BEV车位自动化标注算法设计文档

草稿区

反转车位的调转时间点

1设计功能

本模块为使用感知车位检测模型检测结果、EM融合结果、定位输出信息,进行BEV车位检测模型训练数据的 自动化标注功能。

2设计思路及折衷

2.1 总体设计思路

自动化标注算法采用了EM车位融合策略,基于视频流中的单帧图像检测结果,进行全局车位融合,最后进行标注。总体分为三个部分:

- 1) 单帧车位检测部分:采用感知车位检测模型获得检测结果。
- 2) 多帧车位匹配部分:基于定位信息与IOU的规则将多帧中同一车位匹配。
- 3) 车位坐标融合部分: 匹配后的同一车位角点坐标融合以加权为主。

融合车位使用的坐标建立在3D世界坐标系,3D坐标的来源是基于图像检测的2D图像坐标位置+定位信息,进行坐标变换,转到3D世界坐标系。融合车位对截断车位进行填补,默认补齐到5m。

2.2 设计场景覆盖

与BEV车位检测模型一致

2.3 数据分布

与BEV车位检测模型一致

3 总体设计

3.1 融合依赖数据源

自动化标注数据依赖源有三条,分别是定位信息、EM融合信息、感知车位检测结果。

1	数据源	获取方式	筛选规则	信息	含义	
2	定位topic	实车录制,	1.定位状态为Tracking	timestamp	时间戳	16
3		ebag包解析	2.包含系统时间 3.包含位置、欧拉角、	pos	车身位置 (世界坐标)	ar 单
4			角加速度、线加速度、 速度、四元数	ypr	车身姿态	ar

				* 中医自动化协社并以及			
5			4.车速由四元数与 speed_global计算得到	angle	e_v	角加速度	ar
6			?为什么要单独算车速	acc_	_V	线加速度	ar
7			而不用自带的	speed		车速	ar
8			speed_global	quaternion		四元数	ar
9				timesta	amp	时间戳	16
10					status	车位状态	'FI 'O
11			对于每一个车位 1.车位状态为FREE或 OCCUPIED		type	车位类型	'V 'P, 'S
12	EMtopic	EMtopic	2.车位类型为垂直车 位,平行车位,斜车位 3.车位来源为视觉或超 声波 4.车位已判断 5.包含全局id	packspace_info -> list	source	车位来源	'V 'U
13					id	全局id	int
14					timestamp	时间戳	16
15			6.包含环视时间戳		points	车位角点 (世界坐标系)	ar
16	Camera	大图模型	对于每个车位	timesta	amp	时间戳	16
17		离线推理生成(640*640环视	1.环视推理结果包含车位信息	位信息 is_get_	_loc	是否有定位数据	'Tr 'Fa
18		图作为输入)	2.*有匹配的定位信息 (影响是否有全局车 位)	loc 理结果 点(图 系) 否截断 parkspace_info 点(车 -> list	timestamp	时间戳	16
19					pos	车身位置 (世界坐标系)	ar 单
20			读取环视推理结果		speed	车速	а
21			json		acc_v	线加速度	ar
22		像坐	读取车位角点(图 像坐标系)		ypr	车身姿态	ar
23			 计算车位角点(车 身坐标系) 		points_image	车位角点 (四路环视坐标系)	ar
24			角点(世界坐标系);否则车位角点(世界坐标系) =None		points_car	车位角点 (车身坐标系)	ar

2023/8/14 11:41 BEV车			BEV车位自动化标注算法设	V车位自动化标注算法设计文档		
25				points_global	车位角点 (世界坐标系)	ar
26				is_truncated	车位是否被截断	'Tı 'F;
27			speedbump_info ->list			
28			footwalker_info- >list			
29			arrow_info->list			
30			lane_info->list			

3.2 融合对象类

融合类对象参考EM融合车位规则,利用感知推理结果、EM、定位topic进行多帧融合,获得全局车位信息,再将全局车位信息回填至每一帧图像中。离线融合方式相比EM结果的优点:可以利用未来帧信息,感知模型使用离线大模型。

1	fusion_fusion_parks() 实现融合							
2	步骤	函数	目的	输出	实现方			
3	全局车位匹配	fusion.fusion_weight()	获得全局车位	match_results	■ BEV车位自录 法设计文			
4	车位坐标融合	fusion_weight.fusion()	提高全局车位精度	fusion_results	■ BEV车位自录 法设计文			
5	填补融合车位缺 失帧信息	fusion.fill_every_frame_for_f usion_results()	将全局车位回填至每 一帧图像	fusion_results	BEV车位自示法设计之			
6	获得EM车位信息	fusion.get_em_parks_info()	获取全局车位对应的 EM车位信息	fusion_results[idx] ["em_timestamps"]fusion_results[idx] ["em_parks"]	调用em.get_pa 遍历em_data中: 历每一个车位, 数; 若最高IOU分数 [0.5],则认为该 成功,记录该帧 位信息			

3.2.1 全局车位匹配策略

通过使用所有时间帧的车位信息(camera.park_data),将单帧车位结果匹配,生成全局车位信息,为每一个车位关联一个唯一全局id。

逐帧遍历图像帧车位检测结果进行整理,对于每一帧,维护两个队列 未匹配车位列表(来自当前帧图像检测结果) 未更新车位列表(来自已匹配全局车位列表)

匹配思想:

- 将单帧无独立id的车位转为有时间序列信息的全局车位
- 匹配过程中维护两个队列,一个是一个是当前帧检测车位的list,一个是全局检测车位的list
- 处理顺序: 当前帧车位 -> 与已有全局车位匹配 -> 更新未匹配全局车位 -> 未匹配当前帧车位加入全局车位

3.2.1.1 当前车位与全局车位的匹配规则

iou_score, is_reverse = common_tool.cal_overlap(frame_parks[k]["points_global"], match_results[i]["filter"])

判断车位是否反向

判断规则:

同时满足以下条件则认为以下车位检测反向:

- 两个车位短边中心连线向量的夹角 > 135度(180 45)
- 车位前短边的长度区间为 2~10 (m)

如果车位是反过来了,则调整3、4号角点的位置(因为默认的3、4号角点进行了补边,不一定是真实的坐标)。注意这里只调整3、4号角点位置,不将其与1、2号角点调换。

调整规则:

$$p2 = p1 + 车位长度* rac{\text{两点向量}(p2-p1)}{\text{两点长度}[p1p2]}$$

$$p3 = p0 + 车位长度* rac{两点向量(p3-p0)}{两点长度|p0p3|}$$

·III·

计算车位IOU

<u>判断规则</u>:车位IOU > 0.5 则认为匹配成功

计算公式:

$$IOU = \frac{inter\ area}{min(area1,\ area2)}$$

3.2.1.2 全局车位匹配成功后世界坐标更新公式

fusion.update_match_result(match_results, int(max_idx), frame_parks[k], frame_data,

is_reverse_flags[max_idx])

世界坐标的更新分两种情况:车位正常与车位反转,两种情况处理方式不同。 🚣 不更新图像车位坐标。

1.若该帧车位检测反转(is_reverse=True),不进行车位融合,将全局车位反转(12号角点为34号角点,34号角点为12号角点),同时12角点坐标作为全局车位的12号角点坐标。

全局坐标[2:] = 全局坐标[0:2]

全局坐标[0:2] = 当前帧坐标[0:2]

<u>考虑因素</u>:已有的融合车位后短线可能为脑补角点,置信度存疑,车位检测反转时相信前线角点的准确性,故不进行融合。

2.若该帧车位检测正常(is_reverse=False),车位检测方向与历史帧一致,则进行车位融合。融合方式为加权融合,计算公式为:

$$GL_t = r * GL_{cur} + (1 - r) * GL_{t-1}$$

其中超参数r=0.4, 通过 config param.py 中的 match filter ratio 参数配置。

考虑因素:相信离线模型的检测性能,未采用复杂的融合策略,后续可评估更复杂融合策略性能

3.2.1.3 match results 数据结构与本阶段流程图

1	match_results->list							
2	信息		含义	格式	来源			
3	filter		融合车位角点 (世界坐标系)	array([x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4])				
4	is_reverse		车位是否存在过反转	'True' 'False'	车位存在不小于一帧的检验 转时该变量为True			
5	scene		车位场景	{scene_id: cnt}	统计每一帧的scene,在副取最大次数对应scene进行			
6	frames->list	timestamp	时间戳	16位	图像帧的时间戳			
7	(list长度等于检出该 车位的图像帧数)	loc	定位信息	同CameraTopic-loc 'None'(无匹配定位信息时)	拷贝camera中信息			
8		id	全局id编号	int 从0开始	? id和match_results idx- 是否必要?			

