TIMESERIES 3

11.5.2018

RECAP

- * oscillations/periodic signals
 - * often sinusoidal!
 - * even when not sinusoidal, can be decomposed into a sum of sinusoids
 - * this is the fourier transform

RECAP

- * to see which frequencies are present in a timeseries, simple fourier transforms are not the best tool
- * instead, we use power spectral density
 (psd) estimators
 - * this is like a *regularized* fourier transform

RECAP

- * if we compute psd for small snippets of time and then stack them together into an array
 - * this is the **spectrogram**
 - * it shows which frequencies are present in a timeseries at each point in time
 - * you should know how to read a spectrogram

THE SPECTROGRAM

- * each column is the fourier transform of a short snippet
- * what about each row? what does one row mean?

- * **filtering** is a process that removes some frequencies from a timeseries and lets others remain (or even amplifies them)
- * this is accomplished by convolving your timeseries with a **filter**, a small array that is designed to have a specific effect

- * low-pass filter: removes high frequencies, allows low frequencies through
- * high-pass filter: removes low frequencies, allows high frequencies through
- * band-pass filter: removes all frequencies except for a specific band (the "pass band")

- * low-pass filter: removes high frequencies, allows low frequencies through
- * high-pass filter: removes low frequencies, allows high frequencies through
- * band-pass filter: removes all frequencies except for a specific band (the "pass band")

- * back to the spectrogram:
 - * one row of a spectrogram is a lot like a band-pass filtered version of a timeseries

- * suppose we have some EEG data from a human subject and we want to filter it so that only alpha-band oscillations remain
 - * (this is a band-pass filter)
- * how do you make a filter that has the properties you want?

- * **scipy.signal** is a module in scipy that contains lots of useful functions for filter design
- * scipy.signal.firwin creates "finite impulse response" filters with desired properties

ANALYZING A FILTER

- * scipy.signal.freqz is a great function that tells you what the *frequency* response of your filter looks like
 - * i.e. it tells you what the filter is going to do to your signal

FOURIER ANALYSIS

- * fourier transforms have an interesting property related to convolution:
- * given two timeseries, f and g, their convolution is equal to the element-wise product of their fourier transforms

$$f*g = F \cdot G$$

* the reverse is also true:

$$F*G = f \cdot g$$

FOURIER ANALYSIS

- * this property is important, because convolution is expensive
- * oftentimes it's (much!) faster to
 - (1) take the fourier transform of both,
 - (2) take their element-wise product, and
 - (3) take the inverse fourier transform

FOURIER ANALYSIS

- * it also makes the effect of filtering much more intuitive
- * filtering your timeseries X with a filter f is equivalent to taking the fourier transform of each and then (element-wise) multiplying them!

Time Function Sinc Boxcar $-\frac{\tau}{2}$ 0 $\frac{\tau}{2}$ $G(t) = \begin{cases} 1-|t|/\tau, |t| < \tau \\ 0, |t| > \tau \end{cases}$ Sinc² Triangle 0 $G(t) = e^{-1/2t^2}$ Gaussian Gaussian τ DC Shift Impulse $G(t) = \delta(t)$ = 0, t ≠ 0 0 Single Freq. $G(t) = \cos \omega_0 t$ Sinusoid π/ω 0 π/ω 2π/ω G(t) = comb(t)Comb. Comb. $= \sum_{n=0}^{\infty} \delta(1-n\tau)$ 0 τ 2τ 3τ -2π

Frequency Function

 $S(f) = \tau \operatorname{sinc}(f\tau)$

 $S(f) = \tau \operatorname{sinc}^2(ft)$

 $= (1/\pi f) \sin (\pi f t)$

 $= (1/\pi^2 f^2 \tau) \sin^2 (\pi f t)$

-1/_{\tau} 0 1/_{\tau} 2/_{\tau} 3/_{\tau} 4/_{\tau}

 $S(f) = \frac{1}{2}(\delta(f+f_0) + \delta(f-f_0))$

2π

 4π

 $S(f) = \tau (2\pi)^{1/2} e^{-(\pi f \tau)^2}$

-1/_T 0 1/_T

0

0

 $S(f) = \sum_{-\infty}^{\infty} \delta(f-n/\tau)$

S(f) = 1

 $-f_0$

- * all of the timeseries we work with are discrete or digital, meaning that they are made up of samples separated by some even spacing in time
 - * (note that **sample** is used in a different sense here than in statistics)

- * the number of samples taken per unit time is called the **sampling rate**
 - * e.g. in fMRI our sampling rate is typically 0.5 Hz (1 sample every 2 seconds)
 - * in electrophysiology it could be as high as 25 kHz (25,000 samples per second)

- * the sampling rate limits the frequencies that can be represented in a timeseries
- * the highest frequency that a timeseries can represent is called the **Nyquist** frequency, and it is exactly half the sampling rate

Harry Nyquist

* for example if our fMRI data is sampled at 0.5 Hz, then the Nyquist frequency is 0.25 Hz

* why is this? why can't higher frequency signals be represented?

- * the problem is that any frequency above Nyquist would appear identical to some frequency below Nyquist
- * this is called *aliasing*

END