ANALISI MATEMATICA - LEZIONE 1

INSIEMI NUMERICI

NUMERI NATURALI: N={0,1,2,3,4,...}

NUMERI INTERI: $\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, ...\}$

NUMERI RAZIONALI: Q={m: m, m ∈ Z e m + 0}

NUMERI REALI:

$$\mathbb{R} = \left\{ \begin{array}{l} \text{M.c.}_{A} c_{2} c_{3} c_{4} \dots : m \in \mathbb{Z}, c_{i} \in \left\{0,1,2,...,9\right\} & \forall i \geq 1 \right\} \\ \text{rappresentatione decimale} \\ \text{PER OGNI} \\ \text{PER OGNI} \end{array}$$

OSSERVAZIONI

- $\cdot N \neq \mathbb{Z} \neq \mathbb{Q} \neq \mathbb{R}$
- · Inumeri reali sono in Corrispondenza biunivoca con i punti di una retta orientata

Inoltre

$$1.25 = \frac{125}{100} = \frac{5}{4} \in \mathbb{Q}$$

1.252525...= 1.
$$\overline{25}$$
 = 1 + $\frac{25}{10^2}$ + $\frac{25}{10^4}$ + ... = $\frac{124}{99}$ $\in \mathbb{Q}$
Se $0.\overline{25}$ = \times allowa

$$400x = 15.15 = 15 + x \implies 99x = 15 \implies x = \frac{25}{99}$$

Existono numeri reali non razionali?

TEOREMA V2 € Q V2 è un numero reale positivo tale che il ruo quadrato vale 2

dim. Supponiamo per aroudo che 12 EQ.

Allone ImeNt e ImeNt toliche 12 = m. LESISTE LNATURALI POSITIVI

Quindi VIM=m e elevando al quadroto so ha intero com un munero DISPARI -> 2m=m² 4 intero com un munero PARI di fettori 2

ll fatto che il numero di fottori 2 a destra e a si'mistra siamo diversi contraddice l'unicità della fottori≥zazione di un intero in fottori primi. Così l'ipotessi di portenza TZEQ deve essere falsa e TZ &Q.

OSSERVAZIONE: la reppresentazione decimale di $\sqrt{2}$ e' illimitata e NON periodica $\sqrt{2} = 1.4142135...$

Queste proprieté vole per tuti i NUMERI IRRAZIONALI=R/Q sottezione insemistice

Si dimostre che Q e R/Q sono insiemi DENSI in Rossia

Ya,b∈R cona
b { ∃q∈Q: a<q
b ∃r∈RIQ: a<r
b

PROPRIETÀ DI R

Re mu CAMPO: a' somo due operazioni, SOMMA e PRODOTTO toli che:

•
$$\forall a,b,c \in \mathbb{R}$$
 $(a+b)+c=a+(b+c)$
 $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ P. ASSOCIATIVA

•
$$\forall a,b \in \mathbb{R}$$
 $a+b=b+a$ $\Rightarrow b \Rightarrow a$ $\Rightarrow b \Rightarrow b \Rightarrow a$ $\Rightarrow b \Rightarrow a$

•
$$\forall \alpha \in \mathbb{R}$$
 $\alpha + 0 = \alpha$ ESISTENZA $\alpha \cdot 1 = \alpha$ DELL'ELEMENTO NEUTRO

•
$$\forall a,b,c \in \mathbb{R}$$
 $a \le b = b \le c \implies a \le c$
• $\forall a,b,c \in \mathbb{R}$ $a \le b \implies a + c \le b + c$

OSSERVAZIONE:
$$\forall a,b \geqslant 0$$
 $a \leq b \Leftrightarrow a^2 \leq b^2$
Si moti che $-3 \leq 2$, ma $(-3)^2 \leq 2^2$ mon vole

In R vole l'ASSIOMA DI CONTINUITÀ che anicure le corrispondenza himivoce tre gli elementi di R e i punti della rette orientata. Per questo R ri dice anche COMPLETO.

INTERVALLI

Notazioni: Ha, b ER con axb.

Intervalli LIMITATI:

$$(a,b) = \left\{x \in \mathbb{R} : a < x < b\right\} \quad \text{APERTO}$$

$$(a,b) = \left\{x \in \mathbb{R} : a < x < b\right\}$$

$$[a,b) = \left\{x \in \mathbb{R} : a < x < b\right\}$$

$$[a,b] = \left\{x \in \mathbb{R} : a < x < b\right\} \quad \text{CHIUSO}$$

Intervalli NON LIMITATI:

$$(-\infty, \alpha) = \left\{ \times \in \mathbb{R} \times \langle \alpha \right\} \right\}$$

$$(\alpha, +\infty) = \left\{ \times \in \mathbb{R} \times \langle \alpha \right\} \right\}$$

$$(-\infty, \alpha) = \left\{ \times \in \mathbb{R} : \times \langle \alpha \right\} \right\}$$

$$(-\infty, \alpha) = \left\{ \times \in \mathbb{R} : \times \langle \alpha \right\} \right\}$$

$$(-\infty, +\infty) = \left\{ \times \in \mathbb{R} : \alpha \leq \times \right\}$$

$$(-\infty, +\infty) = \mathbb{R}$$

$$(-\infty, +\infty) = \mathbb{R}$$

$$(-\infty, -2)$$

$$(-1, 1)$$

$$(-\infty, -2)$$

$$(-1, 1)$$

$$(-\infty, -2)$$

$$(-1, 1)$$

$$(-\infty, -2)$$

$$(-1, 1)$$

$$(-\infty, -2)$$

OSSERVAZIONE I $\leq \mathbb{R}$ è un intervallo se e solo se $\forall a,b \in I$ si he che $[a,b] \leq I$.

ESEMPIO Desouvere l'insieme

$$A = \left\{ \times \epsilon \mathbb{R} : \frac{\sqrt{4-x^2}}{4-x} < 2 \right\}$$

come unione di intervalli.

Per le proprietà di R et mecensorio che

4-x²>0 argomento della rodice quadrata ≥0

$$\langle + \rangle (2+x)(2-x) \geqslant 0 \iff x \in [-2,2]$$

Quindi dobbiamo risolver il sistema

$$\begin{cases} x \neq 1 \\ -2 \leq x \leq 2 \\ \frac{\sqrt{4-x^2}}{1-x} < 2 \end{cases}$$
 Nom si può elevere el quedrato eltrimenti si perde il segno el 1-x stinguiamo due così a se conde del segno

Distinguiamo due cosí a se conda del sequo di 1-x: x>1 oppure x<1

Quind: A = [-2,0) U (1,2].