

Intégrales dépendant d'un paramètre

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Exercice 1 **

Pour $n \in \mathbb{N}^*$ et $x \in]0, +\infty[$, on pose $I_n(x) = \int_0^{+\infty} \frac{1}{(t^2 + x^2)^n}$.

- 1. Calculer la dérivée de la fonction I_n sur $]0, +\infty[$.
- 2. En déduire la valeur de $\int_0^{+\infty} \frac{1}{(t^2+1)^3} dt$.

Correction ▼ [005765]

Exercice 2 *** I (très long) Intégrale de POISSON

Pour $x \in \mathbb{R}$, on pose $F(x) = \int_{-\pi}^{\pi} \ln(1 - 2x \cos \theta + x^2) d\theta$.

- 1. (a) Montrer que F est paire, définie et continue sur \mathbb{R} , dérivable sur $\mathbb{R} \setminus \{-1,1\}$. Préciser une expression de F'(x) sous forme intégrale.
 - (b) Calculer F'(x).
 - (c) Déterminer $\lim_{x\to +\infty} (F(x) 4\pi \ln x)$.
 - (d) En déduire F(x) pour tout réel x.
- 2. (a) Quand $x \in]-1,1[$, retrouver ce résultat en écrivant d'abord $\ln(x^2 2x\cos\theta + 1)$ comme somme d'une série (commencer par dériver la fonction de θ).
 - (b) Déterminer une relation entre F(x) et $F\left(\frac{1}{x}\right)$ et en déduire F(x) pour tout réel x.

Correction ▼ [005766]

Exercice 3 ** I Un calcul de l'intégrale de GAUSS $I = \int_0^{+\infty} e^{-t^2} dt$

Pour $x \in \mathbb{R}$, on pose $F(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$ et $G(x) = \left(\int_0^x e^{-t^2} dt\right)^2$.

- 1. Montrer que F est de classe C^1 sur \mathbb{R} et préciser F'.
- 2. Montrer que G est de classe C^1 sur \mathbb{R} et préciser G'.
- 3. Montrer que la fonction F + G est constante sur \mathbb{R} .
- 4. Déterminer $\lim_{x\to +\infty} F(x)$.
- 5. En déduire *I*.

Correction ▼ [005767]

Exercice 4 ***

Existence et calcul de $\int_0^{+\infty} e^{-t^2} \operatorname{ch}(tx) dt$ (on admettra que $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$).

Correction ▼ [005768]

Exercice 5 ***

Existence et calcul de $\int_0^1 \frac{t-1}{\ln t} t^x dt$.

Correction ▼ [005769]

Exercice 6 **** I (très long)

Montrer que pour tout réel x strictement positif, $\int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt = \int_0^{+\infty} \frac{\sin t}{x+t} dt$ et en déduire $\int_0^{+\infty} \frac{\sin t}{t} dt$ (indication : trouver une équation différentielle du second ordre vérifiée par ces deux fonctions).

Correction ▼ [005770]

Exercice 7 ** I (Produit de convolution)

1. Soient f et g deux fonctions définies sur \mathbb{R} , continues et T-périodiques (T réel strictement positif). Pour $x \in \mathbb{R}$, on pose

$$f * g(x) = \int_0^T f(x-t)g(t) dt$$
.

Montrer que la fonction f * g est définie sur \mathbb{R} , continue et T-périodique.

2. * est donc une loi interne sur E, l'espace vectoriel des fonctions définies et continues sur \mathbb{R} et Tpériodiques. Montrer que cette loi est commutative.

Correction ▼ [005771]

Correction de l'exercice 1

- 1. Soit $n \in \mathbb{N}^*$. Soient a et A deux réels tels que 0 < a < A. On considère F_n : $[a,A] \times \mathbb{R} \to \mathbb{R}$ $(x,t) \mapsto \frac{1}{(t^2+x^2)^n}$
 - Pour chaque x de [a,A], la fonction $t \mapsto F_n(x,t)$ est continue par morceaux et intégrable sur $[0,+\infty[$ car $F_n(x,t) \underset{t \to +\infty}{\sim} \frac{1}{t^{2n}} > 0$ avec 2n > 1.
 - La fonction F_n est admet sur $[a,A] \times [0,+\infty[$ une dérivée partielle par rapport à sa première variable x définie par :

$$\forall (x,t) \in [a,A] \times [0,+\infty[, \frac{\partial F_n}{\partial x}(x,t) = \frac{-2nx}{(t^2+x^2)^{n+1}}.$$

De plus,

- pour chaque $x \in [a,A]$, la fonction $t \mapsto \frac{\partial F_n}{\partial x}(x,t)$ est continue par morceaux sur $[0,+\infty[$,
- -pour chaque $t \in [0, +\infty[$, la fonction $x \mapsto \frac{\partial F_n}{\partial x}(x, t)$ est continue sur [a, A],
- -pour chaque $(x,t) \in [a,A] \times [0,+\infty[$,

$$\left|\frac{\partial F_n}{\partial x}(x,t)\right| = \frac{2nx}{(t^2+x^2)^{n+1}} \leqslant \frac{2nA}{(t^2+a^2)^{n+1}} = \varphi(t),$$

où la fonction φ est continue par morceaux et intégrable sur $[0, +\infty[$ car négligeable devant $\frac{1}{t^2}$ quand t tend vers $+\infty$.

D'après le théorème de dérivation des intégrales à paramètres (théorème de LEIBNIZ), la fonction I_n est de classe C^1 sur [a,A] et sa dérivée s'obtient par dérivation sous le signe somme. Ceci étant vrai pour tous réels a et A tels que 0 < a < A, on a montré que la fonction I_n est de classe C^1 sur $[0,+\infty[$ et que

$$\forall x > 0, I'_n(x) = -2nx \int_0^{+\infty} \frac{1}{(t^2 + x^2)^{n+1}} dt = -2nx I_{n+1}(x).$$

$$\forall n \in \mathbb{N}^*, I'_n(x) = -2nx I_{n+1}(x).$$

2. Pour x > 0, on a $I_1(x) = \left[\frac{1}{x} \operatorname{Arctan}\left(\frac{t}{x}\right)\right]_0^{+\infty} = \frac{\pi}{2x}$. Ensuite, $I_2(x) = -\frac{1}{2x}I_1'(x) = \frac{\pi}{4x^3}$ puis $I_3(x) = -\frac{1}{4x}I_2'(x) = \frac{3\pi}{16x^3}$ et donc $I_3(1) = \frac{3\pi}{16}$.

$$\int_0^{+\infty} \frac{1}{(t^2+1)^3} dt = \frac{3\pi}{16}.$$

Correction de l'exercice 2

1. (a) Parité de F. Soit x un réel du domaine de définition de F. En posant $t = \theta + \pi$, on obtient

$$F(x) = \int_{-\pi}^{\pi} \ln(x^2 - 2x\cos\theta + 1) d\theta = \int_{0}^{2\pi} \ln(x^2 + 2x\cos t + 1) dt$$
$$= \int_{-\pi}^{\pi} \ln(x^2 + 2x\cos t + 1) dt \text{ (par } 2\pi\text{-p\'eriodicit\'e)}$$
$$= \int_{-\pi}^{\pi} \ln((-x)^2 - 2(-x)\cos t + 1) dt = F(-x).$$

Ainsi, pour tout réel x, F(x) existe si et seulement si F(-x) existe et de plus F(x) = F(-x).

3

Définition de *F* . Soit $x \in [0, +\infty[$. Pour tout réel $\theta \in [-\pi, \pi]$,

$$x^{2} - 2x\cos\theta + 1 = (x - \cos\theta)^{2} + (\sin\theta)^{2} = |x - e^{i\theta}|^{2} \ge 0.$$

De plus, $|x - e^{i\theta}| = 0 \Leftrightarrow e^{i\theta} = x \Leftrightarrow x = 1$ et $\theta = 0$. Par suite,

- si $x \neq 1$, la fonction $\theta \mapsto x^2 2x \cos \theta + 1$ est continue sur le segment $[0, \pi]$ et donc intégrable sur ce segment.
- si x = 1, pour tout réel $\theta \in [-\pi, \pi]$ on a $x^2 2x\cos\theta + 1 = 2 2\cos\theta = 4\sin^2\frac{\theta}{2}$. La fonction $\theta \mapsto \ln\left(4\sin^2\frac{\theta}{2}\right)$

est continue sur $[-\pi,0]\cup]0,\pi]$ et quand θ tend vers 0

$$\ln\left(4\sin^2\frac{\theta}{2}\right) = 2\ln 2 + 2\ln\left|\sin\frac{\theta}{2}\right| \sim 2\ln\left|\frac{\theta}{2}\right| \sim 2\ln\left|\theta\right| = o\left(\frac{1}{\sqrt{|\theta|}}\right).$$

On en déduit que la fonction $\theta \mapsto \ln\left(4\sin^2\frac{\theta}{2}\right)$ est intégrable sur $[-\pi,\pi]$ et donc que F(1) existe. Finalement, F est définie sur $[0,+\infty[$ et par parité

F est définie sur \mathbb{R} .

Remarque. Par parité de la fonction $\theta \mapsto \ln(x^2 - 2x\cos\theta + 1)$, pour tout réel x, on a encore $F(x) = 2\int_0^{\pi} \ln(x^2 - 2x\cos\theta + 1) d\theta$.

Continuité de
$$F$$
. Soit $A > 1$. Soit $\Phi : [0,A] \times]0,\pi] \rightarrow \mathbb{R}$.
$$(x,\theta) \mapsto \ln(x^2 - 2x\cos\theta + 1)$$
.

- Pour chaque $x \in [0,A]$, la fonction $\theta \mapsto \Phi(x,\theta)$ est continue par morceaux sur $[0,\pi]$.
- Pour chaque $\theta \in]0,\pi]$, la fonction $x \mapsto \Phi(x,\theta)$ est continue par morceaux sur [0,A].
- Pour chaque $(x, \theta) \in \mathbb{R}^+ \times]0, \pi]$, puisque $x^2 2x \cos \theta + 1 = (x \cos \theta)^2 + (\sin \theta)^2$,

$$\begin{split} |\Phi(x,\theta)| & \leq \operatorname{Max}\{ \left| \ln(0^2 - 0\cos\theta + 1) \right|, \left| \ln(\cos^2\theta - 2\cos\theta\cos\theta + 1) \right|, \left| \ln(A^2 - 2A\cos\theta + 1) \right| \} \\ & = \operatorname{Max}\{2 \left| \ln(|\sin\theta|) \right|, \left| \ln(A^2 - 2A\cos\theta + 1) \right| \} = \varphi(\theta). \end{split}$$

On a vu que la fonction $f_1: \theta \mapsto 2 |\ln(|\sin \theta|)|$ est intégrable sur $]0,\pi]$ et d'autre part, la fonction $f_2: \theta \left|\ln(A^2-2A\cos\theta+1)\right|$ est intégrable sur $[0,\pi]$ et donc sur $]0,\pi]$ car continue sur $[0,\pi]$. Puisque $\phi = \frac{1}{2}(f_1+f_2+|f_1-f_2|)$, on en déduit que la fonction ϕ est continue par morceaux et intégrable sur $]0,\pi]$.

D'après le théorème de continuité des intégrales à paramètres, la fonction F est continue sur [0,A] et ceci pour tout A > 1. Par suite, la fonction F est continue sur \mathbb{R}^+ puis par parité,

la fonction F est continue sur \mathbb{R} .

Dérivabilité de F. Soient $A \in]0,1[$ puis $\Phi: [-A,A] \times [0,\pi] \rightarrow \mathbb{R}$ $(x,\theta) \mapsto \ln(x^2 - 2x\cos\theta + 1)$

- Pour chaque $x \in [-A,A]$, la fonction $\theta \mapsto \Phi(x,\theta)$ est continue sur le segment $[0,\pi]$ et donc intégrable sur ce segment.
- La fonction Φ admet sur $[-A,A] \times [0,\pi]$ une dérivée partielle par rapport à sa première variable x définie par

$$\forall (x,\theta) \in [-A,A] \times [0,\pi], \, \frac{\partial \Phi}{\partial x}(x,\theta) = \frac{2x - 2\cos\theta}{x^2 - 2x\cos\theta + 1}.$$

De plus.

- pour chaque $x \in [-A,A]$, la fonction $\theta \mapsto \frac{\partial \Phi}{\partial x}(x,\theta)$ est continue par morceaux sur $[0,\pi]$,
- pour chaque $\theta \in [0, \pi]$, la fonction $x \mapsto \frac{\partial \Phi}{\partial x}(x, \theta)$ est continue sur [-A, A],
- pour chaque $(x, \theta) \in [-A, A] \times [0, \pi]$,

$$\left| \frac{\partial \Phi}{\partial x}(x, \theta) \right| = \frac{2|x - \cos \theta|}{|x - e^{i\theta}|^2} \leqslant \frac{4}{|A - 1|^2} = \varphi(\theta).$$

La dernière inégalité écrite est claire géométriquement :

La plus courte distance d'un point du segment [-A, A] au cercle trigonométrique est la distance de A à 1.

De plus, la fonction constante φ est intégrable sur le segment $[0, \pi]$.

