DISCRETE MATHEMATICS AND ITS APPLICATIONS

1.5 NESTED QUANTIFIERS

WENJING LI

wjli@bupt.edu.cn

SCHOOL OF COMPUTER SCIENCE

BEIJING UNIVERSITY OF POSTS & TELECOMMUNICATIONS

OUTLINE

- Translating Predicate Logic involving nested quantifiers
- Translating Statements into Predicate Logic
- Negating nested quantifiers
- Order of nested quantifiers

TRANSLATING STATEMENTS INVOLVING NESTED QUANTIFIERS

- Assume that the universe of discourse for the variables x and y consists of all real numbers.
- Example 1
 - $\forall xy(x+y=y+x)$ x+y=y+x for all real numbers x and y commutative law for addition of real numbers
 - for every real number x there is a real number y such that x + y = 0 every real number has an additive inverse

associative law for addition of real numbers

TRANSLATING STATEMENTS INVOLVING NESTED QUANTIFIERS

Example 2

$$\forall xy((x>0) \land (y<0) \rightarrow (xy<0))$$

- For every real number x and for every real number y, if x > 0 and y < 0, then xy < 0.
- For real numbers x and y, if x is positive and y is negative, then xy is negative.
- "The product of a positive real number and a negative real number is always a negative real number."

TRANSLATING STATEMENTS INVOLVING NESTED QUANTIFIERS

- Assume the universe of discourse for x, y and z consists of all students in your school.
 - C(x) is "x has a computer"
 - F(x,y) is "x and y are friends"

Example 9

Every student in your school has a computer or has a friend who has a computer.

Example 10

 $\exists x \ \forall y \ \forall z ((F(x,y) \land F(x,z) \land (y \neq z) \rightarrow \sim F(y,z))$

There is a student none of whose friends are also friends with each other.

TRANSLATING MATHEMATICAL STATEMENTS INTO LOGICAL EXPRESSIONS

Example 6

The sum of two positive integers is positive.

Solution:

- Rewrite the statement to find quantifiers and domains "For every two integers, if these integers are both positive, then the sum of these integers is positive."
- Introduce the variables x and y, and specify the domain: Where the domain of x and y is all positive integers $\forall x \ \forall y \ (x + y > 0)$
- Another result:

where the domain of both variables consists of all integers $\forall x \ \forall y \ ((x > 0) \land (y > 0) \rightarrow (x + y > 0))$

Example 7

• Every real number except zero has a multiplicative inverse. Multiplicative inverse of a real number x is a real number y such that xy = 1.

$$\forall x((x\neq 0) \rightarrow \exists y(xy=1))$$
 (U=R)

TRANSLATING SENTENCES INTO LOGICAL EXPRESSIONS

Example 11

- If a person is female and is a parent, then this person is someone's mother.
 - U.D: all people
 - *F(x)*: "*x* is female,"
 - P(x): "x is a parent,"
 - M(x, y): "x is the mother of y."
 - $\forall x((F(x) \land P(x)) \rightarrow \exists y M(x, y)) \ OR$
 - $\forall x \exists y ((F(x) \land P(x)) \rightarrow M(x, y))$

TRANSLATING SENTENCES INTO LOGICAL EXPRESSIONS

Example 12

- Everyone has exactly one best friend.
 - U.D: all people
 - B(x, y): "y is the best friend of x,"

- $\forall x \exists ! y (B(x, y))$
- $\forall x \exists y (B(x, y) \land \forall z ((z \neq y) \rightarrow \neg B(x, z)))$

TRANSLATING SENTENCES INTO LOGICAL EXPRESSIONS

Example 13

There is a woman who has taken a flight on every airline in the world.

Solution

- P(w,f): "w has taken f"; Q(f,a): "f is a flight on a."
- The domain of w is all women, the domain of f is all flights, and the domain of a is all airlines.
- $\exists w \ \forall a \ \exists f \ (P(w,f) \land Q(f,a))$

NEGATING QUANTIFIERS

Expanding quantifiers: If u.d.=a,b,c,...

$$\forall x P(x) \Leftrightarrow P(a) \land P(b) \land P(c) \land \dots$$
$$\exists x P(x) \Leftrightarrow P(a) \lor P(b) \lor P(c) \lor \dots$$

From those, we can prove the laws:

$$\neg \forall x \ P(x) \Leftrightarrow \exists x \ \neg P(x)$$
$$\neg \exists x \ P(x) \Leftrightarrow \forall x \ \neg P(x)$$

Which propositional equivalence laws can be used to prove this?

