published on May 21, 1999

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平11-135120

(43)公開日 平成11年(1999)5月21日

(51) Int.Cl. ⁶ H O 1 M	4/58	饑別記号	FI HO1M	4/58		
HUIM				4/02		D
	4/02			•	`	
	4/04			4/04 A		
	10/40		1)/40 Z		Z
			来競查審	未請求	請求項の数7	OL (全 5 頁)
(21)出願番号	 }	特願平9-293896	(71) 出願人	00000918		
	-			花王株式	会社	
(22)出顧日		平成9年(1997)10月27日		東京都中	中央区日本橋茅	温町1丁目14番10号
(==) Mark		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(72)発明者	赤木	6 —	
			(1.5/)2/11			4番地 花王株式会
				社研究所		7 H 70 10-1171-717
			(72)発明者			
			「の発明者		<u>-</u>	1454 #T#+A
						34番地 花王株式会
				社研究所		
			(72)発明者			
				和歌山川	具和歌山市湊133	4番地 花王株式会
				社研究的	所内	
			(74)代理人	弁理士	青山 葆(外2名)

(54) 【発明の名称】 非水系二次電池用負極材料

(57)【要約】

【課題】 高電圧、高容量および良好な充放電サイクル 特性をもつ新規な非水電解質二次電池用負極材料とその 製造方法。

【解決手段】 負極活物質としてリチウムイオンを挿入・放出する周期律表 I I I B、 I V B、 V B 族から選ばれた 1 種又は 2 種以上の単体又はその化合物を導電性炭素で被覆した複合粒子、正極活物質として遷移金属を構成元素として含む金属酸化物、電解質として有機溶媒にリチウム化合物を固溶或いはリチウム化合物を溶解させた,又は高分子にリチウム化合物を固溶或いはリチウム化合物を溶解させた有機溶媒を保持させたリチウムイオン導電性の非水電解質を用いる。上記の正極、負極及び電解質を同時に組み合わせて用いることにより、高電圧、高容量および良好な充放電サイクル特性をもつ非水系二次電池が得られる。

【特許請求の範囲】

【請求項1】 正極と負極とを有する非水系二次電池において、少なくとも負極活物質がリチウムイオンを挿入・放出する1種又は2種以上の周期律表IIIB、IVB、VB族から選ばれた元素(Siを除く)の単体又はその化合物と、炭素質材料とからなる複合粒子であることを特徴とする非水系二次電池用負極材料。

1

【請求項2】 上記周期律表 I I I B族元素としてB、A I、G a、 I n及びT I からなる群、I V B族元素としてG e、S n及びP b からなる群、V B族元素として 10 A s、S b 及びB i からなる群から選ばれた 1 種又は2種以上の元素の単体又はその化合物を用いることを特徴とする請求項 1 記載の非水系二次電池用負極材料。

【請求項3】 上記元素の単体又はその化合物を複合粒子中に20~95重量%含むことを特徴とする請求項1記載の非水系二次電池用負極材料

【請求項4】 上記複合粒子がさらに導電性を付与する 導電性金属を含むことを特徴とする請求項1~3のいず れか一つに記載の非水系二次電池用負極材料。

【請求項5】 周期律表 I I I B、 I V B、V B 族から 20 選ばれた 1 種又は 2 種以上の元素 (Siを除く)の単体 又はその化合物粉末と熱処理により炭化可能な樹脂材料 との分散混合物としてなる複合材料を、非酸化雰囲気下 400~1200℃で熱処理し、機械的に微粉砕するととにより上記元素の単体又はその化合物と炭素質材料とからなる複合粒子を得ることを特徴とする非水系二次電池用負極材料の製造方法。

【請求項6】 上記複合材料において、熱処理により炭化可能な樹脂材料と分散混合する元素の単体又はその化合物粉末として、平均粒子径が1~30μmの粉末を用 30いることを特徴とする請求項4記載の非水系二次電池用負極材料の製造方法。

