Information Theory and Coding - Prof. Emere Telatar

Jean-Baptiste Cordonnier, Sebastien Speierer, Thomas Batschelet

November 7, 2017

1 Data compression

Definition 1.1 (Information). Abstractly, information can be thought of as the resolution of uncertainty.

Given an alphabet \mathcal{U} (e.g. $\mathcal{U} = \{a, ..., z, A, ..., Z, ...\}$), we want to assign binary sequences to elements of \mathcal{U} , i.e.

$$\mathscr{C}: \mathcal{U} \to \{0,1\}^* = \{\emptyset, 0, 1, 00, 01, ...\}$$

For \mathcal{X} a set

$$\mathcal{X}^n \equiv \{(x_0...x_n), x_i \in \mathcal{X}\}$$
$$\mathcal{X}^* \equiv \bigcup_{n>0} \mathcal{X}^n$$

Definition 1.2. A code \mathscr{C} is called **singular** if

$$\exists (u, v) \in \mathcal{U}^2, u \neq v \quad s.t. \quad C(u) = C(v)$$

Non singular code is defined as opposite

Definition 1.3. A code \mathscr{C} is called **uniquely decodable** if

$$\forall u_1, ..., u_n, v_1, ..., v_n \in \mathcal{U}^* \quad s.t. \quad u_1, ..., u_n \neq v_1, ..., v_n$$

we have

$$\mathscr{C}(u_1)...\mathscr{C}(u_n) \neq \mathscr{C}(v_1)...\mathscr{C}(v_n)$$

 $i.e, \mathcal{C}$ is non-singular

Definition 1.4. Suppose $\mathscr{C}: \mathcal{U} \to \{0,1\}^*$ and $\mathcal{D}: \mathcal{V} \to \{0,1\}^*$ we can define

$$\mathscr{C} \times \mathcal{D} : \mathcal{U} \times \mathcal{V} \to \{0,1\}^* \quad as \quad (\mathscr{C} \times \mathcal{D})(u,v) \to \mathscr{C}(u)\mathcal{D}(v)$$

Definition 1.5. Given $\mathscr{C}: \mathcal{U} \to \{0,1\}^*$, define

$$\mathscr{C}^*: \mathcal{U}^* \to \{0,1\}^*$$
 as $\mathscr{C}^*(u_1...u_n) = \mathscr{C}(u_1)...\mathscr{C}(u_n)$

Definition 1.6. A code $\mathcal{U} \to \{0,1\}^*$ is **prefix-free** is for no $u \neq v \, \mathscr{C}(u)$ is a prefix of $\mathscr{C}(v)$.

Theorem 1.1. If \mathscr{C} is prefix-free then \mathscr{C} is uniquely decodable.

Definition 1.7. $l(\mathscr{C}(u))$ is the length of the code word $\mathscr{C}(u)$ and $l(\mathscr{C})$ is the expected length of the code:

$$l(\mathscr{C}) = \sum_u l(\mathscr{C}(u)) p(u)$$

Definition 1.8 (Kraft sum). Given $\mathscr{C}: \mathcal{U} \to \{0,1\}^*$

$$kraftsum(\mathscr{C}) = \sum_{u} 2^{-l(\mathscr{C}(u))}$$

Lemma 1.2. if $\mathscr{C}: \mathcal{U} \to \{0,1\}^*$ and $\mathcal{D}: \mathcal{V} \to \{0,1\}^*$ then

$$kraftsum(\mathscr{C} \times \mathcal{D}) = kraftsum(\mathscr{C}) \times kraftsum(\mathcal{D})$$

Proof.

$$\begin{split} kraftsum(\mathscr{C}\times\mathcal{D}) &= \sum_{u,v} 2^{-(l(\mathscr{C})*l(\mathcal{D}))} \\ &= \sum_{u} 2^{-l(\mathscr{C})} \sum_{v} 2^{-l(\mathcal{D})} \end{split}$$

Corollary 1.2.1. $kraftsum(\mathscr{C}^n) = (kraftsum(\mathscr{C}))^n$

Proposition 1.1. if \mathscr{C} is non-singular, then

$$kraftsum(\mathscr{C}) \leq 1 + \max_{u} l(\mathscr{C}(u))$$

In coding theory, the **Kraft-McMillan inequality** gives a necessary and sufficient condition for the existence of a uniquely decodable code for a given set of codeword lengths.

Wikipedia. Kraft's inequality limits the lengths of codewords in a prefix code: if one takes an exponential of the length of each valid codeword, the resulting set of values must look like a probability mass function, that is, it must have total measure less than or equal to one. Kraft's inequality can be thought of in terms of a constrained budget to be spent on codewords, with shorter codewords being more expensive.

Theorem 1.3. if \mathscr{C} is uniquely decodable, then $kraftsum(\mathscr{C}) \leq 1$

Proof. \mathscr{C} is uniquely decodable $\equiv \mathscr{C}^*$ is non singular

$$\Rightarrow kraftsum(\mathscr{C}^n) \le 1 + \max_{u_1, \dots, u_n} l(\mathscr{C}^n)$$
$$\Rightarrow kraftsum(\mathscr{C})^n < 1 + nL, \quad L = \max l(\mathscr{C}(n))$$

A growing exp cannot be bounded by a linear function

$$\Rightarrow kraftsum(\mathscr{C}) \leq 1$$

Theorem 1.4. Suppose $\mathscr{C}: \mathcal{U} \to \mathcal{N}$ is such that $\sum_{u} 2^{-l(\mathscr{C}(u))} \leq 1$, then, there exists a prefix-free code $\mathscr{C}': \mathcal{U} \to \{0,1\}$ s.t. $\forall u, l(\mathscr{C}'(u)) = l(\mathscr{C}(u))$

Proof. Let $\mathcal{U} = \{u_1, ..., u_n\}$ and $\mathscr{C}(u_1) \leq \mathscr{C}(u_2) \leq ... \leq \mathscr{C}(u_k) = \mathscr{C}_{max}$. Consider the complete binary tree up to depth \mathscr{C}_{max} initially all nodes are available to be used as codewords. For i = 1, 2, ..., n, place $\mathscr{C}(u_i)$ at an available node at level $\mathscr{C}(u_i)$ remove all descendant of $\mathscr{C}(u_i)$ from the available list.

Corollary 1.4.1. Suppose $\mathscr{C}: \mathcal{U} \to \{0,1\}^*$ is uniquely decodable, then there exist an $\mathscr{C}': \mathcal{U} \to \{0,1\}^*$ which is prefix-free and $l(\mathscr{C}'(n)) = l(\mathscr{C}(n))$

Example 1. $\mathcal{U} = \{a, b, c, d\}$, $\mathscr{C} : \{0, 01, 011, 111\}$ and $\mathscr{C}' : \{0, 10, 110, 111\}$ In this case, decoding \mathscr{C} may require delay, while decoding \mathscr{C}' is instanteneous.

2

2 Alphabet with statistics

Suppose we have an alphabet \mathcal{U} , and suppose we have a random variable U taking values in \mathcal{U} . We denote by $p(u) = Pr(U = u), u \in \mathcal{U}$ with $p(u) \geq 0$ and $\sum_{u} p(u) = 1$.

Suppose we have a code $\mathscr{C}: \mathcal{U} \to \{0,1\}^*$. We then have $\mathscr{C}(u)$ a random binary string and $l(\mathscr{C}(u))$ a random integer.

Example 2. $\mathcal{U} = \{a, b, c, d\}$ $p: \{0.5, 0.25, 0.125, 0.125\}$ $\mathscr{C}: \{0, 01, 110, 111\}$

then we have

$$l(\mathscr{C}(u)) = \begin{cases} 1, & p = 0.5\\ 2, & p = 0.25\\ 3, & p = 0.125 + 0.125 + 0.25 \end{cases}$$

We can measure how efficient $\mathscr C$ represents $\mathcal U$ by considering

$$E[l(\mathscr{C}(u))] = \sum_{u} p(u)l(\mathscr{C}(u))$$
 with $\mathscr{C}(u) = l(\mathscr{C}(u))$

Theorem 2.1. if \mathscr{C} is uniquely decodable, then

$$E[l(\mathscr{C}(u))] \ge \sum_{u} p(u) \log(\frac{1}{p(u)})$$

Proof. let $\mathscr{C}(u) = l(\mathscr{C}(u))$, we know $\sum_u 2^{-\mathscr{C}(u)} \le 1$ because \mathscr{C} is uniquely decodable. We write $q(u) = 2^{-\mathscr{C}(u)}$ and get

$$\begin{split} E[l(\mathscr{C}(u))] &= \sum_{u} p(u)\mathscr{C}(u) = \sum_{u} p(u)\log_{2}\frac{1}{q(u)} \\ &\equiv \sum_{u} p(u)\log\frac{q(u)}{p(u)} \leq 0 \\ &\equiv \sum_{u} p(u)\ln\frac{q(u)}{p(u)} \leq 0 \\ &\leq \sum_{u} p(u)\left[\frac{q(u)}{p(u)} - 1\right] = \underbrace{\sum_{u} q(u)}_{\leq 1} - \underbrace{\sum_{u} p(u)}_{=1} \leq 0 \end{split}$$

Theorem 2.2. For any U, there exists a prefix-free code \mathscr{C} s.t.

$$E[l(\mathscr{C}(u))] < 1 + \sum_{u \in \mathcal{U}} p(u) \log \frac{1}{p(u)}$$

Proof. Given \mathcal{U} , let

$$\begin{split} \mathscr{C}(u) &= \lceil \log \frac{1}{p(u)} \rceil < 1 + \log \frac{1}{p(u)} \\ \Rightarrow \sum_{u} 2^{-\mathscr{C}(u)} &\leq \sum_{u} p(u) = 1 \\ \Rightarrow \sum_{u} p(u)\mathscr{C}(u) < \sum_{u} p(u) \log(\frac{1}{p(u)}) + \underbrace{1}_{\sum p(u)} \end{split}$$

Definition 2.1 (Entropy). Entropy quantifies the amount of uncertainty involved in the value of a random variable or the outcome of a random process.

