Reinforcement Learning in Game Theory ECE 270

Matthew Blischke, Bryan Jang, Eddie Zhang

December 2, 2021

Outline

- Introduction to RL
- Proposal: Dual Agent RL (DARL)
 - Formalization and Objective
 - Connection to Dynamic Games
 - Algorithm Proposal: Policy Gradient
- Example Game: Lion and Zebra
- RL Simulation Results

1. Traditional RL Optimizing Agent Behavior

Fundamentals of Reinforcement Learning

Define interactions between an agent and its environment

Fundamentals of Reinforcement Learning

When action a is chosen from state s:

Transition to state s' with reward r with probability p(s', r|s, a)

From state s, agent chooses action a with probability $\pi(a|s)$

Reward from trajectory
$$au=(s_0,a_0,r_0,s_1,\dots)$$
 is $R_{ au}=\sum\limits_{k=0}^{| au|}r(s_k,a_k)$

Goal: Learn a policy π that maximizes $J(\pi) = \mathop{\mathbb{E}}_{\tau \sim \pi}(R_{\tau})$

Fundamentals of Reinforcement Learning

A policy π is paramaterized by a matrix θ e.g.

$$\theta = \begin{bmatrix} a_1 & a_2 & a_3 \\ 0.2 & 0.5 & 0.3 \\ 0 & 0 & 1 \\ 0.6 & 0.4 & 0 \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{array}{c} s_1 \\ s_2 \\ s_3 \\ \vdots \end{array}$$

Optimal policies are computed iteratively as

$$\theta_{n+1} = \alpha \nabla_{\theta} J(\pi_{\theta_n}) + \theta_n$$

An expression for the gradient can be derived as

$$abla_{ heta} J(\pi_{ heta}) = \mathop{\mathbb{E}}_{ au \sim \pi_{ heta}} \left[\sum_{k=0}^{| au|}
abla_{ heta} \log \pi_{ heta}(a_k|s_k)
ight]$$

Dynamic Game Structure

Multi-stage game (K stages)

- x_k node at which the game enters the kth stage
- u_k action of P_1 at the kth stage
- d_k action of P_2 at the kth stage

$$x_{k+1} = f_k(x_k, u_k, d_k)$$

2. Dual-Agent Reinforcement Learning (DARL)

DARL Background

- Two agents inhabit an environment
- Similar setup to zero-sum games
 - Two players: minimizer and maximizer

- Adversarial training
 - Increase robustness

Training by Bootstrapping

Inspiration: $J(\gamma^*, \sigma) \leq J(\gamma^*, \sigma^*) \leq J(\gamma, \sigma^*)$

Idea: Fix one agent and train the other and repeat until convergence

Parallels: DARL vs. Dynamic Games

DARL

- Stochastic
- Dual agents
- States $s_k \in S$
- Actions $a_k^1 \in A_1$, $a_k^2 \in A_2$
- Policies π^{γ} , π^{σ}
- Reward

$$R_{\tau} = \sum r(s_k, \pi^{\gamma}(s_k), \pi^{\sigma}(s_k))$$

- P₁ wants to maximize
- P₂ wants to minimize

Dynamic Games

- Deterministic
- Two players
- States $x_k \in X$
- Actions $u_k \in \mathcal{U}$, $d_k \in \mathcal{D}$
- Policies γ , σ
- Outcome $J(\gamma, \sigma) = \sum g_k(x_k, \gamma(x_k), \sigma(x_k))$
- P_1 wants to minimize
- P_2 wants to maximize

Analogous concepts exist in both approaches

But reward R_{τ} is opposite of outcome $J(\gamma, \sigma)$

3. Example Game Zebra and Lion

https://github.com/ezhang7423/game-theoretic-adversarial-rl/

Overview

Define a game

Use game theory to find the optimal solution

 Apply reinforcement learning and compare the simulated trajectory with the ideal agent behavior

