This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

11 Veröffentlichungsnummer:

0 292 785 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

2 Anmeldenummer: 88107551.9

(5) Int. Cl.4: C08F 8/00

② Anmeldetag: 11.05.88

Priorität: 22.05.87 DE 3717172

Veröffentlichungstag der Anmeldung: 30.11.88 Patentblatt 88/48

Benannte Vertragsstaaten:
DE FR GB IT NL

Anmelder: BAYER AG
Konzernverwaltung RP Patentabteilung
D-5090 Leverkusen 1 Bayerwerk(DE)

Erfinder: Dujardin, Raif, Dr.
Bodelschwinghstrasse 18
D-4150 Krefeld(DE)
Erfinder: Ebert, Wolfgang, Dr.
Dörperhofstrasse 31
D-4150 Krefeld(DE)

Erfinder: Meyer, Rolf-Volker, Dr. Buchheimerstrasse 23

D-4150 Krefeld(DE) Erfinder: Grigo, Ulrich, Dr.

Michelscheide 9. D-4152 Kempen 3(DE) Erfinder: Grigo, Ulrich, Dr. Michelscheide 9

D-4152 Kempen 3(DE)
Erfinder: Wehnert, Wolfgang, Dr.
Bodelschwinghstrasse 14
D-4150 Krefeld (DE)

Vinylcopolymerisate mit aufgepropften Polycarbonatketten, ihre Herstellung und Verwendung.

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Vinylcopolymerisaten mit aufgepfropften Polycarbonatketten, die nach dem erfindungsgemäßen Verfahren erhältlichen gepfropften Vinylcopolymerisate, ihre Verwendung als Modifikatoren für Mischungen aus thermoplastischen Polycarbonaten und thermoplastischen Polystyrolen, derartige Mischungen selbst sowie die Verwendung derartiger Mischungen als Substrate für optische Datenspeicher.

EP 0 292 785 A2

Vinylcopolymerisate mit aufgepropften Polycarbonatketten, ihre Herstellung und Verwendung

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Vinylcopolymerisaten mit aufgepropften Polycarbonatketten, deren Vinylcopolymerisatpfropfgrundlage ein $\overline{\rm M}$ n (Zahlenmittelmolekulargewicht, ermittelt durch Gelpermeationschromatographie) von 45 000 bis 95 000 hat, deren Polycarbonatketten einen Polykondensationsgrad an wiederkehrenden Carbonatstruktureinheiten von 35 bis 70 haben, und die ein Gewichtsverhältnis von Vinylcopolymerisatpfropfgrundlage zu aufgepfropften Polycarbonatketten zwischen 35 Gew.-% zu 65 Gew.-% und 55 Gew.-% zu 45 Gew.-% haben, das dadurch gekennzeichnet ist, daß man 95 mol-% bis 99,5 Mol-% an Styrol und 5 Mol-% bis 0,5 Mol-% an Verbindungen der Formel (I)

$$\begin{array}{c} \text{CH}_{2} \\ \text{R-C-[CH}_{2} - (0)_{m} -]_{t} \\ \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} & (R_{1})_{n} \\ \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} & (R_{1})_{n} \\ \end{array}$$

worin

10

15

 $R = H \text{ oder } C_1 - C_4 - Alkyl,$

 $R_1 = Cl$, Br, $C_1 \cdot C_4 - Alkyl$, Cyclohexyl oder $C_1 - C_4 - Alkoxy$,

m = 0 oder 1,

n = 0, 1 oder 2,

r = 0 oder 1,

t = 0 oder 1 und

 $X = -O-Si(CH_3)_3$ sind,

durch radikalische initierte Massepolymerisation bis zu einem gewünschten Molekulargewicht (\overline{M} n, Zahlenmittelmolekulargewicht) zwischen 45 000 und 95 000 nach bekannten Verfahren copolymerisiert, und danach das Polymerisat ohne Isolierung mit Diphenolen, Phosgen und Monophenolen in wäßrig-alkalischer Phase unter Zusatz eines inerten organischen Lösungsmittels unter den Bedingungen des Zweiphasengrenzflächenverfahrens umsetzt, wobei die Menge an Diphenol so gewählt ist, daß der Gehalt an Polycarbonatketten im gepfropften Vinylcopolymerisat zwischen 65 Gew.-% und 45 Gew.-%, bezogen auf das Gesamtgewicht des gepfropften Vinylcopolymerisats inclusive aufgepfropften Polycarbonatketten, beträgt, und wobei die Menge an Kettenabbrecher so bemessen ist, daß die mittlere Kettenlänge der aufgepfropften Poly carbonatseitenketten jeweils zwischen 35 und 70 wiederkehrende Carbonatstrukureinheiten aufweist, und wobei die Menge an inerten organischen Lösungsmittel so bemessen sein muß, das die Endviskosität der organischen Phase der Reaktionsmischung zwischen 5 und 25 mPa.s, vorzugsweise zwischen 10 und 20 mPa.s liegt.

Als Endviskosität ist die mit einem Höppler-Viskosimeter bestimmte absolute Viskosität der organischen Phase des Reaktionsgemisches nach abgeschlossener Polykondensation bei 20°C zu verstehen.

Aus der DE-AS 1 153 527 ist ein Verfahren zur Herstellung von Mischpolymerisaten mit Phenolresten als Seitenketten aus ungesättigten Phenolen und anderen olefinischen Verbindungen bekannt. Die Mischpolymerisation erfolgt in Gegenwart von Lewissäuren oder ähnlich wirkenden Säuren, ist somit ionisch katalysiert. Die erhaltenen Produkte haben Durchschnittsmolekulargewichte zwischen etwa 500 und 2000.

Aus der DE-OS 1 770 144 bzw. der DE-OS 1 795 840 bzw. dem US-Patent 3 687 895 ist ebenfalls die Herstellung von entsprechenden Vinylmischpolymerisaten bekannt. Die Copolymerisation kann sowohl ionisch als auch radikalisch katalysiert werden (Seite 4 der DE-OS 1 770 144).

Die Molekulargewichte (Zahlenmittel) \overline{M} n können gemäß Formel II von Seite 3 der DE-OS 1 770 144 zwischen etwa 3000 (I = 5 und r = 5) und etwa 20 000 000(I = 200 und r = 1000) liegen, jedoch werden in den Beispielen M_7 und M_8 jeweils nur \overline{M} n (Zahlenmittelmolekulargewichte) von 5000 erreicht. (Siehe dazu die berichtigte DE-AS 1 770 144, Spalte 8). Darüberhinaus erreichen die aufgepfropften Polycarbonatketten in den entsprechenden Beispielen 12 und 13 der DE-AS 1 770 144 nur einen Polymerisationsgrad von 5,5 bzw. 14,3, während gemäß Formel I ein Polymerisationsgrad von 5 bis 100 möglich ist.

