qpp

0.1

Generated by Doxygen 1.8.5

Mon Apr 14 2014 01:11:56

Contents

1	Nam	nespace	Index														1
	1.1	Names	space List				 	 	 	 	 		 			 	1
2	Hier	archica	Index														3
	2.1	Class I	Hierarchy				 	 	 	 	 		 			 	3
3	Clas	ss Index															5
	3.1	Class I	List				 	 	 	 	 		 			 	5
4	File	Index															7
	4.1	File Lis	st				 	 	 	 	 		 	•		 	7
5	Nam	nespace	Documer	ntatio	n												9
	5.1	qpp Na	amespace	Refe	rence		 	 	 	 	 		 			 	9
		5.1.1	Function	Docu	ımenta	ation	 	 	 	 	 		 			 	13
			5.1.1.1	abs	m		 	 	 	 	 		 			 	13
			5.1.1.2	adjo	oint .		 	 	 	 	 		 			 	13
			5.1.1.3	anti	comm	١	 	 	 	 	 		 			 	14
			5.1.1.4	cha	nnel .		 	 	 	 	 		 			 	14
			5.1.1.5	cho	i		 	 	 	 	 		 			 	15
			5.1.1.6	cho	i2krau	ıs	 	 	 	 	 		 			 	15
			5.1.1.7	con	nm .		 	 	 	 	 		 			 	16
			5.1.1.8	con	jugate		 	 	 	 	 		 			 	16
			5.1.1.9	cos	m		 	 	 	 	 		 			 	16
			5.1.1.10	det			 	 	 	 	 		 			 	17
			5.1.1.11	disp)		 	 	 	 	 		 			 	17
			5.1.1.12	disp)		 	 	 	 	 		 			 	17
			5.1.1.13	disp)		 	 	 	 	 		 			 	17
			5.1.1.14	disp)		 	 	 	 	 		 			 	17
			5.1.1.15	disp	oln		 	 	 	 	 		 			 	17
			5.1.1.16	disp	oln		 	 	 	 	 		 			 	18
			5.1.1.17	disp	oln		 	 	 	 	 		 			 	18
			5 1 1 18	dier	oln												18

iv CONTENTS

5.1.1.19	entanglement	19
5.1.1.20	evals	19
5.1.1.21	evects	20
5.1.1.22	expandout	20
5.1.1.23	expm	21
5.1.1.24	fun	21
5.1.1.25	funm	21
5.1.1.26	gconcurrence	22
5.1.1.27	grams	23
5.1.1.28	grams	23
5.1.1.29	hevals	24
5.1.1.30	hevects	24
5.1.1.31	kron	24
5.1.1.32	kronlist	25
5.1.1.33	kronpow	25
5.1.1.34	load	25
5.1.1.35	loadMATLABmatrix	25
5.1.1.36	loadMATLABmatrix	25
5.1.1.37	loadMATLABmatrix	25
5.1.1.38	logm	26
5.1.1.39	mket	26
5.1.1.40	mket	26
5.1.1.41	mket	27
5.1.1.42	multiidx2n	27
5.1.1.43	mutualinfo	28
5.1.1.44	n2multiidx	28
5.1.1.45	norm	29
5.1.1.46	powm	29
5.1.1.47	proj	30
5.1.1.48	ptrace	30
5.1.1.49	ptrace2	31
5.1.1.50	ptranspose	31
5.1.1.51	rand	32
5.1.1.52	rand	32
5.1.1.53	rand	32
5.1.1.54	rand	32
5.1.1.55	randH	32
5.1.1.56	randket	32
5.1.1.57	randkraus	33
5.1.1.58	randn	33

CONTENTS

		5.1.1.59	randn	33
		5.1.1.60	randn	33
		5.1.1.61	randn	33
		5.1.1.62	randrho	34
		5.1.1.63	randU	34
		5.1.1.64	randV	34
		5.1.1.65	renyi	34
		5.1.1.66	renyi_inf	35
		5.1.1.67	reshape	35
		5.1.1.68	save	35
		5.1.1.69	saveMATLABmatrix	35
		5.1.1.70	saveMATLABmatrix	36
		5.1.1.71	saveMATLABmatrix	36
		5.1.1.72	schmidtcoeff	36
		5.1.1.73	schmidtprob	37
		5.1.1.74	schmidtU	37
		5.1.1.75	schmidtV	38
		5.1.1.76	shannon	38
		5.1.1.77	sinm	39
		5.1.1.78	spectralpowm	39
		5.1.1.79	sqrtm	39
		5.1.1.80	sum	40
		5.1.1.81	super	40
		5.1.1.82	syspermute	41
		5.1.1.83	trace	41
		5.1.1.84	transpose	42
		5.1.1.85	tsallis	42
	5.1.2	Variable	Documentation	42
		5.1.2.1	gt	42
		5.1.2.2	rdevs	42
5.2	qpp::ct	Namespa	ace Reference	42
	5.2.1	Function	Documentation	43
		5.2.1.1	omega	43
	5.2.2	Variable	Documentation	43
		5.2.2.1	chop	43
		5.2.2.2	ee	43
		5.2.2.3	eps	43
		5.2.2.4	ii	43
		5.2.2.5	pi	43
5.3	qpp::in	ternal Nan	mespace Reference	43

vi

		5.3.1	Function	Documentation	 . 44
			5.3.1.1	_check_col_vector	 . 44
			5.3.1.2	_check_dims	 . 44
			5.3.1.3	_check_dims_match_cvect	 . 44
			5.3.1.4	_check_dims_match_mat	 . 44
			5.3.1.5	_check_dims_match_rvect	 . 44
			5.3.1.6	_check_eq_dims	 . 44
			5.3.1.7	_check_nonzero_size	 . 44
			5.3.1.8	_check_perm	 . 44
			5.3.1.9	_check_row_vector	 . 44
			5.3.1.10	_check_square_mat	 . 44
			5.3.1.11	_check_subsys	 . 44
			5.3.1.12	_check_vector	 . 44
			5.3.1.13	_multiidx2n	 . 44
			5.3.1.14	_n2multiidx	 . 44
			5.3.1.15	_ptranspose_worker	 . 44
			5.3.1.16	_syspermute_worker	 . 45
	5.4	qpp::ty	pes Names	space Reference	 . 45
		5.4.1	Typedef D	Documentation	 . 45
			5.4.1.1	bra	 . 45
			5.4.1.2	cmat	 . 45
			5.4.1.3	cplx	 . 45
			5.4.1.4	dmat	 . 45
			5.4.1.5	DynMat	 . 45
			5.4.1.6	fmat	 . 45
			5.4.1.7	imat	 . 45
			5.4.1.8	ket	 . 45
6	Clas	e Door	mentation		47
U	6.1			ribution Class Reference	
	0.1	6.1.1		tor & Destructor Documentation	
		0.1.1	6.1.1.1	Discrete Distribution	
			6.1.1.2	Discrete Distribution	
			6.1.1.3	Discrete Distribution	
		6.1.2		Function Documentation	
		0.1.2	6.1.2.1	probabilities	
			6.1.2.2	sample	
		6.1.3		Data Documentation	
		0.1.0		_d	
	6.2	gpn··Di		ributionAbsSquare Class Reference	
	0.2	יםקקף		mation booguaro oldoo Holorolloo	 . +0

CONTENTS vii

	6.2.1	Construc	ctor & Destructor Documentation	48
		6.2.1.1	DiscreteDistributionAbsSquare	49
		6.2.1.2	DiscreteDistributionAbsSquare	49
		6.2.1.3	DiscreteDistributionAbsSquare	49
		6.2.1.4	DiscreteDistributionAbsSquare	50
	6.2.2	Member	Function Documentation	50
		6.2.2.1	cplx2weights	50
		6.2.2.2	probabilities	50
		6.2.2.3	sample	50
	6.2.3	Member	Data Documentation	50
		6.2.3.1	_d	50
6.3	qpp::E	xception C	Class Reference	50
	6.3.1	Member	Enumeration Documentation	52
		6.3.1.1	Type	52
	6.3.2	Construc	ctor & Destructor Documentation	53
		6.3.2.1	Exception	53
		6.3.2.2	Exception	53
		6.3.2.3	~Exception	53
	6.3.3	Member	Function Documentation	53
		6.3.3.1	_construct_exception_msg	53
		6.3.3.2	what	53
	6.3.4	Member	Data Documentation	53
		6.3.4.1	_custom	53
		6.3.4.2	_msg	53
		6.3.4.3	_type	53
		6.3.4.4	_where	53
6.4	qpp::G	ates Class	s Reference	54
	6.4.1	Construc	ctor & Destructor Documentation	55
		6.4.1.1	Gates	55
		6.4.1.2	Gates	55
		6.4.1.3	~Gates	55
	6.4.2	Member	Function Documentation	55
		6.4.2.1	CTRL	55
		6.4.2.2	Fd	56
		6.4.2.3	getInstance	56
		6.4.2.4	ld	56
		6.4.2.5	operator=	56
		6.4.2.6	Rtheta	56
		6.4.2.7	Xd	56
		6.4.2.8	Zd	56

