Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo

Alexandre Jastrow da Cruz Maikysuel Simões Braga

Relatório do Trabalho 2 de Fundamentos de Sistemas Multimídia

Imagem

Alexandre Jastrow da Cruz Maikysuel Simões Braga

Relatório do Trabalho 2 de Fundamentos de Sistemas Multimídia – Imagem

Trabalho sobre imagem apresentado ao curso de Sistemas de Informação para avaliação parcial da disciplina de Fundamentos de Sistemas Multimídia.

Serra, 19 de agosto de 2020

Professor: Flávio Giraldeli Bianca

Sumário

1.	INT	RODUÇAO	5
2.	ОВ	JETIVO	5
3.	DES	SENVOLVIMENTO	5
	3.1.	Atividade 1: Entendendo Imagens Vetoriais e Bitmaps	5
	3.2.	Atividade 2: Avaliando a "complexidade" de uma imagem	7
	3.3. conte	Atividade 3: O desempenho do PNG-24 em imagens com diferentes údos	7
	3.4.	Atividade 4: Comparando GIF com PNG-8	12
	3.4.1.	4A – Eficiência na Compressão	12
	3.4.2.	4B – Eficiência na Compressão	13
	3.5.	Atividade 5: Entendendo, de verdade, o formato JPEG	15
	3.5.1.	5A - Analisando transparência JPEG	15
	3.5.2.	5B - Analisando Chroma Subsampling	16
	3.5.3.	5C - Chroma Subsampling com Grayscale	18
	3.5.4.	5D - Re-comprimindo JPEG	18
	3.5.5.	5E – Analisando os artefatos	21
	3.6.	Atividade 6: Transcoding em Imagem	22
	3.7.	Atividade 7: Escolhendo corretamente o formato de imagem	23
	3.8.	Atividade 8: Otimizando imagens	25
	3.8.1.	8A – Otimizando imagens em PNG	25
	3.8.2.	8B – Otimizando imagens em JPEG	28
	3.9.	Atividade 9: Avaliando os candidatos a sucessor do JPEG	30
	3.9.1.	9A - Testando os novos formatos em modo Lossless	30
	3.9.2.	9B - Testando os novos formatos em modo Lossy	32
	3.9.3.	9C - Revisitando a escolha correta dos formatos de imagem	33
4.	CO	NCLUSÃO	34
R	EFERÉ	ÈNCIAS BIBLIOGRÁFICAS	34

Lista de Tabelas

Tabela 1 - Desempenho de compressão de arquivos SVG sobre PNG	6
Tabela 2 - Estimativa da complexidade das imagens	
Tabela 3 - Desempenho de compressão BMP	
Tabela 4 - Complexidade real das imagens	9
Tabela 5 - Compressão para 8 bits	12
Tabela 6 - Desempenho entre png-8 vs. gif em baixa resolução	13
Tabela 7 - Compressão JPEG e fator de qualidade	15
Tabela 8 - Desempenho chroma subsampling	16
Tabela 9 - Grayscale	18
Tabela 10 - Recompimindo o JPEG	
Tabela 11 – Eficácia da compressão JPEG	20
Tabela 12 - Análise de artefatos do JPEG	
Tabela 13 - Tipos de imagem	
Tabela 14 - Comparação dos tipos de imagem	
Tabela 15 - Otimização de imagens PNG	26
Tabela 16 - Ganho com otimização de imagens PNG	27
Tabela 17 - Otimização de imagens JPEG	29
Tabela 18 - Ganho com otimização de imagens JPEG	
Tabela 19 – Taxas de compressão a partir do BMP	
Tabela 20 – Taxas de compressão a partir do PNG	
Tabela 21 – Teste de novos formatos em modo lossy	32
Lista de Figuras	
Figura 1 - Degrade por coincidência	6
Figura 2 – Gráfico de desempenho entre png-8 vs. Gif	12
Figura 3 - Gráfico de desempenho entre png-8 vs. gif para baixas resoluções	14
Figure 4 - Imagem no formato V Ch Br	17

1. INTRODUÇÃO

O que seria do mundo dos Sistemas de Informação sem os incríveis recursos de áudio, imagem e vídeo? Seria um campo chato e cheio de textos, tabelas e gráficos sem fim. Nesse cenário cada vez mais competitivo, aqueles que tiverem habilidades e conhecimentos em áudio, vídeo, comunicações e TI o suficiente para convergir tudo em algo de qualidade, serão os que terão mais chance de prosperar com grande diferencial. E de uma parte desses temas que este trabalho irá tratar, a imagem.

2. OBJETIVO

Analisar os principais aspectos teóricos e práticos envolvidos nas imagens, compreendendo os fundamentos da compressão de dados com perdas (lossy) e sem perdas (lossless). Examinar e comparar, através de experimentos, os formatos de imagens mais usados atualmente (com ênfase no jpeg). Analisar e discutir o uso correto dos principais formatos de imagem no contexto de sistemas de informação e a melhor aplicação para sistemas web.

3. DESENVOLVIMENTO

3.1. Atividade 1: Entendendo Imagens Vetoriais e Bitmaps

Após a análise das imagens vetoriais, é possível ver suas características que diferem dos demais arquivos de imagens, como Bitmaps por exemplo. Imagens vetoriais podem ser escalonadas de forma a não ter nenhuma interferência na qualidade de exibição, enquanto as demais, submetidas a grande quantidade de zoom, se mostram ineficazes na exibição dos detalhes. Após abrir as imagens SVG no navegador Chrome, vimos que a qualidade se mantém inalterada mesmo aplicando um zoom de 500%, sem qualquer tipo de serrilhado nas bordas ou "pixelização". Em contrapartida, ao fazermos o mesmo teste com as versões PNG, fica nítido as bordas serrilhadas.

A diferença mais nítida se concentra nas bordas, que são as mudanças brusca de cores, ao ampliar muito o zoom, a nitidez das bordas fica muito prejudicada. Entretanto o PNG lidou muito bem com os degrades, muito presente na raposinha do Firefox e principalmente no pinguim do Linux. Uma curiosidade do problema de nitidez nas bordas

foi no extremo lado direito do tigre onde a cor laranja muda até a cor branca. Na versão em PNG virou um degrade, devido a perda de nitidez nas várias bordas da versão SVG. Conforme vemos Figura 1.

Figura 1 - Degrade por coincidência

Ao abrir a imagem vetorial em qualquer software de edição de texto ou até em interpretadores de HTML é possível ver como ela é constituída, e uma vez entendendo o processo, até modificá-la. Excluindo algumas informações por exemplo, é possível deixar somente a borda da imagem original, ou qualquer outro elemento que queira. Porém a forma que essas imagens são escritas em texto, não são muito intuitivas, sendo necessário tentativa e erro para modificar algo específico.

Uma das vantagens do SVG, é o fato de serem arquivos de texto, possuindo um nível de compressão muito bom, como é possível ver na Tabela 1.

Tamanho dos arquivos em relação ao SVG										
Arquivo SVG	PNG	SVG→RAR	PNG→RAR	SVG→ZIP	PNG→ZIP					
awesome_tiger	556.16%	34.24%	530.95%	34.08%	542.39%					
homer-simpson	878.47%	44.65%	855.37%	43.95%	860.66%					
Mozilla_Firefox	311.19%	18.68%	311.12%	19.86%	310.56%					
NewTux	986.66%	26.53%	957.53%	26.44%	959.54%					

Tabela 1 - Desempenho de compressão de arquivos SVG sobre PNG

3.2. Atividade 2: Avaliando a "complexidade" de uma imagem

Nesta etapa fizemos a seleção intuitiva da complexidade das imagens, usando o conhecimento prévio visto em aulas, é claro.

Níve	l de Com	olexidade	das Image	ens Estima	ativa
Baixa	Média	-Baixa	Médi	a-Alta	Alta
IMG003	IMG001	IMG028	IMG002	IMG036	IMG010
IMG017	IMG005	IMG030	IMG004	IMG037	IMG013
IMG034	IMG006	IMG031	IMG011	IMG038	IMG014
IMG042	IMG007	IMG035	IMG012	IMG041	IMG022
IMG048	IMG008	IMG039	IMG015	IMG045	IMG023
	IMG009	IMG040	IMG016	IMG047	IMG032
	IMG021	IMG043	IMG018	IMG049	IMG044
	IMG025	IMG046	IMG019	IMG050	IMG052
	IMG026	IMG057	IMG020	IMG051	IMG053
	IMG027	IMG059	IMG024	IMG054	IMG056
			IMG029	IMG055	IMG058
		_	IMG033	IMG060	

Tabela 2 - Estimativa da complexidade das imagens

3.3. Atividade 3: O desempenho do PNG-24 em imagens com diferentes conteúdos

3.3.1. 3A - Grau de compressão de BMP em diferentes formatos

	Compressão de dados										
BMP	7	ZIP	ı	RAR		PNG					
4219 KB	KBytes	Ratio (%)	KBytes	Ratio (%)	KBytes	Ratio (%)					
IMG001	1750	41.49	1642	38.93	1576	37.35					
IMG002	3012	71.39	2400	56.88	2076	49.22					
IMG003	1180	27.96	1121	26.58	1018	24.13					
IMG004	3101	73.5	2302	54.58	2147	50.9					
IMG005	2413	57.19	2131	50.52	1780	42.19					
IMG006	2580	61.15	2001	47.42	1785	42.31					
IMG007	2674	63.38	2077	49.23	1841	43.64					
IMG008	2828	67.03	2085	49.42	1871	44.34					
IMG009	2153	51.04	1781	42.22	1535	36.39					
IMG010	4054	96.1	4008	95.01	3431	81.32					
IMG011	2627	62.26	2166	51.34	1914	45.37					
IMG012	3290	78.0	2810	66.62	2451	58.1					
IMG013	3850	91.25	3702	87.76	3149	74.64					
IMG014	3596	85.25	3166	75.05	2510	59.49					
IMG015	3351	79.42	2861	67.82	2508	59.46					
IMG016	3610	85.56	2798	66.33	2275	53.92					
IMG017	1618	38.35	1220	28.93	1129	26.77					

