MATH 251 Midtern Fall 2014 Solutions

(1) (a) Let $v \in Spon(AnB)$. Then $v = a_1v_1 + a_2v_2 + ... + a_nv_n$ where $v_1, ..., v_n \in AnB$ and $a_1, ..., a_n \in IR$. Since $v_1, ..., v_n \in A$, $v \in Spon(A)$. Since $a_1, ..., v_n \in B$, $v \in Spon(B)$.

Hence $v \in (Spon(A)) \cap (Spon(B))$. Since $v \in Spon(AnB)$.

Spon(AnB) $\in (Spon(A)) \cap (Spon(AB))$.

(b) Let $A = \{ (x, 0) | x \in \mathbb{R}^3 \}$, $B = \{ (0, y) | y \in \mathbb{R}^3 \}$. Then spon($A \cup B$) = \mathbb{R}^2 since $A \cup B$ contains the bosis $\{ (i, 0), (0, 1) \}$ of \mathbb{R}^4 . But span $A = A_i$, spon $B = B_i$, so

spon $A \cup Span B = A \cup B$

Since (1.1) EA, (1.1) EB, this vector is not in AUB

4 hence spend U spend # R2 = spen (AUB) & spend U spen B.

(a) (i) The Zero polynothrol $O(\kappa)$ solisties O(51=0), so $O\in W$.

(ii) If $f(\kappa)$, $g(\kappa)\in W$ then f(5)=0, g(5)=0 so (f+g)(5)=-f(5)+g(5)=0+0=0hence $f+g\in W$.

(iii) If $f \in W$ and $C \in \mathbb{R}$ then f(5)=0 so (cf)(5)=cf(5)=cf(5)=0

By (i), (ii), (iii), Wis a subspace.

- (b) Let $f_{\cdot}(x) = x 5$, $f_{2}(x) = x(x 5)$. Clearly f_{\cdot} , $f_{3} \in W$, and $\{f_{\cdot}, f_{2}\}$ is linearly independent since f_{\cdot} , f_{2} have different degrees. Since $W \neq P_{3}(IR)$ ($X \in W$, for example), f_{\cdot} dim $W \in \mathcal{I}$. Since $\{f_{\cdot}, f_{2}\}$ is linearly independent subset of W_{\cdot} dim $W \in \mathcal{I}$. So dim $W = \mathcal{I}_{\cdot}$ and therefore $\{x 5\}$, $\{x 5\}$ is a basis.
- 3) (a) Since $R(7) \leq R$, it has dimension 0 or 1. It is not 0, Since $T(1) = \int_0^1 dt = t \Big|_0^1 = 1 \neq 0$. Hence R(7) = R, rank = 1.

By Dimension Theorem,

$$clm V = rank(T) + n-llify(T)$$

$$3 = 1 + n-llify(T)$$

hence nullity (7) = 2.

(b) It suffices to find two linearly independent polynomials set is from 0 = T(f(c)) = [f(E) dE.

We can use X-112 and x2-113 since

$$\int_{0}^{1} (x - \frac{1}{2}) dx = \frac{x^{2}}{3} - \frac{1}{3} \times \left|_{0}^{1} = \frac{1}{3} - \frac{1}{2} = 0$$

$$\int_{0}^{1} (x^{2} - \frac{1}{3}) dx = \frac{x^{3}}{3} - \frac{1}{3} \times \left|_{0}^{1} = \frac{1}{3} - \frac{1}{3} = 0\right|_{0}^{3}$$

and there are lin. indep. since they have different degrees.

So { X-11) x-1/3} is a besis of M(T).

Mote we could instead find a boss by solving 0= \(\langle \alpha + C \alpha^2 / d \alpha = a + \frac{1}{3} + \frac{1}{3}.

$$\begin{aligned}
\Psi & (a) + (1,0) &= T \left(\frac{1}{2} \binom{1}{1} + \frac{1}{2} \binom{1}{1} \right) \\
&= \frac{1}{3} T \binom{1}{1} + \frac{1}{3} T \binom{1}{1} = \frac{1}{3} \binom{2}{3} + \frac{1}{3} \binom{7}{2} \\
&= \binom{2l_2 - l_2}{3l_2 + 2l_2} = \binom{l_2}{5l_3} \\
T & (0,1) &= T \left(\frac{1}{2} \binom{1}{1} - \frac{1}{2} \binom{1}{1} \right)
\end{aligned}$$

$$T(o_{11}) = T\left(\frac{1}{2}\binom{1}{1} - \frac{1}{2}\binom{1}{1}\right)$$

$$= \frac{1}{2}T\binom{1}{1} - \frac{1}{2}T\binom{1}{1} = \frac{1}{2}\binom{2}{3} - \frac{1}{2}\binom{-1}{2}$$

$$= \binom{2l_2 + l_2}{3l_2 - 2l_2} = \binom{3/2}{1/2}$$

$$= \binom{3/2}{3l_2 - 2l_2} = \binom{3/2}{1/2}$$

Hence
$$[T]_{d} = \frac{1}{2} \begin{pmatrix} 1 & 3 \\ 5 & 1 \end{pmatrix}$$

(6)
$$T(-3,2) = \frac{1}{2} \begin{pmatrix} 1 & 3 \\ 5 & 1 \end{pmatrix} \begin{pmatrix} -3 \\ 2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -3+6 \\ -15+2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 3/2 \\ -13/2 \end{pmatrix}$$

Then

Since Eu, v, w) is linearly independent, the 3 coefficients above

ore 0, i.e.
$$x_1 + x_2 = 0$$
 (1)
 $x_1 + x_2 = 0$ (2)

$$x_1 + x_3 = 0$$
 (3)

Then $X_3 = -X_1$ so (3) gives $X_3 - X_4 = 0$, so $X_5 = X_1$. Then (3) gives $2X_1 = 0$ hence $X_4 = 0$ so $X_1 = 0$ and $X_5 = 0$. Therefore, $\{u+v,v+w,w+v\}$ is linearly independent,