CURS 13

Logică Matematică și Computațională

FMI · Denisa Diaconescu · An universitar 2018/2019

LOGICA DE ORDINUL I

LIMBAJE DE ORDINUL I - RECAP

Un limbaj \mathcal{L} de ordinul I este format din:

- · o mulţime numărabilă $V = \{v_n \mid n \in \mathbb{N}\}$ de variabile;
- conectorii ¬ şi →;
- · paranteze: (,);
- · simbolul de egalitate =;
- · cuantificatorul universal ∀;
- · o mulţime \mathcal{R} de simboluri de relaţii;
- · o mulţime \mathcal{F} de simboluri de funcţii;
- · o mulţime C de simboluri de constante;
- · o funcție aritate ari : $\mathcal{F} \cup \mathcal{R} \to \mathbb{N}^*$.

LIMBAJE DE ORDINUL I - RECAP

Termenii lui \mathcal{L} sunt expresiile lui \mathcal{L} definite astfel:

- (T0) Orice variabilă este termen.
- (T1) Orice simbol de constantă este termen.
- (T2) Dacă $m \geq 1, f \in \mathcal{F}_m$ şi t_1, \ldots, t_m sunt termeni, atunci $ft_1 \ldots t_m$ este termen.

Formulele atomice ale lui \mathcal{L} sunt expresiile de forma:

- · (s = t), unde s, t sunt termeni;
- · $(Rt_1...t_m)$, unde $R \in \mathcal{R}_m$ și $t_1,...,t_m$ sunt termeni.

Formulele lui \mathcal{L} sunt expresiile lui \mathcal{L} definite astfel:

- (F0) Orice formulă atomică este formulă.
- (F1) Dacă φ este formulă, atunci $(\neg \varphi)$ este formulă.
- (F2) Daca φ şi ψ sunt formule, atunci $(\varphi \to \psi)$ este formulă.
- (F3) Dacă φ este formulă și x este variabilă, atunci $(\forall x \varphi)$ este formulă.

LIMBAJE DE ORDINUL I - RECAP

Conectori derivați

Conectorii \lor , \land , \leftrightarrow şi cuantificatorul existenţial \exists sunt introduşi prin următoarele abrevieri:

$$\varphi \lor \psi \qquad := \quad ((\neg \varphi) \to \psi)$$

$$\varphi \land \psi \qquad := \quad \neg(\varphi \to (\neg \psi)))$$

$$\varphi \leftrightarrow \psi \qquad := \quad ((\varphi \to \psi) \land (\psi \to \varphi))$$

$$\exists x \varphi \qquad := \quad (\neg \forall x (\neg \varphi)).$$

STRUCTURA

Definiție 13.1

O \mathcal{L} -structură este un cvadruplu

$$\mathcal{A} = (A, \mathcal{F}^{\mathcal{A}}, \mathcal{R}^{\mathcal{A}}, \mathcal{C}^{\mathcal{A}})$$

unde

- · A este o mulţime nevidă;
- · $\mathcal{F}^{\mathcal{A}} = \{f^{\mathcal{A}} \mid f \in \mathcal{F}\}$ este o mulţime de operaţii pe \mathcal{A} ; dacă f are aritatea m, atunci $f^{\mathcal{A}} : \mathcal{A}^m \to \mathcal{A}$;
- $\mathcal{R}^{\mathcal{A}} = \{R^{\mathcal{A}} \mid R \in \mathcal{R}\}$ este o mulţime de relaţii pe A; dacă R are aritatea m, atunci $R^{\mathcal{A}} \subseteq A^m$;
- $\cdot \ \mathcal{C}^{\mathcal{A}} = \{ c^{\mathcal{A}} \in A \mid c \in \mathcal{C} \}.$
- · A se numește universul structurii A. Notație: A = |A|
- $f^{\mathcal{A}}$ (respectiv $R^{\mathcal{A}}$, $c^{\mathcal{A}}$) se numeşte interpretarea lui f (respectiv R, c) în \mathcal{A} .

