Example SQ MS

[1. Motion]

- (a) (i) constant/steady/uniform speed/velocity OR speed/velocity = 2.5 (m/s)

 speed/velocity = 2.5 m/s accept fraction, average speed/velocity = 2.5 m/s

 B1

 [2]
 - (ii) shape curving upward but not to vertical, at least to 3.5s unless reaches 25 m B1 [1]
 - (b) horizontal (straight) line OR careful sketch accept parallel to time/x-axis B1 [1]
 - (c) tolerance on both axes $\pm \frac{1}{2}$ small square throughout both parts
 - (i) horizontal straight line at 2.5 m/s from 0 to 2 s, ecf from (a)(i) B1
 - (ii) straight line rising to the right as far as the edge of the graph area $\Delta \nu = 4$ m/s or gradient clearly 2 m/s² A1 [3]

[Total: 9]

[2]

[2. Momentum]

[3. Moment]

2	(a)	upwards force = downwards force or no resultant force opposing moments equal or A.C.M. = C. M.	B1 B1	[2]
	(b)	30 x spring balance reading = 40 x 6.0 or equivalent spring balance reading = 8.0 N	C1 A1	[2]
	(c)	0.5 N downwards	B1 B1	[2] Total [6]

[4. Hooke's Law]

Question	Answer	Marks
2(a)	extension is (directly) proportional to load (if elastic limit is not exceeded)	B1
2(b)(i)	0 to 20.5 + / - 0.5 N	В1
2(b)(ii)	(k =) F/x OR (k =) 1/gradient	C1
	140 N/m OR 0.14 N/mm	A1
2(b)(iii)	60 OR 61 OR 62 OR 63 (mm) seen	C1
	180 mm OR 0.18 m	A1
2(c)	W = mg in any form OR (m =) W / g OR (m) = 4 / 8.7	C1
	0.46 kg	A1

[5. Pressure]

[6. Energy and Work]

Question	Answer	Marks
2(a)	energy (of a mass/body/object) due to motion/speed/velocity	B1
2(b)(i)	$E = \frac{1}{2}mv^2$	C1
	$480 = \frac{1}{2} \times m \times 80^2 \text{ so } m = 0.15 \text{ kg}$	A1
2(b)(ii)	1. $E = mgh$ or $\Delta E = mg\Delta h$	C1
	= 0.15 × 9.81 × 210	A1
	= 310J	
	2. work done = 480 – 310	A1
	= 170 J	
2(b)(iii)	work done = Fs	C1
	force = 170/210	A1
	= 0.81 N	
2(b)(iv)	curved line from positive value on <i>v</i> -axis to (<i>T</i> , 0)	M1
	magnitude of gradient decreases	A1
2(b)(v)	as shell rises force decreases and as shell falls force increases	B1
	as shell rises force is downward and as shell falls force is upward	B1
	or	
	as shell rises the force decreases and is downward	(B1)
	as shell falls the force increases and is upward	(B1)

[7. Thermal]

Question	Answer	
4(a)	Molecules of hot liquid collide with (surface of) spoon	B1
	transfer energy / heat to (molecules of) spoon	B1
	(amplitude of) vibration of spoon's molecules increases / is faster (increasing spoon's temperature)	B1
4(b)	Molecules of hot liquid (also) transfer energy to (free) electrons in the spoon	B1
	These (free) electrons move through the metal	B1
4(c)	$(Q =) mc\Delta\theta$	C1
	150 × 4.2 × (80 – 56)	C1
	15000 J	A1

[8. Wave]

6(a)(i)	wavefronts semicircles or part semicircles centred on gap wavelength of waves to right of barrier same as wavelength of incident wave	
6(a)(ii)	1 wavelength shorter	
	correct refraction	B1
	2 direction of travel perpendicular to wavefronts	B1
6(b)	any two from: • particles (in transverse waves) vibrate perpendicular to the direction of travel (of the wave) OR particles in longitudinal waves vibrate parallel to the direction of travel of the wave • longitudinal waves have compressions and rarefactions • transverse waves have troughs and crests	B2
6(c)(i)	1000 m/s ≤ value ≤ 2000 m/s	B1
6(c)(ii)	molecules closer together / water has greater density	B1