装

订

东北林业大学

2015-2016 学年第 1 学期 阶段考试试题

2 100	20 20 PT		— -	H.C.71 POV1.		
题号	_	1 1	111	卷面分		
得分						
评卷 教师						

得分 一、填空题(本大题共8小题,每空2分,总计20分)

-1/1/(1/3) --+1

										_
		0	0	1	0	(1)			123)
		2	0	0	0	$\begin{pmatrix} 1 \end{pmatrix}_{\zeta}$,	$\Gamma = \Gamma$	5
2,	行列式	0	0	0	= -24;	A = 1 (1	2	3),	则 A ¹⁰⁰ 2 6 ⁹⁹ 1 2 3 1 2 3	3
		0	4	0		(1)		_	1 2 3	3)
			4	11	()					

3、设
$$|A_{3\times3}| = 5$$
,则 $|2A| = 40$;设 $|B_{n\times n}| = 2$,则 $|BC^{-1}| = \frac{2}{3}$ $|A_n| = \lambda^{1} |A_n|$ $|A_n| = |B| \cdot |C^{-1}| = |B| \cdot |C^{-1}|$

4、设方阵
$$A$$
满足 $A^2 - A - 2E = 0$,则 $A^2 = \frac{A - E}{2}$;

设
$$a_1a_2$$
· Aa_n $\not\in 0$ 见 a_n a_n

设
$$A$$
 和 B 分别是 m 阶和 n 阶矩阵, 令 $P = \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix}$,则 $P^T = \begin{pmatrix} 0 & B^T \\ A^T & 0 \end{pmatrix}$;

7、齐次线性方程组
$$\begin{cases} \lambda x_1 + x_2 = 0 \\ (2\lambda + 1)x_1 + \lambda x_2 = 0 \end{cases}$$
有非零解,参数 λ 满足: $\lambda = -1$

得分

二、证明题(本大题共2小题,每小题10分,总计20分)

 $P^T = (B \cap B)^T$ $B^T \cap B^T \cap B^T$

$$P^2$$
 是对称阵; (3) 令 $f(x) = x^2 + x - 2$, 证明 $f(P)$ 是对称阵。 $P^{\top} > P$

证明: (1) 由己知 A 是对称阵,所以 $P^T = (B^T A B)^T = B^T A^T (B^T)^T = B^T A B = P$;

(2)
$$(P^2)^T = (PP)^T = P^TP^T = PP = P^2$$
 $(P^T)^2 = P^T \cdot P^T = PP$

(3)
$$f(P) = P^2 + P - 2E$$
,

所以
$$f(P)^{T} = (P^{2} + P - 2E)^{T} = (P^{2})^{T} + P^{T} - (2E)^{T} = (P^{2} + P - 2E) = f(P)$$

$$f(P)^{T} = (P^{2} + P - 2)^{T} = (P^{2})^{T} + P^{T} - (2E)^{T}$$

$$= (P^{2} + P - 2)^{T} + P^{T} - (2E)^{T}$$

$$= (P^{2} + P - 2E)^{T} + P^{T} - (2E)^{T}$$

$$= (P^{2} + P - 2E)^{T} + P^{T} - (2E)^{T}$$

$$= (P^{2} + P - 2E)^{T} + P^{T} - (2E)^{T}$$

$$= (P^{2} + P - 2E)^{T} + P^{T} - (2E)^{T}$$

$$= (P^{2} + P - 2E)^{T} + P^{T} - (2E)^{T}$$

$$= (P^{2} + P - 2E)^{T} + P^{T} - (2E)^{T}$$

$$= (P^{2} + P - 2E)^{T} + P^{T} - (2E)^{T}$$

$$= (P^{2} + P - 2E)^{T} + P^{T} - (2E)^{T}$$

$$= (P^{2} + P - 2E)^{T} + P^{T} - (2E)^{T}$$

$$= (P^{2} + P - 2E)^{T} + P^{T} - (2E)^{T}$$

②、设*n*(*n*≥2) 阶方阵 *A* 可逆, A · A · A · A

(1) 证明其伴随矩阵
$$A*$$
 也可逆; (2) 如果 $A^* = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, 求 A 。

