

Sistemas de Control Automático

8. Diseño de Controladores por Retroalimentación del Estado

Profesor: Luis Enrique González Jiménez

Departamento de Electrónica, Sistemas e Informática (DESI)

Hora: Ma-Vi 16:00 - 18:00

Aula: T-201

Obtenemos su modelo en espacio de estados:

Clásicos Objetivos de Control:

- Que la masa vuelva o permanezca en su posición inicial (Estabilización y ubicación de polos) con algún transitorio deseado.
- Que la salida se comporte de acuerdo a algún patrón deseado (Seguimiento de Referencias).

¿Cómo lograr esto?

Por medio de la entrada u(t)

En espacio de estados retroalimentamos combinaciones lineales del estado.

Entonces, el objetivo es diseñar $\mathit{u}(t) = \mathit{K}\!\mathit{x}(t)$, es decir $\overline{\mathit{K}=?}$

Para poder elegir la ganancia del controlador $\,K\,$ analicemos el sistema en lazo cerrado:

$$\dot{x}(t) = Ax(t) + BKx(t)$$
$$= (A + BK)x(t)$$

Es decir, cambiamos un sistema definido por A a un sistema definido por A + BK

- ¿Cómo definir K para que A+BK tenga los polos que deseo?
- ¿Es esto siempre posible?

Para un sistema con n estados y con los siguientes polos deseados:

$$\{p_{d1} \quad p_{d2} \quad p_{d3} \quad \cdots \quad p_{dn}\}$$

El controlador
$$u(t) = K\!x(t)$$
 con $\left| K = -egin{bmatrix} 0 & 0 & \cdots & 1 \end{bmatrix} M_c^{-1} H(A) \
ight|$ donde:

$$M_{c} = \begin{bmatrix} B & AB & A^{2}B & \cdots & A^{n-1}B \end{bmatrix}$$

$$H(A) = (A - p_{d1}I)(A - p_{d2}I)\cdots(A - p_{dn}I)$$

Entonces el sistema en lazo cerrado $\dot{x}(t) = (A + BK)x(t)$ tendrá los polos deseados.

FÓRMULACIÓN DE ACKERMANN

Esto solo es posible si el sistema es completamente controlable...

CONTROLABILIDAD

Un sistema de orden n es **completamente controlable** si existe una señal de control u(t) que lleve al sistema de un estado inicial $x(t_0)$ a otro estado deseado x(t) en un tiempo finito, $t > t_0$.

La forma de validar si un sistema es controlable es con el cumplimiento de cualquiera de las siguientes condiciones:

$$\operatorname{rank}(M_c) = n$$
, $\det(M_c) \neq 0$ M_c es invertible

donde M_c se conoce como matriz de controlabilidad y está definida como:

$$M_c = \begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix}$$

NOTA: Existen sistemas que poseen una parte **controlable** y otra **no controlable.** Cuando la parte no controlable es **estable** se pueden aplicar técnicas de control a la parte controlable del sistema.

PROCESO DE DISEÑO: Ubicación de Polos con Ackermann

DEFINIR REQUERIMIENTOS

En términos de t_s , M_P , ω_n , ζ , etc.

VALIDAR NECESIDAD

Si el sistema los cumple tal como está, no hay que hacer nada más.

¿SISTEMA CONTROLABLE?

Si no es controlable no se puede proseguir.

OBTENER POLOS DESEADOS

Que cumplan los requerimientos.

CALCULAR GANANCIA DE CONTROL K

Usando la fórmula de Ackermann

DEFINIR u(t)

Usando las ganancias obtenidas y los estados

COMPROBAR COMPORTAMIENTO EN LAZO CERRADO

Simulando el sistema con u(t) = KX(t)

- Se obtuvo la respuesta deseada (FIN)
 - NO se obtuvo la respuesta deseada (REVISAR PROCEDIMIENTO)

EL ALEMÁN EN ACCIÓN: Masa-Resorte

Problema: Dado los parámetros k=0.5, b=1, M=1 para el sistema masaresorte, diseñe un controlador que logre que la respuesta en lazo cerrado del sistema cumpla $t_s<2~s$ y $M_p=0$

REQUERIMIENTOS

$$t_s < 2 \ s \ y \ M_p = 0$$
 ¿YA SE CUMPLEN?

Solución: El sistema original es

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -0.5 & -1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(t)$$

Tiene los polos en $\left\{-\frac{1}{2} - \frac{1}{2}i, -\frac{1}{2} + \frac{1}{2}i\right\}$ y de la definición de los polos de un sistema de segundo orden

$$p_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1} \quad \Rightarrow \quad \zeta \omega_n = \frac{1}{2}, \omega_n \sqrt{\zeta^2 - 1} = \frac{1}{2}$$

Lo que resulta en $\zeta = \omega_n = \sqrt{\frac{1}{2}}$.

Eso significa que la respuesta ante una entrada escalón tendrá las características

$$t_s = \frac{4}{\zeta \omega_n} = 8$$
, $M_p = e^{-(\zeta/\sqrt{1-\zeta^2})\pi} = 0.0432 = 4.32\%$

Veamos que dice Matlab...

REQUERIMIENTOS

 $t_s < 2 s y M_p = 0$

¿YA SE CUMPLEN?

