Linear Algebra, Week 5

Jonny Evans

MATH105

Subspaces, I

Definition

A subset $V \subset \mathbb{R}^n$ is a *linear subspace* if

- \triangleright $v, w \in V$ implies $v + w \in V$.
- $ightharpoonup v \in V$ and $\lambda \in \mathbb{R}$ implies $\lambda v \in V$.

Definition

A subset $V \subset \mathbb{R}^n$ is an *affine subspace* if there exists a vector w and a linear subspace V' such that

$$V = \{ v \in \mathbb{R}^n : v = w + v', \ v' \in V' \}.$$

Line

Line

Line Plane

Subspace	dimension	codimension
1.	1	
Line	1	
Plane	2	

Line 1 Plane 2

:

Line 1 Plane 2

: : Hyperplane

Subspace	dimension	codimension

Line 1 Plane 2

 $\vdots \qquad \qquad \vdots \\ \mathsf{Hyperplane} \qquad \qquad n-1 \\$

Subspace	difficusion	Codimension
Line	1	

n

dimension sodimension

Plane	2
:	<u>:</u>
Hyperplane	n-1

Ambient space \mathbb{R}^n

3	ubspace	unnension	Codimension
	1 !	1	

dimension sodimension

Line	1	
Plane	2	

 $\vdots \hspace{1cm} \vdots \hspace{1cm} H$ yperplane $n-1 \hspace{1cm} 1$

Ambient space \mathbb{R}^n

Cubanasa

Subspace	difficusion	Codimension
l inc	1	

Line	Ţ	
Plane	2	
:	:	
Hyperplane	n-1	

Ambient space \mathbb{R}^n

Subspace	unitension	Codifficitation	
Line	1	n — 1	

dimension codimension

Subspace

Ambient space \mathbb{R}^n n

Line	1	n-1	
Plane	2		
:	:		
Hyperplane	n-1	1	

Subspace	difficitsion	Coulinension	
Lino	1	n _ 1	

Line	1	n-1	
Plane	2	n-2	
<u>:</u>	:	÷	
Hyperplane	n-1	1	

Ambient space \mathbb{R}^n n

<u>'</u>		
Point		
Line	1	n-1

dimension codimension

Line	1	n-1
Plane	2	n-2

Subspace

Ambient space \mathbb{R}^n

Lille	1	n-1
Plane	2	n - 2
:	:	:
Hyperplane	n-1	1
Λ I · · · πν n		^

•		
Point	0	
Line	1	n-1
Plane	2	n-2

n

Line	
Plane	

Ambient space \mathbb{R}^n

Hyperplane n-1

Point	0	n
Line	1	n-1
	_	_

n

dimension codimension

Line	
Plane	

Ambient space \mathbb{R}^n

Hyperplane n-1

Subspace

Hyperplanes

A linear hyperplane is cut out by a single linear equation

$$r_1x_1+\cdots+r_nx_n=0.$$

Hyperplanes

A linear hyperplane is cut out by a single linear equation

$$r_1x_1+\cdots+r_nx_n=0.$$

i.e. fix a row vector $r = \begin{pmatrix} r_1 & \cdots & r_n \end{pmatrix}$; we get the hyperplane

$$r^{\perp} := \left\{ x \in \mathbb{R}^n : rx = 0 \right\}.$$

Hyperplanes

A linear hyperplane is cut out by a single linear equation

$$r_1x_1+\cdots+r_nx_n=0.$$

i.e. fix a row vector $r = (r_1 \cdots r_n)$; we get the hyperplane

$$r^{\perp} := \left\{ x \in \mathbb{R}^n : rx = 0 \right\}.$$

$$r^{\perp}$$
 is the *orthogonal complement* to $r^{T} = \begin{pmatrix} r_{1} \\ \vdots \\ r_{n} \end{pmatrix}$.

Intersections of hyperplanes

An m-by-n matrix A defines m linear hyperplanes:

$$A_{11}x_1 + \dots + A_{1n}x_n = 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$A_{m1}x_1 + \dots + A_{mn}x_n = 0.$$

i.e. Ax = 0. A solution x to this system of equations represents a point in the intersection of these hyperplanes.

Definition

The kernel ker(A) is defined to be this intersection, i.e.

$$\ker(A) = \{x \in \mathbb{R}^n : Ax = 0\}.$$

- Let $A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Ax = b defines three *lines* (hyperplanes in \mathbb{R}^2):

 $\rightarrow X$

Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 1 \end{pmatrix}$$
 and $b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 1 \end{pmatrix}$$
 and $b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 1 \end{pmatrix}$$
 and $b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 1 \end{pmatrix}$$
 and $b = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$.

Definition

Nullity of $A = \dim \ker(A)$.

Theorem

Let A be an m-by-n matrix and $b \in \mathbb{R}^m$ be a vector. The space of solutions to Ax = b is either empty or a translate of ker(A).

Corollary

 $\dim \ker(A) = number \ of \ free \ indices \ of \ reduced \ echelon \ form \ of \ A.$

Subspaces, II

Definition

A *linear combination* of vectors $v_1, \ldots, v_k \in \mathbb{R}^n$ is any vector of the form

$$\lambda_1 v_1 + \cdots + \lambda_k v_k, \qquad \lambda_i \in \mathbb{R}.$$

Definition

The *subspace spanned by* v_1, \ldots, v_k is the set of all their linear combinations:

$$\operatorname{span}(v_1,\ldots,v_k) = \{\lambda_1 v_1 + \cdots + \lambda_k v_k : \lambda_i \in \mathbb{R}\}.$$

Lemma

 $\operatorname{span}(v_1,\ldots,v_k)$ is a linear subspace of \mathbb{R}^n .

Definition

If $V = \operatorname{span}(v_1, \ldots, v_k)$, we call $\{v_1, \ldots, v_k\}$ a spanning set for V. A minimal spanning set is called a *basis*.

Theorem

Two bases for the same subspace V have the same size (this size is called the dimension of V).

Image

Definition

The image $\operatorname{im}(A)$ of an *m*-by-*n* matrix *A* is the subspace of \mathbb{R}^m consisting of all $b \in \mathbb{R}^m$ such that Ax = b has a solution $x \in \mathbb{R}^n$.

Lemma

im(A) is a subspace of \mathbb{R}^n . It is spanned by the columns of A.

Definition

The *rank* of A is the dimension of im(A).

Theorem

The rank of A is the number of leading indices of the reduced echelon form of A.

Corollary (Rank-nullity theorem)

If A is m-by-n then rank(A) + null(A) = n.

Summary

Theorem

Let A be an m-by-n matrix and $b \in \mathbb{R}^m$ be a vector.

- ▶ Ax = b has a solution if and only if $b \in im(A)$,
- ▶ the space of solutions is a translate of ker(A).

$$\mathbb{R}^n \xrightarrow{A} \mathbb{R}^m$$

$$\cup | \qquad \qquad \cup |$$

$$\ker(A) \qquad \operatorname{im}(A)$$

Definition

A (\mathbb{R} -)vector space is a set v together with:

Definition

A (\mathbb{R} -)vector space is a set v together with:

▶ a map $V \times V \rightarrow V$, written $(v, w) \mapsto v + w$,

Definition

A (\mathbb{R} -)vector space is a set ν together with:

- ▶ a map $V \times V \rightarrow V$, written $(v, w) \mapsto v + w$,
- ▶ a map $\mathbb{R} \times V \to V$, written $(\lambda, v) \mapsto \lambda v$,

Definition

A (\mathbb{R} -)vector space is a set v together with:

- ▶ a map $V \times V \rightarrow V$, written $(v, w) \mapsto v + w$,
- ▶ a map $\mathbb{R} \times V \rightarrow V$, written $(\lambda, v) \mapsto \lambda v$,
- ▶ an element $0 \in V$,

Definition

A (\mathbb{R} -)vector space is a set v together with:

- ▶ a map $V \times V \rightarrow V$, written $(v, w) \mapsto v + w$,
- ▶ a map $\mathbb{R} \times V \to V$, written $(\lambda, v) \mapsto \lambda v$,
- ▶ an element $0 \in V$,

Definition

A (\mathbb{R} -)vector space is a set v together with:

