topologia 5.06

7 czerwca 2020

6/1

T0, T1, T2 dziedziczne na podprzestrzenie

Dla tych aksjomatów oddzielania wynika to natychmiast z definicji topologii indukowanej. (Ogólnie mówią one o istnieniu zbiorów otwartych o pewnych własnościach dla każdej pary punktów i część wspólna takiego zbioru z podprzestrzenią daje nam żądany zbiór otwarty w podprzestrzeni.)

T3 dziedziczne na podprzestrzenie

Niech X to przestrzeń $T_3, Y \subseteq X$. Weźmy $y \in Y$ spoza F domkniętego w Y. Istnieje G domknięty w X taki, że $G \cap Y = F$. Skoro X jest T_3 , to istnieją rozłączne $U \supseteq G, V \ni y$ otwarte w X. $(U \cap Y) \supseteq F$ i $(V \cap Y) \ni y$ są rozłączne i otwarte w Y.

$T3\frac{1}{2}$ dziedziczne na podprzestrzenie

Niech X to przestrzeń $T_{3\frac{1}{2}}, Y \subseteq X$. Weźmy $y \in Y$ spoza F domkniętego w Y. Istnieje G domknięty w X taki, że $G \cap Y = F$. Skoro X jest $T_{3\frac{1}{2}}$, to istnieje ciągła $f \colon X \to [0,1]$ taka, że f(y) = 0 i $f[G] = \{1\}$. $f|_Y$ jest ciągła, $f|_Y(y) = 1$ i $f|_Y[F] = 1$.

Normalność dziedziczna na podprzestrzenie domknięte

Niech X to przestrzeń normalna, Y to domknięty podzbiór X. Niech A, B to rozłączne zbiory domknięte w Y. Skoro Y domknięty, to A, B są domknięte w X. Z normalności X istnieją rozłączne $U \supseteq A, V \supseteq B$ otwarte w X. $U \cap Y \supseteq A$ i $V \cap Y \supseteq B$ to rozłączne zbiory otwarte w Y.

6/2b

(trochę wyczyściłam z literówek) Weźmy ciąg Cauchy'ego względem d_Y . Załóżmy nie wprost, że nie jest to ciąg Cauchy'ego (x_i) względem którejś z metryk. Wówczas istnieje ε taki, że dla każdego k istnieją x_i, x_j takie, że $d(x_i, x_j) > \varepsilon$ i i, j > k. Wówczas jednak dla $\varepsilon' = 2^{-k} \min(1, \varepsilon)$ dla każdego k istnieją $x_i, x_j, i, j > k$ takie, że $d_Y(x_i, x_j) > \varepsilon'$, zatem nie jest to ciąg Cauchy'ego w d_Y . Sprzeczność. Skoro jest to ciąg Cauchy'ego względem każdej z podprzestrzeni, to ma granicę w każdej. Te granice są sobie równe. Zatem (x_i) ma granicę w przekroju.

6/5

Załóżmy nie wprost, że istnieje taka przestrzeń metryczna (X,d), że X jest przeliczalny oraz nie istnieje taki punkt $a \in A$, że $\{a\}$ jest otwarty. Zauważmy, że wtedy każdy singleton $\{a\}$ jest domkniętym zbiorem brzegowym: Istotnie suma $\bigcup_{x \in X \setminus \{a\}} B(x,d(x,a))$ jest zbiorem otwartym, który zawiera wszystkie

punkty poza a i nie zawiera a, natomiast brzegowość każdego punktu wynika, z tego, że gdyby pewien singleton $\{a\}$ nie był brzegowy to oznaczałoby to istnienie zbioru otwartego $\emptyset \subsetneq A \subseteq \{a\}$, czyli $A = \{a\}$. Zatem z twierdzenia Baire'a zbiór $\bigcup_{X} \{x\} = X$ jest zbiorem brzegowym, co jest nieprawdą,

bo IntX=X w każdej przestrzeni topologicznej. Otrzymana sprzeczność kończy dowód. Wynika z tego wprost, że (\mathbb{Q},d_e) nie jest metryzowalna w sposób zupełny - wówczas musiałny w tym zbiorze istinieć punkt izolowany natomiast każdy zbiór otwarty z bazy topologii na \mathbb{Q} ma postać $(a,b)\cap\mathbb{Q}$, w szczególności $|(a,b)\cap\mathbb{Q}|>1$.