Automatentheorie und formale Sprachen

Deterministische Endliche Automaten (DEAs)

- 1€ Kosten für eine Eintrittskarte
- Automat akzeptiert 50ct und 1€ Stücke
- Ist der Betrag erreicht, soll der Automat die Verarbeitung beenden

Zeichenregeln

Startzustand

Endzustand

Kanten beschriften!

Zustandsübergangstabelle

δ	<u>50</u>	<u>100</u>
s _o	S ₁	s ₂
S ₁	s ₂	-
S ₂	-	-

Eine Folge Eingaben, die zum Endzustand führt, heißt akzeptierte Folge.

Formale Definition

$$A=(\Sigma, S, \delta, s_0, F)$$

 Σ = Eingabealphabet

S = Zustandsmenge

 $\delta = Zustands \ddot{u}bergangstabelle$ (in unserem Fall)

 s_0 = Startzustand

F = Menge der Endzustände

Formale Definition

$$A = (\{50, 100\}, \{s_0, s_1, s_2\}, \delta, s_0, \{s_2\})$$

Alternative mit Akzeptanz von nicht passenden Beträgen, in diesem Fall ein vollständiger Automat.

Zustandsübergangstabelle

δ	<u>50</u>	<u>100</u>
s _o	s ₁	s ₂
S ₁	S ₂	S ₂
S ₂	s ₂	s ₂

DEA?

In einem konkreten Zustand gibt es für eine konkrete Eingabe nur genau eine Möglichkeit des Zustandsübergangs.

Übungsaufgabe

Entwerfen Sie einen deterministischen endlichen Automaten, der den Kauf einer Fahrkarte im Wert von 2€ beschreibt. Es ist dabei nicht notwendig, dass der Betrag passend eingezahlt wird.

- a) Zeichnen Sie den Automaten.
- b) Beschreiben Sie den Automaten formal und erstellen Sie die Zustandsübergangstabelle.

Übungsaufgabe Beispiellösung

δ	<u>50</u>	<u>100</u>	<u>200</u>
s _o	s ₁	s ₂	s ₄
s ₁	s ₂	s ₃	S ₄
s ₂	s ₃	s ₄	S ₄
s ₃	S ₄	S ₄	s ₄
S ₄	s ₄	s ₄	s ₄

Übungsaufgabe Beispiellösung

A=(
$$\{50, 100, 200\}$$
, $\{s_0, s_1, s_2, s_3, s_4\}$, δ , s_0 , $\{s_4\}$)

(C) 2022, Laura Haase