Statistik och Dataanalys I

Föreläsning 16 - Kontinuerliga sannolikhetsmodeller

Mattias Villani

Statistiska institutionen Stockholms universitet

Översikt

- Likformig fördelning
- **Exponentialfördelning**
- Student-*t*
- **Sannolikhetsmodeller** och verkligheten

Likformig fördelning

Exponentialfördelning

Om $X \sim \operatorname{Expon}(\lambda)$ så är sannolikhetsfunktionen

$$f(x) = \lambda e^{-\lambda x}$$
, för $x > 0$

- $e \approx 2.71$ är Eulers tal.
- Väntevärdet är

$$E(X) = \frac{1}{\lambda}$$

- Exponentialfördelning vanlig modell för väntetider.
 - Tid mellan samtal till stödlinje.
 - ▶ Tid mellan mjukvarureleaser.
- Exponential och Poisson-fördelningen hänger ihop:
 - ▶ Om antalet samtal till stödlinje per timme är $Poisson(\lambda = 3)$ så förväntar vi oss $\lambda = 3$ st samtal i timmen.
 - ▶ Då är tiden mellan samtal $\operatorname{Expon}(\lambda = 3)$ och vi förväntar oss $1/\lambda = 1/3$ timmar (20 minuter) mellan samtal.

Exponentialfördelning

Exponentialfördelning i R

 $X \sim \text{Expon}(\lambda = 3)$. Parametern λ kallas rate i R.

Beräkning	R kommando	Kommentar
f(0.5)	dexp(x = 0.5, rate = 3)	f(x) vid $x=2$
$P(X \le 0.5)$	pexp(q = 0.5, rate = 3)	
Kvantil	qexp(p = 0.5, rate = 3)	Medianen
10 slumptal	rexp(n = 10, rate = 3)	

Se programkoden exponential.R på kurssidan.

Student-*t* **fördelning** (**standard**)

Varför Student-t är viktig för inferens

- Låt X_1, X_2, \dots, X_n var oberoende data from $N(\mu, \sigma^2)$.
- Stickprovmedelvärdet

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Inferens: intresserad av fördelningen för det standardiserad medelvärdet

$$\frac{\bar{X} - \mu}{SD(\bar{X})}$$

- Om variansen i populationen σ² är känd så är det standardiserade medelvärdet normalfördelat.
- Om variansen i populationen σ^2 **är okänd**, och måste skattas med s^2 , så är det **standardiserade medelvärdet student-t fördelad** med $\nu = n 1$ frihetsgrader.

Aktieavkastning

- Finansiella data har ofta extremvärden. Tunga svansar.
- Maximum likelihood: $\mu = 0.094$, $\phi = 1.279$ och $\nu = 2.706$.

Allmän Student-t fördelning för datamodellering

Population och stickprov - ändliga populationer

Modeller som en förenkling av verkligheten

Sannolikhetsmodeller och inferens

Sannolikhetsmodeller möter verkligheten - prediktion

Modellering är en iterativ process

Slutmålet är ofta beslutsfattande i en osäker värld

