Computer Architecture

Yuqiao Meng 2022-1-28

Contents

1	Ove	erview	3
	1.1	Why the prices of two processors differs?	. 3
2	Dig	ital Design	4
	2.1	Abstraction	4
	2.2	The Digital Abstraction	4
	2.3	Digital Discipline: Binary Values	5
	2.4	Decimal to Binary Conversion	5
	2.5	Signed Binary Numbers	5
		2.5.1 Sign/Magnitude Numbers	5
		2.5.2 Two's Complement Numbers	6
	2.6	Logic Gates	6

1 Overview

Intel Xeon Processor

\$13012

\$400

- Xeon Platinum 8380HL
- 28: Cores
- 56: Threads
- Base Frequency: 2.9 GHz
- Max Turbo Frequency: 4.3 GHz
- Cache: 38.5MB
- Max Memory Size: 4.5 TB
- Memory Channels: 6
- Max. Memory Speed: 3200MHz
- Package Size: 77.5 x 56.5mm

- Intel i9-10850K
- 10: Cores
- 20: Threads
- Base Frequency: 3.6 GHz
- Max Turbo Frequency: 5.2 GHz
- Cache: 20MB
- Max Memory Size: 128GB
- Memory Channels: 2
- Max. Memory Speed: 3200MHz
- Package Size: 37.5 x 37.5mm

1.1 Why the prices of two processors differs?

- 1. The prices increase exponentially as the number of Cores and Threads increase. That's because every core has a bad possibility, so the difficult of making a processor with many cores much harder.
- 2. Significant: The memory Chaneels of XEON is three times by i9, which means it has three times as many pins as i9 has.

2 Digital Design

2.1 Abstraction

${\bf 2.2}\quad {\bf The~Digital~Abstraction}$

- Most physical variables are continuous
 - Voltage on a wire
 - Frequency of an oscillation
 - Position of a mass
- Digital abstraction considers discrete subset of values

2.3 Digital Discipline: Binary Values

- Two discrete Values:
 - 1's and 0's
 - 1, true, high
 - -0, false, low
- 1 and 0: voltage levels, rotating gears, fluid levels
- ullet Digital circuits use voltage levels to represent 1 and 0

2.4 Decimal to Binary Conversion

Method: repeatedly divided by 2, remainders goes in next most significant bit

$$53_{10} = 53/2 = 26 R1$$
 $26/2 = 13 R0$
 $13/2 = 6 R1$
 $6/2 = 3 R0$
 $3/2 = 1 R1$
 $1/2 = 0 R1$
 $= 110101_{2}$

2.5 Signed Binary Numbers

2.5.1 Sign/Magnitude Numbers

Problems

- Has two 0 values, positive 0 and negative 0
- Addition of a negative and a postive will fail

${\bf 2.5.2}\quad {\bf Two's\ Complement\ Numbers}$

Conversion from positive to negative:

- Invert every bit
- $\bullet \ \mathrm{Add} \ 1$

2.6 Logic Gates