

Q

All Domains > Algorithms > Graph Theory > Even Tree

Badge Progress

Points: 1232.00 Rank: 12796

Even Tree

Problem Submissions Leaderboard Discussions Editorial €

You are given a tree (a simple connected graph with no cycles). The tree has N nodes numbered from 1 to N and is rooted at node 1.

Find the maximum number of edges you can remove from the tree to get a forest such that each connected component of the forest contains an even number of vertices.

Input Format

The first line of input contains two integers N and M. N is the number of vertices, and M is the number of edges. The next M lines contain two integers u_i and v_i which specifies an edge of the tree.

Constraints

• $2 \le N \le 100$

Note: The tree in the input will be such that it can always be decomposed into components containing an even number of nodes.

Output Format

Print the number of removed edge.

Sample Input

10 9

2 1

3 1

5 2

6 1

/ 2

10 8

Sample Output

2

Explanation

On removing edges (1,3) and (1,6), we can get the desired result.

Original tree:

Decomposed tree:

1 Upload Code as File

☐ Test against custom input

Submissions: 15336 Max Score: 50 Difficulty: Medium Rate This Challenge: なななななな

in 💆 🕇

More

Run Code

Submit Code

C# Current Buffer (saved locally, editable) & 🗸 🔈 Ö 1 using System; using System.Collections.Generic; using System.IO; 4 ▼ class Solution { 5 🔻 static void Main(String[] args) { /* Enter your code here. Read input from STDIN. Print output to STDOUT. Your class should be named 6 Solution */ 7 } 8 } Line: 1 Col: 1

Copyright © 2016 HackerRank. All Rights Reserved