# Multi Instance Multi Label

Lorenzo Niccolai

Fabio Vittorini

lorenzo.niccolai3@stud.unifi.it

fabio.vittorini@stud.unifi.it

## Machine Learning

University of Florence, Department of Information Engineering

July 16, 2017



# Overview

- SVM
  - Classification
  - SVM
- Multi Instance Learning
  - SIL
  - mi-SVM
  - MI-SVM
- Multi Label Learning
- Multi Instance Multi Label Learning
- Our work
  - Results

# Classification problem

Goal: To produce a classifier able to decide whether an object belongs to one or more classes.

Idea: Supervised Learning: Given a dataset of already classified examples, the classifier *learns* a function that solves classification problem.

Dataset is set of classified examples:

$$D = \{(X_i, Y_i) | i \in [1, n]\}$$
$$X_i \in \mathbb{R}^f$$
$$Y_i \in \{-1, +1\}$$

- A vector  $x \in \mathbb{R}^f$  represents an object using f relevant features.
- A number  $y \in \{-1, +1\}$  indicates wether the example belong to target class.

While learning the target function, the dataset is divided in *training set* and *test set*.

L. Niccolai, F. Vittorini MIML July 16, 2017

• The idea is to compute the maximum-margin hyperplane  $w^Tx + b$ which best separates positive examples from negative examples.

Optimization problem is:

$$argmin_w \frac{1}{2} ||w||^2$$

$$Y_i(w^TX_i+b) \geq 1 \ \forall i \in [1,n]$$



Support Vector Machine

Figure 1: Solution of maximum-margin hyperplane

# SVM with slacks

• The examples may not be linearly serparable and so the problem would not have any solutions because constraints are not satisfied. Then we introduce slack variables  $\xi$ 

Optimization problem becomes:

$$\mathit{argmin}_{w,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$

$$y_i(w^Tx_i + b) \ge 1 - \xi_i \ \forall i \in [1, n]$$
  
 $\xi_i \ge 0 \ \forall i \in [1, n]$ 



Figure 2: Solution with slacks

# Multi instance classification

#### Motivation:

- Sometimes a complex item can be well represented by a set of features or instances
- A single instance may belong or not to a class or label (positive or negative)
- An example, or bag, is positive if at least one of its instances is
  positive (it is called witness), where as a negative bag consists of only
  negative instances
- A label is provided for the entire bag, not to instances
- We have a semi-supervised learning problem

[1]

#### Notation

Dataset is now a set of bags, where each bag is a set of instances:

$$D = \{ (X_i, Y_i) | i \in [1, n] \}$$
$$X_i = \{ x_{i,k} | k \in [1, k_i], x_{i,k} \in \mathbb{R}^f \}$$

Notice that each bag can be made of any number of instances, but every instance has a fixed number of features f.



Figure 3: Example of images instances refer to "zebra concept"

# SIL

The first naive approach makes the following label assignment:

- If an instance belongs to a negative bag, sets its label to -1
- If an instance belongs to a positive bag, sets its label to +1

The resulting problem can be solved using a regular SVM, treating each instance as a whole document.

Using this approach makes almost useless multi-instance formulation.

#### Instances label assignment:

- ullet If an instance belongs to a negative bag we can say that its label is -1
- If an instance belongs to a positive bag we don't know for sure its label

This leads to 2 new constraints in SVM problem:

$$y_{i,k} = -1 \text{ if } Y_i = -1$$

$$\sum_{k=1}^{k_i} \frac{y_{i,k}+1}{2} \ge 1 \text{ if } Y_i = +1$$

L. Niccolai, F. Vittorini MIML

Our SVM problem becames the following:

$$\begin{aligned} \min_{Y} \min_{w,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i \\ y_{i,k}(w^T x_{i,k} + b) &\geq 1 - \xi_i \ \forall i \in [1, n], k \in [1, k_i] \\ \xi_i &\geq 0 \ \forall i \in [1, n] \\ y_{i,k} &= -1 \ \text{if} \ Y_i = -1 \\ \sum_{k=1}^{k_i} \frac{y_{i,k} + 1}{2} &\geq 1 \ \text{if} \ Y_i = +1 \end{aligned}$$

