1 Bayesian Regression	where $z_{w,b}(x) = \sqrt{2}cos(w^Tx + b)$. I can MC ex-	Weak union: $X \perp Y, W \mid Z \Rightarrow X \perp Y \mid Z, W$	
$w \sim N(0, \sigma_p^2 I), \ \epsilon \sim N(0, \sigma_n^2 I), \ y = Xw + \epsilon$	tract features z. If # features is \ll n then this is faster ($X^T X$ vs XX^T)	Intersection: $(X \perp Y \mid W, Z) \land (X \perp W \mid Y, Z) \Rightarrow X \perp Y, W \mid Z$	
$y w \sim N(Xw, \sigma_n^2 I)$	Inducing points: We a vector of inducing va-	5 Bayesian Networks	
$w y \sim N((X^TX + \lambda I)^{-1}X^Ty, (X^TX + \lambda I)^{-1}\sigma_n^2)$	riables u	5.1 Basic concepts	
2 Kalman Filter	$f_A _u \sim N(K_{Au}K_uu^{-1}u, K_{AA} - K_{Au}K_uu^{-1}K_{uA})$	•	6.2.1 Sum-product/Belief Propagation (BP)
$\begin{cases} X_{t+1} = FX_t + \epsilon_t & \epsilon_t \sim N(0, \Sigma_x) \\ Y_t = HX_t + \eta_t & \eta_t \sim N(0, \Sigma_v) \end{cases} X_1 \sim N(\mu_p, \Sigma_p)$	$f_* _u \sim N(K_{*u}K_uu^{-1}u, K_{**} - K_{*u}K_uu^{-1}K_{u*})$ Subset of Regressors (SoR): $\blacksquare \rightarrow 0$	A Bayesian network (G, P) consists of: - A BN structure G (directed, acyclic graph)	Algorithm:
	FITC: ■ → its diagonal	- A set of conditional probability distributions	Initialize all messages as uniform distributionUntil converged to:
Then if X_0 is Gaussian then $X_t Y_{1:t} \sim N(\mu_t, \sigma_t)$:	4 Review of useful concepts and Introduction	- (<i>G</i> , <i>P</i>) defines the joint distribution:	- Pick a root in the factor graph and reorient
$\mu_{t+1} = F \mu_t + K_{t+1} (y_{t+1} - HF \mu_t) \Sigma_{t+1} = (I - K_{t+1} H) (F \Sigma_t F^T + \Sigma_x)$	4.1 Multivariate Gaussian	$P(X_1,,X_n) = \prod_i P(X_i Pa_{X_i})$	the edges towards this root. - Update messages according to this orde-
$K_{t+1} = (I - K_{t+1}II)(I - \mathcal{L}_t I^T + \mathcal{L}_x)$ $K_{t+1} = (F \mathcal{L}_t F^T + \mathcal{L}_x) H^T (H(F \mathcal{L}_t F^T + \mathcal{L}_x) H^T + \mathcal{L}_y)^{-1}$	$f(x) = \frac{1}{2\pi\sqrt{ \Sigma }} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$	BNs with 3 nodes:	ring. Do passes from leaves to root and from
3 Gaussian Processes	Suppose we have a Gaussian random vector		root to leaves If a leaf node is a variable node: $\mu_{x \to f}(x) = 1$ -
$f \sim GP(\mu, k) \Rightarrow \forall \{x_1, \dots, x_n\} \ \forall n < \infty$	$X_V \sim N(\mu_V, \Sigma_{VV})$. Suppose we take two disjoint subsets of V:	An undirected path in a BN structure G is	If a leaf node is a factor node: $\mu_{f \to x}(x) = f(x)$
$[f(x_1)\dots f(x_n)] \sim N([\mu(x_1)\dots \mu(x_n)], K)$	$A = i_1,, i_k$ and $B = j_1,, j_m$.	called active trail for observed variables $O \in X_1,,X_n$ of for every consecutive triple of va-	Messages from node v to factor u :
where $K_{ij} = k(x_i, x_j)$	Then, the conditional distribution:	riables X, Y, Z on the path:	$\mu_{v \to u}(x_v) = \prod_{u' \in N(v) \setminus \{u\}} \mu_{u' \to v(x_v)}$
3.1 Gaussian Process Regression	$P(X_A X_B = x_B) = N(\mu_{A B}, \Sigma_{A B})$ is Gaussian:	- indirect causal effect:	- Messages from factor u to node v :
$f \sim GP(\mu, k)$ then: $f y_{1:n}, x_{1:n} \sim GP(\tilde{\mu}, \tilde{k})$	$\mu_{A B} = \mu_A + \Sigma_{AB} \Sigma_{BB}^{-1} (x_B - \mu_B)$	$X \rightarrow Y \rightarrow Z$ and Y unobserved - indirect evidential effect:	$\mu_{u \to v}(x_v) = \sum_{x_u \sim x_v} f_u(x_u) \prod_{v' \in N(u) \setminus \{v\}} \mu_{v' \to u(x'_v)}$
$\tilde{\mu}(x) = \mu(x) + K_{A,x}^T (K_{AA} + \epsilon I_n)^{-1} (y_A - \mu_A)$	$\Sigma_{A B} = \Sigma_{AA} - \Sigma_{AB} \Sigma_{BB}^{-1} \Sigma_{BA}$	$X \leftarrow Y \leftarrow Z$ and Y unobserved	- Break once all messages change by $\leq \epsilon$ Hope: after convergence, we have:
$\tilde{k}(x,x') = k(x,x') - K_{A,x}^T (K_{AA} + \epsilon I_n)^{-1} K_{A,x'}$	4.2 Convex / Jensen's inequality $g(x) = g(x) + g(x) = g(x) + g(x) = g(x)$	- common cause : $X \leftarrow Y \rightarrow Z$ and Y unobserved.	P($X_v = x_v$) = $\frac{1}{Z} \prod_{u \in N(v)} \mu_{u \to v}(x_v)$
Where: $K_{A,x} = [k(x_1, x)k(x_n, x)]^T$	$g(x)$ is convex $\Leftrightarrow x_1, x_2 \in \mathbb{R}, \lambda \in [0, 1] : g''(x) > 0$ $g(\lambda x_1 + (1 - \lambda)x_2) \le \lambda g(x_1) + (1 - \lambda)g(x_2)$	$A \leftarrow I \rightarrow Z$ and I unobserved common effect :	
$[K_{AA}]_{ij} = k(x_i, x_j) \text{ and } \mu_A = [\mu(x_1 \dots x_n)]^T$	$\varphi(E[X]) \le E[\varphi(X)]$	$X \rightarrow Y \leftarrow Z$ and Y or any of Y's descendants is	$P(\overrightarrow{X_u} = \overrightarrow{x_u}) = \frac{1}{Z} f_u(\overrightarrow{x_u}) \prod_{v \in N(u)} \mu_{v \to u}(x_v)$
,	4.3 Kullback-Leiber divergence	observed. Any variables X_i and X_j for which there is	If we have a polytree Bayesian network: - Choose one node as root
3.2 Kernels	$KL(p q) = \mathbb{E}_p \left[\log \frac{p(x)}{q(x)} \right]$	no active trail for observations O are called	- Send messages from leaves to root and from
k(x, y) is a kernel if it's symmetric semidefinite positive:	if $p_0 \sim \mathcal{N}(\mu_0, \Sigma_0)$, $p_1 \sim \mathcal{N}(\mu_1, \Sigma_1) \Rightarrow KL(p_0 p_1)$	d-separated by O.	root to leaves
