# Lesson 5: Deep Q-Network



## LETTER

doi:10.1038/nature14236

## Human-level control through deep reinforcement learning

Volodymyr Mnih<sup>1\*</sup>, Koray Kavukcuoglu<sup>1\*</sup>, David Silver<sup>1\*</sup>, Andrei A. Rusu<sup>1</sup>, Joel Veness<sup>1</sup>, Marc G. Bellemare<sup>1</sup>, Alex Graves<sup>1</sup>, Martin Riedmiller<sup>1</sup>, Andreas K. Fidjeland<sup>1</sup>, Georg Ostrovski<sup>1</sup>, Stig Petersen<sup>1</sup>, Charles Beattie<sup>1</sup>, Amir Sadik<sup>1</sup>, Ioannis Antonoglou<sup>1</sup>, Helen King<sup>1</sup>, Dharshan Kumaran<sup>1</sup>, Daan Wierstra<sup>1</sup>, Shane Legg<sup>1</sup> & Demis Hassabis<sup>1</sup>





#### 3 Main innovations:

 ConvNet Value approximator

CONVNET VALUE APPROXIMATOR!!??

- Experience Replay
- 3. Target Networks



### NQL -> DQN: What's the difference?



#### 3 Main innovations:

 ConvNet Value approximator

•

## CONVNET VALUE APPROXIMATOR!!??

- Experience Replay
- 3. Target Networks



## **But first: Batching**



## **Experience Replay**



#### **Key Point:**

We don't sample from just recent experiences but from all.

#### Batch:



#### Replay:





### **Target Networks**



New Loss:  $r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t)$  2

## **Target Networks**



## One last thing: Huber Loss



#### Where to from here?

#### If you want to continue on this code-base:

- Visualize training with tensorboard
- Try to implement some extensions: Double-DQN, Dueling Networks etc.
- How would any of this work in continuous action spaces?
- Try some of the other environments, MountainCar, Inverted pendulum etc.
- Can you get it working with a Convnet?
  - Warning: training times get out of hand quickly.
  - Test on the ATARI Envs

#### Want to learn about other types of RL?

- Policy Gradients
  - A3C, VPG, TRPO, PPO etc.
- Hybrid/Integrated Methods:
  - UNREAL, NEC, Successor Learning etc.
- Applications/Misc.
  - Inverse RL/Imitation Learning,

#### **Resources:**

 To many to list here: UC Berkeley has tons of great stuff, start with their course or RL book by Richard Sutton



