Projet 8: Soutenance

Participez à une compétition Kaggle SETI Breakthrough Listen – E.T. Signal Search

Gaëtan PELLETIER

Sommaire

- Présentation du projet
- Analyse du jeu de données
- Pré-traitement des données
- Choix d'une architecture de CNN
- Modélisations proposées
- Kernel Kaggle: AutoML
- Limitations du projet
- Synthèse

Projet 8 : Soutenance

Présentation du projet

Présentation du projet

- Participation à une compétition de Data Science
- Plateforme :
 - → Kaggle
- Compétition choisie :
 - → SETI Breakthrough Listen E.T. Signal Search
- Objectif supplémentaire :
 - → fournir un noyau Kaggle sur un élément intéressant avec la communauté

Présentation du projet

- Les signaux étudiés sont des ondes
- Transformée de Fourier → Spectrogramme

Projet 8: Soutenance

Analyse du jeu de données

Analyse du jeu de données

Étude du fichier csv contenant id images et classes

Analyse du jeu de données

• Déséquilibre du jeu de données

 Calcul de poids de classes à appliquer à la perte durant l'entraînement

Utilisation de la perte focale

Métrique utilisée → AUROC (imposée)

Projet 8 : Soutenance

Pré-traitement des données

Pré-traitement des données

Conservation des on-target (étoile observée):

Pré-traitement des données

Cross validation :

- Séparation du jeu de données en 5 plis
- Stratification selon la distribution des classes
- Redimensionnement des images en 250x250 pixels
- Data augmentation :
 - Variation aléatoire des couleurs (random_hue)
 - Symétrie aléatoire (random_flip_up_down)
 - Mixup

Pré-traitement des données

Création de dataloaders :

- Mélange (shuffle)
- Transformations (on-target, resize, data augmentation*)
- Mini-lots (batch)
- Prélecture (prefetch)

• Avec mixup:

- Deux dataloaders avec mêmes données du jeu d'entraînement
- Mixage des images
- Nouveau dataloader pour l'entraînement des modèles (contenant images mixées)

^{*} data augmentation seulement pour jeu d'entraînement

Projet 8 : Soutenance

Choix d'une architecture de CNN

Choix d'une architecture de CNN

- Chargement de modèles par Transfer Learning:
 - Xception
 - EfficientNet B0
 - EfficientNet B4
 - EfficientNet B7
- Utilisation de 10 % du jeu de données
- Rappel → early stopping
- Métrique → AUC

Choix d'une architecture de CNN

Comparaison des modèles :

Choix d'une architecture de CNN

Modèle retenu → EfficientNet B4

- Hyperparamétrage:
 - Optimisation bayésienne (librairie keras-tuner)
 - Taux d'extinction de la couche Dropout
 - Taux d'apprentissage
 - Utilisation de 10 % des données

Projet 8: Soutenance

Modélisations proposées

- Modèle optimisé → EfficientNet B4
- Utilisation jeu de données complet
- Entraînement pour chaque pli
- « Meilleur pli » → entraînement avec *mixup*
- Rappels:
 - Early stopping
 - Échéancier d'apprentissage
 - Points de restauration du modèle (ModelCheckpoint)

Performances EfficientNet B4:

- Deux stratégies :
 - Modèles uniques (avec ou sans mixup)
 - Plusieurs modèles :
 - Moyenne des probabilités d'appartenance à une classe
 - Moyenne harmonique en fonction de l'erreur sur le jeu de validation
- Soumissions des prédictions sur Kaggle
- Obtention d'un score AUC

Projet 8: Soutenance

Kernel Kaggle: AutoML

Kernel Kaggle: AutoML

- AutoML utilisé → AutoKeras
- Principal avantage → même structure que Keras
- Entraînement de 10 modèles (10 % des données)
- Meilleur modèle moins bon que précédents CNN :

Modèles	Xception	EFN B0	EFN B4	EFN B7	AutoKeras
Val loss	0,2432	0,2523	0,2395	0,2151	0,3722
Val AUC	0,7889	0,8038	0,8323	0,8511	0,4758

Kernel Kaggle: AutoML

Améliorations possibles:

- Jeu de données complet
- Data augmentation
- Entraîner plus de modèles
- Imposer architectures à utiliser
 - → éviter d'entraîner modèles trop simples
 - → gain de temps

Kernel Kaggle: AutoML

Partage du kernel avec la communauté Kaggle

Projet 8: Soutenance

Limitations du projet

Limitations du projet

- Volume du jeu de données (plus de 60 Go)
- Quota utilisation GPU: 30h/semaine
- Nombre d'heures du projet fixé par OC : 50 h
- Avec plus de temps, il serait possible :
 - d'utiliser plus de données (4 plis au lieu de 5)
 - de tester différents dimensionnements d'images
 - de tester plusieurs configurations de data augmentation
 - d'entraîner des modèles plus complexes (e.g. EFN B7)

Limitations du projet

Time Stamp Leakage:

- Téléchargement des données en local
- Obtention date de création des spectrogrammes
- Date non remise à zéro par Kaggle
- Possibilité de lier cette date à la classe de l'image
- Obtention score AUC parfait avec AutoGluon:

Limitations du projet

Probable fuite d'informations au sein des images :

- Pré-traitement des images permettrait de trouver celles créées par le centre SETI (classe 1)
- En cours d'investigation par la communauté Kaggle

Projet 8 : Soutenance

Synthèse

Synthèse

- Étude du déséquilibre du dataset
- Pré-traitement des spectrogrammes
- Recherche meilleure architecture de modèles
- Optimisation du modèle EfficientNet B4
- Prédictions par :
 - Modèles uniques
 - Moyennes (harmoniques) → AUC test set 0,963
- Kernel Kaggle pour la communauté : AutoKeras
- Limitations du projet :
 - Temps (alloué au projet, quota GPU)
 - Data leakage → remise à zéro de la compétition

Projet 8 : Soutenance

Merci de votre attention

Projet 8 : Soutenance

Annexe

Annexe 1

Mixup:

- Mixer deux images, ainsi que leur classe
- Modèle perd en confiance absolue
- Améliore la généralisation d'un modèle
- Technique efficace quand peu de connaissances sur le problème étudiée et les augmentations possibles

