Persuasion with Verifiable Information

BY

Maria (Masha) Titova

VANDERBILT UNIVERSITY

May 19, 2022

INTRODUCTION

- ▶ persuasion games with verifiable information
 - privately informed sender
 - · wants receiver to approve his proposal
 - sends verifiable messages
 - uninformed receiver who chooses choosing between
 - approving and rejecting proposal
- many applications
 - prosecutor convinces judge to convict, presents evidence
 - ♦ politician convinces voter to elect him, chooses campaign promises
 - ♦ job market candidate convinces employer to offer job, lists qualifications

PREVIEW OF RESULTS

- persuasion games with verifiable information
 - direct implementation: can restrict attention to direct equilibria
 - sender tells receiver what to do
 - ♦ ranking of equilibrium outcomes (ex-ante utility of sender):
 - worst: equivalent to full disclosure
 - best: commitment outcome (Kamenica and Gentzkow, 2011)

MOTIVATING EXAMPLE, KAMENICA AND GENTZKOW (2011)

prosecutor wants judge to convict; judge wants to convict iff $Pr(guilty) \ge \frac{1}{2}$

- ▶ commitment outcome:
 - prosecutor:
 - if quilty, send q with prob. 1
 - if *innocent*, send g with prob. α
 - judge:

$$Pr(guilty \mid g) = \frac{1 \cdot 0.3}{1 \cdot 0.3 + \alpha \cdot 0.7} = \frac{1}{2} \Longrightarrow \alpha = \frac{3}{7}$$

 \diamond judge convicts 60% of defendants (all *guilty* and $\frac{3}{7}$ of *innocent*)

MOTIVATING EXAMPLE, VERIFIABLE MESSAGES

prosecutor wants judge to convict; judge wants to convict iff $Pr(guilty) \ge \frac{1}{2}$

- **prosecutor** is informed, does not have commitment power
- ightharpoonup message space: $\{g, i, \{g, i\}\}$
 - \diamond verifiability: cannot say g(i) if innocent(guilty)
- \blacktriangleright can judge convict $\frac{3}{7}$ of *innocent* in equilibrium?
 - \diamond NO: in every equilibrium, guilty are convicted, innocent are acquitted

continuous state space allows sender to reach commitment outcome with verifiable messages!

LITERATURE

communication:

information

- Milgrom (1981) and Grossman (1981); Kamenica and Gentzkow (2011): Crawford and Sobel (1982); Spence (1973); Lipnowski and Ravid (2020)
 my contribution: sender reaches commitment outcome with verifiable
- applied Bayesian persuasion:
 - Kolotilin (2015); Ostrovsky and Schwarz (2010); Boleslavsky and Cotton (2015); Romanyuk and Smolin (2019); Alonso and Câmara (2016); Bardhi and Guo (2018); Gehlbach and Sonin (2014); Egorov and Sonin (2019)
 - my contribution: sender has commitment \rightarrow sender's messages are verifiable

MODEL SETUP

$$\Omega := [0,1]$$
 – state space

- ▶ sender (he/him)
 - \diamond privately observes state of the world $\omega \in \Omega$
 - ω drawn from common prior p > 0 over Ω
 - ♦ gets 1 if receiver approves, 0 otherwise
 - state-independent preferences
 - \diamond sends verifiable message $m \subseteq \Omega$ to receiver
 - grain of truth: $\omega \in m$

MODEL SETUP

- ▶ receiver (she/her)
 - \diamond net payoff of approval is $\delta(\omega)$
 - she approves in state ω if only if $\delta(\omega) \geq 0$
 - her complete-information approval set is

$$A := \{ \omega \in \Omega \mid \delta(\omega) \ge 0 \}$$

 \diamond assume $\mathbb{E}_p[\delta(\omega)] < 0$

PROSECUTOR AND JUDGE

- ▶ state space: how guilty defendant is (0% to 100% guilty)
 - \diamond prior is uniform on [0,1]
- ▶ sender: prosecutor (wants judge to convict)
- ▶ receiver: judge (wants to convict defendants who are $\geq 70\%$ guilty)

