Maths Notes

Li WeiHua

Contents

No	otations	v
Ι	Real Analysis	1
1	sequences and series 1.1 sequence	3
II	Functional Analysis	5
2	Metric Space	7
3	Calculus of Variations 3.1 Euler-Lagrange Equation	9
II	I Ordinary Differential Equations	11
4	Brachistochrone Problem	13
5	First Order Equations 5.1 Homogeneous Equations	15 15
IJ	Numerical Methods	17
6	Coursera: Numerical Methods for Engineers 6.1 Logistic Map	19 19 19

iv			Contents

7	Line	ear Algebra	21
\mathbf{V}	O	thers To Be Orgnized	23
8	Vec	tor Calculus	25
	8.1	Kronecker-Delta and Levi-Civita symbol	25
	8.2	Scalar and vector product	26
	8.3	Partial differentiation with non-independent variables	27
\mathbf{A}	ppe	ndices	29
\mathbf{A}	ĿΤΕ	X Notes	29
	A.1	· Ŀ···································	29
		A.1.1 Customizing lists	
	A.2	How to produce png file?	29

Notations

vi *Contents*

List of Figures

List of Tables

Part I Real Analysis

sequences and series

theorem vs proposition vs lemma

The main results are theorems, smaller results are called propositions. A Lemma is a technical intermediate step which has no standing as an independent result. Lemmas are only used to chop big proofs into handy pieces.

1.1 sequence

Theorem 1.1.1. A sequence $(a_n)_{n=1}^{\infty}$ of real numbers is convergent if and only if (iff) it is a Cauchy sequence.

Proposition 1.1.2 (Monotone bounded sequences converge). Let $(a_n)_{n=m}^{\infty}$ be a sequence of real numbers which has some finite upper bound $M \in \mathbb{R}$, and which is also increasing (i.e., $a_{n+1} \geq a_n$ for all $n \geq m$). Then $(a_n)_{n=m}^{\infty}$ is convergent, and in fact

$$\lim_{n \to \infty} a_n = \sup(a_n)_{n=m}^{\infty} \le M$$

Part II Functional Analysis

Metric Space

Definition 2.0.1 (Metric space). A Metric space is a pair (X, d), where X is a set and d is a distance function or metric on X such that $d: X \times X \to [0, +\infty)$. Furthermore, the metric must satisfy the following four axioms:

- (a) d(x,y) = 0 if and only if x = y
- (b) (Positivity) for any distinct $x, y \in X, d(x, y) > 0$
- (c) (Symmetry) d(x, y) = d(y, x)
- (d) (Triangle inequality) d(x,y) <= d(x,z) + d(z,y)

Calculus of Variations

3.1 Euler-Lagrange Equation

Lemma 3.1.1. If $f(x) \in C[a,b]$, and if

$$\int_{a}^{b} f(x)g(x) \, dx = 0$$

for $\forall g(x) \in L(a,b)$ such that g(a) = g(b) = 0, then $f(x) = 0, \forall x \in [a,b]$.

Proof. Suppose f(x) > 0 in some $[x_1, x_2]$, if we set $g(x) = (x - x_1)(x_2 - x)$, then

$$\int_{x_1}^{x_2} f(x)(x-x_1)(x_2-x) \, dx > 0,$$

since the integrand is positive. This contradiction proves the lemma. \Box

Remark 3.1.2. The Lemma 3.1.1 still holds if we replace linear space L(a, b) by normed linear space $N_n(a, b)$. To proof this, just set

$$g(x) = [(x - x_1)(x_2 - x)]^n$$

Problem: find the extremum of equation (3.1).

$$J[y] = \int_{a}^{b} F[x, y, y'] dx$$
 (3.1)

Solution 1:

$$0 = \delta J[y]$$

$$= \int_{a}^{b} \left[F(x, y + \delta y, y' + \delta y') - F(x, y, y') \right] dx$$

$$= \int_{a}^{b} \left[\frac{\partial F}{\partial y} \delta y + \frac{\partial F}{\partial y'} \delta y' \right] dx$$

$$= \int_{a}^{b} \left[\frac{\partial F}{\partial y} \delta y - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) \delta y \right] dx + \frac{\partial F}{\partial y'} \delta y \Big|_{a}^{b}$$

$$= \int_{a}^{b} \left[\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) \right] \delta y dx$$

So,

$$\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) = 0 \tag{3.2}$$

which is called Euler-Lagrange equation.

