第一次习题课

1(作业题 4): 设 G 是一个半群, 如果:

- (1) G 中含有左幺元 e, 即 $\forall x \in G, ex = x$;
- (2) G 的每个元素 x 有 (关于 e) 左逆元 x^{-1} 使得 $x^{-1}x = e$. 试证 G 是群.

证明: 我们欲说明 e 是幺元,那么应该证明 $xe = x(x^{-1}x) = (xx^{-1})x = ex = x, \forall x \in G$,因此我们只需要证明 $xx^{-1} = e, \forall x \in G$,而 $xx^{-1} = e(xx^{-1}) = (ex)x^{-1} = (((x^{-1})^{-1}x^{-1})x)x^{-1} = ((x^{-1})^{-1}(x^{-1}x))x^{-1} = ((x^{-1})^{-1}e)x^{-1} = (x^{-1})^{-1}(ex^{-1}) = (x^{-1})^{-1}x^{-1} = e$. 因此 e 是 G 中幺元,而且同时说明了 G 中任意一个元素有逆元.

2(作业题 8): 举例:

- (1) 举出一个半群的例子, 其中存在元素有左逆元但是没有右逆元;
- (2) 举出一个半群的例子, 其中存在元素至少有两个左逆元;
- (3) 举出一个半群的例子, 其中存在元素有无数个左逆元.

证明: 大多数时候我们谈论左右逆元, 都是在幺半群的情况下, 因为此时只有唯一一个幺元, 性质相对会好些. 我们分别看一些例子:

(a): 右零半群.

设 S 是一个非空子集, 定义其中乘法: $a \cdot b = b, \forall a, b \in S$, 易证 S 是半群, 而且任一元素都是左 幺元, 且任一元素 a 都是元素 b 的相对于左幺元 b 的左逆元. 因此 b 有 |S| 个相对于 b 的左逆元. 同时, 任一元素 b 都是元素 a 的相对于左幺元 b 的左逆元

注意: 右零半群构成一个群 $\Longrightarrow ae = a = e, \forall a \in S \Rightarrow |S| = 1.$

(b): 集合的全变换半群 $\mathcal{T}(X)$ (幺半群).

例: $f: \mathbb{N} \to \mathbb{N}, n \longmapsto n+1$, 没有右逆元因为其不是满射.f 有无限个左逆: $g_a: \mathbb{N} \to \mathbb{N}$,

$$g_a(n) = \begin{cases} n-1 & n \ge 1 \\ a & n = 0 \end{cases} \quad \forall a \in \mathbf{N}.$$

或者 $f(n) = n^2$.

也可以考虑 R^{∞} 上的线性变换: $f:(a_1,a_2,\cdots,a_n,\cdots)=(0,a_1,a_2,\cdots,a_n,\cdots)$.

- (a): 固定右零半群里的一个左幺元, 记为 e, 那么 $\forall a \in G, ab = b = e$ 意味着每个元素关于 e 都有唯一的右幺元 e, 但是 G 一般不是群.
- (b) 若半群 G 有唯一的右幺元 e 并且每个元素都有关于 e 的左逆元, 那么 G 是一个群. 事实上: $e=(a^{-1})^{-1}a^{-1}=(a^{-1})^{-1}(a^{-1}a)a^{-1}=eaa^{-1}$, 所以 $\forall b\in G, b=be=beaa^{-1}=baa^{-1}\Rightarrow e=aa^{-1}$, 进一步 $ea=(aa^{-1})a=ae=a$. 因此, G 是群.
- (c) Kaplansky 定理: 含幺环中一元素若有至少两个右逆元, 则其有无限个右逆元 $(x_0 + (1 x_0 x)x^k)$.
- (d) 定义 $f: \mathbf{N} \to \mathbf{N}$:

$$f(n) = \begin{cases} n-1 & n > 1 \\ 0 & 0 \le n \le 1 \end{cases}$$

易验证 f 只有两个右逆元, 因此 $\mathcal{T}(X)^{op}$ 中 f 恰有两个左逆元.

3(作业题 9): 令 S 是一非空集. 定义 S 上的运算: $a \cdot b = a(a \cdot b = b)$. 则 (S, \cdot) 是一个半群, 称 其为左 (右) 零半群. 若 S 是一半群, 证明如下三款等价:

- (1) S 是一左零半群, 或者 S 是一右零半群;
- (2) $ab = cd \Rightarrow a = c$ 或者 b = d;

(3) 任意映射 $f: S \to S, f(ab) = f(a)f(b)$.

证明: (1)⇒(3): 显然;

 $(3)\Rightarrow(2)$: 先证明 $\forall a,b \in S, ab = a$ 或者 b. 若 $ab \neq a$, 做 S 上的变化 $f(x) = a(x = ab), f(x) = ab(x \neq ab) \Rightarrow a = f(ab) = f(a)f(b) = (ab)f(b)$, 若 f(b) = ab, 那么 a = (ab)(ab) = ab(考虑到独点的映射), 矛盾, 因此 $f(b) = \neq ab$, 即 ab = a. 现证明命题, 设 ab = cd, 若 a = b, 那么 ab = aa = a = b = cd = c(d), 若 $a \neq b$, 那么 ab = a(b), 若 ab = a, 做 ab = a, 他 ab = a, 他

4(作业题 10): 今 G 是一个半群. 则 G 是一个群当且仅当

$$\forall a \in G, \exists! b \in G, (ab)^2 = ab.$$

证明: 第一步: 记上述 b 为 a', 那么有 $(aa'aa')^2 = aa'aa' \Rightarrow a'aa' = a' \Rightarrow (a'a)^2 = a'a$. 若存在另一个 a'' 满足 $(a''a)^2 = a''a$, 即 a = (a'')', 那么 $(aa'')^2 = aa'' \Rightarrow a'' = a'$. 第二步: 任意 $a, b \in G, ((ba')'(ba'))^2 = (((ba')'b)a'))^2 = ((ba')'b)a') \Rightarrow (ba')'b = a$. 即 xb = a 有解,

5:(一些小维典型群)

(1):SO(2)≅U(1)(课堂上说过);

类似的 ay = b 有解, 故 G 是群.

