Министерство образования и науки Российской Федерации (МИНОБРНАУКИ РОССИИ) ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ТГУ) Институт прикладной математики и компьютерных наук Кафедра защиты информации и криптографии

КУРСОВАЯ РАБОТА

БИБЛИОТЕКА ДЛЯ РАБОТЫ С БУЛЕВЫМИ ФУНКЦИЯМИ ДЛЯ ЯЗЫКА ПРОГРАММИРОВАНИЯ LYAPAS

Муругов Михаил Алексеевич

Рук	оводител	ПЬ
кан	д. физм	иат. наук, доцент
		И.А.Панкратова
‹ ‹	>>	201 г.
Сту	дент гру	ппы № 1155
		М.А.Муругов

ОГЛАВЛЕНИЕ

Введение			
1 Описание алгоритмов на математическом языке			
1.1 Принадлежность булевой функции к классу T^0			
1.2 Принадлежность булевой функции к классу T^1			
1.3 Принадлежность булевой функции к классу монотонных булевых функций			
1.4 Преобразование Мёбиуса булевой функции			
1.5 Принадлежность булевой функции к классу линейных булевых функций			
1.6 Отражение вектора значений булевой функции			
1.7 Принадлежность булевой функции к классу самодвойственных булевых функций			
2 Идеи программных реализаций			
$2.1~$ Принадлежность булевой функции к классу T^0			
$2.2\ \Pi$ ринадлежность булевой функции к классу T^1			
2.3 Принадлежность булевой функции к классу монотонных булевых функций			
2.4 Преобразование Мёбиуса булевой функции			
2.5 Принадлежность булевой функции к классу линейных булевых функций			
2.6 Отражение вектора значений булевой функции			
2.7 Принадлежность булевой функции к классу самодвойственных булевых функций			
3 Экспериментальные данные			
3.1 Принадлежность булевой функции к классу монотонных булевых функций			
3.2 Преобразование Мёбиуса булевой функции			
3.3 Принадлежность булевой функции к классу линейных булевых функций			
3.4 Отражение вектора значений булевой функции			
3.5 Принадлежность булевой функции к классу самодвойственных булевых функций			
4 Заключение			

Список использованных источников и литературы

Приложения

ВВЕДЕНИЕ

Целью этой курсовой работы было написание библиотеки для работы с булевыми функциями (определение принадлежности к замкнутым классам, различные преобразования и т.д.) для языка программирования LYaPAS. В дальнейшем планируется, что эта библиотека будет использоваться для реализации криптографических алгоритмов и прочих нужд.

Для криптографии булевы функции важны т.к. они, в частности, используются в качестве комбинирующих и фильтрующих функций при построении поточных шифров; для блочных шифров они используются в качестве функций блоков замены и т.д.

В нынешнее время язык LYaPAS уже выигрывает по скорости на некоторых алгоритмах, но всё ещё требует доработок и улучшений, в следствие чего и был выбран.

В качестве базиса в языке уже реализованы побитовые операции для булевых векторов любой длины, а также для 32-х битных векторов функция подсчёта веса и генерация псевдослучайного вектора. Всё это используется в настоящей работе для реализации более сложных вещей относительно булевых функций.

ОПИСАНИЕ АЛГОРИТМОВ НА МАТЕМАТИЧЕСКОМ ЯЗЫКЕ

Все определения (за исключением преобразования Мёбиуса и отражения вектора значений) взяты из [1].

IПринадлежность булевой функции к классу T^0

Определение. Булева функция *сохраняет константу* 0 (*принадлежит классу* T^0), если на наборе из всех нулей функция принимает значение нуль.

Алгоритм:

Вход: $f(x_1,...,x_n)$ – булева функция

Выход: " f принадлежит классу T^0 ?"

Шаг 1) Если f(0,0,...,0) = 0, то ответ "Да"

Иначе ответ "Нет"

Π ринадлежность булевой функции к классу T^1

Определение. Булева функция *сохраняет константу* 1 (*принадлежит классу* T^1), если на наборе из всех единиц функция принимает значение единица.

Алгоритм:

Вход: $f(x_1,...,x_n)$ – булева функция

Выход: " f принадлежит классу T^1 ?"

Шаг 1) Если f(1,1,...,1) = 1, то ответ "Да"

Иначе ответ "Нет"

Принадлежность булевой функции к классу монотонных булевых функций

Определение. Булева функция $f(x_1,...,x_n)$ называется монотонной (принадлежит классу M), если для любой пары наборов α и β таких, что $\beta \succeq \alpha$, выполняется условие $f(\beta) \geqslant f(\alpha)$.

Алгоритм определения принадлежности булевой функции к классу монотонных булевых функций приведён в [1].

Преобразование Мёбиуса булевой функции

Определение. Положительной конъюнкцией называется элементарная конъюнкция, не содержащая инверсий переменных. Договоримся обозначать положительную конъюнкцию через K^+ .

Определение. Полиномом Жегалкина, или алгебраической нормальной формой (АНФ), булевой функции $f(x_1,...,x_n)$ называется дизъюнкция с исключением различных положительных конъюнкций переменных из множества $X = \{x_1,...,x_n\}$, то есть формула вида $P = K_1^+ \oplus ... \oplus K_p^+$, задающая функцию $f(x_1,...,x_n)$.

Определение. *Преобразованием Мёбиуса* называется функция $\mu: P_2(n) \to P_2(n)$, где $P_2(n)$ — множество всех булевых функций от n переменных. С помощью преобразования Мёбиуса решается задача построения АНФ булевой функции, и вычислить его значения для функции f(x) можно по формуле $g(a) = \bigoplus f(x)$, где $g = \mu(f)$.

Довольно быстрый и простой способ преобразования Мёбиуса, который был взят за основу программной реализации, приведён в [2].

Преобразование Мёбиуса связано с полиномом Жегалкина следующим образом: значение $\mu(f)$ на наборе аргументов говорит о том, есть ли положительная конъюнкция аргументов со значением 1 из этого набора в АНФ функции f (1 — положительная конъюнкция есть, 0 — положительной конъюнкции нет). Набор аргументов (0,...,0) соответствует константе 1.

Принадлежность булевой функции к классу линейных булевых функций

Определение. *Длиной* булева вектора назовем количество его компонент, а *весом* вектора – количество компонент, равных единице

Длину булева вектора a в дальнейшем будем обозначать l(a). Запись l(f), где f – булева функция, будет обозначать длину вектора её значений.

Вес булева вектора a в дальнейшем будем обозначать w(a). Запись w(f), где f – булева функция, будет обозначать вес вектора её значений.

Определение. Длиной полинома Жегалкина назовем количество конъюнкций в полиноме, а его *степенью* – наибольший из рангов конъюнкций, входящих в полином.

Определение. Полином Жегалкина называется *линейным*, если его степень не превышает единицы.

Определение. Булева функция называется *линейной* (*принадлежит классу* L), если ее полином Жегалкина линеен.

Определить линейность булевой функции f достаточно просто. Для этого возьмём булеву функцию $g=\mu(f)$ и построим по вектору значений g АНФ функции f (связь преобразования Мёбиуса и построения АНФ функции описаны на с. 4), если АНФ линейна, то функция f — линейна.

Отражение вектора значений булевой функции

Определение. *Отражением* вектора значений булевой функции является обмен значениями функции на противоположных наборах аргументов.

В дальнейшем отражение вектора значений булевой функции f будем обозначать $f^{\it R}$

Принадлежность булевой функции к классу самодвойственных булевых функций

Определение. Булева функция $f(x_1,...,x_n)$ называется двойственной булевой функции $g(x_1,...,x_n)$, если она получена из $g(x_1,...,x_n)$ инверсией всех аргументов и самой функции, то есть $f(x_1,...,x_n)=\overline{g(x_1,...,x_n)}$.

Определение. Булева функция $f(x_1,...,x_n)$ самодвойственна (принадлежит классу S), если она равна двойственной себе функции, то есть $f(x_1,...,x_n)=\overline{f(x_1,...,x_n)}$.

Алгоритм определения принадлежности булевой функции к классу самодвойственных булевых функций приведён в [1].

ИДЕИ ПРОГРАММНЫХ РЕАЛИЗАЦИЙ

Перед изложением дальнейшего материала необходимо кое-что обозначить:

Во-первых, булевы функции в языке LYaPAS представляются векторами их значений.

Во-вторых, вектора значений булевых функций хранятся в логических комплексах L, каждый элемент которого занимает в памяти 4 байта(32 бита). Таким образом, т.к. $l(f(x_1,...,x_n))=2^n$, то функция до 5 аргументов включительно помещается в один элемент комплекса. От 6 в 2 элемента, от 7 в 4 и т.д. Количество элементов комплекса, необходимых для хранения функции от n аргументов можно вычислить по формуле $Q=\left\lceil \frac{2^n+31}{32}\right\rceil$.

В-третьих, значения булевой функции в памяти хранятся в привычном нам порядке (младшие биты справа, старшие биты слева), при этом нулевой бит нулевого элемента комплекса соответствует значению f(0,...,0), следующий за ним f(0,...,0,1) и т.д.

Также обратите внимание, что в этом разделе находятся лишь <u>идеи</u>, сами программные реализации смотрите в приложении.

Принадлежность к классу T^0

Проверка булевой функции на принадлежность к классу T^0 тривиальна. Необходимо просто посмотреть на первый бит вектора её значений. Если этот бит равен нулю, то функция сохраняет константу 0.

Принадлежность к классу T^1

Для проверки принадлежности булевой функции к классу T^1 необходимо посмотреть на старший бит вектора её значений. Если этот бит равен 1, то функция сохраняет константу 1. Но проверка булевой функции на принадлежность к классу T^1 немного сложнее, чем к классу T^0 , т.к. у функций, зависящих от $n \le 5$ аргументов старший бит вектора значений находится в нулевом элементе комплекса и его сначала необходимо найти. В общем же случае найти старший бит вектора значений функции можно по следующим правилам: $i = \left[\frac{2^n + 31}{32}\right] - 1$, $j = 2^n - 1 \pmod{32}$, где i -индекс элемента комплекса, а j -номер бита в элементе с индексом i.

Принадлежность булевой функции к классу монотонных булевых функций

Т.к. булева функция помещена в «блоки» по 32 бита, то перед стартом рекурсии можно проверить её на монотонность вплоть до 5 компоненты следующими действиями:

$L1i < 1 \& AAAAAAAAA \Rightarrow a$	***Проверяем на монотонность на наборах,
a & L1i ⊕ a →2	***соседних по пятой компоненте
$L1i < 2 \& CCCCCCCCh \Rightarrow a$	***Проверяем на монотонность на наборах,
a & L1i ⊕ a →2	***соседних по четвёртой компоненте
$L1i < 4 \& F0F0F0F0h \Rightarrow a$	
a & L1i ⊕ a →2	***
$L1i < 8 \& FF00FF00h \Rightarrow a$	
a & L1i ⊕ a →2	
$L1i < 16 \Rightarrow a$	***Проверяем на монотонность на наборах,
a & L1i ⊕ a →2	***соседних по первой компоненте

После того, как каждый элемент комплекса проверен таким образом и немонотонность не обнаружена, то запускается рекурсивная функция, которая проверяет на монотонность по остальным компонентам.

Преобразование Мёбиуса булевой функции

Как следует из способа, изложенного в [2] и учитывая, что операция \oplus ассоциативна, преобразование Мёбиуса рекурсивно реализуется по следующему алгоритму:

Вход: $f(x_1,...,x_n)$ – булева функция

Выход: $\mu(f)$

Шаг 1) Разбиваем вектор значений булевой функции на младшую и старшую часть f^0 и f^1 соответственно

Шаг 2)
$$f^1 := f^0 \oplus f^1$$

Шаг 3) Если l(f) = 2, то выход

Иначе выполнить шаги 1-3 для f^0 и f^1

Принадлежность булевой функции к классу линейных булевых функций

Алгоритм на проверку принадлежности булевой функции довольно прост. Необходимо выполнить преобразование Мёбиуса для этой функции и посмотреть, есть ли хотя бы одна единица на наборе аргументов с более, чем одной единицей.

Алгоритм:

Вход:
$$f(x_1,...,x_n)$$
 – булева функция

Выход: "
$$f$$
 — линейна?"

Шаг 1)
$$g := \mu(f)$$

Шаг 2)
$$g(0,...,0) := 0$$

Шаг 3) Для
$$i = 1,...,n$$
:

Шаг 3.1) $g(a_i) := 0$, где a_i — набор аргументов с единственной единицей на i -ой позиции

Шаг 4) Если
$$g(x_1,...,x_n)=0$$
, то ответ "Да"

Иначе ответ "Нет"

Этот алгоритм обусловлен тем, что зануляя значение функции на наборе аргументов из нулей и с одной единицей, мы исключаем из рассмотрения положительные конъюнкции 0 и 1 рангов и если остаётся хоть одна положительная конъюнкций большего ранга, то, как следует из определения линейной функции, она не линейна.

Отражение вектора значений булевой функции

Отражение вектора значений булевой функции программно довольно нетривиально, т.к. нет таких средств, которые позволили бы сделать это за одну операцию. В языке LYaPAS, т.к. вектора значений булевых функций разбиты на «блоки» по 32 бита, преобразование выполняется следующим образом: сначала выполняется отражение каждого «блока» по отдельности, затем первый «блок» меняется местами с последним, второй с предпоследним и т.д.

Также, т.к. вектора значений булевых функций от $n \le 5$ переменных включительно помещаются в один элемент логического комплекса L, то после отражения таких векторов их необходимо будет побитово сдвинуть вправо на $32-2^n$ бита, т.к. после отражения младшие биты станут старшими в 32-x битном «блоке».

Функция, выполняющая отражение 32-х битного «блока»:

```
reverseBits(a/b)

***а — входной вектор

***b — отраженный вектор а

a > 1 & 55555555h \Rightarrow v

a & 55555555h < 1 \lor v \Rightarrow b ***Меняем местами чётные и нечётные биты

b > 2 & 33333333h \Rightarrow v

b & 33333333h \Rightarrow v

b & 0f0f0f0f0h \Rightarrow v

b & 0f0f0f0fh \Rightarrow v

b & 0f0f0offh \Rightarrow v

b & 0off0offh \Rightarrow v

***Меняем местами байты

b > 16 \Rightarrow v

b < 16 \lor v \Rightarrow b ***Меняем местами 2-х байтовые слова
```

Принадлежность булевой функции к классу самодвойственных булевых функций

Программно проверка на принадлежность булевой функции к классу самодвойственных булевых функций реализована согласно следующему алгоритму:

```
Вход: f(x_1,...,x_n) – булева функция
```

Выход: " f — самодвойственна?"

Шаг 1) Разбиваем вектор значений булевой функции на младшую и старшую часть f^0 и f^1 соответственно

Шаг 2) Если
$$f^0 = \overline{(f^1)^R}$$
, то ответ "Да"

Иначе ответ "Нет"

 $\overline{(f^1)^R}$ — этим самым действием мы сопоставляем значения функции на противоположных наборах аргументов, а затем проверяем условие $f(x_1,...,x_n) = \overline{f(x_1,...,x_n)}$.

ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ

Далее представлены графики зависимости времени работы функций над булевыми функциями от количества переменных в булевых функциях. Для каждого количества переменных выполнялось по 100 итераций и на вход подавался наихудший случай (проверка констант на монотонность и т.д.).

Для проверки принадлежности к классам T^0 и T^1 эксперименты не проводились, т.к. сложность этих операций O(1) и смотреть зависимость времени работы функций от количества переменных в булевой функции бессмысленно.

Принадлежность булевой функции к классу монотонных булевых функций

Как видно из графика, при n > 22 функция имеет сложность $O(2^n)$.

Преобразование Мёбиуса булевой функции

Как видно из графика, при n > 22 функция имеет сложность $O(2^n)$, но даже для функции от 31 аргумента выполняется быстрее, чем за секунду.

Принадлежность булевой функции к классу линейных булевых функций

Как видно из графика, при n > 5 функция имеет сложность $O(2^n)$.

Как видно из графика, при n > 5 функция имеет сложность $O(2^n)$.

Принадлежность булевой функции к классу самодвойственных булевых функций

Как видно из графика, при n > 22 функция имеет сложность $O(2^n)$.

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ

- 1. Быкова С.В. Учебно-методический комплекс «Булевы функции». Томск 2006.
- 2. Панкратова И.А. Учебное пособие «Булевы функции в криптографии». Томск 2014.

ПРИЛОЖЕНИЯ

Во всех функциях L1, L2 — вектора значений булевых функций, n — количество переменных, от которых они зависят.

```
***Функция копирования булевой функции от n аргументов из комплекса L1 в
***комплекс L2 (используется, т.к. операция L1⇒L2 не работает на функциях от
***большого количества аргументов)
copyBF(L1,n/L2)
In + 31 > 5 \Rightarrow Q2
Oi
§1
       L1i \Rightarrow L2i
       \Delta i
       \uparrow(i<Q2)1
**
***Рекурсивная функция для выполнения преобразование Мёбиуса
***(вспомогательная, должна вызываться ТОЛЬКО из MobiusBF(/))
MobiusBFHelper(L1,l,h/L1)
***1 - начальный индекс для преобразования
***h - конечный индекс для преобразования
***Преобразования выполняется для [1,h) элементов
h - 1 > 1 \hookrightarrow 2 + 1 \Rightarrow i \Rightarrow m
                             ***Проверяем условие выхода и находим индекс середины L1
l \Rightarrow i
§1
       L1i \bigoplus L1j \Rightarrow L1j
       Δί Δϳ
       \uparrow (j \leq h)1
       *MobiusBFHelper(L1,l,m/L1)
       *MobiusBFHelper(L1,m,h/L1)
§2
```

```
***Преобразование Мёбиуса булевой функции
MobiusBF(L1,n/L2)
*copyBF(L1,n/L2)
In + 31 > 5 \Rightarrow q \Rightarrow Q2
                              ***Считаем, сколько элементов в L1
Oi
$1
       ***Выполняем преобразование Мёбиуса для каждого элемента L2
       L2i < 1 \& AAAAAAAA \oplus L2i \Rightarrow L2i
       L2i < 2 \& CCCCCCCh \oplus L2i \Rightarrow L2i
       L2i < 4 \& F0F0F0F0h \oplus L2i \Rightarrow L2i
       L2i < 8 \& FF00FF00h \oplus L2i \Rightarrow L2i
       L2i < 16 \bigoplus L2i \Rightarrow L2i
       \Delta i \uparrow (i \leq q)1
            ***↑(q≠1)2
q \oplus 1 \mapsto 2
       32 - In \Rightarrow n
       L2.0 < n > n \Rightarrow L2.0 ***"Отсекаем" лишние биты
       *MobiusBFHelper(L2,0,q/L2)
                                             ***Вызов рекурсивной функции
§2
§3
       **
***Проверка булевой функции на линейность
isBFLinear(L1,n/f)
Of
S1 \Rightarrow s
@+L2(s) *MobiusBF(L1,n/L2)
L2.0 & FFFFFFEh \Rightarrow L2.0 ***Зануляем бит, соответствующий набору аргументов из
                              ***нулей
Oi
$1
       ***цикл зануления битов, соответствующих наборам аргументов с одной единицей
       Ii > 5 \Rightarrow k
                      ***Находим индекс нужного элемента
       Ii & 31 ⇒ s ***Находим номер нужного бита
                              ***Зануляем нужный бит
       Is \neg & L2k \Rightarrow L2k
       \Delta i
       \uparrow(i<n)1
In + 31 > 5 \Rightarrow q
                       ***Вычисляем, сколько необходимо элементов для хранения булевой
                       ***функции
Oi
82
       L2i % →3
                       ***Проверяем на наличие единиц на остальных наборах аргументов
       \Delta I \uparrow (i \leq q)2
       \Delta f
               ***Если единиц не обнаружили, то функция линейна
***Принадлежность к классу T^0
isBFT0(L1,n/f)
L1.0 \& 1 \oplus 1 \Rightarrow f
**
```

```
***Принадлежность к классу T^1
isBFT1(L1,n/f)
Of
                       ***Индекс элемента комплекса
In + 31 > 5 \Rightarrow i
                       ***Номер бита
In - 1 & 31 \Rightarrow i
L1i & Ij ↔1
       \Delta f
§1
***Отражение 32-х битного вектора
reverseBits(a/b)
***а – исходный 32-х битный вектор
***b – отражённый вектор а
       a > 1 \& 55555555h \Rightarrow v
       а & 55555555h < 1 \lor v \Rightarrow b **Меняем местами чётные и нечётные биты
b > 2 \& 333333333h \Rightarrow v
b & 33333333h < 2 V v ⇒ b ***Меняем местами пары битов
       b > 4 \& 0f0f0f0fh \Rightarrow v
       b & 0f0f0f0fh < 4 \text{ V V} \Rightarrow b ***Меняем местами последовательности из 4-х битов
b > 8 \& 00ff00ffh \Rightarrow v
                              ***Меняем местами байты
b \& 00ff00ffh < 8 \lor v \Rightarrow b
       b > 16 \Rightarrow v
       b < 16 \lor v \Rightarrow b
                               ***Меняем местами 2-х байтовые слова
**
***Отражение вектора значений булевой функции
revBF(L1,n/L2)
OQ2
                       ***Считаем, сколько элементов требуется для хранения вектора
In + 31 > 5 \Rightarrow q \Rightarrow j
                       ***значений функции
       Vi
               ***Индекс самого старшего элемента
                               ***Переписываем элементы L1 в L2 в обратном порядке
       §1
               L1j @>L2
               \nabla j \uparrow (j < q)1
q \oplus 1 \hookrightarrow 3
       Oj
       §2
               *reverseBits(L2j/b)
               b \Rightarrow L2i
                               ***Отражаем каждый элемент комплекса L2
               \Delta i \uparrow (i < Q2)2
               \rightarrow 4
§3
       32 - In \Rightarrow s
       *reverseBits(L2.0/b) ***Если вектор значений помещается в один элемент,
       b > s \Rightarrow L2.0
                               ***То отражаем его и сдвигаем на нужную позицию
       **
§4
```

```
***Принадлежность к классу линейных булевых функций
isBFSelfdual(L1,n/f)
Of \Delta f
In + 31 > 5 \Rightarrow q
q ⊕ 1 ↔3
               ***↑(q=1)3
       ∇q Oi
               *reverseBits(L1q/b) ***Проверяем, не совпадают ли значения функции
       §1
               b¬ ⊕ L1i →2
                                        **на противоположных наборах аргументов
               \Delta i \nabla q \uparrow (i \leq q) 1
               →4
       §2
               Of
               →4
§3
       *reverseBits(L1.0/b)
       32 - In \Rightarrow s
       b \neg > s \oplus L1.0 \rightarrow 2
§4
***"Эквивалентны ли булевы функции?"
isBFEquals(L1,L2,n/f)
Of \Delta f
In + 31 > 5 \Rightarrow n
Oi
§1
       L1i ⊕ L2i →2
       \Delta I \uparrow (i < n)1
       \rightarrow 3
       Of
§2
§3
***Генерация константы 0
BFconst0(n/L1)
                        ***Вычисляем количество элементов, необходимых для храненя
In + 31 > 5 \Rightarrow Q1
OL1
                       ***функции и обнуляем её (обнуление происходит по мощности)
***Генерация константы 1
BFconst1(n/L1)
In + 31 > 5 \Rightarrow Q1
<sup>-</sup>L1
Q1 \oplus 1 \mapsto 1 ***\uparrow (Q1 \neq 1)1
       32 - In \Rightarrow s ***"Отсекаем" лишние биты, если есть необходимость
       L1.0 < s > s \Rightarrow L1.0
§1
```

```
***Генерация псевдослучайной булевой функции
genBF(n/L1)
OQ1
In + 31 > 5 \Rightarrow q
       X > 16 \Rightarrow a
                        ***Операция Х используется дважды, т.к. младшие биты,
       Х ⊕ а @>L1 ***выдаваемые ею, не совсем случайны
       \uparrow(Q1<q)1
Q1 \oplus 1 \mapsto 2 \quad ***\uparrow (Q1 \neq 1)2
       32 - In \Rightarrow n
       L1.0 > n \Rightarrow L1.0
§2 **
isBFMonotonicHelper(L1,l,h/f)
***Рекурсивная функция для определения монотонности булевой функции
***Должна вызываться ТОЛЬКО из isBFMonotonic(/)
Of
h - l > 1 + l \Rightarrow m \Rightarrow j
l \Rightarrow i
§1
       Lli & Lli ⊕ Lli →3
       \Delta i \Delta j \uparrow (j \leq h) 1
\Delta f
h - 1 \oplus 2 \hookrightarrow 3 ***\uparrow((h-1)=2)3
        *isBFMonotonicHelper(L1,l,m/f)
       f \hookrightarrow 3
       *isBFMonotonicHelper(L1,m,h/f)
§3
        **
***Проверка булевой функции на монотонность
isBFMonotonic(L1,n/f)
In + 31 > 5 \Rightarrow n
Oi Of
§1
       L1i < 1 \& AAAAAAAAA \Rightarrow a
                                ***Проверяем на монотонность на наборах, соседних по пятой
       a & L1i ⊕ a →2
                                ***компоненте
       L1i < 2 \& CCCCCCCCh \Rightarrow a
                                ***Проверяем на монотонность на наборах, соседних по
       a & L1i \oplus a →2
                                ***четвёртой компоненте
       L1i < 4 \& F0F0F0F0h \Rightarrow a
       a & L1i \oplus a \mapsto2
       L1i < 8 \& FF00FF00h \Rightarrow a
       a & L1i \oplus a →2
       L1i < 16 \Rightarrow a
                                ***Проверяем на монотонность на наборах, соседних по первой
       a & L1i \oplus a \mapsto2
                                ***компоненте
       \Delta i \uparrow (i \le n)1
\Delta f
```

```
n \oplus 1 \hookrightarrow 2
        *isBFMonotonicHelper(L1,0,n/f)
§2
***Функция подсчёта веса булевой функции
BFweight(L1,n/q)
Oq
In + 31 > 5 \Rightarrow n
n ⊕ 1 ↔3
Oi
§1
        L1i % + q \Rightarrow q
        \Delta I \uparrow (i < n)1
        \rightarrow 3
§2
        32 - In \Rightarrows
        L1.0 < s > s \% \Rightarrow q
§3
***Вывод значения 32-х битной переменной в двоичном виде
***(младшие биты справа, старшие слева)
printBool(a/)
@+F1(32) OQ1
        a & 1 + '0' @>F1.0
        a > 1 \Rightarrow a \mapsto 1
↑(Q1=32)3
        '0' @>F1.0
§2
        ↑(Q1<32)2
        /F1>C **
§3
***Вывод вектора значений булевой функции
***(Младшие биты справа, старшие слева)
printBF(L1,n/)
\uparrow (n>4)4
        @+F2(16) OQ2
        32 - In \Rightarrow s
        L1.0 < s > s \Rightarrow a
        §1
                 a & 1 + '0' @>F2.0
                 a > 1 \Rightarrow a \mapsto 1
        In \Rightarrow n
        \uparrow (Q2=n)3
                 '0' @>F2.0
        §2
                 \uparrow(Q2\leqn)2
                /F2>C
        §3
                 \rightarrow 6
        In > 5 \Rightarrow n \Rightarrow i
§4
        \nabla i
                 *printBool(L1i/)
        §5
                 Vi
                 \uparrow(i<n)5
§6
```