EXEMPLE - LIMBAJUL EGALITĂŢII

$$\mathcal{L}_{=}=(\mathcal{R},\mathcal{F},\mathcal{C})$$
 unde

- $\mathcal{R} = \mathcal{F} = \mathcal{C} = \emptyset$
- acest limbaj este potrivit doar pentru a exprima proprietăți ale egalității
- · $\mathcal{L}_{=}$ -structurile sunt mulţimile nevide

Exemple de formule:

· egalitatea este simetrică:

$$\forall x \forall y (x = y \to y = x)$$

· universul are cel puţin trei elemente:

$$\exists x \exists y \exists z (\neg(x = y) \land \neg(y = z) \land \neg(z = x))$$

 $\mathcal{L}_{ar} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$ unde

- $\mathcal{R} = {\dot{\langle}}; \dot{\langle}$ este simbol de relație binară, adică are aritatea 2;
- \cdot $\mathcal{F} = \{\dot{+}, \dot{\times}, \dot{S}\}; \dot{+}, \dot{\times}$ sunt simboluri de operații binare și \dot{S} este simbol de operație unar (adică are aritatea 1);
- $\cdot \mathcal{C} = \{\dot{0}\}.$

Scriem $\mathcal{L}_{ar} = (\dot{<}; \dot{+}, \dot{\times}, \dot{S}; \dot{0})$ sau $\mathcal{L}_{ar} = (\dot{<}, \dot{+}, \dot{\times}, \dot{S}, \dot{0})$.

Exemplul natural de \mathcal{L}_{ar} -structură: $\mathcal{N}:=(\mathbb{N},<,+,\cdot,S,0)$, unde $S:\mathbb{N}\to\mathbb{N}, S(m)=m+1$ este funcția succesor. Prin urmare,

$$\dot{<}^{\mathcal{N}} = <, \dot{+}^{\mathcal{N}} = +, \dot{\times}^{\mathcal{N}} = \cdot, \dot{S}^{\mathcal{N}} = S, \dot{O}^{\mathcal{N}} = 0.$$

· Alt exemplu de \mathcal{L}_{ar} -structură: $\mathcal{A} = (\{0,1\},<,\vee,\wedge,\neg,1)$.

EXEMPLU - LIMBAJUL CU UN SIMBOL DE RELAȚIE BINAR

$$\mathcal{L}_{R} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$$
 unde

- $\mathcal{R} = \{R\}; R \text{ simbol binar}$
- $\cdot \mathcal{F} = \mathcal{C} = \emptyset$
- · L-structurile sunt mulțimile nevide împreună cu o relație binară
- · Dacă suntem interesați de mulțimi parțial ordonate (A, \leq) , folosim simbolul \leq în loc de R și notăm limbajul cu $\mathcal{L}_{<}$.
- · Dacă suntem interesați de mulțimi strict ordonate (A, <), folosim simbolul $\dot{<}$ în loc de R și notăm limbajul cu $\mathcal{L}_{<}$.
- · Dacă suntem interesați de grafuri G = (V, E), folosim simbolul \dot{E} în loc de R și notăm limbajul cu \mathcal{L}_{Graf} .
- · Dacă suntem interesați de structuri (A, \in), folosim simbolul $\dot{\in}$ în loc de R și notăm limbajul cu \mathcal{L}_{\in} .

EXEMPLE - LIMBAJUL GRUPURILOR

$$\mathcal{L}_{Gr} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$$
 unde

- $\mathcal{R} = \emptyset$:
- $\mathcal{F} = \{\dot{*},\dot{-1}\}; \dot{*} \text{ simbol binar, }\dot{-1} \text{ simbol unar}$
- $\cdot \mathcal{C} = \{\dot{e}\}.$
- Scriem $\mathcal{L}_{Gr} = (\emptyset; \dot{*}, \dot{-}^1; \dot{e})$ sau $\mathcal{L}_{Gr} = (\dot{*}, \dot{-}^1, \dot{e})$.

