CSC236: Assignment 3

Ruijie Sun, Wenjie Hao

7th, August, 2017

1.

Q1c

2.

Define P (n): "
$$(q, w) \vdash^* (q, \varepsilon)$$
", where $|w| = n$

Base Case :
$$n=0$$

$$w=\varepsilon$$

$$(q,w) \ \vdash^0 (q,\ \varepsilon) \ \vdash^* (q,\ \varepsilon)$$

Inductive Step:

Let
$$n = k$$
, Assume $P(k)$, i.e., $(q, w) \vdash^* (q, \varepsilon)$, where $|w| = k$
Let $w' = wa$. We want to show $P(k+1)$, i.e., $(q, w') \vdash^* (q, \varepsilon)$
 $(q, w') \vdash^0 (q, wa) \vdash^k (q, a)$ (By inductive hypothesis)
Then, $(q, a) \vdash (q, \varepsilon)$
So $P(k+1)$ holds.

3.

The automation accepts the language that ends with "01" or "00".

Q3. NFA

4.

$$(0+1)*1 (0+1) (0+1) (0+1) (0+1) (0+1) (0+1)$$

b)

$$(0+10)*(11+\varepsilon)(0+10)*$$

c)

5.

a)

The statement is False. Disprove by giving counterexample.

Let
$$\Sigma = \{a, b\}, R = a, S = b$$

Proof for ab $\in L((a+b)^*)$:

$$a \in L((a+b)), b \in L((a+b)), \text{ so } ab \in L((a+b)^*)$$

Proof for ab \notin L(a* + b*):

 $ab \notin L(a^*)$ and $ab \notin L(b^*)$, so $ab \notin L(a^* + b^*)$

Since $ab \in L((a+b)^*)$ but $ab \notin L(a^* + b^*)$, the statement is false.

b)

The statement is False. Disprove by giving counterexample.

Let
$$\Sigma = \{a, b\}, R = a, S = b$$

Firstly, we know that $\varepsilon \in L((aa*b)*)$, because there could be zero replication of aa*b.

However, $\varepsilon \notin L((ab + a)*ab)$ because the language must contain at least "ab". (since $\varepsilon \in (ab + a)*$)

Since $\varepsilon \in L((ab + a)^*)$, but $\varepsilon \notin L((ab + a)^*ab)$, the statement is false.

c)

The statement is False. Disprove by giving counterexample.

Let
$$\Sigma = \{a, b\}, R = a, S = b$$

Firstly, we know that $a \in L(a)$, then $a \in L(a+b)$. Therefore, $a \in L((a+b)^*)$.

Secondly, $a \notin L((a*b))$, then $a \notin L((a*b)*)$.

All string in the language, L((a*b)*) must contain either at least one b or is ε .

Since $a \in L((a + b) *)$, but $a \notin L((a*b)*)$, the statement is false.

d)

The statement is False. Disprove by giving counterexample.

Let
$$\Sigma = \{a, b\}, R = a, S = b$$

Firstly, we know that $\varepsilon \in L(ab + b)$, then ba $\in L(b(ab + b)*a)$.

Secondly, we know that $\varepsilon \in L((aa^*b)^*)$ and $\varepsilon \in L((a)^*)$, then the only possible string of the language, $L(aa^*b(aa^*b)^*)$, of length two is ab, so ba $\notin L(aa^*b(aa^*b)^*)$.

Since $ba \in L(b(ab+b)*a)$, but $ba \notin L(aa*b(aa*b)*)$, the statement is false.

6.

$$N(k) = \begin{cases} 0 & if \ k = 0 \\ 0 & if \ k = 1 \\ 2 & if \ k = 2 \\ 0 & if \ k = 3 \\ 2 & if \ k = 4 \\ N(k-2) + 2N(k-3) & if \ k > 4 \end{cases}$$

Explanation: If k is greater than 4, it is clear that the string that is accepted by the automaton must end with 11 or 010 or 001.

Case 1: if the string that is accepted by the automaton ends with 11. It means that we can get the target string of length k by concatenating each accepted string of length (k-2) with 11.

Case 2: if the string that is accepted by the automaton ends with 010 or 001. It means that we can get the target string of length k by concatenating each accepted string of length (k-3) with 010 or 001.

Therefore, if k is greater than 4, N(k) = N(n-2) + 2N(k-3). Then N(14) = N(12) + 2N(11) = N(10) + 2N(9) + 2(N(9)+2N(8)) = N(10) + 4N(9) + 4N(8) = N(8) + 2N(7) + 4(N(7)+2N(6)) + 4(N(6)+2N(5))

. . .

7.

a)

- 1. Suppose L is regular.
- 2. Let n be the pumping constant.
- 3. Choose $w = 0^n 1^m 0^n$ (Note that $w \in L$ and $m, n \ge 0$)
- 4. By PL, w can be factored into xyz such that $|xy| \le n$, |y| > 0 and, for all $i \ge 0$, $xy^iz \in L$
- 5. Since $|xy| \le n$ and |y| > 0, $x = 0^p$, $y = 0^q$, $z = 1^m 0^n$ where p + q = n, $p \ge 0$, q > 0, then p < n.
- 6. Consider i = 0, then $xy^iz = xz = 0^p1^m0^n \subseteq L$. We have obtained a contradiction of the assumed regularity of L. (Since $p < n \rightarrow p \neq n$)
- 7. Hence, L is not regular

b)

- 1. Suppose L is regular.
- 2. Let n be the pumping constant.
- 3. Since $L = \{w \in \{0, 1\}^* | w \text{ is palindrome}\}$, we choose $w = 0^n 1^m 0^n$ (Note that $w \in L$ and $m, n \ge 0$)
- 4. By PL, w can be factored into xyz such that $|xy| \le n$, |y| > 0 and, for all $i \ge 0$, $xy^iz \in L$
- 5. Since $|xy| \le n$ and |y| > 0, $x = 0^p$, $y = 0^q$, $z = 1^m 0^n$ where p + q = n, $p \ge 0$, q > 0, then p < n.
- 6. Consider i = 0, then $xy^iz = xz = 0^p1^m0^n \in L$. We have obtained a contradiction of the assumed regularity of L. (Since $p < n \rightarrow p \neq n$)
- 7. Hence, L is not regular

Define automata which accepts language L:

$$M = \{Q, S, \Sigma, \delta, F\}$$

Define reversal automata which accepts $L^{\text{R.}}$

$$\mathbf{M'} = \{\mathbf{Q}, \mathbf{S'}, \ \sum, \ \delta^R, \ \{S\}\}$$

- $\quad \forall p,q \in \mathbb{Q}, \ (\mathbb{q},\ \sigma,p\) \in \ \delta^R \iff (\mathbb{p},\ \sigma,q) \in \ \delta.$
- $\forall f \in \mathcal{F}, \ (\mathcal{S}', \, \varepsilon, f) \in \delta^R$
- Now S is the new single final states.

Define M'' which accepts language $\frac{1}{2}(L)$.

$$M'' = (Q, S, \sum, \delta, F')$$

$$F' = \bigcup_{w \in L} q_i$$
, (where $n = |w|$, $w = xy$, (S,

$$w) \vdash_{\delta}^{\frac{n}{2}} (q_{i}, y) \ and \ (S', \ w^R) \vdash_{\delta^R}^{\frac{n}{2}+1} (q_{i}, x))$$