

A Report On The Calculation Of The Excited States Of Naphthalene At The MP2/cc-pVDZ Level

osl - 07th June 2022

Abstract

The calculation of excited states for the system 'Naphthalene' is presented, accompanied by automated analysis and image generation provided by the Silico software package. The calculation was performed using the Turbomole software package at the MP2/cc-pVDZ level of theory. The total self-consistent field (SCF) energy of the system was found to be -10432.31 eV after 1 step. The total Møller-Plesset (MP) energy of the system was found to be -10467.16 eV after 1 step. The highest-occupied molecular orbital (HOMO) and lowest-unoccupied molecular orbital (LUMO) were calculated to be -7.78 and 2.37 eV respectively, corresponding to a HOMO-LUMO band gap of 10.15 eV. The permanent dipole moment (PDM) was calculated to be 0.00 D. In total, 2 excited states were calculated with singlet multiplicity. The most intense absorption peak was calculated to be at 246 nm. The lowest energy singlet excited state (S₁) was calculated to be 4.37 eV (284 nm).

Table 1: Summary of overall calculation metadata. [a]: The date and time at which the calculation was completed. [b]: Total combined duration in real-time (wall-time) for all components of the calculation. [c]: Temperature used for thermochemistry analysis. [b]: Pressure used for thermochemistry analysis.

Date ^[a]	Duration ^[b]	Success (Converged)	Computational package	Level of theory	Calculations	Wavefunction	Multiplicity	T ^[c] / K	P ^[d] / atm
07/06/2022 18:40:35	4 m, 2 s	True (N/A)	Turbomole (7.5.0)	MP2/cc- pVDZ	Excited States	restricted	1 (singlet)	N/A	N/A

Summary Of Results

Scf Energy

Table 2: Summary of SCF energy properties.

No. of steps

Final energy -10432.3114 eV
Final energy -1,006,565 kJ⋅mol⁻¹

Mp Energy

Table 3: Summary of MP energy properties.

No. of steps

Final energy -10467.1582 eVFinal energy $-1,009,927 \text{ kJ} \cdot \text{mol}^{-1}$

Geometry

Table 4: Summary of geometry properties.

Formula $C_{10}H_8$

Molar mass 128.1705 g·mol $^{-1}$

Alignment method Minimal
X extension 6.80 Å
Y extension 5.02 Å
Z extension 0.00 Å
Linearity ratio 0.26
Planarity ratio 1.00

Molecular Orbitals

Table 5: Summary of HOMO & LUMO properties.

 ${f E}_{f HOMO,LUMO}$ 10.15 eV ${f E}_{f HOMO}$ -7.78 eV ${f E}_{f LUMO}$ 2.37 eV

Permanent Dipole Moment

Table 6: Summary of the permanent dipole moment properties.

Total< 0.01 DX axis angle90.00 °XY plane angle75.96 °

Excited States

Table 7: Summary of the calculated excited states. E_x : The energy of excited state x. λ_x : The wavelength of a photon of equivalent energy to excited state x. f_x : The oscillator strength of the excited state transition x. ΔE_{xy} : The difference in energy between the lowest excited states of multiplicity x and y.

No. calculated singlets 2

 $\mathbf{E_{S_1}}$ 4.37 eV

 $\lambda_{\mathbf{S_1}}$ (colour, CIE) 284 nm (Ultraviolet \blacksquare , (0.00,

0.00)) < 0.01

 $\mathbf{f_{S_1}}$ < 0.01 Simulated Absorption Peaks 246 nm

Methodology

Metadata

The calculation of the excited states was performed using the **Turbomole (7.5.0)** program, the **HF and MP2** methods and the **cc-pVDZ** basis set. It was completed on the 07^{th} June 2022 after a total duration of 4 m, 2 s and finished successfully. The base multiplicity of the system under study was 1 (singlet). Finally, a **restricted wavefunction** was used, resulting in a single set of doubly occupied orbitals. The full calculation metadata is tabulated in table 1.

Analysis

The report presented here was generated using the Silico software package. This toolset relies upon a number of thirdparty applications and libraries which should be cited

Silico 1.0.0-pre.30 Page 1 of 6

Silico Calculation Report

Naphthalene - Excited States (Singlet)

appropriately in derivative works. In particular, the calculation results described within were parsed by the cclib library. Scientific constants which were used, among other things, for the interconversion of scientific units were provided by SciPy. Commission internationale de l'éclairage (CIE) coordinates, along with visual representations of the equivalent colour, were calculated using the Colour Science library. Three-dimensional plots of atom positions and calculated densities, including molecular orbitals, were rendered using Visual Molecular Dynamics (VMD)⁴ and the Tachyon ray-tracer. Finally, two-dimensional graphs were plotted using the MatPlotlib library, while this report itself was prepared using the Mako template library and the Weasyprint library, the latter of which was responsible for generation of the PDF file.

