# RANCANG BANGUN AWS NODE UNTUK MONITORING CUACA DI PERKEBUNAN TEH PPTK GAMBUNG BERBASIS NRF24L01

#### PRA PROPOSAL PROYEK TINGKAT

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek tingkat

#### oleh:

# AYUNI MAHARANI MELLA TADURI DARYAMAN 6705184124



D3 TEKNOLOGI TELEKOMUNIKASI FAKULTAS ILMU TERAPAN UNIVERSITAS TELKOM 2020

#### Latar Belakang

Indonesia merupakan negara yang memiliki cuaca dan iklim yang khusus dan rumit. Hal ini disebabkan antara lain karena lokasi Indonesia yang berada pada daerah garis khatulistiwa, berbatasan dengan dua samudera yaitu Samudera Hindia dan Samudera Pasifik serta memiliki bentuk topografi orientasi dan struktur kepulauan (Nur A.C, 2019). Tanaman teh (*Camellia sinensis (L.) O. Kuntze)* merupakan tanaman tahunan, berasal dari daerah subtropis, karena itu di Indonesia lebih cocok ditanam di daerah pegunungan. Lingkungan fisik yang paling berpengaruh terhadap pertumbuhan tanaman teh ialah iklim dan tanah. Penghasil teh terbesar di Indonesia adalah daerah Jawa Barat yang menghasilkan 70% dari total produksi teh nasional (Reginawanti H, 2016).

Faktor iklim yang mempengaruhi keberhasilan pertumbuhan teh seperti suhu udara yang baik berkisar 13 - 15 °C, kelembaban relatif pada siang hari >70%, curah hujan tahunan tidak kurang 2.000 mm, dengan bulan penanaman curah hujan kurang dari 60 mm tidak lebih 2 bulan. Dari segi penyinaran sinar matahari sangat mempengaruhi pertanaman teh. Apabila, suhu mencapai 30°C pertumbuhan tanaman teh akan terlambat (Litbag, 2010). Tanaman teh tidak tahan terhadap kekeringan dan pertumbuhan pucuk tanaman teh sangat dipengaruhi oleh curah hujan serta penyinaran matahari (Kartawijaya, 1995). Serangan hama dan penyakit pada tanaman teh juga berhubungan dengan pola cuaca. Oleh karena itu, kenaikan suhu, peningkatan CO<sub>2</sub> dan curah hujan ekstrim (hujan lebat dan kekeringan) yang ditimbulkan oleh perubahan iklim (pemanasan global) dapat mempengaruhi produksi dan kualitas teh (Patra, *et al.*, 2013).

Dalam penelitian ini, penulis akan merancang *Automatic Weather Station Node* untuk monitoring cuaca dimana pada sisi *node sensor* ini menggunakan mikrokontroler ATmega328P sebagai otak dari *node sensor* dan beberapa macam sensor diantaranya, sensor kelembaban udara dan suhu, sensor kelembaban tanah, sensor intensitas cahaya, sensor kecepatan angin dan sensor hujan dan menggunakan panel surya sebagai sumber daya serta modul NRF24L01. Pada penelitian ini, akan dibuat 3 (tiga) *node sensor* yang akan disebar di lokasi-lokasi yang telah dipilih.

Tujuan dari penelitian ini adalah untuk monitoring kondisi cuaca di lingkungan perkebunan teh sehingga dapat meminimalisir dampak buruk yang disebabkan oleh

perubahan cuaca dan iklim tersebut. Hasil data yang telah diperoleh dari monitoring kondisi cuaca dari 3 (ketiga) *sensor node* nantinya akan ditampilkan pada suatu *website*.

Penelitian ini akan dilakukan di Pusat Penelitian Teh dan Kina (PPTK) Gambung, Jawa Barat. Pusat Penelitian Teh dan Kina (PPTK) merupakan Lembaga penelitian pemerintah yang bergerak dalam penelitian teh dan kina. Dengan adanya penelitian ini, yang berjudul "Rancang Bangun *Automatic Weather Station (Aws) Node* untuk Monitoring Cuaca di Perkebunan Teh Pusat Penelitian Dan Kina (PPTK) Gambung Berbasis NRF24L01" diharapkan dapat membantu dan dapat menambah inovasi di Pusat Penelitian Teh dan Kina (PPTK) Gambung.

## Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat.

| No | Judul Penelitian /Karya Ilmiah        | Tahun | Keterangan                                                          |  |  |  |  |  |
|----|---------------------------------------|-------|---------------------------------------------------------------------|--|--|--|--|--|
| 1. | Dampak Perubahan Iklim Terhadap       | 2020  | Dalam penelitian ini, penulis melakukan penelitian dengan           |  |  |  |  |  |
| 1. | Produktivitas Tanaman Teh (Camellia   |       | menggunakan data unsur-unsur iklim selama 10 tahun terakhir.        |  |  |  |  |  |
|    | sinensis L. di Kebun Teh Pasirmalang, |       | Metode yang digunakan adalah metode survei dengan menggunakan       |  |  |  |  |  |
|    | Jawa Barat                            |       | data sekunder kemudian dianalisis.                                  |  |  |  |  |  |
| 2. | Weather Station Quadcopter Using      | 2019  | Dalam penelitian ini, penulis membuat stasiun cuaca dengan          |  |  |  |  |  |
| ۷. | Arduino with NRF24L01 and GPS         |       | menggunakan drone. Tujuan dari proyek ini adalah untuk merekam file |  |  |  |  |  |
|    | Module.                               |       | parameter cuaca seperti suhu, kelembaban, tekanan dengan lokasi GPS |  |  |  |  |  |
|    |                                       |       | yang diberi tag dan penulis menggunakan Modul NRF24L01 yang         |  |  |  |  |  |
|    |                                       |       | terhubung dengan Arduino.                                           |  |  |  |  |  |
| 3. | Design and Implementation of          | 2019  | Dalam penelitian ini, penulis membuat sistem pemantauan cuaca       |  |  |  |  |  |
| 3. | Arduino-Based Weather Monitoring      |       | menggunakan Arduino dan sensor DHT22, Sensor BMP180, Sensor         |  |  |  |  |  |
|    | System in Rural                       |       | LM393 dan sensor 2SS52M. Kemudian data yang diterinna akan          |  |  |  |  |  |
|    |                                       |       | dikirim melalui jaringan seluler menggunakan modem 3G/4G.           |  |  |  |  |  |
| 4. | Implementasi Perangkat Gateway        | 2019  | Dalam penelitian ini, penulis menggunakan modul komunikasi          |  |  |  |  |  |
| 4. | Untuk Pengiriman Data Sensor Dari     |       | NRF24L01 untuk pengiriman data sensor. Pada penelitian ini          |  |  |  |  |  |
|    | Lapangan Ke Pusat Data Pada Jaringan  |       | terpasang sensor DHT11 yang terhubung dengan mikrokontroler dan     |  |  |  |  |  |

|    | Wireless Sensor Network Berbasis      |      | komunikasi antar node sensor dengan gateway menggunakan protocol    |  |  |  |  |
|----|---------------------------------------|------|---------------------------------------------------------------------|--|--|--|--|
|    | Perangkat nRF24L01                    |      | RF24Mesh dan library yang telah ada.                                |  |  |  |  |
| 5. | Rancang Bangun Portable Weather       | 2019 | Dalam penelitian ini penulis menggunakan solar panel dan aki kering |  |  |  |  |
|    | Station Berbasis Jaringan Sensor      |      | sebagai power supply dan penulis melakukan pengukuran unsur cuac    |  |  |  |  |
|    | Nirkabel Menggunakan Koneksi VPN      |      | dan iklim dengan menggunakan sensor yang terpasang pada             |  |  |  |  |
|    |                                       |      | mikrokontroler NodeMCU v3. Kemudian, hasil pengukuran dari          |  |  |  |  |
|    |                                       |      | sensor dikirimkan ke Raspberry Pi melalui koneksi LAN dan           |  |  |  |  |
|    |                                       |      | dikirimkan ke DB Server & Web Server.                               |  |  |  |  |
| 6. | Peningkatan Skalabilitas Mini Weather | 2019 | Dalam penelitian ini, penulis membuat sistem Amicagama yang terdiri |  |  |  |  |
|    | Station Portable berbasis Internet of |      | dari perangkat keras sensor node dan perangkat lunak dashboard      |  |  |  |  |
|    | Things                                |      | pengguna. Pada Penelitian ini penulis menggunakan mikrokontroler    |  |  |  |  |
|    |                                       |      | sebagai otak sensor node, sensor-sensor untuk mendeteksi cuaca,     |  |  |  |  |
|    |                                       |      | keypad sebagai piranti masukan pengguna, LCD untuk menampilkan      |  |  |  |  |
|    |                                       |      | pesan.                                                              |  |  |  |  |
| 7. | Arduino Based Weather Monitoring      | 2018 | Dalam penelitian ini penulis membuat sistem pemantauan cuaca.       |  |  |  |  |
| /. | Telemetry System Using NRF24L01+      |      | Penulis menggunakan Arduino Uno Board dan sensor DHT11, sensor      |  |  |  |  |
|    |                                       |      | LDR, BMP 180 Barometric Pressure dan Modul NRF24L01. Arduino        |  |  |  |  |
|    |                                       |      | menerima data dari sensor dan menampilkan output pada PC. Modul     |  |  |  |  |
|    |                                       |      | NRF24L01 digunakan untuk mengirimkan data yang didapat dari         |  |  |  |  |
|    |                                       |      | sensor.                                                             |  |  |  |  |

