Trabalho Final para aprovação do curso Sistemas Inteligentes

Instruções:

- · Comentem bastante o código, deixe o mais claro possível
- Usem e abusem do Markdown
- Isso ae!

Pre-Processamento

Importação de bibliotecas

In [1]:

```
%matplotlib inline
from sklearn.decomposition import PCA
from sklearn.preprocessing import scale
from sklearn.model_selection import train_test_split as tts
from sklearn.metrics import *
from sklearn.preprocessing import LabelEncoder
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn as sk
import matplotlib.colors
import pandas as pd
from sklearn.model_selection import train_test_split as tts
```

In [2]:

Carregando dataset

```
In [3]:
```

```
#Dataset para treinamento
db = pd.read_csv("bank-additional-dataset/bank-additional-full.csv", sep= ";");
```

Informações sobre o dataset

In [4]:

12/14/2018

```
print("Dimensões do dataset", db.shape)
```

Dimensões do dataset (41188, 21)

In [5]:

```
print("Features do dataset: ", db.columns)
```

bank client data:

```
1 - age (numeric)
2 - job : type of job (categorical: 'admin.','blue-collar','entrepreneu
r','housemaid','management','retired','self-employed','services','studen
t','technician','unemployed','unknown')
3 - marital : marital status (categorical: 'divorced','married','singl
e','unknown'; note: 'divorced' means divorced or widowed)
4 - education (categorical: 'basic.4y','basic.6y','basic.9y','high.schoo
l','illiterate','professional.course','university.degree','unknown')
5 - default: has credit in default? (categorical: 'no','yes','unknown')
6 - housing: has housing loan? (categorical: 'no','yes','unknown')
7 - loan: has personal loan? (categorical: 'no','yes','unknown')
```

related with the last contact of the current campaign:

other attributes:

- 12 campaign: number of contacts performed during this campaign and for this client (numeric, includes last contact)
- 13 pdays: number of days that passed by after the client was last contacted from a previous campaign (numeric; 999 means client was not previous ly contacted)
- 14 previous: number of contacts performed before this campaign and for this client (numeric)
- 15 poutcome: outcome of the previous marketing campaign (categorical:
 'failure', 'nonexistent', 'success')

social and economic context attributes

- 16 emp.var.rate: employment variation rate quarterly indicator (numeric)
 17 cons.price.idx: consumer price index monthly indicator (numeric)
 18 cons.conf.idx: consumer confidence index monthly indicator (numeric)
- 19 euribor3m: euribor 3 month rate daily indicator (numeric)
- 20 nr.employed: number of employees quarterly indicator (numeric)

Output variable (desired target):

21 - y - has the client subscribed a term deposit? (binary: 'yes','no')

Como podemos observar há 11 features categóricas, é um número significante e teremos que tratálos num futuro próximo

In [6]:

#tipos de dados para cada feature db.dtypes

Out[6]:

int64 age job object marital object education object default object housing object loan object contact object month object day of week object duration int64 campaign int64 pdays int64 int64 previous poutcome object float64 emp.var.rate cons.price.idx float64 float64 cons.conf.idx euribor3m float64 nr.employed float64 object In [7]:

print the first 20 rows of data
print(db.head(20))

age	job	marital		е	duc	ation	default	ho	usin
0 56	housemaid	married			bas	ic.4y	no		n
o no 1 57	services	married		hig	h.s	chool	unknown		n
o no 2 37	services	married		hig	h.s	chool	no		ye
s no 3 40	admin.	married			bas	ic.6y	no		n
o no 4 56	services	married		hig	h.s	chool	no		n
o yes 5 45	services	married			bas	ic.9y	unknown		n
o no 6 59	admin.	married	prof	essiona	ıl.c	ourse	no		n
o no 7 41	blue-collar	married			un	known	unknown		n
o no 8 24	technician	single	prof	essiona	ıl.c	ourse	no		ye
s no 9 25	services	single		hig	h.s	chool	no		ye
s no 10 41	blue-collar	married			un	known	unknown		n
o no 11 25	services	single		hig	h.s	chool	no		ye
s no 12 29	blue-collar	single		hig	h.s	chool	no		n
o yes 13 57	housemaid	divorced			bas	ic.4y	no		ye
s no 14 35	blue-collar	married			bas	ic.6y	no		ye
s no 15 54	retired	married			bas	ic.9y	unknown		ye
s yes 16 35	blue-collar	married			bas	ic.6y	no		ye
s no 17 46	blue-collar	married			bas	ic.6y	unknown		ye
s yes 18 50	blue-collar	married			bas	ic.9y	no		ye
s yes 19 39	management	single			bas	ic.9y	unknown		n
o no									
co poutcome	ontact month d · \	ay_of_week	• • •	campai	.gn	pdays	previou	JS	
0 tele existent	ephone may :	mon	• • •		1	999		0	non
1 tele	ephone may :	mon	• • •		1	999		0	non
2 tele	ephone may	mon	• • •		1	999		0	non
3 tele		mon	• • •		1	999		0	non
4 tele	phone may	mon			1	999		0	non
	phone may	mon			1	999		0	non
	phone may	mon			1	999		0	non
7 tele	phone may	mon			1	999		0	non