IMG018	3889	92.19	2737	64.87	2431	57.62
IMG019	3668	86.94	2884	68.36	2409	57.1
IMG020	3752	88.93	2565	60.79	2205	52.27
IMG021	3526	83.59	2152	51.01	1862	44.13
IMG022	3724	88.28	3101	73.51	2620	62.11
IMG023	3773	89.44	3265	77.39	3055	72.4
IMG024	2868	67.97	2374	56.27	2224	52.71
IMG025	1976	46.84	1701	40.32	1545	36.62
IMG026	3687	87.4	2552	60.48	2198	52.1
IMG027	3728	88.37	3014	71.44	2587	61.32
IMG028	2829	67.06	2376	56.33	2194	52.01
IMG029	2471	58.58	2366	56.08	2356	55.84
IMG030	3316	78.59	2561	60.7	2234	52.96
IMG031	2230	52.85	1594	37.79	1638	38.82
IMG032	3944	93.49	3545	84.03	3145	74.55
IMG033	3287	77.92	2872	68.08	2271	53.82
IMG034	1058	25.09	811	19.22	676	16.02
IMG035	2151	50.98	1659	39.32	1412	33.46
IMG036	2370	56.17	2288	54.24	1837	43.55
IMG037	3233	76.63	2818	66.81	2474	58.65
IMG038	3595	85.22	3287	77.91	2887	68.43
IMG039	3230	76.56	2363	56.02	1999	47.37
IMG040	3033	71.9	2363	56.02	2115	50.14
IMG041	3646	86.43	2737	64.89	2251	53.36
IMG042	1198	28.39	1187	28.15	1067	25.28
IMG043	3370	79.88	3032	71.86	2756	65.33
IMG044	3803	90.14	3351	79.42	2977	70.57
IMG045	3200	75.84	2858	67.75	2505	59.37
IMG046	3281	77.77	2707	64.18	2329	55.21
IMG047	3810	90.32	3328	78.89	2977	70.56
IMG048	1725	40.9	1416	33.57	1159	27.48
IMG049	2875	68.14	2594	61.48	2267	53.73
IMG050	2631	62.36	2248	53.29	1976	46.84
IMG051	3547	84.07	2358	55.88	2086	49.44
IMG052	3736	88.55	3081	73.04	2749	65.15
IMG053	3714	88.04	3492	82.77	3127	74.12
IMG054	3077	72.94	2704	64.09	2447	58.01
IMG055	3645	86.39	2745	65.07	2427	57.52
IMG056	3408	80.77	2446	57.98	2278	53.99
IMG057	3103	73.55	2623	62.18	2255	53.46
IMG058	3886	92.11	3810	90.32	3308	78.41
IMG059	2911	68.99	2322	55.04	1997	47.34
IMG060	3367	79.82	2695	63.88	2397	56.83

Tabela 3 - Desempenho de compressão BMP

A primeira coisa que podemos constatar é que o desempenho do Winzip foi o pior, sendo o PNG o formato que teve o melhor desempenho de compressão. Olhando para os dados, dá pra ver que o WinRAR teve um desempenho muito satisfatório mesmo não sendo um software de compressão dedicado para imagens.

Apesar do bom desempenho do WinRAR, não achamos que seria um formato apropriado para imagens lossless, primeiro que virtualmente o arquivo deixar de ser uma imagem, se transformado em um arquivo específico que seria lido apenas pelo programa correto e segundo que o WinRAR não faz propriamente uma compressão da

imagem baseada nos elementos (cores primárias, brilho, matiz e saturação) dela, sendo mais uma compactação de arquivo.

3.3.2. 3B - Grau de complexidade matemático

N	lível de Co	mplexida	de Real d	as Imagen	s
Baixa	Média	-Baixa	Médi	a-Alta	Alta
0 a 0,35	0,35	a 0,5	0,5 a	a 0,7	0,7 a 1
IMG003	IMG001	IMG021	IMG004	IMG033	IMG010
IMG017	IMG002	IMG025	IMG012	IMG037	IMG013
IMG034	IMG005	IMG031	IMG014	IMG038	IMG023
IMG035	IMG006	IMG036	IMG015	IMG040	IMG032
IMG042	IMG007	IMG039	IMG016	IMG041	IMG044
IMG048	IMG008	IMG050	IMG018	IMG043	IMG047
	IMG009	IMG051	IMG019	IMG045	IMG053
	IMG011	IMG059	IMG020	IMG046	IMG058
			IMG022	IMG049	
			IMG024	IMG052	
			IMG026	IMG054	
			IMG027	IMG055	
			IMG028	IMG056	
_	_	_	IMG029	IMG057	_
			IMG030	IMG060	

Tabela 4 - Complexidade real das imagens

Ao comparar as duas tabelas ficamos bem felizes, pudemos ver na prática que as aulas agregaram muita coisa sobre a noção de complexidade em imagens. Apesar de termos errado várias imagens, 19 para ser exato (aproximadamente 32%), não cometemos nenhum erro de dois níveis de diferença. Nos confundimos principalmente entre médiabaixa e média-alta, mas nunca entre baixa e média-alta, ou alta e média-baixa.

Nosso melhor desempenho foi nas imagens de baixa complexidade. Todas que escolhemos estavam corretas, ficando faltando apenas uma, a IMG035, que devido ao forte contraste da blusa com o cenário e as formas geométricas no capacete, acreditamos que poderia elevar, mesmo que só um pouquinho, a complexidade até média-baixa.

As imagens 14, 22, 52 e 56 foram as que julgamos serem de alta complexidade, mas na verdade eram apenas de média-alta complexidade. Analisando a 14 novamente realmente foi um chute muito alto, apesar da grande quantidade de linhas, elas não possuem uma transição tão brusca assim e possui apenas uma cor predominante. O

mesmo vale para a imagem do lobo. As imagens 52 e 56 continuaram a ser uma surpresa, pois aparentam ter uma grande quantidade de informação, nos deixando até um pouco confuso se ficarmos vendo por muito tempo.

O restante das imagens ficou no campo da média complexidade, fato esse, que acreditamos apenas uma vista mais treinada e acostumada com os aspectos de complexidade para ter uma maior taxa de acerto.

3.3.3. 3C - Analisando a complexidade

Nesta tarefa analisamos as imagens através da visão pseudotérmica da eficiência da compressão do PNG, onde o custo em bits de cada pixel é representado por uma cor de uma escala pré-definida.

De cara, na primeira imagem algo estranho, o fundo que aparentemente deveria ser algo simples e uniforme, tem níveis de complexidade diferentes. À primeira vista ignoramos e acreditamos ser apenas um fundo escuro, mas existe um leve gradiente bem destacado pela visão "térmica". O restante da imagem segue a teoria que estudamos, os contornos da camisa, dos fios de cabelo, do rosto, olhos, nariz, orelhas, boca e a estampa geométrica do colete, são as áreas com maior nível de complexidade. No olho dá pra ver que a complexidade mais alta está entre 35 e 50 porcento da imagem total.

As imagens seguintes mostram o que mais usamos para tentar prever a complexidade de uma imagem: quanto mais contrastada for a borda, mais complexa ela é. E quanto mais uniforme for uma região e com variações sutis de cor, menos complexa ela é.

O que houve com a IMG009? Até tentamos colocar o brilho do monitor no máximo, mas não dava pra ver nada daquilo que estava na imagem "termal". Somente após jogar a imagem no editor e aumentar bastante o brilho e diminuir muito o contraste da imagem conseguimos ver a camisa da moça, inclusive a textura da camisa. Além de uma variação na cor do fundo da imagem. No caso desta imagem, uma pequena parte da informação ficou completamente oculta pra gente.

A IMG010 foi a primeira completamente complexa, exatamente como havíamos previsto. A IMG011 é um excelente exemplo pra teoria estudada nas aulas, ficando muito coerente em todos os níveis de complexidade, com as cores contínuas representadas pela cor azul. Texturas, pequenas formas e pessoas, representadas pela

cor vermelha. Ficando a piscina um meio termo entre uma cor uniforme e uma textura, representada pela cor verde na forma "termal".

A IMG015 com a mãe e a filha, muito condizente com o que vimos na primeira imagem do menino assustado, respeitando a mesma coerência dos níveis de complexidade. A imagem 16 dos índios gerou uma certa curiosidade, imaginamos que os bastões estariam bem destacados com baixa complexidade, mas aparentemente parece que a há bastante informação ali naquela tinta vermelha.

Com a imagem das frutas coloridas pudemos ter certeza que a complexidade não está relacionada de forma alguma com as cores e sim com o contraste entre elas. É engraçado como a flor da IMG021 mesmo possuindo um fundo colorido, tem uma uniformidade na complexidade maior do que no fundo das imagens 001 e 009 onde acreditamos a princípio se tratar de uma cor única.

Qual a diferença do céu das imagens 024 e 025 além da tonalidade da cor? Aparentemente nenhuma à primeira vista, mas ao dar um zoom na IMG025 podemos constatar as ondulações que ficaram tão evidentes na imagem "termal". O olho humano realmente não tem tanta precisão assim para esse tipo de informação.

Estamos quase convencidos que áreas da imagem fora de foco tem um comportamento comum no nível de complexidade. Na IMG026 isso ficou bem evidente ao perceber que o caule do cogumelo sumiu junto com os matinhos em primeiro plano que estão fora de foco. Todos esses elementos fora de foco ficaram com uma tonalidade parecida no nível de complexidade, assim como imagens anteriores com as mesmas características de fundo desfocado.

