Cryptanalysis as a Root-Finding Problen Introduction to Gröbner Base Freelunch Systems for Free Gröbner Base Combining an Root Finding with Other Technique

Algebraic Attacks: Theoretical Aspects

Aurélien Bœuf,¹ Léo Perrin¹

¹Inria, France

March 13, 2025

Cryptanalysis as a Root-Finding Problem Introduction to Gröbner Bases Freelunch Systems for Free Gröbner Bases Combining an Root Finding with Other Techniques

In this Presentation

Anemoi Crypto23 **Griffin** Crypto23 **ArionHash** arXiv Cryptanalysis as a Root-Finding Problem Introduction to Gröbner Bases Freelunch Systems for Free Gröbner Bases Combining an Root Finding with Other Techniques

In this Presentation

Anemoi Crypto23

Full-round break of some instances

ArionHash arXiv Cryptanalysis as a Root-Finding Problem Introduction to Gröbner Bases Freelunch Systems for Free Gröbner Bases Combining an Root Finding with Other Techniques

In this Presentation

Anemoi Crypto23

Full-round break of some instances

Full-round break of some instances

In this Presentation

Maybe full-round break?

Full-round break of some instances

Full-round break of some instances

In this Presentation

Maybe full-round break?

Full-round break of some instances

Full-round break of some instances

How did this happen?

Outline

- 1 Cryptanalysis as a Root-Finding Problem
- Introduction to Gröbner Bases
- Freelunch Systems for Free Gröbner Bases
- Combining an Root Finding with Other Techniques

Plan of this Section

- Cryptanalysis as a Root-Finding Problem
- 2 Introduction to Gröbner Bases
- 3 Freelunch Systems for Free Gröbner Bases
- 4 Combining an Root Finding with Other Techniques

Algebraic Attack? What is that?

Design an attack

- Design an attack
- Write a (system of) equation(s)

- Design an attack
- Write a (system of) equation(s)
- 3 ???

- Design an attack
- Write a (system of) equation(s)
- 3 ????
- Deduce a preimage/CICO solution/master key...

- Design an attack
- Write a (system of) equation(s)
- 3 ????
- Deduce a preimage/CICO solution/master key...

The topic of this class: the "???" part!

Plan of this Section

- 1 Cryptanalysis as a Root-Finding Problem
 - A Simple Case: CICO against Feistel-MiMC
 - The Multi-Variate Case
- 2 Introduction to Gröbner Bases
- 3 Freelunch Systems for Free Gröbner Bases
- 4 Combining an Root Finding with Other Techniques

Let's Look at Feistel-MiMC

Plan of this Section

- 1 Cryptanalysis as a Root-Finding Problem
 - A Simple Case: CICO against Feistel-MiMC
 - The Multi-Variate Case
- 2 Introduction to Gröbner Bases
- 3 Freelunch Systems for Free Gröbner Bases
- 4 Combining an Root Finding with Other Techniques

Deriving a Multi-Variate System: CICO-2

Plan of this Section

- 1 Cryptanalysis as a Root-Finding Problem
- Introduction to Gröbner Bases
- 3 Freelunch Systems for Free Gröbner Bases
- 4 Combining an Root Finding with Other Techniques

Plan of this Section

- 1 Cryptanalysis as a Root-Finding Problem
- Introduction to Gröbner Bases
 - Very High Level View
 - Setting Up a Mathematical Machinery
- 3 Freelunch Systems for Free Gröbner Bases
- 4 Combining an Root Finding with Other Techniques

Root Finding: Simple Cases

Consider a multivariate polynomial ring $\mathbb{F}[x_1, x_2, \dots, x_N]$. We want to solve:

$$\begin{cases} p_1(x_1,\ldots,x_N) = 0 \\ p_2(x_1,\ldots,x_N) = 0 \\ \vdots \\ p_k(x_1,\ldots,x_N) = 0 \end{cases}$$

Root Finding: Simple Cases

$$\begin{cases} m_{1,1}x_1 + \dots + m_{1,N}x_N + a_1 = 0 \\ m_{2,1}x_1 + \dots + m_{2,N}x_N + a_2 = 0 \\ & \vdots \\ m_{k,1}x_1 + \dots + m_{k,N}x_N + a_k = 0 \end{cases}$$

Polynomials of **degree 1**: Linear system \Rightarrow **Linear algebra**.

Root Finding: Simple Cases

$$\begin{cases} p_1(x_1) = 0 \\ p_2(x_1) = 0 \\ \vdots \\ p_k(x_1) = 0 \end{cases}$$

One variable: Univariate root finding ⇒ Euclidian division (for Berlekamp-Rabin algorithm).

$$\begin{cases} p_1(x_1,\ldots,x_N) = 0 \\ p_2(x_1,\ldots,x_N) = 0 \\ \vdots \\ p_k(x_1,\ldots,x_N) = 0 \end{cases}$$

Several variables, high degree!

$$\begin{cases} p_1(x_1,\ldots,x_N) = 0 \\ p_2(x_1,\ldots,x_N) = 0 \\ \vdots \\ p_k(x_1,\ldots,x_N) = 0 \end{cases}$$

Several variables, high degree!

General Approach

If $p_i(x_1, \ldots, x_N) = 0$ for all i, then

$$\sum_{i} q_i(x_1,\ldots,x_N)p_i(x_1,\ldots,x_N) = 0,$$

for any set of polynomials $\{q_i\}_i$.

$$\begin{cases} p_1(x_1,\ldots,x_N) = 0 \\ p_2(x_1,\ldots,x_N) = 0 \\ \vdots \\ p_k(x_1,\ldots,x_N) = 0 \end{cases}$$

Several variables, high degree!

General Approach

If $p_i(x_1, \ldots, x_N) = 0$ for all i, then

$$\sum_{i} q_i(x_1,\ldots,x_N)p_i(x_1,\ldots,x_N) = 0,$$

for any set of polynomials $\{q_i\}_i$.

The set of all such linear combinations is the ideal generated by the $\{p_i\}_{i=1}^k$

We denote it $I(p_0, ..., p_{n-1})$.

$$\begin{cases} p_1(x_1,\ldots,x_N) = 0 \\ p_2(x_1,\ldots,x_N) = 0 \\ \vdots \\ p_k(x_1,\ldots,x_N) = 0 \end{cases}$$

Several variables, high degree!

General Approach

If $p_i(x_1, \ldots, x_N) = 0$ for all i, then

$$\sum_{i} q_i(x_1,\ldots,x_N)p_i(x_1,\ldots,x_N) = 0,$$

for any set of polynomials $\{q_i\}_i$.

The set of all such linear combinations is the ideal generated by the $\{p_i\}_{i=1}^k$

We denote it $I(p_0, ..., p_{n-1})$.

Goal: somehow, find a polynomial $r(x_1) = 0$ in this ideal!

Plan of this Section

- 1 Cryptanalysis as a Root-Finding Problem
- Introduction to Gröbner Bases
 - Very High Level View
 - Setting Up a Mathematical Machinery
- 3 Freelunch Systems for Free Gröbner Bases
- 4 Combining an Root Finding with Other Techniques

Over the integer

There is an ideal you all know: $n\mathbb{Z}=\{...,-3n,-2n,-n,0,n,2n,3n,...\}.$

Over the integer

There is an ideal you all know: $n\mathbb{Z} = \{..., -3n, -2n, -n, 0, n, 2n, 3n, ...\}$. Every $x \in \mathbb{Z}$ can be written as a + b, where $a \in n\mathbb{Z}$ and $b \in n\mathbb{Z}$

Over the integer

There is an ideal you all know: $n\mathbb{Z} = \{..., -3n, -2n, -n, 0, n, 2n, 3n, ...\}$. Every $x \in \mathbb{Z}$ can be written as a + b, where $a \in n\mathbb{Z}$ and $b \in \mathbb{Z}/n\mathbb{Z}$.

Over the integer

There is an ideal you all know: $n\mathbb{Z}=\{...,-3n,-2n,-n,0,n,2n,3n,...\}$. Every $x\in\mathbb{Z}$ can be written as a+b, where $a\in n\mathbb{Z}$ and $b\in\mathbb{Z}/n\mathbb{Z}$.

We want to simplify our lives and work in

$$\mathbb{F}[x_1, x_2, \ldots, x_N]/I(p_0, \ldots, p_{n-1})$$
.

A Problem with Euclidian Division

Euclidian division on integers:

$$a = bq + r$$
, $0 \le r < b$.

Division of 13 by 3:

$$13 = 4 \times 3 + 1$$
.

A Problem with Euclidian Division

Euclidian division on integers:

$$a = bq + r$$
, $0 \le r < b$.

Division of 13 by 3:

$$13 = 4 \times 3 + 1$$
.

E Euclidian division on **univariate polynomials** ($\mathbb{F}[X]$):

$$A = BQ + R$$
, $deg(R) < deg(B)$.

Division of $X^3 + X + 1$ by X:

$$X^3 + X + 1 = (X^2 + 1)X + 1.$$

The Problem with Multivariate

Euclidian division on multivariate polynomials:

$$A = BQ + R$$
... condition on R ?

The Problem with Multivariate

Euclidian division on multivariate polynomials:

$$A=BQ+R...$$
 condition on R ?
Division of x by $x+y$ in $\mathbb{F}[x,y]$:
$$x=0\cdot(x+y)+x$$
or
$$x=1\cdot(x+y)-y$$
?

The Problem with Multivariate

Euclidian division on multivariate polynomials:

$$A = BQ + R$$
... condition on R ?

Division of x by x + y in $\mathbb{F}[x, y]$:

$$x = 0 \cdot (x+y) + x \iff x < y$$
or
 $x = 1 \cdot (x+y) - y \iff y < x$

Need to define a monomial ordering.

Division steps determined by leading monomials (LM).

In $\mathbb{F}[x, y, z]$:

LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, x^{1000} ? y

In $\mathbb{F}[x, y, z]$:

LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex }} y <_{\text{lex }} z , \ x^{1000} <_{\text{lex }} y , \ x^{6} yz ? y^{2} z$$

In $\mathbb{F}[x, y, z]$:

LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex }} y <_{\text{lex }} z , x^{1000} <_{\text{lex }} y , x^{6} yz <_{\text{lex }} y^{2}z .$$

In $\mathbb{F}[x, y, z]$:

LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^6 y z <_{\text{lex}} y^2 z$.

■ **Graded LEX:** Compare **total degree** first, then switch to lex if equality.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, y ? x^2

In $\mathbb{F}[x, y, z]$:

LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^6 y z <_{\text{lex}} y^2 z$.

■ Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $y <_{\text{glex}} x^2$, z^2 ? xyz

In $\mathbb{F}[x, y, z]$:

LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^6 y z <_{\text{lex}} y^2 z$.

■ Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex }} y <_{\text{lex }} z$$
, $y <_{\text{glex }} x^2$, $z^2 <_{\text{glex }} xyz$, $xy <_{\text{glex }} xz <_{\text{glex }} yz$.

In $\mathbb{F}[x, y, z]$:

LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex }} y <_{\text{lex }} z , x^{1000} <_{\text{lex }} y , x^{6} yz <_{\text{lex }} y^{2}z .$$

Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex }} y <_{\text{lex }} z$$
, $y <_{\text{glex }} x^2$, $z^2 <_{\text{glex }} xyz$, $xy <_{\text{glex }} xz <_{\text{glex }} yz$.

■ Weighted Graded LEX: Compare the weighted sum of degrees, then lex if equality. Examples for $x <_{lex} y <_{lex} z$ and wt(x) = 6, wt(y) = 1, wt(z) = 2:

$$x$$
? yz^2

In $\mathbb{F}[x, y, z]$:

LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex }} y <_{\text{lex }} z , x^{1000} <_{\text{lex }} y , x^{6} yz <_{\text{lex }} y^{2}z .$$

■ **Graded LEX:** Compare **total degree** first, then switch to lex if equality.

$$x <_{\text{lex }} y <_{\text{lex }} z$$
, $y <_{\text{glex }} x^2$, $z^2 <_{\text{glex }} xyz$, $xy <_{\text{glex }} xz <_{\text{glex }} yz$.

■ Weighted Graded LEX: Compare the weighted sum of degrees, then lex if equality. Examples for $x <_{lex} y <_{lex} z$ and wt(x) = 6, wt(y) = 1, wt(z) = 2:

$$x>_{ ext{wglex}} yz^2$$
 because $ext{wt}(x)=6$ and $ext{wt}(yz)= ext{wt}(y)+2 ext{wt}(z)=5$.

In $\mathbb{F}[x, y, z]$:

LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex }} y <_{\text{lex }} z$$
, $x^{1000} <_{\text{lex }} y$, $x^6 yz <_{\text{lex }} y^2z$.

■ Graded LEX: Compare total degree first, then switch to lex if equality.

$$X <_{\text{lex}} y <_{\text{lex}} z$$
, $y <_{\text{glex}} x^2$, $z^2 <_{\text{glex}} xyz$, $xy <_{\text{glex}} xz <_{\text{glex}} yz$.

■ Weighted Graded LEX: Compare the weighted sum of degrees, then lex if equality. Examples for $x <_{lex} y <_{lex} z$ and wt(x) = 6, wt(y) = 1, wt(z) = 2:

$$x>_{
m wglex} yz^2$$
 because ${
m wt}(x)=6$ and ${
m wt}(yz)={
m wt}(y)+2{
m wt}(z)=5$.

 $\frac{2}{3}$ $\frac{6}{3}$ $\frac{1}{3}$ $\frac{2}{3}$ $\frac{6}{3}$ $\frac{1}{3}$ $\frac{2}{3}$ $\frac{6}{3}$

The Problem... Still.

Consider a system $\{p_1, \ldots, p_k\}$.

 \implies Division of a polynomial p by $\{p_1, \ldots, p_k\}$ for some ordering: final remainder can depend on the choice of divisors!

The Problem... Still.

Consider a system $\{p_1, \ldots, p_k\}$.

 \implies Division of a polynomial p by $\{p_1, \ldots, p_k\}$ for some ordering: **final remainder can** depend on the choice of divisors!

Example: in $\mathbb{F}[x, y]$ with lex ordering ($x <_{lex} y$), divide y^2 by $\{y^2 - 1, y - x\}$.

The Problem... Still.

Consider a system $\{p_1, \ldots, p_k\}$.

 \implies Division of a polynomial p by $\{p_1,\ldots,p_k\}$ for some ordering: final remainder can depend on the choice of divisors!

Example: in $\mathbb{F}[x, y]$ with lex ordering ($x <_{lex} y$), divide y^2 by $\{y^2 - 1, y - x\}$.

$$y^{2}$$

$$\downarrow \qquad \text{red. by } y^{2} - 1$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \text{red. by } y - x$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

The solution: Gröbner Bases.

What is a Gröbner Basis?

Let $G = \{p_1, \dots, p_k\}$ and < a monomial ordering.

Definition

G is a Gröbner basis if and only if the reduction defined by < of any polynomial P does not depend on the order chosen for the reductors.

What is a Gröbner Basis?

Let $G = \{p_1, \dots, p_k\}$ and < a monomial ordering.

Definition

G is a *Gröbner basis* if and only if the reduction defined by < of any polynomial *P* does not depend on the order chosen for the reductors.

Useful Proposition

If $LM_{<}(p_1), \ldots, LM_{<}(p_k)$ are pairwise **coprime** (e.g. x^2 and y), then G is a Gröbner basis.

In
$$\mathbb{F}[x, y]$$
:

• $\{y^2 - 1, y - x\}$ is not a Gröbner basis for lex order with x < y (previous example).

In $\mathbb{F}[x, y]$:

- $| \{y^2 1, y x\}$ is not a Gröbner basis for **lex** order with x < y (previous example).
- However, it is a Gröbner basis for lex order with x > y. Proof: LM $(y^2 1) = y^2$ and LM(y x) = x are coprime.

In $\mathbb{F}[x, y]$:

- $[y^2 1, y x]$ is not a Gröbner basis for lex order with x < y (previous example).
- However, it is a Gröbner basis for lex order with x > y. Proof: LM $(y^2 1) = y^2$ and LM(y x) = x are coprime.
- $\{y^3 + x, y^3 + x^2\}$ is not a Gröbner basis for any lex or deglex order.

In $\mathbb{F}[x, y]$:

- $\{y^2 1, y x\}$ is not a Gröbner basis for **lex** order with x < y (previous example).
- However, it is a Gröbner basis for lex order with x > y. Proof: LM $(y^2 1) = y^2$ and LM(y x) = x are coprime.
- $\{y^3 + x, y^3 + x^2\}$ is not a Gröbner basis for any lex or deglex order.
- However, it is a Gröbner basis for weighted degree orders with wt(x) = 2 and wt(y) = 1, as then $LM(y^3 + x) = y^3$ and $LM(y^3 + x^2) = x^2$ are coprime.

$$\begin{cases} p_1(x_1,\ldots,x_N) = 0 \\ \vdots \\ p_{k-1}(x_1,\ldots,x_N) = 0 \\ p_k(x_1,\ldots,x_N) = 0 \end{cases}$$

1. Define system

$$\begin{cases} p_1(x_1,\ldots,x_N)=0\\ \vdots\\ p_{k-1}(x_1,\ldots,x_N)=0\\ p_k(x_1,\ldots,x_N)=0 \end{cases} \begin{cases} g_1(x_1,\ldots,x_N)=0\\ \vdots\\ g_{\kappa-1}(x_1,\ldots,x_N)=0\\ g_{\kappa}(x_1,\ldots,x_N)=0 \end{cases}$$
1. Define system

2. Find a GB (F4/F5)

$$\begin{cases} p_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ p_{k-1}(x_{1},...,x_{N}) = 0 \\ p_{k}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{\kappa-1}(x_{1},...,x_{N}) = 0 \\ g_{\kappa}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases}$$

1. Define system

$$g_1(x_1,\ldots,x_N) = 0$$
 \vdots
 $g_{\kappa-1}(x_1,\ldots,x_N) = 0$
 $g_{\kappa}(x_1,\ldots,x_N) = 0$

$$\begin{cases} g_1^*(x_1, \dots, x_N) = 0 \\ \vdots \\ g_{N-1}^*(x_{N-1}, x_N) = 0 \\ g_N^*(x_N) = 0 \end{cases}$$

- 2. Find a GB (F4/F5)
- 3. Change order to lex (FGLM)

$$\begin{cases} p_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ p_{k-1}(x_{1},...,x_{N}) = 0 \\ p_{k}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{\kappa-1}(x_{1},...,x_{N}) = 0 \\ g_{\kappa}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases}$$
1. Define system
$$g_{1}(x_{1},...,x_{N}) = 0 \\ g_{2}(x_{1},...,x_{N}) = 0 \\ g_{3}(x_{1},...,x_{N}) = 0 \end{cases}$$
2. Find a GB (F4/F5)
$$g_{1}(x_{1},...,x_{N}) = 0 \\ g_{2}^{*}(x_{1},...,x_{N}) = 0 \\ g_{3}(x_{1},...,x_{N}) = 0 \end{cases}$$

