Jet Mixing Noise Scaling Laws SHJAR Data vs. Pridictions

Authors: Abbas Khavaran and James Bridges

Abstract:

High quality jet noise spectral data measured at the anechoic dome at the NASA Glenn Research Center is used to examine a number of jet noise scaling laws. Configurations considered in the present study consist of convergent as well as convergent-divergent axisymmetric nozzles. The spectral measurements are shown in narrow band and cover 8193 equally spaced points in a typical Strouhal number range of (0.01 – 10.0). Measurements are reported as lossless (i.e. atmospheric attenuation is added to as-measured data), and at 24 equally spaced angles (500 to 1650) on a 100-diameter arc.

Following the work of Viswanathan [Ref. 1], velocity power laws are derived using a least square fit on spectral power density as a function of jet temperature and observer angle. The goodness of the fit is studied at each angle, and alternative relationships are proposed to improve the spectral collapse when certain conditions are met. On the application side, power laws are extremely useful in identifying components from various noise generation mechanisms. From this analysis, jet noise prediction tools can be developed with physics derived from the different spectral components.

JET MIXING NOISE SCALING LAWS SHJAR DATA vs. PREDICTIONS

Abbas Khavaran & James Bridges
NASA Glenn Research Center

Acoustic Technical Working Group Williamsburg, VA Sept. 23-24, 2008

Overview

- Scaling Laws SHJAR data
 - Sideline Angles
 - Small Aft Angles
 - Noise Components (Mixing, Shock, Screech, AMN)

JeNo Scaling (unheated jets)

Acoustic Dome

2-in convergent nozzle smc000

SHJAR within the Dome

Bridges, et al. AIAA-2005-2846

AIAA-2007-3628

SHJAR 2-in SINGLE FLOW NOZZLES

Nozzle	Configuration	Design Mach	Diameter inches	Design NPR
smc000	Convergent	1.00	2.0	1.89
smc021*	Convergent	1.00	2.0	1.89
smc014	CD	1.185	2.0	2.37
smc015	CD	1.40	2.0	3.18
smc016	CD	1.50	2.0	3.67
smc018	CD	1.80	2.0	5.74

^{*} Screech free

All data shown in NB, lossless and on ARC = 100D

POWER LAW $U^{n(\theta,T)}$

$$St = fD / U_{j}$$

$$PSD = 10 Log(\overline{p^{2}}U_{j} / p_{ref}^{2}D)$$

$$PSD(Scaled) = PSD - 10n(\theta, T)Log(U_i / c_{\infty})$$

POWER LAW (Least-Square Method)

$$\hat{y}_i = OASPL(\theta,T), \quad i=1,2,...,N$$
 Viswanathan, K., AIAA J. 44(10), 2006

$$y_i = n(\theta,T)x_i + B(\theta,T);$$
 $x_i = 10Log(U_i / c_\infty),$ $i = 1,2,...,N$

Power Intercept factor parameter

$$\chi(\theta, T) = \frac{1}{N - 2} \sum_{i=1}^{N} \frac{(\hat{y}_i - y_i)^2}{\sigma_i}$$
 Goodness Factor

VELOCITY POWER FACTOR - n (Constant Static Temp)

Excludes points at $U_i / c_{\infty} > 1.0$

Includes points at $U_j / c_{\infty} > 1.0$

GOODNESS FACTOR (Constant Static Temp)

Excludes points at $U_j / c_{\infty} > 1.0$

INTERCEPT PARAMETER

(Contact Static Temp)

Excludes points at $U_j / c_{\infty} > 1.0$

Includes points at $U_j / c_{\infty} > 1.0$

POWER LAW (Constant Total Temp)

- > Power law deteriorates at small aft angles
- > Unheated jets have a distinctly different intercept parameter

APPLICATION OF POWER LAW (Noise Components)

Table C. SHJAR readings at plenum temperature ratio 1.0

	Rdg	Nozzle	T_s	T_t	U_j / c_{∞}	\overline{M}	NPR	M_{j}	A_j / A_e
	1610	smc000	0.97	1.0	0.40	0.40	1.117	0.40	1.0
	1611		0.96	1.0	0.49	0.50	1.186	0.50	1.0
	1612		0.91	1.0	0.67	0.70	1.387	0.70	1.0
	1613		0.86	1.0	0.83	0.90	1.692	0.90	1.0
	1614		0.83	1.0	0.91	1.00	1.893	1.00	1.0
	1616		0.76	1.0	1.08	1.00	2.556	1.24	1.043
	1618		0.70	1.0	1.23	1.00	3.514	1.47	1.156
CD	> 1636	smc016	0.69	1.0	1.24	1.50	3.671	1.50	1.0
Screech-free	>1605	smc021	0.80	1.02	1.04	1.00	2.328	1.17	1.02

$$T_r = 1, \theta = 90^\circ, n = 7.93$$

AMN:

Amplification of mixing noise due to screech

$$T_r = 1, \theta = 150^\circ, n = 9.13$$

smc000

Rdg	$U_{j}/c_{_{\infty}}$	M	NPR
1610	0.40	0.40	1.11
1611	0.49	0.50	1.18
1612	0.67	0.70	1.38
1613	0.83	0.90	1.69
1614	0.91	1.0	1.89

$$T_r = 1, \theta = 150^{\circ}, n = 10.20$$

- Freq parameter (He)
- Adjust power factor (9.13 --> 10.20)

$$He = fD/c_{\infty}$$

Rdg	$U_j/c_{_\infty}$	M	NPR
1610	0.40	0.40	1.11
1611	0.49	0.50	1.18
1612	0.67	0.70	1.38
1613	0.83	0.90	1.69
1614	0.91	1.0	1.89

 $Tt = 1.0, \ \theta = 150^{\circ}, \ n=10.20$

$$T_r = 1, \theta = 150^\circ, n = 10.20$$

Mach 1.50 CD nozzle

Rdg	U_j/c_{∞}	M	\mathbf{M}_{j}	NPR
1636 smc016	1.24	1.50	1.50	3.67

$$T_s = 1.76, \theta = 90^{\circ}, n = 6.15$$

smc000

Rdg	U_j/c_{∞}	M	NPR
5615	0.39	0.29	1.06
5578	0.49	0.37	1.10
5614	0.59	0.45	1.14
5613	0.69	0.52	1.20
5612	0.79	0.60	1.27
5579	0.89	0.67	1.35
5629	1.18	0.89	1.67
5580	1.32	1.0	1.89

Ts = 1.76, θ = 90°, n = 6.15

$$T_s = 1.76, \theta = 150^{\circ}, n = 8.70$$

Rdg	$U_j/c_{_\infty}$	M	NPR
5615	0.39	0.29	1.06
5578	0.49	0.37	1.10
5614	0.59	0.45	1.14
5613	0.69	0.52	1.20
5612	0.79	0.60	1.27
5579	0.89	0.67	1.35
5629	1.18	0.89	1.67
>5580	1.32	1.0	1.89

Ts = 1.76, θ = 150°, n = 8.70

$$T_s = 2.70, \theta = 50^{\circ}, n = 4.92$$

smc000

Rdg	U_j/c_{∞}	M	NPR
5585	0.39	0.24	1.04
5585	0.59	0.36	1.09
5587	0.69	0.42	1.12
5588	0.79	0.48	1.17
5590	1.17	0.72	1.40
5592	1.32	0.81	1.52
5581	1.47	0.91	1.69

$$T_s = 2.70, \theta = 90^{\circ}, n = 5.37$$

$$T_s = 2.70, \theta = 120^{\circ}, n = 6.15$$

$$T_s = 2.70, \theta = 150^{\circ}, n = 8.0$$

- > Scaling laws help to identify noise components
 - ☐ Jet mixing noise
 - ☐ Shock-associated noise
 - **☐** Amplification of jet mixing noise due to screech (AMN)
 - ☐ Mixing noise (components) at small aft angles

Under-expanded Supersonic Jets No Screech Amplification

10¹

Rdg: 1605 (Blue); Mixing noise from scaled Rdg: 1614 (Dark)

St

10°

10⁻¹

120

10⁻²

Mixing Noise – No Screech Amplification

scaled smc000 smc021

Rdg	U_j/c_{∞}	T _t	M _j	M_d	NPR
	0.91 1.04		1.0 1.17	1.0 1.0	

Rdg: 1605 (Blue); Mixing noise from scaled Rdg: 1614 (Dark)

Shock Noise – No Screech Amplification

⇒ smc021

Rda: 1605 -	Shock-assoc	ciated noise

Rdg	U_j/c_{∞}	T _t	M _j	M_d	NPR
1605	1.04	1.0	1.17	1.0	2.33

Under-expanded Supersonic Jets With Screech Amplification

scaled smc000 smc000 (Uexp)
smc000 (Uexp)

Rdg	U_j/c_{∞}	T _t	M _j	M_d	NPR
1614					
1616	1.08	1.0	1.24	1.0	2.55

smc000-1616(Blue); Mixing noise from scaled smc000-1614 (Dark)

Shock Noise – Screech Amplification

Rdg	U_j/c_{∞}	T _t	M _j	M _d	NPR
1616	1.08	1.0	1.24	1.0	2.55

smc000-1616 - Shock-associated noise

Small Aft Angle – Supersonic Noise Components

smc000 smc000

Rdg	U_j/c_{∞}	M _j	M	NPR
1614	0.91	1.0	1.0	1.89
1618	1.23	1.47	1.0	3.51

JeNo Methodology

AIAA-2007-3640

Governing Eq: Linearized Euler

Source: Reynolds Stress + Velocity/Enthalpy

GF: Locally Parallel Mean Flow

Unheated Jets

- > Good agreement along sideline angles
- > Small aft angle agreements deteriorate with increasing jet velocity (jet spread, instability)

