TD8: Molécules et cristaux - corrigé

Exercice 1 : FORMULES DE LEWIS

- 1. H^+ configuration $1s^0 : \overline{H}^{\oplus}$
- 2. O configuration $1s^22s^22p^4 \rightarrow 2$ célibataires, 2 paires : ${}^{\bullet}\overline{\mathbb{Q}}{}^{\bullet}$
- 3. C configuration $1s^22s^22p^2 \to 2$ célibataires , 1 paire, 1 orbitale vacante : $\mathbb{I}\overline{\mathbb{C}}$, habituellement : $\dot{\mathbb{C}}$
- 4. N⁻ configuration $1s^22s^22p^4 \rightarrow 2$ célibataires, 2 paires : $\overline{\underline{N}}^{\bullet}$

Exercice 2 : LES SILICATES

- 1. Configuration $_{14}\text{Si}: 1s22s^22p^63s^23p^2 \rightarrow \mathbb{I}\overline{\text{Si}}$.
- 2. •<u>Ō</u>
- 3. $N = \underbrace{4}_{\text{Si}} + \underbrace{6 \times 4}_{\text{O}_4} + \underbrace{4}_{\text{4-}} = 32$ électrons de valence. Il faut donc placer 16 doublets.
- 4. Silicate : $|\overline{\underline{Q}}^{\ominus} \overline{\underline{Q}}|$ $|\overline{\underline{Q}}^{\ominus} \overline{\underline{Q}}|$

Exercice 3: Combustion du Carbone

1.
$$-C + \frac{1}{2}O_2 \rightarrow CO$$

 $-C + O_2 \rightarrow CO_2$

La réaction de formation de monoxyde de carbone est incomplète car elle se produit dans un milieu pauvre en dioxygène.

2.
$$-\operatorname{CO} : |\operatorname{O} = \operatorname{C}|^{\ominus}$$

 $-\operatorname{CO}_2 : (\operatorname{O} = \operatorname{C} = \operatorname{O})$

Exercice 4 : OXYDES D'AZOTE

- NO $_2:$ O $\dot{\rm N}$ O (On ne peut pas satisfaire la règle de l'octet)
- $\bullet \ \operatorname{NO}_{2}^{-} : \stackrel{\ominus}{:} \overline{\underline{\mathbf{0}}} \longrightarrow \overline{\mathbf{N}} = 0$
- $NO_3^- : |\overline{\underline{Q}} N = \overline{\underline{Q}}|$
- $NO_2^+ : O \longrightarrow N \stackrel{\oplus}{=} O$

Donner la représentation de Lewis de toutes ces molécules à base d'azote.

Exercice 5 : SEL DE CUISINE

On compte le nombre de chaque type d'atome dans une maille cristalline :

- Les 8 atomes de Na aux coins de la maille comptent chacun pour $\frac{1}{8}$ et les 6 atome de Na aux centres des faces comptent chacun pour $\frac{1}{2}$ ce qui donne un total de $8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$ Na
- Les 12 atomes de Cl qui occupent les centres des arêtes comptent chacun pour $\frac{1}{4}$ et l'atome de Cl au centre de la maille compte pour 1, ce qui donne un total de : $12 \times \frac{1}{4} + 1 = 4$ Cl.

La formule chimique de cette maille est donc 4NaCl, que l'on peut simplifier en NaCl.

Exercice 6 : Fluorure de Manganèse

On compte le nombre de chaque type d'atome dans une maille cristalline :

- Les 8 atomes de Mn aux coins de la maille comptent chacun pour $\frac{1}{8}$ et l'atome de Mn aux centres de la maille compte pour 1, ce qui donne un total de $8 \times \frac{1}{8} + 1 = 2$ Mn
- Les 4 atomes de F (type 1) sur les faces comptent chacun pour $\frac{1}{2}$ et les 2 atomes de F dans la maille comptent pour 1, ce qui donne un total de : $4 \times \frac{1}{2} + 2 = 4$ F.

La formule chimique de cette maille est donc Mn₂F₄, que l'on peut simplifier en MnF₂.

Exercice 7: GRAPHITE

On représente ci-dessous la maille parallélépipédique qui décrit correctement le cristal de graphite

Vue de dessus

Vue de face

Vue en perspective