T.C.

KIRIKKALE
ÜNİVERSİTESİ
BİLGİSAYAR
MÜHENDİSLİĞİ

AĞ OPTİMİZASYONU

DR. EVRENCAN ÖZCAN

DERS İÇERİĞİ

- AĞ OPTİMİZASYONUNA GİRİŞ
 - OPTİMİZASYON KAVRAMI
 - TEMEL ŞEBEKE KAVRAMLARI
 - ŞEBEKE OPTİMİZASYONUNUN UYGULAMA ALANLARI
- MİNİMUM YAYILAN AĞAÇ PROBLEMİ
- EN KISA YOL PROBLEMİ
- MAKSİMUM AKIŞ PROBLEMİ
- PROJE YÖNETİMİ
 - KRİTİK YOL METODU (CPM)
 - PROJE DEĞERLENDİRME VE GÖZDEN GEÇİRME TEKNİĞİ (PERT)
 - PROJE PLANLAMASINDA ZAMAN-MALİYET İLİŞKİSİ

Örnek: Widgetco

(Winston 8.4., s. 433)

- Widgetco yeni bir ürün geliştirmektedir. Yapılması gereken faaliyetler, öncelik ilişkileri ve süreleri aşağıda verilmiştir.
- Bu proje için Proje ağını çiziniz.

Faaliyetler	Öncül faaliyetler	Süre (gün)
A:işçilerin eğitimi	-	6
B:hammaddeleri satın alınması	-	9
C: 1. ürünün imalatı	A, B	8
D:2. ürünün imalatı	A, B	7
E: 2. ürünün test edilmesi	D	10
F: 1. ve 2. ürünlerin montajı	C, E	12

Faaliyetler	Öncüller	Süre (gün)
A:işçilerin eğitimi	-	6
B:hammaddeleri satın alınması	-	9
C: 1. ürünün imalatı	А, В	8
D:2. ürünün imalatı	A, B	7
E: 2. ürünün test edilmesi	D	10
F: 1 2. ürünlerin montajı	C, E	12

CPM için iki kilit hesap:

- En Erken başlama zamanı (the early event time)
 ET(i)
 - i düğümünün en erken başlama zamanı.
- En geç başlama zamanı (the late event time) LT(i)
 - i düğümünün projenin bitiş zamanını etkilemeden en geç başlanabileceği zaman

- FT(1) = 0
- ▶ *ET*(*i*) hesabı:
 - i düğümüne doğrudan bağlanan önceki düğümleri bul k; (k, i)
 ∈ S.
 - $ET = \max_{k,(k,i) \in S} ET(k,i) + d_{ki}$
 - d_{ki} : (k,i) bağlantısıyla tanımlanan faaliyetin süresi.
- ET(n) hesaplandığında durulur (n: bitiş düğümü)

Proje ağının bir parçası aşağıda verilmiş olsun.

Örnek: Widgetco

En geç başlama zamanı - LT

- Bitiş düğümünden başlayarak geriye doğru git.
- \blacktriangleright LT(n) = ET(n)
- ▶ LT(i) hesabı
 - i düğümüne doğrudan bağlanan sonraki düğümleri bul j_; (i, j)
 ∈ S.
 - $LT = \min_{j,(i,j)\in S} LT(i,j) d_{ij}$
 - d_{ij}: (i,j) bağlantısıyla tanımlanan faaliyetin süresi.

- Proje ağının bir parçası aşağıda verilmiş olsun.
- ► LT(5)=24, LT(6)=26 ve LT(7)=28

$$LT(4) = \min \{LT(5)-3, LT(6)-4, LT(7)-5\}$$
$$= \min \{21, 22, 23\} = 21$$

Örnek: Widgetco

Toplam Boşluk (Total Float)

- Toplam boşluk (Total Float) TF(i,j)
 - Herhangi bir (i,j) bağlantısı ile gösterilen bir faaliyet için projenin bitirilme süresini etkilemeden en erken başlama zamanına göre ne kadar ertelenebileceğini gösterir.
 - Bir başka ifade ile projenin bitirilme süresini etkilemeden bir faaliyetin süresi ne kadar arttırılabileceğini gösterir.

$$TF(i,j) = LT(j) - ET(i) - t_{ij}$$

Örnek: Widgetco için *TF(i,j)* değerleri

Faaliyet B: TF(1,2) = LT(2) - ET(1) - 9 = 0

Faaliyet A: TF(1,3) = LT(3) - ET(1) - 6 = 3

Faaliyet D: TF(3,4) = LT(4) - ET(3) - 7 = 0

Faaliyet C: TF(3,5) = LT(5) - ET(3) - 8 = 9

Faaliyet E: TF(4,5) = LT(5) - ET(4) - 10 = 0

Faaliyet F: TF(5,6) = LT(6) - ET(5) - 12 = 0

Yapay Faaliyet: TF(2,3) = LT(3) - ET(2) - 0 = 0

Düğüm	ET(i)	LT(i)
1	0	0
2	9	9
3	9	9
4	16	16
5	26	26
6	38	38

Örnek: Widgetco için kritik yol

$$TF(1,2) = 0$$

 $TF(1,3) = 3$
 $TF(2,3) = 0$
 $TF(3,4) = 0$
 $TF(3,5) = 9$
 $TF(4,5) = 0$
 $TF(5,6) = 0$

Widgetco için kritik yol: 1-2-3-4-5-6

Serbest boşluk (Free Float)

- Serbest boşluk (Free Float):
 - Herhangi bir (i,j) bağlantısı ile gösterilen bir faaliyet için sonraki faaliyetlerin başlamasını etkilemeden ne kadar ertelenebileceğini gösterir.

$$FF(i,j) = ET(j) - ET(i) - t_{ij}$$

Örnek: Widgetco için FF(i,j) değerleri

Faaliyet B: FF(1,2) = 9 - 0 - 9 = 0

Faaliyet A: FF(1,3) = 9 - 0 - 6 = 3

Faaliyet D: FF(3,4) = 16 - 9 - 7 = 0

Faaliyet C: FF(3,5) = 26 - 9 - 8 = 9

Faaliyet E: FF(4,5) = 26 - 16 - 10 = 0

Faaliyet F: FF(5,6) = 38 - 26 - 12 = 0

Düğüm	ET(i)	LT(i)
1	0	0
2	9	9
3	9	9
4	16	16
5	26	26
6	38	38

Örneğin C Faaliyetinin FF'si 9 gün olduğu için, bu faaliyetin başlamasının 9 günden fazla ertelenmesi sonraki faaliyetlerin (bu durmunda F faaliyeti) başlama zamanını etkiler.

Doğrusal Programlama Kullanımı

- Kritik yolun süresini bulmak için DP kullanılabilir.
 - Karar değişkenleri
 - x_i: j düğümünün zamanı
 - Kısıtlar
 - Her (i,j) faaliyeti için j ortaya çıkmadan önce i düğümü ortaya çıkmalıdır ve (i,j) faaliyeti bitirilmelidir.

$$x_j \ge x_i + t_{ij} \quad \forall (i,j) \in S$$

Amaç projenin bitiş süresini en küçüklemektir.

$$\min z = x_n - x_1$$

Örnek: Widgetco DP modeli

$$\begin{array}{lll} \min z = & x_6 - x_1 \\ \text{Öyle ki} & x_3 \geq x_1 + 6 & (\text{Bağlantı } (1,3) \text{ kısıtı}) \\ & x_2 \geq x_1 + 9 & (\text{Bağlantı } (1,2) \text{ kısıtı}) \\ & x_5 \geq x_3 + 8 & (\text{Bağlantı } (3,5) \text{ kısıtı}) \\ & x_4 \geq x_3 + 7 & (\text{Bağlantı } (3,4) \text{ kısıtı}) \\ & x_5 \geq x_4 + 10 & (\text{Bağlantı } (4,5) \text{ kısıtı}) \\ & x_6 \geq x_5 + 12 & (\text{Bağlantı } (5,6) \text{ kısıtı}) \\ & x_3 \geq x_2 & (\text{Bağlantı } (2,3) \text{ kısıtı}) \\ \end{array}$$

