Wykład 8 Układy równań liniowych

Dany jest układ m równań liniowych z n niewiadomymi x_1, x_2, \ldots, x_n , o współczynnikach z ciała \mathbb{K} :

$$\begin{cases}
 a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
 a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
 \vdots & , \\
 a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases}$$

gdzie $a_{ij}, b_i \in \mathbb{K}, i = 1, ..., m, j = 1, ..., n.$

Rozwiązaniem układu (*) nazywamy każdy ciąg elementów $(x_1,\ldots,x_n)\in\mathbb{K}^n$ spełniający ten układ.

Oznaczenia. $A = [a_{ij}]_{m \times n}$ - macierz współczynników układu, $B = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$ - wektor (kolumna) wyrazów wolnych.

Definicja 1 Układ (*) nazywamy układem jednorodnym, jeśli B - macierz zerowa, a układem niejednorodnym w przeciwnym przypadku.

Uwaga. Każdy układ jednorodny posiada co najmniej jedno rozwiązanie: $x_1 = x_2 = \cdots = x_n = 0$.

Uwaga. Niech $X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$. Wówczas układ (*) jest równoważny równaniu macierzowemu

Układy Cramera

Dany jest układ n równań liniowych z n niewiadomymi x_1, x_2, \ldots, x_n , o współczynnikach z ciała \mathbb{K} :

(#)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

gdzie $a_{ij}, b_i \in \mathbb{K}, i = 1, ..., n, j = 1, ..., n.$

Lub równoważnie: (##) $A \cdot X = B$, gdzie $A = [a_{ij}]_{n \times n}$, $B = [b_1, \dots, b_n]^T$, $X = [x_1, \dots, x_n]^T$.

Definicja 2 $Uklad (\#) (\Leftrightarrow (\#\#))$ nazywamy układem Cramera, jeśli $\det A \neq 0$.

Twierdzenie 1 Układ Cramera posiada dokładnie jedno rozwiązanie. Może ono być wyznaczone przy pomocy wzorów Cramera:

$$x_1 = \frac{\det A_{(1)}}{\det A}$$
, $x_2 = \frac{\det A_{(2)}}{\det A}$, ..., $x_n = \frac{\det A_{(n)}}{\det A}$,

gdzie $A_{(i)}$ oznacza macierz powstałą z A przez zastąpienie i-tej kolumny macierzą B.

Twierdzenie 2 Jeżeli (##) jest układem Cramera, to $X = A^{-1} \cdot B$ (metoda macierzowa).

Zastosowanie do macierzy przejścia

Oznaczenie.
$$A = [A_1, A_2, \dots, A_n], A_i = \begin{bmatrix} a_{1i} \\ \vdots \\ a_{ni} \end{bmatrix}$$
 (*i*-ta kolumna macierzy A)

Twierdzenie 3 Układ wektorów (A_1, A_2, \ldots, A_n) jest bazą przestrzeni \mathbb{K}^n wtedy i tylko wtedy, $gdy \det [A_1, A_2, \ldots, A_n] \neq 0$.

Rząd macierzy

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, a_{ij} \in \mathbb{K}.$$

Kolumny macierzy A można traktować jako wektory z przestrzeni liniowej \mathbb{K}^m , a wiersze jako wektory z \mathbb{K}^n .

Oznaczenie.
$$A = [A_1, A_2, \dots, A_n], A_i = \begin{bmatrix} a_{1i} \\ \vdots \\ a_{mi} \end{bmatrix}$$
 (*i*-ta kolumna macierzy A) lub: $A = [A^1, A^2, \dots, A^m]^T, A^j = [a_{j1}, \dots, a_{jn}]$ (*j*-ty wiersz macierzy A).

Definicja 3 Rzędem kolumnowym macierzy A nazywamy dim Lin $(A_1, ..., A_n)$ (maksymalną liczbę liniowo niezależnych kolumn macierzy A). Rzędem wierszowym macierzy A nazywamy dim Lin $(A^1, ..., A^m)$ (maksymalną liczbę liniowo niezależnych wierszy macierzy A).

