BIOMASS UTILIZATION IN MALAYSIA: CURRENT STATUS OF CONVERSION OF BIOMASS INTO BIOPRODUCTS

MOHAMED ALI HASSAN SHAHRAKBAH YACOB

UNIVERSITY PUTRA MALAYSIA

Energy Requirement

Global scenario :

- Rising fossil fuels prices
- Rapid depletion of reserves
- Deep water oil production rising cost
- Complications in oil recovery rising cost
- Political uncertainties oil producers

Malaysia scenario :

- Growing demand becoming developed nation by 2020
- Limited fossil fuel reserves, only 30–40 years
- Net oil importer from 2040

Environmental issues: Usage of fossil fuels

- Uncontrolled anthropogenic release of Greenhouse Gases
 - Increased heat trapped in the atmosphere 0.6-2.5°C (last 50 years), 1.4-5.8°C (21st century)
- Detrimental effects to global climate:
 - Increase in sea level (10cm 20cm) submerging of lowlands, deltas & islands
 - Changing weather patterns
 - Increase moisture precipitation & evaporation frequent rainstorms
 & drier soils
 - Decline in soil moisture low crop yield
 - Change in water supplies unpredictable weather
- Adversely affecting the WORLD FOOD PRODUCTION and the WORLD ECOSYSTEM

Biomass as an Alternative?

- Shifting of paradigm towards BIOMASS
 - Renewable energy
 - Sustainable
 - Environmentally friendly
 - Abundant
 - Untapped energy
- Uncertainties of BIOMASS
 - Technological proven?
 - Economically feasible?
 - Constant supply? (quality and quantity)
 - Availability & distribution ? (worldwide)

Biomass in Malaysia

- Biomass:
 - by-products with no or low profit generated from agricultural or industrial processes
- Main sources of biomass in Malaysia
 - Domestic wastes (MSW)
 - Agricultural residues
 - Animal wastes
 - Effluent sludge/wastewater
 - Wood chips

Biomass resources: Agricultural residues

- Most abundant in Malaysia(> 70 million tonnes annually)
- Production of biomass throughout the year – high sunlight intensity/time and high rainfall
- Main contributor of biomass palm oil industry
 - Empty fruit bunches (EFB)
 - Palm oil mill effluent (POME)
 - Mesocarp fiber
 - Palm kernel shells
 - Palm kernel cake (residue)
- Mainly ligno-cellulosic materials

Palm Oil Industry: Biomass

Thermal conversion: Biomass

- Thermal conversion of biomass
- Mainly in power/electricity generation
- Commercially used in the industries
 - Palm oil mills boilers and steam turbines
 - Landfills methane combustion
- Technology proven and high demand for energy
- Low efficiency boiler system meant for waste disposal in the mill

Biological conversion: CH₄ generation

- Collaborative Partners –
 University Putra Malaysia
 Kyushu Inst. of Technology
 FELDA Palm Industries
 Sumitomo Heavy Industries
- CH₄ generation from POME anaerobic treatment
- Pilot plant operation 500 m³ improved design methane tank, POME holding tank, settling tank, gas scrubber, gas storage tank
- Conversion into electricity using gas turbine

Biological Conversion: Organic Acids

- Collaborative partners UPM, FELDA, KIT
- Established fermentation technology of organic acids from POME anaerobic treatment
- Production of acetic, propionic and butyric acids
- Up scaling the process to pilot plant operation

RAW POME

ANAEROBIC TREATMENT

PURIFIED ORGANIC ACID

Biological Conversion: Bioplastics

- Collaborative Partners UPM, KIT & FELDA
- Utilization of acetic, propionic and butyric acids from POME
- Fermentation of organic acids into poly-hydroxyalkanoates
- The whole process will utilize excess energy from biogas plant
- Current stage Distillation of organic acids and downstream processing of PHA

Biological Conversion: Bio-compost

- Organic compost was successfully produced using POME sludge, shredded EFB, MSW and domestic sewage sludge
- Good properties such as pH 6-8, C/N 20 and comply to USEPA standards
- Performance was comparable with commercial composts
- Suitable for vegetables and ornamental plants
- Commercially available

Biological Conversion: Animal Feedstock

- Palm-based feedstock:
 - Oil palm fronds with added nutrient supplements
 - Palm press fiber
 - Palm kernel cake
 - POME sludge
- Sago-based feedstock:
 - Pith residue (starch)
- Most of the feedstock from palm-based and sago-based are commercially available
- Others:
 - Enzyme production by SSF (cellulase, amylase)
 - Acetone-butanol-ethanol (ABE)
 - Mushroom cultivation

Palm oil Industry: Towards Zero Emission

Municipal Solid Waste: Biomass

- Malaysia generates in excess of 15,000 tons of solid waste per day
- The life span of landfills:
 5 10 years ONLY
 80% of the 230 landfills will be closed in TWO years
- Non biodegradable plastics is widely used in supermarkets
- Malaysian government recognizes the importance of preserving the environment by promoting recycling (4R)

Organic waste is the highest contributor

Municipal Solid Waste: Biomass

- Energy (methane) for power/ electricity generation
 - 1st IPP Ayer Hitam Landfill2 MW
- Chemicals
 - Organic acids production lactic, acetic, propionic and butyric acids
 - Bioplastics PHA or polylactate
- Fertilizer Bio-compost

Challenges: Biomass Utilization

- Biomass has great potential as renewable resources
- Two major problems:
 - Technological shortcomings in realization of fermentable products from biomass
 - Complex and sensitive system (biological agents)
 - Production of several products in a single process
 - Complexity in downstream processing
 - Socio-economics
 - Not competitive compared to fossil fuels
 - Accountability in pollution and global warming
 - Sustainability of process and technology

Outlook: Biomass Utilization

- Malaysia has great potential in biomass utilization as renewable resources
- Significant reduction in GHG emission
 - to achieve sustainable development via quantification of emission limitation and reduction of GHG under Kyoto Protocol
 - Clean Development Mechanism (CDM) projects generate Certified Emission Reduction (CER) for sale or export
 - The CER can be used towards developed nations commitments to mitigate their GHG emissions
- Biomass utilization promises sustainable development of both the industry and environment

Acknowledgement

- Organising committee
- Thank you...