			De	riva	tive	of	E CO	apo i	renti	al	aro	1 9	loga	rith	MS.		
						•							O				
	_		/. 8	Defi		•											
what	abi	rut 1		12 0		r C	6Q										
what 2 to ? calcu	lato	2 2			07	Dr	$e \mathbb{Z}$	t, a	r = a	. · a ·	··a;						
					U				;	n tir	res						
					o a	<u>!</u> こな	a j	is d	efined	l b	y (3	(a)" =	- a.				
									, a [‡]	y <u>=</u>	La_						
					@ a	." =	, a	= =	oic .								
				2)	Tho.	n An	מדם	ana	Luci	C Co	lutin	2 4 .					
								a	lysi.				1/		_	,	_
					ω &									8e - U	wo	func	tivns
						El	x) =	e ^x	or	267	s) = -	ln(x)					
					>				Dèffe					7 .			
									, ,			•			tion	the the	at t
							4 \		7-1	,		/ /		7	,	, , ,	/:./
						Sal	istie									Lincl	elot
									Flo.) = [1	\int	hevi	em)			
					>	Opti	ion E										
						n Nal	٠ ميد	_ لاره	ower	= 14	- v -	×2 +	8 × ×	× × × × × × × × × × × × × × × × × × ×	+		
						& A	d: ge	neral	ize eo	sily	ef w	e wa	nt I	ō USE	2 (1)	ruplex	nums.
						& Di	sod:	prov	ing t	to p	prope	rties	of i	to e	xpon	ential	from
									der.						•		
							_				1.						
						,			lni	· ·							
						Def	ine	lnx	$=\int_{1}^{\lambda}$	70	lt.						

	Define other function as its inverse.
	$y=e^{\times} \iff z=\ln y$. 3 Define other exponentials as $a^c=e^{c\ln a}$.
	3 Define other exponentials as $a^c = e^{c\ln a}$. e.g. $2^{\pi} = e^{\pi \ln 2}$
noticing.	2. Derivative of Natural Exponentials. $f(x) = a^{x}$
y = 675	$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{a^{x(a^{\Delta x} - a^{\lambda})}}{\Delta x} = \lim_{\Delta x \to 0} \frac{a^{x(a^{\Delta x} - a^{\lambda})}}{\Delta x}$
clifference $y = \frac{\ln(N+x)}{x}$	when a = e, $\lim_{x \to 0} \frac{e^{\Delta x} - 1}{\Delta x} = 1$
(special limit)	$\frac{d}{dx}e^{x}=e^{x}.$
port	1) lesue 1: Assuming the limit exists.
	1) 20. Issue 2: How to know there is one value of a which. limit is 1?
	3) Issue 3: How the exponential functions are well-defined
	always?
Use the trick	3. Derivative of Natural Logarithm. delax = delax.
solve the cleriva- tive for inverse	$=> e^{\ln x} \cdot \frac{d}{dx} \ln x = 1$
function (complex).	$\Rightarrow \frac{d}{dx} \ln x = \frac{1}{x}$
de common trick	4. Derivative of other exponentials. $a^{x} = (e^{\ln a})^{x} = e^{x \cdot \ln a}.$

would its solve the general prishe for all value of a and already band the answer for one works the general cose is tome of the Gorardive of other logarithm. Logax = $\frac{dx}{dx}$ lina $\frac{dx}{dx}$ logax	in math: when	
for all value of a and attendy loss of order logarithm. Logax = $\frac{1}{\ln x}$ Logax = $\frac{1}{$		d x - d x lna - x lna d I. 1 7
and already bornon the accuse for one that significant the general cose that significant the cose that significant $ logax = lnx $ $ logax = $		1
the assert for one value; then by to write the general consistence of general consistence of the service of general consistence of the logan = $\frac{\ln x}{\ln x}$ $\frac{\ln x}{x} = 0$ $\frac{\ln x}{x} = 0$		
while the system of general cost of other logarithm. $log_{ax} = \frac{l_{ax}}{l_{na}} - 0$ $\frac{l_{ax}}{l_{ax}} l_{og_{ax}} = \frac{l_{ax}}{l_{na}} $ $e_{ax} l_{og_{ax}} = \frac{l_{ax}}{l_{ax}} l_{og_{ax}} = \frac{l_{ax}}{l_{ax}} - 0$ $e_{ax} l_{og_{ax}} = \frac{l_{ax}}{l_{ax}} l_{ox_{ax}} = \frac{l_{ax}}{l_{ox_{ax}}} l_{ox_{ax}} + \frac{l_{ox_{ax}}}{l_{ox_{ax}}} l_{ox_{ax}} $ $e_{ax} l_{ox_{ax}} l_{ox_{ax}} l_{ox_{ax}} = e^{l_{ox_{ax}}} l_{ox_{ax}} l_{ox_{ax}}$	the answer for one	
$log_{0}x = lha$ $log_$	value; then try to	
$log_{0}x = lha$ $log_$	case in terms of the	S. Derivative of other logarithm.
