SF1914/SF1916: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 8 CENTRALA GRÄNSVÄRDESSATSEN (CGS), NORMALFÖRDELNINGSAPPROXIMATIONER. BINOMIAL- OCH POISSON FÖRDELNINGEN: APPROXIMATIVA EGENSKAPER.

Tatjana Pavlenko

18 september 2018

Plan för dagens föreläsning

- Egenskaper hos normalfördelningen (rep.)
- Linjärkombinationer av oberoende normalfördelade s.v. (rep.) (Kap. 6.5)
- Centrala gränsvärdessatsen och normalfördelningsapproximationer. (Kap. 6.7)
- ▶ Binomialfördelning och Possionfördelningen. (rep.)
- ▶ Normalapproximation för Bin(n, p) och $Po(\mu)$. (Kap. 7.2, 7.4)

NORMALFÖRDELNING (REP.)

 \blacktriangleright

▶ Def: En kontinuerlig s.v. X sägs vara normalfördelad med parametrar μ och σ , $(\sigma > 0)$ om täthetsfunktionen ges av

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty.$$

- ▶ Beteckning: $X \in N(\mu, \sigma)$.
- ▶ Om $\mu = 0$ och $\sigma = 1$ sägs X vara standardiserad normalfördelad.

EGENSKAPER HOS NORMALFÖRDELNING (REP.)

- ▶ Sats: $X \in N(\mu, \sigma)$ om och endast om $Z = \frac{X \mu}{\sigma} \in N(0, 1)$.
- ▶ $N(\mu, \sigma)$ är läge-skall familj (location-scale family)!
- ightharpoonup Tolkning av μ och σ : enligt sats får vi

$$E(X) = E(\sigma Z + \mu) = \sigma E(Z) + \mu = \mu,$$

$$V(X) = V(\sigma Z + \mu) = \sigma^2 V(Z) = \sigma^2,$$

dvs är parametrarna μ och σ *väntevärde* respektive *standardavvikelse* för $N(\mu, \sigma)$ -fördelad s.v.

Vidare gäller att

$$f_X(x) = \frac{1}{\sigma} \phi\left(\frac{x-\mu}{\sigma}\right), \quad F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right),$$

$$P(a < X \le b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right).$$

LINJÄR TRANSFORMATION AV NORMALFÖRDELNING.

- ► En viktig egenskap hos normalfördelningen är att den bevaras under linjära transformationer.
- ▶ Sats: Om $X \in N(\mu, \sigma)$, så gäller att

$$Y = aX + b \in N(a\mu + b, |a|\sigma).$$

▶ Sats: Om X_1, X_2, \ldots, X_n är oberoende och respektive $N(\mu_1, \sigma_1), N(\mu_2, \sigma_2), \ldots, N(\mu_n, \sigma_n)$ och konstanterna a_1, a_2, \ldots, a_n, b är givna, så gäller att

$$\sum_{i=1}^n a_i X_i + b \in N\left(\sum_{i=1}^n a_i \mu_i + b, \sqrt{\sum_{i=1}^n a_i^2 \sigma_i^2}\right).$$

Speciallt, om $X_1, X_2, ..., X_n$ är oberoende $N(\mu, \sigma)$ och $a_1 = a_2 = \cdots = a_n = 1/n$ samt b = 0, så gäller att

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \in N(\mu, \sigma/\sqrt{n}).$$

CENTRALA GRÄNSVÄRDESSATSEN (CGS).

▶ Satsen är den viktigaste resultaten inom sannolikhetsteorin:

En summa av oberoende lika fördelade s.v. med godtycklig fördelning är ungefär normalfördelad, bara antalet komponenter i summan är tillräckligt stort.

▶ Sats (CGS): Låt X_1, \ldots, X_n, \ldots vara en oändlig följd av oberoende, likafördelade s.v. med väntevärde μ och och standardavvikelse $0 < \sigma < \infty$. Sätt

$$Y_n = X_1 + \cdots + X_n$$
.

Då gäller för givna a < b att

$$P\left(a<rac{Y_n-n\mu}{\sqrt{n}\sigma}\leq b
ight)\longrightarrow\Phi(b)-\Phi(a)\quad \mathrm{d}\mathring{a}\;n o\infty.$$

► CGS uttalar sig alltså om *fördelningen av Y_n då antalet n växer mot* oändligheten: Y_n är ungefär $N(n\mu, \sqrt{n\sigma})$ -fördelad. Beteckning:

$$Y_n \in AsN(n\mu, \sqrt{n}\sigma).$$

CENTRALA GRÄNSVÄRDESSATSEN (FORTS.)

