

(2) 特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局(43) 国際公開日
2004年2月12日 (12.02.2004)

PCT

(10) 国際公開番号
WO 2004/013550 A1(51) 国際特許分類⁷:

F25B 1/00

(21) 国際出願番号:

PCT/JP2003/009286

(22) 国際出願日:

2003年7月22日 (22.07.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-225822 2002年8月2日 (02.08.2002) JP

(71) 出願人(米国を除く全ての指定国について): ダイキン
工業株式会社 (DAIKIN INDUSTRIES, LTD.) [JP/JP];
〒530-8323 大阪府 大阪市北区中崎西 2丁目4番
12号 梅田センタービル Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人(米国についてのみ): 松岡 弘宗 (MAT-SUOKA,Hiromune) [JP/JP]; 〒591-8511 大阪府 堺市金岡町 1304番地 ダイキン工業株式会社 堺製作所 金岡工場内 Osaka (JP). 水谷 和秀 (MIZUTANI,Kazuhide) [JP/JP]; 〒591-8511 大阪府 堺市金岡町 1304番地 ダイキン工業株式会社 堺製作所 金岡工場内 Osaka (JP).

(74) 代理人: 小野 由己男, 外 (ONO,Yukio et al.); 〒530-0054 大阪府 大阪市北区南森町 1丁目4番19号 サウスホレストビル 新樹グローバル・アイビー特許
業務法人 Osaka (JP).(81) 指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB,
BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK,
DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU,
ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,

[統葉有]

(54) Title: REFRIGERATION EQUIPMENT

(54) 発明の名称: 冷凍装置

(57) Abstract: Refrigeration equipment with steam compression refrigerant circuits capable of stably controlling a refrigerant pressure when refrigerant compressed by a compressor is fed to a use side heat exchanger, comprising an air conditioner (1) having the refrigerant liquid communication pipe (6) and the refrigerant gas pipe (7) of existing equipment, the main refrigerant circuit (10), and the second auxiliary refrigerant circuit (42), the main refrigerant circuit (10) further comprising the compressor (21), a heat source side heat exchanger (24), and the use side heat exchanger (52), wherein the second auxiliary refrigerant circuit (42) is installed between the compressor (21) in the main refrigerant circuit (10) and the use side heat exchanger (52) and returns the refrigerant compressed by the compressor (21) and fed to the use side heat exchanger (52) to the main refrigerant circuit (10) after condensing a part of the refrigerant.

[統葉有]

WO 2004/013550 A1

LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:
— 國際調査報告書

2 文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

- (84) 指定国(広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR),

- (57) 要約: 本発明は、蒸気圧縮式の冷媒回路を含む冷凍装置において、圧縮機において圧縮された冷媒を利用側熱交換器へ送る際に、冷媒圧力を安定的に制御する。空気調和装置(1)は、既設装置の冷媒液連絡配管(6)及び冷媒ガス連絡配管(7)と、主冷媒回路(10)と第2補助冷媒回路(42)とを備えている。主冷媒回路(10)は、圧縮機(21)と熱源側熱交換器(24)と利用側熱交換器(52)とを含んでいる。第2補助冷媒回路(42)は、主冷媒回路(10)の圧縮機(21)と利用側熱交換器(52)との間に設けられ、圧縮機(21)において圧縮されて利用側熱交換器(52)に送られる冷媒の一部を凝縮させた後に主冷媒回路(10)に戻すことが可能である。

明 細 書

冷凍装置

5 技術分野

本発明は、冷凍装置、特に、蒸気圧縮式の冷媒回路を備えた冷凍装置に関する。

背景技術

従来の蒸気圧縮式の冷媒回路を備えた冷凍装置の一つとして、ビル等の空気調和に用いられる空気調和装置がある。このような空気調和装置は、主に、熱源ユニットと、複数の利用ユニットと、これらのユニット間を接続するための冷媒ガス連絡配管及び冷媒液連絡配管とを備えている。この空気調和装置の冷媒ガス連絡配管及び冷媒液連絡配管は、熱源ユニットと複数の利用ユニットとを接続するように設置されているため、配管長が長く、途中に多くの曲げや分岐が存在した複雑な配管形状を有している。このため、空気調和装置を更新する際には、熱源ユニット及び利用ユニットのみを更新して、既設装置の冷媒ガス連絡配管及び冷媒液連絡配管をそのまま流用することが多い。

また、従来の空気調和装置は、R 22のようなHFC系の冷媒を使用しているものが多い。このような空気調和装置の冷媒回路を構成する配管、機器等には、作動冷媒の常温での飽和圧力に応じた強度を有するものが使用されている。しかし、近年の環境問題への配慮から、HFC系冷媒をHFC系冷媒又はHC系冷媒に切り替える取り組みが進められている。このため、ビル等の空気調和に用いられる空気調和装置では、R 22を作動冷媒として使用した既設装置の熱源ユニット及び利用ユニットをR 22と飽和圧力特性が近似するHFC系冷媒のR 407Cを作動冷媒として使用した装置に更新して、既設装置の冷媒ガス連絡配管及び冷媒液連絡配管を流用している。

一方、上記の空気調和装置において、冷凍効率を向上させて消費電力を低減することが望まれている。このようなニーズに対応するために、R 22やR 407Cよりも高圧の飽和圧力特性を有するHFC系冷媒のR 410AやR 32等を使

用することが考えられる。しかし、R410AやR32等の冷媒を作動冷媒として使用しようとすると、熱源ユニット及び利用ユニットだけでなく、冷媒ガス連絡配管や冷媒液連絡配管についても、これらの飽和圧力特性に対応した強度を有する配管に更新しなければならないため、設置工事等の手間が従来よりも増加するという問題が生じる。

このような問題を解決することが可能な空気調和装置として、特開2002-106984号公報に記載の空気調和装置が開示されている。この空気調和装置は、圧縮機、熱源側主熱交換器及び利用側熱交換器を含む冷媒回路と、熱源側熱交換器に並列に接続された熱源側補助熱交換器とを備えている。そして、この空気調和装置は、冷房運転時において、圧縮機の吐出側の冷媒圧力が上昇すると、熱源側補助熱交換器に圧縮機の吐出側の冷媒を導入して凝縮させて、冷媒液連絡配管を含む圧縮機の吐出側から利用側熱交換器までの間の冷媒回路の冷媒圧力を低下させることができある。これにより、R410Aを作動冷媒として使用した熱源ユニット及び利用ユニットに更新するとともに、R22等の作動冷媒を用いた既設装置の冷媒液連絡配管を流用することが可能になる。

