

Address

FCC TEST REPORT

Shenzhen Kingree Electronic Co., Ltd.

Bluetooth Speaker

Model No.: BT2109

Prepared For Shenzhen Kingree Electronic Co., Ltd.

3-6F, 70 Building, Bohua Tech Park, Shangwei Industrial Area,

Zhangkengjing, Guanlan Street, Shenzhen, China

Prepared By Shenzhen Anbotek Compliance Laboratory Limited

1/F, Building D, Sogood Science and Technology Park, Sanwei Address

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26066440

Report Number SZAWW180323005-01

Mar. 23~Apr. 10, 2018 Date of Test

Apr. 11, 2018 Date of Report

Contents

1. General Information				Yu.	
1.1. Client Information	poter	Anbo	tek.	Popole.	An
1.2. Description of Device (EUT)	, otek	Anbore	An	Mpotek	Anbo.
1.2. Description of Device (EUT) 1.3. Auxiliary Equipment Used Durin	g Test	Kupotek	Anbo.	k Hotek	popote.
1.4. Description of Test Modes	Anbo	······································	ek Anbote	Amb	1970dp
1.5. List of channels	Anbore	Nu.	طہے کی	otek Anbo	
1.6. Description Of Test Setup	7 ₀₃₁	oten An	0. b.	1016 × 101000	Jose Yun
1.7. Test Equipment List		wotek.	Anbore A	'un Kek	whotek A
1.6. Description Of Test Setup 1.7. Test Equipment List 1.8. Measurement Uncertainty	por I	Yu.,	Kabotek	Anbo	wotek.
1.8. Measurement Oncertainty	poter	Anbo	" dotek	Anbore.	Ans.
2. Summary of Test Results	Motek	Anbore.	Ann	k botek	Anbo.
3. Conducted Emission Test	VI.,	k kapote	Anbo		k Vupoje,
3.1. Test Standard and Limit	Anbe		otek Anb	or Yur	do. Yay
3.2. Test Setup	k Anb	or VIII	uotek .	oboten Ant	
3.3. Test Procedure	otek.	aboter	Yup.	otek	inport A
3.4. Test Data	,- , , , , , , , , , , , , , , , , , ,	botek	Anbolt	All.	nbotek
3.2. Test Setup	Edge	VII.	unbotek	Anbo	, otek
4.1. Test Standard and Limit	Anboten	Anb	w botel	Anboil	VII.
4.2. Test Setup	botel	Anbote	ν	tek anbote	Anbu
4.3. Test Procedure	b.,	stek Anb	oter Anb.		otek Anbo
4.4. Test Data	Anb.		"hotek A	por Am	notek ni
5. Maximum Peak Output Power Test	otek A	upo.	rs.	Amboten A	Wp. OK
5. Maximum Peak Output Power Test 5.1. Test Standard and Limit 5.2. Test Setup	notek	Anbote.	Yun-	botek	Anbor
5.2. Test Setup	ru.	otek	Aupor	A. otek	Anboten
5.3. Test Procedure	Anbo	n. otel	K Anboter	Anv	botek
5.4. Test Data	Anbote,	Anu	odo	iek Aupota	V
5.2. Test Setup	4	tek Anb		otek Nupr	te. And
0.1. Test Standard					
				" Up.	
6.3. Test Procedure	nboten	Anbo	n notek	Anbole	Ans rek
6.4. Test Data	hotek	Anboto	Vur.	nbotek	Anbo
6.2. Test Setup	An	enbote!	Anbb	ak hotek	Anbole
7.1. Test Standard and Limit	Anbe	ak no	stek Anbot	Anv	iek "bot
7.2. Test Setup	Anbo	to VIII	otek on	botek Anbe	
7.3 Test Procedure	tek vo	boten V	upo V	hotek A	ipole Vil
7 4 Test Data	.o.V	botek	Anboto	All	anbotek
8 Number of Honning Channel Test	upor	Arek	Anbotek	Anbe	hotek
8.1 Test Standard and I imit	Anbotek	Anb	hotek	Anbola	Am
8.2 Test Setup	hotek	Anboles	Pun-	ek abotek	Anbor
8.3. Test Procedure	Key	ek abo	rey Aupor	امر کی	ek Anbor
8.4 Test Data	Aupo,	٧٥	botek Ani	DOLO. YUD	stek st
8.3. Test Procedure	tek An	pour M	rek	nbotek Ar	(Laby);
7. DWCII TIIIIC TCSL			N. Contraction	, AV	