EQUILIBRIUM

- \blacktriangleright (Perfect Bayesian) Equilibrium (σ, a, q)
 - $\diamond \ \sigma(m \mid \omega)$ prob. that sender sends m is state ω
 - maximizes sender's utility $\forall \omega \in \Omega$ subject to $\omega \in m$, $\forall m \subseteq \Omega$
 - $\diamond \ a(m) \in \{0,1\}$ approval strategy of receiver
 - best response $a(m) = \mathbb{1}(\mathbb{E}_{q(\cdot \mid m)}[\delta(\omega)] \ge 0)$
 - $\diamond q(\cdot \mid m) \in \Delta\Omega$ posterior belief of receiver
 - Bayes-rational on equilibrium path
 - supp $q(\cdot \mid m) \subseteq m, \forall m \subseteq \Omega$

OUTCOMES: DEFINITIONS

- \blacktriangleright outcome α specifies $\forall \omega \in \Omega$ probability $\alpha(\omega)$ that receiver approves
 - $\diamond\,$ outcome α is equilibrium outcome if it corresponds to some equilibrium
 - \diamond outcome α^c is commitment outcome if it solves¹

$$\max_{\alpha} \int\limits_{\Omega} \alpha(\omega) p(\omega) d\omega, \quad \text{ subject to } \quad \int\limits_{\Omega} \alpha(\omega) \delta(\omega) p(\omega) d\omega \geq 0$$

¹ Kamenica and Gentzkow (2011), Alonso and Câmara (2016)

DETERMINISTIC OUTCOMES

- \blacktriangleright outcome α is deterministic if $\alpha(\omega) \in \{0,1\}$ for every $\omega \in \Omega$
- \triangleright set of approved states W is deterministic outcome α is

$$W := \{ \omega \in \Omega \mid \alpha(\omega) = 1 \}$$

EQUILIBRIUM OUTCOMES

 \triangleright consider deterministic equilibrium outcome with set of approved states W. What conditions does W satisfy?

- sender cannot deviate to full disclosure:
 - if $\omega \in A$, message $\{\omega\}$ convinces receiver to approve

$$A \subseteq W$$
 (IC)

♦ receiver's expected net payoff of approval is non-negative:

$$\mathbb{E}_p[\delta(\omega) \mid W] \ge 0 \qquad \text{(obedience)}$$

DIRECT IMPLEMENTATION

Theorem 1

- (1) every equilibrium outcome is deterministic
- (2) $W \subseteq \Omega$ is an equilibrium set of approved states $\iff W$ satisfies (IC) and (obedience)

- ▶ **Proof** of |(1)|, by contradiction:
 - \diamond consider equilibrium (σ, a, q) with outcome α
 - $\diamond \alpha$ is not deterministic \Longrightarrow exists ω s.t. $\alpha(\omega) \in (0,1)$
 - \diamond since $\alpha(\omega) > 0$, there exists message m s.t. $\alpha(m) = 1$ and $\omega \in m$
 - \diamond profitable deviation: send m with certainty when state is ω

DIRECT IMPLEMENTATION

Theorem 1

- (1) every equilibrium outcome is deterministic
- (2) $W \subseteq \Omega$ is an equilibrium set of approved states $\iff W$ satisfies (IC) and (obedience)
- ▶ **Proof** of (2), \Longrightarrow : W is set of approved states in equilibrium (σ, a, q)
 - \diamond W satisfies (IC), or else sender can deviate to full disclosure
 - \diamond W satisfies (obedience):
 - let $\mathcal{M} := \{m \subseteq \Omega \mid a(m) = 1\}$ be set of convincing messages
 - if $\omega \in W$, sender convinces w. prob. 1: $\sum_{m \in \mathcal{M}} \sigma(m \mid \omega) = 1$
 - every $m \in \mathcal{M}$ convinces receiver: $\int_{W} \delta(\omega) \sigma(m \mid \omega) p(\omega) d(\omega) \geq 0$
 - take sum over all $m \in \mathcal{M}$, get $\mathbb{E}_p[\delta(\omega) \mid W] \geq 0$

DIRECT IMPLEMENTATION

Theorem 1

- (1) every equilibrium outcome is deterministic
- (2) $W \subseteq \Omega$ is an equilibrium set of approved states $\iff W$ satisfies (IC) and (obedience)

- ▶ **Proof** of $|(2), \Leftarrow|$: direct implementation of W:
 - $\diamond \ \underline{\text{sender}} \colon \ \sigma(W \mid \omega) = \mathbb{1}(\omega \in W) \ \text{and} \ \sigma(\Omega \smallsetminus W \mid \omega) = \mathbb{1}(\omega \notin W)$
 - receiver:
 - on path, approves after W by (obedience), rejects after $\Omega \setminus W$
 - off path is "skeptical"

$$\forall m \subseteq A$$
, supp $q(\cdot \mid m) \subseteq m$, so that $\mathbb{E}_q[\delta(\omega)] \ge 0$

$$\forall m \not\subseteq A, m \neq W, \text{ supp } q(\cdot \mid m) \subseteq m \setminus A, \text{ so that } \mathbb{E}_q[\delta(\omega)] < 0$$

EQUILIBRIUM PAYOFF SET

- ▶ Theorem 1 allows us to restrict attention to sets of approved states $W \subseteq \Omega$ satisfying (IC) and (obedience)
- rank equilibria by sender's ex-ante utility
 - same as his ex-ante odds of approval
 - $\diamond\,$ equals $P(W) := \int\limits_W p(\omega) d\omega,$ prior measure of set of approved states

SENDER-WORST EQUILIBRIUM

- ▶ minimize sender's ex-ante utility across all equilibria
 - \diamond smallest (in terms of ex-ante utility) set of approved states <u>W</u>
 - \diamond sender's (IC) constraint binds: $\underline{W} = A$
- ▶ receiver makes fully informed choice
- ▶ outcome-equivalent to full disclosure AKA full unraveling
 - ♦ (Grossman, 1981); (Milgrom, 1981); (Milgrom and Roberts, 1986); reviewed by (Milgrom, 2008)

SENDER-PREFERRED EQUILIBRIUM

- maximize sender's ex-ante utility across all equilibria
 - \diamond largest (in terms of ex-ante utility) set of approved states \overline{W}
 - receiver's (obedience) constraint binds

Theorem 2

 \overline{W} is characterized by a cutoff value $c^*>0$ such that

- ▶ receiver approves a.s. if $\delta(\omega) > -c^*$ and rejects if $\delta(\omega) < -c^*$
- ▶ whenever receiver approves, her expected net payoff from approval is zero: $\mathbb{E}_p[\delta(\omega) \mid \overline{W}] = 0$

Furthermore, SP equilibrium outcome is a commitment outcome

PROOF OF THEOREM 2, PART I

▶ \overline{W} solves $\max_{W \subseteq \Omega} \int_W p(\omega) d\omega$ subject to $A \subseteq W$ and $\int_W \delta(\omega) p(\omega) d\omega \ge 0$

- \diamond adding ω to \overline{W} has "benefit" $p(\omega)$ and "cost" $-\delta(\omega)p(\omega)$
 - add $\omega \in A$ to \overline{W} because $\delta(\omega) \geq 0 \Longrightarrow (IC)$ holds
 - if $\delta(\omega_2) < \delta(\omega_1) < 0$, add ω_1 first
- ♦ (obedience) binds, or else can increase objective

PROOF OF THEOREM 2, PART II

	SP equilibrium	commitment	
find α to maximize	$\int_{\Omega} \alpha(\omega) p(\omega) d\omega$	$\int_{\Omega} \alpha(\omega) p(\omega) d\omega$	
subject to	$\int\limits_{\Omega}\alpha(\omega)\delta(\omega)$	$p(\omega)d\omega \ge 0$	
	$\alpha(\omega) \in \{0, 1\}$	$\alpha(\omega) \in [0,1]$	