- ▶ a map $V \times V \rightarrow V$, written $(v, w) \mapsto v + w$,
- ▶ a map $\mathbb{R} \times V \to V$, written $(\lambda, v) \mapsto \lambda v$,
- ▶ an element $0 \in V$,

$$u + (v + w) = (u + v) + w$$

Definition

A (\mathbb{R} -)vector space is a set v together with:

- ▶ a map $V \times V \rightarrow V$, written $(v, w) \mapsto v + w$,
- ▶ a map $\mathbb{R} \times V \to V$, written $(\lambda, v) \mapsto \lambda v$,
- ▶ an element $0 \in V$,

$$u + (v + w) = (u + v) + w$$
 $v + w = w + v$

Definition

A (\mathbb{R} -)vector space is a set v together with:

- ▶ a map $V \times V \rightarrow V$, written $(v, w) \mapsto v + w$,
- ▶ a map $\mathbb{R} \times V \to V$, written $(\lambda, v) \mapsto \lambda v$,
- ▶ an element $0 \in V$,

$$u + (v + w) = (u + v) + w$$
 $v + w = w + v$
 $v = 0 + v = v + 0$

Definition

A (\mathbb{R} -)vector space is a set ν together with:

- ightharpoonup a map $V \times V \to V$, written $(v, w) \mapsto v + w$,
- ▶ a map $\mathbb{R} \times V \to V$, written $(\lambda, v) \mapsto \lambda v$,
- ▶ an element $0 \in V$,

$$u + (v + w) = (u + v) + w$$
 $v + w = w + v$
 $v = 0 + v = v + 0$ $v + (-v) = 0$

Definition

A (\mathbb{R} -)vector space is a set ν together with:

- ightharpoonup a map $V \times V \to V$, written $(v, w) \mapsto v + w$,
- ▶ a map $\mathbb{R} \times V \to V$, written $(\lambda, v) \mapsto \lambda v$,
- ▶ an element $0 \in V$,

$$u + (v + w) = (u + v) + w$$
 $v + w = w + v$
 $v = 0 + v = v + 0$ $v + (-v) = 0$
 $1v = v$

Definition

A (\mathbb{R} -)vector space is a set ν together with:

- ightharpoonup a map $V \times V \to V$, written $(v, w) \mapsto v + w$,
- ▶ a map $\mathbb{R} \times V \to V$, written $(\lambda, v) \mapsto \lambda v$,
- ▶ an element $0 \in V$,

$$u + (v + w) = (u + v) + w$$
 $v + w = w + v$
 $v = 0 + v = v + 0$ $v + (-v) = 0$
 $1v = v$ $\lambda(\mu v) = (\lambda \mu)v$

Definition

A (\mathbb{R} -)vector space is a set ν together with:

- ▶ a map $V \times V \rightarrow V$, written $(v, w) \mapsto v + w$,
- ▶ a map $\mathbb{R} \times V \to V$, written $(\lambda, v) \mapsto \lambda v$,
- ▶ an element $0 \in V$,

$$u + (v + w) = (u + v) + w$$

$$v = 0 + v = v + 0$$

$$1v = v$$

$$(\lambda + \mu)v = \lambda v + \mu v$$

$$v + w = w + v$$

$$v + (-v) = 0$$

$$\lambda(\mu v) = (\lambda \mu)v$$

Definition

A (\mathbb{R} -)vector space is a set v together with:

- ightharpoonup a map $V \times V \to V$, written $(v, w) \mapsto v + w$,
- ▶ a map $\mathbb{R} \times V \to V$, written $(\lambda, v) \mapsto \lambda v$,
- ▶ an element $0 \in V$,

$$u + (v + w) = (u + v) + w \qquad v + w = w + v$$

$$v = 0 + v = v + 0 \qquad v + (-v) = 0$$

$$1v = v \qquad \lambda(\mu v) = (\lambda \mu)v$$

$$(\lambda + \mu)v = \lambda v + \mu v \qquad \lambda(v + w) = \lambda v + \lambda w$$

Definition

A (\mathbb{R} -)vector space is a set ν together with:

- ▶ a map $V \times V \rightarrow V$, written $(v, w) \mapsto v + w$,
- ▶ a map $\mathbb{R} \times V \to V$, written $(\lambda, v) \mapsto \lambda v$,
- ▶ an element $0 \in V$,

such that:

$$u + (v + w) = (u + v) + w \qquad v + w = w + v$$

$$v = 0 + v = v + 0 \qquad v + (-v) = 0$$

$$1v = v \qquad \lambda(\mu v) = (\lambda \mu)v$$

$$(\lambda + \mu)v = \lambda v + \mu v \qquad \lambda(v + w) = \lambda v + \lambda w$$

for all $u, v, w \in V$ and $\lambda, \mu \in \mathbb{R}$.

Definition

A (\mathbb{C} -)vector space is a set ν together with:

- ightharpoonup a map $V \times V \to V$, written $(v, w) \mapsto v + w$,
- ▶ a map $\mathbb{C} \times V \to V$, written $(\lambda, v) \mapsto \lambda v$,
- ▶ an element $0 \in V$,

such that:

$$u + (v + w) = (u + v) + w \qquad v + w = w + v$$

$$v = 0 + v = v + 0 \qquad v + (-v) = 0$$

$$1v = v \qquad \lambda(\mu v) = (\lambda \mu)v$$

$$(\lambda + \mu)v = \lambda v + \mu v \qquad \lambda(v + w) = \lambda v + \lambda w$$

for all $u, v, w \in V$ and $\lambda, \mu \in \mathbb{C}$.

Definition

A (k-) vector space is a set v together with:

- ▶ a map $V \times V \rightarrow V$, written $(v, w) \mapsto v + w$,
- ▶ a map $k \times V \rightarrow V$, written $(\lambda, v) \mapsto \lambda v$,
- ▶ an element $0 \in V$,

such that:

$$u + (v + w) = (u + v) + w \qquad v + w = w + v$$

$$v = 0 + v = v + 0 \qquad v + (-v) = 0$$

$$1v = v \qquad \lambda(\mu v) = (\lambda \mu)v$$

$$(\lambda + \mu)v = \lambda v + \mu v \qquad \lambda(v + w) = \lambda v + \lambda w$$

for all $u, v, w \in V$ and $\lambda, \mu \in k$. k can be any *field*: \mathbb{R} , \mathbb{C} , \mathbb{Q} , \mathbb{Z}/p , \mathbb{Q}_p ,...

 $ightharpoonup V=\mathbb{R}^n$ (usual addition and scaling of vectors)

- $V = \mathbb{R}^n$ (usual addition and scaling of vectors) $V = \mathcal{C}^0(\mathbb{R})$ (continuous functions $\mathbb{R} \to \mathbb{R}$):

- $ightharpoonup V=\mathbb{R}^n$ (usual addition and scaling of vectors)
- $ightharpoonup V = \mathcal{C}^0(\mathbb{R})$ (continuous functions $\mathbb{R} \to \mathbb{R}$):
 - (f+g)(x)=f(x)+g(x),

$$V = \mathbb{R}^n$$
 (usual addition and scaling of vectors)

$$V = C^0(\mathbb{R}) \text{ (continuous functions } \mathbb{R} \to \mathbb{R}):$$

$$(f + g)(x) = f(x) + g(x)$$

$$(f+g)(x) = f(x) + g(x),$$

$$(f+g)(x) = f(x) + g(x),$$

$$(\lambda f)(x) = \lambda f(x).$$

- $V = \mathbb{R}^n$ (usual addition and scaling of vectors)
 - $V = C^0(\mathbb{R})$ (continuous functions $\mathbb{R} \to \mathbb{R}$):
 - ightharpoonup (f+g)(x) = f(x) + g(x),
 - \blacktriangleright $(\lambda f)(x) = \lambda f(x)$.
 - $ightharpoonup V = \mathcal{C}^k(\mathbb{R})$ (k-times-ctsly-differentiable functions $\mathbb{R} \to \mathbb{R}$).

