Математические основы методов анализа результатов физического эксперимента

11. Временные масштабы. Регистрация быстропротекающих процессов.

Цифровая видеопоследовательность* - упорядоченное множество статичных цифровых изображений, сменяющих друг друга во времени

Размеры кадра определяются стандартами видео:

- NTSC 720х480 пк
- PAL DVD 720х576 пк
- HD 720 p 1280х720 пк
- HDTV (Full HD) –
 1920х1080 пк

•

типичные соотношения сторон

После *гамма-коррекции* сигналов R, G, B производится их преобразование в модель YCbCr.

Компоненты Y, Cr, Cb квантуются с разрядностью 8 или 10 бит*.

* 8-битное кодирование: Y - 220 уровней, Cr, Cb - 225 уровней из 256, остальные – для сигналов синхронизации

Цифровой стандарт 4:2:2 -

Компоненты Cr, Cb передаются с пространственным разрешением в два раза меньшим, чем по яркостному сигналу Y

Частота дискретизации Y также в 2 раза выше, чем Cr и Cb

Частота следования кадров:

- 12-18 кадров/с минимальная частота, при которой движение будет восприниматься плавным (экспериментальные данные)
- 24 кадра/с кинопленка
- 25, 30 кадров/с телевидение (форматы PAL, SECAM, NTSC)
- 60 кадров/с частота монитора (полный кадр)
- + частные случаи воспроизведения:
 - *замедленный* повтор (медленное воспроизведение видео, снятого с обычной скоростью)
 - *замедленное* движение (воспроизведение ускоренной съемки со скоростью 25 к/с)

Формат кадров - способ передачи двумерного сигнала одномерным массивом

Например, 1080р - высота кадра 1080 пк, прогрессивная развертка

Развертка кадров:

• чересстрочная ("i" - interlaced)

• прогрессивная/построчная ("p" - progressive)

Сжатие видеосигналов

Основные подходы к процессу сжатия видеосигналов основаны на следующих **принципах**:

- пространственная избыточность
- избыточность в цветовых плоскостях
- использование оптимального кода для описания данных

▶ временная избыточность

на скорости 25 кадров в секунду соседние кадры, как правило, изменяются незначительно

Сжатие видеосигналов

последовательность кадров

межкадровая разница

MPEG сжатие

Типы кадров в видеопоследовательности:

- опорные кадры I (Intra frame) независимо сжатые
- предсказуемые кадры Р (Predicted frame)
 сжатые с использованием ссылки на одно изображение
- двунаправленные предсказуемые кадры В
 (Bidirectionally predicted frame)
 сжатые с использованием ссылки на два изображения
- I, P, B кадры объединяются в группы (**GOP- Group Of Pictures**), представляющие собой минимальный повторяемый набор последовательных кадров, например:

(I0 B1 B2 P3 B4 B5 P6 B7 B8 P9 B10 B11) (I12 B13 B14 P15 B16 B17 P18 ...)

MPEG сжатие

Типы кадров в видеопоследовательности:

- опорные кадры I (Intra frame)
- > предсказуемые кадры Р (Predicted frame)
- двунаправленные предсказуемые кадры В (Bidirectionally predicted frame)

https://commons.wikimedia.org/wiki/File:IBBPBB_inter_frame_group_of_pictures.svg

MPEG сжатие

- простая межкадровая разница работает плохо при сильном движении в кадре
- для уменьшения межкадровой разницы применяют алгоритмы компенсации движения:

при движении объектов сцены некоторые группы пикселей на соседних кадрах могут быть немного сдвинуты относительно друг друга

если найти такую группу пикселей и знать искомое их смещение, то можно более точно осуществить прогноз следующего кадра и получить лучшее сжатие.

Сжатие изображений: компенсация движения

 опорный кадр делится на квадратные блоки размером, кратным 8 пк

производится обход
некоторой окрестности
каждого блока в поиске
максимального
соответствия изображению
блока на предыдущем
кадре

Сжатие изображений: компенсация движения

межкадровая разница без компенсации движения

разница между опорным и скомпенсированным кадрами

Экспозиция

Экспозиция - количество света, попадающего на светочувствительный фотоматериал за определенный промежуток времени

- образ объекта в пространстве изображения за время экспозиции не должен сдвинуться больше, чем на 1 пк
- при слабом освещении время экспозиции должно быть увеличено

Медленно протекающие процессы

замедленная съемка

Общее время съемки увеличивается за счет увеличения экспозиции каждого кадра.

Пример: съемка астрономических объектов слабой светимости

прореженная съемка

Съемка ведется с обычной частотой и экспозицией, но затем видеопоследовательность прореживается с определенным шагом

Пример: фильмы, демонстрирующие "ускоренный" рост растений, "быстрое" изменение ландщафтов, движение ледников

Быстропротекающие процессы

Быстропротекающий процесс - физический процесс, длительность которого не превышает нескольких секунд (взрывы, выстрелы, разрушения материалов, сгорание топлива, сверхзвуковые течения)

водородная струя мгновенное изображение

водородная струя усредненное изображение (большая экспозиция)

Быстропротекающие процессы

Достижение высокой скорости съемки:

- уменьшение пространственного разрешения
- отказ от передачи данных в реальном времени
- использование линейной (line-scan) камеры

Hubert Schardin 1942

Быстропротекающие процессы

Достижение сверхмалого времени экспозиции:

- использование приемника с малой выдержкой
- использование источника света малой длительности

модель механического затвора

солнце

свеча

искровой разряд эл. лампа импульсная лампа

лазер...

- Гонсалес Р., Вудс Р. Цифровая обработка изображений. 2012
- В.А. Сойфер. Компьютерная обработка изображений. Часть 1. 1996
- Вильзитер и др. Обработка и анализ цифровых изображений с примерами на LabVIEW IMAQ Vision. 2007
- https://ru.wikipedia.org/wiki/Компенсация _движения

Математические основы методов анализа результатов физического эксперимента

12. Сравнение экспериментальной и численной визуализации течений. Метод обратных задач в геофизике и механике.

Физическое моделирование

К физическому моделированию прибегают:

- если натурные испытания очень трудно или вообще невозможно осуществить
- когда слишком велики (малы) размеры натурного объекта или значения других его характеристик (давления, температуры, скорости протекания процесса и т.п.)
- по экономическим соображениям.

Физическое моделирование

Heller, V., Chen, F., Brühl, M. et al. Sci Rep 9, 861 (2019)

Математическое моделирование

Аналитическая модель представляет собой уравнение/ систему уравнений, описывающих изучаемый процесс

Компьютерное моделирование предполагает выполнение вычислительного эксперимента на основе математической модели с помощью ЭВМ.

Вычислительный эксперимент — новый метод научного исследования, который заставляет совершенствовать математический аппарат, используемый при построении математических моделей.

Для проверки адекватности математической модели и реального объекта, процесса или системы результаты исследований на ЭВМ сравниваются с результатами эксперимента на опытном натурном образце.

Верификация

Верификация вычислительного кода подразумевает подтверждение того, что программная реализация модели точно отражает принятую концептуальную модель и соответствующее данной модели решение.

В процессе верификации устанавливается, что математическая модель решена правильно с использованием методов дискретной математики, реализованных в компьютерной программе

Бенчмарк (benchmark) - эталонное высокоточное решение, используемое для количественной оценки погрешности численного решения

> Верификация

Классические верификационные задачи численной газодинамики (CFD)

"Test Sod"

Классические верификационные задачи численной газодинамики (CFD)

"Backward facing step"

Валидация

Валидация позволяет определить, насколько точно выбранная концептуальная модель описывает исследуемое физическое явление путем сопоставления численных и экспериментальных данных.

Модель, прошедшая некоторый уровень валидации, должна обладать определенной прогностической силой.

Это дает возможность использовать вычислительный код для прогнозирования состояния физической системы в условиях, для которых он не был валидирован.

Валидация (CFD)

Пример 1: Дифракция Ударной Волны

CFD моделирование

Koroteeva et al. Shock Waves. 2016. Vol. 26 (3), P. 269–277

Пример 1: Дифракция Ударной Волны

Пример 1: Дифракция Ударной Волны

130 мкс

0 мкс

Пример 2: Движение ударной волны по поверхности испульсного разряда

Пример 2: Движение ударной волны по поверхности испульсного разряда

эксперимент

Прямые задачи

В экспериментальной физике:

Непосредственное наблюдение или измерение какой-либо характеристики изучаемого объекта или явления

В математической физике:

Нахождение функций, описывающих различные физические явления (распространение звука, тепла, электромагнитных волн и т.д.)

Известны:

- свойства среды
- начальное состояние среды
- граничные условия

Обратные задачи

Определение коэффициентов уравнений, описывающих явление или процесс (свойств среды), начальных либо граничных условий на основании дополнительных данных (полученных в результате наблюдений или экспериментов)

Прямая задача: Обратная задача:

Известно **x**. Найти F(x). Измерено m = F(x) + n. Восстановить **x**.

Основные направления применения обратных задач:

- геофизика
- астрономия
- визуализация данных
- медицинская и промышленная томография
- дефектоскопия и неразрушающий контроль
- дистанционное зондирование
- радиолокация
- и пр.

Классы обратных задач:

- *Эволюционные* (*ретроспективные*) задачи: восстановление начального состояния модели
- Граничные задачи: нахождение функций и параметров, входящих в граничные условия модели
- Коэффициентные задачи: нахождение функций и параметров, входящих в коэффициенты основных уравнений модели
- Геометрические задачи: реконструкция геометрических характеристик некоторого множества, расположенного в области реализации модели
- Задачи поиска источника

• Задача восстановления расфокусированных и смазанных изображений

алгоритмы деконволюции

• Задача томографической реконструкции

фантом Шеппа-Логана

180

135
0 90
45 -

• Задача обратного рассеяния волн

акустические препятствия

распределение поля в дальней зоне

• Электроимпедансная томография (ЭИТ)

объект (проводимость)

диаграмма ток-напряжение

• Задачи сейсмологии

Решение обратных задач

Обратная задача:

Измерено $\mathbf{m} = \mathbf{F}(\mathbf{x}) + \mathbf{n}$. Восстановить \mathbf{x} .

Шум и погрешности экспериментальных измерений делают большинство обратных задач *некорректными*.

Нарушено хотя бы одно из трех *условий корректности* постановки задачи (Адамар, 1903):

- существования решения
- единственности решения
- устойчивости решения по отношению к малым вариациям данных задачи

Решение обратных задач

Основной подход к решению обратных задач - метод регуляризации А.Н.Тихонова

Ошибка восстановления: $\|\Gamma_{\alpha(\delta)}(m) - x\|_X o 0$ при $\delta o 0$