Recherche Opérationnelle I

Nadia Brauner

 ${\tt Nadia.Brauner@imag.fr}$

Dualité

Dualité

- 1 Illustration économique
- 2 Comment prouver l'optimalité ?
- Écrire le dual
- Propriétés

Dualité

Nouveau concept en Programmation Linéaire

Primal

- données A, b, c
- minimiser

Dual

- mêmes données A, b, c
- maximiser

- 1 Illustration économique
- 2 Comment prouver l'optimalité ?
- 3 Écrire le dual
- Propriétés

1 Illustration économique

- 2 Comment prouver l'optimalité ?
- 3 Écrire le dual
- 4 Propriétés

Problème primal (P)

Une famille utilise 6 produits alimentaires comme source de vitamine A et C

	produits (unités/kg)						demande
	1	2	3	4	5	6	(unités)
vitamine A	1	0	2	2	1	2	9
vitamine C	0	1	3	1	3	2	19
Prix par kg	35	30	60	50	27	22	

But : minimiser le coût total

Modélisation

7

Problème dual (\mathcal{D}) associé à (\mathcal{P})

Un producteur de cachets de vitamine synthétique veut convaincre la famille d'acheter ses vitamines.

Quel prix de vente w_A et w_C ?

- pour être compétitif
- et maximiser le profit

Modélisation

Modélisation matricielle

Problème primal

famille : acheter des produits alimentaires à coût minimum et satisfaire la demande en vitamine A et C

Modélisation sous forme matricielle

Problème dual

producteur de vitamines synthétiques : être compétitif vis-à-vis des produits alimentaires comme source de vitamine et maximiser le profit de vente

Modélisation sous forme matricielle

Généralisation de l'illustration économique

	ressource i	demande j
produit <i>j</i>	a _{ij}	Cj
coût i	b _i	

Problème primal (demandeur de produit) : quelle quantité x_i de ressource i acheter pour satisfaire la demande à coût minimum ?

$$\min \sum_{i} b_i x_i$$
 s.c. $\sum_{i} a_{ij} x_i \ge c_j$ $\forall j$

Problème dual (vendeur de produit) : à quel prix proposer les produits pour maximiser le profit tout en restant compétitif ?

$$\max \sum_{i} c_{j} w_{j}$$
 s.c. $\sum_{i} a_{ij} w_{j} \leq b_{i} \quad \forall i$

1 Illustration économique

- 2 Comment prouver l'optimalité ?
- 3 Écrire le dual
- 4 Propriétés

Comment prouver l'optimalité ?

Objectif : démontrer l'optimalité d'une solution

$$\begin{array}{rcl} \max z = x_1 + x_2 \\ 4x_1 & + & 5x_2 & \leq & 20 \\ 2x_1 & + & x_2 & \leq & 6 \\ & & x_2 & \leq & 2 \\ x_1, x_2 \geq 0 \end{array}$$

Idée : trouver une combinaison valide des contraintes permettant de borner terme à terme la fonction objectif

Comment prouver l'optimalité ?

Finalement,

min
$$20y_1 + 6y_2 + 2y_3$$
 (borne sup minimale)
s.c. (borner terme à terme l'objectif)
 $4y_1 + 2y_2 \ge 1$
 $5y_1 + y_2 + y_3 \ge 1$

- Écrire le dual

Forme canonique de dualité

Donnée A, b, c

$$(\mathcal{P}) \begin{cases} \min z = cx \\ s.c. & Ax \ge b \\ x \ge 0 \end{cases}$$

$$(\mathcal{D}) \quad \begin{cases} & \text{max} \quad v = wb \\ & s.c. \quad wA \le c \\ & w \ge 0 \end{cases}$$

Tableau des signes

Illustration économique

min	max		
primal	dual		
dual	primal		
variable ≥ 0	contrainte \leq		
variable ≶ 0	contrainte =		
variable ≤ 0	contrainte \geq		
contrainte ≤	variable ≤ 0		
contrainte =	variable ≶ 0		
contrainte \geq	variable ≥ 0		

L'écriture du Dual est automatique :

- les variables
- la fonction objectif
- les contraintes

Écrire le dual

Écrire le programme dual max
$$z = 4x_1 + 5x_2 + 2x_3$$

$$2x_1 + 4x_2 = 3$$

$$2x_3 \ge 2$$

$$3x_1 + x_2 + x_3 \le 2$$

$$x_2 + x_3 \le 1$$

$$x_1 \ge 0 \quad x_2 \le 0 \quad x_3 \ge 0$$

1 Illustration économique

Comment prouver l'optimalité î

- 3 Écrire le dual
- Propriétés

Propriétés

Propriété

Le dual du dual est équivalent au primal

vérifier sur un exemple

$$\max z = 2x_1 + 3x_2 + 4x_3$$

$$2x_1 + x_2 \leq 3$$

$$x_3 \geq 2$$

$$3x_1 + x_2 + x_3 \leq 2$$

$$x_2 \leq 1$$

$$x_1, x_2 \geq 0, \quad x_3 \leq 0$$

Propriétés

$$(\mathcal{P}) \quad \left\{ \begin{array}{ccc} \min & z = cx \\ s.c. & Ax \geq b \\ & x \geq 0 \end{array} \right. \quad (\mathcal{D}) \quad \left\{ \begin{array}{ccc} \max & v = wb \\ s.c. & wA \leq c \\ & w \geq 0 \end{array} \right.$$

Théorème de dualité faible

Pour chaque paire de solutions admissibles x de (\mathcal{P}) et w de (\mathcal{D})

$$z = cx \ge wb = v$$

Conséquence : que se passe-t-il si l'un est non borné ?