JET CONDITIONS

Subsonic Jets Table 1

Nozzle	CD						
TOZZIC	SP	Rdg	Ma	Tsr	M	Ttr	NPR
smc000	3	1513	0.50	0.95	0.502	1.040	1.188
	8	1521	0.50	1.00	0.501	1.047	1.188
	163	1525	0.50	1.10	0.476	1.154	1.168
	153	1528	0.50	1.20	0.456	1.251	1.153
	15	1531	0.50	1.43	0.419	1.479	1.128
	5	1514	0.70	0.90	0.724	1.025	1.418
	10	1523	0.70	1.00	0.702	1.10	1.389
	165	1526	0.70	1.10	0.666	1.20	1.346
	155	1529	0.70	1.20	0.640	1.30	1.318
	17	1532	0.70	1.43	0.585	1.53	1.260
	7	1515	0.90	0.85	0.972	1.017	1.834
	12	1524	0.90	1.00	0.90	1.164	1.694
	167	1527	0.90	1.10	0.857	1.26	1.616
	157	1530	0.90	1.20	0.825	1.359	1.563
	19	1533	0.90	1.43	0.751	1.592	1.452
	405	1614	0.91	0.83	1.0	1.0	1.893
	415	1584	1.224	1.50	1.0	1.80	1.893
	425	1572	1.356	1.83	1.0	2.2	1.893
	435	1565	1.50	2.26	1.0	2.70	1.893
	445	1554	1.63	2.70	1.0	3.20	1.893

JET CONDITIONS

Under-Expanded Convergent Nozzles

Table 2

			-				
Nozzle	SP	Rdg	Ma	Tsr	Mj	Ttr	NPR
smc000	8020	1534	1.18	1	1.18	1.28	2.38
	8030	1537	1.40	1.40	1.18	1.79	2.38
	8060	1539	1.80	2.37	1.18	2.99	2.34
	9020	1535	1.40	1	1.40	1.39	3.19
	9050	1538	1.80	1.665	1.40	2.30	3.17
	12040	1541	1.80	1.0	1.80	1.65	5.76
	12070	1540	2.40	1.795	1.80	2.92	5.71

Ideally Expanded Supersonic Jets

Table 3

Nozzle	SP	Rdg	Ma	Tsr	Md	Ttr	NPR
smc014	8020	1655	1.18	1	1.18	1.28	2.38
	8030	1656	1.40	1.40	1.18	1.79	2.38
smc015	9020	1660	1.40	1	1.40	1.39	3.19
	9050	1661	1.80	1.665	1.40	2.30	3.17
smc016	10010	1645	1.25	0.695	1.50	1.0	3.67
	10030	1646	1.50	1.0	1.50	1.45	3.67
	10060	1647	1.80	1.446	1.50	2.09	3.70
smc018	12040	1651	1.80	1	1.80	1.65	5.76
	12070	1653	2.40	1.795	1.80	2.92	5.71

WIND-RANS

TKE, Time & Length Scales

Unheated Jets $T_t = 1.0$

Subsonic

$$M = 0.502$$

 $M_a = 0.50$

Subsonic

$$M = 0.97$$

 $M_a = 0.90$

vs. SHJAR DATA 10-1515 Lossless, NB spectral density on ARC = 100D, angles are from inle

Supersonic (smc016)

$$M = 1.50 (CD)$$

$$M_a = 1.25$$

vs. SHJAR DATA 16-1645 Lossless, NB spectral density on ARC = 100D, angles are from inlet

smc000-1513 Lossless, NB spectral density on ARC = 100D, angles are from inlet

Rdg	U_j/c_{∞}	T _s	M	NPR
1534	1.18	1.0	1.0	2.38
1524	0.90	1.0	0.90	1.69

Data with Screech Amplification (smc000-1534)

Supersonic data corrected for AMN effect (scaled up smc000-1524)

JeNo vs. SHJAR DATA smc000-1534 jeno predictions vs scaled smc0024 shjar data (n = 7.57, 9.27) at (90, 150deg)

JeNo vs. SHJAR DATA smc000-1534 shajar data vs jeno,

Hot Jets (Excludes Enthalpy Source Term)

 $M_a = 0.90, T_r = 1.43$

JeNo vs. SHJAR DATA smc000-1531 Lossless, NB spectral density on ARC = 100D, angles are from inlet

JeNo vs. SHJAR DATA smc000-1533 Lossless, NB spectral density on ARC = 100D, angles are from inlet

JeNo Power Factors

$$(T_s = 1.0)$$

SUMMARY

Wind (CFD) Based JeNo Predictions

- \succ Good agreement along sideline (unheated $T_s \le 1$)
- Deteriorating agreement at small aft angles with increasing jet speed resulting in HF cutoff (Jet Spread; Instability Noise)
- Deficit in predicted PSD in the absence of heat-related sources.