cit-rob-1-20230213-E0084-01

cit-rob-1-20230213-E0084-01

X

Note:

- Cross your Registration number(with leading zero). It will be evaluated automatically.
- · Sign in the corresponding signature field.

Robotics

Monday 13th February, 2023 IN2067 / Endterm Exam: Date:

08:00 - 09:30**Examiner:** Prof. Dr.-Ing. Darius Burschka Time:

Working instructions

- This exam consists of 12 pages with a total of 3 problems. Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 128 credits.
- Detaching pages from the exam is prohibited.
- · Allowed resources:
 - one non-programmable pocket calculator
 - one analog dictionary English ↔ native language
- Subproblems marked by * can be solved without results of previous subproblems.
- · Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- · Do not write with red or green colors nor use pencils.
- · Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from	to	/	Early submission at
		,	

cit-rob-1-20230213-E0084-01

8 9

Problem 1 Kinematics (42 credits)

a)* Write the rotation matrix ${}_{2}^{1}R$ (as defined in the lecture) between the coordinate frames from Figure 1.1. Write the general constraints on the elements of the rotation matrix.

Figure 1.1: Coordinate frames {1} and {2}

b)* Figure 1.2 shows a robot having its z_{EE} axis pointing outside the paper plane. Write the Denavit-Hartenberg table of the robot. Ensure maximal number of zeros in the table. Write the values for the rotational joint parameters as seen in the drawn configuration.

Figure 1.2: Schematic of a PRPR robot

cit-rob-1-20230213-E0084-03

cit-rob-1-20230213-E0084-03

0	
1	
2	
3	
4	
5	

e) How many degrees of freedom does this robot have and what are its redundancies? How would you (mathematically, computationally or geometrically) check if a robot has redundancies?

f)* When deriving the Jacobian for a different robot with 4 joints, you arrive at the result

$$J = \begin{pmatrix} -c_1 + d_2c_{13} & 0 & d_2c_{13} & 0 \\ -s_1 + d_2s_{13} & 0 & d_2s_{13} & \frac{\sqrt{3}}{2} \\ 0 & 1 & 0 & 0.5 \\ 0 & 0 & c_1 & 0 \\ 0 & 0 & s_1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$
 How many rotational joints does the robot have? And how many

prismatic joints? Determine how many singular configurations this robot has when considering the position

X

X

X

X

Problem 2 Dynamics (41 credits)

and G. Under which circumstances is it advantageous to use this form of the joint torques equation?	a)* Convert the following joint torques equation to M-B-C-G form. Show your work and clearly mark M, B, C

$$\tau = \begin{pmatrix} m_1(l_1^2c_1^2+2) & c_1 & 0 \\ m_2(1+c_2) & m_2l_2^2 & m_2+m_3 \\ (l_3+1/2)^2(m_1+m_2) & m_2 & m_3l_3^2 \end{pmatrix} \begin{pmatrix} \ddot{\theta}_1 \\ \ddot{\theta}_2 \\ \ddot{\theta}_3 \end{pmatrix} + \begin{pmatrix} \dot{\theta}_1\dot{\theta}_2m_1(l_1-2) - d_3m_3g + \dot{\theta}_1\dot{\theta}_3d_3c_2 + m_3gl_3c_1c_2 \\ -m_3gl_3s_1c_2 + \dot{\theta}^2(2m_2+3) - \dot{\theta}_1(\dot{d}_3+l_2c_2\dot{\theta}_1) \\ \dot{d}_3^2 - \ddot{\theta}_2 + \dot{\theta}_1\dot{\theta}_2m_1l_2 + m_2gl_2s_2 - \dot{\theta}_2^2d_3c_{12} \end{pmatrix}$$

b)* "Because the potential energy depends on the position of each robot joint, the robot will have more
potential energy at 500m altitude than at 0m altitude". Explain why this statement is or is not correct. Does
have an effect on the Lagrange analysis of robot dynamics? Explain your two answers.

C	ı
1	
2	
3	
4	
	•

c)* When determining the M-B-C-G equation for a robot's joint torques, you get a 28x28-dimensional B-matrix. How many joints does this robot have?	

Figure 2.1 presents a robot to be analysed with the Lagrange method. The centers of mass for each link are located at $\frac{1}{3}$ and $\frac{1}{2}$ of the links' length respectively, with masses m_1 and m_2 . The robot's DH-table is given.

Figure 2.1: Schematic of an RR robot

CF	α_{i-1}	a_{i-1}	di	θ_i	value
1	90°	d ₁	0	θ_1	30°
2	90°	0	0	θ_2	0°
EE	0°	0	d ₂	0°	_

The inertial matrices are ${}^{c_1}I_1 = \begin{pmatrix} I_{1xx} & 0 & 0 \\ 0 & I_{1yy} & 0 \\ 0 & 0 & I_{1zz} \end{pmatrix}$

and
$${}^{c_2}I_2 = \begin{pmatrix} I_{2xx} & 0 & 0 \\ 0 & I_{2yy} & 0 \\ 0 & 0 & I_{2zz} \end{pmatrix}$$

d)*	Write the va	alues of all ve	elocities that	you need for	the Lagrange	e analysis.		
								_

Compute the ki	netic and potentia	al energies for e	each link.	

f) Compute the needed energy derivatives to complete the Lagrange analysis and write the joint torque equation. X X cit-rob-1-20230213-E0084-07 X cit-rob-1-20230213-E0084-07 Ķ X

Problem 3 Control (45 credits)

A car, m_1 , actuated by a force \vec{f} is pulling a trailer, m_2 , connected to it by a spring with the spring constant k=4. The spring force is $f_s=k\cdot \Delta x=k\cdot (x_2-x_1)$. The velocity dependent damping force can be calculated by $f_d=b\cdot \dot{x_i}$, where b=4 and x_i is the position of the car or trailer $i=\{1,2\}$ (Fig. 3.1). For simplicity, we assume that $x_1=0, x_2=0$ if no force is acting on the spring (even if the 0 positions of x_i do not coincide). The masses of the car and the trailer are $m_i=4$. The resonance frequency of the trailer is $\omega_{res}=1$.

Figure 3.1: SMD system

a)* Draw the forces acting on the trailer and the car after "cutting" (seperating) the car from trailer (including \vec{f}) and write the two equation balancing all forces on these two systems. Re-write them to a form, where all

b) Check	the left side	of the above	e equation f	for the trailer	for its respon	se to distur	bances usi
b) Check character	the left side	of the above	e equation f ure. Which ty	or the trailer ype of the resp	for its respon	se to distur see?	bances usi
b) Check character	the left side	of the above from the lecti	e equation f ure. Which ty	or the trailer ype of the resp	for its respon	se to distur see?	bances usi
b) Check character	the left side	of the above from the lecti	e equation f ure. Which ty	or the trailer ype of the resp	for its respon	se to distur see?	bances usi
b) Check character	the left side	of the above from the lection	e equation f ure. Which ty	or the trailer ype of the resp	for its respon onse will you	se to distur see?	bances usi
b) Check character	the left side	of the above from the lection	e equation f ure. Which ty	or the trailer ype of the resp	for its respon onse will you	se to distur see?	bances usi
b) Check character	the left side	of the above from the lection	e equation f ure. Which ty	or the trailer ype of the resp	for its respon	se to distur see?	bances usi
b) Check character	the left side istic equation	of the above from the lecti	e equation f ure. Which ty	or the trailer ype of the resp	for its respon	se to distur see?	bances usi
b) Check character	the left side	of the above from the lection	e equation f ure. Which ty	for the trailer type of the resp	for its respon onse will you	se to distur see?	bances usi
b) Check character	the left side istic equation	of the above from the lection	e equation f ure. Which ty	or the trailer ype of the resp	for its respon	se to distur see?	bances usi
b) Check character	the left side istic equation	of the above from the lecti	e equation f ure. Which ty	for the trailer type of the resp	for its respon onse will you	se to distur see?	bances usi
b) Check character	the left side istic equation	of the above from the lect	e equation f ure. Which ty	or the trailer ype of the resp	for its respon ionse will you	se to distur see?	bances usi

cit-rob-1-20230213-E0084-09

cit-rob-1-20230213-E0084-09

X

e)* Explain briefly giving the corresponding equation the control law partitioning and draw the structure of the corresponding controller for a simple spring-mass-damper (SMD) system. Which parameters need to be adjusted for the asymptotic solution of the motion equation and how are the actual parameter values calculated.

X

Ķ

X

X

X

X

X

