Networking

Need for Google Cloud VPC

- In a corporate network or an on-premises data center:
 - Can anyone on the internet see the data exchange between the application and the database?
 - No
 - Can anyone from internet directly connect to your database?
 - Typically **NO**.
 - You need to connect to your corporate network and then access your applications or databases.
- Corporate network provides a secure internal network protecting your resources, data and communication from external users
- How do you do create your own private network in the cloud?
 - Enter Virtual Private Cloud (VPC)

Google Cloud VPC (Virtual Private Cloud)

- Your own isolated network in GCP cloud
 - Network traffic within a VPC is isolated (not visible) from all other Google Cloud VPCs

- You control all the traffic coming in and going outside a VPC
- (Best Practice) Create all your GCP resources (compute, storage, databases etc) within a VPC
 - Secure resources from unauthorized access AND
 - Enable secure communication between your cloud resources
- VPC is a global resource & contains subnets in one or more region
 - (REMEMBER) NOT tied to a region or a zone. VPC resources can be in any region or zone!

Need for VPC Subnets

- Different types of resources are created on cloud databases, compute etc
 - Each type of resource has its own access needs
 - Load Balancers are accessible from internet (public resources)
 - Databases or VM instances should NOT be accessible from internet
 - ONLY applications within your network (VPC) should be able to access them(private resources)
- How do you separate public resources from private resources inside a VPC?
 - Create separate Subnets!
- (Additional Reason) You want to distribute resources across multiple regions for high availability

Database

VPC Subnets

- (Solution) Create different subnets for public and private resources
 - Resources in a public subnet CAN be accessed from internet
 - Resources in a private subnet CANNOT be accessed from internet
 - BUT resources in public subnet can talk to resources in private subnet
- Each Subnet is created in a region
- **Example**: VPC demo-vpc => Subnets region us-central1, europe-west1 or us-west1 or ..

Creating VPCs and Subnets

- By default, every project has a default VPC
- You can create YOUR own VPCs:
 - OPTION 1: Auto mode VPC network:
 - Subnets are automatically created in each region
 - Default VPC created automatically in the project uses auto mode!
 - OPTION 2: Custom mode VPC network:
 - No subnets are automatically created
 - You have complete control over subnets and their IP ranges
 - Recommended for Production
- Options when you create a subnet:
 - Enable Private Google Access Allows VM's to connect to Google API's using private IP's
 - Enable FlowLogs To troubleshoot any VPC related network issues

In 28 Minutes

CIDR (Classless Inter-Domain Routing) Blocks

- Resources in a network use continuous IP addresses to make routing easy:
 - Example: Resources inside a specific network can use IP addresses from 69.208.0.0 to 69.208.0.15
- How do you express a range of addresses that resources in a network can have?
 - CIDR block
- A CIDR block consists of a starting IP address(69.208.0.0) and a range(/28)
 - Example: CIDR block 69.208.0.0/28 represents addresses from 69.208.0.0 to 69.208.0.15 a total of 16 addresses
- Quick Tip: 69.208.0.0/28 indicates that the first 28 bits (out of 32) are fixed.
 - Last 4 bits can change => 2 to the power 4 = 16 addresses

CIDR Exercises

CIDR	Start Range	End Range	Total addresses	Bits selected in IP address
69.208.0.0/24	69.208.0.0	69.208.0.255	256	01000101.11010000.00000000.*****
69.208.0.0/25	69.208.0.0	69.208.0.127	128	01000101.11010000.00000000.0*****
69.208.0.0/26	69.208.0.0	69.208.0.63	64	01000101.11010000.00000000.00*****
69.208.0.0/27	69.208.0.0	69.208.0.31	32	01000101.11010000.00000000.000****
69.208.0.0/28	69.208.0.0	69.208.0.15	16	01000101.11010000.00000000.0000****
69.208.0.0/29	69.208.0.0	69.208.0.7	8	01000101.11010000.0000000.00000***
69.208.0.0/30	69.208.0.0	69.208.0.3	4	01000101.11010000.0000000.000000**
69.208.0.0/31	69.208.0.0	69.208.0.1	2	01000101.11010000.00000000.0000000*
69.208.0.0/32	69.208.0.0	69.208.0.0	1	01000101.11010000.0000000.00000000

- Exercise: How many addresses does **69.208.0.0/26** represent?
 - 2 to the power (32-26 = 6) = 64 addresses from 69.208.0.0 to 69.208.0.63
- Exercise: How many addresses does **69.208.0.0/30** represent?
 - 2 to the power (32-30 = 2) = 4 addresses from 69.208.0.0 to 69.208.0.3
- Exercise: What is the difference between 0.0.0.0/0 and 0.0.0.0/32?
 - 0.0.0.0/0 represent all IP addresses. 0.0.0.0/32 represents just one IP address 0.0.0.0.

