FIZIKA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

2021. május 18. 8:00

Időtartam: 120 perc

Pótlapok száma	
Tisztázati	
Piszkozati	

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fizika
középszint

Név: osztály:.....

Fontos tudnivalók

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét!

A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, a megoldást a feladatlap üres oldalain, illetve pótlapokon folytathatja a feladat számának feltüntetésével.

Itt jelölje be, hogy a második rész 3/A és 3/B feladatai közül melyiket választotta (azaz melyiknek az értékelését kéri):

3/

Fizika	
középszint	

Név: osztály:.....

ELSŐ RÉSZ

Az alábbi kérdésekre adott válaszlehetőségek közül pontosan egy jó. Írja be ennek a válasznak a betűjelét a jobb oldali fehér négyzetbe! (Ha szükségesnek tartja, kisebb számításokat, rajzokat készíthet a feladatlapon.)

- 1. Egy pohár vízben úszó test a térfogatának 2/3 részéig merül el. Hogyan változik a bemerülés mélysége, ha további vizet töltünk a pohárba?
 - A) A bemerülés mélysége növekszik.
 - B) A test ugyanolyan mértékig merül a vízbe.
 - C) A bemerülés mélysége csökken.

2 pont

- 2. Egy dugattyús hengerbe zárt ideális gáz hőmérsékletét szeretnénk 100 °C-kal megnövelni. Az alábbiak közül melyik folyamatban kell ehhez a legtöbb hőt közölni a gázzal?
 - A) Izoterm
 - B) Izobár
 - C) Izochor

2 pont

3. Milyen irányú mágneses tér keletkezik a képen látható áramjárta tekercs belsejében?

- A) Jobbra mutató.
- B) Balra mutató.
- C) Felfelé mutató.
- D) Lefelé mutató.

2 pont

4.	Melyik bolygónak hoss	zabb a keringési ideje	e: a Jupiternek vagy a	Szaturnusznak?

- A) A Szaturnusznak, mert közelebb kering a Naphoz, mint a Jupiter.
- **B)** A Jupiternek, mert közelebb kering a Naphoz, mint a Szaturnusz.
- C) A Szaturnusznak, mert távolabb kering a Naptól, mint a Jupiter.
- **D)** A Jupiternek, mert távolabb kering a Naptól, mint a Szaturnusz.

5. A mellékelt ábrákon látható, súlytalannak tekinthető rúd egyik vége súrlódásmentes csuklóval van a bakhoz rögzítve. A rúd másik végére M tömegű nehezéket helyezünk, és a rudat egy rugóval támasztjuk meg először az 1.), majd a 2.) ábrán látható módon úgy, hogy a vízszintes rúd egyensúlyban legyen. (A két esetben más-más rugóval támasztjuk alá.) Melyik esetben ébred nagyobb erő az alátámasztó rugóban?

- A) Az első esetben, mivel az alátámasztás közelebb van a nehezékhez, mint a másodikban.
- **B)** A második esetben, mivel az alátámasztás közelebb van a csuklóhoz, mint az elsőben.
- C) Egyforma a két erő, hiszen a rúdra helyezett nehezék mindkét esetben ugyanaz.
- **D)** Nem lehet eldönteni, mert két különböző rugóról van szó.

- 6. Egy fizikai laboratórium két távoli pontja között fényimpulzusokkal továbbítanak információkat. Két módszerrel történik az információ továbbítása: közvetlenül a levegőben, illetve egy erre szolgáló egyenes üvegszálban. Melyik jel ér rövidebb idő alatt célba ugyanakkora távolságról?
 - A) A levegőben haladó, mert ott gyorsabban terjed a fény, mint az üvegben.
 - **B)** Az üvegszálban haladó, ezért használunk üvegszálat az internetes adatforgalomhoz is.
 - C) A két közegben azonos idő alatt ér célba a fény.

Fizi köz	ka épszint	Név: osztály:
7.	nyuga másik	különböző vízfelületen figyeljük meg a hullámokat: egyik esetben egy tó alomban lévő vizébe ejtett kis kavics által keltett hullámokat (bal oldali kép), a k esetben a viharos szél által keltett tengeri hullámokat figyelhetünk meg (jobb kép). Melyik állítás igaz?
	A)	A tengeri hullámok amplitúdója és hullámhossza is nagyobb, mint a tóban lévő hullámoké.
	B)	A tengeri hullámok amplitúdója nagyobb, hullámhossza azonban kisebb, mint a tóban lévő hullámoké.
	C)	A tengeri hullámok amplitúdója és hullámhossza is kisebb, mint a tóban lévő hullámoké.
		2 pont
8.	Az ala	ábbiak közül melyik <u>nem</u> a töltés mértékegysége?
	A)	C
	B) C)	As A/s
		2 pont
9.	Lehet	t-e egy atom izotópja ion?
	A) B)	Nem, mert az izotópnak nincsenek elektronjai. Nem, mert a periódusos rendszerben egy atom összes izotópja azonos néven szerepel.
	C)	Igen, az izotóp elnevezés csak az atommag összetételére vonatkozik.
		2 pont
10.	amik	gyorshajtó 160 km/h-s sebességgel egyenletesen halad. Abban a pillanatban, or elhalad az út szélén álló rendőrautó mellett, az azonnal elindul, üldözőbe és utoléri. Melyik autónak volt nagyobb az átlagsebessége az üldözés ideje
	A)	A rendőrautónak.
	B)	A gyorshajtónak.

