Functional Programming Midterm Solution

Friday, November 10 2017

Exercise 1: K-Largest Elements (10 points)

Part I

```
def insert(elem: Int, list: List[Int]): List[Int] = list match {
  case x :: xs if x < elem ⇒ x :: insert(elem, xs)
  case _ ⇒ elem :: list
}</pre>
```

Part II

```
def findKLargestElements(k: Int)(list: List[Int]): List[Int] =
  list.foldLeft(List.empty[Int]) { (acc: List[Int], elem: Int) =>
    val newAcc = insert(elem, acc)

  if (newAcc.size > k) newAcc.tail else newAcc
}
```

Exercise 2: For comprehensions (10 points)

Exercise 3: Variance (10 points)

T1	?	T2
A => Y	>:	A => X
A => Y	>:	B => X
FixedChan[A, X]	<:	FixedChan[A, Y]
FixedChan[A, X]	×	FixedChan[B, X]
FixedChan[A, X]	<:	Chan[A, Y]
Chan[A, Y]	>:	FixedChan[B, X]

Exercise 4: Structural Induction (10 points)

We want to show tree .treeMap(f).toList === tree.toList.map(f) for any tree and f of the appropriate types. We proceed by structural induction on tree.

Case Leaf:

Which concludes the case.

Case Node(left, x, right):

Induction hypotheses:

- IH 1 : left .toList .map(f) === left.treeMap(f).toList
- IH 2 : right.toList.map(f) === right.treeMap(f).toList

Which concludes the case and the proof.