

Francesco Musumeci

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)

Politecnico di Milano, Milano, Italy

Background

- When routing a lightpath (optical channel) in an optical network between a source/destination pair, multiple options are available:
 - Physical route
 - Modulation Format (MF)
 - **–** ...
- Possible impact from:
 - Other active channels
 - No. of traversed devices (amplifiers, fibers, switching devices, ...)
- Each combination provides a different signal quality (e.g., SNR, Bit Error Rate, ...)

S

What is the best combination?

- Trade off: high-order MF is desirable to have higher spectral efficiency (higher bit rate in the same spectral resources)...
- ...BUT it is more sensitive to noise

Background

- How to select path and MF?
- MF is constrained by quality of transmission (QoT) of the received signal (e.g., SNR)
- In turn, signal quality is affected by:
 - Noise of traversed optical amplifiers

	– Inter	•	nels (co-exi nany? how m		aths), n frequency?
	Optical Amplifie			\cap	
S					(D)
	Span 1	Span 2	Span 3		Span n

- → It's desirable to know the QoT (SNR) **before** establishing a lightpath
- Different ways to solve the problem:
 - Analytical models: time consuming, involve huge set of parameters to be known, often 1. uncertain
 - **Design with margin** (simpler approximate models): fast but less accurate (→margin is 2. required), lead to resource underutilization; not developed for a specific network topology → may fail in generalizing
 - 3. ML predictors: can be trained for the specific network and approximate better the required *margin*

Dataset

- 1034 lightpaths routed in different network topologies
- Raw data:

```
One row = one lightpath
 60 60 60 60 60; 5; 50.0129; 21.4016
 70 70 60; 14; 50.0129; 21.7621
  70 70 70 70 70; 29; 50.0129; 21.0628
 70 70 70 70 70; 9; 50.0129; 21.2568
Set of fiber spans
                   Δf from the closest
                                     Lightpath SNR [dB]
 w/length [km]
                    interferer [GHz]
        Max no. of interferers
         (other lightpaths)
          along the route
```

Dataset

- 1034 lightpaths routed in different network topologies
- Raw data:

One row = one lightpath

1 60 60 60 60 60; 5; 50.0129; 21.4016
2 70 70 60; 14; 50.0129; 21.
3 50 50 50 50 50 50 50 50
4 70 70 70 70 70; 29; 50.012; 20
5 70 70 70 70; 9: 50.012; 20

High correlation between no. of spans and lightpath SNR

(other lightpaths)
along the route

Lab overview

Task 1

- Observe raw data characteristics
 - a) Define function read_dataset() that reads a file passed in input and returns 3 lists with lightpaths characteristics (spans, interferers, SNR)
 - See details in the skeleton code
 - b) Call function *read_dataset()* using input file in the skeleton code, check dimensions of returned values and calculate/print mean, variance and std dev for
 - a) number of spans,
 - b) lightpath length,
 - c) number of interferers
 - d) snr across all lightpaths
 - Already given in skeleton code

Task 1a)-b): expected outputs

```
Length of span list: 1034
Length of interferers list: 1034
Length of snr list: 1034
********

Number of spans: mean=15.83, var=243.23, std=15.6
Lightpath length: mean=945.05, var=721041.32, std=849.14
Number of interferers: mean=41.52, var=231.66, std=15.22
SNR: mean=18.37, var=4.46, std=2.11
```

Task 2

- 2. Features matrix generation and data visualization
 - a) Define function extract_features() that takes in input the lists of features (i.e., excluding SNR) obtained in task 1b) and returns a numpy array including the features as columns
 - See details in the skeleton code
 - b) Call function *extract_features()* using the lists obtained in task 1b), verify shape of the returned numpy array and calculate mean, var and std dev for all features across all the lightpaths
 - c) Draw 5 scatterplots with distribution of SNR values against each feature
 - Already given in skeleton code

Task 2a)-b): expected outputs

```
Shape of features matrix: (1034, 5)

********

Number of spans: mean=15.83, var=243.23, std=15.6

Lightpath length: mean=945.05, var=721041.32, std=849.14

Longest span length: mean=71.57, var=76.2, std=8.73

Number of interferers: mean=41.52, var=231.66, std=15.22

Freq distance from closest interferer: mean=52.8, var=1960.32, std=44.28
```

Task 2c): expected outputs

Task 3

- 3. ML algorithms training/testing (Neural Network)
 - Define function train_NN() that takes in input NN hyperparameters, performs training using a training set passed in input and provides training results
 - See details in the skeleton code
 - b) Scale features so as to have 0 mean and unit variance. Split dataset (features matrix and output vector (SNR) retrieved in tasks 1b) and 2b)) into training and test sets (80/20%). Call function train_NN() using scaled features matrix and output (SNR) and with two different solvers ('sgd', 'adam'*)

