Теоретические ("малые") домашние задания

Математическая логика, ИТМО, МЗ232-МЗ239, весна 2023 года

Задание №1. Знакомство с исчислением высказываний.

При решении заданий вам может потребоваться теорема о дедукции (будет доказана на второй лекции): $\Gamma, \alpha \vdash \beta$ тогда и только тогда, когда $\Gamma \vdash \alpha \to \beta$. Например, если было показано существование вывода $A \vdash A$, то тогда теорема гарантирует и существование вывода $\vdash A \to A$.

- 1. Докажите:
 - (a) $\vdash (A \to A \to B) \to (A \to B)$
 - (b) $\vdash \neg (A \& \neg A)$
 - (c) $\vdash A \& B \rightarrow B \& A$
 - (d) $\vdash A \lor B \to B \lor A$
 - (e) $A \& \neg A \vdash B$
- 2. Докажите:
 - (a) $\vdash A \rightarrow \neg \neg A$
 - (b) $\neg A, B \vdash \neg (A \& B)$
 - (c) $\neg A, \neg B \vdash \neg (A \lor B)$
 - (d) $A, \neg B \vdash \neg (A \rightarrow B)$
 - (e) $\neg A, B \vdash A \rightarrow B$
- 3. Докажите:
 - (a) $\vdash (A \rightarrow B) \rightarrow (B \rightarrow C) \rightarrow (C \rightarrow A)$
 - (b) $\vdash (A \to B) \to (\neg B \to \neg A)$ (правило контрапозиции)
 - (c) $\vdash A \& B \rightarrow \neg (\neg A \lor \neg B)$
 - (d) $\vdash \neg(\neg A \lor \neg B) \to (A \& B)$
 - (e) $\vdash (A \rightarrow B) \rightarrow (\neg A \lor B)$
 - (f) $\vdash A \& B \rightarrow A \lor B$
 - (g) $\vdash ((A \rightarrow B) \rightarrow A) \rightarrow A$ (закон Пирса)
- 4. Следует ли какая-нибудь расстановка скобок из другой: $(A \to B) \to C$ и $A \to (B \to C)$? Предложите вывод в исчислении высказываний или докажите, что его не существует (например, воспользовавшись теоремой о корректности, предложив соответствующую оценку).
- 5. Предложите схемы аксиом, позволяющие добавить следующие новые связки к исчислению.
 - (а) Связка «и-не» («штрих Шеффера», "|"): $A \mid B$ истинно, когда один из аргументов ложен. Новые схемы аксиом должны давать возможность исключить конъюнкцию и отрицание из исчисления. Поясним, что мы понимаем под словами «исключить связку». Как вы знаете, конъюнкция и отрицание выражаются через «и-не» ($\neg \alpha := \alpha \mid \alpha$ и т.п.). При такой замене все схемы аксиом для конъюнкции и отрицания должны стать теоремами. При этом исчисление должно остаться корректным относительно классической модели исчисления высказываний.
 - (b) Связка «или-не» («стрелка Пирса», " \downarrow "): $A \downarrow B$ истинно, когда оба аргумента ложны. Новые схемы аксиом должны давать возможность исключить дизъюнкцию и отрицание из исчисления.
 - (c) Нуль-местная связка «ложь» (" \bot "). Мы ожидаем вот такую замену: $\neg A := A \to \bot$. Аналогично, аксиомы для отрицания в новом исчислении должны превратиться в теоремы.
- 6. Достаточно ли лжи и «исключённого или» $(A \oplus B \text{ истинно, когда } A \neq B)$ для выражения всех остальных связок?
- 7. Даны высказывания α и β , причём $\vdash \alpha \to \beta$ и $\not\vdash \beta \to \alpha$. Укажите способ построения высказывания γ , такого, что $\vdash \alpha \to \gamma$ и $\vdash \gamma \to \beta$, причём $\not\vdash \gamma \to \alpha$ и $\not\vdash \beta \to \gamma$.
- 8. Покажите, что если $\alpha \vdash \beta$ и $\neg \alpha \vdash \beta$, то $\vdash \beta$.

Задание №2. Теоремы об исчислении высказываний. Интуиционистская логика.

