TAS-Car Group 10 Slalom course

- L. Falch
- T. Schamberger
- T. Wolf

Technik Autonomer Systeme

Supervisor: Prof. Dr.-Ing. habil. Dirk Wollherr

Lehrstuhl für Steuerungs- und Regelungstechnik

Technische Universität München

Methods

Implemented:

- Autonomous driving
- Speed adjustment
- Collision avoidance
- Oscillation suppression

Partially/not working:

- Slalom task
- Initial pose through wifi
- Combined laser scans
- Kalman Filter

Autonomous driving

- Navigation through waypoints
- Optimizing navigation stack parameters
- Speed adjustment
- Oscillation suppression
- Collision avoidance

Methods

Problem of speed adjustment:

- Car steering angles oscillate at a higher speeds
- ightarrow Limit steering angle depending on laser scan
 - Turn off limitation at corners and obstacles

Speed adjustment

Fixed area in front of the car is checked for obstacles to adjust the speed.

- Angle defines values of the laserscan to look at
- Compute the median of the *n* smallest values of laserscan(angle)
- Speed = $1535 \cdot \text{median}$
- Emergency break if median is smaller threshold

Problem:

 Car starts oscillating if speed is higher than 1550

Working

Oscillation suppression

To overcome the oscillation we limited the steering angle except in the corners of the lab.

Methods

Collision avoidance

- Define collision area
- Cut laser scan in halves
- Detect obstacle
 - Smallest laser scan value
- Steer away from obstacle

Slalom task

- Detect cone
 - Find jump in laser scan
 - Find opposite jump
 - Average the indices
- Split laser scan into sectors
- Define actions for sectors
 - Depending on nearest cone
 - Passing cone left or right
 - Switch actions for new nearest cone
- Future Improvements

Methods

Cone detection robustness

Multi-merge laser scanner

- For better pose estimation through AMCL combine front and rear laser scan with existing node.
- Functionality of node:
 - Convert scans to point cloud
 - Combine the clouds with least possible error
 - Convert back as one laser scan
- Problem: Missing information in merged scan
- Reasons for this error:
 - Error in transformation
 - Scans must be in same plane

Initial pose through wifi

Idea: Find out the initial position over the Wifi intensity.

- Start Position depending on intensity of router
- Closest router doesn't. have highest intensity

```
Level Pos 1: 100
evel Pos 2: 92
Level Pos 3: 45
Found init position 1
```


Discussion

- Basic Navigation could be realized
- Not enough time to smooth out all errors and implement certain features
- Too much effort spent on fixing errors and getting to know the system

