PWM 整流电路及其控制方法

- Ø 实用的整流电路几乎都是晶闸管整流或<u>二极管</u>整流
- Ø 晶闸管相控整流电路:输入电流滞后于电压,且谐波分量大,因此功率因数 很低
- Ø 二极管整流电路:虽位移因数接近 1,但输入电流谐波很大,所以功率因数 也很低
- Ø 把逆变电路中的 SPWM 控制技术用于整流电路,就形成了 PWM 整流电路 可使其输入电流非常接近正弦波,且和输入电压同相位,功率因数近似为 1,也称单位功率因数变流器,或高功率因数整流器

6.4.1 PWM 整流电路的工作原理

PWM 整流电路也可分为电压型和电流型两大类,目前电压型的较多

1. 单相 PWM 整流电路

图 6-28a 和 b 分别为单相半桥 和全桥 PWM 整流电路 半桥电路直流侧电容必须由两个电容串联,其中点和交流<u>电源</u>连接 全桥电路直流侧电容只要一个就可以

交流侧电感 L_s 包括外接 <u>电抗器</u>的电感和交流电源内部电感,是电路正常工作所必须的

图 6-28 单相 PWM 整流电路

a) 单相半桥电路

b) 单相全桥电路

正弦信号波和三角波相比较的方法对 $V_1 \sim V_4$ 进行 SPWM 控制, 就可在交流输入端 AB 产生 SPWM 波 u_{AB}

 u_{AB} 中含有和信号波同频率且幅值成比例的基波、和载波有关的高频谐波,不含低次谐波

由于 L_s的滤波作用,谐波电压只使 i_s产生很小的脉动

当信号波频率和电源频率相同时, i。也为与电源频率相同的正弦波

 u_s 一定时, i_s 幅值和相位仅由 u_{AB} 中基波 u_{ABf} 的幅值及其与 u_s 的相位差决定

改变 u_{ABf} 的幅值和相位,可使 i_s 和 u_s 同相或反相, i_s 比 u_s 超前 90°, 或 i_s 与 u_s 相位差为所需角度

Ø 相量图(图 6-29)

- a: $^{c_{AB}}$ 滞后 $^{c_{AB}}$ 相角 d , $^{c_{AB}}$ 同相,整流状态,功率因数为 1, PWM 整流电路最基本的工作状态
- c: ^{PAB} 滞后 ^{PAB} 滞后 ^{PAB} 相角 d, ^{PAB} 超前 ^{PAB} 90°, 电路向交流电源送出无功功率, 这时称为静止无功功率发送器 (Static Var Generator—SVG)
- d: 通过对 ^{AB} 幅值和相位的控制,可以使 ^{AB} 比 ^B 超前或滞后任一角度

图 6-29 PWM 整流电路的运行方式相量图

a)整流运行 b)逆变运行 c)无功补偿运行 d) a 超前角为

整流状态下

 $u_s>0$ 时,(V_2 、 VD_4 、 VD_1 、 L_s)和(V_3 、 VD_1 、 VD_4 、 L_s)分别组成两个升压斩波电路,以(V_2 、 VD_4 、 VD_1 、 L_s)为例

 V_2 通时, u_s 通过 V_2 、 VD_4 向 L_s 储能

 V_2 关断时, L_s 中的储能通过 VD_1 、 VD_4 向 C 充电

 $u_s < 0$ 时,(V_1 、 VD_3 、 VD_2 、 L_s)和(V_4 、 VD_2 、 VD_3 、 L_s)分别组成两个升压斩波电路

由于是按升压斩波电路工作,如控制不当,直流侧电容电压可能比交流电压峰值高出许多倍,对器件形成威胁

另一方面,如直流侧电压过低,例如低于 u_s 的峰值,则 u_{AB} 中就得不到图 6-29a 中所需的足够高的基波电压幅值,或 u_{AB} 中含有较大的低次谐波,这样就不能按需要控制 i_s , i_s 波形会畸变

可见, 电压型 PWM 整流电路是升压型整流电路, 其输出直流电压可从交流电源电压峰值附近向高调节, 如要向低调节就会使性能恶化, 以至不能工作。

2. 三相 PWM 整流电路

图 6-30, 三相桥式 PWM 整流电路, 最基本的 PWM 整流电路之一, 应用最广

工作原理和前述的单相全桥电路相似,只是从单相扩展到三相

进行 SPWM 控制,在交流输入端 $A \times B$ 和 C 可得 SPWM 电压,按图 6-29a 的相量图控制,可使 $i_a \times i_b \times i_c$ 为正弦波且和电压同相且功率因数近似为 1

