

1.90. LTE Band Edge(NTNV)(Subtest:90, Channel:20000, Bandwidth:10, Modulation:QPSK, RB Number: 25, RB Position:HIGH)

1.91. LTE Band Edge(NTNV)(Subtest:91, Channel:20000, Bandwidth:10, Modulation:QPSK, RB Number: 50, RB Position:LOW)

1.92. LTE Band Edge(NTNV)(Subtest:92, Channel:20000, Bandwidth:10, Modulation:Q16, RB Number: 1, RB Position:LOW)

1.93. LTE Band Edge(NTNV)(Subtest:93, Channel:20000, Bandwidth:10, Modulation:Q16, RB Number: 1, RB Position:MID)

1.94. LTE Band Edge(NTNV)(Subtest:94, Channel:20000, Bandwidth:10, Modulation:Q16, RB Number: 1, RB Position:HIGH)

1.95. LTE Band Edge(NTNV)(Subtest:95, Channel:20000, Bandwidth:10, Modulation:Q16, RB Number: 25, RB Position:LOW)

Center 1.71000 GHz #Res BW 100 kHz

1.96. LTE Band Edge(NTNV)(Subtest:96, Channel:20000, Bandwidth:10, Modulation:Q16, RB Number: 25, RB Position:MID)

	Center Frequency(MHz)		pan(MHz) RBW (MHz)		Detector		quency MHz)	Powe (dBm	V	erdict	Sweep Point	
	1710		30	0.1	RMS		1709.85	-39.	.31 P	ass	601	
LXI RL	<mark>rum Analyzer - Swe</mark> RF 50 Ω	AC			INT REF		ALIGN OFF	08:06:01 PM			equency	
PASS	Center Freq 1.710000000 GHz PASS PNO: Fast → IFGain:Low Atten: 30 of the Atten: 30 of t					dB DET A A A A A					Ä	
10 dB/div	Ref Offset 10.65 dB 10 dB/div Ref 30.00 dBm						z Auto Tune n					
Trac	e 1 Pass										enter Freq	
10.0										1.710	0000000 GHZ	
0.00					<u> </u>	and the second s	arce-lyfa ^o T			1.695	Start Freq	
-10.0												
-20.0										1.725	Stop Freq 6000000 GHz	
-30.0					\		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				CF Step	
-40.0					1 pt		A A A A A A A A A A A A A A A A A A A	,Ava _{k-Mill}		Auto 3	.000000 MHz Man	
-50.0			المهام مسموم	What pay and a				A STANDARD CONTRACTOR	wholeson production	F	req Offset	
-60.0	- Deart Mile State of the Party of	A STANSON SINISANA									0 Hz	
Land Port Control	And an arrangement of the second											

VBW 300 kHz*

Span 30.00 MHz #Sweep 1.000 s (601 pts)

Center 1.71000 GHz #Res BW 100 kHz

1.97. LTE Band Edge(NTNV)(Subtest:97, Channel:20000, Bandwidth:10, Modulation:Q16, RB Number: 25, RB Position:HIGH)

-	Center requency(MHz)		Span(MHz) RBV		Detector	r	quency MHz)	Power (dBm)	Vei	rdict	Sweep Point
	1710	3	30	0.1	RMS		1709.95	-43.1	7 Pa	ss	601
Agilent Spectrum Analyzer - Swept SA X					Mkr1 1.709 95 GHz						equency Auto Tune
10 dB/div Log Trace	Ref 30.00 d	Bm						-43.175			enter Freq 0000000 GHz
0.00						- Francisco	for all the state of the state			1.695	Start Freq 6000000 GHz
-20.0										1.725	Stop Freq 6000000 GHz CF Step
-40.0				thank the state of	1 marsh	on or other parts		Andrew Marker	Aller Sallyre	<u>Auto</u>	.000000 MHz Man
-60.0	Mary des de la descriptor	And the second of the second o	Mary Mary Mary Mary Mary Mary Mary Mary								Freq Offset 0 Hz

VBW 300 kHz*

Span 30.00 MHz #Sweep 1.000 s (601 pts)

1.98. LTE Band Edge(NTNV)(Subtest:98, Channel:20000, Bandwidth:10, Modulation:Q16, RB Number: 50, RB Position:LOW)

1.99. LTE Band Edge(NTNV)(Subtest:99, Channel:20350, Bandwidth:10, Modulation:QPSK, RB Number: 1, RB Position:LOW)

1.100. LTE Band Edge(NTNV)(Subtest:100, Channel:20350, Bandwidth:10, Modulation:QPSK, RB Number: 1, RB Position:MID)

1.101. LTE Band Edge(NTNV)(Subtest:101, Channel:20350, Bandwidth:10, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

