AKDENİZ UNIVERSITY CSE 211 – Digital Design

LAB08 Assignment

Your task is to design 4 bit binary counter using T Type Flip Flops.

- First, fill the state table in the second page in this document
- Then, fill the karnough maps for all flip flops in the second page of this document. Then find the boolean functions.
- Lastly, design your 4-bit counter on Proteus Design Suite. In your design, use a single 7-segment bcd. Counter should start from 0 and increase one per 1 second.
- Count order should be as in state diagram on the right
- Seven segment display should display corresponding BCD value as follows

 $0 \, \Box \, 1 \, \Box \, 2 \, \Box \, 3 \, \Box \, 4 \, \Box \, 5 \, \Box \, 6 \, \Box \, 7 \, \Box \, 8 \, \Box \, 9 \, \Box \, A \, \Box \, B \, \Box \, C \, \Box \, D \, \Box \, E \, \Box \, F \, \Box \, 0 \, \Box \, 1 \dots$

PS: A template project is given in the attached files.

• 7-SEG-BCD-GRN: BCD input 7 segment display

• **JKFF**: JK Type Flip Flop (You must use this to create T Type Flip Flop)

• And Gate: Logic and gate

Logic State, Logic Probe(big)

Full Name:	İrem KARAKAPLAN
Student No:	20220808056

State Table of 4-bit Binary Counter

Present State			
А3	A0		
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1
A1, A0			

Next State								
А3	A3 A2 A1 A0							
0	0	0	1					
0	0	1	0					
0	0	1	1					
0	1	0	0					
0	1	0	1					
0	1	1	0					
0	1	1	1					
1	0	0	0					
1	0	0	1					
1	0	1	0					
1	0	1	1					
1	1	0	0					
1	1	0	1					
1	1	1	0					
1	1	1	1					
0	0	0	0					

Flip-Flop Inputs							
TA3	TA3 TA2 TA1 TA						
0	0	0	1				
0	0	1	1				
0	0	0	1				
0	1	1	1				
0	0	0	1				
0	0	1	1				
0	0	0	1				
1	1	1	1				
0	0	0	1				
0	0	1	1				
0	0	0	1				
0	1	1	1				
0	0	0	1				
0	0	1	1				
0	0	0	1				
1	1	1	1				

A1, A0 A3, A2	00	01	11	1 0
00	0	0	1	0
01	0	0	1	0
11	0	0	1	0
10	0	0	1	0

$$T_{A2} = \sum (m(3,7,11,15))$$

A1, A0 A3, A2	00	01	11	1 0
00	0	0	0	0
01	0	0	1	0
11	0	0	1	0
10	0	0	0	0

$$T_{A3} = \sum \quad (m(7,15))$$

Karnough Maps

A1, A0 A3, A2	00	01	11	10
00	1	1	1	1
01	1	1	1	1
11	1	1	1	1
10	1	1	1	1

$T_{A0} =$	
\sum	(m(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15))

A1, A0 A3, A2	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	0	1	1	0
10	0	1	1	0
$T_{A1} = \sum$	(m(1,3,5,7,9,11,13,15))			