it	,	Vapore.	Anv		Anbor	40
Pupote.	Anv	, nbotek	Aupor		3K 50pc	40
botek	Anbo.	moj	ek subo	And		40
A. otel	k anbote	Anu		botek Anl	,or A	40
uency Band	Edge Require	ement	00r V	notek	nboten	44
mit	0 bo.	otek	Anbote.	Anto	botek	44
otek	upote.	Yun Yek	botek	Anbor	VI.	44
, Nek	obotek	Anbo	Ai.	Anbote	Anb	44
Anbo	h. notek	Anbore.	Anv		k Aupo	44
Anbore	An	k "pot	sk Aupo	. bo.	ote ^K	49
	Anbo	V	otek An	Pore, Yur	Yayı	49
	tek Anb	ote. An	You	abotek l	'upo,	49
		nbotek	Anbo	notek.	Anbote.	50
		, notek	Anbole	VUr.	sbotek	52
		An	abotek	Anbo	6b.	56
	quirement PHOTOGRA	nency Band Edge Require	quirement	quirement. Construction. PHOTOGRAPH.	quirement. Construction. PHOTOGRAPH.	quirement. Construction. PHOTOGRAPH.

TEST REPORT

Shenzhen Kingree Electronic Co., Ltd. Applicant Manufacturer Shenzhen Kingree Electronic Co., Ltd.

Bluetooth Speaker **Product Name**

BT2109 Model No. Trade Mark N.A.

Input: DC 5V, 0.3A (with DC 3.7V, 300 mAh Battery inside) Rating(s)

Test Standard(s) FCC Part15 Subpart C 2017, Section 15.247

ANSI C63.10: 2013 Test Method(s)

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test.	"Ofer Vulle	Mar. 25 Apr. 10, 2016
Date of Test.	207	Winber Waya
Anbotek Anbote	NBOTE -	Winkey Wang
Prepared by :	Ambotek -	k solek Anbot All tok spolek
Amodek		(Tested Engineer / Winkey Wang)
ek Anbotek	CIFICAL	(Tested Eligilicer) Willikey Wally)
	aboten Anboten	langus.
Reviewer:	Anbotek Anbote	All tok
2.5	rek abotek Anbi	Stek Anbotek Anbotek Anbotek Anbotek
		(Project Manager / Tangcy. T)
		(Froject Wanager) Panigey. 1)
Approved & Authorized	Anbotek Anbotek	X Thorn Charles
Approved & Authorized	d Signer :	
		(Manager / Tom Chen)

1. General Information

1.1. Client Information

Applicant	:	Shenzhen Kingree Electronic Co., Ltd.
Address	:	3-6F, 70 Building, Bohua Tech Park, Shangwei Industrial Area, Zhangkengjing, Guanlan Street, Shenzhen, China
Manufacturer	:	Shenzhen Kingree Electronic Co., Ltd.
Address	:	3-6F, 70 Building, Bohua Tech Park, Shangwei Industrial Area, Zhangkengjing, Guanlan Street, Shenzhen, China

1.2. Description of Device (EUT)

Product Name	:	Bluetooth Speaker	no otek Anbotek Anbot Am botek
Model No.	:	BT2109	Anbotek Anbotek Anbot Akk Abot
Trade Mark	:	N.A.	Anbotek Anbotek Anbo
Test Power Supply	:	AC 120V, 60Hz for adapter/AC 2 DC 3.7V, Battery inside	240V, 60Hz for adapter
		Operation Frequency:	2402MHz~2480MHz
	Number of Modulation	Transfer Rate:	1/2/3 Mbits/s
Product		Number of Channel:	79 Channels
Description		Modulation Type:	GFSK, π/4-DQPSK, 8-DPSK
		Antenna Type:	PCB Antenna
		Antenna Gain(Peak):	0 dBi

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

	Adapter	:	Manufacturer: ZTE]
P			M/N: STC-A2050I1000USBA-C	
			S/N: 201202102100876	
			Input: 100-240V~50/60Hz 0.3A	100
,\			Output: DC 5V, 1000mA	o ^k

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	CH00
Mode 2	CH39
Mode 3	CH78
Mode 4	Keeping TX+ Charging Mode

	For Conducted Emission
Final Test Mode	Description
Mode 4	Keeping TX+ Charging Mode

For Radiated Emission							
Final Test Mode	Description						
Mode 1	Anbote CH00 And tek abotek A						
Mode 2	CH39						
Mode 3	CH78						
Mode 4	Keeping TX+ Charging Mode						

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
 - (2) The data rate was set in 1Mbps for radiated emission due to the highest RF output power.

