FCC ID: UXZBSM100

Report No.: DRTFCC1008-0153(1)

Total 72 Pages

RF TEST REPORT

	Test item	: Bluetooth Mic	
	Model No.	: BS-M100	
	Order No.	1008-00644	
	Date of receipt	2010-08-02	
	Test duration	2010-08-04 ~ 20	10-08-11
	Date of issue	2010-08-12	
	Use of report	: FCC Original Gra	ant
Applicant	: Clipcomm Inc.		
	E.S.T Bldg, 229-15, N Korea	lonhyeon-dong, Gan	gnam-gu, Seoul, 135-830 South
Test laboratory	-		Si, Kyunggi-Do, 449-080, Korea
		CC Part 15.247 Subpa NSI C63.4-2003	art C
			ort.
		ee appended test rep	
	Test result : ⊠	Pass	il ,
			nall not be reproduced except in full,
Tested by:	Witnesse	d by:	Reviewed by:
4	7		5
Engineer B.G.HAN	N/A		Manager W.J. Lee

CONTENTS

1. Equipment information	3
1.1 Equipment description	3
1.2 Ancillary equipment	3
2. Information about test items	4
2.1 Test mode & EUT Position	4
2.2 Auxiliary equipment	4
2.3 Tested frequency	4
2.4 Tested environment	4
2.5 EMI Suppression Device(s)/Modifications	4
3. Test Report	5
3.1 Summary of tests	5
3.2 Transmitter requirements	6
3.2.1 Carrier Frequency Separation	6
3.2.2 Number of Hopping Frequencies	9
3.2.3 20 dB Bandwidth	15
3.2.4 Time of Occupancy (Dwell Time)	20
3.2.5 Peak Output Power	23
3.2.6 Conducted Spurious Emissions	28
3.2.7 Radiated Spurious Emissions	51
3.2.8 AC Line Conducted Emissions	68
3.2.9 Antenna Requirements	69
ΔΡΡΕΝΟΙΥ Ι	70

1. Equipment information

1.1 Equipment description

FCC Equipment Class	Part 15 Spread Spectrum Transmitter(DSS)	
Equipment type	Bluetooth Mic	
Equipment model name	BS-M100	
Equipment add model name	N/A	
Equipment serial no.	Identical prototype	
Frequency band	2402 ~ 2480 MHz	
Spread Spectrum	Frequency Hopping	
Modulation type	GFSK, π/4-DQPSK	
Transmission rate	1Mbps, 2Mbps	
Channel Spacing	1.0 MHz	
Power	Li-ion polymer Battery: DC 3.7V	
Antenna type	Internal Type: PIFA Antenna (Max. Peak Gain: -1.75 dBi)	

1.2 Ancillary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
-	-	-	-	-
-	-	-	-	-

2. Information about test items

2.1 Test mode & EUT Position

This Device was tested in continuous transmitting mode(at maximum power) of hopping enable /disable mode.

Test Case 1	-
Test Case 2	-
Test Case 3	-

EUT position: refer to "Test photo.pdf" file.

2.2 Auxiliary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
-	-	-	-	-
-	-	-	-	-

2.3 Tested frequency

- Hopping Function: Enable

	TX Frequency (MHz)	RX Frequency (MHz)	
Hopping Band	2402 ~ 2480	2402 ~ 2480	

- Hopping Function: Disable

	TX Frequency (MHz)	RX Frequency (MHz)
Lowest Channel	2402	2402
Middle Channel	2441	2441
Highest Channel	2480	2480

2.4 Tested environment

Temperature	:	23 ~ 26 °C
Relative humidity content	:	42 ~ 60 % R.H.
Details of power supply	:	Battery: DC 3.7 V

2.5 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing \rightarrow None

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit (Using in 2400 ~ 483.5MHz)	Test Condition	Status Note 1
I. Test Items				
	Carrier Frequency Separation	>= 20dB BW or >= Two- Thirds of the 20dB BW		С
15.247(a)	Number of Hopping Frequencies	>= 15 hops		С
15.247(a)	20 dB Bandwidth	None		С
	Dwell Time	=< 0.4 seconds	Conducted	С
15.247(b)	Transmitter Output Power	=< 1Watt , if CHs >= 75 Others =<0.125W		С
45.047()	Band-edge /Conducted	The radiated emission to any 100 kHz of out-band shall be at least 20dB below		С
15.247(c)	Conducted Spurious Emissions	the highest in-band spectral density.		С
15.205 15.209	Radiated Spurious Emissions	FCC 15.209 Limits	Radiated	С
15.207	AC Conducted Emissions	EN 55022	AC Line Conducted	NA Note. 2
15.203	Antenna Requirements	FCC 15.203	-	С

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

Note 2: When this device is in the charging mode, the Bluetooth function is disabled.

The sample was tested according to the following specification: ANSI C-63.4-2003, DA00-705

3.2 Transmitter requirements

3.2.1 Carrier Frequency Separation

- Procedure:

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

The spectrum analyzer is set to:

Span = wide enough to capture the peaks of two adjacent channels

RBW = 1% of the span Sweep = auto

VBW = ≥ RBW Detector function = peak

Trace = max hold

- Measurement Data: Comply

Hopping Mode	Test Mode	Peak of center channel (MHz)	Peak of adjacent Channel (MHz)	Test Result (MHz)
	Data rate:1Mbps	2439.986	2441.006	1.020
Enable	Data rate: 2Mbps	2440.991	2441.993	1.002
	Inquiry mode	2438.990	2440.995	2.005

See next page for actual measured spectrum plot.

