Total No. of Questions—8]

[Total No. of Printed Pages—4+1

Seat No.

[4957]-1042

S.E. (E & TC/Electronics) (First Semester) EXAMINATION, 2016 ELECTRONIC DEVICES AND CIRCUITS

(2012 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Attempt Q. Nos. 1 or 2, Q. Nos. 3 or 4, Q. Nos. 5 or 6, Q. Nos. 7 or 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of calculator is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) Compare C_E , C_B and C_C amplifier on the basis of the following :
 - (i) A_v
 - (ii) A_i
 - $(iii) R_i$
 - $(iv) R_o$
 - (v) h-parameter model
 - (vi) Application.

(b) For the ckt. shown in Fig. 1, Si transistor with β = 100 is used. Calculate I_B , I_C and V_{CE} . [6]

- 2. (a) For the ckt. shown in Fig. 1, Si transistor with $h_{ie}=1.1\mathrm{k}\Omega$, $h_{fe}=50,\ h_{re}=2.5\times10^{-4},\ h_{oe}=25\ \mu\text{A/V}$ is used. Calculate $A_i,\ A_v,\ R_i,\ R_i',\ R_o$ and Ro'.
 - (b) Derive the expression for stability factor S' for the voltage divider bias circuit. [6]
- 3. (a) For the amplifier shown in Fig. 2, determine the overall low frequency response. The transistor used has $h_{ie}=1\mathrm{k}\Omega$, $h_{fe}=100,\ h_{re}=h_{oe}=0.$ [6]

(b) Draw and explain Colpitts' oscillator using BJT. Calculate the frequency of oscillation when C_1 = 0.001 μF , C_2 = 0.001 μF and L = 5 μH .

Or

- 4. (a) Explain the effect of internal capacitances of transistor used in amplifier ckt. on bandwidth of amplifier with frequency response curve. Define F_{α} and F_{β} separately. [6]
 - (b) Determine the bandwith of a feedback amplifier with an open loop gain $A = 10^4$, an open loop bandwidth $BW(\omega) = 2\pi \times 100$ rad/s. and a closed loop gain $A_f = 50$. Comment on the effect of decrease in gain on bandwidth. [6]
- **5.** (a) Draw transformer coupled class A power amplifier and show that maximum efficiency is 50%. [6]
 - (b) A class B complementary-symmetry power amplifier operates with V_{CC} = 12V, R_{L} = 4 Ω . If the input is sinusoidal, calculate :
 - (i) Maximum power output
 - (ii) Efficiency for maximum output
 - (iii) Power dissipation in both transistors
 - (iv) Power dissipation in each transistor.

Or

6. (a) Explain with ckt. diagram, how even harmonics are eliminated in class B push pull power amplifier. [6]

(b) The following measurements were taken on output of a class A power amplifier to estimate second harmonic distortion.

$$I_{\rm CQ}$$
 = 1.5 A, $I_{\rm max}$ = 2.9 A, $I_{\rm min}$ = 0.2 A. Calculate :

- (i) Shift of Q-point in terms of collector current
- (ii) Percentage second harmonic distortion.
- 7. (a) Give comparison between MOSFET and BJT. [6]
 - (b) For the circuit shown in Fig. 3, the MOSFET parameters are $V_{\rm T}$ = 1.5 V, k = 0.8 mA/V²·

Determine V_{GS} , V_{DS} and I_D , and show that MOSFET is biased in the saturation region. [7]

Fig. 3

- 8. (a) For the ckt. shown in figure 3, determine : $g_m,\ A_v,\ R_i,\ R_i',\ R_o\ \text{and}\ R_o'.$ Given, $V_T=1.5V,\ k=0.8$ mA/V² and $r_0=40$ k Ω . [7]
 - (b) Explain various non-ideal current-voltage characteristics of EMOSFET. [6]