

Instituto Superior Técnico

Matemática Computacional 3° Quarter - 2021/2022

LICENCIATURA EM MATEMÁTICA APLICADA E COMPUTAÇÃO

Projeto Computacional 3

Abril 2022

Clara Pereira 99405 Marta Sereno 99432 Samuel Pearson 99441

Conteúdo

Exer	cício 1																		2
	Alínea	a) .																	2
	Alínea	b) .																	3
	Alínea	c) .																	3
	Alínea	d) .																	4
	Alínea	e) .																	5
Exer	cício 2	. .																	5
	Alínea	a) .																	6
	Alínea	b) .																	6
	Alínea	c) .																	7
	Alínea	d) .																	8
Exer	cício 3	<u> </u>																	9
	Alínea	a) .																	9
	Alínea	b) .																	9
	Alínea	c) .																	9
	Alínea	d) .																	13
Refe	rências																		13

Exercício 1

1. a)

Nesta alínea temos dois objetivos principais.

Em primeiro lugar, é-nos pedido que tracemos os gráficos dos polinómios de Legendre P_k de graus $k=1,\ldots,8$, definidos recurssivamente pelas fórmulas

$$P_{n+1}(x) = \frac{2n+1}{n+1}xP_n(x) - \frac{n}{n+1}P_{n-1}(x), n = 1, 2, \dots, P_0(x) = 1, P_1(x) = x.$$

Criámos então a função legendrepol, que dado um valor de n, recorre a estas fórmulas e devolve o respetivo polinómio de Legendre de grau n.

Por exemplo, depois de simplificado, $legendrepol(3) = \frac{5x^3 - 3x}{2}$

De seguida, recorrendo ao comando fplot, para os vários polinómios de graus 1 até 8, foram desenhados os seus gráficos no intervalo [-1,1]. Além disso, através do comando vpasolve determinaram-se os zeros de cada polinómio, que são também representados graficamente. Mediante a análise do gráfico, podemos observar que cada polinómio de grau k tem exatamente k zeros reais e distintos em (-1,1), distribuídos simetricamente em relação à origem.

(Ver script "ex1apt1".)

Em segundo lugar, pretendemos verificar que

$$\int_{-1}^{1} P_k(x) P_j(x) dx = \begin{cases} \frac{2}{2k+1} &, & k = j \\ 0 &, & k \neq j \end{cases}$$

Deste modo, determinámos, para cada $k, j \leq 8$ o valor de $\int_{1}^{1} P_{k}(x)P_{j}(x) dx$, recorrendo ao comando integral, assim como, o designado "valor teórico", isto é, quando k=j, este valor será $\frac{2}{2k+1}$, e, caso contrário, será igual a 0. Caso o módulo da diferença entre cada par de valores seja menor que uma tolerância de 10^{-10} , o programa atribuirá o valor true, e, caso contrário, o valor false. Basta, então, verificar que todos os elementos devolvem true, provando o pedido.

(Ver script "ex1apt2".)

1. b)

Nesta alínea, pretendemos criar uma função que receba um inteiro n e devolva os n zeros do polinómio de Legendre $P_n(x)$. Assim, definimos a função zerospol que, após verificar que $n \ge 1$ é inteiro, recorre ao comando vpasolve para determinar os zeros do polinómio, devolvendo-os numa lista.

```
Temos, por exemplo, que
zerospol(3) = \{-0.7745966692, 0, 0.7745966692\}
zerospol(4) = \{-0.8611363116, -0.3399810436, 0.3399810436, 0.8611363116\}
```

1. c)

Nesta alínea tencionamos implementar um código que devolva os pesos A_j , j = $0,\ldots,n$, da quadratura $Q_n(f)=\sum_{j=0}^n A_j f(x_j)$, através do método dos coeficientes indeterminados.

Assim, dados os nós de integração x_j , $j=0,\ldots,n$, queremos determinar A_j tais que a quadratura é exata para polinómios de grau o mais elevado possível, ou seja, queremos determinar A_j tais que $\sum_{j=0}^n A_j p(x_j) = \int_{-1}^1 p(x) dx$ para todos os polinómios p(x) com o grau mais elevado possível.

Notemos que $\{1, x, x^2, x^3, \dots\}$ forma uma base dos polinómios.

Queremos, então, que a igualdade acima se verifique para o maior número de potências x^{k} , k = 0, 1, 2, ...