12/14/2018					Bank_Marl	kenting		
8 telephor existent	ie	may	mon		1	999	0	non
9 telephor existent	ie	may	mon		1	999	0	non
10 telephor	ie	may	mon		1	999	0	non
existent 11 telephor existent	ie	may	mon		1	999	0	non
12 telephor existent	ie	may	mon		1	999	0	non
13 telephor existent	ie	may	mon		1	999	0	non
14 telephor existent	ie	may	mon		1	999	0	non
15 telephor existent	ie	may	mon		1	999	0	non
16 telephor existent	ie	may	mon		1	999	0	non
17 telephor existent	ie	may	mon		1	999	0	non
18 telephor	ie	may	mon		1	999	0	non
existent 19 telephor existent	ie	may	mon		1	999	0	non
	+-	conc nr	sico idv	conc. co	nf idv	ouribor?m	25.0	mn] o
emp.var.r yed y		cons.pr		CONS.CO		euribor3m	nr.e	•
0 1.0 no	1.1		93.994		-36.4	4.857		519
1 1.0 no	1.1		93.994		-36.4	4.857		519
2 1.0 no	1.1		93.994		-36.4	4.857		519
3	1.1		93.994		-36.4	4.857		519
4	1.1		93.994		-36.4	4.857		519
1.0 no 5	1.1		93.994		-36.4	4.857		519
1.0 no 6	1.1		93.994		-36.4	4.857		519
1.0 no 7	1.1		93.994		-36.4	4.857		519
1.0 no 8	1.1		93.994		-36.4	4.857		519
1.0 no 9	1.1		93.994		-36.4	4.857		519
1.0 no 10	1.1		93.994		-36.4	4.857		519
1.0 no 11	1.1		93.994		-36.4	4.857		519
1.0 no 12	1.1		93.994		-36.4	4.857		519
1.0 no 13	1.1		93.994		-36.4	4.857		519
1.0 no 14	1.1		93.994		-36.4	4.857		519
1.0 no 15	1.1		93.994		-36.4	4.857		519
1.0 no 16	1.1		93.994		-36.4	4.857		519
1.0 no								

17 1.0 no	1.1	93.994	-36.4	4.857	519
18	1.1	93.994	-36.4	4.857	519
1.0 no 19	1.1	93.994	-36.4	4.857	519

[20 rows x 21 columns]

In [8]:

db.describe()

Out[8]:

	age	duration	campaign	pdays	previous	en
count	41188.00000	41188.000000	41188.000000	41188.000000	41188.000000	411
mean	40.02406	258.285010	2.567593	962.475454	0.172963	0.0
std	10.42125	259.279249	2.770014	186.910907	0.494901	1.5
min	17.00000	0.000000	1.000000	0.000000	0.000000	-3.4
25%	32.00000	102.000000	1.000000	999.000000	0.000000	-1.8
50%	38.00000	180.000000	2.000000	999.000000	0.000000	1.10
75%	47.00000	319.000000	3.000000	999.000000	0.000000	1.40
max	98.00000	4918.000000	56.000000	999.000000	7.000000	1.4(

In [9]:

```
# Contando número de valores nulos no dataset
db.isnull().sum(axis = 0)
```

Out[9]:

0 age job 0 marital 0 0 education default 0 housing 0 loan 0 contact 0 month 0 day_of_week 0 duration 0 campaign 0 pdays 0 0 previous poutcome 0 emp.var.rate 0 cons.price.idx 0 cons.conf.idx 0 euribor3m 0 nr.employed 0 0 dtype: int64

