ANÁLISE DOS DADOS COM R

Funções e Modelos

James R. Hunter, PhD Retrovirologia, EPM, UNIFESP

2023-10-17

MAS, PRIMEIRO ...

De novo, Jim ...? 🙃

WORKING WITH STRINGS

```
1 #| label: string_setup
2 #| echo: false
3
4 peng_raw <- read_csv("penguins_raw.csv")</pre>
```

penguins_raw->penguins

- Variável Species
- Formato raw: Adelie Penguin (Pygoscelis adeliae)
- Só quero o nome Adelie
- Como converter?

SOLUÇÃO #1

FORÇA BRUTA

- for Loop
- sem funções de Tidyverse

```
1 peng_mod <- clean_names(peng_raw)</pre>
 3 peng mod$species mod <- "" # create a new name variable</pre>
 5 for (i in 1:nrow(peng_raw)) {
    if (substr(peng_mod$species[i], 1, 6) == 'Adelie'){
      peng_mod$species_mod[i] <- "ADELIE"</pre>
        if (substr(peng_mod$species[i], 1, 9) == 'Chinstrap'){
           peng_mod$species_mod[i] <- "CHINSTRAP"</pre>
10
         } else {
             if (substr(peng_mod$species[i], 1, 6) == 'Gentoo'){
12
               peng_mod$species_mod[i] <- "GENTOO"</pre>
13
14
15
16 }
17 }
18 ht(peng_mod$species_mod)
```

SOLUÇÃO #2

TIDYVERSE - str_split_i()

- Adelie Penguin (Pygoscelis adeliae)
- str_split_i() divide o string em partes cada vez que encontra o caracter que indica onde divide (aqui espaço " ")
- Retorna o elemento indicado pelo parâmetro i
 - Nome da especie
- Várias versões da função str_split_x()

```
str_split_i(string, pattern, i)
```

```
[1] "Adelie" "Adelie" "Chinstrap" "Chinstrap"
```

FUNÇÕES

- Todos os comandos em R são funções
- Programados por desenvolvedores de R ou dos pacotes

FUNÇÕES - GANHAR EFICIÊNCIA

- Todas essas vezes que repetir um bloco de código
 - Repetir um gráfico com parâmetros diferentes
 - Mesmo para um modelo
 - Evitar copiar-colar com erros
- VSS: Se você vai copiar/colar código mais de 2 vezes
 - Use uma função

EXEMPLO

• Temos tibble com 5 variáveis númericas a - e

```
# A tibble: 5 x 5

a b c d e

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> </dbl>
1 1.37 -0.106 1.30 0.738 0.833
2 -0.565 1.51 2.29 0.811 0.00733
3 0.363 -0.0947 -1.39 0.388 0.208
4 0.633 2.02 -0.279 0.685 0.907
5 0.404 -0.0627 -0.133 0.00395 0.612
```

O QUE QUEREMOS FAZER

- Colocar todas as variáveis numa escala de 0 até 1
 - Mesma coisa que scales:: rescale faz
 - Mas fazemos aqui por copiar/colar

```
1 ex |> mutate(
    a = (a - min(a, na.rm = TRUE)) /
 3
      (max(a, na.rm = TRUE) - min(a, na.rm = TRUE)),
    b = (b - min(b, na.rm = TRUE)) /
4
     (max(b, na.rm = TRUE) - min(a, na.rm = TRUE)),
5
    c = (c - min(c, na.rm = TRUE)) /
7
     (max(c, na.rm = TRUE) - min(c, na.rm = TRUE)),
8
     d = (d - min(d, na.rm = TRUE)) /
9
      (max(d, na.rm = TRUE) - min(d, na.rm = TRUE)),
10)
```

Todos são entre 0 e 1?

```
1 ex |> mutate(
2    a = (a - min(a, na.rm = TRUE)) /
3        (max(a, na.rm = TRUE) - min(a, na.rm = TRUE)),
4    b = (b - min(b, na.rm = TRUE)) /
5        (max(b, na.rm = TRUE) - min(a, na.rm = TRUE)),
6    c = (c - min(c, na.rm = TRUE)) /
7        (max(c, na.rm = TRUE) - min(c, na.rm = TRUE)),
8    d = (d - min(d, na.rm = TRUE)) /
9        (max(d, na.rm = TRUE) - min(d, na.rm = TRUE)),
10    )
# A tibble: 5 x 5
```

```
# A tibble: 5 × 5
    a    b    c    d    e
    <dbl>    <dbl
```

Todos são entre 0 e 1?