Mit anderen Worten, die gepfropften Vinylcopolymerisate gemäß vorliegender Erfindung fallen zwar

40

unter die allgemeine Formel der DE-AS 1 770 144 bzw. des US-Patents 3 687 895, aber nie werden die geforderten Kriterien, nämlich \overline{M} n der Pfropfgrundlage von 45 000 bis 95 000, wiederkehrende Carbonatstruktureinheiten von 35 bis 70 in den Seitenketten und Gewichtsverhältnisse von Polycarbonatketten zu Pfropfgrundlage zwischen 65 Gew.-% zu 35 Gew.-% und 45 Gew.-% zu 55 Gew.-% in der Patentschrift zusammen konkret offenbart. Immer ist mindestens eines dieser Kriterien nicht erfüllt.

Aus dem US-Patent 3 856 886 sind ebenfalls entsprechende Vinylcopolymerisate mit mittleren Molekulargewichten \overline{M} n (Zahlenmittel) von 10 000 bis 200 000, vorzugsweise von 20 000 bis 50 000 (Spalte 2, Zellen 10 bis 16 des US-Patents 3 856 886) bekannt. Auf diese Vlnylcopolymerisate werden ebenfalls Polycarbonat aufgepfropft, wobei auf die bereits zitierte US-Patentschrift 3 687 895 verwiesen wird.

Wiederum sind die gepfropften Vinylcopolymerisate gemäß vorliegender Erfindung unter der allgemeinen Formel des US-Patents 3 856 886 subsummiert, aber nie sind die geforderten 3 Kriterien in der Patentschrift zusammen konkret offenbart. Immer ist mindestens eines dieser Kriterien nicht erfüllt.

In dem US-Patent 3 856 886 werden die gepfropften Vinylcopolymerisate mit Vinylpolymerisaten und/oder thermoplastischen Polycarbonaten abgemischt.

Aus den Beispielen dieses US-Patents ergibt sich nun, daß für die Abmischungen mit Vinylpolymerisaten, also beispielsweise mit Polystyrol, nur Pfropfpolymerisate mit wenig Pfropfgrundlage ausgewählt werden. (In den Beispielen 1 bis 7a nur jeweils 5 Gew.-% Pfropfgrundlage).

Aus den Beispielen 8 bis 15 ergibt sich, daß für die Abmischungen mit thermoplastischen Polycarbonaten die Pfropfgrundlage des gepfropften Vinylpolymerisate höher liegt, nämlich zwischen 10 und 30 Gew.-%.

Aus den Beispielen 16 bis 24 ergibt sich wiederum, daß die eingesetzten Pfropfcopolymerisate eine Pfropfgrundlage von nur 5 Gew.-% haben.

Die Abmischungen der gepfropften Vinylcopolymerisate mit anderen Vinylpolymerisaten haben keine unverträglichkeitserscheinungen, haben eine verbesserte Verseifungs stabilität, ein verbessertes Fließverhalten und eine verbesserte Thermostabilität. (Siehe Spalte 4, Zeilen 16 bis 53 von US-PS 3 856 886 und Seiten 3/4 von DE-OS 2 019 992).

Die Abmischungen der gepfropften Vinylcopolymerisate mit thermoplastischen Polycarbonaten haben eine verbesserte Alkali- und Heißwasserbeständigkeit, außerdem verbeserte mechanischen Eigenschaften und zeigen ebenfalls, keine Unverträglichkeitserscheinungen. (Spalte 6, Zeilen 47 bis 61 von US-PS 3 856 886 sowie Seiten 3/4 der DE-OS 2 019 994).

Die Abmischungen der gepfropften Vinylcopolymerisate mit thermoplastischen Polycarbonaten und mit anderen Vinylpolymerisaten haben eine verbesserte Alkali- und Heißwasserbeständigkeit, keine Unverträglichkeitserscheinungen, verbesserte mechanische und thermische Eigenschaften und verbesserte Fließeigenschaften. (Siehe Spalte 10, Zeilen 4 bis 36 von US-PS 3 856 886 sowie Seiten 3/4 der DE-OS 2 019 993).

Aus der DE-OS 1 950 982 bzw. dem US-Patent 3 758 597 sind schließlich auch Mischpolymerisate mit Phenolresten als Seitenketten bekannt; über die Molekulargewichte dieser Vinylcopolymerisatpfropfgrundlagen sind keine Angaben gemacht. Es ist außerdem die Aufpfropfung mit Polycarbonatketten beschrieben, wobei der Gehalt an Pfropfgrundlage im gepfropften Produkt des einzigen Ausführungsbeispiels 5 Gew.-% beträgt.

Aus der DE-OS 2 357 192 bzw. dem entsprechenden US-Patent 3 991 009 sind ebenfalls entsprechende gefropfte Vinylcopolymerisate bekannt. Die ungepfropften Copolymerisate sollen ein Molekulargewicht (\overline{M} n dadurch Osmose ermittelt) von 10 000 bis 100 000 vorzugvsweise von 10 000 bis 40 000 haben. Die in den Beispielen beschriebenen gepfropften Vinylcopolymerisate haben einen Anteil von 10 Gew.-% bzw. 20 Gew.-% an Copolymerisatgrundlage.

In der DE-OS 2 357 192 bzw. dem US-Patent 3 991 009 wird die Abmischung der gepfropften Vinylcopolymerisate mit Pfropfkautschuken gelehrt, wobei als Pfropfkautschuke auch Gemische von reinen Pfropfpolymerisaten mit Copolymerisaten verstanden werden, aber auch Gemische von Copolymerisaten (siehe Mischung e)).

Schließlich sind polycarbonatgepfropfte Polyvinylverbindungen noch in "angewandte Makromolekulare Chemie 60/61 (1977) Seiten 125 bis 137 (Nr. 861) beschrieben. Jedoch ist auch hier das \overline{M} n der Pfropfgrundlage nur zwischen 2000 und 4000 und der Anteil an Pfropfgrundlage im gefropften Vinylpolymerisat maximal 20 Gew.-%.

Bekannt sind außerdem aus der DE-OS 2 329 585 (Le A 15 024) Mischungen aus Polycarbonaten, die zumindest 50 % aus wiederkehrenden Struktureinheiten der folgenden Formel

15

bestehen, worin R für C₁-C₃-Alkyl steht und X die üblichen Biphenol-Bindeglieder darstellt, mit thermoplastischen Harzen, wie Polystyrolen, die teilweise eine außergewöhnlich gute Verträglichkeit haben, was sich unter anderem in der Transparenz derartiger Mischungen äußert.

In EP-A 0 181 143 sind Mischungen von Polycarbonaten mit Poly-(p-methylstyrolen) beschrieben, wobei bei einer Menge von mehr als 20 Gew.-%, im Polycarbonat-Poly-(-p-methylstyrol)-Gemisch, an Poly-(p-methylstyrol) Unverträglichkeitserscheinungen und damit eine ungünstige Beeinflussung des Eigenschaftsbildes eintreten.

