International Institute of Information Technology Hyderabad

Modern Complexity Theory (CS1.405)

Assignment 4 Deadline: November 18, 2023 (Saturday), 17:00 PM

Venue for Submission: CSTAR, A3-110, Vindhya Block, IIIT Hyderabad **Total Marks: 100**

NOTE: It is strongly recommended that no student is allowed to copy from others. No assignment will be taken after deadline.

Write the following while submitting ONLY HARDCOPY:

Modern Complexity Theory (CS1.405)

Assignment 4

Name: Roll No.:

1. Show that $Pr_R[\mathbf{P^R} = \mathbf{NP^R}] = 0$, where the probability $Pr(\cdot)$ is taken over a random oracle $\mathbf{R} \in \{0,1\}^*$. [10]

- 2. Show that a language $L \in \mathbf{ZPP}$ if and only if L has an average polynomial time algorithm that always gives the right answer.
 - [15]

3. Show that $\mathbf{RP} \subseteq \mathbf{BPP}$.

[10]

4. If $\mathbf{coNP} = \mathbf{NP}$, then for every $i \geq 2$, $\Sigma_i = \mathbf{NP}$.

- [10]
- 5. Let $\mathbf{L} = \{(\langle M \rangle, w) : M \text{ rejects } w \text{ in less than } t(|\langle M \rangle|, w), \text{ time steps, } |\langle M \rangle| \leq \sqrt{\log t(|\langle M \rangle, w|)} \text{ and } M\text{'s}$ tape alphabet has size 4}.
 - (a) $\mathbf{L} \notin \mathbf{TIME}(o(t(n)))$.
 - (b) $\mathbf{L} \in \mathbf{TIME}(O(t(n) \cdot \log t(n))).$

[10 + 10 = 20]

6. Show that $\mathbf{ZPP} \subseteq \mathbf{RP} \cap \mathbf{coRP}$.

[15]

7. Show that **RP** is in the first level of the polynomial hierarchy.

[10]

8. Suppose we have $\mathbf{PP} = \{ \mathbf{L} : x \in \mathbf{L} \text{ is decided by a probabilistic polynomial time algorithm} \}$. By decidable, we mean that the probability of the algorithm being wrong is $\leq 1/2$. Why is \mathbf{PP} less useful than \mathbf{BPP} ? Prove that $\mathbf{BQP} \subseteq \mathbf{PP}$.

[2 + 8 = 10]