Model Development Phase Template

Date	15 July 2024
Team ID	740685
Project Title	SDSS galaxy classification using Machine
	Learning
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Paste the screenshot of the model training code

Model Validation and Evaluation Report:

Mode l	Classification Report	Acc ura cy	Confusion Matrix
Decisi on Tree	from sklearn.tree import DecisionTreeCl clf = DecisionTreeClassifier() # Use th # Train the classifier on the training clf.fit(x_train, y_train) # make predictions on the testing data y_pred = clf.predict(x_test) # Evaluate the classifier from sklearn.metrics import classificat report = classification_report(y_test, print("classification Repoprt:\n",report	0.77	from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, classification_report, recall_ lg = LogisticRegression() log=lg.fit(x_train,y_train) print("confusion matrix: \n",confusion_matrix(y_test,y_pred)) print("

	RANDOM FOREST CLASSIFIER [] from sklearn.ensemble import RF=RandomForestClassifier		[] from sklearn.metrics import confusion_matrix, classificati
Rand omFo rest	<pre># Train the Random Forest cl RF = RandomForestClassifier [] RF.fit(x_train,y_train) RFtrain=RF.predict(x_train) RFtest=RF.predict(x_test)</pre>	1.00	<pre># print classification report , confusion matrix print(confusion_matrix(RFtrain,y_train)) print(confusion_matrix(RFtest,y_test)) print(classification_report(RFtrain,y_train)) # Fix the ty print(classification_report(RFtest,y_test)) # Fix the typo</pre>
Logist ic Regre ssion	LOGISTIC REGRESSION [] from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, classifica lg = LogisticRegression() log=lg.fit(x_train,y_train) print("confusion matrix: \n",confusion_matrix(y_test,y_print("")) print("classification report:\n",classification_report print("") print("accuracy score:\n",accuracy_score(y_test,y_pred)	0.77	<pre></pre>