- Minimum Standard:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW

TRF-RF-202(05)100611 Page 6 / 72

Carrier Frequency Separation

Carrier Frequency Separation Hopping mode: Enable & 2Mbps

Carrier Frequency Separation

Hopping mode: Enable & Inquiry mode

3.2.2 Number of Hopping Frequencies

- Procedure:

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, four frequency ranges within the 2400 ~ 2483.5 MHz FH band were examined.

The spectrum analyzer is set to:

Span = 25MHz Plot 1: Start Frequency = 2389.5MHz, Stop Frequency = 2414.5 MHz

Plot 2: Start Frequency = 2414.5MHz, Stop Frequency = 2439.5 MHz Plot 3: Start Frequency = 2439.5MHz, Stop Frequency = 2464.5 MHz Plot 4: Start Frequency = 2464.5MHz, Stop Frequency = 2489.5 MHz

RBW = 1% of the span or more Sweep = auto

VBW = ≥ RBW Detector function = peak

Trace = max hold

- Measurement Data: Comply

Hopping mode	Test mode	Test Result (Total Hops)
	Data rate: 1Mbps	79
Enable	Data rate: 2Mbps	79
	Inquiry mode	32

Note 1: See next pages for actual measured spectrum plots.

- Minimum Standard:

At least 15 hopes

Number of Hopping Frequencies 1 Hopping mode: Enable & 1Mbps

Number of Hopping Frequencies 3 Hopping mode: Enable & 1Mbps

Number of Hopping Frequencies 1 Hopping mode: Enable & 2Mbps

Number of Hopping Frequencies 3 Hopping mode: Enable & 2Mbps

Number of Hopping Frequencies Hopping mode: Enable & Inquiry mode

3.2.3 20 dB Bandwidth

- Procedure:

The bandwidth at 20 dB below the highest inband spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest Frequencies

Span = approximately 2 or 3 times of the 20 dB bandwidth

RBW = 1% of the 20dB bandwidth or more Sweep = auto

VBW = ≥ RBW Detector function = peak

Trace = max hold

- Measurement Data: Comply

Measurement Data. Comply					
Hopping mode	Test mode	Tested Channel	Test Results (MHz)		
Disable	Date rate: 1Mbps	Lowest	0.918		
		Middle	0.918		
		Highest	0.918		
	Date rate: 2Mbps	Lowest	1.242		
		Middle	1.233		
		Highest	1.221		

Note 1: See next pages for actual measured spectrum plots.

- N	lin	im	um	Star	าdar	d:
-----	-----	----	----	------	------	----

Ν	on	ıe
---	----	----

TRF-RF-202(05)100611 Page 15 / 72

20dB Bandwidth

20dB Bandwidth

20dB Bandwidth

#Res BW 10 kHz

VBW 100 kHz

Copyright 2000-2005 Agilent Technologies

20dB Bandwidth

20dB Bandwidth

Middle Channel & 2Mbps

20dB Bandwidth

3.2.4 Time of Occupancy (Dwell Time)

- Procedure:

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to:

Center frequency = 2441 MHz Span = zero RBW = 1 MHz VBW = \geq RBW

Trace = max hold Detector function = peak

- Measurement Data: Comply

Hopping mode	Test mode	Packet Type	Burst On Time (ms)	Period (ms)	Number of hopping Channels	Test Result (s)
	Data Rate: 1Mbps	DH 5	3.060	3.750	79	0.326
Enable	Data Rate: 2Mbps	DH 5	3.075	3.750	79	0.328
	Inquiry mode	N/A	0.500	1.450	32	0.138

Note 1: Each new transmission event begins on the next channel in the hopping sequence after the final channel used in the previous transmission event.

DWELL TIME=(0.4 x Number of hopping Channels) x Burst On time / (period x Number of hopping Channels)

Note 2: See next pages for actual measured spectrum plots.

- Minimum Standard:

No greater than 0.4 seconds

Time of Occupancy

Time of Occupancy

Time of Occupancy

Hopping mode: Enable & Inquiry mode

3.2.5 Peak Output Power

- Procedure:

The peak output power was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest Frequencies

Span = approximately 5 times of the 20 dB bandwidth

RBW = greater than the 20dB bandwidth of the emission being measured VBW = ≥ RBW Detector function = peak

Trace = max hold Sweep = auto

- Measurement Data: Comply

Hopping mode	Test mode	Tested Channel	Test Results		
			dBm	mW	
Disable	Data rate: 1Mbps	Lowest	5.54	3.581	
		Middle	5.71	3.724	
		Highest	6.12	4.093	
	Data rate: 2Mbps	Lowest	4.74	2.979	
		Middle	4.76	2.992	
		Highest	4.89	3.083	

Note 1: See next pages for actual measured spectrum plots.