Demgegenüber wurde nun gefunden, daß die nach dem erfindungssgemäßen Verfahren erhältlichen gepfropften Vinylpolymerisate, deren Pfropfgrundlage ein M n von 45 000 bis 95 000, vorzugsweise von 60 000 bis 80 000 hat, deren Gehalt an Pfropfgrundlage zwischen 35 Gew.-% und 55 Gew.-%, vorzugsweise zwischen 40 Gew.-% und 50 Gew.-%, bezogen auf Gesamtgewicht an gefropften Vinylcopolymerisat inclusive aufgefropften Polycarbonatketten, beträgt und deren Polycarbonatketten einen Polykondensationsgrad an wiederkehrenden Carbonatstruktureinheiten von 35 bis 70, ausgezeichnete Verträglichkeitsmacher für Polycarbonat-Polystyrol-Gemische sind, so daß derartige Gemische für optische Zwecke, insbesondere für optische Datenspeicher Verwendung finden können.

Gegenstand der vorliegenden Erfindung sind somit die nach dem erfindungsgemäßen Verfahren erhältlichen gepfropften Vinylcopolymerisate, sowie deren Verwendung als Modifikatoren für Mischungen aus thermoplastischen Polycarbonaten und thermoplastischen Polystyrolen.

Gegenstand der vorliegenden Erfindung sind außerdem Mischungen von

A) 70 bis 20 Gew.-%, vorzugsweise 65 bis 40 Gew.-% eines thermoplastischen, aromatischen Polycarbonats auf Basis von Diphenolen der Formel (II)

worin

15

30

Z eine Einfachbindung, ein Alkylen-Rest mit 1 bis 8 C-Atomen, ein Alkyliden-Rest mit 2 bis 12 C-Atomen, ein Cyclohexyliden-Rest, ein Benzyliden-Rest, ein Methyl-benzyliden-Rest, ein Bis-(phenyl)methylen-Rest, -S-, -SO₂-, -CO- oder -O- ist, mit \overline{M} w (Gewichtsmittelmolekulargewichten, ermittelt in bekannter Weise über die relative Lösungsviskosität) zwischen 15 000 und 120 000, vorzugsweise zwischen 20 000 und 80 000 und insbesondere zwischen 25 000 und 45 000, und

B) 30 bis 80 Gew.-%, vorzugsweise 35 bis 60 Gew.-% eines thermoplastische Polystyrols mit einem M w (Gewichtsmittelmolekuargewicht, ermittelt durch Gelpermeationschromatographie in bekannter Weise) von 20 000 bis 400 000, vorzugsweise von 30 000 bis 330 000 und insbesondere 60 000 bis 260 000, die dadurch gekennzeichnet sind, daß sie 0,5 Gew.-% bis 15 Gew.-%, vorzugsweise 1,0 Gew.-% bis 12 Gew.-% und insbesondere 2 Gew.-% bis 9 Gew.-%, bezogen auf jeweils 100 Gew.-% an A) + B), an erfindungsgemäß erhältlichem, gefropftem Vinylcopolymerisat enthalten.

Mischungen von Polycarbonaten mit Polystyrolen sind gemäß japanischer Offenlegungsschrift Sho 61-19 656 der Mitsubishi für optische Zwecke ungeeignet, da sie weißfleckig und trüb sind. (Siehe Vergleichsbeispiel 3 der Sho 61-19 656).

Aus der europäischen Offenlegungsschrift Nr. 019 9824 sind optische Harzmaterialien bekannt. Diese können aus Gemischen von Harzen bestehen, wobei kleine Mengen einer dritten Substanz zugesetzt werden können, um die Verträglichkeit der Gemische zu verbessem (Seite 11 von EP-A 0 199 824). Als solche wird beispielsweise ein Polystyrol-Polycarbonat-Blockcopolymer in Mischungen von Bisphenol-A-Polycarbonat mit Styrol-Maleinsäureanhydrid- Copolymer im Beispiel 2 der EP-A 0 199 824 genutzt. Die Möglichkeit von Mischungen aus Polycarbonat und Polystyrol wird in der EP-A 0 199 824 angesprochen, aber nicht verifiziert. (Seiten 7, 8 und 11 der EP-A 0 199 824) Pfropfcopolymere sind auch als optische Harzmaterialien im Sinne von EP-A 0 199 824 geeignet. (Seite 9, Mitte bis Seite 11, Absatz 1 von EP-A 0 199 824 sowie Beispiel 4 von EP-A 0 199 824). Ein Hinweis auf die speziellen, gepfropften Vinylcopolymerisate gemäß vorliegender Erfindung ist der EP-A 0 199 824 nicht zu entnehmen.

Es lag auch nicht nahe, die gepfropften Vinylcopolymerisate gemäß vorliegender Erfindung als besonders geeignete Modifikatoren einzusetzen, da aus den Beispielen des US-Patents 3 856 886 hervorgeht, einerseits für entsprechende Dreiermischungen gepfropfte Vinylcopolymerisate mit einem geringen Anteil an Vinylcopolymerisat-Pfropfgrundlage einzusetzen, und andererseits für die Mischungen aus thermoplastischen Polycarbonaten mit gepfropften Vinylcopolymerisaten, Pfropfprodukte einzusetzen, die einen höheren Anteil an Vinylcopolymerisat-Pfropfgrundlage enthalten.

Der Zusatz von zusätzlichem Vinylpolymerisat führt daher vorzugsweise zu einer Minderung des Gehalts an Pfropfgrundlage im gepfropften Vinylcopolymerisat, um verträgliche Mischungen aus Polycarbonaten und Vinylpolymerisaten herzustellen.

Aus diesem Grund lag es für den Fachmann nicht nahe, eine verbesserte Verträglichkeit zwischen thermoplastischen Polycarbonat und Polystyrol dadurch herzustellen, daß gepfropfte Vinylcopolymerisate verwendet werden, deren Vinylcopolymerisatpfropfgrundlage erhöht, also zwischen 35 Gew.-% und 55 Gew.-% liegt, um eine optimale Verträglichkeit für optische Anwendungen zu erzielen, d.h. Gemische mit geringer optischer Anisotropie zu erhalten.

Gegenstand der vorliegenden Erfindung ist somit auch die Verwendung der erfindungsgemäßen Mischungen aus den Komponenten A), B) und den gepfropften Vinylpolymerisaten als Substrate für optische Datenspeicher.

Die zur Herstellung der erfindungsgemäßen gepfropften Vinylcopolymerisate erforderlichen Verbindungen der Formel (I) sind entweder bekannt oder nach bekannten Verfahren herstellbar. (Siehe beispielsweise H. Niederprüm, P. Voss, V. Beyl Liebigs Ann., 1973, 20-32 und Japan Kokai Tokyo Koko 79/122 257).

Beispiele für solche Verbindungen sind beispielsweise 3-Trimethylsiloxystyrol, 4-Trimethylsiloxystyrol, 3-Trimethylsilyloxy- α -methylstyrol, 4-Trimethylsiloxy- α -methylsiloxy- α -methylsiloxy- α -methylsiloxy- α -methylsiloxy-allylbenzol, 4-Trimethylsiloxy-allylbenzol und 4-Trimethylsiloxyphenyl-allylether.

Eine Möglichkeit zur Herstellung der Verbindungen der Formel (I) besteht darin, daß man die entsprechenden Phenole (Ia), welche den Verbindungen der Formel (I) entsprechen, worin jedoch X = OH ist, mit Hexamethyldisilazan bei 150°C umsetzt (H. Niederprüm, P. Voss, V. Beyl, Liebigs Ann., 1973, 20-32).

