|     |                                                   | ASSIGNMENT: G                                                      | EOMETRIC PROGRESSION                               | ON                                                                          |
|-----|---------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------|
|     |                                                   |                                                                    | Genera                                             | al term of Geometric progression                                            |
|     |                                                   |                                                                    | Basic Level                                        | _                                                                           |
| 1.  | If the $4^{th},7^{th}$ and                        | $10^{th}$ terms of a G.P. be $a$ , $b$ , $c$ respective            | vely, then the relation between $a$ , $b$ , $c$ is |                                                                             |
|     |                                                   |                                                                    |                                                    | [MNR 1995; Karnataka CET 1999]                                              |
|     | (a) $b = \frac{a+c}{2}$                           | (b) $a^2 = bc$                                                     | (c) $b^2 = ac$                                     | (d) $c^2 = ab$                                                              |
| 2.  | 7 <sup>th</sup> term of the seq                   | uence $\sqrt{2}, \sqrt{10}, 5\sqrt{2},$ is                         |                                                    | Y. \ / /                                                                    |
|     | (a) $125\sqrt{10}$                                | (b) $25\sqrt{2}$                                                   | (c) 125                                            | (d) $125\sqrt{2}$                                                           |
| 3.  | If the 5 <sup>th</sup> term of a                  | G.P. is $\frac{1}{3}$ and $9^{th}$ term is $\frac{16}{243}$ , then | the 4 <sup>th</sup> term will be                   | [MP PET 1982]                                                               |
|     | (a) $\frac{3}{4}$                                 | (b) $\frac{1}{2}$                                                  | (c) $\frac{1}{3}$                                  | (d) $\frac{2}{5}$                                                           |
| 4.  | If the 10 <sup>th</sup> term of                   | a geometric progression is 9 and 4 <sup>th</sup> t                 | erm is 4, then its 7 <sup>th</sup> term is         | [MP PET 1996]                                                               |
|     | (a) 6                                             | (b) 36                                                             | (c) $\frac{4}{9}$                                  | (d) $\frac{9}{4}$                                                           |
| 5.  | The third term of a                               | a G.P. is the square of first term. If the                         | second term is 8, then the $6^{th}$ term is        | [MP PET 1997]                                                               |
|     | (a) 120                                           | (b) 124                                                            | (c) 128                                            | (d) 132                                                                     |
| 6.  | The 6 <sup>th</sup> term of a 6                   | G.P. is 32 and its 8 <sup>th</sup> term is 128, then t             | he common ratio of the G.P. is                     | [Pb. CET 1999]                                                              |
|     | (a) -1                                            | (b) 2                                                              | (c) 4                                              | (d) -4                                                                      |
| 7.  |                                                   |                                                                    | , r being its common ratio; then the nu            |                                                                             |
|     | (a) $\frac{\log l - \log a}{\log r}$              | (b) $1 - \frac{\log l - \log a}{\log r}$                           | (c) $\frac{\log a - \log l}{\log r}$               | (d) $1 + \frac{\log l - \log a}{\log r}$                                    |
| 8.  | If first term and co                              | ommon ratio of a G.P. are both $\frac{\sqrt{3}+i}{2}$              | . The absolute value of $n^{ m th}$ term will be   |                                                                             |
|     | (a) 2 <sup>n</sup>                                | (b) 4 <sup>n</sup>                                                 | (c) 1                                              | (d) 4                                                                       |
| 9.  | In any G.P. the last                              | t term is 512 and common ratio is 2, the                           | nen its 5 <sup>th</sup> term from last term is     |                                                                             |
|     | (a) 8                                             | (b) 16                                                             | (c) 32                                             | (d) 64                                                                      |
| 10. | Given the geometr                                 | ric progression 3, 6, 12, 24, the term                             | m 12288 would occur as the                         | [SCRA 1999]                                                                 |
|     | (a) 11 <sup>th</sup> term                         | (b) 12 <sup>th</sup> term                                          | (c) 13 <sup>th</sup> term                          | (d) 14 <sup>th</sup> term                                                   |
| 11. | Let $\{t_n\}$ be a sequ                           | tence of integers in GP in which $t_4:t_6$                         | = 1:4 and $t_2 + t_5 = 216$ . Then $t_1$ is        |                                                                             |
|     | (a) 12                                            | (b) 14                                                             | (c) 16                                             | (d) None of these                                                           |
|     |                                                   |                                                                    | Advance Level                                      |                                                                             |
|     |                                                   |                                                                    |                                                    |                                                                             |
| 12. | $\alpha, \beta$ are the root increasing G.P., the |                                                                    | and $\gamma, \delta$ are the roots of the equation | $x^2 - 12x + b = 0$ . If $\alpha, \beta, \gamma, \delta$ form an [DCE 2000] |
|     | (a) (3, 12)                                       | (b) (12, 3)                                                        | (c) (2, 32)                                        | (d) (4, 16)                                                                 |