- Minimum Standard:

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: **1 Watt**. For all other frequency hopping systems in the 2400-2483.5 MHz band: **0.125 Watts**

TRF-RF-202(05)100611 Page 23 / 72

Peak Output Power

Peak Output Power

Peak Output Power

Copyright 2000-2005 Agilent Technologies

Peak Output Power

Peak Output Power

Peak Output Power

3.2.6 Conducted Spurious Emissions

- Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

For Band-edge testing the spectrum analyzer is set to:

Tested frequency = the highest and the lowest Frequencies

Center frequency = 2400MHz, 2483.5MHz

Span = 10MHz Detector function = peak

RBW = 1% of the span $VBW = \ge RBW$ Trace = max hold Sweep = auto

For spurious testing the spectrum analyzer is set to:

Tested frequency = the highest, middle and the lowest Frequencies

RBW = 100 kHz $VBW = \ge RBW$ Detector function = peak Sweep = auto

Trace = max hold

- Measurement Data: Comply

Note 1: See next pages for actual measured spectrum plots.

- Minimum Standard:

Minimum Standard: > 20 dBc

Low Band-edge Hopping mode: Disable & 1Mbps

High Band-edge Hopping mode: Disable & 1Mbps

5GHz ~ 10GHz Conducted Spurious Emissions Lowest Channel & 1Mbps

TRF-RF-202(05)100611 Page 31 / 72

10GHz ~ 15GHz Conducted Spurious Emissions Lowest Channel & 1Mbps

15GHz ~ 20GHz Conducted Spurious Emissions Lowest Channel & 1Mbps

20GHz ~ 25GHz Conducted Spurious Emissions Lowest Channel & 1Mbps

Reference for limit

Middle Channel & 1Mbps

30MHz ~ 5GHz Conducted Spurious Emissions Middle Channel & 1Mbps

5GHz ~ 10GHz Conducted Spurious Emissions Middle Channel & 1Mbps

10GHz ~ 15GHz Conducted Spurious Emissions Middle Channel & 1Mbps

15GHz ~ 20GHz Conducted Spurious Emissions Middle Channel & 1Mbps

20GHz ~ 25GHz Conducted Spurious Emissions Middle Channel & 1Mbps

5GHz ~ 10GHz Conducted Spurious Emissions Highest Channel & 1Mbps

10GHz ~ 15GHz Conducted Spurious Emissions Highest Channel & 1Mbps

15GHz ~ 20GHz Conducted Spurious Emissions Highest Channel & 1Mbps

20GHz ~ 25GHz Conducted Spurious Emissions Highest Channel & 1Mbps

Low Band-edge Hopping mode: Disable & 2Mbps

High Band-edge Hopping mode: Disable & 2Mbps

5GHz ~ 10GHz Conducted Spurious Emissions Lowest Channel & 2Mbps

10GHz ~ 15GHz Conducted Spurious Emissions Lowest Channel & 2Mbps

15GHz ~ 20GHz Conducted Spurious Emissions Lowest Channel & 2Mbps

20GHz ~ 25GHz Conducted Spurious Emissions Lowest Channel & 2Mbps

Reference for limit

Middle Channel & 2Mbps

30MHz ~ 5GHz Conducted Spurious Emissions Middle Channel & 2Mbps

5GHz ~ 10GHz Conducted Spurious Emissions Middle Channel & 2Mbps

10GHz ~ 15GHz Conducted Spurious Emissions Middle Channel & 2Mbps

15GHz ~ 20GHz Conducted Spurious Emissions Middle Channel & 2Mbps

20GHz ~ 25GHz Conducted Spurious Emissions Middle Channel & 2Mbps

5GHz ~ 10GHz Conducted Spurious Emissions Highest Channel & 2Mbps

10GHz ~ 15GHz Conducted Spurious Emissions Highest Channel & 2Mbps

15GHz ~ 20GHz Conducted Spurious Emissions Highest Channel & 2Mbps

20GHz ~ 25GHz Conducted Spurious Emissions Highest Channel & 2Mbps

3.2.7 Radiated Spurious Emissions

- Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:

Tested frequency = Low, Middle, High Frequencies

Frequency Range = 30 MHz ~ 10th harmonic.

RBW and VBW = 1. Frequency range: 30MHz ~ 1GHz

RBW = 120KHz / VBW = \geq RBW 2. Frequency range: 1GHz \sim 10th harmonics

Peak mode: RBW = 1MHz / VBW = ≥ RBW Average mode: RBW = 1MHz / VBW = 10Hz

Detector function = Peak Sweep = auto

Trace = max hold

- Measurement Data: Comply

Note 1: See next pages for actual measured spectrum plots and data.

- Minimum Standard:

• FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	3600 ~ 4400	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	4.5 ~ 5.15	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~ 12.52025	149.9 ~ 150.05	1645.5 ~ 1646.5	5.35 ~ 5.46	17.7 ~ 21.4
4.125 ~ 4.128	12.57675 ~ 12.57725	156.52475 ~ 156.52525	1660 ~ 1710	7.25 ~ 7.75	22.01 ~ 23.12
4.17725 ~ 4.17775	13.36 ~ 13.41	156.7 ~ 156.9	1718.8 ~ 1722.2	8.025 ~ 8.5	23.6 ~ 24.0
4.20725 ~ 4.20775	16.42 ~ 16.423	162.0125 ~ 167.17	2200 ~ 2300	9.0 ~ 9.2	31.2 ~ 31.8
6.215 ~ 6.218	16.69475 ~ 16.69525	167.72 ~ 173.2	2310 ~ 2390	9.3 ~ 9.5	36.43 ~ 36.5
6.26775 ~ 6.26825	16.80425 ~ 16.80475	240 ~ 285	2483.5 ~ 2500	10.6 ~ 12.7	Above 38.6
6.31175 ~ 6.31225	25.5 ~ 25.67	322 ~ 335.4	2655 ~ 2900	13.25 ~ 13.4	
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3260 ~ 3267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3332 ~ 3339		
8.37625 ~ 8.38675	74.8 ~ 75.2	960 ~ 1240	3345.8 ~ 3358		

