College of Arts and Sciences

Department of Mathematics

MTH 547: Design of Experiments – Fall 2021

Final Project: Effect on Water Filtration Time

Instructor: Dr. Maher Qumsiyeh

Student Name: Serge Alhalbi Student ID: 101682971

Date: 12/6/2021

I- FFD 1: SAS code:

```
Data FFD1; /*Unreplicated 2^7-4 FFD with resolution 3 (max)*/
Input y ABCDEFG;
/*AB= A*B; AC=A*C; BC=B*C; ABC= A*B*C;*/
Lines;
68.4 -1 -1 -1 +1 +1 +1 -1
77.7 +1 -1 -1 -1 -1 +1 +1
66.4 -1 +1 -1 -1 +1 -1 +1
81.0 +1 +1 -1 +1 -1 -1 -1
78.6 -1 -1 +1 +1 -1 -1 +1
41.2 +1 -1 +1 -1 +1 -1 -1
68.7 -1 +1 +1 -1 -1 +1 -1
38.7 +1 +1 +1 +1 +1 +1 +1
proc glm data = FFD1; /*Half normal plot*/
model y = A|B|C /solution;
ods output ParameterEstimates=PE1;
run:
quit;
data PE2;
set PE1;
estimate = abs(estimate);
if n > 1;
drop StdErr tValue Probt Biased;
run;
proc rank data = PE2 out = PE3;
var estimate;
ranks u; run;
data PE4;
set PE3;
zscore = probit (.5+.5*((u-0.5)/7)); run;
proc sgplot data = PE4;
scatter y = zscore x = estimate/datalabel = Parameter;
yaxis label ='Half Normal Scores';
title 'Half normal Probability Plot'; run;
proc glm data = FFD1; /*Testing the significance of the parameters*/
class A /*B*/ C E;
model y = A C E /*B*C*/; run;
proc glm data = FFD1; /*Best setting*/
class A C;
model y = A|C;
lsmeans A|C / pdiff = all adjust = Tukey lines;
run;
```

- It's an unreplicated 2⁷⁻⁴ FFD design with 7 factors and 8 runs: (2^{k-p}) with k = 7 and p = 4.
 - -The design generators are 4 since p = 4: ABD = +I, ACE = +I, BCF = +I, ABCG = +I.
 - -Resolution: III since main factors are aliased with at least 2 way factor interactions. (Maximum resolution)

-The defining relations are 15 since
$$2^p - 1 = 15$$
: ABD = +I, ACE = +I, BCF = +I, CDG = +I
BCDE = +I, ACDF = +I, ABCG = +I, ABEF = +I, ADEG = +I, BDFG = +I, DEF = +I,
BEG = +I, AFG = +I, ABCDEFG = +I, CEFG = +I.

-The alias structure consisting of 7 relations since $2^{k-p} - 1 = 7$ is the following:

-The equation of the model reduces to the following: (D, E, F, and G in terms of A, B, and C) $y = \beta_0 + \beta_A x_A + \beta_B x_B + \beta_C x_C + \beta_{AB} x_{AB} + \beta_{AC} x_{AC} + \beta_{BC} x_{BC} + \beta_{ABC} x_{ABC} + \epsilon.$

-Degree of Freedom: Where: $df_{Factor/Interaction} = 1$

$$SS_{Total} = SS_A + SS_B + \dots + SS_{ABC} + SS_{Error}$$

$$df_{Total} = df_A + df_B + \dots + df_{ABC} + df_{Error}$$

$$2^{k-p}$$
- 1 = 7 + 0 (Respectively) => df_{Error} = 0

• Model Analysis:

-Half normal plot: (since $df_{Error} = 0$)

Using SAS: A, C, and AC should be significant

-The equation of the model reduces to the following: (E = AC)

$$y = \beta_0 + \beta_A x_A + \beta_C x_C + \beta_{AC} x_{AC} + \varepsilon.$$

-Degree of Freedom: Where: $df_{Factor/Interaction} = 1$

$$SS_{Total} = SS_A + SS_B + SS_{AC} + SS_{Error}$$

$$df_{Total} = df_A + df_B + df_{AC} + df_{Error}$$

$$2^{k-p}$$
- 1 = 3 + 4 (Respectively) => df_{Error} = 4

-Testing if the model is fit ($\alpha = 0.05$):

$$H_0$$
: $\beta_A = \beta_B = \beta_{AC} = 0$ Vs H_a : At least one is $\neq 0$

$$Test \, Statistic = F = \frac{MS_{Model}}{MS_E} = \frac{40.91}{MS_E}$$

p - value = 0.0018 (Small) => null hypothesis is rejected => Model is fit.

