IMDB Review Rating - Sentiment Analysis

Balassubramanian Srinivasan and Vikas Velagapudi

Video Link: CS 657 Final Project Video Presentation (https://youtu.be/Jh5hZaE31JA)

Introduction

This project explores the valuable insights hidden within the vast array of reviews on IMDb, a premier database for films, TV shows, and similar content. The project's cornerstone is a comprehensive dataset obtained from IMDb, via Kaggle, containing detailed information on individual reviews. These reviews, contributed annually by a vast community, are more than just opinions; they contain crucial data points that influence viewer choices and perceptions.

In this project, we analyzed a dataset, comprising elements like review ID, reviewer username, movie title, rating, review summary, date, spoiler tag, review detail, and a helpfulness score. Initially in JSON format, the data was converted to CSV for ease of analysis, with a key preprocessing step being the creation of a 'Sentiment' column based on ratings, categorizing them as negative (1-5) into 0 or positive (6-10) into 1. Our analysis involved developing and cross-validating multiple machine learning models—Logistic Regression, Linear SVC, Random Forest, and MLP—to determine the most effective. Additionally, we innovatively used the 'Helpfulness' metric to identify the most valuable reviews and reviewers in the IMDb community.

About the Dataset

The dataset is an aggregation of publicly available individual data from IMDb. It encompasses various elements, each represented in a structured format:

- Review ID: A unique identifier assigned by IMDb.
- Reviewer: The public identity or username of the reviewer.
- Movie: The title of the film or TV series being reviewed.
- Rating: A numerical score out of 10, with older reviews possibly lacking this data.
- Review Summary: A concise encapsulation of the reviewer's opinion.
- Review Date: The timestamp of when the review was posted.
- Spoiler Tag: A binary indicator where 1 represents a spoiler, and 0 signifies its absence.
- Review Detail: An in-depth account of the reviewer's perspective.
- Helpfulness: A measure of the review's utility, expressed as Upvotes and Downvotes.

Architecture

Data preprocessing

The architecture of our data processing pipeline begins with the conversion of the IMDb dataset from JSON to CSV format, utilizing Apache Spark for its robust handling of large datasets. The process is initiated by reading the JSON file with a predefined custom schema to structure the data effectively. In the interest of simplification and relevance, we remove the 'review_date' column from our DataFrame.

To facilitate sentiment analysis, a new column 'sentiment' is created, using a threshold value of 5 to distinguish between negative (ratings below 5) and positive (ratings above 5) sentiments. This classification is crucial for subsequent analytical models. We also transform the 'helpful' array into a string format, concatenating its elements for a more streamlined representation. After these transformations, the final DataFrame is written to a CSV file, with headers included for clarity, and stored in a designated location. This streamlined and efficient conversion process forms the foundation of our analytical pipeline, ensuring data integrity and ease of access for machine learning models.

Converting Words to Tokens and Vectors

In this phase, we focused on preparing the 'review_summary' column for machine learning training by encoding, tokenizing, and converting text into vectors. This process involves several steps, implemented using Apache Spark's ML library. Firstly, we filter out records with null values in 'review_summary' and 'rating' to maintain data integrity. We then tokenize the review text into individual words. The next step involves removing common stopwords to enhance the quality of text data for analysis. Subsequently, we employ the Word2Vec algorithm to convert these filtered words into numerical vectors, which is a critical step for enabling machine learning algorithms to process textual data. Word2Vec is a technique in natural language processing that converts words into numerical vectors, capturing semantic relationships and contexts in a multi-dimensional space. In parallel, we converted the 'rating' column into a binary 'sentiment' value (1 for positive, 0 for negative) based on a threshold. This entire sequence is structured as a pipeline in Spark, ensuring an efficient and systematic transformation of text data into a format suitable for advanced analytical models. This transformed data is then used in training various machine learning algorithms implemented.

Machine Learning Models

Cross-Validation for models

Cross-validation is a crucial technique in machine learning, used for evaluating the effectiveness of a model's performance. In the provided code snippet, a CrossValidator is implemented, indicating an advanced approach to model training and evaluation. This process involves setting up a pipeline and parameter grid, followed by specifying an evaluator and the number of folds, in this case, 10. This means the data is divided into ten parts, with each part in turn used as a test set and the rest as training data. Additionally, a seed is set for reproducibility, ensuring consistent results across different runs. This is used across the four machine learning models that we built.

