Practical Invalid Curve Attack Using Quadratic Twist

Pierre Chrétien

February 2025

1 Introduction

The so called Invalid curve attack is a real threat for cryptographic protocols based on elliptic curves. The attack has first been presented in [2] and the use of twists was described in [4]. OpenPGP.js prior to 4.2.0 was found to be vulnerable¹. The Node.js secp256k1-node allows bindings to the "Bitcoin curve" secp256k1 and was found to be vulnerable² to small subgroup attacks. Bluetooth was proved to be vulnerable to a "Fixed Coordinate" variant [3]. Edwards model has also been examined in [5]. The SafeCurves website and the associated paper [1] point out as "An ECC implementor can stop an invalid-curve attack by checking whether the input point Q satisfies the correct curve equation; [...] But this creates a conflict between simplicity and security. An implementation that does not include this check is simpler and more likely to be produced, and will pass typical functionality tests."

The rest of the paper is organized as follows. Section 2 recalls the basics mathematical concepts used, in particular about discrete logarithm problem (DLP) and twists of elliptic curves. Section 3 presents the general setting of the attack and ways to exploit poor implementation and weak curves. Section 4 is a complete walkthrough example with a toy curve E. A comprehensive study of morphisms and the quadratic twist E_d allows to solve the challenge DLP not in $E(\mathbb{F}_{q^2})$ (as usually seen in Invalid Curve Attack write-ups) but instead in $E(\mathbb{F}_q)$ and $E_d(\mathbb{F}_q)$. This paper has an expository role.

2 Background Material

Notations: We will denote by \mathbb{F}_q the finite field with $q = p^n$ elements where $p \geq 5$ and $n \in \mathbb{N} - \{0\}$. We will denote by E/\mathbb{F}_q an elliptic curve defined over \mathbb{F}_q . The reader is assumed to be familiar with basic theory of elliptic curves.

Short Weierstrass equations. Since $p \geq 5$, every elliptic curve E/\mathbb{F}_q may be written as

$$E: y^2 = x^3 + ax + b, \ a, b \in \mathbb{F}_a.$$

This is a so called short Weierstrass form of the curve E defined over \mathbb{F}_q . The point at infinity of E is denoted by \mathcal{O}_E .

Remark 1. The condition $p \ge 5$ is not a restriction in our context since p will usually be a large prime.

Automorphisms. Let E_1/\mathbb{F}_q and E_2/\mathbb{F}_q be elliptic curves. These curves may be seen over $\overline{\mathbb{F}_q}$, i.e. coefficients of equations defining E_i may be seen as lying in $\overline{\mathbb{F}_q}$ instead of in \mathbb{F}_q . Every geometric isomorphism of elliptic curves $\phi/\overline{\mathbb{F}_q}$ from $E_1/\overline{\mathbb{F}_q}$ to $E_2/\overline{\mathbb{F}_q}$ has an affine part of the form

$$\phi(x,y) = (u^2x + r, u^3y + su^2x + t). \tag{1}$$

for $u \in \overline{\mathbb{F}_q}^*$, $r, s, t \in \overline{\mathbb{F}_q}$. The isomorphism ψ/\mathbb{F}_q is said to be defined over \mathbb{F}_q or rational if $u, r, s, t \in \mathbb{F}_q$.

Proposition 1. Let E_i/\mathbb{F}_q , $i \in \{1,2\}$ be elliptic curves given by short Weierstrass equations

$$E_i: y^2 = x^3 + a_i x + b_i, \quad a_i, b_i \in \mathbb{F}_q.$$

A geometric isomorphism ϕ from E_1 to E_2 is of the form

$$\phi(x,y) = (u^2x, u^3y).$$

Proof. This is included as a first step to fully understand isomorphisms in the quadratic twist case. Let $(x, y) \in E_1$ and ϕ as given by (1). Applying ϕ to the equation of E_1 and expanding yields

$$y^{2} = x^{3} + a_{1}x + b_{1}$$

$$\Leftrightarrow (u^{3}y + su^{2}x + t)^{2} = (u^{2}x + r)^{3} + a_{1}(u^{2}x + r) + b_{1}$$

$$\Leftrightarrow u^{6}y^{2} + s^{2}u^{4}x^{2} + t^{2} + 2u^{5}sxy + 2u^{3}ty + 2tsu^{2}x = u^{6}x^{3} + 3ru^{4}x^{2} + 3r^{2}u^{2}x + r^{3} + a_{1}u^{2}x + a_{1}r + b_{1}(*)$$

