	NAME: SRIKAR KALE
11 9 20	MAIL: Srikar-kale @research-ilit. ac-in
. [1]	Assignment I FUNCTIONAL ANALYSIS
8)	Describe the span of M= {(1,1,1), (0,0,2)} in R3
Ans)	W(= (1,1)1) & (41) S(4+3)
	$V_2 = (0, 0, 2)$
1	The second of th
	The span of M is the linear combinations of the vectors
	- span of M = & V1 + p V2 where & B are arbitrary
	$= \alpha(1,1,1) + \beta(0,0,2)$ $= (d) d, \alpha+2\beta) + d, \beta \in R$
20	$= (d)d, d+2\beta) + d\beta \in R$
9)	Which of the following subsets of R3 constitute a subspace of R3?
-idro	subspace of R31?
	[Here x = (\xi_1, \xi_2, \xi_3)]
	a) All x with \(\xi_1 = \xi_2 & \xi_3 = 0 \) b) All x with \(\xi_2 = \xi_3 + 1 \)
	b) All x with \(\xi_1 = \xi_2 + 1 \) c) All x with positive \(\xi_1 \), \(\xi_2 \), \(\xi_3 \) \(\xi_1 \) \(\xi_2 \) \(\xi_3 \) \(\xi_1 \) \(\xi_2 \) \(\xi_3 \) \(\xi_1 \) \(\xi_2 \) \(\xi_3 \) \(\xi_1 \) \(\xi_2 \) \(\xi_3 \) \(\xi_1 \) \(\xi_2 \) \(\xi_3 \) \(\xi_1 \) \(\xi_2 \) \(\xi_3 \) \(\xi_1 \) \(\xi_2 \) \(\xi_3 \) \(\xi_1 \) \(\xi_2 \) \(\xi_3 \) \(\xi_1 \) \(\xi_2 \) \(\xi_3 \) \(\xi_1 \) \(\xi_2 \) \(\xi_1 \) \(\xi_2 \) \(\xi_2 \) \(\xi_3 \) \(\xi_1 \) \(\xi_2 \) \(\xi_3 \) \(\xi_1 \) \(\xi_2 \) \(\xi_3 \) \(\xi_1 \) \(\xi_2 \) \(\xi_1 \) \(\xi_2 \) \(\xi_2 \) \(\xi_3 \) \(\xi_1 \) \(\xi_2 \) \(\xi_2 \) \(\xi_2 \) \(\xi_1 \) \(\xi_2 \) \(\xi_2 \) \(\xi_2 \) \(\xi_2 \) \(\xi_1 \) \(\xi_2 \) \(\xi_2 \) \(\xi_1 \) \(\xi_2 \) \(\xi_1 \) \(\xi_2 \) \(
	d) All x with Eg, - Eg + Eg3 = k (fixed)
Ansa	let $x_1 = (\xi_1, \xi_1, 0)$ $2 \in Y$ $x = \mathbb{R}^3$ $x_2 = (\xi_3, \xi_3, 0)$
100	$X_2 = (\xi_3, \xi_3, 0)$
	4 x 17 B x 2 - (4 91) (1 93) P 93))
	= X (X () + B () , X () + B () , D)
7 3	The subspace 4 represents a line: x=4 (80 ==0)
b)	let x1 = (Ep2+1, Ep2, Ep3) 7 Ey, X=R3
	let $X_1 = (\xi_{2}+1, \xi_{2}, \xi_{3})$ \mathcal{E}_{4} $X = \mathbb{R}^3$ $X_2 = (\mathcal{P}_{2}+1, \mathcal{P}_{2}, \mathcal{P}_{3})$
	XX1+BX2 € Y
	classmate

