Set - Theory Homework. Dmitry Semenov, M3100, ISU 409537

1. Определите истинность заданных утверждений. Считайте, что $a \neq b$ – урэлементы. (a) $a \notin \{\{a\},b\}$ - так как $a \neq \{a\}$ (b) $a \in \{a, \{b\}\}$ (c) $\{a\} \in \{a, \{a\}\}$ (d) $\{a\} \subset \{a,b\}$ (e) $\{a\} \not\subseteq \{\{a\}, \{b\}\}$ - второе множество не содержит элемент **a**, только **{a}** (f) $\{\{a\}\}\subset\{\{a\},\{a,b\}\}$ (g) $\{\{a\},b\} \not\subseteq \{a,\{a,b\},\{b\}\}$ - второе множество не содержит элемент $\{a\}$, только **a** и не содержит **b**, (h) $\varnothing \notin \varnothing$ - по свойству пустого множества (i) $\varnothing \subseteq \varnothing$ (j) $\varnothing \not\subset \varnothing$ - по свойству пустого множества (k) $\emptyset \in \{\emptyset\}$ (I) $\varnothing \subseteq \{\{\varnothing\}\}$ (m) $\{\varnothing,\varnothing\}\not\subset\{\varnothing\}$ - так как левое множество равно правому (n) $\{\{\varnothing\}\}\ \subset \{\{\varnothing\}, \{\varnothing\}\}\}$ - так как левое множество равно правому (о) $a \notin 2^{\{a\}}$ - так как **a** в левой части выражения - урэлемент, а не множество (n) $2^{\{a,\varnothing\}} \subset 2^{\{a,b,\varnothing\}}$ (q) $\{a,b\} \not\subseteq 2^{\{a,b\}}$ - булеан множество не содержит урэлементы \pmb{a} и \pmb{b} в отдельности, лишь в виде множества {a, b}

- (r) $\{a,a\}\in 2^{\{a,a\}}$
- (s) $\{\{a\},\varnothing\}\subseteq 2^{\{a,a\}}$
- (t) $\{a, \{a\}\} \not\subset 2^{\{a, 2^{\{a\}}\}}$ так как булеан множество не содержит в себе урэлемент **а**
- (u) $\{\{a,\{\varnothing\}\}\}\}\subset 2^{\{a,2^\varnothing\}}$
- 2. Дано множество-универсум $\mathfrak{U} = \{1, 2, ..., 10\}$ и его подмножества:

$$A = \{x | x$$
-чётное $\}$, $B = \{x | x$ -простое $\}$, $C = \{2, 4, 7, 9\}$.

Нарисуйте диаграмму Венна для заданных множеств, отметьте на ней все элементы и найдите:

(a)
$$B\triangle(A\cap C)=\{2,3,5,7\}\triangle\{2,4\}=\{3,4,5,7\}$$

(b)
$$\overline{B}\setminus (A\triangle C)=\{1,4,6,8,9,10\}\setminus \{6,7,8,9,10\}=\{1,4\}$$

(c)
$$\overline{A \cup C} \cup (C \triangle B) = \{1, 3, 5\} \cup \{3, 4, 5, 9\} = \{1, 3, 4, 5, 9\}$$

(d)
$$|\{A \cup B \cup 2^\varnothing \cup 2^\mathfrak{U}\}| = |\{\{2,4,6,8,10\} \cup \{2,3,5,7\} \cup \{\varnothing\} \cup 2^\mathfrak{U}\}| = |\{1,2,3,4,5,6,7,8,9,10\}| = 1$$

(e)
$$(2^A \cap 2^C) \setminus 2^B = \{ \{\emptyset\}, \{2\}, \{4\}, \{2,4\} \} \setminus 2^B = \{ \{4\}, \{2,4\} \}$$

$$\text{(f) } 2^{B\cap C}\setminus\{2^{|2^{\{\varnothing\}}|}, |\overline{B\cap C}|\}=2^{\{2,7\}}\setminus\{2^{\{\varnothing,\{\varnothing\}\}}, 8\}=\{\varnothing, \{2\}, \{7\}, \{2,7\}\}$$

3. Даны следующие множества:

•
$$A = \{1, 2, 4\}$$

$$\bullet \ \ B = \{\Box, black_cat\} \cup \varnothing = \{\Box, black_cat\}$$

•
$$C = 2^{\varnothing} \setminus \{\varnothing\} = \varnothing$$

•
$$D = \{black_cat, |2^{\{\varnothing,C\}}|\} = \{black_cat, 2\}$$

•
$$E=2^{A\setminus D}\cap 2^{\{|B\setminus D|\}}=\{\varnothing,\{1\},\{4\},\{1,4\}\}\cap\{\varnothing,\{1\}\}=\{\varnothing,\{1\}\}$$

$$\bullet \ \ F=2^{\{\{\varnothing,\varnothing\}\setminus\{\{\varnothing\}\},\{\varnothing\}\triangle C,\{\varnothing,C\},2^\varnothing\}}=2^{\{\varnothing,\{\varnothing\}\}}=\{\varnothing,\{\{\varnothing\}\}\}$$

(a)
$$A\triangle D = \{1, 4, black_cat\}$$

(b)
$$E\triangle 2^C=\{\{1\}\}$$

$$\text{(c) } B \times E = \{ \langle \square,\varnothing \rangle, \langle \square,\{1\} \rangle, \langle black_cat,\varnothing \rangle, \langle black_cat,\{1\} \rangle \}$$

$$\begin{array}{l} \text{(d) } E \times 2^B = \{\varnothing, \{1\}\} \times \{\varnothing, \{\Box\}, \{black_cat\}, \{\Box, black_cat\}\} = \{\langle\varnothing, \varnothing\rangle, \langle\varnothing, \{\Box\}\rangle, \langle\varnothing, \{black_cat\}\rangle, \langle\varnothing, \{\Box, black_cat\}\rangle, \end{array}$$

$$\langle \{1\},\varnothing\rangle, \langle \{1\}, \{\Box\}\rangle, \langle \{1\}, \{black_cat\}\rangle, \langle \{1\}, \{\Box, black_cat\}\rangle\}$$

(e)
$$D^{|C|}=D^arnothing=arnothing$$

4. Найдите все множества A, B и C, которые удовлетворяют следующим условиям:

$$A=\{1,|B|,|C|\}$$

$$B=\{2,|A|,|C|\}$$

$$C = \{1, 2, |A|, |B|\}$$

Заметим, что множество C всегда будет иметь мощность не больше 3, так как мощности множеств A, B могут принимать значения только от 1 до 3.

1) Пусть мощность множества A равна 3. Тогда $C=\{1,2,3,|B|\}$, его мощность будет равна 3 независимо от значения |B|. Отсюда понимаем: $B=\{2,3,3\}=\{2,3\}$.

Получаем удовлетворяющее условию сочетание:

$$A = \{1, 2, 3\}, B = \{2, 3\}, C = \{1, 2, 3\}$$

2) Пусть мощность множества A равна 2. Тогда $C=\{1,2,2,|B|\}=\{1,2,|B|\},$ $B=\{2,2,|C|\}=\{2,|C|\}$

Пусть мощность B равна 2; но тогда мощность C равна 2, а значит $B=\{2\}, |B|=1$. Получаем противоречие.

Пусть мощность B равна 1. Тогда C=1,2, |C|=2, |B|=1, A=1,1,2=1,2, |A|=2.

Получаем удовлетворяющее условию сочетание:

$$A = \{1, 2\}, B = \{2\}, C = \{1, 2\}$$

3) Пусть мощность множества A равна 1. Тогда $A=\{1,1,1\}=\{1\}, |B|=1, C=1$, что невозможно, так как мощность C не может быть меньше 2. Получаем противоречие.

Таким образом, найденные выше 2 варианты единственны.

5. Изобразите на графиках \mathbb{R}^2 следующие множества точек:

(a)
$$\{1,2,3\} \times [1;3]$$

(b)
$$[1;4) imes (2;4]ackslash \{\langle 2,3
angle\}$$

Множество точек декартового произведения - закрашенная область. А, В, С - выколотые точки (c) $([1;6]\times(1;5])\setminus([4;5]\times(2;4))$

Множество точек декартового произведения - закрашенная область. А, В, С, D, Е, F - выколотые точки (d) $\{\langle x,y\rangle\in[1;5]\times[1;4]|(y>x)\vee(x\geqslant4)\}$

Множество точек декартового произведения - закрашенная область, А - выколотая точка

(e)
$$\{\langle x,y
angle \in (1;5]^2 | 4(x-2)^2 + 9(y-3)^2 \leqslant 36 \}$$

Множество точек декартового произведения - закрашенная область, A, B, C - выколотые точки (f) $\{\langle x,y\rangle\in\mathbb{N}^2|\exists z\in\mathbb{N}:x^3+y^3=z^3\}$ = \varnothing - по Великой Теореме Ферма

- 6. Подробно докажите (или опровергните) следующие утверждения:
- (a) Если $A\subseteq B$ и $B\subseteq C$, то $A\subseteq C$.

1)
$$A \subseteq B \Leftrightarrow (\forall x : (x \in A) \Rightarrow (x \in B))$$

- 2) $B\subseteq C\Leftrightarrow (\forall y:(y\in B)\Rightarrow (y\in C))$
- 3) Из 1 и 2 следует, что $(\forall x: (x \in A) \Rightarrow (x \in C)) \Leftrightarrow A \subseteq C$
- (b) $|2^A| = 2^{|A|}$
- 1) 2^A- булеан множество множество всех подмножеств множества A. Для каждого B- подмножества A верно, что $\forall x: (x \in B) \land (x \in A)$.
- 2) Иначе говоря, каждый элемент из множества A может либо входить в подмножество B, либо нет (2 варианта): $\forall x: (x \in B) \Rightarrow (x \in A)$
- 3) Каждому подмножеству B = $\{x_1, x_2, ..., x_m\}$ поставим в соответствие набор длины \mathbf{n} из нулей и единиц, в котором на местах \mathbf{c} номерами i_1, \ldots, i_m стоят единицы, а на остальных местах нули. Это соответствие является взаимно-однозначным.
- 4) Таким образом, мощность булеан множества определяется как произведение |A| двоек, где |A| мощность исходного множества (по принципам комбинаторики):

$$|2^A| = 2_1 * 2_2 * ... * 2_{|A|} = 2^{|A|}$$

(c) Множество рациональных чисел $\mathbb Q$ счётное.

Составим таблицу размером $|\mathbb{Z}| \times |\mathbb{N}|$, где в і-й строчке j-ого столбца будет стоять число $\frac{i}{i}$, $i \in \mathbb{Z}, j \in \mathbb{N}$.

На каждой позиции нашей таблицы будет стоять несократимая дробь $\in \mathbb{Q}$, причём всякое рациональное число находится на каком-то месте в этой таблице.

Будем нумеровать дроби начиная с левого верхнего угла, проходя по таблице линиями, параллельными побочной диагонали. Однозначное соответствие номеров и пар чисел достигается применением одной из функций сопряжения. Таким образом, каждое из рациональных чисел получит свой номер, а значит \mathbb{Q} — счётно.

- (d) $2^{\mathbb{N}}$ несчётное множество.
- 1) Докажем, используя Диагональный метод Кантора.
- 2) $B^{\omega}=\{$ строки из нулей и единиц бесконечной счётной длины $\}$, $\omega-$ супремум $\mathbb N$

3) Каждой строке из выше описанного множества однозначно соответствует какое - то подмножество из булеана натуральных чисел. Например, строке из всех нулей - пустое множество, и т.п.

4) Запишем строки друг под другом в виде матрицы

S_0	<u>0</u>	0	0	0
S_1	1	<u>0</u>	0	0
S_2	0	1	<u>0</u>	0
S_3	0	0	1	<u>0</u>

5) Начиная с $S_{0,0}$ будем выписывать инвертированные значения на позициях $S_{i,i}$

Таким образом, мы получим строку, отличающуюся от каждой из строк из B^ω хотя бы на один символ, т.е. не встречающуюся в этом множестве. Значит, пронумеровать булеан множество натуральных чисел. $2^\mathbb{N}$ — несчётное множество.