*Diederik P. Kingma, Jimmy Ba, "Adam: A Method for Stochastic Optimization", available at https://arxiv.org/abs/1412.6980

Task 3a)-b): expected outputs

Training with solver: sgd

Final loss: 5.179096527026564 Total number of iterations: 5000

Current loss: 5.179

Best loss: 5.179

Training time [s]: 15.482

Final training R2 score is: -1.322

Final training MSE is: 10.356

Training with solver: adam

Final loss: 0.060687486572745614

Total number of iterations: 1696

Current loss: 0.061

Best loss: 0.061

Training time [s]: 4.222

Final training R2 score is: 0.973

Final training MSE is: 0.121

Task 3

- 3. ML algorithms training/testing (Linear Regression)
 - c) Define function *train_linreg()* that performs training using a training set passed in input and provides training results
 - See details in the skeleton code
 - d) Call function train_linreg() to fit a linear regressor using the same training set as for the NN
 - Already given in skeleton code

Expected output:

Training time [s]: 0.006

Final training R2 score is: 0.897

Final training MSE is: 0.459

Task 3

- 3. ML algorithms training/testing (NN vs Linear Regression)
 - e) Compare results (MSE and R2 score) for NN and Linear Regression in both train and test sets
 - Already given in skeleton code

Expected output:

****** Training scores ******

Linear Regression

Final training R2 score is: 0.897

Final training MSE is: 0.459

Neural Network

Final training R2 score is: 0.973

Final training MSE is: 0.121

******* Test scores *******

Linear Regression

Final test R2 score is: 0.901

Final test MSE is: 0.443

Neural Network

Final test R2 score is: 0.974

Final test MSE is: 0.114

Task 4

4. NN vs LR with one feature only

We had observed a high correlation between SNR and some of the

features (e.g., lightpath length)

Do we need all the features?

- a) Retrain NN and LR considering a new dataset that only includes **lightpath length** as a feature. Then, compare the performance of the two regressors on the same test set
 - N.B. Use the SAME train/test sets used in task 3
 - See details in the skeleton code

Task 4a)

Expected output:

****** Test scores *******

Linear Regression

Final test R2 score is: 0.863

Final test MSE is: 0.61

Neural Network

Final test R2 score is: 0.949

Final test MSE is: 0.229

****** Test scores *******

Linear Regression

Final test R2 score is: 0.901

Final test MSE is: 0.443

Neural Network

Final test R2 score is: 0.974

Final test MSE is: 0.114

What can we conclude with this analysis?

one feature only (new results)

all features all features (previous results)

Task 4

- 4. NN vs LR with one feature only
 - b) Plot in the same graph the data points of test set and the curves produced by the univariate NN and LR for a range of lightpath length values as in the test set
 - Already given in skeleton code

Expected output:

- Ground truth SNR
- Optical margin (1/2)
- Predicted SNR
- What is the impact of inaccurate SNR predictions?

MF	Required SNR
QPSK	11 dB +M
8QAM	15 dB +M
16QAM	18 dB +M
32QAM	20.8 dB +M
64QAM	23.7 dB +M

- To avoid QoT overestimation, we add a safety margin M to required SNR
- Corresponds to subtracting M to the predicted SNR
- We want low M (not conservative) not to waste resources
- Better predictors lead to smaller required margin, closer to real SNR

- Ground truth SNR
- Optical margin (2/2)
- Predicted SNR
- What is the impact of inaccurate SNR predictions?
- In the lab, we compute minimum margin M a priori using predicted and ground truth SNR (test set)
- M is the minimum value that guarantees NO DISRUPTION for ALL SNR values in the test set
- Note that we can still get an underestimated MF (lower than it could be)

MF	Required SNR
QPSK	11 dB +M
8QAM	15 dB +M
16QAM	18 dB +M
32QAM	20.8 dB +M
64QAM	23.7 dB +M

- To avoid QoT overestimation, we add a safety margin M to required SNR
- Corresponds to subtracting M to the predicted SNR
- We want low M (not conservative) not to waste resources
- Better predictors lead to smaller required margin, closer to real SNR

Task 5

- 5. Evaluate the impact of inaccurate predictions
 - a) Define function SNR_to_MF() that takes in input SNR value and uses it to return the highest possible modulation format (MF)
 - Already given in skeleton code
 - b) Define function find_minimal_margin() that takes in input predicted and ground truth SNR vectors and find the minimum margin to subtract to prediction in order not to have any disruption due to a higher-order MF in prediction wrt ground truth
 - c) Test function find_minimal_margin() to check if the returned margin allows no disruption for all elements in a predicted SNR vector (compared to its ground truth). Repeat the check comparing ground truth vs non-margined prediction
 - Already given in skeleton code

