Hint: Mid Semester Exam

MATH-II, 22^{nd} February 2016 Time: $1\frac{1}{2}$ Hours, Maximum Marks: 60

1. (a) Let A, B be two square symmetric matrices of order n. Prove that AB is skew-symmetric matrix if and only if AB = -BA. [4 marks]

Ans. $(AB)^T = -AB \iff B^TA^T = -AB \iff BA = -AB \iff AB = -BA$.

- (b) Let A be an $n \times n$ matrix. Then show that
 - (i) If A is an idempotent matrix then det(A) either 0 or 1.
 - (ii) If A is a nilpotent matrix then det(A) = 0.
 - (iii) If A is an orthogonal matrix then $det(A) = \pm 1$.

[2+2+2 marks]

- **Ans.** (i) $A^2 = A \Longrightarrow \det(A^2) = \det(A) \Longrightarrow \det(A) \det(A) = \det(A) \Longrightarrow \det(A) (\det(A) 1) = 0 \Longrightarrow \text{ either}$ $\det(A) = 0 \text{ or } 1.$
 - (ii) Suppose A is a nilpotent matrix of order k, then $A^k = 0 \Longrightarrow \det(A^k) = 0 \Longrightarrow (\det(A))^k = 0 \Longrightarrow$ det(A) = 0.
 - $(iii) \stackrel{'}{A}A^T = A^TA = I \Longrightarrow \det(AA^T) = \det(A^TA) = \det(I) \Longrightarrow \det(A)\det(A^T) = 1 \Longrightarrow (\det(A))^2 = 1 \Longrightarrow (\det(A)$ $1 \Longrightarrow \det(A) = \pm 1.$
- 2. (a) Find a basis for the null space N(A) of the matrix A given below:

$$A = \left(\begin{array}{rrrr} 3 & 4 & 0 & 7 \\ 1 & -5 & 2 & -2 \\ -1 & 4 & 0 & 3 \\ 1 & -1 & 2 & 2 \end{array}\right)$$

Also verify the rank-nullity theorem.

[6 marks]

Ans. We know $N(A) = \{X \in \mathbb{R}^4 : AX = 0\}$. Therefore, applying EROs, we get an equivalent system

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow x_1, x_2, x_3 \text{ are basic variable and } x_4 \text{ is free variable, so by}$$

setting
$$x_4 = r$$
, we get $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = r \begin{pmatrix} -1 \\ -1 \\ -1 \\ 1 \end{pmatrix} \Rightarrow \left\{ \begin{pmatrix} -1 \\ -1 \\ -1 \\ 1 \end{pmatrix} \right\}$ is a basis for the $N(A) \Rightarrow$ nullity of A

is 1. The number of non-zero rows in RREF(A) is 3 i.e., rank(A) = 3, which verify the rank-nullity theorem.

(b) Find $\alpha \in \mathbb{R}$ such that the system

$$x + y - z = 1,$$

$$2x + 3y + \alpha z = 3,$$

$$x + \alpha y + 3z = 2,$$

posses (i) no solution, (ii) infinitely many solutions, (iii) a unique solution.

Ans. The augmented matrix of the system is $\begin{pmatrix} 1 & 1 & -1 & | & 1 \\ 2 & 3 & \alpha & | & 3 \\ 1 & \alpha & 3 & | & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 & | & 1 \\ 0 & 1 & \alpha + 2 & | & 1 \\ 0 & \alpha - 1 & 4 & | & 1 \end{pmatrix}$ Now performing $R_3 \to R_3 - (\alpha - 1)R_2$, we get $\begin{pmatrix} 1 & 1 & -1 & | & 1 \\ 0 & 1 & \alpha + 2 & | & 1 \\ 0 & 0 & (\alpha - 2)(\alpha + 3) & | & \alpha - 2 \\ 0 & 0 & (\alpha - 2)(\alpha + 3) & | & \alpha - 2 \end{pmatrix} \Longrightarrow \text{if } \alpha = -3$, system has

forming
$$R_3 \to R_3 - (\alpha - 1)R_2$$
, we get $\begin{pmatrix} 1 & 1 & -1 & | & 1 \\ 0 & 1 & \alpha + 2 & | & 1 \\ 0 & 0 & (\alpha - 2)(\alpha + 3) & | & \alpha - 2 \end{pmatrix} \Longrightarrow \text{if } \alpha = -3$, system has

no solution. If $\alpha = 2$, system has infinite number of solutions $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5t \\ 1-4t \end{pmatrix}$, $t \in \mathbb{R}$. If $\alpha \neq 2$ and

$$\alpha \neq 3$$
, system has unique solution $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{1}{\frac{\alpha+3}{\alpha+3}} \\ \frac{1}{\alpha+3} \end{pmatrix}$.

