

FCC PART 15.249

INDUSTRY CANADA RSS-210, ISSUE 7 JUNE 2007 TEST AND MEASUREMENT REPORT

For

SynapSense Corporation

2365 Iron Point Rd., Suite 100, Folsom, CA 95630, USA

FCC ID: U62-GATEWAY IC: 7265A-GATEWAY

Report Type: Product Type:

Original Report Low Power RF Transceiver

Test Engineer: Xiao Ming Hu

Report Number: R0811181

Report Date: 2009-01-15

Boni Baniqued

Reviewed By: RF Sr. Engineer

Prepared By: Bay Area Compliance Laboratories Corp.

(84) 1274 Anvilwood Ave

Sunnyvale, CA 94089, USA

Tel: (408) 732-9162 Fax: (408) 732 9164

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government. * This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "*"

TABLE OF CONTENTS

1	GE	NERAL INFORMATION	5
	1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
	1.2	MECHANICAL DESCRIPTION OF EUT	
	1.3	EUT Photograph	5
	1.4	Objective	
	1.5	RELATED SUBMITTAL(S)/GRANT(S)	
	1.6	TEST METHODOLOGY	
	1.7	TEST FACILITY	
2	SYS	STEM TEST CONFIGURATION	
	2.1	JUSTIFICATION	
	2.2	SPECIAL ACCESSORIES	
	2.3	EQUIPMENT MODIFICATIONS	
	2.4	CONFIGURATION OF TEST SETUP	
	2.5	LOCAL SUPPORT EQUIPMENT LISTEUT INTERNAL CONFIGURATION DETAILS	
	2.6 2.7	EXTERNAL I/O CABLING LIST AND DETAILS	
	2.8	BLOCK DIAGRAM OF TEST SETUP	
•			
3	SU	MMARY OF TEST RESULTS	9
4	FC	C §15.203 & IC RSS-GEN § 7.1.4 - ANTENNA REQUIREMENT	10
	4.1	APPLICABLE STANDARD	10
	4.2	ANTENNA CONNECTOR CONSTRUCTION	10
5	FC	C§15.207(A) & IC RSS-GEN § 7.2.2 - CONDUCTED EMISSIONS	11
•	5.1	MEASUREMENT UNCERTAINTY	
	5.2	EUT SETUP.	
	5.3	EMI TEST RECEIVER SETUP.	
	5.4	TEST EQUIPMENT LIST AND DETAILS	
	5.5	TEST PROCEDURE	
	5.6	TEST RESULTS SUMMARY	
	5.7	Environmental Conditions	12
6	FC	C §15.205, §15.209, §15.249 & IC RSS-210 §2.2, §A2.9 - RADIATED EMISSIONS & OUT	OF BAND
E	MISSI	ONS	
	6.1	APPLICABLE STANDARD	
	6.2	MEASUREMENT UNCERTAINTY	
	6.3	TEST EQUIPMENT SETUP	
	6.4	EUT SETUP	
	6.5	TEST EQUIPMENT LIST AND DETAILS	
	6.6 6.7	TEST PROCEDURE	
	6.8	CORRECTED AMPLITUDE & MARGIN CALCULATION	
	6.9	ENVIRONMENTAL CONDITIONS	
7		C §15.109 & IC RSS-GEN §4.6, §7.2.3 – RECEIVER SPURIOUS EMISSIONS	
•	7.1	APPLICABLE STANDARD	
	7.1	MEASUREMENT UNCERTAINTY	
		WILL BUILDING ON CENTRE 11	

