Notion de viscosité d'un fluide Ecoulement visqueux

Existence de contraintes tangentielles dans un fluide

Conditions aux limites

Interface	Vitesse	Pression	Contrainte tangentielle
Paroi solide	$ec{v}_{ m fluide} = ec{v}_{ m paroi}$	$p_{ m fluide} = p_{ m paroi}$	$\eta\left(\frac{\partial v_{x}}{\partial z}\right) = \sigma_{\mathrm{paroi}}$
Fluides	$\vec{v}_{\mathrm{fluide1}} = \vec{v}_{\mathrm{fluide2}}$	$p_{\mathrm{fluide1}} = p_{\mathrm{fluide2}}$	$ \eta_1 \left(\frac{\partial v_x}{\partial z} \right)_{\text{fluide1}} = \eta_2 \left(\frac{\partial v_x}{\partial z} \right)_{\text{fluide2}} $

Operateur v.gradient en coordonnées cylindriques

$$\overrightarrow{e_r}$$
 $V_r \frac{\partial V_r}{\partial r} + \frac{V_\phi}{r} \frac{\partial V_r}{\partial \phi} + V_z \frac{\partial V_r}{\partial z} - \frac{V_\phi^2}{r}$
 $\overrightarrow{e_\theta}$ $V_r \frac{\partial V_\phi}{\partial r} + \frac{V_\phi}{r} \frac{\partial V_\phi}{\partial \phi} + V_z \frac{\partial V_\phi}{\partial z} + \frac{V_r V_\phi}{r}$
 $\overrightarrow{e_z}$ $V_r \frac{\partial V_z}{\partial r} + \frac{V_\phi}{r} \frac{\partial V_z}{\partial \phi} + V_z \frac{\partial V_z}{\partial \phi} + V_z \frac{\partial V_z}{\partial z}$