# Entropy of quasiperiodic subshifts

Guilhem Gamard

26th October 2018

# Tilings and crystals

# Tiles







# Crystals



## Penrose tiles





# Quasicrystals





What's the physical meaning of Penrose tiles?

# Gummelt's decagon





### Gummelt $\simeq$ Penrose

#### Gummelt tiling rule

Tiles may overlap if decorations match; each tile must overlap.

## Theorem (Gummelt, 1996)

Each Gummelt-tiling is isomorphic to a Penrose-tiling, and vice-versa.

## Physical interpretation

Gummelt decagon has locally minimal energy.

# **Back to subshifts**

#### Let q denote a pattern.

## Quasiperiodic

A configuration has *quasiperiod* q when it is covered with copies of q (possibly overlapping).



#### Let q denote a pattern.

## Quasiperiodic

A configuration has *quasiperiod* q when it is covered with copies of q (possibly overlapping).



#### Let q denote a pattern.

## Quasiperiodic

A configuration has *quasiperiod* q when it is covered with copies of q (possibly overlapping).



#### Lemma

The set of q-quasiperiodic configurations is an SFT, called  $X_q$ .

What is the entropy of  $X_q$ ?

# The case of $\mathbb{Z}$ -subshifts

Let q denote a finite word.

#### Remark

Consider two overlapping copies of q; the overlap is a prefix and suffix of q.



Let q denote a finite word.

#### Remark

Consider two overlapping copies of q; the overlap is a prefix and suffix of q.



#### Border

A **border** is a proper suffix and prefix.

An antiborder is the right-complement of a border.

(Note:  $\varepsilon$  is a border and q is an antiborder.)

Let q, w denote finite words.

## Theorem (Mouchard, 2000)

The word w has quasiperiod q iff  $w = qu_0 \dots u_k$ , where each  $u_i$  is an antiborder of q.

Let q, w denote finite words.

## Theorem (Mouchard, 2000)

The word w has quasiperiod q iff  $w = qu_0 \dots u_k$ , where each  $u_i$  is an antiborder of q.

This decomposition is unique iff q is **not** quasiperiodic.

Let q, w denote finite words.

## Theorem (Mouchard, 2000)

The word w has quasiperiod q iff  $w = qu_0 \dots u_k$ , where each  $u_i$  is an antiborder of q.

This decomposition is unique iff q is **not** quasiperiodic.

### Corollary

The biinfinite word **w** has quasiperiod q iff  $\mathbf{w} = \dots u_{-2} u_{-1} u_0 u_1 u_2 \dots$  where each  $u_i$  is an antiborder of q.

This decomposition is unique iff q is **not** quasiperiodic.

Fix q a quasiperiod. Let  $\ell(n)=\# q$ -quasiperiodic words of length n.

Let  $r_0, \ldots, r_{k-1}$  be the antiborders of q.

- If n < |q|, then  $\ell(n) = 0$ .
- If n = |q|, then  $\ell(n) = 1$ .
- If n>|q|, then  $\ell(n)=\sum_{i=0}^{k-1}\ell(n-|r_i|)$ .

Fix q a quasiperiod. Let  $\ell(n)=\# q$ -quasiperiodic words of length n.

Let  $r_0, \ldots, r_{k-1}$  be the antiborders of q.

- If n < |q|, then  $\ell(n) = 0$ .
- If n = |q|, then  $\ell(n) = 1$ .
- If n > |q|, then  $\ell(n) = \sum_{i=0}^{k-1} \ell(n |r_i|)$ .

Let

$$P(x) = x^{|q|} - \sum_{i=0}^{k-1} x^{|q| - |r_i|}$$

and  $\lambda$  the largest real root of P.

#### Lemma

For large 
$$n$$
:  $c_1\lambda^n \le \ell(n) \le c_2\lambda^n$ .

