Assignment 1

October 14, 2019

1 Assignment 1

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    import scipy as sp
    import statsmodels.api as sm
    from scipy.stats import norm
    from statsmodels.tsa.arima_process import ArmaProcess
    from statsmodels.graphics.tsaplots import plot_acf
```

1.1 Question 1

```
Out[2]:
                       Month Day 1-Dec 2-Dec 3-Dec 4-Dec
                                                              5-Dec 6-Dec 7-Dec
                 Year
       19260701 1926
                           7
                                    0.58 - 0.13
                                                 0.68 -0.06
                                                             -0.38
                                                                    -0.07
                                                                           -0.08
                                1
                           7
       19260702 1926
                                2 -0.53 -0.40
                                                 0.16
                                                        0.10
                                                               0.29
                                                                      0.36
                                                                             0.51
       19260706 1926
                           7
                                  -0.33
                                          0.61
                                                -0.38
                                                        0.23
                                                               0.68
                                                                      0.33
                                                                             0.15
                           7
                                7
                                    0.28 -0.10
       19260707 1926
                                                -0.40 -0.54
                                                               0.31
                                                                      0.17
                                                                             0.19
       19260708 1926
                           7
                                8
                                    0.55 - 0.90
                                                 0.04
                                                        0.23 - 0.06
                                                                      0.28
                                                                             0.17
```

```
8-Dec 9-Dec 10-Dec vwretd ewretd
19260701
        -0.06
                0.08
                         0.18
                                  0.12
                                          0.16
19260702
          0.41
                 0.37
                         0.52
                                  0.46
                                         0.21
19260706
          0.33
                 0.11
                         0.16
                                  0.18
                                         0.13
                -0.04
                         0.13
                                         -0.11
19260707
          0.16
                                  0.09
19260708
          0.20
                0.20
                         0.27
                                  0.23
                                         0.40
```

1.1.1 Q 1(a)

```
2-Dec
          4.898%
3-Dec
          5.005%
4-Dec
          4.950%
5-Dec
          4.796%
6-Dec
          4.887%
7-Dec
          4.631%
8-Dec
          4.604%
9-Dec
         4.339%
10-Dec
          3.973%
          4.068%
vwretd
          8.280%
ewretd
dtype: object %
In [4]: std_ret = data.iloc[:, 3:].std()
        print('Percentage of Stdev of daily return is:\n{} %'.format(std_ret.apply(lambda x:format))
Percentage of Stdev of daily return is:
1-Dec
          128.274%
2-Dec
          131.744%
3-Dec
          124.357%
4-Dec
          120.713%
5-Dec
          119.008%
6-Dec
        114.785%
7-Dec
         114.686%
8-Dec
          112.307%
         111.161%
9-Dec
10-Dec
          107.282%
          105.892%
vwretd
          104.394%
ewretd
dtype: object %
1.1.2 Q 1(b)
In [5]: #Calculate on the counts of business days in each interval
        #For there are 22 business days in one month
        import math
        monthly_mean = 22 * mean_ret
        print('Percentage of Mean of monthly return is:\n{} %'.format(monthly_mean.apply(lambd
        monthly_std = math.sqrt(22) * std_ret
        print('Percentage of Stdev of monthly return is:\n{} %'.format(monthly_std.apply(lambda
Percentage of Mean of monthly return is:
1-Dec
          112.504%
2-Dec
          107.766%
3-Dec
          110.102%
4-Dec
          108.909%
```

```
5-Dec
          105.513%
6-Dec
          107.519%
7-Dec
          101.885%
8-Dec
          101.291%
9-Dec
          95.458%
10-Dec
           87.401%
vwretd
          89.486%
          182.165%
ewretd
dtype: object %
Percentage of Stdev of monthly return is:
          601.658%
1-Dec
2-Dec
          617.936%
3-Dec
          583.285%
4-Dec
          566.196%
5-Dec
          558.196%
6-Dec
          538.390%
7-Dec
          537.924%
8-Dec
          526.768%
9-Dec
          521.392%
10-Dec
          503.199%
vwretd
          496.676%
          489.651%
ewretd
dtype: object %
In [6]: #For there are 252 business days in one year
        annual_mean = 252 * mean_ret
        print('Percentage of Mean of annual return is:\n{} %'.format(annual_mean.apply(lambda:
        annual_std = math.sqrt(252) * std_ret
        print('Percentage of Stdev of annual return is:\n{} %'.format(annual_std.apply(lambda:
Percentage of Mean of annual return is:
1-Dec
          1288.681%
2-Dec
          1234.408%
3-Dec
          1261.167%
          1247.499%
4-Dec
5-Dec
          1208.600%
6-Dec
          1231.578%
7-Dec
          1167.046%
8-Dec
          1160.237%
9-Dec
          1093.433%
10-Dec
          1001.140%
vwretd
          1025.027%
ewretd
          2086.617%
dtype: object %
Percentage of Stdev of annual return is:
1-Dec
          2036.285%
```