¹https://www.cve.org/CVERecord?id=CVE-2019-9155

²https://nvd.nist.gov/vuln/detail/CVE-2024-48930

Identifying coefficients of xy and y with those of $y^2 = x^3 + a_2x + b_2$ yields s = 0, t = 0 (recall that $u \neq 0$ and $p \neq 2$).

$$(*) \Leftrightarrow u^6 y^2 = u^6 x^3 + 3ru^4 x^2 + 3r^2 u^2 x + r^3 + a_1 u^2 x + a_1 r + b_1$$

Then, identifying the coefficient of x^2 with the short equation of E_2 yields r=0 (here we use $p\neq 3$). Thus $\phi(x,y) = (u^2x, u^3y)$. We conclude with the following computations that will be used in the sequel.

$$u^{6}y^{2} = u^{6}x^{3} + a_{1}u^{2}x + b_{1}$$

$$\Leftrightarrow y^{2} = x^{3} + \frac{a_{1}}{u^{4}}x + \frac{b_{1}}{u^{6}}$$

$$\Leftrightarrow \frac{a_{1}}{u^{4}} = a_{2}, \quad \frac{b_{1}}{u^{6}} = b_{2} \qquad (**)$$

Proposition 2. Let $p \ge 5$ and E be an elliptic curve given by short Weierstrass equation $E: y^2 = x^3 + ax + b, \ a, b \in \mathbb{F}_q$. The j-invariant of E is defined to be

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}.$$

Let E_1/\mathbb{F}_q , E_2/\mathbb{F}_q be elliptic curves, there exists an isomorphism $\phi/\overline{\mathbb{F}_q}$ from E_1 to E_2 if and only if $j(E_1) = j(E_2)$.

1. We insist that the j-invariant classifies **geometric** isomorphism classes of elliptic curves over \mathbb{F}_q .

2. Since E has a short equation, j(E) has the special form given above. Thus $j(E) \notin \{0, 1728\} \Leftrightarrow a, b \in \mathbb{F}_q^*$.

2.1Twists of Elliptic Curves

Twists. Non trivial twists of E/\mathbb{F}_q are elliptic curves E'/\mathbb{F}_q being isomorphic to E when viewed over $\overline{\mathbb{F}_q}$ but not isomorphic to E when viewed over \mathbb{F}_q . Let E/\mathbb{F}_q be an elliptic curve in short Weierstrass equation $y^2 = x^3 + ax + b$. Recall that $q = p^n$ and $p \ge 5$, so it is possible to write such an equation for E.

Definition 1. Le E/\mathbb{F}_q be an elliptic curve. A twist of E is an elliptic curve E_t/\mathbb{F}_q such that there is a geometric isomorphism $\phi/\overline{\mathbb{F}_q}$ of elliptic curves $\phi: E \simeq E_t$. A twist E_t of E is trivial if there exists an isomorphism ψ of elliptic

Definition 2. Let $d \in \mathbb{F}_q^*$. The twist E_d of E by d is the elliptic curve given in short Weierstrass equation

$$E_d: y^2 = x^3 + d^2ax + d^3b.$$

Remark 3. We did not specify that E_d is non trivial. Actually, let δ be a square root of d in $\overline{\mathbb{F}_q}$ i.e. $\delta^2 = d$, then

$$\phi: E \to E_d$$

$$(x,y) \mapsto \left(\frac{x}{d}, \frac{y}{d\delta}\right)$$

is a geometric isomorphism. It matches relations (**) with $a_1=a,b_1=b,a_2=ad^2,b_2=bd^3$ and $d=\frac{1}{a}$.

Proposition 3. Assume that $j(E) \neq 0,1728$. The twist E_d is trivial if and only if $d \in (\mathbb{F}_q^*)^2$.

