Deep Learning for Computer Vision

Evolution of CNN Architectures: InceptionNet, ResNet

Vineeth N Balasubramanian

Department of Computer Science and Engineering Indian Institute of Technology, Hyderabad

 Deeper networks with focus on efficiency: reduce parameter count, memory usage, and computation

- Deeper networks with focus on efficiency: reduce parameter count, memory usage, and computation
- 22 layers

- Deeper networks with focus on efficiency: reduce parameter count, memory usage, and computation
- 22 layers
- No FC layers

- Deeper networks with focus on efficiency: reduce parameter count, memory usage, and computation
- 22 layers
- No FC layers
- Efficient "Inception" module

- Deeper networks with focus on efficiency: reduce parameter count, memory usage, and computation
- 22 layers
- No FC layers
- Efficient "Inception" module
- Only 5 million parameters! (12x less than AlexNet)

- Deeper networks with focus on efficiency: reduce parameter count, memory usage, and computation
- 22 layers
- No FC layers
- Efficient "Inception" module
- Only 5 million parameters! (12x less than AlexNet)
- ILSVRC'14 classification winner (6.7% top-5 error)

• Inception module:

Local unit with parallel branches

 Local structure repeated many times throughout the networ

Credit: Justin Johnson, Univ of Michigan

- Inception module: Local unit with parallel branches
- Local structure repeated many times throughout the network

- Inception module: Local unit with parallel branches
- Local structure repeated many times throughout the network

Credit: Justin Johnson, Univ of Michigan

Naive Inception module

- Apply parallel filter operations on the input from previous layer:
 - Multiple receptive field sizes for convolution (1 \times 1, 3 \times 3, 5 \times 5)
 - Pooling operation (3×3 max pooling)
- Concatenate all filter outputs together depth-wise

Naive Inception module

- Apply parallel filter operations on the input from previous layer:
 - Multiple receptive field sizes for convolution (1 \times 1, 3 \times 3, 5 \times 5)
 - Pooling operation (3×3 max pooling)
- Concatenate all filter outputs together depth-wise
- What's the problem with this?

Naive Inception module

- Apply parallel filter operations on the input from previous layer:
 - Multiple receptive field sizes for convolution (1 \times 1, 3 \times 3, 5 \times 5)
 - Pooling operation $(3 \times 3 \text{ max pooling})$
- Concatenate all filter outputs together depth-wise
- What's the problem with this?
 Computationally very expensive

Credit: Fei-Fei Li, Justin Johnson and Serena Yeung, CS231n course, Stanford, Spring 2019

Solution: Use 1×1 "Bottleneck" layers to reduce channel dimension before expensive conv layers

Solution: Use 1×1 "Bottleneck" layers to reduce channel dimension before expensive conv layers

Solution: Use 1×1 "Bottleneck" layers to reduce channel dimension before expensive conv layers

Preserves spatial dimensions, reduces depth!

Solution: Use 1×1 "Bottleneck" layers to reduce channel dimension before expensive conv layers

- Preserves spatial dimensions, reduces depth!
- Projects depth to lower dimension (combination of feature maps)

Credit: Fei-Fei Li, Justin Johnson and Serena Yeung, CS231n course, Stanford, Spring 2019

Naive Inception module

1x1 conv "bottleneck" layers

Inception module with dimension reduction

Credit: Fei-Fei Li, Justin Johnson and Serena Yeung, CS231n course, Stanford, Spring 2019

Full Architecture:

Full Architecture:

Full Architecture:

Full Architecture:

Auxiliary classification outputs to inject additional gradient at lower layers (AvgPool-1x1Conv-FC-FC-Softmax)

Full Architecture:

Auxiliary classification outputs to inject additional gradient at lower layers (AvgPool-1x1Conv-FC-FC-Softmax)

22 total layers (parallel layers count as 1 layer. Auxiliary output layers not counted)

Credit: Fei-Fei Li, Justin Johnson and Serena Yeung, CS231n course, Stanford, Spring 2019

Deeper the Merrier

Credit: Fei-Fei Li, Justin Johnson and Serena Yeung, CS231n course, Stanford, Spring 2019

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

Deeper model does worse than shallow model!

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

Deeper model does worse than shallow model! Why?

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

Deeper model does worse than shallow model! Why?

The initial guess is that the deep model is **overfitting** since it is much bigger than the shallow model

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

Deeper model does worse than shallow model! Why?

The deep model is actually **underfitting** since it also performs worse than the shallow model on the training set

How deep can we go? Vanishing/Exploding Gradient

Consider a simple network:

How deep can we go? Vanishing/Exploding Gradient

Consider a simple network:

How deep can we go? Vanishing/Exploding Gradient

Consider a simple network:

- Vanishing gradients: Deeper the network, gradients vanish quickly, thereby slowing the rate of change in initial layers
- Exploding gradients: Happen when the individual layer gradients are much higher than 1, for instance can be overcome by gradient clipping

ResNet

The deeper model should be able to perform at least as well as the shallower model; how?

