東京電機大学未来科学部情報メディア学科「CG モデリングおよび演習」NURBS 曲線演習

学年	学科	学籍番号	氏名

<u>演習1</u> ノット列(t_0 , t_1 , t_2 , t_3 , t_4 , t_5) = (0, 0, 0, 1, 1, 1)が与えられたとき,1つのセグメントで構成される,2次NURBS 曲線(L=1,n=2)のBスプライン基底関数 N_0^2 を求めよ.Bスプライン基底関数は以下のように定義される.

$$N_i^n(t) = \frac{t - t_i}{t_{i+n} - t_i} N_i^{n-1}(t) + \frac{t_{i+n+1} - t}{t_{i+n+1} - t_{i+1}} N_{i+1}^{n-1}(t)$$

$$N_i^0(t) = \begin{cases} 1 & t \in [t_i, t_{i+1}] \\ 0 & t \notin [t_i, t_{i+1}] \end{cases}$$

手順:定義式は漸化式のため, N_i^0 から順に定義する

手順1:まずは N_0^0 , N_1^0 , N_2^0 , N_3^0 , N_4^0 を定義する(tの定義域が定義できない場合は常に0と考えてよい)

手順 $2:N_0^1$, N_1^1 , N_2^1 , N_3^1 を定義する (0除算が出現した項は0と考えてよい)

手順 $3:N_0^2$, N_1^2 , N_2^2 を定義する.

東京電機大学未来科学部情報メディア学科「CG モデリングおよび演習」NURBS 曲線演習

学年	学科	学籍番号	氏名

<u>演習 2</u> 3 つの制御点の座標がそれぞれ $P_0(0,0)$, $P_1(0,2)$, $P_2(2,2)$, 重みがそれぞれ $w_0=1$, $w_1=\sqrt{2}/2$, $w_2=1$ であるとき、

① 演習 1 で求めた N_0^2 , N_1^2 , N_2^2 を基に 2 次 NURBS 曲線上の点の位置を計算により求めよ。NURBS 曲線は以下の式で定義される.

$$C(t) = \frac{\sum_{i=0}^{n+L-1} w_i P_i N_i^n(t)}{\sum_{i=0}^{n+L-1} w_i N_i^n(t)}$$

*分母の有理化はしなくてよい

*グラフを描くために小数点を求める際には電卓、表計算ソフトなどを用いてよい

t=0	
$t=\frac{1}{4}$	
$t=\frac{1}{2}$	
$t = \frac{3}{4}$	

<i>t</i> =1		

② NURBS 曲線のおおよその形状を下図中に描け。

演習3 これまでに学習した各曲線の性質を示す下表を適切に埋めよ

	1 セグメント	複合曲線
二次曲線再現性\局所性	なし	あり
なし		
あり		