In [10]:

```
#Visualizando valores unicos do dataset
print("Age: ",db.age.unique())
print()
print("Job: ",db.job.unique())
print()
print("Maritial: ",db.marital.unique())
print()
print("Education: ",db.education.unique())
print()
print("Default: ",db.default.unique())
print()
print("Housing: ",db.housing.unique())
print()
print("loan: ",db.loan.unique())
print()
print("Contact: ",db.contact.unique())
print()
print("Month : ",db.month.unique())
print()
print("Duration: ",db.duration.unique())
print()
print("Campaign: ",db.campaign.unique())
print()
print("Pdays: ",db.pdays.unique())
print()
print("previous: ",db.previous.unique())
print()
print("Poutcome: ",db.poutcome.unique())
```

```
Age: [56 57 37 40 45 59 41 24 25 29 35 54 46 50 39 30 55 49 34 52
58 32 38 44
42 60 53 47 51 48 33 31 43 36 28 27 26 22 23 20 21 61 19 18 70 66
76 67
 73 88 95 77 68 75 63 80 62 65 72 82 64 71 69 78 85 79 83 81 74 17
87 91
86 98 94 84 92 89]
      ['housemaid' 'services' 'admin.' 'blue-collar' 'technician'
Job:
 'management' 'unemployed' 'self-employed' 'unknown' 'entrepreneur'
 'student'l
Maritial: ['married' 'single' 'divorced' 'unknown']
Education: ['basic.4y' 'high.school' 'basic.6y' 'basic.9y' 'profes
sional.course'
 'unknown' 'university.degree' 'illiterate']
Default: ['no' 'unknown' 'yes']
Housing: ['no' 'yes' 'unknown']
loan: ['no' 'yes' 'unknown']
Contact: ['telephone' 'cellular']
Month: ['may' 'jun' 'jul' 'aug' 'oct' 'nov' 'dec' 'mar' 'apr' 'se
p']
Duration: [ 261 149 226 ... 1246 1556 1868]
Campaign: [ 1 2 3 4 5 6 7 8 9 10 11 12 13 19 18 23 14 22 2
5 16 17 15 20 56
 39 35 42 28 26 27 32 21 24 29 31 30 41 37 40 33 34 43]
Pdavs: [999]
              6
                  4
                      3
                          5
                              1
                                  0
                                    10
                                          7 8
                                                  9 11
                                                         2 12 1
3 14 15 16
 21 17 18 22 25 26
                        19
                             27
                                 201
previous: [0 1 2 3 4 5 6 7]
```

Tratamento do dataset por blocos

- Bank client data
- Last contact of the current campaign
- Social and economic context attributes

['nonexistent' 'failure' 'success']

- Other attributes:

1. Bank Client Data

In [11]:

#Particionando o Dataset para trabalhar apenas com os Client Data
bank_client = db.iloc[: , 0:7]
bank_client.head()

Out[11]:

	age	job	marital	education	default	housing	loan
0	56	housemaid	married	basic.4y	no	no	no
1	57	services	married	high.school	unknown	no	no
2	37	services	married	high.school	no	yes	no
3	40	admin.	married	basic.6y	no	no	no
4	56	services	married	high.school	no	no	yes

In [12]:

```
#Visualizando as amostras
print("Age: ",db.age.unique())
print()
print("Job: ",db.job.unique())
print()
print("Maritial: ",db.marital.unique())
print()
print("Education: ",db.education.unique())
print()
print("Default: ",db.default.unique())
print()
print("Housing: ",db.housing.unique())
print()
print("loan: ",db.loan.unique())
      [56 57 37 40 45 59 41 24 25 29 35 54 46 50 39 30 55 49 34 52
58 32 38 44
42 60 53 47 51 48 33 31 43 36 28 27 26 22 23 20 21 61 19 18 70 66
76 67
 73 88 95 77 68 75 63 80 62 65 72 82 64 71 69 78 85 79 83 81 74 17
87 91
86 98 94 84 92 89]
Job: ['housemaid' 'services' 'admin.' 'blue-collar' 'technician'
'retired'
 'management' 'unemployed' 'self-employed' 'unknown' 'entrepreneur'
 'student'l
Maritial: ['married' 'single' 'divorced' 'unknown']
Education: ['basic.4y' 'high.school' 'basic.6y' 'basic.9y' 'profes
sional.course'
 'unknown' 'university.degree' 'illiterate']
Default: ['no' 'unknown' 'yes']
Housing: ['no' 'yes' 'unknown']
loan: ['no' 'yes' 'unknown']
```

Visualização dos Dados

Distribuição de idades

In [13]:

```
#Deixar Histograma colorido
N, bins, patches = plt.hist(bank_client['age'], bins = 100, orientation = 'verti
cal')
fracs = N/N.max()
norm = matplotlib.colors.Normalize(fracs.min(), fracs.max())
for thisfrac, thispatch in zip(fracs, patches):
    color = plt.cm.viridis(norm(thisfrac))
    thispatch.set_facecolor(color)
#fim comando para deixar colorido
plt.xlabel('Idade', fontsize =10)
plt.ylabel('Distribuição da quantidade por idade', fontsize =10)
plt.title('Distribuição Idade', fontsize =10)
plt.show()
```


Distribuição de trabalhos dos clientes

In [14]:

```
fig, ax = plt.subplots()
fig.set_size_inches(14, 8)
sns.countplot(x = 'job', data = bank_client)
ax.set_xlabel('Job', fontsize=10)
ax.set_ylabel('Count', fontsize=10)
ax.set_title('Job Count Distribution', fontsize=10)
ax.tick_params(labelsize=8)
sns.despine()
```