(2): $SU(2) \rightarrow SO(3)$.

证明: (1):SO(2) =
$$\left\{ \begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} \in M_2(R) | 0 \le \varphi < 2\pi \right\} \to U(1)$$

$$\begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} \mapsto e^{i\varphi}.$$

(2): 旋转群 SO(3). 在 \mathbb{R}^3 上给定标准内积. \mathbb{R}^3 的原点表示成 O,\mathbb{R}^3 上的旋转 (rotation) 是一个光滑映射 $R:\mathbb{R}^3\to\mathbb{R}^3$,其保持原点 O、角度、距离和定向. 考虑 \mathbb{R}^3 中任意两点 A,B,由于 R 保持距离和角度,则四边形 OABC 和四边形 R(O)R(A)R(B)R(C) 全等,因此 OR(A)+OR(B)=OR(C),也就是 R(C)=R(A+B)=R(A)+R(B). 而且我们有 R(rA)=rR(A),因此 R 是一个线性映射. (如果觉得该描述不够数学,也可以利用内积得到更严格的数学证明). 因为:

$$cos(\mathbf{a}, \mathbf{b}) = \frac{\mathbf{a} \cdot \mathbf{b}}{\sqrt{\mathbf{a} \cdot \mathbf{a}} \mathbf{b} \cdot \mathbf{b}}$$

一个旋转保持距离和角度当且仅当其保持内积.

为了保持定向, 只需要其保持外积 $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c} = det(\mathbf{a}, \mathbf{b}, \mathbf{c}), R$ 对应的矩阵同样记为 R, 则有 $sgn(det R \cdot det(\mathbf{a}, \mathbf{b}, \mathbf{c})) = sgn(det(\mathbf{a}, \mathbf{b}, \mathbf{c}))$. 因此 det R > 0.

综上,一个旋转对应于一个线性变换, 其满足: $R^TR=I_3$, det R=1, 即 SO(3). 而我们又知道三阶特殊正交矩阵必有一个实特征根, 且可知其是 $1(\lambda_1\lambda_2\bar{\lambda}_2=1)$. 因此存在 e_r 使得 $Re_R=e_R$. 若 R 不是恒等矩阵,则其属于 1 的特征子空间的维数为一, 其在 R 的作用下是不变的. 我们称改不变子空间为旋转轴 (the axis of rotation),R 可以视作绕着该轴的旋转 (角度记为 ϕ , 旋转 R 记为 $R(e_R,\phi)$). 我们能通过一个坐标变换使得 z 轴变成 e_R , 例如:记 e_R 在 zy 平面的投影和 z 轴的夹角为 θ , e_R 和 z 轴的夹角为 φ ,则:

$$R(e_R,\phi) = \begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\varphi & 0 & \sin\varphi\\ 0 & 1 & 0\\ -\sin\varphi & 0 & \cos\varphi \end{pmatrix} \begin{pmatrix} \cos\phi & -\sin\phi & 0\\ \sin\phi & 0 & \cos\phi\\ 0 & 0 & 1 \end{pmatrix}$$

上述矩阵分别记为 $R_z(\theta)$, $R_y(\varphi)$, $R_z(\phi)$, 因此 $R = R_z(\theta)R_y(\varphi)R_z(\phi)$.

类似的有
$$R_x(\alpha) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\alpha & -\sin\alpha \\ 0 & \sin\alpha & \cos\alpha \end{pmatrix}$$
. 故 SO(3) 可以由初等旋转矩阵 $R_x(\alpha), R_y(\varphi), R_z(\phi)$ 生成.

复旋转. 在 \mathbb{C}^2 给定标准内积. 我们有群同态 $\det:U(2)\longrightarrow U(1)$,显然这是一个满同态,且其 kernel 是 SU(2). 特别的,我们有 $U(2)\cong U(1)\times SU(2)$ $(U(1)\cong\begin{pmatrix}e^{i\varphi/2}&0\\0&e^{i\varphi/2}\end{pmatrix})$.

 $\forall U \in SU(2), U^*U = I_2$, 且 $\det U = 1$, 因此可以得到如下等式

$$|a|^2 + |c|^2 = 1, \quad |b|^2 + |d|^2 = 1,$$

 $\bar{a}b + \bar{(c)}d = 0, \quad ad - bc = 1.$

故 $U^{-1}=\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$, 所以 $d=\bar{a}, c=-\bar{b}$. 因此 SU(2) 中的任意一个元素都可以写成如下形式:

$$U(x,y) = \begin{pmatrix} x & y \\ -\bar{y} & \bar{x} \end{pmatrix}$$
 $|x|^2 + |y|^2 = 1,$

特别的我们有流形间的同构 $SU(2) \cong S^3$.

泡利矩阵. 定义如下矩阵:

$$\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

注意到 $M_0=\mathbb{R}\sigma^1+\mathbb{R}\sigma^2+\mathbb{R}\sigma^3$ 是所有迹零的二阶复 Hermitian 矩阵、 $\forall (x_1,x_2,x_3)^T\in\mathbb{R}^3, (x_1,x_2,x_3)^T\leftrightarrow H_x:=\sum_{i=1}^3x_i\sigma^i,$ 由于在 M_0 上具有矩阵 $A(基:\ \sigma^1,\sigma^2,\sigma^3)$ 的线性变换对应到 \mathbb{R}^3 同样具有矩阵 $A(\&:\ e_1,e_2,e_3)$ 的线性变换,因此我们可以简单地将这两个空间等同起来.

