< Chapter 8> slide #5.

$$\lambda_{xs}^{iid} N(\theta, \sigma^{2}), \sigma^{2} known, i=1, \cdot, n. \quad Hoid=\theta_{0} \text{ vs } Ha: \theta \neq \theta_{0}$$

$$\lambda(x) = \frac{f(x \mid \hat{\theta}_{0})}{f(x \mid \hat{\theta})} = \frac{\prod_{z=1}^{m} \frac{1}{\sqrt{2\pi}\sigma^{z}} \exp\left\{-\frac{\sum_{z}(x_{i} - \theta_{0})^{2}}{2\sigma^{2}}\right\}}{\prod_{z=1}^{m} \frac{1}{\sqrt{2\pi}\sigma^{z}} \exp\left\{-\frac{\sum_{z}(x_{i} - x_{j})^{2}}{2\sigma^{2}}\right\}}$$

$$= \exp\left\{\frac{\sum_{z}(x_{i} - x_{j})}{\sigma^{2}}\right\}$$

$$= \exp\left\{\frac{\sum_{z}(x_{i} - x_{j})}{\sigma^{2}}\right\}$$

 $= \exp\left\{\frac{n}{2\sigma^2}\left(2X\partial_{\sigma}-2X^2-\partial_{\sigma}^2+X^2\right)\right\}$

 $= \exp \left[-\frac{n}{2\sigma^{2}} \left(\bar{X}^{2} - 2\bar{X} \partial_{0} + \partial_{0}^{2} \right) \right] = \exp \left[-\frac{n}{2\sigma^{2}} (\bar{X} - \partial_{0})^{2} \right]$

Then,
$$-2 \log \lambda(x) = -2 \left\{ -\frac{\pi}{2\sigma^2} (\bar{x} - O_2)^2 \right\}$$

$$= \left\{ \frac{\bar{x} - O_2}{\sigma / \sqrt{n}} \right\}^2 \text{ under Ho} \chi^2(1).$$

* When Xi's are normal, -2 leg \(\chi(x)\) follow's \(\chi(1)\) * We reject the if \(\lambda(x) \leq \lambda(x)\) * Under centain conditions (conditions required for CRLB), -2loy N(X) approximately

$$\lambda(x) = \frac{\pi}{e^{-(x_i - \theta_0)}} = \frac{e^{-\sum x_i + n\theta_0}}{e^{-\sum x_i^0 + n \times (1)}} = \exp \left\{ n(\theta_0 - x_{(1)}) \right\}$$

Am LRT reject Ho if $\lambda(x) \leq C = \log \lambda(x) \leq \log C$

 $(\exists n(\theta_o - \chi_{(i)}) \in log C$

€) X(1) ≥ 00 - log C

The reject begion depends on the sample only through the sufficient Statistic.

 $\begin{array}{l} \text{$\langle$ Slide $\#(2)$.} \\ \text{\langle Slide $\&$

<51,de#177.

Xi's iid Gama (3,0), i=1,..., n. Ho: $\theta=0$ ovs $H_1: \theta=0$ (>00) Find MP-test of size α . (=0.05)

We reject to if $L = \frac{f(x|\theta_0)}{f(x|\theta_0)} > k$.

 $L = \frac{m}{\sum_{i=1}^{M} P(3) \theta_{i}^{3}} \chi_{i}^{3+} e^{-\chi_{i}/\theta_{i}} / \frac{m}{\sum_{i=1}^{M} P(3) \theta_{i}^{3}} \chi_{i}^{3+} e^{-\chi_{i}/\theta_{0}}$

 $= \left(\frac{\theta_0}{\theta_1}\right)^3 \exp\left\{-\frac{2}{3} \times \left(\frac{1}{\theta_1} - \frac{1}{\theta_0}\right)\right\} = \left(\frac{\theta_0}{\theta_1}\right)^3 \exp\left\{n \times \frac{\left(\theta_1 - \theta_0\right)}{\theta_0 \theta_1}\right\}$

= Note Lis an increasing function of X since 0,-00>0.

Thus, rejeting to if L>k is the same as rejecting to if X>C.

Or, if ZX2 > C1 = nc. AsT=ZXi - Gamma (3n, Od),

C; can be found numerically s.t. $\int_{C_1}^{\infty} \frac{1}{P(3n)} \frac{3^{n-1}}{9^{n}} \frac{1}{2^n} \frac{3^{n-1}}{9^{n-1}} \frac{1}{9^n} \frac{1}{9^n}$

* When n is large, (E[T] = $3n\theta_0$, $Var(T) = 3n\theta_0^2$) Find C s.t.

 $P\left(\frac{\sum \chi_{i}^{2}-3n\theta_{o}}{\sqrt{3n\theta_{o}^{2}}}>c\right)=\chi. So, MP \text{ test of (approximate) size } \alpha\left(-0.95\right)$

reject Ho if $ZX_i > 3n\theta_0 + C\sqrt{3}n\theta_0^2$ where C=1,645 fr

X:15 lid N(M, 02), 02 known. i=1, ...,n. Ho: M= Mo vs H1: M= M1 (> Mo).

Find MP-test of size &.

