SAYISAL ÇÖZÜMLEME

SAYISAL ÇÖZÜMLEME

5. Hafta

DENKLEM ÇÖZÜMLERİ (Devam)

İÇİNDEKİLER

- 1. Denklem Çözümleri
 - A. Doğrusal Olmayan Denklem Çözümleri
 - ☐ Açık Yöntemler
 - Basit İterasyon
 - Newton-Raphson Yöntemi
 - Kiriş (Secant) Yöntemi

Denklem Çözümünde Açık Yöntemler

- Bu yöntem, x'in yalnızca başlangıç değeri kullanılan ya da kökü kapsayan bir aralık kullanılması gerekmez.
- Açık yöntemler hızlı sonuç vermesine karşın, başlangıç değeri uygun seçilmediğinde ıraksayabilir.
- ☐ Tüm açık yöntemler, kökün bulunması için matematiksel bir formül kullanır.

Serhat Yılmaz'ın Sunusundan Alınmıştır.

- f(x) fonksiyonu f(x)=0 denkliği x=g(x) formuna getirilir.

 - □ Bu eşitliğin anlamı y=x doğrusu ile y=g(x) fonksiyonunun kesişim noktasını bulmaktır.
- Bir x₀ başlangıç değeri seçilir,
- \mathbf{S} $\mathbf{x}_{n+1} = \mathbf{g}(\mathbf{x}_n)$ formu ile iterasyon gerçekleştirilir.
 - \Box $x_1=g(x_0)$
 - \Box $x_2=g(x_1)$
 - **u** ...
 - \Box $x_n=g(x_{n-1})$
- Ourdurma şartı
 - \square | \mathbf{x}_{n+1} \mathbf{x}_n | < ε_s sağlanıncaya kadar
 - ☐ Ya da belirli iterasyonda durdurulabilir

- ❖ Örnek: $f(x) = x^2 3x + 1$ denkleminin kökünü mutlak hata $\delta_a = 0.1$ sınırlamasına göre Basit İterasyon yöntemini kullanarak $x_0 = 2$ değerinden başlayarak çözünüz.
- $f(x) = x^2 3x + 1 \implies g(x) = \sqrt{3x 1}$
- 2 x₀ = 2 'den başlayarak köke doğru yaklaşalım 6 Durdurma Kriteri (Hata Sınırlaması)

$$x_{i+1} = g(x_i)$$

$$| x_{i+1} - x_i | < \varepsilon_s$$
 yada iterasyon

$$x_{k\ddot{o}k} = 2.4835 \implies f(x_{k\ddot{o}k}) = -0.2828$$

- □ Örnek: $f(x)=3e^{-0.5x}-x$ fonksiyonunun kökünü mutlak hata $\delta_a=0.07$ sınırlamasına göre $x_0=8$ değerinden başlayarak hesaplayınız.
 - ☐ Her adım (iterasyon) için yeni x, g(x) ve hatayı hesaplayınız.
- f(x)=0 denkliği x=g(x) formuna getirilir.
 - $x = 3e^{-0.5x}$
- g(x) = $3e^{-0.5x}$ fonksiyonu x_0 = 8 başlangıç değeri ve ε_a = 0.07 hata sınırlamasına göre iterasyona tabi tutuluyor.
- 13. iterasyondan sonra ε_a = 0.07 hata ile kök değeri x=1.4 elde edilir. (Yakınsak iterasyon)

iterasyon sayısı	х	g(x)	h= x _n -x _{n-1}
1	8	0,054946917	7,945053083
2	0,054946917	2,918701514	2,863754597
3	2,918701514	0,697161304	2,221540209
4	0,697161304	2,117066992	1,419905688
5	2,117066992	1,040892786	1,076174206
6	1,040892786	1,782765652	0,741872867
7	1,782765652	1,230264839	0,552500813
8	1,230264839	1,621707926	0,391443087
9	1,621707926	1,333435008	0,288272918
10	1,333435008	1,540173057	0,206738049
11	1,540173057	1,388919019	0,151254038
12	1,388919019	1,498032798	0,109113779
13	1,498032798	1,418494205	0,079538593
14	1,418494205	1,476043484	

❖ Örnek: $f(x) = 3e^{-0.5x} - x$ fonksiyonunun kökünü mutlak hata $\delta_a = 0.07$ sınırlamasına göre $x_0 = 8$ değerinden başlayarak hesaplayan MATLAB programını Basit iterasyon yöntemine göre yazınız.

- En çok kullanılan yöntemlerden biridir.
- Köke, teğetler ile yaklaşılır.
 - Başlangıç değerinin fonksiyonu kestiği noktadan, çizilen teğetin yatay ekseni kestiği yeni nokta başlangıç değeri ile değiştirilerek köke yaklaşmaya çalışmaktır.
 - ☐ Bir noktadaki türev, o noktadan geçen teğetin eğimine eşittir.