$$ightharpoonup V = \mathbb{R}^n$$
 (usual addition and scaling of vectors)

$$V = \mathbb{R}$$
 (usual addition and scaling of vectors)
 $V = C^0(\mathbb{R})$ (continuous functions $\mathbb{R} \to \mathbb{R}$):

$$V = C^*(\mathbb{R}) \text{ (continuous functions } \mathbb{R} \to \mathbb{R})$$

$$(f+g)(x) = f(x) + g(x),$$

$$(\lambda f)(x) = \lambda f(x).$$

$$V = \mathcal{C}^k(\mathbb{R})$$
 (k-times-ctsly-differentiable functions $\mathbb{R} \to \mathbb{R}$).

$$V = C^k(\mathbb{R})$$
 (k-times-ctsly-differentiable functions $\mathbb{R} \to \mathbb{R}$).
 $V = C^\omega(\mathbb{R})$ (analytic functions).

$$ightharpoonup V=\mathbb{R}^n$$
 (usual addition and scaling of vectors)

$$V = \mathbb{R}$$
 (distant addition and scaling of vectors)
 $V = C^0(\mathbb{R})$ (continuous functions $\mathbb{R} \to \mathbb{R}$):

$$(f + g)(x) = f(x) + g(x),$$

•
$$(\lambda f)(x) = \lambda f(x)$$
.
• $V = \mathcal{C}^k(\mathbb{R})$ (k-times-ctsly-differentiable functions $\mathbb{R} \to \mathbb{R}$).

•
$$V = \mathcal{C}^k(\mathbb{R})$$
 (k -times-ctsly-differentiable functions $\mathbb{R} \to \mathbb{R}$).
• $V = \mathcal{C}^\omega(\mathbb{R})$ (analytic functions).

$$\mathcal{C}^0(\mathbb{R})$$

$$ightharpoonup V=\mathbb{R}^n$$
 (usual addition and scaling of vectors)

$$V = \mathbb{R}^n$$
 (astan addition and scaning of vectors)
 $V = \mathcal{C}^0(\mathbb{R})$ (continuous functions $\mathbb{R} \to \mathbb{R}$):

$$(f + g)(x) = f(x) + g(x),$$

 $\mathcal{C}^0(\mathbb{R})\supset \mathcal{C}^1(\mathbb{R})$

$$V = C^k(\mathbb{R})$$
 (k-times-ctsly-differentiable functions $\mathbb{R} \to \mathbb{R}$).
 $V = C^\omega(\mathbb{R})$ (analytic functions).

$$ightharpoonup V = \mathbb{R}^n$$
 (usual addition and scaling of vectors)

$$V = \mathbb{R}$$
 (usual addition and scaling of vectors)
 $V = C^0(\mathbb{R})$ (continuous functions $\mathbb{R} \to \mathbb{R}$):

$$V = C^*(\mathbb{R}) \text{ (continuous functions } \mathbb{R} \to \mathbb{R})$$

$$(f+g)(x) = f(x) + g(x),$$

•
$$(\lambda f)(x) = \lambda f(x)$$
.
• $V = C^k(\mathbb{R})$ (k-times-ctsly-differentiable functions $\mathbb{R} \to \mathbb{R}$)

$$V = C^k(\mathbb{R})$$
 (k -times-ctsly-differentiable functions $\mathbb{R} \to \mathbb{R}$).
 $V = C^\omega(\mathbb{R})$ (analytic functions).

$$\mathcal{C}^0(\mathbb{R})\supset\mathcal{C}^1(\mathbb{R})\supset\mathcal{C}^2(\mathbb{R})$$

$$ightharpoonup V = \mathbb{R}^n$$
 (usual addition and scaling of vectors)

$$V = \mathbb{R}$$
 (distant addition and scaling of vectors)
 $V = C^0(\mathbb{R})$ (continuous functions $\mathbb{R} \to \mathbb{R}$):

$$V = C^{*}(\mathbb{R}) \text{ (continuous functions } \mathbb{R} \to \mathbb{R})$$

$$(f+g)(x) = f(x) + g(x),$$

 $\mathcal{C}^0(\mathbb{R})\supset\mathcal{C}^1(\mathbb{R})\supset\mathcal{C}^2(\mathbb{R})\supset\cdots$