Ao ver os soldados fizemos mais uma constatação, se você não quer ter problemas com compressão de imagens, não tire fotos de pedras e matinhos. Na IMG028 mais uma vez o céu se comportando de maneira "estranha", seria isso algo celestial? A IMG029 é exatamente o que esperávamos, com a grata surpresa de ter toda a estrutura em madeira muito bem detalhada, ao que achávamos ser apenas uma silhueta.

A IMG031 revelou uns artefatos bem interessantes na parede, parecendo algo meio digitalizado. É estranho porque na imagem original não há qualquer resquício que possa indicar aqueles "caminhos" com formas de ondas quadrada. A IMG033 com mais um céu parecendo um lago. IMG035, poucas texturas, poucas bordas, logo pouca complexidade. O restante das imagens seguiu os padrões já observados, sem muita novidade. Nas imagens 046 e 049 finalmente vimos um céu simples e todo azul, como

imaginávamos que seriam todos os outros.

Após observar atentamente todas as sessenta imagens chegamos numa conclusão bem básica, se tem borda ou textura, tem complexidade, e quanto maior o contraste desses elementos, maior é a complexidade dos mesmos.

3.4. Atividade 4: Comparando GIF com PNG-8

3.4.1. 4A – Eficiência na Compressão

	Desempenho dos formatos 8 bits - valores em KBytes												
Arquivo	png-8	gif	Arquiv	o png-8	gif		Arquivo	png-8	gif				
IMG001	91,44	91,71	IMG021	218,82	232,54		IMG041	280,84	301,97				
IMG002	204,33	195,58	IMG022	289,22	292,61		IMG042	91,24	88,28				
IMG003	120,00	121,93	IMG023	282,41	279,06		IMG043	303,78	313,96				
IMG004	191,43	189,32	IMG024	192,31	192,02		IMG044	310,44	317,51				
IMG005	205,29	204,49	IMG025	152,42	150,06		IMG045	255,95	255,39				
IMG006	209,52	214,17	IMG026	228,49	231,82		IMG046	255,29	256,50				
IMG007	193,61	191,67	IMG027	263,63	259,31		IMG047	309,05	310,63				
IMG008	170,41	168,33	IMG028	201,28	201,61		IMG048	84,63	77,02				
IMG009	128,44	130,83	IMG029	162,25	163,33		IMG049	183,72	179,80				
IMG010	372,48	377,04	IMG030	214,80	214,28		IMG050	215,93	223,64				
IMG011	193,16	194,59	IMG031	157,79	159,28		IMG051	201,93	209,49				
IMG012	259,11	269,24	IMG032	308,62	304,99		IMG052	294,85	301,73				
IMG013	339,79	347,26	IMG033	243,60	263,25		IMG053	377,83	382,96				
IMG014	300,55	310,58	IMG034	72,12	74,83		IMG054	225,01	221,12				
IMG015	295,77	311,73	IMG035	117,35	115,93		IMG055	246,67	258,06				
IMG016	255,72	261,87	IMG036	169,33	170,87		IMG056	233,74	246,61				
IMG017	106,90	112,33	IMG037	267,60	275,54		IMG057	178,71	174,39				
IMG018	258,50	266,28	IMG038	276,55	269,72		IMG058	305,93	304,01				
IMG019	248,40	247,54	IMG039	191,68	200,44		IMG059	159,28	157,85				
IMG020	248,08	263,44	IMG040	230,53	236,78		IMG060	246,37	248,15				

Tabela 5 - Compressão para 8 bits

Figura 2 – Gráfico de desempenho entre png-8 vs. Gif

Avaliando o gráfico podemos quase que declarar um empate técnico, mas se formos bem criteriosos, podemos dizer que o PNG ganhou com um melhor desempenho na compressão, apesar de o GIF ter sido pouquíssimo melhor em algumas ocasiões.

Bom, primeiramente queríamos deixar claro que ficamos extremamente impressionados com a qualidade das imagens com um nível de profundidade de cores de apenas 8 bits. Nós estávamos esperando algo muito mais feio, os algoritmos estão realmente incríveis. Em algumas fotos é quase como se tivéssemos apenas aplicado um filtro de redes sociais.

É nítido que as fotos perderam muita saturação e ganharam um tom pastel. O dither foi muito bem aplicado, o rosto da mulher na imagem 09 por exemplo, ficou ótimo com as variações de tonalidade bem suave. Algumas imagens como a 010, 015 ou 054 perderam cores importantes, deixando a foto com um aspecto de tons de cinza. Em alguns casos houve distorção de cores, como a imagem 55, onde a pele do homem ficou com os tons predominantes das tubulações e sua camisa.

3.4.2. 4B – Eficiência na Compressão

Dese	mpenho	dos forr	natos 8 bits	em baixa	resoluç	ão - valores (em KByte	es
Arquivo	png-8	gif	Arquivo	png-8	gif	Arquivo	png-8	gif
IMG001	11,86	6,43	IMG021	28,11	11,77	IMG041	27,66	14,27
IMG002	27,17	12,50	IMG022	30,74	14,92	IMG042	12,42	7,84
IMG003	8,60	5,24	IMG023	31,00	12,40	IMG043	27,38	13,26
IMG004	26,75	10,04	IMG024	20,62	9,28	IMG044	33,29	15,22
IMG005	19,15	9,54	IMG025	16,86	8,57	IMG045	28,99	12,67
IMG006	21,54	10,26	IMG026	30,46	12,43	IMG046	25,84	11,65
IMG007	21,31	9,33	IMG027	32,17	13,19	IMG047	32,72	14,57
IMG008	19,06	9,18	IMG028	22,82	10,13	IMG048	17,45	7,47
IMG009	14,08	8,08	IMG029	27,02	12,41	IMG049	22,04	10,46
IMG010	33,98	13,12	IMG030	29,25	12,04	IMG050	21,62	11,13
IMG011	18,21	9,20	IMG031	19,56	7,95	IMG051	30,49	11,69
IMG012	23,58	10,83	IMG032	31,55	13,40	IMG052	31,67	14,16
IMG013	29,27	15,13	IMG033	25,66	13,06	IMG053	29,24	15,34
IMG014	20,79	11,18	IMG034	10,29	7,41	IMG054	27,45	11,99
IMG015	28,26	14,67	IMG035	18,88	7,73	IMG055	33,48	14,14
IMG016	29,46	13,39	IMG036	21,88	11,09	IMG056	33,89	16,01
IMG017	14,16	6,96	IMG037	26,91	12,62	IMG057	25,05	10,73
IMG018	33,34	14,50	IMG038	27,85	13,46	IMG058	39,70	15,59
IMG019	31,99	14,47	IMG039	23,54	9,72	IMG059	16,18	7,62
IMG020	30,93	14,52	IMG040	22,00	9,98	IMG060	33,92	13,53

Tabela 6 - Desempenho entre png-8 vs. gif em baixa resolução

Figura 3 - Gráfico de desempenho entre png-8 vs. gif para baixas resoluções

Conforme vemos no gráfico, o GIF teve um desempenho muito bom em taxas de compressão, porém a qualidade da imagem ficou bem aquém do PNG-8. O GIF não conseguiu lidar com os degrades das imagens, gerando resultados bem artificiais, com transições bruscas de cores e contraste.

Além desses problemas, as cores em geral ficaram bem lavadas. Ao contrário das imagens com suas resoluções originais, em que o GIF e PNG-8 ficaram bem parelhos, nas imagens em baixa resolução (que já são muito pequenas a nível de armazenamento) não há porque utilizar o GIF diante o PNG-8 que gerou resultados bem mais satisfatórios.

Também fizemos um teste de redimensionar as imagens antes de alterar a profundidade de cor. O resultado foi catastrófico, com a resolução muito baixa, a compressão teve menos informações para poder trabalhar com a alteração das cores, gerando imagens em alguns casos completamente deformadas, como as imagens 004 ou 047.

3.5. Atividade 5: Entendendo, de verdade, o formato JPEG

3.5.1. 5A - Analisando transparência JPEG

	Qualidade Vs Transparência									
Complexidede	ВМР	Qualidad	de 100%	Qualida	Qualidade Transparência					
Complexidade	4219 KB	KBytes	KBytes Ratio		KBytes	Ratio				
Daiya	IMG003	608,74	14,43%	65%	61,84	1,52%				
Baixa	IMG035	995,86	23,61%	75%	120,07	2,94%				
NAS dia baiwa	IMG009	1068,32	25,32%	50%	75,62	1,79%				
Média baixa	IMG021	1331,84	31,57%	40%	116,42	2,76%				
	IMG018	1882,57	43,20%	65%	270,37	6,41%				
Média alta	IMG043	1667,87	39,53%	70%	297,83	7,06%				
A I + -	IMG023	2379,95	54,41%	35%	242,9	5,76%				
Alta	IMG058	2467,04	58,48%	25%	256,91	6,09%				

Tabela 7 - Compressão JPEG e fator de qualidade

Nesta tarefa pudemos analisar o nível de qualidade das imagens, até o máximo possível sem perder a transparência, e assim pudemos notar algumas coisas interessantes. Nas imagens de baixa complexidade, se obteve um grande nível de compressão, mesmo com qualidade 100%, porém, não foi possível baixar muito o nível de qualidade sem que se notasse diferenças bruscas do original. Na IMG003 com baixa qualidade, foi notado que suas bordas se confundiam com o fundo branco, além de rapidamente aparecerem os macroblocos no fundo branco, já na IMG035, se não fossem as palavras na ferramenta do alpinista, a qualidade poderia ter sido ainda mais diminuída, porém como o JPEG não se dá bem com bordas bem definidas, as palavras foram ficando cada vez mais borradas e com "ruído de mosquito".

