#### Chapitre

### Nombres complexes



#### Fiche de révision

Cette fiche ne couvre que les nouevelles propriétés vues dans l'UE. Pour une vision globale des nombres complexes, se reporter aux fiches de révision "Nombres complexes - Partie algébrique" et "Nombres complexes - Partie géométrique" dans la rubrique Mathématiques Exp. du niveau Terminale.

### 6. Passer d'une forme à une autre

#### 6.1. Mettre sous forme trigonométrique

- 1. On calcule le module avec  $|z|=\sqrt{x^2+y^2}$
- 2. On cherche le cosinus de l'angle avec  $\cos(\theta) = \frac{x}{|z|}$
- 3. On cherche le sinus de l'angle avec  $\sin(\theta) = \frac{y}{|z|}$
- 4. On cherche à quel angle correspond la combinaison de  $\cos$  et  $\sin$ .

5. On n'a plus qu'à écrire :  $z=|z|(\cos(\theta)+i\sin(\theta))$  avec les valeurs trouvées

#### 6.1. Mettre sous forme exponentielle

- 1. On écrit le nombre sous sa forme trigonométrique
- 2. On transforme l'écriture en remplaçant  $\cos(\theta) + i\sin(\theta)$  par  $e^{i\theta}$ .

## 6. Propriétés de l'argument et du module

- $\cdot \arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$
- $\cdot \arg(\frac{z_1}{z_2}) = \arg(z_1) \arg(z_2)$
- $|z_1z_2| = |z_1||z_2|$
- $\cdot |\frac{z_1}{z_2}| = \frac{|z_1|}{|z_2|}$

# 6. Représentation complexe des signaux sinusoidaux

#### 6.3. Écrire un signal sous la forme générique

On se sert des propriétés des fonctions trigonométriques pour n'avoir plus qu'un signal de la forme  $A\cos(wt+\varphi)$ , avec A>0

Exemple : 
$$s(t) = -2\cos(wt + \frac{\pi}{4}) = 2\cos(wt + \frac{\pi}{4} + \pi) = 2\cos(wt + \frac{5\pi}{4})$$
.

Exemple: 
$$s(t) = \cos(wt) + \sqrt{3}\sin(wt) = A\cos(wt + \varphi) = A(\cos(wt)\cos(\varphi) - \sin(wt)\sin(\varphi))^{\mathbb{Q}}$$

On procède ensuite par identification :

$$\begin{cases} A(\cos(wt)\cos(\varphi)) &= \cos(wt) \\ -A(\sin(wt)\sin(\varphi)) &= \sqrt{3}\sin(wt) \end{cases} \Rightarrow \begin{cases} A(\cos(\varphi)) &= 1 \\ -A(\sin(\varphi)) &= \sqrt{3} \end{cases}$$

On met au carré:

$$\begin{cases} A^2(\cos(\varphi)^2) &= 1 \\ A^2(\sin(\varphi)^2) &= 3 \end{cases} \Rightarrow \begin{cases} 2A^2(\cos(\varphi)^2 + \sin(\varphi)^2) &= 4 \Rightarrow A = 2 \\ A^2(\sin(\varphi)^2) &= 3 \end{cases}$$

De A, on peut déduire  $\varphi$  avec son  $\sin$  et  $\cos$ .

#### 6.3. Déterminer la forme complexe

À partir de la forme générique, on donne la forme exponentielle complexe :  $s(t) = A\cos(wt + \varphi) \iff s'(t) = Ae^{i(wt + \varphi)} = Ae^{i\varphi}e^{iwt} = A'e^{iwt}$ , avec  $A' = Ae^{i\varphi}$ .

• Astuce
On se sert de la formule de duplication :  $\cos(a + b)$   $\cos(a)\cos(b) - \sin(a)\sin(b)$ .