$\forall \{x_1, \dots, x_n\}$ then for the Gram Matrix	$= \frac{1}{2} \left(tr(\Sigma_1^{-1} \Sigma_0) + (\mu_1 - \mu_0)^T \Sigma_1^{-1} (\mu_1 - \mu_0) - k + \log \frac{ \Sigma_1 }{ \Sigma_0 } \right)$	Theorem : $d - sep(X_i; X_j O)) \Rightarrow X \perp Y Z$	7 Approximate inference
$[K]_{ij} = k(x_i, x_j) \text{ holds } c^T K c \ge 0 \forall c$	$\hat{q} = \arg\min_{a} KL(p q) \Rightarrow \text{overconservative}$	Converse does not hold in general!	7.1 Laplace Approximation
Some Kernels: (h is the bandwidth hyperp.)		6 Exact inference (tree-structured BN)	$\hat{\theta} = \arg\max_{\theta} p(\theta y)$
Gaussian (rbf): $k(x, y) = \exp(-\frac{ x-y ^2}{h^2})$	$\hat{q} = \arg\min_{q} KL(q p) \Rightarrow \text{overconfident}$	6.1 Variable elimination	$\Lambda = -\nabla_{\theta} \nabla_{\theta} \log p(\theta y) _{\theta = \hat{\theta}}$
Exponential: $k(x,y) = \exp(-\frac{\ x-y\ }{h})$	4.4 Review Probability Probability space (Ω, F, P) : Set of atomic	- Given a BN and query $P(X E=e)$	$p(\theta y) \simeq q(\theta) = N(\hat{\theta}, \Lambda^{-1})$
H	events Ω . Set of all non-atomic events	- Choose an ordering of $X_1,,X_n$ Eliminate va-	7.2 Variationa Inverence
Linear kernel: $k(x, y) = x^T y$ (here $K_{AA} = XX^T$)	$(\sigma$ -Algebra): $F \in 2^{\Omega}$. Probability measure:	riables from the outside in!	$\hat{q} = \arg\min_{q \in Q} KL(q p(\cdot y))$
3.3 Optimization of Kernel Parameters	$P: F \to [0,1]$	- Set up initial factors: $f_i = P(X_i Pa_i)$ - For $i = 1: n, X_i \notin X, E$	$\hat{q} = \arg\max_{q \in Q} \mathbb{E}_{\theta \sim q} [\log p(y \theta)] - KL(q p(\cdot))$
Given a dataset A , a kernel function $k(x, y; \theta)$.	Bayes' rule: $P(B A) = P(A,B)/P(A) = P(A B)P(B)/P(A)$, where $P(A) = \sum_{b} P(A B)P(A)$	- Collect and multiply all factors <i>f</i> that in-	$ELBO \doteq \mathbb{E}_{\theta \sim q} [\log p(y \theta)] - KL(q p(\cdot)) \le \log p(y)$
$y \sim N(0, K_y(\theta))$ where $K_y(\theta) = K_{AA}(\theta) + \sigma_n^2 I$	Union: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$	clude X_i - Generate new factor by marginalizing out	7.3 Variable elimination for MPE (most proba-
$\hat{\theta} = \arg\max_{\theta} \log p(y X;\theta)$	Rules for joint distributions:	- Generate new factor by marginalizing out X_i : $g_{X_i} = \sum_{x_i} \prod_j f_j$	ble explanation):
In GP: $\hat{\theta} = \arg\min_{\theta} y^T K_v^{-1}(\theta) y + \log K_v(\theta) $	Sum rule (Marginalization):	- Add g to set of factors	With loopy graphs, BP is often overconfident/oscillates.
We can from here $\nabla \downarrow$:	$P(X_{1:i-1}, X_{i+1:n}) = \sum_{x_i} P(X_{1:i-1}, X_i = x_i, X_{i+1:n})$	- Renormalize $P(x,e)$ to get $P(x e)$	- Given BN and evidence E=e
$\nabla_{\theta} \log p(y X;\theta) = \frac{1}{2} tr((\alpha \alpha^{T} - K^{-1}) \frac{\partial K}{\partial \theta}), \alpha = K^{-1} y$	Product rule (Chain rule): $P(X = P(X) P(X Y) = P(X Y)$	Variable elimination for polytrees:	- Choose an ordering of X_1,x_n
Or we could also be baysian about θ	$P(X_{1:n}) = P(x_1)P(X_2 X_1)P(X_n X_{1:n-1})$ Conditional Independence:	- Pick a root, (avoiding <i>X</i> and <i>E</i>)	- Set up initial factors $f_i = P(X_i Pa_i)$ - For $i = 1: n, X_i \notin E$:
3.4 Aproximation Techniques	$X \perp Y Z \text{ iff } P(X, Y Z) = P(X Z)P(Y Z)$	- Orient edges towards root	- Collect and multiply all factors f_i that in-
Local method: $k(x_1, x_2) = 0$ if $ x_1 - x_2 \gg 1$ Random Fourier Features: if $k(x, y) = \kappa(x - y)$	If $P(Y Z) > 0 \Rightarrow P(X Z,Y) = P(X Z)$	- Eliminate variables according to topological order	clude X_i
$p(w) = \mathcal{F}\{\kappa(\cdot), w\}$. Then $p(w)$ can be normali-	Properties of Conditional Independence:	6.2 Avoiding recomputation: factor graphs	- Generate new factor by maximizing out
zed to be a density.	Symmetry: $X \perp Y \mid Z \Rightarrow Y \perp X \mid Z$ Decomposition: $X \perp (Y, W) \mid Z \Rightarrow X \perp Y \mid Z$	FG for a BN is a bipartite graph consisting of	$X_i \colon g_i = \max_{w = x_i} \prod_j f_j$
$\kappa(x-y) = \mathbb{E}_{p(w)} \left[\exp \left\{ i w^T (x-y) \right\} \right]$ antitransform	Contraction: $(X \perp Y \mid Z) \land (X \perp W \mid Y, Z) \Rightarrow$	variables (circles) and factors (rectangles). It is	- Add g to set of factors
$\kappa(x-y) = \mathbb{E}_{b \sim \mathcal{U}([0,2\pi]), w \sim p(w)} \left[z_{w,b}(x) z_{w,b}(y) \right]$	$X \perp Y, W \mid Z$	not a unique representation.	- For $i = n-1: 1, X_i \notin E: \hat{x}_i = \underset{x_i}{\operatorname{argmax}} g_i(x_i, \hat{x}_{i+1:n})$
([a)]), a P(m) r m) c / 1			x_i

```
Dvnamic Bayesian Networks: a BN at every
                                                          - Fix observed variables X_B = x_B
MPE for a subset of RVs):
                                                                                                                                                                             - Break if ||V_t - V_{t-1}||_{\infty} = \max_{x} |V_t(x) - V_{t-1}(x)| \le \epsilon
