
160760	Central core disease, one form
160781	Cardiomyopathy, hypertrophic, mid-left ventricular chamber type
160900	Myotonic dystrophy
160980	Carney myxoma-endocrine complex
161015	Mitochondrial complex I deficiency, 252010
162150	Obestiy with impaired prohormone processing, 600955
162200	Neurofibromatosis, type 1
162200	Watson syndrome, 193520
163950	Noonan syndrome-1
163950	Cardiofaciocutaneous syndrome, 115150
164009	Leukemia, acute promyelocytic, NUMA/RARA type
164500	Spinocerebellar ataxia-7
164731	Ovarian carcinoma, 167000
164920	Piebaldism
164920	Mast cell leukemia
164920	Mastocytosis with associated hematologic disorder
164953	Liposarcoma
168360	Paraneoplastic sensory neuropathy
168450	Hypoparathyroidism, autosomal dominant
168450	Hypoparathyroidism, autosomal recessive
168461	Multiple myeloma, 254250
168461	Parathyroid adenomatosis 1
168461	Centrocytic lymphoma

160460	Metalland I I I I I I I I I I I I I I I I I I I
168468	Metaphyseal chondrodysplasia, Murk Jansen type, 156400
168500	Parietal foramina
169600	Hailey-Hailey disease
170650	Periodontitis, juvenile
171190	Hypertension, essential, 145500
171650	Lysosomal acid phosphatase deficiency
171760	Hypophosphatasia, adult, 146300
171760	Hypophosphatasia, infantile, 241500
171860	Hemolytic anemia due to phosphofructokinase deficiency
172400	Hemolytic anemia due to glucosephosphate isomerase deficiency
172400	Hydrops fetalis, one form
173470	Glanzmann thrombasthenia, type B
173610	Platelet alpha/delta storage pool deficiency
173850	Polio, susceptibility to
174000	Medullary cystic kidney disease, AD
174810	Osteolysis, familial expansile
174900	Polyposis, juvenile intestinal
176100	Porphyria cutanea tarda
176100	Porphyria, hepatoerythropoietic
176640	Creutzfeldt-Jakob disease, 123400
176640	Gerstmann-Straussler disease, 137440
176640	Insomnia, fatal familial
176880	Protein S deficiency
176930	Dysprothrombinemia
176930	Hypoprothrombinemia
178300	Ptosis, hereditary congenital, 1
179615	Reticulosis, familial histiocytic, 267700
179615	Severe combined immunodeficiency, B cell-negative, 601457
179616	Severe combined immunodeficiency, B cell-negative, 601457
179755	Renal cell carcinoma, papillary, 1
180069	Retinal dystrophy, autosomal recessive, childhood-onset
180069	Retinitis pigmentosa-20
180069	Leber congenital amaurosis-2, 204100
180071	Retinitis pigmentosa, autosomal recessive
180105	Retinitis pigmentosa-10
180200	Osteosarcoma, 259500
180200	Pinealoma with bilateral retinoblastoma
180200	Retinoblastoma
180200	Bladder cancer, 109800
180380	Night blindness, congenital stationery, rhodopsin-related
180380	Retinitis pigmentosa, autosomal recessive
180380	Retinitis pigmentosa-4, autosomal dominant
180385	Leukemia, acute T-cell
180721	Retinitis pigmentosa, digenic
180840	Susceptibility to IDDM
180901	Malignant hyperthermia susceptibility 1, 145600
180901	Central core disease, 117000
181405	Scapuloperoneal spinal muscular atrophy, New England type
181460	Schistosoma mansoni, susceptibility/resistance to
181510	Schizophrenia
182138	Anxiety-related personality traits
182280	Small-cell cancer of lung

182380	Glucose/galactose malabsorption
182600	Spastic paraplegia-3A
182601	Spastic paraplegia-5A Spastic paraplegia-4
182860	Pyropoikilocytosis
182860	Spherocytosis, recessive
182860	Elliptocytosis-2
185800	Symphalangism, proximal
186580	Arthrocutaneouveal granulomatosis
186880	Leukemia/lymphoma, T-cell
187040	Leukemia-1, T-cell acute lymphoblastic
188070	Bleeding disorder due to defective thromboxane A2 receptor
188826	Sorsby fundus dystrophy, 136900
189800	Preeclampsia/eclampsia
190040	Meningioma, SIS-related
190040	Dermatofibrosarcoma protuberans
190040	Giant-cell fibroblastoma
190195	Ichthyosiform erythroderma, congenital, 242100
190195	Ichthyosis, lamellar, autosomal recessive, 242300
190685	Down syndrome
191044	Cardiomyopathy, familial hypertrophic
191181	Cervical carcinoma
191315	Insensitivity to pain, congenital, with anhidrosis, 256800
192090	Ovarian carcinoma
192090	Breast cancer, lobular
192090	Endometrial carcinoma
192090	Gastric cancer, familial, 137215
192340	Diabetes insipidus, neurohypophyseal, 125700
193235	Vitreoretinopathy, neovascular inflammatory
193300	Renal cell carcinoma
193300	von Hippel-Lindau syndrome
194070	Wilms tumor, type 1
194070	Denys-Drash syndrome
194070	Frasier syndrome, 136680
201450	Acyl-CoA dehydrogenase, medium chain, deficiency of
201810	3-beta-hydroxysteroid dehydrogenase, type II, deficiency
203300	Hermansky-Pudlak syndrome
203500	Alkaptonuria
205900	Anemia, Diamond-Blackfan
207750	Hyperlipoproteinemia, type Ib
208400	Aspartylglucosaminuria
209901	Bardet-Biedl syndrome 1
212138	Carnitine-acylcarnitine translocase deficiency
216550	Cohen syndrome
221770	Polycystic lipomembranous osteodysplasia with sclerosing
	leukencephalopathy
221820	Gliosis, familial progressive subcortical
222700	Lysinuric protein intolerance
222800	Hemolytic anemia due to bisphosphoglycerate mutase deficiency
222900	Sucrose intolerance
227646	Fanconi anemia, type D
227650	Fanconi anemia, type A
230000	Fucosidosis
	l .

230800	Coucher disease
230800	Gaucher disease
	Gaucher disease with cardiovascular calcification
231550 231675	Achalasia-addisonianism-alacrimia syndrome
	Glutaricaciduria, type IIC
231680	Glutaricaciduria, type IIA
232500	Glycogen storage disease IV
232600	McArdle disease
233700	Chronic granulomatous disease due to deficiency of NCF-1
234200	Neurodegeneration with brain iron accumulation
236100	Holoprosencephaly-1
236200	Homocystinuria, B6-responsive and nonresponsive types
236250	Homocystinuria due to MTHFR deficiency
236700	McKusick-Kaufman syndrome
236730	Urofacial syndrome
239100	Van Buchem disease
240300	Autoimmune polyglandular disease, type I
245349	Lacticacidemia due to PDX1 deficiency
245900	Norum disease
245900	Fish-eye disease
248510	Mannosidosis, beta-
248600	Maple syrup urine disease, type Ia
248610	Maple syrup urine disease, type II
249000	Meckel syndrome
249100	Familial Mediterranean fever
250850	Hypermethioninemia, persistent, autosomal dominant, due to methionine
	adenosyltransferase I/III deficiency
251170	Mevalonicaciduria
253000	Mucopolysaccharidosis IVA
253200	Maroteaux-Lamy syndrome, several forms
253250	Mulibrey nanism
255800	Schwartz-Jampel syndrome
256700	Neuroblastoma
257200	Niemann-Pick disease, type A
257200	Niemann-Pick disease, type B
258501	3-methylglutaconicaciduria, type III
259700	Osteopetrosis, recessive
259770	Osteoporosis-pseudoglioma syndrome
259900	Hyperoxaluria, primary, type 1
266200	Anemia, hemolytic, due to PK deficiency
266600	Inflammatory bowel disease-1
267750	Knobloch syndrome
268800	Sandhoff disease, infantile, juvenile, and adult forms
268800	Spinal muscular atrophy, HEXB-related
272750	GM2-gangliosidosis, AB variant
272800	Tay-Sachs disease
272800	[Hex A pseudodeficiency]
272800	GM2-gangliosidosis, juvenile, adult
273800	Thrombocytopenia, neonatal alloimmune
273800	Glanzmann thrombasthenia, type A
274180	Thromboxane synthase deficiency
276600	Tyrosinemia, type II
276700	Tyrosinemia, type I

276710	Tyrosinemia, type III
276901	Usher syndrome, type 11
276901	Usher syndrome, type 2
300011	Menkes disease, 309400
300011	Occipital horn syndrome, 304150
	Cutis laxa, neonatal
300011	Mental retardation, X-linked, FRAXF type
300031	
300044	Wernicke-Korsakoff syndrome, susceptibility to
300046	Mental retardation, X-linked 23, nonspecific
300047	Mental retardation, X-linked 20
300048	Intestinal pseudoobstruction, neuronal, X-linked
300049	Nodular heterotopia, bilateral periventricular
300049	BPNH/MR syndrome
300055	Mental retardation with psychosis, pyramidal signs, and macroorchidism
300067	Subcortical laminar heterotopia, X-linked dominant
300067	Lissencephaly, X-linked
300071	Night blindness, congenital stationary, type 2
300075	Coffin-Lowry syndrome, 303600
300077	Mental retardation, X-linked 29
300100	Adrenoleukodystrophy
300100	Adrenomyeloneuropathy
300104	Mental retardation, X-linked nonspecific, 309541
300110	Night blindness, congenital stationary, X-linked incomplete, 300071
300121	Subcortical laminal heteropia, X-linked, 300067
300121	Lissencephaly, X-linked, 300067
300126	Dyskeratosis congenita-1, 305000
300127	Mental retardation, X-linked, 60
300600	Ocular albinism, Forsius-Eriksson type
301000	Thrombocytopenia, X-linked, 313900
301000	Wiskott-Aldrich syndrome
301200	Amelogenesis imperfecta
301201	Amelogenesis imperfecta-3, hypoplastic type
301590	Anophthalmos-1
301830	Arthrogryposis, X-linked (spinal muscular atrophy, infantile, X-linked)
301835	Arts syndrome
302060	Noncompaction of left ventricular myocardium, isolated
302060	Barth syndrome
302060	Cardiomyopathy, X-linked dilated, 300069
302060	Endocardial fibroelastosis-2
302350	Nance-Horan syndrome
302801	Charcot-Marie-Tooth neuropathy, X-linked-2, recessive
302960	Chondrodysplasia punctata, X-linked dominant
303700	Colorblindness, blue monochromatic
303800	Colorblindness, deutan
303900	Colorblindness, protan
304040	Charcot-Marie-Tooth neuropathy, X-linked-1, dominant, 302800
304800	Diabetes insipidus, nephrogenic
305100	Anhidrotic ectodermal dysplasia
305435	Heterocellular hereditary persistence of fetal hemoglobin, Swiss type
305450	FG syndrome
305900	Favism
305900	G6PD deficiency
	1

305900	Hemolytic anemia due to G6PD deficiency
306000	Glycogenosis, X-linked hepatic, type I
306000	Glycogenosis, X-linked hepatic, type II
306700	Hemophilia A
306995	[Homosexuality, male]
307800	Hypophosphatemia, hereditary
308310	Incontinentia pigmenti, familial
308800	Keratosis follicularis spinulosa decalvans
308840	Spastic paraplegia, 312900
308840	Hydrocephalus due to aqueductal stenosis, 307000
308840	MASA syndrome, 303350
309200	Manic-depressive illness, X-linked
309470	Mental retardation, X-linked, syndromic-3, with spastic diplegia
309500	Renpenning syndrome-1
309510	Mental retardation, X-linked, syndromic-1, with dystonic movements, ataxia,
	and seizures
309548	Mental retardation, X-linked, FRAXE type
309605	Mental retardation, X-linked, syndromic-4, with congenital contractures and
	low fingertip arches
309610	Mental retardation, X-linked, syndromic-2, with dysmorphism and cerebral
	atrophy
309620	Mental retardation-skeletal dysplasia
309850	Brunner syndrome
309900	Mucopolysaccharidosis II
310300	Emery-Dreifuss muscular dystrophy
310400	Myotubular myopathy, X-linked
310460	Myopia-1
310460	Bornholm eye disease
311050	Optic atrophy, X-linked
311200	Oral-facial-digital syndrome 1
311300	Otopalatodigital syndrome, type I
311510	Waisman parkinsonism-mental retardation syndrome
311850	Phosphoribosyl pyrophosphate synthetase-related gout
312040	N syndrome, 310465
312060	Properdin deficiency, X-linked
312170	Pyruvate dehydrogenase deficiency
312700	Retinoschisis
312760	Turner syndrome
313400	Spondyloepiphyseal dysplasia tarda
313700	Perineal hypospadias
313700	Prostate cancer
313700	Spinal and bulbar muscular atrophy of Kennedy, 313200
313700	Breast cancer, male, with Reifenstein syndrome
313700	Androgen insensitivity, several forms
314250	Dystonia-3, torsion, with parkinsonism, Filipino type
314300	Goeminne TKCR syndrome
314400	Cardiac valvular dysplasia-1
314580	Wieacker-Wolff syndrome
600040	Colorectal cancer
600045	
	Xeroderma pigmentosum, group E, subtype 2
600065	Leukocyte adhesion deficiency, 116920
600079	Colon cancer

600101	Deafness, autosomal dominant 2
600101	Muscular dystrophy, Duchenne-like, type 2
600119	
	Adhalinopathy, primary
600138	Retinitis pigmentosa-11
600151	Bardet-Biedl syndrome 3
600163	Long QT syndrome-3
600175	Spinal muscular atrophy, congenital nonprogressive, of lower limbs
600194	Ichthyosis bullosa of Siemens, 146800
600223	Spinocerebellar ataxia-4
600231	Palmoplantar keratoderma, Bothnia type
600243	Temperature-sensitive apoptosis
600309	Atrioventricular canal defect-1
600319	Diabetes mellitus, insulin-dependent, 4
600332	Rippling muscle disease-1
600354	Spinal muscular atrophy-1, 253300
600354	Spinal muscular atrophy-2, 253550
600354	Spinal muscular atrophy-3, 253400
600359	Bartter syndrome, type 2
600374	Bardet-Biedl syndrome 4
600525	Trichodontoosseous syndrome, 190320
600528	CPT deficiency, hepatic, type I, 255120
600536	Myopathy, congenital
600623	Prostate cancer, 176807
600631	Enuresis, nocturnal, 1
600650	Myopathy due to CPT II deficiency, 255110
600650	CPT deficiency, hepatic, type II, 600649
600652	Deafness, autosomal dominant 4
600678	Cancer susceptibility
600722	Ceroid lipofuscinosis, neuronal, variant juvenile type, with granular
	osmiophilic deposits
600722	Ceroid lipofuscinosis, neuronal-1, infantile, 256730
600757	Orofacial cleft-3
600759	Alzheimer disease-4
600760	Pseudohypoaldosteronism, type I, 264350
600760	Liddle syndrome, 177200
600761	Pseudohypoaldosteronism, type I, 264350
600761	Liddle syndrome, 177200
600792	Deafness, autosomal recessive 5
600795	Dementia, familial, nonspecific
600807	Bronchial asthma
600808	Enuresis, nocturnal, 2
600811	Xeroderma pigmentosum, group E, DDB-negative subtype, 278740
600850	Schizophrenia disorder-4
600881	Cataract, congenital, zonular, with sutural opacities
600882	Charcot-Marie-Tooth neuropathy-2B
600887	Endometrial carcinoma
600897	Cataract, zonular pulverulent-1, 116200
600900	Muscular dystrophy, limb-girdle, type 2E
600918	Cystinuria, type III
600956	Persistent Mullerian duct syndrome, type II, 261550
600957	Persistent Mullerian duct syndrome, type I, 261550
600958	Cardiomyopathy, familial hypertrophic, 4, 115197
	1

(00075	Classes 2 : Carlle D
600975	Glaucoma 3, primary infantile, B
601072	Deafness, autosomal recessive 8
601105	Pycnodysostosis, 265800
601145	Epilepsy, progressive myoclonic 1, 254800
601199	Neonatal hyperparathyroidism, 239200
601199	Hypocalcemia, autosomal dominant, 601198
601199	Hypocalciuric hypercalcemia, type I, 145980
601238	Cerebellar ataxia, Cayman type
601284	Hereditary hemorrhagic telangiectasia-2, 600376
601295	Bile acid malabsorption, primary
601362	DiGeorge syndrome/velocardiofacial syndrome complex-2
601369	Deafness, autosomal dominant 9
601386	Deafness, autosomal recessive 12
601412	Deafness, autosomal dominant 7
601414	Retinitis pigmentosa-18
601493	Cardiomyopathy, dilated 1C
601517	Spinocerebellar ataxia-2, 183090
601518	Prostate cancer, hereditary, 1, 176807
601567	Combined factor V and VIII deficiency, 227300
601596	Charcot-Marie-Tooth neuropathy, demyelinating
601652	Glaucoma 1A, primary open angle, juvenile-onset, 137750
601669	Hirschsprung disease, one form
601676	Acute insulin response
601682	Glaucoma 1C, primary open angle
601691	Retinitis pigmentosa-19, 601718
601691	Stargardt disease-1, 248200
601691	Cone-rod dystrophy 3
601691	Fundus flavimaculatus with macular dystrophy, 248200
601718	Retinitis pigmentosa-19
601744	Systemic lupus erythematosus, susceptibility to, 1
601769	Osteoporosis, involutional
601769	Rickets, vitamin D-resistant, 277440
601771	Glaucoma 3A, primary infantile, 231300
601780	Ceroid-lipofuscinosis, neuronal-6, variant late infantile
601844	Pseudohypoaldosteronism type II
601846	Muscular dystrophy with rimmed vacuoles
601863	Bare lymphocyte syndrome, complementation group C
601884	[High bone mass]
601920	Alagille syndrome, 118450
601928	Monilethrix, 158000
601954	Muscular dystrophy, limb-girdle, type 2G
601975	Ectodermal dysplasia/skin fragility syndrome
602080	Paget disease of bone-2
602086	Arrhythmogenic right ventricular dysplasia-3
602089	Hemangioma, capillary, hereditary
602092	Deafness, autosomal recessive 18
602094	Lipodystrophy, familial partial
602116	Glioma
602136	Refsum disease, infantile, 266510
602136	Zellweger syndrome-1, 214100
602136	Adrenoleukodystrophy, neonatal, 202370
602153	Monilethrix, 158000
002133	Monneuma, 130000

602216	Peutz-Jeghers syndrome, 175200
602225	Cone-rod retinal dystrophy-2, 120970
602225	Leber congenital amaurosis, type III
602279	Oculopharyngeal muscular dystorphy, 164300
602279	Oculopharyngeal muscular dystrophy, autosomal recessive, 257950
602403	Alzheimer disease, susceptibility to
602447	Coronary artery disease, susceptibility to
602477	Febrile convulsions, familial, 2
602491	Hyperlipidemia, familial combined, 1
602522	Bartter syndrome, infantile, with sensorineural deafness
602568	Homocystinuria-megaloblastic anemia, cbl E type, 236270
602574	Deafness, autosomal dominant 12, 601842
602574	Deafness, autosomal dominant 8, 601543
602716	Nephrosis-1, congenital, Finnish type, 256300
602782	Faisalabad histiocytosis
602783	Spastic paraplegia-7

Mature Polypeptides

5

10

15

20

25

The present invention also encompasses mature forms of a polypeptide having the amino acid sequence of SEQ ID NO:Y and/or the amino acid sequence encoded by the cDNA in a deposited clone. Polynucleotides encoding the mature forms (such as, for example, the polynucleotide sequence in SEQ ID NO:X and/or the polynucleotide sequence contained in the cDNA of a deposited clone) are also encompassed by the invention. Moreover, fragments or variants of these polypeptides (such as, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to these polypeptides, or polypeptides encoded by a polynucleotide that hybridizes under stringent conditions to the complementary strand of the polynucleotide encoding these polypeptides) are also encompassed by the invention. In preferred embodiments, these fragments or variants retain one or more functional acitivities of the full-length or mature form of the polypeptide (e.g., biological activity (such as, for example, activity useful in detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating cardiovascular disorders), antigenicity (ability to bind, or compete with a polypeptide of the invention for binding, to an anti-polypeptide of the invention antibody), immunogenicity (ability to generate antibody which binds to a specific polypeptide of the invention), ability to form multimers with polypeptides of the invention, and ability to bind to a receptor or ligand for a polypeptide of the invention). Antibodies that bind the polypeptides of the invention, and polynucleotides encoding these polypeptides are also encompassed by the invention.

According to the signal hypothesis, proteins secreted by mammalian cells have a signal or secretary leader sequence which is cleaved from the mature protein once export of the growing protein chain across the rough endoplasmic reticulum has been initiated. Most mammalian cells and even insect cells cleave secreted proteins with the same specificity. However, in some cases, cleavage of a secreted protein is not entirely uniform, which results in two or more mature species

of the protein. Further, it has long been known that cleavage specificity of a secreted protein is ultimately determined by the primary structure of the complete protein, that is, it is inherent in the amino acid sequence of the polypeptide.

Methods for predicting whether a protein has a signal sequence, as well as the cleavage point for that sequence, are available. For instance, the method of McGeoch, Virus Res. 3:271-286 (1985), uses the information from a short N-terminal charged region and a subsequent uncharged region of the complete (uncleaved) protein. The method of von Heinje, Nucleic Acids Res. 14:4683-4690 (1986) uses the information from the residues surrounding the cleavage site, typically residues -13 to +2, where +1 indicates the amino terminus of the secreted protein. The accuracy of predicting the cleavage points of known mammalian secretory proteins for each of these methods is in the range of 75-80%. (von Heinje, supra.) However, the two methods do not always produce the same predicted cleavage point(s) for a given protein.

5

10

15

20

25

30

35

In the present case, the deduced amino acid sequence of the secreted polypeptide was analyzed by a computer program called SignalP (Henrik Nielsen et al., Protein Engineering 10:1-6 (1997)), which predicts the cellular location of a protein based on the amino acid sequence. As part of this computational prediction of localization, the methods of McGeoch and von Heinje are incorporated. The analysis of the amino acid sequences of the secreted proteins described herein by this program provided the results shown in Table 1A.

In specific embodiments, polypeptides of the invention comprise, or alternatively consist of, the predicted mature form of the polypeptide as delineated in columns 14 and 15 of Table 1A. Moreover, fragments or variants of these polypeptides (such as, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to these polypeptides, or polypeptides encoded by a polynucleotide that hybridizes under stringent conditions to the complementary strand of the polynucleotide encoding these polypeptides) are also encompassed by the invention. In preferred embodiments, these fragments or variants retain one or more functional acitivities of the full-length or mature form of the polypeptide (e.g., biological activity (such as, for example, activity useful in detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating cardiovascular disorders), antigenicity (ability to bind, or compete with a polypeptide of the invention for binding, to an anti-polypeptide of the invention antibody), immunogenicity (ability to generate antibody which binds to a specific polypeptide of the invention), ability to form multimers with polypeptides of the invention, and ability to bind to a receptor or ligand for a polypeptide of the invention). Antibodies that bind the polypeptides of the invention, and polynucleotides encoding these polypeptides are also encompassed by the invention.

Polynucleotides encoding proteins comprising, or consisting of, the predicted mature form of polypeptides of the invention (e.g., polynucleotides having the sequence of SEQ ID NO: X (Table 1A, column 4), the sequence delineated in columns 7 and 8 of Table 1A, and a sequence

encoding the mature polypeptide delineated in columns 14 and 15 of Table 1A (e.g., the sequence of SEQ ID NO:X encoding the mature polypeptide delineated in columns 14 and 15 of Table 1)) are also encompassed by the invention, as are fragments or variants of these polynucleotides (such as, fragments as described herein, polynucleotides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to these polynucleotides, and nucleic acids which hybridizes under stringent conditions to the complementary strand of the polynucleotide).

As one of ordinary skill would appreciate, however, cleavage sites sometimes vary from organism to organism and cannot be predicted with absolute certainty. Accordingly, the present invention provides secreted polypeptides having a sequence shown in SEQ ID NO:Y which have an N-terminus beginning within 15 residues of the predicted cleavage point (i.e., having 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 more or less contiguous residues of SEQ ID NO:Y at the N-terminus when compared to the predicted mature form of the polypeptide (e.g., the mature polypeptide delineated in columns 14 and 15 of Table 1). Similarly, it is also recognized that in some cases, cleavage of the signal sequence from a secreted protein is not entirely uniform, resulting in more than one secreted species. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

Moreover, the signal sequence identified by the above analysis may not necessarily predict the naturally occurring signal sequence. For example, the naturally occurring signal sequence may be further upstream from the predicted signal sequence. However, it is likely that the predicted signal sequence will be capable of directing the secreted protein to the ER. Nonetheless, the present invention provides the mature protein produced by expression of the polynucleotide sequence of SEQ ID NO:X and/or the polynucleotide sequence contained in the cDNA of a deposited clone, in a mammalian cell (e.g., COS cells, as desribed below). These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

Polynucleotide and Polypeptide Variants

The present invention is also directed to variants of the polynucleotide sequence disclosed in SEQ ID NO:X or the complementary strand thereto, nucleotide sequences encoding the polypeptide of SEQ ID NO:Y, the nucleotide sequence of SEQ ID NO:X that encodes the polypeptide sequence as defined in columns 13 and 14 of Table 1A, nucleotide sequences encoding the polypeptide sequence as defined in columns 13 and 14 of Table 1A, the nucleotide sequence of SEQ ID NO:X encoding the polypeptide sequence as defined in column 7 of Table 1B.1, nucleotide sequences encoding the polypeptide as defined in Table 1B.1, the nucleotide sequence as defined in columns 8 and 9 of Table 2, nucleotide sequences encoding the polypeptide encoded by the nucleotide sequence as defined in column 6 of Table 1C, nucleotide sequences encoding the polypeptide

encoded by the nucleotide sequence as defined in column 6 of Table 1C, the cDNA sequence contained in ATCC Deposit No:Z, nucleotide sequences encoding the polypeptide encoded by the cDNA sequence contained in ATCC Deposit No:Z, and/or nucleotide sequences encoding a mature (secreted) polypeptide encoded by the cDNA sequence contained in ATCC Deposit No:Z.

5

10

15

20

25

30

35

The present invention also encompasses variants of the polypeptide sequence disclosed in SEQ ID NO:Y, the polypeptide as defined in columns 13 and 14 of Table 1A, the polypeptide sequence as defined in Table 1B.1, a polypeptide sequence encoded by the polynucleotide sequence in SEQ ID NO:X, a polypeptide sequence encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2, a polypeptide sequence encoded by the nucleotide sequence as defined in column 6 of Table 1C, a polypeptide sequence encoded by the complement of the polynucleotide sequence in SEQ ID NO:X, the polypeptide sequence encoded by the cDNA sequence contained in ATCC Deposit No:Z and/or a mature (secreted) polypeptide encoded by the cDNA sequence contained in ATCC Deposit No:Z.

"Variant" refers to a polynucleotide or polypeptide differing from the polynucleotide or polypeptide of the present invention, but retaining essential properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the polynucleotide or polypeptide of the present invention.

Thus, one aspect of the invention provides an isolated nucleic acid molecule comprising, or alternatively consisting of, a polynucleotide having a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence described in SEQ ID NO:X or contained in the cDNA sequence of ATCC Deposit No:Z; (b) a nucleotide sequence in SEQ ID NO:X or the cDNA in ATCC Deposit No:Z which encodes the complete amino acid sequence of SEQ ID NO:Y or the complete amino acid sequence encoded by the cDNA in ATCC Deposit No:Z; (c) a nucleotide sequence in SEQ ID NO:X or the cDNA in ATCC Deposit No:Z which encodes a mature polypeptide (i.e., a secreted polypeptide (e.g., as delineated in columns 14 and 15 of Table 1A)); (d) a nucleotide sequence in SEQ ID NO:X or the cDNA sequence of ATCC Deposit No:Z, which encodes a biologically active fragment of a polypeptide; (e) a nucleotide sequence in SEQ ID NO:X or the cDNA sequence of ATCC Deposit No:Z, which encodes an antigenic fragment of a polypeptide; (f) a nucleotide sequence encoding a polypeptide comprising the complete amino acid sequence of SEQ ID NO:Y or the complete amino acid sequence encoded by the cDNA in ATCC Deposit No:Z; (g) a nucleotide sequence encoding a mature polypeptide of the amino acid sequence of SEQ ID NO:Y (i.e., a secreted polypeptide (e.g., as delineated in columns 14 and 15 of Table 1A)) or a mature polypeptide of the amino acid sequence encoded by the cDNA in ATCC Deposit No:Z; (h) a nucleotide sequence encoding a biologically active fragment of a polypeptide having the complete amino acid sequence of SEQ ID NO:Y or the complete amino acid sequence encoded by the cDNA in ATCC Deposit No:Z; (i) a nucleotide sequence encoding an antigenic fragment of a polypeptide having the complete amino acid sequence of SEQ ID NO:Y or the

complete amino acid sequence encoded by the cDNA in ATCC Deposit No:Z; and (j) a nucleotide sequence complementary to any of the nucleotide sequences in (a), (b), (c), (d), (e), (f), (g), (h), or (i) above.

5

10

15

20

25

30

35

The present invention is also directed to nucleic acid molecules which comprise, or alternatively consist of, a nucleotide sequence which is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100%, identical to, for example, any of the nucleotide sequences in (a), (b), (c), (d), (e), (f), (g), (h), (i), or (j) above, the nucleotide coding sequence in SEQ ID NO:X or the complementary strand thereto, the nucleotide coding sequence of the cDNA contained in ATCC Deposit No:Z or the complementary strand thereto, a nucleotide sequence encoding the polypeptide of SEQ ID NO:Y, a nucleotide sequence encoding a polypeptide sequence encoded by the nucleotide sequence in SEQ ID NO:X, a polypeptide sequence encoded by the complement of the polynucleotide sequence in SEQ ID NO:X, a nucleotide sequence encoding the polypeptide encoded by the cDNA contained in ATCC Deposit No:Z, the nucleotide coding sequence in SEQ ID NO:X as defined in columns 8 and 9 of Table 2 or the complementary strand thereto, a nucleotide sequence encoding the polypeptide encoded by the nucleotide sequence in SEQ ID NO:X as defined in columns 8 and 9 of Table 2 or the complementary strand thereto, the nucleotide coding sequence in SEQ ID NO:B as defined in column 6 of Table 1C or the complementary strand thereto, a nucleotide sequence encoding the polypeptide encoded by the nucleotide sequence in SEQ ID NO:B as defined in column 6 of Table 1C or the complementary strand thereto, the nucleotide sequence in SEQ ID NO:X encoding the polypeptide sequence as defined in Table 1B.1 or the complementary strand thereto, nucleotide sequences encoding the polypeptide as defined in Table 1B.1 or the complementary strand thereto, and/or polynucleotide fragments of any of these nucleic acid molecules (e.g., those fragments described herein). Polynucleotides which hybridize to the complement of these nucleic acid molecules under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention, as are polypeptides encoded by these polynucleotides and nucleic acids.

In a preferred embodiment, the invention encompasses nucleic acid molecules which comprise, or alternatively, consist of a polynucleotide which hybridizes under stringent hybridization conditions, or alternatively, under lower stringency conditions, to a polynucleotide in (a), (b), (c), (d), (e), (f), (g), (h), or (i), above, as are polypeptides encoded by these polynucleotides. In another preferred embodiment, polynucleotides which hybridize to the complement of these nucleic acid molecules under stringent hybridization conditions, or alternatively, under lower stringency conditions, are also encompassed by the invention, as are polypeptides encoded by these polynucleotides.

In another embodiment, the invention provides a purified protein comprising, or alternatively consisting of, a polypeptide having an amino acid sequence selected from the group

consisting of: (a) the complete amino acid sequence of SEQ ID NO:Y or the complete amino acid sequence encoded by the cDNA in ATCC Deposit No:Z; (b) the amino acid sequence of a mature (secreted) form of a polypeptide having the amino acid sequence of SEQ ID NO:Y (e.g., as delineated in columns 14 and 15 of Table 1A) or a mature form of the amino acid sequence encoded by the cDNA in ATCC Deposit No:Z mature; (c) the amino acid sequence of a biologically active fragment of a polypeptide having the complete amino acid sequence of SEQ ID NO:Y or the complete amino acid sequence encoded by the cDNA in ATCC Deposit No:Z; and (d) the amino acid sequence of an antigenic fragment of a polypeptide having the complete amino acid sequence of SEQ ID NO:Y or the complete amino acid sequence encoded by the cDNA in ATCC Deposit No:Z.

The present invention is also directed to proteins which comprise, or alternatively consist of, an amino acid sequence which is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100%, identical to, for example, any of the amino acid sequences in (a), (b), (c), or (d), above, the amino acid sequence shown in SEQ ID NO:Y, the amino acid sequence encoded by the cDNA contained in ATCC Deposit No:Z, the amino acid sequence of the polypeptide encoded by the nucleotide sequence in SEQ ID NO:X as defined in columns 8 and 9 of Table 2, the amino acid sequence of the polypeptide encoded by the nucleotide sequence in SEQ ID NO:B as defined in column 6 of Table 1C, the amino acid sequence as defined in Table 1B.1, an amino acid sequence encoded by the nucleotide sequence in SEQ ID NO:X, and an amino acid sequence encoded by the complement of the polynucleotide sequence in SEQ ID NO:X. Fragments of these polypeptides are also provided (e.g., those fragments described herein). Further proteins encoded by polynucleotides which hybridize to the complement of the nucleic acid molecules encoding these amino acid sequences under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention, as are the polynucleotides encoding these proteins.

By a nucleic acid having a nucleotide sequence at least, for example, 95% "identical" to a reference nucleotide sequence of the present invention, it is intended that the nucleotide sequence of the nucleic acid is identical to the reference sequence except that the nucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the polypeptide. In other words, to obtain a nucleic acid having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. The query sequence may be an entire sequence referred to in Table 1B.1 or Table 2 as the ORF (open reading frame), or any fragment specified as described herein.

As a practical matter, whether any particular nucleic acid molecule or polypeptide is at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the

present invention can be determined conventionally using known computer programs. A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. 6:237-245 (1990)). In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by converting U's to T's. The result of said global sequence alignment is expressed as percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identity are: Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty 0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence because of 5' or 3' deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5' and 3' truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5' or 3' ends, relative to the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5' and 3' of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only bases outside the 5' and 3' bases of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.

For example, a 90 base subject sequence is aligned to a 100 base query sequence to determine percent identity. The deletions occur at the 5' end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignment of the first 10 bases at 5' end. The 10 unpaired bases represent 10% of the sequence (number of bases at the 5' and 3' ends not matched/total number of bases in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 bases were perfectly matched the final percent identity would be 90%. In another example, a 90 base subject sequence is compared with a 100 base query sequence. This time the deletions are internal deletions so that there are no bases on the 5' or 3' of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only bases 5' and 3' of the subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to be made for the purposes of the present invention.

By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a query amino acid sequence of the present invention, it is intended that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a query amino acid sequence, up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

5

10

15

20

25

30

35

As a practical matter, whether any particular polypeptide is at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequence of a polypeptide referred to in Table 1A (e.g., the amino acid sequence delineated in columns 14 and 15) or a fragment thereof, Table 1B (e.g., the amino acid sequence identified in column 6) or a fragment thereof, Table 2 (e.g., the amino acid sequence of the polypeptide encoded by the polynucleotide sequence defined in columns 8 and 9 of Table 2) or a fragment thereof, the amino acid sequence of the polypeptide encoded by the polynucleotide sequence in SEQ ID NO:B as defined in column 6 of Table 1C or a fragment thereof, the amino acid sequence of the polypeptide encoded by the nucleotide sequence in SEQ ID NO:X or a fragment thereof, or the amino acid sequence of the polypeptide encoded by cDNA contained in ATCC Deposit No:Z, or a fragment thereof, the amino acid sequence of a mature (secreted) polypeptide encoded by cDNA contained in ATCC Deposit No:Z, or a fragment thereof, can be determined conventionally using known computer programs. A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci.6:237-245 (1990)). In a sequence alignment the query and subject sequences are either both nucleotide sequences or both amino acid sequences. The result of said global sequence alignment is expressed as percent identity. Preferred parameters used in a FASTDB amino acid alignment are: Matrix=PAM 0, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Window Size=sequence length, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject amino acid sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence due to N- or C-terminal deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for N- and C-terminal truncations of the subject sequence when calculating global percent identity. For subject sequences truncated at the N- and

C-termini, relative to the query sequence, the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N- and C-terminal residues of the subject sequence.

For example, a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity. The deletion occurs at the N-terminus of the subject sequence and therefore, the FASTDB alignment does not show a matching/alignment of the first 10 residues at the N-terminus. The 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C- termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%. In another example, a 90 residue subject sequence is compared with a 100 residue query sequence. This time the deletions are internal deletions so there are no residues at the N- or C-termini of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only residue positions outside the N- and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to made for the purposes of the present invention.

The polynucleotide variants of the invention may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. Nucleotide variants produced by silent substitutions due to the degeneracy of the genetic code are preferred. Moreover, polypeptide variants in which less than 50, less than 40, less than 30, less than 20, less than 10, or 5-50, 5-25, 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred. Polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host such as E. coli).

Naturally occurring variants are called "allelic variants," and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an organism. (Genes II,

Lewin, B., ed., John Wiley & Sons, New York (1985)). These allelic variants can vary at either the polynucleotide and/or polypeptide level and are included in the present invention. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.

5

10

15

20

25

30

35

Using known methods of protein engineering and recombinant DNA technology, variants may be generated to improve or alter the characteristics of the polypeptides of the present invention. For instance, one or more amino acids can be deleted from the N-terminus or C-terminus of the polypeptide of the present invention without substantial loss of biological function. As an example, Ron et al. (J. Biol. Chem. 268: 2984-2988 (1993)) reported variant KGF proteins having heparin binding activity even after deleting 3, 8, or 27 amino-terminal amino acid residues. Similarly, Interferon gamma exhibited up to ten times higher activity after deleting 8-10 amino acid residues from the carboxy terminus of this protein. (Dobeli et al., J. Biotechnology 7:199-216 (1988).)

Moreover, ample evidence demonstrates that variants often retain a biological activity similar to that of the naturally occurring protein. For example, Gayle and coworkers (J. Biol. Chem. 268:22105-22111 (1993)) conducted extensive mutational analysis of human cytokine IL-1a. They used random mutagenesis to generate over 3,500 individual IL-1a mutants that averaged 2.5 amino acid changes per variant over the entire length of the molecule. Multiple mutations were examined at every possible amino acid position. The investigators found that "[m]ost of the molecule could be altered with little effect on either [binding or biological activity]." In fact, only 23 unique amino acid sequences, out of more than 3,500 nucleotide sequences examined, produced a protein that significantly differed in activity from wild-type.

Furthermore, even if deleting one or more amino acids from the N-terminus or C-terminus of a polypeptide results in modification or loss of one or more biological functions, other biological activities may still be retained. For example, the ability of a deletion variant to induce and/or to bind antibodies which recognize the secreted form will likely be retained when less than the majority of the residues of the secreted form are removed from the N-terminus or C-terminus. Whether a particular polypeptide lacking N- or C-terminal residues of a protein retains such immunogenic activities can readily be determined by routine methods described herein and otherwise known in the art.

Thus, the invention further includes polypeptide variants which show a biological or functional activity of the polypeptides of the invention (such as, for example, activity useful in detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating cardiovascular disorders). Such variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity.

The present application is directed to nucleic acid molecules at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to the nucleic acid sequences disclosed herein, (e.g.,

encoding a polypeptide having the amino acid sequence of an N and/or C terminal deletion), irrespective of whether they encode a polypeptide having functional activity. This is because even where a particular nucleic acid molecule does not encode a polypeptide having functional activity, one of skill in the art would still know how to use the nucleic acid molecule, for instance, as a hybridization probe or a polymerase chain reaction (PCR) primer. Uses of the nucleic acid molecules of the present invention that do not encode a polypeptide having functional activity include, inter alia, (1) isolating a gene or allelic or splice variants thereof in a cDNA library; (2) in situ hybridization (e.g., "FISH") to metaphase chromosomal spreads to provide precise chromosomal location of the gene, as described in Verma et al., Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York (1988); (3) Northern Blot analysis for detecting mRNA expression in specific tissues (e.g., normal or diseased tissues); and (4) *in situ* hybridization (e.g., histochemistry) for detecting mRNA expression in specific tissues (e.g., normal or diseased tissues).

Preferred, however, are nucleic acid molecules having sequences at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to the nucleic acid sequences disclosed herein, which do, in fact, encode a polypeptide having functional activity. By a polypeptide having "functional activity" is meant, a polypeptide capable of displaying one or more known functional activities associated with a full-length (complete) protein and/or a mature (secreted) protein of the invention. Such functional activities include, but are not limited to, biological activity (such as, for example, activity useful in detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating cardiovascular diseases and disorders), antigenicity (ability to bind, or compete with a polypeptide of the invention for binding, to an anti-polypeptide of the invention antibody), immunogenicity (ability to generate antibody which binds to a specific polypeptide of the invention), ability to form multimers with polypeptides of the invention, and ability to bind to a receptor or ligand for a polypeptide of the invention.

The functional activity of the polypeptides, and fragments, variants and derivatives of the invention, can be assayed by various methods.

For example, in one embodiment where one is assaying for the ability to bind or compete with a full-length polypeptide of the present invention for binding to an anti-polypetide antibody, various immunoassays known in the art can be used, including but not limited to, competitive and non-competitive assay systems using techniques such as radioimmunoassays, ELISA (enzyme linked immunosorbent assay), "sandwich" immunoassays, immunoradiometric assays, gel diffusion precipitation reactions, immunodiffusion assays, in situ immunoassays (using colloidal gold, enzyme or radioisotope labels, for example), western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays, etc. In one embodiment, antibody binding is detected by detecting a label on the primary antibody. In

another embodiment, the primary antibody is detected by detecting binding of a secondary antibody or reagent to the primary antibody. In a further embodiment, the secondary antibody is labeled. Many means are known in the art for detecting binding in an immunoassay and are within the scope of the present invention.

In another embodiment, where a ligand is identified, or the ability of a polypeptide fragment, variant or derivative of the invention to multimerize is being evaluated, binding can be assayed, e.g., by means well-known in the art, such as, for example, reducing and non-reducing gel chromatography, protein affinity chromatography, and affinity blotting. See generally, Phizicky et al., Microbiol. Rev. 59:94-123 (1995). In another embodiment, the ability of physiological correlates of a polypeptide of the present invention to bind to a substrate(s) of the polypeptide of the invention can be routinely assayed using techniques known in the art.

In addition, assays described herein (see Examples) and otherwise known in the art may routinely be applied to measure the ability of polypeptides of the present invention and fragments, variants and derivatives thereof to elicit polypeptide related biological activity (either *in vitro* or *in vivo*). Other methods will be known to the skilled artisan and are within the scope of the invention.

Of course, due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large number of the nucleic acid molecules having a sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to, for example, the nucleic acid sequence of the cDNA contained in ATCC Deposit No:Z, the nucleic acid sequence referred to in Table 1B (SEQ ID NO:X), the nucleic acid sequence disclosed in Table 1A (e.g., the nucleic acid sequence delineated in columns 7 and 8), the nucleic acid sequence disclosed in Table 2 (e.g., the nucleic acid sequence delineated in columns 8 and 9) or fragments thereof, will encode polypeptides "having functional activity." In fact, since degenerate variants of any of these nucleotide sequences all encode the same polypeptide, in many instances, this will be clear to the skilled artisan even without performing the above described comparison assay. It will be further recognized in the art that, for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a polypeptide having functional activity. This is because the skilled artisan is fully aware of amino acid substitutions that are either less likely or not likely to significantly effect protein function (e.g., replacing one aliphatic amino acid with a second aliphatic amino acid), as further described below.

For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie et al., "Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions," Science 247:1306-1310 (1990), wherein the authors indicate that there are two main strategies for studying the tolerance of an amino acid sequence to change.

The first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity of the protein.

The second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. See Cunningham and Wells, Science 244:1081-1085 (1989). The resulting mutant molecules can then be tested for biological activity.

As the authors state, these two strategies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at certain amino acid positions in the protein. For example, most buried (within the tertiary structure of the protein) amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Moreover, tolerated conservative amino acid substitutions involve replacement of the aliphatic or hydrophobic amino acids Ala, Val, Leu and Ile; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement of the amide residues Asn and Gln, replacement of the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement of the small-sized amino acids Ala, Ser, Thr, Met, and Gly.

Besides conservative amino acid substitution, variants of the present invention include (i) substitutions with one or more of the non-conserved amino acid residues, where the substituted amino acid residues may or may not be one encoded by the genetic code, or (ii) substitutions with one or more of the amino acid residues having a substituent group, or (iii) fusion of the mature polypeptide with another compound, such as a compound to increase the stability and/or solubility of the polypeptide (for example, polyethylene glycol), (iv) fusion of the polypeptide with additional amino acids, such as, for example, an IgG Fc fusion region peptide, serum albumin (preferably human serum albumin) or a fragment thereof, or leader or secretory sequence, or a sequence facilitating purification, or (v) fusion of the polypeptide with another compound, such as albumin (including but not limited to recombinant albumin (see, e.g., U.S. Patent No. 5,876,969, issued March 2, 1999, EP Patent 0 413 622, and U.S. Patent No. 5,766,883, issued June 16, 1998, herein incorporated by reference in their entirety)). Such variant polypeptides are deemed to be within the scope of those skilled in the art from the teachings herein.

For example, polypeptide variants containing amino acid substitutions of charged amino acids with other charged or neutral amino acids may produce proteins with improved

characteristics, such as less aggregation. Aggregation of pharmaceutical formulations both reduces activity and increases clearance due to the aggregate's immunogenic activity. See Pinckard et al., Clin. Exp. Immunol. 2:331-340 (1967); Robbins et al., Diabetes 36: 838-845 (1987); Cleland et al., Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377 (1993).

A further embodiment of the invention relates to polypeptides which comprise the amino acid sequence of a polypeptide having an amino acid sequence which contains at least one amino acid substitution, but not more than 50 amino acid substitutions, even more preferably, not more than 40 amino acid substitutions, still more preferably, not more than 30 amino acid substitutions, and still even more preferably, not more than 20 amino acid substitutions from a polypeptide sequence disclosed herein. Of course it is highly preferable for a polypeptide to have an amino acid sequence which, for example, comprises the amino acid sequence of a polypeptide of SEQ ID NO:Y, the amino acid sequence of the mature (e.g., secreted) polypeptide of SEQ ID NO:Y, an amino acid sequence encoded by the portion of SEQ ID NO:X as defined in columnns 8 and 9 of Table 2, an amino acid sequence encoded by the complement of SEQ ID NO:X, an amino acid sequence encoded by cDNA contained in ATCC Deposit No:Z, and/or the amino acid sequence of a mature (secreted) polypeptide encoded by cDNA contained in ATCC Deposit No:Z, or a fragment thereof, which contains, in order of ever-increasing preference, at least one, but not more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid substitutions.

In specific embodiments, the polypeptides of the invention comprise, or alternatively, consist of, fragments or variants of a reference amino acid sequence selected from: (a) the amino acid sequence of SEQ ID NO:Y or fragments thereof (e.g., the mature formand/or other fragments described herein); (b) the amino acid sequence encoded by SEQ ID NO:X or fragments thereof; (c) the amino acid sequence encoded by the complement of SEQ ID NO:X or fragments thereof; (d) the amino acid sequence encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2 or fragments thereof; and (e) the amino acid sequence encoded by cDNA contained in ATCC Deposit No:Z or fragments thereof; wherein the fragments or variants have 1-5, 5-10, 5-25, 5-50, 10-50 or 50-150, amino acid residue additions, substitutions, and/or deletions when compared to the reference amino acid sequence. In preferred embodiments, the amino acid substitutions are conservative. Polynucleotides encoding these polypeptides are also encompassed by the invention.

Polynucleotide and Polypeptide Fragments

The present invention is also directed to polynucleotide fragments of the polynucleotides (nucleic acids) of the invention. In the present invention, a "polynucleotide fragment" refers to a polynucleotide having a nucleic acid sequence which, for example: is a portion of the cDNA contained in ATCC Deposit No:Z or the complementary strand thereto; is a

portion of the polynucleotide sequence encoding the polypeptide encoded by the cDNA contained in ATCC Deposit No:Z or the complementary strand thereto; is a portion of the polynucleotide sequence encoding the mature (secreted) polypeptide encoded by the cDNA contained in ATCC Deposit No:Z or the complementary strand thereto; is a portion of a polynucleotide sequence encoding the mature amino acid sequence as defined in columns 14 and 15 of Table 1A or the complementary strand thereto; is a portion of a polynucleotide sequence encoding the amino acid sequence encoded by the region of SEQ ID NO:X as defined in columns 8 and 9 of Table 2 or the complementary strand thereto; is a portion of the polynucleotide sequence of SEQ ID NO:X as defined in columns 8 and 9 of Table 2 or the complementary strand thereto; is a portion of the polynucleotide sequence in SEQ ID NO:X or the complementary strand thereto; is a polynucleotide sequence encoding a portion of the polypeptide of SEQ ID NO:Y; is a polynucleotide sequence encoding a portion of a polypeptide encoded by SEQ ID NO:X; is a polynucleotide sequence encoding a portion of a polypeptide encoded by the complement of the polynucleotide sequence in SEQ ID NO:X; is a portion of a polynucleotide sequence encoding the amino acid sequence encoded by the region of SEQ ID NO:B as defined in column 6 of Table 1C or the complementary strand thereto; or is a portion of the polynucleotide sequence of SEQ ID NO:B as defined in column 6 of Table 1C or the complementary strand thereto.

5

10

15

20

25

30

35

The polynucleotide fragments of the invention are preferably at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt, at least about 50 nt, at least about 75 nt, or at least about 150 nt in length. A fragment "at least 20 nt in length," for example, is intended to include 20 or more contiguous bases from the cDNA sequence contained in ATCC Deposit No:Z, or the nucleotide sequence shown in SEQ ID NO:X or the complementary stand thereto. In this context "about" includes the particularly recited value or a value larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini. These nucleotide fragments have uses that include, but are not limited to, as diagnostic probes and primers as discussed herein. Of course, larger fragments (e.g., at least 160, 170, 180, 190, 200, 250, 500, 600, 1000, or 2000 nucleotides in length) are also encompassed by the invention.

Moreover, representative examples of polynucleotide fragments of the invention comprise, or alternatively consist of, a sequence from about nucleotide number 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 601-650, 651-700, 701-750, 751-800, 801-850, 851-900, 901-950, 951-1000, 1001-1050, 1051-1100, 1101-1150, 1151-1200, 1201-1250, 1251-1300, 1301-1350, 1351-1400, 1401-1450, 1451-1500, 1501-1550, 1551-1600, 1601-1650, 1651-1700, 1701-1750, 1751-1800, 1801-1850, 1851-1900, 1901-1950, 1951-2000, 2001-2050, 2051-2100, 2101-2150, 2151-2200, 2201-2250, 2251-2300, 2301-2350, 2351-2400, 2401-2450, 2451-2500, 2501-2550, 2551-2600, 2601-2650, 2651-2700, 2701-2750, 2751-2800, 2801-2850, 2851-2900, 2901-2950, 2951-3000, 3001-3050, 3051-3100,

3101-3150, 3151-3200, 3201-3250, 3251-3300, 3301-3350, 3351-3400, 3401-3450, 3451-3500, 3501-3550, 3551-3600, 3601-3650, 3651-3700, 3701-3750, 3751-3800, 3801-3850, 3851-3900, 3901-3950, 3951-4000, 4001-4050, 4051-4100, 4101-4150, 4151-4200, 4201-4250, 4251-4300, 4301-4350, 4351-4400, 4401-4450, 4451-4500, 4501-4550, 4551-4600, 4601-4650, 4651-4700, 4701-4750, 4751-4800, 4801-4850, 4851-4900, 4901-4950, 4951-5000, 5001-5050, 5051-5100, 5101-5150, 5151-5200, 5201-5250, 5251-5300, 5301-5350, 5351-5400, 5401-5450, 5451-5500, 5501-5550, 5551-5600, 5601-5650, 5651-5700, 5701-5750, 5751-5800, 5801-5850, 5851-5900, 5901-5950, 5951-6000, 6001-6050, 6051-6100, 6101-6150, 6151-6200, 6201-6250, 6251-6300, 6301-6350, 6351-6400, 6401-6450, 6451-6500, 6501-6550, 6551-6600, 6601-6650, 6651-6700, 6701-6750, 6751-6800, 6801-6850, 6851-6900, 6901-6950, 6951-7000, 7001-7050, 7051-7100, 7101-7150, 7151-7200, 7201-7250, 7251-7300 or 7301 to the end of SEQ ID NO:X, or the complementary strand thereto. In this context "about" includes the particularly recited range or a range larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini. Preferably, these fragments encode a polypeptide which has a functional activity (e.g., biological activity; such as, for example, activity useful in detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating cardiovascular diseases and disorders). More preferably, these polynucleotides can be used as probes or primers as discussed herein. Polynucleotides which hybridize to one or more of these polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions are also encompassed by the invention, as are polypeptides encoded by these polynucleotides.

5

10

15

20

25

30

35

Further representative examples of polynucleotide fragments of the invention comprise, or alternatively consist of, a sequence from about nucleotide number 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 601-650, 651-700, 701-750, 751-800, 801-850, 851-900, 901-950, 951-1000, 1001-1050, 1051-1100, 1101-1150, 1151-1200, 1201-1250, 1251-1300, 1301-1350, 1351-1400, 1401-1450, 1451-1500, 1501-1550, 1551-1600, 1601-1650, 1651-1700, 1701-1750, 1751-1800, 1801-1850, 1851-1900, 1901-1950, 1951-2000, 2001-2050, 2051-2100, 2101-2150, 2151-2200, 2201-2250, 2251-2300, 2301-2350, 2351-2400, 2401-2450, 2451-2500, 2501-2550, 2551-2600, 2601-2650, 2651-2700, 2701-2750, 2751-2800, 2801-2850, 2851-2900, 2901-2950, 2951-3000, 3001-3050, 3051-3100, 3101-3150, 3151-3200, 3201-3250, 3251-3300, 3301-3350, 3351-3400, 3401-3450, 3451-3500, 3501-3550, 3551-3600, 3601-3650, 3651-3700, 3701-3750, 3751-3800, 3801-3850, 3851-3900, 3901-3950, 3951-4000, 4001-4050, 4051-4100, 4101-4150, 4151-4200, 4201-4250, 4251-4300, 4301-4350, 4351-4400, 4401-4450, 4451-4500, 4501-4550, 4551-4600, 4601-4650, 4651-4700, 4701-4750, 4751-4800, 4801-4850, 4851-4900, 4901-4950, 4951-5000, 5001-5050, 5051-5100, 5101-5150, 5151-5200, 5201-5250, 5251-5300, 5301-5350, 5351-5400, 5401-5450, 5451-5500, 5501-5550, 5551-5600, 5601-5650, 5651-5700, 5701-5750, 5751-5800, 5801-5850, 5851-5900, 5901-5950, 5951-6000, 6001-6050, 6051-6100, 6101-6150, 6151-6200, 6201-6250, 6251-6300,

6301-6350, 6351-6400, 6401-6450, 6451-6500, 6501-6550, 6551-6600, 6601-6650, 6651-6700, 6701-6750, 6751-6800, 6801-6850, 6851-6900, 6901-6950, 6951-7000, 7001-7050, 7051-7100, 7101-7150, 7151-7200, 7201-7250, 7251-7300 or 7301 to the end of the cDNA sequence contained in ATCC Deposit No:Z, or the complementary strand thereto. In this context "about" includes the particularly recited range or a range larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini. Preferably, these fragments encode a polypeptide which has a functional activity (e.g., biological activity). More preferably, these polynucleotides can be used as probes or primers as discussed herein. Polynucleotides which hybridize to one or more of these polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions are also encompassed by the invention, as are polypeptides encoded by these polynucleotides.

5

10

15

20

25

30

35

Moreover, representative examples of polynucleotide fragments of the invention comprise, or alternatively consist of, a nucleic acid sequence comprising one, two, three, four, five, six, seven, eight, nine, ten, or more of the above described polynucleotide fragments of the invention in combination with a polynucleotide sequence delineated in Table 1C column 6. Additional, representative examples of polynucleotide fragments of the invention comprise, or alternatively consist of, a nucleic acid sequence comprising one, two, three, four, five, six, seven, eight, nine, ten, or more of the above described polynucleotide fragments of the invention in combination with a polynucleotide sequence that is the complementary strand of a sequence delineated in column 6 of Table 1C. In further embodiments, the above-described polynucleotide fragments of the invention comprise, or alternatively consist of, sequences delineated in Table 1C, column 6, and have a nucleic acid sequence which is different from that of the BAC fragment having the sequence disclosed in SEQ ID NO:B (see Table 1C, column 5). In additional embodiments, the above-described polynucleotide fragments of the invention comprise, or alternatively consist of, sequences delineated in Table 1C, column 6, and have a nucleic acid sequence which is different from that published for the BAC clone identified as BAC ID NO:A (see Table 1C, column 4). In additional embodiments, the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated Table 1C, column 6, and have a nucleic acid sequence which is different from that contained in the BAC clone identified as BAC ID NO:A (see Table 1C, column 4). Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides and polypeptides are also encompassed by the invention.

In additional specific embodiments, polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more fragments of the sequences delineated in column 6 of Table 1C, and the polynucleotide sequence of SEQ ID NO:X (e.g., as defined in Table 1C, column 2) or fragments or variants thereof. Polypeptides

encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention.

In additional specific embodiments, polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more fragments of the sequences delineated in column 6 of Table 1C which correspond to the same ATCC Deposit No:Z (see Table 1C, column 1), and the polynucleotide sequence of SEQ ID NO:X (e.g., as defined in Table 1A, 1B, or 1C) or fragments or variants thereof. Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention.

In further specific embodiments, polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more fragments of the sequences delineated in the same row of column 6 of Table 1C, and the polynucleotide sequence of SEQ ID NO:X (e.g., as defined in Table 1A, 1B, or 1C) or fragments or variants thereof. Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention.

In additional specific embodiments, polynucleotides of the invention comprise, or alternatively consist of a polynucleotide sequence in which the 3' 10 polynucleotides of one of the sequences delineated in column 6 of Table 1C and the 5' 10 polynucleotides of the sequence of SEQ ID NO:X are directly contiguous. Nucleic acids which hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention. Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.

In additional specific embodiments, polynucleotides of the invention comprise, or alternatively consist of a polynucleotide sequence in which the 3' 10 polynucleotides of one of the sequences delineated in column 6 of Table 1C and the 5' 10 polynucleotides of a fragment or variant of the sequence of SEQ ID NO:X (e.g., as described herein) are directly contiguous Nucleic acids which hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention. Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.

In further specific embodiments, polynucleotides of the invention comprise, or alternatively consist of a polynucleotide sequence in which the 3' 10 polynucleotides of a fragment or variant of the sequence of SEQ ID NO:X and the 5' 10 polynucleotides of the sequence of one of the sequences delineated in column 6 of Table 1C are directly contiguous. Nucleic acids which hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention. Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.

In specific embodiments, polynucleotides of the invention comprise, or alternatively consist of a polynucleotide sequence in which the 3' 10 polynucleotides of one of the sequences delineated in column 6 of Table 1C and the 5' 10 polynucleotides of another sequence in column 6 are directly contiguous. In preferred embodiments, the 3' 10 polynucleotides of one of the sequences delineated in column 6 of Table 1C is directly contiguous with the 5' 10 polynucleotides of the next sequential exon delineated in Table 1C, column 6. Nucleic acids which hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention. Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.

In the present invention, a "polypeptide fragment" refers to an amino acid sequence which is a portion of the amino acid sequence contained in SEQ ID NO:Y, is a portion of the mature form of SEQ ID NO:Y as defined in columns 14 and 15 of Table 1A, a portion of an amino acid sequence encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2, is a portion of an amino acid sequence encoded by the polynucleotide sequence of SEQ ID NO:X, is a portion of an amino acid sequence encoded by the complement of the polynucleotide sequence in SEQ ID NO:X, is a portion of the amino acid sequence of a mature (secreted) polypeptide encoded by the cDNA contained in ATCC Deposit No:Z, and/or is a portion of an amino acid sequence encoded by the cDNA contained in ATCC Deposit No:Z. Protein (polypeptide) fragments may be "free-standing," or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the invention, include, for example, fragments comprising, or alternatively consisting of, from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, 101-

120, 121-140, 141-160, 161-180, 181-200, 201-220, 221-240, 241-260, 261-280, 281-300, 301-320, 321-340, 341-360, 361-380, 381-400, 401-420, 421-440, 441-460, 461-480, 481-500, 501-520, 521-540, 541-560, 561-580, 581-600, 601-620, 621-640, 641-660, 661-680, 681-700, 701-720, 721-740, 741-760, 761-780, 781-800, 801-820, 821-840, 841-860, 861-880, 881-900, 901-920, 921-940, 941-960, 961-980, 981-1000, 1001-1020, 1021-1040, 1041-1060, 1061-1080, 1081-1100, 1101-1120, 1121-1140, 1141-1160, 1161-1180, 1181-1200, 1201-1220, 1221-1240, 1241-1260, 1261-1280, 1281-1300, 1301-1320, 1321-1340, 1341-1360, 1361-1380, 1381-1400, 1401-1420, 1421-1440, or 1441 to the end of the coding region of cDNA and SEQ ID NO: Y. In a preferred embodiment, polypeptide fragments of the invention include, for example, fragments comprising, or alternatively consisting of, from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, 101-120, 121-140, 141-160, 161-180, 181-200, 201-220, 221-240, 241-260, 261-280, 281-300, 301-320, 321-340, 341-360, 361-380, 381-400, 401-420, 421-440, 441-460, 461-480, 481-500, 501-520, 521-540, 541-560, 561-580, 581-600, 601-620, 621-640, 641-660, 661-680, 681-700, 701-720, 721-740, 741-760, 761-780, 781-800, 801-820, 821-840, 841-860, 861-880, 881-900, 901-920, 921-940, 941-960, 961-980, 981-1000, 1001-1020, 1021-1040, 1041-1060, 1061-1080, 1081-1100, 1101-1120, 1121-1140, 1141-1160, 1161-1180, 1181-1200, 1201-1220, 1221-1240, 1241-1260, 1261-1280, 1281-1300, 1301-1320, 1321-1340, 1341-1360, 1361-1380, 1381-1400, 1401-1420, 1421-1440, or 1441 to the end of the coding region of SEQ ID NO:Y. Moreover, polypeptide fragments of the invention may be at least about 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 100, 110, 120, 130, 140, or 150 amino acids in length. In this context "about" includes the particularly recited ranges or values, or ranges or values larger or smaller by several (5, 4, 3, 2, or 1) amino acids, at either extreme or at both extremes. Polynucleotides encoding these polypeptide fragments are also encompassed by the invention.

5

10

15

20

25

30

35

Even if deletion of one or more amino acids from the N-terminus of a protein results in modification of loss of one or more biological functions of the protein, other functional activities (e.g., biological activities; such as, for example, activity useful in detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating cardiovascular diseases and disorders; ability to multimerize; ability to bind a ligand; antigenic ability useful for production of polypeptide specific antibodies) may still be retained. For example, the ability of shortened muteins to induce and/or bind to antibodies which recognize the complete or mature forms of the polypeptides generally will be retained when less than the majority of the residues of the complete or mature polypeptide are removed from the N-terminus. Whether a particular polypeptide lacking N-terminal residues of a complete polypeptide retains such immunologic activities can readily be determined by routine methods described herein and otherwise known in the art. It is not unlikely that a mutein with a large number of deleted N-terminal amino acid residues may retain some biological or immunogenic activities. In fact, peptides composed of as few as six amino acid residues may often evoke an immune response.

Accordingly, polypeptide fragments include the secreted protein as well as the mature form. Further preferred polypeptide fragments include the secreted protein or the mature form having a continuous series of deleted residues from the amino or the carboxy terminus, or both. For example, any number of amino acids, ranging from 1-60, can be deleted from the amino terminus of either the secreted polypeptide or the mature form. Similarly, any number of amino acids, ranging from 1-30, can be deleted from the carboxy terminus of the secreted protein or mature form. Furthermore, any combination of the above amino and carboxy terminus deletions are preferred. Similarly, polynucleotides encoding these polypeptide fragments are also preferred.

The present invention further provides polypeptides having one or more residues deleted from the amino terminus of the amino acid sequence of a polypeptide disclosed herein (e.g., a polypeptide of SEQ ID NO:Y, a polypeptide as defined in columns 14 and 15 of Table 1A, a polypeptide encoded by the polynucleotide sequence contained in SEQ ID NO:X or the complement thereof, a polypeptide encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2, a polypeptide encoded by the portion of SEQ ID NO:B as defined in column 6 of Table 1C, a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z, and/or a mature polypeptide encoded by the cDNA contained in ATCC Deposit No:Z). In particular, N-terminal deletions may be described by the general formula m-q, where q is a whole integer representing the total number of amino acid residues in a polypeptide of the invention (e.g., the polypeptide disclosed in SEQ ID NO:Y, the mature (secreted) portion of SEQ ID NO:Y as defined in columns 14 and 15 of Table 1A, or the polypeptide encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2), and m is defined as any integer ranging from 2 to q-6. Polynucleotides encoding these polypeptides are also encompassed by the invention.

The present invention further provides polypeptides having one or more residues from the carboxy terminus of the amino acid sequence of a polypeptide disclosed herein (e.g., a polypeptide of SEQ ID NO:Y, the mature (secreted) portion of SEQ ID NO:Y as defined in columns 14 and 15 of Table 1A, a polypeptide encoded by the polynucleotide sequence contained in SEQ ID NO:X, a polypeptide encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2, a polypeptide encoded by the portion of SEQ ID NO:B as defined in column 6 of Table 1C, a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z, and/or a mature polypeptide encoded by the cDNA contained in ATCC Deposit No:Z). In particular, C-terminal deletions may be described by the general formula 1-n, where n is any whole integer ranging from 6 to q-1, and where n corresponds to the position of amino acid residue in a polypeptide of the invention. Polynucleotides encoding these polypeptides are also encompassed by the invention.

In addition, any of the above described N- or C-terminal deletions can be combined to produce a N- and C-terminal deleted polypeptide. The invention also provides polypeptides having one or more amino acids deleted from both the amino and the carboxyl termini, which may be described generally as having residues m-n of a polypeptide encoded by SEQ ID NO:X (e.g.,

including, but not limited to, the preferred polypeptide disclosed as SEQ ID NO:Y, the mature (secreted) portion of SEQ ID NO:Y as defined in columns 14 and 15 of Table 1A, and the polypeptide encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2), the cDNA contained in ATCC Deposit No:Z, and/or the complement thereof, where n and m are integers as described above. Polynucleotides encoding these polypeptides are also encompassed by the invention.

5

10

15

20

25

30

35

Also as mentioned above, even if deletion of one or more amino acids from the C-terminus of a protein results in modification of loss of one or more biological functions of the protein, other functional activities (e.g., biological activities such as, for example, activity useful in detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating cardiovascular diseases and disorders; ability to multimerize; ability to bind a ligand; antigenic ability useful for production of polypeptide specific antibodies) may still be retained. For example the ability of the shortened mutein to induce and/or bind to antibodies which recognize the complete or mature forms of the polypeptide generally will be retained when less than the majority of the residues of the complete or mature polypeptide are removed from the C-terminus. Whether a particular polypeptide lacking C-terminal residues of a complete polypeptide retains such immunologic activities can readily be determined by routine methods described herein and otherwise known in the art. It is not unlikely that a mutein with a large number of deleted C-terminal amino acid residues may retain some biological or immunogenic activities. In fact, peptides composed of as few as six amino acid residues may often evoke an immune response.

The present application is also directed to proteins containing polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to a polypeptide sequence set forth herein. In preferred embodiments, the application is directed to proteins containing polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to polypeptides having the amino acid sequence of the specific N- and C-terminal deletions. Polynucleotides encoding these polypeptides are also encompassed by the invention.

Any polypeptide sequence encoded by, for example, the polynucleotide sequences set forth as SEQ ID NO:X or the complement thereof, (presented, for example, in Tables 1A and 2), the cDNA contained in ATCC Deposit No:Z, or the polynucleotide sequence as defined in column 6 of Table 1C, may be analyzed to determine certain preferred regions of the polypeptide. For example, the amino acid sequence of a polypeptide encoded by a polynucleotide sequence of SEQ ID NO:X (e.g., the polypeptide of SEQ ID NO:Y and the polypeptide encoded by the portion of SEQ ID NO:X as defined in columnns 8 and 9 of Table 2) or the cDNA contained in ATCC Deposit No:Z may be analyzed using the default parameters of the DNASTAR computer algorithm (DNASTAR, Inc., 1228 S. Park St., Madison, WI 53715 USA: http://www.dnastar.com/).

Polypeptide regions that may be routinely obtained using the DNASTAR computer algorithm include, but are not limited to, Garnier-Robson alpha-regions, beta-regions, turn-regions, and coil-regions; Chou-Fasman alpha-regions, beta-regions, and turn-regions; Kyte-Doolittle hydrophilic regions and hydrophobic regions; Eisenberg alpha- and beta-amphipathic regions; Karplus-Schulz flexible regions; Emini surface-forming regions; and Jameson-Wolf regions of high antigenic index. Among highly preferred polynucleotides of the invention in this regard are those that encode polypeptides comprising regions that combine several structural features, such as several (e.g., 1, 2, 3 or 4) of the features set out above.

Additionally, Kyte-Doolittle hydrophilic regions and hydrophobic regions, Emini surface-forming regions, and Jameson-Wolf regions of high antigenic index (i.e., containing four or more contiguous amino acids having an antigenic index of greater than or equal to 1.5, as identified using the default parameters of the Jameson-Wolf program) can routinely be used to determine polypeptide regions that exhibit a high degree of potential for antigenicity. Regions of high antigenicity are determined from data by DNASTAR analysis by choosing values which represent regions of the polypeptide which are likely to be exposed on the surface of the polypeptide in an environment in which antigen recognition may occur in the process of initiation of an immune response.

Preferred polypeptide fragments of the invention are fragments comprising, or alternatively, consisting of, an amino acid sequence that displays a functional activity (e.g. biological activity such as, for example, activity useful in detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating cardiovascular diseases and disorders; ability to multimerize; ability to bind a ligand; antigenic ability useful for production of polypeptide specific antibodies) of the polypeptide sequence of which the amino acid sequence is a fragment. By a polypeptide displaying a "functional activity" is meant a polypeptide capable of one or more known functional activities associated with a full-length protein, such as, for example, biological activity, antigenicity, immunogenicity, and/or multimerization, as described herein.

Other preferred polypeptide fragments are biologically active fragments. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.

In preferred embodiments, polypeptides of the invention comprise, or alternatively consist of, one, two, three, four, five or more of the antigenic fragments of the polypeptide of SEQ ID NO:Y, or portions thereof. Polynucleotides encoding these polypeptides are also encompassed by the invention.

35

5

10

15

20

25

30

The present invention encompasses polypeptides comprising, or alternatively consisting of, an epitope of: the polypeptide sequence shown in SEQ ID NO:Y; a polypeptide sequence encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide sequence encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2; the polypeptide sequence encoded by the portion of SEQ ID NO:B as defined in column 6 of Table 1C or the complement thereto; the polypeptide sequence encoded by the cDNA contained in ATCC Deposit No:Z; or the polypeptide sequence encoded by a polynucleotide that hybridizes to the sequence of SEQ ID NO:X, the complement of the sequence of SEQ ID NO:X, the complement of a portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2, or the cDNA sequence contained in ATCC Deposit No:Z under stringent hybridization conditions or alternatively, under lower stringency hybridization as defined supra. The present invention further encompasses polynucleotide sequences encoding an epitope of a polypeptide sequence of the invention (such as, for example, the sequence disclosed in SEQ ID NO:X, or a fragment thereof), polynucleotide sequences of the complementary strand of a polynucleotide sequence encoding an epitope of the invention, and polynucleotide sequences which hybridize to the complementary strand under stringent hybridization conditions or alternatively, under lower stringency hybridization conditions defined supra.

5

10

15

20

25

30

35

The term "epitopes," as used herein, refers to portions of a polypeptide having antigenic or immunogenic activity in an animal, preferably a mammal, and most preferably in a human. In a preferred embodiment, the present invention encompasses a polypeptide comprising an epitope, as well as the polynucleotide encoding this polypeptide. An "immunogenic epitope," as used herein, is defined as a portion of a protein that elicits an antibody response in an animal, as determined by any method known in the art, for example, by the methods for generating antibodies described *infra*. (See, for example, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998-4002 (1983)). The term "antigenic epitope," as used herein, is defined as a portion of a protein to which an antibody can immunospecifically bind its antigen as determined by any method well known in the art, for example, by the immunoassays described herein. Immunospecific binding excludes non-specific binding but does not necessarily exclude cross- reactivity with other antigens. Antigenic epitopes need not necessarily be immunogenic.

Fragments which function as epitopes may be produced by any conventional means. (See, e.g., Houghten, R. A., Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985) further described in U.S. Patent No. 4,631,211.)

In the present invention, antigenic epitopes preferably contain a sequence of at least 4, at least 5, at least 6, at least 7, more preferably at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 20, at least 25, at least 30, at least 40, at least 50, and, most preferably, between about 15 to about 30 amino acids. Preferred polypeptides comprising immunogenic or antigenic epitopes are at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 55,

60, 65, 70, 75, 80, 85, 90, 95, or 100 amino acid residues in length. Additional non-exclusive preferred antigenic epitopes include the antigenic epitopes disclosed herein, as well as portions thereof. Antigenic epitopes are useful, for example, to raise antibodies, including monoclonal antibodies, that specifically bind the epitope. Preferred antigenic epitopes include the antigenic epitopes disclosed herein, as well as any combination of two, three, four, five or more of these antigenic epitopes. Antigenic epitopes can be used as the target molecules in immunoassays. (See, for instance, Wilson et al., Cell 37:767-778 (1984); Sutcliffe et al., Science 219:660-666 (1983)).