- 1. Покажите, что в классическом исчислении высказываний $\Gamma \models \alpha$ влечёт $\Gamma \vdash \alpha$.
- 2. Покажите, что следующие высказывания не доказуемы в интуиционистской логике:
 - (a) $\neg \neg A \rightarrow A$
 - (b) $((A \rightarrow B) \rightarrow A) \rightarrow A$
 - (c) $(A \to B) \lor (B \to A)$
 - (d) $(A \rightarrow B \lor \neg B) \lor (\neg A \rightarrow B \lor \neg B)$
 - (e) $\bigvee_{i=0}^{n-1} A_i \to A_{(i+1)} \% n$
- 3. Выполнены ли формулы де Моргана в интуиционистской логике? Докажите или опровергните:
 - (a) $\alpha \vee \beta \vdash \neg(\neg \alpha \& \neg \beta)$ и $\neg(\neg \alpha \& \neg \beta) \vdash \alpha \vee \beta$
 - (b) $\neg \alpha \& \neg \beta \vdash \neg (\alpha \lor \beta)$ и $\neg (\alpha \lor \beta) \vdash \neg \alpha \& \neg \beta$
 - (c) $\alpha \to \beta \vdash \neg \alpha \lor \beta$ и $\neg \alpha \lor \beta \vdash \alpha \to \beta$
- 4. Покажите, что никакие связки не выражаются друг через друга: то есть, нет такой формулы $\varphi(A,B)$ из языка интуиционистской логики, не использующей связку \star , что $\vdash A \star B \to \varphi(A,B)$ и $\vdash \varphi(A,B) \to A \star B$. Покажите это для каждой связки в отдельности:
 - (a) ★ конъюнкция;
 - (b) **⋆** дизъюнкция;
 - $(c) \star -$ импликация;
 - $(d) \star -$ отрицание.
- 5. Существует несколько схожих вариантов аксиомы исключённого третьего. Не пользуясь 10 схемой аксиом, покажите следующее:
 - (a) $\alpha \vee \neg \alpha, \alpha \rightarrow \neg \alpha \rightarrow \beta \vdash ((\alpha \rightarrow \beta) \rightarrow \alpha) \rightarrow \alpha$
 - (b) $((\alpha \to \beta) \to \alpha) \to \alpha, \alpha \to \neg \alpha \to \beta \vdash \neg \neg \alpha \to \alpha$
- 6. Рассмотрим несколько моделей троичной логики. Логики похожи истинностными значениями $(V = \{-1,0,1\}$, истиной считаем 1) и определением большинства операций: $[\![A\&B]\!] = \min([\![A]\!],[\![B]\!])$, $[\![A\lorB]\!] = \max([\![A]\!],[\![B]\!])$, $[\![\neg A]\!] = -[\![A]\!]$. Отличаются логики определением импликации (ниже), и в одном случае определением отрицания. Про каждую из них ответьте на четыре вопроса: являются ли они корректными и/или полными моделями классического и/или интуиционистского исчисления высказываний.
 - (a) Сильная логика неопределённости Клини: $[A \to B] = [\neg A \lor B]$.
 - (b) Троичная логика Лукасевича: $[A \to B] = \min(1, 1 [A] + [B])$
 - (c) Логика Гёделя G_3 :

$$\llbracket \neg A \rrbracket = \left\{ \begin{array}{l} 1, & \llbracket A \rrbracket = -1 \\ -1, & \text{иначе} \end{array} \right. \qquad \llbracket A \to B \rrbracket = \left\{ \begin{array}{l} 1, & \llbracket A \rrbracket \leqslant \llbracket B \rrbracket \right.$$

7. Изоморфизм Карри-Ховарда — соответствие между интуиционистским исчислением высказываний, с одной стороны, и языками программирования, с другой. А именно, можно заметить, что программа соответствует доказательству, тип программы — логическому высказыванию. Связки (как составные части логического высказывания) соответствуют определённым типовым конструкциям: функция — импликации, конъюнкция — упорядоченной паре, дизъюнкция — алгебраическому типу (std::variant и т.п.).

Например, функция A id(A x) { return x; } доказывает $A \to A$, а функция

std::pair<A,B> swap(std::pair<B,A> x) { return std::pair(x.second, x.first); }

доказывает $B \& A \rightarrow A \& B$.

