Online Skill Discovery using Graph-based Clustering

Jan Hendrik Metzen, University Bremen, Robotics Group, Robert-Hooke-Str. 5, 28359 Bremen, Germany

1 Abstract

We introduce a novel method for skill discovery using the **bottleneck principle** which is based on **bottom-up hierarchical clustering** of the estimated transition graph. In contrast to prior clustering approaches, it can be used **incrementally** and thus several times during the learning process. Furthermore, we show that the choice of the **linkage criterion** is crucial for dealing with non-random sampling policies and stochastic environments.

2 Skill Discovery

- Skill Discovery is one of the major challenges in Hierarchical RL
- Skills should be reusable, distinct, and easy to learn
- Frequency-based approaches (e.g. [2, 3]) and graph-based approaches (e.g. [1])

3 Graph-based Clustering

Graph construction: Based on a multi-set of transitions

 $T = \{(s_i, a_i, s_i')\}_{i=1...n}$, construct a graph node v for any observed state and an edge $e = (s_i, s_i')$ for each observed state transition.

Edge weight: Annotate each edge with a weight, based on the multiplicity N(s, a, s') of (s, a, s') in T.

- Uniform weights: $w_{uni}((s, s')) = 1$
- On-Policy weights: $w_{on}((s,s')) = \sum_a N(s,a,s')$
- Off-Policy weights: $w_{off}((s,s')) = \sum_a N(s,a,s')/N(s,a)$

Linkage criteria determine to which extent the boundary of two connected, disjoint subgraphs $A, B \subset G$ forms a bottleneck in G = (V, E, w).

Let
$$c(A, B) = \sum_{e \in E \cap (A \times B)} w(e)$$
.

Linkage criterion 1:

- $M(A, B) = \frac{\min(|A|, |B|) \log(\max(|A|, |B|))}{c(A, B) + c(B, A)}$, (Mannor et al. [1], w_{uni})
- $\hat{N}_{cut}(A,B) = \frac{c(A,B)+c(B,A)}{c(A,V)+c(B,A)} + \frac{c(B,A)+c(A,B)}{c(B,V)+c(A,B)}$, (Simşek et al. [4], w_{on} or w_{off})

Clustering: Using agglomerative clustering to find close-to-optimal solution for

$$P^* = \underset{P \in \mathcal{P}(V)}{\operatorname{arg min}} |P| \quad \text{s.t.} \quad \underset{p_i \in P, q_i \subset p_i}{\operatorname{max}} I(p_i \setminus q_i, q_i) \leq \psi.$$

Algorithm 1 Constrained agglomerative clustering

Input: graph G = (V, E, w), constraint set C, linkage criterion I, threshold ψ Initialize: partition $P = \{\{v\} | v \in V\}$

 $C = C \cup \text{lambda } p_1, p_2 : (p_1 \times p_2) \cap E \neq \emptyset \# \text{ Merge only clusters } p_i \text{ that are connected in } G$

 $M=\{(p_1,p_2)|(p_1,p_2)\in (P imes P)\land \bigwedge\limits_{c\in C}c(p_1,p_2)\}\ \#$ Merge-candidates fulfilling constraints

 $p_1^*, p_2^* = \arg\min_{p_1, p_2 \in M} I(p_1, p_2) \#$ Find merge candidates with minimal linkage

 $\begin{array}{l} p_1, p_2 \in M \\ \textbf{if } \ I(p_1^*, p_2^*) > \psi \colon \textbf{return } P \\ P = \left(P \setminus \{p_1^*, p_2^*\}\right) \cup \{p_1^* \cup p_2^*\} \ \# \ \mathsf{Merge} \ p_1^* \ \mathsf{and} \ p_2^* \end{array}$

end loop

4) OGAHC

Motivation: Skill discovery should be incremental, i.e. should be conducted several times during learning. For this purpose, OGAHC combines <u>constrained</u> agglomerative clustering with graph smoothing.

Algorithm 2 OGAHC

Input: linkage criterion I, parameters ρ , ψ , m Initialize: partition $P = \emptyset$, graph $G = (\emptyset, \emptyset)$,

loop

 $(s_1, a_1, s_2, \ldots, a_{m-1}, s_m) = ACT(AGENT, ENV) \# Observe trajectory of <math>m-1$ steps $UPDATE(G, (s_1, a_1, s_2, \ldots, a_{m-1}, s_m)) \# Update transition graph with trajectory$

 $G' = \text{SMOOTH}(G, \rho) \# \text{Pseudo transitions for under-explored nodes}$

 $C = \emptyset \#$ Constraints for keeping partitions consistent

for $(p_A, p_B) \in P \times P$ with $p_A \neq p_B$ do

Must not merge two clusters with elements that had not been merged in last iteration $C = C \cup \{ lambda \ p_1, p_2 : (p_1 \cup p_2) \cap p_A = \emptyset \lor (p_1 \cup p_2) \cap p_B = \emptyset \}$

end for

 $P = CAC(G', C, I, \psi) \# Partition G' using constrained agglomerative clustering (CAC) end loop$

Smoothing: For each s, a with with less than ρ samples N(s,a), a pseudo transition of weight $(\rho - N(s,a))/k$ is added to any of the $k = max(5,\rho)$ nearest neighbors of s. "Assume dense local connectivity in the face of uncertainty".

5 Illustration

Scenarios

Random graphs: 50 random graphs consisting of 400 states and 7 groundtruth clusters

Multi-task Maze: Simple 23 × 23 maze world consisting of 4 rooms and 12 different tasks. Shown is a baseline clustering of the domain used for "predefining" skills.

7

Results

8 Outlook

- Evaluation in large and continuous MDPs (graph construction)
- Other smoothing heuristics and graph clustering approaches
- Analysis of computational complexity

9 References

[1] S. Mannor, I. Menache, A. Hoze, and U. Klein.

Dynamic abstraction in reinforcement learning via clustering.

In Proceedings of the 21st International Conference on Machine Learning, pages 560–567, 2004.

[2] A. McGovern and A. G. Barto.

Automatic discovery of subgoals in reinforcement learning using diverse density.

In *In Proceedings of the 18th International Conference on Machine Learning*, pages 361–368, 2001.

[3] Ö. Şimşek and A. G. Barto.

Using relative novelty to identify useful temporal abstractions in reinforcement learning.

In *Proceedings of the 21st International Conference on Machine Learning*, pages 751–758, 2004.

[4] Ö. Şimşek, A. P. Wolfe, and A. G. Barto.

Identifying useful subgoals in reinforcement learning by local graph partitioning.

In *Proceedings of the 22nd International Conference on Machine Learning*, pages 816–823. ACM, 2005.

Deutsches Forschungszentrum für Künstliche Intelligenz GmbH **Contact:**

Jan Hendrik Metzen University Bremen, Robotics Group Director: Prof. Dr. Frank Kirchner www.dfki.de/robotics jhm@informatik.uni-bremen.de