Examen de Mathématiques – Terminale

March 2, 2025

Exercice 1 : Fonctions et Dérivées

Soit $f(x) = \ln(x) - x$.

${\bf Questions}:$

- a) Calculer f'(x).
- b) Étudier les variations de f sur $(0, +\infty)$.
- c) Trouver l'équation de la tangente à f en x = 1.

Réponses de l'élève :

- a) $f'(x) = \frac{1}{x} 1$. b) f est croissante sur (0,1) et décroissante sur $(1,+\infty)$ (approximation).
- c) Pour x = 1, $f(1) = \ln(1) 1 = -1$ et f'(1) = 0; donc la tangente est y = -1.

Correction:

- b) Correct avec justification: $f'(x) = \frac{1}{x} 1$ s'annule pour x = 1. Pour $x \in (0, 1)$, f'(x) > 0, donc f est croissante sur (0, 1). Pour $x \in (1, +\infty)$, f'(x) < 0, donc fest décroissante sur $(1, +\infty)$.
- c) La bonne équation de la tangente : la pente est f'(1) = 0, donc la tangente est constante et passe par (1, f(1)): y = -1.

Note: 2/6.

Exercice 2 : Limites et Continuité

Soit $g(x) = \frac{e^x - 1}{x}$.

Questions:

- a) Calculer $\lim_{x\to 0} g(x)$.
- b) Montrer que g peut être rendue continue en x = 0 en posant g(0) = 1.

Réponses de l'élève :

- a) $\lim_{x\to 0} g(x) = 1$.
- b) En posant g(0) = 1, la fonction devient continue en 0.

Correction:

- a) Correct.
- b) Justification manquante : Utilisation du développement de Taylor $e^x \approx$

 $1+x+\frac{x^2}{2!}+\ldots$ pour $x\approx 0$ confirme que $\lim_{x\to 0}g(x)=1$, ainsi g est continue en 0 si g(0)=1.

Note: 3/4.

Exercice 3: Nombres Complexes

Soit z = 1 + i et w = 2 - i.

Questions:

- a) Calculer z + w et $z \times w$.
- b) Donner la forme trigonométrique de z.

Réponses de l'élève :

- a) z + w = 3 + 0i et $z \times w = 3 + i$ (approximation).
- b) $z = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$.

Correction:

- a) z + w = 3 + 0i est correct, $z \times w = (1 + i)(2 i) = 2 i + 2i i^2 = 3 + i$. Réponses correctes.
- b) Correct.

Note: 5/5.

Exercice 4: Intégrales

Calculer l'intégrale $I = \int_0^1 (2x+1) \, dx$. Réponse de l'élève :

$$I = [x^2 + x]_0^1 = 1 + 1 = 2.$$

La primitive de 2x + 1 est $(2x + 1) = x^2 + x$, donc $I = [x^2 + x]_0^1 = (1^2 + 1) - 1$ $(0^2 + 0) = 2.$

Note: 5/5. Total: 15/20.