Tem erro em b: copiou a em min(a) invés de b

Funções ajudam evitar esse tipo de erro

CONSTRUÇÃO DE UMA FUNÇÃO

PASSO 1 - ESTUDAR A COMPUTAÇÃO

- O que quer fazer?
 - Criar uma nova escala para uma variável
- O que é o cálculo que quer empenha?
 - (a min(a, na.rm = TRUE)) / (max(a, na.rm = TRUE) min(a, na.rm = TRUE))
 - O que varia nesta expressão?
 - Essa vai ser o argumento que nós vamos dar para função
 - Pode dar para ele um nome abstrato, vamos dizer x
 - " (x min(x, na.rm = TRUE)) / (max(x, na.rm = TRUE) min(x, na.rm = TRUE))

4 ELEMENTOS DE UMA FUNÇÃO

- Nome: como vamos chamar esta função (rescale01)
- Keyword: function()
- Argumento(s): valores que variam quando a função é chamada (x)
- Corpo: o código que executa o cálculo
- Template para uma função

```
1 nome <- function(argumentos) {
2  corpo
3 }</pre>
```

NOSSO EXEMPLO

Data			
o ex	5 obs. of 5 variables		
Values			
gr	"/Users/jameshunter/Documents/MAD/Bioinformatica		
Functions			
.Last.value	function (x)	100 - 100 -	
ht	function (d, $m = 5$, $n = m$)	To your your and you want of	
rescale01	function (x)	The same of the sa	

TESTES SIMPLES

```
1 test1 <- c(0, 5, 10)
2 rescale01(test1)

[1] 0.0 0.5 1.0

1 test2 <- c(0, 5, NA, 10)</pre>
```

[1] 0.0 0.5 NA 1.0

2 rescale01(test2)

APLICAR A FUNÇÃO PARA NOSSO EXEMPLO

```
1 ex |> mutate(
2    a = rescale01(a),
3    b = rescale01(b),
4    c = rescale01(c),
5    d = rescale01(d),
6 )
```

INDIREÇÃO

- O que acontece quando uma variável é o argumento de uma função que fica dentro de uma outra função
- Usar pacdemo para ilustrar
- Queremos saber a média da carga viral por grupo
 - Uma média por grupos em geral
 - Vamos usar dplyr::summarize() para obter a média

```
pacdemo_mini <- readxl::read_excel("../pac_demo.xlsx") |>
mutate(logcv = log10(copias_cv)) |>
select(sexo, logcv)
```

SE FAÇO DIRETAMENTE, OK

```
1 pacdemo_mini |>
2 group_by(sexo) |>
3 summarize(media = mean(logcv))
# A tibble: 2 x 2
```

```
# A tibble: 2 × 2
   sexo    media
   <chr>        <dbl>
1 Feminino     4.27
2 Masculino     4.13
```

DENTRO DE UMA FUNÇÃO

```
1 group_mean <- function(data, group_var, mean_var){
2   data |>
3    group_by(group_var) |>
4    summarize(media = mean(mean_var))
5 }
6 group_mean(pacdemo_mini, sexo, logcv)
```

Error in `group_by()':
! Must group by variables found in `.data`.
* Column `group_var' is not found.
Backtrace:
1. global group_nean(pacdemo_mini, sexo, logcv)
4. Amlyr::group by.data.frame(data, group_var)

- summarize() está procurando uma variável chamada group_var
 - Invés de sexo o contéudo de group_var
 - Faz parte de *tidy evaluation* maneira e ordem em que funções são avaliadas

COMO SUPERAR ESSE ERRO

- Embracing (abraços)
 - Literamente colocando chaves (braces) em volta da variável
 - vartorna {{ var }}

FUNÇÕES HELPER (ASSISTÊNCIA)