| Joi                                                                                                                                       | nt Effort By:                             | Dr. Anoop Dix                                                           | kit & Dr. Ha                                         | rish Bhardwaj                             |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------|
| 13.                                                                                                                                       | If $(p+q)^{th}$ term a G.                 | P. be $m$ and $(p-q)^{\rm th}$ term be $n$ , then the                   | ne $p^{	ext{th}}$ term will be                       | [Rajasthan PET 1997; MP PET 1985, 99]     |
|                                                                                                                                           | (a) m/n                                   | (b) $\sqrt{mn}$                                                         | (c) mn                                               | (d) 0                                     |
| 14.                                                                                                                                       | If the third term of a                    | G.P. is 4 then the product of its first 5                               | terms is                                             | [IIT 1982; Rajasthan PET 1991]            |
|                                                                                                                                           | (a) $4^3$                                 | (b) 4 <sup>4</sup>                                                      | (c) 4 <sup>5</sup>                                   | (d) None of these                         |
| <b>15.</b> If the first term of a G.P. $a_1, a_2, a_3, \dots$ is unity such that $4a_2 + 5a_3$ is least, then the common ratio of G.P. is |                                           |                                                                         |                                                      |                                           |
|                                                                                                                                           | (a) $-\frac{2}{5}$                        | (b) $-\frac{3}{5}$                                                      | (c) $\frac{2}{5}$                                    | (d) None of these                         |
| 16.                                                                                                                                       | Fifth term of a G.P. is                   | 2, then the product of its 9 terms is                                   |                                                      | [Pb. CET 1990, 94; AIEEE 2002]            |
|                                                                                                                                           | (a) 256                                   | (b) 512                                                                 | (c) 1024                                             | (d) None of these                         |
| 17.                                                                                                                                       | If the nth term of geo                    | ometric progression $5, -\frac{5}{2}, \frac{5}{4}, -\frac{5}{8}, \dots$ | . is $\frac{5}{1024}$ , then the value of <i>n</i> i | [Kerala (Engg.) 2002]                     |
|                                                                                                                                           | (a) 11                                    | (b) 10                                                                  | (c) 9                                                | (d) 4                                     |
|                                                                                                                                           |                                           |                                                                         | Sum                                                  | to n terms of Geometric progression       |
|                                                                                                                                           |                                           |                                                                         | Basic Level                                          |                                           |
| 18.                                                                                                                                       | The sum of 100 term                       | ns of the series .9+ .09 + .009 will b                                  | e                                                    |                                           |
|                                                                                                                                           | (a) $1 - \left(\frac{1}{10}\right)^{100}$ | (b) $1 + \left(\frac{1}{10}\right)^{106}$                               | (c) $1 - \left(\frac{1}{10}\right)^{106}$            | (d) $1 + \left(\frac{1}{10}\right)^{100}$ |
| 19.                                                                                                                                       | If the sum of three te                    | erms of G.P. is 19 and product is 216,                                  | then the common ratio of the se                      | ries is [Roorkee 1972]                    |
|                                                                                                                                           | (a) $-\frac{3}{2}$                        | (b) $\frac{3}{2}$                                                       | (c) 2                                                | (d) 3                                     |
| 20.                                                                                                                                       | If the sum of first 6 t                   | erms is 9 times to the sum of first 3 to                                | erms of the same G.P., then the c                    | ommon ratio of the series will be         |
|                                                                                                                                           |                                           |                                                                         |                                                      | [Rajasthan PET 1985]                      |
|                                                                                                                                           | (a) -2                                    | (b) 2                                                                   | (c) 1                                                | (d) $\frac{1}{2}$                         |
| 21.                                                                                                                                       | If the sum of n terms                     | of a G.P. is 255 and $n^{ m th}$ term is 128 an                         | nd common ratio is 2 then first t                    |                                           |
| 21.                                                                                                                                       | (a) 1                                     | (b) 3                                                                   | (c) 7                                                | (d) None of these                         |
| 22.                                                                                                                                       |                                           | rs in geometric progression is 38 and                                   |                                                      |                                           |
|                                                                                                                                           | (a) 12                                    | (b) 8                                                                   | (c) 18                                               | (d) 6                                     |
| 23.                                                                                                                                       | The sum of few term                       | s of any ratio series is 728, if common                                 | n ratio is 3 and last term is 486,                   | then first term of series will be         |
|                                                                                                                                           |                                           |                                                                         |                                                      | [UPSEAT 1999]                             |
|                                                                                                                                           | (a) 2                                     | (b) 1                                                                   | (c) 3                                                | (d) 4                                     |
| 24.                                                                                                                                       | The sum of <i>n</i> terms of              | of a G.P. is $3 - \frac{3^{n+1}}{4^{2n}}$ , then the common             | ratio is equal to                                    |                                           |
|                                                                                                                                           | (a) $\frac{3}{16}$                        | (b) $\frac{3}{256}$                                                     | (c) $\frac{39}{256}$                                 | (d) None of these                         |

The value of *n* for which the equation  $1 + r + r^2 + \dots + r^n = (1 + r)(1 + r^2)(1 + r^4)(1 + r^8)$  holds is

25.

