

Selección y Dimensionamiento de Conductores Eléctricos

Que criterios se deben usar para la selección?

Que problemas crea una selección errada?

Introducción Consecuencias de una selección inadecuada de los conductores

- Sobrecalentamiento de las líneas Perdidas de Energía.
- Caídas de tensión.
- Falla de aislamiento y puestas a tierra.
- Cortocircuitos.
- Cortes de suministro.
- Interferencias con otros sistemas
- Incendios.

Los conductores se seleccionan tomando en cuenta lo siguiente:

- Las Condiciones de Servicio del conductor.
- La Capacidad de corriente del conductor.
- La Caída de tensión admisible en el conductor.
- La Capacidad de cortocircuito del conductor.

Condiciones de Servicio

- El numero de fases.
- La temperatura y humedad del medio.
- El sistema de canalización a usar.
 Al aire libre, en tubo o subterráneo?
- Conductor rígido o flexible?....etc

Capacidad de corriente

 La corriente al circular por un conductor disipa calor.

Conductor seleccionado

Capacidad de corriente

- El calentamiento de los conductores produce en el aislante:
 - Disminución de la resistencia de aislamiento.
 - Disminución de la resistencia mecánica
 - → Envejecimiento del aislante.

El calentamiento ocurre dentro de los aparatos eléctricos, los alimentadores, los bornes, etc. Y define el material de aislamiento del conductor

Criterios de selección de los conductores Capacidad de corriente

 La energía eléctrica transportada a través de los conductores debe estar presente

en el momento y la magnitud que el usuario lo requiera; así como en las mejores condiciones de seguridad y operación.

Criterios de selección de los conductores Capacidad de corriente

- La seguridad y la operación están relacionadas con la calidad, la integridad y características del aislante.
- La integridad del aislante depende de la corriente que circula por el conductor y la sección del conductor.

Dimensionamiento de conductores por capacidad de corriente

Criterios de selección de los conductores Capacidad de corriente

 La corriente de trabajo de la carga es:

$$I_t = \frac{P * F.D.}{\sqrt{3} * U * F.P. * \eta}$$
 (A)

El factor de demanda (FD) se usa cuando se conoce el comportamiento de la carga

Criterios de selección de los conductores Capacidad de corriente

 La corriente de diseño del conductor.

$$I_{dise\tilde{n}o}=125\%\ I_{trabajo}$$

$$I_{dise\~no} \leq I_{admisible\ corregida}$$

La corriente de trabajo es por lo general, la corriente nominal de la carga.

Capacidad de corriente

$$I_{dise\tilde{n}o} = \sum_{i=1}^{n} I_i + 25\% I_{mayor}$$

$$I_{dise\tilde{n}o} = I_1 + I_2 + I_3 + \dots + I_n + 0,25 * I_{mayor}$$

Donde:

 $I_{diseño}$ = Corriente de diseno del alimentador, en A.

 I_i = Corriente de la carga "i", en A.

 I_{mayor} = Corriente de la carga mayor en el alimentador, en A.

Dimensionamiento de conductores Método CNE 2006

La <u>corriente</u> que puede transportar un conductor es definida por el <u>método de instalación</u>.

Criterios de selección de los conductores Método CNE – Utilización 2006

- Método basado en la norma IEC 60364-5-52 "Instalaciones eléctricas en edificios" Parte 5-52 "Selección y utilización de material eléctrico canalizaciones"
- Relaciona la capacidad de corriente de un conductor con el método de instalación del mismo.
- Existen factores de corrección por temperatura y agrupación.
- Solo considera 4 tipos de aislamiento: PVC, XLPE, Mineral con o sin cubierta.

Métodos de instalación

Métodos de instalación

Item Nro.	Métodos de instalación	Descripción	Referencia del método de instalación a ser usado para obtener la capacidad de corriente nominal (ver Tabla 3)				
1	2	3	4				
6 7		Conductores aislados o cables unipolares en canales fijados sobre una pared de madera - tendido horizontalmente ¹⁾ - tendido verticalmente ¹⁾	B1				
8 9	8 9	Cable multipolar en canales fijados sobre una pared de madera - tendido horizontalmente ¹⁾ - tendido verticalmente ¹⁾	En deliberación (puede usarse B2)				
10		Conductores aislados o cable unipolar tendido en molduras ²⁾	A1				
11	TV TV ISDN SSDN 13 14	Conductores aislados o cable unipolar en canales de zócalo. Cable multipolar en canales de zócalo	B1 B2				
	13 14						