しかし、上記の空気調和装置の熱源側補助熱交換器は、冷房運転時における冷媒液連絡配管を含む熱源側熱交換器と利用側熱交換器との間の冷媒回路の冷媒圧力を調節するために設けられたものであり、暖房運転時の冷媒ガス連絡配管の冷媒圧力の調節を目的としたものではない。このため、暖房運転時においては、各利用ユニットにおける暖房能力を確保しつつ、圧縮機の吐出圧力を冷媒ガス連絡配管の運転許容圧力よりも低くして運転することが前提となる。具体的には、各利用ユニットにおける暖房能力を確保するために、圧縮機の吐出側の冷媒ガス温度を所定の温度に保ちながら、圧縮機の吐出圧力を冷媒ガス連絡配管の運転許容圧力よりも低くして運転する必要がある。

しかし、R410AはR22等よりも高圧の飽和圧力特性を有するため、圧縮機の吸入温度が同じである場合、圧縮機によって同じ吐出圧力まで昇圧しても、R22等で得られる吐出温度よりも低い吐出温度しか得られない。このため、できる限り、圧縮機の吐出圧力を冷媒ガス連絡配管の運転許容圧力近くまで上げて冷媒温度を高くして、暖房運転しなければならなくなる。一方、圧縮機の吐出圧

力を冷媒ガス連絡配管の運転許容圧力近くまで上げて運転を行う場合、暖房負荷の変更等の急激な圧力変化、特に、圧力上昇に対する応答性の優れた圧力制御が必要となる。

一方、上記の空気調和装置において、冷凍効率を向上させて消費電力を低減することが望まれている。このようなニーズに対応するために、R 22やR 407Cよりも高圧の飽和圧力特性を有するHFC系冷媒のR 410AやR 32等を使用することが考えられる。しかし、R 410AやR 32等の冷媒を作動冷媒として使用しようとすると、熱源ユニット及び利用ユニットだけでなく、冷媒ガス連絡配管や冷媒液連絡配管についても、これらの飽和圧力特性に対応した強度を有する配管に更新しなければならないため、設置工事等の手間が従来よりも増加するという問題が生じる。

また、上記のように、R 22やR 407C等を使用した既設の空気調和装置の冷媒ガス連絡配管や冷媒液連絡配管を流用しつつ、R 22やR 407Cよりも高圧の飽和圧力特性を有するR 410AやR 32等の冷媒を作動冷媒として使用する熱源ユニット及び利用ユニットに更新する場合のみならず、新規に空気調和装置を設置する場合においても、R 410AやR 32等の高圧の飽和圧力特性を有する冷媒ガス連絡配管や冷媒液連絡配管を準備することができない場合もある。このような場合にも、圧縮機の吐出圧力を冷媒ガス連絡配管の運転許容圧力近くまで上げて運転を行うことになるため、暖房負荷の変更等の急激な圧力変化、特に、圧力上昇に対する応答性の優れた圧力制御が必要となる。

発明の開示

この発明の目的は、蒸気圧縮式の冷媒回路を含む冷凍装置において、圧縮機において圧縮された冷媒を利用側熱交換器へ送る際に、冷媒圧力を安定的に制御することにある。

請求項1に記載の冷凍装置は、主冷媒回路と補助冷媒回路とを備えている。主冷媒回路は、圧縮機と熱源側熱交換器と利用側熱交換器とを含んでいる。補助冷媒回路は、主冷媒回路の圧縮機と利用側熱交換器との間に設けられ、圧縮機において圧縮されて利用側熱交換器に送られる冷媒の一部を凝縮させた後に主冷媒回

路に戻すことが可能である。

この冷凍装置では、補助冷媒回路によって、圧縮機において圧縮されて利用側熱交換器に送られる冷媒の一部を凝縮させた後に主冷媒回路へ戻すことによって、利用側熱交換器に送られる冷媒の圧力を低下させることができる。これにより、
5 利用側熱交換器へ送られる冷媒の圧力を安定的に制御することが可能になる。

請求項 2 に記載の冷凍装置は、請求項 1 において、補助冷媒回路は、分岐回路と、凝縮器と、合流回路とを備えている。分岐回路は、圧縮機において圧縮されて利用側熱交換器に送られる冷媒の一部を主冷媒回路から分岐するためのものである。凝縮器は、分岐された冷媒を凝縮させることができ。合流回路は、
10 凝縮された冷媒を主冷媒回路に戻すことが可能なものである。

この冷凍装置では、凝縮器によって冷媒を凝縮させるため、確実に冷媒圧力を低下させることができる。

請求項 3 に記載の冷凍装置は、請求項 2 において、補助冷媒回路は、凝縮器への冷媒の流れを流通／遮断することができる開閉機構をさらに備えている。

15 この冷凍装置では、開閉機構を備えているため、凝縮器への冷媒の流れを適時流通／遮断して冷媒を凝縮させることができる。これにより、利用側熱交換器へ送る冷媒の圧力を安定的に制御することができる。

請求項 4 に記載の冷凍装置は、請求項 2 又は 3 において、主冷媒回路又は補助冷媒回路には、凝縮器と利用側熱交換器との間の冷媒圧力を検出するための圧力
20 検出機構が設けられている。

この冷凍装置では、凝縮器と利用側熱交換器との間の冷媒圧力を検出する圧力検出機構が設けられているため、圧力変化に応じて凝縮器における凝縮負荷を変更することによって、利用側熱交換器に送られる冷媒圧力を安定的に制御するこ
とが可能である。

25 請求項 5 に記載の冷凍装置は、請求項 2 ~ 4 のいずれかにおいて、補助冷媒回路は、凝縮器をバイパスして圧縮機から利用側熱交換器へ向かう冷媒を流すことができるバイパス回路をさらに備えている。主冷媒回路は、主冷媒回路の分岐回路との接続部と主冷媒回路の合流回路との接続部との間に、利用側熱交換器から圧縮機に向かう冷媒の流れのみを許容する逆止機構をさらに備えている。

この冷凍装置では、圧縮機から利用側熱交換器へ冷媒を送る際には補助冷媒回路を通じて冷媒を流し、利用側熱交換器から圧縮機へ冷媒を送る際には主冷媒回路の逆止機構を通じて冷媒を流すことができる。

請求項 6 に記載の冷凍装置は、請求項 2 ~ 5 のいずれかにおいて、凝縮器は、

5 主冷媒回路内を流れる冷媒を冷却源とした熱交換器である。

この冷凍装置では、主冷媒回路内を流れる冷媒を冷却源として使用しているため、他の冷却源が不要である。

請求項 7 に記載の冷凍装置は、請求項 1 ~ 6 のいずれかにおいて、主冷媒回路及び補助冷媒回路を流れる冷媒は、R 407C よりも高い飽和圧力特性を有している。

この冷凍装置では、圧縮機から利用側熱交換器へ送られる冷媒ガスの一部を補助冷媒回路によって凝縮することで利用側熱交換器へ送る冷媒ガスを減圧することができるため、圧縮機と利用側熱交換器との間の回路を構成する配管・機器等の運転許容圧力が R 407C の常温における飽和圧力程度までしか使用できないものを含む場合であっても、R 407C よりも高い飽和圧力特性を有する冷媒を作動冷媒として使用することが可能である。これにより、例えば、作動冷媒として R 22 や R 407C を使用した既設の冷凍装置において、R 407C よりも高圧の飽和圧力特性を有する冷媒を作動冷媒として使用する新設の冷凍装置に更新する場合でも、既設装置の圧縮機と利用側熱交換器との間の冷媒ガス連絡配管を流用することができる。

