| Name  |  |  |
|-------|--|--|
| vanie |  |  |

| Student $\#$ | £ |
|--------------|---|
|--------------|---|

## STAT 101: Final Examination

| Ques | Mark | Out of |
|------|------|--------|
| 1    |      | 5      |
| 2    |      | 5      |
| 3    |      | 4      |
| 4    |      | 4      |
| 5    |      | 1      |
| 6    |      | 1      |
| 7    |      | 5      |
| 8    |      | 5      |
| 9    |      | 5      |
| 10   |      | 5      |
| 11   |      | 3      |
| 12   |      | 2      |
| 13   |      | 5      |

## Instructions:

- 1. This is an open book exam.
- 2. You may use a calculator (with no wireless communications ability).
- 3. You may not use a phone as a calculator or in any other way.
- 4. Sometimes, to do the problem, you will need to make assumptions. You should be clear and explicit about what assumptions you need to make the technique you are using reasonable. Marks will be deducted for failing to make such assumptions clear. The problems where you need to say something about assumptions are not labelled.
- 5. The exam is out of 50.
- 6. There are 15 pages including this one.

Questions number 1 to 7 refer to the following experiment. The data are from the Data Stories Library hosted at Statlib.

Two identical footballs, one air-filled and one helium-filled, were used outdoors on a windless day at The Ohio State University's athletic complex. Each football was kicked 39 times and the two footballs were alternated with each kick. The experimenter recorded the distance travelled (in yards) by each ball. Here are the data, some summary statistics, histograms for the variables and some scatterplots.

| Trial #                 | 1  | 2  | 3  | 4  | 5   | 6   | 7  | 8  | 9  | 10  | 11 | 12 | 13 |
|-------------------------|----|----|----|----|-----|-----|----|----|----|-----|----|----|----|
| Air                     | 25 | 23 | 18 | 16 | 35  | 15  | 26 | 24 | 24 | 28  | 25 | 19 | 27 |
| Helium                  | 25 | 16 | 25 | 14 | 23  | 29  | 25 | 26 | 22 | 26  | 12 | 28 | 28 |
| Difference              | 0  | 7  | -7 | 2  | 12  | -14 | 1  | -2 | 2  | 2   | 13 | -9 | -1 |
| Trial #                 | 14 | 15 | 16 | 17 | 18  | 19  | 20 | 21 | 22 | 23  | 24 | 25 | 26 |
| Air                     | 25 | 34 | 26 | 20 | 22  | 33  | 29 | 31 | 27 | 22  | 29 | 28 | 29 |
| $\operatorname{Helium}$ | 31 | 22 | 29 | 23 | 26  | 35  | 24 | 31 | 34 | 39  | 32 | 14 | 28 |
| Difference              | -6 | 12 | -3 | -3 | -4: | -2  | 5  | 0  | -7 | -17 | -3 | 14 | 1  |
| Trial #                 | 27 | 28 | 29 | 30 | 31  | 32  | 33 | 34 | 35 | 36  | 37 | 38 | 39 |
| Air                     | 22 | 31 | 25 | 20 | 27  | 26  | 28 | 32 | 28 | 25  | 31 | 28 | 28 |
| Helium                  | 30 | 27 | 33 | 11 | 26  | 32  | 30 | 29 | 30 | 29  | 29 | 30 | 26 |
| Difference              | -8 | 4  | -8 | 9  | 1   | -6  | -2 | 3  | -2 | -4  | 2  | -2 | 2  |

Here are some summary statistics:

|        | Trial | $\operatorname{Air}$ | Helium | Difference |
|--------|-------|----------------------|--------|------------|
| Mean   | 20.0  | 25.92                | 26.38  | -0.4615    |
| SD     | 11.40 | 4.69                 | 6.21   | 6.87       |
| Median | 20    | 26                   | 28     | -1         |

The correlation between distance in air and distance with helium is 0.23. The correlation between trial number and distance with air is 0.36. The correlation between trial number and distance with helium is 0.34.









1. Does using helium affect the distance the ball travels?

[5 marks]

2. Give a 95% confidence interval for the distance a heium filled ball travels. [5 marks]

3. Make a normal approximation to estimate the fraction of trials for which the air ball travels more than 5 yards further than the helium ball. [4 marks]

4. Use regression to predict the distance a helium filled ball will travel on a trial where the air filled ball travels 45 yards. [4 marks]

5. Suggest one clear danger in using this method of prediction.

[1 mark]

6. Explain why a paired comparisons (matched pairs) design was useful in this case. Your answer will refer to the data and/or the plots. [1 mark]

7. In 14 of the 39 trials the kick with the air filled ball is longer than the kick with the helium filled ball. Give a 95% confidence interval for the probability that the air filled ball will be kicked farther than the helium filled ball on a given trial.

