A-Level Mathe

Shao Hong

Contents

1	A1:	Inequalities and Equations
	1.1	Solving Inequalities
		1.1.1 Rational Inequalities
	1.2	Modulus Inequalities
2	B1(.	A): Graphing Techniques (Part I)

A1: Inequalities and Equations

1.1 Solving Inequalities

1.1.1 Rational Inequalities

General Methods

- 1. Quadratic formula for factorisation / finding roots (of polynomial).
- 2. Completing the square.
- 3. Discriminant/Completing the Sq to eliminate* factors which are always positive or negative (e.g. removing $x^2 - 3x + 4$). Note to include coefficient of x^2 in argument.
- 4. GC (include sketch).
- 5. Rational Functions^a: Move everything to one side (+,-), then use number line.
- 6. Number line (more complicated functions).

Important Notes

- \Box Eliminating Factors only a works for c = 0 in $f(x) \ge c$ or $f(x) \le c$.
- \Box Discriminant include coefficient of x^2 in argument.
- □ Rational functions exclude the values that causes division by zero to occur.
- \Box Cross multiplication preserves order for $\frac{x}{y} < \frac{x'}{y'}$ iff y and y' are both positive or negative.
- \Box Squaring preserves order for x < y iff x and y are both positive or negative.

Modulus Inequalities 1.2

Fact. Given $x \in \mathbb{R}$, we have that

- $|x| \geq 0$,
- $|x^2| = |x|^2 = x^2$,
- $\bullet \ \sqrt{x^2} = |x|.$

And as long as $x \in \mathbb{R}^+$,

$$\bullet \ \sqrt{x}^2 = |x|.$$

^aFractions of Polynomials

^aCounterexample: $P(x) = x(3x^2 - 9x + 10) \le 2$ iff $x \le 2$ is false. E.g.: $P(1.8) = 6.336 \le 2$. ^bOtherwise, note the counterexample $\frac{1}{2} < \frac{1}{-3}$.

Useful Properties

For every $x, k \in \mathbb{R}$:

- (a) $|x| < k \text{ iff}^{a} k < x < k$.
- (b) |x| > k iff x < -k or x > k.

(of course, similarly applies for the non-strict ordering \leq)

^aNotice that k > 0 here since $0 \le |x| < k$.

Important Notes

 \circ Note that when solving for |x| = y, |x| < y, etc, y must be greater than or equal to 0. In other words, there may be solutions we will need to reject. (For <, equality is of course not allowed.)

Important Notes

- \triangle Carelessness: Look at the question carefully! If they ask for a set of values, then rmb to give it as a set!
- \triangle Exponentiation and Logarithms: Simply use ln and avoid \log_c for $c<1.^a$

 a Order is Preserved under exponentiation/logarithms if the base is $larger\ than$ one. Otherwise, when it is $less\ than$ one, the order is reversed. https://www.desmos.com/calculator/gd8z5fa0bg

B1(A): Graphing Techniques (Part I)

General Definitions

- 1. **Lines of Symmetry**: A *line of symmetry* of a function is a line, such that the function is a reflection of itself about that line.
- 2. Horizontal Asymptotes: A (horizontal) line g(x) = c is the horizontal asymptote of the curve f(x) iff $\lim_{x\to\infty} f(x) = c$ (or with $-\infty$ instead of ∞).
- 3. Vertical Asymptotes: A (vertical) line x = c is a vertical asymptote of the curve f(x) iff $\lim_{x\to c} f(x) = \infty$ or $-\infty$.
- 4. **Oblique Asymptotes**: A line g(x) = mx + c where $m \neq 0$ is an *oblique asymptote* of the curve f(x) iff $\lim_{x\to\infty} [f(x) g(x)] = 0$ (or with $-\infty$ instead of ∞).

Curve Sketching (Rational Funcs)

- S Stationary points
- I Intersection with axes
- A Asymptotes
- i Know how to sketch the graphs of $y = \frac{ax+b}{cx+d}$ and $y = \frac{ax^2+bx+c}{dx+e}$.
- ii Rectangular Hyperbolas (of the form $y = \frac{ax+b}{cx+d}$):
 - Two asymptotes, namely $x = -\frac{d}{c}$ and $y = \frac{a}{c}$.
 - Two lines of symmetry with gradients ± 1 and pass through the intersection point of the aforementioned two asymptotes.
- iii If $n = \deg P = \deg Q$, then
 - y = R(x) is the *horizontal* asymptote of $\frac{P(x)}{Q(x)} = R(x) + \frac{S(x)}{Q(x)}$.
 - Equivalently, $y = \frac{\operatorname{coeff}_P(x^n)}{\operatorname{coeff}_Q(x^n)}$ is a horizontal asymptote.
- iv If deg $P = \deg Q + 1$, then R(x) is an oblique asymptote of $\frac{P(x)}{Q(x)} = R(x) + \frac{S(x)}{Q(x)}$.
- v Write down asymptotes and lines of symmetry. b If none are present indicate with "No lines of symmetry."

```
<sup>a</sup>E.g.: y = \frac{1}{15} is a horizontal asymptote of y = \frac{\mathbf{L}x^2 + 2x - 3}{(5x+1)(3x+2)}
```

Asymptotes: x = 4, y = 20.

Lines of Symmetry: y = x + 16, y = -x + 24.

^aOtherwise notated by $f(x) \to c$ as $x \to \infty$.