Základné aritmeticko-logické operácie

Aritmeticko-logické operácie sa väčšinou vykonávajú v artitmeticko-logickej jednotke (ALJ) (Arithmetics and Logic Unit (ALU)), ktorá je súčasťou centrálnej procesorovej jednotky (Central Process Unit CPU) Resp. (Central Processing Unit) - hlavná vykonávacia jednotka

Logické operácie

Logické operácie sa uskutočňujú nad pamäťovými miestami obyčajne s registrami CPU, pričom sa operácia vykonáva so všetkými dvojicami bitov pamäťových miest. Pamäťové miesta (slová) môžu byť jedno a viacbajtové.

Bity v slovách označujeme indexom, ktorého počiatočná hodnota je 0, a index narastá sprava doľava. Označovanie bitov v 8-bitovom slove (v jednobajtovom slove): 7 (MSB) | 6 | 5 | 4 | 3 | 2 | 1 | 0(LSB)

LSB – Least Significant Bit (bit s najmenšou váhou)

MSB – Most Significant Bit (bit s najväčšou váhou)

Pravidlá základných logických operácií pre jednobitové operandy:

negácia (NOT)

$$B = not(A); B = \overline{A}$$

$$\begin{array}{c|c}
A & B \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

logický súčet (OR)

$$C = A$$
 or B ; $C = A + B$

$$\begin{array}{c|cccc} A & B & C \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ \end{array}$$

logický súčin (AND)

$$egin{array}{c|c|c|c} A & B & C \\ \hline 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \\ \hline \end{array}$$

neekvivalencia (XOR- eXclusive OR)

$$C = A$$
 and B ; $C = A \cdot B$ $C = A \times A \times B$; $C = a \oplus b$

A	В	C
0	0	0
1	0	1
0	1	1
1	1	0

Jedno alebo druhe, ale nie všetky naraz (oboje), 1 až n-1 z n.U nás je n=2 Niektoré realizácie: Práve jedno.

Príklady viacbitových (8-bitové operandy - bajt) logických operácií

negácia (unárna operácia)

$$B = NOT(A)$$
 $[b = \sim a]$
 $A \mid 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0$
 $B \mid 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1$

logický súčet (binárna operácia)

$$C = A OR B \quad [c = a \mid b]$$

$$A \mid 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0$$

$$B \mid 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1$$

$$C \mid 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1$$

logický súčin (AND)

$$C = A \ AND \ B \quad [c = a \& b]$$
 $A \mid 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0$
 $B \mid 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1$
 $C \mid 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0$

neekvivalencia (XOR)

$$C = A \ XOR \ B \quad [c = a^{b}]$$

$$A \mid 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0$$

$$B \mid 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1$$

$$C \mid 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1$$

XOR sa tiež nazýva exluzívny súčet, súčet modulo 2, EOR.

V jazyku C treba odlišovať &, | od logických spojok && a | |.

Použitie logických operácií

negácia

zmena logickej hodnoty všetkých bitov slova na opačnú logickú hodnotu nezávisle od predchádzajúcej logickej hodnoty bitu (napr. kódovanie záporných čísel)

logický súčet

\boldsymbol{A}	0	1	0	1	0	1	0	1	\boldsymbol{A}	1	0	1	0	1	0	1	0
B	1	1	0	0	0	0	1	1	В	1	1	0	0	0	0	1	1
C	1	1	0	1	0	1	1	1	<i>C</i>	1	1	1	0	1	0	1	1

vnútenie logickej jednotky do ľubovoľnej pozície v slove tzv. maskou (B). Výsledok logického súčtu bude mať hodnotu 1 v bitoch, kde má hodnotu 1 operand B, v ostatných bitoch sa zachová pôvodná logická hodnota X