Non-limiting examples of epitopes of polypeptides that can be used to generate antibodies of the invention include a polypeptide comprising, or alternatively consisting of, at least one, two, three, four, five, six or more of the portion(s) of SEQ ID NO:Y specified in Table 1B. These polypeptide fragments have been determined to bear antigenic epitopes of the proteins of the invention by the analysis of the Jameson-Wolf antigenic index which is included in the DNAStar suite of computer programs. By "comprise" it is intended that a polypeptide contains at least one, two, three, four, five, six or more of the portion(s) of SEQ ID NO:Y shown in Table 1B, but it may contain additional flanking residues on either the amino or carboxyl termini of the recited portion. Such additional flanking sequences are preferably sequences naturally found adjacent to the portion; i.e., contiguous sequence shown in SEQ ID NO:Y. The flanking sequence may, however, be sequences from a heterologous polypeptide, such as from another protein described herein or from a heterologous polypeptide not described herein. In particular embodiments, epitope portions of a polypeptide of the invention comprise one, two, three, or more of the portions of SEQ ID NO:Y shown in Table 1B.

Similarly, immunogenic epitopes can be used, for example, to induce antibodies according to methods well known in the art. See, for instance, Sutcliffe et al., *supra*; Wilson et al., *supra*; Chow et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle et al., J. Gen. Virol. 66:2347-2354 (1985). Preferred immunogenic epitopes include the immunogenic epitopes disclosed herein, as well as any combination of two, three, four, five or more of these immunogenic epitopes. The polypeptides comprising one or more immunogenic epitopes may be presented for eliciting an antibody response together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse), or, if the polypeptide is of sufficient length (at least about 25 amino acids), the polypeptide may be presented without a carrier. However, immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting).

Epitope-bearing polypeptides of the present invention may be used to induce antibodies according to methods well known in the art including, but not limited to, *in vivo* immunization, in vitro immunization, and phage display methods. See, e.g., Sutcliffe et al., *supra*; Wilson et al.,

supra, and Bittle et al., J. Gen. Virol., 66:2347-2354 (1985). If in vivo immunization is used, animals may be immunized with free peptide; however, anti-peptide antibody titer may be boosted by coupling the peptide to a macromolecular carrier, such as keyhole limpet hemacyanin (KLH) or tetanus toxoid. For instance, peptides containing cysteine residues may be coupled to a carrier using a linker such as maleimidobenzoyl- N-hydroxysuccinimide ester (MBS), while other peptides may be coupled to carriers using a more general linking agent such as glutaraldehyde. Animals such as rabbits, rats and mice are immunized with either free or carrier- coupled peptides, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about 100 μg of peptide or carrier protein and Freund's adjuvant or any other adjuvant known for stimulating an immune response. Several booster injections may be needed, for instance, at intervals of about two weeks, to provide a useful titer of anti-peptide antibody which can be detected, for example, by ELISA assay using free peptide adsorbed to a solid surface. The titer of anti-peptide antibodies in serum from an immunized animal may be increased by selection of anti-peptide antibodies, for instance, by adsorption to the peptide on a solid support and elution of the selected antibodies according to methods well known in the art.

5

10

15

20

25

30

35

As one of skill in the art will appreciate, and as discussed above, the polypeptides of the present invention (e.g., those comprising an immunogenic or antigenic epitope) can be fused to heterologous polypeptide sequences. For example, polypeptides of the present invention (including fragments or variants thereof), may be fused with the constant domain of immunoglobulins (IgA, IgE, IgG, IgM), or portions thereof (CH1, CH2, CH3, or any combination thereof and portions thereof, resulting in chimeric polypeptides. By way of another non-limiting example, polypeptides and/or antibodies of the present invention (including fragments or variants thereof) may be fused with albumin (including but not limited to recombinant human serum albumin or fragments or variants thereof (see, e.g., U.S. Patent No. 5,876,969, issued March 2, 1999, EP Patent 0 413 622, and U.S. Patent No. 5,766,883, issued June 16, 1998, herein incorporated by reference in their entirety)). In a preferred embodiment, polypeptides and/or antibodies of the present invention (including fragments or variants thereof) are fused with the mature form of human serum albumin (i.e., amino acids 1 - 585 of human serum albumin as shown in Figures 1 and 2 of EP Patent 0 322 094) which is herein incorporated by reference in its entirety. In another preferred embodiment, polypeptides and/or antibodies of the present invention (including fragments or variants thereof) are fused with polypeptide fragments comprising, or alternatively consisting of, amino acid residues 1-z of human serum albumin, where z is an integer from 369 to 419, as described in U.S. Patent 5,766,883 herein incorporated by reference in its entirety. Polypeptides and/or antibodies of the present invention (including fragments or variants thereof) may be fused to either the N- or C-terminal end of the heterologous protein (e.g., immunoglobulin Fc polypeptide or human serum albumin polypeptide). Polynucleotides encoding fusion proteins of the invention are also encompassed by the invention.

Such fusion proteins as those described above may facilitate purification and may increase half-life in vivo. This has been shown for chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. See, e.g., EP 394,827; Traunecker et al., Nature, 331:84-86 (1988). Enhanced delivery of an antigen across the epithelial barrier to the immune system has been demonstrated for antigens (e.g., insulin) conjugated to an FcRn binding partner such as IgG or Fc fragments (see, e.g., PCT Publications WO 96/22024 and WO 99/04813). IgG fusion proteins that have a disulfide-linked dimeric structure due to the IgG portion desulfide bonds have also been found to be more efficient in binding and neutralizing other molecules than monomeric polypeptides or fragments thereof alone. See, e.g., Fountoulakis et al., J. Biochem., 270:3958-3964 (1995). Nucleic acids encoding the above epitopes can also be recombined with a gene of interest as an epitope tag (e.g., the hemagglutinin (HA) tag or flag tag) to aid in detection and purification of the expressed polypeptide. For example, a system described by Janknecht et al. allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht et al., 1991, Proc. Natl. Acad. Sci. USA 88:8972-897). In this system, the gene of interest is subcloned into a vaccinia recombination plasmid such that the open reading frame of the gene is translationally fused to an amino-terminal tag consisting of six histidine residues. The tag serves as a matrix binding domain for the fusion protein. Extracts from cells infected with the recombinant vaccinia virus are loaded onto Ni2+ nitriloacetic acid-agarose column and histidinetagged proteins can be selectively eluted with imidazole-containing buffers.

Fusion Proteins

5

10

15

20

25

30

35

Any polypeptide of the present invention can be used to generate fusion proteins. For example, the polypeptide of the present invention, when fused to a second protein, can be used as an antigenic tag. Antibodies raised against the polypeptide of the present invention can be used to indirectly detect the second protein by binding to the polypeptide. Moreover, because secreted proteins target cellular locations based on trafficking signals, polypeptides of the present invention which are shown to be secreted can be used as targeting molecules once fused to other proteins.

Examples of domains that can be fused to polypeptides of the present invention include not only heterologous signal sequences, but also other heterologous functional regions. The fusion does not necessarily need to be direct, but may occur through linker sequences.

In certain preferred embodiments, proteins of the invention are fusion proteins comprising an amino acid sequence that is an N and/or C- terminal deletion of a polypeptide of the invention. In preferred embodiments, the invention is directed to a fusion protein comprising an amino acid sequence that is at least 90%, 95%, 96%, 97%, 98% or 99% identical to a polypeptide sequence of the invention. Polynucleotides encoding these proteins are also encompassed by the invention.

Moreover, fusion proteins may also be engineered to improve characteristics of the polypeptide of the present invention. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence during purification from the host cell or subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to facilitate handling of polypeptides are familiar and routine techniques in the art.

5

10

15

20

25

30

35

As one of skill in the art will appreciate that, as discussed above, polypeptides of the present invention, and epitope-bearing fragments thereof, can be combined with heterologous polypeptide sequences. For example, the polypeptides of the present invention may be fused with heterologous polypeptide sequences, for example, the polypeptides of the present invention may be fused with the constant domain of immunoglobulins (IgA, IgE, IgG, IgM) or portions thereof (CH1, CH2, CH3, and any combination thereof, including both entire domains and portions thereof), or albumin (including, but not limited to, native or recombinant human albumin or fragments or variants thereof (see, e.g., U.S. Patent No. 5,876,969, issued March 2, 1999, EP Patent 0 413 622, and U.S. Patent No. 5,766,883, issued June 16, 1998, herein incorporated by reference in their entirety)), resulting in chimeric polypeptides. For example, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties (EP-A 0232 262). Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. See, D. Bennett et al., J. Molecular Recognition 8:52-58 (1995); K. Johanson et al., J. Biol. Chem. 270:9459-9471 (1995).

Moreover, the polypeptides of the present invention can be fused to marker sequences, such as a polypeptide which facilitates purification of the fused polypeptide. In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Another peptide tag useful for purification, the "HA" tag, corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson et al., Cell 37:767 (1984)).

Additional fusion proteins of the invention may be generated through the techniques of gene-shuffling, motif-shuffling, exon-shuffling, and/or codon-shuffling (collectively referred to as

"DNA shuffling"). DNA shuffling may be employed to modulate the activities of polypeptides of the invention, such methods can be used to generate polypeptides with altered activity, as well as agonists and antagonists of the polypeptides. See, generally, U.S. Patent Nos. 5,605,793; 5,811,238; 5,830,721; 5,834,252; and 5,837,458, and Pattern et al., Curr. Opinion Biotechnol. 8:724-33 (1997); Harayama, Trends Biotechnol. 16(2):76-82 (1998); Hansson, et al., J. Mol. Biol. 287:265-76 (1999); and Lorenzo and Blasco, Biotechniques 24(2):308-13 (1998) (each of these patents and publications are hereby incorporated by reference in its entirety). In one embodiment, alteration of polynucleotides corresponding to SEQ ID NO:X and the polypeptides encoded by these polynucleotides may be achieved by DNA shuffling. DNA shuffling involves the assembly of two or more DNA segments by homologous or site-specific recombination to generate variation in the polynucleotide sequence. In another embodiment, polynucleotides of the invention, or the encoded polypeptides, may be altered by being subjected to random mutagenesis by error-prone PCR, random nucleotide insertion or other methods prior to recombination. embodiment, one or more components, motifs, sections, parts, domains, fragments, etc., of a polynucleotide encoding a polypeptide of the invention may be recombined with one or more components, motifs, sections, parts, domains, fragments, etc. of one or more heterologous molecules.

Thus, any of these above fusions can be engineered using the polynucleotides or the polypeptides of the present invention.

Recombinant and Synthetic Production of Polypeptides of the Invention

5

10

15

20

25

30

35

The present invention also relates to vectors containing the polynucleotide of the present invention, host cells, and the production of polypeptides by synthetic and recombinant techniques. The vector may be, for example, a phage, plasmid, viral, or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.

The polynucleotides of the invention may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.

The polynucleotide insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E. coli lac, trp, phoA and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation. The coding portion of the transcripts expressed by the constructs will preferably

include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.

As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase, G418, glutamine synthase, or neomycin resistance for eukaryotic cell culture, and tetracycline, kanamycin or ampicillin resistance genes for culturing in E. coli and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells (e.g., Saccharomyces cerevisiae or Pichia pastoris (ATCC Accession No. 201178)); insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS, 293, and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.

Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE-9, available from QIAGEN, Inc.; pBluescript vectors, Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene Cloning Systems, Inc.; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia Biotech, Inc. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Preferred expression vectors for use in yeast systems include, but are not limited to pYES2, pYD1, pTEF1/Zeo, pYES2/GS, pPICZ, pGAPZ, pGAPZalph, pPIC9, pPIC3.5, pHIL-D2, pHIL-S1, pPIC3.5K, pPIC9K, and PAO815 (all available from Invitrogen, Carlbad, CA). Other suitable vectors will be readily apparent to the skilled artisan.

Vectors which use glutamine synthase (GS) or DHFR as the selectable markers can be amplified in the presence of the drugs methionine sulphoximine or methotrexate, respectively. An advantage of glutamine synthase based vectors are the availability of cell lines (e.g., the murine myeloma cell line, NS0) which are glutamine synthase negative. Glutamine synthase expression systems can also function in glutamine synthase expressing cells (e.g., Chinese Hamster Ovary (CHO) cells) by providing additional inhibitor to prevent the functioning of the endogenous gene. A glutamine synthase expression system and components thereof are detailed in PCT publications: WO87/04462; WO86/05807; WO89/01036; WO89/10404; and WO91/06657, which are hereby incorporated in their entireties by reference herein. Additionally, glutamine synthase expression vectors can be obtained from Lonza Biologics, Inc. (Portsmouth, NH). Expression and production of monoclonal antibodies using a GS expression system in murine myeloma cells is described in Bebbington et al., Bio/technology 10:169(1992) and in Biblia and Robinson Biotechnol. Prog. 11:1 (1995) which are herein incorporated by reference.

The present invention also relates to host cells containing the above-described vector constructs described herein, and additionally encompasses host cells containing nucleotide sequences of the invention that are operably associated with one or more heterologous control

regions (e.g., promoter and/or enhancer) using techniques known of in the art. The host cell can be a higher eukaryotic cell, such as a mammalian cell (e.g., a human derived cell), or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. A host strain may be chosen which modulates the expression of the inserted gene sequences, or modifies and processes the gene product in the specific fashion desired. Expression from certain promoters can be elevated in the presence of certain inducers; thus expression of the genetically engineered polypeptide may be controlled. Furthermore, different host cells have characteristics and specific mechanisms for the translational and post-translational processing and modification (e.g., phosphorylation, cleavage) of proteins. Appropriate cell lines can be chosen to ensure the desired modifications and processing of the foreign protein expressed.

Introduction of the nucleic acids and nucleic acid constructs of the invention into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al., Basic Methods In Molecular Biology (1986). It is specifically contemplated that the polypeptides of the present invention may in fact be expressed by a host cell lacking a recombinant vector.

In addition to encompassing host cells containing the vector constructs discussed herein, the invention also encompasses primary, secondary, and immortalized host cells of vertebrate origin, particularly mammalian origin, that have been engineered to delete or replace endogenous genetic material (e.g., the coding sequence), and/or to include genetic material (e.g., heterologous polynucleotide sequences) that is operably associated with polynucleotides of the invention, and which activates, alters, and/or amplifies endogenous polynucleotides. For example, techniques known in the art may be used to operably associate heterologous control regions (e.g., promoter and/or enhancer) and endogenous polynucleotide sequences via homologous recombination (see, e.g., US Patent Number 5,641,670, issued June 24, 1997; International Publication Number WO 96/29411; International Publication Number WO 94/12650; Koller et al., Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); and Zijlstra et al., Nature 342:435-438 (1989), the disclosures of each of which are incorporated by reference in their entireties).

Polypeptides of the invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification.

Polypeptides of the present invention can also be recovered from: products purified from natural sources, including bodily fluids, tissues and cells, whether directly isolated or cultured; products of chemical synthetic procedures; and products produced by recombinant

techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect, and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, polypeptides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes. Thus, it is well known in the art that the N-terminal methionine encoded by the translation initiation codon generally is removed with high efficiency from any protein after translation in all eukaryotic cells. While the N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins, this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked.

In one embodiment, the yeast *Pichia pastoris* is used to express polypeptides of the invention in a eukaryotic system. *Pichia pastoris* is a methylotrophic yeast which can metabolize methanol as its sole carbon source. A main step in the methanol metabolization pathway is the oxidation of methanol to formaldehyde using O₂. This reaction is catalyzed by the enzyme alcohol oxidase. In order to metabolize methanol as its sole carbon source, *Pichia pastoris* must generate high levels of alcohol oxidase due, in part, to the relatively low affinity of alcohol oxidase for O₂. Consequently, in a growth medium depending on methanol as a main carbon source, the promoter region of one of the two alcohol oxidase genes (*AOXI*) is highly active. In the presence of methanol, alcohol oxidase produced from the *AOXI* gene comprises up to approximately 30% of the total soluble protein in *Pichia pastoris*. See Ellis, S.B., *et al.*, *Mol. Cell. Biol.* 5:1111-21 (1985); Koutz, P.J, *et al.*, *Yeast* 5:167-77 (1989); Tschopp, J.F., *et al.*, *Nucl. Acids Res.* 15:3859-76 (1987). Thus, a heterologous coding sequence, such as, for example, a polynucleotide of the present invention, under the transcriptional regulation of all or part of the *AOXI* regulatory sequence is expressed at exceptionally high levels in *Pichia* yeast grown in the presence of methanol.

In one example, the plasmid vector pPIC9K is used to express DNA encoding a polypeptide of the invention, as set forth herein, in a *Pichea* yeast system essentially as described in "*Pichia* Protocols: Methods in Molecular Biology," D.R. Higgins and J. Cregg, eds. The Humana Press, Totowa, NJ, 1998. This expression vector allows expression and secretion of a polypeptide of the invention by virtue of the strong *AOX1* promoter linked to the *Pichia pastoris* alkaline phosphatase (PHO) secretory signal peptide (i.e., leader) located upstream of a multiple cloning site.

Many other yeast vectors could be used in place of pPIC9K, such as, pYES2, pYD1, pTEF1/Zeo, pYES2/GS, pPICZ, pGAPZ, pGAPZalpha, pPIC9, pPIC3.5, pHIL-D2, pHIL-S1,

pPIC3.5K, and PAO815, as one skilled in the art would readily appreciate, as long as the proposed expression construct provides appropriately located signals for transcription, translation, secretion (if desired), and the like, including an in-frame AUG as required.

In another embodiment, high-level expression of a heterologous coding sequence, such as, for example, a polynucleotide of the present invention, may be achieved by cloning the heterologous polynucleotide of the invention into an expression vector such as, for example, pGAPZ or pGAPZalpha, and growing the yeast culture in the absence of methanol.

In addition to encompassing host cells containing the vector constructs discussed herein, the invention also encompasses primary, secondary, and immortalized host cells of vertebrate origin, particularly mammalian origin, that have been engineered to delete or replace endogenous genetic material (e.g., coding sequence), and/or to include genetic material (e.g., heterologous polynucleotide sequences) that is operably associated with polynucleotides of the invention, and which activates, alters, and/or amplifies endogenous polynucleotides. For example, techniques known in the art may be used to operably associate heterologous control regions (e.g., promoter and/or enhancer) and endogenous polynucleotide sequences via homologous recombination (see, e.g., U.S. Patent No. 5,641,670, issued June 24, 1997; International Publication No. WO 96/29411, published September 26, 1996; International Publication No. WO 94/12650, published August 4, 1994; Koller et al., Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); and Zijlstra et al., Nature 342:435-438 (1989), the disclosures of each of which are incorporated by reference in their entireties).

In addition, polypeptides of the invention can be chemically synthesized using techniques known in the art (e.g., see Creighton, 1983, Proteins: Structures and Molecular Principles, W.H. Freeman & Co., N.Y., and Hunkapiller et al., *Nature*, 310:105-111 (1984)). For example, a polypeptide corresponding to a fragment of a polypeptide can be synthesized by use of a peptide synthesizer. Furthermore, if desired, nonclassical amino acids or chemical amino acid analogs can be introduced as a substitution or addition into the polypeptide sequence. Nonclassical amino acids include, but are not limited to, to the D-isomers of the common amino acids, 2,4-diaminobutyric acid, a-amino isobutyric acid, 4-aminobutyric acid, Abu, 2-amino butyric acid, g-Abu, e-Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosine, citrulline, homocitrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, b-alanine, fluoro-amino acids, designer amino acids such as b-methyl amino acids, Ca-methyl amino acids, Na-methyl amino acids, and amino acid analogs in general. Furthermore, the amino acid can be D (dextrorotary) or L (levorotary).

The invention encompasses polypeptides of the present invention which are differentially modified during or after translation, e.g., by glycosylation, acetylation,

phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, etc. Any of numerous chemical modifications may be carried out by known techniques, including but not limited, to specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH₄; acetylation, formylation, oxidation, reduction; metabolic synthesis in the presence of tunicamycin; etc.

Additional post-translational modifications encompassed by the invention include, for example, e.g., N-linked or O-linked carbohydrate chains, processing of N-terminal or C-terminal ends), attachment of chemical moieties to the amino acid backbone, chemical modifications of N-linked or O-linked carbohydrate chains, and addition or deletion of an N-terminal methionine residue as a result of procaryotic host cell expression. The polypeptides may also be modified with a detectable label, such as an enzymatic, fluorescent, isotopic or affinity label to allow for detection and isolation of the protein.

Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin; and examples of suitable radioactive material include iodine (¹²¹I, ¹²³I, ¹²⁵I, ¹³¹I), carbon (¹⁴C), sulfur (³⁵S), tritium (³H), indium (¹¹¹In, ¹¹²In, ^{113m}In, ^{115m}In), technetium (⁹⁹Tc, ^{99m}Tc), thallium (²⁰¹Ti), gallium (⁶⁸Ga, ⁶⁷Ga), palladium (¹⁰³Pd), molybdenum (⁹⁹Mo), xenon (¹³³Xe), fluorine (¹⁸F), ¹⁵³Sm, ¹⁷⁷Lu, ¹⁵⁹Gd, ¹⁴⁹Pm, ¹⁴⁰La, ¹⁷⁵Yb, ¹⁶⁶Ho, ⁹⁰Y, ⁴⁷Sc, ¹⁸⁶Re, ¹⁸⁸Re, ¹⁴²Pr, ¹⁰⁵Rh, and ⁹⁷Ru.

In specific embodiments, a polypeptide of the present invention or fragment or variant thereof is attached to macrocyclic chelators that associate with radiometal ions, including but not limited to, ¹⁷⁷Lu, ⁹⁰Y, ¹⁶⁶Ho, and ¹⁵³Sm, to polypeptides. In a preferred embodiment, the radiometal ion associated with the macrocyclic chelators is ¹¹¹In. In another preferred embodiment, the radiometal ion associated with the macrocyclic chelator is ⁹⁰Y. In specific embodiments, the macrocyclic chelator is 1,4,7,10-tetraazacyclododecane-N,N',N",N"-tetraacetic acid (DOTA). In other specific embodiments, DOTA is attached to an antibody of the invention or fragment thereof via a linker molecule. Examples of linker molecules useful for conjugating DOTA to a polypeptide are commonly known in the art - see, for example, DeNardo et al., Clin Cancer Res. 4(10):2483-90 (1998); Peterson et al., Bioconjug. Chem. 10(4):553-7 (1999); and Zimmerman et al, Nucl. Med. Biol. 26(8):943-50 (1999); which are hereby incorporated by reference in their entirety.

As mentioned, the proteins of the invention may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are

well known in the art. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Polypeptides of the invention may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent crosslinks, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. (See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993); POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al., Meth. Enzymol. 182:626-646 (1990); Rattan et al., Ann. N.Y. Acad. Sci. 663:48-62 (1992)).

5

10

15

20

25

30

35

Also provided by the invention are chemically modified derivatives of the polypeptides of the invention which may provide additional advantages such as increased solubility, stability and circulating time of the polypeptide, or decreased immunogenicity (see U.S. Patent No. 4,179,337). The chemical moieties for derivitization may be selected from water soluble polymers such as polyethylene glycol, ethylene glycol/propylene glycol copolymers, carboxymethylcellulose, dextran, polyvinyl alcohol and the like. The polypeptides may be modified at random positions within the molecule, or at predetermined positions within the molecule and may include one, two, three or more attached chemical moieties.

The polymer may be of any molecular weight, and may be branched or unbranched. For polyethylene glycol, the preferred molecular weight is between about 1 kDa and about 100 kDa (the term "about" indicating that in preparations of polyethylene glycol, some molecules will weigh more, some less, than the stated molecular weight) for ease in handling and manufacturing. Other sizes may be used, depending on the desired therapeutic profile (e.g., the duration of sustained release desired, the effects, if any on biological activity, the ease in handling, the degree or lack of antigenicity and other known effects of the polyethylene glycol to a therapeutic protein or analog). For example, the polyethylene glycol may have an average molecular weight of about 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10,000, 10,500, 11,000, 11,500, 12,000, 12,500, 13,000, 13,500, 14,000, 14,500, 15,000, 15,500, 16,000, 16,500, 17,000, 17,500, 18,000, 18,500, 19,000, 19,500, 20,000,

25,000, 30,000, 35,000, 40,000, 45,000, 50,000, 55,000, 60,000, 65,000, 70,000, 75,000, 80,000, 85,000, 90,000, 95,000, or 100,000 kDa.

As noted above, the polyethylene glycol may have a branched structure. Branched polyethylene glycols are described, for example, in U.S. Patent No. 5,643,575; Morpurgo et al., Appl. Biochem. Biotechnol. 56:59-72 (1996); Vorobjev et al., Nucleosides Nucleotides 18:2745-2750 (1999); and Caliceti et al., Bioconjug. Chem. 10:638-646 (1999), the disclosures of each of which are incorporated herein by reference.

The polyethylene glycol molecules (or other chemical moieties) should be attached to the protein with consideration of effects on functional or antigenic domains of the protein. There are a number of attachment methods available to those skilled in the art, such as, for example, the method disclosed in EP 0 401 384 (coupling PEG to G-CSF), herein incorporated by reference; see also Malik et al., Exp. Hematol. 20:1028-1035 (1992), reporting pegylation of GM-CSF using tresyl chloride. For example, polyethylene glycol may be covalently bound through amino acid residues via a reactive group, such as a free amino or carboxyl group. Reactive groups are those to which an activated polyethylene glycol molecule may be bound. The amino acid residues having a free amino group may include lysine residues and the N-terminal amino acid residues; those having a free carboxyl group may include aspartic acid residues glutamic acid residues and the C-terminal amino acid residue. Sulfhydryl groups may also be used as a reactive group for attaching the polyethylene glycol molecules. Preferred for therapeutic purposes is attachment at an amino group, such as attachment at the N-terminus or lysine group.

As suggested above, polyethylene glycol may be attached to proteins via linkage to any of a number of amino acid residues. For example, polyethylene glycol can be linked to proteins via covalent bonds to lysine, histidine, aspartic acid, glutamic acid, or cysteine residues. One or more reaction chemistries may be employed to attach polyethylene glycol to specific amino acid residues (e.g., lysine, histidine, aspartic acid, glutamic acid, or cysteine) of the protein or to more than one type of amino acid residue (e.g., lysine, histidine, aspartic acid, glutamic acid, cysteine and combinations thereof) of the protein.

One may specifically desire proteins chemically modified at the N-terminus. Using polyethylene glycol as an illustration of the present composition, one may select from a variety of polyethylene glycol molecules (by molecular weight, branching, etc.), the proportion of polyethylene glycol molecules to protein (polypeptide) molecules in the reaction mix, the type of pegylation reaction to be performed, and the method of obtaining the selected N-terminally pegylated protein. The method of obtaining the N-terminally pegylated preparation (i.e., separating this moiety from other monopegylated moieties if necessary) may be by purification of the N-terminally pegylated material from a population of pegylated protein molecules. Selective proteins chemically modified at the N-terminus modification may be accomplished by reductive alkylation which exploits differential reactivity of different types of primary amino groups (lysine

versus the N-terminal) available for derivatization in a particular protein. Under the appropriate reaction conditions, substantially selective derivatization of the protein at the N-terminus with a carbonyl group containing polymer is achieved.

As indicated above, pegylation of the proteins of the invention may be accomplished by any number of means. For example, polyethylene glycol may be attached to the protein either directly or by an intervening linker. Linkerless systems for attaching polyethylene glycol to proteins are described in Delgado et al., Crit. Rev. Thera. Drug Carrier Sys. 9:249-304 (1992); Francis et al., Intern. J. of Hematol. 68:1-18 (1998); U.S. Patent No. 4,002,531; U.S. Patent No. 5,349,052; WO 95/06058; and WO 98/32466, the disclosures of each of which are incorporated herein by reference.

One system for attaching polyethylene glycol directly to amino acid residues of proteins without an intervening linker employs tresylated MPEG, which is produced by the modification of monmethoxy polyethylene glycol (MPEG) using tresylchloride (ClSO₂CH₂CF₃). Upon reaction of protein with tresylated MPEG, polyethylene glycol is directly attached to amine groups of the protein. Thus, the invention includes protein-polyethylene glycol conjugates produced by reacting proteins of the invention with a polyethylene glycol molecule having a 2,2,2-trifluoreothane sulphonyl group.

Polyethylene glycol can also be attached to proteins using a number of different intervening linkers. For example, U.S. Patent No. 5,612,460, the entire disclosure of which is incorporated herein by reference, discloses urethane linkers for connecting polyethylene glycol to proteins. Protein-polyethylene glycol conjugates wherein the polyethylene glycol is attached to the protein by a linker can also be produced by reaction of proteins with compounds such as MPEG-succinimidylsuccinate, MPEG activated with 1,1'-carbonyldiimidazole, MPEG-2,4,5-trichloropenylcarbonate, MPEG-p-nitrophenolcarbonate, and various MPEG-succinate derivatives. A number of additional polyethylene glycol derivatives and reaction chemistries for attaching polyethylene glycol to proteins are described in International Publication No. WO 98/32466, the entire disclosure of which is incorporated herein by reference. Pegylated protein products produced using the reaction chemistries set out herein are included within the scope of the invention.

The number of polyethylene glycol moieties attached to each protein of the invention (i.e., the degree of substitution) may also vary. For example, the pegylated proteins of the invention may be linked, on average, to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 20, or more polyethylene glycol molecules. Similarly, the average degree of substitution within ranges such as 1-3, 2-4, 3-5, 4-6, 5-7, 6-8, 7-9, 8-10, 9-11, 10-12, 11-13, 12-14, 13-15, 14-16, 15-17, 16-18, 17-19, or 18-20 polyethylene glycol moieties per protein molecule. Methods for determining the degree of substitution are discussed, for example, in Delgado et al., Crit. Rev. Thera. Drug Carrier Sys. 9:249-304 (1992).

The polypeptides of the invention can be recovered and purified from chemical synthesis and recombinant cell cultures by standard methods which include, but are not limited to, ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification. Well known techniques for refolding protein may be employed to regenerate active conformation when the polypeptide is denatured during isolation and/or purification.

5

10

15

20

25

30

35

The polypeptides of the invention may be in monomers or multimers (i.e., dimers, trimers, tetramers and higher multimers). Accordingly, the present invention relates to monomers and multimers of the polypeptides of the invention, their preparation, and compositions (preferably, Therapeutics) containing them. In specific embodiments, the polypeptides of the invention are monomers, dimers, trimers or tetramers. In additional embodiments, the multimers of the invention are at least dimers, at least trimers, or at least tetramers.

Multimers encompassed by the invention may be homomers or heteromers. As used herein, the term homomer refers to a multimer containing only polypeptides corresponding to a protein of the invention (e.g., the amino acid sequence of SEQ ID NO:Y, an amino acid sequence encoded by SEQ ID NO:X or the complement of SEQ ID NO:X, the amino acid sequence encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2, and/or an amino acid sequence encoded by cDNA contained in ATCC Deposit No:Z (including fragments, variants, splice variants, and fusion proteins, corresponding to these as described herein)). These homomers may contain polypeptides having identical or different amino acid sequences. In a specific embodiment, a homomer of the invention is a multimer containing only polypeptides having an identical amino acid sequence. In another specific embodiment, a homomer of the invention is a multimer containing polypeptides having different amino acid sequences. embodiments, the multimer of the invention is a homodimer (e.g., containing two polypeptides having identical or different amino acid sequences) or a homotrimer (e.g., containing three polypeptides having identical and/or different amino acid sequences). In additional embodiments, the homomeric multimer of the invention is at least a homodimer, at least a homotrimer, or at least a homotetramer.

As used herein, the term heteromer refers to a multimer containing one or more heterologous polypeptides (i.e., polypeptides of different proteins) in addition to the polypeptides of the invention. In a specific embodiment, the multimer of the invention is a heterodimer, a heterotrimer, or a heterotetramer. In additional embodiments, the heteromeric multimer of the invention is at least a heterodimer, at least a heterotrimer, or at least a heterotetramer.

Multimers of the invention may be the result of hydrophobic, hydrophilic, ionic and/or covalent associations and/or may be indirectly linked by, for example, liposome formation. Thus,

in one embodiment, multimers of the invention, such as, for example, homodimers or homotrimers, are formed when polypeptides of the invention contact one another in solution. In another embodiment, heteromultimers of the invention, such as, for example, heterotrimers or heterotetramers, are formed when polypeptides of the invention contact antibodies to the polypeptides of the invention (including antibodies to the heterologous polypeptide sequence in a fusion protein of the invention) in solution. In other embodiments, multimers of the invention are formed by covalent associations with and/or between the polypeptides of the invention. Such covalent associations may involve one or more amino acid residues contained in the polypeptide sequence (e.g., that recited in SEQ ID NO:Y, encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2, and/or encoded by the cDNA contained in ATCC Deposit No:Z). In one instance, the covalent associations are cross-linking between cysteine residues located within the polypeptide sequences which interact in the native (i.e., naturally occurring) polypeptide. In another instance, the covalent associations are the consequence of chemical or recombinant manipulation. Alternatively, such covalent associations may involve one or more amino acid residues contained in the heterologous polypeptide sequence in a fusion protein. In one example, covalent associations are between the heterologous sequence contained in a fusion protein of the invention (see, e.g., US Patent Number 5,478,925). In a specific example, the covalent associations are between the heterologous sequence contained in a Fc fusion protein of the invention (as described herein). In another specific example, covalent associations of fusion proteins of the invention are between heterologous polypeptide sequence from another protein that is capable of forming covalently associated multimers, such as for example, osteoprotegerin (see, e.g., International Publication NO: WO 98/49305, the contents of which are herein incorporated by reference in its entirety). In another embodiment, two or more polypeptides of the invention are joined through peptide linkers. Examples include those peptide linkers described in U.S. Pat. No. 5,073,627 (hereby incorporated by reference). Proteins comprising multiple polypeptides of the invention separated by peptide linkers may be produced using conventional recombinant DNA technology.

5

10

15

20

25

30

35

Another method for preparing multimer polypeptides of the invention involves use of polypeptides of the invention fused to a leucine zipper or isoleucine zipper polypeptide sequence. Leucine zipper and isoleucine zipper domains are polypeptides that promote multimerization of the proteins in which they are found. Leucine zippers were originally identified in several DNA-binding proteins (Landschulz et al., Science 240:1759, (1988)), and have since been found in a variety of different proteins. Among the known leucine zippers are naturally occurring peptides and derivatives thereof that dimerize or trimerize. Examples of leucine zipper domains suitable for producing soluble multimeric proteins of the invention are those described in PCT application WO 94/10308, hereby incorporated by reference. Recombinant fusion proteins comprising a polypeptide of the invention fused to a polypeptide sequence that dimerizes or trimerizes in

solution are expressed in suitable host cells, and the resulting soluble multimeric fusion protein is recovered from the culture supernatant using techniques known in the art.

Trimeric polypeptides of the invention may offer the advantage of enhanced biological activity. Preferred leucine zipper moieties and isoleucine moieties are those that preferentially form trimers. One example is a leucine zipper derived from lung surfactant protein D (SPD), as described in Hoppe et al. (FEBS Letters 344:191, (1994)) and in U.S. patent application Ser. No. 08/446,922, hereby incorporated by reference. Other peptides derived from naturally occurring trimeric proteins may be employed in preparing trimeric polypeptides of the invention.

In another example, proteins of the invention are associated by interactions between Flag® polypeptide sequence contained in fusion proteins of the invention containing Flag® polypeptide sequence. In a further embodiment, proteins of the invention are associated by interactions between heterologous polypeptide sequence contained in Flag® fusion proteins of the invention and anti-Flag® antibody.

The multimers of the invention may be generated using chemical techniques known in the art. For example, polypeptides desired to be contained in the multimers of the invention may be chemically cross-linked using linker molecules and linker molecule length optimization techniques known in the art (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety). Additionally, multimers of the invention may be generated using techniques known in the art to form one or more inter-molecule cross-links between the cysteine residues located within the sequence of the polypeptides desired to be contained in the multimer (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety). Further, polypeptides of the invention may be routinely modified by the addition of cysteine or biotin to the C-terminus or N-terminus of the polypeptide and techniques known in the art may be applied to generate multimers containing one or more of these modified polypeptides (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety). Additionally, techniques known in the art may be applied to generate liposomes containing the polypeptide components desired to be contained in the multimer of the invention (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety).

Alternatively, multimers of the invention may be generated using genetic engineering techniques known in the art. In one embodiment, polypeptides contained in multimers of the invention are produced recombinantly using fusion protein technology described herein or otherwise known in the art (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety). In a specific embodiment, polynucleotides coding for a homodimer of the invention are generated by ligating a polynucleotide sequence encoding a polypeptide of the invention to a sequence encoding a linker polypeptide and then further to a synthetic polynucleotide encoding the translated product of the polypeptide in the reverse orientation from the original C-terminus to the N-terminus (lacking the leader sequence) (see, e.g., US Patent

Number 5,478,925, which is herein incorporated by reference in its entirety). In another embodiment, recombinant techniques described herein or otherwise known in the art are applied to generate recombinant polypeptides of the invention which contain a transmembrane domain (or hydrophobic or signal peptide) and which can be incorporated by membrane reconstitution techniques into liposomes (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety).

Antibodies

5

10

15

20

25

30

35

Further polypeptides of the invention relate to antibodies and T-cell antigen receptors (TCR) which immunospecifically bind a polypeptide, polypeptide fragment, or variant of the invention (e.g., a polypeptide or fragment or variant of the amino acid sequence of SEQ ID NO:Y or a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z, and/or an epitope, of the present invention) as determined by immunoassays well known in the art for assaying specific antibody-antigen binding. Antibodies of the invention include, but are not limited to, polyclonal, monoclonal, multispecific, human, humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab') fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies (including, e.g., anti-Id antibodies to antibodies of the invention), intracellularlymade antibodies (i.e., intrabodies), and epitope-binding fragments of any of the above. The term "antibody," as used herein, refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that immunospecifically binds an antigen. The immunoglobulin molecules of the invention can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass of immunoglobulin molecule. In preferred embodiments, the immunoglobulin molecules of the invention are IgG1. In other preferred embodiments, the immunoglobulin molecules of the invention are IgG4.

Most preferably the antibodies are human antigen-binding antibody fragments of the present invention and include, but are not limited to, Fab, Fab' and F(ab')2, Fd, single-chain Fvs (scFv), single-chain antibodies, disulfide-linked Fvs (sdFv) and fragments comprising either a VL or VH domain. Antigen-binding antibody fragments, including single-chain antibodies, may comprise the variable region(s) alone or in combination with the entirety or a portion of the following: hinge region, CH1, CH2, and CH3 domains. Also included in the invention are antigen-binding fragments also comprising any combination of variable region(s) with a hinge region, CH1, CH2, and CH3 domains. The antibodies of the invention may be from any animal origin including birds and mammals. Preferably, the antibodies are human, murine (e.g., mouse and rat), donkey, ship rabbit, goat, guinea pig, camel, horse, or chicken. As used herein, "human" antibodies include antibodies having the amino acid sequence of a human immunoglobulin and include antibodies isolated from human immunoglobulin libraries or from animals transgenic for

one or more human immunoglobulin and that do not express endogenous immunoglobulins, as described infra and, for example in, U.S. Patent No. 5,939,598 by Kucherlapati et al.

The antibodies of the present invention may be monospecific, bispecific, trispecific or of greater multispecificity. Multispecific antibodies may be specific for different epitopes of a polypeptide of the present invention or may be specific for both a polypeptide of the present invention as well as for a heterologous epitope, such as a heterologous polypeptide or solid support material. See, e.g., PCT publications WO 93/17715; WO 92/08802; WO 91/00360; WO 92/05793; Tutt, et al., J. Immunol. 147:60-69 (1991); U.S. Patent Nos. 4,474,893; 4,714,681; 4,925,648; 5,573,920; 5,601,819; Kostelny et al., J. Immunol. 148:1547-1553 (1992).

5

10

15

20

25

30

35

Antibodies of the present invention may be described or specified in terms of the epitope(s) or portion(s) of a polypeptide of the present invention which they recognize or specifically bind. The epitope(s) or polypeptide portion(s) may be specified as described herein, e.g., by N-terminal and C-terminal positions, or by size in contiguous amino acid residues, or listed in the Tables and Figures. Preferred epitopes of the invention include the predicted epitopes shown in Table 1B, as well as polynucleotides that encode these epitopes. Antibodies which specifically bind any epitope or polypeptide of the present invention may also be excluded. Therefore, the present invention includes antibodies that specifically bind polypeptides of the present invention, and allows for the exclusion of the same.

Antibodies of the present invention may also be described or specified in terms of their cross-reactivity. Antibodies that do not bind any other analog, ortholog, or homolog of a polypeptide of the present invention are included. Antibodies that bind polypeptides with at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%, at least 55%, and at least 50% identity (as calculated using methods known in the art and described herein) to a polypeptide of the present invention are also included in the present invention. In specific embodiments, antibodies of the present invention cross-react with murine, rat and/or rabbit homologs of human proteins and the corresponding epitopes thereof. Antibodies that do not bind polypeptides with less than 95%, less than 90%, less than 85%, less than 80%, less than 75%, less than 70%, less than 65%, less than 60%, less than 55%, and less than 50% identity (as calculated using methods known in the art and described herein) to a polypeptide of the present invention are also included in the present invention. In a specific embodiment, the abovedescribed cross-reactivity is with respect to any single specific antigenic or immunogenic polypeptide, or combination(s) of 2, 3, 4, 5, or more of the specific antigenic and/or immunogenic polypeptides disclosed herein. Further included in the present invention are antibodies which bind polypeptides encoded by polynucleotides which hybridize to a polynucleotide of the present invention under stringent hybridization conditions (as described herein). Antibodies of the present invention may also be described or specified in terms of their binding affinity to a polypeptide of the invention. Preferred binding affinities include those with a dissociation constant or Kd less

than 5 X 10^{-2} M, 10^{-2} M, 5 X 10^{-3} M, 10^{-3} M, 5 X 10^{-4} M, 10^{-4} M, 5 X 10^{-5} M, 10^{-5} M, 5 X 10^{-6} M, 10^{-6} M, 5 X 10^{-7} M, 10^{7} M, 5 X 10^{-8} M, 10^{-8} M, 5 X 10^{-9} M, 10^{-9} M, 5 X 10^{-10} M, 10^{-10} M, 5 X 10^{-11} M, 10^{-11} M, 5 X 10^{-12} M, 10^{-12} M, 5 X 10^{-13} M, 10^{-13} M, 5 X 10^{-14} M, 10^{-14} M, 5 X 10^{-15} M, or 10^{-15} M.

The invention also provides antibodies that competitively inhibit binding of an antibody to an epitope of the invention as determined by any method known in the art for determining competitive binding, for example, the immunoassays described herein. In preferred embodiments, the antibody competitively inhibits binding to the epitope by at least 95%, at least 90%, at least 85 %, at least 80%, at least 75%, at least 70%, at least 60%, or at least 50%.

Antibodies of the present invention may act as agonists or antagonists of the polypeptides of the present invention. For example, the present invention includes antibodies which disrupt the receptor/ligand interactions with the polypeptides of the invention either partially or fully. Preferably, antibodies of the present invention bind an antigenic epitope disclosed herein, or a portion thereof. The invention features both receptor-specific antibodies and ligand-specific antibodies. The invention also features receptor-specific antibodies which do not prevent ligand binding but prevent receptor activation. Receptor activation (i.e., signaling) may be determined by techniques described herein or otherwise known in the art. For example, receptor activation can be determined by detecting the phosphorylation (e.g., tyrosine or serine/threonine) of the receptor or its substrate by immunoprecipitation followed by western blot analysis (for example, as described *supra*). In specific embodiments, antibodies are provided that inhibit ligand activity or receptor activity by at least 95%, at least 85%, at least 80%, at least 75%, at least 70%, at least 60%, or at least 50% of the activity in absence of the antibody.

The invention also features receptor-specific antibodies which both prevent ligand binding and receptor activation as well as antibodies that recognize the receptor-ligand complex, and, preferably, do not specifically recognize the unbound receptor or the unbound ligand. Likewise, included in the invention are neutralizing antibodies which bind the ligand and prevent binding of the ligand to the receptor, as well as antibodies which bind the ligand, thereby preventing receptor activation, but do not prevent the ligand from binding the receptor. Further included in the invention are antibodies which activate the receptor. These antibodies may act as receptor agonists, i.e., potentiate or activate either all or a subset of the biological activities of the ligand-mediated receptor activation, for example, by inducing dimerization of the receptor. The antibodies may be specified as agonists, antagonists or inverse agonists for biological activities comprising the specific biological activities of the peptides of the invention disclosed herein. The above antibody agonists can be made using methods known in the art. See, e.g., PCT publication WO 96/40281; U.S. Patent No. 5,811,097; Deng et al., Blood 92(6):1981-1988 (1998); Chen et al., Cancer Res. 58(16):3668-3678 (1998); Harrop et al., J. Immunol. 161(4):1786-1794 (1998); Zhu et al., Cancer Res. 58(15):3209-3214 (1998); Yoon et al., J. Immunol. 160(7):3170-3179 (1998);

Prat et al., J. Cell. Sci. 111(Pt2):237-247 (1998); Pitard et al., J. Immunol. Methods 205(2):177-190 (1997); Liautard et al., Cytokine 9(4):233-241 (1997); Carlson et al., J. Biol. Chem. 272(17):11295-11301 (1997); Taryman et al., Neuron 14(4):755-762 (1995); Muller et al., Structure 6(9):1153-1167 (1998); Bartunek et al., Cytokine 8(1):14-20 (1996) (which are all incorporated by reference herein in their entireties).

Antibodies of the present invention may be used, for example, to purify, detect, and target the polypeptides of the present invention, including both *in vitro* and *in vivo* diagnostic and therapeutic methods. For example, the antibodies have utility in immunoassays for qualitatively and quantitatively measuring levels of the polypeptides of the present invention in biological samples. See, e.g., Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); incorporated by reference herein in its entirety.

As discussed in more detail below, the antibodies of the present invention may be used either alone or in combination with other compositions. The antibodies may further be recombinantly fused to a heterologous polypeptide at the N- or C-terminus or chemically conjugated (including covalent and non-covalent conjugations) to polypeptides or other compositions. For example, antibodies of the present invention may be recombinantly fused or conjugated to molecules useful as labels in detection assays and effector molecules such as heterologous polypeptides, drugs, radionuclides, or toxins. See, e.g., PCT publications WO 92/08495; WO 91/14438; WO 89/12624; U.S. Patent No. 5,314,995; and EP 396,387; the disclosures of which are incorporated herein by reference in their entireties.

The antibodies of the invention include derivatives that are modified, i.e, by the covalent attachment of any type of molecule to the antibody such that covalent attachment does not prevent the antibody from generating an anti-idiotypic response. For example, but not by way of limitation, the antibody derivatives include antibodies that have been modified, e.g., by glycosylation, acetylation, pegylation, phosphylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. Any of numerous chemical modifications may be carried out by known techniques, including, but not limited to specific chemical cleavage, acetylation, formylation, metabolic synthesis of tunicamycin, etc. Additionally, the derivative may contain one or more non-classical amino acids.

The antibodies of the present invention may be generated by any suitable method known in the art. Polyclonal antibodies to an antigen-of- interest can be produced by various procedures well known in the art. For example, a polypeptide of the invention can be administered to various host animals including, but not limited to, rabbits, mice, rats, etc. to induce the production of sera containing polyclonal antibodies specific for the antigen. Various adjuvants may be used to increase the immunological response, depending on the host species, and include but are not limited to, Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides,

oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and corynebacterium parvum. Such adjuvants are also well known in the art.

Monoclonal antibodies can be prepared using a wide variety of techniques known in the art including the use of hybridoma, recombinant, and phage display technologies, or a combination thereof. For example, monoclonal antibodies can be produced using hybridoma techniques including those known in the art and taught, for example, in Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling, et al., in: Monoclonal Antibodies and T-Cell Hybridomas 563-681 (Elsevier, N.Y., 1981) (said references incorporated by reference in their entireties). The term "monoclonal antibody" as used herein is not limited to antibodies produced through hybridoma technology. The term "monoclonal antibody" refers to an antibody that is derived from a single clone, including any eukaryotic, prokaryotic, or phage clone, and not the method by which it is produced.

Methods for producing and screening for specific antibodies using hybridoma technology are routine and well known in the art and are discussed in detail in the Examples. In a non-limiting example, mice can be immunized with a polypeptide of the invention or a cell expressing such peptide. Once an immune response is detected, e.g., antibodies specific for the antigen are detected in the mouse serum, the mouse spleen is harvested and splenocytes isolated. The splenocytes are then fused by well known techniques to any suitable myeloma cells, for example cells from cell line SP20 available from the ATCC. Hybridomas are selected and cloned by limited dilution. The hybridoma clones are then assayed by methods known in the art for cells that secrete antibodies capable of binding a polypeptide of the invention. Ascites fluid, which generally contains high levels of antibodies, can be generated by immunizing mice with positive hybridoma clones.

Accordingly, the present invention provides methods of generating monoclonal antibodies as well as antibodies produced by the method comprising culturing a hybridoma cell secreting an antibody of the invention wherein, preferably, the hybridoma is generated by fusing splenocytes isolated from a mouse immunized with an antigen of the invention with myeloma cells and then screening the hybridomas resulting from the fusion for hybridoma clones that secrete an antibody able to bind a polypeptide of the invention.

Another well known method for producing both polyclonal and monoclonal human B cell lines is transformation using Epstein Barr Virus (EBV). Protocols for generating EBV-transformed B cell lines are commonly known in the art, such as, for example, the protocol outlined in Chapter 7.22 of Current Protocols in Immunology, Coligan et al., Eds., 1994, John Wiley & Sons, NY, which is hereby incorporated in its entirety by reference. The source of B cells for transformation is commonly human peripheral blood, but B cells for transformation may also be derived from other sources including, but not limited to, lymph nodes, tonsil, spleen, tumor

tissue, and infected tissues. Tissues are generally made into single cell suspensions prior to EBV transformation. Additionally, steps may be taken to either physically remove or inactivate T cells (e.g., by treatment with cyclosporin A) in B cell-containing samples, because T cells from individuals seropositive for anti-EBV antibodies can suppress B cell immortalization by EBV.

In general, the sample containing human B cells is innoculated with EBV, and cultured for 3-4 weeks. A typical source of EBV is the culture supernatant of the B95-8 cell line (ATCC #VR-1492). Physical signs of EBV transformation can generally be seen towards the end of the 3-4 week culture period. By phase-contrast microscopy, transformed cells may appear large, clear, hairy and tend to aggregate in tight clusters of cells. Initially, EBV lines are generally polyclonal. However, over prolonged periods of cell cultures, EBV lines may become monoclonal or polyclonal as a result of the selective outgrowth of particular B cell clones. Alternatively, polyclonal EBV transformed lines may be subcloned (e.g., by limiting dilution culture) or fused with a suitable fusion partner and plated at limiting dilution to obtain monoclonal B cell lines. Suitable fusion partners for EBV transformed cell lines include mouse myeloma cell lines (e.g., SP2/0, X63-Ag8.653), heteromyeloma cell lines (human x mouse; e.g, SPAM-8, SBC-H20, and CB-F7), and human cell lines (e.g., GM 1500, SKO-007, RPMI 8226, and KR-4). Thus, the present invention also provides a method of generating polyclonal or monoclonal human antibodies against polypeptides of the invention or fragments thereof, comprising EBV-transformation of human B cells.

Antibody fragments which recognize specific epitopes may be generated by known techniques. For example, Fab and F(ab')2 fragments of the invention may be produced by proteolytic cleavage of immunoglobulin molecules, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). F(ab')2 fragments contain the variable region, the light chain constant region and the CH1 domain of the heavy chain.

For example, the antibodies of the present invention can also be generated using various phage display methods known in the art. In phage display methods, functional antibody domains are displayed on the surface of phage particles which carry the polynucleotide sequences encoding them. In a particular embodiment, such phage can be utilized to display antigen binding domains expressed from a repertoire or combinatorial antibody library (e.g., human or murine). Phage expressing an antigen binding domain that binds the antigen of interest can be selected or identified with antigen, e.g., using labeled antigen or antigen bound or captured to a solid surface or bead. Phage used in these methods are typically filamentous phage including fd and M13 binding domains expressed from phage with Fab, Fv or disulfide stabilized Fv antibody domains recombinantly fused to either the phage gene III or gene VIII protein. Examples of phage display methods that can be used to make the antibodies of the present invention include those disclosed in Brinkman et al., J. Immunol. Methods 182:41-50 (1995); Ames et al., J. Immunol. Methods 184:177-186 (1995); Kettleborough et al., Eur. J. Immunol. 24:952-958 (1994); Persic et al., Gene

187 9-18 (1997); Burton et al., Advances in Immunology 57:191-280 (1994); PCT application No. PCT/GB91/01134; PCT publications WO 90/02809; WO 91/10737; WO 92/01047; WO 92/18619; WO 93/11236; WO 95/15982; WO 95/20401; and U.S. Patent Nos. 5,698,426; 5,223,409; 5,403,484; 5,580,717; 5,427,908; 5,750,753; 5,821,047; 5,571,698; 5,427,908; 5,516,637; 5,780,225; 5,658,727; 5,733,743 and 5,969,108; each of which is incorporated herein by reference in its entirety.

5

10

15

20

25

30

35

As described in the above references, after phage selection, the antibody coding regions from the phage can be isolated and used to generate whole antibodies, including human antibodies, or any other desired antigen binding fragment, and expressed in any desired host, including mammalian cells, insect cells, plant cells, yeast, and bacteria, e.g., as described in detail below. For example, techniques to recombinantly produce Fab, Fab' and F(ab')2 fragments can also be employed using methods known in the art such as those disclosed in PCT publication WO 92/22324; Mullinax et al., BioTechniques 12(6):864-869 (1992); and Sawai et al., AJRI 34:26-34 (1995); and Better et al., Science 240:1041-1043 (1988) (said references incorporated by reference in their entireties).

Examples of techniques which can be used to produce single-chain Fvs and antibodies include those described in U.S. Patents 4,946,778 and 5,258,498; Huston et al., Methods in Enzymology 203:46-88 (1991); Shu et al., PNAS 90:7995-7999 (1993); and Skerra et al., Science 240:1038-1040 (1988). For some uses, including in vivo use of antibodies in humans and in vitro detection assays, it may be preferable to use chimeric, humanized, or human antibodies. A chimeric antibody is a molecule in which different portions of the antibody are derived from different animal species, such as antibodies having a variable region derived from a murine monoclonal antibody and a human immunoglobulin constant region. Methods for producing chimeric antibodies are known in the art. See e.g., Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Gillies et al., (1989) J. Immunol. Methods 125:191-202; U.S. Patent Nos. 5,807,715; 4,816,567; and 4,816397, which are incorporated herein by reference in their entirety. Humanized antibodies are antibody molecules from non-human species antibody that binds the desired antigen having one or more complementarity determining regions (CDRs) from the non-human species and a framework regions from a human immunoglobulin molecule. Often, framework residues in the human framework regions will be substituted with the corresponding residue from the CDR donor antibody to alter, preferably improve, antigen binding. These framework substitutions are identified by methods well known in the art, e.g., by modeling of the interactions of the CDR and framework residues to identify framework residues important for antigen binding and sequence comparison to identify unusual framework residues at particular positions. (See, e.g., Queen et al., U.S. Patent No. 5,585,089; Riechmann et al., Nature 332:323 (1988), which are incorporated herein by reference in their entireties.) Antibodies can be humanized using a variety of techniques known in the art including, for example, CDR-grafting

(EP 239,400; PCT publication WO 91/09967; U.S. Patent Nos. 5,225,539; 5,530,101; and 5,585,089), veneering or resurfacing (EP 592,106; EP 519,596; Padlan, Molecular Immunology 28(4/5):489-498 (1991); Studnicka et al., Protein Engineering 7(6):805-814 (1994); Roguska. et al., PNAS 91:969-973 (1994)), and chain shuffling (U.S. Patent No. 5,565,332).

5

10

15

20

25

30

35

Completely human antibodies are particularly desirable for therapeutic treatment of human patients. Human antibodies can be made by a variety of methods known in the art including phage display methods described above using antibody libraries derived from human immunoglobulin sequences. See also, U.S. Patent Nos. 4,444,887 and 4,716,111; and PCT publications WO 98/46645, WO 98/50433, WO 98/24893, WO 98/16654, WO 96/34096, WO 96/33735, and WO 91/10741; each of which is incorporated herein by reference in its entirety.

Human antibodies can also be produced using transgenic mice which are incapable of expressing functional endogenous immunoglobulins, but which can express human immunoglobulin genes. For example, the human heavy and light chain immunoglobulin gene complexes may be introduced randomly or by homologous recombination into mouse embryonic stem cells. Alternatively, the human variable region, constant region, and diversity region may be introduced into mouse embryonic stem cells in addition to the human heavy and light chain genes. The mouse heavy and light chain immunoglobulin genes may be rendered non-functional separately or simultaneously with the introduction of human immunoglobulin loci by homologous recombination. In particular, homozygous deletion of the JH region prevents endogenous antibody production. The modified embryonic stem cells are expanded and microinjected into blastocysts to produce chimeric mice. The chimeric mice are then bred to produce homozygous offspring which express human antibodies. The transgenic mice are immunized in the normal fashion with a selected antigen, e.g., all or a portion of a polypeptide of the invention. Monoclonal antibodies directed against the antigen can be obtained from the immunized, transgenic mice using conventional hybridoma technology. The human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation. Thus, using such a technique, it is possible to produce therapeutically useful IgG, IgA, IgM and IgE antibodies. For an overview of this technology for producing human antibodies, see Lonberg and Huszar, Int. Rev. Immunol. 13:65-93 (1995). For a detailed discussion of this technology for producing human antibodies and human monoclonal antibodies and protocols for producing such antibodies, see, e.g., PCT publications WO 98/24893; WO 92/01047; WO 96/34096; WO 96/33735; European Patent No. 0 598 877; U.S. Patent Nos. 5,413,923; 5,625,126; 5,633,425; 5,569,825; 5,661,016; 5,545,806; 5,814,318; 5,885,793;5,916,771; 5,939,598; 6,075,181; and 6,114,598, which are incorporated by reference herein in their entirety. In addition, companies such as Abgenix, Inc. (Freemont, CA) and Genpharm (San Jose, CA) can be engaged to provide human antibodies directed against a selected antigen using technology similar to that described above.

Completely human antibodies which recognize a selected epitope can be generated using a technique referred to as "guided selection." In this approach a selected non-human monoclonal antibody, e.g., a mouse antibody, is used to guide the selection of a completely human antibody recognizing the same epitope. (Jespers et al., Bio/technology 12:899-903 (1988)).

Further, antibodies to the polypeptides of the invention can, in turn, be utilized to generate anti-idiotype antibodies that "mimic" polypeptides of the invention using techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona, FASEB J. 7(5):437-444; (1989) and Nissinoff, J. Immunol. 147(8):2429-2438 (1991)). For example, antibodies which bind to and competitively inhibit polypeptide multimerization and/or binding of a polypeptide of the invention to a ligand can be used to generate anti-idiotypes that "mimic" the polypeptide multimerization and/or binding domain and, as a consequence, bind to and neutralize polypeptide and/or its ligand. Such neutralizing anti-idiotypes or Fab fragments of such anti-idiotypes can be used in therapeutic regimens to neutralize polypeptide ligand(s)/receptor(s). For example, such anti-idiotypic antibodies can be used to bind a polypeptide of the invention and/or to bind its ligand(s)/receptor(s), and thereby block its biological activity. Alternatively, antibodies which bind to and enhance polypeptide multimerization and/or binding, and/or receptor/ligand multimerization, binding and/or signaling can be used to generate anti-idiotypes that function as agonists of a polypeptide of the invention and/or its ligand/receptor. Such agonistic anti-idiotypes or Fab fragments of such anti-idiotypes can be used in therapeutic regimens as agonists of the polypeptides of the invention or its ligand(s)/receptor(s). For example, such anti-idiotypic antibodies can be used to bind a polypeptide of the invention and/or to bind its ligand(s)/receptor(s), and thereby promote or enhance its biological activity.

Intrabodies of the invention can be produced using methods known in the art, such as those disclosed and reviewed in Chen et al., Hum. Gene Ther. 5:595-601 (1994); Marasco, W.A., Gene Ther. 4:11-15 (1997); Rondon and Marasco, Annu. Rev. Microbiol. 51:257-283 (1997); Proba et al., J. Mol. Biol. 275:245-253 (1998); Cohen et al., Oncogene 17:2445-2456 (1998); Ohage and Steipe, J. Mol. Biol. 291:1119-1128 (1999); Ohage et al., J. Mol. Biol. 291:1129-1134 (1999); Wirtz and Steipe, Protein Sci. 8:2245-2250 (1999); Zhu et al., J. Immunol. Methods 231:207-222 (1999); and references cited therein.

Polynucleotides Encoding Antibodies

5

10

15

20

25

30

35

The invention further provides polynucleotides comprising a nucleotide sequence encoding an antibody of the invention and fragments thereof. The invention also encompasses polynucleotides that hybridize under stringent or alternatively, under lower stringency hybridization conditions, e.g., as defined *supra*, to polynucleotides that encode an antibody, preferably, that specifically binds to a polypeptide of the invention, preferably, an antibody that binds to a polypeptide having the amino acid sequence of SEQ ID NO:Y, to a polypeptide encoded

by a portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2, and/or to a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z.

The polynucleotides may be obtained, and the nucleotide sequence of the polynucleotides determined, by any method known in the art. For example, if the nucleotide sequence of the antibody is known, a polynucleotide encoding the antibody may be assembled from chemically synthesized oligonucleotides (e.g., as described in Kutmeier et al., BioTechniques 17:242 (1994)), which, briefly, involves the synthesis of overlapping oligonucleotides containing portions of the sequence encoding the antibody, annealing and ligating of those oligonucleotides, and then amplification of the ligated oligonucleotides by PCR.

Alternatively, a polynucleotide encoding an antibody may be generated from nucleic acid from a suitable source. If a clone containing a nucleic acid encoding a particular antibody is not available, but the sequence of the antibody molecule is known, a nucleic acid encoding the immunoglobulin may be chemically synthesized or obtained from a suitable source (e.g., an antibody cDNA library, or a cDNA library generated from, or nucleic acid, preferably poly A+RNA, isolated from, any tissue or cells expressing the antibody, such as hybridoma cells selected to express an antibody of the invention) by PCR amplification using synthetic primers hybridizable to the 3' and 5' ends of the sequence or by cloning using an oligonucleotide probe specific for the particular gene sequence to identify, e.g., a cDNA clone from a cDNA library that encodes the antibody. Amplified nucleic acids generated by PCR may then be cloned into replicable cloning vectors using any method well known in the art.

Once the nucleotide sequence and corresponding amino acid sequence of the antibody is determined, the nucleotide sequence of the antibody may be manipulated using methods well known in the art for the manipulation of nucleotide sequences, e.g., recombinant DNA techniques, site directed mutagenesis, PCR, etc. (see, for example, the techniques described in Sambrook et al., 1990, Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY and Ausubel et al., eds., 1998, Current Protocols in Molecular Biology, John Wiley & Sons, NY, which are both incorporated by reference herein in their entireties), to generate antibodies having a different amino acid sequence, for example to create amino acid substitutions, deletions, and/or insertions.

In a specific embodiment, the amino acid sequence of the heavy and/or light chain variable domains may be inspected to identify the sequences of the complementarity determining regions (CDRs) by methods that are well know in the art, e.g., by comparison to known amino acid sequences of other heavy and light chain variable regions to determine the regions of sequence hypervariability. Using routine recombinant DNA techniques, one or more of the CDRs may be inserted within framework regions, e.g., into human framework regions to humanize a non-human antibody, as described *supra*. The framework regions may be naturally occurring or consensus framework regions, and preferably human framework regions (see, e.g., Chothia et al.,

J. Mol. Biol. 278: 457-479 (1998) for a listing of human framework regions). Preferably, the polynucleotide generated by the combination of the framework regions and CDRs encodes an antibody that specifically binds a polypeptide of the invention. Preferably, as discussed *supra*, one or more amino acid substitutions may be made within the framework regions, and, preferably, the amino acid substitutions improve binding of the antibody to its antigen. Additionally, such methods may be used to make amino acid substitutions or deletions of one or more variable region cysteine residues participating in an intrachain disulfide bond to generate antibody molecules lacking one or more intrachain disulfide bonds. Other alterations to the polynucleotide are encompassed by the present invention and within the skill of the art.

In addition, techniques developed for the production of "chimeric antibodies" (Morrison et al., Proc. Natl. Acad. Sci. 81:851-855 (1984); Neuberger et al., Nature 312:604-608 (1984); Takeda et al., Nature 314:452-454 (1985)) by splicing genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. As described *supra*, a chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region, e.g., humanized antibodies.

Alternatively, techniques described for the production of single chain antibodies (U.S. Patent No. 4,946,778; Bird, Science 242:423- 42 (1988); Huston et al., Proc. Natl. Acad. Sci. USA 85:5879-5883 (1988); and Ward et al., Nature 334:544-54 (1989)) can be adapted to produce single chain antibodies. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide. Techniques for the assembly of functional Fv fragments in E. coli may also be used (Skerra et al., Science 242:1038-1041 (1988)).

25

30

35

5

10

15

20

Methods of Producing Antibodies

The antibodies of the invention can be produced by any method known in the art for the synthesis of antibodies, in particular, by chemical synthesis or preferably, by recombinant expression techniques. Methods of producing antibodies include, but are not limited to, hybridoma technology, EBV transformation, and other methods discussed herein as well as through the use recombinant DNA technology, as discussed below.

Recombinant expression of an antibody of the invention, or fragment, derivative or analog thereof, (e.g., a heavy or light chain of an antibody of the invention or a single chain antibody of the invention), requires construction of an expression vector containing a polynucleotide that encodes the antibody. Once a polynucleotide encoding an antibody molecule or a heavy or light chain of an antibody, or portion thereof (preferably containing the heavy or light chain variable domain), of the invention has been obtained, the vector for the production of

the antibody molecule may be produced by recombinant DNA technology using techniques well known in the art. Thus, methods for preparing a protein by expressing a polynucleotide containing an antibody encoding nucleotide sequence are described herein. Methods which are well known to those skilled in the art can be used to construct expression vectors containing antibody coding sequences and appropriate transcriptional and translational control signals. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques, and *in vivo* genetic recombination. The invention, thus, provides replicable vectors comprising a nucleotide sequence encoding an antibody molecule of the invention, or a heavy or light chain thereof, or a heavy or light chain variable domain, operably linked to a promoter. Such vectors may include the nucleotide sequence encoding the constant region of the antibody molecule (see, e.g., PCT Publication WO 86/05807; PCT Publication WO 89/01036; and U.S. Patent No. 5,122,464) and the variable domain of the antibody may be cloned into such a vector for expression of the entire heavy or light chain.

5

10

15

20

25

30

35

The expression vector is transferred to a host cell by conventional techniques and the transfected cells are then cultured by conventional techniques to produce an antibody of the invention. Thus, the invention includes host cells containing a polynucleotide encoding an antibody of the invention, or a heavy or light chain thereof, or a single chain antibody of the invention, operably linked to a heterologous promoter. In preferred embodiments for the expression of double-chained antibodies, vectors encoding both the heavy and light chains may be co-expressed in the host cell for expression of the entire immunoglobulin molecule, as detailed below.

A variety of host-expression vector systems may be utilized to express the antibody molecules of the invention. Such host-expression systems represent vehicles by which the coding sequences of interest may be produced and subsequently purified, but also represent cells which may, when transformed or transfected with the appropriate nucleotide coding sequences, express an antibody molecule of the invention in situ. These include but are not limited to microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing antibody coding sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing antibody coding sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing antibody coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing antibody coding sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3 cells) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter).

Preferably, bacterial cells such as Escherichia coli, and more preferably, eukaryotic cells, especially for the expression of whole recombinant antibody molecule, are used for the expression of a recombinant antibody molecule. For example, mammalian cells such as Chinese hamster ovary cells (CHO), in conjunction with a vector such as the major intermediate early gene promoter element from human cytomegalovirus is an effective expression system for antibodies (Foecking et al., Gene 45:101 (1986); Cockett et al., Bio/Technology 8:2 (1990)).

In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the antibody molecule being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of pharmaceutical compositions of an antibody molecule, vectors which direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., EMBO J. 2:1791 (1983)), in which the antibody coding sequence may be ligated individually into the vector in frame with the lac Z coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, Nucleic Acids Res. 13:3101-3109 (1985); Van Heeke & Schuster, J. Biol. Chem. 24:5503-5509 (1989)); and the like. pGEX vectors may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption and binding to matrix glutathione-agarose beads followed by elution in the presence of free glutathione. The pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.

In an insect system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in *Spodoptera frugiperda* cells. The antibody coding sequence may be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter).

In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the antibody coding sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or *in vivo* recombination. Insertion in a non- essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing the antibody molecule in infected hosts. (e.g., see Logan & Shenk, Proc. Natl. Acad. Sci. USA 81:355-359 (1984)). Specific initiation signals may also be required for efficient translation of inserted antibody coding sequences. These signals include the ATG initiation codon and adjacent sequences. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous

translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (see Bittner et al., Methods in Enzymol. 153:51-544 (1987)).

In addition, a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include but are not limited to CHO, VERY, BHK, Hela, COS, MDCK, 293, 3T3, Wl38, and in particular, breast cancer cell lines such as, for example, BT483, Hs578T, HTB2, BT20 and T47D, and normal mammary gland cell line such as, for example, CRL7030 and Hs578Bst.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express the antibody molecule may be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the antibody molecule. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that interact directly or indirectly with the antibody molecule.

A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler et al., Cell 11:223 (1977)), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, Proc. Natl. Acad. Sci. USA 48:202 (1992)), and adenine phosphoribosyltransferase (Lowy et al., Cell 22:817 (1980)) genes can be employed in tk-, hgprt- or aprt- cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler et al., Natl. Acad. Sci. USA 77:357 (1980); O'Hare et al., Proc. Natl. Acad. Sci. USA 78:1527 (1981)); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, Proc. Natl. Acad. Sci. USA

78:2072 (1981)); neo, which confers resistance to the aminoglycoside G-418 Clinical Pharmacy 12:488-505; Wu and Wu, Biotherapy 3:87-95 (1991); Tolstoshev, Ann. Rev. Pharmacol. Toxicol. 32:573-596 (1993); Mulligan, Science 260:926-932 (1993); and Morgan and Anderson, Ann. Rev. Biochem. 62:191-217 (1993); May, 1993, TIB TECH 11(5):155-215 (1993)); and hygro, which confers resistance to hygromycin (Santerre et al., Gene 30:147 (1984)). Methods commonly known in the art of recombinant DNA technology may be routinely applied to select the desired recombinant clone, and such methods are described, for example, in Ausubel et al. (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, NY (1993); Kriegler, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY (1990); and in Chapters 12 and 13, Dracopoli et al. (eds.), Current Protocols in Human Genetics, John Wiley & Sons, NY (1994); Colberre-Garapin et al., J. Mol. Biol. 150:1 (1981), which are incorporated by reference herein in their entireties.

The expression levels of an antibody molecule can be increased by vector amplification (for a review, see Bebbington and Hentschel, The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells in DNA cloning, Vol.3. (Academic Press, New York, 1987)). When a marker in the vector system expressing antibody is amplifiable, increase in the level of inhibitor present in culture of host cell will increase the number of copies of the marker gene. Since the amplified region is associated with the antibody gene, production of the antibody will also increase (Crouse et al., Mol. Cell. Biol. 3:257 (1983)).

Vectors which use glutamine synthase (GS) or DHFR as the selectable markers can be amplified in the presence of the drugs methionine sulphoximine or methotrexate, respectively. An advantage of glutamine synthase based vectors are the availabilty of cell lines (e.g., the murine myeloma cell line, NS0) which are glutamine synthase negative. Glutamine synthase expression systems can also function in glutamine synthase expressing cells (e.g. Chinese Hamster Ovary (CHO) cells) by providing additional inhibitor to prevent the functioning of the endogenous gene. A glutamine synthase expression system and components thereof are detailed in PCT publications: WO87/04462; WO86/05807; WO89/01036; WO89/10404; and WO91/06657 which are incorporated in their entireties by reference herein. Additionally, glutamine synthase expression vectors that may be used according to the present invention are commercially available from suplliers, including, for example Lonza Biologics, Inc. (Portsmouth, NH). Expression and production of monoclonal antibodies using a GS expression system in murine myeloma cells is described in Bebbington *et al.*, *Bio/technology* 10:169(1992) and in Biblia and Robinson *Biotechnol. Prog.* 11:1 (1995) which are incorporated in their entirities by reference herein.

The host cell may be co-transfected with two expression vectors of the invention, the first vector encoding a heavy chain derived polypeptide and the second vector encoding a light chain derived polypeptide. The two vectors may contain identical selectable markers which enable equal expression of heavy and light chain polypeptides. Alternatively, a single vector may be used

which encodes, and is capable of expressing, both heavy and light chain polypeptides. In such situations, the light chain should be placed before the heavy chain to avoid an excess of toxic free heavy chain (Proudfoot, Nature 322:52 (1986); Kohler, Proc. Natl. Acad. Sci. USA 77:2197 (1980)). The coding sequences for the heavy and light chains may comprise cDNA or genomic DNA.

Once an antibody molecule of the invention has been produced by an animal, chemically synthesized, or recombinantly expressed, it may be purified by any method known in the art for purification of an immunoglobulin molecule, for example, by chromatography (e.g., ion exchange, affinity, particularly by affinity for the specific antigen after Protein A, and sizing column chromatography), centrifugation, differential solubility, or by any other standard technique for the purification of proteins. In addition, the antibodies of the present invention or fragments thereof can be fused to heterologous polypeptide sequences described herein or otherwise known in the art, to facilitate purification.