7.3	EUT Setup	23
7.4	TEST EQUIPMENT LIST AND DETAILS	
7.5	TEST PROCEDURE	
7.6	CORRECTED AMPLITUDE & MARGIN CALCULATION	24
7.7	TEST RESULTS SUMMARY	
7.8	Environmental Conditions	25
8 FC	CC §15.215 & IC RSS-GEN §4.6 – OCCUPIED BANDWIDTH	26
8.1	STANDARD APPLICABLE	26
8.2	TEST EQUIPMENT LIST AND DETAILS	26
8.3	TEST PROCEDURE	
8.4	Environmental Conditions	26
9 EX	KHIBIT A – FCC & IC EQUIPMENT LABELING REQUIREMENTS	29
9.1	FCC ID LABELING REQUIREMENTS	29
9.2	IC ID LABELING REQUIREMENTS	29
9.3	SUGGESTED FCC ID & IC LABEL	
9.4	SUGGESTED FCC ID & IC LABEL LOCATION	30
10	EXHIBIT B TEST SETUP PHOTOS	31
10.1	AC LINE CONDUCTED EMISSIONS – FRONT VIEW	31
10.2	AC LINE CONDUCTED EMISSIONS – SIDE VIEW	31
10.3	RADIATED EMISSIONS – FRONT VIEW	
10.4	RADIATED EMISSIONS – REAR VIEW	
10.5	OCCUPIED BANDWIDTH – BENCH TEST SETUP	33
11	EXHIBIT C - EUT PHOTOGRAPHS	34
11.1	EUT- TOP VIEW	34
11.2	EUT- BOTTOM VIEW	
11.3	EUT- SIDE (PORT) VIEW	
11.4	EUT- SIDE (ANTENNA TERMINAL) VIEW	
11.5	2dBi Omni Directional Antenna	
11.6	EUT- POWER SUPPLY	
11.7	EUT- Cover off View	
11.8	EUT- RF MODULE TOP VIEW	
11.9	EUT- RF MODULE BOTTOM VIEW	
11.10		
11.11		
11.12	EUT- MAIN BOARD PORT VIEW	39

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision	
0	R0811181	Original Report	2009-01-15	

1 GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

The *SynapSense Corporation's* product, model: *99-0360-001 Rev. A* or the "EUT" as referred to in this report is Proprietary SynapSense Wireless Mesh Network application running on 802.15.4 radio network. Product includes embedded Lantronix XPortAR Ethernet adapter. EUT is powered by AC/DC Adapter, 100-240 VAC 50/60 Hz input /5.0V DC, 4.0A output.

1.2 Mechanical Description of EUT

The *SynapSense Corporation's* product, model number: 99-0360-001 Rev. A measures approximately 3.8 cm L x 13.3 cm W x 9.7 cm H.

* All measurement and test data in this report was gathered from production sample serial number: B2062-1 (Assigned by BACL).

1.3 EUT Photograph

Model: 99-0360-001 Rev. A

1.4 Objective

This type of approval report is prepared on behalf of *SynapSense Corporation*. in accordance with Part 2, Subpart J, and Part 15, Subparts A, B and C of the Federal Communication Commissions rules and IC Canada RSS 210 Issue 7 June 2007.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.249 rules and IC RSS-210 Issue 7, RSS-Gen rules.

1.5 Related Submittal(s)/Grant(s)

N/A

1.6 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

1.7 Test Facility

The test site used by BACL Corp. to collect radiated and conducted test measurement data is located at its facility in Sunnyvale, California, USA.

The test site at BACL Corp. has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11, 1997 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the test methods and procedures set forth in ANSI C63.4-2003 & TIA/EIA-603.

The Federal Communications Commission and Voluntary Control Council for Interference have the reports on file and they are listed under FCC registration number: 90464 and VCCI Registration No.: C-2698 and R-2463. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL Corp. is a National Institute of Standards and Technology (NIST) accredited laboratory under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The current scope of accreditations can be found at http://ts.nist.gov/ts/htdocs/210/214/scopes/2001670.htm.

2 SYSTEM TEST CONFIGURATION

2.1 Justification

The system was configured for testing in a typical fashion (as normally used by a typical user).

2.2 Special Accessories

N/A

2.3 Equipment Modifications

No modifications were made to the unit tested.

2.4 Configuration of Test Setup

During the test, EUT is connected to a laptop through unshielded RJ45 connection. EUT is wirelessly connected to support equipment by SynapSense Corporation Model: 99-0189-001.