Continuous Version

Zero-Sum Differential Game

- Zebra chooses $\theta_{\it zebra}(t) \in [0,2\pi)$
- Lion chooses $\omega_{lion}(t) \in [-\frac{v_{lion}}{R}, +\frac{v_{lion}}{R}]$

• Outcome is $J = \begin{cases} T_{exit}, & \text{zebra escapes safely at time } T_{exit} \\ \infty, & \text{otherwise} \end{cases}$

Discrete Simplification

Zero-Sum Dynamic Game

- Zebra chooses $u_k \in \{N, E, S, W, X\}$
- ullet Lion chooses $d_k \in \{-v_{max}, \dots, +v_{max}\}$

- States are given by $x_k = (x_{zebra}, y_{zebra}, pos_{lion})$

Game is solved by the recursive cost-to-go algorithm:

At each state x we compute

$$V_k(x) = \min_{u} \max_{d} (1 + V_{k+1}(f(x, u, d)))$$

= $\max_{d} \min_{u} (1 + V_{k+1}(f(x, u, d)))$

with the boundary conditions

$$V_{K_{max}+1}(x)=\infty, \quad orall x$$
 $V_k(x)=\infty, \quad ext{if zebra is caught in state } x$ $V_k(x)=0, \quad ext{if zebra escapes safely in state } x$

	L												
	-	-	-	-	-	-	-	-			k	=	=1
-	-	-	-	-	-	-	-	-	-				
-	-	Ζ	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				
	_	_	_	_	_	_	_	_					

		-	-	-	-	-	-	-	-			ζ=	='2	2
	-	-	-	-	-	-	-	-	-	-				
	_	_	Z	_	_	_	_	_	_	_				
L	_	_	_	_	_	_	_	_	_	_				
	_	_	_	_	_	_	_	_	_	_				
	_	_	_	_	_	_	_	_	_	_				
	_	_	_	_	_	_	_	_	_	_				
	_	_	_	_	_	_	_	_	_	_				
	_	_	_	_	_	_	_	_	_	_				
		_	_	_	_	_	_	_	_					

		-	-	-	-	-	-	-	-			ζ=	=4
	-	-	-	-	-	-	-	-	-	-			
	-	-	-	Ζ	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
L	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
		_	_	_	_	_	_	_	_				

		-	-	-	-	-	-	-	-		ļ	< =	=5)
	-	-	-	-	-	-	-	-	-	-				
	-	-	-	-	Z	-	-	-	-	-				
	-	-	-	-	-	-	-	-	-	-				
L	_	_	_	_	_	_	_	_	_	-				
	_	_	_	_	_	_	_	_	_	_				
	_	_	_	_	_	_	_	_	_	_				
	_	_	_	_	_	_	_	_	_	_				
	_	_	_	_	_	_	_	_	_	_				
		_	_	_	_	_	_	_	_					

		-	-	-	-	-	-	-	-		k=	=6
	-	-	-	-	-	-	-	-	-	-		
	_	-	-	-	Z	-	-	-	-	-		
L	_	_	_	_	_	_	_	_	_	_		
	-	_	_	_	_	_	_	_	_	_		
	-	_	_	_	_	_	_	_	_	_		
	_	_	_	_	_	_	_	_	_	_		
	_	_	_	_	_	_	_	_	_	_		
	_	_	_	_	_	_	_	_	_	_		
		_	_	_	_	_	_	_	_			

		-	-	-	-	-	-	-	-			ζ=	=7
	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
L	-	-	-	-	Z	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
		_	_	_	_	_	_	_	_				

		-	-	-	-	-	-	-	-		ļ	< =	=8	
	-	-	-	-	-	-	-	-	-	-				
	-	-	-	-	-	-	-	-	-	-				
	-	-	-	-	Ζ	-	-	-	-	-				
	-	-	-	-	-	_	-	_	-	-				
_	_	_	_	_	_	_	_	_	_	_				
	_	_	_	_	_	_	_	_	_	_				
	_	_	_	_	_	_	_	_	_	_				
	_	_	_	_	_	_	_	_	_	_				
		_	_	_	_	_	_	_	_					

