Flexible Permit Nos. 95 and PSD-TX-854

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Emission	Source	Air Contaminant	Emissio	n Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
AT-1210	No. 1 Olefins Cooling Tower	VOC	4.14	18.13
	_	PM_{10}	2.47	10.81
DAT-3201	No. 2 Olefins Cooling Tower	VOC	5.52	24.18
		PM_{10}	3.29	14.41
FUG-V10F	No. 1 Olefins Unit Fugitives	VOC (4)	21.99	96.30
FUG-V20F	No. 2 Olefins Unit Fugitives	VOC (4)	21.64	94.79
FUG-A10F	No. 1 Olefins Analyzer Vent	VOC	0.01	0.01
	Fugitives			
FUG-A20F	No. 2 Olefins Analyzer Vent	VOC	0.01	0.01
	Fugitives			
FUG-FTF	Tank Farm Fugitives	VOC (4)	1.00	4.38
FUG-VSSH	Second Stage Hydrotreater	VOC (4)	1.09	4.77
	Fugitives			
FUG-VBD	Marine Dock Fugitives	VOC (4)	0.09	0.40
FUG-VCM	Metering Station Fugitives	VOC (4)	0.31	1.38
FUG-RAIL	Rail Loading Fugitives	VOC	0.10	0.43
FUELTRK1	No.1 Olefins Truck Loading	VOC	11.05	1.23
FUELTRK2	No. 2 Olefins Truck Loading	VOC	11.05	1.53
AF-1215	Bleach Tank	NaOCl	0.04	0.01
AF-3215	Bleach Tank	Cl ₂	0.03	0.01
AF-3701	Slop Tank	VOC	5.07	0.14
		acetonitrile	0.61	0.01
AF-1103	Acetonitrile Tank	acetonitrile	0.06	0.11
AF-1104	Acetonitrile Tank	acetonitrile	0.06	0.11
AF-1105	Rerun Bottoms Tank	VOC	2.31	4.41
		benzene	0.01	0.01
		toluene	0.01	0.01

Emission	Source	Air Contaminant	Emissic	n Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
			'	
AF-1106	Rerun Bottoms Tank	VOC	2.31	2.77
		benzene	0.01	0.01
		toluene	0.01	0.01
AF-1905	Fuel Oil Tank	VOC	0.54	1.81
AF-3103	Acetonitrile Tank	acetonitrile	0.06	0.10
AF-3905	Fuel Oil Tank	VOC	0.54	2.25
DDF-1001	Fuel Oil Tank	VOC	1.06	0.27
DDF-1301	Methanol Tank	VOC	2.35	0.03
DDF-202	Methanol Tank	VOC	3.90	0.06
DDF-701	Sodium Nitrite Solution Tank	VOC	6.50	0.06
DDF-705	Sodium Nitrite Solution Tank	VOC	6.50	0.05
DF-1001	Fuel Oil Tank	VOC	1.70	4.15
DF-1301	Alcohol Tank	VOC	3.52	0.09
DF-502	Lube Oil Storage	VOC	0.71	0.20
DF-701	Sodium Nitrite Solution Tank	VOC	2.60	0.11
DF-702	Sodium Nitrite Solution Tank	VOC	0.69	0.06
		acetonitrile	0.69	0.06
DF-705	Sodium Nitrite Solution Tank	VOC	0.69	0.02
		acetonitrile	0.69	0.01
DF-916	Lube Oil Storage	VOC	0.60	0.02
DF-101	Decoke Stack	CO	61.00	12.30
		PM_{10}	0.29	0.18
		VOC	0.20	0.97
DF-104	Decoke Stack	CO	73.00	3.18
		PM_{10}	0.74	0.02
		VOC	0.09	0.40
DDF-101	Decoke Stack	CO	36.50	7.20
		PM_{10}	6.20	1.50
DDF-104	Decoke Stack	CO	73.00	3.18
		PM ₁₀	0.80	0.02
DF-105	Decoke Stack	PM ₁₀	8.25	0.83
		CO	38.50	3.85
DDF-105	Decoke Stack	PM_{10}	8.25	0.83
		CO	38.50	3.85
AM-1500	Dock Flare	CO	0.19	0.84

Emission	Source	Air Contaminant	<u>Emissi</u>	on Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
		NO_x	0.07	0.29
		PM_{10}	0.01	0.02
		butadine	0.04	0.16
		propylene	0.03	0.14
DD-606	Hydrotreater Regenerator Stack		10.00	1.40
		SO_2	45.80	3.30
DDD-606	Hydrotreater Regenerator Stack		10.00	1.40
		SO_2	45.80	3.30
DM-1101	No. 1 Olefins Flare	VOC	151.40	89.96
		NO_x	17.42	12.60
		CO	88.74	64.20
		SO_2	0.01	0.02
DDM-3101	No. 2 Olefins Flare	NO_x	14.18	17.35
		CO	72.24	88.39
		SO_2	0.01	0.02
		VOC	115.57	124.46
DDZ-902	Lime Silo Filter Vent	PM_{10}	0.01	0.01
DZ-902	Lime Silo Filter Vent	PM_{10}	3.00	0.05
OF1SOVENT	Seal Oil Vents	VOC	0.30	0.10
RAILLOAD	Rail Loading Fugitives	VOC	10.58	1.15
DB-201	Regeneration Furnace	NO_x	5.90	25.60
	-	CO	2.10	9.20
		PM_{10}	0.30	1.20
		SO_2	0.52	0.11
		VOC	0.20	0.70
DB-601	Regeneration Heater	NO_x	0.81	3.55
		CO	0.29	1.28
		PM_{10}	0.04	0.16
		SO_2	0.07	0.02
		VOC	0.02	0.09
DDB-201	Regeneration Heater	NO_x	5.85	20.50
		CO	2.10	9.30
		PM_{10}	0.30	1.20
		SO_2	0.50	0.10

