Reg No.:\_\_\_\_

consecutive a's.}

Name:

# APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree Examination December 2021 (201) scheme)

Course Code: CST301
Course Name: FORMAL LANGUAGES AND AUTOMATA THEORY

Max. Marks: 100 **Duration: 3 Hours** PART A (Answer all questions; each question carries 3 marks) Marks 1 Draw the state transition diagram showing a DFA for recognizing the language 3 L over the alphabet set  $\Sigma = \{a, b\}$ :  $L = \{x \mid x \in \Sigma^* \text{ and the number of a in } x \text{ is divisible by 2 or 3} \}.$ Write a Regular Grammar G for the language:  $L = \{0^n \ 1^m : n, m \ge 1\}$ 2 3 3 Construct an  $\varepsilon$ -NFA for the regular expression (a+b)\*ab(a+b)\*3 Using homomorphism on Regular Languages, Prove that the language 4 3 L= $\{a^nb^nc^{2n} \mid n \ge 0\}$  is not regular. Given that the language  $\{a^n b^n : n \ge 1\}$  is not regular. 5 State Myhill-Nerode Theorem. 3 6 Write a Context-Free Grammar for the language  $L = \{wcw^r \mid w \in \{a,b\}^*\},\$ 3 w<sup>r</sup> represents the reverse of w. 7 Write the transition functions of PDA with acceptance by Final State for the 3 language  $L = \{a^n b^n : n \ge 0\}$ . 8 State Pumping Lemma for Context Free Languages. 3 9 Write the formal definition of Context Sensitive Grammar and write the CSG 3 for the language  $L = \{ a^n b^n c^n | n > = 1 \}.$ 10 Explain Chomsky hierarchy of languages. 3 PART B (Answer one full question from each module, each question carries 14 marks) Module -1 a) Draw the state-transition diagram showing a DFA for recognizing the language: 11 6  $L = \{x \in \{a,b\}^* \mid \text{ every block of five consecutive symbols in } x \text{ contains two } \}$ 

### 1100CST301122101

b) Draw the state-transition diagram showing an NFA N for the following 8 language L. Obtain the DFA D equivalent to N by applying the subset construction algorithm. L = {x ∈ {a, b} \* | x contains 'bab' as a substring}

7

7

6

8

7

7

7

7

- 12 a) Define Regular Grammar and write Regular Grammar G for the following language:  $L = \{x \in \{a, b\} * | x \text{ does not ends with 'bb' }\}$ 
  - b) Obtain the DFA over the alphabet set  $\Sigma = \{a, b\}$ , equivalent to the regular grammar G with start symbol S and productions:  $S \rightarrow aA \mid bS$ ,  $A \rightarrow aB \mid bS \mid a$  and

 $B \rightarrow aB \mid bS \mid a$ 

### Module -2

- 13 a) State and explain any three closure properties of Regular Languages.
  - b) Find the equivalent Regular Expression using Kleene's construction for the language represented by the following DFA.



- 14 a) Using pumping lemma for Regular Languages, prove that the language  $L = \{0^n \mid n \text{ is a perfect square}\}$  is not Regular.
  - b) Obtain the minimum state DFA for the following DFA.

|                  | a | b | = |  |
|------------------|---|---|---|--|
| <b>→</b> 0       | 1 | 2 |   |  |
| 1                | 4 | 5 |   |  |
| $(2)^r$          | 0 | 3 |   |  |
| $\overline{(3)}$ | 5 | 2 |   |  |
| 4                | 1 | 0 |   |  |
| . 5              | 4 | 3 |   |  |

## Module -3

- 15 a) Show the equivalence classes of Canonical Myhill-Nerode relation for the language of binary string which starts with 1 and ends with 0.
  - b) Consider the following productions:

 $S \rightarrow aB \mid bA$ 

 $A \rightarrow aS | bAA | a$ 

#### 1100CST301122101

## $B \rightarrow bS \mid aBB \mid b$

For the string 'baaabbba' find

- i) The leftmost derivation
- ii) The rightmost derivation
- iii) The parse tree
- 16 a) Construct the Grammars in Chomsky Normal Form generating the set of all strings over {a,b} consisting of equal number of a's and b's.
  - b) Find the Greibach Normal Form for the following Context Free Grammar 7 S $\rightarrow$ XA | BB, B $\rightarrow$ b | SB, X $\rightarrow$ b, A $\rightarrow$ a

### Module -4

- 17 a) Design a PDA for the language L = {ww<sup>r</sup> | w ∈ {a,b}\* }. Also illustrate the7 computation of the PDA on the string 'aabbaa'.
  - b) Construct a CFG to generate L(M) where  $M = (\{p, q\}, \{0, 1\}, \{X, Z_0\}, \delta, q, Z_0)$  7,  $\emptyset$  where  $\delta$  is defined as follows:

$$\delta(q, 0, Z_0) = (q, XZ_0)$$

$$\delta(q, 0, X) = (q, XX)$$

$$\delta(q, 1, X) = (p, \varepsilon)$$

$$\delta(p, 1, X) = (p, \varepsilon)$$

$$\delta(p, \varepsilon, X) = (p, \varepsilon)$$

$$\delta(p, \varepsilon, Z_0) = (p, \varepsilon)$$

- 18 a) Using pumping lemma for Context free languages, prove that the language 7  $L = \{ a^n b^n c^n | n > = 1 \}.$ 
  - b) Prove that CFLs are closed under Union, Concatenation and Homomorphism.

### Module -5

- 19 a) Design Linear Bounded Automata for the language  $L = \{ a^n b^n c^n | n \ge 1 \}$ .
  - b) Design a Turing Machine for the language  $L = \{ a^n b^{2n} \mid n \ge 1 \}$ . Illustrate the computation of TM on the input 'aaabbbbbb'.
- 20 a) Design a Turing Machine to obtain the product of two natural numbers a and b

  5 both represented in unary on the alphabet 0. For example, number 5 is

  7 represented as 00000 ie 0<sup>5</sup>. Assume that initially the input tape contains 0<sup>a</sup>10<sup>b</sup>

  8 and Turing machine should halt with 0<sup>a\*b</sup> as the tape content.
  - b) Prove that 'Turing Machine halting problem' is undecidable.

n' is undecidable. 7

\*\*\*\*