Proof. (\Rightarrow) Assume that there exists a rational isomorphism ψ from E to E_d . According to Proposition 1

$$\exists u \in \mathbb{F}_q^*, \ \psi(x,y) = (u^2x, u^3y)$$

According to (**), $\frac{a}{u^4} = ad^2$ and $\frac{b}{u^6} = bd^3$. The assumption about j(E) is equivalent to $a, b \neq 0$. Thus $\frac{1}{u^4} = d^2$, $\frac{1}{u^6} = d^3$ and $d = \frac{d^3}{d^2} = \frac{1}{u^2} \in (\mathbb{F}_q^*)^2$. (\Leftarrow) Conversely, let $\delta \in \mathbb{F}_q^*$ such that $\delta^2 = d$. Then a rational isomorphism from E to E_d is

$$\psi(x,y) = \left(\frac{x}{d}, \frac{y}{d\delta}\right)$$

Proposition 4. Assume that $j(E) \neq 0,1728$. Then a twist E_t/\mathbb{F}_q of E/\mathbb{F}_q is either trivial or isomorphic over \mathbb{F}_q to E_d/\mathbb{F}_q for some $d \in (\mathbb{F}_q^*) \setminus (\mathbb{F}_q^*)^2$.

Proof. Assume that E_t/\mathbb{F}_q is a non trivial twist of E/\mathbb{F}_q with isomorphism $\phi: E \to E_t$ given by $\phi(x,y) = (u^2x, u^3y)$, $u \notin \mathbb{F}_q$. Let $E_t: y^2 = x^3 + a_tx + b_t$, $a_t, b_t \in \mathbb{F}_q$, thus (**) yields

$$a_t = \frac{a}{u^4}, b_t = \frac{b}{u^6}$$

Then $u^2 = \frac{ba_t}{ab_t} \in \mathbb{F}_q$, i.e. $u \notin \mathbb{F}_q$ but $u^2 \in \mathbb{F}_q$. This means that $u \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$. Let $d := \frac{1}{u^2}$, then $a_t = d^2a, b_t = d^3b$ and $\phi(x,y) = \left(\frac{x}{d}, \frac{uy}{d}\right)$ gives an isomorphism.

Remark 4. Proposition 3 is wrong if p < 5. For example, let p = q = 3, $E : y^2 = x^3 + x + 1$ and d = 2. In this case, E is isomorphic to $E_d : y^2 = x^3 + x + 2$ with ψ given by constants (u, r, s, t) = (2, 2, 0, 0). So E_d is a trivial twist of E but d is non square modulo 3. Note that the general definition of j(E) when p = 3 gives here j(E) = 0.

Order of group of rational points. The group of rational points $E(\mathbb{F}_q)$ has order $\sharp E(\mathbb{F}_q) = q+1-t$ where t is the Trace of Frobenius. An extensive description of the Frobenius endomorphism is out scope for this paper, we only need some basics facts we recall below.

Proposition 5. 1. (Hasse Bound) One has $|t| \le 2\sqrt{q}$.

2. One has $\sharp E_d(\mathbb{F}_q) = q+1+t$, thus $|\sharp E_d(\mathbb{F}_q) - \sharp E(\mathbb{F}_q)| = |2t| \le 4\sqrt{q}$.

Proof. 1. The proof of Hasse Bound is technical, the interessted reader may refer to V Theorem 1.1 from [6]

2. We include this proof to give some insight into how points distribute over $E(\mathbb{F}_q)$ and $E_d(\mathbb{F}_q)$. We will prove that

$$\sharp E(\mathbb{F}_q) + \sharp E_d(\mathbb{F}_q) = 2q + 2 \quad (\dagger)$$

substituting $\sharp E(\mathbb{F}_q) = q + 1 - t$ in (†) gives the result.

Let $f(x) = x^3 + ax + b$, $d \in \mathbb{F}_q^*$ be non square in \mathbb{F}_q and $E_d : Y^2 = X^3 + d^2aX + d^3b$. The following change of variables on E_d (take care, this is not an automorphism of E_d but a tool to count points)

$$X = dx, Y = dy$$

yields $Y^2 = X^3 + d^2aX + d^3b \Leftrightarrow d^2y^2 = d^3x^3 + d^3ax + d^3b \Leftrightarrow y^2 = df(x)$.

