

ISFAHAN UNIVERSITY OF TECHNOLOGY DEPARTMENT OF MATHEMATICAL SCIENCES

Applied Linear Algebra Assignment #5

Due Date: 14 Tir 1400

- 1. Let *A* be the 2×2 matrix $A = \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix}$.
 - a) Find the eigenvalues of *A*.
 - b) Find a basis of \mathbb{R}^2 consisting of eigenvectors of A.
 - c) Diagonalize the matrix *A*.
 - d) Calculate A^7 .
 - e) Diagonalize the inverse matrix A^{-1} of A.
- 2. Suppose that *A* is a square matrix with nonnegative integers such that each of whose rows has the same sum *s*.
 - a) Show that *s* is an eigenvalue of *A*.
 - b) Prove that *s* is the maximum eigenvalue of *A*.
- 3. Suppose that v is a nonzero vector in \mathbb{R}^3 , and suppose A is a 3×3 matrix with distinct real eigenvalues $\lambda_1 < \lambda_2 < \lambda_3$. Suppose that $||A^n v||$ (the length of the vector $A^n v$) converges to 0 as $n \to \infty$. Find all possible values of λ_1 . Hint: the answer will be an open interval in \mathbb{R} .
- 4. a) Suppose that *A* is a 2×2 matrix with det(A) = 0. Use Cayley-Hamilton theorem to show that $A^2 = tr(A)A$ and determine A^n explicitly for each integer $n \ge 2$.
 - b) Let A and B be two 2×2 matrices with A = AB BA. Prove that $A^2 = O$, where O is the all-zeros matrix. (Hint: Compute trace(A) and then apply the Cayley-Hamilton theorem to A.)
- 5. A square matrix *A* is called nilpotent if there is a positive integer *k* such that $A^k = O$.
 - a) Prove that the only diagonalizable nilpotent matrix is the all-zeros matrix (the matrix with all entries equal to zero).
 - b) Prove that A is nilpotent if and only if all eigenvalues of A are zero.
 - c) Let A be a nilpotent $n \times n$ matrix. Prove that $A^n = O$. Hint: Use Cayley-Hamilton Theorem.
- 6. Let $A = \begin{bmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{bmatrix}$. Pick your favorite number x, and find the dimension of the null

space of the matrix A - xI. Your score of this problem is equal to that dimension!