1.102. LTE Band Edge(NTNV)(Subtest:102, Channel:20350, Bandwidth:10, Modulation:QPSK, RB Number: 25, RB Position:LOW)

1.103. LTE Band Edge(NTNV)(Subtest:103, Channel:20350, Bandwidth:10, Modulation:QPSK, RB Number: 25, RB Position:MID)

1.104. LTE Band Edge(NTNV)(Subtest:104, Channel:20350, Bandwidth:10, Modulation:QPSK, RB Number: 25, RB Position:HIGH)

1.105. LTE Band Edge(NTNV)(Subtest:105, Channel:20350, Bandwidth:10, Modulation:QPSK, RB Number: 50, RB Position:LOW)

1.106. LTE Band Edge(NTNV)(Subtest:106, Channel:20350, Bandwidth:10, Modulation:Q16, RB Number: 1, RB Position:LOW)

1.107. LTE Band Edge(NTNV)(Subtest:107, Channel:20350, Bandwidth:10, Modulation:Q16, RB Number: 1, RB Position:MID)

1.108. LTE Band Edge(NTNV)(Subtest:108, Channel:20350, Bandwidth:10, Modulation:Q16, RB Number: 1, RB Position:HIGH)

1.109. LTE Band Edge(NTNV)(Subtest:109, Channel:20350, Bandwidth:10, Modulation:Q16, RB Number: 25, RB Position:LOW)

#Sweep 1.000 s (601 pts)

STATUS

VBW 300 kHz*

1.110. LTE Band Edge(NTNV)(Subtest:110, Channel:20350, Bandwidth:10, Modulation:Q16, RB Number: 25, RB Position:MID)

#Sweep 1.000 s (601 pts)

STATUS

VBW 300 kHz*

Center 1.75500 GHz #Res BW 100 kHz

1.111. LTE Band Edge(NTNV)(Subtest:111, Channel:20350, Bandwidth:10, Modulation:Q16, RB Number: 25, RB Position:HIGH)

VBW 300 kHz*

Span 30.00 MHz

#Sweep 1.000 s (601 pts)

1.112. LTE Band Edge(NTNV)(Subtest:112, Channel:20350, Bandwidth:10, Modulation:Q16, RB Number: 50, RB Position:LOW)

1.113. LTE Band Edge(NTNV)(Subtest:113, Channel:20025, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:LOW)

1.114. LTE Band Edge(NTNV)(Subtest:114, Channel:20025, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:MID)

1.115. LTE Band Edge(NTNV)(Subtest:115, Channel:20025, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

Center 1.71000 GHz #Res BW 150 kHz

1.116. LTE Band Edge(NTNV)(Subtest:116, Channel:20025, Bandwidth:15, Modulation:QPSK, RB Number: 36, RB Position:LOW)

VBW 470 kHz*

Span 40.00 MHz

#Sweep 1.000 s (601 pts)

1.117. LTE Band Edge(NTNV)(Subtest:117, Channel:20025, Bandwidth:15, Modulation:QPSK, RB Number: 36, RB Position:MID)

1.118. LTE Band Edge(NTNV)(Subtest:118, Channel:20025, Bandwidth:15, Modulation:QPSK, RB Number: 36, RB Position:HIGH)

1.119. LTE Band Edge(NTNV)(Subtest:119, Channel:20025, Bandwidth:15, Modulation:QPSK, RB Number: 75, RB Position:LOW)

1.120. LTE Band Edge(NTNV)(Subtest:120, Channel:20025, Bandwidth:15, Modulation:Q16, RB Number: 1, RB Position:LOW)

1.121. LTE Band Edge(NTNV)(Subtest:121, Channel:20025, Bandwidth:15, Modulation:Q16, RB Number: 1, RB Position:MID)

1.122. LTE Band Edge(NTNV)(Subtest:122, Channel:20025, Bandwidth:15, Modulation:Q16, RB Number: 1, RB Position:HIGH)

1.123. LTE Band Edge(NTNV)(Subtest:123, Channel:20025, Bandwidth:15, Modulation:Q16, RB Number: 36, RB Position:LOW)

1.124. LTE Band Edge(NTNV)(Subtest:124, Channel:20025, Bandwidth:15, Modulation:Q16, RB Number: 36, RB Position:MID)

1.125. LTE Band Edge(NTNV)(Subtest:125, Channel:20025, Bandwidth:15, Modulation:Q16, RB Number: 36, RB Position:HIGH)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1710	40	0.15	RMS	1709.933	-42.36	Pass	601
Agilent Spectrum Analyzer - Swe (X) RL RF 50 Ω Center Freq 1.71000	0000 GHz			ALIGN OFF 08:09:07 PM Jar AVG Type: RMS TRACE TYPE MY TYPE MY		456 Fr	equency
PASS Ref Offset 10.	PNO: Fast IFGain:Low 65 dB				1.709 93 G	AAA	Auto Tune