Ложь выражается менее очевидно. Давайте за ложь мы возьмём выражение, имеющее тип несвязанного типового параметра (идея в том, чтобы данное выражение легко приводилось бы к любому типу: из лжи следует всё что угодно). Данный код доказывает $\neg Z$, то есть $Z \to \bot$:

```
template <class A>
A negate(Z x) { throw ("Value of type Z is impossible"); }
```

Конечно, в смысле изоморфизма Карри-Ховарда большинство языков программирования противоречивы.

В завершение теоретической части заметим, что в свете ВНК-интерпретации в изоморфизме Карри-Ховарда нет ничего странного: если под конструкцией мы понимаем тип, то любое значение типа — это метод построения конструкции (типы, значения которых можно построить, мы будем называть обитаемыми), а функция — это способ перестроения одного значения в другое.

Докажите следующие утверждения, написав соответствующую программу:

- (a) $A \to B \to A$
- (b) $A \& B \rightarrow A \lor B$
- (c) $(A \& (B \lor C)) \rightarrow ((A \& B) \lor (A \& C))$
- (d) $(A \rightarrow C) \& (B \rightarrow C) \& A \lor B \rightarrow C$
- (e) $(B \lor C \to A) \to (B \to A) \& (C \to A)$
- (f) $(A \to B) \to (\neg B \to \neg A)$
- (g) $((A \to B) \to C) \to (A \to (B \to C))$
- (h) $(A \rightarrow B) \& (A \rightarrow \neg B) \rightarrow \neg A$
- (i) Выразимые в интуиционистском исчислении высказываний аналоги правил де Моргана для импликации.
- (j) ⊥

Задание №3. Топология, решётки.

- 1. Напомним определения: замкнутое множество такое, дополнение которого открыто. Внутренностью множества A° назовём наибольшее открытое множество, содержащееся в A. Замыканием множества \overline{A} назовём наименьшее замкнутое множество, содержащее A. Назовём окрестностью точки x такое открытое множество V, что $x \in V$. Будем говорить, что точка $x \in A$ внутренняя, если существует окрестность V, что $V \subseteq A$. Точка $x = \mathit{граничная}$, если любая её окрестность V пересекается как с A, так и с его дополнением.
 - (a) Покажите, что A открыто тогда и только тогда, когда все точки A внутренние. Также покажите, что $A^{\circ} = \{x | x \in A \& x$ внутренняя точка $\}$.
 - (b) Покажите, что A замкнуто тогда и только когда, когда содержит все свои граничные точки. Также покажите, что $\overline{A} = \{x \mid x$ внутренняя или граничная точка $\}$. Верно ли, что $\overline{A} = X \setminus ((X \setminus A)^\circ)$?
 - (c) Введём топологию на деревьях способом, рассмотренным на лекции. Рассмотрим некоторое множество вершин V. Опишите множества V° и \overline{V} . Какие вершины будут являться граничными для V?
 - (d) Пусть $A \subseteq B$. Как связаны A° и B° , а также \overline{A} и \overline{B} ?
 - (e) Верно ли $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$ и $(A \cup B)^{\circ} = A^{\circ} \cup B^{\circ}$?
 - (f) Покажите, что $\overline{\left(\overline{A^{\circ}}\right)^{\circ}} = \overline{A^{\circ}}$.
 - (g) Задача Куратовского. Будем применять операции взятия внутренности и замыкания к некоторому множеству всевозможными способами. Сколько различных множеств может всего получиться?
- 2. Напомним, что евклидовой топологией называется топология на \mathbb{R} с базой $\mathcal{B} = \{(a,b) \mid a,b \in \mathbb{R}\}.$
 - (a) Связны ли \mathbb{Q} и $\mathbb{R}\backslash\mathbb{Q}$ как топологические подпространства \mathbb{R} ?
 - (b) Связен ли интервал (0,1)?

