姓名: 专业: 学号:

第 01 周作业

练习 1. 1. $y^4 + y'' + 2x = 0$ 的阶是 ______。

2.
$$(7x-6)dy + (x+y)dx = 0$$
 的阶是 _______。

练习 2. 验证 $y = Cx - \frac{1}{4}C^2$ (C 为任意常数) 是常微分方程 $y = xy' - \frac{1}{4}(y')^2$ 的通解。验证 $y = x^2$ 也是解,由此说明通解不一定包含所有解。

- **练习 3.** 1. 假设 $y_1 = y_1(x)$, $y_2 = y_2(x)$ 是微分方程 y'' + p(x)y' + q(x)y = 0 的解,判断 $y = C_1y_1 + C_2y_2$ (其中 C_1 , C_2 为任意常数) 是否也是该方程的解?
 - 2. 假设 $y_1 = y_1(x)$, $y_2 = y_2(x)$ 是微分方程 y'' + p(x)y' + q(x)y = f(x) 的解,判断 $y = C_1y_1 + C_2y_2$ (其中 C_1 , C_2 为任意常数) 是否也是该方程的解?

练习 4. (关于半衰期)设 M(t) 为某放射物质在时刻 t 的含量。已知任何时刻,该物质衰变速度与剩余含量之比为 $-\lambda$ (λ 是正常数)。问需要经过多长时间,该物质含量减少为初始时刻 t=0 时含量的一半?

练习 5. 已知弹簧系统(详细见课件)满足方程

$$x'' + \frac{9}{4}x = 0$$

问该物体的运动周期是多少? 假设物体的初始位置 x(0)=2,初始速度 x'(0)=-1,求该物体的位置函数 x(t)。

练习 6. 求出 $y' = x^2y$ 的通解。

练习 7. 求解初值问题
$$\begin{cases} xydx + (x^2 + 1)dy = 0 \\ y(0) = 1 \end{cases}$$
 。

练习 8. 求解初值问题 $\begin{cases} \cos y dx + (1 + e^{-x}) \sin y dy = 0 \\ y(0) = \frac{\pi}{4} \end{cases}$ 。

练习 9. 求出 $(x^2 + y^2)dx - xydy = 0$ 的通解。

练习 10. 求出 $y' - \frac{3y}{x} + \frac{1}{2}x = 0$ 的通解。

练习 11. 求解微分方程 $\begin{cases} y' + y \cot x = 5e^{\cos x} \\ y(\frac{\pi}{2}) = -4 \end{cases}$.

练习 12. 求一曲线的方程,这曲线通过原点,并且曲线上任一点 (x, y) 处的斜率是 3x + y。

练习 13. 设函数 f(x) 满足方程 $f'=\gamma f$ $(\gamma$ 为常数)。证明: $\left(\frac{f(x)}{e^{\gamma x}}\right)'=0$,从而 $f(x)=Ce^{\gamma x}$ 。(想想:为什么这就说明 $f'=\gamma f$ 的通解 $f(x)=Ce^{\gamma x}$ 包含了所有解)

- **练习 14.** (一阶线性微分方程的另一种解法) (1) 设 y(x) 是可微函数,p(x) 是连续函数,验证成立恒等式 $y'+p(x)y=e^{\int -p(x)dx}(e^{\int p(x)dx}y)'$ 。 (2) 设函数 y(x) 满足方程 y'+p(x)y=q(x)。利用上述恒等式证明: $y(x)=\left[\int e^{\int p(x)dx}q(x)dx+C\right]e^{\int p(x)dx}$ 。 (想想: 为什么这就说明一阶线性微分方程的通解等同于全部解)