(1) 证明: $AA^* = A | E_n$,所以 $A^* = |A|^{n-1} \neq 0$,故 A^* 也可逆;

(2)
$$A = |A|(A^*)^{-1}$$
,由 $|A^*| = -2$,可知 $|A| = -2$,从而 $A = -2(A^*)^{-1} = \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$

或:
$$A$$
 为二阶矩阵,故 $A^* = \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$,所以 $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$

装

订

东北林业大学

<u>2015-2016 学年第 1 学期 阶段考试试题</u>

得分

三、计算题(本大题共 4 小题,每小题 15 分,总计 60 分)

$$1、设 $D_n = \begin{vmatrix} x & a & \cdots & a \\ a & x & \cdots & a \\ \vdots & \vdots & & \vdots \\ a & a & \cdots & x \end{vmatrix}, (1) 求 D_n 的值; (2) 令 a = 2, 求 D_n = 0 的根.$$$

$$= [x + (n-1)a] \begin{vmatrix} 1 & 0 & \cdots \\ 1 & x-a & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 1 & \cdots & x-a \end{vmatrix} = [x + (n-1)a](x-a)^{n-1}$$

(2)
$$\stackrel{\text{def}}{=} n = 1 \text{ ft}, \quad D_n = x = 0 \Rightarrow x = 0$$

当
$$n > 1$$
 时, $D_n = [x + 2(n-1)](x-2)^{n-1} = 0 \Rightarrow x = -2(n-1)$ 或 $x = 2$

2、设
$$D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & -1 & 1 & 4 \\ 4 & 1 & 1 & 16 \\ 8 & -1 & 1 & 64 \end{vmatrix}$$
, (1) 求 D 的值; (2) 求 $2A_{41} + 2A_{42} + 2A_{43} + A_{44}$ 的值。

解:
$$D = (4-2)(4+1)(4-1)(1-2)(1+1)(-1-2) = 180$$

(2)
$$2A_{41} + 2A_{42} + 2A_{43} + A_{44} = -A_{44} = -\begin{vmatrix} 1 & 1 & 1 \\ 2 & -1 & 1 \\ 4 & 1 & 1 \end{vmatrix} = -(1-2)(1+1)(-1-2) = -6$$

解: (1)
$$|A| = \begin{vmatrix} 3 & 4 \\ 4 & -3 \end{vmatrix} \cdot \begin{vmatrix} 1 & 0 \\ 5 & 1 \end{vmatrix} = -25$$

$$(2) A^{-1} = \begin{pmatrix} \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}^{-1} & \\ & \begin{pmatrix} 1 & 0 \\ 5 & 1 \end{pmatrix}^{-1} \end{pmatrix} = \begin{pmatrix} \frac{3}{25} & \frac{4}{25} & 0 & 0 \\ \frac{4}{25} & \frac{-3}{25} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -5 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 10 & 1 \end{pmatrix} & \begin{pmatrix} 0 & 0 & (5n) & 1 \end{pmatrix}$$
4、设 $P = \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix}$, $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $AP = P\Lambda$, (1) 求 P^{-1} ; (2) 求 A ; (3) 求 A^{n} .

解:
$$P = 2$$
, $P^{-1} = \frac{1}{2} \begin{pmatrix} 4 & -2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$

(2)
$$A = P\Lambda P^{-1} = \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \cdot \frac{1}{2} \begin{pmatrix} 4 & -2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}$$

(2)
$$A = P\Lambda P^{-1} = \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \cdot \frac{1}{2} \begin{pmatrix} 4 & -2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}$$

(3) $A^{n} = P\Lambda^{n} P^{-1} = \frac{1}{2} \begin{pmatrix} 4 - 2^{n+1} & 2^{n+1} - 2 \\ 4 - 2^{n+2} & 2^{n+2} - 2 \end{pmatrix} = \begin{pmatrix} 2 - 2^{n} & 2^{n} - 1 \\ 2 - 2^{n+1} & 2^{n+1} - 1 \end{pmatrix}$