Лабораторная работа №4.2

Исследование энергетического спектра β -частиц и определение их максимальной энергии при помощи магнитного спектрометра

Нехаев Александр 654гр.

9 декабря 2018 г.

Содержание

1.	Введение	1
2.	Экспериментальная установка	2
3.	Ход работы	3

1. Введение

Бета-распад это самопроизвольное преваращение ядер, при котором их массовове число не изменяется, а заряд изменяется на единицу. В данной работе мы будем иметь дело с электронным распадом:

$${}_{Z}^{A}X \rightarrow_{Z+1}^{A} X + e^{-} + \widetilde{\nu} \tag{1}$$

Освобождающаяся в результате распада энергия делится между исходным ядром, электроном и нейтрино. При этом доля энергии, уносимая ядром крайне мала, так что вся энергия делится между нейтрино и электроном. Поэтому электроны могут иметь любую энергию от нулевой до некоторой макимальной энергии, высвобождаемой при распаде.

Вероятность $d\omega$ того, что электрон вылетит с имульсом d^3p , а нейтрино с импульсом d^3k равна произведению этих дифференциалов, но мы должны учесть также закон сохранения энергии.

$$E_e - E - ck = 0 (2)$$

Энергия электрона связана с импульсом обычным образом:

$$E = c\sqrt{p^2 + m^2c^2} - mc^2 \tag{3}$$

Таким образом, вероятность $d\omega$ принимает вид:

$$d\omega = D\delta(E_e - E - ck)d^3pd^3k = D\delta(E_e - E - ck)p^2dpk^2dkd\Omega_e d\Omega_{\tilde{\nu}}$$
(4)

D можно считать с хорошей точностью константой. В этом случае можно проинтегрировать по всем углам и по абсолютному значению импульса нейтрино. В этом случае

 δ -функция исчезнет, а ck всюду заменится на E_e-E . После умножения на полное число распадов выражение примет вид:

$$dN = \frac{16\pi^2 N_0}{c^2} Dp^2 (E_e - E)^2 dp$$
 (5)

В нерелятивистском случае выражение упрощается и принимает вид:

$$\frac{dN}{dE} \simeq \sqrt{E}(E_e - E)^2 \tag{6}$$

Рис. 1: Форма спектра β -частиц при разрешенных переходах

2. Экспериментальная установка

Энергия определяется с помощью β -спектрометров. В работе используется магнитный спектрометр с короткой линзой. Как показывает расчет, для заряженных частиц тонкая

Рис. 2: Схема β -спектрометра с короткой линзой

катушка эквивалентна линзе:

$$\frac{1}{f} \simeq \frac{I^2}{p_e^2} \tag{7}$$

При заданной силе тока на входное окно счетчика собираются электроны с определенным импульсом.

3. Ход работы

Снимем точки β -спектра. Фоновое излучение равно $N_b=0.8098$. С учетом этого пересчитаем число частиц, зарегистрированных счетчиком.

#	J, A	N	$N-N_b$	p , кэ $\mathrm{B/c}$	T, кэ B	mkFermi
1	0.00	0.880	height			