ТЕОРЕТИЧЕСКИЕ ДОМАШНИЕ ЗАДАНИЯ

Математическая логика, ИТМО, М3235-М3239, весна 2022 года

Задание №1. Знакомство с классическим исчислением высказываний.

1. Будем говорить, что высказывание α выводится из гипотез $\gamma_1, \gamma_2, \ldots, \gamma_n$ (и записывать это как $\gamma_1, \gamma_2, \ldots, \gamma_n \vdash \alpha$), если существует такой вывод $\delta_1, \delta_2, \ldots, \delta_n$, что $\alpha \equiv \delta_n$, и каждый из δ_i есть либо гипотеза, либо аксиома, либо получается из каких-то предыдущих высказываний по правилу Modus Ponens. Несколько гипотез мы можем обозначить какой-нибудь большой буквой середины греческого алфавита $(\Gamma, \Delta, \Pi, \Sigma, \Xi)$: например, $\Gamma, \alpha, \beta \vdash \sigma$; здесь Γ обозначает какое-то множество гипотез.

Докажите:

(a) $\vdash (A \rightarrow A \rightarrow B) \rightarrow (A \rightarrow B)$

(b) $\vdash A \& B \rightarrow B \& A$

(c) $\vdash A \& B \rightarrow A \lor B$

(d) $\vdash A \rightarrow \neg \neg A$

(e) $A \& \neg A \vdash B$

(f) $\vdash \neg (A \& \neg A)$

2. Известна теорема о дедукции: Γ , $\alpha \vdash \beta$ тогда и только тогда, когда $\Gamma \vdash \alpha \to \beta$. Теорема доказывается конструктивно, то есть она даёт метод для перестроения одного вывода в другой. В рамках данного задания разрешается результат её применения вписать как часть другого вывода как «чёрный ящик» (как макроподстановку). Докажите с её использованием:

(a) $\neg A, B \vdash \neg (A \& B)$

(b) $A, \neg B \vdash \neg (A \& B)$

(c) $\neg A, \neg B \vdash \neg (A \& B)$

(d) $\neg A, \neg B \vdash \neg (A \lor B)$

(e) $A, \neg B \vdash \neg (A \rightarrow B)$

(f) $\neg A, B \vdash A \rightarrow B$

(g) $\neg A, \neg B \vdash A \rightarrow B$

(h) $\vdash A \& (B \& B) \rightarrow A \& B$

(i) $\vdash (A \rightarrow B) \rightarrow (B \rightarrow C) \rightarrow (A \rightarrow C)$

 $(j) \vdash (A \to B) \to (\neg B \to \neg A)$ (закон контрапозиции)

 $(k) \vdash A \& B \rightarrow \neg (\neg A \lor \neg B)$ (правило де Моргана)

(1) $\vdash \neg(\neg A \& \neg B) \rightarrow A \lor B$ (правило де Моргана)

 $(m) \vdash A \& (B \lor C) \rightarrow (A \& B) \lor (A \& C)$ (дистрибутивность 1)

 $(n) \vdash A \lor (B \& C) \rightarrow (A \lor B) \& (A \lor C)$ (дистрибутивность 2)

3. Существует несколько аналогов схемы аксиом 10 (аксиомы снятия двойного отрицания). Докажите при любых высказываниях α и β :

(a) $\vdash \alpha \lor \neg \alpha$ (правило исключённого третьего)

(b) $\vdash ((\alpha \rightarrow \beta) \rightarrow \alpha) \rightarrow \alpha \ (\exists a \kappa o n \ \Pi u p c a)$

(c) Предположим, 10 схема аксиом заменена на две другие схемы аксиом: $((\alpha \to \beta) \to \alpha) \to \alpha$ и $\alpha \to \neg \alpha \to \beta$. В этих условиях покажите $\neg \neg \alpha \to \alpha$.

(d) Предположим, 10 схема аксиом заменена на две другие схемы аксиом: $\alpha \vee \neg \alpha$ и $\alpha \to \neg \alpha \to \beta$. В этих условиях покажите $\neg \neg \alpha \to \alpha$.

4. Докажите следующие «странные» формулы:

(а) $\vdash (A \to B) \lor (B \to A)$. В самом деле, получается, что из любых двух наугад взятых фактов либо первый следует из второго, либо второй из первого. Например «выполнено как минимум одно из утверждений: (а) если сегодня пасмурно, то курс матлогики все сдадут на A; (б) наоборот, если все сдадут курс матлогики на A, то сегодня пасмурно».