Die radikalisch initierte Massepolymerisation kann beispielsweise wie nachstehend beschrieben, erfolgen:

95-99,5 mol-% Vinylaromat und 0,5-5 mol-% einer Verbindung der Formel (I) werden unter Stickstoffatmosphäre mit 0,05-0,25 Gew.-% a,a -Azodiisobutyronitril, bezogen auf die eingesetzte Gewichtsmenge an Vinylaromaten, versetzt und 20-40 Stunden bei 60-100 °C polymerisiert. Die Reaktionsbedingungen bzgl. Temperatur und Initiatorkonzentration entsprechen denen bekannter Verfahren (siehe auch Houben-Weyl Band 14/1, "Makromolekulare Stoffe" Seite 753 f.f., Georg Thieme Verlag, Stuttgart 1962).

Die Polymerisationszeit richtet sich nach dem Anteil an Comonomeren der Formel (I) und dem angestrebten Molekulargewicht der Vinylcopolymerisatpfropfgrundlage. Bei angestrebtem, hohem Molekulargewicht der Pfropfgrundlage und gleichzeitigem, hohem Anteil an Verbindungen der Formel (I) ist die Polymerisationszeit entsprechend länger zu wählen als bei einem angestrebten niedrigeren Molekulargewicht der Pfropfgrundlage und/oder bei niedrigem Anteil an Verbindungen der Formel (I).

Die resultierenden, noch ungepfropften Copolymerisate bestehen somit aus bifunktionellen Struktureinheiten der Formel (III)

$$\begin{bmatrix}
R \\
C - CH_2 - J - CH_2 - J - CH_2
\end{bmatrix}$$
50
$$\begin{bmatrix}
CH_2 \\
(O)_{m} \\
CH_3
\end{bmatrix}$$

$$CH_3 - CH_3 - CH_3$$

$$CH_3 - CH_3 - CH_3 - CH_3$$

worin

15

25

30

35

R, R₁, m, n, r, t und X die für Formel (I) genannte Bedeutung haben.

Die für die Pfropfreaktion geeigneten Diphenole sind die für die bekannte Herstellung von thermoplastischen Polycarbonaten üblichen Diphenole, vorzugsweise solche der Formel (IV) HO-D-OH, worin D ein zweibindiger, organischer Rest mit 6 bis 30 C-Atomen ist, und insbesondere solche der Formel (II).

Beispiele für geeignete Diphenole sind beispielsweise 2,2-Bis(4-hydroxyphenyl)-propan, 2,2-Bis(3,5-dimethyl-4-hydroxyphenyl)-propan, 2,2-Bis(3,5-dichlor-4-hydroxyphenyl)-propan und 1,1-Bis(4-hydroxyphenyl)-cyclohexan, außerdem Polydialkylsiloxandiphenole, wie sie nachfolgend unter Formel (IIa) aufgeführt sind.

Die Pfropfseitenketten können sowohl ein als auch mehrere Diphenole einkondensiert enthalten, hierbei sei erwähnt, daß die Diphenole der Formel (IIa) in den Seitenketten in einer Menge von maximal 20 Gew.%, bezogen auf das Gesamtgewicht der Polycarbonatseitenketten, enthalten sind.

Geeignete Monophenole der Kettenabbrecher sind beispielsweise Phenol, p-tert.-Butylphenol, p-Cumylphenol und p-Isooctylphenol.

Inerte organische Lösungsmittel für die Pfropfungsreaktion sind beispielsweise Methylenchlorid und Chlorbenzol.

Die Gewichtsmenge an inertem Lösungsmittel beträgt etwa das 20-25 fache, bezogen auf die in der Pfropfungsre aktion eingesetzte Gewichtsmenge an Pfropfgrundlage. Die Menge an Lösungsmittel richtet sich nach der jeweils eingesetzten Gewichtsmenge an Pfropfgrundlage im herzustellenden Pfropf; bei geringer Menge an Pfropfgrundlage reicht eine geringere Menge, bei einer höheren Menge an Pfropfgrundlage im Pfropf wird eine größere Menge an Lösungsmittel benötigt. Die Menge an Lösungsmittel ist natürlich so zu wählen, daß die erhaltene Endviskosität in den anfangs erwähnten Bereich fällt.

Als wäßrige alkalische Phase dient beispielsweise wäßrige Natronlauge oder Kalilauge.

Geeignete Katalysatoren sind beispielsweise tertiäre Amine, wie z.B. Triethylamin oder N-Ethylpiperidin. Die resultierenden, gepfropften Copolymerisate enthalten somit Struktureinheiten der Formel (IIIa), welche den Struktureinheiten der Formel (III) entsprechen, worin jedoch

worin p eine ganze Zahl zwischen 35 und 70 ist und Diphenolat bzw. Monophenolat Reste wie -O-D-O- bzw.

___-

darstellen, welche naturgemäß aus der Umsetzung mit Phosgen in wäßrig alkalischer Phase resultieren, d.h. Reste sind, die durch Abzug der phenolischen H-Atome aus Diphenolen bzw. Monophenolen resultieren.

Die erfindungsgemäße Pfropfreaktion läßt offen, ob alle Pfropfstellen X der Pfropfgrundlage jeweils an der Pfropfreaktion partizipieren, gegebenenfalls kann reines Polycarbonat in untergeordnetem Maße anfallen.

Die als Komponente A) einzusetzenden Polycarbonate sind als solche bekannt oder nach bekannten Verfahren herstellbar. (Siehe bzw. "H. Schnell, Chemistry and Physics of Polycarbonates, Interscience Publishers, New York, 1964).

Polycarbonate auf Basis der Diphenole der Formel (II) sind solche, die zumindest 80 Gew.-%, bezogen auf die Molsumme der einzusetzenden Diphenole, an Diphenolen der Formel (II) einkondensiert enthalten.

Bevorzugte andere Diphenole, die in Mengen von maximal 20 Gew.-%, bezogen auf die Molsumme der einzusetzenden Diphenole, eingesetzt werden, sind solche der Formel (IIa) (siehe EP-0 122 535).

55

50

worin

10

15

25

30

.35

R = C₁-C₆-Alkyl, vorzugsweise CH₃-, und

n = 20 bis 200, vorzugsweise 40 bis 80 sind.

Bevorzugte Diphenole der Formel (II) sind 2,2-Bis-(4-hdyroxyphenyl)-propan und 1,1-Bis(4-hydroxyphenyl)-cyclohexan.

Geeignete Diphenole der Formel (IIa) sind beispielsweise solche der Formel (IIb)

worin

n = 40,60 oder 80 ist.

Geeignete Kettenabbrecher zur Herstellung der Polycaronate der Komponente A) sind beispielsweise Phenol, p-tert.-Butylphenol und p-Isooctylphenol.

Die Polycarbonate gemäß Komponente A) sind sowohl Homopolycarbonate als auch Copolycarbonate.

Die aromatischen Polycarbonate gemäß Komponente A) können sowohl linear als auch verzweigt sein.

