Identifying Selection in Experimental Evolution

Arya Iranmehr airanmehr@ucsd.edu

Bafna Lab University of California, San Diego

January, 2017

Arya Iranmehr

January, 2017

Introduction

• Next generation sequencing has made whole-genome & whole-population sequencing possible.

 $www.1000 {\rm genomes.org}$

Introduction

 Next generation sequencing has made whole-genome & whole-population sequencing possible.

 ${\bf www.1000 genomes.org}$

• For organisms with "short-generation-time", (e.g., yeast, *E. coli*, *D. melanogaster* etc.) it is also possible to collect time-series data of population.

Introduction

• Next generation sequencing has made whole-genome & whole-population sequencing possible.

 $www.1000 {\rm genomes.org}$

- For organisms with "short-generation-time", (e.g., yeast, *E. coli*, *D. melanogaster* etc.) it is also possible to collect time-series data of population.
- Given rise of these modern datasets (population longitudinal data), new techniques required to answer classical population genetics questions on real data.

◆ロト ◆団ト ◆草ト ◆草ト 草 めなべ

Goals

Design a method which

- Detect regions under selection.
- Localizing adaptive allele within the candidate region.
- Estimating selection parameters.

Experimental Evolution (EE)

• EE is a long tradition in biology, which studies the phenotype in time by reducing environmental effects .

Experimental Evolution (EE)

• EE is a long tradition in biology, which studies the phenotype in time by reducing environmental effects .

• In a controlled environment, EE evolves a homogeneous population.

Experimental Evolution (EE)

• EE is a long tradition in biology, which studies the phenotype in time by reducing environmental effects .

Nature Reviews Genetics 14, 827-839 (2013)

- In a controlled environment, EE evolves a homogeneous population.
- Let phenotype of interest be the response to a selection pressure, e.g., response to
 - antibiotic
 - low oxygen conditions
 - hot and cold temperatures
 - etc.

Arya Iranmehr Identifying Selection in Experimental January, 2017

An experiment design for *D. melanogaster*

Whole-Genome Whole-Population Sequencing

• Pooled-Sequencing

Nature Reviews Genetics 15, 749-763 (2014)

Whole-Genome Whole-Population Sequencing

• Pooled-Sequencing

Nature Reviews Genetics 15, 749-763 (2014)

• Implication: only population allele frequency can be computed.

Dynamic of population allele frequency

under different initial conditions and selection strengths frequency change differently

Simplified Model (I)

• Suppose we have sequenced a whole (diploid, size=N) population every generation (eg, for 6 generations) and exact allele frequency are given.

Simplified Model (I)

- Suppose we have sequenced a whole (diploid, size=N) population every generation (eg, for 6 generations) and exact allele frequency are given.
- A discrete-time discrete-state model, Markov chain, can generate such a data.

Simplified Model (II)

- Where $Q_{i,j}(s,h)$ is the probability of going from frequency i/(2N) to j/(2N) when selection strength is s and over dominance is h.
- Neutral:

$$Q_{i,j} = \Pr(j; n = 2N, x = \nu_t = i/2N) = {2N \choose j} \nu_t^j (1 - \nu_t)^{2N-j}$$

• Selection, for $w_{11} = 1 + s$, $w_{01} = 1 + hs$, $w_{00} = 1$

$$\hat{\nu}_{t+} = \mathbb{E}[\nu_{t+}|s, h, \nu_t] = \frac{w_{11}\nu_t^2 + w_{01}\nu_t(1 - \nu_t)}{w_{11}\nu_t^2 + 2w_{01}\nu_t(1 - \nu_t) + w_{00}(1 - \nu_t)^2}$$

$$Q_{i,j}(s, h) = \Pr(j; n = 2N, x = \hat{\nu}_{t+})$$

Simplified Model (III)

• Likelihood of parameter can be easily computed

$$\mathcal{L}(s, h | \{\nu_0, \dots, \nu_5\}) = \Pr(\{\nu_0, \dots, \nu_5\} | Q(s, h))$$

Simplified Model (III)

• Likelihood of parameter can be easily computed

$$\mathcal{L}(s, h | \{\nu_0, \dots, \nu_5\}) = \Pr(\{\nu_0, \dots, \nu_5\} | Q(s, h))$$

• perform maximum likelihood to find \hat{s} , \hat{h} .

Simplified Model (III)

• Likelihood of parameter can be easily computed

$$\mathcal{L}(s, h | \{\nu_0, \dots, \nu_5\}) = \Pr(\{\nu_0, \dots, \nu_5\} | Q(s, h))$$

- perform maximum likelihood to find \hat{s} , \hat{h} .
- compute likelihood ratio, M statistic for each SNP:

$$\begin{split} M &= \frac{\text{likelihood of data as if being under selection with } \hat{s}, \hat{h}}{l\text{ikelihood of data as if being neutral}} \\ &= \frac{\mathcal{L}(\hat{s}, \hat{h} | \{\nu_0, \dots, \nu_5\})}{\mathcal{L}(0, 0 | \{\nu_0, \dots, \nu_5\})} \end{split}$$

Model (complete)

• In reality, population is sequenced after some (τ) generations. solution: use Q^{τ} in computing likelihoods.

Model (complete)

- In reality, population is sequenced after some (τ) generations. solution: use Q^{τ} in computing likelihoods.
- Allele frequencies are unknown, and depth of each variant can be different, and finite sample is taken for sequencing.