2.5 Local Support Equipment List

Manufacturers	Descriptions	Models	Serial Numbers
Synapsense Corporation	Receiver node	99-0489-001	72201
IBM/Lenovo	Laptop	X60S	-

2.6 EUT Internal Configuration Details

Manufacturers	Descriptions	Models	Serial Numbers
Synapsense Corporation	Radio Board	11-0067-016 Rev. A	-
Synapsense Corporation	Main PCB	11-0360-001 Rev. 3	-

2.7 External I/O Cabling List and Details

Cable Descriptions	Length (m)	From	То
Unshielded CAT5	>3m	EUT	IBM Laptop

2.8 Block Diagram of Test Setup

3 SUMMARY OF TEST RESULTS

FCC Rules RSS-210, RSS-Gen Rules Description of Tests		Results
FCC §15.203 IC RSS-Gen §7.1.4	Antenna Requirements	Compliant
FCC §15.207(a) IC RSS-Gen §7.2.2	Conduction Emissions	Compliant
FCC §15.205, §15.209, §15.249 IC RSS-210 §2.2, §A2.9	Radiated Emissions & Out of Band Emissions	Compliant
FCC §15.215 IC RSS-Gen §4.6	Occupied Bandwidth	Compliant
FCC §15.109 IC RSS-Gen §4.10, §7.2.3	Receiver Spurious Emission	Compliant

4 FCC §15.203 & IC RSS-GEN § 7.1.4 - ANTENNA REQUIREMENT

4.1 Applicable Standard

For intentional device, according to FCC Part §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used.

Per IC RSS-Gen §7.1.4, A transmitter can only be sold or operated with antennas with which it was certified. A transmitter maybe certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns. Testing shall be performed using the highest-gain antenna of each combination of transmitter and antenna type for which certification is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type and having equal or lesser gain as an antenna that had been successfully tested for certification with the transmitter, will also be considered certified with the transmitter, and may be used and marketed with the transmitter. The manufacturer shall include with the application for certification a list of acceptable antenna types to be used with the transmitter.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. Any antenna gain in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power before using the power limits specified in IC RSS-210 or RSS-310 for devices of RF output powers of 10 milliwatts or less. For devices of output powers greater than 10 milliwatts, except devices subject to IC RSS-210 Annex 8 or RSS-210 Annex 9, the total antenna gain shall be added to the measured RF output power before using the specified power limits. For devices subject to IC RSS-210 Annex 8 or Annex 9, the antenna gain shall not be added.

4.2 Antenna Connector Construction

The EUT antenna is reverse external Omni Directional attached antenna, the maximum of antenna gain is 2.0dBi, which in accordance to sections FCC Part 15.203 and IC RSS-Gen §7.1.4, is considered sufficient to comply with the provisions of these sections.

Result: Compliant.

Report Number: R0811181

Please refer to the EUT photos.

5 FCC§15.207(a) & IC RSS-GEN § 7.2.2 - CONDUCTED EMISSIONS

5.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is +2.4 dB.

5.2 EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.4-2003 measurement procedure. The specification used was with the FCC Part 15 .207 and IC RSS-Gen §7.2.2 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The AC/DC adapter was connected to a 120 VAC/60 Hz power source.

5.3 EMI Test Receiver Setup

The test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IFBW
150 kHz – 30 MHz	9 kHz

5.4 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.595 0K03	100044	2008-03-24
Solar Electronics CO	Artificial-Mains Network	9252-50-R-24-N	0511213	2008-07-31

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

5.5 Test Procedure

During the conducted emission test, the EUT was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

5.6 Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Part 15.207(a) & IC RSS-Gen §7.2.2</u>, with the worst margin reading of:

-15.66 dB at 0.15 MHz in the Neutral conductor mode.

5.7 Environmental Conditions

Temperature:	18 °C	
Relative Humidity:	40 %	
ATM Pressure:	100.0kPa	

The testing was performed by Xiao Ming Hu on 2008-12-16.

