

# FCC TEST REPORT

ShenZhen YuYuanXin Electronic Technology Co., LTD.

PRO WIRELESS CONTROLLER

Model No.: TNS-1724, 70221

Prepared For ShenZhen YuYuanXin Electronic Technology Co., LTD.

Address Building 11, Tianluohu Industry Park, Guihua Industry Area, Guanguang

Road, Guanlan Town, Longhua District, Shenzhen, Guangdong, China

518110

Prepared By Shenzhen Anbotek Compliance Laboratory Limited

Address 1/F, Building D, Sogood Science and Technology Park, Sanwei

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number SZAWW180710001-01

Date of Test Jul. 10~27, 2018

Date of Report Jul. 27, 2018



# Contents

| 1. General Information                                                                                                         |                  |                                        | VIIIO,         | VII.        |                     |
|--------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------|----------------|-------------|---------------------|
| 1.1. Client Information                                                                                                        | boten A          | Upo                                    | - Joseph       | Mapore      | An .                |
| 1.2. Description of Device (EUT)                                                                                               | - totek          | Anbore                                 | Vu.            | botek       | Anbo                |
| <ul><li>1.1. Client Information</li><li>1.2. Description of Device (EUT)</li><li>1.3. Auxiliary Equipment Used Durin</li></ul> | g Test           | Kupotek                                | Anbo           | h. Hotek    | popote. [           |
| 1.4. Description of Test Modes                                                                                                 | Anbe             | المىيىسىسىسى                           | ek Pupor       | Am          |                     |
| 1.5. List of channels                                                                                                          | Anboic           | P.U.                                   |                | octek Aupo  |                     |
| 1.6. Description Of Test Setup                                                                                                 | N / N            | Yer An                                 | DA 1           | natek pol   | 8                   |
| 1.7. Test Equipment List                                                                                                       |                  | potek.                                 | Anbole         | Viek.       | hotek And           |
| 1.8. Measurement Uncertainty                                                                                                   | born V           | '''''''''''''                          | Repotek        | Anbo        | 10                  |
| 1.9. Description of Test Facility                                                                                              | Roboter          | Aupe                                   | - Jotek        | Anbore      | 10                  |
| 2. Summary of Test Results                                                                                                     | do0tek           | Anbote                                 |                | k kopotek   | Anb                 |
| 3. Conducted Emission Test                                                                                                     | Antek            | hoth                                   | Anbo           |             |                     |
| 3. Conducted Emission Test                                                                                                     | And              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | otek Ant       | Jorg Will   |                     |
| 3.2. Test Setup                                                                                                                | ak Anbo          |                                        | -otek          | spoten Aut  | 12                  |
| 3.3. Test Procedure                                                                                                            | ote <sup>k</sup> | pote.                                  | Anv            | , teotek    | 12                  |
| 3.4. Test Data                                                                                                                 |                  | , hotek                                | Aupor          | V.,         | 12                  |
| 4. Radiation Spurious Emission and Band 4.1. Test Standard and Limit                                                           | Edge             | Notek                                  | popoter.       | Anb         | 17                  |
| 4.1. Test Standard and Limit                                                                                                   | Vupore.          | Vur.                                   |                | K Aupor     | 17                  |
| 4.2. Test Setup                                                                                                                | botek            | Anbos                                  |                | otek subote | And 17              |
| 4.3. Test Procedure                                                                                                            | /raj             | ek ant                                 | ote. And       |             | o <sup>tek</sup> 18 |
| 4.4. Test Data                                                                                                                 | Am               | You                                    | wotek I        | 'upo, Vi    | 19                  |
| 5. Maximum Peak Output Power Test                                                                                              | otek An          | 00- 1                                  | a. otek        | Anbote. A   | 26                  |
| 5. Maximum Peak Output Power Test 5.1. Test Standard and Limit                                                                 | -botek           | Anbore                                 | Anv            | ,,botek     | 26                  |
| 5.2. Test Setup                                                                                                                | ru. Hek          | botek                                  | Anbo           | wotek.      | 26                  |
| 5.3. Test Procedure                                                                                                            | Anbe             |                                        | k Anbore       | An-         | 26                  |
| 5.2. Test Setup                                                                                                                | Anbole           | Pitte                                  | dan Yan        | stek Anbo   | 26                  |
| 6. 20DB Occupy Bandwidth Test                                                                                                  | k pot            | Anb                                    | ······         | dna Antou   | 30                  |
| 6.1. Test Standard                                                                                                             |                  | ote <sup>K</sup>                       | upor b         | Week        | 30                  |
| 6.2. Test Setup                                                                                                                | 0 br.            | 4910                                   | "upoter        | Amb         | 30                  |
| 6.3. Test Procedure                                                                                                            | nbote            | Anu Vok                                |                | Anbor       | 30                  |
| 6.4. Test Data                                                                                                                 | botek            | Anbo                                   | Ar. Cots       | , Bupoter,  | 30                  |
| 7. Carrier Frequency Separation Test                                                                                           | b., Work         | Mpo <sub>fe</sub> ,                    | Mul            | ,ek         | 34                  |
| 7.1. Test Standard and Limit                                                                                                   | Vur.             | کوپہی۔۔۔۔۔کار                          | tek Anbe       | in bin      | 34                  |
| 7.2. Test Setup                                                                                                                | Anbo             |                                        | Kotek N        | abote, And  | 34                  |
| 7.3. Test Procedure                                                                                                            | tek Ant          | loge, V                                | υ <sub>ν</sub> | wotek A     | 34                  |
| 7.4. Test Data                                                                                                                 |                  | ,botek                                 | Anbo           | Pr. Pek     | 34                  |
| 8. Number of Hopping Channel Test                                                                                              | upo              | - Hotek                                | Mpote.         | Vur.        | 38                  |
| 8.1. Test Standard and Limit                                                                                                   | Anbotte          | Vun.                                   | , botek        | Anbo        | 38                  |
| 8.2. Test Setup                                                                                                                | Kupotek          | Anbo                                   |                | rek Mupoter | 38                  |
| 8.3. Test Procedure                                                                                                            |                  | k Aupo                                 | re Vun         | 000, 40,    | 38                  |
| 8.4. Test Data                                                                                                                 | An               | No.                                    | botek Ar       | (po . bo.   | 38                  |
| 6.4. Test Data                                                                                                                 | ter Aup          |                                        | - botek        | Anbore Ar   | 40                  |
| No.                                                                                                                            |                  |                                        |                |             |                     |



| 9.1. Test Standard and Limit.                       | 40              |
|-----------------------------------------------------|-----------------|
| 9.2. Test Setup                                     | 40              |
| 9.3. Test Procedure                                 | 40              |
| 9.4. Test Data                                      | 40              |
| 100kHz Bandwidth of Frequency Band Edge Requirement | 44              |
| 10.1. Test Standard and Limit                       | 44              |
| 10.2. Test Setup                                    | 44              |
| 10.3. Test Procedure                                | 44              |
| 10.4. Test Data                                     | 44              |
| Antenna Requirement                                 | 49              |
| 11.1. Test Standard and Requirement.                | 49              |
|                                                     | 49              |
| PENDIX I TEST SETUP PHOTOGRAPH                      | 50              |
| PENDIX II EXTERNAL PHOTOGRAPH                       | 52              |
| ter up                                              | 55              |
|                                                     | 9.2. Test Setup |



# TEST REPORT

Applicant ShenZhen YuYuanXin Electronic Technology Co., LTD.