```
2-Dec
          2091.379%
3-Dec
          1974.101%
4-Dec
          1916.265%
5-Dec
          1889.190%
6-Dec
          1822.157%
7-Dec
          1820.580%
8-Dec
          1782.825%
9-Dec
          1764.629%
10-Dec
          1703.056%
vwretd
          1680.979%
          1657.203%
ewretd
dtype: object %
1.1.3 Q 1(c)
In [7]: # Compute the means using a simple regression
        data.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 24391 entries, 19260701 to 20181231
Data columns (total 15 columns):
Year
          24391 non-null int64
Month
          24391 non-null int64
          24391 non-null int64
Day
          24391 non-null float64
1-Dec
2-Dec
          24391 non-null float64
3-Dec
          24391 non-null float64
4-Dec
          24391 non-null float64
5-Dec
          24391 non-null float64
          24391 non-null float64
6-Dec
7-Dec
          24391 non-null float64
8-Dec
          24391 non-null float64
          24391 non-null float64
9-Dec
10-Dec
          24391 non-null float64
vwretd
          24391 non-null float64
          24391 non-null float64
ewretd
dtypes: float64(12), int64(3)
memory usage: 3.0 MB
In [8]: coeff = data.drop(columns=['Year', 'Month', 'Day'], axis=1)
        coeff.head()
Out[8]:
                  1-Dec 2-Dec 3-Dec 4-Dec 5-Dec 6-Dec 7-Dec
                                                                   8-Dec 9-Dec \
        19260701
                   0.58 - 0.13
                                 0.68
                                       -0.06 -0.38
                                                     -0.07 -0.08 -0.06
                                                                            0.08
        19260702 -0.53 -0.40
                                 0.16
                                        0.10
                                               0.29
                                                      0.36
                                                             0.51
                                                                    0.41
                                                                            0.37
        19260706 -0.33
                         0.61 -0.38
                                        0.23
                                               0.68
                                                      0.33
                                                             0.15
                                                                    0.33
                                                                            0.11
```

-0.54

0.31

0.17

0.19

0.16 - 0.04

0.28 -0.10 -0.40

19260707

```
0.18 0.12 0.16
     19260701
     19260702 0.52 0.46 0.21
     19260706 0.16 0.18 0.13
     19260707 0.13 0.09 -0.11
            0.27
                  0.23
     19260708
                        0.40
In [9]: # Take i=0 as an example for summary information
     model = sm.OLS(coeff.iloc[:,0], np.ones(len(coeff.index)))
     res = model.fit()
     res.summary()
/Users/sfdatabro/anaconda3/lib/python3.7/site-packages/statsmodels/regression/linear_model.py:
 return self.ess/self.df_model
Out[9]: <class 'statsmodels.iolib.summary.Summary'>
                          OLS Regression Results
     ______
     Dep. Variable:
                             1-Dec R-squared:
                                                           0.000
     Model:
                              OLS Adj. R-squared:
                                                           0.000
     Method:
                       Least Squares F-statistic:
                                                             nan
     Date:
                    Sat, 12 Oct 2019 Prob (F-statistic):
                                                             nan
                           22:15:55 Log-Likelihood:
     Time:
                                                         -40682.
                                                       8.137e+04
     No. Observations:
                             24391 AIC:
                             24390 BIC:
     Df Residuals:
                                                        8.137e+04
     Df Model:
                               0
                         nonrobust
     Covariance Type:
     ______
                                         P>|t|
                       std err
                                                [0.025
                  coef
                                   t
      ______
                         0.008 6.226 0.000
                                                  0.035
                0.0511
     _____
     Omnibus:
                         10953.456 Durbin-Watson:
     Prob(Omnibus):
                             0.000 Jarque-Bera (JB): 2060968.076
                            1.051 Prob(JB):
     Skew:
                                                            0.00
     Kurtosis:
                            47.983 Cond. No.
                                                            1.00
     Warnings:
      [1] Standard Errors assume that the covariance matrix of the errors is correctly speci:
```

19260708 0.55 -0.90 0.04 0.23 -0.06 0.28 0.17 0.20 0.20

10-Dec vwretd ewretd

In $\lceil 10 \rceil$: results = $\lceil \rceil$

Generate an literator

