Übungsblatt 12

Julius Auer, Thomas Tegethoff

Aufgabe 1 ():

a) Gesucht sind die Parameter a, b, c, d, h, i, j, k für zwei Splines $f:[0,1] \to \mathbb{R}, g:[1,2] \to \mathbb{R}$. Die gesuchten Funktionen mit ihren Ableitungen sind:

$$f(x) = a \cdot x^{3} + b \cdot x^{2} + c \cdot x + d$$

$$f'(x) = 3 \cdot a \cdot x^{2} + 2 \cdot b \cdot x + c$$

$$f''(x) = 6 \cdot a \cdot x + 2 \cdot b$$

$$g(x) = h \cdot x^{3} + i \cdot x^{2} + j \cdot x + k$$

$$g'(x) = 3 \cdot h \cdot x^{2} + 2 \cdot i \cdot x + j$$

$$g''(x) = 6 \cdot h \cdot x + 2 \cdot i$$

Aus der Beschreibung sind direkt die folgenden Eigenschaften abzulesen:

$$f(0) = 0$$

$$f'(0) = 0$$

$$g(2) = 8$$

$$g'(2) = 8$$

$$f''(1) = 0$$

$$g''(1) = 0$$

Um das soweit unterbestimmte Gleichungssystem lösen zu können, verwenden wir als zusätzliche Eigenschaft die Tatsache, dass sich f und g an der Grenze ihrer Definitionsbereiche bei x=1 schneiden müssen. Es gilt also zusätzlich:

$$f(1) = g(1)$$

$$f'(1) = g'(1)$$

Ausformuliert erhält man somit ein lineares Gleichungssystem:

$$d = 0$$

$$k = 0$$

$$8 \cdot h + 4 \cdot i + 2 \cdot j = 8$$

$$12 \cdot h + 4 \cdot i + j = 8$$

$$6 \cdot a + 2 \cdot b = 0$$

$$6 \cdot h + 2 \cdot i = 0$$

$$a + b + c = h + i + j$$

$$3 \cdot a + 2 \cdot b + c = 3 \cdot h + 2 \cdot i + j$$

d,k sind also an dieser Stelle bereits bekannt. Für die übrigen Parameter lösen wir mittels Gaussschem Eliminierungsverfahren (*stöhn*):

a	b	c	h	i	j	=
0	0	0	8	4	2	8
0	0	0	12	4	1	8
6	2	0	0	0	0	0
0	0	0	8 12 0 6 -1 -3	2	0	0
1	1	1	-1	-1	-1	0
3	2	1	-3	-2	-1	0

Zuerst etwas umsortieren:

a	b	c	h	i	j	=
1	1	1	-1	-1	-1	0
3	2	1	-3	-2	-1	0
6	2	0	0	0	0	0
0	0	0	6	2	0	0
0	0	0	8	4	2	8
0	0	0	-1 -3 0 6 8 12	4	1	8

 $a ext{-Spalte}$ eliminieren:

a	b	c	h	i	j	=
1	1	1	-1	-1	-1	0
0	-1	-2	-1 0 6 6 8 12	1	2	0
0	-4	-6	6	6	6	0
0	0	0	6	2	0	0
0	0	0	8	4	2	8
0	0	0	12	4	1	8

b-Spalte eliminieren:

a	b	c	h	i	j	=
1	1	1	-1	-1	-1	0
0	1	2	0	-1	-2	0
0	0	2	6	2	-2	0
0	0	0	6	2	0	0
0	0	0	8	4	2	8
0	0	0	-1 0 6 6 8 12	4	1	8

c-Spalte sieht schon gut aus, deshalb weiter mit h:

a	b	c	h	i	j	=
1	1	1	-1	-1	-1	0
0	1	2	0	-1	-2	0
0	0	1	3	1	-1	0
0	0	0	6	2	0	0
0	0	0	0	4	-1 -2 -1 0 6 1	24
0	0	0	0	0	1	8

So ein Glück: i,j ergeben sich direkt! Von unten nach oben können nun alle Parameter ausgerechnet werden, zu:

$$a = 2, b = -6, c = 8,$$

$$h = 2, i = -6, j = 8$$

Eine partielle Interpolation war hier also gar nicht nötig - ein einziges Polynom $e:[0,2]\to\mathbb{R}$ genügt, um alle Eigenschaften zu erfüllen. Ergebnis:

$$e(x) = 2 \cdot x^3 - 6 \cdot x^2 + 2 \cdot x$$

b) Auch wenn f=g=e sind hier unabhängig von einander f in blau und g in rot geplottet (Abbildung 1).

Abbildung 1: Spline

c) Der Schnittpunkt (x_s, y_s) ist vorgegeben bei $x_s = 1$ mit:

$$y_s = e(1) = a + b + c = 4$$

Die Geschwindigkeit v ist dort:

$$v = e'(1) = 3 \cdot a + 2 \cdot b + c = 2$$

Aufgabe 2 ():

Es muss nur ein klitzekleines Stückchen Code geändert werden, um die zufälligen Punkte zu erzeugen:

```
Array<double> x_set(10);
Array<double> y_set(10);

// x_set << 0.688792, 1.15454, 1.67894, 2.1, 2.7, 3.1, 3.6, 4, 5, 6;

// y_set << -0.75, -1.2, -0.50, -1.4, -1, 0, 0.1, 1.3, 0.3, 1.0;

for(int i=0; i<10; ++i) {
    double x = 6.0f * i / 9.0f;
    double y = (rand()%400) / 100.0f - 2.0f;
    x_set[i] = x;
    y_set[i] = y;
}</pre>
```

Davon abgesehen müssen nur ein paar Grenzen angepasst werden und man erhält Abbildung 2. Wie genau die Ableitungen am Anfang und am Ende gewählt werden ist letztlich egal (bei uns: = 1). Code verstanden: check!

(a) $sampling_num = 10$

(b) $sampling_num = 200$

Abbildung 2: Splines

Aufgabe 3 ():

a) Wir definieren Ereignis A als "keine Enten sind zu sehen" und Ereignis B als "Krokodile sind zu sehen".

Wir wissen: $P(\neg A) = (P(\neg A|B) + P(\neg A|\neg B)) = (0.1 + 0.5) = 0.6$. Daraus folgt $P(A) = 1 - P(\neg A) = 0.4$

Außerdem wissen wir: $P(B) = P(\neg A|B) + P(A|B)$. Das stellen wir um nach $P(A|B) = P(B) - P(\neg A|B)$ und rechnen aus: $0.2 = 0.4 * x + 0.6 * 0.5 \leftrightarrow x = \frac{0.2 - (0.6 * 0.5)}{0.4} = 0.425$ daraus ergibt sich P(A|B) = 0.4 * 0.425 = 0.17

Weil wir alle benötigten Variablen haben, setzen wir in den Satz von Bayes ein: Es gilt der Satz von Bayes: $P(B|A) = \frac{P(A|B)*P(B)}{P(A)} = \frac{0.17*0.2}{0.4} = 0.085$.

b) Die Variablen $\neg A$ und B sind abhängig.

Beweis durch Widerspruch: Angenommen $\neg A$ und B sind unabhängig, dann gilt $P(\neg A|B) = P(\neg A)$. Widerspruch: $0.1 \neq 0.6$. q.e.d.