Teopus uplift-моделирования

Введение

Uplift-моделирование — это подход в машинном обучении, который позволяет оценить **прирост эффекта** от определенного воздействия (например, рекламы или маркетинговой кампании). В отличие от классических моделей классификации, uplift-модель предсказывает не вероятность целевого события, а разницу между вероятностями события в двух группах:

- **Treatment-группа** получившие воздействие (например, видели рекламу).
- Control-группа не получившие воздействие (не видели рекламу).

Основные определения

Response Rate (Отклик) Response rate — это доля клиентов, которые выполнили целевое действие (например, покупку) в каждой группе. Для k% топовых клиентов response rate считается как среднее значение целевого признака Y:

$$response_rate@k = \frac{1}{N_k} \sum_{i=1}^{N_k} Y_i, \qquad (1)$$

где:

- N_k количество клиентов в топ k% выборки;
- Y_i целевой признак для клиента i (например, Y=1, если клиент совершил покупку, и Y=0, если нет).

Uplift Uplift на уровне k% определяется как разница между откликом в treatment-группе и откликом в control-группе:

$$uplift@k = response_rate@k_{(treatment)} - response_rate@k_{(control)}.$$
 (2)

Итоговое определение Uplift-модель предсказывает разницу вероятностей между группами:

$$U(X) = P(Y = 1|X, T = 1) - P(Y = 1|X, T = 0),$$
(3)

где:

- U(X) uplift для клиента с признаками X;
- P(Y = 1|X, T = 1) вероятность отклика для treatment-группы;
- P(Y=1|X,T=0) вероятность отклика для control-группы.

Пример расчета uplift

Рассмотрим следующий пример:

- В **treatment-группе** (100 человек) целевое действие выполнили 30 человек: response_rate_treatment = 30/100 = 0.3 (30%).
- В control-группе (100 человек) целевое действие выполнили 20 человек: response_rate_{control} = 20/100 = 0.2 (20%).

Тогда uplift будет равен:

uplift =
$$0.3 - 0.2 = 0.1 (10\%)$$
. (4)

Это означает, что воздействие увеличило вероятность выполнения целевого действия на 10%.

Кривая Qini и метрика Qini Score

Кривая Qini показывает накопленный uplift по топовым k% клиентов. Qini Score определяется как площадь под кривой Qini:

Qini Score =
$$\int_0^1 \text{uplift}(k) dk$$
. (5)

Вывод

Uplift-моделирование позволяет оптимизировать воздействие на клиентов, сфокусировав ресурсы на тех, кто с наибольшей вероятностью отреагирует. Методы моделирования включают двухмодельный подход, одиночную модель с измененным таргетом и анализ кривой Qini для оценки качества модели.

Описание датасетов для построения моделей

1. Датасет clients

Датасет содержит информацию о клиентах и включает следующие поля:

- ullet client id-ID клиента, внешний ключ к датасетам purchases и uplift_train.
- first issue date дата и время, когда клиент впервые был зарегистрирован в системе или получил свою карту лояльности.
- first redeem date дата и время, когда клиент впервые совершил покупку или использовал карту лояльности (например, для начисления или списания бонусов).

- age возраст клиента.
- \bullet gender пол клиента.

После проведения ряда проверок, мы заметили, что существуют очень странные клиенты, например у некоторых есть отрицательный возраст, а кто-то живет уже 1901 год (Рис.1). Скорее всего это связано с какой-то технической неполадкой. В общем и целом, доля этих клиентов маленькая, она составляет порядка 0.3% и ввиду того, что просто удалить клиентов мы не хотим мы заменили странные на наш взгляд возраста медианным значением. Также

Рис. 1: Боксплот возраста.