[5 marks]

8. In the General Social Survey a sample of adults were asked whether or not they supported the statement: "It is right to use animals for medical testing of it might save human lives." The responses, broken down by sex, are:

|             | Men | Women |
|-------------|-----|-------|
| Supportive  | 346 | 306   |
| Sample Size | 516 | 636   |

Find an 80% confidence interval for the difference between the population proportions of men and women who support this statement. [5 marks]

9. The following story is taken from the data story library at lib.stat.cmu.edu. "A manufacturer was considering marketing crackers high in a certain kind of edible fiber as a dieting aid. Dieters would consume some crackers before a meal, filling their stomachs so that they would feel less hungry and eat less. A laboratory studied whether people would in fact eat less in this way. Overweight female subjects ate crackers with different types of fiber (bran fiber, gum fiber, both, and a control cracker) and were then allowed to eat as much as they wished from a prepared menu. The amount of food they consumed and their weight were monitored, along with any side effects they reported. Unfortunately, some subjects developed uncomfortable bloating and gastric upset from some of the fiber crackers. A contingency table of 'Cracker' versus 'Bloat' shows the relationship between the four different types of cracker and the four levels of severity of bloating as reported by the subjects."

The data are:

|                      | High | Low | Medium | None | Total |
|----------------------|------|-----|--------|------|-------|
| Bran                 | 0    | 4   | 1      | 7    | 12    |
| Combo                | 2    | 5   | 3      | 2    | 12    |
| Control              | . 0  | 4   | 2      | 6    | 12    |
| $\operatorname{Gum}$ | 5    | 2   | 3      | 2    | 12    |
| Total                | 7    | 15  | 9      | 17   | 48    |

Carry out a  $\chi^2$  test to see if there to see if there is a relationship between type of cracker and the extent of bloating symptoms.

As part of your answer you should complete the following tables. [5 marks]

Expected Cell Counts

|         |      | Bloating |        |      |  |  |  |
|---------|------|----------|--------|------|--|--|--|
|         | High | Low      | Medium | None |  |  |  |
| Bran    | 1.75 | 3.75     | 2.25   | 4.25 |  |  |  |
| Combo   |      |          |        | 4.25 |  |  |  |
| Control |      |          |        |      |  |  |  |
| Gum     |      |          |        |      |  |  |  |

Components of  $X^2$ 

|         |      | Bloating |        |      |  |  |  |
|---------|------|----------|--------|------|--|--|--|
|         | High | Low      | Medium | None |  |  |  |
| Bran    | 1.75 | 0.02     | 0.69   | 1.78 |  |  |  |
| Combo   | 0.04 |          | 0.42   |      |  |  |  |
| Control |      |          |        |      |  |  |  |
| Gum     | 6.04 | 0.82     | 0.25   | 1.19 |  |  |  |

10. A sample of 20 men is drawn at random from a large population of men. An independent sample of 20 women is also drawn. The individuals' brain sizes (in unknown units) were measured along with their IQs. The data are below.

|      |       | Men        | Women |            |  |
|------|-------|------------|-------|------------|--|
|      | IQ    | Brain Size | IQ    | Brain Size |  |
|      | 140   | 1001       | 133   | 817        |  |
|      | 139   | 1038       | 137   | 952        |  |
|      | 133   | 965        | 99    | 929        |  |
|      | 89    | 909        | 138   | 991        |  |
|      | 133   | 955        | 92    | 854        |  |
|      | 141   | 1080       | 132   | 834        |  |
|      | 135   | 924        | 140   | 856        |  |
|      | 100   | 945        | 96    | 879        |  |
|      | 80    | 889        | 83    | 865        |  |
|      | 83    | 892        | 132   | 852        |  |
|      | 97    | 906        | 101   | 808        |  |
| · ·  | 139   | 955        | 135   | 791        |  |
|      | 141   | 935        | 91    | 832        |  |
|      | 103   | 1062       | 85    | 799        |  |
|      | 144   | 950        | 77    | 794        |  |
|      | 103   | 998        | 130   | 867        |  |
| -    | 90    | 880        | 133   | 858        |  |
|      | 140   | 950        | 83    | 834        |  |
|      | 81    | 930        | 133   | 948        |  |
|      | 89    | 936        | 88    | 894        |  |
| Mean | 115.0 | 954.9      | 111.9 | 862.7      |  |
| SD   | 25.0  | 55.9       | 23.7  | 55.9       |  |

Do the men have larger brain sizes than the women in these populations? [5 marks]

11. On the next page you will see output from JMP in which I regressed IQ on Brain Size for the data set in the previous question putting both men and women together. Give a 90% confidence interval for the slope of the regression line of IQ on brain size in this population. [3 marks]

## JMP output for IQ and brain size question

Brains: Fit Least Squares Page 1 of 1



2.36

0.050472

BrainSize

0.1191546

0.0235\*

12. I have a box with 3 red and 2 green billiard balls in it. I have a bag with 1 red and 3 green balls. I pick one ball from the box without looking and 1 ball from the bag without looking. What is the chance that I get two red balls? [2 marks]

13. Each time I give STAT 101 or 201 I survey the class in the first lecture. In 2004 I had 154 respondents of whom 100 were female. This year I had 66 of whom 39 were female. Assume that we can treat the respondents each year as a sample of all SFU undergrads who would respond to such a survey if asked. Has the proportion of such willing respondents who are female changed between years? [5 marks]