| 8.  | Rancang Bangun Sistem Pengukur     | 2018                                                                          | Dalam penelitian ini penulis membuat sistem pengukur cuaca otomatis       |  |  |  |  |  |
|-----|------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|--|
| 8.  | Cuaca Otomatis Menggunakan         |                                                                               | dengan antarmuka website. Pada penelitian ini penulis menggunakan         |  |  |  |  |  |
|     | Arduino dan Terintegrasi Dengan    |                                                                               | Mikrokontroler Arduino Mega dan beberapa jenis sensor diantaranya         |  |  |  |  |  |
|     | Website                            |                                                                               | Sensor SHT11, Sensor Intensitas Cahaya BH1750, Sensor Curah               |  |  |  |  |  |
|     |                                    |                                                                               | Hujan dan Sensor Tekanan Udara BMP180, Sensor Kecepatan Angin             |  |  |  |  |  |
|     |                                    |                                                                               | dan Arah Angin serta Penulis menggunakan Ethernet Shield yang             |  |  |  |  |  |
|     |                                    |                                                                               | digunakan untuk mengirimkan data hasil ukur sensor ke database.           |  |  |  |  |  |
| 9.  | Perancangan Sensor Kecepatan dan   | 2017                                                                          | Dalam penelitian ini, penulis membuat sistem pengukur kecepatan dan       |  |  |  |  |  |
| 9.  | Arah Angin untuk Automatic Weather | n untuk <i>Automatic Weather</i> arah angin dengan menggunakan mikrokontroler |                                                                           |  |  |  |  |  |
|     | Station (AWS)                      |                                                                               | dilengkapi dengan menggunakan sensor Hall effect yang berfungsi           |  |  |  |  |  |
|     |                                    |                                                                               | untuk mengetahui arah angin serta rotary encoder untuk mengetahui         |  |  |  |  |  |
|     |                                    |                                                                               | kecepatan angin                                                           |  |  |  |  |  |
| 10. | Rancang Bangun Automatic Weather   | 2016                                                                          | Dalam penelitian ini penulis memanfaatkan Raspberry Pi sebagai            |  |  |  |  |  |
| 10. | Station (AWS) Menggunakan          |                                                                               | Automatic Weather Station dengan sensor yang digunakan untuk              |  |  |  |  |  |
|     | Raspberry Pi                       |                                                                               | mengukur cuaca. Pada penelitian ini, penulis menggunakan sensor           |  |  |  |  |  |
|     |                                    |                                                                               | temperature, sensor tekanan udara, dann kelembapan udara yang akan        |  |  |  |  |  |
|     |                                    |                                                                               | ditampilkan pada LCD.                                                     |  |  |  |  |  |
| 11. | Teknologi Adaptasi Untuk Mengatasi | 2014                                                                          | Dalam penelitian ini, penulis membahas tentang berbagai faktor iklim yang |  |  |  |  |  |
| 11. | Perubahan Iklim Pada Tanaman Teh   |                                                                               | mempengaruhi keberhasilan penanaman teh. Selain itu, pada penelitian ini  |  |  |  |  |  |
|     |                                    |                                                                               | membahas tentang penyebab serangan hama dan penyakit pada tanaman teh.    |  |  |  |  |  |

|  | Dan dalam penelitian ini juga dibahas mengenai upaya untuk beradaptasi |
|--|------------------------------------------------------------------------|
|  | dengan perubahan iklim.                                                |

