(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-22695

(43)公開日 平成7年(1995)1月24日

(51) Int.Cl.⁶

識別記号 庁内整理番号

FΙ

技術表示箇所

H01S 3/18

審査請求 未請求 請求項の数1 OL (全 8 頁)

(21)出願番号	特願平5-161925	(71)出顧人 000001889
		三洋電機株式会社
(22) 出願日	平成5年(1993)6月30日	大阪府守口市京阪本通2丁目5番5号
		(72)発明者 三宅 輝明
		大阪府守口市京阪本通2丁目18番地 三洋
		電機株式会社内
		(72)発明者 茨木 晃
		大阪府守口市京阪本通2丁目18番地 三洋
		電機株式会社内
		(72)発明者 林 伸彦
		大阪府守口市京阪本通2丁目18番地 三洋
		電機株式会社内
		(74)代理人 弁理士 西野 卓嗣
		, , , , , = , , , , , , , , , , , , , ,
		最終頁に続く

(54) 【発明の名称】 自励発振型半導体レーザ素子

(57)【要約】

【目的】 動作電流及び垂直方向のビーム広がり角の特性が良好な自励発振型半導体レーザ素子を提供することを目的とする。

【構成】 n型GaAs基板1と、この基板1上に設けたn型第1クラッド層6と、この第1クラッド層6上に設けた活性層8と、この活性層8上に設けたp型第2クラッド層13とを備え、第1、第2クラッド層6、13の層中にそれぞれ発振波長エネルギーに略等しいエネルギーのバンドギャップを有する可飽和光吸収層4、11を有し、且つ前記第1、第2クラッド層6、13は活性層8より小さい屈折率及び大きいバンドギャップを有し、且つ第1クラッド層6と活性層8の間及び活性層8と第2クラッド層13の間にぞれぞれ第1クラッド層6及び第2クラッド層13より小さい屈折率及び大きなバンドギャップを有する障壁層7、9を設けた。

1

【特許請求の範囲】

【請求項1】 第1導電型の半導体基板と、該半導体基 板上に設けた第1導電型の第1クラッド層と、該第1ク ラッド層上に設けた活性層と、該活性層上に設けた第2 導電型の第2クラッド層とを備え、前記第1、第2クラ ッド層は前記活性層より小さい屈折率及び大きいバンド ギャップを有し、且つ前記第1、第2クラッド層の層中 にそれぞれ発振波長エネルギーに略等しいエネルギーの バンドギャップを有する可飽和光吸収層を設け、且つ前 記第2クラッド層の間の少なくとも一方に該第1クラッ ド層及び該第2クラッド層より小さい屈折率及び大きな バンドギャップを有する障壁層を設けたことを特徴とす る自励発振型半導体レーザ素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は出力レーザ光の戻り光に 起因する雑音を低減した半導体レーザ素子に関する。

[0002]

【従来の技術】従来の半導体レーザ素子は、出力レーザ 20 光の戻り光が半導体レーザ素子へ再入射した場合、この 戻り光に起因する雑音(以下、戻り光雑音という)が出 カレーザ光内に発生するといった問題があった。斯る戻 り光雑音は、例えば半導体レーザ素子を光ディスク装置 の光源として使用する場合に、ディスク面等からの反射 された出力レーザ光の戻り光が半導体レーザ素子へ再入 射することにより発生する。

【0003】この半導体レーザ素子の戻り光雑音を低減 する為に、自励発振現象を利用する方法が知られてお り、例えば特開昭63-202083号(H01S 3 30 /18)公報に開示されている。

【0004】斯る半導体レーザ素子では、AlGaAs 活性層を挟むクラッド層のうち、一方のクラッド層に発 振波長に対応するエネルギー (発振波長エネルギー: h レ)よりかなり大きなバンドギャップエネルギーを持つ 屈折率層もしくは該発振波長エネルギーよりかなり小さ なバンドギャップエネルギーを持つ光吸収層を用いるこ とにより、自励発振させることが記載されている。