Resulta o seguinte sistema linear

O qual pode ser escrito na forma

$$\begin{bmatrix} 1 & 1 & \dots & 1 \\ x_0 & x_1 & \dots & x_n \\ x_0^2 & x_1^2 & \dots & x_n^2 \\ \vdots & \vdots & \dots & \vdots \\ x_0^{2n+1} & x_1^{2n+1} & \dots & x_n^{2n+1} \end{bmatrix} \begin{bmatrix} A_0 \\ A_1 \\ A_1 \\ \vdots \\ A_n \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ \frac{2}{3} \\ \vdots \\ (1-(-1)^{n+1}) \\ \frac{(1-(-1)^{n+1})}{n+1} \end{bmatrix}$$

onde a matriz da esquerda é a transposta da matriz Vandermonde do vetor $[x_0, x_1, \dots, x_n]$.

Deste modo, foi definida a função pesos, que recebe um inteiro $n \geq 1$, e começa por calcular a matriz Vandermonde recorrendo aos zeros do polinómio P_{n+1} , determinados pela função zerospol. Para além disso, determina um vetor de dimensões $(n+1)\times 1$ com os respetivos valores de $\int_{-1}^1 x^k \, dx$, $k=0,\ldots,n$. Por fim, resolve o sistema acima, multiplicando a inversa da transposta da matriz Vandermonde pelo vetor determinado, e devolve uma lista com os valores dos pesos obtidos.

```
Por exemplo,
```

```
pesos(2) = \{0.55555555556, 0.888888888, 0.555555556\}
pesos(3) = \{0.3478548451, 0.6521451549, 0.6521451549, 0.3478548451\}
```

1. d)

Nesta alínea é-nos pedido para implementarmos um programa Matlab que recebe um inteiro $n \geq 1$ e uma função f, que devolva um valor aproximado do integral $\int_{-1}^{1} f(x) dx$, calculado pela quadratura de Gauss-Legendre $Q_n(f)$.

Para tal, definimos a função aprox que, recorrendo às funções definidas anteriormente, calcula os valores da função f nos nós de interpolação, f(zerospol(n+1)), e os respetivos pesos, pesos(n). Por fim, como estes valores foram guardados em listas, ambas com dimensões $n \times 1$, basta multiplicar a transposta do primeiro vetor pelo segundo, obtendo-se, assim, a soma pretendida $Q_n(f) = \sum_{j=0}^n A_j f(x_j)$, isto é, a aproximação do integral I(f).

Exemplificando, $aprox(10, @(x) x^2) = 0.66666666667$

1. e)

Nesta última alínea, utilizaremos o nosso programa para aproximar os integrais

1)
$$\int_{-1}^{1} \frac{x^2}{1 + 25x^2} dx$$
, 2) $\int_{0}^{\pi} \sin(\sin(5x)) dx$.

Consideramos $n=1,2,\ldots,8$ e notamos que o segundo integral deve ser alterado para o intervalo [-1,1] recorrendo à mudança de variável dada. Temos, então, $t\in[0,\pi]$, $t=\frac{\pi}{2}(x+1)$, $\frac{dt}{dx}=\frac{\pi}{2}$, com $x\in[-1,1]$. Ou seja, o integral que devemos aproximar é

$$\int_{-1}^{1} \frac{\pi}{2} sin(sin(\frac{5\pi}{2}(x+1))) dx.$$

Por conseguinte, recorrendo à função aprox definida na alínea anterior, calculamos os valores de cada integral para cada n = 1, 2, ..., 8.

De seguida, queremos comparar os valores aproximados com os valores obtidos através do comando *integral*. Prosseguimos, então, ao cálculo dos erros absoluto e relativo de cada aproximação.

Obtivemos os resultados apresentados na tabela abaixo.

	integral 1)	erro relativo 1)	integral 2)	erro relativo 2)
integral	0.0580255877	-	0.3572974964	-
n=1	0.0714285714	0.2309840232	-0.5530201764	2.547786318
n=2	0.04166666667	0.2819259865	2.6245643219	6.345599531
n=3	0.0651629073	0.1230029685	-0.7461795641	3.088398524
n=4	0.0517220832	0.1086331874	0.5414805116	0.5154892409
n=5	0.0615319777	0.0604283398	0.3338664776	0.0655784579
n=6	0.0553551168	0.0460222988	0.3844338917	0.0759490216
n=7	0.0596751233	0.028427727	0.3143350947	0.1202426608
n=8	0.0568518921	0.0202272077	0.3267852077	0.0853974320

Através da análise do erro relativo, podemos concluir que quanto maior o valor de n, ou seja, quanto maior o grau do polinómio, menor será o erro e portanto, melhor será a aproximação segundo a quadratura. É, no entanto, importante notar que, ao contrário do que acontece com o integral 1), relativamente à aproximção do integral 2), esta proporcionalidade não é tão linear.

