

Karnaugh-map Using Arduino

M.DINESH maddudinesh12@gmail.com IITH - FUTURE WIRELESS COMMUNICATIONS-(FWC22044)

3

karnaugh-map

Contents

1 3.1 **Implementation** Introduction 1 components 00 01 11 10 1 karnaugh-map 3.1 Implementation 00 0 0 0 1 **Truthtable** 1 1 1 01 0 1 AB**Hardware Connections** 1 0 0 11 0 0 **Software** 1 10 0 0 0 0

Abstract

The objective of this manual is to show how to verify following min-terms.F = (m7+m2+m6+m5)using karnaugh-map

1 Introduction

Karnaugh-map provides a systematic method for simplifying boolean expressions and may produce simplest SOP or POS expressions.

karnaugh-map used to minimize number of logic gates that are required in a digital circuit.

2 components

component	value	quantity
Arduino	UNO	1
Breadboard	-	1
Led	-	1
Resistor	220ohm	1
Jumperwires	M-M	20

Table-0

Figure 1:k-map

From the above karnaugh-map the expression is

A'BD+A'BC+CD'A'

This karnaugh-map is verified by using

Truthtable Table-1

4 **Truthtable**

	Α	В	С	D	O/P	
C	0	0	0	0	0	
	0	0	0	1	0	
	0	0	1	0	1	
	0	0	1	1	0	
	0	1	0	0	0	
	0	1	0	1	1	
	0	1	1	0	1	
	0	1	1	1	1	
	1	0	0	0	0	
	1	0	0	1	0	
	1	0	1	0	0	
	1	0	1	1	0	
	1	1	0	0	0	
	1	1	0	1	0	
	1	1	1	0	0	
	1	1	1	1	0	

Table-1

5 Hardware Connections

arduir	1 2	3	4	5	9	gnd
input	Α	В	С	D		
led					+	-

Table-2

6 Software

- 1.connect the arduino to the computer
- 2.Download the follwing code

 $https://github.com/maddudinesh/iithyderabad-fwc/blob\\/main/fwcassignment1/codes/fwc%20assignment1.\\txt$

 $3.\mbox{The led}$ beside the 13th pin ON and OFF when changing the inputs