【請求項7】 少なくとも周期律表IIIB、IVB、VB族から選ばれた1種又は2種以上の元素(Siを除く)の単体又はその化合物と炭素質材料とからなる複合粒子を負極活物質とし、遷移金属を構成元素として含む金属酸化物を正極活物質とし、有機溶媒にリチウム化合物を溶解させた、又は高分子にリチウム化合物を固溶或いはリチウム化合物を溶解させた有機溶媒を保持させたリチウムイオン導電性の非水電解質を電解質として用い 40 ることを特徴とする非水系二次電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、非水系二次電池に 関するものであり、さらに詳しくは非水系用二次電池用 負極材料に関する。

[0002]

【従来の技術】3 V級の電圧をもつ非水系二次電池においては、負極活物質として、金属リチウム、正極活物質としてCo, Mn. Ni に代表される遷移金属の酸化物 50

を用いる方法が代表的である。しかし、負極に金属リチウムを用いると、充放電中に金属リチウムが樹枝状の形態(デンドライト)で成長するため内部でショートしたり、またデンドライトの活性が高く発火の危険性があるなどの問題がある。そのため、金属リチウムに代わる活物質としてリチウムイオンを挿入・放出することのできる焼成炭素質材料が負極として実用化されている。しかしながら、炭素材料は体積当たりの充放電容量が低いという欠点を持っている。

[0003]体積当り高い充放電容量が期待できる負極 活物質として、1) TiS,, LiTiS, (米国特許第 3983476号) などの遷移金属カルコゲン化合物、 2) ルチル構造の遷移金属酸化物、例えば、WO2(米 国特許第4198476号)、3)LixFe(F e,) O,などのスピネル化合物 (特開昭58-2203 62号)、4) 電気化学的に合成されたFe₂O₃のリチ ウム化合物 (米国特許第446447号)、Feュ〇, のリチウム化合物(特開平3-112070号)、Nb ,O, (特開昭62-59412号、特開平2-8244 7号)、酸化鉄、FeO, Fe,O,, Fe,O,, 酸化コ バルト、CoO, Co,O,, Co,O, (特開平3-29 1862号)などの遷移金属酸化物が知られている。-方、5) リチウムと合金を形成することが知られている Sn. Cd (Proceedings of the Electrochemical Society, 8 7-1, 1987) Al (Solid State I onics, 20, 1986), Si. Pb. Bi, S b (Proceedings of the Elec trochemical Society, 87-1, 1987)及びこれらのリチウムとの合金(例えば特開 平7-29602号) が提案されている。

[0004]

【発明が解決しようとする課題】しかしながら、上記の Sn, Cd, Al, Si, Pb, Bi, Sb及びこれら のリチウムとの合金は、特に高電流密度(例えば、1m A/cm¹以上) において容量が低くかつ充放電時のサ イクル寿命が短いという問題がある。また上記1)~ 5) の負極活物質の電極電位は金属リチウムの電極電位 に対して費であり、そのためこれら負債活物質を負極と して正極と組み合わせ電池を構成すると、その電池の作 動電圧は負極活物質に金属リチウムを用いた場合に比べ 低くなるという問題がある。そこで本発明の目的は、 1) 可逆的なリチウムイオンの挿入・放出が可能で高容 量を与える負極活物質と2)上記負極活物質の製造方法 を提供し、さらに3)高電流密度での充放電において も、3~4 Vの高電圧、高容量、良好な充放電特性およ びサイクル寿命をもつ非水系二次電池を提供することで ある。

[0005]

【課題を解決するための手段】上記の第1の目的を達成

するため、本発明の負極活物質は、少なくともリチウム イオンを挿入・放出する1種又は2種以上の周期律表 I IIB、IVB、VB族から選ばれた元素(Siを除 く) の単体又はその化合物と炭素質材料とからなる複合 粒子であることを特徴とする。ここで上記複合粒子と は、上記元素の単体又はその化合物を炭素質材料で被覆 したものである。また上記複合粒子がさらに導電性金属 を含むことを特徴とする。第2の目的は、上記元素の単 体又はその化合物と、熱処理により炭化可能な樹脂材料 との分散混合物としてなる複合材料を非酸化雰囲気下4 00~1200℃で熱処理し、機械的に微粉砕すること により炭素質材料で被覆した複合粒子を製造する方法に より達成される。さらに第3の目的は、本発明の複合粒 子を負極活物質とし、遷移金属を構成元素として含む金 属酸化物を正極活物質とし、有機溶媒にリチウム化合物 を溶解させた、又は高分子にリチウム化合物を固溶或い はリチウム化合物を溶解させた有機溶媒を保持させたリ チウムイオン導電性の非水電解質を電解質として電池を 構成することにより達成される。導電性炭素との複合化 により負極活物質の導電性が向上し、さらにリチウムイ 20 オンの挿入・放出が円滑に進行し、活物質利用率の向上 や電池の内部抵抗の減少等の効果がもたらされ、高電 圧、高容量かつサイクル特性に優れた非水電解質二次電 池を得ることができる。