Manufacturer ShenZhen YuYuanXin Electronic Technology Co., LTD.

Product Name PRO WIRELESS CONTROLLER

Model No. TNS-1724, 70221

Trade Mark N.A.

Input: DC 5V, 500mA(with DC 3.7V, 400 mAh Battery inside) Rating(s)

Test Standard(s) FCC Part15 Subpart C 2017, Section 15.247

Test Method(s) ANSI C63.10: 2013

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Jul. 10~27, 2018 Date of Test Prepared by (Engineer / Oliay Yang) Reviewer (Supervisor / Calvin Liu) Approved & Authorized Signer (Manager / Tom Chen)

# 1. General Information

# 1.1. Client Information

| Applicant    | : | ShenZhen YuYuanXin Electronic Technology Co., LTD.                          |
|--------------|---|-----------------------------------------------------------------------------|
| Address      | : | Building 11, Tianluohu Industry Park, Guihua Industry Area, Guanguang Road, |
|              |   | Guanlan Town, Longhua District, Shenzhen, Guangdong, China 518110           |
| Manufacturer | : | ShenZhen YuYuanXin Electronic Technology Co., LTD.                          |
| Address      | : | Building 11, Tianluohu Industry Park, Guihua Industry Area, Guanguang Road, |
|              |   | Guanlan Town, Longhua District, Shenzhen, Guangdong, China 518110           |

# 1.2. Description of Device (EUT)

| Product Name      | : | PRO WIRELESS CONTROLLE                               | R Anbotek Anbotek Anbotek Anbotek                  |
|-------------------|---|------------------------------------------------------|----------------------------------------------------|
| Model No.         | : | TNS-1724, 70221<br>(Note: All samples are the same e | except the name, so we prepare "TNS-1724" for test |
| Trade Mark        | : | N.A. And                                             | otek Anbotek Anbotek Anbotek                       |
| Test Power Supply | : | AC 240V, 60Hz for adapter/ AC                        | 120V, 60Hz for adapter/ DC 3.7V battery inside     |
| Test Sample No.   | : | S1, S2                                               | Anbotek Anbotek Anbotek Anbo                       |
|                   |   | Operation Frequency:                                 | 2402MHz~2480MHz                                    |
|                   |   | Transfer Rate:                                       | 1/2/3 Mbits/s                                      |
| Product           |   | Number of Channel:                                   | 79 Channels                                        |
| Description       |   | Modulation Type:                                     | GFSK, π/4-DQPSK, 8-DPSK                            |
|                   |   | Antenna Type:                                        | PCB Antenna                                        |
|                   |   | Antenna Gain(Peak):                                  | 1 dBi                                              |

**Remark:** 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

# 1.3. Auxiliary Equipment Used During Test

| Adapter | : | Manufacturer: ZTE              | otek Anbotek      |
|---------|---|--------------------------------|-------------------|
|         |   | M/N: STC-A2050I1000USBA-C      | tek abotek        |
|         |   | S/N: 201202102100876           | unbor K Ali notek |
|         |   | Input: 100-240V~ 50/60Hz, 0.3A | Anbote. Anb       |
|         |   | Output: DC 5V, 1000mA          | anbotek Anbot     |

## 1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

| Pretest Mode | Description                                             |
|--------------|---------------------------------------------------------|
| Mode 1       | botek Annotek Anno K CH00 potek Annotek Annotek Annotek |
| Mode 2       | CH39                                                    |
| Mode 3       | CH78 Annotes Annotes Annotes                            |
| Mode 4       | Keeping TX+ Charging Mode                               |

|       |                             | For C | Conducted Emission        |         |      |
|-------|-----------------------------|-------|---------------------------|---------|------|
| 4     | Final Test Mode Description |       |                           |         |      |
| rek b | Mode 4                      | Anbo  | Keeping TX+ Charging Mode | Anbotek | Anbo |

|        | For Radiated Emission |         |         |           |                  |          |           |         |
|--------|-----------------------|---------|---------|-----------|------------------|----------|-----------|---------|
| F      | inal Test Mod         | le      |         |           | Description      |          |           |         |
| Anbore | Mode 1                | Hek A   | poter P | Aupo otek | CH00             | ole Au   | hotek     | Anbotek |
| Anbo   | Mode 2                | botek   | Anboten | And       | CH39             | nboto    | Arrabotek | Anbo    |
| COK AL | Mode 3                | anbotek | Anbote. | k hotek   | CH78             | Anbor    | Air.      | K AT    |
| boter  | Mode 4                | anbotek | Anbore  | Ke        | eping TX+ Chargi | ing Mode | k wh      |         |

#### Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The data rate was set in 1Mbps for radiated emission due to the highest RF output power.

# 1.5. List of channels

| Channel            | Freq. (MHz) | Channel | Freq. (MHz) | Channel | Freq. (MHz) | Channel | Freq. (MHz) | Channel             | Freq. (MHz) |
|--------------------|-------------|---------|-------------|---------|-------------|---------|-------------|---------------------|-------------|
| 00                 | 2402        | An 17   | 2419        | 34      | 2436        | 51      | 2453        | 68                  | 2470        |
| 01                 | 2403        | 18      | 2420        | 35      | 2437        | 52      | 2454        | 69                  | 2471        |
| 02                 | 2404        | 19      | 2421        | 36      | 2438        | 53 oten | 2455        | 70                  | 2472        |
| 03                 | 2405        | 20      | 2422        | 37      | 2439        | 54      | 2456        | 71                  | 2473        |
| 04                 | 2406        | 21      | 2423        | 38      | 2440        | 55      | 2457        | 72                  | 2474        |
| 05                 | 2407        | 22      | 2424        | 39      | 2441        | 56      | 2458        | 73                  | 2475        |
| 05                 | 2408        | 23      | 2425        | 40      | 2442        | 57      | 2459        | 74                  | 2476        |
| 16 N N             | 2409        | 24      | 2426        | 41 Anb  | 2443        | 58      | 2460        | 75                  | 2477        |
| 08                 | 2410        | 25      | 2427        | 42 N    | 2444        | 59      | 2461        | 76                  | 2478        |
| 09                 | 2411        | 26      | 2428        | 43      | 2445        | 60      | 2462        | ote <sup>X</sup> 77 | 2479        |
| An <sup>0</sup> 10 | 2412        | 27 📉    | 2429        | 44      | 2446        | 61 mb°  | 2463        | 78                  | 2480        |
| phPoto.            | 2413        | 28      | 2430        | 45      | 2447        | 62      | 2464        |                     | 30010       |
| 12,000             | 2414        | 29      | 2431        | 46      | 2448        | 63      | 2465        |                     |             |
| 13                 | 2415        | 30      | 2432        | 47,000  | 2449        | 64      | 2466        |                     |             |
| 14                 | 2416        | 31      | 2433        | 48      | 2450        | 65      | 2467        |                     | 100         |
| 15 15              | 2417        | 32      | 2434        | 49      | 2451        | 66      | 2468        |                     |             |
| 16                 | 2418        | 33      | 2435        | 50      | 2452        | 67      | 2469        |                     |             |

