

INTRODUCTORY OF SMJE 3153

Your Lecturers

Assoc. Prof. Ir Dr. Zool Hilmi Ismail

Deputy Director,

Center for Artificial Intelligence and Robotics,

Level 8, MJIIT Building

Universiti Teknologi Malaysia

Assoc. Prof. Dr SEKIGUCHI, Kazuma (関口 和真)

Advanced Control Systems Lab.

Dept.of Mechanical Systems Engineering

Setagaya Campus

Tokyo City University

Our Class Session

Day/Time	1 8:00-8:50	2 9:00-9:50	3 10:00-10:50	4 11:00-11:50	5 12:00-12:50	6 13:00-13:50	7 14:00-14:50	8 15:00-15:50	9 16:00-16:50	10 17:00-17:50	11 18:00-18:50	12 19:00-19:50	13 20:00-20:50	14 21:00-21:50	15 22:00-22:50	16 23:00-23:50
Monday																
Tuesday																
Wednesday		BILIK I	SMJE3153 (L SEC 02 (Lecture) KULIAH 13 (06					SMJE3153 (L) SEC 01 (Lecture) (ULIAH 22 (08								
Thursday																
Friday																

ASSESSMENT DETAILS

- Written Test 1: 20 MARKS
- Written Test 2: 20 MARKS
- Assignment 1: 10 MARKS
- FINAL EXAM: 50 MARKS

CLO & PLO

No.	CLO	PLO EAC UTM	Weight (%)	Taxo. & Generic Skills*	T&L Methods	WP	EA	WK	Assessment Methods
CO1		1	15	C3	Lecture, Active Learning			1	
	Illustrate the basic principles of automatic control systems.	KW							T, F
CO2	Model and analyse time response and stability for	2	45	C4	Lecture, Active Learning			3	T, F
	electrical, mechanical and electromechanical systems using transfer functions.	THPA							
CO3	Design controllers using the Root Locus method.	3	. 30	C6	Lecture, Active Learning			5	T, F
	Design controllers using the Root Locus method.	THDS							2,1
CO4	Demonstrate the ability to solve complex engineering control problems by numerical	5	- 10	P5	Independent learning	1,3,4		6	ASG
	analysis.	SCMT							1135

Refer *Taxonomies of Learning and **UTM's Graduate Attributes, where applicable for measurement of outcomes achievement

^{***}T – Test; Q – Quiz; ASG – Assignment; PR – Project; Pr – Presentation; F – Final Exam; R-Report; PeeR-Peer Review, Lg-Logbook etc.

Course Structure

- Week 1: Course Guidance (Dr Zool)
- Week 2: Mathematical Modelling and Time response analysis (Dr Zool)
- Week 3: Mathematical Modelling and Time response analysis Exercise (Dr Zool)
- Week 4: Relation to Linearization (Dr Zool)
- Week 5: Exact linearization: Theory based on differential geometry (Dr Sekiguchi)
- Week 6: Exact linearization: Exercise of symbolic calculation on MATLAB (Dr Sekiguchi)
- Week 7: Theory of system stability (Dr Zool)
- Week 8: Semester Break
- Week 9: Controllability of a control system (Dr Zool)
- Week 10 : Controllability of a control system: Exercise (Dr Zool)
- Week 11: State feedback controller design (Dr Sekiguchi)
- Week 12: Model predictive control: Idea and theoretical solution (Dr Sekiguchi)
- Week 13: Model predictive control: Exercise on MATLAB programming (Dr Sekiguchi)
- Week 14: Design of advanced controller (Dr Zool)
- Week 15: Class summary and revision (Dr Zool)

TEXTBOOK & REFERENCES

- Norman S. Nise, Control Systems
 Engineering, 6th Edition, Wiley, 2011.
- Dean Frederick and Joe Chow,
 Feedback Control Problems using
 MATLAB and the Control System
 Toolbox, Thomson, 2000.
- Katsuhiko Ogata, Modern Control Engineering, 5th Edition, Prentice Hall, 2010

SYSTEM MODELING & ANALYSIS

CHAPTER 1
Introduction to system

Content

• History of Control System (20 mins.)

1.2 • Control System Basics (60 mins.)

• Control System Configuration (30 mins.)

1.4Examples of Control Systems (20 mins.)

• Control System Design (30 mins.)

