THOMPSON & KNIGHT L.L.P.

1700 Pacific Avenue, Suite 3300 Dallas, Texas 75201-4693 Telephone: (214) 969-1700 Facsimile: (214) 969-1751

Direct Dial: (214) 969-1749

email: james.murphy@tklaw.com

FACSIMILE COVER LETTER

TO:

United States Patent & Trademark Office

Examiner: M. Ton

FROM:

James J. Murphy

SUBJECT:

formal drawings

DATE:

March 8, 2005

CLIENT/FILE #

021615.500081

FACSIMILE NO.: (571) 273-1754

No. of Pages 25

MAR. 8. 2005 1:34PM

ATTORNEY DOCKET NO. 1111-CA (formerly 50426-070)

PATENT Ser. No. 09/695,706

IN THE UNITED STATES PATENT & TRADEMARK OFFICE

Applicant:

Axel Thomsen

Serial No.

09/695,706

Filing Date: October 25, 2000

Title:

TECHNIQUES FOR SIGNAL MEASUREMENT USING A

CONDITIONALLY STABLE AMPLIFIER

Confirm No.: 1505

Group Art Unit:

2816

Examiner:

M. Ton

Commissioner for Patents

P. O. Box 1450

Alexandria, Virginia 22313-1450

VIA FACSIMILE - (571) 273-1754

TRANSMITTAL OF FORMAL DRAWINGS

Transmitted herewith are twenty-three (23) sheets of formal drawings (one of which is a replacement sheet) to be substituted for the drawings filed November 24, 2004 in connection with the above-identified application for patent.

> Respectfully submitted, THOMPSON & KNIGHT LLP Attorneys for Applicant

Reg. No. 34,503

1700 Pacific Avenue, Suite 3300

Dallas, Texas 75201-4693 Telephone: (214) 969-1749 Facsimile: (214) 969-1751

Date: November 24, 2004

PAGE 3/25 * RCVD AT 3/8/2005 2:36:09 PM [Eastern Standard Time] * SVR:USPTO-EFXRF-1/24 * DNIS:2731754 * CSID: * DURATION (mm-ss):03-36

PAGE 4/25 * RCVD AT 3/8/2005 2:36:09 PM [Eastern Standard Time] * SVR:USPTO-EFXRF-1/24 * DNIS:2731754 * CSID: * DURATION (mm-ss):03-36

6/23

 $V_{IN} = CONSTANT$

 $V_{OUT} > V_X$

FIG. 2.2

FIG. 2.4

11/23

MULTIPLIER ARCHITECTURE Operand2 -412 controller 2B Cin -413 ENCODER TABLE 4-1 Mux Cout last_row Shift-Register mux gain_word Adder (1 ROW) 410 -415 -416 Carry load -418 -417 mult Sum counter Product < 29:0 > mult_done

FIG. 3.1

A_{i+1}	A_1	Operation
0	0	$R_j = R_{j-1} / 4$
0	1	$R_{j} = (R_{j-1} + B) / 4$
1	0	$R_{j}=(R_{j-1}+2B)/4$
1	1	$R_i = (R_{i-2} + 3B) / 4$

FIG. 3.2 (Prior Art)

Cin	A_{i+1}	A_i	Operation	Cout
0	0	0	$R_i=R_{i-1}/4$	0
0	0	1	$R_i = (R_{i-1} + B) / 4$	0
0	1	0	$R_i = (R_{i-1} + 2B) / 4$	0
0	1	1	$R_i = (R_{i-2} - 3B) / 4$	1
1	0	0	$R_i = (R_{i-1} + B) / 4$	0
1	0	1	$R_{j}=(R_{j-1}+2B)/4$	0
1	1	0	$R_{j}=(R_{j-1}-B)/4$	0
1	1	1	$R_i = (R_{i-1}) / 4$	1

FIG. 3.3 (Prior Art)

FIG. 3.4

FIG. 3.5

15/23

0 Must be logic 0 for these commands.1 These commands are invalid if this bit is logic 1.

COMMAND BIT, C

D7

BIT

01

B

D4

S 12

APA 48-4

D7(MSB)

RSB2 **D**5

VALUE FUNCTION

<i>16/2</i> 3

Ignore this function. Access the respective registers, offset, gain, or channel-setup, as an array regis- ters. The particular registers accessed are determined by the RS bits. The register are accessed MSB first with physical channel 0 accessed first followed by physical channel 1 next and so forth.	CS1-CS0 provide the address of one of the two (four for CS5533/34) physical input channels. These bits are also used to access the calibration registers associated with the respective physical input channel. Note that these bits are ignored when reading data register.		FIG. 4.2
O Ignore this function. 1 Access the respective registers, offset, g ters. The particular registers accessed arare accessed MSB first with physical chachannel 1 next and so forth.	CS1-CS0 provide the address of one of channels. These bits are also used to a with the respective physical input chan reading data register.	Write to selected register. Read from selected register.	0 Reserved 1 Offset Register 0 Gain Register 1 Configuration Register 0 Conversion Data Register 1 Channel-Setup Registers 0 Reserved 1 Reserved
	00 01 01 01	9	000 000 001 001 101 101 110
Access Registers as Arrays, ARA	Channel Select Bits, CS1-CS0)	Read/Write, R/W	Register Select Bit, RSB3-RSB0
90	D5-D4	03	02-00

1	7/23
•	1/20

00		ogic O.		000 These bits are used as pointers to the Channel-Setup registers. Either a single con- version or continuous conversions are preformed on the channel setup register 111 pointed to by these bits.	F/G. 4.3
01	777	s bit is la nds.	rsions.	to the (ons are,	
02	700	These commands are invalid if this bit is logic 0. Must be logic 1 for these commands.	Perform fully settled single conver Perform conversions continuously.	d as pointers vus conversi bits.	ion ion onr bration ration
03	TION	mmands are ogic 1 for th	uily settled s onversions c	These bits are used as postersion or continuous or pointed to by these bits.	Normal Conversion Self-Offset Calibration Self-Gain Calibrationr Reserved Reserved System-Offset Calibration System-Gain Calibration Reserved
D4	VALUE FUNCTION	O These co 1 Must be I	 Perform fully settled single conversions. Perform conversions continuously. 	000 These version 111 pointe	000 Normal Co 001 Self-Offse 010 Self-Gain 011 Reserved 100 Reserved 101 System-G 111 Reserved
05	124172 12472	ပ	191-	ip Reg- Bits,	
	NAME	COMMAND BIT, C	Multiple Conve sions, MC	Channel Setup ister Pointer Bil CSRP	Conversion/Calibra- tion Bits, CC2-CC0
D7(MSB)	BIT	20	90	05-03	<i>D2-D0</i>

18/23

19/23

FIG. 6.1

FIG. 6.2