Let q denote a non-quasiperiodic word with antiborders  $r_0, \ldots, r_{k-1}$ , and

$$P(x) = x^{|q|} - \sum_{i=0}^{k-1} x^{|q| - |r_i|}$$

If  $\lambda$  is the largest root of P, then  $|Ent(X_q) = \log(\lambda)|$ .

$$Ent(X_q) = \log(\lambda)$$

Let q denote a non-quasiperiodic word with antiborders  $r_0, \ldots, r_{k-1}$ , and

$$P(x) = x^{|q|} - \sum_{i=0}^{k-1} x^{|q| - |r_i|}$$

If  $\lambda$  is the largest root of P, then  $|Ent(X_a) = \log(\lambda)|$ .

$$Ent(X_q) = \log(\lambda)$$

#### Remark

 $X_a$  is finite iff q has no border besides  $\varepsilon$ .

Let q denote a non-quasiperiodic word with antiborders  $r_0, \ldots, r_{k-1}$ , and

$$P(x) = x^{|q|} - \sum_{i=0}^{k-1} x^{|q| - |r_i|}$$

If  $\lambda$  is the largest root of P, then  $|\operatorname{Ent}(X_a)| = \log(\lambda)$ .

$$Ent(X_q) = \log(\lambda)$$

#### Remark

 $X_a$  is finite iff q has no border besides  $\varepsilon$ . Otherwise,  $\operatorname{Ent}(X_a) > 0$ .

Let q denote a non-quasiperiodic word with antiborders  $r_0, \ldots, r_{k-1}$ , and

$$P(x) = x^{|q|} - \sum_{i=0}^{k-1} x^{|q| - |r_i|}$$

If  $\lambda$  is the largest root of P, then  $|\operatorname{Ent}(X_a)| = \log(\lambda)$ .

$$Ent(X_q) = \log(\lambda)$$

#### Remark

 $X_q$  is finite iff q has no border besides  $\varepsilon$ . Otherwise,  $\operatorname{Ent}(X_q) > 0$ .

#### Remark

 $\operatorname{Ent}(X_q)$  is maximal for q=010.

# The case of $\mathbb{Z}^2$ -subshifts

We consider rectangular patterns only.

#### Root

The block r is a **root** of q iff  $q = r^{m \times n}$  for  $m, n \in \mathbb{N}$ .



We consider **rectangular** patterns only.

#### Root

The block r is a **root** of q iff  $q = r^{m \times n}$  for  $m, n \in \mathbb{N}$ .



We consider **rectangular** patterns only.

#### Root

The block r is a **root** of q iff  $q = r^{m \times n}$  for  $m, n \in \mathbb{N}$ .



#### **Primitive**

The block q is **primitive** if it has no roots besides itself.

We consider  ${\bf rectangular}$  patterns only.

#### Root

The block r is a **root** of q iff  $q = r^{m \times n}$  for  $m, n \in \mathbb{N}$ .



## Primitive

The block q is **primitive** if it has no roots besides itself.

## Lemma (G, Richomme, 2015)

Each block has a unique primitive root.

## Border

A **border** of q is a subblock that appears in two opposite corners.



## Border

A **border** of q is a subblock that appears in two opposite corners.



A **border** of q is a subblock that appears in two opposite corners.

#### Remark

 $\{\text{borders of the primitive root}\} \simeq \{\text{overlaps}\}$ 

A **border** of q is a subblock that appears in two opposite corners.

#### Remark

 $\{\text{borders of the primitive root}\} \simeq \{\text{overlaps}\}$ 



A **border** of q is a subblock that appears in two opposite corners.

#### Remark

 $\{borders of the primitive root\} \simeq \{overlaps\}$ 



A **border** of q is a subblock that appears in two opposite corners.

#### Remark

 $\{ \text{borders of the primitive root} \} \simeq \{ \text{overlaps} \}$ 



Theorem (G, Richomme, 2015)

The shift  $X_q$  is finite iff the primitive root of q has no border besides  $\varepsilon$ .

### Theorem (G, Richomme, 2015)

The shift  $X_q$  is finite iff the primitive root of q has no border besides  $\varepsilon$ .

• If r has no border besides  $\varepsilon$ , then  $X_q = r^{\mathbb{Z}^2}$ .

### Theorem (G, Richomme, 2015)

The shift  $X_q$  is finite iff the primitive root of q has no border besides  $\varepsilon$ .

- If r has no border besides  $\varepsilon$ , then  $X_q = r^{\mathbb{Z}^2}$ .
- If r has a nonempty border, then build tiles.