Theorem 2.3. The entropy of a random variable $U \in \mathcal{U}$ is

$$H(U) = \sum_{u \in \mathcal{U}} p(u) \log(\frac{1}{p(u)})$$

with p(u) = Pr(U = u)

Wikipedia. The entropy is a lower bound on the optimal expected length

$$H(U) \leq \mathbb{E} l(\mathscr{C}(u))$$

In fact, one can show that there exists a uniquely decodable code such that

$$H(U) \leq \mathbb{E}\,l(\mathscr{C}(u)) < H(U) + 1$$

Note that H(U) is a function of the distribution $\mathscr{C}_u(.)$ of the random variable U, it isn't a function of U.

$$H(U) = E[f(U)]$$
 where $f(U) = \log(\frac{1}{p(u)})$

How to design optimal codes (in the sense of minimizing $E[l(\mathscr{C}(u))]$)? Formally, given a random variable U, find $\mathscr{C}(u) \to \mathcal{N}$ s.t.

$$\sum_{u \in U} 2^{\mathscr{C}(u)} \leq 1 \quad \text{that minimizes} \quad \sum_{u \in U} p(u)\mathscr{C}(u)$$

Properties of optimal prefix-free codes

- if p(u) < p(v) then $\mathscr{C}(u) \ge \mathscr{C}(v)$
- The two longest codewords have the same length
- There is an optimal code such that the two least probable letters are assigned codewords that differ in the last bit.

Observe that if $\{\mathscr{C}(u_1),...,\mathscr{C}(u_{k-1}),\mathscr{C}(u_k)\}$ is a prefix-free collection of the property that

$$\mathcal{C}(u_{k-1}) = \alpha 0$$

 $\mathcal{C}(u_k) = \alpha 1$ with $\alpha \in \{0, 1\}^*$

then $\{\mathscr{C}(u_1),...,\mathscr{C}(u_{k-2}),\alpha\}$ is also a prefix-free collection. Also

$$\begin{split} \sum_{u \in \mathcal{U}} p(u) l(\mathscr{C}(u)) &= p(u_1) l(\mathscr{C}(u_1)) + \ldots + p(u_{k-2}) l(\mathscr{C}(u_{k-2})) + [p(u_{k-1}) + p(u_k)] (l(\alpha) + 1) \\ &= (p(u_{k-1}) + p(u_k)) + \sum_{v \in \mathcal{V}} p(v) l(\mathscr{C}'(v)) \end{split}$$

So we have shown that with

$$E[l(\mathscr{C}(U)] = p(u_{k-1}) + p(u_k) + E[l(\mathscr{C}'(V))]$$

if \mathscr{C} is optimal for U, then \mathscr{C}' is optimal for V

3 Entropy and mutual information

Definition 3.1 (Joint entropy). Suppose U, V are random variables with $p(u, v) = Pr\{U = u, V = v\}$, the joint entropy is

$$H(UV) = \sum_{u,v} p(u,v) \log \frac{1}{p(u,v)}$$

Theorem 3.1.

$$H(UV) \le H(U) + H(V)$$

with equality iff U and V are independents.

Proof. We want to show that

$$\sum_{u,v} p(u,v) \log \frac{1}{p(u,v)} \le \sum_{u} p(u) \log \frac{1}{p(u)} + \sum_{v} p(v) \log \frac{1}{p(v)} \iff \sum_{u,v} p(u,v) \log \frac{p(u)p(v)}{p(u,v)} \le 0$$

We use $\ln z \le z - 1$ for all z (with equality iff z = 1):

$$\sum_{u,v} p(u,v) \log \frac{p(u)p(v)}{p(u,v)} \le \sum_{u,v} p(u,v) \left[\frac{p(u)p(v)}{p(u,v)} - 1 \right] = \sum_{u,v} p(u)p(v) - \sum_{u,v} p(u,v) = 1 - 1 = 0$$

Same definitions of entropy holds for n symbols.

Definition 3.2 (Joint Entropy). Suppose U_1, U_2, \ldots, U_n are RVs and we are given $p(u_1 \ldots u_n)$, the joint entropy is

$$H(U_1, \dots, U_n) = \sum_{u_1 \dots u_n} p(u_1 \dots u_n) \log \frac{1}{p(u_1 \dots u_n)}$$

Theorem 3.2.

$$H(U_1 \dots U_n) \le \sum_{i=1}^n H(U_i)$$

with equality iff Us are independents

Corollary 3.2.1. if U_1, \ldots, U_n are i.i.d. then $H(U_1, \ldots, U_n) = nH(U_1)$

Definition 3.3 (Conditional entropy).

$$H(U|V) = \sum_{u,v} p(u,v) \log \frac{1}{p(u|v)}$$
$$= \sum_{v} H(U|V=v) Pr \{V=v\}$$

Theorem 3.3.

$$H(UV) = H(U) + H(V|U) = H(V) + H(U|V)$$

Theorem 3.4.

$$H(U) + H(V) \ge H(UV) = H(V) + H(U|V)$$

Definition 3.4 (Mutual information). Mutual information measures the amount of information that can be obtained about one random variable by observing another.

$$I(U; V) = I(V; U) = H(U) - H(U|V)$$

= $H(V) - H(V|U)$
= $H(U) + H(V) - H(UV)$

We can apply the chain rule on the entropy as follow

$$H(U_1U_2...U_n) = H(U_1) + H(U_2|U_1) + \dots + H(U_n|U_1U_2...U_{n-1}) = \sum_{i=1}^n H(U_i|U^{i-1})$$

Definition 3.5 (Conditional mutual information).

$$\begin{split} I(U;V|W) &= H(U|W) - H(U|VW) \\ &= H(V|W) - H(V|UW) \\ &= \mathbb{E}_{u,v,w} \left[\log \frac{p(uv|w)}{p(u|w)p(v|w)} \right] \end{split}$$

Theorem 3.5.

$$I(V; U_1 \dots U_n) = I(V; U_1) + I(V; U_2|U_1) + \dots + I(V; U_n|U_1 \dots U_{n-1})$$

We can apply the chain rule on the mutual information as follows

$$I(U_1, U_2, ...; V) = I(U_1; V) + I(U_2; V|U_1) + ...$$

Theorem 3.6. Data processing inequality Let $X \to Y \to Z$ be a Markov chain, then

$$I(X;Y) \ge I(X;Z)$$

Notation 1.

$$U^n \triangleq (U_1 U_2 \dots U_n)$$

Theorem 3.7.

$$I(U; V|W) \ge 0$$

equality iff conditioned on w, u and v are independent, that is iff U - V - W is a Markov chain. Proof.

$$\begin{split} I(U;V|W) &= \frac{1}{\ln 2} \sum_{u,v,w} p(uvw) \ln \frac{p(u|w)p(v|w)}{p(uv|w)} \\ &\geq \frac{1}{\ln 2} \sum_{u,v,w} p(uvw) \left[\frac{p(u|w)p(v|w)}{p(uv|w)} - 1 \right] \\ &= \frac{1}{\ln 2} \sum_{u,v,w} (p(w)p(u|w)p(v|w) - p(uvw)) \\ &= \frac{1}{\ln 2} (1-1) \\ &= 0 \end{split}$$

Data processing

Theorem 4.1. U - V - W is a $MC \iff I(U; W|V) = 0$

Corollary 4.1.1. $I(U;V) \ge I(U;W)$ and by symetry of $MCI(W;V) \ge I(U;W)$

Proof.

$$I(U; VW) = I(U; V) + I(U; W|V) = I(U; V)$$

and

$$I(U;VW) = I(U;W) + I(U;V|W) \ge I(U;W)$$

Theorem 4.2. Given U a RV taking values in U then $0 \le H(U) \le \log |\mathcal{U}|$. H(U) = 0 iff U is constant, $H(U) = \log |\mathcal{U}| \text{ iff } U \text{ is } p(u) = 1/|\mathcal{U}| \text{ for all } u.$

Proof. For the lower bound,

$$H(U) = \sum_{u} \underbrace{p(u)}_{\geq 0} \underbrace{\log \frac{1}{p(u)}}_{> 0} \geq 0$$

For the upper bound,

$$H(U) - \log |\mathcal{U}| = \sum_{u} p(u) \log \frac{1}{p(u)} - \sum_{u} p(u) \log |\mathcal{U}|$$

$$= \frac{1}{\ln 2} \sum_{u} p(u) \ln \frac{1}{|\mathcal{U}| p(u)}$$

$$\leq \frac{1}{\ln 2} \sum_{u} p(u) \left(\frac{1}{|\mathcal{U}| p(u)} - 1 \right)$$

$$= \frac{1}{\ln 2} \left[\sum_{u} \frac{1}{|\mathcal{U}|} - \sum_{u} p(u) \right]$$

$$= 0$$

Theorem 4.3. $I(U;V) = 0 \iff U \perp V$

Definition 4.1 (Entropy rate of a stochastic process).

$$r = \lim_{n \to \infty} \frac{1}{n} H(U^n)$$
 if the limit exists

Theorem 4.4. For stationary stochastic process U^n , the sequences

$$a_n = \frac{1}{n} H(U^n) \text{ and } b_n = H(U_n | U^{n-1})$$

are positive and non increasing. Then $a = \lim_{n \to \infty} a_n$ and $b = \lim_{n \to \infty} b_n$ exists and a = b.

