Transformations

This lecture is being recorded

Last time...

- We saw how to manipulate vectors and matrices
- Today: we will look at representations of rigid-body transformations based on matrices and vectors
- An understanding of 2D and 3D rigid-body transformations is key to motion planning (and robotics in general)

- There are many representations, none is the "best"
 - Each representation is useful in a different way

Outline

- Homogenous Transforms
- Euler angles

Outline

- Homogenous Transforms
- Euler angles

Homogenous Transforms Outline

- Notational Conventions
- Definitions
- Homogeneous Transforms
- Semantics and Interpretations
- Summary

Objects and Embedded Coordinate Frames

- Objects of interest are real: wheels, sensors, obstacles.
- X Y
- Abstract them by sets of axes fixed to the body.
- These axes:
 - Have a state of motion
 - Can be used to express vectors.
- Call them coordinate frames.

Coordinate Frames

<u>Points</u> possess position but not orientation:

Particle (orientation undefined)

Rigid Bodies possess position and orientation:

 Ball (can rotate)

Relations

- Mechanics is about relations between objects.
- a is "r-related" to b is written:
- Example velocity (v)
 of robot (r) relative to
 earth (e):
- Relationship is directional and asymmetric.

Properties

- "r' is not a property of a.
 - "the" velocity of an object is not defined.

 $\mathsf{r}^\mathsf{b}_\mathsf{a}$

- It's a property of a relative to b.
- a and b are real objects.
- a can be a point but b <u>must be</u> a rigid body.

Sub/Super Scripts – Physics Vectors

- <u>sub</u>scripts denote the frame/ object possessing the vector quantity:
- <u>superscripts</u> denote the frame/object with respect to which the quantity is measured (i.e. the datum):

$$\vec{v}_{ball}^{world} = \vec{v}_{ball}^{train} + \vec{v}_{train}^{world}$$

Notational Conventions

Vectors:

$$\mathbf{p} = \begin{bmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} \end{bmatrix}^{\mathrm{T}}$$

- Also <u>sometimes</u> as <u>p</u> or as p to emphasize it is a vector.
- Matrices:

$$T = \begin{bmatrix} t_{xx} & t_{xy} & t_{xz} \\ t_{yx} & t_{yy} & t_{yz} \\ t_{zx} & t_{zy} & t_{zz} \end{bmatrix}$$

Converting Coordinates

$$p^b = T_a^b p^a$$

We will see later that a notation satisfies our conventions where it means the 'T' property of 'object' a w.r.t 'object' b.

Homogenous Transforms Outline

- Notational Conventions
- Definitions
- Homogeneous Transforms
- Semantics and Interpretations
- Summary

Affine Transformation

Most general linear transformation

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

- r's and t's are the transform constants
- Can be used to effect translation, rotation, scale, reflections, and shear.
- Preserves linearity but not distance (hence, not areas or angles).

Homogeneous Transformation

• Set t1 = t2 = 0: $\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + 0$

- r's are the transform constants
- Can be used to effect rotation, scale, reflections, and shear (<u>not translation</u>).
- Preserves linearity but not distance (hence, not areas or angles).

Orthogonal Transformation

Looks the same ... but:

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \begin{bmatrix} r_{11}r_{12} + r_{21}r_{22} = 0 \\ r_{11}r_{11} + r_{21}r_{21} = 1 \\ r_{12}r_{12} + r_{22}r_{22} = 1 \end{bmatrix}$$

- Can be used to effect rotation, reflections.
- Preserves linearity <u>AND distance</u> (hence, areas and angles).

Rotation Matrix

Looks the same ... but:

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \begin{bmatrix} r_{11}r_{12} + r_{21}r_{22} = 0 \\ r_{11}r_{11} + r_{21}r_{21} = 1 \\ r_{12}r_{12} + r_{22}r_{22} = 1 \end{bmatrix}$$

$$R \qquad \qquad \text{Determinant}(\mathbf{R}) = 1$$

- Can be used to effect rotation.
- Preserves linearity <u>AND distance</u> (hence, areas and angles).

Definitions

- Heading = angle of path tangent.
- Yaw = rotation about vertical axis
- Pitch = rotation about level sideways axis
- Roll = rotation about "forward" axis.
- Attitude = pitch & roll
- Azimuth = yaw (for a pointing device)
- Elevation = pitch (for a pointing device)

Definitions

- Orientation = attitude & yaw.
- Pose = position & orientation

2D:
$$\begin{bmatrix} x & y & \psi \end{bmatrix}^T$$
 3D: $\begin{bmatrix} x & y & z & \theta & \phi & \psi \end{bmatrix}^T$

• Posture = Pose plus some configuration $\begin{bmatrix} x & y & z & \theta & \phi & \psi & q \end{bmatrix}^T$

 Motion = movement of the whole body through space.