和单相相同,该电路也可工作在逆变运行状态及图 c 或 d 的状态

6.4.2 PWM 整流电路的控制方法

Ø 有多种控制方法,根据有没有引入电流反馈可分为两种

没有引入交流电流反馈的——间接电流控制

引入交流电流反馈的——直接电流控制

1. 间接电流控制

间接电流控制也称为相位和幅值控制

按图 6-29a (逆变时为图 6-29b) 的相量关系来控制整流桥交流输入端电压, 使得输入电流和电压同相位,从而得到功率因数为 1 的控制效果

图 6-31, 间接电流控制的系统结构图

图中的 PWM 整流电路为图 6-30 的三相桥式电路

控制系统的闭环是整流器直流侧电压控制环

Ø 控制原理

 $\mathbf{u}_{\mathbf{d}}$ 和实际直流电压 $\mathbf{u}_{\mathbf{d}}$ 比较后送入 PI 调节器,PI 调节器的输出为一直流电流信号 $\mathbf{i}_{\mathbf{d}}$, $\mathbf{i}_{\mathbf{d}}$ 的大小和交流输入电流幅值成正比

稳态时, $u_{d}=$ u_{d} ,PI 调节器输入为零,PI 调节器的输出 i_{d} 和负载电流大小对应,也和交流输入电流幅值对应

负载电流增大时, *C* 放电而使 *u*_d下降, PI 的输入端正偏差,使其输出 *i*_d 增大,进而使交流输入电流增大,也使 *u*_d 回升。达到新的稳态时, *u*_d 和 等, *i*_d 为新的较大的值,与较大的负载电流和较大的交流输入电流对应负载电流减小时,调节过程和上述过程相反

Ø 从整流运行向逆变运行转换

首先负载电流反向而向 C 充电, u_d 抬高,PI 调节器负偏差, i_d 减小后变为负值,使交流输入电流相位和电压相位反相,实现逆变运行

稳态时, u_d 和 u_d 仍然相等,PI 调节器输入恢复到零, i_d 为负值,并与逆变电流的大小对应

Ø 控制系统中其余部分的工作原理

上面的乘法器是 i_d 分别乘以和 a、b、c 三相相电压同相位的正弦信号,再乘以电阻 R,得到各相电流在 R_s 上的压降 u_{Ra} 、 u_{Rb} 和 u_{Rc}

下面的乘法器是 i_d 分别乘以比 a、b、c 三相相电压相位超前 $\pi/2$ 的余弦信号,再乘以电感 L 的感抗,得到各相电流在电感 L_s 上的压降 u_{La} 、 u_{Lb} 和 u_{Lc}

各相电源相电压 u_a 、 u_b 、 u_c 分别减去前面求得的输入电流在电阻 R 和电感 L上的压降,就可得到所需要的交流输入端各相的相电压 u_A 、 u_B 和 u_C 的信号,用该信号对三角波载波进行调制,得到 PWM 开关信号去控制整流桥,就可以得到需要的控制效果

Ø 存在的问题

在信号运算过程中用到电路参数 L_s 和 R_s , 当 L_s 和 R_s 的运算值和实际值有误差时,会影响到控制效果

基于系统的静态模型设计,动态特性较差应用较少

2. 直接电流控制

通过运算求出交流输入电流指令值,再引入交流电流反馈,通过对交流电流的直接控制而使其跟踪指令电流值,因此称为直接电流控制

有不同的电流跟踪控制方法,图 6-32,一种最常用的采用电流滞环比较方式的控制系统结构图

Ø 控制系统组成

双闭环控制系统,外环是直流电压控制环,内环是交流电流控制环外环的结构、工作原理和图 6-31 间接电流控制系统相同

外环 PI 的输出为 i_d , i_d 分别乘以和 a、b、c 三相相电压同相位的正弦信号,

得到三相交流电流的正弦指令信号,和和

, 和 分别和各自的电源电压同相位, 其幅值和反映负载电流大小的直流信号 *i*_d 成正比

指令信号和实际交流电流信号比较后,通过滞环对器件进行控制,便可使实际交流输入电流跟踪指令值

Ø 优点

控制系统结构简单, 电流响应速度快, 系统鲁棒性好获得了较多的应用