- Let $x \in \mathbb{F}_q$ such that f(x) = 0, then $(x,0) \in E(\mathbb{F}_q)$ and $(xd,0) \in E_d(\mathbb{F}_q)$. Each curve gets one point.
- Let $x \in \mathbb{F}_q$ such that $f(x) \in (\mathbb{F}_q^*)^2$. Then $y^2 = f(x)$ has two solutions. Since d is non square, df(x) is non square and $y^2 = df(x)$ has no solution in \mathbb{F}_q . So E gets two points and E_d zero.
- Let $x \in \mathbb{F}_q$ such that $f(x) \notin (\mathbb{F}_q^*)^2$. Then $df(x) \in (\mathbb{F}_q^*)^2$ and $y^2 = df(x)$ has two solution in \mathbb{F}_q giving rise to two points on E_d . E gets zero point.

Let $E_a(\mathbb{F}_q) = E(\mathbb{F}_q) \setminus \{\mathcal{O}_E\}$ be the affine part of E and $E_{d,a}(\mathbb{F}_q) = E_d(\mathbb{F}_q) \setminus \{\mathcal{O}_{E_d}\}$ be the affine part of E_d . Each $x \in \mathbb{F}_q$ contributes for 2 points in $E_a(\mathbb{F}_q) \cup E_{d,a}(\mathbb{F}_q)$, note that $E_a(\mathbb{F}_q) \cap E_{a,d}(\mathbb{F}_q) = \emptyset$. Counting points at infinity once for each curve yields (\dagger) .

Remark 5. It is very significant that every $x \in \mathbb{F}_q$ lifts to $E(\mathbb{F}_{q^2})$ but about an half of those x lifts to $E(\mathbb{F}_q)$. Tracking the coefficient d as in the proof allows to lift points either in $E(\mathbb{F}_q)$ or in $E_d(\mathbb{F}_q)$, that is avoiding any reference to \mathbb{F}_{q^2} . The ultimate goal of this section about twist is this remark. It allows to solve the DLP not in $E(\mathbb{F}_{q^2})$ but in $E(\mathbb{F}_q)$ or $E_d(\mathbb{F}_q)$, speeding up the attack.

2.2 Discrete Logarithm Problem

Definition 3. Let G be a group in multiplicative notation. The **Discrete Logarithm Problem** (DLP) is : given $b, h \in G$ find $a \in \mathbb{Z}$ such that $h = b^a$.

Remark 6. The group law on an elliptic curve being usually written in additive notation, DLP for elliptic curves is rephrased as: given $P, B \in E(\mathbb{F}_q)$ find $a \in \mathbb{Z}$ such that P = aB. The DLP has a solution if and only if P is in the subgroup $\langle B \rangle$ generated by B.

The following discussion gives the necessaries notions when dealing with generic methods to solve the DLP and will be used in the last section. The generic discrete_log method from SageMath uses a combination of Pohlig-Hellman, Baby Step Giant Step (BSGS), Pollard's kangaroo (i.e. Pollard's Lambda), and Pollard's Rho.

- The Pohlig-Helmann method. Let n be the order of a point $B \in E(\mathbb{F}_q)$ and $n = \prod_{i=1}^m p_i^{n_i}$ be its prime factorization. The subgroup H generated by B is cyclic of order n, thus has a unique cyclic subgroup H_i of order $p_i^{n_i}$ for each $i \in [|1;m|]$. By means of the Chinese Remainder Theorem (CRT), solving the DLP in H boils down to solve it in each H_i . The subgroups H_i have order a prime power, which may still be quite large. One can reduce the DLP from H_i to subgroups \tilde{H}_i of order **exactly** p_i . We restrict ourselves to solving the DLP in the \tilde{H}_i 's.
- BSGS method is a collision finding algorithm to solve DLP that requires $\mathcal{O}(\sqrt{p_i})$ running time and $\mathcal{O}(\sqrt{p_i})$ storage. This gives a bound on the size of the p_i 's for which we can hope to solve the DLP with this method.
- Pollard's Rho (resp. Lambda) algorithm is solving the DLP with $\mathcal{O}(\sqrt{p_i})$ (resp. $\mathcal{O}(\sqrt{p_i})$) time complexity but $\mathcal{O}(1)$) (resp. $\mathcal{O}(\ln p_i)$) space complexity.