Örnek: Widgetco DP modeli Çözümü

OBJECTIVE FUNCTION VALUE

1) 38.00000

VARIABLE	VALUE	REDUCED COST	Proje 38 günde	
X6	38.000000	0.000000	bitirilebilir	
X1	0.000000	0.000000	Ditililebilii	
X3	9.000000	0.000000		
X2	9.000000	0.000000		
X5	26.000000	0.000000		
X4	16.000000	0.000000		
ROW	SLACK OR SU	RPLUS DUAL PRICES		
ARC (1,3)	3.000000	0.000000		
ARC (1,2)	0.000000	-1.000000	IZ-dillo cont	
ARC (3,5)	9.000000	0.000000	Kritik yol	
ARC (3,4)	0.000000	-1.000000	1-2-3-4-5-6	
ARC (4,5)	0.000000	-1.000000		
ARC (5,6)	0.000000	-1.000000		
ARC (2,3)	0.000000	-1.000000		

- Projenin kritik yolu, gölge fiyatları -1 olan kısıtlarla ilgili faaliyetleri içerir.
 - Eğer bir kısıtın gölge fiyatı -1 ise bu kısıtın sağ taraf değeri (faaliyetin sğresi) Δ kadar arttığında amaç fonksiyonu (projenin toplam süresi) da Δ kadar artacaktır.

Projenin hızlandırılması

- Çoğu zaman projeler kritik yol süresinden daha önce bitirilmelidir.
- DP ile proje teslim süresine yetişmek için en düşük maliyet ile kaynakların nasıl tahsis edileceği bulunabilir.
- Bu sürece proje hızlandırma (crashing a project) denir.

- Widgetco geliştirdiği ürünün rakip ürüne göre piyasaya daha önce çıkmasını istemektedir.
- Rakibini ürünü 26 gün sonra piyasa çıkacaktır. Bu yüzden Widgetco kendi ürününü 25 içinde piyasaya sürmelidir.
- Projenin bitiş süresi 38 gün olduğu için Widgetco ek harcamalar yarak 25 günlük proje bitiş süresini sağlamalıdır.
- Widgetco herhangibir faaliyetin süresini en fazla 5 gün azaltabilir.
- Bir faaliyetin süresini bir gün düşürmenin maliyeti şu şekildedir:
 - Faaliyet A \$10
 - Faaliyet B \$20
 - Faaliyet C \$3
 - Faaliyet D \$30
 - Faaliyet E \$40
 - Faaliyet F \$50
- Projeyi 25 günde bitirmenin en düşük maliyetini bulunuz.

Karar değişkenleri

A: Faaliyet A'nın süresinden azaltılan gün sayısı

...

F: Faaliyet F'nin süresinden azaltılan gün sayısı

x_i: j düğümünün zamanı

```
min 10A + 20B + 3C + 30D + 40E + 50F
öyle ki; A ≤ 5
         B ≤ 5
         C ≤ 5
         D ≤ 5
         E ≤ 5
         F ≤ 5
         x_3 \ge x_1 + 6 - A
         x_2 \ge x_1 + 9 - B
         x_5 \ge x_3 + 8 - C
         x_4 \ge x_3 + 7 - D
         x_5 \ge x_4 + 10 - E
         x_6 \ge x_5 + 12 - F
         X_3 \geq X_2
         x_6 - x_1 \le 25
  A, B, C, D, E, F \ge 0; x_i urs
```

DP'nin çözümü:

$$z = 390$$
, $A = 2$, $B = 5$, $C = 0$, $D = 5$, $E = 3$, $F = 0$
 $x_1 = 0$, $x_2 = 4$, $x_3 = 4$, $x_4 = 6$, $x_5 = 13$, $x_6 = 25$

- A'yı 2, B'yi 5, D'yi 5 ve E'yi 3 gün azaltarak, proje 25 günde bitirilebilir
- Toplam maliyet \$390 olacaktır.

Kritik yol: 1-2-3-4-5-6 veya 1-3-4-5-6

T.C.
KIRIKKALE
ÜNİVERSİTESİ
BİLGİSAYAR
MÜHENDİSLİĞİ

AĞ OPTİMİZASYONU

DR. EVRENCAN ÖZCAN
OFİS:275
EVRENCAN.OZCAN@KKU.EDU.TR