viii CONTENTS

6.4.3	Member I	Data Documentation	57
	6.4.3.1	b00	57
	6.4.3.2	b01	57
	6.4.3.3	b10	57
	6.4.3.4	b11	57
	6.4.3.5	CNOTab	57
	6.4.3.6	CNOTba	57
	6.4.3.7	CS	57
	6.4.3.8	CZ	57
	6.4.3.9	FRED	57
	6.4.3.10	GHZ	57
	6.4.3.11	H	57
	6.4.3.12	ld2	57
	6.4.3.13	pb00	57
	6.4.3.14	pb01	57
	6.4.3.15	pb10	57
	6.4.3.16	pb11	57
	6.4.3.17	pGHZ	57
	6.4.3.18	pW	57
	6.4.3.19	px0	57
	6.4.3.20	px1	57
	6.4.3.21	py0	57
	6.4.3.22	py1	57
	6.4.3.23	pz0	57
	6.4.3.24	pz1	57
	6.4.3.25	S	57
	6.4.3.26	SWAP	57
	6.4.3.27	$T \ldots \ldots \ldots \ldots \ldots \ldots$	57
	6.4.3.28	TOF	58
	6.4.3.29	$w\ldots\ldots\ldots\ldots\ldots\ldots$	58
	6.4.3.30	X	58
	6.4.3.31	x0	58
	6.4.3.32	x1	58
	6.4.3.33	Y	58
	6.4.3.34	y0	58
	6.4.3.35	y1	58
	6.4.3.36	Z	58
	6.4.3.37	z0	58
	6.4.3.38	z1	58
qpp::No	ormalDistri	bution Class Reference	58

6.5

CONTENTS

	6.5.1	Constructor & Destructor Documentation
		6.5.1.1 NormalDistribution
	6.5.2	Member Function Documentation
		6.5.2.1 sample
	6.5.3	Member Data Documentation
		6.5.3.1 _d
6.6	qpp::Q	udit Class Reference
	6.6.1	Constructor & Destructor Documentation
		6.6.1.1 Qudit
		6.6.1.2 ~Qudit
	6.6.2	Member Function Documentation
		6.6.2.1 getD
		6.6.2.2 getRho
		6.6.2.3 measure
		6.6.2.4 measure
	6.6.3	Member Data Documentation
		6.6.3.1 _D
		6.6.3.2 _rho
6.7	qpp::Ra	andomDevices Class Reference
	6.7.1	Constructor & Destructor Documentation
		6.7.1.1 RandomDevices
		6.7.1.2 RandomDevices
		6.7.1.3 ~RandomDevices
	6.7.2	Member Function Documentation
		6.7.2.1 getInstance
		6.7.2.2 operator=
	6.7.3	Member Data Documentation
		6.7.3.1 _rd
		6.7.3.2 _rng
6.8	qpp::Ti	mer Class Reference
	6.8.1	Constructor & Destructor Documentation
		6.8.1.1 Timer
		6.8.1.2 ~Timer
	6.8.2	Member Function Documentation
		6.8.2.1 seconds
		6.8.2.2 tic
		6.8.2.3 toc
	6.8.3	Friends And Related Function Documentation
		6.8.3.1 operator<< 63
	6.8.4	Member Data Documentation

CONTENTS

		6.8.4.1 _end	3
		6.8.4.2 _start	3
	6.9	qpp::UniformRealDistribution Class Reference	3
		6.9.1 Constructor & Destructor Documentation	3
		6.9.1.1 UniformRealDistribution	3
		6.9.2 Member Function Documentation	3
		6.9.2.1 sample	4
		6.9.3 Member Data Documentation	4
		6.9.3.1 _d	4
_			_
7		Documentation 68	
	7.1	include/channels.h File Reference	
	7.2	include/classes/exception.h File Reference	6
	7.3	include/classes/gates.h File Reference	7
	7.4	include/classes/qudit.h File Reference	8
	7.5	include/classes/randevs.h File Reference	9
	7.6	include/classes/stat.h File Reference	0
	7.7	include/classes/timer.h File Reference	1
	7.8	include/constants.h File Reference	2
	7.9	include/entanglement.h File Reference	4
	7.10	include/entropies.h File Reference	5
	7.11	include/functions.h File Reference	6
	7.12	include/internal.h File Reference	9
	7.13	include/io.h File Reference	0
	7.14	include/matlab.h File Reference	2
	7.15	include/qpp.h File Reference	3
	7.16	include/random.h File Reference	3
	7.17	include/types.h File Reference	5

Chapter 1

Namespace Index

1.1 Namespace List

Here is a list of all namespaces with brief descriptions:

qpp	
qpp::ct	42
qpp::internal	43
qpp::types	45

2 Namespace Index

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

qpp::DiscreteDistribution																		47
qpp::DiscreteDistributionAbsS	qua	are																48
exception																		
qpp::Exception																		 50
qpp::Gates																		54
qpp::NormalDistribution																		58
qpp::Qudit																		59
qpp::RandomDevices																		61
qpp::Timer																		62
app::UniformRealDistribution																		63

Hierarchical Index

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

qpp::DiscreteDistribution												 					47
qpp::DiscreteDistributionAbsSquar	е											 					48
qpp::Exception												 					50
qpp::Gates												 					54
qpp::NormalDistribution												 					58
qpp::Qudit												 					59
qpp::RandomDevices																	
qpp::Timer												 					62
app::UniformRealDistribution												 				_	63

6 Class Index

Chapter 4

File Index

4.1 File List

Here is a list of all files with brief descriptions:

include/channels.h	35
include/constants.h	2
include/entanglement.h	' 4
include/entropies.h	'5
include/functions.h	'6
include/internal.h	'9
include/io.h	30
include/matlab.h	32
include/qpp.h	33
include/random.h	33
include/types.h	35
include/classes/exception.h	6
include/classes/gates.h	57
include/classes/qudit.h	8
include/classes/randevs.h	9
include/classes/stat.h	'0
include/classes/timer.h	71

8 File Index

Chapter 5

Namespace Documentation

5.1 qpp Namespace Reference

Namespaces

- ct
- internal
- types

Classes

- class Exception
- · class Gates
- · class Qudit
- · class RandomDevices
- · class NormalDistribution
- · class UniformRealDistribution
- · class DiscreteDistribution
- · class DiscreteDistributionAbsSquare
- · class Timer

Functions

- types::cmat channel (const types::cmat &rho, const std::vector< types::cmat > &Ks)
- types::cmat super (const std::vector< types::cmat > &Ks)
- types::cmat choi (const std::vector< types::cmat > &Ks)
- std::vector< types::cmat > choi2kraus (const types::cmat &A)
- template<typename Derived >
- types::cmat schmidtcoeff (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)
 template<typename Derived >
- types::cmat schmidtU (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)
- template<typename Derived >
 types::cmat schmidtV (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)
- template<typename Derived >
 types::cmat schmidtprob (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)
- template<typename Derived >
 double entanglement (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)
- template<typename Derived >
 double gconcurrence (const Eigen::MatrixBase< Derived > &A)

```
• template<typename Derived >
  double shannon (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  double renyi (const double alpha, const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double renyi inf (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  double tsallis (const double alpha, const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double mutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< size t > &subsys, const
  std::vector< size t > &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > transpose (const Eigen::MatrixBase < Derived > &A)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > conjugate (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > adjoint (const Eigen::MatrixBase < Derived > &A)
 \bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{Derived} >
  Derived::Scalar trace (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  Derived::Scalar det (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  Derived::Scalar sum (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  double norm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat evals (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat evects (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  types::cmat hevals (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  types::cmat hevects (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat funm (const Eigen::MatrixBase< Derived > &A, types::cplx(*f)(const types::cplx &))
• template<typename Derived >
  types::cmat sqrtm (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  types::cmat absm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat expm (const Eigen::MatrixBase< Derived > &A)
 \bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{Derived} >
  types::cmat logm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat sinm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat cosm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat spectralpowm (const Eigen::MatrixBase< Derived > &A, const types::cplx z)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > powm (const Eigen::MatrixBase< Derived > &A, size_t n)
```

```
    template<typename OutputScalar , typename Derived >

  types::DynMat< OutputScalar > fun (const Eigen::MatrixBase< Derived > &A, OutputScalar(*f)(const type-
  name Derived::Scalar &))
• template<typename Derived1 , typename Derived2 >
  types::DynMat< typename
  Derived1::Scalar > kron (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< Derived2 >
  &B)
 \bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{Derived} >
  types::DynMat< typename
  Derived::Scalar > kronlist (const std::vector < types::DynMat < typename Derived::Scalar > > &As)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > kronpow (const Eigen::MatrixBase< Derived > &A, size_t n)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > reshape (const Eigen::MatrixBase < Derived > &A, size_t rows, size_t cols)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > syspermute (const Eigen::MatrixBase < Derived > &A, const std::vector < size_t > &perm,
  const std::vector< size_t > &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > ptrace2 (const Eigen::MatrixBase < Derived > &A, const std::vector < size t > &dims)
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > ptrace (const Eigen::MatrixBase< Derived > &A, const std::vector< size t > &subsys,
  const std::vector< size t > &dims)
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > ptranspose (const Eigen::MatrixBase< Derived > &A, const std::vector< size t > &sub-
  sys, const std::vector< size t > \&dims)

    template<typename Derived1 , typename Derived2 >

  types::DynMat< typename
  Derived1::Scalar > comm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< Derived2
  > &B)
• template<typename Derived1 , typename Derived2 >
  types::DynMat< typename
  Derived1::Scalar > anticomm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< De-
  rived2 > &B)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > proj (const Eigen::MatrixBase < Derived > &V)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > expandout (const Eigen::MatrixBase < Derived > &A, size_t pos, const std::vector < size_t
  > &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > grams (const std::vector< types::DynMat< typename Derived::Scalar > > &Vs)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > grams (const Eigen::MatrixBase< Derived > &A)

    std::vector< size_t > n2multiidx (size_t n, const std::vector< size_t > &dims)

    size t multiidx2n (const std::vector < size t > &midx, const std::vector < size t > &dims)

    types::ket mket (const std::vector< size_t > &mask)

    types::ket mket (const std::vector < size t > &mask, const std::vector < size t > &dims)

    types::ket mket (const std::vector< size_t > &mask, size_t d)
```

