Билет номер 4

Нормальная система дифференциальных уравнений

Определение 0.1. Система вида

$$\begin{cases} \dot{x}^1 = f^1(t, \bar{x}) \\ \dot{x}^2 = f^2(t, \bar{x}) \\ \dots \\ \dot{x}^n = f^n(t, \bar{x}) \end{cases}$$

называется нормальной системой дифференциальных уравнений п-ого порядка.

Определение 0.2. Система

$$\begin{cases} x^{1}(t_{0}) = x_{0}^{1} \\ x^{2}(t_{0}) = x_{0}^{2} \\ \dots \\ x^{n}(t_{0}) = x_{0}^{n} \end{cases}$$

называется начальным условием

Утверждение 0.1. Решить задачу Коши означает решить нормальную систему дифференциальных уравнений при заданном начальном условии

Теорема 0.1 (Теорема Коши о существовании и единственности решения). Пусть $\forall i, j = \overline{1, n}$ функции $f^i, \frac{\partial f^i}{\partial x^j}$ непрерывны в области $\Omega \subset \mathbb{R}^{n+1}$, тогда, $\forall (t_0, \overline{x_0}) \in \Omega \ \exists h > 0 : \forall t \in [t_0 - h, t_0 + h]$ решение задачи Коши существует и единственно.

Лемма 0.1. Если $\bar{f}(t,\bar{x})$ - непрерывны на Ω , то система уравнений

$$\overline{x}(t) = \overline{x_0} + \int_{t_0}^t \overline{f}(\tau, \overline{x}(\tau)) d\tau$$

эквивалентна задаче Коши.