

Background & Motivation

■What Makes Federated Learning Unfair?

■ Challenges of computing a fair update direction in FL

- 1. Model-level gradient conflict.
- 2. Improvement bias.

3. Layer-level gradient conflict.

FedLF: Layer-Wise Fair Federated Learning

Zibin Pan^{1,2}, Chi Li^{1,4}, Fangchen Yu¹, Shuyi Wang^{1,2}, Haijin Wang¹, Xiaoying Tang* ^{1,2,3}, Junhua Zhao* ^{1,2}

¹SSE, The Chinese University of Hong Kong, Shenzhen; ²The Shenzhen Institute of Artificial Intelligence and Robotics for Society;

³ The Guangdong Provincial Key Laboratory of Future Networks of Intelligence; ⁴ Shenzhen Research Institute of Big Data

zibinpan@link.cuhk.edu.cn, chili@link.cuhk.edu.cn, fangchenyu@link.cuhk.edu.cn, shuyiwang@link.cuhk.edu.cn, haijinwang@link.cuhk.edu.cn, tangxiaoying@cuhk.edu.cn, zhaojunhua@cuhk.edu.cn

Experiments

The proposed FedLF

■ Problem formulation with a fair-driven objective

$$\min_{\omega} (F_1(\omega), F_2(\omega), \cdots, F_m(\omega), P(\omega)),$$
where $P(\omega) = -\cos(\vec{1}, F(\omega)).$

■ Layer-wise Multiple Gradient Descent Algorithm (LMGDA)

$$\begin{aligned} d_l^t, \alpha_l^t &= \underset{\substack{d_l^t \in \mathbb{R}^{n_l}, \alpha_l^t \in \mathbb{R} \\ \text{s.t.} \ g_{l,l}^t \cdot d_l^t \leq \alpha_l^t, \, \forall i = 1, \cdots, m, \\ g_{P,l}^t \cdot d_l^t \leq \alpha_l^t. \end{aligned}$$

Scalable method to obtain d_1^t

$$d_{l}^{t} = -\left(\sum_{i=1}^{m} \lambda_{i} g_{i,l}^{t} + \mu g_{P,l}^{t}\right), \sum_{i=1}^{m} \lambda_{i} + \mu = 1,$$

where $\lambda_1, \dots, \lambda_m, \mu \geq 0$ is the optimum of the dual problem:

$$\max_{\lambda_{i},\mu} -\frac{1}{2} \left\| \sum_{i=1}^{m} \lambda_{i} g_{i,l}^{t} + \mu g_{P,l}^{t} \right\|^{2}$$

$$s.t. \sum_{i=1}^{m} \lambda_{i} + \mu = 1,$$

$$\lambda_{i}, \mu \geq 0, \forall i = 1, 2, \cdots, m.$$

■ Combine layers

If $d_l^t = \vec{0}$ is satisfied for part of $l \in L$, then combine layer l with its neighbor and recalculate d_l^t .

■ The obtained direction d^t satisfies:

- 1. If ω^t is Pareto stationary, then $d^t = \vec{0}$.
- 2. If ω^t is not Pareto stationary, then

$$g_i^t \cdot d^t < 0$$
, $\forall i$; $g_{i,l}^t \cdot d_l^t < 0$, $\forall l$; $g_P^t \cdot d^t < 0$.

■ Improve absent client fairness

Take into account those absent clients who were online from $t - \tau$ to t - 1, where $\tau = M/|S^t|$. M is the number of recorded clients that have already joined in FL, and S^t is a set of online clients at communication round t.

■ Metrics:

- Performance: model average test accuracy across clients.
- Fairness indicator: $\arccos\left(\frac{A(\omega)\cdot\vec{1}}{||A(\omega)|||\vec{1}||}\right)$, where $A(\omega)$ denotes a vector that contains the test accuracy of the global model on each client.
- **■** Performance and fairness

Result 1: The average test accuracy of all clients (and the fairness indicator)

Result 1. The average test accuracy of all cheffs (and the fairness indicator)									
	FMNIST			CIFAR-10			CIFAR-100		
Algorithm	Dir(0.1)	Pat-1	Pat-2	Dir(0.1)	Pat-1	Pat-2	Dir(0.1)	Pat-1	Pat-2
FedAvg	.861(.116)	.828(.170)	.838(.135)	.690(.214)	.575(.341)	.681(.276)	.343(.201)	.199(.667)	.222(.604)
qFedAvg	.847(.133)	.831(.161)	.813(.118)	.681(.204)	.565(.301)	.661(.267)	.344(.196)	.183(.690)	.238(.529)
FedProx	.825(.121)	.834(.142)	.836(.105)	.544(.242)	.572(.205)	.566(.212)	.197(.291)	.207(.617)	.201(.538)
AFL	.865(.109)	.829(.204)	.854(.137)	.679(.201)	.561(.251)	.685(.202)	.382(.181)	.177(.753)	.261(.509)
Ditto	.820(.129)	.749(.278)	.815(.124)	.598(.216)	.463(.240)	.553(.251)	.301(.241)	.070(1.08)	.114(.784)
FedFV	.850(.132)	.836(.165)	.853(.135)	.682(.208)	.568(.376)	.681(.204)	.339(.198)	.191(.664)	.229(.558)
DRFL	.861(.109)	.855(.136)	.847(.157)	.692(.190)	.578(.307)	.684(.270)	.341(.201)	.193(.644)	.228(.540)
FedFa	.844(.174)	.815(.205)	.836(.116)	.653(.244)	.482(.297)	.695(.232)	.387(.189)	.114(1.09)	.222(.776)
FedGini	.867(.115)	.839(.160)	.837(.134)	.698(.195)	.587(.315)	.672(.246)	.349(.191)	.203(.621)	.198(.666)
FedCKA	.861(.117)	.816(.227)	.840(.129)	.690(.205)	.575(.341)	.674(.211)	.344(.201)	.190(.691)	.222(.575)
FedMGDA+	.809(.161)	.750(.305)	.815(.221)	.531(.264)	.440(.314)	.569(.282)	.173(.358)	.035(1.15)	.080(.839)
FedMDFG	.873(.089)	.863(.101)	.874(.084)	.729(.176)	.744(.142)	.714(.153)	.387(.181)	.278(.485)	.332(.387)
FedLF	.892(.084)	.894(.089)	.898(.074)	.766(.140)	.765(.126)	.761(.127)	.420(.158)	.409(.347)	.413(.305)

Result 2: The test accuracy of 10 clients

(a) Pat-1

(b) Pat-2

Acc. (% Acc.

AAAI-24

Client ID

Accuracy and efficiency

Conclusion

- 1. We identify three significant challenges that exist in computing a fair direction for the FL model update.
- 2. We design an effective fair-driven objective to drive the FL model fairer.
- 3. We are the first to propose the layer-wise multiple gradient descent algorithm (LMGDA) and adopt it to determine a layer-wise fair direction for FL model update.
- 4. We theoretically and empirically verified that FedLF outperforms SOTA in terms of performance and fairness.