Test Mode: Operating

120V/60Hz Line

Measurement Result:

Frequency (MHz)	Corrected Reading (dBuV)	Measurement Type (AV/QP)	Line (Line/Neutral)	Limit (dBuV)	Margin (dB)
1.423	19.93	AV	Line	46	-26.07
1.827	19.81	AV	Line	46	-26.19
1.549	18.88	AV	Line	46	-27.12
1.542	18.20	AV	Line	46	-27.80
1.640	14.50	AV	Line	46	-31.50
1.612	13.85	AV	Line	46	-32.15
1.827	24.82	QP	Line	56	-31.18
1.549	24.52	QP	Line	56	-31.48
1.423	24.42	QP	Line	56	-31.58
1.542	23.99	QP	Line	56	-32.01
1.640	19.55	QP	Line	56	-36.45
1.612	18.94	QP	Line	56	-37.06

120V/60Hz Neutral

Measurement Result:

Frequency (MHz)	Corrected Reading (dBuV)	Measurement Type (AV/QP)	Line (Line/Neutral)	Limit (dBuV)	Margin (dB)
0.1500	50.34	QP	Neutral	66.00	-15.66
0.1500	49.92	QP	Neutral	66.00	-16.07
0.1690	47.36	QP	Neutral	65.02	-17.66
0.1500	47.58	QP	Neutral	66.00	-18.42
0.1710	45.42	QP	Neutral	64.89	-19.47
0.1570	46.11	QP	Neutral	65.62	-19.51
0.1500	31.52	AV	Neutral	56.00	-24.48
0.1500	31.44	AV	Neutral	56.00	-24.56
0.1500	30.94	AV	Neutral	56.00	-25.06
0.1710	29.69	AV	Neutral	54.89	-25.21
0.1690	29.73	AV	Neutral	55.02	-25.29
0.1570	25.06	AV	Neutral	55.62	-30.56

6 FCC §15.205, §15.209, §15.249 & IC RSS-210 §2.2, §A2.9 - RADIATED EMISSIONS & OUT OF BAND EMISSIONS

6.1 Applicable Standard

As per FCC §15.249 (a) and IC RSS-210 §A2.9 the field strength of emissions from intentional radiators measured at 3 meter within these frequency bands shall comply with the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)
902–928	50	500
2400–2483.5	50	500
5725–5875	50	500

As Per FCC §15.249 (d) and IC RSS-210 §A2.9 (b) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in the following table, whichever is the lesser attenuation.

Frequency (MHz)	Field Strength (microvolts/m at 3 metres)
30 - 88	100
88 - 216	150
216 - 960	200
Above 960	500

6.2 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Bay Area Compliance Laboratories Corp. is ± 4.0 dB.

6.3 Test Equipment Setup

The spectrum analyzer or receiver is set as:

Below 1000MHz:

$$RBW = 100 \text{ kHz} / VBW = 300 \text{ kHz} / Sweep = Auto$$

Above 1000MHz:

(1) Peak: RBW = 1MHz / VBW = 1MHz / Sweep = Auto
 (2) Average: RBW = 1MHz / VBW = 10Hz / Sweep = Auto

6.4 EUT Setup

The radiated emission and out of band emission tests were performed in the 3 meters chamber B, using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC §15.209, §15.249 and IC RSS-210 §A2.9 limits.

6.5 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
HP	Pre-Amplifier (1 ~ 26.5 GHz)	8449B	3008A1978	2008-10-21
Sunol Science Corp	ol Science Corp Combination Antenna		A020106-3	2008-03-24
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100044	2008-03-24
Sunol Science Corp	System Controller	SC99V	113005-1	NA
Antenna Research Associates, Inc.	Horn Antenna	DRG-118/A	1132	2008-08-07
Agilent	Agilent Analyzer, Spectrum		US44300386	2008-05-19
Sonoma Instrument Pre-Amplifier (10 kHz~ 2.5 GHz)		317	260407	2008-04-29

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

6.6 Test Procedure

For the radiated emissions test, the AC/DC adapter, and all support equipment power cords was connected to the 120V AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 mete, and the EUT is placed on a turntable, which is 0.8 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

6.7 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

6.8 Test Results Summary

According to the data in the following table, the EUT complied with the FCC Part 15.209 & 15.249 & IC RSS-210 §A2.9, the worst margin reading of:

Below 1GHz:

-0.56 dB at 240.024 MHz in the Horizontal polarization.