                                                          - For t = 1 to \infty, do:
- Define max-marginals:
                                                                                                                    These models typically have many loops. Exact
                                                              - Pick a variable i uniformly at random from
                                                                                                                                                                              Then choose greedy policy w.r.t V_t.
P_{max}(X_v = x_v) := \max P(x)
                                                          \{1,...,n\}\setminus B / Set ordering, and then, for each
                                                                                                                    inference is usually intractable.
                                                                                                                                                                               Guaranteed to converge to \epsilon-optimal policy
- For tree factor graphs, max-product computes
                                                                                                                     8.4 Approx. infer. for filtering (DBNs and non-
                                                          X_i (except those in B)
                                                                                                                                                                              (finds approximate solution in polynomial
max-marginals:
                                                              - Set \bar{v}_i = values of all x except x_i
                                                                                                                           linear Kalman filters): Particle filtering
                                                                                                                                                                               number of iterations)!
P_{max}(X_v = x_v) \propto \prod_{u \in N(v)} \mu_{u \to v}(x_v)
                                                              - Sample x_i from P(X_i|v_i)
                                                                                                                    Suppose: P(X_t|y_{1:t}) \approx \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i:t}}, where \delta is
                                                                                                                                                                               9.4 POMDP = Belief-state MDP
- Can retrieve MAP solution from these (must 8
                                                              Dynamical models (include time)
                                                                                                                     the indicator function. Prediction: Propagate
                                                                                                                                                                               States = beliefs over states for original POMDP
be careful when ties need to be broken).
                                                          8.1 Examples with one variable per time step
                                                                                                                                                                               B = \Delta(1,...,n) = \{b:1,...,n \to [0,1], \sum_{x} b(x) = 1\}
                                                                                                                     each particle: x_i' \sim P(X_{t+1}|x_{i,t})
7.4 Sampling based inference: compute mar-
                                                          X_1,...,X_T (unobserved) hidden states
                                                                                                                                                                               Actions: same as original MDP
                                                                                                                     Conditioning:
      ginals as expectations
                                                          Y_1, ..., Y_T (noisy) observations
                                                                                                                                                                               Transition model:
                                                                                                                    - weight particles w_i = \frac{1}{7}P(y_{t+1}|x_i')
Hoeffding's inequality: Suppose f is bounded
                                                          HMMs (polytrees: can use belief propagati-