Proof.

$$\begin{split} b_{n+1} &= H(U_{n+1}|U_1, U_2, \dots, U_n) \\ &\leq H(U_{n+1}|U_2, \dots, U_n) \\ &= H(U_n|U_1, U_2, \dots, U_{n-1}) \\ &= b_n \text{ , because } U_1 \dots U_n \sim U_2 \dots U_{n+1} \text{ (Stationarity)}. \end{split}$$

Hence, it is non-increasing.

For the $\{a_n\}$, observe that

$$a_n = \frac{1}{n}H(U^n) = \frac{1}{n}\left[H(U_1) + H(U_2|U_1) + H(U_3|U^2) + \dots + H(U_n|U^{n-1})\right]$$
$$= \frac{1}{n}\left[b_1 + b_2 + \dots + b_n\right]$$

and by the "Lemma", whenever $b_n \to b$, $a_n \to b$

Lemma 4.5 (Cesaro). Suppose $b_n \to b$,

then,

$$a_n = \frac{1}{n} \left[b_1 + b_2 + \dots + b_n \right]$$
 also converges and to 1.

Proof. Since $b_n \to b$, $\left(\equiv \forall \epsilon > 0 , \exists n(\epsilon) \text{ s.t } \forall n > n(\epsilon) |b_n - b| < \epsilon \right)$

 $\exists B \text{ s.t. } |b_n| < B \text{ for all n.}$

Take $n > n_1(\epsilon) \triangleq \dots$ then

$$|a_n - b| \le \frac{|b_1 - b| + |b_2 - b| + |b_3 - b| + \dots + |b_n - b|}{n}$$

so
$$|a_n - b| \le \frac{1}{n} \left[\sum_{i=1}^{n_0(\epsilon)} \underbrace{|b_i - b|}_{2B} + \sum_{i=n_0(\epsilon)+1}^n \underbrace{|b_i - b|}_{\le \epsilon} \right] \le \frac{n_0(\epsilon)2B}{n} + \epsilon < 2\epsilon$$

for
$$n > n_1(\epsilon) \triangleq \max_{\epsilon} \{n_0(\epsilon) \frac{1}{\epsilon} n_0(\epsilon) 2B\}$$

Theorem 4.6. Given a stationary process with entropy rate r:

$$r = \lim_{n \to \infty} \frac{1}{n} H(U^n)$$

then

1. for every source coding scheme

$$\mathscr{C}_n: U^n \to \{0,1\}^*$$

the expected number of bits / letter is given by

$$\frac{1}{n}E[l(\mathscr{C}(U^n))] \ge r$$

2. for any $\epsilon > 0$, there exists a source coding scheme $\mathscr{C}_n : U^n \to \{0,1\}^*$ s.t.

$$\frac{1}{n}E[l(\mathscr{C}_n(U^n))] < r + \epsilon$$

Proof. 1. we already know

$$\frac{1}{n}E[l(\mathscr{C}_n(U^n))] \ge \frac{1}{n}H(U^n)$$

and the right term is decreasing

2. we also know that for each $n, \exists \mathscr{C}_n$ that is prefix-free s.t.

$$E[l(\mathscr{C}_n(U^n))] < \underbrace{\frac{1}{n}H(U^n)}_r + \underbrace{\frac{1}{n}}_0$$

we can find n large enough s.t. the right hand side $< r + \epsilon$

5 Typicality and typical set

Suppose we have a sequence $U_1, U_2, ...$ of i.i.d. random variables taking values in an alphabet \mathcal{U} . Suppose we observe $u_1, u_2, ..., u_n$. We will call it to be typical- (ϵ, p) if

$$p(u)(1-\epsilon) \le \frac{\text{\# of times } u \text{ appears in } u_1, ..., u_n}{n} \le p(u)(1+\epsilon)$$

Theorem 5.1. u^n is (ϵ, p) -typical then

$$2^{-nH(u)(1+\epsilon)} < Pr(U^n = u^n) < 2^{-nH(u)(1-\epsilon)}$$

Proof.

$$Pr(U^n = u^n) = \prod_{i=1}^n Pr(U_i = u_i) = \prod_{i=1}^n p(u_i) = \prod_{u \in \mathcal{U}} p(u)^{\#_u}$$

with $\#_u$ the number of times u appears in $u_1, ..., u_n$ where

$$n(1-\epsilon)p(u) < \#_u < n(1+\epsilon)p(u)$$

consequently

$$p(u)^{(np(u)(1-\epsilon))} > p(u)^{\#_u} > p(u)^{np(u)(1+\epsilon)}$$

then

$$(\prod_n p(u)^{p(u)})^{(1-\epsilon)n} \ge Pr(U^n = u^n) \ge (\prod_n p(u)^{p(u)})^{(1+\epsilon)n}$$

but

$$p(u)^{p(u)} = 2^{-p(u)\log(\frac{1}{p(u)})} \Rightarrow \prod p(u)^{p(u)} = 2^{-H(u)}$$

Definition 5.1 (Typical set).

$$T(n, \epsilon, p) = \{u^n \in \mathcal{U}^n : u^n \text{ is } (\epsilon, p)\text{-typical}\}$$

Wikipedia. Typical sets provide a theoretical means for compressing data, allowing us to represent any sequence X^n using nH(X) bits on average, and, hence, justifying the use of entropy as a measure of information from a source.

Theorem 5.2. 1. if $u^n \in T(n, \epsilon, p)$ then

$$p(u^n) = Pr(U^n = u^n) = 2^{-nH(u)(1 \pm \epsilon)}$$

when U_i i.i.d.

2.

$$\lim_{n \to \infty} Pr(U^n \in T(n, \epsilon, p)) = 1$$

3.

$$|T(n,\epsilon,p)| \le 2^{n(H(u)(1+\epsilon))}$$

4.

$$|T(n,\epsilon,p)| \ge (1-\epsilon)2^{nH(u)(1-\epsilon)}$$

Proof. 1. Fix $u \in \mathcal{U}$ let $X_i = 1$ if $U_i = u$ and 0 otherwise

$$\frac{\text{\# of times } u \text{ appears in } U_1...U_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

observe that $\{X_i\}$ are i.i.d.

$$X_i = \begin{cases} 1 & \text{w.p. } p(u) \\ 0 & \text{w.p. } 1 - p(u) \end{cases}$$

$$\Rightarrow E[X_i] = p(u) \quad \text{and} \quad Var[X_i] = p(u) - p(u)^2$$

$$\underbrace{Pr\left\{\left|\frac{1}{n}\sum_{i+1}^{n}X_{i}-p(u)\right|\right\} \geq \epsilon p(u)}_{u^{n} \text{ fails the test for letter } u} \leq \frac{Var(\frac{1}{n}\sum X_{i})}{(\epsilon p(u))^{2}} = \frac{(1-p(u))}{\epsilon^{2}p(u)}$$

2.

$$\begin{split} \Pr\left\{U^n \not\in T(n,\epsilon,p)\right\} &= \Pr\left\{\bigcup_{u \in U} \left\{u^n \text{ fails the test for u}\right\}\right\} \\ &\leq \sum_{u \in U} \Pr\left\{U^n \text{ fails the test for } u\right\} \\ &\leq \frac{1}{n} \sum_{u \in U} \frac{(1-p(u))}{p(u)\epsilon^2} \quad \text{which goes to 0 as } n \text{ gets large} \end{split}$$

3.

$$1 \ge Pr\left\{U^n \in T(n,\epsilon,p)\right\} = \sum_{u^n \in T(n,\epsilon,p)} Pr\left\{U^n = u^n\right\}$$
$$\ge \sum_{u^n \in T(n,\epsilon,p)} 2^{-n(1+\epsilon)H(u)}$$
$$= 2^{-n(1+\epsilon)H(u)} |T(n,\epsilon,p)|$$

4.

$$1 - \epsilon \le Pr\left\{U^n \in T(n, \epsilon, p)\right\} = \sum_{u^n \in T(n, \epsilon, p)} Pr\left\{U^n = u^n\right\}$$
$$\le \sum_{u^n \in T(n, \epsilon, p)} 2^{nH(u)(1 - \epsilon)}$$
$$= 2^{-nH(u)(1 - \epsilon)} |T(n, \epsilon, p)|$$

Observation 5.1. $Pr\{U^n \in T(n,\epsilon,p)\} \to 1 \text{ as } n \to \infty$

Definition 5.2 (Kullback Leibler divergence).

$$D(p||q) = \sum_{u} p(u) \log \frac{p(u)}{q(u)} \ge 0$$
 with equality iff $p = q$

If we compress data in a manner that assumes q(u) is the distribution underlying some data, when, in reality, p(u) is the correct distribution, the Kullback-Leiber divergence is the average number of additional bits per datum necessary for compression. It is also called **relative entropy** and is a measure of how one probability distribution diverges from a second probability distribution.