Task 5a-b-c): expected outputs

Minimum margin: 1.09999999999999 dB

***** NON MARGINED PREDICTED SNR *****

Number of incorrectly-assigned MFs: 16

Number of overrated MFs: 9

Number of underrated MFs: 7

***** MARGINED PREDICTED SNR ******

Number of incorrectly-assigned MFs: 86

Number of overrated MFs: 0

Number of underrated MFs: 86

Task 6

- 6. Performance evaluation
 - a) Define function perf_eval() that takes in input real and predicted SNR vectors and provides results
 - See details in the skeleton code
 - b) Use the NN model already used in task 3e) to perform prediction for test set and call function *perf_eval()* to evaluate performance
 - Already given in skeleton code

Task 6a)-b): expected outputs

MSE: 0.11 dB

Max error: 1.14 dB

Minimal margin to avoid disruptions 0.4 dB

Error histogram

-1.1 dB: 1 times

-0.9 dB: 1 times

-0.6 dB: 7 times

...

•••

0.4 dB: 13 times

0.5 dB: 11 times

0.6 dB: 5 times

0.7 dB: 3 times

0.8 dB: 1 times

1.1 dB: 2 times

QoT estimationTask 7 – **HOMEWORK (max 1.5 points)**

- What happens with the margin if some features are not known precisely?
- E.g., span lengths are decided at network design phase but the actual values in the field may be slightly different
- Ref paper:

Th3D.5.pdf

OFC 2020 © OSA 2020

How Uncertainty on the Fiber Span Lengths Influences QoT Estimation Using Machine Learning in WDM Networks

J. Pesic⁽¹⁾, M. Lonardi⁽¹⁾, N. Rossi⁽²⁾, T. Zami⁽²⁾, E. Seve⁽¹⁾ and Y. Pointurier⁽¹⁾
(1) Nokia Bell Labs France, (2) Nokia France
jelena.pesic@nokia-bell-labs.com

Task 7 – **HOMEWORK (max 1.5 points)**

- 7. Evaluate the impact of uncertain fiber span length
 - a) Define function extract_UNCERTAIN_features() (take inspiration from function extract_features() in task 2a), that generates span length features with a random error chosen in a normal distribution with 0 mean and std dev sigma passed in input
 - See details in the skeleton code

Hints:

To obtain the new dataset with features including the error, you should define new span lengths:

 $new \ span \ length = old \ span \ length + error$

where

$$error = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x}{\sigma}\right)^2}$$

QoT estimationTask 7 – **HOMEWORK (max 1.5 points)**

- 7. Evaluate the impact of uncertain fiber span length
 - b) Consider NN algortihm only and redo training and performance evaluation using a new dataset with uncertain features, where error in span length is introduced with std dev = to 5%, 10%, 15% of the maximum span length across all lightpaths. Specifically, after reading the dataset (task 1b), for each error std dev, the steps are:
 - generate features matrix (new function from task 7a)
 - scale, split the dataset and train a new NN (task 3b)
 - predict and evaluate performance (task 6b)

Task 7a)-b): expected outputs

5%*max_span_length	10%*max_span_length	15%*max_span_length
*******	*******	*********
Total number of iterations: 1750	Total number of iterations: 1750	Total number of iterations: 1750
Current loss: 0.064	Current loss: 0.064	Current loss: 0.069
Best loss: 0.064	Best loss: 0.064	Best loss: 0.069
Training time [s]: 5.429	Training time [s]: 5.429	Training time [s]: 8.025
Final training R2 score is: 0.971	Final training R2 score is: 0.971	Final training R2 score is: 0.969
Final training MSE is: 0.128	Final training MSE is: 0.128	Final training MSE is: 0.137
*******	*******	*******
MSE: 0.12 dB	MSE: 0.12 dB	MSE: 0.13 dB
Max error: 1.28 dB	Max error: 1.28 dB	Max error: 1.34 dB
Minimal margin to avoid	Minimal margin to avoid	Minimal margin to avoid
disruptions 1.0 dB	disruptions 1.0 dB	disruptions 1.0 dB
Error histogram	Error histogram	Error histogram
-1.1 dB: 1 times	-1.1 dB: 1 times	-1.1 dB: 1 times
-1.0 dB: 1 times	-1.0 dB: 1 times	-1.0 dB: 1 times
-0.7 dB: 1 times	-0.7 dB: 1 times	-0.7 dB: 4 times

Task 7a)-b): expected outputs

