HN62304B Series HN62324B Series

T-46-13-15

524288-Word × 8-Bit CMOS Mask Programmable ROM

HN62304B, HN62324B Series is a 4-Mbit CMOS maskprogramable ROM organized as 524288-word x 8-bits. It can be operated with a battery because of low power consumption. The large capacity of 4M bits is optimum for a kanji character generator.

Features

- Single 5 V
- Wired OR is permitted for the output in three states
- TTL compatible
- Address access time: 150/200 ns (max.)
- Low power: Active Standby

100 mW (typ) 5 μW (typ)

Byte-Wide Data Organization

Ordering information

Type No.	Address Access Time	Package
HN62304BP	200 ns	600 mil 32-pin
HN62324BP	150 ns	plastic DIP
HN62304BF	200 ns	32-pin
HN62324BF	150 ns	plastic SOP

Pin Arrangement

Block Diagram

(1) HITACHI

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

www.DataSheetA.J.com

HN62304B Series, HN62324B Series -

Absolute Maximum Ratings

T-46-13-1	5	5	E	į						l	ĺ				•																															,																																																																								,	,																		,									
-----------	---	---	---	---	--	--	--	--	--	---	---	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--

Item	Symbol	Rating	Unit
Power supply voltage*1	Vcc	-0.3 to +7.0	V
Terminal voltage*1	VT	-0.3 to Vcc + 0.3	V
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	-55 to +125	°C
Bias temperature	Tbias	-20 to +85	°C

Note: •1. With respect to Vss.

Recommended Operating Conditions (Vss = 0 V, Ta = $0 \text{ to } +70 ^{\circ}\text{C}$)

Item	Symbol	Min	Тур	Max	Unit
Power supply voltage	Vcc	4.5	5.0	5.5	V
T	Vи	2.2		Vcc + 0.3	<u> </u>
Input voltage	V _E ,	-0.3		0.8	٧

DC Characteristics (VCC = $5 \text{ V} \pm 10\%$, Vss = 0 V, Ta = $0 \text{ to } +70^{\circ}\text{C}$)

Item		Symbol	Min	Max	Unit	Test Conditions
Power supply current	Active	Icc		50	mA	Vcc = 5.5 V, Idout = 0 mA, trc = Min
rower suppry cuttent	Standby	IsB		30	μΑ	$Vcc = 5.5 \text{ V}, \overline{CE} \ge Vcc - 0.2 \text{ V}$
Input leak current		Ilul		10	μΑ	$V_{IN} = 0$ to V_{CC}
Output leak current		Lol		10	μΑ	$\overrightarrow{CE} = 2.2 \text{ V}, \overrightarrow{V} \text{OUT} = 0 \text{ to VCC}$
0		Vон	2.4		V	$I_{OH} = -205 \mu A$
Output voltage		Vol		0.4	V	IoL = 1.6 mA

Capacitance (Vcc = 5 V \pm 10%, Vss = 0 V, Ta = 25°C, Vin = 0 V, f = 1 MHz)

Item	Symbol	Min	Max	Unit
Input capacitance•1	Cin		15	pF
Output capacitance 1	Cout	_	15	pF

Note: •1. This parameter is sampled and not 100% tested.

-HN62304B Series, HN62324B Series

AC Operating Characteristics (VCC = 5 V \pm 10%, Vss = 0 V, Ta = 0 to +70°C) **Test Conditions**

T-46-13-15

Input pulse level: 0.8 to VO timing reference level: 1.5 V

0.8 to 2.4 V

Output load:

50E D

1 TTL gate + CL = 100 pF

Input rise/fall time:

10 ns

(including jig capacitance)

Item	Symbol	HN62	2324B	HN62	2304B	
Alent	Syllibol	Min	Max	Min	Max	Uni
Cycle time	trc	150	_	200		ns
Address access time	taa	-	150		200	ns
CE access time	tace		150	-	200	ns
OE access time	toe		70		100	ns
Output Hold Time from Address	s					
Change	TDHA	• 0		0		ns
Output Hold Time from CE	tonc	0		0 .		ns
Output Hold Time from OE	рно	0	_	0	_	ns
CE to Output in High Z	tcHz*1		70		70	ns
OE to Output in High Z	toHz*1	_	70		70	ns
CE to Output in Low Z	tcl.z	10		10		ns
OE to Output in Low Z	tolz	10		10		ns

*1 tcHz and toHz define the time at which the output goes to the high impedance state and is not referenced to output voltage level.

T-46-13-15

Timing Waveform

Notes: 1. tDHA, tDHC, tDHO;

Determined by whichever is faster. Determined by whichever is slower.

2. taa, tace, toe; 3. ICLZ, IOLZ;

Determined by whichever is slower.