[•] FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

TRF-RF-202(05)100611 Page 51 / 72

Restricted Band Edge Lowest Channel & 1Mbps & The worst case EUT Position: X axis **Peak mode / Horizontal polarization**

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

Restricted Band Edge Lowest Channel & 1Mbps & The worst case EUT Position: X axis **Average mode / Horizontal polarization**

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

TRF-RF-202(05)100611 Page 52 / 72

Restricted Band Edge Lowest Channel & 1Mbps & The worst case EUT Position: Y axis **Peak mode / Vertical polarization**

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

Restricted Band Edge Lowest Channel & 1Mbps & The worst case EUT Position: Y axis *Average mode / Vertical polarization*

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

TRF-RF-202(05)100611 Page 53 / 72

Restricted Band Edge Highest Channel & 1Mbps & The worst case EUT Position: X axis **Peak mode / Horizontal polarization**

Restricted Band Edge Highest Channel & 1Mbps & The worst case EUT Position: X axis **Average mode / Horizontal polarization**

Restricted Band Edge Highest Channel & 1Mbps & The worst case EUT Position: Y axis **Peak mode / Vertical polarization**

Restricted Band Edge Highest Channel & 1Mbps & The worst case EUT Position: Y axis **Average mode / Vertical polarization**

Restricted Band Edge Lowest Channel & 2Mbps & The worst case EUT Position: X axis **Peak mode / Horizontal polarization**

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

Restricted Band Edge Lowest Channel & 2Mbps & The worst case EUT Position: X axis **Average mode / Horizontal polarization**

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

TRF-RF-202(05)100611 Page 56 / 72

Restricted Band Edge Lowest Channel & 2Mbps & The worst case EUT Position: Y axis **Peak mode / Vertical polarization**

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

Restricted Band Edge Lowest Channel & 2Mbps & The worst case EUT Position: Y axis *Average mode / Vertical polarization*

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

TRF-RF-202(05)100611 Page 57 / 72

Restricted Band Edge Highest Channel & 2Mbps & The worst case EUT Position: X axis **Peak mode / Horizontal polarization**

Restricted Band Edge Highest Channel & 2Mbps & The worst case EUT Position: X axis **Average mode / Horizontal polarization**

Restricted Band Edge Highest Channel & 2Mbps & The worst case EUT Position: Y axis **Peak mode / Vertical polarization**

Restricted Band Edge Highest Channel & 2Mbps & The worst case EUT Position: Y axis **Average mode / Vertical polarization**

30MHz ~ 1GHz Radiated Spurious Emissions Lowest Channel & 1Mbps

RADIATED EMISSION

Date: 2010-08-07

 Model Name
 :
 BS-M100
 Reference No.
 :
 Power Supply
 :
 BAT 3.7V

 Serial No.
 :
 Identifical prototype
 Temp/Humi
 :
 23°C
 60% R.H.

 Test Condition
 :
 2402MHz
 Operator
 :
 B.G.HAN

Memo : 1Mbps and EUT positions: X, Y, Z

LIMIT : FCC Part15 Subpart.B Class B (3m) MARGIN: 3 dB

No	. FREQ	READING	ANT	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	QP [dBuV]	FACTOR [dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
	Horizont	al								
1	47.397	22.1	9.4	0.9	22.	7 9.7	40.0	30.3	100	184
2	984.458	19.7	21.5	3.8	22.	8 22.2	54.0	31.8	100	252
	Vertical		==							
3	47.390	22.0	9.4	0.9	22.	7 9.6	40.0	30.4	299	1

⁻ Note: Above listed point data is the worst case data.

30MHz ~ 1GHz Radiated Spurious Emissions Middle Channel & 1Mbps

RADIATED EMISSION

Date: 2010-08-07

 Model Name
 :
 BS-M100
 Reference No.
 :
 BAT 3.7V

 Model No.
 :
 Power Supply
 :
 BAT 3.7V

 Serial No.
 :
 Identifical prototype
 Temp/Humi
 :
 23°C
 60% R.H.

 Test Condition
 :
 2441MHz
 Operator
 :
 B.G.HAN

Memo : 1Mbps and EUT positions: X, Y, Z

LIMIT : FCC Part15 Subpart.B Class B (3m) MARGIN: 3 dB

[dBuV/m]	· ·	< <qp d<="" th=""><th>ATA>></th><th></th><th>- P.</th><th>НС</th><th>RIZONTAL</th><th>1</th><th>VER</th><th>TICA</th></qp>	ATA>>		- P.	НС	RIZONTAL	1	VER	TICA
					26					
	<u> </u>	1				han a second and the	THE REAL PROPERTY.	No. ma	للمستنيد	الميايين
	4		Some	was a phaphae	Mary Land Comment Special Spec	hip-on the first parties of the				
 0м	50M	70M	100M		200M	300M	500M	7.0	OM O	
								Fr	equen	су[Н

No.	FREQ	READING QP	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
	Horizont	al	3.77							
1	47.391	23.4	9.4	0.9	22.	7 11.0	40.0	29.0	400	154
	Vertical		-							
2 3	39.288 68.862	23.2 22.0	13.9 6.3	0.8 1.0	22.0		40.0 40.0	24.7 33.4	199 100	4 358

⁻ Note: Above listed point data is the worst case data.

30MHz ~ 1GHz Radiated Spurious Emissions Highest Channel & 1Mbps

RADIATED EMISSION

Date: 2010-08-07

Model Name Model No. Reference No. Power Supply Temp/Humi : : BAT 3.7V : 23'C 60% R.H. : B.G.HAN : BS-M100 : Identifical prototype : 2480MHz Serial No. Test Condition Operator

Memo : 1Mbps and EUT positions: X, Y, Z

LIMIT : FCC Part15 Subpart.B Class B (3m) MARGIN: 3 dB

[/m]	< <qi< th=""><th>P DATA>></th><th>1</th><th></th><th>T T</th><th>ï</th><th>HOF</th><th>RIZONTAL</th><th>7</th><th>VEF</th><th>RTIC</th><th>AL</th></qi<>	P DATA>>	1		T T	ï	HOF	RIZONTAL	7	VEF	RTIC	AL
				15		<i>S</i>							
													S 2
A	\ \							no make day	Marine Marine	out le	displaying the second	المخصيات	M
X	My		AM	Dara	- Company	Trans St. good of the	Markey Bernard	population.					_
			T			51-							
ΠM	50	nm 70	м 1	nnr		2 N N M	1 30	ΩМ	รถกฬ	70	nm	-	10
0M	50	ЭМ 70	M 1	MOC		200M	1 30	0M	500M		00M eque		
OM No.		READING	ANT	LOSS	GAIN	200M RESULT		OM MARGIN	500M ANTENNA	Fre			10 Hz
						RESULT		MARGIN		Fre	eque		
No.	FREQ	READING QP	ANT FACTOR [dB]	LOSS		RESULT	LIMIT	MARGIN	ANTENNA	Fre	eque		
No.	FREQ	READING QP [dBuV]	ANT FACTOR [dB]	LOSS	[dB]	RESULT [dBuV/m]	LIMIT	MARGIN	ANTENNA [cm]	Fre	eque	ncy[ŀ	
1 2	FREQ [MHz] Horizon	READING QP [dBuV] tal 24.5 22.5	ANT FACTOR [dB] 16.0	Loss [dB]	[dB]	RESULT [dBuV/m]	LIMIT [dBuV/m] 40.0	MARGIN [dB]	ANTENNA [cm]	Fre	Eque ABLE DEG]	ncy[ŀ	

⁻ Note: Above listed point data is the worst case data.

30MHz ~ 1GHz Radiated Spurious Emissions Lowest Channel & 2Mbps

RADIATED EMISSION

Date: 2010-08-07

 Model Name
 :
 BS-M100
 Reference No.
 :
 Power Supply
 :
 BAT 3.7V

 Serial No.
 :
 Identifical prototype
 Temp/Humi
 :
 23°C
 60% R.H.

 Test Condition
 :
 2402MHz
 Operator
 :
 B.G.HAN

Memo : 2Mbps and EUT positions: X, Y, Z

LIMIT : FCC Part15 Subpart.B Class B (3m) MARGIN: 3 dB

No	. FREQ	READING	ANT	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	QP [dBuV]	FACTOR [dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
	Horizont	al	7.77							
1	40.881	22.7	13.1	0.8	22.6	6 14.0	40.0	26.0	301	1
2	521.216	28.2	17.9	2.7	24.	5 24.3	46.0	21.7	201	54
	Vertical	L	==							
3	37.772	23.1	14.6	0.8	22.6	6 15.9	40.0	24.1	199	1

⁻ Note: Above listed point data is the worst case data.

30MHz ~ 1GHz Radiated Spurious Emissions Middle Channel & 2Mbps

RADIATED EMISSION

Date: 2010-08-07

 Model Name
 :
 BS-M100
 Reference No.
 :
 Power Supply
 :
 BAT 3.7V

 Serial No.
 :
 Identifical prototype
 Temp/Humi
 :
 23°C
 60% R.H.

 Test Condition
 :
 2441MHz
 Operator
 :
 B.G.HAN

Memo : 2Mbps and EUT positions: X, Y, Z

LIMIT : FCC Part15 Subpart.B Class B (3m) MARGIN: 3 dB

| Compared | Compared

	No	. FREQ	READING	ANT	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE	
		[MHz]	QP [dBuV]	FACTOR [dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]	
8		Horizon	:al									
	1 2	40.881 524.325	24.1 27.5	13.1 17.9	0.8	22.		40.0 46.0	24.6 22.4	201 201	22 212	
28		Vertical	L	==								
	3	40.881 146.587	22.5	13.1 10.4	0.8	22.0	50 (FR) 5 (FR) 5	40.0 43.5	26.2 30.5	100 400	16	

⁻ Note: Above listed point data is the worst case data.

30MHz ~ 1GHz Radiated Spurious Emissions Highest Channel & 2Mbps

RADIATED EMISSION

Date: 2010-08-07

 Model Name
 :
 BS-M100
 Reference No.
 :
 BAT 3.7V

 Model No.
 :
 Power Supply
 :
 BAT 3.7V

 Serial No.
 :
 Identifical prototype
 Temp/Humi
 :
 23°C
 60% R.H.