令 $g \in SU(2)$, 定义如下映射: $\Phi_g: H_x \mapsto gH_xg^{-1}, tr(gH_xg^{-1}) = tr(H_x) = 0$, $(gH_xg^{-1})^* = (g^{-1})^*H_x^*g^* = gH_xg^{-1} \Rightarrow \Phi_g(H_x) = gH_xg^{-1} \in M_0$. 又有 $\Phi_g(H_{\alpha x} + H_{\beta y}) = \alpha\Phi_g(H_x) + \beta\Phi_g(H_y)$, 即 $\Phi \not\in M_0$ 上的线性算子.

设 $\Phi_g(H_x) = H_y$,我们说明 Φ 是 \mathbb{R}^3 上的正交变换. $\Phi_g(x) \cdot \Phi_g(x) = y \cdot y = y_1^2 + y_2^2 + y_3^2 = -\det H_y = -\det g(H_x) = -\det gH_xg^{-1} = -\det H_x = x_1^2 + x_2^2 + x_3^2 = x \cdot x$.

容易证明 $\Phi_{gh} = \Phi_g \circ \Phi_h$, 因此 $\Phi: g \mapsto \Phi_g$ 是 SU(2) 到 O(3) 的同态, 其 kernel 满足 $gH = Hg, \forall H \in M_0$, 即 $g\sigma^i = \sigma^i g, 1 \leq i \leq 3 \Rightarrow g = \pm I_2$. 又因为:

$$U(e^{i\gamma/2}, 0)\sigma^{1}U(e^{i\gamma/2}, 0)^{-1} = \cos\varphi\sigma^{1} + \sin\varphi\sigma^{2},$$

$$U(e^{i\gamma/2}, 0)\sigma^{2}U(e^{i\gamma/2}, 0)^{-1} = -\sin\varphi\sigma^{1} + \cos\varphi\sigma^{2},$$

$$U(e^{i\gamma/2}, 0)\sigma^{3}U(e^{i\gamma/2}, 0)^{-1} = \sigma^{3}.$$

因此 $\Phi(U(e^{-i\gamma/2},0)) = R_z(\gamma)$.

而我们又有 $g = hU(e^{-i\gamma/2}, 0)h^{-1}, h$ 是某个酉矩阵. 因此 $\det \Phi_g = \det(\Phi_h \Phi_{U(e^{-i\gamma/2}, 0)} \Phi_{h^{-1}}) = 1$ (此时的 Φ_h 的定义和上面是一样的).

同样可以计算 $\Phi(U(\cos\alpha/2, -i\sin\alpha/2)) = R_x(\alpha), \Phi(U(\cos\beta/2, -\sin\beta/2)) = R_x(\alpha).$ 综上 $SU(2)/Z_2 \cong SO(3).$

第四次习题课

伍文超 MJTDX USTC

1: (1) 证明 $GL_2(2)$ 同构于 S_3 .

(2) 证明 $PGL_2(3) \cong S_4$. 从而也有 $PSL_2(3) \cong A_4$ 因为其是 $PGL_2(3)$ 的指数为而的子群. $GL_n(\mathbb{F}_q)$ 简记为 $GL_n(q),q$ 是素数的幂.

证明: (1): 考虑:

$$GL_2(2)$$
 $(\mathbb{Z}_2 \oplus \mathbb{Z}_2) \setminus \{(0,0)^T\}$ \longrightarrow $(\mathbb{Z}_2 \oplus \mathbb{Z}_2) \setminus \{(0,0)^T\}$

上述作用是合理的, 因为 $GL_2(2)$ 中任意一个元素给出 $S=(\mathbb{Z}_2\oplus\mathbb{Z}_2)\setminus\{(0,0)^T\}$ 的一个置换 (元素是 可逆矩阵). 通过计算可知 $A \in GL_2(2)$ 在 S 上作用平凡当且仅当 $A = I_2$. 因此有单射 $GL_2(2) \hookrightarrow S_3$. 最后由 $|GL_2(2)| = 2 \cdot 3 = 6 = |S_3|$ 可知二者同构.

(2) 类似于 (1), 考虑 $\mathbb{Z}_3 \oplus \mathbb{Z}_3$ 中的四个子集 $V_i = \{a(i,1) \in \mathbb{Z}_3 \oplus \mathbb{Z}_3 | a = 0,1,2\}, i = 0,1,2,V_\infty = 0,1,2\}$ $\{a(1,0)\in\mathbb{Z}_3\oplus\mathbb{Z}_3|a=0,1,2\}$. 记 $S=\{V_0,V_1,V_2,V_\infty\}$. 同样的 $GL_2(3)$ 中任意一个元素给出 S的一个置换 (合理的),而且通过计算可知 $A \in GL_2(3)$ 在 S 上作用平凡当且仅当 A 是标量矩阵 (scalar matrices). 因此有单射 $GL_2(3)/Z(GL_2(3)) = PGL_2(3) \hookrightarrow S_4$. 最后由 $|GL_2(3)| = 24 = |S_4|$

Remark:(1) 类似的,我们可以取 $\mathbb{F}_q \oplus \mathbb{F}_q$ 中的 q+1 个子集 (一维子空间) $V_i = \{a(i,1) \in \mathbb{F}_q \oplus \mathbb{F}_q | a=0,1,\cdots,q-1\}, i=0,2,\cdots,q-1,V_{\infty}=\{a(1,0) \in \mathbb{F}_q \oplus \mathbb{F}_q | a=0,1,\cdots,p-1\},$ 记

 V_{q-1}, V_{∞} }. 同样的 $GL_2(q)$ 中任意一个元素给出 S 的一个置换 (合理的), 且只有标量矩阵给出平凡 作用, 因此我们得到单射 $PGL_2(q) \hookrightarrow S_{q+1}$

(2) 在线性代数中, 我们定义射影空间为 $ℝ^n$ 的所有一维子空间 (直线) 构成的集合 n=2 时就是射 影直线, n=3 时就是射影平面. 在此处我们可以类似的命名 (1) 中的集合为 \mathbb{F}_q 上的射影直线, 不 妨记为 PL(q). 根据我们的定义, $PL(q)=\{V_0,V_1,V_2,\cdots,V_{q-1},V_\infty\} \longleftrightarrow \mathbb{F}_q \bigcup \{\infty\}$ (将每一个直线 视作一个点),我们将二者视为恒等的. 如果取 \mathbb{F}_q^3 的二维子空间构成的集合则是射影平面 (有限射影平面,有 q^2+q+1 个点和线,每条线上 q+1 个点,每个点关联 q+1 条线.)
(3) 任意 $A=\begin{pmatrix} a & b \\ c & c \end{pmatrix} \in GL_2(q)$,我们有 $A(k(i,1)^T)=k(ai+b,ci+d)$, $A(k(1,0)^T)=k(a,0)$. 等

价的:

$$GL_2(q)$$
 $PL(q)$ \longrightarrow $PL(q)$

$$z \longrightarrow \frac{az+b}{cz+d} = \frac{a+b/z}{c+d/z}$$

2: 旋转群 SO(3) 是单群 (SO(n)?).

证明: 第一次习题课我们证明了 $SU(2)/\{\pm I_2\} \cong SO(3)$, 第四次作业说明了 SU(2) 的包含 $\{\pm I_2\}$ 的正规子群和 SO(3) 的正规子群是一一对应的,因此我们只需要说明 SU(2) 的真包含 $\{\pm I_2\}$ 的正 规子群 G 等于 SU(2). 回顾:

$$SU(2) = \left\{ \left(\begin{array}{cc} x & y \\ -\bar{y} & \bar{x} \end{array} \right) \middle| |x|^2 + |y|^2 = 1, x, y \in \mathbb{C} \right\}$$

从线性代数我们知道任意 $A \in SU(2)$ 酉相似于对角矩阵, 特征多项式有共轭复根或都为 ± 1 , 记为 $B_{\varphi} = \begin{pmatrix} e^{i\varphi} & 0 \\ 0 & e^{-i\varphi} \end{pmatrix}$, $\varphi \in [0,2\pi)$. 因此 SU(2) 的每个共轭类都含有对角矩阵, 而由于正规子群是共轭类的无交并, 因此 G 包含一个对角矩阵 $(\neq \pm I_2)$, 记为 B_{α_0} , $\alpha_0 \neq 0$, π . 自然的 $B_{\alpha_0}^{-1} = B_{2\pi-\alpha_0} \in G$, 故设 $0 < \alpha_0 < \pi$. 考虑 B_{α_0} 和 $\forall A \in G$ 的换位子:

$$\begin{split} [B_{\alpha_0}, A] &= B_{\alpha_0} A B_{\alpha_0}^{-1} A^{-1} \\ &= \begin{pmatrix} e^{i\alpha_0} & 0 \\ 0 & e^{-i\alpha_0} \end{pmatrix} \begin{pmatrix} x & y \\ -\bar{y} & \bar{x} \end{pmatrix} \begin{pmatrix} e^{-i\alpha_0} & 0 \\ 0 & e^{i\alpha_0} \end{pmatrix} \begin{pmatrix} \bar{x} & -y \\ \bar{y} & x \end{pmatrix} \\ &= \begin{pmatrix} |x|^2 + |y|^2 e^{i2\alpha_0} & (e^{i2\alpha_0} - 1)xy \\ (1 - e^{-i2\alpha_0})\bar{xy} & |x|^2 + |y|^2 e^{-i2\alpha_0} \end{pmatrix}. \end{split}$$

 $tr([B_{\alpha_0},A]) = 2|x|^2 + |y|^2(e^{i2\alpha_0} + e^{-i2\alpha_0} = 2(1-|y|^2) + 2|y|^2(-2sin^2\alpha_0 + 1) = 2(1-2|y|^2sin^2\alpha_0).$ 设 $[B_{\alpha_0},A]$ 和 B_{α_1} 共轭,故 $e^{i\alpha_1} + e^{-i\alpha_1} = 2cos\alpha_1 = 2-4|y|^2sin^2\alpha_0 \Rightarrow cos\alpha_1 = 1-2|y|^2sin^2\alpha_0 \in [1-2sin^2\alpha_0,1] = [cos2\alpha_0,1]$,因为 $0 \le |y|^2 \le 1$.

不妨设 $2\alpha_0 \leq 2\pi - 2\alpha_0$ (另一边类似),则有 α_1 可以取遍 $[0,2\alpha_0],[2\pi - 2\alpha_0,2\pi]$. 也就是说 $B_{\alpha_1} \in G, \forall \alpha_1 \in [0,2\alpha_0]$. 因为对于任意的 $\alpha > 0$, 存在 $n \in \mathbb{Z}_{\geq 0}$ 使得 $0 < \alpha/n \leq 2\alpha_0$, 因此 $B_{\alpha} \in G, \forall \alpha$, 即 G = SU(2).

Remark: 一般的,SO(2n+1) 是单群, $SO(2n)/\{\pm I_{2n}\}$ 是单群.