# Join Spectrum Live Interactive Classes

| Joi | nt Effort By: $f D$                                         | r. Anoop Dix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | it & Dr. Hari                                                 | sh Bhardwaj                                    |
|-----|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------|
|     | (a) 13                                                      | (b) 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (c) 15                                                        | (d) 16                                         |
| 26. | The value of the sum $\sum_{n=1}^{13} (n^2 + 1)^n$          | $i^n + i^{n+1}$ ), where $i = \sqrt{-1}$ , equals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                             | [IIT 1998]                                     |
|     | (a) <i>i</i>                                                | (b) <i>i</i> – 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (c) - i                                                       | (d) 0                                          |
| 27. | For a sequence $a_1, a_2$                                   | $a_n$ given $a_1 = 2$ and $\frac{a_{n+1}}{a_n} = \frac{1}{3}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Then $\sum_{r=1}^{20} a_r$ is                                 |                                                |
|     | (a) $\frac{20}{2}[4+19\times3]$                             | (b) $3\left(1-\frac{1}{3^{20}}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (c) 2(1 - 3 <sup>-20</sup> )                                  | (d) None of these                              |
| 28. | The sum of $(x+2)^{n-1} + (x-1)^{n-1}$                      | $(x+1)^{n-2}(x+1)+(x+2)^{n-3}(x+1)^2+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(x+1)^{n-1}$ is equal to                                     | [IIT 1990]                                     |
|     | (a) $(x+2)^{n-2} - (x+1)^n$                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b) $(x+2)^{n-1} - (x+1)^{n-1}$                               |                                                |
|     | (c) $(x+2)^n - (x+1)^n$                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (d) None of these                                             |                                                |
|     |                                                             | Ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | vance Level                                                   | 10                                             |
| 29. | The sum of the first <i>n</i> term                          | as of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \frac{15}$ |                                                               | F 1996, 2000; Pb. CET 1994; DCE 1995, 96       |
|     | (a) $2^n - n - 1$                                           | (b) $1-2^{-n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (c) $n+2^{-n}-1$                                              | (d) $2^n - 1$                                  |
| 30. | If the product of three con                                 | secutive terms of G.P. is 216 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the sum of product of pair – wise is                          | s 156, then the numbers will be<br>[MNR 1978   |
|     | (a) 1, 3, 9                                                 | (b) 2, 6, 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (c) 3, 9, 27                                                  | (d) 2,4,8                                      |
| 31. | If $f(x)$ is a function satisfy                             | ring $f(x + y) = f(x)f(y)$ for all $x$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $y \in N$ such that $f(1) = 3$ and $\sum_{n=0}^{\infty} f(n)$ | (x) = 120. Then the value of $n$ is            |
|     |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | x=1                                                           | [IIT 1992                                      |
|     | (a) 4                                                       | (b) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (c) 6                                                         | (d) None of these                              |
| 32. |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | all terms is 889, then the common                             |                                                |
| 33. | (a) 5                                                       | (b) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (c) 3 in is 243, then the number of terms in                  | (d) 2<br>is <b>[MP PET 2003</b>                |
| 33. | (a) 6                                                       | (b) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (c) 4                                                         | (d) 10                                         |
| 34. |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               | f the terms in the even places is $S_2$ , then |
|     | $S_2/S_1$ is                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               |                                                |
|     | (a) Independent of a                                        | (b) Independent of $r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (c) Independent of a and                                      | d r (d) Dependent on r                         |
| 35. | Sum of the series $\frac{2}{3} + \frac{8}{9} + \frac{8}{9}$ | $\frac{26}{27} + \frac{80}{81} + \dots$ to <i>n</i> terms is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               | [Karnataka CET 2001]                           |
|     | (a) $n-\frac{1}{2}(3^n-1)$                                  | (b) $n + \frac{1}{2}(3^n - 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (c) $n + \frac{1}{2}(1 - 3^{-n})$                             | (d) $n + \frac{1}{2}(3^{-n} - 1)$              |
| 36. | If the sum of the <i>n</i> terms o                          | f G.P. is S product is P and sum o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | f their inverse is $R$ , then $P^2$ is equal                  | l to [IIT 1966; Roorkee 1981]                  |
|     | (a) $\frac{R}{S}$                                           | (b) $\frac{S}{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (c) $\left(\frac{R}{S}\right)^n$                              | (d) $\left(\frac{S}{R}\right)^n$               |

If every term of a G.P. with positive terms is the sum of its two previous terms, then the common ratio of the series is

(c) 9

(d) None of these

[Rajasthan PET 1986]

[Pb. CET 1989]

The minimum value of *n* such that  $1+3+3^2+....+3^n > 1000$  is

(b)  $\frac{2}{\sqrt{5}}$ 

If  $(1.05)^{50} = 11.658$ , then  $\sum_{n=1}^{49} (1.05)^n$  equals

If  $3 + 3\alpha + 3\alpha^2 + \dots = \frac{45}{8}$ , then the value of  $\alpha$  will be

38.

