2019年度 卒業研究論文

MATLAB/Simulinkによる RADAR計測システムの開発

Development on RADAR measurement system using MATLAB/Simulink

一関工業高等専門学校 電気情報工学科 秋田研究室 佐藤 凌雅

2020年2月26日

概要

本研究は、路面の段差検知システムの実現を目的としている. 提案するシ

ステムはRADARを用いて路面を常に監視し、車両前方の段差の有無を検知す

る. システム構築にはMATLAB/Simulinkを用いたモデルベース開発を採用

し、ソフトウェア設計の効率向上を図った. なお、提案した手法の有効性をシ

ミュレーションを通して検証した.

キーワード: RADAR, モデルベース開発

Abstract

This study aims to realize a road step detection system. The proposed

system can always monitor the road surface with RADAR and warn the

driver if there is a step in front of the vehicle. In addition, in order to

improve the efficiency of software design, model-based development using

MATLAB/Simulink was adopted for system construction. The effective-

ness of the proposed method is verified through a simulation and experi-

ment.

Keyword: RADAR, Model-Based Development

目次

第1章	序論	3
1.1	研究の背景と目的	3
1.2	本論文の構成	4
第2章	車載センサの種類	5
2.1	カメラ	5
2.2	LiDAR	6
2.3	RADAR	6
2.4	総括	7
第3章	RADAR	9
3.1	ミリ波RADAR	9
3.2	本研究で使用するRADAR	11
3.3	RADARの有用性の検証	13
第4章	開発手法	19
4.1	モデルベース開発	19
4.2	MATLAB/Simulink	19
4.3	提案システムの開発手法	20
第5章	段差検知システムの開発	21

第6章	段差検知システムの検証	23
第7章	結論	25
参考文献		27

第1章

序論

1.1 研究の背景と目的

自動車の走行時に生じる振動は乗車している人に負担となり、乗り心地の快適性を損ねる.特に上下方向の振動を軽減する装置としてはバネとダンパを用いるサスペンションが広く用いられている.その中でも、アクティブサスペンションは自動車の揺れを検知し、車内で感じる揺れを抑えるように電子制御することが可能である.

このアクティブサスペンション制御の研究は古くから行われており、1989年には市販車に装備されるまでにその技術は進歩している[1]. しかし、その多くはストロークセンサや加速度センサーがバネ下の動きを検知してから作動するもので、車両が段差に侵入した際の最初の衝撃を完全に吸収できない。そこで、車載センサを用いて路面の状態を測定し、車体に衝撃が加わるタイミングでサスペンションを調整することにより、既存のアクティブサスペンション技術では吸収しきれない最初の衝撃を軽減できると考える。

本研究では、このアクティブサスペンションの動作判定の前段として、路面の段差検知 システムの実現を目的とする.

提案するシステムはRADARを用いて路面を常に監視し、車両前方の段差の有無を判別する。システム構築にはMATLAB/Simulinkを用いたモデルベース開発を採用し、ソフトウェア設計の効率向上を図った。なお、提案した手法の有効性をシミュレーションを通して検証した。

4 第1章 序論

1.2 本論文の構成

本論文は7章より構成され、第1章は緒論であり、本文は第2章から始まる.

2章では現在主に使用されている車載センサについて説明し、3章でRADARの原理の説明とLiDARとの比較を行う。4章ではモデルベース開発について説明を行い、5章で実際に提案するシステムについて述べる。6章で検証結果について説明する。最後に、結論を7章に示す。

第2章

車載センサの種類

この章では自動車の運転支援システムや自動運転に活用されているセンサについて説明する.

2.1 カメラ

一般的に自動運転やADAS向けのカメラは車内にあるルームミラーの裏側などに配置されており、車両の進行方向を向いている.その場合、前方カメラはウインドガラスを挟んで前方の画像を撮影し、画像処理用プロセッサが撮影した画像・映像の解析をリアルタイムで行う. この過程を経て、車両の前方に車両や障害物や人がいるかを検知することができる[2].

