Homework 9 Solutions

(You must justify ALL your claims unless otherwise stated)

Problem 1

- (a) Prove that 5n + 3 and 3n + 2 are relatively prime for all $n \in \mathbb{N}$.
- (b) Prove that if a and b are relatively prime integers then gcd(a+b, a-b) = 1 or 2.

Suggested solutions:

- (a) $\gcd(5n+3,3n+2) = \gcd(2n+1,3n+2) = \gcd(2n+1,n+1) = \gcd(n,n+1) = \gcd(n,1) = 1$.
- (b) $\gcd(a+b,a-b) = \gcd(2b,a-b)$. If a-b is odd, then $\gcd(2b,a-b) = \gcd(b,a-b) = \gcd(b,a-b) = \gcd(b,a-b) = 2\gcd(b,a-b) = 2\gcd(b,a-b) = 2\gcd(b,a-b) = 2$.

Alternative solution:

Let $d = \gcd(a+b, a-b)$. Then $d \mid a+b$ and $d \mid a-b$. Adding and subtracting gives $d \mid 2a$ and $d \mid 2b$. We can conclude that d is a common divisor of 2a and 2b. By the definition of $\gcd(2a, 2b)$, we have $d \mid \gcd(2a, 2b)$. Since $\gcd(a, b) = 1$, we have $\gcd(2a, 2b) = 2$. Thus $d \mid 2$. d can only be 1, 2.

Problem 2

Prove the following:

- (a) For all positive integers $a, b, c, \gcd(a, bc) | \gcd(a, b) \cdot \gcd(a, c)$
- (b) For all positive integers a, b, c, if gcd(a, b) and gcd(a, c) are relatively prime then $gcd(a, bc) = gcd(a, b) \cdot gcd(a, c)$.

Suggested solutions:

(a) Write $\gcd(a,b) = ax + by$ for some $x,y \in \mathbb{Z}$ and $\gcd(a,c) = ak + cl$ for some $k,l \in \mathbb{Z}$. We need to show that $\gcd(a,bc)|\gcd(a,b)\cdot\gcd(a,c)$. By Bezout's Lemma on a and bc, it suffices to show that $\gcd(a,b)\cdot\gcd(a,c)$ can be written as as + (bc)t for some $s,t \in \mathbb{Z}$. Multiplying the first two equations:

$$\gcd(a,b) \cdot \gcd(a,c) = (ax + by)(ak + cl)$$
$$= a(axk + byk + xcl) + (bc)(yl)$$

So we can take s = axk + byk + xcl and t = yl.

(b) By part (a), it suffices to show that gcd(a, b) gcd(a, c) | gcd(a, bc). Since gcd(a, b) | b and gcd(a, c) | c, we have gcd(a, b) gcd(a, c) | bc. It remains to show that gcd(a, b) gcd(a, c) a, which implies gcd(a, b) gcd(a, c) is a common divisor of a and bc. By the definition of gcd(a, bc), we have gcd(a, b) gcd(a, c) | gcd(a, bc).

Since $\gcd(a, b)$ and $\gcd(a, c)$ are relatively prime, there are $s, t \in \mathbb{Z}$ such that $s \gcd(a, b) + t \gcd(a, c) = 1$. Also, $\gcd(a, b) \mid a$ so there is $u \in \mathbb{Z}$ such that $a = u \gcd(a, b)$; $\gcd(a, c) \mid a$ so there is $v \in \mathbb{Z}$ such that $a = v \gcd(a, c)$. Then

$$s \gcd(a, b) + t \gcd(a, c) = 1$$
$$s \gcd(a, b)a + t \gcd(a, c)a = a$$
$$s \gcd(a, b)v \gcd(a, c) + t \gcd(a, c)u \gcd(a, b) = a$$
$$\gcd(a, b) \gcd(a, c)(sv + tu) = a$$

as desired.

Alternative solution:

Notice that both $\gcd(a,b)$ and $\gcd(a,c)$ divide $\gcd(a,bc)$ (from the definition of \gcd). Part (a) tells us that $\gcd(a,bc)/\gcd(a,b)$ divides $\gcd(a,c)$. It suffices to show that $\gcd(a,c)\mid\gcd(a,bc)/\gcd(a,b)$. Write $m=\gcd(a,b)$. Since $\gcd(a,c)\mid\gcd(a,bc)$, we have $\gcd(a,c)\mid m(\gcd(a,bc)/m)$. By Theorem 6.1.32 (see the reading from April 7), we have $\gcd(a,c)\mid(\gcd(a,bc)/m)$. In other words, $\gcd(a,c)m\mid\gcd(a,bc)$ as desired.

Problem 3

Let $a, b \in \mathbb{Z}$ with $b \neq 0$ and suppose that a has remainder 1 when divided by b. Prove that a^n has remainder 1 when divided by b for all $n \in \mathbb{N}$.

Suggested solution:

By assumption, there is $k \in \mathbb{Z}$ such that a = kb + 1.

We prove the statement by induction. When n = 0, $a^0 = 1 = 0 \cdot b + 1$ so it has remainder 1 when divided by b.

Assume a^n has remainder 1 when divided by b for some $n \in \mathbb{N}$. Namely, there is $q \in \mathbb{Z}$ such that $a^n = qb + 1$.

Inductive step: $a^{n+1} = a \cdot a^n = a(q \cdot b + 1) = aqb + a = aqb + (kb + 1) = (aq + k)b + 1$. Therefore a^{n+1} also has remainder 1 when divided by b.

Problem 4

Determine which of the following equations have integer solutions $(x,y) \in \mathbb{Z}^2$:

- 1. 465x + 4920y = 1
- 2. 54585x 4920y = 75
- 3. 496185x + 54585y = -10745

Suggested solutions:

- (a) Applying the Euclidean Algorithm: $(4920, 465) \Rightarrow (465, 270) \Rightarrow (270, 195) \Rightarrow (195, 75) \Rightarrow (75, 45) \Rightarrow (45, 30) \Rightarrow (30, 15) \Rightarrow (15, 0)$. Therefore $\gcd(465, 4920) = 15 \nmid 1$. The equation does not have integer solutions.
- (b) Applying the Euclidean Algorithm: $(54585, 4920) \Rightarrow (4920, 465)$. By (a) $gcd(54585, 4920) = 15 \mid 75$. The equation has integer solutions.
- (c) Applying the Euclidean Algorithm: $(496185, 54585) \Rightarrow (54585, 4920)$. By (b) $gcd(496185, 54585) = 15 \nmid -10745$. The equation does not have integer solutions.