- 1. The decomposition is NOT lossless. From the decomposed tables, we see that the shared attributes are only A. Therefore, the decomposition is lossless if A is a key of one of the decomposed tables. However, after checking the FDs, we see that A is not a key of either of the tables, so it is not lossless.
- 2. $A \rightarrow B$, $C \rightarrow B$, $AC \rightarrow B$, $BC \rightarrow A$
- 3. a. If there is a FD dept, cnum→sid, then there is a one-to-one relationship between Student and Class because this FD means that in each class, there is only one student b. If there is a FD sid→dept, cnum, then there is a many-to-one relationship between Student and Class because this FD means that each student can only take one class, but does not limit how many students can take a particular class.
- 4. a. Yes. The closure of $\{E\}$ is R, so E is a key. Specifically, the FDs used in order are $E \rightarrow A$, $A \rightarrow BC$, $B \rightarrow D$.
 - b. No. The closure of {BC} is only {BCD}, so BC is not a key.
- 5. No, because there exist non-trivial FDs $X \rightarrow Y$, where X does not contain a key. After normalizing to BCNF, we get: $R_1(A, B, C)$, $R_2(B, D)$, $R_3(C, E)$, and $R_4(A, F)$.
- 6. (a, b1, c1, d2)
 - (a, b2, c2, d1)
 - (a, b1, c1, d3)
 - (a, b3, c3, d1)
 - (a, b2, c2, d3)
 - (a, b3, c3, d2)
- 7. No, because it is not even in BCNF, so it cannot be in 4NF.

 After normalizing to 4NF, we get R₁(A, B), R₂(A, E), R₃(A, C), and R₄(A, D, F).