カメラは種々の対象物を検出・認識することができ、対象物に応じて複数の用途に利用することができる. 道路上の白線を認識し、その位置から自車のレーン逸脱を警報する機能、前方の車両や歩行者を検知して、衝突の危険がある際に警報を出し、緊急時には自動でブレーキを掛ける機能、等々、様々な用途に用いることができる.

なお,前方を2台のカメラ (ステレオカメラ)を用いると,2台のカメラの映像の視差から物体までの距離を推測することが可能になる[3].

一方,カメラで画像・映像を撮影するということは,基本的には人の目で見るという仕組みと類似の原理であることから,夜間や逆光に加え,濃霧,豪雨,豪雪などの悪天候の

場合は検出能力が低下することが課題の一つとされている[2].

2.2 LiDAR

LiDAR は、赤外線のレーザ光をパルス状に照射し、物体に反射されて帰ってくるまでの時間から距離を計測するセンサである。動作原理が後述するRADARと類似しているため、別名レーザRADARとも呼ばれる。細く絞ったレーザ光を可動ミラーによって方向を変えてスキャンすることで物体の方位も検出することができる。このようなタイプのセンサをスキャン LiDAR と呼ぶ。LiDAR は、ミリ波RADARに比べてさらに波長の短い電磁波である赤外光を使っているため、検出の際の空間分解能が高いことが特長である。この特長を生かし車の進路の安全な場所の検出に使うことができる。

ただし、赤外光を用いるため、豪雨、豪雪、霧などの悪天候時に検出性能が低下するという短所がある[3].

また、LiDARは高価で屋外で使用できる性能のものになると1個あたり数百万円もする. さらに、LiDARは測定時に物理的に回転する. 耐久性の観点から量販車に実装することは現状のままでは少し厳しい[4].

2.3 RADAR

ミリ波RADARは、ミリ波と呼ばれる周波数帯が30GHz~300GHzの非常に波長の短い電波を照射し、物体に反射されて帰ってくる電波を検出することにより、物体までの距離と方向を検出するセンサである。非常に高い周波数の電波は直線性が強く、電波でありながらレーザのように扱うことができる。この周波数を波長にすると1~10mmとミリオーダーの長さになることから、「ミリ波」と呼ばれている。

ミリ波センサのミリ波は直線性が強いため、雨や雪が降っている悪天候な状況でも、遠くまで検出することが可能となる。また、ミリ波は光ではなく電波であるため、トンネル や対向車のライトが当たるなどのように明るさが急激に変化する条件でも、明るさに左右 2.4 総括 7

されず検出できる[5].

2.4 総括

前述した、カメラ、ミリ波RADAR、LiDAR の三種類のセンサは、いずれも長所と短所がある。カメラによる検出は、物体の識別が可能であり、車両や歩行者など自動車を安全に走行させるうえで重要な物体を、他の物体と区別して検出することができる。しかしながら、カメラの画像は人間の目で見る画像と同じ原理に基づくものであり、夜間や逆光など光源が不適切なシーンや、濃霧、豪雨、豪雪などの悪天候のシーンでは、人間と同じく検出能力が低下する。

これに対しミリ波RADARは、自らの発する電波を利用した検出のため、光源や天候に 左右されず良好な検出特性を維持できる。また対象物体までの距離を正確に計測できる特 長もある。しかし、検出の際の空間分解能が他のセンサに比べて劣るため、物体の識別は 困難であり、また段ボール箱や発泡スチロールなど、電波の反射率の低い物体の検出が難 しいという課題がある。

LiDAR は、赤外線のレーザ光を用いるため、電波の反射率が低い物体も検出できる. 特に段ボール箱、木材、発泡スチロールなど、路上散乱物として走行の妨げになる物体も 検出可能である。またスキャン LiDAR では高い空間分解能で距離と方位を検出できるた め、物体検出だけでなく、それらの間のフリースペースの検出も可能である。ただし、赤 外光を用いるため、豪雨、豪雪、霧などの悪天候時に検出性能が低下するという短所があ る。