Lemma 5.3. if $U_1 \ldots U_n$ are i.i.d. with distribution q and $u_1 \ldots u_n$ is (ϵ, p) -tipycal, then

$$2^{-n[H(p)+D(p||q)](1+\epsilon)} < \Pr\left\{ U^n = u^n \right\} < 2^{-n[H(p)+D(p||q)](1-\epsilon)}$$

Proof. Follows from

$$\left[\prod_{u} q(u)^{p(u)}\right]^{n(1+\epsilon)} \le Pr\left\{U^n = u^n\right\} \le \left[\prod_{u} q(u)^{p(u)}\right]^{n(1-\epsilon)}$$

$$\prod_{u} q(u)^{p(u)} = 2^{-\sum p(u)\log\frac{1}{q(u)}}$$

and

$$\sum_{u} p(u) \log \frac{1}{q(u)} = \underbrace{\sum_{u} p(u) \log \frac{1}{p(u)}}_{H(p)} + \underbrace{\sum_{u} p(u) \log \frac{p(u)}{q(u)}}_{D(p||q)}$$

Corollary 5.3.1. if $U_1 \dots U_n$ are i.i.d. following distribution q, then

$$2^{-n[(1+\epsilon)D(p||q)+2\epsilon H(p)]} \le Pr\{U^n \in T(n,\epsilon,p)\} \le 2^{-n[(1-\epsilon)D(p||q)-2\epsilon H(p)]}$$

Proof.

$$Pr\left\{U^n \in T(n,\epsilon,p)\right\} = \sum_{u^n \in T(n,\epsilon,p)} Pr\left\{U^n = u^n\right\}$$

We have

$$2^{-n[H(p)+D(p||q)](1+\epsilon)} \le Pr\left\{U^n = u^n\right\} \le 2^{-n[H(p)+D(p||q)](1-\epsilon)}$$
$$2^{nH(p)(1-\epsilon)} \le |T(n,\epsilon,p)| \le 2^{nH(p)(1+\epsilon)}$$

Example 3. $U \in \{0,1\}, p = \frac{1}{2}, \frac{1}{2}, q = \frac{1}{2} - \delta, \frac{1}{2} + \delta$

$$D(p||q) = \frac{1}{2}\log\frac{1}{1-2\delta} + \frac{1}{2}\log\frac{1}{1+2\delta} = \frac{1}{2}\log\frac{1}{1-4\delta^2} = -\frac{1}{2}\log(1-4\delta^2) \approx \frac{1}{2}4\delta^2 + o(\delta^4)$$

So if we want $2^{-nD(p||q)}$ small, we must pick $n = \Omega(1/\delta^2)$

Example 4. Suppose we are told that U is p distributed and p(u) are powers of 2. We design a prefix-free code \mathscr{C} to minimize $\sum_{u} p(u)l(\mathscr{C}(u))$. We have been misinformed and $U \sim q$, then:

$$E\left[l(\mathscr{C}(u))\right] = \sum_{u} q(u) \log \frac{1}{p(u)}$$

$$= \underbrace{H(q)}_{\text{length for optimal code}} + \underbrace{D(q||p)}_{\text{penalty for misbelief}}$$

5.1 Universal data compression

Suppose we know that the distribution p of U is either $p_1, p_2 \dots p_k$, can we design a code $\mathscr{C}: U \to \{0,1\}^*$

$$E[l(\mathscr{C}(U))] \leq H(U) + \text{small for every } p$$

$$E\left[\frac{1}{n}l(\mathscr{C}(U))\right] \le o(n) + E\left[h_2\left(\frac{K}{n}\right)\right]$$

with
$$K = \sum_{i=1}^{n} u_i$$

We have $\frac{E[K]}{n} = \theta_1$ and $E\left[h_2\left(\frac{K}{n}\right)\right] \le h_2\left(E\left[\frac{K}{n}\right]\right) = h_2(\theta)$

Design \mathscr{C} Because the probability of a bit string is only dependant of the number of 1s (or 0s), it makes sense to encode two strings with the same numbers of 1 with code words of same lengths. Given $u_1 \dots u_n \in \{0,1\}^n$, first count the number of 1, call it k.

$$\mathscr{C}(u_1 \dots u_n) = \underbrace{\operatorname{describe} k}_{\lceil \log(n+1) \rceil} \underbrace{\operatorname{describe} u_1 \dots u_n}_{\lceil \log \binom{n}{k} \rceil}$$

We now want to evaluate

$$\frac{1}{n}E\left[l(\mathscr{C}(U))\right]$$

when $U_1 \dots U_n$ are i.i.d with $p_1 = \theta$ and $p_0 = 1 - p_1$

Observation 5.2. for any $0 \le \alpha \le 1$

$$1 = 1^n = (\alpha + (1 - \alpha))^n = \sum_{i=0}^n \binom{n}{i} \alpha^i (1 - \alpha)^{n-i}$$
$$\geq \binom{n}{k} \alpha^k (1 - \alpha)^{n-k}$$

Then for all α

$$\binom{n}{k} \le \alpha^{-k} (1-\alpha)^{-(n-k)} = 2^{n(\frac{k}{n}\log\frac{1}{\alpha} + (1-\frac{k}{n})\log\frac{1}{1-\alpha})}$$

We pick $\alpha = \frac{k}{n}$, and we get

$$\binom{n}{k} < 2^{nh_2\left(\frac{k}{n}\right)}$$

Using this bound we have

$$\frac{1}{n}l(\mathscr{C}(u_1 \dots u_n)) \le \frac{2}{n} + \frac{\log(n+1)}{n} + h_2\left(\frac{k}{n}\right)$$
$$E\left[\frac{1}{n}l(\mathscr{C}(U))\right] \le o(n) + E\left[h_2\left(\frac{k}{n}\right)\right]$$

Claim 5.1. Suppose U_i are i.i.d. with $Pr\{U_1 = 1\} = \theta$. We have $E\left[\frac{k}{n}\right] = \theta$ and $E\left[h_2\left(\frac{k}{n}\right)\right] \le h_2(E\left[\frac{k}{n}\right]) = h_2(\theta)$. So

$$\lim_{n\to\infty} \frac{1}{n} E\left[l(\mathscr{C}(u_1 \dots u_n))\right] \le h_2(\theta)$$

consequently this scheme is asymptotically optimal.

Proof. To prove the claim we need to show that if $\beta_1 \dots \beta_k$ are in [0,1] and $q_1 \dots q_k$ are non negative numbers that sum to 1 then

$$\sum_{i=1}^{k} q_i h_2(\beta_i) \le h_2 \left(\sum_{i=1}^{k} q_i \beta_i \right)$$

Let U and V be random variables with $U \in \{0,1\}$ and $V \in \{1,\ldots,k\}$ with

$$Pr \{V = i\} = q_i$$

$$Pr \{U = 1 | V = i\} = \beta_i$$

$$Pr \{U = 0 | V = i\} = 1 - \beta_i$$

Then,

$$Pr \{U = 1\} = \sum_{i} q_{i}\beta_{i}$$

$$H(U) = h_{2} \left(\sum_{i} q_{i}\beta_{i}\right)$$

$$H(U|V) = \sum_{i} q_{i}h_{2}(\beta_{i})$$

And we already know that $H(U) \geq H(U|V)$

TODO: Thomas scribes here

Suppose we have an infinite string $u_1u_2..., u_i \in \mathcal{U}$, and

$$u_1u_2... = v_1v_2...$$
 with $v_i \in \mathcal{U}^*, v_i \neq v_j$ when $i \neq j$

for any k we have

$$\lim_{m \to \infty} \frac{length(v_1...v_m)}{m} \ge k \Rightarrow \lim_{m \to \infty} \frac{length(v_1...v_m)}{m} = \infty$$

Definition 5.3. Given an infinite string $u_1u_2...$ and a machine M, let

$$\rho_M(u_1u_2...) = \overline{\lim_{n \to \infty}} \frac{length \ of \ the \ output \ M \ after \ reading \ u_1u_2...}{n}$$

also given s > 0, define

• The compressibility of U^* be s-state machines

$$\rho_s(u_1 u_2 ...) = \min_{M} \rho_M(u_1 u_2 ...)$$

with M an s'-state machine with $s' \leq s$

ullet Compressibility of \mathcal{U}^* by finite state machines

$$\rho_{FSM}(u_1 u_2 ...) = \lim_{s \to \infty} \rho_s(u_1 u_2 ...)$$

Definition 5.4. Suppose $u_1u_2...$ an infinite sequence, define m(n) as the largest m for which $u_1...u_n = v_1...v_m$ with distinct $v_1...v_m$

