

LabB Cholesky Factorization

Speaker: Hua-Yang Weng Date: 2021.10.31

Github: https://github.com/Yuoto/LabB_cholesky_vitis

Take home Idea

- Cholesky Algorithm Flow
- Vitis HLS
 - 1. Pipeline
 - 2. Pipeline II=1
 - 3. Code Refactor Unroll
 - 4. DataType
- Vitis System
 - Compare with CPU
- Appendix
 - Code Refactor Dataflow

Cholesky Flow

$$egin{align} \mathbf{L}_{j,j} &= \sqrt{A_{j,j} - \sum_{k=1}^{j-1} \mathbf{L}_{j,k}^2} \ \mathbf{L}_{i,j} &= rac{1}{\mathbf{L}_{j,j}} \left(A_{i,j} - \sum_{k=1}^{j-1} \mathbf{L}_{i,k} \mathbf{L}_{j,k}
ight), \qquad ext{for } i > j \end{cases}$$

Insights:

- For each column data, they can be computed in parallel
- The order of column cannot be changed

Vitis HLS

1. No pragma (pipeline)


```
double tmp1=sqrt(dataA[0][0]);

dataA[0][0] = tmp1;
Loop first col:

for (int i = 1; i < diagSize; i++){
    dataA[i][0] = dataA[i][0]/tmp1;
}</pre>
```

Calculate First Column 571 cycles, II=1, Iter. Lat=62 Q1: partition in dim1?

```
Loop col:
for (int j = 1; j < diagSize; ++j){</pre>
                                         Loop_diag
   dataType tmp = 0:
                                         Trip C = 1 \sim 511,
  Loop diag:
                                         II=6, Iter. Lat=16
   for(int k = 0; k < j; k++){
      tmp += dataA[j][k]*dataA[j][k];
   dataA[j][j] = sqrt(dataA[j][j] - tmp);
   if (j < diagSize - 1){</pre>
   Loop row:
                                           Loop_vec_mul
   for(int i = j+1; i < diagSize; ++i){</pre>
                                           Trip C = 1 \sim 511,
      dataType tmp2=0;
      Loop vec mul:
                                           II=6, Iter. Lat=17
      for(int k = 0; k < j; k++){}
         tmp2 += dataA[i][k]*dataA[j][k];
      dataA[i][j] = (dataA[i][j] - tmp2)/dataA[j][j];
                      Write Data
                      262145 cycles, II=1, Iter. Lat=3
    for (int i = 0; i < diagSize; i++) {</pre>
      for (int j = 0; j < diagSize; j++) {</pre>
         matrixA[i * diagSize + j] = dataA[i][j];
```

II Violation

- tmp2+= inner-product data dependency
- Loop_vec_mul: IL=17 (3 read +7 mul + 7 add), II=6


```
RRRMMMMMMAAAAAA
RRRMMMMMMMAAAAAA
RRRMMMMMMMAAAAAA
RRRMMMMMMMAAAAAA
RRRMMMMMMMAAAAAA
II=6 → RRRMMMMMMMAAAAAA
```

```
if (j < diagSize - 1){
Loop_row:
for(int i = j+1; i < diagSize; ++i){
    dataType tmp2=0;
    Loop vec mul:
    for(int k = 0; k < j; k++){
        tmp2 += dataA[i][k]*dataA[j][k];
    }
    dataA[i][j] = (dataA[i][j] - tmp2)/dataA[j][j];
}
</pre>
```

2. Pipeline – II=1

Break the tmp+= inner-product data dependency

```
    Add buffer (depth > II)
```

```
for(int i = j+1; i < diagSize; ++i){</pre>
RRRMMMMMMAAAAAAA
                                                              dataType tmp i[16] = \{0\}, tmp3 i, tmp1[8], tmp2[4],
                             AAAA \rightarrow tmp i | 1
                                                              Loop vec_mul:
                                                              for(int k = 0; k < j; k++){
               RRRMMMMMMAAAAAAA → tmp_i|8|
```

 $RRMMMMMMMAAAAAAA \rightarrow tmp_i[15]$ $RRMMMMMMMAAAAAAA \rightarrow tmp_i[0]$

#pragma HLS pipeline

tmp i[k % 16] += dataA[i][k]*dataA[i][k];

