5. Se consideră vectorul aleator discret (X,Y) cu densitatea de probabilitate

$$P(x,y) = \begin{cases} \frac{1}{21} & \text{dacă } x = 0,1,2,3,4,5, \quad y = 0,1,\ldots,x \\ 0 & \text{dacă altfel} \end{cases}$$

Să se determine cov(X, Y).

×	0	1 2	3	4	5	X=	- (0	12	3 4	5	
Ð	1	0 0	0	6			21	21 .		21/	
l l	<u> </u>	1 0	ก	0	0						
2	1 2	1 1 2	0	0	0				0		١
3	1/1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 4	0	6)	7 +	0	(2	5 /	1
Lų		21 21	1 1	1	0		_6			1/	
5	2	21 21	1	<u>_l</u>	1/2/		21			21/	

$$cov(x,y) = M(x,y) - M(x) \cdot M(x)$$

$$M(\times) = \frac{70}{21} \qquad M(\gamma) = \frac{35}{21} \qquad M(\times \gamma) = \frac{140}{21}$$

Se consideră vectorul aleator continuu (X, Y) cu densitatea de probabilitate

$$f(x,y) = \left\{ \begin{array}{ll} \frac{x+y}{3} & \text{dacă } 0 \leq x \leq 1, 0 \leq y \leq 2 \\ 0 & \text{dacă altfel} \end{array} \right.$$

$$M(x) = S_0 \times \frac{2}{3} + \frac{1}{3} \times dx = \left(\frac{2}{3} \times \frac{3}{3} + \frac{1}{3} \times \frac{1}{2}\right) = \frac{2}{9} + \frac{1}{6} = \frac{7}{18}$$

$$\frac{2}{3}\left(\frac{1}{3}\right) = \frac{3}{3}\left(\frac{1}{3}\right) = \frac{3}{3} + \frac{1}{3}\left(\frac{1}{3}\right)$$

$$M = S_0 = \frac{1}{3} + \frac{1}{6} + \frac{1}$$

$$M(x.y) = \begin{cases} 3 \cdot 8 + \frac{3}{12} \cdot 4 - \frac{31}{36} - \frac{44}{36} - \frac{22}{18} = \frac{11}{9} \end{cases}$$

$$M(x.y) = \begin{cases} 3 \cdot 8 + \frac{3}{12} \cdot 4 - \frac{31}{36} - \frac{44}{36} - \frac{22}{18} = \frac{11}{9} \end{cases}$$

$$= \begin{cases} 3 \cdot 8 + \frac{3}{12} \cdot 4 - \frac{31}{36} - \frac{44}{36} - \frac{22}{18} = \frac{11}{9} \end{cases}$$

$$= \begin{cases} 3 \cdot 8 + \frac{3}{12} \cdot 4 - \frac{31}{36} - \frac{44}{36} - \frac{22}{18} = \frac{11}{9} \end{cases}$$

$$= \begin{cases} 3 \cdot 8 + \frac{3}{12} \cdot 4 - \frac{31}{36} - \frac{44}{36} - \frac{22}{18} = \frac{11}{9} \end{cases}$$

$$= \begin{cases} 3 \cdot 8 + \frac{3}{12} \cdot 4 - \frac{3}{12} \cdot 4 - \frac{3}{12} - \frac{3}{12} - \frac{3}{12} - \frac{3}{12} = \frac{11}{12} \end{cases}$$

$$= \begin{cases} 3 \cdot 8 + \frac{3}{12} \cdot 4 - \frac{3}{12} - \frac{3}{$$

7. Daca matricea de covarianta a vectorului (X,Y) este $\Sigma = \begin{pmatrix} 4 & -4 \\ -4 & 25 \end{pmatrix}$, sa se calculeze $\rho(X,Y)$ și $\sigma^2(X+2Y)$.

$$\frac{7^{2}(x)}{y^{2}(y)} = \frac{4}{25}$$

$$\frac{8(x,y)}{\sqrt{(x)}} = \frac{2}{\sqrt{(x)}} = \frac{2}{\sqrt{(x)}} = \frac{2}{\sqrt{(x)}}$$

$$\frac{7}{\sqrt{(x)}} = \frac{2}{\sqrt{(x)}} = \frac{2}{\sqrt{(x)}}$$

$$\frac{7}{\sqrt{(x)}} = \frac{2}{\sqrt{(x)}}$$

$$\frac{7}{\sqrt{(x$$

8. Fie variabilele aleatoare X și Y înre care există relația Y = X - 2. Să se calculeze covarianța și coeficientul de corelație pentru variabilele X, Y, șiind că $\sigma^2(X) = 0.01$. Să se determine matricea de covarianță asociată vectorului (X, Y).

$$S(x, \lambda) = \frac{\Delta \alpha(x, \lambda)}{\Delta(x)} = \frac{\Delta(x, \lambda)}{\Delta(x)} = \frac{\Delta(x)}{\Delta(x)} = \frac{\Delta(x)}{\Delta(x)} = \frac{\Delta(x)}{\Delta(x)} = \frac{\Delta(x)}{\Delta(x)} = \frac{\Delta(x)}{\Delta(x)} = \frac{\Delta(x)}{\Delta(x)}$$

9. Dacă X și Y sunt două variabile aleatore astfel încât $\rho(X,Y)=0$, atunci sunt X și Y independente? Dar necorelate?

10. Se consideră vectorul aleator continuu (X,Y) cu densitatea de probabilitate

$$f(x,y) = \left\{ \begin{array}{ll} 4xy & \text{dacă } 0 \leq x \leq 1, 0 \leq y \leq 1 \\ 0 & \text{dacă altfel} \end{array} \right.$$

Să se determine cov(X, Y).

$$f_{\times}(x) = \int_{0}^{1} 4 \times y \, dy = 4 \times \frac{1}{2} \Big|_{0}^{1} = 2 \times \frac{1}{2$$