Uwaga. Rząd kolumnowy macierzy A jest równy jej rzędowi wierszowemu.

Definicja 4 Rzędem macierzy A nazywamy jej rząd kolumnowy (lub wierszowy).

Oznaczenie. r(A), R(A), rz(A).

Uwaga. Rzad macierzy nieosobliwej stopnia n jest równy n.

Twierdzenie 4 Jeżeli $M_{\mathcal{B}}^{\mathcal{A}}(\phi)$ jest macierzą przekształcenia liniowego $\phi: V \to W$ w dowolnie ustalonych bazach \mathcal{A} , \mathcal{B} to

$$r(M_{\mathcal{B}}^{\mathcal{A}}(\phi)) = r(\phi) = dim Im \phi.$$

Definicja 5 Minorem stopnia k macierzy $A = [a_{ij}]_{m \times n}$ nazywamy wyznacznik macierzy kwadratowej stopnia k powstałej z macierzy A przez wykreślenie m - k wierszy i n - k kolumn.

Uwaga. Rząd macierzy jest równy najwyższemu stopniowi niezerowego minora tej macierzy. **Uwaga.** Rząd macierzy nie zmieni się, gdy

- 1. skreślimy wiersz zerowy,
- 2. skreślimy jeden z dwóch proporcjonalnych wierszy,
- 3. dodamy do wiersza kombinację liniową innych wierszy,

- 4. przestawimy wiersze,
- 5. wykonamy analogiczne operacje na kolumnach.

Uwaga. Macierz nazywamy **schodkową** (**trapezową**), gdy pierwsze niezerowe elementy (tzw. schodki) w kolejnych niezerowych wierszach znajdują się w kolumnach o rosnących numerach. Rząd macierzy schodkowej jest równy liczbie jej schodków.

Układy równań liniowych

Rozpatrujemy dwa układy równań:

(I)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$
(II)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$
gdzie $a_{ij}, b_i \in \mathbb{K}, i = 1, \dots, m, j = 1, \dots, n$.

Uwaga. Zbiór rozwiązań układu (II) jest niepusty i tworzy podprzestrzeń liniową przestrzeni \mathbb{K}^n .

Każde rozwiązanie równania macierzowego $A \cdot X = \mathbb{O}$ (\Leftrightarrow układu (II)) jest wektorem należącym do jądra przekształcenia liniowego ϕ , którego macierzą przekształcenia jest macierz A.

Każde rozwiązanie układu (I) jest postaci $X_B + X_0$, gdzie X_B - jakiekolwiek rozwiązanie szczególne układu (I) i X_0 - pewne rozwiązanie układu (II). X_0 można przedstawić jako kombinację liniową wektorów z bazy przestrzeni ker ϕ (\Leftrightarrow wektorów z bazy przestrzeni rozwiązań układu (II)).

Definicja 6 Układem fundamentalnym rozwiązań układu (II) nazywamy dowolną bazę przestrzeni rozwiązań tego układu.

Definicja 7 $A \cdot X = B$. *Macierzą rozszerzoną* układu (I) nazywamy macierz $[A|B] = [A_1, A_2, \dots, A_n, B]$.

 ${\bf Twierdzenie} \ 5 \ \ (Kroneckera-Capellego)$

- 1. Układ równań (I): $A \cdot X = B$ posiada rozwiązanie $\Leftrightarrow r(A) = r(A|B)$.
- 2. $Jeśli\ r(A) = r(A|B) = n$ to $układ\ (I)$ posiada dokładnie jedno rozwiązanie.
- 3. Jeśli r(A) = r(A|B) = k < n to układ (I) posiada nieskończenie wiele rozwiązań zależnych od n k parametrów, które mogą przyjmować dowolne wartości $z \mathbb{K}$.

Wniosek 6 Układ jednorodny z n niewiadomymi ma niezerowe rozwiązanie $\Leftrightarrow r(A) < n$.