9	is_reverse	是否反向	'True' 'False'	计算iou时给出
10	is_truncated	是否截断	'True' 'False'	拷贝camera中信息
11	points_global	车位角点 (世界坐标系)	array([x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4]) None(无匹配定位信息时)	拷贝camera中信息
12	points_car	车位角点 (车身坐标系)	array([x1 y1 0 x2 y2 0 x3 y3 0 x4 y4 0])	拷贝camera中信息
13	points_image	车位角点 (四路环视坐标系)	array([x1 y1 0 x2 y2 0 x3 y3 0 x4 y4 0])	拷贝camera中信息

本阶段流程图如下:

3.2.2 车位坐标融合策略

·III·

对于每帧的全局车位,基于其时间区间内的车位信息进行融合。若该区间内仅有当前帧为None,则会被填上坐标值;若该区间内少于5帧检出,则即使该帧原有检出,也会覆盖为None。

融合处理流程:

- 1.划定窗口, 取历史m帧和未来的n帧;
- 2.在窗口内,计算每个点的平均值和和标准差,利用 mean±3*std 的范围去剔除异常值;
- 3. 加权平均,理论上距离当前时刻越近,那么标定误差、定位误差、检测误差都会与当前时刻更接近,更符合当前时刻真值的分布。其中权重赋值如下:
 - a) 比如窗口size为7, 当前帧的索引值为6, 取历史4帧和未来2帧, 那么窗口的索引值为a = [2, 3, 4, 5, 6, 7, 8];
 - b) 每一帧的索引值与当前帧的索引值相减, 取绝对值: b = [4, 3, 2, 1, 0, 1, 2];
 - c) 用max(b) b + 1, 得到c = [1, 2, 3, 4, 5, 4, 3];
 - d) 再取d = power(c, n), 最后weight = c / sum(d), power是幂运算, n作为可调整参数, n越大, 当前时刻的权重越大。

```
park_index = np.array(park_index, dtype=float)
step = np.absolute(park_index - idx)
step = np.max(step) - step + 1
weight = np.power(step, self.cfg.fwm_power)
weight = weight / np.sum(weight)
```

- 4.对于漏检帧和距离较远从而无法检测的帧、 以车辆位移最近的融合帧投影到该时刻作为真值;
- 5.借鉴环视车位标注规则,针对某一时刻图像,只有当车位的两个前角点都在环视图像内或者超出图像边界不超过20cm,才会将这个车位作为该时刻环视图的真值车位。
- 1.在局部异常值过滤之前,增加了全局异常值,mean ± 3*std -->mean ± 2*std
- 2.增加最少检测帧数,目前整个数据段检测帧数不少于5帧的车位才会融合
- 3.优化图像截断点处理。利用全局所有检测帧信息,若有实际后角点的检测帧,则预处理时补长到实际长度再进行融合,否则默认 补长到5米
- 4.完成车位判空关联
- 5.完成空间车位关联

3.2.2.1 预处理

预处理的目的是调整要进行融合的**滤波车位(fusion_results[i]["filter"])**和<u>每一帧</u>的**全局车位**(fusion_results[i]["parks"][j]["points_gloabl"])。

滤波车位调整策略:

保留12号角点,对于34号角点,使用车位线长边长度进行调整。

物理含义: 计算单位方向向量, 保持方向一致, 长度使用默认长度

单帧全局车位调整策略:

单帧全局车位调整分两步,第一步针对被截断车位;第二步针对所有车位。

对于被截断车位,使用车位线长边长度调整34号角点位置。调整方式与滤波车位方式一致。

对于所有车位,计算角点均值与标准差,对于偏移2*std的角点,使用平均值替代;此外对于反转车位,调换角点顺序,使得每一帧中同一车位的角点顺序保持一致。

车位线长边长度获取:

默认长度为5m(config_param.py中default_parkline_length给定)

