python data structure

> data structure is the collection of data types
> data structure is the way of storing, managing, organizing tha data make it easier to perform operations like insertion , deletion etc operations
data structure is divided into two types
1)built in data structure
list
tuple
set
dictionary
2) user defined data structure
stack
queue
linked list
tree
graph
LIST
1) list is a collection of different data type
2) list is denoted by square brackets[]
3) list is mutable

4) list allowed duplicates

```
we can perform many operations in a list
        append()
         copy()
         remove()
         pop()
         index()
        insert()
        extend()
        count()
        sort()
        clear()
         reverse()
In [25]:
          N 1=[]
In [26]:
   Out[26]: []
In [27]:

▶ type(1)

   Out[27]: list
In [28]:
         ▶ len(1)
   Out[28]: 0
In [29]:
         ⋈ id(1)
   Out[29]: 2272104206656
In [30]:
         ▶ 1.append(10)
```

we can add only argument to the list

```
In [33]: | len(1)
Out[33]: 1
```

append function add the element at the last of the list

```
In [34]:
          ▶ 1.append(20)
             1.append(30)
             1.append(40)
             1.append(50)
In [35]:
   Out[35]: [10, 20, 30, 40, 50]
In [36]:
          ▶ len(1)
   Out[36]: 5
In [37]:
          N 11=1.copy()
             11
   Out[37]: [10, 20, 30, 40, 50]
          | | 1==11
In [38]:
   Out[38]: True
          N | 1!=11
In [39]:
   Out[39]: False
```

In [40]:

M 11

```
Out[40]: [10, 20, 30, 40, 50]
In [41]:
         ▶ 11.append(100)
In [42]:
         | 11
   Out[42]: [10, 20, 30, 40, 50, 100]
         | 1==11
In [43]:
   Out[43]: False
In [44]:
         ▶ print(len(1))
           print(len(l1))
           5
           6
In [45]:
         print(1)
           print(l1)
           [10, 20, 30, 40, 50]
           [10, 20, 30, 40, 50, 100]
Out[46]: 2272106060416
        clear function removes all the elements from the list
In [47]:
         N l1.clear()
In [48]:
         | 11
   Out[48]: []
Out[49]: 0
Out[50]: 2272106060416
```

the id will be same when the list with elements without elements

```
\mathbb{N}
In [51]:
   Out[51]: [10, 20, 30, 40, 50]
In [52]:
          ▶ 1.append("akshitha")
             1.append(2.3)
             1.append(1+2j)
             1.append(True)
             1.append([1,2,3])
In [53]:
   Out[53]: [10, 20, 30, 40, 50, 'akshitha', 2.3, (1+2j), True, [1, 2, 3]]
         list can allow all the data types
          ▶ 1.append(10)
In [54]:
   Out[54]: [10, 20, 30, 40, 50, 'akshitha', 2.3, (1+2j), True, [1, 2, 3], 10]
         list can allow duplicates
In [55]:
          | 11
   Out[55]: []
In [56]:
          | l1=l.copy()
             11
   Out[56]: [10, 20, 30, 40, 50, 'akshitha', 2.3, (1+2j), True, [1, 2, 3], 10]
In [57]:
          | 1==11
   Out[57]: True
In [58]:
          ▶ 11.count(2.3)
   Out[58]: 1
         count function counts the number of mentioned elements present in the list
In [59]:
          | 11
   Out[59]: [10, 20, 30, 40, 50, 'akshitha', 2.3, (1+2j), True, [1, 2, 3], 10]
```

▶ 11.remove(1+2j)

