LIMITE DE ŞIRURI UTILIZÂND INTEGRALA LEBESGUE

Valeriu Anisiu

Abstract. The paper contains examples of computing some limits of numerical sequences defined by integrals. Some standard theorems from the Lebesgue integral theory are applied. In order to be used at high school level, the most important such theorems are presented in a simplified form involving only the Riemann integral.

MSC 2000. 40-A05, 26A42

Key words. Riemann integral, Lebesgue integral, pointwise convergence, dominated convergence

1. INTRODUCERE

În lucrare sunt prezentate câteva exemple pentru calcul limitelor unor şiruri numerice definite prin integrale utilizând teoreme simple ale teoriei Lebesgue. Enunțurile teoremelor sunt accesibile la nivelul ultimei clase din liceu. În general, soluțiile directe ale unor astfel de probleme (atunci când există) sunt complicate și ne-intuitive.

Utilizarea acestor instrumente permite profesorilor de liceu rezolvarea riguroasă a unor probleme delicate de analiză matematică rămânând ca eventual ulterior să încerce o abordare "elementară", rezultatul fiind deja validat.

Menţionăm că o variantă a teoremei convergenţei dominate pentru integrala Riemann este datorată lui Arzelà şi este demonstrată direct (fără utilizarea integralei Lebesgue) în volumul II al cursului lui Fihtenholt ([3], p.685).

2. REZULTATE TEORETICE CLASICE

Vom enunța în continuare un minim necesar de rezultate simple care se obțin imediat din teoria integralei Lebesgue [2]. Prezentarea este accesibilă unui elev de liceu, demonstrațiile nu pot evita însă un curs de teoria măsurii și nu sunt incluse aici.

DEFINIȚIA 1. O mulțime $A \subseteq \mathbb{R}$ se numește **neglijabilă** dacă pentru orice $\varepsilon > 0$ există un șir de intervale deschise (a_n, b_n) , astfel încât $A \subseteq \bigcup_{n=1}^{\infty} (a_n, b_n)$ și $\sum_{n=1}^{\infty} (b_n - a_n) < \varepsilon$.

Observația 1. Se arată ușor (exercițiu!) că orice mulțime numărabilă este neglijabilă. Reciproca nu are însă loc, un exemplu fiind mulțimea lui Cantor ([2], [4]).

12 Valeriu Anisiu 2

Teorema 1. Fie $f,g:[a,b] \to \mathbb{R}$ două funcții integrabile (Riemann) și $A \subseteq \mathbb{R}$ o mulțime neglijabilă astfel încât $\forall x \in [a, b] \setminus A$, f(x) = g(x).

Atunci
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} g(x) dx.$$

TEOREMA 2. (Teorema convergenței monotone) Fie $f_n:[a,b]\to\mathbb{R}$ un şir crescător de funcții integrabile nenegative convergent (punctual) către o funcție $integrabil Riemann ~f:[a,b] \to \mathbb{R}.$

Atunci există
$$\lim_{n\to\infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$$
.

TEOREMA 3. (Teorema convergenței dominate) Fie $M \geq 0, f_n : [a, b] \rightarrow \mathbb{R}$ un șir de funcții integrabile convergent (punctual) către o funcție integrabilă $f:[a,b]\to\mathbb{R} \text{ astfel } \hat{n}c\hat{a}t \mid f_n(x)\mid \leq M, \ \forall n\in\mathbb{N}, \ \forall x\in[a,b].$

Atunci există
$$\lim_{n\to\infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$$
.

TEOREMA 4. (Teorema convergenței dominate*) Fie $f_n, f, g: I \to \mathbb{R}$ funcții $integrabile\ pe\ orice\ interval\ m\"{a}rginit\ \vec{s}i\ \hat{\imath}nchis\ al\ intervalului\ I\ astfel\ \hat{\imath}nc\hat{a}t$

$$f_n \to f \ (punctual), \ |f_n| \le g \ \text{si} \ \sup \left\{ \int_a^b g(x) \, \mathrm{d}x : a, b \in I, a < b \right\} < \infty.$$

$$Atunci \ exist\ \ \lim_{n \to \infty} \int_I f_n(x) \, \mathrm{d}x = \int_I f(x) \, \mathrm{d}x \ (aici \ integrable \ put\ \hat{a}nd \ fi \ improprii)$$

[3]).

Observația 2. Pentru g = M (funcție constantă) și I interval mărginit și închis se obține prima variantă a teoremei.

