Homework 5, due Apr. 5

Consider the solution to the following integral equation

$$\int_0^{\pi} e^{s \cos(t)} x(t) dt = \frac{e^s - e^{-s}}{s}, \quad \forall s \in [0, \ \pi/2].$$

We know that the exact solution is $x(t) = \sin(t)$, for $t \in [0, \pi]$. In this homework, we find the solution numerically.

Partition the interval $[0, \pi/2]$ by a set of n equally spaced points, $s_i = (i-1)\frac{\pi}{2(n-1)}$, i = 1, 2, ..., n. Consider the following n equations at those n discrete points,

$$\int_0^{\pi} e^{s_i \cos(t)} x(t) dt = \frac{e^{s_i} - e^{-s_i}}{s_i}, \quad i = 1, 2, \dots, n.$$

Approximate the integrals in the above n equations by applying the composite trapezoid rule on the n-1 subintervals of $[0, \pi]$ partitioned by n equally spaced points $t_i = (i-1)\frac{\pi}{(n-1)}$, i = 1, 2, ..., n. Denote the approximate values of x(t) at those discrete points t_i by x_i , and denote by \mathbf{x} the n-dimensional column vector containing x_i , i = 1, 2, ..., n. This leads to a system of linear equations for \mathbf{x}

$$A\mathbf{x} = \mathbf{b}$$
.

- 1. Solve the above system of linear equations directly by using the MATLAB '\' operator. Take n=10,20,50, respectively. For each n, draw the numerical solution on the interval $[0, \pi]$ and compare it with the true solution $x(t)=\sin(t)$. Explain what you observed.
- 2. Solve the same system by using the truncated SVD, as discussed in the lecture. You can take the tolerance value as 10^{-6} to filter out the smaller singular values in the summation. For each of n=10,20,50, draw the numerical solution on the interval $[0,\ \pi]$ and compare it with the true solution $x(t)=\sin(t)$.
- 3. Solve the system by using the Tikhonov regularization approach, as discussed in the lecture. You can take the parameter $\mu = 10^{-3}$ in the algorithm. For n = 10, 20, 50, draw the numerical solution on the interval $[0, \pi]$ and compare it with the true solution $x(t) = \sin(t)$.