## Theorem (G, Richomme, 2015)

The shift  $X_q$  is finite iff the primitive root of q has no border besides  $\varepsilon$ .

- If r has no border besides  $\varepsilon$ , then  $X_q = r^{\mathbb{Z}^2}$ .
- If r has a nonempty border, then build tiles.





#### Tiles have local constraints:



### **Problem**

Those constraints do not allow positive entropy!

We can prove that  $X_q$  is infinite, but not that  $\text{Ent}(X_q) > 0$ .

Is it bad? Consider the block q =

## Proposition

Is it bad? Consider the block q =

## Proposition



Is it bad? Consider the block  $q = \frac{1}{2}$ 

## Proposition



Is it bad? Consider the block q=

## Proposition



# Mindmap so far



## Interchangeable pairs

An **interchangeable pair** is a pair of *q*-quasiperiodic patterns, with the same shape, but different.





#### Valid

A pair is **valid** if it appears in a configuration of  $X_q$ .

#### Lemma

If there is an interchangeable pair whose size is a  $k \times k$  square, then

$$Ent(X_q) \ge 1/k$$

|  | i |  | ı |
|--|---|--|---|
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |

#### Lemma

If there is no interchangeable pair for q, then  $Ent(X_q) = 0$ .

**Idea:** if there are no interchangeable pair, then the shape of a pattern defines the contents of the pattern.

#### Lemma

If there is no interchangeable pair for q, then  $Ent(X_q) = 0$ .

**Idea:** if there are no interchangeable pair, then the shape of a pattern defines the contents of the pattern.

#### **Theorem**

We have  $Ent(X_q) > 0$  if and only if there is a valid pair for q.

(Note: this is also true for Wang tiles.)

If q is of the form



or  $\begin{vmatrix} a & b \\ b & a \end{vmatrix}$ 

then  $\operatorname{Ent}(X_q) > 0$ .



If q is of the form

then  $\operatorname{Ent}(X_q) > 0$ .





$$\operatorname{Ent}(X_q) = 0$$
 unless  $q$  is of the form  $\begin{bmatrix} a \\ b \end{bmatrix}$ 

Idea: on the blackboard.

$$\operatorname{Ent}(X_q) = 0$$
 unless  $q$  is of the form  $\begin{bmatrix} a & b \\ b & a \end{bmatrix}$ 

Idea: on the blackboard.

### Special case

If all borders of q are in the same two corners, then  $Ent(X_q) = 0$ .





Rather frustrating. (Help appreciated.)

## What's next?

## What's next?

- Finish the characterization
- Exact values (or more precise bounds)
- Extend to other shapes
- Relax the definition (pre-quasiperiodic?)

## What's next?

- Finish the characterization
- Exact values (or more precise bounds)
- Extend to other shapes
- Relax the definition (pre-quasiperiodic?)

# Thank you!

# Bibliography

- D. Shechtman, I. Blech, D. Gratias, J. Cahn.
  Metallic Phase with Long-Range Orientational Order and No Translational Symmetry.
  Physical Review Letters 53(20), pp. 1951–1953, 1984.
  https://link.aps.org/doi/10.1103/PhysRevLett.53.1951
- Petra Gummelt.
  Penrose tilings as coverings of congruent decagons.
  Geometriae Dedicata 62, pp. 1–17, 1996.

https://link.springer.com/article/10.1007/BF00239998

- Thierry Monteil, Solomon Marcus.
  Quasiperiodic infinite words: multi-scale case and dynamical properties.
  https://arxiv.org/abs/math/06033542006
- Ronney Polley, Ludwig Staiger.
  Quasiperiods, Subword Complexity and the Smallest Pisot Number.
  Journal of Automata, Languages and Combinatorics 21(1-2), pp. 93–106, 2016.
  http://jalc.de/issues/2016/issue\_21\_1-2/jalc-2016-093-106.php
- Guilhem Gamard, Gwenaël Richomme.
  Coverability and Multi-Scale Coverability on infinite pictures.
  To appear in Journal of Computer and System Sciences.
  https://arxiv.org/abs/1506.08375