Chapter ML: (continued)

I. Introduction

- □ Examples of Learning Tasks
- □ Specification of Learning Tasks
- □ Elements of Machine Learning
- Notation Overview
- □ Classification Approaches Overview

ML:I-70 Introduction ©STEIN 2022

Data, Sets, and Distributions

Symbol	Semantics
x, x_i, x_1, \ldots, x_p	Feature
$\mathbf{x} = (x_1, \dots, x_p)^T \in \mathbf{R}^p$	Feature vector
$\mathbf{x} = (1, x_1, \dots, x_p)^T \in \mathbf{R}^{p+1}, \text{ i.e., } x_0 = 1$	Extended feature vector
X	Feature space, Cartesian product of the domains of the p dimensions of a feature vector \mathbf{x} .
$X = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$	Multiset of feature vectors
X	Random variable (randomness regarding feature x of an object o)
X	Multivariate random variable, random vector (randomness regarding feature vector $\mathbf x$ of an object o)

ML:I-71 Introduction © STEIN 2022

Indexing

Running		Sequence	Semantics of maximum
\square_{s}	\in	$\{\Box_1,\ldots,\Box_d\}$	Number of layers in a multilayer perceptron
\Box_i	€	$\{\square_1,\dots,\square_k\}$	Number of classes Number of folds during cross validation
\Box_l	\in	$\{\Box_1,\ldots,\Box_m\}$	Number of elements in a domain of a feature Number of hyperparameter values during model selection
\Box_i	\in	$\{\Box_1,\ldots,\Box_n\}$	Number of elements in a data set D
\Box_j	\in	$\{\Box_1,\ldots,\Box_p\}$	Dimension of a feature space or a feature vector

ML:I-72 Introduction © STEIN 2022

Functions

Function definition	Function name	Occurrence				
$I_{\neq}(a,b) = \begin{cases} 0 & a = b \\ 1 & a \neq b \end{cases}$	Indicator function	Part II: Machine Learning Basics Part III: Linear Models				
$f(x) = \dots$	function	Part :				

ML:I-73 Introduction © STEIN 2022

Algorithms

Signature	Algorithm name	Occurrence				
$LMS(D,\eta)$	Least Mean Squares	Part I: Introduction Examples of Learning Tasks				
$ALG(\ldots)$	algorithm	Part:				

ML:I-74 Introduction © STEIN 2022

Classification Approaches Overview

						Search in hypothesis space						
Taxonomy				Model function	Classification rule	e Optimization principle			Optimization o (loss/cost function [+		Optimization approach (algorithm)	
	Discriminative approaches	Linear decision boundary (in inner product space)	Linear decision boundary in input space	$y(\mathbf{x}) = \\ heaviside(\mathbf{w}^T \mathbf{x})$	m (>0	Exploit misclassified examples individually: Hebbian learning		\sim	No misclassified example		\sim	Perceptron training algorithm
Classification approaches				Linear function: $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$	$\mathbf{w}^{T} \mathbf{x} \begin{cases} \vdots \\ < 0 \end{cases}$ $\mathbf{w}^{T} = (w_{0},, w_{p})$ $x_{0} = 1$	Linear regression	, Regulari-	\sim	Squared loss (residual sum of squares, RSS)	L_1 or L_2	~	Gradient descent: - batch - incremental
				Logistic function: $y(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$		Logistic regression	zation		Logistic loss (derived via ML)	$\left. \left. \left. \left \mathbf{w} \right _{1,\ldots,p} \right. \right. \right.$		– stochasticNewton-Raphson,BFGS
				SVM w/o kernel (aka linear kernel)		Empirical risk mil	Empirical risk minimization		Regularized hinge loss		\sim	Quadratic prog., sub-grad. descent
			Linear decision bound Nonlinear in input /	$y(\mathbf{x}) = \\ \text{sign}(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}))$	$\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}) \begin{cases} \geq 0 \\ < 0 \end{cases}$ $\mathbf{w}^{T} = (w_{0},, w_{ \mathbf{w} })$ $\phi_{0}(\mathbf{x}) = 1$	Linear regression (nonlinear in predictors)	_ Regulari-	\sim	Squared loss	L_1 or L_2 norm on	\sim	Gradient descent: - batch - incremental
				$y(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T} \boldsymbol{\phi}(\mathbf{x})}$		Log. regression (nonlinear in predictors)	zation		Logistic loss	$\left\ \mathbf{w} ight _{1,,\left \mathbf{w} ight }$		stochasticNewton-Raphson,BFGS
			Nonli linear ii	SVM with nonlinear kernel	$\sim \frac{\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}) - b \begin{cases} \geq 1 \\ \leq -1 \end{cases}}{\mathbf{w} = \sum_{i=1}^{n} \alpha_i c \boldsymbol{\phi}(\mathbf{x}_i)}$ $\mathbf{argmax} = C$	Empirical risk minimization		\sim	Regularized hinge loss			Quadratic prog., sub-grad. descent
		Unrestricted decision boundary	Poly- thetic	$\begin{array}{c} \text{Multilayer percep.:} \\ \mathbf{y}(\mathbf{x}) = \\ \boldsymbol{\sigma}(W^{o}(\mathbf{\sigma}(W^{h}\mathbf{x}))) \end{array}$	$ ightarrow egin{array}{c} argmax_{c \in C} \ \{ \ y_c(\mathbf{x}) \ \} \end{array}$	Regression		\sim	Squared loss (residual sum of squares, RSS)		~>	Backpropagation algorithm
			decision boundar Monothetic feature analysis	$ \begin{array}{c c} \overrightarrow{\text{te}} & \bigwedge_i x_i = v_i \\ y & i = 1,, p \\ \hline \bigvee_i \bigwedge_j x_{ij} = v_{ij} \\ i = 1,, \ \text{leafs} \ \\ z = 1 & \text{deth}(t_i) \end{array} $	Test if x is a	Maximize version space		\sim	No misclassified example		\sim	Candidate elimination algorithm
				$ \overset{\text{LE}}{\underset{\text{OZ}}{\text{OZ}}} \bigvee_{i} \bigwedge_{j} x_{ij} = v_{ij} \\ \underset{j=1,, \text{leafs} }{\underset{j=1,,\text{depth}(l_i)}{\text{depth}(l_i)}} $	$\begin{array}{c c} \operatorname{model} \operatorname{for} \alpha \\ (= \operatorname{fulfills} \alpha). \\ \alpha \text{ is a formula} \end{array}$	Decision tree: (greedy)	_ Regulari-	<i>→</i>	0/1 Loss (= number of misclassified examples)	Tree height, external	~	Algorithms: ID3, C4.5, C5.0, CART
				Arbitrary features: DNF $(\vee_i \wedge_j)$ on domain predicates	in DNF.	feature-wise splitting of example set	zation			path		(exhaustive) search in space of domain splittings
	Generative approaches	ctical	aches	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Maximum a poeteriori hypothesis					_	
Gene		Statistical approaches		$X \sim N(\mu, \sigma^2)$ (or other family)	$ ightsquigarrow \left[egin{argmax} argmax_{c \in C} \ \{P(\mathbf{x} \mu_c, \sigma_c)\} \end{array} ight]$	Maximum a-posteriori hypothesis		\sim	Goodness of fit, e.g chi-squared, Kolmog			

ML:I-75 Introduction © STEIN 2022