	client_id	first_issue_date	first_redeem_date	age	gender
168731	6c43d328e8	2017-07-24	2019-02-27	-7491	U
91960	3b030e7fa6	2018-11-16	2018-12-07	-7158	U
210260	86d1dc8761	2018-10-15	2019-01-26	-5973	U
215345	8a0e463a19	2017-05-04	2017-06-13	-5953	U
177265	71c2137d2d	2018-11-25	2019-03-22	-5949	U

Рис. 2: Топ 5 с минимальным возрастом.

	client_id	first_issue_date	first_redeem_date	age	gender
141178	5a9420d3ea	2017-09-09	2018-03-08	1901	U
172772	6edee96676	2017-11-16	2018-10-18	1852	U
128323	5252823991	2018-10-30	2019-02-22	1841	U
184781	768f4e55ac	2018-10-31	2019-07-19	1800	U
29948	1350cceaf5	2018-11-17	2019-05-16	1717	U

Рис. 3: Топ 5 с максимальным возрастом.

мы заметили, что есть пропуски в дате совершения покупки 9% (35469 клиентов) видимо, не все пользователи успели совершить покупки/ или это техническая ошибка. Дропать их нельзя, так как это наши потенциальные клиенты - если предложить им скидку, может, они и начнут пользоваться нашей услугой. Парадокс заключается в том, что несмотря на то, что у клиентов стоит проупск в дате совершения покупки, они что-то приобретали. Скорее всего, пропуски связаны с каким-то техническим сбоем. Мы решили заполнить пропуски следующим образом: посмотрели сколько в среднем времени проходит между тем, когда клиент зарегестрировался в системе и совершил первую покупку/воспользовался картой лояльности, получили 180, и эту величину прибавим к first_issue_date пользователей, у которых first_redeem_date пустое. Таким образом, мы заполнили пропуски в колонке, где отражается дата первой покупки.

2. Датасет products

Датасет содержит информацию о товарах и их характеристиках. Поля включают:

- ullet product id-ID товара, внешний ключ к датасету purchases.
- level_1 верхний уровень категории товара (например, Продукты питания, Напитки, Косметика).
- level_2 подкатегория верхнего уровня (например, Молочные продукты, Алкогольные напитки, Шампуни).
- level_3 более детализированная категория (например, Йогурты, Пиво, Мужские шампуни).
- level_4 самая детализированная категория товара (например, Греческий йогурт, Светлое пиво, Шампунь с кератином).
- **segment_id** идентификатор сегмента товара (например, премиумкласс, товары для детей, товары для дома).
- brand id идентификатор бренда товара.
- \bullet vendor id ID поставщика товара.
- **netto** вес или объем товара.
- is _own _trademark бинарный признак (0/1), указывающий, является ли товар собственным брендом компании (1 собственный, 0 сторонний).
- is_alcohol бинарный признак (0/1), указывающий, относится ли товар к алкогольной продукции (1 да, 0 нет).

3. Датасет purchases

Датасет содержит информацию о транзакциях клиентов и включает следующие поля:

- ullet client $\operatorname{id}-\operatorname{ID}$ клиента, внешний ключ к датасетам clients и uplift_train.
- \bullet transaction id ID покупки.
- transaction datetime дата и время совершения транзакции.
- regular_points_received количество регулярных бонусных баллов, начисленных клиенту за эту покупку.
- express_points_received количество экспресс-бонусных баллов, начисленных клиенту (например, в рамках акции).
- regular_points_spent количество регулярных бонусных баллов, списанных в этой покупке.
- express_points_spent количество экспресс-бонусных баллов, списанных в этой покупке.
- purchase sum итоговая сумма покупки.
- \bullet store id ID магазина, в котором была совершена покупка.
- \bullet product id ID товара, купленного в рамках покупки.
- product quantity количество единиц товара в данной покупке.
- trn_sum_from_iss бонусы, начисленные на эту покупку и сразу использованные для оплаты.
- trn_sum_from_red бонусы, накопленные ранее и использованные для этой транзакции.

В этом датасете возникла проблема с колонкой trn_sum_from_red. В ней пустные значения составляют порядка 93%, поэтому было принято решение ее дропнуть.