3: 如果域 F 有至少四个元素, 则 $SL_2(F)/\{\pm I_2\}$ 是单群 (一般的, $PSL_n(F_p)$ 呢?). **证明**: 我们先给出一些需要用到的子群:

$$U = \left\{ u(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \middle| x \in F \right\}$$

$$V = \left\{ v(x) = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix} \middle| x \in F \right\}$$

$$D = \left\{ d(x) = \begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix} \middle| x \in F^* \right\}$$

$$B = DU = UD = \left\{ \begin{pmatrix} x & y \\ 0 & x^{-1} \end{pmatrix} \middle| x \in F^*, y \in F \right\}$$

再考虑 $[G,G] = \{ABA^{-1}B^{-1} \in G | A, B \in G\}$, 容易证明 [G,G] 是 G 的正规子群. $d(a)u(b)d(a)^{-1}u(b)^{-1} = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a^{-1} & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} 1 & -b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b(a^2-1) \\ 0 & 1 \end{pmatrix}$ 因此只需要 $a^2 \neq 1$,则可以得到 $U \subset [B,B] \subset U$,故 $U = [B,B] \leq [G,G]$. 进而 $wUw^{-1} = V \leq [G,G] \Rightarrow w = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in [G,G] \Rightarrow [G,G] = G.$

设 K 是 G 的正规子群,则 $B \le KB$. 若 $B=KB \Rightarrow K \in B \Rightarrow K=CKC^{-1} \subset \bigcap_{A \in G} ABA^{-1} = \{\pm I_2\}.$

若 $B \neq KB$, 则存在 $h \in KB \setminus B$ 且 $h = b_1wb_2 \Rightarrow w \in KB \Rightarrow KB = G$. 从而 $w = kb, k \in K, b \in B \Rightarrow V = wUw^{-1} = kbUb^{-1}k^{-1} = kUk^{-1} = kk_1U \subset KU \Rightarrow KU = G$, 故 $G/K = KU/K \cong U/U \cap K$ 是交换群,因此 $G = [G,G] \leq K \Rightarrow K = G$.

Remark: 一般的, 若 $n \geq 3$, 则 $PSL_n(q)$ 是单群 (利用 Iwasawa 定理).

第七次习题课

伍文超 MJTDX USTC

1: 证明 $S_n(n \ge 5)$ 没有指数为 i 的子群, 其中 2 < i < n. 而且 $S_n(任意 n)$ 的指数为 n 的子群同构于 S_{n-1} (在以前的问题中我们已经知道 $S_n(n \ge 2)$ 指数为 2 的子群只有 A_n).

证明: 设 H 是指数为 $i,2 \le i \le n$ 的子群, 考虑 S_n 在 H 的全体左陪集 S 上的左乘作用给出的群作用, 则我们有群同态 $\varphi: S_n \to Sym(S) \cong S_i$, 并且通过同态第一基本定理 $ker\varphi$ 是 $S_n(n \ge 5)$ 的正规子群, 故 $ker\varphi = A_n$ 或者 S_n . 而 $ker\varphi \subset H$ 意味着 $H \in \{\{1\}, A_n\}$. 如果 H = 1 则 i = n, 如果 $H = A_n$, 则 i = 2.

若 H 是指数为 n 的子群, 则 H 作用在 S 上有一个固定点 H, 且由于 φ 是同构,H 中的每一个元素给出 $S-\{H\}$ 上不同的变换, 即有嵌入 $H\hookrightarrow S_{n-1}$. 通过比较阶数, 即可知此为同构.

2: 利用群的表现证明总存在 p3 阶非阿贝尔群.

(1) 例子:
$$GL(n, \mathbb{F}_p)$$
 的 Sylow p-子群, 例如 $\begin{pmatrix} 1 & \mathbb{F}_p & \mathbb{F}_p \\ 0 & 1 & \mathbb{F}_p \\ 0 & 0 & 1 \end{pmatrix}$

(2) 分析:

(a) 若 $p \neq 2$,G 是 p^3 阶群,则其有非平凡中心 Z(G),由第四次作业 11 和该题前两问知 $|Z(G)| = p, G/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p$. 令 $G/Z(G) = < a, b | a^p = b^p = 1, ab = ba >$,取 a 和 b 在 G 中的原像 x, y,则 $[x, y] := xyx^{-1}y^{-1} \in Z(G)$.

(i) 若 [x,y] = 1, 则 $\langle x,y,Z(G) \rangle$ 生成 G, 故 G 是阿贝尔群, 因此 $\langle [x,y] \rangle = Z(G) = G'$.

(ii) 若 ord(x) = ord(y) = p, 则由于 xy = [x, y]yx = yx[x, y], G 中元素都可以写成 $x^iy^j[x, y]^k$, $1 \le i, j, k \le p$ 的形式,因此 $G \cong \langle x, y|x^p = y^p = [x, y]^p = 1$, $[[x, y], x] = [[x, y], y] = 1 \rangle \cong \langle x, y, z|z = [x, y], x^p = y^p = z^p = 1$, $[z, x] = [z, y] = 1 \rangle$. 可以看出此类即是我们 (1) 中给出的例子.

(iii.1) 若 G 中存在 $ord(x) = p^2$ 的元素,令 $X = \langle x \rangle$,则总存在 $y \in G - X$ 使得 $y^p \in X$. 事实上,若 ord(y) = p,则显然, $ord(y) = p^2$,则由于 x^iy^j , $1 \le i, j \le p^2$ 计数 p^4 次,故存在 $i = 1, i_2, j_1, j_2$ 使得 $x^{i_1}y^{j_1} = x_{i_2}y^{j_2} \Rightarrow x^{i_3} = y^{j_3}$ 这同时意味着 $(i_3, p^2) = (j_3, p^2) = p$,也就是说 $y^p \in \langle x^p \rangle \le X$. 由于 G 非交换,因此 $C_G(X) = X$ 是指数为 p 的子群 (lec11,例 2.7),因此其是 G 正规子群. 考虑 y 在 X 上的共轭作用 σ_y ,其显然是一个非平凡的自同构,因为 $ord(y^{-1}xy) = ord(x) = p^2, y \notin X$ (第三次作业). 而由第二次习题课知 $Aut(\mathbb{Z}/p^2\mathbb{Z}) \cong \mathbb{Z}_p \times \mathbb{Z}_{p-1}$ 或者 $\mathbb{Z}_2.y^p \in X$ 意味着 σ_y 是 p 阶自同构,因此 $\sigma_y(x) = x^{kp}$, $1 \le k \le p-1$,通过选取适当的 y(因为 y 和 $\langle y \rangle$ 效果一样),可以使得 k=1,因此 $y^{-1}xy = x^{p+1} \Rightarrow x^py = yx^{p(p+1)} = yx^p$,从而 $Z(G) = \langle x^p \rangle = \langle [x,y] \rangle$. 因此 x^iy^j 形式的不同元素有 p^3 个,故构成 G.

(iii.2) 若 $ord(y) = p^2$,则 $y^p = x^{kp}, 1 \le k \le p-1$,令 $z = y^{-1}x^k \notin X$,则因为 $y^{-1}xy = x^{p+1}, i.e.[x^{-1}, y^{-1}] = x^p$,有 $z^p = (y^{-1}x^k)^p = x^k \sum_{i=1}^p (p+1)^i y^{-p} = x^{kp}y^{-p} = 1$,此处 $\sum_{i=1}^p (p+1)^i = (p+1)\frac{(p+1)^{p-1}}{p} \equiv p(p+1) \equiv p \pmod{p^2}$ (需要 $p \ne 2$). 因此总可以找到 G - X 中的 p 阶元 y_1 满足 $y_1^{-1}xy_1 = x^{p+1}$. 因此 $G \cong \langle x, y|x^{p^2} = y^p = 1, y^{-1}xy = x^{p+1}\rangle$. (b) 若 p = 2,如果其中元素都是二阶元,则其是阿贝尔群. 故其存在 4 阶元 x,记 X = (x). 取

(b) 若 p=2, 如果其中元素都是二阶元, 则其是阿贝尔群. 故其存在 4 阶元 x, 记 X=(x). 取 $y\in G-X$, 若 ord(y)=2, 则结论和上面分析一样, 即有 $G\cong \langle x,y|x^4=y^2=1,y^{-1}xy=x^3\rangle\cong D_4$. 若 G-X 中元素都是 4 阶元, 此时和前文不同的是, 无法将其转化为 G-X 中的二阶元. 但是同样地, 通过共轭作用,y 定义了一个 X 的非平凡自同构, 因此 $y^{-1}xy=x^3$, $G\cong \langle x,y|x^4=y^4=1,y^{-1}xy=x^3\rangle\cong Q_8$.

Rmk: (1) 因为 $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & n & \frac{n(n+1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$, 所以 $p \neq 2$ 时, 这些矩阵都是 p 阶元, 但是

p 为 2 时, 就存在 4 阶元, 根据二阶元的数量可知此时其同构于 D_4 .

 $x^2, (xy)^2 = x^2$, 故 Xy 中无二阶元.

3: $\diamondsuit G = \langle x_i, i \in \mathbb{Z}_{>0} | x_n^n = x_{n-1}, n > 1 \rangle$, 证明 $(G, \cdot) \cong (\mathbb{Q}, +)$.

证明: 考虑群同态 $\varphi: G \to Q$,其由 $x_n \mapsto \frac{1}{n!}, n > 0$ 给出,可知其是满射 (因为 $\{\frac{1}{n!}\}_{n=1}^{\infty}$ 生成 \mathbb{Q}),因此只需要证明 φ 是单同态即可。由于 $x_n^n = x_{n-1}$,因此 G 是交换群,且其中元素 x 都有形式: $\prod_{i=1}^k x_{n_i}^{s_i}, 0 \le s_i < n_i, 1 \le i \le k, s_i \in \mathbb{Z}.$ 因此 $\varphi(x) = \sum_{i=1}^k \frac{s_i}{n_i!}. \varphi(x) = 0$ 当且仅当 $\sum_{i=1}^k \frac{s_i}{n_i!} = 0$ 当 且仅当 $m + \frac{s_k}{n_k} = 0, m \in \mathbb{Z}$, 因此 $n_k = 1, s_k = 0$, 即 x = 1.

4: 给定生成元 $X=\{x_0,x_1,\cdots,x_n,\cdots\}$, 令 F 是 X 上的自由阿贝尔群,R 为包含 $\{px_0,x_0$ $px_1, x_1 - px_2, \dots, x_{n-1} - px_n, \dots$ 的最小正规子群,p 为一素数,G = F/R, 记 $a_n = x_n + R$.

- (1) 证明: $\forall x \in G, \exists n \geq 0$ 使得 $p^n x = 0$.
- (2) $a_n \neq 0, \forall n \geq 0$ 且所有的 a_n 是互异的, 从而 G 是一个无限群.
- (3) 证明 G 的每个真子群都是有限循环群.
- (4) 对于每一个正整数 n,G 有唯一的 p^n 阶子群.
- (5) 令 $U_p = \{e^{\frac{2\pi i k}{p^n}} | k \in \mathbb{Z}, n \geq 0\} \leq \mathbb{C}$ 是所有 p^n 次单位根构成的乘法群, 证明 $G \cong U_p$. 我们将上述群 G 记为 $\mathbb{Z}(p^{\infty})$.

