Classification

The goal of classification is to take an input vector x and to assign y to one of K discrete classes C_k where k = 1, . . . , K, i.e.,

$$f: \mathbf{x} \in \mathbb{R}^D \to \mathbf{y} \in \{1, \dots, K\}$$

 The input space is divided into K regions (one for each class), whose boundaries are called decision boundaries or decision surfaces.

Linear classification

Classification Approaches

- Deterministic approach: Construct a discriminant function f(x) that directly maps each input vector to a specific class
 - Linear deterministic classifier
 - > SVM
 - Perceptron
- Probabilistic Approach: Model the probability distribution x and y and then use this distribution to make optimal decisions
 - Discriminative approach p(y|x)
 - Generative approach –p(x,y)

Linear Deterministic Classifiers

• Construct a linear discriminate function

$$f(\mathbf{x}, \mathbf{w}) = \mathbf{w}^t \mathbf{x} + w_0$$

• Linear classification

$$y(x, w) = \phi(f(x, w)) \quad y = \{1, 2, \dots K\}$$

where $\phi()$ is the activation function that maps $\, \boldsymbol{x} \,$ into $\, \boldsymbol{y} \,$ that belongs to one of K different classes.

Linear Deterministic Classifiers

- Binary discriminant classifiers map input into two classes
- Multi-class discriminant classifiers map input into K classes, K>2.

Binary Discriminant Classifier

Construct a linear discriminant function

 $f(x)=w^tx+w_0$

• Choose the activation function as a step function, i.e.,

$$\mathbf{y}(\mathbf{w}, \mathbf{x}) = \varphi(f(\mathbf{x})) = \begin{cases} C_1 & \text{if } f(\mathbf{x}) > 0 \\ C_2 & \text{else} \end{cases}$$

•Input vector \mathbf{x} is assigned to class C_1 if the discriminant function f() is larger than 0 and to class C_2 otherwise.

Binary Discriminant (cont'd)

Discriminant function $f(\mathbf{x}) = \mathbf{w}^t \mathbf{x} + w_0 = 0$ corresponds to a (N-1)-dimensional hyperplane within the N-dimensional input space. \mathbf{w} determines the orientation and location of the decision surface. For 2D \mathbf{x} , $\mathbf{w}^t \mathbf{x} + w_0 = 0$ is a line

The Perceptron Algorithm

$$\mathbf{x} \qquad \qquad \begin{array}{c} \mathbf{x}_1 & \mathbf{x}_2 \\ \mathbf{x}_2 & \mathbf{x}_2 \\ \mathbf{x}_n & \mathbf{x}_n \end{array} \qquad \begin{array}{c} \mathbf{x}_1 & \mathbf{x}_2 \\ \mathbf{x}_n & \mathbf{x}_n \end{array} \qquad \begin{array}{c} \mathbf{x}_1 & \mathbf{x}_2 \\ \mathbf{x}_n & \mathbf{x}_n \end{array} \qquad \mathbf{y} \in \left\{ +1,-1 \right\}$$

$$y(\mathbf{x}) = \phi(\mathbf{w}^t \mathbf{x} + w_0)$$

where nonlinear activation function f() is given by a step function:

$$y(\mathbf{x}) = \begin{cases} +1 & if \ \mathbf{w}^t \mathbf{x} + w_0 > 0 \\ -1 & else \end{cases}$$

Binary Support Vector Machine

Two-class classification with the linear model is

$$f(\mathbf{x}) = w^t x + w_0 = \mathbf{w}^t \mathbf{x} + w_0$$

Given the target $y=\{-1,+1\}$, an input x is classified into +1 if f(x)>0 and to -1 else

Multi-class discriminant classifiers

 The output y represents K classes (K > 2). The goal is to map input x into multiple classes

