## ИСПИТ ИЗ ОСНОВА ЕЛЕКТРОТЕХНИКЕ 1

18. септембар 2021.

**Напомене:** Испит траје 180 минута. Није дозвољено напуштање сале 60 минута од почетка испита. Писати искључиво хемијском оловком. Дозвољена је употреба само овога папира и вежбанке, који се морају заједно предати. Вежбанку ставити у овај папир. Питања радити искључиво на овоме папиру, а задатке искључиво у вежбанци. Коначне одговоре на питања и тражена извођења уписати у одговарајуће кућице, уцртати у дијаграме или заокружити понуђене одговоре. Одговори без извођења се неће признати. Питања и задаци ће бити прегледани само уколико се налазе на одговарајућим местима. Свако питање носи по 5 поена, а задатак по 20 поена. Употреба калкулатора није дозвољена.

Попунити податке о кандидату у следећој таблици. Исте податке написати и на омоту вежбанке.

| ПОДАЦИ О КАНДИДАТУ (попуњава кандидат) |   |   |                 |     |               |   |   |        |        |   |   |        | УКУПНО ПОЕНА |
|----------------------------------------|---|---|-----------------|-----|---------------|---|---|--------|--------|---|---|--------|--------------|
| Група са<br>предавања                  |   |   | Инде<br>година/ |     | Презиме и име |   |   |        |        |   |   |        |              |
| П1                                     | 3 | / |                 |     |               |   |   |        |        |   |   |        |              |
|                                        |   |   |                 |     |               |   |   |        |        |   |   |        | ОЦЕНА        |
|                                        |   |   |                 | ПИТ | АЊА           |   |   |        | ЗАДАЦИ |   |   |        |              |
| 1                                      | 2 | 3 | 4               | 5   | 6             | 7 | 8 | Укупно | 1      | 2 | 3 | Укупно |              |
|                                        |   |   |                 |     |               |   |   |        |        |   |   |        |              |

### ПИТАЊА

**1.** Отворена површ S има облик троугла са теменима у тачкама A(a,0,0), B(0,a,0) и C(0,0,a), где је a позитивна константа. Површ се налази у електростатичком пољу чији је вектор јачине електричног поља  $\mathbf{E} = -E_0 \, \mathbf{i}_z$ , где је  $E_0$  константа. Одредити израз за флукс вектора јачине електричног поља кроз површ S, у односу на дату нормалу  $\mathbf{n}$ .



**2.** Лопта полупречника a, приказана на слици, наелектрисана је по својој запремини наелектрисањем густине  $\rho(r) = \rho_0 \frac{r}{a}$ , где је r одстојање од центра лопте. Одредити израз за напон између центра лопте (тачка O) и једне тачке на површи лопте (тачка A),  $U_{OA}$ . Средина је свуда вакуум.



3. У линеарном хомогеном диелектрику интензитет вектора поларизације је  $P = 160 \,\mu\text{C/m}^2$ , а концентрација молекула је  $N = 10^{28} \, \text{m}^{-3}$ . Диелектрик је хомогено поларизован. Наелектрисање језгра једног молекула је  $Q = 8 \cdot 10^{-18} \, \text{C}$ . Сматрајући да су електрични моменти  $\, \mathbf{p} \,$  исти израчунати: (а) интензитет електричног момента једног молекула (дипола) и (б) растојање између позитивног и негативног наелектрисања дипола.



**4.** На слици је приказан танак ваздушни двожични вод. Растојање између оса проводника је d, а подужне густине наелектрисања проводника су O', односно -O'. Одредити израз за **вектор** подужне силе која делује на леви проводник.





**5.** У мрежи отпорника приказаној на слици је  $R = \frac{70}{3} \Omega$ . Израчунати еквивалентну отпорност ове мреже.



6. За коло сталне струје са слике познато је  $E_4$  = 8 V ,  $I_{\rm g1}$  = 40 mA ,  $I_{\rm g6}$  = 20 mA ,  $R_2$  = 30  $\Omega$  ,  $R_3$  = 50  $\Omega$  ,  $R_4$  = 200  $\Omega$  и  $R_5$  = 100  $\Omega$  . Израчунати снагу струјног генератора  $I_{\rm g6}$  .





7. Када се напон једне гране линеарног кола сталне струје мери волтметром унутрашње отпорности  $R_{\rm V1}=250~{\rm k}\Omega$ , добија се резултат  $U_1=40~{\rm V}$ , а када се мери волтметром унутрашње отпорности  $R_{\rm V2}=500~{\rm k}\Omega$ , резултат је  $U_2=60~{\rm V}$ . Израчунати напон те гране када волтметар није прикључен.

**8.** У колу сталне струје на слици је  $E=12~{
m V}$  ,  $R_1=R_2=100~{
m \Omega}$  и  $C_1=C_2=C_3=10~{
m \mu F}$  . У првом стационарном стању прекидач

8. У колу сталне струје на слици је E = 12 V ,  $R_1 = R_2 = 100$  С2 и  $C_1 = C_2 = C_3 = 10$  µF. У првом стационарном стању прекидач П је отворен, а електрична енергија кондензатора  $C_1$  је  $W_{e1} = 0$ . Затим се прекидач затвори и успостави се друго стационарно стање. Израчунати прираштај електричне енергије кондензатора  $C_3$ .





## **ЗАДАЦИ**

1. (Задатак се ради полазећи од прве стране вежбанке.)

Полупречник унутрашњег проводника сферног кондензатора је a, а унутрашњи полупречник спољашњег проводника је  $c=50~\mathrm{mm}$ . Кондензатор има два концентрична слоја диелектрика, а полупречник њихове раздвојне површи је  $b=30~\mathrm{mm}$ , као што је приказано на слици. Релативне пермитивности унутрашњег и спољашњег диелектрика су  $\epsilon_{\mathrm{r1}}=6$  и  $\epsilon_{\mathrm{r2}}=3$ , респективно, а одговарајуће електричне чврстине диелектрика су  $E_{\mathrm{kr1}}=90~\mathrm{MV/m}$  и  $E_{\mathrm{kr2}}=20~\mathrm{MV/m}$ . Израчунати (а) полупречник a (0 < a < b) тако да пробојни напон кондензатора буде максималан и (б) пробојни напон кондензатора у том случају.



2. (Задатак се ради полазећи од средине вежбанке.)

У колу сталне струје, приказаном на слици, познато је  $R_1$  = 100  $\Omega$ ,  $R_2$  = 200  $\Omega$ ,  $R_3$  = 400  $\Omega$ ,  $R_5$  = 600  $\Omega$ ,  $I_g$  = 1 A и E = 20 V. (а) Израчунати отпорност отпорника  $R_4$  тако да снага отпорника  $R_5$  буде  $P_{R_5}$  = 6 W. (б) Израчунати снагу идеалног напонског генератора у том случају.



3. (Задатак се ради полазећи од последње стране вежбанке.)

У колу сталне струје, приказаном на слици, познато је  $I_{\rm g}=10~{
m mA}$ . Када је прекидач  $\Pi$  затворен, тада је  $U^{(z)}=5~{
m V}$  и  $I_3^{(z)}=-5~{
m mA}$ , а када је прекидач отворен, тада је  $U^{(o)}=6~{
m V}$ . Израчунати отпорност  $R_3$ .



# ОДГОВОРИ НА ПИТАЊА И РЕШЕЊА ЗАДАТАКА СА ИСПИТА ИЗ ОСНОВА ЕЛЕКТРОТЕХНИКЕ 1 ОДРЖАНОГ 18. СЕПТЕМБРА 2021. ГОДИНЕ

У заградама су бројеви поена за тачан одговор, односно тачно решење.

### ПИТАЊА

1. 
$$\Psi_{\mathbf{E}} = -\frac{a^2 E_0}{2}$$
 (5).

**2.** 
$$U_{OA} = \frac{\rho_0 a^2}{12 \varepsilon_0}$$
 (5).

**3.** (a) 
$$p = 16 \cdot 10^{-33}$$
 Cm (2)  $\mu$  (6)  $d = 2 \cdot 10^{-15}$  m (3).

**4.** 
$$F'_{\rm e} = \frac{Q'^2}{2\pi\epsilon_0 d}$$
 (4), а правац и смер одређени су јединичним вектором чији је смер од левог ка десном проводнику (1).

**5.** 
$$R_{AB} = \frac{35}{3} \Omega$$
 (5).

**6.** 
$$P_{Ig_6} = -80 \text{ mW}$$
 (5).

7. Када волтметар није прикључен, напон те гране је U = 120 V (5).

**8.** 
$$\Delta W_{\rm e3} = 720 \, \mu \text{J}$$
 (5).

### ЗАДАЦИ

1. (а) Пробојни напон кондензатора биће највећи када је 
$$a = b \sqrt{\frac{E_{\rm kr2} \epsilon_{\rm r2}}{E_{\rm krl} \epsilon_{\rm rl}}} = 10$$
 mm (10). (б) При томе, пробојни напон је  $U_{\rm kr} = 840$  kV (10).

**2.** (a) 
$$R_4 = 200 \ \Omega \ (10)$$
. (6)  $P_E = -\frac{28}{3} \ W \ (10)$ .

3. 
$$R_3 = 1 \text{ k}\Omega$$
 (20).

- РЕЗУЛТАТИ ИСПИТА БИЋЕ ОБЈАВЉЕНИ ДО 21. СЕПТЕМБРА У 17 ЧАСОВА.
- ПРИМЕДБЕ НА ДОБИЈЕНЕ ОЦЕНЕ СТУДЕНТИ МОГУ ДА УПУТЕ МЕЈЛОМ НА АДРЕСУ <u>olcan@etf.rs</u>, ПРЕМА УПУТСТВУ ОБЈАВЉЕНОМ НА ЛИНКУ <a href="http://oet.etf.rs/OET.pdf">http://oet.etf.rs/OET.pdf</a> (СТРАНЕ 15-17) НАЈКАСНИЈЕ ДО 22. СЕПТЕМБРА У 17 ЧАСОВА.

Са предмета Основи електротехнике