CONTROLABILIDAD

POLOS DESEADOS

$$p_{1,2} = -4$$

Entonces, verificamos si el sistema es controlable (es decir, si podemos ubicar los polos donde queramos)

$$M_c = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$
 rank $(M_C) = 2$ iSistema Controlable!

Entonces, de las especificaciones podemos obtener el factor de amortiguamiento y la frecuencia natural como (proponiendo $t_s=1\,s$)

$$1 = \frac{4}{\zeta \omega_n}, \quad 0 = e^{-(\zeta/\sqrt{1-\zeta^2})\pi}$$

¿Cómo despejar el factor de amortiguamiento?

$$M_p = e^{-(\zeta/\sqrt{1-\zeta^2})\pi} \Rightarrow \zeta = \sqrt{\frac{\Psi^2}{1+\Psi^2}} \text{ donde } \Psi = \frac{-\ln(M_p)}{\pi}$$

Nosotros ya sabíamos que para no tener sobreimpulso era necesario $\zeta \geq 1$. Por lo tanto, podemos elegir $\zeta = 1$ y $\omega_n = 4$ para cumplir los requerimientos y los polos deseados quedarían como:

$$p_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1} = -4$$

REQUERIMIENTOS

 $t_s < 2 s y M_p = 0$

¿YA SE CUMPLEN?

CONTROLABILIDAD

POLOS DESEADOS

$$p_{1,2} = -4$$

GANANCIA DE CONTROL

$$K = [-15.5 \quad -7]$$

LEY DE CONTROL

$$u(t) = -15.5x_1 - 7x_2$$
 ¿RESPUESTA DESEADA?

Ahora si, podemos poner a Ackerman a trabajar...

$$H(A) = (A+4I)(A+4I) = A^2 + 8A + 16I = \begin{bmatrix} 15.5 & 7 \\ -3.5 & 8.5 \end{bmatrix}$$

$$K = -\begin{bmatrix} 0 & 0 & \cdots & 1 \end{bmatrix} M_c^{-1} H(A) = \begin{bmatrix} -15.5 & -7 \end{bmatrix}$$

Y la ley de control queda como:

$$u(t) = Kx(t) = -15.5x_1 - 7x_2$$

Veamos si se cumplen los requerimientos...

Simulación del Sistema en Lazo Cerrado (MATLAB)

end

```
function MasaResorte_ODE_plot( tspan, x0, Pd ) function dX = MasaResorte ODE sys( t, X )
 global A B C K
                                                   global A B C K
 %Parámetros del sistema
                                                   %U = K*X; %Control por retro (solo estabiliza el sistema)
 k = 0.5; b = 1; M = 1;
                                                   U = K*X + 1; %Control por retro a una entrada escalón
                                                   %U = 1: %Entrada escalón
 %Matrices del Sistema
 A = [0 1; -k/M -b/M];
                                                   %ODE's
 B = [0; 1/M];
                                                   dX = A*X + B*U:
 C = eye(2);
 %Calculamos ganancia del controlador
 Mc = [B A*B] %Matriz de controlabilidad
 H = (A-Pd(1)*eye(2))*(A-Pd(2)*eye(2))
 K = -[0 1]*Mc^-1*H %Para seguimiento de ref constantes
 %K = [0 0];
                          %En caso de guerer simular solo cond. iniciales
 [t, X] = ode45(@MasaResorte ODE sys, tspan, x0);
 %Grafico los estados
 figure;
 subplot(2,1,1); plot(t, X(:,1)); title('ESTADO 1'); grid;
 subplot(2,1,2); plot(t, X(:,2)); title('ESTADO 2'); grid;
 %Grafico el control
 figure;
 U = K*X':
 plot(t, U); title('SENAL DE CONTROL'); grid;
```


Simulación del Sistema en Lazo Cerrado (2 OPCIONES EN SIMULINK)

Respuesta del SLC $u(t) = -15.5x_1 - 7x_2$, $X(0) = \begin{bmatrix} 2 & 2 \end{bmatrix}$

REQUERIMIENTOS

 $t_s < 2 s y M_p = 0$

¿YA SE CUMPLEN?

CONTROLABILIDAD

POLOS DESEADOS

$$p_{1,2} = -4$$

GANANCIA DE CONTROL

$$K = [-15.5 \quad -7]$$

LEY DE CONTROL

$$u(t) = -15.5x_1 - 7x_2$$

¿RESPUESTA DESEADA?

Solo estabiliza, ¿Cómo podremos visualizar ante una entrada escalón?

Respuesta del SLC $u(t) = -15.5x_1 - 7x_2 + 1$, $X(0) = \begin{bmatrix} 0 & 0 \end{bmatrix}$

REQUERIMIENTOS

 $t_{\scriptscriptstyle S} < 2 \; {\rm s} \; {\rm y} \; M_p = 0$

¿YA SE CUMPLEN?

CONTROLABILIDAD

POLOS DESEADOS

$$p_{1,2} = -4$$

GANANCIA DE CONTROL

$$K = [-15.5 \quad -7]$$

LEY DE CONTROL

$$u(t) = -15.5x_1 - 7x_2$$

¿RESPUESTA DESEADA?

¿Porqué no se estabilizó en 1?

No es un esquema de seguimiento de referencias, lo veremos después ©