	Latenc	y (cycles)		Initiation I	nterval		
Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
- VITIS_LOOP_23_1_cholesky_kernel_label3	?	?	2	1	1	?	yes
- Loop_first_col	61	?	62	1	1	1~?	yes
- Loop_col	?	?	?	-	-	1~?	no
+ Loop_col 1	16	16	1	1	1	16	yes
+ Loop diag	16	262159	17	1	1	1 ~ 262144	yes
+ Loop_add_1	16	16	10	1	1	8	yes
+ Loop_add_2	11	11	9	1	1	4	yes
+ Loop_add_3	9	9	9	1	1	2	yes
+ Loop_row	?	?	152 ~ 262295	-	-	?	no
++ Loop_row.1	16	16	1	1	1	16	yes
++ Loop vec mul	16	262159	17	1	1	1 ~ 262144	yes
++ Loop_add_4	16	16	10	1	1	8	yes
++ Loop_add_5	11	11	9	1	1	4	yes
++ Loop_add_6	9	9	9	1	1	2	yes
- VITIS_LOOP_95_2_cholesky_kernel_label4	?	?	3	1	1	?	yes

= Loop

```
for (int bi = 0; bi < 8; bi++) {
       #pragma HLS pipeline
       tmp1[bi] = tmp_i[bi] + tmp_i[bi + 8];
Loop add 2:
for (int bi = 0; bi < 4; bi++) {
#pragma HLS pipeline
   tmp2[bi] = tmp1[bi] + tmp1[bi + 4];
Loop add 3:
for (int bi = 0; bi < 2; bi++) {
#pragma HLS pipeline
   tmp3[bi] = tmp2[bi] + tmp2[bi + 2];
tmp3 i = tmp3[0] + tmp3[1];
dataA[i][j] = (dataA[i][j] - tmp3_i)/dataA[j][j];
```

Compare Report (512x512)

• II=6

***	Loop							
		Latenc	y (cycles)		Initiation	nterval		
	Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
	- VITIS_LOOP_24_1_VITIS_LOOP_25_2	?	?	2	1	1	?	yes
	- Loop_first_col	61	?	62	1	1	1~?	yes
	- Loop_col	?	?	?	-	-	1~?	no
	+ Loop_diag	15	262158	16	1	1	1 ~ 262144	yes
	+ Loop_row	?	?	87 ~ 1572945	-	-	?	no
	++ Loop_vec_mul	16	1572874	17	6	1	1 ~ 262144	yes
	- VITIS_LOOP_62_3_VITIS_LOOP_63_4	?	?	3	1	1	?	yes

□ Summary

Name	BRAM_18K	DSP	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	-	0	1745	-
FIFO	-	-	-	-	-
Instance	-	14	1137	1777	-
Memory	1028	-	2176	16	-
Multiplexer	-	-	-	2055	-
Register	-	-	4334	576	-
Total	1028	14	7647	6169	0
Available	280	220	106400	53200	0
Utilization (%)	367	6	7	11	0

• II=1

∃ Loop

	Latenc	y (cycles)		Initiation	Interval		
Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
- VITIS_LOOP_23_1_cholesky_kernel_label3	?	?	2	1	1	?	yes
- Loop_first_col	61	?	62	1	1	1~?	yes
- Loop_col	?	?	?	-	-	1~?	no
+ Loop_col.1	16	16	1	1	1	16	yes
+ Loop_diag	16	262159	17	1	1	1 ~ 262144	yes
+ Loop_add_1	16	16	10	1	1	8	yes
+ Loop_add_2	11	11	9	1	1	4	yes
+ Loop_add_3	9	9	9	1	1	2	yes
+ Loop_row	?	?	152 ~ 262295	-	-	?	no
++ Loop_row.1	16	16	1	1	1	16	yes
++ Loop_vec_mul	16	262159	17	1	1	1 ~ 262144	yes
++ Loop_add_4	16	16	10	1	1	8	yes
++ Loop_add_5	11	11	9	1	1	4	yes
++ Loop_add_6	9	9	9	1	1	2	yes
- VITIS_LOOP_95_2_cholesky_kernel_label4	?	?	3	1	1	?	yes

