# DS112 - Unsupervised Models - DBSCAN (Density-Based Spatial Clustering of Applications with Noise)



By: eng. Esraa Madhi

## What is DBSCAN?

https://youtu.be/sJQHz97sCZ0

https://youtu.be/sJQHz97sCZ0

DBSCAN is a density-based clustering algorithm that finds clusters by grouping data points that are closely packed together, based on a specified distance and

**density threshold**. DBSCAN is particularly useful for identifying clusters of defined shapes and for detecting noise in the data.

# **How DBSCAN works?**





#### In Steps:

- 1. For each unvisited data point, determine its neighborhood based on a specified distance threshold (eps).
- 2. If the number of neighbors is greater than or equal to a specified density threshold (min\_samples), create a new cluster and add the data point and its neighbors to the cluster.
- 3. Expand the cluster by recursively checking the neighbors' neighbors, following the same density criteria.
- 4. Repeat steps 1 to 3 for all unvisited data points.

The algorithm works by computing the distance between every point and all other points. We then place the points into one of three categories:

• **Core point:** A point with at least *min\_samples* points whose distance with respect to the point is below the threshold defined by epsilon.

- Border point: A point that isn't in close proximity to at least *min\_samples* points but is close enough to one or more core point. Border points are included in the cluster of the closest core point.
- **Noise point:** Points that aren't close enough to core points to be considered border points. Noise points are ignored. That is to say, they aren't part of any cluster.



Example:

#### \*\*\*\*\*\* Minpts = 3, Eps = 1.5, Objective function = Euclidean distance \*\*\*\*\*\* C Ε dist(A,B) = 0.71dist(C,A) = 5.66dist(E,A) = 4.24dist(A,C) = 5.66dist(C,B) = 4.95dist(E,B) = 3.54dist(A,D) = 3.61dist(C,D) = 2.24dist(E,C) = 1.41dist(A,E) = 4.24dist(C,E) = 1.41dist(E,D) = 1.00dist(A,F) = 3.20dist(C,F) = 2.50dist(E,F) = 1.12A is a noise point C is a border point E is a core point В dist(B,A) = 0.71dist(D,A) = 3.61dist(F,A) = 3.20dist(B,C) = 4.95dist(D,B) = 2.92dist(F,B) = 2.50dist(B,D) = 2.92dist(D,C) = 2.24dist(F,C) = 2.50dist(B,E) = 3.54dist(D,E) = 1.00dist(F,D) = 0.50dist(B,F) = 2.50dist(D,F) = 0.50dist(F,E) = 1.12

D is a core point

F is a core point

Demo: https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

#### The key parameters for DBSCAN are:

B is a noise point

- **eps:** The maximum distance between two data points to be considered neighbors.
- min\_samples: The minimum number of data points required to form a dense region (cluster).

### How to choose Eps, min\_samples parameters?

There is no automatic way to determine the **eps** & **min\_samples** value for DBSCAN. They are crucial parameters and **their values depend heavily on the dataset.** 

#### Minimum Samples ("MinPts"):

Here are a few rules of thumb for selecting the MinPts value:

- The larger the data set, the larger the value of MinPts should be
- If the data set is noisier, choose a larger value of MinPts

 Generally, MinPts should be greater than or equal to the dimensionality of the data set

#### Epsilon (ε)

After you select your MinPts value, you can move on to determining  $\epsilon$ . One technique to automatically determine the optimal  $\epsilon$  value is described in this <u>paper</u>. This technique calculates the average distance between each point and its k nearest neighbors, where k = the MinPts value you selected. The average k-distances are then plotted in ascending order on a k-distance graph. You'll find the optimal value for  $\epsilon$  at the point of maximum curvature (i.e. where the graph has the greatest slope).



Points (sample) sorted by distance

#### **Pros:**

• It can find clusters of defined shapes, unlike K-means, which tends to work best with spherical and equally sized clusters.



- It can identify noise points, which can be useful for detecting outliers or anomalies.
- It does not require specifying the number of clusters in advance.

#### Cons:

- It is sensitive to the choice of parameters (eps and min\_samples). Selecting appropriate values for these parameters can be challenging and may require domain knowledge or trial and error.
- It may not perform well with clusters of varying densities or with highdimensional data.
- The algorithm's performance may degrade as the size of the dataset increases.

# **Resources:**

• https://github.com/christianversloot/machine-learningarticles/blob/main/performing-dbscan-clustering-with-python-and-scikitlearn.md