The LNM Institute of Information Technology Jaipur, Rajsthan

MATH-II ■ Assignment 3

- 1. C[a,b] denotes the vector space of all continuous functions on the closed interval [a,b], then for $f,g \in C[a,b]$ define the inner product as: $\langle f,g \rangle = \int_a^b f(t)g(t)dt....(I)$ Show that postulates of inner product hold in (I).
 - (a) For f(t) = t + 2, $g(t) = t^2 3t + 4$, a = -1 and b = 1, compute $\langle f, g \rangle$, ||f||, and ||g||.
 - (b) For f(t) = 3t 5, $g(t) = t^2$, a = 0 and b = 1, compute $\langle f, g \rangle$, ||f||, and ||g||.
 - (c) Verify the Cauchy-Schwarz inequality for the vector f and g in (a) and (b).
- 2. Verify that the following is an inner product on R^2 , where $\alpha = (x_1, x_2)$ and $\beta = (y_1, y_2)$:
 - (a) $\langle \alpha, \beta \rangle = x_1 y_1 x_1 y_2 x_2 y_1 + 4x_2 y_2$
 - (b) $<\alpha,\beta>=5x_1y_1-x_2y_2$
 - (c) $<\alpha,\beta>=x_1y_1+x_2y_2+5$
 - (d) $\langle \alpha, \beta \rangle = x_1y_1 + x_1y_2 + x_2y_1 + 3x_2y_2$
 - (e) $<\alpha,\beta>=x_1x_2+5y_1y_2$
- 3. Find the value of a so that the following is an inner product on R^2 , where $\alpha = (x_1, x_2)$ and $\beta = (y_1, y_2)$:

$$<\alpha,\beta>=x_1y_1-3x_1y_2-3x_2y_1+ax_2y_2$$

- 4. Show that the norm of a vector in a vector space V has the following three properties
 - (a) $||v|| \ge 0$ and ||v|| = 0 if and only if v = 0.
 - (b) $\|\lambda v\| = |\lambda| \|v\|$ for all $\lambda \in \mathbb{R}$ and $v \in V$.
 - (c) $||v + w|| \le ||v|| + ||w||$ for all $v, w \in V$.

Note that $\|\cdot\| = \langle \cdot, \cdot \rangle^{1/2}$, where $\langle \cdot, \cdot \rangle$ is an inner product defined on V.

- 5. Let U be the subspace of R^4 spanned by $\{(1,1,1,1), (1,-1,2,2), (1,2,-3,-4)\}$. Then by using Gram-Schmidt process find the orthonormal basis and orthonormal basis under the usual inner product on R^4 .
- 6. Use Gram-Schmidt process to transform each of the following into an orthonormal basis;
 - (a) $\{(1,0,1),(1,0,-1),(0,3,4)\}$ for \mathbb{R}^3 with the standard inner product.
 - (b) $\{(1,0,1),(1,0,-1),(0,3,4)\}$ for \mathbb{R}^3 using the inner product defined by $\langle (x,y,z),(x',y',z') \rangle = xx' + 2yy' + 3zz'.$
- 7. Consider the vector space $P(t) = \{a_0 + a_1t + a_2t^2 : a_0, a_1, a_2 \in R\}$ with inner product $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$ Apply the Gram-Schmidt algorithm to the set $\{1, t, t^2\}$ to obtain an orthogonal set $\{f_0, f_1, f_2\}$ with integer coefficients.