4. Датасет uplift_train

Датасет содержит информацию для построения uplift-модели на основе A/B теста:

- ullet client $\operatorname{id}-\operatorname{ID}$ клиента, внешний ключ к датасетам clients и purchases.
- **treatment_flg** бинарный признак, указывающий на группу клиента в A/B тесте:
 - -1 тестовая группа (treatment).

- -0 контрольная группа (control).
- target бинарный признак, указывающий на результат воздействия на пользователя:
 - 1 клиент совершил покупку (целевое действие).
 - 0 клиент не совершил покупку.

Связи между датасетами

- clients.client_id связывает датасет clients с purchases и uplift_train.
- ullet products.product_id связывает датасет products c purchases.
- uplift_train.client_id связывает uplift_train c clients и purchases.

Feature Engineering

В общем и целом, обучаться наша модель будет на данных 400162 клиентов и для каждого клиента мы разработали фичи. Пройдемся по порядку.

1. Информация о клиенте

Эти признаки описывают основные характеристики клиентов, такие как возраст, пол и даты их первой активности:

- **age** возраст клиента. Используется для анализа демографического профиля и выявления возрастных групп с разной активностью.
- gender пол клиента. Помогает понять различия в поведении между мужчинами и женщинами.
- first_issue_year, first_issue_month, first_issue_day дата регистрации клиента. Используется для анализа влияния времени регистрации на покупательскую активность.
- first_redeem_year, first_redeem_month, first_redeem_day дата первой покупки. Помогает понять, сколько времени клиенту потребовалось для первой транзакции.
- issue_redeem_days_diff разница в днях между регистрацией и первой покупкой. Указывает на скорость вовлечения клиента.

2. Финансовая активность

Эти признаки описывают финансовую активность клиента:

- total_purchase_sum общая сумма всех покупок клиента. Оценивает общий вклад клиента.
- total_purchase_count общее количество покупок клиента. Анализирует активность клиента.
- avg_purchase_sum средняя стоимость одной покупки. Позволяет понять средний размер корзины клиента.
- max_purchase_sum, min_purchase_sum, std_purchase_sum максимальная, минимальная сумма покупки и стандартное отклонение. Оценивают вариативность покупок клиента.
- purchase _frequency _weekly, purchase _frequency _monthly частота покупок клиента в неделю и месяц. Показывает регулярность покупок.
- avg_days_between_purchases, max_days_between_purchases, min_days_between_purchases среднее, максимальное и минимальное количество дней между покупками. Оценивают лояльность и вовлечённость клиента.
- time_span_days количество дней между первой и последней транзакцией. Анализирует активность клиента за весь период.

3. Активность по дням недели

Признаки, отражающие активность клиента в зависимости от дня недели:

- purchases_weekday_0, ..., purchases_weekday_6 количество покупок, совершённых в каждый день недели (понедельник, вторник, ...).
- purchase_sum_weekday_0, ..., purchase_sum_weekday_6 сумма покупок, совершённых в каждый день недели.
- weekday_ratio_0, ..., weekday_ratio_6 доля покупок, совершённых в определённый день недели от общего количества покупок.
- favorite_weekday день недели, когда чаще всего совершаются покупки.
- favorite_weekday_sum день недели с максимальной суммой покупок.

4. Активность по месяцам

Признаки, отражающие активность клиента в зависимости от месяца:

- purchases_month_1, ..., purchases_month_12 количество покупок, совершённых в каждом месяце.
- purchase_sum_month_1, ..., purchase_sum_month_12 сумма покупок, совершённых в каждом месяце.
- month_ratio_1, ..., month_ratio_12 доля покупок, совершённых в каждом месяце от общего количества покупок.
- favorite month месяц, когда чаще всего совершаются покупки.
- favorite month sum месяц с максимальной суммой покупок.