4. Find the roots in \mathbb{F}_q of g_N^* with univariate methods, etc.

$$\begin{cases} p_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ p_{k-1}(x_{1},...,x_{N}) = 0 \\ p_{k}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{\kappa-1}(x_{1},...,x_{N}) = 0 \\ g_{\kappa}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases}$$
1. Define system
$$g_{1}(x_{1},...,x_{N}) = 0 \\ g_{2}(x_{1},...,x_{N}) = 0 \\ g_{3}(x_{1},...,x_{N}) = 0 \end{cases}$$
2. Find a GB (F4/F5)
$$g_{1}(x_{1},...,x_{N}) = 0 \\ g_{2}(x_{1},...,x_{N}) = 0 \\ g_{3}(x_{1},...,x_{N}) = 0 \end{cases}$$
3. Change order to lex (FGLM)

4. Find the roots in \mathbb{F}_q of g_N^* with univariate methods, etc.

Remark: Steps 2 and 3 are both computationally costly, but not for the same reasons. For most AOPs, step 2 dominates, **but we can skip it**.

The Targets of the Day Using Weighted Orders The Case of Anemoi Solving the System given a Gröbner Basis

Plan of this Section

- 1 Cryptanalysis as a Root-Finding Problem
- 2 Introduction to Gröbner Bases
- 3 Freelunch Systems for Free Gröbner Bases
- 4 Combining an Root Finding with Other Techniques

The Targets of the Day
Using Weighted Orders
The Case of Anemoi
Solving the System given a Gröbner Basis

Plan of this Section

- 1 Cryptanalysis as a Root-Finding Problem
- 2 Introduction to Gröbner Bases
- 3 Freelunch Systems for Free Gröbner Bases
 - The Targets of the Day
 - Using Weighted Orders
 - The Case of Anemoi
 - Solving the System given a Gröbner Basis
- 4 Combining an Root Finding with Other Techniques

CICO Problem

CICO Problem of size c (capacity of the sponge) for permutation P:

$$P(*, \dots, *, \underbrace{0, \dots, 0}_{c \text{ elements}}) = (*', \dots, *', \underbrace{0, \dots, 0}_{c \text{ elements}})$$

CICO Problem

CICO Problem of size c (capacity of the sponge) for permutation P:

$$P(*, \dots, *, \underbrace{0, \dots, 0}_{c \text{ elements}}) = (*', \dots, *', \underbrace{0, \dots, 0}_{c \text{ elements}})$$

Solving CICO of size c gives collisions to the hash function.

- \Rightarrow Multivariate attack: solve CICO faster than brute-force attacks using a model of P.
- \Rightarrow We focus on c=1.

$$P(x,*,\ldots,*,0)=(*',\ldots,*',0).$$

Block Cipher

Figure: The ever-popular Block Cipher construction.

The Targets of the Day
Using Weighted Orders
The Case of Anemoi
Solving the System given a Gröbner Basis

Quick Overview of Griffin, Arion, Anemoi

Our targets:

Anemoi	Griffin	ArionHash
Crypto23	Crypto23	arXiv

- Griffin, ArionHash and AnemoiSponge are Arithmetization-Oriented families of hash functions.
- Based on Griffin- π , Arion- π and Anemoi families of permutations (all fixed-key block ciphers).

The Targets of the Day
Using Weighted Orders
The Case of Anemoi
Solving the System given a Gröbner Basis

Quick Overview of Griffin, Arion, Anemoi

Our targets:

Anemoi	Griffin	ArionHash
Crypto23	Crypto23	arXiv

- Griffin, ArionHash and AnemoiSponge are Arithmetization-Oriented families of hash functions.
- Based on Griffin- π , Arion- π and Anemoi families of permutations (all fixed-key block ciphers).
- Many instances are defined: variable \mathbb{F}_p , number of branches, exponents for monomial permutations...

⇒ We attack some instance better than others.

The Targets of the Day

Using Weighted Orders The Case of Anemoi Solving the System given a Gröbner Basis

Griffin- π - Round Function (4 branches)

The Targets of the Day Using Weighted Orders The Case of Anemoi Solving the System given a Gröbner Basis

Griffin- π - Round Function (4 branches)

 $\cdot^{1/\alpha}$ is the only high-degree operation \implies add one variable per $\cdot^{1/\alpha}$.