- 3. Примеры топологий. Для каждого из примеров ниже проверьте, задано ли в нём топологическое пространство, и ответьте на следующие вопросы, если это так: каковы окрестности точек в данной топологии; каковы замкнутые множества в данной топологии; связно ли данное пространство.
 - (a) Топология Зарисского на \mathbb{R} : $\Omega = \{\varnothing\} \cup \{X \subseteq \mathbb{R} \mid \mathbb{R} \setminus X \text{ конечно}\}$, то есть пустое множество и все множества с конечным дополнением.
 - (b) Топология стрелки на \mathbb{R} : $\Omega = \{\emptyset, \mathbb{R}\} \cup \{(x, +\infty) | x \in \mathbb{R}\}$, то есть пустое, всё пространство и все открытые лучи.
 - (c) Множество всех бесконечных подмножеств \mathbb{R} : $\Omega = \{\emptyset\} \cup \{X \subseteq \mathbb{R} \mid X \text{ бесконечно}\}$
 - (d) Множество всевозможных объединений арифметических прогрессий: $A(a) = \{a \cdot x \mid x \in \mathbb{Z}\};$ $X \in \Omega$, если $X = \emptyset$ или $X = \bigcup_i A(a_i)$ (все $a_i > 0$).
- 4. Непрерывной функцией называется такая, для которой прообраз открытого множества всегда открыт. Путём на топологическом пространстве X назовём непрерывное отображение вещественного отрезка [0,1] в X. Опишите пути (то есть, опишите, какие функции могли бы являться путями):
 - (a) на № (с дискретной топологией);
 - (b) в топологии Зарисского;
 - (с) на дереве (с топологией с лекции);
- 5. Связным множеством в топологическом пространстве назовём такое, которое связно как подпространство. Линейно связным множеством назовём такое, в котором две произвольные точки могут быть соединены путём, образ которого целиком лежит в множестве.
 - (а) Покажите, что линейно связное множество всегда связно;
 - (b) Покажите, что связное не обязательно линейно связное.
- 6. Всегда ли непрерывным образом связного пространства является другое связное (под)пространство? Докажите или опровергните.
- 7. Рассмотрим подмножество частично упорядоченного множества, и рассмотрим следующие свойства: (а) наличие наибольшего элемента; (б) наличие супремума; (в) наличие единственного максимального элемента. Всего можно рассмотреть шесть утверждений ((а) влечёт (б), (а) влечёт (в), и т.п.) про каждое определите, выполнено ли оно в общем случае, и приведите либо доказательство, либо контрпример. Задача состоит из одного пункта, для получения баллов все шесть утверждений должны быть разобраны.
- 8. Покажите следующие утверждения для импликативных решёток:
 - (a) монотонность: пусть $a \le b$ и $c \le d$, тогда $a + c \le b + d$ и $a \cdot c \le b \cdot d$;
 - (b) законы поглощения: $a \cdot (a + b) = a$; $a + (a \cdot b) = a$;
 - (c) $a \le b$ выполнено тогда и только тогда, когда $a \to b = 1$;
 - (d) из $a \le b$ следует $b \to c \le a \to c$ и $c \to a \le c \to b$;
 - (e) из $a \leq b \rightarrow c$ следует $a \cdot b \leq c$;
 - (f) $b \le a \to b \text{ if } a \to (b \to a) = 1$;
 - (g) $a \to b \le ((a \to (b \to c)) \to (a \to c));$
 - (h) $a \le b \to a \cdot b \text{ if } a \to (b \to (a \cdot b)) = 1$
 - (i) $a \to c \le (b \to c) \to (a+b \to c)$
 - (j) импликативная решётка дистрибутивна: $(a+b) \cdot c = (a \cdot c) + (b \cdot c)$
- 9. Докажите, основываясь на формулах предыдущих заданий, что интуиционистское исчисление высказываний корректно, если в качестве модели выбрать алгебру Гейтинга.
- 10. Покажите, что на конечном множестве дистрибутивная решётка всегда импликативна.
- 11. Постройте пример дистрибутивной, но не импликативной решётки.
- 12. Покажите, что в дистрибутивной решётке всегда $a + (b \cdot c) = (a + b) \cdot (a + c)$.
- 13. Покажите, что (≤) отношение предпорядка, а (≈) отношение эквивалентности.
- 14. Покажите, что $[\alpha]_{\mathcal{L}} + [\beta]_{\mathcal{L}} = [\alpha \vee \beta]_{\mathcal{L}}$. Зависит ли результат от выбора представителей классов эквивалентности $[\alpha]$ и $[\beta]$? Ответ также докажите.
- 15. Покажите, что $[\alpha \to \beta]_{\mathcal{L}}$ псевдодополнение $[\alpha]_{\mathcal{L}}$ до $[\beta]_{\mathcal{L}}$.

Задание №4. Модели Крипке. Естественный вывод.