The present invention encompasses antibodies recombinantly fused or chemically conjugated (including both covalently and non-covalently conjugations) to a polypeptide (or portion thereof, preferably at least 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 amino acids of the polypeptide) of the present invention to generate fusion proteins. The fusion does not necessarily need to be direct, but may occur through linker sequences. The antibodies may be specific for antigens other than polypeptides (or portion thereof, preferably at least 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 amino acids of the polypeptide) of the present invention. For example, antibodies may be used to target the polypeptides of the present invention to particular cell types, either in vitro or *in vivo*, by fusing or conjugating the polypeptides of the present invention to antibodies specific for particular cell surface receptors. Antibodies fused or conjugated to the polypeptides of the present invention may also be used in in vitro immunoassays and purification methods using methods known in the art. See e.g., Harbor et al., *supra*, and PCT publication WO 93/21232; EP 439,095; Naramura et al., Immunol. Lett. 39:91-99 (1994); U.S. Patent 5,474,981; Gillies et al., PNAS 89:1428-1432 (1992); Fell et al., J. Immunol. 146:2446-2452 (1991), which are incorporated by reference in their entireties.

The present invention further includes compositions comprising the polypeptides of the present invention fused or conjugated to antibody domains other than the variable regions. For example, the polypeptides of the present invention may be fused or conjugated to an antibody Fc region, or portion thereof. The antibody portion fused to a polypeptide of the present invention may comprise the constant region, hinge region, CH1 domain, CH2 domain, and CH3 domain or any combination of whole domains or portions thereof. The polypeptides may also be fused or conjugated to the above antibody portions to form multimers. For example, Fc portions fused to the polypeptides of the present invention can form dimers through disulfide bonding between the Fc portions. Higher multimeric forms can be made by fusing the polypeptides to portions of IgA

and IgM. Methods for fusing or conjugating the polypeptides of the present invention to antibody portions are known in the art. See, e.g., U.S. Patent Nos. 5,336,603; 5,622,929; 5,359,046; 5,349,053; 5,447,851; 5,112,946; EP 307,434; EP 367,166; PCT publications WO 96/04388; WO 91/06570; Ashkenazi et al., Proc. Natl. Acad. Sci. USA 88:10535-10539 (1991); Zheng et al., J. Immunol. 154:5590-5600 (1995); and Vil et al., Proc. Natl. Acad. Sci. USA 89:11337- 11341 (1992) (said references incorporated by reference in their entireties).

5

10

15

20

25

30

35

As discussed, supra, the polypeptides corresponding to a polypeptide, polypeptide fragment, or a variant of SEQ ID NO:Y may be fused or conjugated to the above antibody portions to increase the in vivo half life of the polypeptides or for use in immunoassays using methods known in the art. Further, the polypeptides corresponding to SEQ ID NO:Y may be fused or conjugated to the above antibody portions to facilitate purification. One reported example describes chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. See EP 394,827; and Traunecker et al., Nature 331:84-86 (1988). polypeptides of the present invention fused or conjugated to an antibody having disulfide-linked dimeric structures (due to the IgG) may also be more efficient in binding and neutralizing other molecules, than the monomeric secreted protein or protein fragment alone. See, for example, Fountoulakis et al., J. Biochem. 270:3958-3964 (1995). In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. See, for example, EP A 232,262. Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. (See, Bennett et al., J. Molecular Recognition 8:52-58 (1995); Johanson et al., J. Biol. Chem. 270:9459-9471 (1995)).

Moreover, the antibodies or fragments thereof of the present invention can be fused to marker sequences, such as a peptide to facilitate purification. In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Other peptide tags useful for purification include, but are not limited to, the "HA" tag, which corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson et al., Cell 37:767 (1984)) and the "flag" tag.

The present invention further encompasses antibodies or fragments thereof conjugated to a diagnostic or therapeutic agent. The antibodies can be used diagnostically to, for example,

monitor the development or progression of a tumor as part of a clinical testing procedure to, e.g., determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, radioactive materials, positron emitting metals using various positron emission tomographies, and nonradioactive paramagnetic metal ions. The detectable substance may be coupled or conjugated either directly to the antibody (or fragment thereof) or indirectly, through an intermediate (such as, for example, a linker known in the art) using techniques known in the art. See, for example, U.S. Patent No. 4,741,900 for metal ions which can be conjugated to antibodies for use as diagnostics according to the present invention. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin; and examples of suitable radioactive material include 125I, 131I, 111In or 99Tc.

5

10

15

20

25

30

35

Further, an antibody or fragment thereof may be conjugated to a therapeutic moiety such as a cytotoxin, e.g., a cytostatic or cytocidal agent, a therapeutic agent or a radioactive metal ion, e.g., alpha-emitters such as, for example, 213Bi. A cytotoxin or cytotoxic agent includes any agent that is detrimental to cells. Examples include paclitaxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis- dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine).

The conjugates of the invention can be used for modifying a given biological response, the therapeutic agent or drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, a-interferon, ß-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, an

apoptotic agent, e.g., TNF-alpha, TNF-beta, AIM I (See, International Publication No. WO 97/33899), AIM II (See, International Publication No. WO 97/34911), Fas Ligand (Takahashi et al., Int. Immunol., 6:1567-1574 (1994)), VEGI (See, International Publication No. WO 99/23105), a thrombotic agent or an anti- angiogenic agent, e.g., angiostatin or endostatin; or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 ("IL-2"), interleukin-6 ("IL-6"), granulocyte macrophage colony stimulating factor ("GM-CSF"), granulocyte colony stimulating factor ("G-CSF"), or other growth factors.

Antibodies may also be attached to solid supports, which are particularly useful for immunoassays or purification of the target antigen. Such solid supports include, but are not limited to, glass, cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene.

Techniques for conjugating such therapeutic moiety to antibodies are well known. See, for example, Arnon et al., "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy", in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds.), pp. 243-56 (Alan R. Liss, Inc. 1985); Hellstrom et al., "Antibodies For Drug Delivery", in Controlled Drug Delivery (2nd Ed.), Robinson et al. (eds.), pp. 623-53 (Marcel Dekker, Inc. 1987); Thorpe, "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review", in Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera et al. (eds.), pp. 475-506 (1985); "Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy", in Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al. (eds.), pp. 303-16 (Academic Press 1985), and Thorpe et al., "The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates", Immunol. Rev. 62:119-58 (1982).

Alternatively, an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Patent No. 4,676,980, which is incorporated herein by reference in its entirety.

An antibody, with or without a therapeutic moiety conjugated to it, administered alone or in combination with cytotoxic factor(s) and/or cytokine(s) can be used as a therapeutic.

Immunophenotyping

5

10

15

20

25

30

35

The antibodies of the invention may be utilized for immunophenotyping of cell lines and biological samples. Translation products of the gene of the present invention may be useful as cell-specific markers, or more specifically as cellular markers that are differentially expressed at various stages of differentiation and/or maturation of particular cell types. Monoclonal antibodies directed against a specific epitope, or combination of epitopes, will allow for the screening of cellular populations expressing the marker. Various techniques can be utilized using monoclonal antibodies to screen for cellular populations expressing the marker(s), and include magnetic separation using antibody-coated magnetic beads, "panning" with antibody attached to a solid

matrix (i.e., plate), and flow cytometry (See, e.g., U.S. Patent 5,985,660; and Morrison et al., Cell, 96:737-49 (1999)).

These techniques allow for the screening of particular populations of cells, such as might be found with hematological malignancies (i.e. minimal residual disease (MRD) in acute leukemic patients) and "non-self" cells in transplantations to prevent Graft-versus-Host Disease (GVHD). Alternatively, these techniques allow for the screening of hematopoietic stem and progenitor cells capable of undergoing proliferation and/or differentiation, as might be found in human umbilical cord blood.

Assays For Antibody Binding

5

10

15

20

25

30

35

The antibodies of the invention may be assayed for immunospecific binding by any method known in the art. The immunoassays which can be used include but are not limited to competitive and non-competitive assay systems using techniques such as western blots, radioimmunoassays, ELISA (enzyme linked immunosorbent assay), "sandwich" immunoassays, immunoprecipitation assays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement-fixation assays, immunoradiometric assays, fluorescent immunoassays, and protein A immunoassays, to name but a few. Such assays are routine and well known in the art (see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York, which is incorporated by reference herein in its entirety). Exemplary immunoassays are described briefly below (but are not intended by way of limitation).

Immunoprecipitation protocols generally comprise lysing a population of cells in a lysis buffer such as RIPA buffer (1% NP-40 or Triton X- 100, 1% sodium deoxycholate, 0.1% SDS, 0.15 M NaCl, 0.01 M sodium phosphate at pH 7.2, 1% Trasylol) supplemented with protein phosphatase and/or protease inhibitors (e.g., EDTA, PMSF, aprotinin, sodium vanadate), adding the antibody of interest to the cell lysate, incubating for a period of time (e.g., 1-4 hours) at 4° C, adding protein A and/or protein G sepharose beads to the cell lysate, incubating for about an hour or more at 4° C, washing the beads in lysis buffer and resuspending the beads in SDS/sample buffer. The ability of the antibody of interest to immunoprecipitate a particular antigen can be assessed by, e.g., western blot analysis. One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the binding of the antibody to an antigen and decrease the background (e.g., pre-clearing the cell lysate with sepharose beads). For further discussion regarding immunoprecipitation protocols see, e.g., Ausubel et al., eds., (1994), Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York, section 10.16.1.

Western blot analysis generally comprises preparing protein samples, electrophoresis of the protein samples in a polyacrylamide gel (e.g., 8%- 20% SDS-PAGE depending on the molecular weight of the antigen), transferring the protein sample from the polyacrylamide gel to a

membrane such as nitrocellulose, PVDF or nylon, blocking the membrane in blocking solution (e.g., PBS with 3% BSA or non-fat milk), washing the membrane in washing buffer (e.g., PBS-Tween 20), blocking the membrane with primary antibody (the antibody of interest) diluted in blocking buffer, washing the membrane in washing buffer, blocking the membrane with a secondary antibody (which recognizes the primary antibody, e.g., an anti-human antibody) conjugated to an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase) or radioactive molecule (e.g., 32P or 125I) diluted in blocking buffer, washing the membrane in wash buffer, and detecting the presence of the antigen. One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the signal detected and to reduce the background noise. For further discussion regarding western blot protocols see, e.g., Ausubel et al, eds, (1994), Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York, section 10.8.1.

ELISAs comprise preparing antigen, coating the well of a 96 well microtiter plate with the antigen, adding the antibody of interest conjugated to a detectable compound such as an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase) to the well and incubating for a period of time, and detecting the presence of the antigen. In ELISAs the antibody of interest does not have to be conjugated to a detectable compound; instead, a second antibody (which recognizes the antibody of interest) conjugated to a detectable compound may be added to the well. Further, instead of coating the well with the antigen, the antibody may be coated to the well. In this case, a second antibody conjugated to a detectable compound may be added following the addition of the antigen of interest to the coated well. One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the signal detected as well as other variations of ELISAs known in the art. For further discussion regarding ELISAs see, e.g., Ausubel et al, eds, (1994), Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York, section 11.2.1.

The binding affinity of an antibody to an antigen and the off-rate of an antibody-antigen interaction can be determined by competitive binding assays. One example of a competitive binding assay is a radioimmunoassay comprising the incubation of labeled antigen (e.g., 3H or 125I) with the antibody of interest in the presence of increasing amounts of unlabeled antigen, and the detection of the antibody bound to the labeled antigen. The affinity of the antibody of interest for a particular antigen and the binding off-rates can be determined from the data by scatchard plot analysis. Competition with a second antibody can also be determined using radioimmunoassays. In this case, the antigen is incubated with antibody of interest conjugated to a labeled compound (e.g., 3H or 125I) in the presence of increasing amounts of an unlabeled second antibody.

Antibodies of the invention may be characterized using immunocytochemisty methods on cells (e.g., mammalian cells, such as CHO cells) transfected with a vector enabling the

expression of an antigen or with vector alone using techniques commonly known in the art. Antibodies that bind antigen transfected cells, but not vector-only transfected cells, are antigen specific.

5 Therapeutic Uses

10

15

20

25

30

35

Table 1D also provides information regarding biological activities and preferred therapeutic uses (i.e. see, "Preferred Indications" column) for polynucleotides and polypeptides of the invention (including antibodies, agonists, and/or antagonists thereof). Table 1D also provides information regarding assays which may be used to test polynucleotides and polypeptides of the invention (including antibodies, agonists, and/or antagonists thereof) for the corresponding biological activities. The first column ("Gene No.") provides the gene number in the application for each clone identifier. The second column ("cDNA ATCC Deposit No:Z") provides the unique clone identifier for each clone as previously described and indicated in Table 1A, Table 1B, and Table 1C. The third column ("AA SEQ ID NO:Y") indicates the Sequence Listing SEQ ID Number for polypeptide sequences encoded by the corresponding cDNA clones (also as indicated in Table 1A, Table 1B, and Table 2). The fourth column ("Biological Activity") indicates a biological activity corresponding to the indicated polypeptides (or polynucleotides encoding said The fifth column ("Exemplary Activity Assay") further describes the polypeptides). corresponding biological activity and also provides information pertaining to the various types of assays which may be performed to test, demonstrate, or quantify the corresponding biological activity.

The present invention is further directed to antibody-based therapies which involve administering antibodies of the invention to an animal, preferably a mammal, and most preferably a human, patient for treating one or more of the disclosed diseases, disorders, or conditions. Therapeutic compounds of the invention include, but are not limited to, antibodies of the invention (including fragments, analogs and derivatives thereof as described herein) and nucleic acids encoding antibodies of the invention (including fragments, analogs and derivatives thereof and anti-idiotypic antibodies as described herein). The antibodies of the invention can be used to detect, prevent, diagnose, prognosticate, treat, and/or ameliorate diseases, disorders or conditions associated with aberrant expression and/or activity of a polypeptide of the invention, including, but not limited to, cardiovascular diseases and disorders. The treatment and/or prevention of cardiovascular diseases and disorders associated with aberrant expression and/or activity of a polypeptide of the invention includes, but is not limited to, alleviating symptoms associated with cardiovascular diseases and disorders. Antibodies of the invention may be provided in pharmaceutically acceptable compositions as known in the art or as described herein.

In a specific and preferred embodiment, the present invention is directed to antibodybased therapies which involve administering antibodies of the invention to an animal, preferably a mammal, and most preferably a human, patient for treating cardiovascular diseases and disorders. Therapeutic compounds of the invention include, but are not limited to, antibodies of the invention (e.g., antibodies directed to the full length protein expressed on the cell surface of a mammalian cell; antibodies directed to an epitope of a polypeptide of the invention (such as, for example, a predicted linear epitope shown in Table 1B; or a conformational epitope, including fragments, analogs and derivatives thereof as described herein) and nucleic acids encoding antibodies of the invention (including fragments, analogs and derivatives thereof and anti-idiotypic antibodies as described herein). The antibodies of the invention can be used to detect, diagnose, prevent, treat, prognosticate, and/or ameliorate cardiovascular diseases, disorders or conditions associated with aberrant expression and/or activity of a polypeptide of the invention. The treatment and/or prevention of cardiovascular diseases, disorders, or conditions associated with aberrant expression and/or activity of a polypeptide of the invention includes, but is not limited to, alleviating symptoms associated with those diseases, disorders or conditions. Antibodies of the invention may be provided in pharmaceutically acceptable compositions as known in the art or as described herein.

A summary of the ways in which the antibodies of the present invention may be used therapeutically includes binding polynucleotides or polypeptides of the present invention locally or systemically in the body or by direct cytotoxicity of the antibody, e.g. as mediated by complement (CDC) or by effector cells (ADCC). Some of these approaches are described in more detail below. Armed with the teachings provided herein, one of ordinary skill in the art will know how to use the antibodies of the present invention for diagnostic, monitoring or therapeutic purposes without undue experimentation.

The antibodies of this invention may be advantageously utilized in combination with other monoclonal or chimeric antibodies, or with lymphokines or hematopoietic growth factors (such as, e.g., IL-2, IL-3 and IL-7), for example, which serve to increase the number or activity of effector cells which interact with the antibodies.

The antibodies of the invention may be administered alone or in combination with other types of treatments (e.g., radiation therapy, chemotherapy, hormonal therapy, immunotherapy and anti-tumor agents). Generally, administration of products of a species origin or species reactivity (in the case of antibodies) that is the same species as that of the patient is preferred. Thus, in a preferred embodiment, human antibodies, fragments derivatives, analogs, or nucleic acids, are administered to a human patient for therapy or prophylaxis.

It is preferred to use high affinity and/or potent *in vivo* inhibiting and/or neutralizing antibodies against polypeptides or polynucleotides of the present invention, fragments or regions thereof, for both immunoassays directed to and therapy of cardiovascular diseases and disorders related to polynucleotides or polypeptides, including fragments thereof, of the present invention. Such antibodies, fragments, or regions, will preferably have an affinity for polynucleotides or

polypeptides of the invention, including fragments thereof. Preferred binding affinities include those with a dissociation constant or Kd less than 5 X 10^{-2} M, 10^{-2} M, 5 X 10^{-3} M, 10^{-3} M, 5 X 10^{-4} M, 10^{-4} M, 5 X 10^{-5} M, 10^{-5} M, 5 X 10^{-6} M, 10^{-6} M, 5 X 10^{-7} M, 10^{-7} M, 5 X 10^{-8} M, 10^{-8} M, 5 X 10^{-9} M, 10^{-9} M, 5 X 10^{-10} M, 10^{-10} M, 5 X 10^{-11} M, 10^{-11} M, 5 X 10^{-12} M, 10^{-12} M, 5 X 10^{-13} M, 10^{-13} M, 5 X 10^{-14} M, 10^{-14} M, 5 X 10^{-15} M, and 10^{-15} M.

Gene Therapy

5

10

15

20

25

30

35

In a specific embodiment, nucleic acids comprising sequences encoding antibodies or functional derivatives thereof, are administered to treat, inhibit or prevent a cardiovascular disease or disorder associated with aberrant expression and/or activity of a polypeptide of the invention, by way of gene therapy. Gene therapy refers to therapy performed by the administration to a subject of an expressed or expressible nucleic acid. In this embodiment of the invention, the nucleic acids produce their encoded protein that mediates a therapeutic effect.

Any of the methods for gene therapy available in the art can be used according to the present invention. Exemplary methods are described below.

For general reviews of the methods of gene therapy, see Goldspiel et al., Clinical Pharmacy 12:488-505 (1993); Wu and Wu, Biotherapy 3:87-95 (1991); Tolstoshev, Ann. Rev. Pharmacol. Toxicol. 32:573-596 (1993); Mulligan, Science 260:926-932 (1993); and Morgan and Anderson, Ann. Rev. Biochem. 62:191-217 (1993); May, TIBTECH 11(5):155-215 (1993). Methods commonly known in the art of recombinant DNA technology which can be used are described in Ausubel et al. (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, NY (1993); and Kriegler, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY (1990).

In a preferred embodiment, the compound comprises nucleic acid sequences encoding an antibody, said nucleic acid sequences being part of expression vectors that express the antibody or fragments or chimeric proteins or heavy or light chains thereof in a suitable host. In particular, such nucleic acid sequences have promoters operably linked to the antibody coding region, said promoter being inducible or constitutive, and, optionally, tissue-specific. In another particular embodiment, nucleic acid molecules are used in which the antibody coding sequences and any other desired sequences are flanked by regions that promote homologous recombination at a desired site in the genome, thus providing for intrachromosomal expression of the antibody encoding nucleic acids (Koller and Smithies, Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); Zijlstra et al., Nature 342:435-438 (1989). In specific embodiments, the expressed antibody molecule is a single chain antibody; alternatively, the nucleic acid sequences include sequences encoding both the heavy and light chains, or fragments thereof, of the antibody.

Delivery of the nucleic acids into a patient may be either direct, in which case the patient is directly exposed to the nucleic acid or nucleic acid- carrying vectors, or indirect, in

which case, cells are first transformed with the nucleic acids in vitro, then transplanted into the patient. These two approaches are known, respectively, as *in vivo* or ex vivo gene therapy.

5

10

15

20

25

30

35

In a specific embodiment, the nucleic acid sequences are directly administered in vivo, where it is expressed to produce the encoded product. This can be accomplished by any of numerous methods known in the art, e.g., by constructing them as part of an appropriate nucleic acid expression vector and administering it so that they become intracellular, e.g., by infection using defective or attenuated retrovirals or other viral vectors (see U.S. Patent No. 4,980,286), or by direct injection of naked DNA, or by use of microparticle bombardment (e.g., a gene gun; Biolistic, Dupont), or coating with lipids or cell-surface receptors or transfecting agents, encapsulation in liposomes, microparticles, or microcapsules, or by administering them in linkage to a peptide which is known to enter the nucleus, by administering it in linkage to a ligand subject to receptor-mediated endocytosis (see, e.g., Wu and Wu, J. Biol. Chem. 262:4429-4432 (1987)) (which can be used to target cell types specifically expressing the receptors), etc. In another embodiment, nucleic acid-ligand complexes can be formed in which the ligand comprises a fusogenic viral peptide to disrupt endosomes, allowing the nucleic acid to avoid lysosomal degradation. In yet another embodiment, the nucleic acid can be targeted in vivo for cell specific uptake and expression, by targeting a specific receptor (see, e.g., PCT Publications WO 92/06180; WO 92/22635; WO92/20316; WO93/14188, WO 93/20221). Alternatively, the nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination (Koller and Smithies, Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); Zijlstra et al., Nature 342:435-438 (1989)).

In a specific embodiment, viral vectors that contains nucleic acid sequences encoding an antibody of the invention are used. For example, a retroviral vector can be used (see Miller et al., Meth. Enzymol. 217:581-599 (1993)). These retroviral vectors contain the components necessary for the correct packaging of the viral genome and integration into the host cell DNA. The nucleic acid sequences encoding the antibody to be used in gene therapy are cloned into one or more vectors, which facilitates delivery of the gene into a patient. More detail about retroviral vectors can be found in Boesen et al., Biotherapy 6:291-302 (1994), which describes the use of a retroviral vector to deliver the mdrl gene to hematopoietic stem cells in order to make the stem cells more resistant to chemotherapy. Other references illustrating the use of retroviral vectors in gene therapy are: Clowes et al., J. Clin. Invest. 93:644-651 (1994); Kiem et al., Blood 83:1467-1473 (1994); Salmons and Gunzberg, Human Gene Therapy 4:129-141 (1993); and Grossman and Wilson, Curr. Opin. in Genetics and Devel. 3:110-114 (1993).

Adenoviruses are other viral vectors that can be used in gene therapy. Adenoviruses are especially attractive vehicles for delivering genes to respiratory epithelia. Adenoviruses naturally infect respiratory epithelia where they cause a mild disease. Other targets for adenovirus-based delivery systems are liver, the central nervous system, endothelial cells, and

muscle. Adenoviruses have the advantage of being capable of infecting non-dividing cells. Kozarsky and Wilson, Current Opinion in Genetics and Development 3:499-503 (1993) present a review of adenovirus-based gene therapy. Bout et al., Human Gene Therapy 5:3-10 (1994) demonstrated the use of adenovirus vectors to transfer genes to the respiratory epithelia of rhesus monkeys. Other instances of the use of adenoviruses in gene therapy can be found in Rosenfeld et al., Science 252:431-434 (1991); Rosenfeld et al., Cell 68:143- 155 (1992); Mastrangeli et al., J. Clin. Invest. 91:225-234 (1993); PCT Publication WO94/12649; and Wang, et al., Gene Therapy 2:775-783 (1995). In a preferred embodiment, adenovirus vectors are used.

5

10

15

20

25

30

35

Adeno-associated virus (AAV) has also been proposed for use in gene therapy (Walsh et al., Proc. Soc. Exp. Biol. Med. 204:289-300 (1993); U.S. Patent No. 5,436,146).

Another approach to gene therapy involves transferring a gene to cells in tissue culture by such methods as electroporation, lipofection, calcium phosphate mediated transfection, or viral infection. Usually, the method of transfer includes the transfer of a selectable marker to the cells. The cells are then placed under selection to isolate those cells that have taken up and are expressing the transferred gene. Those cells are then delivered to a patient.

In this embodiment, the nucleic acid is introduced into a cell prior to administration *in vivo* of the resulting recombinant cell. Such introduction can be carried out by any method known in the art, including but not limited to transfection, electroporation, microinjection, infection with a viral or bacteriophage vector containing the nucleic acid sequences, cell fusion, chromosome-mediated gene transfer, microcell-mediated gene transfer, spheroplast fusion, etc. Numerous techniques are known in the art for the introduction of foreign genes into cells (see, e.g., Loeffler and Behr, Meth. Enzymol. 217:599-618 (1993); Cohen et al., Meth. Enzymol. 217:618-644 (1993); Cline, Pharmac. Ther. 29:69-92m (1985) and may be used in accordance with the present invention, provided that the necessary developmental and physiological functions of the recipient cells are not disrupted. The technique should provide for the stable transfer of the nucleic acid to the cell, so that the nucleic acid is expressible by the cell and preferably heritable and expressible by its cell progeny.

The resulting recombinant cells can be delivered to a patient by various methods known in the art. Recombinant blood cells (e.g., hematopoietic stem or progenitor cells) are preferably administered intravenously. The amount of cells envisioned for use depends on the desired effect, patient state, etc., and can be determined by one skilled in the art.

Cells into which a nucleic acid can be introduced for purposes of gene therapy encompass any desired, available cell type, and include but are not limited to epithelial cells, endothelial cells, keratinocytes, fibroblasts, muscle cells, hepatocytes; blood cells such as T lymphocytes, B lymphocytes, monocytes, macrophages, neutrophils, eosinophils, megakaryocytes, granulocytes; various stem or progenitor cells, in particular hematopoietic stem

or progenitor cells, e.g., as obtained from bone marrow, umbilical cord blood, peripheral blood, fetal liver, etc.

In a preferred embodiment, the cell used for gene therapy is autologous to the patient.

In an embodiment in which recombinant cells are used in gene therapy, nucleic acid sequences encoding an antibody are introduced into the cells such that they are expressible by the cells or their progeny, and the recombinant cells are then administered *in vivo* for therapeutic effect. In a specific embodiment, stem or progenitor cells are used. Any stem and/or progenitor cells which can be isolated and maintained in vitro can potentially be used in accordance with this embodiment of the present invention (see e.g. PCT Publication WO 94/08598; Stemple and Anderson, Cell 71:973-985 (1992); Rheinwald, Meth. Cell Bio. 21A:229 (1980); and Pittelkow and Scott, Mayo Clinic Proc. 61:771 (1986)).

In a specific embodiment, the nucleic acid to be introduced for purposes of gene therapy comprises an inducible promoter operably linked to the coding region, such that expression of the nucleic acid is controllable by the presence or absence of an appropriate inducer of transcription.

Demonstration of Therapeutic or Prophylactic Activity

5

10

15

20

25

30

35

The compounds or pharmaceutical compositions of the invention are preferably tested in vitro, and then *in vivo* for the desired therapeutic or prophylactic activity, prior to use in humans. For example, in vitro assays to demonstrate the therapeutic or prophylactic utility of a compound or pharmaceutical composition include, the effect of a compound on a cell line or a patient tissue sample. The effect of the compound or composition on the cell line and/or tissue sample can be determined utilizing techniques known to those of skill in the art including, but not limited to, rosette formation assays and cell lysis assays. In accordance with the invention, in vitro assays which can be used to determine whether administration of a specific compound is indicated, include in vitro cell culture assays in which a patient tissue sample is grown in culture, and exposed to or otherwise administered a compound, and the effect of such compound upon the tissue sample is observed.

Therapeutic/Prophylactic Administration and Composition

The invention provides methods of treatment, inhibition and prophylaxis by administration to a subject of an effective amount of a compound or pharmaceutical composition of the invention, preferably a polypeptide or antibody of the invention. In a preferred embodiment, the compound is substantially purified (e.g., substantially free from substances that limit its effect or produce undesired side-effects). The subject is preferably an animal, including but not limited to animals such as cows, pigs, horses, chickens, cats, dogs, etc., and is preferably a mammal, and most preferably human.

Formulations and methods of administration that can be employed when the compound comprises a nucleic acid or an immunoglobulin are described above; additional appropriate formulations and routes of administration can be selected from among those described herein below.

5

10

15

20

25

30

35

Various delivery systems are known and can be used to administer a compound of the invention, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the compound, receptor-mediated endocytosis (see, e.g., Wu and Wu, J. Biol. Chem. 262:4429-4432 (1987)), construction of a nucleic acid as part of a retroviral or other vector, etc. Methods of introduction include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The compounds or compositions may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local. In addition, it may be desirable to introduce the pharmaceutical compounds or compositions of the invention into the central nervous system by any suitable route, including intraventricular and intrathecal injection; intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir. Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.

In a specific embodiment, it may be desirable to administer the pharmaceutical compounds or compositions of the invention locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, e.g., in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. Preferably, when administering a protein, including an antibody, of the invention, care must be taken to use materials to which the protein does not absorb.

In another embodiment, the compound or composition can be delivered in a vesicle, in particular a liposome (see Langer, Science 249:1527-1533 (1990); Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 353-365 (1989); Lopez-Berestein, ibid., pp. 317-327; see generally ibid.)

In yet another embodiment, the compound or composition can be delivered in a controlled release system. In one embodiment, a pump may be used (see Langer, *supra*; Sefton, CRC Crit. Ref. Biomed. Eng. 14:201 (1987); Buchwald et al., Surgery 88:507 (1980); Saudek et al., N. Engl. J. Med. 321:574 (1989)). In another embodiment, polymeric materials can be used (see Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Florida (1974); Controlled Drug Bioavailability, Drug Product Design and Performance,

Smolen and Ball (eds.), Wiley, New York (1984); Ranger and Peppas, J., Macromol. Sci. Rev. Macromol. Chem. 23:61 (1983); see also Levy et al., Science 228:190 (1985); During et al., Ann. Neurol. 25:351 (1989); Howard et al., J.Neurosurg. 71:105 (1989)). In yet another embodiment, a controlled release system can be placed in proximity of the therapeutic target, e.g., the brain, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, *supra*, vol. 2, pp. 115-138 (1984)).

5

10

15

20

25

30

35

Other controlled release systems are discussed in the review by Langer (Science 249:1527-1533 (1990)).

In a specific embodiment where the compound of the invention is a nucleic acid encoding a protein, the nucleic acid can be administered *in vivo* to promote expression of its encoded protein, by constructing it as part of an appropriate nucleic acid expression vector and administering it so that it becomes intracellular, e.g., by use of a retroviral vector (see U.S. Patent No. 4,980,286), or by direct injection, or by use of microparticle bombardment (e.g., a gene gun; Biolistic, Dupont), or coating with lipids or cell-surface receptors or transfecting agents, or by administering it in linkage to a homeobox- like peptide which is known to enter the nucleus (see e.g., Joliot et al., Proc. Natl. Acad. Sci. USA 88:1864-1868 (1991)), etc. Alternatively, a nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination.

The present invention also provides pharmaceutical compositions. Such compositions comprise a therapeutically effective amount of a compound, and a pharmaceutically acceptable carrier. In a specific embodiment, the term "pharmaceutically acceptable" means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. The term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E.W. Martin. Such compositions will contain a therapeutically effective amount of the compound, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient. The formulation should suit the mode of administration.

In a preferred embodiment, the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.

The compounds of the invention can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.

The amount of the compound of the invention which will be effective in the treatment, inhibition and prevention of a disease or disorder associated with aberrant expression and/or activity of a polypeptide of the invention can be determined by standard clinical techniques. In addition, *in vitro* assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each patient's circumstances. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.

For antibodies, the dosage administered to a patient is typically 0.1 mg/kg to 100 mg/kg of the patient's body weight. Preferably, the dosage administered to a patient is between 0.1 mg/kg and 20 mg/kg of the patient's body weight, more preferably 1 mg/kg to 10 mg/kg of the patient's body weight. Generally, human antibodies have a longer half-life within the human body than antibodies from other species due to the immune response to the foreign polypeptides. Thus, lower dosages of human antibodies and less frequent administration is often possible. Further, the dosage and frequency of administration of antibodies of the invention may be reduced

by enhancing uptake and tissue penetration (e.g., into the brain) of the antibodies by modifications such as, for example, lipidation.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

Diagnosis and Imaging

5

10

15

20

25

30

35

Labeled antibodies, and derivatives and analogs thereof, which specifically bind to a polypeptide of interest can be used for diagnostic purposes to detect, diagnose, prognosticate, or monitor cardiovascular diseases, disorders, and/or conditions associated with the aberrant expression and/or activity of a polypeptide of the invention. The invention provides for the detection of aberrant expression of a polypeptide of interest, comprising (a) assaying the expression of the polypeptide of interest in cells or body fluid of an individual using one or more antibodies specific to the polypeptide interest and (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of aberrant expression.

The invention provides a diagnostic assay for diagnosing a cardiovascular disease or disorder, comprising (a) assaying the expression of the polypeptide of interest in cells or body fluid of an individual using one or more antibodies specific to the polypeptide interest and (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of a particular cardiovascular disease or disorder. With respect to cancers of the cardiovascular system, the presence of a relatively high amount of transcript in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer of the cardiovascular system.

Antibodies of the invention can be used to assay protein levels in a biological sample using classical immunohistological methods known to those of skill in the art (e.g., see Jalkanen et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen et al., J. Cell. Biol. 105:3087-3096 (1987)). Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose

oxidase; radioisotopes, such as iodine (125I, 121I), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and technetium (99Tc); luminescent labels, such as luminol; and fluorescent labels, such as fluorescein and rhodamine, and biotin.

5

10

15

20

25

30

35

One facet of the invention is the detection and diagnosis of a disease or disorder associated with aberrant expression of a polypeptide of interest in an animal, preferably a mammal and most preferably a human. In one embodiment, diagnosis comprises: a) administering (for example, parenterally, subcutaneously, or intraperitoneally) to a subject an effective amount of a labeled molecule which specifically binds to the polypeptide of interest; b) waiting for a time interval following the administering for permitting the labeled molecule to preferentially concentrate at sites in the subject where the polypeptide is expressed (and for unbound labeled molecule to be cleared to background level); c) determining background level; and d) detecting the labeled molecule in the subject, such that detection of labeled molecule above the background level indicates that the subject has a particular disease or disorder associated with aberrant expression of the polypeptide of interest. Background level can be determined by various methods including, comparing the amount of labeled molecule detected to a standard value previously determined for a particular system.

It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99mTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain the specific protein. *In vivo* tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982)).

Depending on several variables, including the type of label used and the mode of administration, the time interval following the administration for permitting the labeled molecule to preferentially concentrate at sites in the subject and for unbound labeled molecule to be cleared to background level is 6 to 48 hours or 6 to 24 hours or 6 to 12 hours. In another embodiment the time interval following administration is 5 to 20 days or 5 to 10 days.

In an embodiment, monitoring of the disease or disorder is carried out by repeating the method for diagnosing the disease or disease, for example, one month after initial diagnosis, six months after initial diagnosis, one year after initial diagnosis, etc.

Presence of the labeled molecule can be detected in the patient using methods known in the art for *in vivo* scanning. These methods depend upon the type of label used. Skilled artisans will be able to determine the appropriate method for detecting a particular label. Methods and devices that may be used in the diagnostic methods of the invention include, but are not limited to,

computed tomography (CT), whole body scan such as position emission tomography (PET), magnetic resonance imaging (MRI), and sonography.

In a specific embodiment, the molecule is labeled with a radioisotope and is detected in the patient using a radiation responsive surgical instrument (Thurston et al., U.S. Patent No. 5,441,050). In another embodiment, the molecule is labeled with a fluorescent compound and is detected in the patient using a fluorescence responsive scanning instrument. In another embodiment, the molecule is labeled with a positron emitting metal and is detected in the patent using positron emission-tomography. In yet another embodiment, the molecule is labeled with a paramagnetic label and is detected in a patient using magnetic resonance imaging (MRI).

10

15

20

25

30

35

5

Kits

The present invention provides kits that can be used in the above methods. In one embodiment, a kit comprises an antibody of the invention, preferably a purified antibody, in one or more containers. In a specific embodiment, the kits of the present invention contain a substantially isolated polypeptide comprising an epitope which is specifically immunoreactive with an antibody included in the kit. Preferably, the kits of the present invention further comprise a control antibody which does not react with the polypeptide of interest. In another specific embodiment, the kits of the present invention contain a means for detecting the binding of an antibody to a polypeptide of interest (e.g., the antibody may be conjugated to a detectable substrate such as a fluorescent compound, an enzymatic substrate, a radioactive compound or a luminescent compound, or a second antibody which recognizes the first antibody may be conjugated to a detectable substrate).

In another specific embodiment of the present invention, the kit is a diagnostic kit for use in screening serum containing antibodies specific against proliferative and/or cancerous polynucleotides and polypeptides. Such a kit may include a control antibody that does not react with the polypeptide of interest. Such a kit may include a substantially isolated polypeptide antigen comprising an epitope which is specifically immunoreactive with at least one antipolypeptide antigen antibody. Further, such a kit includes means for detecting the binding of said antibody to the antigen (e.g., the antibody may be conjugated to a fluorescent compound such as fluorescein or rhodamine which can be detected by flow cytometry). In specific embodiments, the kit may include a recombinantly produced or chemically synthesized polypeptide antigen. The polypeptide antigen of the kit may also be attached to a solid support.

In a more specific embodiment the detecting means of the above-described kit includes a solid support to which said polypeptide antigen is attached. Such a kit may also include a non-attached reporter-labeled anti-human antibody. In this embodiment, binding of the antibody to the polypeptide antigen can be detected by binding of the said reporter-labeled antibody.

In an additional embodiment, the invention includes a diagnostic kit for use in screening serum containing antigens of the polypeptide of the invention. The diagnostic kit includes a substantially isolated antibody specifically immunoreactive with polypeptide or polynucleotide antigens, and means for detecting the binding of the polynucleotide or polypeptide antigen to the antibody. In one embodiment, the antibody is attached to a solid support. In a specific embodiment, the antibody may be a monoclonal antibody. The detecting means of the kit may include a second, labeled monoclonal antibody. Alternatively, or in addition, the detecting means may include a labeled, competing antigen.

In one diagnostic configuration, test serum is reacted with a solid phase reagent having a surface-bound antigen obtained by the methods of the present invention. After binding with specific antigen antibody to the reagent and removing unbound serum components by washing, the reagent is reacted with reporter-labeled anti-human antibody to bind reporter to the reagent in proportion to the amount of bound anti-antigen antibody on the solid support. The reagent is again washed to remove unbound labeled antibody, and the amount of reporter associated with the reagent is determined. Typically, the reporter is an enzyme which is detected by incubating the solid phase in the presence of a suitable fluorometric, luminescent or colorimetric substrate (Sigma, St. Louis, MO).

The solid surface reagent in the above assay is prepared by known techniques for attaching protein material to solid support material, such as polymeric beads, dip sticks, 96-well plate or filter material. These attachment methods generally include non-specific adsorption of the protein to the support or covalent attachment of the protein, typically through a free amine group, to a chemically reactive group on the solid support, such as an activated carboxyl, hydroxyl, or aldehyde group. Alternatively, streptavidin coated plates can be used in conjunction with biotinylated antigen(s).

Thus, the invention provides an assay system or kit for carrying out this diagnostic method. The kit generally includes a support with surface-bound recombinant antigens, and a reporter-labeled anti-human antibody for detecting surface-bound anti-antigen antibody.

Uses of the Polynucleotides

5

10

15

20

25

30

35

Each of the polynucleotides identified herein can be used in numerous ways as reagents. The following description should be considered exemplary and utilizes known techniques.

The polynucleotides of the present invention are useful for chromosome identification. There exists an ongoing need to identify new chromosome markers, since few chromosome marking reagents, based on actual sequence data (repeat polymorphisms), are presently available. Each sequence is specifically targeted to and can hybridize with a particular location on an

individual human chromosome, thus each polynucleotide of the present invention can routinely be used as a chromosome marker using techniques known in the art. Table 1B, column 9 provides the chromosome location of some of the polynucleotides of the invention.

Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably at least 15 bp (e.g., 15-25 bp) from the sequences shown in SEQ ID NO:X. Primers can optionally be selected using computer analysis so that primers do not span more than one predicted exon in the genomic DNA. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to SEQ ID NO:X will yield an amplified fragment.

5

10

15

20

25

30

35

Similarly, somatic hybrids provide a rapid method of PCR mapping the polynucleotides to particular chromosomes. Three or more clones can be assigned per day using a single thermal cycler. Moreover, sublocalization of the polynucleotides can be achieved with panels of specific chromosome fragments. Other gene mapping strategies that can be used include in situ hybridization, prescreening with labeled flow-sorted chromosomes, preselection by hybridization to construct chromosome specific-cDNA libraries, and computer mapping techniques (See, e.g., Shuler, Trends Biotechnol 16:456-459 (1998) which is hereby incorporated by reference in its entirety).

Precise chromosomal location of the polynucleotides can also be achieved using fluorescence in situ hybridization (FISH) of a metaphase chromosomal spread. This technique uses polynucleotides as short as 500 or 600 bases; however, polynucleotides 2,000-4,000 bp are preferred. For a review of this technique, see Verma et al., "Human Chromosomes: a Manual of Basic Techniques," Pergamon Press, New York (1988).

For chromosome mapping, the polynucleotides can be used individually (to mark a single chromosome or a single site on that chromosome) or in panels (for marking multiple sites and/or multiple chromosomes).

Thus, the present invention also provides a method for chromosomal localization which involves (a) preparing PCR primers from the polynucleotide sequences in Table 1B and/or Table 2 and SEQ ID NO:X and (b) screening somatic cell hybrids containing individual chromosomes.

The polynucleotides of the present invention would likewise be useful for radiation hybrid mapping, HAPPY mapping, and long range restriction mapping. For a review of these techniques and others known in the art, see, e.g. Dear, "Genome Mapping: A Practical Approach," IRL Press at Oxford University Press, London (1997); Aydin, J. Mol. Med. 77:691-694 (1999); Hacia et al., Mol. Psychiatry 3:483-492 (1998); Herrick et al., Chromosome Res. 7:409-423 (1999); Hamilton et al., Methods Cell Biol. 62:265-280 (2000); and/or Ott, J. Hered. 90:68-70 (1999) each of which is hereby incorporated by reference in its entirety.

Once a polynucleotide has been mapped to a precise chromosomal location, the physical position of the polynucleotide can be used in linkage analysis. Linkage analysis establishes coinheritance between a chromosomal location and presentation of a particular disease. (Disease mapping data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library)). Table 1B provides an OMIM reference identification number of diseases associated with the cytologic band disclosed in Table 1B, as determined using techniques described herein and by reference to Table 5. Assuming 1 megabase mapping resolution and one gene per 20 kb, a cDNA precisely localized to a chromosomal region associated with the disease could be one of 50-500 potential causative genes.

Thus, once coinheritance is established, differences in a polynucleotide of the invention and the corresponding gene between affected and unaffected individuals can be examined. First, visible structural alterations in the chromosomes, such as deletions or translocations, are examined in chromosome spreads or by PCR. If no structural alterations exist, the presence of point mutations are ascertained. Mutations observed in some or all affected individuals, but not in normal individuals, indicates that the mutation may cause the disease. However, complete sequencing of the polypeptide and the corresponding gene from several normal individuals is required to distinguish the mutation from a polymorphism. If a new polymorphism is identified, this polymorphic polypeptide can be used for further linkage analysis.

Furthermore, increased or decreased expression of the gene in affected individuals as compared to unaffected individuals can be assessed using the polynucleotides of the invention. Any of these alterations (altered expression, chromosomal rearrangement, or mutation) can be used as a diagnostic or prognostic marker. Diagnostic and prognostic methods, kits and reagents encompassed by the present invention are briefly described below and more thoroughly elsewhere herein (see e.g., the sections labeled "Antibodies", "Diagnostic Assays", and "Methods for Detecting Diseases").

Thus, the invention also provides a diagnostic method useful during diagnosis of a disorder, involving measuring the expression level of polynucleotides of the present invention in cells or body fluid from an individual and comparing the measured gene expression level with a standard level of polynucleotide expression level, whereby an increase or decrease in the gene expression level compared to the standard is indicative of a disorder. Additional non-limiting examples of diagnostic methods encompassed by the present invention are more thoroughly described elsewhere herein (see, e.g., Example 12).

In still another embodiment, the invention includes a kit for analyzing samples for the presence of proliferative and/or cancerous polynucleotides derived from a test subject. In a general embodiment, the kit includes at least one polynucleotide probe containing a nucleotide sequence that will specifically hybridize with a polynucleotide of the invention and a suitable container. In a

specific embodiment, the kit includes two polynucleotide probes defining an internal region of the polynucleotide of the invention, where each probe has one strand containing a 31'mer-end internal to the region. In a further embodiment, the probes may be useful as primers for polymerase chain reaction amplification.

Where a diagnosis of a related disorder, including, for example, diagnosis of a tumor, has already been made according to conventional methods, the present invention is useful as a prognostic indicator, whereby patients exhibiting enhanced or depressed polynucleotide of the invention expression will experience a worse clinical outcome relative to patients expressing the gene at a level nearer the standard level.

By "measuring the expression level of polynucleotides of the invention" is intended qualitatively or quantitatively measuring or estimating the level of the polypeptide of the invention or the level of the mRNA encoding the polypeptide of the invention in a first biological sample either directly (e.g., by determining or estimating absolute protein level or mRNA level) or relatively (e.g., by comparing to the polypeptide level or mRNA level in a second biological sample). Preferably, the polypeptide level or mRNA level in the first biological sample is measured or estimated and compared to a standard polypeptide level or mRNA level, the standard being taken from a second biological sample obtained from an individual not having the related disorder or being determined by averaging levels from a population of individuals not having a related disorder. As will be appreciated in the art, once a standard polypeptide level or mRNA level is known, it can be used repeatedly as a standard for comparison.

By "biological sample" is intended any biological sample obtained from an individual, body fluid, cell line, tissue culture, or other source which contains polypeptide of the present invention or the corresponding mRNA. As indicated, biological samples include body fluids (such as semen, lymph, vaginal pool, sera, plasma, urine, synovial fluid and spinal fluid) which contain the polypeptide of the present invention, and tissue sources found to express the polypeptide of the present invention. Methods for obtaining tissue biopsies and body fluids from mammals are well known in the art. Where the biological sample is to include mRNA, a tissue biopsy is the preferred source.

The method(s) provided above may preferably be applied in a diagnostic method and/or kits in which polynucleotides and/or polypeptides of the invention are attached to a solid support. In one exemplary method, the support may be a "gene chip" or a "biological chip" as described in US Patents 5,837,832, 5,874,219, and 5,856,174. Further, such a gene chip with polynucleotides of the invention attached may be used to identify polymorphisms between the isolated polynucleotide sequences of the invention, with polynucleotides isolated from a test subject. The knowledge of such polymorphisms (i.e. their location, as well as, their existence) would be beneficial in identifying disease loci for many disorders, such as for example, in neural disorders, immune system disorders, muscular disorders, reproductive disorders, gastrointestinal

disorders, pulmonary disorders, digestive disorders, metabolic disorders, cardiovascular disorders, renal disorders, proliferative disorders, and/or cancerous diseases and conditions. Such a method is described in US Patents 5,858,659 and 5,856,104. The US Patents referenced *supra* are hereby incorporated by reference in their entirety herein.

5

10

15

20

25

30

35

The present invention encompasses polynucleotides of the present invention that are chemically synthesized, or reproduced as peptide nucleic acids (PNA), or according to other methods known in the art. The use of PNAs would serve as the preferred form if the polynucleotides of the invention are incorporated onto a solid support, or gene chip. For the purposes of the present invention, a peptide nucleic acid (PNA) is a polyamide type of DNA analog and the monomeric units for adenine, guanine, thymine and cytosine are available commercially (Perceptive Biosystems). Certain components of DNA, such as phosphorus, phosphorus oxides, or deoxyribose derivatives, are not present in PNAs. As disclosed by Nielsen et al., Science 254, 1497 (1991); and Egholm et al., Nature 365, 666 (1993), PNAs bind specifically and tightly to complementary DNA strands and are not degraded by nucleases. In fact, PNA binds more strongly to DNA than DNA itself does. This is probably because there is no electrostatic repulsion between the two strands, and also the polyamide backbone is more flexible. Because of this, PNA/DNA duplexes bind under a wider range of stringency conditions than DNA/DNA duplexes, making it easier to perform multiplex hybridization. Smaller probes can be used than with DNA due to the strong binding. In addition, it is more likely that single base mismatches can be determined with PNA/DNA hybridization because a single mismatch in a PNA/DNA 15-mer lowers the melting point (T.sub.m) by 8°-20° C, vs. 4°-16° C for the DNA/DNA 15-mer duplex. Also, the absence of charge groups in PNA means that hybridization can be done at low ionic strengths and reduce possible interference by salt during the analysis.

The compounds of the present invention have uses which include, but are not limited to, detecting cancer in mammals. In particular the invention is useful during diagnosis of pathological cell proliferative neoplasias which include, but are not limited to: acute myelogenous leukemias including acute monocytic leukemia, acute myeloblastic leukemia, acute promyelocytic leukemia, acute myelomonocytic leukemia, acute erythroleukemia, acute megakaryocytic leukemia, and acute undifferentiated leukemia, etc.; and chronic myelogenous leukemias including chronic myelomonocytic leukemia, chronic granulocytic leukemia, etc. Preferred mammals include monkeys, apes, cats, dogs, cows, pigs, horses, rabbits and humans. Particularly preferred are humans.

Pathological cell proliferative disorders are often associated with inappropriate activation of proto-oncogenes. (Gelmann, E. P. et al., "The Etiology of Acute Leukemia: Molecular Genetics and Viral Oncology," in Neoplastic Diseases of the Blood, Vol 1., Wiernik, P. H. et al. eds., 161-182 (1985)). Neoplasias are now believed to result from the qualitative alteration of a normal cellular gene product, or from the quantitative modification of gene

expression by insertion into the chromosome of a viral sequence, by chromosomal translocation of a gene to a more actively transcribed region, or by some other mechanism. (Gelmann et al., supra) It is likely that mutated or altered expression of specific genes is involved in the pathogenesis of some leukemias, among other tissues and cell types. (Gelmann et al., supra) Indeed, the human counterparts of the oncogenes involved in some animal neoplasias have been amplified or translocated in some cases of human leukemia and carcinoma. (Gelmann et al., supra)

5

10

15

20

25

30

35

For example, c-myc expression is highly amplified in the non-lymphocytic leukemia cell line HL-60. When HL-60 cells are chemically induced to stop proliferation, the level of c-myc is found to be downregulated. (International Publication Number WO 91/15580). However, it has been shown that exposure of HL-60 cells to a DNA construct that is complementary to the 5' end of c-myc or c-myb blocks translation of the corresponding mRNAs which downregulates expression of the c-myc or c-myb proteins and causes arrest of cell proliferation and differentiation of the treated cells. (International Publication Number WO 91/15580; Wickstrom et al., Proc. Natl. Acad. Sci. 85:1028 (1988); Anfossi et al., Proc. Natl. Acad. Sci. 86:3379 (1989)). However, the skilled artisan would appreciate the present invention's usefulness is not be limited to treatment, prevention, and/or prognosis of proliferative disorders of cells and tissues of hematopoietic origin, in light of the numerous cells and cell types of varying origins which are known to exhibit proliferative phenotypes.

In addition to the foregoing, a polynucleotide of the present invention can be used to control gene expression through triple helix formation or through antisense DNA or RNA. Antisense techniques are discussed, for example, in Okano, J. Neurochem. 56: 560 (1991); "Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988). Triple helix formation is discussed in, for instance Lee et al., Nucleic Acids Research 6: 3073 (1979); Cooney et al., Science 241: 456 (1988); and Dervan et al., Science 251: 1360 (1991). Both methods rely on binding of the polynucleotide to a complementary DNA or RNA. For these techniques, preferred polynucleotides are usually oligonucleotides 20 to 40 bases in length and complementary to either the region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxy-nucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. The oligonucleotide described above can also be delivered to cells such that the antisense RNA or DNA may be expressed in vivo to inhibit production of polypeptide of the present invention antigens. Both techniques are effective in model systems, and the information disclosed herein can be used to design antisense or triple helix polynucleotides in an effort to treat disease, and in particular, for the treatment of proliferative diseases and/or conditions. Non-limiting antisense and

triple helix methods encompassed by the present invention are more thoroughly described elsewhere herein (see, e.g., the section labeled "Antisense and Ribozyme (Antagonists)").

Polynucleotides of the present invention are also useful in gene therapy. One goal of gene therapy is to insert a normal gene into an organism having a defective gene, in an effort to correct the genetic defect. The polynucleotides disclosed in the present invention offer a means of targeting such genetic defects in a highly accurate manner. Another goal is to insert a new gene that was not present in the host genome, thereby producing a new trait in the host cell. Additional non-limiting examples of gene therapy methods encompassed by the present invention are more thoroughly described elsewhere herein (see, e.g., the sections labeled "Gene Therapy Methods", and Examples 16, 17 and 18).

5

10

15

20

25

30

35

The polynucleotides are also useful for identifying individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identifying personnel. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The polynucleotides of the present invention can be used as additional DNA markers for RFLP.

The polynucleotides of the present invention can also be used as an alternative to RFLP, by determining the actual base-by-base DNA sequence of selected portions of an individual's genome. These sequences can be used to prepare PCR primers for amplifying and isolating such selected DNA, which can then be sequenced. Using this technique, individuals can be identified because each individual will have a unique set of DNA sequences. Once an unique ID database is established for an individual, positive identification of that individual, living or dead, can be made from extremely small tissue samples.

Forensic biology also benefits from using DNA-based identification techniques as disclosed herein. DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, semen, synovial fluid, amniotic fluid, breast milk, lymph, pulmonary sputum or surfactant, urine, fecal matter, etc., can be amplified using PCR. In one prior art technique, gene sequences amplified from polymorphic loci, such as DQa class II HLA gene, are used in forensic biology to identify individuals. (Erlich, H., PCR Technology, Freeman and Co. (1992)). Once these specific polymorphic loci are amplified, they are digested with one or more restriction enzymes, yielding an identifying set of bands on a Southern blot probed with DNA corresponding to the DQa class II HLA gene. Similarly, polynucleotides of the present invention can be used as polymorphic markers for forensic purposes.

There is also a need for reagents capable of identifying the source of a particular tissue. Such need arises, for example, in forensics when presented with tissue of unknown origin.

Appropriate reagents can comprise, for example, DNA probes or primers prepared from the sequences of the present invention, specific to tissues, including but not limited to those shown in Table 1B. Panels of such reagents can identify tissue by species and/or by organ type. In a similar fashion, these reagents can be used to screen tissue cultures for contamination. Additional non-limiting examples of such uses are further described herein.

The polynucleotides of the present invention are also useful as hybridization probes for differential identification of the tissue(s) or cell type(s) present in a biological sample. Similarly, polypeptides and antibodies directed to polypeptides of the present invention are useful to provide immunological probes for differential identification of the tissue(s) (e.g., immunohistochemistry assays) or cell type(s) (e.g., immunocytochemistry assays). In addition, for a number of disorders of the above tissues or cells, significantly higher or lower levels of gene expression of the polynucleotides/polypeptides of the present invention may be detected in certain tissues (e.g., tissues expressing polypeptides and/or polynucleotides of the present invention, for example, those disclosed in Table 1B, and/or cancerous and/or wounded tissues) or bodily fluids (e.g., semen, lymph, vaginal pool, serum, plasma, urine, synovial fluid or spinal fluid) taken from an individual having such a disorder, relative to a "standard" gene expression level, i.e., the expression level in healthy tissue from an individual not having the disorder.

Thus, the invention provides a diagnostic method of a disorder, which involves: (a) assaying gene expression level in cells or body fluid of an individual; (b) comparing the gene expression level with a standard gene expression level, whereby an increase or decrease in the assayed gene expression level compared to the standard expression level is indicative of a disorder.

In the very least, the polynucleotides of the present invention can be used as molecular weight markers on Southern gels, as diagnostic probes for the presence of a specific mRNA in a particular cell type, as a probe to "subtract-out" known sequences in the process of discovering novel polynucleotides, for selecting and making oligomers for attachment to a "gene chip" or other support, to raise anti-DNA antibodies using DNA immunization techniques, and as an antigen to elicit an immune response.

30 Uses of the Polypeptides

5

10

15

20

25

35

Each of the polypeptides identified herein can be used in numerous ways. The following description should be considered exemplary and utilizes known techniques.

Polypeptides and antibodies directed to polypeptides of the present invention are useful to provide immunological probes for differential identification of the tissue(s) (e.g., immunohistochemistry assays such as, for example, ABC immunoperoxidase (Hsu et al., J. Histochem. Cytochem. 29:577-580 (1981)) or cell type(s) (e.g., immunocytochemistry assays).

Antibodies can be used to assay levels of polypeptides encoded by polynucleotides of the invention in a biological sample using classical immunohistological methods known to those of skill in the art (e.g., see Jalkanen, et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, et al., J. Cell. Biol. 105:3087-3096 (1987)). Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase; radioisotopes, such as iodine (131 I, 125 I, 123 I, 121 I), carbon (14C), sulfur (35S), tritium (3H), indium (115m In, 113m In, 112 In, 111 In), and technetium (99Tc, 99mTc), thallium (201 Ti), gallium (68Ga, 67Ga), palladium (103 Pd), molybdenum (99Mo), xenon (133 Xe), fluorine (18F), 153 Sm, 177 Lu, 159 Gd, 149 Pm, 140 La, 175 Yb, 166 Ho, 90 Y, 47 Sc, 186 Re, 188 Re, 142 Pr, 105 Rh, 97 Ru; luminescent labels, such as luminol; and fluorescent labels, such as fluorescein and rhodamine, and biotin.

5

10

15

20

25

30

35

In addition to assaying levels of polypeptide of the present invention in a biological sample, proteins can also be detected *in vivo* by imaging. Antibody labels or markers for *in vivo* imaging of protein include those detectable by X-radiography, NMR or ESR. For X-radiography, suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma.

A protein-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, ¹³¹I, ¹¹²In, ^{99m}Tc, (¹³¹I, ¹²⁵I, ¹²³I, ¹²¹I), carbon (¹⁴C), sulfur (³⁵S), tritium (³H), indium (^{115m}In, ^{113m}In, ¹¹¹In), and technetium (99Tc, 99mTc), thallium (201Ti), gallium (68Ga, 67Ga), palladium (103Pd), molybdenum (99Mo), xenon (133Xe), fluorine (18F, 153Sm, 177Lu, 159Gd, 149Pm, 140La, 175Yb, 166Ho, 90Y, 47Sc, 186Re, ¹⁸⁸Re, ¹⁴²Pr, ¹⁰⁵Rh, ⁹⁷Ru), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously or intraperitoneally) into the mammal to be examined for immune system disorder. It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of ^{99m}Tc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which express the polypeptide encoded by a polynucleotide of the invention. In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments" (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982)).

In one embodiment, the invention provides a method for the specific delivery of compositions of the invention to cells by administering polypeptides of the invention (e.g.,

polypeptides encoded by polynucleotides of the invention and/or antibodies) that are associated with heterologous polypeptides or nucleic acids. In one example, the invention provides a method for delivering a therapeutic protein into the targeted cell. In another example, the invention provides a method for delivering a single stranded nucleic acid (e.g., antisense or ribozymes) or double stranded nucleic acid (e.g., DNA that can integrate into the cell's genome or replicate episomally and that can be transcribed) into the targeted cell.

5

10

15

20

25

30

35

In another embodiment, the invention provides a method for the specific destruction of cells (e.g., the destruction of tumor cells) by administering polypeptides of the invention in association with toxins or cytotoxic prodrugs.

By "toxin" is meant one or more compounds that bind and activate endogenous cytotoxic effector systems, radioisotopes, holotoxins, modified toxins, catalytic subunits of toxins, or any molecules or enzymes not normally present in or on the surface of a cell that under defined conditions cause the cell's death. Toxins that may be used according to the methods of the invention include, but are not limited to, radioisotopes known in the art, compounds such as, for example, antibodies (or complement fixing containing portions thereof) that bind an inherent or induced endogenous cytotoxic effector system, thymidine kinase, endonuclease, RNAse, alpha toxin, ricin, abrin, Pseudomonas exotoxin A, diphtheria toxin, saporin, momordin, gelonin, pokeweed antiviral protein, alpha-sarcin and cholera toxin. "Toxin" also includes a cytostatic or cytocidal agent, a therapeutic agent or a radioactive metal ion, e.g., alpha-emitters such as, for example, ²¹³Bi, or other radioisotopes such as, for example, ¹⁰³Pd, ¹³³Xe, ¹³¹I, ⁶⁸Ge, ⁵⁷Co, ⁶⁵Zn, ⁸⁵Sr, ³²P, ³⁵S, ⁹⁰Y, ¹⁵³Sm, ¹⁵³Gd, ¹⁶⁹Yb, ⁵¹Cr, ⁵⁴Mn, ⁷⁵Se, ¹¹³Sn, ⁹⁰Yttrium, ¹¹⁷Tin, ¹⁸⁶Rhenium, ¹⁶⁶Holmium, and ¹⁸⁸Rhenium; luminescent labels, such as luminol; and fluorescent labels, such as fluorescein and rhodamine, and biotin. In a specific embodiment, the invention provides a method for the specific destruction of cells (e.g., the destruction of tumor cells) by administering polypeptides of the invention or antibodies of the invention in association with the radioisotope ⁹⁰Y. In another specific embodiment, the invention provides a method for the specific destruction of cells (e.g., the destruction of tumor cells) by administering polypeptides of the invention or antibodies of the invention in association with the radioisotope 111In. In a further specific embodiment, the invention provides a method for the specific destruction of cells (e.g., the destruction of tumor cells) by administering polypeptides of the invention or antibodies of the invention in association with the radioisotope ¹³¹I.

Techniques known in the art may be applied to label polypeptides of the invention (including antibodies). Such techniques include, but are not limited to, the use of bifunctional conjugating agents (see e.g., U.S. Patent Nos. 5,756,065; 5,714,631; 5,696,239; 5,652,361; 5,505,931; 5,489,425; 5,435,990; 5,428,139; 5,342,604; 5,274,119; 4,994,560; and 5,808,003; the contents of each of which are hereby incorporated by reference in its entirety).

Thus, the invention provides a diagnostic method of a disorder, which involves (a) assaying the expression level of a polypeptide of the present invention in cells or body fluid of an individual; and (b) comparing the assayed polypeptide expression level with a standard polypeptide expression level, whereby an increase or decrease in the assayed polypeptide expression level compared to the standard expression level is indicative of a disorder. With respect to cancer, the presence of a relatively high amount of transcript in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

Moreover, polypeptides of the present invention can be used to treat or prevent diseases or conditions such as, for example, neural disorders, immune system disorders, muscular disorders, reproductive disorders, gastrointestinal disorders, pulmonary disorders, cardiovascular disorders, renal disorders, proliferative disorders, and/or cancerous diseases and conditions. For example, patients can be administered a polypeptide of the present invention in an effort to replace absent or decreased levels of the polypeptide (e.g., insulin), to supplement absent or decreased levels of a different polypeptide (e.g., hemoglobin S for hemoglobin B, SOD, catalase, DNA repair proteins), to inhibit the activity of a polypeptide (e.g., an oncogene or tumor supressor), to activate the activity of a polypeptide (e.g., by binding to a receptor), to reduce the activity of a membrane bound receptor by competing with it for free ligand (e.g., soluble TNF receptors used in reducing inflammation), or to bring about a desired response (e.g., blood vessel growth inhibition, enhancement of the immune response to proliferative cells or tissues).

Similarly, antibodies directed to a polypeptide of the present invention can also be used to treat disease (as described *supra*, and elsewhere herein). For example, administration of an antibody directed to a polypeptide of the present invention can bind, and/or neutralize the polypeptide, and/or reduce overproduction of the polypeptide. Similarly, administration of an antibody can activate the polypeptide, such as by binding to a polypeptide bound to a membrane (receptor).

At the very least, the polypeptides of the present invention can be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. Polypeptides can also be used to raise antibodies, which in turn are used to measure protein expression from a recombinant cell, as a way of assessing transformation of the host cell. Moreover, the polypeptides of the present invention can be used to test the biological activities described herein.

The compounds of the present invention are useful for diagnosis, treatment, prevention and/or prognosis of various disorders in mammals, preferably humans. Such disorders include, but are not limited to, those related to biological activities described in Table 1D and, also as described herein under the section heading "Biological Activities".

5

10

15

20

25

30

35

For a number of disorders, substantially altered (increased or decreased) levels of gene expression can be detected in tissues, cells or bodily fluids (e.g., sera, plasma, urine, semen, synovial fluid or spinal fluid) taken from an individual having such a disorder, relative to a "standard" gene expression level, that is, the expression level in tissues or bodily fluids from an individual not having the disorder. Thus, the invention provides a diagnostic method useful during diagnosis of a disorder, which involves measuring the expression level of the gene encoding the polypeptide in tissues, cells or body fluid from an individual and comparing the measured gene expression level with a standard gene expression level, whereby an increase or decrease in the gene expression level(s) compared to the standard is indicative of a disorder. These diagnostic assays may be performed *in vivo* or *in vitro*, such as, for example, on blood samples, biopsy tissue or autopsy tissue.

The present invention is also useful as a prognostic indicator, whereby patients exhibiting enhanced or depressed gene expression will experience a worse clinical outcome relative to patients expressing the gene at a level nearer the standard level.

In certain embodiments, a polypeptide of the invention, or polynucleotides, antibodies, agonists, or antagonists corresponding to that polypeptide, may be used to diagnose and/or prognosticate diseases and/or disorders associated with the tissue(s) in which the polypeptide of the invention is expressed, including one, two, three, four, five, or more tissues disclosed in Table 1B.2 (Tissue Distribution Library Code).

By "assaying the expression level of the gene encoding the polypeptide" is intended qualitatively or quantitatively measuring or estimating the level of the polypeptide of the invention or the level of the mRNA encoding the polypeptide of the invention in a first biological sample either directly (e.g., by determining or estimating absolute protein level or mRNA level) or relatively (e.g., by comparing to the polypeptide level or mRNA level in a second biological sample). Preferably, the polypeptide expression level or mRNA level in the first biological sample is measured or estimated and compared to a standard polypeptide level or mRNA level, the standard being taken from a second biological sample obtained from an individual not having the disorder or being determined by averaging levels from a population of individuals not having the disorder. As will be appreciated in the art, once a standard polypeptide level or mRNA level is known, it can be used repeatedly as a standard for comparison.

By "biological sample" is intended any biological sample obtained from an individual, cell line, tissue culture, or other source containing polypeptides of the invention (including portions thereof) or mRNA. As indicated, biological samples include body fluids (such as sera,

plasma, urine, synovial fluid and spinal fluid) and tissue sources found to express the full length or fragments thereof of a polypeptide or mRNA. Methods for obtaining tissue biopsies and body fluids from mammals are well known in the art. Where the biological sample is to include mRNA, a tissue biopsy is the preferred source.

Total cellular RNA can be isolated from a biological sample using any suitable technique such as the single-step guanidinium-thiocyanate-phenol-chloroform method described in Chomczynski and Sacchi, Anal. Biochem. 162:156-159 (1987). Levels of mRNA encoding the polypeptides of the invention are then assayed using any appropriate method. These include Northern blot analysis, S1 nuclease mapping, the polymerase chain reaction (PCR), reverse transcription in combination with the polymerase chain reaction (RT-PCR), and reverse transcription in combination with the ligase chain reaction (RT-LCR).

The present invention also relates to diagnostic assays such as quantitative and diagnostic assays for detecting levels of polypeptides of the invention, in a biological sample (e.g., cells and tissues), including determination of normal and abnormal levels of polypeptides. Thus, for instance, a diagnostic assay in accordance with the invention for detecting over-expression of polypeptides of the invention compared to normal control tissue samples may be used to detect the presence of tumors. Assay techniques that can be used to determine levels of a polypeptide, such as a polypeptide of the present invention in a sample derived from a host are well-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis and ELISA assays. Assaying polypeptide levels in a biological sample can occur using any art-known method.

Assaying polypeptide levels in a biological sample can occur using antibody-based techniques. For example, polypeptide expression in tissues can be studied with classical immunohistological methods (Jalkanen et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, M., et al., J. Cell . Biol. 105:3087-3096 (1987)). Other antibody-based methods useful for detecting polypeptide gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase, and radioisotopes, such as iodine (125 I, 121 I), carbon (14 C), sulfur (35 S), tritium (3 H), indium (112 In), and technetium (99 Tc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.

The tissue or cell type to be analyzed will generally include those which are known, or suspected, to express the gene of inteest (such as, for example, cancer). The protein isolation methods employed herein may, for example, be such as those described in Harlow and Lane (Harlow, E. and Lane, D., 1988, "Antibodies: A Laboratory Manual", Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York), which is incorporated herein by reference in its entirety. The isolated cells can be derived from cell culture or from a patient. The analysis of cells taken from culture may be a necessary step in the assessment of cells that could be used as

part of a cell-based gene therapy technique or, alternatively, to test the effect of compounds on the expression of the gene.

For example, antibodies, or fragments of antibodies, such as those described herein, may be used to quantitatively or qualitatively detect the presence of gene products or conserved variants or peptide fragments thereof. This can be accomplished, for example, by immunofluorescence techniques employing a fluorescently labeled antibody coupled with light microscopic, flow cytometric, or fluorimetric detection.

5

10

15

20

25

30

35

In a preferred embodiment, antibodies, or fragments of antibodies directed to any one or all of the predicted epitope domains of the polypeptides of the invention (shown in Table 1B) may be used to quantitatively or qualitatively detect the presence of gene products or conserved variants or peptide fragments thereof. This can be accomplished, for example, by immunofluorescence techniques employing a fluorescently labeled antibody coupled with light microscopic, flow cytometric, or fluorimetric detection.

In an additional preferred embodiment, antibodies, or fragments of antibodies directed to a conformational epitope of a polypeptide of the invention may be used to quantitatively or qualitatively detect the presence of gene products or conserved variants or peptide fragments thereof. This can be accomplished, for example, by immunofluorescence techniques employing a fluorescently labeled antibody coupled with light microscopic, flow cytometric, or fluorimetric detection.

The antibodies (or fragments thereof), and/or polypeptides of the present invention may, additionally, be employed histologically, as in immunofluorescence, immunoelectron microscopy or non-immunological assays, for in situ detection of gene products or conserved variants or peptide fragments thereof. In situ detection may be accomplished by removing a histological specimen from a patient, and applying thereto a labeled antibody or polypeptide of the present invention. The antibody (or fragment thereof) or polypeptide is preferably applied by overlaying the labeled antibody (or fragment) onto a biological sample. Through the use of such a procedure, it is possible to determine not only the presence of the gene product, or conserved variants or peptide fragments, or polypeptide binding, but also its distribution in the examined tissue. Using the present invention, those of ordinary skill will readily perceive that any of a wide variety of histological methods (such as staining procedures) can be modified in order to achieve such in situ detection.

Immunoassays and non-immunoassays for gene products or conserved variants or peptide fragments thereof will typically comprise incubating a sample, such as a biological fluid, a tissue extract, freshly harvested cells, or lysates of cells which have been incubated in cell culture, in the presence of a detectably labeled antibody capable of binding gene products or conserved variants or peptide fragments thereof, and detecting the bound antibody by any of a number of techniques well-known in the art.

The biological sample may be brought in contact with and immobilized onto a solid phase support or carrier such as nitrocellulose, or other solid support which is capable of immobilizing cells, cell particles or soluble proteins. The support may then be washed with suitable buffers followed by treatment with the detectably labeled antibody or detectable polypeptide of the invention. The solid phase support may then be washed with the buffer a second time to remove unbound antibody or polypeptide. Optionally the antibody is subsequently labeled. The amount of bound label on solid support may then be detected by conventional means.

By "solid phase support or carrier" is intended any support capable of binding an antigen or an antibody. Well-known supports or carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, gabbros, and magnetite. The nature of the carrier can be either soluble to some extent or insoluble for the purposes of the present invention. The support material may have virtually any possible structural configuration so long as the coupled molecule is capable of binding to an antigen or antibody. Thus, the support configuration may be spherical, as in a bead, or cylindrical, as in the inside surface of a test tube, or the external surface of a rod. Alternatively, the surface may be flat such as a sheet, test strip, etc. Preferred supports include polystyrene beads. Those skilled in the art will know many other suitable carriers for binding antibody or antigen, or will be able to ascertain the same by use of routine experimentation.

The binding activity of a given lot of antibody or antigen polypeptide may be determined according to well known methods. Those skilled in the art will be able to determine operative and optimal assay conditions for each determination by employing routine experimentation.

In addition to assaying polypeptide levels or polynucleotide levels in a biological sample obtained from an individual, polypeptide or polynucleotide can also be detected *in vivo* by imaging. For example, in one embodiment of the invention, polypeptides and/or antibodies of the invention are used to image diseased cells, such as neoplasms. In another embodiment, polynucleotides of the invention (e.g., polynucleotides complementary to all or a portion of an mRNA) and/or antibodies (e.g., antibodies directed to any one or a combination of the epitopes of a polypeptide of the invention, antibodies directed to a conformational epitope of a polypeptide of the invention, or antibodies directed to the full length polypeptide expressed on the cell surface of a mammalian cell) are used to image diseased or neoplastic cells.

Antibody labels or markers for *in vivo* imaging of polypeptides of the invention include those detectable by X-radiography, NMR, MRI, CAT-scans or ESR. For X-radiography, suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma. Where *in vivo* imaging is used to detect enhanced levels of

polypeptides for diagnosis in humans, it may be preferable to use human antibodies or "humanized" chimeric monoclonal antibodies. Such antibodies can be produced using techniques described herein or otherwise known in the art. For example methods for producing chimeric antibodies are known in the art. See, for review, Morrison, *Science 229*:1202 (1985); Oi et al., *BioTechniques 4*:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671; Boulianne *et al.*, *Nature 312*:643 (1984); Neuberger *et al.*, *Nature 314*:268 (1985).

Additionally, any polypeptides of the invention whose presence can be detected, can be administered. For example, polypeptides of the invention labeled with a radio-opaque or other appropriate compound can be administered and visualized *in vivo*, as discussed, above for labeled antibodies. Further, such polypeptides can be utilized for *in vitro* diagnostic procedures.

