

Classification and visualisation of estimates and their uncertainty

2020-02-03

Thierry Onkelinx

NATUUR- EN BOSONDERZOEK

Introduction

Interpretation of estimates without information of uncertainty

Estimates with uncertainty

Unapproriate limits in combination with uncertainty

NATUUR- EN BOSONDERZOEK

Uncertainty

Point estimate

Confidence interval

Confidence interval

30%, 60% and 90% confidence interval

9 confidence intervals (10% increments)

NATUUR- EN BOSONDERZOEK

Classification of estimates

Significant effects

Non significant effects

Non significant effects

Detailed classification of positive effects

Detailed classification of unknown effects

vww.INBO.be

Why don't you use p-values?

NATUUR- EN BOSONDERZOEK

How to define reference and thresholds?

Width of the confidence interval

"The value for which p=0.05, or 1 in 20, is 1.96 or nearly 2; it is convenient to take this point as a limit in judging whether a deviation is to be considered significant or not." (Fisher, 1925)

- ▶ two-sided test with p = 0.05 as threshold
 - p = 0.05/2 = 0.025 on each side
 - 2.5% and 97.5% quantiles = 95% CI
- smaller CI
 - larger p
 - more false positives & fewer false negatives

	no effect	effect
not significant	TN	FN
significant	FP	TP

► Change detection in ecology: fewer false negatives = early warning

www.INBO.be

- Null hypothesis
- A model parameter is zero
 - No effect of treatment X
 - No change in time
 - e.g. Natura2000: population remains stable
- A prespecified target
 - e.g. PARTRIDGE: population increases by 30% over 4 years

www.INBO.be

- ► Effect size from power analysis
 - e.g. Natura 2000: detect -25% over 24 year
- Expert judgement
 - What change is large enough to be relevant / important?
 - What change is small enough to be irrelevant / not important?
 - Do consult a statistician

INSTITUUT
NATUUR- EN BOSONDERZOEK

Tools

effectclass

https://effectclass.netlify.com (Onkelinx, 2020)

functions

- classification(): classifies intervals based on a reference and thresholds
- format_ci(): format an effect size with its confidence interval
- stat_fan(): fan plot based on mean and standard error
- stat_effect() + scale_effect(): display point with shape based on classification

classification(reference = 3, threshold = c(2, 4)) and format_ci()

estimate	se	lcl	ucl	class	formatted
4.712389	0.01	4.6959404	4.7288375	++	4.712 (4.696; 4.729)
4.712389	0.10	4.5479036	4.8768743	++	4.71 (4.55; 4.88)
4.712389	1.00	3.0675354	6.3572426	+	4.7 (3.1; 6.4)
3.141593	0.01	3.1251441	3.1580412	+~	3.142 (3.125; 3.158)
3.141593	0.10	2.9771073	3.3060780	~	3.14 (2.98; 3.31)
0.000000	0.01	-0.0164485	0.0164485		0.0000 (-0.0164; 0.0164)
0.000000	0.10	-0.1644854	0.1644854		0.000 (-0.164; 0.164)
0.000000	1.00	-1.6448536	1.6448536		0.00 (-1.64; 1.64)
1.570796	0.01	1.5543478	1.5872449		1.5708 (1.5543; 1.5872)
1.570796	0.10	1.4063110	1.7352817		1.571 (1.406; 1.735)
1.570796	1.00	-0.0740573	3.2156500	?-	1.6 (-0.1; 3.2)
3.141593	1.00	1.4967390	4.7864463	?	3.1 (1.5; 4.8)

www.INBO.be

stat_effect() + scale_effect()

classification

NATUUR- EN BOSONDERZOEK

Your feedback

Questions for the audience

- How do you feel about the fan-plots?
- Is the classification easy to understand and use?
- Should we use a standardised symbology and terminology?

Suggested symbology

Suggested terminology

Class	trend	state
++	strong increase	goal strongly exceeded
+	increase	goal exceed
+~	moderate increase	goal moderately exceeded
~	stable	goal reached
-~	moderate decrease	goal almost achieved
-	decrease	goal not achieved
	strong decrease	goal clearly not achieved
?+	potential increase	goal maybe achieved
?-	potential decrease	goal maybe not achieved
?	unclear	unknown if goal achieved

effectclass

https://effectclass.netlify.com

Referenties I

Fisher, R. (1925). Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh. ISBN 978-0-05-002170-5.

Onkelinx, T. (2020). effectclass: Classification and visulation of effects. URL https://effectclass.netlify.com. R package version 0.1.2.

