Topics in Applied Mathematics Exercise

Hwijae Son

October 8, 2024

- 1. (a) Write a program to find the root of the function $f(x) = x^2 1$ using Newton's method. The initial value is $x_0 = 10$.
 - (b) Write a program to find the minimum of the function $f(x) = x^2$ using Gradient Descent. The initial value is $x_0 = 10$.
- 2. (a) The power method is an iterative algorithm to find the dominant eigenvalue. The algorithm can be summarized as follows:

For $A \in \mathbb{R}^{n \times n}$, $b_0 \in \mathbb{R}^n$, if we assume A has an eigenvalue that is strictly greater in magnitude than its other eigenvalues and the starting vector b_0 has a nonzero component in the direction of an eigenvector associated with the dominant eigenvalue, then a sequence $b_{k+1} = \frac{Ab_k}{\|Ab_k\|}$ converges to an eigenvector associated with the dominant eigenvalue.

Make a random matrix and find its dominant eigenvalue by using the power method.

- (b) Write a function that takes a matrix and a number and returns the closest eigenvalue of the matrix from a given number using the inverse shifted power method.
- 3. (a) Create a random matrix and check whether it is invertible.
 - (b) If an inverse exists, compute the QR decomposition of the matrix.
 - (c) Check the identities for the orthogonal matrix Q
 - i. $det(Q) = \pm 1$
 - ii. If $Qx = \lambda x$, then $|\lambda| = 1$.