Introdução a NLP e IR Morphology and Finite State Transducers

Alexandre Rademaker¹

FGV/EMAp

August 10, 2022

¹Olga Zamaraeva, University of Washington

Morphology and Phonology

- Morphology is the study of decomposing words
 - Kim sleep-s.
 - Kim is sleep-ing.
- Phonology is the study of sound realization based on environment
- Morphology and Phonology are complex fields
- For our purposes, we will look at their simplified versions (mostly just Morphology)
- ...in the space of regular languages and FSM

Morphology

- Lexicon (stems)
- affixes:
 - prefix un-cover
 - suffix cover-ed
 - ▶ infix vinco (Latin, "I win", basic root "vic")
 - circumfix ge-berg-te (Dutch, "mountain range", from "berg", mountain)
- ► Templatic morphology
- Isolating languages
- ► Fusion
- Agglutinating

Morphological classes

Morphological Class	Regularly Inflected Verbs				
stem	walk	merge	try	map	
-s form	walks	merges	tries	maps	
-ing participle	walking	merging	trying	mapping	
Past form or -ed participle	walked	merged	tried	mapped	

Morphological Class	Irregularly Inflected Verbs			
stem	eat	catch	cut	
-s form	eats	catches	cuts	
-ing participle	eating	catching	cutting	
preterite	ate	caught	cut	
past participle	eaten	caught	cut	

Morphologically rich languages: Agglutination

Turkish	English
muvaffak	successful
muvaffak-iyet	success
muvaffak-iyet-siz	unsuccessful (without success)
muvaffak-iyet-siz-les	to become unsuccessful
muvaffak-iyet-siz-les-tir	to make one unsuccessful
muvaffak-iyet-siz-les-tiri-ci	maker of unsuccessful ones
muvaffak-iyet-siz-les-tiri-ci-les	to become a maker of unsuccessful ones
muvaffak-iyet-siz-les-tiri-ci-les-tir	to make one a maker of unsuccessful ones

muvaffakiyetsizlestiricilestiriveremeyebileceklerimizdenmissinizcesine

like you would be from those we can not easily make a maker of unsuccessful ones

https://www.rabiaergin.com/turkish-morphology.html

Morphologically rich languages: Fusion

Russian	English
zl o	evil (noun:neut, nom, sg)
zla	evil (noun:neut, gen, sg)
zl oj	evil (adj., masc, nom, sg)
zlaja	evil (adj., fem, nom, sg)
zl ogo	evil (adj., masc, gen, sg)
zlost	anger, malevolence (noun:fem,nom,sg)
zlost i	anger, malevolence (noun:fem,gen,sg)
zlost n-ogo	evil,malignant (adj, masc, gen, sg)
zlostn ost	evil, malignancy (noun:fem, nom, sg)
zlostnosti	evil, malignancy (noun:fem, gen, sg)

Fusion vs. Agglutination

Fusion:

- one affix can combine several features (e.g. Case, Number, Gender)
- affixes tend to fuse with each other and with the base, forming a new base
- once the affix fuses, it "no longer means what it used to"
- common in Indo-European languages

Agglutination

- one affix typically "means" one feature
- affixes maintain their "meaning" in long words
- common in Turkic languages

Derivational morphology

- e.g., un-, re-, anti-, -ism, -ist etc
- broad range of semantic possibilities, may change part of speech
- indefinite combinations
 e.g., antiantidisestablishmentarianism
 anti-anti-dis-establish-ment-arian-ism
- ▶ generally semi-productive: e.g., escapee, textee, ?dropee, ?snoree, *cricketee (* and ?)
- zero-derivation: e.g. tango, waltz

Internal structure and ambiguity

Morpheme ambiguity stems and affixes may be individually ambiguous: e.g. dog (noun or verb), +s (plural or 3persg-verb)

Structural ambiguity: e.g., shorts or short -s unionised could be union -ise -ed or un- ion -ise -ed

Bracketing: un- ion -ise -ed

- ▶ un- ion is not a possible form, so not ((un- ion) -ise) -ed
- un- is ambiguous:
 - with verbs: means 'reversal' (e.g., untie)
 - with adjectives: means 'not' (e.g., unwise, unsurprised)
- ▶ therefore (un- ((ion -ise) -ed))