 Test Condition
 :
 2480MHz
 Operator
 :
 B.G.HAN

Memo : 2Mbps and EUT positions: X, Y, Z

LIMIT : FCC Part15 Subpart.B Class B (3m) MARGIN: 3 dB

| Compared | Compared

SAIN RESULT	LIMIT MARGIN	ANTENNA	TABLE
[dB] [dBuV/m]	[dBuV/m] [dB]	[cm]	[DEG]
22.6 15.0	40.0 25.0	301	5
22.7 7.5	40.0 32.5	400	358
24.4 23.4	46.0 22.6	201	0
22.6 13.2 22.7 6.5 22.7 6.1	40.0 26.8 40.0 33.5 40.0 33.9	199 299 100	7 284 134
	dB] [dBuV/m] 22.6 15.0 22.7 7.5 24.4 23.4 22.6 13.2 22.7 6.5	dB] [dBuV/m] [dBuV/m] [dB] 22.6 15.0 40.0 25.0 22.7 7.5 40.0 32.5 24.4 23.4 46.0 22.6 22.6 13.2 40.0 26.8 22.7 6.5 40.0 33.5	dB] [dBuV/m] [dBuV/m] [dB] [cm] 22.6 15.0 40.0 25.0 301 22.7 7.5 40.0 32.5 400 24.4 23.4 46.0 22.6 201 22.6 13.2 40.0 26.8 199 22.7 6.5 40.0 33.5 299

⁻ Note: Above listed point data is the worst case data.

1GHz ~ 25GHz Radiated Spurious Emissions & 1Mbps

Lowest Channel

Frequency	ANT	The worst case	Reading	g(dBuV)	T.F	D.C.F	Result(dBuV/m)		Limit(dBuV/m)		Margin(dB)	
(MHz)	Pol	EUT Position	PK	AV	(dB/m)	D.C.F	PK	AV	PK	AV	PK	AV
4804.030	Н	X axis	51.66	44.25	5.14	-30.28	26.52	19.11	74.00	54.00	47.48	34.89
4804.005	V	Y axis	55.60	48.58	5.14	-30.28	30.46	23.44	74.00	54.00	43.54	30.56
7206.005	Н	X axis	52.17	43.80	9.73	-30.28	31.62	23.25	74.00	54.00	42.38	30.75
7206.005	V	Y axis	50.85	42.41	9.73	-30.28	30.30	21.86	74.00	54.00	43.70	32.14

Middle Channel

Frequency	ANT	The worst case	Reading	g(dBuV)	T.F	D.C.F	Result(d	dBuV/m)	Limit(d	BuV/m)	Margi	n(dB)
(MHz)	Pol	EUT Position	PK	AV	(dB/m)	D.C.F	PK	AV	PK	AV	PK	AV
4882.000	Н	X axis	52.59	45.26	5.32	-30.28	27.63	20.30	74.00	54.00	46.37	33.70
4882.000	٧	Y axis	53.91	46.79	5.32	-30.28	28.95	21.83	74.00	54.00	45.05	32.17
7323.015	Н	X axis	49.58	40.49	10.25	-30.28	29.55	20.46	74.00	54.00	44.45	33.54
7322.985	V	Y axis	49.14	40.35	10.25	-30.28	29.11	20.32	74.00	54.00	44.89	33.68

Highest Channel

- Highest Chainei												
Frequency	ANT	The worst case	Reading	g(dBuV)	T.F (dB/m) D.C.F	DCE	Result(dBuV/m)		Limit(dBuV/m)		Margin(dB)	
(MHz)	Pol	EUT Position	PK	AV		PK	AV	PK	AV	PK	AV	
4960.010	Н	X axis	50.62	42.31	5.90	-30.28	26.24	17.93	74.00	54.00	47.76	36.07
4960.005	V	Y axis	52.19	44.70	5.90	-30.28	27.81	20.32	74.00	54.00	46.19	33.68
7440.040	Н	X axis	46.10	35.91	10.62	-30.28	26.44	16.25	74.00	54.00	47.56	37.75
7440.015	V	Y axis	45.63	35.87	10.62	-30.28	25.97	16.21	74.00	54.00	48.03	37.79

Note.

- 1. Except for the above table: All other spurious emissions were less than 50dB for the limit.
- 2. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F + D.C.F / T.F = AF + CL - AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, D.C.F (Duty Cycle Correction Factor) = 20log(The worst Case DWELL Time/100ms) = 20log(3.06ms / 100ms) = -30.28dB

1GHz ~ 25GHz Radiated Spurious Emissions & 2Mbps

Lowest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position	Reading(dBuV)		T.F	D.C.F	Result(dBuV/m)		Limit(dBuV/m)		Margin(dB)	
			PK	AV	(dB/m)	D.C.F	PK	AV	PK	AV	PK	AV
4804.040	Н	X axis	48.62	38.13	5.14	-30.24	23.52	13.03	74.00	54.00	50.48	40.97
4804.005	V	Y axis	51.44	41.11	5.14	-30.24	26.34	16.01	74.00	54.00	47.66	37.99
7206.005	Н	X axis	49.04	38.51	9.73	-30.24	28.53	18.00	74.00	54.00	45.47	36.00
7206.020	V	Y axis	48.04	36.92	9.73	-30.24	27.53	16.41	74.00	54.00	46.47	37.59