### Rancangan Sistem



Gambar 1 Model Rancangan Sistem Monitoring Cuaca di PTTK Gambung Secara Keseluruhan

Pada Gambar 1 Model Rancangan Sistem Monitoring Cuaca di PTTK Gambung Secara Keseluruhan merupakan model perancangan sistem monitoring cuaca pada Perkebunan Teh Pusat Penelitian Teh dan Kina (PPTK) Gambung secara keseluruhan. Pada proyek tingkat ini akan dikerjakan secara berkelompok berjumlah 2 (dua) orang dengan pembagian sub bab model sistem yaitu, satu orang akan mengerjakan bagian AWS *Node Sensor* dan AWS *WIFI-Gateway*.



Gambar 2 Lokasi Pelaksanaan Penelitian

Pada Gambar 2 merupakan lokasi pelaksanaan penelitian yaitu, Pusat Penelitian Teh dan Kina (PTTK) Gambung, Jawa Barat. Pada proyek tingkat ini, akan dibangun *Automatic Weather Station* (AWS) dengan node sensor yang berjumlah 3 yang akan diletakkan pada 3 titik lokasi yang terpilih. Dimana, node sensor 1 memiliki jarak sejauh 200 meter dari *gateway*, node sensor 2 memiliki jarak sejauh 700 meter dari *gateway* dan node 3 memiliki jarak sejauh 300 meter dari *gateway*. Untuk *gateway* berada di kantor PPTK Gambung, Jawa Barat.



Gambar 3 Model Rancang Bangun *Automatic Weather Station (Aws) Node* Untuk Monitoring Cuaca Di Perkebunan Teh Pusat Penelitian Dan Kina (PPTK) Gambung Berbasis NRF24L01

Pada Gambar 3. Perangkat keras *node sensor* terdiri mikrokontroler ATMega328P sebagai otak *node sensor* yang berfungsi untuk memproses data yang diterima dari inputan sensor. Penggunaan solar panel digunakaan sebagai *power supply*. Sistem diawali dengan membaca *input* data dari sensor DHT11 yang berfungsi untuk mendeteksi suhu dan kelembaban udara. *Sensor Soil Moisture* yang berfungsi untuk mendeteksi kelembapan tanah dengan menancapkan sensor tersebut pada tempat teh ditanam. Sensor *Anemometer* yang berfungsi untuk mengukur kecepatan angin. Sensor cahaya BH1750 yang digunakan untuk mengukur intensitas cahaya pada ruang lingkup tanaman teh dan Sensor *Rain Gauge* 

sebagai alat pendeteksi sensor curah hujan. Mikrokontroler sebagai otak *node sensor* berfungsi untuk membaca data-data dari sensor. Kemudian, data yang didapat dikirimkan ke *Gateway* dengan NRF24L01 sebagai modul komunikasi *wireless*. Pada penelitian ini, akan dibuat 3 (tiga) *node sensor* yang masing-masing *node sensor* tersebut dilengkapi 5 (lima) sensor yaitu, sensor kelembaban udara dan suhu, sensor kelembaban tanah, sensor kecepatan angin, sensor intensitas cahaya dan sensor hujan.

#### Referensi

- [1] Anjarsari, I. E. (2020). Pengaruh cuaca terhadap hasil pucuk teh (Camellia sinensis L.(O) Kuntze) klon GMB 7 pada periode jendangan dan pemetikan produksi. *Jurnal Kultivasi Vol.* 19 ISSN: 1412-4718, eISSN: 2581-138x, 1076-1082.
- [2] Cahyati, S. N. (2018). *Rancang Bangun Miniatur Stasiun Cuaca*. Makasar: DEPARTEMEN TEKNIK INFORMATIKA, FAKULTAS TEKNIK, UNIVERSITAS HASANUDDIN.
- [3] Dina Angela, T. A. (2017). Perancangan Sensor Kecepatan dan Arah Angin untuk Automatic Weather Station (AWS). *Jurnal Telematika*, vol. 12 no. 1, *Institut Teknologi Harapan Bangsa*, *Bandung p-ISSN:* 1858-2516 e-ISSN: 2579-3772.
- [4] Eko M, R. S. (2019). Prototype weather station uses LoRa wireless connectivity. *International Conference On Engineering, Technology and Innovative Researche* (pp. 1-8). Purwokerto: Journal of Physics: Conference Series, Electrical Engineering Department, Universitas Jenderal Soedirman.
- [5] Ferdy Erwan, A. M. (2018). RANCANG BANGUN SISTEM PENGUKUR CUACA OTOMATIS MENGGUNAKAN ARDUINO DAN TERINTEGRASI DENGAN WEBSITE. Jurnal Coding, Sistem Komputer Untan Volume 06, No. 03 (2018), hal 255-264 ISSN: 2338-493X, 255-264.
- [6] Gina Zahra Anjani, A. (2020). Dampak Perubahan Iklim Terhadap Produktivitas Tanaman Teh (Camellia sinensis L.) di Kebun Teh Pasirmalang, Jawa Barat. *Jurnal Produksi Tanaman Vol.* 8 No. 3, ISSN: 2527-8452, 271-275.
- [7] I G. A. K. Diafari Djuni H, ,. I. (2019). Design and Implementation of Arduino-Based Weather Monitoring System in Rural. *Journal of Electrical, Electronics and Informatics*, p-ISSN: 2549– 8304 e-ISSN: 2622–0393, 58-61.
- [8] Ir. Dedi Soleh Effendi, M. D. (2010). *Budidaya dan Pasca Panen TEH*. Bogor: Pusat Penelitian dan Pengembangan Perkebunan, Badan Penelitian dan Pengembangan Pertanian Kementerian Pertanian.
- [9] M. Salim Machfud, M. S. (2016). RANCANG BANGUN AUTOMATIC WEATHER STATION (AWS). ALHAZEN Journal of Physics Vol. II No. 2 Th. 2016 ISSN: 2407-9073, 48-57.

- [10] Muhammad Abdul Hadi, A. P. (2019). RANCANG BANGUN PORTABLE WEATHER STATION BERBASIS JARINGAN SENSOR NIRKABEL MENGGUNAKAN KONEKSI VPN. STRING (Satuan Tulisan Riset dan Inovasi Teknologi) Vol. 4 No. 1 p-ISSN: 2527 -9661 e-ISSN: 2549 - 2837, 32-37.
- [11] Nur A. S. P., C. A. (2019). Peningkatan Skalabilitas Mini Weather Station Portable berbasis Internet of Things. *Indonesian Journal of Electronics and Instrumentation Systems (IJEIS)* Vol.9, No.2, pp. 203-214 ISSN (print): 2088-3714, ISSN (online): 2460-7681, 203-214.
- [12] Patra, P. S. (2013). EFFECT OF CLIMATE CHANGE ON PRODUCTION OF DARJEELING TEA: A CASE STUDY IN DARJEELING TEA RESEARCH & DEVELOPMENT CENTRE, TEA BOARD, KURSEONG. *Global Journal Of Biology, Argiculture & Healt Sciences, Vol.2(4):174-180 ISSN: 2319 5584*, 174-180.
- [13] Rafi Sidqi, B. R. (2018). Arduino Based Weather Monitoring Telemetry System Using NRF24L01+. *IOP Conf. Series: Materials Science and Engineering 336 (2018) 012024 doi:10.1088/1757-899X/336/1/012024*. Surabaya: Department of Electrical Engineering, Universitas Negeri Surabaya.
- [14] Ranjitkar, S. S. (2016). Climate modelling for agroforestry species selection in Yunnan Province, China. China: Environmental Modelling & Software, 75:263-272.
- [15] Shasyasyam, S. A. (2019). Weather Station Quadcopter Using Arduino with NRF24L01 and GPS Module. *International Research Journal of Engineering and Technology, Volume: 06 Issue: 03, e-ISSN: 2395-0056 p-ISSN: 2395-0072*, 4690-4691.
- [16] Tsany Afif, A. B. (2019). Implementasi Perangkat Gateway Untuk Pengiriman Data Sensor Dari Lapangan Ke Pusat Data Pada Jaringan Wireless Sensor Network Berbasis Perangkat nRF24L01. *Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol. 3, No. 4 e-ISSN:* 2548-964X, 3695-3701.