- 1. Опровергните формулы, построив соответствующие модели Крипке:
 - (a) $\neg \neg A \to A$
 - (b) $((A \to B) \to A) \to A$
 - (c) $(A \rightarrow B \lor \neg B) \lor (\neg A \rightarrow B \lor \neg B)$
 - (d) $\bigvee_{i=0,n-1} A_i \to A_{(i+1)\%n}$
- 2. Покажите, что любая модель Крипке обладает свойством: для любых W_i, W_j, α , если $W_i \leq W_j$ и $W_i \Vdash \alpha$, то $W_i \Vdash \alpha$.
- 3. Несколько задач на упрощение структуры миров моделей Крипке.
 - (а) Покажите, что формула опровергается моделью Крипке тогда и только тогда, когда она опровергается древовидной моделью Крипке.
 - (b) Верно ли, что если формула опровергается некоторой древовидной моделью Крипке (причём у каждой вершины не больше двух сыновей), то эту древовидную модель можно достроить до полного бинарного дерева, с сохранением свойства опровержимости?
 - (с) Верно ли, что если некоторая модель Крипке опровергает некоторую формулу, то добавление любого мира к модели в качестве потомка к любому из узлов оставит опровержение в силе?
- 4. Постройте опровержимую в ИИВ формулу, которая не может быть опровергнута моделью Крипке (ответ требуется доказать):
 - (а) глубины 2 и меньше;
 - (b) глубины $n \in \mathbb{N}$ и меньше.
- 5. Покажите аналог теоремы о дедукции для естественного вывода: $\Gamma, \alpha \vdash \beta$ тогда и только тогда, когда $\Gamma \vdash \alpha \to \beta$.
- 6. Определим отображение между языками вывода (гильбертов и естественный вывод):

$$|\varphi|_{e} = \begin{cases} |\alpha|_{e} \star |\beta|_{e}, & \varphi = \alpha \star \beta \\ |\alpha|_{e} \to \bot, & \varphi = \neg \alpha \\ X, & \varphi = X \end{cases} \qquad |\varphi|_{r} = \begin{cases} |\alpha|_{r} \star |\beta|_{r}, & \varphi = \alpha \star \beta \\ A \& \neg A, & \varphi = \bot \\ X, & \varphi = X \end{cases}$$

- (a) Покажите, что $\vdash_e \alpha$ влечёт $\vdash_r |\alpha|_r$;
- (b) Покажите, что $\vdash_{\rm r} \alpha$ влечёт $\vdash_{\rm e} |\alpha|_{\rm e}$.
- 7. Классическое исчисление высказываний также можно сформулировать в стиле естественного вывода, заменив правило исключения лжи на такое:

$$\frac{\Gamma,\varphi\to\bot\vdash\bot}{\Gamma\vdash\varphi}\ (\text{удал}\neg\neg)$$

В этом задании будем обозначать через $\Gamma \vdash_{\kappa} \varphi$ тот факт, что формула φ выводится из контекста Γ в классическом И.В. в варианте естественного вывода.

- (a) Покажите, что если $\vdash_{\kappa} \varphi$ и A_1, \ldots, A_n все пропозициональные переменные из φ , то $\vdash_{\mathsf{e}} A_1 \vee \neg A_1 \to A_2 \vee \neg A_2 \to \cdots \to A_n \vee \neg A_n \to \varphi$.
- (b) Покажите теорему Гливенко: если $\vdash_{\kappa} \varphi$, то $\vdash_{e} \neg \neg \varphi$.

Задание №5. Исчисление предикатов

- 1. Докажите (или опровергните) следующие формулы в исчислении предикатов:
 - (a) $(\forall x.\phi) \to (\forall y.\phi[x:=y])$, если есть свобода для подстановки y вместо x в ϕ и y не входит свободно в ϕ .
 - (b) $(\exists x.\phi) \to (\exists y.\phi[x:=y])$, если есть свобода для подстановки y вместо x в ϕ и y не входит свободно в ϕ .
 - (c) $(\forall x.\phi) \rightarrow (\exists x.\phi)$