Emission	Source	Air Contaminant	<u>Emissior</u>	n Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
DDB-601	Regeneration Heater	VOC NO _x CO PM ₁₀ SO ₂	0.15 0.81 0.28 0.04 0.07	0.70 2.84 1.23 0.15 0.02
J-1	2nd Stage Hydrotreater Feed Heater	VOC NO_x CO PM_{10} SO_2 VOC	0.02 0.58 0.12 0.07 0.08 0.02	0.09 2.53 0.53 0.30 0.02 0.10

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	Emission Ra	ates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**

FURNACE EMISSION CAPS

The Furnace Emission Cap includes the Olefins Furnaces (Emission Point Nos. [EPNs] DB-101A, DB-101B, DB-101C, DB-101D, DB-102A, DB-102B, DB-102C, DB-102D, DB-103, DB-104, DB-105, DB-106, DB-107, DB-108, DB-109, DDB-1, DDB-2, DDB-3, DDB-4, DDB-5, DDB-101A, DDB-101B, DDB-101C, DDB-101D, DDB-102A, DDB-102B, DDB-102C, and DDB-102D) and the Liquid Furnaces (EPNs DDB-104-A and DDB-104-B).

NO _x CAP	Furnace Emission Cap	NO_x	` ,	2243.26 (5)
			` ,	1760.37 (6)
			284.70 (7)	1246.99(7)
VOC CAP	Furnace Emission Cap	VOC	18.48 (5)	80.95 (5)
			20.66 (6)	90.49 (6)
			23.63 (7)	103.49 (7)
CO CAP	Furnace Emission Cap	CO	164.80 (5)	721.82 (5)
			184.22 (6)	806.90 (6)
			200.78 (7)	879.41 (7)
PM ₁₀ CAP	Furnace Emission Cap	PM_{10}	25.54 (5)	111.86 (5)
			28.55 (6)	125.04 (6)
			32.65 (7)	143.00 (7)
SO ₂ CAP	Furnace Emission Cap	SO_2	48.00 (5)	10.51 (5)
			53.66 (6)	11.75 (6)
			61.37 (7)	13.44 (7)
NH ₃ CAP	Furnace Emission Cap	NH_3	0.00 (5)	0.00 (5)
	·		11.93 (6)	52.25 (6)
			27.47 (7)	120.33 (7)

⁽⁵⁾ Emission Cap Prior to July, 2005

⁽⁶⁾ Emission Cap From July 31, 2005 through October 31, 2007 after construction at No. 1 Olefins is complete

⁽⁷⁾ Emission Cap After October 31, 2007

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	Emissi	on Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
TANK EMISSION CA	<u>APS</u>			
VOC CAP	EFR TANK CAP	VOC	11.06	45.18
Benzene CAP	EFR TANK CAP	Benzene	0.74	2.29
Toluene CAP	EFR TANK CAP	Toluene	0.15	0.32
Hexane CAP	EFR TANK CAP	Hexane	0.41	1.47
Styrene CAP Xylene CAP	EFR TANK CAP EFR TANK CAP	Styrene Xylene	0.01 0.08	0.02 0.10
Ethylbenzene CAP	EFR TANK CAP	Ethylbenzene	0.02	0.03

The Tank Emission Caps include the following sources:

<u>EPN</u>	<u>Source</u>
AF-1101	Liquid Feed Tank
AF-1102	Liquid Feed Tank
AF-1901	Crude Benzene Tank
AF-1902	Gasoline Product Tank
AF-1903	Gasoline Product Tank
AF-1904	Crude Benzene Tank
AF-3101	Liquid Feed Tank
AF-3102	Liquid Feed Tank
AF-3901	Pyrolysis Gasoline Storage Tank

Flexible Permit Nos. 95 and PSD-TX-854 Page 7

EMISSION SOURCES, EMISSIONS CAPS, AND INDIVIDUAL EMISSION LIMITATIONS

- (1) Emission point identification either specific equipment designation or emission point number from a plot plan.
- (2) Specific point source names. For fugitive sources, use an area name or fugitive source name.
- (3) VOC volatile organic compounds as defined in Title 30 Texas Administrative Code Section 101.1
 - NO_x total oxides of nitrogen
 - SO₂ sulfur dioxide
 - PM particulate matter, suspended in the atmosphere, including PM₁₀.
- $\text{PM}_{\text{10}}~$ particulate matter equal to or less than 10 microns in diameter. Where PM is not listed, it shall

be assumed that no particulate matter greater than 10 microns is emitted.

CO - carbon monoxide

Cl₂ - chlorine

NH₃ - ammonia

- (4) Fugitive emissions are an estimate only and should not be considered as a maximum allowable emission rate.
- (5) Emission Cap Prior to March 31, 2004
- (6) Emission Cap From March 31, 2004 through June 30, 2006 after construction at No. 1 Olefins is complete
- (7) Emission Cap After June 30, 2006
- * Emission rates are based on and the facilities are limited by the following maximum operating schedule:

24 Hrs/day 7 Days/week 52 Weeks/year or 8,760 Hrs/year

** Compliance with annual emission limits is based on a rolling 12-month period.

Dated
