

Flop and Complexity

Linear Algebra

Department of Computer Engineering Sharif University of Technology

Hamid R. Rabiee rabiee@sharif.edu

Maryam Ramezani <u>maryam.ramezani@sharif.edu</u>

Complexity of vector computations

- □ Computers store (real) numbers in floating-point format
- □ Floating point= 64 bits or 8 bytes
 - o How many possible sequences of bits?
 - o How many bytes to store n-vector?
- □ Current memory and storage devices, with capacities measured in many gigabytes (109 bytes), can easily store vectors with dimensions in the millions or billions.
- □ Sparse vectors are stored in a more efficient way that keeps track of indices and values of the nonzero entries.
- □ Note about floating point operations and round-off error.

Floating Point Operation

FLOP (Floating Point Operations)

- ☐ The unit of complexity when comparing vector and matrix algorithms
- ☐ 1 flop = one basic arithmetic operation in R or C (+,-,*, $\sqrt{}$,···)
- ☐ Estimate the time of computation= counting the total number of Floating Point Operations (FLOP)s.

Notes:

- ☐ We don't distinguish between the different types of arithmetic operations.
- ☐ We don't distinguish between real and complex arithmetic.
- ☐ We ignore integer operations (indexing, loop counters, …)
- ☐ We ignore cost of memory access.

Complexity of vector computations

- Operation count (flop count)
 - o Total number of operations in an algorithm
 - o $runtime \approx \frac{number\ of\ operations\ (flops)}{computer\ speed\ (flops\ per\ second)}$
- Dominant term: the highest-order term in the flop count

$$\frac{1}{3}n^3 + 100n^2 + 10n + 5 \approx \frac{1}{3}n^3$$

Order: the power in the dominant term:

$$\frac{1}{3}n^3 + 10n^2 + 100 = \text{order } n^3$$

Complexity of vector computations

- □ How quickly the vector operations can be carried out by a computer depends very much on the computer hardware and software, and the size of the vector.
- □ The complexity of an operation is the number of flops required to carry it out, as a function of the size or sizes of the input to the operation.
- □ Crude approximation of time to execute: (flopsneeded)/(computer speed)
- □ current computers are around 1Gflop/sec (10⁹ flops/sec)

Famous Vectors

- \Box Zero vector O_n
- \Box Ones vector I_n
- □ Unit vector e_i (e_i is the entry with 1 value)
- □ Sparse vector: a vector if many of its entries are zero
 - o Can be stored and manipulated efficiently on a computer
 - \circ nnz(x): number of entries of vector x that are nonzero

Example

- Write all unit vectors with length of 3.
- ☐ What is the most sparsest vector?

Complexity of vector computations for $v \in \mathbb{R}^n$

	#FLOPS		Complexity	
Operation	General	Sparse	General	Sparse
Scalar-Vector product				
Vector-Vector sum				
Inner product				
Outer product (vectors with sizes "n" and "m"				
Hadamard product				

References

- Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares
- □ Linear Algebra and its applications
- Linear algebra A Modern Introduction David Poole
- Floating Point Operations in Matrix-Vector Calculus, Raphael Hunger