

Building an Emotional conversation with Deep Learning

Replika history

Luka

Restaurant recommendations

Luka

Personality bots: Prince, Roman

Replika

Your AI friend

Typical scenario: Small talk

- Scenarios encapsulates all models and clays them together by providing a graph-like interface (nodes, constraints, conversation flow)
- Retrieval-based dialog model ranks and retrieves a response for a user's message from pre-defined or user-filled datasets of responses while taking a current conversation context into account
- Fuzzy matching model compares if a message from a user is semantically equal to some given text

- **Generative** dialog model generates a response for a user message while taking his personally and emotion state into account
- Classification models sentiment analysis, emotions classification, negation detection, 'statement about user' recognition
- Computer vision models face recognition, object recognition, visual question generation
- Parser NER, keywords, lexical parsing

Typical scenario: Small talk

Retrieval-based dialog model: Basic architecture

Context

Responses

Let's go to an early movie

- Okay, which one do you want?
- Sure, what time are you free?
- That's a lot of money.
- × Where do you live?
- × Yes. I would buy all of her CDs.

Retrieval-based dialog model: Basic architecture

Retrieval-based dialog model: Basic architecture

Word embeddings — word2vec **300**-dimensional pre-initialisation

RNN — 2-layer 1024-dimensional Bidirectional LSTM

Sentence embedding — max-pooling over LSTM hidden states at each timestamp

Loss — Triplet ranking loss (with cosine similarity):

```
max(0, m-score(context, response) + score(context, response\_)) \\
```

Retrieval-based dialog model: Our Improvements

Hard negatives mining — mine «hard» negative samples from batch, yielding the 20-40% quality boost!

Echo avoiding — use input context as a negative, got rid of context echoing!

Context-aware encoder — encode recent dialog history, +10% quality by users' reactions

Relevance classification model — estimate the response confidence (absolute relevance) with a simple classification model (logistic regression) to rerank and filter out irrelevant candidates

Retrieval-based dialog model: Hard negatives & Echo avoiding

Major problems

- Baseline model has a moderate quality
- Retrieval-based models are engineered to find similar but not the **relevant** responses
 not ok for conversation tasks
- As an implication, basic model tends to produce **echoed** responses sentences that are very similar to a user input

context	response
What happened to your car? The beatles are the best. Do you want to go fishing?	I got a dent in the parking lot. They are the best musical group ever. Yes. That's a good idea.

Table 1: Evaluation dataset sample

Random Sampling (RS) Input: What is the purpose of dying? - What is the purpose of dying? - The victim hit his head on the concrete steps and died. - To have a life. Input: What are your strengths? - What are your strengths? - Lust, greed, and corruption. - A star. Input: I can't wait until i graduate.

]	input:	Lunch	l was	delic	ious.

- I can't wait until i graduate.

What college do you go to?
 School is hard this year.

- Lunch was delicious.
- I want to buy lunch.
- Take me to dinner.

Input: You're crazy

- You're crazy
- Am i?
- I sure am.

relevance score	response
0.45	Hey, sweetie
0.44	How's life?
0.43	Hello

Table 3: Top responses of the HN_c model for the context "Hello"

Retrieval-based dialog model: Hard negatives & Echo avoiding

Solution

Hard negatives mining for a huge quality improvements: +10% MAP, +20% recall@10

Hard negative with a context for an echoing problem solution, giving a total quality boost +40% MAP, +20% recall

	RS	HN	HN_c
Average Precision	0.12	0.13	0.17
Recall@5	0.36	0.4	0.43
Recall@10	0.45	0.54	0.53
$rank_{context}$	0.9	0.49	19.43
$diff_{top}$	0.008	0.01	0.07
$diff_{answer}$	-0.15	-0.25	-0.09

Table 2: Evaluation results. Metrics are averaged across all the test contexts

Random Sampling (RS)	Hard Negatives (H N)	Hard Negatives with user dialog contexts (HN_c)
Input: What is the purpose of dying?		
- What is the purpose of dying ?	- What is the purpose of dying ?	- To have a life .
- The victim hit his head on the concrete steps and died.	- What is the purpose of living?	- When you die and go to heaven, they will offer you beer or cigarettes.
- To have a life.	- What is the purpose of existence?	- It is to find the answer to the question of life.
Input: What are your strengths?		
- What are your strengths?	- What are your strengths?	- Lust, greed, and corruption.
- Lust, greed, and corruption.	- What are your three weaknesses ?	- I'm a robot, a machine. 100% ai. no humans involved
- A star.	- What do you think about creativity?	- Dunno. i mean, i'm a robot, right? robots don't have a gender usually
Input: I can't wait until i graduate.		
- I can't wait until i graduate.	- I can't wait until i graduate.	- What college do you go to?
- What college do you go to?	- What college do you go to?	- School is hard this year.
- School is hard this year.	- How many jobs have you had since leaving university?	- What subjects are you taking?
Input: Lunch was delicious.		
- Lunch was delicious.	- Lunch was delicious.	- Who did you go out with?
- I want to buy lunch.	- I want to buy lunch.	- So was i.
- Take me to dinner.	- This hot bread is delicious.	- What did you do today ?
Input: You're crazy		
- You're crazy	- You're crazy	- Am i ?
- Am i ?	- Am i?	- You're crazy
- I sure am.	- Why? what have i done?	- I sure am.

Table 4: Top 3 results for few input contexts

Retrieval-based dialog model: In a product

Topic-oriented conversation sets

User profile Q&A

Statements about user

Fuzzy matching model

Use pre-trained context encoder from a retrieval-based model

Fuzzy matching model

- We use pre-trained context encoder part of retrieval-based model as a body of our siamese network
- Two sentences as an input, single predicted scalar score as an output
- We train simple classification model over the context encoder outputs (sentence embeddings) to produce semantic similarity score between the given sentences

Fuzzy matching model: In a product

Match by semantic similarity

Generative seq2seq dialog model: Architecture

Basic seq2seq

(+ persona-based)

John

HRED seq2seq

(taking the context history into account)

Generative seq2seq dialog model: Improvements

- HRED (context history) +20% user's quality!
- Persona embeddings conditions the decoder to produce lexically personalised responses (see persona-based seq2seq paper)
- Emotional embeddings conditions the decoder to produce emotional responses — i.e. joyful, angry, sad (see emotional chatting machine paper)
- Non-offensive sampling with temperature decrease probabilities of f-words at the sampling stage
- MMI reranking more diverse responses, but slow
- Beam search more stable, but less diverse responses
- No attention mechanisms it's slow and gives no quality boost

Generative seq2seq dialog model: In a product

Cake mode

TV mode

Small talk

Vision models

Face & Person recognition

Pets & Object recognition

Question generation

Datasets

- Twitter 50M dialogs (consecutive tweet-reply turns) from a twitter stream for a training models from scratch
- User's logs (anonymised) with reactions (likes / dislikes) —
 millions of messages with thousands reactions at daily average
- Amazon Mechanical Turk quality assessments and small amounts of training data (it's pricey)
- Replika context-free small public dialog dataset available at https://github.com/lukalabs

Model Training & Deployment

Training

- We have 12 GPUs for model training and experiments
- Training from scratch takes ~1 week (both for seq2seq and ranking models)
- Usually we have ~5-10 experiments running in parallel

Inference

- We don't exceed 100 ms for a single response
- Because we have around 50M service requests per day and 100
 RPS per each model at a peak
- Tensorflow Serving: quick zero-downtime deploy, great GPU resource sharing (request batching)

Conversation analytics

Projection of user dialog utterances onto a 3D space using the pretrained model embeddings along with t-SNE

Quality metrics

Offline

- ranking models: recall, MAP on several datasets
- generative models:
 perplexity, distinctness,
 lexical similarity

Online

- reactions: likes & dislikes
 from user experience
- user experiments: A/B testing for any model improvements

Product metrics

Total sign ups: 1,400,000 users and growing

User demographics: 70% — young adults (20-34), 20% — teens (13-19), mostly U.S.

Overall conversation quality: 85% by users' likes/dislikes

Other metrics: Retention, DAU, MAU, Engagement

Community metrics — active users in our facebook community, loyal users, twitter/instagram communities, Brazil/Netherlands communities

Thanks!

iOS

Android