- Quer usar partes de uma função para fazer resumos paralelos de alguns dados
- Helper Function
- Como summarytools::descrfaz

```
1 mini summary <- function(data, var){</pre>
    data |>
      summarise(
        min = min({{ var }}, na.rm = TRUE),
        max = max( \{\{var \}\}, na.rm = TRUE),
        med = median({{ var }}, na.rm = TRUE)
 7
 9 mini summary(pacdemo mini, logcv)
# A tibble: 1 \times 3
   min max med
 <dbl> <dbl> <dbl>
1 1.92 5.94 4.22
1 mini_summary(ex, c)
# A tibble: 1 \times 3
  min max med
 <dbl> <dbl> <dbl>
1 -1.39 2.29 -0.133
```

QUANDO DEVEMOS USAR FUNÇÕES

- Questão Prática
- Quando copiar/colar pode introduzir erros
- Pode ter funções chamando funções
 - Cada função faz uma tarefa específica
 - Utilidade aqui para embracing
- Programação Funcional
 - Subset de linguagem especial que facilita mais complexidade nas funções
 - Estilo que reduz quase a 0 uso de loops funções vetorizadas

APLICAR FUNÇÃO ÀS VÁRIAS COLUNAS

• Introdução a programação funcional

3 FUNÇÕES E FAMÍLIAS DAS FUNÇÕES

- apply família
- across()-dplyr
- purrr::map_x() família

FAMÍLIA apply

- apply(), lapply(), sapply(), e tapply()
- Base R
- Aprender apply()
- Dados: pacdemo

```
1 pacdemo |>
2   slice(1:4) |>
3   gt()
```

sexo	idade	CV	cd4	cd8
Masculino	60	5200	898	1311
Masculino	73	1947	958	817
Feminino	51	480000	958	817
Masculino	50	257313	142	1009

MÉDIA DAS VARIÁVEIS NÚMERICAS

Pode fazer uma lista dos cálculos

```
1 (med_idade <- mean(pacdemo$idade))
[1] 51.2

1 (med_cv <- mean(pacdemo$cv))
[1] 90692.82

1 (med_cd4 <- mean(pacdemo$cd4))
[1] 513.9

1 (med_cd8 <- mean(pacdemo$cd8))
[1] 994.3</pre>
```

- Lembre a aregra de não copiar/colar mais de 2 vezes
- Pode fazer um função que vai de coluna em coluna
- apply() já foi escrito

apply()

• Template:

```
apply(X, MARGIN, FUN, ...)
```

- X: o objeto que estamos avaliando (pacdemo)
- MARGIN: colunas (2) ou fileiras (1)
- FUN: função a ser aplicada (sem parênteses)

SOMA DOS VALORES NÚMERICOS

1 apply(pacdemo[,2:5], 2, sum)

idade cv cd4 cd8 2560 4534641 25695 49715

MÉDIA DOS VALORES NÚMERICOS

- Levando em conta que pode ter um valor NA
- mean(x, na.rm = TRUE)
- Os ... no template

TIDYVERSE-dplyr::across()

- Permite que você fazer um cálculo ou operação em várias colunas
 - Como apply, mas mais flexível
 - Facilita trabalho com grupos e com colunas na mesma operação
 - Como apply, expressa a função dentro da função across ()
 - Pode ser aplicada a uma variedade das colunas de um conjunto grande
 - Funções anônimas
 - \circ Equivalente em R para funções lambda (λ) em Python e outras idiomas

CASO MAIS SIMPLES

- Mesma operação que com apply ()
- Template:

```
across(.cols, .fns, ...)
```

ESTRUTURA DE test

```
1 str(test)
tibble [1 × 2] (S3: tbl_df/tbl/data.frame)
$ sum : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
..$ idade: num 2560
..$ cv : num 4534641
..$ cd4 : num 25695
..$ cd8 : num 49715
$ mean: tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
..$ idade: num 51.2
..$ cv : num 90693
..$ cd4 : num 514
..$ cd8 : num 994
```

- Tibbles, tibbles em todos os lugares!
- across () retorna um tibble com una coluna por
 - Cada coluna em .cols
 - Cada função em . funs

