Note Title	Lagrange multiplier examples; thto to multiple thtegrals
	Today: . 2 examples of Cagrange multipliers . a first look at multiple integrals
	Example 1
	Find the points on (x+1)2+(y-1)2 = 4 that are closest to, and farthest from, the origin.
	Exerise: a) dan diagram
	orso or year of low or morginass
	b) make a rough estimate of the answer
	What function f do we want to maximize? Distance from origin is ricity, but it is equivalent (and easier) to minimize and or maximize rity?
	The value of it that maximizes f(10) also maximizes (f(11))2. Save for min. Technically, this is because the 'squaring' operation is monotonic.
	is because the squarty operation is movetanic.

Example 2

Construct a lox inthant a top. Bottom costs \$2/sqft. Sides cost \$3/sqft. Volume must be 9 ansiz ft. What is minimum cost?

Use Layrange multiplies:

$$\nabla C = \langle \\ \nabla V = \langle \\ \rangle$$

Require
$$\nabla C = 2 \nabla V$$

i.e.

Solve e.g. via Wolfram Alpha: solve 2y+6z=lambda*y*z, 2x+6z=lambda*y*z, 6x+6y=lambda*x*y, xyz=9 Only real solution is: 11=3, y=3, Z=1, 1=4 Hence minimum last is C(3,3,1) = \$54. [sluip the textbook section on "the constraints"] Muttiple integrals Recall: o one interpretation of an integral is (area under a curve) = only males sense if f(2) > 0 · We can estimate this area using many thin rectangles: - y=f(x) It is a sample a x1 1/2 1 somewhere in the interval Area = $\lim_{x \to \infty} \frac{1}{x} \int_{-\infty}^{\infty} \int_{-\infty}$

liemann sum

