MATHEMATICS - 050 (E)

Set No. 3

Mathematics

QUESTION PAPER - 2

Std. - 12

Time: 3 Hours

AUGUST-2020

Total Mark: 100

PART - A: 50 Marsk Part - B: 50 Marks

[Time: 1 Hour]

PART - A

[Maximum Marks : 50]

Instructions:

- There are 50 objective type (M.C.Q.) question in Part-A and all questions are compulsory.
- The questions are serially numbred from 1 to 50 and each carries 1 marks. 2.
- Read each question carefully, select proper alternative and answer in the OMR Sheet. 3.
- The OMR Sheet is given for answering the questions. The answer of each question is represented by (A) O, (B) O, (C) O, (D) O. Darken the circle ● of the correct answer will ball-pen.
- Rough work is to be done in the space provided for this purpose in the Test Booklet only.
- Set No of question paper printed on the upper most right side of the question paper is to be wirtten in the column provided in the OMR Sheet.
- Use of simple calculator and log table is allowed, if required.
- Notations used in this question paper have proper meaning...
- 1. If \vec{a} is a non zero vector of magnitude 'a' and λ is a non zero scalar, then $\lambda \vec{a}$ is a unit vector if

$$(A) a = \frac{1}{|\lambda|}$$

(B)
$$\lambda = -1$$

(C)
$$a = |\lambda|$$

(D)
$$\lambda =$$

- Vector \vec{a} and \vec{b} be such that $|\vec{a}|$ and $|\vec{b}| = \frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angle 2. between \vec{a} and \vec{b} is
 - $(A) \frac{\pi}{2}$
- (B) $\frac{\pi}{4}$
- (C) $\frac{\pi}{3}$
- (D) $\frac{\pi}{6}$
- The value of $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ is 3.
 - (A)3
- (C) 1
- (D) 0
- - (A) $\theta = \frac{2\pi}{3}$ (B) $\theta = \frac{\pi}{3}$ (C) $\theta = \frac{\pi}{2}$
- (D) $\theta = \frac{\pi}{4}$
- if $|\vec{a}|=8$, $|\vec{b}|=3$ and $|\vec{a}\times\vec{b}|=12$, then value of $\vec{a}\cdot\vec{b}$ is 5.
 - (A) $6\sqrt{3}$
- (B) $8\sqrt{3}$
- (C) $12\sqrt{3}$
- (D) None of these
- The area of a parallelogram whose adjacent sides are given by the vectors $\vec{a} = 3\hat{i} + \hat{j} + 4\hat{k}$ and 6. $\vec{b} = \hat{i} - \hat{j} + \hat{k} \text{ is}$
 - (A) $\sqrt{21}$
- (B) $\sqrt{42}$
- (C)42
- (D) 21

(C) $0 < y < \pi$

23.

(A) 3×3

- Number of binary operations on the set $\{a, b\}$ is 18. (B) 16(A)8(C) 20 (D) 4 If $\sin^{-1} x = y$, than 19. (A) $\frac{-\pi}{2} < y < \frac{\pi}{2}$ (B) $\frac{-\pi}{2} \le y \le \frac{\pi}{2}$
- 20. $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$ is equal to (B) $\frac{5\pi}{6}$ (A) $\frac{\pi}{6}$ (D) $\frac{7\pi}{6}$ (C) $\frac{\pi}{2}$

(D) $0 \le y \le \pi$

- If $\tan^{-1} x + \tan^{-1} y = \frac{4\pi}{5}$, then $\cot^{-1} x + \cot^{-1} y = \dots$ (B) $\frac{2\pi}{\epsilon}$ $(A) \pi$
- (C) $\frac{3\pi}{5}$ (D) $\frac{\pi}{5}$ 22. $\tan^2\left(\frac{1}{2}\cos^{-1}\frac{3}{4}\right) = \dots$ (D) $\frac{4}{7}$ (B) $\frac{3}{7}$ (A) 1

For equal ordered square matrices A and B.