1.126. LTE Band Edge(NTNV)(Subtest:126, Channel:20025, Bandwidth:15, Modulation:Q16, RB Number: 75, RB Position:LOW)

1.127. LTE Band Edge(NTNV)(Subtest:127, Channel:20325, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:LOW)

1.128. LTE Band Edge(NTNV)(Subtest:128, Channel:20325, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:MID)

1.129. LTE Band Edge(NTNV)(Subtest:129, Channel:20325, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

1.130. LTE Band Edge(NTNV)(Subtest:130, Channel:20325, Bandwidth:15, Modulation:QPSK, RB Number: 36, RB Position:LOW)

1.131. LTE Band Edge(NTNV)(Subtest:131, Channel:20325, Bandwidth:15, Modulation:QPSK, RB Number: 36, RB Position:MID)

1.132. LTE Band Edge(NTNV)(Subtest:132, Channel:20325, Bandwidth:15, Modulation:QPSK, RB Number: 36, RB Position:HIGH)

1.133. LTE Band Edge(NTNV)(Subtest:133, Channel:20325, Bandwidth:15, Modulation:QPSK, RB Number: 75, RB Position:LOW)

1.134. LTE Band Edge(NTNV)(Subtest:134, Channel:20325, Bandwidth:15, Modulation:Q16, RB Number: 1, RB Position:LOW)

1.135. LTE Band Edge(NTNV)(Subtest:135, Channel:20325, Bandwidth:15, Modulation:Q16, RB Number: 1, RB Position:MID)

1.136. LTE Band Edge(NTNV)(Subtest:136, Channel:20325, Bandwidth:15, Modulation:Q16, RB Number: 1, RB Position:HIGH)

1.137. LTE Band Edge(NTNV)(Subtest:137, Channel:20325, Bandwidth:15, Modulation:Q16, RB Number: 36, RB Position:LOW)

1.138. LTE Band Edge(NTNV)(Subtest:138, Channel:20325, Bandwidth:15, Modulation:Q16, RB Number: 36, RB Position:MID)

Center 1.75500 GHz #Res BW 150 kHz

1.139. LTE Band Edge(NTNV)(Subtest:139, Channel:20325, Bandwidth:15, Modulation:Q16, RB Number: 36, RB Position:HIGH)

VBW 470 kHz*

Span 40.00 MHz

#Sweep 1.000 s (601 pts)

Center 1.75500 GHz #Res BW 150 kHz

1.140. LTE Band Edge(NTNV)(Subtest:140, Channel:20325, Bandwidth:15, Modulation:Q16, RB Number: 75, RB Position:LOW)

VBW 470 kHz*

4.000000 MHz

Freq Offset 0 Hz

Man

<u>Auto</u>

Span 40.00 MHz

#Sweep 1.000 s (601 pts)

