Inside the RNN: update equations

An RNN layer, at time step t

- ullet Takes input element ${f x}_{(t)}$
- ullet Updates latent state ${f h}_{(t)}$
- ullet Optionally outputs $\mathbf{y}_{(t)}$

according to the equations

$$egin{array}{lll} \mathbf{h}_{(t)} &=& \phi(\mathbf{W}_{xh}\mathbf{x}_{(t)} + \mathbf{W}_{hh}\mathbf{h}_{(t-1)} + \mathbf{b}_h) \ \mathbf{y}_{(t)} &=& \mathbf{W}_{hy}\mathbf{h}_{(t)} + \mathbf{b}_y \end{array}$$

where

- ϕ is an activation function (usually anh)
- **W** are the weights of the RNN layer
 - lacksquare partitioned into $\mathbf{W}_{xh}, \mathbf{W}_{hh}, \mathbf{W}_{hy}$
 - lacksquare \mathbf{W}_{xh} : weights that update $\mathbf{h}_{(t)}$ based on $\mathbf{x}_{(t)}$
 - $lackbox{ } lackbox{ } lac$
 - lacksquare \mathbf{W}_{hy} : weights that update $\mathbf{y}_{(t)}$ based on $\mathbf{h}_{(t)}$

RNN

Notes

- $\bullet~$ The RNN literature uses ϕ rather than $a_{(l)}$ to denote an activation function
- This is the update equation for a single example $\mathbf{x}^{(i)}$
- In practice, we can simultaneously update for multiple examples
 - $\ \ \, \blacksquare$ The m' < m examples in a minibatch, as examples are independent
- ullet So if we are counting weights/parameters: it is m' times bigger

Let's try to understand these equations

$$\mathbf{h}_{(t)} = \phi(\mathbf{W}_{xh}\mathbf{x}_{(t)} + \mathbf{W}_{hh}\mathbf{h}_{(t-1)} + \mathbf{b}_h)$$

 $\mathbf{h}_{(t)}$ is the latent state after time step t

- It is a *vector* of length $||\mathbf{h}||$
- We drop the time subscript as the dimension on each step is the same

 $\mathbf{W}_{xh}\mathbf{x}_{(t)}$ must therefore also be a vector of length $||\mathbf{h}||$

- $||\mathbf{W}_{xh}||$ is a matrix of shape $(||\mathbf{h}|| \times ||\mathbf{x}||)$
- \mathbf{h}_j , the j^{th} element of latent state \mathbf{h} is the dot product of row j of \mathbf{W}_{xh} and \mathbf{x}
- So $\mathbf{W}_{xh}^{(j)}$ describes how input $\mathbf{x}_{(t)}$ influences new state $\mathbf{h}_{(t),j}$

That is: there are separate weights for each j that describe the interaction of ${f h}$ and ${f x}$

Similarly, $\mathbf{W}_{hh}\mathbf{h}_{(t-1)}$ must be a vector of length $||\mathbf{h}||$

- $||\mathbf{W}_{hh}||$ is a matrix of shape $(||\mathbf{h}|| \times ||\mathbf{h}||)$ So $\mathbf{W}_{hh}^{(j)}$ describes how prior state $\mathbf{h}_{(t-1)}$ influences new state $\mathbf{h}_{(t),j}$

 \mathbf{b}_h , the bias/threshold must also be a vector of length $||\mathbf{h}||$

- ullet It adjusts the threshold of activation function ϕ
- ullet As per our practice: we will usually fold ${f b}$ into the weight matrices ${f W}_{xh}, {f W}_{hh}$

Finally, activation ϕ maps a vector of length $||\mathbf{h}||$ to another vector of length $||\mathbf{h}||$

