Нижегородский государственный университет имени Н.И. Лобачевского Радиофизический факультет. Кафедра Электродинамики.

Отчет по лабораторной работе №2 **Электромагнитное экранирование**

Выполнили студенты 440 группы Карусевич А.А., Шиков А.П.

Цель работы: Экспериментальное наблюдение явления экранирования переменного магнитного поля металлическими оболочками и выяснение роли основных физических факторов (свойств материала экрана, а именно - проводимости и магнитной проницаемости; толщины его стенок; частоты поля), определяющих степень проникновения поля через экран, а также теоретический расчет экранирующих свойств металлических оболочек на простой модели и сопоставление экспериментальных и теоретических данных.

1. Теоретическая часть

1.1. Введение

Под электромагнитным экранированием понимается изоляция некоторой области пространства от проникновения электромагнитных полей, существующих в соседних областях. В статических или переменных квазистационарных полях (которым соответствуют длины волн, много большие характерных размеров используемых приборов и устройств) такая изоляция осуществляется обычно с помощью замкнутых металлических оболочек - экранов.

Общей физической причиной ослабления поля внутри экрана является то обстоятельство, что наведенные в нем внешнем полем токи (или заряды) создают во внутренней области поле, противоположное внешнему. В результате суммарное поле в этой области, складывающееся из полей внешних и наведенных источников, уменьшается.

1.2. Расчет экранирующего действия металлических оболочек

В работе используются оболочки цилиндрической формы. Для получения качественных оценок ослабления поля в экранированной области и установления характера его зависимости от параметров можно ограничиться изучением более простых моделей, допускающих точное решение задачи в из-

вестных аналитических функциях. Поскольку высота и диаметр внутренней полости используемых в работе экранирующих цилиндров одинаковы и весьма малы по сравнению с длиной волны в свободном пространстве $lambda_0$, наиболее подходящей моделью следует считать сферический слой, который имеет тот же объем внутренней полости и внешний радиус $a \ll \lambda_0$. Последнее условие означает, что вне металла (как во внешней, так и в экранируемой областях) поле можно рассматривать как квазистатическое. Приведем основные результаты решения задачи об экранирующих свойствах сферического слоя по отношению к переменному магнитному полю.

Если замкнутая однородная сферическая оболочка помещена в квазистатическое внешнее поле с комплексным вектором напряженности $\vec{H}_0 e^{i\omega t}$, которое в ее отсутствие является однородным, то поле в ограничиваемой ею области $\vec{H}_1 e^{i\omega t}$ также однородно. Эффективность экранирования удобно характеризовать величиной отношения комплексных амплитуд этих полей:

$$\eta_m = \frac{H_0}{H_1} \tag{1}$$

Безразмерная величина $|\eta_m|$ показывает, в какое число раз ослабляется поле в экранированной области, и может быть названа **коэффициентом ослабления**. Она сильно зависит от соотношения между толщиной экрана d и толщиной скин-слоя $\delta = \frac{c}{\sqrt{2\pi\sigma\mu\omega}}$ (c - скорость света в вакууме, σ - проводимость, μ - магнитная проницаемость экрана). Рассмотрим два предельных случая:

В пределе $\delta \ll d \ll a$ (сильный скин-эффект)

$$\eta_m = \frac{1}{6} \left[(1-i)\frac{\mu\delta}{a} + 3 + (1+i)\frac{a}{\mu\delta} \right] \exp\left[(1+i)\frac{d}{\delta} \right]$$
 (2)

При $\mu=1$

$$\eta_m = \frac{1}{6}(1+i)\frac{a}{\delta} \exp\left[(1+i)\frac{d}{\delta}\right] \tag{3}$$

Область отсутствия скин-эффекта (в пределе $\delta \gg d \ll a$):

$$\eta_m = 1 + \frac{2}{3} \frac{d}{a} \frac{(\mu - 1)^2}{\mu} + i \frac{2}{3} \frac{ad}{\mu \delta^2}$$
 (4)

При
$$\mu = 1$$

$$\eta_m = 1 + i \frac{2ad}{3\delta^2} \tag{5}$$

Для приближенных оценок величины η_m (с точностью $\sim 10\%$) выражения (2)-(5) можно использовать и в промежуточном случае ($\delta \simeq d$), разграничивая области применимости формул (2), (3), с одной стороны, и (4), (5), с другой стороны, точкой $\delta = d$.

2. Экспериментальная часть

Лабораторная установка предусматривает проведение измерений коэффициентов ослабления для трех латунных и трех стальных экранов цилиндрической формы.

Схема измерения $|\eta_m|$ заключалась в следующем: переменное магнитное поле создается внутри соленоида, подключенного к выходу генератора. Внутренние размеры всех экранов одинаковы (высота и радиус основания h=R=5 см), а толщина стенок различна (d=0.2 см, 0.5 см, 1 см).

Сталь: $\sigma \simeq 0.7 \cdot 10^{17} \, c^{-1}, \mu \sim 10^2 \div 10^3$ при $H \sim 10$ эрстед.