1.141. LTE Band Edge(NTNV)(Subtest:141, Channel:20050, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:LOW)

1.142. LTE Band Edge(NTNV)(Subtest:142, Channel:20050, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:MID)

1.143. LTE Band Edge(NTNV)(Subtest:143, Channel:20050, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

1.144. LTE Band Edge(NTNV)(Subtest:144, Channel:20050, Bandwidth:20, Modulation:QPSK, RB Number: 50, RB Position:LOW)

1.145. LTE Band Edge(NTNV)(Subtest:145, Channel:20050, Bandwidth:20, Modulation:QPSK, RB Number: 50, RB Position:MID)

1.146. LTE Band Edge(NTNV)(Subtest:146, Channel:20050, Bandwidth:20, Modulation:QPSK, RB Number: 50, RB Position:HIGH)

1.147. LTE Band Edge(NTNV)(Subtest:147, Channel:20050, Bandwidth:20, Modulation:QPSK, RB Number: 100, RB Position:LOW)

1.148. LTE Band Edge(NTNV)(Subtest:148, Channel:20050, Bandwidth:20, Modulation:Q16, RB Number: 1, RB Position:LOW)

1.149. LTE Band Edge(NTNV)(Subtest:149, Channel:20050, Bandwidth:20, Modulation:Q16, RB Number: 1, RB Position:MID)

1.150. LTE Band Edge(NTNV)(Subtest:150, Channel:20050, Bandwidth:20, Modulation:Q16, RB Number: 1, RB Position:HIGH)

1.151. LTE Band Edge(NTNV)(Subtest:151, Channel:20050, Bandwidth:20, Modulation:Q16, RB Number: 50, RB Position:LOW)

1.152. LTE Band Edge(NTNV)(Subtest:152, Channel:20050, Bandwidth:20, Modulation:Q16, RB Number: 50, RB Position:MID)

#Res BW 200 kHz

1.153. LTE Band Edge(NTNV)(Subtest:153, Channel:20050, Bandwidth:20, Modulation:Q16, RB Number: 50, RB Position:HIGH)

#Sweep 1.000 s (601 pts)

STATUS

VBW 620 kHz*

1.154. LTE Band Edge(NTNV)(Subtest:154, Channel:20050, Bandwidth:20, Modulation:Q16, RB Number: 100, RB Position:LOW)

1.155. LTE Band Edge(NTNV)(Subtest:155, Channel:20300, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:LOW)

1.156. LTE Band Edge(NTNV)(Subtest:156, Channel:20300, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:MID)

1.157. LTE Band Edge(NTNV)(Subtest:157, Channel:20300, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

1.158. LTE Band Edge(NTNV)(Subtest:158, Channel:20300, Bandwidth:20, Modulation:QPSK, RB Number: 50, RB Position:LOW)

Center 1.75500 GHz

#Res BW 200 kHz

1.159. LTE Band Edge(NTNV)(Subtest:159, Channel:20300, Bandwidth:20, Modulation:QPSK, RB Number: 50, RB Position:MID)

VBW 620 kHz*

Freq Offset 0 Hz

Span 40.00 MHz

#Sweep 1.000 s (601 pts)

1.160. LTE Band Edge(NTNV)(Subtest:160, Channel:20300, Bandwidth:20, Modulation:QPSK, RB Number: 50, RB Position:HIGH)

1.161. LTE Band Edge(NTNV)(Subtest:161, Channel:20300, Bandwidth:20, Modulation:QPSK, RB Number: 100, RB Position:LOW)

1.162. LTE Band Edge(NTNV)(Subtest:162, Channel:20300, Bandwidth:20, Modulation:Q16, RB Number: 1, RB Position:LOW)

1.163. LTE Band Edge(NTNV)(Subtest:163, Channel:20300, Bandwidth:20, Modulation:Q16, RB Number: 1, RB Position:MID)

1.164. LTE Band Edge(NTNV)(Subtest:164, Channel:20300, Bandwidth:20, Modulation:Q16, RB Number: 1, RB Position:HIGH)

Center 1.75500 GHz

#Res BW 200 kHz

1.165. LTE Band Edge(NTNV)(Subtest:165, Channel:20300, Bandwidth:20, Modulation:Q16, RB Number: 50, RB Position:LOW)

VBW 620 kHz*

Span 40.00 MHz

#Sweep 1.000 s (601 pts)

1.166. LTE Band Edge(NTNV)(Subtest:166, Channel:20300, Bandwidth:20, Modulation:Q16, RB Number: 50, RB Position:MID)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point	
1755	40	0.2	RMS	1755.267	-40.84	Pass	601	
Agilent Spectrum Analyzer - Swept SA [X] RL RF 50 Ω AC INT REF Δ. ALIGN OFF 08:13:29 PM Jan 12, 2016								
Center Freq 1.755000000 GHz PASS PASS PRO: Fast PRO:			eRun A	Avg Type: RMS vg Hold: 1/1	TRACE 123456 TYPE MIMMMMM DET A A A A A A		requency	
Ref Offset 10.				Mkr1 1.755 27 GHz Auto Tul				

Center 1.75500 GHz

#Res BW 200 kHz

1.167. LTE Band Edge(NTNV)(Subtest:167, Channel:20300, Bandwidth:20, Modulation:Q16, RB Number: 50, RB Position:HIGH)

VBW 620 kHz*

Span 40.00 MHz

#Sweep 1.000 s (601 pts)

1.168. LTE Band Edge(NTNV)(Subtest:168, Channel:20300, Bandwidth:20, Modulation:Q16, RB Number: 100, RB Position:LOW)

END