D'après le théorème de dérivation des intégrales à paramètres, la fonction F est de classe C^1 sur [-A,A] et sa dérivée s'obtient par dérivation sous le signe somme. Ceci étant vrai pour tout $A \in]0,1[$, F est de classe C^1 sur]-1,1[et $\forall x \in]-1,1[$, $F'(x)=4\int_0^\pi \frac{x-\cos\theta}{x^2-2x\cos\theta+1}\,d\theta$. La démarche est

analogue sur $]-\infty,-1[$ et sur $]1,+\infty[$ et finalement F est de classe C^1 sur $\mathbb{R}\setminus\{-1,1\}$ et

$$\forall x \in \mathbb{R} \setminus \{-1,1\}, F'(x) = 4 \int_0^{\pi} \frac{x - \cos \theta}{x^2 - 2x \cos \theta + 1} d\theta.$$

(b) Calcul de F'(x). Soit $x \in \mathbb{R} \setminus \{-1,1\}$. On pose $t = \tan\left(\frac{\theta}{2}\right)$. On a donc $\cos \theta = \frac{1-t^2}{1+t^2}$ et $d\theta = \frac{2dt}{1+t^2}$. On obtient

$$F'(x) = 4 \int_0^{\pi} \frac{x - \cos \theta}{x^2 - 2x \cos \theta + 1} d\theta = 8 \int_0^{+\infty} \frac{x - \frac{1 - t^2}{1 + t^2}}{x^2 - 2x \frac{1 - t^2}{1 + t^2} + 1} \frac{dt}{1 + t^2}$$

$$= 8 \int_0^{+\infty} \frac{(1 + t^2)x - (1 - t^2)}{((1 + t^2)x^2 - 2x(1 - t^2) + (1 + t^2))(1 + t^2)} dt$$

$$= 8 \int_0^{+\infty} \frac{(x + 1)t^2 + (x - 1)}{((x + 1)^2t^2 + (x - 1)^2)(1 + t^2)} dt$$

Pour tout réel t,

$$\left(t^2 + \left(\frac{x-1}{x+1}\right)^2\right)(t^2+1) = \left(t - i\frac{x-1}{x+1}\right)\left(t + i\frac{x-1}{x+1}\right)(t-i)(t+i).$$

De plus, $\pm \frac{x-1}{x+1} = \pm 1 \Leftrightarrow \frac{x-1}{x+1} = -1 \Leftrightarrow x = 0.$ • $F'(0) = 4 \int_0^{\pi} (-\cos\theta) d\theta = 0.$

- Si $x \neq 0$, les pôles de la fraction rationnelle $\frac{(x+1)t^2+(x-1)}{((x+1)^2t^2+(x-1)^2)(1+t^2)}$ sont simples et par parité, la décomposition en éléments simples de cette fraction s'écrit

$$\frac{(x+1)t^2 + (x-1)}{((x+1)^2t^2 + (x-1)^2)(1+t^2)} = \frac{a}{t-i\frac{x-1}{x+1}} - \frac{a}{t+i\frac{x-1}{x+1}} + \frac{b}{t-i} - \frac{b}{t+i},$$

avec

$$a = \frac{-(x+1)\left(\frac{x-1}{x+1}\right)^2 + (x-1)}{(x+1)^2 \left(2i\frac{x-1}{x+1}\right) \left(1 - \left(\frac{x-1}{x+1}\right)^2\right)} = \frac{-(x+1)(x-1)^2 + (x-1)(x+1)^2}{2i(x+1)(x-1)((x+1)^2 - (x-1)^2)}$$
$$= \frac{2(x^2-1)}{2i(x^2-1)(4x)} = \frac{1}{4ix},$$

et

$$b = \frac{-(x+1)+(x-1)}{2i(-(x+1)^2+(x-1)^2)} = \frac{1}{4ix}.$$

Donc

$$8\frac{(x+1)t^2 + (x-1)}{((x+1)^2t^2 + (x-1)^2)(1+t^2)} = \frac{2}{ix} \left(\frac{1}{t - i\frac{x-1}{x+1}} - \frac{1}{t + i\frac{x-1}{x+1}} + \frac{1}{t-i} - \frac{1}{t+i} \right)$$

$$= \frac{2}{ix} \left(\frac{2i\frac{x-1}{x+1}}{t^2 + \left(\frac{x-1}{x+1}\right)^2} + \frac{2i}{t^2+1} \right) = \frac{4}{x} \left(\frac{x^2 - 1}{(x+1)^2t^2 + (x-1)^2} + \frac{1}{t^2+1} \right)$$

Ensuite, en notant ε le signe de $\frac{x-1}{x+1}$

$$F'(x) = \frac{4}{x} \int_0^{+\infty} \left(\frac{x^2 - 1}{(x+1)^2 t^2 + (x-1)^2} + \frac{1}{t^2 + 1} \right) dt$$
$$= \frac{4}{x} \left[\frac{x^2 - 1}{(x+1)^2} \frac{1}{\frac{x-1}{x+1}} \operatorname{Arctan} \left(\frac{t}{\frac{x-1}{x+1}} \right) \right]_0^{+\infty} = \frac{4}{x} (\varepsilon + 1) \frac{\pi}{2}$$

Par suite, si $x \in]-1,1[, F'(x) = 0$ et si $x \in]-\infty,-1[\cup]1,+\infty[, F'(x) = \frac{4\pi}{x}]$

$$\forall x \in \mathbb{R} \setminus \{-1, 1\}, F'(x) = \begin{cases} 0 \text{ si } x \in]-1, 1[\\ \frac{4\pi}{x} \text{ si } x \in]-\infty, -1[\cup]1, +\infty[\end{cases}.$$

(c) Soit x > 1.

$$F(x) - 4\pi \ln(x) = \int_{-\pi}^{\pi} \ln(x^2 - 2x \cos \theta + 1) d\theta - \int_{-\pi}^{\pi} \ln(x^2) d\theta = \int_{-\pi}^{\pi} \ln\left(1 - \frac{2}{x} \cos \theta + \frac{1}{x^2}\right) d\theta = F\left(\frac{1}{x}\right).$$

Par suite, $\lim_{x\to +\infty} (F(x)-4\pi\ln(x))=\lim_{x\to +\infty} F\left(\frac{1}{x}\right)=\lim_{y\to 0} F(y)=F(0)=0$ par continuité de F en 0.

