СОДЕРЖАНИЕ

ВВЕДІ	ЕНИЕ		5
1 АНАЛИЗ ПРЕДМЕТНОЙ ОБЛАСТИ			8
1.1	Системы дифференциальной коррекции и кинематика реального		
	времени		8
1.2	Программный пакет RTKLIB		8
	1.2.1	Поддерживаемые спутниковые системы	8
	1.2.2	Режимы работы	8
	1.2.3	Поддерживаемые форматы данных	8
	1.2.4	Программы, входящие в состав RTKLIB	8
1.3	Основные проблемы использования RTKLIB		8
1.4	Обзор существующих веб-приложений, предназначенных для		
	работы с устройствами без органов управления		8
1.5	5 Выволы по разлелу 1		8

ВВЕДЕНИЕ

Актуальность темы. В настоящее время сложно представить жизнь без спутниковой навигации — данная технология стала неотъемлемой частью деятельности огромного числа людей. Спутниковые системы позволяют легко определить улицу или дом, где находится человек, или же просто помочь в ориентировании на незнакомой местности. Но использование систем навигации не ограничивается только лишь бытовым применением — данная технология активно применяется для решения задач автоматизации сельскохозяйственных работ, топографических съёмок, а также в множестве других областей.

Точность современных приёмников, установленных, например, в смартфонах или автомобильных навигаторах, в зависимости от условий, при которых осуществлялось определение местоположения, варьируется от трёх до пяти метров. Для повседневного применения, например, ориентации по городу — это отличный результат. Однако же, для решения задач более сложных, чем перечисленные выше, необходимы гораздо более точные данные, которые получают, используя технологию дифференциального GPS. Данное решение подразумевает использование сложных алгоритмов, а стоимость представленных на рынке устройств, позволяющих производить подобные расчёты, может превышать 10000 долларов США.

Для тех, кому по тем или иным причинам дорогостоящее оборудование недоступно, решением может стать RTKLIB — проект с открытым исходным кодом, реализующий вышеупомянутые алгоритмы для стандартных, общедоступных приёмников. Однако, распространению данного пакета программ мешает неудобство его использования: для управления и мониторинга требуется наличие полноценного компьютера, а программы RTKLIB имеют множество режимов работы и настроек, что достаточно сильно повышает общий порог вхождения.

Объектом исследования является программный пакет высокоточного позиционирования RTKLIB.

Предметом исследования является процесс взаимодействия пользователя с программными компонентами RTKLIB.

Целью исследования является создание приложения, позволяющего взаимодействовать с RTKLIB через веб-браузер. Под взаимодействием понимается возможность наблюдать различные статусы и изменять настройки компонентов RTKLIB, производить сбор данных, а также работать с накопленными файлами логов данных глобальных навигационных спутниковых систем (ГНСС).

Для достижения цели исследования был сформулирован следующий ряд задач:

- изучить состав и возможности программного комплекса RTKLIB;
- произвести анализ существующих веб-приложений, предназначенных для работы устройствами, у которых отсутствую органы управления;
 - осуществить проектирование и разработку приложения;
 - произвести тестирование приложения.

Также, по завершении разработки, ставится задача создания открытого программного интерфейса приложения (англ. *Application Programming Interface, API*), с помощью которого пользователи смогут без труда расширять функциональность приложения в соответствии со своими задачами.

Средствами разработки в представленной работе являются: языки программирования Python и JavaScript для реализации серверной (англ. backend) и клиентской (англ. front-end) частей приложения соответственно, открытые JavaScript-библиотеки D3.js, OpenLayers, JavaScript-фреймворк Vue.js. Для организации обмена данными серверной и клиентской частей приложения в реальном времени используются библиотека Socket.IO, принцип работы которой основывается на протоколе WebSocket.

Методологической основой работы послужила гибкая методология разработки (англ. *Agile software development*), ориентированная на итеративный процесс создания программного продукта и учитывающая возможность динамического формирования требований.

Новизна работы обусловлена отсутствием в настоящее время какихлибо программных продуктов с открытым API, основанных на RTKLIB и позволяющих работать с геодезическим оборудованием через веб-браузер.

Результатом данной работы является рабочая версия приложения, в которой реализованы все необходимые функции, перечисленные в постановке цели исследования. Также была создана и выложена в открытый доступ пользовательская документация, поясняющая основные моменты работы с приложением. Открытый АРІ находится в стадии разработки.

Апробация результатов работы. Наличие документации позволило осуществить открытое тестирование приложения пользователями и, как результат, получить отзывы, сообщения об ошибках и пожелания к функциональности.

1 АНАЛИЗ ПРЕДМЕТНОЙ ОБЛАСТИ

- 1.1 Системы дифференциальной коррекции и кинематика реального времени
 - 1.2 Программный пакет RTKLIB
 - 1.2.1 Поддерживаемые спутниковые системы
 - 1.2.2 Режимы работы
 - 1.2.3 Поддерживаемые форматы данных
 - 1.2.4 Программы, входящие в состав RTKLIB
 - 1.3 Основные проблемы использования RTKLIB
 - 1.4 Обзор существующих веб-приложений, предназначенных для работы с устройствами без органов управления
 - 1.5 Выводы по разделу 1