図面の簡単な説明

第 1 図は、本発明の冷凍装置の一例としての空気調和装置の冷媒回路の概略図である。

25 第 2 図は、冷房運転時における空気調和装置の冷凍サイクルのモリエル線図である。

第 3 図は、暖房運転時における空気調和装置の冷凍サイクルのモリエル線図である。

第 4 図は、本発明の変形例 1 の空気調和装置の冷媒回路の概略図である。

第5図は、本発明の変形例2の空気調和装置の冷媒回路の概略図である。

発明を実施するための最良の形態

以下に、本発明の冷凍装置の一例としての空気調和装置について、図面に基づいて説明する。

(1) 空気調和装置の全体構成

図1は、本発明の冷凍装置の一例としての空気調和装置1の冷媒回路の概略図である。空気調和装置1は、1台の熱源ユニット2と、それに並列に接続された複数台（本実施形態では、2台）の利用ユニット5と、熱源ユニット2と利用ユニット5とを接続するための冷媒液連絡配管6及び冷媒ガス連絡配管7とを備えており、例えば、ビル等の冷暖房に使用される装置である。

空気調和装置1は、本実施形態において、R22やR407C等よりも高圧の飽和圧力特性を有するR410Aを作動冷媒として使用している。尚、作動冷媒の種類は、R410Aに限定されず、R32等でもよい。また、空気調和装置1は、本実施形態において、既設のR22やR407C等を使用した空気調和装置の熱源ユニット及び利用ユニットを熱源ユニット2及び利用ユニット5に更新して構成されたものである。すなわち、冷媒液連絡配管6及び冷媒ガス連絡配管7は、既設の冷媒液連絡配管及び冷媒ガス連絡配管を流用しており、R22やR407C等の飽和圧力特性以下でしか運転することができないものである。このため、R410AやR32等の高圧の飽和圧力特性を有する作動冷媒を使用する場合には、冷媒液連絡配管6及び冷媒ガス連絡配管7の許容運転圧力以下で運転する必要がある。具体的には、冷媒液連絡配管6及び冷媒ガス連絡配管7は、R22やR407Cの常温における飽和圧力に対応する約3MPaの運転圧力を超えない範囲で使用されなければならない。尚、熱源ユニット2及び利用ユニット5を構成する機器、配管等は、R410Aの常温における飽和圧力（約4MPa）に対応できるように設計されている。

(2) 利用ユニットの構成

利用ユニット5は、主に、利用側膨張弁51と、利用側熱交換器52と、これらを接続する配管とから構成されている。本実施形態において、利用側膨張弁5

1 は、冷媒圧力の調節や冷媒流量の調節等を行うために、利用側熱交換器 5 2 の液側に接続された電動膨張弁である。本実施形態において、利用側熱交換器 5 2 は、クロスフィンチューブ式の熱交換器であり、室内の空気と熱交換するためのものである。本実施形態において、利用ユニット 5 は、ユニット内に室内の空気を取り込み、送り出すためのファン（図示せず）を備えており、室内の空気と利用側熱交換器 5 2 を流れる冷媒とを熱交換させることが可能である。

（3）熱源ユニットの構成

熱源ユニット 2 は、主に、圧縮機 2 1 と、油分離器 2 2 と、四路切換弁 2 3 と、熱源側熱交換器 2 4 と、ブリッジ回路 2 5 と、レシーバ 2 6 と、熱源側膨張弁 2 7 と、冷却器 2 8 と、第 1 補助冷媒回路 2 9 と、液側仕切弁 3 0 と、ガス側仕切弁 4 1 と、第 2 補助冷媒回路 4 2 と、これらを接続する配管とから構成されている。

圧縮機 2 1 は、本実施形態において、電動機駆動のスクロール式の圧縮機であり、吸入した冷媒ガスを圧縮するためのものである。

油分離器 2 2 は、圧縮機 2 1 の吐出側に設けられ、圧縮・吐出された冷媒ガス中に含まれる油を気液分離するための容器である。油分離器 2 2 において分離された油は、油戻し管 4 3 を介して、圧縮機 2 1 の吸入側に戻されるようになっている。

四路切換弁 2 3 は、冷房運転と暖房運転との切り換え時に、冷媒の流れの方向を切り換えるための弁であり、冷房運転時には油分離器 2 2 の出口と熱源側熱交換器 2 4 のガス側とを接続するとともに圧縮機 2 1 の吸入側と冷媒ガス連絡配管 7 側とを接続し（図 1 の四路切換弁の実線を参照）、暖房運転時には油分離器 2 2 の出口と冷媒ガス連絡配管 7 側とを接続するとともに圧縮機 2 1 の吸入側と熱源側熱交換器 2 4 のガス側とを接続することが可能である（図 1 の四路切換弁の破線を参照）。

熱源側熱交換器 2 4 は、本実施形態において、クロスフィンチューブ式の熱交換器であり、空気を熱源として冷媒と熱交換するためのものである。本実施形態において、熱源ユニット 2 は、ユニット内に屋外の空気を取り込み、送り出すためのファン（図示せず）を備えており、屋外の空気と熱源側熱交換器 2 4 を流れ

る冷媒とを熱交換させることが可能である。

レシーバ26は、熱源側熱交換器24と利用側熱交換器52との間を流れる冷媒を一時的に溜めるための容器である。レシーバ26は、容器上部に入口を有しており、容器下部に出口を有している。レシーバ26の入口及び出口は、それぞれ、ブリッジ回路25を介して熱源側熱交換器24と冷却器28との間の冷媒回路に接続されている。また、レシーバ26の出口とブリッジ回路25との間に、熱源側膨張弁27が接続されている。本実施形態において、熱源側膨張弁27は、熱源側熱交換器24と利用側熱交換器52との間の冷媒圧力の調節や冷媒流量の調節等を行うための電動膨張弁である。