		-	-	-	-	-	-	-	-		ļ	(=	=6
	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	Z	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
_	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
		_	_	_	_	_	_	_	_				

		-	-	-	-	-	-	-	-		k=1	0
	-	-	-	-	-	-	-	-	-	-		
L	-	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	Ζ	_	-	-	-		
	_	_	_	_	_	_	_	_	_	_		
	_	_	_	_	_	_	_	_	_	_		
	_	_	_	_	_	_	_	_	_	_		
	_	_	_	_	_	_	_	_	_	_		
	_	_	_	_	_	_	_	_	_	_		
		_	_	_	_	_	_	_	_			

		-	-	-	-	-	-	-	-		ļ	< =	:11
	-	-	-	-	-	-	-	-	-	-			
L	-	-	-	-	-	-	-	-	-	-			
	_	_	_	_	_	_	_	_	_	-			
	_	_	_	_	_	Ζ	_	_	_	-			
	_	_	_	_	_	_	_	_	_	-			
	_	_	_	_	_	_	_	_	_	-			
	_	_	_	_	_	_	_	_	_	-			
	_	_	_	_	_	_	_	_	_	_			
		_	_	_	_	_	_	_	_				

		-	-	-	-	-	-	-	-		k:	=	12
_	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	Z	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
		_	_	_	_	_	_	_	_				

		-	-	-	-	-	-	-	-		k	=	13)
_	-	-	-	-	-	-	-	-	-	-				
	-	-	-	-	-	-	-	-	-	-				
	-	-	-	-	-	-	-	-	-	-				
	-	-	-	-	-	-	-	-	-	-				
	-	-	-	-	-	Z	-	-	-	-				
	-	-	-	-	-	-	-	-	-	-				
	-	-	-	-	-	-	-	-	-	-				
	-	-	-	-	-	-	-	-	-	-				
		_	_	_	_	_	_	_	_					

		-	-	-	-	-	-	-	-		k	=	1	4
	-	-	-	-	-	-	-	-	-	-				
	-	-	-	-	-	-	-	-	-	-				
	-	-	-	-	-	-	-	-	-	-				
L	-	-	-	-	-	-	-	-	-	-				
	-	-	-	-	-	Z	_	-	-	-				
	-	-	-	-	-	-	-	-	-	-				
	-	-	-	-	-	-	-	-	-	-				
	-	-	-	-	-	-	-	-	-	-				
		_	_	_	_	_		_	_					

		-	-	-	-	-	-	-	-		k	=	15
	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
L	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	Z	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-			

		-	-	-	-	-	-	-	-		k=16
	-	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	Z	-	-	-	
	-	-	-	-	-	-	-	-	-	-	
L	-	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	-	
		_	_	_	_	_	_	_	_		

		-	-	-	-	-	-	-	-		k	(=	=]	17
	-	-	-	-	-	-	-	-	-	-				
	-	-	-	-	-	-	-	-	-	-				
	-	-	-	-	-	-	-	-	-	-				
	-	-	-	-	-	-	-	-	-	-				
	-	-	-	-	-	-	-	Z	-	-				
	-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-	-				
	-	-	-	-	-	-	-	-	-	-				

	-	-	-	-	-	-	-	-		k	=	1	8
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	Z	-	-				
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				
	-	-	-	-	-	-	-	-					
		L											

	-	-	-	-	-	-	-	-		k	=	1	9
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	Z	-				
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				
	-	-	-	-	-	-	-	-					
		L											

	-	-	-	-	-	-	-	-		k	=	2	2
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	Z				
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				
	-	-	-	-	-	-	-	-					
								L					

