

Figure 1 : Schematic representation of Photo-CREC-Air and its associated internal components.

Figure 2 : Schematic representation of the Venturi section.

Figure 3 : Cross section of the Venturi, section A-A.

Figure 4 : Details of Photo-CREC-Air reflector.

1999

Figure 5: Mechanical drawing of the perforated plate.

PCT/CA98/00314

Figure 6: TPD of the 3M Blue Pleated Filter. The full line represents the water desorption from the mesh. The dashed line is the adopted temperature program.

Figure 7: Close up picture of Figure 5.5 showing a single treated strand and TiO₂ attached to it firmly.

Figure 8: Toluene/air ratio versus time, the internal standard used in the experimental runs.

-7:5

- -5

-2.5

Figure 9A: Velocity profile at 25 °C. Average superficial velocity to 2.83 m/s.

0

r (cm)

2.5

5

Figure 9B: Average velocity profile at 97°C. Average superficial gas velocity

3.0= m/s.

Figure 10A UV intensity profile across the filter sectional area with r=0 representing the center of the filter. Position 1: 0 degrees, Position 2: 90 degrees,

Position 3:180 degrees, Position 4: 270 degrees.

Figure 10B: Radial UV intensity decay profile across the mesh with r=0 representing the center of the mesh.

Figure 11A: Results of the blank runs in Photo-CREC-Air lacking TiO₂ mesh and with no UV irradiation at 20°C.

· TOO!

Figure 11B. Results of the blank runs in Photo-CREC-Air lacking TiO₂ mesh and with no UV irradiation at 100°C.

Figure 12: Typical experimental curves showing changes of reactant and product concentration as a function of time-on-stream with toluene concentration being $10.4~\mu g/cm^3$ and heating plate at $T=100^{\circ}C$.

Figure 13A: Experimental run with Photo-CREC-Air: initial toluene concentration=5.2 $\mu g/cm^3$, Temperature=100 °C, water level below 25 $\mu g/cm^3$.

Figure 13B : Experimental run with Photo-CREC-Air: initial toluene concentration=7.78 μg/cm³, Temperature=100 °C, water level below 25 μg/cm³.

Figure 13B: Experimental run with Photo-CREC-Air: initial toluene concentration=10.4 $\mu g/cm^3$, Temperature=100 °C, water level below 25 $\mu g/cm^3$.

Figure 13D : Experimental run with Photo-CREC-Air: initial toluene concentration=13 μg/cm³, Temperature=100 °C, water level below 25 μg/cm³.

Figure 14 : Rate of toluene oxidation as a function of the initial toluene concentration.

Figure 15A: Experimental run with Photo-CREC-Air: initial toluene concentration=10.4 μg/cm³, Temperature=75 °C, water level below 25 μg/cm³.

Figure 15B : Experimental run with Photo-CREC-Air: initial toluene concentration=10.4 μg/cm³, Temperature=50 °C, water level below 25 μg/cm³.

Figure 15C: Experimental run with Photo-CREC-Air: initial toluene concentration=10.4 $\mu g/cm^3$, Temperature=20 °C, water level below 25 $\mu g/cm^3$.

1939

Figure 15D: Experimental run with Photo-CREC-Air: initial toluene concentration=10.4 μg/cm³, Temperature=100 °C, water level about 30 μg/cm³.

Figure 16A: Kinetic constants for the different initial toluene concentration.

Figure 16B : Quantum yields assessed for the different toluene initial concentrations studied.

WO 98/46335

Figure 17A: Simulated chemical species distribution for the following set of constants and operating conditions: k_1 =0.03(hr⁻¹), k_2 =0.03(hr⁻¹), and C_o =18 μ g/cm³ (5000ppm). 27/30

geel ton a

Figure 17B : Simulated chemical species distribution for the following set of constants and operating conditions: $k_1=0.03$ (hr^{-1}), $k_2=0.22$ (hr^{-1}), and $C_o=18\mu g/cm^3(5000ppm)$.

Reactants **Products** Concentration (ppm) Intermediates Time (hr)

Figure 17C: Simulated chemical species distribution for the following set of constants and operating conditions: k_1 =0.3 (hr⁻¹), k_2 =2.2 (hr⁻¹), and C_o = 18 μ g/cm³(5000ppm).

1999

:Estimated errors of the kinetic parameter associated with the Figure 18 different measured variables