Inicial primer apellido	
Calcula II	
Cálculo II	Grupo mañana
1º del Grado en Matemáticas	Grupo tarde [

9 de abril de 2021

Parcial 2

Apellidos y Nombre ______ D.N.I. ____

Justifique todas las respuestas.

Curso 2020-2021

1. (3 pts) Sea k un entero positivo y $f: \mathbb{R} \to \mathbb{R}$ la función definida por

1º DE DOBLE TITULACIÓN EN INGENIERÍA INFORMÁTICA-MATEMÁTICAS

$$f(x,y) = \begin{cases} \frac{(xy)^k \cos x}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0); \\ 0, & (x,y) = (0,0). \end{cases}$$

- 1. ¿Para qué valores de k la función f es continua en todo \mathbb{R}^2 ?
- 2. Halle $\partial f/\partial x$ y $\partial f/\partial y$ en (0,0).
- 3. Determine los valores de k para que la función f sea diferenciable en todo \mathbb{R}^2 .

Solución:

La función va a ser continua en todo punto de \mathbb{R}^2 . Si $(x_0, y_0) \neq (0, 0)$, f es continua en (x_0, y_0) porque es igual al cociente de funciones continuas en una vecindad de (x_0, y_0) (como es $\mathbb{R}^2 \setminus \{(0, 0)\}$).

En (0,0) tenemos que ver la continuidad estudiando el límite de f cuando $(x,y) \to (0,0)$ y viendo si es igual a f(0,0) = 0. Para ello, observamos que

$$|xy|^k |\cos x| \le (x^2 + y^2)^k,$$

así que

$$\left| \frac{(xy)^k \cos x}{\sqrt{x^2 + y^2}} \right| \le \frac{(x^2 + y^2)^k}{\sqrt{x^2 + y^2}} = (x^2 + y^2)^{k - \frac{1}{2}} \to 0$$

cuando $(x,y) \to (0,0)$ ya que $k \ge 1$.

Para el segundo apartado, tenemos que usar la definición de derivada parcial como

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0,$$

e igual para la otra.

Para la diferenciabilidad en el (0,0) tenemos que recurrir otra vez al límite que aparece en la definición; como las parciales en (0,0) son ambas nulas, queda comprobar si

$$0 = \lim_{(x,y)\to(0,0)} \frac{\frac{(xy)^k \cos x}{\sqrt{x^2 + y^2}}}{\sqrt{x^2 + y^2}} = \lim_{(x,y)\to(0,0)} \frac{(xy)^k \cos x}{x^2 + y^2}.$$

Para k=1, si nos aproximamos a (0,0) por puntos de la forma x=y, nos queda un límite de la forma

$$\lim_{x \to 0} \frac{x^2 \cos x}{x^2 + x^2} = \frac{1}{2} \neq 0,$$

con lo que para k = 1, f no es diferenciable ahí.

Para $k \geq 2$, ese límite existe y va a ser cero. Para ver esto, observamos que

$$|xy|^k |\cos x| \le (x^2 + y^2)^k$$

así que

$$\left| \frac{(xy)^k \cos x}{x^2 + y^2} \right| \le \frac{(x^2 + y^2)^k}{x^2 + y^2} = (x^2 + y^2)^{k-1} \to 0,$$

cuando $(x,y) \to (0,0)$, ya que $k-1 \ge 1$.

2. (1.5 pts) Se considera la función $f(x,y) = x^2 + y^4 + e^{xy}$. Calcule la derivada direccional de la función en el punto (1,0) en la dirección de máximo crecimiento de la función (nota: la derivada direccional se considera respecto a direcciones v con ||v|| = 1).

Solución: La dirección de máximo crecimiento está dada por el gradiente de f, así que empezamos calculándolo:

$$\nabla f(x,y) = (2x + ye^{xy}, 4y^3 + xe^{xy}).$$

En el punto (1,0), $\nabla f(1,0) = (2,1)$; la dirección unitaria de máximo crecimiento es, entonces, $\vec{v} = (2/\sqrt{5}, 1/\sqrt{5})$. La derivada direccional en esa dirección es

$$D_{\vec{v}}f(1,0) = \langle \nabla f(1,0), \vec{v} \rangle = \langle (2,1), (2/\sqrt{5}, 1/\sqrt{5}) \rangle = 5/\sqrt{5} = \sqrt{5}.$$

También podíamos habernos dado cuenta inmediatamente de que esa dereivada direccional tenía que coincidir con la norma del gradiente en ese punto por lo visto en clase.

3. (2 pts) Sea $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ una función diferenciable en \mathbb{R}^3 tal que

$$\frac{\partial f}{\partial x}(0,1,0) = -1, \qquad \frac{\partial f}{\partial y}(0,1,0) = 3, \qquad \frac{\partial f}{\partial z}(0,1,0) = 2.$$

Sea $h(u,v)=f(\operatorname{sen} u,\cos v,uv)$. Use la regla de la cadena para calcular $\frac{\partial h}{\partial u}(0,0)$ y $\frac{\partial h}{\partial v}(0,0)$.

