Logika rozmyta – wnioskowanie i zastosowania

System rozmyty

- 1. rozmywanie (fuzzification)
- 2. zastosowanie operacji rozmytych
- 3. zastosowaniem implikacji rozmytych
- 4. precyzowanie (defuzzification)- np. metoda wyznaczania "środka ciężkości" (ang. Centre of Gravity, COG)

Schemat systemu rozmytego

Terminologia

Fuzyfikator

Rodzaje funkcji przynależności:

Reguły wnioskowania

- zastosowanie wiedzy eksperta ekspert na podstawie zdobytego wcześniej doświadczenia ma określić sposób postępowania dla poszczególnych przypadków, które mogą się zdarzyć w trakcie procesu.
- Zadaniem eksperta będzie konstrukcja reguły wnioskowania, jak i doboru funkcji przynależności dla każdego przypadku.
- zastosowanie badań eksperymentalnych podstawą reguł są wyniki numeryczne eksperymentów, określające zarówno reguły wnioskowania jak i funkcje przynależności.

Wnioskowanie 1 – aktywacja reguły

Wnioskowanie 2 – wartość reguły

Agregacja reguł

aggregation

Defuzyfikator – precyzowanie / wyostrzanie

Rodzaje defuzyfikatorów:

według średnich wartości centrów

według ważony średnich wartości centrów

$$y = \frac{\sum_{l=1}^{M} c_l \mu_{F^{(l)}}(x^{(l)})}{\sum_{l=1}^{M} \mu_{F^{(l)}}(x^{(l)})}$$

$$y = \frac{\sum_{l=1}^{M} c_l \frac{\mu_{F^{(l)}}(x^{(l)})}{\sigma^{(l)}}}{\sum_{l=1}^{M} \frac{\mu_{F^{(l)}}(x^{(l)})}{\sigma^{(l)}}}$$

 c_l , $\sigma^{(l)}$ - centrum (dyspersja) zbioru rozmytego $G^{(l)}$; $\mu_{F(l)}$ - funkcja przynależności zbiorów $_9$ rozmytych $F^{(l)}$ odpowiadających danemu wektorowi wejściowemu

Defuzyfikator – precyzowanie / wyostrzanie

5. Defuzzify the aggregate output (centroid)

$$g = \frac{\sum_{i=1}^{9} x_i \cdot u(x_i)}{\sum_{i=1}^{9} u(x_i)} = 16,7$$

Wyostrzanie

- Metoda środka maksimum (Middle of Maxima)
- Metoda pierwszego maksimum (First of Maxima)
- Metoda ostatniego maksimum (Last of Maxima)
- Metoda środka ciężkości (Center of Gravity)
- Metoda wysokości (Height Method)

Model Mamdaniego

- Metoda Mamdaniego jest przydatna, gdy liczba zmiennych jest mała. W przeciwnym razie napotka się następujące trudności:
- Liczba reguł rośnie wykładniczo wraz z liczbą zmiennych w przesłance.
- Im więcej reguł, tym trudniej ocenić ich dopasowanie do problemu.
- Jeżeli liczba zmiennych w przesłance jest zbyt duża, trudno będzie zrozumieć relacje między przesłankami i konsekwencjami.
- Istnieją inne metody wnioskowania takie jak metoda Sugeno, która inaczej oblicza implikację.

Model Sugeno

- Model Takagi-Sugeno-Kanga
- różni się od poprzedniego tym, że:
 - we wnioskach reguł występują nie zbiory rozmyte ale funkcje zmiennych wejściowych,

 przy czym są to najczęściej funkcje liniowe, więc każda reguła modelu opisuje jeden płaski (liniowy) segment powierzchni modelu.

Model rozmyty

Podejście nie rozmyte


```
if service<3,
    tip=((0.1/3)*service+0.05)*servRatio+
        + (1-servRatio)*(0.2/10*food+0.05);
elseif service<7,
    tip=(0.15)*servRatio+
        + (1-servRatio)*(0.2/10*food+0.05);
else
    tip=((0.1/3)*(service-7)+0.15)*servRatio+
        + (1-servRatio)*(0.2/10*food+0.05);</pre>
```

Inne zastosowanie

Funkcje przynależności

Rozmywanie

$$\mu_{zimno}(Tw=10)=0,4$$
 $\mu_{b,zimno}(Tw=10)=0,15$

Rozmywanie

$$\mu_{ciepło}(Tz=11)=0,5$$
 $\mu_{zimno}(Tz=11)=0,2$

Reguly sterowania

Temperatura wewnatrz domu

Zbiory rozmyte

Temperatura na zewnątrz domu Zbiory rozmyte

	Mróz	Zimno	Ciepło	Gorąco	B.gorąco
B.zimno	Mocne- grzanie	Mocne- grzanie	Grzanie	Grzanie	Wyłącz
Zimno	Mocne- grzanie	Grzanie	Grzanie	Wyłącz	Wyłącz
Dobrze	Grzanie	Wyłącz	Wyłącz	Wyłącz	Chłodzenie
Gorąco	Wyłącz	Wyłącz	Chłodzenie	Chłodzenie	Mocne- chłodzenie
B.gorąco	Wyłącz	Chłodzenie	Chłodzenie	Mocne- chłodzenie	Mocne- chłodzenie

Niezerowe stopnie wybranych aktywacji reguł

Aktywacja reguły

IF (TEMPwewnatrz is b.zimno) and (TEMPzewnatrz is zimno)THEN (Klimatyzator is mocne-grzanie)

Aktywacja reguły

R11. IF (TEMPwewnatrz is b.zimno) and (TEMPzewnatrz is ciepło) THEN (Klimatyzator is grzanie)

$$\mu_{b.zimno(Tw) \cap ciepło(Tz)} = 0,15$$

Aktywacja reguły

R12. IF (TEMPwewnatrz is zimno) and (TEMPzewnatrz is ciepło)THEN (Klimatyzator is grzanie)

$$\mu_{\text{b.zimno(Tw)} \cap \text{ciepło(Tz)}} = 0,4$$

Agregacja reguł

$$\mu_C(x) = Max[\mu_A(x), \mu_B(x)]$$

Przykład – metoda środka maksimum

Zalety stosowania logiki rozmytej

- Stabilność małe różnice na wej. generują małe różnice na wyj.
- Łatwość wyrażenie wiedzy w języku naturalnym
- Interpolacja możliwość obliczenia wyj. dla danych wej. spoza zakresu początkowo przewidzianego
 - (przy odpowiedniej konstrukcji f. przynależności)