Source DF		Sum of Squares		Mean S	quare	F Value	Pr > F	
Model 3		1827.953750		609.317917		40.91	0.0018	
Error	4		59.5750	00	14.893750			
Corrected Total	al 7		1887.528750					
R-Square 0.96843			Coeff Var 5.929314		oot MSE 3.859242	-		

-R-Square and R-Square Adjusted:

*
$$R^2 = \frac{SS_{Model}}{SS_{Total}} = 0.9684 \Rightarrow \frac{96.84\%}{96.84\%}$$
 of the variations in the response y are explained by the model.

*
$$R_{adj}^2 = 1 - \frac{SS_E/df_E}{SS_{Total}/df_{Total}} = 0.9448 \Rightarrow 94.48\%$$
 of the variations in the response y are explained by the model (Used since the number of regressors affecting the response is high).

-Testing the significance of the parameters:

 H_0 : Parameter = 0 Vs H_a : Parameter \neq 0 (One by one)

$$eta_{A_F-value} = 15.88$$
, $eta_{A_P-value} = 0.0163 < lpha$ (Small) => $oldsymbol{eta}_A$ is significant: A is active. $eta_{C_F-value} = 36.89$, $eta_{C_P-value} = 0.0037 < lpha$ (Small) => $oldsymbol{eta}_C$ is significant: C is active. $eta_{AC_F-value} = 69.96$, $eta_{AC_P-value} = 0.0011 < lpha => oldsymbol{eta}_{AC}$ is significant: AC or E is active.

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Α	1	236.531250	236.531250	15.88	0.0163
С	1	549.461250	549.461250	36.89	0.0037
Е	1	1041.961250	1041.961250	69.96	0.0011

• Adequacy Plots:

No pattern: The residuals have equal variances

Almost straight line: The residuals seem to be normally distributed

We can't decide whether the variances are equal amongst the level of each factor since we have few points

• Settings for optimal response: (Minimum time)

Tukey Comparison Lines for Least Squares Means of A*C LS-means with the same letter are not significantly different.									
	y LSMEAN	Α	С	LSMEAN Number					
Α	79.35	1	-1	3					
Α									
Α	73.65	-1	1	2					
Α									
Α	67.40	-1	-1	1					
В	39.95	1	1	4					

Α	С	y LSMEAN	LSMEAN Number
-1	-1	67.4000000	1
-1	1	73.6500000	2
1	-1	79.3500000	3
1	1	39.9500000	4

Least Squares Means for effect A*C Pr > t for H0: LSMean(i)=LSMean(j) Dependent Variable: y									
i/j	1 2 3 4								
1		0.4609	0.1140	0.0071					
2	0.4609		0.5236	0.0033					
3	0.1140	0.5236		0.0018					
4	0.0071	0.0033	0.0018						

As we can see from the grouping table one and only one setting minimizes the response y:

Group B:
$$\mu_4 \neq (\mu_1 = \mu_2 = \mu_3) \Rightarrow A = 1$$
; C = 1 for an average of 39.95 minutes.

Or: Water supply source: Well; Temperature: High.

-Moreover, the p-values from the SAS table assure that this is correct:

*
$$(\mu_4 = \mu_1)_{p-value} = 0.0071 < \alpha$$
 (Small) It means that $\mu_4 = \mu_1$ is rejected.

*
$$(\mu_4 = \mu_2)_{p-value} = 0.0033 < \alpha$$
 (Small) It means that $\mu_4 = \mu_1$ is rejected.

*
$$(\mu_4 = \mu_3)_{p-value} = 0.0018 < \alpha$$
 (Small) It means that $\mu_4 = \mu_1$ is rejected.