Латунь: $\sigma \simeq 1.5 \cdot 10^{17} \, c^{-1}, \mu \cong 1$ при $H \sim 10$ эрстед.

Схема установки:

Рис. 1: Схема установки

Переменное магнитное поле создается внутри соленоида, подключенного к выходу звукового генератора. В качестве индикатора поля используется второй соленоид, с выхода которого переменное напряжение может подаваться на усилитель вольтметра. Надевая больший (генераторный) соленоид сначала на открытый (неэкранированный) индикатор, а затем на индикатор, закрываемый экраном, и измеряя, как изменяются при этом показания вольтметра, можно (при неизменности амплитуды тока в цепи внешнего соленоида) определить коэффициент ослабления. Поскольку внесение металлического экрана внутрь внешнего соленоида изменяет его коэффициент самоиндукции, а следовательно, и его импеданс, сила тока в цепи внешнего соленоида и создаваемое этим током магнитное поле $_0$ при наличии экрана и в его отсутствие могут быть различными. Это нужно учитывать. В используемой схеме предусмотрено измерение относительных изменений токов как во внутреннем, так и во внешнем соленоидах. С этой целью в цепь внешнего соленоида введено сопротивление R, напряжение с которого подается на вертикальный усилитель осциллографа. Тогда:

$$|\eta_m| = \frac{V_0 U_e}{V_e U_0},\tag{6}$$

где V и U - соответственно показания вольтметра и осциллографа, индексы о и е относятся соответственно к величинам, измеренным без экрана и с экраном.

3. Экспериментальные результаты

3.1. Измерение $|\eta_m|$ латунных и стальных экранов

При измерении каждого экрана производилась подстройка напряжения на генераторном соленоиде, чтобы оно было одно и тоже при отсутствии экрана и его внесении, чтобы можно было применять формулу (6).

Таблица 1: Измерение экранирования латунными экранами

	Без экрана		Латунь 2			Латунь 5			Латунь 10		
f, Гц	V_0	U_0	V_e	U_e	$ \eta_m $	V_e	U_e	$ \eta_m $	V_e	U_e	$ \eta_m $
20	1 000	16.70	930	16.30	1.05	910.0	16.30	1.07	870.00	16.30	1.12
50	1000	5.59	870	5.59	1.15	820.0	5.59	1.22	620.00	5.19	1.50
100	1000	4.40	770	4.40	1.30	650.0	4.40	1.54	490.00	4.40	2.04
200	1000	1.90	680	2.09	1.62	540.0	2.24	2.18	380.00	2.40	3.32
500	1000	1.14	500	1.30	2.28	300.0	1.46	4.27	180.00	1.60	7.80
1000	1000	0.73	390	0.92	3.23	170.0	1.00	8.06	90.00	1.27	19.33
2000	1000	0.65	240	0.92	5.90	80.0	1.00	19.23	34.00	1.30	58.82
5000	1000	0.58	100	0.78	13.45	28.0	0.88	54.18	3.80	1.28	580.73
10000	700	0.31	39	0.32	18.53	5.2	0.33	143.30	0.45	0.62	3111.07

У стальных экранов некоторые измерения не были произведены полностью, ввиду сильного падения V_e и появления шумов, искажающих результаты (шум больше точности измерения).

Таблица 2: Измерение экранирования стальными экранами

	Без экрана		Сталь 2			Сталь 5			Сталь 10		
f, Гц	V_0	U_0	V_e	U_e	$ \eta_m $	V_e	U_e	$ \eta_m $	V_e	U_e	$ \eta_m $
20	1 000	16.70	52.00	16.00	18	20.000	15.60	47	18.000	15.10	50
50	1 000	5.59	68.00	4.50	12	9.000	4.20	83	1.500	4.00	477
100	1 000	4.40	54.00	3.20	13	7.500	2.79	85	0.350	1.60	1039
200	1 000	1.90	40.00	1.05	14	2.200	0.97	232	0.040	0.83	10921
500	1 000	1.14	22.00	0.68	27	0.250	0.60	2105	0.010	0.58	50877
1000	1 000	0.73	9.00	0.52	79	0.035	0.50	19568	0.005	0.48	131506
2000	1 000	0.65	3.20	0.54	260	0.030	0.48	24614	_	_	_
5000	1 000	0.58	0.18	0.54	5172	_	_	_	_	_	_
10000	700	0.31	0.07	0.38	12258	-	_	_	-	_	_

Для полученных результатов по всем частотам и всем экранам рассчитан $|\eta_m|$ и построены графики в логарифмическом масштабе по обеим осям.

На рисунке 2 (см. стр. 7) приведены шесть графиков для каждого экрана.