```
for j in np.arange(0,12):
            model = sm.OLS(coeff.iloc[:,j], np.ones(len(coeff.index)))
            res = model.fit()
            results.append(res.params[0]*100)
         # Turn the results into a dataframe
        means_ols = pd.DataFrame(columns=coeff.columns)
        means_ols.loc['Mean_OLS Percentage'] = results
        means_ols
Out[10]:
                                 1-Dec
                                          2-Dec
                                                     3-Dec
                                                               4-Dec
                                                                        5-Dec \
        Mean_OLS Percentage 5.113812 4.898446 5.004633 4.950392 4.796031
                                          7-Dec
                                                               9-Dec
                                 6-Dec
                                                     8-Dec
                                                                       10-Dec \
        Mean OLS Percentage 4.887212 4.631134 4.604116 4.339018 3.972777
                                vwretd
                                         ewretd
        Mean_OLS Percentage 4.067566 8.280226
In [11]: # Method 2
        mean_ret_reg = pd.Series([])
        for i in data.columns[3:]:
            model = sm.OLS(data.ix[:,i], np.ones(len(data.index)))
            res = model.fit()
            mean_ret_reg = mean_ret_reg.append(res.params)
        mean_ret_reg.index = data.columns[3:]
        mean_ret_reg
/Users/sfdatabro/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:4: DeprecationWar:
.ix is deprecated. Please use
.loc for label based indexing or
.iloc for positional indexing
See the documentation here:
http://pandas.pydata.org/pandas-docs/stable/indexing.html#ix-indexer-is-deprecated
  after removing the cwd from sys.path.
Out[11]: 1-Dec
                  0.051138
         2-Dec
                  0.048984
         3-Dec
                  0.050046
        4-Dec
                  0.049504
        5-Dec
                 0.047960
        6-Dec
                 0.048872
        7-Dec
                 0.046311
        8-Dec
                 0.046041
        9-Dec
                 0.043390
         10-Dec 0.039728
```

vwretd 0.040676 ewretd 0.082802 dtype: float64

1.1.4 Q 1(d)

```
In [12]: # Split the dataset
         mean_pre = data.loc[data['Year']<=1945,:]</pre>
         mean_post = data.loc[data['Year']>1945,:]
         mean_pre.info()
         mean_post.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 5814 entries, 19260701 to 19451231
Data columns (total 15 columns):
Year
          5814 non-null int64
Month
          5814 non-null int64
          5814 non-null int64
Day
          5814 non-null float64
1-Dec
2-Dec
          5814 non-null float64
3-Dec
          5814 non-null float64
4-Dec
          5814 non-null float64
5-Dec
          5814 non-null float64
6-Dec
          5814 non-null float64
          5814 non-null float64
7-Dec
8-Dec
          5814 non-null float64
9-Dec
          5814 non-null float64
10-Dec
          5814 non-null float64
          5814 non-null float64
vwretd
ewretd
          5814 non-null float64
dtypes: float64(12), int64(3)
memory usage: 726.8 KB
<class 'pandas.core.frame.DataFrame'>
Int64Index: 18577 entries, 19460102 to 20181231
Data columns (total 15 columns):
Year
          18577 non-null int64
Month
          18577 non-null int64
          18577 non-null int64
Day
1-Dec
          18577 non-null float64
          18577 non-null float64
2-Dec
          18577 non-null float64
3-Dec
4-Dec
          18577 non-null float64
5-Dec
          18577 non-null float64
6-Dec
          18577 non-null float64
7-Dec
          18577 non-null float64
          18577 non-null float64
8-Dec
9-Dec
          18577 non-null float64
```

