Lecture 9:

MORPHOLOGICAL IMAGE PROCESSING

Morphological Image Processing

- Binary dilation and erosion
- Set-theoretic interpretation
- Opening, closing, morphological edge detectors

Gray Level Thresholding

Binary Image

How do we fill "missing pixels"?

Original image

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

After dilation

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Counting Coins

Image after segmentation

Image after segmentation and morphological processing

Mathematical Morphology

- Ånh là một hàm hai chiều, f(x, y), của các biến tọa độ rời rạc (x, y).
- Một định nghĩa thay thế có thể dựa trên khái niệm rằng ảnh bao gồm một tập hợp các tọa độ rời rạc.

Morphology

A binary image containing two object sets A and B

- $B = \{(0,0), (0,1), (1,0)\}$
- $A = \{(5,0), (3,1), (4,1), (5,1), (3,2), (4,2), (5,2)\}$

Basic Set Theory

Logic Operations

p	q	p AND q (also $p \cdot q$)	$p \ \mathbf{OR} \ q \ (\mathbf{also} \ p \ + \ q)$	NOT (p) (also \bar{p})
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	0

FIGURE 9.3 Some logic operations between binary images. Black represents binary 1s and white binary 0s in this example.

Some Basic Definitions

- Let A and B be sets with components a=(a1,a2) and b=(b1,b2), respectively.
- The *translation* of A by x=(x1,x2) is A + x = {c | c = a + x, for a ∈ A}

$$A^r = \{x \mid x = -a \text{ for } a \in A\}$$

■ The *complement* of A is

$$A^{c} = \{x \mid x \notin A\}$$

The union of A and B is

$$A \cup B = \{x \mid x \in A \text{ or } x \in B \}$$

The intersection of A and B is

$$A \cap B = \{x \mid x \in A \text{ and } x \in B \}$$

Some Basic Definitions

The difference of A and B is.

$$A - B = A \cap B^c = \{x \mid x \in A \text{ and } x \notin B\}$$

Binary image processing

- Representation of individual pixels as 0 or 1
 - Object = 1 (white)
 - background = 0 (black)
- Processing by logical functions is fast and simple

Structuring Element (SE)

- SE có thể thay đổi kích thước
- Giá trị của các phần tử là 0, 1

Examples of SE

Some Basic Definitions

Dilation – giãn/mở rộng

$$A \oplus B = \{x \mid (B + x) \cap A \neq \emptyset\}$$

Dilation expands a region.

$$g[x,y] = OR[W\{f[x,y]\}] := dilate(f,W)$$

Original (701x781)

dilation with 3x3 structuring element

dilation with 7x7 structuring element

- Expands the size of 1-valued objects
- Smoothes object boundaries
- Closes holes and gaps

Dilation expands a region

$$g[x,y] = OR[W\{f[x,y]\}] := dilate(f,W)$$

Dilation Example

Dilation Example

Original Image

Processed Image With Dilated Pixels

Structuring Element

Dilation

Dilation

Example: Dilation

• Dilation is an important morphological

operation

Applied Structuring Element:

1	1	1
1	1	1
1	1	1

Dilation Example 1

Original image

Dilation by 3*3 square structuring element

Dilation by 5*5 square structuring element

Application of dilation: bridging gaps in images

Original image

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

After dilation

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

0	1	0
1	1	1
0	1	0

Structuring element

What Is Dilation For?

Dilation can repair breaks

Dilation can repair intrusions

Some Basic Definitions

Erosion – co/thu hep

$$A \Theta B = \{x \mid (B + x) \subseteq A\}$$

Erosion shrinks a region.

$$g[x,y] = AND[\hat{W}\{f[x,y]\}] := erode(f,W)$$

Original (701x781)

erosion with 3x3 structuring element

erosion with 7x7 structuring element

- Shrinks the size of 1-valued objects
- Smoothes object boundaries
- Removes peninsulas, fingers, and small objects

Erosion (shrinking foreground)

$$g[x,y] = AND[\hat{W}\{f[x,y]\}] := erode(f,W)$$

Structuring Element

Processed Image

Structuring Element

Erosion

Erosion

A first Example: Erosion

• Erosion is an important morphological

operation

Applied Structuring Element:

1	1	1
1	1	1
1	1	1

Original image

Erosion by 3*3 square structuring element

Erosion by 5*5 square structuring element

Original binary image Circles (792x892)

Erosion by 30x30 structuring element

Erosion by 70x70 structuring element

Erosion by 96x96 structuring element

Application of erosion: loại bỏ các chi tiết không liên quan

Squares of size 1,3,5,7,9,15 pels

Erode with 13x13 square

Dilation and erosion are duals

- Extract boundary of a set A:
 - First erode A (make A smaller)

$$\beta(A) = A - (A \ominus B)$$

Application: boundary extraction

Some Basic Definitions

Opening is erosion followed by dilation:

$$A \circ B = (A \Theta B) \oplus B$$

- Opening smoothes regions, removes spurs, breaks narrow lines.
- Closing is dilation followed by erosion:

$$A \bullet B = (A \oplus B) \Theta B$$

Closing fills narrow gaps and holes in a region.

Some Basic Definitions

a. Original

b. Erosion

c. Dilation

FIGURE 25-10

Morphological operations. Four basic morphological operations are used in the processing of binary images: erosion, dilation, opening, and closing. Figure (a) shows an example binary image. Figures (b) to (e) show the result of applying these operations to the image in (a).

d. Opening

e. Closing

FIGURE 9.11

- (a) Noisy image.
- (c) Eroded image.
- (d) Opening of A.
- (d) Dilation of the opening.
- (e) Closing of the opening. (Original image for this example courtesy of the National Institute of Standards and Technology.)

Boundary of a set, A, can be found by A - (A ⊕ B)

a b

FIGURE 9.14
(a) A simple binary image, with 1's represented in white. (b) Result of using Eq. (9.5-1) with the structuring element in Fig. 9.13(b).

B

Summary

TABLE 9.2 Summary of morphological operations and their properties.

Operation	Equation	Comments (The Roman numerals refer to the structuring elements shown in Fig. 9.26).
Translation	$(A)_z = \{w \mid w = a + z, \text{ for } a \in A\}$	Translates the origin of <i>A</i> to point <i>z</i> .
Reflection	$\hat{B} = \{w \mid w = -b, \text{ for } b \in B\}$	Reflects all elements of <i>B</i> about the origin of this set.
Complement	$A^c = \{w w \notin A\}$	Set of points not in A.
Difference	$egin{aligned} A - B &= \{w w \in A, w otin B \} \ &= A \cap B^c \end{aligned}$	Set of points that belong to <i>A</i> but not to <i>B</i> .
Dilation	$A \oplus B = \{z \mid (\hat{B})_z \cap A \neq \emptyset\}$	"Expands" the boundary of A . (I)
Erosion	$A\ominus B=\big\{z (B)_z\subseteq A\big\}$	"Contracts" the boundary of A . (I)
Opening	$A\circ B=(A\ominus B)\oplus B$	Smoothes contours, breaks narrow isthmuses, and eliminates small islands and sharp peaks. (I)
Closing	$A ullet B = (A \oplus B) \ominus B$	Smoothes contours, fuses narrow breaks and long thin gulfs, and eliminates small holes. (I)