

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 Fax: +86-755-26648637

Website: www.cqa-cert.com

Report Template Version: V03 Report Template Revision Date: Mar.1st, 2017

RF Exposure Evaluation Report

Report No.: CQASZ20190600024EX-03

Applicant: Hangzhou Meari Technology Co., Ltd.

Address of Applicant: No.91, Chutian Road, Xixing Block, Binjiang, Hangzhou,310051 Zhejiang,

CHINA

Manufacturer: Hangzhou Meari Technology Co., Ltd.

Address of Manufacturer: No.91, Chutian Road, Xixing Block, Binjiang, Hangzhou, 310051 Zhejiang,

CHINA

Equipment Under Test (EUT):

Product: Wireless DoorBell

Model No.: Bell 7S Brand Name: N/A

FCC ID: 2AG7C-BELL7S
Standards: 47 CFR Part 1.1307

47 CFR Part 1.1310

KDB447498D01 General RF Exposure Guidance v06

Date of Test: May 31, 2019 to Jun. 21, 2019

Date of Issue: Jun. 21, 2019

Test Result : PASS*

Tested By:

#Daisy Qin

Reviewed By:

(Aaron Ma)

Approved By:

(Jack Ai)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: CQASZ20190600024EX-03

2 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20190600024EX-01	Rev.01	Initial report	Jun. 21, 2019

Report No.: CQASZ20190600024EX-03

3 Contents

		Page
1	COVER PAGE	1
	2 VERSION	
_	2 VERSION	,4
3	CONTENTS	3
1	4 GENERAL INFORMATION	1
•		
	4.1 CLIENT INFORMATION	4
	4.3 GENERAL DESCRIPTION OF WIFI	4
	4.4 GENERAL DESCRIPTION OF 433.92MHZ	
5	5 RF EXPOSURE EVALUATION	
	5.1 RF Exposure Compliance Requirement	5
	5.1.1 Limits	5
	5.1.2 Test Procedure	5
	5.2 1.1.3 FUT RE EXPOSURE EVALUATION	

Report No.: CQASZ20190600024EX-03

4 General Information

4.1 Client Information

Applicant:	Hangzhou Meari Technology Co., Ltd.			
Address of Applicant:	No.91, Chutian Road, Xixing Block, Binjiang, Hangzhou,310051			
	Zhejiang, CHINA			
Manufacturer:	Hangzhou Meari Technology Co., Ltd.			
Address of Manufacturer:	No.91, Chutian Road, Xixing Block, Binjiang, Hangzhou,310051			
	Zhejiang, CHINA			

4.2 General Description of EUT

Product Name:	Wireless DoorBell
Model No.:	Bell 7S
Trade Mark:	N/A
Hardware Version:	V1.1
Software Version:	V2.0
Sample Type:	☐ Mobile ☐ Portable ☐ Fix Location
Power Supply:	DC3.7V from battery

4.3 General Description of WIFI

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz	
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels IEEE 802.11n HT40: 7 Channels	
Channel Separation:	5MHz	
	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK)	
Type of Modulation:	IEEE for 802.11g : OFDM	
7,	IEEE for 802.11n(HT20): OFDM	
	IEEE 802.11n HT40: OFDM	
Test Software of EUT:	RF test (manufacturer declare)	
Antenna Type	IPEX Antenna	
Antenna Gain	1.5dBi	

4.4 General Description of 433.92MHz

Operation Frequency:	433.92MHz
Channel Numbers:	1
Modulation Type:	GFSK
Antenna Type:	Spring antenna
Antenna Gain:	-3.5dBi

Report No.: CQASZ20190600024EX-03

5 RF Exposure Evaluation

5.1 RF Exposure Compliance Requirement

5.1.1 Limits

According to FCC Part1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in part1.1307(b)

Table 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	/Controlled Exposu	res	
0.3–3.0	614	1.63	*(100)	6
3.0-30	1842/f	4.89/f	*(900/f ²)	6
30–300	61.4	0.163	1.0	6
300-1500			f/300	6
1500–100,000			5	6
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure	
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f ²)	30
30–300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

F= Frequency in MHz

Friis Formula

Friis transmission formula: $Pd = (Pout*G)/(4*Pi*R^2)$

Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE . If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

5.1.2 Test Procedure

Software provided by client enabled the EUT to transmit data at lowest, middle and highest channel individually.

