Learning Coalition Structures with Games

Yixuan Even Xu Tsinghua

Chun Kai Ling

Fei Fang Columbia Carnegie Mellon

Coalition Structure Learning (CSL)

Coalition: A nonempty subset of the agents, in which the agents coordinate their actions and have common interests.

Coalition Structure: A set partition of the agents $\{1, 2, \dots, n\}$

Behavior Model in a Game: Each coalition act as a joint player whose actual utility equals the total utilities of its members

Coalition Structure Learning (CSL): Recover the unknown coalition structure by observing interactions in designed games

What kind of games can the algorithm design?

What observation does the algorithm obtain?

Single-Bit Observation Oracle: The algorithm queries a game *G* and a strategy profile Σ , the agents answer whether Σ is an NE in G

Easy to compute for the agents, one bit of information per query

Theorem 3.1: Any algorithm for CSL must interact at least $n \log_2 n - O(n \log_2 \log_2 n)$ rounds with the agents

Types of Games: Normal form games, congestion games, graphical games, auctions. We study all four settings in this paper, and show asymptotically optimal algorithms for all of them.

Solving CSL with Normal Form Games

How to distinguish between the two?

Normal Form Gadgets: A normal form game where a specific pair of agents (x, y)plays the **Prisoner's Dilemma**, and other agents only have one action that has no effect

	L_y	D_y
C_{x}	(3, 3)	(0, 5)
$D_{\mathcal{X}}$	(5, 0)	(1, 1)

Lemma 3.1: (D_x, D_y) is an Nash Equilibrium if and only if x and yare not in the same coalition

Product of Normal Form Gadgets: Running several normal form gadgets simultaneously as a single normal form game

Agents individually act in each gadget

Agent's utility equals the sum of that agent's utility in each gadget

Lemma 3.2: Always defect is a Nash Equilibrium iff the chosen pair are not in the same coalition in each gadget

Our Algorithm: Iterative Grouping (IG)

Determine each agent's coalition one by one For agent *i*, let all others play **normal form gadgets** with *i* If always defect is an NE, then agent *i* has no other teammates Otherwise, we know that someone is in the same coalition with i Run a **binary search** to locate one teammate *j* of *i*

Merge *i* and *j* as one joint player Proceed iteratively until *i*'s coalition is finalized

Theorem 3.2: IG solves CSL with $n \log_2 n + 3n$ rounds IG is optimal up to low order terms

Extension: Solving CSL with Auctions

AuctionCSL: The algorithm can only design auctions

Format: Second-price auctions with personalized reserves Each agent i have a valuation v_i and a reserve price r_i The highest bidder wins, with $price = max\{second\ bid, reserve\ price\}$

To better simulate the practice, we further restrict the algorithm The algorithm can only design the reserve prices

The valuations are random each query, but the algorithm sees them

Auction Gadgets: How to tell if there is cooperation between one specific agent and a group?

 $r_1 = 5$

 $r_1 = 5$

 $r_2 = 2$

 $r_3 = 5$

 $r_3 = 5$

If Agent 1 is NOT Cooperating with Agent 2

Truthful bidding IS an NE

If Agent 1 IS Cooperating with Agent 2 $b_3 = 2$ $b_2 = 5$ $b_1 = 0$ $v_3 = 2$ $v_1 = 5$ $v_2 = 0$

 $r_2 = 2$

Truthful bidding is NOT an NE

AuctionIG: Our algorithm built upon auction gadgets

Theorem 4.1: In expectation, AuctionIG solves AuctionCSL with $(4.16 + o(1))n \log_2 n$ rounds, i.e., Auction IG is optimal asymptotically