1.5. List of channels

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
00	2402	17	2419	34	2436	51	2453	68	2470
01	2403	18	2420	35	2437	52	2454	69	2471
02	2404	19	2421	36	2438	53 ote 1	2455	70	2472
03	2405	20	2422	37	2439	54	2456	71	2473
04	2406	21	2423	38	2440	55	2457	72	2474
05	2407	22	2424	39	2441	56	2458	73	2475
05	2408	23	2425	40	2442	57	2459	74	2476
kel 07 M	2409	24	2426	41 Anlo	2443	58	2460	75	2477
08	2410	25	2427	42	2444	59	2461	76	2478
09	2411	26	2428	43	2445	60	2462	ote ^X 77	2479
An ¹⁰ 10	2412	27	2429	44	2446	61.000	2463	78	2480
phPotos	2413	28	2430	45	2447	62	2464		30010
12	2414	29	2431	46	2448	63	2465		
13	2415	30	2432	47,000	2449	64	2466		
14	2416	31	2433	48	2450	65	2467		D 10 P
15 15	2417	32	2434	49	2451	66	2468		
16	2418	33	2435	50	2452	67	2469		

Note:

- 1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.
- 2. EUT built-in battery-powered, fully-charged battery use of the test battery.

1.6. Description Of Test Setup

CE

RE

1.7. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	
ntek 1. nbotek	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 17, 2017	1 Year	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Nov. 17, 2017	1 Year	
3. №	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 17, 2017	1 Year	
4.	Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 17, 2017	1 Year	
5.	Spectrum Analysis	Agilent	N9038A	MY53227295	Nov. 17, 2017	1 Year	
6.	Preamplifier	SKET Electronic	BK1G18G30 D	KD17503	Nov. 17, 2017	1 Year	
7.00	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Nov. 17, 2017	1 Year	
8.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 20, 2017	1 Year	
9.1	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 20, 2017	1 Year	
10.	Loop Antenna	Schwarzbeck	HFH2-Z2	100047	Nov. 17, 2017	1 Year	
11.	Horn Antenna	Schewarzbeck	BBHA9170	9170-375	Nov. 17, 2017	1 Year	
12.	Pre-amplifier	SONOMA	310N	186860	Nov. 17, 2017	1 Year	
13.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A	
14.	RF Test Control System	YIHENG	YH3000	2017430	Nov. 18, 2017	1 Year	
15.	Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 17, 2017	1 Year	
16.	Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 17, 2017	1 Year	
17.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 18, 2017	1 Year	
18.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 18, 2017	1 Year	
19.	Signal Generator	Agilent	E4421B	MY41000743	Nov. 18, 2017	1 Year	
20.	DC Power Supply	LW	TPR-6410D	349315	Nov. 01, 2017	1 Year	
21.	Constant Temperature Humidity Chamber	Sertep	ZJ-HWHS80 B	ZJ-17042804	Nov. 01, 2017	1 Year	

FCC ID: ZV9-BT2109

1.8. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 4.1 dB (Horizontal)
		Ur = 4.3 dB (Vertical)
		Anbotek Anbotek Anbotek Anbotek Anbotek
Conduction Uncertainty	:	Uc = 3.4dB

1.9. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

All Emissions tests were performed at

Shenzhen Anbotek Compliance Laboratory Limited.

at 1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

2. Summary of Test Results

Standard Section	Test Item	Result
15.203/15.247(c)	Antenna Requirement	PASS
15.207	Conducted Emission	PASS
15.205/15.209	Spurious Emission	PASS
15.247(b)(1)	Conducted Peak Output Power	PASS
15.247(a)(1)	20dB Occupied Bandwidth	PASS
15.247(a)(1)	Carrier Frequencies Separation	PASS
15.247(a)(1)	Hopping Channel Number	PASS
15.247(a)(1)	Dwell Time	PASS
15.247(d)	Band Edge	PASS

3. Conducted Emission Test

3.1. Test Standard and Limit

Ç	Test Standard	FCC Part15 Section 15.20	07 Ambolish Amb	Anbotek Anbote An
		Emagnaman	Maximum RF I	Line Voltage (dBuV)
7		Frequency	Quasi-peak Level	Average Level
	Test Limit	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
6		500kHz~5MHz	56	46
0		5MHz~30MHz	60	50

Remark: (1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequency.

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

Please to see the following pages

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode Test Specification: AC 120V, 60Hz for adapter

Comment: Live Line

Tem.:22.5°C Hum.:59%

	No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBu∀	Over Limit (dB)	Detector	Remark
0	1	0.4780	2.57	19.97	22.54	46.37	-23.83	AVG	
	2	0.9500	22.23	20.11	42.34	56.00	-13.66	QP	
2	3	0.9500	10.28	20.11	30.39	46.00	-15.61	AVG	
	4	1.4260	3.10	20.13	23.23	46.00	-22.77	AVG	
	5	1.8940	19.52	20.14	39.66	56.00	-16.34	QP	
	6	1.8940	6.12	20.14	26.26	46.00	-19.74	AVG	
	7	3.3260	5.01	20.17	25.18	46.00	-20.82	AVG	
3	8	4.7180	20.89	20.20	41.09	56.00	-14.91	QP	
	9	4.7180	5.17	20.20	25.37	46.00	-20.63	AVG	
3	10	8.0540	24.05	20.29	44.34	60.00	-15.66	QP	
	11	12.9620	23.50	20.29	43.79	60.00	-16.21	QP	
	12	13.2740	23.43	20.29	43.72	60.00	-16.28	QP	

