Toolformer Summary

Toolformer is aiming to call external APIs in a self-supervised way on LLM.

Given an API call,

$$c = (a_c, i_c)$$

where $a_c :=$ the name of the API call, $i_c :=$ the corresponding input, $r_c :=$ the corresponding result of the API call. Then, we have a linearity, that is

$$e(c) := \langle \text{API} \rangle \ a_c(i_c) \ \langle /\text{API} \rangle$$

 $e(c, r) := \langle \text{API} \rangle \ a_c(i_c) \rightarrow \ r \langle /\text{API} \rangle$

where $\langle API \rangle$ stands for the start tokenizer, $\langle /API \rangle$ stands for the end tokenizer.

Given a dataset $C = \{x^1, ..., x^{|C|}\}$ of sequence plain texts, we would convert the datasets into an augmented dataset C^* by API calls in the upcoming ways.

I. Sampling Step

Denote that P(x) as a prompt encouraging the language model to annotate with API calls. Given an input $x = x_1, ..., x_n$ Define that

$$p_i := p_M(\langle API \rangle | P(x), x_{1:i-1})$$

where $P_M(z_{n+1|z_1,...,z_n})$ be the probability of M assigned to z_{n+1} .

Then, we set a sampling threshold τ_s s.t. all positions $I = \{i \mid p_i > \tau_s\}$.

In other words, if the first k candidate positions for the API calls probability hitting the threshold, we would remain computing; Otherwise, we would throw it out.

II. Executing Step

we execute the API calls generated from M to get corresponding executing results r.

III. Filtering Step

To filter out, we compute the cross entropy loss for M over given tokens

$$L_{i}(z) := -\sum_{j=1}^{n} w_{j-1} \cdot \log p_{M}(x_{j} \mid z, x_{1:j-1})$$

$$L_{i}^{+} := L_{i}(e(c_{i}, r_{i}))$$

$$L_{i}^{-} := \min(L_{i}(\epsilon), L_{i}(e(c_{i}, \epsilon)))$$

where ϵ denotes the empty sequence.

And we set another threshold filtering threshold τ_f s.t. $L_i^- L_i^+ \geq \tau_f$.

IV. Finetuning Step

We merge the remaining API calls and insert into original input sequence $x = x_1, \dots, x_n$, then, we construct a new sequence $x^* := x_{1:i-1}, e(c_i, r_i), x_{i:n}$.

Iteratively finetune augmented dataset C^* interleave them with the new dataset. As API calls inserted in exactly positions, enabling the LM to decide when and how to use which external tool.

V. Inference Step

Generating text after IV finetuning step, decoding until M produce the \rightarrow token, then call API to get the response.

External Tools

Toolformer used question ansering, calculator, Wikipedia Search, Machine Translation and Calendar external APIs. Compared with GPT model, whatever Toolformer API calls disabled or not, Toolformer usually has a better performance, one potential reason that is because the model is finetuned on many API calls and their results, improving its own capabilities.

Conclusion

Labeling dataset by human need considerable cost, thus, we try to use self-supervised learning ways to save the computation cost. Nonetheless, toolformer is not an artificial intelligence that could learned by itself as I expected when I just read the abstraction of the paper. However, with the help of external tools, it could significantly improve its performance compared with traditional large models, as well.