Exemple naturale de \mathcal{L}_{Gr} -structuri sunt grupurile: $\mathcal{G}=(G,\cdot,^{-1},e)$. Prin urmare, $\dot{*}^{\mathcal{G}}=\cdot,\dot{^{-1}}^{\mathcal{G}}=^{-1},\dot{e}^{\mathcal{G}}=e$.

Pentru a discuta despre grupuri abeliene (comutative), este tradițional să se folosească limbajul $\mathcal{L}_{AbGr} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$, unde

- $\mathcal{R} = \emptyset$:
- $\mathcal{F} = \{\dot{+}, \dot{-}\}; \dot{+} \text{ simbol binar, } \dot{-} \text{ simbol unar;}$
- $\cdot \ \mathcal{C} = \{\dot{0}\}.$

Scriem $\mathcal{L}_{AbGr} = (\dot{+}, \dot{-}, \dot{0}).$

INTERPRETARE (EVALUARE)

Fie $\mathcal L$ un limbaj de ordinul I și $\mathcal A$ o $\mathcal L$ -structură.

Definiția 13.2

O interpretare sau evaluare a (variabilelor) lui \mathcal{L} în \mathcal{A} este o funcție $e: V \to A$.

În continuare, $e: V \to A$ este o interpretare a lui $\mathcal L$ in $\mathcal A$.

Definiția 13.3

Prin inducție pe termeni se definește interpretarea $t^{\mathcal{A}}(e) \in A$ a termenului t sub evaluarea e:

- · dacă $t = x \in V$, atunci $t^{A}(e) := e(x)$;
- · dacă $t = c \in \mathcal{C}$, atunci $t^{\mathcal{A}}(e) := c^{\mathcal{A}}$;
- · dacă $t = ft_1 \dots t_m$, atunci $t^{\mathcal{A}}(e) := f^{\mathcal{A}}(t_1^{\mathcal{A}}(e), \dots, t_m^{\mathcal{A}}(e))$.

Prin inducție pe formule se definește interpretarea

$$\varphi^{\mathcal{A}}(e) \in \{0,1\}$$

a formulei φ sub evaluarea e.

$$(s = t)^{\mathcal{A}}(e) = \begin{cases} 1 & \text{dacă } s^{\mathcal{A}}(e) = t^{\mathcal{A}}(e) \\ 0 & \text{altfel.} \end{cases}$$
$$(Rt_1 \dots t_m)^{\mathcal{A}}(e) = \begin{cases} 1 & \text{dacă } R^{\mathcal{A}}(t_1^{\mathcal{A}}(e), \dots, t_m^{\mathcal{A}}(e)) \\ 0 & \text{altfel.} \end{cases}$$

INTERPRETAREA FORMULELOR

Negația și implicația

$$(\neg \varphi)^{\mathcal{A}}(e) = 1 - \varphi^{\mathcal{A}}(e);$$

$$(\varphi \to \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \to \psi^{\mathcal{A}}(e)$$
, unde,

Prin urmare,

$$(\neg \varphi)^{\mathcal{A}}(e) = 1 \iff \varphi^{\mathcal{A}}(e) = 0.$$

$$(\varphi \to \psi)^{\mathcal{A}}(e) = 1 \iff (\varphi^{\mathcal{A}}(e) = 0 \text{ sau } \psi^{\mathcal{A}}(e) = 1).$$

INTERPRETAREA FORMULELOR

Notație

Pentru orice variabilă $x \in V$ și orice $a \in A$, definim o nouă interpretarea $e_{x \leftarrow a}: V \to A$ prin

$$e_{x \leftarrow a}(v) = \begin{cases} e(v) & \text{dacă } v \neq x \\ a & \text{dacă } v = x. \end{cases}$$

Interpretarea formulelor

$$(\forall x \varphi)^{\mathcal{A}}(e) = \begin{cases} 1 & \text{dacă } \varphi^{\mathcal{A}}(e_{x \leftarrow a}) = 1 \text{ pentru orice } a \in A \\ 0 & \text{altfel.} \end{cases}$$

RELAŢIA DE SATISFACERE

Fie \mathcal{A} o \mathcal{L} -structură și $e: V \to A$ o interpretare a lui \mathcal{L} în \mathcal{A} .