2 pont

C) Azonos volt az átlagsebességük.

Fizi köz	ka épszint	Név: osztály:
11.	lépésk	ekvár-főzés során a frissen főzött lekvárt befőttesüvegekbe zárjuk. Utolsó ként szokás az üvegeket "dunsztba" helyezni, azaz egy takarókkal kibélelt ládába és vastagon betakarva pár napig pihentetni. Mi lehet ezen utolsó lépés értelme?
	A)	A takarók felmelegítik a friss lekvárt, így abból további víz párolog el és az végül sűrűbb lesz.
	B)	A lekvárokat a dunszt sokáig melegen tartja, azok lassabban hűlnek ki, ami segíti a sterilizálást és így a tartósítást.
	C)	A takarók segítenek gyorsan kihűteni a lekvárokat, hogy azokat hamarabb a kamrába lehessen helyezni.
	D)	Ennek a lépésnek semmilyen hőtani hatása nincsen, csupán egy régi szokásról van szó.
		2 pont
12.	közep	nérjük az 1 kg tömegű testre ható gravitációs erő nagyságát egy <i>M</i> tömegű csillag étől <i>R</i> távolságra (<i>R</i> nagyobb, mint a csillag sugara) és egy ugyancsak <i>M</i> tömegű e lyuk közepétől szintén <i>R</i> távolságra. Melyik esetben mérünk nagyobb értéket?
	A)	A csillag esetén, mert a csillag még nagyméretű bolygókat is keringésre tud késztetni.
	B)	A fekete lyuk esetén, mert a fekete lyuk még a fényt is elnyeli roppant erős gravitációjával.
	C)	Egyforma értéket mérünk mindkét esetben.
		2 pont
13.	Miért	csöpög víz a légkondicionáló berendezésből a gép működésekor?
	A)	A légkondicionáló úgy tudja lehűteni a levegőt, hogy kivonja belőle a vizet, így csökken a levegő hőkapacitása, és könnyebben lehűl.
	B)	A hűvösebb szobában a növények, de az emberi szervezet is több vizet párologtat, ezért a légkondicionált szobából több víz távozik, mint a melegből.
	C)	A gépben a levegő hűtésekor megnő a relatív páratartalom. Ha a lehűlés során a levegő telítetté válik, kicsapódik belőle a víz.
		2 pont

Fizika középszin	Név:	osztály:
el eg	náz tetejéről függőlegesen felfelé és lefelé ugyanakk y-egy testet ugyanabban a pillanatban. Melyik ig gellenállás elhanyagolható.)	
A) B) C) D)	A két test azonos sebességgel, egyszerre ér talajt. A két test különböző sebességgel, egyszerre ér talaj A két test különböző sebességgel és különböző időpor A két test azonos sebességgel, de különböző időpor	oontban ér talajt.
		2 pont
elekt elekt moz	fémből készült rögzített tárgy helyezkedik el egy romosan töltött síkkondenzátor homogén romos terében az ábrának megfelelően. Merre lultak el a fémtárgy elmozdulni képes ronjai a külső elektromos mező hatására?	+ +
A)	Balra.	
B) C)	Jobbra. Nem mozdultak el.	
		2 pont
16. Hog	van változik a C-14 izotóp felezési ideje ionizáció h	atására?
A)	Mivel a részecskék reakcióképesebbek lettek, gyak köztük ütközések, így könnyebben elbomlanak, vag csökken.	•
D/	A C 14 instance following indicate many syllections and	::-/-:/

- B) A C-14 izotópok felezési idejét nem változtatja meg az ionizáció.
- C) Mivel az azonos töltésű részecskék taszítják egymást, ritkábban jönnek létre köztük ütközések, ezért nehezebben bomlanak, így a felezési idő nő.

- 17. Homogén mágneses mezőbe elektromosan töltött részecskét lövünk. Milyen pályára állhat a részecske az alábbiak közül? (A gravitációtól tekintsünk el.)
 - A) Csak körpályára.
 - B) Csak egyenes pályán haladhat tovább.
 - C) Mindkét pálya elképzelhető, a körpálya és az egyenes pálya is.