Distribuição estado civil

In [15]:

```
fig, ax = plt.subplots()
fig.set_size_inches(8, 5)
sns.countplot(x = 'marital', data = bank_client)
ax.set_xlabel('Marital', fontsize=15)
ax.set_ylabel('Count', fontsize=15)
ax.set_title('Martial Count Distribution', fontsize=15)
ax.tick_params(labelsize=10)
sns.despine()
```


Distribuição Escolaridade

In [16]:

```
fig, ax = plt.subplots()
fig.set_size_inches(12, 5)
sns.countplot(x = 'education', data = bank_client)
ax.set_xlabel('Education', fontsize=10)
ax.set_ylabel('Count', fontsize=10)
ax.set_title('Education Count Distribution', fontsize=15)
ax.tick_params(labelsize=7)
sns.despine()
```


Distribuição Housing, Loan e Default

In [17]:

```
fig, (ax1, ax2, ax3) = plt.subplots(nrows = 1, ncols = 3, figsize = (12,4))
sns.countplot(x = 'default', data = bank client, ax = ax1, order = ['no', 'unkno']
wn', 'yes'])
ax1.set_title('Default', fontsize=10)
ax1.set xlabel('')
ax1.set_ylabel('Count', fontsize=10)
ax1.tick params(labelsize=7)
sns.countplot(x = 'housing', data = bank client, ax = ax2, order = ['no', 'unkno']
wn', 'yes'])
ax2.set_title('Housing', fontsize=10)
ax2.set xlabel('')
ax2.set_ylabel('Count', fontsize=10)
ax2.tick params(labelsize=7)
sns.countplot(x = 'loan', data = bank client, ax = ax3, order = ['no', 'unknown']
, 'yes'])
ax3.set title('Loan', fontsize=10)
ax3.set xlabel('')
ax3.set ylabel('Count', fontsize=10)
ax3.tick params(labelsize=7)
plt.subplots adjust(wspace=0.25)
```


In [18]:

```
fig, ax = plt.subplots()
fig.set_size_inches(12, 4)
sns.countplot(x = 'education', hue = 'loan', data = bank_client)
ax.set_xlabel('Education', fontsize=15)
ax.set_ylabel('Count', fontsize=15)
ax.set_title('Education Count Distribution', fontsize=15)
ax.tick_params(labelsize=8)
sns.despine()
```


Tratamento com os dados Categoricos

In [19]:

```
#Transformações de dados categoricos para valores numericos
labelencoder_X = LabelEncoder()
bank_client['job'] = labelencoder_X.fit_transform(bank_client['job'])
bank_client['marital'] = labelencoder_X.fit_transform(bank_client['marital'])
bank_client['education'] = labelencoder_X.fit_transform(bank_client['education'])
bank_client['default'] = labelencoder_X.fit_transform(bank_client['default'])
bank_client['housing'] = labelencoder_X.fit_transform(bank_client['housing'])
bank_client['loan'] = labelencoder_X.fit_transform(bank_client['loan'])
```

In [20]:

bank_client.head()

Out[20]:

	age	job	marital	education	default	housing	loan
0	56	3	1	0	0	0	0
1	57	7	1	3	1	0	0
2	37	7	1	3	0	2	0
3	40	0	1	1	0	0	0
4	56	7	1	3	0	0	2

2. Related with the last contact of the current campaign

In [21]:

#Particionando o Dataset para trabalhar apenas com 'Related with the last contac
t of the current campaign'
bank_related = db.iloc[: , 7:11]

bank related.head()

Out[21]:

	contact	month	day_of_week	duration
0	telephone	may	mon	261
1	telephone	may	mon	149
2	telephone	may	mon	226
3	telephone	may	mon	151
4	telephone	may	mon	307

In [22]:

```
#Visualizando as amostras do dataset
print("Contact: ", bank_related.contact.unique())
print()
print("Month : ", bank_related.month.unique())
print()
print("Day of week: ", bank_related.day_of_week.unique())
print()
print("Duration: ", bank_related.duration.unique())
print()
Contact: ['telephone' 'cellular']
```

```
Contact: ['telephone' 'cellular']

Month : ['may' 'jun' 'jul' 'aug' 'oct' 'nov' 'dec' 'mar' 'apr' 'se
p']

Day of week: ['mon' 'tue' 'wed' 'thu' 'fri']

Duration: [ 261 149 226 ... 1246 1556 1868]
```