表2.1に、各種センサーの機能・性能を相互比較した例を示す。

表2.1 各種センサーの機能・性能別相互比較(5段階評価:5がベスト)[6]

機能・性能	LiDAR	レーダー	可視カメラ
近傍の物体検知	2	4	2
測定距離	4	4	5
分解能	4	3	5
暗い場所での動作	5	5	1
明るい場所での動作	5	5	4
雪・霧・雨の際の動作	3	5	2
色彩/コントラスト	1	1	5
検出速度	4	5	2
センサーの寸法	1	5	5
価格	1	5	5

本研究は路面の段差検知システムの実現を目的としている。そのため、他のセンサと比較して近傍の物体検知と検出速度に優位性があり、かつ安価であるRADARが最適なセンサであると考える。

第3章

RADAR

この章ではRADARの基本原理、研究に使用するRADARの性能を示し、LiDARとの比較を行う.

3.1 ミリ波RADAR

3.1.1 RADAR

RADARは電波を発射し遠方にある目標物を検知し、そこまでの距離を測る電波検知装置である[7].

RADARシステムは以下のような簡易なブロック図(図3.1)で表される.

● 送信アンテナ部

電波を効率よく物標に放射し, 反射波を捉える装置

• 信号処理部

受信したデータ列を検出や測距など目的を達するために行うソフトウェア処理

● 検波部

受信波を信号処理しやすい信号形式に変換する装置

10 第3章 RADAR

図3.1 RADARのブロック図

例えば、RADARではパルス波(矩形波)を図3.2のように物標方向に照射し、その反射信号から距離に対する反射強度を得ることができる。物標の位置はこの反射波の強度のピークが発生している箇所に存在すると考えることができる。なお、この反射強度は物体の比誘電率に依存する。障害物のない箇所でも空気による若干の反射は発生するが、空気の比誘電率は物標より小さくなるため反射は少なくなり、物標の検知が可能となる。

図3.2 物体の位置と反射強度の関係

3.1.2 ミリ波

ミリ波の波長は図3.3に示すように1mm~10mmと非常に短い.

図3.3 電波の分類[8]

波長が1cm以下のマイクロ波と比較した際の特徴を以下に述べる[9].

1. 広帯域性

RADARの分解能は帯域幅の逆数となる. ミリ波は広い帯域幅を利用できるため高 分解能・高精度化が可能となる.

2. 装置の小型軽量化

アンテナ開口径は波長に比例するため、周波数が高いほど装置サイズを小さくできる.

3. 鋭い指向性

空間的に高密度の利用が可能となる. また, お互いの電波の干渉も低くできる.

3.2 本研究で使用するRADAR

本研究ではAcconeer社製のXC112/XR112評価キットを用いる. この評価キットは同社製のA111というパルスRADARを搭載したRADARセンサボード(XR112)とRaspberryPiとの接続用コネクタボード(XC112)から構成される. 図3.4にXC112お

12 第3章 RADAR

よびXR112の外観を示す.

(a) XC112[11]

(b) XR112[13]

図3.4 評価キットの外観

評価キットのブロック図を図3.5に示す.

図3.5 XC112/XR112評価キットのブロック図[12]

この評価キットは図3.5にもあるように、シングルボードコンピュータのRaspberryPiを使用することを想定しており、本研究でもRaspberryPiをRADAR制御用コンピュータとして使用した。図3.6にRaspberryPiとRADARを接続した様子を示す。

図3.6 評価キットとRADAR

評価キットに使用されているA111は周波数 $60 \mathrm{GHz}$ (波長 $5~\mathrm{mm}$)のミリ波RADARである[12].

3.3 RADARの有用性の検証

ここではRADARとLiDARにおける環境依存性について検証を行う.

