

EDA

- Переименование признаков
- Обработка факторных признаков: замена значений 'X', 'H/Д' на -1, удаление пустых признаков и признаков с высокой корреляционной связью
- Поиск уникальных признаков по годам
- Конкатенация данных за все года
- Анализ балансовых показателей
- Анализ прибыли и убытков

Используемые экономические показатели

Баланс:

- non_current_assets внеоборотные активы
 - intangible_assets нематериальные активы
 - **property_plant_equipment** основные средства
- current_assets оборотные активы
 - accounts_receivable дебиторская задолженность
- capital_and_reserves капитал и резервы
 - share_capital уставный капитал
- non_current_liabilities долгосрочные обязательства
 - nc_borrowings заёмные средства (долгосрочные)
- current_liabilities краткосрочные обязательства
 - **c_borrowings** заёмные средства (краткосрочные)
 - accounts_payable кредиторская задолженность

Финансовый результат:

- **revenue** выручка
- cost_amount себестоимость
- sales_profit прибыль (убыток) от продажи
- profit_before_tax прибыль (убыток) до налогообложения

Показатели оценки ликвидности и устойчивости:

- OWL собственные оборотные средства (СОС)
- **CWC** чистый оборотный капитал (ЧОК)
- WC рабочий капитал (PK)
- **ktl** коэффициент текущей ликвидности $(K_{T,n})$
- **kfn** коэффициент финансовой независимости (К_{фн})
- **kfu** коэффициент финансовой устойчивости ($K_{\Phi v}$)
- **kfl** финансовый ливеридж (К_{фл})
- **km** коэффициент маневренности (К_м)
- **kowc -** коэффициент обеспеченности собственными оборотными средствами КСОСКСОС (kowc)
- **ROA_ncl -** рентабельность внеоборотных активов (ROA_{вн})
- **ROA_ca -** рентабельность оборотных активов (ROA_{oa})
- **ROA -** рентабельность суммарных активов (ROA)
- **Rsale -** рентабельность продаж (R_{sale})
- **ROCP -** рентабельность прямых затрат (ROCP)
- **ROCS -** рентабельность полных затрат на продажу (ROCS)

Как читать показатели в решении

Сдвиг:

В решении используется относительная нумерация исторических данных и показатели смещены относительно «текущего» года:

Обозначение	bef_04 (-4й)	bef_03 (-3й)	bef_02 (-2й)	bef_01 (-1й)	Текущий
Пример	2018	2019	2020	2021	2022

Виды показателей:

- Прямой
- Абсолютная разница год-к-году
- Относительная разница год-к-году

Прямой показатель:

Статья, раздел баланса, или рассчитанный коэффициент, выраженный в своей единице изм.

Пример: current assets bef 01

Абсолютная разница год-к-году:

Разница значений показателя соседних лет (динамка)

Пример: current_assets_diff

Pacчem: current_assets_bef_01 - current_assets_bef_02

Относительная разница год-к-году:

Отношение прироста к показателю предыдущего года (темп):

Пример: current assets diff frac

Pacчem: (current_assets_bef_01 - current_assets_bef_02) / current_assets_bef_02)

Примеры:

current_assets_diff_bef_01_02

Разница стоимости оборотных активов прошлого года к позапрошлому.

current_assets_bef_01 - current_assets_bef_02

current_assets_diff_frac_bef_01_02

Отношение прироста оборотных активов прошлого года к позапрошлому.

(current_assets_bef_01 - current_assets_bef_02)

current_assets_bef_02

Feature Engineering

Проверка корреляции признаков с целевым - фактом ПДЗ - "overdue"

На графике отражены признаки, сила корреляции которых более 0.1

Feature Engineering

Статьи и разделы баланса из года в год коррелируют между собой.

Признаки, коррелирующие между собой с силой более 0.7 - удалим.

Количество признаков после предобработки

Feature Engineering

Проверка корреляции оставшихся признаков

Затем мы удалили «пустые» признаки и признаки с бесконечными значениями, и построили график Heatmap.

Высокой силы корреляции между отобранными признаками нет

Количество признаков после предобработки

Модель предсказания просрочки

Используемый модуль -

LGBMClassifier

Для новых контрагентов

Weight	Feature
0.1143 ± 0.1360	kfu_bef_03
0.0905 ± 0.1292	Sum
0.0333 ± 0.1069	ROA_ncl_bef_02
0.0238 ± 0.0602	non_current_assets_diff_bef_03_04
0.0095 ± 0.0883	cost_amount_diff_bef_03_04
-0.0524 ± 0.0632	accounts_payable_diff_frac_bef_03_04

Наиболее значимыми для модели оказались признаки "kfu_bef_03" и "Sum".

Weight	Feature	
0.2857 ± 0.1313	Sum	
0.1571 ± 0.0883	kfu_bef_03	

Важность признаков при использовании попарной комбинации 6 признаков

Для старых контрагентов

	Weight	Feature
	0.1381 ± 0.0356	Sum
	0.1000 ± 0.1061	kfu_bef_03
	0.0905 ± 0.0819	ar_sum_bef_01
	0.0810 ± 0.0571	ROA_ncl_bef_02
	0.0762 ± 0.0555	non_current_assets_diff_bef_03_04
	0.0667 ± 0.0555	cost_amount_diff_bef_03_04
	0.0667 ± 0.0356	accounts_payable_diff_frac_bef_03_04
	0.0238 ± 0.0426	max ar bef 01

Наиболее значимым признаком для модели, обученной на полном множестве отобранных признаков, получился признак "Sum" - сумма факторных признаков.

Модель предсказания просрочки

Для старых контрагентов

Вывод: для предсказания факта ПДЗ по старым контрагентам необходимо использовать все отобранные признаки, потому что они отлично дополняют друг друга, создавая синергетический эффект. **Точность предсказаний ~81%.**

Для новых контрагентов

Вывод: для предсказания факта ПДЗ для новых контрагентов лучше использовать комбинацию следующих признаков: "Sum" и "kfub_bef_03"; эта комбинация позволяет получить Точность предсказаний ~81%.

Модель предсказания просрочки - Вывод

В ходе проделанной работы по анализу контрагентов и выявлению факторов просрочки дебиторской задолженности были промоделированы две ситуации:

- взаимодействие со старыми контрагентами, т.е. с таким, с которым было сотрудничество ранее;
- взаимодействие с исключительно новыми контрагентами.

Эти ситуации влияют на признаки, которые брались для обучения модели.

Результаты

Код на GitHub

>350

Признаков проанализировано

7

Признаков выбрано для обучения модели

Предложено 3 подхода к моделированию

Точность предсказания факта просрочки

Спасибо за внимание

