

REGRESSÃO LINEAR COM MÚLTIPLAS VARIÁVEIS

Múltiplas características (variáveis).

	Size (feet ²)	Price (\$1000)
Até agora vimos:	$\underline{}$	y
-	2104	460
	1416	232
	1534	315
	852	178

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Múltiplas características (variáveis).

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	1 <i>7</i> 8
•••	•••	•••	•••	•••

Notação:

n = número de características (features)

 $x^{(i)}$ = Entrada (features) do i^{th} exemplo de treinamento

 $x_i^{(i)}$ = valor da característica j do i^{th} exemplo de treinamento

Hipótese:

Anterior:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Agora:
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$$

4

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Por conveniência de notação, definimos $x_0=1$.

Assim:

Hipótese:

$$X = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \Re^{n+1}$$

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \Re^{n+1}$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Gradiente descendente para múltiplas variáveis

Hipótese: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$

Função Custo: $J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

(Atualize simultaneamente para todo $j = 0, \dots, n$

 $\theta_0, \theta_1, \ldots, \theta_n$

 $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$

Parâmetros:

Repeat {

Gradiente descendente:

Gradiente Descendente

Anteriormente (n=1):

Repeat {

 $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$ $\frac{\partial}{\partial \theta_0} J(\theta)$

(Atualize simultaneamente θ_0, θ_1)

 $\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$

 $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$

Novo algoritmo $(n \ge 1)$:

Repeat $\{\theta_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} \}$

(Atualize simultaneamente θ_i , $j = 0, \dots, n$)

 $\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1} (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)}$

 $\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$

Gradiente descendente: Feature Scaling

Feature Scaling

Ideia: Colocar as características dentro da mesma escala.

Feature Scaling

Coloque as características (features) dentro do intervalo

$$-1 \le x_i \le 1$$

$$-3 \le x \le 3$$

$$x_0 = 1$$
 $0 \le x_1 \le 3$ $-3 \le x \le 3$ $-2 \le x_2 \le 0.5$ $-\frac{1}{3} \le x \le \frac{1}{3}$ $-100 \le x_3 \le 100$ \times

$$-0.0001 \le x_4 \le 0.0001 >$$

Mean normalization

Troque x_i por $x_i - \mu_i$ - (Não faça isso para $x_0 = 1$).

$$\begin{aligned} \text{E.g.} \quad x_1 &= \frac{size - 1000}{2000} \\ x_2 &= \frac{\#bedrooms - 2}{5} \\ &\quad -0.5 \leq x_1 \leq 0.5, -0.5 \leq x_2 \leq 0.5 \\ x_1 &\longleftarrow \frac{x_1 - \mu_1}{s_1} \quad x_2 \leftarrow \frac{x_2 - \mu_2}{s_2} \\ &\quad S - \text{Range (Max-Min) ou Desvio padrão.} \end{aligned}$$

Gradiente descendente: Taxa de Aprendizado

Gradiente descendente

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging": Como saber se o Gradiente descendente está funcionando corretamente.
- Como escolher a taxa de aprendizado lpha .

O gradiente descendente está funcionando corretamente?

Examplo de teste automático de convergência:

Considere convergente se $J(\theta)$ decresce pelo menos 10^{-3} em cada iteração.

O gradiente descendente está funcionando corretamente?

- Para um valor pequeno de α , $J(\theta)$ deve decrescer a cada iteração.
- Mas se α é muito pequeno, o gradiente descendente pode convergir muito lentamente.

Resumo:

- Se α for muito pequeno: convergência Lenta.
- Se α for muito grande: $J(\theta)$ poderia não decrescer em cada iteração, ou mesmo, não convergir.

Para escolher α , tente:

..., 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, ...

Características (Features) e Regressão polinomial

Predição do preço de casas

$$h_{\theta}(x) = \theta_{0} + \theta_{1} \times frente + \theta_{2} \times Profundidade$$

Área:

X=frente x profundidade

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$

Regressão Polinomial

 $\theta_0 + \theta_1 x + \theta_2 x^2$ $\rightarrow \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$ Preço (y)

Tamanho (x)
$$x_1 = (size)$$

$$x_2 = (size)^2$$

$$x_3 = (size)^2$$

 $x_3 = (size)^3$ $\theta = \theta_0 + \theta_1(size) + \theta_2(size)^2 + \theta_3(size)^3$

Escolha de características (features)

Equação Normal

Gradiente Descendente

Equação Normal: Método para resolver θ analiticamente.