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode Test Specification: AC 120V, 60Hz for adapter

Comment: Neutral Line

Tem.:22.5°C Hum.:59%

N	No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBu∀	Over Limit (dB)	Detector	Remark
1		0.5899	4.18	20.01	24.19	46.00	-21.81	AVG	
2		0.9340	23.29	20.10	43.39	56.00	-12.61	QP	
3		0.9420	10.26	20.10	30.36	46.00	-15.64	AVG	
4		1.4060	4.18	20.13	24.31	46.00	-21.69	AVG	
5		1.8780	21.03	20.14	41.17	56.00	-14.83	QP	
6		1.8780	6.38	20.14	26.52	46.00	-19.48	AVG	
7		3.2820	5.13	20.17	25.30	46.00	-20.70	AVG	
8		4.2540	18.89	20.19	39.08	56.00	-16.92	QP	
9		4.6820	3.12	20.20	23.32	46.00	-22.68	AVG	
10	0	7.0420	23.42	20.26	43.68	60.00	-16.32	QP	
1	1	11.7420	23.04	20.31	43.35	60.00	-16.65	QP	
1:	2	12.5980	22.96	20.30	43.26	60.00	-16.74	QP	

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 240V, 60Hz for adapter

Comment: Live Line

Tem.:22.5°C Hum.:59%

N	0.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBu∀)	Limit dBu√	Over Limit (dB)	Detector	Remark
1		0.4660	4.00	19.96	23.96	46.58	-22.62	AVG	
2		0.9380	19.07	20.10	39.17	56.00	-16.83	QP	
3		0.9380	11.76	20.10	31.86	46.00	-14.14	AVG	
4		1.4299	3.77	20.13	23.90	46.00	-22.10	AVG	
5		1.8900	20.89	20.14	41.03	56.00	-14.97	QP	
6		1.8900	7.11	20.14	27.25	46.00	-18.75	AVG	
7		3.2940	5.99	20.17	26.16	46.00	-19.84	AVG	
8		4.2379	23.31	20.19	43.50	56.00	-12.50	QP	
9		4.7699	22.26	20.20	42.46	56.00	-13.54	QP	
10)	4.7699	7.02	20.20	27.22	46.00	-18.78	AVG	
11		12.7699	24.95	20.30	45.25	60.00	-14.75	QP	
12	2	15.2139	23.09	20.26	43.35	60.00	-16.65	QP	

8

9

10

11

12

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 240V, 60Hz for adapter

Comment: Neutral Line

25.74

25.00

6.69

4.57

24.52

1.8900

2.3699

2.3699

4.2740

12.2500

20.14

20.15

20.15

20.19

20.30

45.88

45.15

26.84

24.76

44.82

56.00

56.00

46.00

46.00

60.00

Tem.:22.5°C Hum.:59%

QP

QP

AVG

AVG

QP

-10.12

-10.85

-19.16

-21.24

-15.18

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.2	209 and 15.205	And	Anbotek	Tupo, stek
	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz~0.490MHz	2400/F(kHz)	abotek - Anbo	to Vue	300
e e	0.490MHz-1.705MHz	24000/F(kHz)	Anbotek Ar	Pur Vin	30
o	1.705MHz-30MHz	30	Anbatek	Anbore -	30
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	3.4
	88MHz~216MHz	150	43.5	Quasi-peak	3 _{botek}
	216MHz~960MHz	200	46.0	Quasi-peak	3 nbotek
e ^l	960MHz~1000MHz	500	54.0	Quasi-peak	atek 3
25	Above 1000MHz	500	54.0	Average	3
	AUOVE 1000IVIHZ	ipotek - Anbor	74.0	Peak	3

Remark:

- (1)The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying

aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW = 1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW = 30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW = 300kHz, Detector = Quasi-Peak, Trace mode = Max hold, Sweep- auto couple.

For above 1GHz, Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, pre-scan the GFSK, $\pi/4$ QPSK, 8DPSK modulation, and found the GFSK modulation which is worse case.