Die Verzweigung kann durch den Einbau geringer Mengen, vorzugsweise zwischen 0,05 und 2,0 Mol-%, bezogen auf eingesetzte Diphenole, an drei- oder mehr als dreifunktionellen Verbindungen, z.B. solchen mit drei oder mehr als drei phenolischen Hydroxygruppen in bekannter Weise erfolgen.

Derartige Polycarbonate sind bekannt. (Siehe beispielsweise DE-PS 2 500 092 bzw. US-Patent 4 185 009).

Einige der verwendbaren Verbindungen mit drei oder mehr als drei phenolischen Hydroxygruppen sind beisielsweise Phloroglucin, 4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptan, 1,3,5-Tri-(4-hydroxyphenyl)-benzol, 1,1,1-Tri-(4-hydroxyphenyl)-ethan, 2,6-Bis-(2´-hydroxy-5´-methylbenzyl)-4-methylphenol, 2-(4-hydroxyphenyl)-propan und 1,4-Bis-(4,4´-dihydroxytriphenyl-methyl)-benzol. Einige der sonstigen dreifunktionellen Verbindungen sind 2,4-Dihydroxybenzoesäure, Trimesinsäure, Cyanurchlorid und 3,3-Bis-(4-hydroxy-3-methyl-phenyl)-2-oxo-2,3-dihydroindol.

Es kann sowohl ein Polycarbonat allein als auch ein Gemisch verschiedener Polycarbonate als Komponente A) fungieren.

Polystyrole gemäß Komponente B) sind sowohl Homopolymere als auch Copolymere. Sie sind entweder als solche be kannt, oder nach bekannten Verfahren erhältlich. Geeignete Monomere für die erfindungsgemäß einzusetzenden Polystyrole sind vor allem Styrol selbst, o-, p- und m-Methylstyrol, p-Ethylstyrol, 2,4-Dimethylstyrol, o-Chlorstyrol, 2,5-Dichlorstyrol, Vinylnaphthalin und Vinylbiphenyl.

Beispiele sind die entsprechenden Homopolymere der erwähnten Monomeren.

Beispiele für Copolymere sind Styrol-α-Methylstyrol-Copolymere, Styrol-p-Methylstyrol-Copolymere, Copolymere aus verschiedenen Methylstyrol-Isomeren ("Vinyltoluol"), auch in Kombination mit Styrol sowie Copolymere von Styrol und Divinylbenzol.

Bevorzugte Styrolpolymere sind die Homopolymere der Styrols, des p-Methylstyrols und des o-Chlorstyrols, sowie die Copolymeren von Styrol und a-Methylstyrol, von Styrol und p-Methylstyrol, Polyvinyltoluole der verschiedensten Vinyltoluole, gegebenenfalls in Kombination mit Styrol.

Es kann sowohl ein Polystyrol allein, als auch ein Gemisch verschiedener Polystyrole als Komponente B) fungieren.

Zur Herstellung der erfindungsgemäßen Mischungen können die Polycarbonatkomponente, die Polysty-

rolkomponente und die Pfropfcopolymerkomponente oberhalb der Erweichungs temperatur der verwendeten Polycarbonatkomponente vermischt werden. Dies kann beispielsweise durch Compoundierung bei der Extrusion in den üblichen Schneckenmaschinen in einem einzigen Arbeitsgang erfolgen und zwar beispielsweise bei Temperaturen zwischen 280°C und 350°C.

Zur Compoundierung eignen sich bekannte Apparaturen, Doppelschneckenextruder werden bevorzugt eingesetzt.

Es ist selbstverständlich, daß im Bedarfsfall bei derartigen Polymermischungen die für Polycarbonat bzw. Polystyrol üblichen Stabilisatorsysteme und/oder Entformungsmittel verwendet werden können, die durch Compoundierung, wie oben beschrieben, in bekannter Weise eingearbeitet werden können.

Die Verwendung von Kunststoffen oder Kunststoffgemischen als Substrate für optische Datenspeicher setzt folgendes voraus:

Die Information optischer Datenträger wird mit dem linear polarisierten Licht eines Lasers gelesen und im Falle beschreibbarer Datenspeicher auch eingeschrieben. Eines der Systeme für beschreib- und löschbare Verfahren sind die magnetooptischen Datenspeicher: Hier muß besonderer Wert auf doppelbrechungsfreies Substratmaterial gelegt werden, da eine geringfügige Drehung (unter 1°) der Licht-Schwingungsebene schon als Signal gelesen wird.

Doppelbrechung setzt sich in Kunststoff (Thermoplasten) im wesentlichen aus 2 Faktoren zusammen: Einer materialspezifischen Komponente einerseits und einem verarbeitungsbedingten Anteil, der auch als Orientierungsdoppelbrechung bezeichnet wird, andererseits.

Doppelbrechungsarme, thermoplastische Formteile können somit durch zweierlei Maßnahmen hergestellt werden, entweder durch die Wahl geeigneter Verarbeitungsparameter, beispielsweise durch Verarbeitung von niedrigviskosen Typen bei relativ hoher Temperatur wie etwa beim Spritzgießen oder Spritzprägen von Audio-Compact-Discs aus thermoplastischem Polycarbonat, oder durch den Einsatz von Material, das von sich auch nur geringe Neigung zur Doppelbrechung zeigt, wie beispielsweise Polymethylmethacrylate, welche für die Herstellung von Video-Discs verwendet werden

Beschreibbare Speicherverfahren wie z.B. magnetooptlsche Systeme erfordern beim Beschreiben eine relativ hohe Energie, um ein akzeptables Signal/Rausch-Verhältnis zu bekommen. Dazu wird eine Optik mit großer numerischer Apretur verwendet. Durch den Öffnungswinkel der Schreib-und Leseoptik bedingt, bekommt eine möglichst geringe optische Anisotropie auch für den Strahlenverlauf in tangentialer und radialer Richtung erhebliche Bedeutung. So zeigen Compact Discs, die in axialer Richtung bereits sehr niedrige Gangunterschiede der Doppelbrechung (unter 10 nm/mm) aufweisen, tangential und radial noch hohe Meßwerte, typischerweise um 500-1000 nm/mm.

Bekannt ist bereits die allgemeine Möglichkeit, die Doppelbrechung eines Polymeren zu verringern, indem man ein Polymeres mit entgegengesetzter Doppelbrechung hinzufügt (J. Hennig, Vortrag auf der Tagung "Neue Polymere" in Bad Nauheim, 14./15.04.1986: "Polymere als Substrate für optische Plattenspeicher").

Bekannt ist auch die prinzipielle Möglichkeit, durch Kombination von Polycarbonat und modifiziertem Polystyrol ein Material geringer Doppelbrechung zu erhalten (Nikkei Sangyo-Industry Daily vom 07.02.1986 "Sumitomo Chemical Developed New Resin for Erasable Optical Disc").

