Exercise 1 (4.1.A Vakil). Show that the natural map $A_f \to \mathcal{O}_{\text{Spec}(A)}(D(f))$ is an isomorphism. $\llbracket \text{Hint: Exercise 3.5.E Vakil.} \rrbracket$

Answer

Exercise 2 (Restrictions). Do the following:

- i) Explain, using Definition 4.1.1 (and not exercise 4.1.A) what the restriction map is.
- ii) Explain, using exercise 4.1.A what the restriction map is.

Answer

Exercise 3 (4.1.D Vakil). Suppose M is an A-module. Show that the following construction describes a sheaf \widetilde{M} on the distinguished base. Define $\widetilde{M}(D(f))$ to be the localization of M at the multiplicative set of all functions that do not vanish outside of V(f).

Define restriction maps $res_{D(f),D(g)}$ in the analogous way to $\mathcal{O}_{Spec(A)}$.

Show that this defines a sheaf on the distinguished base, and hence a sheaf on Spec(A). Then show that this is an $\mathcal{O}_{Spec(A)}$ -module.

Answer

Exercise 4. Let $A = \mathbb{C}[x, y]$ and let $\mathfrak{p} = \text{gen}(y)$, viewed as a point of X = Spec(A). What is $\mathfrak{O}_{X,p}$?

Recall that $\mathcal{O}_{X,p}$ is a local ring, that is, it has a unique maximal ideal, \mathfrak{m}_p . What is the residue field $\kappa_{\mathfrak{p}} = \mathcal{O}_{X,p}/\mathfrak{m}_p$?

Answer

Exercise 5 (4.4.A Vakil). Show that you can glue an arbitrary collection of schemes together. Suppose we are given:

- \diamond schemes X_i (as i runs over some index set I, not necessarily finite),
- \diamond open subschemes $X_{ij} \subseteq X_i$ with $X_{ii} = X_i$,
- \diamond isomorphisms $f_{ij}: X_{ij} \to X_{ji}$ with f_{ii} the identity

such that

the isomorphisms "agree on triple intersections", i.e.,

$$f_{ik} \mid X_{ij} \cap X_{ik} = f_{jk} \mid X_{ji} \cap X_{jk} \circ f_{ij} \mid X_{ij} \cap X_{ik} \circ$$

(so implicitly, to make sense of the right side, $f_{ij}(X_{ik} \cap X_{ij}) \subseteq X_{jk}$).

This *cocycle condition* ensures that f_{ij} and f_{ji} are inverses. In fact, the hypothesis that f_{ii} is the identity also follows from the cocycle condition.

Show that there is a unique scheme X (up to unique isomorphism) along with open subsets isomorphic to the X_i respecting this gluing data in the obvious sense. Hint: what is X as a set? What is the topology on this set? In terms of your description of the open sets of X, what are the sections of this sheaf over each open set?

А	n	S	W	7e	r
L .	-	u	* *	_	-