Relació entre els processos aleatoris i les variables aleatòries

Si representam varies realitzacions d'un procés aleatori i consideram els valors de cada realització per a un valor constant de t_i , obtenim un conjunt de nombres aleatoris. Cadascun d'aquests nombres està associat a un únic resultat de l'experiment aleatori.

$$\begin{array}{cccc} X(t_i): & \Omega & \longrightarrow & \mathbb{R} \\ & \omega_1 & \to & X(\omega_1, t_i) \\ & \omega_2 & \to & X(\omega_2, t_i) \\ & \vdots & \vdots & \vdots \end{array}$$

Recordem que una variable aleatòria es definia com un conjunt de nombres, cada un d'ells associats a un resultat d'un experiment aleatori. De manera que $X(t_i)$ és una variable aleatòria, associada a l'instant de temps t_i d'un procés aleatori.

Per a cada instant de temps (també anomenat índex) que considerem tendrem una nova variable aleatòria, per aquest motiu es diu que un procés aleatori és una col·lecció indexada de variables aleatòries.

Notació. Hi ha vàries maneres de denotar els processos aleatoris. X(t) o X_t s'utilitza per a denotar la v.a. associada al temps t en el cas continu. En el cas discret és més freqüent utilitzar la notació X_i , que representa la v.a. associada a l'instant de temps t_i .

Observació. Les v.a. associades a un procés aleatori discret no són necessàriament discretes ni les associades a un procés continu són contínues.

Caracterització dels processos aleatoris

Com que un procés aleatori és una colecció de variables aleatòries, una forma de caracteritzar-lo (definir les seves propietats) és mitjançant la funció de probabilitat (v.a. discretes) o de densitat (v.a. contínues) conjunta de totes aquestes variables:

$$P(X_1=x_1,X_2=x_2,\cdots)$$
 (cas discret)
$$f_{X_1X_2...}(x_1,x_2,\cdots)$$
 (cas continu)

En general és impossible calcular la funció de probabilitat o densitat conjunta d'un procés que pot estar definit per una infinitat de v.a. Per aquest motiu és més habitual calcular altres característiques d'aquestes v.a. com ara els seus moments (esperança i variància) i els seus moments conjunts (autocorrelació i autocovariància).

Donat un procés aleatori X(t), definim:

- Mitjana o esperança de X(t): $m_X(t) = E(X(t))$
- Autocorrelacó de X(t): $R_X(t_1, t_2) = E(X(t_1) \cdot X(t_2))$
- Autocovariància de X(t): $C_X(t_1, t_2) = R_X(t_1, t_2) m_X(t_1) \cdot m_X(t_2)$
- Variància de X(t): $Var(X(t)) = C_X(t,t)$
- Coeficient de correlació de X(t): $\rho_X(t_1,t_2)=\frac{C_X(t_1,t_2)}{\sqrt{C_X(t_1,t_1)}\sqrt{C_X(t_2,t_2)}}$
- Propietats:

$$R_X(t_1, t_2) = R_X(t_2, t_1)$$

 $C_X(t_1, t_2) = C_X(t_2, t_1)$

Donat dos processos aleatoris X(t) i Y(t), definim:

- Correlació creuada de X(t) i Y(t): $R_{XY}(t_1, t_2) = E(X(t_1) \cdot Y(t_2))$
- Covariància creuada de X(t) i Y(t): $C_{XY}(t_1,t_2) = R_{XY}(t_1,t_2) m_X(t_1) \cdot m_Y(t_2)$

- Els processos es diuen **ortogonals** si $R_{XY}(t_1, t_2) = 0, \forall t_1, t_2$
- Els processos es diuen **incorrelats** si $C_{XY}(t_1, t_2) = 0, \forall t_1, t_2$
- Els processos es diuen **independents** si els vectors aleatoris $(X(t_1), X(t_2), \dots, X(t_k))$ i $(Y(t'_1), Y(t'_2), \dots, Y(t'_j))$ són independents per a tot k i j i qualsevol elecció de t_1, \dots, t_k i t'_1, \dots, t'_j .

Exemple 3:

(Exercici 2). Considerem el procés aleatori en temps discret X(n) definit a continuació. Es llança una moneda a l'aire; si surt cara $X(n) = (-1)^n$ i $X(n) = (-1)^{n+1}$ si surt creu, per a tot n.

- a) Dibuixau alguns camins de mostra del procés.
- b) Calculau la funció de probabilitat de X(n).
- c) Calculau la funció de probabilitat conjunta de X(n) i X(n+k).
- d) Calculau $\mu_X(n)$ y $C_X(n,m)$.

Exemple 4:

(Exercici 3). Sigui g(t) un pols rectangular a l'interval (0,1), és a dir g(t)=1 si $t\in (0,1)$ i zero a la resta de casos. Considerem el procés aleatori definit per X(t)=Ag(t) on $A=\pm 1$ amb la mateixa probabilitat.

- a) Calculau la funció de probabilitat de X(t).
- b) Calculau $\mu_X(t)$
- c) Calculau la funció de probabilitat conjunta de X(t) i X(t+d), amb d>0.
- d) Calculau $C_X(t, t + d)$ amb d > 0.

Exemple 5:

(Exercici 6). Sigui Z(t) = At + B on A i B són v.a. independents.

- a) Calculau la funció de densitat de Z(t).
- b) Trobau $\mu_Z(t)$ i $C_Z(t_1, t_2)$.

Exemple 6:

Calculau $C_{XY}(t_1, t_2)$ per als processos $X(t) = \cos(\omega t + \Theta)$ i $Y(t) = \sin(\omega t + \Theta)$, on $\Theta \sim \mathcal{U}(-\pi, \pi)$.

Exercicis proposats: 1, 4, 5, 7, 8