Exercício 2

2. a)

Para obter a aproximação $\tilde{y}(x)$, criámos a função a2, que recebe como argumentos os extremos do integral a e b, o número n para o qual teremos os nodos t_j , com j=0,...,n, a função K(x,t) e a função f(x), e devolve $\tilde{y}(x)$, usando o método descrito. De seguida, utilizámos os métodos i), ii) e iii), para aproximar o integral I(K,y), utilizando a aproximação $y \approx \tilde{y}$, ou seja, $I(K,y) \approx I(K,\tilde{y})$.

i)

Criou-se a função comptrapz que recebe os mesmos argumentos que a função a2, e realiza a regra dos Trapézios composta para $I(K, \tilde{y})$ para os n+1 nodos no intervalo [a, b] - através da função trapz do Matlab; devolvendo a função aproximada I(K, y)(x).

ii)

Criou-se a função simpcomp que recebe os mesmos argumentos que a função a2, e realiza a regra de Simpson composta para $I(K, \tilde{y})$ para os n+1 nodos no intervalo [a, b]; devolvendo a função aproximada I(K, y)(x).

iii)

Para este método utilizámos o código do exercício 1, nomeadamente a função aprox. No entanto, a regra de Gauss-Legendre apenas realiza integrais de extremos -1 e 1, pelo que tivemos de reescrever o integral.

Seja $h(t) = \sqrt{t} \cdot y(t)$ definida no intervalo [0,1] e considere-se \tilde{h} , o seu prolongamento par (em t) ao intervalo [-1,1].

Podemos então definir \tilde{h} no Matlab e temos que:

$$2\int_0^1 \frac{\sqrt{x}}{(1+xt^2)^2} h(t) dt = \int_{-1}^1 \frac{\sqrt{x}}{(1+xt^2)^2} \tilde{h}(t) dt$$

Usando este resultado, definiu-se então a função gl, que recebe como argumento n e devolve a aproximação do integral I(K,y) pela regra de quadratura de Gauss-Legendre.

2. b)

Queremos mostrar que $\int_0^1 \frac{\sqrt{xt}}{(1+xt^2)^2} \cdot \sqrt{t} \, dt = \frac{\sqrt{x}}{2} - \frac{x\sqrt{x}}{2(1+x)} = \frac{\sqrt{x}}{2(1+x)}$.

Vamos então calcular o integral do lado esquerdo da equação.

Efetuando a substituição $1 + xt^2 = s \Leftrightarrow t = \sqrt{\frac{s-1}{x}}$, temos que $\frac{ds}{dt} = 2xt$.

Calculando os novos extremos do intervalo de integração:

$$\sqrt{\frac{s-1}{x}} = 0 \Leftrightarrow s = 1 \text{ e } \sqrt{\frac{s-1}{x}} = 1 \Leftrightarrow s = x+1$$

Obtemos então:

$$\int_0^1 \frac{\sqrt{x}t}{(1+xt^2)^2} dt = \int_1^{x+1} \frac{\sqrt{x}}{s^2} \frac{1}{2x} ds = \frac{1}{2\sqrt{x}} \int_1^{x+1} s^{-2} ds = -\frac{1}{2\sqrt{x}} s^{-1} \Big|_1^{x+1}$$
$$= \frac{1}{2\sqrt{x}} (1 - \frac{1}{x+1}) = \frac{1}{2\sqrt{x}} (\frac{x}{x+1}) = \frac{\sqrt{x}}{2(1+x)}$$

Está então mostrado que $y(x) = \sqrt{x}$ satisfaz a equação (4) do enunciado. De seguida apresenta-se o gráfico da solução exata (a preto) sobreposto ao gráfico da solução aproximada (a vermelho).

Considerou-se também pertinente mostrar um fragmento do gráfico obtido resultante de uma ampliação, de modo a poder distinguir os dois gráficos:

Pela observação dos gráficos, podemos concluir que a aproximação obtida é muito próxima da solução exata, pelo que o método devolve uma boa aproximação.