- (d) $(\forall x. \forall x. \phi) \rightarrow (\forall x. \phi)$
- (e) $(\forall x.\phi) \rightarrow (\neg \exists x. \neg \phi)$
- (f) $(\exists x. \neg \phi) \rightarrow (\neg \forall x. \phi)$
- (g) $(\forall x.\alpha \lor \beta) \to (\neg \exists x. \neg \alpha) \& (\neg \exists x. \neg \beta)$
- (h) $((\forall x.\alpha) \lor (\forall y.\beta)) \to \forall x. \forall y.\alpha \lor \beta$. Какие условия надо наложить на переменные и формулы? Приведите контрпримеры, поясняющие необходимость условий.
- (i) $(\alpha \to \beta) \to \forall x.(\alpha \to \beta)$. Возможно, нужно наложить какие-то условия на переменные и формулы? Приведите контрпримеры, поясняющие необходимость условий (если условия требуются).
- 2. Опровергните формулы $\phi \to \forall x.\phi$ и $(\exists x.\phi) \to (\forall x.\phi)$
- 3. Докажите или опровергните (каждую формулу в отдельности): $(\forall x.\exists y.\phi) \rightarrow (\exists y.\forall x.\phi)$ и $(\exists x.\forall y.\phi) \rightarrow (\forall y.\exists x.\phi)$;
- 4. Докажите или опровергните (каждую формулу в отдельности): $(\forall x.\exists y.\phi) \rightarrow (\exists x.\forall y.\phi)$ и $(\exists x.\forall y.\phi) \rightarrow (\forall x.\exists y.\phi)$
- 5. Рассмотрим интуиционистское исчисление предикатов (добавим схемы аксиом и правила вывода с кванторами поверх интуиционистского исчисления высказываний).
 - (a) Определим модель для исчисления предикатов. Пусть $\langle X,\Omega\rangle$ некоторое топологическое пространство. Возможно ли рассмотреть $V=\Omega$ (как и в исчислении высказываний), пропозициональные связки определить аналогично топологической интерпретации И.И.В., оценки же кванторов сделать такими:

$$\llbracket \forall x.\varphi \rrbracket = \left(\bigcap_{v \in D} \llbracket \varphi \rrbracket^{x:=v}\right)^{\circ}, \quad \llbracket \exists x.\varphi \rrbracket = \bigcup_{v \in D} \llbracket \varphi \rrbracket^{x:=v}$$

- (b) Покажите, что в интуиционистском исчислении предикатов теорема Гливенко не имеет места (а именно, существует формула α , что $\vdash_{\kappa} \alpha$, но $\not\vdash_{u} \neg \neg \alpha$).
- (c) Определим операцию $(\cdot)_{Ku}$:

$$(\varphi \star \psi)_{\mathrm{Ku}} = \varphi_{\mathrm{Ku}} \star \psi_{\mathrm{Ku}}, \quad (\forall x.\varphi)_{\mathrm{Ku}} = \forall x.\neg\neg\varphi_{\mathrm{Ku}}, \quad (\exists x.\varphi)_{\mathrm{Ku}} = \exists x.\varphi_{\mathrm{Ku}}$$

Тогда *преобразованием Куроды* формулы φ назовём $\neg\neg(\varphi_{Ku})$. Покажите, что $\vdash_{\kappa} \alpha$ тогда и только тогда, когда $\vdash_{\mu} \neg\neg(\alpha_{Ku})$.

6. Покажите, что исчисление предикатов не полно в моделях ограниченной конечной мощности. А именно, пусть дана модель $\mathcal{M} = \langle D, F, T, E \rangle$. Назовём мощностью модели мощность её предметного множества: $|\mathcal{M}| = |D|$. Покажите, что для любой конечной мощности модели $n \in \mathbb{N}$ найдётся такая формула α , что при $|\mathcal{M}| \leq n$ выполнено $[\![\alpha]\!]_{\mathcal{M}} = \Pi$, но $\not\vdash \alpha$.

