(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-284296

(43)公開日 平成8年(1996)10月29日

(51) Int.Cl.6		識別記号	庁内整理番号	FΙ				技術表示	高所
E 0 4 B	5/02			E 0 4 B	5/02		С		
	2/94				2/94				
E 0 4 C	2/30			E 0 4 C	2/30		V		
				審查請才	文 未請求	請求項の数3	FD	(全 6	頁)
(21)出願番号	·	寺顧平7-117823		(71)出願人	0001859	49			

(22)出願日

平成7年(1995) 4月18日

小野田エー・エル・シー株式会社

愛知県名古屋市中区錦1丁目13番26号

(72)発明者 盛岡 優

愛知県尾張旭市下井町下井2035番地 小野

田エー・エル・シー株式会社建築研究所内

(72)発明者 実政 是和

愛知県尾張旭市下井町下井2035番地 小野

田エー・エル・シー株式会社建築研究所内

(74)代理人 弁理士 後呂 和男 (外2名)

(54) 【発明の名称】 ALCパネル及びその取り付け構造

(57) 【要約】

【目的】 建物の振動や衝撃等が取り付け用のビスに作 用しても緩みが発生せず、十分な強度を確保できるAL Cパネル及びその取り付け構造を提供する。

【構成】 ALCパネル12は軽量気泡コンクリート製 のパネル本体14内に補強筋マット13を埋設してなる 構造である。補強筋マット13は多数の縦補強筋15と 横補強筋16とを縦横に組み合わせて溶接してなり、長 手方向の両端部には、縦補強筋15に直交するアンカー プレート17がそれぞれ溶接により固定されている。こ のアンカープレート17には、セルフタップ形の取付ビ ス18が螺合して貫通され、その取付ビス18の先端部 がC形鋼11にねじ込まれてALCパネル12が固定さ れている。

10…梁

1 2 … A L Cパネル

13…構強筋マット

14…パネル本体

16~~橫補強筋

17…アンカープレート

18…取付ビス

【特許請求の範囲】

【請求項1】 軽量気泡コンクリート製のパネル本体内に複数の補強筋を縦横に組み合わせた補強筋マットを埋設してなるALCパネルを建物躯体に取り付けるための構造であって、

前記ALCパネル内の前記補強筋マットには所定方向に並ぶ複数本の補強筋の間に掛け渡してアンカープレートが予め固定されており、前記アンカープレートと前記建物躯体側とが前記アンカープレートを貫通するネジ部材を介して固定されていることを特徴とするALCパネル 10の取り付け構造。

【請求項2】 多数の補強筋を縦横に組み合わせてなる補強筋マットを埋設するように軽量気泡コンクリートのスラリーを流し込んで製造されるALCパネルにおいて、金属製のアンカープレートが、前記補強筋マットのうち所定方向に並ぶ複数本の補強筋の間に掛け渡して前記スラリーの流し込み前に予め固定されていることを特徴とするALCパネル。

【請求項3】 アンカープレートには、多数の透孔が形成されていることを特徴とする請求項2記載のALCパネル。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は軽量気泡コンクリート製のALCパネル及びその取り付け構造に関する。

[0002]

【従来の技術】ALCパネルの取り付け構造としては、図8に示すものが公知である。これは、ALCパネル1にタッピングネジ2を打ち込み、その先端を建物躯体側に設けられた固定アングル3にねじ込んでALCパネル1を固定する構造であり、タッピングネジ2の頭部が貫通したねじ孔は外部からパテ等の補修材にて埋められる。

[0003]

【発明が解決しようとする課題】ところで、一般に、この種のALCパネル1が建物躯体に取り付けられている状態において、建物躯体からはALCパネル1に振動や衝撃が繰り返し作用するという事情があり、またALCパネル1は、パネル本体が無数の微細気泡を含む軽量気泡コンクリート製であってプレキャストコンクリート等 40に比べると強度が低いという事情がある。

【0004】しかるに、従来の取り付け構造では、躯体からの振動や衝撃はタッピングネジ2とパネル本体との間の集中的な接触部を介してALCパネル1に伝えられるため、建物の振動や衝撃等がALCパネル1に繰り返し作用すると長期間のうちにはタッピングネジ2の周囲のALCパネル1が次第に削られるようになる。このようになると、ネジ2に緩みが生じてくるため、やがては頭部の補修材にクラックが発生して雨水の侵入を引き起こすに至るという問題があった。

【0005】これを防止するために、例えば特公昭50-24530号公報のように、ALCパネルに金属板を打ち込み、ここにボルトを貫通させてALCパネルを建物躯体に固定する構造も考えられている。これによればボルトが金属板に一体化されるため、ボルトの緩みが生じにくいという利点が得られる。

【0006】しかしながら、上記構造では、ボルトが金属板に一体化されるとはいえ、この金属板は、パネル内の補強筋とは無関係に、軽量気泡コンクリート中に単独で埋め込まれた形態となっているに過ぎないから、強度的には今ひとつ不足する傾向にあった。また、この金属板を大形化することも考えられるが、この種のパネル内には多数の補強筋を縦横に組み合わせてなる補強筋マットが埋設されているから、これを避けて金属板を打ち込むという関係上、実際にはその大形化には大きな制約がある。

【0007】本発明は上記事情に鑑みてなされたもので、その目的は、強度的にはプレキャストコンクリートに比べて低い傾向にある軽量気泡コンクリート製でありながら、建物の振動や衝撃等が取り付け用のネジ部材に作用しても緩みが発生せず、しかも十分な強度を確保できるALCパネル及びその取り付け構造を提供することにある。

[0008]

【課題を解決するための手段】本発明のALCパネルは、多数の補強筋を縦横に組み合わせてなる補強筋マットを埋設するように軽量気泡コンクリートのスラリーを流し込んで製造されるものにおいて、金属製のアンカープレートが、補強筋マットのうち所定方向に並ぶ複数本の補強筋の間に掛け渡してスラリーの流し込み前に予め固定されているところに特徴を有する(請求項2の発明)。この場合、アンカープレートには、多数の透孔を予め形成しておいてもよい(請求項3の発明)。

【0009】また、本発明のALCパネル取付構造は、ALCパネル内の補強筋マットには所定方向に並ぶ複数本の補強筋の間に掛け渡してアンカープレートが予め固定されており、そのアンカープレートと建物躯体側とがアンカープレートを貫通するネジ部材により固定されているところに特徴を有する(請求項1の発明)。

0 [0010]

【作用】請求項1に係るALCパネルの取り付け構造によれば、ALCパネルの補強筋にはアンカープレートが予め固定され、このアンカープレートにネジ部材を貫通させてALCパネルが建物躯体に取り付けられている。このため、躯体側からの力はネジ部材を介してこれと一体化されたアンカープレート及び補強筋に受けられることになって高い取付強度が得られる上に、躯体側からの力はアンカープレート及び補強筋とパネル本体との間の広い接触部を介してパネル本体に伝えられ、従来の構造のようにネジ部材だけがパネル本体に対して振動するよ

bU

うなことがなくなるため、その緩みを確実に防止できる。

【0011】また、アンカープレートはパネル本体に予め埋め込まれて補強筋に固定されているから、後から打ち込むものとは異なり、補強筋マットの存在を気にすることなく必要な位置に配置することができ、また、このアンカープレートにより補強筋マット自体の強度も高くなる。

【0012】請求項2に係るALCパネルによれば、建物躯体に対して上記した取付構造を採用することができる。そして、請求項3に係るALCパネルでは、その製造時に、軽量気泡コンクリートのスラリーの流し込み時に生ずる気泡がアンカープレートの透孔を通って動くから、これらの気泡が集まってアンカープレートの下面に滞留したりすることがない。

[0013]

【発明の効果】以上述べたように、本発明に係るALCパネルの取り付け構造によれば、建物躯体への取付用のネジ部材の緩みを確実に防止できるので、防水機能を長期にわたり維持でき、また、高い取付強度を得ることが20できる。また、請求項2に係るALCパネルによれば、上記構造の取付が可能になり、特にアンカープレートに透孔を形成した請求項3のALCパネルによれば、気泡の滞留によりパネル強度が局部的に低下することを未然に防止できるという優れた効果が得られる。

[0014]

【実施例】

<第1実施例>以下、本発明を建物躯体への床パネルの取付構造に適用した第1実施例について図1ないし図3を参照して説明する。建物躯体の梁10はH形鋼から構 30成されて複数本がほぼ水平に横架され、その上面にC形鋼11が梁10に沿って溶接により固定されている。ALCパネル12は一方の辺を長くした長方形であり、長辺側の両端部を対向する2本の梁10の間に掛け渡して配置され、複数枚が平行に並べられている。

【0015】上記ALCパネル12は軽量気泡コンクリート製のパネル本体14内に補強筋マット13を埋設してなる一般的な構造である。この補強筋マット13は多数の縦補強筋15と横補強筋16とを縦横に組み合わせて溶接してなり、図3に示すように、縦補強筋15は340列が上下2段に配置され、横補強筋16は各縦補強筋15と直交するようにして互いに所定間隔を隔てて配置され、各補強筋15、16は交差部分で溶接により固定されている。このALCパネル12は、図示しない型枠内に補強筋マット13を配置し、この型枠内に軽量気泡コンクリートのスラリーを流し込んで補強筋マット13を埋設することで製造され、そのスラリーは無数の微細な気泡を含んで硬化することで軽量のパネル本体14が形成される。そして、この補強筋マット13のうち長手方向の両端部には、アンカープレート17が上段側の3本50

の縦補強筋 15 に直交してこれらを連結するようにして溶接により固定されており、これが横補強筋 16 に沿った形態となっている。なお、このアンカープレート 17 の板厚及びサイズは、ALCパネル 12 の大きさや重量に応じて決定されるが、幅 60 cm、長さ 180 cmとした本実施例のALCパネル 12 に関しては、強度及び加工性の面から、厚さは 12 mm~32 mm、幅は 40 mm~35 mmとすることが望ましかった。