6. Common Method e.g. $f(x) = (\cos x) \sin x$. 1) Method /: $ab = e b \ln a$. $f(x) = (\cos x) \sin x = e \sin x \cdot \ln \cos x$. $f'(x) = e \sin x \cdot \ln \cos x$. $(\cos x) \cdot \ln \cos x + \sin x \cdot (\cos x + \sin x)$. 2) Method 2: Yogarithm Differentiation $\ln f(x) = \ln (\cos x) \sin x$. $= \frac{dx}{dx} \ln f(x) = \frac{dx}{dx} \sin x \cdot \ln \cos x$. $\Rightarrow \frac{dx}{dx} \ln f(x) = \frac{dx}{dx} \sin x \cdot \ln \cos x$. $\Rightarrow \frac{dx}{dx} \ln f(x) = \cos x \cdot \ln \cos x - \frac{\sin^2 x}{\cos x}$. 7. Proof of the power rule. $\frac{dx}{dx} [x^c] = \frac{dx}{dx} [e^{c \ln x}]$ $= e^{c \ln x} \cdot \frac{dx}{dx} [c \ln x]$ $= \frac{x^c}{a} \cdot \frac{c}{a}$	case that can solve	lus de la laconomiento de laconomiento de la laconomiento de la laconomiento de la laconomiento de la laconomiento de laconomiento de laconomiento de laconomiento de laconomiento de la laconomiento de la laconomiento de laconomiento de la laconomiento de
6. Common Method e.g. $f(x) = (\cos x) \sin x$. 1) Method /: $ab = e b \ln a$. $f(x) = (\cos x) \sin x = e \sin x \cdot \ln \cos x$. $f'(x) = e \sin x \cdot \ln \cos x$. $(\cos x) \cdot \ln \cos x + \sin x \cdot (\cos x + \sin x)$. 2) Method 2: Yogarithm Differentiation $\ln f(x) = \ln (\cos x) \sin x$. $= \frac{dx}{dx} \ln f(x) = \frac{dx}{dx} \sin x \cdot \ln \cos x$. $\Rightarrow \frac{dx}{dx} \ln f(x) = \frac{dx}{dx} \sin x \cdot \ln \cos x$. $\Rightarrow \frac{dx}{dx} \ln f(x) = \cos x \cdot \ln \cos x - \frac{\sin^2 x}{\cos x}$. 7. Proof of the power rule. $\frac{dx}{dx} [x^c] = \frac{dx}{dx} [e^{c \ln x}]$ $= e^{c \ln x} \cdot \frac{dx}{dx} [c \ln x]$ $= \frac{x^c}{a} \cdot \frac{c}{a}$		logax = lna lna lna - D
6. Common Method e.g. $f(x) = (\cos x) \sin x$. 1) Method /: $ab = e b \ln a$. $f(x) = (\cos x) \sin x = e \sin x \cdot \ln \cos x$. $f'(x) = e \sin x \cdot \ln \cos x$. $(\cos x) \cdot \ln \cos x + \sin x \cdot (\cos x + \sin x)$. 2) Method 2: Yogarithm Differentiation $\ln f(x) = \ln (\cos x) \sin x$. $= \frac{dx}{dx} \ln f(x) = \frac{dx}{dx} \sin x \cdot \ln \cos x$. $\Rightarrow \frac{dx}{dx} \ln f(x) = \frac{dx}{dx} \sin x \cdot \ln \cos x$. $\Rightarrow \frac{dx}{dx} \ln f(x) = \cos x \cdot \ln \cos x - \frac{\sin^2 x}{\cos x}$. 