Multi-class discriminant classifiers

• Construct K linear discriminant functions, one for each class :

$$f_k(\mathbf{x}) = \mathbf{w}_k^{t} \mathbf{x} + w_{k,0}$$

 Apply the max activation function (pick the max), assign x to class C_k, i.e.,

$$y = \arg\max_{k} (f_k(\mathbf{x}))$$

Linear Probabilistic Classifiers

Model the probability distribution **x** and y and then use this distribution to make optimal decisions

- $\quad \textbf{Discriminative approach} p(y \,|\, x)$
- Generative approach –p(x,y)

Linear Discriminative Classifiers

•Construct the probability of p(y|x) and perform classification based on p(y|x), i.e.,

$$y^* = \arg\max_{y \in \{1, 2, \dots, K\}} p(y \mid \mathbf{x})$$

Binary Discriminative Classifier

 Construct the discriminant function f(x)=w^tx+w₀

 Compute p(y|x) by choosing the sigmoid activity function, i.e.,

$$p(y|\mathbf{x},\mathbf{w}) = \sigma(f(\mathbf{x})) = \frac{1}{1 + e^{-y \cdot f(\mathbf{x})}}$$

- The sigmoid function σ () maps the discriminant function $f(\mathbf{x})$ into a number between 0 and 1 (probability).
- x is classified into y=1 if p(y=1|x)>0.5 and y= -1 otherwise.
- This is the so-called logistic regression

Multiclass Discriminative Models

•Output $y \in \{1,2,..,K\}$ K>2 and construct $P(y|\mathbf{x})$ by a multiclass sigmoid function (σ_M) using K discriminant functions $f_k(\mathbf{x},\mathbf{w}_k,\mathbf{w}_{k,0})$

$$p(y = k | \mathbf{x}) = \sigma_M(f_k(\mathbf{x}, \mathbf{w}_k, w_{k,0})) = \frac{\exp(\mathbf{w}_k^t \mathbf{x} + w_{k,0})}{\sum_{j=1}^K \exp(\mathbf{w}_j^t \mathbf{x} + w_{j,0})}$$

$$k^* = \arg\max_k p(y = k \mid \mathbf{x})$$

This is called softmax classifier or multinomial logistic regression

Classifier Summary

- Deterministic Classifiers
 - Binary linear classifier discriminant function
 - ► f(x)=w^tx+w₀-binary discriminant function
 - \rightarrow y= $\phi(f(x))-\phi()$ is activation function
 - \$\phi()\$ is step function-binary discriminant classifier
 Perceptron
 SVM
 - Multi-class classifier
 - $ightharpoonup f_{\nu}(x) = W_{\nu}^{t}x + W_{\nu}^{0}$ -contruct K discriminant functions
 - $ightharpoonup y = \phi(f_k(x)) = \operatorname{argmax}_k f_k(x) \operatorname{multi-class} discriminant classifier$

Classifier Summary

- Discriminative Classifiers p(y|x)
 - Binary classifier
 - $p(y|x) = \sigma(yf(x)) \phi()$ = sigmoid function-logistic regression
 - Multi-class classifier
 - $ho p(y=k|x)=\sigma_{M}(f_{k}(x))=\frac{e^{f_{k}(x)}}{\sum_{k=1}^{K}e^{f_{k}(x)}}$
 - $ightharpoonup \sigma_M$ is multi-class sigmoid function

Classifier Learning

- · Deterministic classifier learning
 - Binary discriminant classifier learning
 - Multi-class discriminant classifier learning
- Discriminative classifier learning
 - Binary classifier learning
 - Multi-class classifier learning

Binary Discriminant Classifier Learning

 Given the training data D={x[m], y[m]}, m=1,2,..,M, learn the model parameters Θ by minimizing the overall loss function L(D:Θ) of the form

$$L(\mathbf{D}: \mathbf{\Theta}) = \frac{1}{M} \sum_{m=1}^{M} l(\mathbf{x}[m], y[m], \mathbf{\Theta}) + \lambda R(\mathbf{\Theta})$$

where the first term is the individual loss function and the second term is the regularization