Namespace Documentation • template<typename T > void disp (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout) • template<typename T > void displn (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout) template<typename T > void disp (const T *x, const size t n, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout) • template<typename T > void displn (const T *x, const size_t n, const std::string &separator, const std::string &start="[", const std-::string &end="]", std::ostream &os=std::cout) template<typename Derived > void disp (const Eigen::MatrixBase< Derived > &A, double chop=ct::chop, std::ostream &os=std::cout) • template<typename Derived > void displn (const Eigen::MatrixBase< Derived > &A, double chop=ct::chop, std::ostream &os=std::cout) void disp (const types::cplx c, double chop=ct::chop, std::ostream &os=std::cout) • void displn (const types::cplx c, double chop=ct::chop, std::ostream &os=std::cout) template<typename Derived > void save (const Eigen::MatrixBase< Derived > &A, const std::string &fname) template<typename Derived > types::DynMat< typename Derived::Scalar > load (const std::string &fname) • template<typename Derived > Derived loadMATLABmatrix (const std::string &mat_file, const std::string &var_name) template<>

types::dmat loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)

template<>

types::cmat loadMATLABmatrix (const std::string &mat file, const std::string &var name)

template<typename Derived >

void saveMATLABmatrix (const Eigen::MatrixBase< Derived > &A, const std::string &mat file, const std-::string &var name, const std::string &mode)

template<>

void saveMATLABmatrix (const Eigen::MatrixBase < typename types::dmat > &A, const std::string &mat_file, const std::string &var name, const std::string &mode)

template<>

void saveMATLABmatrix (const Eigen::MatrixBase< typename types::cmat > &A, const std::string &mat_file, const std::string &var name, const std::string &mode)

template<typename Derived >

Derived rand (size_t rows, size_t cols, double a=0, double b=1)

• template<>

types::dmat rand (size_t rows, size_t cols, double a, double b)

template<>

types::cmat rand (size_t rows, size_t cols, double a, double b)

double rand (double a=0, double b=1)

template<typename Derived >

Derived randn (size t rows, size t cols, double mean=0, double sigma=1)

template<>

types::dmat randn (size_t rows, size_t cols, double mean, double sigma)

template<>

types::cmat randn (size_t rows, size_t cols, double mean, double sigma)

- double randn (double mean=0, double sigma=1)
- types::cmat randU (size_t D)
- types::cmat randV (size t Din, size t Dout)
- std::vector< types::cmat > randkraus (size t n, size t D)
- types::cmat randH (size t D)
- types::ket randket (size t D)
- types::cmat randrho (size_t D)

Variables

- RandomDevices & rdevs = RandomDevices::getInstance()
- const Gates & gt = Gates::getInstance()

5.1.1 Function Documentation

5.1.1.1 template<typename Derived > types::cmat qpp::absm (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.2 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::adjoint (const Eigen::MatrixBase< Derived > & $\it A$)

5.1.1.3 template<typename Derived1 , typename Derived2 > types::DynMat<typename Derived1::Scalar> qpp::anticomm (const Eigen::MatrixBase< Derived1 > & A, const Eigen::MatrixBase< Derived2 > & B)

Here is the call graph for this function:

5.1.1.4 types::cmat qpp::channel (const types::cmat & $\it rho$, const std::vector< types::cmat > & $\it Ks$)

5.1.1.5 types::cmat qpp::choi (const std::vector< types::cmat > & Ks)

Here is the call graph for this function:

5.1.1.6 std::vector<types::cmat> qpp::choi2kraus (const types::cmat & A)

5.1.1.7 template<typename Derived1 , typename Derived2 > types::DynMat<typename Derived1::Scalar> qpp::comm (const Eigen::MatrixBase< Derived1 > & A, const Eigen::MatrixBase< Derived2 > & B)

Here is the call graph for this function:

5.1.1.8 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::conjugate (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.9 template<typename Derived > types::cmat qpp::cosm (const Eigen::MatrixBase< Derived > & A)

5.1.1.10 template<typename Derived > Derived::Scalar qpp::det (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

- 5.1.1.11 template < typename T > void qpp::disp (const T & x, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)
- 5.1.1.12 template<typename T > void qpp::disp (const T * x, const size_t n, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)
- 5.1.1.13 template<typename Derived > void qpp::disp (const Eigen::MatrixBase< Derived > & A, double chop = ct::chop, std::ostream & os = std::cout)
- 5.1.1.14 void qpp::disp (const types::cplx c, double chop = ct : :chop, std::ostream & os = std::cout)

Here is the call graph for this function:

5.1.1.15 template<typename T > void qpp::displn (const T & x, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)

5.1.1.16 template < typename T > void qpp::displn (const T * x, const size_t n, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)

Here is the call graph for this function:

5.1.1.17 template < typename Derived > void qpp::displn (const Eigen::MatrixBase < Derived > & A, double chop = ct::chop, std::ostream & os = std::cout)

Here is the call graph for this function:

5.1.1.18 void qpp::displn (const types::cplx c, double chop = ct : :chop, std::ostream & os = std::cout)

5.1.1.19 template < typename Derived > double qpp::entanglement (const Eigen::MatrixBase < Derived > & A, const std::vector < size_t > & dims)

Here is the call graph for this function:

 $5.1.1.20 \quad template < typename \ Derived > types::cmat \ qpp::evals \ (\ const \ Eigen::Matrix Base < Derived > \& \ A \)$

5.1.1.21 template < typename Derived > types::cmat qpp::evects (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.22 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::expandout (const Eigen::MatrixBase< Derived > & A, size_t pos, const std::vector< size_t > & dims)

5.1.1.23 template<typename Derived > types::cmat qpp::expm (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.24 template < typename OutputScalar , typename Derived > types::DynMat < OutputScalar > qpp::fun (const Eigen::MatrixBase < Derived > & A, OutputScalar(*)(const typename Derived::Scalar &) f)

Here is the call graph for this function:

5.1.1.25 template<typename Derived > types::cmat qpp::funm (const Eigen::MatrixBase< Derived > & A, types::cplx(*)(const types::cplx &) f)

Parameters

Α	input matrix
f	function pointer

Returns

types::cmat

Here is the call graph for this function:

5.1.1.26 template < typename Derived > double qpp::gconcurrence (const Eigen::MatrixBase < Derived > & A)

5.1.1.27 template < typename Derived > types::DynMat < typename Derived::Scalar > qpp::grams (const std::vector < types::DynMat < typename Derived::Scalar > > & Vs)

Here is the call graph for this function:

5.1.1.28 template < typename Derived > types::DynMat < typename Derived::Scalar > qpp::grams (const Eigen::MatrixBase < Derived > & A)

5.1.1.29 template < typename Derived > types::cmat qpp::hevals (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.30 template<typename Derived > types::cmat qpp::hevects (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.31 template<typename Derived1 , typename Derived2 > types::DynMat<typename Derived1::Scalar> qpp::kron (const Eigen::MatrixBase< Derived1 > & A, const Eigen::MatrixBase< Derived2 > & B)

5.1.1.32 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::kronlist (const std::vector< types::DynMat< typename Derived::Scalar > > & As)

Here is the call graph for this function:

5.1.1.33 template < typename Derived > types::DynMat < typename Derived::Scalar > qpp::kronpow (const Eigen::MatrixBase < Derived > & A, size_t n)

- $5.1.1.34 \quad template < typename \ Derived > types:: DynMat < typename \ Derived:: Scalar > qpp:: load (\ const \ std:: string \ \& \ \textit{fname}$)
- 5.1.1.35 template < typename Derived > Derived qpp::loadMATLABmatrix (const std::string & mat_file, const std::string & var_name)
- 5.1.1.36 template <> types::dmat qpp::loadMATLABmatrix (const std::string & mat_file, const std::string & var_name)
- 5.1.1.37 template<> types::cmat qpp::loadMATLABmatrix (const std::string & mat_file, const std::string & var_name)

5.1.1.38 template<typename Derived > types::cmat qpp::logm (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.39 types::ket qpp::mket (const std::vector< size_t > & mask)

Here is the call graph for this function:

5.1.1.40 types::ket qpp::mket (const std::vector < size_t > & mask, const std::vector < size_t > & dims)

5.1.1.41 types::ket qpp::mket (const std::vector < size_t > & mask, size_t d)

Here is the call graph for this function:

5.1.1.42 size_t qpp::multiidx2n (const std::vector< size_t > & midx, const std::vector< size_t > & dims)

5.1.1.43 template<typename Derived > double qpp::mutualinfo (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & subsys, const std::vector< size_t > & dims)

Here is the call graph for this function:

5.1.1.44 std::vector<size_t> qpp::n2multiidx (size_t n, const std::vector< size_t> & dims)

5.1.1.45 template < typename Derived > double qpp::norm (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.46 template < typename Derived > types::DynMat < typename Derived::Scalar > qpp::powm (const Eigen::MatrixBase < Derived > & A, size_t n)

5.1.1.47 template < typename Derived > types::DynMat < typename Derived::Scalar > qpp::proj (const Eigen::MatrixBase < Derived > & V)

Here is the call graph for this function:

5.1.1.48 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::ptrace (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & subsys, const std::vector< size_t > & dims)

5.1.1.49 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::ptrace2 (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & dims)

Here is the call graph for this function:

5.1.1.50 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::ptranspose (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & subsys, const std::vector< size_t > & dims)

- 5.1.1.51 template < typename Derived > Derived qpp::rand (size_t rows, size_t cols, double a = 0, double b = 1)
- 5.1.1.52 template <> types::dmat qpp::rand (size_t rows, size_t cols, double a, double b)
- 5.1.1.53 template <> types::cmat qpp::rand (size_t rows, size_t cols, double a, double b)
- 5.1.1.54 double qpp::rand (double a = 0, double b = 1)

Here is the call graph for this function:

5.1.1.55 types::cmat qpp::randH (size_t D)

Here is the call graph for this function:

5.1.1.56 types::ket qpp::randket (size_t D)

5.1.1.57 std::vector<types::cmat> qpp::randkraus (size_t n, size_t D)

Here is the call graph for this function:

5.1.1.58 template < typename Derived > Derived qpp::randn (size_t rows, size_t cols, double mean = 0, double sigma = 1)

5.1.1.59 template<> types::dmat qpp::randn (size_t rows, size_t cols, double mean, double sigma)

Here is the call graph for this function:

- 5.1.1.60 template<> types::cmat qpp::randn (size_t rows, size_t cols, double mean, double sigma)
- 5.1.1.61 double qpp::randn (double mean = 0, double sigma = 1)

5.1.1.62 types::cmat qpp::randrho (size_t D)

Here is the call graph for this function:

5.1.1.63 types::cmat qpp::randU (size_t D)

5.1.1.64 types::cmat qpp::randV (size_t Din, size_t Dout)

Here is the call graph for this function:

5.1.1.65 template < typename Derived > double qpp::renyi (const double alpha, const Eigen::MatrixBase < Derived > & A)

5.1.1.66 template < typename Derived > double qpp::renyi_inf (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.67 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::reshape (const Eigen::MatrixBase< Derived > & A, size_t rows, size_t cols)

Here is the call graph for this function:

5.1.1.68 template < typename Derived > void qpp::save (const Eigen::MatrixBase < Derived > & A, const std::string & fname)

Here is the call graph for this function:

5.1.1.69 template<typename Derived > void qpp::saveMATLABmatrix (const Eigen::MatrixBase< Derived > & A, const std::string & mat_file , const std::string & mode)

5.1.1.70 template<> void qpp::saveMATLABmatrix (const Eigen::MatrixBase< typename types::dmat > & A, const std::string & mat_file, const std::string & var_name, const std::string & mode)

Here is the call graph for this function:

5.1.1.71 template<> void qpp::saveMATLABmatrix (const Eigen::MatrixBase< typename types::cmat > & A, const std::string & mat_file, const std::string & var_name, const std::string & mode)

Here is the call graph for this function:

5.1.1.72 template<typename Derived > types::cmat qpp::schmidtcoeff (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & dims)

5.1.1.73 template < typename Derived > types::cmat qpp::schmidtprob (const Eigen::MatrixBase < Derived > & A, const std::vector < size_t > & dims)

Here is the call graph for this function:

5.1.1.74 template < typename Derived > types::cmat qpp::schmidtU (const Eigen::MatrixBase < Derived > & A, const std::vector < size_t > & dims)

5.1.1.75 template < typename Derived > types::cmat qpp::schmidtV (const Eigen::MatrixBase < Derived > & A, const std::vector < size_t > & dims)

Here is the call graph for this function:

5.1.1.76 template<typename Derived > double qpp::shannon (const Eigen::MatrixBase< Derived > & A)

5.1.1.77 template < typename Derived > types::cmat qpp::sinm (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.78 template<typename Derived > types::cmat qpp::spectralpowm (const Eigen::MatrixBase< Derived > & A, const types::cplx z)

Here is the call graph for this function:

5.1.1.79 template < typename Derived > types::cmat qpp::sqrtm (const Eigen::MatrixBase < Derived > & A)

5.1.1.80 template < typename Derived > Derived::Scalar qpp::sum (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.81 types::cmat qpp::super (const std::vector< types::cmat > & Ks)

5.1.1.82 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::syspermute (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & perm, const std::vector< size_t > & dims)

Here is the call graph for this function:

5.1.1.83 template < typename Derived > Derived::Scalar qpp::trace (const Eigen::MatrixBase < Derived > & A)

5.1.1.84 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::transpose (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.85 template<typename Derived > double qpp::tsallis (const double alpha, const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

- 5.1.2 Variable Documentation
- 5.1.2.1 const Gates& qpp::gt = Gates::getInstance()
- 5.1.2.2 RandomDevices& qpp::rdevs = RandomDevices::getInstance()

5.2 qpp::ct Namespace Reference

Functions

std::complex< double > omega (size_t D)

Variables

- const double chop = 1e-10
- const double eps = 1e-12
- const std::complex< double > ii = $\{ 0, 1 \}$

- const double pi = 3.141592653589793238462643383279502884
- const double ee = 2.718281828459045235360287471352662497

5.2.1 Function Documentation

```
5.2.1.1 std::complex<double> qpp::ct::omega ( size_t D )
```

5.2.2 Variable Documentation

- 5.2.2.1 const double qpp::ct::chop = 1e-10
- 5.2.2.2 const double qpp::ct::ee = 2.718281828459045235360287471352662497
- 5.2.2.3 const double qpp::ct::eps = 1e-12
- 5.2.2.4 const std::complex < double > qpp::ct::ii = { 0, 1 }
- 5.2.2.5 const double qpp::ct::pi = 3.141592653589793238462643383279502884

5.3 qpp::internal Namespace Reference

Functions

- void n2multiidx (size t n, size t numdims, const size t *dims, size t *result)
- size t multiidx2n (const size t *midx, size t numdims, const size t *dims)
- template<typename Derived >

bool _check_square_mat (const Eigen::MatrixBase< Derived > &A)

 $\bullet \ \ \text{template}{<} \text{typename Derived} >$

bool <u>_check_vector</u> (const Eigen::MatrixBase< Derived > &A)

• template<typename Derived >

bool <u>_check_row_vector</u> (const Eigen::MatrixBase< Derived > &A)

• template<typename Derived >

bool <u>_check_col_vector</u> (const Eigen::MatrixBase< Derived > &A)

• template<typename T >

bool <u>check_nonzero_size</u> (const T &x)

- bool <u>_check_dims</u> (const std::vector< size_t > &dims)
- template<typename Derived >

bool _check_dims_match_mat (const std::vector< size_t > &dims, const Eigen::MatrixBase< Derived > &A)

• template<typename Derived >

bool _check_dims_match_cvect (const std::vector< size_t > &dims, const Eigen::MatrixBase< Derived > &V)

template<typename Derived >

bool _check_dims_match_rvect (const std::vector< size_t > &dims, const Eigen::MatrixBase< Derived > &V)

- bool check eq dims (const std::vector< size t > &dims, size t dim)
- bool _check_subsys (const std::vector< size_t > &subsys, const std::vector< size_t > &dims)
- bool _check_perm (const std::vector< size_t > &perm, const std::vector< size_t > &dims)
- $\bullet \ \ \text{template}{<} \text{typename Scalar} >$

void _syspermute_worker (size_t numdims, const size_t *cdims, const size_t *cperm, size_t i, size_t &iperm, const types::DynMat< Scalar > &V, types::DynMat< Scalar > &result)

• template<typename Scalar >

void _ptranspose_worker (const size_t *midxcol, size_t numdims, size_t numsubsys, const size_t *cdims, const size_t *csubsys, size_t i, size_t j, size_t &iperm, size_t &jperm, const types::DynMat < Scalar > &A, types::DynMat < Scalar > &result)

