

685.621 Algorithms for Data Science

Supervised Learning: Regression Algorithms

How Regression Predicts Values

Regression Types

- Linear Regression
 - Mathematical Equation
- K-Nearest Neighbors
 - Influenced by nearby points
- Decision Tree
 - Rule Based
- Support Vector
 - Hyperplane within a margin of error

How Regression Models Learn

Algorithm	Key Characteristics
Linear Regression	Finds best-fit line by minimizing squared errors.
K-Nearest Neighbors (KNN) Regression	Stores data and predicts based on nearest neighbors
Decision Tree Regression	Recursively splits data into segments to minimize variance
Support Vector Regression	Finds a function that fits most data within a margin
Ridge/Lasso Regression	Modifies Linear Regression by penalizing large coefficients

Choosing the Right Model

Algorithm	Туре	Key Characteristics
Linear Regression	Linear	Simple, interpretable, assumes linearity
KNN Regression	Instance-based	No training phase, works well for small datasets
Decision Trees Regression	Rule-based	Captures nonlinear relationships, ensemble methods for robustness
Support Vector Regression	Hyperplane-based	Handles outliers, defines optimal margin for predictions
Ridge & Lasso Regression	Linear	Regularization techniques to prevent overfitting

Linear Regression

$$\hat{y} = w^T x + b$$

Advantages

- Interpretable
- Works well when data has linear relationship
- Efficient & scalable

- Assumes linearity and independence
- **Sensitive** to outliers
- Can underfit complex relationships
- Cannot model interactions unless explicitly added

Ordinary Least Squares (OLS)

Ordinary Least Squares (OLS) minimizes the sum of squared residuals to find the best linear model

$$y = X\beta + \varepsilon$$
 $\beta = (X^TX)^{-1}X^Ty$

It assumes a linear relationship, projects the target onto the featur space, and provides the most unbiased linear estimator under Gaussian noise.

Geometric Interpretation of OLS: Projection and Residual

Multicollinearity

Occurs when two or more independent variables in a regression model are highly correlated.

Why is it a Problem?

- Makes it difficult to determine the individual effect of each variable.
- Leads to unstable coefficients
- Reduces interpretability of the model

How to Detect it:

- Variance Inflation Factor (VIF)
- Correlation Matrix

Dealing with Multicollinearity

- VIF-Based Feature Selection
 - If two features have a high VIF (>10) remove one.
- Principal Component Analysis (PCA)
 - Transform correlated features into independent principal components
- Ridge Regression (L2 Regularization)
 - Reduces the impact of multicollinearity by shrinking coefficients
- Lasso Regression (L1 Regularization)
 - Can set some coefficients to zero, performing automatic feature selection

Regularization for Linear Regression

Penalty on absolute values of coefficients

$$\widehat{\beta}_{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} \left(y_{i} - \mathbf{x}_{i}^{\top} \beta \right)^{2} + \lambda \sum_{j=1}^{p} \left| \beta_{j} \right| \right\}$$

Penalty on squared coefficients

$$\widehat{\boldsymbol{\beta}}_{\text{ridge}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} \left(\boldsymbol{y}_{i} - \boldsymbol{x}_{i}^{\top} \boldsymbol{\beta} \right)^{2} + \lambda \sum_{j=1}^{p} \beta_{j}^{2} \right\}$$

K-Nearest Neighbors (KNN) Regression

$$d(x,x') = \sqrt{\sum_{i=1}^{n} (x_i - x_i')^2} \qquad \widehat{y} = \frac{1}{k} \sum_{i \in neighbors} y_i$$

$$\widehat{y} = \frac{1}{k} \sum_{i \in neighbors} y_i$$

Advantages

- Easy to implement and understand
- Captures local patterns and non-linearities
- Naturally handles multi-modal distributions

- Computationally expensive at prediction time
- **Poor performance** in higher dimensions
- Choice of k matters
- **Sparse data** is a problem

Rule-Based Regression

Advantages

- Captures nonlinear and interaction effects
- Easy to visualize and interpret
- No scaling and handles missing values
- Handles both categorical and numerical

- Prone to
 overfitting deep
 trees memorize
- Unstable— Small changes in data can produce very different trees
- May create biased splits with imbalanced target distributions

The Power of Ensembles

Advantages

- Reduces overfitting
 More stable than a single Decision Tree.
- Handles highdimensional data well – Works even when many features exist.
- Works with missing data – Can still make predictions even if some values are missing.

- Less interpretable Unlike a single Decision Tree, it's hard to visualize.
- Computationally expensive — Training multiple trees takes more time than a single model.
- May not work well for small datasets — Too many trees can lead to unnecessary complexity.

Support Vector Regression (SVR)

Soft Margin
$$\min_{\mathbf{w},b,\xi} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^N \xi_i$$
, Function $\widehat{y} = \sum_{i=1}^N (\alpha_i - \alpha_i^*) K(\mathbf{x}_i, \mathbf{x}) + b$.

$$\widehat{y} = \sum_{i=1}^{N} \left(\alpha_i - \alpha_i^* \right) K(\mathbf{x}_i, \mathbf{x}) + b.$$