A polypeptide-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, ¹³¹I, ¹¹²In, ^{99m}Tc), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously or intraperitoneally) into the mammal to be examined for a disorder. It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of ^{99m}Tc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain the antigenic protein. *In vivo* tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments" (Chapter 13 in *Tumor Imaging: The Radiochemical Detection of Cancer*, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982)).

With respect to antibodies, one of the ways in which an antibody of the present invention can be detectably labeled is by linking the same to a reporter enzyme and using the linked product in an enzyme immunoassay (EIA) (Voller, A., "The Enzyme Linked Immunosorbent Assay (ELISA)", 1978, Diagnostic Horizons 2:1-7, Microbiological Associates Quarterly Publication, Walkersville, MD); Voller et al., *J. Clin. Pathol.* 31:507-520 (1978); Butler, J.E., *Meth. Enzymol.* 73:482-523 (1981); Maggio, E. (ed.), 1980, Enzyme Immunoassay, CRC Press, Boca Raton, FL.; Ishikawa, E. et al., (eds.), 1981, Enzyme Immunoassay, Kgaku Shoin, Tokyo). The reporter enzyme which is bound to the antibody will react with an appropriate substrate, preferably a chromogenic substrate, in such a manner as to produce a chemical moiety which can be detected, for example, by spectrophotometric, fluorimetric or by visual means. Reporter enzymes which can be used to detectably label the antibody include, but are not limited to, malate dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, yeast alcohol dehydrogenase, alpha-glycerophosphate, dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease,

urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase and acetylcholinesterase. Additionally, the detection can be accomplished by colorimetric methods which employ a chromogenic substrate for the reporter enzyme. Detection may also be accomplished by visual comparison of the extent of enzymatic reaction of a substrate in comparison with similarly prepared standards.

Detection may also be accomplished using any of a variety of other immunoassays. For example, by radioactively labeling the antibodies or antibody fragments, it is possible to detect polypeptides through the use of a radioimmunoassay (RIA) (see, for example, Weintraub, B., Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, March, 1986, which is incorporated by reference herein). The radioactive isotope can be detected by means including, but not limited to, a gamma counter, a scintillation counter, or autoradiography.

It is also possible to label the antibody with a fluorescent compound. When the fluorescently labeled antibody is exposed to light of the proper wave length, its presence can then be detected due to fluorescence. Among the most commonly used fluorescent labeling compounds are fluorescein isothiocyanate, rhodamine, phycocyanin, phycocyanin, allophycocyanin, ophthaldehyde and fluorescamine.

The antibody can also be detectably labeled using fluorescence emitting metals such as ¹⁵²Eu, or others of the lanthanide series. These metals can be attached to the antibody using such metal chelating groups as diethylenetriaminepentacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA).

The antibody also can be detectably labeled by coupling it to a chemiluminescent compound. The presence of the chemiluminescent-tagged antibody is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of particularly useful chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt and oxalate ester.

Likewise, a bioluminescent compound may be used to label the antibody of the present invention. Bioluminescence is a type of chemiluminescence found in biological systems in, which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the presence of luminescence. Important bioluminescent compounds for purposes of labeling are luciferin, luciferase and aequorin.

Methods for Detecting Diseases

5

10

15

20

25

30

35

In general, a disease may be detected in a patient based on the presence of one or more proteins of the invention and/or polynucleotides encoding such proteins in a biological sample (for example, blood, sera, urine, and/or tumor biopsies) obtained from the patient. In other words, such proteins may be used as markers to indicate the presence or absence of a disease or disorder,

including cancer and/or as described elsewhere herein. In addition, such proteins may be useful for the detection of other diseases and cancers. The binding agents provided herein generally permit detection of the level of antigen that binds to the agent in the biological sample. Polynucleotide primers and probes may be used to detect the level of mRNA encoding polypeptides of the invention, which is also indicative of the presence or absence of a disease or disorder, including cancer. In general, polypeptides of the invention should be present at a level that is at least three fold higher in diseased tissue than in normal tissue.

There are a variety of assay formats known to those of ordinary skill in the art for using a binding agent to detect polypeptide markers in a sample. See, e.g., Harlow and Lane, *supra*. In general, the presence or absence of a disease in a patient may be determined by (a) contacting a biological sample obtained from a patient with a binding agent; (b) detecting in the sample a level of polypeptide that binds to the binding agent; and (c) comparing the level of polypeptide with a predetermined cut-off value.

In a preferred embodiment, the assay involves the use of a binding agent(s) immobilized on a solid support to bind to and remove the polypeptide of the invention from the remainder of the sample. The bound polypeptide may then be detected using a detection reagent that contains a reporter group and specifically binds to the binding agent/polypeptide complex. Such detection reagents may comprise, for example, a binding agent that specifically binds to the polypeptide or an antibody or other agent that specifically binds to the binding agent, such as an anti-immunoglobulin, protein G, protein A or a lectin. Alternatively, a competitive assay may be utilized, in which a polypeptide is labeled with a reporter group and allowed to bind to the immobilized binding agent after incubation of the binding agent with the sample. The extent to which components of the sample inhibit the binding of the labeled polypeptide to the binding agent is indicative of the reactivity of the sample with the immobilized binding agent. Suitable polypeptides for use within such assays include polypeptides of the invention and portions thereof, or antibodies, to which the binding agent binds, as described above.

The solid support may be any material known to those of skill in the art to which polypeptides of the invention may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681. The binding agent may be immobilized on the solid support using a variety of techniques known to those of skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the agent and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a well in a

microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the binding agent, in a suitable buffer, with the solid support for the suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and about 1 day. In general, contacting a well of plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of binding agent ranging from about 10 ng to about 10 ug, and preferably about 100 ng to about 1 ug, is sufficient to immobilize an adequate amount of binding agent.

Covalent attachment of binding agent to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the binding agent. For example, the binding agent may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

Gene Therapy Methods

Also encompassed by the invention are gene therapy methods for treating or preventing disorders, diseases and conditions. The gene therapy methods relate to the introduction of nucleic acid (DNA, RNA and antisense DNA or RNA) sequences into an animal to achieve expression of the polypeptide of the present invention. This method requires a polynucleotide which codes for a polypeptide of the present invention operatively linked to a promoter and any other genetic elements necessary for the expression of the polypeptide by the target tissue. Such gene therapy and delivery techniques are known in the art, see, for example, WO90/11092, which is herein incorporated by reference.

Thus, for example, cells from a patient may be engineered with a polynucleotide (DNA or RNA) comprising a promoter operably linked to a polynucleotide of the present invention ex vivo, with the engineered cells then being provided to a patient to be treated with the polypeptide of the present invention. Such methods are well-known in the art. For example, see Belldegrun, A., et al., J. Natl. Cancer Inst. 85: 207-216 (1993); Ferrantini, M. et al., Cancer Research 53: 1107-1112 (1993); Ferrantini, M. et al., J. Immunology 153: 4604-4615 (1994); Kaido, T., et al., Int. J. Cancer 60: 221-229 (1995); Ogura, H., et al., Cancer Research 50: 5102-5106 (1990); Santodonato, L., et al., Human Gene Therapy 7:1-10 (1996); Santodonato, L., et al., Gene Therapy 4:1246-1255 (1997); and Zhang, J.-F. et al., Cancer Gene Therapy 3: 31-38 (1996)), which are herein incorporated by reference. In one embodiment, the cells which are engineered are arterial cells. The arterial cells may be reintroduced into the patient through direct injection to the artery, the tissues surrounding the artery, or through catheter injection.

As discussed in more detail below, the polynucleotide constructs can be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, and the like). The polynucleotide constructs may be delivered in a pharmaceutically acceptable liquid or aqueous carrier.

5

10

15

20

25

30

35

In one embodiment, the polynucleotide of the present invention is delivered as a naked polynucleotide. The term "naked" polynucleotide, DNA or RNA refers to sequences that are free from any delivery vehicle that acts to assist, promote or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or precipitating agents and the like. However, the polynucleotide of the present invention can also be delivered in liposome formulations and lipofectin formulations and the like can be prepared by methods well known to those skilled in the art. Such methods are described, for example, in U.S. Patent Nos. 5,593,972, 5,589,466, and 5,580,859, which are herein incorporated by reference.

The polynucleotide vector constructs used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication. Appropriate vectors include pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; pSVK3, pBPV, pMSG and pSVL available from Pharmacia; and pEF1/V5, pcDNA3.1, and pRc/CMV2 available from Invitrogen. Other suitable vectors will be readily apparent to the skilled artisan.

Any strong promoter known to those skilled in the art can be used for driving the expression of the polynucleotide sequence. Suitable promoters include adenoviral promoters, such as the adenoviral major late promoter; or heterologous promoters, such as the cytomegalovirus (CMV) promoter; the respiratory syncytial virus (RSV) promoter; inducible promoters, such as the MMT promoter, the metallothionein promoter; heat shock promoters; the albumin promoter; the ApoAI promoter; human globin promoters; viral thymidine kinase promoters, such as the Herpes Simplex thymidine kinase promoter; retroviral LTRs; the b-actin promoter; and human growth hormone promoters. The promoter also may be the native promoter for the polynucleotide of the present invention.

Unlike other gene therapy techniques, one major advantage of introducing naked nucleic acid sequences into target cells is the transitory nature of the polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production of the desired polypeptide for periods of up to six months.

The polynucleotide construct can be delivered to the interstitial space of tissues within the an animal, including of muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and connective tissue. Interstitial space of the tissues comprises the intercellular, fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that

same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by the plasma of the circulation and the lymph fluid of the lymphatic channels. Delivery to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells which are differentiated, although delivery and expression may be achieved in non-differentiated or less completely differentiated cells, such as, for example, stem cells of blood or skin fibroblasts. *In vivo* muscle cells are particularly competent in their ability to take up and express polynucleotides.

5

10

15

20

25

30

35

For the naked nucleic acid sequence injection, an effective dosage amount of DNA or RNA will be in the range of from about 0.05 mg/kg body weight to about 50 mg/kg body weight. Preferably the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be determined by those of ordinary skill in the art and may depend on the condition being treated and the route of administration.

The preferred route of administration is by the parenteral route of injection into the interstitial space of tissues. However, other parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the nose. In addition, naked DNA constructs can be delivered to arteries during angioplasty by the catheter used in the procedure.

The naked polynucleotides are delivered by any method known in the art, including, but not limited to, direct needle injection at the delivery site, intravenous injection, topical administration, catheter infusion, and so-called "gene guns". These delivery methods are known in the art.

The constructs may also be delivered with delivery vehicles such as viral sequences, viral particles, liposome formulations, lipofectin, precipitating agents, etc. Such methods of delivery are known in the art.

In certain embodiments, the polynucleotide constructs are complexed in a liposome preparation. Liposomal preparations for use in the instant invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. However, cationic liposomes are particularly preferred because a tight charge complex can be formed between the cationic liposome and the polyanionic nucleic acid. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Felgner et al., Proc. Natl. Acad. Sci. USA (1987) 84:7413-7416, which is herein incorporated by reference); mRNA (Malone et al., Proc. Natl. Acad. Sci. USA (1989) 86:6077-6081, which is herein incorporated by reference); and purified transcription factors (Debs et al., J. Biol. Chem. (1990) 265:10189-10192, which is herein incorporated by reference), in functional form.

Cationic liposomes are readily available. For example, N[1-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are particularly useful and are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, N.Y. (See, also, Felgner et al., Proc. Natl Acad. Sci. USA (1987) 84:7413-7416, which is herein incorporated by reference). Other commercially available liposomes include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boehringer).

5

10

15

20

25

30

35

Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, e.g. PCT Publication No. WO 90/11092 (which is herein incorporated by reference) for a description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes. Preparation of DOTMA liposomes is explained in the literature, see, e.g., P. Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417, which is herein incorporated by reference. Similar methods can be used to prepare liposomes from other cationic lipid materials.

Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, Ala.), or can be easily prepared using readily available materials. Such materials include phosphatidyl, choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.

For example, commercially dioleoylphosphatidyl (DOPC), choline dioleoylphosphatidyl glycerol (DOPG), and dioleoylphosphatidyl ethanolamine (DOPE) can be used in various combinations to make conventional liposomes, with or without the addition of cholesterol. Thus, for example, DOPG/DOPC vesicles can be prepared by drying 50 mg each of DOPG and DOPC under a stream of nitrogen gas into a sonication vial. The sample is placed under a vacuum pump overnight and is hydrated the following day with deionized water. The sample is then sonicated for 2 hours in a capped vial, using a Heat Systems model 350 sonicator equipped with an inverted cup (bath type) probe at the maximum setting while the bath is circulated at 15EC. Alternatively, negatively charged vesicles can be prepared without sonication to produce multilamellar vesicles or by extrusion through nucleopore membranes to produce unilamellar vesicles of discrete size. Other methods are known and available to those of skill in the art.

The liposomes can comprise multilamellar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs), with SUVs being preferred. The various liposome-nucleic acid complexes are prepared using methods well known in the art. See, e.g., Straubinger et al., Methods of Immunology (1983), 101:512-527, which is herein incorporated by reference. For example, MLVs containing nucleic acid can be prepared by depositing a thin film

of phospholipid on the walls of a glass tube and subsequently hydrating with a solution of the material to be encapsulated. SUVs are prepared by extended sonication of MLVs to produce a homogeneous population of unilamellar liposomes. The material to be entrapped is added to a suspension of preformed MLVs and then sonicated. When using liposomes containing cationic lipids, the dried lipid film is resuspended in an appropriate solution such as sterile water or an isotonic buffer solution such as 10 mM Tris/NaCl, sonicated, and then the preformed liposomes are mixed directly with the DNA. The liposome and DNA form a very stable complex due to binding of the positively charged liposomes to the cationic DNA. SUVs find use with small nucleic acid fragments. LUVs are prepared by a number of methods, well known in the art. Commonly used methods include Ca²⁺-EDTA chelation (Papahadjopoulos et al., Biochim. Biophys. Acta (1975) 394:483; Wilson et al., Cell 17:77 (1979)); ether injection (Deamer, D. and Bangham, A., Biochim. Biophys. Acta 443:629 (1976); Ostro et al., Biochem. Biophys. Res. Commun. 76:836 (1977); Fraley et al., Proc. Natl. Acad. Sci. USA 76:3348 (1979)); detergent dialysis (Enoch, H. and Strittmatter, P., Proc. Natl. Acad. Sci. USA 76:145 (1979)); and reverse-phase evaporation (REV) (Fraley et al., J. Biol. Chem. 255:10431 (1980); Szoka, F. and Papahadjopoulos, D., Proc. Natl. Acad. Sci. USA 75:145 (1978); Schaefer-Ridder et al., Science 215:166 (1982)), which are herein incorporated by reference.

5

10

15

20

25

30

35

Generally, the ratio of DNA to liposomes will be from about 10:1 to about 1:10. Preferably, the ration will be from about 5:1 to about 1:5. More preferably, the ration will be about 1:3. Still more preferably, the ratio will be about 1:1.

U.S. Patent No. 5,676,954 (which is herein incorporated by reference) reports on the injection of genetic material, complexed with cationic liposomes carriers, into mice. U.S. Patent Nos. 4,897,355, 4,946,787, 5,049,386, 5,459,127, 5,589,466, 5,693,622, 5,580,859, 5,703,055, and international publication no. WO 94/9469 (which are herein incorporated by reference) provide cationic lipids for use in transfecting DNA into cells and mammals. U.S. Patent Nos. 5,589,466, 5,693,622, 5,580,859, 5,703,055, and international publication no. WO 94/9469 provide methods for delivering DNA-cationic lipid complexes to mammals.

In certain embodiments, cells are engineered, ex vivo or *in vivo*, using a retroviral particle containing RNA which comprises a sequence encoding a polypeptide of the present invention. Retroviruses from which the retroviral plasmid vectors may be derived include, but are not limited to, Moloney Murine Leukemia Virus, spleen necrosis virus, Rous sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, gibbon ape leukemia virus, human immunodeficiency virus, Myeloproliferative Sarcoma Virus, and mammary tumor virus.

The retroviral plasmid vector is employed to transduce packaging cell lines to form producer cell lines. Examples of packaging cells which may be transfected include, but are not limited to, the PE501, PA317, R-2, R-AM, PA12, T19-14X, VT-19-17-H2, RCRE, RCRIP, GP+E-86, GP+envAm12, and DAN cell lines as described in Miller, Human Gene Therapy 1:5-14

(1990), which is incorporated herein by reference in its entirety. The vector may transduce the packaging cells through any means known in the art. Such means include, but are not limited to, electroporation, the use of liposomes, and CaPO₄ precipitation. In one alternative, the retroviral plasmid vector may be encapsulated into a liposome, or coupled to a lipid, and then administered to a host.

The producer cell line generates infectious retroviral vector particles which include polynucleotide encoding a polypeptide of the present invention. Such retroviral vector particles then may be employed, to transduce eukaryotic cells, either in vitro or *in vivo*. The transduced eukaryotic cells will express a polypeptide of the present invention.

In certain other embodiments, cells are engineered, ex vivo or *in vivo*, with polynucleotide contained in an adenovirus vector. Adenovirus can be manipulated such that it encodes and expresses a polypeptide of the present invention, and at the same time is inactivated in terms of its ability to replicate in a normal lytic viral life cycle. Adenovirus expression is achieved without integration of the viral DNA into the host cell chromosome, thereby alleviating concerns about insertional mutagenesis. Furthermore, adenoviruses have been used as live enteric vaccines for many years with an excellent safety profile (Schwartz et al. Am. Rev. Respir. Dis.109:233-238 (1974)). Finally, adenovirus mediated gene transfer has been demonstrated in a number of instances including transfer of alpha-1-antitrypsin and CFTR to the lungs of cotton rats (Rosenfeld, M. A. et al. (1991) Science 252:431-434; Rosenfeld et al., (1992) Cell 68:143-155). Furthermore, extensive studies to attempt to establish adenovirus as a causative agent in human cancer were uniformly negative (Green, M. et al. (1979) Proc. Natl. Acad. Sci. USA 76:6606).

Suitable adenoviral vectors useful in the present invention are described, for example, in Kozarsky and Wilson, Curr. Opin. Genet. Devel. 3:499-503 (1993); Rosenfeld et al., Cell 68:143-155 (1992); Engelhardt et al., Human Genet. Ther. 4:759-769 (1993); Yang et al., Nature Genet. 7:362-369 (1994); Wilson et al., Nature 365:691-692 (1993); and U.S. Patent No. 5,652,224, which are herein incorporated by reference. For example, the adenovirus vector Ad2 is useful and can be grown in human 293 cells. These cells contain the E1 region of adenovirus and constitutively express Ela and Elb, which complement the defective adenoviruses by providing the products of the genes deleted from the vector. In addition to Ad2, other varieties of adenovirus (e.g., Ad3, Ad5, and Ad7) are also useful in the present invention.

Preferably, the adenoviruses used in the present invention are replication deficient. Replication deficient adenoviruses require the aid of a helper virus and/or packaging cell line to form infectious particles. The resulting virus is capable of infecting cells and can express a polynucleotide of interest which is operably linked to a promoter, but cannot replicate in most cells. Replication deficient adenoviruses may be deleted in one or more of all or a portion of the following genes: E1a, E1b, E3, E4, E2a, or L1 through L5.

In certain other embodiments, the cells are engineered, ex vivo or *in vivo*, using an adeno-associated virus (AAV). AAVs are naturally occurring defective viruses that require helper viruses to produce infectious particles (Muzyczka, N., Curr. Topics in Microbiol. Immunol. 158:97 (1992)). It is also one of the few viruses that may integrate its DNA into non-dividing cells. Vectors containing as little as 300 base pairs of AAV can be packaged and can integrate, but space for exogenous DNA is limited to about 4.5 kb. Methods for producing and using such AAVs are known in the art. See, for example, U.S. Patent Nos. 5,139,941, 5,173,414, 5,354,678, 5,436,146, 5,474,935, 5,478,745, and 5,589,377.

For example, an appropriate AAV vector for use in the present invention will include all the sequences necessary for DNA replication, encapsidation, and host-cell integration. The polynucleotide construct is inserted into the AAV vector using standard cloning methods, such as those found in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press (1989). The recombinant AAV vector is then transfected into packaging cells which are infected with a helper virus, using any standard technique, including lipofection, electroporation, calcium phosphate precipitation, etc. Appropriate helper viruses include adenoviruses, cytomegaloviruses, vaccinia viruses, or herpes viruses. Once the packaging cells are transfected and infected, they will produce infectious AAV viral particles which contain the polynucleotide construct. These viral particles are then used to transduce eukaryotic cells, either ex vivo or *in vivo*. The transduced cells will contain the polynucleotide construct integrated into its genome, and will express a polypeptide of the invention.

Another method of gene therapy involves operably associating heterologous control regions and endogenous polynucleotide sequences (e.g. encoding a polypeptide of the present invention) via homologous recombination (see, e.g., U.S. Patent No. 5,641,670, issued June 24, 1997; International Publication No. WO 96/29411, published September 26, 1996; International Publication No. WO 94/12650, published August 4, 1994; Koller et al., Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); and Zijlstra et al., Nature 342:435-438 (1989), which are herein encorporated by reference. This method involves the activation of a gene which is present in the target cells, but which is not normally expressed in the cells, or is expressed at a lower level than desired.

Polynucleotide constructs are made, using standard techniques known in the art, which contain the promoter with targeting sequences flanking the promoter. Suitable promoters are described herein. The targeting sequence is sufficiently complementary to an endogenous sequence to permit homologous recombination of the promoter-targeting sequence with the endogenous sequence. The targeting sequence will be sufficiently near the 5' end of the desired endogenous polynucleotide sequence so the promoter will be operably linked to the endogenous sequence upon homologous recombination.

The promoter and the targeting sequences can be amplified using PCR. Preferably, the amplified promoter contains distinct restriction enzyme sites on the 5' and 3' ends. Preferably, the 3' end of the first targeting sequence contains the same restriction enzyme site as the 5' end of the amplified promoter and the 5' end of the second targeting sequence contains the same restriction site as the 3' end of the amplified promoter. The amplified promoter and targeting sequences are digested and ligated together.

5

10

15

20

25

30

35

!

The promoter-targeting sequence construct is delivered to the cells, either as naked polynucleotide, or in conjunction with transfection-facilitating agents, such as liposomes, viral sequences, viral particles, whole viruses, lipofection, precipitating agents, etc., described in more detail above. The P promoter-targeting sequence can be delivered by any method, included direct needle injection, intravenous injection, topical administration, catheter infusion, particle accelerators, etc. The methods are described in more detail below.

The promoter-targeting sequence construct is taken up by cells. Homologous recombination between the construct and the endogenous sequence takes place, such that an endogenous sequence is placed under the control of the promoter. The promoter then drives the expression of the endogenous sequence.

The polynucleotide encoding a polypeptide of the present invention may contain a secretory signal sequence that facilitates secretion of the protein. Typically, the signal sequence is positioned in the coding region of the polynucleotide to be expressed towards or at the 5' end of the coding region. The signal sequence may be homologous or heterologous to the polynucleotide of interest and may be homologous or heterologous to the cells to be transfected. Additionally, the signal sequence may be chemically synthesized using methods known in the art.

Any mode of administration of any of the above-described polynucleotides constructs can be used so long as the mode results in the expression of one or more molecules in an amount sufficient to provide a therapeutic effect. This includes direct needle injection, systemic injection, catheter infusion, biolistic injectors, particle accelerators (i.e., "gene guns"), gelfoam sponge depots, other commercially available depot materials, osmotic pumps (e.g., Alza minipumps), oral or suppositorial solid (tablet or pill) pharmaceutical formulations, and decanting or topical injection of naked calcium For example, direct during applications surgery. phosphate-precipitated plasmid into rat liver and rat spleen or a protein-coated plasmid into the portal vein has resulted in gene expression of the foreign gene in the rat livers (Kaneda et al., Science 243:375 (1989)).

A preferred method of local administration is by direct injection. Preferably, a recombinant molecule of the present invention complexed with a delivery vehicle is administered by direct injection into or locally within the area of arteries. Administration of a composition locally within the area of arteries refers to injecting the composition centimeters and preferably, millimeters within arteries.

Another method of local administration is to contact a polynucleotide construct of the present invention in or around a surgical wound. For example, a patient can undergo surgery and the polynucleotide construct can be coated on the surface of tissue inside the wound or the construct can be injected into areas of tissue inside the wound.

Therapeutic compositions useful in systemic administration, include recombinant molecules of the present invention complexed to a targeted delivery vehicle of the present invention. Suitable delivery vehicles for use with systemic administration comprise liposomes comprising ligands for targeting the vehicle to a particular site. In specific embodiments, suitable delivery vehicles for use with systemic administration comprise liposomes comprising polypeptides of the invention for targeting the vehicle to a particular site.

Preferred methods of systemic administration, include intravenous injection, aerosol, oral and percutaneous (topical) delivery. Intravenous injections can be performed using methods standard in the art. Aerosol delivery can also be performed using methods standard in the art (see, for example, Stribling et al., Proc. Natl. Acad. Sci. USA 189:11277-11281, 1992, which is incorporated herein by reference). Oral delivery can be performed by complexing a polynucleotide construct of the present invention to a carrier capable of withstanding degradation by digestive enzymes in the gut of an animal. Examples of such carriers, include plastic capsules or tablets, such as those known in the art. Topical delivery can be performed by mixing a polynucleotide construct of the present invention with a lipophilic reagent (e.g., DMSO) that is capable of passing into the skin.

Determining an effective amount of substance to be delivered can depend upon a number of factors including, for example, the chemical structure and biological activity of the substance, the age and weight of the animal, the precise condition requiring treatment and its severity, and the route of administration. The frequency of treatments depends upon a number of factors, such as the amount of polynucleotide constructs administered per dose, as well as the health and history of the subject. The precise amount, number of doses, and timing of doses will be determined by the attending physician or veterinarian.

Therapeutic compositions of the present invention can be administered to any animal, preferably to mammals and birds. Preferred mammals include humans, dogs, cats, mice, rats, rabbits sheep, cattle, horses and pigs, with humans being particularly preferred.

Biological Activities

5

10

15

20

25

30

35

Polynucleotides or polypeptides, or agonists or antagonists of the present invention, can be used in assays to test for one or more biological activities. If these polynucleotides or polypeptides, or agonists or antagonists of the present invention, do exhibit activity in a particular assay, it is likely that these molecules may be involved in the diseases associated with the

biological activity. Thus, the polynucleotides and polypeptides, and agonists or antagonists could be used to treat the associated disease.

Members of the secreted family of proteins are believed to be involved in biological activities associated with, for example, cellular signaling. Accordingly, compositions of the invention (including polynucleotides, polypeptides and antibodies of the invention, and fragments and variants thereof) may be used in diagnosis, prognosis, prevention and/or treatment of diseases and/or disorders associated with aberrant activity of secreted polypeptides.

In preferred embodiments, compositions of the invention (including polynucleotides, polypeptides and antibodies of the invention, and fragments and variants thereof) may be used in the diagnosis, prognosis, prevention, treatment, and/or amelioration of diseases and/or disorders relating to the cardiovascular system (e.g., atherosclerosis, stroke, myocardial infarction, hypertension, and as described in the "Cardiovascular Disorders" section below).

In certain embodiments, a polypeptide of the invention, or polynucleotides, antibodies, agonists, or antagonists corresponding to that polypeptide, may be used to diagnose and/or prognosticate diseases and/or disorders associated with the tissue(s) in which the polypeptide of the invention is expressed including one, two, three, four, five, or more tissues disclosed in Table 1B.2 (Tissue Distribution Library Code).

Thus, polynucleotides, translation products and antibodies of the invention are useful in the diagnosis, detection, prevention, prognistication, and/or treatment of diseases and/or disorders associated with activities that include, but are not limited to, prohormone activation, neurotransmitter activity, cellular signaling, cellular proliferation, cellular differentiation, and cell migration.

More generally, polynucleotides, translation products and antibodies corresponding to this gene may be useful for the diagnosis, prognosis, prevention, treatment and/or amelioration of diseases and/or disorders associated with the following system or systems.

Cardiovascular Disorders

5

10

15

20

25

30

35

Polynucleotides or polypeptides, or agonists or antagonists of the present invention, may be used to detect, prevent, diagnose, prognosticate, treat, and/or ameliorate cardiovascular diseases and disorders, including, but not limited to, peripheral artery disease, such as limb ischemia.

Cardiovascular disorders include, but are not limited to, cardiovascular abnormalities, such as arterio-arterial fistula, arteriovenous fistula, cerebral arteriovenous malformations, congenital heart defects, pulmonary atresia, and Scimitar Syndrome. Congenital heart defects include, but are not limited to, aortic coarctation, cor triatriatum, coronary vessel anomalies, crisscross heart, dextrocardia, patent ductus arteriosus, Ebstein's anomaly, Eisenmenger complex, hypoplastic left heart syndrome, levocardia, tetralogy of fallot, transposition of great vessels,

double outlet right ventricle, tricuspid atresia, persistent truncus arteriosus, and heart septal defects, such as aortopulmonary septal defect, endocardial cushion defects, Lutembacher's Syndrome, trilogy of Fallot, ventricular heart septal defects.

5

10

15

20

25

30

35

Cardiovascular disorders also include, but are not limited to, heart disease, such as arrhythmias, carcinoid heart disease, high cardiac output, low cardiac output, cardiac tamponade, endocarditis (including bacterial), heart aneurysm, cardiac arrest, congestive heart failure, congestive cardiomyopathy, paroxysmal dyspnea, cardiac edema, heart hypertrophy, congestive cardiomyopathy, left ventricular hypertrophy, right ventricular hypertrophy, post-infarction heart rupture, ventricular septal rupture, heart valve diseases, myocardial diseases, myocardial ischemia, pericardial effusion, pericarditis (including constrictive and tuberculous), pneumopericardium, postpericardiotomy syndrome, pulmonary heart disease, rheumatic heart disease, ventricular dysfunction, hyperemia, cardiovascular pregnancy complications, Scimitar Syndrome, cardiovascular syphilis, and cardiovascular tuberculosis.

Arrhythmias include, but are not limited to, sinus arrhythmia, atrial fibrillation, atrial flutter, bradycardia, extrasystole, Adams-Stokes Syndrome, bundle-branch block, sinoatrial block, long QT syndrome, parasystole, Lown-Ganong-Levine Syndrome, Mahaim-type pre-excitation syndrome, Wolff-Parkinson-White syndrome, sick sinus syndrome, tachycardias, and ventricular fibrillation. Tachycardias include paroxysmal tachycardia, supraventricular tachycardia, accelerated idioventricular rhythm, atrioventricular nodal reentry tachycardia, ectopic atrial tachycardia, ectopic junctional tachycardia, sinoatrial nodal reentry tachycardia, sinus tachycardia, Torsades de Pointes, and ventricular tachycardia.

Heart valve diseases include, but are not limited to, aortic valve insufficiency, aortic valve stenosis, hear murmurs, aortic valve prolapse, mitral valve prolapse, tricuspid valve prolapse, mitral valve insufficiency, mitral valve stenosis, pulmonary atresia, pulmonary valve insufficiency, pulmonary valve stenosis, tricuspid atresia, tricuspid valve insufficiency, and tricuspid valve stenosis.

Myocardial diseases include, but are not limited to, alcoholic cardiomyopathy, congestive cardiomyopathy, hypertrophic cardiomyopathy, aortic subvalvular stenosis, pulmonary subvalvular stenosis, restrictive cardiomyopathy, Chagas cardiomyopathy, endocardial fibroelastosis, endomyocardial fibrosis, Kearns Syndrome, myocardial reperfusion injury, and myocarditis.

Myocardial ischemias include, but are not limited to, coronary disease, such as angina pectoris, coronary aneurysm, coronary arteriosclerosis, coronary thrombosis, coronary vasospasm, myocardial infarction and myocardial stunning.

Cardiovascular diseases also include vascular diseases such as aneurysms, angiodysplasia, angiomatosis, bacillary angiomatosis, Hippel-Lindau Disease, Klippel-Trenaunay-Weber Syndrome, Sturge-Weber Syndrome, angioneurotic edema, aortic diseases, Takayasu's

Arteritis, aortitis, Leriche's Syndrome, arterial occlusive diseases, arteritis, enarteritis, polyarteritis nodosa, cerebrovascular disorders, diabetic angiopathies, diabetic retinopathy, embolisms, thrombosis, erythromelalgia, hemorrhoids, hepatic veno-occlusive disease, hypertension, hypotension, ischemia, peripheral vascular diseases, phlebitis, pulmonary veno-occlusive disease, Raynaud's disease, CREST syndrome, retinal vein occlusion, Scimitar syndrome, superior vena cava syndrome, telangiectasia, atacia telangiectasia, hereditary hemorrhagic telangiectasia, varicocele, varicose veins, varicose ulcer, vasculitis, and venous insufficiency.

5

10

15

20

25

30

35

Aneurysms include, but are not limited to, dissecting aneurysms, false aneurysms, infected aneurysms, ruptured aneurysms, aortic aneurysms, cerebral aneurysms, coronary aneurysms, heart aneurysms, and iliac aneurysms.

Arterial occlusive diseases include, but are not limited to, arteriosclerosis, intermittent claudication, carotid stenosis, fibromuscular dysplasias, mesenteric vascular occlusion, Moyamoya disease, renal artery obstruction, retinal artery occlusion, and thromboangiitis obliterans.

Cerebrovascular disorders include, but are not limited to, carotid artery diseases, cerebral amyloid angiopathy, cerebral aneurysm, cerebral anoxia, cerebral arteriosclerosis, cerebral arteriovenous malformation, cerebral artery diseases, cerebral embolism and thrombosis, carotid artery thrombosis, sinus thrombosis, Wallenberg's syndrome, cerebral hemorrhage, epidural hematoma, subdural hematoma, subaraxhnoid hemorrhage, cerebral infarction, cerebral ischemia (including transient), subclavian steal syndrome, periventricular leukomalacia, vascular headache, cluster headache, migraine, and vertebrobasilar insufficiency.

Embolisms include, but are not limited to, air embolisms, amniotic fluid embolisms, cholesterol embolisms, blue toe syndrome, fat embolisms, pulmonary embolisms, and thromoboembolisms. Thrombosis include, but are not limited to, coronary thrombosis, hepatic vein thrombosis, retinal vein occlusion, carotid artery thrombosis, sinus thrombosis, Wallenberg's syndrome, and thrombophlebitis.

Ischemic disorders include, but are not limited to, cerebral ischemia, ischemic colitis, compartment syndromes, anterior compartment syndrome, myocardial ischemia, reperfusion injuries, and peripheral limb ischemia. Vasculitis includes, but is not limited to, aortitis, arteritis, Behcet's Syndrome, Churg-Strauss Syndrome, mucocutaneous lymph node syndrome, thromboangiitis obliterans, hypersensitivity vasculitis, Schoenlein-Henoch purpura, allergic cutaneous vasculitis, and Wegener's granulomatosis.

Polypeptides may be administered using any method known in the art, including, but not limited to, direct needle injection at the delivery site, intravenous injection, topical administration, catheter infusion, biolistic injectors, particle accelerators, gelfoam sponge depots, other commercially available depot materials, osmotic pumps, oral or suppositorial solid pharmaceutical formulations, decanting or topical applications during surgery, aerosol delivery. Such methods are known in the art. Polypeptides may be administered as part of a Therapeutic,

described in more detail below. Methods of delivering polynucleotides are described in more detail herein.

Wound Healing and Epithelial Cell Proliferation

In accordance with yet a further aspect of the present invention, there is provided a process for utilizing polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, for therapeutic purposes, for example, to stimulate epithelial cell proliferation and basal keratinocytes for the purpose of wound healing, and to stimulate hair follicle production and healing of dermal wounds. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, may be clinically useful in stimulating wound healing including surgical wounds, excisional wounds, deep wounds involving damage of the dermis and epidermis, eye tissue wounds, dental tissue wounds, oral cavity wounds, diabetic ulcers, dermal ulcers, cubitus ulcers, arterial ulcers, venous stasis ulcers, burns resulting from heat exposure or chemicals, and other abnormal wound healing conditions such as uremia, malnutrition, vitamin deficiencies and complications associated with systemic treatment with steroids, radiation therapy and antineoplastic drugs and antimetabolites. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to promote dermal reestablishment subsequent to dermal loss

Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to increase the adherence of skin grafts to a wound bed and to stimulate re-epithelialization from the wound bed. The following are types of grafts that polynucleotides or polypeptides, agonists or antagonists of the present invention, could be used to increase adherence to a wound bed: autografts, artificial skin, allografts, autodermic graft, autoepdermic grafts, avacular grafts, Blair-Brown grafts, bone graft, brephoplastic grafts, cutis graft, delayed graft, dermic graft, epidermic graft, fascia graft, full thickness graft, heterologous graft, xenograft, homologous graft, hyperplastic graft, lamellar graft, mesh graft, mucosal graft, Ollier-Thiersch graft, omenpal graft, patch graft, pedicle graft, penetrating graft, split skin graft, thick split graft. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, can be used to promote skin strength and to improve the appearance of aged skin.

It is believed that polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, will also produce changes in hepatocyte proliferation, and epithelial cell proliferation in the lung, breast, pancreas, stomach, small intestine, and large intestine. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could promote proliferation of epithelial cells such as sebocytes, hair follicles, hepatocytes, type II pneumocytes, mucin-producing goblet cells, and other epithelial cells and their progenitors contained within the skin, lung, liver, and gastrointestinal tract. Polynucleotides or polypeptides,

agonists or antagonists of the present invention, may promote proliferation of endothelial cells, keratinocytes, and basal keratinocytes.

Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could also be used to reduce the side effects of gut toxicity that result from radiation, chemotherapy treatments or viral infections. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, may have a cytoprotective effect on the small intestine mucosa. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, may also stimulate healing of mucositis (mouth ulcers) that result from chemotherapy and viral infections.

5

10

15

20

25

30

35

Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could further be used in full regeneration of skin in full and partial thickness skin defects, including burns, (i.e., repopulation of hair follicles, sweat glands, and sebaceous glands), treatment of other skin defects such as psoriasis. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to treat epidermolysis bullosa, a defect in adherence of the epidermis to the underlying dermis which results in frequent, open and painful blisters by accelerating reepithelialization of these lesions. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could also be used to treat gastric and doudenal ulcers and help heal by scar formation of the mucosal lining and regeneration of glandular mucosa and duodenal mucosal lining more rapidly. Inflammatory bowel diseases. such as Crohn's disease and ulcerative colitis, are diseases which result in destruction of the mucosal surface of the small or large intestine, respectively. Thus, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to promote the resurfacing of the mucosal surface to aid more rapid healing and to prevent progression of inflammatory bowel disease. Treatment with polynucleotides or polypeptides, agonists or antagonists of the present invention, is expected to have a significant effect on the production of mucus throughout the gastrointestinal tract and could be used to protect the intestinal mucosa from injurious substances that are ingested or following surgery. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to treat diseases associate with the under expression.

Moreover, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to prevent and heal damage to the lungs due to various pathological states. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, which could stimulate proliferation and differentiation and promote the repair of alveoli and brochiolar epithelium to prevent or treat acute or chronic lung damage. For example, emphysema, which results in the progressive loss of aveoli, and inhalation injuries, i.e., resulting from smoke inhalation and burns, that cause necrosis of the bronchiolar epithelium and alveoli could be effectively treated using polynucleotides or polypeptides, agonists or antagonists of the

present invention. Also, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to stimulate the proliferation of and differentiation of type II pneumocytes, which may help treat or prevent disease such as hyaline membrane diseases, such as infant respiratory distress syndrome and bronchopulmonary displasia, in premature infants.

Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could stimulate the proliferation and differentiation of hepatocytes and, thus, could be used to alleviate or treat liver diseases and pathologies such as fulminant liver failure caused by cirrhosis, liver damage caused by viral hepatitis and toxic substances (i.e., acetaminophen, carbon tetraholoride and other hepatotoxins known in the art).

In addition, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used treat or prevent the onset of diabetes mellitus. In patients with newly diagnosed Types I and II diabetes, where some islet cell function remains, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to maintain the islet function so as to alleviate, delay or prevent permanent manifestation of the disease. Also, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used as an auxiliary in islet cell transplantation to improve or promote islet cell function.

Chemotaxis

5

10

15

20

25

30

35

Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention may have chemotaxis activity. A chemotaxic molecule attracts or mobilizes cells (e.g., monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells) to a particular site in the body, such as inflammation, infection, or site of hyperproliferation. The mobilized cells can then fight off and/or heal the particular trauma or abnormality.

Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention may increase chemotaxic activity of particular cells. These chemotactic molecules can then be used to treat inflammation, infection, hyperproliferative disorders, or any immune system disorder by increasing the number of cells targeted to a particular location in the body. For example, chemotaxic molecules can be used to treat wounds and other trauma to tissues by attracting immune cells to the injured location. Chemotactic molecules of the present invention can also attract fibroblasts, which can be used to treat wounds.

It is also contemplated that polynucleotides or polypeptides, as well as agonists or antagonists of the present invention may inhibit chemotactic activity. These molecules could also be used to treat disorders. Thus, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention could be used as an inhibitor of chemotaxis.

Binding Activity

5

10

15

20

25

30

35

A polypeptide of the present invention may be used to screen for molecules that bind to the polypeptide or for molecules to which the polypeptide binds. The binding of the polypeptide and the molecule may activate (agonist), increase, inhibit (antagonist), or decrease activity of the polypeptide or the molecule bound. Examples of such molecules include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

Preferably, the molecule is closely related to the natural ligand of the polypeptide, e.g., a fragment of the ligand, or a natural substrate, a ligand, a structural or functional mimetic. (See, Coligan et al., Current Protocols in Immunology 1(2):Chapter 5 (1991)). Similarly, the molecule can be closely related to the natural receptor to which the polypeptide binds, or at least, a fragment of the receptor capable of being bound by the polypeptide (e.g., active site). In either case, the molecule can be rationally designed using known techniques.

Preferably, the screening for these molecules involves producing appropriate cells which express the polypeptide. Preferred cells include cells from mammals, yeast, Drosophila, or *E. coli*. Cells expressing the polypeptide (or cell membrane containing the expressed polypeptide) are then preferably contacted with a test compound potentially containing the molecule to observe binding, stimulation, or inhibition of activity of either the polypeptide or the molecule.

The assay may simply test binding of a candidate compound to the polypeptide, wherein binding is detected by a label, or in an assay involving competition with a labeled competitor. Further, the assay may test whether the candidate compound results in a signal generated by binding to the polypeptide.

Alternatively, the assay can be carried out using cell-free preparations, polypeptide/molecule affixed to a solid support, chemical libraries, or natural product mixtures. The assay may also simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide, measuring polypeptide/molecule activity or binding, and comparing the polypeptide/molecule activity or binding to a standard.

Preferably, an ELISA assay can measure polypeptide level or activity in a sample (e.g., biological sample) using a monoclonal or polyclonal antibody. The antibody can measure polypeptide level or activity by either binding, directly or indirectly, to the polypeptide or by competing with the polypeptide for a substrate.

Additionally, the receptor to which the polypeptide of the present invention binds can be identified by numerous methods known to those of skill in the art, for example, ligand panning and FACS sorting (Coligan, et al., Current Protocols in Immun., 1(2), Chapter 5, (1991)). For example, expression cloning is employed wherein polyadenylated RNA is prepared from a cell responsive to the polypeptides, for example, NIH3T3 cells which are known to contain multiple receptors for the FGF family proteins, and SC-3 cells, and a cDNA library created from this RNA is divided into pools and used to transfect COS cells or other cells that are not responsive to the

polypeptides. Transfected cells which are grown on glass slides are exposed to the polypeptide of the present invention, after they have been labeled. The polypeptides can be labeled by a variety of means including iodination or inclusion of a recognition site for a site-specific protein kinase.

Following fixation and incubation, the slides are subjected to auto-radiographic analysis. Positive pools are identified and sub-pools are prepared and re-transfected using an iterative sub-pooling and re-screening process, eventually yielding a single clones that encodes the putative receptor.

5

10

15

20

25

30

35

As an alternative approach for receptor identification, the labeled polypeptides can be photoaffinity linked with cell membrane or extract preparations that express the receptor molecule. Cross-linked material is resolved by PAGE analysis and exposed to X-ray film. The labeled complex containing the receptors of the polypeptides can be excised, resolved into peptide fragments, and subjected to protein microsequencing. The amino acid sequence obtained from microsequencing would be used to design a set of degenerate oligonucleotide probes to screen a cDNA library to identify the genes encoding the putative receptors.

Moreover, the techniques of gene-shuffling, motif-shuffling, exon-shuffling, and/or codon-shuffling (collectively referred to as "DNA shuffling") may be employed to modulate the activities of the polypeptide of the present invention thereby effectively generating agonists and antagonists of the polypeptide of the present invention. See generally, U.S. Patent Nos. 5,605,793, 5,811,238, 5,830,721, 5,834,252, and 5,837,458, and Patten, P. A., et al., Curr. Opinion Biotechnol. 8:724-33 (1997); Harayama, S. Trends Biotechnol. 16(2):76-82 (1998); Hansson, L. O., et al., J. Mol. Biol. 287:265-76 (1999); and Lorenzo, M. M. and Blasco, R. Biotechniques 24(2):308-13 (1998); each of these patents and publications are hereby incorporated by reference). In one embodiment, alteration of polynucleotides and corresponding polypeptides may be achieved by DNA shuffling. DNA shuffling involves the assembly of two or more DNA segments into a desired molecule by homologous, or site-specific, recombination. In another embodiment, polynucleotides and corresponding polypeptides may be altered by being subjected to random mutagenesis by error-prone PCR, random nucleotide insertion or other methods prior to recombination. In another embodiment, one or more components, motifs, sections, parts, domains, fragments, etc., of the polypeptide of the present invention may be recombined with one or more components, motifs, sections, parts, domains, fragments, etc. of one or more heterologous molecules. In preferred embodiments, the heterologous molecules are family members. In further preferred embodiments, the heterologous molecule is a growth factor such as, for example, platelet-derived growth factor (PDGF), insulin-like growth factor (IGF-I), transforming growth factor (TGF)-alpha, epidermal growth factor (EGF), fibroblast growth factor (FGF), TGF-beta, bone morphogenetic protein (BMP)-2, BMP-4, BMP-5, BMP-6, BMP-7, activins A and B, decapentaplegic(dpp), 60A, OP-2, dorsalin, growth differentiation factors (GDFs), nodal, MIS,

inhibin-alpha, TGF-beta1, TGF-beta2, TGF-beta3, TGF-beta5, and glial-derived neurotrophic factor (GDNF).

Other preferred fragments are biologically active fragments of the polypeptide of the present invention. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.

5

10

15

20

25

30

35

Additionally, this invention provides a method of screening compounds to identify those which modulate the action of the polypeptide of the present invention. An example of such an assay comprises combining a mammalian fibroblast cell, a the polypeptide of the present invention, the compound to be screened and ³[H] thymidine under cell culture conditions where the fibroblast cell would normally proliferate. A control assay may be performed in the absence of the compound to be screened and compared to the amount of fibroblast proliferation in the presence of the compound to determine if the compound stimulates proliferation by determining the uptake of ³[H] thymidine in each case. The amount of fibroblast cell proliferation is measured by liquid scintillation chromatography which measures the incorporation of ³[H] thymidine. Both agonist and antagonist compounds may be identified by this procedure.

In another method, a mammalian cell or membrane preparation expressing a receptor for a polypeptide of the present invention is incubated with a labeled polypeptide of the present invention in the presence of the compound. The ability of the compound to enhance or block this interaction could then be measured. Alternatively, the response of a known second messenger system following interaction of a compound to be screened and the receptor is measured and the ability of the compound to bind to the receptor and elicit a second messenger response is measured to determine if the compound is a potential agonist or antagonist. Such second messenger systems include but are not limited to, cAMP guanylate cyclase, ion channels or phosphoinositide hydrolysis.

All of these above assays can be used as diagnostic or prognostic markers. The molecules discovered using these assays can be used to treat disease or to bring about a particular result in a patient (e.g., blood vessel growth) by activating or inhibiting the polypeptide/molecule. Moreover, the assays can discover agents which may inhibit or enhance the production of the polypeptides of the invention from suitably manipulated cells or tissues.

Therefore, the invention includes a method of identifying compounds which bind to a polypeptide of the invention comprising the steps of: (a) incubating a candidate binding compound with a polypeptide of the present invention; and (b) determining if binding has occurred. Moreover, the invention includes a method of identifying agonists/antagonists comprising the steps of: (a) incubating a candidate compound with a polypeptide of the present

invention, (b) assaying a biological activity, and (b) determining if a biological activity of the polypeptide has been altered.

Targeted Delivery

5

10

15

20

25

30

35

In another embodiment, the invention provides a method of delivering compositions to targeted cells expressing a receptor for a polypeptide of the invention, or cells expressing a cell bound form of a polypeptide of the invention.

As discussed herein, polypeptides or antibodies of the invention may be associated with heterologous polypeptides, heterologous nucleic acids, toxins, or prodrugs via hydrophobic, hydrophilic, ionic and/or covalent interactions. In one embodiment, the invention provides a method for the specific delivery of compositions of the invention to cells by administering polypeptides of the invention (including antibodies) that are associated with heterologous polypeptides or nucleic acids. In one example, the invention provides a method for delivering a therapeutic protein into the targeted cell. In another example, the invention provides a method for delivering a single stranded nucleic acid (e.g., antisense or ribozymes) or double stranded nucleic acid (e.g., DNA that can integrate into the cell's genome or replicate episomally and that can be transcribed) into the targeted cell.

In another embodiment, the invention provides a method for the specific destruction of cells (e.g., the destruction of tumor cells) by administering polypeptides of the invention (e.g., polypeptides of the invention or antibodies of the invention) in association with toxins or cytotoxic prodrugs.

By "toxin" is meant compounds that bind and activate endogenous cytotoxic effector systems, radioisotopes, holotoxins, modified toxins, catalytic subunits of toxins, or any molecules or enzymes not normally present in or on the surface of a cell that under defined conditions cause the cell's death. Toxins that may be used according to the methods of the invention include, but are not limited to, radioisotopes known in the art, compounds such as, for example, antibodies (or complement fixing containing portions thereof) that bind an inherent or induced endogenous cytotoxic effector system, thymidine kinase, endonuclease, RNAse, alpha toxin, ricin, abrin, *Pseudomonas* exotoxin A, diphtheria toxin, saporin, momordin, gelonin, pokeweed antiviral protein, alpha-sarcin and cholera toxin. By "cytotoxic prodrug" is meant a non-toxic compound that is converted by an enzyme, normally present in the cell, into a cytotoxic compound. Cytotoxic prodrugs that may be used according to the methods of the invention include, but are not limited to, glutamyl derivatives of benzoic acid mustard alkylating agent, phosphate derivatives of etoposide or mitomycin C, cytosine arabinoside, daunorubisin, and phenoxyacetamide derivatives of doxorubicin.

Drug Screening

5

10

15

20

25

30

35

Further contemplated is the use of the polypeptides of the present invention, or the polynucleotides encoding these polypeptides, to screen for molecules which modify the activities of the polypeptides of the present invention. Such a method would include contacting the polypeptide of the present invention with a selected compound(s) suspected of having antagonist or agonist activity, and assaying the activity of these polypeptides following binding.

This invention is particularly useful for screening therapeutic compounds by using the polypeptides of the present invention, or binding fragments thereof, in any of a variety of drug screening techniques. The polypeptide or fragment employed in such a test may be affixed to a solid support, expressed on a cell surface, free in solution, or located intracellularly. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide or fragment. Drugs are screened against such transformed cells in competitive binding assays. One may measure, for example, the formulation of complexes between the agent being tested and a polypeptide of the present invention.

Thus, the present invention provides methods of screening for drugs or any other agents which affect activities mediated by the polypeptides of the present invention. These methods comprise contacting such an agent with a polypeptide of the present invention or a fragment thereof and assaying for the presence of a complex between the agent and the polypeptide or a fragment thereof, by methods well known in the art. In such a competitive binding assay, the agents to screen are typically labeled. Following incubation, free agent is separated from that present in bound form, and the amount of free or uncomplexed label is a measure of the ability of a particular agent to bind to the polypeptides of the present invention.

Another technique for drug screening provides high throughput screening for compounds having suitable binding affinity to the polypeptides of the present invention, and is described in great detail in European Patent Application 84/03564, published on September 13, 1984, which is incorporated herein by reference herein. Briefly stated, large numbers of different small peptide test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. The peptide test compounds are reacted with polypeptides of the present invention and washed. Bound polypeptides are then detected by methods well known in the art. Purified polypeptides are coated directly onto plates for use in the aforementioned drug screening techniques. In addition, non-neutralizing antibodies may be used to capture the peptide and immobilize it on the solid support.

This invention also contemplates the use of competitive drug screening assays in which neutralizing antibodies capable of binding polypeptides of the present invention specifically compete with a test compound for binding to the polypeptides or fragments thereof. In this

manner, the antibodies are used to detect the presence of any peptide which shares one or more antigenic epitopes with a polypeptide of the invention.

Antisense And Ribozyme (Antagonists)

5

10

15

20

25

30

35

In specific embodiments, antagonists according to the present invention are nucleic acids corresponding to the sequences contained in SEQ ID NO:X, or the complementary strand thereof, and/or to cDNA sequences contained in cDNA ATCC Deposit No:Z identified for example, in Table 1A and/or 1B. In one embodiment, antisense sequence is generated internally, by the organism, in another embodiment, the antisense sequence is separately administered (see, for example, O'Connor, J., Neurochem. 56:560 (1991). Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988). Antisense technology can be used to control gene expression through antisense DNA or RNA, or through triple-helix formation. Antisense techniques are discussed for example, in Okano, J., Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988). Triple helix formation is discussed in, for instance, Lee et al., Nucleic Acids Research 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1300 (1991). The methods are based on binding of a polynucleotide to a complementary DNA or RNA.

For example, the use of c-myc and c-myb antisense RNA constructs to inhibit the growth of the non-lymphocytic leukemia cell line HL-60 and other cell lines was previously described. (Wickstrom et al. (1988); Anfossi et al. (1989)). These experiments were performed in vitro by incubating cells with the oligoribonucleotide. A similar procedure for *in vivo* use is described in WO 91/15580. Briefly, a pair of oligonucleotides for a given antisense RNA is produced as follows: A sequence complimentary to the first 15 bases of the open reading frame is flanked by an EcoR1 site on the 5 end and a HindIII site on the 3 end. Next, the pair of oligonucleotides is heated at 90°C for one minute and then annealed in 2X ligation buffer (20mM TRIS HCl pH 7.5, 10mM MgCl2, 10MM dithiothreitol (DTT) and 0.2 mM ATP) and then ligated to the EcoR1/Hind III site of the retroviral vector PMV7 (WO 91/15580).

For example, the 5' coding portion of a polynucleotide that encodes the polypeptide of the present invention may be used to design an antisense RNA oligonucleotide of from about 10 to 40 base pairs in length. A DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription thereby preventing transcription and the production of the receptor. The antisense RNA oligonucleotide hybridizes to the mRNA *in vivo* and blocks translation of the mRNA molecule into receptor polypeptide.

In one embodiment, the antisense nucleic acid of the invention is produced intracellularly by transcription from an exogenous sequence. For example, a vector or a portion thereof, is transcribed, producing an antisense nucleic acid (RNA) of the invention. Such a vector would contain a sequence encoding the antisense nucleic acid. Such a vector can remain episomal

or become chromosomally integrated, as long as it can be transcribed to produce the desired antisense RNA. Such vectors can be constructed by recombinant DNA technology methods standard in the art. Vectors can be plasmid, viral, or others known in the art, used for replication and expression in vertebrate cells. Expression of the sequence encoding the polypeptide of the present invention or fragments thereof, can be by any promoter known in the art to act in vertebrate, preferably human cells. Such promoters can be inducible or constitutive. Such promoters include, but are not limited to, the SV40 early promoter region (Bernoist and Chambon, Nature 29:304-310 (1981), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto et al., Cell 22:787-797 (1980), the herpes thymidine promoter (Wagner et al., Proc. Natl. Acad. Sci. U.S.A. 78:1441-1445 (1981), the regulatory sequences of the metallothionein gene (Brinster, et al., Nature 296:39-42 (1982)), etc.

The antisense nucleic acids of the invention comprise a sequence complementary to at least a portion of an RNA transcript of a gene of the present invention. However, absolute complementarity, although preferred, is not required. A sequence "complementary to at least a portion of an RNA," referred to herein, means a sequence having sufficient complementarity to be able to hybridize with the RNA, forming a stable duplex; in the case of double stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed. The ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the larger the hybridizing nucleic acid, the more base mismatches with a RNA it may contain and still form a stable duplex (or triplex as the case may be). One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex.

Oligonucleotides that are complementary to the 5' end of the message, e.g., the 5' untranslated sequence up to and including the AUG initiation codon, should work most efficiently at inhibiting translation. However, sequences complementary to the 3' untranslated sequences of mRNAs have been shown to be effective at inhibiting translation of mRNAs as well. See generally, Wagner, R., 1994, Nature 372:333-335. Thus, oligonucleotides complementary to either the 5'- or 3'- non- translated, non-coding regions of polynucleotide sequences described herein could be used in an antisense approach to inhibit translation of endogenous mRNA. Oligonucleotides complementary to the 5' untranslated region of the mRNA should include the complement of the AUG start codon. Antisense oligonucleotides complementary to mRNA coding regions are less efficient inhibitors of translation but could be used in accordance with the invention. Whether designed to hybridize to the 5'-, 3'- or coding region of mRNA of the present invention, antisense nucleic acids should be at least six nucleotides in length, and are preferably oligonucleotides ranging from 6 to about 50 nucleotides in length. In specific aspects the oligonucleotide is at least 10 nucleotides, at least 17 nucleotides, at least 25 nucleotides or at least 50 nucleotides.

The polynucleotides of the invention can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, hybridization, etc. The oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors *in vivo*), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84:648-652; PCT Publication No. WO88/09810, published December 15, 1988) or the blood-brain barrier (see, e.g., PCT Publication No. WO89/10134, published April 25, 1988), hybridization-triggered cleavage agents. (See, e.g., Krol et al., 1988, BioTechniques 6:958-976) or intercalating agents. (See, e.g., Zon, 1988, Pharm. Res. 5:539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.

5

10

15

20

25

30

35

The antisense oligonucleotide may comprise at least one modified base moiety which is selected from the group including, but not limited to, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine.

The antisense oligonucleotide may also comprise at least one modified sugar moiety selected from the group including, but not limited to, arabinose, 2-fluoroarabinose, xylulose, and hexose.

In yet another embodiment, the antisense oligonucleotide comprises at least one modified phosphate backbone selected from the group including, but not limited to, a phosphorothioate, a phosphorodithioate, a phosphoramidate, a phosphoramidate, a phosphoramidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.

In yet another embodiment, the antisense oligonucleotide is an a-anomeric oligonucleotide. An a-anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual b-units, the strands run parallel to each other (Gautier et al., 1987, Nucl. Acids Res. 15:6625-6641). The oligonucleotide is a 2'-0-

methylribonucleotide (Inoue et al., 1987, Nucl. Acids Res. 15:6131-6148), or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett. 215:327-330).

Polynucleotides of the invention may be synthesized by standard methods known in the art, e.g. by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides may be synthesized by the method of Stein et al. (1988, Nucl. Acids Res. 16:3209), methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.

5

10

15

20

25

30

35

While antisense nucleotides complementary to the coding region sequence could be used, those complementary to the transcribed untranslated region are most preferred.

Potential antagonists according to the invention also include catalytic RNA, or a ribozyme (See, e.g., PCT International Publication WO 90/11364, published October 4, 1990; Sarver et al, Science 247:1222-1225 (1990). While ribozymes that cleave mRNA at site specific recognition sequences can be used to destroy mRNAs, the use of hammerhead ribozymes is preferred. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The sole requirement is that the target mRNA have the following sequence of two bases: 5'-UG-3'. The construction and production of hammerhead ribozymes is well known in the art and is described more fully in Haseloff and Gerlach, Nature 334:585-591 (1988). There are numerous potential hammerhead ribozyme cleavage sites within the nucleotide sequence of SEQ ID NO:X. Preferably, the ribozyme is engineered so that the cleavage recognition site is located near the 5' end of the mRNA; i.e., to increase efficiency and minimize the intracellular accumulation of non-functional mRNA transcripts.

As in the antisense approach, the ribozymes of the invention can be composed of modified oligonucleotides (e.g., for improved stability, targeting, etc.) and should be delivered to cells which express *in vivo*. DNA constructs encoding the ribozyme may be introduced into the cell in the same manner as described above for the introduction of antisense encoding DNA. A preferred method of delivery involves using a DNA construct "encoding" the ribozyme under the control of a strong constitutive promoter, such as, for example, pol III or pol II promoter, so that transfected cells will produce sufficient quantities of the ribozyme to destroy endogenous messages and inhibit translation. Since ribozymes unlike antisense molecules, are catalytic, a lower intracellular concentration is required for efficiency.

Antagonist/agonist compounds may be employed to inhibit the cell growth and proliferation effects of the polypeptides of the present invention on neoplastic cells and tissues, i.e. stimulation of angiogenesis of tumors, and, therefore, retard or prevent abnormal cellular growth and proliferation, for example, in tumor formation or growth.

The antagonist/agonist may also be employed to prevent hyper-vascular diseases, and prevent the proliferation of epithelial lens cells after extracapsular cataract surgery. Prevention of the mitogenic activity of the polypeptides of the present invention may also be desirous in cases such as restenosis after balloon angioplasty.

The antagonist/agonist may also be employed to prevent the growth of scar tissue during wound healing.

The antagonist/agonist may also be employed to treat the diseases described herein.

Thus, the invention provides a method of treating disorders or diseases, including but not limited to the disorders or diseases listed throughout this application, associated with overexpression of a polynucleotide of the present invention by administering to a patient (a) an antisense molecule directed to the polynucleotide of the present invention, and/or (b) a ribozyme directed to the polynucleotide of the present invention.

Binding Peptides and Other Molecules

The invention also encompasses screening methods for identifying polypeptides and nonpolypeptides that bind polypeptides of the invention, and the binding molecules identified thereby. These binding molecules are useful, for example, as agonists and antagonists of the polypeptides of the invention. Such agonists and antagonists can be used, in accordance with the invention, in the therapeutic embodiments described in detail, below.

This method comprises the steps of:

- a. contacting polypeptides of the invention with a plurality of molecules; and
- b. identifying a molecule that binds the polypeptides of the invention.

The step of contacting the polypeptides of the invention with the plurality of molecules may be effected in a number of ways. For example, one may contemplate immobilizing the polypeptides on a solid support and bringing a solution of the plurality of molecules in contact with the immobilized polypeptides. Such a procedure would be akin to an affinity chromatographic process, with the affinity matrix being comprised of the immobilized polypeptides of the invention. The molecules having a selective affinity for the polypeptides can then be purified by affinity selection. The nature of the solid support, process for attachment of the polypeptides to the solid support, solvent, and conditions of the affinity isolation or selection are largely conventional and well known to those of ordinary skill in the art.

Alternatively, one may also separate a plurality of polypeptides into substantially separate fractions comprising a subset of or individual polypeptides. For instance, one can separate the plurality of polypeptides by gel electrophoresis, column chromatography, or like method known to those of ordinary skill for the separation of polypeptides. The individual polypeptides can also be produced by a transformed host cell in such a way as to be expressed on or about its outer surface (e.g., a recombinant phage). Individual isolates can then be "probed" by the

35

30

5

10

15

20

25

polypeptides of the invention, optionally in the presence of an inducer should one be required for expression, to determine if any selective affinity interaction takes place between the polypeptides and the individual clone. Prior to contacting the polypeptides with each fraction comprising individual polypeptides, the polypeptides could first be transferred to a solid support for additional convenience. Such a solid support may simply be a piece of filter membrane, such as one made of nitrocellulose or nylon. In this manner, positive clones could be identified from a collection of transformed host cells of an expression library, which harbor a DNA construct encoding a polypeptide having a selective affinity for polypeptides of the invention. Furthermore, the amino acid sequence of the polypeptide having a selective affinity for the polypeptides of the invention can be determined directly by conventional means or the coding sequence of the DNA encoding the polypeptide can frequently be determined more conveniently. The primary sequence can then be deduced from the corresponding DNA sequence. If the amino acid sequence is to be determined from the polypeptide itself, one may use microsequencing techniques. The sequencing technique may include mass spectroscopy.

In certain situations, it may be desirable to wash away any unbound polypeptides from a mixture of the polypeptides of the invention and the plurality of polypeptides prior to attempting to determine or to detect the presence of a selective affinity interaction. Such a wash step may be particularly desirable when the polypeptides of the invention or the plurality of polypeptides are bound to a solid support.

The plurality of molecules provided according to this method may be provided by way of diversity libraries, such as random or combinatorial peptide or nonpeptide libraries which can be screened for molecules that specifically bind polypeptides of the invention. Many libraries are known in the art that can be used, e.g., chemically synthesized libraries, recombinant (e.g., phage display libraries), and in vitro translation-based libraries. Examples of chemically synthesized libraries are described in Fodor et al., 1991, Science 251:767-773; Houghten et al., 1991, Nature 354:84-86; Lam et al., 1991, Nature 354:82-84; Medynski, 1994, Bio/Technology 12:709-710;Gallop et al., 1994, J. Medicinal Chemistry 37(9):1233-1251; Ohlmeyer et al., 1993, Proc. Natl. Acad. Sci. USA 90:10922-10926; Erb et al., 1994, Proc. Natl. Acad. Sci. USA 91:11422-11426; Houghten et al., 1992, Biotechniques 13:412; Jayawickreme et al., 1994, Proc. Natl. Acad. Sci. USA 91:1614-1618; Salmon et al., 1993, Proc. Natl. Acad. Sci. USA 90:11708-11712; PCT Publication No. WO 93/20242; and Brenner and Lerner, 1992, Proc. Natl. Acad. Sci. USA 89:5381-5383.

Examples of phage display libraries are described in Scott and Smith, 1990, Science 249:386-390; Devlin et al., 1990, Science, 249:404-406; Christian, R. B., et al., 1992, J. Mol. Biol. 227:711-718); Lenstra, 1992, J. Immunol. Meth. 152:149-157; Kay et al., 1993, Gene 128:59-65; and PCT Publication No. WO 94/18318 dated Aug. 18, 1994.

In vitro translation-based libraries include but are not limited to those described in PCT

Publication No. WO 91/05058 dated Apr. 18, 1991; and Mattheakis et al., 1994, Proc. Natl. Acad. Sci. USA 91:9022-9026.

By way of examples of nonpeptide libraries, a benzodiazepine library (see e.g., Bunin et al., 1994, Proc. Natl. Acad. Sci. USA 91:4708-4712) can be adapted for use. Peptoid libraries (Simon et al., 1992, Proc. Natl. Acad. Sci. USA 89:9367-9371) can also be used. Another example of a library that can be used, in which the amide functionalities in peptides have been permethylated to generate a chemically transformed combinatorial library, is described by Ostresh et al. (1994, Proc. Natl. Acad. Sci. USA 91:11138-11142).

5

10

15

20

25

30

35

The variety of non-peptide libraries that are useful in the present invention is great. For example, Ecker and Crooke, 1995, Bio/Technology 13:351-360 list benzodiazepines, hydantoins, piperazinediones, biphenyls, sugar analogs, beta-mercaptoketones, arylacetic acids, acylpiperidines, benzopyrans, cubanes, xanthines, aminimides, and oxazolones as among the chemical species that form the basis of various libraries.

Non-peptide libraries can be classified broadly into two types: decorated monomers and oligomers. Decorated monomer libraries employ a relatively simple scaffold structure upon which a variety functional groups is added. Often the scaffold will be a molecule with a known useful pharmacological activity. For example, the scaffold might be the benzodiazepine structure.

Non-peptide oligomer libraries utilize a large number of monomers that are assembled together in ways that create new shapes that depend on the order of the monomers. Among the monomer units that have been used are carbamates, pyrrolinones, and morpholinos. Peptoids, peptide-like oligomers in which the side chain is attached to the alpha amino group rather than the alpha carbon, form the basis of another version of non-peptide oligomer libraries. The first non-peptide oligomer libraries utilized a single type of monomer and thus contained a repeating backbone. Recent libraries have utilized more than one monomer, giving the libraries added flexibility.

Screening the libraries can be accomplished by any of a variety of commonly known methods. See, e.g., the following references, which disclose screening of peptide libraries: Parmley and Smith, 1989, Adv. Exp. Med. Biol. 251:215-218; Scott and Smith, 1990, Science 249:386-390; Fowlkes et al., 1992; BioTechniques 13:422-427; Oldenburg et al., 1992, Proc. Natl. Acad. Sci. USA 89:5393-5397; Yu et al., 1994, Cell 76:933-945; Staudt et al., 1988, Science 241:577-580; Bock et al., 1992, Nature 355:564-566; Tuerk et al., 1992, Proc. Natl. Acad. Sci. USA 89:6988-6992; Ellington et al., 1992, Nature 355:850-852; U.S. Pat. No. 5,096,815, U.S. Pat. No. 5,223,409, and U.S. Pat. No. 5,198,346, all to Ladner et al.; Rebar and Pabo, 1993, Science 263:671-673; and CT Publication No. WO 94/18318.

In a specific embodiment, screening to identify a molecule that binds polypeptides of the invention can be carried out by contacting the library members with polypeptides of the invention immobilized on a solid phase and harvesting those library members that bind to the polypeptides of the invention. Examples of such screening methods, termed "panning" techniques are described by way of example in Parmley and Smith, 1988, Gene 73:305-318; Fowlkes et al., 1992, BioTechniques 13:422-427; PCT Publication No. WO 94/18318; and in references cited herein.

In another embodiment, the two-hybrid system for selecting interacting proteins in yeast (Fields and Song, 1989, Nature 340:245-246; Chien et al., 1991, Proc. Natl. Acad. Sci. USA 88:9578-9582) can be used to identify molecules that specifically bind to polypeptides of the invention.

Where the binding molecule is a polypeptide, the polypeptide can be conveniently selected from any peptide library, including random peptide libraries, combinatorial peptide libraries, or biased peptide libraries. The term "biased" is used herein to mean that the method of generating the library is manipulated so as to restrict one or more parameters that govern the diversity of the resulting collection of molecules, in this case peptides.

Thus, a truly random peptide library would generate a collection of peptides in which the probability of finding a particular amino acid at a given position of the peptide is the same for all 20 amino acids. A bias can be introduced into the library, however, by specifying, for example, that a lysine occur every fifth amino acid or that positions 4, 8, and 9 of a decapeptide library be fixed to include only arginine. Clearly, many types of biases can be contemplated, and the present invention is not restricted to any particular bias. Furthermore, the present invention contemplates specific types of peptide libraries, such as phage displayed peptide libraries and those that utilize a DNA construct comprising a lambda phage vector with a DNA insert.

As mentioned above, in the case of a binding molecule that is a polypeptide, the polypeptide may have about 6 to less than about 60 amino acid residues, preferably about 6 to about 10 amino acid residues, and most preferably, about 6 to about 22 amino acids. In another embodiment, a binding polypeptide has in the range of 15-100 amino acids, or 20-50 amino acids.

The selected binding polypeptide can be obtained by chemical synthesis or recombinant expression.

Other Activities

5

10

15

20

25

30

35

A polypeptide, polynucleotide, agonist, or antagonist of the present invention, as a result of the ability to stimulate vascular endothelial cell growth, may be employed in treatment for stimulating re-vascularization of ischemic tissues due to various disease conditions such as thrombosis, arteriosclerosis, and other cardiovascular conditions. The polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed to stimulate angiogenesis and limb regeneration, as discussed above.

A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed for treating wounds due to injuries, burns, post-operative tissue repair, and ulcers since they are mitogenic to various cells of different origins, such as fibroblast cells and skeletal muscle cells, and therefore, facilitate the repair or replacement of damaged or diseased tissue.

A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed stimulate neuronal growth and to treat and prevent neuronal damage which occurs in certain neuronal disorders or neuro-degenerative conditions such as Alzheimer's disease, Parkinson's disease, and AIDS-related complex. A polypeptide, polynucleotide, agonist, or antagonist of the present invention may have the ability to stimulate chondrocyte growth, therefore, they may be employed to enhance bone and periodontal regeneration and aid in tissue transplants or bone grafts.

A polypeptide, polynucleotide, agonist, or antagonist of the present invention may be also be employed to prevent skin aging due to sunburn by stimulating keratinocyte growth.

A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed for preventing hair loss, since FGF family members activate hair-forming cells and promotes melanocyte growth. Along the same lines, a polypeptide, polynucleotide, agonist, or antagonist of the present invention may be employed to stimulate growth and differentiation of hematopoietic cells and bone marrow cells when used in combination with other cytokines.

A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed to maintain organs before transplantation or for supporting cell culture of primary tissues. A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed for inducing tissue of mesodermal origin to differentiate in early embryos.

A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also increase or decrease the differentiation or proliferation of embryonic stem cells, besides, as discussed above, hematopoietic lineage.

A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be used to modulate mammalian characteristics, such as body height, weight, hair color, eye color, skin, percentage of adipose tissue, pigmentation, size, and shape (e.g., cosmetic surgery). Similarly, a polypeptide, polynucleotide, agonist, or antagonist of the present invention may be used to modulate mammalian metabolism affecting catabolism, anabolism, processing, utilization, and storage of energy.

A polypeptide, polynucleotide, agonist, or antagonist of the present invention may be used to change a mammal's mental state or physical state by influencing biorhythms, caricadic rhythms, depression (including depressive disorders), tendency for violence, tolerance for pain, reproductive capabilities (preferably by Activin or Inhibin-like activity), hormonal or endocrine levels, appetite, libido, memory, stress, or other cognitive qualities.

A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be used as a food additive or preservative, such as to increase or decrease storage capabilities, fat content, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional components.

35

5

10

15

20

25

30

The above-recited applications have uses in a wide variety of hosts. Such hosts include, but are not limited to, human, murine, rabbit, goat, guinea pig, camel, horse, mouse, rat, hamster, pig, micro-pig, chicken, goat, cow, sheep, dog, cat, non-human primate, and human. In specific embodiments, the host is a mouse, rabbit, goat, guinea pig, chicken, rat, hamster, pig, sheep, dog or cat. In preferred embodiments, the host is a mammal. In most preferred embodiments, the host is a human.