▶ Observera att $E(Y_n) = n\mu$ och $D(Y_n) = \sqrt{n\sigma}$. För varje givet n är

$$\frac{Y_n - n\mu}{\sqrt{n}\sigma}$$

en standardiserad s.v. Den har väntevärde lika med noll och standardavvikelse lika med 1 som en standardiserad normalfördelad s.v.

► Enligt CGS: när *n* går mot oändligheten kommer hela fördelningen för den angivna standardiserade s.v. att gå mot en *standardiserad normalfördelning*, dvs

$$\frac{Y_n-n\mu}{\sqrt{n}\sigma}\in \textit{AsN}(0,1).$$

CENTRALA GRÄNSVÄRDESSATSEN (FORTS.)

▶ Följdats: För en oändlig följd av oberoende likafördelade s.v. X_1, \ldots, X_n, \ldots med $E(X_i) = \mu$ och $D(X_i) = \sigma$ ($0 < \sigma < \infty$) gäller att

$$ar{X}_n = rac{1}{n} \sum_{i=1}^n X_i \in \mathit{AsN}\left(\mu, rac{\sigma}{\sqrt{n}}
ight) \quad \mathrm{då} \quad n o \infty,$$

dvs aritmetisk medelvärdet \bar{X}_n är approximativt normalfördelat för tillräckligt stort n.

Normalfördelningsapproximation. Enligt CGS: $\sum_{i=1}^{n} X_i \in AsN(n\mu, \sqrt{n}\sigma)$ och $\bar{X}_n \in AsN(\mu, \sigma/\sqrt{n})$. Detta ger approximationerna

$$P\left(a < \sum_{i=1}^{n} X_i \le b\right) \approx \Phi\left(\frac{b - n\mu}{\sqrt{n}\sigma}\right) - \Phi\left(\frac{a - n\mu}{\sqrt{n}\sigma}\right),$$

$$P\left(c < \bar{X}_n \leq d\right) \approx \Phi\left(\frac{d-\mu}{\sigma/\sqrt{n}}\right) - \Phi\left(\frac{c-\mu}{\sigma/\sqrt{n}}\right).$$

CENTRALA GRÄNSVÄRDESSATSEN (FORTS.)

FIGUR: Fördelningen för $\frac{\ddot{X}_n - \mu}{\sigma/\sqrt{n}}$ för n=1, n=10, n=100 och n=1000, där

$$\bar{X}_n = (X_1 + \dots + X_n)/n$$

och X_1,\ldots,X_n,\ldots är oberoende Po(1)-variabler (så att $\mu=\sigma=1$). Då $n\to\infty$ liknar fördelningen alltmer den standardiserade normalfödelningstäthet.

BINOMIALFÖRDELNING (REP. FLS. 3)

▶ Binomialfördelning omnämndes i Kap. 3. 4 (se föreläsn. 3. Som tidigare nämnts, Def: om en s.v. *X* har sannolikhetsfunktionen

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, ..., n$$

där 0 , sägs <math>X vara binomialfördelad. Beteckning: $X \in Bin(n, p)$.

- ► Förekomst:
 - Betrakta ett försök som utförs på *förhand bestämt antal gånger n*. Försöken antas vara oberoende, och varje försök kan lyckas (med slh p) eller misslyckas. Låt s.v. X vara antalet lyckade försök av dessa n. Man är intresserad att finna P(X=k), dvs sannolikheten för att antalet lyckade försök är k. Då är $X \in Bin(n,p)$ och sannolikheterna P(X=k) ges av $p_X(k)$.

BINOMIALFÖRDELNING (FORTS.)

- ▶ Binomialfördelning uppträder också som fördelning för summan av oberoende lika fördelade s.v. !
- Antag att för n st. oberoende försök är sannolikheten att lyckas i varje försök lika med p. Associera med vart och ett av de n försöken en s.v. I_i , $i = 1, \ldots, n$ sådan att

$$I_i = \left\{ egin{array}{ll} 1 & \mbox{om försök nr. i lyckas} \\ 0 & \mbox{annars} \end{array}
ight.$$

- Från tidigare vet vi att I_i är oberoende, Bernoulli-fördelade s.v. med samma p, dvs $I_i \in Be(p)$ (se def. 3.3, s. 51).
- ▶ Låt X vara antalet lyckade försök bland de n utförda,

$$X = I_1 + I_2 + \cdots + I_n.$$

Då har vi att $X = \sum_{i=1}^{n} I_i \in Bin(n, p)$. (Observera att $I_i \in Bin(1, p)$.)