Homogenous Transforms Outline

- Notational Conventions
- Definitions
- Homogeneous Transforms
- Semantics and Interpretations
- Summary

Homogeneous Coordinates

 Coordinates which are <u>unique up to a scale</u> factor. i.e

$$\underline{x} = 6\underline{x} = -12\underline{x} = 3.14\underline{x} =$$
same thing

 The numbers in the vectors are not the same but we interpret them to mean the same thing (in fact. the thing whose scale factor is 1).

Pure Directions

- Its also possible to represent pure directions
 - Pure in the sense they "are everywhere" (i.e. have no position and cannot be moved).
- We use a scale factor of zero to get a pure direction:

$$d_{1} = \begin{bmatrix} x_{1} \\ y_{1} \\ z_{1} \end{bmatrix}$$

It will shortly be clear why this works.

Why Bother?

 Points in 3D can be rotated, reflected, scaled, and sheared with 3 X 3 matrices....

• But not translated.
$$p_2 = p_1 + p_k = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} + \begin{bmatrix} x_k \\ y_k \\ z_k \end{bmatrix} \neq T \operatorname{rans}(p_k) p_1$$

Trick: Move to 4D

$$p_{2} = p_{1} + p_{k} = \begin{bmatrix} x_{1} \\ y_{1} \\ z_{1} \\ 1 \end{bmatrix} + \begin{bmatrix} x_{k} \\ y_{k} \\ z_{k} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & x_{k} \\ 0 & 1 & 0 & y_{k} \\ 0 & 0 & 1 & z_{k} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ y_{1} \\ z_{1} \\ 1 \end{bmatrix} = Trans(p_{k})p_{1}$$

$$x_2 = 1 \times x_1 + x_k$$

$$y_2 = 1 \times y_1 + y_k$$

$$z_2 = 1 \times z_1 + z_k$$

 The scale factor in the <u>vector</u> is used to add a scaled amount of the 4th <u>matrix</u> column.

Format of Homogeneous Transforms (HTs)

Inverse of a HT

 Of course standard matrix inverse also works, but this is faster

Homogenous Transforms Outline

- Notational Conventions
- Definitions
- Homogeneous Transforms
- Semantics and Interpretations
- Summary

- Mapping:
 - Point1 -> Point2 (both expressed in same coordinates)

$$s\theta = sin(\theta)$$

$$c\theta = cos(\theta)$$

$$R o t x_{(\theta)} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c & \theta & -s & \theta & 0 \\ 0 & s & \theta & c & \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$s\theta = sin(\theta)$$

$$c\theta = cos(\theta)$$

$$Roty_{(\phi)} = \begin{bmatrix} c_{\phi} & 0 & s_{\phi} & 0 \\ 0 & 1 & 0 & 0 \\ -s_{\phi} & 0 & c_{\phi} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$s\theta = sin(\theta)$$

$$c\theta = cos(\theta)$$

$$R otz_{(\psi)} = \begin{bmatrix} c_{\psi} & -s_{\psi} & 0 & 0 \\ s_{\psi} & c_{\psi} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example: Operating on a Point

 A point at the origin is translated along the y axis by 'v' units and then the resulting point is rotated by 90 degrees around the x axis.

Example: Operating on a Direction

 The y axis unit vector is translated along the y axis by v units and then rotated by 90 degrees around the x axis.

y • Having a zero scale factor
 j = [0 1 0 0]^T disables translation.

HTs as Coordinate Frames

 The columns of the identity HT can be considered to represent 3 directions and a point – the coordinate frame itself.

Example: Operating on a Frame

 Each resulting column of this result is the transformation of the corresponding column in the original identity matrix

Huh?

- Columns of an input matrix are treated independently in multiplication.
- Every orthonormal matrix can be viewed as one set of axes located with respect to another set.
 - The "locations" can be read right from the matrix – they're just the columns.
- We can use this idea to track the position and orientation of rigid bodies....
 - Imagine <u>embedding frames</u> inside them somewhere and track their motions.

Converting Coordinates

 Converting coordinates is about expressing the <u>same physical point</u> with respect to a new origin and set of unit vectors.

• Given T_b^a and p^a , how to compute p^b ?