3 Invalid Curve Attack

Invalid Cuve Attack is presented in [4]. Let $E/\mathbb{F}_q: y^2=x^3+ax+b$ be the public curve of the cryptosystem on which the DLP is (assumed) hard.

Main idea: The vulnerabilty lies in the fact that a malicious user may send a point that is **not** on E/\mathbb{F}_q but on a weaker curve, say a quadratic twist, and then exploit it to solve an easier DLP. This is mainly due to b not beeing used for scalar multiplication on E in short Weierstrass form. Let's break it down.

- 1. Mallory may send an honest P=(x,y) on E and gets back $B:=\mathtt{k}.P$ from Bob. Mallory wants to recover the secret key \mathtt{k} . But Mallory may also send a malicious point $Q=(\tilde{x},\tilde{y})$ on another curve $\tilde{E}:y^2=x^3+ax+\tilde{b}$ (note that the a coefficient remains unchanged). Since formulae for computing $\mathtt{k}.Q$ do not involve b,\tilde{b} , Bob will correctly compute $\mathtt{k}.Q\in\tilde{E}$, believing he just made a computation on E.
- 2. Varying the curve \tilde{E} , i.e. varying $\tilde{b} \in \mathbb{F}_q$, Mallory collects various $k.Q_i$ for $Q_i \in \tilde{E}_i$. Choosing wisely the \tilde{E}_i 's and Q_i 's may produce several easy DLP.
- 3. Say that Mallory chooses \tilde{E}_i and $Q_i \in \tilde{E}_i$ of order n_i , let p_i be a prime divisor of n_i . Sending Q_i to Bob, Mallory receives $B_i := \mathtt{k}.Q_i$. Note that $\hat{Q}_i = \frac{n_i}{p_i}Q_i$ has order p_i . Mallory computes $\hat{B}_i = \frac{n_i}{p_i}B_i$, so that $\hat{B}_i = \mathtt{k}.\hat{Q}_i$. Mallory solves this DLP in the group $<\hat{Q}_i>$ of order p_i , thus recovers \mathtt{k} modulo p_i .
- 4. Iterating this process over various prime factors p_i of n_i , for various n_i on selected \tilde{E}_i gives k modulo many primes. By means of the CRT, Mallory recovers k modulo the product of the p_i 's. If k is known to be a, say, 2^{256} bits key and the product of the p_i is greater than 2^{256} then Mallory actually recovered k.

Remark 7. 1. Checking that the received point Q acutally lies on E stops the attack.

- 2. According to [1], a curve supporting "simple, fast, constant-time single-coordinate single-scalar multiplication [...]drastically limits the power of invalid-curve attacks" due to the fact that for a given $x \in \mathbb{F}_q$, formulae for single-coordinate ladders work for the original curve and the quadratic twist. So if the implementation is based on such ladders (e.g. Montgomery ladders), Mallory has only access to points on E and E_d but on no other curve \tilde{E} as above.
- 3. Even if $\sharp E(\mathbb{F}_q) = hp$ with p prime and h a small cofactor (a classical setting in cryptographic applications) then $\sharp E_d(\mathbb{F}_q)$ might have a prime factorization with many small primes (such numbers are called smooth). For example **brainpoolP256t1** curve has prime order but its quadratic twist has smooth order since it factors in a product of 7 primes of which 6 have bit length less than 42 (the last prime factor has bit length 89).

4 Walkthrough Example

In this section we give full details to implement the attack on a toy curve in a fake game between Bob and Mallory. The full code is available in FastInvalidAttack.py, containing some more explanations and comments.

Setting:

- You are given some ECDH challenge, assume moreover that the curve E is in short Weierstrass form.
- The implementation on Bob's side does not check whether the user passes a point actually on E.
- If the challenge uses two coordinates to compute on E, one may try a Small Subgroup Attack. So one may choose x such that it lifts as $Q_i = (x, y)$ of smooth order on a weak curve E_i . This is not the situation we are interested in.

• If the challenge uses single-coordinate to compute on E (with some sort of Montgomery scalar multiplication) this may be an Invalid Curve Attack restricting the choice of the weak E_i to the quadratic twist E_d .