(a) 1

(a) 208.34

| 40. | If $a_1, a_2, a_3, \dots, a_n$ are in G.P | . with first term 'a' and c                                      | common ratio 'r' then $\frac{a_1^2}{a_1^2}$ | $\frac{a_1 a_2}{a_1^2 - a_2^2} + \frac{a_2 a_3}{a_2^2 - a_3^2} + \frac{a_3 a_4}{a_3^2 - a_n^2}$ | + + $\frac{a_{n-1}a_n}{a_{n-1}^2 - a_n^2}$ is equal to |      |
|-----|-------------------------------------------|------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------|------|
|     | (a) $\frac{nr}{1-r^2}$                    | (b) $\frac{(n-1)^r}{1-r^2}$                                      | (c) $\frac{1}{1}$                           | <u>nr</u><br>1 - r                                                                              | (d) $\frac{(n-1)r}{1-r}$                               |      |
| 41. | The sum of the squares of                 | three distinct real numb                                         | ers which are in G.P. is                    | $S^2$ . If their sum is $\alpha S$ , the                                                        | en                                                     |      |
|     | (a) $1 < \alpha^2 < 3$                    | (b) $\frac{1}{3} < \alpha^2 < 1$                                 | (c) 1                                       | < \alpha < 3                                                                                    | (d) $\frac{1}{3} < \alpha < 1$                         |      |
|     |                                           |                                                                  |                                             | 1/3                                                                                             | Sum to infinite term                                   | s    |
|     |                                           |                                                                  | Basic Level                                 | <b>&gt;/, \</b>                                                                                 |                                                        |      |
| 42. | If the sum of the series 1+               | $-\frac{2}{x} + \frac{4}{x^2} + \frac{8}{x^3} + \dots \infty$ is | a finite number, then                       |                                                                                                 | [UPSEAT 20                                             | 02]  |
|     | (a) $x > 2$                               | (b) $x > -2$                                                     | (c) x                                       | $:>\frac{1}{2}$                                                                                 | (d) None of these                                      |      |
| 43. | If $y = x - x^2 + x^3 - x^4 +$            | $\infty$ , then value of $x$ will                                | be                                          | [MNR 1975; l                                                                                    | Rajasthan PET 1988; MP PET 20                          | 02]  |
|     | (a) $y + \frac{1}{y}$                     | (b) $\frac{y}{1+y}$                                              | (c) y                                       | $y = \frac{1}{y}$                                                                               | (d) $\frac{y}{1-y}$                                    |      |
| 44. | If the sum of an infinite G.I             | P. be 9 and the sum of fir                                       | st two terms be 5, then t                   | the common ratio is                                                                             |                                                        |      |
|     | (a) $\frac{1}{3}$                         | (b) $-\frac{3}{2}$                                               | (c) $\frac{3}{4}$                           | <u>3</u>                                                                                        | (d) $\frac{2}{3}$                                      |      |
| 45. | 2.357 =                                   |                                                                  |                                             |                                                                                                 | [IIT 1983; Rajasthan PET 19                            | 95]  |
|     | (a) $\frac{2355}{1001}$                   | (b) $\frac{2370}{997}$                                           | (c) $\frac{2}{3}$                           | 2355<br>999                                                                                     | (d) None of these                                      |      |
| 46. | The first term of a G.P. who              | ose second term is 2 and                                         | sum to infinity is 8, will                  | l be [M                                                                                         | MNR 1979; Rajasthan PET 1992,                          | 95]  |
|     | (a) 6                                     | (b) 3                                                            | (c) 4                                       |                                                                                                 | (d) 1                                                  |      |
| 47. | The sum of infinite terms of              | of a G.P. is <i>x</i> and on squar                               | ring the each term of it, t                 | the sum will be <i>y</i> , then the                                                             | common ratio of this series is [Rajasthan PET 19       | 881  |
|     | $x^2 - y^2$                               | $r^2 + v^2$                                                      |                                             | $r^2 - v$                                                                                       | 2                                                      | -J-J |
|     | (a) $\frac{x^2 - y^2}{x^2 + y^2}$         | (b) $\frac{x^2 + y^2}{x^2 - y^2}$                                | (c) $\frac{\lambda}{\lambda}$               | $\frac{x}{x^2 + y}$                                                                             | (d) $\frac{x^2 + y}{x^2 - y}$                          |      |



#### Advance Level

**61.** If  $A = 1 + r^z + r^{2z} + r^{3z} + ..... \infty$ , then the value of *r* will be

(a)  $A(1-A)^z$ 

(b)  $\left(\frac{A-1}{A}\right)^{1/z}$ 

(c)  $\left(\frac{1}{A}-1\right)^{1/z}$ 

(d)  $A(1-A)^{1/2}$ 

**62.** The sum to infinity of the following series  $2 + \frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^3} + \dots$ , will be

[AMU 1984]

74.