Nas imagens de média baixa complexidade, tivemos alguns resultados interessantes, a IMG009, poderia ter sua qualidade diminuída ainda mais, porém o que fez com que a transparência tenha sido perdida com qualidade de 50%, foram os olhos ficando sem brilho, além de estar perdendo a definição das bordas e os vários ruídos que aparecem nos cílios dos olhos, diria até que se ela estivesse de olhos fechados a qualidade poderia baixar para uns 35 a 40%. Já na imagem IMG021 a qualidade pôde ser baixada para 40% sem perder a transparência, com o fundo fora de foco, não dava para saber se a imagem estava perdendo qualidade ou se era somente algum truque de fotografia, a transparência foi perdida nesse caso por culpa das linhas que a flor possui, que foram ficando cada vez menos definidas.

Agora falando das imagens de média e alta complexidade. Começando pela IMG018, antes de diminuir sua qualidade, achavamos que ela chegaria aos 30% sem problemas, porém, o que fez com que ela não diminuísse muito, foram essas plaquinhas com nomes, seria possível economizar belos Bytes se não fossem elas, com a qualidade abaixo dos 70% suas letras ficaram borradas e cheias de "ruído de mosquito", ficando evidente a perda da transparência da imagem, na imagem do gato, podíamos jurar que a imagem 43 poderia chegar até uns 25 a 30%, porém como aconteceu anteriormente na imagem 9, os olhos do gatinho, foram perdendo o brilho a cada diminuição da qualidade, e em seguida suas bordas foram-se deteriorando, não sendo possível a diminuição da qualidade. Se ignorarmos os olhos e os macroblocos que foram surgindo no fundo, conseguimos diminuir a qualidade até 35%.

Após a análise das imagens de grande complexidade, foi possível notar que é possível baixar bastante suas qualidades sem perder a transparência. Na imagem 23, não foi possível chegar a níveis abaixo de 54% principalmente pelo deck da casa do lago e a árvore seca, que fazem uma borda que contrastava com o lago, tornando evidente a perda da transparência. Já na imagem 58, foi possível baixar muito sua qualidade, nessa imagem original já era difícil perceber os detalhes, tendo que prestar bastante atenção, o JPEG fez o uso eficaz dos componentes de alta frequência da imagem, podendo baixar bastante a qualidade, só não foi possível uma qualidade menor que 25% por que os macroblocos da compressão ficaram evidentes, porém com olhares menos atentos seria possível baixar um pouco mais.

3.5.2. 5B - Analisando Chroma Subsampling

	Chroma Subsampling												
ВМР	Qualidade Transparência 4:4:4			04:0	04:02:02		04:02:00		04:01:01				
4219 kB	Qualidade	kBytes	Ratio	kBytes	Ratio	kBytes	Ratio	kBytes	Ratio				
IMG003	65%	61,84	1,52%	55,79	1,32%	52,83	1,25%	52,93	1,25%				
IMG035	75%	120,07	2,94%	102,13	2,42%	89,62	2,12%	91,42	2,17%				
IMG009	50%	75,62	1,79%	66,81	1,58%	61,68	1,46%	62,34	1,48%				
IMG021	40%	116,42	2,76%	99,63	2,36%	87,64	2,08%	88,87	2,11%				
IMG018	65%	270,37	6,41%	231,62	5,49%	208,08	4,93%	208,02	4,93%				
IMG043	70%	297,83	7,06%	6,44	6,44%	258,02	6,12%	258,29	6,12%				
IMG023	35%	242,9	5,76%	213,32	5,06%	198,13	4,70%	198,51	4,71%				
IMG058	25%	256,91	6,09%	228,94	5,43%	212,96	5,05%	212,02	5,03%				

Tabela 8 - Desempenho chroma subsampling

Nas IMG003 e IMG035 de baixa e IMG009 de média-baixa complexidade, não foi possível notar nenhumfatoa alteração de qualidade ao aplicar os subsampling. Isso se

deve ao fato das imagens terem pouca quantidade de cores, mesmo usando o preset Low (4:2:2), não foi percebida alterações nas imagens, e também pouco se alterou em seu tamanho. Pode ser que aplicações onde essa pequena diferença, e na soma de várias outras compense. Porém achamos desnecessário para esse caso perder ainda mais informações da imagem para pouco ganho de performance. Na imagem 21 pudemos visualizar levemente uma diferença de cor, perdendo um pouco de vida por assim dizer, é como se a imagem ficasse levemente opaca, nela tivemos um ganho pequeno porém considerável na compressão, em aplicações onde essa imagem seja requisitada milhões de vezes pode ser que valha a pena o pequeno ganho que se obteve, isso se a aplicação não tiver como foco imagens de boa qualidade.

Nas imagens 18, 43, 23 e 58, consideramos que o ganho está na maior taxa de compressão, pois não foram percebidas alterações muito evidentes, nem mesmo na imagem 18 que possui uma boa gama de cores diferentes. Claro que se for utilizá-las para algum trabalho de edição ou coisa parecida, elas já não servem mais, porém, para uma utilização comum, existe um ganho considerável na redução do tamanho em relação ao subsampling 4:4:4. Diríamos que o mais indicado seria o 4:2:2 nesses dois casos.

Na Figura 4 - Imagem no formato Y Cb Br temos o Y Cb Cr de uma das imagens analisadas, ao fazer o subsampling nas imagens dessa sessão do trabalho. Na prática apenas mexemos nos canais Cb e Cr, que são os canais de cor, o canal Y (luminância), se permaneceu inalterado, porém mesmo mexendo em 66% da informação das imagens, notamos pouca ou nenhuma alteração em questão de qualidade, até mesmo quando aplicamos o preset 4:1:1 que descarta ¼ da resolução horizontal pouco se alterou. Mas quando mexemos no canal Y, impressionou como a imagem se altera, pouco alteração em seu valor acarreta em grande modificação na imagem, tendo isso em mente, se torna inviável na compressão a alteração nos valores de luminância da imagem.

Figura 4 - Imagem no formato Y Cb Br

3.5.3. 5C - Chroma Subsampling com Grayscale

	Chroma Subsampling											
ВМР	04:04:04		04:02:02		04:02:00		04:01:01		Grayscale			
4219 kB	kB	Ratio	kB	Ratio	kB	Ratio	kB	Ratio	kB	Ratio		
IMG003	61,84	1,52%	55,79	1,32%	52,83	1,25%	52,93	1,25%	50,31	1,19%		
IMG035	120,07	2,94%	102,13	2,42%	89,62	2,12%	91,42	2,17%	71,7	1,70%		
IMG009	75,62	1,79%	66,81	1,58%	61,68	1,46%	62,34	1,48%	56,55	1,34%		
IMG021	116,42	2,76%	99,63	2,36%	87,64	2,08%	88,87	2,11%	71,01	1,68%		
IMG018	270,37	6,41%	231,62	5,49%	208,08	4,93%	208,02	4,93%	178,87	4,24%		
IMG043	297,83	7,06%	6,44	6,44%	258,02	6,12%	258,29	6,12%	243,82	5,78%		
IMG023	242,9	5,76%	213,32	5,06%	198,13	4,70%	198,51	4,71%	184,88	4,38%		
IMG058	256,91	6,09%	228,94	5,43%	212,96	5,05%	212,02	5,03%	194,04	4,60%		

Tabela 9 - Grayscale

Adicionando à Tabela 9 os dados das imagens em grayscale, pudemos ver de cara que em todos os casos as imagens ficaram menores. Em alguns muito pouco, como a IMG003 que já tinha pouca informação de cor, por isso não teve uma redução efetiva, note que os dados dessa imagem têm pouca alteração de um campo para o outro. Porém a IMG018 teve uma redução de quase um terço em comparação a sua versão no preset 4:4:4. De acordo com o que foi estudado, essa imagem junto com a IMG021 possuem uma boa quantidade de informações de cor, que foram descartadas, porém, se for comparar com as versões no preset 4:1:1, a economia em Bytes foram muito pouco, estando de acordo com a teoria estudada sobre o descarte dos canais de cores. Empresas como instagram devem gostar quando entra na moda tirar fotos em preto e branco, deve gerar uma boa economia de dados.

3.5.4. 5D - Re-comprimindo JPEG

	Re-comprimindo JPEG										
ВМР	JPEG	R/	AR	Z	IP	PJG					
4219 kB	kBytes	kBytes Ratio (%)		kBytes	Ratio (%)	kBytes	Ratio (%)				
IMG001	108,45	104,01	95,91	103,95	95,85	83,51	77				
IMG002	191,1	191,25	100,08	190,85	99,87	150,47	78,74				
IMG003	65,43	60,93	93,12	60,84	92,98	42,02	64,22				
IMG004	221,2	221,35	100,07	220,9	99,86	176,52	79,8				
IMG005	158,77	157,91	99,46	157,74	99,35	127,93	80,58				
IMG006	132,82	131,05	98,67	130,97	98,61	102,22	76,96				
IMG007	132,62	132,58	99,97	132,19	99,68	105,1	79,25				
IMG008	187,15	185,49	99,11	185,46	99,1	129,74	69,32				
IMG009	105,95	101,57	95,87	101,28	95,59	82,29	77,67				
IMG010	457,9	458,05	100,03	457,84	99,99	382,09	83,44				