将车位两条短边分为top与bottom, top由1、2号角点构成线段, bottom由3、4号角点构成线段

如果车位底边bottom未截断地出现5次(config_param.py中fwm_truncated_scale给定),则使用top与bottom的距离来极端、计算车位线长边长度。

```
### Python | 收起へ

### Len(parks_global_bottom) > self.cfg.fwm_truncated_scale:

### bottom_mean = np.mean(parks_global_bottom, axis=0)

### parkline_mean03 = bottom_mean[1] - top_mean[0]

### parkline_mean12 = bottom_mean[0] - top_mean[1]

### parkline_mean = (parkline_mean03 + parkline_mean12) / 2.0

### default_parkline_length = np.linalg.norm(parkline_mean, ord=2)
```

3.2.2.2 融合处理

融合处理的目的是调整<u>每一帧</u>的**全局车位(fusion_results[i]["parks"][j]["points_gloabl"])。**

处理思路:

对于第j帧的全局车位,使用[fwm_old_frame_num, fwm_future_frame_num]区间内所有非None的全局车位进行融合。(区间范围由config_param.py进行配置,目前为 [j-20, j+15])

若区间内可使用融合车位帧少于fwm_need_fusion_frame_num(目前为5帧),则该帧全局车位直接赋值None;否则使用区间内车位进行融合。

融合策略:

[pp_1, pp_2, ..., pp_n]为区间内的全局车位列表;mp为平均车位角点;diff为全局车位与平均车位的差值列表,如果diff>2*std,则diff=0;w为权重列表,距离当前帧越近,则权重越大;fp为融合车位角点

$$egin{aligned} mp &= mean([pp_1,...,pp_n]) \ w &= max(abs(n-idx)) - abs(n-idx) + 1; w = normalize(w) \ w &= max(abs(n-idx)) - abs(n-idx) + 1; w = normalize(w) \ fp &= mp + w * diff \end{aligned}$$

3.2.2.3 本阶段流程图

本阶段fusion_results结构同match_results,流程图见下:

3.2.3 每帧缺失信息回填

3.2.3.1 回填缺失的时间帧信息

在先前处理中,fusion_results中parks list长度不固定,范围为首次检出帧到视频最终帧。为了统一信息,将对parks list填充至相同长度,首帧由首次检出帧变更为首次包含定位信息帧。填充通过双重遍历camera_data与fusion_results完成,此外还对每一个fuison_results[i]["parks"][j]增加["is_fusion"]字段,用来描述fuison_results[i]["parks"][j]["points_global"]是否进行了时间区间车位融合。

3.2.3.2 更新其余坐标系下的车位角点坐标

在先前处理中,仅对世界坐标系下的车位角点(point_global)进行了融合,未更新其他坐标系下对应的车位角点。为了统一坐标信息,进行双重遍历fusion_results中每一个parks[idx]以更新坐标,由于坐标系变换需要定位信息,若该帧没有匹配的定位信息则直接跳过。

对于已融合车位(fusion_results[i]["parks"][idx]["is_fusion"]=True),直接更新其车身坐标系、图像坐标系下的车位角点坐标;对于未有融合车位(此时global_points是None),则寻找该车位所有时间帧中最近欧式距离的已融合车位,将该融合车位信息赋值给global_points,接着更新对应的车身坐标系、图像坐标系下的车位角点坐标。

3.2.3.3 fusion_results数据结构

1	fusion_results->list						
2	信息		含义	格式	来源		
3	filter		融合车位角点 (世界坐标系)	array([x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4])			
4	is_reverse		车位是否反转	'True' 'False'			
5	frames->list	frames->list timestamp		<str>16位</str>	图像帧的时间戳		
6	(list长度等于有定位 信息的图像帧数)	loc	定位信息	同CameraTopic-loc 'None'(无匹配定位信息 时)	拷贝camera中信息		
7		id	全局id编号	int 从0开始	? id和match_results idx 要?		
8		is_reverse	是否反向	'True' 'False'	计算iou时给出		
		is_truncated	是否截断	'True'	拷贝camera中信息		