Stages for zebra to escape from each starting position:

```
[[nan 27. 1. 1. 1. 1. 1. 1. 1. 1. nan]
[ 1. 25. 23. 21. 19. 3. 3. 3. 3. 1.]
[ 1. 23. 21. 19. 17. 17. 19. 5. 3. 1.]
[ 1. 21. 19. 17. 15. 13. 7. 5. 3. 1.]
[ 1. 3. 17. 15. 13. 11. 7. 5. 3. 1.]
[ 1. 3. 17. 13. 11. 9. 7. 5. 3. 1.]
[ 1. 3. 7. 7. 7. 7. 7. 5. 3. 1.]
[ 1. 3. 5. 5. 5. 5. 5. 5. 3. 1.]
[ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. nan]]
```

Analytic Solution: Simultaneous Play

We redefine the outcome as

$$J = egin{cases} 0, & ext{zebra escapes safely before stage } \mathcal{K}_{ extit{max}} \ 1, & ext{otherwise} \end{cases}$$

At each state x we compute

$$V_k(x) = \min_{y} \max_{z} y^T Az = \max_{z} \min_{y} y^T Az$$
 where $A_{ij} = V_{k+1}(f(x, i, j))$

with the boundary conditions

$$V_{\mathcal{K}_{max}+1}(x)=1, \quad \forall x$$
 $V_k(x)=1, \quad \text{if zebra is caught in state } x$ $V_k(x)=0, \quad \text{if zebra escapes safely in state } x$

Analytic Solution: Simultaneous Play

Probability that zebra is unable to escape within $K_{max}=15$ stages:

```
nan 0.833 0.533 0.228 0.107 0.
                                              nanl
[0.833 0.533 0.228 0.107 0.049 0.049 0.107 0.228 0.
[0.533 0.228 0.107 0.049 0.022 0.014 0.049 0.107 0.
[0.228 0.107 0.049 0.022 0.01 0.006 0.013 0.
Γ0.
     0.049 0.022 0.01 0.004 0.
                             0.006 0.
[0. 0.049 0.014 0.006 0.
                             0.
[0. 0.107 0.049 0.012 0. 0.
                             0.
                                  0.
                                       0.
                                            0.
[0. 0. 0. 0. 0. 0. 0.
                                  0.
                                       0.
                                            0.
[0.
     0. 0. 0. 0.
                        0. 0.
                                  0.
                                       0.
  nan 0.
          0.
               0.
                    0.
                         0.
                             0.
                                  0.
                                       0.
                                              nan
```

4. RL Game Implementation Zebra and Lion

Diverging J over training episodes

Using a gradient estimator: sampling all possible trajectories

$$abla_{ heta} \hat{J}(\pi_{ heta}) = \mathop{\mathbb{E}}_{ au \sim D} \left[\sum_{k=0}^{| au|}
abla_{ heta} \log \pi_{ heta}(a_k|s_k)
ight]$$

Compare with the analytical results:

```
[[nan 1. 1. 1. nan]
[ 1. 1. 1. 1. 1.]
[ 1. 1. 1. 1. 0.]
[ 1. 1. 1. 1. 0.]
[nan 0. 0. 0. nan]]
```

Zebra had no chance of escape

Further Work

- Prove or disprove convergence of bootstrapping method
- Extend DARL to non zero-sum games
- Analyze properties of using the gradient estimator vs. true gradient

References

- Robust Adversarial Reinforcement Learning. http://proceedings.mlr.press/v70/pinto17a/pinto17a.pdf.
- An Overview of Multi-Agent Reinforcement ... Arxiv.org. https://arxiv.org/pdf/2011.00583.pdf.
- "Game Theory and Multi-Agent Reinforcement Learning."
 ResearchGate, https://www.researchgate.net/
 publication/269100101_Game_Theory_and_
 Multi-agent_Reinforcement_Learning.
- "CS231N: Convolutional Neural Networks for Visual Recognition." Stanford University CS231n: Convolutional Neural Networks for Visual Recognition, http://cs231n.stanford.edu/.
- Openai. "Openai/Spinningup: An Educational Resource to Help Anyone Learn Deep Reinforcement Learning." GitHub, https://github.com/openai/spinningup.