5.3.1 Function Documentation

- 5.3.1.1 template < typename Derived > bool qpp::internal::_check_col_vector (const Eigen::MatrixBase < Derived > & A)
- 5.3.1.2 bool qpp::internal::_check_dims (const std::vector < size_t > & dims)
- 5.3.1.3 template<typename Derived > bool qpp::internal::_check_dims_match_cvect (const std::vector< size_t > & dims, const Eigen::MatrixBase< Derived > & V)
- 5.3.1.4 template<typename Derived > bool qpp::internal::_check_dims_match_mat (const std::vector< size_t > & dims, const Eigen::MatrixBase< Derived > & A)
- 5.3.1.5 template<typename Derived > bool qpp::internal::_check_dims_match_rvect (const std::vector< size_t > & dims, const Eigen::MatrixBase< Derived > & V)
- 5.3.1.6 bool qpp::internal::_check_eq_dims (const std::vector < size_t > & dims, size_t dim)
- 5.3.1.7 template<typename T > bool qpp::internal::_check_nonzero_size (const T & x)
- 5.3.1.8 bool qpp::internal::_check_perm (const std::vector< size_t > & perm, const std::vector< size_t > & dims)
- 5.3.1.9 template < typename Derived > bool qpp::internal::_check_row_vector (const Eigen::MatrixBase < Derived > & A)
- 5.3.1.10 template<typename Derived > bool qpp::internal::_check_square_mat (const Eigen::MatrixBase< Derived > & A)
- 5.3.1.11 bool qpp::internal::_check_subsys (const std::vector < size_t > & subsys, const std::vector < size_t > & dims)
- $5.3.1.12 \quad template < typename \ Derived > bool \ qpp::internal::_check_vector \ (\ const \ Eigen::MatrixBase < Derived > \& \ A \)$
- 5.3.1.13 size_t qpp::internal::_multiidx2n (const size_t * midx, size_t numdims, const size_t * dims)
- 5.3.1.14 void qpp::internal::_n2multiidx (size_t n, size_t numdims, const size_t * dims, size_t * result)
- 5.3.1.15 template < typename Scalar > void qpp::internal::_ptranspose_worker (const size_t * midxcol, size_t numdims, size_t numsubsys, const size_t * cdims, const size_t * csubsys, size_t i, size_t i, size_t & iperm, size_t & jperm, const types::DynMat < Scalar > & A, types::DynMat < Scalar > & result)

5.3.1.16 template<typename Scalar > void qpp::internal::_syspermute_worker (size_t numdims, const size_t * cdims, const size_t * cperm, size_t * cperm, size_t * iperm, const types::DynMat< Scalar > & V, types::DynMat< Scalar > & result)

Here is the call graph for this function:

5.4 qpp::types Namespace Reference

Typedefs

- typedef std::complex < double > cplx
- · typedef Eigen::MatrixXcd cmat
- · typedef Eigen::MatrixXd dmat
- typedef Eigen::MatrixXf fmat
- · typedef Eigen::MatrixXi imat
- typedef Eigen::Matrix < cplx, Eigen::Dynamic, 1 > ket
- typedef Eigen::Matrix < cplx,
 1, Eigen::Dynamic > bra
- template<typename Scalar >
 using DynMat = Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic >

5.4.1 Typedef Documentation

- 5.4.1.1 typedef Eigen::Matrix<cplx, 1, Eigen::Dynamic> qpp::types::bra
- 5.4.1.2 typedef Eigen::MatrixXcd qpp::types::cmat
- 5.4.1.3 typedef std::complex<double> qpp::types::cplx
- 5.4.1.4 typedef Eigen::MatrixXd qpp::types::dmat
- 5.4.1.5 template<typename Scalar > using qpp::types::DynMat = typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>
- 5.4.1.6 typedef Eigen::MatrixXf qpp::types::fmat
- 5.4.1.7 typedef Eigen::MatrixXi qpp::types::imat
- 5.4.1.8 typedef Eigen::Matrix<cplx, Eigen::Dynamic, 1> qpp::types::ket

Namespace	Documer	ntation

Chapter 6

Class Documentation

6.1 qpp::DiscreteDistribution Class Reference

```
#include <stat.h>
```

Public Member Functions

- template<typename InputIterator > DiscreteDistribution (InputIterator first, InputIterator last)
- DiscreteDistribution (std::initializer_list< double > weights)
- Discrete Distribution (std::vector< double > weights)
- size_t sample ()
- std::vector< double > probabilities ()

Protected Attributes

```
std::discrete_distributionsize_t > _d
```

6.1.1 Constructor & Destructor Documentation

- 6.1.1.1 template<typename InputIterator > qpp::DiscreteDistribution::DiscreteDistribution (InputIterator first, InputIterator last) [inline]
- **6.1.1.2** qpp::DiscreteDistribution::DiscreteDistribution (std::initializer_list < double > weights) [inline]
- 6.1.1.3 qpp::DiscreteDistribution::DiscreteDistribution (std::vector< double > weights) [inline]

6.1.2 Member Function Documentation

6.1.2.1 std::vector<double> qpp::DiscreteDistribution::probabilities () [inline]

6.1.2.2 size_t qpp::DiscreteDistribution::sample() [inline]

Here is the call graph for this function:

6.1.3 Member Data Documentation

6.1.3.1 std::discrete_distribution<**size_t**> **qpp::DiscreteDistribution::_d** [protected]

The documentation for this class was generated from the following file:

· include/classes/stat.h

6.2 qpp::DiscreteDistributionAbsSquare Class Reference

#include <stat.h>

Public Member Functions

- template<typename InputIterator > DiscreteDistributionAbsSquare (InputIterator first, InputIterator last)
- DiscreteDistributionAbsSquare (std::initializer_list< types::cplx > amplitudes)
- DiscreteDistributionAbsSquare (std::vector< types::cplx > amplitudes)
- DiscreteDistributionAbsSquare (const types::cmat &V)
- size_t sample ()
- std::vector< double > probabilities ()

Protected Member Functions

template<typename InputIterator >
 std::vector< double > cplx2weights (InputIterator first, InputIterator last)

Protected Attributes

std::discrete_distribution < size_t > _d

6.2.1 Constructor & Destructor Documentation

6.2.1.1 template<typename InputIterator > qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare (InputIterator *first*, InputIterator *last*) [inline]

Here is the call graph for this function:

6.2.1.2 qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare(std::initializer_list< types::cplx > amplitudes) [inline]

Here is the call graph for this function:

6.2.1.3 qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare (std::vector< types::cplx > amplitudes) [inline]

6.2.1.4 qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare (const types::cmat & V) [inline]

Here is the call graph for this function:

6.2.2 Member Function Documentation

- 6.2.2.1 template<typename InputIterator > std::vector<double> qpp::DiscreteDistributionAbsSquare::cplx2weights (InputIterator first, InputIterator last) [inline], [protected]
- **6.2.2.2** std::vector<double> qpp::DiscreteDistributionAbsSquare::probabilities() [inline]
- $\textbf{6.2.2.3} \quad \textbf{size_t qpp::DiscreteDistributionAbsSquare::sample ()} \quad \texttt{[inline]}$

Here is the call graph for this function:

6.2.3 Member Data Documentation

6.2.3.1 std::discrete_distribution<size_t> qpp::DiscreteDistributionAbsSquare::_d [protected]

The documentation for this class was generated from the following file:

• include/classes/stat.h

6.3 qpp::Exception Class Reference

#include <exception.h>

Inheritance diagram for qpp::Exception:

Collaboration diagram for qpp::Exception:

Public Types

enum Type {

Type::UNKNOWN_EXCEPTION = 1, Type::ZERO_SIZE, Type::MATRIX_NOT_SQUARE, Type::MATRIX_NOT_CVECTOR,

Type::MATRIX_NOT_RVECTOR, Type::MATRIX_NOT_VECTOR, Type::MATRIX_NOT_SQUARE_OR_CV-ECTOR, Type::MATRIX_NOT_SQUARE_OR_RVECTOR,

Type::MATRIX_NOT_SQUARE_OR_VECTOR, Type::DIMS_INVALID, Type::DIMS_NOT_EQUAL, Type::DIMS_MISMATCH_MATRIX,

Type::DIMS_MISMATCH_CVECTOR, Type::DIMS_MISMATCH_RVECTOR, Type::DIMS_MISMATCH_VECTOR, Type::SUBSYS_MISMATCH_DIMS,

Type::PERM_MISMATCH_DIMS, Type::NOT_QUBIT_GATE, Type::NOT_QUBIT_SUBSYS, Type::NOT_BI-PARTITE.