3. APLICAŢII

Problema 1. Fie $h:[0,1]\to\mathbb{R}$ o funcție integrabilă continuă în punctul 1. Atunci

$$\lim_{n \to \infty} n \int_{0}^{1} x^{n} h(x) \, \mathrm{d}x = h(1).$$

Soluția 1. Se aplică întâi o schimbare de variabilă $(x^n = t)$ și se obține $n \int_{0}^{1} x^{n} h(x) dx = \int_{0}^{1} t^{\frac{1}{n}} h(t^{\frac{1}{n}}) dt.$

 \widetilde{Se} poate acum aplica teorema convergenței dominate șirului de funcții f_n : $[0,1] \to \mathbb{R}, \ f_n(t) = t^{\frac{1}{n}} h(t^{\frac{1}{n}}), \ pentru \ care \lim_{n \to \infty} f_n(t) = h(1), \ \forall t \in (0,1] \ si$ $\lim_{n\to\infty} f_n(0) = 0. \quad Multimea \quad \{0\} \quad find \quad neglijabilă \quad obținem \quad \lim_{n\to\infty} \int_0^1 f_n(t) \, dt = \int_0^1 h(1) \, dt = h(1).$

Observația 3. Nu este posibilă utilizarea șirului de funcții $f_n(x) = nx^n h(x)$ deși converge punctual la 0 pe [0,1) întrucât nu este aplicabilă teorema convergenței dominate.

Observația 4. Atenție, schimbarea de variabilă utilizată, deși corectă, necesită totuși o justificare la nivel de liceu întrucât funcția $\varphi:[0,1] \to [0,1],$ $\varphi(t)=t^{1/n}$ nu este derivabilă în punctul 0. Pentru $\varepsilon\in(0,1)$ putem considera schimbarea de variabilă doar pe intervalul $[\varepsilon,1]$ obținând $\int_{\varepsilon}^{1} x^n h(x) dx = \int_{\varepsilon^{1/n}}^{1} t^{\frac{1}{n}} h(t^{\frac{1}{n}}) dt$, după care pentru $\varepsilon \to 0_+$ se obține rezultatul dorit.

Problema 2. Fie $h:[0,1] \to [0,\infty)$ o funcție continuă și notăm

$$I_n = \int_0^1 x^n h(x) dx, \ n \ge 1.$$

Să se arate că șirul $S_n = \sum_{k=1}^n \frac{1}{k} I_k$ este convergent.

(Gh. Szöllösy, GM 5-6 / 2004)

Soluția 2. Se aplică teorema convergenței dominate în varianta generalizată (teorema 3) pentru șirul de funcții $f_n(x) = \sum_{k=1}^n \frac{1}{k} x^k h(x), \ x \in [0,1).$ Avem $\lim_{n \to \infty} f_n(x) = h(x) \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k} x^k = -\ln(1-x)h(x).$ Așadar în teoremă se poate lua "dominarea" $g(x) = -\ln(1-x)h(x).$ Verificarea condiției este ușoară: pentru $a, b \in [0,1), \ a < b$ avem

$$\int_{a}^{b} g(x) dx \leq H \int_{a}^{b} (-\ln(1-x)) dx = H \cdot (F(b) - F(a)),
unde H = \max h \ si \ F(a) = \int_{0}^{a} (-\ln(1-x)) dx = a + (1-a) \ln(1-a).
Rezultă F(b) - F(a) \le F(1-) - F(0) = 1, \ deci \int_{a}^{b} g(x) dx \le H.
Se obține: \lim_{n \to \infty} S_n = -\int_{0}^{1} \lin(1-x) f(x) dx.$$

Observația 5. Nu este necesar ca f să fie continuă ≥ 0 . Este suficient de exemplu ca f să fie măsurabilă și mărginită. De remarcat că integrala precedentă este improprie în punctul 1.

Problema 3. Fie $h:[0,1]\to\mathbb{R}$ o funcție continuă. Atunci

$$\lim_{n \to \infty} \int_{0}^{1} \frac{h(x)}{nx^{2} + 1/n} \, \mathrm{d}x = \frac{\pi h(0)}{2}.$$

14 Valeriu Anisiu 4

Soluția 3. $\int\limits_0^1 \frac{h(x)}{nx^2+1/n} \,\mathrm{d}x = \int\limits_0^n \frac{h(x/n)}{x^2+1} \,\mathrm{d}x = \int\limits_0^\infty \frac{h(x/n)}{x^2+1} \chi_{[0,n]} \left(x\right) \,\mathrm{d}x, \, \text{$\it si se aplică teorema convergenței dominate (3) pentru intervalul $I=[0,\infty)$, $luând $g(x)=H/(x^2+1)$, $unde $H=\max|h|$. $\it S-a notat cu $\chi_{[0,n]}$ funcția caracteristică a intervalului $[0,n]$ adică $\chi_{[0,n]}(x)=\begin{cases} 1, & x\leq n\\ 0, & x>n \end{cases}$.