7. Proof of the power rule. $\frac{dx}{dx} [x^c] = \frac{dx}{dx} [e^{c \ln x}]$ $= e^{c \ln x} \cdot \frac{dx}{dx} [c \ln x]$ $= \frac{x^c}{a} \cdot \frac{c}{a}$		$\frac{d}{dx} \log_{\alpha} x = \frac{d}{dx} \frac{\ln x}{\ln \alpha} = \frac{x}{\ln \alpha} = \frac{x}{\ln \alpha}$
eg. $f(x) = (\cos x) \sin x$. 1) Method $f(x) = e^{-\frac{1}{2} \sin x} = e^{-\frac{1}{2} \sin x} \cdot \ln \cos x$. $f(x) = (\cos x) \sin x = e^{-\frac{1}{2} \sin x} \cdot \ln \cos x$. $f(x) = e^{-\frac{1}{2} \sin x} \cdot \ln \cos x$. $(\cos x) \cdot \ln \cos x + \sin x$. $(\cos x) \cdot \ln \cos x$. 2) Method 2: Logarithm Differentiation $f(x) = -\frac{1}{2} \ln \cos x$.		
eg. $f(x) = (\cos x) \sin x$. 1) Method $f(x) = e^{-\frac{1}{2} \sin x} = e^{-\frac{1}{2} \sin x} \cdot \ln \cos x$. $f(x) = (\cos x) \sin x = e^{-\frac{1}{2} \sin x} \cdot \ln \cos x$. $f(x) = e^{-\frac{1}{2} \sin x} \cdot \ln \cos x$. $(\cos x) \cdot \ln \cos x + \sin x$. $(\cos x) \cdot \ln \cos x$. 2) Method 2: Logarithm Differentiation $f(x) = -\frac{1}{2} \ln \cos x$.		
eg. $f(x) = (\cos x) \sin x$. 1) Method $f(x) = e^{-\frac{1}{2} \sin x} = e^{-\frac{1}{2} \sin x} \cdot \ln \cos x$. $f(x) = (\cos x) \sin x = e^{-\frac{1}{2} \sin x} \cdot \ln \cos x$. $f(x) = e^{-\frac{1}{2} \sin x} \cdot \ln \cos x$. $(\cos x) \cdot \ln \cos x + \sin x$. $(\cos x) \cdot \ln \cos x$. 2) Method 2: Logarithm Differentiation $f(x) = -\frac{1}{2} \ln \cos x$.		6. Common Method
1) Method 1: $ab = e^{b\ln a}$. $f(x) = (cos_x) sinx = e^{sin_x \ln cos_x}.$ $f'(x) = e^{sin_x \ln cos_x}. (cos_x \ln cos_x + sin_x) (cos_x \ln cos_x + sin_x)$ $= (cos_x) sin_x \cdot (cos_x \ln cos_x - sin_x)$ $= (cos_x) sin_x \cdot (cos_x \ln cos_x - sin_x)$ $= a \ln f(x) = \ln (cos_x) sin_x$ $= a \ln f(x) = a \ln sin_x \ln cos_x$ $= a \ln f(x) = cos_x \ln cos_x - sin_x^2$ $= a \ln f(x) = (cos_x) sin_x \cdot (cos_x \ln cos_x - sin_x^2)$ $= a \ln f(x) = (cos_x) sin_x \cdot (cos_x \ln cos_x - sin_x^2)$ $= a \ln f(x) = cos_x \ln cos_x - sin_x^2$ $= a \ln f(x) = cos_x \ln cos_x -$		
$f(x) = (cos_{X}) sin_{X} = e sin_{X} \cdot hcos_{X}.$ $f(x) = e sin_{X} \cdot (hcos_{X}) \cdot (cos_{X} \cdot (hcos_{X} + sin_{X} \cdot (cos_{X} \cdot (h-sin_{X})))$ $= (cos_{X}) sin_{X} \cdot (cos_{X} \cdot hcos_{X} - \frac{sin_{X}}{cos_{X}}).$ $20 \text{ Method } 2: \text{ Yogarithm Differentiation}$ $\ln f(x) = \ln (cos_{X}) sin_{X}.$ $= o \ln \ln f(x) = \frac{d}{dx} sin_{X} \cdot hcos_{X}.$ $\Rightarrow f(x) = e sin_{X} \cdot hcos_{X}.$ $\Rightarrow f(x) = cos_{X} \cdot hcos_{X} - \frac{sin_{X}}{cos_{X}}.$ $\Rightarrow f(x) = (cos_{X}) sin_{X} \cdot (cos_{X} \cdot (hcos_{X} - \frac{sin_{X}}{cos_{X}}).$ $7. \text{ Proof of the power rule.}$ $\frac{d}{dx} [x^{c}] = \frac{d}{dx} [e^{cln_{X}}]$ $= e^{cln_{X}} \cdot \frac{d}{dx} [ccl_{X}]$ $= x^{c} \cdot \frac{c}{x}$		
$f(x) = (cos_{X}) sin_{X} = e sin_{X} \cdot hcos_{X}.$ $f(x) = e sin_{X} \cdot (hcos_{X}) \cdot (cos_{X} \cdot (hcos_{X} + sin_{X} \cdot (cos_{X} \cdot (h-sin_{X})))$ $= (cos_{X}) sin_{X} \cdot (cos_{X} \cdot hcos_{X} - \frac{sin_{X}}{cos_{X}}).$ $20 \text{ Method } 2: \text{ Yogarithm Differentiation}$ $\ln f(x) = \ln (cos_{X}) sin_{X}.$ $= o \ln \ln f(x) = \frac{d}{dx} sin_{X} \cdot hcos_{X}.$ $\Rightarrow f(x) = e sin_{X} \cdot hcos_{X}.$ $\Rightarrow f(x) = cos_{X} \cdot hcos_{X} - \frac{sin_{X}}{cos_{X}}.$ $\Rightarrow f(x) = (cos_{X}) sin_{X} \cdot (cos_{X} \cdot (hcos_{X} - \frac{sin_{X}}{cos_{X}}).$ $7. \text{ Proof of the power rule.}$ $\frac{d}{dx} [x^{c}] = \frac{d}{dx} [e^{cln_{X}}]$ $= e^{cln_{X}} \cdot \frac{d}{dx} [ccl_{X}]$ $= x^{c} \cdot \frac{c}{x}$		1) Method 1: at = eblna.
$f'(x) = e^{\sin x \cdot (n\cos x)} \cdot (\cos x \cdot (n\cos x + \sin x) \cdot (\cos x \cdot (-\sin x)))$ $= (\cos x) \sin x \cdot (\cos x \cdot (n\cos x) - \frac{\sin^2 x}{\cos x}).$ 2) Method 2: Yogarithm Differentiation $lnf(x) = ln(\cos x) \sin x.$ $\Rightarrow dx ln f(x) = dx \sin x \cdot (n\cos x)$ $\Rightarrow f(x) = \cos x \cdot (n\cos x) - \frac{\sin^2 x}{\cos x}$ $\Rightarrow f(x) = (\cos x) \sin x \cdot (\cos x \cdot (n\cos x) - \frac{\sin^2 x}{\cos x}).$ 7. Proof of the power rule. $dx [x^c] = dx [e^{\cos x}]$ $= e^{\cos x} \cdot dx [c \cos x]$		flx) - (coex) sinx = p sinx ln cosx.