# Note:

- 1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.
- 2. EUT built-in battery-powered, fully-charged battery use of the test battery.

# 1.6. Description Of Test Setup

CEo



RE





# 1.7. Test Equipment List

| Item                 | Equipment                                | Manufacturer            | Model No.  | Serial No.    | Last Cal.     | Cal. Interval |
|----------------------|------------------------------------------|-------------------------|------------|---------------|---------------|---------------|
| otek<br>1.<br>nbotek | L.I.S.N. Artificial Mains Network        | Rohde & Schwarz         | ENV216     | 100055        | Nov. 17, 2017 | 1 Year        |
| 2.                   | EMI Test Receiver                        | Rohde & Schwarz         | ESCI       | 100627        | Nov. 17, 2017 | 1 Year        |
| 3. №                 | RF Switching Unit                        | Compliance Direction    | RSU-M2     | 38303         | Nov. 17, 2017 | 1 Year        |
| 4.                   | Spectrum Analysis                        | Agilent                 | E4407B     | US39390582    | Nov. 17, 2017 | 1 Year        |
| 5.                   | Spectrum Analysis                        | Agilent                 | N9038A     | MY53227295    | Nov. 17, 2017 | 1 Year        |
| 6.                   | Preamplifier                             | SKET Electronic         | BK1G18G30D | KD17503       | Nov. 17, 2017 | 1 Year        |
| P7.                  | EMI Test Receiver                        | Rohde & Schwarz         | ESCI       | 100627        | Nov. 17, 2017 | 1 Year        |
| 8.                   | Double Ridged Horn<br>Antenna            | Instruments corporation | GTH-0118   | 351600        | Nov. 20, 2017 | 1 Year        |
| 9.                   | Bilog Broadband Antenna                  | Schwarzbeck             | VULB9163   | VULB 9163-289 | Nov. 20, 2017 | 1 Year        |
| 10.                  | Loop Antenna                             | Schwarzbeck             | HFH2-Z2    | 100047        | Nov. 17, 2017 | 1 Year        |
| MT.                  | Horn Antenna                             | Schewarzbeck            | BBHA9170   | 9170-375      | Nov. 17, 2017 | 1 Year        |
| 12.                  | Pre-amplifier                            | SONOMA                  | 310N       | 186860        | Nov. 17, 2017 | 1 Year        |
| 13.                  | EMI Test Software<br>EZ-EMC              | SHURPLE                 | N/A        | N/A           | N/A           | N/A           |
| 14.                  | RF Test Control<br>System                | YIHENG                  | YH3000     | 2017430       | Nov. 18, 2017 | 1 Year        |
| 15.                  | Power Sensor                             | DAER                    | RPR3006W   | 15I00041SN045 | Nov. 17, 2017 | 1 Year        |
| 16.                  | Power Sensor                             | DAER                    | RPR3006W   | 15I00041SN046 | Nov. 17, 2017 | 1 Year        |
| 17.                  | MXA Spectrum Analysis                    | Agilent                 | N9020A     | MY51170037    | Nov. 18, 2017 | 1 Year        |
| 18.                  | MXG RF Vector<br>Signal Generator        | Agilent                 | N5182A     | MY48180656    | Nov. 18, 2017 | 1 Year        |
| 19.                  | Signal Generator                         | Agilent                 | E4421B     | MY41000743    | Nov. 18, 2017 | 1 Year        |
| 20.                  | DC Power Supply                          | Anbote LW Anbo          | TPR-6410D  | 349315        | Nov. 01, 2017 | 1 Year        |
| 21.                  | Constant Temperature<br>Humidity Chamber | Sertep                  | ZJ-HWHS80B | ZJ-17042804   | Nov. 01, 2017 | 1 Year        |

## 1.8. Measurement Uncertainty

| Radiation Uncertainty  | : | Ur = 3.9 dB (Horizontal) | Anbotek   | Anbore An     |
|------------------------|---|--------------------------|-----------|---------------|
|                        |   | Ur = 3.8 dB (Vertical)   | Anbotek   | Aupor Air     |
|                        |   | Anbotek Anbote And botel | Anbotek   | Anbo. A       |
| Conduction Uncertainty | : | Uc = 3.4  dB             | stek Anbo | tek Anbo otek |

# 1.9. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

#### ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

#### **Test Location**

All Emissions tests were performed at Shenzhen Anbotek Compliance Laboratory Limited. at 1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

# 2. Summary of Test Results

| Standard Section | Test Item                      | Result |  |  |
|------------------|--------------------------------|--------|--|--|
| 15.203/15.247(c) | Antenna Requirement            | PASS   |  |  |
| 15.207           | Conducted Emission             | PASS   |  |  |
| 15.205/15.209    | Spurious Emission              | PASS   |  |  |
| 15.247(b)(1)     | Conducted Peak Output Power    | PASS   |  |  |
| 15.247(a)(1)     | 20dB Occupied Bandwidth        | PASS   |  |  |
| 15.247(a)(1)     | Carrier Frequencies Separation | PASS   |  |  |
| 15.247(a)(1)     | Hopping Channel Number         | PASS   |  |  |
| 15.247(a)(1)     | Dwell Time                     | PASS   |  |  |
| 15.247(d)        | Band Edge                      | PASS   |  |  |

# 3. Conducted Emission Test

## 3.1. Test Standard and Limit

| Test Standard | FCC Part15 Section 15.207 | Anbors All hotek | Anbotek Anbo stek              |  |  |  |  |  |
|---------------|---------------------------|------------------|--------------------------------|--|--|--|--|--|
|               | Γ                         | Maximum RF I     | Maximum RF Line Voltage (dBuV) |  |  |  |  |  |
|               | Frequency                 | Quasi-peak Level | Average Level                  |  |  |  |  |  |
| Test Limit    | 150kHz~500kHz             | 66 ~ 56 *        | 56 ~ 46 *                      |  |  |  |  |  |
|               | 500kHz~5MHz               | 56               | 46                             |  |  |  |  |  |
|               | 5MHz~30MHz                | 60               | 50                             |  |  |  |  |  |

**Remark:** (1) \*Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequency.

### 3.2. Test Setup



#### 3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

## 3.4. Test Data

Please to see the following pages.



