Sequence Definition of Uniform Continuity

Connor Finucane

Let (X, d) and (Y, ϱ) be metric spaces and $f: X \to Y$.

Show that the following are equivalent:

(1)
$$\forall \epsilon > 0 \ \exists \delta(\epsilon) > 0 \ \forall x \in X \ \forall y \in X \ [d(x,y) < \delta] \Rightarrow [\varrho(f(x), f(y)) < \epsilon]$$

For arbitrary sequences $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ in X with $\lim_{n\to\infty} d(x_n, y_n) = 0$ then $\lim_{n\to\infty} \varrho(f(x_n), f(y_n)) = 0$

Proof.

 (\Rightarrow) Fix arbitrary sequences (x_n) and (y_n) with $d(x_n,y_n)\to 0$. We have that:

$$\forall \gamma > 0 \ \exists N_0(\gamma) \ \forall n \geq N_0 \ d(x_n, y_n) < \gamma$$

Let ϵ be given and show:

$$\exists G_0(\epsilon) > 0 \ \forall g \geq G_0 \ \varrho(f(x_n), f(y_n)) < \epsilon$$

Pick, using notation found in (1), $G_0 := N_0(\delta(\epsilon))$. I claim that this satisfies the above. Pick $g \ge G_0$ and by the above we have that $d(x_g, y_g) < \delta(\epsilon)$ and using (1): $\varrho(f(x_g), f(y_g)) < \epsilon$.

The above is equivalent to:

$$\lim_{n \to \infty} \varrho(f(x_n), f(y_n)) = 0$$

 (\Leftarrow) We will prove this implication using contraposition. Take $\neg(1)$:

$$\exists \epsilon > 0 \ \forall \delta > 0 \ \exists x(\delta) \in X \ \exists y(\delta) \in X \ d(x,y) < \delta \ \text{and} \ \varrho(f(x),f(y)) \ge \epsilon$$

I write $x(\delta)$ and $y(\delta)$ to denote the dependance of x and y on the choice of arbitrary δ .

Construct sequences $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ as follows using the above notation:

for every
$$n \in \mathbb{N}$$
 let $\delta_n := \frac{1}{n}$ and $x_n := x(\delta_n), y_n := y(\delta_n)$

We immediately have that: $d(x_n, y_n) \to 0$. Since for any ϵ we can find n_0 with $\delta_{n_0} = n_0^{-1} < \epsilon$. And by our defintion of (x_n) and (y_n) we have: $d(x_{n_0}, y_{n_0}) < \delta_{n_0} < \epsilon$. And since δ_n is decreasing we are done.

Also by the definitions of the sequences we have that for any n $\varrho(f(x_n), f(y_n)) \ge \epsilon$. So if we pick $\frac{\epsilon}{2}$ we cannot find n with $\varrho(f(x_n), f(y_n)) < \frac{\epsilon}{2}$. Therefore: $\varrho(f(x_n), f(y_n)) \not\to 0$. We have exhibited sequences which converge to each other but do not converge when composed with f. This is $\neg(2)$ and we are done.