Arya Iranmehr January, 2017

Generative Process

Generative Process 1: The Generative Process for Dynamic Pool-seq Data.

```
Input: N, n, R, \{\lambda_{\tau_0}, \dots, \lambda_{\tau_T}\}, \mathcal{T} = \{\tau_0, \dots, \tau_T\}
Output: Time-series pool-seq data for R replicates of a single locus
                \{\mathbf{c}^{(r)}\}\ \text{and}\ \{\mathbf{d}^{(r)}\}.
for r \leftarrow 1 to R do
     for t \leftarrow \tau_0 to \tau_T do
           2N\nu_t \sim \text{Binomial}(2N, \nu_{t-1});
           if t \in \mathcal{T} then
                d_t^{(r)} \sim \text{Poiss}(\lambda_{\tau_i});
           2ny_t \sim \text{Binomial}(2n, \nu_t);
                c_t^{(r)} \sim \text{Binomial}(d_t^{(r)}, y_t);
           end
     end
end
```

Arya Iranmehr Identifying Selection in Experimental January, 2017 12 /

Composite Likelihood for a Region (I)

• So far we developed log-odds ratio statistics M (frequency data) and H (read count data) for each variant.

Composite Likelihood for a Region (I)

- So far we developed log-odds ratio statistics M (frequency data) and H (read count data) for each variant.
- For a small region with L variants we can simply take the max score in the region, which is prone to false positives.

Arya Iranmehr Identifying Selection in Experimental January, 2017 13 / 25

Composite Likelihood for a Region (I)

- So far we developed log-odds ratio statistics M (frequency data) and H (read count data) for each variant.
- For a small region with L variants we can simply take the max score in the region, which is prone to false positives.
- We know that nearby variants can be correlated, esp. when selection is going on

Composite Likelihood for a Region (II)

• Computing joint likelihoods of SNPs is infeasible (haplotypes are required) and intractable (requires estimating covariance).

Composite Likelihood for a Region (II)

- Computing joint likelihoods of SNPs is infeasible (haplotypes are required) and intractable (requires estimating covariance).
- A heuristic is to compute composite (aka, pseudo) likelihood of the region L to reduce false-positives

$$\mathcal{H} = \frac{1}{|L|} \sum_{\ell \in L} H_{\ell}$$

14 / 25

Arya Iranmehr Identifying Selection in Experimental January, 2017

Performance in Detecting Regions under Selection

Each point represent power (TPR when FPR \leq 0.05) of detection in 1000 simulations (500 neutral, 500 selection) of a 50Kbp window, for different coverages.

Detecting regions under selection: Observations

(i) Provides better and much robust performances to change of coverage.

Detecting regions under selection: Observations

- (i) Provides better and much robust performances to change of coverage.
- (ii) It can detect well even when coverage is low, i.e., favored allele frequency (1/200 in hard sweep) is below accuracy of sequencing (1/30).

◆□▶ ◆□▶ ◆豊▶ ◆豊▶ ・豊 ・釣९○

Detecting regions under selection: Observations

- (i) Provides better and much robust performances to change of coverage.
- (ii) It can detect well even when coverage is low, i.e., favored allele frequency (1/200 in hard sweep) is below accuracy of sequencing (1/30).
- (iii) Run time is better or comparable with others.

Localizing favored allele

Each curve depicts cumulative distribution of the rank of favored allele among (≈ 1150) variants, in 500 simulations.

17 / 25

Estimating parameters (I)

Our model estimates strength of selection s and overdominance h parameter for each variant.

- h = 0: recessive adaptive allele
- h = 0.5: directional selection
- h = 1: dominant adaptive allele
- h > 1 :overdominance

◆□▶ ◆□▶ ◆重▶ ◆重▶ ■ 釣@@

18 / 25

Estimating parameters (II)

Distribution of bias of parameters in 500 simulations.

Estimating parameters (III)

Assuming majority of the variants evolving neutrally, we can fit population size N on neutral model, i.e. Q(0,0,2N)

Hypothesis Testing

The statistical procedure involves:

- (i) Estimating population size, \hat{N} , over the whole genome.
- (ii) Estimating selection parameters for given \hat{N}
- (iii) Computing likelihood statistics.
- (iv) Hypothesis testing: The null distribution of likelihood ratio statistics are computed on a set of single locus drift simulations with population size of \widehat{N} . p-values and FDR is computed accordingly.

Analysis of real data

• A population of *D. melanogaster* is evolved for 59 generations, under alternative hot and cold temperatures.

Analysis of real data

- A population of *D. melanogaster* is evolved for 59 generations, under alternative hot and cold temperatures.
- Coverage is different at generations and samples are not synchronized.

Analysis of real data

- A population of *D. melanogaster* is evolved for 59 generations, under alternative hot and cold temperatures.
- Coverage is different at generations and samples are not synchronized.
- Genome scan for sliding window size=50Kbp, steps=10Kbp

384 variants showing signature of overdominance

Discussion

• An efficient method for analyzing full time-series read-count data is proposed.

Discussion

- An efficient method for analyzing full time-series read-count data is proposed.
- By computing composite likelihood \mathcal{H} statistic is more robust to false positives.

Discussion

- An efficient method for analyzing full time-series read-count data is proposed.
- By computing composite likelihood \mathcal{H} statistic is more robust to false positives.
- When initial frequency of the favored allele is low, stronger selection helps detecting selection but makes locating favored allele a harder task.
- Next step is to apply to new dataset with a well defined phenotype, e.g. response to hypoxia.

Thanks!