Solución: Denotamos $g: \mathbb{R}^2 \to \mathbb{R}^3$ dada como $g(u,v) = (x(u,v),y(u,v),z(u,v)) = (\operatorname{sen} u, \cos u, uv)$, con lo que $h = (f \circ g)(u,v)$. Observamos que g(0,0) = (0,1,0), con lo que, según la regla de la cadena,

$$\frac{\partial h}{\partial u}(0,0) = \frac{\partial f}{\partial x}(0,1,0)\frac{\partial x}{\partial u}(0,0) + \frac{\partial f}{\partial y}(0,1,0)\frac{\partial y}{\partial u}(0,0) + \frac{\partial f}{\partial z}(0,1,0)\frac{\partial z}{\partial u}(0,0).$$

Ahora bien,

$$\frac{\partial x}{\partial u} = \cos u, \quad \frac{\partial y}{\partial u} = -\sin u, \quad \frac{\partial z}{\partial u} = v,$$

que en (u,v)=(0,0) valen

$$\frac{\partial x}{\partial u}(0,0) = 1, \quad \frac{\partial y}{\partial u}(0,0) = 0, \quad \frac{\partial z}{\partial u}(0,0) = 0.$$

Sustituyendo, queda

$$\frac{\partial h}{\partial u}(0,0) = (-1) \cdot 1 + 3 \cdot 0 + 2 \cdot 0 = (-1).$$

De forma similar,

$$\frac{\partial h}{\partial v}(0,0) = 0.$$

Si se quiere usar la regla de la cadena en forma matricial, solo hay que notar que

$$Dh(0,0) = Df(0,1,0) \cdot Dg(0,0),$$

y que

$$Df(0,1,0) = \begin{bmatrix} -1 & 3 & 2 \end{bmatrix}, \qquad Dg(u,v) = \begin{bmatrix} \cos u & 0 \\ -\sin u & 0 \\ v & u \end{bmatrix}, \quad Dg(0,0) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Por la regla de la cadena,

$$Dh(0,0) = \begin{bmatrix} -1 & 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} = (-1,0), \qquad \frac{\partial h}{\partial u}(0,0) = -1, \quad \frac{\partial h}{\partial v}(0,0) = 0$$

4. (2 pts) Se considera la función $f(x,y) = e^{ax+y^2} + b \operatorname{sen}(x^2 + y^2)$. Determine los valores de a y b para que $\nabla f(0,0) = (0,0)$ y el polinomio de Taylor de segundo orden centrado en el origen tome el valor 6 en el punto (1,2).

Solución: Empezamos calculando las parciales (todo existe porque f es suma y composición de funciones con un número infinito de derivadas parciales continuas).

$$\frac{\partial f}{\partial x} = ae^{ax+y^2} + b \cdot 2x \cos(x^2 + y^2), \quad \frac{\partial f}{\partial y} = 2ye^{ax+y^2} + b \cdot 2y \cos(x^2 + y^2).$$

Sustituyendo en (0,0) obtenemos

$$\frac{\partial f}{\partial x}(0,0) = a, \quad \frac{\partial f}{\partial y}(0,0) = 0,$$

con lo que necesariamente a=0 y $f(x,y)=e^{y^2}+b\sin(x^2+y^2)$.

Para calcular el polinomio de Taylor de segundo orden, continuamos tomando derivadas segundas:

$$\frac{\partial^2 f}{\partial x^2} = b(2\cos(x^2 + y^2) - 4x^2\sin(x^2 + y^2)), \quad \frac{\partial^2 f}{\partial x \partial y} = 2ye^{y^2} + b(-4xy\sin(x^2 + y^2)), \\
\frac{\partial^2 f}{\partial y^2} = 2e^{y^2} + 4y^2e^{y^2} + b(2\cos(x^2 + y^2) - 4y^2\sin(x^2 + y^2)), \quad (1)$$

así que

$$\frac{\partial^2 f}{\partial x^2}(0,0) = 2b, \quad \frac{\partial^2 f}{\partial x \partial y}(0,0) = 0, \quad \frac{\partial^2 f}{\partial y^2}(0,0) = 2 + 2b,$$

y el polinomio de Taylor de segundo orden de f en (0,0) es

$$P_2(x,y) = 1 + \frac{1}{2}(2bx^2 + (2+2b)y^2) = 1 + bx^2 + (1+b)y^2.$$

Para que P(1,2) = 6, necesitamos que

$$6 = 1 + b + (1 + b)4$$
, $5b = 1$, $b = 1/5$.

5. (1.5 pts) Se considera la función $F: \mathbb{R}^3 \to \mathbb{R}$ dada por $F(x,y,z) = x^3 - y + z^3$ y la superficie de nivel de F correspondiente al valor c = 0 que denotamos por S_0 . Si P_{α} es el plano tangente a S_0 por el punto $(\alpha, 0, -\alpha)$, halle la ecuación de una recta comprendida en todos los P_{α} para cualquier valor de $\alpha \in \mathbb{R}$.

Solución: El vector gradiente de F es $(3x^2, -1, 3z^2)$. Para un α fijo, $\nabla F(\alpha, 0, -\alpha) = (3\alpha^2, -1, 3\alpha^2)$, y el plano tangente a la superficie S_0 por el punto $(\alpha, 0, -\alpha)$ es el de ecuación

$$\langle \nabla F(\alpha, 0, -\alpha), (x - \alpha, y, z + \alpha) \rangle = 0,$$

esto es,

$$\langle (3\alpha^2, -1, 3\alpha^2), (x - \alpha, y, z + \alpha) \rangle = 0.$$

Desarrollando queda

$$3\alpha^{2}(x-\alpha) - y + 3\alpha^{2}(z+\alpha) = 3\alpha^{2}x - y + 3\alpha^{2}z = 0,$$

esto es, la ecuación de P_{α} es

$$3\alpha^2(x+z) - y = 0,$$

y es obvio que la recta x+z=0, y=0 se halla en todos esos planos. También se puede tomar α_0 , α_1 en \mathbb{R} , y ver los puntos comunes de intersección de P_{α_0} , y de P_{α_1} .