

UBAS: An Ultrasound Based Air-writing System

Hui Chen, Tarig Ballal, Mohamed Saad and Tareq Y. Al-Naffouri King Abdullah University of Science and Technology (KAUST)

1. Introduction

- Gestures play an essential role in both human-human and human-machine interaction
- Ultrasound provides high accuracy in localization and tracking
- We propose an accurate and low cost ultrasound-based text recognition system

2. System Structure

3. Motion Tracking

For a certain angle, the noise-free phase difference vector:

$$\phi_i(heta_x) = rac{2\pi d}{\lambda_i} = rac{2\pi f_i \sin(heta_x) D}{v} \quad (i=1,...,N), \quad (1-1)^{-1}$$

- f_i is the i^{th} frequency component of the signal.
- ullet v is the speed of signal propagation.

The observed phase-difference:

$$\hat{\psi}_i = \arg(Y_1(f_i) \cdot Y_2^*(f_i)) = \hat{\phi}_i - 2\pi N_i,$$
 (2)

► Y_1 and Y_2 are the DFT (Discrete Fourier Transform) of the received signals at sensor S_1 and sensor S_2 , respectively.

Phase mismatch function:

$$e(\theta_m) = \sum_{i=1}^{N} |\hat{\psi}_i - \psi_i(\theta_m)| = \sum_{i=1}^{N} |\hat{\psi}_i - \text{wrap}(\phi_i(\theta_m))|, \quad (3)$$

$$\text{wrap}(\alpha) = \left(\frac{\alpha}{2\pi} - \left\lfloor \frac{\alpha}{2\pi} \right\rfloor\right) \cdot 2\pi, \quad (4)$$

ullet θ_m is the angle candidates.

Search based AOA estimation:

$$\hat{\theta} = \arg\min_{\theta_m} \{e(\theta_m)\}. \tag{5}$$

4. Letter Recognition

Letter Angle-based Model: The template letters can be represented by an 2K matrix D_t where M is the number of letters, K is the length of the angles vector. We extend the original template matrix to D_r based on shift and shrink. Classification can be done by matrix multiplication:

$$V = D_r^T g \tag{6}$$

Dynamic time warping (DTW), redundant dictionary (RD), RD with decision tree (RD-DT) and neural network (NN) will utilize this model for classification.

Letter Direction Model: We can represent letters using the direction at each measurement point. We can divide the directions into 8 groups.

Directional DTW (D-DTW), hidden Markov model(HMM) complete classification based on letter direction model.

5. Experiments

System accuracy was tested using ART system in KAUST Visualization Lab.

12 volunteers were recruited to collect 3120 written letters according to the following instructions:

- ▶ Try to write each number according to a template;
- ▶ The duration of each gesture is around 2 seconds;
- ▶ Sit around 1 metre in front of the receiver array;
- The movement of the hands should be within a square of 80 cm by 80 cm centered around the receiver array;
- Repeat each letter 10 times.

6. Results Evaluation

Average AOA estimating time on different machines:

Machine	Per Measurement (ms)	Per Letter (s)
Dell T7500	1.2	0.12
Macbook Pro	3.5	0.34
MITXPC M350	34.1	3.32

Average classification time and accuracy for different algorithms:

Method	T_{avg} (ms)	Accuracy (%)
DTW	1054.3	91.92
D-DTW	185.7	97.21
RD	0.1	90.87
RD-DT	1.2	96.25
NN	15.4	96.47
HMM	6.9	96.92
	DTW D-DTW RD RD-DT NN	D-DTW 185.7 RD 0.1 RD-DT 1.2 NN 15.4

 T_{avq} is the average classification time per letter.

7. Conclusion

- We presented an ultrasonic air-writing system for English letters.
- Classification performance is evaluated for both training-free and training-based classification methods.
- For the future work, the authors aim to develop algorithms for word recognition that can adapt to different writing styles.

Reference

[1] Chen H, Ballal T, Saad M, et al. Angle-of-arrival-based gesture recognition using ultrasonic multi-frequency signals[C]. Signal Processing Conference (EUSIPCO), 2017 25th European. IEEE, 2017: 16-20. [2] "UBAS: Ultrasound Based Air-writing System" (under preparation)