

de Huelva

4 ROBOTS MÓVILES

- 4.1 Introducción: Preliminares y Conceptos.
- 4.2 Características de los Robots Móviles.
- 4.3 Estrategias de Control.
- 4.4 Seguimiento de Trayectorias.
- 4.5 Algoritmoms de Planificación.
- 4.6 Introducción a la Localización.
- 4.7 Control reactivo
- 4.8 Slam
- 4.9 Navegación Topológica

4.3 ESTRATEGIAS DE CONTROL DE ROBOTS MÓVILES

GENERALIDADES

Control Atractivo: Estrategia que hace que el robot converja hacia una configuración determinada.

Control Repulsivo: Estrategia que hace que el robot sea repelido de algunas configuraciones.

ESTRATEGIAS DE CONTROL

g₁, g₂: Grados de libertad del vehículo

ESTRATEGIAS DE CONTROL

ESTRATEGIAS DE CONTROL

Controlador Alto Nivel

Modelo Inverso

ESTRATEGIAS ATRACTIVAS

Diferencial Drive

Triciclo y Ackerman

$\begin{aligned} v &= k_v \cdot |D| \\ \psi &= f(\theta_e) \cdot \psi_{max} \end{aligned}$

Convergencia Asintótica (Diferencial Drive)

la Condición de Brockett

$$\begin{bmatrix} |D| \\ \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \sqrt{x^2 + y^2} \\ -\theta + \operatorname{atan} 2(y, x) \\ -\theta - \alpha \end{bmatrix}$$

. Ingenieria Electrónica, Sistemas Informáticos y Automática (F. Gómez Bravo)

$$\rho = \frac{1}{R} = f(\Delta) = \frac{2(\Delta)}{L_H^2}$$

$$\rho = \frac{1}{R} = f(\Delta) = \frac{2(\Delta)}{L_H^2}$$

Para un Car-like robot

$$v = h(error).$$

$$\phi = atan(\frac{l}{r}) = atan(l \cdot \rho)$$

Universidad de Huelva

Método Geométrico

Para un Car-like robot

1.
$$\Delta = g([x \ y \ \theta], [x_d \ y_d])$$

2.
$$\rho = f(\Delta)$$

3.
$$v = h(error)$$
.

4.
$$\phi = \operatorname{atan}(l \cdot \rho)$$