Genomic BLUP

Peter von Rohr

2021-03-08

Goal: Find SNP 1 - SNP 6 out of the many SNPs

For the two SNPs 7 and 8 that are not linked to a QTL

Summary: 2 Problems

- 1. if we consider all SNP in our data set, then p>>N
 ==> least squares cannot be used
- ==> least squares cannot be used
 2. from genetic model: only few QTL for a given trait,
 ==> most SNP have marker effects (a) = 0

because the position of the QTL is unknown, we do not know which SNP have marker effects = 0

Approaches in Fixed Linear Model Framework

Possible solution for problem 2: Model selection to determine which SNP have marker effect that are not 0

Two Approaches

- Forward selection: Start with empty model include predictors that improve model
 Backward elimination: Start with full model, remove predictors
- 2. Backward elimination: Start with <u>full model</u>, remove predictors as long as model does not get worse

all SNP, not possible due to p>>N

no SNP

Backward Elimination

except for SNP data, this is the preferred way

Model Selection With Genomic Data

cannot use backward elimination with genomic data, because parameter estimation in the full model cannot be

- Only backward elimination really works in practical problems
- ▶ Large number of predictors $(1.5 * 10^5)$
- ▶ How to determine sequence of predictors to eliminate
- Fitting the full model is problematic

Mixed Linear Effect Model

- One solution: replace fixed linear effect model by <u>mixed</u> linear effect model (mle)
- MLE: additional random effect besides error term
- Random effects are specified by expected value and variance
- In livestock breeding MLE have a good reputation from BLUP animal model

MLE In Genomics

- Two different parametrizations
- 1. Marker Effect Model (MEM)
- 2. Breeding Value Model (BVM)

Overview

Marker Effect Model

In MEM random effects of markers are directly included in the model. For an idealized data set we can write

$$y = 1_n \mu + Wq + e$$

where

e

y vector of length n with observations general mean denoting fixed effects 1_n vector of length n of all ones q vector of length m of random SNP effects W design matrix relating SNP-genotypes to observations

vector of length n of random error terms

Breeding Value Model

$$y = Xb + Zg + e$$

where

- y vector of length n with observations
 - b vector of length r with fixed effects
 - X incidence matrix linking elements in b to observations
 - t vector of length t with random genomic breeding values
 - Z incidence matrix linking elements in g to observations
- e vector of length n of random error terms