Everything Everywhere All in One

Yoàv Montacute

University of Cambridge

Joint work with Nihil Shah Resources in Computation 2022

Pathwidth

Pathwidth

Path decomposition (Robertson and Seymour)

We define a **coalgebra number** $\kappa^{\mathbb{PR}}(\mathcal{A})$ of a finite structure \mathcal{A} to be the least k such that there exists a coalgebra $\alpha: \mathcal{A} \to \mathbb{PR}_k \mathcal{A}$.

Pathwidth

Path decomposition (Robertson and Seymour)

We define a **coalgebra number** $\kappa^{\mathbb{PR}}(\mathcal{A})$ of a finite structure \mathcal{A} to be the least k such that there exists a coalgebra $\alpha: \mathcal{A} \to \mathbb{PR}_k \mathcal{A}$.

Theorem (coalgebraic characterisation of pathwidth)

For all σ -structures \mathcal{A} , $pw(\mathcal{A}) = \kappa^{\mathbb{PR}}(\mathcal{A}) - 1$.

The comonad \mathbb{PR}_k

Given a relational structure $\mathcal{A}=(A,R_1,\ldots,R_m)$, we define $\mathbb{PR}_k\mathcal{A}$ as follows:

The comonad \mathbb{PR}_k

Given a relational structure $\mathcal{A} = (A, R_1, \dots, R_m)$, we define $\mathbb{PR}_k \mathcal{A}$ as follows:

• The universe $\mathbb{PR}_k A$ consists of all pairs of non-empty sequences and indices

$$(s,i) = ([(p_1,a_1),\ldots,(p_n,a_n)],i),$$

where $p_i \in [k]$, $a_i \in A$ and $i \in [n]$.

The comonad \mathbb{PR}_k

Given a relational structure $\mathcal{A} = (A, R_1, \dots, R_m)$, we define $\mathbb{PR}_k \mathcal{A}$ as follows:

• The universe $\mathbb{PR}_k A$ consists of all pairs of non-empty sequences and indices

$$(s,i) = ([(p_1,a_1),\ldots,(p_n,a_n)],i),$$

where $p_i \in [k]$, $a_i \in A$ and $i \in [n]$.

- For each relation R (for simplicity let R be binary), we define $((s,i),(t,j)) \in R^{\mathbb{PR}_k \mathcal{A}}$ if

 - ② If j > i (resp. i > j), then the *i*-th pebble of s does not appear in s(i, j];
 - $\$ $\mathbb{R}^{\mathcal{A}}(\varepsilon_{\mathcal{A}}(s,i),\varepsilon_{\mathcal{A}}(t,j)), \text{ where } \varepsilon_{\mathcal{A}}([(p_1,a_1),\ldots,(p_n,a_n)],i)=a_i.$

The coKleisli category

Consider the category $\mathcal{K}(\mathbb{PR}_k)$ which is the coKleisli category over the comonad \mathbb{PR}_k . Its objects are the same as $\mathcal{R}(\sigma)$ and morphisms from \mathcal{A} to \mathcal{B} in the category are homomorphisms $f: \mathbb{PR}_k \mathcal{A} \to \mathcal{B}$.

The coKleisli category

Consider the category $\mathcal{K}(\mathbb{PR}_k)$ which is the coKleisli category over the comonad \mathbb{PR}_k . Its objects are the same as $\mathcal{R}(\sigma)$ and morphisms from \mathcal{A} to \mathcal{B} in the category are homomorphisms $f: \mathbb{PR}_k \mathcal{A} \to \mathcal{B}$.

Composition of morphisms $g \circ_{\mathcal{K}(\mathbb{PR}_k)} f = g \circ f^*$, where

$$f^*: ([(p_1, a_1), \dots, (p_n, a_n)], i) \mapsto ([(p_1, f(s_1)), \dots, (p_n, f(s_n))], i)$$

and $s_j = ([(p_1, a_1), \dots, (p_n, a_n)], j)$, for all $j \in [n]$.

All-in-one k-pebble game

Let $\exists^+ \land \mathcal{L}^k$ denote the fragment of $\exists^+ \mathcal{L}^k$ with restricted conjunction. i.e. every conjunction has at most one quantified formula with free variables.

All-in-one k-pebble game

Let $\exists^+ \downarrow \mathcal{L}^k$ denote the fragment of $\exists^+ \mathcal{L}^k$ with restricted conjunction. i.e. every conjunction has at most one quantified formula with free variables.

Consider the all-in-one k-pebble game $\exists \mathbf{PPeb}_k(\mathcal{A}, \mathcal{B})$. The game is played in one round during which:

- Spoiler provides a sequence of pebble placements $[(p_1, a_1), \dots, (p_n, a_n)]$.
- **②** Duplicator answers with a sequence $[(p_1, b_1), \dots, (p_n, b_n)]$.

If every prefix induces a partial homomorphism from \mathcal{A} to \mathcal{B} , then Duplicator wins the game.

All-in-one k-pebble game

Let $\exists^+ \downarrow \mathcal{L}^k$ denote the fragment of $\exists^+ \mathcal{L}^k$ with restricted conjunction. i.e. every conjunction has at most one quantified formula with free variables.

Consider the all-in-one k-pebble game $\exists \mathbf{PPeb}_k(\mathcal{A}, \mathcal{B})$. The game is played in one round during which:

- Spoiler provides a sequence of pebble placements $[(p_1, a_1), \dots, (p_n, a_n)]$.
- **2** Duplicator answers with a sequence $[(p_1, b_1), \dots, (p_n, b_n)]$.

If every prefix induces a partial homomorphism from \mathcal{A} to \mathcal{B} , then Duplicator wins the game.