Type::OUT_OF_RANGE, Type::UNDEFINED_TYPE, Type::TYPE_MISMATCH, Type::CUSTOM_EXCEPTION }

Public Member Functions

- Exception (const std::string &where, const Type &type)
- Exception (const std::string &where, const std::string &custom)
- virtual const char * what () const noexceptoverride
- virtual ∼Exception () noexcept

Private Member Functions

• std::string _construct_exception_msg ()

Private Attributes

```
• std::string _where
```

- std::string _msg
- Type _type
- std::string _custom

6.3.1 Member Enumeration Documentation

6.3.1.1 enum qpp::Exception::Type [strong]

Enumerator

UNKNOWN_EXCEPTION

ZERO_SIZE

MATRIX_NOT_SQUARE

MATRIX_NOT_CVECTOR

MATRIX_NOT_RVECTOR

MATRIX_NOT_VECTOR

MATRIX_NOT_SQUARE_OR_CVECTOR

MATRIX_NOT_SQUARE_OR_RVECTOR

MATRIX_NOT_SQUARE_OR_VECTOR

DIMS_INVALID

DIMS_NOT_EQUAL

DIMS_MISMATCH_MATRIX

DIMS_MISMATCH_CVECTOR

DIMS_MISMATCH_RVECTOR

DIMS_MISMATCH_VECTOR

SUBSYS_MISMATCH_DIMS

PERM_MISMATCH_DIMS

NOT_QUBIT_GATE

 NOT_QUBIT_SUBSYS

NOT_BIPARTITE

OUT_OF_RANGE

UNDEFINED_TYPE

TYPE_MISMATCH

CUSTOM_EXCEPTION

6.3.2 Constructor & Destructor Documentation

6.3.2.1 qpp::Exception::Exception (const std::string & where, const Type & type) [inline]

Here is the call graph for this function:

6.3.2.2 qpp::Exception::Exception (const std::string & where, const std::string & custom) [inline]

Here is the call graph for this function:

- **6.3.2.3 virtual qpp::Exception::** \sim **Exception()** [inline], [virtual], [noexcept]
- 6.3.3 Member Function Documentation
- **6.3.3.1 std::string qpp::Exception::_construct_exception_msg()** [inline], [private]
- 6.3.3.2 virtual const char* qpp::Exception::what() const [inline], [override], [virtual], [noexcept]
- 6.3.4 Member Data Documentation
- **6.3.4.1 std::string qpp::Exception::_custom** [private]
- **6.3.4.2 std::string qpp::Exception::_msg** [private]
- **6.3.4.3 Type qpp::Exception::_type** [private]
- **6.3.4.4 std::string qpp::Exception::_where** [private]

The documentation for this class was generated from the following file:

• include/classes/exception.h

6.4 qpp::Gates Class Reference

```
#include <gates.h>
```

Public Member Functions

- Gates (const Gates &)=delete
- Gates & operator= (const Gates &)=delete
- virtual ∼Gates ()=default
- types::cmat Rtheta (double theta) const
- types::cmat ld (size t D) const
- types::cmat Zd (size_t D) const
- types::cmat Fd (size_t D) const
- types::cmat Xd (size_t D) const
- types::cmat CTRL (const types::cmat &A, const std::vector< size_t > &ctrl, const std::vector< size_t > &gate, size_t n, size_t D=2) const

Static Public Member Functions

• static const Gates & getInstance ()

Public Attributes

- types::cmat ld2
- types::cmat H
- · types::cmat X
- types::cmat Y
- types::cmat Z
- types::cmat S
- · types::cmat T
- types::cmat CNOTab
- types::cmat CZ
- types::cmat CS
- types::cmat CNOTba
- types::cmat SWAP
- types::cmat TOF
- types::cmat FRED
- types::ket x0
- types::ket x1
- types::ket y0
- types::ket y1
- types::ket z0
- types::ket z1
- types::cmat px0
- types::cmat px1
- types::cmat py0
- types::cmat py1
- types::cmat pz0
- types::cmat pz1
- types::ket b00
- types::ket b01
- types::ket b10
- types::ket b11

- types::cmat pb00
- types::cmat pb01
- types::cmat pb10
- types::cmat pb11
- types::ket GHZ
- types::ket W
- types::cmat pGHZ
- · types::cmat pW

Private Member Functions

• Gates ()

6.4.1 Constructor & Destructor Documentation

- 6.4.1.1 qpp::Gates::Gates() [inline],[private]
- **6.4.1.2** qpp::Gates::Gates (const Gates &) [delete]
- **6.4.1.3 virtual qpp::Gates::**~Gates() [virtual], [default]

6.4.2 Member Function Documentation

6.4.2.1 types::cmat qpp::Gates::CTRL (const types::cmat & A, const std::vector < size_t > & ctrl, const std::vector < size_t > & gate, size_t n, size_t D = 2) const [inline]

6.4.2.2 types::cmat qpp::Gates::Fd(size_t D)const [inline]

Here is the call graph for this function:

- **6.4.2.3** static const Gates& qpp::Gates::getInstance() [inline], [static]
- 6.4.2.4 types::cmat qpp::Gates::ld (size_t D) const [inline]
- **6.4.2.5 Gates& qpp::Gates::operator=(const Gates &)** [delete]
- 6.4.2.6 types::cmat qpp::Gates::Rtheta (double theta) const [inline]
- 6.4.2.7 types::cmat qpp::Gates::Xd(size_t D)const [inline]

Here is the call graph for this function:

6.4.2.8 types::cmat qpp::Gates::Zd(size_t D)const [inline]

6.4.3	Member Data Documentation
6.4.3.1	types::ket qpp::Gates::b00
6.4.3.2	types::ket qpp::Gates::b01
6.4.3.3	types::ket qpp::Gates::b10
6.4.3.4	types::ket qpp::Gates::b11
6.4.3.5	types::cmat qpp::Gates::CNOTab
6.4.3.6	types::cmat qpp::Gates::CNOTba
6.4.3.7	types::cmat qpp::Gates::CS
6.4.3.8	types::cmat qpp::Gates::CZ
6.4.3.9	types::cmat qpp::Gates::FRED
6.4.3.10	types::ket qpp::Gates::GHZ
6.4.3.11	types::cmat qpp::Gates::H
6.4.3.12	types::cmat qpp::Gates::ld2
6.4.3.13	types::cmat qpp::Gates::pb00
6.4.3.14	types::cmat qpp::Gates::pb01
6.4.3.15	types::cmat qpp::Gates::pb10
6.4.3.16	types::cmat qpp::Gates::pb11
6.4.3.17	types::cmat qpp::Gates::pGHZ
6.4.3.18	types::cmat qpp::Gates::pW
6.4.3.19	types::cmat qpp::Gates::px0
6.4.3.20	types::cmat qpp::Gates::px1
6.4.3.21	types::cmat qpp::Gates::py0
6.4.3.22	types::cmat qpp::Gates::py1
6.4.3.23	types::cmat qpp::Gates::pz0
6.4.3.24	types::cmat qpp::Gates::pz1
6.4.3.25	types::cmat qpp::Gates::S
6.4.3.26	types::cmat qpp::Gates::SWAP
6.4.3.27	types::cmat qpp::Gates::T

```
6.4.3.28 types::cmat qpp::Gates::TOF
6.4.3.29 types::ket qpp::Gates::W
6.4.3.30 types::cmat qpp::Gates::X
6.4.3.31 types::ket qpp::Gates::x0
6.4.3.32 types::ket qpp::Gates::x1
6.4.3.33 types::cmat qpp::Gates::Y
6.4.3.34 types::ket qpp::Gates::y0
6.4.3.35 types::ket qpp::Gates::y1
6.4.3.36 types::ket qpp::Gates::Z
6.4.3.37 types::ket qpp::Gates::z0
6.4.3.38 types::ket qpp::Gates::z0
6.4.3.38 types::ket qpp::Gates::z1
```

The documentation for this class was generated from the following file:

· include/classes/gates.h

6.5 qpp::NormalDistribution Class Reference

```
#include <stat.h>
```

Public Member Functions

- NormalDistribution (double mean=0, double sigma=1)
- double sample ()

Protected Attributes

std::normal_distribution_d

6.5.1 Constructor & Destructor Documentation

6.5.1.1 qpp::NormalDistribution::NormalDistribution (double mean = 0, double sigma = 1) [inline]

6.5.2 Member Function Documentation

6.5.2.1 double qpp::NormalDistribution::sample() [inline]

Here is the call graph for this function:

6.5.3 Member Data Documentation

6.5.3.1 std::normal_distribution qpp::NormalDistribution::_d [protected]

The documentation for this class was generated from the following file:

• include/classes/stat.h

6.6 qpp::Qudit Class Reference

```
#include <qudit.h>
```

Public Member Functions

- Qudit (const types::cmat &rho=Gates::getInstance().pz0)
- size_t measure (const types::cmat &U, bool destructive=false)
- size_t measure (bool destructive=false)
- types::cmat getRho () const
- size_t getD () const
- virtual ~Qudit ()=default

Private Attributes

- · types::cmat _rho
- size_t _D

6.6.1 Constructor & Destructor Documentation

6.6.1.1 qpp::Qudit::Qudit (const types::cmat & rho = Gates::getInstance().pz0) [inline]

Here is the call graph for this function:

6.6.1.2 virtual qpp::Qudit:: \sim **Qudit()** [virtual], [default]

6.6.2 Member Function Documentation

6.6.2.1 size_t qpp::Qudit::getD() const [inline]

6.6.2.2 types::cmat qpp::Qudit::getRho() const [inline]

6.6.2.3 size_t qpp::Qudit::measure (const types::cmat & U, bool destructive = false) [inline]

6.6.2.4 size_t qpp::Qudit::measure (bool destructive = false) [inline]

Here is the call graph for this function:

6.6.3 Member Data Documentation

```
6.6.3.1 size_t qpp::Qudit::_D [private]
```

6.6.3.2 types::cmat qpp::Qudit::_rho [private]

The documentation for this class was generated from the following file:

• include/classes/qudit.h

6.7 qpp::RandomDevices Class Reference

#include <randevs.h>

Public Member Functions

- RandomDevices (const RandomDevices &)=delete
- RandomDevices & operator= (const RandomDevices &)=delete
- virtual ∼RandomDevices ()=default

Static Public Member Functions

• static RandomDevices & getInstance ()

Public Attributes

- std::random device rd
- std::mt19937 _rng

Private Member Functions

• RandomDevices ()