NEGATING NESTED QUANTIFIERS

Example 14

- Express the negation of the statement $\forall x \exists y (xy=1)$.
- $\qquad \sim \forall \mathbf{x} \exists \mathbf{y} (\mathbf{x} \mathbf{y} = \mathbf{1})$

$$\Leftrightarrow \exists x \sim \exists y (xy = 1)$$

$$\Leftrightarrow \exists x \forall y \sim (xy=1)$$

$$\Leftrightarrow \exists x \forall y (xy \neq 1)$$

NEGATING NESTED QUANTIFIERS

Example 15

There dose not exist a woman who has taken a flight on every airline in the world.

Solution

■ $\neg \exists w \ \forall a \ \exists f \ (P(w,f) \land Q(f,a))$

$$\Leftrightarrow \bigvee w \neg \forall a \exists f \ (P(w,f) \land Q(f,a))$$
 by De Morgan's for \exists

$$\Leftrightarrow \forall w \exists a \neg \exists f (P(w,f) \land Q(f,a))$$
 by De Morgan's for \forall

$$\Leftrightarrow \forall w \; \exists a \; \forall f \; \neg (P(w,f) \land Q(f,a))$$
 by De Morgan's for \exists

$$\Leftrightarrow \forall w \; \exists a \; \forall f (\neg P(w,f) \; \lor \neg Q(f,a))$$
 by De Morgan's for \land .

"For every woman there is an airline such that for all flights, this woman has not taken that flight or that flight is not on this airline"

NEGATING NESTED QUANTIFIERS

Example 16

Express the fact that $\lim_{x\to a} f(x) = L$ does not exist.

$$\lim_{x \to a} f(x) \neq L$$

$$\neg \forall \epsilon > 0 \,\exists \delta > 0 \,\forall x (0 < |x - a| < \delta \to |f(x) - L| < \epsilon)$$

$$\equiv \exists \epsilon > 0 \,\neg \exists \delta > 0 \,\forall x (0 < |x - a| < \delta \to |f(x) - L| < \epsilon)$$

$$\equiv \exists \epsilon > 0 \,\forall \delta > 0 \,\neg \forall x (0 < |x - a| < \delta \to |f(x) - L| < \epsilon)$$

$$\equiv \exists \epsilon > 0 \,\forall \delta > 0 \,\exists x \,\neg (0 < |x - a| < \delta \to |f(x) - L| < \epsilon)$$

$$\equiv \exists \epsilon > 0 \,\forall \delta > 0 \,\exists x \,\neg (0 < |x - a| < \delta \to |f(x) - L| < \epsilon)$$

$$\equiv \exists \epsilon > 0 \,\forall \delta > 0 \,\exists x \,\neg (0 < |x - a| < \delta \to |f(x) - L| < \epsilon)$$

The last step uses the equivalence $\neg(p \rightarrow q) \equiv p \land \neg q$

Example

- U=R: the real number
- Let P(x,y) be the statement "x+y=y+x".
- what is the truth value of the quantification $\forall x \forall y P(x,y)$?

Example

- Let Q(x,y) denote "x+y=0".
- what are the truth values of the quantifications $\exists y \forall x \ Q(x,y)$ and $\forall x \exists y \ Q(x,y)$?

- Let U = R, the real numbers,
- P(x,y): xy = 0
 - $\forall x \forall y P(x, y)$
 - $\forall x \exists y P(x, y)$
 - $\exists x \forall y P(x, y)$
 - $\exists x \exists y P(x, y)$
- Suppose P(x, y) is the predicate x/y=1?

Example

- U=R
- Let Q(x,y,z) be the statement "x+y=z".
- what are the truth values of the statements $\forall x \forall y \exists z \ Q(x,y,z)$ and $\exists z \forall x \forall y \ Q(x,y,z)$?