【0005】しかしながら、本願出願人の実験結果によ ると、上記発振波長エネルギーよりかなり大きなバンド 40 する。 ギャップエネルギーをもつ屈折率層の場合は、非点隔差 が大きくなり、他方発振波長エネルギーよりかなり小さ なバンドギャップエネルギーを持つ光吸収層の場合は、 動作電流が大きくなるといったことが判った。このよう に非点隔差が大きいと、出力されたビーム(レーザ光) は絞ることが困難であるので、光ディスク装置等の光源 として用いた場合にはクロストークのSN比が悪くな り、また動作電流が大きいと、消費電力が大きくなる。 【0006】この問題に対して、本願出願人は活性層を

に略等しいエネルギーのバンドギャップを有する可飽和 光吸収層(過飽和光吸収層)を設けることにより、動作 電流値等が小さく且つ非点隔差も小さくできる自励発振 型半導体レーザ素子を特願平4-297178号で提案 した。

[0007]

【発明が解決しようとする課題】しかしながら、上述の ように活性層を挟む両クラッド層の層中にそれぞれ発振 波長エネルギーに略等しいエネルギーのバンドギャップ 記第1クラッド層と前記活性層の間又は前記活性層と前 10 を有する可飽和光吸収層を設けた場合にも、出力された レーザ光 (レーザビーム) の垂直方向(積層方向)のビ **ーム広がり角θを十分に小さくできない。この垂直方向** のビーム広がり角のが大きい場合には、光ディスク装置 等の中で用いられる対物レンズとの結合効率が小さくな るため、レーザ出力を大きくする必要があり、この結果 消費電力が大きくなる。

> 【0008】この垂直のビーム広がり角を小さくする ために、クラッド層と活性層の屈折率差を小さくすれば よいが、このようにこの屈折率差を小さくする場合に は、クラッド層と活性層のバンドギャップ差が小さくな り、動作電流が大きくなるといった問題があった。

【0009】本発明は斯る問題点を鑑みて成されたもの であり、動作電流及び垂直方向のビーム広がり角の特性 が良好な自励発振型半導体レーザ素子を提供することを 目的とする。

[0010]

【課題を解決するための手段】本発明の自励発振型半導 体レーザ素子は、第1導電型の半導体基板と、該半導体 基板上に設けた第1導電型の第1クラッド層と、該第1 クラッド層上に設けた活性層と、該活性層上に設けた第 2導電型の第2クラッド層とを備え、前記第1、第2ク ラッド層は前記活性層より小さい屈折率及び大きいバン ドギャップを有し、且つ前記第1、第2クラッド層の層 中にそれぞれ発振波長エネルギーに略等しいエネルギー のバンドギャップを有する可飽和光吸収層を設け、且つ 前記第1クラッド層と前記活性層の間又は前記活性層と 前記第2クラッド層の間の少なくとも一方に該第1クラ ッド層及び該第2クラッド層より小さい屈折率及び大き なバンドギャップを有する障壁層を設けたことを特徴と

[0011]

【作用】本発明の自励発振型半導体レーザ素子では、第 1導電型の半導体基板と、該半導体基板上に設けた第1 **導電型の第1クラッド層と、該第1クラッド層上に設け** た活性層と、該活性層上に設けた第2導電型の第2クラ ッド層とを備え、前記第1、第2クラッド層は前記活性 層より小さい屈折率及び大きいバンドギャップを有し、 且つ前記第1、第2クラッド層の層中にそれぞれ発振波 長エネルギーに略等しいエネルギーのバンドギャップを 挟む両クラッド層の層中にそれぞれ発振波長エネルギー 50 有する可飽和光吸収層を設け、且つ前記第1クラッド層

と前記活性層の間又は前記活性層と前記第2クラッド層 の間の少なくとも一方に該第1クラッド層及び該第2ク ラッド層より小さい屈折率及び大きなバンドギャップを 有する障壁層を設けたので、レーザ光の垂直方向の広が り角及び動作電流特性が良好になる。

[0012]