			1		
9				'False'	
10		is_fusion	是否进行车位融合	'True' 'False'	进行车位融合操作后,表points_global=None,则(可融合帧数<5帧); 合合 ▲ is_fusion=False时po不为None(如果parks li车位对该帧进行赋值)
11		points_global	车位角点 (世界坐标系)	array([x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4]) None(无匹配定位信息时)	使用时间区间内的车位列融合
12		points_car	车位角点 (车身坐标系)	array([x1 y1 0 x2 y2 0 x3 y3 0 x4 y4 0])	基于融合后的points_glo 到(依赖车身位姿信息)
13		points_image	车位角点 (四路环视坐标系)	array([x1 y1 0 x2 y2 0 x3 y3 0 x4 y4 0])	基于points_car进行变换 尺寸、分辨率、轮宽)
14		points_bevim age	车位角点 (五路环视坐标系)	array([x1 y1 0 x2 y2 0 x3 y3 0 x4 y4 0])	基于points_image进行变bev_offset_x、bev_offse
	em_timest		时间戳	16位	拷贝EMtopic
15 -	em_parks->list	status	车位状态	'FREE' 'OCCUPIED'	
16		type	车位类型	'VERTICAL' 'PARALLEL' 'SLANTED'	
		source	车位来源	'VISION' 'ULTRASONIC'	
18		id	全局id	int 从0开始	_
19		timestamp	时间戳	16位	
20		points	车位角点 (世界坐标系)	array([x1 y1 z1 x2 y2 z2 x3 y3 z3	

20)23/8/14 11:41		BEV车位	五自动化标注算法设计文档	
				x4 y4 z4])	
21	park_dict->dict	key: par	ks[idx]["timestamp"]	value:parks[idx]	以parks中每一元素的时 元素为value,赋值构造
22					

3.3 自动化标注标签生成

融合结果以两种形式进行存储,一是将融合后的全局车位存储,在多车型转换及车位调整中使用;二是将每一 帧图像对应的标注信息保存位json格式,在模型训练时使用。

3.3.1 全局车位字典格式

3.3.2 json文件格式

```
</>
                                                                       JSON | 收起 ^
  1 {
                                             // <str> -- 图像名,以16位时间戳命名
       "image_id": "zzz.jpg",
```

```
// <dict> -- 标注真值
     "preData": {
         "loc": {
                                           // <dict> -- 定位信息
            "acc_v": {"x":, "y":, "z":},
5
                                              // <dict> <float> -- 车身线加速度
            "pos":{"x":, "y":, "z":},
                                              // <dict> <float> -- 车身位置
6
            "speed": {"x":, "y":, "z":},
                                              // <dict> <float> -- 车速
7
            "ypr": {"x":, "y":, "z":}
                                              // <dict> <float> -- 车身姿态
2
9
        },
         "parkingspace": [
10
                                       // <list> -- 车位信息 k parkspace in
  'parkspace` list
           {
11
                "id": ,
12
                                        // <int> -- 车位全局id
13
                "p": □
                                        // <List> --车位角点(四路环视图像坐标系)4
points in p
                     {"x":, "y":, "z":}, // <dict> <float> -- 1\2\3\4号角点顺
14
次
15
                     {},
16
                      {},
17
                     {},
18
                   ],
                "p_bev": [{},{},{}], // <List> --车位角点(五路环视图像坐标系) 4
points in p
20
                "p_car": [{},{},{},{}], // <List> --车位角点(车身坐标系) 4 points
in p
21
               "p_global": [{},{},{},{}], // <List> --车位角点(世界坐标系) 4 points
in p
22
                "source":,
                                         // <str> -- 车位来源
                                         // "VISION"感知车位 "ULTRASONIC" 超
23
声波车位 "EM_VISION" 空间车位
24
               "status":
                                         // <str> -- 车位状态
                                         // "UNKOWM" 未知 "OCCUPIED" 非空车位
"FREE" 空车位
26
         },
27
         ],
        "timestamp": zzz
28
                                       // <int> -- 16位时间戳
29
    }
30 }
```

3.3.3 可视化图像

黄色角点: 1号角点

品红色: 2、3、4号角点

3.4 多车型的标注结果统一

不同车型的两台车,在同一起点出发,到达同一终点,若每一时刻位置相同,则其定位信息得到的位姿是否相同?

3.5 结合环视检测结果与BEV检测结果

只需更新json读取的信息,

aroundview_json

infer_result_json

测试样例

