

Introduction to Operating Systems CS 1550

Spring 2023
Sherif Khattab

ksm73@pitt.edu

(Some slides are from Silberschatz, Galvin and Gagne ©2013)

Announcements

- Upcoming deadlines
 - Homework 8 is due this Friday
 - Quiz 1 and Lab 2 due on Tuesday 2/28 at 11:59 pm
 - Project 2 is due Friday 3/17 at 11:59 pm
- Talk by candidate faculty
 - This Wednesday 3/15 @ 10 am at 5317 Sennott Square
 - Donuts will be served!

Last Lecture ...

- How to implement Condition Variables and Locks using semaphores
- CPU scheduling
 - SJF
 - Priority
 - RR

Today ...

- CPU scheduling
 - Multi-Level Feedback Queues
 - CPU burst estimation

Multilevel Feedback Scheduling

- Preemptive scheduling with dynamic priorities
- N ready to execute queues with decreasing priorities:
 - $P(RQ_0) > P(RQ_1) > ... > P(RQ_{N-1})$
- Dispatcher selects a process for execution from RQ_i only if RQ_{i-1} to RQ₀ are empty

Multilevel Feedback Scheduling

- New process are placed in RQ₀
- After the first quantum, they are moved to RQ₁, and to RQ₂ after the second quantum, ... and to RQ_{N-1} after the Nth quantum
- I/O-bound processes remain in higher priority queues.
 - CPU-bound jobs drift downward.
 - Hence, long jobs may starve

Multiple Feedback Queues

Different RQs may have different quantum values

- With a fixed quantum time, the turnaround time of longer processes can be high
- To alleviate this problem, the time quantum can be increased based on the depth of the queue
 - Time quantum of RQ_i = 2ⁱ⁻¹
- May still cause longer processes to suffer starvation.
 - Possible fix is to promote a process to higher queue after some time

Process	Arrival Time	Service Time
1	0	3
2	2	6
3	4	4
4	6	5
5	8	2

•	To alleviate this problem, the time		
	quantum can be increased based on the		
	depth of the queue		

- Time quantum of RQ_i = 2ⁱ⁻¹
- May still cause longer processes to suffer starvation.
 - Possible fix is to promote a process to higher queue after some time

Process	Arrival Time	Service Time
1	0	3
2	2	6
3	4	4
4	6	5
5	8	2

- With a fixed quantum time, the turnaround time of longer processes can be high
- To alleviate this problem, the time quantum can be increased based on the depth of the queue
 - Time quantum of RQ_i = 2ⁱ⁻¹
- May still cause longer processes to suffer starvation.
 - Possible fix is to promote a process to higher queue after some time

Process	Arrival Time	Service Time
1	0	3
2	2	6
3	4	4
4	6	5
5	8	2

•	To alleviate this problem, the time		
	quantum can be increased based on the		
	depth of the queue		

- Time quantum of RQ_i = 2ⁱ⁻¹
- May still cause longer processes to suffer starvation.
 - Possible fix is to promote a process to higher queue after some time

Process	Arrival Time	Service Time
1	0	3
2	2	6
3	4	4
4	6	5
5	8	2

•	To alleviate this problem, the time		
	quantum can be increased based on the		
	depth of the queue		

- Time quantum of RQ_i = 2ⁱ⁻¹
- May still cause longer processes to suffer starvation.
 - Possible fix is to promote a process to higher queue after some time

Process	Arrival Time	Service Time
1	0	3
2	2	6
3	4	4
4	6	5
5	8	2

•	To alleviate this problem, the time		
	quantum can be increased based on the		
	depth of the queue		

- Time quantum of RQ_i = 2ⁱ⁻¹
- May still cause longer processes to suffer starvation.
 - Possible fix is to promote a process to higher queue after some time

Process	Arrival Time	Service Time
1	0	3
2	2	6
3	4	4
4	6	5
5	8	2

With a fixed quantum time, the turnaround time of longer processes can be high

•	To alleviate this problem, the time		
	quantum can be increased based on the		
	depth of the queue		

- May still cause longer processes to suffer starvation.