- 3. (a) Let u, v, w be three linearly independent vectors in \mathbb{R}^n , where $n \geq 3$. For what real values of k, are the vectors v u, kw v and u w linearly independent? [6 marks]
 - **Ans.** vectors v u, kw v and u w are L.I. iff $\alpha(u v) + \beta(kw v) + \gamma(u w) = 0_V \Longrightarrow \alpha = \beta = \gamma = 0$. Here, $\alpha(u - v) + \beta(kw - v) + \gamma(u - w) = 0_V \Longrightarrow (\alpha + \gamma)u + (-\alpha - \beta)v + (\beta k - \gamma)w = 0_V$, since vectors u, v, w are L.I. therefore $\alpha + \gamma = -\alpha - \beta = \beta k - \gamma = 0$. This homogeneous system of linear equations with unknown α, β, γ has trivial solution if $k \neq 1$.
 - (b) Consider the vector space $\mathbb{R}^2(\mathbb{R})$. Let $u=(u_1, u_2)$ and $v=(v_1, v_2)$ be two vectors in \mathbb{R}^2 such that $u_1v_1+u_2v_2=0$ and $u_1^2+u_2^2=1=v_1^2+v_2^2$. Determine whether the set $\{u,v\}$ form a basis for \mathbb{R}^2 or not?
 - **Ans.** With the given conditions, both vectors u and v are orthonormal to each other, therefore u = (1,0) and v = (0,1). Set $\{u,v\}$ is L.I. thus form a basis of \mathbb{R}^2 .
- 4. (a) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that T(1,0,0) = (1,0,0), T(1,1,0) = (1,1,1) and T(1,1,1) = (1,1,0). Find (i) T(x,y,z), (ii) N(T), (iii) R(T). [8 marks]
 - **Ans.** Since vectors (1,0,0), (1,1,0), (1,1,1) are L.I., therefore form a basis for \mathbb{R}^3 . Let $(x,y,z) \in \mathbb{R}^3$ then $(x,y,z) = \alpha(1,0,0) + \beta(1,1,0) + \gamma(1,1,1) \Longrightarrow \alpha = (x-y), \beta = (y-z), \gamma = z \Longrightarrow T(x,y,z) = T((x-y)(1,0,0) + (y-z)(1,1,0) + z(1,1,1)) = (x-y)T(1,0,0) + (y-z)T(1,1,0) + zT(1,1,1) = (x,y,y-z).$ $N(T) = \{(x,y,z)\mathbb{R}^3 : T(x,y,z) = 0_V\} = \{(0,0,0)\}.$ By rank-nullity theorem $R(T) = \mathbb{R}^3$.
 - (b) Let $T:U\to V$ be a linear transformation. Show that T is one-one iff null space N(T) is the zero subspace, $\{0_U\}$ of U. [6 marks]
 - Ans. Suppose T is one-one. Then $T(u) = T(v) \Rightarrow u = v$. If $u \in N(T)$, then $T(u) = 0_V = T(0_U) \Rightarrow u = 0_U$. This means that $N(T) = \{0_U\}$. Conversely suppose $N(T) = \{0_U\}$. Also let T(u) = T(v), then $T(u v) = T(u) T(v) = 0_V$. So $u v \in N(T) = \{0_U\}$. So $u v = 0_U$, i.e., u = v. This implies that T is one-one.
- 5. (a) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation defined by T(x,y,z) = (x+y,y-z). Let $B_1 = \{(1,0,1),(0,1,1),(1,1,1)\}$ and $B_2 = \{(1,2),(-1,1)\}$ be bases for \mathbb{R}^3 and \mathbb{R}^2 respectively, then find the matrix of T with respect to bases B_1 and B_2 . [6 marks]
- **Ans.** We have $T(1,0,1)=(1,-1)=a_{11}(1,2)+a_{21}(-1,1)=0(1,2)+(-1)(-1,1)$ $T(0,1,1)=(1,0)=a_{12}(1,2)+a_{22}(-1,1)=\frac{1}{3}(1,2)+(-\frac{2}{3})(-1,1)$ $T(1,1,1)=(2,0)=a_{13}(1,2)+a_{23}(-1,1)=\frac{2}{3}(1,2)+(-\frac{4}{3})(-1,1)$ Thus matrix of T with respect to bases B_1 and B_2 is $\begin{pmatrix} 0 & \frac{1}{3} & \frac{2}{3} \\ -1 & -\frac{2}{3} & -\frac{4}{3} \end{pmatrix}$
 - (b) Verify that the mapping define by $\langle u, v \rangle = 10u_1v_1 + 3u_1v_2 + 3u_2v_1 + 2u_2v_2 + u_2v_3 + u_3v_2 + u_3v_3$, where, $u = (u_1, u_2, u_3)$, $v = (v_1, v_2, v_3)$ is an inner product on $\mathbb{R}^3(\mathbb{R})$. Find the angle between the vectors (1, 1, 1) and (2, -5, 2).
- Ans. $\langle u, v + w \rangle = 10u_1(v_1 + w_1) + 3u_1(v_2 + w_2) + 3u_2(v_1 + w_1) + 2u_2(v_2 + w_2) + u_2(v_3 + w_3) + u_3(v_2 + w_2) + u_3(v_3 + w_3) = 10u_1v_1 + 3u_1v_2 + 3u_2v_1 + 2u_2v_2 + u_2v_3 + u_3v_3 + 10u_1w_1 + 3u_1w_2 + 3u_2w_1 + 2u_2w_2 + u_2w_3 + u_3w_2 + u_3w_3 = \langle u, v \rangle + \langle u, w \rangle$ Similarly, one can easily prove that $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle$, $\alpha \in \mathbb{R}$. Since $u, v \in \mathbb{R}^3$ therefore it is easy to show $\overline{\langle u, v \rangle} = \langle v, u \rangle$.

Also by definition of $\langle , \rangle, \langle u, u \rangle \geq 0$ and $\langle u, u \rangle = 0$ iff $u = 0_V$.