

Probabilités et Statistiques

Loi normale et convergences

Pr. Hamza El Mahjour



## **Outline**

## Loi Normale

Processus Aléatoires
Introduction
Types de convergence
Théorème Centrale Limite

## normale → centrée/réduite

#### Théorème

Soit X une v.a.r normale telle que  $X \sim \mathcal{N}(\mu, \sigma^2)$  alors  $Z = \frac{X - \mu}{\sigma}$  suit une loi normale centrée réduite.

## normale → centrée/réduite

#### Théorème

Soit X une v.a.r normale telle que  $X \sim \mathcal{N}(\mu, \sigma^2)$  alors  $Z = \frac{X - \mu}{\sigma}$  suit une loi normale centrée réduite.



# normale → centrée/réduite

#### Théorème

Soit X une v.a.r normale telle que  $X \sim \mathcal{N}(\mu, \sigma^2)$  alors  $Z = \frac{X - \mu}{\sigma}$  suit une loi normale centrée réduite.



## Tableau de la loi normale

En pratique, comme on l'a déjà dit, on utilisera le tableau de la loi normale (Z-score Table) suivant:

| Z   | .00   | .01   | .02   | .03   | .04   |
|-----|-------|-------|-------|-------|-------|
| 0.0 | .5000 | .5040 | .5080 | .5120 | .5160 |
| 0.1 | .5398 | .5438 | .5478 | .5517 | .5557 |
| 0.2 | .5793 | .5832 | .5871 | .5910 | .5948 |
| 0.3 | .6179 | .6217 | .6255 | .6293 | .6331 |
| 0.4 | .6554 | .6591 | .6628 | .6664 | .6700 |
| 0.5 | .6915 | .6950 | .6985 | .7019 | .7054 |
| 0.6 | .7257 | .7291 | .7324 | .7357 | .7389 |
| 0.7 | .7580 | .7611 | .7642 | .7673 | .7704 |
| 0.8 | .7881 | .7910 | .7939 | .7967 | .7995 |

Soit  $X \sim \mathcal{N}(12, 0.5)$ . On veut trouver le z-score de la valeur x = 12.17. On trouve

$$z_x = \frac{12.17 - 12}{0.5} = 0.34 =$$

Donc  $\mathbb{P}(\{X\leq 12.17\})=0.6331$ 

#### Tableau de la loi normale

En pratique, comme on l'a déjà dit, on utilisera le tableau de la loi normale (Z-score Table) suivant:

| z   | .00   | .01   | .02   | .03   | (.04) |
|-----|-------|-------|-------|-------|-------|
| 0.0 | .5000 | .5040 | .5080 | .5120 | .5160 |
| 0.1 | .5398 | .5438 | .5478 | .5517 | .5557 |
| 0.2 | .5793 | .5832 | .5871 | .5910 | .5948 |
| 0.3 | .6179 | .6217 | .6255 | .6293 | .6331 |
| 0.4 | .6554 | .6591 | .6628 | .6664 | .6700 |
| 0.5 | .6915 | .6950 | .6985 | .7019 | .7054 |
| 0.6 | .7257 | .7291 | .7324 | .7357 | .7389 |
| 0.7 | .7580 | .7611 | .7642 | .7673 | .7704 |
| 8.0 | .7881 | .7910 | .7939 | .7967 | .7995 |

Soit  $X \sim \mathcal{N}(12, 0.5)$ . On veut trouver le z-score de la valeur x = 12.17. On trouve

$$z_x = \frac{12.17 - 12}{0.5} = 0.34 = \frac{0.3}{0.04} + 0.04$$

Donc 
$$\mathbb{P}(\{X \le 12.17\}) = 0.6331$$

## cas à connaître

Il y a plusieurs cas de calculs qui se résument aux suivants:

## cas à connaître

Il y a plusieurs cas de calculs qui se résument aux suivants:



## **Exemple pratique**

Les durées de vie des gorilles dans un zoo particulier suivent une distribution normale. La durée de vie moyenne d'un gorille est de 20.8 ans, l'écart-type est de 3.1 ans. Calculer à chaque fois la probabilité qu'un gorille

- vive moins de 13.05 ans?
- vive plus de 25.915 ans?
- vive entre 17.1 et 23.9 ans?

## **Outline**

Loi Normale

- Processus Aléatoires
  - Introduction
  - Types de convergence
  - Théorème Centrale Limite

# Processus Aléatoires

Introduction

On peut définir des suites de variables aléatoires  $(X_n)_{n\in\mathbb{N}}$  quand chaque  $X_n$  représente une v.a.r définie sur le même espace probabilisé  $(\Omega, \mathcal{F}, \mathbb{P})$ .

#### Exemple

On répète une infinité un lancer d'une pièce de monnaie et on y associe une loi de Bernoulli. On obtient ainsi une suite de v.a.r  $X_i=0$  ou 1 pour chaque i.

On peut appeler une telle suite un processus aléatoire discret.

#### v.a.r i.i.d

Une suite de v.a.r est dite i.i.d si elles sont deux à deux indépendantes et identiquement distribuées (suivent la même loi  $\rightarrow$ ) même fonction de répartition.

## Example

Lancer consécutive d'un dé en associant à chaque lancer une variable aléatoire qui prend la valeur affiché par le dé.

Un autre exemple

### Exemple

On lance un dé successivement jusqu'à l'obtention de six. Si le six est obtenu on attribue la valeur 0 à tout  $X_n$  après l'obtention de six. Dans ce cas là les variables ne sont pas indépendantes.

# Processus Aléatoires

Types de convergence

## Convergences

Comme dans le cas d'une suite de fonctions ou d'une suite numérique, on se pose la question sur le comportement à long terme d'une suite de v.a.r On mentionne d'abord une inégalité importante à retenir

## Théorème (Inégalité de Bienaymé-Chebyshev)

Soit X une v.a.r admettant une espérance  $\mathbb{E}[X]$  et de variance  $\sigma^2$  (l'hypothèse de variance finie garantie l'existence de l'espérance). Alors

$$\forall \varepsilon > 0, \qquad \mathbb{P}(|X - \mathbb{E}[X]| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}.$$

# Convergence en probabilité

On définit maintenant le premier type de convergence

## Définition (Convergence en probabilité)

On considére une suite  $(X_n)$  de v.a.r et X une autre variable aléatoire définis sur le même espace probabilisé.

On dit que la suite  $(X_n)$  converge en probabilité vers une constante réelle l si

$$\forall \epsilon > 0, \qquad \lim_{n \to \infty} \mathbb{P}(|X_n - l) > \epsilon) = 0.$$

On dit que la suite  $(X_n)$  converge en probabilité vers X si

$$\forall \epsilon > 0, \qquad \lim_{n \to \infty} \mathbb{P}(|X_n - X| > \epsilon) = 0.$$

Pour que  $X_n \to X$  en proba. il faut et il suffit que  $\lim_{n\to\infty} \mathbb{E}[X_n - X] = 0$  et  $\lim_{n\to\infty} \mathbf{var}(X_n - X) = 0$ . (utiliser l'inégalité de Bienaymé-Chebyshev).

# Exemple de la loi binomiale

......

Voici une caractérisation importante

#### Théorème

Soit  $(X_n)$  une suite de v.a.r vérifiant

$$\lim_{n\to\infty}\mathbb{E}[X_n]=l \qquad \text{et} \qquad \lim_{n\to\infty}\mathbf{var}(X)=0$$

alors  $X_n \xrightarrow{\mathbb{P}} l$ .

# Loi faible des grands nombres

Soit  $X_n$  une suite de v.a.r de même espérance l et de variances vérifiant

$$\lim_{n\to\infty}\frac{1}{n^2}\sum_{i=1}^n\sigma_i^2=0. \text{ Posons } S_n=\sum_{i=1}^nX_i. \text{ Donc}$$

$$S_n/n \xrightarrow{\mathbb{P}} l$$

# Loi faible des grands nombres

Soit  $X_n$  une suite de v.a.r de même espérance l et de variances vérifiant

$$\lim_{n\to\infty}\frac{1}{n^2}\sum_{i=1}^n\sigma_i^2=0. \text{ Posons } S_n=\sum_{i=1}^nX_i. \text{ Donc}$$

$$S_n/n \xrightarrow{\mathbb{P}} l$$

Pour interpréter ce résultat, la loi faible des grands nombres stipule que pour tout  $\epsilon$  positif, la probabilité que la moyenne empirique  $S_n/n$  s'éloigne de l'espérance d'au moins  $\epsilon$  tend vers 0 quand n tend vers l'infini.

# Convergence en loi

#### **Définition**

Soient  $(X_n)$  et X des v.a.r définies sur un même espace probabilisé, de fonctions de répartitions respectives  $F_n$  et F. On dit que  $X_n$  converge en loi et on note  $X_n \xrightarrow{\mathcal{L}} X$  su en tout point x où F est continue on a  $\lim_{n\to\infty} F_n(x) = F(x)$ .

On admet les propriétés suivantes

## Convergence en loi

#### Définition

Soient  $(X_n)$  et X des v.a.r définies sur un même espace probabilisé, de fonctions de répartitions respectives  $F_n$  et F. On dit que  $X_n$  converge en loi et on note  $X_n \xrightarrow{\mathcal{L}} X$  su en tout point x où F est continue on a  $\lim_{n\to\infty} F_n(x) = F(x)$ .

On admet les propriétés suivantes

- La convergence en probabilité entraîne la convergence en loi.
- Dans le cas discret,  $X_n \xrightarrow{\mathcal{L}} X$  ssi

$$\forall x \in \mathbb{R}, \lim_{n \to \infty} \mathbb{P}(\{X_n = x\}) = \mathbb{P}(\{X = x\}))$$

# Processus Aléatoires

Théorème Centrale Limite