•
$$(\lambda f)(x) = \lambda f(x)$$
.
• $V = C^k(\mathbb{R})$ (k-times-ctsly-differentiable functions $\mathbb{R} \to \mathbb{R}$).

$$V = C^k(\mathbb{R})$$
 (k-times-ctsly-differentiable functions $\mathbb{R} \to \mathbb{R}$).
 $V = C^\omega(\mathbb{R})$ (analytic functions).

$$ightharpoonup V=\mathbb{R}^n$$
 (usual addition and scaling of vectors)

$$V = \mathbb{R}$$
 (distant addition and scaling of vectors)
 $V = C^0(\mathbb{R})$ (continuous functions $\mathbb{R} \to \mathbb{R}$):

$$V = C \text{ (R) (continuous functions } \mathbb{R} \to \mathbb{R}).$$

$$\blacktriangleright (f+g)(x) = f(x) + g(x),$$

•
$$(\lambda f)(x) = \lambda f(x)$$
.
• $V = C^k(\mathbb{R})$ (k -times-ctsly-differentiable functions $\mathbb{R} \to \mathbb{R}$).

▶
$$V = \mathcal{C}^k(\mathbb{R})$$
 (*k*-times-ctsly-differentiable functions $\mathbb{R} \to \mathbb{R}$).
▶ $V = \mathcal{C}^\omega(\mathbb{R})$ (analytic functions).

$$\mathcal{C}^0(\mathbb{R})\supset\mathcal{C}^1(\mathbb{R})\supset\mathcal{C}^2(\mathbb{R})\supset\cdots\supset\mathcal{C}^\infty(\mathbb{R})$$

$$ightharpoonup V = \mathbb{R}^n$$
 (usual addition and scaling of vectors)

$$V = \mathbb{R}^0$$
 (as defined and searing of vectors)
 $V = \mathcal{C}^0(\mathbb{R})$ (continuous functions $\mathbb{R} \to \mathbb{R}$):

$$V = C \text{ (M) (continuous functions } \mathbb{R} \to \mathbb{R}).$$

$$(f + g)(x) = f(x) + g(x),$$

•
$$(\lambda f)(x) = \lambda f(x)$$
.
• $V = C^k(\mathbb{R})$ (k-times-ctsly-differentiable functions $\mathbb{R} \to \mathbb{R}$).

$$V = \mathcal{C}^{\omega}(\mathbb{R})$$
 (analytic functions).

$$\mathcal{C}^0(\mathbb{R})\supset \mathcal{C}^1(\mathbb{R})\supset \mathcal{C}^2(\mathbb{R})\supset \cdots\supset \mathcal{C}^\infty(\mathbb{R})\supset \mathcal{C}^\omega(\mathbb{R}).$$

Definition

A map $T: V \rightarrow W$ is called *linear* if

$$T(v_1 + v_2) = T(v_1) + T(v_2)$$
 and $T(\lambda v) = \lambda T(v)$

for all $v, v_1, v_2 \in V$, $\lambda \in \mathbb{R}$.

Definition

A map $T: V \rightarrow W$ is called *linear* if

$$T(v_1 + v_2) = T(v_1) + T(v_2)$$
 and $T(\lambda v) = \lambda T(v)$

for all $v, v_1, v_2 \in V$, $\lambda \in \mathbb{R}$.

Theorem

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear then there exists an m-by-n matrix A such that T(v) = Av for all $v \in \mathbb{R}^n$. Conversely, a matrix defines a linear map $v \mapsto Av$.

Definition

A map $T: V \rightarrow W$ is called *linear* if

$$T(v_1 + v_2) = T(v_1) + T(v_2)$$
 and $T(\lambda v) = \lambda T(v)$

for all $v, v_1, v_2 \in V$, $\lambda \in \mathbb{R}$.

Theorem

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear then there exists an m-by-n matrix A such that T(v) = Av for all $v \in \mathbb{R}^n$. Conversely, a matrix defines a linear map $v \mapsto Av$.

Example

Differentiation defines a linear map $\frac{d}{dx}: \mathcal{C}^1(\mathbb{R}) \to \mathcal{C}^0(\mathbb{R})$.