3.3.1 検証手法

センサ

比較対象としてRADARと同じ価格帯のLiDARを用意した。使用したLiDARの性能と外観を表3.1,図3.7に示す。[14]

14 第3章 RADAR

表3.1 LiDARの性能

製品名	YDLIDAR X4
検出距離	120~11,000mm
走査視野	360°
角分解能	0.5°
走査周波数	6~12Hz
電源電圧	DC5V
消費電流	450mA

図3.7 測定に使用したLiDAR

なお、LiDARは仕様上、全方向(ヨー角360度)をスキャンするが、今回の実験では壁側の1本のレーザーだけ使用する.

実験環境

壁との距離をセンサで24時間計測する.この際の実験環境を表3.2、実験の様子を図3.8に示す.

測定日時	2020/01/12 08:47~2020/01/12 08:47
測定場所	一関高専4号棟402号室
測定環境	無人,消灯,外からの外乱光あり
対象物までの距離	0.6m
測定間隔	10秒

表3.2 実験環境

図3.8 RADARとLiDARの比較実験の様子

3.3.2 測定結果

RADAR, LiDARから得られた観測データを図3.9に示す。また、センサの平均値、分散値を表3.3にまとめる。

16 第3章 RADAR

図3.9 LiDARとRADARの測定値の推移

表3.3 実験結果

	LiDAR	RADAR
平均	0.59538803	0.59935253
中央値	0.59500000	0.59958800
分散	0.00003424	0.00000024
標準偏差	0.00585180	0.00049350

図3.9のデータに対して移動平均フィルタを施した.フィルタ処理後のデータを図3.10に示す.

図3.10 LiDARとRADARの測定値の推移(移動平均フィルタ処理後)

3.3.3 結論

表3.3からLiDARと比較してRADARの方が値のばらつきが小さいことがわかった. しかし、LiDARとRADARでは測定原理が異なるため、単純にこのデータだけでRADARの方が優れているとは言い切れない. そこで、図3.10を見ると、LiDARは時間経過に対応して得られるデータが変動している. 測定を行なった2020年1月12日の一関市の日没は16:33、1月13日の日の出は6:54であった. LiDARの測定値が大きく変動している時間と日没、日の出の時間はおおよそ一致していることから、この値の変動は外からの太陽光の影響を受けた可能性がある. また、測定を行なった部屋では温度、湿度の管理を行なっていなかったため、光以外の環境的要因によって測定値にばらつきが出た可能性も考えられる.

一方でRADARは24時間を通してほぼ一定の値を取り続けていた。このことから、RADARはLiDARと比較して外乱の影響を受けにくいと考えられる。以上より、RADARは他の車載センサと比較して環境変化に対しての優位性があると結論づける。

第4章

開発手法

この章ではモデルベース開発という開発手法について概説し、提案システムの開発プロセスについて説明する.

4.1 モデルベース開発

モデルベース開発(Model Based Design / Development MBD)とは、シミュレーション可能なモデルを用いるソフトウェア開発手法のことを指す。制御系MBDでは、制御器および制御対象、またはその一部をモデルで表現し、机上シミュレーション/リアルタイムシミュレーションにより制御アルゴリズムの開発・検証を行う。このモデル化とシミュレーションは、ハードウェアが利用できない場合(システム開発初期)には特に有益である。さらに、コード生成ツールを用いて、制御器モデルから実際の制御器(マイコン等)に組み込む制御用Cプログラムを作成することも可能となる。コード生成により、時間を節約し手作業でのコーディングによるエラーを防ぐことができる[15]。

4.2 MATLAB/Simulink

本研究では、信号処理アルゴリズムの開発にMATLAB/Simulinkを使用した.
MATLABはThe MathWorks社が開発している数値解析ソフトウェアであり、その中で

20 第4章 開発手法

使うプログラミング言語の名称でもある[16]. また、SimulinkはMATLABと統合化されたモデルベース開発のためのソフトウェアである。モデルにMATLABアルゴリズムを組み込み、シミュレーションの結果をMATLABにエクスポートして詳細な解析を行うことができる[17].