                                                                                                                                                                              - Stochastic observation:
                                                                                                                    - resample N particles x_{i,t+1} \sim \frac{1}{7} \sum_{i=1}^{N} w_i \delta_{x_i}
in [0, C]. Then:
                                                                                                                                                                              P(Y_t|b_t) = \sum_{x=1}^n P(Y_t|X_t = x)b_t(x)
                                                          on): X_i categorical, Y_i categorical (or arbitrary)
                                                                                                                                                                              - State update (Bayesian filtering!), given
P(|E_P[f(X)] - \frac{1}{N} \sum_{i=1}^{N} f(x_i)| \ge \epsilon) \le 2exp(\frac{-2N\epsilon^2}{C^2})
                                                          Kalman filters: X_i, Y_i Gaussian distributions
                                                                                                                    Conclusion we came to: Z = \sum_{i=1}^{N} w_i \delta_{x_i}
                                                          - P(X_1): prior belief about location at time i
                                                                                                                                                                              b_t, y_t, a_t: b_{t+1}(x') = \frac{1}{7} \sum_{x} b_t(x) P(y_t | x) P(X_{t+1}) =
Monte Carlo Sampling from a BN:
                                                                                                                     9 Probabilistic Planning
                                                          - P(X_{t+1}|X_t): 'Motion model' (how do I ex-
                                                                                                                                                                               x'|X_t = x, a_t
- Sort variables in topological ordering X_1, X_n
                                                                                                                     9.1 Markov Decision Processes
                                                          pect my target to move in the environment?):
                                                                                                                                                                              Reward function: r(b_t, a_t) = \sum_{x} b_t(x) r(x, a_t)
- For i = 1 to n, sample:
                                                                                                                    An MDP is specified by a quintuple:
                                                          X_{t+1} = FX + \epsilon_t where \epsilon_t \sim N(0, \Sigma_x)
x_i \sim P(X_1 = x_1, ..., X_{i-1} = x_{i-1})
                                                                                                                                                                               9.5 Example of approx. solution to POMDPs:
                                                                                                                     (X,A,r,P(x'|x,a),\gamma), where X are states, A
                                                          - P(Y_t|X_t): 'Sensor model' (what do I observe
Rejection Sampling:
                                                                                                                                                                                     Policy gradients
                                                                                                                     are actions, r(x,a) is a reward function and
                                                          if target is at location X_t?) Y_t = HX_t + \eta_t where
                                                                                                                                                                              - Assume parameterized policy: \pi(b) = \pi(b; \theta)

    Collect samples over all variables:

                                                                                                                     transition probabilities:
                                                          \eta_t \sim N(0, \Sigma_v)
\hat{P}(X_A = x + A | X_B = x_B) = \frac{Count(x_A, x_B)}{Count(x_B)}
                                                                                                                                                                              - For each parameter \theta the policy induces a
                                                                                                                     P(x'|x, a) = \text{Prob}(\text{Next state} = x'|\text{Action } a)