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

FCC ID: ZV9-BT2109

Test Results (30~1000MHz)

Job No.: SZAWW180323005-01 Temp.(°C)/Hum.(%RH): 23.2°C/54%RH

Standard: FCC PART 15C Power Source: DC 3.7V, Battery inside

Test Mode: Keeping TX+ Charging Mode Polarization: Horizontal

FCC ID: ZV9-BT2109

Test Results (30~1000MHz)

Job No.: SZAWW180323005-01 Temp.(°C)/Hum.(%RH): 23.2°C/54%RH

Standard: FCC PART 15C Power Source: DC 3.7V, Battery inside

Test Mode: Keeping TX+ Charging Mode Polarization: Vertical

Test Results (1GHz-25GHz)

Test Mode: 0	CH00			Test	channel: Lowe	est		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4804.00	38.33	34.04	6.58	34.09	44.86	74.00	-29.14	boteV
7206.00	32.51	37.11	7.73	34.50	42.85	74.00	-31.15	Ve Ve
9608.00	32.07	39.31	9.23	34.79	45.82	74.00	-28.18	V
12010.00	***************************************	tek	abotek p	upote	An.	74.00	Anbou	V
14412.00	* And	stek h	nbotek	Anboten	Ann	74.00	Anbor	v V
4804.00	42.83	34.04	6.58	34.09	49.36	74.00	-24.64	H
7206.00	34.36	37.11	7.73	34.50	44.70	74.00	-29.30	H
9608.00	31.59	39.31	9.23	34.79	45.34	74.00	-28.66	Aupor
12010.00	*nbote	Anbo	rek by	botek	Aupoten	74.00	Anbotek	PĤ
14412.00	lek * Anbo	rek Ar	100r P	potek	Anborek	74.00	Anbotek	НР
			A	verage Valu	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4804.00	26.95	34.04	6.58	34.09	33.48	54.00	-20.52	V
7206.00	21.08	37.11	7.73	34.50	31.42	54.00	-22.58	V
9608.00	20.09	39.31	9.23	34.79	33.84	54.00	-20.16	V
12010.00	potek * Ar	100L	abotek	Anbotek	K Aupo	54.00	Anbo	V
14412.00	Anbote*	Anbor	A. botek	Anbor	Anbo	54.00	rek Mul	V
4804.00	31.29	34.04	6.58	34.09	37.82	54.00	-16.18	Anbota.
7206.00	23.32	37.11	7.73	34.50	33.66	54.00	-20.34	ÞΉ
9608.00	19.91	39.31	9.23	34.79	33.66	54.00	-20.34	Щ
12010.00	otek *	potek	Aupote	And Motek	Anbotek	54.00	All nbots	Н
14412.00	*	botek	Vupore,	Ann	k anbote	54.00	W. W.	ote ^K H

Test Results (1GHz-25GHz)

Test Mode: 0	CH39			Test	channel: Midd	le		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4882.00	36.84	34.38	6.69	34.09	43.82	74.00	-30.18	Voote
7323.00	31.52	37.22	7.78	34.53	41.99	74.00	-32.01	Ve
9764.00	31.19	39.46	9.35	34.80	45.20	74.00	-28.80	V
12205.00	*	tek	abotek A	upoto	Arr.	74.00	Anbo	V
14646.00	* And	otek.	Anbotek	Anboten	Annotek	74.00	Anbo	v V
4882.00	41.03	34.38	6.69	34.09	48.01	74.00	-25.99	H
7323.00	33.24	37.22	7.78	34.53	43.71	74.00	-30.29	H
9764.00	30.57	39.46	9.35	34.80	44.58	74.00	-29.42	Aupor H
12205.00	* Anbote	Anbo	18K	obotek	Anboten	74.00	Anbotek	PH
14646.00	ek * Anbo	Vey Vi	loor b	. abotek	Anborek	74.00	Anbotek	ΗÞ
			A	verage Value	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4882.00	25.75	34.38	6.69	34.09	32.73	54.00	-21.27	V
7323.00	20.27	37.22	7.78	34.53	30.74	54.00	-23.26	V
9764.00	19.37	39.46	9.35	34.80	33.38	54.00	-20.62	V
12205.00	ootek * A	100x	abotek	Anbotek	Anbe	54.00	Anbo	V
14646.00	*	Anbo	Abotek	Anbore	Anb	54.00	Yek Yu	V
4882.00	29.93	34.38	6.69	34.09	36.91	54.00	-17.09	Aupore.
7323.00	22.41	37.22	7.78	34.53	32.88	54.00	-21.12	ρĤ
9764.00	19.07	39.46	9.35	34.80	33.08	54.00	-20.92	Han
12205.00	otek *	potek	Aupot	And	Anbotek	54.00	, abote	Н
14646.00	*	abotek	Aupore, K	An	k Anbote	54.00	lek h	o ^{teK} H

FCC ID: ZV9-BT2109

Test Results (1GHz-25GHz)