Capacidad de corriente

Área de sección		Método de Instalación de Acuerdo a la NTP 370,301 (IEC 60364-5-523)												
transversal nominal del	A1 PVC 70 °C		Д	2	B1		A1		A2		B1			
conductor mm ²					ā						á			
Aisfamiento			PVC 70 °C		PVC 70 °C		XLPE 6 EPR		XLPE 6 EPR		XLPE 6 EPR 90 °C			
Temperatura														
Cantidad Conductores	2	3	2	3	2	3	2	3	2	3	2	3		
1	2	3	4	5	6	7	8	9	10	11	12	13		
Cobre									******	3,000				
1,5	14,5	13,5	14	13	22	18	22	19,5	24	22	26	22		
2,5	19,5	18	18,5	17,5	29	24	30	26	33	30	34	29		
4	26	24	25	23	38	31	40	35	45	40	44	37		
6	34	31	32	29	47	39	51	44	58	52	56	46		
10	46	42	43	39	63	52	69	60	80	71	73	61		
16	61	56	57	52	81	67	91	80	107	96	95	79		
25	80	73	75	68	104	86	119	105	138	119	121	101		
35	99	89	92	83	125	103	146	128	171	147	146	122		
50	119	108	110	99	148	122	175	154	209	179	173	144		
70	151	136	139	125	183	151	221	194	269	229	213	178		
95	182	164	167	150	216	179	265	233	328	278	252	211		
120	210	188	192	172	246	203	305	268	382	322	287	240		
150	240	216	219	196	278	230	93 2 03	29	441	371	324	271		
185	273	245	248	223	312	258	27 4 25	28	506	424	363	304		
240	321	286	291	261	361	297	174.0	200	599	500	419	351		
300	367	328	334	298	408	336	327	29	693	576	474	396		

Corrección por temperatura ambiente

2	P	vc	XLPE	o EPR	MI - Mineral * (al aire)			
Temperatura ambiente [°C]	Cables al aire	Cables en ductos enterrados	Cables al aire	Cables en ductos enterrados	Cubierta de PVC o desnudo y expuesto al contacto 70°C	Desnudo no expuesto al contacto 105 °C		
10	1,22	1,10	1,15	1,07	1,26	1,14		
15	1,17	1,05	1,12	1,04	1,20	1,11		
20	1,12	1,00	1,08	1,00	1,14	1,07		
25	1,06	0,95	1,04	0,96	1,07	1,04		
30	1,00	0,89	1,00	0,93	1,00	1,00		
35	0,94	0,84	0,96	0,89	0,93	0,96		
40	0,87	0,77	0,91	0,85	0,85	0,92		
45	0,79	0,71	0,87	0,80	0,87	0,88		
50	0,71	0,63	0,85	0,76	0,67	0,84		
55	0,61	0,55	0,76	0,71	0,57	0,80		
60	0,50	0,45	0,71	0,65	0,45	0,75		
65	(1 11))		0,65	0,60		0,70		
70	(=)	=	0,58	0,53	-	0,65		
75	(I))	=	0,50	0,46	-	0,60		
80	15.70		0,41	0,38	-	0,54		
85	-	8		10	8	0,47		
90	-	8	-	<u> </u>	8	0,40		
95	12	=	(42)	<u> </u>	2	0,32		

Corrección por número de circuitos

Ítem	Disposición (en cuanto a cables)	Número de circuitos o cables multipolar												A usarse con capaci- dades de corriente	
		1	2	3	4	5	6	7	8	9	12	16	20	nominal, referencia	
1	Agrupados en el aire, sobre una superficie empotrados o encerrados	1,00	0,80	0,70	0,65	0,60	0,57	0,54	0,52	0,50	0,45 0,41 0,38		4 a 8 Métodos A a F		
2	En una capa sobre una pared, piso o bandeja no perforada	1,00	0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,70	No más factores de reducción para más de nueve circuitos o cables multipolares			4 a 7	
3	En una capa fijado directamente bajo un techo de madera	0,95	0,81	0,72	0,68	0,66	0,64	0,63	0,62	0,61				Método C	
4	En una capa sobre una bandeja perforada horizontal o vertical	1,00	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72				8 a 9	
5	En una capa sobre un soporte de bandeja de escaleras, o listones, etc.	1,00	0,87	0,82	0,80	0,80	0,79	0,79	0,78	0,78				Métodos E y F	

- La capacidad nominal de corriente o de transporte de un conductor depende de las siguientes condiciones:
 - La canalización
 - La temperatura ambiente.
 - La agrupación de conductores dentro de los ductos de canalización.

Por lo tanto, al variar estas condiciones se debe efectuar una corrección.

