Bayesian inference day 2

Introduction

Today, we start working with real data! A few quick review of yesterday:

Bayesian inference

- 1. A model for the data generating mechanism is specified in terms of probability distributions with unknown parameters. The model should be specified in a way that the questions you have of the data may be asked of the model parameters.
- 2. Your prior belief about the unknown parameters is expressed in a probabilistic way via the **prior distribution**, $p(\theta)$.
- 3. Data are collected and are modeled via a probability distribution, $p(y|\theta)$ (i.e. the likelihood or sampling model)
- 4. Your updated belief in θ is expressed via the **posterior distribution**, according to Bayes' rule:

$$p(\theta|\mathbf{y}) = \frac{p(\mathbf{y}|\theta)p(\theta)}{p(\mathbf{y})} = \frac{p(\mathbf{y}|\theta)p(\theta)}{\int_{\theta} p(\mathbf{y}|\theta)p(\theta)d\theta}$$

5. All subsequent inference is based on the posterior distribution.

Bayesian data analysis

- 1. Generate samples from the posterior distribution (using math, PPLs, etc)
- 2. Assess model convergence using trace plots and the Gelman-Rubin diagnostic.
- 3. Obtain posterior summaries of the model (means, medians, credibility intervals)
- 4. Assess model fit using posterior predictive checks
- 5. (Optionally) Compute metrics for model comparison (Bayes' factors, information criterion, LOO-CV)

Distribution	Parameters	Probability function	Mean	Variance	\mathbf{MGF}
Bernoulli $Bern(p)$	$p \in [0, 1]$	$f(x) = p^{x}(1-p)^{1-x};$ $x \in \{0, 1\}$	p	p(1 - p)	$pe^t + (1-p)$
Binomial $Bin(p)$	$p \in [0,1]$	$f(x) = \binom{n}{x} p^x (1-p)^{n-x};$ $x \in \{0, 1,, n\}$	np	np(1-p)	$\left[pe^t + (1-p)\right]^n$
Geometric $Geom(p)$	$p \in [0,1]$	$f(x) = p(1-p)^{x-1};$ $x \in \{1, 2, \dots\}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - (1 - p)e^t}$
Hypergeometric	$N \in \{0, 1, \dots\}$ $r \in \{0, 1, \dots, N\}$ $n \in \{0, 1, \dots, N\}$	$f(x) = \frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}};$ $x \in \{0, 1, \dots, n\} \text{ if } n \le r,$ $x \in \{0, 1, \dots, r\} \text{ if } n > r$	$rac{nr}{N}$	$n\left(\frac{n}{r}\right)\left(\frac{N-r}{N}\right)\left(\frac{N-n}{N-1}\right)$	Don't bother
Poisson $Pois(\lambda)$	$\lambda > 0$	$f(x) = \frac{e^{-\lambda} \lambda^x}{x!};$ $x \in \{0, 1, \dots\}$	λ	λ	$\exp\left[\lambda(e^t-1)\right]$
Negative binomial $NegBin(r, p)$	$r \in \{0, 1, \dots\}$ $p \in [0, 1]$	$f(x) = {x+r+1 \choose x} p^r (1-p)^x;$ $x \in \{0, 1, \dots\}$	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$	$\left(\frac{p}{1 - (1 - p)e^t}\right)^r$
Beta beta(a, b)	a, b > 0	$f(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1};$ $x \in (0,1)$	$rac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$	DNE
Chi-square χ^2_{ν}	$\nu \in \{1, 2, \dots\}$	$f(x) = \frac{1}{2^{\nu/2}\Gamma(\frac{\nu}{2})} x^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}};$ x > 0	u	2ν	$(1-2t)^{-v/2}$
Exponential $\operatorname{Exp}(\lambda)$	$\lambda > 0$	$f(x) = \lambda e^{-\lambda x};$ $x > 0$	$\frac{1}{\lambda}$	$rac{1}{\lambda^2}$	$rac{\lambda}{\lambda-t}$
Gamma $Ga(\alpha, \beta)$	$\alpha, \beta > 0$	$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x};$ x > 0	$rac{lpha}{eta}$	$rac{lpha}{eta^2}$	$\left(1 - \frac{t}{\beta}\right)^{-\alpha}$
Normal $N(\mu, \sigma^2)$	$\mu\in(-\infty,\infty)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (x - \mu)^2\right\};$ $x \in (-\infty, \infty)$	μ	σ^2	$\exp\left\{\mu t + \frac{t^2\sigma^2}{2}\right\}$
Uniform $\mathrm{Unif}(\theta_1,\theta_2)$	$\{\theta_1, \theta_2: \theta_1 < \theta_2\}$	$f(x) = \frac{1}{\theta_2 - \theta_1};$ $\theta_1 \le x \le \theta_2$	$\frac{1}{2}(\theta_1 + \theta_2)$	$\frac{1}{12}(\theta_2 - \theta_1)^2$	$\frac{e^{t\theta_2} - e^{t\theta_1}}{t(\theta_2 - \theta_1)}$

Bayes Crash Course Stratton - Day 1

Warm-up: Real-data example

Now let's practice on some real data! We will use a subset of the data is Anna is working with.

```
weeds <- readRDS("bcc_dat.rds") %>% dplyr::select(Number_Tre:first3, Year_)
weeds
```

```
# A tibble: 1,791 x 5
   Number_Tre Code PCT_ZoneTr first3 Year_
        <dbl> <chr> <chr>
                                 <chr>
                                         <dbl>
           50 HIIN
                     100
                                 PIN
 1
                                          2014
 2
           12 HIIN
                     100
                                 ESR
                                          2014
 3
           49 MAVU
                     100
                                 HWY
                                          2014
 4
           51 HIIN
                     100
                                 CHL
                                          2014
 5
           58 COMA
                     90
                                 CAM
                                          2014
 6
           10 CAPY
                     100
                                 NOW
                                          2014
 7
             8 CESO
                     100
                                 PIN
                                          2014
 8
           47 MAVU
                     25
                                 BOT
                                          2014
9
           31 CAPY
                                 BGC
                                          2014
                     100
10
            18 CAPY
                     5
                                 MAR
                                          2014
# i 1,781 more rows
```

There are a number of potential questions to investigate for these data, including:

```
    Number_Tre ~ PCT_ZoneTr
    Number_Tre ~ PCT_ZoneTr * Code
    Number Tre ~ PCT ZoneTr * Code + first3
```

For each, write out the model including the priors, and fit the model using either nimble or stan. Provide posterior summaries and interpret the results.