Test Mode: 0	CH78			Test	channel: High	est		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4960.00	36.37	34.72	6.79	34.09	43.79	74.00	-30.21	Vool
7440.00	31.21	37.34	7.82	34.57	41.80	74.00	-32.20	Ve
9920.00	30.92	39.62	9.46	34.81	45.19	74.00	-28.81	V
12400.00	***************************************	rek .	abotek p	upoto	Vu.	74.00	Anbox	V
14880.00	* And	rek l	nbotek	Anbote	Am	74.00	Anbo	v V
4960.00	40.46	34.72	6.79	34.09	47.88	74.00	-26.12	Н
7440.00	32.88	37.34	7.82	34.57	43.47	74.00	-30.53	H
9920.00	30.25	39.62	9.46	34.81	44.52	74.00	-29.48	Aupor H
12400.00	*nbote	Aupo	18K	obotek	Aupoton	74.00	Anbotek	Ĥ
14880.00	lek * Anbo	Vey VI	100, b	botek	Aupolen	74.00	Anbotek	НР
			A	verage Valu	e		W.	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4960.00	25.42	34.72	6.79	34.09	32.84	54.00	-21.16	V
7440.00	20.04	37.34	7.82	34.57	30.63	54.00	-23.37	V
9920.00	19.17	39.62	9.46	34.81	33.44	54.00	-20.56	V
12400.00	potek * Ar	100°	potek	Anboten	K Anbo	54.00	Anbo	V
14880.00	Anbotek	Anbo	A spotek	Aupot	K VUB	54.00	rek Yu,	V
4960.00	29.55	34.72	6.79	34.09	36.97	54.00	-17.03	Anbots H
7440.00	22.16	37.34	7.82	34.57	32.75	54.00	-21.25	ÞΉ
9920.00	18.83	39.62	9.46	34.81	33.10	54.00	-20.90	Щ
12400.00	otek *	potek	Anboto	Andotek	Anbotek	54.00	, abote	Н
14880.00	*	abotek	Vupote, R	Aug ofe	k Anbote	54.00	ok N	ote ^K H

Remark

- 1. During the test, pre-scan the GFSK, $\pi/4$ QPSK, 8DPSK modulation, and found the GFSK modulation is worse case, the report only record this mode.
- 2. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Radiated Band Edge:

Test Mode: (CH00			Test	Test channel: Lowest					
			1	Peak Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.		
2390.00	44.21	29.15	3.41	34.01	42.76	74.00	-31.24	Hek		
2400.00	61.19	29.16	3.43	34.01	59.77	74.00	-14.23	H		
2390.00	44.88	29.15	3.41	34.01	43.43	74.00	-30.57	V		
2400.00	63.37	29.16	3.43	34.01	61.95	74.00	-12.05	V		
			A	verage Valu	e					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.		
2390.00	34.46	29.15	3.41	34.01	33.01	54.00	-20.99	Hoo		
2400.00	45.77	29.16	3.43	34.01	44.35	54.00	-9.65	H		
2390.00	34.50	29.15	3.41	34.01	33.05	54.00	-20.95	o⊬ V		
2400.00	47.55	29.16	3.43	34.01	46.13	54.00	-7.87	V		

Test Mode: 0	CH78			Test	channel: High	est		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	46.47	29.28	3.53	34.03	45.25	74.00	-28.75	$^{\prime\prime}$ $^{\prime\prime}$ $^{\prime\prime}$
2500.00	45.39	29.30	3.56	34.03	44.22	74.00	-29.78	Hot
2483.50	47.54	29.28	3.53	34.03	46.32	74.00	-27.68	V
2500.00	46.52	29.30	3.56	34.03	45.35	74.00	-28.65	V
			A	verage Valu	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	37.30	29.28	3.53	34.03	36.08	54.00	-17.92	ArHot
2500.00	35.11	29.30	3.56	34.03	33.94	54.00	-20.06	Hank
2483.50	38.62	29.28	3.53	34.03	37.40	54.00	-16.60	6 V
2500.00	35.15	29.30	3.56	34.03	33.98	54.00	-20.02	tek V

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ QPSK, 8DPSK modulation, and found the GFSK modulation is worse case, the report only record this mode.
- 2. Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor

5. Maximum Peak Output Power Test

5.1. Test Standard and Limit

Test Standard	FCC Part15 C Se	ection 15.247	(b)(3)	Anhotek	Anbotek	Anbo. stek
Test Limit	1W or 125 mW	Anbotek	Anbore	An	Anboten	Anbo

5.2. Test Setup

5.3. Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above,
- 2. Spectrum Setting:

RBW > the 20 dB bandwidth of the emission being measured

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

5.4. Test Data

Test Item	:	Max. peak output power	Test Mode :	:	CH Low ~ CH High
Test Voltage	:	DC 3.7V, Battery inside	Temperature :	:	24℃
Test Result		PASS	Humidity		55%RH

Channel Frequency (MHz)	Peak Power output (dBm)	Limit (dBm)	Results	Modulation
2402	-2.137	30	PASS	BDR
2441	-4.644	30	PASS	BDR
2480	-5.103	30	PASS	BDR
2402	-2.195	30	PASS	EDR
2441	-4.682	30	PASS	EDR
2480	-5.116	30	PASS	EDR

