

Project Management

Fundamentals

Quality Management

Agenda

- Quality Management
- Cost of Quality
- Total Quality Management (TQM) Tools
- Root Cause Analysis
- Verification & Validation

Quality Management

Let's Think about Quality

Customer Requirement:

I want 100 squares of white chart paper with dimensions 5"x5" in 5 days

How will you ensure that you meet the customer's requirement?

Quality

To improve the quality of the deliverable, what all requirements did you focus on?

Quantity

Dimensions

Colour

Specified

No Creases

Clean Paper

Neat edges

Inherent

Quality

The degree to which a set of

specified & inherent

characteristics fulfill

requirements.

Quality Management

Creating and following

policies and procedures

to meet the project's

defined quality needs.

Quality Management

Planning

 Plan Quality Management – quality related processes & activities are planned

Executing

 Manage Quality – quality assurance is done to ensure that defined quality processes are being followed

Monitoring & Control

• **Control Quality** – periodic checks to check the quality & ensure improvements

What is the difference?

Quality Assurance

Auditing the quality Process to identify Process Gaps i.e. deviations from defined quality processes

Quality Control

Inspecting the Product to identify Defects

i.e. deviation from specifications & requirements

Quality Assurance (QA) vs Quality Control (QC)

Cost of Quality

Cost Of Quality (CoQ)

Money spent during project to avoid failure

Money spent during/after project because of failures

Cost of Conformance

Prevention costs (Build a quality product)

- Training
- Document processes
- Equipment
- Time to do work "right"

Appraisal (quality assessment)

- Testing
- Inspections

Internal failure costs

- Rework
- Scrap

Cost of Non- Conformance

External failure costs

- Liabilities
- Warranty work
- Lost business

Total Quality Management (TQM) Tools

QC Tools

It is believed that the **7 QC tools** were introduced by Kaoru **Ishikawa** in postwar Japan, inspired by the seven **famous weapons of Benkei**.

Benkei was a Japanese warrior monk who owned 7 weapons which he used to win all his battles.

Pareto Chart

Find the causes which are contributing to maximum problems / defects

80-20 Rule

80% of the problems are due to 20% of the root causes

Root Cause Analysis

Fish Bone Diagram

Pictorial presentation of the causes for a certain effect by brainstorming

aka Cause & Effect Diagram or Ishikawa Diagram

Activity

The vehicle will not start.

How will we find out Why!?

Why-Why Analysis

Failure Definition: The vehicle will not start.

- 1. Why? The battery is dead. (First why)
 - 2. Why? The alternator is not functioning. (Second why)
 - 3. Why? The alternator belt has broken. (Third why)
 - 4. Why? The alternator belt was beyond its useful service life and not replaced. (Fourth why)
 - **5.** Why? The vehicle was not maintained following the service schedule. (Fifth why, a root cause)

The last answer, Root Cause, should point toward what failed: 5M+1E

Man

Machine

Measurement

Method

Material

Environment

Example

Verification & Validation

Verification vs Validation

Verification vs Validation

Verification & Validation

Are we building the product right?

Are we building the right product?

Verification

- Verify the intermediary products like requirement documents, design documents, ER diagrams, test plan and traceability matrix
- Developer point of view
- Verified without executing the software code
- Techniques used: Informal Review, Inspection, Walkthrough, Technical and Peer review

Validation

- Validate the final end product like developed software or service or system
- Customer point of view
- Validated by executing the software code
- Techniques used: Functional testing, System testing, Smoke testing, Regression testing and Many more

Key Take-aways

Note down the top 3 Key
Take-aways for you from
this session

Thank You

https://www.linkedin.com/company/talent-academy-taualpha/