Assignment1 Extended

Name: Ahmed Nour

Sheet ID: 16

Q1)

Code:

module comp (a,b);

input [3:0] a;

output b;

assign b = (a > 4'b0010 & a < 4'b1000) ? 1 : 0;

endmodule

Simulation:

To solve the question, we need to divide the clock into the smallest clock of all of them to make sure that there will not be any clock has 0 and 1 at the same moment.

Note: the bold lines are the dividers, the dashed lines test the value at the clock.

Q3)

Code:

module comp (a, b, c, f);

input a, b, c;

output f;

assign
$$f = ((a \land b) \& (b \sim \land c) \& c);$$

endmodule

Simulation:

Note: As shown in the simulation the only case that justify f = 1 when a = 0, b = 1 and c = 1.

Q4)

Code:

module comp (a,b);

input [2:0] a;

output b;

assign $b = \sim |a|$;

endmodule

Simulation:

Note: To get 1 only when all bits are 0s and using one gate we use nor due to truth table and the output of the simulation.

Α	В	С	$X = \overline{A + B + C}$
0	0	0	1
05	507	213	COM
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	O Eksterne

Q5)

Code:

```
module ALU1b (a, b, Ainvert, Binvert, CarryIn, Operation, Result, CarryOut);
input a, b, Ainvert, Binvert, CarryIn;
input [1:0] Operation;
output Result, CarryOut;
wire at , bt;
assign at = (Ainvert)? ~a : a;
assign bt = (Binvert)? ~b : b;
assign {CarryOut, Result} = (Operation == 0)? (at & bt) : (Operation == 1)? (at | bt) : (at + bt + CarryIn);
```

endmodule

Simulation:

