odern RNNs _{验,4个问题}

4/4分 (100.00%)

✓ 恭	喜!您通过了!	下一项
1/		
1. Choose correc	t statements about the exploding gradient problem:	
Explod	ling gradient problem is easy to detect.	
正确 Exploding g	radients are easy to detect, not vanishing.	
ReLU	nonlinearity helps with the exploding gradient problem.	
未选择的是正确	角的	
	ason of the exploding gradient problem in the simple RNN is the ronlinearities sigmoid, tanh, and ReLU does not cause the problem.	
正确 Derivatives gradient pro	of all these nonlinearities are less than 1, therefore they may caus oblem.	e only the vanishing
The the efficie	reshold for gradient clipping should be as low as possible to makent.	e the training more
未选择的是正确	角的	
1/	1	

C

分数

Choose correct statements about the vanishing gradient problem:

Vanishing gradient problem is easy to detect.

4/4分 (100.00%)

	Both nonlinearity and the recurrent weight matrix $oldsymbol{W}$ cause the vanishing gradient problem.	
正确 That	is true!	
	Orthogonal initialization of the recurrent weight matrix helps with the vanishing gradient problem.	
正确 That	is true!	
	Truncated BPTT helps with the vanishing gradient problem.	
未选择的是正确的		

1/1

分数

3.

Consider the LSTM architecture:

odern RNNs

4/4 分 (100.00%)

验, 4 个问题
$$egin{array}{c} i_t \ o_t \ f_t \end{array} egin{array}{c} & ilde{f} \ \sigma \ \sigma \ \sigma \end{array} \end{pmatrix} (Vx_t + Wh_{t-1} + b)$$

$$c_t = f_t \cdot c_{t-1} + i_t \cdot g_t, \quad h_t = o_t \cdot ilde{f}(c_t)$$

Choose correct statements about this architecture:

	The LSTM needs four times more parameters than the simple RNN
--	---

正确

For each gate we need its own set of parameters and there are 3 gates in the LSTM architecture.

	Gradients do not vanish on the way through memory cells \emph{c} in the LSTM with forget gate.
--	--

未选择的是正确的

未选择的是正确的

正确

Very large norm of ${\it W}$ may cause the exploding gradient problem. Therefore gradient clipping is useful for LSTM and GRU architectures too.

4/4分(100.00%)

4.

Consider the GRU architecture:

$$g_t = ilde{f}ig(V_g x_t + W_g (h_{t-1} \cdot r_t) + b_gig)$$

$$h_t = (1-u_t)\cdot g_t + u_t\cdot h_{t-1}$$

Which combination of the gate values makes this model equivalent to the simple RNN? Here value zero corresponds to a closed gate and value one corresponds to an open gate.

- Both reset and update gates are open.
- Both reset and update gates are closed.
- Reset gate is open and update gate is closed.

正确

That is it!

Update gate is open and reset gate is closed.

- \bigcirc