$= (\cos x)^{\sin x} \cdot (\cos x \cdot \ln \cos x - \frac{\sin x}{\cos x}).$ 2) Method 2: Logarithm Differentiation $\ln f(x) = \ln (\cos x)^{\sin x}.$ $= \frac{dx}{dx} \ln f(x) = \frac{dx}{dx} \sin x \cdot \ln \cos x.$ $\Rightarrow \frac{dx}{dx} \ln f(x) = \cos x \cdot \ln \cos x - \frac{\sin^2 x}{\cos x}.$ $\Rightarrow \frac{f(x)}{f(x)} = (\cos x)^{\sin x} \cdot (\cos x \cdot \ln \cos x - \frac{\sin^2 x}{\cos x}).$ 7. Proof of the power rule. $\frac{d}{dx} \left[x^c \right] = \frac{dx}{dx} \left[e^{\sin x} \right]$ $= e^{-\cos x} \cdot \frac{d}{dx} \left[\cot x \right]$ $= x^c \cdot \frac{c}{x}$		
$= (\cos x)^{\sin x} \cdot (\cos x \cdot \ln \cos x - \frac{\sin x}{\cos x}).$ 2) Method 2: Logarithm Differentiation $\ln f(x) = \ln (\cos x)^{\sin x}.$ $= \frac{dx}{dx} \ln f(x) = \frac{dx}{dx} \sin x \cdot \ln \cos x.$ $\Rightarrow \frac{dx}{dx} \ln f(x) = \cos x \cdot \ln \cos x - \frac{\sin^2 x}{\cos x}.$ $\Rightarrow \frac{f(x)}{f(x)} = (\cos x)^{\sin x} \cdot (\cos x \cdot \ln \cos x - \frac{\sin^2 x}{\cos x}).$ 7. Proof of the power rule. $\frac{d}{dx} \left[x^c \right] = \frac{dx}{dx} \left[e^{\sin x} \right]$ $= e^{-\cos x} \cdot \frac{d}{dx} \left[\cot x \right]$ $= x^c \cdot \frac{c}{x}$		$f(x) = e^{-x^2 + (\cos x + \sin x + (\cos x + \cos x))}$
2) Method 2: Yogarithm Differentiation $lnf(x) = ln(cos_{x}) \frac{sin_{x}}{sin_{x}}$ $\Rightarrow \frac{d}{dx} ln f(x) = \frac{d}{dx} \frac{sin_{x}}{sin_{x}} \frac{lncos_{x}}{cos_{x}}$ $\Rightarrow \frac{1}{f(x)} \cdot f'(x) = cos_{x} \cdot lncos_{x} - \frac{sin_{x}^{2}x}{cos_{x}}$ $\Rightarrow f'(x) = (cos_{x}) \frac{sin_{x}}{sin_{x}} \cdot lcos_{x} \cdot lncos_{x} - \frac{sin_{x}^{2}x}{cos_{x}}$ 7. Proof of the power rule. $\frac{d}{dx} [x^{c}] = \frac{d}{dx} [e^{cln_{x}}]$ $= e^{cln_{x}} \cdot \frac{d}{dx} [cln_{x}]$ $= x^{c} \cdot \frac{c}{x}$		$= (\cos x) \sin x \cdot (\cos x \cdot n \cos x \cdot - \frac{\sin x}{\cos x}).$
$ \frac{d}{dx} \ln f(x) = \frac{d}{dx} \sin x \cdot \ln \cos x $ $ \Rightarrow \frac{1}{f(x)} \cdot f'(x) = \cos x \cdot \ln \cos x - \frac{\sin^2 x}{\cos x} $ $ \Rightarrow f'(x) = (\cos x)^{\sin x} \cdot (\cos x \cdot \ln \cos x - \frac{\sin^2 x}{\cos x}) $ $ 7. \text{ Proof of the power rule.} $ $ \frac{d}{dx} \left[x^c \right] = \frac{d}{dx} \left[e^{\cos x} \right] $ $ = e^{\cos x} \cdot \frac{d}{dx} \left[\cosh x \right] $ $ = x^c \cdot \frac{c}{x} $		
