

Université Libre de Bruxelles

Implementation of High-Level Cryptographic Protocols using a SoC platform

June 24th, 2015

Quentin Delhaye

- Context
- 2 Cryptographic protocols
- Platform
- 4 Implementation
- Results
- Conclusion

Context

- More connections, less power, same security
- Work done with Barco Silex

Objectives

- Use a dedicated hardware.
- Real life use cases.
- → Decrease CPU load.
- → Improve performance.

- Context
- 2 Cryptographic protocols
- Opening the second of the s
- 4 Implementation
- Results
- 6 Conclusion

Cryptographic protocols

VPN

- TLS
- IPsec

Schemes

- AES
- SHA-2
- Diffie-Hellman
- RSA

- Context
- 2 Cryptographic protocols
- Platform
 - Hardware
 - Operating System
- 4 Implementation
- Results
- Conclusion

SoCrates

Linux structure

Linux structure (Cont'd)

- Context
- 2 Cryptographic protocols
- Opening the state of the sta
- Implementation
 - OpenVPN
 - IPsec
- Results
- Conclusion

OpenVPN

IPsec

- Context
- Cryptographic protocols
- Opening the state of the sta
- 4 Implementation
- Results
 - TLS connections
 - File transfer
 - Interpretation
- Conclusion

TLS connections - Context

- 1 server, 10 clients
- 1-second connections
- RSA-1024/2048/4096
- OpenVPN

TLS connections - OpenVPN

File transfer - Context

- 128MB file
- AES-256-CBC/SHA-256
- OpenVPN/IPsec

File transfer - OpenVPN

File transfer – IPsec

Results interpretation

TLS connections

- \bullet connections $\times 6$
- CPU usage ÷17

File transfer

- Drop OpenVPN
- Performance -10%
- CPU usage ÷4
- OpenVPN is single-threaded
- OpenVPN software overhead
- IPsec works in kernel

Conclusion

- Stay in the kernel
- GCM is comming
- Ongoing development
 - Test better hardware
 - Improve the drivers

Software GCM

soft-gcm256
ba411e-cbc256:none

Figure: Software: asm kernel module mode GCM

Hardware: AES IP core mode CBC

OpenVPN file transfer – AES-256-CBC – MAC none

- Hardware top 3:
 - Mernel memory handling
 - Context switch
 - IRQ restore
- Software top 3:
 - 4 AES encryption
 - IRQ restore
 - OpenVPN encryption routine

OpenSSL benchmark

TLS connection latency

		Connection time [s]	
RSA-1024	soft	0.041921	÷2
	BA411E	0.020312	
RSA-2048	soft	0.202945	÷5
	BA411E	0.039965	-5
RSA-4096	soft	1.436743	÷7.8
	BA411E	0.183533	-1.6

Table: OpenVPN connection time necessary to establish an aes-256-cbc connection with DHE.