In [23]:

```
# Distribuição Contatos, mes e dias da semana
```

In [24]:

```
fig, (ax1, ax2, ax3) = plt.subplots(nrows = 1, ncols = 3, figsize = (12,4))
sns.countplot(x = 'contact', data = bank related, ax = ax1, order = ['telephone'
, 'cellular'])
ax1.set_title('Contact', fontsize=10)
ax1.set_xlabel('')
ax1.set ylabel('Count', fontsize=10)
ax1.tick params(labelsize=7)
sns.countplot(x = 'month', data = bank related, ax = ax2, order = ['mar', 'apr', 'apr', 'arr', 'ar
    'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec']
)
ax2.set title('Month', fontsize=10)
ax2.set xlabel('')
ax2.set_ylabel('Count', fontsize=10)
ax2.tick params(labelsize=7)
sns.countplot(x = 'day_of_week', data = bank_related, ax = ax3, order = ['mon',
'tue', 'wed', 'thu', 'fri'])
ax3.set title('Day of week', fontsize=10)
ax3.set xlabel('')
ax3.set_ylabel('Count', fontsize=10)
ax3.tick params(labelsize=7)
plt.subplots adjust(wspace=0.25)
#['may', 'jun', 'jul', 'aug', 'oct', 'nov', 'dec', 'mar', 'apr', 'sep']
```


Distribuição duração vs ocorrência

In [25]:

```
fig, ax2 = plt.subplots()
fig.set_size_inches(12, 5)
ax2.set_xlabel('Duration Calls', fontsize=10)
ax2.set_ylabel('Occurence', fontsize=10)
ax2.set_title('Duration x Ocucurence', fontsize=10)
ax2.tick_params(labelsize=10)
sns.distplot(bank_related['duration'], ax = ax2)
sns.despine(ax = ax2)
```

/home/william/anaconda3/lib/python3.6/site-packages/matplotlib/axe s/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

In [26]:

As ligações que tiverem o tempo de duração da ligação zero automaticamente o t arget será 'no', assim devemos excluir essas linhas db[(db['duration'] == 0)]

Out[26]:

	age	job	marital	education	default	housing	loan	conta
6251	39	admin.	married	high.school	no	yes	no	telepho
23031	59	management	married	university.degree	no	yes	no	cellular
28063	53	blue-collar	divorced	high.school	no	yes	no	cellular
33015	31	blue-collar	married	basic.9y	no	no	no	cellular

4 rows × 21 columns

Tratamento com os dados Categoricos

In [27]:

Out[27]:

	contact	month	day_of_week	duration
0	1	6	1	261
1	1	6	1	149
2	1	6	1	226
3	1	6	1	151
4	1	6	1	307

3. Social and economic context attributes

In [28]:

```
#Particionando o Dataset para trabalhar apenas com 'Social and Economic context
  attibutes'
bank_se = db.loc[: , ['emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribo
r3m', 'nr.employed']]
bank_se.head()
```

Out[28]:

	emp.var.rate	cons.price.idx	cons.conf.idx	euribor3m	nr.employed
0	1.1	93.994	-36.4	4.857	5191.0
1	1.1	93.994	-36.4	4.857	5191.0
2	1.1	93.994	-36.4	4.857	5191.0
3	1.1	93.994	-36.4	4.857	5191.0
4	1.1	93.994	-36.4	4.857	5191.0

4. Other attributes

In [29]:

```
bank_o = db.loc[: , ['campaign', 'pdays', 'previous', 'poutcome']]
bank_o.head()
```

Out[29]:

	campaign	pdays	previous	poutcome
0	1	999	0	nonexistent
1	1	999	0	nonexistent
2	1	999	0	nonexistent
3	1	999	0	nonexistent
4	1	999	0	nonexistent

In [30]:

```
#Visualizando as amostras do dataset
print("Contact: ", bank_o.poutcome.unique())
print()
```

```
Contact: ['nonexistent' 'failure' 'success']
```

Tratamento com dados categoricos

In [31]:

```
bank_o['poutcome'] = labelencoder_X.fit_transform(bank_o['poutcome'])
#bank_o['poutcome'].replace(['nonexistent', 'failure', 'success'], [1,2,3], inpl
ace = True)
bank_o.head()
```

Out[31]:

	campaign	pdays	previous	poutcome
0	1	999	0	1
1	1	999	0	1
2	1	999	0	1
3	1	999	0	1
4	1	999	0	1