Example 5.

$$u = aaaaaaaaa, \quad \underbrace{\emptyset}_{v_1} \underbrace{a}_{v_2} \underbrace{aa}_{v_3} \underbrace{aaa}_{v_4} \underbrace{aaaa}_{v_5} \quad \Rightarrow m(10) = 5$$

So far we know that

$$\frac{\text{ length of the output of any s-state IL machine when it reads } u_1u_2...}{n} \geq \frac{m(n)\log(\frac{m(n)}{8s^2})}{n}$$

with

$$\frac{m(n)\log(\frac{m(n)}{8s^2})}{n} = \frac{m(n)\log(m(n))}{n} - \frac{m(n)\log(8s^2)}{length(v_1...v_m)}$$

hence if M is a s-state machine

$$\rho_M(u_1u_2...) \geq \overline{\lim_{n \to \infty}} \frac{m(n)\log(m(n))}{n} \quad \text{ then } \quad \rho_{FSM}(u_1u_2...) \geq \overline{\lim_{n \to \infty}} \frac{m(n)\log m(n)}{n}$$

6 Lemple-Ziv data compression method

Given some alphabet \mathcal{U} to both encoder and decoder, they also agree an order on \mathcal{U} :

- 1. Start with a dictionary $\mathcal{D} = \mathcal{U}$
- 2. To each word $w \in \mathcal{D}$, assign a $\lceil \log |\mathcal{D}| \rceil$ -bit binary description in the dictionary order
- 3. Parse the first word w in $u_1u_2...$ in the dictionary, output its binary description
- 4. replace w in \mathcal{D} by $\{wu, \forall u \in \mathcal{U}\}$.
- 5. Go to 2.

Example 6. Define an alphabet $\mathcal{U} = \{a, b, c\}$ with $a \leq b \leq c$ and an input message

$$u = abacac$$

- Create the dictionary $\mathcal{D} = \{a, b, c\}$ and its corresponding binary description $\mathcal{D}_{bin} = \{00, 01, 10\}$
- The first word in the message is 'a', output its binary description

$$output = 01$$

• Update the dictionary:

$$\mathcal{D} = \{a, ba, bb, bc, c\}$$
 $\mathcal{D}_{bin} = \{000, 001, 010, 011, 100\}$

 \bullet Parse the next word 'ba' and output its binary description

$$output=01001$$

• Update the dictionary

$$\mathcal{D} = \{a, baa, bab, bac, bb, bc, c\}$$
 $\mathcal{D}_{bin} = \{000, 001, ...\}$

• Continue until the end of the input data...

The decoder can proceed in a similar way to iteritavely update the dictionary while decoding the message.

6.1 Analysis of LZ

Observe that LZ parses the string $u_1u_2...$ into $v_1v_2...$ with $v_i \in \mathcal{U}^*$ or $v_i \in \mathcal{D}_i$ where \mathcal{D}_i is the dictionary at step i.

When going from iteration $i \to i+1$, v_i is removed from \mathcal{D} , consequently v_1, v_2, v_3 are distinct.

The length of the output of LZ after reading $u_1...u_m$ is given by

LZ output's length =
$$\lceil \log |\mathcal{U}| \rceil + \lceil \log(2|\mathcal{U}|-1) \rceil + \lceil \log(3|\mathcal{U}|-2) \rceil + \dots + \lceil \log(m|\mathcal{U}|-m+1) \rceil$$

we observe that

LZ output's length
$$< m(\log(m|\mathcal{U}|) + 1) = m\log(2m|\mathcal{U}|)$$

Also we have

bits / letter
$$< \frac{m \log(2m|\mathcal{U}|)}{length(u_1...u_m)}$$

$$= \frac{m \log(m)}{length(u_1...u_m)} + \frac{m \log(2|\mathcal{U}|)}{length(u_1...u_m)}$$

therefore

$$\rho_{LZ}(u_1u_2...) = \lim_{m \to \infty} \frac{\text{\# bits}}{\text{letter}} \leq \lim_{m \to \infty} \frac{m \log(m)}{lenqth(u_1...u_m)} \leq \lim_{n \to \infty} \frac{m(n) \log(m(n))}{n} \leq \rho_{FSM}(u_1u_2...)$$

So we have proved the following theorem:

Theorem 6.1. for every $u_1u_2...$

$$\rho_{LZ}(u_1u_2...) \le \rho_{FSM}(u_1u_2...)$$

Corollary 6.1.1. if $u_1u_2...$ is stationary

$$\rho_{LZ}(u_1u_2...) = entropy rate of u_1u_2...$$

7 Transmission of data

Interesting in the case of unreliable transmission media.

Definition 7.1 (Communication channel). A communication channel W is a device with an input alphabet \mathcal{X} and an output alphabet \mathcal{Y} . Its behavior is described by

$$W_i(y_i|x^i, y^{i-1}) = Pr\{Y_i = y_i|X^i = x^i, Y^{i-1} = y^{i-1}\}$$

Definition 7.2 (Memoryless channel). a channel W is said to be memoryless if

$$W_i(y_i|x^i, y^{i-1}) = W(y_i|x_i)$$

Definition 7.3 (Stationary channel). a channel W is said to be stationary if

$$W_i(y|x) = W(y|x)$$

Example 7 (Binary erasure channel - BEC). $\mathcal{X} = \{0,1\}$ and $\mathcal{Y} = \{0,1,?\}$, then

$$W(0|0) = 1 - p$$
$$W(?|0) = p$$

$$W(1|0) = 0$$

and same for $x_i = 1$.

Example 8 (Binary symetric channel - BSC).

$$W(0|0) = 1 - p = W(1|1)$$

$$W(1|0) = p = W(0|1)$$

The input $X_1, X_2 \dots X_n$ to a channel might have memory

$$Pr\{X^n = x^n\} = p(x_1)p(x_2|x_1)\dots p(x_i|x^{i-1})\dots p(x_n|x^{n-1})$$

$$Pr\{X^{n} = x^{n}, Y^{n} = y^{n}\} = p(x_{1})W_{1}(y_{1}|x_{1})p(x_{2}|x_{1}, y_{1})W(y_{2}|x_{1}, x_{2}, y_{1})\dots$$

$$= \prod_{i} p(x_{i}|\underbrace{x^{i-1}}_{\text{feedback memory}}\underbrace{y^{i-1}}_{\text{ord}})W_{i}(y_{i}|x^{i}y^{i-1})$$

Lemma 7.1. if there is no feedback and the channel is memoryless and stationary, then

$$Pr\{Y^n = y^n | X^n = x^n\} = \prod_{i=1}^n W(y_i | x_i)$$

Proof.

$$Pr \{Y^n = y^n, X^n = x^n\} = \prod_{i=1}^n p(x_i|x^{i-1}y^{i-1})W_i(y_i|x^iy^{i-1})$$

$$= \prod_{i=1}^n p(x_i|x^{i-1})W(y_i|x_i)$$

$$= \prod_{i=1}^n W(y_i|x_i)Pr \{X^n = x^n\}$$

Example 9. Suppose W is BSC(1/2) but we have feedback, defined by $X_1 = 0$ and $X_i = Y_{i-1}$.

$$Pr\left\{Y^2 = 00|X^2 = 01\right\} = 0$$
$$W(0|0)W(0|1) = \frac{1}{4}$$

Lemma 7.2. if W is stationary memoryless and there is no feedback, then

$$H(Y^n|X^n) = \sum_{i=1}^n H(Y_i|X_i)$$

Proof.

$$H(Y^{n}|X^{n}) = E\left[\log\frac{1}{Pr\{Y^{n}|X^{n}\}}\right] = E\left[\log\prod_{i=1}^{n}\frac{1}{Pr\{Y_{i}|X_{i}\}}\right] = \sum_{i=1}^{n}E\left[\log\frac{1}{Pr\{Y_{i}|X_{i}\}}\right] = \sum_{i=1}^{n}H(Y_{i}|X_{i})$$

For a memoryless stationary channel W(Y|X) we can compute, for any distribition p(x), p(x,y) = p(x)W(y|x) and I(X;Y), we can also compute

$$C(W) = \max_{p(x)} I(X;Y)$$

Lemma 7.3. for a stationary memoryless W without feedback, we have

$$I(X^n; Y^n) \le nC(W)$$

Proof.

$$I(X^n; Y^n) = H(Y^n) - H(Y^n|X^n)$$

$$= H(Y^n) - \sum_i H(Y_i|X_i)$$

$$\leq \sum_i H(Y_i) - \sum_i H(Y_i|X_i)$$

$$= \sum_i I(X_i; Y_i)$$

Note that the joint distribution $Pr\{X_i, Y_i\}$ is of the form p(x)W(y|x), then $I(X_i; Y_i) \leq C(W)$

Notation 2. for simplicity

$$p * q = (1 - q)p + q(1 - p)$$

Example 10. Let W be a BSC(p), $Pr\{X=0\}=1-q$ and $Pr\{X=1\}=q$. Then

$$Pr \{Y = 0\} = (1 - q)(1 - p) + qp$$
$$Pr \{Y = 1\} = (1 - q)p + q(1 - p)$$

$$H(Y|X = 0) = p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p}$$

$$H(Y|X = 1) = p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p}$$

$$H(Y|X) = p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p}$$

$$I(X;Y) = H(Y) - H(Y|X)$$

$$= (p*q)\log\frac{1}{p*q} + (1 - (p*q))\log\frac{1}{1 - (p*q)} - \left[p\log\frac{1}{p} + (1-p)\log\frac{1}{1-p}\right]$$

We maximize I(X;Y) for q=1/2

$$C(W) = \log 2 - h_2(p)$$

Example 11. Let W be $\mathrm{BEC}(p)$ and $\Pr\left\{X=1\right\}=q$

$$H(X) = h_2(q)$$

 $H(X|Y = 0) = 0$
 $H(X|Y = 1) = 0$
 $H(X|Y = ?) = h_2(q)$

$$I(X;Y) = h_2(q) - ph_2(q) = (1-p)h_2(q)$$

 $C(W) = (1-p)\log 2$

7.1 Fano's inequality

Suppose U and V take values in the same alphabet \mathcal{U} , then

$$H(U|V) \le p_e \log(|\mathcal{U}| - 1) + h_2(p_e)$$

with

$$p_e = Pr\{U \neq V\}$$
 and $h_2(p) = p\log(\frac{1}{p}) + (1-p)\log(\frac{1}{(1-p)})$

Proof. Define

$$Z = \begin{cases} 1 & U \neq V \\ 0 & U = V \end{cases}, \quad H(Z) = h_2(p_e)$$

$$H(UZ|V) = H(U|V) + H(Z|UV)$$
$$= H(Z|V) + H(U|VZ)$$
$$< H(Z) + H(U|VZ)$$

but

$$H(U|VZ) = \underbrace{H(U|V,Z=0)}_{0} \Pr\left\{Z=0\right\} + \underbrace{H(U|V,Z=1)}_{\leq \log(|\mathcal{U}|-1)} \underbrace{\Pr\left\{Z=1\right\}}_{p_{e}}$$

So if $H(U|V) > \lambda \Rightarrow \exists f(\lambda) > 0, p_e > f(\lambda)$

Corollary 7.3.1. Suppose U^L , V^L are random sequences with common alphabet \mathcal{U} , define :

$$p_{e,i} = Pr\{U_i \neq V_i\}, \quad \bar{p_e} = \frac{1}{L} \sum_{i=1}^{L} p_{e,i}$$

then

$$\frac{1}{L}H(U^{L}|V^{L}) \le h_{2}(\bar{p_{e}}) + \bar{p_{e}}\log(|\mathcal{U}| - 1)$$

Proof.

$$\frac{1}{L}H(U^{L}|V^{L}) = \frac{1}{L}\sum_{i=1}^{L}H(U_{i}|U^{i-1}V^{L})$$

$$\leq \frac{1}{L}\sum_{i=1}^{L}H(U_{i}|V_{i})$$

$$\leq \frac{1}{L}\sum_{i=1}^{L}(p_{e,i}\log(|\mathcal{U}|-1) + h_{2}(p_{e,i}))$$

$$= \bar{p_{e}}\log(|\mathcal{U}|-1) + \frac{1}{L}\sum_{i=1}^{L}h_{2}(p_{e,i})$$

$$\leq \bar{p_{e}}\log(|\mathcal{U}|-1) + h_{2}(\frac{1}{L}\sum_{i=1}^{L}p_{e,i})$$

$$= \bar{p_{e}}\log(|\mathcal{U}|-1) + h_{2}(\bar{p_{e}})$$

Theorem 7.4. "Bad news" theorem, converse to the coding theorem

- Suppose we have a stationary source $U_1U_2...$ with entropy rate H and produces a letter every τ_s seconds.
- Suppose also that we have a channel W that accepts input $X_1X_2...$ once every τ_c seconds.
- Suppose also

$$\frac{H}{\tau_s} > \frac{C(W)}{\tau_c}$$

then there is a $\lambda > 0$ such that $\bar{p_e} > \lambda$

Definition 7.4. stable suppose the encoder works by taking blocks of L letters

$$(U_1...U_L)(U_{L+1}...U_{2L})...$$

and outputs

$$(X_1...X_n)(X_{n+1}...U_{2n})...$$

then the encoder is stable if

$$L\tau_s \geq n\tau_c$$

Proof. Recall that for a stationary source $\frac{H(U_1...U_L)}{L}$ tends to H so

$$H(U_1...U_L) \ge LH$$

We also have

$$I(U^2; V^2) \le nC(W)$$

therefore, since $\frac{n}{L} \leq \frac{\tau_s}{\tau_c}$

$$\begin{split} H(U^2|V^2) &= \frac{1}{L}(H(U^2) - I(U^2;V^2)) \geq H - \frac{n}{L}C(W) \\ &\geq H - \frac{\tau_s}{\tau_c}C(W) \\ &= \tau_s(\frac{H}{\tau_s} - \frac{C(W)}{\tau_c}) \end{split}$$

The right hand side is

$$\epsilon(\tau_c, \tau_s, H, C) > 0$$

so for every stable encoder, decoder, we have

$$\bar{p_e} \log(|\mathcal{U}| - 1) + h_2(\bar{p_e}) > \epsilon(\tau_s, \tau_c, H, C)$$

then

$$\bar{p_e} \geq \epsilon(\tau_s, \tau_c, H, C, |\mathcal{U}|)$$

Example 12. Suppose $\mathcal{U} = \{0, 1\}$ and $U_1U_2...$ is a Markov process with

$$U_1 = \begin{cases} 0 & \text{with } p = 0.5 \\ 1 & \text{with } p = 0.5 \end{cases}, \quad p(U_{n+1}|U_n) = \begin{cases} 1-p & u_{n+1} = u_n \\ p & u_{n+1} \neq u_n \end{cases},$$

$$H = \lim_{n \to \infty} H(U_n | U^{n-1})$$

$$= \lim_{n \to \infty} H(U_n | U_{n_1})$$

$$= H(U_2 | U_1) = h_2(p)$$

suppose $w = BEC(q), c(w) = (1 - q) \log(2)$ and $\tau_s = \tau_c = 1$

$$h_2(\bar{p_e}) \ge h_2(p) - (1-q)\log(2) \Rightarrow \bar{p_e} \ge \lambda$$

What we want to do next is to show a matching "Good news" theorem:

We could show that if $\frac{H}{\tau_s} \leq \frac{c(w)}{\tau_c}$ then for any $\lambda > 0$, we can find a stable encoder and decoder such that $p_e < \lambda$. Instead, we will show stronger results:

- 1. **Separation theorem** The encoder can be designed in a modular way:
 - A **source encoder** which encoder message words in bits. The design of this encoder is strongly dependent of the type of the input.
 - A channel encoder which encoder the bits to maximize the performance with a specific channel.
- 2. We will show that

$$Pr\left\{U^L \neq V^L\right\} < \lambda$$

using the fact that

$$(U_i \neq V_i) \Rightarrow (U^L \neq V^L)$$
 so $p_{e,i} \leq Pr\{U^L \neq V^L\} \Rightarrow \bar{p_e} \leq Pr\{U^L \neq V^L\}$

We will now show that good channel encoders and channel decoders exist

Definition 7.5. Given a channel W with input alphabet \mathcal{X} , a block encoder is a function

$$Enc: \{1, ..., M\} \rightarrow \mathcal{X}^n$$

with n the block length.

Enc(1),...,Enc(M) are each called codewords and M is equal to the number of codewords. The rate of the code can be defined by

$$R = \frac{\log M}{n}$$

Definition 7.6. Given a channel W with outure alphabet Y, a block decoder is a function

$$Dec: \mathcal{Y}^n \to \{?, 1, ..., M\}$$

Definition 7.7.

$$p_{error}(m) = Pr\{\hat{m} \neq m|m\}$$

$$\bar{p}_{error}(m) = \frac{1}{M} \sum_{m=1}^{M} p_{error}(m)$$

$$\hat{p}_{error}(m) = \max_{m} p_{error}(m)$$

7.2 Computational consideration for C(W)

We have an optimization problem

$$\max_{p_X} f(p_X) \quad \text{where} \quad f(p_X) = I(X;Y)$$

See section C for further information on convex optimization.

