

# Chapter 6 Review (Formal Relational Query Languages)



#### Relational Algebra vs. Relational Calculus

- 정형 관계 질의 언어 (Formal Relational Query Language)
  - 원하는 데이터를 얻기 위해 릴레이션에 필요한 처리 요구를 수행하는 것으로 데이터베이스 시스템의 구성 요소 중 데이터 언어의 역할을 함
  - 데이터 관계 모델 연산의 종류 : 관계 대수와 관계 해석이 있음
    - 기능과 표현력 측면에서 능력이 동등함



- 관계적 완전성(Relationally Completeness)
  - 어떤 관계 질의어를 관계 대수 또는 관계 해석으로 표현할 수 있으면
     "관계적으로 완전(relationally complete)하다"라고 함



# **Operators of Relational Algebra**

■ 관계대수 기본 연산자 (6 Basic Operators)

| 연산자<br>종류 | 대상 | 연산자 이름                   | 기호                             | 설명                |  |
|-----------|----|--------------------------|--------------------------------|-------------------|--|
| 기본        | 단항 | Selection                | σ                              |                   |  |
| 기본        | 단항 | Projection               | $\pi$                          | 릴레이션의 속성을 선택      |  |
| 기본        | 이항 | Union                    | □ 두 릴레이션의 합집합                  |                   |  |
| 기본        | 이항 | Set Difference           | et Difference                  |                   |  |
| 기본        | 이항 | <b>Cartesian Product</b> | Product X 두 릴레이션에 속한 모든 투플의 집합 |                   |  |
| 기본        | 단항 | Rename                   | ρ                              | 릴레이션이나 속성의 이름을 변경 |  |

#### ■ 관계대수 추가 연산자

| 연산자<br>종류 | 대상    | 연산자 이름           |         | 기호                 | 설명                                                       |                                         |
|-----------|-------|------------------|---------|--------------------|----------------------------------------------------------|-----------------------------------------|
| 추가        | 항     | Set Intersection |         | $\subset$          | 두 릴레이션의 교집합                                              |                                         |
| 추가        | 이하    | Assignment       |         | <b>←</b>           | 릴레이션 결과 값을 일시적인 변수 형태로 표현                                |                                         |
|           |       | Natural<br>Theta | Natural |                    | $\bowtie$                                                | 두 릴레이션 간의 같은 속성을 기준으로 조인 (중복 속성 제거)     |
|           |       |                  | eta     | $\bowtie_{\theta}$ | 두 릴레이션 간의 비교 조건에 만족하는 집합                                 |                                         |
| 추가        | 이항 조인 |                  | left    | $\bowtie$          | • 자연 조인 후 각각 왼쪽(left), 오른쪽(right), 양쪽(full)의 모든 값을 결과로 추 |                                         |
|           |       |                  | Outer   | right              | $\bowtie$                                                | 출 • 조인이 실패(또는 값이 없을 경우)한 쪽의 값을 NULL로 채움 |
|           |       |                  |         | full               | $\bowtie$                                                |                                         |



## **Operators of Relational Algebra**

■ 관계대수 확장 연산자

| 연산자<br>종류 | 대상 | 연산자 이름                    | 기호                           | 설명                                                  |
|-----------|----|---------------------------|------------------------------|-----------------------------------------------------|
| 확장        | 단항 | Generalized<br>Projection | $\prod_{F_1,F_2},,_{F_n}(E)$ | Projection 연산에 산술연산(Arithmetic Operation)을 추가       |
| 확장        | 단항 | Aggregate<br>Functions    | $\mathcal{G}$                | Sum, Average, Max, Min, Count와 같은 집계함수를 관계대수로<br>표현 |
| 확장        | 이항 | Division                  | ÷                            | 부모 릴레이션에 포함된 투플의 값을 모두 갖고 있는 투플을 분<br>자 릴레이션에서 추출   |