Criterios de selección de los conductores Corrección de la Capacidad nominal de corriente

 La capacidad de corriente de un conductor se obtiene de la siguiente expresión,

$$I_{corr} = K_N * K_T * I_{adm}$$

 I_{corr} = Corriente admisible corregida, en A.

K_N = Factor de Corrección por agrupación.

 K_T = Factor de Corrección por temperatura.

 I_{adm} = Corriente admisible del conductor, en A.

- Verificar la capacidad de corriente de un conductor en las siguientes condiciones:
 - Calibre TW 70 de 6 mm²
 - Temperatura ambiente 38°C
 - Numero de circuitos (conductores) en el ducto = 3 monofásicos
 - Instalados en tubería adosada a la pared

- En estas condiciones se tienen los siguientes valores:
 - Intensidad admisible del conductor Calibre
 TW 6 mm² en circuito monofásicos = 30 A
 - K_T=0,87 (tabla 5A, al aire a 40°C puede interpolarse)
 - K_N=0,7 (tabla 5C, 3 circuitos monofásicos método A)

 La corriente admisible corregida del conductor para estas condiciones será:

$$I_{adm. corregida} = K_N * K_T * I_{admisible}$$

$$I_{adm. corregida} = 0,70 * 0,87 * 30 A$$

$$I_{adm. corregida} = 0,609 * 30 A$$

Verificación de la caída de tensión admisible

Se debe limitar la caída de tensión en el alimentador de cada carga, especialmente en el caso de cargas sensibles como lámparas o instrumentación.

Criterios de selección de los conductores Caída de tensión admisible

 El transporte de corriente en un conductor produce una caída de tensión.

$$\Delta U = I * R_c$$

Donde:

 ΔU = Caída de tensión, en Voltios.

I = Corriente de carga, en Amperios.

 R_c = Resistencia de los conductores, en Ω .

Criterios de selección de los conductores Caída de tensión admisible

En nuestro país, la caída de tensión admisible es:

 Alimentadores 	- 4 %	
 Circuitos derivados 	- 2,5 %	Según
 Circuitos de motores 	- 3 %	CNE
 Circuitos de iluminación 	- 1 %	

Expresada como porcentaje de la tensión entre líneas. Se recomienda revisar el CNE utilización para otras condiciones.

Criterios de selección de los conductores Caída de tensión admisible Circuitos trifásicos

$$\Delta U\% = \frac{0,03092 * I * L * \cos \phi}{A * U} * 100\%$$

$$\Delta U\% \le \Delta U\%_{Admisible}$$

Donde:

 $\Delta U\%$ = Caída de tensión, en porcentaje.

 $cos\phi$ = Factor de potencia.

U = Tensión, en Voltios.

I = corriente de operación, en Ampere.

L = Distancia del tablero al punto de alimentación, en m

Criterios de selección de los conductores Caída de tensión admisible

 Si consideramos un circuito con las condiciones de carga más desfavorables, podemos hallar la sección mínima del conductor.

$$A_{minima} = \frac{0,03092 * I * L * \cos \phi}{\Delta U \% * U} * 100\%$$

Criterios de selección de los conductores Caída de tensión admisible Circuitos monofásicos

$$\Delta U\% = \frac{0.0357 * I * L * \cos \phi}{A * U} * 100\%$$

$$\Delta U\% \le \Delta U\%_{Admisible}$$

Donde:

 $\Delta U\%$ = Caída de tensión, en porcentaje.

 $cos\phi$ = Factor de potencia.

U = Tensión, en Voltios.

I = corriente de operación, en Ampere.

L = Distancia del tablero al punto de alimentación, en m

Criterios de selección de los conductores Caída de tensión admisible

 Si consideramos un circuito monofásico con las condiciones de carga más desfavorables, podemos hallar la sección mínima del conductor.

$$A_{minima} = \frac{0.0357 * I * L * \cos \phi}{\Delta U \% * U} * 100\%$$

Criterios de selección de los conductores Cálculo de Alimentadores

- Los conductores alimentadores de un circuito eléctrico pueden alimentar una carga o un conjunto de cargas.
 - Alimentadores con carga concentrada
 - Alimentadores con carga distribuida

Cálculo por Caída de Tensión Admisible Alimentador con carga concentrada

 Este alimentador tiene la carga o centro de carga situada en un extremo del alimentador.

Cálculo por Caída de Tensión Admisible

Alimentador con carga concentrada

 Si consideramos un circuito, con las condiciones de carga más desfavorables, podemos hallar la sección mínima del conductor.

$$A_{minima} = \frac{k * 1 * L *}{\Delta U\% * U} * 100\%$$

Ejemplo 2

 Alimentador de un calefactor monofásico de 2 kW que se encuentra en un tercer piso.

