| Name: |            |
|-------|------------|
| J#:   | Dr. Clontz |
| Date: |            |

## **SEMIFINAL**

Math 237 – Linear Algebra

Fall 2017

Version 1

Work any problems you wish on the provided answer sheets; take care to label the standard for each response. Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write an augmented matrix corresponding to the following system of linear equations.

$$x_1 + 4x_3 = 1$$
$$x_2 - x_3 = 7$$
$$x_1 - x_2 + 3x_3 = -1$$

E2. Put the following matrix in reduced row echelon form.

$$\begin{bmatrix} 3 & -1 & 0 \\ -1 & 0 & -1 \\ -1 & 1 & 2 \\ 0 & 2 & 6 \end{bmatrix}$$

E3. Find the solution set for the following system of linear equations.

$$2x_1 - 2x_2 + 6x_3 - x_4 = -1$$
$$3x_1 + 6x_3 + x_4 = 5$$
$$-4x_1 + x_2 - 9x_3 + 2x_4 = -7$$

E4. Find a basis for the solution set of the system of equations

$$x + 2y + 3z + w = 0$$
$$3x - y + z + w = 0$$
$$2x - 3y - 2z = 0$$
$$-x + 2z + 5w = 0$$

**V1.** Let V be the set of all pairs of real numbers with the operations, for any  $(x_1, y_1), (x_2, y_2) \in V, c \in \mathbb{R}$ ,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$
  
 $c \odot (x_1, y_1) = (0, cy_1)$ 

- (a) Show that scalar multiplication **distributes vectors** over scalar addition:  $(c+d)\odot(x,y)=c\odot(x,y)\oplus d\odot(x,y).$
- (b) Determine if V is a vector space or not. Justify your answer.
- **V2.** Determine if  $\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix}$  can be written as a linear combination of the vectors  $\begin{bmatrix} 5\\2\\-3\\2 \end{bmatrix}$ ,  $\begin{bmatrix} 3\\1\\1\\0 \end{bmatrix}$ , and  $\begin{bmatrix} 8\\3\\5\\-1 \end{bmatrix}$ .
- **V3.** Determine if the vectors  $\begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}$ ,  $\begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}$ ,  $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$ , and  $\begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$  span  $\mathbb{R}^4$ .

**V4.** Let W be the set of all complex numbers a+bi satisfying a=2b. Determine if W is a subspace of  $\mathbb{C}$ .

**S1.** Determine if the set of vectors 
$$\left\{ \begin{bmatrix} 3\\-1\\0\\4 \end{bmatrix}, \begin{bmatrix} 1\\2\\-2\\1 \end{bmatrix}, \begin{bmatrix} 3\\-8\\6\\5 \end{bmatrix} \right\}$$
 is linearly dependent or linearly independent.

Determine if the set  $\{2x^2 - x + 3, 2x^2 + 2, -x^2 + 4x + 1\}$  is a basis of  $\mathcal{P}^2$ .

**S3.** Let W be the subspace of  $\mathcal{P}^3$  given by  $W = \text{span} \left( \left\{ x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3 \right\} \right)$ . Find a basis for

**S4.** Let W be the subspace of  $\mathbb{R}^{2\times 2}$  given by  $W = \operatorname{span}\left(\left\{\begin{bmatrix} 2 & 0 \\ -2 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 3 & 6 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}\right\}\right)$ . Compute the dimension of W.

**A1.** Let  $T: \mathbb{R}^4 \to \mathbb{R}^2$  be the linear transformation given by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 3x_3\\3x_2 - x_3 \end{bmatrix}.$$

Write the matrix for T with respect to the standard bases of  $\mathbb{R}^4$  and  $\mathbb{R}^2$ .

Determine if  $D: \mathbb{R}^{2\times 2} \to \mathbb{R}$  given by  $D\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a - 3c$  is a linear transformation or not.

**A3.** Determine if each of the following linear transformations is injective (one-to-one) and/or surjective (onto).

(a) 
$$S: \mathbb{R}^2 \to \mathbb{R}^4$$
 given by the standard matrix  $\begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \\ 3 & -3 \end{bmatrix}$ .  
(b)  $T: \mathbb{R}^4 \to \mathbb{R}^3$  given by the standard matrix  $\begin{bmatrix} 2 & 3 & -1 & 1 \\ -1 & 1 & 1 & 1 \\ 4 & 7 & -1 & 5 \end{bmatrix}$ 

(b) 
$$T: \mathbb{R}^4 \to \mathbb{R}^3$$
 given by the standard matrix 
$$\begin{bmatrix} 2 & 3 & -1 & 1 \\ -1 & 1 & 1 & 1 \\ 4 & 7 & -1 & 5 \end{bmatrix}$$

**A4.** Let  $T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^3$  be the linear map given by  $T\left(\begin{bmatrix} a & b \\ x & y \end{bmatrix}\right) = \begin{bmatrix} a+x \\ 0 \\ b+y \end{bmatrix}$ . Compute a basis for the kernel and a basis for the image of T.

M1. Let

$$A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix} \qquad \qquad B = \begin{bmatrix} 3 & 1 & 0 \end{bmatrix} \qquad \qquad C = \begin{bmatrix} 3 & -1 & 4 \\ 1 & 0 & 2 \end{bmatrix}$$

Exactly one of the six products AB, AC, BA, BC, CA, CB can be computed. Determine which one, and compute it.

**M2.** Determine if the matrix  $\begin{bmatrix} 3 & -1 & 0 \\ 2 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$  is invertible.

- **M3.** Find the inverse of the matrix  $\begin{bmatrix} 2 & -1 & -3 \\ -14 & 9 & 24 \\ 3 & -2 & -5 \end{bmatrix}$ .
- **G1.** Compute the determinant of the matrix  $\begin{bmatrix} 2 & 3 & 0 & 1 \\ -1 & 3 & 1 & 4 \\ 0 & 2 & 0 & 3 \\ 1 & -1 & 3 & 5 \end{bmatrix}.$
- **G2.** Compute the eigenvalues, along with their algebraic multiplicities, of the matrix  $\begin{bmatrix} 9 & -3 & 2 \\ 23 & -8 & 5 \\ 2 & -1 & 1 \end{bmatrix}$ .
- **G3.** Compute the eigenspace of the eigenvalue -1 in the matrix  $\begin{bmatrix} 4 & -2 & -1 \\ 15 & -7 & -3 \\ -5 & 2 & 0 \end{bmatrix}$ .
- **G4.** Compute the geometric multiplicity of the eigenvalue -1 in the matrix  $\begin{bmatrix} 4 & -2 & -1 \\ 15 & -7 & -3 \\ -5 & 2 & 0 \end{bmatrix}$ .

| Standard: |  |
|-----------|--|
|           |  |

| Standard: |  |
|-----------|--|
|           |  |