Die Verwendung der erfindungsgemäßen Mischungen als Substrate für optische Datenspeicher kann wie folgt erläutert werden:

"Substrat" für optische Datenspeicher im erfindungsgemäßen Sinne ist das Material der mechanischen Grundlage einer Datenplatte, das sowohl als Träger für eine Informationsschicht bzw. - ebene dient als auch den Abstandshalter zwischen dieser informationstragenden und der äußeren -ebenen- Plattenoberfläche darstellt.

Der informationstragende Lichtstrahl muß sowohl zum Lesen als auch zum Schreiben unverändert das Substrat durchlaufen - auf dem Weg von der ebenen Plattenoberfläche zur gegenüberliegenden Datenseite ebenso wie -im Falle des Lesestrahls - nach Informationsübertragung von dieser wieder zur äußeren Oberfläche zurück, aus der er zum Detektor hin austritt.

Beispiele für optische Datenspeicher sind beispielsweise Audio-Compact-Disc und die Video-Disc.

Beispiele

55

45

A Herstellung der Pfropfcopolymeren

Beispiel 1

a) Pfropfgrundlage

erhalten durch Copolymerisation von 1950 g Styrol und 50 g 4-Trimethylsiloxy- α -methylstyrol in Masse in Gegenwart von 2 g α, α' -Azodiisobutyronitril unter Stickstoff bei 80° C innerhalb von 29 Stunden.

Das mittlere Molekulargewicht, ermittelt durch Gelpermeationschromatographie, wurde zu $\overline{M}_n = 68\,377$ g/mol bestimmt.

b) Pfropfungsreaktion

Innerhalb von einer Stunde werden bei $20\text{-}25^{\circ}$ C unter Rühren 1,1 kg (11,1 Mol) Phosgen in ein Gemisch aus 2,223 kg (9,75 mol) 2,2-Bis(4-hydroxyphenyl)-propan (BPA); 43,9 g ($\frac{1}{2}$ 3 mol % bezogen auf BPA) p-tert.-Butylphenol; 2,3 kg 45 %iger Natronlauge; 40 l Wasser, 20 kg Chlorbenzol und 1,95 kg der unter a) beschriebenen Pfropfgrundlage gelöst in 20 kg Methylenchlorid eingeleitet. Anschließend werden 19 ml ($\frac{1}{2}$ 1 mol % bezogen auf BPA) N-Ethylpiperidin zugesetzt und 1h lang nachgerührt. Die organische Phase wird abgetrennt, elektrolytfrei gewaschen und nach Abdestillieren des Methylenchlorids bei 300° C extrudiert. Es wurden 3,9 kg Produkt erhalten, mit einer rel. Lösungsviskosität π_{rel} = 1,482. Das berechnete Molekulargewicht der Polycarbonatseitenäste/Pfropfstelle beträgt \overline{M}_n = 13.293 g/mol, was einem Polykondensationsgrad \overline{p} von 52 entspricht.

Beispiel 2

15

25

40

50

55

30 a) Pfropfgrundlage

erhalten durch Copolymerisation von 222 g Vinyltoluol und 5 g 4-Trimethylsiloxy- α -methylstyrol in Masse in Gegenwart von 0,2 g α , α -Azodiisobutyronitril unter Stickstoff bei 80 °C innerhalb von 24 Stunden. Das mittlere Molekulargewicht ermittelt durch Gelpermeationschromatographie, wurde zu $\overline{M}_n = 63.219$ g/mol bestimmt.

b) Pfropfungsreaktion

Innerhalb von einer halben Stunde werden bei 20-25 °C unter Rühren 15 g (0,15 mol) Phosgen in ein Gemisch aus 22,8 g (0,1 mol) 2,2-Bis(4-hydroxyphenyl)-propan (BPA); 450 mg (= 3 mol% bezogen auf BPA) p-tert.-Butylphenol; 20 g (0,5 mol) Natriumhydroxid; 400 ml Wasser und 20 g der unter b) beschriebenen Pfropfgrundlage gelöst in 400 ml Methylenchlorid eingeleitet. Nach Zugabe von 0,14 ml N-Ethylpiperidin wird noch 1/2 h lang nachgerührt. Die organische phase wird abgetrennt, elektrolytfrei gewaschen, getrocknet und eingeengt. Es wurden 43,8 g Produkt erhalten mit einer Lösungsviskosität $\pi_{\rm rel}$ = 1.328.

Das berechnete Molekulargewicht der Polycarbonatseitenäste/Pfropfstelle beträgt 10.459 g/mol, was einem Polykondensationsgrad p von 41 entspricht.

8 Herstellung der Mischungen

Im folgenden sind die in den Beispielen und Vergleichsbeispielen verwendeten Materialien beschrieben. Die angegebenen Lösungsvkositäten wurden in Methylenchlorid bei 5 g/l bei 25°C ermittelt.

- l) Polycarbonat (PC) aus Bisphenol A, hergestellt gemäß DE 2 842 005, mit einer rel. Lösungsviskosität $\pi_{rel} = 1,20$ (gemessen in Methylenchlorid bei 5 g/l bei 25 °C) entspricht einem M_w von 18 500.
 - II) Polystyrol (PS) mit einer rel. Lösungsviskosität $\pi_{rel} = 1,597$ entspricht einem M_w von 350 000.

III) Polyvinyltoluol (PVT) mit einer rel. Lösungsviskosität $\pi_{\rm rel} = 1,328$ entspricht einem $M_{\rm w}$ von 155 000.

Die Probenpräparation für die morphologischen Untersuchungen der erfindungsgemäßen Mischungen sowie der Vergleichsbeispiele erfolgte durch Lösungscompoundierung der Einzelkomponenten. Aus diesen Lösungen wurde nach bekannten Verfahren 50 µm Gießfolien hergestellt, von denen anschließend Ultramicrotomschnitte mit einem LKB Ultratome III angefertigt wurden. Mit dieser Art der Probenpräparation sollte gewährleistet werden, daß die mikroskopischen Aufnahmen ein repräsentatives Bild des thermodynamischen Gleichgewichtszustandes der Polymermischungen wiedergegeben. Die Morphologie der Polymerblends wurde in einem Lichtmikroskop (Leitz Dialus Pol) im polarisierten Durchlicht sowie in einem Transmissionselektronenmikroskop (EM 400, Philips) studiert.

In den folgenden Beispielen werden polycarbonatreiche Polymermischungen, bestehend aus 60 Gew.- % Polycarbonat und 40 Gew.- % Styrolpolymeren, beschrieben.

Bei den erfindungsgemäßen Polymermischungen in den Beispielen 3-6, ergibt sich die Gesamtmenge von 60 Gew.-% an Polycarbonat als Summe aus dem Gewichtsanteil an Polycarbonat in der zugesetzten Menge an Pfropfcopolymer plus der zugesetzten Menge an Homo-Polycarbonat. Dementsprechend ergeben sich die Gesamtmenge an Styrolpolymeren von 40 Gew.-% als Summe aus dem Gewichtsanteil an Styrolpolymeren in der zugesetzten Menge an Pfropfcopolymer plus der zugesetzten Menge an Styrolpolymeren.