Report No.: CQASZ20190600024EX-03

5.2 1.1.3 EUT RF Exposure Evaluation

1) For WIFI

Antenna Gain: 1.5dBi

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 1.41 in linear scale.

Output Power Into Antenna & RF Exposure Evaluation Distance:

Measurement Data

asurement Data				
	802.	11b		
Test channel	Peak Output Power	Tune up tolerance	Maximum tu	ne-up Powe
	(dBm)	(dBm)	(dBm)	(mW)
Lowest(2412MHz)	16.385	16.5	16.5	44.67
Middle(2442MHz)	15.503	16	16	39.81
Highest(2462MHz)	15.664	16	16	39.81
	802.	11g		
Test channel	Peak Output Power	Tune up tolerance	Maximum tu	ne-up Powe
	(dBm)	(dBm)	(dBm)	(mW)
Lowest(2412MHz)	15.173	15.5	15.5	35.48
Middle(2442MHz)	14.874	15	15	31.62
Highest(2462MHz)	15.196	15.5	15.5	35.48
	802.11n	(HT20)		
Test channel	Peak Output Power	Tune up tolerance	Maximum tu	ne-up Pow
	(dBm)	(dBm)	(dBm)	(mW)
Lowest(2412MHz)	14.803	15	15	31.62
Middle(2442MHz)	14.522	15	15	31.62
Highest(2462MHz)	14.834	15	15	31.62
	802.11n	(HT40)		
Test channel	Peak Output Power	Tune up tolerance	Maximum tu	ne-up Pow
	(dBm)	(dBm)	(dBm)	(mW)
Lowest(2422MHz)	12.245	12.5	12.5	17.78
Middle(2442MHz)	12.321	12.5	12.5	17.78
Highest(2452MHz)	12.349	12.5	12.5	17.78

The worst case:

1110	Worst case.				
N	Maximum tune-up Power (mW)	Antenna Gain (dBi)	Power Density at R = 20 cm (mW/cm²)	Limit	Result
	44.67	1.5	0.0126	1.0	PASS

Note: 1) Refer to report No. CQASZ20190600024EX-01 for EUT test Max Conducted Peak Output Power

Report No.: CQASZ20190600024EX-03

value.

2) $Pd = (Pout*G)/(4*Pi*R^2) = (44.67*1.41)/(4*3.1416*20^2) = 0.0126$

2) For 433.92MHz:

The worst case (refer to report CQASZ20190600024EX-02) is below:

Antenna polarization: Horizontal					
Frequency (MHz) Level (dBuV/m) Polarization					
433.92	Peak				
433.92	76.97	Average			

Antenna polarization: Vertical					
Frequency (MHz) Level (dBuV/m) Polarization					
433.92	85.93	Peak			
433.92	77.59	Average			

eirp = pt x gt = $(E \times d)^2/30$

where:

pt = transmitter output power in watts,

gt = numeric gain of the transmitting antenna (unitless),

 $E = electric field strength in V/m, ---10^{((dB\mu V/m)/20)}/10^6 ,$

d = measurement distance in meters (m)---3m,

So pt = $(E \times d)^2/30 / gt$

For 433.92MHz wireless:

Field strength = 85.93dBµV/m @3m

Ant. gain -3.5dBi; so Ant numeric gain=0.45

So pt= ${[10^{85.93/20)}/10^6x3]^2/30/0.45}x1000mW = 0.263mW$

oum tune-up Power (mW)	Antenna Gain (dBi)	Power Density at R = 20 cm (mW/cm²)	Limit	Result
0.263	-3.5	2.34 x 10 ⁻⁵	0.289	PASS

Note: 1) Pd = $(Pout*G)/(4*Pi*R^2)=(0.263*0.45)/(4*3.1416*20^2)=2.34 \times 10^{-5}$

2) Limit=433.92/1500=0.289

3) For 433.92MHz and WIFI

The 433.92MHz and WIFI radios can not transmit simultaneously.