# Introduction to ML Data Preprocessing & KNN

#### Quan Minh Phan & Ngoc Hoang Luong

 ${\bf University} \,\, {\bf of} \,\, {\bf Information} \,\, {\bf Technology}$ 

Vietnam National University Ho Chi Minh City

June 19, 2023



#### Overview

1 A roadmap for building machine learning system

2 Data Pre-processing

3 K-Nearest Neighbors

4 Model Evaluation

# Roadmap

#### 5 major steps:

- Data Pre-processing
- Model Learning
- Model Evaluation
- Prediction
- Model Deployment



#### Overview

A roadmap for building machine learning system

2 Data Pre-processing

3 K-Nearest Neighbors

4 Model Evaluation

# Types of Data



#### Numerical: quantitative data

- Discrete: #students in a class, the age of a person, ...
- Continuous: the height of a person, the wind speed, . . .

#### Categorical: qualitative data

- Ordered: food ratings (excellent, good, bad), feelings (happy, neutral, bad), ...
- Nominal: the name of students, . . .

#### How to load data?

# Syntax (load)

pandas.read\_csv(filepath)

#### Examples

>> import pandas as pd

>> df = pd.read\_csv('/content/toy\_dataset.csv')

### Syntax (show *n* data points)

pandas. Data Frame. head(n)

### **Examples**

>> df.head(n = 5)

# Data Representation



# Data Cleaning

- Independent variables should NOT contain
  - ► Missing or NULL values
  - Outliers
  - ▶ Data on different scales ([10, 30] vs [1M, 1B])
  - ► Special characters (\*, ?, %, #)
  - **.** . . .
- Data Cleaning: The processes of detecting and correcting (or removing) missing values or <u>outliers</u>.
  - Ensuring data is correct, consistent and usable.

# Missing values

In .csv files, missing values are usually represented as empty, 'NA', 'N/A', 'null', 'nan', 'NaN'.



# Missing values (cont.)

### Syntax (count #'NaN' each column)

pandas.DataFrame.isna().sum()

- >> df\_1 = pd.read\_csv('content/toy\_dataset.csv')
- >> countNULL = df\_1.isna().sum()
  countNULL
- >> null\_cols = df\_1[countNULL > 0]
  null\_cols

### How to handle?



# Removing

#### Syntax

### pandas.DataFrame.dropna(inplace)

### **Examples**

>> df\_1.dropna(inplace = True)

or

 $>> df_1 = df_1.dropna(inplace = False)$ 

# How to handle? (cont.)



# Filling

### Examples

Find the mean, median, and mode for the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

#### Mean

• mean = (13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13)/9 = 15

#### Median

- Sorting the list: 13, 13, 13, 14, 14, 16, 18, 21
- *median* = 14

#### Mode

• *mode* = 13

# Filling (cont.)

#### **Step 1:** Calculating the filling values

# Syntax (calculate the mean)

pandas. Data Frame.mean()

#### **Examples**

>> mean\_age = df\_1['Age'].mean()
mean\_age

# Syntax (calculate the median)

pandas.DataFrame.median()

#### Examples

>> median\_height = df\_1['Height'].median() median\_height

# Filling (cont.)

#### **Step 1:** Calculating the filling values

Syntax (calculate the mode)

 ${\bf pandas. Data Frame. mode}()[0]$ 

### Examples

>> mode\_grade = df\_1['Grade'].mode()[0] mode\_grade

# Filling (cont.)

#### **Step 2:** Replacing 'NaN' by the filling values

### Syntax

pandas.DataFrame.fillna(value, inplace)

- >> df\_1['Age'].fillna(value = mean\_age, inplace = True)
- $>> df_1['Height'].fillna(value = median_height, inplace = True)$
- $>> df_1['Grade'].fillna(value = mode_grade, inplace = True)$

# Outliers (examples)



Figure: Examples of outliers

### Syntax (visualize the outliers)

seaborn.boxplot(data)

### **Examples**

>> import seaborn as sbn sbn.boxplot(df\_1['Height'])

# Outliers (Interquartile Range)



### **Examples**

Find the outliers on 71, 70, 90, 70, 70, 60, 70, 72, 72, 320, 71, 69

#### Examples

Find the outliers on 71, 70, 90, 70, 70, 60, 70, 72, 72, 320, 71, 69

#### Solution

- Sort the data: 60, 69, 70, 70, 70, 70, 71, 71, 72, 72, 90, 320
- Calculate the median  $(Q2) \to (70 + 71)/2 = 70.5$
- ullet Calculate the lower quartile (Q1) o (70+70)/2 = 70.0
- Calculate the upper quartile (Q3)  $\rightarrow$  (72 + 72)/2 = 72
- $\bullet$  Calculate the interquartile range (IQR)  $\rightarrow$  Q3 Q1 = 72 70 = 2
- Find the upper and lower fences. Lower fence = Q1 - 1.5 \* IQR = 70 - 1.5 \* 2 = 67Upper fence = Q3 + 1.5 \* IQR = 71.5 + 1.5 \* 2 = 74.5
- The data points that are lower than the lower fence and greater than the upper fence are outliers → outliers: 60; 90; 320.

#### Examples

 $>> df_1 = df_1[\sim((df_1)|(df_1['Height'] > up_fence))]$ 

# Data Transformation (Label Encoding)

**Label Encoding**: replacing each value in a categorical column with numbers from 0 to N-1

Syntax (initialize)

sklearn.preprocessing.LabelEncoder()

#### Examples

>> from sklearn.preprocessing import LabelEncoder

label\_encoder = LabelEncoder()

# Label Encoding

### Syntax (fit & transform)

# $\textbf{LabelEncoder}().\textbf{fit\_transform}(X)$

$$>> df_1['Sex'] = label_encoder.fit_transform(df_1['Sex'])$$
  
  $df_1.reset_index(drop = True, inplace = True)$ 

# Data Transformation (One-hot Encoding)

**One-hot Encoding**: dividing a categorical column into n number of columns with n is the total number of unique labels in that column.

Syntax (initialize)

sklearn.preprocessing.OneHotEncoder()

#### Examples

>> from sklearn.preprocessing import OneHotEncoder onehot\_encoder = OneHotEncoder(sparse\_output = False)

# One-hot Encoding

### Syntax (fit & transform)

#### OneHotEncoder().fit\_transform(X)

- >> variable = 'Grade'
- >> encoded\_data = onehot\_encoder.fit\_transform(df\_1[[variable]])
- >> encoded\_col = pd.DataFrame(data=encoded\_data, columns=onehot\_encoder.get\_feature\_names\_out([variable]))
- >> df\_1 = pd.concat([df\_1.drop(columns=[variable, 'Rich?']), encoded\_col, df\_1['Rich?']], axis=1)

# Data Scaling

**Normalization**: involves to the rescaling of the features to a range of [0,1]

$$x_{norm}^{(i)} = \frac{x^{(i)} - x_{min}}{x_{max} - x_{min}}$$

where:

- $x_{max}$ : the largest value of column x
- $x_{min}$ : the smallest value of column x

**Standardization**: centers the columns at the mean 0 with the standard deviation 1

$$x_{std}^{(i)} = \frac{x^{(i)} - \mu_x}{\sigma_x}$$

where:

- $\mu_x$ : the mean of column x
- $\sigma_x$ : the standard deviation of column x



#### Normalization

### Syntax

### sklearn.preprocessing.MinMaxScaler()

```
>> from sklearn.preprocessing import MinMaxScaler
norm_scaler = MinMaxScaler()
```

```
>> df_1[['Age']] = norm_scaler.fit_transform(df_1[['Age']]) df_1[['Age']]
```

#### Standardization

### Syntax

### sklearn.preprocessing.StandardScaler()

- >> from sklearn.preprocessing import StandardScaler
  std\_scaler = StandardScaler()
- $>> df_1[['Height']] = std_scaler.fit_transform(df_1[['Height']]) df_1[['Height']]$

# Data Splitting (Train-Test Split)

### Syntax

 $sklearn.model\_selection.train\_test\_split(X, y, test\_size, random\_state)$ 

- X: independent variables
- y: target variable

- >> from sklearn.model\_selection import train\_test\_split
- $>> X = df_1.drop(columns = ['Rich?', 'ID'])$ y = df\_1['Rich?']
- $>> X_{train}, X_{test}, y_{train}, y_{test} = train_{test\_split}(X, y, test\_size = 0.3)$

### **Exercises**

 $DataPreprocessing\_exercise.pdf$ 

#### Overview

A roadmap for building machine learning system

2 Data Pre-processing

K-Nearest Neighbors

Model Evaluation

### Recall







# Load 'Iris' dataset and Train-test Split (7:3)

### Examples

```
>> iris_dataset = pd.read_csv('content/iris_dataset.csv')
iris_dataset
```

```
>> X = iris_dataset.drop(columns=['species'])
y = iris_dataset['species']
```

 $>> X_{train}, X_{test}, y_{train}, y_{test} = train_{test\_split}(X, y, test_{size} = 0.3)$ 

# How to implement KNN?

### Syntax (initialize)

**sklearn.neighbors.KNeighborsClassifier**(*n\_neighbors*, *p*)

#### where:

- n₋neighbors: the number of neighbors (K)
- p: power parameter for the Minkowski metric.
  - p = 1: Manhattan distance
  - p = 2: Euclidean distance
  - ▶ *p* > 2: Minkowski distance

- >> from sklearn.neighbors import KNeighborsClassifier
- >> clf = KNeighborsClassifier( $n_neighbors = 3, p = 2$ )

# How to implement? (cont.)

### Syntax (fit)

 ${\bf sklearn.neighbors.KNeighborsClassifier}().{\bf fit}(X,y)$ 

#### **Examples**

>> clf.fit(X\_train, y\_train)

### Syntax (predict)

sklearn.neighbors.KNeighborsClassifier().predict(X)

#### **Examples**

 $>> y_pred = clf.predict(X_test)$ 

#### Overview

A roadmap for building machine learning system

2 Data Pre-processing

3 K-Nearest Neighbors

Model Evaluation

#### Performance Metrics

#### Classification

- Accuracy
- Confusion matrix
- Precision and Recall
- F1 score

#### Regression

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- R-Squared

# Syntax (import)

from sklearn.metrics import ...

- >> from sklearn.metrics import accuracy\_score
- >> accuracy = accuracy\_score(y\_test, y\_pred)
  accuracy

### Exercise

 $KNN_{exercise.pdf}$