ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ІВАНА ФРАНКА

Факультет прикладної математики та інформатики

Методи комп'ютерних обчислень

Індивідуальне завдання №1

Виконала:

Ст. Шувар Софія

Група ПМІ-33

Оцінка

Прийняв: ас. Остапов О.Ю. проф. Шинкаренко Г.А

Варіант 5

Постановка задачі

Знайти функцію u = u(x), яка на відрізку [0, 1] задовольняє наступне рівняння:

$$-\frac{d}{dx}(T(x)\frac{du}{dx}) + b(x)\frac{du}{dx} + \sigma(x)u = f(x) \qquad \forall x \in (0,1),$$
$$u(1) = 0, \qquad -T(x)\frac{du}{dx}\Big|_{x=0} = \hat{q}$$

Варіаційне формулювання

1. Вибираю простір: $V := \{ v(x) \in H^1(0,1) : v(1) = 0 \}$ Домножую обидві частини рівняння на функцію $v(x) \in V$ і інтегрую обидві частини рівняння на проміжку (0,1).

$$\int_{0}^{1} \left(-\frac{d}{dx} (T(x) \frac{du}{dx}) + b(x) \frac{du}{dx} + \sigma(x)u \right) v(x) dx$$

$$= \int_{0}^{1} f(x)v(x) dx \qquad (1)$$

$$\int_{0}^{1} \left(-\left(T(x) \frac{d^{2}u}{d^{2}x} + \frac{dT}{dx} \frac{du}{dx} \right) + b(x) \frac{du}{dx} + \sigma(x)u \right) v(x) dx$$

$$= \int_{0}^{1} f(x)v(x) dx$$

2. Обчислюю:

$$\int_0^1 (-T(x)u'')v(x)dx = -T(1)v(1)u'(1) + T(0)v(0)u'(0) +$$

$$+ \int_0^1 u'(x) (T(x)v(x))' dx = -\hat{q}v(0) + \int_0^1 u'(x) (T(x)v(x))' dx =$$

$$-\hat{q}v(0) + \int_0^1 u'(x) (T'(x)v(x) + T(x)v'(x)) dx$$

3. Підставивши отриманий результат у рівняння (1) отримала:

$$\int_{0}^{1} \left(u'(x)T(x)v'(x) + b(x)u'(x)v(x) + \sigma(x)u(x)v(x) \right) dx =$$

$$= \int_{0}^{1} f(x)v(x)dx + \hat{q}v(0)$$

4. Таким чином варіаційне формулювання:

Знайти функцію
$$u(x) \in V$$
, таку, що для довільного $v(x) \in V$: $a(u,v) = \langle l,v \rangle$, $\partial e \ V := \{ \ v(x) \in H^1(0,1) \colon \ v(1) = 0 \ \}$. Білінійна форма: $a(u,v) = \int_0^1 \bigl(u'(x) T(x) v'(x) + b(x) u'(x) v(x) + \ \sigma(x) u(x) v(x) \bigr) dx$ Лінійний функціонал: $\langle l,v \rangle = \int_0^1 f(x) v(x) dx + \ \widehat{q} v(0)$.

Метод розв'язування (МСЕ)

- **1.** Для обчислення кусково-лінійної апроксимації МСЕ U_h використовую сітку скінченних елементів утворену n+1 вузлами: $x_0, x_1 \dots x_n$, ∂e $x_0 = 0$, $x_n = 1$, $h = \frac{1}{n}$.
- **2.** Використовую базисні функції Куранта $\varphi_i(x)$ (i = 0, ... n):

$$\varphi_i(x) = \begin{cases} 0, x \in [0, x_{i-1}] \cup [x_{i+1}, 1] \\ \frac{x - x_{i-1}}{h}, & x \in [x_{i-1}, x_i] \\ \frac{x_{i+1} - x}{h}, & x \in [x_i, x_{i+1}] \end{cases}$$

- **3.** Функція $U_h = \sum_{i=0}^{n-1} q_i \, \varphi_i(x)$, $\partial e \, \varphi_i(x) \, (i=0, ... n-1)$ базисні функції Куранта ($U_h(1)=0$).
- **4.** Коефіцієнти q_i знаходжу з системи за допомогою методу прогонки:

$$\sum_{k=0}^{n-1} a(\varphi_{k,} \varphi_i) q_k = \langle l, \varphi_i \rangle, i = 0, \dots n-1;$$

Тут коефіцієнти $a(\varphi_k, \varphi_i)$ утворюють тридіагональну матрицю A, $a < l, \varphi_i >$ - вектор l.

Матрицю та вектор заповнюю за формулами:

$$a_{ii} = \frac{1}{h} T\left(x_{i-\frac{1}{2}}\right) + \frac{1}{h} T\left(x_{i+\frac{1}{2}}\right) + \frac{1}{2} b\left(x_{i-\frac{1}{2}}\right) - \frac{1}{2} b\left(x_{i+\frac{1}{2}}\right) + \frac{h}{3} \sigma\left(x_{i+\frac{1}{2}}\right) + \frac{h}{3} \sigma\left(x_{i+\frac{1}{2}}\right)$$

$$a_{ii+1} = -\frac{1}{h} T\left(x_{i+\frac{1}{2}}\right) + \frac{1}{2} b\left(x_{i+\frac{1}{2}}\right) + \frac{h}{6} \sigma\left(x_{i+\frac{1}{2}}\right)$$

$$a_{i+1i} = -\frac{1}{h} T\left(x_{i+\frac{1}{2}}\right) - \frac{1}{2} b\left(x_{i+\frac{1}{2}}\right) + \frac{h}{6} \sigma\left(x_{i+\frac{1}{2}}\right), \qquad i = 1, \dots, n-1$$

$$a_{00} = \frac{1}{h} T\left(x_{\frac{1}{2}}\right) - \frac{1}{2} b\left(x_{\frac{1}{2}}\right) + \frac{h}{3} \sigma\left(x_{\frac{1}{2}}\right).$$

$$l_{i} = \frac{h}{2} f\left(x_{i-\frac{1}{2}}\right) + \frac{h}{2} f\left(x_{i+\frac{1}{2}}\right), \qquad i = 1, \dots, n-1$$

$$l_{0} = \frac{h}{2} f\left(x_{\frac{1}{2}}\right) + \hat{q}$$

5. Розв'язавши систему, знаходжу функцію апроксимації $U_h = \sum_{i=0}^{n-1} q_i \, \varphi_i(x)$, будую її графік.

6. Обчислюю норми:

$$||U_h||_0 = \sqrt{\frac{h}{3} \sum_{i=0}^{n-1} (q_i^2 + q_i q_{i+1} + q_{i+1}^2)}$$

$$||U_h||_1 = \sqrt{\frac{1}{h} \sum_{i=0}^{n-1} ((q_i - q_{i+1})^2) + ||U_h||_0^2}$$

Аналіз результатів

Продемонструю роботу своєї програми на конкретному прикладі:

T(x) = -2x - 1			
b(x) = 2x - 3			
$\sigma(x) = -2$			
$f(x) = x^2 + x$			
$\hat{q} = -2$			

Розв'язавши диференціальне рівняння, отримала:

$$U(x) = \frac{1}{2}(3 - 4x + x^2)$$

Після виконання програми отримала такі результати:

Кількість вузлів (N+1)	Кількість проміжків (N)	$\ U_h\ _0$	$\ U_h\ _1$
5	4	0.777460	1.675663
11	10	0.792836	1.714797
31	30	0.795490	1.721554
51	50	0.795703	1.722096
101	100	0.795792	1.722325
501	500	0.795821	1.722398

Проміжні результати:

Графік функцій Куранта для N=4:

(Інші графіки функцій Куранта доступні у програмній реалізації)

Графіки апроксимацій:

• *N* = 4

• *N* = 10

 $\bullet \quad N = 50$

• *N* = 100

• *N* = 500

Графік функції U(x):

Висновок:

Під час виконання даного завдання, я для даної крайової задачі сформулювала варіаційну задачу, здійснила програмну реалізацію методу скінченних елементів знаходження апроксимації розв'язку заданої крайової задачі та обчислення норм $\|U_h\|_0$ та $\|U_h\|_1$ для різного згущення сітки. Для цього я використовувала мову програмування Python, а саме бібліотеки: NumPy, Pandas та MatplotLib. Протестувала програму на конкретних прикладах та переконалась, що МСЕ дає достатньо точну апроксимацію для великої кількості вузлів.