210 PTAMA INMOTTENUE IL DADATE FLAT XX1+ BX2 = (X(\xi_2+1), X\xi_2, \xi_3)+(B(\(\infty+1), B\xi_2, B\infty) = (x\xi_2 + \beta\rangle_2 + \delta\rangle_3) \delta\xi_2 + \beta\rangle_3) Not equivallent to & E2+BP2+ undido vi XXI+BX2 & 4 - Doesn't form a subspace. c) let $x_1 = (\xi_1, \xi_2, \xi_3)$ $y \in y$ $x_2 = (\eta_1, \eta_2, \eta_3)$ $y \in y$ $\xi_1, \xi_2, \xi_3, \eta_1, \eta_2, \eta_3 \in \mathbb{R}^+$ If $x_1, x_2 \in y$ then $dx_1 + \beta x_2 \in y$ for trany 9, B & Ril 4 is a subspace. xx, = (xE, , xE, , xE3) BX2 = (BD1, BD2, BD3) XX1+BX2= (XEp,+BR1, XE2+BR2, XE3+BR3)

Depending on «, B, we might not always get positive values.

d) let $X_1 = (\xi_1, \xi_2, \xi_3) \} \in Y$ $X_2 = (n_1, n_2, n_3)$ $\xi_1 - \xi_2 + \xi_3 = K$ ξ_1, ξ_2 Eg, 1, Ez, 7, 1, 1, 1, 1, 1, 1, 1, € R 12 - 12 + 12 = K

If x1, x2 e 4, then < x1+ &x2 must also e 4 if 4 es a superace.

PAGE

	DATE
	(Assumption)
	y = 2x1 + Bx2
	∠ XX, + BX2 (Ale inequality) (N4)
	4 x1 x1 + B 1 X2 (N3)
	< (f ve const) (length 1) + (+ve const). (length 2)
	= +ve constant, y =0 if y=0
not 1	-: y <0 =) length is a -ve value which is not possible
	-: The assumption y <0 is false -: y ≥ 0
(S)	There are several norms of practical importance on the vector space of ordered n tuples of numbers, notably defined by: a) x = \frac{\xi}{2} + \frac{\xi}{2} + - + \frac{\xi}{2} b) x = (\xi ^2 + \xi ^2 + - \xi ^2) P
butnep	e) x ₂₀ = max { \xi_1 , \xi_2 \gamma \xi_n \xi
	In each case verify (NI) to (NY) are satisfied.
Ans)	$ x_1 = \xi_1 + \xi_2 + \xi_n $ $k = (\xi_1, \xi_2, \xi_n)$
roton	(NI): X , ≥0
(33192	Since $ X_1 = \sum \mathcal{E}_i \rightarrow \geq 0$ (Symmation of the values)
	(Nr): X =0 => X=0
	classmate

classmate

< 1x11 + 1/4/1

=) X = (0,0, -- . 0)

N3 ||ax|| = |a| ||x||

= |a| || x ||

Ny (Ale inequality)

|| x+y|| \le || x || + ||y||

b) $\|x\|\|_{p} = (|\xi_{1}|^{p} + |\xi_{2}|^{p} + -- |\xi_{n}|^{p})^{p}$ $x = (\xi_{1}, \xi_{21} - - \xi_{n})$ NI =) (X) > 0 1 \xi_1 P+ |\xi_2|P+ - - |\xi_n| \rightarrow \sum of the nos powered p -: ||X||p= (|\xi|^+ |\xi|^+ - |\xi|^p) \rightarrow \in 0. $N2 =) ||x|| = 0 \iff |x| = 0$ for IXI =0, every individual term must be zero. =) X=0 / N3) $\|ax\| = |a| \|x\|$ at = (a&, a&, - -, a&n) 1|ax1| = ((a\xi, 1+ |a\xi_2|+-- |a\xi_n|P))/P = (|al (|1 × |1 P)) YP = |a| 11 x 11 NY) 1/x+41 = 1/x 1/+ 1/4/1 4= (21) 221 -- - 2n) classmate

Xty = (\xi_1 \xi_2 \tau_1) \xi_2 \tau_1 - \xi_n + \gamma_n) 1x+y1 = (\xi_1+n_1) + \xi_2+n_2 | + -- + \xi_n+ \gamma_n | \frac{1}{2} | E (E | E | P) YP + (E | Minkowski mean it < 1×11 + [[4]] 9 ||X||00 = max { |E1 | 1 | E2 | 7 -- | En | 4 14) ||x|| > max & +ve no 1, +ve no 2, -- +ve no n } → tre no k ke[1,n] €I =) ||x || ≥ 0 mm x 100 d = 1 8 1 d ement $||X|| = 0 \iff X = 0$ 2) E = = -- En = 0 =) X=0 N3) lax 1 = |a| 1| x 1| 1X = (a Eq. , a Eq. , - , a Eq.) ||ax|| = max { | ax, |, | ax, |, --., | ax, | } = 191 max } (\xi_1), |\xi_2|, - | &\xi_n| 4 = |a| ||x||

Classmate

	DATE
8)	If 11.11 & 11.110 are equivalent norms on X, show that the cauchy sequences in (X, 11 11) & (X, 11 110) are the same.
	all x = b x = b x o x \in
	Let the sequence (Xn) in X be cauchy. Then for every E>0 there is an N such that $\ X_m - X_n\ < \varepsilon$ for all $m, n > N$.
	$a\ x_m - x_n\ _0 \leq \ x_m - x_n\ \leq b\ x_m - x_n\ _0$
	$a\ x_{m}-x_{n}\ _{0} \leq \ x_{m}-x_{n}\ $ $a\ x_{m}-x_{n}\ _{0} \leq \epsilon$ $\ x_{m}-x_{n}\ _{0} \leq \epsilon/a$ $\epsilon > 0, a > 0$
	$\ X_{m}-X_{n}\ \leq b \ X_{m}-X_{n}\ _{0}$ $\leq \langle b \ X_{m}-X_{n}\ _{0}$
	$\ X_m - X_n\ _0 > \epsilon/b$
	.: for all $m, n > N$ $ X_m - X_n _0 \text{ lies boly } (E/b, E/a)$
	A Xm-Xnllo <€ for every € >0 & m,n >N
	-: Cauchy sequences in (X, 11 11) & (t, 11 110) are same.
	classmate

X &, + B P2)

classmate .. To is linear. PAGE

a) for
$$T_1:$$

$$D(T) \to \mathbb{R}^{2}$$

$$R(T) \to \chi \text{ axis}$$

$$N(T) \to \Upsilon \text{ axis}$$

for
$$T_2$$
:
$$D(T) \rightarrow \mathbb{R}^{2}$$

$$\mathbb{R}(T) \rightarrow \mathbb{Y} \text{ axis}$$

$$\mathbb{N}(T) \rightarrow \mathbb{X} \text{ axis}$$

$$N(T) \rightarrow X \text{ axis}$$
 $T_2(\mathcal{E}_1, \mathcal{E}_2) \rightarrow (0, \mathcal{E}_2) \rightarrow (0, 0) \Rightarrow \mathcal{E}_2 = 0$

for any \mathcal{E}_1 , if $\mathcal{E}_2 = 0$, $T(\mathcal{E}_1, \mathcal{E}_2) \Rightarrow (0, 0)$
 $\therefore N(T_2) = X \text{ axis}$
 $T_2^{-1} \text{ does} \text{ wt exist}$

For
$$T_3$$
:

 $D(T) \longrightarrow \mathbb{R}^2$
 $\mathbb{R}(T) \longrightarrow \mathbb{R}^2$
 $\mathbb{N}(T) \longrightarrow \mathbb{Z}$ ero vector

 T_3^{-1} exists.

for Ty:
$$D(T) \longrightarrow \mathbb{R}^{2}$$
If $Y = 0$

$$R(T) \longrightarrow 0$$

$$N(T) \longrightarrow \mathbb{R}^{2}$$

$$Ty^{-1} doenb exist$$

b) T1: (E1, E2) -> (E1, 0)

 $(T_1: \mathbb{R}^2 \to \mathbb{R}^2)$

 $T_3: (\xi_1, \xi) \rightarrow (\xi_2, \xi_1) \quad (J_3: \mathbb{R}^2 \rightarrow \mathbb{R}^2)$

Let XI ER' be (EII) E) where Ep, E2 ER and

are arbitrary.

(T1. T3): X1 = T1 (T3: (E0 E2)) = T1: (E2, E1)

= (8,0)

 $(T_3 \cdot T_1) \cdot X_1 = T_3 \cdot (T_1 : (\xi_1, \xi_2)) = T_3 : (\xi_1, 0)$ = $(0, \xi_1)$

T, T3 X, + T3 T, X,

.: Ti & T3 are non-commuteable operators.