Definiția 13.4

Fie φ o formulă. Spunem că:

- e satisface φ în \mathcal{A} dacă $\varphi^{\mathcal{A}}(e) = 1$. Notaţie: $\mathcal{A} \models \varphi[e]$.
- · e nu satisface φ în \mathcal{A} dacă $\varphi^{\mathcal{A}}(e) = 0$. Notaţie: $\mathcal{A} \not\models \varphi[e]$.

Corolarul 13.5

Pentru orice formule φ, ψ și orice variabilă x,

- (i) $A \vDash \neg \varphi[e] \iff A \not\vDash \varphi[e]$.
- (ii) $A \vDash (\varphi \to \psi)[e] \iff A \vDash \varphi[e] \text{ implică } A \vDash \psi[e] \iff A \nvDash \varphi[e] \text{ sau } A \vDash \psi[e].$
- (iii) $A \vDash (\forall x \varphi)[e] \iff$ pentru orice $a \in A$, $A \vDash \varphi[e_{x \leftarrow a}]$.

Demonstrație. Exercițiu ușor.

RELAŢIA DE SATISFACERE

Fie φ, ψ formule şi x o variabilă.

Propoziția 13.6

(i)
$$(\varphi \lor \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \lor \psi^{\mathcal{A}}(e);$$

(ii)
$$(\varphi \wedge \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \wedge \psi^{\mathcal{A}}(e);$$

(iii)
$$(\varphi \leftrightarrow \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \leftrightarrow \psi^{\mathcal{A}}(e);$$

(iv)
$$(\exists x \varphi)^{\mathcal{A}}(e) = \begin{cases} 1 & \text{dacă există } a \in A \text{ a.î. } \varphi^{\mathcal{A}}(e_{x \leftarrow a}) = 1 \\ 0 & \text{altfel.} \end{cases}$$

Demonstrație. Exercițiu ușor. Arătăm, de exemplu, (iv).

$$(\exists x\varphi)^{\mathcal{A}}(e) = 1 \iff (\neg \forall x \neg \varphi)^{\mathcal{A}}(e) = 1 \iff (\forall x \neg \varphi)^{\mathcal{A}}(e) = 0$$

$$\iff \text{există } a \in A \text{ a.i. } (\neg \varphi)^{\mathcal{A}}(e_{x \leftarrow a}) = 0$$

$$\iff \text{există } a \in A \text{ a.i. } \varphi^{\mathcal{A}}(e_{x \leftarrow a}) = 1. \quad \Box$$

RELAŢIA DE SATISFACERE

Corolarul 13.7

- (i) $\mathcal{A} \vDash (\varphi \land \psi)[e] \iff \mathcal{A} \vDash \varphi[e] \text{ si } \mathcal{A} \vDash \psi[e].$
- (ii) $A \vDash (\varphi \lor \psi)[e] \iff A \vDash \varphi[e] \text{ sau } A \vDash \psi[e].$
- (iii) $\mathcal{A} \vDash (\varphi \leftrightarrow \psi)[e] \iff \mathcal{A} \vDash \varphi[e] \operatorname{ddacă} \mathcal{A} \vDash \psi[e].$
- $\text{(iv) } \mathcal{A} \vDash (\exists \mathsf{x} \varphi)[e] \Longleftrightarrow \text{ există } a \in \mathsf{A} \text{ a.î. } \mathcal{A} \vDash \varphi[e_{\mathsf{x} \leftarrow a}].$

SEMANTICĂ

Fie φ formulă a lui \mathcal{L} .

Definiția 13.8

Spunem că φ este satisfiabilă dacă există o \mathcal{L} -structură \mathcal{A} și o evaluare $e:V\to A$ a.î.

$$\mathcal{A} \vDash \varphi[e].$$

Spunem şi că (A, e) este un model al lui φ .

Atenţie! Este posibil ca atât φ cât şi $\neg \varphi$ să fie satisfiabile. Exemplu: $\varphi := x = y$ în $\mathcal{L}_=$.