(c)  $\frac{7}{-}$ 

(d)  $\frac{9}{-}$ 

(d)  $3G^2$ 

|          | (a) 3                                                            | (b) 4                                                                         | (c) $\frac{7}{2}$                                                   | (d) $\frac{9}{2}$                                                             |
|----------|------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 63.      | $x = 1 + a + a^2 + \dots \infty (a < 1)$                         | $y = 1 + b + b^2 + \dots \le (b < 1)$ . Then t                                | the value of $1 + ab + a^2b^2 + \dots \infty$                       | is [MNR 1980; MP PET 1985                                                     |
|          | (a) $\frac{xy}{x+y-1}$                                           | (b) $\frac{xy}{x+y+1}$                                                        | (c) $\frac{xy}{x-y-1}$                                              | (d) $\frac{xy}{x-y+1}$                                                        |
| 64.      | The value of $a^{\log_b x}$ , where $a$                          | $a = 0.2, b = \sqrt{5}, x = \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$ | to ∞ is                                                             |                                                                               |
| <b>6</b> | (a) 1                                                            | (b) 2                                                                         | (c) 1/2                                                             | (d) 4                                                                         |
| 65.      | The sum of an infinite geome                                     | etric series is 3. A series, which is form                                    |                                                                     | 1999; Roorkee 1972; UPSEAT 1999                                               |
|          | (a) $\frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \frac{3}{16}, \dots$ | (b) $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$              | (c) $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}, \dots$   | (d) $1, -\frac{1}{3}, \frac{1}{3^2}, -\frac{1}{3^3}, \dots$                   |
| 66.      | If $1 + \cos \alpha + \cos^2 \alpha + \dots \infty$              | $\alpha = 2 - \sqrt{2}$ , then $\alpha$ , $(0 < \alpha < \pi)$ is             |                                                                     | [Roorkee 2000                                                                 |
|          | (a) $\pi/8$                                                      | (b) $\pi/6$                                                                   | (c) $\pi/4$                                                         | (d) $3\pi/4$                                                                  |
| 67.      | Consider an infinite G.P. with                                   | a first term $a$ and common ratio $r$ , its s                                 | um is 4 and the second term is 3,                                   | /4 , then [IIT Screening 2000; DCE 2001                                       |
|          | (a) $a = \frac{7}{4}, r = \frac{3}{7}$                           | (b) $a = \frac{3}{2}, r = \frac{1}{2}$                                        | (c) $a=2, r=\frac{3}{8}$                                            | (d) $a = 3, r = \frac{1}{4}$                                                  |
| 68.      | Let $n(>1)$ be a positive integ                                  | er, then the largest integer $m$ such tha                                     | at $(n^m + 1)$ divides $(1 + n + n^2 +$                             | $ + n^{127}$ ), is [IIT 1995]                                                 |
|          | (a) 32                                                           | (b) 63                                                                        | (c) 64                                                              | (d) 127                                                                       |
| 69.      |                                                                  | um of the series $a(a+b) + a^2(a^2 + b^2)$                                    | $+a^{3}(a^{3}+b^{3})+$ upto $\infty$ is                             | Y                                                                             |
|          | (a) $\frac{a}{1-a} + \frac{ab}{1-ab}$                            |                                                                               | (c) $\frac{b}{a-b} + \frac{a}{1-a}$                                 | (d) $\frac{b^2}{1-b^2} + \frac{ab}{1-ab}$                                     |
| 70.      |                                                                  | G.P., whose first term is $a$ , then the su                                   |                                                                     | [UPSEAT 2002                                                                  |
|          |                                                                  | (b) $S\left[1-\left(1-\frac{a}{S}\right)^n\right]$                            | 7                                                                   | (d) None of these                                                             |
| 71.      | If S denotes the sum to infini                                   | ity and $S_n$ the sum of $n$ terms of the                                     | series $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$ , such | that $S - S_n < \frac{1}{1000}$ , then the leas                               |
|          | value of <i>n</i> is (a) 8                                       | (6) 9                                                                         | (c) 10                                                              | (d) 11                                                                        |
| 72.      | If exp. $\{(\sin^2 x + \sin^4 x + \sin^4 x + \dots)\}$           | $+\infty$ ) $\log_e 2$ } satisfies the equation $x^2$                         | 9x + 8 = 0, then the value of —                                     | $\frac{\cos x}{\cos x}$ , $0 < x < \frac{\pi}{2}$ is                          |
|          | (a) $\frac{1}{2}(\sqrt{3}+1)$                                    | (b) $\frac{1}{2}(\sqrt{3}-1)$                                                 | (c) 0                                                               | $\begin{array}{ccc} s x + \sin x & 2 \\ \text{(d) None of these} \end{array}$ |
|          |                                                                  |                                                                               |                                                                     | Geometric mean                                                                |
|          |                                                                  | Basic Le                                                                      | vel                                                                 |                                                                               |
| 73.      | If G be the geometric mean o                                     | f x and y, then $\frac{1}{G^2 - x^2} + \frac{1}{G^2 - y^2} =$                 |                                                                     |                                                                               |

