Ex: Compute SSR ye dA on R = [0, 2] x [0, 3] SolI: Sk ye dA = Sx=0 Sy=0 ye dydx Inner Integral: Sy=0 ye dy (du=dy v=-ze = [-xe-xy-]-xe-xy dy J=0 = [-xe-xy- 12e-xy]3=0 · (- 3 e - 3x - 12e 3x) - (0 - 12 = e (-3 - x2) + 1/2 in Skye dA = Sx=0(e 3x(-3/2 - x2) + 1/2) dx
inproper integral ~ abondon ship! Solz: Slaye dA = Sy. Sx. ye xy dx dy Inner Integral: Sx=0 ye dx = Sx=0-e (-y)dx = Sx=0-edu = -e/x=0=-exg/2 = (-e^{-2y})-(-e^{-0y}) = 1-e^{-2y} = Sy=0 (1-e-2y)dy= [y+ze-2y]3

COAL Integrate over more complicated regions. Ex: Compute net volume of the solid bounded by Z=x2+y2, y=2x, y=x2, Z=0 Vol (5) = Sp ((x2+y2)-0) dA = Sx=0 Sy=x2 (x2+y2) dy dx = Sx (x2y + 3 y 3 Jx2 y dx · 5 ((2x3+8x3)-(x4+3x6))dx = See (14 3 - x - 1 x 6) dx = [14x - 5x - 21x]x=0 = 7.16 - 32 - 128 -0

 $=\frac{56}{3}-\frac{32}{5}-\frac{126}{21}$

Take-Away: If R can be parameterized by $R = \{(x,y): C, \leq x \leq C_2, g, (x) \leq y \leq g, (x)\},$

then... She f(x,y)dA = Ix=c, Ig=3,cr) f(x,y)dydx.

Similarly, if R is parameterized by $R = \{(x,y): C, \leq y \leq C_2, g, (y) \leq x \leq g, (y)\}$

Shef(x,y) dA = Sy=c, Sx=g(y) f(x,y) dxdy

Ex: Compute Spy dA over R. the triangle of vertices. (0,0), (1,3), (2,2).

Picture: $R = \{(x,y): 0 \le y \le 3\}$ $y-2 = (\frac{2-3}{2-1})(x-2)$ y=3: y=x y=3: y=x y=3: y=x y=3: y=xy=3: y=x

> :. R = R, UR, w/ R, = {(x,y): 2=y=3, 3y=x=4-y} R, = {(x,y): 0=y=2, 3y=x=y}

 $\begin{array}{lll}
\vdots & \iint_{R} y \, dA = \iint_{R} y \, dA + \iint_{R} y \, dA \cdot \int_{R} \left[2y^{2} - \frac{4}{9}y^{3} \right]_{y=2}^{3} \\
\iint_{R} y \, dA = \iint_{y=2} \int_{x=\frac{1}{9}y} y \, dx \, dy & = \left(2 \cdot 9 - \frac{4}{9} \cdot 27 \right) \\
& - \left(2 \cdot 4 - \frac{4}{9} \cdot 8 \right) \\
& = \iint_{y=2} y \left[x \right]_{x=\frac{1}{9}y}^{4-y} \, dy & = \left(18 - 12 \right) - \left(8 - \frac{32}{9} \right)
\end{array}$

 $= \int_{y=2}^{3} y \left(4 - \frac{4}{5}y \right) dy$ $= \int_{y=2}^{3} \left(4y - \frac{4}{3}y^{2} \right) dy$ $= -2 + \frac{32}{9} = \left[\frac{14}{9} \right]$

$$\int_{R} y \, dA = \int_{g=0}^{2} \int_{x=\frac{1}{3}y} y \, dx \, dy$$

$$= \int_{g=0}^{2} y \left[x\right]_{x=\frac{1}{3}y} \, dy$$

$$= \int_{g=0}^{2} y \left(y - \frac{1}{3}y\right) \, dy$$

$$= \frac{2}{3} \int_{g=0}^{2} y^{2} \, dy$$

$$= \frac{2}{3} \cdot \frac{1}{3} y^{3} \Big|_{g=0}^{2}$$

$$= \frac{2}{9} \left(8-0\right) = \left(\frac{76}{9}\right)$$

-> :. SkydA = 14 + 16 = 10 3

Setup:

Motivating Question: What is the volume of a sphere?

S={(x,y,z):x2+y2+22=12

for (x,y) & R: = = + \(\sigma^2 - \chi^2 - \ch

· Should integrate Vol(5) = Sle ZVr2-x2-y2dA

x2+y2=12 :R= {(x,y):-r=x=r, \(\nabla_{2}-x^2=y=\nabla_{2}-x^2\)

Vol(5) = S=- Sy=-182-x2 V12-x2-y2 dy dx

Exercise: Explain why that's terrible.