

Task augmentation methods

an auxiliary task is added (task augmentation)

number of adelitional
$$-S
ightharpoone f_y(q) = y$$
 $S \leq N - M$ components

corresponding to some desirable feature for the solution

$$r_A = {r \choose y} = {f(q) \choose f_y(q)} \implies \dot{r}_A = {J(q) \choose J_y(q)} \dot{q} = J_A(q) \dot{q} \qquad J_A \qquad M + S$$

a solution is chosen still in the form of a generalized inverse

$$\dot{q} = K_A(q)\dot{r}_A$$

or by adding a term in the null space of the augmented Jacobian matrix J_A

Augmenting the task ...

advantage: better shaping of the inverse kinematic solution

disadvantage: algorithmic singularities are introduced when

$$\rho(J) = M \quad \rho(J_v) = S \quad \text{but} \quad \rho(J_A) < M + S$$

to avoid this, it should be always $\mathcal{R}(J^T) \cap \mathcal{R}(J_y^T) = \emptyset$

$$\mathcal{R}(J^T) \cap \mathcal{R}(J_y^T) = \emptyset$$

difficult to be obtained globally!

rows of J AND rows of J_{ν} are all together linearly independent

Augmented task

SA JOHN NE

Li=1 i=1,....4

$$f_{y}(q) = q_4 = \pi/2$$
 (S = 1)

last link is to be held vertical...

Extended Jacobian (S = N-M)

• square J_A : in the absence of algorithmic singularities, we can choose

$$\dot{q} = J_A^{-1}(q)\dot{r}_A \rightarrow \text{PLS in case}$$

- the scheme is then repeatable
 - provided no singularities are encountered during a complete task cycle*
- when the N-M conditions $f_{y}(q)=0$ correspond to necessary (and sufficient) conditions for constrained optimality of a given objective function H(q) (see RG method, slide #36), this scheme guarantees that constrained optimality is locally preserved during task execution $\int_{Y^{(q)}} \int_{Y^{(q)}} \int_{$
 - in the vicinity of algorithmic singularities, the execution of both the original task as well as the auxiliary task(s) are affected by errors (when using DLS inversion)

Robotics 2

^{*} there exists an unexpected phenomenon in some 3R manipulators having "generic" kinematics: the robot may sometimes perform a pose change after a full cycle, even if no singularity has been encountered during motion (see J. Burdick, *Mech. Mach. Theory*, 30(1), 1995)

Extended Jacobian

MACRO-MICRO manipulator

$$N = 4, M = 2$$

$$\dot{r} = J(q_1, \dots, q_4)\dot{q}$$
$$\dot{y} = J_y(q_1, q_2)\dot{q}$$

$$J_A = \begin{pmatrix} * & * \\ * & 0 \end{pmatrix}$$
 4×4

SA DONAM NE

Task Priority

if the original (primary) task $\dot{r}_1 = J_1(q)\dot{q}$ has higher priority than the auxiliary (secondary) task $\dot{r}_2 = J_2(q)\dot{q}$

we first address the task with highest priority

$$\dot{q} = J_1^{\#} \dot{r}_1 + \left(I - J_1^{\#} J_1 \right) v_1$$

• and then choose v_1 so as to satisfy, if possible, also the secondary (lower priority) task

$$\dot{r}_2 = J_2 \dot{q} = J_2 J_1^{\dagger} \dot{r}_1 + J_2 (I - J_1^{\dagger} J_1) v_1 = J_2 J_1^{\dagger} \dot{r}_1 + J_2 P_1 v_1$$

the general solution for v_1 takes the usual form

$$v_1 = (J_2 P_1)^{\#} (\dot{r}_2 - J_2 J_1^{\#} \dot{r}_1) + (I - (J_2 P_1)^{\#} (J_2 P_1)) v_2$$

 v_2 is available for the execution of further tasks of lower (ordered) priorities

Task Priority (continue)

• substituting the expression of v_1 in \dot{q}

$$\dot{q} = J_1^{\#} \dot{r}_1 + P_1 (J_2 P_1)^{\#} (\dot{r}_2 - J_2 J_1^{\#} \dot{r}_1) + P_1 (I - (J_2 P_1)^{\#} (J_2 P_1)) v_2$$

$$P(BP)^{\#} = (BP)^{\#}$$
when matrix P is
idempotent and symmetric
$$(J_2 P_1)^{\#}$$
possibly = 0

main advantage: highest priority task is ideally no longer affected by algorithmic singularities (error is restricted only to secondary task)

Robotics 2