If n geometric means be inserted between a and b, then the n<sup>th</sup> geometric mean will be



If p, q, r are in A.P., then  $p^{th}$ ,  $q^{th}$  and  $r^{th}$  terms of any G.P. are in

87.

(c) 4

(d) Nonexistent

| •   | = = = =                                                          |                                                           |                                         |                                                        |
|-----|------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|--------------------------------------------------------|
|     | (a) AP                                                           |                                                           | (b) G.P.                                |                                                        |
|     | (c) Reciprocals of these                                         | terms are in A.P.                                         | (d) None of these                       |                                                        |
| 88. | If $a$ , $b$ , $c$ are in G.P., then                             |                                                           |                                         | [Rajasthan PET 1995]                                   |
|     | (a) $a^2, b^2, c^2$ are in G.P.                                  |                                                           | (b) $a^2(b+c), c^2(a+b), b$             | $b^2(a+c)$ are in G.P.                                 |
|     | (c) $\frac{a}{b+c}$ , $\frac{b}{c+a}$ , $\frac{c}{a+b}$ a        | re in G.P. (d)                                            | None of these                           |                                                        |
| 89. | Let $a$ and $b$ be roots of $x$ the ratio of $(q + p) : (q - p)$ |                                                           | the roots of $x^2 - 12x + q = 0$ , when | ere a, b, c, d form an increasing G.P. Ther            |
|     | (a) 8:7                                                          | (b) 11:10                                                 | (c) 17:15                               | (d) None of these                                      |
| 90. | If the roots of the cubic ed                                     | $ax^3 + bx^2 + cx + d = 0 \text{ are in}$                 | n G.P., then                            |                                                        |
|     | (a) $c^3 a = b^3 d$                                              | (b) $ca^3 = bd^3$                                         | $(c)  a^3b = c^3d$                      | $(d) / ab^3 = cd^3$                                    |
| 91. | If $x_1, x_2, x_3$ as well as $y_1$ ,                            | $y_2, y_3$ are in G.P. with the same con                  | mmon ratio, then the points $(x_1,$     | $(y_1), (x_2, y_2) \text{ and } (x_3, y_3)$ [IIT 1999] |
|     | (a) Lie on a straight line                                       | (b) Lie on an ellipse                                     | (c) Lie on a circle                     | (d) Are vertices of a triangle                         |
| 92. | Let $f(x) = 2x + 1$ . Then the                                   | ne number of real values of $x$ for wh                    | nich the three unequal numbers          | f(x), f(2x), f(4x) are in GP is                        |
|     | (a) 1                                                            | (b) 2                                                     | (c) 0                                   | (d) None of these                                      |
| 93. | $S_{\rm r}$ denotes the sum of the                               | first $r$ terms of a G.P. Then $S_n, S_{2n}$              | $-S_n, S_{3n} - S_{2n}$ are in          |                                                        |
|     | (a) A.P.                                                         | (b) G.P.                                                  | (c) H.P.                                | (d) None of these                                      |
| 94. | If $a^{1/x} = b^{1/y} = c^{1/z}$ and                             | a, b, c are in G.P., then $x, y, z$ will be               | in                                      | [IIT 1969; UPSEAT 2001                                 |
|     | (a) A.P.                                                         | (b) G.P.                                                  | (c) H.P.                                | (d) None of these                                      |
| 95. | If $x$ , $y$ , $z$ are in G.P. and $a^x$                         | $=b^y=c^z$ , then                                         |                                         | [IIT 1966, 1968]                                       |
|     | (a) $\log_a c = \log_b a$                                        | (b) $\log_b a = \log_c b$                                 | (c) $\log_c b = \log_a c$               | (d) None of these                                      |
|     |                                                                  |                                                           | Cana                                    | ral term of Harmonic progression                       |
|     |                                                                  | Bas                                                       | sic Level                               | all term of narmonic progression                       |
|     |                                                                  |                                                           |                                         |                                                        |
| 96. |                                                                  | of a progression are 30, 24, 20. The                      |                                         |                                                        |
|     | (a) 18                                                           | (b) $17\frac{1}{7}$                                       | (c) 16                                  | (d) None of these                                      |
| 97. | The 5 <sup>th</sup> term of the H.P., 2                          | $2, 2\frac{1}{2}, 3\frac{1}{3}, \dots$ will be            |                                         | [MP PET 1984]                                          |
|     | (a) $5\frac{1}{5}$                                               | (b) $3\frac{1}{5}$                                        | (c) 1/10                                | (d) 10                                                 |
| 98. | If 5 <sup>th</sup> term of a H.P. is $\frac{1}{45}$              | and $11^{th}$ term is $\frac{1}{69}$ , then its $16^{th}$ | term will be                            | [Rajasthan PET 1987, 97]                               |
|     | (a) $\frac{1}{89}$                                               | (b) $\frac{1}{85}$                                        | (c) $\frac{1}{80}$                      | (d) $\frac{1}{79}$                                     |
|     |                                                                  |                                                           |                                         |                                                        |