□ Summary

Name	BRAM_18K	DSP	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	-	0	1036	-
FIFO	-	-	-	-	-
Instance	-	20	1477	2626	-
Memory	1024	-	0	0	-
Multiplexer	-	-	-	1577	-
Register	-	-	2004	160	-
Total	1024	20	3481	5399	0
Available	280	220	106400	53200	0
Utilization (%)	365	9	3	10	0

3. Code Refactor – Unroll

- Split tiles(blocks)
- Perform pipelined inner-product in parallel

3. Code Refactor — Unroll

```
Latency (cycles)
                                                                                                Initiation Interval
                                                                                     Iteration Latency | achieved | target | Trip Count | Pipelined
                                                           Loop Name
                                                                           min
                                                                                max

    Loop_read_VITIS_LOOP_146_1 | 262144 |

                                                                               262144
template <typename T, int NMAX, int NCU>
                                                                                         224 ~ 5968
                                                      - Loop col
                                                                          114688 3055616
void choleskv(int m, T* A, int lda, int& info) { Loop_write_VITIS_LOOP_156_2 262145 262145
   if (NMAX == 1)
       A[0] = hls::sqrt(A[0]);
   else {
                                                                                           Array-partitioned
       static T matA[NCU][(NMAX + NCU - 1) / NCU][NMAX];
      #pragma HLS array partition variable = matA cyclic factor = NCU dim = 1
                                                                                           Matrix buffer
       //#pragma HLS resource variable = matA core = XPM MEMORY uram
       Loop read:
                                                                 Read Data
       for (int r = 0; r < m; r++) {
                                                                 262144 cycles, II=1, Iter. Lat=2
          for (int c = 0; c < m; c++) {
          #pragma HLS pipeline
          matA[r \% NCU][r / NCU][c] = A[r * 1da + c]
                                                                          Core
       internal::cholesky core<T, NMAX, NCU>(m, matA);
                                                                          114688~ 3055616 cycles
       Loop write:
       for (int r = 0; r < m; r++) {
          for (int c = 0; c < m; c++) {
          #pragma HLS pipeline
             A[r * 1da + c] = matA[r % NCU][r / NCU][c];
```

Write Data 262144 cycles, II=1, Iter. Lat=3

262144

262144

512

no

yes

3. Code Refactor – Unroll

- Core: A big non-pipelined loop
- For each col j in matrix
 - Calculate diagonal term first (chol_jj unit)
 - Then, parallel compute each rows with factor NCU (chol_col_wrapper unit)

```
Instance
                                            Module
grp_chol_jj_double_512_16_s_fu_630
                                    chol jj double 512 16 s
grp chol col double 512 16 s fu 683 chol col double 512 16 s
grp_chol_col_double_512_16_s_fu_694 chol_col_double_512_16_s
grp_chol_col_double_512_16_s_fu_705 chol_col_double_512_16_s
grp_chol_col_double_512_16_s_fu_716 chol_col_double_512_16_s
grp_chol_col_double_512_16_s_fu_727 chol_col_double_512_16_s
grp_chol_col_double_512_16_s_fu_738 chol_col_double_512_16_s
grp_chol_col_double_512_16_s fu_749 chol_col_double_512_16_s
grp_chol_col_double_512_16_s_fu_760 chol_col_double_512_16_s
grp_chol_col_double_512_16_s_fu_771 | chol_col_double_512_16_s
grp_chol_col_double_512_16_s_fu_782 chol_col_double_512_16_s
grp_chol_col_double_512_16_s_fu_793 | chol_col_double_512_16_s
grp_chol_col_double_512_16_s_fu_804 chol_col_double_512_16_s
grp_chol_col_double_512_16_s_fu_815 chol_col_double_512_16_s
grp_chol_col_double_512_16_s fu_826 chol_col_double_512_16_s
grp_chol_col_double_512_16_s_fu_837 | chol_col_double_512_16_s
grp_chol_col_double_512_16_s_fu_848 chol_col_double_512_16_s
```

```
template <typename T, int N, int NCU>
void cholesky_core(int n, T dataA[NCU][(N + NCU - 1) / NCU][N]) {
   T tmp1, dataj[NCU][N];
   #pragma HLS array_partition variable = dataj cyclic factor = NCU dim = 1

   Loop_col:
   for (int j = 0; j < n; ++j) {
        chol_jj<T, N, NCU>(dataA, dataj, tmp1, j);
        chol_col_wrapper<T, N, NCU>(n, dataA, dataj, tmp1, j);
   }
}
```