例: "存在最小的自然数"。

解1: 采用全体自然数作为个体域.

设: G(x,y): x≤y;

原命题符号化成: ∃x∀yG(x,y)

注意量词顺序: ∀y∃xG(x,y) "没有最小的自然数"

解2: 采用全总个体域

设: F(x): x是自然数; G(x,y): x≤y;

原命题符号化成: $\exists x(F(x) \land \forall y(F(y) \rightarrow G(x,y)))$

OTHER EXAMPLES

例: "不存在最大的自然数"。

解: 采用全总个体域

设: F(x): x是自然数; G(x,y): x≤y;

原命题符号化成:

$$\sim \exists x(F(x) \land \forall y(F(y) \rightarrow G(y,x)))$$
 或 $\forall x(F(x) \rightarrow \exists y(F(y) \land G(x,y)))$

■ 例: "存在唯一的对象满足性质P"。

解: 设: P(x): x满足性质P

原命题符号化成(全总个体域):

$$\exists!xP(x)$$
 或

$$\exists x (P(x) \land \forall y (P(y) \rightarrow x = y))$$

OTHER EXAMPLES

■ 例: "火车比汽车快"。

解: 设: F(x): x是火车; G(x): x是汽车; H(x,y): x比y快原命题符号化成(全总个体域):

• 例:"有的汽车比火车快"。

解: 设: F(x): x是火车; G(x): x是汽车; H(x,y): x比y快

原命题符号化成(全总个体域):

$$\exists y (F(y) \land \exists x (G(x) \land H(x,y)))$$
 或
$$\exists y \exists x (F(y) \land G(x) \land H(x,y))$$

SUMMARY: PREDICATE LOGIC

- 论域/个体域(U.D./scope/domain): 个体词的取值范围, 缺省 (default)采用全总个体域.
- 全总个体域: 世界上的万事万物
- 特性谓词: P()表示所关注的对象的性质
- 两类量词: ∀, ∃
- ■量词的否定、嵌套和顺序
- 谓词逻辑的基础应用:
 - 谓词逻辑到自然语言的翻译
 - 自然语言到谓词逻辑的翻译

HOMEWORK

- § 1.5
 - **1**0, 28, 34, 46

DISCRETE MATHEMATICS AND ITS APPLICATIONS

SUPPL: 一阶逻辑合式公式

WENJING LI

wjli@bupt.edu.cn

SCHOOL OF COMPUTER SCIENCE

BEIJING UNIVERSITY OF POSTS & TELECOMMUNICATIONS

一阶逻辑的字母表

- 个体常项: a, b, c, ..., a₁, b₁, c₁,...
- 个体变项: $x, y, z, ..., x_1, y_1, z_1, ...$
- 函数符号: $f, g, h, ..., f_1, g_1, h_1, ...$
- 谓词符号: F, G, H, ..., F₁, G₁, H₁, ...
- 量词符号: 3,∀
- 联结词符号: ~, ∧, ∨, →, ↔
- 括号与逗号: (,),,

个体词

- 个体常项(Constant)
 - 表示具体的特定对象
 - 用小写英文字母a,b,c,...来表示
 - 例如: a:王大明, b:王小明, G(x,y): x与y是兄弟, "王大明与王小明是兄弟": G(a,b)

个体变项(Variable)

- 表示不确定的泛指对象
- 用小写英文字母x,y,z,...来表示
- 例如: **F(x)**: **x**是人。**G(x)**: **x**是数。
 - "存在着人": ∃xF(x)
 - "仅有一人": ∃!xF(x)
 - "万物皆数": ∀xG(x)

一阶逻辑的合式公式

■ 项(term)

- 个体常项和个体变项是项
- 若 $f(x_1,x_2,...,x_n)$ 是n元函数, $t_1,t_2,...,t_n$ 是项,则 $f(t_1,t_2,...,t_n)$ 是项
- 所有的项都是有限次地应用上述规则形成的
- 例如: a, x, f(a), g(a, x), g(x, f(a))