#### **Conducted Emission Test Data**

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 240V, 60Hz for adapter

Comment: Live Line

Tem.: 22.2°C Hum.: 60%



#### **Conducted Emission Test Data**

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 240V, 60Hz for adapter

Comment: Neutral Line

Tem.: 22.2℃ Hum.: 60%





## **Conducted Emission Test Data**

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 120V, 60Hz for adapter

Comment: Live Line

Tem.: 22.2°C Hum.: 60%



## **Conducted Emission Test Data**

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 120V, 60Hz for adapter

Comment: Neutral Line

Tem.: 22.2℃ Hum.: 60%



# 4. Radiation Spurious Emission and Band Edge

# 4.1. Test Standard and Limit

| Test Standard | FCC Part15 C Section 15.20 | 99 and 15.205                    | Am                | Anbotek 1  | rupo, rek                |
|---------------|----------------------------|----------------------------------|-------------------|------------|--------------------------|
|               | Frequency (MHz)            | Field strength (microvolt/meter) | Limit<br>(dBuV/m) | Remark     | Measurement distance (m) |
|               | 0.009MHz~0.490MHz          | 2400/F(kHz)                      | obotek - Anbo     | co Pur     | 300                      |
|               | 0.490MHz-1.705MHz          | 24000/F(kHz)                     | Anbotek Ar        | pore Am    | notek 30 Anb             |
|               | 1.705MHz-30MHz             | 30                               | Anbatek           | Anbor P    | 30                       |
| Test Limit    | 30MHz~88MHz                | 100                              | 40.0              | Quasi-peak | 3.ek                     |
|               | 88MHz~216MHz               | 150                              | 43.5              | Quasi-peak | 3 <sub>botek</sub>       |
|               | 216MHz~960MHz              | 200                              | 46.0              | Quasi-peak | kek 3 nbotek             |
|               | 960MHz~1000MHz             | 500                              | 54.0              | Quasi-peak | atek 3 anbo              |
|               | Above 1000MHz              | 500                              | 54.0              | Average    | 3                        |
|               | Above 1000MHZ              | potek - Anbot                    | 74.0              | Peak       | Ambe 3ek                 |

#### Remark:

- (1)The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

## 4.2. Test Setup



Figure 1. Below 30MHz





Figure 2. 30MHz to 1GHz



Figure 3. Above 1 GHz

#### 4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9\*6\*6 Chamber. The device is evaluated in xyz orientation.

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying



aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW = 1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW = 30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW = 300kHz, Detector = Quasi-Peak, Trace mode = Max hold, Sweep- auto couple.

For above 1GHz, Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

#### 4.4. Test Data

#### **PASS**

During the test, pre-scan the GFSK,  $\pi/4$ QPSK, 8DPSK modulation, and found the GFSK modulation which is worse case.

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

#### Test Results (30~1000MHz)

Job No.: SZAWW180710001-01 Temp.(°C)/Hum.(%RH): 23.2°C/54%RH

Standard: FCC PART 15C Power Source: DC 3.7V battery inside

Test Mode: Keeping TX+ Charging Mode Polarization: Horizontal





#### Test Results (30~1000MHz)

Job No.: SZAWW180710001-01 Temp.(°C)/Hum.(%RH): 23.2°C/54%RH

Standard: FCC PART 15C Power Source: DC 3.7V battery inside

Test Mode: Keeping TX+ Charging Mode Polarization: Vertical



# **Test Results (1GHz-25GHz)**

| Test Mode: 0    | CH00                 |                             |                 | Test channel: Lowest     |                |                |                 |                    |
|-----------------|----------------------|-----------------------------|-----------------|--------------------------|----------------|----------------|-----------------|--------------------|
| Peak Value      |                      |                             |                 |                          |                |                |                 |                    |
| Frequency (MHz) | Read Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss (dB) | Preamp<br>Factor<br>(dB) | Level (dBuV/m) | Limit (dBuV/m) | Over Limit (dB) | Pol.               |
| 4804.00         | 38.77                | 34.04                       | 6.58            | 34.09                    | 45.30          | 74.00          | -28.70          | boteV              |
| 7206.00         | 32.80                | 37.11                       | 7.73            | 34.50                    | 43.14          | 74.00          | -30.86          | Val                |
| 9608.00         | 32.34                | 39.31                       | 9.23            | 34.79                    | 46.09          | 74.00          | -27.91          | V                  |
| 12010.00        | *                    | tek                         | hbotek p        | upor                     | Ar. potek      | 74.00          | Aupo.           | V                  |
| 14412.00        | * And                | stek l                      | nbotek          | Aupoter                  | Am             | 74.00          | Aupor           | V                  |
| 4804.00         | 43.36                | 34.04                       | 6.58            | 34.09                    | 49.89          | 74.00          | -24.11          | Н                  |
| 7206.00         | 34.69                | 37.11                       | 7.73            | 34.50                    | 45.03          | 74.00          | -28.97          | H                  |
| 9608.00         | 31.90                | 39.31                       | 9.23            | 34.79                    | 45.65          | 74.00          | -28.35          | Anbote H           |
| 12010.00        | * Anbote             | Anbo                        | 18K             | botek                    | Anboten        | 74.00          | anbotek         | PH                 |
| 14412.00        | cek * Amb            | stek bi                     | 100, b          | abotek                   | Anboten        | 74.00          | nbotek          | H×                 |
|                 |                      |                             | A               | verage Value             | e              | 0.0            |                 |                    |
| Frequency (MHz) | Read Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss (dB) | Preamp<br>Factor<br>(dB) | Level (dBuV/m) | Limit (dBuV/m) | Over Limit (dB) | Pol.               |
| 4804.00         | 27.31                | 34.04                       | 6.58            | 34.09                    | 33.84          | 54.00          | -20.16          | V                  |
| 7206.00         | 21.32                | 37.11                       | 7.73            | 34.50                    | 31.66          | 54.00          | -22.34          | V                  |
| 9608.00         | 20.31                | 39.31                       | 9.23            | 34.79                    | 34.06          | 54.00          | -19.94          | V                  |
| 12010.00        | poter * A            | lpo tek                     | Mahotek         | Anbore                   | Aug            | 54.00          | Aupor           | V                  |
| 14412.00        | Anbotak              | Aupor                       | An abotek       | Anbote                   | Anba           | 54.00          | lek Aut         | V                  |
| 4804.00         | 31.70                | 34.04                       | 6.58            | 34.09                    | 38.23          | 54.00          | -15.77          | H du               |
| 7206.00         | 23.59                | 37.11                       | 7.73            | 34.50                    | 33.93          | 54.00          | -20.07          | ÞΉ                 |
| 9608.00         | 20.16                | 39.31                       | 9.23            | 34.79                    | 33.91          | 54.00          | -20.09          | НS                 |
| 12010.00        | otek *               | potek                       | Anboto          | And                      | Anbotek        | 54.00          | phote           | Н                  |
| 14412.00        | *                    | anbotek                     | Anboten         | Nun.                     | k nbote        | 54.00          | ok by.          | ote <sup>K</sup> H |

