KADI SARVA VISHWAVIDYALAYA

B.E. (CE/CSE) SEMESTER - V KSV EXAMINATION APRIL -2025

SUBJECT CODE: - CE504-N

SUBJECT NAME: - Design & Analysis of Algorithm

DATE: - 15/04/2025

TIME: - 12:30 pm to 3:30 pm

MARKS: -70 Marks

Instructions:

- 1. Answer each section in separate Answer Sheet.
- 2. All questions are compulsory.
- 3. Indicate clearly, the options you attempted along with its respective question number.
- 4. Assume suitable data wherever necessary.
- 5. Use of scientific calculator is permitted.

SECTION-I

- Q-1 (A) How do you define the algorithm? What are the different characteristics of an algorithm? [05]
 - (B) Write an algorithm of Insertion sort. Derive its complexity.

[05]

(C) Explain Asymptotic notations with examples.

[05]

OR

(C) Give the recursive algorithm to find Fibonacci series.

[05]

Q-2 (A) Explain Radix sort algorithm with an example.

[05]

(B) Write down the algorithm of Quick sort and trace the given dataset. 50,30,10,90,80,20,40,70

[05]

OR

Q-2(A) Explain Binary search algorithm with example.

[05]

(B) Solve the below mentioned recurrence relation using Master's Theorem?

[05]

- 1. $T(n) = 4T(n/2) + n^2$
- 2. $T(n)=4T(n/2)+n^3$

Q-3(A) Explain Strassen's algorithm for matrix multiplication.

[05]

(B) Solve the following Activity Selection problem with given data where S_i and F_i are the [05] starting time and finishing time respectively.

Α	A ₁	A ₂	A ₃	A4	A5	A ₆	A ₇	A8	A9	A ₁₀	A_{11}
Si	1	3	0	5	3	5	6	8	8	2	14
Fi	4	5	6	7	8	9	10	11	12	15	16

OR

- Q-3(A) Find the Solution of the fractional Knapsack Problem n=3, M=50 kg and Profit Vector (60, [05] 100, 120) and Weight Vector (10, 20, 30) using Greedy approach.
 - (B) Explain Kruskal's Algorithm to find the Minimum Spanning Tree on the graph.

[05]

SECTION-II

Q-4(A)	Define following terms: (i) Space complexity (ii) Adjacency Matrix (iii) Spanning tree (iv) Time										
	Complexity (v) Principal of Optimality										
(B)	Differentiate between Greedy Algorithm and Dynamic Programming.										
(C)	Given two sequence of characters, $X = BCDAACD$, $Y = ACDBAC$. Obtain the common subsequence.										
	OR										
(C)	Given four matrices, find out optimal sequence for matrix chain multiplication A1, A2, A3 and										
	A4 be four matrices of dimensions 10 x 30, 30 x 5 and 5 x 60 respectively.	• •									
Q-5(A)	What is DFS? Explain with example.										
(B)	Explain Pre-conditioning in traversing trees.										
	OR										
Q-5(A)	What is BFS? Explain with example.										
(B)	Describe shortest path algorithm with example.										
Q-6(A)	Explain Backtracking Method. Give any one solution of 4-Queen problem using backtracking method.										
(B)	Differentiate between NP hard and NP complete problem.	[05]									
	OR	[00]									
Q-6 (A)	Describe Min-Max Principle in details with example.	[05]									
(B)	Explain Travelling Salesman problem with example.										
		[05]									

Best of Luck