Corriente aprox. = 10 A.

■ Distancia = 40 metros

■ ∆U = 3%

Conductor de Cobre, tipo TW.

Ejemplo 2

$$A_{minima} = \frac{2 * k * I * L *}{\Delta U\% * U} * 100\%$$

$$A_{minima} = \frac{2 * 0,01785 * 10 * 40}{3 * 220} * 100$$

$$A_{minima} = 2,164 mm^{2}$$

En la tabla seleccionamos un conductor TW Calibre 2,5 mm² cuya sección es mayor que la mínima!!

Cálculo por Caída de Tensión Admisible

TINIBRIG

Alimentador con carga Distribuida

Este alimentador tiene varias cargas a lo largo de su trayectoria.

- En este caso se pueden usar dos criterios de dimensionamiento:
 - Criterio de la sección constante.
 - Criterio de la sección variable.

Cálculo por Caída de Tensión Admisible Criterio de la sección constante

 En este caso se considera que el alimentador tiene la misma sección en toda su longitud.

Donde:

 L_n = Distancia de la carga "n", en metros.

 I_n = Corriente de la carga "n", en Amperios.

Criterios de selección de los conductores **Ejemplo 3**

Se tiene un alimentador trifásico en la figura:

Criterios de selección de los conductores Ejemplo 3

$$A = \frac{k * 100\%}{\Delta U\% * U} \left(L_1 * I_1 * \cos \phi_1 + L_2 * I_2 * \cos \phi_2 + ... + L_n * I_n * \cos \phi_n \right)$$

$$A = \frac{0,03092 * 100}{5 * 220} \left(30 * 20 * 1 + 80 * 30 * 1 + 120 * 60 * 1 \right)$$

$$A_{minima} \approx 28,7 \text{ mm}^2$$

 El conductor a seleccionar será un TW con una sección de 35 mm²

Cálculo por Caída de Tensión Admisible Criterio de la sección cónica

La sección del conductor disminuye en cada tramo.

Cálculo por Caída de Tensión Admisible Criterio de la sección variable

En el diagrama se puede ver que la corriente en cada tramo del conductor es:

• Tramo 1
$$I_1 = i_1 + I_2$$

• Tramo 2
$$I_2 = i_2 + I_3$$

■ Tramo 3
$$I_3=i_3$$

La longitud del conductor es:

$$L_{total} = L_1 + L_2 + L_3$$

Cálculo por Caída de Tensión Admisible Criterio de la sección variable

 En este caso, la sección del alimentador se determina suponiendo que la "Densidad de corriente (J) es constante"

$$J = \frac{\Delta U\% * U}{k * L_T * \cos \phi_{promedio}} * 100\% (A/mm^2)$$

Cálculo por Caída de Tensión Admisible Criterio de la sección variable

- La sección de cada tramo se obtiene de las expresiones del lado.
- Donde:
 - Ai es el Area de la sección "i"
 - Ii es la corriente de la sección "i"
 - J es la densidad de corriente hallada

$$A_1 = \frac{I_1}{J}$$

$$A_2 = \frac{I_2}{J}$$

$$A_3 = \frac{I_3}{J}$$

Criterios de selección de conductores Ejemplo 4

Alimentador trifásico de cobre ρ_{Cu}= 0,01785 y caída de tensión Δ**U=3%**

Criterios de selección de conductores Ejemplo 4

$$J = \frac{\Delta U\% * U}{k * L_T * \cos \phi_{promedio}} * 100\%$$

$$J = \frac{3 * 220}{0,03092 * 180 * 1,0 * 100}$$

$$J = 1,186 \quad A/mm^2$$

 La densidad de corriente admisible es 1,19 A/mm² y se debe aplicar a cada tramo del alimentador.

Criterios de selección de conductores Ejemplo 4

$$A_1 = \frac{I_1}{J} = \frac{85}{1,186} = 71,67 \quad mm^2$$

$$A_2 = \frac{I_2}{J} = \frac{70}{1,186} = 59,02 \quad mm^2$$

$$A_3 = \frac{I_3}{J} = \frac{50}{1,186} = 42,16 \quad mm^2$$

Criterios de selección de los conductores Corriente de cortocircuito

Los
 conductores
 ante un
 cortocircuito,
 responden
 según su
 capacidad de
 disipación
 térmica.

Criterios de selección de los conductores Corriente de cortocircuito

 La respuesta del conductor debe estar por encima de la curva de respuesta de los dispositivos de protección.

