

Iterative Refinement of Point Correspondences for 3D Statistical Shape Models

Proc. Medical Image Computing and Computer-Assisted Interventions Toronto, September 18-22, 2011. pp. 417-425

Sharmishtaa Seshamani Gouthami Chintalapani **Russell Taylor**

Department of Computer Science The Johns Hopkins University

WHITING SCHOOL OF ENGINEERING THE JOHNS HOPKINS UNIVERSITY

Introduction

- Shape atlases: Representation and Modeling
- Bone Atlases for the study of anatomical variation
- Dense Point based representations from registration to a template
- Incorrect point correspondences can influence the statistical modeling

Prior Work

Active Shape Models

Cootes et al., 1995 Active shape models - their training and application.

Registration to mean shape

Chui et al., 2004 Unsupervised learning of an atlas from unlabeled point-sets.

Iterative Bootstrapping

Chintalapani et al., 2007 Statistical Atlases of Bone Anatomy: Construction, Iterative Improvement and Validation

· Optimization of MDL

Davies et al., 2010 Building 3-D Statistical Shape Models by Direct Optimization

Copyright @ 2011 S. Seshsamani, R. H. Taylo

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Proposed Method

Iterative method with two steps:

Use current point correspondences to generate model (PCA)

$$V_i^{rec} = \bar{M} + \sum_{i=1}^n \lambda_i Y_i$$

Use model to re-estimate point correspondences

Copyright © 2011 S. Seshsamani, R. H. Taylor

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Fractional Update

- · Closest Points may cause illegal triangles
- Comparing surface normals to check for "flipping" triangles can identify this
- Fractional update: Select largest m such that no triangles are flipped

Flowchart

S = {V,T} : Original Surfaces (Meshes and Triangles)

V : Original Vertices

Vrec : Reconstructed Vertices

V^{closest}: Closest Points on Original Surface to Reconstructed Vertices

V^{updated}: Vertices after fractional update S^{updated} = S{V^{updated}, T}: Updated Surfaces

Copyright © 2011 S. Seshsamani, R. H. Taylor

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Algorithm

Algorithm 1 Point Update Algorithm

```
1: Input: S = \{(V_i, T) | i = 1 \dots N\}, Stepsize s
```

- 2: for all $S_i = (V_i, T) \in \mathcal{S}$ do
- 3: Generate \mathcal{V}'_i and compute PCA model $\Rightarrow (\bar{M}, Y)$.
- Reconstruct V_i with \bar{M} and $Y \Rightarrow V_i^{rec}$ 4:
- Compute closest points to S_i . $\Rightarrow V_i^{closest}$
- 6: Compute direction vector d_{along} for every vertex
- Set $\mu=1$ and compute fractional update $\Rightarrow V_i^{updated}$ while $V_i^{updated}$ is not consistent do 7:
- 8:
- 9: $\mu = \mu - s$
- Compute fractional update ${\cal V}_i^{updated}$ 10:
- 11: end while
- 12: **end for**
- 13: Output: $S^{updated} = \{(V_i^{updated}, T) | i = 1 \dots N\}$

Experimental Setup: Data

- Pelvis Atlas: 110 normal adult male subjects, anonymized
- Each sample is a 512X512X256 CT Volume, manually segmented
- Surface mesh extraction: 11163 points, 23414 triangles
- Each mesh was first registered to a template mesh to establish initial correspondences

Experimental Setup: Validation

- Cross validation: 5 fold
- Training set is used for learning mean shape and modes

Copyright © 2011 S. Seshsamani, R. H. Taylor

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Experimental Setup: Validation

- · Cross validation: 5 fold
- Training set is used for learning mean shape and modes
- Reconstruction for all the data is carried out with 30 modes
- Point Update carried out to eliminate out of surface component
- Fractional update carried out to ensure consistency
- Reported Metrics: Vertex Error, Surface Error, Volume Error

Closest Points

Leave out Validation with Point Update to the closest points V^{closest}

Copyright © 2011 S. Seshsamani, R. H. Taylor

Engineering Research Center for Computer Integrated Surgical Systems and Technology

The effect of Fractional Updates

Example of Mesh Update

Conclusion

- Presented a general iterative method for refinement of 3D point to point correspondences, which does not require any outside information
- · Results show reduction in vertex and surface error for leave 20 out validation
- Extensions: Evaluation of consistency using intensity information, application to other types of atlases.

Acknowledgments

NIH Grant Number 5R21EB008227-02 Johns Hopkins University internal funds.