Claim 7.1. f is a concave function

We want to compute

$$\frac{\partial I(X;Y)}{\partial p(x)}$$

We have

$$I(X;Y) = \sum_{x,y} p(x)W(y|x) \log \frac{W(y|x)}{p_Y(y)}$$

$$p_Y(y) = \sum p(x)W(y|x)$$

$$\begin{split} \frac{\partial I}{\partial p(x_0)} &= \sum_{x,y} \frac{\partial}{\partial p(x_0)} \left\{ p(x)W(y|x) \log \frac{W(y|x)}{p_Y(y)} \right\} \\ &= \sum_{x,y} \left\{ I_{x=x_0} W(y|x) \log \frac{W(y|x)}{P_Y(y)} - p(x)W(y|x) \frac{W(y|x_0)}{p_Y(y)} \log e \right\} \\ &= \sum_{y} W(y|x_0) \log \frac{W(y|x_0)}{p_Y(y)} - \sum_{y} p_Y(y) \frac{W(y|x_0)}{p_Y(y)} \log e \\ &= \sum_{y} W(y|x_0) \log \frac{W(y|x)}{P_Y(y)} - \log e \end{split}$$

Theorem 7.5. p_X maximizes I(X;Y) iff there exists λ such that for all x

$$\sum_{y} W(y|x) \log \frac{W(y|x)}{P_Y(y)} \le \lambda$$

with equality when $p_X(x) = 0$. Furthermore $\lambda = C(W)$.

Proof. We only need to prove the furthermore part. Observe that for all x

$$p_X(x) \sum_{y} W(y|x) \log \frac{W(y|x)}{P_Y(y)} = p_X(x)\lambda$$

and then

$$\sum_{x} p_X(x) \sum_{y} W(y|x) \log \frac{W(y|x)}{P_Y(y)} = \sum_{x} p_X(x)\lambda$$

Example 13 (Z channel). W is a normal binary channel that maps a 1 input to a 0 output with probability ϵ . Applying theorem 7.5 with x = 0 and x = 1:

$$W(0|0)\log\frac{W(0|0)}{p_Y(0)} = W(0|1)\log\frac{W(0|1)}{p_Y(1)} + W(1|1)\log\frac{W(1|1)}{p_Y(1)}$$

$$\iff \log\frac{1}{p_Y(y)} = \epsilon\log\frac{\epsilon}{p_Y(0)} + (1-\epsilon)\log\frac{1-\epsilon}{p_Y(1)} = h_2(\epsilon) + \epsilon\log\frac{1}{p_Y(0)} + (1-\epsilon)\log\frac{1}{p_Y(1)}$$

$$\iff \log\frac{p_Y(1)}{p_Y(0)} = -\frac{h_2(\epsilon)}{1-\epsilon} \triangleq -\alpha$$

$$\implies p_Y(1) = \frac{2^{-\alpha}}{1+2^{-\alpha}} \text{ and } p_Y(0) = \frac{1}{1+2^{-\alpha}}$$

$$C(W) = \log(1 + 2^{-\alpha})$$

Lemma 7.6. For any circle with red segments of cumulative length strictly less than 1/4, there exists a square whose all corners are on the circle but not on the red segments.

Proof. By random construction. Place the first corner of the square uniformly at random on the circle (also makes the 3 other uniform).

$$Pr\{1\text{st corner lands on red}\} < \frac{1}{4}$$
 $Pr\{i\text{th corner lands on red}\} < \frac{1}{4}$
 $Pr\{\bigcup_{i=1}^{i} i\text{th corner lands on red}\} < 1$

Pr {none of the corners land on red} > 0

Theorem 7.7 (Channel coding - good news). Given a channel W (discrete, memoryless, stationary), a rate R < C(W) and $\epsilon > 0$, there exists a n large enough and encoding/decoding functions $Enc: \{1...M\} \to \mathcal{X}^n$ with $M \ge 2^{nR}$ and $Dec: \mathcal{Y}^n \to \{1...M\}$ such that for all $m \in \{1...M\}$

$$Pr\left\{Dec(Y^n) \neq m | X^n = Enc(m)\right\} < \epsilon$$

In other words we can communicate reliably at rate greater or equal to R on channel W.

Proof. Given W and R < C(W), fix a p_X such that I(X;Y) > R. Pick $\delta > 0$, n large enough (to be determined later) and set $M' = \lceil 2 \cdot 2^{nR} \rceil$. Define the encoding function

$$Enc(1) = X(1)_1 \dots X(1)_n$$

$$\dots = \dots$$

$$Enc(M') = X(M')_1 \dots X(M')_n$$

choosing $\{X(m)_i : 1 \le i \le n, 1 \le m \le M'\}$ i.i.d. $\sim p_X$. For the decoder fix

$$T(n, \delta, p_{XY}) = \left\{ (x^n, y^n) : (1 - \delta)p_{XY}(x, y) \le \frac{\#\{(x_i, y_i) = (x, y)\}}{n} \le (1 + \delta)p_{XY}(x, y) \right\}$$

 $Dec(y^n)$: check for each m if $(Enc(m), y^n) \in T(n, \delta, p_{XY})$, if there is only a single m for which the pair is in the typical set then $Dec(y^n) = m$ otherwise (if there is none or more than one) $Dec(y^n) = 0$.

We now compute the probability of error $p_{e,m} \triangleq Pr\{Dec(Y^n) \neq m | X^n = Enc(m)\}$. $p_{e,m}$ depends on the choice of $Enc(1) \dots Enc(M)$ and since $Enc(1) \dots Enc(M)$ are randomly chosen, $p_{e,m}$ is a random variable. Supposing m is sent, an error will happen if and only if $(Enc(m), y^n) \notin T$ or for some $m' \neq m : (Enc(m'), y^n) \in T$

$$\begin{split} E\left[p_{e,m}\right] &= E_{Enc}[E_y[I\left\{\text{error has happened} \mid m \text{ is sent}\right\}]] \\ &= E_{Enc}[I\{\left(Enc(m),y\right) \not\in T, \exists m' \neq m(Enc(m',Y^n) \in T\} \mid m \text{ is sent}] \\ &\leq E[I\{\left(Enc(m),Y^n\right) \not\in T\}] + \sum_{m' \neq m} I\{\left(Enc(m'),Y^n\right) \in T\} \mid m \text{ is sent}] \\ &= Pr\left\{\left(Enc(m),Y^n\right) \not\in T | m \text{ is sent}\right\} + \sum_{m' \neq m} Pr\left\{\left(Enc(m'),Y^n\right) \in T | m \text{ is sent}\right\} \end{split}$$

We have

$$Pr \{Enc(m) = x_1 \dots x_n, Y^n = y_1 \dots y_n | m \text{ is sent}\} = p_x(x_1) p_x(x_2) \dots p_x(x_n) W(y_1 | x_1) W(y_2 | x_2) \dots W(y_n | x_n)$$
$$= p_X(x_1) p_X(x_2) \dots p_X(x_n) p_Y(y_1) p_Y(y_2) \dots p_Y(y_n)$$

and as n gets large

$$Pr\{(Enc(m), Y^n) \notin T(p_{XY}, n, \delta)\} = Pr\{\text{iid sequence} \sim p_{XY} \notin T(p_{XY}, n, \delta)\} \to 0$$

because $(Enc(m), Y^n)$ is iid $\sim p_{XY}$. Recall from typicallity that if U^n is iid p_U , then

$$\lim_{n\to\infty} \Pr\left\{U^n \notin T(n, p_U, \delta)\right\} = 0$$

and if U^n is in reality iid $\sim q_U$

$$Pr\{U^n \in T(n, p, \delta)\} < 2^{-n[D(p||q) - o(\delta)]}$$

Then,

$$Pr \{(Enc(m), Enc(m'), Y^n) = (x^n, (x')^n, y^n)\} = p_X(x^n)p_X((x')^n)W(y^n|x^n)$$

$$Pr \{(Enc(m), y^n) = (x^n, y^n)\} = p_X(x^n)W(y^n|x^n)$$

$$Pr \{(Enc(m'), y^n) = ((x')^n, y^n)\} = p_X((x')^n) \underbrace{\sum_{x^n} p(x^n)W(y^n|x^n)}_{p_Y(y)}$$

$$\iff (Enc(m'), y') \text{ is iid } \sim q_{XY} = p_X p_Y$$

$$\Rightarrow Pr \{(Enc(m'), y^n) \in T(p_{XY}, n, \delta)\} \leq 2^{-n[D(p||q) - o(\delta)]}$$

Also

$$D(p||q) = \sum_{xy} p_{XY}(x,y) \log \frac{p_{XY}(x,y)}{p_X(x)p_Y(y)} = I(X;Y)$$

Remember $M' = \lceil 2 \cdot 2^{nR} \rceil \le 2 \cdot 2^{nR} + 1$ then $M' - 1 \le 2 \cdot 2^{nR}$

$$E\left[p_{e,m}\right] \le o_n(1) + (M'-1)2^{-n[I(X;Y) - o(\delta)]} \le o_n(1) + 2 \cdot 2^{-n(I(X;Y) - R - o(\delta))}$$

We choose δ small enough to have a negative exponent. Then it will go to 0 as n gets large. So we have shown that for n large enough we can make for every m:

$$\begin{split} &E\left[p_{e,m}\right] < \frac{\epsilon}{2} \\ \Rightarrow &E\left[\sum_{m=1}^{M'} p_{e,m}\right] \le \frac{M'}{2} \epsilon \\ \Rightarrow &\exists \text{an encoder such that } \sum_{m=1}^{M'} p_{e,m} \le \frac{M'}{2} \epsilon \end{split}$$

How many terms in the sumation can be greater or equal to ϵ ? At most M'/2, so remaining must be strictly smaller than ϵ but

$$M' - \frac{1}{2}M' = \frac{1}{2}\lceil 2 \cdot 2^{nR} \rceil \ge \frac{1}{2}2 \cdot 2^{nR} = 2^{nR}$$

We throw away the one smaller than ϵ and we have a code with rate greater than R for

$$\max_{m} p_{e,m} < \epsilon$$

Example 14. Suppose $\mathcal{X} = \{a, b, c\}$, C(W) = 1.3 and R = 1.25, then $Enc(1...32) \to \mathcal{X}^4$ is a valid encoding function for this channel, while $Enc(1...32) \to \mathcal{X}^5$ would not allow reliable transmission.