- (b) Обобщение предыдущего пункта: при любом $n \geqslant 1$ и любых $\alpha_1, \ldots, \alpha_n$ выполнено $\vdash (\alpha_1 \rightarrow \alpha_2) \lor (\alpha_2 \rightarrow \alpha_3) \lor \cdots \lor (\alpha_{n-1} \rightarrow \alpha_n) \lor (\alpha_n \rightarrow \alpha_1)$
- 5. В рамках данного задания неравными высказываниями будем называть высказывания α и β , у которых нет такого переименования переменных, чтобы их таблицы истинности совпали. Например, A и B & B равные высказывания, ведь высказывания E и E & E имеют одну и ту же таблицу истинности:

$$\begin{array}{c|c}
E & E \& E \\
\hline
\Pi & \Pi \\
\hline
\Pi & \Pi
\end{array}$$

Однако, высказывания A и $A \rightarrow A$ не равны.

Даны высказывания α и β , причём $\vdash \alpha \to \beta$ и $\alpha \neq \beta$. Укажите способ построения высказывания γ , такого, что $\vdash \alpha \to \gamma$ и $\vdash \gamma \to \beta$, причём $\alpha \neq \gamma$ и $\beta \neq \gamma$.

6. Покажите, что если $\alpha \vdash \beta$ и $\neg \alpha \vdash \beta$, то $\vdash \beta$.

Задание №2. Теоремы о корректности и полноте классического исчисления высказываний. Интуиционистская логика.

- 1. Теоремы о корректности и полноте классического исчисления высказываний.
 - (a) Заполните пробел в доказательстве корректности исчисления высказываний: покажите, что если $\vdash \alpha$ и в доказательстве высказывание δ_n получено с помощью Modus Ponens из δ_j и $\delta_k \equiv \delta_j \to \delta_n$, то $\models \delta_n$.
 - (b) Покажите, что если $\Gamma \vdash \alpha$, то $\Gamma \models \alpha$.
 - (c) Покажите, что если $\Gamma \models \alpha$, то $\Gamma \vdash \alpha$.
- 2. Предложите топологические пространства и оценку для пропозициональных переменных, опровергающие следующие выскзывания:
 - (a) $A \vee \neg A$ (на лекции приводился пример в \mathbb{R} ; в данном же задании предложите оценку в каком-то другом пространстве, например в \mathbb{R}^2)
 - (b) $(((A \rightarrow B) \rightarrow A) \rightarrow A)$
 - (c) $\neg \neg A \rightarrow A$
 - (d) $(A \rightarrow (B \lor \neg B)) \lor (\neg A \rightarrow (B \lor \neg B))$
 - (e) $(A \to B) \lor (B \to C) \lor (C \to A)$
 - (f) $\bigvee_{i=1}^{n} ((A_i \to A_{(i \mod n)+1}) \& (A_{(i \mod n)+1} \to A_i))$
- 3. Доказуемы ли следующие высказывания в интуиционистской логике?
 - (a) $\neg \neg \neg \neg A \rightarrow \neg \neg A$
 - (b) $\neg A \lor \neg \neg A \lor \neg \neg \neg A$
 - (c) $A \vee B \rightarrow \neg (\neg A \& \neg B)$
 - (d) $\neg(\neg A \lor \neg B) \to A \& B$
 - (e) $(A \rightarrow B) \rightarrow (\neg A \lor B)$
 - (f) $(\neg A \lor B) \to (A \to B)$
- 4. Известно, что в классической логике любая связка может быть выражена как композиция конъюнкций и отрицаний: существует схема высказываний, использующая только конъюнкции и отрицания, задающая высказывание, логически эквивалентное исходной связке. Например, для импликации можно взять $\neg(\alpha \& \neg \beta)$, ведь $\alpha \to \beta \vdash \neg(\alpha \& \neg \beta)$ и $\neg(\alpha \& \neg \beta) \vdash \alpha \to \beta$. Возможно ли в интуиционистской логике выразить через остальные связки:
 - (а) конъюнкцию?
 - (b) дизъюнкцию?
 - (с) импликацию?