Loop add 1:

Loop add 2:

Loop add 3:

for (int j = 0; j < 8; j++) {

for (int j = 0; j < 4; j++) {

for (int j = 0; j < 2; j++) {

tmp1[j] = tmp[j] + tmp[j + 8];

tmp2[j] = tmp1[j] + tmp1[j + 4];

tmp3[j] = tmp2[j] + tmp2[j + 2];

#pragma HLS pipeline

#pragma HLS pipeline

#pragma HLS pipeline

```
j=3
```

```
void chol jj(T dataA[NCU][(N + NCU - 1) / NCU][N], T dataj[NCU][N], T& tmp1 j, int& j)
   T \text{ tmp}[16] = \{0\}, \text{ tmp3 j, tmp1}[8], \text{ tmp2}[4], \text{ tmp3}[2];
   #pragma HLS resource variable = tmp core = RAM 2P LUTRAM
   Loop vec mul jj:
   for (int k = 0; k < j; k++) {
   #pragma HLS pipeline
   #pragma HLS dependence variable = tmp inter false
   #pragma HLS dependence variable = dataA inter false
      T tmp2 j = dataA[j % NCU][j / NCU][k];
      tmp[k % 16] += tmp2 j * tmp2 j;
      for (int p = 0; p < NCU; p++) {
      #pragma HLS unroll
         dataj[p][k] = tmp2 j;
```


Given col j, **pipelined** inner-product its j-1 elements

□ Latency

☐ Summary

Latency	(cycles)	Latency (absolute)	Interval		
min	max	min	max	min	max	Туре
133	659	1.330 us	6.590 us	133	659	none

□ Detail

Pipelined with II=1, Iter. Lat.= 17

Loop

	Latency	(cycles)		Initiation	nterval		
Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
- Loop 1	16	16	1	1	1	16	yes
- Loop_vec_mul_jj	0	526	17	1	1	0 ~ 511	yes
- Loop_add_1	16	16	10	T	T	8	yes
- Loop_add_2	11	11	9	1	1	4	yes
- Loop_add_3	9	9	9	1	1	2	yes

tmp3 i = tmp3[0] + tmp3[1];tmp1_j = hls::sqrt(dataA[j % NCU][j / NCU][j] - tmp3_j); dataA[j % NCU][j / NCU][j] = tmp1 j;

Buffer & Adder Tree to reduce II

chol_col_wrapper unit

```
template <typename T, int N, int NCU>

☐ Instance

void cholesky core(int n, T dataA[NCU][(N + NCU - 1) / NCU][N]) {
                                                                                                                  Instance
    T tmp1, dataj[NCU][N];
                                                                                                          grp_chol_jj_double_512_16_s_fu_676
    #pragma HLS array partition variable = dataj cyclic factor = NCU dim = 1
                                                                                                          grp chol col double 512 16 s fu 729
                                                                                                          grp_chol_col_double_512_16_s_fu_740
                                                                                                          grp_chol_col_double_512_16_s_fu_751
                                                                                                          grp chol col double 512 16 s fu 762
    Loop col:
                                                                                                          grp_chol_col_double_512_16_s_fu_773_c
    for (int j = 0; j < n; ++j)
                                                                                                          grp_chol_col_double_512_16_s_fu_784
                                                                                                          grp_chol_col_double_512_16_s_fu_795
         chol jj<T, N, NCU>(dataA, dataj, tmp1, j);
                                                                                                          grp chol col double 512 16 s fu 806
                                                                                                          grp_chol_col_double_512_16_s_fu_817
         chol col wrapper<T, N, NCU>(n, dataA, dataj, tmp1, j);
                                                                                                          grp_chol_col_double_512_16_s_fu_828 |
                                                                                                          grp chol col double 512 16 s fu 839
                                                                                                          grp_chol_col_double_512_16_s_fu_850
                                                                                                          grp_chol_col_double_512_16_s_fu_861
        the j column data vector buffer is duplicated NCU times (16 \times 512)
                                                                                                          grp_chol_col_double_512_16_s_fu_872 |
                                                                                                          grp chol col double 512 16 s fu 883
                                                                                                          grp_chol_col_double_512_16_s_fu_894
template <typename T, int N, int NCU>
void chol col wrapper(int n, T dataA[NCU][(N + NCU - 1) / NCU][N], T dataj[NCU][N], T tmp1, int j) {
    //#pragma HLS DATAFLOW
    Loop row:
                                                                                           NCU
    for (int num = 0; num < NCU; num++) {
    #pragma HLS unroll factor = NCU
                                                                                           parallel
        chol col<T, N, NCU>(n, dataA[num], dataj[num], tmp1, num, j);
      Each unrolled unit gets one allocated matrix tile (32 \times 512)
```