IMG011	140,68	137,66	97,85	137,48	97,73	110,06	78,23
IMG012	222,58	222,6	100,01	222,13	99,8	179,08	80,46
IMG013	396,59	396,74	100,04	396,52	99,98	321,41	81,04
IMG014	223,72	223,87	100,07	223,55	99,92	177,57	79,37
IMG015	251,39	251,54	100,06	251,27	99,95	207,61	82,58
IMG016	219,26	219,41	100,07	219,13	99,94	173,79	79,26
IMG017	69,61	66,67	95,78	66,73	95,86	49,44	71,02
IMG018	261,75	261,9	100,06	261,67	99,97	210,24	80,32
IMG019	243,71	243,86	100,06	243,59	99,95	195,9	80,38
IMG020	209,06	209,2	100,07	208,96	99,95	163,79	78,35
IMG021	155,29	155,44	100,1	155,11	99,88	117,68	75,78
IMG022	272,88	273,02	100,05	272,72	99,94	221,66	81,23
IMG023	381,64	381,79	100,04	381,56	99,98	316,8	83,01
IMG024	203,59	198,63	97,56	198,31	97,41	161,35	79,25
IMG025	148,42	143,94	96,98	143,7	96,82	113,59	76,53
IMG026	189,66	189,81	100,08	189,48	99,91	148,56	78,33
IMG027	283,38	283,53	100,05	283,28	99,96	231,62	81,73
IMG027	225,34	222,01	98,52	221,45	98,27	180,94	80,3
IMG029	339,94	338,43	99,56	338,04	99,44	271,65	79,91
IMG030	220,55	220,53	99,99	219,91	99,71	177,28	80,38
IMG031	151,34	151,26	99,95	151,11	99,85	119,2	78,76
IMG032	383,21	383,36	100,04	383,14	99,98	318,13	83,02
IMG032	262,12	260,38	99,34	259,67	99,07	205,39	78,36
IMG034	63,47	55,76	87,85	55,57	87,55	44,26	69,73
IMG035	92,2	91,48	99,22	91,28	99	69,43	75,3
IMG036	222,97	220,58	98,93	220,01	98,67	173	77,59
IMG037	220,65	220,8	100,07	220,48	99,92	179,49	81,35
IMG038	338,63	338,78	100,04	338,46	99,95	279,84	82,64
IMG039	109,18	109,33	100,14	109,01	99,84	85,88	78,66
IMG040	163,5	163,65	100,09	163,22	99,83	132,3	80,92
IMG041	238,2	238,35	100,06	238,09	99,95	187,09	78,54
IMG042	112,34	104,52	93,04	104,29	92,83	84,73	75,42
IMG043	297,26	297,41	100,05	296,89	99,88	244,54	82,26
IMG044	366,21	366,35	100,04	366,12	99,98	303,6	82,9
IMG045	317,43	315,13	99,28	314,31	99,02	259,19	81,65
IMG046	208,98	208,26	99,66	207,75	99,41	169,14	80,94
IMG047	377,86	378,01	100,04	377,79	99,98	311,46	82,43
IMG048	95,37	93,56	98,1	93,22	97,75	72,67	76,2
IMG049	197,59	196,4	99,4	196,13	99,26	156,41	79,16
IMG050	149,72	148,11	98,92	148,06	98,89	115,15	76,91
IMG050	161,79	161,94	100,09	161,58	99,87	123,27	76,19
IMG052	317,38	317,53	100,05	317,28	99,97	259,29	81,7
IMG053	395,03	395,18	100,04	394,97	99,98	326	82,53
IMG054	287,4	286,14	99,56	285,47	99,33	231,15	80,43
IMG055	242,21	242,36	100,06	242,11	99,96	195,47	80,7
IMG056	254,46	254,6	100,06	254,27	99,93	195,84	76,96
IMG057	193,67	193,82	100,08	193,39	99,86	156,08	80,59
IMG058	497,91	498,05	100,03	497,68	99,95	398,59	80,05
IMG059	133,99	133,56	99,68	133,37	99,54	106,29	79,33
IMG060	274,53	274,67	100,05	274,18	99,87	217,67	79,29
5000	_, ,,,,,		,	mnimindo o		,,0,	. 5,25

Tabela 10 - Recompimindo o JPEG

Como esperado, ao comprimir sem perdas as imagens JPEG, nos formatos RAR e ZIP notamos que em alguns casos se obteve redução ínfima no tamanho, em outros se manteve, e ainda em alguns caso o tamanho final foi maior que o original, isso se dá porque ao final da compressão JPEG (após a transformada DCT) se aplica o algoritmo

de Huffman no restante, que é uma compressão sem perdas, ou seja, após ter feito todo o descarte de informação com o subsampling nos canais de cor, e em seguida a transformada DCT, se aplica Huffman, não dando margem para outra compressão sem perdas, por que a entropia já foi atingida em seu máximo ou perto disso. Então como é possível a coluna final dessa Tabela 10? A imagem é desmembrada, assim ocorrem várias otimizações em sua estrutura com base em modelos estatísticos e redundância dentro do arquivo usando a codificação de entropia aritmética e otimização das tabelas resultantes da transformada DCT. Nas configurações usuais de compressão, a maioria dos coeficientes são quantizados para zero, cada grupo 8x8 é codificado independentemente, e dividido em níveis, esses níveis variam de imagem para imagem, com isso, a redução média do arquivo está por volta de 15% sem perda de informação original.

wxPackJPG									
Quantidade de imagens	Tamanho total (Mb)	tempo de compressão (segundos)	Tamanho comprimido (Mb)	Ratio (%)	Tempo de Descompressão (segundos)				
600	131	24.5	105.5	80.53	22				

Tabela 11 – Eficácia da compressão JPEG

Também fizemos um teste para verificar a eficácia dessa compressão, na Tabela 11, pegamos seiscentas imagens JPEG com tamanho aproximado de 131 megabytes no total, fazendo a compressão, o tamanho final foi para 80% do tamanho original, com um gasto de 24 segundos para a compressão e 22 para a descompressão, isso usando um processador core i7 7700. Analisando esses resultados dá para perceber que tivemos uma redução considerável no tamanho, a questão agora é saber, compensa? Foram gastos quase cinquenta segundos de processamento para comprimir e descomprimir todos os arquivos, em uma aplicação com dezenas de milhões de imagens teria um custo computacional considerável. Na nossa opinião, só compensaria aplicar esse tipo de compressão se a empresa for do porte do Google ou do Facebook, caso contrário o ganho com disco se perde com o gasto de processador.

3.5.5. 5E – Analisando os artefatos

	Análise de Artefatos no JPEG										
ВМР	Perda	de detal	hes	Ruído	de mosq	uito	Macroblocos				
4219 kB	Qualidade (%)	kBytes	Ratio (%)	Qualidade (%)	kBytes	Ratio (%)	Qualidade (%)	kBytes	Ratio (%)		
IMG003	70	60,55	1,44	82	80,9	1,92	52	46,38	1,1		
IMG035	50	65,7	1,56	78	108,7	2,58	44	60,64	1,44		
IMG009	43	59,74	1,42	57	74,85	1,77	35	50,05	1,19		
IMG021	40	99,62	2,36	76	177,4	4,2	37	95,32	2,26		
IMG018	35	149,7	3,55	84	355,9	8,44	25	118,7	2,81		
IMG043	30	150,1	3,56	82	355,7	8,43	48	198,5	4,71		
IMG023	41	196,4	4,66	85	523,9	12,42	31	196,4	4,66		
IMG058	24	223,6	5,3	36	287,9	6,83	22	322,2	5,01		

Tabela 12 - Análise de artefatos do JPEG

Quando procuramos pelas primeiras deteriorações visuais na IMG003, vimos que o primeiro a surgir foi o ruído de mosquito, essa imagem em específico possui muitas bordas bem definidas e constantes, então com uma pequena redução na qualidade já é possível notar esses ruídos em suas redondezas. Logo em seguida, baixando a qualidade para 70%, o ruído de mosquito se multiplica prejudicando gravemente a qualidade da imagem, aos 52% de qualidade já podemos visualizar os macroblocos nos componentes de baixa frequência da imagem, principalmente no canto inferior esquerdo, onde aparecem os blocos de forma clara. Coisa muito similar acontece na IMG035, no caso do ruído de mosquito que ocorre aos 78%, essa imagem porém já aguenta uma redução maior na sua qualidade podendo diminuir até próximo dos 44% de qualidade antes de aparecerem os primeiros macro blocos na blusa do alpinista.

Na imagem IMG009 temos um rosto humano, ela conseguiu receber qualidade consideravelmente baixas antes que se pudesse notar alguma alteração, o ruído de mosquito só foi notado com qualidade aos 57%, isso prestando bastante atenção pois esses se manifestam no cabelo da moça, ficando difícil distinguir o que era cabelo e o que era sujeira da baixa qualidade. A perda efetiva de detalhes e os macroblocos surgem bem próximos uns dos outros, sendo os macroblocos se manifestando no fundo preto da imagem, e a perda de detalhes nas sardas presente no rosto da mulher. De fato o jpeg trabalha bem com componentes de alta frequência, apesar de bem diferente, na IMG021 temos dados parecidos, somente com a diferença referente ao ruído que surge muito cedo com qualidade de 76%, isso se dá pela divisão muito definida de uma

parte para outra da flor na imagem, acreditamos que as similaridades estão relacionadas ao fato delas estarem no mesmo grupo de média-baixa frequência.

Agora temos dois casos interessantes pertencentes ao mesmo grupo de média-alta frequência, enquanto a IMG043 tem seus macroblocos revelados aos 48% de qualidade, na imagem 18 só se manifestam aos 25%. Porém na imagem do gato esses macroblocos se manifestam cedo pelos componentes de baixa frequência no fundo da imagem, se ignorássemos isso, os macroblocos só apareceriam aos 19% nos olhos do gato. Já no conjunto de frutas da IMG0018, eles aparecem primeiramente nas frutas mais uniformes com poucas imperfeições, no caso do ruído de mosquito uma imagem se diferencia bastante da outra, no cesto de frutas ele se manifesta rapidamente nas plaquinhas com nome e preço das frutas, já no gato aparece contornando o bigode, de acordo com o conteúdo estudado sobre jpeg e como ele trabalha com bordas.

Por último temos as imagens de alta frequência. Em relação ao ruído de mosquito temos os dois extremos, a imagem que foi detectado mais cedo, e a que foi detectado mais tarde. Na IMG023 logo foram detectados esses ruídos, principalmente por causa da árvore com os galhos secos que contrastava com o lago ao fundo. Já na IMG058, quase não foi detectado, era difícil diferenciar o ruído com a terra ou outro elemento da imagem, com relação aos macroblocos, o que entregou a imagem da casa do lago, foi o lago, apesar de ter sido difícil também diferenciar o que era um macrobloco ou o que era uma imperfeição do lago. Na imagem da plantação a perda da qualidade estava muito vinculada com o aparecimento dos macroblocos, são muitos componentes de alta frequência que mascaram a queda de qualidade.

Analisado de forma geral podemos ver que quanto maior for a quantidade de componentes de alta frequência da imagem, maior será a margem para mexer nos componentes de qualidade, não somos muito bons em detectar detalhes no meio da bagunça, porém, enxergamos de longe uma imperfeição em uma imagem com predominância de baixa frequência como a IMG003, se nela aparecer um macrobloco no meio da tela logo percebemos, já na IMG058 custou para notarmos.

3.6. Atividade 6: Transcoding em Imagem

O vídeo proposto ilustra a perda de qualidade de uma imagem após inúmeras compressões no formato JPEG. A imagem foi dividida em quatro quadrantes, onde cada um tem um nível de compressão diferente. O quadrante II possui um alto grau de

transparência, ficando imperceptível a diferença mesmo após 1500 recompressões.

No quadrante III apesar de não ter perdas na saturação das cores, podemos perceber a diminuição na profundidade da cor, é como se a imagem fosse perdendo bits. Todas essas percepções ficam muito mais nítidas nos quadrantes I e IV, com perda acentuada das cores e surgimento de artefatos de macrobloco, principalmente no quadrante IV.

Isso ocorre porque o JPEG é um algoritmo de compressão de imagem com perdas que usa DCT. O DCT fornece uma boa aproximação para permitir a decomposição de uma imagem em um conjunto de formas de onda, cada uma com uma frequência espacial particular. Isso nos permite diminuir sucessivamente componentes de frequência que são imperceptíveis ao olho humano. Na etapa de quantização, coeficientes de alta frequência são descartados permanentemente, gerando distorções em regiões de alto contraste. A próxima compressão nessa imagem que já possui distorções, irá aumentar mais ainda as mesmas.

As transformações geométricas como rotação, espelhamento e corte de imagens são normalmente realizadas descomprimindo a imagem para um mapa de pixels, que é transformado e recomprimido para o formato original. Embora esse método seja adequado para imagens em formatos lossless, como PNG, há um problema com formatos lossy, como JPEG: a recompressão causa perda de qualidade. Sendo assim os dados precisam ser reorganizados sem a etapa de descompressão e recompressão para realizar essas transformações sem perdas.

3.7. Atividade 7: Escolhendo corretamente o formato de imagem

Para conversão das imagens, utilizamos parâmetros mínimos para chegar a um nível de transparência ou suficientemente próximo. Abaixo na Tabela 13 com as características encontradas e tamanhos gerados.

		Tipos de imagens			
Imagem	Tipo	Características			
1	mista	Texto com cores e pequena foto			
2	geométrica	Bordas bem definidas com alto contraste			
3 mista		undo em degrade com texto e imagem com bordas brusca e em degrade			
4	logomarca	Muito degrade com cores vivas			
5	cartoon	Bordas bem definidas com poucas cores e uniformes			
6	ícone	Poucas cores com muito degrade			
7	logomarca	Bordas bem definidas com poucas cores e uniformes			
8	logomarca	Bordas bem serrilhadas com poucas cores e uniformes			
9	logomarca	Degrade, bordas suaves e texto			
10	logomarca	Muito degrade com cor única			
11	ícone	Degrade, bordas suaves e várias cores			
12	foto	Tons de cinza, muito contraste, fundo desfocado, regiões de alta frequência no rosto bordas na camisa			
13	foto	Muitas cores, muitas bordas, texturas de alta e baixa frequência.			
14	texto	Texto preto e branco			
15	foto	Muitas cores com variação suave e bordas bem definidas			

Tabela 13 - Tipos de imagem

	Cor	nparaç	ão dos	tipos c	le imagem
Imagam	Tai	manho	em KB		- Parâmetros
Imagem	Original	GIF	PNG	JPEG	Parametros
01	2486	60	44	116	Optimal 128, Medium
02	1408	52	27	123	Optimal 8, Medium
03	2026	44	113	105	97%, High(4:1:1)
04	1599	82	231	183	100%, High(4:1:1)
05	1873	20	21	65	Optimal 11, Medium
06	279	15	34	29	TrueColor, Medium
07	494	7	5	21	Optimal 15, Medium
08	1588	13	6	26	Optimal 15, Medium
09	1120	122	84	31	60%, High (4:1:1)
10	1412	45	130	43	95%, High (4:1:1)
11	268	34	91	14	89% Medium (4:2:0)
12	7183	1201	1036	186	30%, High (4:1:1)
13	7042	1840	1472	363	35%, High (4:1:1)
14	2101	40	31	158	Optimal 16, Medium
15	4219	434	1359	184	89%, Medium (4:2:0)

Tabela 14 - Comparação dos tipos de imagem

As imagens selecionadas estão na cor azul na Tabela 14. Para selecionarmos as imagens, consideramos a que ficou com o menor tamanho, atrelado a um bom nível de transparência. Imagens com muito degrade como as 03, 04 e 06, o GIF não se saiu muito bem, por isso, mesmo sendo menor ele não foi escolhido.

As imagens 09, 10 e 11 possuem um canal de transparência, caso ele seja importante, deverá ser usado o PNG. Nesse caso os parâmetros selecionados foram:

- Imagem 09 Optimal 128, Medium;
- Imagem 10 TrueColor, Medium;
- Imagem 11 TrueColor, Medium.

3.8. Atividade 8: Otimizando imagens

3.8.1. 8A – Otimizando imagens em PNG

	Otimizaç	ão de imag	gens PNG e	m KBytes	
Imagem	original	lossles web	lossy soft only 10%	lossy soft only 50%	lossy soft only 90%
IMG001	1576	1454	386	561	938
IMG002	2076	2033	579	960	1475
IMG003	1018	870	191	311	556
IMG004	2147	2084	707	1089	1576
IMG005	1780	1618	462	757	1185
IMG006	1785	1643	437	691	1114
IMG007	1841	1757	399	690	1175
IMG008	1871	1785	537	899	1398
IMG009	1535	1474	370	695	1059
IMG010	3431	3410	1673	2301	2892
IMG011	1914	1823	467	751	1245
IMG012	2451	2365	717	1130	1743
IMG013	3149	2868	1217	1741	2353
IMG014	2510	2451	786	1295	1922
IMG015	2508	2177	798	1140	1625
IMG016	2275	2198	760	1145	1680
IMG017	1129	1002	192	323	591
IMG018	2431	2417	812	1243	1822
IMG019	2409	2280	744	1142	1684
IMG020	2205	2202	644	1020	1592
IMG021	1862	1803	487	790	1259
IMG022	2620	2467	868	1324	1889
IMG023	3055	3030	1383	1897	2487
IMG024	2224	2147	684	1064	1590
IMG025	1545	1459	485	719	1060
IMG026	2198	2178	646	1025	1585
IMG027	2587	2546	905	1367	1947
IMG028	2194	2124	757	1106	1594
IMG029	2356	2294	1076	1516	1989
IMG030	2234	2160	675	1050	1570
IMG031	1638	1491	414	786	1179
IMG032	3145	2959	1264	1794	2404
IMG033	2271	2238	887	1329	1871
IMG034	676	654	186	330	486
IMG035	1412	1320	259	460	819
IMG036	1837	1726	775	1067	1434
IMG037	2474	2283	725	1183	1745

IMG038	2887	2879	1237	1750	2322
IMG039	1999	1893	353	802	1354
IMG040	2115	1930	482	892	1424
IMG041	2251	2218	725	1138	1712
IMG042	1067	963	333	481	625
IMG043	2756	2524	934	1331	1902
IMG044	2977	2802	1167	1677	2248
IMG045	2505	2427	936	1346	1875
IMG046	2329	2189	660	1028	1547
IMG047	2977	2895	1243	1734	2321
IMG048	1159	1083	235	445	713
IMG049	2267	2207	625	993	1576
IMG050	1976	1811	498	767	1214
IMG051	2086	2019	517	852	1394
IMG052	2749	2669	1077	1553	2139
IMG053	3127	3108	1288	1895	2540
IMG054	2447	2366	930	1311	1824
IMG055	2427	2356	769	1196	1769
IMG056	2278	2189	740	1116	1674
IMG057	2255	2157	569	1049	1608
IMG058	3308	3230	1538	2075	2673
IMG059	1997	1960	376	793	1371
IMG060	2397	2331	758	1185	1738

Tabela 15 - Otimização de imagens PNG

Ganho com otimização de imagens PNG									
Imagem	lossless web	lossy soft only 10%	lossy soft only 50%	lossy soft only 90%					
IMG001	92%	24%	36%	60%					
IMG001	98%	28%	46%	71%					
IMG002	85%	19%	31%	55%					
IMG004	97%	33%	51%	73%					
IMG004	91%	26%	43%	67%					
IMG005	91%	24%	39%	62%					
IMG007	95%	22%	38%	64%					
IMG008	95%	29%	48%	75%					
IMG009	96%	24%	45%	69%					
IMG010	99%	49%	67%	84%					
IMG011	95%	24%	39%	65%					
IMG012	96%	29%	46%	71%					
IMG013	91%	39%	55%	75%					
IMG014	98%	31%	52%	77%					
IMG015	87%	32%	45%	65%					
IMG016	97%	33%	50%	74%					
IMG017	89%	17%	29%	52%					
IMG018	99%	33%	51%	75%					
IMG019	95%	31%	47%	70%					
IMG020	100%	29%	46%	72%					
IMG021	97%	26%	42%	68%					
IMG022	94%	33%	51%	72%					
IMG023	99%	45%	62%	81%					
IMG024	97%	31%	48%	72%					
IMG025	94%	31%	47%	69%					
IMG026	99%	29%	47%	72%					
IMG027	98%	35%	53%	75%					
IMG028	97%	35%	50%	73%					
IMG029	97%	46%	64%	84%					
IMG030	97%	30%	47%	70%					

IMG031	91%	25%	48%	72%
IMG032	94%	40%	57%	76%
IMG033	99%	39%	59%	82%
IMG034	97%	28%	49%	72%
IMG035	93%	18%	33%	58%
IMG036	94%	42%	58%	78%
IMG037	92%	29%	48%	71%
IMG038	100%	43%	61%	80%
IMG039	95%	18%	40%	68%
IMG040	91%	23%	42%	67%
IMG041	99%	32%	51%	76%
IMG042	90%	31%	45%	59%
IMG043	92%	34%	48%	69%
IMG044	94%	39%	56%	75%
IMG045	97%	37%	54%	75%
IMG046	94%	28%	44%	66%
IMG047	97%	42%	58%	78%
IMG048	93%	20%	38%	61%
IMG049	97%	28%	44%	70%
IMG050	92%	25%	39%	61%
IMG051	97%	25%	41%	67%
IMG052	97%	39%	57%	78%
IMG053	99%	41%	61%	81%
IMG054	97%	38%	54%	75%
IMG055	97%	32%	49%	73%
IMG056	96%	32%	49%	73%
IMG057	96%	25%	47%	71%
IMG058	98%	47%	63%	81%
IMG059	98%	19%	40%	69%
IMG060	97%	32%	49%	72%
Média	97%	31%	48%	72%

Tabela 16 - Ganho com otimização de imagens PNG

As operações com lossless tiveram desempenho bem tímido com uma média de redução de apenas 3% em relação ao arquivo original, sendo o melhor resultado uma redução de 10%. Ao visualizarmos as imagens pseudotérmicas deu pra ver que os graus de complexidade praticamente permaneceram inalterados, resultando em uma qualidade intacta.

Já em modo lossy as coisas ficaram realmente interessantes. Com uma taxa de compressão de 50% conseguimos reduzir em média os arquivos para 48% do tamanho original, com qualidade muito satisfatória, só foi percebido alguns pouquíssimos (e pequenos) artefatos em regiões de baixa frequência, como o fundo da imagem 01. Entretanto algo totalmente aceitável para um ganho tão grande.

Analisando as imagens pseudotérmicas, foi possível perceber que o algoritmo (muito agressivo) reduz o nível de complexidade em toda imagem, passando o vermelho a ser laranja, o laranja a ser amarelo, o amarelo a ser verde e o verde ser azul. Ou seja, ele reduz, em um grau na escala, o custo em bits gasto por cada pixel da imagem. É claro

que isso é apenas um exemplo, em várias imagens é possível perceber uma redução de dois graus e até três graus na escala pseudothermal.

Com a compressão lossy em 90% o algoritmo foi bem menos agressivo, reduzindo apenas um nível pseudothermal no grau de complexidade de cada pixel. Com uma redução média de quase 30%, não pudemos perceber artefatos nesse nível de compressão. De repente seria uma configuração interessante para quem quisesse guardar suas fotos lossless e economizar algum espaço.

Em 10% de compressão foi diminuído muito mais o nível de complexidade com um ganho médio de 31% do tamanho do arquivo original. Entretanto distorções mais expícitas apareceram. Como no oceano da imagem 05, que apareceram artefatos que lembraram um pouco os macroblocos DCT do algoritmo de compressão JPEG. Porém não deixou nada a desejar com as fotos mais texturizadas. Seria uma forma interessante de comprimir para a Web e sistemas online em geral. Imagine por exemplo uma imagem como a 017, que antes possuía 1129 KBytes e agora possui apenas 192 KBytes, uma incrível redução de 83% do seu tamanho original. Isso se traduz em economia de espaço no servidor e menos dados trafegando nas redes.

3.8.2. 8B – Otimizando imagens em JPEG

Nesse teste foi feito apenas a comparação com o formato lossless.

	Otimização de imagens JPEG em KByte										
Imagem	original	lossless web		Imagem	original	lossless web		Imagem	original	lossless web	
IMG001	108	96		IMG021	155	147		IMG041	238	226	
IMG002	191	180		IMG022	273	257		IMG042	112	98	
IMG003	65	59		IMG023	382	358		IMG043	297	278	
IMG004	221	209		IMG024	204	188		IMG044	366	344	
IMG005	159	148		IMG025	148	134		IMG045	317	297	
IMG006	133	123		IMG026	190	178		IMG046	209	197	
IMG007	133	125		IMG027	283	267		IMG047	378	355	
IMG008	187	173		IMG028	225	207		IMG048	95	89	
IMG009	106	97		IMG029	340	322		IMG049	198	183	
IMG010	458	426		IMG030	221	208		IMG050	150	136	
IMG011	141	130		IMG031	151	139		IMG051	162	151	
IMG012	223	207		IMG032	383	360		IMG052	317	300	
IMG013	397	372		IMG033	262	248		IMG053	395	373	
IMG014	224	215		IMG034	63	54		IMG054	287	267	

IMG015	251	238	IMG035	92	88	IMG055	242	227
IMG016	219	208	IMG036	223	209	IMG056	254	240
IMG017	70	62	IMG037	221	208	IMG057	194	181
IMG018	262	245	IMG038	339	318	IMG058	498	453
IMG019	244	228	IMG039	109	102	IMG059	134	121
IMG020	209	194	IMG040	163	153	IMG060	275	259

Tabela 17 - Otimização de imagens JPEG

Otimização de imagens JPEG									
Imagem	lossless web	Imagem	lossless web		Imagem	lossless web			
IMG001	88%	IMG021	94%		IMG041	95%			
IMG002	94%	IMG022	94%		IMG042	88%			
IMG003	91%	IMG023	94%		IMG043	94%			
IMG004	95%	IMG024	92%		IMG044	94%			
IMG005	93%	IMG025	90%		IMG045	94%			
IMG006	93%	IMG026	94%		IMG046	94%			
IMG007	94%	IMG027	94%		IMG047	94%			
IMG008	92%	IMG028	92%		IMG048	93%			
IMG009	91%	IMG029	95%		IMG049	92%			
IMG010	93%	IMG030	94%		IMG050	91%			
IMG011	93%	IMG031	92%		IMG051	93%			
IMG012	93%	IMG032	94%		IMG052	94%			
IMG013	94%	IMG033	95%		IMG053	94%			
IMG014	96%	IMG034	85%		IMG054	93%			
IMG015	95%	IMG035	95%		IMG055	94%			
IMG016	95%	IMG036	94%		IMG056	94%			
IMG017	89%	IMG037	94%		IMG057	93%			
IMG018	94%	IMG038	94%		IMG058	91%			
IMG019	94%	IMG039	94%		IMG059	90%			
IMG020	93%	IMG040	94%		IMG060	95%			
	Média		94%						

Tabela 18 - Ganho com otimização de imagens JPEG

Como podemos ver, o ganho variou de 88% a 96%, ficando em média 94% do arquivo original. Apesar de não ser um bom ganho de compressão, ainda assim vale a pena fazer, já que não temos perdas de qualidade.

Fizemos o teste com 100 fotos pessoais tiradas por um smartphone. O desempenho foi muito mais satisfatório, com um ganho médio de 88%. Sendo que em alguns casos, as fotos passaram a ter de 35% a 55% do tamanho original. Isso sim justifica, e muito, a otimização para guardar em backup por exemplo.

3.9. Atividade 9: Avaliando os candidatos a sucessor do JPEG

3.9.1. 9A - Testando os novos formatos em modo Lossless

Taxa de compressão em relação ao BMP								
ВМР	PNG-24 WebP AVIF BMP PNG-24 W					WebP	AVIF	
4219 KB	Ratio (%)	Ratio (%)	Ratio (%)		4219 KB	Ratio (%)	Ratio (%)	Ratio (%)
IMG001	37.94	26.77	22.29		IMG031	38.56	27.43	23.45
IMG002	49.7	42.11	35.78		IMG032	74.6	55.36	49.96
IMG003	23.55	15.92	13.03		IMG033	53.97	42.15	36.03
IMG004	51.73	41.9	36.67		IMG034	16.15	14.14	11.3
IMG005	42.86	29.71	25.99		IMG035	34.59	26.42	21.61
IMG006	43.41	30.85	26.95		IMG036	43.06	30.02	26.23
IMG007	44.95	34.9	29.84		IMG037	58.47	39.76	34.46
IMG008	44.8	35.5	29.75		IMG038	68.58	60.68	54.94
IMG009	36.85	27.94	22.81		IMG039	48.19	33.81	29.01
IMG010	81.34	71.32	63.74		IMG040	50.63	34.77	29.95
IMG011	46.82	35.68	30.42		IMG041	53.86	42.47	36.32
IMG012	59.02	42.14	37.44		IMG042	25.18	16.81	13.63
IMG013	74.44	51.48	45.15		IMG043	65.55	43.0	38.89
IMG014	59.18	43.51	39.07		IMG044	70.68	50.95	44.69
IMG015	60.03	37.33	32.89		IMG045	59.67	45.33	39.58
IMG016	54.07	40.65	35.31		IMG046	55.44	38.6	33.13
IMG017	27.18	19.98	16.59		IMG047	70.59	52.21	46.16
IMG018	58.09	47.41	40.65		IMG048	28.38	21.51	17.84
IMG019	57.49	43.59	37.01		IMG049	54.6	41.57	35.51
IMG020	52.76	43.77	37.53		IMG050	47.32	32.53	27.29
IMG021	45.36	35.48	29.77		IMG051	50.32	38.69	32.7
IMG022	62.36	46.21	39.7		IMG052	65.31	48.84	42.68
IMG023	72.67	60.06	53.68		IMG053	74.14	59.63	53.37
IMG024	53.43	41.85	36.96		IMG054	58.47	44.98	39.7
IMG025	36.52	28.73	24.08		IMG055	57.69	42.95	36.18
IMG026	52.63	43.62	36.49		IMG056	53.97	40.91	33.6
IMG027	61.81	49.17	42.06		IMG057	53.6	39.68	33.0
IMG028	52.29	40.28	34.97		IMG058	78.64	63.5	57.05
IMG029	55.58	43.57	37.2		IMG059	48.15	38.54	33.05
IMG030	53.5	40.89	34.27		IMG060	57.51	41.86	35.53

