CS 113: Mathematical Structures for Computer Science

Dr. Francis Parisi

Pace University

Fall 2018

Relations and Functions

Chapter 5

Relations and Functions

- Relations
- Equivalence Relations
- Functions
- Bijective Functions
- Cardinalities of Sets

- Often we have two sets A and B where some of the elements of A are connected to elements of B
- These connections are described by two important concepts: relations and functions
- Which applies depends on the nature of the connection

Recall from Chapter 2 that the Cartesian product of two sets A and B is the set of all ordered pairs (a,b) where $a \in A$ and $b \in B$. Symbolically we write

$$A \times B = \{(a,b) : a \in A, b \in B\}.$$

Definition

A **relation** R **from a set** A **to a set** B is a subset of $A \times B$. In addition, R is said to be a relation on $A \times B$. If $(a,b) \in R$, then a is said to be related to b; while if $(a,b) \notin R$, then a is not related to b. If $(a,b) \in R$, we also write a R b; while if $(a,b) \notin R$, we write a R b.

Example

For sets $A = \{x, y, z\}$, and $B = \{0, 1, 2, 3\}$, $R = \{(x, 1), (x, 2), (y, 1), (z, 0), (z, 3)\}$ is a relation from A to B.

Exercise

Let $A = \left\{ \sqrt{2}, e, 3, \pi \right\}$ and $B = \left\{ 1, 2, 3, 4 \right\}$. An element $a \in A$ is said to be related to an element $b \in B$ if |a - b| < 1. Which elements of A are related to which elements of B?

Exercise

Let $\mathbb N$ be the set of natural numbers and $\mathbb N^{-1}$ denote the set of negative integers. A relation R from $\mathbb N$ to $\mathbb N^{-1}$ is defined by $a\ R\ b$ if $a+b=\mathbb N$. Give examples of pairs of elements that are related and some that $are\ not$.

Definition

A **relation** R **on a set** S is a relation from S to S. That is, R is a relation on a set S if R is a subset of $S \times S$.

- ▶ If a set A has n elements then there are 2^n subsets of A
- There are three key properties of relations defined next

Definition

Let *R* be a relation defined on a nonempty set *S*. Then *R* is:

- 1. **reflexive** if a R a for all $a \in S$; that is, if $a \in S$, then $(a, a) \in R$
- 2. **symmetric** if whenever a R b, then b R a for all $a, b \in S$; that is if $(a, b) \in R$ then $(b, a) \in R$
- 3. **transitive** if whenever a R b and b R c, then a R c for all $a, b, c \in S$; that is if $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$

- A relation R need not have any one or more of these properties
- A relation R defined on a set S is:
 - 1' **not reflexive** if $(x,x) \notin R$ for some $x \in S$
 - 2' **not symmetric** if $(x, y) \in R$ but $(y, x) \notin R$ for some pair (x, y) of distinct elements of S
 - 3' **not transitive** if $(x,y) \in R$ and $(y,z) \in R$ but $(x,z) \notin R$ for some $x,y,z \in S$

Relations and Functions – Equivalence Relations

- Relations that have all three properties, reflexive, symmetric and transitive, are equivalence relations
- ► The best known relation, the equals relation, is an equivalence relation

Definition

A relation R on a non-empty set is an equivalence relation if R is reflexive, symmetric and transitive

For an equivalence relation R defined on a set A there is a subset of A associated with each element of A that is of particular interest.

Definition

Let R be an equivalence relation on a set A. For $a \in A$, the equivalence class [a] is defined by

$$[a] = \{x \in A : x R a\}$$

Relations and Functions – Equivalence Relations

Exercise

Let $S = \{1, 2, 3, 4, 5, 6\}$. The relation

$$R = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (1,4), (2,3), (2,6), (3,2), (3,6), (4,1), (6,2), (6,3)\}$$

on S is an equivalence relation. Therefore, there is an an equivalence class associated with each element of S. Find the equivalence classes.

- We saw that in a relation from set A to set B an element of A may relate to some or all of the elements of B
- We will now consider the case when each element of A is related to exactly one element of B

Definition

Let A and B be nonempty sets. A **function** f from A to B is a relation from A to B that associates with each element of A a unique element of B. A function f from A to B is denoted by $f:A\to B$

Definition

Given a function $f:A\to B$ if $b\in B$ is the unique element assigned to $a\in A$ by f then we write b=f(a), and b is the **image** of a under f

Definition

If $f:A\to B$ is a function from a set A to B, then A is called the **domain** of f and B is the **codomain** of f. The **range** f(A) is the set of images of the elements of A, namely,

$$f(A) = \{ f(a) : a \in A \}$$

Definition

For a function f from a set A to a set B and a subset X of A, the image of X under f is the set

$$f(X) = \{ f(x) : x \in X \}$$

- ▶ For every subset X of A, $f(X) \subseteq B$
- ▶ If X = A then f(X) = f(A) is the range of f

Visualizing Functions It is often useful to visualize a function via a diagram

Exercise

Let $A = \{a, b, c, d, e\}$ and $B = \{x, y, z\}$ and $f = \{(a, x), (b, x), (c, z), (d, x), (e, z)\}$ be a function from A to B.