Other Preferred Embodiments

5

10

15

20

25

30

35

Other preferred embodiments of the claimed invention include an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 50 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X or the complementary strand thereto, the nucleotide sequence as defined in column 5 of Table 1B.1 or columns 8 and 9 of Table 2 or the complementary strand thereto, and/or cDNA contained in ATCC Deposit No:Z.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of the portion of SEQ ID NO:X as defined in column 5, "ORF (From-To)", in Table 1B.1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of the portion of SEQ ID NO:X as defined in columns 8 and 9, "NT From" and "NT To" respectively, in Table 2.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 150 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X or the complementary strand thereto, the nucleotide sequence as defined in column 5 of Table 1B.1 or columns 8 and 9 of Table 2 or the complementary strand thereto, and/or cDNA contained in ATCC Deposit No:Z.

Further preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 500 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X or the complementary strand thereto, the nucleotide sequence as defined in column 5 of Table 1B.1 or columns 8 and 9 of Table 2 or the complementary strand thereto, and/or cDNA contained in ATCC Deposit No:Z.

A further preferred embodiment is a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of the portion of SEQ ID NO:X defined in column 5, "ORF (From-To)", in Table 1B.1.

A further preferred embodiment is a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of the portion of SEQ ID NO:X defined in columns 8 and 9, "NT From" and "NT To", respectively, in Table 2.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence of SEQ ID NO:X or the complementary strand thereto, the nucleotide sequence as defined in column 5 of Table 1B.1 or columns 8 and 9 of Table 2 or the complementary strand thereto, and/or cDNA contained in ATCC Deposit No:Z.

5

10

15

20

25

30

35

Also preferred is an isolated nucleic acid molecule which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising a nucleotide sequence of SEQ ID NO:X or the complementary strand thereto, the nucleotide sequence as defined in column 5 of Table 1B.1 or columns 8 and 9 of Table 2 or the complementary strand thereto, and/or cDNA contained in ATCC Deposit No:Z, wherein said nucleic acid molecule which hybridizes does not hybridize under stringent hybridization conditions to a nucleic acid molecule having a nucleotide sequence consisting of only A residues or of only T residues.

Also preferred is a composition of matter comprising a DNA molecule which comprises the cDNA contained in ATCC Deposit No:Z.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides of the cDNA sequence contained in ATCC Deposit No:Z.

Also preferred is an isolated nucleic acid molecule, wherein said sequence of at least 50 contiguous nucleotides is included in the nucleotide sequence of an open reading frame sequence encoded by cDNA contained in ATCC Deposit No:Z.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 150 contiguous nucleotides in the nucleotide sequence encoded by cDNA contained in ATCC Deposit No:Z.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 500 contiguous nucleotides in the nucleotide sequence encoded by cDNA contained in ATCC Deposit No:Z.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence encoded by cDNA contained in ATCC Deposit No:Z.

A further preferred embodiment is a method for detecting in a biological sample a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X or the complementary strand thereto; the nucleotide sequence as defined in column 5 of Table 1B.1 or columns 8 and 9 of Table 2 or the complementary strand thereto; and a nucleotide sequence encoded by cDNA contained in ATCC Deposit No:Z; which method comprises a step of comparing a nucleotide sequence of at least one nucleic acid molecule in said sample with a sequence selected from said group and determining

whether the sequence of said nucleic acid molecule in said sample is at least 95% identical to said selected sequence.

Also preferred is the above method wherein said step of comparing sequences comprises determining the extent of nucleic acid hybridization between nucleic acid molecules in said sample and a nucleic acid molecule comprising said sequence selected from said group. Similarly, also preferred is the above method wherein said step of comparing sequences is performed by comparing the nucleotide sequence determined from a nucleic acid molecule in said sample with said sequence selected from said group. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

5

10

15

20

25

30

35

A further preferred embodiment is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting nucleic acid molecules in said sample, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X or the complementary strand thereto; the nucleotide sequence as defined in column 5 of Table 1B.1 or columns 8 and 9 of Table 2 or the complementary strand thereto; and a nucleotide sequence of the cDNA contained in ATCC Deposit No:Z.

The method for identifying the species, tissue or cell type of a biological sample can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a nucleotide sequence of SEQ ID NO:X or the complementary strand thereto; the nucleotide sequence as defined in column 5 of Table 1B.1 or columns 8 and 9 of Table 2 or the complementary strand thereto; or the cDNA contained in ATCC Deposit No:Z which encodes a protein, wherein the method comprises a step of detecting in a biological sample obtained from said subject nucleic acid molecules, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X or the complementary strand thereto; the nucleotide sequence as defined in column 5 of Table 1B.1 or columns 8 and 9 of Table 2 or the complementary strand thereto; and a nucleotide sequence of cDNA contained in ATCC Deposit No:Z.

The method for diagnosing a pathological condition can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X or the complementary strand thereto; the nucleotide sequence as defined in column 5 of Table 1B.1 or columns 8 and 9 of Table 2 or the complementary strand thereto; and a nucleotide sequence encoded by cDNA contained in ATCC Deposit No:Z. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

5

10

15

20

25

30

35

Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a DNA microarray or "chip" of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 100, 150, 200, 250, 300, 500, 1000, 2000, 3000, or 4000 nucleotide sequences, wherein at least one sequence in said DNA microarray or "chip" is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1A and/or Table 1B.1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA "Clone ID" in Table 1A and/or Table 1B.1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and/or a polypeptide encoded by cDNA contained in ATCC Deposit No:Z.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and/or a polypeptide encoded by cDNA contained in ATCC Deposit No:Z.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and/or a polypeptide encoded by cDNA contained in ATCC Deposit No:Z.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the complete amino acid sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and/or a polypeptide encoded by cDNA contained in ATCC Deposit No:Z.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the complete amino acid sequence of a polypeptide encoded by contained in ATCC Deposit No:Z

Also preferred is a polypeptide wherein said sequence of contiguous amino acids is included in the amino acid sequence of a portion of said polypeptide encoded by cDNA contained in ATCC Deposit No:Z; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and/or the polypeptide sequence of SEQ ID NO:Y.

5

10

15

20

25

30

35

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of a polypeptide encoded by cDNA contained in ATCC Deposit No:Z.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence of a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z.

Further preferred is an isolated antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: a polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z.

Further preferred is a method for detecting in a biological sample a polypeptide comprising an amino acid sequence which is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: a polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z; which method comprises a step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group and determining whether the sequence of said polypeptide molecule in said sample is at least 90% identical to said sequence of at least 10 contiguous amino acids.

Also preferred is the above method wherein said step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group comprises determining the extent of specific binding of polypeptides in said sample to an antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at

least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: a polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z.

5

10

15

20

25

30

35

Also preferred is the above method wherein said step of comparing sequences is performed by comparing the amino acid sequence determined from a polypeptide molecule in said sample with said sequence selected from said group.

Also preferred is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting polypeptide molecules in said sample, if any, comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z.

Also preferred is the above method for identifying the species, tissue or cell type of a biological sample, which method comprises a step of detecting polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the above group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a nucleic acid sequence identified in Table 1A, 1B or Table 2 encoding a polypeptide, which method comprises a step of detecting in a biological sample obtained from said subject polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z.

In any of these methods, the step of detecting said polypeptide molecules includes using an antibody.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a nucleotide sequence encoding a polypeptide wherein said polypeptide comprises an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand

thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z.

Also preferred is an isolated nucleic acid molecule, wherein said nucleotide sequence encoding a polypeptide has been optimized for expression of said polypeptide in a prokaryotic host.

Also preferred is a polypeptide molecule, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z.

Further preferred is a method of making a recombinant vector comprising inserting any of the above isolated nucleic acid molecule into a vector. Also preferred is the recombinant vector produced by this method. Also preferred is a method of making a recombinant host cell comprising introducing the vector into a host cell, as well as the recombinant host cell produced by this method.

Also preferred is a method of making an isolated polypeptide comprising culturing this recombinant host cell under conditions such that said polypeptide is expressed and recovering said polypeptide. Also preferred is this method of making an isolated polypeptide, wherein said recombinant host cell is a eukaryotic cell and said polypeptide is a human protein comprising an amino acid sequence selected from the group consisting of: polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z. The isolated polypeptide produced by this method is also preferred.

Also preferred is a method of treatment of an individual in need of an increased level of a protein activity, which method comprises administering to such an individual a Therapeutic comprising an amount of an isolated polypeptide, polynucleotide, immunogenic fragment or analogue thereof, binding agent, antibody, or antigen binding fragment of the claimed invention effective to increase the level of said protein activity in said individual.

Also preferred is a method of treatment of an individual in need of a decreased level of a protein activity, which method comprised administering to such an individual a Therapeutic comprising an amount of an isolated polypeptide, polynucleotide, immunogenic fragment or analogue thereof, binding agent, antibody, or antigen binding fragment of the claimed invention effective to decrease the level of said protein activity in said individual.

Also preferred is a method of treatment of an individual in need of a specific delivery of toxic compositions to diseased cells (e.g., tumors, leukemias or lymphomas), which method comprises administering to such an individual a Therapeutic comprising an amount of an isolated

5

10

15

20

25

30

polypeptide of the invention, including, but not limited to a binding agent, or antibody of the claimed invention that are associated with toxin or cytotoxic prodrugs.

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

Description of Table 6

Table 6 summarizes some of the ATCC Deposits, Deposit dates, and ATCC designation numbers of deposits made with the ATCC in connection with the present application. These deposits were made in addition to those described in the Table 1A.

Table 6

5

10

ATCC Deposits	Deposit Date	ATCC Designation Number
LP01, LP02, LP03, LP04,	May-20-97	209059, 209060, 209061, 209062, 209063,
LP05, LP06, LP07, LP08,	}	209064, 209065, 209066, 209067, 209068,
LP09, LP10, LP11,	}	209069
LP12	Jan-12-98	209579
LP13	Jan-12-98	209578
LP14	Jul-16-98	203067
LP15	Jul-16-98	203068
LP16	Feb-1-99	203609
LP17	Feb-1-99	203610
LP20	Nov-17-98	203485
LP21	Jun-18-99	PTA-252
LP22	Jun-18-99	PTA-253
LP23	Dec-22-99	PTA-1081

Examples

5

10

20

25

30

35

Example 1: Isolation of a Selected cDNA Clone From the Deposited Sample

Each ATCC Deposit No:Z is contained in a plasmid vector. Table 7 identifies the vectors used to construct the cDNA library from which each clone was isolated. In many cases, the vector used to construct the library is a phage vector from which a plasmid has been excised. The following correlates the related plasmid for each phage vector used in constructing the cDNA library. For example, where a particular clone is identified in Table 7 as being isolated in the vector "Lambda Zap," the corresponding deposited clone is in "pBluescript."

	Vector Used to Construct Library	Corresponding Deposited Plasmid
	Lambda Zap	pBluescript (pBS)
	Uni-Zap XR	pBluescript (pBS)
	Zap Express	pBK
15	lafmid BA	plafmid BA
	pSport1	pSport1
	pCMVSport 2.0	pCMVSport 2.0
	pCMVSport 3.0	pCMVSport 3.0
	pCR [®] 2.1	pCR [®] 2.1

Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S. Patent Nos. 5,128, 256 and 5,286,636), Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 16:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res. 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Both can be transformed into E. coli strain XL-1 Blue, also available from Stratagene. pBS comes in 4 forms SK+, SK-, KS+ and KS. The S and K refers to the orientation of the polylinker to the T7 and T3 primer sequences which flank the polylinker region ("S" is for SacI and "K" is for KpnI which are the first sites on each respective end of the linker). "+" or "-" refer to the orientation of the f1 origin of replication ("ori"), such that in one orientation, single stranded rescue initiated from the f1 ori generates sense strand DNA and in the other, antisense.

Vectors pSport1, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. (See, for instance, Gruber, C. E., et al., Focus 15:59 (1993)). Vector lafmid

BA (Bento Soares, Columbia University, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue. Vector pCR[®]2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. (See, for instance, Clark, J. M., Nuc. Acids Res. 16:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991)). Preferably, a polynucleotide of the present invention does not comprise the phage vector sequences identified for the particular clone in Table 7, as well as the corresponding plasmid vector sequences designated above.

The deposited material in the sample assigned the ATCC Deposit Number cited by reference to Table 1A, Table 2, Table 6 and Table 7 for any given cDNA clone also may contain one or more additional plasmids, each comprising a cDNA clone different from that given clone. Thus, deposits sharing the same ATCC Deposit Number contain at least a plasmid for each ATCC Deposit No:Z.

TABLE 7

15

10

5

Libraries owned by Catalog	Catalog Description	Vector	ATCC Deposit
HUKA HUKB HUKC HUKD HUKE HUKF HUKG	Human Uterine Cancer	Lambda ZAP II	LP01
HCNA HCNB	Human Colon	Lambda Zap II	LP01
HFFA	Human Fetal Brain, random primed	Lambda Zap II	LP01
HTWA	Resting T-Cell	Lambda ZAP II	LP01
HBQA	Early Stage Human Brain, random primed	Lambda ZAP II	LP01
HLMB HLMF HLMG HLMH HLMI HLMJ HLMM HLMN	breast lymph node CDNA library	Lambda ZAP II	LP01
HCQA HCQB	human colon cancer	Lamda ZAP II	LP01
HMEA HMEC HMED HMEE	Human Microvascular	Lambda ZAP II	LP01
HMEF HMEG HMEI HMEJ HMEK HMEL	Endothelial Cells, fract. A	•	
HUSA HUSC	Human Umbilical Vein Endothelial Cells, fract. A	Lambda ZAP II	LP01
HLQA HLQB	Hepatocellular Tumor	Lambda ZAP II	LP01
HHGA HHGB HHGC HHGD	Hemangiopericytoma	Lambda ZAP II	LP01
HSDM	Human Striatum Depression, re- rescue	Lambda ZAP II	LP01
HUSH	H Umbilical Vein Endothelial Cells, frac A, re-excision	Lambda ZAP II	LP01
HSGS .	Salivary gland, subtracted	Lambda ZAP II	LP01
HFXA HFXB HFXC HFXD HFXE HFXF HFXG HFXH	Brain frontal cortex	Lambda ZAP II	LP01
HPQA HPQB HPQC	PERM TF274	Lambda ZAP II	LP01
HFXJ HFXK	Brain Frontal Cortex, re-excision	Lambda ZAP II	LP01
HCWA HCWB HCWC HCWD HCWE HCWF HCWG HCWH HCWI HCWJ HCWK	CD34 positive cells (Cord Blood)	ZAP Express	LP02

Libraries owned by Catalog	Catalog Description	Vector	ATCC
			Deposit
HCUA HCUB HCUC	CD34 depleted Buffy Coat (Cord Blood)	ZAP Express	LP02
HRSM	A-14 cell line	ZAP Express	LP02
HRSA	A1-CELL LINE	ZAP Express	LP02
HCUD HCUE HCUF HCUG	CD34 depleted Buffy Coat	ZAP Express	LP02
HCUH HCUI	(Cord Blood), re-excision		
HBXE HBXF HBXG	H. Whole Brain #2, re-excision	ZAP Express	LP02
HRLM	L8 cell line	ZAP Express	LP02
HBXA HBXB HBXC HBXD	Human Whole Brain #2 - Oligo dT > 1.5Kb	ZAP Express	LP02
HUDA HUDB HUDC	Testes	ZAP Express	LP02
ННТМ ННТО	H. hypothalamus, frac A;re-excision	ZAP Express	LP02
HHTL	H. hypothalamus, frac A	ZAP Express	LP02
HASA HASD	Human Adult Spleen	Uni-ZAP XR	LP03
HFKC HFKD HFKE HFKF	Human Fetal Kidney	Uni-ZAP XR	LP03
HFKG			
HE8A HE8B HE8C HE8D HE8E HE8F HE8M HE8N	Human 8 Week Whole Embryo	Uni-ZAP XR	LP03
HGBA HGBD HGBE HGBF	Human Gall Bladder	Uni-ZAP XR	LP03
HGBG HGBH HGBI			
HLHA HLHB HLHC HLHD	Human Fetal Lung III	Uni-ZAP XR	LP03
HLHE HLHF HLHG HLHH HLHQ			
HPMA HPMB HPMC HPMD	Human Placenta	II ' ZAD VD	T D02
HPME HPMF HPMG HPMH	Human Piacenta	Uni-ZAP XR	LP03
HPRA HPRB HPRC HPRD	Human Prostate	Uni-ZAP XR	LP03
HSIA HSIC HSID HSIE	Human Adult Small Intestine	Uni-ZAP XR	LP03
HTEA HTEB HTEC HTED	Human Testes	Uni-ZAP XR	LP03
HTEE HTEF HTEG HTEH	Tullian Testes	UIII-ZAP AR	LP03
НТЕІ НТЕЈ НТЕК			
HTPA HTPB HTPC HTPD	Human Pancreas Tumor	Uni-ZAP XR	LP03
НТРЕ	Traman runerous runior	OIII-ZAI AK	LI 05
HTTA HTTB HTTC HTTD HTTE HTTF	Human Testes Tumor	Uni-ZAP XR	LP03
HAPA HAPB HAPC HAPM	Human Adult Dulmanan	II.: ZAD VD	I DO2
HETA HETB HETC HETD	Human Adult Pulmonary Human Endometrial Tumor	Uni-ZAP XR	LP03
HETE HETF HETG HETH	Human Endometrial 1 umor	Uni-ZAP XR	LP03
HETI			
HHFB HHFC HHFD HHFE	Human Fetal Heart	Uni-ZAP XR	LP03
HHFF HHFG HHFH HHFI	Transmir Carricart	OIII-ZAI AK	LF 03
HHPB HHPC HHPD HHPE	Human Hippocampus	Uni-ZAP XR	LP03
HHPF HHPG HHPH			12.03
HCE1 HCE2 HCE3 HCE4	Human Cerebellum	Uni-ZAP XR	LP03
HCE5 HCEB HCEC HCED			
HCEE HCEF HCEG			
HUVB HUVC HUVD HUVE	Human Umbilical Vein, Endo. remake	Uni-ZAP XR	LP03
HSTA HSTB HSTC HSTD	Human Skin Tumor	Uni-ZAP XR	LP03

Libraries owned by Catalog	Catalog Description	Vector	ATCC
HTAE			Deposit
	TI D. ID. II. (CI.)		
HFEA HFEB HFEC HJPA HJPB HJPC HJPD	Human Fetal Epithelium (Skin)	Uni-ZAP XR	LP03
	HUMAN JURKAT MEMBRANE BOUND POLYSOMES	Uni-ZAP XR	LP03
HESA	Human epithelioid sarcoma	Uni-Zap XR	LP03
HLTA HLTB HLTC HLTD HLTE HLTF	Human T-Cell Lymphoma	Uni-ZAP XR	LP03
HFTA HFTB HFTC HFTD	Human Fetal Dura Mater	Uni-ZAP XR	LP03
HRDA HRDB HRDC HRDD HRDE HRDF	Human Rhabdomyosarcoma	Uni-ZAP XR	LP03
HCAA HCAB HCAC	Cem cells cyclohexamide treated	Uni-ZAP XR	LP03
HRGA HRGB HRGC HRGD	Raji Cells, cyclohexamide treated	Uni-ZAP XR	LP03
HSUA HSUB HSUC HSUM	Supt Cells, cyclohexamide treated	Uni-ZAP XR	LP03
HT4A HT4C HT4D	Activated T-Cells, 12 hrs.	Uni-ZAP XR	LP03
HE9A HE9B HE9C HE9D HE9E HE9F HE9G HE9H HE9M HE9N	Nine Week Old Early Stage Human	Uni-ZAP XR	LP03
HATA HATB HATC HATD HATE	Human Adrenal Gland Tumor	Uni-ZAP XR	LP03
HT5A	Activated T-Cells, 24 hrs.	Uni-ZAP XR	LP03
HFGA HFGM	Human Fetal Brain	Uni-ZAP XR	LP03
HNEA HNEB HNEC HNED HNEE	Human Neutrophil	Uni-ZAP XR	LP03
HBGB HBGD	Human Primary Breast Cancer	Uni-ZAP XR	LP03
HBNA HBNB	Human Normal Breast	Uni-ZAP XR	LP03
HCAS	Cem Cells, cyclohexamide treated, subtra	Uni-ZAP XR	LP03
HHPS	Human Hippocampus, subtracted	pBS	LP03
HKCS HKCU	Human Colon Cancer, subtracted	pBS	LP03
HRGS	Raji cells, cyclohexamide treated, subtracted	pBS	LP03
HSUT	Supt cells, cyclohexamide treated, differentially expressed	pBS	LP03
HT4S	Activated T-Cells, 12 hrs, subtracted	Uni-ZAP XR	LP03
HCDA HCDB HCDC HCDD HCDE	Human Chondrosarcoma	Uni-ZAP XR	LP03
НОАА НОАВ НОАС	Human Osteosarcoma	Uni-ZAP XR	LP03
HTLA HTLB HTLC HTLD HTLE HTLF		Uni-ZAP XR	LP03
HLMA HLMC HLMD	Breast Lymph node cDNA library	Uni-ZAP XR	LP03
Н6ЕА Н6ЕВ Н6ЕС		Uni-ZAP XR	LP03
HTXA HTXB HTXC HTXD		Uni-ZAP XR	LP03
HTXE HTXF HTXG HTXH	(12hs)/Thiouridine labelledEco		

Libraries owned by Catalog	Catalog Description	Vector	ATCC
HNFA HNFB HNFC HNFD HNFE HNFF HNFG HNFH HNFJ	Human Neutrophil, Activated	Uni-ZAP XR	Deposit LP03
НТОВ НТОС	HUMAN TONSILS, FRACTION 2	Uni-ZAP XR	LP03
HMGB	Human OB MG63 control fraction I	Uni-ZAP XR	LP03
НОРВ	Human OB HOS control fraction I	Uni-ZAP XR	LP03
HORB	Human OB HOS treated (10 nM E2) fraction I	Uni-ZAP XR	LP03
HSVA HSVB HSVC	Human Chronic Synovitis	Uni-ZAP XR	LP03
HROA	HUMAN STOMACH	Uni-ZAP XR	LP03
НВЈА НВЈВ НВЈС НВЈО НВЈЕ НВЈГ НВЈС НВЈН НВЈІ НВЈЈ НВЈК	HUMAN B CELL LYMPHOMA	Uni-ZAP XR	LP03
HCRA HCRB HCRC	human corpus colosum	Uni-ZAP XR	LP03
HODA HODB HODC HODD	human ovarian cancer	Uni-ZAP XR	LP03
HDSA	Dermatofibrosarcoma Protuberance	Uni-ZAP XR	LP03
HMWA HMWB HMWC HMWD HMWE HMWF HMWG HMWH HMWI HMWJ	Bone Marrow Cell Line (RS4;11)	Uni-ZAP XR	LP03
HSOA	stomach cancer (human)	Uni-ZAP XR	LP03
HERA	SKIN	Uni-ZAP XR	LP03
HMDA	Brain-medulloblastoma	Uni-ZAP XR	LP03
HGLA HGLB HGLD	Glioblastoma	Uni-ZAP XR	LP03
HEAA	H. Atrophic Endometrium	Uni-ZAP XR	LP03
НВСА НВСВ	H. Lymph node breast Cancer	Uni-ZAP XR	LP03
HPWT	Human Prostate BPH, re- excision	Uni-ZAP XR	LP03
HFVG HFVH HFVI	Fetal Liver, subtraction II	pBS	LP03
HNFI	Human Neutrophils, Activated, re-excision	pBS	LP03
HBMB HBMC HBMD	Human Bone Marrow, re- excision	pBS	LP03
HKML HKMM HKMN	H. Kidney Medulla, re-excision	pBS	LP03
HKIX HKIY	H. Kidney Cortex, subtracted	pBS	LP03
HADT	H. Amygdala Depression, subtracted	pBS	LP03
H6AS	HI-60, untreated, subtracted	Uni-ZAP XR	LP03
H6ES	HL-60, PMA 4H, subtracted	Uni-ZAP XR	LP03
H6BS	HL-60, RA 4h, Subtracted	Uni-ZAP XR	LP03
H6CS	HL-60, PMA 1d, subtracted	Uni-ZAP XR	LP03
НТХЈ НТХК	Activated T- cell(12h)/Thiouridine-re- excision	Uni-ZAP XR	LP03
HMSA HMSB HMSC HMSD HMSE HMSF HMSG HMSH HMSI HMSJ HMSK	Monocyte activated	Uni-ZAP XR	LP03

Libraries owned by Catalog	Catalog Description	Vector	ATCC
			Deposit
HAGA HAGB HAGC HAGD HAGE HAGF	Human Amygdala	Uni-ZAP XR	LP03
HSRA HSRB HSRE	STROMAL - OSTEOCLASTOMA	Uni-ZAP XR	LP03
HSRD HSRF HSRG HSRH	Human Osteoclastoma Stromal Cells - unamplified	Uni-ZAP XR	LP03
HSQA HSQB HSQC HSQD HSQE HSQF HSQG	Stromal cell TF274	Uni-ZAP XR	LP03
HSKA HSKB HSKC HSKD HSKE HSKF HSKZ	Smooth muscle, serum treated	Uni-ZAP XR	LP03
HSLA HSLB HSLC HSLD HSLE HSLF HSLG	Smooth muscle,control	Uni-ZAP XR	LP03
HSDA HSDD HSDE HSDF HSDG HSDH	Spinal cord	Uni-ZAP XR	LP03
HPWS	Prostate-BPH subtracted II	pBS	LP03
HSKW HSKX HSKY	Smooth Muscle- HASTE normalized	pBS	LP03
HFPB HFPC HFPD	H. Frontal cortex,epileptic;re- excision	Uni-ZAP XR	LP03
HSDI HSDJ HSDK	Spinal Cord, re-excision	Uni-ZAP XR	LP03
HSKN HSKO	Smooth Muscle Serum Treated, Norm	pBS	LP03
HSKG HSKH HSKI	Smooth muscle, serum induced,re-exc	pBS	LP03
HFCA HFCB HFCC HFCD HFCE HFCF	Human Fetal Brain	Uni-ZAP XR	LP04
HPTA HPTB HPTD	Human Pituitary	Uni-ZAP XR	LP04
HTHB HTHC HTHD	Human Thymus	Uni-ZAP XR	LP04
HE6B HE6C HE6D HE6E HE6F HE6G HE6S	Human Whole Six Week Old Embryo	Uni-ZAP XR	LP04
HSSA HSSB HSSC HSSD HSSE HSSF HSSG HSSH HSSI HSSJ HSSK	Human Synovial Sarcoma	Uni-ZAP XR	LP04
HE7T	7 Week Old Early Stage Human, subtracted	Uni-ZAP XR	LP04
НЕРА НЕРВ НЕРС	Human Epididymus	Uni-ZAP XR	LP04
HSNA HSNB HSNC HSNM HSNN	Human Synovium	Uni-ZAP XR	LP04
HPFB HPFC HPFD HPFE	Human Prostate Cancer, Stage C fraction	Uni-ZAP XR	LP04
	12 Week Old Early Stage Human	Uni-ZAP XR	LP04
HE2Q	12 Week Old Early Stage Human, II	Uni-ZAP XR	LP04
	Human Pituitary, subtracted	Uni-ZAP XR	LP04
HAUA HAUB HAUC	Amniotic Cells - TNF induced	Uni-ZAP XR	LP04
	Amniotic Cells - Primary Culture	Uni-ZAP XR	LP04
HWTA HWTB HWTC	wilm's tumor	Uni-ZAP XR	LP04
HBSD	Bone Cancer, re-excision	Uni-ZAP XR	LP04

Catalog Description	Vector	ATCC
		Deposit
	Uni-ZAP XR	LP04
	Uni-ZAP XR	LP04
	Uni-ZAP XR	LP04
Smooth muscle, IL1b induced	Uni-ZAP XR	LP04
Adipocytes	Uni-ZAP XR	LP04
Prostate BPH	Uni-ZAP XR	LP04
Endothelial cells-control	Uni-ZAP XR	LP04
Endothelial-induced	Uni-ZAP XR	LP04
	Uni-ZAP XR	LP04
	Uni-ZAP XR	LP04
neutrophils control	Uni-ZAP XR	LP04
1 -	Uni-ZAP XR	LP04
induced		
		LP04
		LP04
Anergic T-cell	Uni-ZAP XR	LP04
Bone marrow	Uni-ZAP XR	LP04
Osteoblasts	Uni-ZAP XR	LP04
E. M. P. LENIE. LINE	** * * * * * * * * * * * * * * * * * * *	
	Uni-ZAP XR	LP04
	II ' ZADAD	
		LP04
Wacropnage-oxLDL	Uni-ZAP XR	LP04
Magraphaga (CM CSE treated)	II ZAD VD	T 70.4
Wacrophage (GM-CSF treated)	Uni-ZAP XR	LP04
Normal Proctate	IIm: ZAD VD	T DO4
		LP04
		LP04
		LP04
	Uni-ZAP XR	LP04
	I Ini. ZAP YR	LP04
		LP04
	OIII-ZAI AK	LF04
	IIni-ZAP XR	LP04
	OIII-ZAI AK	LF04
	IIn; ZAD VD	LP04
H. Frontal Cortex. Enilentic		
Alzheimer's, spongy change	Uni-ZAP XR	LP04
	Salivary gland, re-excision Smooth muscle-ILb induced Human Substantia Nigra Smooth muscle, IL1b induced Adipocytes Prostate BPH Endothelial cells-control Endothelial-induced Human Brain, Striatum Human Hypothalmus, Schizophrenia neutrophils IL-1 and LPS induced STRIATUM DEPRESSION Hypothalamus Anergic T-cell Bone marrow Osteoblasts Epithelial-TNFa and INF induced Apoptotic T-cell Macrophage-oxLDL Macrophage (GM-CSF treated) Normal Prostate LNCAP prostate cell line PC3 Prostate cell line Human Osteoclastoma, re-excision H Macrophage (GM-CSF treated), re-excision Human Adipose Tissue, re-excision Human Adipose Tissue, re-excision	Salivary gland, re-excision Smooth muscle-ILb induced Human Substantia Nigra Smooth muscle, IL1b induced Adipocytes Prostate BPH Uni-ZAP XR Endothelial cells-control Endothelial-induced Uni-ZAP XR Human Brain, Striatum Human Brain, Striatum Human Human Hypothalmus, Schizophrenia neutrophils IL-1 and LPS induced STRIATUM DEPRESSION Human Hypothalamus Anergic T-cell Bone marrow Osteoblasts Uni-ZAP XR Epithelial-TNFa and INF induced Apoptotic T-cell Macrophage (GM-CSF treated) Normal Prostate cell line Human Osteoclastoma, re-excision Human Osteoclastoma, re-excision Human Osteoclastome, re- Uni-ZAP XR Uni-ZAP XR

Libraries owned by Catalog	Catalog Description	Vector	ATCC
HMIA HMIB HMIC	Human Manic Depression	Uni-ZAP XR	Deposit LP04
	Tissue		
HTSA HTSE HTSF HTSG HTSH	Human Thymus	pBS	LP05
HPBA HPBB HPBC HPBD HPBE	Human Pineal Gland	pBS	LP05
HSAA HSAB HSAC	HSA 172 Cells	pBS	LP05
HSBA HSBB HSBC HSBM	HSC172 cells	pBS	LP05
НЈАА НЈАВ НЈАС НЈАД	Jurkat T-cell G1 phase	pBS	LP05
НЈВА НЈВВ НЈВС НЈВD	Jurkat T-Cell, S phase	pBS	LP05
HAFA HAFB	Aorta endothelial cells + TNF-a	pBS	LP05
HAWA HAWB HAWC	Human White Adipose	pBS	LP05
HTNA HTNB	Human Thyroid	pBS	LP05
HONA	Normal Ovary, Premenopausal	pBS	LP05
HARA HARB	Human Adult Retina	pBS	LP05
HLJA HLJB	Human Lung	pCMVSport 1	LP06
HOFM HOFN HOFO	H. Ovarian Tumor, II, OV5232	pCMVSport 2.0	LP07
HOGA HOGB HOGC	OV 10-3-95	pCMVSport 2.0	LP07
HCGL	CD34+cells, II	pCMVSport 2.0	LP07
HDLA	Hodgkin's Lymphoma I	pCMVSport 2.0	LP07
HDTA HDTB HDTC HDTD HDTE	Hodgkin's Lymphoma II	pCMVSport 2.0	LP07
HKAA HKAB HKAC HKAD HKAE HKAF HKAG HKAH	Keratinocyte	pCMVSport2.0	LP07
HCIM	CAPFINDER, Crohn's Disease, lib 2	pCMVSport 2.0	LP07
HKAL	Keratinocyte, lib 2	pCMVSport2.0	LP07
HKAT	Keratinocyte, lib 3	pCMVSport2.0	LP07
HNDA	Nasal polyps	pCMVSport2.0	LP07
HDRA	H. Primary Dendritic Cells, lib 3	pCMVSport2.0	LP07
НОНА НОНВ НОНС	Human Osteoblasts II	pCMVSport2.0	LP07
HLDA HLDB HLDC	Liver, Hepatoma	pCMVSport3.0	LP08
HLDN HLDO HLDP	Human Liver, normal	pCMVSport3.0	LP08
HMTA	pBMC stimulated w/ poly I/C	pCMVSport3.0	LP08
HNTA	NTERA2, control	pCMVSport3.0	LP08
HDPA HDPB HDPC HDPD HDPF HDPG HDPH HDPI HDPJ HDPK	Primary Dendritic Cells, lib 1	pCMVSport3.0	LP08
HDPM HDPN HDPO HDPP	Primary Dendritic cells, frac 2	pCMVSport3.0	LP08
HMUA HMUB HMUC	Myoloid Progenitor Cell Line	pCMVSport3.0	LP08
HHEA HHEB HHEC HHED	T Cell helper I	pCMVSport3.0	LP08
HHEM HHEN HHEO HHEP	T cell helper II	pCMVSport3.0	LP08
HEQA HEQB HEQC	Human endometrial stromal cells		LP08
HJMA HJMB	Human endometrial stromal	pCMVSport3.0	LP08
TION IN THE INTERPRETATION	cells-treated with progesterone	pervi v spore.v	Livo
HSWA HSWB HSWC	Human endometrial stromal cells-treated with estradiol	pCMVSport3.0	LP08
HSYA HSYB HSYC	Human Thymus Stromal Cells	pCMVSport3.0	LP08
HLWA HLWB HLWC	Human Placenta	pCMVSport3.0	LP08

Libraries owned by Catalog	Catalog Description	Vector	ATCC Deposit
HRAA HRAB HRAC	Rejected Kidney, lib 4	pCMVSport3.0	LP08
HMTM	PCR, pBMC I/C treated	PCRII	LP09
HMJA	H. Meniingima, M6	pSport 1	LP10
HMKA HMKB HMKC HMKD	H. Meningima, M1	pSport 1	LP10
HMKE	11. Mennighha, M1	psport i	Lito
HUSG HUSI	Human umbilical vein	pSport 1	LP10
	endothelial cells, IL-4 induced	poport	
HUSX HUSY	Human Umbilical Vein	pSport 1	LP10
	Endothelial Cells, uninduced	F - F	
HOFA	Ovarian Tumor I, OV5232	pSport 1	LP10
HCFA HCFB HCFC HCFD	T-Cell PHA 16 hrs	pSport 1	LP10
HCFL HCFM HCFN HCFO	T-Cell PHA 24 hrs	pSport 1	LP10
HADA HADC HADD HADE	Human Adipose	pSport 1	LP10
HADF HADG		F = F = T = T = T = T = T = T = T = T =	
HOVA HOVB HOVC	Human Ovary	pSport 1	LP10
HTWB HTWC HTWD HTWE	Resting T-Cell Library,II	pSport 1	LP10
HTWF	3,	,	
НММА	Spleen metastic melanoma	pSport 1	LP10
HLYA HLYB HLYC HLYD	Spleen, Chronic lymphocytic	pSport 1	LP10
HLYE	leukemia		
HCGA	CD34+ cell, I	pSport 1	LP10
HEOM HEON	Human Eosinophils	pSport 1	LP10
HTDA	Human Tonsil, Lib 3	pSport 1	LP10
HSPA	Salivary Gland, Lib 2	pSport 1	LP10
НСНА НСНВ НСНС	Breast Cancer cell line, MDA 36	pSport 1	LP10
HCHM HCHN	Breast Cancer Cell line,	pSport 1	LP10
	angiogenic		
HCIA	Crohn's Disease	pSport 1	LP10
HDAA HDAB HDAC	HEL cell line	pSport 1	LP10
HABA	Human Astrocyte	pSport 1	LP10
HUFA HUFB HUFC	Ulcerative Colitis	pSport 1	LP10
HNTM	NTERA2 + retinoic acid, 14	pSport 1	LP10
	days	L	
HDQA	Primary Dendritic	pSport 1	LP10
	cells,CapFinder2, frac 1		
HDQM	Primary Dendritic Cells,	pSport 1	LP10
	CapFinder, frac 2		
HLDX	Human Liver, normal, CapFinder		LP10
HULA HULB HULC	Human Dermal Endothelial	pSport1	LP10
HUMA	Cells,untreated Human Dermal Endothelial	-C-o-t1	LP10
HUMA	cells,treated	pSport1	LP10
НСЈА	Human Stromal Endometrial	pSport1	LP10
HOJA	fibroblasts, untreated	ipsporti	LITO
НСЈМ	Human Stromal endometrial	pSport1	LP10
	fibroblasts, treated w/ estradiol	Poporti	
HEDA	Human Stromal endometrial	pSport1	LP10
	fibroblasts, treated with	 	12
	progesterone		
HFNA	Human ovary tumor cell	pSport1	LP10

Libraries owned by Catalog	Catalog Description	Vector	ATCC
	03/250721	 	Deposit
THICA THE DIVINE THE D	OV350721	- C	I D10
HKGA HKGB HKGC HKGD	Merkel Cells	pSport1	LP10
HISA HISB HISC	Pancreas Islet Cell Tumor	pSport1	LP10
HLSA	Skin, burned	pSport1	LP10
HBZA	Prostate, BPH, Lib 2	pSport 1	LP10
HBZS	Prostate BPH,Lib 2, subtracted	pSport 1	LP10
HFIA HFIB HFIC	Synovial Fibroblasts (control)	pSport 1	LP10
HFIH HFII HFIJ	Synovial hypoxia	pSport 1	LP10
HFIT HFIU HFIV	Synovial IL-1/TNF stimulated	pSport 1	LP10
HGCA	Messangial cell, frac 1	pSport1	LP10
HMVA HMVB HMVC	Bone Marrow Stromal Cell, untreated	pSport1	LP10
HFIX HFIY HFIZ	Synovial Fibroblasts (II1/TNF), subt	pSport1	LP10
HFOX HFOY HFOZ	Synovial hypoxia-RSF subtracted	pSport1	LP10
HMQA HMQB HMQC HMQD	Human Activated Monocytes	Uni-ZAP XR	LP11
HLIA HLIB HLIC	Human Liver	pCMVSport 1	LP012
ННВА ННВВ ННВС ННВD ННВЕ	Human Heart	pCMVSport 1	LP012
НВВА НВВВ	Human Brain	pCMVSport 1	LP012
HLJA HLJB HLJC HLJD HLJE	Human Lung	pCMVSport 1	LP012
HOGA HOGB HOGC	Ovarian Tumor	pCMVSport 2.0	LP012
НТЈМ	Human Tonsils, Lib 2	pCMVSport 2.0	LP012
HAMF HAMG	КМН2	pCMVSport 3.0	LP012
НАЈА НАЈВ НАЈС	L428	pCMVSport 3.0	LP012
HWBA HWBB HWBC HWBD HWBE	Dendritic cells, pooled	pCMVSport 3.0	LP012
HWAA HWAB HWAC HWAD HWAE	Human Bone Marrow, treated	pCMVSport 3.0	LP012
НҮАА НҮАВ НҮАС	B Cell lymphoma	pCMVSport 3.0	LP012
HWHG HWHH HWHI	Healing groin wound, 6.5 hours post incision	pCMVSport 3.0	LP012
HWHP HWHQ HWHR	Healing groin wound; 7.5 hours post incision	pCMVSport 3.0	LP012
HARM	Healing groin wound - zero hr post-incision (control)	pCMVSport 3.0	LP012
НВІМ	Olfactory epithelium; nasalcavity	pCMVSport 3.0	LP012
HWDA	Healing Abdomen wound; 70&90 min post incision	pCMVSport 3.0	LP012
HWEA	Healing Abdomen Wound;15 days post incision	pCMVSport 3.0	LP012
HWJA	Healing Abdomen Wound;21&29 days	pCMVSport 3.0	LP012
HNAL	Human Tongue, frac 2	pSport1	LP012
НМЈА	H. Meniingima, M6	pSport1	LP012
HMKA HMKB HMKC HMKD HMKE	H. Meningima, M1	pSport1	LP012
HOFA	Ovarian Tumor I, OV5232	pSport1	LP012

Libraries owned by Catalog	Catalog Description	Vector	ATCC
	2 company	1 00001	Deposit
HCFA HCFB HCFC HCFD	T-Cell PHA 16 hrs	pSport1	LP012
HCFL HCFM HCFN HCFO	T-Cell PHA 24 hrs	pSport1	LP012
НММА НММВ НММС	Spleen metastic melanoma	pSport1	LP012
HTDA	Human Tonsil, Lib 3	pSport1	LP012
HDBA	Human Fetal Thymus	pSport1	LP012
HDUA	Pericardium	pSport1	LP012
HBZA	Prostate, BPH, Lib 2	pSport1	LP012
HWCA	Larynx tumor	pSport1	LP012
HWKA	Normal lung	pSport1	LP012
HSMB	Bone marrow stroma,treated	pSport1	LP012
НВНМ	Normal trachea	pSport1	LP012
HLFC	Human Larynx	pSport1	LP012
HLRB	Siebben Polyposis	pSport1	LP012
HNIA	Mammary Gland	pSport1	LP012
HNJB	Palate carcinoma	pSport1	LP012
HNKA	Palate normal	pSport1	LP012
HMZA	Pharynx carcinoma	pSport1	LP012
HABG	Cheek Carcinoma	pSport1	LP012
HMZM	Pharynx Carcinoma	pSport1	LP012
HDRM	Larynx Carcinoma	pSport1	LP012
HVAA	Pancreas normal PCA4 No	pSport1	LP012
HICA	Tongue carcinoma	pSport1	LP012
HUKA HUKB HUKC HUKD	Human Uterine Cancer	Lambda ZAP II	LP013
HUKE	Cance.	Edinoda Z/ (1 11	LI 015
HFFA	Human Fetal Brain, random primed	Lambda ZAP II	LP013
HTUA	Activated T-cell labeled with 4-thioluri	Lambda ZAP II	LP013
HBQA	Early Stage Human Brain, random primed	Lambda ZAP II	LP013
НМЕВ	Human microvascular Endothelial cells, fract. B	Lambda ZAP II	LP013
HUSH	Human Umbilical Vein Endothelial cells, fract. A, re- excision	Lambda ZAP II	LP013
HLQC HLQD	Hepatocellular tumor, re- excision	Lambda ZAP II	LP013
HTWJ HTWK HTWL	Resting T-cell, re-excision	Lambda ZAP II	LP013
HF6S	Human Whole 6 week Old Embryo (II), subt	pBluescript	LP013
HHPS	Human Hippocampus, subtracted	pBluescript	LP013
HL1S	LNCAP, differential expression	pBluescript	LP013
HLHS HLHT	Early Stage Human Lung, Subtracted	pBluescript	LP013
HSUS	Supt cells, cyclohexamide treated, subtracted	pBluescript	LP013
HSUT	Supt cells, cyclohexamide treated, differentially expressed	pBluescript	LP013
HSDS	H. Striatum Depression,	pBluescript	LP013
		<u> </u>	1 0.0

Libraries owned by Catalog	Catalog Description	Vector	ATCC
		ļ	Deposit
LIDEG	subtracted		
HPTZ	Human Pituitary, Subtracted VII		LP013
HSDX	H. Striatum Depression, subt II	pBluescript	LP013
HSDZ	H. Striatum Depression, subt	pBluescript	LP013
HPBA HPBB HPBC HPBD	Human Pineal Gland	pBluescript SK-	LP013
HPBE			
HRTA	Colorectal Tumor	pBluescript SK-	LP013
HSBA HSBB HSBC HSBM	HSC172 cells	pBluescript SK-	LP013
HJAA HJAB HJAC HJAD	Jurkat T-cell G1 phase	pBluescript SK-	LP013
HJBA HJBB HJBC HJBD	Jurkat T-cell, S1 phase	pBluescript SK-	LP013
HTNA HTNB	Human Thyroid	pBluescript SK-	LP013
НАНА НАНВ	Human Adult Heart	Uni-ZAP XR	LP013
HE6A	Whole 6 week Old Embryo	Uni-ZAP XR	LP013
HFCA HFCB HFCC HFCD HFCE	Human Fetal Brain	Uni-ZAP XR	LP013
HFKC HFKD HFKE HFKF HFKG	Human Fetal Kidney	Uni-ZAP XR	LP013
HGBA HGBD HGBE HGBF HGBG	Human Gall Bladder	Uni-ZAP XR	LP013
HPRA HPRB HPRC HPRD	Human Prostate	Uni-ZAP XR	LP013
HTEA HTEB HTEC HTED HTEE	Human Testes	Uni-ZAP XR	LP013
HTTA HTTB HTTC HTTD HTTE	Human Testes Tumor	Uni-ZAP XR	LP013
НҮВА НҮВВ	Human Fetal Bone	Uni-ZAP XR	LP013
HFLA	Human Fetal Liver	Uni-ZAP XR	LP013
HHFB HHFC HHFD HHFE HHFF	Human Fetal Heart	Uni-ZAP XR	LP013
HUVB HUVC HUVD HUVE	Human Umbilical Vein, End. remake	Uni-ZAP XR	LP013
HTHB HTHC HTHD	Human Thymus	Uni-ZAP XR	LP013
HSTA HSTB HSTC HSTD	Human Skin Tumor	Uni-ZAP XR	LP013
HTAA HTAB HTAC HTAD HTAE	Human Activated T-cells	Uni-ZAP XR	LP013
HFEA HFEB HFEC	Human Fetal Epithelium (skin)	Uni-ZAP XR	LP013
НЈРА НЈРВ НЈРС НЈРD	Human Jurkat Membrane Bound Polysomes		LP013
HESA	Human Epithelioid Sarcoma	Uni-ZAP XR	LP013
HALS	Human Adult Liver, Subtracted	Uni-ZAP XR	LP013
HFTA HFTB HFTC HFTD	Human Fetal Dura Mater	Uni-ZAP XR	LP013
НСАА НСАВ НСАС	Cem cells, cyclohexamide treated	Uni-ZAP XR	LP013
HRGA HRGB HRGC HRGD		Uni-ZAP XR	LP013
НЕ9А НЕ9В НЕ9С НЕ9D НЕ9Е		Uni-ZAP XR	LP013
HSFA		Uni-ZAP XR	LP013
HATA HATB HATC HATD HATE		Uni-ZAP XR	LP013
HTRA	Human Trachea Tumor	Uni-ZAP XR	LP013

Libraries owned by Catalog	Catalog Description	Vector	ATCC
			Deposit
HE2A HE2D HE2E HE2H HE2I	Human	Uni-ZAP XR	LP013
HE2B HE2C HE2F HE2G HE2P	12 Week Old Early Stage Human, II	Uni-ZAP XR	LP013
HNEA HNEB HNEC HNED HNEE	Human Neutrophil	Uni-ZAP XR	LP013
HBGA	Human Primary Breast Cancer	Uni-ZAP XR	LP013
HPTS HPTT HPTU	Human Pituitary, subtracted	Uni-ZAP XR	LP013
HMQA HMQB HMQC HMQD	Human Activated Monocytes	Uni-ZAP XR	LP013
НОАА НОАВ НОАС	Human Osteosarcoma	Uni-ZAP XR	LP013
HTOA HTOD HTOE HTOF HTOG	human tonsils	Uni-ZAP XR	LP013
HMGB	Human OB MG63 control fraction I	Uni-ZAP XR	LP013
НОРВ	Human OB HOS control fraction I	Uni-ZAP XR	LP013
ноов	Human OB HOS treated (1 nM E2) fraction I	Uni-ZAP XR	LP013
HAUA HAUB HAUC	Amniotic Cells - TNF induced	Uni-ZAP XR	LP013
HAQA HAQB HAQC HAQD	Amniotic Cells - Primary Culture	Uni-ZAP XR	LP013
HROA HROC	HUMAN STOMACH	Uni-ZAP XR	LP013
НВЈА НВЈВ НВЈС НВЈО НВЈЕ	HUMAN B CELL LYMPHOMA	Uni-ZAP XR	LP013
HODA HODB HODC HODD	human ovarian cancer	Uni-ZAP XR	LP013
НСРА	Corpus Callosum	Uni-ZAP XR	LP013
HSOA	stomach cancer (human)	Uni-ZAP XR	LP013
HERA	SKIN	Uni-ZAP XR	LP013
HMDA	Brain-medulloblastoma	Uni-ZAP XR	LP013
HGLA HGLB HGLD	Glioblastoma	Uni-ZAP XR	LP013
HWTA HWTB HWTC	wilm's tumor	Uni-ZAP XR	LP013
HEAA HAPN HAPO HAPP HAPQ HAPR	H. Atrophic Endometrium Human Adult Pulmonary;re- excision	Uni-ZAP XR Uni-ZAP XR	LP013
HLTG HLTH	Human T-cell lymphoma;re- excision	Uni-ZAP XR	LP013
НАНС НАНО НАНЕ	Human Adult Heart;re-excision	Uni-ZAP XR	LP013
HAGA HAGB HAGC HAGD HAGE	Human Amygdala	Uni-ZAP XR	LP013
НЅЈА НЅЈВ НЅЈС	Smooth muscle-ILb induced	Uni-ZAP XR	LP013
НЅНА НЅНВ НЅНС	Smooth muscle, IL1b induced	Uni-ZAP XR	LP013
HPWA HPWB HPWC HPWD HPWE	Prostate BPH	Uni-ZAP XR	LP013
НРІА НРІВ НРІС	LNCAP prostate cell line	Uni-ZAP XR	LP013
НРЈА НРЈВ НРЈС	PC3 Prostate cell line	Uni-ZAP XR	LP013
НВТА	Bone Marrow Stroma, TNF&LPS ind	Uni-ZAP XR	LP013
HMCF HMCG HMCH HMCI HMCJ	Macrophage-oxLDL; re-excision	Uni-ZAP XR	LP013
HAGG HAGH HAGI	Human Amygdala;re-excision	Uni-ZAP XR	LP013

Libraries owned by Catalog	Catalog Description	Vector	ATCC
			Deposit
HACA	H. Adipose Tissue	Uni-ZAP XR	LP013
HKFB	K562 + PMA (36 hrs),re- excision	ZAP Express	LP013
HCWT HCWU HCWV	CD34 positive cells (cord blood),re-ex	ZAP Express	LP013
HBWA	Whole brain	ZAP Express	LP013
HBXA HBXB HBXC HBXD	Human Whole Brain #2 - Oligo dT > 1.5Kb	ZAP Express	LP013
HAVM	Temporal cortex-Alzheizmer	pT-Adv	LP014
HAVT	Hippocampus, Alzheimer Subtracted	pT-Adv	LP014
HHAS	CHME Cell Line	Uni-ZAP XR	LP014
HAJR	Larynx normal	pSport 1	LP014
HWLE HWLF HWLG HWLH	Colon Normal	pSport 1	LP014
HCRM HCRN HCRO	Colon Carcinoma	pSport 1	LP014
HWLI HWLJ HWLK	Colon Normal	pSport 1	LP014
HWLQ HWLR HWLS HWLT	Colon Tumor	pSport 1	LP014
HBFM	Gastrocnemius Muscle	pSport 1	LP014
HBOD HBOE	Quadriceps Muscle	pSport 1	LP014
HBKD HBKE	Soleus Muscle	pSport 1	LP014
HCCM	Pancreatic Langerhans	pSport 1	LP014
HWGA	Larynx carcinoma	pSport 1	LP014
HWGM HWGN	Larynx carcinoma	pSport 1	LP014
HWLA HWLB HWLC	Normal colon	pSport 1	LP014
HWLM HWLN	Colon Tumor	pSport 1	LP014
HVAM HVAN HVAO	Pancreas Tumor	pSport 1	LP014
HWGQ	Larynx carcinoma	pSport 1	LP014
HAQM HAQN	Salivary Gland	pSport 1	LP014
HASM	Stomach; normal	pSport 1	LP014
НВСМ	Uterus; normal	pSport 1	LP014
HCDM	Testis; normal	pSport 1	LP014
HDJM	Brain; normal	pSport 1	LP014
HEFM	Adrenal Gland, normal	pSport 1	LP014
НВАА	Rectum normal	pSport 1	LP014
HFDM	Rectum tumour	pSport 1	LP014
HGAM	Colon, normal	pSport 1	LP014
ННММ	Colon, tumour	pSport 1	LP014
HCLB HCLC	Human Lung Cancer	Lambda Zap II	LP015
HRLA	L1 Cell line	ZAP Express	LP015
ННАМ	Hypothalamus, Alzheimer's	pCMVSport 3.0	LP015
HKBA	Ku 812F Basophils Line	pSport 1	LP015
HS2S	Saos2, Dexamethosome Treated	pSport 1	LP016
HA5A	Lung Carcinoma A549 TNFalpha activated	pSport 1	LP016
HTFM	TF-1 Cell Line GM-CSF Treated	pSport 1	LP016
HYAS	Thyroid Tumour	pSport 1	LP016
HUTS	Larynx Normal	pSport 1	LP016
HXOA	Larynx Tumor	pSport 1	LP016
НЕАН	Ea.hy.926 cell line	pSport 1	LP016
HINA	Adenocarcinoma Human	pSport 1	LP016

Libraries owned by Catalog	Catalog Description	Vector	ATCC
TIDAGA	7 76 11 11		Deposit
HRMA	Lung Mesothelium	pSport 1	LP016
HLCL	Human Pre-Differentiated	Uni-Zap XR	LP017
LICOA	Adipocytes	6	V D000
HS2A	Saos2 Cells	pSport 1	LP020
HS2I	Saos2 Cells; Vitamin D3 Treated		LP020
HUCM	CHME Cell Line, untreated	pSport 1	LP020
HEPN	Aryepiglottis Normal	pSport 1	LP020
HPSN	Sinus Piniformis Tumour	pSport 1	LP020
HNSA	Stomach Normal	pSport 1	LP020
HNSM	Stomach Tumour	pSport 1	LP020
HNLA	Liver Normal Met5No	pSport 1	LP020
HUTA	Liver Tumour Met 5 Tu	pSport 1	LP020
HOCN	Colon Normal	pSport 1	LP020
HOCT	Colon Tumor	pSport 1	LP020
HTNT	Tongue Tumour	pSport 1	LP020
HLXN	Larynx Normal	pSport 1	LP020
HLXT	Larynx Tumour	pSport 1	LP020
HTYN	Thymus	pSport 1	LP020
HPLN	Placenta	pSport 1	LP020
HTNG	Tongue Normal	pSport 1	LP020
HZAA	Thyroid Normal (SDCA2 No)	pSport 1	LP020
HWES	Thyroid Thyroiditis	pSport 1	LP020
HFHD	Ficolled Human Stromal Cells, 5Fu treated	pTrip1Ex2	LP021
HFHM,HFHN	Ficolled Human Stromal Cells, Untreated	pTrip1Ex2	LP021
HPCI	Hep G2 Cells, lambda library	lambda Zap-CMV XR	LP021
НВСА,НВСВ,НВСС	H. Lymph node breast Cancer	Uni-ZAP XR	LP021
HCOK	Chondrocytes	pSPORT1	LP022
HDCA, HDCB, HDCC	Dendritic Cells From CD34 Cells	pSPORT1	LP022
HDMA, HDMB	CD40 activated monocyte dendritic cells	pSPORT1	LP022
HDDM, HDDN, HDDO	LPS activated derived dendritic cells	pSPORT1	LP022
HPCR	Hep G2 Cells, PCR library	lambda Zap-CMV XR	LP022
НААА, НААВ, НААС	Lung, Cancer (4005313A3): Invasive Poorly Differentiated Lung Adenocarcinoma	pSPORT1	LP022
НІРА, НІРВ, НІРС	Lung, Cancer (4005163 B7): Invasive, Poorly Diff. Adenocarcinoma, Metastatic	pSPORT1	LP022
ноон, нооі	Ovary, Cancer: (4004562 B6) Papillary Serous Cystic Neoplasm, Low Malignant Pot	pSPORT1	LP022
HIDA	Lung, Normal: (4005313 B1)	pSPORT1	LP022
HUJA,HUJB,HUJC,HUJD,HUJ E		pCMVSport 3.0	LP022

Libraries owned by Catalog	Catalog Description	Vector	ATCC
			Deposit
HNOA,HNOB,HNOC,HNOD	Ovary, Normal: (9805C040R)	pSPORT1	LP022
HNLM	Lung, Normal: (4005313 B1)	pSPORT1	LP022
HSCL	Stromal Cells	pSPORT1	LP022
HAAX	Lung, Cancer: (4005313 A3)	pSPORT1	LP022
	Invasive Poorly-differentiated		
	Metastatic lung adenocarcinoma		
HUUA,HUUB,HUUC,HUUD	B-cells (unstimulated)	pTrip1Ex2	LP022
HWWA,HWWB,HWWC,HWW	B-cells (stimulated)	pSPORT1	LP022
D,HWWE,HWWF,HWWG			
HCCC	Colon, Cancer: (9808C064R)	pCMVSport 3.0	LP023
HPDO HPDP HPDQ HPDR	Ovary, Cancer (9809C332):	pSport 1	LP023
HPD	Poorly differentiated		
	adenocarcinoma		<u> </u>
НРСО НРСР НРСО НРСТ	Ovary, Cancer (15395A1F):	pSport 1	LP023
	Grade II Papillary Carcinoma		
НОСМ НОСО НОСР НОСО	Ovary, Cancer: (15799A1F)	pSport 1	LP023
	Poorly differentiated carcinoma		
HCBM HCBN HCBO	Breast, Cancer: (4004943 A5)	pSport 1	LP023
HNBT HNBU HNBV	Breast, Normal: (4005522B2)	pSport 1	LP023
HBCP HBCQ	Breast, Cancer: (4005522 A2)	pSport 1	LP023
HBCJ	Breast, Cancer: (9806C012R)	pSport 1	LP023
HSAM HSAN	Stromal cells 3.88	pSport 1	LP023
HVCA HVCB HVCC HVCD	Ovary, Cancer: (4004332 A2)	pSport 1	LP023
HSCK HSEN HSEO	Stromal cells (HBM3.18)	pSport 1	LP023
HSCP HSCQ	stromal cell clone 2.5	pSport 1	LP023
HUXA	Breast Cancer: (4005385 A2)	pSport 1	LP023
HCOM HCON HCOO HCOP	Ovary, Cancer (4004650 A3):	pSport 1	LP023
HCOQ	Well-Differentiated	•	
	Micropapillary Serous		
	Carcinoma		
HBNM	Breast, Cancer: (9802C020E)	pSport 1	LP023
HVVA HVVB HVVC HVVD	Human Bone Marrow, treated	pSport 1	LP023
HVVE			

Two nonlimiting examples are provided below for isolating a particular clone from the deposited sample of plasmid cDNAs cited for that clone in Table 7. First, a plasmid is directly isolated by screening the clones using a polynucleotide probe corresponding to the nucleotide sequence of SEQ ID NO:X.

5

10

Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported. The oligonucleotide is labeled, for instance, with ³²P-γ-ATP using T4 polynucleotide kinase and purified according to routine methods. (E.g., Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982)). The plasmid mixture is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art, such as those provided by the vector supplier or in related publications or patents cited

above. The transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening (e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edit., (1989), Cold Spring Harbor Laboratory Press, pages 1.93 to 1.104), or other techniques known to those of skill in the art.

5

10

15

20

25

30

35

Alternatively, two primers of 17-20 nucleotides derived from both ends of the nucleotide sequence of SEQ ID NO:X are synthesized and used to amplify the desired cDNA using the deposited cDNA plasmid as a template. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 µl of reaction mixture with 0.5 ug of the above cDNA template. A convenient reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 µM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.

Several methods are available for the identification of the 5' or 3' non-coding portions of a gene which may not be present in the deposited clone. These methods include but are not limited to, filter probing, clone enrichment using specific probes, and protocols similar or identical to 5' and 3' "RACE" protocols which are well known in the art. For instance, a method similar to 5' RACE is available for generating the missing 5' end of a desired full-length transcript. (Fromont-Racine et al., Nucleic Acids Res. 21(7):1683-1684 (1993)).

Briefly, a specific RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcripts. A primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the gene of interest is used to PCR amplify the 5' portion of the desired full-length gene. This amplified product may then be sequenced and used to generate the full length gene.

This above method starts with total RNA isolated from the desired source, although poly-A+ RNA can be used. The RNA preparation can then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA which may interfere with the later RNA ligase step. The phosphatase should then be inactivated and the RNA treated with tobacco acid pyrophosphatase in order to remove the cap structure present at the 5' ends of messenger RNAs. This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase.

This modified RNA preparation is used as a template for first strand cDNA synthesis using a gene specific oligonucleotide. The first strand synthesis reaction is used as a template for

PCR amplification of the desired 5' end using a primer specific to the ligated RNA oligonucleotide and a primer specific to the known sequence of the gene of interest. The resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the desired gene.

5 Example 2: Isolation of Genomic Clones Corresponding to a Polynucleotide

A human genomic P1 library (Genomic Systems, Inc.) is screened by PCR using primers selected for the sequence corresponding to SEQ ID NO:X according to the method described in Example 1. (See also, Sambrook.)

10

15

20

25

30

35

Example 3: Tissue specific expression analysis

The Human Genome Sciences, Inc. (HGS) database is derived from sequencing tissue and/or disease specific cDNA libraries. Libraries generated from a particular tissue are selected and the specific tissue expression pattern of EST groups or assembled contigs within these libraries is determined by comparison of the expression patterns of those groups or contigs within the entire database. ESTs and assembled contigs which show tissue specific expression are selected.

The original clone from which the specific EST sequence was generated, or in the case of an assembled contig, the clone from which the 5' most EST sequence was generated, is obtained from the catalogued library of clones and the insert amplified by PCR using methods known in the art. The PCR product is denatured and then transferred in 96 or 384 well format to a nylon membrane (Schleicher and Scheull) generating an array filter of tissue specific clones. Housekeeping genes, maize genes, and known tissue specific genes are included on the filters. These targets can be used in signal normalization and to validate assay sensitivity. Additional targets are included to monitor probe length and specificity of hybridization.

Radioactively labeled hybridization probes are generated by first strand cDNA synthesis per the manufacturer's instructions (Life Technologies) from mRNA/RNA samples prepared from the specific tissue being analyzed (e.g., prostate, prostate cancer, ovarian, ovarian cancer, etc.). The hybridization probes are purified by gel exclusion chromatography, quantitated, and hybridized with the array filters in hybridization bottles at 65°C overnight. The filters are washed under stringent conditions and signals are captured using a Fuji phosphorimager.

Data is extracted using AIS software and following background subtraction, signal normalization is performed. This includes a normalization of filter-wide expression levels between different experimental runs. Genes that are differentially expressed in the tissue of interest are identified.

Example 4: Chromosomal Mapping of the Polynucleotides

An oligonucleotide primer set is designed according to the sequence at the 5' end of SEQ ID NO:X. This primer preferably spans about 100 nucleotides. This primer set is then used in a polymerase chain reaction under the following set of conditions: 30 seconds, 95°C; 1 minute, 56°C; 1 minute, 70°C. This cycle is repeated 32 times followed by one 5 minute cycle at 70°C. Human, mouse, and hamster DNA is used as template in addition to a somatic cell hybrid panel containing individual chromosomes or chromosome fragments (Bios, Inc). The reactions are analyzed on either 8% polyacrylamide gels or 3.5 % agarose gels. Chromosome mapping is determined by the presence of an approximately 100 bp PCR fragment in the particular somatic cell hybrid.

Example 5: Bacterial Expression of a Polypeptide

15

20

10

5

A polynucleotide encoding a polypeptide of the present invention is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence, as outlined in Example 1, to synthesize insertion fragments. The primers used to amplify the cDNA insert should preferably contain restriction sites, such as BamHI and XbaI, at the 5' end of the primers in order to clone the amplified product into the expression vector. For example, BamHI and XbaI correspond to the restriction enzyme sites on the bacterial expression vector pQE-9. (Qiagen, Inc., Chatsworth, CA). This plasmid vector encodes antibiotic resistance (Amp^r), a bacterial origin of replication (ori), an IPTG-regulatable promoter/operator (P/O), a ribosome binding site (RBS), a 6-histidine tag (6-His), and restriction enzyme cloning sites.

25

The pQE-9 vector is digested with BamHI and XbaI and the amplified fragment is ligated into the pQE-9 vector maintaining the reading frame initiated at the bacterial RBS. The ligation mixture is then used to transform the E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan^r). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis.

30

Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D.⁶⁰⁰) of between 0.4 and 0.6. IPTG (Isopropyl-B-D-thiogalacto pyranoside) is then added

2738

35

to a final concentration of 1 mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression.

Cells are grown for an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic agent 6 Molar Guanidine HCl by stirring for 3-4 hours at 4°C. The cell debris is removed by centrifugation, and the supernatant containing the polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (available from QIAGEN, Inc., *supra*). Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure (for details see: The QIAexpressionist (1995) QIAGEN, Inc., *supra*).

5

10

15

20

25

30

35

Briefly, the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8. The column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the polypeptide is eluted with 6 M guanidine-HCl, pH 5.

The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein can be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins are eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4°C or frozen at -80°C.

In addition to the above expression vector, the present invention further includes an expression vector, called pHE4a (ATCC Accession Number 209645, deposited on February 25, 1998) which contains phage operator and promoter elements operatively linked to a polynucleotide of the present invention, called pHE4a. (ATCC Accession Number 209645, deposited on February 25, 1998.) This vector contains: 1) a neomycinphosphotransferase gene as a selection marker, 2) an E. coli origin of replication, 3) a T5 phage promoter sequence, 4) two lac operator sequences, 5) a Shine-Delgarno sequence, and 6) the lactose operon repressor gene (lacIq). The origin of replication (oriC) is derived from pUC19 (LTI, Gaithersburg, MD). The promoter and operator sequences are made synthetically.

DNA can be inserted into the pHE4a by restricting the vector with NdeI and XbaI, BamHI, XhoI, or Asp718, running the restricted product on a gel, and isolating the larger fragment (the stuffer fragment should be about 310 base pairs). The DNA insert is generated according to the PCR protocol described in Example 1, using PCR primers having restriction sites for NdeI (5' primer) and XbaI, BamHI, XhoI, or Asp718 (3' primer). The PCR insert is gel purified and restricted with compatible enzymes. The insert and vector are ligated according to standard protocols.

The engineered vector could easily be substituted in the above protocol to express protein in a bacterial system.

Example 6: Purification of a Polypeptide from an Inclusion Body

5

The following alternative method can be used to purify a polypeptide expressed in E coli when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

15

10

The cells are then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 xg for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

20

The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 xg centrifugation for 15 min., the pellet is discarded and the polypeptide containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

25

Following high speed centrifugation (30,000 xg) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

30

To clarify the refolded polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 µm membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 nm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

35

Fractions containing the polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of

strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant polypeptide should exhibit greater than 95% purity after the above refolding and purification steps. No major contaminant bands should be observed from Commassie blue stained 16% SDS-PAGE gel when 5 µg of purified protein is loaded. The purified protein can also be tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

Example 7: Cloning and Expression of a Polypeptide in a Baculovirus Expression System

15

20

25

30

35

10

5

In this example, the plasmid shuttle vector pA2 is used to insert a polynucleotide into a baculovirus to express a polypeptide. This expression vector contains the strong polyhedrin promoter of the *Autographa californica* nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites such as BamHI, Xba I and Asp718. The polyadenylation site of the simian virus 40 ("SV40") is used for efficient polyadenylation. For easy selection of recombinant virus, the plasmid contains the beta-galactosidase gene from *E. coli* under control of a weak Drosophila promoter in the same orientation, followed by the polyadenylation signal of the polyhedrin gene. The inserted genes are flanked on both sides by viral sequences for cell-mediated homologous recombination with wild-type viral DNA to generate a viable virus that express the cloned polynucleotide.

Many other baculovirus vectors can be used in place of the vector above, such as pAc373, pVL941, and pAcIM1, as one skilled in the art would readily appreciate, as long as the construct provides appropriately located signals for transcription, translation, secretion and the like, including a signal peptide and an in-frame AUG as required. Such vectors are described, for instance, in Luckow et al., Virology 170:31-39 (1989).

Specifically, the cDNA sequence contained in the deposited clone, including the AUG initiation codon, is amplified using the PCR protocol described in Example 1. If a naturally occurring signal sequence is used to produce the polypeptide of the present invention, the pA2 vector does not need a second signal peptide. Alternatively, the vector can be modified (pA2 GP) to include a baculovirus leader sequence, using the standard methods described in Summers et al., "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures," Texas Agricultural Experimental Station Bulletin No. 1555 (1987).

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The plasmid is digested with the corresponding restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.).

The fragment and the dephosphorylated plasmid are ligated together with T4 DNA ligase. E. coli HB101 or other suitable E. coli hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates. Bacteria containing the plasmid are identified by digesting DNA from individual colonies and analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing.

Five μg of a plasmid containing the polynucleotide is co-transfected with 1.0 μg of a commercially available linearized baculovirus DNA ("BaculoGold™ baculovirus DNA, Pharmingen, San Diego, CA), using the lipofection method described by Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987). One μg of BaculoGold™ virus DNA and 5 μg of the plasmid are mixed in a sterile well of a microtiter plate containing 50 μl of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards, 10 μl Lipofectin plus 90 μl Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm tissue culture plate with 1 ml Grace's medium without serum. The plate is then incubated for 5 hours at 27° C. The transfection solution is then removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. Cultivation is then continued at 27° C for four days.

After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, *supra*. An agarose gel with "Blue Gal" (Life Technologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10.) After appropriate incubation, blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf). The agar containing the recombinant viruses is then resuspended in a microcentrifuge tube containing 200 µl of Grace's medium and the suspension containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4° C.

To verify the expression of the polypeptide, Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovirus containing the polynucleotide at a multiplicity of infection ("MOI") of about 2. If radiolabeled proteins are desired, 6 hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc., Rockville, MD). After 42 hours, 5 μCi of ³⁵S-methionine and 5 μCi ³⁵S-cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then are harvested by centrifugation. The proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled).

Microsequencing of the amino acid sequence of the amino terminus of purified protein may be used to determine the amino terminal sequence of the produced protein.

Example 8: Expression of a Polypeptide in Mammalian Cells

5

10

15

20

25

30

35

The polypeptide of the present invention can be expressed in a mammalian cell. A typical mammalian expression vector contains a promoter element, which mediates the initiation of transcription of mRNA, a protein coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription is achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses, e.g., RSV, HTLVI, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular elements can also be used (e.g., the human actin promoter).

Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146), pBC12MI (ATCC 67109), pCMVSport 2.0, and pCMVSport 3.0. Mammalian host cells that could be used include, human Hela, 293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.

Alternatively, the polypeptide can be expressed in stable cell lines containing the polynucleotide integrated into a chromosome. The co-transfection with a selectable marker such as DHFR, gpt, neomycin, or hygromycin allows the identification and isolation of the transfected cells.

The transfected gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) marker is useful in developing cell lines that carry several hundred or even several thousand copies of the gene of interest. (See, e.g., Alt, F. W., et

al., J. Biol. Chem. 253:1357-1370 (1978); Hamlin, J. L. and Ma, C., Biochem. et Biophys. Acta, 1097:107-143 (1990); Page, M. J. and Sydenham, M. A., Biotechnology 9:64-68 (1991)). Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) and NSO cells are often used for the production of proteins.

5

10

15

20

25

30

35

Derivatives of the plasmid pSV2-dhfr (ATCC Accession No. 37146), the expression vectors pC4 (ATCC Accession No. 209646) and pC6 (ATCC Accession No.209647) contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al., Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart et al., Cell 41:521-530 (1985)). Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, XbaI and Asp718, facilitate the cloning of the gene of interest. The vectors also contain the 3' intron, the polyadenylation and termination signal of the rat preproinsulin gene, and the mouse DHFR gene under control of the SV40 early promoter.

Specifically, the plasmid pC6, for example, is digested with appropriate restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.

A polynucleotide of the present invention is amplified according to the protocol outlined in Example 1. If a naturally occurring signal sequence is used to produce the polypeptide of the present invention, the vector does not need a second signal peptide. Alternatively, if a naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., International Publication No. WO 96/34891.)

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The amplified fragment is then digested with the same restriction enzyme and purified on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC6 using, for instance, restriction enzyme analysis.

Chinese hamster ovary cells lacking an active DHFR gene is used for transfection. Five µg of the expression plasmid pC6 or pC4 is cotransfected with 0.5 µg of the plasmid pSVneo using lipofectin (Felgner et al., *supra*). The plasmid pSV2-neo contains a dominant selectable marker, the *neo* gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates

(Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of methotrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 μ M, 2 μ M, 5 μ M, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100 - 200 μ M. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.

Example 9: Protein Fusions

5

10

15

20

25

30

35

The polypeptides of the present invention are preferably fused to other proteins. These fusion proteins can be used for a variety of applications. For example, fusion of the present polypeptides to His-tag, HA-tag, protein A, IgG domains, and maltose binding protein facilitates purification. (See Example 5; see also EP A 394,827; Traunecker, et al., Nature 331:84-86 (1988)). Similarly, fusion to IgG-1, IgG-3, and albumin increases the halflife time *in vivo*. Nuclear localization signals fused to the polypeptides of the present invention can target the protein to a specific subcellular localization, while covalent heterodimer or homodimers can increase or decrease the activity of a fusion protein. Fusion proteins can also create chimeric molecules having more than one function. Finally, fusion proteins can increase solubility and/or stability of the fused protein compared to the non-fused protein. All of the types of fusion proteins described above can be made by modifying the following protocol, which outlines the fusion of a polypeptide to an IgG molecule, or the protocol described in Example 5.