(d) отрицание?

Если да, предложите формулу и два вывода. Если нет — докажите это (например, предложив соответствующую модель).

- 5. Теорема Гливенко. Обозначим доказуемость высказывания α в классической логике как $\vdash_{\kappa} \alpha$, а в интуиционистской как $\vdash_{\mathsf{u}} \alpha$. Оказывается возможным показать, что какое бы ни было α , если $\vdash_{\kappa} \alpha$, то $\vdash_{\mathsf{u}} \neg \neg \alpha$. А именно, покажите, что:
 - (a) Если α аксиома, полученная из схем 1–9 исчисления высказываний, то $\vdash_{\mathbf{u}} \neg \neg \alpha$.
 - (b) $\vdash_{\mathsf{M}} \neg \neg (\neg \neg \alpha \to \alpha)$
 - (c) $\neg \neg \alpha, \neg \neg (\alpha \rightarrow \beta) \vdash_{\mathbf{H}} \neg \neg \beta$
 - (d) Докажите утверждение теоремы ($\vdash_{\kappa} \alpha$ влечёт $\vdash_{\mathbf{u}} \neg \neg \alpha$), опираясь на предыдущие пункты, и покажите, что классическое исчисление высказываний противоречиво тогда и только тогда, когда противоречиво интуиционистское.
- 6. Возможно ли предложить такой набор множеств S из \mathbb{R} (формально: $S \subseteq \mathcal{P}(\mathbb{R})$), чтобы при выборе его в качестве истинностного множества \mathbb{V} , при сохранении правил вычисления значений связок для интуиционистской логики, получилась бы полная и корректная модель для классического исчисления высказываний?
- 7. Пусть S некоторое множество. Рассмотрим $\mathbb{V} = \mathcal{P}(S)$, определим связки так:

Также, будем считать, что $\models \alpha$, если $\llbracket \alpha \rrbracket = S$.

Покажите, что получившееся:

- (a) корректная модель классического исчисления высказываний. Для уменьшения рутинной работы достаточно показать выполнение схем аксиом 5,9,10 и правила Modus Ponens.
- (b) полная модель классического исчисления высказываний.

Задание №3. Интуиционистская логика и натуральный вывод.

- 1. Напомним определения: замкнутое множество такое, дополнение которого открыто. Внутрен- ностью множества A° назовём наибольшее открытое множество, содержащееся в A. Замыканием множества \overline{A} назовём наименьшее замкнутое множество, содержащее A. Назовём окрестностью точки x такое открытое множество V, что $x \in V$. Будем говорить, что точка $x \in A$ внутреняя, если существует окрестность V, что $V \subseteq A$. Точка $x \in A$ граничная, если любая её окрестность V пересекается как с A, так и с его дополнением.
 - (a) Покажите, что A открыто тогда и только тогда, когда все точки A внутренние. Также покажите, что $A^{\circ} = \{x | x \in A \& x$ внутренняя точка $\}$.
 - (b) Покажите, что A замкнуто тогда и только когда, когда содержит все свои граничные точки. Также покажите, что $\overline{A} = \{x | x \in A \& x$ внутренняя или граничная точка $\}$. Верно ли, что $\overline{A} = X \ ((X \backslash A)^\circ)$?
 - (с) Покажите, что внутренность и замыкание корректно определены (что существуют соответствующие наибольшее и наименьшее множества).
 - (d) Введём топологию на деревьях способом, рассмотренным на лекции. Рассмотрим некоторое множество вершин V. Опишите множества V° и \overline{V} . Какие вершины будут являться граничными для V?
 - (e) Пусть $A\subseteq B$. Как связаны A° и B° , а также \overline{A} и \overline{B} ?
 - (f) Верно ли $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$ и $(A \cup B)^{\circ} = A^{\circ} \cup B^{\circ}$?
 - (g) Покажите, что $\overline{\left(\overline{A^{\circ}}\right)^{\circ}} = \overline{A^{\circ}}$.