【実施例】本発明に係る一実施例を図面を参照しつつ詳 細に説明する。図1は本実施例のA1GaAs系自励発 振型半導体レーザ素子の断面構造を示す模式図である。 【0013】図中、1はn型GaAs半導体基板であ り、このn型GaAs半導体基板1上には、n型GaA sバッファ層(典型的には、層厚0.5μm)2、n型 AlraGa1-raAsクラッド層(典型的には、層厚1. 5μm、組成比xa=0.5)3、n型AluaGai-ua As第1可飽和光吸収層(ua<xa, xb, za, z b: 典型的には、層厚0.03 μm、組成比ua=0. 13) 4、n型AlzbGal-zbAsクラッド層(典型的 には層厚0.2µm、組成xb=0.5)5がこの順序 で形成されており、該クラッド層3、5によりn型第1 クラッド層6が構成されている。即ち、第1クラッド層 6中にn型第1可飽和光吸収層4が設けられている。 【0014】前記クラッド層5上には、n型AlyaGa 1-yaAs第1障壁層(ya>xa, xb, za, zb: 典型的には、層厚 0. 1 μm、組成比y a = 0. 55) 7、アンドープのAlqGal-qAs活性層(q<xa, xb, za, zb:典型的には、層厚0.08μm、組 成比q=0.13)8、及びp型AlybGal-ybAs第 2障壁層 (yb>xa, xb, za, zb:典型的に は、層厚O. 1 µm、組成比yb=O. 55) 9がこの

【0015】前記第2障壁層9上には、p型AlzaGa 1-zaAsクラッド層 (典型的には、層厚 0.2 µm、組 成比za=0.5)10、p型AlubGai-ubAs第2 可飽和光吸収層(ub<xa,xb,za,zb:典型 的には、層厚0.03 μm、組成比ub=0.13)1 1がこの順序で形成されている。この第2可飽和光吸収 層11中央上に共振器方向に延在するストライプ状リッ ジ部をなすp型AlzbGal-zbAsクラッド層(典型的 には、層厚 0.7μ m、ストライプ下面幅Wが 3.5μ m、組成比zb=0.5)12が形成されている。即 ち、前記クラッド層10、12によりp型第2クラッド 層13が構成され、このp型第2クラッド層13中に第 2可飽和光吸収層11が設けられている。

順序で形成されている。

【0016】前記クラッド層12のそのリッジ部上面に は、p型GaAsキャップ層(典型的には、層厚O.3 μm) 14が形成されている。このキャップ層14の側 面、前記クラッド層12の側面、及び該クラッド層12 が設けられていない第2可飽和光吸収層11上には、n 型GaAs電流阻止層(典型的には、層厚0.8μm) 15、15が形成されている。前記キャップ層14及び 50 ッジ部形状をなすp型キャップ層14及びp型クラッド

電流阻止層15、15上にはp型GaAsコンタクト層 (典型的には、層厚6μm) 16が形成されている。 【0017】前記コンタクト層16上にはAu-Crか らなるp型側オーミック電極17、前記n型GaAs基 板1下面にはAu-Sn-Crからなるn型側オーミッ ク電極18が形成されている。

【0018】図2(a)はこの自励発振型半導体レーザ 素子の活性層8近傍のエネルギーバンド構造の概略図、 図2(b)は同じく活性層8近傍の屈折率を示す概略図 10 を示す。

【0019】これら図からも判るように、第1、第2ク ラッド層6、13は活性層8より小さな屈折率及び大き なバンドギャップを有している。そして活性層8を挟む ように両側に第1、第2クラッド層6、13より小さな 屈折率であると共に大きなバンドギャップを有し且つ活 性層8より層厚の大きい第1、第2障壁層7、9が設け られ、更にこの外側を挟むように第1、第2クラッド層 6、13中に活性層7と同一のバンドギャップ(屈折 率)、即ち発振波長エネルギーに等しいエネルギーのバ ンドギャップを有する第1、第2可飽和光吸収層4、1 1が設けられている。

