

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING

REPORT ON

STEP DOWN CHOPPER SIMULATION USING MULTISIM

NAME: S VARSHA

USN: 1BY20ET048

SUBJECT: POWER ELECTRONICS AND INSTRUMENTATION

SUBJECT CODE: 18EC36

SEMESTER: III

ACADEMIC YEAR: 2021-2022

FACULTY INCHARGE: MRS. SOWMYASHREE M.S.

MARKS:

THEORY

- Chopper is a power electronic converter which converts fixed DC input voltage to variable DC output voltage.
- They consist of semiconductor devices such as BJT, power transistors, IGBTs, power MOSFETS and thyristors (working as a switch), input DC power supply, elements (R,L,C) and output load.
- o APPLICATIONS:
 - →DC Drives
 - →Subway cars
 - →Battery driven vehicles
 - \rightarrow SMPS
- o TYPES OF CHOPPERS:
 - 1. AC LINK CHOPPER

- →Costly, bulky, less-efficient
- →Transformer provides isolation between load and source 2. DC CHOPPER
- It is a static device (switch) used to obtain variable DC voltage from a source of constant DC voltage.
- o It is DC equivalent of an AC transformer.
- o ADVANTAGES:
 - →saves power
 - →greater efficiency
 - →faster response
 - →lower maintenance
 - →small size, smooth control

- o Solid-state choppers are widely used in
 - →trolley cars
 - →battery-operated vehicles
 - →traction-motor control
 - →control of large number of DC motors from a common DC bus
 - →control of induction motors, marine hoists, forklift trucks, mine haulers

o DC CHOPPERS CLASSIFICATION:

Based on input output voltage levels:

- →Step Down Chopper / Buck Converter
 Output voltage < Input voltage
- →Step Up Chopper / Boost Chopper Output voltage > Input voltage

STEP-DOWN CHOPPER WORKING

- →The average output voltage across the load is controlled by varying on-period and off-period (or duty cycle) of the switch.
- →A commutation circuitry is required for SCR based chopper circuit.
- →Therefore, in general, gate-commutation based choppers have replaced the SCR based choppers.
- →However, for high voltage and high-current applications, SCR based choppers are used.
- \rightarrow The power-diode (D_F) operates in freewheeling mode to provide a path to load-current when switch (S) is OFF.
- →The smoothing inductor filters out the ripples in the load current.
- \rightarrow Switch S is kept conducting for period T_{on} and is blocked for period T_{off} .

- \rightarrow During the period T_{on} , when the chopper is on, the supply terminals are connected to the load, terminals.
- \rightarrow During the interval T_{off}, when the chopper is off, load current flows through the freewheeling diode D_F.
- ightarrowHence load terminals are short circuited by D_F and load voltage is zero during T_{off} .
- →In this manner, a chopped DC voltage is produced at the load terminals.
- \rightarrow The average load-voltage E_o is given by

$$E_o = E_{dc}(T_{on} / T_{on} + T_{off})$$

 T_{on} = on-time of the chopper

 $T_{\text{off}} = \text{off-time of the chopper}$

 $T = T_{on} + T_{off} = chopping period$

 \rightarrow If α = T_{on} / T be the duty cycle

$$E_o = E_{dc} (T_{on} / T)$$

$$E_o = E_{dc} \cdot \alpha$$

→Thus, the load voltage can be controlled by varying the duty cycle of the chopper.

$$E_o = E_{dc} (T_{on} / T)$$

$$E_o = E_{dc} . T_{on} . f$$

f = chopping frequency

- →The output voltage varies linearly with the duty cycle.
- ightarrowIt is therefore possible to control the output voltage in the range zero to E_{dc} .

CIRCUIT

COMPONENTS USED IN MULTISIM:

- 1. DC power supply
- 2. N channel power MOSFET
- 3. Clock Voltage Source
- 4. Diode
- 5. Inductor (1000mH)
- 6. Resistor (Load) (10Ω)
- 7. Voltmeter (to measure stepped down voltage)

- 8. Oscilloscope
- 9. Current clamp (to observe current waveform)
- 10.Ground

OUTPUT VOLTAGE AND CURRENT WAVEFORMS

SIMULATED WAVEFORMS

