rabic Brisi'i lagiocias	c ruic cuiti	Cicincino	nee/ aata																								
Sample ID	La	Ce	Pr		Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Ва	Th	Nb	Υ	Hf	Та	U	Pb	Rb	Cs	Sr	Sc	Zr
NSH MS99033-1	1.36	2.38	0.27	1.07	0.19	0.39	0.18	0.03	0.16	0.03	0.08	0.01	0.07	0.01	57	0.01	0.06	0.95	0.01	0.00	0.00	0.37	1.7	7 0.10	512	0.3	1
NSH MS99033-2	1.48	2.60			0.23	0.37		0.03	0.19		0.09					0.00		1.18					2.3	0.13			1
NSH MS99033-3	1.46	2.59	0.30	1.18	0.24	0.37	0.23	0.04	0.22	0.05	0.12	0.02	0.10	0.01	61	0.01	0.04	1.49	0.02	0.00	0.02	1.28	3.8	0.29	493	0.4	1
NSH MS99033-4	1.46	2.52	0.29	1.19	0.21	0.38	0.21	0.03	0.17	0.03	0.09	0.01	0.07	0.01	58	0.01	0.04	1.09	0.02	0.00	0.01	0.42	. 2.8	0.20	506	0.3	1
* This ICPMS REE analysis is done by the GeoAnalytical Lab at Washington State University. Four plagioclase crystals with minimal visible other mineral inclusions from anorthosite sample MS99033 were picked for REE analyses. The units of all analyses are in parts per million (ppm).																											
* The Flux used for th	The Flux used for the fusion is di-Lithium-tetraborate (Spectromelt* A-10, EM Science, Gibbstown, NJ). Reagents are HNO3 69-70% (Fisher ACS plus grade), HF 48-52% (Baker ACS reagent grade), HC104 67-71% (Fisher Trace Metal Grade), and H2O2 (Baker ACS Reagent). The HF is further purified before use by sub-boiling distillation in a tefflon																										
still. All water used is >18 M deionized water from a Nanopure analytical grade water system (Barnstead/Thermolyne)																											
Powdered samples are mixed with an equal amount of lithium tetraborate flux (typically 2g), placed in a carbon crucible and fused at 1000°C in a muffle furnace for 30 minutes. After cooling, the resultant fusion bead is briefly ground in a carbon-steel ring mill and a 250 mg portion is weighed into a 30 ml, screw-top Teflon PFA vial for																											
dissolution. The acid dissolution consists of a first evaporation with HNO3 (2ml), HF (6 ml), and HClO4 (2 ml) at 110° C. After evaporating to dryness, the sample is wetted and the sides of the vial are rinsed with a small amount of water before a second evaporation with HClO4 (2 ml) at 160° C. After the second evaporation, samples are brought																											
into solution by adding approximately 10 ml of water, 3 ml HNO3, 5 drops H2O2, 2 drops of HF and warmed on a hot plate until a clear solution is obtained. The sample is then transferred to a clean 60 ml HDPE bottle diluted up to a final weight of 60g with de-ionized water.																											
·																											
Solutions are analyze	d on an Agile	ent model 4	500 ICP-MS	and are dilu	ited an addit	tional 10X a	t the time of	analysis usi	ng Agilent's	Integrated S	ample Intr	oduction Sy	stem (ISIS).	This yields a	final dilutio	on factor of :	:4800 relative t	o the amour	nt of sample	fused. Instru	umental dri	ft is correct	ed using Ru,	, In, and Re a	s internal sta	andards. Inte	rnal
standardization for th	ne REEs uses	a linear inte	rpolation b	etween In a	nd Re after D	oherty (198	39) to compe	nsate for ma	ass-dependa	ant differenc	es in the ra	te and degre	e of instrum	ental drift.	sobaric inte	erference of	light rare earth o	xides on the	e mid- heavy	REEs can be	a significan	t source of	error in ICP-	MS analysis.	so tuning is	optimized to	keep the
CeO/Ce ratio below 0																											
batch of 18 unknown																					0						
							0					,,		,	, 0	,			,								
1																											

Table DR3. Plagioclase rare earth elements (REE) data