1 1 X X X X 1 1

logický súčin

vnútenie log. 0 do ľubovoľnej pozície v slove maskou (B). Výsledok logického súčinu bude mať log. 0 v bitoch, kde má log. 0 hodnotu operand B, v ostatných bitoch sa zachová pôvodná logická hodnota X

$$X$$
 X 0 0 0 0 X X

neekvivalencia

negácia log. hodnoty v ľubovoľnej pozícii v slove maskou (**B**). Výsledok XOR bude mať opačnú logickú hodnotu v bitoch, kde má log. 1 hodnotu operand **B**, v ostatných bitoch sa zac<u>ho</u>vá pôvodná logická hodnota <u>X</u>

$$X \quad XXX \quad X \quad X \quad X \quad X \quad X$$

Posuny a rotácie

Posuny a rotácie obsahov pamäťových miest patria medzi unárne operátory. Operácie využívajú pomocný bit – príznakový bit CPU - Carry bit (C).

Rotácia obsahu pamäťového miesta doprava

Rotácia obsahu pamäťového miesta doľava

Logické posuny

Logický posun obsahu pamäťového miesta doprava

Logický posun obsahu pamäťového miesta doľava

$$\boxed{C} \leftarrow \boxed{7} \leftarrow \boxed{0} \leftarrow 0$$

Aritmetické posuny

Aritmetický posun obsahu pamäťového miesta doprava

Aritmetický posun obsahu pamäťového miesta doľava

Použitie:

- cyklické testovanie obsahu bitov
- vytváranie slov pri kódovaní
- aritmetické posuny
- aritmetický posun doprava je celočíselným delením číslom 2
- pri *n* posunoch ide o celočíselné delenie číslom 2

- celočíselný posun doľava je násobením číslom 2
- pri *n* posunoch ide o násobenie číslom 2

$$(0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1)_2 = 32 + 16 + 8 + 2 + 1 = (59)_{10}$$
 $(0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0)_2 = 64 + 32 + 16 + 4 + 2 = (118)_{10}$
 $59 * 2 = 118$
 $a = b << n;$

Jazyk C: Operátory na manipuláciu s bitmi

& logický súčin po bitoch

logický súčet po bitoch

^ neekvivalencia po bitoch

<< posuv vľavo

>> posuv vpravo

~ unárny operátor, jednotkový doplnok

! negácia

Treba odlišovať &, od logických spojok && a | .

UNárny operátor - jeden parameter, pracuje s jedným údajom

Blnárny operátor -dva parametre, pracuje s dvoma údajmi

TERnárny operátor -tri parametre, pracuje s troma údajmi ?: v jazyku C.

Celočíselná aritmetika

Medzi základné celočíselné aritmetické operácie, ktoré realizuje ALU, patria

- súčet
- rozdiel
- násobenie
- delenie

Všetky tieto operácie sú binárne.

Binárne číslo:

- •Dva znaky "0" a "1"
- •Znamienko mínus "-"
- •,,Desatinná", binarna bodka "."

Vieme zapísať: (-1011.01010)

 $_2$ =(-11.3125)

Počítač pozná len: ..0" a ..1"

Celé čísla bez znamienka

Ak interpretujeme binárny obsah slova, ako zobrazenie dekadického čísla v pozičnej číselnej sústave so základom 2, ide o zobrazenie celých nezáporných čísel, t.j. celých čísel bez znamienka (sú to celé čísla typu unsigned).

Súčet, rozdiel čísel bez znamienka

Pre súčet, rozdiel binárnych čísel platia pravidlá binárnej aritmetiky pre jednobitové slová, kde okrem výsledného bitu, treba uvažovať signalizáciu prenosu, výpožičky do, z vyššieho rádu.

$$S = A + / B + -$$
 $A \quad B \quad S \quad carry \quad (C) \quad borrow$
 $0 \quad 0 \quad 0 \quad 0$
 $1 \quad 0 \quad 1 \quad 0 \quad 0$
 $0 \quad 1 \quad 1 \quad 0 \quad 1$
 $1 \quad 1 \quad 0 \quad 1$
Modulo 2, XOR

13/59

V prípade súčtu dvoch 8-bitových slov bude

v ďalšom príklade

V tomto prípade došlo k požiadavke na prenos do vyššieho rádu, po skončení sčítania. ALU obsahujú stavové slovo, ktorého jeden bit (Carry Bit) slúži na zapisovanie tejto informácie. Po vykonaní súčtu získame informáciu: pamäťové miesto nestačí svojou veľkosťou na zápis výsledku sčítania.