```
10-Dec
          18577 non-null float64
vwretd
          18577 non-null float64
          18577 non-null float64
ewretd
dtypes: float64(12), int64(3)
memory usage: 2.3 MB
In [13]: t_mean = pd.Series([])
         pval_mean = pd.Series([])
         for i in range (3,15):
             t,pval = sp.stats.ttest_ind(mean_pre.iloc[:,i],mean_post.iloc[:,i],equal_var = Fai
             t_mean = t_mean.append(pd.Series(t,index=[i]))
             pval_mean = pval_mean.append(pd.Series(pval, index=[i]))
         print('T statistic value:\n',t_mean)
         print('P-value:\n',pval_mean)
T statistic value:
3
       0.700360
4
      0.247870
5
    -0.100710
6
     0.058821
     -0.326088
7
8
     0.050282
9
     -0.486052
10
    -0.471566
11
     -0.612983
12
    -0.679560
13
     -0.580293
14
      2.804149
dtype: float64
P-value:
3
       0.483728
4
      0.804242
5
     0.919784
6
     0.953096
7
     0.744367
8
     0.959899
9
     0.626945
10
     0.637251
11
     0.539907
12
     0.496804
13
      0.561735
14
      0.005059
dtype: float64
```

1.2 Q 2

In []:

1.2.1 Q 2 (a) (b)

```
In [14]: T_AR = pd.DataFrame(columns=data.columns[3:])
         R2 = pd.DataFrame(columns=data.columns[3:])
         coeff_df = pd.DataFrame(columns=data.columns[3:])
         for i in data.columns[3:]:
             reti = data.loc[:,i]
             model = sm.OLS(reti.iloc[1:],sm.add_constant(np.array(reti.iloc[:-1])))
             res = model.fit()
             coeff_df.loc[:,i] = pd.Series(res.params)
             T_AR.loc[:,i] = pd.Series(res.tvalues)
             R2.loc[:,i] = pd.Series(res.rsquared)
         coeff_df
Out[14]:
                   1-Dec
                              2-Dec
                                        3-Dec
                                                   4-Dec
                                                             5-Dec
                                                                       6-Dec
                                                                                  7-Dec \
                0.042100 0.042514 0.042044 0.042217
                                                          0.041178 0.041584
                                                                              0.040143
         const
         x1
                0.176411
                          0.132326
                                    0.159476 0.147371
                                                         0.141876
                                                                   0.149355
                                                                              0.133427
                   8-Dec
                              9-Dec
                                       10-Dec
                                                            ewretd
                                                  vwretd
         const
                0.041046
                          0.039563
                                     0.038571
                                               0.037859
                                                          0.064993
                0.108692
                          0.088241
                                     0.028987
         x1
                                               0.069220
                                                          0.215102
In [15]: T_AR
Out[15]:
                    1-Dec
                                2-Dec
                                           3-Dec
                                                       4-Dec
                                                                  5-Dec
                                                                              6-Dec
                             5.080738
                                                               5.454383
                                                                           5.716560
                 5.203053
                                        5.344011
                                                    5.517211
         const
                27.988295
                            20.848140
                                       25.227586 23.268308 22.382529
                                                                         23.588517
         x1
                    7-Dec
                                8-Dec
                                           9-Dec
                                                     10-Dec
                                                                            ewretd
                                                                vwretd
         const
                 5.511128
                             5.736710
                                        5.575553
                                                  5.613208
                                                              5.592675
                                                                          9.924417
                21.024413 17.074919 13.834190 4.528602
                                                            10.835680
                                                                        34.396714
         x1
In [16]: R2
Out [16]:
              1-Dec
                        2-Dec
                                  3-Dec
                                            4-Dec
                                                       5-Dec
                                                                 6-Dec
                                                                            7-Dec \
         0.03112 \quad 0.01751 \quad 0.025432 \quad 0.021718 \quad 0.020128 \quad 0.022306 \quad 0.017802
               8-Dec
                         9-Dec
                                  10-Dec
                                            vwretd
                                                       ewretd
         0 0.011814 0.007786 0.00084 0.004791 0.046268
In []:
1.2.2 Q 2(c)
```

1.3 Q 3

1.3.1 Q 3(a)

