8.5 Komplexní čísla

Zopakujme a doplňme k poznatkům o reálných číslech.

Pro libovolná reálná čísla a,b,c platí:

			sčítání ⊕	násobení 🛇
uzavřenost	U	$\forall a,b \in R$:	$a+b \in R$	$a \cdot b \in R$
neutrální prvek	NP	$\forall a \in R$:	a + n = a	$a \cdot e = a$
			(n=0)	(e=1)
komutativnost	K	$\forall a,b \in R$:	a+b=b+a	$a \cdot b = b \cdot a$
asociativnost	A	$\forall a,b,c \in R$:	a + (b+c) = (a+b)+c	$a \cdot (b \cdot c) = (a \cdot b) \cdot c$
distributivnost	D	$\forall a,b,c \in R$:	$a \cdot (b+c) = a \cdot b + a \cdot c$	
inverzní prvek	IP	$\forall a \in R$:	$\exists a^{-1} \in R : a + a^{-1} = 0 \exists a^{-1}$	$\in R: a \cdot a^{-1} = 1, a \neq 0$
			$\left(a^{-1} = -a\right)$	$\left(a^{-1} = \frac{1}{a}\right)$

Definice 8.5.1

Množina A na níž jsou definovány dvě binární operace (sčítání a násobení (\oplus, \otimes)), které mají vlastnosti U, NP, K, A, D, IP, tedy struktura (A, \oplus, \otimes) se nazývá těleso.

Věta 8.5.1

Struktura $(R.+,\cdot)$ je těleso.

Definice 8.5.2 Komplexních čísel

Komplexním číslem nazýváme libovolnou uspořádanou dvojici reálných čísel [a,b]. Množinu všech reálných čísel značíme C a zřejmě $C = R \times R$. Dále definujeme:

1)
$$\forall [a,b], [c,d] \in C : [a,b] \oplus [c,d] = [a+c,b+d]$$

2)
$$\forall [a,b], [c,d] \in C : [a,b] \otimes [c,d] = [ac-bd,ad+bc]$$

Věta 8.5.2

Struktura (C, \oplus, \otimes) je těleso.

Definice 8.5.3

Každé komplexní číslo [a,0] lze ztotožnit s reálným číslem a.

V komplexním čísle z = [a,b] nazveme a reálnou složkou (částí) Rez a b imaginární složkou (částí) Imz komplexního čísla z.

Číslo [a,b], kde $b \neq 0$ je číslo imaginární.

Číslo [0,b], kde $b \neq 0$ je číslo ryze imaginární.

Číslo [0,1] označujeme i a nazýváme (ryze) imaginární jednotkou.

Věta 8.5.3

Zřejmě:
$$\forall n \in N_0 : i^{4n} = 1, i^{4n+1} = i, i^{4n+2} = -1, i^{4n+3} = -i$$

Věta 8.5.4

Každé komplexní číslo [a,b] lze psát v tzv. algebraickém tvaru [a,b] = a + bi.

Komplexní čísla znázorňujeme v rovině, kdy Re z představuje x -ovou souřadnici a Im z y -ovou souřadnici. Hovoříme o tzv. komplexní nebo Gaussově rovině.

Definice 8.5.4

Absolutní hodnotou komplexního čísla z = [a,b] = a+bi rozumíme reálné číslo $|z| = \sqrt{a^2 + b^2}$.

Geometrický význam absolutní hodnoty z komplexního čísla *z* je vzdálenost jeho obrazu od počátku v Gaussově rovině.

Vlastnosti absolutní hodnoty:

- 1) $\forall z \in C : |z| \ge 0$
- $|z| = 0 \Leftrightarrow z = 0$
- 3) $\forall a, b \in C : |a \cdot b| = |a| \cdot |b|$
- 4) $\forall a, b \in C, b \neq 0 : \left| \frac{a}{b} \right| = \frac{|a|}{|b|}$

Všechna komplexní čísla jejichž absolutní hodnota se rovná 1, se nazývají komplexní jednotky. Jejich obrazy vyplní jednotkovou kružnici.

Množinu komplexních čísel C nelze uspořádat.

Někdy nazýváme absolutní hodnotu komplexního čísla z modulem komplexního čísla z.

Protože každý bod v rovině o kartézských souřadnicích $[a_1,a_2]$ lze určit též pomocí polárních souřadnic $[a|,\alpha]$, lze komplexní čísla vyjádřit též v tzv. goniometrickém tvaru.

