En el sistema (1.2.10) todos los coeficientes a_{ij} y b_i son números reales dados. El problema es encontrar todos los conjuntos de n números, denotados por $(x_1, x_2, x_3, \ldots x_n)$, que satisfacen cada una de las m ecuaciones en (1.2.10). El número a_{ij} es el coeficiente de la variable x_j en la i-ésima ecuación

Es posible resolver un sistema de m ecuaciones con n incógnitas haciendo uso de la eliminación de Gauss-Jordan o gaussiana. En seguida se proporciona un ejemplo en el que el número de ecuaciones e incógnitas es diferente.

EJEMPLO 1.2.7 Solución de un sistema de dos ecuaciones con cuatro incógnitas

Resuelva el sistema

$$x_1 + 3x_2 - 5x_3 + x_4 = 4$$

 $2x_1 + 5x_2 - 2x_3 + 4x_4 = 6$

SOLUCIÓN ► Este sistema se escribe como una matriz aumentada y se reduce por renglones:

$$\begin{pmatrix} 1 & 3 & -5 & 1 & | & 4 \\ 2 & 5 & -2 & 4 & | & 6 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & 3 & -5 & 1 & | & 4 \\ 0 & -1 & 8 & 2 & | & -2 \end{pmatrix}$$

Hasta aquí se puede llegar. La matriz de coeficiente se encuentra en forma escalonada reducida por renglones. Es evidente que existe un número infinito de soluciones. Los valores de las variables x_3 y x_4 se pueden escoger de manera arbitraria. Entonces $x_2 = 2 + 8x_3 + 2x_4$ y $x_1 = -2 - 19x_3 - 7x_4$. Por lo tanto, todas las soluciones se representan por $(-2 - 19x_3 - 7x_4, 2 + 8x_3 + 2x_4, x_3, x_4)$. Por ejemplo, si $x_3 = 1$ y $x_4 = 2$ se obtiene la solución (-35, 14, 1, 2).

Al resolver muchos sistemas es evidente que los cálculos se vuelven fastidiosos. Un buen método práctico es usar una calculadora o computadora siempre que las fracciones se compliquen. Debe hacerse notar, sin embargo, que si los cálculos se llevan a cabo en una computadora o calculadora pueden introducirse errores de "redondeo". Este problema se analiza en el apéndice C.

EJEMPLO 1.2.8 Un problema de administración de recursos

Un departamento de pesca y caza del estado proporciona tres tipos de comida a un lago que alberga a tres especies de peces. Cada pez de la especie 1 consume cada semana un promedio de 1 unidad del alimento A, 1 unidad del alimento B y 2 unidades del alimento C. Cada pez de la especie 2 consume cada semana un promedio de 3 unidades del alimento A, 4 del B y 5 del C. Para un pez de la especie 3, el promedio semanal de consumo es de 2 unidades del alimento A, 1 unidad del alimento B y 5 unidades del C. Cada semana se proporcionan al lago 25 000 unidades del alimento A, 20 000 unidades del alimento B y 55 000 del C. Si suponemos que los peces se comen todo el alimento, ¿cuántos peces de cada especie pueden coexistir en el lago?

SOLUCIÓN Sean x_1 , x_2 y x_3 el número de peces de cada especie que hay en el ambiente del lago. Si utilizamos la información del problema se observa que x_1 peces de la especie 1 consumen x_1 unidades del alimento A, x_2 peces de la especie 2 consumen $3x_2$ unidades del alimento A y x_3 peces de la especie 3 consumen $2x_3$ unidades del alimento A. Entonces, $x_1 + 3x_2 + 2x_3 =$