```
In [17]: retvw = data.loc[:,'vwretd']
        const = []
        x1 = []
        T_predict_const = []
         T_predict_x1 = []
        R2_predict = []
         for i in range (3,6):
            reti = data.iloc[:,i]
            model = sm.OLS(retvw[1:],sm.add_constant(np.array(reti[:-1])))
             res = model.fit()
             const.append(res.params[0])
             x1.append(res.params[1])
             T predict const.append(res.tvalues[0])
             T_predict_x1.append(res.tvalues[1])
             R2_predict.append(res.rsquared)
        rtvw_df = pd.DataFrame(columns=['1-Dec', '2-Dec', '3-Dec'])
        rtvw_df.loc['coeff_const'] = const
        rtvw_df.loc['coeff_x1'] = x1
        rtvw_df.loc['t_predict_const'] = T_predict_const
        rtvw_df.loc['t_predict_x1'] = T_predict_x1
        rtvw_df.loc['r_squared'] = R2_predict
        rtvw_df
Out[17]:
                             1-Dec
                                       2-Dec
                                                 3-Dec
                         0.039729 0.039487 0.039140
         coeff_const
                         0.018462 0.024223 0.030643
         coeff x1
         t_predict_const 5.855936 5.822032 5.771310
         t_predict_x1
                         3.493411 4.708386 5.623433
        r_squared
                         0.000500 0.000908 0.001295
In [18]: #Method2
        retvw = data.loc[:,'vwretd']
         coeff_predict = pd.DataFrame(columns = data.columns[3:6])
         T_predict = pd.DataFrame(columns= data.columns[3:6])
        R2_predict = pd.DataFrame(columns= data.columns[3:6])
         for i in data.columns[3:6]:
             reti = data.loc[:,i]
             model = sm.OLS(retvw[1:],sm.add_constant(np.array(reti[:-1])))
             res = model.fit()
             coeff_predict.loc[:,i] = pd.Series(res.params)
             T_predict.loc[:,i] = pd.Series(res.tvalues)
             R2_predict.loc[:,i] = pd.Series(res.rsquared)
```

```
In [19]: coeff_predict
Out[19]:
                   1-Dec
                             2-Dec
                                       3-Dec
         const 0.039729 0.039487 0.039140
                0.018462 0.024223 0.030643
         x1
In [20]: T_predict
Out[20]:
                   1-Dec
                             2-Dec
                                       3-Dec
         const 5.855936 5.822032 5.771310
         x1
                3.493411 4.708386 5.623433
In [21]: R2_predict
Out[21]:
           1-Dec
                       2-Dec
                                 3-Dec
         0 0.0005 0.000908 0.001295
In [22]: #To explore deeper, we take 10-Decile to conduct one more test.
In [23]: retvw = data.loc[:,'vwretd']
        reti = data.iloc[:,9]
        model = sm.OLS(retvw[1:],sm.add_constant(np.array(reti[:-1])))
        res = model.fit()
         res.summary()
         coeff = res.params
         t_predict = res.tvalues
         r2_predict = res.rsquared
In [24]: print('coeff: ',coeff)
         print('t_predict: ', t_predict)
        print('r2_predict', r2_predict)
coeff: const
                 0.038033
x1
         0.057044
dtype: float64
t_predict: const
                    5.615216
x1
        9.666526
dtype: float64
r2_predict 0.0038168392419561936
1.3.2 Q 3(b)
1.4 O 4
1.4.1 Q 4 (a)(b)(c)
In [25]: np.random.seed(5435576)
         T = 100
         t = np.arange(1,T+1)
```

```
eps = np.random.normal(0,1,T)
Y = np.zeros((T,1))
phi=0.1
for i in np.arange(1,len(Y)-1):
    Y[i+1] = Y[i]*phi+eps[i+1]

fig = plt.figure()
plt.plot(t,Y, color='red')
plt.xlabel('time')
plt.ylabel('AR(1) with \phi=%4.2f' %(phi))
plt.show()
```


1.4.2 Q 4 (d)(e)

```
In [26]: np.random.seed(5435576)
        T = 100
        t = np.arange(1,T+1)
        eps_ar2 = np.random.randn(T,2)
        Y = np.zeros((T,2))
        phi=0.1
        for i in np.arange(1,len(Y)-1):
            Y[i+1] = Y[i]*phi+eps[i+1]
fig = plt.figure()
```

```
plt.plot(t,Y, color='red')
plt.xlabel('time')
plt.ylabel('AR(2) with \phi=%4.2f' %(phi))
plt.show()
```


1.4.3 Q 4 (f)

1.4.4 Q 4 (g)(h)(i)(j)(k)

```
fig = plt.figure()
plt.hist(mu_ts,bins=20)
plt.title('mean over time in question h')
fig = plt.figure()
plt.hist(var_ts,bins=20)
plt.title('Var over time in question h')
```

Out[48]: Text(0.5, 1.0, 'Var over time in question h')

1.4.5 Q 4 (1)

mean over time in question i

In []:

1.5 Q 5

In [32]: #Compute the daily mean

mean_ret = data.iloc[:,1:].mean()