【0020】斯る半導体レーザ素子の製造方法を図3を 用いて説明する。

【0021】最初に、図3(a)に示すように有機金属 気相成長法 (MOCVD法) 又は分子線エピタキシャル 成長法 (MBE法) により、n型GaAs基板1上にn 型バッファ層2、n型クラッド層3、n型第1可飽和光 吸収層4、n型クラッド層5、n型第1障壁層7、アン ドープの活性層8、p型第2障壁層9、p型クラッド層 10、p型第2可飽和光吸収層11、p型クラッド層1 2、及びp型キャップ層14をこの順序で連続成長す る。その後、通常のフォトリソグラフィ技術等を用い て、前記p型キャップ層14上にストライプ状の層厚 0.2μmのSiO₂マスク層20を形成する。前記S iO2マスク層2Oをマスクとして燐酸系エッチング液 により、前記p型クラッド層12がO.1~O.3μm 厚残余するように前記p型キャップ層14及びp型クラ ッド層12をエッチングした後、塩酸エッチング液によ り該残余したクラッド層12をエッチング除去してスト 40 ライプ状のリッジ部形状にする。ここで、前記塩酸エッ チング液はAl組成比の小さいAltGaュ-tAsがAl 組成比の大きいAlsGaュ-sAs(t<s)に比べてエ ッチングレートが小さいので、前記第2可飽和光吸収層 11は所謂エッチング停止層としての作用も兼ね備え る。従って、前記エッチングはこの第2可飽和光吸収層 11で制御性良く止めることができる。

【0022】その後、図3(b)に示すように、前記S iO₂マスク層2Oを介した状態で、MOCVD法又は MBE法により前記第2可飽和光吸収層11上並びにリ

30

層12の側面にn型電流阻止層15、15を形成する。 【0023】次に、図1に示すように、前記SiO₂マスク層20をフッ酸系エッチング液で除去して前記p型キャップ層14を露出させた後、MOCVD法又はMBE法によりこの露出したp型キャップ層14上及び前記n型電流阻止層15、15上にp型コンタクト層16を形成する。その後、前記p型コンタクト層16の上面及びn型GaAs基板1の下面にそれぞれAu−Crからなるp型側オーミック電極17、Au−Sn−Crからなるn型側オーミック電極18を形成する。

【0024】ところで、上述では、活性層8の両側に第 1、第2障壁層7、9を設けた構成について説明した が、第1障壁層7を設けず第2障壁層9のみであっても よい。第1、第2障壁層7、9の両方を設けた上記第1 実施例としての自励発振型半導体レーザ素子と、第1障 壁層7を設けず第2障壁層9のみを設けた以外は上記第 1実施例と同じ構成である第2実施例としての自励発振 型半導体レーザ素子と、第1、第2障壁層7、9の両方 を設けない比較例としての自励発振型半導体レーザ素子 とについて、温度25℃で光出力3mW時のレーザビー ムの垂直方向の広がり角 θ (度)、動作電流 Iop(mA)、温度25℃の発振しきい値電流 Ith (mA)、温 度25℃から70℃での特性温度To(K)を測定し た。尚、これら第1、第2実施例、及び比較例の素子 は、第1可飽和光吸収層4と活性層8の間隔、及び第2 可飽和光吸収層11と活性層8の間隔は同じとし、他の 条件は、第1、第2障壁層の有無を除いて同じとした。 また、この測定は、第2障壁層9及びクラッド層10の p型キャリア濃度を共通の値3×10¹⁷ c m⁻³、6×1 0¹⁷ c m⁻³とした2種類の場合について行った。この結 果を図4~図7に示す。これら測定においてこれら素子 は単一横モードで自励発振が良好に行われた。

【0025】図4は第1実施例、第2実施例、及び比較例としての自励発振型半導体レーザ素子の垂直方向の広がり角の(度)と前記p型キャリア濃度との関係を示す

【0026】この図から、第2障壁層9及びクラッド層10のキャリア濃度に関係なく、第1実施例、第2実施例、比較例の広がり角 θ は、約33度、約35度、約37度となることが判る。即ち、広がり角度 θ は、第1、第2障壁層7、9の両方ともない比較例に比べ、第2障壁層9を備えた第2実施例が小さくなり、更に第1、第2障壁層7、9の両方を備えた第1実施例が小さくなることが判る。