II- FFD 2: SAS code:

```
Data FFD2; /*Unreplicated 2^7-3 FFD with resolution 4 (max)*/
Input y A B C D E F G;
Lines:
68.4 -1 -1 -1 +1 +1 +1 -1
77.7 +1 -1 -1 -1 -1 +1 +1
66.4 -1 +1 -1 -1 +1 -1 +1
81.0 +1 +1 -1 +1 -1 -1 -1
78.6 -1 -1 +1 +1 -1 -1 +1
41.2 +1 -1 +1 -1 +1 -1 -1
68.7 -1 +1 +1 -1 -1 +1 -1
38.7 +1 +1 +1 +1 +1 +1 +1
66.7 +1 +1 +1 -1 -1 -1 +1
65.0 -1 +1 +1 +1 +1 -1 -1
86.4 +1 -1 +1 +1 -1 +1 -1
61.9 -1 -1 +1 -1 +1 +1 +1
47.8 +1 +1 -1 -1 +1 +1 -1
59.0 -1 +1 -1 +1 -1 +1 +1
42.6 +1 -1 -1 +1 +1 -1 +1
67.6 -1 -1 -1 -1 -1 -1 -1
proc glm data = FFD2; /*Half normal plot*/
model y = A|B|C|D /solution;
ods output ParameterEstimates = PE1; run; quit;
data PE2;
set PE1:
estimate = abs(estimate);
if n > 1;
drop StdErr tValue Probt Biased; run; quit;
proc rank data = PE2 out = PE3;
var estimate;
ranks u; run;
data PE4;
set PE3;
zscore = probit (.5+.5*((u-0.5)/15)); run;
proc sgplot data = PE4;
scatter y = zscore x = estimate/datalabel = Parameter;
yaxis label = 'Half Normal Scores';
title 'Half normal Probability Plot'; run;
Proc glm data = FFD2 plots = all diagnostics(unpack); /*Testing the significance of the parameters*/
Class A B C D E F;
Model y = A /*ABCD is */A*E /*BCD is */E / p; Run;
proc glm data = FFD2; /*Best setting*/
class A E;
model y = A|E;
lsmeans A|E / pdiff = all adjust = Tukey lines; run;
```

- It's an unreplicated 2^{7-3} **FFD design** with 7 factors and 8 runs: (2^{k-p}) with k = 7 and p = 3.
 - -The design generators are 3 since p = 3: BCDE = +I, ACDF = +I, ABCG = +I.
 - -Resolution: IV since main factors are aliased with at least 3 way factor interactions. (Maximum resolution)
 - -The defining relations are 7 since $2^p 1 = 7$: BCDE = +I, ACDF = +I, ABCG = +I, ABEF = +I, ADEG = +I, BDFG = +I, CEFG = +I.
 - -The alias structure consisting of 15 relations since $2^{k-p} 1 = 15$ is the following:

$$A = BEF = BCG = CDF = DEG$$

$$B = AEF = ACG = DFG = CDE$$

$$C = ABG = BDE = ADF = EFG$$

$$D = BFG = BCE = AEG = ACF$$

$$E = ABF = BCD = ADG = CFG$$

$$F = ABE = BDG = ACD = CEG$$

$$G = ABC = BDF = ADE = CEF$$

$$AB = BCDF = BDEG = ACDE = ADFG = EF = CG$$

$$AC = BG = ABDE = BCEF = AEFG = DF = CDEG$$

$$AD = ABCE = ABFG = BDEF = BCDG = CF = EG$$

$$AE = BF = ABCD = BCEG = ACFG = DG = CDEF$$

$$AF = BE = ABDG = BCFG = ACEG = CD = DEFG$$

$$AG = BC = ABDF = BEFG = ACEF = DE = CDFG$$

$$BD = ABEG = ABCF = ADEF = ACDG = FG = CE$$

$$ABD = BCF = BEG = ACE = AFG = DEF = CDG$$

-The equation of the model reduces to the following: (E, F, and G in terms of A, B, C, and D) $y = \beta_0 + \beta_A x_A + \beta_B x_B + \beta_C x_C + \beta_D x_D + \beta_{BCD} x_{BCD} + \beta_{ACD} x_{ACD} + \beta_{ABC} x_{ABC} + \beta_{AB} x_{AB} + \beta_{AC} x_{AC} + \beta_{AD} x_{AD} + \beta_{ABCD} x_{ABCD} + \beta_{CD} x_{CD} + \beta_{BC} x_{BC} + \beta_{BD} x_{BD} + \beta_{ABD} x_{ABD} + \epsilon.$

-Degree of Freedom: Where: $df_{Factor/Interaction} = 1$

$$SS_{Total} = SS_A + SS_B + \dots + SS_{ABD} + SS_{Error}$$

$$df_{Total} = df_A + df_B + \dots + df_{ABD} + df_{Error}$$

$$2^{k-p}$$
- 1 = 15 + 0 (Respectively) => $df_{Error} = 0$

Model Analysis:

-Half normal plot: (since $df_{Error} = 0$)

Using SAS: A, ABCD, and BCD should be significant

-The equation of the model reduces to the following: (AE = ABCD, E = BCD)

$$y = \beta_0 + \beta_A x_A + \beta_E x_E + \beta_{AE} x_{AE} + \epsilon.$$

-Degree of Freedom: Where: $df_{Factor/Interaction} = 1$

$$SS_{Total} = SS_A + SS_E + SS_{AE} + SS_{Error}$$

$$df_{Total} = df_A + df_E + df_{AE} + df_{Error}$$

$$2^{k-p}\text{--}1\ = 3+12 \quad \text{(Respectively)} \Rightarrow df_{Error} = 12$$

-Testing if the model is fit ($\alpha = 0.05$):

$$H_0$$
: $\beta_A = \beta_E = \beta_{AE} = 0$ Vs H_a : At least one is $\neq 0$

$$Test \, Statistic = F = \frac{MS_{Model}}{MS_E} = \frac{23.13}{MS_E}$$

p - value < .0001 (Small) => null hypothesis is rejected => Model is fit.