$\Rightarrow f(x) = cosx \cdot lncosx - \frac{sin^2x}{cosx}$ $\Rightarrow f(x) = (cosx) \frac{sin^2x}{cosx} \cdot \frac{sin^2x}{cosx}.$ 7. Proof of the power rule. $\frac{d}{dx} [x^c] = \frac{d}{dx} [e^{clnx}]$ $= e^{c-lnx} \cdot \frac{d}{dx} [clnx]$ $= x^c \cdot \frac{c}{x}$		
$\Rightarrow f(x) = cosx \cdot lncosx - \frac{sin^2x}{cosx}$ $\Rightarrow f(x) = (cosx) \frac{sin^2x}{cosx} \cdot \frac{sin^2x}{cosx}.$ 7. Proof of the power rule. $\frac{d}{dx} [x^c] = \frac{d}{dx} [e^{clnx}]$ $= e^{c-lnx} \cdot \frac{d}{dx} [clnx]$ $= x^c \cdot \frac{c}{x}$		lnf(x) = ln(cosx)sins
$\Rightarrow f(x) = cosx \cdot lncosx - \frac{sin^2x}{cosx}$ $\Rightarrow f'(x) = (cosx) \frac{sin^2x}{cosx} \cdot \frac{sin^2x}{cosx}.$ 7. Proof of the power rule. $\frac{d}{dx} [x^c] = \frac{d}{dx} [e^{clnx}]$ $= e^{clnx} \cdot \frac{d}{dx} [clnx]$ $= x^c \cdot \frac{c}{x}$		de la constant de la
7. Proof of the power rule. $\frac{d}{dx} \bar{L}x^{c} I = \frac{cl}{dx} [e^{clnx}] I = e^{clnx} \cdot \frac{d}{dx} \bar{L}clnx I = x^{c} \cdot \frac{c}{x}$		=
7. Proof of the power rule. $\frac{d}{dx} \bar{L}x^{c} \bar{I} = \frac{cl}{dx} \bar{L}c lnx \bar{I}$ $= x^{c} \cdot \frac{c}{x}$		$\Rightarrow \overline{f(x)} \cdot f'(x) = \cos x \cdot \ln \cos x - \frac{\sin x}{\cos x}$
7. Proof of the power rule. $\frac{d}{dx} [x^{c}] = \frac{cl}{dx} [e^{clnx}]$ $= e^{clnx} \cdot \frac{d}{dx} [clnx]$ $= x^{c} \cdot \frac{c}{x}$		Sinx / Sin ² X
$= e^{c \ln x} \cdot \frac{d}{dx} I c \ln x I$ $= x^{c} \cdot \frac{c}{x}$		$f'(x) = (\cos x)^{-1/2} \cdot (\cos x \cdot (n\cos x \cdot - \cos x \cdot) \cdot$
$= e^{c \ln x} \cdot \frac{d}{dx} I c \ln x I$ $= x^{c} \cdot \frac{c}{x}$		
$= e^{c \ln x} \cdot \frac{d}{dx} I c \ln x I$ $= x^{c} \cdot \frac{c}{x}$		7 D L D 44 5
$= e^{c \ln x} \cdot \frac{d}{dx} I c \ln x I$ $= x^{c} \cdot \frac{c}{x}$		1. Froot of the power rule.
$= e^{c \ln x} \cdot \frac{d}{dx} I c \ln x I$ $= x^{c} \cdot \frac{c}{x}$		$\frac{\partial}{\partial x} \left[x^{c} \right] = \frac{\partial}{\partial x} \left[e^{c \ln x} \right]$
$= \chi^{\mathcal{C}} \cdot \frac{\mathcal{C}}{\chi}$		clax d - 127
		$= \chi^{\mathcal{C}} \cdot \frac{\mathcal{C}}{\chi}$
$-c\lambda$		
		- CX