 $L = \exp\left\{-\frac{\sum(X_i - \mu_1)^2}{2\sigma^2}\right\} / \exp\left\{-\frac{\sum(X_i - \mu_2)^2}{2\sigma^2}\right\}$ = $\exp \left\{ \frac{n \times (\mu_1 - \mu_2)}{2\sigma^2} \left(\mu_1 - \mu_2 \right) - \frac{n}{2\sigma^2} \left(\mu_1^2 - \mu_2^2 \right) \right\}$

As L is an increasing function of X, reject Ho if L > k is the same as rejecting to if $\overline{X} > C$, where C is determined as $P(X>C)=\alpha$ or $P(X-M_0>C_1)=\alpha$.

1. MP test: Reject Ho if X > Mo + CI 5 , where C1=Z1-X.

Then, L is a decreasing function of X. => MP test is "Reject Ho if X < Mo+C15m, where C1 = Zx.

We have UMP test for the two cases of (U1>100), (U1<10), and they are not identical. So, for the hypothesis Hoile no us Hailt & Mo, we do NOT have a UMP test.

Ho: 2 = 200

· H.: 2>20)

$$\frac{\chi_{i}'_{s} \text{ iid}}{L(x|\lambda_{i})} = \frac{\lambda e^{-\lambda x}}{-\lambda_{i} \chi_{i}^{2}}, \quad \chi_{i} > 0, \quad \chi_{i} \geq 0. \quad \text{Find UMP test of size of } \frac{L(x|\lambda_{i})}{L(x|\lambda_{o})} = \frac{\pi}{\frac{\pi}{1-\lambda_{o}}} \frac{\lambda_{i} e^{-\lambda_{o} \chi_{i}^{2}}}{\frac{\pi}{1-\lambda_{o}}} = \left(\frac{\lambda_{i}}{\lambda_{o}}\right)^{m} \exp\left\{-\sum \chi_{i}(\lambda_{i}-\lambda_{o})\right\} \geq k - a$$

$$\Rightarrow \exp\left\{-\sum X_{2}(\lambda_{1}-\lambda_{0})\right\} \geq \left(\frac{\lambda_{0}}{\lambda_{1}}\right)^{n} k$$

$$=) - \sum X_i \left(\lambda_i - \lambda_o \right) \ge \log \left(\frac{\lambda_o}{\lambda_i} \right)^m k = k_i$$

$$=) - \sum (\lambda_i - \lambda_0) \ge k_1$$

$$=)$$
 $\sum Xi \leq C$

By Neyman - Pearson Theorem, rejecting Ho if Exisc is UMP test. [Note; small " ΣX " indicates small mean or large scale λ]

Alternative solution.

From (1), we see the family has MLR in T(X)== XI.

(Note @ is a decreasing function of EX:, so an increasing function of -IX:)

Then, by Karlin-Rubin Thm, a UMP test is

rejecting Ho if - EX; > k or , equivalently EXi < C.

When n=100 is given, then choose c s.t.

$$\int_{0}^{C} \frac{1}{P(n)(1/N)^{n}} \chi^{n-1} e^{-\lambda \chi} d\chi = 0.05.$$
n rate or mean.

In R, C is found by P> qgamma (0.05, 100, 1/20) 2 > qgamma (0,05,100, scale = 20).

Note that it makes P(IX; < c) = 0.05 under Ho. * scale = 1/rate

(Slide 28)

EX) Xi's iid
$$f(x|\eta) = e^{-(\chi-\eta)}$$
, $\chi > \eta$, $\eta > 0$, $i=1, \dots, n$.

Find a UMP test of size χ for $H_0: \eta \leq \eta_0$ vs $H_1: \eta > \eta_0$.

$$\frac{L(\chi|\eta_1)}{L(\chi|\eta_0)} = \frac{e^{-\sum \chi_1 + \eta \eta_0} I(\chi_{(1)} > \eta_0)}{e^{-\sum \chi_1 + \eta \eta_0} I(\chi_{(1)} > \eta_0)} = \exp\{n(\eta_1 - \eta_0)\} \frac{I(\chi_{(1)} > \eta_0)}{I(\chi_{(1)} > \eta_0)}$$

$$\Rightarrow \frac{e^{-\sum \chi_1 + \eta \eta_0} I(\chi_{(1)} > \eta_0)}{e^{-\sum \chi_1 + \eta \eta_0} I(\chi_{(1)} > \eta_0)}$$

=> This is MLR in T(x)= X(1)

By Karlin-Rubin Theorem, rejecting Ho if X(1) > C, where $P(X(1) > C) \stackrel{Ho}{=} \alpha$ is a UMP test of size α .

Now, find the value of C.

$$P(X(1)>c) = P(X_1>c)^m = \begin{bmatrix} 1-\int_{\gamma_0}^{c} e^{-(t-\gamma_0)} dt \end{bmatrix}^m$$

$$This is the = \begin{bmatrix} 1+(e^{c-\gamma_0}-1) \end{bmatrix}^m = e^{m(c-\gamma_0)} = \alpha$$

$$Probability if rejecting = \begin{bmatrix} 1+(e^{c-\gamma_0}-1) \end{bmatrix}^m = e^{m(c-\gamma_0)} = \alpha$$

$$C = \frac{1}{m} \log x + \gamma_0$$