Binary Classifier Loss Functions

For binary classifier $y \in \{-1,+1\}$

• 0-1 loss function – the loss is 0 if the predicted labels and groundtruth labels are the same and 1 otherwise

$$l_{0/1} = \begin{cases} 0 & \text{if } y(\mathbf{w}^t \mathbf{x} + w_0) > 0 \\ 1 & \text{else} \end{cases}$$

• Hinge loss function $l_b = \max(0.1 - y(\mathbf{w}^T \mathbf{x} + w_0))$

when y ($\mathbf{w}^{t}\mathbf{x}+\mathbf{w}_{0}$) >1 the hinge loss is zero. Otherwise the loss increases linearly with $\mathbf{w}^{t}\mathbf{x}+\mathbf{w}_{0}$

Hinge loss is an upper bound of 0/1 loss

Classifier Learning with 0/1 Loss Function

 For the 0/1 loss function, the total loss function can be written as

$$L_{0/1}(\mathbf{D}: \mathbf{w}, w_0) = \frac{1}{M} \sum_{m=1}^{M} l_{0/1}(y[m](\mathbf{w}^t \mathbf{x}[m] + w_0) + \lambda R(\mathbf{w}, w_0)$$

 The parameters can be obtained by minimizing the loss function, i.e.,

$$\mathbf{w}^*, w_0^* = \arg\min_{\mathbf{w}, w} L_{0/1}(\mathbf{D} : \mathbf{w}, w_0)$$

Classifier Learning with 0/1 Loss Function

- Gradient-based method cannot solve for the parameters by minimizing the total 0/1 loss function $L_{0/1}(\mathbf{D}:\mathbf{w},w)$ since the gradient of $l_{0/1}(y[m](\mathbf{w}'\mathbf{x}[m]+w_0)$ is zero everywhere
- Minimizing the overall 0/1 loss function is intractable
- Solution is to minimize an alterative loss function such as the hinge loss function

Binary Classifier Learning with Hinge Loss

 For the hinge loss function, the total loss function can be written as

$$L_{H}(D: \mathbf{w}, w_{0}) = \frac{1}{M} \sum_{m=1}^{M} \max(0, 1 - y[m](\mathbf{w}^{t} \mathbf{x}[m] + w_{0}) + \lambda R(\mathbf{w}, w_{0})$$

• The parameters can be obtained by minimizing the loss function, i.e.,

$$\mathbf{w}^*, w_0^* = \arg\min_{\mathbf{w}, w} L_H(\mathbf{D} : \mathbf{w}, w_0)$$

Binary Classifier Learning with Hinge Loss

Let
$$\Theta = (\mathbf{w}, w_0)' \quad \mathbf{X} = (\mathbf{x}, \mathbf{l})' \quad z[m] = y[m](\mathbf{w}'\mathbf{x}[m] + w_0)$$

$$L_H(D:\Theta) = \frac{1}{M} \sum_{m=1}^{M} \max(0, 1 - y[m]) \Theta'\mathbf{X}[m] + w_0 + \lambda R(\mathbf{w}, w_0)$$

$$= \frac{1}{M} \sum_{m=1}^{M} \max(0, 1 - y[m]) \Theta'\mathbf{X}[m] + \lambda R(\Theta)$$

$$= \frac{1}{M} \sum_{m=1}^{M} \max(0, 1 - z[m]) + \lambda R(\Theta)$$

$$= \frac{1}{M} \sum_{m=1}^{M} \max(0, 1 - z[m]) + \lambda R(\Theta)$$

$$\frac{\partial L_H(D:\Theta)}{\partial \Theta} = \frac{1}{M} \sum_{m=1}^{M} \frac{\partial \max(0, 1 - z[m])}{\partial z} \frac{\partial z}{\partial \Theta} + \lambda \frac{\partial R(\Theta)}{\partial \Theta}$$

$$\frac{\partial \max(0, 1 - z[m])}{\partial z} = \begin{cases} 0 & \text{if } z[m] > 1 \\ -1 & \text{else} \end{cases}$$