■ 原子公式(atomic formula)

- 若R($x_1, x_2, ..., x_n$)是n元谓词, $t_1, t_2, ..., t_n$ 是项,则R($t_1, t_2, ..., t_n$)是原子公式
- 例如: F(a), G(a, y), F(f(a)), G(x, g(a, y))

一阶逻辑的合式公式

- 合式公式(well-formed formula)
 - 原子公式是合式公式
 - 若A是合式公式,则(~A)是合式公式
 - 若A,B是合式公式,则(A \land B), (A \lor B), (A \rightarrow B), (A \rightarrow B) 也是合式公式
 - 若A是合式公式,则∃xA,∀xA也是合式公式
 - 有限次地应用上述规则形成的符号串是合式公式
 - F(f(a,a),b)
 - $\exists x (F(x) \land \forall y (G(y) \rightarrow H(x,y)))$
 - 约定: 省略多余括号
 - 最外层
 - 优先级递减: ∃, ∀; ~; ∧, ∨; →, ↔

合式公式中的变项

- 量词辖域: 在 $\exists xA$, $\forall xA$ 中, A是量词的辖域. 例如: $\exists x(F(x) \land \forall y(G(y) \rightarrow H(x,y)))$ $\exists xF(x) \land \forall y(G(y) \rightarrow H(x,y))$
- **指导变项:** 紧跟在量词后面的个体变项.例如: $\exists x(F(x) \land \forall y(G(y) \rightarrow H(x,y)))$
- 约東出现: 在辖域中与指导变项同名的变项. 例如:
 ∃x(F(x)∧∀y(G(y)→H(x,y)))
- 自由出现: 既非指导变项又非约束出现. 例如:∀y(G(y)→H(x,y))

合式公式中的变项

- $\bullet \dot{H}(x,y) \vee \exists \underline{x} F(x) \vee \forall \underline{y} (G(y) \rightarrow H(x,y))$
 - x与y是指导变项
 - x与y是约束出现
 - x与y是自由出现

闭式(CLOSED FORM)

- 闭式: 无自由出现的变项
- 一般来说, 闭式表示的是命题, 例如
 - F(a)
 - ∃xF(x)
- 不是闭式
 - F(x)
 - $\forall y(G(y) \rightarrow H(x,y))$

合式公式的解释

- F(f(a,a),b)
- 例1: 个体域是全体自然数;

$$f(x,y)=x+y$$
; $F(x,y): x=y$

原公式解释为: "2+2=4"

■ 例2: 个体域是全体实数;

$$f(x,y)=x-y$$
; $F(x,y): x>y$

原公式解释为: "3-3>5"

对合式公式的解释包括给出:

- 个体域(论域)
- 个体常项,个体变项
- 函数
- 谓词

的具体含义

一阶逻辑类型

- 永真式Tautology:
 - 在各种解释下取值均为真(逻辑有效式)
 - 命题逻辑永真式: 在各种赋值下取值均为真(重言式)
- 永假式Contradiction:
 - 在各种解释下取值均为假(矛盾式)
 - 命题逻辑永假式: 在各种赋值下取值均为假(矛盾式)
- 可满足式: 非永假式

DISCRETE MATHEMATICS AND ITS APPLICATIONS

SUPPL: 一阶逻辑等值式

WENJING LI

wjli@bupt.edu.cn

SCHOOL OF COMPUTER SCIENCE

BEIJING UNIVERSITY OF POSTS & TELECOMMUNICATIONS

一阶逻辑等值式(定义)

- 等值: *A⇔B*
 - 读作: A等值于B
 - 含义: A与B在各种解释下取值均相等

- $A \Leftrightarrow B$ 当且仅当 $A \leftrightarrow B$ 是永真式
 - 例如: ~∀xF(x)⇔∃x~F(x)

一阶逻辑等值式(来源)

- 1.命题逻辑等值式的代换实例
- 2.与量词有关的
 - 2.1 有限个体域量词消去
 - 2.2 量词否定
 - 2.3 量词辖域收缩与扩张
 - 2.4 量词分配
- 3.与变项有关的
 - 3.1 换名规则
 - 3.2 代替规则

1.代换实例

· 在命题逻辑等值式中,代入一阶逻辑公式所得到的 式子,称为原来公式的代换实例.

