ELEN 50 Lab 4 Bradley Lostak Tamir Enkhjargal Friday 2:15-5:00p

Prelab:

Part 1: R_1 should be 1.25 k Ω . Part 2: R_1 should be 1 k Ω .

Part A:

- 2) Output voltage = -12.4V
- 3) DC Voltage gain = $\frac{-12.4}{1}$ =- 12.4
- 4) Current = 0.00084 mA, $\frac{1}{0.00084} = 1190.5 \sim 1.2 \text{k}\Omega$
- 5) Error Voltage = -2.6304 V
- 6) Using Amplitude of 1 Vpp

Using Amplitude of 3 Vpp

The graph looks like this because it can't go larger than the input $\pm Vcc$ (+15,-15). Once it goes above the Vcc magnitude, the circuit because negatively and positively saturated.

Part B:

510Ω R:

- .514 V DMM
- .507 V Op Amp
- Percentage Error: .028%

1KΩ R:

- .987 V DMM
- .994 V Op Amp
- Percentage Error: .71%

3.9KΩ R:

- 3.915 V DMM
- 3.911 V Op Amp
- Percentage Error: .102 %

$5.1k\Omega$ R:

- 5.083 V DMM
- 5.064 V Op Amp
- Percentage Error: .374%

$10k\Omega$ R:

- 10.104 V DMM
- 10.067 V Op Amp
- Percentage Error: .366%