In den lichtmikroskopischen Aufnahmen (im weiteren Text als LM-Aufnahmen abgekürzt) erscheint die kontinuierliche Polycarbonatmatrix im polarisierten Durchlicht heller als die in disperser Phase vorliegenden Styrolpolymeren. Bei den transmissionselektronenmikroskopischen Aufnahmen erscheint die Polycarbonatmatrix hingegen dunkler als die dispergierte Styrolpolymerphase. Die bessere Verträglichkeit der erfindungsgemäßen Mischungen wurde anhand der aus den transmissionselektronenmikroskopischen Aufnahmen (im weiteren Text als TEM-Aufnahmen abgekürzt) ermittelten Domänengröße der Styrolpolymerphase beurteilt

Vergleichsbeispiel 1

60 Tle. Polycarbonat werden mit 40 Tle. Polystyrol in 1000 Tln. Methylenchlorid aufgelöst. Aus dieser Lösung wurde eine 50 µm Gießfolie angefertigt. LM = Figur 1, Vergrößerung 500:1.

Vergleichsbeispiel 2

35

40

30

Aus der Lösung von 60 Tln. Polycarbonat, 40 Tln. Polyvinyltoluol und 1000 Tln. Methylenchlorid konnte keine für die morphologischen Untersuchungen geeignete Folie hergestellt werden, da die hohe Delaminierungstendenz dazu führt, daß die Einzelpolymere in der Folie separate Schichten bilden.

Beispiele 3-5

Es wurden jeweils 55 Tle. Polycarbonat, 35 Tle. Styrolpolymeres und 10 Tle. Pfropfcopolymer in 1000 Tln. Methylenchlorid aufgelöst und aus diesen Lösungen anschließend 50 µm Gießfolien hergestellt. Die genaue Zusammensetzung der erfindungsgemäßen Polymermischungen in Gew.-% sowie die mittelre Domänengröße sind in Tabelle 1 zusammengefaßt.

TEM-Aufnahme von Beispiel 3 = Figur 2, Vergrößerung LM-Aufnahme von Beispiel 4 = Figur 3, Vergrößerung 500:1 TEM-Aufnahme von Beispiel 4 = Figur 4, Vergrößerung 7500:1 LM-Aufnahme von Beispiel 5 = Figur 5, Vergrößerung 500:1 TEM-Aufnahme von Beispiel 5 = Figur 6, Vergrößerung 7500:1.

Tabelle 1: Zusammensetzung und Domänengröße der Styrolpolymerenphase in den Vergleichbeispielen
1 und 2 sowie in den Beispielen 3-5

Beispiele	PC	PS	PVT	Pfropfcopolymer polymer		Domänen- größe in	
			,	Bsp.1	Bsp.2	μm	
Vergleichs-	-						
Beispiel 1	60	40	-	-	-	6-80	
Vergleichs-	•						
Beispiel 2	60	-	40	-	-	nicht be-	
						stimmbar	
Beispiele							
3	55	35	-	10	-	0,5-3,0	
4	55	-	35	10	-	0,6-5,3	
5	55	-	35	•	10	1,6-5,3	

Beispiel 6

30

35

45

50

5

Gemischt wurden wechselnde Anteile Polycarbonat I), Polystyrol II) und Pfropfcopolymer des Beispiels 1 durch Compoundierung an einer ZSK 32 bei 270-290 °C. Aus den erhaltenen Compounds wurden Compact Discs bei einer Massetemperatur von 340 °C spritzgegossen. Die Doppelbrechung der Misschungen wurde beurteilt durch Messung des Gangunterschiedes in Abhängigkeit von den Raumrichtungen in der Mitte zwischen Plattenachse und -rand (Tabelle 2).

Doppelbrechung von Compact-Disk (120 mm #) aus Polycarbonat I)/Polystyrol II) Pfropfcopolymer des Beispiels 1 Tabelle 2:

Messungen des Gangunterschieds in der Mitte zwischen Plattenachse und -rand im Durchlicht (axial) sowie an den Querschnitten tangential und radial.

.i•d/mm-mm-1	:ht	ingential radial	139 -157		163 -185
Gangunterschied/mm-mm $^{-1}$	Durchlicht	(axial) tengential	41	17	34
nmetzung in *	Pfropfcopolymer	des Beispiels 1	2,5	2,0	10,0
Substratzusammense GewX	PS	£	38,75	37,50	35,00
Substr	5	2	58,75	57,50	55,00

MOCID- >ED | Assorbe

Ansprüche

5

15

20

1. Verfahren zur Herstellung von Vinylcopolymerisaten mit aufgepfropften Polycarbonatketten, deren Vinylcopolymerisatpfropfgrundlage ein $\overline{\rm M}$ n (Zahlenmittelmolekulargewicht, ermittelt durch Gelpermeationschromatographie von 45 000 bis 95 000 hat, deren Polycarbonatketten einen Polykondensationsgrad an wiederkehrenden Carbonatstruktureinheiten von 35 bis 70 haben, und die ein Gewichtsverhältnis von Vinylcopolymerisatpfropfgrundlage zu aufgepfropften Polycarbonatketten zwischen 35 Gew.-% zu 65 Gew.-% und 55 Gew.-% zu 45 Gew.-% haben, dadurch gekennzeichnet, daß man 95 mol-% bis 99,5 Mol-% an Styrol und 5 Mol-% bis 0,5 Mol-% an Verbindungen der Formel (i)

$$R-C-[CH2-(0)m-]t$$

$$(R1)n$$

$$CH3$$

$$CH3$$

$$(R1)n$$

$$CH3$$

$$(R1)n$$

$$CH3$$

$$(R1)n$$

worin

 $R = H \text{ oder } C_1 - C_4 - Alkyl,$

P = CI, Br, $C_1 \cdot C_4 \cdot AlkyI$, Cyclohexyl oder $C_1 \cdot C_4 \cdot Alkoxy$

m = 0 oder 1,

n = 0, 1 oder 2,

r = 0 oder 1,

t = 0 oder 1 und

 $X = -O-Si(CH_3)_3$ sind,

durch radikalische initierte Massepolymerisation bis zu einem gewünschten Molekulargewicht (\overline{M} n, Zahlenmittelmolekulargewicht) zwischen 45 000 und 95 000 nach bekannten Verfahren copolymerisiert, und danach das Polymerisat ohne Isolierung mit Diphenolen, Phosgen und Monophenolen in wäßrig-alkalischer Phase unter Zusatz eines inerten organischen Lösungsmittels unter den Bedingungen des Zweiphasengrenzflächenverfahrens umsetzt, wobei die Menge an Diphenol so gewählt ist, daß der Gehalt an Polycarbonatketten im gepfropften Vinylcopolymerisat zwischen 65 Gew.-% und 45 Gew.-%, bezogen auf das Gesamtgewicht des gepfropften Vinylcopolymerisats inclusive aufgepfropften Polycarbonatketten, beträgt, und wobei die Menge an Kettenabbrecher so bemessen ist, daß die mittlere Kettenlänge der aufgepfropften Polycarbonatseitenketten jeweils zwischen 35 und 70 wiederkehrende Carbonatstrukureinheiten aufweist, und wobei die Menge an inerten organischen Lösungsmittel so bemessen sein muß, das die Endviskosität der organischen Phase der Reaktionsmischung zwischen 5 und 25 mPa.s liegt.