```
In [31]: # Downloaded the most recent data from 1926-07-01 to 2019-08-30
         data = pd.read_csv('Portfolios_Formed_on_ME_daily.csv',header=0)
         data.columns = ['Date', '1-Dec', '2-Dec', '3-Dec', '4-Dec', '5-Dec', '6-Dec',
                '7-Dec', '8-Dec', '9-Dec', '10-Dec']
         data.head()
Out[31]:
                Date
                      1-Dec
                              2-Dec
                                     3-Dec
                                            4-Dec
                                                    5-Dec
                                                           6-Dec
                                                                  7-Dec
                                                                          8-Dec
                                                                                 9-Dec
                       0.58
         0
           19260701
                             -0.13
                                      0.68
                                            -0.06
                                                    -0.38
                                                           -0.07
                                                                  -0.08
                                                                         -0.06
                                                                                  0.08
         1
            19260702
                      -0.53
                             -0.40
                                      0.16
                                                     0.29
                                                            0.36
                                                                   0.51
                                                                           0.41
                                                                                  0.37
                                             0.10
         2
           19260706
                      -0.33
                               0.61
                                     -0.38
                                             0.23
                                                     0.68
                                                            0.33
                                                                   0.15
                                                                           0.33
                                                                                  0.11
         3
            19260707
                       0.28
                             -0.10
                                     -0.40
                                            -0.54
                                                     0.31
                                                            0.17
                                                                   0.19
                                                                           0.16
                                                                                 -0.04
           19260708
                       0.55
                             -0.90
                                      0.04
                                             0.23
                                                   -0.06
                                                            0.28
                                                                   0.17
                                                                           0.20
                                                                                  0.20
            10-Dec
         0
              0.18
              0.52
         1
         2
              0.16
         3
              0.13
              0.27
         4
```

```
print('Percentage of Mean of daily return is:\n{} %'.format(mean_ret.apply(lambda x:format))
                       std_ret = data.iloc[:,1:].std()
                       print('Percentage of Stdev of daily return is:\n{} %'.format(std_ret.apply(lambda x:format(std_ret.apply(lambda x):format(std_ret.apply(lambda x):format(std_ret.apply(lambdax):format(std_ret.apply(lambda x):format(std_ret.apply(lambda x):
Percentage of Mean of daily return is:
1-Dec
                         5.093%
2-Dec
                         4.890%
                        5.005%
3-Dec
4-Dec
                     4.949%
5-Dec
                         4.810%
6-Dec
                         4.930%
7-Dec
                    4.673%
8-Dec
                        4.640%
9-Dec
                         4.386%
10-Dec
                         4.014%
dtype: object %
Percentage of Stdev of daily return is:
                         128.118%
2-Dec
                         131.642%
3-Dec
                       124.279%
4-Dec
                         120.686%
5-Dec
                     118.988%
6-Dec
                     114.760%
7-Dec
                         114.634%
8-Dec
                      112.191%
9-Dec
                         111.031%
                         107.170%
10-Dec
dtype: object %
In [33]: # Compute the monthly return
                       monthly_mean = 22 * mean_ret
                       print('Percentage of Mean of monthly return is:\n{} %'.format(monthly_mean.apply(lamber))
                       monthly_std = math.sqrt(22) * std_ret
                       print('Percentage of Stdev of monthly return is:\n{} %'.format(monthly_std.apply(lamber))
                       # Compute the annual return
                       annual_mean = 252 * mean_ret
                       print('Percentage of Mean of annual return is:\n{} %'.format(annual_mean.apply(lambda
                       annual_std = math.sqrt(252) * std_ret
                       print('Percentage of Stdev of annual return is:\n{} %'.format(annual_std.apply(lambda
Percentage of Mean of monthly return is:
                         112.050%
1-Dec
2-Dec
                         107.571%
3-Dec
                         110.106%
```

```
4-Dec
          108.879%
5-Dec
          105.809%
6-Dec
          108.454%
7-Dec
          102.814%
8-Dec
          102.078%
9-Dec
           96.481%
10-Dec
           88.306%
dtype: object %
Percentage of Stdev of monthly return is:
1-Dec
          600.925%
2-Dec
          617.455%
3-Dec
          582.918%
          566.067%
4-Dec
5-Dec
          558.104%
6-Dec
          538.273%
7-Dec
          537.682%
8-Dec
          526.223%
9-Dec
          520.781%
10-Dec
          502.672%
dtype: object %
Percentage of Mean of annual return is:
1-Dec
          1283.487%
2-Dec
          1232.172%
3-Dec
          1261.211%
4-Dec
          1247.163%
5-Dec
          1211.999%
6-Dec
          1242.290%
7-Dec
          1177.686%
8-Dec
          1169.262%
9-Dec
          1105.151%
10-Dec
          1011.509%
dtype: object %
Percentage of Stdev of annual return is:
1-Dec
          2033.804%
2-Dec
          2089.750%
3-Dec
          1972.861%
4-Dec
          1915.829%
5-Dec
          1888.880%
6-Dec
          1821.761%
7-Dec
          1819.760%
8-Dec
          1780.979%
9-Dec
          1762.561%
10-Dec
          1701.271%
dtype: object %
In [34]: results = []
```