$$\frac{\partial \max(0, 1 - z[m])}{\partial z} = \frac{\partial [y[m](\mathbf{w}'\mathbf{x}[m] + w_0)]}{\partial \Theta} = \frac{\partial [y[m]\Theta'\mathbf{x}[m]]}{\partial \Theta} = y[m]\mathbf{x}[m]$$

$$\frac{\partial L_H(D:\Theta)}{\partial \Theta} = \frac{-1}{M} \sum_{m=1}^{M} y[m]\mathbf{x}[m]V[m] + \lambda \frac{\partial R(\Theta)}{\partial \Theta}, \text{where } I[m] = \begin{cases} 0 & \text{if } z[m] > 1 \\ 1 & \text{else} \end{cases}$$

Multiclass Discrimnative Classifier Learning

- Suppose y ∈{1,2,...,K}, we can construct a discriminate function for each class, i.e., f_k(x)=w^t_kx+w_{k,0}
- A generalized hinge loss for K class can be constructed as follows

$$l_h(\mathbf{x}, y = k, \mathbf{W}) = \max(0, 1 + \max_{k' \neq k} (\mathbf{w}_k' \cdot \mathbf{x} + w_{k', 0} - \mathbf{w}_k' \cdot \mathbf{x} - w_{k, 0}))$$

where
$$\mathbf{W} = (\mathbf{w}_1, w_{1,0}, \mathbf{w}_2, w_{2,0}, ..., \mathbf{w}_K, w_{K,0})^t$$

 W can be learnt by minimizing the generalized hinge loss function

Discriminative Classifier Learning

- Binary logistic regression learning
- Multi-class logistic regression learning

Binary Logistic Regression Learning (cont'd)

Θ is found by minimizing the negative log likelihood function ,i.e.,

$$\mathbf{\Theta}^* = \arg\min_{\mathbf{\Theta}} - LCL(D:\mathbf{\Theta})$$

There is no closed-form solution. Gradient descent can be used to estimate Θ iteratively, i.e.,

$$\mathbf{\Theta}^{t} = \mathbf{\Theta}^{t-1} - \eta \frac{\partial - LCL(\mathbf{D} : \mathbf{\Theta}^{t})}{\partial \mathbf{\Theta}} \Big|_{\mathbf{\Theta}^{t-1}}$$

where

$$\begin{split} &\frac{\partial - LCL(\mathbf{D} : \mathbf{\Theta}')}{\partial \mathbf{\Theta}} = \frac{\partial \sum_{m=1}^{M} \log\{1 + e^{-y[m]\mathbf{\Theta}'\mathbf{X}[m]}\}}{\partial \mathbf{\Theta}} \\ &= -\sum_{m=1}^{M} \frac{e^{-y[m]\mathbf{\Theta}'\mathbf{X}[m]}}{1 + e^{-y[m]\mathbf{\Theta}'\mathbf{X}[m]}} y[m]\mathbf{X}[m] \end{split}$$

Binary Logistic Regression Learning

 Given the training data D={x[m], y[m]}, m=1,2,..,M and y[m] ∈{-1,+1}, learn the model parameters Θ by minimizing the negative log conditional likelihood, i.e.,

$$\begin{array}{l} - LCL \quad (\mathbf{D}: \boldsymbol{\Theta} \;) = -\sum\limits_{m=1}^{M} \log \quad p\left(y\left[m\;\right] \mid \mathbf{x}\left[m\;\right]\right) = -\sum\limits_{m=1}^{M} \log \quad \sigma\left(yf\left(\mathbf{x}\left[m\;\right]\right)\right) \\ = -\sum\limits_{m=1}^{M} \log \left\{ \quad \frac{1}{1 + e^{-y\left[m\;\right] \left(\mathbf{w}' \mathbf{x}\left[m\;\right] + \mathbf{w}_{0}\right)}} \right\} \\ = \sum\limits_{m=1}^{M} \log \left\{ \quad 1 + e^{-y\left[m\;\right] \boldsymbol{\Theta}' \mathbf{x}\left[m\;\right]} \right\} \quad \sigma \text{ is the} \\ \mathbf{where} \quad \boldsymbol{\Theta} = \begin{bmatrix} \mathbf{w} \\ \mathbf{w}_{0} \end{bmatrix} \quad \mathbf{X}[m] = \begin{bmatrix} \mathbf{x}\left[m\right] \\ \mathbf{1} \end{bmatrix} \quad \text{sigmoid function}$$