Source DF S		Su	Sum of Squares		Mean S	quare	F Value	Pr > F
Model 3		2700.276875		900.092292		23.13	<.0001	
Error	12	467.052500		38.921042				
Corrected Total	15		3167.329375					
R-Square			Coeff Var	Ro	oot MSE	y Me	an	
0.852		541	9.808271		.238673	63.606	25	

-R-Square and R-Square Adjusted:

* $R^2 = \frac{SS_{Model}}{SS_{Total}} = 0.8525 \Rightarrow 85.25\%$ of the variations in the response y are explained by the model.

* $R_{adj}^2 = 1 - \frac{SS_E/df_E}{SS_{Total}/df_{Total}} = 0.8157 => 81.57\%$ of the variations in the response y are explained by the model (Used since the number of regressors affecting the response is high).

-Testing the significance of the parameters:

 H_0 : Parameter = 0 Vs H_a : Parameter \neq 0 (One by one)

$$\beta_{A_{P-value}} = 4.60$$
, $\beta_{A_{P-value}} = 0.0532 \approx \alpha \text{ (Small)} => \beta_A \text{ is significant: A is active.}$

$$\beta_{E_{F-value}} = 37.94$$
, $\beta_{E_{P-value}} < .0001 < \alpha \text{ (Small)} => \beta_E \text{ is significant: E is active.}$

$$\beta_{AE_{F-value}} = 26.85$$
, $\beta_{AE_{P-value}} = 0.0002 < \alpha$ (Small) => β_{AE} is significant: AE is active.

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Α	1	178.890625	178.890625	4.60	0.0532
A*E	1	1044.905625	1044.905625	26.85	0.0002
Е	1	1476.480625	1476.480625	37.94	<.0001

• Adequacy Plots:

No pattern: The residuals have equal variances

Almost straight line: The residuals seem to be normally distributed

 $Equal\ variances\ amongst\ the\ residuals\ and\ the\ settings\ of\ the\ active\ factors\ and\ factor\ interactions$

• Settings for optimal response: (Minimum time)

Tukey	Comparison Line	es foi	Least	Squares Means of A*E	A	E	y LS	MEAN	LSMEAN	Number	
	LS-means with the same letter are not significantly different.						68.47	750000		1	
							65.42	250000			
							77.9500000				
	y LSMEAN	Α	E	LSMEAN Number	1	1	42.57	50000		4	
Α	77.950	1	-1	3							
Α									ns for effect A*E an(i)=LSMean(j)		
Α	68.475	-1	-1	1	Dependent Variable: y						
Α					i/j		1	2	3	4	
-	05.105				1			0.8984	0.1933	0.0004	
Α	65.425	-1	1	2	2	0.	8984		0.0625	0.0011	
					3	0.	1933	0.0625		<.0001	
В	42.575	1	1	4	4	0.	0004	0.0011	<.0001		

As we can see from the grouping table one and only one setting minimizes the response y:

Group B:
$$\mu_4 \neq (\mu_1 = \mu_2 = \mu_3) \Rightarrow A = 1$$
; E = 1 for an average of 42.575 minutes.

Or: Water supply source: Well; Caustic Soda Addition Rate: Fast.

Moreover, the p-values from the SAS table assure that this is correct:

- * $(\mu_4 = \mu_1)_{p-value} = 0.0071 < \alpha$ (Small) It means that $\mu_4 = \mu_1$ is rejected.
- * $(\mu_4 = \mu_2)_{p-value} = 0.0033 < \alpha$ (Small) It means that $\mu_4 = \mu_1$ is rejected.
- * $(\mu_4 = \mu_3)_{p-value} = 0.0018 < \alpha$ (Small) It means that $\mu_4 = \mu_1$ is rejected.

• Conclusion:

Comparing the same experiment with 8 runs to the one with 16 runs. We find that the active factors are different. However, **factors A and E are active in both cases**.

As well, the best setting remained the same in both designs:

In design I, the best setting was A = 1; C = 1, but AC = E, this implies that the best setting is A = 1; E = 1. (Same as in design II)

Thus, we can conclude that still running the experiment few runs is still sometime somewhat accurate.