Er11438

Report Docu	Form Approved OMB No. 0704-0188					
reviewing instructions, searching exi- reviewing the collection of informatio information, including suggestions for Operations and Reports, 1215 Jeffers	sting data sources, gathering and ma on. Send comments regarding this bu r reducing this burden, to Washingto on Davis Highway, Suite 1204, Arli- ion of law, no person shall be subject	intainir irden es on Head ngton V ot to a p	I hour per response, including the time for ng the data needed, and completing and stimate or any other aspect of this collection of dquarters Services, Directorate for Information /A 22202-4302. Respondents should be aware benalty for failing to comply with a collection			
1. REPORT DATE 12 MAR 2003	2. REPORT TYPE N/A	3. DA	3. DATES COVERED			
4. TITLE AND SUBTITLE Mean Squared Error Performance Prediction of Maximum-Likelihood signal Parameter Estimation			5a. CONTRACT NUMBER			
			5b. GRANT NUMBER			
			5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)			5d. PROJECT NUMBER			
			5e. TASK NUMBER			
			5f. WORK UNIT NUMBER			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Defense Advanced Research Project Agency (DARPA)			8. PERFORMING ORGANIZATION REPORT NUMBER			
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)			
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAILABILITY Approved for public release						
13. SUPPLEMENTARY NOTES Also see: ADM001520, The	original document contai	ns co	lor images.			
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF: 17. 18. 19a. NAME OF RESPONSIBLE						

a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	LIMITATION OF ABSTRACT UU	OF PAGES	PERSON Patricia Mawby, EM 1438 PHONE:(703) 767-9038 EMAIL:pmawby@dtic.mil
---------------------------	-----------------------------	------------------------------	------------------------------------	-------------	---

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

pwd: cannot determine current directory!

Prediction of Maximum-Likelihood Mean Squared Error Performance Signal Parameter Estimation

Christ D. Richmond

Session III: Adaptive Detection and Estimation Adaptive Senor Array Processing Workshop

12th March 2003

*This work was sponsored by DARPA under Air Force contract F19628-95-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government.

Outline

- Problem
- Previous Work
- Zoor Zoor
- Numerical Results
- Conclusions

Goals of Analysis

- Problem:
- Likelihood (ML) signal parameter estimation unknown Mean Squared Error (MSE) performance of Maximum-
- 1. Colored Noise
- Finite Number of Colored Noise Only Training Samples
- Goal:
- Develop robust theory for prediction of ML MSE
- Proposed Method:
- Use Interval Error based method proposed by Van Trees 1968
- Must derive/approximate probability of "interval error"

Typical Composite MSE Performance

- Three definitive regions of Signal-to-Noise-Ratio (SNR)
- No Information, Threshold, and Asymptotic (CRB)
- Recall MSE = Estimator Variance + Estimator Bias

Previous Work

- K. Bell, Ph. D. George Mason University, 1995
- K. Bell, Y. Steinberg, Y. Ephraim, H. Van Trees, IEEE T-SP March 1997
- 4009 c nov stall S. Pawlukiewio
- Colored Noise Allowed
- Colored Noise Only Finite training effects
- Exact two point error probabilities used

Ziv-Zakai Bounds

F. Athley, TE

Method of Interval Error

- All previous work considered non-adaptive and while noise only case
- Error probabilities approximated via Chernoff Bounds

Outline

- Theory
- Maximum-Likelihood Estimation (MLE)
- Interval Error Based Method of MSE Prediction
- Numerical Results
- Conclusions

Signal Parameter Estimation **Maximum-Likelihood**

$$\pi^{-N} |\mathbf{R}|^{-1} \exp\left\{-\left[\mathbf{x} - S\mathbf{v}(\theta)\right]^H \mathbf{R}^{-1} \left[\mathbf{x} - S\mathbf{v}(\theta)\right]\right\}$$

$$\theta_{ML} = \operatorname{argmax} t_{MF}(\theta)$$

$$t_{\Lambda F}(\theta) = \frac{\left|\mathbf{v}^{H}(\theta)\mathbf{R}^{-1}\mathbf{x}\right|^{2}}{\mathbf{v}^{H}(\theta)\mathbf{R}^{-1}\mathbf{v}(\theta)}$$

Matched Filter

Clairvoyant

Data Model:
$$\pi^{-N(L+1)} |\mathbf{R}|^{-(L+1)} \exp \left\{ -\left[\mathbf{x} - S\mathbf{v}(\theta) \right]^H \mathbf{R}^{-1} \left[\mathbf{x} - S\mathbf{v}(\theta) \right] \right] - \operatorname{tr} \left(\mathbf{R}^{-1} \mathbf{X} \mathbf{X}^H \right) \right\}$$

$$= \frac{\mathbf{v}^{H}(\theta)\hat{\mathbf{R}}^{-1}\mathbf{x}^{\dagger}}{\mathbf{v}^{H}(\theta)\hat{\mathbf{R}}^{-1}\mathbf{v}(\theta)} \hat{\mathbf{F}}$$

ML Estimator:
$$\theta_{ML} = \operatorname{argmax} t_{AMF}(\theta) \quad t_{AMF}(\theta) = \frac{\mathbf{v}^H(\theta) \hat{\mathbf{R}}^{-1} \mathbf{x}|^2}{\mathbf{v}^H(\theta) \hat{\mathbf{R}}^{-1} \mathbf{v}(\theta)} \quad \hat{\mathbf{R}} = \frac{1}{L} \mathbf{x} \mathbf{x}^H \quad Adaptive$$

$$\mathbf{V}(\theta)$$
 $\hat{\mathbf{R}} \equiv \frac{1}{L} \mathbf{X} \mathbf{X}^H$

- Complex Gaussian data model: All snapshots Nx
- Arbitrary N x N Colored Covariance
- Deterministic Signal ("Conditional")
- Colored noise only training samples available
- Single scalar signal parameter
- Joint signal parameter estimation not considered

Method of ML MSE Prediction: **Based on Interval Errors**

In general MSE can be written as the sum of two terms

$$E\left\{\left(\hat{\theta}-\theta\right)^{2}\right\} = Pr(\text{No Interval Error})E\left\{\left(\hat{\theta}-\theta\right)^{2}\right\}$$
No Interval Error

+Pr(Interval Error) $E | (\hat{\theta} - \theta)^2 |$ Interval Error MSE for Deterministic Signal Parameters

Challenge is accurate calculation of error probabilities given by

$$p(\hat{\theta} = \theta_n | \theta_k) + 2$$

Union Bound (UB) Approximation: Interval Error Probabilities

- Recall the ML approach: $\theta = \operatorname{argmax} t(\theta)$
- The probability of interval error is bounded by the relation

$$p(\hat{\theta} = \theta_n | \theta_k) = \Pr\left\{ \bigcup_{k=1}^K \left[t(\theta_n) > t(\theta_k) | \theta = \theta_k \right] \right\} \le \sum_{k=1}^K \Pr\left[t(\theta_n) > t(\theta_k) | \theta = \theta_k \right]$$

- UB is a useful tool for computation of error probabilities in Digital Communication Schemes
- Approximation relies on two point error probabilities
- UB often over estimates error in "No Information" region of **MSE** curve

Two Point Probabilities for the Matched Filter: R known

• Let array responses for two points be given by $V = [v(\theta_n), v(\theta_k)]$

Define the following matrices

$$\mathbf{A} = \begin{bmatrix} \frac{1}{\sqrt{\mathbf{v}(\theta_n)}\mathbf{R}^{-1}\mathbf{v}(\theta_n)} & 0 & \\ \frac{1}{\sqrt{\mathbf{v}(\theta_n)}\mathbf{R}^{-1}\mathbf{v}(\theta_k)} \end{bmatrix} \qquad \mathbf{W} = \mathbf{R}^{-1}\mathbf{V}\mathbf{A} \quad \mathbf{R}_{VX} \equiv \mathbf{A}\mathbf{V}^H\mathbf{R}^{-1}\mathbf{V}\mathbf{A}$$

$$\mathbf{A} = \begin{bmatrix} \frac{1}{\sqrt{\mathbf{v}(\theta_n)}\mathbf{R}^{-1}\mathbf{v}(\theta_k)} \\ 0 & \frac{1}{\sqrt{\mathbf{v}(\theta_k)\mathbf{R}^{-1}\mathbf{v}(\theta_k)}} \end{bmatrix}$$

$$\mathbf{R}_{VX}^{1/2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \mathbf{R}_{VX}^{1/2} = \mathbf{Q}_{VX}^H \mathbf{\Lambda}_{VX} \mathbf{Q}_{VX}$$

Defining the vector

 $\mathbf{m} = \begin{vmatrix} m_1 \\ m_2 \end{vmatrix} = \mathbf{Q}_{VX} \mathbf{R}_{VX}^{-1/2} \mathbf{W}^H \mathbf{v}(\theta_k)$

The exact desired two point probabilities are given by

$$\Pr\left[\int_{MF}(\theta_{i})>t_{MF}(\theta_{i})|\theta=\theta_{i}\right]=\Pr\left[\frac{\lambda_{1}^{2}\left(m_{1}^{2}\right)}{\lambda_{1}\left(m_{2}^{2}\right)}\leq\frac{\lambda_{1}\chi_{1}^{2}}{\lambda_{1}\chi_{1}}\right]$$

Expressible in terms of Marcum Q-function

the Adaptive Matched Filter: R unknown Two Point Probabilities for

• Let $t_{AMF}(heta_n) = \left| y_{AMF,1} \right|^2$; the desired probability can be written $t_{AMF}(heta_k) = \left| y_{AMF,2} \right|^2$; the desired probability can be written

$$\Pr \left[t_{_{AMF}}(\theta_{_{n}}) > t_{_{AMF}}(\theta_{_{k}}) \middle| \theta = \theta_{_{k}} \right] = \Pr \left\{ \left. \mathbf{y}_{_{AMF}}^{H} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \! \mathbf{y}_{_{AMF}} < 0 \right\}$$