Tanggal: 7 Desember 2020

Kami yang bertanda tangan dibawah ini:

**CALON PEMBIMBING 1** 

Kode : DYD

Nama : Denny Darlis, S.Si., M.T.

**CALON PEMBIMBING 2** 

Kode : DNN

Nama : Dwi Andi Nurmantris, S.T., M.T.

Menyatakan bersedia menjadi dosen pembimbing Proyek Akhir bagi mahasiswa berikut,

NIM : 6705184124

Nama : Ayuni Maharani Mella Taduri Daryaman

Prodi / Peminatan : D3TT/\_(MI/SDV)

: Rancang Bangun AWS Node Untuk Monitoring Cuaca di Perkebunan Teh PPTK Gambung Calon Judul PA

Berbasis nRF24L01

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Akhir yang berlaku.

Calon Pembimbing 1

Calon Pembimbing 2

(Denny Darlis, S.Si., M.T.)

(Dwi Andi Nurmantris, S.T., M.T.)

#### CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari Portal Dosen » menu "File Repositori" » file "PA TEL-U FIT Pedoman &
- Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja



**Telkom University** Jl.Telekomunikasi No.1, Terusan Buah Batu Bandung 40257 Indonesia

#### Daftar Nilai Hasil Studi Mahasiswa

NIM (Nomor Induk Mahasiswa)

Nama

: 6705184124

Dosen Wali Program Studi : DUM / DADAN NUR RAMADAN : D3 Teknologi Telekomunikasi

. AYUNI MAHARANI MELLA TADURI

DARYAMAN

#### 2018/2019 - GANJIL

| Kode Mata Kuliah | Mata Kuliah                                 | Nama Mata Kuliah B.<br>Inggris                   | SKS | Nilai | Status |
|------------------|---------------------------------------------|--------------------------------------------------|-----|-------|--------|
| DTH1A2           | K3 DAN<br>LINGKUNGAN<br>HIDUP               | K3 AND ENVIRONMENT                               | 2   | АВ    |        |
| DTH1B3           | MATEMATIKA<br>TELEKOMUNIKASI<br>I           | MATHEMATICS<br>TELECOMMUNICATIONS<br>I           | 3   | А     |        |
| DTH1C3           | DASAR TEKNIK<br>KOMPUTER DAN<br>PEMROGRAMAN | BASIC COMPUTER<br>ENGINEERING AND<br>PROGRAMMING | 3   | AB    |        |
| DTH1D3           | RANGKAIAN<br>LISTRIK                        | ELECTRICAL CIRCUITS                              | 3   | С     |        |
| DTH1E2           | BENGKEL<br>MEKANIKAL DAN<br>ELEKTRIKAL      | MECHANICAL AND<br>ELECTRICAL<br>WORKSHOP         | 2   | В     |        |
| DTH1F3           | DASAR SISTEM<br>TELEKOMUNIKASI              | BASIC<br>TELECOMMUNICATIONS<br>SYSTEM            | 3   | АВ    |        |
| DUH1A2           | LITERASI TIK                                | ICT LITERACY                                     | 2   | А     |        |
| HUH1A2           | PENDIDIKAN<br>AGAMA DAN<br>ETIKA - ISLAM    | RELIGIOUS EDUCATION<br>AND ETHICS - ISLAM        | 2   | А     |        |
|                  | Jumlah SKS                                  | 20                                               |     |       |        |
|                  | IPS                                         | 3.4                                              |     |       |        |