Theorem (morphism power theorem)

Given two σ -structures \mathcal{A} and \mathcal{B} , the following are equivalent:

- Duplicator has a winning strategy in $\exists \mathbf{PPeb}_k(\mathcal{A}, \mathcal{B})$.
- $\mathcal{A} \Rightarrow^{\exists^+ \wedge \mathcal{L}^k} \mathcal{B}$.
- There exists a coKleisli morphism $f: \mathbb{PR}_k \mathcal{A} \to \mathcal{B}$.

 \mathfrak{B}

In this example Duplicator loses the 2-pebble game but wins the all-in-one 2-pebble game.

All-in-one bijective k-pebble game

Consider the all-in-one bijective k-pebble game $\#PPeb_k(\mathcal{A},\mathcal{B})$. The game is played in one round during which:

- Spoiler provides a sequence of pebble placements with one pebble placement hidden $[(p_1, a_1), \ldots, (p_j, _), \ldots, (p_n, a_n)].$
- **2** Duplicator answers with a sequence $[(p_1, \psi_1), \dots, (p_n, \psi_n)]$ of pebble placements and bijections $\psi_i : A \to B$.

If every prefix induces a partial isomorphism from \mathcal{A} to \mathcal{B} , then Duplicator wins the game.

All-in-one bijective k-pebble game

Consider the all-in-one bijective k-pebble game $\#\mathbf{PPeb}_k(\mathcal{A},\mathcal{B})$. The game is played in one round during which:

- Spoiler provides a sequence of pebble placements with one pebble placement hidden $[(p_1, a_1), \ldots, (p_j, _), \ldots, (p_n, a_n)].$
- **2** Duplicator answers with a sequence $[(p_1, \psi_1), \dots, (p_n, \psi_n)]$ of pebble placements and bijections $\psi_i : A \to B$.

If every prefix induces a partial isomorphism from \mathcal{A} to \mathcal{B} , then Duplicator wins the game.

Theorem (isomorphism power theorem)

Given two σ -structures \mathcal{A} and \mathcal{B} , the following are equivalent:

- Duplicator has a winning strategy in $\#\mathbf{Peb}_k(\mathcal{A},\mathcal{B})$.
- $\mathcal{A} \equiv^{\# \wedge \mathcal{L}^k} \mathcal{B}$.
- There exists a coKleisli isomorphism $f : \mathbb{PR}_k \mathcal{A} \to \mathcal{B}$.

Bijective 2-pebble game (standard vs. all-in-one)

Bijective 2-pebble game (standard vs. all-in-one)

• The $\#\mathcal{L}^k$ -formula

$$\exists x \Big(\exists y \big(Exy \land \exists_{\leq 2} x (Eyx \land Rx)\big) \land \exists y \big(Exy \land \exists_{\geq 2} x (Eyx \land Bx)\big)\Big)$$

is true in \mathcal{A} but not in \mathcal{B} .

Lovász-type theorem for pathwidth

Theorem (Dawar, Jakl and Reggio)

Given a locally finite category $\mathscr C$ with pushout and proper factorisation system, for all $\mathcal A,\mathcal B\in\mathscr C$,

$$\mathcal{A} \cong \mathcal{B} \iff |\mathbf{hom}_{\mathscr{C}}(\mathcal{C},\mathcal{A})| = |\mathbf{hom}_{\mathscr{C}}(\mathcal{C},\mathcal{B})|, \, \forall \mathcal{C} \in \mathscr{C}.$$

Lovász-type theorem for pathwidth

Theorem (Dawar, Jakl and Reggio)

Given a locally finite category $\mathscr C$ with pushout and proper factorisation system, for all $\mathcal A,\mathcal B\in\mathscr C$,

$$\mathcal{A} \cong \mathcal{B} \iff |\mathbf{hom}_{\mathscr{C}}(\mathcal{C},\mathcal{A})| = |\mathbf{hom}_{\mathscr{C}}(\mathcal{C},\mathcal{B})|, \, \forall \mathcal{C} \in \mathscr{C}.$$

Theorem (Lovász-type theorem)

For every finite σ -structures \mathcal{A} and \mathcal{B} :

$$\mathcal{A} \equiv^{\# \wedge \mathcal{L}^k} \mathcal{B} \iff |\mathbf{hom}_{\Sigma_f}(\mathcal{C}, \mathcal{A})| = |\mathbf{hom}_{\Sigma_f}(\mathcal{C}, \mathcal{B})|,$$

for every finite σ -structure \mathcal{C} with pathwidth at most k.

Ongoing work with Anuj Dawar and Nihil Shah.

Figure: Bisimulation vs. trace-equivalence

Theorem (Balcázar, Gabarró and Sántha)

Deciding bisimulation is P-complete.

Figure: Balcázar, Gabarró and Sántha (1992)

Theorem (Kolaitis and Panttaja)

Determining the winner of the k-pebble game for a fixed k is P-complete

Theorem (Kolaitis and Panttaja)

Determining the winner of the k-pebble game with k as an input is EXPTIME-complete.

Theorem (Kolaitis and Panttaja)

Determining the winner of the k-pebble game for a fixed k is P-complete

Theorem (Kolaitis and Panttaja)

Determining the winner of the k-pebble game with k as an input is EXPTIME-complete.

Figure: Kolaitis and Panttaja (2003)

Theorem (Chandra and Stockmeyer)

 $Deciding\ trace-equivalence\ is\ PSPACE-complete$

Theorem (Chandra and Stockmeyer)

Deciding trace-equivalence is PSPACE-complete

Figure: Kanellakis and Smolka (1990)

Conjecture

Determining the winner of the all-in-one k-pebble game for a fixed k is PSPACE-complete.

Conjecture

Determining the winner of the all-in-one k-pebble game with k as an input is EXPSPACE-complete.

Thank you