Part III Ordinary Differential Equations

Chapter 4 Brachistochrone Problem

First Order Equations

5.1 Homogeneous Equations

$$\frac{dy}{dx} = f(x, y)$$

Part IV Numerical Methods

Coursera: Numerical Methods for Engineers

6.1 Logistic Map

Mathematically, the logistic map is written

$$x_{n+1} = rx_n(1 - x_n), (6.1)$$

where r (sometimes also denoted μ) is a positive constant.

6.1.1 Fixed Point

The fixed point means that some point satisfies x = f(x). By solving

$$x = rx(1-x), \quad x = 0 \quad \text{or} \quad x = 1 - \frac{1}{r}$$

6.1.2 Period-2 Point

We say that x_1 and x_2 are a period-2 cycle of a one-dimensional map f(x) if

$$x_2 = f(x_1)$$
 and $x_1 = f(x_2)$ and $x_1 \neq x_2$.

Determine the period-2 cycle for the logistic map by solving the equation x = f(f(x)), with f(x) = rx(1-x).

Chapter 7
Linear Algebra

$\begin{array}{c} {\bf Part~V} \\ {\bf Others~To~Be~Orgnized} \end{array}$

Vector Calculus

8.1 Kronecker-Delta and Levi-Civita symbol

$$\epsilon_{ijk}\epsilon_{lmn} = \begin{vmatrix}
\delta_{il} & \delta_{im} & \delta_{in} \\
\delta_{jl} & \delta_{jm} & \delta_{jn} \\
\delta_{kl} & \delta_{km} & \delta_{kn}
\end{vmatrix}
= \delta_{il}(\delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km}) - \delta_{im}(\delta_{jl}\delta_{kn} - \delta_{jn}\delta_{kl})
+ \delta_{in}(\delta_{jl}\delta_{km} - \delta_{jm}\delta_{kl})$$
(8.1)

We use **Einstein sum convention**, then we can prove the following simpler and useful identities:

(a)
$$\epsilon_{ijk}\epsilon_{imn} = \delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km}$$

(b)
$$\epsilon_{ijk}\epsilon_{ijn} = 2\delta_{kn}$$

Proof. (a)

$$\begin{split} \epsilon_{ijk}\epsilon_{imn} &= \epsilon_{ijk}\epsilon_{lmn}\delta_{il} \\ &= \delta_{il}\delta_{il}(\delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km}) - \delta_{il}\delta_{im}(\delta_{jl}\delta_{kn} - \delta_{jn}\delta_{kl}) \\ &+ \delta_{il}\delta_{in}(\delta_{jl}\delta_{km} - \delta_{jm}\delta_{kl}) \\ &= \delta_{ii}(\delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km}) - \delta_{im}(\delta_{ji}\delta_{kn} - \delta_{jn}\delta_{ki}) \\ &+ \delta_{in}(\delta_{ij}\delta_{km} - \delta_{jm}\delta_{ki}) \\ &= 3(\delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km}) - (\delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km}) + (\delta_{jn}\delta_{km} - \delta_{jm}\delta_{kn}) \\ &= \delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km} \end{split}$$

$$\epsilon_{ijk}\epsilon_{ijn} = \epsilon_{ijk}\epsilon_{imn}\delta_{jm}$$

$$= \delta_{jm}(\delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km})$$

$$= \delta_{jj}\delta_{kn} - \delta_{jn}\delta_{kj}$$

$$= 2\delta_{kn}$$

8.2 Scalar and vector product

Definition 8.2.1. The scalar triple product is defined by $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})$ and the vector triple product is defined by $\mathbf{A} \times (\mathbf{B} \times \mathbf{C})$ where $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathbf{R}^3$.

