

PREDICTING HEART DISEASE: HARNESSING MACHINE LEARNING FOR EARLY DETECTION

CONTENT

- Introduction
- Data exploration
- Visualization
- Machine learning

INTRODUCTION TO HEART DISEASE

The World Health Organization reports that 12 million people die from heart disease each year.

Half of these deaths are caused by cardiovascular disease.

Early diagnosis of cardiovascular disease can help people make lifestyle changes to reduce their risk of complications.

This research aims to identify the most important risk factors for heart disease and predict overall risk.

DATASET ITMES

Column Descriptions:

- id (Unique id for each patient)
- age (Age of the patient in years)
- origin (place of study)
- sex (Male/Female)
- cp chest pain type
 - 1. typical angina.
 - 2. atypical angina.
 - 3. non-anginal.
 - 4. asymptomatic.
- trestbps resting blood pressure (resting blood pressure (in mm Hg on admission to the hospital))
- chol (serum cholesterol in mg/dl)
- fbs (if fasting blood sugar > 120 mg/dl)
- restecg (resting electrocardiographic results)
- -- Values: [normal, stt abnormality, lv hypertrophy]
- thalach: maximum heart rate achieved
- exang: exercise-induced angina (True/ False)
- oldpeak: ST depression induced by exercise relative to rest
- slope: the slope of the peak exercise ST segment
- ca: number of major vessels (0-3) colored by fluoroscopy
- thal: [normal; fixed defect; reversible defect]
- num: the predicted attribute

DATA EXPLORATION

Checking the data shape (920, 16)

age column (28, 77)

#	Column	Non-Null Count	Dtype
0	id	920 non-null	int64
1	age	920 non-null	int64
2	sex	920 non-null	object
3	dataset	920 non-null	object
4	ср	920 non-null	object
5	trestbps	861 non-null	float64
6	chol	890 non-null	float64
7	fbs	830 non-null	object
8	restecg	918 non-null	object
9	thalch	865 non-null	float64
10	exang	865 non-null	object
11	oldpeak	858 non-null	float64
12	slope	611 non-null	object
13	ca	309 non-null	float64
14	thal	434 non-null	object
15	num	920 non-null	int64
<pre>dtypes: float64(5), int64(3), object(8)</pre>			

VISUALIZATIONS

Mean 53.51086956521739 Median 54.0 Mode 0 54

AGE COLUMN DISTRIBUTION

GENDER BASE DISTRIBUTION

Male percentage in the data: 78.91% Female percentage in the data: 21.09%

EXPLORING AGE BY DATASET

Mean of the dataset: dataset
Cleveland 54.351974
Hungary 47.894198
Switzerland 55.317073
VA Long Beach 59.350000
Name: age, dtype: float64

Median of the dataset: dataset
Cleveland 55.5
Hungary 49.0
Switzerland 56.0
VA Long Beach 60.0
Name: age, dtype: float64

Mode of the dataset: dataset
Cleveland 58
Hungary 54
Switzerland 61
VA Long Beach [62, 63]
Name: age, dtype: object

EXPLORING CP (CHEST PAIN)

EXPLORING CP BY DATASET

RESTING BLOOD PRESSURE

TRESTBPS

MACHINE LEARINING MODEL EVALUATION

Model Logistic Regression Accuracy: 0.4945652173913043 Model Gradient Boosting Accuracy: 0.6358695652173914

Model KNeighbors Classifier Accuracy: 0.592391304347826

Model Decision Tree Classifier Accuracy: 0.6141304347826086

Model AdaBoost Classifier Accuracy: 0.5760869565217391 Model Random Forest Test Accuracy: 0.6086956521739131

Model XGboost Classifier Accuracy: 0.625

Model Support Vector Machine Accuracy: 0.5815217391304348

Model Naye base Classifier Accuracy: 0.5217391304347826

Best Model: GradientBoosting

CONCULSION

The minimum age to have a heart disease start from 28 years old

Most of the people get heart disease at the age of 53 to 54 years.

We have the highest number of people from Clveland(304) and lowest from Switzerland (123)

The highest number of female in this dataset are from Cleveland(97) and lowest are from VA Long Beach(6)

The highest number of male are from Hungary(212) and lowest from Switzerland(113)

The age in which highest number of Typical Angina happened is 62 to 63 years.

The age in which highest number of Asymtomatic Angina happened is 56 to 57 years.

The age in which highest number of Non Anginal happened is 54 to 55 years.

The age in which highest number of Atypical Angina happened is 54 to 55 years.

Thanks!

Abdallah Mohamed Shokry a.shokry811@email.com