HW5f

Math 172: Galois Theory

Jun 14 at 1:00

Prof. Thonkers

Stephen Xu

Stephen Xu HW5f

Problem 1

24.3.7

Let $\alpha = \sqrt{2 + \sqrt{2}} \in \mathbb{C}$.

- a) Compute $f = \min_{\mathbb{Q}}(\alpha)$.
- b) Find $E \subseteq \mathbb{C}$ such that E is the splitting field for f over \mathbb{Q} . Compute $|E : \mathbb{Q}|$.
- c) Show that $\operatorname{Gal}(E/\mathbb{Q})$ contains an element of order 4.
- a) Consider $\alpha^2 \sqrt{2} = 2$. Rearranging, we obtain $\alpha^2 = 2 + \sqrt{2}$. We thus have $\alpha^4 = \left(2 + \sqrt{2}\right)^2 \Rightarrow \alpha^4 4\sqrt{2} 6 = 0$. We can rewrite $4\sqrt{2} + 6$ in terms of α^2 , obtaining $4\sqrt{2} + 6 = 4\alpha^2 2$. Therefore $\alpha^4 4\alpha^2 + 2$. As such we obtain a potential minimal polynomial $x^4 4x^2 + 2$. Using Eisenstein's, we see it's irreducible and monic with α as a root. Therefore $f = x^4 4x^2 + 2$.
- b) We can find the roots as $\pm \sqrt{2+\sqrt{2}}$, $\pm \sqrt{2-\sqrt{2}}$. We note that because they share the same minimal polymial, $|E:\mathbb{Q}|=\deg(\min_{\mathbb{Q}}(\alpha))=4$, and we have that $E=\mathbb{Q}\left(\sqrt{2+\sqrt{2}},\sqrt{2-\sqrt{2}}\right)$.
- c) Consider the automorphism $\sigma \in \operatorname{Gal}(E/\mathbb{Q})$ such that $\varphi(\alpha) = \beta$, where $\beta = \sqrt{2 \sqrt{2}}$. Consider $\varphi\left(\sqrt{2}\right) = \varphi\left(\sqrt{\alpha\beta}\right) = \varphi(\alpha^2 2) = \varphi(\alpha)^2 \varphi(2) = \beta^2 2 = -\sqrt{2}$

Using this, we see that we can use σ recursively to obtain $\beta, \alpha, -\alpha, -\beta$. We thus show that σ is an element of order 4 in $\operatorname{Gal}(E/\mathbb{Q})$.

Stephen Xu HW5f

Problem 2

New Problem

Content 1 from part 1

Content 2 from part 2

- a) Answering question posed from part 1.
- b) Answering question posed from part 2.