DBA3701 Introduction to Optimization Lecture 8

Non-Linear Optimization

Objective Function and Constraints

Optimization

Art of finding a best solution from collection alternatives.

Everyone optimizes: application in ...

- Science: design of experiments
- Engineering: power-grid control and design
- Finance: pricing of options, optimal portfolio selection.
- Medicine: optimal radiation dose design
- Economics: optimal transition to clean energy
- Big data: machine learning ... training of neural nets
- ... more details tomorrow.

Objective Function

Ingredients of Optimization

- Decision Variables, x, model decisions.
- \blacksquare Constraints model acceptable values of x.
- Objective(s) model our goals / performance measure.

minimize
$$f(x)$$

subject to $l_c \le c(x) \le u_c$

objectve function nonlinear constraints

$$I_A \leq A^T x \leq u_A$$

linear constraints

$$I_X \leq X \leq U_X$$

simple bounds

$$x \in X$$

structural constraints

Objective Function and Constraints

```
minimize f(x) objective function subject to I_c \le c(x) \le u_c nonlinear constraints I_A \le A^T x \le u_A linear constraints I_X \le x \le u_X simple bounds x \in X
```

Basic Blanket Assumptions

We make the following blanket assumptions:

- $\mathbf{x} \in \mathbb{R}^n$ finite dimensional.
- Functions, $c: \mathbb{R}^n \to \mathbb{R}^m$ and $f: \mathbb{R}^n \to \mathbb{R}$ are smooth.
- Bounds, I_c , u_c , I_A , u_A , I_X , u_X can be infinite.
- Set $X \subset \mathbb{R}^n$ imposes structural restrictions x (later).

Objective Function and Constraints

minimize
$$f(x)$$

subject to $I_c \le c(x) \le u_c$
 $I_A \le A^T x \le u_A$
 $I_X \le x \le u_X$
 $x \in X$

objective function nonlinear constraints linear constraints simple bounds structural constraints

To Minimize or To Maximize? $\max f(x)$ equivalent to $-\min(-f(x))$

... wlog only consider minimization

Example: Design of Reinforced Concrete Beam

Variables:

- $x_1 =$ area of re-inforcement,
- $\mathbf{x}_2 = \mathbf{width}$ of beam,
- $x_3 = \text{depth of beam.}$
- Objective: minimizing cost of reinforced beam
- Constraints:
 - Support minimum amount of load.
 - Bounds on width/depth ratio and variables (positivity).

Example: Design of Reinforced Concrete Beam

Variables:

- \mathbf{x}_1 = area of re-inforcement, e.g. $\mathbf{x}_1 \in \{40, 45, \dots, 75\}$
- x_2 = width of beam,
- $x_3 = \text{depth of beam.}$
- Objective: minimizing cost of reinforced beam
- Constraints:
 - Support minimum amount of load.
 - Bounds on width/depth ratio and variables (positivity).

minimize
$$f(x) = 29.4x_1 + 0.6x_2x_3$$
 cost of beam subject to $c(x) = x_1x_2 - 7.735\frac{x_1^2}{x_2} \ge 180$ load constraint $x_3 - 4x_2 \ge 0$ width/depth ratio $40 \le x_1 \le 77$, $x_2 \ge 0$, $x_3 \ge 0$ simple bounds,

In practice, area of reinforcement, x_1 , is discrete ... include in X.

NEOS Optimization Tree

Classification by Type of Constraint Assume $X = \mathbb{R}^n$, and f(x), c(x) twice continuously differentiable

Unconstrained Optimization all $x \in \mathbb{R}^n$ feasible:

minimize
$$f(x)$$
.

Special Case: Least-Squares Problem

$$\underset{x \in \mathbb{R}^n}{\text{minimize }} f'(x) = \sum_{j=1}^m (r_j(x))^2,$$

Bound Constrained Optimization only bounds constraints:

minimize
$$f(x)$$
 subject to $1 \le x \le u$,

where $I, u \in \mathbb{R}^n$ can be infinite.

Special case: $f(x) = c^T x$ solved trivially.

Classification by Constraint Type

Assume $X = \mathbb{R}^n$, and f(x), c(x) twice continuously differentiable

Linearly Constrained Optimization nonlinear objective and linear constraints

minimize
$$f(x)$$
 objective function subject to $I_A \le A^T x \le u_A$ linear constraints $I_X \le x \le u_X$ simple bounds

Important Special Cases: 10/35

Linear Programming Objective function is linear:

$$f(x) = c^T x$$

Quadratic Programming Objective function is quadratic:

$$f(x) = x^T Gx/2 + g^T x + a$$

wlog assume a = 0 Why???

Classification by Constraint Type

Assume $X = \mathbb{R}^n$, and f(x), c(x) twice continuously differentiable

Equality Constrained Optimization all constraints are equations:

minimize
$$f(x)$$

subject to $c(x) = 0$.

Special Case: Only linear equality constraints: $A^Tx = b$.

Classification by Constraint Type

Assume $X = \mathbb{R}^n$, and f(x), c(x) twice continuously differentiable

Nonlinearly Constrained Optimization

minimize
$$f(x)$$
 objective function subject to $I_C \le c(x) \le u_C$ nonlinear constration $I_A \le A^T x \le u_A$ linear constraints $I_X \le x \le u_X$ simple bounds $x \in X$

objective function nonlinear constraints $x \in X$ structural constraints

Programming vs. Optimization

This problem is also called a Nonlinear Programming Problem.

Classification by Type of Variables

Variable type is encoded in $x \in X$:

- **Continuous Variables** are variables with $x \in \mathbb{R}^n$
 - ... leverage classical calculus.
- **Discrete Variables** X is discrete subset:
 - Binary Variables $X = \{0, 1\}^n$ model logic.
 - Integer Variables $X = Z^n$ model numbers of equipment.
 - Discrete Variables from discrete set, e.g.

$$X = \{1/4, 1/2, 1, 2, 4, ...\}^{13/4}$$

- ... can be modeled with binary variables.
- ⇒ Integer or discrete programming problems

Often have mixture of continuous and discrete variables, called **mixed-integer programs** (MIPs).

A Simple Portfolio Selection Problem

Decisions

• x_i : decision variable on amount to invest in stock i=1,2

Data

- \tilde{r}_i : Reward from stock i (random variable)
- $\mu_i = E(\tilde{r}_i)$: expected reward from stock i
- $Var(\tilde{r}_i)$: variance in reward from stock i
- $\sigma_{ij} = \mathrm{E}((\tilde{r}_i \mu_i)(\tilde{r}_j \mu_j)) = \mathrm{Cov}(\tilde{r}_i, \tilde{r}_j)$. Note that $\sigma_{ii} = \mathrm{Var}(\tilde{r}_i)$:
- Budget B, target β on expected portfolio reward

A Simple Portfolio Selection Problem

Objective: Minimize total portfolio variance so that

- Expected reward of total portfolio is above target β
- Total amount invested stay within our budget
- No short sales

(Linearly constrained NLP)

$$\begin{aligned} &\min & f(x) = \mathrm{Var}(\tilde{r}_1 x_1 + \tilde{r}_2 x_2) = \sigma_{11} x_1^2 + \sigma_{22} x_2^2 + 2 x_1 x_2 \sigma_{12} \\ &\text{s.t.} & \sum_j x_j \leq B \\ & \sum_j \mu_j x_j \geq \beta \\ & x_j \geq 0 \end{aligned}$$

Generalization of Portfolio Variance

$$\begin{aligned}
&\operatorname{Var}(\tilde{r}x_{1} + \tilde{r}_{2}x_{2}) \\
&= \sigma_{11}x_{1}^{2} + 2\sigma_{12}x_{1}x_{2} + \sigma_{22}x_{2}^{2} \\
&= \sum_{i=1}^{2} \sum_{j=1}^{2} \sigma_{ij}x_{i}x_{j} \\
&= \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}' \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}
\end{aligned}$$

Generalization of Portfolio Variance

$$\begin{aligned}
&\operatorname{Var}(\tilde{r}x_1 + \dots + \tilde{r}_n x_n) \\
&= \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}' \begin{bmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \dots & \sigma_{nn} \end{bmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \\
&= x' \Sigma x
\end{aligned}$$

Generalization of Portfolio Variance

 Σ is known as the covariance matrix, which has the following properties:

- It is a symmetric matrix.
- It is a positive definite matrix,

$$x'\Sigma x > 0$$
 $\forall x, x \neq 0$

- ullet The Eigenvalues of Σ are real and positive.
- ullet There exists real matrix, A such that $\Sigma = A'A$.

Covariance Matrix from Data

Let $X \in \mathbb{R}^{T \times N}$ be a matrix that contains the stock returns of N stocks over T periods. In particular, X_{tn} denotes the return of stock i at period t.

Average stock return:

$$\mu_i = \frac{1}{T} \sum_{t=1}^T X_{ti} \qquad \mu = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_N \end{pmatrix}$$

Covariance Matrix from Data

Covariance (unbiased estimation)

$$\sigma_{ij} = \frac{1}{T-1} \sum_{t=1}^{T} (X_{ti} - \mu_i)(X_{tj} - \mu_j)$$

Covariance Matrix

$$\Sigma = rac{1}{T-1}(X-1_T\mu')'(X-1_T\mu')$$

where $\mathbf{1}_T$ is a vector of ones of dimension T.

Compact form of Portfolio Selection Problem

min
$$x'\Sigma x$$

s.t. $1'x \leq B$
 $\mu'x \geq \beta$
 $x \geq 0$

Quadratic Optimization Problems

min
$$x'Mx + c'x$$

s.t. $x'M_ix \leq a_ix + b_i \ \forall i = \{1, \dots, m\}$

where

$$oldsymbol{M}, oldsymbol{M}_1, \dots, oldsymbol{M}_m$$

are symmetric positive semidefinite (PSD) matrices, i.e.

$$x'\Sigma x \geq 0 \qquad \forall x$$

On Positive Semidefinite Matrix

• If leading principal minors of matrix are positive, then matrix is positive definite.

• However, if one of them is zero, we cannot conclude that the matrix is positive semidefinite. If this is the case, add the diagonal elements of the matrix by a very small number, ϵ and then check the leading principal minors again. If they are positive then, the matrix is positive semidefinite.

Quadratic Optimization Problems

 Quadratic optimization problems (QOP) can be solved efficiently, though not as great as LOP.

 Some solver can incorporate integer constraints in their quadratic optimization package.

Are these QOP?

min
$$c'x$$

s.t. $Ax \geq b$
 $x \geq 0$

$$\max_{i=1}^{\infty} \frac{-x'Mx + c'x}{-x'M_ix + a'_ix \ge b_i} \quad \forall i = \{1, \dots, m\}$$

where

$$m{M},m{M}_1,\ldots,m{M}_m$$

are PSD matrices.

Are these QOP?

min
$$5x_1^2 + 6x_2^2 + 10x_3^2 + 4x_1x_2 + 3x_1x_3 - 2x_2x_3 - 6x_1 + 4x_2$$

s.t. $-5x_1^2 - 4x_2^2 - 6x_3^2 + 4x_1x_2 - 2x_1x_3 \ge -3x_1 + x_3 + 9$

min
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}' \begin{bmatrix} 5 & 2 & 1.5 \\ 2 & 6 & 1 \\ 1.5 & 1 & 10 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} - 6x_1 + 4x_2$$
s.t. $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}' \begin{bmatrix} 5 & -2 & 1 \\ -2 & 4 & 0 \\ 1 & 0 & 6 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} - 3x_1 + x_3 \le -9$

$$\begin{bmatrix} 5 & 2 & 1.5 \\ 2 & 6 & 1 \\ 1.5 & 1 & 10 \end{bmatrix} \text{ and } \begin{bmatrix} 5 & -2 & 1 \\ -2 & 4 & 0 \\ 1 & 0 & 6 \end{bmatrix} \text{ are positive definite matrices.}$$

Are these QOP?

$$\max x'Mx + c'x$$
s.t. ...

where M is a PSD matrix.

min
$$x'Mx + c'x$$
 s.t. ...

where M is any symmetric matrix.

where M, M_1 are PSD matrices.

Objective: Maximize probability that portfolio returns exceeds target β .

- Expect reward of portfolio is above β .
- Total Investment stays within budget B
- No short sales
- Assume returns are normally distributed.

max
$$\mathbb{P}(\tilde{r}'x \geq \beta)$$

s.t. $\mathbf{1}'x \leq B$
 $\boldsymbol{\mu}'x \geq \beta$
 $x \geq \mathbf{0}$

Under normal distribution assumption,

$$\mathbb{P}(\tilde{r}'x \ge \beta)$$

$$= \mathbb{P}\left(\frac{\mu'x - \tilde{r}'x}{\sqrt{x'\Sigma x}} \le \frac{\mu'x - \beta}{\sqrt{x'\Sigma x}}\right)$$

$$= \mathbb{P}\left(\frac{\mu'x - \beta}{\sqrt{x'\Sigma x}}\right)$$

$$= \Phi\left(\frac{\mu'x - \beta}{\sqrt{x'\Sigma x}}\right)$$

Recall Sharpe ratio:
$$\frac{\mu'x-\beta}{\sqrt{x'\Sigma x}}$$

How do we solve the problem?

Observe:

$$\max \begin{array}{c} \frac{\mu'x-\beta}{\sqrt{x'\Sigma x}} & \min \begin{array}{c} \frac{\sqrt{x'\Sigma x}}{\mu'x-\beta} & \min \begin{array}{c} \frac{x'\Sigma x}{(\mu'x-\beta)^2} \\ \text{s.t.} & \frac{1'x\leq B}{\mu'x\geq \beta} & \text{s.t.} \end{array} \begin{array}{c} \frac{1'x\leq B}{\mu'x\geq \beta} \\ x\geq 0 \end{array} \end{array} \Rightarrow \begin{array}{c} \min \begin{array}{c} \frac{x'\Sigma x}{(\mu'x-\beta)^2} \\ \text{s.t.} & \frac{1'x\leq B}{\mu'x\geq \beta} \\ x\geq 0 \end{array}$$

Observe:

$$\begin{array}{lll} \min & \frac{x'\Sigma x}{(\mu'x-\beta)^2} & \min & \frac{x'\Sigma x}{y^2} \\ \text{s.t.} & 1'x \leq B & \Leftrightarrow & \text{s.t.} & 1'x \leq B \\ & \mu'x \geq \beta & & \mu'x-\beta = y \\ & x \geq 0 & & x \geq 0 \end{array}$$

Assume there exists an optimum solution where $\mu'x>\beta$ or equivalently y>0. Otherwise, finite meaningful solution may not exist.

$$\min \frac{x'\Sigma x}{y^2}$$

$$\text{s.t. } 1'x \le B$$

$$\mu'x - \beta = y$$

$$x \ge 0$$

$$x \ge 0$$

$$\min \frac{x'\Sigma x}{y}$$

$$\text{s.t. } 1'\frac{x}{y} \le B$$

$$\mu'\frac{x}{y} - \beta = y$$

$$\frac{1}{y} \ge 0$$

Change of variables: Let $\bar{x} = x/y$, z = 1/y.

$$\min \frac{x'}{y} \frac{x}{y}$$

$$\text{s.t. } 1' \frac{x}{y} \le B \frac{1}{y}$$

$$\mu' \frac{x}{y} - \beta \frac{1}{y} = 1$$

$$\frac{1}{y} \ge 0$$

$$\frac{1}{y} \ge 0$$

$$\frac{x}{y} \ge 0$$

$$\min \overline{x}' \sum \overline{x}$$

$$\text{s.t. } 1' \overline{x} \le Bz$$

$$\mu' \overline{x} - \beta z = 1$$

$$z \ge 0$$

$$\overline{x} \ge 0$$

Solve the following QOP:

min
$$ar{x}'\Sigmaar{x}$$
 s.t. $1'ar{x} \leq Bz$ $\mu'ar{x} - \beta z = 1$ $z \geq 0$ $ar{x} \geq 0$

Actual portfolio weights: $x = \bar{x}y = \bar{x}/z$.

Problem

- We currently own z_i shares from stock $i, i \in S$
- P_i current price of stock i
- We consider buying and selling stocks in S, and consider buying new stocks from the set $B(B \cap S = \emptyset)$
- Set of stocks $B \cup S = \{1, \dots, n\}$

Data

• Forecasted prices next period (say next month) and their correlations.

$$\mathrm{E}(\tilde{p}_i) = \mu_i, \sigma_{ij} = \mathrm{Cov}(\tilde{p}_i, \tilde{p}_j)$$

$$\boldsymbol{\mu} = (\mu_1, \ldots, \mu_n)', \qquad \boldsymbol{\Sigma} = \sigma_{ij}$$

Issues and Objectives

- Mutual fund regulation: we cannot sell a stock if we do not own it
- Transaction costs
- Turnover
- Liquidity
- Volatility
- Objective: Maximize expected wealth next period minus transaction costs

Decision variables

$$x_i = \begin{cases} # \text{ shares bought or sold if } i \in S \\ # \text{ shares bought if } i \in B \end{cases}$$

By convension:

$$x_i \ge 0$$
 buy $x_i < 0$ sell

Transaction costs

- Small investors only pay commission costs: a_i \$ per share traded.
- Transaction costs: $a_i|x_i|$
- Large investors (like portfolio managers of large funds) may affect price: price become $p_i + b_i x_i$.
- Price impact costs: $(p_i + b_i x_i)x_i p_i x_i = b_i x_i^2$
- Total transaction costs:

$$c_i(x_i) = a_i|x_i| + b_i x_i^2$$

Liquility

- Suppose you own 50% of the outstanding stock of a company
- How difficult is it to sell it?
- Reasonable to bound the percentage of ownership on a particular stock
- Thus, for **liquidity** reasons $\frac{z_i + x_i}{z_i^{total}} \leq \gamma_i$
- $z_i^{total} = \#$ outstanding shares of stock i
- γ_i maximum allowable percentage of ownership

Turnover

• Because of transaction costs: $|x_i|$ should be small:

$$|x_i| \leq \delta_i$$
.

Alternatively,

$$\sum_{i=1}^{N} p_i |x_i| \le t$$

Balanced portfolio

• Need the value of stocks we buy and sell to balance out:

$$\left| \sum_{i=1}^{n} p_i x_i \right| \le L$$

• No short sales:

$$z_i + x_i \ge 0$$

Expected value and volatality

• Expected value of portfolio

$$\operatorname{E}\left(\sum_{i=1}^n \widetilde{p}_i(z_i+x_i)\right) = \sum_{i=1}^n \mu_i(z_i+x_i)$$

• Variance of portfolio

$$\operatorname{Var}\left(\sum_{i=1}^n \widetilde{p}_i(z_i+x_i)
ight) = (oldsymbol{z}+oldsymbol{x})'oldsymbol{\Sigma}(oldsymbol{z}+oldsymbol{x})$$

$$\max \sum_{i=1}^{n} (\mu_{i}(z_{i} + x_{i}) - a_{i}|x_{i}| - b_{i}x_{i}^{2})$$
s.t.
$$(z + x)' \Sigma(z + x) \leq s$$

$$z_{i} + x_{i} \leq \gamma_{i}z_{i}^{total} \qquad i = 1, \dots, n$$

$$-\delta_{i} \leq x_{i} \leq \delta_{i} \qquad i = 1, \dots, n$$

$$-L \leq \sum_{i=1}^{n} p_{i}x_{i} \leq L$$

$$\sum_{i=1}^{n} p_{i}|x_{i}| \leq t$$

$$z_{i} + x_{i} \geq 0 \qquad i = 1, \dots, n$$

Is this a QOP?