Simulation Software in Control – MATLAB (10 mins.)

1.6

1.1 HISTORY OF CONTROL SYSTEMS

SHARE YOUR KNOWLEDGE ON CONTROL SYSTEM

https://jamboard.google.com/d/1k TUkuMysL0KvowGqplY3rnZv2Xqi8 MhQatLYJs3uqhA/edit?usp=sharing

History of Control System

300 BC

1900's

2000's

Early

• Simple, primitive

- Water clock (300 BC)
- Steam pressure & temperature control systems (1680s)
- Speed control (1745)
- Stability Theories
 - Routh-Hurwitz (1877)
 - Lyapunov (1892)

20th Century

• Extensive use of sensors

- Automatic Ship Steering (1922)
- PID Controller (1920s)
- Feedback Control System Technique (1930s)
- Root locus, Bode, Nyquist (1948)

Contemporary

Widespread applications

- Navigation
- Entertainment
- Smart Homes
- Military
- Space Application
- Chemical Process

History – Water Clock

One of the earliest control systems known is the water clock invented by Ktesibios (300 BC).

Speed of water flow ∞ level of water in an upper tank

P=ρgh

History – Steam Pressure Control

In 1681, Denis Papin introduced the steam pressure control systems, where he invented the safety valve (very similar to the present pressure cooker)

History – 20th Century Applications

Contemporary Applications

1.2

CONTROL SYSTEMS BASICS

- ◆ General Block Diagram
 - Purpose & Methods
- ◆ Manual vs. Automatic Control
- ◆ Control System Components
 - ◆ Types of Control Problems

SHARE YOUR KNOWLEDGE ON CONTROL SYSTEM

https://jamboard.google.com/d/1k TUkuMysL0KvowGqplY3rnZv2Xqi8 MhQatLYJs3uqhA/edit?usp=sharing

Control System Basics - General Control System Block Diagram

Control System Basics

- Purpose & Methods

Primary Aim:

- To regulate certain variables about constant values even when there are disturbances.
- To force some parameter to vary in a specific manner.

Control Methods:

- 'Manual' control
- 'Automatic' control

4 main control purposes

1

- For power amplification
- e.g. in moving the radar antenna position to certain angle, small input power is amplified to produce high output torque

2

- For remote control
- e.g. in controlling the movements of robots working in contaminated areas where human presence should be avoided

3

- For convenience of input form
- e.g. in a temperature control system, the turn of a knob corresponds to certain desired room temperature.

4

- For compensation for disturbance
- e.g. to maintain antenna position in the presence of strong wind.

Manual Control

Human-aided control

Operator constantly observe the deviation and make corrections when necessary

Not consistent

Hundreds of variables to be controlled

Automatic Control

To replace humans with machines (nowadays, computers) to implement the control of the plant. Measurement → sensors/transducers Decision → computers Control action → actuators

3 Main Control System Components

1. Sensor

- sense the physical signals
- convert into electrical signals
- e.g. thermocouple measures a temperature and converts it into voltage

2. Controller

- the 'brain' of the control system
- does all the calculations and decision-making processes – computer
- compares the desired and actual plant output → calculate the amount of control to be applied

3. Final control element

- accepts an input from the controller, which is then transformed into some proportional operation performed on the process
- must be operated by an actuator
- e.g. to control the yawing direction of a ship, the rudder (the final control element) is moved to certain angle by a hydraulic actuator.

2 Types of Control Problems

Regulation

Servo Control

Problem: CV deviates from SP due to disturbance.

'Regulatory control'

To maintain the quantity at some desired value regardless of external influences.

Problem: CV must follow the changes in the SP.

'Servo Control'

Make CV follow SP when the SP changes.

1.3 CONTROL SYSTEM CONFIGURATION

◆ Open-Loop & Closed-Loop Systems

SHARE YOUR KNOWLEDGE ON CONTROL SYSTEM

https://jamboard.google.com/d/1k TUkuMysL0KvowGqplY3rnZv2Xqi8 MhQatLYJs3uqhA/edit?usp=sharing

Control System Configuration

Open-loop Control System

Closed-loop Control System

Closed-loop Control System

Example: Liquid Level Control System

1.4 EXAMPLES OF CONTROL SYSTEMS

- Based on System Paradigms
- ◆ Based on Types of Signals Used
 - ◆ Based on System Models
 - Based on Control Objectives

Power amplification in a **dish-type** antennas

- Varying in diameter from 8 to 30 metres
- Serving an Earth station in a satellite communications network.