- 2. Gepfropfte Vinylcopolymerisate, erhältlich nach dem Verfahren des Anspruchs 1.
- 3. Gepfropfte Vinylcopolymerisate gemäß Anspruch 2, dadurch gekennzeichnet, daß sie Struktureinheiten der Formel (Illa) enthalten

50

$$\begin{bmatrix} R \\ C-CH_2-J \\ 0,5-5 \end{bmatrix} = \begin{bmatrix} CH-CH_2 \\ 99,5-95 \end{bmatrix}$$

$$\begin{bmatrix} CH_2 \\ (O)_m \end{bmatrix} = \begin{bmatrix} CH_3 \\ CH_3 \\ CH_3 \end{bmatrix} = \begin{bmatrix} CH_2 \\ CH_3 \end{bmatrix} = \begin{bmatrix} CH_$$

worin

5

10

15

R, R₁, m, n, r und t die für Formel I im Anspruch 1 genannte Bedeutung hanben, p eine ganze Zahl zwischen 35 und 70 ist und Diphenolat und Monophenolat Reste sind, die durch Abzug der phenolischen H = Atome aus Diphenolen bzw. Monophenolen resultieren.

- 4. Verwendung der gepfropften Vinylcopolymerisate gemäß Ansprüche 2 und 3 als Modifikatoren für Mischungen aus thermoplastischen Polycarbonaten und thermoplastischen Polystyrolen.
 - 5. Mischungen von
- A) 70 bis 20 Gew.-% eines thermoplastischen, aromatischen Polycarbonats auf Basis von Diphenolen der Formel (II)

worin

30

Z eine Einfachbindung, ein Alkylen-Rest mit 1 bis 8 C-Atomen, ein Alkyliden-Rest mit 2 bis 12 C-Atomen, ein Cyclohexyliden-Rest, ein Benzyliden-Rest ein Methyl-benzyliden-Rest, ein Bis-(phenyl)-methylen-Rest, -S-, -SO₂-, -CO- oder -O- ist, mit M w (Gewichtsmittelmolekulargewichten, ermittelt in bekannter Weise über die relative Lösungsviskosität) zwischen 15 000 und 120 000, und

- B) 30 bis 80 Gew.-% eines thermoplastischen Polystyrols mit einem \overline{M} w (Gewichtsmittelmolekulargewicht, ermittelt durch Gelpermeationschromatographie in bekannter Weise) von 20 000 bis 400 000, dadurch gekennzeichnet, daß sie 0,5 Gew.-% bis 15 Gew.-%, bezogen jeweils auf 100 Gew.-% an A) + B), an gefropften Vinylcopolymerisat gemäß Anspruch 2 erhalten.
- 6. Mischungen gemäß Anspruch 5, dadurch gekennzeichnet, daß sie 1,0 Gew.-% bis 12 Gew.-% an gepfropften Vinylcopolymerisat enthalten.
- 7. Mischungen gemäß Anspruch 5, dadurch gekennzeichnet, daß sie 2 Gew.-% bis 9 Gew.-% an gepfropften Vinylcopolymerisat enthalten.
 - 8. Verwendung der Mischungen des Anspruchs 5 als Substrate für optische Datenspeicher.

50

45

FIG. 1

FIG. 2

FIG. 4

)OCID: <EP 020278542 L

1) Veröffentlichungsnummer:

0 292 785

Α3

12

EUROPÄISCHE PATENTANMELDUNG

21 Anmeldenummer: 88107551.9

(1) Int. Cl.4: C08F 8/00 , C08G 63/62

2 Anmeldetag: 11.05.88

3 Priorität: 22.05.87 DE 3717172

Weröffentlichungstag der Anmeldung: 30.11.88 Patentblatt 88/48

Benannte Vertragsstaaten:

DE FR GB IT NL

Veröffentlichungstag des später ver öffentlichten Recherchenberichts: 12.07.89 Patentblatt 89/28 Anmelder: BAYER AG

D-5090 Leverkusen 1 Bayerwerk(DE)

© Erfinder: Dujardin, Ralf, Dr. Bodelschwinghstrasse 18 D-4150 Krefeld(DE)

Erfinder: Ebert, Wolfgang, Dr.

Dörperhofstrasse 31 D-4150 Krefeld(DE)

Erfinder: Meyer, Rolf-Volker, Dr.

Buchheimerstrasse 23 D-4150 Krefeld(DE) Erfinder: Grigo, Ulrich, Dr. Michelscheide 9

D-4152 Kempen 3(DE) Erfinder: Grigo, Ulrich, Dr.

Michelscheide 9 D-4152 Kempen 3(DE)

Erfinder: Wehnert, Wolfgang, Dr. Bodelschwinghstrasse 14

D-4150 Krefeld(DE)

Vinylcopolymerisate mit aufgepropften Polycarbonatketten, ihre Herstellung und Verwendung.

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Vinylcopolymerisaten mit aufgepfropften Polycarbonatketten, die nach dem erfindungsgemäßen Verfahren erhältlichen gepfropften Vinylcopolymerisate, ihre Verwendung als Modifikatoren für Mischungen aus thermoplastischen Polycarbonaten und thermoplastischen Polystyrolen, derartige Mischungen selbst sowie die Verwendung derartiger Mischungen als Substrate für optische Datenspeicher.

Xerox Copy Centre

88 10 7551

		GE DOKUMENTE		
Kategorie	Kennzeichnung des Dokur der maßgeb	nents mit Angabe, soweit erforderlich, lichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
D,A	DIE ANGEWANDTE MAK Band 60/61, Nr. 86 125-137; D. MARGOT "Polycarbonat-gepf Polyvinylverbindun * Insgesamt *	ropfte	1-8	C 08 F 8/00 C 08 G 63/62
D,A	DE-A-1 770 144 (B * Anspuch *	AYER)	1-8	
D,A	DE-A-2 019 992 (B * Anspruch *	AYER)	1-8	
D,A	DE-A-2 019 993 (B * Anspruch *	AYER)	1-8	
D,A	DE-A-2 019 994 (B. * Anspruch *	AYER)	1-8	
D,A	DE-A-1 795 840 (B. * Anspruch *	AYER)	1-8	RECHERCHIERTE SACHGEBIETE (Int. Cl.4)
				C 08 G C 08 F
·	<u>.</u>			
	=			
Der voi	rliegende Recherchenbericht wur	de für alle Patentansprüche erstellt	1	
	Recherchenort	Abschlußdatum der Recherche	 1	Prisfer
DEN HAAG		11-04-1989	MERG	ONI M.

KATEGORIE DER GENANNTEN DOKUMENTE

X: von besonderer Bedeutung allein betrachtet
Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
A: technologischer Hintergrund
O: nichtschriftliche Offenbarung
P: Zwischenliteratur

T: der Erfindung zugrunde liegende Theorien oder Grundsätze E: älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus andern Gründen angeführtes Dokument

& : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

EPO FORM 1503 00.82 (P0403)