Assume we are given a challenge where one plays the role of a malicious user Mallory interacting with Bob. Mallory sends a point P to Bob who computes B := k.P for some secret key k and sends back B. Mallory goal is to recover the secret key k. Assume moreover that Bob uses some sort of single-coordinate scalar multiplication.

- 1. Check the prime factorizations of $\sharp E(\mathbb{F}_q), \sharp E_d(\mathbb{F}_q)$. Check that they are smooth enough, i.e. have many prime factors with bit length less than, say, 40. Each of these orders only have one very large prime factor. Moreover check that these orders have **different** small prime factors. This implies that sending to Bob a point on E_d allows Mallory to recover the secret key k modulo some new prime factors compared to only sending points that lie on E.
- 2. One chooses a point $G_0 \in \mathcal{E}_d(\mathbb{F}_q)$ by lifting some $x \in \mathbb{F}_q$, this is done by trial and error until one finds x such that $f(x) \notin (\mathbb{F}_q)^2$.
- 3. Since $\sharp E_d(\mathbb{F}_q)$ has only one unhandleable big prime factor p_b for DLP, we restrict to the subgroup of order $n_0 = \frac{\sharp E_d(\mathbb{F}_q)}{p_b}$ by setting $\hat{G}_0 := p_b G_0$.
- 4. One chooses a point $G_1 \in \mathcal{E}(\mathbb{F}_q)$ by lifting some $x \in \mathbb{F}_q$, this is done by trial and error until one finds x such that $f(x) \in (\mathbb{F}_q)^2$.
- 5. Since $\sharp E(\mathbb{F}_q)$ has only one unhandleable big prime factor p_b' for DLP, we restrict to the subgroup of order $n_1 = \frac{\sharp E(\mathbb{F}_q)}{p_b'}$ by setting $\hat{G}_1 := p_b'G_1$.
- 6. Mallory sends the x-coordinates of \hat{G}_0 and \hat{G}_1 to Bob and gets back pubkey0 and pubkey1. Those are x-coordinates of points $P_0 \in E_d(\mathbb{F}_q)$ and $P_1 \in E(\mathbb{F}_q)$ such that

$$P_i = k\hat{G}_i$$

This is where using morphisms between E and E_d allows Mallory to dodge working in \mathbb{F}_{q^2} . Note that Bob uses a single-coordinate scalar multiplication (and no extra bit to identify y), thus Mallory knows the discrete logs only up to sign. Indeed, P_i and $-P_i$ have the same x-coordinate due to the short Weierstrass form, Mallory may have recovered k or -k (modulo n_i).

7. Mallory solves these two DLP to recover k modulo n_0 and n_1 . By means of the CRT, Mallory recovers k modulo n_0n_1 (note that n_0, n_1 are coprime). Since $n_0 \times n_1 \ge \sharp E(\mathbb{F}_q)$, Mallory actually recovered k.

Remark 8. Note that points 2. and 3. above are usually done in Invalid Curve Attack write-ups in $E_d(\mathbb{F}_{q^2})$, thus the DLP involving G_0 is solved over \mathbb{F}_{q^2} implying a significant slow down of the attack. If the challenge has to be solved under some time constraints, this could be an hindering.

References

- [1] Daniel J. Bernstein and Tanja Lange. Safe curves for elliptic-curve cryptography. Cryptology ePrint Archive, Paper 2024/1265, 2024.
- [2] Ingrid Biehl, Bernd Meyer, and Volker Müller. Differential fault attacks on elliptic curve cryptosystems. In Mihir Bellare, editor, *Advances in Cryptology CRYPTO 2000*, pages 131–146, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.
- [3] Eli Biham and Lior Neumann. Breaking the bluetooth pairing the fixed coordinate invalid curve attack. Cryptology ePrint Archive, Paper 2019/1043, 2019.
- [4] P.-A. Fouque, R. Lercier, D. Réal, and F. Valette. Fault Attack on Elliptic Curve with Montgomery Ladder Implementation. In FDTC '08. 5th Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 92–98. IEEE-CS Press, August 2008.
- [5] Samuel Neves and Mehdi Tibouchi. Degenerate curve attacks. Cryptology ePrint Archive, Paper 2015/1233, 2015.
- [6] Joseph H Silverman. The Arithmetic of Elliptic Curves. Graduate texts in mathematics. Springer, Dordrecht, 2009.