常用导数

$$y = a^x$$

$$y = \tan x$$

$$y = \cot x$$

$$y = \sec x$$

$$y = \csc x$$

$$y = \arcsin x$$

$$y = \arccos x$$

$$y = \arctan x$$

$$y = \operatorname{arccot} x$$

$$y = \operatorname{arcsec} x$$

$$y = \operatorname{arccsc} x$$

$$y = \sinh x = \frac{e^x - e^{-x}}{2}$$

编号 原函数 导函数

$$18 y = \cosh x = \frac{e^x + e^{-x}}{2}$$

19
$$y = \tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

20
$$y = \operatorname{arsh} x = \ln(x + \sqrt{x^2 + 1})$$

21
$$y = \operatorname{arch} x = \ln(x + \sqrt{x^2 - 1})$$

$$22 y = \operatorname{arth} x = \frac{1}{2} \ln(\frac{1+x}{1-x})$$

积分补充

编号	原函数	导函数
23		$rac{1}{\sqrt{x^2\pm a^2}}$
24		$\sqrt{a^2-x^2}$
25		$\sqrt{x^2\pm a^2}$

常用凑微分法

序号	原式	变式
1	$\int f(ax+b) \mathrm{d}x$ ($a eq 0$)	
2	$\int f(\sin x)\cos x \mathrm{d}x$	
3	$\int f(\cos x) \sin x \mathrm{d}x$	
4	$\int f(\ln x) \frac{1}{x} \mathrm{d}x$	
5	$\int f(x^n) x^{n-1} \mathrm{d}x (n eq 0)$	
6	$\int f(\frac{1}{x^n}) \frac{1}{x^{n+1}} \mathrm{d}x (n \neq 0)$	
7	$\int f(\tan x) \frac{\mathrm{d}x}{\cos^2 x}$	
8	$\int f(\cot x) \frac{\mathrm{d}x}{\sin^2 x}$	
9	$\int f(\arcsin x) \frac{\mathrm{d}x}{\sqrt{1-x^2}}$	
10	$\int f(\arctan x) \frac{\mathrm{d}x}{1+x^2}$	
11	$\int \frac{f'(x)}{f(x)} \mathrm{d}x$	

泰勒公式 (拉格朗日余项)

$$f(x) = T_n(x) + R_n(x)$$
 $T_n(x) =$ $R_n(x) =$ $(\xi =))$

五个基本初等函数的麦克劳林公式 (拉格朗日余项)

$$x\in (-\infty,+\infty), rac{ heta\in (0,1)}{ heta\in (0,1)}$$
 $e^x=$ $\sin x=$ $\cos x=$ $(1+x)^lpha=$ $\ln(1+x)=$

矩阵和、差、积的秩

$$\leq R(A \pm B) \leq$$
 $\leq R(AB) \leq$
 $s \times n, n \times m$

各种分布

分布	概率密度	分布函数
$X\sim (0-1)$		
$X \sim B(n,p)$		
$X \sim P(\lambda)$		
几何分布 $p(1-p)^{k-1}$		
$X \sim U(a,b)$		
$X \sim E(\lambda)$		
$X \sim N(\mu, \sigma^2)$		

常见随机变量的数学期望和方差

分布 期望 方差

 $X \sim (0-1)$

 $X \sim B(n,p)$

 $X \sim P(\lambda)$

几何分布 $p(1-p)^{k-1}$

 $X \sim U(a,b)$

 $X \sim E(\lambda)$

 $X \sim N(\mu, \sigma^2)$

Γ函数

 $\Gamma(lpha) =$

性质

$$\Gamma(\alpha+1)=$$

$$\Gamma(1) =$$

$$\Gamma(n+1) =$$

$$\Gamma(rac{1}{2}) =$$

切比雪夫不等式

$$P\{|X - EX| \ge \varepsilon\}$$

$$m{P}\{|X-m{E}X|$$

大数定理

名称	条件	意义
切比雪夫		
伯努利		
辛钦		

独立同分布的中心极限定理

- 独立
- 同分布
- 数学 期望与方差 存在

$$X_1, X_2, \cdots, X_n, \cdots, \ P(X_i, X_j) =$$
 $EX, DX:$

棣莫弗-拉普拉斯定理(二项分布以正 态分布为其极限分布)

 $Y_n \sim$

 χ^2, t, F 分布

1.

2.

3.

样本期望与方差

$$E\overline{X} =$$

$$oldsymbol{D}\overline{X} =$$

$$ES^2 =$$