

Exploratory data analysis

Exploring numerical data

Prof. Dr. Jan Kirenz HdM Stuttgart

Data for 3142 counties in the United States

Scatterplots for paired data

Total income is on the x-axis

Data: loans50

Loan amount is on the y-axis

This is a borrower with a **total income** of 350 k and a **loan amount** of 35 k

Each point represents a single case (borrower)

Data: loans50

A scatterplot of the median household income against the poverty rate for the county dataset

Dot plots

A dot plot of interest rate (numbers are rounded)

Data: Ioan50

The **mode** is the value with the most occurrences

Median

- If the data are ordered from smallest to largest, the median is the observation right in the middle.
- If there are an even number of observations, there will be two values in the middle, and the median is taken as their average.

Interest rates from the loan 50 dataset, arranged in ascending order (original values)

	1	2	3	4	5	6	7	8	9	10
1	5.31	5.31	5.32	6.08	6.08	6.08	6.71	6.71	7.34	7.35
10	7.35	7.96	7.96	7.96	7.97	9.43	9.43	9.44	9.44	9.44
20	9.92	9.92	9.92	9.92	9.93	9.93	10.42	10.42	10.90	10.90
30	10.91	10.91	10.91	11.98	12.62	12.62	12.62	14.08	15.04	16.02
40	17.09	17.09	17.09	18.06	18.45	19.42	20.00	21.45	24.85	26.30

The middle

Median = (9.93 + 9.93) / 2 = 9.93

The **median** is the number in the middle

The **mean** is the center of the distribution (the average)

The sample mean

The sample mean, denoted as $\bar{\mathbf{x}}$, can be calculated as

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n},$$

where $x_1, x_2, ..., x_n$ represent the n observed values.

- The sample mean is a sample statistic, and serves as a **point estimate** of the population mean.
- This estimate may not be perfect, but if the sample is good (representative of the population), it is usually a pretty good estimate.

Results of a trial of 1500 adults that suffer from asthma

	Description	New drug	Standard drug
0	Number of patients	500	1000
1	Total asthma attacks	200	300

- New drug: 200/500 = 0.4 asthma attacks per patient
- Standard drug: 300/1000 = 0.3 asthma attacks per patient

The population mean

- The population mean is also computed the same way but is denoted as µ.
- It is often not possible to calculate µ since population data are rarely available

Per capita income against population size in 3,143 US counties

The weighted mean

The weighted mean can be calculated as

weighted mean of
$$x_i$$
s = $\frac{w_1 x_1 + w_2 x_2 + \dots + w_n x_n}{w_1 + w_2 + \dots + w_n} = \frac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i}$

 $x_1, x_2, ..., x_n$ represent the n observed values.

w₁, w₂, ..., w_n represent the n weights.

 The simple mean is a weighted mean where all the weights are 1:

$$\frac{x_1 + x_2 + x_3 + \dots + x_n}{n} = \frac{1 \times x_1 + 1 \times x_2 + 1 \times x_3 + \dots + 1 \times x_n}{1 + 1 + 1 + \dots + 1}$$

Histograms

A histogram for interest rate with 3 bins, a bin width of 10 and a range of scores of 30

A histogram for interest rate with 1 bin, bin width of 30 and a range of scores of 30

A histogram for interest rate with bin width 1

Histograms can be used to identify modes

A mode is represented by a prominent peak in the distribution.

Counting only prominent peaks.

Variance and standard deviation

Understanding the shape of the data distribution.

- When data trail off in one direction, the distribution has a long tail.
- If a distribution has a long left tail, it is left skewed.
- If a distribution has a long right tail, it is **right skewed.**

We call the distance of an observation from its mean its **deviation**.

$$egin{aligned} x_1 - ar{x} &= 10.9 - 11.57 = -0.67 \ x_2 - ar{x} &= 9.92 - 11.57 = -1.65 \ x_3 - ar{x} &= 26.3 - 11.57 = 14.73 \ dots \ x_{50} - ar{x} &= 6.08 - 11.57 = -5.49 \end{aligned}$$

The sample variance

Deviation:

$$egin{aligned} x_1 - ar{x} &= 10.9 - 11.57 = -0.67 \ x_2 - ar{x} &= 9.92 - 11.57 = -1.65 \ x_3 - ar{x} &= 26.3 - 11.57 = 14.73 \ &dots \ x_{50} - ar{x} &= 6.08 - 11.57 = -5.49 \end{aligned}$$

$$s^2 = rac{(-0.67)^2 + (-1.65)^2 + (14.73)^2 + \dots + (-5.49)^2}{50 - 1} \ = rac{0.45 + 2.72 + \dots + 30.14}{49} \ = 25.52$$

If we square these deviations and then take an average, the result is equal to the **sample variance**, denoted by s²

Variance & standard deviation

- The **variance** is the average squared distance from the mean.
- The standard deviation is the square root of the variance.

$$s=\sqrt{rac{\sum_{i=1}^n(x_i-ar{x})^2}{n-1}}$$

$$s = \sqrt{25.52} = 5.05$$

Standard deviation

- The standard deviation is useful when considering how far the data are distributed from the mean.
- The standard deviation represents the typical deviation of observations from the mean.

- Often about 68% of the data will be within one standard deviation of the mean
- and about 95% will be within two standard deviations.
- However, these percentages are not strict rules.

Synthetic generated data with symmetric distribution

- Variables that show roughly equal trailing off in both directions are called **symmetric**.
- Normal (or Gaussian) distribution

Histogram with kernel density estimation (KDE)

Histogram with kernel density estimation (KDE)

Histogram with kernel density estimation (KDE)

Example in Google Sheets