# **Test Results (1GHz-25GHz)**

| Test Mode: C    | CH39                                    |                             |                 | Test                     | Test channel: Middle |                |                 |                    |  |
|-----------------|-----------------------------------------|-----------------------------|-----------------|--------------------------|----------------------|----------------|-----------------|--------------------|--|
|                 |                                         |                             |                 | Peak Value               |                      |                |                 |                    |  |
| Frequency (MHz) | Read Level<br>(dBuV)                    | Antenna<br>Factor<br>(dB/m) | Cable Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m)    | Limit (dBuV/m) | Over Limit (dB) | Pol.               |  |
| 4882.00         | 37.68                                   | 34.38                       | 6.69            | 34.09                    | 44.66                | 74.00          | -29.34          | boteV              |  |
| 7323.00         | 32.08                                   | 37.22                       | 7.78            | 34.53                    | 42.55                | 74.00          | -31.45          | Vek                |  |
| 9764.00         | 31.69                                   | 39.46                       | 9.35            | 34.80                    | 45.70                | 74.00          | -28.30          | V                  |  |
| 12205.00        | *************************************** | tek                         | abotek P        | upor                     | VI.,                 | 74.00          | Anboartek       | V                  |  |
| 14646.00        | * And                                   | otek                        | Anbotek         | Anbote                   | An hotek             | 74.00          | Aupor           | V V                |  |
| 4882.00         | 42.04                                   | 34.38                       | 6.69            | 34.09                    | 49.02                | 74.00          | -24.98          | H                  |  |
| 7323.00         | 33.87                                   | 37.22                       | 7.78            | 34.53                    | 44.34                | 74.00          | -29.66          | H                  |  |
| 9764.00         | 31.15                                   | 39.46                       | 9.35            | 34.80                    | 45.16                | 74.00          | -28.84          | Anbou              |  |
| 12205.00        | * Anbote                                | Aupo                        | rek k           | obotek                   | Aupole               | 74.00          | anbotek         | HA                 |  |
| 14646.00        | rek * Anb                               | ser by                      | lpo tek         | nbotek                   | Anbote               | 74.00          | Anbotek         | HAT                |  |
|                 |                                         |                             | A               | verage Value             | e                    |                |                 |                    |  |
| Frequency (MHz) | Read Level<br>(dBuV)                    | Antenna<br>Factor<br>(dB/m) | Cable Loss (dB) | Preamp<br>Factor<br>(dB) | Level (dBuV/m)       | Limit (dBuV/m) | Over Limit (dB) | Pol.               |  |
| 4882.00         | 26.44                                   | 34.38                       | 6.69            | 34.09                    | 33.42                | 54.00          | -20.58          | V                  |  |
| 7323.00         | 20.73                                   | 37.22                       | 7.78            | 34.53                    | 31.20                | 54.00          | -22.80          | V                  |  |
| 9764.00         | 19.78                                   | 39.46                       | 9.35            | 34.80                    | 33.79                | 54.00          | -20.21          | V                  |  |
| 12205.00        | poter * A                               | 'po                         | A botek         | Anbore                   | And                  | 54.00          | Aupon           | V                  |  |
| 14646.00        | *                                       | Aupor                       | A. botek        | Anbote                   | Ano                  | 54.00          | lek Aut         | V                  |  |
| 4882.00         | 30.71                                   | 34.38                       | 6.69            | 34.09                    | 37.69                | 54.00          | -16.31          | Yupore H           |  |
| 7323.00         | 22.93                                   | 37.22                       | 7.78            | 34.53                    | 33.40                | 54.00          | -20.60          | μĤ                 |  |
| 9764.00         | 19.55                                   | 39.46                       | 9.35            | 34.80                    | 33.56                | 54.00          | -20.44          | Ησ                 |  |
| 12205.00        | *                                       | potek                       | Aupor           | Andotek                  | Anbotek              | 54.00          | nbote           | Н                  |  |
| 14646.00        | *                                       | botek                       | Anboten         | Pun.                     | k nbotel             | 54.00          | ey.             | o <sup>tek</sup> H |  |