10 ブリッジ回路25は、熱源側熱交換器24と冷却器28との間に接続された4つの逆止弁25a～25dから構成された回路であり、熱源側熱交換器24と利用側熱交換器52との間の冷媒回路を流れる冷媒が熱源側熱交換器24側からレシーバ26に流入する場合及び利用側熱交換器52側からレシーバ26に流入する場合のいずれの場合においても、レシーバ26の入口側からレシーバ26内に冷媒を流入させ、かつ、レシーバ26の出口から熱源側熱交換器24と利用側熱交換器52との間の冷媒回路に冷媒液を戻す機能を有している。具体的には、逆止弁25aは、利用側熱交換器52側から熱源側熱交換器24へ向かって流れる冷媒をレシーバ26の入口に導くように接続されている。逆止弁25bは、熱源側熱交換器24側から利用側熱交換器52へ向かって流れる冷媒をレシーバ26の入口に導くように接続されている。逆止弁25cは、レシーバ26の出口から熱源側膨張弁27を通じて流れる冷媒を利用側熱交換器52側に戻すことができるよう接続されている。逆止弁25dは、レシーバ26の出口から熱源側膨張弁27を通じて流れる冷媒を熱源側熱交換器24側に戻すことができるよう接続されている。これにより、熱源側熱交換器24と利用側熱交換器52との間の冷媒回路からレシーバ26に流入する冷媒は、常に、レシーバ26の入口から流入し、レシーバ26の出口から常に冷媒が熱源側熱交換器24と利用側熱交換器52との間の冷媒回路に戻されるようになっている。

冷却器28は、熱源側熱交換器24において凝縮されて利用側熱交換器52に送られる冷媒を冷却するための熱交換器である。また、冷却器28の利用側熱交

換器 52 側（出口側）には、利用側熱交換器 52 と熱源側膨張弁 27 との間の冷媒圧力（減圧後の冷媒圧力）を検出するための第 1 圧力検出機構 31 が設けられている。本実施形態において、第 1 圧力検出機構 31 は圧力センサである。熱源側膨張弁 27 は、第 1 圧力検出機構 31 で測定される冷媒圧力値が所定の圧力値 5 になるように開度調節される。

液側仕切弁 30 及びガス側仕切弁 41 は、それぞれ、冷媒液連絡配管 6 及び冷媒ガス連絡配管 7 に接続されている。冷媒液連絡配管 6 は、利用ユニット 5 の利用側熱交換器 52 の液側と熱源ユニット 2 の熱源側熱交換器 24 の液側との間を接続している。冷媒ガス連絡配管 7 は、利用ユニット 5 の利用側熱交換器 52 のガス側と熱源ユニット 2 の四路切換弁 23 との間を接続している。ここで、上記 10 に説明された利用側膨張弁 51、利用側熱交換器 52、圧縮機 21、油分離器 22、四路切換弁 23 と、熱源側熱交換器 24、ブリッジ回路 25、レシーバ 26、熱源側膨張弁 27、冷却器 28、液側仕切弁 30 及びガス側仕切弁 41 が順次接続された冷媒回路を空気調和装置 1 の主冷媒回路 10 とする。

15 次に、熱源ユニット 2 に設けられた第 1 補助冷媒回路 29 及び第 2 補助冷媒回路 42 について説明する。

第 1 補助冷媒回路 29 は、レシーバ 26 の出口の冷媒の一部を減圧して冷却器 28 に導入して利用側熱交換器 52 に向かって流れる冷媒と熱交換させた後、熱交換された冷媒を圧縮機 21 の吸入側に戻すための冷媒回路である。具体的には、 20 第 1 補助冷媒回路 29 は、レシーバ 26 の出口と熱源側膨張弁 27 とを接続する回路から分岐されて冷却器 28 に向かう第 1 分岐回路 29a と、第 1 分岐回路 29a に設けられた補助側膨張弁 29b と、冷却器 28 の出口から圧縮機 21 の吸入側に合流する第 1 合流回路 29c と、第 1 合流回路 29c に設けられた第 1 温度検出機構 29d とを備えている。

25 補助側膨張弁 29b は、冷却器 28 に流す冷媒流量の調節を行うための電動膨張弁である。第 1 温度検出機構 29d は、冷却器 28 出口の冷媒温度を測定するために設けられたサーミスタである。そして、補助側膨張弁 29b の開度は、第 1 温度検出機構 29d で測定される冷媒温度に基づいて調節される。具体的には、第 1 温度検出機構 29d と図示しない熱源側熱交換器 24 の冷媒温度との過熱度

制御によって調節されている。これにより、冷却器 28 出口の冷媒は、完全に蒸発して圧縮機 21 の吸入側に戻されるようになっている。

第 2 補助冷媒回路 42 は、主冷媒回路 10 の四路切換弁 23 と利用側熱交換器 52との間に設けられており、圧縮機 21において圧縮されて利用側熱交換器 52 に送られる冷媒の一部を凝縮させた後に主冷媒回路 10 に戻すことが可能な冷媒回路である。第 2 補助冷媒回路 42 は、主に、圧縮機 21において圧縮されて利用側熱交換器 52 に送られる冷媒の一部を主冷媒回路 10 から分岐するための第 2 分岐回路 42a と、分岐された冷媒を凝縮させることが可能な凝縮器 42b と、凝縮された冷媒を主冷媒回路 10 に戻すことが可能な第 2 合流回路 42c とを備えている。本実施形態において、凝縮器 42b は、空気を熱源として冷媒と熱交換する熱交換器である。

また、凝縮器 42b の第 2 合流回路 42c 側には、凝縮器 42b への冷媒の流れを流通／遮断するための凝縮器開閉弁 42d が設けられている。凝縮器開閉弁 42d は、凝縮器 42b に流入する冷媒流量の調節が可能な電動膨張弁である。

また、第 2 合流回路 42c には、凝縮器 42b の第 2 合流回路 42c 側（出口側）の冷媒圧力を検出するための第 2 圧力検出機構 42e が設けられている。本実施形態において、第 2 圧力検出機構 42e は、圧力センサである。凝縮器開閉弁 42d は、第 2 圧力検出機構 42e によって測定される冷媒圧力値が所定の圧力値以下になるように開度調節される。

さらに、第 2 補助冷媒回路 42 は、凝縮器 42b をバイパスして圧縮機 21 から利用側熱交換器 52 へ向かう冷媒を流すことが可能なバイパス回路 42f をさらに備えている。そして、主冷媒回路 10 の第 2 分岐回路 42a との接続部と第 2 合流回路 42c との接続部との間には、利用側熱交換器 52 から圧縮機 21 への流れのみを許容する逆止機構 44 が設けられている。本実施形態において、逆止機構 44 は、逆止弁である。バイパス回路 42f には、凝縮器 42b へ流入する冷媒流量を凝縮器開閉弁 42d の開度調節によって確保することができるよう、凝縮器開閉弁 42d 及び凝縮器 42b の圧力損失に相当するキャピラリ 42g が設けられている。

（4）空気調和装置の動作

次に、空気調和装置1の動作について、図1～図3を用いて説明する。ここで、図2は空気調和装置1を冷房運転する際の冷凍サイクルのモリエル線図であり、図3は空気調和装置1を暖房運転する際の冷凍サイクルのモリエル線図である。

