

Given, 75 reliable 2. P' 4B - taxi appears Islae 1B - tapi is blue AG - tapi appears green TG - tapi is green P(AB | TB) = 0.75 P(AG | TG) = 0.25Aleo, Given: P(74) = 0.9 P(7B)=0.9 P(TB|AB) = P(AB|TB)P(AB|TB) + P(AB|TG)P(TG)= 0.75 × 0-1 0.75×0.++0.25×0.9 = 0-25 of P(14/ AB) = 1-0.25 -: The car is most-likely green.

3.9	Deather (D) Happy (1)		
3.	Deln's		
	Good 1/3 3/5		
	3/5		
	Study (s) Happy (N)		
	Fail (s) Happy (M) Happy (N)		
	Pass 31-1		
	13-1 1/5		
	Neighbor(N) Happy (V)		
/102.10	Happy (N)		
	oul- 1,		
	1/3 3/5-		
	P(Y/Good, Pars, out)		
	= P(Good/Y) P(Pars/Y) P(out/Y) P(Y)		
	$= h \times 1 \times$		
	$= \frac{1}{3} \times 1 \times 1 \times \frac{3}{8}$ $= 0.0416$		
	- 0,07/8		
	P(N/Good, Pars, out-)		
	= P (Good/N) P(Pars/N) P(out/N) P(N)		
	$= \frac{3}{5} \times \frac{1}{5} \times \frac{3}{5} \times \frac{5}{8}$		
	= 9/ = 0.045		
	Jim is not happy based on abone results.		

<i>5</i> 7	P(Y= / Good, Pass, out)	3 9) Dealter (10)
	= P (Good, Pars, o	ut (Y) P(Y)
		od, Pars, out)
	(N) r squt = (M) /3×13/8	Specky (3)
	7,	107 - 1 Tall - 1 25"
	3/3 = 1	Pass
	= 1	
	Happy (N) Happy (N)	Deighbor (10)
	P(N/Good, Go Pars, out)	= 1-P(Y/(100d, Pass, out)
Consider twee spins	15 3/5	= 1-1-100
and the state of t		= 0 + P(+8; (6) P(16)

5.
$$p(xi|y=1) = o_{ii}^{xi} (1-o_{ii})^{1-2i}$$
 $p(x=1|x) = p(x|y=1) p(y=1)$
 $p(x) = p(x|y=1) p(y=1) + p(x|y=0) p(y=0)$
 $p(x|y=1) p(y=1) + \sum_{i=1}^{n} p(x_i|y=0) p(y=0)$
 $p(x|y=1) p(y=1) + \sum_{i=1}^{n} p(x_i|y=0) p(x_i|y=1)$
 $p(x|y=1) - \sum_{i=1}^{n} p(x_i|y=0) p(x_i|y=1) p(x_i|y=1)$
 $p(x_i|y=1) - \sum_{i=1}^{n} p(x_i|y=0) p(x_i|y=0) p(x_i|y=1)$
 $p(x_i|y=1) - \sum_{i=1}^{n} p(x_i|y=0) p(x_i|y=0) p(x_i|y=0)$
 $p(x_i|y=1) - \sum_{i=1}^{n} p(x_i|y=0) p(x_i|y=0) p(x_i|y=0) p(x_i|y=0)$
 $p(x_i|y=0) - \sum_{i=1}^{n} p(x_i|y=0) p(x_i|y=0) p(x_i|y=0) p(x_i|y=0)$
 $p(x_i|y=0) - \sum_{i=1}^{n} p(x_i|y=0) p(x_i|y=0) p(x_i|y=0) p(x_i|y=0)$
 $p(x_i|y=0) - \sum_{i=1}^{n} p(x_i|y=0) p(x_i|y$

$$= \underbrace{\sum_{x} \left(\ln o_{ib} - \ln o_{ii} \right) + \left(1 - x_{i} \right) \left(\ln \left(1 + o_{ie} \right) - \ln \left(1 - o_{ii} \right) \right)}_{-\ln \left(1 - o_{ii} \right)}$$

$$= \underbrace{\sum_{x} \left(\ln o_{ib} - \ln o_{ii} \right) + \left(\ln o_{ii} \left(1 - o_{ii} \right) \right)}_{-\ln \left(1 - o_{ii} \right)}$$

$$= \underbrace{\sum_{x} \left(\ln o_{ii} \left(1 - o_{ii} \right) + \sum_{x} \left(\ln o_{ii} \left(1 - o_{ii} \right) \right) + \sum_{x} \left(\ln o_{ii} \left(1 - o_{ii} \right) \right)}_{-\ln \left(1 - o_{ii} \right)}$$