# **Test Results (1GHz-25GHz)**

| Test Mode: C    | CH78                                    |                             |                 | Test                     | Test channel: Highest |                |                 |                    |  |
|-----------------|-----------------------------------------|-----------------------------|-----------------|--------------------------|-----------------------|----------------|-----------------|--------------------|--|
|                 |                                         |                             |                 | Peak Value               |                       |                |                 |                    |  |
| Frequency (MHz) | Read Level<br>(dBuV)                    | Antenna<br>Factor<br>(dB/m) | Cable Loss (dB) | Preamp<br>Factor<br>(dB) | Level (dBuV/m)        | Limit (dBuV/m) | Over Limit (dB) | Pol.               |  |
| 4960.00         | 36.32                                   | 34.72                       | 6.79            | 34.09                    | 43.74                 | 74.00          | -30.26          | boteV              |  |
| 7440.00         | 31.18                                   | 37.34                       | 7.82            | 34.57                    | 41.77                 | 74.00          | -32.23          | Vek                |  |
| 9920.00         | 30.89                                   | 39.62                       | 9.46            | 34.81                    | 45.16                 | 74.00          | -28.84          | V                  |  |
| 12400.00        | *                                       | tek                         | abotek p        | upote                    | V. Potek              | 74.00          | Aupon           | V                  |  |
| 14880.00        | * *                                     | otek                        | nbotek          | Aupoten                  | Au. Potek             | 74.00          | Anbor           | e <sup>X</sup> V   |  |
| 4960.00         | 40.40                                   | 34.72                       | 6.79            | 34.09                    | 47.82                 | 74.00          | -26.18          | H                  |  |
| 7440.00         | 32.84                                   | 37.34                       | 7.82            | 34.57                    | 43.43                 | 74.00          | -30.57          | H                  |  |
| 9920.00         | 30.22                                   | 39.62                       | 9.46            | 34.81                    | 44.49                 | 74.00          | -29.51          | Anbox H            |  |
| 12400.00        | * * * * * * * * * * * * * * * * * * * * | Anbo                        | 18K             | obotek                   | Anbotes               | 74.00          | anbotek         | HA                 |  |
| 14880.00        | rek * Amb                               | stek bi                     | 100 FSK         | - abotek                 | Anboten               | 74.00          | anbotek         | HAT                |  |
|                 |                                         |                             | A               | verage Value             | e                     |                |                 |                    |  |
| Frequency (MHz) | Read Level<br>(dBuV)                    | Antenna<br>Factor<br>(dB/m) | Cable Loss (dB) | Preamp<br>Factor<br>(dB) | Level (dBuV/m)        | Limit (dBuV/m) | Over Limit (dB) | Pol.               |  |
| 4960.00         | 25.38                                   | 34.72                       | 6.79            | 34.09                    | 32.80                 | 54.00          | -21.20          | V                  |  |
| 7440.00         | 20.01                                   | 37.34                       | 7.82            | 34.57                    | 30.60                 | 54.00          | -23.40          | V                  |  |
| 9920.00         | 19.15                                   | 39.62                       | 9.46            | 34.81                    | 33.42                 | 54.00          | -20.58          | V                  |  |
| 12400.00        | poter * A                               | Ipo rek                     | abotek          | Anbore                   | And                   | 54.00          | Aupor           | V                  |  |
| 14880.00        | *                                       | Aupor                       | An botek        | Anbote                   | Amb                   | 54.00          | lek Aut         | V                  |  |
| 4960.00         | 29.50                                   | 34.72                       | 6.79            | 34.09                    | 36.92                 | 54.00          | -17.08          | Aupore.            |  |
| 7440.00         | 22.12                                   | 37.34                       | 7.82            | 34.57                    | 32.71                 | 54.00          | -21.29          | MH                 |  |
| 9920.00         | 18.80                                   | 39.62                       | 9.46            | 34.81                    | 33.07                 | 54.00          | -20.93          | Ηn                 |  |
| 12400.00        | *                                       | potek                       | Aupore          | And                      | Anbotek               | 54.00          | pole            | Н                  |  |
| 14880.00        | *                                       | botek                       | Anboten         | Am                       | L nbote               | 54.00          | -/r h.,         | o <sup>tel</sup> H |  |

#### Remark

- 1. During the test, pre-scan the GFSK,  $\pi/4$ QPSK, 8DPSK modulation, and found the GFSK modulation is worse case, the report only record this mode.
- 2. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. "\*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.



# Radiated Band Edge:

| Test Mode: 0    | CH00                 |                             |                 | Test                     | Test channel: Lowest |                |                 |       |  |
|-----------------|----------------------|-----------------------------|-----------------|--------------------------|----------------------|----------------|-----------------|-------|--|
|                 |                      |                             |                 | Peak Value               | Value                |                |                 |       |  |
| Frequency (MHz) | Read Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss (dB) | Preamp<br>Factor<br>(dB) | Level (dBuV/m)       | Limit (dBuV/m) | Over Limit (dB) | Pol.  |  |
| 2390.00         | 46.46                | 29.15                       | 3.41            | 34.01                    | 45.01                | 74.00          | -28.99          | Harog |  |
| 2400.00         | 63.76                | 29.16                       | 3.43            | 34.01                    | 62.34                | 74.00          | -11.66          | Hek   |  |
| 2390.00         | 47.35                | 29.15                       | 3.41 And        | 34.01                    | 45.90                | 74.00          | -28.10          | V     |  |
| 2400.00         | 66.18                | 29.16                       | 3.43            | 34.01                    | 64.76                | 74.00          | -9.24           | V     |  |
|                 |                      |                             | A               | verage Valu              | e                    |                |                 |       |  |
| Frequency (MHz) | Read Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss (dB) | Preamp<br>Factor<br>(dB) | Level (dBuV/m)       | Limit (dBuV/m) | Over Limit (dB) | Pol.  |  |
| 2390.00         | 36.20                | 29.15                       | 3.41            | 34.01                    | 34.75                | 54.00          | -19.25          | AnbH  |  |
| 2400.00         | 47.65                | 29.16                       | 3.43            | 34.01                    | 46.23                | 54.00          | -7.77           | AHOV. |  |
| 2390.00         | 36.40                | 29.15                       | 3.41            | 34.01                    | 34.95                | 54.00          | -19.05          | V     |  |
| 2400.00         | 49.64                | 29.16                       | 3.43            | 34.01                    | 48.22                | 54.00          | -5.78           | V     |  |

| Test Mode: C    | CH78                 |                             |                 | Test                     | Test channel: Highest |                |                 |                    |  |
|-----------------|----------------------|-----------------------------|-----------------|--------------------------|-----------------------|----------------|-----------------|--------------------|--|
|                 |                      |                             |                 | Peak Value               |                       |                |                 |                    |  |
| Frequency (MHz) | Read Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss (dB) | Preamp<br>Factor<br>(dB) | Level (dBuV/m)        | Limit (dBuV/m) | Over Limit (dB) | Pol.               |  |
| 2483.50         | 48.99                | 29.28                       | 3.53            | 34.03                    | 47.77                 | 74.00          | -26.23          | ote <sup>K</sup> H |  |
| 2500.00         | 47.48                | 29.30                       | 3.56            | 34.03                    | 46.31                 | 74.00          | -27.69          | "boH <sup>k</sup>  |  |
| 2483.50         | 50.43                | 29.28                       | 3.53            | 34.03                    | 49.21                 | 74.00          | -24.79          | Vote               |  |
| 2500.00         | 48.82                | 29.30                       | 3.56            | 34.03                    | 47.65                 | 74.00          | -26.35          | V                  |  |
|                 |                      |                             | A               | verage Valu              | e                     |                |                 |                    |  |
| Frequency (MHz) | Read Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss (dB) | Preamp<br>Factor<br>(dB) | Level (dBuV/m)        | Limit (dBuV/m) | Over Limit (dB) | Pol.               |  |
| 2483.50         | 39.07                | 29.28                       | 3.53            | 34.03                    | 37.85                 | 54.00          | -16.15          | upote,             |  |
| 2500.00         | 36.56                | 29.30                       | 3.56            | 34.03                    | 35.39                 | 54.00          | -18.61          | An H rev           |  |
| 2483.50         | 40.58                | 29.28                       | 3.53            | 34.03                    | 39.36                 | 54.00          | -14.64          | Valor              |  |
| 2500.00         | 36.78                | 29.30                       | 3.56            | 34.03                    | 35.61                 | 54.00          | -18.39          | V                  |  |