①冷房運転

まず、冷房運転について説明する。冷房運転時は、四路切換弁23が図1の実線で示される状態、すなわち、圧縮機21の吐出側が熱源側熱交換器24のガス側に接続され、かつ、圧縮機21の吸入側が利用側熱交換器52のガス側に接続された状態となっている。また、液側仕切弁30、ガス側仕切弁41は閉にされ、利用側膨張弁51は冷媒を減圧するように開度調節されている。熱源側膨張弁27は、第1圧力検出機構31における冷媒圧力を所定の圧力値に制御するために開度調節された状態にある。補助側膨張弁29bは、第1温度検出機構29dと図示しない熱源側熱交換器24の冷媒温度との過熱度制御により開度調節された状態にある。ここで、第2補助冷媒回路42の凝縮器開閉弁42dは閉止されている。これにより、利用側熱交換器52から圧縮機21へ流れる冷媒は、主として、逆止機構44を通じて流れようになっている。

この主冷媒回路10及び補助冷媒回路29、42の状態で、熱源ユニット2のファン（図示せず）、利用ユニット5のファン（図示せず）及び圧縮機21を起動すると、冷媒ガスは、圧縮機21に吸入されて圧力 P_{s1} から圧力 P_{d1} まで圧縮された後、油分離器22に送られて油と冷媒ガスとに気液分離される（図2の点A₁、B₁参照）。その後、圧縮された冷媒ガスは、四路切換弁23を経由して熱源側熱交換器24に送られて、外気と熱交換して凝縮される（図2の点C₁参照）。この凝縮した冷媒液は、ブリッジ回路25の逆止弁25bを通じてレシーバ26に流れ込む。そして、冷媒液は、レシーバ26に一時的に溜められた後、熱源側膨張弁27において、冷媒液連絡配管6の運転許容圧力 P_{a1} よりも高圧の圧力 P_{d1} から圧力 P_{a1} よりも低圧の圧力 P_{e1} まで減圧される（図2の点D₁参照）。このとき、減圧された冷媒は、気液二相の状態となっている。この減圧された冷媒は、冷却器28において、第1補助冷媒回路29側を流れる冷媒と熱交換して冷却されて過冷却液となり（図2の点E₁参照）、液側仕切弁30及び冷媒液連絡配管6を経由して利用ユニット5側に送られる。そして、利用ユニット5に送

られた冷媒液は、利用側膨張弁 5 1 で減圧された後（図 2 の点 F₁ 参照）、利用側熱交換器 5 2 で室内空気と熱交換して蒸発される（図 2 の点 A₁ 参照）。この蒸発した冷媒ガスは、冷媒ガス連絡配管 7、ガス側仕切弁 4 1、逆止機構 4 4 及び四路切換弁 2 3 を経由して、再び、圧縮機 2 1 に吸入される。ここで、第 1 圧力検出機構 3 1 で測定される圧力は、熱源側膨張弁 2 7 の開度調節によって所定の圧力値（すなわち、圧力 P_{e1}）に制御されている。また、レシーバ 2 6 に溜められた冷媒液の一部は、第 1 補助冷媒回路 2 9 の第 1 分岐回路 2 9 a に設けられた補助側膨張弁 2 9 b によって圧力 P_{e1} 近くまで減圧された後、冷却器 2 8 に導入され、主冷媒回路 1 0 側を流れる冷媒と熱交換されて蒸発される。そして、蒸発された冷媒は、第 1 合流回路 2 9 c を通じて圧縮機 2 1 の吸入側に戻される。このようにして、冷媒圧力を冷媒液連絡配管 6 の運転許容圧力 P_{a1} よりも低い圧力 P_{e1} に減圧調節するとともに、冷媒液を十分に過冷却状態にして利用側熱交換器 5 2 に供給する冷房運転が行われる。

②暖房運転

次に、暖房運転について説明する。暖房運転時は、四路切換弁 2 3 が図 1 の破線で示される状態、すなわち、圧縮機 2 1 の吐出側が利用側熱交換器 5 2 のガス側に接続され、かつ、圧縮機 2 1 の吸入側が熱源側熱交換器 2 4 のガス側に接続された状態となっている。また、液側仕切弁 3 0、ガス側仕切弁 4 1 は閉にされ、利用側膨張弁 5 1 及び熱源側膨張弁 2 5 は冷媒を減圧するように開度調節されている。ここで、補助側膨張弁 2 9 b は閉止されており、第 1 補助冷媒回路を使用しない状態になっている。第 2 補助冷媒回路 4 2 の凝縮器開閉弁 4 2 d は、第 2 圧力検出機構 4 2 e における冷媒圧力を所定の圧力値に制御するために開度調節された状態にある。

この主冷媒回路 1 0 及び補助冷媒回路 2 9、4 2 の状態で、熱源ユニット 2 のファン（図示せず）、利用ユニット 5 のファン（図示せず）及び圧縮機 2 1 を起動すると、冷媒ガスは、圧縮機 2 1 に吸入されて圧力 P_{s2} から P_{d2} まで圧縮された後、油分離器 2 2 に送られて油と冷媒ガスとに気液分離される（図 3 の点 A₂、B₂ 参照）。その後、圧縮された冷媒ガスは、四路切換弁 2 3 を経由して利用ユニット 5 側に送られる。ここで、冷媒ガスは、四路切換弁 2 3 とガス側仕切弁 4

1との間に設けられた逆止機構44によって流れが遮断されて、第2補助冷媒回路42を経由して利用ユニット5側に流れる。

冷媒ガスは、第2分岐回路42aに流れ込んだ後、第2補助冷媒回路42のバイパス回路42fを通じて第2合流回路42cに戻る流れと凝縮器42b及び凝縮器開閉弁42dを通じて合流回路42cに戻る流れとに分岐される。バイパス回路42fを流れる冷媒ガスは、キャピラリ42gによっていくらか減圧されて第2合流回路42cに戻る(図3の点C₂参照)。一方、凝縮器42bには、凝縮器開閉弁42dの開度に応じた流量の冷媒ガスが流れ込み、外気と熱交換して凝縮されて冷媒液となって第2合流回路42cに戻る(図3の点H₂、I₂参照)。

第2合流回路42cに戻って混合された冷媒ガスは、凝縮器42bにおける冷媒ガスの凝縮に伴う冷媒ガスの体積の減少による減圧作用によって、第2分岐回路42aを流れる冷媒ガスの圧力P_{d2}から冷媒ガス連絡配管7の運転許容圧力P_{a2}よりも低圧の圧力P_{e2}の冷媒ガスとなって主冷媒回路10に戻され、利用側熱交換器52に送られる(図3の点D₂参照)。ここで、凝縮器開閉弁42dは、第2合流回路42cに設けられた第2圧力検出機構42eにより測定される冷媒圧力によって圧力P_{e2}になるように開度調節されており、凝縮器42bにおける冷媒ガスの凝縮量、すなわち、利用側熱交換器52へ送られる冷媒ガスの圧力制御を実現している。また、この減圧制御によって減圧された後の冷媒ガスの状態(図3の点D₂)は、圧縮機21による冷媒の圧縮工程の線上(図3の点A₂と点B₂を結ぶ線上)付近にある。このことは、この減圧制御によって、圧縮機21によって圧力P_{e2}まで圧縮した際の冷媒温度とほぼ同じ温度を得ることができる事を示している。これにより、利用側熱交換器52に送られる冷媒ガスは、圧縮機21によって、圧力P_{e2}まで圧縮された場合の冷媒温度と同等の冷媒温度で送られる。