PROBLEMA 4. Fie $J_1, J_2, ..., J_{10}$ intervale incluse în [0, 1] fiecare având lungimea 1/3. Să se arate că există un punct x_0 care aparține la cel puțin 4 dintre aceste intervale.

Soluția 4. Definim $f:[0,1] \to \mathbb{R}$, $f(x) = \operatorname{card}\{k \in \{1,2,...,10\} : x \in J_k\}$. Atunci $f = \sum_{k=1}^{10} \chi_{J_k}$. Avem $\int_0^1 f(x) dx = 10/3$. Nu este deci posibil ca $f \leq 3$, prin urmare există $x_0 \in [0,1]$ cu $f(x_0) > 3$ și deci $f(x_0) \geq 4$ (deoarece $f(x_0) \in \mathbb{N}$).

Problema 5. Calculați limitele

$$L_{1} = \lim_{n \to \infty} n \int_{1}^{1/n} \frac{\cos(x + 1/n) - \cos(x)}{x^{3/2}} dx$$
$$L_{2} = \lim_{n \to \infty} \int_{1}^{n-1} \frac{\cos(x + 1/n)}{\sqrt{x}} dx.$$

$$\begin{aligned} & \text{Solutia 5. } I_n = n \int\limits_{1}^{1/n} \frac{\cos x \cos(1/n) - \sin x \sin(1/n) - \cos(x)}{x^{3/2}} dx \\ &= n \int\limits_{1/n}^{1} \frac{\cos x (1 - \cos(1/n)) + \sin x \sin(1/n)}{x^{3/2}} dx \\ &= n \int\limits_{1/n}^{1} \frac{\cos x (1 - \cos(1/n))}{x^{3/2}} dx + n \sin(1/n) \int\limits_{1/n}^{1} \frac{\sin x}{x^{3/2}} dx = a_n + b_n. \\ &a_n \to 0 \ deoarece \ |a_n| \le n \cdot 2 \sin^2(1/(2n)) \int\limits_{1/n}^{1} \frac{dx}{x^{3/2}} \\ &\le 2n((1/(2n))^2 (2\sqrt{n} - 2) \to 0. \\ &b_n \to \int_0^1 \frac{\sin x}{x^{3/2}} dx \ deoarece \ se \ aplică \ teorema \ convergenței \ dominate \ (3) \ utilizând \\ &\left|\frac{\sin x}{x^{3/2}}\right| \le \frac{1}{x^{1/2}}. \end{aligned}$$

Deci
$$L_1 = \int_0^1 \frac{\sin x}{x^{3/2}} dx = -2 \sin(1) + 2\sqrt{2}\sqrt{\pi} \text{ FresnelC}\left(\frac{\sqrt{2}}{\sqrt{\pi}}\right) \approx 1.935154980.$$

Pentru a calcula L_2 considerăm

$$J_n = \int_{1}^{n-1} \frac{\cos x \cos(1/n) - \sin x \sin(1/n)}{\sqrt{x}} dx$$

$$= \cos(1/n) \int_{1}^{n-1} \frac{\cos x}{\sqrt{x}} dx - \sin(1/n) \int_{1}^{n-1} \frac{\sin x}{\sqrt{x}} = a_n + b_n.$$

$$b_n \to 0 \cdot \int_{1}^{\infty} \frac{\sin x}{\sqrt{x}} = 0, \ a_n \to 1 \cdot \int_{1}^{\infty} \frac{\cos x}{\sqrt{x}} = -\sqrt{2}\sqrt{\pi} \operatorname{FresnelC}\left(\frac{\sqrt{2}}{\sqrt{\pi}}\right) = \frac{1}{2}\sqrt{2}\sqrt{\pi}.$$

Cele două integrale exprimate cu funcțiile lui Fresnel au fost calculate pentru comoditate cu Maple (v. [1]) dar calculul poate fi realizat și manual.

BIBLIOGRAFIE

- [1] V. Anisiu Calcul formal cu Maple, Presa Universitară Clujeană, Cluj-Napoca, 2006.
- [2] V. Anisiu Topologie și teoria măsurii, UBB, Cluj-Napoca 1995.
- [3] G.M. Fihtenholţ Curs de calcul diferențial și integral I, II, Ed. Tehnică, București 1964
- [4] https://en.wikipedia.org/wiki/Cantor_set

Faculty of Mathematics and Computer Science

 $"Babe \S-Bolyai"\ University$

Str. Kogălniceanu, no. 1

400084 Cluj-Napoca, Romania

e-mail: anisiu@math.ubbcluj.ro

Primit la redacție: 15 Septembrie 2015