计算机组成原理总结

主讲: 裕健

E-mail:pcadiy@126.com

考试题型分布

○ 判断对错题: 10%

○ 单项选择题: 20%

○ 填空题: 20%

○ 综合应用题: 50%

计算机系统概论

- 二进制、十进制、八进制、十六进制、BCD码与 真值
 - 表示方法
 - 转换方法
- 奇偶校验
 - 奇偶校验的含义
 - 能检出奇数个错误,不能确定出错位置

真值	原码	反码	补码	补码的偶校验 位(1位)
	0.1010101			
		11001101		
			0100111	
		1.0101		
-25/32				

- 定点运算题
 - 已知X=27和Y=31,用变形补码计算X+Y和X-Y,同时指出运算结果是否溢出?
 - 解: 首先将X、Y转化为二进制真值
 - 分别求出[X]_原、[Y]_原, 再求出[X]_补、[Y]_补以及
 [-Y]_补。
 - 用变形补码分别计算X+Y和X-Y(列竖式)
 - 结果用十进制真值表示。

- 定点运算题
 - 已知X=27和Y=31,用单符号补码计算X+Y和X-Y,同时指出运算结果是否溢出?
 - 解: 首先将X、Y转化为二进制真值
 - 分别求出[X]_原、[Y]_原, 再求出[X]_补、[Y]_补以及
 [-Y]_补。
 - 用单符号补码分别计算X+Y和X-Y(列竖式)
 - 结果用十进制真值表示。

- 定点乘法运算
 - 原码并行乘法
 - 不带符号的阵列乘法(阵列乘法器通常由与门阵列和一位全加器组成)
 - 带符号的阵列乘法(不带符号的阵列乘法器和 3个求补器组成)

- 定点除法运算
 - 恢复余数法
 - 不恢复余数法(部分余数为负 商0, 左移 加除数 部分余数为正 商1, 左移 减除数)

- 主存与辅存的特点
 - 容量、速度、价格
- 地址译码
 - 容量与地址线数的关系
- 静态RAM与动态RAM
 - 刷新:集中刷新、分散(异步)刷新,以行为 单位进行。

- Cache
 - 主存与CPU速度不匹配
 - 全相连、组相联、直接映射均由硬件完成
 - 直接映射无需替换策略
- 相联存储器
 - 特点按内容寻址的存储器

- 例: P112、第15题
 - 主存的块数: 2²², 块号的位数22 位 16M×32=2⁴×2²⁰×32=2²²×2²×32
 - Cache的行数: 2¹⁴,行号的位数14 位 64K×32=2⁶×2¹⁰×32=2¹⁴×2²×32
 - 块内容量: 2²×32, 块内地址位数2位
 标记 s-r
 行 r

- 存储器地址映射
 - 主存共4096块,每块16个字,则其块地址(12) 位,块内地址(4)位,字块标记(9)位。
 - 组相联Cache共32块,每组4块(4路组相联), Cache地址(5)位,其中组地址(3)位。
 - 主存的地址格式: 2¹²×2⁴= 2⁷× 2⁵×2⁴
 - $= 2^9 \times 2^3 \times 2^4$
 - Cache的地址格式: 2⁵×2⁴= 2³× 2²×2⁴

- 某计算机主存8MB,分成4096块。Cache64KB, 分成和主存同样大小的块,地址映像采用直接映像 方式,见下图。求:
- o(1)Cache有多少块?
- o(2)Cache的块内地址为多少位?
- o(3)Cache的行号为多少位?
- (4)设Cache中的主存标记如图所示,当CPU送出地址为6807FFH时,能否在Cache中访问到该单元?若送出地址为2D07FFH时,能否在Cache中访问到该单元?上述两个地址若不在Cache中,应如何映射到Cache中?

- (1)每块的大小:
 8MB/4096=2³×2²⁰/2¹²=2¹¹(B)
 Cache64KB: 64KB =2⁶×2¹⁰ =2⁵×2¹¹(B), 2⁵=32块。
- o(2)Cache的块内地址为11位。
- o(3)Cache的行号5位。
- O 7F1057H=111 1111 0001 0000 1001 1111
- O 2D07FFH=010 1101 0000 0111 1111 1111

标记↩	Cache 块√
0101010₽	0块₽
1101101₽	1 块↩
01111111₽	2 块↩
0000001₽	3 块↩
1011001₽	4 块₽
٠	٠
0000111₽	n-2 块√
1111000↩	n-1 块√

- 某机器中,已知配有一个地址空间为0000H~1FFFH的ROM(采用8K×8的EPROM)区域。现在再用一个RAM芯片(8K×4)形成一个16K×8的RAM区域,起始地址为2000H。假设RAM芯片有/CS和/WE信号控制端。CPU地址总线为A15~A0,数据总线为D7~D0,控制信号R//W(读/写),/MREQ(当存储器进行读或写操作时,该信号指示地址总线上的地址是有效的)。要求:
- (1) 计算分别需要的芯片数
- (2) 画出地址译码方案。
- o(3)将ROM和RAM同CPU连接。

- 解: ROM:1片、RAM:16K×8/8K×4=4片
- ROM地址范围: 0 0000 0000 0000 (0000H)

1 1111 1111 1111 (1FFFH)

ROM容量: 2¹³=2³×2¹⁰=8KB

- RAM容量: 16KB=2⁴×2¹⁰ =2¹⁴
- RAM地址范围: 01 0 0000 0000 0000 (2000H)
 - **01** 1 1111 1111 (3FFFH)
 - 10 0 0000 0000 0000 (4000H)
 - **10** 1 1111 1111 (5FFFH)
 - 11 0 0000 0000 0000 (6000H)
 - **11** 1 1111 1111 (7FFFH)

指令系统

- 指令的类型
 - RR, RS, SS
- 指令的寻址方式
 - 隐含、立即、直接、间接、寄存器、寄存器间接。

中央处理器

- 指令周期
- 机器指令与微程序、微指令的关系
- 主要寄存器
 - IR, AR, DR, PC,
- 控制器的功能
 - 取指、译码、生成控制信号
- 硬布线控制器:操作码译码、状态反馈、时序控 制
- 微程序控制器: 用软件方法实现控制

中央处理器

- 微程序控制
 - 水平型微指令与垂直型微指令
 - 水平微指令的格式

控制字段(编码)+测试字段+微地址字段(编码)

- 例: 控存256×48b,采用水平微指令格式,有3个测试条件,微指令各字段的位数是多少?
 - 256单元需要8b=下地址字段
 - ○测试字段3b
 - ○控制字段=48-8-3=37b
- 编码方式的微指令,同一段内需满足互斥

中央处理器

- 0 流水线
 - 流水线周期: 子任务周期的最大值
 - 非流水与流水线的时间计算
 - 流水线存在的问题
 - ○资源相关
 - ○数据相关
 - ○控制相关

总线系统等

- 引入总线的目的
- 总线的仲裁
 - 集中式(连接、计数、独立请求)
- 中断: 慢速外设
- 中断向量: 中断服务程序入口地址。
- DMA: 数据传送全由DMA控制器(硬件)控制 完成,以数据块为单位,传送完成发中断;
- 通道: 可以执行I/O指令。