$\begin{array}{c} M2103 \\ \text{TP n° 3} - \text{La classe } \textit{Monôme} \text{ en Java} \end{array}$

Un monôme est représenté en mathématique sous la forme : $\mathbf{a_i} \ \mathbf{x^i}$ où x représente une variable, a_i son coefficient (réel) et i son exposant (entier).

a) Opérations

 $unMon\^ome$: Réel x Entier \rightarrow Monôme

coefficient: Monôme \rightarrow Réel exposant: Monôme \rightarrow Entier

somme: Monôme x Monôme \rightarrow Monôme produit: Monôme x Monôme \rightarrow Monôme

dérivée : Monôme → Monôme

b) Pré-conditions

Pour m1 et m2 de type Monôme: somme (m1, m2) est défini ssi exposant (m1) = exposant (m2)

c) Propriétés

Pour m, m1 et m2 de type *Monôme*, c de type *Réel* et e de *Entier* :

- (P1) coefficient (unMonôme (c, e)) = c
- (P2) exposant (unMonôme (c, e)) = e
- (P3) somme (m1, m2) = unMônome (coefficient (m1) + coefficient (m2), exposant (m1))
- (P5) dérivée (m) =
 si exposant (m) = 0 alors unMonôme (0.0, 0)
 sinon unMônome (coefficient (m) * exposant (m), exposant (m) -1)

TP n° 3 M2103

Questions:

- 1) Aller dans la javadoc standard Java pour rechercher la classe ArithmeticException. Le lien se trouve sous Moodle: Lien vers la documentation Java Standard Edition 7. Quel est le nom du paquetage dont est issue cette classe? De quelle classe hérite-t-elle?
- 2) Traduire le TAD *Monôme* en une classe Java.
- 3) Rajouter dans la classe Java une méthode toString() produisant une version chaine d'un monôme sous la forme « coefficientxeexposant ».

 Par exemple, 10xe2 représente le monôme 10 x²
- 4) Rajouter dans la classe Java une méthode estNul() déterminant si un monôme est nul.
- 5) Générer la documentation au format javadoc de la classe *Monôme*.
- 6) Ecrire une application Java cliente de *Monôme* qui crée 2 monômes nuls et qui propose le menu ci-dessous. Celui-ci orientera sur le traitement correspondant en fonction du choix de l'utilisateur (utilisation d'une structure de contrôle *switch*).

```
Quel est votre choix :

1- modifier le premier monôme
2- modifier le deuxième monôme
3- afficher le premier monôme
4- afficher le deuxième monôme
5- calculer la somme des 2 monômes
6- calculer le produit des 2 monômes
7- calculer la dérivée du premier monôme
8- calculer la dérivée du deuxième monôme
9- quitter l'application
```

7) Afin de réduire la taille de la méthode *main*, créer dans la classe de l'application deux méthodes de classe spécifiées ainsi :

Class TestMonomeRefactore

- java.lang.Object
 - TestMonomeRefactore

```
public class TestMonomeRefactore
extends java.lang.Object
```

Constructor Summary

```
Constructors

Constructor and Description

TestMonomeRefactore()
```

Method Summary

TP n° 3 M2103

Modifier and Type	Method and Description
static void	aff□c□erMen□ () affiche le menu de l'application
static Mono⊡e	□ect□reMonome (java.util.Scanner entr□e) lit un monôme sur l'entrée standard (coefficient et exposant)
static void	ma□n (java.lang.String□□ args) propose un menu orientant sur différents traitements pour tester la classe Monome

Methods inherited from class java.lang.Object

• Constructor Detail

• TestMonomeRefactore

public □estMono□e□e□actore()

Method Detail

afficherMenu

public static void a□□ic□erMenu()

affiche le menu de l'application

lectureMonome

public static Mono□e lectureMono□e(java.util.Scanner entr□e)

lit un monôme sur l'entrée standard (coefficient et exposant)

Parameters:

entr□e - scanner associé au flot standard d'entrée

Returns:

monôme résultat

main

public static void □ain(java.lang.String□□ args)

propose un menu orientant sur différents traitements pour tester la classe Monome

Parameters:

args -

TP n° 3 M2103