Validação dos dados

```
In [91]:
```

```
#Montado o dataset pre-processado
db_pronto= pd.concat([bank_client, bank_related, bank_se, bank_o], axis = 1)
db pronto = db pronto[['age', 'job', 'marital', 'education', 'default', 'housin']
g', 'loan',
                     'contact', 'month', 'day_of_week', 'duration', 'emp.var.rat
e', 'cons.price.idx',
                     'cons.conf.idx', 'euribor3m', 'nr.employed', 'campaign', 'p
days', 'previous', 'poutcome']]
#Criando Target
y = pd.get_dummies(db['y'], columns = ['y'], prefix = ['y'], drop first = True)
#Excluindo linhas no qual o tempo de ligação é 0
db pronto = db pronto.drop([6251,23031,28063, 33015], axis=0)
y = y.drop([6251,23031,28063, 33015], axis = 0)
#Confirmando exclusão
print(db pronto.loc[db pronto['duration'] == 0])
print(db pronto.shape)
print(y.shape)
```

```
Empty DataFrame
Columns: [age, job, marital, education, default, housing, loan, con
tact, month, day_of_week, duration, emp.var.rate, cons.price.idx, c
ons.conf.idx, euribor3m, nr.employed, campaign, pdays, previous, po
utcome]
Index: []
(41184, 20)
(41184, 1)
```

Treinamento do modelo

```
In [92]:
```

```
y_array = np.array(y)

#transformando em um vetor 1D
y_array = y_array.reshape(-1)
#y_array = y_array.flatten()

y_array.shape

Out[92]:
(41184,)

In [93]:

#Bibliotecas para validação dos modelos
from sklearn.model_selection import cross_validate, cross_val_score
from sklearn.model_selection import KFold
```

1. KNN

In [86]:

from sklearn.neighbors import KNeighborsClassifier as KNN

Escolhendo K vizinhos para o modelo

In [96]:

```
neighbors = np.arange(0,25)
#Lista vazia para guardar os resultados
cv scores = []
#Interação para poder decidir quando vizinhos usar no KNN com 10-fold
for k in neighbors:
    k value = k+1
    knn = KNN(n_neighbors = k_value, weights='uniform', p=2, metric='euclidean')
    kfold = KFold(n splits=10)
    scores = cross val score(knn, db pronto, y array, cv=kfold, scoring='accurac
y')
    cv scores.append(scores.mean()*100)
    print("k=%d %0.2f " % (k_value, scores.mean()*100))
optimal k = neighbors[cv scores.index(max(cv scores))]
print ("Número ótimo de vizinhos é %d com %0.1f%" % (optimal_k, cv_scores[opti
mal k]))
plt.plot(neighbors, cv_scores)
plt.xlabel('Number of Neighbors K')
plt.ylabel('Train Accuracy')
plt.show()
```

```
k=187.65
k=289.21
k=389.20
k=489.74
k=5 89.83
k=6 90.06
k=790.17
k=8 90.26
k=990.32
k=10 90.40
k=11 90.60
k=12 90.60
k=13 90.73
k=14 90.74
k=15 90.81
k=16 90.78
k=17 90.76
k=18 90.64
k=19 90.78
k=20 90.62
k=21 90.70
k=22 90.66
k=23 90.82
k=24 90.70
k=25 90.83
Número ótimo de vizinhos é 24 com 90.8%
```


In [103]:

#Uma vez escolhido k vizinhos vamos validar o modelo com os k vizinhos
knn = KNN(n_neighbors = 24, weights='uniform', p=2, metric='euclidean')
scores = cross_validate(estimator=knn, X=db_pronto, y = y_array, scoring=['accur
acy', 'precision', 'recall', 'f1'], cv=kfold)

In [112]:

```
#Visualizando as métricas para cada K-fold do treinamento.
scores = pd.DataFrame(scores)
scores.head(10)
#Temos as métricas Acurácias, precisão, recall e f1
```

Out[112]:

	fit_time	score_time	test_accuracy	train_accuracy	test_precision	train_prec
0	0.750064	1.804733	0.968439	0.911480	0.413043	0.687556
1	0.749651	1.565197	0.964069	0.912424	0.469388	0.690920
2	0.679790	1.570873	0.960185	0.912856	0.531646	0.692764
3	1.097730	2.037847	0.943433	0.914556	0.604167	0.689994
4	0.936274	2.003972	0.946090	0.913991	0.611465	0.690105
5	0.935774	2.251072	0.951190	0.914207	0.611111	0.690058
6	0.918801	1.924168	0.899223	0.919009	0.518182	0.686221
7	1.113227	2.084138	0.889995	0.919981	0.564516	0.684704
8	1.108644	2.431741	0.856241	0.922085	0.609375	0.690083
9	1.240317	1.600899	0.691112	0.935601	0.688794	0.625434

In [117]:

```
print("Média Acurácia", round(scores['test_accuracy'].mean(), 3))
print("Média Precisão", round(scores['test_precision'].mean(), 3))
print("Média Recall", round(scores['test_recall'].mean(), 3))
print("Média Recall", round(scores['test_f1'].mean(), 3))
```

Média Acurácia 0.907 Média Precisão 0.562 Média Recall 0.34 Média Recall 0.411

2. Decision Tree

In [119]:

from sklearn.tree import DecisionTreeClassifier

In [120]:

```
dtree = DecisionTreeClassifier(criterion='gini') #ou Gini
scores_1 = cross_validate(estimator=dtree, X=db_pronto, y = y_array, scoring=['a
ccuracy', 'precision','recall','f1'], cv=kfold)
```