【0016】上述のように製造されたALCパネル12は、その両端部をC形鋼11に載せた状態で、ネジ部材に相当するセルフタップ形の取付ビス18が螺合して貫通され、その取付ビス18の先端部がC形鋼11にねじ込まれて係合している。これにより、ALCパネル12がC形鋼11に固定されている。なお、ALCパネル12の上面のうち取付ビス18の貫通により形成されたビス挿通孔19には、補修パテ20が埋め込まれて取付ビス18の頭部が隠されている。

【0017】上記構成のALCパネル12の取付構造に よれば、ALCパネル12の補強筋マット13にはアン カープレート17が予め固定され、このアンカープレー ト17に取付ビス18を螺合することでALCパネル1 2が建物躯体の梁10に固定されている。従って、この 取付状態では躯体側からの力は取付ビス18を介してこ れと一体化されたアンカープレート17及び補強筋マッ ト13に受けられることになって高い取付強度が得られ る。また、躯体側からの力はアンカープレート17及び 補強筋マット13とパネル本体14との間の広い接触部 を介してパネル本体14に伝えられ、従来の構造のよう に取付ビス18だけがパネル本体14に対して振動する ようなことがなくなる。この結果、建物の振動や衝撃等 がALCパネル12に繰り返し作用したとしても、長期 間のうちに取付ビス18に緩みが生ずるようなことが確 実に防止され、ひいては頭部の補修パテ20にクラック が発生して雨水等の侵入の原因になることを未然に防止 することができる。しかも、特に本実施例では、ネジ部 材としてセルフタッピングタイプの取付ビス18を利用 しているから、そのねじ込み作業が簡単である上に、取 付ビス18がアンカープレート17に螺合して係止状態 となり、取付ビス18とアンカープレート17との一体 40 性がより高まり、その緩み防止にいっそう効果的であ る。

【0018】勿論、アンカープレート17はパネル本体14に予め埋め込まれて補強筋マット13に固定されているから、後から打ち込むものとは異なり、補強筋マット13の存在を気にすることなく最適な位置に配置することができる。しかも、アンカープレート17は、3本の縦補強筋15間に跨って溶接により固定されているから、そのアンカープレート17による補強筋マット13の強度増強効果が得られる。すなわち、本来的にはALCパネル12の取り付けのための部品であるアンカープ

望ましい。

【図面の簡単な説明】

【図1】本発明の第1実施例を示すALCパネルの取付 状態の縦断面図

7

【図2】同じく第1実施例を示すALCパネルの一部破断斜視図

【図3】同じく第1実施例を示す床パネルの敷設状態を示す斜視図

【図4】本発明の第2実施例を示すALCパネルの一部 破断斜視図

【図5】本発明の第3実施例を示すALCパネルの取付 状態の縦断面図

【図6】本発明の第4実施例を示すALCパネルの取付*

* 状態の縦断面図

【図7】本発明の第5実施例を示すALCパネルの取付 状態の縦断面図

【図8】従来のALCパネルの取付構造を示す縦断面図 【符号の説明】

10…梁

12…ALCパネル

13…補強筋マット

14…パネル本体

10 15…縦補強筋

16…横補強筋

17…アンカープレート

18…取付ビス

【図1】

10…梁

12…ALCパネル

13…繍強筋マット

14…パネル本体

15…縦補強筋

16…機補強斷

17…アンカーブレート

18…取付ピス

【図3】

ALC PANEL AND ITS INSTALLATION STRUCTURE

Publication number: JP8284296

Publication date:

1996-10-29

Inventor:

MORIOKA MASARU; SANEMASA KOREKAZU

Applicant:

ONODA ALC KK

Classification:

- international:

E04B2/94; E04B5/02; E04C2/30; E04B2/90; E04B5/02;

E04C2/30; (IPC1-7): E04B5/02; E04B2/94; E04C2/30

- European:

Application number: JP19950117823 19950418
Priority number(s): JP19950117823 19950418

Report a data error here

Abstract of JP8284296

PURPOSE: To secure sufficient strength without causing looseness even when oscillation, impact, etc., of a building works on a machine screw for installation. CONSTITUTION: An ALC panel 12 is constituted by burying a reinforcing bar mat 13 in a panel main body 14 made of light-weight aerated concrete. The reinforcing bar mat 13 is constituted by combining a large number of longitudinal reinforcing bars 15 and lateral reinforcing bars 16 longitudinally and laterally and welding them together, and anchor plates 17 orthogonal with the longitudinal reinforcing bars 15 are respectively fixed by welding on both end parts in the longitudinal direction. Self tapping type installation machine screw 18 are screwed and made to pass through these anchor plates 17, and the ALC panel 12 is fixed as head end parts of these installation machine screws 18 are screwed into C type section 11.

RECEIVED

APR 0 9 2007

JAMES R. CYPHER

Data supplied from the esp@cenet database - Worldwide