Nombres réels, fonctions numériques

Bornes supérieure / inférieure

Exercice 1 (Calculs de sup et inf)

Déterminer les éventuelles bornes sup/inf des parties de \mathbb{R} suivantes. S'agit-il de max/min?

$$A = \{x \in \mathbb{R} \mid x^2 < 2\}, \qquad B = \left\{1 - \frac{1}{n}, \ n \in \mathbb{N}^*\right\},$$

$$C = \{xe^{-x}, \ x > 0\}, \ D = \left\{\frac{2xy}{x^2 + y^2}, \ (x, y) \in (\mathbb{R}^*)^2\right\}$$

Exercice 2 (Exercice d'abstraction)

Soient A et B deux parties non-vides de \mathbb{R} telles que

$$\forall x \in A, \forall y \in B, \ x \leqslant y.$$

Montrer que A est majorée, B est minorée, et $\sup(A) \leqslant \inf(B)$.

Valeur absolue, partie entière

Exercice 3 (Disjonctions de cas)

En distinguant les valeurs prises par $x \in \mathbb{R}$, ré-exprimer |4x+2|-|2-5x| sans valeurs absolues.

Exercice 4 ((In)équations)

Résoudre, dans \mathbb{R} les (in)équations suivantes :

(a)
$$|x-3| \ge 4$$
 (b) $|x^2-1| \le 3$

(c)
$$|2x-4| = |x+3|$$
 (d) $\left|\frac{1}{x}-3\right| \le 2$

Exercice 5 (Partie entière)

1. Montrer que pour tous $x, y \in \mathbb{R}$,

$$|x| + |y| \le |x + y| \le |x| + |y| + 1.$$

Montrer que ces inégalités peuvent être strictes.

- 2. Pour $x \in \mathbb{R}$ et $n \in \mathbb{Z}$ a-t-on |x+n| = |x| + n?
- 3. Soient $n \in \mathbb{N}$ et $k \in \mathbb{N}^*$.

Déterminer les solutions de |kx| = n.

Études de fonctions

Exercice 6 (Fonctions "quasi-usuelles")

Déterminer en un coup d'oeil :

- Le domaine de définition.
- L'allure de la courbe représentative.
- (a) $f: x \mapsto \ln(x+2)$
- (b) $g: x \mapsto x(x-1)$
- (c) $h: x \mapsto e^{-x} + 1$
 - (d) $u: x \mapsto |x-2|-1$
- (e) $v: x \mapsto \frac{1}{x+3}$.
- (f) $w: x \mapsto (x-1)^{1/3}$

Exercice 7 (Étude "sans dériver")

Sans dériver, déterminer :

- Le domaine de définition.
- La parité/périodicité (éventuelle).
- Le tableau de variation complet.
- Les éventuelles bornes sup/inf, max/min.
- L'allure de la courbe représentative.

(a)
$$f(x) = \frac{1}{\ln(x)}$$

(b)
$$g(x) = \tan(2x)$$

(c)
$$h(x) = \arctan(x^2 - 1)$$
 (d) $u(x) = x^{-1/4} - 4x^{1/4}$

(d)
$$u(x) = x^{-1/4} - 4x^{1/4}$$

(e)
$$v(x) = \ln(-x^2 + 4x - 3)$$

Exercice 8 ((In)équations)

Résoudre les (in)équations suivantes :

- (a) $2 \le |2x+1| \le 4$
- (b) $(x)^{\sqrt{x}} = (\sqrt{x})^x$
- (c) $\tan(x) > 1$.
- (d) $1 < \arctan(x) \leqslant \frac{\pi}{3}$.

Exercice 9 ("Exposant variable")

1. Soit I un intervalle de \mathbb{R} et $u: I \to \mathbb{R}^*_{\perp}, v: I \to \mathbb{R}$ des fonctions dérivables. On pose :

$$\forall x \in I, \ f(x) = (u(x))^{v(x)}$$

Exprimer la dérivée f' en fonction de u, v, u' et v'. (on admet, à ce stade, que f est dérivable)

2. Application : étudier la fonction $x \mapsto (1+x)^x$ et tracer sa courbe représentatrice.

Exercice 10 (La plus petite période)

On pose : $\forall x \in \mathbb{R}, \ f(x) = (x - \lfloor x \rfloor) \sin\left(\frac{\pi x}{2}\right).$

- 1. Vérifier que f est 4-périodique.
- 2. On souhaite montrer que 4 est la plus petite période de f.
- (a) Montrer que si p > 0 est une période, alors $p \in \mathbb{N}$. (on pourra considérer f(p))
- (b) Conclure.

Fonctions trigonométriques

Exercice 11 (Antécédents par cos, sin, tan)

Déterminer les ensembles suivants :

- $\cos^{-1}(\{0\})$, $\cos^{-1}(\{1\})$, $\cos^{-1}(\{-1\})$
- $\sin^{-1}(\{0\})$, $\sin^{-1}(\{1\})$, $\sin^{-1}(\{-1\})$
- $\tan^{-1}(\{0\})$, $\tan^{-1}(\{1\})$, $\tan^{-1}(\{-1\})$

Exercice 12 ((In)équations)

Déterminer l'ensemble des solutions des (in)équations suivantes :

- (a) $\cos(x) \le \frac{1}{2}$ (b) $\sin(2x) \ge -\frac{1}{2}$
- (c) $\cos(3x+1) = 0$

Exercice 13 (Des formules de trigo)

Soient $a, b \in \mathbb{R}$. Établir les formules suivantes :

- $\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$
- $\sin(a-b) = \sin(a)\cos(b) \cos(a)\sin(b)$
- $\cos^2(a) = \frac{1 + \cos(2a)}{2}$ $\sin^2(a) = \frac{1 \cos(2a)}{2}$ $\cos(a)\cos(b) = \frac{1}{2}(\cos(a-b) + \cos(a+b))$ $\bullet \sin^2(a) = \frac{1 - \cos(2a)}{2}$
- $\sin(a)\sin(b) = \frac{1}{2}(\cos(a-b) \cos(a+b))$

Exercice 14 ($\cos \circ \arctan$)

Pour $x \in \mathbb{R}$, simplifier $\cos(\arctan(x))$.

Un peu de théorie

Exercice 15 (Décomposition paire + impaire)

Dans cet exercice, on note:

- \mathcal{P} l'ensemble des fonctions paires sur \mathbb{R} .
- \mathcal{I} l'ensemble des fonctions impaires sur \mathbb{R} .

En raisonnant pas analyse-synthèse, montrer:

$$\forall f \in \mathcal{F}(\mathbb{R}, \mathbb{R}), \ \exists ! (g, h) \in \mathcal{P} \times \mathcal{I}, \ f = g + h.$$

Exercice 16 (Périodique et monotone)

1. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction p-périodique (avec p > 0). Montrer que pour tout $x \in \mathbb{R}$, on a :

$$\forall n \in \mathbb{N}, \ f(x) = f(x + np)$$

- 2. Soient $x, y \in \mathbb{R}$ avec $x \leq y$. Montrer qu'il existe $n \in \mathbb{N}$ tel que $x + np \geqslant y$.
- 3. Déduire de questions précédentes que si f est périodique et monotone, alors elle est constante.