1.2 Characteristics of Polynomial Functions (Part 1)

INVESTIGATING FINITE DIFFERENCES

A first difference or finite difference is the difference between **consecutive y-coordinates** for **evenly spaced integral x-coordinates**. To calculate a first difference, **subtract consecutive y-values**.

1. Complete the following table for the relation y = 2x + 1:

X	f(x)	$\Delta f(x)$
-2		
-1		
0		
1		
2		

\sim 1			•	
()h	serv	vat	เก	ns

How can you identify a linear relation?

In general, function in the form y = mx + b, is a

For a linear relation, all of the first differences are

The constant differences = ____× ____

2. Complete the following table for the relation $y = 3x^2 - 1$:

X	f(x)	Δf(x)	$\Delta^2 f(x)$
-2			
-1			
О			
1			
2			

Observations

In general, function in the form $f(x) = ax^2 + bx + c$ is a

Its first differences form an arithmetic sequence.

Its second differences are .

The constant differences = ____× ___

3. Complete the following table for the relation $y = 2x^3 + 1$:

X	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$
-2				
-1				
О				
1				
2				

Observations

In general, a function in the form $f(x) = ax^3 + bx^2 + cx + d$ is a ______. Its third differences are _____.

The constant differences = ____×

Summary and Extension:

1. If the first differences are e	gual:

_	_1	
_	The function is a	degree function;
	THE full choll is a	ucgice function,

2. If the second differences are equal:

3. If the third differences are equal:

GENERAL RULE:

- Finite differences can be used to determine the degree of a polynomial function.
- For example, the fourth differences of a quartic function are constant.
- The constant finite differences have the same sign as the leading coefficient.
- The constant finite differences are equal to $a[n \times (n-1) \times ... \times 2 \times 1] = an!$ where a is the value of the leading coefficient. (The constant differences = an!)

Example 1:

The table of values represents a polynomial function.

X	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$
-2	- 54				
-1	-8				
О	О				
1	6				
2	22				
3	36				
4	12				
5	-110				

Use finite differences to determine:

(a) The degree of the polynomial function	
---	--

(b) The sign of the leading coefficient _	
---	--

(c) The value of the leading coefficient	
--	--

Example 2: The points (1,-4), (2,0), (3,30), (4, 98) (5,216) (6,396) are on a function. Find the equation of the function.

X	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$
1	- 4				
2	О				
3	30				
4	98				
5	216				
6	396				

Method:

- Step 1: Complete a table of values to determine the type of function and its general equation.
- Step 2: Find the equations for consecutive values of y.
- Step 3: Create a system of equations and solve for the variables 'a', 'b', and 'c'.
- Step 4: Write the equation.

Example 3: The points (1,0), (2,-2), (3,-2), (4,0), (5,4), (6,10) are on a function. Find the equation of the function.

X	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$
1					
2					
3					
4					
5					
6					

Exit Card!

- 1. For the polynomial function $f(x) = (9x^3 9x^2 9x + 9)(x^2 x + 2)$. State:
 - (a) the degree of the function:_____
 - (b) the leading coefficient:
 - (c) the value of the constant finite differences:
- 2. A polynomial function has a constant fourth difference of -132. Determine
 - (a) the type of the function:
 - (b) the degree of the function _____
 - (c) the value of the leading coefficient:

Practice

- 1. In each of the following, the points given lie on the graph of a polynomial f unction. Determine the equation of the function using the algebraic method developed in class:
 - a) (1,4), (2,15), (3,30), (4,49), (5,72), (6,99)
 - b) (1, -34), (2,-42), (3,-38), (4,-16), (5,30), (6,106)
 - c) (1,12), (2,-10), (3,-18), (4,0), (5,56), (6,162)
 - d) (1,-2), (2,-4), (3,-6), (4,-8), (5,14), (6,108), (7,346)
- 2. The first three square pyramidal numbers are 1,5, and 14, as shown in the diagram. Find the next three pyramidal numbers and determine the equation of a polynomial function that gives the xth square pyramidal number.

Warm-Up

Determine the equation of the function that has the following points on its curve:

$$(-2,-24), (-1,-7), (0,-2), (1,-3), (2,-4), (3,1)$$
.

X	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$
-2	-24				
-1	-7				
О	-2				
1	-3				
2	- 4				
3	1				