

Formal Security Analysis and Improvement of a hash-based NFC M-coupon Protocol

Ali Alshehri and Steve Schneider

Agenda

- Introduction.
- Approach
 - CasperFDR (example)
 - More about the underline theory (CSP)
- Apply to the Hash-based NFC M-coupon protocols by Hsiang et al.
 - Capturing the requirements:
 - In CasperFDR
 - From the CSP aspect
 - Analysis (Attack & solutions)

Introduction

- **NFC** (Near Field Communication).
- NFC mobile coupon protocols.
 - The Hash-based M-coupon protocol.
- Formal security analysis.
 - CasperFDR

Agenda

- Introduction.
- Approach
 - CasperFDR (example)
 - More about the underline theory (CSP)
- Apply to a Hash-based NFC M-coupon protocols by Hsiang et al.
 - Capturing the requirements:
 - In CasperFDR
 - From the CSP aspect
 - Analysis (Attack & solutions)

CasperFDR

-CSP (Communicating Sequential Processes):

is a formal language for describing patterns of interaction in concurrent systems.

- FDR (Failures Divergences Refinement) : CSP refinement checker.


```
#Free variables
A,B: Agent
na : Nonce
                                              Modeling in CasperFDR
PK : Agent -> PublicKey
SK : Agent -> SecretKey
InverseKeys = (kab,kab), (PK, SK)
kab : SessionKey
#Processes
INITIATOR(A,B,na, kab) knows PK
RESPONDER(B, A)
                    knows PK, SK(B)
#Protocol description
                                                             #Protocol description
     > A : B
 1. A -> B : {A,na,kab}{PK(B)}
 . B -> A : {na}{kab}
                                                                        -> A : B
A -> B : {A,na,kab}{PK(B)}
B -> A : {na}{kab}
#Specification
Secret(B, kab, [A])
Agreement(B, A, [na, kab])
#Actual variables
Alice, Bob, Mallory : Agent
Na. Nm : Nonce
Kab,Km : SessionKey
InverseKeys = (Kab, Kab), (Km, Km)
#Functions
symbolic PK, SK
#System
INITIATOR(Alice Bob Na Kab)
RESPONDER(Bob, Alice)
#Intruder Information
Intruder = Mallory
IntruderKnowledge = {Alice, Bob, Mallory, Nm, Km,PK, SK(Mallory)}
```

compile check compile & check

CasperFDR (black-box User)

The CSP theory aspect

New events – Independent processes

The CSP theory aspect

Dolev-Yao model threat

The CSP theory aspect

Agenda

- Introduction.
- Approach
 - CasperFDR (example)
 - More about the underline theory (CSP)
- Apply to a Hash-based NFC M-coupon protocols by Hsiang et al.
 - Capturing the requirements:
 - In CasperFDR
 - From the CSP aspect
 - Analysis (Attack & solutions)

Security Requirements:

- Confidentiality
- Forgery Protection: (No Unauthorized Generation & No Manipulation)
- Unauthorized Copying: (Not Transferable)
- Data Integrity
- No Multiple Cash-in

Security Requirements:

- Confidentiality
- Forgery Protection: (No Unauthorized Generation & No Manipulation)
- Unauthorized Copying: (Not Transferable)
- Data Integrity
- No Multiple Cash-in

In CasperFDR:

StrongSecret (C, X, Offer , [I])

Security Requirements:

- Confidentiality
- Forgery Protection: (No Unauthorized Generation & No Manipulation)
- Unauthorized Copying: (Not Transferable)
- Data Integrity
- No Multiple Cash-in

In CasperFDR:

NonInjectiveAgreement (I,C,[X,Offer])

Security Requirements:

- Confidentiality
- Forgery Protection: (No Unauthorized Generation & No Manipulation)
- Unauthorized Copying: (Not Transferable)
- Data Integrity
- No Multiple Cash-in

In CasperFDR:

NonInjectiveAgreement (I,C,[X,Offer,ID(u)])

Security Requirements:

- Confidentiality
- Forgery Protection: (No Unauthorized Generation & No Manipulation)
- Unauthorized Copying: (Not Transferable)
- Data Integrity
- No Multiple Cash-in

In CasperFDR:

NonInjectiveAgreement (I,C,[X,Offer,ID(u),ID(i))])

Security Requirements:

- Confidentiality
- Forgery Protection: (No Unauthorized Generation & No Manipulation)
- Unauthorized Copying: (Not Transferable)
- Data Integrity
- No Multiple Cash-in

In CasperFDR:

Agreement (I,C,[X,Offer])

Analysis

	Hash-based
Confidentiality	\checkmark
Forgery Protection	√
Data Integrity	x
No Multiple Cash in	x
Not Transferable	x

```
M = \{ ID(u), V, C \}
V = ID(u) \oplus h[ID(i)]
C = h[ h[ID(i)] \oplus X \oplus Offer ]
h[ID(i)] = ID(u) \oplus V
V' = ID(intruder) \oplus h[ID(i)]
M' = \{ID(u), V, C \}
M' = \{ID(intruder), V', C \}
```

Solution

	Hash-based	Enhanced Hash-based
Confidentiality	\checkmark	\checkmark
Forgery Protection	\checkmark	\checkmark
Data Integrity	x	\checkmark
No Multiple Cash in	X	
Not Transferable	X	\checkmark
User Authentication		

```
Hash-based
M = \{ ID(u), V, C \}
V = ID(u) \oplus h[ID(i)]
C = h[ h[ID(i)] \oplus X \oplus Offer ]
Enhanced
M = \{ ID(u) \oplus M
```

```
Enhanced Hash-based

M = { ID(u), V, C }

V = ID(u) ⊕ h[ID(i)]

C = h[ h[ID(i)] ⊕ X ⊕ Offer ⊕ ID(u) ]
```

A general framework

Conclusion

- Hash-based M-coupon protocol.
- Deep formal analysis.
- Other solutions suggested (footfall, premium)

Thank you

• Questions?

Ali Alshehri a.a.alshehri@surrey.ac.uk