Briefly, the human Fc portion of the IgG molecule can be PCR amplified, using primers that span the 5' and 3' ends of the sequence described below. These primers also should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector.

For example, if pC4 (ATCC Accession No. 209646) is used, the human Fc portion can be ligated into the BamHI cloning site. Note that the 3' BamHI site should be destroyed. Next, the vector containing the human Fc portion is re-restricted with BamHI, linearizing the vector, and a polynucleotide of the present invention, isolated by the PCR protocol described in Example 1, is ligated into this BamHI site. Note that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced.

If the naturally occurring signal sequence is used to produce the polypeptide of the present invention, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., International Publication No. WO 96/34891.)

Human IgG Fc region:

5

10

15

20

25

30

35

GGGATCCGGAGCCCAAATCTTCTGACAAAACTCACACATGCCCACCGTGCCCAGCAC
CTGAATTCGAGGGTGCACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCT
CATGATCTCCCGGACTCCTGAGGTCACATGCGTGGTGGTGGACGTAAGCCACGAAGA
CCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC
AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGT
CCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGC
CCTCCCAACCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACC
ACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCT
GACCTGCCTGGTCAAAGGCTTCTATCCAAGCGACATCGCCGTGGAGTGGGAGAGCAA
TGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGGTGGACTCCGACGGCTC
CTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGT
CTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTC
TCCCTGTCTCCGGGTAAATGAGTGCGACGGCCGCGACTCTTAGAGGAT (SEQ ID NO: 1)

Example 10: Production of an Antibody from a Polypeptide

a) Hybridoma Technology

The antibodies of the present invention can be prepared by a variety of methods. (See, Current Protocols, Chapter 2.) As one example of such methods, cells expressing a polypeptide of the present invention are administered to an animal to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation of a polypeptide of the present invention is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

Monoclonal antibodies specific for a polypeptide of the present invention are prepared using hybridoma technology (Kohler et al., Nature 256:495 (1975); Kohler et al., Eur. J. Immunol. 6:511 (1976); Kohler et al., Eur. J. Immunol. 6:292 (1976); Hammerling et al., in: Monoclonal Antibodies and T-Cell Hybridomas, Elsevier, N.Y., pp. 563-681 (1981)). In general, an animal (preferably a mouse) is immunized with a polypeptide of the present invention or, more preferably, with a secreted polypeptide-expressing cell. Such polypeptide-expressing cells are cultured in any suitable tissue culture medium, preferably in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56°C), and supplemented with about 10 g/l of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 μg/ml of streptomycin.

The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP2O), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands et al. (Gastroenterology 80:225-232 (1981)). The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide of the present invention.

5

10

15

20

30

35

Alternatively, additional antibodies capable of binding to a polypeptide of the present invention can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the polypeptide-specific antibody can be blocked by said polypeptide. Such antibodies comprise anti-idiotypic antibodies to the polypeptide-specific antibody and are used to immunize an animal to induce formation of further polypeptide-specific antibodies.

For *in vivo* use of antibodies in humans, an antibody is "humanized". Such antibodies can be produced using genetic constructs derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric and humanized antibodies are known in the art and are discussed herein. (See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., International Publication No. WO 8702671; Boulianne et al., Nature 312:643 (1984); Neuberger et al., Nature 314:268 (1985)).

 b) Isolation Of Antibody Fragments Directed Against a Polypeptide of the Present Invention From A Library Of scFvs

Naturally occurring V-genes isolated from human PBLs are constructed into a library of antibody fragments which contain reactivities against a polypeptide of the present invention to which the donor may or may not have been exposed (see e.g., U.S. Patent 5,885,793 incorporated herein by reference in its entirety).

Rescue of the Library. A library of scFvs is constructed from the RNA of human PBLs as described in International Publication No. WO 92/01047. To rescue phage displaying antibody fragments, approximately 10° E. coli harboring the phagemid are used to inoculate 50 ml of 2xTY containing 1% glucose and 100 μg/ml of ampicillin (2xTY-AMP-GLU) and grown to an O.D. of 0.8 with shaking. Five ml of this culture is used to inoculate 50 ml of 2xTY-AMP-GLU, 2 x 108 TU of delta gene 3 helper (M13 delta gene III, see International Publication No. WO 92/01047) are added and the culture incubated at 37°C for 45 minutes without shaking and then at 37°C for

45 minutes with shaking. The culture is centrifuged at 4000 r.p.m. for 10 min. and the pellet resuspended in 2 liters of 2xTY containing 100 μg/ml ampicillin and 50 ug/ml kanamycin and grown overnight. Phage are prepared as described in International Publication No. WO 92/01047.

M13 delta gene III is prepared as follows: M13 delta gene III helper phage does not encode gene III protein, hence the phage(mid) displaying antibody fragments have a greater avidity of binding to antigen. Infectious M13 delta gene III particles are made by growing the helper phage in cells harboring a pUC19 derivative supplying the wild type gene III protein during phage morphogenesis. The culture is incubated for 1 hour at 37° C without shaking and then for a further hour at 37°C with shaking. Cells are spun down (IEC-Centra 8,400 r.p.m. for 10 min), resuspended in 300 ml 2xTY broth containing 100 μg ampicillin/ml and 25 μg kanamycin/ml (2xTY-AMP-KAN) and grown overnight, shaking at 37°C. Phage particles are purified and concentrated from the culture medium by two PEG-precipitations (Sambrook et al., 1990), resuspended in 2 ml PBS and passed through a 0.45 μm filter (Minisart NML; Sartorius) to give a final concentration of approximately 10¹³ transducing units/ml (ampicillin-resistant clones).

Panning of the Library. Immunotubes (Nunc) are coated overnight in PBS with 4 ml of either 100 μg/ml or 10 μg/ml of a polypeptide of the present invention. Tubes are blocked with 2% Marvel-PBS for 2 hours at 37°C and then washed 3 times in PBS. Approximately 10¹³ TU of phage is applied to the tube and incubated for 30 minutes at room temperature tumbling on an over and under turntable and then left to stand for another 1.5 hours. Tubes are washed 10 times with PBS 0.1% Tween-20 and 10 times with PBS. Phage are eluted by adding 1 ml of 100 mM triethylamine and rotating 15 minutes on an under and over turntable after which the solution is immediately neutralized with 0.5 ml of 1.0M Tris-HCl, pH 7.4. Phage are then used to infect 10 ml of mid-log E. coli TG1 by incubating eluted phage with bacteria for 30 minutes at 37°C. The E. coli are then plated on TYE plates containing 1% glucose and 100 μg/ml ampicillin. The resulting bacterial library is then rescued with delta gene 3 helper phage as described above to prepare phage for a subsequent round of selection. This process is then repeated for a total of 4 rounds of affinity purification with tube-washing increased to 20 times with PBS, 0.1% Tween-20 and 20 times with PBS for rounds 3 and 4.

Characterization of Binders. Eluted phage from the 3rd and 4th rounds of selection are used to infect E. coli HB 2151 and soluble scFv is produced (Marks, et al., 1991) from single colonies for assay. ELISAs are performed with microtitre plates coated with either 10 pg/ml of the polypeptide of the present invention in 50 mM bicarbonate pH 9.6. Clones positive in ELISA are further characterized by PCR fingerprinting (see, e.g., International Publication No. WO 92/01047) and then by sequencing. These ELISA positive clones may also be further characterized by techniques known in the art, such as, for example, epitope mapping, binding affinity, receptor signal transduction, ability to block or competitively inhibit antibody/antigen binding, and competitive agonistic or antagonistic activity.

Example 11: Method of Determining Alterations in a Gene Corresponding to a Polynucleotide

RNA isolated from entire families or individual patients presenting with a cardiovascular disease or disorder is isolated. cDNA is then generated from these RNA samples using protocols known in the art. (See, Sambrook.) The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO:X; and/or the nucleotide sequence of the cDNA contained in ATCC Deposit No:Z. Suggested PCR conditions consist of 35 cycles at 95 degrees C for 30 seconds; 60-120 seconds at 52-58 degrees C; and 60-120 seconds at 70 degrees C, using buffer solutions described in Sidransky et al., Science 252:706 (1991).

5

10

15

20

25

30

PCR products are then sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTherm Polymerase (Epicentre Technologies). The intronexon boundaries of selected exons is also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations are then cloned and sequenced to validate the results of the direct sequencing.

PCR products are cloned into T-tailed vectors as described in Holton et al., Nucleic Acids Research, 19:1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals are identified by mutations not present in unaffected individuals.

Genomic rearrangements are also observed as a method of determining alterations in a gene corresponding to a polynucleotide. Genomic clones isolated according to Example 2 are nick-translated with digoxigenindeoxy-uridine 5'-triphosphate (Boehringer Manheim), and FISH performed as described in Johnson et al., Methods Cell Biol. 35:73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the corresponding genomic locus.

Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium iodide, producing a combination of C- and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera (Photometrics, Tucson, AZ) and variable excitation wavelength filters. (Johnson et al., Genet. Anal. Tech. Appl., 8:75 (1991)). Image collection, analysis and chromosomal fractional length measurements are performed using the ISee Graphical Program System. (Inovision Corporation, Durham, NC.) Chromosome alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated disease.

Example 12: Method of Detecting Abnormal Levels of a Polypeptide in a Biological Sample

A polypeptide of the present invention can be detected in a biological sample, and if an increased or decreased level of the polypeptide is detected, this polypeptide is a marker for a particular phenotype. Methods of detection are numerous, and thus, it is understood that one skilled in the art can modify the following assay to fit their particular needs.

For example, antibody-sandwich ELISAs are used to detect polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific antibodies, at a final concentration of 0.2 to 10 ug/ml. The antibodies are either monoclonal or polyclonal and are produced by the method described in Example 10. The wells are blocked so that non-specific binding of the polypeptide to the well is reduced.

The coated wells are then incubated for > 2 hours at RT with a sample containing the polypeptide. Preferably, serial dilutions of the sample should be used to validate results. The plates are then washed three times with deionized or distilled water to remove unbound polypeptide.

Next, 50 ul of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbound conjugate.

Add 75 ul of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate (NPP) substrate solution to each well and incubate 1 hour at room temperature. Measure the reaction by a microtiter plate reader. Prepare a standard curve, using serial dilutions of a control sample, and plot polypeptide concentration on the X-axis (log scale) and fluorescence or absorbance of the Y-axis (linear scale). Interpolate the concentration of the polypeptide in the sample using the standard curve.

25

30

35

5

10

15

20

Example 13: Formulation

The invention also provides methods of preventing, treating and/or ameliorating a cardiovascular disease or disorder by administration to a subject of an effective amount of a Therapeutic. By therapeutic is meant polynucleotides or polypeptides of the invention (including fragments and variants), agonists or antagonists thereof, and/or antibodies thereto, in combination with a pharmaceutically acceptable carrier type (e.g., a sterile carrier).

The Therapeutic will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side effects of treatment with the Therapeutic alone), the site of delivery, the method of administration, the scheduling of administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations.

As a general proposition, the total pharmaceutically effective amount of the Therapeutic administered parenterally per dose will be in the range of about lug/kg/day to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the Therapeutic is typically administered at a dose rate of about 1 ug/kg/hour to about 50 ug/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.

Therapeutics can be are administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a nontoxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

Therapeutics of the invention are also suitably administered by sustained-release systems. Suitable examples of sustained-release Therapeutics are administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

Therapeutics of the invention are also suitably administered by sustained-release systems. Suitable examples of sustained-release Therapeutics include suitable polymeric materials (such as, for example, semi-permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules), suitable hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, and sparingly soluble derivatives (such as, for example, a sparingly soluble salt).

Sustained-release matrices include polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman et al., Biopolymers 22:547-556 (1983)), poly (2- hydroxyethyl methacrylate) (Langer et al., J. Biomed. Mater. Res. 15:167-277 (1981), and Langer, Chem. Tech. 12:98-105 (1982)), ethylene vinyl acetate (Langer et al., Id.) or poly-D- (-)-3-hydroxybutyric acid (EP 133,988).

In a preferred embodiment, polypeptide, polynucleotide, and antibody compositions of the invention are formulated in a biodegradable, polymeric drug delivery system, for example as described in U.S. Patent Nos. 4,938,763; 5,278,201; 5,278,202; 5,324,519; 5,340,849; and 5,487,897 and in International Publication Numbers WO01/35929, WO00/24374, and WO00/06117 which are hereby incorporated by reference in their entirety. In specific preferred embodiments the polypeptide, polynucleotide, and antibody compositions of the invention are formulated using the ATRIGEL® Biodegradable System of Atrix Laboratories, Inc. (Fort Collins, Colorado).

5

10

15

20

25

30

35

Examples of biodegradable polymers which can be used in the formulation of polypeptide, polynucleotide, and antibody compositions, include but are not limited to, polylactides, polyglycolides, polycaprolactones, polyanhydrides, polyamides, polyurethanes, polyesteramides, polyorthoesters, polydioxanones, polyacetals, polyketals, polycarbonates, polyorthocarbonates, polyphosphazenes, polyhydroxybutyrates, polyhydroxyvalerates, polyalkylene oxalates, polyalkylene succinates, poly(malic acid), poly(amino acids), poly(methyl vinvl ether), poly(maleic anhydride), polyvinylpyrrolidone, polyethylene polyhydroxycellulose, chitin, chitosan, and copolymers, terpolymers, or combinations or mixtures of the above materials. The preferred polymers are those that have a lower degree of crystallization and are more hydrophobic. These polymers and copolymers are more soluble in the biocompatible solvents than the highly crystalline polymers such as polyglycolide and chitin which also have a high degree of hydrogen-bonding. Preferred materials with the desired solubility parameters are the polylactides, polycaprolactones, and copolymers of these with glycolide in which there are more amorphous regions to enhance solubility. In specific preferred embodiments, the biodegradable polymers which can be used in the formulation of polypeptide, polynucleotide, and antibody compositions are poly(lactide-co-glycolides). Polymer properties such as molecular weight, hydrophobicity, and lactide/glycolide ratio may be modified to obtain the desired polypeptide, polynucleotide, or antibody release profile (See, e.g., Ravivarapu et al., Journal of Pharmaceutical Sciences 89:732-741 (2000), which is hereby incorporated by reference in its entirety).

It is also preferred that the solvent for the biodegradable polymer be non-toxic, water miscible, and otherwise biocompatible. Examples of such solvents include, but are not limited to, N-methyl-2-pyrrolidone, 2-pyrrolidone, C2 to C6 alkanols, C1 to C15 alchohols, dils, triols, and tetraols such as ethanol, glycerine propylene glycol, butanol; C3 to C15 alkyl ketones such as acetone, diethyl ketone and methyl ethyl ketone; C3 to C15 esters such as methyl acetate, ethyl acetate, ethyl lactate; alkyl ketones such as methyl ethyl ketone, C1 to C15 amides such as dimethylformamide, dimethylacetamide and caprolactam; C3 to C20 ethers such as tetrahydrofuran, or solketal; tweens, triacetin, propylene carbonate, decylmethylsulfoxide, dimethyl sulfoxide, oleic acid, 1-dodecylazacycloheptan-2-one, Other preferred solvents are

benzyl alchohol, benzyl benzoate, dipropylene glycol, tributyrin, ethyl oleate, glycerin, glycofural, isopropyl myristate, isopropyl palmitate, oleic acid, polyethylene glycol, propylene carbonate, and triethyl citrate. The most preferred solvents are N-methyl-2-pyrrolidone, 2-pyrrolidone, dimethyl sulfoxide, triacetin, and propylene carbonate because of the solvating ability and their compatibility.

5

10

15

20

25

30

35

Additionally, formulations comprising polypeptide, polynucleotide, and antibody compositions and a biodegradable polymer may also include release-rate modification agents and/or pore-forming agents. Examples of release-rate modification agents include, but are not limited to, fatty acids, triglycerides, other like hydrophobic compounds, organic solvents, plasticizing compounds and hydrophilic compounds. Suitable release rate modification agents include, for example, esters of mono-, di-, and tricarboxylic acids, such as 2-ethoxyethyl acetate, methyl acetate, ethyl acetate, diethyl phthalate, dimethyl phthalate, dibutyl phthalate, dimethyl adipate, dimethyl succinate, dimethyl oxalate, dimethyl citrate, triethyl citrate, acetyl tributyl citrate, acetyl triethyl citrate, glycerol triacetate, di(n-butyl) sebecate, and the like; polyhydroxy alcohols, such as propylene glycol, polyethylene glycol, glycerin, sorbitol, and the like; fatty acids; triesters of glycerol, such as triglycerides, epoxidized soybean oil, and other epoxidized vegetable oils; sterols, such as cholesterol; alcohols, such as C.sub.6 -C.sub.12 alkanols, 2-ethoxyethanol. The release rate modification agent may be used singly or in combination with other such agents. Suitable combinations of release rate modification agents include, but are not limited to, glycerin/propylene glycol, sorbitol/glycerine, ethylene oxide/propylene oxide, butylene glycol/adipic acid, and the like. Preferred release rate modification agents include, but are not limited to, dimethyl citrate, triethyl citrate, ethyl heptanoate, glycerin, and hexanediol. Suitable pore-forming agents that may be used in the polymer composition include, but are not limited to, sugars such as sucrose and dextrose, salts such as sodium chloride and sodium carbonate, polymers such as hydroxylpropylcellulose, carboxymethylcellulose, polyethylene glycol, and polyvinylpyrrolidone. Solid crystals that will provide a defined pore size, such as salt or sugar, are preferred.

In specific preferred embodiments the polypeptide, polynucleotide, and antibody compositions of the invention are formulated using the BEMATM BioErodible Mucoadhesive System, MCATM MucoCutaneous Absorption System, SMPTM Solvent MicroParticle System, or BCPTM BioCompatible Polymer System of Atrix Laboratories, Inc. (Fort Collins, Colorado).

Sustained-release Therapeutics also include liposomally entrapped Therapeutics of the invention (see generally, Langer, Science 249:1527-1533 (1990); Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 317 -327 and 353-365 (1989)). Liposomes containing the Therapeutic are prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci. (USA) 82:3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci.(USA) 77:4030-4034 (1980); EP 52,322; EP 36,676; EP

88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal Therapeutic.

In yet an additional embodiment, the Therapeutics of the invention are delivered by way of a pump (*see* Langer, *supra*; Sefton, CRC Crit. Ref. Biomed. Eng. 14:201 (1987); Buchwald et al., Surgery 88:507 (1980); Saudek et al., N. Engl. J. Med. 321:574 (1989)).

5

10

15

20

25

30

35

Other controlled release systems are discussed in the review by Langer (*Science* 249:1527-1533 (1990)).

For parenteral administration, in one embodiment, the Therapeutic is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to the Therapeutic.

Generally, the formulations are prepared by contacting the Therapeutic uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes.

The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.

The Therapeutic is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.

Any pharmaceutical used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Therapeutics generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

5

10

15

20

25

30

35

Therapeutics ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous Therapeutic solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized Therapeutic using bacteriostatic Water-for-Injection.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the Therapeutics of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the Therapeutics may be employed in conjunction with other therapeutic compounds.

The Therapeutics of the invention may be administered alone or in combination with adjuvants. Adjuvants that may be administered with the Therapeutics of the invention include, but are not limited to, alum, alum plus deoxycholate (ImmunoAg), MTP-PE (Biocine Corp.), QS21 (Genentech, Inc.), BCG (e.g., THERACYS®), MPL and nonviable prepartions of Corynebacterium parvum. In a specific embodiment, Therapeutics of the invention are administered in combination with alum. In another specific embodiment, Therapeutics of the invention are administered in combination with QS-21. Further adjuvants that may be administered with the Therapeutics of the invention include, but are not limited to, Monophosphoryl lipid immunomodulator, AdjuVax 100a, QS-21, QS-18, CRL1005, Aluminum salts, MF-59, and Virosomal adjuvant technology. Vaccines that may be administered with the Therapeutics of the invention include, but are not limited to, vaccines directed toward protection against MMR (measles, mumps, rubella), polio, varicella, tetanus/diptheria, hepatitis A, hepatitis B, haemophilus influenzae B, whooping cough, pneumonia, influenza, Lyme's Disease, rotavirus, cholera, yellow fever, Japanese encephalitis, poliomyelitis, rabies, typhoid fever, and pertussis. Combinations may be administered either concomitantly, e.g., as an admixture, separately but simultaneously or concurrently; or sequentially. This includes presentations in which the combined agents are administered together as a therapeutic mixture, and also procedures in which the combined agents are administered separately but simultaneously, e.g., as through separate intravenous lines into the same individual. Administration "in combination" further includes the separate administration of one of the compounds or agents given first, followed by the second.

The Therapeutics of the invention may be administered alone or in combination with other therapeutic agents. Therapeutic agents that may be administered in combination with the Therapeutics of the invention, include but not limited to, chemotherapeutic agents, antibiotics, steroidal and non-steroidal anti-inflammatories, conventional immunotherapeutic agents, and/or therapeutic treatments described below. Combinations may be administered either concomitantly, e.g., as an admixture, separately but simultaneously or concurrently; or sequentially. This includes presentations in which the combined agents are administered together as a therapeutic mixture, and also procedures in which the combined agents are administered separately but simultaneously, e.g., as through separate intravenous lines into the same individual. Administration "in combination" further includes the separate administration of one of the compounds or agents given first, followed by the second.

In one embodiment, the Therapeutics of the invention are administered in combination with an anticoagulant. Anticoagulants that may be administered with the compositions of the invention include, but are not limited to, heparin, low molecular weight heparin, warfarin sodium (e.g., COUMADIN®), dicumarol, 4-hydroxycoumarin, anisindione (e.g., MIRADONTM), acenocoumarol (e.g., nicoumalone, SINTHROMETM), indan-1,3-dione, phenprocoumon (e.g., MARCUMARTM), ethyl biscoumacetate (e.g., TROMEXANTM), and aspirin. In a specific embodiment, compositions of the invention are administered in combination with heparin and/or warfarin. In another specific embodiment, compositions of the invention are administered in combination with warfarin and aspirin. In another specific embodiment, compositions of the invention are administered in combination with heparin. In another specific embodiment, compositions of the invention are administered in combination with heparin. In another specific embodiment, compositions of the invention are administered in combination with heparin. In another specific embodiment, compositions of the invention are administered in combination with heparin and aspirin.

In another embodiment, the Therapeutics of the invention are administered in combination with thrombolytic drugs. Thrombolytic drugs that may be administered with the compositions of the invention include, but are not limited to, plasminogen, lys-plasminogen, alpha2-antiplasmin, streptokinae (e.g., KABIKINASETM), antiresplace (e.g., EMINASETM), tissue plasminogen activator (t-PA, altevase, ACTIVASETM), urokinase (e.g., ABBOKINASETM), sauruplase, (Prourokinase, single chain urokinase), and aminocaproic acid (e.g., AMICARTM). In a specific embodiment, compositions of the invention are administered in combination with tissue plasminogen activator and aspirin.

In another embodiment, the Therapeutics of the invention are administered in combination with antiplatelet drugs. Antiplatelet drugs that may be administered with the compositions of the invention include, but are not limited to, aspirin, dipyridamole (e.g., PERSANTINETM), and ticlopidine (e.g., TICLIDTM).

In specific embodiments, the use of anti-coagulants, thrombolytic and/or antiplatelet

drugs in combination with Therapeutics of the invention is contemplated for the detection, prevention, diagnosis, prognostication, treatment, and/or amelioration of thrombosis, arterial thrombosis, venous thrombosis, thromboembolism, pulmonary embolism, atherosclerosis, myocardial infarction, transient ischemic attack, unstable angina. In specific embodiments, the use of anticoagulants, thrombolytic drugs and/or antiplatelet drugs in combination with Therapeutics of the invention is contemplated for the prevention of occulsion of saphenous grafts, for reducing the risk of periprocedural thrombosis as might accompany angioplasty procedures, for reducing the risk of stroke in patients with atrial fibrillation including nonrheumatic atrial fibrillation, for reducing the risk of embolism associated with mechanical heart valves and or mitral valves disease. Other uses for the therapeutics of the invention, alone or in combination with antiplatelet, anticoagulant, and/or thrombolytic drugs, include, but are not limited to, the prevention of occlusions in extracorporeal devices (e.g., intravascular canulas, vascular access shunts in hemodialysis patients, hemodialysis machines, and cardiopulmonary bypass machines).

5

10

15

20

25

30

35

Therapeutics of the invention may also be administered in combination with additional cardiovascular agents, such as, for example, beta-adrenergic blockers, calcium channel blockers, ACE inhibitors, angiotensin II blockers, alpha adrenergic blockers, hypotensive agents, antilipemic agents, and vasodilating agents.

Non-limiting examples of beta-adrenergic blockers includes TENORMINTM (atenolol), BREVIBLOC™ (esmolol), NORMODYNE™ (labetalol), TRANDATE™, LOPRESSOR™ (metoprolol), INDERAL™ (propranolol), and BETApp96™ (sotalol). Calcium channel blockers includes, for example, NORVASCTM (amlodipine), CARDIZEMTM (diltiazem), PLENDILTM (felodipine), DYNACRIC™ (isradipine), CARDENE™ (nicardipine), ADALAT™ (nifedipine), and CALANTM (verapamil). ACE inhibitors includes, for example, LOTENSINTM (benazepril), CAPOTEN™ (captopril), VASOTEC™ (enalapril), MONOPRIL™ (fosinopril), PRINIVIL™ (lisinopril), ACCUPRILTM (quinapril), and ALTACETM (ramipril). Non-limiting examples of angiotensin II blockers includes AVAPRO™ (irbesartan), COZAAR™ (losartan), and DIOVAN™ (valsartan). Alpha adrenergic blockers includes, for example, CARDURATM (doxazosin), MINIPRESSTM (prazosin), FLOMAXTM (tamsulosin), and terazosin. Hypotensive agents include, for example, CATAPRESTM (clonidine), APRESOLINETM (hydralazine), ALDOMETTM (methyldopa), LONITEN™ (minoxidil), NIPRIDE™ (nitroprusside) and reserpine. Antilipemic agents include, for example, LIPITORTM (atorvastatin), QUESTRANTM (cholestyramine), LOLESTID™ (colestipol), TRICOR™ (fenofibrate), LOPID™ (gemfibrate), MEVACOR™ (lovstatin), PRAVACHOL™ (pravastatin), and ZOCOR™ (simvastatin). Non-limiting examples of vasodilating agents include alprostadil, amyl nitrite, PERSANTIN™ (dipyridamole), FLONAN™ (epoprostenol), ISORDIL™ (isosorbide dinitrate), IMDUR™ (isosorbide

mononitrate), NIMOTOP™ (nimodipine), INOmax™ (nitric oxide gas), nitroglycerin, papaverine, and PRISCOLINE™ (tolazoline).

5

10

15

20

25

30

35

In certain embodiments, Therapeutics of the invention are administered in combination with antiretroviral agents, nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), nonnucleoside reverse transcriptase inhibitors (NNRTIs), and/or protease inhibitors (PIs). NRTIs that may be administered in combination with the Therapeutics of the invention, include, but are not limited RETROVIR™ (zidovudine/AZT), VIDEX™ (didanosine/ddI), HIVID™ (zalcitabine/ddC), ZERIT™ (stavudine/d4T), EPIVIR™ (lamivudine/3TC), and COMBIVIR™ (zidovudine/lamivudine). NNRTIs that may be administered in combination with the Therapeutics of the invention, include, but are not limited to, VIRAMUNE™ (nevirapine), RESCRIPTOR™ (delavirdine), and SUSTIVA™ (efavirenz). Protease inhibitors that may be administered in combination with the Therapeutics of the invention, include, but are not limited to, CRIXIVAN™ (indinavir), NORVIR™ (ritonavir), INVIRASE™ (saquinavir), and VIRACEPT™ (nelfinavir). In a specific embodiment, antiretroviral agents, nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and/or protease inhibitors may be used in any combination with Therapeutics of the invention to treat AIDS and/or to prevent or treat HIV infection.

Additional NRTIs include LODENOSINETM (F-ddA; an acid-stable adenosine NRTI; Triangle/Abbott; COVIRACILTM (emtricitabine/FTC; structurally related to lamivudine (3TC) but with 3- to 10-fold greater activity *in vitro*; Triangle/Abbott); dOTC (BCH-10652, also structurally related to lamivudine but retains activity against a substantial proportion of lamivudine-resistant isolates; Biochem Pharma); Adefovir (refused approval for anti-HIV therapy by FDA; Gilead Sciences); PREVEON® (Adefovir Dipivoxil, the active prodrug of adefovir; its active form is PMEA-pp); TENOFOVIRTM (bis-POC PMPA, a PMPA prodrug; Gilead); DAPD/DXG (active metabolite of DAPD; Triangle/Abbott); D-D4FC (related to 3TC, with activity against AZT/3TC-resistant virus); GW420867X (Glaxo Wellcome); ZIAGENTM (abacavir/159U89; Glaxo Wellcome Inc.); CS-87 (3'azido-2',3'-dideoxyuridine; WO 99/66936); and S-acyl-2-thioethyl (SATE)-bearing prodrug forms of β-L-FD4C and β-L-FddC (WO 98/17281).

Additional NNRTIs include COACTINON™ (Emivirine/MKC-442, potent NNRTI of the HEPT class; Triangle/Abbott); CAPRAVIRINE™ (AG-1549/S-1153, a next generation NNRTI with activity against viruses containing the K103N mutation; Agouron); PNU-142721 (has 20- to 50-fold greater activity than its predecessor delavirdine and is active against K103N mutants; Pharmacia & Upjohn); DPC-961 and DPC-963 (second-generation derivatives of efavirenz, designed to be active against viruses with the K103N mutation; DuPont); GW-420867X (has 25-fold greater activity than HBY097 and is active against K103N mutants; Glaxo

Wellcome); CALANOLIDE A (naturally occurring agent from the latex tree; active against viruses containing either or both the Y181C and K103N mutations); and Propolis (WO 99/49830).

Additional protease inhibitors include LOPINAVIR™ (ABT378/r; Abbott Laboratories); BMS-232632 (an azapeptide; Bristol-Myres Squibb); TIPRANAVIR™ (PNU-140690, a non-peptic dihydropyrone; Pharmacia & Upjohn); PD-178390 (a nonpeptidic dihydropyrone; Parke-Davis); BMS 232632 (an azapeptide; Bristol-Myers Squibb); L-756,423 (an indinavir analog; Merck); DMP-450 (a cyclic urea compound; Avid & DuPont); AG-1776 (a peptidomimetic with *in vitro* activity against protease inhibitor-resistant viruses; Agouron); VX-175/GW-433908 (phosphate prodrug of amprenavir; Vertex & Glaxo Welcome); CGP61755 (Ciba); and AGENERASE™ (amprenavir; Glaxo Wellcome Inc.).

5

10

15

20

25

30

35

Additional antiretroviral agents include fusion inhibitors/gp41 binders. Fusion inhibitors/gp41 binders include T-20 (a peptide from residues 643-678 of the HIV gp41 transmembrane protein ectodomain which binds to gp41 in its resting state and prevents transformation to the fusogenic state; Trimeris) and T-1249 (a second-generation fusion inhibitor; Trimeris).

Additional antiretroviral agents include fusion inhibitors/chemokine receptor antagonists. Fusion inhibitors/chemokine receptor antagonists include CXCR4 antagonists such as AMD 3100 (a bicyclam), SDF-1 and its analogs, and ALX40-4C (a cationic peptide), T22 (an 18 amino acid peptide; Trimeris) and the T22 analogs T134 and T140; CCR5 antagonists such as RANTES (9-68), AOP-RANTES, NNY-RANTES, and TAK-779; and CCR5/CXCR4 antagonists such as NSC 651016 (a distamycin analog). Also included are CCR2B, CCR3, and CCR6 antagonists. Chemokine receptor agonists such as RANTES, SDF-1, MIP-1α, MIP-1β, etc., may also inhibit fusion.

Additional antiretroviral agents include integrase inhibitors. Integrase inhibitors include dicaffeoylquinic (DFQA) acids; L-chicoric acid (a dicaffeoyltartaric (DCTA) acid); quinalizarin (QLC) and related anthraquinones; ZINTEVIR™ (AR 177, an oligonucleotide that probably acts at cell surface rather than being a true integrase inhibitor; Arondex); and naphthols such as those disclosed in WO 98/50347.

Additional antiretroviral agents include hydroxyurea-like compunds such as BCX-34 (a purine nucleoside phosphorylase inhibitor; Biocryst); ribonucleotide reductase inhibitors such as DIDOX™ (Molecules for Health); inosine monophosphate dehydrogenase (IMPDH) inhibitors such as VX-497 (Vertex); and mycopholic acids such as CellCept (mycophenolate mofetil; Roche).

Additional antiretroviral agents include inhibitors of viral integrase, inhibitors of viral genome nuclear translocation such as arylene bis(methylketone) compounds; inhibitors of HIV entry such as AOP-RANTES, NNY-RANTES, RANTES-IgG fusion protein, soluble complexes

of RANTES and glycosaminoglycans (GAG), and AMD-3100; nucleocapsid zinc finger inhibitors such as dithiane compounds; targets of HIV Tat and Rev; and pharmacoenhancers such as ABT-378.

5

10

15

20

25

30

35

Other antiretroviral therapies and adjunct therapies include cytokines and lymphokines such as MIP-1α, MIP-1β, SDF-1α, IL-2, PROLEUKIN™ (aldesleukin/L2-7001; Chiron), IL-4, IL-10, IL-12, and IL-13; interferons such as IFN-α2a; antagonists of TNFs, NFκB, GM-CSF, M-CSF, and IL-10; agents that modulate immune activation such as cyclosporin and prednisone; vaccines such as Remune™ (HIV Immunogen), APL 400-003 (Apollon), recombinant gp120 and fragments, bivalent (B/E) recombinant envelope glycoprotein, rgp120CM235, MN rgp120, SF-2 rgp120, gp120/soluble CD4 complex, Delta JR-FL protein, branched synthetic peptide derived from discontinuous gp120 C3/C4 domain, fusion-competent immunogens, and Gag, Pol, Nef, and Tat vaccines; gene-based therapies such as genetic suppressor elements (GSEs; WO 98/54366), and intrakines (genetically modified CC chemokines targetted to the ER to block surface expression of newly synthesized CCR5 (Yang et al., PNAS 94:11567-72 (1997); Chen et al., Nat. Med. 3:1110-16 (1997)); antibodies such as the anti-CXCR4 antibody 12G5, the anti-CCR5 antibodies 2D7, 5C7, PA8, PA9, PA10, PA11, PA12, and PA14, the anti-CD4 antibodies Q4120 and RPA-T4, the anti-CCR3 antibody 7B11, the anti-gp120 antibodies 17b, 48d, 447-52D, 257-D, 268-D and 50.1, anti-Tat antibodies, anti-TNF-α antibodies, and monoclonal antibody 33A; aryl hydrocarbon (AH) receptor agonists and antagonists such as TCDD, 3,3',4,4',5pentachlorobiphenyl, 3,3',4,4'-tetrachlorobiphenyl, and α-naphthoflavone (WO 98/30213); and antioxidants such as γ -L-glutamyl-L-cysteine ethyl ester (γ -GCE; WO 99/56764).

In a further embodiment, the Therapeutics of the invention are administered in combination with an antiviral agent. Antiviral agents that may be administered with the Therapeutics of the invention include, but are not limited to, acyclovir, ribavirin, amantadine, and remantidine.

In other embodiments, Therapeutics of the invention may be administered in combination with anti-opportunistic infection agents. Anti-opportunistic agents that may be administered in combination with the Therapeutics of the invention, include, but are not limited to, TRIMETHOPRIM-SULFAMETHOXAZOLE™, DAPSONE™, PENTAMIDINE™, ATOVAQUONE™, ISONIAZID™, RIFAMPIN™, PYRAZINAMIDE™, ETHAMBUTOL™, RIFABUTIN™, CLARITHROMYCIN™, AZITHROMYCIN™, GANCICLOVIR™, FOSCARNET™, CIDOFOVIR™, FLUCONAZOLE™, ITRACONAZOLE™, KETOCONAZOLE™, ACYCLOVIR™, FAMCICOLVIR™, PYRIMETHAMINE™, LEUCOVORIN™, NEUPOGEN™ (filgrastim/G-CSF), and LEUKINE™ (sargramostim/GM-CSF). In a specific embodiment, Therapeutics of the invention are used in any combination with TRIMETHOPRIM-SULFAMETHOXAZOLE™, DAPSONE™, PENTAMIDINE™, and/or

ATOVAQUONE™ to prophylactically treat or prevent an opportunistic Pneumocystis carinii pneumonia infection. In another specific embodiment, Therapeutics of the invention are used in ISONIAZID™, with RIFAMPIN™, PYRAZINAMIDE™. any combination ETHAMBUTOL™ to prophylactically treat or prevent an opportunistic Mycobacterium avium complex infection. In another specific embodiment, Therapeutics of the invention are used in any combination with RIFABUTIN™, CLARITHROMYCIN™, and/or AZITHROMYCIN™ to prophylactically treat or prevent an opportunistic Mycobacterium tuberculosis infection. In another specific embodiment, Therapeutics of the invention are used in any combination with GANCICLOVIR™, FOSCARNET™, and/or CIDOFOVIR™ to prophylactically treat or prevent an opportunistic cytomegalovirus infection. In another specific embodiment, Therapeutics of the invention are used in any combination with FLUCONAZOLE™, ITRACONAZOLE™, and/or KETOCONAZOLE™ to prophylactically treat or prevent an opportunistic fungal infection. In another specific embodiment, Therapeutics of the invention are used in any combination with ACYCLOVIR™ and/or FAMCICOLVIR™ to prophylactically treat or prevent an opportunistic herpes simplex virus type I and/or type II infection. In another specific embodiment, Therapeutics of the invention are used in any combination with PYRIMETHAMINE™ and/or LEUCOVORIN™ to prophylactically treat or prevent an opportunistic Toxoplasma gondii infection. In another specific embodiment, Therapeutics of the invention are used in any combination with LEUCOVORINTM and/or NEUPOGENTM to prophylactically treat or prevent an opportunistic bacterial infection.

5

10

15

20

25

30

35

In a further embodiment, the Therapeutics of the invention are administered in combination with an antibiotic agent. Antibiotic agents that may be administered with the Therapeutics of the invention include, but are not limited to, amoxicillin, beta-lactamases, aminoglycosides, beta-lactam (glycopeptide), beta-lactamases, Clindamycin, chloramphenicol, cephalosporins, ciprofloxacin, erythromycin, fluoroquinolones, macrolides, metronidazole, penicillins, quinolones, rapamycin, rifampin, streptomycin, sulfonamide, tetracyclines, trimethoprim, trimethoprim-sulfamethoxazole, and vancomycin.

In other embodiments, the Therapeutics of the invention are administered in combination with immunestimulants. Immunostimulants that may be administered in combination with the Therapeutics of the invention include, but are not limited to, levamisole (e.g., ERGAMISOLTM), isoprinosine (e.g. INOSIPLEXTM), interferons (e.g. interferon alpha), and interleukins (e.g., IL-2).

In other embodiments, Therapeutics of the invention are administered in combination with immunosuppressive agents. Immunosuppressive agents that may be administered in combination with the Therapeutics of the invention include, but are not limited to, steroids, cyclosporine, cyclosporine analogs, cyclophosphamide methylprednisone, prednisone,

azathioprine, FK-506, 15-deoxyspergualin, and other immunosuppressive agents that act by suppressing the function of responding T cells. Other immunosuppressive agents that may be administered in combination with the Therapeutics of the invention include, but are not limited to, prednisolone, methotrexate, thalidomide, methoxsalen, rapamycin, leflunomide, mizoribine (BREDININTM), brequinar, deoxyspergualin, and azaspirane (SKF 105685), ORTHOCLONE OKT® 3 (muromonab-CD3), SANDIMMUNETM, NEORALTM, SANGDYATM (cyclosporine), PROGRAF® (FK506, tacrolimus), CELLCEPT® (mycophenolate motefil, of which the active metabolite is mycophenolic acid), IMURANTM (azathioprine), glucocorticosteroids, adrenocortical steroids such as DELTASONETM (prednisone) and HYDELTRASOLTM (prednisolone), FOLEXTM and MEXATETM (methotrxate), OXSORALEN-ULTRATM (methoxsalen) and RAPAMUNETM (sirolimus). In a specific embodiment, immunosuppressants may be used to prevent rejection of organ or bone marrow transplantation.

In an additional embodiment, Therapeutics of the invention are administered alone or in combination with one or more intravenous immune globulin preparations. Intravenous immune globulin preparations that may be administered with the Therapeutics of the invention include, but not limited to, GAMMARTM, IVEEGAMTM, SANDOGLOBULINTM, GAMMAGARD S/DTM, ATGAMTM (antithymocyte glubulin), and GAMIMUNETM. In a specific embodiment, Therapeutics of the invention are administered in combination with intravenous immune globulin preparations in transplantation therapy (e.g., bone marrow transplant).

In certain embodiments, the Therapeutics of the invention are administered alone or in combination with an anti-inflammatory agent. Anti-inflammatory agents that may be administered with the Therapeutics of the invention include, but are not limited to, corticosteroids (e.g. betamethasone, budesonide, cortisone, dexamethasone, hydrocortisone, methylprednisolone, prednisolone, prednisolone, and triamcinolone), nonsteroidal anti-inflammatory drugs (e.g., diclofenac, diflunisal, etodolac, fenoprofen, floctafenine, flurbiprofen, ibuprofen, indomethacin, ketoprofen, meclofenamate, mefenamic acid, meloxicam, nabumetone, naproxen, oxaprozin, phenylbutazone, piroxicam, sulindac, tenoxicam, tiaprofenic acid, and tolmetin.), as well as antihistamines, aminoarylcarboxylic acid derivatives, arylacetic acid derivatives, arylbutyric acid derivatives, arylcarboxylic acids, arylpropionic acid derivatives, pyrazoles, pyrazolones, salicylic acid derivatives, thiazinecarboxamides, e-acetamidocaproic acid, S-adenosylmethionine, 3-amino-4-hydroxybutyric acid, amixetrine, bendazac, benzydamine, bucolome, difenpiramide, ditazol, emorfazone, guaiazulene, nabumetone, nimesulide, orgotein, oxaceprol, paranyline, perisoxal, pifoxime, proquazone, proxazole, and tenidap.

In an additional embodiment, the compositions of the invention are administered alone or in combination with an anti-angiogenic agent. Anti-angiogenic agents that may be administered with the compositions of the invention include, but are not limited to, Angiostatin (Entremed,

Rockville, MD), Troponin-1 (Boston Life Sciences, Boston, MA), anti-Invasive Factor, retinoic acid and derivatives thereof, paclitaxel (Taxol), Suramin, Tissue Inhibitor of Metalloproteinase-1, Tissue Inhibitor of Metalloproteinase-2, VEGI, Plasminogen Activator Inhibitor-1, Plasminogen Activator Inhibitor-2, and various forms of the lighter "d group" transition metals.

Lighter "d group" transition metals include, for example, vanadium, molybdenum, tungsten, titanium, niobium, and tantalum species. Such transition metal species may form transition metal complexes. Suitable complexes of the above-mentioned transition metal species include oxo transition metal complexes.

Representative examples of vanadium complexes include oxo vanadium complexes such as vanadate and vanadyl complexes. Suitable vanadate complexes include metavanadate and orthovanadate complexes such as, for example, ammonium metavanadate, sodium metavanadate, and sodium orthovanadate. Suitable vanadyl complexes include, for example, vanadyl acetylacetonate and vanadyl sulfate including vanadyl sulfate hydrates such as vanadyl sulfate mono- and trihydrates.

Representative examples of tungsten and molybdenum complexes also include oxo complexes. Suitable oxo tungsten complexes include tungstate and tungsten oxide complexes. Suitable tungstate complexes include ammonium tungstate, calcium tungstate, sodium tungstate dihydrate, and tungstic acid. Suitable tungsten oxides include tungsten (IV) oxide and tungsten (VI) oxide. Suitable oxo molybdenum complexes include molybdate, molybdenum oxide, and molybdenyl complexes. Suitable molybdate complexes include ammonium molybdate and its hydrates, sodium molybdate and its hydrates, and potassium molybdate and its hydrates. Suitable molybdenum oxides include molybdenum (VI) oxide, molybdenum (VI) oxide, and molybdic acid. Suitable molybdenyl complexes include, for example, molybdenyl acetylacetonate. Other suitable tungsten and molybdenum complexes include hydroxo derivatives derived from, for example, glycerol, tartaric acid, and sugars.

A wide variety of other anti-angiogenic factors may also be utilized within the context of the present invention. Representative examples include, but are not limited to, platelet factor 4; protamine sulphate; sulphated chitin derivatives (prepared from queen crab shells), (Murata et al., Cancer Res. 51:22-26, (1991)); Sulphated Polysaccharide Peptidoglycan Complex (SP- PG) (the function of this compound may be enhanced by the presence of steroids such as estrogen, and tamoxifen citrate); Staurosporine; modulators of matrix metabolism, including for example, proline analogs, cishydroxyproline, d,L-3,4-dehydroproline, Thiaproline, alpha,alpha-dipyridyl, aminopropionitrile fumarate; 4-propyl-5-(4-pyridinyl)-2(3H)-oxazolone; Methotrexate; Mitoxantrone; Heparin; Interferons; 2 Macroglobulin-serum; ChIMP-3 (Pavloff et al., J. Bio. Chem. 267:17321-17326, (1992)); Chymostatin (Tomkinson et al., Biochem J. 286:475-480, (1992)); Cyclodextrin Tetradecasulfate; Eponemycin; Camptothecin; Fumagillin (Ingber et al., Nature 348:555-557, (1990)); Gold Sodium Thiomalate ("GST"; Matsubara and Ziff, J. Clin.

Invest. 79:1440-1446, (1987)); anticollagenase-serum; alpha2-antiplasmin (Holmes et al., J. Biol. Chem. 262(4):1659-1664, (1987)); Bisantrene (National Cancer Institute); Lobenzarit disodium (N-(2)-carboxyphenyl-4- chloroanthronilic acid disodium or "CCA"; (Takeuchi et al., Agents Actions 36:312-316, (1992)); and metalloproteinase inhibitors such as BB94.

5

10

15

20

25

30

35

Additional anti-angiogenic factors that may also be utilized within the context of the present invention include Thalidomide, (Celgene, Warren, NJ); Angiostatic steroid; AGM-1470 (H. Brem and J. Folkman J Pediatr. Surg. 28:445-51 (1993)); an integrin alpha v beta 3 antagonist Storgard et al., J Clin. Invest. 103:47-54 (1999)); carboxynaminolmidazole; Carboxyamidotriazole (CAI) (National Cancer Institute, Bethesda, MD); Conbretastatin A-4 (CA4P) (OXiGENE, Boston, MA); Squalamine (Magainin Pharmaceuticals, Plymouth Meeting, PA); TNP-470, (Tap Pharmaceuticals, Deerfield, IL); ZD-0101 AstraZeneca (London, UK); APRA (CT2584); Benefin, Byrostatin-1 (SC339555); CGP-41251 (PKC 412); CM101; Dexrazoxane (ICRF187); DMXAA; Endostatin; Flavopridiol; Genestein; GTE; ImmTher; Iressa (ZD1839); Octreotide (Somatostatin); Panretin; Penacillamine; Photopoint; PI-88; Prinomastat (AG-3340) Purlytin; Suradista (FCE26644); Tamoxifen (Nolvadex); Tazarotene: Tetrathiomolybdate; Xeloda (Capecitabine); and 5-Fluorouracil.

Anti-angiogenic agents that may be administed in combination with the compounds of the invention may work through a variety of mechanisms including, but not limited to, inhibiting proteolysis of the extracellular matrix, blocking the function of endothelial cell-extracellular matrix adhesion molecules, by antagonizing the function of angiogenesis inducers such as growth factors, and inhibiting integrin receptors expressed on proliferating endothelial cells. Examples of anti-angiogenic inhibitors that interfere with extracellular matrix proteolysis and which may be administered in combination with the compositons of the invention include, but are not lmited to, AG-3340 (Agouron, La Jolla, CA), BAY-12-9566 (Bayer, West Haven, CT), BMS-275291 (Bristol Myers Squibb, Princeton, NJ), CGS-27032A (Novartis, East Hanover, NJ), Marimastat (British Biotech, Oxford, UK), and Metastat (Aeterna, St-Foy, Quebec). Examples of antiangiogenic inhibitors that act by blocking the function of endothelial cell-extracellular matrix adhesion molecules and which may be administered in combination with the compositons of the invention include, but are not lmited to, EMD-121974 (Merck KcgaA Darmstadt, Germany) and Vitaxin (Ixsys, La Jolla, CA/Medimmune, Gaithersburg, MD). Examples of anti-angiogenic agents that act by directly antagonizing or inhibiting angiogenesis inducers and which may be administered in combination with the compositons of the invention include, but are not lmited to, Angiozyme (Ribozyme, Boulder, CO), Anti-VEGF antibody (Genentech, S. San Francisco, CA), PTK-787/ZK-225846 (Novartis, Basel, Switzerland), SU-101 (Sugen, S. San Francisco, CA), SU-5416 (Sugen/ Pharmacia Upjohn, Bridgewater, NJ), and SU-6668 (Sugen). Other anti-angiogenic agents act to indirectly inhibit angiogenesis. Examples of indirect inhibitors of angiogenesis which may be administered in combination with the compositions of the invention include, but are

not limited to, IM-862 (Cytran, Kirkland, WA), Interferon-alpha, IL-12 (Roche, Nutley, NJ), and Pentosan polysulfate (Georgetown University, Washington, DC).

In particular embodiments, the use of compositions of the invention in combination with anti-angiogenic agents is contemplated for the treatment, prevention, and/or amelioration of an autoimmune disease, such as for example, an autoimmune disease described herein.

5

10

15

20

25

30

35

In a particular embodiment, the use of compositions of the invention in combination with anti-angiogenic agents is contemplated for the treatment, prevention, and/or amelioration of arthritis. In a more particular embodiment, the use of compositions of the invention in combination with anti-angiogenic agents is contemplated for the treatment, prevention, and/or amelioration of rheumatoid arthritis.

In another embodiment, the polynucleotides encoding a polypeptide of the present invention are administered in combination with an angiogenic protein, or polynucleotides encoding an angiogenic protein. Examples of angiogenic proteins that may be administered with the compositions of the invention include, but are not limited to, acidic and basic fibroblast growth factors, VEGF-1, VEGF-2, VEGF-3, epidermal growth factor alpha and beta, platelet-derived endothelial cell growth factor, platelet-derived growth factor, tumor necrosis factor alpha, hepatocyte growth factor, insulin-like growth factor, colony stimulating factor, macrophage colony stimulating factor, granulocyte/macrophage colony stimulating factor, and nitric oxide synthase.

In additional embodiments, compositions of the invention are administered in combination with a chemotherapeutic agent. Chemotherapeutic agents that may be administered with the Therapeutics of the invention include, but are not limited to alkylating agents such as nitrogen mustards (for example, Mechlorethamine, cyclophosphamide, Cyclophosphamide Ifosfamide, Melphalan (L-sarcolysin), and Chlorambucil), ethylenimines and methylmelamines (for example, Hexamethylmelamine and Thiotepa), alkyl sulfonates (for example, Busulfan), nitrosoureas (for example, Carmustine (BCNU), Lomustine (CCNU), Semustine (methyl-CCNU), and (streptozotocin)), Streptozocin triazenes (for example, Dacarbazine dimethyltriazenoimidazolecarboxamide)), folic acid analogs (for example, Methotrexate (amethopterin)), pyrimidine analogs (for example, Fluorouacil (5-fluorouracil; 5-FU), Floxuridine (fluorodeoxyuridine; FudR), and Cytarabine (cytosine arabinoside)), purine analogs and related inhibitors (for example, Mercaptopurine (6-mercaptopurine; 6-MP), Thioguanine (6-thioguanine; TG), and Pentostatin (2'-deoxycoformycin)), vinca alkaloids (for example, Vinblastine (VLB, vinblastine sulfate)) and Vincristine (vincristine sulfate)), epipodophyllotoxins (for example, Etoposide and Teniposide), antibiotics (for example, Dactinomycin (actinomycin D), Daunorubicin (daunomycin; rubidomycin), Doxorubicin, Bleomycin, Plicamycin (mithramycin), and Mitomycin (mitomycin C), enzymes (for example, L-Asparaginase), biological response modifiers (for example, Interferon-alpha and interferon-alpha-2b), platinum coordination compounds (for example, Cisplatin (cis-DDP) and Carboplatin), anthracenedione (Mitoxantrone),

substituted ureas (for example, Hydroxyurea), methylhydrazine derivatives (for example, Procarbazine (N-methylhydrazine; MIH), adrenocorticosteroids (for example, Prednisone), progestins (for example, Hydroxyprogesterone caproate, Medroxyprogesterone, Medroxyprogesterone acetate, and Megestrol acetate), estrogens (for example, Diethylstilbestrol (DES), Diethylstilbestrol diphosphate, Estradiol, and Ethinyl estradiol), antiestrogens (for example, Tamoxifen), androgens (Testosterone proprionate, and Fluoxymesterone), antiandrogens (for example, Flutamide), gonadotropin-releasing horomone analogs (for example, Leuprolide), other hormones and hormone analogs (for example, methyltestosterone, estramustine, estramustine phosphate sodium, chlorotrianisene, and testolactone), and others (for example, dicarbazine, glutamic acid, and mitotane).

5

10

15

20

25

30

35

In one embodiment, the compositions of the invention are administered in combination with one or more of the following drugs: infliximab (also known as RemicadeTM Centocor, Inc.), Trocade (Roche, RO-32-3555), Leflunomide (also known as AravaTM from Hoechst Marion Roussel), KineretTM (an IL-1 Receptor antagonist also known as Anakinra from Amgen, Inc.)

In a specific embodiment, compositions of the invention are administered in combination with CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) or combination of one or more of the components of CHOP. In one embodiment, the compositions of the invention are administered in combination with anti-CD20 antibodies, human monoclonal anti-CD20 antibodies. In another embodiment, the compositions of the invention are administered in combination with anti-CD20 antibodies and CHOP, or anti-CD20 antibodies and any combination of one or more of the components of CHOP, particularly cyclophosphamide and/or prednisone. In a specific embodiment, compositions of the invention are administered in combination with Rituximab. In a further embodiment, compositions of the invention are administered with Rituximab and CHOP, or Rituximab and any combination of one or more of the components of CHOP, particularly cyclophosphamide and/or prednisone. In a specific embodiment, compositions of the invention are administered in combination with tositumomab. In a further embodiment, compositions of the invention are administered with tositumomab and CHOP, or tositumomab and any combination of one or more of the components of CHOP, particularly cyclophosphamide and/or prednisone. The anti-CD20 antibodies may optionally be associated with radioisotopes, toxins or cytotoxic prodrugs.

In another specific embodiment, the compositions of the invention are administered in combination Zevalin[™]. In a further embodiment, compositions of the invention are administered with Zevalin[™] and CHOP, or Zevalin[™] and any combination of one or more of the components of CHOP, particularly cyclophosphamide and/or prednisone. Zevalin[™] may be associated with one or more radisotopes. Particularly preferred isotopes are ⁹⁰Y and ¹¹¹In.

In an additional embodiment, the Therapeutics of the invention are administered in combination with cytokines. Cytokines that may be administered with the Therapeutics of the invention include, but are not limited to, IL2, IL3, IL4, IL5, IL6, IL7, IL10, IL12, IL13, IL15, anti-CD40, CD40L, IFN-gamma and TNF-alpha. In another embodiment, Therapeutics of the invention may be administered with any interleukin, including, but not limited to, IL-1alpha, IL-1beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, and IL-21.

5

10

15

20

25

30

35

In one embodiment, the Therapeutics of the invention are administered in combination with members of the TNF family. TNF, TNF-related or TNF-like molecules that may be administered with the Therapeutics of the invention include, but are not limited to, soluble forms of TNF-alpha, lymphotoxin-alpha (LT-alpha, also known as TNF-beta), LT-beta (found in complex heterotrimer LT-alpha2-beta), OPGL, FasL, CD27L, CD30L, CD40L, 4-1BBL, DcR3, OX40L, TNF-gamma (International Publication No. WO 96/14328), AIM-I (International Publication No. WO 97/33899), endokine-alpha (International Publication No. WO 98/18921, OX40, and nerve growth factor (NGF), and soluble forms of Fas, CD30, CD27, CD40 and 4-IBB, TR2 (International Publication No. WO 96/34095), DR3 (International Publication No. WO 97/33904), DR4 (International Publication No. WO 98/32856), TR5 (International Publication No. WO 98/30693), TRANK, TR9 (International Publication No. WO 98/56892),TR10 (International Publication No. WO 98/54202), 312C2 (International Publication No. WO 98/56892), and TR12, and soluble forms CD154, CD70, and CD153.

In an additional embodiment, the Therapeutics of the invention are administered in combination with angiogenic proteins. Angiogenic proteins that may be administered with the Therapeutics of the invention include, but are not limited to, Glioma Derived Growth Factor (GDGF), as disclosed in European Patent Number EP-399816; Platelet Derived Growth Factor-A (PDGF-A), as disclosed in European Patent Number EP-682110; Platelet Derived Growth Factor-B (PDGF-B), as disclosed in European Patent Number EP-282317; Placental Growth Factor (PIGF), as disclosed in International Publication Number WO 92/06194; Placental Growth Factor-2 (PIGF-2), as disclosed in Hauser et al., Growth Factors, 4:259-268 (1993); Vascular Endothelial Growth Factor (VEGF), as disclosed in International Publication Number WO 90/13649; Vascular Endothelial Growth Factor-A (VEGF-A), as disclosed in European Patent Number EP-506477; Vascular Endothelial Growth Factor-2 (VEGF-2), as disclosed in International Publication Number WO 96/39515; Vascular Endothelial Growth Factor B (VEGF-3); Vascular Endothelial Growth Factor B-186 (VEGF-B186), as disclosed in International Publication Number WO 96/26736; Vascular Endothelial Growth Factor-D (VEGF-D), as disclosed in International Publication Number WO 98/02543; Vascular Endothelial Growth Factor-D (VEGF-D), as disclosed in International Publication Number WO 98/07832; and Vascular Endothelial Growth

Factor-E (VEGF-E), as disclosed in German Patent Number DE19639601. The above mentioned references are herein incorporated by reference in their entireties.

In an additional embodiment, the Therapeutics of the invention are administered in combination with Fibroblast Growth Factors. Fibroblast Growth Factors that may be administered with the Therapeutics of the invention include, but are not limited to, FGF-1, FGF-2, FGF-3, FGF-4, FGF-5, FGF-6, FGF-7, FGF-8, FGF-9, FGF-10, FGF-11, FGF-12, FGF-13, FGF-14, and FGF-15.

5

10

15

20

25

30

35

In an additional embodiment, the Therapeutics of the invention are administered in combination with hematopoietic growth factors. Hematopoietic growth factors that may be administered with the Therapeutics of the invention include, but are not limited to, granulocyte macrophage colony stimulating factor (GM-CSF) (sargramostim, LEUKINE™, PROKINE™), granulocyte colony stimulating factor (G-CSF) (filgrastim, NEUPOGEN™), macrophage colony stimulating factor (M-CSF, CSF-1) erythropoietin (epoetin alfa, EPOGEN™, PROCRIT™), stem cell factor (SCF, c-kit ligand, steel factor), megakaryocyte colony stimulating factor, PIXY321 (a GMCSF/IL-3 fusion protein), interleukins, especially any one or more of IL-1 through IL-12, interferon-gamma, or thrombopoietin.

In certain embodiments, Therapeutics of the present invention are administered in combination with adrenergic blockers, such as, for example, acebutolol, atenolol, betaxolol, bisoprolol, carteolol, labetalol, metoprolol, nadolol, oxprenolol, penbutolol, pindolol, propranolol, sotalol, and timolol.

In another embodiment, the Therapeutics of the invention are administered in combination with an antiarrhythmic drug (e.g., adenosine, amidoarone, bretylium, digitalis, digoxin, digitoxin, diliazem, disopyramide, esmolol, flecainide, lidocaine, mexiletine, moricizine, phenytoin, procainamide, N-acetyl procainamide, propafenone, propranolol, quinidine, sotalol, tocainide, and verapamil).

In another embodiment, the Therapeutics of the invention are administered in combination with diuretic agents, such as carbonic anhydrase-inhibiting agents (e.g., acetazolamide, dichlorphenamide, and methazolamide), osmotic diuretics (e.g., glycerin, isosorbide, mannitol, and urea), diuretics that inhibit Na⁺-K⁺-2Cl⁻ symport (e.g., furosemide, bumetanide, azosemide, piretanide, tripamide, ethacrynic acid, muzolimine, and torsemide), thiazide and thiazide-like diuretics (e.g., bendroflumethiazide, benzthiazide, chlorothiazide, hydrochlorothiazide, hydroflumethiazide, methyclothiazide, polythiazide, trichormethiazide, chlorthalidone, indapamide, metolazone, and quinethazone), potassium sparing diuretics (e.g., amiloride and triamterene), and mineralcorticoid receptor antagonists (e.g., spironolactone, canrenone, and potassium canrenoate).

In one embodiment, the Therapeutics of the invention are administered in combination with treatments for endocrine and/or hormone imbalance disorders. Treatments for endocrine

and/or hormone imbalance disorders include, but are not limited to, ¹²⁷I, radioactive isotopes of iodine such as ¹³¹I and ¹²³I; recombinant growth hormone, such as HUMATROPE™ (recombinant somatropin); growth hormone analogs such as PROTROPIN™ (somatrem); dopamine agonists such as PARLODEL™ (bromocriptine); somatostatin analogs such as SANDOSTATIN™ (octreotide); gonadotropin preparations such as PREGNYL™, A.P.L.™ and PROFASI™ (chorionic gonadotropin (CG)), PERGONAL™ (menotropins), and METRODIN™ (urofollitropin (uFSH)); synthetic human gonadotropin releasing hormone preparations such as FACTREL™ and LUTREPULSE™ (gonadorelin hydrochloride); synthetic gonadotropin agonists such as LUPRON™ (leuprolide acetate), SUPPRELIN™ (histrelin acetate), SYNAREL™ (nafarelin acetate), and ZOLADEX™ (goserelin acetate); synthetic preparations of thyrotropin-releasing hormone such as RELEFACT TRH™ and THYPINONE™ (protirelin); recombinant human TSH such as THYROGEN™; synthetic preparations of the sodium salts of the natural isomers of thyroid hormones such as L-T₄™, SYNTHROID™ and LEVOTHROID™ (levothyroxine sodium), L-T₃™, CYTOMEL™ and TRIOSTAT™ (liothyroine sodium), and THYROLAR™ (liotrix); 6-*n*-propylthiouracil antithyroid compounds such as (propylthiouracil), mercaptoimidazole and TAPAZOLE™ (methimazole), NEO-MERCAZOLE™ (carbimazole); beta-adrenergic receptor antagonists such as propranolol and esmolol; Ca²⁺ channel blockers; dexamethasone and iodinated radiological contrast agents such as TELEPAQUE™ (iopanoic acid) and ORAGRAFIN™ (sodium ipodate).

5

10

15

20

25

30

35

Additional treatments for endocrine and/or hormone imbalance disorders include, but are not limited to, estrogens or congugated estrogens such as ESTRACE™ (estradiol), ESTINYL™ (ethinyl estradiol), PREMARIN™, ESTRATAB™, ORTHO-EST™, OGEN™ and estropipate (estrone), ESTROVIS™ (quinestrol), ESTRADERM™ (estradiol), DELESTROGEN™ and VALERGEN™ (estradiol valerate), DEPO-ESTRADIOL CYPIONATE™ and ESTROJECT LA™ (estradiol cypionate); antiestrogens such as NOLVADEX™ (tamoxifen), SEROPHENE™ and CLOMID™ (clomiphene); progestins such as DURALUTIN™ (hydroxyprogesterone caproate), MPA™ and DEPO-PROVERA™ (medroxyprogesterone acetate), PROVERA™ and CYCRIN™ (MPA), MEGACE™ (megestrol acetate), NORLUTIN™ (norethindrone), and NORLUTATE™ and AYGESTIN™ (norethindrone acetate); progesterone implants such as NORPLANT SYSTEM™ (subdermal implants of norgestrel); antiprogestins such as RU 486™ (mifepristone); hormonal contraceptives such as ENOVID™ (norethynodrel plus mestranol), PROGESTASERT™ (intrauterine device that releases progesterone), LOESTRIN™, BREVICON™, MODICON™, GENORA™, NELONA™, NORINYL™, OVACON-35™ and OVACON-50™ (ethinyl estradiol/norethindrone), LEVLEN™, NORDETTE™, TRI-LEVLEN™ and TRIPHASIL-21™ (ethinyl estradiol/levonorgestrel) LO/OVRAL™ and OVRAL™ (ethinyl estradiol/norgestrel),

DEMULEN™ (ethinyl estradiol/ethynodiol diacetate), NORINYL™, ORTHO-NOVUM™, NORETHIN™, GENORA™, and NELOVA™ (norethindrone/mestranol), DESOGEN™ and ORTHO-CEPT™ (ethinyl estradiol/desogestrel), ORTHO-CYCLEN™ and ORTHO-TRICYCLEN™ (ethinyl estradiol/norgestimate), MICRONOR™ and NOR-QD™ (norethindrone), and OVRETTE™ (norgestrel).

5

10

15

20

25

30

Additional treatments for endocrine and/or hormone imbalance disorders include, but are not limited to, testosterone esters such as methenolone acetate and testosterone undecanoate; parenteral and oral androgens such as TESTOJECT-50™ (testosterone), TESTEX™ (testosterone DELATESTRYL™ propionate), (testosterone enanthate), DEPO-TESTOSTERONE™ (testosterone cypionate), DANOCRINE™ (danazol), HALOTESTIN™ (fluoxymesterone), ORETON METHYL™, TESTRED™ and VIRILON™ (methyltestosterone), and OXANDRIN™ (oxandrolone); testosterone transdermal systems such as TESTODERM™; androgen receptor antagonist and 5-alpha-reductase inhibitors such as ANDROCUR™ (cyproterone acetate), EULEXIN™ (flutamide), and PROSCAR™ (finasteride); adrenocorticotropic hormone preparations such as CORTROSYN™ (cosyntropin); adrenocortical steroids and their synthetic analogs such as ACLOVATE™ (alclometasone dipropionate), CYCLOCORT™ (amcinonide), BECLOVENT™ and VANCERIL™ (beclomethasone dipropionate), **CELESTONE™** (betamethasone), BENISONE™ and UTICORT™ (betamethasone benzoate), DIPROSONE™ (betamethasone dipropionate), CELESTONE PHOSPHATE™ (betamethasone sodium phosphate), CELESTONE SOLUSPAN™ (betamethasone sodium phosphate and acetate), BETA-VAL™ and VALISONE™ (betamethasone valerate), TEMOVATE™ (clobetasol propionate), CLODERM™ (clocortolone pivalate), CORTEF™ and HYDROCORTONE™ (cortisol (hydrocortisone)), HYDROCORTONE ACETATE™ (cortisol (hydrocortisone) acetate), LOCOID™ (cortisol (hydrocortisone) butyrate), HYDROCORTONE PHOSPHATE™ (cortisol (hydrocortisone) sodium phosphate), A-HYDROCORT™ and SOLU CORTEF™ (cortisol (hydrocortisone) sodium succinate), WESTCORT™ (cortisol (hydrocortisone) valerate), CORTISONE ACETATE™ DESOWEN™ TRIDESILON™ (cortisone acetate), and (desonide), TOPICORT™ (desoximetasone), DECADRON™ (dexamethasone), DECADRON LA™ (dexamethasone acetate), DECADRON PHOSPHATE™ and HEXADROL PHOSPHATE™ (dexamethasone sodium phosphate), FLORONE™ and MAXIFLOR™ (diflorasone diacetate), FLORINEF ACETATE™ (fludrocortisone acetate), AEROBID™ and NASALIDE™ (flunisolide), FLUONID™ and SYNALAR™ (fluocinolone acetonide), LIDEX™ (fluocinonide), FLUOR-OP™ and FML™ (fluorometholone), CORDRAN™ (flurandrenolide), HALOG™ (halcinonide), HMS LIZUIFILM™ (medrysone), ·MEDROL™ (methylprednisolone), DEPO-MEDROL™ and

MEDROL ACETATE™ (methylprednisone acetate), A-METHAPRED™ and SOLUMEDROL™ (methylprednisolone sodium succinate), ELOCON™ (mometasone furoate), HALDRONE™ (paramethasone acetate), DELTA-CORTEF™ (prednisolone), ECONOPRED™ (prednisolone HYDELTRASOL™ (prednisolone sodium phosphate), HYDELTRA-T.B.A™ acetate), (prednisolone tebutate), DELTASONE™ (prednisone), ARISTOCORT™ and KENACORT™ (triamcinolone), KENALOG™ (triamcinolone acetonide), ARISTOCORT™ and KENACORT DIACETATE™ (triamcinolone diacetate), and ARISTOSPAN™ (triamcinolone hexacetonide); inhibitors of biosynthesis and action of adrenocortical steroids such as CYTADREN™ (aminoglutethimide), NIZORAL™ (ketoconazole), MODRASTANE™ (trilostane), METOPIRONE™ (metyrapone); bovine, porcine or human insulin or mixtures thereof; insulin analogs; recombinant human insulin such as HUMULIN™ and NOVOLIN™; oral hypoglycemic agents such as ORAMIDE™ and ORINASE™ (tolbutamide), DIABINESE™ (chlorpropamide), TOLAMIDE™ and TOLINASE™ (tolazamide), DYMELOR™ (acetohexamide), glibenclamide, MICRONASE™, DIBETA™ and GLYNASE™ (glyburide), GLUCOTROL™ (glipizide), and DIAMICRON™ (gliclazide), GLUCOPHAGE™ (metformin), ciglitazone, pioglitazone, and alpha-glucosidase inhibitors; bovine or porcine glucagon; somatostatins SANDOSTATIN™ (octreotide); and diazoxides such as PROGLYCEM™ (diazoxide).

5

10

15

20

25

30

35

In an additional embodiment, the Therapeutics of the invention are administered in combination with drugs effective in treating iron deficiency and hypochromic anemias, including but not limited to, ferrous sulfate (iron sulfate, FEOSOLTM), ferrous fumarate (e.g., FEOSTATTM), ferrous gluconate (e.g., FERGONTM), polysaccharide-iron complex (e.g., NIFEREXTM), iron dextran injection (e.g., INFEDTM), cupric sulfate, pyroxidine, riboflavin, Vitamin B₁₂, cyancobalamin injection (e.g., REDISOLTM, RUBRAMIN PCTM), hydroxocobalamin, folic acid (e.g., FOLVITETM), leucovorin (folinic acid, 5-CHOH4PteGlu, citrovorum factor) or WELLCOVORIN (Calcium salt of leucovorin), transferrin or ferritin.

In another embodiment, Therapeutics of the invention are administered in combination with vasodilating agents and/or calcium channel blocking agents. Vasodilating agents that may be administered with the Therapeutics of the invention include, but are not limited to, Angiotensin Converting Enzyme (ACE) inhibitors (e.g., papaverine, isoxsuprine, benazepril, captopril, cilazapril, enalaprilat, fosinopril, lisinopril, moexipril, perindopril, quinapril, ramipril, spirapril, trandolapril, and nylidrin), and nitrates (e.g., isosorbide dinitrate, isosorbide mononitrate, and nitroglycerin). Examples of calcium channel blocking agents that may be administered in combination with the Therapeutics of the invention include, but are not limited to amlodipine, bepridil, diltiazem, felodipine, flunarizine, isradipine, nicardipine, nifedipine, nimodipine, and verapamil.

In additional embodiments, the Therapeutics of the invention are administered in combination with other therapeutic or prophylactic regimens, such as, for example, radiation therapy.

5

10

15

20

Example 14: Method of Treating Decreased Levels of the Polypeptide

The present invention relates to a method for treating an individual in need of an increased level of a polypeptide of the invention in the body comprising administering to such an individual a composition comprising a therapeutically effective amount of polypeptides (including agonists thereto), and/or antibodies of the invention. Moreover, it will be appreciated that conditions caused by a decrease in the standard or normal expression level of a polypeptide of the present invention in an individual may be treated by administering agonists of said polypeptide. Thus, the invention also provides a method of treatment of an individual in need of an increased level of the polypeptide comprising administering to such an individual a Therapeutic comprising an amount of the agonist (including polypeptides and antibodies of the present invention) to increase the activity level of the polypeptide in such an individual.

For example, a patient with decreased levels of a polypeptide receives a daily dose 0.1-100 ug/kg of the agonist for six consecutive days. The exact details of the dosing scheme, based on administration and formulation, are provided in Example 13.

Example 15: Method of Treating Increased Levels of the Polypeptide

25

The present invention also relates to a method of treating an individual in need of a decreased level of a polypeptide of the invention in the body comprising administering to such an individual a composition comprising a therapeutically effective amount of an antagonist of the invention (including polypeptides and antibodies of the invention).

30

35

In one example, antisense technology is used to inhibit production of a polypeptide of the present invention. This technology is one example of a method of decreasing levels of a polypeptide, due to a variety of etiologies, such as cancer.

For example, a patient diagnosed with abnormally increased levels of a polypeptide is administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5, 2.0 and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the treatment was well tolerated. The antisense polynucleotides of the present invention can be formulated using techniques and formulations described herein (e.g. see Example 13), or otherwise known in the art.

Example 16: Method of Treatment Using Gene Therapy-Ex Vivo

5

10

15

20

25

30

35

One method of gene therapy transplants fibroblasts, which are capable of expressing a polypeptide, onto a patient. Generally, fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin) is added. The flasks are then incubated at 37 degree C for approximately one week.

At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks.

pMV-7 (Kirschmeier, P.T. et al., DNA, 7:219-25 (1988)), flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

The cDNA encoding a polypeptide of the present invention can be amplified using PCR primers which correspond to the 5' and 3' end sequences respectively as set forth in Example 1 using primers and having appropriate restriction sites and initiation/stop codons, if necessary. Preferably, the 5' primer contains an EcoRI site and the 3' primer includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is then used to transform bacteria HB101, which are then plated onto agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted.

