CS 295A/395D: Artificial Intelligence

More on Markov Chains & Intro to MDPs

Prof. Emma Tosch

22 April 2022

Agenda

- Review Markov chains
- Important properties of Markov Chains
- Introduce Markov Decision Processes (MDPs)

Review: Markov Chains

A first-order Markov chain is defined by the model $\langle S, T, v_0 \rangle$ such that:

$$S = \{s_1, ..., s_n\}$$
 is the set of n states

$$p_{ij} = P(X_t = s_j \mid X_{t-1} = s_i)$$

$$v_0 = \langle P(X_1 = s_1), P(X_1 = s_2), \dots, P(X_1 = s_n) \rangle$$

Review: Markov Property

The Markov property for a kth-order Markov chain is:

$$P(X_t \mid X_{t-1}, ..., X_{t-k}, ..., X_1) = P(X_t \mid X_{t-1}, ..., X_{t-k})$$

i.e., X_t is independent of the sequence that produced it, given its k predecessors.

Can be thought of as:

- Memoryless-ness (statistics)
- Temporal locality (computer science)

Review: Graphical representation vs. Bayes Nets

Bayes Net

- Encodes independence relations
- Nodes represent conditional probability distributions

Bayes Net

Review: Graphical representation vs. Bayes Nets

Bayes Net

Encodes independence relations

 Nodes represent conditional probability distributions

State transition diagram

- Encodes transition probabilities
- Nodes encode conditional probability distributions

State transition diagram

Bayes Net

Review: Graphical representation vs. Bayes Nets

Bayes Net

Encodes independence relations

 Nodes represent conditional probability distributions

State transition diagram

Encodes transition probabilities

 Nodes encode conditional probability distributions

Markov Chain

- Represents the sequence of states
- Encodes independence relations

State transition diagram

Bayes Net

State transition diagram

State transition diagram

Recall: Markov Property

The Markov property for a kth-order Markov chain is:

$$P(X_t \mid X_{t-1}, ..., X_{t-k}, ..., X_1) = P(X_t \mid X_{t-1}, ..., X_{t-k})$$

i.e., X_t is independent of the sequence that produced it, given its k predecessors.

Thus, a second-order Markov chain has the property:

$$P(X_t \mid X_{t-1}, \dots, X_{t-k}, \dots, X_1) = P(X_t \mid X_{t-1}, X_{t-2})$$

Can we get these probabilities from our original transition diagram?

- Have: $P(X_t | X_{t-1})$
- Want: $P(X_t | X_{t-1}, X_{t-2})$

State transition diagram

Thus, a second-order Markov chain has the property:

$$P(X_t \mid X_{t-1}, \dots, X_{t-k}, \dots, X_1) = P(X_t \mid X_{t-1}, X_{t-2})$$

A first-order Markov chain is defined by the model $\langle S, T, v_0 \rangle$ such that:

$$S = \{s_1, ..., s_n\}$$
 is the set of n states

$$p_{ij} = P(X_t = s_j \mid X_{t-1} = s_i)$$

$$v_0 = \langle P(X_1 = s_1), P(X_1 = s_2), \dots, P(X_1 = s_n) \rangle$$

A first-order Markov chain is defined by the model $\langle S, T, v_0 \rangle$ such that:

$$S = \{s_1, ..., s_n\}$$
 is the set of n states

$$p_{ij} = P(X_t = s_j \mid X_{t-1} = s_i)$$

$$v_0 = \langle P(X_1 = s_1), P(X_1 = s_2), \dots, P(X_1 = s_n) \rangle$$

A **k**th-order Markov chain is defined by the model $\langle S, T, v_0 \rangle$ such that:

$$S = \{s_1, ..., s_n\}$$
 is the set of n states

$$p_{ij} = P(X_t = s_i \mid X_{t-1} = s_i)$$

$$v_0 = \langle P(X_1 = s_1), P(X_1 = s_2), ..., P(X_1 = s_n) \rangle$$

A kth-order Markov chain is defined by the model $\langle S, T, v_0 \rangle$ such that:

$$S = \{s_1, \dots, s_n\}$$
 is the set of n states

T is a $n \times n$ matrix of transition probabilities such that:

$$p_{ij} = P(X_t = s_i \mid X_{t-1} = s_i)$$

State set remains the same!

$$v_0 = \langle P(X_1 = s_1), P(X_1 = s_2), \dots, P(X_1 = s_n) \rangle$$

A kth-order Markov chain is defined by the model $\langle S, T, v_0 \rangle$ such that:

$$S = \{s_1, \dots, s_n\}$$
 is the set of n states

T is a $n \times n$ matrix of transition probabilities such that:

$$p_{ij} = P(X_t = s_j | X_{t-1} = s_i)$$

$$v_0 = \langle P(X_1 = s_1), P(X_1 = s_2), \dots, P(X_1 = s_n) \rangle$$

Previously: just encoded edges from the transition diagram as a matrix

A kth-order Markov chain is defined by the model $\langle S, T, v_0 \rangle$ such that:

$$S = \{s_1, ..., s_n\}$$
 is the set of n states

T is a $n \times n$ matrix of transition probabilities such that:

$$p_{ij} = P(X_t = s_j | X_{t-1} = s_i)$$

$$v_0 = \langle P(X_1 = s_1), P(X_1 = s_2), \dots, P(X_1 = s_n) \rangle$$

Recall:

 s_i = state we are coming from

 s_i = state we are going to

A kth-order Markov chain is defined by the model $\langle S, T, v_0 \rangle$ such that:

$$S = \{s_1, \dots, s_n\}$$
 is the set of n states

T is a $n \times n$ matrix of transition probabilities such that:

$$p_{ij} = P(X_t = s_j | X_{t-1} = s_i)$$

$$v_0 = \langle P(X_1 = s_1), P(X_1 = s_2), \dots, P(X_1 = s_n) \rangle$$

Now: what is i?

A kth-order Markov chain is defined by the model $\langle S, T, v_0 \rangle$ such that:

$$S = \{s_1, \dots, s_n\}$$
 is the set of n states

T is a $n \times n$ matrix of transition probabilities such that:

$$p_{ij} = P(X_t = s_j \mid X_{t-1} = s_i)$$

$$v_0 = \langle P(X_1 = s_1), P(X_1 = s_2), \dots, P(X_1 = s_n) \rangle$$

Now: what is i?
i matches a state in the transition diagram,
not a state from \$

A kth-order Markov chain is defined by the model $\langle S, T, v_0 \rangle$ such that:

 $S = \{s_1, ..., s_n\}$ is the set of n states

$$p_{ij} = P(X_t = s_i | X_{t-1} = s_i)$$

$$v_0 = \langle P(X_1 = s_1), P(X_1 = s_2), ..., P(X_1 = s_n) \rangle$$

A kth-order Markov chain is defined by the model $\langle S, T, v_0 \rangle$ such that:

$$S = \{s_1, ..., s_n\}$$
 is the set of n states

... and let
$$v_i = \langle s^1, ..., s^k \rangle$$

$$p_{ij} = P(X_t = s_j \mid X_{t-1} = s_i)$$

$$v_0 = \langle P(X_1 = s_1), P(X_1 = s_2), ..., P(X_1 = s_n) \rangle$$

A kth-order Markov chain is defined by the model $\langle S, T, v_0 \rangle$ such that:

$$S = \{s_1, ..., s_n\}$$
 is the set of n states

T is a $n^k \times n$ matrix of transition probabilities such that:

... and let
$$v_i=\langle s^1,...,s^k
angle$$

$$p_{ij}=Pig(X_t=s_j\mid X_{t-1}=v_i(k),...\;,\; X_{t-k}=v_i(1)\,ig)$$

 $v_0 = \langle P(X_1 = s_1), P(X_1 = s_2), \dots, P(X_1 = s_n) \rangle$

A kth-order Markov chain is defined by the model $\langle S, T, v_0 \rangle$ such that:

$$S = \{s_1, \dots, s_n\}$$
 is the set of n states

... and let
$$v_i = \langle s^1, \dots, s^k \rangle$$

$$p_{ij} = P\big(X_t = s_j \mid X_{t-1} = v_i(k), \dots, \ X_{t-k} = v_i(1)\,\big)$$

$$v_0 = \langle P(X_1 = s_1), P(X_1 = s_2), \dots, P(X_1 = s_n) \rangle$$

A kth-order Markov chain is defined by the model $\langle S, T, v_0 \rangle$ such that:

$$S = \{s_1, ..., s_n\}$$
 is the set of n states

... and let
$$v_i = \langle s^1, ..., s^k \rangle$$

$$p_{ij} = P \big(X_t = s_j \mid X_{t-1} = v_i(k), ..., X_{t-2} = v_i(1) \big)$$

$$v_0 = \langle P(X_2 = s_1, X_1 = s_1), P(X_2 = s_2, X_1 = s_1), \dots, P(X_2 = s_n, X_1 \neq s_n) \rangle$$

Markov Chains via Linear Algebra

Assume first order. Then we can compute

$$P(X_t) = v_0 T^t$$

Produces a vector v_t of size 1 x n giving the probability that we are in each state of S after t steps.

What does this look like for an arbitrary order chain?

First order spreadsheet demo 1

Steady State Distributions

Some Markov chains have the property that:

$$v = Tv$$

v is the steady state distribution for the Markov Chain

Can solve for v directly

Most Markov chains have a unique steady state distribution that the chain converges to, regardless of starting distribution.

First order spreadsheet demo 2

Property: Irreducibility

A Markov Chain is irreducible iff in the transition graph there exists a path from every state to every other state, i.e., you can't get stuck in a group of nodes.

First order spreadsheet demo 3

Property: Aperiodicity

An irreducible Markov chain with transition matrix T is called periodic if there exists some t > 1 such that there exists a state s which can only be visited at time steps $\{t, 2t, 3t, ...\}$, that is with period t.

If T is not periodic (i.e., t=1), then the chain is aperiodic.

Property: Uniqueness of steady state distribution

A Markov chain that is irreducible and aperiodic has a unique steady state distribution.

This is the property that allows Markov Chain Monte Carlo sampling.

Markov Decision Processes (MDPs)

Markov Chains + decisions

Two new pieces of information:

- Actions to take (choices/decisions)
- Rewards for entering a new state due to an action