Remark: The EDR was tested on $(\pi/4DQPSK, 8DPSK)$ modes, only the worst data of (8DPSK) is attached in the following pages

Test Mode: BDR---Low

Test Mode: BDR---Middle

Test Mode: BDR---High

Test Mode: EDR---Low

Test Mode: EDR---Middle

Test Mode: EDR---High

6. 20DB Occupy Bandwidth Test

6.1. Test Standard

Test Standard	FCC Part15 C Section 15.247 (a)(1)		Anbotek	Anbo A.
	101	-100	12.	200

6.2. Test Setup

6.3. Test Procedure

Using the following spectrum analyzer settings:

- 1. Span= approximately 2 to 3 times the 20dB bandwidth, centered on a hopping channel.
- 2. Set the RBW = 30 kHz.
- 3. Set the VBW = 100 kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

6.4. Test Data

Test Item : 20dB BW Test Mode : CH Low ~ CH High

Test Voltage : DC 3.7V, Battery inside Temperature : 24° C Test Result : PASS Humidity : 55%RH

Channel	Frequency(MHz)	20dB Down BW(kHz)	Modulation Mode
Low	2402	1101.0	BDR Anbott
Middle	2441	1099.0	BDR
High	2480	1100.0	BDR
Low	2402	1346.0	EDR
Middle	2441	1348.0	EDR
High	2480	1345.0	EDR

Remark: The EDR was tested on $(\pi/4DQPSK, 8DPSK)$ modes, only the worst data of (8DPSK) is attached in the following pages.

Test Mode: BDR---Low

Test Mode: BDR---Middle

Test Mode: BDR---High

Test Mode: EDR---Low

Test Mode: EDR---Middle

Test Mode: EDR---High

7. Carrier Frequency Separation Test

7.1. Test Standard and Limit

70	Test Standard	FCC Part15 C Section 15.247 (a)(1)	Anbotek	Anbo tek
	Test Limit	>25KHz or >two-thirds of the 20 dB bandwidth	Anbotek	Anbo

7.2. Test Setup

7.3. Test Procedure

The EUT must have its hopping function enabled. Using the following spectrum analyzer settings:

- 1. Span= Wide enough to capture the peaks of two adjacent channels
- 2. Set the RBW = 30 kHz.
- 3. Set the VBW = 100 kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

7.4. Test Data

Test Item	:	Frequency Separation	Test Mode :	CH Low ~ CH High
Test Voltage	:	DC 3.7V, Battery inside	Temperature :	2 4℃
Test Result	:	PASS	Humidity :	55%RH

Channal	Frequency Separation Read		Limit	Modulation
Channel	(MHz)	Value (kHz)	(kHz)	Mode
Low	2402	1000	734.0	BDR Mbote
Middle	2441	1000	732.7	BDR
High	2480	1000	733.3	BDR
Low	2402	1000	897.3	EDR
Middle	2441	1000	898.7	EDR
High	2480	1000	896.7	EDR

Remark:

- 1. The limit of mode (EDR) is 2/3 of 20dB BW;
- 2. The EDR was tested on (π /4DQPSK, 8DPSK) modes, only the worst data of (8DPSK) is attached in the following pages.

Test Mode: BDR---Low

Test Mode: BDR---Middle

Test Mode: BDR---High

Test Mode: EDR---Low

Test Mode: EDR---Middle

Test Mode: EDR---High

8. Number of Hopping Channel Test

8.1. Test Standard and Limit

Test Standard	FCC Part15 C S	Section 15.2	47 (a)(1)	Andhotek	Anbotek	Anbo	Δ.
Test Limit	>15 channels	Anbotek	Anboro	Ann	Anbotek	Anbo	K b

8.2. Test Setup

8.3. Test Procedure

The EUT must have its hopping function enabled. Using the following spectrum analyzer setting:

- 1. Span= the frequency band of operation
- 2. Set the RBW = 100kHz.
- 3. Set the VBW = 300kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

8.4. Test Data

Test Item : Number of Hopping Frequency Test Mode : CH Low ~ CH High

Test Voltage : DC 3.7V, Battery inside Temperature : 24°C
Test Result : PASS Humidity : 55%RH

Hopping Channel Frequency		Quantity of Hopping Channel	Quantity of Hopping Channel		
26	Range				
/	2402-2480MHz	79 79 Novek	>15		

BDR Mode

EDR Mode

9. Dwell Time Test

9.1. Test Standard and Limit

37,	Test Standard	FCC Part15 (C Section 15.24	17 (a)(1)	Anshotek	Anbotek	Anbo	Α.
	Test Limit	0.4 sec	Anbotek	Anboro	An	Anbotek	Anboatel	F

9.2. Test Setup

9.3. Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span= zero span, centered on a hopping channel
- 2. Set the RBW = 1 MHz.
- 3. Set the VBW = 1 MHz.
- 4. Sweep time = as necessary to capture the entire dwell time per hopping channel.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

