Exponential Distribution Simulation; Tooth Growth Analysis

Ash Chakraborty

Wednesday, June 17, 2015

PART 1: SIMULATION - Sampling the Exponential Distribution

Part 1 of this report investigates the *Exponential Distribution* and compares it to the *Central Limit Theorem*. We conduct simulations on this distribution with a sample size of 40 exponentials by generating a sampling distribution of sample means. The consequences of this sampling distribution will be evaluated for adherence to the central limit theorem.

```
set.seed(123)
sample <- rexp(40, rate=0.2)
```

We conduct a 1000 simulations, and extract the mean of each sample:

```
samp.dist <- NULL
for(i in 1:1000) {samp.dist <- c(samp.dist, mean(rexp(40, rate=0.2)))}</pre>
```

Comparing Variance and Mean to Theoretical Variance and Mean

The distribution has begun to resemble a Gaussian distribution.

```
## [1] "Mean of Sampling Distribution: 5.0135"
## [1] "Variance of Distribution: 0.6025"
```

The theoretical mean of the exponential distribution is given by $1/\lambda$ ($\lambda = 0.2$) = 5. **The sampling distribution's mean is a fairly good approximation**. The theoretical variance of the sampling distribution: $(1/\lambda^2)/n = 0.625$. **The variance obtained from the sampling distribution is a good approximation**.

Verifying Distribution Normality

We will conduct two simulations with larger sample sizes (n= 100 & 1000), conduct a 1000 trials and compute the *variance* and *skew* :

```
#sim 1, sample size = 100
samp.dist1 <- NULL
for(i in 1:1000){samp.dist1 <- c(samp.dist1, mean(rexp(100, rate=0.2)))}
#sim 2, sample size=1000
samp.dist2 <- NULL
for(i in 1:1000){samp.dist2 <- c(samp.dist2, mean(rexp(1000, rate=0.2)))}</pre>
```

Plotting the resulting sampling distributions side by side:

- The mean is approximated more closely as the sample size increases (in line with CLT)
- Variance of sampling distribution significantly decreases (in line with CLT)

• The skew of the density curve get smaller, suggesting a normal curve

END OF PART 1

PART 2: Analyzing Tooth Growth Data

We run some summary analysis on this dataset, in addition to testing hypotheses to extract any relationships between supplement, dosage, and tooth length.

Data Summary

The scatter below shows the dataset spread out into groups by supplement and dosage:

- There is a positive correlation between length and dosage amount 0.5 and 1.0 for both supplements.
- There is *no data* for either supplement at dosage amount 1.5.
- Any effect on length at dosage amount of 2.0 for either supplement is unclear.
- Overall, the average sample tooth growth length is greater for "OJ" than it is for "VC".

Hypothesis Testing

In the first test (which serves as the template for the subsequent tests), we compare the effect on tooth growth between supplements OJ and VC at dose = 0.5. We **assume** that the NULL hypothesis, H_0 : $\mu_{xOJ} = \mu_{xVC}$, is true; independent groups, and unequal variance.

```
# Function to take in the dosage group and perform a t-test on supplement
effect on length
doseTest <- function(d) {</pre>
        testdf <- NULL
        testdf <- subset(ToothGrowth, dose==d, select=c('len', 'supp'))</pre>
        # apply t.test to compare the mean lengths by supplement at the
dosage group
        t.test(len ~ supp, paired=FALSE, data=testdf)}
doseTest(0.5)
##
   Welch Two Sample t-test
##
## data: len by supp
## t = 3.1697, df = 14.969, p-value = 0.006359
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1.719057 8.780943
## sample estimates:
## mean in group OJ mean in group VC
##
              13.23
                                 7.98
```

Here, we see that the 95% confidence interval is above zero. The p value of 0.64% is very unlikely, thus causing us to *reject* the NULL hypothesis. **Under a similar assumption, we repeat the** *t-test* **to get the probability of the alternate hypothesis for the other dosage groups**:

```
doseTest(1)$p.value
## [1] 0.001038376

doseTest(2)$p.value
## [1] 0.9638516
```

We note that for dose = 1.0, the p value of 0.1% is unlikely, thus causing us to **reject** the NULL hypothesis. However, for dose = 2.0, the p value of 96.39% is well within the 95th percentile of values that comply with the NULL hypothesis. In this case, then, the NULL hypothesis **stands**.

Assumptions and Conclusions

The following assumptions must be restated for the tests conducted above:

- The subjects in each dosage groups are independent (not paired)
- Unequal variance between groups has been assumed

The scatter plot and the tests performed on the dataset help us conclude the following:

At dose=0.5, OJ results in higher tooth growth than VC

- At dose=1.0, OJ results in higher tooth growth than VC
- At dose=2.0, there is no discernible difference in tooth growth between the supplements
- Overall, it seems that OJ is more effective than VC at increasing tooth growth when administered at doses 0.5 or 1.0.

END OF REPORT

APPENDIX 1: GIT CODE

The entire markdown file can be found in this github repo.

APPENDIX 2: PLOT CODE BLOCKS

(PART 1) Comparing Variance and Mean to Theoretical Variance and Mean

```
#sampling distribution of sample means
g3 <- ggplot()
g3+geom_histogram(aes(x=samp.dist, fill=..count..), col="black")+
        scale fill gradient("Count",
                            low = "green",
                            high = "red")+
        #mean of sampling dist.
        geom_vline(aes(xintercept=mean(samp.dist)),
                   linetype="longdash",
                   col="blue")+
        geom_text(aes(x=mean(samp.dist)*1.15,
                      label=paste0("Mean of \n Sampling Distribution = ",
                                   round(mean(samp.dist), 4))
                  col="blue", size=3
                  )+
        #theoretical mean
        geom_vline(aes(xintercept=1/0.2),
                       linetype="longdash",
                       col="darkblue"
                   )+
        geom_text(aes(x=(1/0.2)*1.15),
                      y = 90,
                      label=paste0("Theoretical Mean of \n Exponential
Distribution = ",
                                    round(1/0.2, 4)
```

```
col="darkblue", size=3
                  )+
        #variance of sampling dist.
        geom_hline(aes(yintercept=var(samp.dist)*100),
                       linetype="longdash",
                       col="blue"
        geom_text(aes(y=var(samp.dist)*110,
                      x=3,
                      label=paste0("Variance of \n Sampling Distribution = ",
                                   round(var(samp.dist), 4))
                  col="blue", size=3
        #theoretical variance = population variance/n
        geom_hline(aes(yintercept=((1/(0.2^2))/40)*100),
                       linetype="longdash",
                       col="darkblue")+
        geom_text(aes(y=((1/(0.2^2))/40)*90,
                      x=3.
                      label=paste0("Theoretical Variance \n of Distribution =
                                   round(((1/(0.2^2))/40), 4))
                  col="darkblue", size=3
        labs(title="Sampling Distribution of Sample Means \n of the
Exponential Distribution (1000 Trials)",
                x="Means", y="Count")+
        theme bw()+
        theme(legend.position="none")
```

(PART 1) Verifying Normality

This code chunk is quite large and may be found in its entirety in github: markdown.

(PART 2) ToothGrowth Summary