In [60]:

```
In [61]: N 11
Out[61]: [10, 20, 30, 40, 50, 'akshitha', 2.3, True, [1, 2, 3], 10]
```

remove funtion deletes the particular element

we have 10 2 duplicates elements when we perform remove operation it deletes first occurance element

pop function removes the last element in the list by default(last in first out)

```
In [66]: | 11.pop()
11
Out[66]: [20, 30, 40, 50, 'akshitha', 2.3, True]
In [67]: | 11.pop(1)
Out[67]: 30
```

when we want to remove particular element from the list using pop function we pass the index of that element

```
In [71]: N 1.pop(2)
Out[71]: 30

In [72]: N 1
Out[72]: [10, 20, 40, 50, 'akshitha', 2.3, (1+2j), True, [1, 2, 3], 10]

In [73]: N 1.index(2.3)
Out[73]: 5
```

index function used to return the index of a value

In the insert() function, we pass two parameters

The index where we want to insert the element

The value of the element to be inserted

forward indexing and backward indexing

```
In [88]: N 15
Out[88]: [3000, 100, 34, 9, 3]
In [89]: N 15[2]
Out[89]: 34
In [90]: N 15[-1]
Out[90]: 3
In [91]: N 15[-4]
Out[91]: 100
```

slicing

```
In [93]: ▶ 11
    Out[93]: [20, 40, 50, 'akshitha', 2.3]
In [94]: ► 11[0:3]
    Out[94]: [20, 40, 50]
In [95]: ▶ 11[1:]
    Out[95]: [40, 50, 'akshitha', 2.3]
In [96]: ► 11[:3]
    Out[96]: [20, 40, 50]
In [97]: ▶ 11[-3:]
    Out[97]: [50, 'akshitha', 2.3]
In [98]: ▶ 11[:-3]
    Out[98]: [20, 40]
In [99]: ► 11[:]
    Out[99]: [20, 40, 50, 'akshitha', 2.3]
In [100]:  M mylist=["one",'two','three','four','five','six','seven','eight']
Out[102]: ['one', 'two', 'three']
In [103]: ▶ mylist
   Out[103]: ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight']
In [104]: | mylist.append('ten')
In [105]: ▶ mylist
   Out[105]: ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'ten']
```

```
▶ mylist.insert(4, 'eleven')
In [106]:
              mylist
   Out[106]: ['one',
                'two',
                'three',
                'four',
                'eleven',
                'five',
                'six',
                'seven',
                'eight',
                'ten']
In [107]:
           M mylist.insert(1, 'ONE')
              mylist
   Out[107]: ['one',
                'ONE',
                'two',
                'three',
                'four',
                'eleven',
                'five',
                'six',
                'seven',
                'eight',
                'ten']
           mylist.remove('ONE')
In [108]:
In [109]:
            ⋈ mylist
   Out[109]: ['one',
                'two',
                'three',
                'four',
                'eleven',
                'five',
                'six',
                'seven',
                'eight',
                'ten']
In [111]:

    mylist.pop()

   Out[111]: 'ten'
In [112]:
           ⋈ mylist
   Out[112]: ['one', 'two', 'three', 'four', 'eleven', 'five', 'six', 'seven', 'eight']
```

```
Out[113]: 'eleven'
In [114]: ► mylist
   Out[114]: ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight']
In [115]:
          ▶ mylist[0]=1
             mylist[1]=2
             mylist[2]=3
             mylist
   Out[115]: [1, 2, 3, 'four', 'five', 'six', 'seven', 'eight']
In [116]:
          ▶ | mylist.clear()
             mylist
   Out[116]: []
In [117]:
          | del mylist
             mylist
             NameError
                                                    Traceback (most recent call last)
             <ipython-input-117-e3998fd6e4af> in <module>
                   1 del mylist
             ----> 2 mylist
             NameError: name 'mylist' is not defined
In [119]:
          mylist = ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine'
In [120]:
          ► mylist1=mylist
In [121]:

    id(mylist1), id(mylist)

   Out[121]: (2272106016896, 2272106016896)
In [123]:
          ▶ | mylist2=mylist.copy()
In [124]:
          mylist2
   Out[124]: ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine']
Out[125]: 2272106161088
```

```
Out[126]: 'one'
list2=['five','six','seven','eight']
       N list3=list1+list2
In [128]:
         list3
  Out[128]: ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight']
list1
  Out[129]: ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight']
Out[130]: ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight']
Out[131]: True
Out[133]: False
Out[134]: False
Out[135]: ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight']
In [136]:
       list1
  Out[136]: ['eight', 'seven', 'six', 'five', 'four', 'three', 'two', 'one']
 In [ ]:
```