利用側熱交換器52に送られる冷媒ガスは、上記のように、圧力P_{e2}まで減圧された後、主冷媒回路10に戻されて、ガス側仕切弁41及び冷媒ガス連絡配管7を通じて、利用ユニット5に送られる。そして、利用ユニット5に送られた冷媒ガスは、利用側熱交換器52で室内空気と熱交換して凝縮される(図3の点E₂参照)。この凝縮した冷媒液は、利用側膨張弁51で圧力P_{f2}まで減圧された

後（図3の点F₂参照）、冷媒液連絡配管6を経由して熱源ユニット2に送られる。そして、熱源ユニット2に送られた冷媒液は、熱源側膨張弁25で圧力P_{s2}まで減圧された後（図3の点G₂参照）、熱源側熱交換器24で外気と熱交換して蒸発される（図3の点A₂参照）。この蒸発した冷媒ガスは、四路切換弁23を経由して、再び、圧縮機21に吸入される。このようにして、冷媒圧力を冷媒ガス連絡配管7の運転許容圧力P_{a2}よりも低い圧力P_{e2}に減圧調節するとともに、冷媒ガスを圧縮機21によって圧縮して得られる冷媒温度と同等の冷媒温度に調節して利用側熱交換器52に供給する暖房運転が行われる。

（5）本実施形態の空気調和装置の特徴

10 本実施形態の空気調和装置1には、以下のような特徴がある。

①冷房運転時の特徴

本実施形態の空気調和装置1では、熱源側熱交換器24において凝縮された冷媒を熱源側膨張弁27による減圧操作及び冷却器28による冷却操作の後に、利用側熱交換器52に送ることができるようになっている。このため、利用側熱交換器52に送られる冷媒を減圧するとともに過冷却状態を保つことができる。また、第1圧力検出機構31によって、熱源側膨張弁27で減圧された後の冷媒圧力を検出することができるため、熱源側膨張弁27と利用側熱交換器52との間の冷媒圧力を所定の圧力値（図2の圧力P_{e1}）に調節することができる。これにより、熱源側熱交換器24で凝縮された冷媒を減圧して利用側熱交換器52に送る際に、冷媒圧力を安定的に制御するとともに、利用側熱交換器52における冷房能力の低下を防ぐことができる。本実施形態においては、図2に示すように、熱源側膨張弁27による減圧前のエンタルピ差h_{D1}よりも減圧後のエンタルピ差h_{E1}の方が大きいため、冷媒単位流量当たりの冷房能力が大きくなっている。

また、空気調和装置1では、第1圧力検出機構31が圧力センサであるため、冷房運転中において、熱源側膨張弁27と利用側熱交換器52との間の冷媒圧力を常時監視でき、冷媒圧力の制御の信頼性が高い。

また、空気調和装置1では、熱源側熱交換器24で凝縮された冷媒液を熱源側膨張弁27によって冷媒液連絡配管6の運転許容圧力P_{a1}よりも低い圧力P_{e1}まで減圧して利用側熱交換器52へ送ることができるため、本実施形態のように、

熱源側膨張弁 27 と利用側熱交換器 52 との間の回路を構成する配管・機器等の運転許容圧力が R407C の常温における飽和圧力程度までしか使用できないものを含む場合であっても、R407C よりも高い飽和圧力特性を有する冷媒を作動冷媒として使用することが可能である。これにより、本実施形態のように、作動冷媒として R22 や R407C を使用した既設の空気調和装置において、R407C よりも高圧の飽和圧力特性を有する冷媒を作動冷媒として使用する新設の空気調和装置 1 に更新する場合でも、既設装置の冷媒液連絡配管 6 を流用することができる。

また、空気調和装置 1 は、熱源側熱交換器 24 において凝縮された冷媒を溜めた後、熱源側膨張弁 27 に冷媒を送るためのレシーバ 26 を備えているため、熱源側熱交換器 24 で凝縮された冷媒液が熱源側熱交換器 24 内に溜まつたままにならず、排出を促進することができる。これにより、熱源側熱交換器 24 の液没部分を減らして、熱交換を促進することができる。

また、空気調和装置 1 では、冷媒液を過冷却状態で利用側熱交換器 52 に送ることができるため、本実施形態のように複数の利用ユニット 5 への分岐が生じる場合や熱源ユニット 2 から利用ユニット 5 への高低差ある場合であっても、冷媒が液状態で保たれて冷媒の偏流を生じにくくすることができる。

また、空気調和装置 1 では、冷却器 28 は主冷媒回路 10 内を流れる冷媒を冷却源とした熱交換器であるため、他の冷却源が不要である。本実施形態においては、第 1 補助冷媒回路 29 によって冷却器 28 に導入される冷媒を冷却源としている。第 1 補助冷媒回路 29 は、熱源側熱交換器 24 で凝縮された冷媒の一部を圧縮機 21 の吸入側に戻すことができる冷媒圧力まで減圧したものを冷却器の冷却源として使用しており、主冷媒回路 10 側を流れる冷媒の温度よりも十分に低い温度の冷却源を得るために、主冷媒回路 10 側を流れる冷媒を過冷却状態まで冷却することができる。さらに、第 1 補助冷媒回路 29 は、補助側膨張弁 29b と冷却器 28 の出口に設けられた第 1 温度検出機構 29d とを備えているため、第 1 温度検出機構 29d によって測定される冷媒温度に基づいて補助側膨張弁 29b の開度調節をして、冷却器 28 を流れる冷媒の流量を調節することが可能である。これにより、主冷媒回路 10 側を流れる冷媒を確実に冷却

するとともに、冷却器28出口の冷媒を蒸発させた後、圧縮機21に戻すことができる。

②暖房運転時の特徴

本実施形態の空気調和装置1では、暖房運転時に、第2補助冷媒回路42によつて、圧縮機21において圧縮されて利用側熱交換器52に送られる冷媒の一部を凝縮させて利用側熱交換器52に送られる冷媒の圧力を低下させることができる。これにより、利用側熱交換器52へ送られる冷媒の圧力を安定的に制御することができる。本実施形態において、第2補助冷媒回路42は、凝縮器42bを備えており、この凝縮器42bによって利用側熱交換器52に送られる冷媒を凝縮させて、冷媒ガスの体積を減少させることによって減圧できるため、確実に、かつ、応答よく冷媒圧力を低下させることができる。また、第2補助冷媒回路42は、凝縮器42bへの冷媒の流れを流通／遮断することができる凝縮器開閉弁42dを備えているため、適時、凝縮器42bへの冷媒の流れを流通／遮断することも可能である。さらに、第2補助冷媒回路42の第2合流回路42cには、凝縮器42bと利用側熱交換器52との間の冷媒圧力を検出するための第2圧力検出機構42eが設けられているため、利用側熱交換器52に送られる冷媒圧力を安定的に制御することが可能である。

