MATH 220A

Name: Quin Darcy Due Date: 4/4/21 Instructor: Dr. Martins Assignment: Homework 4

19.1 Prove that for functions $f: \mathbb{R} \to \mathbb{R}$, the $\varepsilon - \delta$ definition of continuity implies the open set definition.

Proof. Assume that $f: \mathbb{R} \to \mathbb{R}$ is continuous and let $V \subset \mathbb{R}$ be any open set in the range of f. Then we want to show that $f^{-1}(V)$ is open. To do this we let $a \in f^{-1}(V)$ and show that a is contained in a neighborhood which is contained in $f^{-1}(V)$. Since f is continuous, then for any $\varepsilon > 0$, there exists $\delta > 0$ such that $f(x) \in (f(a) - \varepsilon, f(a) + \varepsilon)$ for all $x \in \mathbb{R}$ such that $|x - a| < \delta$. Hence, $a \in (a - \delta, a + \delta) \subset f^{-1}(V)$. Therefore every point of $f^{-1}(V)$ is an interior point.

19.5. Show that the subspace (a, b) of \mathbb{R} is homeomorphic with (0, 1) and the subspace [a, b] is homeomorphic with [0, 1].

Proof. We begin by defining the following function $f:(a,b)\to(0,1)$:

$$f(x) = \frac{x - a}{b - a}.$$

We want to show that f is a bijection, f is continuous, and f^{-1} is continuous. We will first let $x_1, x_2 \in (a, b)$ and assume that $f(x_1) = f(x_2)$. Then this implies that

$$\frac{x_1 - a}{b - a} = \frac{x_2 - a}{b - a} \Rightarrow x_1 - a = x_2 - a \Rightarrow x_1 = x_2.$$

Hence, f is injective. Next, if $y \in (0,1)$, then choosing $x \in (a,b)$ such that x = y(b-a) + a, then we get that f(x) = y. Hence, f is surjective.

Having shown that f is a bjection, we now want to show that f and f^{-1} are both continuous over (a, b) and (0, 1), respectively. Let $c \in (a, b)$ and let $\varepsilon > 0$. Then for $\delta = \varepsilon |b - a|$, it follows that for all $x \in (a, b)$

$$|x - c| < \delta \Rightarrow |x - c| < \varepsilon |b - a|$$

$$\Rightarrow \frac{|x - c|}{|b - a|} < \varepsilon$$

$$\Rightarrow \left| \frac{x - c}{b - a} \right| < \varepsilon$$

$$\Rightarrow \left| \frac{x - a}{b - a} - \frac{c - a}{b - a} \right| < \varepsilon$$

$$\Rightarrow |f(x) - f(c)| < \varepsilon.$$

For all $c \in (a, b)$. This shows that f is continuous. Now we need to show that $f^{-1}(y) = y(b-a) + a$ is continuous at every $x \in (0, 1)$. Letting $\varepsilon > 0$ and selecting the same $\delta = \varepsilon/|b-a|$ as before we find that for all $y \in (0, 1)$

$$\begin{aligned} |y-c| &< \delta \\ \Rightarrow |y-c| &< \frac{\varepsilon}{|b-a|} \\ \Rightarrow |y-c||b-a| &< \varepsilon \\ \Rightarrow |(y-c)(b-a)| &< \varepsilon \\ \Rightarrow |y(b-a)-c(b-a)| &< \varepsilon \\ \Rightarrow |y(b-a)+a-c(b-a)-a| &< \varepsilon \\ \Rightarrow |f^{-1}(y)-f^{-1}(c)| &< \varepsilon. \end{aligned}$$

Therefore (a, b) is homeomorphic to (0, 1). Lastly, we note that both f and f^{-1} are defined on the end points of their respective intervals and that f(a) = 0, f(b) = 1, $f^{-1}(0) = a$, and $f^{-1}(1) = b$. Hence, the given function, f, also shows that [a, b] and [0, 1] are homeomorphic.

19.13. Let $A \subset X$; let $f: A \to Y$ be continuous; let Y be Hausdorff. Show that if f may be extended to a continuous function $g: \overline{A} \to Y$, then g is uniquely determined by f.

Proof. Let $g: \overline{A} \to Y$ and $h: \overline{A} \to Y$ be continuous extensions of f. Assume there exists $x \in \overline{A}$ such that $g(x) \neq h(x)$. Then since Y is Hausdorff and $g(x), h(x) \in Y$, then there exists neighborhoods U_1 and U_2 such that $g(x) \in U_1$, $h(x) \in U_2$, and $U_1 \cap U_2 = \emptyset$. We also note that $x \in g^{-1}(U_1)$ and $x \in h^{-1}(U_2)$. Hence, $x \in g^{-1}(U_1) \cap h^{-1}(U_2)$, which, by continuity, is open as it is the intersection of open sets. With $x \in \overline{A}$, then either $x \in A$ or $x \in A'$. If $x \in A$, then f(x) = g(x) = h(x), which is a contradiction. If $x \in A'$, then there exists some $x \in A$ such that $x \neq x$ and $x \in A'$ and $x \in A'$. This implies that $x \in A'$ such that $x \in A'$ and thus $x \in A'$ such that $x \in A'$ and thus $x \in A'$ and thus $x \in A'$ such that $x \in A'$ and thus $x \in A'$ and thus $x \in A'$ such that $x \in A'$ and thus $x \in A'$ and thus $x \in A'$ such that $x \in A'$ and thus $x \in A'$ and thus $x \in A'$ such that $x \in A'$ and thus $x \in A'$ and thus $x \in A'$ such that $x \in A'$ and thus $x \in A'$ such that $x \in A'$ and thus $x \in A'$ such that $x \in A'$ and thus $x \in A'$ such that $x \in A'$ such that $x \in A'$ and thus $x \in A'$ such that $x \in A'$ and thus $x \in A'$ such that $x \in A'$ such that $x \in A'$ and thus $x \in A'$ such that $x \in A'$ and thus $x \in A'$ such that $x \in A'$ such that $x \in A'$ and thus $x \in A'$ such that $x \in A'$ and thus $x \in A'$ such that $x \in A'$ such that $x \in A'$ such that $x \in A'$ and thus $x \in A'$ such that $x \in A'$ such that x

20.1. (a) In \mathbb{R}^n , define

$$d'(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + \dots + |x_n - y_n|.$$

Show that d' is a metric that induces the usual topology on \mathbb{R}^n . Sketch the basis elements under d' when n=2.