Binary Logistic Regression Learning (cont'd)

Alternatively, the gradient can be computed as

$$\begin{split} &\frac{\partial - LCL(\mathbf{D}: \mathbf{\Theta}')}{\partial \mathbf{\Theta}} = -\frac{\partial \sum\limits_{m=1}^{N} \log \sigma(y[m]f(\mathbf{x}[m]))}{\partial \mathbf{\Theta}} \\ &= -\sum\limits_{m=1}^{M} \frac{1}{\sigma(y[m]f(\mathbf{x}[m]))} \frac{\partial \sigma(y[m]f(\mathbf{x}[m]))}{\partial [y[m]f(\mathbf{x}[m]))} \frac{\partial (y[m]f(\mathbf{x}[m]))}{\partial \mathbf{\Theta}} \\ &= -\sum\limits_{m=1}^{M} \frac{1}{\sigma(y[m]f(\mathbf{x}[m]))} \sigma(y[m]f(\mathbf{x}[m]))(1 - \sigma(y[m]f(\mathbf{x}[m])))y[m]\mathbf{X}[m] \\ &= -\sum\limits_{m=1}^{M} (1 - \sigma(y[m]f(\mathbf{x}[m])))y[m]\mathbf{X}[m] \end{split}$$

Multiclass Logistic Regression Learning

- Suppose $y \in \{1,2,...,K\}$, we can construct a discriminant function for each class, i.e., $f_k(\mathbf{x}) = \mathbf{w}^t_k \mathbf{x} + \mathbf{w}_{k,0} = \Theta_{\kappa}^t \mathbf{X}$, where $\Theta_k = [\mathbf{w}^t, \mathbf{w}_{k,0}]^t \quad \mathbf{X} = [\mathbf{x} \quad 1]^t$
- For output y, we use 1-of-K encoding, where we use a
 Kx1 binary vector y, whose contains a single 1 for
 element k (the correct class) and 0 elsewhere.
- For 5 classes and the input belongs to class 2, **y** is

$$\mathbf{y} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Multiclass Logistic Regression Learning

Given training data D={X[m],y[m]}, m=1,2,..M, learn the parameters Θ by minimizing the total negative log conditional likelihood

$$\begin{split} L(\mathbf{D}:\mathbf{\Theta}) &= -\sum_{m=1}^{N} \log p(y[m] \,|\, \mathbf{X}[m], \mathbf{\Theta}) = -\sum_{m=1}^{N} \log \prod_{k=1}^{K} [p(y[m] = k' \,|\, \mathbf{X}[m], \mathbf{\Theta})]^{y[m][k']} \\ &= -\sum_{m=1}^{N} \sum_{k'=1}^{K} \mathbf{y}[m][k'] \log p(y[m] = k' \,|\, \mathbf{X}[m], \mathbf{\Theta})) \\ &= -\sum_{m=1}^{N} \sum_{k'=1}^{K} \mathbf{y}[m][k'] \log \frac{\exp(\mathbf{\Theta}_{k'}' \mathbf{X}[m])}{\sum_{j=1}^{K} \exp(\mathbf{\Theta}_{j}' \mathbf{X}[m])} \end{split}$$