chol col distributed

```
void chol_col(int n, T dataA[(N + NCU - 1) / NCU][N], T dataj[N], T tmp1_i, int num,
Loop_per_Unit:
for (int p = (j + 1) / NCU; p < (n + NCU - 1) / NCU; p++) {
    #pragma HLS loop tripcount min = 1 max = 8
    T tmp_i[16] = {0}, tmp3_i, tmp1[8], tmp2[4], tmp3[2];
    #pragma HLS resource variable = tmp_i core = RAM_2P_LUTRAM</pre>
```

```
NCU parallel j=2
```

```
Loop_vec_mul:
for (int k = 0; k < j; k++) {
    #pragma HLS loop_tripcount min = 1 max = N
    #pragma HLS pipeline
    #pragma HLS dependence variable = tmp_i inter false
    #pragma HLS dependence variable = dataA inter false
        tmp_i[k % 16] += dataA[p][k] * dataj[k];
}</pre>
```

Given col j, for the rows p in the given tile

Pipelined inner-product j-1 elements With i, j column (data[p], dataj)

```
Loop_add_1:
for (int j = 0; j < 8; j++) {
    #pragma HLS pipeline
    tmp1[j] = tmp_i[j] + tmp_i[j + 8];
}

Loop_add_2:
for (int j = 0; j < 4; j++) {
    #pragma HLS pipeline
    tmp2[j] = tmp1[j] + tmp1[j + 4];
}

Loop_add_3:
for (int j = 0; j < 2; j++) {
    #pragma HLS pipeline
    tmp3[j] = tmp2[j] + tmp2[j + 2];
}

tmp3_i = tmp3[0] + tmp3[1];</pre>
```

☐ Summary

Latency	(cycles)	Latency	(absolute)	Interval	(cycles)	
min	max	min	max	min	max	Туре
87	5305	0.870 us	53.050 us	87	5305	none

□ Detail

■ Instance

□ Loop

	Latency	(cycles)		Initiation	nterval		
Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
- Loop_per_Unit	86	5304	86 ~ 663	-	-	1~8	no
+ Loop per Unit.1	16	16	1	1	1	16	ves
+ Loop_vec_mul	16	526	17	1	1	1 ~ 511	yes
+ Loop_add_1	16	16	10	1	1	8	yes
+ Loop_add_2	11	11	9	1	1	4	yes
+ Loop_add_3	9	9	9	1	1	2	yes

if (p * NCU + num > j) dataA[p][j] = (dataA[p][j] - tmp3_i) / tmp1_i;

Compare Report (512x512)