2. c)

Para construir a tabela, considerámos, para a proximação de y(x), $\tilde{y}(x) = a2(0,1,K,f,15)$ e avaliámo-la nos pontos t_j , j=0,...,15. Avaliámos também a solução exta $y(x)=\sqrt{x}$, e calculámos o módulo da diferença para o erro. Os valores obtidos apresentam-se em baixo:

t_j	$y(t_j)$	$\tilde{y}(t_j)$	$ y(t_j) - \tilde{y}(t_j) $
0	0	0	0
0.0667	0.1674	0.2582	$2.0867 \cdot 10^{-10}$
0.1333	0.2325	0.3651	$2.7378 \cdot 10^{-10}$
0.2000	0.2816	0.4472	$3.1250 \cdot 10^{-10}$
0.2667	0.3233	0.5164	$3.3747 \cdot 10^{-10}$
0.3333	0.3608	0.5774	$3.5339 \cdot 10^{-10}$
0.4000	0.3958	0.6325	$3.6225 \cdot 10^{-10}$
0.4667	0.4291	0.6831	$3.6595 \cdot 10^{-10}$
0.5333	0.4611	0.7303	$3.6916 \cdot 10^{-10}$
0.6000	0.4922	0.7746	$3.8232 \cdot 10^{-10}$
0.6667	0.5226	0.8165	$4.2393 \cdot 10^{-10}$
0.7333	0.5523	0.8563	$5.2120 \cdot 10^{-10}$
0.8000	0.5816	0.8944	$7.0855 \cdot 10^{-10}$
0.8667	0.6103	0.9309	$1.0238 \cdot 10^{-10}$
0.9333	0.6387	0.9661	$1.5023 \cdot 10^{-10}$
1.0000	0.6667	1.0000	$2.1702 \cdot 10^{-10}$

Analisando os erros, cuja ordem de grandeza é de 10^-10 , temos a confirmação do que tinhamos concluido graficamente: o método utilizado permite obter uma aproximação muito boa.

2. d)

Para calcular a ordem de convergência, notou-se o seguinte: quando n aumenta num fator de k, o erro diminui num fator de k^{ord} onde ord é a ordem de convergência do método.

Assim sendo, implementou-se um código Matlab que devolve uma matriz 2x5 onde as entradas da coluna j correspondem, respetivamente, ao logaritmo na base k do quociente do erro absoluto para n_j pelo erro absoluto obtido para $n_{j+1} = nk$, para o método i e ii.

Consideraram-se os valores de n mencionados no enunciado. (No caso do método i, n aumenta sempre num fator de 2).

Estudando o comportamento assintótico das duas sucessões obtidas, vemos que no caso do método i os valores parecem convergir para 2, enquanto que no caso do método ii parecem convergir para 4. Desta forma, concluímos que a ordem de con-

vergência destes métodos é, respetivamente, quadrática e quártica. Na tabela abaixo apresentam-se os resultados:

Trapézios	4.1474	2.1369	2.2064	2.0957	-
Simpson	6.7892	5.4256	4.3842	4.3743	4.27965

Exercício 3

$$\begin{cases} \begin{bmatrix} y(t) \\ y'(t) \\ y''(t) \end{bmatrix}' = \begin{bmatrix} y'(t) \\ y''(t) \\ f(t,y(t),y'(t),y''(t)) \end{bmatrix}, t > a \\ \begin{bmatrix} y(a) \\ y'(a) \\ y''(a) \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

3. b)

i)

Tendo em conta que $y(t) = (1 + t^2)^{-1}$ temos:

- $y'(t) = -\frac{2t}{(1+t^2)^2}$

- $y''(t) = -\frac{2}{(1+t^2)^2} + \frac{8t^2}{(1+t^2)^3} = \frac{-2+6t^2}{(1+t^2)^3}$ $y'''(t) = \frac{(1+t^2)^2(12t+12t^3+12t-36t^3)}{(1+t^2)^6} = \frac{24t-24t^3}{(1+t^2)^4}$ $f(t,y(t),y'(t),y''(t)) = \frac{-8t}{(1+t^2)^3} \cdot \frac{-2t}{(1+t^2)^2} \frac{4t}{(1+t^2)} \cdot \frac{-2+6t^2}{(1+t^2)^3} = \frac{24t-24t^3}{(1+t^2)^4}$
- y(0) = 1, y'(0) = 0, y''(0) = -2

Conclui-se então que y'''(t) = f(t, y(t), y'(t), y''(t)) e as condições iniciais são satisfeitas, pelo que $y(t) = (1 + t^2)^{-1}$ satisfaz o problema (5).

ii)

Para esta alínea criou-se a função RK que, como pedido, recebe os parâmetros $f, a, \alpha, \beta, \gamma, n$ e devolve uma aproximação numérica da solução do problema (5) no intervalo [0,T] (mais especificamente, nos n+1 pontos de discretização $t_i=jh,j=$ (0,...,n), considerando T=10. A função devolve, portanto, n+1 valores, onde o j-ésimo valor corresponde à aproximação y_j do valor $y(t_j)(j=0,...,n)$

3. c)

Para esta alínea foram criadas duas funções:

- \bullet grafico, que recebe como argumento n e devolve o gráfico em que a solução aproximada aparece a vermelho e a solução exata a verde;
- tabela, que recebe como argumento n e devolve uma tabela em que as colunas correspondem, respetivamente, aos pontos t_k , aos valores aproximados y_k , aos valores exatos $y(t_k)$ e aos erros $|y(t_k) y_k|$, com k = 1, ..., n.

