

Art of Problem Solving

1997 APMO

APMO 1997

1 Given:

$$S = 1 + \frac{1}{1 + \frac{1}{3}} + \frac{1}{1 + \frac{1}{3} + \frac{1}{6}} + \dots + \frac{1}{1 + \frac{1}{3} + \frac{1}{6} + \dots + \frac{1}{1993006}}$$

where the denominators contain partial sums of the sequence of reciprocals of triangular numbers (i.e. $k=\frac{n(n+1)}{2}$ for $n=1,\ 2,\ \ldots,1996$). Prove that S>1001.

2 Find an integer n, where $100 \le n \le 1997$, such that

$$\frac{2^n+2}{n}$$

is also an integer.

3 Let ABC be a triangle inscribed in a circle and let

$$l_a = \frac{m_a}{M_a} \; , \; l_b = \frac{m_b}{M_b} \; , \; l_c = \frac{m_c}{M_c} \; ,$$

where m_a, m_b, m_c are the lengths of the angle bisectors (internal to the triangle) and M_a, M_b, M_c are the lengths of the angle bisectors extended until they meet the circle. Prove that

$$\frac{l_a}{\sin^2 A} + \frac{l_b}{\sin^2 B} + \frac{l_c}{\sin^2 C} \ge 3$$

and that equality holds iff ABC is an equilateral triangle.

Triangle $A_1A_2A_3$ has a right angle at A_3 . A sequence of points is now defined by the following iterative process, where n is a positive integer. From A_n $(n \ge 3)$, a perpendicular line is drawn to meet $A_{n-2}A_{n-1}$ at A_{n+1} .

- (a) Prove that if this process is continued indefinitely, then one and only one point P is interior to every triangle $A_{n-2}A_{n-1}A_n$, $n \ge 3$.
- (b) Let A_1 and A_3 be fixed points. By considering all possible locations of A_2 on the plane, find the locus of P.

Contributors: shobber, carlosbr

Art of Problem Solving 1997 APMO

Suppose that n people $A_1, A_2, ..., A_n, (n \ge 3)$ are seated in a circle and that $\mathbf{5}$ A_i has a_i objects such that

$$a_1 + a_2 + \dots + a_n = nN$$

where N is a positive integer. In order that each person has the same number of objects, each person A_i is to give or to receive a certain number of objects to or from its two neighbours A_{i-1} and A_{i+1} . (Here A_{n+1} means A_1 and A_n means A_0 .) How should this redistribution be performed so that the total number of objects transferred is minimum?

www.artofproblemsolving.com/community/c4114

Contributors: shobber, carlosbr