MO 25:

VZÁJOMNÁ POLOHA LINEÁRNYCH ÚTVAROV V E₃

• p: $A[a_1, a_2, a_3]$ $s(s_1, s_2, s_3)$

$$p: x = a_1 + t.s_1 \\ y = a_2 + t.s_2 \\ z = a_3 + t.s_3, t \in R$$

Vzájomná poloha priamok:

- priamka p, priamka q
- q: $X[x_1, x_2, x_3]$ \vec{u} (u₁, u₂, u₃)

$$\begin{aligned} q\colon & & x = x_1 + v.u_1 \\ & & y = x_2 + v.u_2 \\ & & z = x_3 + v.u_3, \, v {\in R} \end{aligned}$$

Totožné priamky:

- parametrický tvar:
 - p ≡ q
 - s = k. u; $k \in R \{0\}$
 - $\overrightarrow{AX} = f. \ \vec{s}; f \in R \{0\}$
- <u>všeobecný tvar:</u>
 - sú rovnobežné, splývajúce a majú všetky spoločné body
- smernicový tvar:
 - $k_1 = k_2$; $q_1 = q_2$

Rovnobežné:

- parametrický tvar:
 - s = k.u; $k \in R \{0\}$
 - $\overrightarrow{AX} \neq f$. \vec{s} ; $f \in R \{0\}$
- všeobecný tvar:
 - nemajú žiaden spoločný bod
- smernicový tvar:
 - $k_1 = k_2; q_1 \neq q_2$

Rôznobežné a mimobežné:

- $\vec{s} \neq k \cdot \vec{u}$; $k \in R \{0\}$
- q = p

$$x_1 + v.u_1 = a_1 + t.s_1$$

$$x_2 + v.u_2 = a_2 + t.s_2$$

 $v = ?$

t = ?

t, v dosadíme do 3. rovnice:

$$x_3 + v.u_3 = a_3 + t.s_3$$

- všeobecný tvar:
 - → ak platí ⇒ rôznobežky (majú 1 spoločný bod)
 - → ak neplatí ⇒ mimobežky (nemajú spoločný bod)
- parametrický tvar:
 - rôznobežky: \vec{s} je s \vec{u} , \vec{v} lineárnou kombináciou
 - mimobežky: \vec{s} nie je s \vec{u} , \vec{v} lineárnou kombináciou

mimobežné:

Vzájomná poloha rovín:

$$\alpha$$
: $a_1x + b_1y + c_1z + d_1 = 0$

$$\beta$$
: $a_2x + b_2y + c_2z + d_2 = 0$

rovnobežné rôzne:

rovnobežné splývajúce:

 $n_{\alpha}(a_1,b_1,c_1); n_{\beta}(a_2,b_2,c_2) \rightarrow line \acute{a}rne \ z\acute{a}visl\acute{e}$

$$\rightarrow$$
 $n_{\beta} = k. n_{\alpha}$

$$d_2 \neq k. d_1$$

rôznobežné:

spoločná priamka - priesečnica $n_{\alpha}(a_1,b_1,c_1);\, n_{\beta}(a_2,b_2,c_2)$

→ lineárne nezávislé

Prienik priamky a roviny:

α:
$$3x + 4y - z + 12 = 0$$

p: $x = ...$
 $y = ...$
 $z = ...$ dosadíme do: α: $3x + 4y - z + 12 = 0 \Rightarrow$ zistíme, čomu sa rovná t

t dosadíme do parametrického vyjadrenia priamky p a dostaneme $P[x, y, z] \rightarrow$ prienik priamky a roviny

všeobecne:

$$\begin{array}{l} \overline{\alpha \colon ax + by + cz + d = 0} \\ p\colon x = a_1 + t. \ u_1 \\ y = a_2 + t. \ u_2 \\ z = a_3 + t. \ u_3, \ t \in R \end{array} \right\} \ x, \ y, \ z \ dosad \ me \ do \ \alpha$$

- → nekonečne veľa riešení priamka p leží v rovine α
- → 1 riešenie priamka má jeden spoločný bod s rovinou
- \rightarrow nemá riešenie priamka je rovnobežná rôzna s rovinou α

$$\overrightarrow{s_p}$$
. $\overrightarrow{n_\alpha} = 0 \Leftrightarrow p \parallel \alpha$

rovnobežné rôzne:

splývajúce:

rôznobežné:

Rez kocky rovinou:

- ak dva body ležia v jednej rovine, môžeme ich spojiť
- ak dve rovnobežné roviny sú rôznobežné s rovinou treťou, potom ich priesečnice sú rovnobežné
- majme tri navzájom rôznobežné roviny. Ak dve priesečnice sú rôznobežné, potom ich priesečníkom prechádza aj tretia priesečnica
- majme tri rôznobežné roviny. Ak dve z priesečníc sú rovnobežné, potom je s nimi rovnobežná aj tretia priesečnica.