                                                                                                                                                                               Markov chain
                                                          8.2 Inference tasks
                                                                                                                     Objective: find a stationary policy \pi: S \to A
- Throw away samples that disagree with x_B
                                                                                                                                                                                Can compute expected reward I(\theta) by samp-
                                                          Filtering: P(X_t|y_{1,...,t}) Is it raining today?
                                                                                                                     that maximizes the sum of cumulative rewards.
- Count fraction of x_a on remaining samples
                                                          Prediction: P(X_{t+\tau}|Y_{1:t}) Rain 5 days from now?
                                                                                                                    Value of a state given a policy: sum of cumu-
7.4.1 Directly sampling from the posterior:
                                                                                                                                                                              - Find optimal parameters through search (gra-
                                                          Example for one step: P(X_{t+1}|Y_{1:t})
                                                                                                                    lative rewards, given that the initial state is
                                                                                                                                                                              dient ascent): \theta^* = argmax \quad J(\theta)
                                                          \sum_{x} P(X_{t+1}, X_t = x_t | Y_{1:t}) = \sum_{x} P(X_{t+1} | X_t = x_t | Y_{1:t})
                                                                                                                    this state \rightarrow Bellman equation:
Markov Chain:: A (stationary) MC is a se-
                                                          x_t)P(X_t|Y_{1:t}) (with KFs, you need integrals!)
quence of RVs X_1,...,X_N, with prior P(X_1)
                                                                                                                     V^{\pi}(s) = \mathbb{E} \left[ \sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, \pi(s_{t}), s_{t+1}) | s_{0} = s \right]
                                                                                                                                                                               10 Learning models from training data
                                                          Smoothing: P(X_{\tau}|y_{1:t}) with \tau < t Did it rain
and transition probabilities P(X_{t+1}|X_t) inde-
                                                                                                                                                                               10.1 Learning from i.i.d data
                                                          last week? [Can use sum-product (aka forward-
                                                                                                                    = \sum_{s' \in S} P(s'|s, \pi(s)) | r(s, \pi(s), s') + \gamma V^{\pi}(s') |
pendent of t.
                                                                                                                                                                               Algorithm for Bayes Net MLE:
                                                          backward).]
Markov assumpt.: X_{1:t-1} \perp X_{t+1:T} | X_t, \forall t > 1
                                                                                                                    = r(s, \pi(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi(s)) V^{\pi}(s')
                                                                                                                                                                               Given BN of structure G and dataset D of com-
                                                          MPE: argmaxP(x_{1:T}|y_{1:T}) Can use max pro-
Stationarity assumption:
                                                                                                                    Theorem (Bellman): a policy is optimal iff it
                                                                                                                                                                              plete observations
P(X_{t+1} = x | X_t = x') = P(X_t = x | X_{t-1} = x'), \forall t > 1
