

EVOLUTIONARY COMPUTATION

Adaptive Differential Evolution

Adam Viktorin

aviktorin@utb.cz

PhD student & A.I.Lab researcher

ailab.fai.utb.cz

TBU in Zlín

Czech Republic

TOC

- Differential Evolution
- Control parameter adaptation
- DISH/DISH-XX
- Waste-to-Energy application

Differential Evolution

- Metaheuristic optimizer / Evolutionary computation technique / Evolutionary algorithm
- Rainer Storn & Kenneth V. Price 1995
- Great for numerical single objective optimization
- Given $f: A \to \mathbb{R}$, $A \subseteq \mathbb{R}^{dim}$
- Find a set of parameters x₀:
- $f(\mathbf{x}_0) \leq f(\mathbf{x}), \ \forall \mathbf{x} \in A$
- Generate random set of solutions (first generation)
- 2. While stopping criteria not met do
 - 1. Use mutation and crossover operators to produce candidate solutions
 - Select better one from the target and candidate solutions for the next generation
- Return best-found solution

Control parameters

- Population size NP
- 2. Scaling factor F
- 3. Crossover rate CR
- User-dependent algorithm setting
- Optimization performance massively influenced
- "No free lunch" theorem

Population

- 1. Population size NP
 - Range [4, inf]
- Smaller population => more generations
- Larger population => better search space coverage

Mutation operator

Example: rand/1

•
$$v_i = x_{r1} + F \cdot (x_{r2} - x_{r3})$$

• $i \neq r1 \neq r2 \neq r3$

- 2. Scaling factor F
 - Usual range [0, 2]

Crossover operator

Example: binomial

- 3. Crossover rate *CR*
 - Range [0, 1]

Selection

- Target vs. candidate solution
- ullet $oldsymbol{x}_i$ vs. $oldsymbol{u}_i$
- If $f(u_i) \le f(x_i)$ then u_i goes to the next generation.

Control parameter adaptation

- "The answer to practitioners prayers."
- Deterministic / Adaptive / Self-adaptive
- Relatively easy for F and CR
- Not so easy for NP
- Usual practice
 - Find out what worked in the past (F and CR) and try similar values
 - Adaptive
 - Start with big population and gradually decrease its size –
 Deterministic

DISH timeline

What	How	When	IEEE CEC comp	
DE	Original	1995	-	
JADE	Current-to-pbest/1	2009	-	
SHADE	Historical memories	2013	3 rd (2013)	
L-SHADE	Linear decrease of population size	2014	1 st (2014)	
iL-SHADE	Optimization phase F and CR update	2016	4 th (2016)	
Distance based parameter adaptation	Redefined success	2017	-	
jSO	Current-to-pbest-w/1		2 nd (2017)	
Distance adaptation for jSO		2019	2 nd (2019)	
DISH-XX Double crossover		2020	? (2020)	

Table 1. DISH history overview.

WASTE-TO-ENERGY FACILITY PLACEMENT

Application example

Czech Republic

Application

Waste-to-Energy facilities in Czech Republic

•	Waste production	า (2018)	3.20 Mt
	Macto production	(2010)	0120 111

- Used for energy recovery (~23%)
 0.75 Mt
- The rest landfills

- Facility optimization (placement, capacity, producers)
- Mixed-integer non-linear problem

Scale of the problem

- 4 existing facilities (2 ready for extension)
- 36 possible new facility locations
- Each facility has from 2 to 27 various options for its capacity
- 204 waste producers
- Non-linear penalization for unused capacity

Facility placement – example solutions

Comparison to conventional solver

Nr. of regions	Objective function value [EUR]			Computing time [h:mm:ss]		Nr. of fac. [-]	
	DICOPT	DR_DISH	Diff. [%]	DICOPT	DR_DISH	DICOPT	DR_DISH
1	2.10E+07	2.10E+07	0	0:00:04	0:01:48	1	1
4	9.45E+07	1.02E+07	7.94	0:01:15	0:08:22	9	4
5	1.06E+08	1.11E+08	4.72	0:01:39	0:09:46	6	4
8	1.60E+08	1.62E+08	1.25	3:55:32	0:17:09	12	6
9	2.11E+08	2.12E+08	0.47	5:54:08	0:22:21	14	8
10	-	2.42E+08	-		0:23:44	-	9
14	-	3.02E+08	-		0:40:53	-	12

Table 2. Result comparison between conventional optimizer (DICOPT) and metaheuristic optimizer (DR_DISH).

Solution for the whole Czech Republic

THANK YOU

Adam Viktorin

aviktorin@utb.cz

PhD student & A.I.Lab researcher

ailab.fai.utb.cz

TBU in Zlín

Czech Republic