Pipeline II=1 (max 172600981, max 337771 per col)

odules & Loops	Issue	Type Slack	Latency	y(cycle	s) Late			Latency	Inte	erval Trip Count		Pipeli	ned				
cholesky_kernel		-1.09	1	731259	07	1.731E9		-	173125	5908			no				
C VITIS_LOOP_24_1_cholesky_kernel_la	oel3	-		2621	44	2.621E6		2		1 2	62144	1	yes				
C Loop_first_col		-		5	71	5.710E3		62		1	511		yes				
> C Loop_col		-	1	726009	81	1.726E9		337771		-	511		no				
VITIS_LOOP_96_2_cholesky_kernel_la	oel4	-		2621	45	2.621E6		3		1 2	62144		yes				
Laten	cy (cycles)	I	Initiation	Interval											A		
Loop Name min	max	Iteration Latency	achieved	target			1	- C									
- VITIS_LOOP_24_1_cholesky_kernel_label3 262144			1	1	262144		s L	Summa							r		
- Loop first col 571		62	1	1	511		<u> </u>	Name	e	BRAM_18K	DSP	FF	LUT	URAM			
- Loop_col 77161	172600981	151 ~ 337771	-	-	511	n		DSP		-	-	-	-	-			
+ Loop_col.1					10	7-	5	Expressio	n	-	_	0	1199				
+ Loop_diag 16			1	1	1 ~ 511		1	FIFO			-						
+ Loop_add_1 16		10	1	1	8	yes	- I		-			-					
+ Loop_add_2	11	9	1	1	4	yes	⊣ ,	Instance		-	14	972	1727	-		x 5	6
+ Loop_add_3	9	9	1	1	2	yes	⊣ I	Memory		1028	-	2176	16	-			U
+ Loop_row (337110	152 ~ 661	-	-	0 ~ 510		-	Multiplex	er	-	-	-	2050	-		_	_
++ Loop_row.1 16		1	1	1	16	7-		Register			_	3881	576				
++ Loop_vec_mul 16		17	1	1	1 ~ 510					1020							
++ Loop_add_4 16		10	1	1	8	yes	5	Total		1028	14	7029	5568	0			
++ Loop_add_5 11	11	9	1	1	4	yes	- I	Available		280	220	106400	53200	0			
++ Loop_add_6	9	9	1	1	2	yes	5	Utilization	1 (%)	367	6	6	10	0			
- VITIS_LOOP_96_2_cholesky_kernel_label4 262145	262145	3	1	1	262144	yes	S I		()								

• Unroll factor = 16, (max 3055616, max 5968 per col)

										•		,			
Modules & Loops	Issue Type	Slack L	atency(cycles) l	Latency(ns) Iterat	ion Latenc	y Interval	Trip Count	Pipelined						
✓		-1.24	3579910	3.580E	7		- 3579911	-	no	☐ Summary					
> o chol_jj_double_512_16_s		-1.24	659	6.590E	3		- 659	-	no	- Julilliary					
> o chol_col_double_512_16_s		-1.24	5305	5.305E	4		- 5305	-	no	Name	BRAM_18K	DSP	FF	LUT	URAM
C Loop read VITIS LOOP 146 1		-	262144	2.621E	6		2 1	262144	yes	DSP	-	-	-	-	-
C Loop_col		-	3055616	3.056E	7	596	58 -	512	no	Expression	-	-	0	262	-
C Loop_write_VITIS_LOOP_156_2		-	262145	2.621E	6		3 1	262144	yes	FIFO	-	-	-	-	-
□ Loop										Instance	0	238	69791	55770	-
	Latency	(cycles)		Ini	tiation	Interval				Memory	1056	-	0	0	-
Loop Name	min	max	Iteration Late	ency ac	hieved	target	Trip Coun	t Pipeline	d l	Multiplexer	-	-	-	2145	-
- Loop_read_VITIS_LOOP_146_1	262144	262144		2	1	1	26214	4 ye	s	Register	-	-	329	-	-
- Loop_col	114688	3055616	224 ~ 5	5968	-	-	51	2 no	5	Total	1056	238			
- Loop_write_VITIS_LOOP_156_2	262145	262145		3	1	1	26214	4 ye	s	Available	280		106400	53200	0
									_	Utilization (%)	377	108	65	109	0

4. Datatype

Unroll factor = 16, (max 3055616, max 5968 per col)

