Week 4

Discrete Time Martingales

Lecturer: Siva Athreya Scribe: Abhiti Mishra, Devesh Bajaj

Origin is from horse-racing (betting system). The dictionary meaning of the word 'martingale' is the harness of a horse.

Let $\{Z_n\}_{n\geq 1}$ is a sequence of random variables on $(\Omega, \mathcal{F}, \mathbb{P})$.

Definition 4.0.1. A sequence of random variables $\{Z_n\}_{n\geq 1}$ is said to be a Martingale if

$$\mathbb{E}(Z_n|Z_{n-1}=z_{n-1},\dots,Z_1=z_1)=z_{n-1} \ \forall \ n\geq 2$$
(4.1)

Things to understand- conditional expectation for discrete and conditional random variable [?]. Things we will explore-

- 1. Examples of $\{Z_n\}_{n\geq 1}$ that are martingales.
- 2. How different are martingales from iid sequences and markov chains?
- 3. How to interpret 4.1?

Example. $\{S_n\}_{n\geq 1}$ and $S_0\equiv 0$.

$$X_i = \begin{cases} 1, & w.p & 1/2 \\ -1, & w.p & 1/2 \end{cases}$$

$$S_n = \sum_{i=1}^n X_i$$

Let
$$s_{n-1}, s_{n-2}, \dots, s_1 \in \mathbb{Z}$$
 such that $\mathbb{P}(S_{n-1} = s_{n-1}, \dots, S_1 = s_1) > 0$

$$\mathbb{E}(S_n|S_{n-1} = s_{n-1}, \dots, S_1 = s_1) = \sum_{k \in \mathbb{Z}} k \mathbb{P}(S_n = k|S_{n-1} = s_{n-1}, \dots, S_1 = s_1)$$

$$= \sum_{k \in \mathbb{Z}} k \frac{\mathbb{P}(S_n = k, S_{n-1} = s_{n-1}, \dots, S_1 = s_1)}{\mathbb{P}(S_{n-1} = s_{n-1}, \dots, S_1 = s_1)}$$

$$= \sum_{k \in \mathbb{Z}} k \frac{\mathbb{P}(S_{n-1} + X_n = k, S_{n-1} = s_{n-1}, \dots, S_1 = s_1)}{\mathbb{P}(S_{n-1} = s_{n-1}, \dots, S_1 = s_1)}$$

$$= \sum_{k \in \mathbb{Z}} k \frac{\mathbb{P}(X_n = k - s_{n-1}, S_{n-1} = s_{n-1}, \dots, S_1 = s_1)}{\mathbb{P}(S_{n-1} = s_{n-1}, \dots, S_1 = s_1)}$$

$$= \sum_{k \in \mathbb{Z}} k \frac{\mathbb{P}(X_n = k - s_{n-1}) \mathbb{P}(S_{n-1} = s_{n-1}, \dots, S_1 = s_1)}{\mathbb{P}(S_{n-1} = s_{n-1}, \dots, S_1 = s_1)}$$

$$= (s_{n-1} + 1) \mathbb{P}(X_n = -1) + (s_{n-1} - 1) \mathbb{P}(X_n = 1)$$

$$= (s_{n-1} + 1) \frac{1}{2} + (s_{n-1} - 1) \frac{1}{2} = s_{n-1}$$

Note that the summations here are "finite" sums.

As $s_{n-1}, \ldots, s_1 \in \mathbb{Z}$ were arbitrary, $\{S_n\}_{n>1}$ is a martingale.

Example. $\{X_i\}_{i\geq 1}$ be an iid sequence on $(\Omega, \mathcal{F}, \mathbb{P})$. Let $Z_n = \prod_{i=1}^n X_i$ and Range $(Z_n) \subset \mathbb{R} \ \forall \ n \geq 1$.

Let $z_{n-1}, \ldots, z_1 \in \mathbb{R}$ such that $\mathbb{P}(Z_{n-1} = z_{n-1}, \ldots, Z_1 = z_1) > 0$. Then

$$\begin{split} \mathbb{E}(Z_{n}|Z_{n-1} = z_{n-1}, \dots, Z_{1} = z_{1}) &= \sum_{k \in Range(Z_{n})} k \mathbb{P}(Z_{n} = k|Z_{n-1} = z_{n-1}, \dots, Z_{1} = z_{1}) \\ &= \sum_{k \in Range(Z_{n})} k \frac{\mathbb{P}(Z_{n} = k, Z_{n-1} = z_{n-1}, \dots, Z_{1} = z_{1})}{\mathbb{P}(Z_{n-1} = z_{n-1}, \dots, Z_{1} = z_{1})} \\ &= \sum_{k \in Range(Z_{n})} k \frac{\mathbb{P}(Z_{n-1}X_{n} = k, Z_{n-1} = z_{n-1}, \dots, Z_{1} = z_{1})}{\mathbb{P}(Z_{n-1} = z_{n-1}, \dots, Z_{1} = z_{1})} \\ &= \sum_{k \in Range(Z_{n})} k \mathbb{P}(Z_{n-1}X_{n} = k, Z_{n-1} = z_{n-1}, \dots, Z_{1} = z_{1}) \\ &= \sum_{k \in Range(Z_{n})} k \mathbb{P}(Z_{n-1}X_{n} = k) \frac{\mathbb{P}(Z_{n-1} = z_{n-1}, \dots, Z_{1} = z_{1})}{\mathbb{P}(Z_{n-1} = z_{n-1}, \dots, Z_{1} = z_{1})} \\ &= \sum_{u \in S^{1}, Range(X_{n}) = S^{1}} u z_{n-1} \mathbb{P}(X_{n} = u) \\ &= z_{n-1} \mathbb{E}[X_{n}] = z_{n-1} \end{split}$$

Note that the sums here might be infinite. In the last step we assume $\mathbb{E}[X_i] = 1$. Now since $\{z_i\}_{i=1}^{n-1}$ were arbitrary, $\{Z_n\}_{n\geq 1}$ is a martingale.

Example.

$$X_i = \begin{cases} 2, & w.p \ 1/2 \\ 0, & w.p \ 1/2 \end{cases}$$

Then $\mathbb{E}(X_i) = 1$. Therefore, $Z_n = \prod_{i=1}^n X_i$ is a martingale. Range $(Z_n) = \{2^n, 0\}$. Note that the mean stays constant and

$$\mathbb{P}(Z_n=0)=1-\frac{1}{2^n}$$

$$\mathbb{P}(Z_n = 2^n) = \frac{1}{2^n}$$

Intuition- The first equation shows that the martingale takes a very low value with very high probability and the second one shows that it takes a very large value with very low probability Idea behind Markov Chains -

$$X_n | X_{n-1}, \dots, X_1 \stackrel{d}{=} X_n | X_{n-1}$$

Idea behind Martingales - Expected value of Z_n conditioned on the past depends only on Z_{n-1} . $\{Z_n\}_{n\geq 1}$ in law could depend on the entire past!