Part I: True/False

Each problem is points for a total of 60 points. (10 problems 6 points each; 3 points for correct T/F; 3 points for correct explanation.)

Problem 1. Decide if each of the following is true or false. For each, provide an example or counter-example or an argument as required. You may refer to a theorem if that applies.

a) _____ Let V be a vector space and $S = \{v_1, \ldots, v_n\}$ such that span(S) = V. S can be extended to a basis for V.

b) _____ Suppose \mathcal{B} is a basis for V, then for any vector $\mathbf{v} \notin \mathcal{B}$, $\mathcal{B} \cup \{\mathbf{v}\}$ is dependent.

c) _____ $U = \{(x, y) \in \mathbb{R}^2 \mid x \text{ and } y \text{ have the same sign} \}$ is a subspace of \mathbb{R}^2 .

d) _____ The map $L: \mathbb{R}^2 \to \mathbb{R}$ given by $L(x_1, x_2) = |x_1 - x_2|$ is linear.

e) _____ The evaluation map at c, $e_c: P \to \mathbb{R}$ given by $e_c(p(x)) = p(c)$ is linear where P is the vector space of all polynomials with real coefficients.

f) There are subspaces $V_0 = \mathbb{R}^4 \supseteq V_1 \supseteq V_2 \supseteq V_3 \supseteq V_4 \supseteq V_5 = \{\mathbf{0}\}$ where each V_i is a proper subspace of V_{i-1} .

g) _____ Given any three linearly independent vectors $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3\}$, from \mathbb{R}^3 and any three vectors $\{p_1(x), p_2(x), p_3(x)\}$ from P_6 (polynomials of degree 6), there is a unique linear function $L: \mathbb{R}^3 \to P_6$ satisfying $L(\boldsymbol{v}_i) = p_i(x)$, for i = 1, 2, 3.

h) _____ Suppose $L: \mathbb{R}^{2\times 3} \to \mathbb{R}^4$ is linear and onto, that is, $\operatorname{Img}(L) = \mathbb{R}^4$. Then $\dim(\ker(L)) = 2$.

Recall $\mathbb{R}^{2\times 3}$ is the space of 2×3 matrices.

i) Let $\mathcal{B} = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3 \}$ be a basis for V and suppose $\boldsymbol{v} = \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \alpha_3 \boldsymbol{v}_3$.

$$[oldsymbol{v}]_{\mathcal{B}} = egin{bmatrix} lpha_1 \ lpha_2 \ lpha_3 \end{bmatrix}$$

j) $L: \mathbb{R}^{3\times 3} \to \mathbb{R}^{3\times 3}$ is given by L(A) = BA for a 3×3 matrix B. If \mathcal{B} is a basis for $\mathbb{R}^{3\times 3}$, then $[L]_{\mathcal{B}} = B$.

Part II: Computational (80 points)

Show all computations so that you make clear what your thought processes are.

Problem 2 (20 pts). Consider A given by

$$A = \begin{bmatrix} 1 & 2 & -4 & 3 & 2 \\ -3 & -6 & 14 & -13 & -3 \\ 0 & 0 & 3 & -6 & 4 \\ 2 & 4 & -7 & 4 & 5 \end{bmatrix}$$

Find a basis for each of NS(A), CS(A), and RS(A).

Hint: This should require exactly one (not two or three) reduction of a matrix to echelon form.

Workspace

Problem 3 (20 pts). Let $L: \mathbb{R}^{3\times 2} \to \mathbb{R}^{2\times 2}$ given by L(A) = DA where

$$D = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 1 \end{bmatrix}$$

- a) (8 points) Show that L is a linear map.
- b) (12 points) Give the matrix $[L]_{\mathcal{B},\mathcal{C}}$ in terms of the basis \mathcal{B} for $\mathbb{R}^{3\times 2}$ and \mathcal{C} for $\mathbb{R}^{2\times 2}$ given by:

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

$$\mathcal{C} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

Problem 4 (20 pts). Consider the map $L: \mathbb{R}^3 \to \mathbb{R}^3$ that maps any point in \mathbb{R}^3 onto the plane spanned by (1, -2, 1) and (2, 0, -2) in such a way that points in the plane are fixed and which maps (1, 1, 1) to (0, 0, 0).

- a) (7 points) Find $[L]_{\mathcal{B}}$ for $\mathcal{B} = \{(1, -2, 1), (2, 0, -2), (1, 1, 1)\}.$
- b) (5 points) Find the change of basis matrix [id]_{\mathcal{B},E} (from the basis \mathcal{B} to the standard basis.)
- c) (8 points) Find the matrix for L wrt the standard basis using the first two parts. (Give me the decomposition: $[\mathrm{id}]_{\mathcal{B},\mathcal{E}}[L]_{\mathcal{B}}[\mathrm{id}]_{\mathcal{E},\mathcal{B}}$ as well as the resulting matrix.

Problem 5 (20 pts). The green (dashed) house has been transformed to the red (solid) house by a linear transformation $L: \mathbb{R}^2 \to \mathbb{R}^2$.

Desmos

- a) What is $L(e_1)$?
- b) What is $L(e_2)$?
- c) What is [L]?

Name:			
Namo.			
manue.			

Exam 2 - MAT345

Part III: Theory and Proofs (30 points; 10 points each)

Choose three of the five options. If you try all five, I will grade the first three, not the best three. You must decide what should be graded.

This part is take-home. You should complete this work on your own without consulting websites, friends, the Math Center, etc.

Problem 6 (10 points). Suppose S is an independent set of vectors from a vector space V, then

 $S \cup \{v\}$ is dependent $\iff v \in \operatorname{span}(S)$.

Problem 7 (10 points). Show that if $L: V \to W$ is linear and $\{L(\mathbf{v}_1), L(\mathbf{v}_2), L(\mathbf{v}_3)\}$ is linearly independent, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent.

Problem 8 (10 points). Suppose $A = [a_1 a_2 a_3 a_4 a_5]$ is a 4×5 matrix and $NS(A) = span\{(-2, 1, 0, 0, 0), (5, 0, 2, 1, 0)\}$

Find rref(A) and explain how you know that what you have found is rref(A).

Problem 9 (10 points). Suppose A is a 5×5 matrix and $A^n = O$ for some n, then $A^5 = O$.

Problem 10 (10 points). For A and B are $n \times n$ matrices. Show that AB is invertible \iff both A and B are invertible