If the 7th term of a H.P. is  $\frac{1}{10}$  and the 12th term is  $\frac{1}{25}$ , then the 20th term is 99.

[MP PET 1997]

**100.** If  $6^{th}$  term of a H.P. is  $\frac{1}{61}$  and its tenth term is  $\frac{1}{105}$ , then first term of that H.P. is

[Karnataka CET 2001]

(b)  $\frac{1}{30}$ 

#### Advance Level

**101.** The 9th term of the series 27+9+5 $\frac{2}{5}$ +3 $\frac{6}{7}$ +..... will be

[MP PET 1983]

(a)  $1\frac{10}{17}$ 

(b)  $\frac{10}{17}$ 

**102.** In a H.P.,  $p^{th}$  term is q and the  $q^{th}$  term is p. Then  $pq^{th}$  term is

[Karnataka CET 2002]

(c) pq

**103.** If *a*, *b*, *c* be respectively the  $p^{th}$ ,  $q^{th}$  and  $r^{th}$  terms of a H.P., then  $\Delta =$ 

(a) 1

(c)

(d) None of these

### Basic Level

**104.** If  $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$  be the harmonic mean between a and b, then the value of n is

[Assam PET 1986]

Harmonic mean

(d) 2

(a) 1 (b) -1

105. If the harmonic mean between a and b be H, then  $\frac{H+a}{H-a} + \frac{H+b}{H-b}$ 

[AMU 1998]

(a) 4

(d) a+b

**106.** If *H* is the harmonic mean between *p* and *q*, then the value of  $\frac{H}{p} + \frac{H}{q}$  is

[MNR 1990; UPSEAT 2000; 2001]

(a) 2

(d) None of these

**107.** H. M. between the roots of the equation  $x^2 - 10x + 11 = 0$  is

[MP PET 1995]

(c)  $\frac{21}{20}$ 

(d)  $\frac{11}{5}$ 

**108.** The harmonic mean of  $\frac{a}{1-ab}$  and  $\frac{a}{1+ab}$  is

[MP PET 1996]

(a)  $\frac{a}{\sqrt{1-a^2h^2}}$ 

(b)  $\frac{a}{1-a^2b^2}$ 

(c) a

(d)  $\frac{1}{a-a^2b^2}$ 

**109.** The sixth H.M. between 3 and  $\frac{6}{13}$  is [Rajasthan PET 1996] Advance Level **110.** If there are *n* harmonic means between 1 and  $\frac{1}{3!}$  and the ratio of  $7^{th}$  and  $(n-1)^{th}$  harmonic means is 9:5, then the value of *n* will be (a) 12 (b) 13 (c) 14 **111.** If *m* is a root of the given equation  $(1-ab)x^2 - (a^2+b^2)x - (1+ab) = 0$  and *m* harmonic means are inserted between *a* and *b*, then the difference between last and the first of the means equals (d) ab(a-b)(a) b-a(b) ab(b-a)(c) a(b-a)Properties of Harmonic progression **Basic Level 112.** If  $\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{a} + \frac{1}{c}$ , then a, b, c are in [MNR 1984; MP PET 1997; UPSEAT 2000] (c) H.P. (d) In G.P. and H.P. both **113.** If a, b, c are in H.P., then  $\frac{a}{b+c}$ ,  $\frac{b}{c+a}$ [Roorkee 1980] (c) H.P. (a) A.P. (d) None of these **114.** If a, b, c, d are any four consecutive coefficients of any expanded binomial, then  $\frac{a+b}{a}$ ,  $\frac{b+c}{b}$ ,  $\frac{c+d}{c}$  are in (c) H.P. (d) None of these **115.**  $\log_3 2, \log_6 2, \log_{12} 2$  are in [Rajasthan PET 1993, 2001] (b) G.P. (c) H.P. (d) None of these **116.** If *a*, *b*, *c* are in H.P., then for all  $n \in N$  the true statement is [Rajasthan PET 1995] (a)  $a^n + c^n < 2b^n$ (c)  $a^n + c^n = 2b^n$ (d) None of these 117. Which number should be added to the numbers 13, 15, 19 so that the resulting numbers be the consecutive term of a H.P. (a) 7 (d) -7Advance Level **118.** If  $b^2$ ,  $a^2$ ,  $c^2$  are in A.P., then a+c, b+c, c+a will be in [AMU 1974] (c) H.P. (d) None of these **119.** If *a*, *b*, *c*, *d* be in H.P., then (a)  $a^2 + c^2 > b^2 + d^2$  (b)  $a^2 + d^2 > b^2 + c^2$  (c)  $ac + b^2$ **120.** If  $a_1, a_2, a_3, \dots, a_n$  are in H.P., then  $a_1a_2 + a_2a_3 + \dots + a_{n-1}a_n$  will be equal to (c)  $ac + bd > b^2 + c^2$ (d)  $ac + bd > b^2 + d^2$ [IIT 1975]

