Cumulative Posterior Distributions

Offline SHMC

m=1/cov, L=20, eta= $5 \cdot 10^{-12}$ (evolution times chosen offline; increment=0.08)

Offline SMC (SIR)

a=0.98, ESS_threshold=N_particles/2 Resampling:

$$\mu = a \cdot f_{particle} + (1 - a) \cdot \mu_{current}$$
$$\sigma = \sqrt{1 - a^2} \cdot \sigma_{current}$$

(evolution times chosen offline; increment=0.08)

Adaptive SHMC

m=1/cov, L=20, eta= 10^{-6} (evolution times chosen adaptively; k=1.25)

Adaptive SMC (SIR)

a=0.98, ESS_threshold=N_particles/2 Resampling:

$$\mu = a \cdot f_{particle} + (1 - a) \cdot \mu_{current}$$

$$\sigma = \sqrt{1 - a^2} \cdot \sigma_{current}$$

(evolution times chosen adaptively; k=1.25)

All: n=1000; N=100; f_max=10; f_real=8

Cumulative Posterior Distributions

(prior with support over negative frequencies)

Offline SHMC

m=1/cov, L=20, eta=10⁻¹⁰
(evolution times chosen offline;
increment=0.08)

Offline SMC (SIR)

a=0.98, ESS_threshold=N_particles/2 Resampling:

$$\mu = a \cdot f_{particle} + (1 - a) \cdot \mu_{current}$$

$$\sigma = \sqrt{1 - a^2} \cdot \sigma_{current}$$

(evolution times chosen offline; increment=0.08)

Adaptive SHMC

m=1/cov, L=20, eta= 10^{-10} (evolution times chosen adaptively; k=1.25)

Adaptive SMC (SIR)

a=0.98, ESS_threshold=N_particles/2 Resampling*:

$$\mu = a \cdot f_{particle} + (1 - a) \cdot \mu_{current}$$

$$\sigma = \sqrt{1 - a^2} \cdot \sigma_{current}$$
* ~10x less frequent than for offline

(evolution times chosen adaptively; k=1.25)

All: n=2000; N=100; f_max=10; f_real=8

MCMC (single particle)

(5% HMC steps)

MCMC using HMC and MH proposals

HMC: m=0.1, L=10, eta= $5 \cdot 10^{-3}$, threshold=0.01

MH: gaussian proposals, sigma=0.01

- * Percentage of HMC steps: **5.0**%.
- * Hamiltonian Monte Carlo: 80% mean acceptance rate.
- * Metropolis-Hastings: 82% meanacceptance rate.

(Move on product of all likelihoods, for evolution times chosen in advance; increment=0.08)

n=1; N=100; measurements=100; f_max=10

MCMC (single particle)

(95%+ HMC steps)

MCMC using HMC and MH proposals

HMC: m=0.1, L=20, eta= 10^{-3} , threshold=0.01

MH: gaussian proposals, sigma=0.01

* Percentage of HMC steps: 97%.

* Hamiltonian Monte Carlo: 99% mean acceptance rate.

* Metropolis-Hastings: 33% mean acceptance rate.

HMC: m=0.1, L=20, eta= 10^{-3} , threshold=0.01

* Percentage of HMC steps: 100%.

* Hamiltonian Monte Carlo: 100% mean acceptance rate

n=1; N=100; measurements=100; f_max=10

100 particle SMC vs. MCMC (single particle)

(Matched for number of measurements, measurement times, number of steps, real frequency, prior distribution, and constraints)

n=1 or 100; N=100; measurements=100; f_max=10

(evolution times chosen offline; increment=0.08)