Věta 8.5.5 Goniometrický tvar komplexního čísla

Pro všechna komplexní čísla z platí: $z=|z|\cdot (\cos\varphi+i\cdot\sin\varphi)$, kde |z| je modul komplexního čísla a φ jeho argument, který není určen jednoznačně. Pro základní argument je $0\leq \varphi<2\pi$.

Poznámka:

Pokud je φ argument komplexního čísla z, potom je jeho argumentem též libovolné číslo z množiny $\{\varphi+2k\pi\}$, kde $k\in Z$.

Nechť $a = |a| \cdot (\cos \alpha + i \cdot \sin \alpha)$ a $b = |b| \cdot (\cos \beta + i \cdot \sin \beta)$ jsou dvě libovolná komplexní čísla. Potom: 1) $a \cdot b = |a \cdot b| \cdot (\cos(\alpha + \beta) + i \cdot \sin(\alpha + \beta))$

2)
$$\frac{a}{b} = \left| \frac{a}{b} \right| \cdot \left(\cos(\alpha - \beta) + i \cdot \sin(\alpha - \beta) \right), b \neq 0$$

Věta 8.5.6 Moivrova věta

$$\forall n \in \mathbb{N} : \forall \varphi \in \mathbb{R} : (\cos \varphi + i \cdot \sin \varphi)^n = \cos n \cdot \varphi + i \cdot \sin n \cdot \varphi$$

Definice 8.5.5

Pokud je dáno komplexní číslo $z = a + b \cdot i$, potom číslo $a - b \cdot i$ nazýváme komplexně sdruženým číslem k číslu z a značíme jej \bar{z} .

Vlastnosti komplexně sdružených čísel

- 1)
- 2) 3) $z + \overline{z} = 2 \cdot \text{Re } z$
- $z \overline{z} = 2 \cdot \text{Im } z$
- 4) $z \cdot \overline{z} = |z|^2$

Příklad

Určete čemu se rovná
$$\frac{z}{\overline{z}}$$
, $\frac{\overline{z}}{z}$, $\overline{a} + \overline{b}$, $\overline{a} - \overline{b}$, $\overline{a} \cdot \overline{b}$, $\frac{\overline{a}}{\overline{b}}$.

Poznámka:

Exponenciální tvar komplexního čísla $[a,b] = |z| \cdot e^{i\varphi}$.

Věta 8.5.7 Mocniny a odmocniny komplexních čísel

Pokud je libovolné komplexní číslo $z = |z| \cdot (\cos \varphi + i \cdot \sin \varphi)$,

pak pro každé přirozené číslo n zřejmě platí: $z^n = |z|^n \cdot (\cos n\varphi + i \cdot \sin n\varphi)$

a zároveň
$$\sqrt[n]{z} = \sqrt[n]{|z|} \cdot \left(\cos\frac{\varphi + 2k\pi}{n} + i \cdot \sin\frac{\varphi + 2k\pi}{n}\right)$$
, kde $k \in \{0,1,2,...,(n-1)\}$.

Navíc obrazy všech $\sqrt[n]{z}$ tvoří vrcholy pravidelného n-úhelníku, vepsaného do kružnice se středem v počátku a poloměru $\sqrt[n]{|z|}$. (Pro n=1,2 samozřejmě nikoli.)

Řešení rovnic v oboru komplexních čísel

I. Řešení kvadratických rovnic v oboru komplexních čísel

a)
$$a \cdot x^2 + b \cdot x + c = 0$$
, $a, b, c \in R, a \neq 0$

aa) rovnice bez absolutního členu

$$c = 0$$
 $a \cdot x^2 + b \cdot x = 0$ $x(a \cdot x + b) = 0$ $x_1 = 0, x_2 = -\frac{b}{a}$

ab) ryze kvadratická rovnice

$$b = 0$$
 $a \cdot x^2 + c = 0$ $a \cdot c < 0$ $x_{1,2} = \pm \sqrt{-\frac{c}{a}}$

$$a \cdot c > 0$$

$$x_{1,2} = \pm i \cdot \sqrt{-\frac{c}{a}}$$

ac) úplná kvadratická rovnice

$$a \cdot x^{2} + b \cdot x + c = 0$$
 $D = b^{2} - 4ac$ $D > 0$ $x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$ $D = 0$ $x_{1,2} = \frac{-b}{2a}$ $D < 0$ $x_{1,2} = \frac{-b \pm i\sqrt{|D|}}{2a}$

b)
$$a \cdot x^2 + b \cdot x + c = 0$$
, $a, b, c \in C, a \neq 0$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
,

kde $\sqrt{b^2 - 4ac}$ je jedna ze dvou druhých odmocnin komplexního čísla $b^2 - 4ac$.

