defined on the measurable set E and that $(f_n)_{n\in\mathbb{N}}$ is a sequence of measurable functions so that $|f_n|\leq g$. If f is a function so that $f_n \to f$ almost everywhere then

Theorem 1 (Dominated convergence of Lebesgue) Assume that g is an integrable function

$$\lim_{n \to \infty} \int f_n = \int f.$$
Proof: The function $g - f_n$ is non-negative and thus from Fatou lemma we have that $\int (g - f) \le \lim_{n \to \infty} \inf \int f(g_n - f) = \lim_{n \to \infty} \inf \int f(g_n - f) = \lim_{n \to \infty} \inf \int f(g_n - f) = \lim_{n \to \infty} \inf \int f(g_n - f) = \lim_{n \to \infty} \inf \int f(g_n - f) = \lim_{n \to \infty} \inf \int f(g_n - f) = \lim_{n \to \infty} \inf \int f(g_n - f) = \lim_{n \to \infty} \inf \int f(g_n - f) = \lim_{n \to \infty} \inf \int f(g_n - f) = \lim_{n \to \infty} \inf \int f(g_n - f) = \lim_{n \to \infty} \inf \int f(g_n - f) = \lim_{n \to \infty} \inf \int f(g_n - f) = \lim_{n \to \infty} \inf \int f(g_n - f) = \lim_{n \to \infty} \inf \int f(g_n - f) = \lim_{n \to \infty} \inf \int f(g_n - f) = \lim_{n$

 $\liminf \int (g - f_n)$. Since $|f| \le g$ and $|f_n| \le g$ the functions f and f_n are integrable and we have $\int g - \int f \le \int g - \limsup \int f_n,$

so
$$\int g - \int f \le \int g - \min \sup \int f_n,$$

Θεώοημα 2 (Κυοιαοχημένης σύγκλισης του Lebesgue) Έστω ότι η g είναι μια ολοκληρώσιμη

Θεώρημα 2 (Κυριαρχημένης σύγκλισης του Lebesgue) Έστω ότι η
$$g$$
 είναι μια ολοκληρώσιμη συνάρτηση ορισμένη στο μετρήσιμο σύνολο E και η $(f_n)_{n\in\mathbb{N}}$ είναι μια ακολουθία μετρήσιμων συναρτήσεων ώστε $|f_n| \leq g$. Υποθέτουμε ότι υπάρχει μια συνάρτηση f ώστε η $(f_n)_{n\in\mathbb{N}}$ να τείνει στην f σχεδόν παντού. Τότε

παντού. Τότε $\lim \int f_n = \int f.$

$$\lim \int f_n = \int f.$$
 Απόδειξη: Η συνάφτηση $g - f_n$ είναι μη αφνητική και άφα από το Λήμμα του Fatou ισχύει
$$\int (f - g) \leq \liminf \int (g - f_n). \text{ Επειδή } |f| \leq g \text{ και } |f_n| \leq g \text{ οι } f \text{ και } f_n \text{ είναι ολοκληφώσιμες,}$$
 έχουμε

έχουμε $\int g - \int f \le \int g - \limsup \int f_n,$

άρα

 $\int f \ge \limsup \int f_n.$