- (a) Determine the domain, codomain, and range of f.
- (b) Determine the image of d.
- (c) Is y an image?
- (d) Determine f(X) where $x = \{a, c, d\}$.
- (e) Give an example of a function g from B to A.

Exercise

Let $f: A \to B$ be a function. Prove that if $A_1, A_2 \subseteq A$, then

$$f(A_1 \cup A_2) = f(A_1) \cup f(A_2).$$

Exercise

For every $x \in \mathbb{R}$, let f(x) denote any real number such that (x, y) lies on the circle $x^2 + y^2 = 25$. Is f(x) a function from \mathbb{R} to \mathbb{R} ?

Common Functions

- ▶ **Identity Function** The function $f: A \rightarrow A$ defined by $f(a) = a, \forall a \in A$
- ▶ **Absolute Value Function** The function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = |x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

▶ **Ceiling Function** The function $f : \mathbb{R} \to \mathbb{Z}$ defined by $f(x) = \lceil x \rceil$

Common Functions

- ▶ Floor Function The function $f: \mathbb{R} \to \mathbb{Z}$ defined by $f(x) = \lfloor x \rfloor$ If $a \in \mathbb{R}^+$, $a \neq 1$, $b \in \mathbb{R}$, and $a^b = c$, then $\log_a c = b$ if and only if $a^b = c$
- **Exponential Function** The function $f: \mathbb{R} \to \mathbb{R}^+$ defined by $f(x) = 2^x$
- ▶ **Logarithmic Function** The function $g : \mathbb{R}^+ \to \mathbb{R}$ defined by $g(x) = \log_2 x$

Composition of Functions

Definition

Let A, B, and C be sets and suppose that $f: A \to B$ and $g: B \to C$ are two functions. The **composition** $g \circ f$ of f and g is the function from A to C defined by $(g \circ f)(a) = g(f(a))$ for $a \in A$.

Example

Let
$$A=\{1,2,3\}$$
, $B=\{a,b,c,d\}$ and $C=\{x,y,z\}$ and let $f:A\to B$ and $g:B\to C$ be functions where

$$f = \{(1,c), (2,b), (3,a)\}$$
 and $g = \{(a,y), (b,x), (c,x), (d,z)\}.$

Then

$$(g \circ f)(1) = g(f(1)) = g(c) = x.$$

Exercise

Let $f : \mathbb{R} \to \mathbb{R}$, and $g : \mathbb{R} \to \mathbb{R}$, defined as

$$f(x) = \sin x$$
 and $g(x) = x^2$.

Determine $(f \circ g)(x)$, and $(g \circ f)(x)$.

Often functions from a set *A* to a set *B* have one or both of the following properties

- each element of B is the image of at most one element of A
- 2. each element of B is the image of at least one element of A

Property #1 One-to-One Functions

Definition

For two nonempty sets A and B, a function $f:A\to B$ is said to be **one-to-one** if every two distinct elements of A have distinct images in B, that is if $a,b\in A$ and $a\neq b$, then $f(a)\neq f(b)$. This function is also known as an **injective function** or an **injection**.

Property #2 Onto Functions

Definition

Let A and B be two nonempty sets. A function $f:A\to B$ is called **onto** if every element of B is the image of some element of A. This function is also known as an **surjective function** or a **surjection**.

Exercise

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 5x - 3 for $x \in \mathbb{R}$. Show f(x) is one-to-one.

Exercise

Show the following are not one-to-one.

(a)
$$f : \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^2 + 1$, $x \in \mathbb{R}$

(b)
$$g : \mathbb{Z} \to \mathbb{Z}, g(n) = \lceil n \rceil, n \in \mathbb{Z}$$

(c)
$$h : \mathbb{R} \to \mathbb{R}, \ h(x) = x^2 - 3x + 1, \ x \in \mathbb{R}$$

Exercise

Determine whether the function $f:\mathbb{R}\to\mathbb{R}$ defined by

$$f(x) = x^2 - 2x + 5$$

dor $x \in \mathbb{R}$ is onto.

Exercise

A function $f: \mathbb{Z} \to \mathbb{Z}$ is defined by

$$f(n) = 2n$$
.

Determine (and explain) whether f is

- (a) one-to-one
- (b) onto

What if a function is both one-to-one and onto?

If a function f from a set A to a set B is both one-to-one and onto then every element of B is the image of at most (one-to-one) one element of A and the image of at least (onto) one element of A. In other words, every element of B is the image of exactly one element of A.

