

DECUS NO.

8-72

TITLE

Matrix Inversion - Real Numbers

AUTHOR

Prof. A. E. Sapega

COMPANY

Trinity College Hartford, Connecticut

DATE

April 18, 1967

FORMAT

MATRIX INVERSION - REAL NUMBERS

Program Library Writeup

DECUS No. 8-72

This program inverts a matrix, up to size 12x12, of real numbers. The algorithm used is the Gauss-Jordan method. A unit vector of appropriate size is generated internally at each stage. Following the Gauss sweep-out, the matrix is shifted in storage, another unit vector is generated, and the calculation proceeds.

MINIMUM HARDWARE

PDP-8, ASR-33

OTHER PROGRAMS NEEDED

FORTRAN Compiler, FORTRAN Operating System

STORAGE REQUIREMENT

This program uses essentially all core not used by the FORTRAN Operating System.

EXECUTION TIME

Actual computation takes less than 10 seconds. Data read in and read out may take up to 5 minutes.

MISCELLANEOUS

A data tape should be prepared beforehand. The first entry on the tape is the size of the matrix. The matrix entries are then read in by rows.

```
TYPE 1
 1; FORMAT(/, "MATRIX INVERSION.... WILL HANDLE UP TO 12X12
LOAD DATA TAPE --- HIT CONTINUE")
PAUSE
TYPE 2
2; FORMAT(/,/,"SIZE OF MATRIX = ")
ACCEPT 3,N
3; FORMAT(I)
LAST = N*N
DIMENSION A(156)
TYPE 4
4; FORMAT(/,/,"MATRIX ENTRIES IN ORDER A11, A12, A13, ETC.")
 C ; READ IN DATA
I1 = 1
I2 = LAST - N + 1
DO 100 J = 1.0
DO 101 I = I1.12.N
ACCEPT 5,A(I)
5; FORMAT(E)
101; CONTINUE
I1 = I1 + I
12 = 12 + 1
199; CONTINUE
TYPE 8
8; FORMAT(/,//,"MATRIX INVERSION RESULTS",/)
9; FORMAT(/,/,"ORIGINAL MATRIX VALUES",/)
JOG = 1
GO TO 200
C; BEGIN INVERSION
C; J IS INDEX OF STAGE OF INVERSION
149;D0\ 150\ J = IN
C; SET UP UNIT VECTOR
DO 105 I = 1.N
A(LAST+I) = 9.9
105; CONTINUE
A(LAST+J) = 1.0
C; SET UP TO CLEAR PIVOT ROW
PVT = A(J)
J3 = LAST + J
DO 106 KP = J.J3.N
A(KP) = A(KP)/PVT
106; CONTINUE
C; CALCULATE REMAINING ROWS
DO 110 KRT = 1.N
IF(KRT-J) 107,110,107
```

```
107;KR1 = KRT
KR2 = KR1 + LAST
KPR = J
RWC = A(KR1)
DO 109 KR = KR1, KR2, N
A(KR) = A(KR) - RWC * A(KPR)
KPR = KPR + N
109; CONTINUE
110; CONTINUE
C; SHIFT ARRAY TO ELIMINATE LEADING UNIT VECTOR
DO 111 I = 1.LAST
A(I) = A(I+N)
111; CONTINUE
150; CONTINUE
TYPE 160
160; FORMAT(/,/,"THE INVERSE MATRIX IS"/)
JOG = 2
GO TO 200
161; STOP
C;PRINT OUT SUBROUTINE
200; ILNE = 4
NR=NRC=1
TYPE 201 NR
201; FORMAT(/, "ROW ", I,/)
I1 = 1
I2 = LAST - N + 1
KONT = 1
00 210 JP = 1.0
D0 213 I = I1.I2.N
TYPE 212,A(I)
212; FORMAT(E)
IF(N-NRC) 216,216,215
216; IF(N-NR) 213, 213, 217
217;NR = NR+1
NRC = KONT = 1
ILNE = 4
TYPE 201, NR
GO TO 213
215; IF (KONT-ILNE) 214,220,214
220; ILNE = ILNE + 4
TYPE 221
221; FORMAT(/,/)
2143KONT = KONT + 1
NRC=NRC+1
213; CONTINUE
I1 = I1 + 1
I5 = I5 + 1
210; CONTINUE
GO TO (149,161), JOG
END
```

MATRIX INVERSION ... WILL HANDLE UP TO 12X12 LOAD DATA TAPE --- HIT CONTINUE

SIZE OF MATRIX = 8

MATRIX ENTRIES IN ORDER All, Al2, Al3, ETC.