证明: (1) $p^{n+1}x_n = px_0 \in R$, 因此 $p^{n+1}a_n = 0, \forall n \geq 0$. 由于 $pa_{n+1} = a_n$, 因此 G 是交换群, 其中 元素都有 $a = \sum_{i=1}^k m_i a_i$ 的形式. 故 p^{k+1} 零化 a.

- (2) 若 $a_0 = 0$, 则 $x_0 \in R$. 而我们知道 $F \cong \bigotimes_{i \in X} \mathbb{Z}$, 因此 $x_0 = \sum_{i=1}^k m_i (x_{i-1} px_i) + m_0 px_0 = \sum_{i=1}^k m_i (x_{i-1} px_i) + m_0 px_$ $(m_0p + m_1)x_0 + \sum_{i=1}^{k-1} (m_{i+1} - m_ip)x_i + m_kpx_k, m_j \in \mathbb{Z}, j \geq 0.$ 故 $m_0p + m_1 = 1, m_{i+1} = m_ip1 \leq i \leq k-1, m_kp = 0.$ 因此 $1 = m_0p$,矛盾. 类似的可以证明 $a_n \neq 0$. 若 $a_n = a_m, m \geq n$,则 $a_n = p^{m-n}a_m \Rightarrow (1-p^{m-n})a_m = 0$,乘以一个合适的 $p^i(\neq 0)$ 可以得到
- $p^i = 0$, 矛盾. 因此 a_n 是互异的. 从而 G 是无限群.
- (3) 设 $H \leq G$, 若 H 含有无限个 a_n , 则由 $pa_n = a_{n-1}$ 可知 H 含有所有的 a_n , H = G. 若其只含有限个 a_n . 若 $a = \sum_{i=1}^k m_i a_i \in H$, $0 \leq m_i < p$, $m_k \neq 0$, 则 $p^k a = p^k m_k a_k = m_k a_0 \in H \Rightarrow a_0 \in H \Rightarrow m_k a_1 = p^{n-1}a m_{k-1}a_0 \in H \Rightarrow a_1 \in H$, 依次即可得 $H = \langle a_0, a_1, \cdots, a_m \rangle = \langle a_m \rangle$, 即 H 是 有限循环群.
 - (4) 从 (3) 即可得知 G 的有限子群都是形如 $\langle a_m \rangle$ 的 p^{m+1} 阶循环群, 因此 p^n 阶子群是唯一的.
- (5) 易知 $R_p \cong Z[\frac{1}{n}]/Z \cong G$. 第一个同构是自然的, 第二个同构类似于上面那个问题.

Rmk: $Q/Z \cong \bigoplus_p \mathbb{Z}(p^{\infty}), \mathbb{Q}/\mathbb{Z}_{(p)} \cong Z(p^{\infty})$, 此处 $\mathbb{Z}_{(p)}$ 代表 p 进整数环.

5: 令 $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, 我们在第三次作业证明了 $A, B \neq SL_2(\mathbb{Z})$ 的一组生 成元. 令 $C=AB^{-1}=\begin{pmatrix}0&1\\-1&1\end{pmatrix}$,则 $SL_2(\mathbb{Z})$ 也可以由 A,C 生成. 因此我们有自然群同态 $f:G:=\langle x,y|x^4=1,x^2=y^3\rangle \to SL_2(\mathbb{Z})(x\mapsto A,y\mapsto C)$ 并且 f 诱导出群同态 $g:H:=\langle x,y|x^2=y^3\rangle$ $y^3 = 1 \rightarrow PSL_2(\mathbb{Z}).$

- (1) 证明 $\langle x, y | x^4 = 1, x^2 = y^3 \rangle \cong \langle a, b | aba = bab, (aba)^4 = 1 \rangle$.
- (2) 证明 f 是单射当且仅当 g 是单射, 证明 f 是满射当且仅当 g 是满射.
- (3) 尝试证明 f 和 g 都是群同构.

证明: (1) 容易看出 (分析一下 relations 就能看出): 由 $\varphi: x \mapsto aba, y \mapsto ab, \phi: a \mapsto y^{-1}x, b \mapsto xy^{-1}$ 定义的映射是群同态, 且二者复合都是恒等群同态, 因此两群同构.

 $(2)f: x \mapsto A, y \mapsto C, A^4 = I_2, A^2 = C^3$. 由于 $x^2 \in C(G), x^2 = -I_2$, 因此 f 诱导出

 $\bar{f} = g: G/\langle x^2 \rangle = H \to SL_2(\mathbb{Z})/\{\pm I_2\} \cong PSL_2(\mathbb{Z})$. 因此从这样的映射定义出发知 f 是单 射 (满射) 则显然 g 是单射 (满射),f 不是单射 (注意到 $x^2 \notin kerf$) 则 g 不是单射. 若 g 是满射, 则 任意 $A \in SL_2(\mathbb{Z}), \exists X \in H, \ s.t. \ g(X) = \bar{A}, \exists Y \in G \ s.t. \ \pi_2(A) = (A) = g(X) = g\pi_1(Y) = \pi_2 f(Y) \Rightarrow$ $A^{-1}f(Y) \in ker\pi_2 = \{\pm I_2\}, \text{ in } f \in \mathbb{R}$

(3) 我们证明 f 是满射且 g 是因此 f 和 g 都是同构 f 是满射因为 A_1, C 生成 $SL_2(\mathbb{Z})$ (第三次作 业第 4 题, 第二次习题课). 下面说明 g 是单射.