Proof. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Then since for each $1 \le i \le n$, we have that $|x_i - y_i| \ge 0$, then $|\mathbf{x} - \mathbf{y}| \ge 0$. Similarly, if $|\mathbf{x} - \mathbf{y}| = 0$, then $|x_i - y_i| = 0$ for all i and thus, $x_i = y_i$ for all i, which implies that $\mathbf{x} = \mathbf{y}$.

Since for each $1 \leq i \leq n$, $d(x_i, y_i) = d(y_i, x_i)$, i.e., $|x_i - y_i| = |y_i - x_i|$, then if $d'(\mathbf{x}, \mathbf{y}) \neq d'(\mathbf{y}, \mathbf{x})$, then that would imply that $|x_i - y_i| \neq |y_i - x_i|$, which is a contradiction, since d is a metric on \mathbb{R} .

Finally, letting $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}$. Then

$$d(\mathbf{x}, \mathbf{z}) = |x_1 - z_1| + \dots + |x_n - z_n|$$

and

$$d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z}) = (|x_1 - y_1| + |y_1 - z_1|) + \dots + (|x_n - y_n| + |y_n - z_n|)$$

Finally, we note that for each i, $|x_i - z_i| \le |x_i - y_i| + |y_i - z_i|$ and thus by induction it can be shown that $|x_1 - z_1| + \cdots + |x_n - z_n| \le (|x_1 - y_1| + |y_1 - z_1|) + \cdots + (|x_n - y_n| + |y_n - z_n|)$.

To show that d' induces the usual topology on \mathbb{R}^n , we will show that the topology induced by d' is the same as the topology induced by ρ , which by Theorem 20.3, is the same as the standard topology on \mathbb{R}^n . To do this, we will let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Then consider the two metrics: $d'(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + \cdots + |x_n - y_n|$, and $\rho(\mathbf{x}, \mathbf{y}) = \max\{|x_1 - y_1|, \dots, |x_n - y_n|\} = |x_i - y_i|$, for some $1 \le i \le n$. This implies that $|x_1 - y_1| + \cdots + |x_n - y_n| \le n|x_i - y_i|$. Hence, $d'(\mathbf{x}, \mathbf{y}) \le n\rho(\mathbf{x}, \mathbf{y})$. By Lemma 20.2, any basis element $B_{d'}(\mathbf{x}, \varepsilon)$, of size ε , contains a basis element $B_{\rho}(\mathbf{x}, \varepsilon/n)$. Similarly, for any basis element $B_{\rho}(\mathbf{x}, \varepsilon)$ contains a basis element $B_{d'}(\mathbf{x}, \varepsilon)$ since $\rho(\mathbf{x}, \mathbf{y}) \le d'(\mathbf{x}, \mathbf{y})$, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Thus, the topologies induced by d' and ρ are the same as the standard topology on \mathbb{R}^n .

Finally, the basis elements under d' appear as follows:

Figure 1: Basis

21.10 Using the closed set formulation of continuity (Theoreom 18.1), show that the following are closed subsets of \mathbb{R}^2 :

$$A = \{x \times y \mid xy = 1\}$$

$$S^{1} = \{x \times y \mid x^{2} + y^{2} = 1\}$$

$$B^{2} = \{x \times y \mid x^{2} + y^{2} < 1\}$$

Proof. Consider the function $f: \mathbb{R} \to \mathbb{R}$ such that f(x) = x. Then if $\varepsilon > 0$, and $a \in \mathbb{R}$, if we choose $\delta = \varepsilon$, it follows that $|x - a| < \delta$, then $|f(x) - f(a)| < \varepsilon$. Hence, f is continuous. A similar argument can be used to show that g(y) = y is continuous. By Lemma 21.4, the function fg is a continuous function from $\mathbb{R} \times \mathbb{R}$ into \mathbb{R} . Finally, considering the singleton set $\{1\}$, which is closed, we may then apply Theorem 18.1 which states that $(fg)^{-1}(\{1\}) = A$ is closed.

To show that S^1 is closed, we first need to show that the function $f(x)=x^2$ is continuous. Letting $\varepsilon>0$, and $a\in\mathbb{R}$, then letting $K=\min\{1,\frac{\varepsilon}{1+2|a|}\}$. It follows that if $\delta=K/2$, then |x-a|<1 and so |x|<1+|a|. Thus, $|x^2-a^2|=|x+a||x-a|\leq |x-a||1+2|a||<\delta|1+2|a||=\varepsilon$. Thus, $f(x)=x^2$ is continuous. This implies that $g(y)=y^2$ is continuous and by Lemma 21.4, f+g is continuous. By Theorem 18.1, $(f+g)^{-1}(\{1\})$ is closed.

Lastly, we consider the set [-1, 1] which is closed in \mathbb{R} and letting f and g be the same functions as above, we get that (f+g) is continuous, and that $(f+g)^{-1}([-1, 1]) = B^2$, which by Theorem 18.1, is closed.

5