Multiclass Logistic Regression Learning

$$\begin{split} L(\mathbf{D}:\boldsymbol{\Theta}) &= -\sum_{m=1}^{M} \log p(y[m]|\mathbf{X}[m],\boldsymbol{\Theta}) = -\sum_{m=1}^{M} \log \prod_{k'=1}^{K} [p(y[m] = k'|\mathbf{X}[m],\boldsymbol{\Theta})]^{y[m][k']} \\ &= -\sum_{m=1}^{M} \log \prod_{k'=1}^{K} [\sigma_{M}(f(\mathbf{X}[m],\boldsymbol{\Theta}_{k}))]^{y[m][k']} = -\sum_{m=1}^{M} \log \prod_{k'=1}^{K} \left[\frac{\exp(\boldsymbol{\Theta}_{k'}'\mathbf{X}[m])}{\sum_{j=1}^{K} \exp(\boldsymbol{\Theta}_{j}'\mathbf{X}[m])} \right] \\ &= -\sum_{m=1}^{M} \sum_{k'=1}^{K} \left[\mathbf{y}[m][k'] \log \frac{\exp(\boldsymbol{\Theta}_{k'}'\mathbf{X}[m])}{\sum_{j=1}^{K} \exp(\boldsymbol{\Theta}_{j}'\mathbf{X}[m])} \right] \\ &= -\sum_{m=1}^{M} \sum_{k'=1}^{K} \left[\mathbf{y}[m][k'] \left(\boldsymbol{\Theta}_{k'}'\mathbf{X}[m] - \log \sum_{j=1}^{K} \exp(\boldsymbol{\Theta}_{j}'\mathbf{X}[m]) \right) \right] \\ &= \sigma_{m} \text{ is the multi-class} \\ &= \arg \min_{\boldsymbol{\Theta}} L(\mathbf{D}:\boldsymbol{\Theta}) \\ &= \operatorname{arg\,min} L(\mathbf{D}:\boldsymbol{\Theta}) \end{split}$$

Multiclass Logistic Regression Learning

$$\frac{\partial L(\mathbf{D}:\mathbf{\Theta})}{\partial \mathbf{\Theta}} = \begin{bmatrix} \frac{\partial L(\mathbf{D}:\mathbf{\Theta})}{\partial \mathbf{\Theta}_{1}} \\ \frac{\partial L(\mathbf{D}:\mathbf{\Theta})}{\partial \mathbf{\Theta}_{2}} \\ .. \\ \frac{\partial L(\mathbf{D}:\mathbf{\Theta})}{\partial \mathbf{\Theta}_{K}} \end{bmatrix}$$

Multiclass Logistic Regression Learning

$$\begin{split} &\frac{\partial L(\mathbf{D} : \mathbf{\Theta})}{\partial \mathbf{\Theta}_{k}} = \frac{\partial \sum_{m=1}^{K} \sum_{k'=1}^{K} \mathbf{y}[m][k'] \log \frac{\exp(\mathbf{\Theta}_{k'}^{\prime}\mathbf{X}[m])}{\sum_{j=1}^{K} \exp(\mathbf{\Theta}_{j'}^{\prime}\mathbf{X}[m])}}{\partial \mathbf{\Theta}_{k}} \\ &= -\frac{\partial \sum_{m=1}^{K} \sum_{k'=1}^{K} \{\mathbf{y}[m][k'] \mathbf{\Theta}_{k'}^{\prime}\mathbf{X}[m] - \mathbf{y}[m][k'] \log \sum_{j=1}^{K} \exp(\mathbf{\Theta}_{j'}^{\prime}\mathbf{X}[m])\}}{\partial \mathbf{\Theta}_{k}} \\ &= -\sum_{m=1}^{K} \{\mathbf{y}[m][k]\mathbf{X}[m] - \frac{\exp(\mathbf{\Theta}_{k'}^{\prime}\mathbf{X}[m])\mathbf{X}[m]}{\sum_{j=1}^{K} \exp(\mathbf{\Theta}_{j'}^{\prime}\mathbf{X}[m])}\} \\ &= -\sum_{m=1}^{K} \mathbf{X}[m]\{\mathbf{y}[m][k] - \sigma_{M}(\mathbf{\Theta}_{k'}^{\prime}\mathbf{X}[m])\} \end{split}$$

