

Trigonometric Ratios Ex 5.1 Q36

Answer:

(i) In tan A , ∠A is acute an angle Therefore,

Minimum value of $\angle A$ is 0° and

Maximum value of ∠A is 90°

We know that $\tan 0^\circ = 0$ and

tan90° = ∞

Therefore the statement that;

"The value of tan A is always less than 1" is false

(ii)
$$\sec A = \frac{1}{\cos A}$$

In $\sec A$ and $\cos A$, $\angle A$ is acute angle

Therefore,

Minimum value of ∠A is 0° and

Maximum value of ∠A is 90°

We know that cos0° = 1 and

Now,

$$\sec 0^{\circ} = \frac{1}{\cos 0^{\circ}}$$
$$= \frac{1}{1}$$

Therefore minimum value of $\sec A$ is $\sec 0^{\circ} = 1$ (1) Therefore maximum value of $\sec A$ is $\sec 90^{\circ} = \infty$ (2) Now consider the given value Here, $\frac{12}{5} = 2.4$ This value 2.4 lies in between 1 and ∞ Now from equation (1) and (2) , we can say that the value $\frac{12}{5} = 2.4$ lies in between minimum value of $\sec A$ (that is 1) and maximum value of $\sec A$ (that is ∞) Hence, $\sec A = \frac{12}{5}$, for some value of angle A is true (iii) Cosecant of angle A is defined as $\csc A = \frac{1}{\sin A}$ Also, $\sin A$ is defined as $\sin A = \frac{\text{Perpendicular side opposite to } \angle A}{\text{Lipedanuse}}$ $cosecA = \frac{Hypotenuse}{Perpendicular side opposite to \angle A} \dots (1)$ $\cos A$ is defined as $\cos A = \frac{\text{Base side adjacent to } \angle A}{\text{Literate}}$ Therefore from equation (1) and (2), it is clear that $\cos A$ and $\csc A$ (that is cosecant of angle A) are two different trigonometric angles Hence, $\cos A$ is the abbreviation used for cosecant of angle A is False (iv) cot A is a trigonometric ratio which means cotangent of angle A Hence, cot A is the product of cot and A is False (v) $\sin \theta = \frac{4}{3}$ The value $\frac{4}{3} = 1.333$ $\ln \sin \theta$, $\angle \theta$ is acute an angle Therefore, Minimum value of $\angle \theta$ is 0° and Maximum value of $\angle \theta$ is 90° We know that $\sin 0^{\circ} = 0$ and Therefore the value of $\sin heta$ should lie between 0 and 1 and must not exceed 1

Hence the given value for $\sin \theta$ (that is $\frac{4}{3} = 1.333$) is not possible

Therefore, $\sin \theta = \frac{4}{3}$, for some angle θ = False

********* END ********