- +0 1000000E+1
- +0.500000E+0
- +0.333333E+0
- +0.250000E+0
- +0.200000E+0
- +0 166666E+0
- +0 1 42857E+0
- +0 125000E+0
- +0.500000E+0
- +0.333333E+0
- +0.250000E+0
- +0.200000E+0
- +0 166666E+0
- +0 1 42857E+0
- +0 125000E+0
- +0-111111E+0
- +0.333333E+0
- +0.250000E+0
- +0.200000E+0
- +0 166666E+0
- +0 1 42857E+0
- +0.125000E+0
- +0 111111E+0
- +0 100000E+0
- +0.250000E+0 +0 • 200000E+0
- +0 166666E+Ø
- +0 1 42857E+0

- +0.125000E+0
- +0.111111E+0
- +0.1000000E+0
- +0.909090E-1
- +0.200000E+0
- +0.166666E+0
- +0 . 142857E+0
- +0.125000E+0
- +Ø 111111E+Ø
- +0.100000E+0
- +0.909090E-1
- +0.833333E-1
- +0.166666E+0
- +0 · 1 42857E+Ø
- +0.125000E+0
- +Ø 111111E+Ø
- +0.100000E+0
- +0.909090E-1
- +Ø 833333E-1
- +Ø 769231E-1
- +0.142857E+0
- TW . 14283 / ETE
- +0.125000E+0
- +0.111111E+0
- +0 1000000E+0
- +0.909090E-1
- +0.833333E-1
- +0.769231E-1
- +0.714285E-1
- +0.125000E+0
- +Ø 111111E+Ø
- +0.100000E+0
- +0.909090E-1
- +Ø · 833333E-1
- +0.769231E-1
- +0-714285E-1
- +0.66666E-1

MATRIX INVERSION RESULTS

ORIGINAL MATRIX VALUES

ROV +1			
+0 • 100000E+1	+0 • 500000E+0	+0•333332E+0	+0•250000E+0
+0•290000E+0	+0 • 166666E+Ø	+0 • 1 42857E+0	+0.125000E+0
+0 • 5000000E+0	+0•333332E+0	+0 • 250000E+0	+0•200000E+0
+Ø•166666E+Ø	+Ø•142857E+Ø	+0 • 125000E+0	+0 • 111110E+0
ROW +3 +0.0333332E+0	+0.250000E+0	+0 • 200000E+0	+0 • 166666E+0
+0 • 142857E+0	+0 • 125000E+0	+0 • 1 1 1 1 1 0 E + 0	+0 • 100000E+0
ROW +4 +0•250000E+0	+0 • 200000 E+0	+0 • 166666E+0	+0 • 1 42857E+0
+0 • 125000E+0	+0 • 111110E+0	+0 • 100000E+0	+0.909090E-1
ROW +5 +0•200000E+0	+0 • 166666E+0	+0 • 1 42857E+0	+0.125000E+0
+0 • 111110E+0	+0 • 100000E+0	+0.909090E-1	+0.833332E-1
ROW +6 +0•166666E+0	+0 • 1 42857E+0	+0 • 125000E+0	+0 • 1 1 1 1 1 0 E + 0
+0 • 100000E+0	+0•909090E-1	+0 • 833332E-1	+0 • 769231 E-1
ROW +7 +0•142857E+0	+0 • 125000E+0	+0 • 111110E+0	+0 • 1000000E+0
+0 • 90 90 90 E - 1	+0 • 833332E-1	+0.769231E-1	+0 • 71 4285E-1
ROW +8 +0•125000E+0	+0 • 111110E+0	+0 • 100000E+0	+0 • 909090E-1
+0.833332E-1	+0 • 769231E-1	+0 • 71 4285E-1	+0 • 666665E-1

MATRIX INVERSION.... WILL HANDLE UP TO 12X12 LOAD DATA TAPE --- HIT CONTINUE

SIZE OF MATRIX = 4

MATRIX ENTRIES IN ORDER All, Al2, Al3, ETC. +0.100000E+1

- +0.500000E+0
- +0.333333E+0
- +0.250000E+0
- +0.500000E+0
- +0.333333E+0
- +0.250000E+0
- +0.200000E+0
- +0.333333E+0
- +0.250000E+0
- +0.200000E+0
- +Ø 166666E+Ø
- 8 155555E
- +0.250000E+0
- +0.166666E+0
- +0 142857E+0

MATRIX INVERSION RESULTS

ORIGINAL MATRIX VALUES

ROW +1				
+0.100000E+1 ROW +2	+0.5000000E+0	+0 • 333332E+0	+0.250000E+0	
+0.500000E+0 ROW +3	+0.333332E+0	+0 •250000E+0	+0•200000E+0	
+0.333332E+0 ROW +4	+0.250000E+0	+0 • 2000000E+0	+0 • 166666E+0	
+0.250000E+0	+0.200000E+0	+0 •166666E+0	+0 • 1 42857E+0	
THE INVERSE MA	TRIX IS			
+ؕ159725E+2 ROW +2	-ؕ119655E+3	+ؕ239128E+3	-0 • 139416E+3	
-0.119654E+3	+ؕ119573E+4	-0 • 268928E+4	+0 • 167286E+4	
+0.239126E+3 ROW +4	-0.268927E+4	+0 • 6 4531 4E+ 4	-0 • 418214E+4	
-0 · 139415E+3	+0 • 167284E+4	-0.418212E+4	+0 • 278812E+4	

MATRIX INVERSION RESULTS

ORIGINAL MATRIX VALUES

-0.293182E+4 !

ROW +1 +0•100000E+1	+0•500000E+0	+0•333332E+0	+0•250000E+0
+0•200000E+0 ROW +2 +0•300000E+0	+0•333332E+0	+0•250000E+0	+0•200000E+0
+0.166666E+0 ROW +3 +0.333332E+0	+0•250000E+0	+0•200000E+0	+0•16666E+0
+0 • 1 42857E+0	. 0 . 2 . 3 . 0 . 0 . 0 . 0	• ₩ • ≅₩₩₩₩₽ • ₩	*W•100006E*W
ROW +4 +0•250000E+0	+0•200000E+0	+0 • 166666E+0	+Ø•142857E+Ø
+0 • 125000E+0 ROW +5 +0 • 200000E+0	+0•166666E+0	+0 •1 42570E+0	+0•125000E+0
+0 • 111110E+0			
THE INVERSE MAT	TRIX IS		
ROW +1 +0.126073E+2	-0.767119E+2	+0•111613E+3	-0.920288E+1
•	-0.767119E+2 +0.326738E+3	+0•111613E+3 -0•108908E+3	-0.920288E+1 -0.962137E+3
+0.126073E+2 -0.407754E+2 ROW +2 -0.515580E+2 +0.825129E+3 ROW +3	+ؕ326738E+3		
+0.126073E+2 -0.407754E+2 ROW +2 -0.515580E+2 +0.825129E+3			
+0.126073E+2 -0.407754E+2 ROW +2 -0.515580E+2 +0.825129E+3 ROW +3	+ؕ326738E+3	-0•108908E+3	-0•962137E+3
+0.126073E+2 -0.407754E+2 ROW +2 -0.515580E+2 +0.825129E+3 ROW +3 -0.694729E+2 -0.373930E+4 ROW +4	+0•326738E+3 +0•124880E+4	-0 • 108908E+3 -0 • 524054E+4	-0•962137E+3 +0•775907E+4

THE INVERSE MATRIX IS

ROW +1			
+ؕ272634E+2	-0.357763E+3	+0 • 130014E+4	-0 • 1 41 41 3E+4
-0.329614E+3	+0.312726E+3	+0 • 165345E+4	-0-119708E+4
-0.356676E+3	+0.630141E+4	-0 • 254948E+5	+0 • 256585E+5
+0.241019E+5 ROW +3	-0.352589E+5	-0 • 169460E+5	+0 • 221324E+5
+0 • 128535E+4	-6 • 252997E+5	+0 • 102323E+6	-0.569573E+5
-0.285921E+6 ROW +4	+0 • 410354E+6	-0.777362E+5	-ؕ688629E+5
-0.135440E+4	+0 • 246516E+5	-0.540229E+5	-0.296322E+6
+0 • 124483E+7 ROW +5	-0.156502E+7	+0 • 665992E+6	-0.172452E+5
-0.415422E+3	+0 • 255213E+5	-0.289462E+6	+0 • 124128E+7
-0.245451E+7 ROW +6	+0 • 228681E+7	-ؕ848236E+6	+0 • 380734E+5
+0.321370E+3	-0.348104E+5	+0 • 401734E+6	-0 • 1 52542E+7
+0.222715E+7 ROW +7	-0.653729E+6	-0.113237E+7	+0 • 718552E+6
+0 • 172594E+4	-ؕ191468E+5	-0.597868E+5	+0.604021E+6
-0.748710E+6	-0.119720E+7	+0 • 27 4985E+7	-0.133427E+7
-Ø · 123858E+4	+ؕ232816E+5	-0.774314E+5	+0 • 107290E+5
-0.766784E+4	+0.755308E+6	-Ø • 134583E+7	+0.645083E+6

MATRIX INVERSION WILL HANDLE UP TO 12X12 LOAD DATA TAPE --- HIT CONTINUE

SIZE OF MATRIX = 5

MATRIX ENTRIES IN ORDER A11, A12, A13, ETC.

- +0 1000000E+1
- +0.500000E+0
- +0.333333E+Ø
- +0.250000E+0
- +0.200000E+0
- +0.500000E+0
- +0.333333E+0
- +0.250000E+0
- +0.200000E+0
- +0.166666E+Ø
- +0.33333E+0
- +Ø 25ØØØØE+Ø
- +0.200000E+0
- +0 166666E+0
- +0 1 42857E+0
- +0.250000E+0
- +0.200000E+0 +0 • 166666E+0
- +0 1 42857E+0
- +0.125000E+0
- +0.200000E+0
- +0.166666E+0
- +0 1 4257E+0
- +0.125000E+0
- +Ø 111111E+Ø