#### 2018/2019 - GENAP

| Kode Mata Kuliah                    | Mata Kuliah | Nama Mata Kuliah B.<br>Inggris          | SKS | Nilai | Status |
|-------------------------------------|-------------|-----------------------------------------|-----|-------|--------|
| DMH1A2                              | OLAH RAGA   | SPORT                                   | 2   | А     |        |
| DTH1G3 MATEMATIKA TELEKOMUNIKASI II |             | MATHEMATICS<br>TELECOMMUNICATIONS<br>II | 3   | AB    |        |
|                                     | Jumlah SKS  | 21                                      |     |       |        |
|                                     | IPS         | 3.74                                    |     |       |        |

| Kode Mata Kuliah | Mata Kuliah                      | Nama Mata Kuliah B.<br>Inggris | SKS | Nilai | Status |
|------------------|----------------------------------|--------------------------------|-----|-------|--------|
| DTH1H3           | TEKNIK DIGITAL                   | DIGITAL TECHNIQUES             | 3   | А     |        |
| DTH1I3           | ELEKTRONIKA<br>ANALOG            | ANALOG ELECTRONIC              | 3   | А     |        |
| DTH1J2           | BENGKEL<br>ELEKTRONIKA           | ELECTRONICS<br>WORKSHOP        | 2   | АВ    |        |
| DTH1K3           | ELEKTROMAGNETIKA                 | ELECTROMAGNETIC                | 3   | В     |        |
| HUH1G3           | PANCASILA DAN<br>KEWARGANEGARAAN | PANCASILA AND<br>CITIZENSHIP   | 3   | А     |        |
| LUH1B2           | BAHASA INGGRIS I                 | ENGLISH I                      | 2   | А     |        |
|                  | Jumlah SKS                       | 21                             |     |       |        |
|                  | IPS                              | 3.74                           |     |       |        |

#### 2018/2019 - ANTARA

| Kode Mata Kuliah | Mata<br>Kuliah | Nama Mata Kuliah B. Inggris | SKS | Nilai | Status |
|------------------|----------------|-----------------------------|-----|-------|--------|
|                  | Jumlah SKS     |                             |     |       |        |
| IPS              |                |                             | 0   |       |        |

#### 2019/2020 - GANJIL

| Kode Mata Kuliah | Mata Kuliah                                 | Nama Mata Kuliah B.<br>Inggris                    | SKS  | Nilai | Status |
|------------------|---------------------------------------------|---------------------------------------------------|------|-------|--------|
| DTH2A2           | BAHASA INGGRIS<br>TEKNIK I                  | ENGLISH<br>TECHNIQUE I                            | 2    | АВ    |        |
| DTH2B3           | KOMUNIKASI<br>DATA BROADBAND                | BROADBAND DATA COMMUNICATIONS                     | 3    | А     |        |
| DTH2C2           | BENGKEL<br>INTERNET OF<br>THINGS            | INTERNET OF<br>THINGS<br>WORKSHOP                 | 2    | В     |        |
| DTH2D3           | APLIKASI<br>MIKROKONTROLER<br>DAN ANTARMUKA | MICROCONTROLLER<br>APPLICATIONS AND<br>INTERFACES | 3    | А     |        |
| DTH2E3           | SISTEM<br>KOMUNIKASI                        | COMMUNICATIONS<br>SYSTEMS                         | 3    | АВ    |        |
| DTH2F3           | TEKNIK<br>TRANSMISI RADIO                   | RADIO<br>TRANSMISSION<br>TECHNIQUES               | 3    | ВС    |        |
| DTH2G3           | SISTEM<br>KOMUNIKASI<br>OPTIK               | OPTICAL<br>COMMUNICATION<br>SYSTEMS               | 3    | АВ    |        |
| LUH1A2           | BAHASA<br>INDONESIA                         | INDONESIAN                                        | 2    | АВ    |        |
|                  | Jumlah SKS                                  | 21                                                |      |       |        |
|                  | IPS                                         |                                                   | 3.45 |       |        |