Modules & Loops	Issue Type	Slack L	atency(cycles)	Latency	(ns) Itera	tion Latenc	y Interv	al 1	Trip Count	Pipelined						
✓		-1.24	3579910	3.5	80E7		- 35799	11	-	no	☐ Summary					
> o chol_jj_double_512_16_s		-1.24	659	6.5	90E3		- 6	59	-	no		I = = · · · · · · · · · · ·				
> o chol_col_double_512_16_s		-1.24	5305	5.3	05E4		- 53	05	-	no	Name	BRAM_18K	DSP	FF	LUT	URAM
C Loop read VITIS LOOP 146 1		-	262144	2.6	21E6		2	1	262144	yes	DSP	-	-	-	-	-
C Loop_col		-	3055616	3.0)56E7	59	68	-	512	no	Expression	-	-	0	262	-
C Loop_write_VITIS_LOOP_156_2		-	262145	2.6	21E6		3	1	262144	yes	FFO	-	-	-	-	-
□ Loop											Instance	0	238	69791	55770	-
	Latency	(cycles)			Initiation	Interval					Memory	1056	-	0	0	-
Loop Name	min	max	Iteration Lat	ency	achieved	target	Trip Co	unt	Pipelined	ī	Multiplexer	-	-	-	2145	-
- Loop_read_VITIS_LOOP_146_1	262144	262144	ļ l	2	1	1	262	$\overline{}$	yes	⊣	Register	-	-	329	-	-
- Loop_col		3055616	224 ~	5968	-	-		512	no	\dashv	Total	1056	238	70120	58177	0
- Loop_write_VITIS_LOOP_156_	2 262145	262145	5	3	1	1	262	144	yes	5	Available	280	220	106400	53200	0
										_	Utilization (%)	377	108	65	109	0

Float datatype, (max 2789376, max 5448 per col)

Modules & Loops	Issue Type	Slack	Latency(cycles)	Latency(ns)	Iteration Latency	Interval	Trip Count	Pipelined
✓ o cholesky_kernel		-1.19	3313670	3.314E7	-	3313671	-	no
> • chol_jj_float_512_16_s		-1.19	603	6.030E3	-	603	-	no
> • chol_col_float_512_16_s		-1.19	4841	4.841E4	-	4841	-	no
C Loop read VITIS LOOP 149 1		-	262144	2.621E6	2	1	262144	ves
C Loop_col		-	2789376	2.789E7	5448	-	512	no
C Loop_write_VITIS_LOOP_159_2		-	262145	2.621E6	3	1	262144	yes

	Latency	(cycles)		Initiation	nterval		
Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
- Loop_read_VITIS_LOOP_149_1	262144	262144	2	1	1	262144	yes
- Loop_col	81920	2789376	160 ~ 5448	-	-	512	no
- Loop_write_VITIS_LOOP_159_2	262145	262145	3	1	1	262144	yes

Resource
Utilization
X0.5

─ Summary

Name	BRAM_18K	DSP	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	-	0	262	-
FIFO	-	-	-	-	-
Instance	0	85	38587	31641	-
Memory	528	-	0	0	-
Multiplexer	-	-	-	2145	-
Register	-	-	265	-	-
Total	528	85	38852	34048	0
Available	280	220	106400	53200	0
Utilization (%)	188	38	36	64	0

Vitis System

Kernel = cholesky_kernel NDRange = 1:1:1Start = 57.90645 msEnd = 58.22028 msDuration = 0.31383 ms

Vitis System

	CPU	
(ms)	16x16	512x512
Total	0.007	15.6

U50 System (Pipelined II=6)				
(ms)	16x16	512x512		
Total	112.8	956		
Kernel	0.313	655		
Memory Write	0.124	0.527		
Memory Read	0.057	0.527		

U50 System (Pipelined II=1				
(ms)	16x16	512x512		
Total	94.4	2880		
Kernel	0.21	156		
Memory Write	0.096	0.511		
Memory Read	0.021	0.502		

(ms)	16x16	512x512
Total		2727
Kernel		12.4
Memory Write		0.318
Memory Read		0.509

U50 System (Unroll factor=16)

U50 System (Unroll factor=16 + float)				
(ms)	16x16	512x512		
Total		2660		
Kernel		10.7		
Memory Write		0.184		
Memory Read		0.231		