SEMANTICĂ

Fie φ formulă a lui \mathcal{L} .

Definiția 13.9

Spunem că φ este adevărată într-o \mathcal{L} -structură \mathcal{A} dacă pentru orice evaluare $e:V\to A$,

$$\mathcal{A} \vDash \varphi[e].$$

Spunem şi că \mathcal{A} satisface φ sau că \mathcal{A} este un model al lui φ .

Notaţie: $A \models \varphi$

Definiția 13.10

Spunem că φ este formulă universal adevărată sau (logic) validă dacă pentru orice \mathcal{L} -structură \mathcal{A} ,

$$\mathcal{A} \vDash \varphi$$
.

SEMANTICĂ

Fie φ, ψ formule ale lui \mathcal{L} .

Definiția 13.11

 φ şi ψ sunt logic echivalente (notație $\varphi \bowtie \psi$) dacă pentru orice $\mathcal L$ -structură $\mathcal A$ și orice evaluare $e:V\to A$,

$$\mathcal{A} \vDash \varphi[e] \iff \mathcal{A} \vDash \psi[e].$$

Definiția 13.12

 ψ este consecință semantică a lui φ (notație $\varphi \models \psi$) dacă pentru orice \mathcal{L} -structură \mathcal{A} și orice evaluare $e: V \to A$,

$$\mathcal{A} \vDash \varphi[e] \quad \Rightarrow \quad \mathcal{A} \vDash \psi[e].$$

Observație

- (i) $\varphi \models \psi$ ddacă $\models \varphi \rightarrow \psi$.
- (ii) $\varphi \vDash \psi$ ddacă $(\psi \vDash \varphi$ şi $\varphi \vDash \psi)$ ddacă $\vDash \psi \leftrightarrow \varphi$.

ECHIVALENȚE ȘI CONSECINȚE LOGICE

Propoziția 13.13

Pentru orice formule φ , ψ și orice variabile x, y,

$$\neg \exists x \varphi \quad \exists x \neg \varphi \qquad (1)$$

$$\neg \forall x \varphi \quad \exists \exists x \neg \varphi \qquad (2)$$

$$\forall x (\varphi \land \psi) \quad \exists \forall x \varphi \land \forall x \psi \qquad (3)$$

$$\forall x \varphi \lor \forall x \psi \quad \exists \forall x (\varphi \lor \psi) \qquad (4)$$

$$\exists x (\varphi \land \psi) \quad \exists \exists x \varphi \land \exists x \psi \qquad (5)$$

$$\exists x (\varphi \lor \psi) \quad \exists \exists x \varphi \lor \exists x \psi \qquad (6)$$

$$\forall x (\varphi \to \psi) \quad \exists \forall x \varphi \to \forall x \psi \qquad (7)$$

$$\forall x (\varphi \to \psi) \quad \exists \exists x \varphi \to \exists x \psi \qquad (8)$$

$$\forall x \varphi \quad \exists \exists x \varphi \qquad (9)$$

ECHIVALENŢE ŞI CONSECINŢE LOGICE

$$\varphi \models \exists x \varphi \tag{10}$$
$$\forall x \varphi \models \varphi \tag{11}$$

$$\forall x \forall y \varphi \quad \exists \quad \forall y \forall x \varphi$$

$$\exists x \exists y \varphi \quad \exists y \exists x \varphi$$

$$\exists y \forall x \varphi \models \forall x \exists y \varphi.$$

(14)

(12)(13)

Dem.: Exercițiu.

Propoziția 13.14

Pentru orice termeni s, t, u,

- (i) $\models t = t$:
- (ii) $\models s = t \rightarrow t = s$:
- (iii) $\models s = t \land t = u \rightarrow s = u$.

Dem.: Exerciţiu uşor.

Pe data viitoare!

Conținutul tehnic al acestui curs se regăsește în cursul de *Logică Matematică și Computațională* al prof. Laurențiu Leuștean din anul universitar 2017/2018.