Examples

Remote control robots in contaminated area: **Sojourner**

- Roving on Mars in 1997.
- Solar-powered, 11.5 kg.
- Speed: 0.4 meters/minute
- Its wheel system enabled it to climb over obstacles one-and-a-half wheel diameters tall.

Convenient input for a **thermostat**

• Position to heat

Examples

Disturbance compensation in a **Rolling Mill**

 Maintain steel thickness despite variations/disturbance

UNIVERSITI TEKNOLO THE Example: High-speed Train Suspension System

TEKNOLOGI OTHER Example: Emission Control for Automotive Engines

Emission Regulation

Tier	Date	СО	THC	NMHC	NO _x	HC+NO _x	P	PM
Euro 1	October 1994	2.72	-	1	1	0.97		400 350
Euro 2	January 1998	2.2	1	1	1	0.5		(mdd) uoi 250
Euro 6	Septembe r 2014	1.000	0.100	0.068	0.060	-	0.0	HC Concentration (ppm) 250 250 150 100 50
* Applies	only to vehic	cles with	direct ir	njection en	gines			0

Replacing carburetor engines with <u>fuel</u> <u>injection system</u>

1.5 CONTROL SYSTEM DESIGN PROCESS

Controller Design Process - General

Controller Design Process - General

Example – Antenna Position Control

1.6 MATLAB

- ◆ MATLAB
- ◆ Control System Toolbox
 - ♦ Simulink

MATLAB

- Important tool in current control system design.
- Recall:
 - To achieve:
 - » <u>PO4:</u> Ability to work with modern instrumentation, software and hardware.
 - through:
 - » <u>CO4:</u> Apply <u>MATLAB</u> software in analyzing control system performance
- MATLAB contains:
 - Lots of Toolboxes one of them is 'Control System Toolbox'
 - Simulink click and drag

Control System Toolbox

- Contains a set of functions relation to control system design.
- Can be used together with other MATLAB functions or functions from other toolboxes.

Simulink

- More graphical.
- Code writing is minimal.

EXERCISES

Review questions

- Name 3 applications of feedback control system.
- Give 3 examples of open-loop systems.
- Give an example of what happen to a system that is unstable.
- Name 3 approaches to the mathematical modeling of control systems.
- How do we classify control systems?
- What are the steps involved in designing a control system?

Answers

- Name 3 applications of feedback control system.
 - Guided missiles, automatic gain control in radio receivers, satellite tracking antenna
- Give 3 examples of open-loop systems
 - Motor, low pass filter, inertia supported between two bearings
- Give an example of what happen to a system that is unstable
 - It follows a growing transient response until the steady-state response is no longer visible. The system
 will either destroy itself, reach an equilibrium state because of saturation in driving amplifiers, or hit
 limit stops.
- Name 3 approaches to the mathematical modeling of control systems.
 - Transfer function, state-space, differential equations
- How do we classify control systems?
 - Open-loop control system and closed-loop control system
 - Linear and non-linear control systems
 - Time-invariant and time-varying control systems
 - Continuous and discrete control systems
 - Single input-single output (SISO) and multi input-multi output (MIMO)
 - Lumped parameter and distributed parameter control systems

Answers

 What are the steps involved in designing a control system?

STEP 1

 Transform requirement s into physical systems

STEP 2

Draw a functional block diagram

STEP 3

• Create a schematic

STEP 4

 Develop mathematical model (block diagram)

STEP 5

Reduce block diagram

STEP 6

Analyze & Design

Problem 1

A variable resistor, called a potentiometer is given below. The resistor is varied by moving a wiper arm along a fixed resistance. The resistance from A to C is fixed, but the resistance from B to C varies with the position of the wiper arm. If it takes 10 turns to move the wiper arm from A to C, draw a block diagram of the potentiometer showing the input variable, output variable and (inside a block) the gain etc.

Solution 1

Problem 2

A temperature control system operates by sensing the difference between the thermostat setting and the actual temperature and then opening a fuel valve an amount proportional to this difference. Draw a functional closed-loop block diagram, identifying the input and output transducers, the controller and the plant. Further, identify the input and output signals of all subsystems previously described.

Solution 2

END OF CHAPTER 1