That is an intractable mixed optimization problem

A feasible algorithm that finds a non optimal solution is the following:

```
MI-SVM (X, Y)

1 y_{i,k} = -1 if Y_i = -1

2 y_{i,k} = +1 if Y_i = +1

3 do

4 Solve regular SVM finding w, b

5 y_{i,k} = sign(w^T x_{i,k} + b) if Y_i = +1

6 Adjust each positive bag to satisfy constraints

7 while (y_{i,k} change)
```

# MI-SVM

This approach uses directly the dataset in its bag form:

$$\begin{aligned} & argmin_{w,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i \\ & y_i (max_k w^T x_{i,k} + b) \ge 1 - \xi_i \ \forall i \in [1, n] \\ & \xi_i \ge 0 \ \forall i \in [1, n] \end{aligned}$$

This is possible by selecting a *witness* from each bag instance.

# MI-SVM algorithm

A feasible algorithm that finds a solution is the following:

```
MI-SVM (X, Y)

1 \bar{x}_i = avg(x_{i,k}) \ \forall x_{i,k} \in X_i positive bag

2 do

3 Assign \bar{\alpha}_i \in [0, C] to each \bar{x}_i

4 Assign \alpha_{i,j} with \sum_{j=1}^{k_i} \alpha_{i,j} \in [0, C] \ \forall x_{i,k} \in X_i negative bag

5 Solve regular SVM finding w, b

6 Find new \bar{x}_i by selecting the best one for each positive bag

7 while (witnesses change)
```

L. Niccolai, F. Vittorini MIML July 16, 2017

## Other common frameworks for MI

In addition to these methods we can cite:

Diverse density (DD): DD COMPLICATO

EM-DD: COMPLICATO

Citation kNN: documento OKOK

MIL Random forest (MIL RF): PAGAMENTO

MBSTAR: MicroRNA

# Multi label classification

#### Motivation:

- Sometimes a complex item can be well represented by a set of labels
- Helps single label classification when the concept is more complicated or general

# Solutions [4]:

- Problem transformation
- Algorithm adaptation

### **Notation**

A set of labels  $L = \{y_1, y_2, ... y_l\}$  is given.

Each object contained in the dataset is associated with a set of labels:

$$D = \{(X_i, Y_i | i \in [1, n])\}$$

$$X_i \in \mathbb{R}^f$$

$$Y_i = \{y_{i,h} | h \in [1, h_i], y_{i,h} \in L, h_i \le I\}$$



Figure 4: Multi label example

# Problem transformation

Attempt to convert the multilabel problem in a regular binary task. Two lossy methods:

- Randomly discard each label information except one from each instance
- Remove instances that have actually more than one label

Other solutions:

- Train a binary classifier for each existing combination of labels
- Train a binary classifier for each label (used in this work)

# An algorithm adaptation approach

The idea is to focus on ranking rather than binary classification [2]

- Train a classifier  $f_l: X \to \mathbb{R}$  for each label
- For each test example sort label list according to predicted rank
- ullet Set size prediction feeding dataset and thresholds  $t(X_i)$  to a classifier

$$t(X_i) = argmin_t\{k \in Y_i \text{ s.t. } f_k(X_i) \leq t\} + \{k \in \bar{Y}_i \text{ s.t. } f_k(X_i) \geq t\}$$

• Take the best labels according to set size prediction:

L. Niccolai, F. Vittorini MIML July 16, 2017 19 / 30

# Introduction to MIML

MIML problems combine motivations of multi instance and multi label ones.

Given a set of labels  $L = \{y_1, y_2, ... y_l\}$ 

$$X_{i} = \{x_{i,k} | k \in [1, k_{i}], x_{i,k} \in \mathbb{R}^{f}\} Y_{i} = \{y_{i,h} | h \in [1, h_{i}], y_{i,h} \in L, h_{i} \leq I\}$$
$$D = \{(X_{i}, Y_{i}) | i \in [1, n]\}$$



Figure 5: Different learning frameworks

# **SVM Solution**

To allow regular SVMs to solve this problem, we use *problem transformation*.

There are 2 possibilities:

- MIML → MISL → SISL (used in this work)
- MIML  $\rightarrow$  SIML  $\rightarrow$  SISL



Figure 6: Two possible solutions to implement MIML

# Multi label to single label

Excluding lossy approaches, the idea is to train a multi-instance (single label) classifier for each label.

Given a MIML dataset  $D = \{(X_i, Y_i) | i \in [1, n]\}$  we produce I datasets as follows:

$$D_{y_j} = \{(X_i, Y_{y_j}) | i \in [1, n]\} \ \forall j \in [1, L]$$

Where

$$Y_{y_j} = \begin{cases} +1 & \text{if } y_j \in Y_i \\ -1 & \text{otherwise} \end{cases}$$

Then we train L regular multi-instance SVMs and collect their results.

# Multi instance to single instance

Given one of MISL datasets produced at previous step, we compared the 3 methods previously exposed:

- SIL
- MI-SVM
- mi-SVM

They all use a standard SISL SVM as subroutine.

## Our work

The aim of our work is to replicate a part of the results of [5] using the **MIML framework** and compare the different metrics.

- We focused on the text categorization using text documents (bags) belonging to categories (labels)
- $\bullet$  We choose to use the  $\rm MIMLBOOST$  solution using multi-instance learning as the bridge between MIML and SISL
- ullet Bag of words approach to Reuters-21578 dataset
- Multi instance tasks solved with SIL, MI-SVM and mi-SVM approaches
- Dataset was processed as follows

### **Test**

#### Documents selection:

- Removed every document with 0 labels
- Removed short documents (less than 30 words)
- Removed randomly documents with 1 label to obtain 2000 examples

### Dictionary creation:

- Performed stemming
- Removed stopwords
- Removed rare words keeping 2% of them (about 210)

#### Multi instance data

- Splitted documents in passages of 50 words max
- Removed empty instances (according to dictionary)

## Evaluation criteria

Four criteria are used for performance evaluation:

• hamming loss:

$$hloss_S(h) = \frac{1}{p} \sum_{i=1}^p \frac{1}{|\mathcal{Y}|} |h(X_i) \Delta Y_i|$$

one-error:

one 
$$-\operatorname{error}_{S}(h) = \frac{1}{p} \sum_{i=1}^{p} [[\operatorname{arg} \max_{y \in \mathcal{Y}} h(X_{i}, y)] \notin Y_{i}]$$

coverage:

$$coverage_S(h) = \frac{1}{p} \sum_{i=1}^{p} \max_{y \in Y_i} rank^h(X_i, y) - 1$$

• ranking loss:

$$rloss_{S}(h) = \frac{1}{p} \sum_{i=1}^{p} \frac{1}{|Y_{i}| \cdot |\bar{Y}_{i}|} |\{(y_{1}, y_{2}) \in Y_{i} \times \bar{Y}_{i} \text{ s.t. } h(X_{i}, y_{1}) \leq h(X_{i}, y_{2})\}|$$

# More metrics

Other metrics used by reference article:

• average precision:

$$avgprec_{S}(h) = \frac{1}{p} \sum_{i=1}^{p} \frac{1}{|Y_{i}|} \sum_{y \in Y_{i}} \frac{|\{y' \mid rank^{h}(X_{i}, y') \leq rank^{h}(X_{i}, y), \ y' \in Y_{i})\}|}{rank^{h}(X_{i}, y)}$$

average recall:

$$\mathit{avgrecl}_{\mathcal{S}}(h) = \frac{1}{p} \sum_{i=1}^{p} \frac{|\{y \mid \mathit{rank}^h(X_i, y) \leq |h(X_i)|, \ y \in Y_i)\}|}{|Y_i|}$$

average F1:

$$avgF1_S(h) = \frac{2 \times avgprec_S(h) \times avgrecl_S(h)}{avgprec_S(h) + avgrecl_S(h)}$$

[3]

|                | Metrics         |                 |                 |                 |                 |                     |                 |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------------------|-----------------|
| Algorithms     | hloss           | one-error       | coverage        | rloss           | aveprec         | averecl             | aveF1           |
| MimlBoost      | .053±.004       | .094±.014       | .387±.037       | .035±.005       | .937±.008       | .792±.010           | .858±.008       |
| MimlSvm        | $.033 \pm .003$ | $.066 \pm .011$ | $.313 \pm .035$ | $.023 \pm .004$ | $.956 \pm .006$ | $.925 \pm .010$     | $.940 \pm .008$ |
| $MimlSvm_{mi}$ | $.041 \pm .004$ | $.055 \pm .009$ | $.284 \pm .030$ | $.020 \pm .003$ | $.965 \pm .005$ | $.921 \pm .012$     | $.942 \pm .007$ |
| MimlNn         | $.038 \pm .002$ | $.080 \pm .010$ | $.320 \pm .030$ | $.025 \pm .003$ | $.950 \pm .006$ | .834±.011           | .888±.008       |
| AdtBoost.MH    | .055±.005       | .120±.017       | .409±.047       | N/A             | .926±.011       | N/A                 | N/A             |
| RankSvm        | $.120 \pm .013$ | $.196 \pm .126$ | $.695 \pm .466$ | .085±.077       | $.868 \pm .092$ | $.4\dot{1}1\pm.059$ | .556±.068       |
| MISvm          | $.050 \pm .003$ | $.081 \pm .011$ | $.329 \pm .029$ | $.026 \pm .003$ | $.949 \pm .006$ | $.777 \pm .016$     | $.854 \pm .011$ |
| MI – knn       | $.049 \pm .003$ | $.126 \pm .012$ | $.440 \pm .035$ | $.045 \pm .004$ | $.920 \pm .007$ | $.821 \pm .021$     | .867±.013       |
| SIL            | .072±.002       | .129±.017       | .104±.036       | .025±.004       | .865±.012       | .797±.020           | .829±.016       |
| MISVM          | $.134 \pm .004$ | $.015 \pm .008$ | $.666 \pm .054$ | $.214 \pm .011$ | $.636 \pm .019$ | $.425 \pm .008$     | $.509 \pm .011$ |
| mi – SVM       | $.111 \pm .003$ | $.041 \pm .010$ | $.295 \pm .073$ | $.121 \pm .013$ | $.746 \pm .025$ | $.534 \pm .014$     | $.626 \pm .018$ |

# Considerations

- Scores are quite low, but one-error is low even if it's not a good metric for evaluating multilabel performance
- Selected labels' frequencies are 520, 434, 283, 222, 223, 220, 187 over 2000 documents.
- Test repeated for best 2 labels with following results

|            | Metrics         |                 |                 |                 |                 |                 |                 |
|------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Algorithms | hloss           | one-error       | coverage        | rloss           | aveprec         | averecl         | aveF1           |
| SIL        | .072±.002       | .129±.017       | .104±.036       | .025±.004       | .865±.012       | .797±.020       | .829±.016       |
| MISVM      | $.134 \pm .004$ | $.015 \pm .008$ | $.666 \pm .054$ | $.214 \pm .011$ | $.636 \pm .019$ | $.425 \pm .008$ | $.509 \pm .011$ |
| mi – SVM   |                 |                 |                 |                 |                 |                 |                 |

- Stuart Andrews, Ioannis Tsochantaridis, and Thomas Hofmann.
   Support vector machines for multiple-instance learning. In Advances in neural information processing systems, pages 577–584, 2003.
- [2] André Elisseeff and Jason Weston. A kernel method for multi-labelled classification. In Advances in neural information processing systems, pages 681–687, 2002.
- [3] Mohammad S Sorower. A literature survey on algorithms for multi-label learning. *Oregon State University, Corvallis*, 18, 2010.
- [4] Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An overview. *International Journal of Data Warehousing and Mining*, 3(3), 2006.
- [5] Zhi-Hua Zhou, Min-Ling Zhang, Sheng-Jun Huang, and Yu-Feng Li. Multi-instance multi-label learning. Artificial Intelligence, 176(1):2291–2320, 2012.