9.4. Test Data

Test Item : Time of Occupancy Test Mode : CH Low ~ CH High

Test Voltage : DC 3.7V, Battery inside Temperature : 24° C Test Result : PASS Humidity : 55° RH

				260.
Pulse width (ms)	Time slot length(ms)	Dwell time (ms)	Limit (s)	Modulation
0.520	time slot length *1600/2 /79 * 31.6	166.40	0.4	BDR
1.705	time slot length *1600/4 /79 * 31.6	272.80	0.4	BDR
3.400	time slot length *1600/6 /79 * 31.6	362.67	0.4	BDR MOO
0.535	time slot length *1600/2 /79 * 31.6	171.20	0.4	EDR
1.632	time slot length *1600/4 /79 * 31.6	261.12	0.4	EDR
3.360	time slot length *1600/6 /79 * 31.6	358.40	0.4	EDR
	(ms) 0.520 1.705 3.400 0.535 1.632	(ms) Time slot length(ms) 0.520 time slot length *1600/2 /79 * 31.6 1.705 time slot length *1600/4 /79 * 31.6 3.400 time slot length *1600/6 /79 * 31.6 0.535 time slot length *1600/2 /79 * 31.6 1.632 time slot length *1600/4 /79 * 31.6	(ms) Time slot length(ms) (ms) 0.520 time slot length *1600/2 /79 * 31.6 166.40 1.705 time slot length *1600/4 /79 * 31.6 272.80 3.400 time slot length *1600/6 /79 * 31.6 362.67 0.535 time slot length *1600/2 /79 * 31.6 171.20 1.632 time slot length *1600/4 /79 * 31.6 261.12	(ms) Time slot length(ms) (ms) Limit (s) 0.520 time slot length *1600/2 /79 * 31.6 166.40 0.4 1.705 time slot length *1600/4 /79 * 31.6 272.80 0.4 3.400 time slot length *1600/6 /79 * 31.6 362.67 0.4 0.535 time slot length *1600/2 /79 * 31.6 171.20 0.4 1.632 time slot length *1600/4 /79 * 31.6 261.12 0.4

Remark: The EDR was tested on (π /4DQPSK, 8DPSK) modes, only the worst data of (8DPSK) is attached in the following pages.

Test Mode: BDR---DH1

Test Mode: BDR---DH3

Test Mode: BDR—DH5

Test Mode: EDR---3DH1

Test Mode: EDR---3DH3

Test Mode: EDR—3DH5

10. 100kHz Bandwidth of Frequency Band Edge Requirement

10.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (d)
Test Limit	in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

10.2. Test Setup

10.3. Test Procedure

The EUT must have its hopping/Non-hopping function enabled. Using the following spectrum analyzer setting:

- 1. Set the RBW = 100kHz.
- 2. Set the VBW = 300kHz.
- 3. Sweep time = auto couple.
- 4. Detector function = peak.
- 5. Trace mode = \max hold.
- 6. Allow trace to fully stabilize.

10.4. Test Data

Test Item : Band edge : CH Low ~ CH High
Test Voltage : DC 3.7V, Battery inside : Temperature : 24°C
Test Result : PASS : Humidity : 55%RH

Remark: The EDR was tested on $(\pi/4DQPSK, 8DPSK)$ modes, only the worst data of $(\pi/4DQPSK)$ is attached in the following pages.

For Hopping Mode

BDR mode

EDR mode

For Non-Hopping Mode

BDR mode -- Lowest

BDR mode -- Highest

For Non-Hopping Mode

EDR mode -- Lowest

EDR mode -- Highest

Conducted Emission Method

Test Mode: BDR---Low

Test Mode: BDR---Mid

Test Mode: BDR---High

Test Mode: EDR---Low

Test Mode: EDR---Mid

Test Mode: EDR---High

11. Antenna Requirement

11.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203 /247(c)
	1) 15.203 requirement:
	All
	An intentional radiator shall be designed to ensure that no antenna other than that furnished
	by the responsible party shall be used with the device. The use of a permanently
	attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the
	manufacturer may design the unit so that a broken antenna can be replaced by the user, bu
Requirement	the use of a standard antenna jack or electrical connector is prohibited.
	2) 15.247(c) (1)(i) requirement:
	Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed
	Point-to-point operations may employ transmitting antennas with directional gain greater
	than 6dBi provided the maximum conducted output power of the intentional radiator is
	reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

11.2. Antenna Connected Construction

The bluetooth antenna is PCB Antenna which permanently attached, and the best case gain of the antenna is 0 dBi. It complies with the standard requirement.

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Radiation Emission Test

APPENDIX II -- EXTERNAL PHOTOGRAPH

APPENDIX III -- INTERNAL PHOTOGRAPH

End of Report