また、第2補助冷媒回路42による圧力制御によると、減圧制御後の状態（図3の点D₂参照）は、圧縮機21による圧縮工程の線上（図3のA₂とB₂とを結ぶ線上）付近にある。この減圧制御によって、利用側熱交換器52に送る冷媒ガスの温度を圧縮機21によって圧力P_{e2}まで圧縮された場合の冷媒温度と同等の冷媒温度にすることができるため、所望の暖房負荷を確保するのが容易である。

また、空気調和装置1では、第2補助冷媒回路42に設けられたバイパス回路42fと主冷媒回路10に設けられた逆止機構44とをさらに備えているため、圧縮機21から利用側熱交換器52へ冷媒を送る際には第2補助冷媒回路42を通じて冷媒を流し、利用側熱交換器52から圧縮機21へ冷媒を送る際には主冷媒回路10の逆止機構44を通じて冷媒を流すことができる。これにより、冷房運転時と暖房運転時の冷媒ガスの流路を切り換えることができる。

また、空気調和装置1では、図3に示すように、圧縮機21から利用側熱交換

器52へ送られる冷媒ガスの一部を第2補助冷媒回路42によって凝縮することで利用側熱交換器52へ送る冷媒ガスを冷媒ガス連絡配管7の運転許容圧力 P_{a2} よりも低い圧力 P_{e2} まで減圧することができるため、本実施形態のように、圧縮機21と利用側熱交換器52との間の回路を構成する配管・機器等の運転許容圧力がR407Cの常温における飽和圧力程度までしか使用できないものを含む場合であっても、R407Cよりも高い飽和圧力特性を有する冷媒を作動冷媒として使用することが可能である。これにより、本実施形態のように、作動冷媒としてR22やR407Cを使用した既設の空気調和装置において、R407Cよりも高圧の飽和圧力特性を有する冷媒を作動冷媒として使用する新設の空気調和装置1に更新する場合でも、既設装置の冷媒ガス連絡配管7を流用することができる。

(6) 変形例1

前記実施形態では、空気調和装置1の熱源ユニット2内の冷却器28と液側仕切弁30との間に圧力センサからなる第1圧力検出機構31が設けられているが、図4に示すように、ブリッジ回路25と冷却器28との間にサーミスタからなる第1圧力検出機構131を設けた熱源ユニット102を含む空気調和装置101としてもよい。尚、空気調和装置101の他の構成は、空気調和装置1と同じであるため、説明を省略する。

空気調和装置101では、熱源側熱交換器24で凝縮された冷媒は、熱源側膨張弁27によって減圧されて飽和状態の冷媒液又は二相流の冷媒となり、冷却器28へ送られて過冷却状態まで冷却された後、利用側熱交換器24へ送られる。ここで、熱源側膨張弁27と冷却器28との間に設けられたサーミスタからなる第1圧力検出機構131は、熱源側膨張弁27で減圧された後の冷媒温度を測定することになる。この測定された冷媒温度は、飽和状態又は気液二相状態の冷媒の温度であるため、この温度から冷媒の飽和圧力を換算して知ることができる。すなわち、第1圧力検出機構131によって熱源側膨張弁27で減圧された後の冷媒圧力を間接的に測定することになる。これにより、前記実施形態と同様、熱源側膨張弁27と利用側熱交換器52との間の冷媒圧力を安定的に制御することができる。

(7) 変形例2

前記実施形態では、空気調和装置1の熱源ユニット2内の第2補助冷媒回路42が空冷式の凝縮器42bを備えているが、図5に示すように、主冷媒回路210を流れる冷媒を冷却源とする凝縮器242bを備えた第2補助冷媒回路242が設けられた熱源ユニット202を含む空気調和装置201としてもよい。ここで、凝縮器242bの冷却源は、冷却器28の冷却源と同様、第1補助冷媒回路229の補助側膨張弁229bで減圧した冷媒である。

第1補助冷媒回路229は、主に、レシーバ26の出口と熱源側膨張弁27とを接続する回路から分岐されて冷却器28及び凝縮器242bに向かう第1分岐回路229aと、冷却器28の出口及び凝縮器242bの出口から圧縮機21の吸入側に合流する第1合流回路229cとから構成されている。第1分岐回路229aは、主分岐回路229aと、主分岐回路229aに設けられた補助側膨張弁229bと、補助側膨張弁229bの下流側に設けられ冷却器28の入口に接続される冷却器側分岐回路229cと、補助側膨張弁229bの下流側に設けられ凝縮器242bの入口に接続される凝縮器側分岐回路229eとを備えている。冷却器側分岐回路229cは、冷却器28への冷媒の流れを流通／遮断するための分岐開閉弁229dを備えている。また、凝縮器側分岐回路229eは、凝縮器242bへの冷媒の流れを流通／遮断するための分岐開閉弁229fを備えている。第1合流回路229cは、圧縮機21の吸入側に合流する主合流回路229iと、冷却器28の出口から主合流回路229iに合流する冷却器側合流回路229cと、凝縮器242bの出口から主合流回路229iに合流する凝縮器側合流回路229hと、主合流回路229iに設けられた第1温度検出機構229jとを備えている。尚、空気調和装置201の他の構成は、空気調和装置1と同じであるため、説明を省略する。

空気調和装置201は、冷却器28を使用できるようにするために分岐開閉弁229dを開とし、凝縮器242bを使用しないようにするために分岐開閉弁229fを閉とする操作を行った後に、冷房運転することによって、空気調和装置1と同様の冷房運転を行うことができる。また、冷却器28を使用しないようにするために分岐開閉弁229dを閉とし、凝縮器242bを使用できるようにす

るために分岐開閉弁 229f を開とする操作を行った後に、暖房運転することによって、空気調和装置 1 と同様の暖房運転を行うことができる。すなわち、運転モードに応じた分岐開閉弁 229d、229f の切り替え操作によって、主冷媒回路 210 の圧力制御を安定的に行うことができる。

5 (8) 他の実施形態

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。

①前記実施形態においては、空気調和装置の熱源ユニットとして外気を熱源とした空冷式の熱源ユニットを使用したが、水冷式や氷蓄熱式の熱源ユニットを使用してもよい。

②前記実施形態においては、第 2 圧力検出機構に圧力センサを使用したが、圧力スイッチでもよい。これにより、制御応答が早くなる。また、凝縮器開閉弁は、電動膨張弁ではなく、絞り機能のない電磁弁でもよい。これにより、電動膨張弁を使用する場合に比べて滑らかな制御応答は得られないが、素早い制御応答を得ることができる。

