TD 9 : Systèmes de numération flottante

Julien BESTARD Paul Dufour

Contents

1	Exe	ercice 1:	
	1.1	128	
	1.2	-32.75	
	1.3		
	1.4	0.0625	
2		ercice 2:	
	2.1	1	
	2.2	-64	
	2.3	$12.06640625 \dots \dots$	
	2.4	0.2734375	
3	Exercice 3:		
	3.1	1011 1101 0100 0000 0000 0000 0000 0000	
	3.2	0101 0101 0110 0000 0000 0000 0000 0000	
	3.3	1100 0001 1111 0000 0000 0000 0000 0000	
	3.4	1111 1111 1000 0000 0000 0000 0000 0000	
	3.5		
4	Exe	ercice 4:	
	4.1	1. $(403048000000000)_{16}$	
		2. $(C04000000000000)_{16}$	
		3. $(BFC000000000000000)_2$	
		4. $(80000000000000)_{16}$	
		5 (FFF0001100000000)	

1 Exercice 1:

Donnez la représentation flottante, en simple précision des nombres suivants :

1.1 128

- 1. S = 0
- 2. $128 = (10000000)_2 = (1,0) \times 2^7$
- 3. M = 0 et e = 7
- 4. E = e + biais = 7 + 127 = 6 + 128 $E = (10000110)_2$

1.2 -32.75

- 1. S = 1
- 2. $|-32.75| = (00100000, 11)_2 = (1,0000011)x2^4$
- 3. M = 0000011 et e = 4
- 4. $E = 4 + 127 = (10000100)_2$
- 5. $-32.75 \implies (1100001000000011000000000000000000)_2 = (C2060000)_{16}$

$1.3 \quad 18.125$

- 1. S = 0
- 2. $18.125 = (00010010, 001)_2 = (1, 0010001)x2^4$
- 3. M = 0000011 et e = 4
- 4. $E = 4 + 127 = (10000100)_2$
- 5. $18.125 \implies (1100001000000011000000000000000000)_2 = (41910000)_{16}$

$1.4 \quad 0.0625$

- 1. S = 0
- 2. $0.0626 = (0,0001)_2 = (1,0)x2^{-4}$
- 3. M = 0 et e = -4
- 4. $E = -4 + 127 = (01111011)_2$

2 Exercice 2:

2.1 1

- 1. S = 0
- 2. $1 = (1)_2 = (1,0) \times 2^0$
- 3. M = 0 et e = 0
- 4. $E = 0 + 1023 = (011111111111)_2$

2.2 -64

- 1. S = 1
- 2. $|-64| = (100\,0000)_2 = (1,0) \times 2^6$
- 3. M = 0 et e = 6
- 4. $E = 6 + 1023 = (100\,0000\,0101)_2$

2.3 12.06640625

- 1. S = 0
- 2. $12.06640625 = (1100,00010001)_2 = (1,10000010001) \times 2^3$
- 3. $M = 1000\,0010\,001$ et e = 3
- 4. $E = 2 + 1023 = (100\,0000\,0010)_2$

$2.4 \quad 0.2734375$

- 1. S = 0
- 2. $0.2734375 = (0.010001)_2 = (1.00011) \times 2^{-2}$
- 3. M = 00011 et e = 3
- 4. $E = -2 + 1023 = (011111111101)_2$

3 Exercice 3:

$3.1 \quad 1011 \ 1101 \ 0100 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000$

Donc : S = 1 E = 0111 1010 e = E - biais =
$$(01111010)_2 - (01111111)_2 = -5$$

 $m_2 = (1, M)_2 = (1, 1)_2 = (11)_2 \times 2^{-1}$
C1 : $-m_2 \times 2^e = -(1, 1)_2 \times 2^{-5} = -(11)_2 \times 2^{-6} = -3 \times 2^{-6} = -0,046875$

$3.2 \quad 0101 \ 0101 \ 0110 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000$

Donc : S = 0 E =
$$(10101010)_2 - 127 = 43$$

 $m_2 = (1, M)_2 = (1, 11)_2 = (111)_2 \times 2^2$
Cl : $m_2 = (1, 11)_2 \times 2^{43} = (111)_2 \times 2^2 \times 2^{41} = 7 \times 2^{41} = -0,046875$

Donc:
$$S = 1$$
 $E = 10000011 = 131$ $e = E - biais = 131 - 127 = 4$ $m_2 = (1, M)_2 = (1, 111)_2 \times 2^4$ $Cl: -m_2 \times 2^e = -(1, 111)_2 \times 2^4 = -(1111)_2 \times 2 = -30$

$3.4 \quad 1111 \ 1111 \ 1000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000$

$$\begin{array}{l} \text{Donc}: \, S = 1 \\ E = 1111\,1111 \\ M = 0 \times 23 \implies -\infty \end{array}$$

$3.5 \quad 0000 \ 0000 \ 0100 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000$

```
Donc : S = 0 E = 0 donc si M = 0 alors 0 sinon nb denormalisé donc e = 1 - biais = - 126 et m = (0,M)_2 = (0,1)_2 = (1,0)_2 \times 2^{-1} CL (1,0)_2 = 2^{-1} \times 2^{-126} = 2^{-127}
```

4 Exercice 4:

4.1 1. (4030480000000000)₁₆

$$937 \times 2^{-9} * 2^4 = 937 \times 2^{-5} = 29,28125$$

4.2 2. (*C*040000000000000)₁₆

 $= 937 \times 2^{-9}$

$$\implies (1|1000000100|000000000000...000)_2$$
 $s = 1 \implies negatif$

$$e = E - biais = (10000000100)_2 - (1023)_{16}$$

$$e = 1028 - 1023 = 5$$

$$m_2 = (1, M)_2$$

$$= (1, 0)_2$$

$$-1 \times 2^5 = -32$$

4.3 3. (*BFC*00000000000000)₂

$$\Rightarrow (1|011111111100|00000000000000...000)_2$$

$$s = 1 \Rightarrow negatif$$

$$e = E - biais = (011111111100)_2 - (1023)_{16}$$

$$e = 1020 - 1023 = -3$$

$$m_2 = (1, M)_2$$

$$= (1, 0)_2$$

4.4 4. (8000000000000000)₁₆

 $-1 \times 2^{-3} = -0,125$

```
\implies (1|000000000000|000000000000...000)_2 \\ s = 1 \implies negatif \ E = 0etM)0 \ \text{donc on a (-)0}
```

4.5 5. (*FFF*0000100000000)₂