# Remark:

- 1. During the test, pre-scan the GFSK,  $\pi/4$ QPSK, 8DPSK modulation, and found the GFSK modulation is worse case the report only record this mode.
- 2. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor

# 5. Maximum Peak Output Power Test

# 5.1. Test Standard and Limit

| Test Standard | FCC Part15 C Section 15.247 (b)(3) | Annatek   | Anbotek | Anbore Am |
|---------------|------------------------------------|-----------|---------|-----------|
| Test Limit    | 1W or 125mW                        | And hotek | Anbotek | Anbot     |

## 5.2. Test Setup



#### 5.3. Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above,
- 2. Spectrum Setting:

RBW > the 20 dB bandwidth of the emission being measured

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $VBW \ge RBW$ 

Sweep = auto

Detector function = peak

Trace = max hold

## 5.4. Test Data

| Test Item    | : | Max. peak output power | Test Mode   | : | CH Low ~ CH High |
|--------------|---|------------------------|-------------|---|------------------|
| Test Voltage | : | DC 3.7V battery inside | Temperature | : | 24°C             |
| Tost Dosult  |   | DACC WOLL AND          | Humaidite   |   | 550/DII          |

| Peak Power output | Limit                                                | Results                                                                                                                | Modulation                                                                                                                                                          |  |
|-------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (dBm)             | (dBm)                                                | 11000110                                                                                                               |                                                                                                                                                                     |  |
| 0.826             | 30                                                   | PASS                                                                                                                   | BDR BDR                                                                                                                                                             |  |
| -0.893            | 30 30 NOVE                                           | PASS                                                                                                                   | BDR                                                                                                                                                                 |  |
| 2.034             | 30                                                   | PASS                                                                                                                   | BDR                                                                                                                                                                 |  |
| 0.019             | 20.96                                                | PASS                                                                                                                   | EDR                                                                                                                                                                 |  |
| -1.706            | 20.96                                                | PASS                                                                                                                   | EDR                                                                                                                                                                 |  |
| 1.066             | 20.96                                                | PASS                                                                                                                   | EDR                                                                                                                                                                 |  |
|                   | (dBm)<br>0.826<br>-0.893<br>2.034<br>0.019<br>-1.706 | (dBm)     (dBm)       0.826     30       -0.893     30       2.034     30       0.019     20.96       -1.706     20.96 | (dBm)     (dBm)       0.826     30     PASS       -0.893     30     PASS       2.034     30     PASS       0.019     20.96     PASS       -1.706     20.96     PASS |  |

Remark: The EDR was tested on  $(\pi/4DQPSK, 8DPSK)$  modes, only the worst data of (8DPSK) is attached in the following pages.





Test Mode: BDR---Low



Test Mode: BDR---Middle





Test Mode: BDR---High



Test Mode: EDR---Low





Test Mode: EDR---Middle



Test Mode: EDR---High



# 6. 20DB Occupy Bandwidth Test

# 6.1. Test Standard

| T4 C411       | ECC P-++15 C C+1 15 247 (-)(1)     | Vu.   | Jek. | Vupo. | br. |
|---------------|------------------------------------|-------|------|-------|-----|
| Test Standard | FCC Part15 C Section 15.247 (a)(1) | poter | Anbe | Yel   |     |

# 6.2. Test Setup



## 6.3. Test Procedure

Using the following spectrum analyzer settings:

- 1. Span= approximately 2 to 3 times the 20dB bandwidth, centered on a hopping channel.
- 2. Set the RBW = 30 kHz.
- 3. Set the VBW = 100 kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

## 6.4. Test Data

Test Item : 20dB BW Test Mode : CH Low ~ CH High

Test Voltage : DC 3.7V battery inside Temperature :  $24^{\circ}$ C Test Result : PASS Humidity :  $55^{\circ}$ RH

|      | 3         | - O. V. V.     | The state of the s | 760, 707        |
|------|-----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| o!   | Channel   | Frequency(MHz) | 20dB Down BW(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Modulation Mode |
| olc. | Low       | 2402           | Anbou 1105 potek An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BDR             |
|      | Middle    | 2441           | 1105 1105 1100 1100 1100 1100 1100 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BDR             |
|      | High Migh | 2480           | 1104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BDR Ambouek     |
|      | Low       | 2402           | 1358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EDR             |
| 18   | Middle    | 2441           | 1358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EDR             |
| 100  | High High | 2480           | 1355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EDR             |

Remark: The EDR was tested on  $(\pi/4DQPSK, 8DPSK)$  modes, only the worst data of (8DPSK) is attached in the following pages.





Test Mode: BDR---Low



Test Mode: BDR---Middle





Test Mode: BDR---High



Test Mode: EDR---Low





Test Mode: EDR---Middle



Test Mode: EDR---High



# 7. Carrier Frequency Separation Test

## 7.1. Test Standard and Limit

| Test Standard | FCC Part15 C Section 15.247 (a)(1)           | Anbotek | Anbo. stek |
|---------------|----------------------------------------------|---------|------------|
| Test Limit    | >25KHz or >two-thirds of the 20 dB bandwidth | Anbotek | Anbo       |

# 7.2. Test Setup



# 7.3. Test Procedure

The EUT must have its hopping function enabled. Using the following spectrum analyzer settings:

- 1. Span= Wide enough to capture the peaks of two adjacent channels
- 2. Set the RBW = 30 kHz.
- 3. Set the VBW = 100 kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

## 7.4. Test Data

| Test Item    | : | Frequency Separation   | Test Mode   | : | CH Low ~ CH High |
|--------------|---|------------------------|-------------|---|------------------|
| Test Voltage | : | DC 3.7V battery inside | Temperature | : | 24℃              |
| Test Result  | : | PASS                   | Humidity    | : | 55%RH            |

| Channel | Frequency | Separation Read | Limit | Modulation Mode |  |
|---------|-----------|-----------------|-------|-----------------|--|
|         | (MHz)     | Value (kHz)     | (kHz) |                 |  |
| Low     | 2402      | 1000            | 736.7 | BDR             |  |
| Middle  | 2441      | 1000            | 736.7 | BDR             |  |
| High    | 2480      | 1000            | 736.0 | BDR             |  |
| Low     | 2402      | 1000            | 905.3 | EDR             |  |
| Middle  | 2441      | 1000            | 905.3 | EDR             |  |
| High    | 2480      | 1000            | 903.3 | EDR             |  |

#### Remark:

- 1. The limit of mode (EDR) is 2/3 of 20dB BW;
- 2. The EDR was tested on ( $\pi$ /4DQPSK, 8DPSK) modes, only the worst data of (8DPSK) is attached in the following pages.