Discussion

Total SCF Energy

The total energy of the system was calculated at the **self-consistent field (SCF)** level, corresponding to the energy calculated by the Hartree-Fock (HF) method, with a value of -10432.31 eV, corresponding to -1,006,565 KJmol⁻¹. A plot of the total SCF electron density is shown in figure 1.

Figure 1: Plot of the total SCF electron density, plotted with an isovalue of 0.0004. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Total MP Energy

The total energy of the system was calculated at the **Møller-Plesset (MP)** level with a value of -10467.16 eV, corresponding to -1,009,927 $\rm KJmol^{-1}$.

Geometry

The **empirical formula** of the studied system was $C_{10}H_8$, corresponding to a **molecular mass** of $128.17~{\rm gmol^{-1}}$. The molecular geometry was aligned to the cartesian (X, Y and Z) axes by the **Minimal (MIN)** method. Using this method, the **extent of the molecular system** in the X, Y and Z axes ($L_{\rm X}$, $L_{\rm Y}$ and $L_{\rm Z}$, corresponding to the molecular width, length and height respectively) was determined to be 6.80, 5.02 and 0.00 Å respectively. These extensions give rise to a **molecular linearity ratio** (1-($L_{\rm X}/L_{\rm Y}$)) and **planarity ratio** (1-($L_{\rm X}/L_{\rm Y}$)) of 0.26 and 1.00 respectively.

Permanent Dipole Moment

The calculated **permanent dipole moment** was < 0.01 D, with a vector (x,y,z) of 0.00, 0.00, 0.00 D. The angle between the dipole moment vector and the x-axis was 90.00°, while the angle between the dipole moment and the xy-plane was 75.96°. A plot of the permanent dipole moment is shown in figure 2.

Figure 2: The permanent dipole moment (red arrow) plotted against the aligned molecular geometry with a scale of 1 Å = 1.0 D. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Molecular Orbitals

In total, 180 doubly occupied molecular orbitals were calculated, divided into 34 occupied orbitals and 146 unoccupied (or virtual) orbitals. The calculated energies of the **HOMO and LUMO** were -7.78 and 2.37 eV respectively, corresponding to a **HOMO-LUMO band gap** of 10.15 eV (figure 8). Plots of the orbital density for the HOMO-1, HOMO, LUMO and LUMO+1 are shown in figures 3-5 and 7 respectively, while the orbital overlap between the HOMO and LUMO is shown in figure 6.

Figure 8: Graph of the calculated molecular orbital energies in close proximity to the HOMO-LUMO gap. Solid lines: occupied orbitals, dashed lines: virtual orbitals.

Silico 1.0.0-pre.30 Page 2 of 6

Silico Calculation Report

Naphthalene - Excited States (Singlet)

Figure 3: Orbital density plots of the HOMO-1, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 5: Orbital density plots of the LUMO, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 4: Orbital density plots of the HOMO, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 6: Orbital density plots of the HOMO (blue) and LUMO (red), plotted simultaneously with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Silico 1.0.0-pre.30 Page 3 of 6

Figure 7: Orbital density plots of the LUMO+1, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Excited States

In total, the energies of two singlet electronic excited states were calculated, which are shown in figure 9. The energy of the lowest **singlet excited state** (S_1) was 4.37 eV, corresponding to absorption by a photon with a wavelength of 284 nm, an ultraviolet 'color' \blacksquare and CIE coordinates of (0.00, 0.00). A complete table of the calculated excited state properties is available in table 8. In addition, an electronic transition spectrum was simulated using a gaussian function with full-width at half maximum (FWHM) of 0.40 eV, from which the **one most intense peak** was found at 246 nm. The full simulated absorption spectrum is shown in figure 10.

Figure 9: Graph of the calculated excited states. f: oscillator strength of the relevant ground to excited state transition.

Figure 10: Graph of the simulated absorption spectrum. Excited states are shown as vertical black lines, while peaks simulated with a gaussian function with FWHM: 0.40 eV are shown as a blue line. Peaks can be found at: 246 nm.

