Tecnología de buses.

Un bus se puede definir como una línea de interconexión portadora de información, constituida por varios hilos conductores (en sentido físico) o varios canales (en sentido de la lógica), por cada una de las cuales se transporta un bit de información. El número de líneas que forman los buses (ancho del bus) es fundamental: Si un bus está compuesto por 16 líneas, podrá enviar 16 bits al mismo tiempo.

Los buses conectan toda la circuitería interna. Es decir, los distintos subsistemas del ordenador intercambian datos gracias a los buses. Podemos clasificar a los buses, según el criterio de su situación física:

Bus Interno: Este mueve datos entre los componentes internos del microprocesador.

Bus local: De alta velocidad que conecta el procesador a la caché, el controlador de la caché también puede acceder al bus del sistema, con esta implementación, la mayor parte de los datos a los que va a acceder el procesador, que están en la caché, serán entregados a una alta velocidad, otro punto a destacar de esta parte es que los accesos a memoria por parte de la caché no van a interrumpir el flujo de datos entre procesador y caché. También se ve la posibilidad de conectar un dispositivo de entrada salida al bus local.

Bus del sistema: En el está conectada la memoria y por debajo el bus de expansión, al cual se pueden conectar una

amplia diversidad de dispositivos, entre el bus del sistema y el bus de expansión se encuentra una interface, que entre las principales tareas está la de adaptar las velocidades de transmisión, por ejemplo para un dispositivo muy lento conectado al bus de expansión la interface podría acumular una cierta cantidad de datos y luego transmitirla a través del bus del sistema.

Bus de expansión, más lento conectado mediante otro adaptador.

Todas las partes del microprocesador están unidas mediante diversas líneas eléctricas. El conjunto de estas líneas se denominan bus interno del microprocesador. Por este bus interno circulan los datos (bus de datos), las señales de control (bus de control) o las direcciones de memoria (bus de direcciones). Cuando se habla de un microprocesador de 32 bits, el número de líneas del bus interno es de 32.

Bus Externo: Este se utiliza para comunicar el procesador y otras partes, como periféricos y memoria.

Buses ISA (Industry Standard Arquitecture).

Las primeras computadoras personales estaban equipadas con ranuras de 8 bits, que para la velocidad de aquellos procesadores eran suficiente. Actualmente son lentas para los procesadores que existen.

Buses EISA(Extended Industry Standard Arquitecture). Arquitectura estándar industrial extendida. Tiene características de la ISA en cuanto a su compatibilidad pero con la velocidad de MCA es decir, 32 bits.

Buses VESA(Video Electronic Standard Asociation). Son una extensión de ISA. Incluye toda la tecnología de EISA, funcionan al ritmo del procesador y permiten la transferencia de datos sin necesidad de que estos intervengan permitiendo procesos mucho más rápidos y dejando mayor tiempo libre al microprocesador central.

Buses PCI (Peripheral Component Interconect).

Interconexión a componentes perimetrales. Es de características similares a VESA, pero se distingue porque la conexión del bus con el microprocesador se efectúa por intermedio de un chip adicional que simplifica y suprime las limitaciones de la conexión directa.

Bus AGP (Advanced Graphics Port).

Puerto Avanzado de Gráficos. Se trata de un nuevo sistema para conectar periféricos en la placa base de la computadora, bus por el que van datos del procesador a los periféricos.

CardBus y PC Card (comúnmente PCMCIA)

Buses multiplexados básicos

En las computadora, el microprocesador controla (y se comunica con) las memorias y los dispositivos de entrada/salida (E/S) a través de la estructura de bus interna. El bus está multiplexado de manera que cualquiera de los dispositivos que están conectados al mismo pueda enviar o recibir datos hacia o desde los otros dispositivos.

Señales del bus. Utilizando la técnica de control síncrono del bus, el microprocesador suele ser el encargado de generar todas las señales de temporización y control. Entonces, los otros dispositivos sincronizan sus operaciones con dichas señales de control y temporización. Con la técnica de control asíncrono del bus, las señales de control y temporización son generadas conjuntamente por un origen y destino.