Multiclass Logistic Regression Learning

 $\boldsymbol{\Theta}$ can be solved iteratively gradient descent

$$\begin{split} \nabla_{\boldsymbol{\theta}_{i}} L(\mathbf{D}:\boldsymbol{\Theta}) &= \frac{\partial L(\mathbf{D}:\boldsymbol{\Theta})}{\partial \boldsymbol{\theta}_{i}} = -\frac{\partial \sum_{m=1}^{K} \sum_{i=1}^{K} \left[\mathbf{y}[m][k'] \boldsymbol{\Theta}_{i}' \mathbf{X}[m] - \log \sum_{j=1}^{K} \exp(\boldsymbol{\Theta}_{j}' \mathbf{X}[m]) \right]}{\partial \boldsymbol{\Theta}_{i}} \\ &= -\sum_{m=1}^{M} \sum_{i=1}^{K} \left[\mathbf{y}[m][k'] \boldsymbol{\delta}_{i}' \boldsymbol{\Theta}_{i}' \mathbf{X}[m] - \log \sum_{j=1}^{K} \exp(\boldsymbol{\Theta}_{j}' \mathbf{X}[m]) \right]}{\partial \boldsymbol{\Theta}_{i}} \\ &= -\sum_{m=1}^{M} \left[\mathbf{y}[m][k] \mathbf{X}[m] - \sum_{i=1}^{K} \left[\mathbf{y}[m][k'] \frac{\exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])}{\partial \boldsymbol{\Theta}_{i}} \mathbf{X}[m] \right] \right] \\ &= -\sum_{m=1}^{M} \left[\mathbf{y}[m][k] \mathbf{X}[m] - \sum_{i=1}^{K} \left[\mathbf{y}[m][k'] \frac{\exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])}{\sum_{j=1}^{K} \exp(\boldsymbol{\Theta}_{j}' \mathbf{X}[m])} \mathbf{X}[m] \right] \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[\mathbf{y}[m][k] - \frac{\exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])}{\sum_{i=1}^{K} \exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])} \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[\mathbf{y}[m][k] - \frac{\exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])}{\sum_{i=1}^{K} \exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])} \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[\mathbf{y}[m][k] - \frac{\exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])}{\sum_{i=1}^{K} \exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])} \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[\mathbf{y}[m][k] - \frac{\exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])}{\sum_{i=1}^{K} \exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])} \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[\mathbf{y}[m][k] - \frac{\exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])}{\sum_{i=1}^{K} \exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])} \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[\mathbf{y}[m][k] - \frac{\exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])}{\sum_{i=1}^{K} \exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])} \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[\mathbf{y}[m][k] - \frac{\exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])}{\sum_{i=1}^{K} \exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])} \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[\mathbf{y}[m][k] - \frac{\exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])}{\sum_{i=1}^{K} \exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])} \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[\mathbf{y}[m][k] - \frac{\exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])}{\sum_{i=1}^{K} \exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])} \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m][k] \mathbf{X}[m] - \frac{\exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])}{\sum_{i=1}^{K} \exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])} \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m][k] \mathbf{X}[m] - \frac{\exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])}{\sum_{i=1}^{K} \exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])} \\ &= -\sum_{m=1}^{M} \mathbf{X}[m][k] \mathbf{X}[m] - \frac{\exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])}{\sum_{i=1}^{K} \exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])} \\ &= -\sum_{m=1}^{M} \mathbf{X}[m][k] \mathbf{X}[m] - \frac{\exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])}{\sum_{i=1}^{K} \exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])} \\ &= -\sum_{m=1}^{M} \mathbf{X}[m][k] \mathbf{X}[m] - \frac{\exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])}{\sum_{i=1}^{K} \exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])} \\ &= -\sum_{m=1}^{M} \mathbf{X}[m][k] \mathbf{X}[m] - \frac{\exp(\boldsymbol{\Theta}_{i}' \mathbf{X}[m])}{\sum_$$

Multiclass Logistic Regression Learning

Alternatively, the gradient can be compute as

$$\begin{split} \frac{\partial L(\mathbf{D}:\mathbf{\Theta})}{\partial \boldsymbol{\Theta}_{k}} &= -\frac{\partial \sum_{m=1}^{M} \log \prod_{k=1}^{K} \left[\sigma_{M} \left(f(\mathbf{x}[m], \boldsymbol{\Theta}_{k}) \right) \right]^{\gamma[m][k']}}{\partial \boldsymbol{\Theta}_{k}} = -\frac{\partial \sum_{m=1}^{M} \sum_{k=1}^{M} y[m][k'] \log \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \right)}{\partial \boldsymbol{\Theta}_{k}} \\ &= -\sum_{m=1}^{M} \sum_{k=1}^{K} y[m][k'] \frac{\partial \log \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \right)}{\partial \boldsymbol{\Theta}_{k}} = -\sum_{m=1}^{M} \left[y[m][k] \frac{\partial \log \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \right)}{\partial \boldsymbol{\Theta}_{k}} + \sum_{k=1, k \neq k}^{k} y[m][k'] \frac{\partial \log \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \right)}{\partial \boldsymbol{\Theta}_{k}} \right] \\ &= -\sum_{m=1}^{M} \left[y[m][k] (1 - \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \mathbf{X}[m] - \sum_{k=1, k \neq k}^{k} y[m][k'] \frac{\sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \right)}{\sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \mathbf{X}[m] \right)} \right] \\ &= -\sum_{m=1}^{M} \left[y[m][k] (1 - \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \mathbf{X}[m] - \sum_{k=1, k \neq k}^{k} y[m][k'] \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \mathbf{X}[m] \right) \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[y[m][k] (1 - \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \mathbf{X}[m] - \sum_{k=1, k \neq k}^{k} y[m][k'] \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \mathbf{X}[m] \right) \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[y[m][k] - \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \mathbf{X}[m] \right) \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[y[m][k] - \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \mathbf{X}[m] \right) \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[y[m][k] - \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \mathbf{X}[m] \right) \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[y[m][k] - \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \mathbf{X}[m] \right) \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[y[m][k] - \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \mathbf{X}[m] \right) \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[y[m][k] - \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \mathbf{X}[m] \right) \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[y[m][k] - \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \mathbf{X}[m] \right) \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[y[m][k] - \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \mathbf{X}[m] \right) \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[y[m][k] - \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \mathbf{X}[m] \right) \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[y[m][k] - \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \mathbf{X}[m] \right] \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[y[m][k] - \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \mathbf{X}[m] \right) \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[y[m][k] - \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_{k}) \mathbf{X}[m] \right] \right] \\ &= -\sum_{m=1}^{M} \mathbf{X}[m] \left[y[m][k] - \sigma_{M} \left(f(\mathbf{X}[m], \boldsymbol{\Theta}_$$

Multiclass Logistic Regression Learning

Add regularization

$$\mathbf{\Theta}_{k}^{t+1} = \mathbf{\Theta}_{k}^{t+1} - \eta [\nabla_{\mathbf{\Theta}_{k}} L(\mathbf{D} : \mathbf{\Theta}) + \lambda \nabla_{\mathbf{\Theta}_{k}} R(\mathbf{\Theta}_{k})]$$

where $R(\Theta)$ can be L1-norm or squared L2-norm

Capacity, Overfitting, and Underfitting

- Capacity-a model's ability to fit a variety of functions. It is determined by the number of parameters the model has.
- Overfitting-a model performs well on training data but poorly on unseen testing data
- Underfitting-a model performs poorly both on training and testing data