Griffin- π - Model

- **CICO** problem: $\mathcal{G}_{\pi}(\cdots||0) = (\cdots||0)$.
 - \implies One variable x_0 in the input. One equation for the output (last branch at 0).
- N_{rounds} equations of the form $x_i^{\alpha} = P_i(x_0, x_1, \dots x_{i-1})$ ($\cdot^{1/\alpha}$ S-boxes).

Griffin- π - Model

- **CICO** problem: $\mathcal{G}_{\pi}(\cdots||0)=(\cdots||0)$.
 - \implies One variable x_0 in the input. One equation for the output (last branch at 0).
- N_{rounds} equations of the form $x_i^{\alpha} = P_i(x_0, x_1, \dots x_{i-1})$ ($\cdot^{1/\alpha}$ S-boxes).

Example ($\alpha = 3$, one round)

$$x_1^3 = ax_0 + b$$

 $x_0^7 + cx_0^4 x_1 + dx_0 x_1^2 + \dots = 0$

$$\begin{cases} p_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ p_{k-1}(x_{1},...,x_{N}) = 0 \\ p_{k}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{\kappa-1}(x_{1},...,x_{N}) = 0 \\ g_{\kappa}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases}$$
1. Define system
$$\begin{cases} g_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ \vdots \\ g_{N}^{*}(x_{N}) = 0 \end{cases}$$
2. Find a GB (F4/F5)
$$\begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N}^{*}(x_{N}) = 0 \end{cases}$$
3. Change order to lex (FGLM)

4. Find the roots in \mathbb{F}_q of g_N^* with univariate methods, etc.

Designers of Anemoi and Griffin base their security on the hardness of **Step 2**.

Generic System Solving

$$\begin{cases} p_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ p_{k-1}(x_{1},...,x_{N}) = 0 \\ p_{k}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} x_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{\kappa-1}(x_{1},...,x_{N}) = 0 \\ g_{\kappa}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases}$$

$$1. \text{ Define system} \qquad 2 \text{ and a GB } (F4/F5) \qquad 3. \text{ Change order to lex } (FGLM)$$

4. Find the roots in \mathbb{F}_q of g_N^* with univariate methods, etc.

Designers of Anemoi and Griffin base their security on the hardness of Step 2.

But we can skip it!

Plan of this Section

- 1 Cryptanalysis as a Root-Finding Problem
- 2 Introduction to Gröbner Bases
- 3 Freelunch Systems for Free Gröbner Bases
 - The Targets of the Day
 - Using Weighted Orders
 - The Case of Anemoi
 - Solving the System given a Gröbner Basis
- 4 Combining an Root Finding with Other Techniques

Griffin- π - Model

- CICO problem: $\mathcal{G}_{\pi}(\cdots||0) = (\cdots||0)$. ⇒ One variable \mathbf{x}_0 in the input. One equation for the output (last branch at 0).
- N_{rounds} equations of the form $x_i^{\alpha} = P_i(x_0, x_1, \dots x_{i-1})$ ($\cdot^{1/\alpha}$ S-boxes).

Example ($\alpha = 3$, one round)

$$x_1^3 = ax_0 + b$$

 $x_0^7 + cx_0^4 x_1 + dx_0 x_1^2 + \dots = 0$

Griffin- π - Model

- CICO problem: $\mathcal{G}_{\pi}(\cdots||0) = (\cdots||0)$. ⇒ One variable \mathbf{x}_0 in the input. One equation for the output (last branch at 0).
- N_{rounds} equations of the form $x_i^{\alpha} = P_i(x_0, x_1, \dots x_{i-1})$ ($\cdot^{1/\alpha}$ S-boxes).

Example ($\alpha = 3$, one round)

$$x_1^3 = ax_0 + b$$

 $x_0^7 + cx_0^4 x_1 + dx_0 x_1^2 + \dots = 0$

Observation: x_1 has a lower degree than x_0 in the last equation.

- \implies In grevlex, the leading monomials are x_0^7 and x_1^3 .
- ⇒ It's a Gröbner basis! (coprime leading monomials)

Griffin- π - Model

- CICO problem: $\mathcal{G}_{\pi}(\cdots||0) = (\cdots||0)$. ⇒ One variable \mathbf{x}_0 in the input. One equation for the output (last branch at 0).
- N_{rounds} equations of the form $x_i^{\alpha} = P_i(x_0, x_1, \dots x_{i-1})$ ($\cdot^{1/\alpha}$ S-boxes).

Example ($\alpha = 3$, one round)

$$x_1^3 = ax_0 + b$$

 $x_0^7 + cx_0^4 x_1 + dx_0 x_1^2 + \dots = 0$

Observation: x_1 has a lower degree than x_0 in the last equation.

- \implies In grevlex, the leading monomials are x_0^7 and x_1^3 .
- ⇒ It's a Gröbner basis! (coprime leading monomials)

For more rounds, grevlex doesn't work. We need weighted degree orders, with $wt(x_0) = 1$ and $wt(x_i) = 7^{i-1}$.

Arion- π - Round Function (4 branches)

Arion- π - Round Function (4 branches)

 $\cdot^{1/\alpha}$ is the only high-degree operation \implies add one variable per $\cdot^{1/\alpha}$.

Plan of this Section

- 1 Cryptanalysis as a Root-Finding Problem
- 2 Introduction to Gröbner Bases
- Freelunch Systems for Free Gröbner Bases
 - The Targets of the Day
 - Using Weighted Orders
 - The Case of Anemoi
 - Solving the System given a Gröbner Basis
- 4 Combining an Root Finding with Other Techniques

Anemoi - Nonlinear layer (2 branches)

Anemoi - Nonlinear layer (2 branches)

 $(\cdot)^{1/\alpha}$ is the only high-degree operation \implies add one variable per $(\cdot)^{1/\alpha}$.

Anemoi - Model

Example ($\alpha = 3$, one round)

$$x_1^3 = ax_0^2 + bx_0 + c$$

$$x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0$$

Anemoi - Model

Example ($\alpha = 3$, one round)

$$x_1^3 = ax_0^2 + bx_0 + c$$

$$x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0$$

 x_0^2 cancels out: this isn't a Gröbner basis for any order!

Anemoi - Model

Example ($\alpha = 3$, one round)

$$x_1^3 = ax_0^2 + bx_0 + c$$

$$x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0$$

 x_0^2 cancels out: this isn't a Gröbner basis for any order!

Saving the Freelunch

Solution: multiply last equation by x_1^2 and reduce it by the first equation. We get:

$$p^*(x_0,x_1) = ax_0^3 + bdx_0^2x_1 + \cdots$$

Anemoi - Model

Example ($\alpha = 3$, one round)

$$x_1^3 = ax_0^2 + bx_0 + c$$

$$x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0$$

 x_0^2 cancels out: this isn't a Gröbner basis for any order!

Saving the Freelunch

Solution: multiply last equation by x_1^2 and reduce it by the first equation. We get:

$$p^*(x_0,x_1) = ax_0^3 + bdx_0^2x_1 + \cdots$$

 \implies The first equation and p^* are a Gröbner basis for some weighted order.

Anemoi - Model

Example ($\alpha = 3$, one round)

$$x_1^3 = ax_0^2 + bx_0 + c$$

$$x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0$$

 x_0^2 cancels out: this isn't a Gröbner basis for any order!

Saving the Freelunch

Solution: multiply last equation by x_1^2 and reduce it by the first equation. We get:

$$p^*(x_0,x_1) = ax_0^3 + bdx_0^2x_1 + \cdots$$

 \implies The first equation and p^* are a Gröbner basis for some weighted order.

This adds a few parasitic solutions (corresponding to $x_1=0$), but not many.

Plan of this Section

- 1 Cryptanalysis as a Root-Finding Problem
- 2 Introduction to Gröbner Bases
- 3 Freelunch Systems for Free Gröbner Bases
 - The Targets of the Day
 - Using Weighted Orders
 - The Case of Anemoi
 - Solving the System given a Gröbner Basis
- 4 Combining an Root Finding with Other Techniques

FGLM in a Nutshell

- Given a zero-dimensional ideal I, a Gröbner basis G_1 for I some ordering $<_1$, and an ordering $<_2$, FGLM computes a Gröbner basis G_2 for $<_2$ in $O(n_{var}D_I^3)$.
- D₁ is the degree of the ideal, a.k.a. the number of solutions of the system in the algebraic closure.

FGLM in a Nutshell

- Given a zero-dimensional ideal I, a Gröbner basis G_1 for I some ordering $<_1$, and an ordering $<_2$, FGLM computes a Gröbner basis G_2 for $<_2$ in $O(n_{var}D_I^3)$.
- D_I is the degree of the ideal, a.k.a. the number of solutions of the system in the algebraic closure.
- This is interesting because a GB in lex order must have a univariate polynomial in the smallest variable, which we can solve. (This corresponds to eliminating the other variables.)

FGLM in a Nutshell

- Given a zero-dimensional ideal I, a Gröbner basis G_1 for I some ordering $<_1$, and an ordering $<_2$, FGLM computes a Gröbner basis G_2 for $<_2$ in $O(n_{var}D_I^3)$.
- D_I is the degree of the ideal, a.k.a. the number of solutions of the system in the algebraic closure.
- This is interesting because a GB in lex order must have a univariate polynomial in the smallest variable, which we can solve. (This corresponds to eliminating the other variables.)
- Free Gröbner basis, FGLM and symmetric techniques to bypass the first rounds is already enough to break some instances of Griffin and Arion.

Faster Change of Order Strategy

- Idea from a 2022 paper by Jérémy Berthomieu, Vincent Neiger, Mohab Safey El Din.
- Strategy: for the smallest variable x, compute the characteristic polynomial χ of the linear operation $P \mapsto \text{Red}_{<}(x \cdot P, G)$.
- $\chi(x) = 0$. Generically, this is **exactly** the univariate polynomial in x in the reduced GB of t in **lex** order.
- Issue: our systems do not verify an important property of the original paper.

Computing the Multiplication Matrix

Step 1: Compute the matrix T of the linear operation in $\mathbb{F}[x_0, x_1, \dots, x_N]$ that maps P to $x_0 \cdot P$.

Need to reduce monomials of the form $x_0^{k_0+1}x_1^{k_1}\cdots x_N^{k_N}$. We have no tight complexity estimate for this step.

Computing the Multiplication Matrix

Step 1: Compute the matrix T of the linear operation in $\mathbb{F}[x_0, x_1, \dots, x_N]$ that maps P to $x_0 \cdot P$.

- Need to reduce monomials of the form $x_0^{k_0+1}x_1^{k_1}\cdots x_N^{k_N}$. We have no tight complexity estimate for this step.
- The matrix is sparse. If leading monomials are $x_0^{d_0}, \ldots, x_N^{d_N}$:

$$T_0 = egin{pmatrix} 0 & 0 & \cdots & \cdots & 0 & * & \\ \hline 1_{...} & 0_{...} & \cdots & \cdots & 0 & * & \\ 0_{...} & \cdots & \cdots & \cdots & \vdots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & 1 & * \end{pmatrix}$$

Computing the Characteristic Polynomial

Step 2: Given *T*, compute det(XI - M).

 \implies T is sparse. With block matrix reasoning, this reduces to computing the determinant of a polynomial matrix of size $D_1 = d_1 \cdots d_N$.

 \implies In Griffin and Arion, d_0 is by far the highest degree, so this reduces complexity by a lot.

 \implies This can be computed with fast linear algebra, in $\mathcal{O}(d_0\log(d_0)^2d_1^{\omega}\cdots d_N^{\omega})$.

Our Full Algorithm

- sysGen: Compute the Freelunch system and the order for a free Gröbner basis.
- **2** matGen: Compute the multiplication matrix *T*. **Complexity hard to evaluate**.
- \blacksquare polyDet: Compute the characteristic polynomial χ of T.
 - $\implies \text{Longest step aside from } \mathtt{matGen}.$
- **uniSol**: Find roots of χ with Berlekamp-Rabin in $\mathcal{O}(D_l \log(D_l) \log(pD_l))$.

Experimental Results

Figure: Complexity of Griffin (7 out of 10 rounds, α =3)

Complexity of Anemoi (7 out of 21 rounds, $\alpha=$ 3)

Experimental Results

Figure: Complexity of Griffin (7 out of 10 rounds, α =3)

Complexity of Anemoi (7 out of 21 rounds, $\alpha=$ 3)

- ⇒ For Griffin, polyDet upper-bounds the others up to 7 rounds.
- \implies For Anemoi, matGen is the bottleneck.

Plan of this Section

- 1 Cryptanalysis as a Root-Finding Problem
- 2 Introduction to Gröbner Bases
- 3 Freelunch Systems for Free Gröbner Bases
- 4 Combining an Root Finding with Other Techniques

Skipping Rounds

Conclusion

- A0 primitives should not base their security on the complexity of finding a Gröbner basis (F4/F5).
- Instead, focus on the growth of D_I with the number of rounds (impacts the complexity of solving algorithms).
- Anemoi, Griffin and Arion need to recompute their numbers of rounds!

Conclusion

- A0 primitives should not base their security on the complexity of finding a Gröbner basis (F4/F5).
- Instead, focus on the growth of D_I with the number of rounds (impacts the complexity of solving algorithms).
- Anemoi, Griffin and Arion need to recompute their numbers of rounds!

MatGen and PolyDet are already getting obsolete!

Improved Resultant Attack against Arithmetization-Oriented Primitives

https://eprint.iacr.org/2025/259 Augustin Bariant, Aurélien Boeuf, Pierre Briaud, Maël Hostettler, Morten Øygarden, Håvard Raddum

Conclusion

- A0 primitives should not base their security on the complexity of finding a Gröbner basis (F4/F5).
- Instead, focus on the growth of D_I with the number of rounds (impacts the complexity of solving algorithms).
- Anemoi, Griffin and Arion need to recompute their numbers of rounds!

MatGen and PolyDet are already getting obsolete!

Improved Resultant Attack against Arithmetization-Oriented Primitives

https://eprint.iacr.org/2025/259 Augustin Bariant, Aurélien Boeuf, Pierre Briaud, Maël Hostettler, Morten Øygarden, Håvard Raddum

Thank you!

Griffin Trick

Arion Trick