Os resultados obtidos apresentam-se de seguida. Gráficos:

n = 5:

n = 10:

n = 20:

n = 40:

n = 80:

Tabelas:

n = 5:

t_k	y_k	$y(t_k)$	$ y(t_k)-y_k $
2	-3	0.2	-3.2
4	-2003.4	0.058824	2003.5
6	2.6652e + 13	0.027027	2.6652e+13
8	2.4141e+49	0.015385	2.4141e+49
10	-1.5014e+176	0.009901	1.5014e + 176

n = 10:

t_k	y_k	$y(t_k)$	$ y(t_k) - y_k $
1	0	0.5	0.5
2	1.2883	0.2	1.0883
3	1.8725	0.1	1.7725
4	-1.7356	0.058824	1.7944
5	-87.318	0.038462	87.356
6	3.074e + 08	0.027027	3.074e + 08
7	4.007e + 31	0.02	4.007e + 31
8	-2.1137e+112	0.015385	2.1137e+112
9	-Inf	0.012195	Inf
10	NaN	0.009901	NaN

De seguida, apresentam-se apenas 5 linhas das tabelas para n=20,40,80, correspondentes a $t_k=2,4,6,8,10$, uma vez que estas tabelas teriam dimensões muito grandes para serem apresentadas na sua totalidade.

n = 20:

t_k	y_k	$y(t_k)$	$ y(t_k) - y_k $
2	0.30138	0.2	0.10138
4	0.27186	0.058824	0.21303
6	0.32717	0.027027	0.30014
8	0.32784	0.015385	0.31246
10	0.31175	0.009901	0.30185

n = 40:

t_k	y_k	$y(t_k)$	$ y(t_k)-y_k $
2	0.20738	0.2	0.0073807
4	0.072227	0.058824	0.013403
6	0.049564	0.027027	0.022537
8	0.047966	0.015385	0.032581
10	0.052751	0.009901	0.04285

n = 80:

t_k	y_k	$y(t_k)$	$ y(t_k) - y_k $
2	0.20063	0.2	0.00063409
4	0.059822	0.058824	0.00099885
6	0.02871	0.027027	0.0016826
8	0.017841	0.015385	0.0024559
10	0.013169	0.009901	0.0032684

Podemos observar que para n=5,10, o método diverge muito rapidamente (reparese na escala usada nos gráficos). No caso de n=10 o valor de y_9 obtido, calculado pelo Matlab, é-Inf, uma vez que o cálculo deste valor leva a um resultado demasiado elevado para ser representado pelo sistema de ponto flutuante do Matlab. Deste modo, o Matlab considera que o ponto y_{10} também não toma um valor numérico (NaN), pelo que y_9 e y_{10} não são representados no gráfico.

Notou-se também, usando a função grafico, que a partir de n=11, todas as aproximações y_k se mantêm no intervalo [0,1] (Repare-se na diferença de resultados para n=10 e n=11!).

3. d)

De modo a estudar a convergência do método com os resultados obtidos, criou-se a função convergencia, que recebe como argumento um inteiro nit e devolve nit+1 valores, em que o k-ésimo valor corresponde ao quociente do erro absoluto da última iterada do método com $n=20\cdot 2^k$ pelo erro absoluto da última iterada do método com $n=20\cdot 2^{k+1}$ (k=0,...,nit).

Deste modo, podemos estudar experimentalmente o comportamento assintótico da sucessão produzida pela função convergencia.

Fazendo convergencia(9), obtemos:

 $7.0444\ 13.1102\ 10.9360\ 9.6469\ 8.8921\ 8.4675\ 8.2398\ 8.1215\ 8.0605\ 8.0337$

Deste modo, observamos que quando n aumenta num fator de 2, o erro tende a diminuir num fator de, aproximadamente, $8=2^3$, o que nos leva a concluir que a convergência do método é cúbica.

Bibliografia

- [1] Videman, J., Matemática Computacional, (2021-2022), Apontamentos das Aulas
- [2] Graça, M.M. e P.L. Lima, (2022), Apontamentos de Matemática Computacional