4.3 提案システムの開発手法

提案システムの開発は,具体的には以下の開発プロセスに沿って行った.

1. 制御対象のデータ収集

RADAR信号処理アルゴリズムを構築する上で、シミュレータに入力するためのテストデータを実機から収集した.

2. 信号処理アルゴリズム設計

RADAR信号から所望のデータ(路面の段差の有無)を算出する信号処理器をSimulink上に構築し、シミュレーションを行った。

3. アルゴリズムの検証

事前に収集したRADAR信号のデータを解析し、アルゴリズムの有効性を検証した.

第5章

段差検知システムの開発

この章では、構築した段差検知システムについて説明を行う.

第6章

段差検知システムの検証

この章では、構築した段差検知システムについてのシミュレーション、実験の結果について述べる.

第7章

結論

参考文献

- [1] 武馬修一・趙在成・神田亮・梶野英紀・土田久輔・十津憲司・大谷佳史. 電動アクティブサスペンションアクチェータの開発. 自動車技術会論文集. 2008, 39, 5, p. 13.
- [2] 自動運転LAB. 【最新版】自動運転の最重要コアセンサーまとめ LiDAR、ミリ波レーダ、カメラ. https://jidounten-lab.com/y_2520, (参照:2020-01-24)
- [3] 松ヶ谷和沖. 自動運転を支えるセンシング技術. Denso technical review. 2016, 21, p. 13-21.
- [4] MIT Technology Review. Self-Driving Cars' Spinning-Laser Problem. https://www.technologyreview.com/s/603885/autonomous-cars-lidar-sensors/?set=603886, (参照:2020-01-24)
- [5] ZMP.Autonomous Driving (自動運転)の制御に使われるセンサについて. https://www.zmp.co.jp/knowledge/ad_top/dev/sensor, (参照:2020-01-24)
- [6] CleanTechnica. Tesla & Google Disagree About LIDAR Which Is Right?. https://cleantechnica.com/2016/07/29/tesla-google-disagree-lidar-right/, (参照:2020-01-24)
- [7] 梶原昭博 (2019). ミリ波レーダー技術と設計. 科学情報出版.
- [8] 総務省. 周波数帯ごとの主な用途と電波の特徴. https://www.tele.soumu.go.jp/j/adm/freq/search/myuse/summary/, (参照:2020-02-06)
- [9] 藤村契二. 車載用ミリ波レーダの実用化技術. 電気学会論文誌. 1998, 118, p. 292.
- [10] Acconeer. EVK Getting Started Guide. https://developer.acconeer.com/download/evk-getting-started-guide-pdf/, (参照:2020-02-11)
- [11] Acconeer. XC112 Product Brief. https://developer.acconeer.com/download/xc112-product-brief-pdf/, (参照:2020-02-11)
- [12] Acconeer. XC112_XR112 User Guide. https://developer.acconeer.com/download/xc112_xr112-user-guide-pdf/, (参照:2020-02-11)
- [13] Acconeer. XR112 Product Brief. https://developer.acconeer.com/download/xr112-product-brief-pdf/, (参照:2020-02-11)

28 参考文献

[14] YDLIDAR. YDLIDAR X4 Datasheet. http://www.ydlidar.com/Public/upload/files/2019-12-18/YDLIDAR%20X4%20Datasheet.pdf, (参照:2020-01-18)

- [15] The MathWorks,Inc. Model-Based Design with Simulink. https://jp.mathworks.com/help/simulink/gs/model-based-design.html, (参照:2020-02-10)
- [16] The MathWorks,Inc. Getting Started with MATLAB. https://jp.mathworks.com/help/matlab/getting-started-with-matlab.html, (参照:2020-02-10)
- [17] The MathWorks,Inc. Getting Started with Simulink. https://jp.mathworks.com/help/simulink/getting-started-with-simulink.html, (参照:2020-02-10)