- pri viacslovnom sčítaní musíme uvažovať hodnotu tohto bitu pri sčítaní slov vyšších rádov
- v prípade súčtu celých čísel bez znamienka platí, že zároveň signalizuje tzv. pretečenie (overflow) (vo všeobecnosti neplatí).

Pretečenie znamená, že výsledok operácie nie je zobraziteľný (to, čo je vo výsledku, nie je správny výsledok operácie).

Na realizáciu sčítania sa v **ALU** používajú sčítačky realizované pomocou logických obvodov. Pri sčítaní na najnižšom ráde (sčítanie nultého rádu) sa používa **polovičná sčítačka**.

Popis polovičnej sčítačky pomocou aritmetických operácií

$$s_0 = (a_0 + b_0) \mod 2$$
 $c_1 = (a_0 + b_0)/2$

a logických operácií

$$s_0 = a_0 \overline{b}_0 + \overline{a}_0 b_0$$
 $c_1 = a_0 b_0$

Polovičná sčítačka sa dá realizovať pomocou kombinačných obvodov

Tri možné spôsoby realizácie polovičnej sčítačky.

Oneskorenie: ,,S'' = 3 a ,,C'' = 1,2

Vytvorenie úplnej sčítačky pomocou polovičnej sčítačky:

Realizácia: 9 obvodov.

Oneskorenie: ,,S" = 6 a ,,C" = 5

Pri sčítaní na ďalších rádoch treba uvažovať prenosy z predchádzajúcich rádov

$$S = A + B$$
 $A \quad B \quad C_I \quad S \quad carry \quad (C)$
 $0 \quad 0 \quad 0 \quad 0 \quad 0$
 $1 \quad 0 \quad 0 \quad 1 \quad 0$
 $0 \quad 1 \quad 0 \quad 1 \quad 0$
 $1 \quad 1 \quad 0 \quad 0 \quad 1$
 $0 \quad 0 \quad 1 \quad 1 \quad 0$
 $1 \quad 0 \quad 1 \quad 0 \quad 1$
 $0 \quad 1 \quad 1 \quad 0 \quad 1$
 $1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1$

$$s_i = (a_i + b_i + c_i) \mod 2$$
 $c_{i+1} = (a_i + b_i + c_i)/2$

$$S_i = a_i \overline{b_i} \overline{c_i} + \overline{a_i} b_i \overline{c_i} + \overline{a_i} \overline{b_i} \overline{c_i} + \overline{a_i} \overline{b_i} \overline{c_i} + \overline{a_i} b_i \overline{c_i} \qquad c_{i+1} = a_i b_i + (a_i + b_i) c_i$$

Možná praktická realizácia úplnej sčítačky:

Realizácia: 12 obvodov

Oneskorenie: "S" = 3 a "C" = 2

Na sčítanie dvoch n-bitových čísel sa dajú použiť **paralelná** alebo **sériová** sčítačka, pričom sa vo všetkých stupňoch používa úplná sčítačka (realizácia prenosu z predchádzajúceho sčítania)

Inkrementácia: nastavíme carry bit a pričítame nuly

Sériová sčítačka: oneskorenie dané počtom taktov

Rozdiel čísel bez znamienka

Pre odčítanie binárnych čísel platia pravidlá binárnej aritmetiky pre jednobitové slová

$$S = A - B$$

A B S borrow (B)

0 0 0

1 0 1 0

0 1 1 1

1 0 0

kde okrem výsledného bitu, treba uvažovať signalizáciu výpožičky z vyššieho rádu (borrow).