$$= \underbrace{\sum_{x} \left(\ln o_{ii} - \ln o_{ii} \right) + \sum_{x} \left(\ln o_{ii} \left(1 - o_{ii} \right) \right)}_{-\ln \left(1 - o_{ii} \right)}$$

$$= \underbrace{\sum_{x} \left(\ln o_{ii} - \ln o_{ii} \right) + \sum_{x} \left(\ln o_{ii} \left(1 - o_{ii} \right) \right)}_{-\ln \left(1 - o_{ii} \right)}$$

$$= \underbrace{\sum_{x} \left(\ln o_{ii} - \ln o_{ii} \right) + \sum_{x} \left(\ln o_{ii} \left(1 - o_{ii} \right) \right)}_{-\ln \left(1 - o_{ii} \right)}$$

$$= \underbrace{\sum_{x} \left(\ln o_{ii} - \ln o_{ii} \right) + \sum_{x} \left(\ln o_{ii} \left(1 - o_{ii} \right) \right)}_{-\ln \left(1 - o_{ii} \right)}$$

$$= \underbrace{\sum_{x} \left(\ln o_{ii} - \ln o_{ii} \right) + \sum_{x} \left(\ln o_{ii} \left(1 - o_{ii} \right) \right)}_{-\ln \left(1 - o_{ii} \right)}$$

$$= \underbrace{\sum_{x} \left(\ln o_{ii} - \ln o_{ii} \right) + \sum_{x} \left(\ln o_{ii} \left(1 - o_{ii} \right) \right)}_{-\ln \left(1 - o_{ii} \right)}$$

$$= \underbrace{\sum_{x} \left(\ln o_{ii} - \ln o_{ii} \right) + \sum_{x} \left(\ln o_{ii} \left(1 - o_{ii} \right) \right)}_{-\ln \left(1 - o_{ii} \right)}$$

$$= \underbrace{\sum_{x} \left(\ln o_{ii} - \ln o_{ii} \right) + \sum_{x} \left(\ln o_{ii} \left(1 - o_{ii} \right) \right)}_{-\ln \left(1 - o_{ii} \right)}$$

$$= \underbrace{\sum_{x} \left(\ln o_{ii} - \ln o_{ii} \right) + \sum_{x} \left(\ln o_{ii} \left(1 - o_{ii} \right) \right)}_{-\ln \left(1 - o_{ii} \right)}$$

$$= \underbrace{\sum_{x} \left(\ln o_{ii} - \ln o_{ii} \right) + \sum_{x} \left(\ln o_{ii} \left(1 - o_{ii} \right) \right)}_{-\ln \left(1 - o_{ii} \right)}$$

$$= \underbrace{\sum_{x} \left(\ln o_{ii} - \ln o_{ii} \right) + \sum_{x} \left(\ln o_{ii} \left(1 - o_{ii} \right) \right)}_{-\ln \left(1 - o_{ii} \right)}$$

$$= \underbrace{\sum_{x} \left(\ln o_{ii} - \ln o_{ii} \right) + \sum_{x} \left(\ln o_{ii} \left(1 - o_{ii} \right) \right)}_{-\ln \left(1 - o_{ii} \right)}$$

$$= \underbrace{\sum_{x} \left(\ln o_{ii} - \ln o_{ii} \right) + \sum_{x} \left(\ln o_{ii} - \ln o_{ii} \right)}_{-\ln \left(1 - o_{ii} \right)}$$

$$= \underbrace{\sum_{x} \left(\ln o_{ii} - \ln o_{ii} \right) + \sum_{x} \left(\ln o_{ii} - \ln o_{ii} \right)}_{-\ln \left(1 - o_{ii} \right)}$$

$$= \underbrace{\sum_{x} \left(\ln o_{ii} - \ln o_{ii} \right) + \sum_{x} \left(\ln o_{ii} - \ln o_{ii} \right)}_{-\ln \left(1 - o_{ii} \right)}$$

$$= \underbrace{\sum_{x} \left(\ln o_{ii} - \ln o_{ii} \right) + \sum_{x} \left(\ln o_{ii} - \ln o_{ii} \right)}_{-\ln \left(1 - o_{ii} \right)}_{-$$

$$P(Y=1/x) = \frac{1}{1 + \exp(-\ln 1 - \delta)} + \frac{1}{2} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{jo}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{ij}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{ij}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{ij}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{ij}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{ij}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{ij}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{ij}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{ij}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{ij}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{ij}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{ij}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{ij}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{ij}^{T}) \times i \right)$$

$$+ \frac{1}{3} \left((O_{ij}^{T} - O_{ij}^{T}) \times i$$