## Recitation #14: Sequences

## Warm up:

Find the limit of the following sequences as n tends to  $\infty$ .

(a) 
$$a_n = \frac{n^{1000}}{2^n}$$

- (b)  $b_n = \cos(n\pi)$
- (c)  $c_n = \cos(n!\pi)$

## Group work:

**Problem 1** Find the limit of the given sequence. Also, determine if it is a geometric sequence.

(a) 
$$a_n = \frac{n^2}{2^n}$$

(c) 
$$a_n = \left(\frac{1}{n}\right)^4$$

(d) 
$$a_n = \frac{e^n + (-3)^n}{5^n}$$

(b) 
$$a_n = \frac{1}{3^n}$$

(e) 
$$a_n = 3^{\frac{1}{n}}$$

**Problem 2** Show that

$$\lim_{n\to\infty} \left(\sqrt{n+1} - \sqrt{n}\right)$$

exists by proving that  $a_n = \sqrt{n+1} - \sqrt{n}$  is a bounded monotonic sequence. A hint is to show that  $f(x) = \sqrt{x+1} - \sqrt{x}$  is a decreasing function by showing that f'(x) < 0.

**Problem 3** For each of the following sequences, find the limit as the number of terms approaches infinity.

(a) 
$$a_n = \left(\frac{n+1}{2n}\right) \left(\frac{n-2}{n}\right)^{\frac{n}{2}}$$

(e) 
$$a_n = (2^n + 3^n)^{\frac{1}{n}}$$
  
Hint:  $a_n \ge (0 + 3^n)^{\frac{1}{n}} = 3$  and  $a_n \le (2 \cdot 3^n)^{\frac{1}{n}} = 2^{\frac{1}{n}} \cdot 3$ 

(b) 
$$a_n = \sqrt[n]{3^{2n+1}}$$

(f) 
$$a_n = \frac{n^{365} + 5^n}{8^n + n^3}$$

(c) 
$$a_n = \left(\sqrt{n^2 + 7} - n\right)$$

(d) 
$$a_n = \frac{(2n+3)!}{5n^3(2n)!}$$