The amphotropic pA317 or GP+am12 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).

Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed

and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is produced.

The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.

Example 17: Gene Therapy Using Endogenous Genes Corresponding To Polynucleotides of the Invention

10

15

20

25

30

35

5

Another method of gene therapy according to the present invention involves operably associating the endogenous polynucleotide sequence of the invention with a promoter via homologous recombination as described, for example, in U.S. Patent NO: 5,641,670, issued June 24, 1997; International Publication NO: WO 96/29411, published September 26, 1996; International Publication NO: WO 94/12650, published August 4, 1994; Koller et al., *Proc. Natl. Acad. Sci. USA*, 86:8932-8935 (1989); and Zijlstra et al., *Nature*, 342:435-438 (1989). This method involves the activation of a gene which is present in the target cells, but which is not expressed in the cells, or is expressed at a lower level than desired.

Polynucleotide constructs are made which contain a promoter and targeting sequences, which are homologous to the 5' non-coding sequence of endogenous polynucleotide sequence, flanking the promoter. The targeting sequence will be sufficiently near the 5' end of the polynucleotide sequence so the promoter will be operably linked to the endogenous sequence upon homologous recombination. The promoter and the targeting sequences can be amplified using PCR. Preferably, the amplified promoter contains distinct restriction enzyme sites on the 5' and 3' ends. Preferably, the 3' end of the first targeting sequence contains the same restriction enzyme site as the 5' end of the amplified promoter and the 5' end of the second targeting sequence contains the same restriction site as the 3' end of the amplified promoter.

The amplified promoter and the amplified targeting sequences are digested with the appropriate restriction enzymes and subsequently treated with calf intestinal phosphatase. The digested promoter and digested targeting sequences are added together in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The construct is size fractionated on an agarose gel, then purified by phenol extraction and ethanol precipitation.

In this Example, the polynucleotide constructs are administered as naked polynucleotides via electroporation. However, the polynucleotide constructs may also be administered with transfection-facilitating agents, such as liposomes, viral sequences, viral particles, precipitating agents, etc. Such methods of delivery are known in the art.

Once the cells are transfected, homologous recombination will take place which results in the promoter being operably linked to the endogenous polynucleotide sequence. This results in the expression of polynucleotide corresponding to the polynucleotide in the cell. Expression may be detected by immunological staining, or any other method known in the art.

Fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in DMEM + 10% fetal calf serum. Exponentially growing or early stationary phase fibroblasts are trypsinized and rinsed from the plastic surface with nutrient medium. An aliquot of the cell suspension is removed for counting, and the remaining cells are subjected to centrifugation. The supernatant is aspirated and the pellet is resuspended in 5 ml of electroporation buffer (20 mM HEPES pH 7.3, 137 mM NaCl, 5 mM KCl, 0.7 mM Na₂ HPO₄, 6 mM dextrose). The cells are recentrifuged, the supernatant aspirated, and the cells resuspended in electroporation buffer containing 1 mg/ml acetylated bovine serum albumin. The final cell suspension contains approximately 3X10⁶ cells/ml. Electroporation should be performed immediately following resuspension.

Plasmid DNA is prepared according to standard techniques. For example, to construct a plasmid for targeting to the locus corresponding to the polynucleotide of the invention, plasmid pUC18 (MBI Fermentas, Amherst, NY) is digested with HindIII. The CMV promoter is amplified by PCR with an XbaI site on the 5' end and a BamHI site on the 3' end. Two non-coding sequences are amplified via PCR: one non-coding sequence (fragment 1) is amplified with a HindIII site at the 5' end and an Xba site at the 3'end; the other non-coding sequence (fragment 2) is amplified with a BamHI site at the 5'end and a HindIII site at the 3'end. The CMV promoter and the fragments (1 and 2) are digested with the appropriate enzymes (CMV promoter - XbaI and BamHI; fragment 1 - XbaI; fragment 2 - BamHI) and ligated together. The resulting ligation product is digested with HindIII, and ligated with the HindIII-digested pUC18 plasmid.

Plasmid DNA is added to a sterile cuvette with a 0.4 cm electrode gap (Bio-Rad). The final DNA concentration is generally at least 120 µg/ml. 0.5 ml of the cell suspension (containing approximately 1.5.X10⁶ cells) is then added to the cuvette, and the cell suspension and DNA solutions are gently mixed. Electroporation is performed with a Gene-Pulser apparatus (Bio-Rad). Capacitance and voltage are set at 960 µF and 250-300 V, respectively. As voltage increases, cell survival decreases, but the percentage of surviving cells that stably incorporate the introduced DNA into their genome increases dramatically. Given these parameters, a pulse time of approximately 14-20 mSec should be observed.

Electroporated cells are maintained at room temperature for approximately 5 min, and the contents of the cuvette are then gently removed with a sterile transfer pipette. The cells are added directly to 10 ml of prewarmed nutrient media (DMEM with 15% calf serum) in a 10 cm dish and incubated at 37 degree C. The following day, the media is aspirated and replaced with 10 ml of fresh media and incubated for a further 16-24 hours.

The engineered fibroblasts are then injected into the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads. The fibroblasts now produce the protein product. The fibroblasts can then be introduced into a patient as described above.

Example 18: Method of Treatment Using Gene Therapy - In Vivo

5

10

15

20

25

30

35

Another aspect of the present invention is using *in vivo* gene therapy methods to prevent, treat, and/or ameliorate cardiovascular diseases and disorders. The gene therapy method relates to the introduction of naked nucleic acid (DNA, RNA, and antisense DNA or RNA) sequences into an animal to increase or decrease the expression of the polypeptide. The polynucleotide of the present invention may be operatively linked to (i.e., associated with) a promoter or any other genetic elements necessary for the expression of the polypeptide by the target tissue. Such gene therapy and delivery techniques and methods are known in the art, see, for example, WO90/11092, WO98/11779; U.S. Patent NO. 5693622, 5705151, 5580859; Tabata et al., Cardiovasc. Res. 35(3):470-479 (1997); Chao et al., Pharmacol. Res. 35(6):517-522 (1997); Wolff, Neuromuscul. Disord. 7(5):314-318 (1997); Schwartz et al., Gene Ther. 3(5):405-411 (1996); Tsurumi et al., Circulation 94(12):3281-3290 (1996) (incorporated herein by reference).

The polynucleotide constructs may be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, intestine and the like). The polynucleotide constructs can be delivered in a pharmaceutically acceptable liquid or aqueous carrier.

The term "naked" polynucleotide, DNA or RNA, refers to sequences that are free from any delivery vehicle that acts to assist, promote, or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or precipitating agents and the like. However, the polynucleotides of the present invention may also be delivered in liposome formulations (such as those taught in Felgner P.L. et al. (1995) Ann. NY Acad. Sci. 772:126-139 and Abdallah B. et al. (1995) Biol. Cell 85(1):1-7) which can be prepared by methods well known to those skilled in the art.

The polynucleotide vector constructs used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication. Any strong promoter known to those skilled in the art can be used for driving the expression of DNA. Unlike other gene therapy techniques, one major advantage of introducing naked nucleic acid sequences into target cells is the transitory nature of the polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production of the desired polypeptide for periods of up to six months.

The polynucleotide construct can be delivered to the interstitial space of tissues within an animal, including muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph,

blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and connective tissue. Interstitial space of the tissues comprises the intercellular fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by the plasma of the circulation and the lymph fluid of the lymphatic channels. Delivery to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells which are differentiated, although delivery and expression may be achieved in non-differentiated or less completely differentiated cells, such as, for example, stem cells of blood or skin fibroblasts. *In vivo* muscle cells are particularly competent in their ability to take up and express polynucleotides.

For the naked polynucleotide injection, an effective dosage amount of DNA or RNA will be in the range of from about 0.05 g/kg body weight to about 50 mg/kg body weight. Preferably the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be determined by those of ordinary skill in the art and may depend on the condition being treated and the route of administration. The preferred route of administration is by the parenteral route of injection into the interstitial space of tissues. However, other parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the nose. In addition, naked polynucleotide constructs can be delivered to arteries during angioplasty by the catheter used in the procedure.

The dose response effects of injected polynucleotide in muscle *in vivo* is determined as follows. Suitable template DNA for production of mRNA coding for polypeptide of the present invention is prepared in accordance with a standard recombinant DNA methodology. The template DNA, which may be either circular or linear, is either used as naked DNA or complexed with liposomes. The quadriceps muscles of mice are then injected with various amounts of the template DNA.

Five to six week old female and male Balb/C mice are anesthetized by intraperitoneal injection with 0.3 ml of 2.5% Avertin. A 1.5 cm incision is made on the anterior thigh, and the quadriceps muscle is directly visualized. The template DNA is injected in 0.1 ml of carrier in a 1 cc syringe through a 27 gauge needle over one minute, approximately 0.5 cm from the distal insertion site of the muscle into the knee and about 0.2 cm deep. A suture is placed over the injection site for future localization, and the skin is closed with stainless steel clips.

After an appropriate incubation time (e.g., 7 days) muscle extracts are prepared by

excising the entire quadriceps. Every fifth 15 um cross-section of the individual quadriceps muscles is histochemically stained for protein expression. A time course for protein expression may be done in a similar fashion except that quadriceps from different mice are harvested at different times. Persistence of DNA in muscle following injection may be determined by Southern blot analysis after preparing total cellular DNA and HIRT supernatants from injected and control mice. The results of the above experimentation in mice can be used to extrapolate proper dosages and other treatment parameters in humans and other animals using naked DNA.

Example 19: Transgenic Animals

10

15

20

25

30

5

The polypeptides of the invention can also be expressed in transgenic animals. Animals of any species, including, but not limited to, mice, rats, rabbits, hamsters, guinea pigs, pigs, micro-pigs, goats, sheep, cows and non-human primates, *e.g.*, baboons, monkeys, and chimpanzees may be used to generate transgenic animals. In a specific embodiment, techniques described herein or otherwise known in the art, are used to express polypeptides of the invention in humans, as part of a gene therapy protocol.

Any technique known in the art may be used to introduce the transgene (i.e., polynucleotides of the invention) into animals to produce the founder lines of transgenic animals. Such techniques include, but are not limited to, pronuclear microinjection (Paterson et al., Appl. Microbiol. Biotechnol. 40:691-698 (1994); Carver et al., Biotechnology (NY) 11:1263-1270 (1993); Wright et al., Biotechnology (NY) 9:830-834 (1991); and Hoppe et al., U.S. Pat. No. 4,873,191 (1989)); retrovirus mediated gene transfer into germ lines (Van der Putten et al., Proc. Natl. Acad. Sci., USA 82:6148-6152 (1985)), blastocysts or embryos; gene targeting in embryonic stem cells (Thompson et al., Cell 56:313-321 (1989)); electroporation of cells or embryos (Lo, 1983, Mol Cell. Biol. 3:1803-1814 (1983)); introduction of the polynucleotides of the invention using a gene gun (see, e.g., Ulmer et al., Science 259:1745 (1993); introducing nucleic acid constructs into embryonic pleuripotent stem cells and transferring the stem cells back into the blastocyst; and sperm-mediated gene transfer (Lavitrano et al., Cell 57:717-723 (1989); etc. For a review of such techniques, see Gordon, "Transgenic Animals," Intl. Rev. Cytol. 115:171-229 (1989), which is incorporated by reference herein in its entirety.

Any technique known in the art may be used to produce transgenic clones containing polynucleotides of the invention, for example, nuclear transfer into enucleated oocytes of nuclei from cultured embryonic, fetal, or adult cells induced to quiescence (Campell et al., Nature 380:64-66 (1996); Wilmut et al., Nature 385:810-813 (1997)).

35

The present invention provides for transgenic animals that carry the transgene in all their cells, as well as animals which carry the transgene in some, but not all their cells, *i.e.*, mosaic animals or chimeric. The transgene may be integrated as a single transgene or as multiple copies

such as in concatamers, e.g., head-to-head tandems or head-to-tail tandems. The transgene may also be selectively introduced into and activated in a particular cell type by following, for example, the teaching of Lasko et al. (Lasko et al., Proc. Natl. Acad. Sci. USA 89:6232-6236 (1992)). The regulatory sequences required for such a cell-type specific activation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art. When it is desired that the polynucleotide transgene be integrated into the chromosomal site of the endogenous gene, gene targeting is preferred. Briefly, when such a technique is to be utilized, vectors containing some nucleotide sequences homologous to the endogenous gene are designed for the purpose of integrating, via homologous recombination with chromosomal sequences, into and disrupting the function of the nucleotide sequence of the endogenous gene. The transgene may also be selectively introduced into a particular cell type, thus inactivating the endogenous gene in only that cell type, by following, for example, the teaching of Gu et al. (Gu et al., Science 265:103-106 (1994)). The regulatory sequences required for such a cell-type specific inactivation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art.

Once transgenic animals have been generated, the expression of the recombinant gene may be assayed utilizing standard techniques. Initial screening may be accomplished by Southern blot analysis or PCR techniques to analyze animal tissues to verify that integration of the transgene has taken place. The level of mRNA expression of the transgene in the tissues of the transgenic animals may also be assessed using techniques which include, but are not limited to, Northern blot analysis of tissue samples obtained from the animal, *in situ* hybridization analysis, and reverse transcriptase-PCR (rt-PCR). Samples of transgenic gene-expressing tissue may also be evaluated immunocytochemically or immunohistochemically using antibodies specific for the transgene product.

Once the founder animals are produced, they may be bred, inbred, outbred, or crossbred to produce colonies of the particular animal. Examples of such breeding strategies include, but are not limited to: outbreeding of founder animals with more than one integration site in order to establish separate lines; inbreeding of separate lines in order to produce compound transgenics that express the transgene at higher levels because of the effects of additive expression of each transgene; crossing of heterozygous transgenic animals to produce animals homozygous for a given integration site in order to both augment expression and eliminate the need for screening of animals by DNA analysis; crossing of separate homozygous lines to produce compound heterozygous or homozygous lines; and breeding to place the transgene on a distinct background that is appropriate for an experimental model of interest.

Transgenic animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.

Example 20: Knock-Out Animals

5

10

15

20

25

30

35

Endogenous gene expression can also be reduced by inactivating or "knocking out" the gene and/or its promoter using targeted homologous recombination. (e.g., see Smithies et al., Nature 317:230-234 (1985); Thomas & Capecchi, Cell 51:503-512 (1987); Thompson et al., Cell 5:313-321 (1989); each of which is incorporated by reference herein in its entirety). For example, a mutant, non-functional polynucleotide of the invention (or a completely unrelated DNA sequence) flanked by DNA homologous to the endogenous polynucleotide sequence (either the coding regions or regulatory regions of the gene) can be used, with or without a selectable marker and/or a negative selectable marker, to transfect cells that express polypeptides of the invention in vivo. In another embodiment, techniques known in the art are used to generate knockouts in cells that contain, but do not express the gene of interest. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the targeted gene. Such approaches are particularly suited in research and agricultural fields where modifications to embryonic stem cells can be used to generate animal offspring with an inactive targeted gene (e.g., see Thomas & Capecchi 1987 and Thompson 1989, supra). However this approach can be routinely adapted for use in humans provided the recombinant DNA constructs are directly administered or targeted to the required site in vivo using appropriate viral vectors that will be apparent to those of skill in the art.

In further embodiments of the invention, cells that are genetically engineered to express the polypeptides of the invention, or alternatively, that are genetically engineered not to express the polypeptides of the invention (e.g., knockouts) are administered to a patient in vivo. Such cells may be obtained from the patient (i.e., animal, including human) or an MHC compatible donor and can include, but are not limited to fibroblasts, bone marrow cells, blood cells (e.g., lymphocytes), adipocytes, muscle cells, endothelial cells etc. The cells are genetically engineered in vitro using recombinant DNA techniques to introduce the coding sequence of polypeptides of the invention into the cells, or alternatively, to disrupt the coding sequence and/or endogenous regulatory sequence associated with the polypeptides of the invention, e.g., by transduction (using viral vectors, and preferably vectors that integrate the transgene into the cell genome) or transfection procedures, including, but not limited to, the use of plasmids, cosmids, YACs, naked DNA, electroporation, liposomes, etc. The coding sequence of the polypeptides of the invention can be placed under the control of a strong constitutive or inducible promoter or promoter/enhancer to achieve expression, and preferably secretion, of the polypeptides of the invention. The engineered cells which express and preferably secrete the polypeptides of the invention can be introduced into the patient systemically, e.g., in the circulation, or intraperitoneally.

Alternatively, the cells can be incorporated into a matrix and implanted in the body, e.g., genetically engineered fibroblasts can be implanted as part of a skin graft; genetically engineered endothelial cells can be implanted as part of a lymphatic or vascular graft. (See, for example, Anderson et al. U.S. Patent No. 5,399,349; and Mulligan & Wilson, U.S. Patent No. 5,460,959 each of which is incorporated by reference herein in its entirety).

When the cells to be administered are non-autologous or non-MHC compatible cells, they can be administered using well known techniques which prevent the development of a host immune response against the introduced cells. For example, the cells may be introduced in an encapsulated form which, while allowing for an exchange of components with the immediate extracellular environment, does not allow the introduced cells to be recognized by the host immune system.

Transgenic and "knock-out" animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.

Example 21: Biological Effects of Agonists or Antagonists of the Invention

Fibroblast and endothelial cell assays.

5

10

15

20

25

30

35

Human lung fibroblasts are obtained from Clonetics (San Diego, CA) and maintained in growth media from Clonetics. Dermal microvascular endothelial cells are obtained from Cell Applications (San Diego, CA). For proliferation assays, the human lung fibroblasts and dermal microvascular endothelial cells can be cultured at 5,000 cells/well in a 96-well plate for one day in growth medium. The cells are then incubated for one day in 0.1% BSA basal medium. After replacing the medium with fresh 0.1% BSA medium, the cells are incubated with the test proteins for 3 days. Alamar Blue (Alamar Biosciences, Sacramento, CA) is added to each well to a final concentration of The cells are incubated for 4 hr. Cell viability is measured by reading in a CytoFluor fluorescence reader. For the PGE₂ assays, the human lung fibroblasts are cultured at 5,000 cells/well in a 96-well plate for one day. After a medium change to 0.1% BSA basal medium, the cells are incubated with FGF-2 or agonists or antagonists of the invention with or without IL-1\alpha for 24 hours. The supernatants are collected and assayed for PGE₂ by EIA kit (Cayman, Ann Arbor, MI). For the IL-6 assays, the human lung fibroblasts are cultured at 5,000 cells/well in a 96-well plate for one day. After a medium change to 0.1% BSA basal medium, the cells are incubated with FGF-2 or with or without agonists or antagonists of the invention IL-1α for 24 hours. The supernatants are collected and assayed for IL-6 by ELISA kit (Endogen, Cambridge, MA).

Human lung fibroblasts are cultured with FGF-2 or agonists or antagonists of the invention for 3 days in basal medium before the addition of Alamar Blue to assess effects on growth of the fibroblasts. FGF-2 should show a stimulation at 10 - 2500 ng/ml which can be used to compare stimulation with agonists or antagonists of the invention.

5

Example 22: The Effect of Agonists or Antagonists of the Invention on the Growth of Vascular Endothelial Cells

m 50 re

15

20

On day 1, human umbilical vein endothelial cells (HUVEC) are seeded at 2-5x10⁴ cells/35 mm dish density in M199 medium containing 4% fetal bovine serum (FBS), 16 units/ml heparin, and 50 units/ml endothelial cell growth supplements (ECGS, Biotechnique, Inc.). On day 2, the medium is replaced with M199 containing 10% FBS, 8 units/ml heparin. An agonist or antagonist of the invention, and positive controls, such as VEGF and basic FGF (bFGF) are added, at varying concentrations. On days 4 and 6, the medium is replaced. On day 8, cell number is determined with a Coulter Counter.

An increase in the number of HUVEC cells indicates that the compound of the invention may proliferate vascular endothelial cells, while a decrease in the number of HUVEC cells indicates that the compound of the invention inhibits vascular endothelial cells.

The studies described in this example tested activity of a polypeptide of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), agonists, and/or antagonists of the invention.

Example 23: Lymphadema Animal Model

25

30

35

The purpose of this experimental approach is to create an appropriate and consistent lymphedema model for testing the therapeutic effects of an agonist or antagonist of the invention in lymphangiogenesis and re-establishment of the lymphatic circulatory system in the rat hind limb. Effectiveness is measured by swelling volume of the affected limb, quantification of the amount of lymphatic vasculature, total blood plasma protein, and histopathology. Acute lymphedema is observed for 7-10 days. Perhaps more importantly, the chronic progress of the edema is followed for up to 3-4 weeks.

Prior to beginning surgery, blood sample is drawn for protein concentration analysis. Male rats weighing approximately ~350g are dosed with Pentobarbital. Subsequently, the right legs are shaved from knee to hip. The shaved area is swabbed with gauze soaked in 70% EtOH. Blood is drawn for serum total protein testing. Circumference and volumetric measurements are made prior to

injecting dye into paws after marking 2 measurement levels (0.5 cm above heel, at mid-pt of dorsal paw). The intradermal dorsum of both right and left paws are injected with 0.05 ml of 1% Evan's Blue. Circumference and volumetric measurements are then made following injection of dye into paws.

Using the knee joint as a landmark, a mid-leg inguinal incision is made circumferentially allowing the femoral vessels to be located. Forceps and hemostats are used to dissect and separate the skin flaps. After locating the femoral vessels, the lymphatic vessel that runs along side and underneath the vessel(s) is located. The main lymphatic vessels in this area are then electrically coagulated or suture ligated.

5

10

15

20

25

30

35

Using a microscope, muscles in back of the leg (near the semitendinosis and adductors) are bluntly dissected. The popliteal lymph node is then located. The 2 proximal and 2 distal lymphatic vessels and distal blood supply of the popliteal node are then ligated by suturing. The popliteal lymph node, and any accompanying adipose tissue, is then removed by cutting connective tissues.

Care is taken to control any mild bleeding resulting from this procedure. After lymphatics are occluded, the skin flaps are sealed by using liquid skin (Vetbond) (AJ Buck). The separated skin edges are sealed to the underlying muscle tissue while leaving a gap of ~0.5 cm around the leg. Skin also may be anchored by suturing to underlying muscle when necessary.

To avoid infection, animals are housed individually with mesh (no bedding). Recovering animals are checked daily through the optimal edematous peak, which typically occurred by day 5-7. The plateau edematous peak are then observed. To evaluate the intensity of the lymphedema, the circumference and volumes of 2 designated places on each paw before operation and daily for 7 days are measured. The effect of plasma proteins on lymphedema is determined and whether protein analysis is a useful testing perimeter is also investigated. The weights of both control and edematous limbs are evaluated at 2 places. Analysis is performed in a blind manner.

Circumference Measurements: Under brief gas anesthetic to prevent limb movement, a cloth tape is used to measure limb circumference. Measurements are done at the ankle bone and dorsal paw by 2 different people and those 2 readings are averaged. Readings are taken from both control and edematous limbs.

Volumetric Measurements: On the day of surgery, animals are anesthetized with Pentobarbital and are tested prior to surgery. For daily volumetrics animals are under brief halothane anesthetic (rapid immobilization and quick recovery), and both legs are shaved and equally marked using waterproof marker on legs. Legs are first dipped in water, then dipped into instrument to each marked level then measured by Buxco edema software(Chen/Victor). Data is recorded by one person, while the other is dipping the limb to marked area.

Blood-plasma protein measurements: Blood is drawn, spun, and serum separated prior to surgery and then at conclusion for total protein and Ca2⁺ comparison.

Limb Weight Comparison: After drawing blood, the animal is prepared for tissue collection. The limbs are amputated using a quillitine, then both experimental and control legs are cut at the

ligature and weighed. A second weighing is done as the tibio-cacaneal joint is disarticulated and the foot is weighed.

Histological Preparations: The transverse muscle located behind the knee (popliteal) area is dissected and arranged in a metal mold, filled with freezeGel, dipped into cold methylbutane, placed into labeled sample bags at - 80EC until sectioning. Upon sectioning, the muscle is observed under fluorescent microscopy for lymphatics..

5

10

15

20

25

30

35

The studies described in this example tested activity of agonists or antagonists of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides or polypeptides of the invention (e.g., gene therapy).

Example 24: Suppression of TNF alpha-induced adhesion molecule expression by an Agonist or Antagonist of the Invention

The recruitment of lymphocytes to areas of inflammation and angiogenesis involves specific receptor-ligand interactions between cell surface adhesion molecules (CAMs) on lymphocytes and the vascular endothelium. The adhesion process, in both normal and pathological settings, follows a multistep cascade that involves intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial leukocyte adhesion molecule-1 (E-selectin) expression on endothelial cells (EC). The expression of these molecules and others on the vascular endothelium determines the efficiency with which leukocytes may adhere to the local vasculature and extravasate into the local tissue during the development of an inflammatory response. The local concentration of cytokines and growth factor participate in the modulation of the expression of these CAMs.

Tumor necrosis factor alpha (TNF-a), a potent proinflammatory cytokine, is a stimulator of all three CAMs on endothelial cells and may be involved in a wide variety of inflammatory responses, often resulting in a pathological outcome.

The potential of an agonist or antagonist of the invention to mediate a suppression of TNF-a induced CAM expression can be examined. A modified ELISA assay which uses ECs as a solid phase absorbent is employed to measure the amount of CAM expression on TNF-a treated ECs when costimulated with a member of the FGF family of proteins.

To perform the experiment, human umbilical vein endothelial cell (HUVEC) cultures are obtained from pooled cord harvests and maintained in growth medium (EGM-2; Clonetics, San Diego, CA) supplemented with 10% FCS and 1% penicillin/streptomycin in a 37 degree C humidified incubator containing 5% CO₂. HUVECs are seeded in 96-well plates at concentrations of 1 x 10⁴ cells/well in EGM medium at 37 degree C for 18-24 hrs or until confluent. The monolayers are subsequently washed 3 times with a serum-free solution of RPMI-1640 supplemented with 100 U/ml

penicillin and 100 mg/ml streptomycin, and treated with a given cytokine and/or growth factor(s) for 24 h at 37 degree C. Following incubation, the cells are then evaluated for CAM expression.

Human Umbilical Vein Endothelial cells (HUVECs) are grown in a standard 96 well plate to confluence. Growth medium is removed from the cells and replaced with 90 ul of 199 Medium (10% FBS). Samples for testing and positive or negative controls are added to the plate in triplicate (in 10 ul volumes). Plates are incubated at 37 degree C for either 5 h (selectin and integrin expression) or 24 h (integrin expression only). Plates are aspirated to remove medium and 100 µl of 0.1% paraformaldehyde-PBS(with Ca++ and Mg++) is added to each well. Plates are held at 4°C for 30 min.

5

10

15

20

25

35

Fixative is then removed from the wells and wells are washed 1X with PBS(+Ca,Mg)+0.5% BSA and drained. Do not allow the wells to dry. Add 10 μ l of diluted primary antibody to the test and control wells. Anti-ICAM-1-Biotin, Anti-VCAM-1-Biotin and Anti-E-selectin-Biotin are used at a concentration of 10 μ g/ml (1:10 dilution of 0.1 mg/ml stock antibody). Cells are incubated at 37°C for 30 min. in a humidified environment. Wells are washed X3 with PBS(+Ca,Mg)+0.5% BSA.

Then add 20 μl of diluted ExtrAvidin-Alkaline Phosphotase (1:5,000 dilution) to each well and incubated at 37°C for 30 min. Wells are washed X3 with PBS(+Ca,Mg)+0.5% BSA. 1 tablet of p-Nitrophenol Phosphate pNPP is dissolved in 5 ml of glycine buffer (pH 10.4). 100 μl of pNPP substrate in glycine buffer is added to each test well. Standard wells in triplicate are prepared from the working dilution of the ExtrAvidin-Alkaline Phosphotase in glycine buffer: 1:5,000 (10°) > 10⁻¹.5 > 10⁻¹.5 > 10⁻¹.5. 5 μl of each dilution is added to triplicate wells and the resulting AP content in each well is 5.50 ng, 1.74 ng, 0.55 ng, 0.18 ng. 100 μl of pNNP reagent must then be added to each of the standard wells. The plate must be incubated at 37°C for 4h. A volume of 50 μl of 3M NaOH is added to all wells. The results are quantified on a plate reader at 405 nm. The background subtraction option is used on blank wells filled with glycine buffer only. The template is set up to indicate the concentration of APconjugate in each standard well [5.50 ng; 1.74 ng; 0.55 ng; 0.18 ng]. Results are indicated as amount of bound AP-conjugate in each sample.

The studies described in this example tested activity of agonists or antagonists of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides or polypeptides of the invention (e.g., gene therapy).

30 Example 25: Production Of Polypeptide of the Invention For High-Throughput Screening Assays

The following protocol produces a supernatant containing polypeptide of the present invention to be tested. This supernatant can then be used in the Screening Assays described in Examples 27-30.

First, dilute Poly-D-Lysine (644 587 Boehringer-Mannheim) stock solution (1mg/ml in PBS) 1:20 in PBS (w/o calcium or magnesium 17-516F Biowhittaker) for a working solution of

50ug/ml. Add 200 ul of this solution to each well (24 well plates) and incubate at RT for 20 minutes. Be sure to distribute the solution over each well (note: a 12-channel pipetter may be used with tips on every other channel). Aspirate off the Poly-D-Lysine solution and rinse with 1ml PBS (Phosphate Buffered Saline). The PBS should remain in the well until just prior to plating the cells and plates may be poly-lysine coated in advance for up to two weeks.

Plate 293T cells (do not carry cells past P+20) at 2 x 10⁵ cells/well in .5ml DMEM(Dulbecco's Modified Eagle Medium)(with 4.5 G/L glucose and L-glutamine (12-604F Biowhittaker))/10% heat inactivated FBS(14-503F Biowhittaker)/1x Penstrep(17-602E Biowhittaker). Let the cells grow overnight.

The next day, mix together in a sterile solution basin: 300 ul Lipofectamine (18324-012 Gibco/BRL) and 5ml Optimem I (31985070 Gibco/BRL)/96-well plate. With a small volume multi-channel pipetter, aliquot approximately 2ug of an expression vector containing a polynucleotide insert, produced by the methods described in Examples 8-10, into an appropriately labeled 96-well round bottom plate. With a multi-channel pipetter, add 50ul of the Lipofectamine/Optimem I mixture to each well. Pipette up and down gently to mix. Incubate at RT 15-45 minutes. After about 20 minutes, use a multi-channel pipetter to add 150ul Optimem I to each well. As a control, one plate of vector DNA lacking an insert should be transfected with each set of transfections.

Preferably, the transfection should be performed by tag-teaming the following tasks. By tag-teaming, hands on time is cut in half, and the cells do not spend too much time on PBS. First, person A aspirates off the media from four 24-well plates of cells, and then person B rinses each well with .5-1ml PBS. Person A then aspirates off PBS rinse, and person B, using a12-channel pipetter with tips on every other channel, adds the 200ul of DNA/Lipofectamine/Optimem I complex to the odd wells first, then to the even wells, to each row on the 24-well plates. Incubate at 37 degree C for 6 hours.

While cells are incubating, prepare appropriate media, either 1%BSA in DMEM with 1x penstrep, or HGS CHO-5 media (116.6 mg/L of CaCl2 (anhyd); 0.00130 mg/L CuSO₄-5H₂O; 0.050 mg/L of Fe(NO₃)₃-9H₂O; 0.417 mg/L of FeSO₄-7H₂O; 311.80 mg/L of Kcl; 28.64 mg/L of MgCl₂; 48.84 mg/L of MgSO₄; 6995.50 mg/L of NaCl; 2400.0 mg/L of NaHCO₃; 62.50 mg/L of NaH₂PO₄-H₂O; 71.02 mg/L of Na₂HPO₄; .4320 mg/L of ZnSO₄-7H₂O; .002 mg/L of Arachidonic Acid; 1.022 mg/L of Cholesterol; .070 mg/L of DL-alpha-Tocopherol-Acetate; 0.0520 mg/L of Linoleic Acid; 0.010 mg/L of Linoleic Acid; 0.010 mg/L of Myristic Acid; 0.010 mg/L of Oleic Acid; 0.010 mg/L of Palmitric Acid; 0.010 mg/L of Palmitic Acid; 100 mg/L of Pluronic F-68; 0.010 mg/L of Stearic Acid; 2.20 mg/L of Tween 80; 4551 mg/L of D-Glucose; 130.85 mg/ml of L-Aspartic Acid; 29.56 mg/ml of L-Cystine-2HCL-H₂O; 31.29 mg/ml of L-Asparagine-H₂O; 6.65 mg/ml of L-Aspartic Acid; 29.56 mg/ml of L-Cystine-2HCL-H₂O; 31.29 mg/ml of L-Cystine-2HCL-H₂O; 31.29 mg/ml of L-Cystine-2HCL-H₂O; 31.29 mg/ml of L-Cystine-2HCL-H₂O;

Cystine-2HCL; 7.35 mg/ml of L-Glutamic Acid; 365.0 mg/ml of L-Glutamine; 18.75 mg/ml of Glycine; 52.48 mg/ml of L-Histidine-HCL-H20; 106.97 mg/ml of L-Isoleucine; 111.45 mg/ml of L-Leucine; 163.75 mg/ml of L-Lysine HCL; 32.34 mg/ml of L-Methionine; 68.48 mg/ml of L-Phenylalainine; 40.0 mg/ml of L-Proline; 26.25 mg/ml of L-Serine; 101.05 mg/ml of L-Threonine; 19.22 mg/ml of L-Tryptophan; 91.79 mg/ml of L-Tryrosine-2Na-2H20; and 99.65 mg/ml of L-Valine; 0.0035 mg/L of Biotin; 3.24 mg/L of D-Ca Pantothenate; 11.78 mg/L of Choline Chloride; 4.65 mg/L of Folic Acid; 15.60 mg/L of i-Inositol; 3.02 mg/L of Niacinamide; 3.00 mg/L of Pyridoxal HCL; 0.031 mg/L of Pyridoxine HCL; 0.319 mg/L of Riboflavin; 3.17 mg/L of Thiamine HCL; 0.365 mg/L of Thymidine; 0.680 mg/L of Vitamin B₁₂; 25 mM of HEPES Buffer; 2.39 mg/L of Na Hypoxanthine; 0.105 mg/L of Lipoic Acid; 0.081 mg/L of Sodium Putrescine-2HCL; 55.0 mg/L of Sodium Pyruvate; 0.0067 mg/L of Sodium Selenite; 20uM of Ethanolamine; 0.122 mg/L of Ferric Citrate; 41.70 mg/L of Methyl-B-Cyclodextrin complexed with Linoleic Acid; 33.33 mg/L of Methyl-B-Cyclodextrin complexed with Oleic Acid; 10 mg/L of Methyl-B-Cyclodextrin complexed with Retinal Acetate. Adjust osmolarity to 327 mOsm) with 2mm glutamine and 1x penstrep. (BSA (81-068-3 Bayer) 100gm dissolved in 1L DMEM for a 10% BSA stock solution). Filter the media and collect 50 ul for endotoxin assay in 15ml polystyrene conical.

The transfection reaction is terminated, preferably by tag-teaming, at the end of the incubation period. Person A aspirates off the transfection media, while person B adds 1.5ml appropriate media to each well. Incubate at 37 degree C for 45 or 72 hours depending on the media used: 1%BSA for 45 hours or CHO-5 for 72 hours.

On day four, using a 300ul multichannel pipetter, aliquot 600ul in one 1ml deep well plate and the remaining supernatant into a 2ml deep well. The supernatants from each well can then be used in the assays described in Examples 27-30.

It is specifically understood that when activity is obtained in any of the assays described below using a supernatant, the activity originates from either the polypeptide of the present invention directly (e.g., as a secreted protein) or by polypeptide of the present invention inducing expression of other proteins, which are then secreted into the supernatant. Thus, the invention further provides a method of identifying the protein in the supernatant characterized by an activity in a particular assay.

Example 26: Construction of GAS Reporter Construct

5

10

15

20

25

30

35

One signal transduction pathway involved in the differentiation and proliferation of cells is called the Jaks-STATs pathway. Activated proteins in the Jaks-STATs pathway bind to gamma activation site "GAS" elements or interferon-sensitive responsive element ("ISRE"),

located in the promoter of many genes. The binding of a protein to these elements alter the expression of the associated gene.

GAS and ISRE elements are recognized by a class of transcription factors called Signal Transducers and Activators of Transcription, or "STATs." There are six members of the STATs family. Stat1 and Stat3 are present in many cell types, as is Stat2 (as response to IFN-alpha is widespread). Stat4 is more restricted and is not in many cell types though it has been found in T helper class I, cells after treatment with IL-12. Stat5 was originally called mammary growth factor, but has been found at higher concentrations in other cells including myeloid cells. It can be activated in tissue culture cells by many cytokines.

5

10

15

20

25

30

The STATs are activated to translocate from the cytoplasm to the nucleus upon tyrosine phosphorylation by a set of kinases known as the Janus Kinase ("Jaks") family. Jaks represent a distinct family of soluble tyrosine kinases and include Tyk2, Jak1, Jak2, and Jak3. These kinases display significant sequence similarity and are generally catalytically inactive in resting cells.

The Jaks are activated by a wide range of receptors summarized in the Table below. (Adapted from review by Schidler and Darnell, Ann. Rev. Biochem. 64:621-51 (1995)). A cytokine receptor family, capable of activating Jaks, is divided into two groups: (a) Class 1 includes receptors for IL-2, IL-3, IL-4, IL-6, IL-7, IL-9, IL-11, IL-12, IL-15, Epo, PRL, GH, G-CSF, GM-CSF, LIF, CNTF, and thrombopoietin; and (b) Class 2 includes IFN-a, IFN-g, and IL-10. The Class 1 receptors share a conserved cysteine motif (a set of four conserved cysteines and one tryptophan) and a WSXWS motif (a membrane proximal region encoding Trp-Ser-Xaa-Trp-Ser (SEQ ID NO: 2)).

Thus, on binding of a ligand to a receptor, Jaks are activated, which in turn activate STATs, which then translocate and bind to GAS elements. This entire process is encompassed in the Jaks-STATs signal transduction pathway. Therefore, activation of the Jaks-STATs pathway, reflected by the binding of the GAS or the ISRE element, can be used to indicate proteins involved in the proliferation and differentiation of cells. For example, growth factors and cytokines are known to activate the Jaks-STATs pathway (See Table below). Thus, by using GAS elements linked to reporter molecules, activators of the Jaks-STATs pathway can be identified.

			JAKs			STATS	GAS(elements) or ISRE
	<u>Ligand</u>	tyk2	Jak 1	Jak2	Jak3		
	IFN family						
5	IFN-a/B	+	+	-	-	1,2,3	ISRE
	IFN-g		+	+	-	1	GAS (IRF1>Lys6>IFP)
	II-10	+	?	?	-	1,3	
	gp130 family						
10	IL-6 (Pleiotropic)	+	+	+	?	1,3	GAS (IRF1>Lys6>IFP)
	Il-11(Pleiotropic)	?	+	?	?	1,3	
	OnM(Pleiotropic)	?	+	+	?	1,3	
	LIF(Pleiotropic)	?	+	+	?	1,3	
	CNTF(Pleiotropic)	-/+	+	+	?	1,3	
15	G-CSF(Pleiotropic)	?	+	?	?	1,3	
	IL-12(Pleiotropic)	+	-	+	+	1,3	
	0.6 '1						
	g-C family		•			125	CAS
20	IL-2 (lymphocytes)	-	+	-	+	1,3,5	GAS
20	IL-4 (lymph/myeloid	.) -	+	-	+	6	GAS (IRF1 = IFP $>>$ Ly6)(IgH)
	IL-7 (lymphocytes)	-	+	-	+	5	GAS
	IL-9 (lymphocytes)	-	+	-	+	5	GAS
	IL-13 (lymphocyte)	-	+	?	?	6	GAS
25	IL-15	?	+	?	+	5	GAS
25	gp140 family						
	IL-3 (myeloid)	_	_	+	_	5	GAS (IRF1>IFP>>Ly6)
	IL-5 (myeloid)	-	_	+	_	5	GAS (IICI 17 17 2 Lyb)
	GM-CSF (myeloid)	_	_	+	_	5	GAS
30	Givi-Coi (inyciola)	_	_	•	-	3	GAS
30	Growth hormone fan	nily					
	GH	?	_	+	_	5	
	PRL	?	+/-	+	_	1,3,5	
	EPO	?	-	+	_	5	GAS(B-CAS>IRF1=IFP>>Ly6)
35	2. 0	•				•	2,00
	Receptor Tyrosine K	<u>inases</u>					
	EGF	?	+	+	-	1,3	GAS (IRF1)
	PDGF	?	+	+	-	1,3	
	CSF-1	?	+	+	-	1,3	GAS (not IRF1)
40							

To construct a synthetic GAS containing promoter element, a PCR based strategy is employed to generate a GAS-SV40 promoter sequence. The 5' primer contains four tandem copies of the GAS binding site found in the IRF1 promoter and previously demonstrated to bind STATs upon induction with a range of cytokines (Rothman et al., Immunity 1:457-468 (1994).), although other GAS or ISRE elements can be used instead. The 5' primer also contains 18bp of sequence complementary to the SV40 early promoter sequence and is flanked with an XhoI site. The sequence of the 5' primer is:

5

10

15

20

25

30

35

5':GCGCCTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATATCTGCCATCTCAATTAG:3' (SEQ ID NO: 3)

The downstream primer is complementary to the SV40 promoter and is flanked with a Hind III site: 5':GCGCCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO: 4)

PCR amplification is performed using the SV40 promoter template present in the B-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with Xhol/Hind III and subcloned into BLSK2-. (Stratagene.) Sequencing with forward and reverse primers confirms that the insert contains the following sequence:

With this GAS promoter element linked to the SV40 promoter, a GAS:SEAP2 reporter construct is next engineered. Here, the reporter molecule is a secreted alkaline phosphatase, or "SEAP." Clearly, however, any reporter molecule can be instead of SEAP, in this or in any of the other Examples. Well known reporter molecules that can be used instead of SEAP include chloramphenical acetyltransferase (CAT), luciferase, alkaline phosphatase, B-galactosidase, green fluorescent protein (GFP), or any protein detectable by an antibody.

The above sequence confirmed synthetic GAS-SV40 promoter element is subcloned into the pSEAP-Promoter vector obtained from Clontech using HindIII and XhoI, effectively replacing the SV40 promoter with the amplified GAS:SV40 promoter element, to create the GAS-SEAP vector. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

Thus, in order to generate mammalian stable cell lines expressing the GAS-SEAP reporter, the GAS-SEAP cassette is removed from the GAS-SEAP vector using Sall and NotI, and inserted into a backbone vector containing the neomycin resistance gene, such as pGFP-1 (Clontech), using these restriction sites in the multiple cloning site, to create the GAS-SEAP/Neo

vector. Once this vector is transfected into mammalian cells, this vector can then be used as a reporter molecule for GAS binding.

Other constructs can be made using the above description and replacing GAS with a different promoter sequence. However, many other promoters can be substituted using the protocols described in these Examples. For instance, SRE, IL-2, NFAT, or Osteocalcin promoters can be substituted, alone or in combination (e.g., GAS/NF-KB/EGR, GAS/NF-KB, Il-2/NFAT, or NF-KB/GAS). Similarly, other cell lines can be used to test reporter construct activity, such as HELA (epithelial), HUVEC (endothelial), Reh (B-cell), Saos-2 (osteoblast), HUVAC (aortic), or Cardiomyocyte.

10

15

20

25

5

Example 27: Assay for SEAP Activity

As a reporter molecule for the assays, SEAP activity is assayed using the Tropix Phospho-light Kit (Cat. BP-400) according to the following general procedure. The Tropix Phospho-light Kit supplies the Dilution, Assay, and Reaction Buffers used below.

Prime a dispenser with the 2.5x Dilution Buffer and dispense 15 ul of 2.5x dilution buffer into Optiplates containing 35 ul of a supernatant. Seal the plates with a plastic sealer and incubate at 65 degree C for 30 min. Separate the Optiplates to avoid uneven heating.

Cool the samples to room temperature for 15 minutes. Empty the dispenser and prime with the Assay Buffer. Add 50 ml Assay Buffer and incubate at room temperature 5 min. Empty the dispenser and prime with the Reaction Buffer (see the Table below). Add 50 ul Reaction Buffer and incubate at room temperature for 20 minutes. Since the intensity of the chemiluminescent signal is time dependent, and it takes about 10 minutes to read 5 plates on a luminometer, thus one should treat 5 plates at each time and start the second set 10 minutes later.

Read the relative light unit in the luminometer. Set H12 as blank, and print the results. An increase in chemiluminescence indicates reporter activity.

Reaction B	Buffer F	Formul	lation:
------------	----------	--------	---------

# of plates	Rxn buffer diluent (ml)	CSPD (ml)
10	60	3
11	65	3.25
12	70	3.5
13	75	3.75
14	80	4
15	85	4.25
16	90	4.5

17 95 4.75	
18 100 5	
19 105 5.25	
20 110 5.5	
21 115 5.75	
22 120 6	
23 125 6.25	
24 130 6.5	
25 135 6.75	
26 140 7	
27 145 7.25	
28 150 7.5	
29 155 7.75	
30 160 8	
31 165 8.25	
32 170 8.5	
33 175 8.75	
34 180 9	
35 185 9.25	
36 190 9.5	
37 195 9.75	
38 200 10	
39 205 10.25	
40 210 10.5	
41 215 10.75	
42 220 11	
43 225 11.25	
44 230 11.5	
45 235 11.75	
46 240 12	
47 245 12.25	
48 250 12.5	
49 255 12.75	
50 260 13	

Example 28: High-Throughput Screening Assay Identifying Changes in Small Molecule Concentration and Membrane Permeability

5

10

Binding of a ligand to a receptor is known to alter intracellular levels of small molecules, such as calcium, potassium, sodium, and pH, as well as alter membrane potential. These alterations can be measured in an assay to identify supernatants which bind to receptors of a particular cell. Although the following protocol describes an assay for calcium, this protocol can easily be modified to detect changes in potassium, sodium, pH, membrane potential, or any other small molecule which is detectable by a fluorescent probe.

The following assay uses Fluorometric Imaging Plate Reader ("FLIPR") to measure changes in fluorescent molecules (Molecular Probes) that bind small molecules. Clearly, any

fluorescent molecule detecting a small molecule can be used instead of the calcium fluorescent molecule, fluo-4 (Molecular Probes, Inc.; catalog no. F-14202), used here.

For adherent cells, seed the cells at 10,000 -20,000 cells/well in a Co-star black 96-well plate with clear bottom. The plate is incubated in a CO_2 incubator for 20 hours. The adherent cells are washed two times in Biotek washer with 200 ul of HBSS (Hank's Balanced Salt Solution) leaving 100 ul of buffer after the final wash.

5

10

15

20

25

30

A stock solution of 1 mg/ml fluo-4 is made in 10% pluronic acid DMSO. To load the cells with fluo-4, 50 ul of 12 ug/ml fluo-4 is added to each well. The plate is incubated at 37 degrees C in a CO₂ incubator for 60 min. The plate is washed four times in the Biotek washer with HBSS leaving 100 ul of buffer.

For non-adherent cells, the cells are spun down from culture media. Cells are resuspended to $2-5\times10^6$ cells/ml with HBSS in a 50-ml conical tube. 4 ul of 1 mg/ml fluo-4 solution in 10% pluronic acid DMSO is added to each ml of cell suspension. The tube is then placed in a 37 degrees C water bath for 30-60 min. The cells are washed twice with HBSS, resuspended to 1×10^6 cells/ml, and dispensed into a microplate, 100 ul/well. The plate is centrifuged at 1000 rpm for 5 min. The plate is then washed once in Denley Cell Wash with 200 ul, followed by an aspiration step to 100 ul final volume.

For a non-cell based assay, each well contains a fluorescent molecule, such as fluo-4. The supernatant is added to the well, and a change in fluorescence is detected.

To measure the fluorescence of intracellular calcium, the FLIPR is set for the following parameters: (1) System gain is 300-800 mW; (2) Exposure time is 0.4 second; (3) Camera F/stop is F/2; (4) Excitation is 488 nm; (5) Emission is 530 nm; and (6) Sample addition is 50 ul. Increased emission at 530 nm indicates an extracellular signaling event caused by the a molecule, either polypeptide of the present invention or a molecule induced by polypeptide of the present invention, which has resulted in an increase in the intracellular Ca⁺⁺ concentration.

Example 29: High-Throughput Screening Assay Identifying Tyrosine Kinase Activity

The Protein Tyrosine Kinases (PTK) represent a diverse group of transmembrane and cytoplasmic kinases. Within the Receptor Protein Tyrosine Kinase RPTK) group are receptors for a range of mitogenic and metabolic growth factors including the PDGF, FGF, EGF, NGF, HGF and Insulin receptor subfamilies. In addition there are a large family of RPTKs for which the corresponding ligand is unknown. Ligands for RPTKs include mainly secreted small proteins, but also membrane-bound and extracellular matrix proteins.

Activation of RPTK by ligands involves ligand-mediated receptor dimerization, resulting in transphosphorylation of the receptor subunits and activation of the cytoplasmic tyrosine kinases. The cytoplasmic tyrosine kinases include receptor associated tyrosine kinases of the src-family (e.g., src, yes, lck, lyn, fyn) and non-receptor linked and cytosolic protein tyrosine kinases, such as the Jak family, members of which mediate signal transduction triggered by the cytokine superfamily of receptors (e.g., the Interleukins, Interferons, GM-CSF, and Leptin).

Because of the wide range of known factors capable of stimulating tyrosine kinase activity, identifying whether polypeptide of the present invention or a molecule induced by polypeptide of the present invention is capable of activating tyrosine kinase signal transduction pathways is of interest. Therefore, the following protocol is designed to identify such molecules capable of activating the tyrosine kinase signal transduction pathways.

Seed target cells (e.g., primary keratinocytes) at a density of approximately 25,000 cells per well in a 96 well Loprodyne Silent Screen Plates purchased from Nalge Nunc (Naperville, IL). The plates are sterilized with two 30 minute rinses with 100% ethanol, rinsed with water and dried overnight. Some plates are coated for 2 hr with 100 ml of cell culture grade type I collagen (50 mg/ml), gelatin (2%) or polylysine (50 mg/ml), all of which can be purchased from Sigma Chemicals (St. Louis, MO) or 10% Matrigel purchased from Becton Dickinson (Bedford,MA), or calf serum, rinsed with PBS and stored at 4 degree C. Cell growth on these plates is assayed by seeding 5,000 cells/well in growth medium and indirect quantitation of cell number through use of alamarBlue as described by the manufacturer Alamar Biosciences, Inc. (Sacramento, CA) after 48 hr. Falcon plate covers #3071 from Becton Dickinson (Bedford,MA) are used to cover the Loprodyne Silent Screen Plates. Falcon Microtest III cell culture plates can also be used in some proliferation experiments.

To prepare extracts, A431 cells are seeded onto the nylon membranes of Loprodyne plates (20,000/200ml/well) and cultured overnight in complete medium. Cells are quiesced by incubation in serum-free basal medium for 24 hr. After 5-20 minutes treatment with EGF (60ng/ml) or 50 ul of the supernatant produced in Example 25, the medium was removed and 100 ml of extraction buffer ((20 mM HEPES pH 7.5, 0.15 M NaCl, 1% Triton X-100, 0.1% SDS, 2 mM Na3VO4, 2 mM Na4P2O7 and a cocktail of protease inhibitors (# 1836170) obtained from Boeheringer Mannheim (Indianapolis, IN)) is added to each well and the plate is shaken on a rotating shaker for 5 minutes at 4°C. The plate is then placed in a vacuum transfer manifold and the extract filtered through the 0.45 mm membrane bottoms of each well using house vacuum. Extracts are collected in a 96-well catch/assay plate in the bottom of the vacuum manifold and immediately placed on ice. To obtain extracts clarified by centrifugation, the content of each well,

after detergent solubilization for 5 minutes, is removed and centrifuged for 15 minutes at 4 degree C at $16,000 \times g$.

Test the filtered extracts for levels of tyrosine kinase activity. Although many methods of detecting tyrosine kinase activity are known, one method is described here.

5

10

15

20

25

30

35

Generally, the tyrosine kinase activity of a supernatant is evaluated by determining its ability to phosphorylate a tyrosine residue on a specific substrate (a biotinylated peptide). Biotinylated peptides that can be used for this purpose include PSK1 (corresponding to amino acids 6-20 of the cell division kinase cdc2-p34) and PSK2 (corresponding to amino acids 1-17 of gastrin). Both peptides are substrates for a range of tyrosine kinases and are available from Boehringer Mannheim.

The tyrosine kinase reaction is set up by adding the following components in order. First, add 10ul of 5uM Biotinylated Peptide, then 10ul ATP/Mg₂₊ (5mM ATP/50mM MgCl₂), then 10ul of 5x Assay Buffer (40mM imidazole hydrochloride, pH7.3, 40 mM beta-glycerophosphate, 1mM EGTA, 100mM MgCl₂, 5 mM MnCl₂, 0.5 mg/ml BSA), then 5ul of Sodium Vanadate(1mM), and then 5ul of water. Mix the components gently and preincubate the reaction mix at 30 degree C for 2 min. Initial the reaction by adding 10ul of the control enzyme or the filtered supernatant.

The tyrosine kinase assay reaction is then terminated by adding 10 ul of 120mm EDTA and place the reactions on ice.

Tyrosine kinase activity is determined by transferring 50 ul aliquot of reaction mixture to a microtiter plate (MTP) module and incubating at 37 degree C for 20 min. This allows the streptavidin coated 96 well plate to associate with the biotinylated peptide. Wash the MTP module with 300ul/well of PBS four times. Next add 75 ul of anti-phospotyrosine antibody conjugated to horse radish peroxidase(anti-P-Tyr-POD(0.5u/ml)) to each well and incubate at 37 degree C for one hour. Wash the well as above.

Next add 100ul of peroxidase substrate solution (Boehringer Mannheim) and incubate at room temperature for at least 5 mins (up to 30 min). Measure the absorbance of the sample at 405 nm by using ELISA reader. The level of bound peroxidase activity is quantitated using an ELISA reader and reflects the level of tyrosine kinase activity.

Example 30: High-Throughput Screening Assay Identifying Phosphorylation Activity

As a potential alternative and/or complement to the assay of protein tyrosine kinase activity described in Example 29, an assay which detects activation (phosphorylation) of major intracellular signal transduction intermediates can also be used. For example, as described below

one particular assay can detect tyrosine phosphorylation of the Erk-1 and Erk-2 kinases. However, phosphorylation of other molecules, such as Raf, JNK, p38 MAP, Map kinase kinase (MEK), MEK kinase, Src, Muscle specific kinase (MuSK), IRAK, Tec, and Janus, as well as any other phosphoserine, phosphotyrosine, or phosphothreonine molecule, can be detected by substituting these molecules for Erk-1 or Erk-2 in the following assay.

5

10

15

20

25

30

35

Specifically, assay plates are made by coating the wells of a 96-well ELISA plate with 0.1ml of protein G (1ug/ml) for 2 hr at room temp, (RT). The plates are then rinsed with PBS and blocked with 3% BSA/PBS for 1 hr at RT. The protein G plates are then treated with 2 commercial monoclonal antibodies (100ng/well) against Erk-1 and Erk-2 (1 hr at RT) (Santa Cruz Biotechnology). (To detect other molecules, this step can easily be modified by substituting a monoclonal antibody detecting any of the above described molecules.) After 3-5 rinses with PBS, the plates are stored at 4 degree C until use.

A431 cells are seeded at 20,000/well in a 96-well Loprodyne filterplate and cultured overnight in growth medium. The cells are then starved for 48 hr in basal medium (DMEM) and then treated with EGF (6ng/well) or 50 ul of the supernatants obtained in Example 25 for 5-20 minutes. The cells are then solubilized and extracts filtered directly into the assay plate.

After incubation with the extract for 1 hr at RT, the wells are again rinsed. As a positive control, a commercial preparation of MAP kinase (10ng/well) is used in place of A431 extract. Plates are then treated with a commercial polyclonal (rabbit) antibody (1ug/ml) which specifically recognizes the phosphorylated epitope of the Erk-1 and Erk-2 kinases (1 hr at RT). This antibody is biotinylated by standard procedures. The bound polyclonal antibody is then quantitated by successive incubations with Europium-streptavidin and Europium fluorescence enhancing reagent in the Wallac DELFIA instrument (time-resolved fluorescence). An increased fluorescent signal over background indicates a phosphorylation by polypeptide of the present invention or a molecule induced by polypeptide of the present invention.

Example 31: Human Dermal Fibroblast and Aortic Smooth Muscle Cell Proliferation

The polypeptide of interest is added to cultures of normal human dermal fibroblasts (NHDF) and human aortic smooth muscle cells (AoSMC) and two co-assays are performed with each sample. The first assay examines the effect of the polypeptide of interest on the proliferation of normal human dermal fibroblasts (NHDF) or aortic smooth muscle cells (AoSMC). Aberrant growth of fibroblasts or smooth muscle cells is a part of several pathological processes, including fibrosis, and restenosis. The second assay examines IL6 production by both NHDF and SMC. IL6

production is an indication of functional activation. Activated cells will have increased production of a number of cytokines and other factors, which can result in a proinflammatory or immunomodulatory outcome. Assays are run with and without co-TNFa stimulation, in order to check for costimulatory or inhibitory activity.

5

10

15

20

25

30

Briefly, on day 1, 96-well black plates are set up with 1000 cells/well (NHDF) or 2000 cells/well (AoSMC) in 100 μl culture media. NHDF culture media contains: Clonetics FB basal media, 1mg/ml hFGF, 5mg/ml insulin, 50mg/ml gentamycin, 2%FBS, while AoSMC culture media contains Clonetics SM basal media, 0.5 μg/ml hEGF, 5mg/ml insulin, 1μg/ml hFGF, 50mg/ml gentamycin, 50 μg/ml Amphotericin B, 5%FBS. After incubation at 37°C for at least 4-5 hours culture media is aspirated and replaced with growth arrest media. Growth arrest media for NHDF contains fibroblast basal media, 50mg/ml gentamycin, 2% FBS, while growth arrest media for AoSMC contains SM basal media, 50mg/ml gentamycin, 50μg/ml Amphotericin B, 0.4% FBS. Incubate at 37 °C until day 2.

On day 2, serial dilutions and templates of the polypeptide of interest are designed such that they always include media controls and known-protein controls. For both stimulation and inhibition experiments, proteins are diluted in growth arrest media. For inhibition experiments, TNFa is added to a final concentration of 2ng/ml (NHDF) or 5ng/ml (AoSMC). Add 1/3 vol media containing controls or polypeptides of the present invention and incubate at 37 degrees C/5% CO₂ until day 5.

Transfer 60µl from each well to another labeled 96-well plate, cover with a plate-sealer, and store at 4 degrees C until Day 6 (for IL6 ELISA). To the remaining 100 µl in the cell culture plate, aseptically add Alamar Blue in an amount equal to 10% of the culture volume (10µl). Return plates to incubator for 3 to 4 hours. Then measure fluorescence with excitation at 530nm and emission at 590nm using the CytoFluor. This yields the growth stimulation/inhibition data.

On day 5, the IL6 ELISA is performed by coating a 96 well plate with 50-100 ul/well of Anti-Human IL6 Monoclonal antibody diluted in PBS, pH 7.4, incubate ON at room temperature.

On day 6, empty the plates into the sink and blot on paper towels. Prepare Assay Buffer containing PBS with 4% BSA. Block the plates with 200 μ l/well of Pierce Super Block blocking buffer in PBS for 1-2 hr and then wash plates with wash buffer (PBS, 0.05% Tween-20). Blot plates on paper towels. Then add 50 μ l/well of diluted Anti-Human IL-6 Monoclonal, Biotinlabeled antibody at 0.50 mg/ml. Make dilutions of IL-6 stock in media (30, 10, 3, 1, 0.3, 0 ng/ml). Add duplicate samples to top row of plate. Cover the plates and incubate for 2 hours at RT on shaker.

Plates are washed with wash buffer and blotted on paper towels. Dilute EU-labeled Streptavidin 1:1000 in Assay buffer, and add 100 µl/well. Cover the plate and incubate 1 h at RT. Plates are again washed with wash buffer and blotted on paper towels.

Add 100 μ l/well of Enhancement Solution. Shake for 5 minutes. Read the plate on the Wallac DELFIA Fluorometer. Readings from triplicate samples in each assay were tabulated and averaged.

5

10

15

20

25

30

35

A positive result in this assay suggests AoSMC cell proliferation and that the polypeptide of the present invention may be involved in dermal fibroblast proliferation and/or smooth muscle cell proliferation. A positive result also suggests many potential uses of polypeptides, polynucleotides, agonists and/or antagonists of the polynucleotide/polypeptide of the present invention which gives a positive result. For example, inflammation and immune responses, wound healing, and angiogenesis, as detailed throughout this specification. Particularly, polypeptides of the present invention and polynucleotides of the present invention may be used in wound healing and dermal regeneration, as well as the promotion of vasculogenesis, both of the blood vessels and lymphatics. The growth of vessels can be used in the treatment of, for example, cardiovascular diseases. Additionally, antagonists of polypeptides and polynucleotides of the invention may be useful in treating diseases, disorders, and/or conditions which involve angiogenesis by acting as an anti-vascular agent (e.g., anti-angiogenesis). These diseases, disorders, and/or conditions are known in the art and/or are described herein, such as, for example, malignancies, solid tumors, benign tumors, for example hemangiomas, acoustic neuromas, neurofibromas, trachomas, and pyogenic granulomas; artheroscleric plaques; ocular angiogenic diseases, for example, diabetic retinopathy, retinopathy of prematurity, macular degeneration, corneal graft rejection, neovascular glaucoma, retrolental fibroplasia, rubeosis, retinoblastoma, uvietis and Pterygia (abnormal blood vessel growth) of the eye; rheumatoid arthritis; psoriasis; delayed wound healing; endometriosis; vasculogenesis; granulations; hypertrophic scars (keloids); nonunion fractures; scleroderma; trachoma; vascular adhesions; myocardial angiogenesis; coronary collaterals; cerebral collaterals; arteriovenous malformations; ischemic limb angiogenesis; Osler-Webber Syndrome; plaque neovascularization; telangiectasia; hemophiliac joints; angiofibroma; fibromuscular dysplasia; wound granulation; Crohn's disease; and atherosclerosis. Moreover, antagonists of polypeptides and polynucleotides of the invention may be useful in treating anti-hyperproliferative diseases and/or anti-inflammatory known in the art and/or described herein.

One skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), antibodies, agonists, and/or antagonists and fragments and variants thereof.

Example 32: Cellular Adhesion Molecule (CAM) Expression on Endothelial Cells

5

10

15

20

25

30

35

The recruitment of lymphocytes to areas of inflammation and angiogenesis involves specific receptor-ligand interactions between cell surface adhesion molecules (CAMs) on lymphocytes and the vascular endothelium. The adhesion process, in both normal and pathological settings, follows a multi-step cascade that involves intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial leukocyte adhesion molecule-1 (E-selectin) expression on endothelial cells (EC). The expression of these molecules and others on the vascular endothelium determines the efficiency with which leukocytes may adhere to the local vasculature and extravasate into the local tissue during the development of an inflammatory response. The local concentration of cytokines and growth factor participate in the modulation of the expression of these CAMs.

Briefly, endothelial cells (e.g., Human Umbilical Vein Endothelial cells (HUVECs)) are grown in a standard 96 well plate to confluence, growth medium is removed from the cells and replaced with 100 µl of 199 Medium (10% fetal bovine serum (FBS)). Samples for testing and positive or negative controls are added to the plate in triplicate (in 10 µl volumes). Plates are then incubated at 37°C for either 5 h (selectin and integrin expression) or 24 h (integrin expression only). Plates are aspirated to remove medium and 100 µl of 0.1% paraformaldehyde-PBS(with Ca++ and Mg++) is added to each well. Plates are held at 4°C for 30 min. Fixative is removed from the wells and wells are washed 1X with PBS(+Ca,Mg) + 0.5% BSA and drained. 10 µl of diluted primary antibody is added to the test and control wells. Anti-ICAM-1-Biotin, Anti-VCAM-1-Biotin and Anti-E-selectin-Biotin are used at a concentration of 10 μg/ml (1:10 dilution of 0.1 mg/ml stock antibody). Cells are incubated at 37°C for 30 min. in a humidified environment. Wells are washed three times with PBS(+Ca,Mg) + 0.5% BSA. 20 µl of diluted ExtrAvidin-Alkaline Phosphatase (1:5,000 dilution, referred to herein as the working dilution) are added to each well and incubated at 37°C for 30 min. Wells are washed three times with PBS(+Ca,Mg)+0.5% BSA. Dissolve 1 tablet of p-Nitrophenol Phosphate pNPP per 5 ml of glycine buffer (pH 10.4). 100 µl of pNPP substrate in glycine buffer is added to each test well. Standard wells in triplicate are prepared from the working dilution of the ExtrAvidin-Alkaline Phosphotase in glycine buffer: 1:5,000 (10^{0}) > $10^{-0.5}$ > $10^{-1.5}$. 5 μ l of each dilution is added to triplicate wells and the resulting AP content in each well is 5.50 ng, 1.74 ng, 0.55 ng, 0.18 ng. 100 µl of pNNP reagent is then added to each of the standard wells. The plate is incubated at 37°C for 4h. A volume of 50 µl of 3M NaOH is added to all wells. The plate is read on a plate reader at 405 nm using the background subtraction option on blank wells filled with glycine buffer only. Additionally, the template is set up to indicate the concentration of AP-conjugate in each standard well [5.50 ng; 1.74 ng; 0.55 ng; 0.18 ng]. Results are indicated as amount of bound AP-conjugate in each sample.

5

10

15

20

25

30

Example 33: Alamar Blue Endothelial Cells Proliferation Assay

This assay may be used to quantitatively determine protein mediated inhibition of bFGF-induced proliferation of Bovine Lymphatic Endothelial Cells (LECs), Bovine Aortic Endothelial Cells (BAECs) or Human Microvascular Uterine Myometrial Cells (UTMECs). This assay incorporates a fluorometric growth indicator based on detection of metabolic activity. A standard Alamar Blue Proliferation Assay is prepared in EGM-2MV with 10 ng /ml of bFGF added as a source of endothelial cell stimulation. This assay may be used with a variety of endothelial cells with slight changes in growth medium and cell concentration. Dilutions of the protein batches to be tested are diluted as appropriate. Serum-free medium (GIBCO SFM) without bFGF is used as a non-stimulated control and Angiostatin or TSP-1 are included as a known inhibitory controls.

Briefly, LEC, BAECs or UTMECs are seeded in growth media at a density of 5000 to 2000 cells/well in a 96 well plate and placed at 37 degreesC overnight. After the overnight incubation of the cells, the growth media is removed and replaced with GIBCO EC-SFM. The cells are treated with the appropriate dilutions of the protein of interest or control protein sample(s) (prepared in SFM) in triplicate wells with additional bFGF to a concentration of 10 ng/ml. Once the cells have been treated with the samples, the plate(s) is/are placed back in the 37° C incubator for three days. After three days 10 ml of stock alamar blue (Biosource Cat# DAL1100) is added to each well and the plate(s) is/are placed back in the 37°C incubator for four hours. The plate(s) are then read at 530nm excitation and 590nm emission using the CytoFluor fluorescence reader. Direct output is recorded in relative fluorescence units.

Alamar blue is an oxidation-reduction indicator that both fluoresces and changes color in response to chemical reduction of growth medium resulting from cell growth. As cells grow in culture, innate metabolic activity results in a chemical reduction of the immediate surrounding environment. Reduction related to growth causes the indicator to change from oxidized (non-fluorescent blue) form to reduced (fluorescent red) form (i.e., stimulated proliferation will produce a stronger signal and inhibited proliferation will produce a weaker signal and the total signal is proportional to the total number of cells as well as their metabolic activity). The background level

of activity is observed with the starvation medium alone. This is compared to the output observed from the positive control samples (bFGF in growth medium) and protein dilutions.

Example 34: Detection of Inhibition of a Mixed Lymphocyte Reaction

5

10

15

20

25

30

35

This assay can be used to detect and evaluate inhibition of a Mixed Lymphocyte Reaction (MLR) by gene products (e.g., isolated polypeptides). Inhibition of a MLR may be due to a direct effect on cell proliferation and viability, modulation of costimulatory molecules on interacting cells, modulation of adhesiveness between lymphocytes and accessory cells, or modulation of cytokine production by accessory cells. Multiple cells may be targeted by these polypeptides since the peripheral blood mononuclear fraction used in this assay includes T, B and natural killer lymphocytes, as well as monocytes and dendritic cells.

Polypeptides of interest found to inhibit the MLR may find application in diseases associated with lymphocyte and monocyte activation or proliferation. These include, but are not limited to, diseases such as asthma, arthritis, diabetes, inflammatory skin conditions, psoriasis, eczema, systemic lupus erythematosus, multiple sclerosis, glomerulonephritis, inflammatory bowel disease, crohn's disease, ulcerative colitis, arteriosclerosis, cirrhosis, graft vs. host disease, host vs. graft disease, hepatitis, leukemia and lymphoma.

Briefly, PBMCs from human donors are purified by density gradient centrifugation using Lymphocyte Separation Medium (LSM[®], density 1.0770 g/ml, Organon Teknika Corporation, West Chester, PA). PBMCs from two donors are adjusted to 2 x 10⁶ cells/ml in RPMI-1640 (Life Technologies, Grand Island, NY) supplemented with 10% FCS and 2 mM glutamine. PBMCs from a third donor is adjusted to 2 x 10⁵ cells/ml. Fifty microliters of PBMCs from each donor is added to wells of a 96-well round bottom microtiter plate. Dilutions of test materials (50 μl) is added in triplicate to microtiter wells. Test samples (of the protein of interest) are added for final dilution of 1:4; rhuIL-2 (R&D Systems, Minneapolis, MN, catalog number 202-IL) is added to a final concentration of 1 μg/ml; anti-CD4 mAb (R&D Systems, clone 34930.11, catalog number MAB379) is added to a final concentration of 10 μg/ml. Cells are cultured for 7-8 days at 37°C in 5% CO₂, and 1 μC of [³H] thymidine is added to wells for the last 16 hrs of culture. Cells are harvested and thymidine incorporation determined using a Packard TopCount. Data is expressed as the mean and standard deviation of triplicate determinations.

Samples of the protein of interest are screened in separate experiments and compared to the negative control treatment, anti-CD4 mAb, which inhibits proliferation of lymphocytes and the positive control treatment, IL-2 (either as recombinant material or supernatant), which enhances proliferation of lymphocytes.

One skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), antibodies, agonists, and/or antagonists and fragments and variants thereof.

5

Example 35: Assays for Protease Activity

The following assay may be used to assess protease activity of the polypeptides of the invention.

10

15

20

25

30

Gelatin and casein zymography are performed essentially as described (Heusen et al., *Anal. Biochem.*, 102:196-202 (1980); Wilson et al., *Journal of Urology*, 149:653-658 (1993)). Samples are run on 10% polyacryamide/0.1% SDS gels containing 1% gelain orcasein, soaked in 2.5% triton at room temperature for 1 hour, and in 0.1M glycine, pH 8.3 at 37°C 5 to 16 hours. After staining in amido black areas of proteolysis apear as clear areas agains the blue-black background. Trypsin (Sigma T8642) is used as a positive control.

Protease activity is also determined by monitoring the cleavage of n-a-benzoyl-L-arginine ethyl ester (BAEE) (Sigma B-4500. Reactions are set up in (25mMNaPO₄,1mM EDTA, and 1mM BAEE), pH 7.5. Samples are added and the change in adsorbance at 260nm is monitored on the Beckman DU-6 spectrophotometer in the time-drive mode. Trypsin is used as a positive control.

Additional assays based upon the release of acid-soluble peptides from casein or hemoglobin measured as adsorbance at 280 nm or colorimetrically using the Folin method are performed as described in Bergmeyer, et al., *Methods of Enzymatic Analysis*, 5 (1984). Other assays involve the solubilization of chromogenic substrates (Ward, *Applied Science*, 251-317 (1983)).

Example 36: Identifying Serine Protease Substrate Specificity

Methods known in the art or described herein may be used to determine the substrate specificity of the polypeptides of the present invention having serine protease activity. A preferred method of determining substrate specificity is by the use of positional scanning synthetic combinatorial libraries as described in GB 2 324 529 (incorporated herein in its entirety).

Example 37: Ligand Binding Assays

The following assay may be used to assess ligand binding activity of the polypeptides of the invention.

Ligand binding assays provide a direct method for ascertaining receptor pharmacology and are adaptable to a high throughput format. The purified ligand for a polypeptide is radiolabeled to high specific activity (50-2000 Ci/mmol) for binding studies. A determination is then made that the process of radiolabeling does not diminish the activity of the ligand towards its polypeptide. Assay conditions for buffers, ions, pH and other modulators such as nucleotides are optimized to establish a workable signal to noise ratio for both membrane and whole cell polypeptide sources. For these assays, specific polypeptide binding is defined as total associated radioactivity minus the radioactivity measured in the presence of an excess of unlabeled competing ligand. Where possible, more than one competing ligand is used to define residual nonspecific binding.

Example 38: Functional Assay in Xenopus Oocytes

Capped RNA transcripts from linearized plasmid templates encoding the polypeptides of the invention are synthesized in vitro with RNA polymerases in accordance with standard procedures. In vitro transcripts are suspended in water at a final concentration of 0.2 mg/mi. Ovarian lobes are removed from adult female toads, Stage V defolliculated oocytes are obtained, and RNA transcripts (10 ng/oocyte) are injected in a 50 nl bolus using a microinjection apparatus. Two electrode voltage clamps are used to measure the currents from individual *Xenopus oocytes* in response polypeptides and polypeptide agonist exposure. Recordings are made in Ca2+ free Barth's medium at room temperature. The Xenopus system can be used to screen known ligands and tissue/cell extracts for activating ligands.