                                                                                                                     is greedy w.r.t. its induced value function!
                                                                                                                                                                              For each X_i estimate: \hat{\theta}_{X_i|Pa_i} = \frac{Count(X_i, Pa_i)}{Count(Pa_i)}
                                                          duct (aka Viterbi algorithm).
If ergodic (= there exists a finite t such that
                                                                                                                     V^*(x) = max_a[r(x, a) + \gamma \sum_{x'} P(x'|x, a)V^*(x')]
                                                          Bayesian filtering: Start with P(X_1):
                                                                                                                                                                               Pseudo-counts for lime and cherry flavor:
every state can be reached in exactly t steps),
                                                                                                                    Bellman equation mais geral:
                                                          At time t, assume we have P(X_t|y_{1:t-1})
                                                                                                                                                                              \theta_{F=c} \frac{Count(F=c) + \alpha_c}{N + \alpha_c + \alpha_l}
then: it has a unique and positive stationary
                                                                                                                     V^{*}(x) = \max_{a} \left[ \sum_{x'} P(x'|x, a) (r(a, x, x') + \gamma V^{*}(x')) \right]
                                                          Conditioning: P(X_t|y_{1:t}) = \frac{P(X_t|y_{1:t-1})P(y_t|X_t)}{\sum_{x_t} P(X_t|y_{1:t-1})P(y_t|X_t)}
distribution \pi(X) > 0, such for all x:
                                                                                                                     Optimal policy:
                                                                                                                                                                               10.1.1 Score based structure learning
\lim P(X_N = x) = \pi(x) \text{ and } \pi(X) \perp P(X_1).
                                                                                                                    \pi^*(s) = argmax[r(x,a) + \gamma \sum_{x'} P(x'|x,a)V^*(x')]
                                                          Prediction (O(n^2) \text{ vs } O(n) \text{ in conditioning}):
                                                                                                                                                                               Define scoring function S(G;D) and search
If MC satisfies the detailed balance equation
                                                          P(X_{t+1}|y_{1:t}) = \sum_{x} P(X_{t+1}|X_t) P(X_t|y_{1:t})
                                                                                                                                                                               over BN structure G: G^* = argmaxS(G; D)
                                                                                                                     9.2 Policy iteration (Cost O(S^3 + SA\Delta))
(for unnormalized distribution Q, for all x, x':
                                                          Since HMM is a polytree, smoothing/MPE
                                                                                                                    Start with an arbitrary (e.g. random) policy \pi.
                                                                                                                                                                               Examples of scores:
Q(x)P(x'|x) = Q(x')P(x|x'), then the MC has
                                                          can be computed by VE/BP. Kalman filte-
                                                                                                                     Until converged, do:
                                                                                                                                                                               MLE Score:
stationarity distribution \pi(X) = 1/ZQ(X).
                                                          ring: Bayesian filtering for continuous pro-
                                                                                                                                                                              log P(D|\theta_G, G) = N \sum_{i=1}^n \hat{I}(X_i; Pa_i) + const.
                                                                                                                     Compute value function V^{\pi}(x)
