CHAPTER SIX

Diode-Transistor Logic [DTL]

Introduction

- To improve upon the RTL circuits, DTL circuits are introduced in this chapter.
- The fan-out in RTL gates was relatively low.

Basic DTL Inverter

Basic DTL NAND Gate

If at <u>least one input</u> less than $V_{BE}(FA)$, then Q_1 is off. i.e. $I_{CC}=0$

$$V_{OH} = V_{CC}$$

Noise Margins in DTL Gates

- O Noise margins:
 - Low noise margin
 - High noise margin

$$\frac{\left|V_{NML} = V_{IL} - V_{OL}\right|}{V_{NMH} = V_{OH} - V_{IH}}$$

$$V_{NML} = V_{BE}(FA) - V_{CE}(sat)$$

$$\left|V_{NMH} = V_{CC} - V_{BE}(sat)\right|$$

 $V_{OH} = V_{CC}$ $V_{OL} = V_{CE}(sat)$ $V_{IL} = V_{BE}(FA)$ $V_{IH} = V_{BE}(sat)$ another

To <u>improve</u> the low noise margin, diode is connected in series with D_1 .

Level-Shifted DTL Inverter

When Q_1 is switched from saturation to cut-off, the stored base charges must be removed in order to make the switching faster. A resistor R_D & V_{FF} (-) are added.

The additional diode D_{L2} increases both V_{IL} and V_{IH} by $V_{DL2}(ON)$, i.e. The **VTC** shifts on the x-axis by $V_{DL2}(ON)$

Low noise margin is improved, while the high noise margin is still accepted.

Ex: $V_{CE}(sat) = 0.2V$, $V_{BE}(FA) = 0.7V$, $V_{BF}(sat) = 0.8V$, $V_{CC} = 5V$,

Without D _{L2}	With D _{L2}
$V_{NML} = 0.7 - 0.2$	$V_{NML} = 1.4 - 0.2$
$=0.5V_{\frac{1.2-0.5}{0.5}=140\%}=1.2V_{\frac{140\% increase}{140\% increase}}$	
$V_{NMH} = 5 - 0.8$	$V_{NMH} = 5 - 1.5$
$=4.2V_{}$	= 3.5V
$\frac{3.5-4.2}{4.2} = 16.7\%$ 16.7% decrease	

Transistor Modified DTL

The fan-out can be furhter improved by replacing the levelshifting diode D_{L2} with a BJT $\frac{Q_L}{Q_L}$, and splitting R_B into two resistors ρR_E and $(1-\rho)R_B$, whose sum is R_B .

The BJT Q_L , provides more base current to Q_1 ., i.e. Q_1 sinks more current from an output load \rightarrow fanout increases. Q_L operates in forward-active mode $(V_B < V_C)$ (emitter-follower configuration).

If $\rho = 1$, Q_1 acts as a diode (D_{12})

When splitting R_B : the input resistance R_B seen by V_{IN} (low) remains the same.

When $V < V_{II}$: Q_I is ON (FA)

,

Transistor Modified DTL

o Example

Determine V_{OH} , V_{OL} , V_{IL} , and V_{IH} for TMDTL, assuming $V_{CE}(sat) = 0.2V$, $V_{BE}(FA) = 0.7V$, $V_{CC} = 5V$, $V_D(ON) = 0.7V$

Solution

$$V_{OH} = V_{CC}$$
 $V_{OL} = V_{CE}(sat)$

$$V_{IL} = -V_{DI}(ON) + V_{BE,L}(FA) + V_{DL}(ON) + V_{BE,1}(FA)$$
$$V_{IL} = 1.4V$$

DTL NAND Gate

The VTC is similar to the basic DTL NAND gate, (refer to slide 5)

When <u>any input</u> is low, then Q_L , Q_1 are off. Therefore, $V_{OH} = V_{CC}$.

When <u>all input</u> are high, then Q_L (FA), Q_1 (sat) are ON. Therefore, $V_{OL} = V_{CF}$ (sat).