OUTRA MANEIRA DE MOSTRA AS DUAS FUNÇÕES

```
1 pacdemo |>
2 summarise(res = across(idade:cd8, c(sum, mean)))
# A tibble: 1 × 1
# required to 1 Side do 2 = Serv 1 Serv 2 Sed4 1 Sed4 2 Sed4 1 Sed4 2 Sed4 2
```

ACROSS() E FUNÇÕES ANÔNIMAS

- Se precisamos colocar outro argumento no call para across()
 - Como controlar para NAs nos dados: na rm = TRUE
- Precisa usar uma função anônima para especificar a função

FUNÇÃO ANÔNIMA

- Anônima porque não tem nome
- Função que pode ser jogado no lixo depois de uso
- \(x) seguido pelo código da função
 - $\setminus (x) \times + 1$ aumentar o valor de x por 1
 - \(x) median(x, na.rm = TRUE)

APLICAR PARA pacdemo summarise

- Calcular média das colunas númericas
 - Cuidando de chance de ter NA

FAMÍLIA purrr::map_()

- Pacote purr desenhado para fornecer funções para programação funcional
- purrr::map() transforma cada elemento de uma lista ou vetor por aplicação de uma função
 - Retorna uma lista
- map_lgl(), map_int(), map_dbl(), e map_chr()
 retornam um vetor do tipo indicado

```
1 # work with penguins
 3 n unique <- function(x) length(unique(x))</pre>
 4
 5 peng_mod |>
    select(species, island, sex, ) |>
 7 map(n_unique)
$species
[1] 3
$island
[1] 3
$sex
[1] 3
 1 peng_mod |>
 2 select(species, island, sex, ) |>
 3 map_int(n_unique)
species island sex
     3 3
                 3
```

SÓ O INÍCIO COM purrr

MODELOS

- Tirar conclusões sobre uma população baseado numa amostra
- Mesma ideia atrás de inferência em estatística
- Modelos de machine learning como grandes modelos estatísticos
- Também existem modelos de simulação
 - Replicar com matemática um processo cujas dimensões e regras são bem compreendidas

ESTATÍSTICA VS. MACHINE LEARNING

- Testes estatísticos tendem de ser mais simples para aplicar e analisar
- Modelos de machine learning podem formar estruturas e previsões mais sofisticadas
- Machine learning mais certo que os modelos estatísticos?
 - Estudo de 2018 diz que não têm resultados melhores¹
- Decisão para usar um modelo de machine learning depende de:
 - Necessidade
 - Sofisticação do modelo para estudo
 - Tamanho do amostra
 - Habilidade e experiência do pesquisador com o algoritmo de machine learning

1. Makridakis S, Spiliotis E, Assimakopoulos V. Statistical and Machine Learning forecasting methods: Concerns and ways

SABORES DE *MACHINE LEARNING*

- Existe uma variável dependente
 - Supervisionado
 - Supervisão por causa que o resultado do modelo pode ser avaliado em termos da realidade dos resultados observados
 - 2 subtipos
 - Classificação Colocar cada caso em um grupo baseado no valores das variáveis independentes
 - Regressão Determinar um valor de uma combinação das variáveis independentes
- Não existe uma variável dependente
 - Não-supervisionado
 - Explorar a estrutura dos casos e tentar agrupar eles em *clusters* dos casos
 - o Também, olhar na estrutura das variáveis independentes com PCA

REGRESSÃO LINEAR SIMPLES

REGRESSÃO - HISTORIA

- Termo vem de eugenismo (eugenics) de Sir Francis Galton.
- Estudou alturas de famílias
- Observou que crianças de pais altos tendiam de ser mais baixas de que os pais e crianças de pais baixos tendiam de ser mais altas
- Chamou a tendência regressão à média
- Usaremos esses dados clássicos

MÉTODO DE MÍNIMOS QUADRADOS

- Solucionamos com o método Mínimos Quadrados
 - Inventado por Carl Friedrich Gauss (1777 1855)
 - Método minimiza as divergências entre os valores lineares previstos e os valores dos dados
 - Consegue o melhor relação entre a variável de resultado e as variáveis prognosticas
- Por enquanto, vamos restringir o modelo para forma linear
 - Outras formas existem

