

Socket and Network Programming

Tehran
Polytechnic
University

By: Amir Hossein Payberah

payberah@yahoo.com

Contents

- Network Concepts
- Socket
- Related Data Structures
- Related System Calls and Commands

Network Layers

Application Transport End-to-End Connection Network Routing Tehran Data Link Framing Polytechnic University **Physical Physical** topology

Physical Layer

It sends bits and receives bits.

Data Link Layer

- It ensures that messages are delivered to the proper device.
- It translates messages from the Network layer into bits for physical layer to transmit.
 - It formats the message into data frames.
 - It adds a header containing the hardware destination and source address.

Network Layer

- It is responsible for routing through an internetwork and for network addressing.
 - It is responsible for transporting traffic between devices that are not locally attached.
- It uses software address.

IP Addresses

Transport Layer

- Flow control
 - It prevents a sending host on one side of connection from overflowing the buffers in the receiving host.
- Acknowledgment
 - It guarantees the data won't be duplicated or lost.
- Windowing
 - It controls how much information is transferred from one end to the other.

Network Connections

- The Transport layer provide two types of connection:
- Connection-less (UDP)
 - It is an unreliable connection.
- Connection-oriented (TCP)
 - It handshakes before transfers information.

Connection-oriented

Connection-less

Port Numbers

 It is possible for more than one user process at a time to be using either TCP or UDP.

 This requires some method for identifying the data associated with

each user process.

5-Tuple Association

{ protocol, src port, src addr, dst port, dst addr }

Tehran Polytechnic

University

Contents

- Network Concepts
- - Socket
 - Related Data Structures
 - Related System Calls and Commands

Socket

It is an interface between the application layer and other layers.

Type of Sockets

- Stream Socket
 - Provide a reliable, sequenced, two-way connection.
 - This is use TCP Socket.
- Datagram Socket
 - A connection-less and unreliable connection.
 - This is use UDP Socket.
- Tehran Raw Socket
- Polytechnic University
- Used for internal network protocols.

Contents

- Network Concepts
- Socket

Related System Calls and Commands

Data Structures

```
Tehra struct in_addr {
Polytec | unsigned long s_addr; // that's a 32-bit long, or 4 bytes |
};
Univer
```


Contents

- Network Concepts
- Socket
- Related Data Structures
- Related System Calls and Commands

Byte Ordering Routines

- htons() // "Host to Network Short"
- htonl() // "Host to Network Long"
- ntohs() // "Network to Host Short"
- ntohl() // "Network to Host Long"

Address Conversion Routines

- inet addr t inet addr (char *cp);
 - Converts the Internet host address cp from numbers-and-dots notation into binary data in network byte order.
- int inet_aton (char *cp, struct in_addr *inp);
 - Converts the Internet host address cp from numbers-and-dots notation into binary data.
- char *inet_ntoa (struct in_addr in);
 - Converts the Internet host address given in network byte order to a string in standard numbers-and-dots notation.

socket System Call

- int socket (int family, int type, int protocol);
- It creates the end point.
- Family:
 - AF_INET, AF_UNIX, ...
- Type:
 - SOCK_STREAM
 - SOCK DGRAM
 - SOCK_RAW

bind System Call

- int bind (int sockfd, struct sockaddr *addr, int addrlen);
- It assigns a name to an unnamed socket.

connect System Call

- int connect (int sockfd, struct sockaddr *addr, int addrlen);
- A client use it to establish a connection with a server.

listen System Call

- int listen (int sockfd, int backlog);
- This system call is used by connectionoriented to indicate that it is willing to receive connections.

accept System Call

- int accept (int sockfd, struct sockaddr *addr, int *len);
- An incoming calls arrive at a listening socket, they will be queued until the server program ready to process them.

send and recv System Calls

- int send (int sockfd, char *buff, int len., int flag);
- int sendto (int sockfd, char *buff, int len., int flag, struct sockaddr *to, int addrlen);
- int recv (int sockfd, char *buff, int len., int flag);
- int recvfrom (int sockfd, char *buff, int len., int flag, struct sockaddr *from, int *addrlen);

Connection-oriented

Tehran

Connection-less

Question?