【0027】図5は第1実施例、第2実施例、及び比較例としての自励発振型半導体レーザ素子の動作電流 Iop (mA)と前記p型キャリア濃度の関係を示す。

【0028】この図から、動作電流 Iopは、第1、第2 障壁層7、9の両方共ない比較例に比べ、第2障壁層9 を備えた第2実施例が小さく、更に第1、第2障壁層 7、9の両方を備えた第1実施例が小さくなり、特に第2障壁層9及びクラッド層10のキャリア濃度を低くした方が小さくできることが判る。

【0029】図6は第1実施例、第2実施例、及び比較例としての自励発振型半導体レーザ素子の発振しきい値電流 Ith (mA)と前記p型キャリア濃度の関係を示す

【0030】この図から、発振しきい値電流 I th も動作電流 I op と同様、第1、第2障壁層7、9の両方共ない比較例に比べ、第2障壁層9を備えた第2実施例が小さく、更に第1、第2障壁層7、9の両方を備えた第1実施例が小さくなり、特に第2障壁層9及びクラッド層10のキャリア濃度を低くした方が小さくできることが判る。

【0031】図7は第1実施例、第2実施例、及び比較例としての自励発振型半導体レーザ素子の特性温度T₀(K)と前記p型キャリア濃度の関係を示す。

【0032】この図から、特性温度Toは、第1、第2 障壁層7、9の両方共ない比較例に比べ、第2障壁層9 を備えた第2実施例が大きくなり、更に第1、第2障壁層7、9の両方を備えた第1実施例が大きくなり、特に第2障壁層7及びクラッド層10のキャリア濃度が大きい場合に大きくできることが判る。

【0033】これら図4~図7から、垂直方向の広がり 角 θ 、及び動作電流 I op は、第1、第2障壁層7、9の 両方共ない比較例に比べ、第2障壁層9を備えた第2実 施例がよく、更に第1、第2障壁層7、9の両方を備え た第1実施例が格段によくなることが判る。また、第1 実施例、第2実施例からも判るように発振しきい値電流 Ith、特性温度Toは、前記第2障壁層9及びクラッド 層10のp型キャリア濃度が通常の濃度範囲であれば全 く問題ない値であり、従って、上述したように前記p型 キャリア濃度は、この濃度を大きくする場合に、特性温 度Toは良いが、動作電流 I or と発振しきい値電流 I th は悪く、逆に該濃度を小さくする場合に、特性温度To が悪く、動作電流IoPと発振しさい値電流Ithが良くな るので、用途に応じて選択すればよい。更に、図示しな いが、非点隔差は、比較例と第2実施例は略同じであ り、第1実施例はこれらより小さくなった。尚、第2障 壁層9、クラッド層10以外のキャリア濃度は、素子特 性に大きく影響を与えないので、通常の範囲で適宜選択 すればよい。

【0034】上記第1障壁層7、第2障壁層9はこれらの層厚が活性層8の層厚に比べて小さい場合でも、動作電流及び垂直方向の広がり角0を小さくできる。しかし、理由は明らかでないが、第1障壁層7、第2障壁層9の層厚を極めて小さくした場合(即ち、障壁層7、9が実質的に光に対して影響を与えない場合)に比べて、上述のように第1障壁層7、第2障壁層9の層厚が活性50層8の層厚に比べて大きい場合に特に上述のような顕著

30

.. .

な効果があった。このような顕著な効果は、第1、第2 可飽和光吸収層4、11が活性層8を対して挟むような 構成で且つ該活性層8に比べて層厚が大きい第1障壁層 7又は第2障壁層9が活性層8に近接して設けられてい る場合に得られ、特に第1、第2可飽和光吸収層4、1 1、及び第1、第2障壁層7、9が活性層8に対して対 称な位置に設けられた場合に好ましい効果が得られる。 【0035】また、上述の第1、第2の可飽和光吸収層 4、11のバンドギャップは、活性層8のバンドギャッ プと同じであるが、多少大きくても小さく(例えばAl 10 き、この結果、更に低消費電力が可能となる。また、非 組成比差で±0.01程度)ても発振光を吸収して可飽 和状態になり、この結果自励発振するので、第1、第2 の可飽和光吸収層4、11のバンドギャップは、発振波 長エネルギー(発振光のエネルギー: h v)に略等しい エネルギーであれば同様の効果が得られる。更に、前記 活性層8は上記構造に限らず量子井戸構造からなっても よい。