Similarity Transforms

• Suppose you have a transform A^0 defined relative to frame 0, and you want to know what it is in frame 1. Assume you know T_1^0 .

$$B = (T_1^0)^{-1} A^0 T_1^0$$

B is transform A⁰ represented in frame 1

Sequencing Transforms

- Any sequence of transforms can be represented by a single transform (Euler's rotation theorem)
- How you sequence transforms depends on if you are transforming w.r.t. the fixed or the current axes
- Transforming w.r.t. *current* axes: multiply *on the right* $T_n^0 = T_1^0 T_2^1 \dots T_n^{n-1}$
- Transforming w.r.t. *fixed* axes of frame 0: multiply *on the left* $T_2^0=T_1^0[(T_1^0)^{-1}A^0T_1^0]=A^0T_1^0$

Similarity transform

Homogenous Transforms Outline

- Notational Conventions
- Definitions
- Homogeneous Transforms
- Semantics and Interpretations
- Summary

Summary

 Everything is relative. There is no way to distinguish moving a point "forward" from moving the coordinate system "backward".

• In both cases, the resulting (blue) point has the same relationship to the blue frame.

Summary

- Homogeneous Transforms are:
 - Operators
 - Frames
- They can be both the things that operate on other things and the things operated upon.

Break

Euler Angles

Can define rotation relative to the axes of a frame

$$R_z(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$R_y(\beta) = \begin{pmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{pmatrix}$$

$$R_x(\gamma) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \gamma & -\sin \gamma \\ 0 & \sin \gamma & \cos \gamma \end{pmatrix}$$

Rotating about more than one axis

- Great for rotating about a single axis
- What if we want to rotate about multiple axes?
 - Need to adopt a convention: for example roll-pitch-yaw

```
R(\alpha, \beta, \gamma) = R_z(\alpha) R_y(\beta) R_x(\gamma) =
\begin{pmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta \sin \gamma - \sin \alpha \cos \gamma & \cos \alpha \sin \beta \cos \gamma + \sin \alpha \sin \gamma \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta \sin \gamma + \cos \alpha \cos \gamma & \sin \alpha \sin \beta \cos \gamma - \cos \alpha \sin \gamma \\ -\sin \beta & \cos \beta \sin \gamma & \cos \beta \cos \gamma \end{pmatrix}
```

There are 12 variants of ordering and axis selection for Euler angles

Problems with Euler Angles

- Single axis: no problem!
- Two or more axes
 - Results can be counter-intuitive
 - "Small" rotations are better than "large" ones
- Singularities
 - Many Euler Angles map to one rotation (Gimbal Lock)
 - Where singularities are depends on the convention
 - Small rotations near singularities can have big effects

Singularity Example

Let's say this is our convention:

$$R = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \beta & -\sin \beta \\ 0 & \sin \beta & \cos \beta \end{bmatrix} \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Let's set $\beta = 0$

$$R = \begin{bmatrix} \cos\alpha & -\sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\gamma & -\sin\gamma & 0 \\ \sin\gamma & \cos\gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Multiplying through, we get:

$$R = \begin{bmatrix} \cos\alpha\cos\gamma - \sin\alpha\sin\gamma & -\cos\alpha\sin\gamma - \sin\alpha\cos\gamma & 0\\ \sin\alpha\cos\gamma + \cos\alpha\sin\gamma & -\sin\alpha\sin\gamma + \cos\alpha\cos\gamma & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Simplify:

$$R = \begin{bmatrix} \cos(\alpha + \gamma) & -\sin(\alpha + \gamma) & 0\\ \sin(\alpha + \gamma) & \cos(\alpha + \gamma) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

 α and γ do the same thing! We have lost a degree of freedom!

What to use?

- Euler angles are simplest but have singularity problems
 - Besides you usually convert to rotation matrices to actually use them
- My recommendation: Use Homogenous Transforms whenever possible
 - Easy to compose and manipulate (just linear algebra)
 - Rotation and translation in one consistent package
 - Not super-simple, but can "read" the coordinate axes by looking at columns
- Many software frameworks provide methods to convert between these representations (ROS, openrave)
- LaValle Chapter 3 also discusses quaternions 四元法
 - We won't cover this but it's a very useful representation!

Reading and Homework

- Homework 1 is out
- Read chapter 13.1 from Boyd Linear Algebra Book
- Reading from optimization book
 - Introduction (Ch. 1)
 - Convex sets (Ch. 2.1-2.3, 2.5)
 - Convex functions (Ch. 3.1-3.2.5)