• It can be shown that AMF outputs can be written equal in distribution
$$\mathbf{y}_{4ME} = \begin{bmatrix} y_{4ME,1} \end{bmatrix}_d^d \begin{bmatrix} q_{11} & a_{12} \\ \sqrt{a_{22}} & \sqrt{a_{22}} \end{bmatrix} (\mathbf{v}^H \mathbf{R}^{-1} \mathbf{v})^{-1/2} \mathbf{x}_{4MF}$$
 where

 $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \sim CW \left(L - N + 2, \mathbf{V}^H \mathbf{R}^{-1} \mathbf{V} \right) \text{ and } \mathbf{X}_{AMF} \sim CN_{2x1} \left(S \left[\sqrt{\mathbf{V}(\theta_n)} \mathbf{R}^{-1} \mathbf{V}(\theta_n) \right] \right|_1^{1_2} \cdot \frac{1}{\beta_{L-N+3,N-2}} \right)$

· The necessary two point probabilities can be thus obtained

Outline

- Introduction
- Theory Numerical Results
 - Conclusions

White Noise Example: R known

- N=18 element ULA, (λ/2.25) element spacing, broadside at 90 degs, endfire at 0 and 180 degs
- 0dB white noise

Colored Noise Example: R known

- N=18 element ULA, (λ/2.25) element spacing, broadside at 90 degs, endfire at 0 and 180 degs
 - 0dB white noise plus 30dB Jammer at 75 degs

White Noise Example: R unknown

N=18 element ULA, (λ/2.25) element spacing, broadside at 90 degs, endfire at 0 and 180 degs

0dB white noise

Adaptive Training: L = 1.5N, 2N, and 3N

Colored Noise Example: R unknown

N=18 element ULA, ($\lambda/2.25$) element spacing, broadside at 90 degs, endfire at 0 and 180 degs

0dB white noise plus 30dB Jammer at 75 degs

Adaptive Training: L = 1.5N, 2N, and 3N

Conclusions

- Interval error method represents a viable and numerically efficient technique
- Theory and simulation have very good match
- UB overestimates MSE, however, in "No Information" region
- Two point probabilities have been computed in closed form
- Colored Noise
- Adaptive Finite Training Effects
- Established a the notion of SINR Loss for the parameter estimation problem

Future Work

- Explore tighter bounds on probability of interval errors than that given by the Union Bound
- Expurgating terms of Union Bound, for example
- Extend to Stochastic / Unconditional signal models
- Generalize to vector signal parameters
- Comparisons with Bayesian Bound predictions
- Ziv-Zakai, Weiss-Weinstein, etc.

Backups

999999-19 XYZ 4/28/2003

Method of ML MSE Prediction: Based on Interval Errors

In general MSE can be written as the sum of two terms

$$E\Big\{\Big(\hat{\theta} - \theta\Big)^2\Big\} = \Pr(\text{No Interval Error}) E\Big\{\Big(\hat{\theta} - \theta\Big)^2\Big| \text{No Interval Error}\Big\} + \Pr(\text{Interval Error}) E\Big\{\Big(\hat{\theta} - \theta\Big)^2\Big| \text{Interval Error}\Big\}$$

Deterministic Signal Parameters

$$E\Big\{ (\hat{\theta} - \theta)^2 \Big| \theta_k \Big\} = \Pr(\text{No Interval Error} | \theta_k) \cdot \text{CRB}(\theta_k) + \sum_{n=1}^K p \Big(\hat{\theta} = \theta_n \Big| \theta_k \Big) (\theta_n - \theta_k)^2$$

$$E\Big\{ (\hat{\theta} - \theta)^2 \Big| \theta \Big\} = \int_{\hat{\Theta}} (\hat{\theta} - \theta)^2 p \Big(\hat{\theta} | \theta \Big) p \Big(\hat{\theta} | \theta \Big) d\hat{\theta}$$

$$E\Big\{ (\hat{\theta} - \theta)^2 \Big| \theta \Big\} = \int_{\hat{\Theta}: MAINLOBE} (\hat{\theta} - \theta)^2 p \Big(\hat{\theta} | \theta \Big) p \hat{\theta} + \int_{\hat{\Theta}: AMBIGUITIES} (\hat{\theta} - \theta)^2 p \Big(\hat{\theta} | \theta \Big) p \hat{\theta}$$

the Matched Filter: R known Two Point Probabilities for

· These probabilities are expressible in terms of the Marcum Q-function:

$$\Pr\left[t_{MF}(\theta_{n}) > t_{MF}(\theta_{k}) \mid \theta = \theta_{k}\right] = \Pr\left[\frac{\chi^{2}(m_{1}|^{2})}{\chi^{1}(m_{2}|^{2})} \leq \frac{-\lambda_{YX,2}}{\lambda_{YX,1}}\right] = \left[\frac{\lambda_{YX,2}}{\lambda_{YX,2}} \mid \left\{\frac{2|m_{1}|^{2}\lambda_{YX,2}}{\lambda_{YX,2}}, \frac{2|m_{1}|^{2}\lambda_{YX,2}}{\lambda_{YX,2}}, \frac{2|m_{1}|^{2}\lambda_{YX,2}}{\lambda_{YX,2}}\right\}\right\}$$