5. Продукты и бренды

Признаки, связанные с продуктами и брендами:

- unique_products_purchased количество уникальных продуктов, купленных клиентом.
- favorite product id ID продукта, который чаще всего покупался.
- favorite_brand_id ID бренда, чьи продукты чаще всего покупались
- favorite_segment_id ID сегмента, чьи продукты чаще всего покупались.
- product_diversity доля уникальных продуктов в общем количестве покупок.
- $avg_product_quantity$ среднее количество единиц товара в одной покупке.
- max_product_quantity максимальное количество единиц товара в одной покупке.
- avg product netto средняя масса/объем товаров в покупках.

6. Специфические покупки

Признаки, связанные с определёнными категориями продуктов:

- alcohol_purchase_sum, alcohol_purchase_count общая сумма и количество покупок алкогольной продукции.
- own_trademark_sum, own_trademark_count общая сумма и количество покупок продуктов собственной марки.

- alcohol_ratio доля покупок алкогольной продукции в общем количестве покупок.
- own_trademark_ratio доля покупок продуктов собственной марки в общем количестве покупок.

7. Магазины и суммы выше порогов

Признаки, связанные с магазинами и крупными покупками:

- **favorite_store_id** ID магазина, где чаще всего совершались покупки.
- purchases_above_threshold_500, purchases_above_threshold_750, purchases_above_threshold_1000 количество покупок, сумма которых превышает 500, 750 и 1000 соответственно.
- sum_above_threshold_500, sum_above_threshold_750, sum_above_threshold_1000
 сумма покупок, превышающая 500, 750 и 1000 соответственно. По желаню сумму можно изменить в коде.

8. Динамика покупок

Признаки, описывающие динамику покупок клиента:

• purchase_growth_rate — темп роста покупок клиента за последние 3 месяца.

Uplift модели

1) Treatment Dummy approach

Самое простое и интуитивное решение заключается в том, что модель обучается одновременно на двух группах. При этом бинарный флаг коммуникации выступает в качестве дополнительного признака. Каждый объект из тестовой выборки скорим дважды: с флагом коммуникации, равным 1, и с флагом, равным 0. Вычитая вероятности по каждому наблюдению, получим искомый uplift.

Для решения любых задач классификации и регрессии мы использовали библиотеку CatBoost.

Была построена модель CatBoostClassifier, которая предсказывала целевое действие (target). В виду того, что перед нами не стояла цель получить наилучишй результат с точки зрения подгонки под тестовые данные, то не использовались методы подбора гиперпараметров через

Рис. 4: CatBoost top 20 features

GridSearch или Optuna, а параметры подбирались используя встроенные в CatBoost графики LogLoss и AUC на трейне и валидации, именно по ним оценивалась модель (во избежании Overfitting).

uplift рассчитывался как разность уверенности классификатора в выставленном классе для оценок, полученных при использованиии treatment $\mathrm{flg}=1$ (для всех юзеров) и treatment $\mathrm{flg}=0$ (для всех юзеров)

Рис. 5: Treatment Dummy approach

Рис. 6: Treatment Dummy approach results

Рис. 7: True Results (Uplift)

Рис. 8: AUUC Curve

- Ось X Proportion of population targeted Доля целевой популяции, на которую направлено воздействие (от 0 до 100%).
- Ось Y Cumulative Uplift Накопленный uplift суммарный прирост эффекта по мере привлечения большего количества клиентов из топовой части предсказаний модели.
- Синяя линия Модельный uplift Это накопленный uplift, который предсказывает модель. Чем выше кривая, тем эффективнее модель при фокусировании на наиболее перспективных клиентах.
- Серая пунктирная линия Random Targeting Линия показывает результат случайного таргетирования и служит базовым ориентиром.
- Оранжевая пунктирная линия Uplift@20% Отмечает значение uplift при таргетировании на топ 20% клиентов.
- Красная точка Uplift max Красная точка на графике показывает максимальный накопленный uplift, достигнутый моделью.
- AUUC Area Under the Uplift Curve Площадь под кривой накопленного uplift. Чем больше эта площадь, тем лучше модель.
 Она показывает, насколько эффективно модель приоритизирует клиентов с максимальным потенциалом прироста.