• The updated state

So updated latent state $\mathbf{h}_{(t)}$ is influenced

- By the input $\mathbf{x}_{(t)}$
- ullet The prior latent state ${f h}_{(t-1)}$

The second equation

$$\mathbf{y}_{(t)} = \mathbf{W}_{hy}\mathbf{h}_{(t)} + \mathbf{b}_y$$

is just a "translation" of the latent state $\mathbf{h}_{(t)}$

- ullet To $\mathbf{y}_{(t)}$, the t^{th} element of the output sequence
- $||\mathbf{W}_{hy}||$ is a matrix of shape $(||\mathbf{y}|| \times ||\mathbf{h}||)$
 - $||\mathbf{y}||$ is the length of each output element and is problem dependent
 - For example: a OHE

It is common to equate $\mathbf{y}_{(t)} = \mathbf{h}_{(t)}$

- No separate "output"
- Just the latent state
- Particularly when using stacked RNN layers
 - lacksquare $\mathbf{y}_{(t)}$ becomes the input to the next layer

Equation in pseudo-matrix form

You will often see a short-hand form of the equation.

Look at $\mathbf{h}_{(t)}$ as a function of two inputs $\mathbf{x}, \mathbf{h}_{(t-1)}$.

We can stack the two inputs into a single matrix.

Stack the two matrices $\mathbf{W}_{xh}, \mathbf{W}_{hh}$ into a single weight matrix

$$egin{aligned} \mathbf{h}_{(t)} &= \mathbf{W}\mathbf{I} + \mathbf{b} \ & ext{with} \ \mathbf{W} &= \left[egin{aligned} \mathbf{W}_{xh} & \mathbf{W}_{hh}
ight] \ \mathbf{I} &= \left[egin{aligned} \mathbf{x}_{(t)} \ \mathbf{h}_{(t-1)}
ight] \end{aligned}$$

Stacked RNN layers revisited

With the benefit of the RNN update equations, we can clarify how stack RNN layers works.

Let superscript [l] denote a stacked layer of RNN.

So the RNN update equation for the bottom layer 1 becomes

$$egin{array}{lll} \mathbf{h}_{(t)}^{[1]} &=& \phi(\mathbf{W}_{xh}\mathbf{x}_{(t)} + \mathbf{W}_{hh}\mathbf{h}_{(t-1)}^{[1]} + \mathbf{b}_h) \end{array}$$

The RNN update equation for layer $\left[l\right]$ becomes

$$egin{array}{ll} \mathbf{h}_{(t)}^{[l]} &=& \phi(\mathbf{W}_{xh}\mathbf{h}_{(t)}^{[l-1]} + \mathbf{W}_{hh}\mathbf{h}_{(t-1)}^{[l]} + \mathbf{b}_h) \end{array}$$

That is: the input to layer [l] is $\mathbf{h}_{(t)}^{[l-1]}$ rather than $\mathbf{x}_{(t)}$

Loss function

As usual, the objective of training is to find the weights ${f W}$ that minimize a loss function

$$\mathcal{L} = L(\hat{\mathbf{y}}, \mathbf{y}; \mathbf{W})$$

which is the average of per example losses $\mathcal{L}^{(\mathbf{i})}$

$$\mathcal{L} = rac{1}{m} \sum_{i=1}^m \mathcal{L^{(i)}}$$

When the output is a sequence

- It's important to recognize that the *target* is a sequence too!
- So the per example loss has an added temporal dimension
- Loss per example per time step
- Comparing the predicted t^{th} output $\hat{\mathbf{y}}_{(t)}^{(\mathbf{i})}$ to the t^{th} target $\mathbf{y}_{(t)}^{(\mathbf{i})}$

In the case that the API outputs sequences

•
$$\mathcal{L}^{(\mathbf{i})} = \sum_{t=1}^T \mathcal{L}^{(\mathbf{i})}_{(t)}$$

In the case that the API outputs a single value

$$ullet \ \mathcal{L}^{(\mathbf{i})} = \mathcal{L}_{(T)}$$

RNN Loss: Forward pass

```
In [2]: print("Done")
```

Done