ResNet

The deeper model should be able to perform at least as well as the shallower model; how?

Solution: Change the network with identity connections between layers:

The deeper model should be able to perform at least as well as the shallower model; how?

Solution: Change the network with identity connections between layers:

The deeper model should be able to perform at least as well as the shallower model; how?

Solution: Change the network with identity connections between layers:

The deeper model should be able to perform at least as well as the shallower model; how?

Solution: Change the network with identity connections between layers:

- A residual network is a stack of many residual blocks
- ullet Each residual block has two 3×3 conv layers

- A residual network is a stack of many residual blocks
- ullet Each residual block has two 3 imes 3 conv layers
- ullet Periodically, double number of filters and downsample spatially using stride 2 (/2 in each dimension)

- A residual network is a stack of many residual blocks
- ullet Each residual block has two 3×3 conv layers
- Periodically, double number of filters and downsample spatially using stride 2 (/2 in each dimension)
- Use global average pooling and a single linear layer at the end (FC 1000 to output classes)

- A residual network is a stack of many residual blocks
- ullet Each residual block has two 3×3 conv layers
- Periodically, double number of filters and downsample spatially using stride 2 (/2 in each dimension)
- Use global average pooling and a single linear layer at the end (FC 1000 to output classes)
- ullet Total depths of 34, 50, 101, or 152 layers for ImageNet dataset

For deeper networks (ResNet-50+), use "bottleneck" layer to improve efficiency (similar to GoogLeNet)

For deeper networks (ResNet-50+), use "bottleneck" layer to improve efficiency (similar to GoogLeNet)

- Able to train very deep networks
- Deeper networks performs better than shallow networks now (as expected); residual blocks help avoid vanishing gradient
- 1st place in all ILSVRC and COCO 2015 competitions
- We will discuss detection, localization, segmentation and the COCO dataset a bit later

- Able to train very deep networks
- Deeper networks performs better than shallow networks now (as expected); residual blocks help avoid vanishing gradient
- 1st place in all ILSVRC and COCO 2015 competitions
- We will discuss detection, localization, segmentation and the COCO dataset a bit later

- Able to train very deep networks
- Deeper networks performs better than shallow networks now (as expected); residual blocks help avoid vanishing gradient
- 1st place in all ILSVRC and COCO 2015 competitions
- We will discuss detection, localization, segmentation and the COCO dataset a bit later

- Able to train very deep networks
- Deeper networks performs better than shallow networks now (as expected); residual blocks help avoid vanishing gradient
- 1st place in all ILSVRC and COCO 2015 competitions
- We will discuss detection, localization, segmentation and the COCO dataset a bit later

- Able to train very deep networks
- Deeper networks performs better than shallow networks now (as expected); residual blocks help avoid vanishing gradient
- 1st place in all ILSVRC and COCO 2015 competitions
- We will discuss detection, localization, segmentation and the COCO dataset a bit later

ResNet @ ILSVRC & COCO 2015 Competitions

1st place in all five major challenges

- ImageNet Classification: "Ultra-deep" 152-layer nets
- ImageNet Detection: 16% better than the 2nd best
- ImageNet Localization: 27% better than the 2nd best
- COCO Detection: 11% better than the 2nd best
- COCO Segmentation: 12% better than the 2nd best

Homework

Readings

- Tutorial: Illustrated: 10 CNN Architectures
 - Read 4-6: Inception-v1, Inception-v3, ResNet-50
- (Optional) For more details, skim through the following papers:
 - ImageNet Classification with Deep Convolutional Neural Networks
 - Very Deep Convolutional Networks for Large-Scale Image Recognition
 - Going Deeper with Convolutions
 - Deep Residual Learning for Image Recognition

Exercise

• Show that minimizing negative log likelihood in a neural network with a softmax activation function in the last layer is equivalent to minimizing cross-entropy error function (*Hint:* Read Chapter 3 of Nielsen's online book on basics of NNs)

References

- [1] Yann LeCun et al. "Gradient-based learning applied to document recognition". In: 1998.
- [2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet Classification with Deep Convolutional Neural Networks". In: NIPS. 2012.
- [3] Karen Simonyan and Andrew Zisserman. "Very Deep Convolutional Networks for Large-Scale Image Recognition". In: CoRR abs/1409.1556 (2015).
- [4] Christian Szegedy et al. "Going deeper with convolutions". In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 1–9.
- [5] Kaiming He et al. "Deep Residual Learning for Image Recognition". In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 770–778.
- [6] Johnson, Justin, EECS 498-007 / 598-005 Deep Learning for Computer Vision (Fall 2019). URL: https://web.eecs.umich.edu/~justincj/teaching/eecs498/ (visited on 06/29/2020).
- [7] Li, Fei-Fei; Johnson, Justin; Serena, Yeung; CS 231n Convolutional Neural Networks for Visual Recognition (Spring 2019). URL: http://cs231n.stanford.edu/2019/ (visited on 06/29/2020).