2) Two Models approach

Подход с двумя моделями один из самых популярных и достаточно часто встречается в статьях. Метод заключается в отдельном моделировании двух условных вероятностей на целевой и контрольной группах, а именно:

- 1. Строится первая модель, оценивающая вероятность выполнения целевого действия среди клиентов, с которыми мы взаимодействовали.
- 2. Строится вторая модель, оценивающая ту же вероятность, но среди клиентов, с которыми мы не производили коммуникацию.
- 3. Затем для каждого клиента рассчитывается разность оценок вероятностей двух моделей.

В нашем случае используется CatBoost для построения двух отдельных моделей. Одна модель обучается на группе с treatment_flg = 1, а другая на группе с treatment_flg = 0. Флаг коммуникации не используется как объясняющая переменная.

Для каждого пользователя из выборочной группы делаются два предсказания:

$$\begin{split} & \operatorname{predict_proba}_{\operatorname{treatment}} = P(Y = 1 \mid X, \operatorname{treatment_flg} = 1), \\ & \operatorname{predict_proba}_{\operatorname{control}} = P(Y = 1 \mid X, \operatorname{treatment_flg} = 0). \end{split}$$

Затем рассчитывается uplift для каждого пользователя как разность вероятностей:

$$\operatorname{uplift}(X) = \operatorname{predict_proba}_{\operatorname{treatment}} - \operatorname{predict_proba}_{\operatorname{control}}.$$

Рис. 9: Two Models approach

 $\mbox{Puc.}$ 10: Two Models approach AUUC

Как можно заметить на кривой Model AUUC появилась точка максимума - почему же так? Да все просто: модель прогнозирует пользователей, на которых лучше не воздействовать, так как они откажутся от совершения целевого действия (в прошой модели все uplift значения были > 0, поэтому было выгодно рассылать смс всем пользователям).

3) Class Transformation approach (Classification)

Достаточно интересный и математически подтверждённый подход к построению модели, который заключается в прогнозировании немного изменённой целевой переменной:

$$Z_i = Y_i \cdot W_i + (1 - Y_i) \cdot (1 - W_i)$$

где:

- Z_i новая целевая переменная i-го клиента,
- Y_i целевая переменная i-го клиента,
- $W_i = \{0,1\}$ бинарный флаг коммуникации:
 - при $W_i = 1 i$ -й клиент попал в целевую (treatment) группу, где была коммуникация;
 - при $W_i = 0$ i-й клиент попал в контрольную (control) группу, где не было коммуникации.

Другими словами, новый класс равен 1, если мы знаем, что на конкретном наблюдении результат при взаимодействии был бы таким же или лучше, как и в контрольной группе, если бы мы могли знать результат в обеих группах:

$$Z_i = egin{cases} 1, & ext{если } W_i = 1 \text{ и } Y_i = 1, \ 1, & ext{если } W_i = 0 \text{ и } Y_i = 0, \ 0, & ext{в остальных случаях.} \end{cases}$$

Таким образом, увеличив вдвое прогноз нового таргета и вычтя из него единицу, мы получим значение самого uplift, т.е.

$$uplift = 2 \cdot P(Z=1) - 1$$

Исходя из допущения, описанного выше:

$$P(W = 1) = P(W = 0) = \frac{1}{2},$$

данный подход следует использовать только в случаях, когда количество клиентов, с которыми мы прокоммуницировали, равно количеству клиентов, с которыми коммуникации не было. В нашей выборке группы поделены поровну, поэтому мы можем воспользоваться этим допущением.

По итогу мы снова обучаем CatBoost классификатор, делаем предикты, получаем predict proba и рассчитываем uplift.