BINOMIALFÖRDELNINGS EGENSKAPER (FORTS.)

▶ Vi använder summa framställningen ovan för att bestämma väntevärde och varians för $X \in Bin(n, p)$.

$$E(X) = E\left(\sum_{i=1}^{n} I_i\right) = \sum_{i=1}^{n} E(I_i) = np,$$

$$V(X) = V\left(\sum_{i=1}^{n} I_i\right) = |\text{ober. } I_i| = \sum_{i=1}^{n} V(I_i) = np(1-p),$$

$$D(X) = \sqrt{V(X)} = \sqrt{np(1-p)}.$$

▶ Sats: Additionssatsen för binomialfördelningar. Låt $X_1 \in Bin(n_1, p)$ och $X_2 \in Bin(n_2, p)$ vara oberoende s.v. (Obs! Samma p för X_1 och X_2). Då gäller att

$$Y = X_1 + X_2 \in Bin(n_1 + n_2, p).$$

NORMALAPPROXIMATION FÖR $X \in Bin(n, p)$.

- Av X representation som summa, $X = \sum_{i=1}^{n} I_i$, följer att centrala gränsvärdessatsen (CGS) kan tillämpas!
- För stora n är X ungefär normalfördelad med det väntevärde och varians som ges ovan, dvs, $X \in AsN(np, \sqrt{np(1-p)})$. Detta vidare ger

$$P(a < X \le b) = |\text{standardisera}|$$

$$= P\left(\frac{a - np}{\sqrt{np(1-p)}} < \frac{X - np}{\sqrt{np(1-p)}} \le \frac{b - np}{\sqrt{np(1-p)}}\right)$$

$$\approx \Phi\left(\frac{b - np}{\sqrt{np(1-p)}}\right) - \Phi\left(\frac{a - np}{\sqrt{np(1-p)}}\right).$$

- ▶ Hur stort n? Approximation ger bra noggrannhet om np(1-p) > 10. Detta används som tumregel.
- Exempel på tavlan.

Poisson-fördelning (Rep. från fls 3.)

▶ Def: Om en s.v. X har sannolikhetsfunktionen

$$p_X(k) = e^{-\mu} \frac{\mu^k}{k!}, \quad k = 0, 1, 2, \dots$$

där $\mu > 0$ sägs X vara Poissonfördelad. Beteckning: $X \in Po(\mu)$.

- ► Förekomst:
 - Används för att modellera sällsynta händelser. Antag att $X \in Bin(n,p)$ där ant. oberoende försök n är stort och sannolikheten p att lyckas i varje försök är liten. Betrakta $\mu = np$ som är "lagom". Då ges antalet lyckade försök approximativt av en s.v. som är Poissonfördelad med $\mu = np$. Detta kallas ibland små talens lag. Approximationen är rimlig om p < 0.1 och n > 10.

EGENSKAPER HOS $Po(\mu)$.

- Exakta egenskaper hos $Po(\mu)$.
 - ▶ Sats: Om $X \in Po(\mu)$ gäller att

$$E(X) = \mu$$
, $V(X) = \mu$, $D(X) = \sqrt{\mu}$.

▶ Sats: Additionssatsen för Poissonfördelningar. Låt $X_1 \in Po(\mu_1)$ och $X_2 \in Po(\mu_2)$ vara oberoende s.v. Då gäller att

$$Y = X_1 + X_2 \in Po(\mu_1 + \mu_2).$$

- ▶ Approximativa egenskaper hos $Po(\mu)$.
 - Låt $X \in Po(\mu)$ och låt μ vara ett heltal. Då, enligt additionssats gäller att $X = V_1 + \dots + V_\mu$ där V_i är oberoende Po(1)-fördelade s.v. Det följer nu av CGS att $X \in AsN(\mu, \sqrt{\mu})$ då μ är tillräckligt stort.
 - Approximation gäller även om μ är inte heltal!
 - ▶ Tumregel: Approximation är ganska bra om $\mu > 15$.

TABLE OF COMMON DISTRIBUTIONS

Table of Common Distributions

Relationships among common distributions. Solid lines represent transformations and special cases, dashed lines represent limits. Adapted from Leemis (1986).