Property 8.2.2. The scalar triple product has identities

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B}) \tag{8.2}$$

The vector triple product can be expanded as

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C})\mathbf{B} - (\mathbf{A} \cdot \mathbf{B})\mathbf{C}$$

$$\mathbf{B} \times (\mathbf{C} \times \mathbf{A}) = (\mathbf{B} \cdot \mathbf{A})\mathbf{C} - (\mathbf{B} \cdot \mathbf{C})\mathbf{A}$$

$$\mathbf{C} \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{C} \cdot \mathbf{B})\mathbf{A} - (\mathbf{C} \cdot \mathbf{A})\mathbf{B}$$
(8.3)

These identities can be proved by using Kronecker-Delta and Levi-Civita symbol.

Proof. Equation (8.2) can be expanded as following

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = A_i [\mathbf{B} \times \mathbf{C}]_i$$

$$= A_i \epsilon_{ijk} B_j C_k$$

$$\stackrel{i \leftrightarrow j}{=} B_i \epsilon_{jik} A_j C_k$$

$$= B_i \epsilon_{ikj} C_k A_j$$

$$= B_i [\mathbf{C} \times \mathbf{A}]_i$$

$$= \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A})$$

The i-th component of equation (8.3) can be expanded as following

$$[\mathbf{A} \times (\mathbf{B} \times \mathbf{C})]_{i} = \epsilon_{ijk} A_{j} [\mathbf{B} \times \mathbf{C}]_{k}$$

$$= \epsilon_{ijk} A_{j} \epsilon_{klm} B_{l} C_{m}$$

$$= (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) A_{j} B_{l} C_{m}$$

$$= A_{j} B_{i} C_{j} - A_{j} B_{j} C_{i}$$

$$= [(\mathbf{A} \cdot \mathbf{C}) \mathbf{B} - (\mathbf{A} \cdot \mathbf{B}) \mathbf{C}]_{i}$$

Furthermore, we can get following identities,

1. Jacobi identity

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) + \mathbf{B} \times (\mathbf{C} \times \mathbf{A}) + \mathbf{C} \times (\mathbf{A} \times \mathbf{B}) = 0. \tag{8.4}$$

2. scalar quadruple product

$$(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) = (\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D}) - (\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C}) \tag{8.5}$$

3. Lagrange's identity

$$|\mathbf{A} \times \mathbf{B}|^2 = |\mathbf{A}|^2 |\mathbf{B}|^2 - (\mathbf{A} \cdot \mathbf{B})^2 \tag{8.6}$$

8.3 Partial differentiation with non-independent variables

Example 8.3.1. Let $w = x^2 + y^2 + z^2$ where $z = x^2 + y^2$. Calculate $\partial w/\partial x$. There are two possible:

(a) x, y are independent

$$\frac{\partial w}{\partial x} = \frac{\partial}{\partial x} (x^2 + y^2 + (x^2 + y^2)^2)$$

= $2x + 2(x^2 + y^2)^2$
= $4x^2 + 4y^2x + 2x$.

(b) x, z are independent

$$\frac{\partial w}{\partial x} = \frac{\partial}{\partial x}(z + z^2) = 0.$$

To sum up, the value of $\partial w/\partial x$ depends on which variables are independent. To avoid the ambiguity, we should using the following notation:

Case (a) x, y are the independent variables: $\left(\frac{\partial w}{\partial x}\right)_y$

Case (b) x, z are the independent variables: $\left(\frac{\partial w}{\partial x}\right)_z$.

These are read, "the partial of w with respect to x, with y (resp. z) held constant".

Example 8.3.2.

$$w = f(x, y, z, t)$$
, where $xy = zt$,

then only three of the variables $x,\,y,\,z,\,t$ can be independent. Thus we would write expressions like

- (a) x, y are the independent variables: $\left(\frac{\partial w}{\partial x}\right)_y$
- (b) x, z are the independent variables: $\left(\frac{\partial w}{\partial x}\right)_z$.

Appendix A

LATEX Notes

A.1 LaTeX list: enumitem

List structures in LaTeX have three types:

- itemize for a bullet list
- enumerate for an enumerated list
- description for a descriptive list.

The description environment can have optional label:

\item[label text] Text of your description goes here...

A.1.1 Customizing lists

A.2 How to produce png file?

Fist use *standalone* package with option **preview**:

\documentclass[preview, convert={outext=.png}]{standalone}

Then compile tex source code:

latexmk -shell-escape textfile