When the output voltage is at state high, then the input diodes in the load gates are reverse-biased

When the output voltage is at state low, then the input diodes in the load gates are forward-biased

Maximum fan-out depends on the last statement

$$I_{OL} = M \times I_{IL}$$

$$M = \frac{I_{OL}}{I_{IL}}$$

Input current low IIL

$$I_{IL} = \frac{V'_{CC} - V'_D(ON) - V_{CE}(sat)}{R'_B}$$

Input current low IIL

$$I_{IL} = \frac{V_{CC}' - V_D'(ON) - V_{CE}(sat)}{R_B'}$$

Output current low I_{OL}

$$I_{OL} = I_{C1}(sat) - I_{RC}$$

$$I_{OL} = \sigma_1 \beta_F I_{B1}(sat) - \frac{V_{CC} - V_{CE}(sat)}{R_C}$$

$$I_{B1}(sat) = I_{EL} - \frac{V_{BE}(sat)}{R_D}$$

$$I_{EL} = I_{\rho R_B}$$

Assuming IBL negligible, we can neglect the voltage drop across $(1-\rho)R_B$.

$$I_{\rho R_B} \cong \frac{V_{CC} - V_{BE,L}(FA) - V_D(ON) - V_{BE1}(sat)}{\rho R_B}$$

o Example

Determine the maximum fan-out for driving DTL

gate, assuming:

$$\begin{split} &V_{CE}(sat)\!=\!0.2V,\ V_{BE}(sat)\!=\!0.8V,\\ &V_{BE}(FA)\!=\!0.7V, V_{D}(ON)\!=\!0.7V\ ,V_{CC}\!=\!5V,\\ &R_{C}\!=\!6k\Omega,\ \rho R_{B}\!=\!1.75k\Omega, (1\!-\!\rho)R_{B}\!=\!2k\Omega\ ,\ R_{D}\!=\!5k\Omega,\\ &\beta_{F}\!=\!49,\ and\ \sigma_{1L}\!=\!0.85. \end{split}$$

o Solution

$$I_{IL} = \frac{V'_{CC} - V'_{D}(ON) - V_{CE}(sat)}{R'_{B}}$$

$$I_{IL} = \frac{5 - 0.7 - 0.2}{3.75} = 1.093 mA$$

o Example

Determine the maximum fan-out for driving DTL gate, assuming:

$$\begin{split} &V_{CE}(sat)\!=\!0.2V,\ V_{BE}(sat)\!=\!0.8V,\\ &V_{BE}(FA)\!=\!0.7V, V_{D}(ON)\!=\!0.7V\ , V_{CC}\!=\!5V,\\ &R_{C}\!=\!6k\Omega,\ \rho R_{B}\!=\!1.75k\Omega, (1\!-\!\rho)R_{B}\!=\!2k\Omega\ ,\ R_{D}\!=\!5k\Omega, \end{split}$$

 $\beta_{\rm F} = 49$, and $\sigma_{11} = 0.85$.

o Solution
$$I_{IL} = 1.093 mA$$

$$I_{\rho R_B} \cong \frac{V_{CC} - V_{BE,L}(FA) - V_D(ON) - V_{BE1}(sat)}{5 - 0.7 - 0.7 - 0.8} = \frac{5 - 0.7 - 0.7 - 0.8}{1.75} = 1.6mA = I_{EL}$$

$$I_{B1}(sat) = I_{EL} - \frac{V_{BE}(sat)}{R_D} = 1.6 - \frac{0.8}{5} = 1.44mA$$

$$I_{OL} = 0.85 \times 49 \times 1.44 - \frac{5 - 0.2}{6} = 59.98 - 0.8 = 59.18mA$$

$$M = \frac{I_{OL}}{I_{IL}} = \frac{59.18}{1.093} = 54.4$$

$$M = 54$$

DTL Power-Dissipation

Output high current supplied $(I_{CC}(H))$ For High output, Input is <u>low</u> $(V_{CE}(sat))$

$$I_{\rho R_B}(H) \cong \frac{V_{CC} - V_D(ON) - V_{CE1}(sat)}{R_B}$$

Since Q_1 is cut-off, $I_{RC}(OH) = 0 \rightarrow I_{CC(Total)}(OH) = I_{\rho RB}(OH)$

Output low current supplied $(I_{CC}(L))$ For Low output, Input is <u>High</u>

$$I_{\rho R_{B}}(L) \cong \frac{V_{CC} - V_{BE,L}(FA) - V_{D}(ON) - V_{BE1}(sat)}{\rho R_{B}}$$

$$I_{RC}(L) = \frac{V_{CC} - V_{CE}(sat)}{R_{C}}$$

$$I_{CC}(L) = I_{RC}(L) + I_{\rho RB}(L)$$

HW #6: Solve Problems: 6.1, 6.5, 6.8, 6.12,6.14