Introduction to Computer Networks

Network Services (§5.1)

Topic

- What kind of service does the Network layer provide to the Transport layer?
 - How is it implemented at routers?

Two Network Service Models

- Datagrams, or connectionless service
 - Like postal letters
 - (This one is IP)

- Virtual circuits, or connectionoriented service
 - Like a telephone call

Store-and-Forward Packet Switching

- Both models are implemented with store-and-forward packet switching
 - Routers receive a complete packet, storing it temporarily if necessary before forwarding it onwards
 - We use statistical multiplexing to share link bandwidth over time

Store-and-Forward (2)

Switching element has internal buffering for contention

Store-and-Forward (3)

- Simplified view with per port output buffering
 - Buffer is typically a FIFO (First In First Out) queue
 - If full, packets are discarded (congestion, later)

Datagram Model

 Packets contain a destination address; each router uses it to forward each packet, possibly on different paths

Datagram Model (2)

- Each router has a forwarding table keyed by address
 - Gives next hop for each destination address; may change

IP (Internet Protocol)

- Network layer of the Internet, uses datagrams (next)
 - IPv4 carries 32 bit addresses on each packet (often 1.5 KB)

Virtual Circuit Model

- Three phases:
 - 1. Connection establishment, circuit is set up
 - Path is chosen, circuit information stored in routers
- Data transfer, circuit is used
 - Packets are forwarded along the path
- 3. Connection teardown, circuit is deleted
 - Circuit information is removed from routers
- Just like a telephone circuit, but virtual in the sense that no bandwidth need be reserved; statistical sharing of links

Virtual Circuits (2)

- Packets only contain a short label to identify the circuit
 - Labels don't have any global meaning, only unique for a link

Virtual Circuits (3)

- Each router has a forwarding table keyed by circuit
 - Gives output line and next label to place on packet

Virtual Circuits (4)

- Each router has a forwarding table keyed by circuit
 - Gives output line and next label to place on packet

MPLS (Multi-Protocol Label Switching, §5.6.5)

- A virtual-circuit like technology widely used by ISPs
 - ISP sets up circuits inside their backbone ahead of time
 - ISP adds MPLS label to IP packet at ingress, undoes at egress

Datagrams vs Virtual Circuits

Complementary strengths

	Issue	Datagrams	Virtual Circuits
	Setup phase	Not needed	Required
->	Router state	Per destination	Per connection
P	Addresses	Packet carries full address	Packet carries short label
	Routing	Per packet	Per circuit
7	Failures	Easier to mask	Difficult to mask
	Quality of service	Difficult to add	Easier to add

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey