

Symbol

V_{DSS}

 V_{DGR}

 $\mathbf{V}_{\mathrm{GSS}}$

 V_{GSM}

 \mathbf{I}_{D25}

I_{DM}

I

E_{AS}

 $\mathbf{P}_{\scriptscriptstyle \mathrm{D}}$

 T_{J}

 \mathbf{T}_{JM}

T_{stg}

 T_L

M,

 $T_{\underline{s_{OLD}}}$

Weight

TrenchT2[™] Power MOSFETs

IXTA80N12T2 IXTP80N12T2

 $V_{DSS} = 120V$ $I_{D25} = 80A$ $R_{DS(op)} \le 17m\Omega$

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier

Test Conditions

Continuous

Transient

 $T_{c} = 25^{\circ}C$

 $T_c = 25^{\circ}C$

 $T_{c} = 25^{\circ}C$

 $T_{c} = 25^{\circ}C$

TO-263

TO-220

Plastic Body for 10s

Mounting Torque (TO-220)

 $T_1 = 25^{\circ}C$ to $175^{\circ}C$

 $T_J = 25^{\circ}C$ to 175°C, $R_{gs} = 1M\Omega$

 $T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm IM}$

Maximum Lead Temperature for Soldering

٧

Α

Α

Α

mJ

W

°C

°C

٥С

°С

٥С

g

g

Nm/lb.in.

Maximum Ratings

120

120

±20

±30

80

200

40

400

325

175

300

260

2.5

3.0

1.13 / 10

-55 ... +175

-55 ... +175

TO-263AA (IXTA)

TO-220AB (IXTP)

G = Gate	D	= Drain
S = Source	Tab	= Drain

Features

- International Standard Packages
- 175°C Operating Temperature
- Avalanche Rated
- Low R_{DS(on)}
- Fast Intrinsic Rectifier
- High Current Handling Capability

				Value Max	
BV _{DSS}	$V_{GS} = 0V$, $I_D = 250\mu A$	120			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 100\mu A$	2.5		4.5	V
I _{GSS}	$V_{gs} = \pm 20V, V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			5	μΑ
	T _J = 150°C			175	μΑ
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Notes 1, 2$			17	mΩ

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- Synchronous Rectification
- DC/DC Converters and Off-Line UPS
- Primary- Side Switch
- High Current Switching Applications

•	Symbol Test Conditions Characteristic Value T __ = 25°C, Unless Otherwise Specified) Min. Typ. Max			Values ⊢ Max.	
g _{fs}		$V_{DS} = 10V, I_{D} = 0.5 \cdot I_{D25}, \text{ Note 1}$	36	60	S
C _{iss})			4740	pF
Coss	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		415	pF
C _{rss}	J			66	pF
t _{d(on)}	١	Pacietive Switching Times		21	ns
t _r		Resistive Switching Times $V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		14	ns
t _{d(off)}	1	$R_{G} = 10\Omega$ (External)		39	ns
t _f	J	G , , , ,		28	ns
Q _{g(on)})			80	nC
Q _{gs}	}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		23	nC
Q_{gd}	J			20	nC
R _{thJC}					0.46 °C/W
R _{thCH}		TO-220		0.50	°C/W

Source-Drain Diode

Symbol Test Conditions Chara		acteristic Values		
$(T_{J} = 2)$	5°C, Unless Otherwise Specified) Min.	Тур.	Max.	
Is	$V_{GS} = 0V$		80	Α
I _{SM}	Repetitive, Pulse Width Limited by T _{JM}		320	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1		1.3	V
t _{rr}	$I_F = 0.5 \cdot I_{D25}, V_{GS} = 0V$	90		ns
I _{RM}	-di/dt = 100A/μs	4		Α
\mathbf{Q}_{RM}	$\int V_R = 60V$	180		nC

Notes: 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

2. On through-hole packages, $R_{\mathrm{DS(on)}}$ Kelvin test contact location must be 5mm or less from the package body.

Pins: 1 - Gate 2,4 - Drain TO-263 Outline

3 - Source

MYZ	INCHES		MILLIMETERS	
2114	MIN	MAX	MIN	MAX
Α	.160	.190	4.06	4.83
A1	.080	.110	2.03	2.79
b	.020	.039	0.51	0.99
b2	.045	.055	1.14	1.40
С	.016	.029	0.40	0.74
c2	.045	.055	1.14	1.40
D	.340	.380	8.64	9.65
D1	.315	.350	8.00	8.89
Ε	.380	.410	9.65	10.41
E1	.245	.320	6.22	8.13
е	.100 BSC		2.54	BSC
L	.575	.625	14.61	15.88
L1	.090	.110	2.29	2.79
L2	.040	.055	1.02	1.40
L3	.050	.070	1.27	1.78
L4	0	.005	0	0.13

Pins: 1 - Gate 2 - Drain 3 - Source

MYZ	INCHES		MILLIMETERS		
2114	MIN	MAX	MIN	MAX	
Α	.170	.190	4.32	4.83	
b	.025	.040	0.64	1.02	
b1	.045	.065	1.15	1.65	
С	.014	.022	0.35	0.56	
D	.580	.630	14.73	16.00	
E	.390	.420	9.91	10.66	
е	.100 BSC		2.54 BSC		
F	.045	.055	1.14	1.40	
H1	.230	.270	5.85	6.85	
J1	.090	.110	2.29	2.79	
k	0	.015	0	0.38	
L	.500	.550	12.70	13.97	
L1	.110	.230	2.79	5.84	
ØΡ	.139	.161	3.53	4.08	
Q	.100	.125	2.54	3.18	

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. **Junction Temperature** $R_G = 10\Omega$, $V_{GS} = 10V$ $V_{DS} = 60V$ tr-Nanoseconds I_D = 80A I_D = 40A T_J - Degrees Centigrade

Fig. 14. Resistive Turn-on Rise Time vs. **Drain Current** $R_G = 10\Omega$, $V_{GS} = 10V$ $V_{DS} = 60V$ T_J = 125℃ tr-Nanoseconds T_J = 25°C I_D - Amperes

Fig. 15. Resistive Turn-on Switching Times vs. **Gate Resistance** t_{d(on)} - -T_J = 125℃, V_{GS} = 10V V_{DS} = 60V tr - Nanoseconds 100 80 60 ^լ _{d(on)} - Nanoseconds I_D = 40A $R_{\mbox{\scriptsize G}}$ - \mbox{Ohms}

Fig. 19. Maximum Transient Thermal Impedance