Time quantum of $RQ_i = 2^{i-1}$

Possible fix is to promote a process to higher queue after some time

Process	Arrival Time	Service Time
1	0	3
2	2	6
3	4	4
4	6	5
5	8	2

- With a fixed quantum time, the turnaround time of longer processes can be high
- To alleviate this problem, the time quantum can be increased based on the depth of the queue

Process	Arrival Time	Service Time
1	0	3
2	2	6
3	4	4
4	6	5
5	8	2

- Time quantum of RQ_i = 2ⁱ⁻¹
- May still cause longer processes to suffer starvation.
 - Possible fix is to promote a process to higher queue after some time

- With a fixed quantum time, the turnaround time of longer processes can be high
- To alleviate this problem, the time quantum can be increased based on the depth of the queue

Process	Arrival Time	Service Time
1	0	3
2	2	6
3	4	4
4	6	5
5	8	2

- Time quantum of RQ_i = 2ⁱ⁻¹
- May still cause longer processes to suffer starvation.
 - Possible fix is to promote a process to higher queue after some time

- With a fixed quantum time, the turnaround time of longer processes can be high
- To alleviate this problem, the time quantum can be increased based on the depth of the queue

Process	Arrival Time	Service Time
1	0	3
2	2	6
3	4	4
4	6	5
5	8	2

- Time quantum of RQ_i = 2ⁱ⁻¹
- May still cause longer processes to suffer starvation.
 - Possible fix is to promote a process to higher queue after some time

- With a fixed quantum time, the turnaround time of longer processes can be high
- To alleviate this problem, the time quantum can be increased based on the depth of the queue

Process	Arrival Time	Service Time
1	0	3
2	2	6
3	4	4
4	6	5
5	8	2

- Time quantum of RQ_i = 2ⁱ⁻¹
- May still cause longer processes to suffer starvation.
 - Possible fix is to promote a process to higher queue after some time

- With a fixed quantum time, the turnaround time of longer processes can be high
- To alleviate this problem, the time quantum can be increased based on the depth of the queue

Process	Arrival Time	Service Time
1	0	3
2	2	6
3	4	4
4	6	5
5	8	2

- Time quantum of RQ_i = 2ⁱ⁻¹
- May still cause longer processes to suffer starvation.
 - Possible fix is to promote a process to higher queue after some time

- With a fixed quantum time, the turnaround time of longer processes can be high
- To alleviate this problem, the time quantum can be increased based on the depth of the queue

Process	Arrival Time	Service Time
1	0	3
2	2	6
3	4	4
4	6	5
5	8	2

- Time quantum of RQ_i = 2ⁱ⁻¹
- May still cause longer processes to suffer starvation.
 - Possible fix is to promote a process to higher queue after some time

- With a fixed quantum time, the turnaround time of longer processes can be high
- To alleviate this problem, the time quantum can be increased based on the depth of the queue

Process	Arrival Time	Service Time
1	0	3
2	2	6
3	4	4
4	6	5
5	8	2

- Time quantum of RQ_i = 2ⁱ⁻¹
- May still cause longer processes to suffer starvation.
 - Possible fix is to promote a process to higher queue after some time

Algorithm Comparison

- Which one is the best?
- The answer depends on many factors:
 - the system workload (extremely variable)
 - hardware support for the dispatcher
 - relative importance of performance criteria (response time, CPU utilization, throughput...)
 - The evaluation method used (each has its limitations...)

Back to SJF: CPU Burst Estimation

- Let T[i] be the execution time for the ith instance of this process: the actual duration of the ith CPU burst of this process
- Let S[i] be the predicted value for the ith CPU burst of this process. The simplest choice is:
 - $S[n+1] = (1/n)(T[1]+...+T[n])=(1/n) \sum_{i=1 \text{ to } n} T[i]$
- This can be more efficiently calculated as:
 - S[n+1] = (1/n) T[n] + ((n-1)/n) S[n]
- This estimate, however, results in equal weight for each instance

CPU Burst Estimation

Estimating the required CPU burst

- Recent instances are more likely to better reflect future behavior
- A common technique to factor the above observation into the estimate is to use exponential averaging:

• $S[n+1] = \alpha T[n] + (1-\alpha) S[n]$; $0 < \alpha < 1$

CPU burst Estimate (Exponential Average)

- Recent instances have higher weights, whenever α > 1/n
- Expanding the estimated value shows that the weights of past instances decrease exponentially
 - S[n+1] = α T[n] + (1- α) α T[n-1] + ... (1- α)^{i} α T[n-i] + ... + (1- α)^{n}S[1]
 - The predicted value of 1st instance, S[1], is usually set to 0 to give priority to new processes

Exponentially Decreasing Coefficients

Exponentially Decreasing Coefficients

- S[1] = 0 to give high priority to new processes
- Exponential averaging tracks changes in process behavior much faster than simple averaging

FCFS Problem in HW7

CPU Burst Estimation

