The CTC saga: C2 comparison

Stelios Sfakianakis

Date: 2014-09-21

This is the comparison between peripheral blood of cancer patients and normal individuals, which identifies genes expressed in cancer blood. We are using the following datasets:

- GSE27562: "In total, we collected blood from **57** women with a diagnosis of breast cancer and **37** with a benign diagnosis" (PMID: 21781289) Platform: Affymetrix
- GSE16443: "Blood samples were collected from 121 females referred for diagnostic mammography following an initial suspicious screening mammogram. Diagnostic work-up revealed that 67 of these women had breast cancer while 54 had no malignant disease. Additionally, 9 samples from 6 healthy female controls (three pregnant women, one breast-feeding woman and two healthy controls at different timepoints in their menstrual cycle) were included." (PMID: 20078854). Platform: Applied Biosystems (ABI)

Loading the data and performing the merge:

```
> load("data/gse27562 c2.rda")
> load("data/gse16443.rda")
> datasets = list(GSE27562=gse27562, GSE16443=gse16443)
> mgse_COMBAT <- merge(datasets, method="COMBAT");</pre>
We select the samples to be used for this comparison:
> ind <- gse27562$characteristics_ch1=='phenotype: Normal' |</pre>
      gse27562$characteristics_ch1=='phenotype: Malignant' |
      gse27562$characteristics_ch1=='phenotype: Pre-Surgery (aka Malignant)'
> gse27562 samples = sampleNames(gse27562[,ind])
> gse16443 samples = sampleNames(gse16443)
> samples = c(gse16443_samples, gse27562_samples)
> c2.data = mgse_COMBAT[,samples]
Let's cache the dataset for subsequent analyses:
> saveRDS(c2.data, file=file.path("intermediate", "c2.data.rds"))
The distribution of the samples is shown in Table 1.
And the distribution of samples in a 2D MDS plot are shown in Figure 1.
> plotMDS(c2.data, "Study", "Disease")
```


Figure 1: MDS plot of the merged samples $\,$

	GSE16443	GSE27562
Cancer	67	57
Control	54	31

Table 1: Sample distribution

```
> cl = ifelse(c2.data$Disease == 'Control', 0, 1)
> sam.out <- sam(exprs(c2.data), c1, B=500, rand=0xDEAD);</pre>
> summary(sam.out);
SAM Analysis for the Two-Class Unpaired Case Assuming Unequal Variances
s0 = 0
Number of permutations: 500
MEAN number of falsely called variables is computed.
  Delta
           p0
                 False Called
                                    FDR cutlow cutup
                                                        j2
                                                             j1
     0.1 0.58 4588.124
                         5452 0.487998 -0.243 0.551 3332 4499
1
     0.4 0.58 2441.588
                          3970 0.356633 -0.617 1.271 2755 5404
                         2167 0.183678 -1.378 2.052 1639 6091
3
     0.7 0.58 686.398
     1.0 0.58
                 168.1
                         1198 0.081367 -2.009 2.805 1010 6431
                         524 0.027281 -2.728 3.601 477 6572
5
    1.3 0.58
               24.652
6
    1.6 0.58
                 3.476
                          234 0.008614 -3.344
                                                  Inf 234 6619
7
     1.8 0.58
                  0.74
                          135 0.003179 -3.770
                                                  Inf
                                                      135 6619
                            54 0.000644 -4.386
8
     2.1 0.58
                  0.06
                                                  Inf
                                                        54 6619
     2.4 0.58
                 0.004
                            12 0.000193 -5.190
                                                        12 6619
9
                                                  Inf
     2.7 0.58
                                      0 -5.592
                                                         7 6619
10
                     0
                                                  Inf
> delta <- findDelta(sam.out, fdr=0.05, verbose=FALSE)[2,1]
The threshold seems to be at
 Delta Called
                   FDR
5 1.144
           808 0.05052
6 1.144
           777 0.04934
> sam.sum <- summary(sam.out, delta)
> w <- which(sam.sum@mat.sig$d.value > 0)
> num.genes.over <- length(w)</pre>
> num.genes.over
[1] 79
So we find 79 genes overexpressed in cancer peripheral blood.
[1] 777 209
They can be found in the c2_siggenes.txt file.
> sessionInfo()
```

R version 3.1.1 (2014-07-10)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

- [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
- [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
 [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
- [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
 [9] LC_ADDRESS=C LC_TELEPHONE=C
- [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

- [1] splines grDevices datasets parallel stats graphics utils
- [8] methods base

other attached packages:

[1]	plyr_1.8.1	ggplot2_1.0.0	xtable_1.7-3
[4]	<pre>inSilicoMerging_1.8.6</pre>	DWD_0.11	Matrix_1.1-4
[7]	siggenes_1.38.0	multtest_2.20.0	knitr_1.6
Γ107	Biobase 2.24.0	BiocGenerics 0.10.0	magrittr 1.1.0

loaded via a namespace (and not attached):

- [1] codetools_0.2-9 colorspace_1.2-4 digest_0.6.4 evaluate_0.5.5 [5] formatR_0.10 grid_3.1.1 gtable_0.1.2 lattice_0.20-29 [9] MASS_7.3-34 munsell_0.4.2 proto_0.3-10 Rcpp_0.11.2 [13] reshape2_1.4 scales_0.2.4 stats4_3.1.1 stringr_0.6.2
- [17] survival_2.37-7 tools_3.1.1