```
# Generate an literator
        for j in np.arange(1,11):
            model = sm.OLS(data.iloc[:,j], np.ones(len(data.index)))
             res = model.fit()
             results.append(res.params[0]*100)
         # Turn the results into a dataframe
        means_ols = pd.DataFrame(columns=data.columns[1:])
        means ols.loc['Mean OLS Percentage'] = results
        means_ols
Out [34]:
                                 1-Dec
                                           2-Dec
                                                     3-Dec
                                                               4-Dec
                                                                        5-Dec
                                                                                 6-Dec \
        Mean_OLS Percentage 5.093204 4.889572
                                                 5.004805 4.949061
                                                                      4.80952 4.92972
                                 7-Dec
                                           8-Dec
                                                     9-Dec
                                                              10-Dec
        Mean_OLS Percentage 4.673358 4.639928 4.385521 4.013926
In [35]: year_1 = []
        for i in data['Date']:
             i = str(i)
             year_1.append(i[:4])
        data['Year'] = year_1
In [36]: data.head()
Out [36]:
                     1-Dec 2-Dec 3-Dec 4-Dec
                                                  5-Dec
                                                         6-Dec
                                                               7-Dec 8-Dec 9-Dec
                Date
                      0.58 -0.13
                                     0.68 -0.06
        0 19260701
                                                  -0.38
                                                         -0.07
                                                                -0.08 -0.06
                                                                               0.08
         1
           19260702
                     -0.53 -0.40
                                     0.16
                                            0.10
                                                   0.29
                                                          0.36
                                                                 0.51
                                                                        0.41
                                                                               0.37
         2 19260706
                     -0.33 0.61
                                   -0.38
                                           0.23
                                                          0.33
                                                   0.68
                                                                 0.15
                                                                        0.33
                                                                               0.11
         3 19260707
                      0.28 -0.10
                                   -0.40 -0.54
                                                   0.31
                                                          0.17
                                                                 0.19
                                                                        0.16 - 0.04
         4 19260708
                      0.55 - 0.90
                                     0.04
                                            0.23 - 0.06
                                                          0.28
                                                                 0.17
                                                                        0.20
                                                                               0.20
            10-Dec Year
             0.18 1926
        0
             0.52 1926
         1
        2
             0.16 1926
         3
             0.13 1926
         4
             0.27 1926
In [41]: pd.to_numeric(data['Year'])
Out[41]: 0
                  1926
                  1926
         1
         2
                  1926
        3
                  1926
         4
                  1926
        5
                  1926
        6
                  1926
```

7	1926
8	1926
9	1926
10	1926
11	1926
12 13 14 15	1926 1926 1926 1926 1926
17	1926
18	1926
19	1926
20	1926
21 22 23 24 25	1926 1926 1926 1926
26	1926
27	1926
28	1926
29	1926
24529	2019
24530	2019
24531	2019
24532	2019
24533	2019
24534	2019
24535	2019
24536	2019
24537	2019
24538	2019
24539	2019
24540	2019
24541	2019
24542	2019
24543	2019
24544	2019
24545	2019
24546	2019
24547	2019
24548	2019
24549 24550 24551	2019 2019