Test Mode: BDR---Low



Test Mode: BDR---Middle





Test Mode: BDR---High



Test Mode: EDR---Low





Test Mode: EDR---Middle



Test Mode: EDR---High

# 8. Number of Hopping Channel Test

#### 8.1. Test Standard and Limit

| Test Standard | FCC Part15 C Section | 15.247 (a)(1) | Ambotek | Anbotek | Anbo | p.   |
|---------------|----------------------|---------------|---------|---------|------|------|
| Test Limit    | >15 channels         | K Anboro      | Am      | Anbotek | Anbo | , Pr |

#### 8.2. Test Setup



### 8.3. Test Procedure

The EUT must have its hopping function enabled. Using the following spectrum analyzer setting:

- 1. Span= the frequency band of operation
- 2. Set the RBW = 100kHz.
- 3. Set the VBW = 300kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

#### 8.4. Test Data

| Test Item    | : Number of Hopping Frequency | Test Mode :   | CH Low ~ CH High |
|--------------|-------------------------------|---------------|------------------|
| Test Voltage | : DC 3.7V battery inside      | Temperature : | 24°C             |
| Test Result  | : PASS                        | Humidity :    | 55%RH            |

| Hopping Channel Frequency Range | Quantity of Hopping Channel | Quantity of Hopping Channel |
|---------------------------------|-----------------------------|-----------------------------|
| 2402-2480MHz                    | And 79 botek Anbox          | >15 mboten                  |





BDR Mode



**EDR Mode** 



### 9. Dwell Time Test

#### 9.1. Test Standard and Limit

| Test Standard | FCC Part15 | C Section 15.2 | 247 (a)(1) | Ambotek | Anbotek | Anbo. | pc. |
|---------------|------------|----------------|------------|---------|---------|-------|-----|
| Test Limit    | 0.4 sec    | Anbotek        | Auporg     | All     | Anbotek | Anbo  | P   |

### 9.2. Test Setup



#### 9.3. Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span= zero span, centered on a hopping channel
- 2. Set the RBW = 1 MHz.
- 3. Set the VBW = 1 MHz.
- 4. Sweep time = as necessary to capture the entire dwell time per hopping channel.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

#### 9.4. Test Data

Test Item : Time of Occupancy Test Mode : CH Low ~ CH High

Test Voltage : DC 3.7V battery inside Temperature :  $24^{\circ}$ C Test Result : PASS Humidity :  $55^{\circ}$ RH

| Package<br>Type | Pulse width (ms) | Time slot length(ms)                | Dwell time (ms) | Limit (s) | Modulation   |
|-----------------|------------------|-------------------------------------|-----------------|-----------|--------------|
| DH1             | 0.368            | time slot length *1600/2 /79 * 31.6 | 117.76          | 0.4       | BDR          |
| DH3             | 1.620            | time slot length *1600/4 /79 * 31.6 | 259.20          | 0.4       | BDR          |
| DH5             | 2.872            | time slot length *1600/6 /79 * 31.6 | 306.35          | 0.4       | BDR          |
| 3DH1            | 0.378            | time slot length *1600/2 /79 * 31.6 | 120.96          | 0.4       | bote EDR Ant |
| 3DH3            | 1.625            | time slot length *1600/4 /79 * 31.6 | 260.00          | 0.4       | EDR          |
| 3DH5            | 2.880            | time slot length *1600/6 /79 * 31.6 | 307.20          | 0.4       | EDR          |

Remark: The EDR was tested on ( $\pi/4$ DQPSK, 8DPSK) modes, only the worst data of (8DPSK) is attached in the following pages.





Test Mode: BDR---DH1



Test Mode: BDR---DH3





Test Mode: BDR—DH5



Test Mode: EDR---3DH1





Test Mode: EDR---3DH3



Test Mode: EDR—3DH5



# 10. 100kHz Bandwidth of Frequency Band Edge Requirement

#### 10.1. Test Standard and Limit

| Test Standard | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Limit    | in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a). |

#### 10.2. Test Setup



#### 10.3. Test Procedure

The EUT must have its hopping/Non-hopping function enabled. Using the following spectrum analyzer setting:

- 1. Set the RBW = 100kHz.
- 2. Set the VBW = 300kHz.
- 3. Sweep time = auto couple.
- 4. Detector function = peak.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.

#### 10.4. Test Data

| Test Item    | : | Band edge              | Test Mode   | : | CH Low ~ CH | High |
|--------------|---|------------------------|-------------|---|-------------|------|
| Test Voltage | : | DC 3.7V battery inside | Temperature | • | 24°C        |      |
| Test Result  | : | PASS                   | Humidity    | • | 55%RH       |      |

Remark: The EDR was tested on  $(\pi/4DQPSK, 8DPSK)$  modes, only the worst data of  $(\pi/4DQPSK)$  is attached in the following pages.



#### For Hopping Mode



BDR mode



EDR mode



#### For Non-Hopping Mode



BDR mode -- Lowest



BDR mode -- Highest



#### For Non-Hopping Mode



EDR mode -- Lowest



EDR mode -- Highest



#### Conducted Emission Method





Test Mode: BDR---Low

Test Mode: BDR---Mid





Test Mode: BDR---High

Test Mode: EDR---Low





Test Mode: EDR---Mid

Test Mode: EDR---High

## 11. Antenna Requirement

## 11.1. Test Standard and Requirement

| Test Standard | FCC Part15 Section 15.203 /247(c)                                                                                                                                               |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | 1) 15.203 requirement:                                                                                                                                                          |
|               | An intentional radiator shall be designed to ensure that no antenna other than that furnished                                                                                   |
|               | by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the |
|               | manufacturer may design the unit so that a broken antenna can be replaced by the user, but                                                                                      |
| Requirement   | the use of a standard antenna jack or electrical connector is prohibited.  2) 15.247(c) (1)(i) requirement:                                                                     |
|               | Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed.                                                                                               |
|               | Point-to-point operations may employ transmitting antennas with directional gain greater                                                                                        |
|               | than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.     |

#### 11.2. Antenna Connected Construction

The bluetooth antenna is Ceramic Antenna which permanently attached, and the best case gain of the antenna is 1 dBi. It complies with the standard requirement.





## APPENDIX I -- TEST SETUP PHOTOGRAPH





Photo of Radiation Emission Test







## APPENDIX II -- EXTERNAL PHOTOGRAPH

















### APPENDIX III -- INTERNAL PHOTOGRAPH





















---- End of Report -----