SVM for Regression

Epsilon Insensitive Loss Function

$$L\in (y,\hat{g})\triangleq \begin{cases} 0 & \text{if } |y-\hat{g}|<\varepsilon\\ |y-\hat{g}|-\varepsilon & \text{otherwise} \end{cases}$$

Not differentiable because of the absolute value function

$$\hat{y}(x) = \hat{w}_{s} + \hat{w}^{T}x$$

SVMs for classification

$$y_i \in \S -1,1?$$

$$f(x_i) = \log \frac{\rho(y_i = x | x_i, w)}{\rho(y_i = -1 | x_i, w)} = \omega^T x_i = M_i$$

case 1:
$$ji = +1$$
 $mi > 0 \rightarrow yimi > 0 \rightarrow sigm(yimi) > 0.5$
case 2: $ji = +1$ $mi < 0 \rightarrow yimi < 0 \rightarrow sigm(yimi) < 0.5$
case 3: $ji = -1$ $mi < 0 \rightarrow yimi < 0 \rightarrow sigm(yimi) < 0.5$
case 4: $ji = -1$ $mi < 0 \rightarrow yimi > 0 \rightarrow sigm(yimi) > 0.5$

$$L_{\Pi} = -\log P(y|x,w) = -\log sigm(y,m)$$

$$= -\log \left[\frac{1}{1+e^{ym}}\right] = \log \left(1+e^{ym}\right)$$

Hinge Loss

Linge $(y_1 M) = \max(0, 1-y M)$ y = +1 + m > 0 + y M > 0 y = +1 + m < 0 + y M < 0 y = -1 + m < 0 + y M < 0 y = -1 + m < 0 + y M < 0 y = -1 + m < 0 + y M < 0

In the cases where
$$y=+1$$
 & $m\geq 1$ or $y=-1$ & $m\leq -1$ } $y=-1$

$$\max(0, 1-ym) = 0$$

The cases where
$$y=\pm 1$$
 d $0 < m < 1$ of $0 < ym < 1$

$$y=-1$$
 d $-1 < m < 0$

$$max(0, 1-ym) = 1-ym$$

max
$$(0, 1-ym) = 1-ym$$

In the cases where $y=+1$ if $m < 0$ or $y = -1$ if $m > 0$ $y = -1$ is $y = -1$ in thich is $y = -1$

Prediction

$$\hat{y}(x) = sgn(f(x)) = sgn(\hat{w}_s + \hat{w}_t^T x)$$

$$\hat{y}(x) = sgn\left(\hat{w}_{o} + \frac{1}{2}x_{i}^{T}x_{i}^{T}x\right)$$

inner produc

$$\hat{y}(x) = sgn(\hat{w}_0 + \frac{1}{2}\alpha; K(x_{1/x}))$$