Above 1GHz:

-21.74 dB at 4810 MHz in the Vertical polarization for Low Channel.
-20.24 dB at 4890 MHz in the Vertical polarization for Middle Channel.
-21.55 dB at 4960 MHz in the Vertical polarization for High Channel.

6.9 Environmental Conditions

Temperature:	18 °C
Relative Humidity:	40 %
ATM Pressure:	100.0kPa

The testing was performed by Xiao Ming Hu on 2008-12-16.

Test Mode: Transmitting

Below 1 GHz (Worst Case):

Frequency (MHz)	Corrected Reading (dBuV/m)	Measurement Type (QP/AV)	Ant. Polarization (V/H)	Ant. Height (cm)	Table Azimuth (Degree)	Limit (dBuV/m)	Margin (dB)
240.024	45.44	QP	Н	114	127	46.0	-0.56
45.720	38.99	QP	V	208	346	40.0	-1.01
34.600	38.15	QP	V	100	108	40.0	-1.85
249.993	44.20	QP	Н	100	120	46.0	-2.30
105.765	40.91	QP	Н	159	238	43.5	-2.59
41.372	35.58	QP	V	117	260	40.0	-4.42

Above 1 GHz:

Low Channel

Fundamental measured at 3 meters:

Frequency (MHz)	Meter Reading (dBuV)	Detector (PK/AV)	Table Azimuth (Degree)	Ant. Height (m)	Ant. Polar. (H/V)	Ant. Factor (dB/m)		Pre- Amp. Gain (dB)	Duty Cycle (dB)	Cord. Amp. (dBµV/m)	FCC §15.24 IC RSS-2 Limit (dBuV/m)	
2405	94.55	PK	271	1.13	V	28.20	6.05	35.52	0	93.28	114	-20.72
2405	88.03	PK	92	1.58	Н	28.20	6.05	35.52	0	86.76	114	-27.24
2405	94.55	PK	271	1.13	V	28.20	6.05	35.52	-30	63.28	94	-31.62
2405	88.03	PK	92	1.58	Н	28.20	6.05	35.52	-30	56.76	94	- 37.24

Spurious/Harmonics Emissions measured at 3 meters (Above 1 GHz)

Frequency (MHz)	Meter Reading (dBuV)	Detector (PK/AV)	Table Azimuth (Degree)	Ant. Height (m)	Ant. Polar. (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Duty Cycle (dB)	Cord. Amp. (dBµV/m)	FCC §15.24 IC RSS-2 Limit (dBuV/m)	49, §15.209 10 §A2.9 Margin (dB)
4810	27.47	PK	277	1.00	V	33.10	8.86	34.89	-30	22.26	54	-31.74
4810	26.63	PK	0	1.00	Н	33.10	8.86	34.89	-30	16.15	54	-37.85
4810	45.19	PK	277	1.00	V	33.10	8.86	34.89	0	52.26	74	-21.74
4810	39.08	PK	0	1.00	Н	33.10	8.86	34.89	0	46.15	74	-27.85

Middle Channel

Fundamental measured at 3 meters:

Frequency	Meter Reading	Detector	Table Azimuth	Ant. Height	Ant. Polar.	Ant. Factor	Cable Loss	Pre- Amp.	Duty Cvcle	Cord.	FCC §15.249, §15.209 IC RSS-210 §A2.9	
(MHz)	(dBuV)	(PK/AV)	(Degree)	(m)		(dB/m)	(dB)	Gain (dB)	(dB)	Amp. (dBμV/m)	Limit (dBuV/m)	Margin (dB)
2445	93.82	PK	270	1.31	V	28.50	6.10	35.54	0	92.88	114	-21.12
2445	83.21	PK	318	1.09	Н	28.50	6.10	35.54	0	82.27	114	-31.73
2445	93.82	PK	270	1.31	V	28.50	6.10	35.54	-30	62.88	94	- 31.12
2445	83.21	PK	318	1.09	Н	28.50	6.10	35.54	-30	52.27	94	- 41.73

