FORMATION DATA SCIENTIST

PROJET 5: SEGMENTEZ DES CLIENTS D'UN SITE E-COMMERCE

Soutenu par: Kourouma Sekouba Aissatou

SOMMAIRE

- 1 MISSION
- 2 PRESENTATION DU JEU DE DONNÉE
- 3. ANALYSE EXPLORATOIRE
- 4. CREATION DU FICHIER CLIENT
- 5. ACP
- 6. ALGORITHME K-MEANS
- 7. CLUSTERING HIÉRARCHIQUE
- **8 ALGORITHME DBSCAN**
- 9. TESTER UN CLUSTERRING K-MEANS AVEC LES VARIABLE QUALITATIVES
- 10. ETUDE DE LA STABILITÉ TEMPORAIRE
- 11. CONCLUSION

1. MISSION

Créer une segmentation client exploitée par l'équipe Marketing pour personnaliser les campagnes et améliorer l'engagement.

- Comment assurer que la segmentation client permettra à l'équipe Marketing de cibler efficacement chaque segment avec des offres personnalisées tout en optimisant les ressources
- Comment intégrer efficacement les variables qualitatives, comme la satisfaction, dans la segmentation en complément des données quantitatives ?
- Comment créer une segmentation dynamique qui reflète l'évolution des comportements clients et reste pertinente à long terme, avec une fréquence de mise à jour adaptée ?

2. PRESENTATION DU JEU DE DONNÉE

3. ANALYSE EXPLORATOIRE

4. CREATION DU FICHIER CLIENT

- frequence
- days_since_last_order
- first_order_date
- total_amount_spent
- average_order_value

- max_order_value
- average_freight_value
- most_frequent_payment_type
 - average_review_score

customer_unique_id	frequence	total_amount_spent	average_review_score	days_since_last_order	first_order_date	average_order_value	max_order_value	average_freight_value	most_frequent_payment
0 0000366f3b9a7992bf8c76cfdf3221e2	1	129.90	5.0	6	2018-05-10 10:56:27	129.90	129.90	12.00	cred
1 0000b849f77a49e4a4ce2b2a4ca5be3f	1	18.90	4.0	6	2018-05-07 11:11:27	18.90	18.90	8.29	cred
2 0000f46a3911fa3c0805444483337064	1	69.00	3.0	7	2017-03-10 21:05:03	69.00	69.00	17.22	cred
3 0000f6ccb0745a6a4b88665a16c9f078	1	25.99	4.0	7	2017-10-12 20:29:41	25.99	25.99	17.63	cred
4 0004aac84e0df4da2b147fca70cf8255	1	180.00	5.0	7	2017-11-14 19:45:42	180.00	180.00	16.89	cred

3.0

Nombre de composantes de l'ACP

3.5

4.0

4.5

5.0

1.0

1.5

2.0

2.5

6. ALGORITHME K-MEANS

6.1 Trouver l'optimum du nombre de clusters

- calcul des Scores de Silhouette
- l'Indice de Davies-Bouldin

6.2 STATISTIQUE DES CLUSTERS

- La répartition des cluster
- La description des cluster

SCORES DE SILHOUETTE

INDICE DE DAVIES-BOULDIN

Le Cluster formé

La répartition des cluster

```
cluster
4    18273
2    18271
3    17799
5    16271
1    14114
0    9989
Name: count, dtype: int64
```


7. CLUSTERING HIÉRARCHIQUE

Non applicable en raison d'un problème de mémoire.

8. ALGORITHME DBSCAN

9. TESTER UN CLUSTERRING K-MEANS AVEC LES VARIABLE QUALITATIVES

```
Répartition des clusters
      18273
     18198
     17805
     16446
     14121
      9874
Name: count, dtype: int64
```


ETUDE DE LA STABILITÉ TEMPORAIRE

CONCLUSION

SEGMENTATION IDENTIFIÉE

• IMPACT SUR L'ÉQUIPE MARKETING

SUIVI DE LA SATISFACTION CLIENT

• FRÉQUENCE DE MISE À JOUR