I v oboru komplexních čísel platí Vietovy vztahy.

II. Binomické rovnice v oboru komplexních čísel

$$a \cdot x^n + b = 0$$
, $a, b \in C$, $a \neq 0$

Příklad

Řešte v množině a) reálných b) komplexních čísel

1)
$$x^3 - 1 = 0$$
 2) $x^6 - 1 = 0$ 3) $x^5 - 1 = 0$

$$(1+i)\cdot x^5 = 1-i$$

III. Trinomické rovnice v oboru komplexních čísel

$$a \cdot x^{2n} + b \cdot x^n + c = 0, \ a, b, c \in C, a \neq 0$$

Převedeme substitucí $s=x^n$, což představuje binomickou rovnici, na kvadratickou rovnici $a \cdot s^2 + b \cdot s + c = 0$.

Příklad

Řešte v množině a) reálných b) komplexních čísel $x^8 + 7 \cdot x^4 + 16 = 0$

IV. Algebraické rovnice

Algebraický polynom:
$$P_n(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + ... + a_1 \cdot x + a_0$$
, $a_i \in C, a_n \neq 0$, $i = 0,1,2,...,n$

Věta 8.5.8 Základní věta algebry

Každá algebraická rovnice s komplexními koeficienty stupně $n \in N$ má vždy alespoň jeden komplexní kořen.

Libovolný mnohočlen n-tého stupně se rovná součinu lineárních kořenových činitelů. Vyskytuje-li se v uvedeném rozkladu dvojčlen $x-\alpha_i$ právě k-á krát, pak se α_i nazývá k-á násobný nulový bod polynomu.

$$P_{n}(x) = a_{n} \cdot x^{n} + a_{n-1} \cdot x^{n-1} + \dots + a_{1} \cdot x + a_{0} = a_{n} \cdot (x - \alpha_{1}) \cdot (x - \alpha_{2}) \cdot \dots \cdot (x - \alpha_{n}) = a_{n} \cdot (x - \alpha_{1})^{r_{1}} \cdot (x - \alpha_{2})^{r_{2}} \cdot \dots \cdot (x - \alpha_{s})^{r_{s}}$$

Věta 8.5.9

Každá algebraická rovnice s komplexními koeficienty stupně $n \in N$ má právě n kořenů, přičemž každý kořen se počítá se svou násobností.

Dále budeme uvažovat polynomy s reálnými koeficienty!

Věta 8.5.10

Má-li polynomická rovnice s reálnými koeficienty imaginární kořen, je jejím kořenem i číslo komplexně sdružené.

Věta 8.5.11

Každý mnohočlen s reálnými koeficienty lze rozložit na součin lineárních a kvadratických činitelů s reálnými koeficienty.

Komplexní funkce komplexní proměnné

S každou komplexní funkcí komplexní proměnné w = f(z) je spojena vždy určitá transformace Gaussovy roviny.

Uveď me několik nejjednodušších:

I.
$$w = z + a, a \in C$$

II.
$$w = C \cdot z$$
, $C \in R$

III.
$$w = z \cdot (\cos \varphi + i \cdot \sin \varphi), \ \varphi \in R$$

IV.
$$w = a \cdot z$$
, $a \in C$

V.
$$w = \frac{1}{z}$$

VI.
$$w = \frac{a \cdot z + b}{c \cdot z + d}$$
, $a, b, c, d \in C$, $a \cdot d \neq b \cdot c$

Poznámka

Věta: Eulerova

$$\forall x \in R : e^{i \cdot x} = \cos x + i \cdot \sin x$$

Pokud má funkce komplexní proměnné v nějaké oblasti první derivaci, má v této oblasti (oblastí v rovině nazveme otevřenou souvislou množinu) všechny derivace.(holomorfní fce)

Holomorfní funkci jde v každém bodě oblasti rozvinout v konvergentní Taylorovu řadu.