Implement a simple text editor. The editor initially contains an empty string, S. Perform Q operations of the following 4 types:

- 1. append(W) Append string W to the end of S.
- 2. delete(k) Delete the last k characters of S.
- 3. print(k) Print the k^{th} character of S.
- 4. undo() Undo the last (not previously undone) operation of type 1 or 2, reverting S to the state it was in prior to that operation.

Example

```
S = \text{`abcde'} ops = [\text{'1 fg', '3 6', '2 5', '4', '3 7', '4', '3 4'}]
```

index	5	ops[index]	explanation
		ops[maex]	
0	abcde	1 fg	append fg
1	abcdefg	3 6	print the 6th letter - f
2	abcdefg	2 5	delete the last 5 letters
3	ab	4	undo the last operation, index 2
4	abcdefg	3 7	print the 7th characgter - g
5	abcdefg	4	undo the last operation, index 0
6	abcde	3 4	print the 4th character - d

The results should be printed as:

```
f
g
d
```

Input Format

The first line contains an integer, Q, denoting the number of operations.

Each line i of the Q subsequent lines (where $0 \le i < Q$) defines an operation to be performed. Each operation starts with a single integer, t (where $t \in \{1,2,3,4\}$), denoting a type of operation as defined in the Problem Statement above. If the operation requires an argument, t is followed by its space-separated argument. For

example, if t=1 and $W=\mbox{"abcd"}$, line i will be 1 abcd.

Constraints

- $1 \le Q \le 10^6$
- $1 \le k \le |S|$
- ullet The sum of the lengths of all W in the input $\leq 10^6$.
- ullet The sum of k over all delete operations $\leq 2 \cdot 10^6$.
- All input characters are lowercase English letters.
- It is guaranteed that the sequence of operations given as input is possible to perform.

Output Format

Each operation of type 3 must print the k^{th} character on a new line.

Sample Input

STDIN	Function	
8	Q = 8	
1 abc	ops[0] =	'1
3 3	ops[1] =	13
2 3		
1 xy		
3 2		
4		
4		
3 1		

Sample Output

c y a

Explanation

Initially, S is empty. The following sequence of 8 operations are described below:

- 1. S= "". We append abc to S, so S= "abc".
- 2. Print the 3^{rd} character on a new line. Currently, the 3^{rd} character is c.
- 3. Delete the last 3 characters in S (abc), so S="".
- 4. Append xy to S, so S="xy".
- 5. Print the 2^{nd} character on a new line. Currently, the 2^{nd} character is y.
- 6. Undo the last update to S, making S empty again (i.e., S="").
- 7. Undo the next to last update to S (the deletion of the last 3 characters), making $S={
 m "abc"}.$
- 8. Print the $\mathbf{1}^{st}$ character on a new line. Currently, the $\mathbf{1}^{st}$ character is a.