Example 39: Microphysiometric Assays

Activation of a wide variety of secondary messenger systems results in extrusion of small amounts of acid from a cell. The acid formed is largely as a result of the increased metabolic activity required to fuel the intracellular signaling process. The pH changes in the media surrounding the cell are very small but are detectable by the CYTOSENSOR microphysiometer (Molecular Devices Ltd., Menlo Park, Calif.). The CYTOSENSOR is thus capable of detecting the activation of polypeptide which is coupled to an energy utilizing intracellular signaling pathway.

Example 40: Extract/Cell Supernatant Screening

30

5

10

15

20

A large number of mammalian receptors exist for which there remains, as yet, no cognate activating ligand (agonist). Thus, active ligands for these receptors may not be included within the ligands banks as identified to date. Accordingly, the polypeptides of the invention can also be functionally screened (using calcium, cAMP, microphysiometer, oocyte electrophysiology, etc., functional screens) against tissue extracts to identify its natural ligands. Extracts that produce positive functional responses can be sequentially subfractionated until an activating ligand is isolated and identified.

Example 41: Calcium and cAMP Functional Assays

5

10

15

20

30

35

Seven transmembrane receptors which are expressed in HEK 293 cells have been shown to be coupled functionally to activation of PLC and calcium mobilization and/or cAMP stimulation or inhibition. Basal calcium levels in the HEK 293 cells in receptor-transfected or vector control cells were observed to be in the normal, 100 nM to 200 nM, range. HEK 293 cells expressing recombinant receptors are loaded with fura 2 and in a single day >150 selected ligands or tissue/cell extracts are evaluated for agonist induced calcium mobilization. Similarly, HEK 293 cells expressing recombinant receptors are evaluated for the stimulation or inhibition of cAMP production using standard cAMP quantitation assays. Agonists presenting a calcium transient or cAMP fluctuation are tested in vector control cells to determine if the response is unique to the transfected cells expressing receptor.

Example 42: ATP-binding assay

The following assay may be used to assess ATP-binding activity of polypeptides of the invention.

ATP-binding activity of the polypeptides of the invention may be detected using the ATP-binding assay described in U.S. Patent 5,858,719, which is herein incorporated by reference in its entirety. Briefly, ATP-binding to polypeptides of the invention is measured via photoaffinity labeling with 8-azido-ATP in a competition assay. Reaction mixtures containing 1 mg/ml of the ABC transport protein of the present invention are incubated with varying concentrations of ATP, or the non-hydrolyzable ATP analog adenyl-5'-imidodiphosphate for 10 minutes at 4°C. A mixture of 8-azido-ATP (Sigma Chem. Corp., St. Louis, MO.) plus 8-azido-ATP (³²P-ATP) (5 mCi/μmol, ICN, Irvine CA.) is added to a final concentration of 100 μM and 0.5 ml aliquots are placed in the wells of a porcelain spot plate on ice. The plate is irradiated using a short wave 254 nm UV lamp

at a distance of 2.5 cm from the plate for two one-minute intervals with a one-minute cooling interval in between. The reaction is stopped by addition of dithiothreitol to a final concentration of 2mM. The incubations are subjected to SDS-PAGE electrophoresis, dried, and autoradiographed. Protein bands corresponding to the particular polypeptides of the invention are excised, and the radioactivity quantified. A decrease in radioactivity with increasing ATP or adenly-5'-imidodiphosphate provides a measure of ATP affinity to the polypeptides.

Example 43: Small Molecule Screening

This invention is particularly useful for screening therapeutic compounds by using the polypeptides of the invention, or binding fragments thereof, in any of a variety of drug screening techniques. The polypeptide or fragment employed in such a test may be affixed to a solid support, expressed on a cell surface, free in solution, or located intracellularly. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide or fragment. Drugs are screened against such transformed cells in competitive binding assays. One may measure, for example, the formulation of complexes between the agent being tested and polypeptide of the invention.

Thus, the present invention provides methods of screening for drugs or any other agents which affect activities mediated by the polypeptides of the invention. These methods comprise contacting such an agent with a polypeptide of the invention or fragment thereof and assaying for the presence of a complex between the agent and the polypeptide or fragment thereof, by methods well known in the art. In such a competitive binding assay, the agents to screen are typically labeled. Following incubation, free agent is separated from that present in bound form, and the amount of free or uncomplexed label is a measure of the ability of a particular agent to bind to the polypeptides of the invention.

Another technique for drug screening provides high throughput screening for compounds having suitable binding affinity to the polypeptides of the invention, and is described in great detail in European Patent Application 84/03564, published on September 13, 1984, which is herein incorporated by reference in its entirety. Briefly stated, large numbers of different small molecule test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. The test compounds are reacted with polypeptides of the invention and washed. Bound polypeptides are then detected by methods well known in the art. Purified polypeptides are coated directly onto plates for use in the aforementioned drug screening techniques. In addition, nonneutralizing antibodies may be used to capture the peptide and immobilize it on the solid support.

This invention also contemplates the use of competitive drug screening assays in which neutralizing antibodies capable of binding polypeptides of the invention specifically compete with a test compound for binding to the polypeptides or fragments thereof. In this manner, the antibodies are used to detect the presence of any peptide which shares one or more antigenic epitopes with a polypeptide of the invention.

5

10

15

20

25

30

35

Example 44: Phosphorylation Assay

In order to assay for phosphorylation activity of the polypeptides of the invention, a phosphorylation assay as described in U.S. Patent 5,958,405 (which is herein incorporated by reference) is utilized. Briefly, phosphorylation activity may be measured by phosphorylation of a protein substrate using gamma-labeled ³²P-ATP and quantitation of the incorporated radioactivity using a gamma radioisotope counter. The polypeptides of the invention are incubated with the protein substrate, ³²P-ATP, and a kinase buffer. The ³²P incorporated into the substrate is then separated from free ³²P-ATP by electrophoresis, and the incorporated ³²P is counted and compared to a negative control. Radioactivity counts above the negative control are indicative of phosphorylation activity of the polypeptides of the invention.

Example 45: Detection of Phosphorylation Activity (Activation) of the Polypeptides of the Invention in the Presence of Polypeptide Ligands

Methods known in the art or described herein may be used to determine the phosphorylation activity of the polypeptides of the invention. A preferred method of determining phosphorylation activity is by the use of the tyrosine phosphorylation assay as described in US 5,817,471 (incorporated herein by reference).

Example 46: Identification Of Signal Transduction Proteins That Interact With Polypeptides Of The Present Invention

The purified polypeptides of the invention are research tools for the identification, characterization and purification of additional signal transduction pathway proteins or receptor proteins. Briefly, labeled polypeptides of the invention are useful as reagents for the purification of molecules with which it interacts. In one embodiment of affinity purification, polypeptides of the invention are covalently coupled to a chromatography column. Cell-free extract derived from

putative target cells, such as carcinoma tissues, is passed over the column, and molecules with appropriate affinity bind to the polypeptides of the invention. The protein complex is recovered from the column, dissociated, and the recovered molecule subjected to N-terminal protein sequencing. This amino acid sequence is then used to identify the captured molecule or to design degenerate oligonucleotide probes for cloning the relevant gene from an appropriate cDNA library.

Example 47: Assay for Phosphatase Activity

The following assay may be used to assess serine/threonine phosphatase (PTPase) activity of the polypeptides of the invention.

In order to assay for serine/threonine phosphatase (PTPase) activity, assays can be utilized which are widely known to those skilled in the art. For example, the serine/threonine phosphatase (PSPase) activity is measured using a PSPase assay kit from New England Biolabs, Inc. Myelin basic protein (MyBP), a substrate for PSPase, is phosphorylated on serine and threonine residues with cAMP-dependent Protein Kinase in the presence of [32P]ATP. Protein serine/threonine phosphatase activity is then determined by measuring the release of inorganic phosphate from 32P-labeled MyBP.

Example 48: Interaction of Serine/Threonine Phosphatases with other Proteins

The polypeptides of the invention with serine/threonine phosphatase activity as determined in Example 47 are research tools for the identification, characterization and purification of additional interacting proteins or receptor proteins, or other signal transduction pathway proteins. Briefly, labeled polypeptide(s) of the invention is useful as a reagent for the purification of molecules with which it interacts. In one embodiment of affinity purification, polypeptide of the invention is covalently coupled to a chromatography column. Cell-free extract derived from putative target cells, such as neural or liver cells, is passed over the column, and molecules with appropriate affinity bind to the polypeptides of the invention. The polypeptides of the invention -complex is recovered from the column, dissociated, and the recovered molecule subjected to N-terminal protein sequencing. This amino acid sequence is then used to identify the captured molecule or to design degenerate oligonucleotide probes for cloning the relevant gene from an appropriate cDNA library.

5

10

15

20

25

In order to assay for heparanase activity of the polypeptides of the invention, the heparanase assay described by Vlodavsky et al is utilized (Vlodavsky, I., et al., Nat. Med., 5:793-802 (1999)). Briefly, cell lysates, conditioned media or intact cells (1 x 10^6 cells per 35-mm dish) are incubated for 18 hrs at 37°C, pH 6.2-6.6, with 35 S-labeled ECM or soluble ECM derived peak I proteoglycans. The incubation medium is centrifuged and the supernatant is analyzed by gel filtration on a Sepharose CL-6B column (0.9 x 30 cm). Fractions are eluted with PBS and their radioactivity is measured. Degradation fragments of heparan sulfate side chains are eluted from Sepharose 6B at $0.5 < K_{av} < 0.8$ (peak II). Each experiment is done at least three times. Degradation fragments corresponding to "peak II," as described by Vlodavsky et al., is indicative of the activity of the polypeptides of the invention in cleaving heparan sulfate.

Example 50: Immobilization of biomolecules

This example provides a method for the stabilization of polypeptides of the invention in non-host cell lipid bilayer constucts (see, e.g., Bieri et al., Nature Biotech 17:1105-1108 (1999), hereby incorporated by reference in its entirety herein) which can be adapted for the study of polypeptides of the invention in the various functional assays described above. Briefly, carbohydrate-specific chemistry for biotinylation is used to confine a biotin tag to the extracellular domain of the polypeptides of the invention, thus allowing uniform orientation upon immobilization. A 50uM solution of polypeptides of the invention in washed membranes is incubated with 20 mM NaIO4 and 1.5 mg/ml (4mM) BACH or 2 mg/ml (7.5mM) biotin-hydrazide for 1 hr at room temperature (reaction volume, 150ul). Then the sample is dialyzed (Pierce Slidealizer Cassett, 10 kDa cutoff; Pierce Chemical Co., Rockford IL) at 4C first for 5 h, exchanging the buffer after each hour, and finally for 12 h against 500 ml buffer R (0.15 M NaCl, 1 mM MgCl2, 10 mM sodium phosphate, pH7). Just before addition into a cuvette, the sample is diluted 1:5 in buffer ROG50 (Buffer R supplemented with 50 mM octylglucoside).

Example 51: TAQMAN

Quantitative PCR (QPCR). Total RNA from cells in culture are extracted by Trizol separation as recommended by the supplier (LifeTechnologies). (Total RNA is treated with DNase I (Life Technologies) to remove any contaminating genomic DNA before reverse transcription.) Total RNA (50 ng) is used in a one-step, 50ul, RT-QPCR, consisting of Taqman Buffer A (Perkin-

Elmer; 50 mM KCl/10 mM Tris, pH 8.3), 5.5 mM MgCl₂, 240 μM each dNTP, 0.4 units RNase inhibitor(Promega), 8%glycerol, 0.012% Tween-20, 0.05% gelatin, 0.3uM primers, 0.1uM probe, 0.025units Amplitaq Gold (Perkin-Elmer) and 2.5 units Superscript II reverse transcriptase (Life Technologies). As a control for genomic contamination, parallel reactions are setup without reverse transcriptase. The relative abundance of (unknown) and 18S RNAs are assessed by using the Applied Biosystems Prism 7700 Sequence Detection System (Livak, K. J., Flood, S. J., Marmaro, J., Giusti, W. & Deetz, K. (1995) PCR Methods Appl. 4, 357-362). Reactions are carried out at 48°C for 30 min, 95°C for 10 min, followed by 40 cycles of 95°C for 15s, 60°C for 1 min. Reactions are performed in triplicate.

Primers (f & r) and FRET probes sets are designed using Primer Express Software (Perkin-Elmer). Probes are labeled at the 5'-end with the reporter dye 6-FAM and on the 3'-end with the quencher dye TAMRA (Biosource International, Camarillo, CA or Perkin-Elmer).

Example 52: Assays for Metalloproteinase Activity

Metalloproteinases (EC 3.4.24.-) are peptide hydrolases which use metal ions, such as Zn^{2+} , as the catalytic mechanism. Metalloproteinase activity of polypeptides of the present invention can be assayed according to the following methods.

Proteolysis of alpha-2-macroglobulin

5

10

20

25

30

35

To confirm protease activity, purified polypeptides of the invention are mixed with the substrate alpha-2-macroglobulin (0.2 unit/ml; Boehringer Mannheim, Germany) in 1x assay buffer (50 mM HEPES, pH 7.5, 0.2 M NaCl, 10 mM CaCl₂, 25 μM ZnCl₂ and 0.05% Brij-35) and incubated at 37°C for 1-5 days. Trypsin is used as positive control. Negative controls contain only alpha-2-macroglobulin in assay buffer. The samples are collected and boiled in SDS-PAGE sample buffer containing 5% 2-mercaptoethanol for 5-min, then loaded onto 8% SDS-polyacrylamide gel. After electrophoresis the proteins are visualized by silver staining. Proteolysis is evident by the appearance of lower molecular weight bands as compared to the negative control.

Inhibition of alpha-2-macroglobulin proteolysis by inhibitors of metalloproteinases

Known metalloproteinase inhibitors (metal chelators (EDTA, EGTA, AND HgCl₂), peptide metalloproteinase inhibitors (TIMP-1 and TIMP-2), and commercial small molecule MMP inhibitors) are used to characterize the proteolytic activity of polypeptides of the invention. The three synthetic MMP inhibitors used are: MMP inhibitor I, [IC₅₀ = 1.0 μ M against MMP-1 and MMP-8; IC₅₀ = 30 μ M against MMP-9; IC₅₀ = 150 μ M against MMP-3]; MMP-3 (stromelysin-1) inhibitor I [IC₅₀ = 5 μ M against MMP-3], and MMP-3 inhibitor II [K_i = 130 nM against MMP-3];

inhibitors available through Calbiochem, catalog # 444250, 444218, and 444225, respectively). Briefly, different concentrations of the small molecule MMP inhibitors are mixed with purified polypeptides of the invention (50µg/ml) in 22.9 µl of 1x HEPES buffer (50 mM HEPES, pH 7.5, 0.2 M NaCl, 10 mM CaCl₂, 25 µM ZnCl₂ and 0.05%Brij-35) and incubated at room temperature (24 °C) for 2-hr, then 7.1 µl of substrate alpha-2-macroglobulin (0.2 unit/ml) is added and incubated at 37°C for 20-hr. The reactions are stopped by adding 4x sample buffer and boiled immediately for 5 minutes. After SDS-PAGE, the protein bands are visualized by silver stain.

Synthetic Fluorogenic Peptide Substrates Cleavage Assay

The substrate specificity for polypeptides of the invention with demonstrated metalloproteinase activity can be determined using synthetic fluorogenic peptide substrates (purchased from BACHEM Bioscience Inc). Test substrates include, M-1985, M-2225, M-2105, M-2110, and M-2255. The first four are MMP substrates and the last one is a substrate of tumor necrosis factor- α (TNF- α) converting enzyme (TACE). All the substrates are prepared in 1:1 dimethyl sulfoxide (DMSO) and water. The stock solutions are 50-500 μ M. Fluorescent assays are performed by using a Perkin Elmer LS 50B luminescence spectrometer equipped with a constant temperature water bath. The excitation λ is 328 nm and the emission λ is 393 nm. Briefly, the assay is carried out by incubating 176 μ l 1x HEPES buffer (0.2 M NaCl, 10 mM CaCl₂, 0.05% Brij-35 and 50 mM HEPES, pH 7.5) with 4 μ l of substrate solution (50 μ M) at 25 °C for 15 minutes, and then adding 20 μ l of a purified polypeptide of the invention into the assay cuvett. The final concentration of substrate is 1 μ M. Initial hydrolysis rates are monitored for 30-min.

Example 53: Characterization of the cDNA contained in a deposited plasmid

The size of the cDNA insert contained in a deposited plasmid may be routinely determined using techniques known in the art, such as PCR amplification using synthetic primers hybridizable to the 3' and 5' ends of the cDNA sequence. For example, two primers of 17-30 nucleotides derived from each end of the cDNA (i.e., hybridizable to the absolute 5' nucleotide or the 3' nucleotide end of the sequence of SEQ ID NO:X, respectively) are synthesized and used to amplify the cDNA using the deposited cDNA plasmid as a template. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 ul of reaction mixture with 0.5 ug of the above cDNA template. A convenient reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 uM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94 degree C for 1 min; annealing at 55 degree C for 1 min; elongation at 72 degree C for 1 min) are performed with a Perkin-Elmer Cetus

automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product. It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.

Incorporation by Reference

5

The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background of the 10 Invention, Detailed Description, and Examples is hereby incorporated herein by reference. In addition, the sequence listing submitted herewith is incorporated herein by reference in its entirety. The specification and sequence listing of each of the following U.S. and PCT applications are herein incorporated by reference in their entirety: U.S. Appln. No. 60/040,162 filed on 07-Mar-1997, U.S. Appln. No. 60/043,576 filed on 11-Apr-1997, U.S. Appln. No. 60/047,601 filed on 23-15 May-1997, U.S. Appln. No. 60/056,845 filed on 22-Aug-1997, U.S. Appln. No. 60/043,580 filed on 11-Apr-1997, U.S. Appln. No. 60/047,599 filed on 23-May-1997, U.S. Appln. No. 60/056,664 filed on 22-Aug-1997, U.S. Appln. No. 60/043,314 filed on 11-Apr-1997, U.S. Appln. No. 60/047,632 filed on 23-May-1997, U.S. Appln. No. 60/056,892 filed on 22-Aug-1997, U.S. Appln. No. 60/043,568 filed on 11-Apr-1997, U.S. Appln. No. 60/047,595 filed on 23-May-1997, U.S. 20 Appln. No. 60/056,632 filed on 22-Aug-1997, U.S. Appln. No. 60/043,578 filed on 11-Apr-1997, U.S. Appln. No. 60/040,333 filed on 07-Mar-1997, U.S. Appln. No. 60/043,670 filed on 11-Apr-1997, U.S. Appln. No. 60/047,596 filed on 23-May-1997, U.S. Appln. No. 60/056,864 filed on 22-Aug-1997, U.S. Appln. No. 60/043,674 filed on 11-Apr-1997, U.S. Appln. No. 60/047,612 filed on 23-May-1997, U.S. Appln. No. 60/056,631 filed on 22-Aug-1997, U.S. Appln. No. 60/043,569 25 filed on 11-Apr-1997, U.S. Appln. No. 60/047,588 filed on 23-May-1997, U.S. Appln. No. 60/056,876 filed on 22-Aug-1997, U.S. Appln. No. 60/043,671 filed on 11-Apr-1997, U.S. Appln. No. 60/043,311 filed on 11-Apr-1997, U.S. Appln. No. 60/038,621 filed on 07-Mar-1997, U.S. Appln. No. 60/043,672 filed on 11-Apr-1997, U.S. Appln. No. 60/047,613 filed on 23-May-1997, U.S. Appln. No. 60/056,636 filed on 22-Aug-1997, U.S. Appln. No. 60/043,669 filed on 11-Apr-30 1997, U.S. Appln. No. 60/047,582 filed on 23-May-1997, U.S. Appln. No. 60/056,910 filed on 22-Aug-1997, U.S. Appln. No. 60/043,315 filed on 11-Apr-1997, U.S. Appln. No. 60/047,598 filed on 23-May-1997, U.S. Appln. No. 60/056,874 filed on 22-Aug-1997, U.S. Appln. No. 60/043,312 filed on 11-Apr-1997, U.S. Appln. No. 60/047,585 filed on 23-May-1997, U.S. Appln. No. 60/056,881 filed on 22-Aug-1997, U.S. Appln. No. 60/043,313 filed on 11-Apr-1997, U.S. Appln. 35

No. 60/047,586 filed on 23-May-1997, U.S. Appln. No. 60/056,909 filed on 22-Aug-1997, U.S. Appln. No. 60/040,161 filed on 07-Mar-1997, U.S. Appln. No. 60/047,587 filed on 23-May-1997, U.S. Appln. No. 60/056,879 filed on 22-Aug-1997, U.S. Appln. No. 60/047,500 filed on 23-May-1997, U.S. Appln. No. 60/056,880 filed on 22-Aug-1997, U.S. Appln. No. 60/047,584 filed on 23-May-1997, U.S. Appln. No. 60/056,894 filed on 22-Aug-1997, U.S. Appln. No. 60/047,492 filed 5 on 23-May-1997, U.S. Appln. No. 60/056,911 filed on 22-Aug-1997, U.S. Appln. No. 60/040,626 filed on 07-Mar-1997, U.S. Appln. No. 60/047,503 filed on 23-May-1997, U.S. Appln. No. 60/056,903 filed on 22-Aug-1997, U.S. Appln. No. 60/047,501 filed on 23-May-1997, U.S. Appln. No. 60/056,637 filed on 22-Aug-1997, U.S. Appln. No. 60/047,590 filed on 23-May-1997, U.S. Appln. No. 60/056,875 filed on 22-Aug-1997, U.S. Appln. No. 60/047,581 filed on 23-May-1997, 10 U.S. Appln. No. 60/056,882 filed on 22-Aug-1997, U.S. Appln. No. 60/047,592 filed on 23-May-1997, U.S. Appln. No. 60/056,888 filed on 22-Aug-1997, U.S. Appln. No. 60/040,334 filed on 07-Mar-1997, U.S. Appln. No. 60/047,618 filed on 23-May-1997, U.S. Appln. No. 60/056,872 filed on 22-Aug-1997, U.S. Appln. No. 60/047,617 filed on 23-May-1997, U.S. Appln. No. 60/056,662 filed on 22-Aug-1997, U.S. Appln. No. 60/047,589 filed on 23-May-1997, U.S. Appln. No. 15 60/056,862 filed on 22-Aug-1997, U.S. Appln. No. 60/047,594 filed on 23-May-1997, U.S. Appln. No. 60/056,884 filed on 22-Aug-1997, U.S. Appln. No. 60/047,583 filed on 23-May-1997, U.S. Appln. No. 60/056,878 filed on 22-Aug-1997, U.S. Appln. No. 60/040,336 filed on 07-Mar-1997, U.S. Appln. No. 60/047,502 filed on 23-May-1997, U.S. Appln. No. 60/056,893 filed on 22-Aug-1997, U.S. Appln. No. 60/047,633 filed on 23-May-1997, U.S. Appln. No. 60/056,630 filed on 22-20 Aug-1997, U.S. Appln. No. 60/047,593 filed on 23-May-1997, U.S. Appln. No. 60/056,887 filed on 22-Aug-1997, U.S. Appln. No. 60/040,163 filed on 07-Mar-1997, U.S. Appln. No. 60/047,597 filed on 23-May-1997, U.S. Appln. No. 60/056,889 filed on 22-Aug-1997, U.S. Appln. No. 60/047,615 filed on 23-May-1997, U.S. Appln. No. 60/056,877 filed on 22-Aug-1997, U.S. Appln. No. 60/047,600 filed on 23-May-1997, U.S. Appln. No. 60/056,886 filed on 22-Aug-1997, U.S. 25 Appln. No. 60/047,614 filed on 23-May-1997, U.S. Appln. No. 60/056,908 filed on 22-Aug-1997, U.S. Appln. No. 60/040,710 filed on 14-Mar-1997, U.S. Appln. No. 60/050,934 filed on 30-May-1997, U.S. Appln. No. 60/048,100 filed on 30-May-1997, U.S. Appln. No. 60/040,762 filed on 14-Mar-1997, U.S. Appln. No. 60/048,357 filed on 30-May-1997, U.S. Appln. No. 60/048,189 filed on 30-May-1997, U.S. Appln. No. 60/041,277 filed on 21-Mar-1997, U.S. Appln. No. 60/048,188 30 filed on 30-May-1997, U.S. Appln. No. 60/048,094 filed on 30-May-1997, U.S. Appln. No. 60/048,350 filed on 30-May-1997, U.S. Appln. No. 60/048,135 filed on 30-May-1997, U.S. Appln. No. 60/042,344 filed on 21-Mar-1997, U.S. Appln. No. 60/048,187 filed on 30-May-1997, U.S. Appln. No. 60/048,099 filed on 30-May-1997, U.S. Appln. No. 60/050,937 filed on 30-May-1997, U.S. Appln. No. 60/048,352 filed on 30-May-1997, U.S. Appln. No. 60/041,276 filed on 21-35

Mar-1997, U.S. Appln. No. 60/048,069 filed on 30-May-1997, U.S. Appln. No. 60/048,131 filed on 30-May-1997, U.S. Appln. No. 60/048,186 filed on 30-May-1997, U.S. Appln. No. 60/048,095 filed on 30-May-1997, U.S. Appln. No. 60/041,281 filed on 21-Mar-1997, U.S. Appln. No. 60/048,355 filed on 30-May-1997, U.S. Appln. No. 60/048,096 filed on 30-May-1997, U.S. Appln. No. 60/048,351 filed on 30-May-1997, U.S. Appln. No. 60/048,154 filed on 30-May-1997, U.S. Appln. No. 60/048,160 filed on 30-May-1997, U.S. Appln. No. 60/042,825 filed on 08-Apr-1997, U.S. Appln. No. 60/048,070 filed on 30-May-1997, U.S. Appln. No. 60/042,727 filed on 08-Apr-1997, U.S. Appln. No. 60/048,068 filed on 30-May-1997, U.S. Appln. No. 60/042,726 filed on 08-Apr-1997, U.S. Appln. No. 60/048,184 filed on 30-May-1997, U.S. Appln. No. 60/042,728 filed on 08-Apr-1997, U.S. Appln. No. 60/042,754 filed on 08-Apr-1997, U.S. Appln. No. 60/048,190 filed on 30-May-1997, U.S. Appln. No. 60/044,039 filed on 30-May-1997, U.S. Appln. No. 60/048,093 filed on 30-May-1997, U.S. Appln. No. 60/048,885 filed on 06-Jun-1997, U.S. Appln. No. 60/057,645 filed on 05-Sep-1997, U.S. Appln. No. 60/049,375 filed on 06-Jun-1997, U.S. Appln. No. 60/057,642 filed on 05-Sep-1997, U.S. Appln. No. 60/048,881 filed on 06-Jun-1997, U.S. Appln. No. 60/057,668 filed on 05-Sep-1997, U.S. Appln. No. 60/048,880 filed on 06-Jun-1997, U.S. Appln. No. 60/057,635 filed on 05-Sep-1997, U.S. Appln. No. 60/048,896 filed on 06-Jun-1997, U.S. Appln. No. 60/057,627 filed on 05-Sep-1997, U.S. Appln. No. 60/049,020 filed on 06-Jun-1997, U.S. Appln. No. 60/057,667 filed on 05-Sep-1997, U.S. Appln. No. 60/048,876 filed on 06-Jun-1997, U.S. Appln. No. 60/057,666 filed on 05-Sep-1997, U.S. Appln. No. 60/048,895 filed on 06-Jun-1997, U.S. Appln. No. 60/057,764 filed on 05-Sep-1997, U.S. Appln. No. 60/048,884 filed on 06-Jun-1997, U.S. Appln. No. 60/057,643 filed on 05-Sep-1997, U.S. Appln. No. 60/048,894 filed on 06-Jun-1997, U.S. Appln. No. 60/057,769 filed on 05-Sep-1997, U.S. Appln. No. 60/048,971 filed on 06-Jun-1997, U.S. Appln. No. 60/057,763 filed on 05-Sep-1997, U.S. Appln. No. 60/048,964 filed on 06-Jun-1997, U.S. Appln. No. 60/057,650 filed on 05-Sep-1997, U.S. Appln. No. 60/048,882 filed on 06-Jun-1997, U.S. Appln. No. 60/057,584 filed on 05-Sep-1997, U.S. Appln. No. 60/048,899 filed on 06-Jun-1997, U.S. Appln. No. 60/057,647 filed on 05-Sep-1997, U.S. Appln. No. 60/048,893 filed on 06-Jun-1997, U.S. Appln. No. 60/057,661 filed on 05-Sep-1997, U.S. Appln. No. 60/048,900 filed on 06-Jun-1997, U.S. Appln. No. 60/057,662 filed on 05-Sep-1997, U.S. Appln. No. 60/048,901 filed on 06-Jun-1997, U.S. Appln. No. 60/057,646 filed on 05-Sep-1997, U.S. Appln. No. 60/048,892 filed on 06-Jun-1997, 30 U.S. Appln. No. 60/057,654 filed on 05-Sep-1997, U.S. Appln. No. 60/048,915 filed on 06-Jun-1997, U.S. Appln. No. 60/057,651 filed on 05-Sep-1997, U.S. Appln. No. 60/049,019 filed on 06-Jun-1997, U.S. Appln. No. 60/057,644 filed on 05-Sep-1997, U.S. Appln. No. 60/048,970 filed on 06-Jun-1997, U.S. Appln. No. 60/057,765 filed on 05-Sep-1997, U.S. Appln. No. 60/048,972 filed on 06-Jun-1997, U.S. Appln. No. 60/057,762 filed on 05-Sep-1997, U.S. Appln. No. 60/048,916 35

5

10

15

20

filed on 06-Jun-1997, U.S. Appln. No. 60/057,775 filed on 05-Sep-1997, U.S. Appln. No. 60/049,373 filed on 06-Jun-1997, U.S. Appln. No. 60/057,648 filed on 05-Sep-1997, U.S. Appln. No. 60/048,875 filed on 06-Jun-1997, U.S. Appln. No. 60/057,774 filed on 05-Sep-1997, U.S. Appln. No. 60/049,374 filed on 06-Jun-1997, U.S. Appln. No. 60/057,649 filed on 05-Sep-1997, U.S. Appln. No. 60/048,917 filed on 06-Jun-1997, U.S. Appln. No. 60/057,770 filed on 05-Sep-1997, U.S. Appln. No. 60/048,949 filed on 06-Jun-1997, U.S. Appln. No. 60/057,771 filed on 05-Sep-1997, U.S. Appln. No. 60/048,974 filed on 06-Jun-1997, U.S. Appln. No. 60/057,761 filed on 05-Sep-1997, U.S. Appln. No. 60/048,883 filed on 06-Jun-1997, U.S. Appln. No. 60/057,760 filed on 05-Sep-1997, U.S. Appln. No. 60/048,897 filed on 06-Jun-1997, U.S. Appln. No. 60/057,776 filed on 05-Sep-1997, U.S. Appln. No. 60/048,898 filed on 06-Jun-1997, U.S. Appln. No. 10 60/057,778 filed on 05-Sep-1997, U.S. Appln. No. 60/048,962 filed on 06-Jun-1997, U.S. Appln. No. 60/057,629 filed on 05-Sep-1997, U.S. Appln. No. 60/048,963 filed on 06-Jun-1997, U.S. Appln. No. 60/057,628 filed on 05-Sep-1997, U.S. Appln. No. 60/048,877 filed on 06-Jun-1997, U.S. Appln. No. 60/057,777 filed on 05-Sep-1997, U.S. Appln. No. 60/048,878 filed on 06-Jun-1997, U.S. Appln. No. 60/057,634 filed on 05-Sep-1997, U.S. Appln. No. 60/049,608 filed on 13-15 Jun-1997, U.S. Appln. No. 60/058,669 filed on 12-Sep-1997, U.S. Appln. No. 60/049,566 filed on 13-Jun-1997, U.S. Appln. No. 60/058,668 filed on 12-Sep-1997, U.S. Appln. No. 60/052,989 filed on 13-Jun-1997, U.S. Appln. No. 60/058,750 filed on 12-Sep-1997, U.S. Appln. No. 60/049,607 filed on 13-Jun-1997, U.S. Appln. No. 60/058,665 filed on 12-Sep-1997, U.S. Appln. No. 60/049,611 filed on 13-Jun-1997, U.S. Appln. No. 60/058,971 filed on 12-Sep-1997, U.S. Appln. 20 No. 60/050,901 filed on 13-Jun-1997, U.S. Appln. No. 60/058,972 filed on 12-Sep-1997, U.S. Appln. No. 60/049,609 filed on 13-Jun-1997, U.S. Appln. No. 60/058,975 filed on 12-Sep-1997, U.S. Appln. No. 60/048,356 filed on 30-May-1997, U.S. Appln. No. 60/056,296 filed on 29-Aug-1997, U.S. Appln. No. 60/048,101 filed on 30-May-1997, U.S. Appln. No. 60/056,293 filed on 29-Aug-1997, U.S. Appln. No. 60/050,935 filed on 30-May-1997, U.S. Appln. No. 60/056,250 filed 25 on 29-Aug-1997, U.S. Appln. No. 60/049,610 filed on 13-Jun-1997, U.S. Appln. No. 60/061,060 filed on 02-Oct-1997, U.S. Appln. No. 60/049,606 filed on 13-Jun-1997, U.S. Appln. No. 60/060,841 filed on 02-Oct-1997, U.S. Appln. No. 60/049,550 filed on 13-Jun-1997, U.S. Appln. No. 60/060,834 filed on 02-Oct-1997, U.S. Appln. No. 60/049,549 filed on 13-Jun-1997, U.S. Appln. No. 60/060,865 filed on 02-Oct-1997, U.S. Appln. No. 60/049,548 filed on 13-Jun-1997, 30 U.S. Appln. No. 60/060,844 filed on 02-Oct-1997, U.S. Appln. No. 60/049,547 filed on 13-Jun-1997, U.S. Appln. No. 60/061,059 filed on 02-Oct-1997, U.S. Appln. No. 60/051,381 filed on 01-Jul-1997, U.S. Appln. No. 60/058,598 filed on 12-Sep-1997, U.S. Appln. No. 60/051,480 filed on 01-Jul-1997, U.S. Appln. No. 60/058,663 filed on 12-Sep-1997, U.S. Appln. No. 60/051,926 filed on 08-Jul-1997, U.S. Appln. No. 60/058,785 filed on 12-Sep-1997, U.S. Appln. No. 60/052,793 35

filed on 08-Jul-1997, U.S. Appln. No. 60/058,664 filed on 12-Sep-1997, U.S. Appln. No. 60/051,925 filed on 08-Jul-1997, U.S. Appln. No. 60/058,660 filed on 12-Sep-1997, U.S. Appln. No. 60/051,929 filed on 08-Jul-1997, U.S. Appln. No. 60/058,661 filed on 12-Sep-1997, U.S. Appln. No. 60/052,803 filed on 08-Jul-1997, U.S. Appln. No. 60/055,722 filed on 18-Aug-1997, U.S. Appln. No. 60/052,732 filed on 08-Jul-1997, U.S. Appln. No. 60/055,723 filed on 18-Aug-1997, U.S. Appln. No. 60/051,932 filed on 08-Jul-1997, U.S. Appln. No. 60/055,948 filed on 18-Aug-1997, U.S. Appln. No. 60/051,931 filed on 08-Jul-1997, U.S. Appln. No. 60/055,949 filed on 18-Aug-1997, U.S. Appln. No. 60/051,916 filed on 08-Jul-1997, U.S. Appln. No. 60/055,953 filed on 18-Aug-1997, U.S. Appln. No. 60/051,930 filed on 08-Jul-1997, U.S. Appln. No. 60/055,950 filed on 18-Aug-1997, U.S. Appln. No. 60/051,918 filed on 08-Jul-1997, U.S. Appln. No. 60/055,947 filed on 18-Aug-1997, U.S. Appln. No. 60/051,920 filed on 08-Jul-1997, U.S. Appln. No. 60/055,964 filed on 18-Aug-1997, U.S. Appln. No. 60/052,733 filed on 08-Jul-1997, U.S. Appln. No. 60/056,360 filed on 18-Aug-1997, U.S. Appln. No. 60/052,795 filed on 08-Jul-1997, U.S. Appln. No. 60/055,684 filed on 18-Aug-1997, U.S. Appln. No. 60/051,919 filed on 08-Jul-1997, U.S. Appln. No. 60/055,984 filed on 18-Aug-1997, U.S. Appln. No. 60/051,928 filed on 08-Jul-1997, U.S. Appln. No. 60/055,954 filed on 18-Aug-1997, U.S. Appln. No. 60/052,870 filed on 16-Jul-1997, U.S. Appln. No. 60/055,952 filed on 18-Aug-1997, U.S. Appln. No. 60/052,871 filed on 16-Jul-1997, U.S. Appln. No. 60/055,725 filed on 18-Aug-1997, U.S. Appln. No. 60/052,872 filed on 16-Jul-1997, U.S. Appln. No. 60/056,359 filed on 18-Aug-1997, U.S. Appln. No. 60/052,661 filed on 16-Jul-1997, U.S. Appln. No. 60/055,985 filed on 18-Aug-1997, U.S. Appln. No. 60/052,874 filed on 16-Jul-1997, U.S. Appln. No. 60/055,724 filed on 18-Aug-1997, U.S. Appln. No. 60/052,873 filed on 16-Jul-1997, U.S. Appln. No. 60/055,726 filed on 18-Aug-1997, U.S. Appln. No. 60/052,875 filed on 16-Jul-1997, U.S. Appln. No. 60/056,361 filed on 18-Aug-1997, U.S. Appln. No. 60/053,440 filed on 22-Jul-1997, U.S. Appln. No. 60/055,989 filed on 18-Aug-1997, U.S. Appln. No. 60/053,441 filed on 22-Jul-1997, U.S. Appln. No. 60/055,946 filed on 18-Aug-1997, U.S. Appln. No. 60/053,442 filed on 22-Jul-1997, U.S. Appln. No. 60/055,683 filed on 18-Aug-1997, U.S. Appln. No. 60/054,212 filed on 30-Jul-1997, U.S. Appln. No. 60/055,968 filed on 18-Aug-1997, U.S. Appln. No. 60/054,209 filed on 30-Jul-1997, U.S. Appln. No. 60/055,972 filed on 18-Aug-1997, U.S. Appln. No. 60/054,234 filed on 30-Jul-1997, U.S. Appln. No. 60/055,969 filed on 18-Aug-1997, U.S. Appln. No. 60/055,386 filed on 05-Aug-1997, U.S. Appln. No. 60/055,986 filed on 18-Aug-1997, U.S. Appln. No. 60/054,807 filed on 05-Aug-1997, U.S. Appln. No. 60/055,970 filed on 18-Aug-1997, U.S. Appln. No. 60/054,215 filed on 30-Jul-1997, U.S. Appln. No. 60/056,543 filed on 19-Aug-1997, U.S. Appln. No. 60/054,218 filed on 30-Jul-1997, U.S. Appln. No. 60/056,561 filed on 19-Aug-1997, U.S. Appln. No. 60/054,214 filed on 30-Jul-1997, U.S. Appln. No. 60/056,534 filed on 19-Aug-1997, U.S. Appln. No. 60/054,236 filed

5

10

15

20

25

30

on 30-Jul-1997, U.S. Appln. No. 60/056,729 filed on 19-Aug-1997, U.S. Appln. No. 60/054,213 filed on 30-Jul-1997, U.S. Appln. No. 60/056,727 filed on 19-Aug-1997, U.S. Appln. No. 60/054,211 filed on 30-Jul-1997, U.S. Appln. No. 60/056,554 filed on 19-Aug-1997, U.S. Appln. No. 60/054,217 filed on 30-Jul-1997, U.S. Appln. No. 60/056,730 filed on 19-Aug-1997, U.S. Appln. No. 60/055,312 filed on 05-Aug-1997, U.S. Appln. No. 60/056,563 filed on 19-Aug-1997, 5 U.S. Appln. No. 60/055,309 filed on 05-Aug-1997, U.S. Appln. No. 60/056,557 filed on 19-Aug-1997, U.S. Appln. No. 60/055,310 filed on 05-Aug-1997, U.S. Appln. No. 60/056,371 filed on 19-Aug-1997, U.S. Appln. No. 60/054,798 filed on 05-Aug-1997, U.S. Appln. No. 60/056,732 filed on 19-Aug-1997, U.S. Appln. No. 60/056,369 filed on 19-Aug-1997, U.S. Appln. No. 60/056,535 filed on 19-Aug-1997, U.S. Appln. No. 60/056,556 filed on 19-Aug-1997, U.S. Appln. No. 10 60/056,555 filed on 19-Aug-1997, U.S. Appln. No. 60/054,806 filed on 05-Aug-1997, U.S. Appln. No. 60/056,366 filed on 19-Aug-1997, U.S. Appln. No. 60/054,809 filed on 05-Aug-1997, U.S. Appln. No. 60/056,364 filed on 19-Aug-1997, U.S. Appln. No. 60/054,804 filed on 05-Aug-1997, U.S. Appln. No. 60/056,370 filed on 19-Aug-1997, U.S. Appln. No. 60/054,803 filed on 05-Aug-1997, U.S. Appln. No. 60/056,731 filed on 19-Aug-1997, U.S. Appln. No. 60/055,311 filed on 05-15 Aug-1997, U.S. Appln. No. 60/056,365 filed on 19-Aug-1997, U.S. Appln. No. 60/054,808 filed on 05-Aug-1997, U.S. Appln. No. 60/056,367 filed on 19-Aug-1997, U.S. Appln. No. 60/056,726 filed on 19-Aug-1997, U.S. Appln. No. 60/056,368 filed on 19-Aug-1997, U.S. Appln. No. 60/056,728 filed on 19-Aug-1997, U.S. Appln. No. 60/056,628 filed on 19-Aug-1997, U.S. Appln. No. 60/056,629 filed on 19-Aug-1997, U.S. Appln. No. 60/056,270 filed on 29-Aug-1997, U.S. 20 Appln. No. 60/056,271 filed on 29-Aug-1997, U.S. Appln. No. 60/056,247 filed on 29-Aug-1997, U.S. Appln. No. 60/056,073 filed on 29-Aug-1997, U.S. Appln. No. 60/057,669 filed on 05-Sep-1997, U.S. Appln. No. 60/057,663 filed on 05-Sep-1997, U.S. Appln. No. 60/057,626 filed on 05-Sep-1997, U.S. Appln. No. 60/058,666 filed on 12-Sep-1997, U.S. Appln. No. 60/058,973 filed on 12-Sep-1997, U.S. Appln. No. 60/058,974 filed on 12-Sep-1997, U.S. Appln. No. 60/058,667 filed 25 on 12-Sep-1997, U.S. Appln. No. 60/060,837 filed on 02-Oct-1997, U.S. Appln. No. 60/060,862 filed on 02-Oct-1997, U.S. Appln. No. 60/060,839 filed on 02-Oct-1997, U.S. Appln. No. 60/060,866 filed on 02-Oct-1997, U.S. Appln. No. 60/060,843 filed on 02-Oct-1997, U.S. Appln. No. 60/060,836 filed on 02-Oct-1997, U.S. Appln. No. 60/060,838 filed on 02-Oct-1997, U.S. Appln. No. 60/060,874 filed on 02-Oct-1997, U.S. Appln. No. 60/060,833 filed on 02-Oct-1997, 30 U.S. Appln. No. 60/060,884 filed on 02-Oct-1997, U.S. Appln. No. 60/060,880 filed on 02-Oct-1997, U.S. Appln. No. 60/061,463 filed on 09-Oct-1997, U.S. Appln. No. 60/061,529 filed on 09-Oct-1997, U.S. Appln. No. 60/071,498 filed on 09-Oct-1997, U.S. Appln. No. 60/061,527 filed on 09-Oct-1997, U.S. Appln. No. 60/061,536 filed on 09-Oct-1997, U.S. Appln. No. 60/061,532 filed on 09-Oct-1997, U.S. Appln. No. 60/063,099 filed on 24-Oct-1997, U.S. Appln. No. 60/063,088 35

filed on 24-Oct-1997, U.S. Appln. No. 60/063,100 filed on 24-Oct-1997, U.S. Appln. No. 60/063,387 filed on 24-Oct-1997, U.S. Appln. No. 60/063,148 filed on 24-Oct-1997, U.S. Appln. No. 60/063,386 filed on 24-Oct-1997, U.S. Appln. No. 60/062,784 filed on 24-Oct-1997, U.S. Appln. No. 60/063,091 filed on 24-Oct-1997, U.S. Appln. No. 60/063,090 filed on 24-Oct-1997, U.S. Appln. No. 60/063,089 filed on 24-Oct-1997, U.S. Appln. No. 60/063,092 filed on 24-Oct-5 1997, U.S. Appln. No. 60/063,111 filed on 24-Oct-1997, U.S. Appln. No. 60/063,101 filed on 24-Oct-1997, U.S. Appln. No. 60/063,109 filed on 24-Oct-1997, U.S. Appln. No. 60/063,110 filed on 24-Oct-1997, U.S. Appln. No. 60/063,098 filed on 24-Oct-1997, U.S. Appln. No. 60/063,097 filed on 24-Oct-1997, U.S. Appln. No. 60/064,911 filed on 07-Nov-1997, U.S. Appln. No. 60/064,912 filed on 07-Nov-1997, U.S. Appln. No. 60/064,983 filed on 07-Nov-1997, U.S. Appln. No. 10 60/064,900 filed on 07-Nov-1997, U.S. Appln. No. 60/064,988 filed on 07-Nov-1997, U.S. Appln. No. 60/064,987 filed on 07-Nov-1997, U.S. Appln. No. 60/064,908 filed on 07-Nov-1997, U.S. Appln. No. 60/064,984 filed on 07-Nov-1997, U.S. Appln. No. 60/064,985 filed on 07-Nov-1997, U.S. Appln. No. 60/066,094 filed on 17-Nov-1997, U.S. Appln. No. 60/066,100 filed on 17-Nov-1997, U.S. Appln. No. 60/066,089 filed on 17-Nov-1997, U.S. Appln. No. 60/066,095 filed on 17-15 Nov-1997, U.S. Appln. No. 60/066,090 filed on 17-Nov-1997, U.S. Appln. No. 60/068,006 filed on 18-Dec-1997, U.S. Appln. No. 60/068,057 filed on 18-Dec-1997, U.S. Appln. No. 60/068,007 filed on 18-Dec-1997, U.S. Appln. No. 60/068,008 filed on 18-Dec-1997, U.S. Appln. No. 60/068,054 filed on 18-Dec-1997, U.S. Appln. No. 60/068,064 filed on 18-Dec-1997, U.S. Appln. No. 60/068,053 filed on 18-Dec-1997, U.S. Appln. No. 60/070,923 filed on 18-Dec-1997, U.S. 20 Appln. No. 60/068,365 filed on 19-Dec-1997, U.S. Appln. No. 60/068,169 filed on 19-Dec-1997, U.S. Appln. No. 60/068,367 filed on 19-Dec-1997, U.S. Appln. No. 60/068,369 filed on 19-Dec-1997, U.S. Appln. No. 60/068,368 filed on 19-Dec-1997, U.S. Appln. No. 60/070,657 filed on 07-Jan-1998, U.S. Appln. No. 60/070,692 filed on 07-Jan-1998, U.S. Appln. No. 60/070,704 filed on 07-Jan-1998, U.S. Appln. No. 60/070,658 filed on 07-Jan-1998, U.S. Appln. No. 60/073,160 filed 25 on 30-Jan-1998, U.S. Appln. No. 60/073,159 filed on 30-Jan-1998, U.S. Appln. No. 60/073,165 filed on 30-Jan-1998, U.S. Appln. No. 60/073,164 filed on 30-Jan-1998, U.S. Appln. No. 60/073,167 filed on 30-Jan-1998, U.S. Appln. No. 60/073,162 filed on 30-Jan-1998, U.S. Appln. No. 60/073,161 filed on 30-Jan-1998, U.S. Appln. No. 60/073,170 filed on 30-Jan-1998, U.S. Appln. No. 60/074,141 filed on 09-Feb-1998, U.S. Appln. No. 60/074,341 filed on 09-Feb-1998, 30 U.S. Appln. No. 60/074,037 filed on 09-Feb-1998, U.S. Appln. No. 60/074,157 filed on 09-Feb-1998, U.S. Appln. No. 60/074,118 filed on 09-Feb-1998, U.S. Appln. No. 60/076,051 filed on 26-Feb-1998, U.S. Appln. No. 60/076,053 filed on 26-Feb-1998, U.S. Appln. No. 60/076,054 filed on 26-Feb-1998, U.S. Appln. No. 60/076,052 filed on 26-Feb-1998, U.S. Appln. No. 60/076,057 filed on 26-Feb-1998, U.S. Appln. No. 60/077,714 filed on 12-Mar-1998, U.S. Appln. No. 60/077,687 35

filed on 12-Mar-1998, U.S. Appln. No. 60/077,686 filed on 12-Mar-1998, U.S. Appln. No. 60/077,696 filed on 12-Mar-1998, U.S. Appln. No. 60/078,566 filed on 19-Mar-1998, U.S. Appln. No. 60/078,574 filed on 19-Mar-1998, U.S. Appln. No. 60/078,576 filed on 19-Mar-1998, U.S. Appln. No. 60/078,579 filed on 19-Mar-1998, U.S. Appln. No. 60/078,563 filed on 19-Mar-1998, U.S. Appln. No. 60/078,573 filed on 19-Mar-1998, U.S. Appln. No. 60/078,578 filed on 19-Mar-5 1998, U.S. Appln. No. 60/078,581 filed on 19-Mar-1998, U.S. Appln. No. 60/078,577 filed on 19-Mar-1998, U.S. Appln. No. 60/080,314 filed on 01-Apr-1998, U.S. Appln. No. 60/080,312 filed on 01-Apr-1998, U.S. Appln. No. 60/080,313 filed on 01-Apr-1998, U.S. Appln. No. 60/085,180 filed on 12-May-1998, U.S. Appln. No. 60/085,105 filed on 12-May-1998, U.S. Appln. No. 60/085,094 filed on 12-May-1998, U.S. Appln. No. 60/085,093 filed on 12-May-1998, U.S. Appln. No. 10 60/085,924 filed on 18-May-1998, U.S. Appln. No. 60/085,906 filed on 18-May-1998, U.S. Appln. No. 60/085,927 filed on 18-May-1998, U.S. Appln. No. 60/085,920 filed on 18-May-1998, U.S. Appln. No. 60/085,928 filed on 18-May-1998, U.S. Appln. No. 60/085,925 filed on 18-May-1998, U.S. Appln. No. 60/085,921 filed on 18-May-1998, U.S. Appln. No. 60/085,923 filed on 18-May-1998, U.S. Appln. No. 60/085,922 filed on 18-May-1998, U.S. Appln. No. 60/090,112 filed 15 on 22-Jun-1998, U.S. Appln. No. 60/089,508 filed on 16-Jun-1998, U.S. Appln. No. 60/089,507 filed on 16-Jun-1998, U.S. Appln. No. 60/089,510 filed on 16-Jun-1998, U.S. Appln. No. 60/089,509 filed on 16-Jun-1998, U.S. Appln. No. 60/090,113 filed on 22-Jun-1998, U.S. Appln. No. 60/092,956 filed on 15-Jul-1998, U.S. Appln. No. 60/092,921 filed on 15-Jul-1998, U.S. Appln. No. 60/092,922 filed on 15-Jul-1998, U.S. Appln. No. 60/094,657 filed on 30-Jul-1998, 20 U.S. Appln. No. 60/095,486 filed on 05-Aug-1998, U.S. Appln. No. 60/096,319 filed on 12-Aug-1998, U.S. Appln. No. 60/095,455 filed on 06-Aug-1998, U.S. Appln. No. 60/095,454 filed on 06-Aug-1998, U.S. Appln. No. 60/097,917 filed on 25-Aug-1998, U.S. Appln. No. 60/098,634 filed on 31-Aug-1998, U.S. Appln. No. 60/101,546 filed on 23-Sep-1998, U.S. Appln. No. 60/102,895 filed on 02-Oct-1998, U.S. Appln. No. 60/108,207 filed on 12-Nov-1998, U.S. Appln. No. 25 60/113,006 filed on 18-Dec-1998, U.S. Appln. No. 60/112,809 filed on 17-Dec-1998, U.S. Appln. No. 60/116,330 filed on 19-Jan-1999, U.S. Appln. No. 60/119,468 filed on 10-Feb-1999, U.S. Appln. No. 60/125,055 filed on 18-Mar-1999, U.S. Appln. No. 60/128,693 filed on 09-Apr-1999, U.S. Appln. No. 60/130,991 filed on 26-Apr-1999, U.S. Appln. No. 60/137,725 filed on 07-Jun-1999, U.S. Appln. No. 60/145,220 filed on 23-Jul-1999, U.S. Appln. No. 60/149,182 filed on 17-30 Aug-1999, U.S. Appln. No. 60/152,317 filed on 03-Sep-1999, U.S. Appln. No. 60/152,315 filed on 03-Sep-1999, U.S. Appln. No. 60/155,709 filed on 24-Sep-1999, U.S. Appln. No. 60/163,085 filed on 02-Nov-1999, U.S. Appln. No. 60/172,411 filed on 17-Dec-1999, U.S. Appln. No. 60/162,239 filed on 29-Oct-1999, U.S. Appln. No. 60/215,139 filed on 30-Jun-2000, U.S. Appln. No. 60/162,211 filed on 29-Oct-1999, U.S. Appln. No. 60/215,138 filed on 30-Jun-2000, U.S. Appln. 35

No. 60/162,240 filed on 29-Oct-1999, U.S. Appln. No. 60/215,131 filed on 30-Jun-2000, U.S. Appln. No. 60/162,237 filed on 29-Oct-1999, U.S. Appln. No. 60/219,666 filed on 21-Jul-2000, U.S. Appln. No. 60/162,238 filed on 29-Oct-1999, U.S. Appln. No. 60/215,134 filed on 30-Jun-2000, U.S. Appln. No. 60/163,580 filed on 05-Nov-1999, U.S. Appln. No. 60/215,130 filed on 30-5 Jun-2000, U.S. Appln. No. 60/163,577 filed on 05-Nov-1999, U.S. Appln. No. 60/215,137 filed on 30-Jun-2000, U.S. Appln. No. 60/163,581 filed on 05-Nov-1999, U.S. Appln. No. 60/215,133 filed on 30-Jun-2000, U.S. Appln. No. 60/163,576 filed on 05-Nov-1999, U.S. Appln. No. 60/221,366 filed on 27-Jul-2000, U.S. Appln. No. 60/164,344 filed on 09-Nov-1999, U.S. Appln. No. 60/195,296 filed on 07-Apr-2000, U.S. Appln. No. 60/221,367 filed on 27-Jul-2000, U.S. Appln. No. 60/164,835 filed on 12-Nov-1999, U.S. Appln. No. 60/221,142 filed on 27-Jul-2000, U.S. 10 Appln. No. 60/164,744 filed on 12-Nov-1999, U.S. Appln. No. 60/215,140 filed on 30-Jun-2000, U.S. Appln. No. 60/164,735 filed on 12-Nov-1999, U.S. Appln. No. 60/221,193 filed on 27-Jul-2000, U.S. Appln. No. 60/164,825 filed on 12-Nov-1999, U.S. Appln. No. 60/222,904 filed on 03-Aug-2000, U.S. Appln. No. 60/164,834 filed on 12-Nov-1999, U.S. Appln. No. 60/224,007 filed 15 on 04-Aug-2000, U.S. Appln. No. 60/164,750 filed on 12-Nov-1999, U.S. Appln. No. 60/215,128 filed on 30-Jun-2000, U.S. Appln. No. 60/166,415 filed on 19-Nov-1999, U.S. Appln. No. 60/215,136 filed on 30-Jun-2000, U.S. Appln. No. 60/166,414 filed on 19-Nov-1999, U.S. Appln. No. 60/219,665 filed on 21-Jul-2000, U.S. Appln. No. 60/164,731 filed on 12-Nov-1999, U.S. Appln. No. 60/215,132 filed on 30-Jun-2000, U.S. Appln. No. 60/226,280 filed on 18-Aug-2000, 20 U.S. Appln. No. 60/256,968 filed on 21-Dec-2000, U.S. Appln. No. 60/226,380 filed on 18-Aug-2000, U.S. Appln. No. 60/259,803 filed on 05-Jan-2001, U.S. Appln. No. 60/228,084 filed on 28-Aug-2000, U.S. Appln. No. 09/915,582 filed on 27-Jul-2001, U.S. Appln. No. 60/231,968 filed on 12-Sep-2000, U.S. Appln. No. 60/236,326 filed on 29-Sep-2000, U.S. Appln. No. 60/234,211 filed on 20-Sep-2000, U.S. Appln. No. 60/226,282 filed on 18-Aug-2000, U.S. Appln. No. 60/232,104 25 filed on 12-Sep-2000, U.S. Appln. No. 60/234,210 filed on 20-Sep-2000, U.S. Appln. No. 60/226,278 filed on 18-Aug-2000, U.S. Appln. No. 60/259,805 filed on 05-Jan-2001, U.S. Appln. No. 60/226,279 filed on 18-Aug-2000, U.S. Appln. No. 60/259,678 filed on 05-Jan-2001, U.S. Appln. No. 60/226,281 filed on 18-Aug-2000, U.S. Appln. No. 60/231,969 filed on 12-Sep-2000, U.S. Appln. No. 60/228,086 filed on 28-Aug-2000, U.S. Appln. No. 60/259,516 filed on 04-Jan-30 2001, U.S. Appln. No. 60/228,083 filed on 28-Aug-2000, U.S. Appln. No. 60/259,804 filed on 05-Jan-2001, U.S. Appln. No. 60/270,658 filed on 23-Feb-2001, U.S. Appln. No. 60/304,444 filed on 12-Jul-2001, U.S. Appln. No. 60/270,625 filed on 23-Feb-2001, U.S. Appln. No. 60/304,417 filed on 12-Jul-2001, U.S. Appln. No. 60/295,869 filed on 06-Jun-2001, U.S. Appln. No. 60/304,121 filed on 11-Jul-2001, U.S. Appln. No. 60/311,085 filed on 10-Aug-2001, U.S. Appln. No. 35 60/325,209 filed on 28-Sep-2001, U.S. Appln. No. 60/330,629 filed on 26-Oct-2001, U.S. Appln.

No. 60/331,046 filed on 07-Nov-2001, U.S. Appln. No. 60/358,554 filed on 22-Feb-2002, U.S. Appln. No. 60/358,714 filed on 25-Feb-2002, U.S. Appln. No. 60/277,340 filed on 21-Mar-2001, U.S. Appln. No. 60/306,171 filed on 19-Jul-2001, U.S. Appln. No. 60/278,650 filed on 27-Mar-2001, U.S. Appln. No. 60/331,287 filed on 13-Nov-2001, U.S. Appln. No. 09/950,082 filed on 12-Sep-2001, U.S. Appln. No. 09/950,083 filed on 12-Sep-2001, PCT Appln. No. US00/29363 filed on 25-Oct-2000, PCT Appln. No. US00/29360 filed on 25-Oct-2000, PCT Appln. No. US00/29362 filed on 25-Oct-2000, PCT Appln. No. US00/29365 filed on 25-Oct-2000, PCT Appln. No. US00/29364 filed on 25-Oct-2000, PCT Appln. No. US00/30040 filed on 01-Nov-2000, PCT Appln. No. US00/30037 filed on 01-Nov-2000, PCT Appln. No. US00/30045 filed on 01-Nov-2000, PCT Appln. No. US00/30036 filed on 01-Nov-2000, PCT Appln. No. US00/30039 filed on 01-Nov-2000, PCT Appln. No. US00/30654 filed on 08-Nov-2000, PCT Appln. No. US00/30628 filed on 08-Nov-2000, PCT Appln. No. US00/30653 filed on 08-Nov-2000, PCT Appln. No. US00/30629 filed on 08-Nov-2000, PCT Appln. No. US00/30679 filed on 08-Nov-2000, PCT Appln. No. US00/30674 filed on 08-Nov-2000, PCT Appln. No. US00/31162 filed on 15-Nov-2000, PCT Appln. No. US00/31282 filed on 15-Nov-2000, PCT Appln. No. US00/30657 filed on 08-Nov-2000, PCT Appln. No. US01/01396 filed on 17-Jan-2001, PCT Appln. No. US01/01387 filed on 17-Jan-2001, PCT Appln. No. US01/01567 filed on 17-Jan-2001, PCT Appln. No. US01/01431 filed on 17-Jan-2001, PCT Appln. No. US01/01432 filed on 17-Jan-2001, PCT Appln. No. US01/00544 filed on 09-Jan-2001, PCT Appln. No. US01/01435 filed on 17-Jan-2001, PCT Appln. No. US01/01386 filed on 17-Jan-2001, PCT Appln. No. US01/01565 filed on 17-Jan-2001, PCT Appln. No. US01/01394 filed on 17-Jan-2001, PCT Appln. No. US01/01434 filed on 17-Jan-2001, PCT Appln. No. US01/01397 filed on 17-Jan-2001, PCT Appln. No. US01/01385 filed on 17-Jan-2001, PCT Appln. No. US01/01384 filed on 17-Jan-2001, PCT Appln. No. US01/01383 filed on 17-Jan-2001, PCT Appln. No. US02/05064 filed on 21-Feb-2002, PCT Appln. No. US02/05301 filed on 21-Feb-2002, U.S. Appln. No. 09/148,545 filed on 04-Sep-1998, U.S. Appln. No. 09/621,011 filed on 20-Jul-2000, U.S. Appln. No. 09/981,876 filed on 19-Oct-2001, U.S. Appln. No. 09/149,476 filed on 08-Sep-1998, U.S. Appln. No. 09/809,391 filed on 16-Mar-2001, U.S. Appln. No. 09/882,171 filed on 18-Jun-2001, U.S. Appln. No. 60/190,068 filed on 17-Mar-2000, U.S. Appln. No. 09/152,060 filed on 11-Sep-1998, U.S. Appln. No. 09/852,797 filed on 11-May-2001, U.S. Appln. No. 09/853,161 filed on 11-May-2001, U.S. Appln. No. 09/852,659 filed on 11-May-2001, U.S. Appln. No. 10/058,993 filed on 30-Jan-2002, U.S. Appln. No. 60/265,583 filed on 02-Feb-2001, U.S. Appln. No. 09/154,707 filed on 17-Sep-1998, U.S. Appln. No. 09/966,262 filed on 01-Oct-2001, U.S. Appln. No. 09/983,966 filed on 26-Oct-2001, U.S. Appln. No. 10/059,395 filed on 31-Jan-2002, U.S. Appln. No. 09/984,245 filed on 29-Oct-2001, U.S. Appln. No. 09/166,780 filed on 06-Oct-1998, U.S. Appln. No. 09/577,145 filed on 24-

10

15

20

25

30

May-2000, U.S. Appln. No. 09/814,122 filed on 22-Mar-2001, U.S. Appln. No. 09/189,144 filed on 10-Nov-1998, U.S. Appln. No. 09/690,454 filed on 18-Oct-2000, U.S. Appln. No. 10/062,831 filed on 05-Feb-2002, U.S. Appln. No. 10/062,599 filed on 05-Feb-2002, U.S. Appln. No. 09/205,258 filed on 04-Dec-1998, U.S. Appln. No. 09/933,767 filed on 22-Aug-2001, U.S. Appln. No. 60/184,836 filed on 24-Feb-2000, U.S. Appln. No. 60/193,170 filed on 29-Mar-2000, U.S. 5 Appln. No. 10/023,282 filed on 20-Dec-2001, U.S. Appln. No. 10/004,860 filed on 07-Dec-2001, U.S. Appln. No. 09/209,462 filed on 11-Dec-1998, U.S. Appln. No. 09/213,365 filed on 17-Dec-1998, U.S. Appln. No. 09/627,081 filed on 27-Jul-2000, U.S. Appln. No. 09/227,357 filed on 08-Jan-1999, U.S. Appln. No. 09/983,802 filed on 25-Oct-2001, U.S. Appln. No. 09/973,278 filed on 10-Oct-2001, U.S. Appln. No. 60/239,899 filed on 13-Oct-2000, U.S. Appln. No. 09/984,490 filed 10 on 30-Oct-2001, U.S. Appln. No. 09/776,724 filed on 06-Feb-2001, U.S. Appln. No. 09/229,982 filed on 14-Jan-1999, U.S. Appln. No. 09/669,688 filed on 26-Sep-2000, U.S. Appln. No. 60/180,909 filed on 08-Feb-2000, U.S. Appln. No. 09/236,557 filed on 26-Jan-1999, U.S. Appln. No. 09/666,984 filed on 21-Sep-2000, U.S. Appln. No. 09/820,649 filed on 30-Mar-2001, U.S. Appln. No. 60/295,558 filed on 05-Jun-2001, U.S. Appln. No. 09/244,112 filed on 04-Feb-1999, 15 U.S. Appln. No. 09/774,639 filed on 01-Feb-2001, U.S. Appln. No. 09/969,730 filed on 04-Oct-2001, U.S. Appln. No. 60/238,291 filed on 06-Oct-2000, U.S. Appln. No. 09/251,329 filed on 17-Feb-1999, U.S. Appln. No. 09/716,128 filed on 17-Nov-2000, U.S. Appln. No. 09/257,179 filed on 25-Feb-1999, U.S. Appln. No. 09/729,835 filed on 06-Dec-2000, U.S. Appln. No. 09/262,109 filed on 04-Mar-1999, U.S. Appln. No. 09/722,329 filed on 28-Nov-2000, U.S. Appln. No. 09/722,329 20 filed on 17-Jan-2002, U.S. Appln. No. 60/262,066 filed on 18-Jan-2001, U.S. Appln. No. 09/281,976 filed on 31-Mar-1999, U.S. Appln. No. 09/288,143 filed on 08-Apr-1999, U.S. Appln. No. 09/984,429 filed on 30-Oct-2001, U.S. Appln. No. 60/244,591 filed on 01-Nov-2000, U.S. Appln. No. 09/296,622 filed on 23-Apr-1999, U.S. Appln. No. 09/305,736 filed on 05-May-1999, U.S. Appln. No. 09/818,683 filed on 28-Mar-2001, U.S. Appln. No. 09/974,879 filed on 12-Oct-25 2001, U.S. Appln. No. 60/239,893 filed on 13-Oct-2000, U.S. Appln. No. 09/334,595 filed on 17-Jun-1999, U.S. Appln. No. 09/348,457 filed on 07-Jul-1999, U.S. Appln. No. 09/739,907 filed on 20-Dec-2000, U.S. Appln. No. 09/938,671 filed on 27-Aug-2001, U.S. Appln. No. 09/363,044 filed on 29-Jul-1999, U.S. Appln. No. 09/813,153 filed on 21-Mar-2001, U.S. Appln. No. 09/949,925 filed on 12-Sep-2001, U.S. Appln. No. 60/232,150 filed on 12-Sep-2000, U.S. Appln. 30 No. 09/369,247 filed on 05-Aug-1999, U.S. Appln. No. 10/062,548 filed on 05-Feb-2002, U.S. Appln. No. 09/382,572 filed on 25-Aug-1999, U.S. Appln. No. 09/716,129 filed on 17-Nov-2000, U.S. Appln. No. 09/393,022 filed on 09-Sep-1999, U.S. Appln. No. 09/798,889 filed on 06-Mar-2001, U.S. Appln. No. 09/397,945 filed on 17-Sep-1999, U.S. Appln. No. 09/437,658 filed on 10-Nov-1999, U.S. Appln. No. 09/892,877 filed on 28-Jun-2001, U.S. Appln. No. 09/948,783 filed on 35

10-Sep-2001, U.S. Appln. No. 60/231,846 filed on 11-Sep-2000, U.S. Appln. No. 09/461,325 filed on 14-Dec-1999, U.S. Appln. No. 10/050,873 filed on 18-Jan-2002, U.S. Appln. No. 60/263,230 filed on 23-Jan-2001, U.S. Appln. No. 60/263,681 filed on 24-Jan-2001, U.S. Appln. No. 10/012,542 filed on 12-Dec-2001, U.S. Appln. No. 09/482,273 filed on 13-Jan-2000, U.S. Appln. No. 60/234,925 filed on 25-Sep-2000, U.S. Appln. No. 09/984,276 filed on 29-Oct-2001, U.S. Appln. No. 09/984,271 filed on 29-Oct-2001, U.S. Appln. No. 09/489,847 filed on 24-Jan-2000, U.S. Appln. No. 60/350,898 filed on 25-Jan-2002, U.S. Appln. No. 09/511,554 filed on 23-Feb-2000, U.S. Appln. No. 09/739,254 filed on 19-Dec-2000, U.S. Appln. No. 09/904,615 filed on 16-Jul-2001, U.S. Appln. No. 10/054,988 filed on 25-Jan-2002, U.S. Appln. No. 09/531,119 filed on 20-Mar-2000, U.S. Appln. No. 09/820,893 filed on 30-Mar-2001, U.S. Appln. No. 09/565,391 filed on 05-May-2000, U.S. Appln. No. 09/948,820 filed on 10-Sep-2001, U.S. Appln. No. 09/591,316 filed on 09-Jun-2000, U.S. Appln. No. 09/895,298 filed on 02-Jul-2001, U.S. Appln. No. 09/618,150 filed on 17-Jul-2000, U.S. Appln. No. 09/985,153 filed on 01-Nov-2001, U.S. Appln. No. 09/628,508 filed on 28-Jul-2000, U.S. Appln. No. 09/997,131 filed on 30-Nov-2001, U.S. Appln. No. 09/661,453 filed on 13-Sep-2000, U.S. Appln. No. 10/050,882 filed on 18-Jan-2002, U.S. Appln. No. 09/684,524 filed on 10-Oct-2000, U.S. Appln. No. 10/050,704 filed on 18-Jan-2002, U.S. Appln. No. 09/726,643 filed on 01-Dec-2000, U.S. Appln. No. 10/042,141 filed on 11-Jan-2002, U.S. Appln. No. 09/756,168 filed on 09-Jan-2001, U.S. Appln. No. 09/781,417 filed on 13-Feb-2001, U.S. Appln. No.10/060,255 filed on 01-Feb-2002, U.S. Appln. No. 09/789,561 filed on 22-Feb-2001, U.S. Appln. No. 09/800,729 filed on 08-Mar-2001, U.S. Appln. No. 09/832,129 filed on 11-Apr-2001, PCT Appln. No.US98/04482 filed on 06-Mar-1998, PCT Appln. No.US98/04493 filed on 06-Mar-1998, PCT Appln. No.US98/04858 filed on 12-Mar-1998, PCT Appln. No.US98/05311 filed on 19-Mar-1998, PCT Appln. No.US98/06801 filed on 07-Apr-1998, PCT Appln. No.US98/10868 filed on 28-May-1998, PCT Appln. No.US98/11422 filed on 04-Jun-1998, PCT Appln. No.US01/05614 filed on 21-Feb-2001, PCT Appln. No.US98/12125 filed on 11-Jun-1998, PCT Appln. No.US98/13608 filed on 30-Jun-1998, PCT Appln. No.US98/13684 filed on 07-Jul-1998, PCT Appln. No.US98/14613 filed on 15-Jul-1998, PCT Appln. No.US98/15949 filed on 29-Jul-1998, PCT Appln. No.US98/16235 filed on 04-Aug-1998, PCT Appln. No.US98/17044 filed on 18-Aug-1998, PCT Appln. No.US98/17709 filed on 27-Aug-1998, PCT Appln. No.US98/18360 filed on 03-Sep-1998, PCT Appln. No. US02/01109 filed on 17-Jan-2002, PCT Appln. No.US98/20775 filed on 01-Oct-1998, PCT Appln. No.US98/21142 filed on 08-Oct-1998, PCT Appln. No.US98/22376 filed on 23-Oct-1998, PCT Appln. No.US98/23435 filed on 04-Nov-1998, PCT Appln. No.US98/27059 filed on 17-Dec-1998, PCT Appln. No.US99/00108 filed on 06-Jan-1999, PCT Appln. No.US99/01621 filed on 27-Jan-1999, PCT Appln. No.US99/02293 filed on 04-Feb-1999, PCT Appln. No.US99/03939 filed on 24-Feb-

5

10

15

20

25

30

1999, PCT Appln. No.US99/05721 filed on 11-Mar-1999, PCT Appln. No.US99/05804 filed on 18-Mar-1999, PCT Appln. No.US99/09847 filed on 06-May-1999, PCT Appln. No.US99/13418 filed on 15-Jun-1999, PCT Appln. No.US99/15849 filed on 14-Jul-1999, PCT Appln. No.US01/00911 filed on 12-Jan-2001, PCT Appln. No.US01/29871 filed on 24-Sep-2001, PCT Appln. No.US99/17130 filed on 29-Jul-1999, PCT Appln. No.US99/19330 filed on 24-Aug-1999, PCT Appln. No.US99/22012 filed on 22-Sep-1999, PCT Appln. No.US99/26409 filed on 09-Nov-1999, PCT Appln. No.US99/29950 filed on 16-Dec-1999, PCT Appln. No.US00/00903 filed on 18-Jan-2000, PCT Appln. No.US00/03062 filed on 08-Feb-2000, PCT Appln. No.US00/06783 filed on 16-Mar-2000, PCT Appln. No.US00/08979 filed on 06-Apr-2000, PCT Appln. No.US00/15187 filed on 02-Jun-2000, PCT Appln. No.US00/19735 filed on 20-Jul-2000, PCT Appln. No.US00/22325 filed on 16-Aug-2000, PCT Appln. No.US00/24008 filed on 31-Aug-2000, PCT Appln. No.US00/26013 filed on 22-Sep-2000, PCT Appln. No.US00/28664 filed on 17-Oct-2000, US Appln. No. 09/833,245 filed on 12-Apr-2001, and PCT Appln. No. US01/11988 filed on 12-Apr-2001, US Appln. No. 10/100,683, PCT Appln. No. US02/08278 filed on 19-Mar-2002, PCT Appln. No. US02/08279 filed on 19-Mar-2002, PCT Appln. No. US02/08123 filed on 19-Mar-2002, PCT Appln. No. US02/09785 filed on 19-Mar-2002, PCT Appln. No. US02/08276 filed on 19-Mar-2002, PCT Appln. No. US02/08277 filed on 19-Mar-2002, and PCT Appln. No. US02/08124 filed on 19-Mar-2002.

5

10