#### 2019/2020 - GENAP

| Kode Mata Kuliah | Mata Kuliah                       | Nama Mata Kuliah B.<br>Inggris        | SKS | Nilai | Status |
|------------------|-----------------------------------|---------------------------------------|-----|-------|--------|
| DMH1B2           | PENGEMBANGAN<br>PROFESIONALISME   | PROFESSIONAL<br>DEVELOPMENT           | 2   | А     |        |
| DMH2A2           | KERJA PRAKTEK                     | INTERSHIP                             | 2   | А     |        |
| DTH2H3           | JARINGAN DATA<br>BROADBAND        | BROADBAND DATA<br>NETWORK             | 3   | А     |        |
| DTH2I3           | DASAR<br>KOMUNIKASI<br>MULTIMEDIA | BASIC<br>COMMUNICATION<br>MULTIMEDIA  | 3   | АВ    |        |
| DTH2J2           | TEKNIK TRAFIK                     | TRAFFIC ENGINEERING                   | 2   | А     |        |
| DTH2K3           | ELEKTRONIKA<br>TELEKOMUNIKASI     | ELECTRONICS<br>TELECOMMUNICATIONS     | 3   | АВ    |        |
| DTH2L3           | TEKNIK ANTENNA<br>DAN PROPAGASI   | ANTENNA TECHNIQUES<br>AND PROPAGATION | 3   | А     |        |
| DTH2M3           | SISTEM<br>KOMUNIKASI<br>SELULER   | CELLULAR<br>COMMUNICATION<br>SYSTEMS  | 3   | АВ    |        |
| DUH2A2           | KEWIRAUSAHAAN                     | ENTREPRENEURSHIP                      | 2   | А     |        |
|                  | Jumlah SKS                        | 23                                    |     |       |        |
|                  | IPS                               |                                       | 3.8 |       |        |

#### 2019/2020 - ANTARA

| Kode Mata Kuliah | Mata<br>Kuliah | Nama Mata Kuliah B. Inggris | SKS | Nilai | Status |
|------------------|----------------|-----------------------------|-----|-------|--------|
|                  | Jumlah SKS     |                             |     |       |        |
| IPS              |                |                             | 0   |       |        |

#### 2020/2021 - GANJIL

| Kode Mata Kuliah | Mata Kuliah                             | Nama Mata<br>Kuliah B. Inggris | SKS | Nilai | Status |
|------------------|-----------------------------------------|--------------------------------|-----|-------|--------|
| UWI3E1           | HEI                                     | HEI                            | 1   |       |        |
| VTI2H2           | BAHASA INGGRIS<br>TEKNIK II             | ENGLISH<br>TECHNIQUES II       | 2   |       |        |
| VTI2K3           | JARINGAN<br>TELEKOMUNIKASI<br>BROADBAND | BROADBAND<br>DATA<br>NETWORKS  | 3   |       |        |
| VTI3D3           | KEAMANAN<br>JARINGAN                    | NETWORK<br>SECURITY            | 3   |       |        |
| VTI3E2           | CLOUD COMPUTING                         | CLOUD<br>COMPUTING             | 2   |       |        |
|                  | Jumlah SKS                              | 11                             |     |       |        |
|                  | IPS                                     | 0                              |     |       |        |

#### 2020/2021 - GENAP

| Kode Mata Kuliah | Mata<br>Kuliah | Nama Mata Kuliah B. Inggris | SKS | Nilai | Status |
|------------------|----------------|-----------------------------|-----|-------|--------|
|------------------|----------------|-----------------------------|-----|-------|--------|

| Kode Mata Kuliah | Mata<br>Kuliah | Nama Mata Kuliah B. Inggris | SKS | Nilai | Status |
|------------------|----------------|-----------------------------|-----|-------|--------|
| Jumlah SKS       |                |                             | 0   |       |        |
| IPS              |                |                             | 0   |       |        |

| : 85 SKS |                      | IPK : 3.61                                   |
|----------|----------------------|----------------------------------------------|
| : 85 SKS | Belum Lulus          | IPK : 3.61                                   |
| : 81 SKS | Belum Lulus          | IPK : 3.6                                    |
| : 41 SKS | Belum Lulus          | IPK: 3.57                                    |
|          | : 81 SKS<br>: 85 SKS | : 81 SKS Belum Lulus<br>: 85 SKS Belum Lulus |

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 09 Desember 2020 21:08:59 oleh AYUNI MAHARANI MELLA TADURI DARYAMAN