例1: A⇔~~A, 令A=∀xF(x), 得到
 ∀xF(x)⇔~~ ∀xF(x)

• 例2: $A \rightarrow B \Leftrightarrow \sim A \lor B$, $\diamondsuit A = F(x)$, B = G(y), 得到 $F(x) \rightarrow G(y) \Leftrightarrow \sim F(x) \lor G(y)$

2.1 有限个体域量词消去

■ 设个体域为有限集D= $\{a_1, a_2, ..., a_n\}$,则 $\forall x A(x) \Leftrightarrow A(a_1) \land A(a_2) \land ... \land A(a_n)$ $\exists x A(x) \Leftrightarrow A(a_1) \lor A(a_2) \lor ... \lor A(a_n)$

- 例: 个体域D={a,b,c}, 则∃x∀yF(x,y)
 - $\Leftrightarrow \exists x (F(x,a) \land F(x,b) \land F(x,c))$
 - $\Leftrightarrow (F(a,a) \land F(a,b) \land F(a,c)) \lor (F(b,a) \land F(b,b) \land F(b,c)) \lor (F(c,a) \land F(c,b) \land F(c,c))$

2.1 有限个体域量词消去

- $U=\{1, 2, 3\}$
- Find an expression equivalent to $\forall x \exists y P(x, y)$, where the variables are bound.
- Expand from inside out or outside in.
- Outside in:

$$\forall x \exists y P(x, y)$$

$$\Leftrightarrow \exists y P(1, y) \land \exists y P(2, y) \land \exists y P(3, y)$$

$$\Leftrightarrow [P(1,1) \lor P(1,2) \lor P(1,3)] \land$$

$$[P(2,1) \lor P(2,2) \lor P(2,3)] \land$$

$$[P(3,1) \lor P(3,2) \lor P(3,3)]$$

2.2 量词否定等值式

- \blacksquare $^{\backprime}\sim \forall xA(x)\Leftrightarrow \exists x\sim A(x)$
- $\sim \exists x A(x) \Leftrightarrow \forall x \sim A(x)$
- P(x): x是必然的, ∀xP(x)
- 并非一切都是必然的
 - $\sim \forall x P(x)$
- 有的事物是偶然的
 - ∃x(x 不是必然的)
 - $\Rightarrow \exists x \sim P(x)$
- 所以
 - $\sim \forall x P(x) \Leftrightarrow \exists x \sim P(x)$

- P(x): x是孤立的, $\exists x P(x)$
- 不存在孤立事物
 - $-\exists x P(x)$
- 一切事物都不是孤立的
 - $\forall x \sim P(x)$
- 所以
 - $\neg \exists x \ P(x) \Leftrightarrow \forall x \ \neg P(x)$

2.3 量词辖域收缩与扩张(∀)

- '假设B中不含x的出现
 - 1) $\forall x(A(x) \lor B) \Leftrightarrow \forall xA(x) \lor B$
 - $2) \forall x(A(x) \land B) \Leftrightarrow \forall xA(x) \land B$
 - 3) $\forall x(A(x) \rightarrow B) \Leftrightarrow \exists xA(x) \rightarrow B$
 - 4) $\forall x(B \rightarrow A(x)) \Leftrightarrow B \rightarrow \forall x A(x)$

■ 例1: ∀x(F(x) ∨ G(y))

$$\Leftrightarrow \forall x F(x) \lor G(y)$$

辖域收缩:∀x(A(x) ∨B)⇔∀xA(x) ∨B

∀的辖域收缩与扩张

• 例2: $\forall x \forall y (F(x) \land G(y))$

$$\Leftrightarrow \forall x (F(x) \land \forall y G(y))$$

辖域收缩: $\forall x(A(x) \land B) \Leftrightarrow \forall xA(x) \land B$

$$\Leftrightarrow \forall \mathbf{x} F(\mathbf{x}) \wedge \forall \mathbf{y} G(\mathbf{y})$$

辖域收缩: $\forall x(A(x) \land B) \Leftrightarrow \forall xA(x) \land B$

2.3 量词辖域收缩与扩张(∀)

■ $i \mathbb{E} 3$): $\forall \mathbf{x} (\mathbf{A}(\mathbf{x}) \rightarrow \mathbf{B}) \Leftrightarrow \exists \mathbf{x} \mathbf{A}(\mathbf{x}) \rightarrow \mathbf{B}$

证明:
$$\forall x(A(x) \rightarrow B)$$

$$\Leftrightarrow \forall x (\sim A(x) \lor B)$$

$$\Leftrightarrow \forall x \sim A(x) \lor B$$

$$\Leftrightarrow \sim \exists x A(x) \lor B$$

$$\Leftrightarrow \exists x A(x) \rightarrow B$$

■ $i \mathbb{I} 4$): $\forall \mathbf{x} (\mathbf{B} \rightarrow \mathbf{A}(\mathbf{x})) \Leftrightarrow \mathbf{B} \rightarrow \forall \mathbf{x} \mathbf{A}(\mathbf{x})$

证明:
$$\forall x(B \rightarrow A(x))$$

$$\Leftrightarrow \forall x (\sim B \lor A(x))$$

$$\Leftrightarrow \sim B \vee \forall x A(x)$$

$$\Leftrightarrow B \rightarrow \forall x A(x)$$

2.3 量词辖域收缩与扩张(3)

- 假设: B中不含x的出现
 - 1) $\exists x(A(x) \lor B) \Leftrightarrow \exists xA(x) \lor B$
 - 2) $\exists x(A(x) \land B) \Leftrightarrow \exists xA(x) \land B$
 - 3) $\exists x(A(x) \rightarrow B) \Leftrightarrow \forall xA(x) \rightarrow B$
 - 4) $\exists x(B \rightarrow A(x)) \Leftrightarrow B \rightarrow \exists x A(x)$

3的辖域收缩与扩张

- 例1: $\exists x(F(x) \lor G(y))$
 - $\Leftrightarrow \exists x F(x) \lor G(y)$

辖域收缩: $\exists x(A(x) \lor B) \Leftrightarrow \exists xA(x) \lor B$

- 例2: ∀x∃y(F(x) \ G(y))
 - $\Leftrightarrow \forall x(F(x) \land \exists yG(y))$ 辖域收缩: $\exists x(A(x) \land B) \Leftrightarrow \exists xA(x) \land B$
 - $\Leftrightarrow \forall x F(x) \land \exists y G(y)$ 辖域收缩: $\forall x (A(x) \land B) \Leftrightarrow \forall x A(x) \land B$

2.3 量词辖域收缩与扩张(3)

■ $\exists \mathbf{x}(\mathbf{A}(\mathbf{x}) \rightarrow \mathbf{B}) \Leftrightarrow \forall \mathbf{x}\mathbf{A}(\mathbf{x}) \rightarrow \mathbf{B}$

证明:
$$\exists x(A(x) \rightarrow B)$$

 $\Leftrightarrow \exists x(\sim A(x) \lor B)$
 $\Leftrightarrow \exists x \sim A(x) \lor B$
 $\Leftrightarrow \sim \forall x A(x) \lor B$
 $\Leftrightarrow \forall x A(x) \rightarrow B$

• $i\mathbb{E}4$): $\exists \mathbf{x}(\mathbf{B} \rightarrow \mathbf{A}(\mathbf{x})) \Leftrightarrow \mathbf{B} \rightarrow \exists \mathbf{x} \mathbf{A}(\mathbf{x})$

证明:
$$\exists x(B \rightarrow A(x))$$

 $\Leftrightarrow \exists x(\sim B \lor A(x))$
 $\Leftrightarrow \sim B \lor \exists x A(x)$

$$\Leftrightarrow B \rightarrow \exists x A(x)$$

2.4 量词分配

- $\forall x(A(x) \land B(x)) \Leftrightarrow \forall xA(x) \land \forall xB(x)$
 - 班里每位同学都上了微积分课和离散数学课
 - \blacksquare $\forall x (P(x) \land Q(x))$
 - 班里每位同学都上了微积分课,同时每位同学也都上了离散数学课
 - $\nabla x P(x) \wedge \nabla x Q(x)$
 - 显然: $\forall x (P(x) \land Q(x)) \Leftrightarrow \forall x P(x) \land \forall x Q(x)$
- $\exists \mathbf{x} (\mathbf{A}(\mathbf{x}) \vee \mathbf{B}(\mathbf{x})) \Leftrightarrow \exists \mathbf{x} \mathbf{A}(\mathbf{x}) \vee \exists \mathbf{x} \mathbf{B}(\mathbf{x})$
 - 有一数,它或是偶数或是素数
 - $\exists x (P(x) \lor Q(x))$
 - 或者有一个偶数,或者有一个素数
 - $\exists x \ P(x) \lor \exists x \ Q(x)$
 - 显然: $\exists x (P(x) \lor Q(x)) \Leftrightarrow \exists x P(x) \lor \exists x Q(x)$

2.4 量词分配(反例)

 $\forall \mathbf{x} (\mathbf{A}(\mathbf{x}) \vee \mathbf{B}(\mathbf{x})) \not\Rightarrow \forall \mathbf{x} \mathbf{A}(\mathbf{x}) \vee \forall \mathbf{x} \mathbf{B}(\mathbf{x})$

反例: 个体域为全体自然数; A(x): x是偶数,B(x): x是奇数 $\Xi \Leftrightarrow 1$, $\Xi \Leftrightarrow 0$

- $\forall x(A(x) \lor B(x)) \Leftarrow \forall xA(x) \lor \forall xB(x)$ (逻辑蕴含式)
- $\exists x(A(x) \land B(x)) \Rightarrow \exists xA(x) \land \exists xB(x)$ (逻辑蕴含式)
- $\exists \mathbf{x} (\mathbf{A}(\mathbf{x}) \land \mathbf{B}(\mathbf{x})) \not\leftarrow \exists \mathbf{x} \mathbf{A}(\mathbf{x}) \land \exists \mathbf{x} \mathbf{B}(\mathbf{x})$

反例: 个体域为全体自然数; A(x): x是偶数, B(x): x是奇数

左 \Leftrightarrow 0, 右 \Leftrightarrow 1

- 全称量词对合取满足分配律
- 存在量词对析取满足分配律
- 相反不成立

2.4 量词分配(蕴含)

 $\exists x \ (A(x) \to B(x)) \Leftrightarrow \forall x \ A(x) \to \exists x \ B(x)$

左边⇔
$$\exists x (\sim A(x) \lor B(x))$$

 $\Leftrightarrow \exists x \sim A(x) \lor \exists x B(x)$
 $\Leftrightarrow \sim \forall x A(x) \lor \exists x B(x)$

3量词分配

$$\exists x A(x) \to \forall x B(x) \Rightarrow \forall x (A(x) \to B(x))$$

 $\Leftrightarrow \sqrt[4]{x}A(x) \to \exists xB(x)$

左边⇔~
$$\exists x A(x) \lor \forall x B(x)$$
)

$$\Leftrightarrow \forall x \sim A(x) \lor \forall x B(x)$$

$$\Rightarrow \forall x (\sim A(x) \lor B(x))$$

逻辑蕴含

$$\Leftrightarrow \forall x (A(x) \to B(x))$$

2.4 量词分配(蕴含)

 $\forall x (A(x) \rightarrow B(x)) \land \forall x A(x)$

附加前提法

 $\Leftrightarrow \forall x (\sim A(x) \ \lor B(x)) \land \forall x A(x)$

 $\Leftrightarrow \forall x((\sim A(x) \lor B(x)) \land A(x))$

∀量词分配

 $\Leftrightarrow \forall x((\sim A(x) \land A(x)) \lor (B(x)) \land A(x))$ 分配律

 $\Leftrightarrow \forall x (B(x) \land A(x))$

 $\Leftrightarrow \forall x B(x) \land \forall x A(x)$

 $\Rightarrow \forall x B(x)$

合取消去

3.1 换名(RENAME)规则

Rename:

■ 把某个**指导变项**和其量词辖域中所有同名的**约束变项**,都 换成新的个体变项符号.

Example:

- $\forall x (A(x) \land B(x)) \Leftrightarrow \forall y (A(y) \land B(y))$
- $\forall x A(x) \land \forall x B(x) \Leftrightarrow \forall y A(y) \land \forall z B(z)$
- $H(x,y) \vee \exists x F(x) \vee \forall y (G(y) \rightarrow H(x,y))$
- $\Leftrightarrow H(x,y) \vee \exists z F(z) \vee \forall u(G(u) \rightarrow H(x,u))$

3.2 代替(SUBSTITUTE)规则

Substitute:

■ 把某个自由变项的所有出现,都换成新的个体变项符号.

Example:

- $A(x) \land B(x) \Leftrightarrow A(y) \land B(y)$
- $H(x,y) \vee \exists x F(x) \vee \forall y (G(y) \rightarrow H(x,y))$
- $\Leftrightarrow H(s,t) \vee \exists x F(x) \vee \forall y (G(y) \rightarrow H(s,y))$

谓词公式的范式(NF)

- 前東范式 (Prenex Normal Form)
 - 如果量词均在合式公式的开头,它们的辖域延伸到整个 公式末尾,则该公式称为前束范式。

 - $\forall y \forall x (\sim P(x,y) \rightarrow Q(y))$
- 存在性定理:
 - 谓词逻辑合式公式均存在与之等值的前束范式
- 构造方法:
 - 利用换名、代替、量词的收缩和扩张等进行等值变换

前東范式PNF

示例

Put the statements in prenex normal form.

$$(\exists x P(x) \lor \forall y Q(y)) \rightarrow \exists x R(x)$$

课堂练习

•Put the statements in prenex normal form.

$$\forall x P(x,y) \rightarrow \exists y Q(x,y)$$

原式
$$\Leftrightarrow \forall x P(x,y) \to \exists t Q(s,t)$$

换名规则,代替规则

$$\Leftrightarrow \exists t (\forall x P(x,y) \rightarrow Q(s,t))$$

辖域扩张: $B\to\exists xA(x)⇔\exists x(B\to A(x))$

$$\Leftrightarrow \exists t (\exists x (P(x,y) \rightarrow Q(s,t)))$$

辖域扩张: $\forall x A(x) \rightarrow B \Leftrightarrow \exists x (A(x) \rightarrow B)$

$$\Leftrightarrow \exists t \exists x (P(x,y) \rightarrow Q(s,t))$$

原式 $\Leftrightarrow \forall x P(x,y) \to \exists t Q(s,t)$

 $\Leftrightarrow \neg \forall x P(x,y) \lor \exists t Q(s,t)$

 $\Leftrightarrow \exists x \sim P(x,y) \vee \exists tQ(s,t)$

 $\Leftrightarrow \exists \mathbf{x} (\sim \mathbf{P}(\mathbf{x}, \mathbf{y}) \vee \exists \mathbf{t} \mathbf{Q}(\mathbf{s}, \mathbf{t}))$

 $\Leftrightarrow \exists x \exists t (\sim P(x,y) \lor Q(s,t))$

换名规则,代替规则

蕴含等值式

否定等值式

辖域扩张

辖域扩张

课堂练习

•Put the statements in prenex normal form.

$$\forall x P(x,y) \rightarrow \exists y Q(x,y)$$

合式公式的前束范式是不唯一的

HOMEWORK

- 1. 设个体域D={a,b,c}, 消去下列各式的量词:
 - (1) $\forall x (F(x) \land G(x))$
 - (2) $\forall x (F(x) \rightarrow \exists y G(y))$
- 2. 证明等值式:

$$\forall x F(x) \lor \sim \exists x G(x) \Leftrightarrow \forall x \forall y (F(x) \lor \sim G(y))$$

- 3. 求下列各式的前束范式:
 - (1) $\forall x F(x) \lor \exists x G(x)$
 - $(2) \forall x \forall y (\exists z (P(x,z) \land P(y,z)) \rightarrow \exists u Q(x,y,u))$