Middle Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position	Reading(dBuV)		T.F	D.C.F	Result(dBuV/m)		Limit(dBuV/m)		Margin(dB)	
			PK	AV	(dB/m)	D.O.1	PK	AV	PK	AV	PK	AV
4881.990	Н	X axis	49.69	38.76	5.32	-30.24	24.77	13.84	74.00	54.00	49.23	40.16
4881.975	٧	Y axis	51.86	41.40	5.32	-30.24	26.94	16.48	74.00	54.00	47.06	37.52
7323.055	Н	X axis	47.40	35.07	10.25	-30.24	27.41	15.08	74.00	54.00	46.59	38.92
7323.040	V	Y axis	46.78	35.18	10.25	-30.24	26.79	15.19	74.00	54.00	47.21	38.81

Highest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position	Reading(dBuV)		T.F	D.C.F	Result(dBuV/m)		Limit(dBuV/m)		Margin(dB)	
			PK	AV	(dB/m)	D.C.F	PK	AV	PK	AV	PK	AV
4959.990	Н	X axis	45.23	33.55	5.90	-30.24	20.89	9.21	74.00	54.00	53.11	44.79
4960.005	V	Y axis	47.46	36.14	5.90	-30.24	23.12	11.80	74.00	54.00	50.88	42.20
7440.010	Н	X axis	42.83	30.95	10.62	-30.24	23.21	11.33	74.00	54.00	50.79	42.67
7440.230	V	Y axis	44.23	31.61	10.62	-30.24	24.61	11.99	74.00	54.00	49.39	42.01

Note.

- 1. Except for the above table: All other spurious emissions were less than 55dB for the limit.
- 2. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F + D.C.F / T.F = AF + CL - AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, D.C.F (Duty Cycle Correction Factor) = 20log(The worst Case DWELL Time/100ms) = 20log(3.075ms / 100ms) = -30.24dB

TRF-RF-202(05)100611 Page 67 / 72

3.2.8 AC Line Conducted Emissions

- Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak and average detector mode with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

- Measurement Data: NA

Note: When this device is in the charging mode, the Bluetooth function is disabled.

- Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range	Conducted Limit (dBuV)						
(MHz)	Quasi-Peak	Average					
0.15 ~ 0.5	66 to 56 *	56 to 46 *					
0.5 ~ 5	56	46					
5 ~ 30	60	50					

^{*} Decreases with the logarithm of the frequency

3.2.9 Antenna Requirements

- Procedure:

Describe how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.

- Conclusion: Comply

The antenna is permanently attached by soldering. (Refer to Internal Photo file.)

- Minimum Standard:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions.

TRF-RF-202(05)100611 Page 69 / 72

APPENDIX I

TEST EQUIPMENT FOR TESTS

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment.

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
\boxtimes	Spectrum Analyzer	Agilent	E4440A	25/09/09	25/09/10	MY45304199
	Spectrum Analyzer	Rohde Schwarz	FSQ26	25/02/10	25/02/11	200445
	Spectrum Analyzer(RE)	H.P	8563E	13/10/09	13/10/10	3551A04634
	Power Meter	H.P	EPM-442A	01/07/10	01/07/11	GB37170413
	Power Sensor	H.P	8481A	01/07/10	01/07/11	3318A96332
	Power Divider	Agilent	11636B	13/10/09	13/10/10	56471
	Power Splitter	Anritsu	K241B	13/10/09	13/10/10	20611
	Power Splitter	Anritsu	K241B	01/07/10	01/07/11	017060
	Frequency Counter	H.P	5342A	01/07/10	01/07/11	2119A04450
	TEMP & HUMIDITY Chamber	JISCO	KR-100/J-RHC2	10/10/09	10/10/10	30604493/021031
\boxtimes	Digital Multimeter	H.P	34401A	12/03/10	12/03/11	3146A13475, US36122178
	Multifunction Synthesizer	HP	8904A	06/10/09	06/10/10	3633A08404
\boxtimes	Signal Generator	Rohde Schwarz	SMR20	12/03/10	12/03/11	101251
\boxtimes	Signal Generator	H.P	ESG-3000A	01/07/10	01/07/11	US37230529
	Vector Signal Generator	Rohde Schwarz	SMJ100A	11/01/10	11/01/11	100148
	Vector Signal Generator	Rohde Schwarz	SMBV100A	23/02/10	23/02/11	255571
	Audio Analyzer	H.P	8903B	02/07/10	02/07/11	3011A09448
	Modulation Analyzer	H.P	8901B	01/07/10	01/07/11	3028A03029
	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	02/07/10	02/07/11	GB43461134
	Universal Radio communication Tester	Rohde Schwarz	CMU 200	12/03/10	12/03/11	106760
	Bluetooth Tester	TESCOM	TC-3000B	01/07/10	01/07/11	3000B000268
	Thermo hygrometer	BODYCOM	BJ5478	28/01/10	28/01/11	090205-3
\boxtimes	Thermo hygrometer	BODYCOM	BJ5478	28/01/10	28/01/11	090205-2
	Thermo hygrometer	BODYCOM	BJ5478	28/01/10	28/01/11	090205-4
	AC Power supply	DAEKWANG	5KVA	12/03/10	12/03/11	20060321-1
\boxtimes	DC Power Supply	HP	6622A	12/03/10	12/03/11	3448A03760
	DC Power Supply	HP	6633A	12/03/10	12/03/11	3524A06634
	BAND Reject Filter	Microwave Circuits	N0308372	06/10/09	06/10/10	3125-01DC0352
	BAND Reject Filter	Wainwright	WRCG1750	06/10/09	06/10/10	2
	High-Pass Filter	ANRITSU	MP526D	06/10/09	06/10/10	M27756
	High-pass filter	Wainwright	WHNX2.1	N/A	N/A	1
\boxtimes	High-pass filter	Wainwright	WHNX3.0	N/A	N/A	9
	High-pass filter	Wainwright	WHNX5.0	N/A	N/A	8
	High-Pass Filter	Wainwright	WHKX8.5	N/A	N/A	1
	Tunable Notch Filter	Wainwright	WRCT800.0 /960.0-0.2/40-8SSK	N/A	N/A	32
	Tunable Notch Filter	Wainwright	WRCD1700.0 /2000.0-0.2/40- 10SSK	N/A	N/A	53
	Tunable Notch Filter	Wainwright	WRCT1900.0/ 2200.0-5/40-10SSK	N/A	N/A	30
	HORN ANT	ETS	3115	23/09/09	23/09/10	21097
\boxtimes	HORN ANT	ETS	3115	14/07/10	14/07/11	6419
\boxtimes	HORN ANT	A.H.Systems	SAS-574	10/06/09	10/06/11	154
	HORN ANT	A.H.Systems	SAS-574	10/06/09	10/06/11	155

