# Genome Informatics 2022

Lesson 5 - Single cell RNA & Spatial transcriptomics analysis

# Why Single Cell study?

- Hidden variation in gene expression
- Regulatory process of biotechnological or medical relevance
- Relationship between cellular processes and external stimuli

# Why Single Cell study?

### Developmental biology

- Discover more complicated mechanisms in cellular development
- Confirm the distinct gene expression signatures across different cell types
- Identify functional differences among the same cell cell type

### Cancer biology

- Find evidence for models of cancer
- Infer timing of mutations and the drivers
- Evaluate effectiveness of targeted therapy

### Microbiology

- Discover low-abundance species that are are difficult to culture in vitro
- Monitor transcriptional gene activation mechanisms for functional annotation

# Bulk RNA sequencing vs Single cell

# ONE GENOME FROM MANY



A single cell is difficult to isolate, but it can be done mechanically or with an automated cell sorter.

The DNA is extracted and amplified. during which errors can creep in.

Amplified DNA is sequenced.

Errors introduced in earlier steps make sequence assembly difficult; the final sequence can have gaps.

# Single cell sequencing



### Single Cell RNA-seq: Easy as 1,2, 3, ... 5



# Single cell sequencing alignment and gene count



## Cell-gene matrix



### Annotated data object



# Cell-gene matrix

|        |        |        |        |            | 30        | Cell type                       | e 1 |
|--------|--------|--------|--------|------------|-----------|---------------------------------|-----|
|        | Cell 1 | cell 2 | cell 3 | <br>cell X | 20        | Cell type                       |     |
| Gene a | 3      | 5      | 6      | <br>3      | 10        | Cell type                       |     |
| gene b | 3      | 5      | 3      | <br>2      | VE2       | ● Cell type                     | e 5 |
| gene c | 5      | 6      | 5      | <br>4      | t-SI      | Cell type                       |     |
| gene d | 5      | 6      | 7      | <br>8      | -10       | Cell type  Cell type            |     |
| •••    |        |        |        |            | -20       |                                 |     |
| gene z | 7      | 8      | 4      | <br>3      | 20        |                                 |     |
|        |        |        |        | 1          | -30<br>-3 | 30 -20 -10 0 10 20 30<br>t-SNE1 |     |

### Latent (low-dimensional) representation of data

Principal Component analysis linearly transforming the data into a
 new coordinate system where (most
 of) the variation in the data can be
 described with fewer dimensions than
 the initial data





### Latent (low-dimensional) representation of data

**Uniform Manifold Approximation** and Projection (UMAP) tends to better preserve the global structure of the data when projecting from high to low dimensions **UMAP** 

## Single-cell RNA downstream analysis workflow



## Preprocessing







### Normalisation

- Gene length might affect the number of captured reads
- Scaling
- Transformation
  - Log
  - Square root
  - Pearson residual (scTeansform)

| # 0 | Scal | 14k-<br>12k-<br>10k-<br>10k-<br>6k-<br>4k-<br>2k-<br>0 | 500 <sup>20</sup> 00 <sup>25</sup> 00 <sup>30</sup> 00<br>index |
|-----|------|--------------------------------------------------------|-----------------------------------------------------------------|
|     |      |                                                        |                                                                 |

16k

#### Raw data

| Gene | 1 |
|------|---|
| Gene | 2 |

| Cell Type A | Cell Type B | Δ   |
|-------------|-------------|-----|
| 1           | 2           | 1   |
| 100         | 200         | 100 |

#### Log<sub>2</sub> transform

| Cell Type A | Cell Type B | Δ |
|-------------|-------------|---|
| 0           | 1           | 1 |
| 6.64        | 7.64        | 1 |

#### Square root transform

| Cell Type A | Cell Type B | Δ    |
|-------------|-------------|------|
| 1           | 1.41        | 0.41 |
| 10          | 14.1        | 4.1  |

### Normalisation





⇒ Let's quantify the measurement accuracy for *GAPDH* using the **signal-to-noise ratio** (SNR):

$$SNR = \frac{\mu}{\sigma} = \frac{46}{7.4} = 6.2$$
 standard deviation

### Normalisation - Pearson residual

#### Pearson residuals

|        | Cell Type A<br>(50%) | Cell Type B<br>(50%) | Δ     |
|--------|----------------------|----------------------|-------|
| Gene 1 | 0.816                | 1.63                 | 0.814 |
| Gene 2 | 8.16                 | 16.3                 | 8.14  |

1. Simple transformations  $\longrightarrow$   $y_{ij} = f(x_{ij})$ 

Gene 1

Gene 2

- Log transform
- Square root transform

Pearson residuals 
$$y_{ij} = w_j * x_{ij}$$

- ⇒ Instead of transforming each measurement individually, Pearson residuals apply a weight to **all** measurements of a gene.
- ⇒ This makes it so that each gene contributes to the analysis according to **how much evidence** there is that it is non-uniformly expressed.
- ⇒ This favors genes that are expressed in **only a small fraction of cells**.

Raw data

| Cell Type A (50%) | Cell Type B (50%)  |                   |  |
|-------------------|--------------------|-------------------|--|
|                   | Subtype 1<br>(48%) | Subtype 2<br>(2%) |  |
| 0                 | 8                  | 8                 |  |
| 0                 | 0                  | 4.5               |  |

Pearson residuals

| Cell Type A (50%) | Cell Type B (50%)  |                   |  |
|-------------------|--------------------|-------------------|--|
|                   | Subtype 1<br>(48%) | Subtype 2<br>(2%) |  |
| 0                 | 4                  | 4                 |  |
| 0                 | 0                  | 15                |  |

### Normalisation - Log, square root and Person residual

# $y = \ln(x+1) \text{ (Log)}$



### A real-world comparison

$$y = \sqrt{x} + \sqrt{x+1}$$
 (Freeman–Tukey)



#### Pearson residuals



### Batch effects correction



t-SNE plots of the pancreas datasets, before and after MNN correction Each point represents a cell and is coloured by the batch of origin.

### Batch effects correction





# Clustering

### Louvain clustering



### Clustering and cell type annotation

 Marker genes - genes with statistically significant variation in the specific cluster comparing to the rest of the cells



### Scanpy library

- Scalable toolkit for analyzing single-cell gene expression data
- Annotated data object
- Tutorial: <u>Preprocessing and clustering 3k PBMCs</u>



- What if we obtain for every cell beside expression its spatial coordinates
- Each spot is 250 nm in diameter and the center-to-center distance between neighboring spots is 500 nm





### Annotated data object



### Stereo-Seq: Spatiotemporal transcriptomic atlas of mouse organogenesis



# Spatial transcriptomics data analysis

- <u>Stereopy</u> library
- Quick start tutorial