③前記実施形態においては、バイパス回路にキャピラリを設けたが、圧力損失が確保できればよいため、バイパス回路の部分の配管径を小さくするだけでもよい。

④前記実施形態においては、圧縮機の吐出圧力が常に冷媒液連絡配管や冷媒ガス連絡配管よりも高い圧力である場合の運転について説明したが、圧縮機のインバータ制御等による容量制御と組み合わせた制御としてもよい。例えば、通常は、圧縮機の容量制御により、圧縮機の吐出圧力センサ等で測定される冷媒圧力が冷媒液連絡配管や冷媒ガス連絡配管の許容運転圧力よりも低くなるように制御しており、第 1 及び第 2 圧力検出機構で検出される圧力が冷媒液連絡配管及び冷媒ガス連絡配管の許容運転圧力に近づく場合にのみ熱源側膨張弁や凝縮器開閉弁を開けて冷媒圧力を低下させる等の運転が可能である。

⑤前記実施形態においては、既設の R22 や R407C 等を使用した空気調和装置の熱源ユニット及び利用ユニットを熱源ユニット 2 及び利用ユニット 5 に更

新して、R 22やR 407C等の飽和圧力特性以下でしか運転することができない既設の冷媒液連絡配管及び冷媒ガス連絡配管を流用した構成について説明したが、これに限定されない。例えば、新規に空気調和装置を設置する場合においても、R 410AやR 32等の高圧の飽和圧力特性を有する冷媒ガス連絡配管や冷媒液連絡配管を準備することができない場合もあるため、このような場合にも、前記実施形態と同様に、本発明を適用することが可能である。これにより、現地において準備可能な冷媒ガス連絡配管や冷媒液連絡配管を用いて、R 410AやR 32等の高圧の飽和圧力特性を有する冷媒を作動冷媒として使用した空気調和装置を構成することが可能になる。

10

産業上の利用可能性

本発明を利用すれば、補助冷媒回路によって、圧縮機において圧縮されて利用側熱交換器に送られる冷媒の一部を凝縮させることによって冷媒圧力を低下させることができるために、利用側熱交換器へ送られる冷媒の圧力を安定的に制御する

15 ことが可能になる。

請求の範囲

1. 圧縮機（21）と熱源側熱交換器（24）と利用側熱交換器（52）とを含む主冷媒回路（10、110、210）と、

5 前記主冷媒回路の前記圧縮機と前記利用側熱交換器との間に設けられ、前記圧縮機において圧縮されて前記利用側熱交換器に送られる冷媒の一部を凝縮させた後に主冷媒回路に戻すことが可能な補助冷媒回路（42、242）と、
を備えた冷凍装置（1、101、201）。

2. 前記補助冷媒回路（42、242）は、前記圧縮機（21）において圧縮
10 されて前記利用側熱交換器（52）に送られる冷媒の一部を前記主冷媒回路（10、110、210）から分岐するための分岐回路（42a）と、分岐された冷媒を凝縮させることが可能な凝縮器（42b）と、凝縮された冷媒を前記主冷媒回路に戻すことが可能な合流回路（42c）とを備えている、請求項1に記載の冷凍装置（1、101、201）。

15 3. 前記補助冷媒回路（42、242）は、前記凝縮器（42b、242b）への冷媒の流れを流通／遮断することができる開閉機構（42d）をさらに備えている、請求項2に記載の冷凍装置（1、101、201）。

4. 前記主冷媒回路（10、110、210）又は前記補助冷媒回路（42、
242）には、前記凝縮器（42b、242b）と前記利用側熱交換器（52）
20 との間の冷媒圧力を検出するための圧力検出機構（42e）が設けられている、
請求項2又は3に記載の冷凍装置（1、101、201）。

5. 前記補助冷媒回路（42、242）は、前記凝縮器（42b、242b）をバイパスして前記圧縮機（21）から前記利用側熱交換器（52）へ向かう冷媒を流すことができるバイパス回路（42f）をさらに備えており、

25 前記主冷媒回路（10、110、210）は、前記主冷媒回路の前記分岐回路（42a）との接続部と前記主冷媒回路の前記合流回路（42c）との接続部との間に、前記利用側熱交換器から前記圧縮機に向かう冷媒の流れのみを許容する逆止機構（44）をさらに備えている、

請求項2～4のいずれかに記載の冷凍装置（1、101、201）。

6. 前記凝縮器（242b）は、前記主冷媒回路（210）内を流れる冷媒を冷却源とした熱交換器である、請求項2～5のいずれかに記載の冷凍装置（201）。

7. 前記主冷媒回路（10、110、210）及び前記補助冷媒回路（42、
5 242）を流れる冷媒は、R407Cよりも高い飽和圧力特性を有している、請求項1～6のいずれかに記載の冷凍装置（1、101、201）。

Fig. 1

2/5

Fig. 2

3/5

Fig. 3

4/5

Fig. 4

5/5

Fig. 5

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/09286

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl⁷ F25B1/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ F25B1/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1926-1996	Toroku Jitsuyo Shinan Koho	1994-2003
Kokai Jitsuyo Shinan Koho	1971-2003	Jitsuyo Shinan Toroku Koho	1996-2003

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

ECLA, F25B1/00

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y A	JP 8-49948 A (Yoriyuki OGURI), 20 February, 1996 (20.02.96), Full text; Figs. 1 to 9 (Family: none)	1, 2, 5-7 3, 4
Y A	JP 6-323643 A (Mitsubishi Heavy Industries, Ltd.), 25 November, 1994 (25.11.94), Full text; Figs. 1 to 3 (Family: none)	1, 2, 5-7 3, 4
Y	JP 2001-355924 A (Daikin Industries, Ltd.), 26 December, 2001 (26.12.01), Full text; Figs. 1 to 11 (Family: none)	6

 Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
06 October, 2003 (06.10.03)Date of mailing of the international search report
21 October, 2003 (21.10.03)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C17 F25B 1/00

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C17 F25B 1/00

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1926-1996年

日本国公開実用新案公報 1971-2003年

日本国登録実用新案公報 1994-2003年

日本国実用新案登録公報 1996-2003年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

ECLA, F25B 1/00

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 8-49948 A (大栗 順之) 1996. 02. 20, 全文, 第1-9図 (ファミリーなし)	1, 2, 5- 7
A		3, 4
Y	JP 6-323643 A (三菱重工業株式会社) 1994. 11. 25, 全文, 第1-3図 (ファミリーなし)	1, 2, 5- 7
A		3, 4
Y	JP 2001-355924 A (ダイキン工業株式会社) 2001. 12. 26, 全文, 第1-11図 (ファミリーなし)	6

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

06. 10. 03

国際調査報告の発送日

21.10.03

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

長崎 洋一

3M 3332

電話番号 03-3581-1101 内線 3376