

DARVOUX Théo

Novembre 2023

Crédits : Etienne pour les exercices 9.25 et 9.26

Exercices.																						
	Exercice 10.17													 		 						2
	Exercice 10.18													 		 				•		2

Exercice 10.17 $[\Diamond \Diamond \Diamond]$

1. Calculer les racines carrées du nombre -8i.

On donnera ces nombres sous forme algébrique et sous forme trigonométrique.

2. Résoudre dans \mathbb{C} l'équation

$$z^2 - 4z + 4 + 2i = 0$$

Notons δ une racine de -8i:

$$\delta = \sqrt{8}e^{-i\frac{\pi}{4}} = 2\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right) = 2\sqrt{2}\left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right) = 2 - 2i$$

2. Le discriminant Δ vaut -8i. Ses racines carrées sont donc 2-2i et -2+2i. L'ensemble des solutions de l'équation est donc : $\{3-i, 1+i\}$.

Soit $n \in \mathbb{N}$ n $n \geq 2$. Calcul de

$$\sum_{z \in \mathbb{U}_n} z \quad \text{et} \quad \prod_{z \in \mathbb{U}_n} z$$

On a:

$$\sum_{z \in \mathbb{U}_n} z = \sum_{k=0}^{n-1} e^{i\frac{2k\pi}{n}} = \frac{1 - e^{i2\pi}}{1 - e^{i\frac{2\pi}{n}}} = 0$$

Et:

$$\prod_{x \in \mathbb{I}} z = \prod_{k=0}^{n-1} e^{i\frac{2k\pi}{n}} = \exp\left(\sum_{k=0}^{n-1} i\frac{2k\pi}{n}\right) = \exp\left(i\frac{2\pi}{n}\sum_{k=0}^{n-1} k\right) = e^{i\pi(n-1)} = (-1)^{n-1}$$