

Designnotat

Tittel: Realisering av pulsbreddefilter

Forfatter: Karl Henrik Ejdfors

Versjon: 2.0 Dato: 3. mai 2017

Innhold

1	Problembeskrivelse	1
2	Prinsipiell løsning	1
3	Realisering og test	3
4	Konklusjon	6
5	Takk	6

1 Problembeskrivelse

Vi vil ta for oss design av et system som vist i figur 1.1. Det skal filtreres et pulstog, slik at pulstoget stopper under en gitt driftsyklus D_0 . I dette designet er D_0 gitt ved 45%. Filteret påtrykkes signalet $v_1(t)$, med driftsyklus D, og utgangssignalet er definert ved formel 1.1.

$$v_2(t) = \begin{cases} v_1(t) & \text{dersom } D \ge D_0 \\ 0 & \text{dersom } D < D_0 \end{cases}$$
 (1.1)

Driftsyklusen D_0 er definert ved forholdet gitt i formel 1.2, der T er perioden på pulstogene, i dette designet satt til 5ms, og T' er pulsbredden. Inngangssignalet $v_1(t)$ varierer mellom verdiene 0 og V.

$$D_0 = \frac{T'}{T} \tag{1.2}$$

$$v_1(t) \qquad \qquad v_2(t)$$

Figur 1.1: Oversiktsfigur over design, inspirert av [1].

2 Prinsipiell løsning

Pulsfilteret sammenligner to signaler, og kan lages ved implementasjon som vist i figur 2.1.

Figur 2.1: Konsept av pulsbreddefilter, modifisert fra Lundheim [1].

Driftsyklusen til v_1 er gitt ved formel 2.1, der T er perioden og T' er pulsbredden til signalet.

$$D = \frac{T'}{T} \cdot 100\% \iff T' = \frac{D}{100\%} \cdot T. \tag{2.1}$$

Første del av systemet, før komparatoren K i figur 2.1, brukes for å måle pulsbredden. Signalet v_3 inneholder informasjon om pulsbredden til inngangen v_1 [1]. Spenningen v_1 varierer mellom 0 og V, og dermed vil kondensatoren C_1 lade seg opp og ut gjennom motstanden R_1 . Spenningsformen til v_3 blir som vist i figur 2.2.

Figur 2.2: Spenningsform til $v_3[1]$

Komparatoren K sammenligner de to spennigsverdiene v_3 og V_0 , og gir ut et høyt signal når $v_3 \geq V_0$. Dioden har tilnærmet null motstand og sørger for at det blir en tilnærmet momentan opplading av C_2 når K sender ut pulser. Når K gir ut et lavt signal lader C_2 seg ut gjennom R_2 . Dette skjer sakte slik at v_4 ikke når logisk-lav før neste puls. Den logiske og-porten sender ut signaler i takt med inngangen v_1 dersom styrespenningen v_4 er logisk høy, altså når $D \geq D_0$.

Som vist i figur 2.2, varierer v_3 mellom V_1 og V_2 . Toppverdien V_2 er en monotont økende funksjon av pulsbredden T' til v_1 . Verdien til V_2 er gitt ved utledning av ligning 2.2 og 2.3 til ligning 2.4. Man kan sette verdien $V_0 \geq V_2$, slik at V_0 samsvarer med terskelen D_0 . Det må derfor velges en τ_1 slik at v_3 lades opp til V_2 før neste puls.

$$V_1 = v_3(T) = V_2 \cdot e^{-\frac{T - T'}{\tau_1}}. (2.2)$$

$$V_2 = v_3(T') = V + (V_1 - V) \cdot e^{-\frac{T'}{\tau_1}}.$$
 (2.3)

Løser man ligning 2.2 og 2.3 med hensyn på V_1 og V_2 , gir dette ligning 2.4:

$$V_2 = \frac{1 - e^{-\frac{T'}{\tau_1}}}{1 - e^{-\frac{T}{\tau_1}}} \cdot V. \tag{2.4}$$

Utladningen av v_4 må som sagt skje sakte, men ikke så sakte at den er høy ved neste periode. Dermed kan to ulikheter for $\tau_2 = R_2 \cdot C_2$ settes opp, gitt ved ulikheten 2.5. V_T er definert som terskelspenningen for og-porten og V' er gitt som driftspenningen til komparatoren K.

$$v_4(T) = V' \cdot e^{-\frac{T}{\tau_2}} > V_T \Longrightarrow \frac{T}{\ln(\frac{V'}{V_T})} < \tau_2 < \frac{2T}{\ln(\frac{V'}{V_T})}. \tag{2.5}$$

Figur 2.3: Utladningskurve for v_4 [1]

3 Realisering og test

Løsningen som er presentert i dette notatet er realisert med hensyn på et pulstog med verdiene for henholdsvis driftsyklus, amplitude og periode

$$D_0 = 45\%$$
 $V = 2V$ $T = 5ms$

på inngangen v_1 . Ved formel 2.1 gir dette pulsbredden

$$T'=2.25ms.$$

Filteret kan realiseres som i kretsskjema 3.1, med tilhørende komponentverdier i tabell 3.1. Vi finner verdi for $V_0 = V_2$ ved formel 2.3, der vi velger τ_1 slik at $v_3 \geq V_0$ før neste puls.

$$\tau_1 = R_1 \cdot C_1 = 10k\Omega \cdot 100nF = 1ms.$$

Dette gir $V_0 = 1.8V$.

Tabell 3.1: Verdier på komponenter

R_1	$10 \mathrm{k}\Omega$
R_2	$120 \mathrm{k}\Omega$
R_3	$150 \mathrm{k}\Omega$
C_1	100nF
C_2	100nF

Figur 3.1: Kretsfigur for realisering av pulsbreddefilter

Spenningsverdien til v_4 skal forbli på logisk høyt nivå før neste pulstog. Ulikheten 2.5, med verdiene

$$V' = 5V \qquad V_T = 1.5V \qquad T = 5ms$$

gir

$$4.2ms < \tau_2 < 8.3ms$$
.

Det blir valgt verdi for $\tau_2 = 12ms$, implementert med $R_2 = 120k\Omega$ og $C_2 = 100nF$:

$$\tau_2 = R_2 \cdot C_2 = 120k\Omega 100nF = 12ms$$

 R_3 er en *pull-down* motstand.

Figur 3.2: Fotografi av oppsett

Figur 3.3 og 3.4 viser henholdsvis v_2 for driftsyklus under og over $D_0=45\%$, der gul graf er inngangssignalet v_1 og blå graf er utgangssignalet v_2 . Utgangssignalet vist i figur 3.4 er dempet. Dette kan komme av feil implementering av den logiske og-porten samt verdier på komponenter. Utsignalene skal kun tolkes som boolske verdier, og så lenge signalet kan tolkes som logisk høy, kan man se bort ifra demping.

Figur 3.3: Visualisering av spenning v_2 med driftsyklus $D_0=43\%<\!45\%$

Figur 3.4: Visualisering av spenning v_2 med driftsyklus $\geq 45\%$

4 Konklusjon

Pulsbreddefilteret er testet med periode T = 5ms og driftsyklus D_0 rundt 45%. Figur 3.4 viser stor demping av det blå utgangssignalet. Signalet skal kun tolkes som en boolsk verdi, og dermed fungerer designet av pulsbreddefilteret til sin hensikt.

5 Takk

Jeg ønsker å takke både Markus Rud og Ole Bjørn Eithun Pedersen for fruktbare diskusjoner under arbeidet med dette designet.

Referanser

[1] Lars Lundheim. Pulsbreiddfilter. NTNU 2017.