report

Data Analysis

1 Introduction

This is an example

1.1 first

Well done,bro

1.2 second

keep going

2 Code chunk

2.1 show output only

[1] 1 2 3 4 5

2.2 show code and output

```
print(6:10)
```

```
[1] 6 7 8 9 10
```

- 2.3 show nothing(run code)
- 2.4 show nothing(don't run code)

3 Inline code

1

1

4 Table

Table 1: The first 5 rows

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-22	5.5497748	-3.964125	0.0041530
x	11	0.8944272	12.298374	0.0000018

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa

5 Mathematics

$$y_i = \alpha + \beta x_i + \epsilon_i, ~~ \epsilon_i \sim N(0, \sigma^2),$$

$$y_i = \alpha + \beta_{\mbox{Male}} \cdot \mathbb{I}_{\mbox{Male}}(x),$$

6 Figures

Figure 1 displays a scatterplot of the teaching score against beauty score. Here, there appears to be a positive relationship between teaching and beauty scores. Hence, teaching score tends to increase with beauty score. However, as seen from Figure 1 and the observed correlation coefficient, it is only a weakly positive relationship. A linear regression model will now be fitted to assess the relationship between teaching and beauty scores.

Figure 1: Relationship between teaching and beauty scores. The best-fitting line has been superimposed.

100
Depature delay(minutes)

150

200

50

6.1 inside code

Figure 2: try