H 中的元素都可以写成如下形式 $w=y^{\epsilon_1}xy^{\epsilon_2}x\cdots y^{\epsilon_{r-1}}xy^{\epsilon_r}, xw, wx, xwx, x, \epsilon_i \in \{\pm 1\}, 1 \leq i \leq r$ r. 又有 $x \notin kerg, xwx = xwx^{-1}, xwxx^{-1} = xw$, 所以只需要证明 $\{w, wx\} \cap kerg = xw$

$$r.$$
 又有 $x \notin kerg, xwx = xwx^{-1}, xwxx^{-1} = xw$,所以只需要证明 $\{w, wx\}$ [] $kerg = .$ 我们有 $g(y^{-1}x) = g(y^2)g(x) = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}^2 \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix} = \bar{B}, g(yx) = A\bar{C}B.$ (i.e.[1,0;-1,1]). 令 $D = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$,则 $g(wx) = g(y^{\epsilon_1}xy^{\epsilon_e}x\cdots y^{\epsilon_r}x) = \prod_{i=1}^r g(y^{\epsilon_i}x) = A^{t_1}B^{t_2}\cdots A^{t_l}A^{t_l}$ 女是因为 $A^{t_1}B^{t_2}\cdots A^{t_l}A^{t_l}$ 的非对角元素非果

 $\neq \bar{1}$, 这是因为 $A^{t_1}B^{t_2}\cdots A^{t_l}A^{t_l}$ 的非对角元素非零.

若 $g(w) = \bar{q}$, 则 g(wx) = g(w)g(x) = g(x), 得到矛盾因为 $A^{t_1}B^{t_2}\cdots A^{t_l}A^{t_l}$ 的元素全正, 因此 g(wx) 对应元素的代表元里的元素全正或者全负.

综上,g 是单射. 因此我们证明了所需结论.

6: 设 G 是一个无限阿贝尔群.

- (1) 若 G 的每一个真子群是有限群, 则存在素数 p 使得 $G \cong \mathbb{Z}(p^{\infty})$.
- (2) 若 G 同构于每一个真子群, 则 $G \cong \mathbb{Z}$.
- (3) 若 G 同构于每个非平凡商群, 则 $G \cong \mathbb{Z}(p^{\infty})$.
- (4) 若 G 的每个非平凡商群是有限的,则 $G \cong \mathbb{Z}$.

证明: (1) p 为任一素数, 定义 G 的 p 准素部分为 $G_p = \{g \in G | p^n g = 0, \exists n \in \mathbb{N}\}$, 易证 G_p 是 G 的子群且 $G = \bigoplus_p G_p$. 如果有 2 个或以上数量的素数使得 $G_p \neq 0$, 则每个 G_p 都是有限群, 且 有无穷个 p 使得 $G_p \neq 0$, 但是此时 G 有无限真子群. 因此只能存在某个素数 p 使得 $G = G_p$. 令 $G[p] = \{g \in G | pg = 0\}, \, \text{则 } G[p] = ker(p : G \to G).$ 显然 pG 和 G[p] 都是 G 的子群. 若 p[G] 有限, 则 G[p]=G 是无限的,但是这样意味着 G 存在无限真子群 $\oplus \mathbb{Z}_p$. 因此 G=pG ,且 $|G[p^n]|=|G[p]|^n$. 而由 Cauchy 定理可知 $|G[p]| = p^k$ 因为其内所有非零元素都是 p 阶的.

引理 (GTM148,10.27): 若 G 和 H 是可除 p 准素群, 则 $G \cong H \Leftrightarrow G[p] \cong H[p]$

因此 $G \cong \bigoplus_{i=1}^k Z(p^{\infty})$, 只可能 k = 1, 故命题得证.

也可以考虑 G 中含有任意 p^k 阶群因为 G = pG, 因此 $G = \text{limit } \mathbb{Z}/p^k\mathbb{Z} \cong Z(p^{\infty})$.

- (2) 因为 G 同构与每一个真子群, 因此 $G \cong \langle x \rangle \cong \mathbb{Z}, \forall x \in \mathbb{Z}$.
- (3) 定义 $tor(G) = \{g \in G | ord(g) < \infty\}, tor(G)$ 中的元素称为扭元. 若 $tor(G) = 0, \forall x \in G\}$ $G,G/(nx)\cong G$ 但是 G/(nx) 有扭元 x. 因此 $tor(G)\neq 0$. 断言 tor(G)=G, 否则 G/tor(G) 是 无扭模但是 G 有扭元, 矛盾. 因此 G 中元素都是扭元 $\Rightarrow G = \bigoplus_p G_p$. 而利用 Zorn 引理可证明 G/G_p 中无 p 准素部分,因此存在唯一的素数使得 $G=G_p$. 类似于 (1), 有 $G\cong G/G[p]\cong pG$ (否则 $G \cong G[p] \cong \bigoplus_{i \in I} \mathbb{Z}/p\mathbb{Z}$, 不同构于任意非平凡商群), 从而 $G \cong \mathbb{Z}(p^{\infty})$.
- (4) 任取非零 $x \in G, G/(x) = \{a_1(x), \dots, a_n(x)\}$ 是有限群, 故 $ord(x) = \infty$ 且 G 是有限生成 阿贝尔群, 由结构定理可知 $G \cong \bigoplus_i \mathbb{Z} \oplus \bigoplus_m \mathbb{Z}_m$, 因此 $G \cong \mathbb{Z}$.

Rmk: 若不预先假定 G 是阿贝尔群, 则结论不一定成立. 如 G = SO(3), 一个无限单群, 因此无非平 凡商群,(3)(4) 不成立. (2) 则是任意情况都成立. 至于 (1), 例如 Tarski monster groups, 即每一个 真子群都是有限 p 阶循环群的无限单群.

 $7:S_n, A_n$ 的表示老师已经讲过,也可以参考近世代数 300 题或者 GTM80 < A course in the theory of group >, p52.