In28 Minutes

Examples of Recommended CIDR Blocks - VPC Subnets

Recommended CIDR Blocks

- Private IP addresses RFC 1918: 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16
- Shared address space RFC 6598: 100.64.0.0/10
- IETF protocol assignments RFC 6890: 192.0.0.0/24

- You CANNOT use these as CIDR for VPC Subnets
 - o Private Google Access-specific virtual IP addresses: 199.36.153.4/30, 199.36.153.8/30
 - Current (local) network RFC 1122: 0.0.0.0/8
 - Local host RFC 1122: 127.0.0.0/8
- (REMEMBER) You **CAN EXTEND** the CIDR Block Range of a Subnet (Secondary CIDR Block)

Firewall Rules

 Configure Firewall Rules to control traffic going in or out of the network:

Virtual Private

- Stateful
- Each firewall rule has priority (0-65535) assigned to it
- 0 has highest priority. 65535 has least priority
- Default implied rule with lowest priority (65535)
 - Allow all egress
 - Deny all ingress
 - Default rules can't be deleted
 - You can override default rules by defining new rules with priority 0-65534
- Default VPC has 4 additional rules with priority 65534
 - Allow incoming traffic from VM instances in same network (default-allow-internal)
 - Allow Incoming TCP traffic on port 22 (SSH) **default-allow-ssh**
 - Allow Incoming TCP traffic on port 3389 (RDP) default-allow-rdp
 - Allow Incoming ICMP from any source on the network default-allow-icmp

Cloud

Firewall Rules - Ingress and Egress Rules

- Ingress Rules: Incoming traffic from outside to GCP targets
 - Target (defines the destination): All instances or instances with TAG/SA
 - Source (defines where the traffic is coming from): CIDR or All instances or instances with TAG/SA

- Egress Rules: Outgoing traffic to destination from GCP targets
 - Target (defines the source): All instances or instances with TAG/SA
 - Destination: CIDR Block
- Along with each rule, you can also define:
 - Priority Lower the number, higher the priority
 - Action on match Allow or Deny traffic
 - Protocol ex. TCP or UDP or ICMP
 - Port Which port?
 - Enforcement status Enable or Disable the rule

Firewall Rules - Best Practices

- Use network tags and control allowed traffic into a VM using firewall rules
- Ensure that firewall rule allow the right kind of traffic:
 - Only allow traffic from load balancing into VM instances
 - Remove 0.0.0.0/0 from Source IP ranges
 - Add 130.211.0.0/22 and 35.191.0.0/16
 - Allows health checks from load balancing to VM instances
- (REMEMBER) All egress from an VM instance is allowed by default:
 - To allow Specific EGRESS ONLY
 - o 1: Create an egress rule with low priority to deny all traffic
 - 2: Create egress rule with high priority to allow traffic on specific port

Shared VPC

- Scenario: Your organization has multiple projects. You want resources in different projects to talk to each other?
 - How to allow resources in different projects to talk with internal IPs securely and efficiently?

- Created at organization or shared folder level (Access Needed: Shared VPC Admin)
- Allows VPC network to be shared between projects in same organization
- Shared VPC contains one host project and multiple service projects:
 - Host Project Contains shared VPC network
 - Service Projects Attached to host projects
- Helps you achieve separation of concerns:
 - Network administrators responsible for Host projects and Resource users use Service Project

VPC Peering

Scenario: How to connect VPC networks across different organizations?

Enter VPC Peering

- Networks in same project, different projects and across projects in different organizations can be peered
- All communication happens using internal IP addresses
 - Highly efficient because all communication happens inside Google network
 - Highly secure because not accessible from Internet
 - No data transfer charges for data transfer between services
- (REMEMBER) Network administration is NOT changed:
 - Admin of one VPC do not get the role automatically in a peered network