INTRODUCTION TO GAME THEORY

Understanding the Game

Game theory: The study of decision-making in situations where one player's outcome depends on the decisions of other players.

A **strategic game** is the fundamental schema for analyzing decision-making via game theory. They have three elements:

- 1. Players: Participants in the game.
- 2. **Actions:** A player's options for how to behave in the game. Taken together, the players' actions create an outcome.
- 3. Payoffs: The results associated with a given outcome.

In **simultaneous games**, players select their actions at the same time.

Remember: Games can be played sequentially or simultaneously, but the latter lend themselves to more straightforward analysis.

The Normal Form and Nash Equilibria

The **normal form (strategic form)** is a concise method for representing a strategic game.

Best responses (or **strategies**): The actions that maximize a player's payoff given the actions of the other player.

Strategic form is typically drawn as a matrix, with players' best responses marked with stars.

A formal prediction is called a **solution concept**, but one only exists when all players have at least one best response in common.

Nash equilibrium: A set of actions wherein each player's action is a best response given the actions of all other players.

A game may contain one Nash equilibrium (e.g., the matrix with the yellow highlight), or more than one, or none at all.

Nash equilibria can solve **non-cooperative games**, i.e., ones lacking a formal method for ensuring player cooperation.

The **prisoner's dilemma** is an example of a non-cooperative game.

Matrices: Some Examples

		Regina				
		lower price	keep price			
Ralph	keep price lower price	★★ \$5,000 \$5,000	\$10,000 \$2,500			
Ra	keep price	\$2,500 \$10,000	\$7,500 \$7,500			
		_	ina keep price			
		Reg lower price	jina keep price			
Ralph	keep price lower price	_				

Dominance and Rationalization

Strictly dominant: A strategy that always provides higher payoffs than the other(s).

Weakly dominant: A strategy that provides higher payoffs in at least one outcome, and equal payoffs in all others.

Intransitive: No strategy dominates.

Rationalization: A solution concept involving the evaluation of a game's strategies from each player's perspective. The **iterated elimination of strictly dominated strategies** is an example:

- 1. Examine the game from Player 1's perspective. Remove any of their strictly dominated strategies.
- 2. Do the same from Player 2's perspective. Repeat until no strictly dominated strategies remain for either player.
- Any outcomes that survive this process are rationalizable strategies. If only one survives, the game is dominance solvable.

A game in which the strategies of both players are intransitive.						
Tom	<u> </u>	rock	paper	scissors		
Alexa	rock	0,0	-1,1	1,-1		
	paper	1,–1	0,0	-1, <mark>1</mark>		
S	scissors	-1,1	1,–1	0,0		

Extensive-Form Games

The extensive form is a means for modeling sequential games. Its major components are:

- **Game tree:** A decision tree used to show players, strategies, and payoffs.
- Node: Each circle on the game tree represents a decision point for the respective player.
- Branch: Shows the possible strategies at each node.
- Terminal node: Shows the payoffs tied to each chain of decisions.

Backward induction: A method for solving extensive-form games.

After breaking the game down into smaller **subgames**:

- Identify Player 2's best responses based on her payoffs at the terminal nodes. Eliminate the remaining strategies.
- 2. Shift those payoffs forward, creating new terminal nodes. Then select Player 1's best response.
- 3. The surviving chain of strategies is called a **subgame perfect equilibrium**.