- ightharpoonup commitment outcome α^c may not be deterministic
 - \diamond let $\mathcal{D} := \{ \omega \in \Omega \mid 0 < \alpha^c(\omega) < 1 \}$ notice that $\delta(\omega) = const, \forall \omega \in \mathcal{D}$
 - \diamond partition \mathcal{D} into X and Y, where $\int\limits_{\mathcal{D}} \alpha^c(\omega) p(\omega) d\omega = \int\limits_{X} p(\omega) d\omega$

$$\widetilde{\alpha}^{c}(\omega) = \begin{cases} \alpha^{c}(\omega), & \text{if } \omega \notin \mathcal{D} \\ 1, & \text{if } \omega \in X \\ 0, & \text{if } \omega \in Y \end{cases}$$
 is a deterministic commitment outcome

PROSECUTOR AND JUDGE

- ▶ sender-preferred equilibrium: $\max_{W \subseteq \Omega} |W|$ s.t. $\int_{W} \delta(\omega) d\omega = 0 \rightarrow \overline{W} = [0.4, 1]$
 - ♦ judge convicts 60% of defendants even though 70% are innocent
 - \diamond implementation: if $\omega \geq 0.4$, send [0.4, 1]; if $\omega < 0.4$, send [0, 0.4)
 - iudge: $U[0,1] \xrightarrow{[0.4,1]} U[0.4,1] \rightarrow \text{posterior mean is } 0.7 \rightarrow \text{convict}$

MANY (INDEPENDENT) RECEIVERS

$$I := \{1, \dots, n\}$$
 – set of receivers p is common prior

▶ sender:

- \diamond has state-independent utility $u_s: 2^I \to \mathbb{R}$
- $\diamond u_s$ weakly increases in every receiver's action

▶ receiver $i \in I$:

- \diamond observes private verifiable message $m_i \subseteq \Omega$ chosen by sender
- \diamond solves independent problem: approves if $\omega \in A_i := \{\omega \in \Omega \mid \delta_i(\omega) \geq 0\}$

MANY (INDEPENDENT) RECEIVERS: RESULTS

- \blacktriangleright (W_1,\ldots,W_n) is an equilibrium collection of sets of approved states \iff
 - $\diamond A_i \subseteq W_i$, for all $i \in I$
 - $\diamond \mathbb{E}_p[\delta_i(\omega) \mid W_i] \ge 0$
- ▶ SP equilibrium outcome is a commitment outcome

ONE RECEIVER WITH 3+ ACTIONS

- receiver chooses action from set $J = \{0, 1, \dots, k\}$ with $k \geq 2$
- ightharpoonup receiver's complete-information approval set for action $j \in J$ is A_j
- \blacktriangleright outcome is a partition (W_0, W_1, \dots, W_k)
 - $\diamond W_j \subseteq \Omega$ are states in which receiver plays action $j \in J$
- ▶ (IC): if $\omega \in A_j$ then $\omega \in W_j \cup \cdots \cup W_k$
 - may be violated in all commitment outcomes

CONCLUSION

- ▶ I solve persuasion games with verifiable information
 - \diamond <u>direct implementation</u>: W is an equilibrium set of approval states \iff
 - W satisfies receiver's (obedience) and sender's (IC) constraints
 - set of equilibrium outcomes:

worst: full disclosure \rightarrow best: commitment outcome

Thank You!

CONNECTION TO REVELATION PRINCIPLE(S)

- ▶ Myerson (1986) and Forges (1986):
 - any equilibrium of a mediated sender-receiver game is outcome-equivalent to one in which
 - sender truthfully reveals ω to mediator
 - mediator recommends action
 - receiver obediently follows recommendation
 - \diamond **Theorem 1** provides necessary and sufficient conditions for W to be implementable in equilibrium
- ▶ Kamenica and Gentkow (2011) and Bergemann and Morris (2019):
 - ♦ WLOG to let set of signals equal set of actions