- 관계대수 식 표현 방법
  - 수식트리 (Expression Tree) 활용



represents

 $\Pi_{name, dept\_name}(\sigma_{salary>90000}(instructor))$ 

- 1. 정보를 추출하고자 하는 Relation을 선택 또는 만듦 (FROM 절; 스키마의 의미를 잘 보도록!!!)
  - \* 조인, 차집합, 합집합 등으로 relation을 결합함
- 2. 추출하고자 하는 정보가 담긴 튜플만 선택 (Where 절; 조건에 해당하는 튜플만 선택 함)
- 3. 원하는 데이터 추출

(Select 절: 질의에서 원하는 데이터를 출력)



#### 참고: 합집합, 차집합, 교집합

- 합집합, 교집합, 차집합은 합병 가능(union-compatible)하기 위해 아래의 2가지 조건을 만족해야 함
  - 두 릴레이션의 차수(속성 개수)가 같아야 함
  - 두 릴레이션에서 서로 대응되는 속성의 도메인이 같아야 함, 단 도메인이 같으면 이름은 달라도 된다.

고객 릴레이션

| 고객번호 | 고객이름     | 나이  |
|------|----------|-----|
| INT  | CHAR(20) | INT |
| 100  | 정소화      | 20  |
| 200  | 김선우      | 35  |
| 300  | 고명석      | 24  |

그림 6-6 합병이 불가능한 예

고객 릴레이션

| 고객번호 | 고객이름     | 나이  |
|------|----------|-----|
| INT  | CHAR(20) | INT |
| 100  | 정소화      | 20  |
| 200  | 김선우      | 35  |
| 300  | 고명석      | 24  |

직원 릴레이션

| 직원번호 | 직원이름     | 직위       |  |
|------|----------|----------|--|
| INT  | CHAR(20) | CHAR(20) |  |
| 10   | 김용욱      | 부장       |  |
| 20   | 채광주      | 과장       |  |
| 30   | 김수진      | 대리       |  |

- 속성이 모두 3개로 차수가 같다.(O)
- 나이(INT)와 직위(CHAR) 도메인이 다름 (X)

직원 릴레이션

| 직원번호 | 직원이름     | 나이  |
|------|----------|-----|
| INT  | CHAR(20) | INT |
| 10   | 김용욱      | 40  |
| 20   | 채광주      | 32  |
| 30   | 김수진      | 28  |



## **Tuple Relational Calculus**

- 튜플 관계 해석
  - 원하는 릴레이션을 튜플해석식(Tuple calculus expression)으로 정의할 수 있는 표기법
- 튜플 해석식의 구성 요소

```
\{t \mid t \in EMPLOYEE \land t[SALARY] > 50000\}
```

- 튜플 변수 t
- t[A]: 튜플변수 t가 나타내는 튜플의 어떤 Attribute A의 값
- 막대 (I) 왼편에 나온 튜플변수 t는 목표 튜플이며, 막대(I) 오른편에 명세 된 조건을 만족하는 결과로 추출됨

```
employee (person_name, street, city)
works (person_name, company_name, salary)
company (company_name, city)
manages (person_name, manager_name)
```

- Question
  - Find the names of all employees who work for First Bank Corporation ?
    - {t | some s in works (t[person\_name]=t[person\_name] ^ s[compan\_name] = "First Bank Corporation")}
  - Find the names and cities of residence of all employees who work for First

Bank Corporation?



#### **Domain Relational Calculus**

- 도메인 관계 해석
  - 원하는 릴레이션을 도메인 해석식(Domain calculus expression)으로 정의할
     수 있는 표기법
- 도메인 해석식의 구성 요소

$$\{ \langle x_1, x_2, ..., x_n \rangle \mid P(x_1, x_2, ..., x_n) \}$$

- 도메인 변수  $x_1, x_2, ..., x_n$  :지정된 Attribute의 도메인을 값으로 취하는 변수
- 막대(I) 왼편에 나온 도메인 변수들은 목표 리스트이며, 막대(I) 오른편에 명세 된 조건을 만족하는 도메인 값으로 만들어지는 튜플

employee (person\_name, street, city)
works (person\_name, company\_name, salary)
company (company\_name, city)
manages (person\_name, manager\_name)

- Question