CENTRAL DIFFERENCE:

Formula:

$$\mathsf{Y}(\mathsf{x}) = y_o + \frac{(\Delta y_o + \Delta y_{-1})p}{2} + \frac{p^2}{2!} \Delta^2 y_{-1} + \frac{p(p^2 - 1)}{3!} (\Delta^3 + \Delta^3 y_{-2}) + \frac{p^2(p^2 - 1^2)}{4!} \Delta^4 y_{-2}$$

Example:

Use central interpolation to find the value of y when x=35 from the following table

Х	20	30	40	50
У	512	439	346	243

Let $x_0 = 40$

Х	У	Δy	$\Delta^2 y$	$\Delta^3 y$
x ₋₂ =20	y ₋₂ =512			
		Δy_{-2} =-73		
<i>x</i> ₋₁ =30	<i>y</i> ₋₁ =439		$\Delta^2 y_2 = -20$	
		$\Delta y_{-1} = -93$		$\Delta^{3}y_{2}=10$
x ₀ =40	<i>y</i> ₀ =346		$\Delta^2 y_1 = -10$	
		$\Delta y_0 = -103$		
<i>x</i> ₁ =50	<i>y</i> ₁ =243			

Given

X=35, x_o =40, h=10

$$p = \frac{x - x_o}{h}$$

$$=\frac{35-40}{10}$$

Putting values in formula

$$y(35) = 346 + (0.5) \left(\frac{-103 - 93}{2} \right) + \frac{(-0.5)^2}{2!} (-10)$$

y (35) =346+49-1.525

y (35)=393.75