Задание №6. Теорема о полноте исчисления предикатов

- 1. Покажите, что следующие определения противоречивой теории эквивалентны (ваше рассуждение должно подходить для всех исчислений, которые мы проходили до этого момента КИВ, ИИВ, КИП; задача состоит из одного пункта, для получения баллов все четыре утверждения должны быть разобраны): (а) существует формула α , что $\vdash \alpha \& \neg \alpha$; (б) существует формула α , что $\vdash \alpha$ и $\vdash \neg \alpha$; (в) $\vdash A \& \neg A$; (г) любая формула доказуема.
- 2. Покажите, что если классическое исчисление высказываний противоречиво, то также противоречиво и интуиционистское исчисление высказываний.
- 3. Покажите, что если $\neg \varphi \vdash \varphi$, то $\vdash \varphi$. Аналогично, покажите, что из $\neg \varphi \vdash \alpha \& \neg \alpha$ следует $\vdash \varphi$. Покажите требуемые утверждения конструктивно, перестроив данные в условии доказательства в доказательство φ .
- 4. Пусть M непротиворечивое множество формул и \mathcal{M} построенная в соответствии с теоремой о полноте исчисления предикатов оценка для M. Мы ожидаем, что \mathcal{M} будет моделью для M, для чего было необходимо доказать несколько утверждений. Восполните некоторые пробелы в том доказательстве. А именно, если φ некоторая формула и для любой формулы ζ , более короткой, чем φ , выполнено $\mathcal{M} \models \zeta$ тогда и только тогда, когда $\zeta \in M$, тогда покажите:

- (a) если $\varphi = \alpha \& \beta$, $\mathcal{M} \models \alpha \& \beta$, то $\alpha \& \beta \in M$; и если $\mathcal{M} \models \alpha \& \beta$, то $\alpha \& \beta \notin M$;
- (b) если $\varphi = \neg \alpha$, $\mathcal{M} \models \neg \alpha$, то $\neg \alpha \in M$; и если $\mathcal{M} \not\models \neg \alpha$, то $\neg \alpha \notin M$.
- 5. Напомним, что машиной Тьюринга называется упорядоченная шестёрка

$$\langle A_{\text{внешн}}, A_{\text{внутр}}, T, \varepsilon, s_{\text{нач}}, s_{\text{доп}} \rangle$$

где внешний и внутренний алфавиты конечны и не пересекаются $(A_{\text{внешн}} \cap A_{\text{внутр}} = \varnothing), \varepsilon \in A_{\text{внешн}}, s_{\text{нач}}, s_{\text{доп}} \in A_{\text{внутр}},$ и T — это функция переходов: $T : A_{\text{внутр}} \times A_{\text{внешн}} \to A_{\text{внутр}} \times A_{\text{внешн}} \times \{\leftarrow, \rightarrow, \cdot\}.$

Все неиспользованные клетки ленты заполнены ε , головка перед запуском стоит на самой левой заполненной клетке. При работе машина последовательно выполняет переходы и двигает ленту (в соответствии с T), пока не окажется в допускающем состоянии $s_{\rm доп}$ (успешное завершение). Также можно выделить отвергающее состояние $s_{\rm отв}$, оказавшись в котором, машина оканчивает работу с ошибкой (неуспешное завершение).

Например, пусть $A_{\text{внешн}} = \{0, 1, \varepsilon\}$, $A_{\text{внутр}} = \{s_s, s_f\}$, $s_{\text{нач}} = s_s$, $s_{\text{доп}} = s_f$, отвергающего состояния не задано, и функция переходов указана в таблице ниже:

Такая машина Тьюринга меняет на ленте все 0 на 1, а все 1 — на 0. Например, для строки 011:

$$011\Rightarrow 111\Rightarrow 101\Rightarrow 100\varepsilon$$

Заметьте, что на последнем шаге головка сдвинулась вправо, за заполненные клетки — оказавшись на неиспользованной, заполненной символами ε части ленты — и остановилась благодаря тому, что $T(s_s, \varepsilon) = \langle s_f, \ldots \rangle$.

Напишите следующие программы для машины Тьюринга и продемонстрируйте их работу на какомнибудь эмуляторе:

- (а) разворачивающую строку в алфавите $\{0,1\}$ в обратном порядке (например, из 01110111 программа должна сделать 11101110); в этом и в последующих заданиях в алфавит внешних символов при необходимости можно добавить дополнительные символы;
- (b) в строке в алфавите $\{0,1,2\}$ сокращающую все «постоянные» подстроки до одного символа: машина должна превратить 1022220101111 в 1020101;
- (c) допускающую правильные скобочные записи (например, (()) должно допускаться, a)()(отвергаться);
- (d) допускающую строки вида $a^nb^nc^n$ в алфавите $\{a,b,c\}$ (например, строка aabbcc должна допускаться, а abbbc отвергаться);
- (е) допускающую только строки, состоящие из констант и импликаций (алфавит $\{0,1,\to,(,)\}$), содержащие истинные логические выражения; например, выражение $(((0 \to 1) \to 0) \to 0)$ машина должна допустить, а выражение $((1 \to 1) \to 0)$ отвергнуть. Можно считать, что выражение написано в корректном синтаксисе (все скобки корректно расставлены, никаких скобок не пропущено).
- 6. Пусть дано число $k \in \mathbb{N}$. Известно, что если $0 \le k < 2^n$, то возможно закодировать k с помощью n цифр 0 и 1. А как закодировать число, если мы не знаем верхней границы n? Какую лучшую асимптотику длины кодировки относительно $\log_2 k$ вы можете предложить? Кодировка должна использовать только символы 0 и 1, также код должен быть префиксным (ни один код не является префиксом другого).
- 7. Как известно, машина Тьюринга может быть проинтерпретирована другой машиной Тьюринга. Предложите способ закодировать машину Тьюринга в виде текста в алфавите {0,1}. Естественно, символы алфавитов при кодировке меняются на их номера, и эти номера надо будет как-то записывать в виде последовательностей цифр 0 и 1.

Задание №7. Аксиоматика Пеано, формальная арифметика.

1. Рассмотрим аксиоматику Пеано. Пусть

$$a^b = \begin{cases} 1, & b = 0 \\ a^c \cdot a, & b = c' \end{cases}$$

Докажите, что:

- (a) $a \cdot b = b \cdot a$
- (b) $(a+b) \cdot c = a \cdot c + b \cdot c$
- (c) $a^{b+c} = a^b \cdot a^c$
- (d) $(a^b)^c = a^{b \cdot c}$

2. Определим отношение «меньше или равно» так: $0 \le a$ и $a' \le b'$, если $a \le b$. Докажите, что:

- (a) $x \leqslant x + y$;
- (b) $x \le x \cdot y$ (укажите, когда это так в остальных случаях приведите контрпримеры);
- (c) Если $a \leq b$ и $m \leq n$, то $a \cdot m \leq b \cdot n$;
- (d) $x \le y$ тогда и только тогда, когда существует n, что x + n = y;
- (e) Будем говорить, что a делится на b с остатком, если существуют такие p и q, что $a = b \cdot p + q$ и $0 \le q < b$. Покажите, что p и q всегда существуют и единственны, если b > 0.

3. Определим «ограниченное вычитание»:

$$a - b = \begin{cases} 0, & a = 0 \\ a, & b = 0 \\ p - q, & a = p', b = q' \end{cases}$$

Докажите, что:

- (a) a + b b = a;
- (b) $(a b) \cdot c = a \cdot c b \cdot c$;
- (c) $a b \leq a + b$;
- (d) a b = 0 тогда и только тогда, когда $a \le b$.

4. Обозначим за \overline{n} представление числа n в формальной арифметике:

$$\overline{n} = \left\{ \begin{array}{ll} 0, & n = 0\\ (\overline{k})', & n = k + 1 \end{array} \right.$$

Например, $\overline{5} = 0'''''$. Докажите в формальной арифметике:

- (a) $\vdash \overline{2} \cdot \overline{3} = \overline{6}$;
- (b) $\vdash \forall p.(\exists q.q'=p) \lor p=0$ (единственность нуля);
- (c) $\vdash p \cdot q = 0 \rightarrow p = 0 \lor q = 0$ (отсутствие делителей нуля);

5. Будем говорить, что k-местное отношение R выразимо в формальной арифметике, если существует формула формальной арифметики ρ со свободными переменными x_1, \ldots, x_k , что:

- (а) для всех $\langle a_1,\ldots,a_k\rangle\in R$ выполнено $\vdash \rho[x_1:=\overline{a_1}]\ldots[x_k:=\overline{a_k}]$ (доказуема формула ρ с подставленными значениями a_1,\ldots,a_k вместо свободных переменных x_1,\ldots,x_k);
- (b) для всех $\langle a_1, \ldots, a_k \rangle \notin R$ выполнено $\vdash \neg \rho[x_1 := \overline{a_1}] \ldots [x_k := \overline{a_k}]$.

Выразите в формальной арифметике (укажите формулу ρ и докажите требуемые свойства про неё):

8

- (a) «полное» отношение $R = \mathbb{N}^2$ (любые два числа состоят в отношении);
- (b) отношение (=);
- (c) отношение «хотя бы один из аргументов равен 0».