Using morphological processing in NLP

- compiling a full-form lexicon
- recognizing and normalizing mini-formal languages (e.g. dates)
- stemming for IR (not linguistic stem)
- ▶ *lemmatization* (often inflections only): finding stems and affixes as a precursor to parsing. *morphosyntax*: interaction between morphology and syntax

Spelling rules

- English morphology is essentially concatenative
- ▶ irregular morphology inflectional forms have to be listed
- regular phonological and spelling changes associated with affixation, e.g.
 - ightharpoonup -s is pronounced differently with stem ending in s, x or z
 - spelling reflects this with the addition of an e (boxes etc)

morphophonology

 in English, description is independent of particular stems/affixes

Lexical requirements for morphological processing

affixes, plus the associated information conveyed by the affix

```
ed PAST_VERB
ed PSP_VERB
s PLURAL_NOUN
```

 irregular forms, with associated information similar to that for affixes

```
began PAST_VERB begin begun PSP_VERB begin
```

stems with syntactic categories (plus more)

Morphological parsing

- Accept/reject strings consisting of morphemes
 - E.g. for spell-checking
 - What about just encoding the lexicon as a list of words?
- Map strings to bundles/sequences of linguistic features
- Morphological analysis for research support
 - A parser as a hypothesis
 - Build a parser based on your current understanding of what the language does
 - Then run it over a corpus of words, see how much it actually parsed and where and why it broke

J&M text, Fig 3.12

FSA for morphological parsing

- Create FSAs for classes of word stems (word lists).
- Create FSA for affixes using word classes as stand-ins for the stem word lists.
- Concatenate FSAs for stems with FSAs for affixes.

Finite State Transducers

Analyzing (parsing) a word morphologically:

cat is cat
$$[+N, +SG]$$
,

cats is cat [+N, +PL]

FST and FSA

- ► FSA define regular expressions
- ► FST define **regular relations**
- FST use two alphabet sets
- ▶ The **transition** function relates input to states
- the output function relates input to output

Visualizing FST

J&M text, Fig 3.12

upper and lower tapes

Regular relations

- Regular language: a set of strings
- ▶ Regular relation: a set of **pairs** of strings:
 - ightharpoonup E.g., Regular relation = {a:1, b:2, c:2}
 - ▶ Input $\Sigma = \{a,b,c\}$ Output $=\{1, 2\}$

FST:

FST conventions

Inversion

- Inversion of an FST switches input and output labels
- Thus we can turn a parser into a generator
- Parsing:
 - ► Input: cat
 - Output: cat+N+SG
- ► Generating:
 - ► Input: cat+N+PL
 - Output: cats

Composition

- example:
 - ightharpoonup T1 = {a:1}
 - ightharpoonup T2 = {1:one}
 - ightharpoonup T1· T2 = {a:one}
 - ► T2(T1(a)) =one
- Note that order matters: $T1(T2(a)) \neq one$
- ► Take a minute: what is T1(T2(a))?
- Composition is used for complex morphological analysis (e.g. semitic languages)

Morphological parsing with FST

- ► A very influential approach since Koskenniemi (1983)
- AKA "two-level morphology"
- ▶ an example of a *symbolic* approach

Recognizing/analyzing complex words

If I only wanted to recognize, what would I need?