                                                          blems. RV corrupted by Gaussian distributions
Designing Markov Chains:
                                                                                                                                                                              Where mutual information (I(X_i, X_j) \ge 0) is:
                                                                                                                     Compute greedy policy \pi_G w.r.t. V^{\pi}
- Proposal distribution R(X'|X): given X_t = x,
                                                         with zero mean. Bayesian filtering is basi-
                                                                                                                    - Set \pi \leftarrow \pi_G
Guaranteed to monotonically improve and to
sample "proposal"x' \sim R(X'|X = x)
                                                          cally the same, except that sums turn to
                                                                                                                                                                              I(X_i, X_j) = \sum_{x_i, x_j} P(x_i, x_j) \log \frac{P(x_i, x_j)}{P(x_i)P(x_j)}
- Acceptance distribution
                                                          integrals. General Kalman update
                                                                                                                    converge to an optimal policy \pi^* in O(n^2m/(1-
                                                                                                                                                                               Empirical mutual information:
   - Suppose X_t = x
                                                          - Transition model: P(x_{t+1}|x_t) = N(x_{t+1}; Fx_t, \Sigma_x)
                                                                                                                     \gamma)) iterations (converges in polynomial num-
                                                                                                                                                                              \hat{P}(x_i, x_i) = \frac{Count(x_i, x_j)}{N}
    - With probability \alpha = min\left\{1, \frac{Q(x')R(x|x')}{Q(x)R(x'|x)}\right\}
                                                         - Sensor model: P(y_t|x_t) = N(y_t; Hx_t, \Sigma_v)
                                                                                                                     ber of iterations)!
                                                         - Kalman update:
                                                                                                                                                                              \hat{I}(X_i, X_j) = \sum_{x_i, x_j} \hat{P}(x_i, x_j) log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i) \hat{P}(x_j)}
                                                                                                                     9.3 Value iteration (Cost O(SA\Delta))
set: X_{t+1} = x'
                                                          \mu_{t+1} = F \mu_t + K_{t+1} (y_{t+1} - HF \mu_t)
   - With probability 1 - \alpha, set X_{t+1} = x
                                                                                                                    Initialize V_0(x) = max_a r(x, a)
                                                                                                                                                                              Regularizing a Bayes Net:
                                                          \Sigma_{t+1} = (I - K_{t+1})(F\Sigma_t F^T + \Sigma_x)
                                                                                                                    For t = 1 to \infty:
                                                                                                     (F\Sigma_t F^T + - \text{For each } (x, a), \text{ let:}
                                                                                                                                                                              S_{BIC}(G) = \sum_{i=1}^{n} \hat{I}(X_i; Pa_i) - \frac{\log N}{2N} |G|
                                                              Kalman gain: K_{t+1}
MCMC for graphical models: Gibbs samp-
                                                                                                                                                                              where G is the number of parameters, n the
                                                          (\Sigma_r)H^T(H(F\Sigma_tF^T+\Sigma_r)H^T+\Sigma_r)^{-1}
                                                                                                                    Q_t(x, a) = r(x, a) + \gamma \sum_{x'} P(x'|x, a) V_{t-1}(x')
ling (Random Vs Practical variant):
```

