תרגול 5: SVM

תזכורת – גאומטריה של מישור

- $\frac{w^{T}x}{\|w\|}:w$ היטל של ווקטור x בכיוון ווקטור \bullet
- משוואה של מישור ב $w \in \mathbb{R}^d, b \in \mathbb{R}$ עבור, $w^T x + b = 0 : \mathbb{R}^d$ קבועים c עבור קבוע כלשהוא ברור ש cw,cb עבור קבוע כלשהוא w,b מגדירים את אותו מישור כמו
- $d = \frac{w' \, x_0 + b}{\|w\|} : w, b$ מרחק מהמישור מהמישור מהמישור מהמישור של נקודה •

הסימן . $d_{\scriptscriptstyle 0} = \frac{b}{\|w\|}$ הוא מהמישור הראשית של שהמרחק מתקבל בהצבת x = 0

או לכיוון המקביל ל,wא קובע לכיוון המישור של המישור בצד או הנקודה של של d: w האנטי-מקביל ל

:אזכורת: –SVM

ניסוח הבעיה הפרימאלית: (P)

$$\min_{w,b} \frac{1}{2} \|w\|^2$$

s.t.:
$$y_k(w^T x_k + b) \ge 1$$
, $k = 1, 2, ..., n$

ניסוח הבעיה הדואלית: (D)

$$\max_{\alpha} \sum_{k=1}^{n} \alpha_k - \frac{1}{2} \sum_{k,l=1}^{n} \alpha_k \alpha_l y_k y_l \langle x_k, x_l \rangle$$

s.t.:
$$\alpha_k \ge 0$$
, $k = 1, 2, ..., n$
$$\sum_{k=1}^{n} \alpha_k y_k = 0$$

$$\sum_{k=1}^{n} \alpha_k y_k = 0$$

support vectors (SV) - תכונות ה

- 1. מרחקן למישור המפריד הוא מינימלי.
 - .SV אם ורק אם $\alpha_i > 0$.2
- - של margin מהמישור המפריד נקרא הSV מהמישור המרחק אוקלידי של ה $\frac{1}{\|w\|}$ (תרגיל: הוכיחו את הביטוי הנייל, בעזרת הביטוי למרחק נקודה ממישור ותכונה מסי 3).

שאלה 1 - דוגמאות ניתנות להפרדה לינארית

נתונות שתי המחלקות הבאות:

($y_k = -1$) [1,6],[1,10],[4,11] : מחלקה

 $(y_k = +1)$ [6,1], [7,6],[10,4] : 2 מחלקה

- support) הלינארי וקטורי מהם אוי מהם הלינארי את SVM הלינארי את צייר את צייר את אייר את אייר את אייר את אייר את אייר (vectors $^{\circ}$
 - ב. נתון כי הערכים האופטימליים של הבעיה הדואלית הם:

$$\alpha = \begin{bmatrix} 0.0356 & 0 & 0.04 & 0 & 0.0756 & 0 \end{bmatrix}^T$$

לאילו דוגמאות שייכים הערכים השווים לאפס?

- ג. חשב את ערך הווקטור w האופטימאלי של הבעיה הפרימאלית!
 - ד. מהו ה-margin של הבעיה!
 - $.\,lpha_{_{i}}$ ישירות מערכי margin-ה. חשב את

פתרון

- n_{SV} א. נבדוק מה המספר האפשרי n_{SV} של ווקטורי תמיכה בבעיה זו
- אפשרי באופן עקרוני, אם כל הנקודות בסט הלימוד שייכות פיכות $n_{SV}=0$.1 רק למחלקה אחת. הפתרון האופטימלי המתקבל הוא . $\forall i: \alpha_i=0 \to w=0$
- .2 $n_{sv}=1$ לא אפשרי במקרה הכללי, שכן אי אפשר לקיים את התנאי : $n_{sv}=1$.2 עם α_i עם $\sum_i \alpha_i y_i = 0$ אחד בלבד ששונה מ- 0. **היוצא מהכלל** הוא מקרה פרטי בו אנו מאלצים את המישור המפריד לעבור בראשית, כלומר קובעים b=0. במצב זה a_i אינו מופיע בבעית האופטימיזציה, ולא נקבל את התנאי a_i . a_i . השאלה דנה במקרה הכללי ולכן לא נבדוק את המקרה הזה.
 - 3. אפשרי. במקרה זה הווקטור w ניצב לקו המחבר את ווקטורי התמיכה. זוגות אפשריים הן הנקודות (ראו ציור) ווקטורי התמיכה. זוגות אפשריים הן הנקודות (ראו ציור) $\{1,4\};\{1,5\};\{3,4\};\{3,5\}$ לסתירה עם ההנחה שהם ווקטורי תמיכה, שכן עבור כל זוג קייימת נקודה אחרת שיותר קרובה למישור המפריד, בסתירה לתכונות ה-SV

$$\{1,3,5\}: w = \frac{1}{15} \begin{bmatrix} 5 \\ -3 \end{bmatrix}, b = -\frac{2}{15}$$

$${3,4,5}: w = \frac{1}{10} \begin{bmatrix} 5 \\ -1 \end{bmatrix}, b = -\frac{19}{10}$$

. $\{1,3,5\}$ מינימלי, כלומר $\|w\|$ מינימלי הוא השלשה והפתרון האופטימלי

- .SV שייכים לדוגמאות שאינן ה $\alpha_i = 0$ הערכים עבורם
 - $\boldsymbol{\kappa}$ את \boldsymbol{w} האופטימלי מצאנו בסעיף אי.
 - $\frac{1}{\|w\|}$ = 2.5725 של הבעיה הוא margin של הבעיה
- $w = \sum_i \alpha_i y_i x_i = -0.0356 \cdot x_1 0.04 \cdot x_3 + .0756 \cdot x_5$ נמצא את א עייי הנוסחה שייי הנוסחה מחושב כמו בסעיף די. מתקבל כמובן אותו w כמו מסעיף אי וה מתקבל כמובן אותו

SVM - 2 שאלה

נזכר כי פתרון בעיית ה-SVM כרוך בפתרון בעיית האופטימיזציה הבאה:

$$\min_{w \in \mathbb{R}^d, \xi \in \mathbb{R}^n, b \in \mathbb{R}} \left(\frac{1}{2} \|w\|^2 + C \sum_{k=1}^n \xi_k \right)$$
subject to:
$$y_k(w^T x_k + b) \ge 1 - \xi_k \qquad k = 1, ..., n$$

$$\xi_k \ge 0 \qquad \qquad k = 1, ..., n$$

 $.\Big(w^*,b^*,\xi^*\Big)$ נרשום את הפתרון האופטימאלי של בעיה (1) עייי: נייח את הפתרון האופטימאלי של בעיה הנייל לקבוע $.\delta>0$, ונכתוב במקום הקבוע $.\delta<0$ את הקבוע $.\delta$. מתקבלת הבעיה $.\delta$.

$$\left(\widehat{w},\widehat{b},\widehat{\xi}\right) = \left(\delta\cdot w^*,\delta\cdot b^*,\delta\cdot \xi^*\right)$$
 : נגדיר

- 1. הוכיחו כי $\left(\widehat{w},\widehat{b},\widehat{\xi}\right)$ הינו פתרון אפשרי של בעיה (2). כלומר, הראו כי עבור הוכיחו כי $\left(\widehat{w},\widehat{b},\widehat{\xi}\right)$ המשתנים הנ"ל מתקיימים שתי משוואות האי-שוויון של בעיה (2).
- 2. הוכיחו כי $\left(\widehat{w},\widehat{b},\widehat{\xi}\right)$ הינו הפתרון האופטימאלי של בעיה (2). (רמז : נסו להוכיח .2 זאת בשלילה).
- 3. הוכיחו כי הפתרון האופטימאלי לבעיה (2) מבצע סיווג זהה לזה של הפתרון האופטימאלי של בעיה (1). כלומר:

$$\operatorname{sign}(w^{*T}x + b^*) = \operatorname{sign}(\hat{w}^Tx + \hat{b}), \quad \forall x \in \mathbb{R}^d$$

פתרון: ראו קובץ pdf המצורף באתר הקורס.