PROPOSITO

Prever um resultado numa variável dependente baseado em uma ou mais variáveis independentes

- Uma regressão linear simples
- Mais regressão linear múltipla

VISUALIZAÇÃO DE REGRESSÃO

LINHA RETA

$$y = \beta_0 + \beta_1 x$$

- β_1 = inclinação da linha (slope)
- β_0 = intercepto (onde cruza o eixo y)
- Os dois parâmetros da regressão
- Com estes parâmetros, Mínimos Quadrados acha a reta que melhor prevê o valor da variável dependente dado o valor de independente

"MELHOR" QUER DIZER "BOM"?

- Apesar de ser a melhor maneira de prever y, possível que não descreve bem y
- Bom depende dos dados
- Melhor depende do método

EQUAÇÃO DE REGRESSÃO

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- Y_i = valor de variável dependente
- β_0 = intercepto
- β_1 = inclinação da reta de regressão
- X_i = valor da variável independente
- ϵ_i = termo de erro de cada caso

EQUAÇÃO DE REGRESSÃO - ESTIMAÇÃO

$$\hat{Y_i} = b_0 + b_1 X_i + e_i$$

- $\hat{Y_i}$ = valor de variável dependente (estimado)
- b_0 = intercepto
- b_1 = inclinação da reta de regressão
- X_i = valor da variável independente
- e_i = termo de erro de cada caso

TERMO DE ERRO (ϵ)

- Também chamado resíduo
- Responsável pela variabilidade em y que a reta não consegue explicar

MÍNIMOS QUADRADOS

- Faz o cálculo que minimiza o quadrado da soma dos erros
- Erros = resíduos = diferenças entre o valor observado e o valor esperado

$$min \sum (y_i - y_i^2)^2$$

- y_i = valor observado da variável dependente
- $\hat{y_i}$ = valor estimado da variável dependente

BASTA DE TEORIA - EXEMPLO

- A base de dados de Galton sobre altura nas famílias
- Pergunta é se filhos/as são mais altos ou mais baixos de que os pais
- Mediu 898 filhos/as em 197 famílias
- Base de dados originais (em papel) fica na University College, London (UCL)

VARIÁVEIS

 height, father, mother todos medem altura em polegadas

FOCO EM PAIS E FILHOS

```
boys <- galton %>%
filter(sex == "M") %>%
select(-family, -mother, -sex, -nkids)
glimpse(boys)
```

```
Rows: 465
Columns: 2
$ father <dbl> 78.5, 75.5, 75.5, 75.0, 75.0, 75.0, 75.0, 75.0, 75.0, 74.0, 74....
$ height <dbl> 73.2, 73.5, 72.5, 71.0, 70.5, 68.5, 72.0, 69.0, 68.0, 76.5, 74....
```

- father é a variável independente
- height é a variável dependente
- Queremos ver se a altura do pai prevê a altura do filho

PAI/FILHO - GRÁFICO DE DISPERSÃO

O QUE PODEMOS DIZER AGORA?

- Parece que mais altos os pais, mais altos os filhos
- Vamos olhar nas estatísticas descritivas das 2 variáveis
 - mais correlação

```
vars n mean sd median trimmed mad min max range skew kurtosis father 1 465 69.17 2.30 69.0 69.16 1.93 62 78.5 16.5 0.11 0.55 height 2 465 69.23 2.63 69.2 69.25 2.67 60 79.0 19.0 -0.03 0.29 se father 0.11 height 0.12
```

[1] "Coeficiente de Correlação: 0.391"

O QUE É A "CORRELAÇÃO"?

- Coeficiente de Correlação mede o grau da associação linear entre 2 variáveis
- Sempre cai entre -1 e +1
 - -1 significa uma relação perfeitamente inversa (quando x sobe, y desce pela mesma proporção)
 - O significa que não existe uma relação linear entre as 2 variáveis
 - +1 significa uma relação perfeitamente positiva (quando x sobe, y sobe pela mesma proporção)
- V.S.S: quando tem correlação positiva, tem inclinação da linha de tendência positiva, e vice versa

PARA CALCULAR A LINHA DE REGRESSÃO - O QUE QUEREMOS?

- Uma linha que minimiza a diferença entre y_i e $y^{\hat{}}$
- Precisamos trabalhar com o quadrado da diferença
 - para não ter uma soma de 0

SSE - UM COMPONENTE DO SOMA DE QUADRADOS (SST)

- SST = SSE + SSR
- SST Total
- SSE Relacionados aos Erros/Resíduos
- SSR Relacionados/Explicados pela regressão

SST – O QUE REPRESENTA?

 A variância total é a diferença entre o valor do modelo para cada valor de X e a média dos valores da variável dependente (y)

SOMA DOS QUADRADOS

- Referimos a esse soma dos quadrados que queremos minimizar como SSE
 - Error sum of squares
- SSE como componente da soma dos quadrados total
 - SSE soma dos quadrados relacionados ao resíduo
 - SSR soma dos quadrados relacionados a regressão
- Expressão de SSE

$$SSE = \sum_{i=1}^{n} (y_i - y)^2$$

$$SSE = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

PARA DETERMINAR A FORMULA PARA eta_0 E eta_1

- Para minimizar a SSE (determinar a linha mais eficiente), precisamos usar cálculo
- Fazer a derivativo parcial com respeito a β_0 e β_1

$$\frac{\partial}{\partial \beta_0} SSE = \frac{\partial}{\partial \beta_1} SSE = 0$$

- Chamadas as equações normais
- Confiamos nos softwares para calcular os parâmetros da equação

FUNÇÃO EM R

- Função lm ("linear model")
- lm(formula, data, subset, weights,
 na.action, method = "qr", model = TRUE, x
 = FALSE, y = FALSE, qr = TRUE,
 singular.ok = TRUE, contrasts = NULL,
 offset, ...)
- Os importantes são formula, data, subset, weights, na.action

ARGUMENTOS PARA Lm ()

- formula: onde mostra quais variáveis você está modelando
 - Variável dependente vem primeiro
 - Separada da independente(s) por " ~ "
 - Para os boys: height ~ father
- data: data frame ou tibble que contem as variáveis
- subset, weights: parâmetros que permitem que você customizar tratamento das variáveis
- na.action: como vai tratar os dados missing na base de dados

FUNÇÃO APLICADA AOS PAIS E FILHOS

• Função lm produz uma lista de 12 itens em um formato especial

O QUE DIZ O MODELO

$$\hat{y} = 38.259 + 0.448x$$

- Se o pai tivesse 0 altura, o filho teria 38.259 polegadas de altura
 - Não faz sentido prático, mas estabelece a base para calculo de altura
 - Para cada polegada incremental da altura do pai, o filho seria 0.448 polegadas mais alto

EXTRAIR OS VALORES DOS COEFICIENTES

1. Usar broom::tidy

term estimate std.error statistic p.val (Intercept) 38.2589122 3.3866340 11.297032 father 0.4477479 0.0489353 9.149788

2. Usar coef

1 coef(fit1)

(Intercept) father 38.2589122 0.4477479

PREVISÕES DE NOVOS VALORES

- Pode usar o modelo para prever novos valores da altura dos filhos
- Usar broom::augment

O QUE SIGNIFICA O MODELO? COMO INTERPRETAR ELE?

EXISTE RELAÇÃO ENTRE VARIÁVEIS INDEPENDENTE E DEPENDENTES?

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

• Se β_1 (inclinação da linha) for 0, o que seria a equação?

$$Y_i = \beta_0 + \epsilon_i$$

- X desaparece
- Relação entre Y e X não existe
 - Só tem intercepto e erro
- Faz possível teste eficiente de existência ou não de uma relação entre X e Y
- Cria uma hipótese nula de $H_0: \beta_1 = 0$

TESTE DE HIPÓTESE NULA

- Vamos fazer uma simulação de hipótese nula
- Se a nula é correta, qualquer altura do filho podia ter ocorrido com qualquer altura do pai.
- Podemos calcular o modelo de regressão 5.000 vezes com valores de todo a base de alturas dos filhos
- Como resultado, vamos focar nos valores da inclinação, β_1
- Depois, nós vamos comparar nosso valor de β_1 observado e ver onde cai na distribuição dos valores simulados

HISTOGRAMA DAS INCLINAÇÃO DOS MODELOS

HISTOGRAMA COM VALORES ABAIXO/ACIMA DO VALOR DA AMOSTRA

Número de simulações com betal >= obs: 0

O VALOR-P DA INCLINAÇÃO (eta_1)

- Porque nenhuma das simulações produziu um valor superior ao observado (0.448)
 - Pode concluir que o valor-p deste teste é 0.
 - Não parece existir nenhuma chance que a inclinação = 0
- Assim, rejeitamos a hipótese nula e concluir que uma relação linear entre as alturas dos pais e filhos realmente existe.

PREMISSAS DE REGRESSÃO LINEAR

- Todas as variáveis independentes devem ter a mesma variância - Gráfico de resíduo deve evitar padrões indo de esquerda até direta
- 2. Todas as observações, resíduos e variáveis independentes: todos devem ser independentes Gráfico de resíduo não deve mostrar um padrão sinuoso
- 3. Resíduos têm uma distribuição perto a normal Gráfico "qq" dos resíduos padronizados Indica que as variáveis têm distribuição normal multivariada
- 4. Variáveis independentes devem evitar multicollinearity Ter correlações altas entre elas

GRÁFICO DE RESÍDUOS

- Gráfico que mostra o valor previsto pelo modelo ("fitted value") vs. o resíduo
- Uso da função broom::augment()
 - Eficiente para extrair os valores utilizados nos testes dos modelos

IMPORTÂNCIA DOS RESÍDUOS

•	Pode usar os erros/resíduos para verificar se as premissas
	da regressão foram respeitadas

 Não devem mostrar um padrão line 	ar
--	----

GRÁFICO Q-Q

- Verifica a normalidade dos resíduos
 - Mais perto a uma linha reta, melhor o "fit" com uma distribuição normal

GRÁFICOS Q-Q TAMBÉM DISPONÍVEL DIRETAMENTE EM BASE R

```
1 qqnorm(boys$height)
2 qqline(boys$height, col = 2, lwd = 2)
3 grid()
```


TESTE-F DAS VARIÂNCIAS DO MODELO

- Teste-F é um teste que verifica que as variâncias das variáveis são perto de iguais
- Utiliza a Distribuição F
 - Tem 2 graus de libera de como parâmetros
- Serve como um teste de significância total de um modelo
- Produzido pelo função Summary da função lm

TESTE-F DO MODELO DAS ALTURAS PAI-FILHO

R^2 – coeficiente de determinação

- Medida de quanto a linha de regressão explica a variância em Y
- Relação entre a SSR e a SST

$$R^2 = \frac{SSR}{SST}$$

- Calculado pelo lm
 - visível em Summary
- Varia entre 0 e 1
- $\sqrt{R^2} = r$ (coeficiente de correlação)


```
Coefficients:
```

Estimate Std. Error t value Pr(>|t|)

(Intercept) 38.25891 3.38663 11.30 <2e-16 ***

father 0.44775 0.04894 9.15 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.424 on 463 degrees of freedom

Multiple R-squared: 0.1531, Adjusted R-squared: 0.1513

F-statistic: 83.72 on 1 and 463 DF, p-value: < 2.2e-16

SIGNIFICÂNCIA DE \mathbb{R}^2

- Se 100% da variância ser explicado pela regressão
- SSR = SST
- $\therefore R^2 = SST/SST = 1$
- Variância completamente explicado pela regressão
- Em geral, o grau em que a regressão explica a variância no modelo

DOIS GRÁFICOS MAIS AVANÇADOS

FUNÇÃO plot PARA OBJETOS lm

FUNÇÃO qqPlot() DO PACOTE car

[1] 137 241

REGRESSÃO LINEAR MÚLTIPLA - MLR

- Regressão quando tem mais de 1 variável independente
 - Mais de 1 covariado
- Mudança na Equação do Modelo de Regressão

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i + \ldots + \beta_k X_i + \epsilon_i$$