Appendix

4. Code Refactor – Dataflow

- 4.1. Dataflow @ inner product & adder tree
- 4.2. Dataflow @ column -> Pipeline @ column
- 4.3. Dataflow @ read_loop & cholesky_core & write_loop

```
Loop vec mul jj:
for (int k = 0; k < j; k++) {
#pragma HLS pipeline
#pragma HLS dependence variable = tmp inter false
#pragma HLS dependence variable = dataA inter false
  T tmp2 j = dataA[j % NCU][j / NCU][k];
   tmp[k % 16] += tmp2 j * tmp2 j;
   for (int p = 0; p < NCU; p++) {
   #pragma HLS unroll
     dataj[p][k] = tmp2_j;
Loop add 1:
for (int j = 0; j < 8; j++) {
#pragma HLS pipeline
  tmp1[j] = tmp[j] + tmp[j + 8];
Loop add 2:
for (int j = 0; j < 4; j++) {
#pragma HLS pipeline
   tmp2[j] = tmp1[j] + tmp1[j + 4];
Loop add 3:
for (int j = 0; j < 2; j++) {
#pragma HLS pipeline
  tmp3[j] = tmp2[j] + tmp2[j + 2];
```



```
Loop_read:
for (int r = 0; r < m; r++) {
    for (int c = 0; c < m; c++) {
        #pragma HLS pipeline
        matA[r % NCU][r / NCU][c] = A[r * 1da + c];
      }
}
internal::cholesky_core<T, NMAX, NCU>(m, matA);

Loop_write:
for (int r = 0; r < m; r++) {
    for (int c = 0; c < m; c++) {
        #pragma HLS pipeline
            A[r * 1da + c] = matA[r % NCU][r / NCU][c];
      }
}</pre>
```

4.1. Dataflow @ inner product & adder tree

 Do not really help, since the input of adder tree has to wait for all previous outputs.

```
Loop vec mul jj:
for (int k = 0; k < j; k++) {
#pragma HLS pipeline
#pragma HLS dependence variable = tmp inter false
#pragma HLS dependence variable = dataA inter false
   T tmp2_j = dataA[j % NCU][j / NCU][k];
   tmp[k % 16] += tmp2_j * tmp2_j;
   for (int p = 0; p < NCU; p++) {
   #pragma HLS unroll
      dataj[p][k] = tmp2 j;
Loop add 1:
for (int j = 0; j < 8; j++) {
#pragma HLS pipeline
   tmp1[j] = tmp[j] + tmp[j + 8];
Loop add 2:
for (int j = 0; j < 4; j++) {
#pragma HLS pipeline
   tmp2[j] = tmp1[j] + tmp1[j + 4];
Loop add 3:
for (int j = 0; j < 2; j++) {
#pragma HLS pipeline
   tmp3[i] = tmp2[i] + tmp2[i + 2];
```

4.2. Dataflow @ column -> Pipeline @ column

 Cannot be pipelined -> no other computing unit available

4.3. Dataflow @ read_loop & cholesky_core & write_loop

Not trivial, since there exists feed back loops

```
template <typename T, int N, int NCU>
void cholesky core(int n, T dataA[NCU][(N + NCU - 1) / NCU][N]) {
   T tmp1, dataj[NCU][N];
   #pragma HLS array partition variable = dataj cyclic factor = NCU dim = 1
   Loop col:
   for (int j = 0; j < n; ++j) {
      chol jj<T, N, NCU>(dataA, dataj, tmp1, j);
      chol col wrapper<T, N, NCU>(n, dataA, dataj, tmp1, j);
                       Loop read:
                       for (int r = 0; r < m; r++) {
                          for (int c = 0; c < m; c++) {
                          #pragma HLS pipeline
                          matA[r % NCU][r / NCU][c] = A[r * lda + c];
                       internal::cholesky_core<T, NMAX, NCU>(m, matA);
                       Loop write:
                       for (int r = 0; r < m; r++) {
                          for (int c = 0; c < m; c++) {
                          #pragma HLS pipeline
                             A[r * 1da + c] = matA[r % NCU][r / NCU][c];
```