Рис. 2: Результаты эксперимента для трех латунных и трех стальных экранов

3.2. Совмещение теории и эксперимента для латунных экранов

Рис. 3: Разграничение применимости формул толщиной скин-слоя $\delta(f)$

Рис. 4: Наложение теоретических графиков (пунктиром) на экспериментальные для латунных экранов

Принимая в качестве модели цилиндрического экрана сферический слой той же толщины d и с тем же объемом внутренней полости $V=(4\pi/3)(a-d)^3=\pi R^2 h$ (отсюда, ввиду $a\gg d$, имеем $a\cong (3R^2h/4)^{1/3}$), построили для исследуемых экранов графики теоретической зависимости $|\eta_m(f)|$.

Для разграничения области применения формул различных приближений по δ/d , построен график $\delta(f)$ для латуни и на нем построены константы d=0.2,0.5,1.0 см.

Хорошее качественное совпадение наблюдается в области частот до 6 к Γ ц. Для более высоких частот теоретические кривые нарастают быстрее с ростом частоты.

3.3. Оценка μ для стальных экранов по результатам измерений

Для стальных экранов почти всюду выполняется $\delta \ll d$, поэтому оценка производится из формулы

$$\eta_m = \frac{1}{6} \left[(1-i)\frac{\mu\delta}{a} + 3 + (1+i)\frac{a}{\mu\delta} \right] \exp\left[(1+i)\frac{d}{\delta} \right]$$
 (7)

Взяв модуль от этого выражения, получим:

$$|\eta_m| = \frac{\exp\left[\frac{d}{\delta}\right]}{6} \sqrt{\left(\frac{\mu\delta}{a} + 3 + \frac{a}{\mu\delta}\right)^2 + \left(\frac{a}{\mu\delta} - \frac{\mu\delta}{a}\right)^2}$$
(8)

Здесь можно получить итерационное уравнение для μ двумя способами: через логарифмирование и приведение к общему знаменателю. Для начала приведем формулу к общему знаменателю:

$$|\eta_m| = \frac{\exp\left[\frac{d}{\delta}\right]}{6\mu\delta a} \sqrt{((\mu\delta)^2 + 3a\mu\delta + a^2)^2 + (a^2 - (\mu\delta)^2)^2}$$
 (9)

$$\mu = \frac{\exp\left[\frac{d}{\delta}\right]}{6|\eta_m|\delta a} \sqrt{\left((\mu\delta)^2 + 3a\mu\delta + a^2\right)^2 + \left(a^2 - (\mu\delta)^2\right)^2}$$
(10)

Эту формулу можно представить (зафиксировав ω и взяв из эксперимента $|\eta_m(\omega)|)$ в виде

$$\mu = F(\mu) \tag{11}$$

Это уравнение в виде, пригодном для применения известного метода простых итераций, который заключается в задании начального приближения $\mu^{(0)}$ и итерационного процесса:

$$\mu^{(1)} = F(\mu^{(0)}), \quad \mu^{(2)} = F(\mu^{(1)}), \quad \mu^{(3)} = F(\mu^{(2)}), \quad \dots$$
 (12)

Начальное приближение можно выбрать из диапазона $\mu = 10^2 \div 10^3$.

Хотя функция, стоящая справа, на самом деле не удовлетворяет условиям устойчивости (сходимости) численного решения, но все равно можно найти

этим методом решение, перебирая начальные значения μ до того значения, когда точка меняет направление расходимости.

Для 2 мм — стали полученное таким методом значение на частоте 500 Γ ц дает $\mu=153$. На графике (см. рис 5, стр.12) хорошо видно, что действительно это значение дает численное решение этого уравнения, и теоретический график проходит через практическую точку.

Для 5 мм – стали (на частоте 500 Гц) $\mu=140$, для 10 мм – стали (на частоте 200 Гц) $\mu=130$.

Экспериментальные точки подбирались таким образом, чтобы рассчитанная из них μ давала теоретические графики, наиболее хорошим образом описывающие экспериментальные кривые, хотя бы в диапазоне не очень больших частот.

Расхождение теоретического графика (который уходит в значительно большие по сравнению с практическими $|\eta_m|$) и практического, который перестает расти, можно объяснить частотным насыщением магнитной проницаемости стали: доменная структура не успевает изменяться вслед за частотой поля, и μ начинает падать с ростом частоты.

Рис. 5: Сопоставление теоретических графиков и практических для стальных экранов

4. Результаты

В работе было исследовано явление экранирования переменного магнитного поля стальными и латунными экранами.

Произведен расчет и сопоставление экранирующих свойств латунных экранов с экспериментальными с помощью модели сферического слоя. Выявлено хорошее совпадение теории с практикой до f=6 к Γ ц.

Численными методами найдены μ для стальных экранов, дающие наиболее адекватное соответствие теоретических графиков практическим: $\mu=153,140,130$ для 2,5,10 мм экранов. В этом случае теория дает качественное соответствие вплоть на частотах $f\simeq 1$ к Γ ц.

Список литературы

[1] Гильденбург В.Б., Павличенко И.А. Практикум: электромагнитное экранирование. — Н. Новгород: ННГУ, 2016. — 20 с.