$$\lim_{x\to+\infty}(F(x)-4\pi\ln(x))=0.$$

- (d) F est continue sur [-1,1], dérivable sur]-1,1[de dérivée nulle sur]-1,1[. Donc la fonction F est constante sur l'intervalle [-1,1]. Par suite, pour tout réel $x \in [-1,1]$, F(x) = F(0) = 0.
 - F est dérivable sur $]1,+\infty[$ et $\forall x>1,\,F'(x)=\frac{4\pi}{x}.$ Donc il existe $C\in\mathbb{R}$ tel que $\forall x>1,\,F(x)=4\pi\ln x+C$ avec $C=\lim_{x\to+\infty}(F(x)-4\pi\ln x)=0.$ Donc $\forall x>1,\,F(x)=4\pi\ln x.$
 - Si x < -1, $F(x) = F(-x) = 4\pi \ln(-x) = 4\pi \ln|x|$.

$$\forall x \in \mathbb{R}, \, \int_{-\pi}^{\pi} \ln(x^2 - 2x \cos \theta + 1) \, d\theta = \begin{cases} 0 \text{ si } x \in [-1, 1] \\ 4\pi \ln(|x|) \text{ si } x \in]-\infty, -1[\cup]1, +\infty[\end{cases}.$$

2. (a) Soit $x \in]-1,1[$. Pour $\theta \in [-\pi,\pi]$, on pose $f(\theta) = \ln(x^2 - 2x\cos\theta + 1)$. Puisque $\forall \theta \in [-\pi,\pi]$, $x^2 - 2x\cos\theta + 1 > 0$ (voir 1)), f est dérivable sur $[-\pi,\pi]$ et pour $\theta \in [-\pi,\pi]$,

$$f'(\theta) = \frac{2x \sin \theta}{x^2 - 2x \cos \theta + 1} = \frac{1}{i} \left(\frac{e^{i\theta}}{x - e^{i\theta}} - \frac{e^{-i\theta}}{x - e^{-i\theta}} \right) = \frac{1}{i} \left(-\frac{1}{1 - xe^{-i\theta}} + \frac{1}{1 - xe^{i\theta}} \right)$$

$$= \frac{1}{i} \left(\sum_{n=0}^{+\infty} x^n e^{in\theta} - \sum_{n=0}^{+\infty} x^n e^{-in\theta} \right) \left(\cos|xe^{i\theta}| = |xe^{-i\theta}| = |x| < 1 \right)$$

$$= 2 \sum_{n=1}^{+\infty} \sin(n\theta) x^n.$$

Soit $\theta \in [-\pi, \pi]$. I désigne l'intervalle $[0, \theta]$ ou $[\theta, 0]$ suivant que θ soit positif ou négatif.

Pour $n \in \mathbb{N}^*$ et $t \in I$, posons $g_n(t) = 2\sin(nt)x^n$. Pour tout $n \in \mathbb{N}^*$ et tout $t \in I$, on a $|f_n(t)| \le$ $|x|^n$. Comme $|x|^n$ est le terme général d'une série numérique convergente, la série de fonctions de terme général f_n , $n \in \mathbb{N}^*$, converge normalement et donc uniformément sur le segment I. D'après le théorème d'intégration terme à terme sur un segment, on peut écrire

$$f(\theta) = f(0) + \int_0^{\theta} f'(t) dt = 2\ln(1-x) + \sum_{n=1}^{+\infty} 2x^n \int_0^{\theta} \sin(nt) dt$$
$$= 2\left(-\sum_{n=1}^{+\infty} \frac{x^n}{n} + \sum_{n=1}^{+\infty} (1 - \cos(n\theta)) \frac{x^n}{n}\right) = -2\sum_{n=1}^{+\infty} \frac{\cos(n\theta)}{n} x^n.$$

$$\forall x \in]-1,1[,\forall \theta \in [-\pi,\pi], \ln(x^2 - 2x\cos\theta + 1) = -2\sum_{n=1}^{+\infty} \frac{\cos(n\theta)}{n} x^n.$$

Soit $x \in]-1,1[$. Pour $n \in \mathbb{N}^*$ et $\theta \in [-\pi,\pi]$, $\left|\frac{\cos(n\theta)}{n}x^n\right| \leqslant |x|^n$. Comme précédemment, on peut intégrer terme à terme et on obtient

$$F(x) = -2\sum_{n=1}^{+\infty} \frac{x^n}{n} \int_{-\pi}^{\pi} \cos(n\theta) \, d\theta = 0.$$

$$\forall x \in]-1, 1[, \int_{-\pi}^{\pi} \ln(x^2 - 2x\cos\theta + 1) \, d\theta = 0.$$

(b) Soit $x \in \mathbb{R}^*$.

$$F\left(\frac{1}{x}\right) = \int_{-\pi}^{\pi} \ln\left(1 - \frac{2}{x}\cos\theta + \frac{1}{x^2}\right) d\theta = \int_{-\pi}^{\pi} (\ln(1 - 2x\cos\theta + x^2) - \ln(x^2)) d\theta = -4\pi\ln|x| + F(x).$$

$$\forall x \in \mathbb{R}^*, F\left(\frac{1}{x}\right) = -4\pi\ln|x| + F(x).$$

Soit x > 1. Puisque $\frac{1}{x} \in]0,1[$, $F(x) = 4\pi \ln x + F\left(\frac{1}{x}\right) = 4\pi \ln x$. On retrouve alors les résultats du 1).

Correction de l'exercice 3

- 1. Soit A>0. Soit $\Phi: [-A,A]\times [0,1] \to \mathbb{R}$. $(x,t) \mapsto \frac{e^{-x^2(1+t^2)}}{1+t^2}$ Pour chaque x de [-A,A], la fonction $t\mapsto F(x,t)$ est continue sur le segment [0,1] et donc intégrable
 - sur ce segment.
 - La fonction Φ admet sur $[-A,A] \times [0,1]$ une dérivée partielle par rapport à sa première variable x définie par:

$$\forall (x,t) \in [-A,A] \times [0,1], \frac{\partial \Phi}{\partial x}(x,t) = -2xe^{-x^2(1+t^2)}.$$

De plus,

- pour chaque $x \in [-A,A]$, la fonction $t \mapsto \frac{\partial \Phi}{\partial x}(x,t)$ est continue par morceaux sur le segment [0,1],
- pour chaque $t \in [0,1]$, la fonction $x \mapsto \frac{\partial \Phi}{\partial x}(x,t)$ est continue par morceaux sur \mathbb{R} ,
- pour chaque $(x,t) \in [-A,A] \times [0,1], \left| \frac{\partial \Phi}{\partial x}(x,t) \right| \leqslant 2A = \varphi(t)$, la fonction φ étant continue et donc intégrable sur le

segment [0,1].

