3D-Chair-GAN

Ярослав Гераськин, Тихон Воробьев

Задача

Генерация трехмерных стульев в воксельном представлении на основе результатов статьи Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling.

Данные

Разные стулья (889 штук)

Под разными углами (12 поворотов, всего 10668)

Данные (Shapenet data)

VAE 3D GAN

Модели (Генератор)

Генератор такой же, как в статье, но выход 32x32x32, dim(z)=200 Структура моделей такая же, как в статье, но с модификациями

Модели (Дискриминатор)

Дискриминатор такой же, как в статье Структура моделей такая же, как в статье, но с модификациями

Промежуточные результаты

Модификации

- Gen BN -> Gen IN
- Disc BN -> Disc SN (<u>Spectral normalization</u>)
- GAN -> Hinge WGAN (<u>Geometric GAN</u>)
- <u>TTUR</u> (use different Ir for gen and disc)

$$egin{aligned} L_D &= -\mathbb{E}_{(x,y)\sim p_{data}}[\min(0,-1+D(x,y))] - \mathbb{E}_{z\sim p_z,y\sim p_{data}}[\min(0,-1-D(G(z),y))] \ & L_G &= -\mathbb{E}_{z\sim p_z,y\sim p_{data}}D(G(z),y) \end{aligned}$$

Обучение

Loss/disc tag: Loss/disc

Распределение значений на выходе дискриминатора для сгенерированных объектах показывает, что сгенерированные объекты больше похожи друг на друга, чем реальные стулья

Результаты (Shapenet data)

Один вид стульев (видимо, самый простой) получается хорошо

Результаты (Shapenet data)

Другие типы стульев тоже есть, но для модели они оказались сложнее

Обучение энкодера

- Энкодер обучался при фиксированном генераторе
- Только reconstruction loss (L1)

Encoder Layer	Input
conv2d 11x11 s=4 ch=32	3x256x256
conv2d 5x5 s=2 ch=64	32x64x64
conv2d 5x5 s=2 ch=128	64x32x32
conv2d 5x5 s=2 ch=256	128x16x16
conv2d 8x8 s=1 ch=2*200	256x8x8
Flatten	400x1x1
Sample	400
Output (Identity)	sample (200), mean (200), sigma (200)

Результаты (Энкодер)

Generated model

100

150

200

150

Encoder input

Real model

Результаты (Энкодер)

Encoder input

Real model