[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。 本発明では、周期律表IIIB族のB、Al、Ga、I n及びTiからなる群、IVB族のGe、Sn及びPb からなる群、VB族のAs、Sb及びBiからなる群か ら選ばれた1種又は2種以上の単体又はその化合物を用 30 いる。単体としては好ましくは、Bi、Al、Snであ る。化合物としては、リチウムイオンの挿入・放出が可 能であれば良く、InBi, Bi, In,, Bi In,, InSb. InAs. InP. InN. GaSb. Ga As, GaP, GaN, Tl, Sb, Sb, Tl, Bi, T1, A1Sb等の化合物半導体が挙げられる。 【0007】また、本発明に用いる導電性金属とは、C u, Au, Ag等貴金属やFe、Co, Ni等遷移金属 である。

【0008】また、本発明の樹脂材料としては、熱処理 により炭化し、かつ炭化したものが導電性を有する材料 であれば特に限定されるものではないが、具体例を挙げ れば、フェノール樹脂、エポキシ樹脂、不飽和ポリエス テル樹脂、フラン樹脂、尿素樹脂、メラミン樹脂、アル キド樹脂、キシレン樹脂等の熱硬化性樹脂をそのまま又 はブレンドもしくは変性したもの、ナフタレン、アセナ フタレン、フェナントレン、アントラセン、トリフェニ レン、ピレン、クリセン、ナフタセン、ピセン、ペリレ ン、ペンタフェン、ペンタエン等の縮合系多環炭化水素 化合物、その誘導体、あるいは、これらの混合物を主成 50 はこの種の電池に用いられるものであればいずれも使用

分とするピッチ等が挙げられる。

【0009】炭素質材料が主成分となると容量が小さく なり、また逆に少なすぎると十分な導電性が得られない ため、上記元素の単体又はその化合物の複合粒子におけ る含有量は20重量%以上が望ましく、さらに望ましく は40重量%以上、95重量%以下である。

【0010】本発明の負極活物質の製造方法としては、 下記の方法が挙げられるが、これに限定されるものでは ない。IIIB、IVB、VB族の元素(Siを除く) から選ばれた単体又はその化合物の粉末の1種又は2種 以上を、熱処理により炭化可能な樹脂材料に分散させ、 混合し、上記元素の単体又はその化合物の粉末と上記樹 脂材料との複合材料を調製する。上記元素の単体又はそ の化合物の粉末としては、平均粒子径が1~30 μmの 粉末を用いることが望ましい。上記複合材料を非酸化雰 囲気で、好ましくは窒素、アルゴンガス中で焼成する。 400℃未満では炭化が不十分であり、1200℃を招 えると充放電に関与しない添加した単体又はその化合物 の炭化物が生成するため、いずれも容量が低下する。そ のため焼成温度は400℃~1200℃が望ましい。ま た、熱処理時間は0. 1時間以上が望ましい。焼成後は 振動ミル等を用い、機械的に微粉砕する。このようにし て作製した複合粒子に結着剤を加えて混練し、ステンレ ス網に塗布し負極とする。

