

What do you see?

Interactions

Interactions

cow eats grass

(co)Evolution

(co)Evolution

cow's stomach digest grass

How do you write it?

(if you are a mathematician)

the Web and the Tree

on the interplay between ecological processes and evolutionary histories

the Web and the Tree

on the interplay between ecological processes and evolutionary histories

Giulio Valentino Dalla Riva Supervisors: Mike Steel Charles Semple Daniel Stouffer

University of Canterbury 31 March 2016

- 1. Random Dot Product Graphs (Chap. 4)
- 2. Centrality & Uniqueness (Chaps. 5 & 7)
- 3. Niche Evolution and Diversity (Chap. 6)

- 1. Random Dot Product Graphs (Chap. 4)
- 2. Centrality & Uniqueness (Chaps. 5 & 7)
- 3. Niche Evolution and Diversity (Chap. 6)

and skip other work (sorry coauthors)

RDPG

OIKOS

S Y N T H E S I S I N G E C O L O G Y

Research

Exploring the evolutionary signature of food webs' backbones using functional traits

Giulio V. Dalla Riva¹ and Daniel B. Stouffer

Issue

Did evolution leave a trace in the structure of ecological networks?

How do we do phylogenetic comparative analysis with food webs?

Because TRAITS

$$\mathbf{P}(x_2 \rightarrow x_1) = \mathbf{X}_2 \cdot \mathbf{X}_1$$

$$\mathbf{P}(\mathbf{x}_2 \leftarrow \mathbf{x}_3) = \mathbf{x}_3 \cdot \mathbf{x}_2$$

$$\mathbf{M} := \mathbf{x} \cdot \mathbf{x}^{\mathsf{t}}$$

$$\mathbf{M}_{ij} = \mathbf{P}(x_i \rightarrow x_j)$$

LdVSd VSdRd

d

C

Thm: X X are MLE of Y

we need to choose

x, x unique up to an orthogonal transformation

$$p_{12} = p_{1y} + p_{2y}$$

$$p_{12} = p_{1y} + p_{2y}$$

 $p_{13} = \dots$

$$\mathbf{x}_{12} = d(x_1, x_2)$$

$$\mathbf{x}_{12} = d(x_1, x_2)$$

$$\mathbf{x}_{13} = d(x_1, x_3)$$

Are d_x d_x predicted by d_p ?

yes

0.75 0.75 0.75 0.25 0.25 0.26 Rank Type Mantel test p-values

Did evolution leave a trace in the structure of ecological networks?

yes, and starting from d

Dalla Riva, G. V. and Stouffer, D. B. (2015), Exploring the evolutionary signature of food webs' backbones using functional traits. Oikos. doi: 10.1111/oik.02305

CENTRALITY

with Carey E. Priebe (JHU)

with Arne Ø. Mooers (SFU) and Mike Steel

How do we measure the importance of nodes in a RDPG framework?

Are ecological unique species evolutionary distinctive?

NICHE

with M Huttchinson, DB Stouffer and M Dehling

How do species' niches evolve?

How do we detect the effect of interactions in species' evolution?

BEYOND

How do species' evolve in ?

with M Doebeli (UBC)

Under which scenarios unique in

means unique in

with M Doebeli (UBC)

with Carey E Priebe (JHU)

Because we are all responsible for all [...] I go for all [...]

-Fyodor Dostoyevsky The Brothers Karamazov