Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа компьютерных технологий и информационных систем

Отчёт по лабораторной работе № 5

Тема: Имитационная модель ССМО

Дисциплина: Системный анализ и принятие решений

Выполнил студент гр. 5130901/10101	(подпись)	М.Т. Непомнящий
Руководитель	(подпись)	А.Г. Сиднев

Оглавление

Задание	3
Построение алгоритмов	
1. Поиск коэффициентов загруженности узлов	
На вход:	
Обозначения:	
Алгоритм:	
2. Поиск коэффициентов загруженности узлов	
На вход:	
Выход:	5
Алгоритм:	6

Задание

Задана сеть массового обслуживания, включающая три узла, M=3. Число каналов обслуживания в узлах определяется вектором $m^T=(1\ 1\ 1)$, интенсивности обслуживания — вектором

$$\mu^T = (2 c^{-1}, 0.8 c^{-1}, 0.1 c^{-1}).$$

В сети циркулируютN заявок в соответствии с матрицей передач R:

$$R = \begin{pmatrix} 0.1 & 0.4 & 0.5 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Требуется:

определить характеристики узлов и сети в целом (N = 3);

Построение алгоритмов

1. Поиск коэффициентов загруженности узлов

Данная сеть СМО является замкнутой и одноканальной. Воспользуемся алгоритмом поиска коэффициентов загруженности узлов для сетей данного типа.

На вход:

- µ[] массив интенсивностей обслуживания узлов сети;
- N число заявок циркулирующих в сети;
- R матрица передач

Обозначения:

TA(I) -массив времен наступления событий

$$I = \overline{1,2M}$$

 $I = \overline{1, M}$ – освобождение узла I

 $I = \overline{M+1,2M}$ – поступление заявки в узел I-M

Рис. 1 – Освобождение/поступление в узлы

$$K(\Lambda)$$
 – число заявок в узле Λ , $\Lambda = \overline{1,M}$

 $TOЖ(\Lambda)$ – накопленное время простаивания узла Λ , $\Lambda = \overline{1,M}$

Требуется найти коэффициенты загрузки узлов K(загруз I), $I = \overline{1, M}$

$$\eta(I) = \frac{T\Pi - TOW(I)}{T\Pi}$$
, где $T\Pi$ — время моделирования

ТМОД – предельное время моделирования

Алгоритм:

Рис. 2 – Схема алгоритма

2. Поиск коэффициентов загруженности узлов

На вход:

- η[] коэффициенты загруженности узлов сети
- μ[] массив интенсивностей обслуживания узлов сети;
- М количество узлов сети

Выход:

Для узлов:

- Среднее число требований \bar{J}
- Среднее число ожидающих требований \bar{n}_o
- Среднее время пребывания \bar{t}_c
- Среднее время ожидания $\bar{t}_{\text{ож}}$

Для всей сети:

$$\bar{n}_{o-}c = \sum_{i=1}^{M} \bar{n}_{o_i}; \bar{j}_{-}c = \sum_{i=1}^{M} \bar{j}_{i}; \bar{t}_{c-}c = \sum_{i=1}^{M} \bar{t}_{c_i}; \bar{t}_{o\text{m-}}c = \sum_{i=1}^{M} \bar{t}_{o\text{m}_i}$$

Алгоритм:

Рис. 3 – Схема алгоритма (2)