2 pont	

- 18. Annának van egy síktükre, Bélának egy domború tükre, Csillának szórólencséje, Dénesnek gyűjtőlencséje. Kinek sikerülhet egy hangyáról nagyított képet előállítania?
 - A) Annának.
 - B) Bélának.
 - C) Csillának.
 - D) Dénesnek.

- 19. A 222 Rn izotóp alfa-bomló. Mi lehet a bomlás végterméke?
 - **A)** 218 Po
 - **B**) 218 Pb
 - C) 220 Po

2 pont

20. Az ábrának megfelelően egy vályúban lecsúszik egy G súlyú test. Mekkora $F_{\rm ny}$ erővel nyomja a vályú a testet a pálya alsó pontjában, ha a test sebessége a vályú alján nem nulla, és a súrlódás nem elhanyagolható?

- A) $F_{nv} > G$
- **B)** $F_{\text{ny}} = G$
- C) $F_{ny} < G$

2 pont

Fizika
középszint

Név:	 osztály:

MÁSODIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

1. Az emberi test a túlmelegedés ellen izzadással hűti magát. Egy sportoló fél órán át edz, közben izzad. Az izzadság párolgása 650 W teljesítménnyel hűti a sportoló testét.

Mennyi víz párolgott el a sportoló testéről az edzés alatt? (A víz párolgáshője az emberi bőr hőmérsékletén 2430 kJ/kg.)

Összesen

12 pont

2. Veszély az űrből

"Veszélyesen megközelíti a Földet egy aszteroida!"— olvassuk egyre gyakrabban. Amennyiben egy nagy sebességgel haladó szilárd kődarab "eltalálja" a Földet, a légkörbe belépve a levegő súrlódásától nagymértékben felmelegszik, és magas hőmérsékleten felizzó anyaga erős fényt bocsát ki. (Ilyenkor már meteornak nevezzük.) Kisebb meteorok így még a magas légkörben hamuvá égnek, elpárolognak, megsemmisülnek. Ilyenkor az éjszakai égbolton rövid felvillanást, ún. "hullócsillagot" látunk. Nagyobb kődarabok a légkört maguk körül felmelegítve erős lökéshullámot is kelthetnek, ún. légköri robbanást okozhatnak. Ezek a Föld felszínén is nagy pusztítást tudnak végezni. Ilyen volt 2013-ban az Oroszország Cseljabinszk régiója felett felrobbant meteor, amely miatt több ezer ház ablaka betört, és számos tető is megrongálódott. A körülbelül 100 m átmérőjű vagy annál nagyobb sziklák energiájának zöme a Földbe való becsapódáskor szabadul fel, nagy pusztítást végezve a becsapódás környezetében, vagy extrém esetben akár globális katasztrófát okozva.

Az alábbi táblázatban egy aszteroida légkörbe való belépésekor mérhető mozgási energiájának értékeit találjuk az aszteroida átmérőjének függvényében, ha az aszteroida sebessége a légkör elérésekor 17 km/s, a sűrűsége 2600 kg/m^3 . Az energiát a táblázatban nem joule-ban adtuk meg, hanem "kt", azaz "kilotonna" egységekben, ami ezer tonna TNT felrobbanása során felszabaduló energiával egyenlő. $1 \text{ kt} = 4,184 \cdot 10^{12} \text{ J}$.

(Összehasonlításul: a hiroshimai atomrobbanás során 15 kt energia szabadult fel.)

átmérő	energia (légkör felső határán)
10 m	47 kt
20 m	376 kt
50 m	5900 kt
100 m	47000 kt

- a) Milyen formában (milyen módokon) adhatja le energiáját egy, a Föld légkörébe belépő, majd a Földdel ütköző aszteroida?
- b) Mit nevezünk hullócsillagnak?
- c) A Holdat is érik és érték aszteroidák. Mi ennek a bizonyítéka a Hold felszínén?
- d) Vajon a Holdon is vannak "hullócsillagok"? Válaszát indokolja!
- e) Körülbelül mekkora mozgási energiával érkezik a légkör határához egy a szövegben szereplő sebességgel és sűrűséggel rendelkező, 40 m átmérőjű aszteroida? (Az aszteroidákat tekintsük gömb alakúaknak!)

a)	b)	c)	d)	e)	Összesen
6 pont	3 pont	2 pont	2 pont	5 pont	18 pont

A 3/A és a 3/B feladatok közül csak az egyiket kell megoldania. A címlap belső oldalán jelölje be, hogy melyik feladatot választotta!