Tabela 19 – Taxas de compressão a partir do BMP

Taxa de compressão em relação ao PNG									
Imagem	PNG-24	WebP AVIF			Imagem	PNG-24	WebP	AVIF	
Nome	KBytes	Ratio (%)	Ratio (%)		Nome	KBytes	Ratio (%)	Ratio (%)	
IMG001	1600.43	70.58	58.76		IMG031	1626.75	71.14	60.82	
IMG002	2096.76	84.72	71.99		IMG032	3147.36	74.2	66.97	
IMG003	993.34	67.6	55.34		IMG033	2276.72	78.1	66.77	
IMG004	2182.38	80.99	70.9		IMG034	681.18	87.56	69.96	
IMG005	1808.03	69.32	60.65		IMG035	1459.18	76.4	62.49	
IMG006	1831.54	71.06	62.07		IMG036	1816.75	69.71	60.92	
IMG007	1896.15	77.64	66.39		IMG037	2466.71	68.0	58.94	
IMG008	1889.9	79.26	66.42		IMG038	2893.41	88.48	80.11	
IMG009	1554.66	75.82	61.88		IMG039	2033.2	70.15	60.2	
IMG010	3431.65	87.68	78.36		IMG040	2136.1	68.67	59.15	
IMG011	1975.32	76.21	64.97		IMG041	2272.3	78.85	67.44	
IMG012	2489.74	71.4	63.44		IMG042	1062.39	66.73	54.14	
IMG013	3140.46	69.16	60.66		IMG043	2765.58	65.59	59.32	
IMG014	2496.88	73.52	66.01		IMG044	2981.89	72.08	63.23	
IMG015	2532.48	62.19	54.79		IMG045	2517.48	75.97	66.32	
IMG016	2281.03	75.19	65.3		IMG046	2339.01	69.63	59.76	
IMG017	1146.46	73.53	61.04		IMG047	2978.12	73.96	65.39	
IMG018	2450.78	81.61	69.97		IMG048	1197.42	75.78	62.87	
IMG019	2425.28	75.82	64.37		IMG049	2303.49	76.14	65.03	
IMG020	2225.73	82.96	71.13		IMG050	1996.32	68.74	57.67	
IMG021	1913.83	78.22	65.61		IMG051	2123.06	76.87	64.98	
IMG022	2630.87	74.1	63.67		IMG052	2755.41	74.77	65.34	
IMG023	3065.91	82.64	73.87		IMG053	3127.72	80.43	71.99	
IMG024	2254.28	78.32	69.17		IMG054	2466.88	76.92	67.89	
IMG025	1540.61	78.66	65.93		IMG055	2433.95	74.45	62.71	
IMG026	2220.4	82.89	69.33		IMG056	2276.94	75.79	62.26	
IMG027	2607.54	79.55	68.06		IMG057	2261.29	74.02	61.57	
IMG028	2205.94	77.03	66.88		IMG058	3317.56	80.75	72.55	
IMG029	2344.84	78.38	66.93		IMG059	2031.29	80.03	68.65	
IMG030	2257.08	76.42	64.06		IMG060	2426.31	72.78	61.77	

Tabela 20 – Taxas de compressão a partir do PNG

Se considerarmos apenas o tamanho, o formato AVIF ganha em todos os casos após ser comprimido, porém ele sofre com o tempo de compressão, demorando vários minutos, enquanto o WebP tem uma velocidade de compressão similar ao PNG, sendo consideravelmente mais eficiente. E com base nas tabelas e com as informações que temos hoje, achamos o mais indicado o WebP por esta no mercado a mais tempo e ter suporte da maioria dos navegadores modernos. Sabemos que não está suficientemente tão difundido quanto o PNG, mas acreditamos que já esteja em condições de ser usado

em projetos e aplicações. Enquanto o AVIF, não arriscaríamos de usá-lo por enquanto. Uma nova tecnologia, mesmo que promissora, sempre corre o risco de ser descontinuado ou perder compatibilidade e etc.

3.9.2. 9B - Testando os novos formatos em modo Lossy

Novos formatos em modo Lossy									
ВМР	WebP		HEIC		AVIF				
4219 kB	Transparência (%)	Aceitável (%)	Transparência (%)	Aceitável (%)	Transparência (%)	Aceitável (%)			
IMG003	83	62	63	48	71	48			
IMG035	86	50	45	37	46	28			
IMG009	85	46	66	52	67	58			
IMG021	66	42	42	33	46	29			
IMG018	69	55	44	31	41	30			
IMG043	77	50	30	23	35	24			
IMG023	71	49	45	29	43	26			
IMG058	48	30	32	25	30	26			

Tabela 21 – Teste de novos formatos em modo lossy

Quando analisamos o WebP, podemos notar que ele é bem similar ao jpeg nos aspectos de qualidade, com tudo mais eficiente na compressão. Os níveis de transparência aqui foram obtidos com valores altos de qualidade, isso pode ter acontecido pela forma com a qual analisamos as imagens que foram diferentes do jpeg, e ou ainda por estarmos com os olhos mais treinados próximo do fim do trabalho.

O formato AVIF dá um show de qualidade, podendo aumentar bastante a sua compressão antes de ter uma perda mais significativa de qualidade. Uma coisa que notamos a respeito desse formato, é que quando baixamos bastante a qualidade, os macroblocos não ficam tão evidentes como no jpeg e no WebP. Em alguns casos tudo fica meio que borrado, e em outros como na mulher da imagem 9, é como se tivesse passado um Photoshop nela, tirando as imperfeições do rosto, deixando a pele toda lisa por assim dizer, (parece até aqueles efeitos de embelezamento das câmeras de smarthphones chineses) e baixando um pouco mais, a imagem fica com o aspecto de uma pintura de algum artista. Esse formato obteve um bom nível de compressão e também na manutenção de sua qualidade, o problema dele é que para obter esses resultados, o tempo de processamento é mais elevado do que os demais, tornando cada

mudança na qualidade para análise um teste de paciência.

Sob as asas da Apple temos o HEIC, esse formato como o AVIF faz um excelente trabalho ao disfarçar os macroblocos em qualidades muito baixas, deixando a imagem com um aspecto borrado, seu nível de transparência aparente é parecido com o AVIF, porém o nível de compressão já está mais perto do WebP. Por ser o padrão adotado pela Apple, não podemos ignorá-lo sem perder um público importante.

3.9.3. 9C - Revisitando a escolha correta dos formatos de imagem

Nesta etapa do trabalho optamos por dar exemplos de o que faríamos em diversas aplicações, já temos dados e tabelas o suficiente das questões anteriores, então iremos citar um tipo de aplicação, qual a nossa escolha e porquê. Nos casos a seguir tome como base o uso padrão do formato HEIC, pois esse é um formato adotado pela Apple, e ignorar essa fatia do mercado seria um erro.

Site Institucional: Sites desse tipo se tratam de uma espécie de cartão de visitas da empresa ou pessoa de negócio, por se tratar de uma aplicação que tem poucas páginas, e provavelmente poucas imagens, decidimos optar por um formato com maior qualidade, mesmo que custe um pouco mais de processamento, o que escolhemos foi o AVIF para esse tipo de aplicação.

Blogs, **sites de notícias e portais**: Para esse modelo de negócio optamos pelo WebP, esses sites têm como objetivo atingir o máximo de pessoas possível, então optamos por esse formato por possuir um maior suporte dos navegadores atuais, sendo considerado um bom formato em termos de qualidade, e melhor do que o jpeg em termos de compressão.

eCommerce: Nesse tipo de site, precisamos de um formato com boa qualidade, que possa dar zoom sem perder muitos detalhes, e que seja leve, geralmente se o cliente entra nesse tipo de site para comprar algo, ele não pode ficar frustrado com a demora no carregamento de imagens, então para esse tipo de negócio optamos pelo AVIF na qualidade média alta, coisa de uns 80% de fator de qualidade.

Banco de imagens: nesse caso não há o que discutir, quem procura esse tipo de site está a busca de imagens de alta qualidade para uso profissional, nesse caso o que se faz necessário é o PNG.

Redes sociais: Em aplicativos como Instagram e facebook, com o foco voltado quase

que integral para as imagens, é preciso fazer um estudo de caso bem detalhado, por que é necessário conciliar qualidade com espaço em disco, essas aplicações fazem possivelmente centenas de milhões de upload de imagens por dia, ou seja, cada 5% de compressão a mais significa uma grande economia, pensando nisso optamos pelo AVIF nessas aplicações por ter um excelente equilíbrio entre qualidade e taxa de compressão.

4. CONCLUSÃO

Conclusão feita em vídeo, disponibilizado no link abaixo:

https://youtu.be/m45Pm0HIRxA

REFERÊNCIAS BIBLIOGRÁFICAS

Slides professor Flávio Giraldeli – IFES – 2021 – SERRA