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
	Dipole Antenna	Schwarzbeck	VHA9103	06/10/09	06/10/10	2116
	Dipole Antenna	Schwarzbeck	VHA9103	06/10/09	06/10/10	2117
	Dipole Antenna	Schwarzbeck	UHA9105	05/10/09	05/10/10	2261
	Dipole Antenna	Schwarzbeck	UHA9105	05/10/09	05/10/10	2262
	LOOP Antenna	ETS	6502	14/09/09	14/09/10	3471
	Coaxial Fixed Attenuators	Agilent	8491B	01/07/10	01/07/11	MY39260700
\boxtimes	Attenuator (3dB)	WEINSCHEL	56-3	16/12/09	16/12/10	Y2342
	Attenuator (3dB)	WEINSCHEL	56-3	16/12/09	16/12/10	Y2370
	Attenuator (10dB)	WEINSCHEL	23-10-34	01/10/09	01/10/10	BP4386
	Attenuator (10dB)	WEINSCHEL	23-10-34	11/01/10	11/01/11	BP4387
	Attenuator (10dB)	WEINSCHEL	31696	06/10/09	06/10/10	446
	Attenuator (10dB)	WEINSCHEL	31696	06/10/09	06/10/10	408
	Attenuator (20dB)	WEINSCHEL	86-20-11	06/10/09	06/10/10	432
	Attenuator (30dB)	JFW	50FH-030-300	12/03/10	12/03/11	060320-1
	Attenuator (40dB)	WEINSCHEL	57-40-33	01/10/09	01/10/10	NN837
	Termination	H.P	HP-909D	02/07/10	02/07/11	02750
	Termination	H.P	HP-909D	02/07/10	02/07/11	02702
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0088CAN	01/07/10	01/07/11	788
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0185CAN	01/07/10	01/07/11	790
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0215CAN	01/07/10	01/07/11	112
\boxtimes	Amplifier (30dB)	Agilent	8449B	23/04/10	23/04/11	3008A01590
	Amplifier (30dB)	H.P	8449B	13/05/10	13/05/11	3008A00370
	Amplifier	EMPOWER	BBS3Q7ELU	02/11/09	02/11/10	1020
	RF Power Amplifier	OPHIRRF	5069F	01/07/10	01/07/11	1006
\boxtimes	EMI TEST RECEIVER	R&S	ESU	29/01/10	29/01/11	100014
\boxtimes	BILOG ANTENNA	SCHAFFNER	CBL 6112D	28/10/09	28/10/10	22609
\boxtimes	Amplifier (22dB)	H.P	8447E	29/01/10	29/01/11	2945A02865
	EMI TEST RECEIVER	R&S	ESCI	12/05/10	12/05/11	100364
	LOG-PERIODIC ANT.	Schwarzbeck	UHALP 9108 A-1	07/10/09	07/10/10	1098
	BICONICAL ANT.	Schwarzbeck	VHA 9103	06/10/09	06/10/10	91031946
	LOG-PERIODIC ANT.	Schwarzbeck	UHALP9108A	07/07/10	07/07/11	590
	Low Noise Pre Amplifier	TSJ	MLA-100K01-B01-2	12/03/10	12/03/11	1252741
	Amplifier (25dB)	Agilent	8447D	12/03/10	12/03/11	2944A10144
	Amplifier (25dB)	Agilent	8447D	01/07/10	01/07/11	2648A04922
	Spectrum Analyzer(CE)	H.P	8591E	12/03/10	12/03/11	3649A05889
	LISN	Kyoritsu	KNW-407	29/01/10	29/01/11	8-317-8
	LISN	Kyoritsu	KNW-242	29/01/10	29/01/11	8-654-15
	CVCF	NF Electronic	4420	12/03/10	12/03/11	304935/337980
	50 ohm Terminator	HME	CT-01	12/01/10	12/01/11	N/A
	RFI/FIELD Intensity Meter	Kyoritsu	KNM-2402	02/07/10	02/07/11	4N-170-3