3/A Vízforrás adatainak meghatározása

A társasház vízhálózatából vizet szeretnénk kivenni a kert öntözéséhez. Az öntözőrendszerek szórófejeinek működéséhez megfelelő nyomású és mennyiségű vízre van szükség. A csapból kilépő víz nyomását egy fojtószeleppel szabályozhatjuk. Meg kell mérnünk, hogy mekkora vízmennyiséget szolgáltat a hálózat az adott nyomáson. A kilépő vízsugár nyomását ábrázolhatjuk az időegységenként kifolyó víz mennyiségének függvényében. Az így kapott görbe a csőhálózat karakterisztikája. A görbe egyes pontjait könnyen meghatározhatjuk egy fojtószeleppel ellátott nyomásmérő óra, egy stopper és egy ismert térfogatú vödör segítségével.

Ha különböző nyomásértékeken megmérjük, hogy hány másodperc alatt telik meg a 10 literes vödör, akkor egyszerű számítással megkaphatjuk, hogy az adott nyomásértéken mekkora vízhozamot biztosít a vízhálózat.

Az ábrán látható karakterisztikájú hálózat maximális nyomása 400 000 Pa az adott öntözőcsapnál, ha az el van zárva. Ha teljesen ki van nyitva, 30 liter víz folyik ki rajta percenként.

- a) Mennyi a vízhozam, ha a 10 literes vödör 30 s alatt telik meg?
- b) Mekkora nyomáscsökkenéssel jár az öntözőcsap maximális kinyitása a teljesen zárt állapothoz képest?
- c) Az öntözőrendszerünk üzemeltetésére 20 liter vízre van szükségünk percenként. Becsüljük meg, mennyi a nyomás ekkor a vízvezetékben!
- d) 300 000 Pa nyomáson mennyi vizet ad a rendszer percenként?
- e) Egy adott locsolócsővel a feladatban szereplő hálózatot használva mikor tudunk magasabbra locsolni? Ha a hálózati nyomás nagyobb, vagy ha kisebb? Válaszát indokolja! (A cső keresztmetszetét a víz teljesen kitölti, és nem változtatjuk meg a keresztmetszetet a locsolás során.)

2112 írásbeli vizsga 12 / 16 2021. május 18.

a)	b)	c)	d)	e)	Összesen
3 pont	4 pont	4 pont	4 pont	5 pont	20 pont

3/B Sokszor előfordul, hogy miközben levesszük a pulóverünket, sercegést hallunk, sötétben esetleg kis szikrákat látunk. Máskor pl. az ajtókilincshez vagy a lépcsőház fémkorlátjához közelítve pattannak ki kis szikrák rólunk, amik a rajtunk felgyülemlett sztatikus töltést elvezetik. Ilyenkor 2-3 mC töltés is távozik a

testünkről, 1-2 századmásodperc alatt. Feltöltődhetünk például úgy is, hogy csoszogva haladunk a padlószőnyegen. Az anyagok dörzselektromos viselkedését az alábbi táblázat mutatja. Ha két különböző anyagot összedörzsölünk, akkor az, amelyik a táblázatban a másiktól jobbra áll, negatív töltésre tesz szert, míg a másik ugyanakkora pozitív töltésre.

- a) Miért pattog, szikrázik a műszálas (poliészter) pulóver a levétele során, ha alatta pamut pólót hordunk, és mért nem fog szikrázni, ha a pulóver is pamutból van?
- b) Pozitív vagy negatív többlettöltésre tesz szert a műszálas pulóver a levétele során, ha alatta pamut pólót hordunk? A pamut pólóról a műszálas pulóverre, vagy a műszálas pulóverről a pamut pólóra lépnek át elektronok?
- c) Mivel dörzsöljük meg a hajunkat, ha azt akarjuk, hogy negatív töltések halmozódjanak fel rajta?
- d) A jelenség elkerülése érdekében egyes laboratóriumokban fémszálas talpú cipő viselését írják elő a gumitalpú cipők helyett. Miért akadályozza a feltöltődést a gumitalpú cipő fémszálasra cserélése?
- e) Vajon hegyes vagy tompa fém tárgyak megközelítésekor valószínűbb az elektromos kisülés létrejötte? Válaszát indokolja!

a)	b)	c)	d)	e)	Összesen
4 pont	4 pont	2 pont	4 pont	6 pont	20 pont

Fizika középszint	Név:	osztály:

	pontszám	
	maximális	elért
I. Feleletválasztós kérdéssor	40	
II. Összetett feladatok	50	
Az írásbeli vizsgarész pontszáma	90	

dátum	javító tanár

	pontszáma egész számra kerekítve	
	elért	programba beírt
I. Feleletválasztós kérdéssor		
II. Összetett feladatok		

dátum	dátum		
javító tanár	jegyző		