СПРАВОЧНИК ПО БАЗОВЫМ КОМАНДАМ СИСТЕМЫ **R**

Дьяконов Александр

ВНИМАНИЕ! ДОКУМЕНТ НАХОДИТСЯ В СТАДИИ **ПОСТОЯННОЙ** ПРАВКИ! ВОЗМОЖНЫ ОШИБКИ!

Версия «19 октября 2013 года»

Рекомендуемые книги, электронные ресурсы:

- http://zoonek2.free.fr/UNIX/48_R/all.html Vincent Zoonekynd Statistics with R Один из самых полных источников по R.
- http://nostarch.com/artofr.htm Norman Matloff The Art of R programming Полноценный учебник по R.
- http://r-analytics.blogspot.com/ Советы по установке, использованию, ссылки на книги
- http://ru.wikipedia.org/wiki/ Много полезных ссылок.

СПИСОК БУДЕТ ПОПОЛНЕН.

Особенности системы

- [+] Бесплатное Π О, содержащее все необходимые функции для обработки, визуализации и анализа данных.
- [+] Превосходная реализация многих алгоритмов анализа данных. Например, одна из лучших реализаций алгоритма случайного леса (RF).
- [–] Требует загрузки всех данных в память!
- [–] Является интерпретатором с не очень богатыми возможностями по визуализации данных.

Особенности этого учебного пособия

Автор считает, что лучше всего подобные системы изучать на примерах. Ведь знакомятся с ними люди, уже освоившие один или даже несколько высокоуровневых языков программирования. Синтаксис учится просто, а все тонкости всё равно познаются в процессе работы. Необходимо лишь показать примеры работы с системой. Это должны быть маленькие и самостоятельные фрагменты кода, из которых при желании можно составлять большие программы для решения достаточно сложных задач.

Многие примеры взяты из [1]–[2]. Большая часть из них существенно переработана и изменена. Автор позволил себе не указывать каждый раз источник, но очень благодарен всем, кто пишет дельные книги по системе R.

Что сразу надо учитывать

R сочетает объектно-ориентированный и функциональный подходы к программированию.

R – скриптовый язык, поэтому, в частности, в нём нет объявления переменных.

Установка

Скачать новую версию можно с сайта http://cran.r-project.org. При установке не должно возникнуть проблем.

Основная мощь системы заключена в дополнительных пакетах, которые устанавливаются отдельно (например, командой install.packages, см. ниже).

На компьютере могут отдельно сосуществовать несколько версий системы (для каждой нужно будет устанавливать пакеты).

Начало. Примитивные операции

Начало. Примитивные операции	
> help(solve)	Вызов помощи.
> ?solve	
> help("(")	Попробуйте набрать example (persp).
	Многие функции имеют хорошие примеры
	своей работы!
<pre>> help.start()</pre>	Вызов html-помощи.
> x <- 15 # можно x=15	Присваивание.
> X	Чувствительность к регистру!
Ошибка: объект "А" не найден	
> x[1]	Скаляр – это вектор единичной длины.
[1] 15	Элементы вектора нумеруются с единицы.
> x<-y<-z<-0	Сложные присваивания.
> y	
[1] 0	
> ПервПер <- 2 -> ВторПер	Допустимы и такие присваивания.
> ВторПер	Допустима кириллица! В R вообще сделано
[1] 2	максимум для того, чтобы код программы
	читался как обычный текст.
> a <- c(1,3,4)	Различные способы присваивания.
> a = c(1,3,4)	
> c(1,3,4) -> a	
> assign("a", c(1,3,4))	Обратите внимание на кавычки!
> a	
[1] 1 3 4 > a = 1; b = 2; a+b #комментарий	
> a = 1; b = 2; a+b #комментарий	Оформление. Команды отделяются точкой с
[1] 3	запятой или переводом строки. В конце
> c = a-b	команды точка с запятой не обязательна.
> (c = a-b)	Команда в скобках выводит результат.
[1] -1	
> (c =	Если команда не завершена, выводится
+ a - b)	«приглашение» «+». Этот приём часто
[1] -1	используется при написании листингов.
$> a = \{x = 1; y = 1;$	Блок команд выделяется фигурными

1	
+ z = x+y	скобками. Его значение – результат
> a	последнего присваивания в блоке.
[1] 2	
> 2 + 3	Сложение.
[1] 5	T C
> "+"(2,3) # можно и так	Любая операция – это прежде всего функция!
[1] 5	Пожатия
> 7/3	Деление.
[1] 2.3333333 > 7%/%3	Подолналанное дологие
[1] 2	Целочисленное деление.
> 7883	Остаток.
[1] 1	OCIAIOR.
> 2 ³	Возведение в степень.
[1] 8	Бозведение в степень.
> round(1.234,1)	Округление до заданного знака после
[1] 1.2	запятой.
> floor (5.2)	Другие функции округления.
[1] 5	, 15 15 15 15 15
<pre>> ceiling(5.2)</pre>	
[1] 6	
> trunc(5.2)	
[1] 5	
> signif(0.55555555, digits = 3)	
[1] 0.556	25
> round(0.5)	Обратите внимание: R использует стандарт
[1] 0	IEC 60559.
> 1==2	Булев тип.
[1] FALSE > x = F	Допустимы сокращения: «Т» и «F», если,
> x - r > x	конечно, нет переменных с таким именем.
[1] FALSE	
	Логические операции:
> FALSE & TRUE # M	конъюнкция,
[1] FALSE	,
> FALSE TRUE # или	дизъюнкция,
[1] TRUE	
> !FALSE # не	отрицание (определены и над логическими
[1] TRUE	векторами, см. дальше).
$\mathbf{x} \leftarrow 2$	В логических выражениях используйте & и
if ((x>0)&&(x<5))	11.
x < -5	Form we wave (N-N) Section (I C
> $c(0,0,-1,NA)/c(0,1,0,1)$	Есть не-числа (NaN), бесконечности (Inf, –
[1] NaN 0 -Inf NA	Inf) и «отсутствия значений» (NA).
> c(0,0,-1,NA)*c(0,1,0,1)	Папанна и умноменна позначения (та ута
[1] 0 0 0 NA	Деление и умножение поэлементное (те, что приняты в линейной алгебре – %/%, %*%).
> var(x)	
[1] 4.666667	Вызов функций (два одинаковых действия).
> sum((x-mean(x))^2)/(length(x)-	
1)	
-1	

[1] 4.666667	
> sqrt(-1)	Для операции с комплексными числами
[1] NaN	указывайте мнимую часть!
Warning message:	
In sqrt(-1) : созданы NaN	
> sqrt(-1+0i)	Обратите внимание на запись « 0i ».
[1] 0+1i	-
> 0.3 - 3*0.1	Напоминаем про особенность вычислений
[1] -5.551115e-17	(особенность IEEE 754 арифметики)!
	Поэтому
	> 0.3 == 3*0.1
	[1] FALSE
<pre>> formatC(pi, digits=2, width=8,</pre>	Один из низкоуровневых способов управлять
<pre>format="f")</pre>	форматом вывода чисел (возвращает строку).
[1] " 3.14"	
> source("commands.R")	Вызов команд из файла.
<pre>> sink("record.lis")</pre>	Перенаправить вывод в файл. Вернуть вывод
> sink()	на консоль.
> objects()	Вывести список объектов. Есть также
[1] "a" "b"	функция 1s ().
> rm(a)	
> objects()	Удалить объект.
[1] "b"	

Векторы

Векторы	
> x <- 1	Декларировать переменные заранее не надо.
> y[1] <- 1	Однако есть исключения.
Ошибка в у[1] <- 1 : объект 'у'	
не найден	
<pre>> (y = vector(length=2))</pre>	Вектор надо сначала создать (чтобы
[1] FALSE FALSE	обращаться по индексам).
> y[1] = 1	
> y	Названия переменных в R (например, «х») –
[1] 1 0	просто указатели.
> 1:5	Генерация векторов.
[1] 1 2 3 4 5	
<pre>> seq(from=1, to=5)</pre>	
[1] 1 2 3 4 5	
> seq(from=1, to=5, by=2)	
[1] 1 3 5	
<pre>> seq(from=1, to=5, length=2)</pre>	
[1] 1 5	
> 5:1	Не надо указывать (-1) как в системе
[1] 5 4 3 2 1	MATLAB.
> a <- rep(c(1,3), times=3)	Повтор вектора.
> length(a) <- 5	«Урезание» вектора. Обратите внимание: это
> a	«нетипичная» запись. Непривычно делать
[1] 1 3 1 3 1	присваивание значению функции, но на
# это было обозначение	самом деле в R есть функция "length<-".
> a <- "length<-"(a, 5)	И это было просто её обозначение!
> rep(1:3, each=2)	Повтор каждого элемента вектора.

```
[1] 1 1 2 2 3 3
> rep(1:3, 2) # times = 2
[1] 1 2 3 1 2 3
> rep(1:3, times=2, len=7)
[1] 1 2 3 1 2 3 1
> rep(1:3,1:3)
                                       Повтор каждого элемента нужное число раз.
[1] 1 2 2 3 3 3
> rev(1:4)
                                       «Переворот» вектора. Это замена такого
[1] 4 3 2 1
                                       фрагмента:
                                       a = 1:4
                                       a[length(a):1]
> x = c(2,1,10,9,10)
> sort(x)
                                       Сортировка вектора. Сам вектор ж при этом
[1] 1 2 9 10 10
                                       не меняется!
> order(x)
                                       Индексы элементов в порядке возрастания.
[1] 2 1 4 3 5
> sort(x, decreasing = TRUE)
                                       Сортировка в другом порядке.
[1] 10 10 9 2 1
> rank(c(2,3,3,5,5,5,4))
                                       Порядковый ранг элементов. Очень полезная
[1] 1.0 2.5 2.5 6.0 6.0 6.0 4.0
                                       функция при обработке данных.
> c(1,4,2,6)>4
                                       Логический вектор.
[1] FALSE FALSE TRUE
> is.na(c(1, NA, 3))
                                       Что пропуск. Напомним, NA – пропуск, NAN
[1] FALSE TRUE FALSE
                                       - не-число.
> which (c(T, T, F, T))
                                       Перевод логического вектора в индексы.
[1] 1 2 4
> a = c(2, -Inf, 5, NaN, NA)
                                       Логический вектор возвращают многие
# что является числом
                                       функции.
> i = is.finite(a)
> a[i]
                                       Логическим вектором можно делать
[1] 2 5
                                       индексацию.
> x < -c(11, 45, 12, 9)
                                       Индексация «вектор от вектора».
> y < -c(4,3,1,2)
> z < -c(1,4,3,2)
                                       Напоминаем, элементы вектора нумеруются
> x[y[z]]
                                       с единицы!
[1] 9 45 11 12
> x < -c(1,5,2,3,10)
                                       Все остальные элементы (кроме второго и
> x[-c(2,4)]
                                       четвёртого). Очень удобная запись!
[1] 1 2 10
> (x < -x[-3])
                                       Так можно удалить элемент из вектора.
[1] 1 5 3 10
                                       Только так, поскольку размер вектора
                                       определяется при создании!
> (x < -c(x[1:2], 13, x[3:4]))
                                       Вставка элемента.
[1] 1 5 13 3 10
> fruit <- c(5, 10, 1, 20)
                                       «Именование индексов». Можно обращаться
> names(fruit) <- c("orange",</pre>
                                       «по имени».
"banana", "apple", "peach")
> fruit["banana"]
```

```
banana
    10
> fruit[2]
banana
    10
# обнуление имён
> names(fruit) <- NULL</pre>
> fruit["banana"]
[1] NA
> fruit[2]
[1] 10
> a <- 1
                                       Обращение к элементам вектора.
> a[4] < -2
                                       Автоматическое дополнение вектора
> a
                                       «неизвестными значениями».
[1] 1 NA NA 2
> a <- numeric(0)</pre>
                                       Создание пустого вектора и присваивание.
> a[2] <- 3
> a
[1] NA 3
> mode(a)
                                       Тип объекта.
[1] "numeric"
> length(a)
                                       Длина объекта.
[1] 2
> a[3] = 2i
                                       Смена типа. Обратите внимание на
> mode(a)
                                       динамическую смену типа.
[1] "complex"
> a[4] = "q"
> mode(a)
                                       Ещё одна «смена».
[1] "character"
> a
[1] NA "3+0i" "0+2i" "q"
x \leftarrow (-c) + moxho x = NULL
                                       «Наращивание» вектора.
for (i in 1:10)
x \leftarrow append(x, i)
[1] 1 2 3 4 5 6 7 8 9
10
> x <- c()
                                       Тонкость: конструкция 1: length(x) не
> 1:length(x)
                                       всегда работает «ожидаемо». Выход -
[1] 1 0
                                       использовать seq.
> seq(c(7,2,1))
[1] 1 2 3
> seq(c())
integer (0)
> identical(c(1,2),c(1,2))
                                       Есть функция проверки на равенство, но
[1] TRUE
                                       пользоваться ей надо с особой
> identical(c(1,2),c(1,3))
                                       осторожностью.
[1] FALSE
> identical(c(1,2),1:2)
[1] FALSE
```

```
# вот почему...
> typeof(c(1,2))
[1] "double"
> typeof(1:2)
[1] "integer"
> crossprod(c(1,3,2),c(0,1,2))
                                    Скалярное произведение векторов.
     [,1]
[1,] 7
> a <- 1:6
                                    Векторы дублируются при присваивании.
> b <- c(-2,1)
> a + b
[1] -1 3 1 5 3 7
```

```
Математические операции
> A = c(1,2,3,1)
                                      Операции на множествах.
> B = c(1,3,4,5)
> union(A, B) # объединение
[1] 1 2 3 4 5
> setdiff(A,B) # pashocts
[1] 2
> intersect (A, B) # пересечение
[1] 1 3
> setequal(A,1:3) # paseнcrso
[1] TRUE
> 2 %in% A # принадлежность
[1] TRUE
> choose (3,2) # число сочетаний
[1] 3
                                       Различные сочетания без повторений.
> combn(1:4,3) # сочетания
                                      Результат записывается в матрицу.
     [,1] [,2] [,3] [,4]
[1,]
        1
             1
                   1
[2,]
         2
              2
                    3
                          3
                                      Есть возможность сразу применить
        3
[3,]
              4
                                       некоторую операцию к столбцам этой
> combn (1:4, 3, sum)
                                      матрицы.
[1] 6 7 8 9
> a = c(3, 5, 1)
                                       Операции максимума. Аналогично с
> b = c(4,2)
                                       минимумом – надо тах заменить на тіп.
> max(a,b) # максимальный эл-т
                                       Максимальный элемент.
[1] 5
> which.max(a) # его индекс
                                       Его индекс.
[1] 2
> pmax(a,b) # поэлементный max
                                       Поэлементный максимум. Поскольку у
[1] 4 5 4
                                       аргументов разные размеры, один из них
Предупреждение
                                       «запикливается».
In pmax(a, b) : аргумент будет
частично зациклен
> nlm(function(x)
                                       Минимизация функции, см. также optim.
return (abs(x)+1/abs(x)), 8)
                                       Обратите внимение на механизм анонимных
$minimum
                                       функций в R.
[1] 2
$estimate
```

[1] 0.9999995	
\$gradient	
[1] 1.776357e-09	
[1] 1.7763376-09	
\$code	
[1] 1	
\$iterations	
[1] 13	
> cumsum(c(4,2,1))	Кумулятивная сумма.
[1] 4 6 7	Kymynnindian Cymma.
> cumprod(c(4,2,1))	Кумулятивное произведение.
[1] 4 8 8	кумулитивное произведение.
> factorial (12)	Факториал.
[1] 479001600	- witopitani
> factorial(1:4)	
[1] 1 2 6 24	
> exp =	Сивольные вычисления –
expression(x*sqrt(x+1)+cos(x))	
> D(exp,'x')	взятие производной.
sqrt(x + 1) + x * (0.5 * (x +	
$1)^{-0.5}$ - $\sin(x)$	
<pre>> integrate(function(x)</pre>	Интегрирование.
$\sin(x) *x, 0, 2*pi)$	
-6.283185 with absolute error <	
1.4e-13	
# Normal	Различные статистические функции для трёх
dnorm()	распределений. Легко запомнить их
pnorm()	назначения по первой букве
qnorm()	d – функция плотности,
rnorm()	р – функция распределения,
# Chi square	q – квантиль,
dchisq()	\mathbf{r} – генерация случайных чисел.
<pre>pchisq()</pre>	
qchisq()	
rchisq()	
# Binomial	
dbinom()	
pbinom()	
qbinom()	
rbinom()	N v
> set.seed(100)	Установка генератора случайных чисел.
> rnorm(3) # (1)	
[1] -0.502 0.131 -0.078	
> rnorm(3)	
[1] 0.886 0.116 0.318 > set.seed(100) # =*=	
> rnorm(3) # nobrop (1)	
[1] -0.502 0.131 -0.078	
> runif(4)	Равномерно распределённые значения.
[1] 0.342 0.730 0.378 0.774	т авномерно распределенные значения.
[1] 0.042 0.700 0.070 0.774	

```
> rnorm(4)
[1] -0.280 -1.008 -1.070 -1.094
                                       Нормально распределённые значения.
> sample(1:10, 3, replace=FALSE)
                                       3 случайных числа из 10 без повторений.
[1] 3 10 6
> s = c('A', 'B', 'C', 'D')
> sample(s, 5, replace=TRUE)
                                       5 случайных букв.
[1] "A" "D" "D" "A" "A"
> sample(0:1, 10, replace=TRUE,
                                       Случайный бинарный вектор (с заданными
p=c(0.3,0.7)
                                       вероятностями появления 0 и 1).
[1] 1 0 1 1 1 1 0 1 1 1
> a = c(20, 10, 40, 30, 30)
                                       Сортировка.
> sort(a)
[1] 10 20 30 30 40
> order(a)
                                       order – даёт индексы элементов в порядке
[1] 2 1 4 5 3
                                       возрастания, для убывания используйте
> rank(a)
                                       аргумент decreasing = FALSE.
[1] 2.0 1.0 5.0 3.5 3.5
                                       rank – аналогичная функция, которая
                                       учитывает одинаковость элементов.
```