Yakınsaklık Koşulu

Başlangıç noktasındaki türev ile köke yaklaşma

Tan
$$(\alpha_1) = \frac{f(x_0)}{(x_0 - x_1)} = f'(x_0)$$

 \mathbf{z}_{i} yalnız bırakılırsa, ifade basit iterasyondaki gibi $\mathbf{x}_{n+1} = \mathbf{g}(\mathbf{x}_{n})$ formuna dönüştürülür

$$x_1 = \underbrace{x_0 - \frac{f(x_0)}{f'(x_0)}}_{g(x_0)}$$

S Yakınsaklık koşulu,

$$|g'(x_0)| \langle 1$$

g'(
$$x_0$$
) = $(x_0 - \frac{f(x_0)}{f'(x_0)})' = \left| \frac{f''(x_0).f(x_0)}{(f'(x_0))^2} \right| \langle 1$

- ❖ Örnek: f(x) = x² 10 denklemini Newton-Raphson yöntemini kullanarak x₀ = 3 değerinden başlayarak, iki iterasyon için çözünüz?
- $f(x) = x^2 10$ $\Rightarrow f'(x) = 2x$
- $x_0 = 3$ 'ten başlayarak köke doğru yaklaşalım

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

3 Durdurma Kriteri (Hata Sınırlaması)

$$| x_{i+1} - x_i | < \epsilon_s$$
 yada iterasyon

- Örnek: f(x) = x³ + 4x² − 3 denklemini Newton-Raphson yöntemini kullanarak x₀ = 0.7 değerinden başlayarak, üç iterasyon için çözünüz?
- 2 $x_0 = -0.7$ 'den başlayarak köke doğru yaklaşalım 8 Durdurma Kriteri (Hata Sınırlaması) $x_{i+1} = x_i \frac{f(x_i)}{f'(x_i)}$

❖ Örnek: $f(x) = x^3 + 4x^2 - 3$ fonksiyonunun kökünü mutlak hata $\delta_a = 0.01$ sınırlamasına göre $x_0 = 0.7$ değerinden başlayarak hesaplayan MATLAB programını Newton-Raphson yöntemine göre yazınız.

- □ Bazı fonksiyonların/denklemlerin türevini almak oldukça zor olabilir. Bu işlemler uzun zaman alabilir.
- ☐ Türev almadan çözüm için Kiriş (secant) yönteminden yararlanılır.
- Sekildeki A-B noktaları arasında, x₀ ve x₁ başlangıç değerleri kullanılarak türev alınmadan gerçek köke daha yakın bir kök bulunabilir.

$$x_{i+1} = x_i - \frac{(x_i - x_{i-1})}{(y_i - y_{i-1})} y_i$$

- Kirişin x eksenini kestiği nokta köke yakın noktadır.
- Her yeni iterasyonda yeni bir kiriş noktaları bulunarak kirişlerin x eksenini kestiği yeni noktalar ile köke yaklaşılır.

Secant Yönteminin Regula-Falsi Yöntemi İle Karşılaştırılması

İkisinde de iki ilk tahmin değeri var

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

❖ Örnek: f(x) = e⁻x - x denkleminin köklerini [0,1] aralığında Secant Yöntemi ile çözünüz?

$$f(0)=1.0$$
 $f(1)=-0.632\,120\,559$ \Rightarrow $f(0)f(1)<0$ olduğundan aralıkta kök vardır. $x_0=0,$ $y_0=f(x_0)=1$ $x_1=1$ $y_1=f(x_1)=-0.632\,120\,559$

•
$$x_2 = x_1 - \frac{x_1 - x_0}{y_1 - y_0} y_1 = 1 - \frac{1 - 0}{-0.632120559 - 1} (-0.632120559) = 0.612699$$
,

$$f(0.612699) = y_2 = -0.0708127$$

•
$$x_3 = x_2 - \frac{x_2 - x_1}{y_2 - y_1} y_2 = 0.612699 - \frac{(0.612699 - 1)}{(-0.0708127 + 0.632120)} (-0.0708127) = 0.563838$$

$$|x_3 - x_2| = |0.563838 - 0.612699| = 0.048861$$

$$f(0.563838) = y_3 = 0.00518297,$$

•
$$x_4 = 0.567170$$
 $|x_4 - x_3| = |0.567170 - 0.563838| = 0.003332$

•
$$x_5 = 0.567143$$
 $|x_5 - x_4| = |0.567143 - 0.567170| = 2.7 \times 10^{-5}$

•
$$x_6 = 0.567143$$
 $|x_6 - x_5| = |0.567143 - 0.567143| = 0$

O halde verilen denklemin yaklaşık kökü x = 0.567143 dir.

ÖDEV

- - Newton-Raphson
 - Basit iterasyon metotlarını kullanarak çözünüz?

KAYNAKLAR

- Serhat YILMAZ, "Bilgisayar İle Sayısal Çözümleme", Kocaeli Üniv. Yayınları
- Cüneyt BAYILMIŞ, Sayısal Analiz Ders Notları, Sakarya Üniversitesi.
- Mehmet YILDIRIM, Sayısal Analiz Ders Notları, Sakarya Üniversitesi
- İlyas ÇANKAYA, Devrim AKGÜN, "MATLAB ile Meslek Matematiği" Seçkin
 Yayıncılık
- Irfan Karagöz, "Sayısal Analiz ve Mühendislik Uygulamaları" Vipaş Yayıncılık