Silico 1.0.0-pre.30 Page 4 of 6

49

LUMO+14

A

Tables Of	Results			48	LUMO+13	A	10.6261
				47	LUMO+12	A	10.4351
Atom Coor	dinates			46	LUMO+11	A	7.9455
Table 9: Coordinates of the atoms of the system under study, as aligned to the					LUMO+10	A	7.4055
cartesian axes by the Minimal method.				44	LUMO+9	A	7.3699
Element	X Coord /Å	Y Coord /Å	Z Coord /Å	43	LUMO+8	A	6.8297
С	-1.2509100	-1.4118100	-0.0000100	42	LUMO+7	A	6.4869
С	-2.4487500	-0.7132700	0.0000100	41	LUMO+6	A	6.3480
С	-2.4487500	0.7132700	0.0000100	40	LUMO+5	Α	5.4144
С	-1.2509100	1.4118100	-0.0000100	39	LUMO+4	A	5.4053
С	-0.0000000	0.7179300	-0.0000200	38	LUMO+3	Α	4.9896
С	-0.0000000	-0.7179400	-0.0000200	37	LUMO+2	A	4.7431
С	1.2509100	-1.4118100	-0.0000100	36	LUMO+1	A	3.2023
С	1.2509100	1.4118100	-0.0000100	35	LUMO	A	2.3705
С	2.4487500	0.7132700	0.0000100	34	номо	A	-7.7835
С	2.4487500	-0.7132700	0.0000100	33	HOMO-1	A	-8.6036
Н	-1.2480900	-2.5080700	-0.0000100	32	HOMO-2	A	-10.3698
Н	-3.4000100	-1.2561900	0.0000200	31	HOMO-3	A	-12.0540
Н	-3.4000100	1.2561900	0.0000300	30	HOMO-4	A	-12.9253
Н	-1.2480900	2.5080700	-0.0000100	29	HOMO-5	A	-13.1917
Н	1.2480900	-2.5080700	-0.0000100	28	НОМО-6	A	-14.1706
Н	1.2480900	2.5080700	-0.0000200	27	HOMO-7	A	-14.3301
Н	3.4000100	1.2561900	0.0000300	26	HOMO-8	A	-15.2492
Н	3.4000100	-1.2561900	0.0000200	25	HOMO-9	A	-15.7422
				24	HOMO-10	A	-15.7464
Molecular Orbitals				23	HOMO-11	A	-16.4964
				22	HOMO-12	A	-16.8787
Table 10: Energies of the calculated molecular orbitals.				21	НОМО-13	A	-18.2419
Level	Label	Symmetry	Energy /eV	20	HOMO-14	A	-18.8268
50	LUMO+15	A	11.9600	19	НОМО-15	A	-19.1551

11.7353

Silico 1.0.0-pre.30 Page 5 of 6

Excited States

Table 8: Energies and other	properties of the cal	Iculated excited states
Tuble 6: Ellerales and other	properties of the car	cuiatea excitea states.

Number	Symbol	Symmetry	Energy /eV	Wavelength /nm	Colour (CIE x,y)	Oscillator Strength	Transitions (Probability)
1	s_1	Singlet-A	4.3707	283.67	Ultraviolet (0.00, 0.00)	0.0002	HOMO-1 → LUMO (0.49) HOMO → LUMO+1 (0.48)
2	s_2	Singlet-A	5.0100	247.47	Ultraviolet (0.00, 0.00)	0.0880	HOMO → LUMO (0.90) HOMO-1 → LUMO+1 (0.08)

References

- N. M. O'boyle, A. L. Tenderholt and K. M. Langner, Journal of Computational Chemistry, 2008, 29, 839--845
- 2. P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt and S. 1. 0. Contributors, Nature Methods, 2020, 17, 261--272
- 3. T. Mansencal, M. Mauderer, M. Parsons, N. Shaw, K. Wheatley, S. Cooper, J. D. Vandenberg, L. Canavan, K. Crowson, O. Lev, K. Leinweber, S. Sharma, T. J. Sobotka, D. Moritz, M. Pppp, C. Rane, P. Eswaramoorthy, J. Mertic, B. Pearlstine, M. Leonhardt, O. Niemitalo, M. Szymanski and M. Schambach, Colour 0.3.15, Zenodo, 2020
- W. Humphrey, A. Dalke and K. Schulten, Journal of Molecular Graphics, 1996, 14, 33-38
- J. Stone, Masters Thesis, Computer Science Department, University of Missouri-Rolla, 1998
- J. D. Hunter, Computing in Science & Engineering, 2007, 9, 90-95
- M. Bayer, https://www.makotemplates.org, (accessed May 2020)
- 8. K. Community, https://weasyprint.org, (accessed May 2020)

Silico 1.0.0-pre.30 Page 6 of 6