6.7.1 Constructor & Destructor Documentation

```
6.7.1.1 qpp::RandomDevices::RandomDevices( ) [inline],[private]
```

- **6.7.1.2 qpp::RandomDevices::RandomDevices (const RandomDevices &)** [delete]
- **6.7.1.3** virtual qpp::RandomDevices::~RandomDevices() [virtual], [default]
- 6.7.2 Member Function Documentation
- **6.7.2.1** static RandomDevices& qpp::RandomDevices::getInstance() [inline], [static]
- **6.7.2.2** RandomDevices& qpp::RandomDevices::operator=(const RandomDevices &) [delete]
- 6.7.3 Member Data Documentation
- 6.7.3.1 std::random_device qpp::RandomDevices::_rd
- 6.7.3.2 std::mt19937 qpp::RandomDevices::_rng

The documentation for this class was generated from the following file:

• include/classes/randevs.h

6.8 qpp::Timer Class Reference

```
#include <timer.h>
```

Public Member Functions

- Timer ()
- void tic ()
- void toc ()
- double seconds () const
- virtual ∼Timer ()=default

Protected Attributes

- std::chrono::high_resolution_clock::time_point _start
- std::chrono::high_resolution_clock::time_point _end

Friends

std::ostream & operator<< (std::ostream &os, const Timer &rhs)

6.8.1 Constructor & Destructor Documentation

```
6.8.1.1 qpp::Timer::Timer( ) [inline]
```

6.8.1.2 virtual qpp::Timer::∼Timer() [virtual], [default]

6.8.2 Member Function Documentation

```
6.8.2.1 double qpp::Timer::seconds( ) const [inline]
6.8.2.2 void qpp::Timer::tic( ) [inline]
6.8.2.3 void qpp::Timer::toc( ) [inline]
```

6.8.3 Friends And Related Function Documentation

```
6.8.3.1 std::ostream& operator<< ( std::ostream & os, const Timer & rhs ) [friend]
```

6.8.4 Member Data Documentation

```
6.8.4.1 std::chrono::high_resolution_clock::time_point qpp::Timer::_end [protected]
```

```
6.8.4.2 std::chrono::high_resolution_clock::time_point qpp::Timer::_start [protected]
```

The documentation for this class was generated from the following file:

· include/classes/timer.h

6.9 qpp::UniformRealDistribution Class Reference

```
#include <stat.h>
```

Public Member Functions

- UniformRealDistribution (double a=0, double b=1)
- double sample ()

Protected Attributes

std::uniform_real_distribution _d

6.9.1 Constructor & Destructor Documentation

6.9.1.1 qpp::UniformRealDistribution::UniformRealDistribution (double a = 0, double b = 1) [inline]

6.9.2 Member Function Documentation

64 Class Documentation

6.9.2.1 double qpp::UniformRealDistribution::sample () [inline]

Here is the call graph for this function:

6.9.3 Member Data Documentation

 $\textbf{6.9.3.1} \quad \textbf{std::uniform_real_distribution qpp::UniformRealDistribution::_d} \quad \texttt{[protected]}$

The documentation for this class was generated from the following file:

• include/classes/stat.h

Chapter 7

File Documentation

7.1 include/channels.h File Reference

```
#include <cmath>
#include <vector>
#include "constants.h"
#include "functions.h"
#include "internal.h"
#include "types.h"
#include "classes/exception.h"
Include dependency graph for channels.h:
```


This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

- types::cmat qpp::channel (const types::cmat &rho, const std::vector< types::cmat > &Ks)
- types::cmat qpp::super (const std::vector< types::cmat > &Ks)
- types::cmat qpp::choi (const std::vector< types::cmat > &Ks)
- std::vector< types::cmat > qpp::choi2kraus (const types::cmat &A)

7.2 include/classes/exception.h File Reference

#include <stdexcept>
#include <string>

Include dependency graph for exception.h:

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::Exception

Namespaces

• qpp

7.3 include/classes/gates.h File Reference

```
#include "constants.h"
#include "functions.h"
#include "exception.h"
#include "internal.h"
#include "types.h"
```

Include dependency graph for gates.h:

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::Gates

Namespaces

• qpp

7.4 include/classes/qudit.h File Reference

```
#include "exception.h"
#include "functions.h"
#include "gates.h"
#include "internal.h"
#include "types.h"
#include "classes/stat.h"
Include dependency graph for qudit.h:
```


This graph shows which files directly or indirectly include this file:

Classes

class qpp::Qudit

Namespaces

qpp

7.5 include/classes/randevs.h File Reference

#include <cstdlib>
#include <random>
Include dependency graph for randevs.h:

This graph shows which files directly or indirectly include this file:

Classes

• class qpp::RandomDevices

Namespaces

• qpp

7.6 include/classes/stat.h File Reference

```
#include <algorithm>
#include <functional>
#include "exception.h"
#include "internal.h"
#include "randevs.h"
#include "types.h"
```

Include dependency graph for stat.h:

This graph shows which files directly or indirectly include this file:

Classes

- · class qpp::NormalDistribution
- class qpp::UniformRealDistribution
- class qpp::DiscreteDistribution
- class qpp::DiscreteDistributionAbsSquare

Namespaces

• qpp

7.7 include/classes/timer.h File Reference

#include <chrono>

#include <ostream>

Include dependency graph for timer.h:

This graph shows which files directly or indirectly include this file:

Classes

class qpp::Timer

Namespaces

qpp

7.8 include/constants.h File Reference

#include <complex>

Include dependency graph for constants.h:

This graph shows which files directly or indirectly include this file:

Namespaces

- qpp
- · qpp::ct

Functions

std::complex< double > qpp::ct::omega (size_t D)

Variables

- const double qpp::ct::chop = 1e-10
- const double qpp::ct::eps = 1e-12
- const std::complex< double > $qpp::ct::ii = \{ 0, 1 \}$
- const double qpp::ct::pi = 3.141592653589793238462643383279502884
- const double qpp::ct::ee = 2.718281828459045235360287471352662497

7.9 include/entanglement.h File Reference

```
#include <Eigen/SVD>
#include "entropies.h"
#include "functions.h"
#include "internal.h"
#include "types.h"
```

Include dependency graph for entanglement.h:

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Functions

- template<typename Derived >
 types::cmat qpp::schmidtcoeff (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)
- template<typename Derived >
 types::cmat qpp::schmidtU (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)

- template<typename Derived >
 types::cmat qpp::schmidtV (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)
- template<typename Derived >
 types::cmat qpp::schmidtprob (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)
- template<typename Derived >
 double qpp::entanglement (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)
- template<typename Derived >
 double qpp::gconcurrence (const Eigen::MatrixBase< Derived > &A)

7.10 include/entropies.h File Reference

```
#include <cmath>
#include "functions.h"
#include "internal.h"
#include "types.h"
#include "classes/exception.h"
#include "io.h"
```

Include dependency graph for entropies.h:

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Functions

```
    template<typename Derived >
        double qpp::shannon (const Eigen::MatrixBase< Derived > &A)
```

- template<typename Derived >
 double qpp::renyi (const double alpha, const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 double qpp::renyi_inf (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 double qpp::tsallis (const double alpha, const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 double qpp::mutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &subsys, const std::vector< size_t > &dims)

7.11 include/functions.h File Reference

```
#include <cmath>
#include <numeric>
#include <vector>
#include "constants.h"
#include "internal.h"
#include "types.h"
#include "classes/exception.h"
Include dependency graph for functions.h:
```


This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

 template<typename Derived > types::DynMat< typename

Functions

```
Derived::Scalar > qpp::transpose (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::conjugate (const Eigen::MatrixBase < Derived > &A)
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > qpp::adjoint (const Eigen::MatrixBase < Derived > &A)

    template<typename Derived >

  Derived::Scalar qpp::trace (const Eigen::MatrixBase< Derived > &A)
 template<typename Derived >
  Derived::Scalar qpp::det (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  Derived::Scalar <a href="mailto:qpp::sum">qpp::sum</a> (const Eigen::MatrixBase</a> Derived > &A)

    template<typename Derived >

  double <a href="mailto:qpp::norm">qpp::norm</a> (const Eigen::MatrixBase</a> Derived > &A)

    template<typename Derived >

  types::cmat qpp::evals (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat qpp::evects (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat qpp::hevals (const Eigen::MatrixBase< Derived > &A)
 \bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{Derived} >
  types::cmat qpp::hevects (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat qpp::funm (const Eigen::MatrixBase< Derived > &A, types::cplx(*f)(const types::cplx &))

    template<typename Derived >
```

template<typename Derived >

types::cmat qpp::sqrtm (const Eigen::MatrixBase< Derived > &A)

types::cmat qpp::absm (const Eigen::MatrixBase< Derived > &A)