Example 15. Suppose we want to design a code with $n=1000, R=\frac{1}{2}$. The encoding table will have 1000×2^{500} elements, more than 10^{153} elements. "C'est impossible M'sieur!"

Appendices

A Markov chains

 $U_1 - U_2 - \cdots - U_n$ forms a Markov chain if the joint probability distribution of the RVs is

$$p(a, b, c, d) = p(a)p(b|a)p(c|b)p(d|c)$$

which is equivalent to (U_1, \ldots, U_{k-1}) are independent of (U_{k+1}, \ldots, U_n) when conditionned on U_k for any k.

Theorem A.1. The reverse of a MC is a MC

B Stochastic processes

A stochastic process is a collection $U_1, U_2 \dots U_n$ of RVs each taking values in \mathcal{U} . It is described by its joint probability

$$p(u^n) = P(U_1 \dots U_n = u_1 \dots u_n) = P(U^n = u^n)$$

Definition B.1 (Stationary stochastic process). A process U_1, U_2, \ldots is called stationary if for every n and k and $u_1 \ldots u_n$, we have

$$p(u^n) = p(U_1 \dots U_n = u_1 \dots u_n) = p(U_{1+k} \dots U_{n+k} = u_1 \dots u_n)$$

In other words, the process is time shift invariant.

C Concave/convex functions

A function $f: S \to \mathbb{R}$ is called convex if

$$\forall x, y \in S, 0 \le \lambda \le 1, f(\lambda x - (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

where S is a convex set.

Definition C.1. A set $S \subseteq \mathbb{R}^k$ is called to be convex if

$$\forall x, y \in S, 0 \le \lambda \le 1, \lambda x + (1 - \lambda)y \in S$$

Definition C.2. f is called concave if -f is convex.

Definition C.3. *k-simplex*

$$S_k = \{(p_1, ..., p_k) \in \mathbb{R}^k, p \ge 0, \sum_i p_i = 1\}$$

as the k-simplex (a(k-1)-dimentional subset of \mathbb{R}^k)

Remark: Given S_k a convex set and $p, q \in S_k$, let

$$r = \lambda p + (1 - \lambda)q$$

$$r_i = \lambda p_i + (1 - \lambda)q_i > 0$$

$$\sum r_i = \lambda + (1 - \lambda) = 1$$

Example 16. Let $f: S_k \to \mathbb{R}$, with

$$f(p_1, ..., p_k) = \sum_{i=1}^{k} p_i \log_{\frac{1}{p_i}}$$

claim: f is concave

Proof. Given $p, q \in S_k, 0 \le \lambda \le 1$, define (U, V) with $U \in \{0, 1\}$ and $V \in \{1, ..., k\}$

$$P_{UV}(u,v) = \begin{cases} \lambda p_i, & u = 0, v = i\\ (1-\lambda)q_i, & u = 1, v = i \end{cases}$$

therefore we have

$$Pr \{V = i\} = \lambda p_i + (1 - \lambda)q_i$$
$$H(V) = f(\lambda p + (1 - \lambda)q)$$
$$H(V|U) = \lambda f(p) + (1 - \lambda)f(q)$$

Example 17. For W(Y|X) let $f(p_X) = I(X;Y)$ when $p(x,y) = p_X(x)W(Y|X)$ Claim: f is concave,

$$I(X;Y) = H(Y) - H(X|Y)$$

and

$$H(Y|X) = \sum_{x} p_X(x) \sum_{y} W(Y|X) \log \frac{1}{W(Y|X)}$$

We see that H(Y|X) is a linear function of $p_X(x)$.

H(Y) is a concave function of $p_Y(y)$ with

$$p_Y(y) - \sum_x p_X(x)W(Y|X)$$

$$p_X \xrightarrow[\text{linear}]{} p_Y \xrightarrow[\text{concave}]{} H(Y) \Longrightarrow p_X \xrightarrow[\text{concave}]{} H(Y)$$

How to maximize a function on the simplex?

Theorem C.1. Karush-Kuhn-Tucker conditions - (KKT) Suppose $f: S_k \to \mathbb{R}$, smooth $(\frac{df}{dp_idp_j} \text{ exists})$, then if $p = \{p_1, ..., p_k\}$ maximizes f, then $\exists \lambda \text{ s.t.}$

$$rac{dq_i}{dp_j}dp_j$$
 exists), then if $p=\{p_1,...,p_k\}$ maximizes f , then f $orall i$ $orall i$ $orall i$ $rac{df}{dn_i} \leq \lambda$

with equality $\forall i \text{ for which } p_i > 0$

Proof. Suppose $(p_1, ..., p_k)$ maximizes f, then suppose that $p_i > 0$. Then we can consider a $p' \in S_k$ as follow: Pick $j \neq i$ and a small $\epsilon, 0 < \epsilon < p_i$

$$p'_{k} = \begin{cases} p_{i} - \epsilon, & k = i \\ p_{j} + \epsilon, & k = j \\ p_{k}, & \text{else} \end{cases}$$

$$f(p') = f(p) + \frac{df(p)}{dp_i}(-\epsilon) + \frac{df(p)}{dp_j}(\epsilon) + O(\epsilon^2)$$
$$= f(p) + \epsilon \left[\frac{df}{dp_i} - \frac{df}{dp_i} \right] + O(\epsilon^2)$$

So for every i, j with $p_i > 0$ we have

$$\frac{df}{dp_i}\frac{df}{dp_i}$$

 \Rightarrow equality if i and j are such that $p_i > 0, p_j > 0$ \Rightarrow for i's such that $p_i > 0, \frac{df}{dp_i} = \lambda$ and all the indices j have $\frac{df}{dp_j} \leq \lambda$

Theorem C.2. Suppose $f: S_k \to \mathbb{R}$, suppose f is concave and suppose for $p \in S_k$, the KKT condition hold. Then $\forall q \in S_k, f(q) \leq f(p)$

Proof.

$$f(\epsilon q + (1 - \epsilon)p) \ge (1 - \epsilon)f(p) + \epsilon f(q)$$
$$\frac{f(\epsilon q + (1 - \epsilon)p) - f(p)}{\lambda} \ge f(q) - f(p), \quad \forall 0 < \epsilon \le 1$$

$$\Rightarrow f(q) - f(p) \le \lim_{\epsilon \to 0} \frac{f(p + \epsilon(q - p)) - f(p)}{\epsilon}$$

$$f(p + \epsilon(q - p)) = f(p) + \sum_{i} \epsilon(q_i - p_i) \frac{df(p)}{dp_i} + O(\epsilon^2)$$
$$\frac{f(p + \epsilon(q - p)) - f(p)}{\epsilon} = \sum_{i} (q_i - p_i) \frac{df(p)}{dp_i} + O(\epsilon)$$

So

$$\lim_{\epsilon \to 0} \frac{f(p + \epsilon(q - p)) - f(p)}{\epsilon} = \sum_{i} (q_i - p_i) \frac{df(p)}{dp_i}$$

with

$$(q_i - p_i) \frac{df}{dp_i} = \begin{cases} \underbrace{\lambda(q_i - p_i)}_{\geq 0}, & p_i > 0 \\ \underbrace{(q_i - p_i)}_{\leq \lambda} \underbrace{\frac{df}{dp_i}}_{\leq \lambda}, & p_i = 0 \end{cases} \leq \lambda(q_i - p_i)$$

$$\Rightarrow f(q) - f(p) \leq \lim_{\epsilon \to 0} [\ldots] \leq 0$$

Example 18. Suppose $f(p_1, p_2, p_3) = p_1 p_2^2 p_3^3$. We want to maximize it. If it isn't concave, we know that $\log(f(..))$ is concave. A try with KKT:

$$\frac{df}{dp_1} = \frac{1}{p_1}, \frac{df}{dp_2} = \frac{2}{p_2}, \frac{df}{dp_3} = \frac{3}{p_3}$$

setting then all λ yeild

$$(p_1, p_2, p_3) = \lambda(1, 2, 3) = (\frac{1}{6}, \frac{2}{6}, \frac{3}{6})$$

Example 19.

$$f(p_1, p_2, p_3) = (1 + p_1)p_2p_3$$

maximize f on the simplex by considering

$$\log(f) = \log(1 + p_1) + \log(p_2) + \log(p_3)$$

therefore:

$$\frac{df}{dp_1} = \frac{1}{1+p_1}, \frac{df}{dp_2} = \frac{1}{p_2}, \frac{df}{dp_3} = \frac{1}{p_3}$$

suggest p=(0,0.5,0.5) the $\frac{df}{dp}=(1,2,2) \rightarrow$ satisfy KKT with $\lambda=2$