Матрицы

```
a = matrix(1:6, nrow=2, ncol=3)
                                       Порождение матрицы.
[,1] [,2] [,3]
                    5
[1,] 1 3
       2
[2,]
             4
a = matrix(1:6, nr=2)
                                       Аналогичное действие (один аргумент не
  [,1] [,2] [,3]
                                       указывается, а второй – указывается в
[1,] 1 3 5
[2,] 2 4 6
                                       «сокращённом варианте»).
> a[1,2]
                                       Индексация (как и для векторов – нумерация
[1] 3
                                       с единицы).
a[,2]
                                       Второй столбец.
[1] 3 4
a[,2,drop=FALSE]
                                       Второй столбец как подматрица.
    [,1]
[1,]
        3
[2,]
> a[ ,2:3]
                                       Подматрица.
 [,1] [,2]
[1,]
        3
[2,]
        1
                                       Третий элемент (если считать по столбцам).
> a[3]
[1] 3
                                       Все элементы матрицы.
c(a)
[1] 1 2 3 4 5 6
> a+c(1,2,3)
                                       Обратите внимание, что операция
  [,1] [,2] [,3]
                                       выполнилась по столбцам! Матрицы также
[1,] 2 6
[2,] 4 5
                                       хранятся по столбцам (это просто «длинные
                                       векторы», которые «имею форму»)!
                                       Напоминаем, также, что векторы
                                       дублируются при присваивании.
```

```
> rownames(a) = c("X", "Y")
> colnames(a) = c("Z", "T", "S")
                                        Именование строк и столбцов.
> a["X", "T"]
[1] 3
> a
 ZTS
X 1 3 2
Y 2 1 3
> ncol(a)
                                        Число столбцов.
[1] 3
> nrow(a)
                                        Число строк.
[1] 2
> dim(a)
                                        Размеры матрицы.
[1] 2 3
> dim(a)[1]
                                        Второй способ – число строк. Обратите
[1] 2
                                        внимание на синтаксис.
> a <- matrix(1:4, nr=2)</pre>
                                        Ещё раз обратим внимание, что R часто
> ncol(a)
                                        автоматически «схлопывает» данные в
[1] 2
                                        вектор, а это уже не матрица! Поэтому
> b <- a[,2]
                                        некоторые функции над ним не имеют
> ncol(b) # над вектором!
                                        смысла.
NULL
> b
[11 \ 3 \ 4]
> b <- a[,2, drop=FALSE]</pre>
> ncol(b) # над матрицей!
[1] 1
> b
     [,1]
[1,] 3
[2,]
                                        Запись a[, 2, drop=FALSE] может
# [ - это функция
                                        показаться странной, но квадратная скобка
> b <- "["(a,1:2,2,drop=FALSE)</pre>
                                        «[» – это обычная функция!
> b
     [,1]
[1,]
[2,]
> as.matrix(c(1,2))
                                        Вот ещё один способ превратить вектор в
     [,1]
                                        матрицу.
[1,]
        1
[2,] 2
> a = matrix(1:3, nrow = 2, ncol
                                        Порождение матрицы «по строкам».
= 3, byrow=TRUE)
                                        Матрица всё равно будет храниться «по
> a
                                        столбнам»!
     [,1] [,2] [,3]
[1,] 1 2
[2,] 1 2
> a %*% c(1,1,1)
                                        Обратите внимание на умножение! Для
   [,1]
                                        вектора нет понятие «ориентации» (точнее,
[1,] 6
                                        часто считается, что он вертикально
[2,] 6
                                        ориентирован – попробуйте t(c(1,1,1)).
> y <- matrix(nrow=2, ncol=2)</pre>
                                        Порождение «по умолчанию».
```

```
> y
    [,1] [,2]
[1,] NA NA
[2,]
      NA
            NA
> y[,1] <- 2
                                   Присваивание значений элементам.
> y[,2] <- c(1,3)
> y
     [,1] [,2]
[1,] 2 1
[2,] 2 3
> h = 1:10
                                   Ещё один способ превращения вектора в
> attr(h, "dim") = c(2,5)
                                   матрицу. Снова «нетипичная» запись!
> h
    [,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4
                 6
                       8
                           10
a <- matrix(1:6,2,3)</pre>
row(a)
                                   Интересные функции «номера строк» и
   [,1] [,2] [,3]
                                   «номера столбцов».
[1,] 1 1 1
[2,] 2 2 2
col(a)
    [,1] [,2] [,3]
[1,] 1 2 3
[2,] 1 2 3
> a[col(a) == row(a)] <- 0
                                   Обнуление главной диагонали.
> a
    [,1] [,2] [,3]
[1,] 0 3
[2,] 2 0
                 6
> cbind(0, rbind(c(1,3), c(5,7)))
                                   Конкатенация матриц.
  [,1] [,2] [,3]
[1,] 0 1 3
[2,] 0 5 7
> rbind(c(1,2),c(3,4))
                                   Так удобно порождать матрицы.
     [,1] [,2]
                                   Напоминаем, про отсутствие ориентации у
[1,] 1 2
                                   вектора.
       3
[2,]
            4
> cbind(c(1,2),c(3,4))
  [,1] [,2]
[1,]
     1 3
[2,]
       2
```

Операции с матрицами

[,1] [,2] [1,] -1 3 [2,] 1 5 > A + 1	Прибавление константы (происходит
[,1] [,2] [1,] 2 4 [2,] 3 5 > A*B [,1] [,2]	поэлементно). Поэлементное умножение.
[1,] -2 0 [2,] -2 4 > c(A) [1] 1 2 3 4	Векторизация. Кстати, операции A+B , c (A) +B , A+c (B) эквивалентны.
> A[A<=2] <- 0 > A	Фильтрация.
[,1] [,2] [1,] 0 3 [2,] 0 4 > A[A>2] [1] 3 4	Элементы, удовлетворяющие условию. Результат, естественно, выводится как вектор!
> which (A>2) [1] 3 4	Их номера. Обратите внимание: номера соответствуют номерам в векторе
> outer(c(1,2,3),c(-1,2,1),"*") [,1] [,2] [,3] [1,] -1 2 1 [2,] -2 4 2 [3,] -3 6 3	«Внешние» (покомпонентные) операции. Способ умножить вектор-столбец на вектор-строку.
> c(1,2,3)%o%c(-1,2,1) [,1] [,2] [,3] [1,] -1 2 1 [2,] -2 4 2 [3,] -3 6 3	Кстати, для скалярного произведения в R нет функции «inner», есть функция crossprod
> $A = matrix(c(1,0,2,-1))$	Кронекеровское произведение.
nrow=2)	T
> B = $matrix(c(0,-1,3,2),$	
nrow=2)	
<pre>> kronecker(A, B)</pre>	
[,1] [,2] [,3] [,4] [1,] 0 3 0 6 [2,] -1 2 -2 4 [3,] 0 0 0 -3 [4,] 0 0 1 -2	
<pre>> A <- matrix(1:4, ncol = 2) > A = t(A) > A</pre>	Транспонирование.
[,1] [,2] [1,] 1 2 [2,] 3 4	

> b = c(5,7)	Решение уравнений.
> solve(A,b)	
[1] -3 4 > det (A)	Опроиодители
[1] -2	Определитель.
> solve(A)	Обратная матрица.
[,1] [,2]	Внимание: A^-1 – не обратная матрица
[1,] -2.0 1.0 [2,] 1.5 -0.5	(здесь степень поэлементная).
> eigen (A)	Собственные значения и векторы.
\$values	
[1] 5.3722813 -0.3722813	
\$vectors	
[,1] [,2]	
[1,] -0.4159736 -0.8245648 [2,] -0.9093767 0.5657675	
[2,] -0.9093767 0.3637673 > svd(a)	Сингулярное разложение матрицы.
\$d	r · ·
[1] 5.291503e+00 2.943727e-16	
\$u	
[,1] [,2]	
[1,] -0.7071068 -0.7071068	
[2,] -0.7071068 0.7071068	
\$ _V	
[,1] [,2]	
[1,] -0.2672612 -0.9487015 [2,] -0.5345225 0.2918172	
[3,] -0.8017837 0.1216890	
> svd(a)\$d [1] 5.291503e+00 2.943727e-16	Только одна матрица разложения.
> qr(a)	QR-разложение, есть также разложение
\$qr	chol.
[,1] [,2] [1,] -3.1622777 -4.4271887	
[2,] 0.9486833 -0.6324555	
\$rank	
[1] 2	
\$qraux	
[1] 1.3162278 0.6324555	
\$pivot	
[1] 1 2	
attr(,"class") [1] "qr"	
> f <- function(x) # нормировка	Пример как делать нормировки (по строкам и
V V W 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 T , 1 () ()

```
+ \{x/sum(x)\}
                                     столбцам) – с помощью очень универсальной
> A <- matrix(1:6, nc=3)
                                     функции арріу.
> A
    [,1] [,2] [,3]
[1,] 1 3 5
[2,]
       2
> t (apply (A, 1, f)) # по строкам
         [,1] [,2]
[,3]
[1,] 0.1111 0.3333 0.5555
[2,] 0.1666 0.3333 0.5000
> apply (A, 2, f) # по стролбцам
          [,1] [,2]
[,3]
[1,] 0.3333 0.4285 0.4545
[2,] 0.6666 0.5714 0.5454
> A = matrix(sample(10,6), nr=2,
                                     Ещё раз об apply... многие функции в R
nc=3)
                                     работают сразу со всеми элементами
> A
                                     матрицы. Здесь показано, как найти номера
    [,1] [,2] [,3]
                                     наименьших элементов в строках и столбцах.
[1,] 6 9 3
[2,]
       1
              2
                                     См. также Векторизация, функции apply-
> which.min(A)
                                     семейства».
[1] 2
> apply(A, 1, which.min)
[1] 3 1
> apply(A, 2, which.min)
[1] 2 2 1
> m <- matrix(1:4, nr=2)</pre>
                                     Функция sweep позволяет делать операции
> m
                                     по строкам и по столбцам.
    [,1] [,2]
[1,]
       1 3
[2,] 2
> sweep (m, 1, c(1,2), "+")
                                     Прибавить вектор к каждому столбцу.
  [,1] [,2]
[1,] 2 4
[2,] 4
> sweep (m, 2, c(1,2), "+")
                                     К каждой строке.
    [,1] [,2]
[1,] 2 5
       3
[2,]
> sweep (m, 2, colSums (m), "/")
                                     Нормировка – делим на сумму элементов в
          [,1]
                                     столбце.
[1,] 0.3333333 0.4285714
[2,] 0.6666667 0.5714286
                                     См. также Векторизация.
> m <- matrix(1:6, nr=2)</pre>
                                     Функция diag может делать разные
> m
                                     операции, в зависимости от аргумента:
    [,1] [,2] [,3]
                                     взвращать диагональ матрицы или порождать
[1,] 1
             3
                                     матрицу с заданной диагональю.
[2,] 2
             4
> diag(m)
                                     В последнем случае можно указать размеры,
[1] 1 4
                                     например так: diag(c(1,4),2,3).
```

```
Многомерные матрицы
> a = array(1:12, c(2,3,2))
                                  Многомерные матрицы.
> a
, , 1
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4
, , 2
   [,1] [,2] [,3]
[1,]
    7 9 11
[2,]
      8 10 12
> dim1 = c("A", "B")
> dim2 = c("A2", "B2", "C2")
> dim3 = c("X", "Y")
> dimnames(a) =
list(dim1, dim2, dim3)
> a["A", "B2", "Y"]
[1] 9
> A <- matrix(1:6, nr=2)</pre>
> B <- matrix(7:12, nr=2)</pre>
> array(c(A,B), dim=c(2,3,2))
                                  Конкатенация матриц по третьему
, , 1
                                  направлению (по третьей размерности).
    [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
, , 2
   [,1] [,2] [,3]
[1,] 7
           9 11
[2,] 8 10 12
> a = 1:24
                                  Ещё один способ создания многомерной
> dim(a) = c(4,3,2)
                                  матрицы.
> a
, , 1
     [,1] [,2] [,3]
[1,]
    1 5 9
       2
[2,]
            6
                10
[3,]
      3
           7 11
     4 8
[4,]
                12
```

```
, , 2
   [,1] [,2] [,3]
[1,]
     13 17
               21
               22
[2,]
      14
           18
               23
[3,]
     15 19
[4,]
      16
           20
               24
```

```
Списки
> 1 <- list(name="John",</pre>
                                        Список – перечень разнотипных данных.
salary=100, credit=TRUE)
                                        Похож на питоновский словарь и очень
> str(1) # созданный список
                                        отдалённо на структуру в С.
List of 3
 $ name : chr "John"
                                        Для вывода списка лучше использовать str
 $ salary: num 100
                                        - получается более компактно. «str» означает
 $ credit: logi TRUE
                                        «структура» (функция вызывается от любого
                                        объекта).
> 1[["name"]] # по имени
                                        Индексация возможна по имени и по номеру
$name
                                        индекса (начинается с единицы).
[1] "John"
> 1$name # по имени (2й способ)
                                        Обратите внимание на R-й способ
[1] "John"
                                        индексации через «$».
> 1[[1]] # по индексу
[1] "John"
> 1[1] # Одинарные [] -
                                        Когда используем одинарные квадратные
подсписок
                                        скобки, результатом является список –
$name
                                        подсписок исходного.
[1] "John"
> 1[1:2] # подсписок
$name
[1] "John"
$salary
[1] 100
> 1[[1:2]] # так нельзя
Ошибка в 1[[1:2]] : подгруппа
выходит за пределы
                                        Длина списка.
> length(1) # длина
[1] 3
> 1 <- vector(mode="list")</pre>
                                        Создание пустого списка.
> 1
list()
> 1[1] = 1
                                        «Наполнение» списка.
> 1["second"] = 2
```

```
> str(1)
List of 2
 $
         : num 1
                                       У первого элемента отсутствует имя –
$ second: num 2
                                       обращаться можно только по индексу.
> names(1)[1] = "first"
                                       Добавление имени.
> str(1)
List of 2
 $ first : num 1
$ second: num 2
> a <- matrix(c(3,5,2,1),</pre>
nrow=2)
> b <- "12 3"
> 1 <- list(a,b,12)</pre>
                                       Обращение к (2,1)-элементу матрицы,
> 1[[1]][2][1]
                                       которая является первым элементом списка.
[1] 5
                                       Ещё раз про различные способы
> names(1) <- c("first",</pre>
                                       индексации...
"second", "third")
> index = 2
> l[[index]]
[1] "12 3"
> 1$index # так нельзя
NULL
> index <- "second"</pre>
> 1[[index]]
[1] "12 3"
> 1$index # так нельзя
NULL
                                       Добавление и удаление элементов списка.
> l$onemore <- TRUE # добавить
> 1$second <- NULL # удалить
> str(1)
List of 3
 $ first : num [1:2, 1:2] 3 5 2
1
 $ third : num 12
 $ onemore: logi TRUE
                                       Первый способ «отказаться от имён» -
> str(unname(1))
                                       функция unname.
List of 3
 $ : num [1:2, 1:2] 3 5 2 1
 $ : num 12
 $ : logi TRUE
                                       Второй – «обнуление» имён.
> names(1) <- NULL</pre>
> 1 \leftarrow hist(c(1,1,2,2,3,2))
                                       Многие функции возвращают списки. Это
> str(1)
                                       способ вернуть сразу несколько значений
List of 7
                                       (формально возвращая одно).
$ breaks : num [1:5] 1 1.5
2 2.5 3
 $ counts : int [1:4] 2 3 0
```

```
$ intensities: num [1:4] 0.667
1 0 0.333
 $ density : num [1:4] 0.667
1 0 0.333
           : num [1:4] 1.25
 $ mids
1.75 2.25 2.75
$ xname
              : chr "c(1, 1, 2,
2, 3, 2)"
 $ equidist : logi TRUE
- attr(*, "class")= chr
"histogram"
> summary(1)
                                     Ещё один способ вывода информации о
             Length Class Mode
                                     списке. Попробуйте также plot (1) – это
breaks
             5
                    -none-
                                     ещё один пример т.н. generic-функции,
numeric
                                     которую можно вызывать от любого объекта.
counts
                    -none-
numeric
intensities 4
                    -none-
numeric
density
            4
                    -none-
numeric
mids
             4
                    -none-
numeric
xname
            1
                    -none-
character
equidist
            1
                    -none-
logical
> c(1,c(2,3)) # вектор
                                     Тонкость: функция с не получает
[1] 1 2 3
                                     «двухуровневые» объекты. Она всё
> c(1, list(2,3)) # список
                                     «сливает» в один вектор/список.
[[1]]
[1] 1
[[2]]
[1] 2
[[3]]
[1] 3
# список списков
                                     А функция list получает!
> list(1, list(2,3))
[[1]]
[1] 1
[[2]]
[[2]][[1]]
[1] 2
[[2]][[2]]
[1] 3
                                     Векторизация списков.
> a <-list(1, list(2,3))
```

```
> names(a) <-c('a1', 'a2')</pre>
> names(a$a2) <-c('a1', 'a2')</pre>
> c(a) # не получится...
$a1
[1] 1
$a2
$a2$a1
[1] 2
$a2$a2
[1] 3
> c(a, recursive=TRUE) # вектор!
                                     Нужно указывать значение аргумента
   a1 a2.a1 a2.a2
                                     recursive.
   1 2 3
> 1 <- list(1,1:2,1:3,1:4)
                                     Применение apply-функций к списку. Для
> f <-function(x)</pre>
                                     каждого элемента списка (это векторы)
return(c(min(x), max(x)))
                                     находим максимальное и минимальное
> lapply(1, f) # результат -
                                     значения.
список
[[1]]
[1] 1 1
[[2]]
[1] 1 2
[[3]]
[1] 1 3
[[4]]
[1] 1 4
> sapply(1, f) # результат -
матрица
    [,1] [,2] [,3] [,4]
[1,] 1 1
                  1
       1 2
[2,]
```

Циклы и функции

```
Условный оператор. Скобки важны!
> a = 2;
> if (a<3) a = a+5 else a = a-7
> a
[1] 7
> a=3
                                       Можно присваивать значение условного
> x = if(a>2) 5 else 7
                                       оператора.
> x
[1] 5
                                       Удобная конструкция ifelse. Но есть
> ifelse(a>2, 5, 7)
                                       тонкий момент: попробуйте
[1] 5
                                       ifelse(2>1,c(7,2),3)
> switch(a, 'one', 'two',
'three')
                                       switch
```

```
[1] "three"
> x = c(1, 2, 0, 1, 2, 3)
                                        Использование ifelse. Замена «больших»
> ifelse(x>1.5, NA, x)
                                        чисел на NA.
[1] 1 NA 0 1 NA NA
> suma = 0
                                        Оператор цикла for.
> a = c(2,6,3) # что суммировать
> for (i in a)
                                        Конечно, надо делать так: suma = sum(a).
> suma = suma + i
while(...) { ...
                                        Синтаксис циклов while и repeat.
i=0
                                        Обратите внимание: next, а не continue.
repeat
i = i+1
if (i<3) next # след. итер.
цикла
i = i+2
if (i>10) break # закончить
print(i)
> myfun <- function(a, b,</pre>
                                        Функции. Значение функции – последнее
i=TRUE)
                                        вычисленное или return.
+ { if (i)
      return (a+b)
                                        Важно понимать, что function -
+ else
                                        встроенная функция, «работа которой» –
        return(a-b)
                                        создавать другие функции.
+ }
> myfun (1,3)
                                        Можно придавать аргументам значения по
[1] 4
                                        умолчанию (i=TRUE).
> myfun(1,3,FALSE)
[1] -2
                                        Возможны обращения при явном указании
> myfun(1, i=FALSE, b=3)
                                        аргументов.
[1] -2
> f <- myfun</pre>
                                        Функция – это объект. Можно выполнять
> f(0,1,1==2)
                                        присваивание.
[1] -1
myfun <- function(a, b)</pre>
                                        Несколько возвращаемых значений.
c = a+b
                                        Такой способ принят во многих языках
d = a-b
                                        программирования. Переменные с, d могут
return(list(c,d))
                                        иметь разный тип!
> myfun (1, 2)
                                        Вызов функции.
[[1]]
[1] 3
[[2]]
[1] -1
> myfun
                                        Если набрать имя объекта, то мы увидим
```

```
function(a, b)
                                         объект. Функции не являются исключением.
    c = a+b
    d = a-b
    return(list(c,d))
> formals(myfun)
                                         Специальный вызов аргументов.
$a
$b
> body (myfun)
                                         Специальный вызов «тела функции».
    c = a + b
                                         Кстати, для редактирования функции
    d = a - b
                                         наберите edit (myfun).
    return(list(c, d))
                                         «Подмена» тела функции. Если не
> body(myfun) <- quote(max(a,1)</pre>
                                         использовать quote, то R начнёт вычислять
+ \min(b, 0))
                                         выражение \max(a, 1) + \min(b, 0).
> f <- function(...) {list(...)}</pre>
                                         Произвольное число аргументов у функции.
> f(1,2,3)
 [[1]]
[1] 1
[[2]]
[1] 2
[[3]]
[1] 3
f <- function (...)</pre>
                                         «Прохождение» по списку аргументов.
  1 <- list(...)
  for (i in seq(along=1))
   cat("Имя:", names(1)[i],
"Значение: ", l[[i]], "\n")
  }
}
> f(x=1, g=3)
Имя: х Значение: 1
Имя: д Значение: 3
f <- function(a)</pre>
                                         Вывод всех объектов (имён) в локальной
                                         области осуществляется с помощью функции
  b <- 1
                                         1s. Заметим, что имя переменной c не
  x \leftarrow ls()
                                         выводится (она ещё не создана).
  c <- 2
  return(x)
}
f(0)
[1] "a" "b"
```

```
f <- function(xloc)</pre>
                                       Допустимо использовать глобальные
{return(xloc+xqlob)}
                                       переменные.
xglob = 10
> f(2)
[1] 12
f <- function(x)</pre>
                                       В этом примере:
                                       переменная ж после вызова функции
  x <<- x+1 # глобально!
                                       существует. Она стала глобальной,
  у <- 2 # идёт только в ответ
                                       поскольку использовалось присваивание <<-
}
                                        , переменная у, напротив, не существует...
z < -3
                                       но она была результатом работы функции.
> (f(z))
[1] 2
                                       Присваивание <<- ищет нужную
> x
                                       переменную в окружении предыдущего
[1] 4
                                       уровня, потом предпредыдущего и т.д. Если
> y
                                       не находит – создаёт глобальную
Ошибка: объект 'у' не найден
                                       переменную.
> z
[1] 3
> predict
                                       Просмотр кода может не работать (функция
function (object, ...)
                                       predict определена для разных объектов) –
UseMethod("predict")
                                       надо уточнить название функции – сработает
<environment: namespace:stats>
                                       predict.mlm
> methods("predict")
 [1] predict.ar*
predict.Arima*
predict.arima0*
predict.glm
predict.HoltWinters*
predict.lm
 [7] predict.loess*
predict.mlm
predict.nls*
predict.poly
predict.ppr*
predict.prcomp*
[13] predict.princomp*
predict.smooth.spline*
predict.smooth.spline.fit*
predict.StructTS*
> "%!%" <- function(a, b)
                                       Определение новой операции.
\{a+b+\min(a,b)\}
> 28!83
[1] 7
> f <- function (x) { if(</pre>
                                       Остановка функции.
!is.numeric(x) )
+ stop("Expecting a NUMERIC
vector!")
+ x^2
+ }
```

```
> f('as')
Ошибка в f("as") : Expecting a
NUMERIC vector!
> f(1:2)
[1] 1 4
my.arg <- function (x, ...) {</pre>
                                      Функция «видит свои аргументы».
cat("My first argument was: ")
cat (deparse (substitute(x)))
cat ("\n")
> my.arg(3)
My first argument was: 3
> my.arg(x)
My first argument was: x
> my.arg(x+1)
My first argument was: x + 1
> counter <- function()</pre>
                                      Окружения позволяют создавать подобные
+ {
                                      функции-счётчики.
      n <- 0 # инициализация
+
      function()
      {
           n<<-n+1 # увелич.
           cat ('Счётчик=', n, '\n')
+
      }
+ }
> n1 <- counter()</pre>
> n2 <- counter()</pre>
> n1
function()
    {
        n << -n+1
         cat('Счётчик=', n, '\n')
<environment: 0x07312da4>
> n2
function()
    {
        n << -n+1
        cat('Счётчик=',n,'\n')
<environment: 0x0400a870>
> n1()
Счётчик= 1
> n1()
Счётчик= 2
> n2()
Счётчик= 1
> n1()
Счётчик= 3
```

Векторизация

```
> x < -c(1,0,2)
                                       Основной принцип: вектор на вход, вектор на
> \sin(x)
                                       выход.
[1] 0.84147 0.00000 0.90929
> y < -c(2,0,1)
> x>y
[1] FALSE FALSE TRUE
> a = 1:4; b = c(0,2)
                                       R по умолчанию всё «зацикливает». Иногда
> a + b # нет предупреждения!
                                       даже без предупреждения.
[1] 1 4 3 6
> a + c(2,0,1)
[1] 3 2 4 6
Предупреждение
In a + c(2, 0, 1):
  длина большего объекта не
является произведением длины
меньшего объекта
> x < -c(2,4,NA,3,7,1,4)
                                       Использование логических массивов для
> x[x>3]
                                       фильтрации.
[1] 4 NA 7 4
> subset (x, x>3)
                                       Фильтрация с помощью subset. Отличие в
[1] 4 7 4
                                       интерпретации NA.
> which (x>3)
[1] 2 5 7
                                       Индексы нужных элементов.
> x < -c(1,2,-1,0,3,-2)
                                       Векторизация с помощью ifelse. Здесь,
> ifelse(x>0, x*2, 0)
                                       замена отрицательных значений на ноль и
[1] 2 4 0 0 6 0
                                       удвоение положительных.
> m <- matrix(1:4, nr=2)</pre>
                                       Использование специальных функций,
> sweep (m, 2, colSums (m), "/")
                                       например sweep. Здесь каждый елемент
           [,1]
                       [,2]
                                       разделили на сумму элементов в его столбце.
[1,] 0.3333333 0.4285714
[2,] 0.6666667 0.5714286
```

Векторизация, функции apply-семейства

```
> x <- 1:5
                                      Применение функции к каждому элементу
> f <-function(x)</pre>
                                       вектора. На выходе – матрица.
+ return (c(x, x^2, x^3))
+ }
> sapply(x, f)
                                      Можно совсем коротко:
     [,1] [,2] [,3] [,4] [,5]
                                       sapply(1:5, function(x)
[1,]
        1 2
                    3
                         4
                                       \{c(x, x^2, x^3)\}
                    9
                        16
                              2.5
[2,]
        1
              4
                   27
[3,]
        1
              8
                       64
> (a <-matrix(sample(12,12),</pre>
                                      Пример построчной/постолбцовой обработки
nc=4))
                                      матрицы – всё делается с помощью функции
     [,1] [,2] [,3] [,4]
                                      арр1у. Работает и с многомерными
                  12 10
[1,]
      5
             1
                                      матрицами!
         3
              7
[2,]
                   8
                          9
        2
[3,]
             11
> apply(a,1,min)
                                       Указываем измерение и функцию, которую
[1] 1 3 2
```

```
> apply(a, 2, max)
                                        применить. Здесь: минимальные элементы в
[1] 5 11 12 10
                                        строке, максимальные в столбце, суммы
> apply(a, 1, sum)
                                        строк.
[1] 28 27 23
> rowSums(a)
                                        Для сумм и средних значений рекомендуется
[1] 28 27 23
                                        применять функции colSums (),
                                        rowSums(), colMeans II rowMeans().
> 1 <- list(1:3, 'abc', c(3,4))
                                        Обрабатываем список и результат получаем в
> lapply(1, length)
                                        виде списка.
[[1]]
[1] 3
[[2]]
[1] 1
[[3]]
[1] 2
> sapply(1, length)
                                        А здесь – результат в виде вектора. «s» =
[1] 3 1 2
                                        «simplify».
> f <- function(x)</pre>
+ {return(c(min(x), max(x)))}
> sapply(1, f)
                                        Иногда (если выводятся векторы одной
      [,1] [,2] [,3]
                                        длины) результат может конвертироваться и
[1,] "1" "abc" "3"
                                        в матрицу.
[2,] "3" "abc" "4"
> sapply(1:2, function(x)
                                        И даже в многомерную матрицу.
matrix(x,2,2), simplify =
"array")
, , 1
  [,1] [,2]
[1,] 1 1
[2,] 1 1
, , 2
     [,1] [,2]
[1,]
        2
[2,] 2
               2
> (a <- vapply(NULL, is.factor,</pre>
                                        Функция vapply быстрее sapply, но для
FUN.VALUE = FALSE))
                                        неё надо указать возвращаемый тип.
logical(0)
                                        Рекомендуется использовать именно эту
                                        функцию.
                                        [vapply – примеры]
                                        «v» = «velocity»
> mapply(sum, 1:4, 0:3,
                                        Когда надо поэлементно применить функцию
c(10,10,0,0))
                                        к нескольким объектам, используется
[1] 11 13 5 7
                                        mapply. Здесь – сумма первых элементов
                                        векторов, вторых и т.д.
```

```
«m» = «multivariate»
> 1 <- list(1, c(2,3), list(4,
                                     Рекурсивное применение функции (к
c(5,6)))
                                     вложенным спискам) делается с помощью
> f <- function(x)</pre>
                                      rapply.
+ {x[1]<-x[1]+1; return(x)}
> rapply(1, f)
                                     Здесь результат в виде списка (перечня
[1] 2 3 3 5 6 6
                                     значений).
> rapply(1, f, how='replace')
                                     А здесь оставляем исходную структуру
[[1]]
                                     вложенности!
[1] 2
                                     «r» = «recursively»
[[2]]
[1] 3 3
[[3]]
[[3]][[1]]
[1] 5
[[3]][[2]]
[1] 6 6
> data.frame(name=c("Иванов",
                                     Пример вычисления средних баллов
"Иванов", "Петров", "Иванов",
                                     студентов.
"Петров", "Сидоров"),
mark=c(4,5,3,4,5,5))
     name mark
1 Иванов 4
2 Иванов
             3
3 Петров
4 Иванов
             4
5 Петров
             5
6 Сидоров
              5
> df <-
data.frame(name=c("Иванов",
"Иванов", "Петров", "Иванов",
"Петров", "Сидоров"),
mark=c(4,5,3,4,5,5))
> tapply(X = df$mark, INDEX =
df$name, FUN = mean)
            Петров Сидоров
  Иванов
4.333333 4.000000 5.000000
```

пакет plyr, reshape

Строки

> 'String'=="String"	Строки в R. Можно использовать одинарные
[1] TRUE	или двойные кавычки.
<pre>print('a\tb\n')</pre>	Выводить стоки на экран лучше с помощью
[1] "a\tb\n"	cat.
<pre>print('a\tb\n', quote=F)</pre>	
[1] a\tb\n	

```
cat('a\tb\n')
                                      Обратите внимание, как cat выводит
                                      спецсимволы \t,\n.
cat('c:\\temp\\')
c:\temp\
cat ("в файл",
                                      Запись в файл!
file="filename.txt",
append=TRUE)
sprintf('%g-\n%2.2f', 1, 2)
                                      Самое мощное средство для формирования
[1] "1-\n2.00"
                                      строк - sprintf!
strs = c('one', 'two', 'none')
> sprintf('q=%s',strs)
[1] "q=one" "q=two" "q=none"
> x = 13
                                      Важно использовать sep при конкатенации.
> paste('x=', x)
[1] "x= 13"
> paste('x=', x, sep='')
[1] "x=13"
> paste('one','two',sep=',')
[1] "one, two"
> a = paste(c("X", "Y"), 1:3,
                                      Специальная конкатенация.
sep="-")
> a
                                      Удобно, например, при составлении имён
[1] "X-1" "Y-2" "X-3"
                                      файлов для записи.
> cat(paste(1:3, "String",
sep="-", collapse="\n"),
"END\n")
1-String
2-String
3-String END
strs = c('one', 'two', 'none')
                                      Поиск.
grep('on', strs)
[1] 1 3
> s='one, two, three'
                                      Функции со строками.
> nchar(s)
                                      Число символов.
[1] 15
> substring(s, 6, 8)
                                      Подстрока.
[1] "two"
> a = strsplit(s,',')
                                      Разбиение.
> a
[[1]]
[1] "one" " two" " three"
> a[[1]][2]
[1] " two"
                                      Поиск.
> grep('o',s)
[1] 1
                                      Тоже поиск.
```

```
> regexpr('o', s)
[1] 1
attr(, "match.length")
[1] 1
> regexpr('o', c('one','two'))
[1] 1 3
attr(,"match.length")
[1] 1 1
> gsub(" ", "", s)
                                      Замена подстрок – здесь – удаление
[1] "one, two, three"
                                      пробелов.
> sub(" ", "", s)
                                      Только с первым вхождением.
[1] "one, two, three"
                                      Замена нескольких пробелов одним.
> gsub(" +", " ", "a b c
                                d")
[1] "a b c d"
                                      Некоторые применения регулярных
                                      выражений.
> grep('[0-9]a', c('12bc', 'q2a',
                                      Поиск комбинации «цифра» – буква «а».
'3', '0aa'))
[1] 2 4
> grep('\\.', c('1.2','ss',
                                      Поиск точки.
'ss.', 'q!'))
[1] 1 3
```

Даты

> as.Date("2011-12-31")	Конвертирование строки в формат «дата».
[1] "2011-12-31"	
> as.Date("31/12/2011",	
<pre>format="%d/%m/%Y")</pre>	
[1] "2011-12-31"	
<pre>> d = Sys.Date()</pre>	Из переменной типа «дата» можно выудить
> d	достаточно много информации.
[1] "2012-01-13"	
<pre>> format(d, format="%A, %d %B</pre>	
%Y")	
[1] "пятница, 13 Январь 2012"	
> seq(as.Date("2011-01-01"),	Перебор дат с шагом «две недели».
as.Date("2011-03-01"), by="2	
weeks")	
[1] "2011-01-01" "2011-01-15"	
"2011-01-29" "2011-02-12" "2011-	
02-26"	
> seq(as.Date("2012-01-01"),	Умный перебор дат с шагом «1 месяц» (а не
as.Date("2012-03-01"),	31 день).
by="month")	
[1] "2012-01-01" "2012-02-01"	
"2012-03-01"	
> seq(as.Date("2012-01-01"),	
as.Date("2012-03-01"), by="31	
days")	
[1] "2012-01-01" "2012-02-01"	
> a = Sys.time()	Разница двух засечек.

```
> difftime(a, Sys.time(),
units="secs")
Time difference of -17.214 secs
d <- read.table("foo.txt")
d$Date <- as.Date( as.character( d$Date ) )</pre>
Действия при загрузке файла с «временным» столбцом.
```

```
Факторы
> anss = c("Yes", "No", "Yes",
                                       Факторы. Для хранения «категориальных»
"Yes", "No", "I don'n know")
                                       («номинальных», факторных) данных
> fc <- factor(anss)</pre>
                                       (например, национальность, страна
> fc
                                       проживания, политическая партия, группа
[1] Yes
                   No
                                       крови и т.п.).
Yes
              Yes
                             No
I don'n know
Levels: I don'n know No Yes
> str(fc)
 Factor w/ 3 levels "I don'n
know",..: 3 2 3 3 2 1
> unclass(fc)
[1] 3 2 3 3 2 1
attr(,"levels")
                                       Видно, что фактически роль играют только
[1] "I don'n know" "No" "Yes"
                                       номера классов эквивалентностей,
> tapply(c(1,2,2,2,3,4), fc,
                                       порождённых исходными данными.
mean)
I don'n know
                              Yes
                     No
                                       Вычислить средние значения по каждому
                 2.5000
    4.0000
                           1.6666
                                       классу эквивалентности.
> tapply(c(1,2,2,2,3,4), fc,
length)
I don'n know
                     No
                              Yes
                                       Мощности классов эквивалентности.
                      2
         1
                               3
                                       Функция tapply наиболее часто
> table(fc)
                                       используется с факторами.
fc
I don'n know
                     No
                              Yes
                                       Аналогичный результат – функция table.
                      2
> df <- data.frame(a=c(2,1,2,4),
                                       Что такое data.frame см. в разделе
b=c(4,4,2,1)
                                       «Фреймы».
> df
  a b
1 2 4
2 1 4
3 2 2
4 4 1
> df[,1] <-factor(df[,1])
> df[,2] <-factor(df[,2])</pre>
> df
  a b
1 2 4
2 1 4
3 2 2
4 4 1
> df[,1] <-unclass(df[,1])
```

> df[,2] <-unclass(df[,2])	
> df	Значения факторов – это «натуральные
a b	числа». Обычные числа они «перекодируют»
1 2 3	1
2 1 3	сохраняя порядок. Но при этом 1 -> 1
3 2 2	
	2 -> 2
4 3 1	4 -> 3
> x <- factor(levels=	Можно заранее определить, какие уровни
c(10,13,20))	будут (названия классов эквивалентностей).
> x[1] <- 10	
> x[2] <- 10	
> x[3] <- 20	
> x[4] < -25	
Предупреждение	
<pre>In `[<factor`(`*tmp*`, 4,<="" pre=""></factor`(`*tmp*`,></pre>	
value = 25) :	
invalid factor level, NAs	
generated	
> ж # что получилось	
[1] 10 10 20 <na></na>	
Levels: 10 13 20	
> a <- factor(c('a', 'b', 'a',	Тонкость при работе с факторами: если взять
'a', 'b', 'c', 'd'))	подвектор, даже если в нём нет каких-то
> b <- a[1:5]	значений, он всё равно помнит исходные
> b	уровни.
[1] abaab	уровии.
Levels: a b c d	
Levels. a D C d	
> tapply(c(1,2,10,1,5), b, mean)	D
	Вот где это может быть существенно:
a b c d 4.0 3.5 NA NA	«лишние NA».
4.0 3.3 NA NA	, , , , , , , , , , , , , , , , , , ,
	Чтобы избавиться от лишних уровней,
	следовало написать
	a[1:5, drop=TRUE].
> g1(2,3,7,c('a','b'))	Создание факторов «по шаблону» (число
[1] a a a b b b a	уровней, число повторов, длина).
Levels: a b	
> a = gl(2,3,7,c('2','5'))	
<pre>> as.numeric(levels(a)[a])</pre>	Преобразование факторов в числа.
[1] 2 2 2 5 5 5 2	
> a = gl(2,3,7,c('a','b'))	Объединение факторов.
> b = gl(3,2,7,c('a','b','c'))	
> a	
[1] a a a b b b a	
Levels: a b	
> b	
[1] a a b b c c a	
Levels: a b c	
<pre>> interaction(a,b)</pre>	
[1] a.a a.a a.b b.b b.c b.c a.a	
Levels: a.a b.a a.b b.b a.c b.c	
LCVCID. a.a D.a a.D D.D a.C D.C	

```
> cut (c(1,2,3,4,5,6,7,8,1,2,3),
                                     «Разнесение по уровням».
breaks=c(1,5,7))
[1] < NA > (1,5] (1,5] (1,5]
(1,5] (5,7] (5,7] < NA > < NA >
(1,5] (1,5]
Levels: (1,5] (5,7]
> x < -c(2,2,5,3,6,5,NA)
                                     Построение матрицы характеристических
> xf <- factor(x,levels=2:6)</pre>
                                     векторов классов эквивалентности.
> xf
               5 3 6
[1] 2
         2
                               5
< NA >
Levels: 2 3 4 5 6
> model.matrix(~xf-1)
  xf2 xf3 xf4 xf5 xf6
1
    1 0 0
                 0
2
    1
        0
             0
                 0
                     0
3
   \cap
        0
            0
                 1
                     0
4 0
       1
            0 0
                     0
5
    0
        0
             0
                 0
                     1
    0
        0
             0
attr(,"assign")
[1] 1 1 1 1 1
attr(, "contrasts")
attr(, "contrasts") $xf
[1] "contr.treatment"
> ages = c(12, 18, 22, 20, 16, 18)
                                     Функция tapply действует как будто
> grps = c(1, 2, 1, 1, 2, 3)
                                     второй аргумент факторный.
> tapply(ages, grps, mean)
1 2 3
18 17 18
# двухмерные факторы
> grps = c(1, 2, 1, 1, 2, 3)
> grps2= c(1, 1, 1, 2, 2, 2)
> tapply(ages, list(grps,grps2),
mean)
   1
      2
1 17 20
2 18 16
3 NA 18
# если есть NA
> grps = c(1, 2, 1, 1, 2, NA)
> tapply(ages, grps, mean)
 1
18 17
# продолжение предыдущего
                                     Функция split похожа на tapply. Она
# примера
                                     разбивает на группы, но потом никакой
> split(ages, list(grps,grps2))
                                     функции к ним не применяет, т.е. это первый
$`1.1`
                                     шаг функции tapply.
[1] 12 22
```

```
$`2.1`
[1] 18
$`3.1`
numeric(0)
$`1.2`
[1] 20
$`2.2`
[1] 16
$`3.2`
[1] 18
> df <- data.frame(sex=</pre>
                                      Ещё примеры с функцией split...
c('m','f','m','m','m'),
range=c(1,1,1,0,0),
age=c(20, 25, 30, 20, 20))
> df
  sex range age
          1 20
1
    m
          1 25
2
    f
3 m
          1 30
4
             20
   m
          0
           0 20
  m
> split(df$age, list(df$sex,
df$range))
$f.0
numeric(0)
$m.0
[1] 20 20
$f.1
[1] 25
$m.1
[1] 20 30
                                      Ещё один пример использования этой
> split(1:6, c(1,2,2,1,1,1))
                                      функции. Часто применяется в параллельном
$`1`
                                      программировании.
[1] 1 4 5 6
$`2`
[1] 2 3
```

Фреймы

```
      y = matrix(c(2,3,7,8), nrow=2)
      Фреймы. И матриц «об таблица, в томпатем (у) = с("Иванов",
```

Фреймы. Идеально подходят для хранения матриц «объект-признак». По сути, это таблица, в которой для каждого столбца определён свой тип. Иногда удобно считать,

```
"Петров")
                                      что это набор списков одинаковой длины.
year = c(1979, 1981);
                                      Работа с фреймами очень похожа на работу с
status = c(TRUE, FALSE);
                                      матрицами.
f = data.frame(y, year, status)
      Level1 Level2 year status
                   7 1979
       2
                             TRUE
Иванов
Петров
            3
                  8 1981
                            FALSE
                                      Обращение к элементам фрейма должно
> f["Иванов", 3]
                                      быть понятно после изучения списков.
[1] 1979
> f["Иванов",][3]
       year
Иванов 1979
> f["Иванов",][[3]]
[1] 1979
> f["Иванов", "year"]
[1] 1979
> f$year
[1] 1979 1981
> f[,2]
[1] 7 8
                                      При использовании drop=FALSE результат
> f[,2, drop=FALSE]
                                      остаётся фреймом (не конвертируется в
       Level2
                                      вектор).
Иванов
Петров
             8
                                      Строки добаляются «как списки».
> f[3,] \leftarrow list(4, 9, 1985,
TRUE)
> f
      Level1 Level2 year status
Иванов 2
                   7 1979 TRUE
            3
                   8 1981
Петров
                            FALSE
3
            4
                   9 1985
                             TRUE
                                      Операции похожи на матричные.
> f[f$Level2>7,]
       Level1 Level2 year status
Петров
             3
                    8 1981 FALSE
                     9 1985
3
             4
                            TRUE
                                      Последнюю операцию можно сделать и
> subset(f, Level2>7)
                                      так...
       Level1 Level2 year status
                    8 1981 FALSE
            3
Петров
             4
                     9 1985 TRUE
                                      Ещё одно применение функции subset.
> subset(f, Level2>7,
select=c('year', 'status'))
       year status
Петров 1981
             FALSE
       1985
               TRUE
> f
                                      Полезная функция – «пометить» строки,
       Level1 Level2 year status
                                      которые не содержат неопределённых
```

Иванов 2 7 1979 TRUE	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	элементов.
Петров 3 8 1981 FALSE	
Сидоров 4 9 1985 NA	
> complete.cases(f)	
[1] TRUE TRUE FALSE	Y.C.
> f2 <- cbind(f, c('m', 'm'))	Конкатенацию, как и для матриц, можно
> names(f2)[5] <- 'sex'	проводить с помощью cbind и rbind.
> f2	
Level1 Level2 year status	Кстати, здесь добавляется факторный
Sex	столбец! Сделайте str (f2).
Иванов 2 7 1979 TRUE m	
Петров 3 8 1981 FALSE m	D
> attach(f)	В примере выше можно упростить доступ к
The following object(s) are	столбцам – упоминать только их имя
masked _by_ '.GlobalEnv':	
status, year	
> Level1	Но присваивание Level1 = 2 здесь не
[1] 2 3 4 > detach(f)	изменит сам фрейм!
> detach(r) > Level1	
Oшибка: объект 'Level1' не	T
ошиока: ооъект Levell не найден	Теперь такой доступ опять запрещён.
> df <- data.frame(row.names =	Способы добавления нового столбца.
c('Alex', 'Serg'), Exam1 =	Спосооы дооавления нового столоца.
c(3.4, 4.5), Exam2 = $c(4.3, 4.6)$)	
> df	
Exam1 Exam2	
Alex 3.4 4.3	
Serg 4.5 4.6	
> df[,3] <- df\$Exam1 - df\$Exam2	
> df	
Exam1 Exam2 V3	
Alex 3.4 4.3 -0.9	
Serg 4.5 4.6 -0.1	
> df\$diffEx <- df\$Exam1 -	
df\$Exam2	
> df	
Exam1 Exam2 V3 diffEx	
Alex 3.4 4.3 -0.9 -0.9	
Serg 4.5 4.6 -0.1 -0.1	
<pre>> names = c("Alex", "Serg")</pre>	Ещё пример фрейма.
> age = c(20, 32)	
> f <- data.frame(names, age)	
> f	
names age	
1 Alex 20	
2 Serg 32	
> f\$names	
[1] Alex Serg	
Levels: Alex Serg	
<u> </u>	1

```
> f <- data.frame(names, age,</pre>
                                      Если не надо переделывать строки в
stringsAsFactors=FALSE)
                                      факторы, а это происходит по умолчанию, то
> f
                                      можно воспользоваться опцией
 names age
                                      stringsAsFactors=TRUE.
1 Alex 20
2 Serg 32
> f$names
[1] "Alex" "Serg"
> dim(f)
[1] 2 2
> names(f)
[1] "names" "age"
> row.names(f)
[1] "1" "2"
> df <-
                                      Такое чтение из файла переводит данные во
read.table("C:\\table.txt", sep=
                                      фрейм.
',', header=TRUE)
> df
                                      Содержание текстового файла:
 A B desc
                                      A, B, desc
1 1 2 Иван
                                      1, 2, Иван
2 1 3 Пётр
                                      1, 3, Пётр
> (df1 <-
                                      Для слияния двух фреймов используется
data.frame (x=c(1,1,2,2),
                                      функция merge (аналог SQL-вского join).
y=c('a', 'b', 'a', 'b')))
 х у
1 1 a
2 1 b
3 2 a
4 2 b
> (df2 <-
data.frame (z=c(1,2,3,4),
x=c(1,1,2,2),
y=c('a','b','a','b')))
  z x y
1 1 1 a
2 2 1 b
3 3 2 a
4 4 2 b
> merge(df1, df2)
 x y z
1 1 a 1
2 1 b 2
3 2 a 3
4 2 b 4
> (df3 <-
merge(df1, df2, by="x"))
 x y.x z y.y
1 1
     a 1
2 1
     a 2
            b
3 1
     b 1
             а
4 1
     b 2
             b
```

```
a 3
6 2
      a 4
            b
7 2
     b 3
             а
8 2 b 4
            b
                                     К фреймам можно применять функции
> sapply(df3, sort)
                                     sapply и lapply, но они действуют на
     x y.x z y.y
                                     списки-столбцы (в результате часто «фрейм»
[1,] 1 1 1
                1
                                     теряет смысл, поскольку значения столбцов
[2,] 1
         1 1
                1
                                     перестают соответствовать друг другу).
[3,] 1
         1 2
[4,] 1 1 2
                                     Здесь показан пример сортировки, в
[5,] 2 2 3
                2
                                     факторах значение меняется на номер класса
[6,] 2 2 3 2
                                     эквивалентности.
[7,] 2
         2 4
                2
[8,] 2 2 4
                2
> (d = data.frame(a=1:3, b=4:6,
                                     Обратите внимание на действие функции
c=7:9))
                                     table. И на вывод с помощью ftable.
 a b c
1 1 4 7
2 2 5 8
3 3 6 9
> (t = table(d))
, c = 7
  b
a 456
 1 1 0 0
 2 0 0 0
 3 0 0 0
, c = 8
  b
a 456
 1 0 0 0
  2 0 1 0
 3 0 0 0
, c = 9
  b
a 456
  1 0 0 0
  2 0 0 0
  3 0 0 1
> ftable(t)
    c 7 8 9
a b
1 4 1 0 0
  5 0 0 0
  6 0 0 0
```

```
4
      0 0 0
  5
      0 1 0
  6
      0 0 0
3 4
      0 0 0
      0 0 0
      0 0 1
> ftable(d)
    c 7 8 9
a b
1 4
      1 0 0
  5
      0 0 0
  6
      0 0 0
2 4
      0 0 0
  5
      0 1 0
  6
      0 0 0
3 4
      0 0 0
  5
      0 0 0
      0 0 1
> A <- data.frame(city =
                                      Два разных объединения фреймов.
c('Moscow','Korolev','Pushkino')
, income=c(9000, 1100, 750))
                                             city income
> B <- data.frame(city =
                                                     9000
                                          Moscow
c('Moscow', 'Pushkino', 'Fryzino')
                                      2
                                        Korolev
                                                     1100
, code=c(095, 030, 044))
                                      3 Pushkino
                                                      750
> merge (A, B, by=1)
      city income code
              9000
                      95
    Moscow
                                             city code
2 Pushkino
               750
                      30
                                                     95
                                          Moscow
> C <- A
                                      2 Pushkino
                                                     30
> m <- match(A$scity, B$city, 0)</pre>
                                      3 Fryzino
                                                     44
> C$code <- ifelse(m==0, 0,</pre>
B$code[m])
> C
      city income code
1
   Moscow
              9000
                      95
2 Korolev
              1100
                       0
              750
                      95
3 Pushkino
> df = data.frame(x=1:3,
                                      «Разделение» – превращение в список.
y=LETTERS[1:3])
> (df = data.frame(x=1:3,
y=LETTERS [1:3]))
  х у
1 1 A
2 2 B
3 3 C
> split(df$x, df$y)
$A
[1] 1
$В
[1] 2
```

	<u></u>
\$C	
[1] 3	
> df	«Усреднение» информации – функция
name Ex1 Ex2	aggregate.
1 Alex 4 3	
2 Serg 4 4	
3 Alex 3 5	
4 Serg 5 4	
5 John 5 4	
> aggregate(df[,-1],	
<pre>list(df\$name), mean)</pre>	
Group.1 Ex1 Ex2	
1 Alex 3.5 4	
2 John 5.0 4	
3 Serg 4.5 4	
> df <-	Сортировка по значениям одного из
data.frame(names=c("Alex",	столбцов.
"Serg", "John"),	· ·
age=c(14,16,13))	
<pre>> df[order(df\$age),]</pre>	
names age	
3 John 13	
1 Alex 14	
2 Serg 16	

Загрузка данных, запись в файлы

[не очень хорошо структурировано]

> a<-read.table("data1.txt",	Загрузка данных. Отмечаем разделитель и
sep=" ", na.strings="*",	неизвестные значения.
header=TRUE)	
> a	
Price Floor Area Rooms Age	
Cent.heat	
01 52.00 111 830 5 6.2	
no	
02 54.75 128 710 5 7.5	
no	
03 57.50 101 1000 5 4.2	
no	
04 57.50 NA 800 5 4.0	
yes	
> a = edit (HousePrice)	Редактирование.
> df <-	Чтобы загрузить матрицу, надо её сначала
read.table('c:\\temp\\txt.txt')	загрузить как data.frame.
<pre>> as.matrix(df)</pre>	
V1 V2 V3	В файле
[1,] 3 21 13	3 21 13
[2,] 4 5 22	4 5 22
a <- read.xls("mydata.xls",	Загрузка Excel-данных.
<pre>sheet = "Sheet1")</pre>	

d <- read.csv("txt.csv")	Загрузка csv-файла.
d <- read.csv2("txt.csv")	Загрузка csv-файла при разделении точкой с запятой и использовании запятой при записи чисел.
<pre>d <- read.delim("foo.txt")</pre>	Загрузка файла с разделением табуляцией.
<pre>d <- read.fwf("txt.fwf")</pre>	Загрузка файла с фиксированными полями.
<pre>> x = matrix(1:6, nr=2) > write(x, file='c:\\temp\\1.txt')</pre>	1 2 3 4 5
> x = matrix(1:6, nr=2)	"V1" "V2" "V3"
> write.table(x,	"1" 1 3 5
file='c:\\temp\\1.txt')	"2" 2 4 6 1 3 5
<pre>> x = matrix(1:6, nr=2) > write.table(x,</pre>	2 4 6
file='c:\\temp\\1.txt',	2 4 0
row.names=F, col.names=F)	
> x = matrix(1:6, nr=2)	"", "V1", "V2", "V3"
> write.csv(x,	"1",1,3,5
<pre>file='c:\\temp\\1.txt')</pre>	"2",2,4,6
> x = matrix(1:6, nr=2)	""; "V1"; "V2"; "V3"
> write.csv2(x,	"1";1;3;5
file='c:\\temp\\1.txt')	"2";2;4;6
> save(x, file = 'c:\\temp\\1.txt')	Внутренний формат R - не текстовый
> rm(x)	файл
> x	(можно сохранять несколько переменных)
Ошибка: объект "x" не найден > y <- load(file = 'c:\\temp\\1.txt') > x [,1] [,2] [,3] [1,] 1 3 5 [2,] 2 4 6	Надо просто: load(file = 'c:\\temp\\1.txt')
> y [1] "x"	Загрузка происходит в переменную х!
<pre>> df name age 1 John 15 2 Alex 17 > write.table(df,'txt.txt')</pre>	Первый способ записи в файл. В файле: "name" "age" "1" "John" 15 "2" "Alex" 17
<pre>write.table(df,'txt.txt', quote=FALSE, col.names=FALSE, row.names=FALSE, sep=';')</pre>	Кстати, quote=FALSE убирает кавычки в строках. В файле: John; 15 Alex; 17
> cat(file='txt.txt', c(1,4,7), "\nstr\n")	Другие способы записи в файл. В файле: 1 4 7
<pre>> cat(file='txt.txt', 1:5,</pre>	str

append=TRUE)	1 2 3 4 5
<pre>fl <- file("txt.txt", "w")</pre>	В файле:
<pre>writeLines(c("str1", "str2"), f1)</pre>	str1
close(fl)	str2
read.table("filename.txt",	При загрузке больших файлов лучше сразу
<pre>colClasses = c("numeric",</pre>	указать типы столбцов.
<pre>rep("character", 10)))</pre>	
read.table("foo.csv", header =	
TRUE, sep = ",",	
<pre>na.strings = c("#N/A!", "NA",</pre>	
"@NA"),	
quote = '"',	
<pre>comment.char = "")</pre>	
<pre>> scan('c:\\temp\\txt.txt')</pre>	Различные способы считывания файлов. На
Read 5 items	практике надо делать так
[1] 1 2 3 4 5	m <- scan()
<pre>> scan('c:\\temp\\txt.txt',</pre>	второй аргумент – «тип» считываемых
sep='\n')	данных, sep – разделитель.
Read 2 items	
[1] 12 345	В файле
<pre>> scan('c:\\temp\\txt.txt',</pre>	1 2
what='')	3 4 5
Read 5 items	
[1] "1" "2" "3" "4" "5"	
<pre>> scan('c:\\temp\\txt.txt', what='', sep='\n')</pre>	
Read 2 items	
[1] "1 2" "3 4 5"	
> a <- scan()	Ввод данных с клавиатуры выполняется той
1: 12	же функцией.
2: 2 3	же функцией.
4:	
Read 3 items	
> a	
[1] 12 2 3	
> s <- readline("Ваш пароль:")	Можно сделать ввод одной строки.
Ваш пароль: ттр	Section of the sectio
> s	
[1] "mmp"	
> print("cmpoka\nstr")	Различные способы вывода на экран.
[1] "строка\nstr"	
> cat("cmpoka\nstr")	Функция cat правильно интерпретирует
строка	символы вида \n, кроме того, конкатенирует
str	все свои аргументы.
> cat("строка","\n","str",	
sep='+')	
строка+	
+str	
> txt <- scan('temp1.txt',"")	Функция scan позволяет считать файл «по

```
Read 8 items
                                       словам».
> txt
[1] "$1." "Знакомство" "c" "R"
[5] "§2." "Работа" "с"
"системой"
> words <- split(1:length(txt),</pre>
                                       Превращение слов в список.
txt)
> words
$`$1.`
[1] 1
$`$2.`
[1] 5
$R
[1] 4
$Знакомство
[1] 2
$Работа
[1] 6
$c
[1] 3 7
$системой
[1] 8
> adr <-
                                       Чтение данных «из Интернета».
"http://archive.com/db/"
> adr <- paste(uci,</pre>
"echo/echo.data", sep="")
> ecc <- read.csv(adr)</pre>
> search()
                                       Текущие загруженные пакеты.
[1] ".GlobalEnv"
"package:stats"
"package:graphics"
[4] "package:grDevices"
"package:utils"
"package:datasets"
[7] "package:methods"
"Autoloads"
"package:base"
> library()
                                       Список доступных пакетов (содержатся в
                                       директории, но, возможно, не загружены).
# создать файл
                                       Полезная функция count.fields -
> cat("NAME", "1:John",
                                       считает число полей в каждой строке файла.
"2:Paul", file = "foo", sep =
                                       Поля разделены символом sep.
"\n")
                                       Часто имеет смысл такая конструкция:
# считать число полей
                                       table(count.fields("foo", sep =
> count.fields("foo", sep = ":")
```

```
[1] 1 2 2
> unlink("foo") # удалить
D <- read.csv("data.csv",</pre>
                                       После загрузки файла полезно взглянуть на
header=TRUE,
                                       уникальные значения в каждом столбце...
stringsAsFactors=FALSE)
print (unique (sort (D[, col])))
> fl <-
                                       Показано чтение файла по строкам. С
file("c:\\temp\\txt.txt", "r")
                                       помощью seek можно перемещаться по
> readLines(fl,2) # 2 строки
                                       файлу.
[1] "Alex, 2" "Serg, 3"
> seek(con=fl, where=2)
                                       Сначала создаётся соединение, подробности
[1] 9
                                       можно узнать, используя команду
> readLines(fl, 1)
                                                    ?connection
[1] "ex, 2"
                                       Например, можно создать срединение
                                       командой url ().
while (TRUE)
 rl <- readLines(fl, n=1)</pre>
 if (length(rl) == 0)
   break
 else
   print(rl)
 }
[1] "Serg, 3"
[1] "John, 12"
                                       После работы с файлом (соединением) надо
> close(fl)
                                       «его закрыть».
                                       Работа с файлами и директорией.
> setwd('c:\\temp\\')
                                       Задать рабочую директорию,
> getwd()
                                       узнать рабочую директорию,
[1] "c:/temp"
> file.info('txt.txt')
                                       информация о файле,
         size isdir mode
mtime
                      ctime
          12 FALSE 666 2013-05-
txt.txt
03 16:47:27 2013-05-03 15:05:41
                        atime exe
txt.txt 2013-05-03 15:05:41 no
> file.exists('txt.txt')
                                       существует ли файл,
[1] TRUE
> dir()
                                       файлы директории.
   [1] "1363498.key"
   [2] "16.Chetviorkin.pdf"
   [3] "txt.txt"
sumtree <- function(drtr)</pre>
                                       Пример из [ART] – найти сумму данных во
                                       всех файлах каталога.
tot <- 0
# все имена файлов
(+подкаталоги)
fls <- dir(drtr,recursive=TRUE)</pre>
for (f in fls)
```

```
# f - директория?
  f <- file.path(drtr,f)</pre>
  if (!file.info(f)$isdir)
    {
    tot <- tot +
sum(scan(f, quiet=TRUE))
    }
  }
return(tot)
```

Советы по убыстрению кода

```
> a = runif(1000000)
                                        Всегда пользуйтесь встроенными средствами
> b = runif(1000000)
                                        параллелизации.
> system.time(a <- a*b-b^0.7)
пользователь
                 система
                              опшодп
                              0.16
       0.13
                  0.03
> system.time(for (i in
                                        Здесь происходят обращения к различным
1:1000000) a[i] <- a[i]*b[i]-
                                        функциям: for, «:» (двоеточие это тоже
b[i]^0.7)
                                        функция), «[<-».
пользователь
                 система
                              прошло
       5.63
                  0.00
                              5.63
> library(compiler)
                                        Можно использовать «byte code compiler»,
> f <- function() for (i in</pre>
                                        чтобы ускорить код.
1:1000000) a[i] <- a[i]*b[i]-
b[i]^0.7
> cf <- cmpfun(f)</pre>
> system.time(cf())
пользователь
                 система
                              опшодп
                 0.00
                              1.11
      1.11
> a <- 2
                                        После присваивания новая переменная не
> b <- a
                                        создалась (в том смысле, что ссылки а и в
> tracemem(a)
                                        ссылаются на один участок памяти). Но
[1] "<0x0c9d7ce0>"
                                        когда переменная в изменилась – под неё
> tracemem(b)
                                        выделилось новое место.
[1] "<0x0c9d7ce0>"
> b <- 3
> tracemem(a)
[1] "<0x0c9d7ce0>"
> tracemem(b)
[1] "<0x0c347d28>"
Rprof()
                                        Для того, чтобы узнать, какие функции
# вызов функции
                                        тормозят программу, используйте
Rprof (NULL)
                                        профайлинг.
summaryRprof()
                                        RMySQL (доступ к БД SQL),
                                        biglm (регрессия на больших данных),
                                        ff (может хранить данные на диске),
                                        bigmemory (может хранить данные на диске и
                                        в основной памяти).
```

Функция by!!!

Полезные функции

```
> tf = c(TRUE, FALSE)
                                      Логические функции:
> tt = c(TRUE, TRUE)
                                      any – хотя бы один аргумент TRUE,
> ff = c(FALSE, FALSE)
                                      all – все аргументы TRUE.
> c(any(tf), all(tf))
[1] TRUE FALSE
> c(any(tt), all(tt))
[1] TRUE TRUE
> c(any(ff), all(ff))
[1] FALSE FALSE
> a = c(1,2,2,1,3,2,1,2,3)
                                      Вывод статистики числа вхождений.
> b = c(1,1,2,2,1,2,1,1,2)
> table(a,b)
                                       – для пар
  b
a 12
  1 2 1
  2 2 2
 3 1 1
> table(a)
                                      - для вхождений элементов
1 2 3
3 4 2
> table(b)
h
1 2
5 4
> addmargins(table(a,b),
                                      Применение функций «по размерностям».
FUN=c('max','min'))
Margins computed over dimensions
in the following order:
1: a
2: b
     b
     1 2 min
      2 1 1
  1
  2 2 2
      1 1
  3
             1
 max 2 2 2
> findInterval(22,
                                      Найти номер интервала, в котором находится
c(1,10,20,30,40))
                                      значение.
[1] 3
> do.call(sum, list(1,2,3))
                                      Если заранее не известно число аргументов
[1] 6
                                      функции, то можно для её вызова
                                      использовать do.call.
s1 <- 11
                                      get – очень мощная функция! Она позволяет
s2 <- 20
                                      получать объект по его имени.
s3 <- -9
m = c()
                                      Нельзя здесь сделать так: get (s) <- i.
for (i in 1:3)
```

Графика

```
dev.new() # новое
                                      Функции для работы с графическими
dev.set (2) # перейти
                                      окнами.
windows
dev.cur() # текущее
windows
dev.list() # BCe
windows windows
      2
               3
dev.off(3) # закрыть
windows
dev.off() # закрыть тек.
windows
graphics.off() # закрыть всё
                                      В среде WINDOWS – создать новое
windows()
                                      графическое окно.
locator()
                                      Функция, которая позволяет запоминать
                                      координаты кликов по графическому окну.
> plot(c(1,2,1,2))
                                      Способ сохранить график, а потом
> rc = recordPlot()
                                      восстановить.
> plot(c(3,2,1,3))
> replayPlot(rc)
```

```
      ж = seq(-pi, pi, len = 30)
      Обычный график функции. Обратите

      y = sin(x)
      внимание на «чисто R-овскую» запись у~х

      plot(x, y)
      (изобразить у как функцию от х).

      # цвет, надписи, легенда
      plot(x, y, type="l", col="red", xlab="time", ylab="", main="график")

      text(1,0,"(1,0)")
      legend(-3,1,"синус", "red")

      # добавить сетку -
```



```
> x = sort(runif(40))
> plot(x, type = 'h', lwd = 3,
                                                                                                                                                                                                            0.8
col = heat.colors(length(x)),
                                                                                                                                                                                                                                                                                               The state of the s
xlab='')
                                                                                                                                                                                                             ဖ
> lines(x, type='b', pch=10)
                                                                                                                                                                                                             o
                                                                                                                                                                                                            0.4
                                                                                                                                                                                                             0.2
                                                                                                                                                                                                             0
                                                                                                                                                                                                                              0
                                                                                                                                                                                                                                                         10
                                                                                                                                                                                                                                                                                   20
                                                                                                                                                                                                                                                                                                               30
                                                                                                                                                                                                                                                                                                                                           40
                                                                                                                                                                                 Для вывода разичных цветов можно также
                                                                                                                                                                                 использовать
                                                                                                                                                                                 rainbow
                                                                                                                                                                                 heat.colors
                                                                                                                                                                                 terrain.colors
                                                                                                                                                                                 topo.colors
                                                                                                                                                                                 cm.colors
> m <- matrix(sin(1:20), nrow=4)
                                                                                                                                                                                 Обычные графики...
> matplot(1:5, t(m), type='1',
xlab='', ylab='')
                                                                                                                                                                                                          -1.0
                                                                                                                                                                                                                                                    2
                                                                                                                                                                                                                                                                           3
                                                                                                                                                                                                                                                                                                                        5
                                                                                                                                                                                                                              1
                                                                                                                                                                                                                                                                                                 4
                                                                                                                                                                                 Обратите внимание: все строятся одной
                                                                                                                                                                                 командой!
> a = c(2,3,1)
> names(a) = c("a", "b", "c")
                                                                                                                                                                                                             3.0
> barplot(a, name="bar",
col=c("red", "green", "black"),
                                                                                                                                                                                                             2.0
density=c(10, 30, 70))
                                                                                                                                                                                                             0.
                                                                                                                                                                                                                                                                         bar
```

```
a = c(2,3,1)
names(a) = c("a", "b", "c")
barplot(a, name="bar",
col=c("red", "green", "black"),
density=c(10, 30, 70))
> a = c(1, 4, 2, 3)
> a <- matrix(a, nrow=2)</pre>
     [,1] [,2]
[1,]
       1
[2,]
> colnames(a) = c("X", "Y")
> rownames(a) = c(10,20)
> barplot(a)
> barplot(a, beside=TRUE,
legend.text=TRUE)
```


Обратите внимание, что легенда «налезает» на график.

0

2

4

```
> x = c(1,3,5)
> names(x) = c('one', 'two',
'three')
> barplot(as.matrix(x), horiz =
TRUE, col = rainbow(length(x)),
legend.text = TRUE)
> title(main = "Bar plot")
```


6

8

Bar plot

> hist(rnorm(100), breaks=7, col='yellow')

Histogram of rnorm(100)


```
> x = rnorm(100, mean=0, sd=1) +
rnorm(100, mean=10, sd=2)
> hist(x, probability=TRUE,
breaks=10, col="light blue",
xlab="", ylab="",main="")
> points(density(x, bw=1),
type='l', lwd=2, col="red")
> points(density(x, bw=.5),
type='l', lwd=2, col="blue")
```

Гистограмма и различные аппроксимации плотности.


```
> a = c(1,5,7,2,3,4)
> b = a^2
> coplot(a ~ b | c(1,1,1,2,2,2))
```

График по уровням третьего вектора.

Given: c(1, 1, 1, 2, 2, 2)

0.5 1.0 1.5 2.0 2.5

> m = t(rbind(a,b,1))

Попарные столбцовые графики.

horizontal=TRUE)


```
> x = c(rnorm(100), rnorm(200),
rnorm(300))
> y = factor(c(rep(1,100),
rep(2,200), rep(3,300)))
boxplot(x~y, horizontal=TRUE,
col='light blue')
```

Ящик с усами для трёх подвыборок одной выборки (задаются факторным вектором). Отмечены выбросы.


```
x = c(1,2,4)
names(x) <-c('one', 'two',
'three')
pie(x)</pre>
```

График-пирог.


```
# данные
                                                 data and regression line
> x = runif(40, min=-1, max=1)
                                           0.
> y = \sin(0.6*x*(x+2)) +
rnorm(40, sd=0.1)
                                           2
# изобразить
> plot(y ~ x, main = "data and
                                           0.0
regression line")
# линия регрессии
> abline(lm(y \sim x), col = 'red',
                                           2
lwd = 2)
                                              -1.0
                                                    -0.5
                                                          0.0
                                                                0.5
                                                                      1.0
> x = runif(40, min=-2, max=2)
                                            Непараметрическая регресиия.
> y = \sin(0.6*x*(x+2)) +
                                                      lowess lines
rnorm(40, sd=0.1)
# изобразить
                                           2
> plot(y ~ x, main = "lowess
line")
                                           0
# линия непараметрической
                                           o
регрессии
                                           2
> lines(lowess(x,y), col =
                                           o.
'green', lwd = 2)
                                           0
> lines(lowess(x,y,f=0.5), col =
'lightgreen', lwd = 2)
> lines(lowess(x,y,f=0.2), col =
                                               -2
                                                     -1
                                                           0
                                                                 1
                                                                       2
'dark green', lwd = 2)
                                      См. также функцию loess.
> x = rnorm(40)
                                      Выпуклая оболочка точек.
> y = rnorm(40, sd=3)
> plot (y~x)
> T = cbind(x, y)
> polygon( T[chull(T),],
                                           2
col="light yellow", lwd=2)
points(x, y)
                                           2
                                                  -2
                                                          0
                                                                       3
op \leftarrow par (mar=c(3,3,0,0)+1,
                                      «Классический» вывод для задач
ps=10)
                                      классификации.
# отступы + шрифт
x = c(rnorm(40), rnorm(20,
mean=2))
y = c(rnorm(40, sd=3),
```

```
rnorm(20))
plot(x,y, bg=c('red',
'blue') [c(rep(1,40),
rep(2,20))], pch=21)
# pch=21 нужно, чтобы выводились
закрашенные точки
                                         \alpha
grid(col='black') # сетка
                                         Ņ
par (op)
x = c(rnorm(40), rnorm(20,
                                                 Bubble plot
mean=2))
y = c(rnorm(40, sd=3),
                                                          0 000
rnorm(20))
z = c(rep(1,40), rep(2,20))
plot(x, y, cex = z, xlab = "",
                                       4
ylab = "", main = "Bubble plot")
                                       φ
x = c(rnorm(40), rnorm(20,
mean=2))
y = c(rnorm(40, sd=3),
                                        ဖ
rnorm(20))
z = c(rep(1,40), rep(2,20))
                                        0
plot(x, y, cex = z, xlab = "",
                                        Ņ
ylab = "", col='dark green',
                                        4
pch=16)
points(x, y, cex = z,
col='yellow')
N < -50
                                   Линии уровня функции.
x \leftarrow seq(-1, 1, length=N)
y \leftarrow seq(-1, 1, length=N)
xx <- matrix(x, nr=N, nc=N)</pre>
yy <- matrix(y, nr=N, nc=N,
byrow=TRUE)
xx)^2
contour(x, y, z, col='blue')
```



```
# устанавливает ширину границ
op <- par(mar=c(0,0,0,0)+1)

persp(x, y, z,
theta = 20, phi = 20,
shade = .5,
col = rainbow(N),
border = "green")
par(op)</pre>
```

График самой функции. [СМ. ПОЛЕЗНЫЙ СПОСОБ УМЕНЬШИТЬ ГРАНИЦЫ!!!]


```
# подготовка данных
x < - seq(-3, 3, length = 30)
y <- x
f <- function(x,y)</pre>
\{\cos(x^2+y^2)\}
z \leftarrow outer(x, y, f)
# это другой способ!
# рисование
op <- par(bg = "light pink",
mar=c(0,0,0,0)+1)
persp(x, y, z,
theta = 30, phi = 30,
expand = 0.5,
col = "light green",
ltheta = 120,
shade = 0.75,
ticktype = "detailed",
xlab = "x", ylab = "y", zlab =
"f(x,y)"
```



```
par(op)
library(lattice)
a <- 1:10
b <- 1:15
eg <- expand.grid(x=a, y=b)
eg$z <- eg$x^2 + eg$x * eg$y
wireframe(z ~ x+y, eg)</pre>
```



```
# обратите внимание на ps=10 -
ШРИФТ
op <- par(bg = "light yellow",</pre>
mar = c(3,3,0,0)+1, ps=10)
a <- seq(0,2*pi,length=100)</pre>
# чертим окружность
plot(cos(a), sin(a), type = 'l',
lty = 3)
I = seq(from=1, to=length(a),
by=10)
cols = cm.colors(length(I))
# проводим стрелки
for (j in 1:length(I))
{
i = I[j]
arrows(0,0, cos(a[i]),
sin(a[i]), col=cols[j], lw=3)
text(cos(a[i]), sin(a[i]),
round(a[i],2))
}
```

par(op)

Вывод графиков различных функций. Обратите внимание на **expression** – функция, которая позволяет вставлять математические выражения.

```
x <- seq(from=-2, to=2, length=100) # "сетка точек" y1 <- x^3 # первая функция y2 <- x^2 # вторая plot( y1~x, type = 'l', col = 'red', xlim = c(-2,2), ylab="графики") lines( y2~x, type='l', col='green') abline(0,1) # линия # добавить легенду legend( 1, -1, c(expression(x^3), expression(x^2), "x"), lwd=2, col=c("red", "green", "black")
```


Оценка плотности

library (MASS)

данные

```
x = c(rnorm(40), rnorm(20, mean=2))
y = c(rnorm(40, sd=3), rnorm(20))
T = cbind(x, y)
# оценка плотности
z <- kde2d(x,y, n=10)
# вывод первого изображения
plot(x,y, main = "Оценка плотности")
contour(z, col = "red", drawlabels = FALSE, add = TRUE)
# вывод второго
image(z, main = "Оценка плотности")</pre>
```

Оценка плотности

Оценка плотности


```
# увеличим выборку и выведем график плотности x = c(rnorm(400), rnorm(100, mean=4)) y = c(rnorm(400, sd=3), rnorm(100)) z <- kde2d(x,y, n=30) persp(z, main = "Оценка плотности", phi=30, theta=40) # для вывода второго графика persp(z, main = "Оценка плотности", phi=30, theta=40, col='pink', shade=0.4)
```

Равномерное распределение

Р.р. с выбросами

Небольшая переделка примера из [1]. Вывод осуществляется сразу на «две половинки» изображения. Выводится гистограмма, аппроксимация плотности и сама выборка.

```
N \leftarrow 30 # размервыборки set.seed(2) x1 \leftarrow runif(N) # равномерное распределение x2 \leftarrow c(x1, -2, 3, 4) # + выбросы
```

```
f <- function (x, ...)</pre>
x \leftarrow (x - mean(x)) / sd(x) # стандартивация
# вывод гистограммы
hist(x,
col = "light green",
xlim = c(-3, 3),
ylim = c(0, 1),
probability = TRUE,
# вывод аппроксимации плотности
lines (density (x), col = "red", lwd = 2) # плотность
rug(x) # + выборка
}
op \leftarrow par (mfrow=c(1,2))
f(x1, main = "Равномерное распределение")
f(x2, main = "P.p. c выбросами")
par(op)
```

kurtosis = 1.37

Небольшая переделка примера из [1]. Оценка «похожести на нормальное распределение». Очень интересно смотрится гистограмма в левом верхнем углу.

```
library(e1071) # подключение библиотеки (там есть \phi-я kurtosis) n = 40 x <- c(rnorm(n-20), runif(20)) qqnorm(x, main=paste("kurtosis =", round(kurtosis(x), digits=2)), col="dark green") qqline(x, col="red")
```

```
# теперь выводим в углу рисунка op <- par(fig=c(0, 0.5, 0.4, 1), new=TRUE) hist(x, probability=T, col="light green", xlab="", ylab="", main="", axes=F) box() par(op)
```


Вывод одномерной выборки. Шум нужен, чтобы точки «не накладывались» друг на друга.

```
op <- par(mfrow=c(2,1))

x = c(1,2,6,7,8,8,8,12,12)

stripchart(x, jitter=TRUE, method="jitter")

plot(runif(length(x)) ~ x, ylab="шум")

par(op)
```

Методы главных и независимых компонент

```
# порождение выборки

x = rnorm(100);
y = rnorm(100);
T = cbind(x+2*y, x-3*y);
a = prcomp(T) # метод РСА

# рисование

op <- par(mfrow=c(2,1),
mar=c(0,0,0,0)+2)
plot(T[,1], T[,2], col='dark
red', pch=16, xlim=c(-10,10),
ylim=c(-10,10), xlab='',
```

blue', pch=16, xlab='', ylab='')

```
ylab='')
plot((T%*%a$rotation)[,1],
                                     9
(T%*%a$rotation)[,2], col='dark
green', pch=16, xlim=c(-10,10),
ylim=c(-10,10), xlab='',
                                    2
ylab='')
par (op)
                                    0
# второй рисунок можно получить
                                    Ŋ
проще -
plot(a$x, col='dark blue',
pch=16, xlim=c(-10,10),
ylim=c(-10,10), xlab='',
ylab='')
                                        -10
                                              -5
                                                    0
                                                          5
                                                               10
# первый тоже...
plot(T, col='dark red', pch=16,
xlim=c(-10,10), ylim=c(-10,10),
xlab='', ylab='')
                                    2
# вывод собственных значений
a = princomp(T)
a$sd
                                    Ċ
                                    0
  Comp.1
           Comp.2
3.655761 1.257609
                                              -5
                                                    0
                                                          5
library(e1071) # для ICA
                                    Сравнение методов главных и независимых
# порождение выборки
                                    компонент.
x = runif(1000);
y = runif(1000);
T = cbind(x+2*y, x-3*y);
# метод РСА
a = prcomp(T)
 # метод ICA
b = ica(T, lrate=0.1, ncomp=2)
# рисование
op \leftarrow par (mfrow=c(3,1),
                                    Ņ
mar=c(0,0,0,0)+2)
plot(T, col='dark red', pch=16,
xlab='', ylab='')
plot(a$x, col='dark green',
                                        0.0
                                            0.5
                                                1.0 1.5
                                                        2.0 2.5
pch=16, xlab='', ylab='')
plot((T%*%b$weights)[,1],
(T%*%b$weights)[,2], col='dark
blue', pch=16, xlab='', ylab='')
par (op)
# в выводе ICA можно проще:
plot(b$projection, col='dark
```



```
library (MASS)
# порождение выборки
x = rnorm(1000);
y = rnorm(1000);
T = rbind(cbind(x+2*y, x+3*y+1)),
cbind(x-y+5, x-3*y+1));
y = c(rep(1,1000), rep(2,1000))
a = prcomp(T) # метод PCA
b = Ida(y~T) # метод LDA
cols = c('red', 'blue')
# рисование
op \leftarrow par (mfrow=c(2,1),
mar=c(0,0,0,0)+2)
plot(T[,1], T[,2], pch=16,
xlab='', ylab='', col=cols[y],
cex=0.5)
plot(a$x[,1], T%*%b$scaling,
pch=16, xlab='', ylab='',
col=cols[y], cex=0.5)
par(op)
```

Демонстрация линейного дискриминантного анализа. Вторая картинка получается следующим образом: первая ось – первая главная компонента, вторая – результат LDA (на ней классы максимально хорошо разделяются).


```
Многомерное шкалирование
T = matrix(c(0,1,2,3,1,
                                      Необходимо
                                                   по
                                                        матрице
                                                                  расстояний
1,0,2,2,1, 2,2,0,1,1,
                                      изобразить точки на плоскости.
3,2,1,0,1,1,1,1,1,0),5
a = cmdscale(T, k = 2)
plot(a, col='dark blue', pch=16,
                                             2
xlab='', ylab='', cex=1.5)
Т # матрица расстояний
                                             0
dist(a) # м.р. между
                                             o.
получившимися точками
                                             Ŋ
> dist(a)
           2
                 3
     1
2 1.32
                                                -1.5 -0.5
                                                         0.5
                                                               1.5
3 2.18 2.00
4 3.00 2.18 1.32
5 1.50 1.00 1.00 1.50
                                             ιÖ
      [,1] [,2] [,3] [,4] [,5]
                    2
                          3
[1,]
         0
              1
                                             0.0
                    2
                          2
[2,]
         1
              0
         2
              2
                    0
[3,]
                          1
                               1
                                             Ŋ
[4,]
         3
              2
                    1
                          0
                               1
[5,]
         1
              1
                    1
                          1
                               0
# другой метод
                                                 -1.0
                                                       0.0
                                                            1.0
b = isoMDS(T, k=2)
plot(b$points, col='dark green',
pch=17, xlab='', ylab='',
                                             9
cex=1.5
                                             0
dist(b$points)
                                             0.0
> dist(b)
           2
                 3
2 0.99
                                             Ø
3 2.29 2.38
4 2.74 2.41 1.08
5 1.06 1.07 1.34 1.68
                                                 -1.0
                                                       0.0
                                                             1.0
```

Алгоритмы машинного обучения

```
library(e1071) # для svm
# данные
x = rnorm(50);
y = rnorm(50);
T = rbind(cbind(x+2*y-1, x-y),
cbind(x-y+4, x+3*y+1));
# классы
y = c(rep(1,50), rep(2,50))
Y <- as.factor(y)
# запуск SVM
r <- svm(T, Y)
# контрольная выборка
n < -100
x <- cbind( rep(seq(-
10,10,length=n), each=n),
rep(seq(-10,10,length=n), n))
# вывод рисунка
z <- predict(r, x) #</pre>
классификация
z \leftarrow c(rgb(1,.8,.8),
rgb(.8,.8,.9))[ as.numeric(z) ]
cols = c('red', 'blue')
pchs = c(16, 22)
plot(x, col=z, pch=15, xlab="",
ylab="", main="SVM", axes=FALSE)
box()
points(T, col = cols[y],
pch=pchs[y])
# полиномиальный SVM
r \leftarrow svm(T, Y,
kernel='polynomial')
# вывод рисунка
z <- predict(r, x)</pre>
z \leftarrow c(rgb(1,.8,.8),
rgb(.8,.8,.9))[ as.numeric(z) ]
```

Попробуйте самостоятельно получить все приведённые рисунки (Вам придётся проварьировать ядра в методе SVM). Попробуйте также изменять другие параметры метода (например, параметры ядер).


```
op <- par(mar=c(0,0,0,0)+1)
plot(x, col=z, pch=15, xlab="",
ylab="", main="SVM polynomial,
degree=3", axes=FALSE)
box()
points(T, col = cols[y],
pch=pchs[y])
par(op)
# степень = 2
r \leftarrow svm(T, Y,
kernel='polynomial', degree=2)
# вывод рисунка
z <- predict(r, x)</pre>
z \leftarrow c(rgb(1, .8, .8))
rgb(.8,.8,.9))[ as.numeric(z) ]
op \leftarrow par(mar=c(0,0,0,0)+1)
plot(x, col=z, pch=15, xlab="",
ylab="", main="SVM polynomial,
degree=2", axes=FALSE)
box()
points(T, col = cols[y],
pch=pchs[y])
par (op)
Типичное обращение к функции:
model <- svm(x=T, y=Y,</pre>
scale=FALSE, type="C-
classification",
kernel="radial", gamma = 3, cost
= 1, class.weights = NULL)
z <- predict (model, x)</pre>
```



```
# данные из пред. примера
# только такой тип принимает!
YT = data.frame(Y,T)
# построение дерева
r <- rpart(Y~.,YT)
# классификация (тоже
data.frame)
z <- predict(r, data.frame(x))</pre>
# преобразование ответа!!!
z <- ifelse(z[,1]>0.5,1,2)
# вывод рисунка
z \leftarrow c(rgb(1,.8,.8),
rgb(.8,.8,.9))[ as.numeric(z) ]
op \leftarrow par(mar=c(0,0,0,0)+1)
plot(x, col=z, pch=15, xlab="",
ylab="", main="rpart(Y~.,YT)",
axes=FALSE)
box()
points(T, col = cols[y],
pch=pchs[y])
par (op)
# вывод дерева
> r
n = 100
```

Решающее дерево.


```
node), split, n, loss, yval,
(yprob)
      * denotes terminal node
1) root 100 50 1 (0.5000000
0.5000000)
  2) X1< 2.319586 50 3 1
(0.9400000 0.0600000) *
  3) X1 \ge 2.31958650 3 2
(0.0600000 0.9400000) *
                                    Показано, как в решающих деревьях
r <- rpart(Y~.,YT, control =
                                    задаются параметры (построено «более
c(minsplit = 10, minbucket = 2))
                                    сложное» дерево).
                                         minsplit=10, minbucket=2
n = 100
node), split, n, loss, yval,
(yprob)
      * denotes terminal node
 1) root 100 50 1 (0.50000000
0.50000000)
   2) X1< 2.319586 50 3 1
(0.94000000 0.06000000)
     4) X2< 3.699459 48 1 1
(0.97916667 0.02083333) *
     5) X2 \ge 3.699459 2 0 2
(0.0000000 1.0000000) *
   3) X1 \ge 2.31958650 3 2
(0.06000000 0.94000000)
     6) X2< 0.1776497 23 3 2
(0.13043478 \ 0.86956522)
      12) X2 \ge -0.1175459 2
(1.00000000 0.00000000) *
      13) X2< -0.1175459 21 1 2
(0.04761905 \ 0.95238095) *
     7) X2 \ge 0.17764972702
(0.00000000 1.00000000) *
z \leftarrow knn(T, x, Y, k = 5)
                                    Метод k ближайших соседей (показаны
                                    картинки при разных k).
```



```
op <- par(mar=c(0,0,0,0)+1,
bg=rgb(1,1,.9))
```

данные берем «свм-ные»

поиск центров кластеров cl <- kmeans(T, 2)

рисование

plot(T, col=cols[cl\$cluster],
pch=pchs[cl\$cluster], xlab="",

Кластеризация методом k-средних (результат случаен!) Для запуска нужны данные и переменные, определённые при запуске SVM.

```
ylab="", main="kmeans",
axes=FALSE)
points(cl$centers, col =
'black', pch = 8, cex=3, lw=2)
box()
par(op)
```

```
kmeans
```

```
op \leftarrow par(mar=c(0,0,0,0)+1,
bg = rgb(1, 1, .9))
# поиск центров кластеров
cl <- kmeans(T, 2)</pre>
# рисование
plot(T, col=cols[cl$cluster],
pch=pchs[cl$cluster], xlab="",
ylab="", main="kmeans",
axes=FALSE)
# соединения
segments( T[cl$cluster==1,][,1],
T[cl$cluster==1,][,2],
cl$centers[1,1],
cl$centers[1,2], col=cols[1])
segments( T[cl$cluster==2,][,1],
T[cl$cluster==2,][,2],
cl$centers[2,1],
cl$centers[2,2], col=cols[2])
# центры кластеров
points(cl$centers, col =
'black', pch = 8, cex=3, 1w=2)
box()
par (op)
```

Чуть изменен графический вывод.

kmeans

Результат работы «стандартной» функции вывода **clusplot**.

CLUSPLOT(T)

Component 1
These two components explai

```
# кластеризовать
hc <- hclust(dist(T))
# вывести дендрограмму
plot(hc, labels = FALSE, hang =
-1)
```

clusplot(T, clus=cl\$cluster)

Иерархическая кластеризация. Вывод дендрограммы.

Cluster Dendrogram

Height 6 6 12

dist(T) hclust (*, "complete")

```
# подготовка данных
N <- 100 # число точек
a <- 1
b <- 3
epsilon \leftarrow rnorm(N, sd=0.5) #
шум
X <-runif(N)</pre>
Y \leftarrow a + b*X + epsilon
# рисование
plot(X, Y, col='darkblue',
ylim=c(range(Y)[1]-
1, range (Y) [2]))
abline(a,b, col="blue")
abline(lm(Y~X), col="red",
lwd=2) # лин. регрессия
legend(par('usr')[1]+0.15,
par('usr')[3]+1.5,
с ('Настоящая зав-ть',
'Восстановленная'),
lwd=c(1,2),
col=c('blue', 'red'))
# коэффициент корреляции
> cor(X, Y)
[1] 0.867497
# корреляция между рангами
> cor(rank(X), rank(Y))
[1] 0.8759676
# можно проще...
> cor(X,Y, method='spearman')
[1] 0.8759676
```

подготовка данных

N <- 20 # число точек

Линейная регрессия выполняется командой lm(Y~X).

Три классические регрессии. Тонким пунктиром показаны расстояния, суммы

```
a < -0.5
                                       которых они минимизируют.
b < -0.7
epsilon \leftarrow rnorm(N, sd=0.2) #
шум
                                       \alpha
X <-runif(N)</pre>
                                       0
Y \leftarrow a + b*X + epsilon
# рисование
                                       0
                                       Ö
plot(X, Y, col='black', lwd=2,
xlim=c(0,1), ylim=c(-0.7,0.3))
                                       \alpha
# первая регрессия
reg1 = lm(Y~X)
abline(reg1, col="red", lwd=2) #
                                       9.0
лин. регрессия
segments(X, Y, X,
reg1$fitted.values, col="red",
lty=3)
                                                0.2
                                                     0.4
                                                          0.6
                                                                8.0
                                                                     1.0
                                           0.0
# вторая регрессия
reg2 = lm(X~Y)
abline (-reg2$coefficients[1]/
reg2$coefficients[2],
1/reg2$coefficients[2],
col="blue", lwd=2) # лин.
регрессия
segments (X, Y,
reg2$fitted.values,
Y, col="blue", lty=3)
# третья регрессия
XY < -cbind(X, Y)
reg3 <- princomp(XY)</pre>
b <- reg3$loadings[2,1] /</pre>
reg3$loadings[1,1]
a <- reg3$center[2] - b *</pre>
reg3$center[1]
abline(a, b, col="black", lwd=2)
XY <- reg3$center +
outer(reg3$loadings[,1],
(solve(reg3$loadings, (t(XY) -
reg3$center))[1,]))
segments( X, Y, XY[1,], XY[2,],
col="black", lty=3)
x < -c(1, 2, 3, 4, 5)
                                       Вроде, функция predict для линейной
y < -x^2
                                       регрессии работает только так... на
r < -lm(y \sim x)
                                       обучающей выборки.
# тонкость
df = as.data.frame(1:10)
colnames(df) = 'x'
# чтобы это работало
z<-predict(r, newdata=df)</pre>
plot(y\sim x, xlim=c(1,10),
```


Распределения


```
op <- par(bg=rgb(1, 1, 0.8),
mar=c(0,0,0,0)+1)
N <- 100 # число шагов
x <- cumsum(rnorm(N))
y <- cumsum(rnorm(N))
plot(x, y,
type = "o", pch = 16, lwd = 1,
xlab = "", ylab = "",
axes = FALSE,
main = "Броуновское движение",
col='darkblue')
box()
par(op)
```

```
Броуновское движение
```

```
N <- 500 # длина выборки

n <- 10 # число "блоков"

p <- 0.5

x <- rbinom(N,n,p) # генерация

с.в.

# вывод картинки

hist(x, xlim = c(min(x),

max(x)), probability = TRUE,

nclass = max(x) - min(x) + 1,

col = 'lightgreen', main =

'Еиномиальное\праспределение')

lines(density(x, bw=1), col =

'red', lwd = 2)
```

Демонстрация биномиального распределения. Обратите внимание, как название сделать «в две строчки». Выполните эти команды с большими значениями **N** и **n**.

Для генерации выборки можно было использовать команды

```
x \leftarrow \text{rep}(NA, N)
for (i in 1:N) x[i] \leftarrow \text{sum}(sample(c(1,0), n, replace = TRUE, prob = c(p, 1-p)))
```

Аналогично, гипергеометрическое распределение

```
N <- 500

x <- rhyper(N, 200, 100, 100) #
генерация с.в.

# вывод картинки
hist(x, xlim = c(min(x),
max(x)), probability = TRUE,
nclass = max(x) - min(x) + 1,
col = 'lightpink', main =
'Гипергеометрическое\n
распределение')
lines(density(x, bw=1), col =
```


Смесь норм. распределений


```
n < -100
x \leftarrow seq(-7, 7, length=n)
p \leftarrow c(0.2, 0.3, 0.5)
m < -c(1,2,4)
s \leftarrow c(4,2,1)
y3 \leftarrow p[1] * dnorm(x, mean=m[1], sd=s[1]) +
p[2] * dnorm(x, mean=m[2], sd=s[2]) +
p[3] * dnorm(x, mean=m[3], sd=s[3])
y2 \leftarrow p[1] * dnorm(x, mean=m[1], sd=s[1]) +
p[2] * dnorm(x, mean=m[2], sd=s[2])
y1 \leftarrow p[1] * dnorm(x, mean=m[1], sd=s[1])
plot.new()
plot.window(xlim=range(x), ylim=range(0,y1,y2,y3), main="M")
polygon(c(x[1],x,x[n]), c(0,y3,0), col="lightblue", border=NA)
polygon(c(x[1],x,x[n]), c(0,y2,0), col="lightgreen", border=NA)
polygon(c(x[1],x,x[n]), c(0,y1,0), col="lightpink", border=NA)
lines(x, y1, lwd=2)
lines(x, y2, lwd=2)
```

```
lines(x, y3, lwd=2)
box()
axis(1)
title("Смесь норм. распределений")
```

Отладка...

```
> x <- 2
                                      Прекращение выполнения при определённых
> stopifnot(x>0)
                                      условиях.
> x < -2
> stopifnot(x>0)
                                      Кстати, функция traceback () после
Error: x > 0 He TRUE
                                      ошибки перечисляет стек вызывавшихся
                                      функций.
> f <- function(x)</pre>
                                      Отладка функции.
 {
      x = x+1
                                      n = next
      x = x/2
                                      c = continue
      x = x-1
 }
> debug(f)
> f(5)
debugging in: f(5)
debug at #2: {
    x = x + 1
    x = x/2
    x = x - 1
Browse[2] > x # чему равен x?
Browse[2]> n # дальше
debug at \#3: x = x + 1
Browse[2]> where
where 1: f(5)
Browse[2] > c # продолжить
exiting from: f(5)
> h <- function(x)</pre>
                                      Другой способ отладки.
      x = x+1
      return(x)
> trace(h, browser)
                                      Указываем, какую функцию вызывать при
[1] "h"
                                      вызове функции h.
> h(2)
Tracing h(2) on entry
Called from: eval(expr, envir,
enclos)
Browse[1]> c
[1] 3
> untrace(h)
> h(2)
[1] 3
> g <- function(x)</pre>
                                      «Условная отладка».
```

```
{
       x = x+1
       if (x<0) browser()</pre>
       x = x/2
       x = x-1
 }
> g(2)
> g(-2)
Called from: g(-2)
Browse[1]> c
setBreakpoint("x.R", 28)
                                        Установка брейкпоинта.
                                        Совет: если используете псевдослучайные
> runif(3)
[1] 0.913602933 0.009119434
                                        сила (а многие функции, например gbm, их
0.158165920
                                        используют), то всегда устанавливайте
> set.seed(516)
                                        генератор, чтобы иметь возможность
> runif(3)
                                        повторить эксперимент при тех же услових,
[1] 0.1554475 0.5151574
                                        при которых возникла ошибка.
0.1704808
> set.seed(516)
> runif(3)
[1] 0.1554475 0.5151574
0.1704808
                                        Есть также различные пакеты для отладки:
                                        - debug
                                        - edtdbg (для Vim, Emacs)
```

Пакеты (библиотеки)

Hakeibi (t	DHOJIHOTEKH)
install.packages('name',	Установка пакета с именем пате
dependencies=TRUE)	(производится через интернет).
	dependencies=TRUE означает, что
	дополнительно устанавливаются все пакеты,
	от которых зависит работа пакета name .
> library('gbm')	Для того, чтобы пользоваться пакетом, его
Загрузка требуемого пакета:	надо предварительно «подключить»
survival	(загрузить в память).
Загрузка требуемого пакета:	
splines	
Загрузка требуемого пакета:	
lattice	
Загрузка требуемого пакета:	
parallel	
Loaded gbm 2.1	
> path.package()	Вывод загруженных пакетов
"C:/R-3.0.1/library/gbm"	
"C:/R-3.0.1/library/parallel"	
"C:/R-3.0.1/library/lattice"	
"C:/R-30~1.1/library/base"	
> .libPaths()	Список директорий, в которых R ищет
[1] "C:/R-3.0.1/library"	пакеты для загрузки.

	Если вызвать с аргументом – можно внести
	изменение в этот список.
> update.packages()	Обновить пакеты.
> data()	Доступ к данным из загруженных пакетов.

Параллельные вычисления

```
# вычисление суммы множества
                                       Пример использования пакета snow.
строк
suma <- function(irows, M)</pre>
                                       Естественно, это «игровой» пример.
                                       Аналогичную работу делает функция sum.
s <- 0
for (i in irows)
for (j in 1:ncol(M))
s \leftarrow s + M[i,j]
}
return(s)
library(snow)
# два процесса
cl <- makeCluster(type="SOCK",</pre>
c("localhost", "localhost"))
# матрица с данными
M <- matrix(sample(0:1, 1000000,</pre>
replace=TRUE), nrow=1000)
# разбиваем строки на 2 группы
irows <-
split(1:nrow(M),1:length(cl))
# отдаём их процессам
sums <- clusterApply(cl, irows,</pre>
suma, M)
# "объединяем ответы"
print (do.call(sum, sums))
# обратите внимание sum(sums) не
             работает
```

gputools

книга: http://heather.cs.ucdavis.edu/parprocbook

Разное...

```
> options (warn=-1)
> split (1:10,1:3)
> options (warn=0)
$`1`
[1] 1 4 7 10

$`2`
[1] 2 5 8

$`3`
[1] 3 6 9
Предотвращение вывода предепреждений.
```

```
> expand.grid(c(1,2), c(3,4))
                                      Декартово произведение.
  Var1 Var2
     1
1
2
     2
           3
     1
           4
> match(c(1,2,3), c(2,3,4))
                                      Функция соответствия.
[1] NA 1 2
> x
 [1] 1 4 2 3 2 3 5 5 5 2
> match(x, c(2,4,1), nomatch=0)
[1] 3 2 1 0 1 0 0 0 0 1
substitute(x+x+1-y,
                                      Подстановка...
list(x=2,y=3))
2 + 2 + 1 - 3
> s = '1+2'
> eval(s)
[1] "1+2"
                                     parse – перевод строки в «вычисляемое
> eval(parse(text=s))
                                      выражение», eval - вычисление.
[1] 3
> exists('T')
                                      Наличие переменной проверяется функцией.
[1] TRUE
                                      Напомним, что T=TRUE.
> exists('a')
[1] FALSE
> a = 2i
> exists('a')
[1] TRUE
```

Создание своего пакета

```
> f <- function(x,y) {x+y}
> g <- function(x,y) {x-y}
> a = 10.01
> package.skeleton("mypackage",
c("f", "g", "a"))
Coздастся директория mypackage.
```

Справочник по командам R для знатоков MatLab-a

* html R for MATLAB users (вроде: Vidar Bronken Gundersen, /mathesaurus.sf.net)
David Hiebeler MATLAB/R Reference http://www.math.umaine.edu/~hiebeler

Далее покажем соответствия команд R и системы Matlab. Для краткости указываем только те функции и операции, в которых есть отличия.

R-команда	М-команда
Работа с системой	
help.start()	doc
	Вызов справки (в R – гипертекстовой).
help(plot)	help plot
или	Помощь по функции.
?plot	
Обратите внимание на команду	
help(Syntax)	

help(package='splines')	help splines
morp (package sprines)	или
	doc splines
	Помощь по пакету [БИБЛИОТЕКЕ].
demo()	demo
	Демонстрация.
example(plot)	Примеры использования функции (в
	MATLABe нет).
source('foo.R')	foo
	или
	foo.m
	Запустить содержимое файла.
В R нет похожей функциональности!	which sqrt
	Показывает путь к файлу, в котором
	определена функция sqrt .
history()	history
	История команд
<pre>savehistory(file=".Rhistory")</pre>	diary on
	diary off
	Запись истории команд в файл.
q(save='no')	exit
	или
	quit
111	Закончить работу.
library (RSvgDevice)	Подключение библиотеки.
Перед подключением надо установить библиотеку	D avarage MATLAD va arrangers
install.packages('RSvgDevice')	В системе MATLAB достаточно воспользоваться опцией SETPATH.
# комментарий в R	% комментарий в MATLAB
x <- 1 +	x = 1 +
2	2
_	Разрыв строки.
.Last.value	ans
	«Последнее вычисленное значение».
objects()	who или whos
	Список переменных в памяти
ls.str(pattern='ab')	whos *ab*
	Список переменных, в имена которых входит
	последовательность букв 'аb'.
rm(x)	clear x
	Удаление из памяти.
rm(list=ls())	clear all
	Удаление из памяти всех переменных.
list.files()	dir или ls
или	Содержимое текущей директории.
dir()	
<pre>list.files(pattern="\.r\$")</pre>	what
	Файлы с кодом в текущей директории.
<pre>getwd() setwd('foo')</pre>	pwd
	cd foo

	Теклира пиректория и её измочение
save.image(file='foo.rda')	Текущая директория и её изменение.
load('foo.rda')	load foo.mat
10au(100.1ua)	
	Сохранение всех переменных в файл / загрузка из файла.
<pre>write(t(A), file='c:\\data.txt',</pre>	загрузка из фаила. save data.txt A -ascii
ncolumn=dim(A)[2]) # t(A)!!!	save data.txt A -ascii
incolumn-dim(A)[2]) # C(A):::	<pre>tmp = importdata('data.txt', '</pre>
B = as.matrix(read.table(', s);
c:\\data.txt', skip=s))	B = tmp.data
c. (\data.txt , skip-s))	Сохранение и загрузка данных в таблицу
	текстового формата.
<pre>system("notepad")</pre>	!notepad
system (notepad)	system("notepad")
	Вызов системных команд.
set.seed(10)	rand('state',10)
560.5664(10)	Установка генератора псевдослучайных
	чисел в фиксированное состояние.
options(digits=6) # рекомендация	format short g and
operons (drgres-0) # peromentativa	format long g
	Контроль формата вывода.
Sys.sleep(x)	pause (x)
bys.sieep(x)	Π ауза x секунд.
.Machine\$double.eps	eps
.Machinevaoabie.eps	Машинная точность.
t1 = proc.time()	t1=cputime; cputime-t1 % CPU-
proc.time()-t1	time
proc.cime() cr	tic; toc
	Засечка времени и просмотр, сколько
	времени прошло.
<pre>stop('message')</pre>	error('message')
book (mesoage)	Остановка вычислений с выдачей сообщения
<pre>warning('message')</pre>	об ошибке.
manage ,	warning('message')
	Выдача предупреждения.
Опет	рации
a <- 1	a=1;
	Присваивание.
1i	і или ј
	Мнимая единица.
Re(a)	real(a)
Im (a)	imag(a)
Arg(a)	arg(a)
Conj(a)	conj(a)
a ^ b	a.^b;
	Возведение в степень.
a * a	a.*a
	Поэлементное умножение.
a %% b	rem(a,b) или
	mod(a,b)
	Остаток от деления.
	Octator of Achiellar.

- 0./0.1-	TT
a %/% b	Целочисленное деление
	(нет в MATLAB-е).
a != b	a ~= b
	Неравно.
!x	~x или not (x)
	He x.
ceiling(x)	ceil(x)
Cerring (x)	Округление к ближайшему целому, которое
	больше данного.
	Отбрасывание дробной части
	fix(a)
	не имеет аналогов в R.
sum(a*b)	dot(a,b)
	Скалярное произведение векторов.
2*pnorm(x*sqrt(2))-1	erf(x)
qnorm((1+x)/2)/sqrt(2)	erfinv(y)
	Функция ошибки (и её обратная).
y <<- 7	assignin('base', 'y', 7)
<pre>get('y', envir=globalenv())</pre>	evalin('base', 'y')
# если нет локальной пер. у	Работа с глобальными переменными.
fix(A)	
IIX (A)	openvar (A)
	Отредактировать значение переменной.
	Вызывается редактор для редактирования!
	твенные операции
<pre>setdiff(union(a,b),</pre>	setxor(a,b)
<pre>intersect(a,b))</pre>	Симметрическая разность
is.element(2,a)	ismember(2,a)
или	«Входит во множество».
2 %in% a	
choose (10,3)	nchoosek(10,3)
	Число сочетаний.
Попом	
$a \leftarrow c(2,3,4,5)$	кдения a = [2 3 4 5]
a \- c(2,3,4,3)	a - [2 3 4 3]
b <- + (+ (a (2 2 4 5)))	b = [2 3 4 5]'
$b \leftarrow t(t(c(2,3,4,5)))$	n - [2 3 4 5]
# или	
$b \leftarrow as.matrix(c(2,3,4,5),$	
ncol=1)	
В R нет ориентации вектора!	
Можно упростить ввод с помощью функции	Можно упростить ввод с помощью
a = scan()	<pre>input('')</pre>
rnorm(10)	randn(1,10)
<pre>runif(10, min=1, max=5)</pre>	1+4*rand(1,10)
<pre>matrix(runif(36),6)</pre>	rand(6)
	Случайные векторы.
seq(10)	1:10
или	
1:10	
seq(10,1) или 10:1	10:-1:1
<u> </u>	10:-3:1
Обратите внимание: не указываем «-1».	10. 3.1
seq(from=10, to=1, by=-3)	

	1:nemage (1 10 7)
seq(1,10,length=7)	linspace (1, 10, 7)
10^seq(a,b,len=n)	logspace(a,b,n)
rev(a)	fliplr(a) или
	a (end:-1:1)
b[]=2	a(:) = 3
c(a,a)	[a a]
	Конкатенация.
a <- 1:3	a = 1:3
rep(a,3)	repmat (a, 1, 3)
	1 2 3 1 2 3 1 2 3
a <- 1:3	a = 1:3
rep(a, each=2)	a = repmat(a, 2, 1)
	a = a(:)'
	1 1 2 2 3 3
a <- 1:3	[сложнее]
rep(a, a)	1 2 2 3 3 3
a[-1]	a (2:end) Без первого элемента.
a[-i]	a([1:i-1 i+1:end]) Не очень
	эффективно.
a[length(a)]	a (end) Последний элемент.
Нет короткой конструкции.	
$\mathbf{a} = \mathbf{a}[1:3]$ или	a = a (1:3) Обрезка вектора.
length(a) <- 3	a a (2.6) copesku zekropu.
sample $(k, 1)$	floor(k*rand) + 1
	Случайное целое число от 1 до k.
sample(n)	randperm(n)
	Случайная перестановка.
Функции над векто	ррами и матрицами
pmax (a, b)	тах (a, b) Поэлементный максимум.
$\max(a,b)$	max ([a b]) Максимум из элементов 2х
v <- max(a); i <- which.max(a)	векторов.
	[v,i] = маж (а) Стандартная функция
i a andan (a)	максимума в MATLABe.
i <- order(a)	[~, i] = sort(a(:))
Amora a sub-francis de sub-francis d	Индексы элементов (для сортировки).
<pre>tmp=sort (v, index.return=TRUE);</pre>	[s,idx]=sort(v)
s=tmp\$x; idx=tmp\$ixs	Сортировка элементов и возврат индексов.
	ие матриц
rbind(c(2,3),c(4,5))	a = [2 3;4 5]
matrix(c(2,3,4,5), nrow=2,	Породить матрицу
byrow=TRUE)	2 3
array(c(2,4,3,5), dim=c(2,2))	4 5
a <- 1:3	a = 1:3
b <- 5:7	b = 5:7
rbind(a,b)	[a; b]
cbind(a,b)	[a', b']
	Получение матриц
	1 2 3
	5 6 7
	И
	1 5

	2 6
	3 7
matrix(0,3,5) или $array(0,c(3,5))$	zeros(3,5)
matrix(1,3,5) или array(1,c(3,5))	ones (3,5)
matrix(9,3,5) или $array(9,c(3,5))$	ones(3,5) *9 или repmat(9,3,5)
diag(1,3)	eye (3)
diag(c(4,5,6))	diag([4 5 6])
diag(c(4,5,0))	Получение особых матриц (из всех нулей,
	единиц, констант, единичной и
	диагональной).
<pre>matrix(runif(m*n),m,n)</pre>	rand (m, n)
	Порождение случайной матрицы.
	magic (3)
<pre>matrix(1:6,nrow=3,byrow=T)</pre>	reshape(1:6,3,2)'
_ · · · · · · · · · · · · · · · · · · ·	
matrix(1:6, nrow=2) или	reshape (1:6,2,3)
array(1:6,c(2,3))	Изменение размеров.
> c(x)	x(:)
[1] 2 1 5 3	Векторизация.
> as.vector(x)	
[1] 2 1 5 3	
a[row(a) <= col(a)]	Элементы не ниже главной диагонали.
	Нет такого! Что-то подобное
	делает triu(a)
	матрицами
a[2,3] < -2	а (2,3) = 2 Элемент.
a[1,]	а(1,:) Строка.
a [,1] или a [,1,drop=FALSE], чтобы	а(:,1) Столбец.
результат был подматрицей	
a(c(1,3), c(1,4))	а([1 3],[1 4]) Подмарица.
a[-2,-3]	Подматрица без второй строки и третьего
	столбца. В MATLABe конструкция гораздо
	«тяжеловеснее». Например, такая (вызывает
	изменение матрицы).
	a(2,:) = [];
	a(:,3) = [];
t(a)	a.'
Conj(t(a))	a'
(0,0)	Транспонирование (+ сопряжение).
a * b	a .* b поэлементное умножение
a %*% b	
	а * b обычное умножение
solve(a,b)	a \ b
a %*% solve(b)	a / b
a / b	a./b
- A 1	поэлементное деление
a ^ k	a.^k
	поэлементное возведение в степень
В «R» нет эффективного способа (только	a^k
умножением матрицы на себя).	возведение в степень
pmax (x, 3)	max(x, 3)
x[x<3] <-3	x(x<3) = 3
	Of any and Parkers and any any any any any any
	«Обрезка». Замена всех элементов, которые

	меньше 3 на 3.
solve(a)	inv (a) Обратная матрица.
ginv(a)	ріnv (а) Псевдобратная матрица.
	ріпу (а) псевдооратная матрица. потт (а)
sqrt (sum (abs (x) ^2))	norm(a)
Нет прямого аналога в R.	chol(o)
	chol (a) Нет R-аналога.
qr(a) \$rank	rank (a)
_	• •
Получается через QR-разложение.	Ранг матрицы. trace (a)
Sum (drag (A))	След матрицы.
eigen(a) \$values	еig(a)
eigen(a) \$values eigen(a) \$vectors	[v,1] = eig(a)
svd(a)\$d	[v, 1] = elg(a) svd(a)
tmp=eigen(A)	[V,D]=eig(A)
w=tmp\$values	w=diag(D)
V=tmp\$varues V=tmp\$vectors	Собственные значения и собственные
	векторы, записанные в матрицу.
apply(a,2,sum) # colSums(A)	sum (a) Сумма строк.
apply(a,1,sum) # rowSums(A)	sum(a, 2)' или sum(a') Сумма
	столбцов.
sum(a)	sum (a (:)) Сумма всех элементов.
apply(a, 2, cumsum)	ситѕит (а) Кумулятивная сумма.
	Синвин (а) Кумулятивная сумма.
	Аналогично с операцией максимума.
cummax(x)	Кумулятивный максимум и минимум. Нет
cummin(x)	простого МАТLAB-аналога. Можно сделать
(11)	Tak:
	$f = Q(x,i) \max(x(1:i))$
	arrayfun(@(a) f(x,a),
	1:length(x))
i <- apply(a,1,which.max)	[~, i] = max(a)
	Индексы максимальных элементов (в
	столбцах).
pmax(b,c)	max(b,c)
	Поэлементный максимум.
sort(a)	sort (a(:)) Сортировка всех элементов.
apply(a,2,sort)	sort (a) Сортировка по столбцам.
t(apply(a,1,sort)) # !!!	sort (a, 2) Сортировка по строкам.
# не совсем эквивалентно	sortrows(a,1)
a[order(a[,1]),]	Сортировка строк не имеет R-аналога.
# Можно сортировать по	
нескольким столбцам	Обратите внимание на функцию order .
order(m[,1], m[,2], m[,3])	
apply(a,2,mean)	mean(a)
apply(a,2,median)	median(a)
apply(a,2,sd)	std(a)
apply(a,2,var)	var(a)
cov(x,y)	cov(x,y)
mean(a)	mean(a(:))
colMeans(a) # apply(a,2,mean)	mean(a)

```
rowMeans(a) # apply(a,1,mean)
                                       mean(a, 2)
                                       a = corrcoef([1 2 3], [1 3 2])
cor(x,y)
                                       a(1,2)
                                       fliplr(a)
a[,ncol(a):1] или
t(apply(a,1,rev))
                                       flipud(a)
a[nrow(a):1,] или
                                       Зеркальное отражение матрицы.
apply(a, 2, rev)
kronecker(matrix(1,2,3),a)
                                       repmat (a, 2, 3)
     5
           2
                 5
                       2
                                       «Копирование матрицы»
1
     3
           1
                 3
                      1
                            3
2
     5
           2
                 5
                       2
                            5
                            3
           1
                 3
a[lower.tri(a)] <- 0
                                       triu(a)
a[upper.tri(a)] <- 0</pre>
                                       tril(a)
                                       Треугольные матрицы.
m=dim(A)[1];
                                       circshift(A)
n=dim(A)[2];
A[(1:m-s1-1)%m+1,(1:n-s2-
1) %%n+1]
Нет встроенной функции.
which (a > 2)
                                       find(a>2)
ij <- which(a != 0, arr.ind=</pre>
                                       [i j v] = find(a)
TRUE); v <- a[ij]
w = which(A > 5, arr.ind=TRUE);
                                       [i,j] = find(A > 5)
                                       Найти индексы элементов, удовлетворяющих
     row col
                                       заданному условию.
[1,]
        3
[2,]
            3
       1
[3,]
       2
            3
[4,]
       3
            3
[5,]
       1
            4
[6,]
       2
            4
[7,] 3
                               Размеры матриц
dim(a)
                                       size(a)
                                       size(a, 1)
nrow(a)
ncol(a)
                                       size(a,2)
length(dim(a))
                                       ndims(a)
\dim(a) = c(m,n)
                                       a = reshape(a, m, n)
                                       Изменение размеров матрицы.
m \leftarrow dim(a)[1]
                                       [r,c] = ind2sub(size(A), ind)
n \leftarrow dim(a)[2]
                                       Восстановление обычной индексации по
r = ((ind-1) \% m) + 1
                                       «линейной».
c = floor((ind-1) / m) + 1
ИЛИ
r = row(A)[ind];
c = col(A)[ind]
                                       ind = sub2ind(size(A), r, c)
m \leftarrow dim(a)[1]
ind = (c-1)*m + r
                                       Восстновление «линейной» индексации по
                                       обычной.
```

Операции со строками		
a <- 'str1'	a = 'str1';	
b <- 'str2'	b = 'str2';	
paste(a, b, sep='')	[a b]	
[1] "str1str2"	Конкатенация строк.	
strs = c('aa', 'bb')	strs = { 'aa', 'bb'};	
<pre>paste(strs, collapse='')</pre>	[strs{:}]	
_		
[1] "aabb" str <- 'abcd'	Конкатенация строк в массиве ячеек / списке. strs = 'abcd'	
substr(str,2,4)	strs[2:4]	
[1] "bcd"	Подстрока.	
<pre>gregexpr(p, s)[[1]]</pre>	regexp(s, p)	
	Регулярные выражения.	
match(c('a', 'b'),	<pre>[iin ipos] = ismember({'a',</pre>	
c('s','a','aa','cc','a'))	'b'}, {'s','a','aa','cc','a'})	
В R выводятся первые вхождения!	Проверка на вхождение элементов одного	
	множества в другое. В системе MATLAB	
	находятся последние вхождения.	
as.character(x)	num2str(x)	
	Перевод числа в строку.	
s = readline('Введите строку:')	s = input('Введите строку', 's')	
	Ввод строки.	
<pre>eval(parse(text='a=pi'))</pre>	eval('a=pi')	
	Выполнение строки.	
Ци	КЛЫ	
for(i in 1:5)	for i=1:5	
{	<pre>disp(i);</pre>	
print(i)	end	
}		
c = ifelse(a>b, 1, 0)	if a>b	
	c = 1;	
	else	
	c = 0;	
	end	
Спі	іски	
x = list()	x = cell(0)	
x[[1]] = c(1,2)	$x\{1\} = [1 \ 2]$	
x[[2]] = 'two'	$x{2} = `two'$	
В «R» есть возможность обращения к	В MATLAB есть возможность делать	
элементам списка по именам.	многомерные матрицы ячеек.	
Гра	фика	
<pre>plot(x,y, type="1")</pre>	plot(x,y)	
	Обычный график.	
plot(x,y)	plot(x,y,'o')	
_ · · · - ·	scatter(x,y)	
	Скаттер-графики.	
plot(x1, y1, type="1")	plot (x1, y1)	
matplot(x2, y2, add=TRUE,	hold on	
type="1")	plot (x2, y2)	
plot(x,y,type="b",col="red")	plot(x,y,'ro-')	
grid()	grid on	
3(/	y v	

11	hold on
Использование функции	hold on
lines	
plot(x, y, xlim=c(0, 10),	plot(x,y, type="l")
ylim=c(0,5), main="title",	axis([0 10 0 5])
<pre>xlab="x-axis", ylab="y-axis")</pre>	title('title')
	<pre>xlabel('x-axis')</pre>
	<pre>ylabel('y-axis')</pre>
<pre>plot (x, y, log="y")</pre>	semilogy(a)
<pre>plot(x,y, log="x")</pre>	semilogx(a)
<pre>plot(x, y, log="xy")</pre>	loglog(a)
$f \leftarrow function(x) sin(x/3) -$	f = inline('sin(x/3) -
$\cos(x/5)$	cos(x/5)')
plot(f, xlim=c(0, 40), type='p')	ezplot(f,[0,40])
$f \leftarrow function(x,y) x*exp(-x^2-$	n = -2:.1:2;
y^2)	[x,y] = meshgrid(n,n);
$n \leftarrow seq(-2,2, length=40)$	$z = x.*exp(-x.^2-y.^2);$
z <- outer(n,n,f)	mesh(z)
<pre>persp(n, n, z, theta=30, phi=30,</pre>	
expand=0.6, ticktype='detailed')	
	0.5
	0
0.4	
0.2	
H0.04	0.5
-0.2	40 60
-0.47	20 20
-2 -1 0c	
70 1	
2 -2	
postscript(file="foo.eps")	print -depsc2 foo.eps
plot (1:3) # вывод графики	Вывод в ерѕ-файл.
dev.off()	вывод в сре-фаил.
401.011()	
<pre>png(filename = "Rplot%03d.png")</pre>	Print -dpng foo.png
plot(1:3) # вывод графики	Вывод в png-файл.
dev.off()	
D.D	
В R также можно использовать следующие	
команды:	
pdf(file='foo.pdf')	
<pre>devSVG(file='foo.svg')</pre>	
	команды
$z \leftarrow lm(y\sim x)$	<pre>z = polyval(polyfit(x,y,1),x)</pre>
<pre>plot(x,y)</pre>	plot(x,y,'o', x,z ,'-')
abline(z)	Линейная регрессия.
$p = coef(lm(y \sim x + I(x^2)))$	p = polyfit(x,y,2)
	Полиномиальная регрессия.
coef(lm(as.formula(p = polyfit(x,y,n)
	L Loriero (u/1/m)

paste('y~',paste('I(x^',1:n,')',	
sep='', collapse='+')))))	
polyroot(c(1,2,1))	roots([1 -2 1])
	Корни полинома.
uniroot(sin, c(-1,1))	fzero(@(x) sin(x),0.1)
	Нули функции.
<pre>m = optimize(sin,</pre>	m = fminbnd(@(x) sin(x), 0,
c(0,2*pi))\$minimum	2*pi)
	Оптимизация.
f <- function(a,b,c)	$f = @(a,b,c) \sin(a+c) + \cos(b+c)$
$\{\sin(a+c)+\cos(b+c)\}$	m = fminbnd(@(a) f(a,1,1), 0,
m = optimize(f, c(0,2*pi), b=1,	2*pi)
c=1) \$minimum	Оптимизация функции нескольких
	переменных по одной переменной.
<pre>integrate(sin, 0, pi)</pre>	quad(@(x) sin(x), 0, pi)
	Интегрирование.
<pre>fft(a, inverse=TRUE)</pre>	ifft(a)
	Обратное преобразование Фурье.
нет	factor(20)
	Факторизация (разложение на множители).
as.numeric(names(sort(-	mode(x)
table(x))))[1]	Наиболее часто встречающееся значение.
w = table(x)	<pre>v = unique(x);</pre>
<pre>c = as.numeric(w)</pre>	c = hist(x, v);
<pre>v = as.numeric(names(w))</pre>	Перечислить все элементы
	мультимножества. Указать, сколько раз
	каждое из них входит в мультимножество.

IDE, GUI

- RStudio, http://www.rstudio.org/
- StatET, http://www.walware.de/goto/statet/
- ESS (Emacs Speaks Statistics), http://ess.r-project.org/
- R Commander: John Fox, "The R Commander: A Basic-Statistics Graphical Interface to R," Journal of Statistical Software 14, no. 9 (2005):1–42.
- JGR (Java GUI for R), http://cran.r-project.org/web/packages/JGR/index.html
- Revolution R (коммерческая разработка): http://www.revolutionanalytics.com/