CS738: Advanced Compiler Optimizations

Interprocedural Data Flow Analysis Functional Approach

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE. ||T Kanpur

Interprocedurally Valid Paths

- ► G* ignores the special nature of call and return edges
- ▶ Not all paths in G* are feasible
 - do not represent potentially valid execution paths
- ▶ $IVP(r_1, n)$: set of all interprocedurally valid paths from r_1 to
- ▶ Path $q \in \text{path}_{G^*}(r_1, n)$ is in IVP (r_1, n)
 - iff sequence of all E^1 edges in g (denoted g_1) is proper

main

IVPs

р

Path Decomposition

$$\begin{array}{rcl} q & \in & \mathsf{IVP}(r_{\mathsf{main}}, n) \\ & \Leftrightarrow \\ q & = & q_1 \parallel (c_1, r_{p_2}) \parallel q_2 \parallel \cdots \parallel (c_{j-1}, r_{p_j}) \parallel q_j \\ & & \mathsf{where for each } i < j, q_i \in \mathsf{IVP}_0(r_p, c_i) \mathit{and} q_i \in \mathsf{IVP}_0(r_p, n) \end{array}$$

Proper sequence

- ▶ q₁ without any return edge is proper
- let $q_1[i]$ be the first return edge in q_1 . q_1 is proper if

 - $q_1[i-1]$ is call edge corresponding to $q_1[i]$; and
 - p q'_1 obtained from deleting $q_1[i-1]$ and $q_1[i]$ from q_1 is

Interprocedurally Valid Complete Paths

- ▶ $IVP_0(r_p, n)$ for procedure p and node $n \in N_p$
- ▶ set of all interprocedurally valid paths q in G^* from r_p to n
 - Each call edge has corresponding return edge in q restricted to E1

Functional Approach

- ► (*L*, *F*): a *distributive* data flow framework
- ▶ Procedure p, node $n \in N_p$
- lacksquare $\phi_{(r_p,n)}\in F$ describes flow of data flow information from start of r_p to start of n
 - along paths in $IVP_0(r_p, n)$

Functional Approach Constraints

$$\begin{array}{ll} \phi_{(f_p,f_p)} & \leq & id_L \\ \phi_{(f_p,n)} & = & \bigwedge_{(m,n) \in \mathcal{E}_p} (h_{(m,n)} \circ \phi_{(f_p,m)}) & \text{ for } n \in N_p \end{array}$$
 where

$$h_{(m,n)} \ = \ \begin{cases} f_{(m,n)} & \text{if } (m,n) \in E_p^0, \\ f_{(m,n)} \in F \text{ associated flow function} \\ \phi_{(q_0,e_q)} & \text{if } (m,n) \in E_p^1 \text{ and } m \text{ calls procedure } q \end{cases}$$

Information x at r_p translated to information $\phi_{(r_0,n)}(x)$ at n

Solving ϕ Constraints

▶ Round-robin iterative approximations to initial values

$$\begin{array}{rcl} \phi^0_{(r_p,r_p)} & \leq & id_L \\ \phi^0_{(r_p,n)} & \leq & f_\Omega & n \in N_p - \{r_p\} \end{array}$$

Reach maximal fixed point

Example

$$id_{L} \operatorname{read} \underbrace{a,b}_{f_{1}} \underbrace{b_{1}}_{f_{1}} \underbrace{ii \left(a=0\right) \top}_{f_{2}} \underbrace{iid_{L}}_{b_{2}} \underbrace{iid_{L}}_{b_{2$$

р

Example

Interprocedural MOP

$$\Psi_n = \bigwedge \{ f_q : q \in \mathsf{IVP}(r_{\mathsf{main}}, n) \} \in F \qquad \forall n \in N^*$$
 $y_n = \Psi_n(\mathsf{BoundaryInfo}) \qquad \forall n \in N^*$

 y_n is the meet-over-all-paths solution (MOP).

Iterative Solution

			Iteration #		
Function	Constraint	Init	1 st	2 nd	310
$\phi_{(r_1,r_1)}$	idL	id	id	id	id
$\phi_{(r_1,c_1)}$	$f_1 \circ \phi_{(r_1,r_1)}$	f_{Ω}	f_1	f_1	f_1
$\phi_{(r_1,n_1)}$	$\phi(r_2,e_2) \circ \phi(r_1,c_1)$	f_{Ω}	f_{Ω}	f_1	f_1
$\phi_{(r_1,e_1)}$	$f_1 \circ \phi_{(r_1,n_1)}$	f_{Ω}	f_1	f_1	f_1
$\phi_{(r_2,r_2)}$	id _L	id	id	id	id
$\phi(r_2,b_2)$	$id_L \circ \phi_{(r_2,r_2)}$	f_{Ω}	id	id	id
$\phi_{(r_2,c_2)}$	$f_0 \circ \phi_{(r_2,b_2)}$	f_{Ω}	f_0	f_0	f_0
$\phi(r_2, n_2)$	$\phi(r_2, \theta_2) \circ \phi(r_2, c_2)$	f_{Ω}	f_{Ω}	f_0	f_0
$\phi(r_2,e_2)$	$(f_1 \circ \phi_{(r_2, r_2)}) \wedge (id_L \circ \phi_{(r_2, r_2)})$	f_{Ω}	id	id	id

Solving Data Flow Problem

main

- \blacktriangleright The above process gives solution to ϕ functions
- ▶ Use it to compute data flow information x_n associated with start of block n

$$x_{r_{\text{main}}} = BoundaryInfo$$

for each procedure p

$$\begin{array}{lll} x_{r_p} & = & \bigwedge \left\{ \begin{matrix} \phi_{(r_q,c)}(x_{r_q}) : & q \text{ is a procedure and} \\ c \text{ is a call to } p \text{ in } q \end{matrix} \right\} \\ x_n & = & \phi_{(r_p,n)} & n \in N_p - \{r_p\} \end{array}$$

lterative algorithm for solution, maximal fixed point solution

IVP₀ Lemma

$$\phi_{(r_p,n)} = \bigwedge \{f_q : q \in \mathsf{IVP}_0(r_p,n)\} \quad \forall n \in N_p$$

Proof: By induction (Exercise/Reading Assignment)

$$\Psi_n = \bigwedge \{ f_q : q \in \mathsf{IVP}(r_{\mathsf{main}}, n) \} \in F \quad \forall n \in N^*$$

 $\mathcal{X}_n = \wedge \{\phi_{(r_{p_i},n)} \circ \phi_{(r_{p_{i-1}},c_{i-1})} \circ \ldots \circ \phi_{(r_{p_1},c_1)} \mid c_i \text{ calls } p_{i+1}\}$

MOP

$$\Psi_n = \mathcal{X}_n$$

Proof: IVPn Lemma and Path decomposition

$$y_n = \Psi_n(BoundaryInfo) = \mathcal{X}_n(BoundaryInfo)$$

MOP vs MFP	Practical Issues
 F is distributive ⇒ MFP = MOP F is monotone ⇒ MFP ≤ MOP 	 How to compute φs effectively? For general frameworks L not finite F not bounded Does the solution process converge? How much space is required to represent φ functions? Is it possible to avoid explicit function compositions and meets?