Recognizing/analyzing complex words

Just an FSA

Identifying word classes

Inflectional classes: Indo-European

LATIN DECLENSIONS

ABL rēge

rēgibus

corpore

corporibus

abl rē

rēbus

bencrowder.net . Last modified 16 June 2016

1ST DEC	CLENSION				3RD DE	CLENSION I-S	TEM		
	aqua, -ae, 1	. water				cīvis, -is, M	. citizen	mare, -is, 1	i. sea
NOM	singular aqua	plural aqu <mark>ae</mark>			NOM	singular cīvis	plural cīvēs	singular mare	plural maria
GEN	aquae	aqu <mark>ārum</mark>			GEN	cīvis	cīvium	maris	marium
DAT	aquae	aqu <mark>īs</mark>			DAT	cīvī	cīvibus	marī	maribus
ACC	aquam	aqu <mark>ās</mark>			ACC	cīvem	cīvēs	mare	maria
ABL	aquā	aquīs			ABL	cīve	cīvibus	marī	maribus
ND DE	CLENSION				4TH DE	CLENSION			
	servus, -ī, l	м. slave	dönum, -ī,	N. gift		frūctus, -ūs	, м. fruit	cornū, -ūs	N. horn
NOM	SINGULAR SERVUS	plural servī	singular d önum	dona	NOM	singular früctus	früctüs	singular cornü	PLURAL COTNUA
GEN	servī	servörum	dōnī	dōnōrum	GEN	frūctūs	früctuum	cornüs	cornuur
DAT	servō	servīs	dōnō	dōnīs	DAT	frūctuī	frūctibus	cornū	cornibu
ACC	servum	servōs	dönum	dōna	ACC	früctum	frūctūs	cornū	cornua
ABL	servō	servīs	dōnō	dōnīs	ABL	frūctū	frūctibus	cornů	cornibus
SRD DEG	CLENSION				5TH DE	CLENSION			
	rēx, rēgis, 1	м. king	corpus, cor	poris, n. body		rës, reï, F. tl	ning	diēs, diēī, 1	м. day
	SINGULAR	PLURAL	SINGULAR	PLURAL		SINGULAR	PLURAL	SINGULAR	PLURAL
NOM	rēx	rēgēs	corpus	corpora	NOM	rēs	rēs	diēs	diēs
GEN	rēgis	rēgum	corporis	corporum	GEN	reī	rērum	diēī	diērum
DAT	rēgī	rēgibus	corpori	corporibus	DAT	reī	rēbus	diēī	diēbus
	rēgem	rēgēs	corpus	corpora	ACC	rem	rēs	diem	diēs

diēbus

diē

Inflectional classes: Bigger picture

- Nobody really needs to look for inflectional classes in IE languages
 - particularly not in Latin...
- ▶ But there are many languages in the world for which the exact morphological behavior is not yet fully understood
- ▶ Why is it important that we learn about it and describe it?

Example: Abui [abz] (Alor island in Indonesia)

Form	Gloss	Condition
Ø-	stem alone	I
Ca-	patient (PAT)	II
Ce-	location (LOC)	III
Cee-	benefactive (BEN)	III
Co-	recipient (REC)	IV
Coo-	goal (GOAL)	IV

Table 2: Prefix forms and glosses; Condition I is stem attested bare.

Stem	I	II	III	IV	Class
<i>fil</i> 'pull'	+	+	+	+	A (1111)
kaanra 'complete'	+	+	+	+	A (1111)
kafia 'scratch'	+	-	+	+	B (1011)
yaa 'go'	+	-	+	+	B (1011)
mpang 'think'	+	-	-	+	C (1001)
bel 'pull out'	-	+	+	+	D (0111)
luk 'bend'	-	-	+	+	E (0011)

Table 3: Examples of Abui verb classes

Probabilistic morphological parsing

- Train a model on a large training corpus
- E.g. the corpus contains pairs of surface and underlying strings
 - ► (like that same cats/cat+N+PL pair)
- morpheme boundaries can be inferred statistically
- Neural nets very successful
- Not an option when there is no training data
- Other limitations?

Using FSTs

- ► FSTs assume *tokenization* (word boundaries) and words split into characters. One character pair per transition!
- Analysis: return character list with affix boundaries, so enabling lexical lookup.
- Generation: input comes from stem and affix lexicons.
- One FST per spelling rule: either compile to big FST or run in parallel.
- FSTs do not allow for internal structure:
 - can't model un- ion -ize -d bracketing.
 - can't condition on prior transitions, so potential redundancy

Foma

- ▶ https://fomafst.github.io/
- ► Tutorial 1 (basic):https://github.com/mhulden/foma/blob/master/foma/docs/simpleintro.md
- ► Tutorial 2 (more advanced): https://fomafst.github.io/morphtut.html

Concluding comments

- ► English is an outlier among the world's languages: very limited inflectional morphology.
- English inflectional morphology hasn't been a practical problem for NLP systems for decades.
- Limited need for probabilities, small number of possible morphological analyses for a word.
- Lots of other applications of finite-state techniques: fast, supported by toolkits, good initial approach for very limited systems.