浙江大学

数值分析方法

题目:函数拟合的 GUI 实现

姓名学号: szx 3210000000

指导老师: 余光定

年级及专业: 大二 电子科学与技术

学院: 信电学院

一、设计思路

1. GUI 设计界面搭建

借用 Matlab 的 App Designer 设计工具,使用内置的 Table、Button、输入框、二维坐标图搭建 GUI 图形界面,在 Button 上设置回调函数.与用户进行交互,输入框用于给用户输入拟合相关参数。

2. 数据输入及导入

程序使用 Excel 文件输入数据。用户通过在指定的 Excel 文件中输入待拟合的数据点,由程序中的 Read 按钮对同目录下的 Excel 文件数据进行读取,并在对数据进行排序后显示在 Table 中。输入的数据保存在全局变量中,方便拟合函数的调用。

3. 函数拟合

程序提供三种函数拟合方式: 拉格朗日内插、三次样条和多项式 拟合。三种拟合方式分立在不同页面中,数据由同一 Excel 文件提供,但回调、数据调用、结果显示等操作独立进行。在拟合算法函数中,通过对数据的运算,得到拟合的多项式的系数及符号表达式,并输出到回调函数中。

4. 表达式输出及图像绘制

用户在点击 Button 后,回调函数获得拟合结果的符号表达式,使用 fplot 函数,使函数在指定的坐标图中绘制,并对函数图像的绘制区间进行限定。将函数符号表达式转换位向量式,并在数字编辑框中显示输出。

二、算法描述

1. 拉格朗日内插法

算法基本思想:

构造 n 次多项式, 能够经过所有的数据点, 充分利用数据点, 并使 n 的次数较少. 使得拟合的函数连续, 且包含所给定的所有信息。

算法的数学表达:

$$L_{n,k}(x) = \prod_{i=0, i\neq k}^{n} \frac{x - x_i}{x_k - x_i}$$

该式子对所有的数据都纳入其中,对给定的 n+1 个点构造 n 次表达式,并使得拟合函数满足:

$$L_{n,k}(x_i) = \begin{cases} 1, i = k \\ 0, otherwise \end{cases}$$

最后,对每一数据点进行相同操作并相加,得到:

$$F(x) = \sum_{k=0}^{n} f(x_k) L_{n,k}(x)$$

代码实现:

定义符号 x, n 为数据点个数,对每一数据进行求 L 的操作(两层for 循环运算),最后乘以 y 值并相加,得到 F 拟合函数,输出到回调函数。funL 即为化简后的拉格朗日内插函数表达式,xx、yy 分别为输入的数据的 x、y 值。

2. 三次样条拟合

算法基本思想:

对给定数据,每两点之间构造三次多项式,保证多项式端点值都与对应的数据点值相同,即保证分段函数连续,并使端点处一阶导数、二阶导数相等。对最外围两点,在无要求时,二阶导数都为0;在有要求即设为给定值。再次基础上,对每一段函数,都有四个限制条件,可解出所有系数。

算法的数学表达:

每段函数设为:

$$S_{j}(x) = a_{j} + b_{j}(x - x_{j}) + c_{j}(x - x_{j})^{2} + d_{j}(x - x_{j})^{3}$$
令 $h_{j} = x_{j+1} - x_{j}$, 每段满足的方程为:

$$a_{j+1} = S_{j+1}(x_{j+1}) = S_j(x_{j+1}) = a_j + b_j h_j + c_j h_j^2 + d_j h_j^3$$

$$b_{j+1} = b_j + 2c_j h_j + 3d_j h_j^2$$

$$c_{j+1} = c_j + 3d_j h_j$$

对上式进行化简和组合, 可得到矩阵方程:

$$AX = B$$

$$\mathbf{B} = \begin{bmatrix} 0 \\ \frac{3}{h_1} (a_2 - a_1) - \frac{3}{h_0} (a_1 - a_0) \\ \cdots \\ \frac{3}{h_{n-1}} (a_n - a_{n-1}) - \frac{3}{h_{n-2}} (a_{n-1} - a_{n-2}) \\ 0 \end{bmatrix}$$

$$X = \begin{bmatrix} c_0 \\ c_1 \\ \dots \\ c_n \end{bmatrix}$$

由此,可计算得到拟合多项式的系数的矩阵形式。 当对端点二阶导数有要求时,

$$B = \begin{bmatrix} \frac{3}{h_0}(a_1 - a_0) - 3f'(a) \\ \frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0) \\ \cdots \\ \frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2}) \\ 3f'(b) - \frac{3}{h_{n-1}}(a_n - a_{n-1}) \end{bmatrix}$$

代码实现:

```
function TCSI = Cubic2(~, x, y, L, R) %三系样条 (限制) 的算法. 得到系数矩阵 n=length(x);
a=y;
b=zeros(n-1,1);
d=zeros(n-1,1);
h=diff(x);
B=zeros(n, 1);
A=zeros(n, 1);
A=zeros(n, 1);
B(1)=3*(a(2)-a(1))/h(1)-3*L;
B(n)=3*R-3*(a(n)-a(n-1))/h(n-1);

for i=2:n-1
B(i)=(3/h(i))*(a(i+1)-a(i))-(3/h(i-1))*(a(i)-a(i-1));
end

A(1, 1)=2*h(1);
A(n, n-1)=h(n-1);
A(n, n-2)=h(n-1);
for i=2:n-1
A(i,i-1)=h(i-1);
A(i,i+1)=h(i);
end

c=A\B;
for i=1:n-1
b(i)=(a(i+1)-a(i))/h(i)-h(i)*(c(i+1)+2*c(i))/3;
d(i)=(c(i+1)-c(i))/(3*h(i));
end

a=zeros(n-1, 1);
c=zeros(n-1, 1);
for i=1:n-1
aa(i)=a(i);
cc(i)=c(i);
end
```

先定义出系数矩阵,通过循环写出运算矩阵,进行计算后,将系数矩阵返回,并赋值给 Table。

3. 多项式近似

算法基本思想:

对于给定的目标多项式阶数,将x值代入拟合表达式,并于对应的函数值比较,选择合适的系数,使得其方差最小,从而使得在给定阶数下,函数拟合的偏差最小。

算法的数学表达:

$$E = \sum_{i=1}^{m} (y_i - P_n(x_i))^2$$

该式为方差的表达式, P 为拟合函数, 我们要使得 E 最小, 故对 其进行求导运算得:

$$0 = \frac{\partial E}{\partial a_{i}} = -2\sum_{i=1}^{m} y_{i} x_{i}^{j} + 2\sum_{k=0}^{n} a_{k} \sum_{i=1}^{m} x_{i}^{j+k}$$

由此, 移项化简得到运算式:

$$\sum_{k=0}^{n} a_k \sum_{i=1}^{m} x_i^{j+k} = \sum_{i=1}^{m} y_i x_i^{j}$$

从中, 我们便可算出拟合函数的系数。

代码实现:

```
function funDLS = Squares(~, xx, yy, n) %多项式近似的算法代码
   m=length(xx);
       funDLS=0;
   else
       sum=0;
       a=zeros(n+1, n+1):
       b=zeros(n+1,1);
        for i=1:n+1
            for j=1:n+1
                for k=1:m
                   sum=sum+power(xx(k),i+j-2);
               a(i, j)=sum;
               sum=0;
           end
        sum=0;
        for i=1:n+1
           for k=1:n
               sum=sum+power(xx(k),i-1)*yy(k);
           b(i)=sum;
           sum=0;
       c=a\b;
       syms x;
       y=0;
        for i=1:n+1
          y=y+c(i)*power(x, i-1);
        funDLS=vpa(y,4);
```

代码思路与算法相同,通过循环得到运算表达式,计算得到系数, 再通过循环相加,得到符号表达式。

三、软件用法

1. Approximation_Function. mlapp 文件

打开 mat lab, 在该文件所在目录下, 打开该文件, 点击运行即可使用。

2. Approximation_Function.mlappinstall 文件

打开 mat lab, 点击菜单中的 APP 按钮, 再点击 APP 安装, 选择该文件, 即可将该 APP 安装进"我的 APP"中。

3. 数据输入及修改

应用程序通过 xydata. xlsx 文件读入数据, 输入或修改数据直接 在该文件中相应栏输入或修改数据即可, 支持乱序输入。

由于程序读取文件的路径已在程序代码中固定,所以请不要移动 Excel 文件的位置,以免程序不能正常读取。

4. 应用程序使用

三种拟合方法分立于三个独立的界面,通过程序上方的按钮进行 切换。

在拟合函数时,先点击"Read from Excel"按钮,再点击"Plot"按钮。函数图像会绘制于坐标图内,拉格朗日内插和多项式拟合的结果会在输出框中显示;三次样条的拟合函数的系数会列于Table中。

三次样条的端点限制和多项式的阶数输入都通过数字输入框输入。程序支持不同限制条件下, 拟合函数图像的对比。

四、应用示例

使用的数据已经置于 xydata. xlsx 文件中

, ,		
X	У	
1	0.6	
4	3	
6	5	
3	1	
5	14.3	
10	21.79	

运行程序后,点击 "Read from Excel" 按钮,数据被排序,并显示在 Table 中。

X	Υ
1.0000	0.6000
3.0000	1.0000
4.0000	3.0000
5.0000	14.3000
6.0000	5.0000
10.0000	21.7900

之后,再点击"Plot"按钮,就可得到函数图像和拟合表达式。 拉格朗日内插:

三次样条(自然与有限制):

多项式近似 (五次及六次):

9.5953 -20.5220

Plot

图形及表达式都成功显示, 程序基本是成功的

五、性能分析

1. 计算复杂度

拉格朗日内插:使用了两层 for 循环,复杂度应为 n^2。

三次样条: 使用一层 for 循环及矩阵运算, 复杂度应为 n。

多项式近似:使用三层 for 循环,复杂度应为 n^3。

2. 运行速度

拉格朗日内插: 0.62s

三次样条: 0.87s

多项式近似: 0.76s

3. 准确性

拟合函数的准确性由算法决定, 三种算法各有利弊。

拉格朗日内插:

误差为:

$$\frac{f^{(n+1)}(\delta(x))}{(n+1)!} \prod_{i=0}^{n} x - x_i$$

并且拟合出的函数次数较高,在数据点本身有误差时,没办法排除。但胜在算法简单,充分利用数据,表达简洁。

三次样条:

拟合的精确度比较高,对数据充分地利用,拟合函数次数较低。但是,运算比较复杂,并且拟合出的函数并不是完全连续的,只在二阶内连续,对于高阶的问题无法解决。

多项式拟合:

阶数给定,可以得到具有特定关系的变量之间的函数系数,并且 可以排除数据点中误差较大的点。缺点在于通常不过数据点,在大区 域内的关系能够很好地表达,但对于小范围的拟合精度较低。