ТРАНСПОРТНЫЕ СВОЙСТВА ГЕКСАГОНАЛЬНОГО ПЕРОВСКИТА Ва₆Nd₂Ti₄O₁₇

Бубнова П.О., Веринкина Е.М., Корона Д.В., Анимица И.Е. Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

Поиск новых функциональных материалов с высокой ионной проводимостью является важной материаловедческой задачей. Внимание привлекают протонные проводники, которые в области средних температур (500–700 °C) демонстрируют более высокие значения ионной проводимости, чем кислород-ионные проводники. Интерес представляет класс гексагональных перовскитов, ключевой особенностью которых является их структура, позволяющая данным соединениям проявлять высокую протонную проводимость и химическую устойчивость. Это делает их перспективными протонпроводящими материалами для электрохимического применения.

В настоящей работе был получен сложный оксид состава $Ba_6Nd_2Ti_4O_{17}$, изучена возможность внедрения воды в его структуру методом инфракрасной спектроскопии, определены температурные зависимости общей электропроводности в сухой и влажной атмосферах.

Синтез осуществляли твердофазным методом из исходных соединений $BaCO_3$, Nd_2O_3 , TiO_2 . Реакционная смесь подвергалась ступенчатому отжигу при температурах $1000\,^{\circ}C$ (24 часа), $1250\,^{\circ}C$ (48 часов). Однофазность образца подтверждена методом $P\Phi A$ с использованием дифрактометра XRD-7000 Maxima (Shimadzu, Япония). Сложный оксид $Ba_6Nd_2Ti_4O_{17}$ характеризуется гексагональной симметрией (пр.гр. P63/mmc, a=b=5.987(1) Å, c=29.895(1) Å).

Инфракрасные спектры предварительно гидратированного $Ba_6Nd_2Ti_4O_{17}$, полученные на ИК-Фурье-спектрометре Nicolet 6700 в частотном диапазоне 500–4000 см⁻¹ методом диффузного отражения, показали наличие протонов в структуре в виде кристаллографически неэквивалентных трех типов OH^- групп.

Исследование электрических свойств проводили на керамическом образце $Ba_6Nd_2Ti_4O_{17}$, спеченном при $1250~^{\circ}C$ в течение 24 часов. Относительная плотность керамики $Ba_6Nd_2Ti_4O_{17}$, определенная методом гидростатического взвешивания в ундекане, составила $80~^{\circ}M$. Электропроводность сложного оксида измеряли методом электрохимического импеданса (Z-1000P, Elins, Poccuя) в частотном диапазоне $100~^{\circ}C$ д мГц в сухом (pH₂O=3·10⁻⁵ атм) и влажном (pH₂O=2·10⁻² атм) воздухе в интервале $200-950~^{\circ}C$. Установлено, что во всем интервале температур значения общей электропроводности во влажной атмосфере выше, чем в атмосфере сухого воздуха. При $300~^{\circ}C$ разница в значениях проводимости составляет ~2 порядка величины. Ниже $600~^{\circ}C$ во влажной атмосфере наблюдается изменение энергии активации, что связано с возникновением протонных дефектов и появлением вклада протонной проводимости. Значения энергии активации уменьшались с $0.75~^{\circ}B$ (сухой воздух) до $0.45~^{\circ}B$ (влажный воздух).