Московский авиационный институт (национальный исследовательский университет) Институт № 8 «Информационные технологии и прикладная математика»

Курсовой проект

Тема: Аллокаторы памяти

Выполнил студент группы М8О-208Б-23
Никольский Константин Германович
Преподаватель: Миронов Е.С.
Оценка:
Дата:

• Цель работы

- 1. Приобретение практических навыков в использовании знаний, полученных в течении курса
- 2. Проведение исследования в выбранной предметной области

• Задание

Необходимо спроектировать и реализовать программный прототип в соответствии с выбранным вариантом. Произвести анализ и сделать вывод на основании данных, полученных при работе программного прототипа.

Исследование 2 аллокаторов памяти: необходимо реализовать два алгоритма аллокации памяти и сравнить их по следующим характеристикам:

- Фактор использования
- Скорость выделения блоков
- Скорость освобождения блоков
- Простота использования аллокатора

• Вариант

№18 Необходимо сравнить два алгоритма аллокации: блоки по 2 в степени п и алгоритм двойников

• Пример работы

--- Started Buddy allocator --Results for Buddy allocator:

Allocation time 0.00139865 seconds
Deallocation time: 0.00126461 seconds

Total memory: 2097152 bytes Total requested: 514239 bytes

Used memory after alloc: 689969 bytes Free memory after alloc: 1407183 bytes

Memory usage: 74.53% Memory utilization: 32.9%

Used memory after free: 0 bytes

Free memory after free: 2097152 bytes

--- Started Power of 2 allocator --Results for Power of 2 allocator:
Allocation time 0.0688966 seconds
Deallocation time: 0.0688764 seconds

Total memory: 2097152 bytes

Total requested: 516021 bytes

Used memory after alloc: 678123 bytes Free memory after alloc: 1419029 bytes

Memory usage: 76.1%

Memory utilization: 32.34%

Used memory after free: 0 bytes

Free memory after free: 2097152 bytes

• Анализ

Описание алгоритмов:

• Блоки по 2 в степени п

Аллокатор **Power of 2** использует стратегию выделения блоков памяти, размеры которых являются степенями двойки. Этот подход обеспечивает быструю аллокацию за счет простого управления фиксированными размерами блоков, жертвуя при этом эффективностью использования памяти.

• Buddy allocator

Buddy Allocator — это алгоритм управления памятью, который использует принцип разделения и объединения блоков для эффективного выделения и освобождения памяти. Основная идея заключается в том, что память делится на блоки, размер которых равен степени двойки, и блоки могут быть разделены или объединены в зависимости от потребностей.

Тестирование:

Реализовано тестирование следующих характеристик:

- 1. Скорость выделения памяти
- 2. Скорость освобождения памяти
- 3. Коэффициент использования памяти

Обоснование подхода тестирования:

- Взять размер памяти, имитирующие реальные условия 2МВ;
- 1000 итераций записи и удаления позволяют создать достоверную статистику;
- Случайный размер блоков (от 1 до 1024 байт) позволяет сымитировать реальный сценарий использования;
- Отслеживается не только выделенный, но и запрошенный размер памяти.

Результаты тестирования:

Характеристика	Power-of-2 аллокатор	Buddy аллокатор
Время аллокации	0.000148395 секунд	0.00138391 секунд
Время деаллокации	0.000281177 секунд	0.0012087 секунд
Общая память	2097152 байт	2097152 байт
Запрошено памяти	516021 байт	514239 байт
Выделено памяти	678123 байт	689969 байт
Коэффициент	76.1%	74.53%
использования выделенн	ой	
памяти		

Сравнение и заключение:

I. Производительность

Power-of-2 аллокатор (в данной реализации) примерно в 10 раз быстрее в аллокации и примерно 20 раз быстрее в деаллокации, чем Buddy аллокатор. Эффективность buddy аллокатора падает при частых аллокациях/деаллокациях из-за частого разбиения и слияния блоков памяти.

II. Использование памяти:

Хотя и buddy аллокатор менее эффективно использует память, но в долгосроке он более пригоден для использования, поскольку не имеет внутренней фрагментации в отличии от Power-of-2.

III. Удобство использования памяти:

Power-of-2 аллокатор более удобен в использовании, поскольку его интерфейсы более просты. Для деаллокации в нём нужно передать лишь блок, в то время, как в buddy allocator кроме блока необходимо передать размер этого блока.

• Вывод

В ходе выполнения курсовой работы были спроектированы и реализованы два алгоритма аллокации памяти, проведено их сравнение по ключевым характеристикам: фактору использования памяти, скорости выделения и освобождения блоков, а также простоте использования. Результаты исследования показали, что каждый аллокатор имеет свои преимущества и недостатки: например, Power-of-2 аллокатор демонстрирует высокую скорость работы, но может страдать от внутренней фрагментации, в то время как Buddy Allocator обеспечивает более эффективное использование памяти за счет разделения и объединения блоков, но требует больше времени на выполнение операций. Полученные данные позволяют сделать вывод о выборе оптимального аллокатора в зависимости от конкретных задач и требований к производительности.