Рис. 11: Class Transformation approach (Classification)

Рис. 12: Class Transformation approach (Classification) AUUC

4) Class Transformation approach (Regression)

На предыдущий тип трансформации классов накладываются серьёзные ограничения: целевая переменная Y_i может быть только бинарной, а контрольная и целевая группы должны быть распределены в равных пропорциях. Давайте рассмотрим более общий подход из, не имеющий таких ограничений.

Трансформируем исходную целевую переменную Y_i по следующей формуле:

$$Z_i = Y_i \frac{W_i - p}{p(1 - p)},$$

где:

- Z_i новая целевая переменная для i-го клиента,
- W_i флаг коммуникации для i-го клиента,
- p* propensity score или вероятность отнесения к целевой группе: $p = P(W_i = 1 \mid X_i = x)$.

Здесь важно отметить, что можно оценить p как долю объектов с W=1 в выборке. Или воспользоваться способом, в котором предлагается оценить p как функцию от X, обучив классификатор на имеющихся данных X=x, а в качестве целевой переменной взяв вектор флага коммуникации W.

После применения формулы получаем новую целевую переменную Z_i и можем обучить модель регрессии с функционалом ошибки:

$$MSE = \frac{1}{n} \sum_{i=0}^{n} (Z_i - \hat{Z}_i)^2.$$

Так как именно при применении MSE предсказания модели являются условным математическим ожиданием целевой переменной.

Рис. 13: Class Transformation approach (Regression)

 $\mbox{Puc.}$ 14: Class Transformation approach (Regression) AUUC

5) Causal trees

Стоит отметить, что предыдущие методы имеют следующие недостатки:

- В методах с двумя моделями при расчёте финального предсказания учитываются результаты двух моделей, а значит их ошибки суммируются;
- Если для обучения будут использоваться принципиально разные модели или природа данных целевой и контрольной групп будет сильно отличаться, то может потребоваться калибровка предсказаний моделей;
- Так как во многих методах uplift прогнозируется косвенно, модели могут пропускать слабые различия между целевой и контрольной группами.

Хочется взять хорошо зарекомендовавший себя метод и изменить его так, чтобы непосредственно оптимизировать uplift. Например, использовать деревья решений с другим критерием разбиения. Дерево строится так, чтобы максимизировать расстояние (дивергенцию) между распределениями целевой переменной у контрольной и целевой групп. Формально для каждого разбиения это можно записать так:

$$Gain_D = D_{\text{after split}}(P^T, P^C) - D_{\text{before split}}(P^T, P^C),$$

где P^C, P^T — распределения целевой переменной в контрольной и целевой группах, D — дивергенция (расхождение) между двумя распределениями.

Есть несколько видов дивергенции D, которые используют для решения этой задачи:

• Дивергенция Кульбака-Лейблера (Kullback-Leibler divergence):

$$KL(P,Q) = \sum_{i} p_i \log \frac{p_i}{q_i}.$$

• Евклидово расстояние (Euclidean distance):

$$E(P,Q) = \sum_{i} (p_i - q_i)^2.$$

• Дивергенция хи-квадрат (Chi-squared divergence):

$$\chi^{2}(P,Q) = \sum_{i} \frac{(p_{i} - q_{i})^{2}}{q_{i}}.$$

Где распределения представлены как $Q=(q_1,\ldots,q_n)$ и $P=(p_1,\ldots,p_n)$. Если получается так, что в вершине при разбиении остаются объекты одной группы (контрольной или целевой), то дивергенция сводится к стандартному для деревьев критерию:

- КL-дивергенция к энтропийному критерию,
- Евклидово расстояние и хи-квадрат к критерию Джини.

Мы использовали библиотеку от Uber - Causalml A именно класс UpliftRandomForestClassifier, где по умолчанию установлена Дивергенция Кульбака—Лейблера.

Рис. 15: Causal trees

Рис. 16: Causal trees AUUC