Spurious/Harmonics Emissions measured at 3 meters (Above 1 GHz)

Frequency (MHz)	Meter Reading (dBuV)	Detector (PK/AV)	Table Azimuth (Degree)	Ant. Height (m)	Ant. Polar. (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Duty Cycle (dB)	Cord. Amp. (dBµV/m)	FCC §15.24 IC RSS-2 Limit (dBuV/m)	49, §15.209 10 §A2.9 Margin (dB)
4890	46.54	PK	304	1.00	V	33.10	8.96	34.84	0	53.76	74	-20.24
4890	40.79	PK	0	1.00	Н	33.10	8.96	34.84	0	48.01	74	-25.99
4890	46.54	PK	304	1.00	V	33.10	8.96	34.84	-30	23.76	54	-30.24
4890	40.79	PK	0	1.00	Н	33.10	8.96	34.84	-30	18.01	54	-35.99

High Channel

Fundamental measured at 3 meters:

Frequency (MHz)	Meter Reading (dBuV)	Detector (PK/AV)	Table Azimuth (Degree)	Ant. Height (m)	Ant. Polar. (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Duty Cycle (dB)	Cord. Amp. (dBµV/m)	FCC §15.24 IC RSS-2 Limit (dBuV/m)	, 0
2480	93.47	PK	263	1.02	V	28.80	6.19	35.56	0	92.90	114	-21.10
2480	84.19	PK	225	1.00	Н	28.80	6.19	35.56	0	83.62	114	-30.38
2480	93.47	PK	263	1.02	V	28.80	6.19	35.56	-30	62.90	94	- 31.10
2480	84.19	PK	225	1.00	Н	28.80	6.19	35.56	-30	53.62	94	- 40.38

Spurious/Harmonics Emissions measured at 3 meters (Above 1 GHz)

Frequency (MHz)	Meter Reading (dBuV)	Detector (PK/AV)	Table Azimuth (Degree)	Ant. Height (m)	Ant. Polar. (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Duty Cycle (dB)	Cord. Amp. (dBµV/m)	FCC §15.24 IC RSS-2 Limit (dBuV/m)	49, §15.209 10 §A2.9 Margin (dB)
4960	44.66	PK	31	1.00	V	33.60	9.05	34.86	0	52.45	74	-21.55
4960	39.52	PK	0	1.00	Н	33.60	9.05	34.86	0	47.31	74	-26.69
4960	44.66	PK	31	1.00	V	33.60	9.05	34.86	-30	22.45	54	- 31.55
4960	39.52	PK	0	1.00	Н	33.60	9.05	34.86	-30	17.31	54	- 36.69

Note: Duty cycle = $20 \log_{10} (Ton/Tp) = 20 \log_{10} (3.17/100) = -30 dB$

Out of Band Emissions

Frequency (MHz)	Meter Reading (dBuV)	Detector (PK/AV)	Table Azimuth (Degree)	Ant. Height (m)	Ant. Polar. (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. (dBµV/m)	FCC §15.24 IC RSS-2 Limit	Margin
								(ub)		(dBuV/m)	(dB)
2342.1	34.19	AV	270	1.2	V	28.7	6.10	35.50	33.49	54	-20.51
2344.6	34.15	AV	263	1.2	Н	28.7	6.10	35.50	33.45	54	-20.55
2342.1	39.79	PK	270	1.6	V	28.7	6.10	35.50	39.09	74	-34.91
2344.6	39.30	PK	263	1.4	Н	28.7	6.10	35.50	38.60	74	-35.40
2488.8	32.74	AV	230	1.8	V	28.8	6.19	35.56	32.17	54	-21.83
2489.0	32.34	AV	168	1.6	Н	28.8	6.19	35.56	31.77	54	-22.23
2488.8	38.15	PK	230	1.8	V	28.8	6.19	35.56	37.58	74	-36.42
2489.0	36.69	PK	168	1.6	Н	28.8	6.19	35.56	36.12	74	-37.88