D'après le théorème de dérivation des intégrales à paramètres (théorème de LEIBNIZ), la fonction F est de classe C^1 sur [-A,A] et sa dérivée s'obtient en dérivant sous le signe somme. Ceci étant vrai pour tout A > 0, F est de classe C^1 sur \mathbb{R} et

$$\forall x \in \mathbb{R}, F'(x) = -2x \int_0^1 e^{-x^2(1+t^2)} dt.$$

2. La fonction $x \mapsto e^{-x^2}$ est continue sur \mathbb{R} . On en déduit que la fonction $x \mapsto \int_0^x e^{-t^2} dt$ est de classe C^1 sur \mathbb{R} . Il en est de même de la fonction G et pour tout réel x,

$$G'(x) = 2e^{-x^2} \int_0^x e^{-t^2} dt.$$

3. Soit $x \in \mathbb{R}^*$. En posant u = xt, on obtient

$$F'(x) = -2x \int_0^1 e^{-x^2(1+t^2)} dt = -2e^{-x^2} \int_0^1 e^{-(xt)^2} x dt = -e^{-x^2} \int_0^x e^{-u^2} du = -G'(x),$$

cette égalité restant vraie quand x = 0 par continuité des fonctions F' et G' sur \mathbb{R} .

Ainsi, F' + G' = 0 et donc $\forall x \in \mathbb{R}$, $F(x) + G(x) = F(0) + G(0) = \int_0^1 \frac{1}{1+t^2} dt = \frac{\pi}{4}$.

$$\forall x \in \mathbb{R}, F(x) + G(x) = \frac{\pi}{4}.$$

4. Pour $x \in \mathbb{R}$,

$$|F(x)| = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt \le e^{-x^2} \int_0^1 \frac{1}{1+t^2} dt = \frac{\pi}{4e^{x^2}},$$

et puisque $\lim_{x\to +\infty} \frac{\pi}{4\rho^{x^2}} = 0$, on a montré que

$$\lim_{x\to +\infty} F(x) = 0.$$

5. Pour x > 0, on a $\int_0^x e^{-t^2} dt \ge 0$ et donc d'après la question 3),

$$\int_0^x e^{-t^2} dt = \sqrt{G(x)} = \sqrt{\frac{\pi}{2} - F(x)}.$$

La question 4) permet alors d'affirmer que $\lim_{x\to +\infty} G(x) = \frac{\sqrt{\pi}}{2}$ et donc que

$$\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}.$$

Correction de l'exercice 4 A

Soit $x \in \mathbb{R}$. La fonction $t \mapsto e^{-t^2} \operatorname{ch}(tx)$ est continue sur $[0, +\infty[$. Quand t tend vers $+\infty$, $e^{-t^2} \operatorname{ch}(tx) = \frac{1}{2}(e^{-t^2+tx} + e^{-t^2})$ e^{-t^2-tx}) = $o(\frac{1}{t^2})$ d'après un théorème de croissances comparées et donc la fonction $t \mapsto e^{-t^2} \operatorname{ch}(tx)$ est intégrable sur $[0, +\infty[$. Pour $x \in \mathbb{R}$, on peut poser $f(x) = \int_0^{+\infty} e^{-t^2} \operatorname{ch}(tx) dt$.

Calcul de f(x). Soit A > 0. On pose $\Phi: [-A,A] \times [0,+\infty[\rightarrow \mathbb{R} (x,t) \mapsto e^{-t^2} \operatorname{ch}(tx)]$

- Pour chaque $x \in [-A, A]$, la fonction $t \mapsto e^{-t^2} \operatorname{ch}(tx)$ est continue par morceaux et intégrable sur $[0, +\infty[$.
- La fonction Φ admet sur $[-A,A] \times [0,+\infty[$ une dérivée partielle par rapport à sa première variable définie par:

$$\forall (x,t) \in [-A,A] \times [0,+\infty[,\frac{\partial \Phi}{\partial x}(x,t) = te^{-t^2} \operatorname{sh}(tx).$$

- pour chaque $x \in [-A,A]$, la fonction $t \mapsto \frac{\partial \Phi}{\partial x}(x,t)$ est continue par morceaux sur $[0,+\infty[$, -pour chaque $t \in [0,+\infty[$, la fonction $x \mapsto \frac{\partial \Phi}{\partial x}(x,t)$ est continue sur [-A,A],
- pour chaque $(x,t) \in [-A,A] \times [0,+\infty[$,

$$\left| \frac{\partial \Phi}{\partial x}(x,t) \right| = te^{-t^2} |\operatorname{sh}(tx)| \leqslant te^{-t^2} \operatorname{sh}(t|A|) = \varphi(t).$$

La fonction φ est continue par morceaux sur $[0,+\infty[$ et intégrable sur $[0,+\infty[$ car négligeable devant $\frac{1}{t^2}$ quand t tend vers $+\infty$.

D'après le théorème de dérivation des intégrales à paramètres (théorème de LEIBNIZ), la fonction f est de classe C^1 sur [-A,A] et sa dérivée s'obtient par dérivation sous le signe somme. Ceci étant vrai pour tout réel A > 0, la fonction f est de classe C^1 sur \mathbb{R} et

$$\forall x \in \mathbb{R}, f'(x) = \int_0^{+\infty} t e^{-t^2} \operatorname{sh}(tx) dt.$$

Soit $x \in \mathbb{R}$. On effectue maintenant une intégration par parties. Soit A > 0. Les deux fonctions $t \mapsto te^{-t^2}$ et $t \mapsto \operatorname{sh}(tx)$ sont de classe C^1 sur le segment [0,A]. On peut donc effectuer une intégration par parties et on obtient

$$\int_0^A t e^{-t^2} \operatorname{sh}(tx) dt = \left[-\frac{1}{2} e^{-t^2} \operatorname{sh}(tx) \right]_0^A + \frac{x}{2} \int_0^A e^{-t^2} \operatorname{ch}(tx) dt = -\frac{1}{2} e^{-A^2} \operatorname{sh}(tA) + \frac{x}{2} \int_0^A e^{-t^2} \operatorname{ch}(tx) dt.$$

Quand A tend vers $+\infty$, on obtient $f'(x)=\int_0^{+\infty}te^{-t^2}\operatorname{sh}(tx)\ dt=\frac{x}{2}\int_0^{+\infty}e^{-t^2}\operatorname{ch}(tx)\ dt=\frac{x}{2}f(x)$. Ensuite, pour tout réel x, $e^{-x^2/4}f'(x)-\frac{x}{2}e^{-x^2/4}f(x)=0$ ou encore $(e^{-x^2/4}f)'(x)=0$. On en déduit que $\forall x\in\mathbb{R}$, $e^{-x^2/4}f(x)=e^0f(0)=\int_0^{+\infty}e^{-t^2}\ dt=\frac{\sqrt{\pi}}{2}$ et donc que $\forall x\in\mathbb{R}$, $f(x)=\frac{\sqrt{\pi}}{2}e^{x^2/4}$.

$$\forall x \in \mathbb{R}, \int_0^{+\infty} e^{-t^2} \operatorname{ch}(tx) dt = \frac{\sqrt{\pi}}{2} e^{x^2/4}.$$

Correction de l'exercice 5

Soit $x \in \mathbb{R}$. La fonction $t \mapsto \frac{t-1}{\ln t} t^x$ est continue sur]0,1[. **Etude en 1.** $\frac{t-1}{\ln t} t^x \sim 1 \times 1 = 1$ et donc la fonction $t \mapsto \frac{t-1}{\ln t} t^x$ se prolonge par continuité en 1. On en déduit que la fonction $t\mapsto \frac{t-1}{\ln t}t^x$ est intégrable sur un voisinage de 1 à gauche. **Etude en** 0. $\frac{t-1}{\ln t}t^x \underset{t\to 0}{\sim} -\frac{t^x}{\ln t} > 0$.

-si x > -1, $-\frac{t^x}{\ln t} = o(t^x)$ et puisque x > -1, la fonction $t \mapsto \frac{t-1}{\ln t} t^x$ est intégrable sur un voisinage de 0 à droite.

- si $x \le -1$, la fonction $t \mapsto -\frac{t^x}{\ln t}$ domine la fonction $t \mapsto -\frac{1}{t \ln t}$ quand t tend vers 0 par valeurs supérieures. Puisque la fonction $-\frac{1}{t \ln t}$ est positive et que $\int_x^{1/2} -\frac{1}{t \ln t} dt = \ln|\ln(x)| - \ln|\ln(1/2)| \xrightarrow[x \to 0]{} +\infty$, la fonction $t \mapsto -\frac{1}{t \ln t}$

 $-\frac{1}{t \ln t}$ n'est pas intégrable sur un voisinage de 0. Il en est de même de la fonction $t \mapsto \frac{t-1}{\ln t} t^x$. Finalement, la fonction $t \mapsto \frac{t-1}{\ln t} t^x$ est intégrable sur]0,1[si et seulement si x > -1. Pour x > -1, on peut poser $f(x) = \int_0^1 \frac{t-1}{\ln t} t^x \, dt.$ $\mathbf{Calcul} \ \mathbf{de} \ f(x). \ \text{Soit} \ a > -1. \ \text{On pose} \ \Phi: \ [a, +\infty[\times]0, 1[\ \to \ \mathbb{R} \ . \\ (x,t) \ \mapsto \ \frac{t-1}{\ln t} t^x$ $\bullet \ \text{Pour chaque} \ x \in [a, +\infty[, \text{la fonction} \ t \mapsto \frac{t-1}{\ln t} t^x \text{ est continue par morceaux et intégrable sur }]0, 1[.$ $\bullet \ \text{La fonction} \ \Phi \ \text{admet sur} \ [a, +\infty[\times]0, 1[\ \text{une dérivée partielle par rapport à sa première variable définie par :}]$

$$\forall (x,t) \in [a, +\infty[\times]0, 1[, \frac{\partial \Phi}{\partial x}(x,t) = (t-1)t^x = t^{x+1} - t^x.$$

- pour chaque $x \in [a, +\infty[$, la fonction $t \mapsto \frac{\partial \Phi}{\partial x}(x, t)$ est continue par morceaux sur]0, 1[,
- -pour chaque $t \in]0,1[$, la fonction $x \mapsto \frac{\partial \Phi}{\partial x}(x,t)$ est continue sur $[a,+\infty[$,
- pour chaque $(x,t) \in [a, +\infty[\times]0, 1[$,

$$\left| \frac{\partial \Phi}{\partial x}(x,t) \right| = (1-t)t^a = \varphi(t).$$

La fonction φ est continue par morceaux sur]0,1[et intégrable sur]0,1[car a>-1.

D'après le théorème de dérivation des intégrales à paramètres (théorème de LEIBNIZ), la fonction f est de classe C^1 sur $[a, +\infty[$ et sa dérivée s'obtient par dérivation sous le signe somme. Ceci étant vrai pour tout réel a > -1, la fonction f est de classe C^1 sur $]-1,+\infty[$ et

$$\forall x > -1, f'(x) = \int_0^1 (t-1)t^x dt = \left[\frac{t^{x+2}}{x+2} - \frac{t^{x+1}}{x+1}\right]_0^1 = \frac{1}{x+2} - \frac{1}{x+1}.$$

Par suite, il existe $C \in \mathbb{R}$ tel que $\forall x > -1$, $f(x) = \ln\left(\frac{x+2}{x+1}\right) + C$ (*). Pour déterminer la constante C, on peut utiliser le résultat de l'exercice $??: \int_0^1 \frac{t-1}{\ln t} dt = \ln 2$. On peut aussi obtenir directement la constante C sans aucun calcul d'intégrale. Pour cela, déterminons $\lim_{x\to+\infty} f(x)$. La fonction $g: t\mapsto \frac{t-1}{\ln t}$ est continue sur le segment]0,1[, prolongeable par continuité en 0 et en 1 en posant

g(0) = 0 et g(1) = 1. On en déduit que cette fonction est bornée sur l'intervalle [0,1] (car son prolongement est une fonction continue sur un segment).

Soit M un majorant de la fonction $|g| \sin [0,1]$. Pour x > -1, on a

$$|g(x)| \le M \int_0^1 t^x dt = \frac{M}{x+1}.$$

Ceci montre que $\lim_{x\to +\infty} f(x) = 0$ et en passant à la limite quand x tend vers $+\infty$ dans l'égalité (*), on obtient C = 0. On a donc montré que

$$\forall x > -1, \, \int_0^1 \frac{t-1}{\ln t} t^x \, dt = \ln\left(\frac{x+2}{x+1}\right).$$

On retrouve en particulier $\int_0^1 \frac{t-1}{\ln t} dt = \ln 2$.

Correction de l'exercice 6

Existence de $\int_0^{+\infty} \frac{e^{-tx}}{1+t^2} dt$. Soit $x \ge 0$. La fonction $t \mapsto \frac{e^{-tx}}{1+t^2}$ est continue sur $[0, +\infty[$ et est dominée par $\frac{1}{t^2}$ quand t tend vers $+\infty$. Cette fonction est donc intégrable sur $[0, +\infty[$. Donc $\int_0^{+\infty} \frac{e^{-tx}}{1+t^2} dt$ existe pour tout réel positif xet on pose $\forall x \ge 0$, $f(x) = \int_0^{+\infty} \frac{e^{-tx}}{1+t^2} dt$.

Continuité de f sur $[0, +\infty[$. Soit $\Phi: [0, +\infty[\times [0, +\infty[\to \mathbb{R}]]]] \mapsto \frac{e^{-tx}}{1+t^2}$.

- Pour chaque $x \in [0, +\infty[$, la fonction $t \mapsto \Phi(x, t)$ est continue par morceaux sur $[0, +\infty[$.
- Pour chaque $t \in [0, +\infty[$, la fonction $x \mapsto \Phi(x, t)$ est continue sur $[0, +\infty[$.
- Pour chaque $(x,t) \in [0,+\infty[\times[0,+\infty[,$

$$|\Phi(x,t)| = \frac{e^{-tx}}{1+t^2} dt \leqslant \frac{1}{1+t^2} = \varphi_0(t).$$

De plus, la fonction φ_0 est continue et intégrable sur $[0,+\infty[$ car équivalente à $\frac{1}{t^2}$ quand t tend vers $+\infty$. D'après le théorème de continuité des intégrales à paramètres, f est continue sur $[0, +\infty[$.

Dérivée seconde de f. Soit a>0. On pose $\Phi: [0,+\infty[\times[a,+\infty[$ $\to \mathbb{R}$. $(x,t) \mapsto \frac{e^{-tx}}{1+t^2}$ En plus de ce qui précède, Φ admet sur $[a,+\infty[\times[0,+\infty[$ des dérivées partielles d'ordre 1 et 2 définies par

$$\forall (x,t) \in [a, +\infty[\times[0, +\infty[, \frac{\partial \Phi}{\partial x}(x,t)]] = -\frac{te^{-tx}}{1+t^2} \text{ et } \frac{\partial^2 \Phi}{\partial x^2}(x,t) = \frac{t^2e^{-tx}}{1+t^2}.$$

- Pour chaque $x \in [a, +\infty[$, les fonctions $t \mapsto \frac{\partial \Phi}{\partial x}(x, t)$ et $t \mapsto \frac{\partial^2 \Phi}{\partial x^2}(x, t)$ sont continues par morceaux sur $[0, +\infty[$. Pour chaque $t \in [0, +\infty[$, les fonctions $x \mapsto \frac{\partial \Phi}{\partial x}(x, t)$ et $x \mapsto \frac{\partial^2 \Phi}{\partial x^2}(x, t)$ sont continues sur $[a, +\infty[$.
- Pour chaque $(x,t) \in [a, +\infty[\times [0, +\infty[$,

$$\left| \frac{\partial \Phi}{\partial x}(x,t) \right| = \frac{te^{-tx}}{1+t^2} \leqslant \frac{te^{-at}}{1+t^2} = \varphi_1(t) \text{ et } \left| \frac{\partial^2 \Phi}{\partial x}(x,t) \right| = \frac{t^2e^{-tx}}{1+t^2} \leqslant \frac{t^2e^{-at}}{1+t^2} = \varphi_2(t).$$

De plus, les fonctions φ_1 et φ_2 sont continues par morceaux et intégrables sur $[0, +\infty[$ car négligeables devant $\frac{1}{t^2}$ quand t tend vers $+\infty$.

D'après une généralisation du théorème de dérivation des intégrales à paramètres, f est de classe C^2 sur $[a, +\infty]$ et ses dérivées premières et secondes s'obtiennent par dérivation sous le signe somme. Ceci étant vrai pour tout a > 0, f est de classe C^2 sur $]0, +\infty[$ et

$$\forall x > 0, f'(x) = \int_0^{+\infty} \frac{te^{-tx}}{1+t^2} dt \text{ et } f''(x) = \int_0^{+\infty} \frac{t^2e^{-tx}}{1+t^2} dt.$$

Equation différentielle vérifiée par f. Pour x > 0,

$$f''(x) + f(x) = \int_0^{+\infty} \frac{t^2 e^{-tx}}{1 + t^2} dt + \int_0^{+\infty} \frac{e^{-tx}}{1 + t^2} dt = \int_0^{+\infty} e^{-tx} dt = \left[-\frac{e^{-tx}}{x} \right]_0^{+\infty} = \frac{1}{x}.$$

$$\forall x > 0, f(x) + f''(x) = \frac{1}{x}.$$

Existence de $\int_0^{+\infty} \frac{\sin t}{x+t} dt$. Si x = 0, l'exercice ??, 1) montre que $\int_0^{+\infty} \frac{\sin t}{t} dt$ est une intégrale convergente. Si x > 0, une intégration par parties fournit pour A > 0

$$\int_0^A \frac{\sin t}{t+x} dt = -\frac{\cos A}{A+x} + \frac{1}{x} - \int_0^A \frac{\cos t}{(t+x)^2} dt.$$

La fonction $t\mapsto \frac{\cos t}{(t+x)^2}$ est continue sur $[0,+\infty[$ et est dominée par $\frac{1}{t^2}$ quand t tend vers $+\infty$. Cette fonction est donc intégrable sur $[0,+\infty[$. On en déduit que la fonction $A\mapsto \int_0^A \frac{\cos t}{(t+x)^2}\,dt$ a une limite réelle quand A tend vers $+\infty$ et il en est de même de la fonction $A\mapsto \int_0^A \frac{\sin t}{t+x}\,dt$. Ainsi, pour chaque $x\in [0,+\infty[$, $\int_0^{+\infty} \frac{\sin t}{t+x}\,dt$ est une intégrale convergente. Pour $x\geqslant 0$, on peut donc poser $g(x)=\int_0^{+\infty} \frac{\sin t}{t+x}\,dt$.

Equation différentielle vérifiée par g. Pour x > 0, on pose u = x + t. on obtient

$$g(x) = \int_0^{+\infty} \frac{\sin t}{t+x} dt = \int_x^{+\infty} \frac{\sin(u-x)}{u} du = \cos x \int_x^{+\infty} \frac{\sin u}{u} du - \sin x \int_x^{+\infty} \frac{\cos u}{u} du.$$

(car toutes les intégrales considérées sont convergentes). Maintenant, les fonctions $c: u \mapsto \frac{\cos u}{u}$ et $s: u \mapsto \frac{\sin u}{u}$ sont continues sur $]0,+\infty[$ et admettent donc des primitives sur $]0,+\infty[$. On note C (respectivement S) une primitive de la fonction c (respectivement s) sur $]0,+\infty[$). Pour tout réel x>0, $\int_x^{+\infty} \frac{\cos u}{u} \, du = \lim_{t\to +\infty} C(t) - C(x)$. On en déduit que la fonction $x\mapsto \int_x^{+\infty} \frac{\cos u}{u} \, du$ est de classe C^1 sur $]0,+\infty[$, de dérivée -c. De même, la fonction $x\mapsto \int_x^{+\infty} \frac{\sin u}{u} \, du$ est de classe C^1 sur $]0,+\infty[$, de dérivée -s. Mais alors la fonction g est de classe C^1 sur $]0,+\infty[$ et pour tout réel x>0,

$$g'(x) = -\sin x \int_{x}^{+\infty} \frac{\sin u}{u} du - \frac{\sin x \cos x}{x} - \cos x \int_{x}^{+\infty} \frac{\cos u}{u} du + \frac{\cos x \sin x}{x}$$
$$= -\cos x \int_{x}^{+\infty} \frac{\cos u}{u} du - \sin x \int_{x}^{+\infty} \frac{\sin u}{u} du.$$

La fonction g' est encore de classe C^1 sur $]0, +\infty[$ et pour tout réel x > 0,

$$g'(x) = \sin x \int_{x}^{+\infty} \frac{\cos u}{u} du + \frac{\cos^{2} x}{x} - \cos x \int_{x}^{+\infty} \frac{\sin u}{u} du + \frac{\sin^{2} x}{x}$$
$$= \frac{1}{x} - g(x).$$

$$\forall x > 0, g''(x) + g(x) = \frac{1}{x}.$$

Egalité de f et g sur $]0, +\infty[$. Pour tout réel x>0, (f-g)''(x)+(f-g)(x)=0. Donc il existe deux réels λ et μ tels que $\forall x>0$, $(f-g)(x)=\lambda\cos x+\mu\sin x=A\cos(x+\varphi)$ pour $A=\sqrt{\lambda^2+\mu^2}$ et pour un certain φ . Maintenant, pour x>0, $|f(x)|=\int_0^{+\infty}\frac{e^{-tx}}{1+t^2}dt\leqslant \int_0^{+\infty}e^{-tx}dt=\frac{1}{x}$ et on en déduit que $\lim_{x\to+\infty}\frac{1}{x}=0$. Ensuite, $|g(x)\leqslant \left|\int_x^{+\infty}\frac{\sin u}{u}du\right|+\left|\int_x^{+\infty}\frac{\cos u}{u}du\right|$. Puisque les intégrales $\int_1^{+\infty}\frac{\sin u}{u}du$ et $\int_1^{+\infty}\frac{\cos u}{u}du$ sont des intégrales convergentes, on a $\lim_{x\to+\infty}\int_x^{+\infty}\frac{\sin u}{u}du=\lim_{x\to+\infty}\int_x^{+\infty}\frac{\cos u}{u}du=0$ et donc aussi $\lim_{x\to+\infty}g(x)=0$. Finalement, $\lim_{x\to+\infty}(f(x)-g(x))=0$ ce qui impose A=0 et donc $\forall x>0$, f(x)=g(x).

$$\forall x > 0, \int_0^{+\infty} \frac{e^{-tx}}{1+t^2} dt = \int_0^{+\infty} \frac{\sin t}{t+x} dt.$$

Continuité de g en 0 et valeur de $\int_0^{+\infty} \frac{\sin t}{t} dt$. Pour x > 0,

$$g(x) = \cos x \int_{x}^{+\infty} \frac{\sin u}{u} du - \sin x \int_{x}^{+\infty} \frac{\cos u}{u} du$$
$$= \cos x \int_{x}^{+\infty} \frac{\sin u}{u} du - \sin x \int_{1}^{+\infty} \frac{\cos u}{u} du + \sin x \int_{x}^{1} \frac{1 - \cos u}{u} du - \sin x \ln x.$$

Quand x tend vers 0, $\sin x \ln x \sim x \ln x$ et donc $\lim_{x\to 0} \sin x \ln x = 0$. Ensuite, la fonction $u\mapsto \frac{1-\cos u}{u}$ est intégrable sur]0,1] car continue sur]0,1] et prolongeable par continuité en 0. On en déduit que $\lim_{x\to 0} \sin x \int_x^1 \frac{1-\cos u}{u} du = 0 \times \int_0^1 \frac{1-\cos u}{u} du = 0$. Il reste

$$\lim_{\substack{x \to 0 \\ x > 0}} g(x) = \int_0^{+\infty} \frac{\sin t}{t} \, dt = g(0).$$

La fonction g est donc continue en 0. Puisque la fonction f est également continue en 0, on en déduit que

$$g(0) = \lim_{\substack{x \to 0 \\ x > 0}} g(x) = \lim_{\substack{x \to 0 \\ x > 0}} f(x) = f(0) = \int_0^{+\infty} \frac{1}{1 + t^2} \, dt = \frac{\pi}{2}.$$

$$\forall x \geqslant 0, \int_0^{+\infty} \frac{e^{-tx}}{1+t^2} dt = \int_0^{+\infty} \frac{\sin t}{t+x} dt$$
 et en particulier, $\int_0^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}$.

Correction de l'exercice 7

- 1. Soit $x \in \mathbb{R}$. La fonction $t \mapsto f(x-t)g(t)$ est continue sur le segment [0,T] et donc intégrable sur ce segment. Par suite, f * g(x) existe.
 - Soit $x \in \mathbb{R}$. $f * g(x+T) = \int_0^T f(x+T-t)g(t) dt = \int_0^T f(x-t)g(t) dt = f * g(x)$. Donc la fonction f * g est T-périodique.
 - Les fonction f et g sont continues sur \mathbb{R} et T-périodiques. Ces fonctions sont en particulier bornées sur \mathbb{R} . On note M_1 et M_2 des majorants sur \mathbb{R} des fonctions |f| et |g| respectivement.

Soit
$$\Phi: \mathbb{R} \times [0,T] \to \mathbb{R}$$

 $(x,t) \mapsto f(x-t)g(t)$

- Pour chaque $x \in \mathbb{R}$, la fonction $t \mapsto \Phi(x,t)$ est continue par morceaux sur [0,T].
- Pour chaque $t \in [0,T]$, la fonction $x \mapsto \Phi(x,t)$ est continue sur \mathbb{R} .
- Pour chaque $(x,t) \in \mathbb{R} \times [0,T]$, $|\Phi(x,t)| \leq M_1 M_2 = \varphi(t)$. De plus, la fonction φ est continue et donc intégrable sur le segment [0,T].

D'après le théorème de continuité des intégrales à paramètres, la fonction f * g est continue sur \mathbb{R} .

2. Soient f et g deux éléments de E. Soit $x \in \mathbb{R}$. En posant u = x - t, on obtient

$$f * g(x) = \int_0^T f(x-t)g(t) dt = \int_x^{x-T} f(u)g(u-t) (-du) = \int_{x-T}^x g(u-t)f(u) du$$
$$= \int_0^T g(u-t)f(u) du \text{ (car la fonction } u \mapsto g(u-t)f(u) \text{ est } T\text{-p\'eriodique)}$$
$$= g * f(x).$$