Et l'optimalité ?

Certificat d'optimalité

Si

$$z = cx = wb = v$$

pour des solutions admissibles x de (\mathcal{P}) et w de (\mathcal{D}) , alors x et w sont optimales

Théorème de dualité forte

Si (\mathcal{P}) a des solutions et (\mathcal{D}) a des solutions, alors

$$cx^* = w^*b$$

Pour l'exemple des vitamines

- écrire le primal avec les variables d'écart (s_i)
- écrire le dual avec les variables d'écart (t_i)
- trouver une solution du primal optimale
- trouver une solution du dual optimale
- écrire les paires de variables (s_i, w_i) et (x_j, t_j)
- que remarquez-vous ?

Forme canonique de dualité

$$(\mathcal{P}) \left\{ \begin{array}{lll} \min & z = \sum_{j=1}^{m} c_j x_j \\ s.c. & \sum_{j=1}^{m} a_{ij} x_j \geq b_i & \forall i \\ & x_j \geq 0 & \forall j \end{array} \right. \left\{ \begin{array}{lll} \max & v = \sum_{i=1}^{n} w_i b_i \\ s.c. & \sum_{i=1}^{n} a_{ij} w_i \leq c_j & \forall j \\ & w_i \geq 0 & \forall i \end{array} \right.$$

Les solutions réalisables x^* de (\mathcal{P}) et w^* de (\mathcal{D}) sont **optimales** si et seulement si

$$(1) \left(\sum_{i} a_{ij} x_i^* - b_i \right) w_i^* = 0 \quad \forall i$$

et

(2)
$$(c_j - \sum_i a_{ij} w_i^*) x_i^* = 0 \quad \forall j$$

Pour mieux comprendre

(1)
$$\iff$$
 si $w_i^* > 0$ alors $\sum_j a_{ij} x_j^* = b_i$
 \iff si $\sum_i a_{ij} x_i^* > b_i$ alors $w_i^* = 0$

(2)
$$\iff$$
 si $x_j^* > 0$ alors $\sum_i a_{ij} w_i^* = c_j$
 \iff si $\sum_i a_{ij} w_i^* < c_i$ alors $x_i^* = 0$

Forme canonique de dualité

$$(\mathcal{P}) \left\{ \begin{array}{lll} \min & z = \sum_{j=1}^m c_j x_j \\ s.c. & \sum_{j=1}^m a_{ij} x_j \geq b_i & \forall i \\ & x_j \geq 0 & \forall j \end{array} \right. \left\{ \begin{array}{lll} \max & v = \sum_{i=1}^n w_i b_i \\ s.c. & \sum_{i=1}^n a_{ij} w_i \leq c_j & \forall j \\ & w_i \geq 0 & \forall i \end{array} \right.$$

Les solutions réalisables x^* du primal et w^* du dual sont optimales si et seulement si

$$(1) \left(\sum_{j} a_{ij} x_j^* - b_i \right) w_i^* = 0 \quad \forall i$$
 et

(2)
$$(c_j - \sum_i a_{ij} w_i^*) x_j^* = 0 \quad \forall j$$

Autrement dit...

Pour x^* optimale de (\mathcal{P}) et w^* optimale de (\mathcal{D}) , une contrainte de (\mathcal{P}) est serrée à égalité OU la variable associée à cette contrainte est nulle dans w^* . Idem dans l'autre sens

Intérêt Si on connaît x^* optimal de (\mathcal{P}) , alors on peut trouver y^* en appliquant la propriété des écarts complémentaires (et ainsi prouver l'optimalité de x^*)

essayer sur un exemple $\max z = x_1 + x_2$

$$4x_1 + 5x_2 \leq 20$$

$$2x_1 + x_2 \leq 6$$
$$x_2 \leq 2$$

$$x_1, x_2 \ge 0$$

avec
$$x_1 = 2$$
 et $x_2 = 2$

Petite philosophie de la dualité

Illustration économique

À quoi servent les trois théorèmes de dualité

- Dualité faible : pour faire la preuve d'optimalité
- Écarts complémentaires : pour trouver une solution optimale du dual connaissant une solution optimale du primal
- Dualité forte : garantit qu'une preuve d'optimalité (utilisant la dualité) est possible