IPv6

Header structure

IPv4 vs. IPv6 headers

IPv4 IPv6

Version	IHL	Type of Service	Total Length	
Identification		Flags	Fragment Offset	
Time to L	.ive	Protocol	Header Checksum	
Source Address				
Destination Address				
Options				Padding

- Header Length: not needed since base header has fixed length
- Identification, Flags, Fragment Offset: no in-network fragmentation
- Header Checksum: removed to improve processing speed
 - With IPv6, UDP checksum is mandatory

IPv6 base header (40 bytes)

0	4	12	16	24	31
Vers.	Class Flow Label				
	Payload Lengtl	h	Next Header	Hop Limit	
	Source Address				
		Source /	Address		
		.			
		Destinatio	n Address		

- Version (4 bits)
 - **-** 6
- Traffic Class (1 byte)
 - Substitutes the ToS field in IPv4

Can be used to give priority to certain packets
within a flow, or it can be used to give priority to
datagrams from certain applications (for example,
ICMP packets) over datagrams from other
applications

- Flow label (20 bits)
 - randomly generated
 - distinguishes packets that require the same treatment in order to facilitate the handling of real-time traffic

- Payload length (2 bytes)
 - Does not include the header length (as in IPv4)
 - Extension headers are considered part of the payload

- Hop limit (1 byte)
 - Analogous to TTL field in IPv4, but no more expressed in seconds

- Next header (1 byte)
 - Resembles the Protocol
 Type in IPv4, but ...
 - It is much more, reflecting the new organization of IPv6 packets

IPv6 header structure

- One base header (40 bytes), plus
- Zero or more extension headers (variable size)
- Daisy chain organization

IPv6 header structure

Values in the Next Header field (base and

extension headers)

Values	Meaning
0	Hop-by-Hop Options header
4	IPv4
6	Transmission Control Protocol
17	User Datagram Protocol
41	IPv6
43	Routing header
44	Fragment header
46	Resource Reservation Protocol
50	Encapsulating Security Payload header
51	Authentication header
58	Internet Control Message Protocol v6
59	No Next header
60	Destination Options header
135	Mobility Header (Mobile IPv6)
•••	

IPv6 extension headers

- Inserted only when needed
- Processed in the order they appear by the node identified by the DA (with one exception)
 - A specific order is recommended
- Open to further extensions

Value	Extension Header
0	Hop-by-Hop Options Header
43	Routing Header
44	Fragment Header
50	ESP Header
51	Authentication Header
59	No Next Header
60	Destination Options Header

- Carries optional information that must be examined by every node along the path
- Format
 - Next header (1 byte)
 - Header Extension Length (1 byte)
 - Header length in eight-byte units (minus one)
 - Options
 - One or more

Options field format (Tag-Length-Value)

- Action (2 bits): what to do if the option is not recognized
 - 00: Skip and continue processing
 - 01: Discard the packet
 - 10: Discard the packet and send an ICMP Parameter Problem message to the packet's Source address
 - 11: Discard the packet and send ICMP Parameter Problem message to the packet's Source address only if the destination is not a multicast address

Options field format (Tag-Length-Value)

- C (1 bit)
 - 1: the option information can change en route
 - 0: the option information does not change en route
- Type
 - Jumbo Payload
 - Router Alert

- Jumbo Payload (Type=194)
 - Used to send very large packets whose length cannot be encoded on 16 bits only (>64KB)
 - when used, the IPv6 payload length field is set to zero
 - Packet length encoded with 32-bits
 - supports the transmission of packets that are between 65,536 and 4,294,967,295 bytes (4GB)
- Compromise between the initial design of IPv6 and special networking requirements

- Router Alert (Type=5)
 - indicates to a router on the forwarding path that the packet contains important information to be processed by the router
 - Example: RSVP uses control packets containing information that needs to be interpreted or updated by routers along the path

Routing header

- Gives a list of intermediate nodes to be visited on the path to the destination
 - Routing Type
 - 0: default
 - 2: Mobile IPv6
 - 3: RPL
 - Segments Left
 - Nodes left to be visited
 - Address (RT=0)

Address[n]

Routing header

Example

Fragment header

- Unlike IPv4, routers do not fragment IPv6 packets
 - Fragmentation occurs only at the source host sending the packet
 - The destination host only handles reassembly
 - IPv6 packets larger than the MTU of the forwarding link are discarded by the router
- IPv6 hosts use a Path MTU discovery procedure
- The IPv6 minimum MTU size is <u>1280 bytes</u>!!!

Fragment header

- Fragment Offset (13 bits)
 - The offset in 8-byte units of the data in this packet
 relative to the start of the data in the original
 packet

Next Header

Reserved

- M-Flag (1 bit)
 - 1: more fragments
 - 0: last fragment
- Identification (4 bytes)
 - Generated by the source host in order to identify all packets belonging to the original packet

31

Fragment Offset

Identification

Fragment header

- Example
 - One packet fragmented into three fragments

Other extension headers

- Authentication Header
- Encapsulating Payload Security Header
 - IPv6 security support (IPsec)
- No Next Header
 - No payload
- Destination Options Header
 - Same as Hop-by-Hop, but options to be processed only at the destination
 - Used by Mobile IPv6

IPv6 EH processing

IPv6 EH processing

IPv6 EH processing

Source: Cisco White Paper, IPv6 Extension Headers Review and Considerations, 2006

References

S. Hagen. IPv6 essentials. 3/ed. O'Reilly, 2014

- RFC 8200, "Internet Protocol, Version 6 (IPv6)
 Specification," 2017
- RFC 2675, "IPv6 Jumbograms," 1999
- RFC 2711, "IPv6 Router Alert Option," 1999