Definition

A function that is one-to-one and onto is called a **bijective** function, a **bijection**, or a **one-to-one correspondence**

Composition of Bijective Functions

Theorem

Let A, B, and C be nonempty sets and let $f : A \rightarrow B$ and $g : B \rightarrow C$ be two functions.

- (a) If f and g are one-to-one, then so is $g \circ f$
- (b) If f and g are onto, then so is $g \circ f$

Corollary

Let A, B, and C be nonempty sets and let $f: A \to B$ and $g: B \to C$ be two functions. If f and g are bijective, then so is $g \circ f$.

Inverse Functions

- Let the nonempty sets A and B be $A = \{a, b, c\}$ and $B = \{x, y, z\}$
- ▶ A bijective function $f: A \rightarrow B$ pairs off the elements of A with the elements of B
- ► So for example $f = \{(a, x), (b, y), (c, z)\}$

Definition

The **inverse function** or the **inverse** f^{-1} of f is found by replacing each ordered pair (r, s) with (s, r). The function $f^{-1}: B \to A$ is also bijective.

Theorem

Let A and B be nonempty sets. A function $f: A \to B$ has an inverse function $f^{-1}: B \to A$ if and only if f is bijective. Moreover if f is bijective so is f^{-1} .

Relations and Functions – Cardinalities of Sets

Sets Having the Same Cardinality

- We discussed cardinality, the number of elements in a set, when we covered set theory in chapter 2
- ► Consider sets $A = \{a, b, c\}$ and $B = \{x, y, z\}$ again each set has three elements so |A| = |B|
- And the bijective function $f = \{(a, x), (b, y), (c, z)\}$ pairs off the elements and motivate a definition for same cardinality

Definition

Two nonempty sets A and B (finite or infinite) are defined to have the same cardinality, written |A|=|B|, if there exists a bijective function from A to B

Relations and Functions – Cardinalities of Sets

Denumerable Sets

- ► The definition for same cardinality provides us with a definition for |A| = |B| when A and B are infinite.
- This leads us to an important class of infinite sets

Definition

A set *A* is called **denumerable** if $|A| = |\mathbb{N}|$.

In other words, set A is denumerable if it has the same number of elements as the set of positive in integers, or natural numbers. Put another way, set A is denumerable if its elements can be put in one-to-one correspondence with the elements of \mathbb{N} .

Relations and Functions – Cardinalities of Sets

Countable and Uncountable Sets

Definition

A set that is either finite or denumerable is called **countable**. A denumerable set is also called **countably finite**. A set that is not countable is called **uncountable**.

Theorem

Every set that contains an uncountable subset is itself uncountable.

Corollary

The set \mathbb{R} of real numbers is uncountable.

Corollary

The set \mathbb{C} of complex numbers is uncountable.

Relations and Functions - Cardinalities of Sets

Theorem

If A and B are disjoint denumerable sets, then $A \cup B$ is denumerable.

Theorem

The set of irrational numbers is uncountable.

Theorem

Every set has a smaller cardinality than its power set, that is, $|A| < |\mathcal{P}(A)|$ for every set A.

Corollary

There is no set of largest cardinality.

Relations and Functions – Key Results

- ▶ Let R be an equivalence relation on a nonempty set A and let a and b be elements of A. Then [a] = [b] if and only if a R b.
- Let R be an equivalence relation defined on a nonempty set A. If \mathcal{P} is the set of distinct equivalence classes of A resulting from R, then \mathcal{P} is a partition of A.
- Let R be an equivalence relation defined on a nonempty set A. If [a] = [b] are equivalence classes of A resulting from R, then either [a] = [b] or $[a] \cap [b] = \emptyset$.
- Let A,B and C be nonempty sets and $f: A \rightarrow B$ and $g: B \rightarrow C$ two functions. Then the following hold:

```
If f and g are one-to-one, then so is g \circ f.
If f and g are onto, then so is g \circ f.
If f and g are bijective, then so is g \circ f.
```

Relations and Functions – Key Results

- ▶ A function $f: A \to B$ has an inverse $f^{-1}: B \to A$ if and only if f is bijective; then f^{-1} is also bijective.
- ▶ If $f: A \to B$ is a bijective function, then $f^{-1} \circ f$ is the identity function on A and $f \circ f^{-1}$ is the identity function on B.
- ▶ The set \mathbb{Z} of integers is denumerable.
- ▶ The set \mathbb{Q} of rational numbers is denumerable.
- ▶ Every infinite subset of a denumerable set is denumerable
- Every set that contains an uncountable subset is itself uncountable
- ightharpoonup The set $\mathbb R$ of real numbers is uncountable
- ightharpoonup The set $\mathbb C$ of complex numbers is uncountable
- ▶ If A and B are disjoint denumerable sets, then $A \cup B$ is denumerable
- The set of irrational numbers is uncountable
- ▶ For every set A, $|A| < |\mathcal{P}(A)|$
- There is no set of largest cardinality