

Problem Statement

X Education, an online education company, has a significant challenge with low lead conversion rates. Despite acquiring a large number of leads (via marketing efforts, website visits, and referrals), only 30% of leads are converted into paying customers. The company aims to improve this conversion rate by identifying the "Hot Leads" — those that are most likely to convert — and prioritizing them for follow-up by the sales team. This approach will help optimize resources, increase efficiency, and ultimately raise the lead conversion rate to approximately 80%.

Objective

The goal is to build a predictive model that scores leads based on their likelihood of conversion, using historical data on lead activities, behavior on the website, and other relevant factors. The leads with higher scores should have a higher probability of conversion, allowing the sales team to focus on the most promising leads.

Analysis Methodology

Data sourcing, cleaning and preparation

Feature scaling, splitting the data into train and test sets

Model Development

Model Evaluation

Lead Scoring Prediction

EDA

> Handled Null values.

Dropped columns with more than 40% null values.

➤ Handled Categorical Values by using get dummies method.

Variables impacting the Conversion Rate

- ➤ TotalVisits
- ➤ Total Time Spent on Website
- ▶ Lead Source_Welingak Website
- Last Activity_SMS Sent
- ➤ Country_Germany
- ➤ Tags_Closed by Horizzon
- ➤ Tags_Lost to EINS
- ▶ Tags_Ringing
- ➤ Tags_Will revert after reading the email
- ▶ Tags_switched off

Model Evaluation - Train Set

Confusion Matrix:

Actual/Predicted

Negative

Positive

Negative

True Negative 3763

False Positive 152

Positive

False Negative 323

True Positive 2113

Model Performance:

Accuracy	91.3 %
Sensitivity	91.0%
Specificity	91.5%
False Positive	8.45%
Positive predictive value	87%
Negative predictive value	94.2%

Model Evaluation - Train Set

ROC Curve

Model Performance:

From the curve above, 0.3 is the optimum point to take it as a cutoff probability.

Precision	93.2 %
Recall	86.7%

Model Evaluation – Test Set

Confusion Matrix:

Actual/PredictedNegativePositiveNegativeTrue Negative
1569False Positive
155PositivePositive
93True Positive
906

Model Performance:

Accuracy	92.5 %
Sensitivity	85.4%
Specificity	91%
False Positive	8.9%
Positive predictive value	90.6%
Negative predictive value	94.4%

Train and Test Data Comparison:

	Train Data	Test Data
Accuracy	91.3 %	92.5 %
Sensitivity	91.0%	85.4%
Specificity	91.5%	91%
False Positive	8.45%	8.9%
Positive predictive value	87%	90.6%
Negative predictive value	94.2%	94.4%

The model metrics for test and train data are very similar and higher than 85%

=> Good Performance of the model