- (h) Задача Куратовского. Будем применять операции взятия внутренности и замыкания к некоторому множеству всевозможными способами. Сколько различных множеств может всего получиться?
- 2. Примеры топологий. Для каждого из примеров ниже покажите, в нём задано топологическое пространство и ответьте следующие вопросы: каковы окрестности точек в данной топологии; каковы будут внутренность и замыкание для данного множества (определите это прямо); каковы замкнутые множества в данной топологии; является ли данная топология моделью для классической логики; связно ли данное пространство.
 - (а) Топология Зарисского на \mathbb{R} : $\Omega = \{\varnothing\} \cup \{X \subseteq \mathbb{R} \mid \mathbb{R} \setminus X \text{ конечно}\}$, то есть пустое множество и все множества с конечным дополнением.
 - (b) Топология стрелки на \mathbb{R} : $\Omega = \{\emptyset, \mathbb{R}\} \cup \{(x, +\infty) | x \in \mathbb{R}\}$, то есть пустое, всё пространство и все открытые лучи.
 - (c) Множество всех бесконечных подмножеств \mathbb{R} : $\Omega = \{\emptyset\} \cup \{X \subseteq \mathbb{R} \mid X \text{ бесконечно}\}$
 - (d) Множество всевозможных объединений арифметических прогрессий: $A(a) = \{a \cdot x \mid x \in \mathbb{Z}\};$ $X \in \Omega$, если $X = \emptyset$ или $X = \bigcup_i A(a_i)$ (все $a_i > 0$). Будет ли это топологическим пространством, если мы будем рассматривать арифметические прогрессии в полной форме, в виде $a \cdot x + b$?
- 3. Связность.
 - (a) Связны ли \mathbb{Q} и $\mathbb{R}\backslash\mathbb{Q}$ как топологические подпространства \mathbb{R} ?
 - (b) Связно ли множество $\{0,1\}$ в топологии стрелки и в топологии Зарисского?
 - (с) Покажите, что дерево с отмеченным корнем (с рассмотренной на лекции топологией) связно.
 - (d) Покажите, что если лес связен в топологическом смысле, то он состоит из одного дерева.
- 4. Натуральный вывод был описан на лекции, но примеров доказательств не приводилось. Приведём такой пример:

$$\frac{\overline{\alpha \& \beta \vdash \alpha \& \beta}}{\underline{\alpha \& \beta \vdash \alpha}} \qquad \frac{\overline{\alpha \& \beta \vdash \alpha \& \beta}}{\alpha \& \beta \vdash \beta}$$

$$\underline{\alpha \& \beta \vdash \beta \& \alpha}$$

Постройте следующие доказательства в натуральном выводе:

- (a) $\alpha \vdash \neg \neg \alpha$
- (b) $\neg \alpha \lor \beta \vdash \alpha \to \beta$
- (c) $\alpha \to \beta \vdash \neg \beta \to \neg \alpha$
- (d) $\alpha \vee \beta \vdash \neg(\neg \alpha \& \neg \beta)$
- 5. Чтобы избежать путаницы, обозначим выводимость в ИИВ «гильбертовского стиля» как $\vdash_{\mathbf{r}}$, а знак \vdash в ИИВ «системы натурального (естественного) вывода» как $\vdash_{\mathbf{n}}$.

Напомним, что языки гильбертовского и натурального выводов отличаются (обозначим эти языки как \mathcal{L}_{r} и \mathcal{L}_{h} соответсвенно.

Определим функции, отображающие языки друг в друга: $|\cdot|_{\tt h}:\mathcal{L}_{\tt r}\to\mathcal{L}_{\tt h}$ и $|\cdot|_{\tt r}:\mathcal{L}_{\tt h}\to\mathcal{L}_{\tt r}$. Они сохраняют почти все значения, кроме лжи (\bot) и отрицания (\neg) :

$$|\sigma|_{\mathbf{H}} = \begin{cases} |\alpha|_{\mathbf{H}} \to \bot, & \sigma \equiv \neg \alpha \\ |\alpha|_{\mathbf{H}} \star |\beta|_{\mathbf{H}}, & \sigma \equiv \alpha \star \beta \\ X, & \sigma \equiv X \end{cases} \qquad |\sigma|_{\mathbf{\Gamma}} = \begin{cases} A \& \neg A, & \sigma \equiv \bot \\ |\alpha|_{\mathbf{\Gamma}} \star |\beta|_{\mathbf{\Gamma}}, & \sigma \equiv \alpha \star \beta \\ X, & \sigma \equiv X \end{cases}$$

Естественным образом расширим эти операции на контексты: $|\gamma_1, \gamma_2, \dots, \gamma_n| = |\gamma_1|, |\gamma_2|, \dots, |\gamma_n|$.

