

PARALLEL AND GPU PROGRAMMING IN PYTHON

Mohsen Safari
HPC Advisor, SURF

November 16, 2023

Amsterdam Science Park

Outline

- GPUs as hardware accelerator
- PyCUDA programming
 - CUDA programming and execution model
- Examples:
 - Vector (1D array) addition
 - Matrix (2D array) addition
 - Matrix multiplication
 - Reduction
- Optimization tips
- Two bugs in GPU programming

Resources

- The slides and source code of the examples can be found at:
 - https://github.com/sara-nl/Parallel-and-GPU-programming-in-Python

Hardware Accelarator (e.g., GPUs)

What is it?

Why do we need it?

How to benefit it?

A computer is

Peripherals

Main Gloals

General-Purpose

Low latency

Complicated CPUs

Memory Hierarchy

Moore's Law

Number of transistors on a CPU chip will double every 18 months.

Dennard Scaling Law

As transistors become smaller, their power density stays constant

- As a result of Moore's and Dennard's law:
 - CPU manufacturers can raise clock frequency without significantly increasing overall circuit power consumption

Clock Frequency

End of Moore's/Dennard's Law

The prediction had been true for a long time

 We observe that #transistors does not increase in the scale of Moore's law

We reach the end of Dennard scaling law

Multi-core CPUs

Multi-processors

New requirements

Big data

- New applications:
 - Massively parallel
 - Certain operations

Faster computation

Accelerator

Accelarators/Co-processors

Graphics Processing Units (GPUs)

Field Programmable Gate Arrays (FPGAs)

Tensor Processing Units (TPUs)

—

Simplere many cores

Simpler cores (i.e., simplified ALUs and CUs)

Replicate many of them

As a co-processor

GPUs

Initially invented for image rendering purposes

Gradually evolved to be used as General Purpose GPU

GPUs vs CPUs

Two Metrics

Latency: the time it takes an instruction to be processed

 Throughput: the number of instructions that can be processed in a certain amount of time

Two Metrics

CPUs are latency-optimized processors

GPUs are throughput-optimized (co-)processors

GPU Manufacturers

Supercomputers

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE D0E/SC/Oak Ridge National Laboratory United States	8,730,112	1,102.00	1,685.65	21,100
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	1,110,144	151.90	214.35	2,942
4	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148.60	200.79	10,096
5	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94.64	125.71	7,438

Supercomputers

6	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93.01	125.44	15,371
7	Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE D0E/SC/LBNL/NERSC United States	761,856	70.87	93.75	2,589
8	Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	555,520	63.46	79.22	2,646
9	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,981,760	61.44	100.68	18,482
10	Adastra - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE Grand Equipement National de Calcul Intensif - Centre Informatique National de l'Enseignement Suprieur (GENCI-CINES) France	319,072	46.10	61.61	921

Snellius Supercomputer

72 GPU nodes

Each node has 4 A100 NVIDIA GPU devices

- In total 288 GPUs

GPU CPU Connectivity

GPU Usability

- How to Use GPUs?

GPU Usability

3 Ways to Accelerate Applications

Applications

Libraries

OpenACC Directives

Programming Languages

"Drop-in"
Acceleration

Easily Accelerate Applications

Maximum Flexibility

GPU Libraries

GPU Usability

3 Ways to Accelerate Applications

Applications

Libraries

OpenACC Directives

Programming Languages

"Drop-in"
Acceleration

Easily Accelerate Applications

Maximum Flexibility

OpenACC/OpenMP

OpenACC stands for Open Accelerators

OpenMP stands for Open Multi-Processing

Directive-based APIs

Simple compiler hints to parallelize the code

GPU Usability

3 Ways to Accelerate Applications

Applications

Libraries

OpenACC Directives

Programming Languages

"Drop-in"
Acceleration

Easily Accelerate Applications

Maximum Flexibility

GPU Programming Languages

Core GPU Programming

- Nvidia GPUs:
 - CUDA, OpenCL, HIP
- AMD GPUs:
 - OpenCL, HIP
- Intel GPUs:
 - OpenCL

Accessing to GPUs in Python

PyTorch/TensorFlow

They are powerful and mature deep learning libraries

They benefit from GPUs without knowing GPU programming knowledge

They are open sources

They are taught in machine learning courses

CuPy vs NumPy


```
NumPy
```

```
import numpy as np
X_{cpu} = np.zeros((10,))
W_{cpu} = np.zeros((10, 5))
y_cpu = np.dot(x_cpu, W_cpu)
```

```
import cupy as cp
x_{gpu} = cp.zeros((10,))
W_gpu = cp.zeros((10, 5))
y_gpu = cp.dot(x_gpu, W_gpu)
```


Numba

 It is an open-source Just-In Time (JIT) compiler that translates a subset of Python and Numpy into GPU machine code.

 It uses a collection of decorators that can be applied to your functions to instruct Numba to compile them.

For more information: https://numba.pydata.org/

PyCUDA

 It gives you easy, Pythonic access to NVIDIA's CUDA parallel computation API.

There is more flexibility to write custom CUDA kernels

For more information: https://documen.tician.de/pycuda/

NVIDIA GPU Hardware

NVIDIA GPU Hardware

GPU device:

Flynn's classical taxonomy

		Instruction stream	
		Single	Multiple
Data stream	Single	SISD	MISD
	Multiple	SIMD	MIMD

- Introduced by NVIDIA in 2006, Compute Unified Device Architecture
- General purpose programming model that leverages the parallel compute engine in NVIDIA GPUs
- An extension of C language
- CUDA programs are CPU-GPU programs:
 - CPU part is called host
 - GPU part is called *kernel*

To execute any CUDA program, there are three main steps:

- Copy the input data from host memory to device memory, also known as host-to-device transfer
- Call the kernel from host and execute the GPU program
- Copy the results from device memory to host memory, also called device-to-host transfer

Threads are organized into two

hierarchical levels:

- Threads are grouped into blocks
- Blocks are grouped into grids
- Blocks and grids can be

1D, 2D and 3D

Built-in functions:

- Dimension:
 - · gridDim.x, gridDim.y, gridDim.z
 - blockDim.x, blockDim.z
- Index:
 - blockIdx.x, blockIdx.y, blockIdx.z
 - threadIdx.x, threadIdx.y, threadIdx.z

CUDA Grid

- gridDim.x = 3
- gridDim.y = 3
- blockDim.x = 3
- blockDim.y = 3

Synchronization in CUDA

- There is a mechanism to synchronize all threads in a block:
 - Built-in function __syncthreads()
- There is no mechanism to synchronize all threads across all blocks
 - Decouple the kernel into two separate kernels

GPU Node

- 4 NVIDIA A100 GPUs per node
 - Multiprocessors: 108
 - Streaming cores: 6912
 - Tensor Cores: 432
 - Global memory: 40 GB
- MIG partitions: 1/7th of A100 GPUs
- One GPU is shared among 7 people
- Note that you have around 5 GB memory:
 - Matrix $(35,000 * 35,000) = 35,000*35,000*4 \approx 5 \text{ GB}$

First Example:

Parallel Vector (1D array) Addition in PyCUDA

Calculate Global Index (1D grid, 1D block)

- Global Thread ID: blockIdx.x * blockDim.x + threadIdx.x
- For global thread ID 26:
 - blockldx.x = 3
 - blockDim.x = 8
 - threadIdx.x = 2
 - Global thread ID = 3 * 8 + 2 = 26

PyCUDA Implementation

- Implement vector addition in PyCUDA
- Compare its execution time to the sequential version

Automatic Data Transfer

- Automatic data transfer using PyCUDA driver:
 - In()
 - Out()
 - InOut()
- PyCUDA programs become simpler

Second Example:

Parallel Matrix (2D array) Addition in PyCUDA

Calculate Global Index (2D grid, 2D block)

Matrix 12*16

- Global Thread ID:
 - row = blockldx.y * blockDim.y + threadIdx.y = 2 * 4 + 1 = 9
 - column = blockldx.x * blockDim.x + threadIdx.x = 1 * 4 + 3 = 7

Row-Major Flattening of a Matrix

- Matrix 3*3
- For each element (row, col):
 - New ID = row * (No of col) + col
- For instance element "5" in location (1, 2):
 - New ID = 1 * 3 + 2 = 5

How we see a 2D array

Row-Major Flattening of a Matrix

PyCUDA Implementation

- Implement matrix addition in PyCUDA
- Compare its execution time to the sequential version

Exercise 1

- Try to transpose a matrix in parallel using PyCUDA
- Compare its execution time to the sequential version

Third Example:

Parallel Matrix (2D array) Multiplication in PyCUDA

Sequential Matrix Multiplication

```
/* ijk */
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}</pre>
```


$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \times \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix}$$

Parallel Matrix Multiplication

```
int k, sum = 0;
int col = threadIdx.x + blockDim.x * blockIdx.x;
int row = threadIdx.y + blockDim.y * blockIdx.y;
if(col < width && row < width) {
for (k = 0; k < width; k++)
 sum += a[row * width + k] * b[k * width + col];
 c[row * width + col] = sum;
```


PyCUDA Implementation

- Implement matrix multiplication in PyCUDA
- Compare its execution time to
 - Sequential CPU-based
 - Numpy.matmul()
 - @ operator

Fourth Example: Reduction in PyCUDA

Reduction

Reduction (addition)

Reduction (addition)

Reduction (addition)

$$(tid\%(2^{level})==0) ==> a[tid] += a[tid+2^{level}]$$

PyCUDA Implementation

- Implement reduction in PyCUDA using one thread block
- Compare its execution time to the sequential version and Python reduce operator

PyCUDA Implementation

- Extend it to use arbitrary size (i.e., multiple thread blocks)
- Compare its execution time to the sequential version and Python reduce operator

PyCUDA Implementation

- How to use shared memory in reduction?
- Compare its execution time to the sequential version and Python reduce operator

Exercise 2

 Reduce an array using other operators (subtraction, multiplication, etc.)

Optimization

There are different ways to optimize CUDA codes:

- Number of threads per block
- Workload per thread
- Total work per thread block
- Correct memory access and data locality
- **-** ...

Tips for Optimization

Global Memory Access:

Coalesced

Non-coalesced

Tips for Optimization

Avoid Warp Divergence:

```
if ( threadIdx.x < 16 )
   ... A ...
else
   ... В ...
```


Tips for Optimization

- Use shared memory in two cases:
 - When threads in a block need to shared data
 - When there are repeated accesses to one location in global memory
 - In this case, it is possible to use registers as local memory to each thread

GPU Development Cycle

Data Races

 A data race is a situation where two or more threads may access the same memory location simultaneously and at least one of them is a write

It causes undefined behavior of programs

Data Race Example

```
__global__ void kernel(int *arr)
{

arr += 1;
}
```

One solution is to use built-in atomic operations in GPU programming languages

Data Race Example

```
global void kernel(int *arr, int size)
 if (tid < size-1)
    arr[tid] += arr[tid+1];
 }
```

One solution is to use synchronization methods in GPU programming

Barrier Divergence

 A barrier divergence happens when threads from the same thread block diverge and hit different (syntactical) barriers.

Barrier Divergence Example

```
_global__ void kernel(...){
 if (tid \% 2 == 0){
     syncthreads();
     . . . .
 } else{
     syncthreads(); }
```


Questions

Thank you for participating! Any questions?