7 FCC §15.109 & IC RSS-GEN §4.6, §7.2.3 – RECEIVER SPURIOUS EMISSIONS

7.1 Applicable Standard

As per FCC §15.109 and IC RSS-Gen §4.6, §7.2.3, the receiver spurious limits measured at 3 meters shall be complied with the following table.

Frequency (MHz)	Field Strength (microvolts/m at 3 metres)
30 - 88	100
88 - 216	150
216 - 960	200
Above 960	500

7.2 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Bay Area Compliance Laboratories Corp. is +4.0 dB.

7.3 EUT Setup

7.4 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
НР	Pre-Amplifier (1 ~ 26.5 GHz)	8449B	3008A1978	2008-10-21
Sunol Science Corp	Combination Antenna	JB3 Antenna	A020106-3	2008-03-24
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100044	2008-03-24
Sunol Science Corp	System Controller	SC99V	113005-1	NA
Antenna Research Associates, Inc.	Horn Antenna	DRG-118/A	1132	2008-08-07
Agilent	Analyzer, Spectrum	E4446A	US44300386	2008-05-19
Sonoma Instrument	Pre-Amplifier (10 kHz~ 2.5 GHz)	317	260407	2008-04-29

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

7.5 Test Procedure

For the radiated emissions test, the AC/DC adapter, and all support equipment power cords was connected to the 120V AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 mete, and the EUT is placed on a turntable, which is 0.8 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

7.6 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

7.7 Test Results Summary

According to the data in the following table, the EUT complied with the FCC Part 15.109 & IC RSS-Gen §7.2.3, the worst margin reading of:

-0.91 dB at 374.989 MHz in the Horizontal polarization.

7.8 Environmental Conditions

Temperature:	20 °C	
Relative Humidity:	75 %	
ATM Pressure:	100.0kPa	

The testing was performed by Xiao Ming Hu on 2009-01-15.

Test Mode: Receiving

Frequency (MHz)	Corrected Reading (dBuV/m)	Measurement Type (QP/AV)	Ant. Polarization (V/H)	Ant. Height (cm)	Table Azimuth (Degree)	Limit (dBuV/m)	Margin (dB)
374.989	45.09	QP	Н	100	135	46.0	-0.91
240	41.75	QP	Н	140	205	46.0	-4.25
361.004	41.25	QP	Н	100	141	46.0	-4.75
250.05	39.88	QP	Н	100	206	46.0	-6.12
53.922	31.6	QP	V	100	269	40.0	-8.40
47.7	27.86	QP	V	100	241	40.0	-12.14

8 FCC §15.215 & IC RSS-GEN §4.6 – OCCUPIED BANDWIDTH

8.1 Standard Applicable

Per FCC §15.215, 20 dB occupied bandwidth should be provided.

Per IC RSS-Gen §4.6, When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

8.2 Test Equipment List and Details

Manufacturer	Description	Description Model		Calibration Date
Agilent	Analyzer, Spectrum	E4440A	US45303156	2008-05-31

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

8.3 Test Procedure

With the EUT's antenna attached, the EUT's 20dB Bandwidth power was received by the test antenna which was connected to the spectrum analyzer with the START and STOP frequencies set to the EUT's operation band.

8.4 Environmental Conditions

Temperature:	20 ° C	
Relative Humidity:	40%	
ATM Pressure:	100.2kPa	

The testing was performed by Xiao Ming Hu on 2008-11-20

Test Result: Please refer to the following table and plots.

Channel	Frequency (MHz)	20 dB Occupied Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
Low	2405	2.653	2.6279
Middle	2445	2.685	2.6298
High	2480	2.654	2.5943

Low Channel

Middle Channel

High Channel