- (а) Пусть $\Gamma \vdash_{\Gamma} \alpha$. Покажите, что $|\Gamma|_{\tt H} \vdash_{\tt H} |\alpha|_{\tt H}$: предложите общую схему перестроения доказательства, постройте доказательства для трёх случаев базы (схема аксиом 2, схема аксиом 5, схема аксиом 9) и одного случая перехода индукции.
- (b) Пусть $\Gamma \vdash_{\mathbf{H}} \alpha$. Покажите, что $|\Gamma|_{\mathbf{r}} \vdash_{\mathbf{r}} |\alpha|_{\mathbf{r}}$ (постройте схему доказательства, и покажите один случай базы и три случая перехода индукции).
- (c) Покажите аналог теоремы о дедукции: $\Gamma \vdash_{\text{H}} \alpha \to \beta$ тогда и только тогда, когда $\Gamma, \alpha \vdash_{\text{H}} \beta$.

- 6. Покажите, что открытые множества топологического пространства с отношением порядка (⊆) образуют импликативную решётку с нулём.
- 7. Напомним, что линейным порядком называется такой порядок $\langle X, \leq \rangle$, что для любых $x,y \in X$ выполнено $x \leq y$ или $y \leq x$. Задаёт ли линейный порядок решётку? Дистрибутивна, импликативна ли она, есть ли в ней 0 и 1?
- 8. Рассмотрим \mathbb{N}_0 (натуральные числа с нулём) с традиционным отношением порядка как решётку. Каков будет смысл операций (+), (\cdot) и (\rightarrow) в данной решётке, определены ли 0 или 1? Верно ли, что $2 \cdot 2 = 4$ или 2 + 2 = 4? Приведите каких-нибудь три свойста традиционных определений (+) и (\cdot) , которые будут всё равно выполнены при таком переопределении, и три свойства, которые перестанут выполняться.
- 9. Постройте следующие примеры:
 - (a) непустого частично-упорядоченного множества, имеющего операцию (+) для всех элементов, но не имеющего (\cdot) для некоторых; имеющего опреацию (\cdot) для всех элементов, но не имеющего (+) для некоторых.
 - (b) решётки, не являющейся дистрибутивной решёткой; импликативной решётки без 0.
 - (с) дистрибутивной, но не импликативной решётки (эта решётка не может быть конечной).
- 10. Покажите, что в дистрибутивной решётке (всегда $a + (b \cdot c) = (a + b) \cdot (a + c)$) также выполнено и $(a + b) \cdot c = (a \cdot c) + (b \cdot c)$.
- 11. Покажите следующие тождества и свойства для импликативных решёток:
 - (a) ассоциативность: a + (b + c) = (a + b) + c и $a \cdot (b \cdot c) = (a \cdot b) \cdot c$;
 - (b) монотонность: пусть $a \le b$ и $c \le d$, тогда $a + c \le b + d$ и $a \cdot c \le b \cdot d$;
 - (c) Законы поглощения: $a \cdot (a + b) = a; a + (a \cdot b) = a;$
 - (d) $a \le b$ выполнено тогда и только тогда, когда $a \to b = 1$;
 - (e) из $a \le b$ следует $b \to c \le a \to c$ и $c \to a \le c \to b$;
 - (f) из $a \leq b \rightarrow c$ следует $a \cdot b \leq c$;
 - (g) $b \le a \to b$ и $a \to (b \to a) = 1$;
 - (h) $a \to b \le ((a \to (b \to c)) \to (a \to c));$
 - (i) $a \le b \to a \cdot b \text{ if } a \to (b \to (a \cdot b)) = 1$
 - (j) $a \to c \le (b \to c) \to (a + b \to c)$
 - (k) импликативная решётка дистрибутивна: $a + (b \cdot c) = (a + b) \cdot (a + c)$
- 12. Докажите, основываясь на формулах предыдущих заданий, что ИИВ (вариант натурального вывода) корректно, если в качестве модели выбрать импликативную решётку с 0, а функции оценок определить так:

Оценка турникета определяется через импликацию: $[\gamma_1, \ldots, \gamma_n \vdash \alpha] = [\gamma_1 \to \ldots \to \alpha]$.