Class 6

Shikhar Saxena

January 24, 2023

Contents

Stochastic Optimization: 1-period MDP	1
Dynamic Programming	2
Deterministic Dynamic Programming	2
Shortest Path from Root Node (R) to Leaf Node example	2
Notation	2
Definition of a Dynamic Program	
Bellman Optimality Equation	

Stochastic Optimization: 1-period MDP

Problem P1:

$$\min_{\pi:S\to\mathcal{A}} E[c(S,\pi(S),W)] \tag{1}$$

Here we are optimizing over all mappings (Functional Optimization Problem).

Define
$$Q(s, a) := E[c(s, a, W)|S = s].$$

Problem P2:

$$\min_{a \in \mathcal{A}} Q(s, a) \text{ and } \pi^*(s) = \arg\min_{a \in \mathcal{A}} Q(s, a) \tag{2}$$

Here we are optimizing over actions (over a chosen state) (Collection of Parameter Optimization).

The solution in (2) is definitely a solution for (1) but the converse might not be true.

Proof. Proof for converse might not be true:

An intuition for this is that P2 might have a solution for a state (that is improbable P(s) = 0). If we solve through P1, it might map to any action (because this state is improbable) but through P2, we might get a fixed mapping for this state.

Proof for other side:

Let π^* minimize P2.

$$\begin{split} E[c(S, \pi(S), W)] &= E[E[c(S, \pi(S), W)|S]] \\ &\geq E[E[c(S, \pi^*(S), W)|S]] \\ &= E[c(S, \pi^*(S), W)] \end{split}$$

Dynamic Programming

Deterministic Dynamic Programming

The environment is governed by what is called a *deterministic plant equation*. Essentially, deterministic transitions and root.

Shortest Path from Root Node (R) to Leaf Node example

- $\circ\,$ State space $\mathcal S$
 - * all nodes
- \circ Action space \mathcal{A}
 - ★ {leftnode, rightnode}
- $f: \mathcal{S} \times \mathcal{A} \to \mathcal{S}$ (Plant equation)
 - \star Denotes next state. $s_{t+1} = f(s_t, a_t)$
- \circ Edge cost incurred c(s, a)
- \circ Objective: V(R)

$$V(R) = \min_{a \in \mathcal{A}} \{c(R, a) + V(s')\}$$
 where $s' = f(R, a)$

These are called **Bellman-Type Equation**: Solve recursively backwards.

Notation

- Discrete set of times t = 0, 1, ..., T
- Notation from the shortest path example
- Countable spaces in most cases (unless specified)
- \circ s_0 denote starting state
- $\circ r(s_t, a_t) \text{ or } c(s, a)$
- $\circ r_T(s_T)$: Reward for terminating in s_T at time T
- $\circ \ \pi = (\pi_t : 0, 1, \dots, T-1)$
 - * Policy Vector over all timesteps (No action at the last timestep).
 - * Specifies action $\pi_t \in \mathcal{A}$ to be taken at time t.

- \star π is a function of state (can also depend on the timestep tho; like we have used in this notation).
- $\star \ s_{t+1} = f(s_t, \pi_t)$
- Cumulative Reward:

$$V^{\pi}(s_0) = r(s_0, \pi_0) + r(s_1, \pi_1) + \dots + r_T(s_T)$$

Definition of a Dynamic Program

$$V(s_0) \quad := \max_{\pi \in \Pi} V^\pi(s_0) \quad := \sum_{t=0}^{T-1} r(s_t, \pi_t) + r_T(s_T)$$

• Except for easy problems, it is difficult to get a closed form solution for this

Let
$$\pi_t := (\pi_t, \dots, \pi_{T-1})$$

Define
$$V_t^{\pi_t}(s_t) = \sum_{u=t}^{T-1} r(s_u, \pi_u) + r_T(s_T)$$

Then,
$$V_T^{\pi_T}(s) = r_T(s)$$
 and $V_0^{\pi}(s) = V(s_0)$

Bellman Optimality Equation

$$V_t(s) = \max_{a \in \mathcal{A}} \{r(s,a) + V_{t+1}(s')\} \text{ where } s' = f(s,a)$$