**121.** If x, y, z are in H.P., then the value of expression  $\log(x+z) + \log(x-2y+z)$  will be

(d) None of these

[Rajasthan PET 1985, 2000]

(a) 
$$\log(x-z)$$

(b) 
$$2\log(x-z)$$

(c) 
$$3\log(x-z)$$

(d) 
$$4 \log(x-z)$$

122. II 
$$\frac{}{2}$$
,

**122.** If  $\frac{x+y}{2}$ , y,  $\frac{y+z}{2}$  are in H.P., then x, y, z are in

H.P. (d) None of these

[Rajasthan PET 1989; MP PET 2003]

A.P. (b)

G.P. (c)

[Rajasthan PET 1991]

**123.** If *a*, *b*, *c*, *d* are in H.P., then

(a) 
$$a + d > b + c$$

(b) 
$$ad > bc$$

### Arithmetio-geometric progression

### Basic Level

**124.** If 
$$|x| < 1$$
, then the sum of the series  $1 + 2x + 3x^2 + 4x^3 + \dots \le \infty$  will be

(a) 
$$\frac{1}{1-x}$$

(b) 
$$\frac{1}{1+x}$$

(c) 
$$\frac{1}{(1+x)^2}$$

(d) 
$$\frac{1}{(1-x)^2}$$

**125.** The sum of 
$$0.2+0.004+0.00006+0.0000008+.....$$
 to  $\infty$  is

(a) 
$$\frac{200}{891}$$

(b) 
$$\frac{2000}{9801}$$

(c) 
$$\frac{1000}{9801}$$

**126.** The 
$$n^{th}$$
 term of the sequence 1.1, 2.3, 4.5, 8.7,..... will be

(a) 
$$2^n(2n-1)$$

(b) 
$$2^{n-1}(2n+1)$$

(c) 
$$2^{n-1}(2n-1)$$

(d) 
$$2^n(2n+1)$$

### Advance Level

**127.** The sum of infinite terms of the following series 
$$1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots$$
 will be

[MP PET 1981; Rajasthan PET 1997; Roorkee 1992; DCE 1996, 2000]

(a) 
$$\frac{3}{16}$$

(b) 
$$\frac{35}{8}$$

(c) 
$$\frac{35}{4}$$

(d) 
$$\frac{35}{16}$$

**128.** The sum of the series 
$$1 + 3x + 6x^2 + 10x^3 + \dots \infty$$
 will be

(a) 
$$\frac{1}{(1-x)^2}$$

(b) 
$$\frac{1}{1-x}$$

(c) 
$$\frac{1}{(1+x)^2}$$

(d) 
$$\frac{1}{(1-x)^3}$$

**129.** 
$$2^{1/4}.4^{1/8}.8^{1/16}.16^{1/32}...$$
 is equal to

(d) 
$$\frac{5}{2}$$

**130.** The sum of 
$$1 + \frac{2}{5} + \frac{3}{5^2} + \frac{4}{5^3} + \dots$$
 upto *n* terms is

(c) 
$$\frac{3}{7} - \frac{3n+5}{16 \times 5^{n-1}}$$

(d) 
$$\frac{1}{2} - \frac{5n+1}{3 \times 5^{n+2}}$$

[MNR 1984; MP PET 1998; AIEEE 2002]

[MP PET 1982]

**131.** The sum of 
$$i - 2 - 3i + 4 + \dots$$
 upto 100 terms, where  $i = \sqrt{-1}$  is

(a) 
$$50(1-i)$$

(b) 
$$25i$$

(c) 
$$25(1+i)$$

(d) 
$$100(1-i)$$