Student Name:	Date:	

Lab 7: Gravity Pitch

Start-up Instructions

- 1. Go to https://www.explorelearning.com
- 2. If you already created an account using my class code got to step 6.
- 3. Click on the "Enroll in a Class" button in the upper right hand corner of the web page.
- 4. Type in the class code: CWBJQF.
- 5. Create an account, all you need is your name and mail.
- 6. Select the Gravity Pitch Gizmo simulation.

Gizmo Warm-up: Which way does gravity pull?

- Use the slider to set the Velocity to 0.0 km/s (kilometers per second). Velocity is basically the same thing as speed, but has direction as well. In this case the pitcher is simply dropping the ball. Click Play ().
 - A. What direction does the ball go?
 - B. Sketch the pitcher and the trajectory of the ball on the diagram.
- 2. Click **Reset** (2) and drag the pitcher to several new positions. Click **Play** and watch him drop the ball each time. Sketch the pitcher and the trajectory of each ball on the diagram.

Α.	What do y	you notice?	

B. The ball is pulled by a force called **gravity**. In what direction does gravity always pull the ball?

Activity A:

Get the Gizmo ready:

How far does it go?

- Click Reset.
- Drag the pitcher back to the top.
- Set the **Velocity** to 1.0 km/s (2,232 miles per hour).

Question: Why do objects go around, or orbit, other objects?

1. Observe: Click **Play** and observe the ball's trajectory. (Note: The pitcher is very tall – about 1500 km (930 miles) tall!)

2.	Predict: How would the trajectory of the ball change as the pitcher throws it harder and harder? Explain below, and draw several predicted trajectories on the diagram.						
_	0 II			•			
3.	necessary, use th and the "-" zoom	w the ball at velocities of 3 e Fast forward button (control to see a larger are the trajectory and record the) to speed things a. For each throw	s up ′,			
	Velocity	y Distance	traveled				
	3 km/s						
	5 km/s						
	7 km/s						
		: What force causes objec 8 km/s and 9 km/s. (If you at happens?	•			e the "—"	
С	ctivity B: omparing lanets	Get the Gizmo ready: Click Reset. On the Planet mer Set the Velocity to		5 .			
Qι	uestion: How woul	d the gravity of other pla	inets affect a pit	ched ball?			
1.	matter it contains.	the Planet mass and Pla The radius of a planet is e mass and radius of Ven	the distance from		-		
	Venus mass:	× Earth's mass	Venus radius	s:	× Earth's radius		

Design a planet

2.	Predict: Will the pitcher have to throw the ball faster or not as fast to send a ball into orbit around				
	Venus? Why?				
3.	Run Gizmo: Orbital velocity is the velocity needed to make a circular orbit. Use the Gizmo to find the orbital velocity of the ball on Venus. Make the orbit as circular as you can.				
	A. What is the orbital velocity on Venus?				
	B. Do the same on Earth. What is the orbital velocity on Earth?				
	C. Based on this, which planet do you think has stronger gravity, Venus or Earth? Explain.				
4.	Predict: Select Mars. Estimate what the orbital velocity will be on Mars:				
5.	Run Gizmo: Adjust the Velocity until you create a circular orbit on Mars.				
	A. What is the orbital velocity on Mars?				
	B. How does gravity on Mars compare to Earth and Venus?				
6.	Extend your thinking: The escape velocity is the smallest velocity needed for the baseball to escap from the planet's gravity and fly off into space, never to return. When the ball reaches escape velocity, the Distance traveled will read "infinity."				
	A. Which planet do you think has the lowest escape velocity?				
	Use the Gizmo to test your prediction. Were you correct?				
A	Get the Gizmo ready: • Click Reset				

Question: How does a planet's mass and radius affect a pitched ball?

1. <u>Observe</u>: Using the sliders, try a variety of values for **Planet mass** and **Planet radius** for your custom planet. Observe the trajectory of the ball each time.

• On the **Planet** menu, select **Custom**.

• Set the **Velocity** to 7.0 km/s.

2.	Form hypothese	es: Fill in the blar	nks below:		
	As its mass increases, the strength of a planet's gravity				
	As its radius inc	creases, the strer	ngth of a pla	net's gravity	
3.				n (no mass), Planet radius to 1.0 of Earth (equal to at for masses of 1.0 (equal to Earth) and 2.0.	
	Planet mass	Planet radius	Velocity	What happened?	
	0.0	1.0	7.0 km/s		
	1.0	1.0	7.0 km/s		
	2.0	1.0	7.0 km/s		
4.	Analyze: How d	oes increasing th	ne mass affe	ect the gravity of the planet? How do you know?	
5.	Planet radius	Record results in	a notebook	it, but now keep the Planet mass at 1.0 and change to or on a separate sheet of paper.	the
	B. How doe	es changing the r	radius affect	the strength of a planet's gravity?	
6.		•		a planet with the strongest possible gravity. What are	e the