```
24553
                  2019
         24554
                  2019
         24555
                  2019
         24556
                  2019
         24557
                  2019
         24558
                  2019
         Name: Year, Length: 24559, dtype: int64
In [43]: # Split the dataset
         mean_pre = data.loc[data['Year']<='1945',:]</pre>
         mean_post = data.loc[data['Year']>'1945',:]
         mean_pre.info()
         mean_post.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 5814 entries, 0 to 5813
Data columns (total 12 columns):
          5814 non-null int64
Date
1-Dec
          5814 non-null float64
          5814 non-null float64
2-Dec
          5814 non-null float64
3-Dec
          5814 non-null float64
4-Dec
5-Dec
          5814 non-null float64
6-Dec
          5814 non-null float64
          5814 non-null float64
7-Dec
8-Dec
          5814 non-null float64
9-Dec
          5814 non-null float64
10-Dec
          5814 non-null float64
Year
          5814 non-null object
dtypes: float64(10), int64(1), object(1)
memory usage: 590.5+ KB
<class 'pandas.core.frame.DataFrame'>
Int64Index: 18745 entries, 5814 to 24558
Data columns (total 12 columns):
          18745 non-null int64
Date
          18745 non-null float64
1-Dec
          18745 non-null float64
2-Dec
          18745 non-null float64
3-Dec
4-Dec
          18745 non-null float64
5-Dec
          18745 non-null float64
6-Dec
          18745 non-null float64
7-Dec
          18745 non-null float64
8-Dec
          18745 non-null float64
9-Dec
          18745 non-null float64
10-Dec
          18745 non-null float64
Year
          18745 non-null object
dtypes: float64(10), int64(1), object(1)
```

```
memory usage: 1.9+ MB
In [44]: t_mean = pd.Series([])
         pval_mean = pd.Series([])
         for i in range(1,11):
             t,pval = sp.stats.ttest_ind(mean_pre.iloc[:,i],mean_post.iloc[:,i],equal_var = Fai
             t_mean = t_mean.append(pd.Series(t,index=[i]))
             pval_mean = pval_mean.append(pd.Series(pval, index=[i]))
         print('T statistic value:\n',t_mean)
         print('P-value:\n',pval_mean)
T statistic value:
 1
       0.708559
2
      0.251793
3
    -0.100625
4
     0.059465
5
    -0.333314
6
     0.025017
7
    -0.510227
8
     -0.492878
     -0.640578
    -0.706171
dtype: float64
P-value:
1
       0.478624
2
      0.801209
3
     0.919851
4
     0.952583
5
     0.738907
     0.980042
7
     0.609908
8
     0.622114
9
      0.521817
10
      0.480103
dtype: float64
In [45]: T_AR = pd.DataFrame(columns=data.columns[1:11])
         R2 = pd.DataFrame(columns=data.columns[1:11])
         coeff_df = pd.DataFrame(columns=data.columns[1:11])
         for i in data.columns[1:11]:
             reti = data.loc[:,i]
             model = sm.OLS(reti.iloc[1:],sm.add_constant(np.array(reti.iloc[:-1])))
             res = model.fit()
```

```
coeff_df.loc[:,i] = pd.Series(res.params)
             T_AR.loc[:,i] = pd.Series(res.tvalues)
             R2.loc[:,i] = pd.Series(res.rsquared)
         coeff_df
Out [45]:
                    1-Dec
                              2-Dec
                                        3-Dec
                                                   4-Dec
                                                              5-Dec
                                                                        6-Dec
                                                                                  7-Dec \
         const 0.041967 0.042476 0.042101 0.042270
                                                          0.041350 0.041999
                                                                               0.040550
                                     0.158247
                                               0.145953
                                                          0.140597 0.148155
         x1
                0.175608 0.131397
                                                                               0.132432
                   8-Dec
                              9-Dec
                                       10-Dec
                0.041391 0.040014
                                     0.038998
                          0.087539
         x1
                0.108057
                                    0.028284
In [46]: T_AR
Out[46]:
                     1-Dec
                                2-Dec
                                            3-Dec
                                                       4-Dec
                                                                   5-Dec
                                                                              6-Dec \
                 5.209997
                             5.096951
                                        5.372001
                                                    5.543253
                                                               5.495847
                                                                           5.793580
         const
         x1
                27.952884
                            20.770403
                                       25.114424 23.118822
                                                              22.253086
                                                                          23.475427
                    7-Dec
                                            9-Dec
                                                     10-Dec
                                8-Dec
                                                   5.700602
                 5.587762
                             5.810397
         const
                                        5.664740
         x1
                20.936915 17.032632 13.770466
                                                  4.433925
In [47]: R2
Out[47]:
                                                                   6-Dec
               1-Dec
                          2-Dec
                                    3-Dec
                                               4-Dec
                                                         5-Dec
                                                                             7-Dec \
         0 \quad 0.030838 \quad 0.017265 \quad 0.025042 \quad 0.021302 \quad 0.019768 \quad 0.02195 \quad 0.017538
               8-Dec
                          9-Dec
                                10-Dec
         0 0.011676 0.007663 0.0008
```

In []: