

Optimal Sparse Decision Trees

Xiyang Hu¹, Cynthia Rudin², Margo Seltzer^{3*}

xiyanghu@cmu.edu, cynthia@cs.duke.edu, mseltzer@cs.ubc.ca 1 Carnegie Mellon University, 2 Duke University, 3 The University of British Columbia *Author names are in alphabetic order.

Overview

- Decision Trees: Extremely popular form for interpretable ML models since the 1980's.
- Existing algorithms use greedy splitting and pruning, providing no guarantee of optimality.
- OSDT is the first practical algorithm for construction of optimal decision trees for binary variables.
- OSDT combines analytical bounds, computational caching, and fast bit-vector operations to efficiently prune the search space.

Notation

We focus on binary classification, and our decision trees are Boolean functions.

- A tree can be expressed in terms of its leaves.
- A leaf, p_k , is the classification rule of the path from the root to leaf k.
- Let H be the number of leaves in a tree and $K \leq H$ be the number of leaves that will not be split.
- We represent a decision tree, d as $(d_{un}, \delta_{un}, d_{\text{split}}, \delta_{\text{split}}, K, H)$, where
- $d_{un} = (p_1, \ldots, p_K)$ are the unchanged leaves of d,
- $\delta_{un} = (\hat{y}_1^{(\text{leat})}, \dots, \hat{y}_K^{(\text{leat})}) \in \{0, 1\}^K$ are the predicted labels of leaves d_{un} ,
- $d_{\text{split}} = (p_{K+1}, \dots, p_H)$ are the leaves we are going to split, and
- $\delta_{\text{split}} = (\hat{y}_{K+1}^{(\text{leaf})}, \dots, \hat{y}_{H}^{(\text{leaf})}) \in \{0, 1\}^{H-K}$ are the predicted labels of leaves d_{split} .

Objective Function

For a tree $d = (d_{un}, \delta_{un}, d_{\text{split}}, \delta_{\text{split}}, K, H)$, we define its objective function as a combination of the misclassification error and a sparsity penalty on the number of leaves:

$$R(d, \mathbf{x}, \mathbf{y}) = \ell(d, \mathbf{x}, \mathbf{y}) + \lambda H(d). \tag{1}$$

where $R(d, \mathbf{x}, \mathbf{y})$ is a regularized empirical risk, H(d) is the number of leaves in the tree d, and the loss $\ell(d, \mathbf{x}, \mathbf{y})$ is the misclassification error of d, i.e., the fraction of training data with incorrectly predicted labels.

Optimization Framework

We minimize the objective function based on a branch-and-bound framework. We prove a series of useful bounds that work together to eliminate a large part of the search space.

Hierarchical objective lower bound

Tree T lower bound b(T)

any child tree t of Tree T Objective $R(t) \ge b(T)$

Optimization Framework Cont'd

Objective lower bound with one-step lookahead

Lower bound on node support

Lower bound on incremental classification accuracy

Tree T get two new leaves split one leaf Incremental accuracy≥λ

Leaf accurate support bound

T₁and T₂ are actually the same, only need to evaluate one of them.

Tree T₁

Equivalent points bound

ĸ	Feature A	Feature B	Feature C	Feature D		Lable	For a given dataset, if there are
	1	0	1	1		0	multiple samples with exactly the same features but different labels, then no matter how we build our
	1	0	1	1		1	
	1	0	1	1		1	
	1	0	1	1		1	
	1	0	1	1		0	classifier, we will always predict
	•••	•••	•••	•••	•••	•••	some of these points incorrectly.
	1	0	1	1		1	

Algorithm

The loss can be decomposed into two parts corresponding to the unchanged leaves and the leaves to be split:

- $\bullet \ \ell(d, \mathbf{x}, \mathbf{y}) \equiv \ell_p(d_{un}, \delta_{un}, \mathbf{x}, \mathbf{y}) + \ell_p(d_{\text{split}}, \delta_{\text{split}}, \mathbf{x}, \mathbf{y}),$ where $d_{un} = (p_1, ..., p_K), \, \delta_{un} = (\hat{y}_1^{(\text{leaf})}, ..., \hat{y}_K^{(\text{leaf})}),$ $d_{\mathrm{split}} = (p_{K+1}, \ldots, p_H) \text{ and } \delta_{\mathrm{split}} = (\hat{y}_{K+1}^{(\mathrm{leaf})}, \ldots, \hat{y}_H^{(\mathrm{leaf})});$
- $\ell_p(d_{un}, \delta_{un}, \mathbf{x}, \mathbf{y}) = \frac{1}{N} \sum_{n=1}^N \sum_{k=1}^K \operatorname{cap}(x_n, p_k) \wedge \mathbb{1}[\hat{y}_k^{(\text{leaf})} \neq y_n]$ is the proportion of data in the unchanged leaves that are misclassified;
- $\ell_p(d_{\text{split}}, \delta_{\text{split}}, \mathbf{x}, \mathbf{y}) = \frac{1}{N} \sum_{n=1}^N \sum_{k=K+1}^H \operatorname{cap}(x_n, p_k) \wedge \mathbb{1}[\hat{y}_k^{(\text{leaf})} \neq y_n]$ is the proportion of data in the leaves we are going to split that are
- Define a lower bound $b(d_{un}, \mathbf{x}, \mathbf{y})$ on the objective by leaving out the latter loss,

$$b(d_{un}, \mathbf{x}, \mathbf{y}) \equiv \ell_p(d_{un}, \delta_{un}, \mathbf{x}, \mathbf{y}) + \lambda H \le R(d, \mathbf{x}, \mathbf{y}), \tag{2}$$

where the leaves d_{un} are kept and the leaves d_{split} are going to be split. Here, $b(d_{un}, \mathbf{x}, \mathbf{y})$ gives a lower bound on the objective of any child tree of d.

Algorithm 1 Branch-and-bound for learning optimal decision trees.

Input: Objective function $R(d, \mathbf{x}, \mathbf{y})$, objective lower bound $b(d_{un}, \mathbf{x}, \mathbf{y})$, set of features $S = \{s_m\}_{m=1}^M$, training data $(\mathbf{x}, \mathbf{y}) = \{(x_n, y_n)\}_{n=1}^N$, initial best known tree d^0 with objective $R^0 = R(d^0, \mathbf{x}, \mathbf{y})$; d^0 could be obtained as output from another (approximate) algorithm, otherwise, $(d^0, R^0) = (\text{null}, 1)$ provides reasonable default values. The initial value of δ_{split} is the majority label of the whole dataset.

Output: Provably optimal decision tree d^* with minimum objective R^*

Incremental Computation

During the execution of our algorithm, for each tree d, we compute the lower bound $b(d_{un}, \mathbf{x}, \mathbf{y})$ of the tree based on its unchanged leaves d_{un} and the corresponding objective $R(d, \mathbf{x}, \mathbf{y})$ of the tree. Given the hierarchical nature of the parent-children relationship, we *incrementally* compute the objective function and the lower bound throughout the brand-and-bound execution of the algorithm. Together, these ideas save >97% execution time.

Experiments

Accuracy and optimality

Training accuracy of OSDT, CART, BinOCT on different data (time limit: 30min). Horizontal lines indicate the accuracy of the best OSDT tree. On most datasets, all trees of BinOCT and CART are below this line.

Convergence

Example OSDT execution traces (COMPAS Dataset, $\lambda = 0.005$). Lines are the objective value and dashes are the lower bound for OSDT. For each scheduling policy, we mark the time to optimum and the optimal objective value using a star.

Scalability

Scalability with respect to number of samples and number of features using (multiples of) the ProPublica data set. ($\lambda = 0.005$).

Sample Trees

Figure: The optimal decision tree generated by OSDT on COMPAS dataset. ($\lambda=0.005$)

Figure: The decision tree generated by BinOCT and OSDT on the Tic-Tac-Toe data. Trees of BinOCT must be complete binary trees, while OSDT can generate trees of any shape.

Figure: The decision tree generated by BinOCT and OSDT on Monk1 dataset. The tree generated by BinOCT includes useless splits, while OSDT can avoid this problem.

Paper and Code

- Paper: https://arxiv.org/abs/1904.12847
- Code: https://github.com/xiyanghu/OSDT