In [123]:

```
#Visualizando as métricas para cada K-fold do treinamento.
scores_1 = pd.DataFrame(scores_1)
scores_1.head(10)
#Temos as métricas Acurácias, precisão, recall e f1
```

Out[123]:

	fit_time	score_time	test_accuracy	train_accuracy	test_precision	train_prec	
0	0.217129	0.006352	0.952901	1.0	0.264706	1.0	
1	0.198115	0.007267	0.949988	1.0	0.303226	1.0	
2	0.239363	0.006505	0.941248	1.0	0.345455	1.0	
3	0.197003	0.006552	0.924253	1.0	0.431095	1.0	
4	0.194602	0.006493	0.936134	1.0	0.489362	1.0	
5	0.198114	0.006384	0.927149	1.0	0.325581	1.0	
6	0.226866	0.006806	0.857698	1.0	0.326403	1.0	
7	0.180223	0.006556	0.857212	1.0	0.379747	1.0	
8	0.182637	0.007201	0.832686	1.0	0.467305	1.0	
9	0.183003	0.007493	0.604177	1.0	0.581875	1.0	

In [129]:

```
print("Média Acurácia", round(scores_1['test_accuracy'].mean(), 3))
print("Média Precisão", round(scores_1['test_precision'].mean(), 3))
print("Média Recall", round(scores_1['test_recall'].mean(), 3))
print("Média Recall", round(scores_1['test_f1'].mean(), 3))
```

Média Acurácia 0.878 Média Precisão 0.391 Média Recall 0.407 Média Recall 0.396

3. Artificial Neural Networks

In [132]:

```
#Decidir quando hidden layer usar, talvez seja um problema de otimização
#Fazer iterativamente para a escolha de neuronios
from sklearn.neural_network import MLPClassifier
ANN = MLPClassifier(hidden_layer_sizes=(15))
```

In [133]:

```
scores\_2 = cross\_validate(estimator=ANN, X=db\_pronto, y = y\_array, scoring=['accuracy', 'precision', 'recall', 'f1'], cv=kfold)
```

In [128]:

```
#Visualizando as métricas para cada K-fold do treinamento.
scores_2 = pd.DataFrame(scores_2)
scores_2.head(10)
#Temos as métricas Acurácias, precisão, recall e f1
```

Out[128]:

	fit_time	score_time	test_accuracy	train_accuracy	test_precision	train_prec		
0	3.724794	0.006598	0.967225	0.900850	0.428571	0.630481		
1	1.902635	0.008315	0.964797	0.878673	0.000000	0.250000		
2	4.414217	0.006742	0.962855	0.900526	0.569536	0.595583		
3	0.820253	0.006606	0.937121	0.891704	0.625000	0.705471		
4	1.372052	0.006479	0.945847	0.900475	0.680851	0.671273		
5	1.475896	0.006512	0.945847	0.889737	0.533333	0.706030		
6	0.993322	0.006666	0.893152	0.901149	0.453333	0.622958		
7	1.019836	0.006821	0.879553	0.903820	0.497110	0.628534		
8	2.509186	0.007027	0.864983	0.909378	0.602222	0.621033		
9	1.336846	0.008188	0.607334	0.927508	0.549550	0.510572		
4								

In [134]:

```
print("Média Acurácia", round(scores_2['test_accuracy'].mean(), 3))
print("Média Precisão", round(scores_2['test_precision'].mean(), 3))
print("Média Recall", round(scores_2['test_recall'].mean(), 3))
print("Média Recall", round(scores_2['test_f1'].mean(), 3))
```

Média Acurácia 0.892 Média Precisão 0.569 Média Recall 0.264 Média Recall 0.299

4. Linear Discriminant Analysis (LDA)

In [136]:

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

In [137]:

```
LDA = LinearDiscriminantAnalysis()
scores_3 = cross_validate(estimator=LDA, X=db_pronto, y = y_array, scoring=['accuracy', 'precision','recall','f1'], cv=kfold)
```

In [140]:

```
#Visualizando as métricas para cada K-fold do treinamento.

scores_3 = pd.DataFrame(scores_3)

scores_3.head(10)

#Temos as métricas Acurácias, precisão, recall e f1
```