• template<typename Derived >

```
types::cmat qpp::expm (const Eigen::MatrixBase< Derived > &A)
template<typename Derived >
  types::cmat qpp::logm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat qpp::sinm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat qpp::cosm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat qpp::spectralpowm (const Eigen::MatrixBase< Derived > &A, const types::cplx z)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::powm (const Eigen::MatrixBase < Derived > &A, size_t n)

    template<typename OutputScalar , typename Derived >

  types::DynMat< OutputScalar > qpp::fun (const Eigen::MatrixBase< Derived > &A, OutputScalar(*f)(const
  typename Derived::Scalar &))

    template<typename Derived1 , typename Derived2 >

  types::DynMat< typename
  Derived1::Scalar > qpp::kron (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< De-
  rived2 > &B)
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > qpp::kronlist (const std::vector < types::DynMat < typename Derived::Scalar > > &As)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::kronpow (const Eigen::MatrixBase< Derived > &A, size_t n)
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > qpp::reshape (const Eigen::MatrixBase< Derived > &A, size_t rows, size_t cols)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::syspermute (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t >
  &perm, const std::vector< size t > &dims)
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > qpp::ptrace2 (const Eigen::MatrixBase< Derived > &A, const std::vector< size t >
  &dims)
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > qpp::ptrace (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &sub-
  sys, const std::vector< size t > \&dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::ptranspose (const Eigen::MatrixBase< Derived > &A, const std::vector< size t >
  &subsys, const std::vector< size t > &dims)

    template<typename Derived1 , typename Derived2 >

  types::DynMat< typename
  Derived1::Scalar > qpp::comm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< De-
  rived2 > &B)

    template<typename Derived1 , typename Derived2 >

  types::DynMat< typename
  Derived1::Scalar > gpp::anticomm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase<
  Derived 2 > \&B)
template<typename Derived >
  types::DynMat< typename
  \label{eq:const_equation} Derived::Scalar > \underset{}{\mathsf{qpp::proj}} \ (\mathsf{const} \ \mathsf{Eigen::MatrixBase} < \mathsf{Derived} > \&V)
```

```
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > qpp::expandout (const Eigen::MatrixBase< Derived > &A, size_t pos, const std::vector<
  size_t > &dims)
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > qpp::grams (const std::vector < types::DynMat < typename Derived::Scalar > > &Vs)
• template<typename Derived >
 types::DynMat< typename
  Derived::Scalar > qpp::grams (const Eigen::MatrixBase < Derived > &A)
• std::vector< size_t > qpp::n2multiidx (size_t n, const std::vector< size_t > &dims)
```

- size_t qpp::multiidx2n (const std::vector< size_t > &midx, const std::vector< size_t > &dims)
- types::ket qpp::mket (const std::vector< size_t > &mask)
- types::ket qpp::mket (const std::vector < size_t > &mask, const std::vector < size_t > &dims)
- types::ket qpp::mket (const std::vector< size t > &mask, size t d)

7.12 include/internal.h File Reference

```
#include <iostream>
#include <utility>
#include <vector>
#include "types.h"
#include "classes/exception.h"
Include dependency graph for internal.h:
```


This graph shows which files directly or indirectly include this file:

Namespaces

- qpp
- qpp::internal

Functions

- void qpp::internal::_n2multiidx (size_t n, size_t numdims, const size_t *dims, size_t *result)
- size t qpp::internal:: multiidx2n (const size t *midx, size t numdims, const size t *dims)
- template<typename Derived >
 bool qpp::internal::_check_square_mat (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::_check_vector (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::_check_row_vector (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::_check_col_vector (const Eigen::MatrixBase< Derived > &A)
- template<typename T >
 bool qpp::internal::_check_nonzero_size (const T &x)
- bool qpp::internal:: check dims (const std::vector< size t > &dims)
- template<typename Derived >
 bool qpp::internal::_check_dims_match_mat (const std::vector< size_t > &dims, const Eigen::MatrixBase
 Derived > &A)
- template<typename Derived >
 bool qpp::internal::_check_dims_match_cvect (const std::vector< size_t > &dims, const Eigen::MatrixBase
 Derived > &V)
- template<typename Derived >
 bool qpp::internal::_check_dims_match_rvect (const std::vector< size_t > &dims, const Eigen::MatrixBase
 Derived > &V)
- bool qpp::internal::_check_eq_dims (const std::vector< size_t > &dims, size_t dim)
- bool qpp::internal::_check_subsys (const std::vector < size_t > &subsys, const std::vector < size_t > &dims)
- bool qpp::internal::_check_perm (const std::vector< size_t > &perm, const std::vector< size_t > &dims)
- template<typename Scalar >
 void qpp::internal::_syspermute_worker (size_t numdims, const size_t *cdims, const size_t *cperm, size_t i,
 size_t &iperm, const types::DynMat< Scalar > &V, types::DynMat< Scalar > &result)
- template<typename Scalar >
 void qpp::internal::_ptranspose_worker (const size_t *midxcol, size_t numdims, size_t numsubsys, const size_t *cdims, const size_t *csubsys, size_t i, size_t j, size_t &iperm, size_t &jperm, const types::DynMat< Scalar > &A, types::DynMat< Scalar > &result)

7.13 include/io.h File Reference

```
#include <fstream>
#include <iomanip>
#include <iostream>
#include <stdexcept>
#include <vector>
#include "types.h"
#include "classes/exception.h"
```

Include dependency graph for io.h:

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

- template<typename T >
 void qpp::disp (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]",
 std::ostream &os=std::cout)
- template<typename T >
 void qpp::displn (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)
- template<typename T >
 void qpp::disp (const T *x, const size_t n, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)

template<typename T >
 void qpp::displn (const T *x, const size_t n, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)

template<typename Derived >
 void qpp::disp (const Eigen::MatrixBase< Derived > &A, double chop=ct::chop, std::ostream &os=std::cout)
 template<typename Derived >

void qpp::displn (const Eigen::MatrixBase< Derived > &A, double chop=ct::chop, std::ostream &os=std::cout)
 void qpp::disp (const types::cplx c, double chop=ct::chop, std::ostream &os=std::cout)

- void qpp::displn (const types::cplx c, double chop=ct::chop, std::ostream &os=std::cout)
- template<typename Derived >
 void qpp::save (const Eigen::MatrixBase< Derived > &A, const std::string &fname)
- template < typename Derived >
 types::DynMat < typename
 Derived::Scalar > qpp::load (const std::string &fname)

7.14 include/matlab.h File Reference

```
#include <Eigen/Dense>
#include <stdexcept>
#include <string>
#include "internal.h"
#include "types.h"
#include "classes/exception.h"
#include "mat.h"
#include "mex.h"
```

Include dependency graph for matlab.h:

Namespaces

qpp

Functions

- template<typename Derived >
 Derived qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)
- template<>
 types::dmat gpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)
- template<>
 types::cmat qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)
- template<typename Derived >
 void qpp::saveMATLABmatrix (const Eigen::MatrixBase< Derived > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)

- template<>
 void qpp::saveMATLABmatrix (const Eigen::MatrixBase< typename types::dmat > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)
- template<>
 void qpp::saveMATLABmatrix (const Eigen::MatrixBase< typename types::cmat > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)

7.15 include/qpp.h File Reference

```
#include "channels.h"
#include "constants.h"
#include "entanglement.h"
#include "entropies.h"
#include "functions.h"
#include "io.h"
#include "random.h"
#include "classes/exception.h"
#include "classes/gates.h"
#include "classes/qudit.h"
#include "classes/randevs.h"
#include "classes/stat.h"
#include "classes/stat.h"
#include "classes/timer.h"
Include dependency graph for qpp.h:
```


Namespaces

qpp

Variables

- RandomDevices & qpp::rdevs = RandomDevices::getInstance()
- const Gates & qpp::gt = Gates::getInstance()

7.16 include/random.h File Reference

```
#include "constants.h"
#include "types.h"
#include "classes/exception.h"
#include "classes/stat.h"
```

Include dependency graph for random.h:

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

- template<typename Derived >
 Derived qpp::rand (size_t rows, size_t cols, double a=0, double b=1)
- template<>
 types::dmat qpp::rand (size_t rows, size_t cols, double a, double b)
- template<>
 types::cmat qpp::rand (size_t rows, size_t cols, double a, double b)
- double qpp::rand (double a=0, double b=1)
- template<typename Derived >
 Derived qpp::randn (size_t rows, size_t cols, double mean=0, double sigma=1)
- template<>
 types::dmat qpp::randn (size_t rows, size_t cols, double mean, double sigma)
- template<>
 types::cmat qpp::randn (size_t rows, size_t cols, double mean, double sigma)
- double qpp::randn (double mean=0, double sigma=1)

- types::cmat qpp::randU (size_t D)
- types::cmat qpp::randV (size_t Din, size_t Dout)
- std::vector< types::cmat > qpp::randkraus (size_t n, size_t D)
- types::cmat qpp::randH (size_t D)
- types::ket qpp::randket (size_t D)
- types::cmat qpp::randrho (size_t D)

7.17 include/types.h File Reference

#include <Eigen/Dense>
#include <complex>
Include dependency graph for types.h:

This graph shows which files directly or indirectly include this file:

Namespaces

- qpp
- qpp::types

Typedefs

- typedef std::complex< double > qpp::types::cplx
- typedef Eigen::MatrixXcd qpp::types::cmat
- typedef Eigen::MatrixXd qpp::types::dmat

- typedef Eigen::MatrixXf qpp::types::fmat
- typedef Eigen::MatrixXi qpp::types::imat
- typedef Eigen::Matrix < cplx,
 Eigen::Dynamic, 1 > qpp::types::ket
- typedef Eigen::Matrix< cplx,
 - 1, Eigen::Dynamic > qpp::types::bra
- template<typename Scalar >
 using qpp::types::DynMat = Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic >