Chapter 2 End to End Machine Learning

DuLi

2019年3月19日

目录 2

目录

1	Outline	3										
2	Working with Real Data	3										
3 Look at the Big Picture												
	3.1 Frame the Problem	4										
	3.2 Select a Performance Measure	5										
4	Get the data	6										
	4.1 Create the workspace	6										
	4.2 Take a Quick Look at the Data Structure	6										

1 OUTLINE 3

1 Outline

Here are main steps you will go through:

- 1. Look at the big picture.
- 2. Get the data.
- 3. Discover and visualize the data to gain insights.
- 4. Prepare the data fpr machine learning algorithms.
- 5. Select a model and train it.
- 6. Fine-tune your model.
- 7. Present your solution.
- 8. Launch, monitor, and maintain your system.

2 Working with Real Data

Here are a afew places you can look to get data:

- Popular open data open repositories:
- UC Irvine Machine Learning Repositories.
- Kaggle datasets.
- Amazon's AWS datasets.
- Meta Portals(they list open data repositories)
- dataportals.org
- opendatamonitor.eu
- quandl.com
- Other pages listing many popular open data repositories

- Wikipedia's list of Machine Learning datasets.
- Quora.com question.
- Datasets subreddit.

图 1: California Housing Prices Databases

3 Look at the Big Picture

3.1 Frame the Problem

The first question to ask you is what exactly is the bussiness objective; building a model is probably not the end goal. How do you expect use and benefit from this model? This is improtant because it will determine how you frame the problem, what algorithms you will select, what performance measure you will use to evaluate your model, and how much effort you should spend tweaking it. Your model output (a predicting of a district's median housing price) will be fed to another Machine Learning system along with

many other signals. This downstream system will determine whether it is worth investing in a given area or not.

图 2: A machine learning pipeline for real estate investment

The next step is framing the problem: is it supervised, unsupervised, or Reinforcement learning? Is it a classification task, a regression task, or something else? Should we use batch learning or online learning technique? Clearly it is supervised, we need historical data to train the model. Moreover it is a typical regression task, more specifically, this is a multivariate regression since the system will use mutiple features to make a prediction. In first chapter, we predicted life satisfiction based on just one feature, the GDP per captia. Finally, there is no continuous flow of data coming in the system, there is no particular need to adjust to changing data rapidly, and the data is small enough to fit in memory, so plain batch learning should do just fine.

3.2 Select a Performance Measure

The next step is to select a performance measure. A typical performance measure for regression problems is the Root Mean Square Error(均方根误差), it measures the standard deviation of the errors the system makes in its prediction.

$$RMSE(X,h) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (h(X^{i}) - y^{i})^{2}}$$
 (1)

Even though the RMSE is generally the perferred performance measure for regression tasks, in some

4 GET THE DATA 6

contexts you may prefer to use another function. For example, suppose that there are many outlier districts. In that case, we may consider using the Mean Absolute Error(平均绝对误差):

$$MAE(X,h) = \frac{1}{m} \sum_{i=1}^{m} |h(X^i) - y^i|$$
 (2)

Both the RMSE and MAE are ways to measure the *distance* between two vectors. Various distance measures or norms are possible:

- Euclidean norm(欧几里得距离)。
- Manhattan norm(曼哈顿距离), it measures the distance between two points in a city if you can only travel along orthogonal city blocks.也就是指城市中两点之间沿着街区边缘走路的距离。
- \bullet More generally, the l_k norm of a vector v containing n elements is defined as:

$$||v|| = (|v_o|^k + |v_1|^k + \dots + |v_n|^k)^{\frac{1}{k}}$$
 (3)

4 Get the data

It's time to get your hands dirty.

4.1 Create the workspace

First, you need to have Python enviornment installed. We recommand you installed anaconda on your computer. https://www.anaconda.com/

4.2 Take a Quick Look at the Data Structure

Let's take a look a the Data Structure. I download the database from Kaggle.https://www.kaggle.com/camnugent/california-housing-prices.Let's take a glance of the data structure. Each row represent one district. There are 10 attributes (Figure 3):longitude, lattidute, housing_median_age, total_rooms, total bedrooms, population, households, median income, median house value, ocean proximity.

4 GET THE DATA 7

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity
	-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.0	NEAR BAY
		37.86		7099.0	1106.0	2401.0	1138.0	8.3014	358500.0	NEAR BAY
		37.85		1467.0	190.0	496.0		7.2574	352100.0	NEAR BAY
				1274.0		558.0		5.6431	341300.0	NEAR BAY
	-122.25	37.85		1627.0	280.0	565.0	259.0	3.8462	342200.0	NEAR BAY
				919.0				4.0368	269700.0	NEAR BAY
	-122.25	37.84		2535.0	489.0	1094.0	514.0	3.6591	299200.0	NEAR BAY
		37.84		3104.0	687.0		647.0	3.1200	241400.0	NEAR BAY
	-122.26	37.84	42.0	2555.0	665.0	1206.0	595.0	2.0804	226700.0	NEAR BAY
				3549.0			714.0	3.6912	261100.0	NEAR BAY
10	-122.26	37.85		2202.0	434.0	910.0	402.0	3.2031	281500.0	NEAR BAY
				3503.0		1504.0	734.0		241800.0	NEAR BAY
12	-122.26	37.85		2491.0	474.0	1098.0	468.0	3.0750	213500.0	NEAR BAY
13	-122.26	37.84	52.0	696.0	191.0	345.0	174.0	2.6736	191300.0	NEAR BAY

图 3: Data Structure

The info method is useful to get a quick description of the data,in particular the total number of rows, and each attribute's type and number of non-null values. There are 20640 instances in the dataset, which means that it is fairly small by Machine Learning standards, but it's perfect to get started. Notice that the total_bedrooms attribute has only 20433 non-null values, meaning that 207 districts are missing this feature. We will need to take care of this later.

```
raw_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
longitude
                      20640 non-null float64
latitude
                      20640 non-null float64
housing_median_age
                      20640 non-null float64
total_rooms
                      20640 non-null float64
total bedrooms
                      20433 non-null float64
population
                      20640 non-null float64
households
                      20640 non-null float64
median_income
                      20640 non-null float64
median_house_value
                      20640 non-null float64
ocean_proximity
                      20640 non-null object
dtypes: float64(9), object(1)
memory usage: 1.6+ MB
```

图 4: Data Info

All attribute are numercial, except the ocean_proximity field. We can find out what categories exist and how many districts belong to each category by using the value_counts() method:

4 GET THE DATA 8

```
In [6]: raw_data['ocean_proximity'].value_counts()
Out[6]: <1H OCEAN 9136
    INLAND 6551
    NEAR OCEAN 2658
    NEAR BAY 2290
    ISLAND 5
    Name: ocean_proximity, dtype: int64</pre>
```

图 5: Data Counts

Let's look at the other fields. The describe() method shows a summary of the numercial attributes. (Figure 6). The count, mean, min and max rows are self-explanatory.

count 26440,00000 20440,000000 20440,000000 20440,000000 20640,000000	[7]: raw	raw_data.describe()									
min -119.566704 35.631861 28.63848 263.763081 537.87053 1425.476744 499.539680 3.870671 208655.816909 sid 2.03552 2.135952 12.965558 2181.615252 42.1385970 1132.462122 382.329753 1.899822 115395.619874 min -124.580000 3.2540000 1.8000000 2.000000 1.000000 3.000000 2.0000000 0.09990 0.49990000000 25% -121.800000 3.3500000 2.2600000 217.7000000 435.000000 116.000000 459.000000 256.3400 1.97900.000000 50% -118.010000 3.7710000 317.000000 3148.000000 417.000000 175.000000 465.000000 4,74250 2.54725.000000			longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
sid 2.093532 2.195952 12.585598 2181.613252 42.1385910 112.446712 38.232753 18.99822 115.995.15874 min -124.35000 32.540000 1.00000 2.000000 1.000000 1.000000 3.000000 1.000000 0.499900 0.49990000 25% -121.80000 3393000 18.00000 427.000000 435.00000 18000000 49.000000 2.55440 119700.000000 59% -118.01000 37.710000 37.000000 3148.00000 647.000000 1725.000000 69.500000 4.74250 2.64725.000000	cou	int 2	10640.000000	20640.000000	20640.000000	20640.000000	20433.000000	20640.000000	20640.000000	20640.000000	20640.000000
min -124350000 32540000 1,000000 2,000000 1,000000 3,000000 1,000000 0,499900 14999,000000 25% -121,500000 339,0000 14677,500000 260,000000 737,000000 200,00000 2,593,400 11960,000000 5% -118,010000 37,710000 316,000000 3148,00000 467,00000 1725,00000 469,00000 47,4250 24,4725,00000	me	an	-119.569704	35.631861	28.639486	2635.763081	537.870553	1425.476744	499.539680	3.870671	206855.816909
25% -121,800,000 33,930,000 18,000,000 1447,750,000 256,000,000 787,000,000 280,000,000 2,563,400 19600,000,000 50% -118,490,000 34,260,000 2127,700,000 435,000,000 116,600,000 499,000,000 3,548,00 179700,000,000 75% -118,010,000 37,700,000 3148,000,000 647,000,000 1725,000,000 695,000,000 4,743250 24725,000,000	s	itd	2.003532	2.135952	12.585558	2181.615252	421.385070	1132.462122	382.329753	1.899822	115395.615874
59% -118,490000 34,260000 29,000000 2127,000000 435,000000 116,6000000 49,9000000 2,54800 179700,000000 75% -118,010000 37,710000 37,000000 3148,000000 647,000000 1725,000000 65,000000 4,743250 244725,000000	m	nin	-124.350000	32.540000	1.000000	2.000000	1.000000	3.000000	1.000000	0.499900	14999.000000
75% -118.010000 37.710000 37.000000 3148.000000 647.000000 1725.000000 605.000000 4.743250 264725.000000	25	5%	-121.800000	33.930000	18.000000	1447.750000	296.000000	787.000000	280.000000	2.563400	119600.000000
	50	0%	-118.490000	34.260000	29.000000	2127.000000	435.000000	1166.000000	409.000000	3.534800	179700.000000
max -114.310000 41.950000 52.000000 39320.000000 6445.000000 35682.000000 6082.000000 15.000100 500001.000000	75	5%	-118.010000	37.710000	37.000000	3148.000000	647.000000	1725.000000	605.000000	4.743250	264725.000000
	m	ax	-114.310000	41.950000	52.000000	39320.000000	6445.000000	35682.000000	6082.000000	15.000100	500001.000000

图 6: Data Describe

Another quick way to get a feel of the type of data you are dealing with is to plot a histogram for each numercial attribute.

图 7: A histogram for each numercial attribute