Out[140]:

	fit_time	score_time	test_accuracy	train_accuracy	test_precision	train_precisi
0	0.101903	0.005602	0.969410	0.903062	0.450000	0.635257
1	0.050533	0.005157	0.966011	0.902846	0.530864	0.629866
2	0.048474	0.005148	0.961884	0.903224	0.610390	0.628999
3	0.048830	0.005221	0.940762	0.905194	0.605839	0.626671
4	0.056611	0.007342	0.946819	0.904630	0.663793	0.625296
5	0.049301	0.005157	0.948033	0.905115	0.564706	0.629919
6	0.051483	0.005745	0.894366	0.910106	0.454545	0.629933
7	0.049343	0.005299	0.886595	0.910646	0.535714	0.624071
8	0.049451	0.005845	0.855270	0.914315	0.569892	0.628625
9	0.052393	0.006267	0.661000	0.930448	0.695276	0.539388

In [141]:

```
print("Média Acurácia", round(scores_3['test_accuracy'].mean(), 3))
print("Média Precisão", round(scores_3['test_precision'].mean(), 3))
print("Média Recall", round(scores_3['test_recall'].mean(), 3))
print("Média Recall", round(scores_3['test_f1'].mean(), 3))
```

Média Acurácia 0.903 Média Precisão 0.568 Média Recall 0.324 Média Recall 0.404

5. Logistic Regression

In [143]:

```
from sklearn.linear model import LogisticRegression
```

In [145]:

```
logmodel = LogisticRegression()
scores_4 = cross_validate(estimator=logmodel, X=db_pronto, y = y_array, scoring=
['accuracy', 'precision','recall','f1'], cv=kfold)
```

In [148]:

```
#Visualizando as métricas para cada K-fold do treinamento.
scores_4 = pd.DataFrame(scores_4)
scores_4.head(10)
#Temos as métricas Acurácias, precisão, recall e f1
```

Out[148]:

	fit_time	score_time	test_accuracy	train_accuracy	test_precision	train_precisi
0	0.354411	0.005435	0.971352	0.903278	0.477778	0.669917
1	0.379584	0.005793	0.965768	0.903575	0.533333	0.668620
2	0.385641	0.005458	0.960913	0.904519	0.606557	0.671223
3	0.469140	0.005535	0.936635	0.907028	0.573171	0.674896
4	0.479800	0.005569	0.945119	0.905736	0.659794	0.670896
5	0.349824	0.005504	0.948276	0.904845	0.593750	0.660637
6	0.399228	0.006099	0.897280	0.911671	0.486842	0.676219
7	0.384103	0.005931	0.892424	0.912022	0.573099	0.672642
8	0.361499	0.005982	0.860855	0.914504	0.625418	0.663488
9	0.420548	0.006276	0.629189	0.931366	0.748299	0.585859

In [149]:

```
print("Média Acurácia", round(scores_4['test_accuracy'].mean(), 3))
print("Média Precisão", round(scores_4['test_precision'].mean(), 3))
print("Média Recall", round(scores_4['test_recall'].mean(), 3))
print("Média Recall", round(scores_4['test_f1'].mean(), 3))
```

Média Acurácia 0.901 Média Precisão 0.588 Média Recall 0.255 Média Recall 0.348

6. Support Vector Machine (SVM)

In [152]:

```
from sklearn.svm import LinearSVC
```

In [153]:

```
SVM = LinearSVC()
scores_5 = cross_validate(estimator=SVM, X=db_pronto, y = y_array, scoring=['acc
uracy', 'precision','recall','f1'], cv=kfold)
```

In [156]:

```
#Visualizando as métricas para cada K-fold do treinamento.
scores_5 = pd.DataFrame(scores_5)
scores_5.head(10)
#Temos as métricas Acurácias, precisão, recall e f1
```

Out[156]:

	fit_time	score_time	test_accuracy	train_accuracy	test_precision	train_precis
0	9.460046	0.009249	0.973294	0.886497	0.555556	0.714094
1	12.390656	0.007202	0.965526	0.902361	0.511111	0.618442
2	11.613157	0.005831	0.926681	0.801565	0.357143	0.369759
3	11.460008	0.008619	0.936150	0.895859	0.678571	0.742120
4	11.745255	0.006043	0.941476	0.900610	0.673913	0.682316
5	10.252776	0.005210	0.945847	0.894162	0.538462	0.763383
6	9.933803	0.006342	0.900437	0.891437	0.714286	0.744417
7	10.591744	0.006104	0.883681	0.893676	0.769231	0.772487
8	11.224879	0.008153	0.847256	0.910835	0.531148	0.652870
9	10.142964	0.007201	0.540554	0.926644	0.500000	0.623932

In [157]:

```
print("Média Acurácia", round(scores_5['test_accuracy'].mean(), 3))
print("Média Precisão", round(scores_5['test_precision'].mean(), 3))
print("Média Recall", round(scores_5['test_recall'].mean(), 3))
print("Média Recall", round(scores_5['test_f1'].mean(), 3))
```

Média Acurácia 0.886 Média Precisão 0.583 Média Recall 0.216 Média Recall 0.222

Resultados e Metricas

Discussões