Logica de primer orden: Semantica

Prof. Ernesto Rodriguez

Universidad del Itsmo erodriguez@unis.edu.gt

El Triangulo de la Semantica

Imagne obtenida de [1]

Semantica de la Lógica de Primer Orden

- El proposito de la lógica es responder preguntas sobre algún dominio
- Generalmente, ese dominio pertenece al mundo real, con todos sus objetos materiales, immateriales, sentimientos, ect.
- Sin embargo, la lógica esta limitada a objetos que pueden existir en un pedazo de papel
- Por eso mismo, utiliza los conjuntos como sus objetos
- Debido a que el "mundo real" no esta hecho de conjuntos (abierto a discusión filosofica), necesitamos modelar nuestro dominio de interes mediante conjuntos
- A este dominio de interes se le conoce como la Estructura-S

La Estructura-S

Estructura-S: Un conjunto que contiene todos los objetos con los que trabaja una lógica de primer orden. Formalemente, para un conjunto S de simbolos constantes, predicados y funciones, se define una Estructura-S (denotada como \mathcal{A}) es un conjunto A (llamado el transportador de \mathcal{A}) con las siguientes caracteristicas:

- Por cada simbolo constante $c \in S$, existe un elemento en $c^{\mathcal{A}} \in A$
- Por cada predicado unitario $P \in S$, existe un conjunto $P^A \subset A$
- Por cada predicado binario $R \in S$, existe un conjunto $R^A \in A \otimes A$
- Una funcion binaria $f \int S$ es una funcion cuyo dominio y rango pertenecen a A. Se puede definir como $f^A := \{(x,y)|f(x)=y\}$.
- Los predicados y funciones de mayor aridad se definien de forma similar.

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ □ りへ○

La Estructura-S

A menudo, los ingredientes de una Estructura-S \mathcal{A} se colocan en una tupla. Por ejemplo:

- Si nuestro conjunto S de simbolos contiene $\{+,0,1\}$, podemos escribir $\mathcal{A}:=(\mathbb{N},+^{\mathbb{N}},0^{\mathbb{N}},1^{\mathbb{N}})$
- El el conjunto S de numeros naturales ordenados $\{+,<,0,1\}$ se escribe $\mathcal{A}:=(\mathbb{N},+^{\mathbb{N}},<^{\mathbb{N}},0^{\mathbb{N}},1^{\mathbb{N}})$

Observaciones

- La lógica de primer orden (y las lógica en general) obligan que uno describa su contenido antes de utilizarse.
- Si uno desea extender el dominio de una lógica, uno debe definir nueva mente la *Estructura-S*.
- En algúnos casos, se puede extneder el vocabulario definiendo nuevos simbolos mediante la lógica misma. Por ejemplo:
 - $\forall x \ 2 = x \Leftrightarrow x = 1 + 1$
- Puede succeder que la lógica no sea una buena herramienta para describir procesos que ocurren a traves del tiempo. Por ejemplo, la evolución, donde nuevas especies aparecen y viejas especies de-aparecen.
- Existe la logica *lineal-temporal* que permite describir procesos que ocurren a traves del tiempo.

Interpretaciones

- Una interpretación \mathcal{I} es una pareja (\mathcal{A}, β) donde \mathcal{A} es una Estructura-S y β es una asignación de variables.
- Una asignación de variables es un diccionario que para toda variable x,y,z, etc. define un objeto $c \in A$ al cual apunta la variable.

Re-asignación de Variables

Dada una asignación de variables β se define la re-asignación de variables $\beta \frac{a}{x}$ como una asignación que actua igual a β excepto en el caso de x, a la cual se le asigna el valor a:

$$\beta \frac{a}{x}(y) = \begin{cases} a & \text{if } y = x \\ \beta(y) & \text{otherwise} \end{cases}$$

Dado $\mathcal{I}:=(\mathcal{A},\beta)$, también se define $\mathcal{I}^{\, a}_{\, x}$ como $(\mathcal{A},\beta^{\, a}_{\, x})$

Interpretación de Expressiones

Ahora, dada una expression y una interpretación $\mathcal{I} := (\mathcal{A}, \beta)$, podemos interpretarla de la siguiente manera:

- Para toda variable x, $\mathcal{I}(x) = \beta(x)$
- Dada una constante $c \in S$, $\mathcal{I}(c) = c^{\mathcal{A}}$
- Dado f y las expressiones x_1, \ldots, x_n : $\mathcal{I}(fx_1, \ldots, x_n) = f^{\mathcal{A}}(\mathcal{I}(x_1), \ldots \mathcal{I}(x_n))$

Relación de Modelado

Dada una interpretación $\mathcal{I}=(\mathcal{A},\beta)$ y una expression φ , podemos definir la relacion de modelado $\mathcal{I}\models\varphi$ (dicho \mathcal{I} es un modelo de φ) como:

Las reglas para (\Leftarrow) y (\Leftrightarrow) se pueden definir de la misma forma.

Relación de Modelado

- Una expresión φ solo puede ser cierta o mentira respecto a alguna interpretación $\mathcal I$
- Las interpretaciónes \mathcal{I} nos permiten colocar objetos matematicos dentro de formulas logicas.
- La importancia de esta relación entre formulas y objetos sera más clara cuando estudiemos un calculo que nos permite trabajar on dichas formulas.

Vinculación

Relación de Vinculación: Dada una expresión φ y un conjunto ϕ , escribimos $\phi \models \varphi$ (dicho ϕ vincula a φ) si toda interpretación que es un modelo de ϕ (es decir que es un modelo para todo $\psi \in \phi$) tambien es un modelo de φ .

- La Relacion de Vinculación es en essencia una "verdad matematica" ya que dice que dada una serie de suposiciones (ϕ) poemos ver que φ es cierto.
- Una *Relacion de vinculación* simpre existe o no, sin importar si alguien ya lo demostro o no.

Formalidades

- Una expresión φ es una tautologia, si la vincula el conjunto vacio $(\emptyset \models \varphi)$. Ej. $\forall x \neg \neg x \Leftrightarrow x$
- Una expresión φ es *invalida* o una *contradicción* si no existe un conjunto ϕ tal que $\phi \models \varphi$
- Una expresión φ es satisfacible si existe alún ϕ tal que $\phi \models \varphi$
- Dos expresiones φ y ψ son equivalentes si $\varphi \models \psi$ y $\psi \models \varphi$, tambien escrito como $\varphi \Leftrightarrow \psi$

Referencias

Herbert Jaeger.

Lecture notes: Formal languages and logic.

http://minds.jacobs-university.de/sites/default/files/uploads/teaching/lectureNotes/LN_FLL.pdf