1. Logistic Regression

Logistic Regression (LR) for sentiment analysis involves a multi-step process, tailored to optimize model performance using Apache Spark's ML library. Initially, we define the LR model, specifying 'word_vectors' as the feature column and 'sentiment' as the label column. This model is then integrated into a pipeline, streamlining the process flow. For evaluation, we employ the BinaryClassificationEvaluator with the Area Under the Receiver Operating Characteristic (ROC) curve (AUC-ROC) as the metric, which effectively measures the model's

ability to distinguish between classes. The core of our approach lies in hyperparameter tuning, achieved through a ParamGridBuilder. We experiment with different values of the regularization parameter ('regParam') and ElasticNet mixing parameter ('elasticNetParam') to find the optimal combination.

This hyperparameter grid, when coupled with a CrossValidator performing 10-fold cross-validation, allows for thorough testing and validation of the model, ensuring robustness and accuracy. Once the cross-validation process is complete, we identify and extract the best-performing LR model. This model is then tested on a separate test dataset to assess its performance, specifically measuring the AUC-ROC to evaluate its effectiveness in sentiment classification. Finally, we report the AUC-ROC score along with the best parameters for regularization and ElasticNet, providing insights into the model's performance and the impact of the chosen hyperparameters.

2. Linear Support Vector Classifier

The Linear Support Vector Classifier (Linear SVC) model in our sentiment analysis project follows a structured and methodical approach. Beginning with defining the Linear SVC model, we set 'word_vectors' as the features and 'sentiment' as the label. The model is then incorporated into a pipeline for streamlined processing. The evaluation of the Linear SVC model is conducted using a Multiclass Classification Evaluator, with accuracy as the chosen metric. To optimize the model's performance, hyperparameter tuning is carried out. A parameter grid is established, varying the regularization parameter ('regParam') and the maximum number of iterations ('maxIter'). This grid includes values of 0.01, 0.1, and 0.2 for 'regParam', and 10, 50, and 100 for 'maxIter', covering a range of possible configurations. After training the model with cross-validation on the training dataset, we identify the best-performing model based on the 10-fold cross-validation results. This model is then tested on a separate test dataset. The primary metric for assessment is accuracy, calculated to determine how well the model performs on unseen data.

3. Random Forest

The architecture of the Random forest Classifier involves creating multiple decision trees during training and outputting the class that is the mode of the classes (classification) of individual trees, thereby improving accuracy and reducing the risk of overfitting. Our implementation of RFC starts with defining the RandomForestClassifier in Apache Spark, with 'word_vectors' as the features and 'sentiment' as the label. This model forms part of a pipeline for systematic processing. For evaluation, we use the

MulticlassClassificationEvaluator, focusing on metrics like accuracy and the F1 score. These metrics are crucial for assessing the model's predictive power and balance between precision and recall. We use a ParamGridBuilder to experiment with different values of 'numTrees' (the number of trees in the forest) and 'maxDepth' (the maximum depth of each tree). Specifically, we explore combinations of 10 and 100 trees and tree depths of 5 and 10. This range allows us to assess the impact of tree complexity and ensemble size on performance. After training with 10-fold cross-validation, we select the best-performing RFC model based on these results. This model is then evaluated on a separate test dataset. The key metrics for assessment are accuracy and the F1 score, providing a holistic view of the model's performance in classifying sentiments.

4. Multi-Layer Perceptron

MLP is a class of feedforward artificial neural networks that consist of multiple layers of nodes in a directed graph, with each layer fully connected to the next one. This structure enables the model to capture complex patterns and relationships in the data. In implementing the MLP Classifier, we first define the architecture of the neural network. Our model consists of three layers: an input layer with 100 nodes (corresponding to the size of our word vectors), a hidden layer with 50 nodes, and an output layer with 2 nodes (for binary classification of sentiment). This setup aims to process the input word vectors through these layers to effectively classify sentiments. e use the ParamGridBuilder to explore different combinations of 'blockSize' (the size of the blocks the input data is divided into during training) and 'maxIter' (the maximum number of iterations). Specifically, we test block sizes of 128 and 256 and maximum iterations of 100 and 200. After training with 10-fold cross-validation, we select the best-performing MLP model based on these results. This model is then evaluated on a separate test dataset. We calculate the accuracy and the F1 score to determine the model's effectiveness in sentiment classification.

Experiments and Results

A. Classification of sentiment

We conducted sentiment classification experiments using three distinct textual sources from IMDb reviews: **the review summary, review detail, and a combination of both summary and detail**. This comprehensive approach aimed to explore the nuances of sentiment analysis from different perspectives and text lengths. We employed four machine learning models—Logistic Regression, Linear SVC, Random Forest Classifier, and Multi-Layer Perceptron—to analyze these text sources. Each model was rigorously trained and tested on each type of text data to evaluate its effectiveness in accurately classifying sentiments, thereby providing a holistic understanding of sentiment trends across different sections of IMDb reviews.

NOTE-(The Plotted Graphs for Hyperparameter Tuning are added in Appendix-End of Report)

1. Logistic Regression

Best Hyperparameter

Case	Parameter	Value
Using Review Summary	RegParam, ElasticNetParam	0.01. 0.0
Using Review Detail	RegParam, ElasticNetParam	0.01. 0.0
Using Review Summary and Review Detail	RegParam, ElasticNetParam	0.01. 0.0

AUC -ROC

Case	Metric	Value
Using Review Summary	AUC-ROC	0.668161
Using Review Detail	AUC-ROC	0.885838
Using Review Summary and Review Detail	AUC-ROC	0.892139

2. Linear SVC

Best Hyperparameter

Case	Parameter	Value
Using Review Summary	RegParam,MaxIter	0.01,50
Using Review Detail	RegParam,MaxIter	0.01,50
Using Review Summary and Review Detail	RegParam,MaxIter	0.01,100

Accuracy

Case	Metric	Value	
Using Review Summary	Accuracy	0.737040	
Using Review Detail	Accuracy	0.844862	

Using Review Summary and Review Detail	Accuracy	0.850551
--	----------	----------

3. Random Forest Classifier

Best Hyperparameter

Case	Parameter	Value
Using Review Summary	NumTrees, MaxDepth	100,10
Using Review Detail	NumTrees, MaxDepth	100,10
Using Review Summary and Review Detail	NumTrees, MaxDepth	100,10

Accuracy and F1 Score

Case	Metric	Value
Using Review Summary	Accuracy, F1 Score	0.755575, 0.672968
Using Review Detail	Accuracy, F1 Score	0.811184, 0.7811059
Using Review Summary and Review Detail	Accuracy, F1 Score	0.8103310, 0.780064

4. Multi-Layer Perceptron

Best Hyperparameter

Case	Parameter	Value
Using Review Summary	BlockSize, MaxIter	256, 200
Using Review Detail	BlockSize, MaxIter	128, 100
Using Review Summary and Review Detail	BlockSize, MaxIter	256, 200

Accuracy and F1 Score

Case	Metric	Value
Using Review Summary	Accuracy, F1 Score	0.754776, 0.6863522
Using Review Detail	Accuracy, F1 Score	0.8444077, 0.838785
Using Review Summary and Review Detail	Accuracy, F1 Score	0.857792, 0.845422

NOTE-The Cross-Validation of the model's Accuracy Graph is added to the Appendix at the end of the report.

Comparing Models Accuracy across Review Summary

Using Review Summary

Random Forest has the highest Accuracy

Using Review Detail

Linear SVC and MLP contain almost same Accuracy(Highest)

Using Review Detail and Review Summary(Combined) - MLP has highest Accuracy

B. Identifying Helpful reviewers

We analyzed the dataset to identify the most helpful and least helpful reviewers on IMDb, based on their review upvotes (helpful votes) and downvotes (non-helpful votes) from the **Helpful column** in the dataset. We first transformed the 'helpful' column to separate the count of upvotes and downvotes for each review. We then aggregated these votes at the reviewer level to calculate the total helpful and non-helpful votes for each individual. By computing the net helpful votes (helpful minus non-helpful), we were able to gauge the overall reception of each reviewer's contributions. Further, we sorted these reviewers to identify those with the highest positive and negative net votes, providing insights into the most and least appreciated reviewers in the community. Additionally, we calculated the 'helpful rate', a metric representing the ratio of net helpful votes to the number of reviews written by a reviewer. This rate helped in assessing the overall helpfulness of reviewers on a relative scale. Finally, we sorted reviewers based on this helpful rate to highlight those consistently providing valuable insights (most positive votes rate) and those whose reviews were often found less useful (most negative votes rate). This comprehensive analysis offered a nuanced understanding of reviewer influence and community reception on the IMDb platform.

Reviewers with the best positive record and negative record

Re\	Reviewers with the Most Positive Votes Rate					
	reviewer	total_helpful_votes	total_non_helpful_votes	net_helpful_votes	review_count	helpful_rate
i	rutan07	951	1	950	1	950.0
	s458862411	923	1	922	1	922.0
	eak-1	885	1	884	1	884.0
	hermes1-2	879	1	878	1	878.0
	GVH0	813	1	812	1	812.0
	Shut_Up_Irwin	778	1	777	1	777.0
	jmkelly03	726	1	725	1	725.0
	EvilAdam	715	1	714	1	714.0
	mattfg	713	1	712	1	712.0
	fernandolindblom	544	56	488	2	244.0
	SJ_1	986	105	881	8	110.125

Reviewers	with	+ho	Most	Negative	Votes	Rata
ventemet.2	MICH	une	1105 L	Negative	VULES	Nate

+					
reviewer	total_helpful_votes	total_non_helpful_votes	net_helpful_votes	review_count	helpful_rate
		42204	200		
ccthemovieman-1	9719	13384			-18.698979591836736
MartinHafer	2894	5851	-2957	316	-9.35759493670886
lee_eisenberg	4136	7020	-2884	537	-5.370577281191807
Theo Robertson	2828	5706	-2878	289	-9.95847750865052
jotix100	8085	10750	-2665	317	-8.406940063091483
jboothmillard	722	3273	-2551	357	-7.1456582633053225
bkoganbing	8735	11239	-2504	356	-7.033707865168539
moonspinner55	3472	5855	-2383	313	-7.613418530351438
claudio_carvalho	4460	6647	-2187	250	-8.748
MovieAddict2016	2583	4382	-1799	250	-7.196
noralee	2696	4360	-1664	449	-3.706013363028953
Coventry	2422	4040	-1618	211	-7.668246445497631
movieman_kev	1623	3203	-1580	462	-3.41991341991342
Nazi_Fighter_David	3704	5257	-1553	91	-17.065934065934066
Captain_Couth	2231	3643	-1412	348	-4.057471264367816
The_Void	2245	3643	-1398	224	-6.241071428571429
Spuzzlightyear	1292	2631	-1339	187	-7.160427807486631
rebeljenn	1007	2245	-1238	218	-5.678899082568807
Boba_Fett1138	2367	3515	-1148	186	-6.172043010752688
poolandrews	772	1909	-1137	226	-5.030973451327434
+	·	·		+	·+

only showing top 20 rows

Conclusion

In conclusion, our project successfully leveraged the rich dataset of IMDb reviews to perform an in-depth sentiment analysis and community feedback evaluation. By employing various machine learning models—Logistic Regression, Linear SVC, Random Forest Classifier, and Multi-Layer Perceptron—we could effectively classify sentiments from different sections of reviews, namely the summary and detail parts. Each model demonstrated its unique strengths and provided valuable insights into how different textual data contribute to sentiment analysis.

We understand that Review Detail provided the models with much better information to train as the accuracies for models with Review Detail had a much higher accuracy compared to Review Summary. This is as expected as the Review Detail is an elaboration about their summaries by the reviewer. The review Summary contained vague descriptions regarding the reviews of the customer and while MLP was able to provide a good accuracy of 75%, it isn't good enough to predict the sentiment of the reviews of customers.

Furthermore, our exploration into the helpfulness of reviewers, using upvotes and downvotes, revealed significant patterns in community engagement and preferences. This aspect of the project not only highlighted the most and least appreciated reviewers but also offered a new perspective on how audience feedback correlates with content quality. The methodologies and findings of this project have broad implications. They can be applied to enhance recommendation systems, improve content curation, and drive a better understanding of audience sentiment in the entertainment industry. This project stands as a testament to the power of data-driven insights in understanding and leveraging user-generated content in digital platforms.

Appendix

All Output Screenshots

Tokenizing, Encoding(Word2Vector) and removing Stopwords

For Review Summary

+		+	++		++	+		++	+
review id	reviewer	movie	rating	review summary	sentiment	helpful str	words	filtered words	word vectors
+		+	+		++			÷÷	
rw1133942 Or	riginalMovieBuff21	Kill Bill: Vol. 2	8	Good follow up th	1	0,1	[good, follow, up	[good, follow, an	[-0.0174793627811
rw1133946	GreenwheelFan2002	The Island (2005)	9	Not just about ac	1	2,5	[not, just, about	[action,, surviva]	[-0.0015293636824
rw1133948	itsascreambaby	Win a Date with T	3	Falls under the c	0	2,3	[falls, under, th	[falls, category:	[0.02177360622833]
rw1133949 Or	riginalMovieBuff21	Saturday Night Li	10	Before Tommy Boy	1	4,4	[before, tommy, b	[tommy, boy, blac	[-0.0102770130596
rw1133950	Aaron1375	Outlaw Star (1998-)	10	Great anime serie	1	11,12	[great, anime, se	[great, anime, se	0.00945213783998
rw1133952 1	TheFilmConnoisseur	The Aviator (2004)	10	Howard Hughes for	1			[howard, hughes,]	
rw1133953	swansongang	Star Wars: Episod	j 9	Better than peopl	j 1	7,10	[better, than, pe	[better, people,	-0.0195879302918
rw1133954	diand	The Amityville Ho	j 3	Laid-back horror	i ei	0.1	[laid-back, horror]	[[laid-back, horror]]	0.03508853539824
rw1133955	btillman63	Flying Tigers (1942)	j 6	Tigers Opted Out	j 1	19,29	[tigers, opted, out]	[tigers, opted]	[0.0,0.0,0.0,0.0,]
rw1133956	Aaron1375	Phantasm III: Lor	j 6	Be careful of wha	1	0.4	[be, careful, of	[careful, wish, f	[-0.0041894295718]
rw1133957		The Truth About C						[f***?]	
rw1133958		Trainspotting (1996)		Terrible film				[terrible, film]	
rw1133959		Feardotcom (2002)		"I couldn't make	i ei			["i, make, much,	
rw1133960		The Mansion of Ma		More like mansion				[like, mansion, w	
		Mean Streets (1973)		You do not make u				[make, sins, chur	
rw1133965	film-246			Fabulous! Extreme				[fabulous!, extre	
rw1133967		Il turco in Itali		It's Rossini and				[rossini, fun, -,	
rw1133968		The Man Who Would		Friendship Betwee				[friendship, two,	
rw1133971		Into the West (2005)		An Uneven Telling				[uneven, telling,	
rw1133972		Constantine (2005)		Ignore the overly				[ignore, overly-s]	
+		+	+			-,-,		+	
only charing ton 30 page									

only showing top 20 rows

For Review Detail

reviewer	movie	rating	review_detail	sentiment	helpful_str	words	filtered_words	word_vectors
	Kill Bill: Vol. 2		After seeing Tara		0,1	 [after, seeing, t	[seeing, tarantin	[0.01082890155915
GreenwheelFan2002	The Island (2005)	9	Once again the cr	1	2,5	[once, again, the	[critics, prove,	[-0.0289733993571
itsascreambaby	Win a Date with T	3	This IS a film th	0	2,3	$ [this,\;is,\;a,\;fil\ldots $	[film, done, many	[-0.0599386736044
OriginalMovieBuff21	Saturday Night Li	10	Chris Farley is o	1	4,4	[chris, farley, i	[chris, farley, o	[0.05708405094292
Aaron1375	Outlaw Star (1998-)	10	I love this anime	1	11,12	[i, love, this, a	[love, anime, ser	[-0.0230636870882
TheFilmConnoisseur	The Aviator (2004)	10	****Excellent ***	1	0,2	[****excellent, *	[****excellent, *	[-0.0058397793583
swansongang	Star Wars: Episod	9	I always get anno	1	7,10	$ [i, always, get, \ldots] $	[always, get, ann	[0.00281698877659
diand_	The Amityville Ho	3	The Amityville Ho	0	0,1	$ [the, amityville, \ldots $	[amityville, horr	[-0.0124440706804
	Flying Tigers (1942)		Several friends o	1	19,29	[several, friends	[several, friends	[-0.0176130703672
Aaron1375	Phantasm III: Lor	6	The first install	1	0,4	[the, first, inst	[first, installme	[-0.0436510868665
agent_mohr	The Truth About C	1	How on earth does	0	3,9	[how, on, earth,	[earth, director,	[-0.0249811645645
garyr-2	Trainspotting (1996)	1	I figure that all	0	36,112	[i, figure, that,	[figure, people,	[-0.0173698278622
lost-in-limbo	Feardotcom (2002)	3	There's a Website	0	1,4	[there's, a, webs	[website, called,	[-0.0195496023315
NateManD	The Mansion of Ma	7	"The Mansion of M	1	25,31	$ [" exttt{the, mansion, o} $	["the, mansion, m	[0.00206191134365
TheFilmConnoisseur	Mean Streets (1973)	10	CONTAINS MINOR SP	1	1,3	[contains, minor,	[contains, minor,	[-0.0163377750963
film-246	Madagascar (2005)	10	Fabulous Film! Ve	1	5,9	[fabulous, film!,	[fabulous, film!,	[-0.0329439443377
Rosabel	Il turco in Itali	6	This is a very li	1	2,2	[this, is, a, ver	[light-hearted, p	[-0.0160867258087
mcdougaller	The Man Who Would	9	What a treat to u	1	2,5	[what, a, treat,	[treat, unearth,	[-0.0372200469930
Barky44	Into the West (2005)	5	"Into the West" i	0	8,15	["into, the, west	["into, west", un	[0.00876748694870
illini_CHL	Constantine (2005)	8	Chances are they	1	3,5	[chances, are, th	[chances, die-har	[-0.0676822942402
+		+	+			·		++

For Combined Column Vector of Review Detail and Review Summary

words_summary	helpful_str	Sentiment	review_detail	review_summary	rating	movie	reviewer	review_id
[good, follow, up	0,1	1	After seeing Tara	Good follow up th	8	Kill Bill: Vol. 2	OriginalMovieBuff21	rw1133942
[not, just, about	2,5	1	Once again the cr	Not just about ac	9	The Island (2005)	GreenwheelFan2002	rw1133946
[falls, under, th	2,3	0	This IS a film th	Falls under the c	3	Win a Date with T	itsascreambaby	rw1133948
[before, tommy, b	4,4	1	Chris Farley is o	Before Tommy Boy	10	Saturday Night Li	OriginalMovieBuff21	rw1133949
[great, anime, se	11,12	1	I love this anime	Great anime serie	10	Outlaw Star (1998-)	Aaron1375	rw1133950
[howard, hughes,	0,2	1	****Excellent ***	Howard Hughes for	10	The Aviator (2004)	TheFilmConnoisseur	rw1133952
[better, than, pe	7,10	1	I always get anno	Better than peopl	9	Star Wars: Episod	swansongang	rw1133953
[laid-back, horror]	0,1	0	The Amityville Ho	Laid-back horror	3	The Amityville Ho	diand_	rw1133954
[tigers, opted, out]	19,29	1	Several friends o	Tigers Opted Out	6	Flying Tigers (1942)	btillman63	rw1133955
[be, careful, of,	0,4	1	The first install	Be careful of wha	6	Phantasm III: Lor	Aaron1375	rw1133956
[what, the, f***?]	3,9	0	How on earth does	What the f***?	1	The Truth About C	agent_mohr	rw1133957
[terrible, film]	36,112	0	I figure that all	Terrible film	1	Trainspotting (1996)	garyr-2	rw1133958
["i, couldn't, ma	1,4	0	There's a Website	"I couldn't make	3	Feardotcom (2002)	lost-in-limbo	rw1133959
[more, like, mans	25,31	1	"The Mansion of M	More like mansion	7	The Mansion of Ma	NateManD	rw1133960
[you, do, not, ma	1,3	1	CONTAINS MINOR SP	You do not make u	10	Mean Streets (1973)	TheFilmConnoisseur	rw1133964
[fabulous!, extre	5,9	1	Fabulous Film! Ve	Fabulous! Extreme	10	Madagascar (2005)	film-246	rw1133965
[it's, rossini, a	2,2	1	This is a very li	It's Rossini and	6	Il turco in Itali	Rosabel	rw1133967
[friendship, betw	2,5	1	What a treat to u	Friendship Betwee	9	The Man Who Would	mcdougaller	rw1133968
[an, uneven, tell	8,15	0	"Into the West" i	An Uneven Telling	5	Into the West (2005)	Barky44	rw1133971
[ignore, the, ove	3,5	1	Chances are they	Ignore the overly	8	Constantine (2005)	illini_CHL	rw1133972

only showing top 20 rows

+		+	+			
words_summary	filtered_words_summary	word_vectors_summary	words_detail	filtered_words_detail	word_vectors_detail	combined_features
++		+	+		+	
[good, follow, up	[good, follow, an	[0.09897127184376	[after, seeing, t	[seeing, tarantin	[-0.0534763250230	[0.09897127184376
[not, just, about	[action,, surviva	[0.01554072275757	[once, again, the	[critics, prove,	[-0.0394247354402	[0.01554072275757
[falls, under, th	[falls, category:	[0.00530465831980	[this, is, a, fil	[film, done, many	[-0.0367161307949	[0.00530465831980
[before, tommy, b	[tommy, boy, blac	[0.02498977037224	[chris, farley, i	[chris, farley, o	[-0.0049703205869	[0.02498977037224
[great, anime, se	[great, anime, se	[0.08315026491181	[i, love, this, a	[love, anime, ser	[-0.0695174744544	[0.08315026491181
[howard, hughes,	[howard, hughes,	[-0.0010966970415	[****excellent, *	[****excellent, *	[0.01360663533210	[-0.0010966970415
[better, than, pe	[better, people,	[0.01190652512013	[i, always, get,	[always, get, ann	[-0.0375068674133	[0.01190652512013
[laid-back, horror]	[laid-back, horror]	[0.05178220197558	[the, amityville,	[amityville, horr	[-0.0457603408650	[0.05178220197558
[tigers, opted, out]	[tigers, opted]	[0.0,0.0,0.0,0.0,	[several, friends	[several, friends	[-0.0621036605940	(200,[100,101,102
[be, careful, of,	[careful, wish, f	[-0.0010488545522	[the, first, inst	[first, installme	[-0.0476437096521	[-0.0010488545522
[what, the, f***?]	[f***?]	[0.0,0.0,0.0,0.0,	[how, on, earth,	[earth, director,	[-0.0183711961554	(200,[100,101,102
[terrible, film]	[terrible, film]	[-0.0592315085232	[i, figure, that,	[figure, people,	[-0.0770213876745	[-0.0592315085232
["i, couldn't, ma	["i, make, much,	[0.01091368713726	[there's, a, webs	[website, called,	[-0.0369525389039	[0.01091368713726
[more, like, mans	[like, mansion, w	[6.45740399098334	["the, mansion, o	["the, mansion, m	[-0.0591593121164	[6.45740399098334
[you, do, not, ma	[make, sins, chur	[0.02045345166698	[contains, minor,	[contains, minor,	[-0.0019397507119	[0.02045345166698
[fabulous!, extre	[fabulous!, extre	[-0.0049627900356	[fabulous, film!,	[fabulous, film!,	[-0.0691767041713	[-0.0049627900356
[it's, rossini, a	[rossini, fun, -,	[0.01707870909012	[this, is, a, ver	[light-hearted, p	[-0.0157078844057	[0.01707870909012
[friendship, betw	[friendship, two,	[-0.0125896851532	[what, a, treat,	[treat, unearth,	[-0.0137132407894	[-0.0125896851532
[an, uneven, tell	[uneven, telling,	[0.02426180820912	["into, the, west	["into, west", un	[-0.0425362927424	[0.02426180820912
[ignore, the, ove	[ignore, overly-s	[7.19500162328283	[chances, are, th	[chances, die-har	[0.00543170812797	[7.19500162328283
++		+	+		+	+

Building a Logistic Regression

Using Review Summary

Using Review Detail

Using Review Detail and Review Summary

Building a Linear SVC

Using Review Summary

Using Review Detail

Using Review Detail and Review Summary

Building a Random forest

Using Review Summary

Using Review Detail

Using Review Detail and Review Summary

Building a Multi-Layer Perceptron

Using Review Summary

Using Review Detail

Using Review Detail and Review Summary

HELPFUL VOTES RECEIVED BY THE REVIEWER

Total Helpful votes and Not Helpful Votes received

reviewer	total_helpful_votes	total_non_helpful_votes	net_helpful_votes
sweetmik	83	163	-80
edcrosay	0	0	0
janmarc-1	0	9	-9
milesjgraham	19	40	-21
awnorm	2	11	-9
tetrical	2	9	-7
rmax304823	650	1082	-432
CherryBlossomBoy	2	5	-3
jhclues	15	37	-22
lizzie_mag	22	44	-22
imonroe	11	24	-13
jrsmitty	3	7	-4
Glamdring-The-Foe	2	3	-1
coyets	0	0	0
turgaytemel	0	1	-1
danielri	0	0	0
eyzarblu-1	1	6	-5
fwendt	4	9	-5
ales-mrak	4	16	-12
electromance	0	1	-1
+	·	·	+

only showing top 20 rows

Reviewers with the most Net Positive and Net Negative votes

Reviewers with the Most Positive Votes

4		· 	
reviewer	total_helpful_votes	total_non_helpful_votes	net_helpful_votes
rutan07	951	1	950
s458862411	923	1	922
eak-1	885	1	884
SJ_1	986	105	881
hermes1-2	879	1	878
GVH0	813	1	812
Shut_Up_Irwin	778	1	777
jmkelly03	726	1	725
EvilAdam	715	1	714
mattfg	713	1	712
fernandolindblom	544	56	488

Reviewers with the Most Negative Votes

+	+	·	++
reviewer	total_helpful_votes	total_non_helpful_votes	net_helpful_votes
+	+	·	++
ccthemovieman-1	9719	13384	-3665
MartinHafer	2894	5851	-2957
lee eisenberg	4136	7020	-2884
Theo Robertson	2828	5706	-2878
jotix100	8085	10750	-2665
jboothmillard	722	3273	-2551
bkoganbing	8735	11239	-2504
moonspinner55	3472	5855	-2383
claudio carvalho	4460	6647	-2187
MovieAddict2016	2583	4382	-1799
noralee	2696	4360	-1664
Coventry	2422	4040	-1618
movieman kev	1623	3203	-1580
Nazi Fighter David	3704	5257	-1553
Captain Couth		3643	
The Void	2245	3643	:
Spuzzlightyear	1292	2631	
rebeljenn		2245	!!!
Boba Fett1138	2367	3515	-1148
poolandrews	772	1909	-1137
+	, +		

only showing top 20 rows

Rate of the Positive and negative votes received

+	·			+	+
reviewer	total_helpful_votes	total_non_helpful_votes	net_helpful_votes	review_count	helpful_rate
+		463		+	+
sweetmik		163	-80	1	-80.0
edcrosay	0	0	0	1	0.0
janmarc-1	0	9	-9	1	-9.0
milesjgraham	19	40	-21	1	-21.0
awnorm	2	11	-9	1	-9.0
tetrical	2	9	-7	1	-7.0
rmax304823	650	1082	-432	75	-5.76
CherryBlossomBoy	2	5	-3	3	-1.0
jhclues	15	37	-22	2	-11.0
lizzie mag	22	44	-22	1	-22.0
imonroe	11	24	-13	2	-6.5
jrsmitty	3	7	-4	2	-2.0
Glamdring-The-Foe	2	3	-1	1	-1.0
coyets	0	0	0	1	0.0
turgaytemel	0	1	-1	1	-1.0
danielri	0	0	0	1	0.0
eyzarblu-1	j 1j	6	-5	1	-5.0
fwendt	4	9	-5	1	-5.0
ales-mrak	4	16	-12	6	-2.0
electromance	0	1	-1	1	-1.0
4					

only showing top 20 rows