- (A) $B^{-1}A^{-1} = (AB)^{-1}$ (B) $A^{-1}B = B^{-1}A$ (D) AB = BA(C) (AB)' = AB
- If Matrix A is of the type 3×2 and Matrices B and C of the type 2×3 then A(B-C) is 24. matrix. (C) 3×2 (D) 2×3 (B) 2×2
- 25. If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ and A + A' = 1, then the value of $\alpha = \dots$ For More Papers & Materials Visit www.VisionPapers.in!!!
 - (D) $\frac{\pi}{6}$ (A) $\frac{3\pi}{2}$ (B) $\frac{\pi}{2}$ (C) π
- If A is square matrix such that $A^2 = A$, then $(I + A)^3 7A$ is equal to 26. (B) I-A (A) 3A (D) A (C) I
- Let A be a square matrix of order 3, then |KA| = 27. (C) $K^3 |A|$ (D) K | A | (B) $K^2 |A|$ (A) 3K|A|
- 28. $\begin{vmatrix} 1^{2} & 5^{2} & 3^{2} \\ 2^{2} & 25^{2} & 24^{2} \\ 3^{2} & 41^{2} & 40^{2} \end{vmatrix} + \begin{vmatrix} 1^{2} & 5^{2} & 4^{2} \\ 2^{2} & 25^{2} & 7^{2} \\ 3^{2} & 41^{2} & 9^{2} \end{vmatrix} = \dots$
 - (D) 36 (C) 18 (B) - 18(4)0

4 7.	The are enclosed by the ellipse	$\frac{x^2}{a^2}$ +	$\frac{y^2}{b^2} = 1$	is

- (A) πab^2
- (B) πab
- (C) $\pi a^2 b$
- (D) $\pi^2 ab$

(A) π ab*

The number of arbitary constants in the general solution of a differential equation of fourth 48. order is

- (A) 4
- (B)2
- (C)3
- (D) 0

The Integrating Factor of the differential equation $x \frac{dy}{dx} - y = 2x^2$ is

- (A) x
- (B) e^{-y}
- (C) -
- (D) e^{-x}

Solution of the differential equation $\frac{dx}{dx} + \frac{dy}{dx} = 0$ is 50.

(A) x + y = c

(B) $\log x \cdot \log y = c$

(C) xy = c

(D) $\frac{1}{r} + \frac{1}{v} = c$

050 (E) AUGUST - 2020

Time: 2 Hours

PART - B

Maximum Marks: 50

Instructions:

- Write in a clear legible hand writing.
- 2. There are three sections in Part-B of the questions paper and total to 18 questions are there.
- 3. All the questions are compulsory. Internal options are given.
- The numbers at the right side represent the marks of the questions.
- Start new section on new page.
- Maintain Sequence.
- 7. Use of simple calculator and log table is allowed, if required.
- 8. Use the graph paper to solve the problem of L.P.

SECTION: A

Answer the following 1 to 8 questions as directed in the question. (Each question carries 2 marks.)

16

- Prove that: $3\cos^{-1} x = \cos^{-1} (4x^3 3x), x \in \left[\frac{1}{2}, 1\right].$ 1.
- Differentiate $\sin \left(\tan^{-1} e^{-x^2}\right)$ with respect to x. 2.
- Find $\int \frac{1}{\cos^2 x (1-\tan x)^2} dx$. 3.
- Find the area bounded by the curve $y = \cos x$ between x = 0 and $x = 2\pi$. 4.
- Find the area of the region bounded by $y^2 = 9x$, x = 2, x = 4 and x axis in the first quadrent. 5.

- Find the area of the parabola $y^2 = 4ax$ bounded by its latus rectum. 5. 6.
- If $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ are such that, $\vec{a} + \lambda \vec{b}$ is perpendicular to

18

- 7. Find the angle between the line $\frac{x+1}{2} = \frac{y}{3} = \frac{z-3}{6}$ and the plane 10x + 2y 11z = 3.
- 8. A random Variable X has the following probability distribution:

X	0	1	2	3	4	5	6	7
P(X)	0	k	2 <i>k</i>	2 <i>k</i>	3 <i>k</i>	k ²	2 <i>k</i> ²	$7k^2 + k$

Determine: P(0 < X < 3)

OR

8. Evaluate
$$P(A \cup B)$$
, if $2P(A) = P(B) = \frac{5}{13}$ and $P(A/B) = \frac{2}{5}$.

SECTION: B

- Answer the following 9 to 14 questions as directed in the question.
 (Each question carries 3 marks.)
- 9. If $f(x) = \frac{4x+3}{6x-4}$, $x \neq \frac{2}{3}$. Show that fof (x) = x, for all $x \neq \frac{2}{3}$. What is the inverse of f?
- 10. Let $A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 5 & 2 \\ 7 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 5 \\ 3 & 8 \end{bmatrix}$. Find a matrix D such that CD AB = 0, where 0 is 2×2 zero matrix.

OR

10. If
$$A^{-1} = \begin{pmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{pmatrix}$, find $(AB)^{-1}$

- 11. If $(x-a)^2 + (y-b)^2 = c^2$, for some c > 0, prove that : $\frac{[1+y^2]^{\frac{3}{2}}}{y_2}$ is a constant independent of a and b.
- 12. Show that the line $\frac{x-a+d}{\alpha-\delta} = \frac{y-a}{\alpha} = \frac{z-a-d}{\alpha+\delta}$ and $\frac{x-b+c}{\beta-\gamma} = \frac{y-b}{\beta} = \frac{z-b-c}{\beta+\gamma}$ are coplannar.

OR

For More Papers & Materials Visit www.VisionPapers.in !!!

- 12. Find the shortest distance between the lines, $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$ and $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$.
- 13. Solve the following linear programming problem graphically:

Minimise and Maximise z = 3x + 9y

Subject to the constraints: $x + 3y \le 60$, $x + y \ge 10$, $x \le y$, $x \ge 0$, $y \ge 0$

14. Two cards are drawn simultaneously (or successively without replacement) from a well shuffled pack of 52 cards. Find mean, variance and standard deviation of the number of kings.

16

SECTION: C

- Answer the following 15 to 18 questions as directed in the question. (Each question carries 4 marks.)
- Using the property of determinant solve the equation for x. 15.

$$\begin{vmatrix} a+x & a-x & a-x \\ a-x & a+x & a-x \\ a-x & a-x & a+x \end{vmatrix} = 0$$

Show that Semi-vartical angle, of the cone of the maximum volume and of given slant height, 16. is $tan^{-1}\sqrt{2}$.

OR

Show that the euation of normal at any point on the curve. 16.

Show that the eulation of normal at any possible
$$x = 3\cos\theta - \cos^3\theta$$
, $y = 3\sin\theta - \sin^3\theta$ is $4(y\cos^3\theta - x\sin^3\theta) = 3\sin 4\theta$.

- Evaluate $\int_{a^2 \cos^2 x + b^2 \sin^2 x}^{\pi}$
- Solve the differentaial equation 18.

$$(x dy - y dx) y \sin\left(\frac{y}{x}\right) = (ydx + xdy) x \cos\left(\frac{y}{x}\right).$$

BOARD QUESTION PAPER - 2 - SOLUTIONS (AUGUST 2020)

PART - A

- **10.** B 9. B **6.** B 7. C 8. A **5.** C 4. A 3. C 2. B 1. A
- **20**. B **18.** B 19. B 15. C 16. C 17. A 14. A 13. A 11. B 12. B
- 25. B **26.** C **30**. D 27. C 28. A **29.** B 24. A 23. A **22.** C **21.** D
- 35. D 34. A **36.** C **33.** B **37.** D **38.** B **40.** D 32. A **39.** B **31**. A
- 43. A 44. C **45.** B 42. B **46.** B 41. D 47. A 48. A **50**. C 49. C