- For each x, let $V_t(x) = maxQ_t(x, a)$

Retrieving MAP from Max-Product (MAP = - Start with initial assignment x **to all variables 8.3 Examples with > 1 variable per time step**

number of variables and N the number of dom. Take step in negative gradient direction. training examples.

Chow-Liu algorithm:

- For each pair X_i, X_i of variables, compute:

$$\hat{P}(x_i, x_j) = \frac{\hat{Count}(x_i, x_j)}{N}$$

Compute mutual information

- Define complete graph with weight of edge (X_i, X_i) given by the mutual information
- Find max spanning tree → undirected tree
- Pick any variable as root and orient the edges away using breadth-first search.

11 Reinforcement Learning

11.1 Model-based RL

11.1.1 ϵ greedy

With probability ϵ , pick random action. With prob $(1 - \epsilon)$, pick best action. If sequence ϵ satisfies Robbins Monro criteria \rightarrow convergence to optimal policy with prob 1.

11.1.2 R_{max} algorithm

Input: starting x_0 , discount factor γ .

Initially: add fairy tale state x^* to MDP

- Set $r(x, a) = R_{max}$ for all states x and actions a
- Set $P(x^*|x,a) = 1$ for all states x and actions a
- Choose the optimal policy for r and P **Repeat**: 1. Execute policy π and, for each visited state/action pair, update r(x, a)
- 2. Estimate transition probabilities P(x | x, a)
- 3. If observed 'enough' transitions/rewards, recompute policy π , according to current model P and r.

Enough"? See Hoeffding's inequality. To reduce error ϵ , need more samples N.

Theorem: With probability $1 - \delta$, R_{max} will reach an ϵ -optimal policy in a number of steps that is polynomial in |X|, |A|, T, $1/\epsilon$ and $log(1/\delta)$. Memory $O(|X^2||A|)$.

11.2 Model-free RL: estimate V*(x) directly

11.2.1 Q-learning

 $Q(x,a) \leftarrow (1-\alpha_t)Q(x,a) + \alpha_t(r+\gamma \max_{a'} Q(x',a'))$ **Theorem**: If learning rate α_t satisfies:

 $\sum_{t} \alpha_{t} = \infty$ and $\sum_{t} \alpha_{t}^{2} < \infty$ (Robbins-Monro), and actions are chosen at random, then Q learning converges to optimal *Q** with probability

Optimistic Q learning:

Initialize: $Q(x, a) = \frac{R_{max}}{1 - \gamma} \prod_{t=1}^{T_{init}} (1 - \alpha_t)^{-1}$

Same convergence time as with R_{max} . Memory O(|X||A|). Comp: O(|A|).

Parametric Q-function approximation: $Q(x,a;\theta) = \theta^T \phi(x,a)$ to scale to large state spaces. (You can use Deep NN here!)

SGD for ANNs: initialize weights. For t =1,2..., pick a data point (x,y) uniformly at ran-

(In practise, mini-batches).

Deep Q Networks: use CNN to approx Q function. $L(\theta) = \sum_{(x,a,r,x') \in D} (r + \gamma \max_{a} Q(x', a'; \theta^{old}) - Q(x', a'; \theta^{old}))$

 $Q(x,a;\theta)^2$ **Double DQN:** current network for evaluating argmax (too optimistic, and you remove θ^{old} and put θ).

11.3 Gaussian processes

A GP is an (infinite) set of random variables (RV), indexed by some set X, i.e., for each x in \dot{X} , there is a RV Y_x where there exists functions $\mu: X \to \mathbb{R}$ and $K: X \times X \to \mathbb{R}$ such that for all: $A \in X$, $A = x_1,...x_k$, it holds that $Y_A = [Y_{x_1}, ..., Y_{x_k}] \sim N(\mu_a, \Sigma_{AA})$, where: $\Sigma_{AA} = [Y_{x_1}, ..., Y_{x_k}] \sim N(\mu_a, \Sigma_{AA})$ matrix with all combinations of $K(x_i, x_i)$.

K is called kernel (covariance) function (must be symmetric and pd) and μ is called mean function. Making prediction with **GPs:** Suppose $P(f) = GP(f; \mu, K)$ and we observe $y_i = f(\overrightarrow{x_i}) + \epsilon_i$, $A = \{\overrightarrow{x_1} : \overrightarrow{x_k}\}$ $P(f(x)|\overrightarrow{x_1}:\overrightarrow{x_k},y_{1:k})=GP(f;\mu',K')$. In particular, $P(f(x)|\overrightarrow{x_1}:\overrightarrow{x_k},y_{1:k})=N()f(x);\mu_{x|A},\sigma_{x|a}^2$ where $\mu_{x|a} = \mu(\overrightarrow{x}) + \sum_{x,A} (\sum_{AA} + \sigma^2 I)^{-1} \sum_{x,A}^T (\overrightarrow{y_A} - \sum_{x,A} (\overrightarrow{y_A})^{-1} + \sum_{x,A} (\overrightarrow{y_A})^{-1} +$ μ_A) and $\sigma_{x|a}^2 = K(\overrightarrow{x}, \overrightarrow{x}) - \Sigma_{x,A}(\Sigma_{AA} + \sigma^2 I)^{-1} \Sigma_{x,A}^T$.

Closed form formulas for prediction!