Whiskey vs Rum

Woo Junhong

Table of contents

03

04

Background
O1

Problem statement and goals

02

Processing
Web Scraping, Data Processing,
EDA

Modeling

Model Analysis and evaluation

Conclusion

Recommendation, Going forward

Sing Song Cellar

- International alcohol dealer
- Good quality of alcohol
- First company to air drop alcoholic beverages
- Affordable alcohol

Problem statement

Creation of a machine learning model to maximize the efficiency of their marketing spend based on their target audience. Whiskey or Rum?

Goals

Aim To build a classifier that identifies keywords and to classify them to either whiskey or rum based on accuracy

WEB-SCRAPING

- PushShift API
- At least 10,000 rows

r/rum

r/whiskey

Data Cleaning

- Combined title and texts features
- Combined into one dataframe
- Duplicates removed

Preprocessing text

Remove links

O3 Remove emojis

Remove special characters, emoji

Tokenizer and lemmatizer

Top Words

r/whiskey

Top 2 word phase

r/whiskey

r/rum

Top 3 word phase

r/whiskey

r/rum

Rum and whiskey top words

For Rum and whiskey

Rum and whiskey top words

Modeling and Evaluation

Baseline accuracy: 0.54

Model	Train Score	Test Score
Bernoulli Naive Bayes (TfidfVectorizer)	0.54	0.54
Bernoulli Naive Bayes (CountVectorizer)	0.88	0.86
Multinomial Bayes (CountVectorizer)	0.88	0.86
Multinomial Bayes (TF-IDFVectorizer)	0.98	0.95
Gaussian Naive Bayes (CountVectorizer)	0.88	0.86
Gaussian Naive Bayes (TfidfVectorizer)	0.98	0.80
Logistic Regression (TF-IDFVectorizer)	0.99	0.96
KNeighborsClassifier (TF-IDFVectorizer)	0.94	0.89
Hypertuned KNeighborsClassifier (TF-IDFVectorizer)	0.89	0.88

Multinomial NB model - TFIDF vectortizer

Multinomial Bayes (TF-IDFVectorizer)

0.95

Model Fitting

- AUC of 0.99

 Better at distinguishing positive and negatives

Recommendations

Explore other models

Random Forests Classifier, Ensemble Techniques, etc

Add more stop words

Use more useful words

Limited to 2 subreddits

Include more subreddits into model

More data

Other social media platforms

Hypertune models

Both vectorizers and model to compare