V prípade odčítania dvoch 8-bitových slov bude

- V druhom prípade je po vykonaní operácie nastavený príznak podtečenia
- -v prípade viacbajtového odčítania je potrebné tento príznak uvažovať
- inak je výsledok nesprávny výsledok nie je zobraziteľný

Hardvérovo sa dá odčítačka realizovať, ale na inom princípe, nie realizáciou pravidiel pre odčítanie.

Zobrazenie záporných celých čísel

Možné reprezentácie celých záporných čísel

- priamy kód
- inverzný
- doplnkový

Treba riešiť dve úlohy:

- Zobraziť číslo,
- Realizovať operáciu s týmto číslom

Priamy kód:

MSB bit, bit s najväčšou váhou: – znamienkový bit,

n-1 bitov: absolútna hodnota čísla

$$MSB = 0$$
, kladné číslo $((-1)^0 = +1)$

$$MSB = 1$$
, záporné číslo $((-1)^1 = -1)$

$$((-1)^0 = +1)$$

$$((-1)^1 = -1)^1$$

$$0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad (11)_{10}$$

$$1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad (-11)_{10}$$

- rozsah zobraziteľných čísel je symetrický <-(2 $^{n-1}-1$), 2 $^{n-1}-1$ >
- pri aritmetických operáciách treba vyhodnocovať znamienka
- nejednoznačná nula

Zložité aritmetické operácie (potrebujeme sčítačku aj odčítačku)

nepoužíva sa

Inverzný kód (1's complement)

MSB bit, bit s najväčšou váhou: – znamienkový bit,

MSB = 0, kladné číslo

MSB = 1, záporné číslo

Číslo s opačným znamienkom sa vytvára inverziou bit po bite

$$0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 = (11)_{10}$$

1 1 1 0 1 0
$$(-11)_{10}$$

- rozsah zobraziteľných čísel je symetrický <- $(2^{n-1}-1)$, $2^{n-1}-1>$
- aritmetické operácie zložité
- nejednoznačná nula

- kód pre n-bitové záporné číslo je vytvorený podľa vzťahu

$$Y = -X$$
 $Y = 2^{n} - X - 1$

Inverzný kód (1's complement)

n = 4

	X	X	X	X		X	X	X	X
0	0	0	0	0	-0	1	1	1	1
1	0	0	0	1	-1	1	1	1	0
2	0	0	1	0	-2	1	1	0	1
3	0	0	1	1	-3	1	1	0	0
4	0	1	0	0	-4	1	0	1	1
5	0	1	0	1	-5	1	0	1	0
6	0	1	1	0	-6	1	0	0	1
7	0	1	1	1	-7	1	0	0	0

$$Y = -X \quad Y = 2^n - X - 1$$

$$9 = 0000 \quad 1001 \qquad -9 = 1111 \quad 0110$$

$$5 = 0000 \quad 0101 \qquad -5 = 1111 \quad 1010$$

$$-9 \quad 1111 \quad 0110 \qquad 9 \quad 0000 \quad 1001$$

$$+5 \quad 0000 \quad 0101 \qquad -5 \quad 1111 \quad 1010$$

$$-4 \quad 1111 \quad 1011 \qquad 4 \quad 1 \quad 0000 \quad 0011$$

$$-\triangleright \qquad \qquad 1$$

$$0000 \quad 0100$$

pri sčítaní treba korigovať výsledok pripočítaním obsahu carry bitu k LSB

Doplnkový kód (2's complement)

Bit s najväčšou váhou MSB – znamienkový bit, n-1 bitov absolútna hodnota čísla

MSB = 0, kladné číslo

MSB = 1, záporné číslo

Číslo s opačným znamienkom sa vytvára v dvoch krokoch:

- 1) inverzia bit po bite
- 2) pripočítanie jednotky (inkrementácia)

z uvedeného vyplýva, že platí

$$X = -(-X)$$

- je len jedna nula

 výsledok sčítania dvoch čísel s ľubovolnou kombináciou znamienok v doplnkovom kóde dáva správny výsledok

bez korekcie

$$9 = 0000 \quad 1001 \qquad -9 = 1111 \quad 0111$$

$$5 = 0000 \quad 0101 \qquad -5 = 1111 \quad 1011$$

$$4 = 0000 \quad 0100 \qquad -4 = (1111 \quad 1011 + 1) = 1111 \quad 1100$$

$$-9 \quad 1111 \quad 0111 \quad 9 \quad 0000 \quad 1001 \quad -5 \quad 1111 \quad 1011 \quad 0111 \quad -5 \quad 1111 \quad 1011 \quad 1011 \quad 1010$$

$$-4 \quad \sqrt{1} \quad 0000 \quad 0100$$

- v prípade súčtu čísel v doplnkovom kóde nastavenie carry bitu neznamená pretečenie.

V prípade nerovnakých znamienkových bitov (MSB) pretečeniu nemôže dôjsť.

Len v prípade, že MSB obidvoch operandov je rovnaké, pretečenie nastane vtedy, ak MSB výsledku sa nezhoduje s MSB operandov!

$$Overflow = MSB_A.MSB_B\overline{MSB_S} + \overline{MSB_A}.\overline{MSB_B}MSB_S$$

Problémom je, že hodnota MSB jedného z operandov v reálnom prípade je zmenená. Preto na detekciu overflow sa používajú prenosy do vyšších rádov (carry bity) posledných dvoch stupňov paralelnej sčítačky

$$Overflow = c_n.\overline{c_{n-1}} + \overline{c_n}.c_{n-1}$$

$$(+6)$$

$$(+127)$$

$$(+8)$$

$$(+1)$$

$$(+14)$$

$$(-128)$$

$$V=0, C=0 => OK$$

$$V=1, C=0 \Rightarrow ERROR$$

$$(+2)$$

$$(+4)$$

$$(-4)$$

$$(-2)$$

$$(-2)$$

$$(+2)$$

$$V=0, C=0 => OK$$

$$V=0, C=1 => OK$$

$$= 0$$

$$= 1$$

$$V = MSB_{A}.MSB_{B}MSB_{S} + MSB_{A}.MSB_{B}MSB_{S}$$

$$V = c_{n}.\overline{c_{n-1}} + \overline{c_{n}}.c_{n-1}$$

$$V=0, C=1 => OK$$

$$V=1, C=1 \Rightarrow ERROR$$

$$V = c_n . c_{n-1} + c_n . c_{n-1}$$

$$V = MSB_A.MSB_B \overline{MSB_S} + \overline{MSB_A}.\overline{MSB_B}MSB_S$$

Sčítačka-odčítačka v doplnkovom kóde

- kód pre n-bitové záporné číslo v doplnkovom kóde je vytvorený podľa vzťahu: Y = -X $Y = 2^n X$
- rozsah zobraziteľných čísel je nesymetrický < -2 $^{n-1}$, 2^{n-1} -1>

Príklad:

$${A = 2 (0010)} - {B=-3(1101)} = {S=+5(0101)}$$

BCD kód

BCD (Binary Coded Decimal) – dvojkovo-desiatkové kódovanie

- zostáva desiatková sústava
- číslice sa kódujú do binárneho kódu

Existuje veľa možností kódovať dekadické číslice. Najväčší význam majú váhové kódy. Na kódovanie stačia 4 bity (nevyužívajú sa všetky kombinácie). Nech

$$d = a_3 v_3 + a_2 v_2 + a_1 v_1 + a_0 v_0$$

Aby kód bol vhodný pre aritmetické operácie mal by splniť nasledovné podmienky:

- 1. Jednoznačnosť každej dekadickej číslici je priradená jednoznačne jediná štvorica binárnych číslic
- 2. Aditívnosť binárny súčet kódov číslic je rovný kódu ich súčtu
- 3. Symetričnosť ak pre dve dekadické číslice platí: $d_i + d_j = 9$ potom medzi číslicami platí: $d_i = a_3 a_2 a_1 a_0 \implies d_j = \overline{a}_3 \overline{a}_2 \overline{a}_1 \overline{a}_0$
- 4. Usporiadanosť väčším dekadickým čísliciam sú priradené väčšie kódy (možnosť porovnávania číslic)
- 5. Párnosť párnym čísliciam zodpovedajú párne kódy, nepárnym nepárne

Najpoužívanejší kód je pre : $v_3 = 8$ $v_2 = 4$ $v_1 = 2$ $v_0 = 1$

Binárny kód	Dekadická číslica	
0000	0	
0001	1	
0010	2	
0011	3	
0100	4	
0101	5	
0110	6	
0111	7	
1000	8	
1001	9	
1010-1111	nevyužité kódy	

Príklad:

Pre dekadické číslo 2357 $_{10} = 0010\ 0011\ 0101\ 0111$ $_{BCD}$

Pozn.: Môžeme sa stretnúť s pojmami *zhustený* a *nezhustený* zápis čísel v BCD kóde. Posledne uvedený príklad zodpovedá zhustenému zápisu. V prípade nezhusteného kódu sa každá číslica kóduje do osobitného bajtu, doplnením núl do horných štyroch bitov

$$2357_{10} = \underline{00000010} \quad \underline{00000011} \quad \underline{00000101} \quad \underline{000000111}$$

Sčítanie a odčítanie v BCD kóde

Tento kód nie je symetrický, preto pri aritmetickom sčítaní a odčítaní je treba *upravovať* výsledok, v prípade **prenosu** do vyššieho rádu, alebo **výpožičke** z vyšších rádov.

Súčet dvoch operandov kódovaných v BCD kóde sa vykonáva rovnakým spôsobom ako súčet dvoch binárnych celých čísel, majme tri príklady:

Vykonajme súčet čísel kódovaných v BCD kóde

23+45,

23+29,

27+29

V tomto prípade BCD kód výsledku sčítania zodpovedá BCD kódu správneho výsledku.

V prvom prípade je kód dolnej štvorice bitov nesprávny, v druhom prípade obidve číslice patria medzi správne BCD kódy, ale výsledok je nesprávny (prenos do vyššieho rádu medzi bitmi 3 a 4) . $AC = Auxiliary \ Carry \ Flag$

43/59

Po vykonaní súčtu BCD čísel treba testovať

- buď prenos do vyššieho rádu z každej štvorice bitov
- alebo, či kód číslice nepatrí do množiny kódov číslic 0 až 9
- alebo je výsledná číslica správna

Ak nastane jeden z dvoch prvých prípadov, vtedy vykonáme *opravu* pripočítaním čísla 6 na príslušnom ráde

V obidvoch prípadoch sme získali po korekcii správny kód výsledku.

V prípade odčítania môže nastať rovnaká situácia ako pri sčítaní, že dôjde k podtečeniu medzi štvoricami bitov alebo k nesprávnemu kódu číslice.

53	0101	0 0 1 1	
_ 29	0010	1001	
	1		< <i>AC</i> >
24	0 0 1 0	1010	2A
_	-0000	0110	06
	0 0 1 0	0100	24

V tomto prípade vo výsledku je neplatný kód číslice s najnižšou váhou a došlo k podtečeniu medzi bitmi 3 a 4.

Súčin celých čísel bez znamienka

Majme dva binárne osembitové operandy

$$A = a_7 2^7 + a_6 2^6 + \dots + a_1 2^1 + a_0 2^0$$

$$B = b_7 2^7 + b_6 2^6 + \dots + b_1 2^1 + b_0 2^0$$

$$S = A \cdot B = A \cdot (b_7 2^7 + b_6 2^6 + \dots + b_1 2^1 + b_0 2^0) = b_7 A 2^7 + b_6 A 2^6 + \dots + b_1 A 2^1 + b_0 A 2^0$$

Ak sú operandy n-bitové, výsledok bude 2n-bitový.

Súčin celých čísel (so znamienkom)

Budeme uvažovať len čísla vyjadrené v doplnkovom kóde. Na to aby algoritmus násobenia bol použiteľný, je treba:

- previest' operandy na kladné čísla, a potom
- upraviť výsledok podľa výsledného znamienka súčinu a
- korigovať výsledok získaný popísaným algoritmom.

Majme operandy X a -Y, v doplnkovom kóde $-Y = 2^n - Y$ potom

$$X(-Y) \to X(2^n - Y) = 2^n X - XY$$

obrazom –XY je v doplnkovom kóde

$$X(-Y) \rightarrow 2^{2n} - XY$$

potom musíme korigovať výsledok pripočítaním čísla

korekcia =
$$(2^{2n} - XY) - (2^n X - XY) = 2^{2n} - 2^n X =$$

= $2^n (2^n - X)$

čo je vlastne o n-bitov posunutý operand (-X) zobrazený v doplnkovom kóde, ktorý treba pripočítať k súčinu X(-Y).

Príklad: Majme čísla 15 a –13. Na ich zobrazenie potrebuje 5 bitov 1 bit znamienkový a 4 bity na zobrazenie čísel 13 a 15. Výsledok násobenia týchto čísel bude 10 bitový.

Podobná situácia nastane v prípade, že sú obidva operandy záporné

$$(-X)(-Y) \rightarrow (2^n - X)(2^n - Y) = 2^{2n} - 2^n X - 2^n Y + XY$$

Aby bol výsledok správny musíme pripočítať k výsledku 2^n . X a 2^n . Y, a ignorovať jednotku v Carry Bite.