【0011】さらに導電性を付与する導電性金属として Cu、Au、Ag等の貴金属やFe、Co、Ni等の遷 移金属を含む複合粒子は、以下に述べるいずれかの方法 によって作製できる。すなわち、1)上記導電性金属の 粉末から選ばれた少なくとも1種を上記炭化可能な樹脂 材料に添加後焼成する、あるいは、2)上記元素の単体 又はその化合物と炭素質材料からなる複合粒子を結着剤 を加えて混練し、上記導電性金属の箔の上に塗布し、非 酸化雰囲気で所定の温度で熱処理する。2)の方法で は、導電性金属箔表面の導電性金属が熱処理により複合 粒子中に拡散し、新たに導電性金属を含む複合粒子を作 製できる。複合粒子中の導電性金属の量は、炭素質材料 と合わせて5重量%以上、60重量%以下であることが 望ましい。

【0012】本発明の正極活物質として用いられる正極 材料は、従来公知の何れの材料も使用でき、例えば、し ixCoO₂, LixNiO₂, MnO₂, LiMnO₂, $LixMn_2O_4$, $LixMn_{2-v}O_4$, $\alpha-V_2O_5$, TiSz等が挙げられる。

【0013】本発明に使用される非水電解質は、有機溶 媒にリチウム化合物を溶解させた非水電解液、又は髙分 子にリチウム化合物を固溶或いはリチウム化合物を溶解 させた有機溶媒を保持させた高分子固体電解質を用いる ことができる。 非水電解液は、有機溶媒と電解質とを適 宜組み合わせて調製されるが、これら有機溶媒や電解質

5

可能である。有機溶媒としては、例えばプロピレンカー ボネート、エチレンカーボネート、ピニレンカーボネー ト、ジメチルカーボネート、ジエチルカーボネート、メ チルエチルカーボネート、メチルエチルカーボネート、 1, 2-ジメトキシエタン、1, 2-ジエトキシエタン メチルフォルメイト、ブチロラクトン、テトラヒドロフ ラン、2-メチルテトラヒドロフラン、1-3ジオキソ フラン、4-メチル-1、3-ジオキソフラン、ジエチ ルエーテル、スルホラン、メチルスルホラン、アセトニ トリル、プロピオニトリル、ブチロニトリル、バレロニ 10 トリル、、ベンゾニトリル、1,2-ジクロロエタン、 4-メチル-2-ペンタノン、1、4-ジオキサン、ア ニソール、ジグライム、ジメチルホルムアミド、ジメチ ルスルホキシド等である。これらの溶媒はその1種を単 独で使用することができるし、2種以上を併用すること もできる。電解質としては、例えばLiClO.、Li AsF., LiPF., LiBF., LiB(C.H.).. LiC1, LiBr, LiI, LiCH, SO,, LiC F,SO,, LiAlCl,等が挙げられ、これらの1種 を単独で使用することもできるし、2種以上を併用する 20 こともできる.

【0014】本発明に使用される高分子固体電解質は、上記の電解質から選ばれる電解質を以下に示す高分子に固溶させたものを用いることができる。例えば、ポリエチレンオキサイドやポリブロビレンオキサイドのようなポリエチレンサクシネート、ポリーカブロラクタムのようなポリエステル鎖を有する高分子、ポリエチレンイミンのようなポリアミシはで有する高分子、ポリアルキレンスルフィドのようなポリスルフィド鏡を有する高分子が挙げられる。また、本発明に使用される高分子固体電解質として、ポリフタにピニリデン、ファ化ビニリデンーテトラフルオロエチレン共重合体、ポリエチレンオキサイド、ポリアクリニトリル、ポリブロビレンオキサイド等の高分子に上記非水電解液を保持させ上記高分子を可塑化させたものを用いることもできる。

[0015]

【実施例】以下、実施例を用いて本発明をさらに詳細に 説明するが、本発明はかかる実施例に限定されるもので はない。

【0016】実施例1. ビスマス粉末とフェノール樹脂を当重量混合撹拌し、80℃で3日間硬化させた。ここで用いたフェノール樹脂はクレゾール(mークレゾール含有率38%)150部に30%ホルムアルデヒド水溶液135部と25%アンモニア水7. 5部を混合し、85℃で105分加熱後、減圧蒸留で水を除いたもの用いた。得られたビスマス含有フェノール樹脂硬化物を1100℃で3時間焼成し、乾式粉砕後、テフロンを結着剤とし、20mm×15mmのSUS製メッシュに塗布したビスマスーカーボン複合粒子を負極として使用した。

正極は次の様にして作製した。炭酸リチウムLizCO, と炭酸コバルトCoCO,等をモル比で秤量し、イソブ ロビルアルコールを用いてボールミルで湿式混合した 後、溶媒を蒸発させて800℃1時間で仮焼きを行な う。仮焼粉を振動ミルで再粉砕した後、成型圧1.3t on/cm²で直径16mm厚さ0.5mmのペレット に加圧成型した後、800℃で10時間焼成したものを 正極とした。電解液はエチレンカーポネートとジメチル カーボネートの体積比1:1混合溶媒に六フッ化リン酸 リチウムLiPF。を1モル/1溶解したものを用い た。との様にして作製されたコイン電池を室温で一昼夜 放置エージングした後、1.5mAの定電流により、 4. 2 V ~ 2. 5 V の範囲で定電流充放電試験を行っ た。結果を表1に示す。放電電位は3.1Vで一定電位 をとり、ピスマスーカーボン複合粒子は負極活物質とし て適した特性をもつことが判明した。

【0017】実施例2.実施例1と同様にアルミニウム粉末とフェノール樹脂を等重量混合撹拌し、80℃で3日間硬化させた。アルミニウム含有フェノール樹脂硬化物を1100℃で3時間焼成し、乾式粉砕後、テフロンを結着剤とし、SUS製メッシュに塗布したアルミニウムーカーボン複合粒子を電極とし使用した。実施例1に示した正極を用いて、コイン電池を組み、1.5mAの定電流で充放電評価を行った。放電電位は3.4 Vで一定電位をとり、アルミニウムーカーボン複合粒子は負極活物質として適した特性をもつことが判明した。

【0018】実施例3.実施例1同様に銭粉末とフェノール樹脂を等重量混合撹拌し、80℃で3日間硬化させた。銭含有フェノール樹脂硬化物を1100℃で3時間焼成し、乾式粉砕後、テフロンを結着剤とし、SUS製メッシュに塗布した銭ーカーボン複合粒子を電極として使用した。実施例1に示した正極を用いて、コイン電池を組み、1.5mAの定電流で充放電評価を行った。放電時の平均電位は3.2 Vで一定電位をとり、銭ーカーボン複合粒子は負極活物質として適した特性をもつことが判明した。

[0019] 比較例1.実施例1で用いたフェノール樹脂そのものを80℃で3日間硬化させた。とのフェノール樹脂硬化物を1100℃で3時間焼成して得られたカーボンを、乾式粉砕後、テフロンを結着剤とし、SUS製メッシュに塗布し負極とした。ビスマスーカーボン複合粒子同様、実施例1に示した正極を用いて、コイン電池を組み、1.5mAの定電流で充放電評価を行った。このとき得られた放電容量は3~4mAhと低く、またビスマスーカーボン複合粒子を用いた場合と異なり一定電位での充放電特性も示さなかった。

【0020】比較例2.グラファイト粉末を比較例1と同様にテフロンを結着剤として、SUS製メッシュに塗布し負極とした。実施例1に示した正極を用いて、コイ50 ン電池を組み、1.5mAの定電流で充放電評価を行っ

{

tc.

[0021]

*【表1】

放電容量(mAh)

実施例 1	7 2
実施例2	2 1
実施例3	3 3
比較例 1	4
比較例2	12

[0022]

性の非水電解質を用いる非水系二次電池において、少な くとも負極活物質としてリチウムイオンを挿入・放出す る周期律表 I I I B、 I V B、 V B 族から選ばれた 1 種 又は2種以上の単体又はその化合物と導電性炭素からな る複合粒子、正極活物質として遷移金属を構成元素とし

て含む金属酸化物、電解質として有機溶媒にリチウム化 【発明の効果】以上述べた様に、本発明はリチウム導電 10 合物を溶解させた、又は高分子にリチウム化合物を溶解 或いはリチウム化合物を溶解させた有機溶媒を保持させ たリチウムイオン導電性の非水電解質を組み合わせて用 いることにより、高電圧、高容量および良好な充放電サ イクル特性をもつ非水系二次電池が得られる。

This Page Blank (uspto)