【0036】更に、上述ではAIGaAs系半導体レー ザ素子について述べたが、他の例えばAIGaInP系 半導体レーザ素子でも同様の効果が得られる。尚、A1 20 ある。 GaInP系半導体は、AlGaAs系半導体と同様に Al組成比が大きくなるに従って、バンドギャップが大 きく且つ屈折率が小さくなるので、AI組成比を変える ことにより、バンドギャップ及び屈折率を選択できる。 【0037】また、上述のリッジ型の半導体レーザ素子 に限らず、セルフアライン型等の他の構造の半導体レー ザ素子に用いても効果がある。

【0038】また、上記実施例の各クラッド層3、5、 10、12は、同じ屈折率、バンドギャップを有する構 成であるが、必ずしも同一である必要はない。即ち、第 30 1 1、第2クラッド層6、13は均一である必要はない。 [0039]

【発明の効果】本発明の自励発振型半導体レーザ素子 は、第1導電型の半導体基板と、該半導体基板上に設け た第1導電型の第1クラッド層と、該第1クラッド層上 に設けた活性層と、該活性層上に設けた第2導電型の第 2クラッド層とを備え、前記第1、第2クラッド層の層 中にそれぞれ発振波長エネルギーに略等しいエネルギー のバンドギャップを有する第1、第2可飽和光吸収層を 有し、且つ前記第1、第2クラッド層は前記活性層より 40 12 小さい屈折率及び大きいバンドギャップを有し、且つ前

記第1クラッド層と前記活性層の間又は前記活性層と前 記第2クラッド層の間の少なくとも一方に該第1クラッ ド層及び該第2クラッド層より小さい屈折率及び大きな バンドギャップを有する障壁層を設けたので、自励発振 型半導体レーザ素子として戻り光雑音を十分に低減でき る。更に、斯る構成では、動作電流値が小さくなるの で、低消費電力となり、また垂直方向のビーム広がり角 が小さくなるので、この素子と組み合わせて対物レンズ を使用する場合にこのレンズとの結合効率が良好にで 点隔差が小さいので、出力されたビーム(レーザ光)を

【図面の簡単な説明】

【図1】本発明に係る一実施例の半導体レーザ素子の断 面構造を示す模式図である。

十分に絞ることができ、光ディスク装置等の光源として

用いた場合にクロストークのSN比がよくなる。

【図2】上記実施例の活性層近傍のエネルギーバンド構 造及び屈折率を示す概略図である。

【図3】上記実施例の半導体レーザ素子の製造工程図で

【図4】本発明に係る実施例と比較例の広がり角8の特 性を示す図である。

【図5】本発明に係る実施例と比較例の動作電流 Iopの 特性を示す図である。

【図6】本発明に係る実施例と比較例の発振しきい値電 流Ⅰthの特性を示す図である。

【図7】本発明に係る実施例と比較例の特性温度Toの 特性を示す図である。

【符号の説明】

- n型GaAs基板
- 3 n型クラッド層
- n型第1可飽和光吸収層 4
- 5 n型クラッド層
- n型第1クラッド層 6
- 7 n型第1障壁層
- 8 活性層
- 9 p型第1障壁層
- 10 p型クラッド層
- 11 p型第2可飽和光吸収層
- p型クラッド層
 - 13 p型第2クラッド層

【図1】

フロントページの続き

(72)発明者 田尻 敦志 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内

(72)発明者 古沢 浩太郎 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内

(72)発明者 松本 光晴

. . . .

大阪府守口市京阪本通2丁目18番地 三洋

電機株式会社内

(72)発明者 松川 健一

大阪府守口市京阪本通2丁目18番地 三洋

電機株式会社内

(72)発明者 後藤 壮謙

大阪府守口市京阪本通2丁目18番地 三洋

電機株式会社内

(72)発明者 井手 大輔

大阪府守口市京阪本通2丁目18番地 三洋

電機株式会社内