$$korekcia = (XY) - (2^{2n} - 2^n X - 2^n Y + XY) = (-2^{2n}) + 2^n X + 2^n Y$$

Booth-ov algoritmus

- Algoritmus dáva správny výsledok pre všetky kombinácie kladných a záporných operandov.
- V tomto prípade sa testujú dva bity násobiteľa naraz, okrem aktuálneho bitu sa testuje najbližší nižší bit (môžu nastať tri situácie):
- 1. v aktuálnom bite je 1 a nasledujúcom je 0 potom odčítame násobenca od výsledku
- 2. v aktuálnom bite je 0 a nasledujúcom je 1 potom pripočítame násobenca k výsledku
- 3. ak sú uvedené bity rovnaké nerobíme nič
- 4. ak pri pripočítaní sa nastaví carry bit, ten sa ignoruje
- 5. ak je testované LSB násobiteľa, nižší bit sa predpokladá, že je nulový
- 6. pri posune medzivýsledku sa používa aritmetický posun (kopíruje sa MSB)

```
15 = 01111, -15 = 10000 + 1 = 10001
13 = 01101_{2} - 13 = 10010 + 1 = 10011
15*13 = 195
   9 8 7 6 5 4 3 2 1 0
                                  0 1 1 0 1 0*
  0 \quad 0
                                                    (-)
0 1 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0 0
                                 (\rightarrow)
  1 1 0 0 0 1 0
                      0 \ 0 \ 0
                                  0 1 1 0 1
                                                     (+)
  0 1 1 1 1 0 0 0 0 0
                                 (\rightarrow)
  0 0 1
                1 0
                      0 \ 0 \ 0
  0 0 0 1 1 1 1
                      0 \ 0 \ 0
                                  0 1 1 0 1
                                                     (-)
  1 0 0 0 1 0 0 0 0
  1 0 1 0 0 1 1 0 0 0
                                 (\rightarrow)
  1 1 0 1 0 0 1 1
                                  0 1 1 0 1
                          0 0
                                                   (\rightarrow)
  1 1 1 0 1 0 0 1 1 0
                                  0 1 1 0 1
                                                    (+)
  0 1 1 1 1 0 0 0 0 0
  0 1 1 0 0 0 0 1 1 0
                                 (\rightarrow)
            0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad = 128 + 64 + 3 = 195
```

```
15 = 01111_{2} - 15 = 10000 + 1 = 10001
13 = 01101, -13 = 10010 + 1 = 10011
15*(-13) = -195
   9 8 7 6 5 4 3 2 1 0
   0 \quad \boxed{1 \quad 0 \quad 0 \quad 1 \quad 1} \quad 0 * \quad (-)
0
0 1 0 0 0 1 0 0 0 0
        0
            0 1 0
                     0 \quad 0 \quad 0 \quad 0
0
                                     (\rightarrow)
  1 1 1 0 0 0 1 0 0 0 1 0 0 1 1
0
  0 1 1 1 1 0 0 0 0 0
0
                         0 \quad 0 \quad 0 \quad (\rightarrow)
                  0 1
   0 0 1
            0 1 1 0 1 0 0
0
                         0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1
   0 0 0
0
            1 0 1
                      1
         0 0 1 0
                      0
                          0 \quad 0 \quad 0
0
                        0 \quad 1 \quad 0 \quad (\rightarrow)
0
     1 0 0 1 1 1 0 1 = -(0011000010 + 1) = -(0011000011) = -195
```

Idea Booth-ovho algoritmu

$$A*(001111110) = A*(25 + 24 + 23 + 22 + 21) = A*(26 - 21)$$

$$25 + 24 + 23 + 22 + 21 = 32 + 16 + 8 + 4 + 2 = 62$$

$$26 - 21 = 64 - 2 = 62$$

Pri násobení namiesto piatich súčtov opernadu A s medzivýsledkom násobenia, stačí jeden súčet a jeden rozdiel posunutého operandu A.

Dá sa ukázať podobná vlastnosť v prípade násobenia čísel kódovaných v doplnkovom kóde.

Podiel celých čísel bez znamienka

Pre celočíselné delenie platí

$$\frac{X}{Y} = P + \frac{Z}{Y} \quad alebo \quad X = P.Y + Z$$

$$575 : 25 = 23 \qquad 575 : 45 = 12$$

$$-\frac{50}{75} \qquad -\frac{45}{125}$$

$$-\frac{75}{0} \qquad -\frac{90}{35}$$

```
575 = 10001111111, 25 = 011001, -25 = 100111,
575:25=23
9 8 7 6 5 4 3 2 1 0
1 0 0 0 1 1 1 1 1 1
1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad (D < 0 \quad P = 10)
0 0 1 0 1 0 1 1 1 1 ()
1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad (+)
0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad (D > 0 \quad P = 1011)
1 1 1 1 1 0 0 1 1 1
10111_{,} = 16 + 4 + 2 + 1 = 23
```

Príznakové bity

Sú súčasťou príznakového registra (stavového slova procesora), ktorý agreguje okrem iného aj jednobitové informácie o výsledku aritmeticko-logickej operácie, medzi ktoré patria:

- (C), (CY) (Carry) (signalizácia prenosu do vyššieho rádu/ výpožičky z vyššieho rádu)
- (Z) (Zero) príznak nuly (všetky bity výsledku sú nulové)
- (S) (Signum) kopíruje MSB výsledku
- Overflow, Parity atd'.

Význam príznakových bitov pri vetvení programu!!

Literatúra:

- [1] Clements, A: The Principles of Computer Hardware, Oxford
- [2] Stalling, W.: Computer Organization and Architecture, principles ...,