Se 1D $(\theta \in \mathbb{R})$

 $\theta \in \mathbb{R}^{n+1}$

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{d}{d\theta}J(\theta) = 0$$

Resolva em função de θ

$$eta \in \mathbb{R}^{n+1}$$
 $J(heta_0, heta_1, \dots, heta_m) = rac{1}{2m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)})^2$ $rac{\partial}{\partial heta_j} J(heta) = \dots = 0$ (para cada j)

Resolva para cada $\theta_0, \theta_1, \dots, \theta_n$

Exemplos: m = 4.

		Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
_	x_0	$ x_1 $	x_2	x_3	x_4	y
	1	2104	5	1	45	460
	1	1416	3	2	40	232
	1	1534	3	2	30	315
	1	852	2	1	36	178
	-	$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	2 30	$y = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$	460 232 315 178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$

$$\theta = (X^T X)^{-1} X^T y$$

m exemplos $(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})$:

$$n$$
 características. $\begin{bmatrix} x_0^{(i)} \end{bmatrix}$

$$\begin{bmatrix} x_0^{(i)} \\ x_0^{(i)} \end{bmatrix}$$

$$\begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \end{bmatrix}$$

$$x^{(i)} = \begin{bmatrix} x_0 \\ x_1^{(i)} \\ x_2^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$x^{(i)} = \begin{vmatrix} x_2^{(i)} \\ \vdots \\ x_{(i)} \end{vmatrix} \in \mathbb{R}^{n+1}$$

$$\begin{vmatrix} \vdots \\ x_n^{(i)} \end{vmatrix}$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$X = \begin{bmatrix} - & (X^{(1)})^T & - \\ - & (X^{(2)})^T & - \\ - & \vdots & - \\ - & (X^{(m)})^T & - \end{bmatrix} \qquad Y = \begin{bmatrix} y^1 \\ y^2 \\ \vdots \\ y^m \end{bmatrix}$$

$$X = \begin{bmatrix} 1 & x^1 \\ 1 & x^2 \\ \vdots & \vdots \\ 1 & x^m \end{bmatrix} \quad Mx(n+1)$$

$$X = \begin{bmatrix} 1 & x^1 \\ 1 & x^2 \\ \vdots & \vdots \\ 1 & x^m \end{bmatrix} \quad Mx2$$

$$X = \begin{bmatrix} - & (X^{(1)})^T & - \\ - & (X^{(2)})^T & - \\ & & \ddots \end{bmatrix}$$

$$\begin{bmatrix} & - \\ 1 & - \end{bmatrix}$$

$$\mathcal{X}^m$$

$$\theta = (X^TX)^{-1}X^Ty$$

$$(X^TX)^{-1} \, \text{\'e} \, \text{a inversa da matrix} \, \, X^TX \, .$$

Octave ou Matlab: pinv(x'*x)*x'*y

m exemplos de treinamento, n características.

Gradiente Descendente

- Precisa escolher α .
- Muitas iterações.
- Trabalha bem mesmo quando n é grande.

Equação Normal

- Não precisa escolher α .
- Não é iterativo
- Precisa calcular $(X^TX)^{-1}$
- Lento se n é muito grande

Equação Normal e não inversabilidade

Equação Normal

$$\theta = (X^T X)^{-1} X^T y$$

- Se X^TX é não inversível (singular/degenerada)

Faça:

-Octave ou matlab: pinv(x'*x)*x'*y

E se X^TX não for inversível?

• Redundante features (linearmente dependente).

E.g.
$$x_1 = \text{Tamanho em feet}^2$$

 $x_2 = \text{Tamanho em m}^2$

- Muitos features (e.g. $m \le n$).
 - Exclua alguns features ou faça regularização.