B.C.S.E. 2nd year 1st Semester Examination 2016

NUMERICAL METHODS

Time: 3 hours. Full Marks: 100

Answer question no.1 and any 4 from the rest. All parts of same question should be answered together.

1.	a) b) c) d) e) f) g)	 Draw a comparison between regula falsi method and secant method. Derive Aitken's acceleration formula Modify Newton- Raphson iteration formula for solution of a nonlinear equation with multiple roots at a point. Define Δ and E. Prove that (E^{1/2} + E^{-1/2})(1+Δ)^{1/2} = 2 + Δ. Define the terms eigenvalue and eigenvector. 									
2. a) Given the following table of values:											
		р	0.5	1.0	1.5	2.	.0	2.5	3.0	7	
		v	1.62	1.00	0.75	0.0	62	0.52	0.46	7	
	Obtain a least squares fit of the following form to the tabular values. $\mathbf{pv}^{\lambda} = \mathbf{k}$ b) Derive Lagrange interpolation formula. c) Fit a polynomial to the following table of values using Lagrange interpolation formula. $\mathbf{x} 0 1 3 4$										
		T21 - 1 - 41	1 6 1	y -12	0	6	12				
	Find the value of \mathbf{y} when $\mathbf{x} = 2$.									4	
3.	 a) Discuss Jacobi's iterative method for finding the roots of linear simultaneous equations. b) Write down the method in matrix notation. c) Hence find the convergence of the method. 								6 4 4		

d) Solve the following system of equations by Gauss- Seidel iterative method. Solution is required corrected upto 4 decimal places.

$$x + 3y + 10 z = 24$$

 $28x + 4y - z = 32$
 $2x + 17y + 4z = 35$

- 4. a) Discuss Modified Euler's formula for solution of differential equations.
- 6
- b) Derive the expression for truncation error of the above method.
- 4

6

c) Solve the following differential equation by Euler's method.

$$\frac{dy}{dx} = x^2 + y \qquad \text{with } y(0) = 1.0$$

Compute the first 5 steps of the solution with step size h = 0.1 Compare the results with those obtained from the exact solution

$$y = 3 e^{x} - x^{2} - 2x - 2$$

10

- 5. a) Prove that Power method finds the largest eigenvalue of a square matrix.
- 8
- b) Discuss predictor-corrector method for solution of ordinary differential equations. Derive the predictor, modifier and corrector formulae for Adams-Bashforth method.
- 12

6. a) Given the following tabular values:

X	50	60	70	80	90
y	19.96	36.65	58.81	77.21	94.61

Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at $x = 51$.

12

Derive the requisite formulae.

c) Find the inverse of the following matrix using Gauss-Jordan method.

8

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$$

7. a) Discuss Romberg's method for evaluating the integral of the following form.

$$\int_{b}^{a} f(x) dx$$

b) Evaluate the following integral by Gaussian quadrature formula. Take n = 2.

$$\int_{0}^{1} \frac{1}{x^{2} + 1} dx$$

2

[Turn over]

8. a) Describe Bairstow's method for finding the complex roots of a polynomial equation.
b) Solve the following equation by iterative method using repeated substitution corrected upto 4 decimal places. Take x₀ = 0.

 $3x - 1 - \cos(x) = 0$ Take an appropriate form for iteration.
