

Amazon Virtual Private Cloud (VPC)

Networking Fundamentals and Connectivity Options

Steve Seymour
Principal Solutions Architect

18th September 2017

VPC

VPC: your private network in AWS

Walkthrough: setting up an Internet-connected VPC

Creating an Internet-connected VPC: steps

Choosing an address range

Setting up subnets in Availability Zones

Creating a route to the Internet

Authorizing traffic to/from the VPC

Choosing an IP address range

CIDR notation review

CIDR range example:

172.31.0.0/16

1010 1100 0001 1111 0000 0000 0000 0000

Choosing an IPv4 address range for your VPC

Avoid ranges that overlap with other networks to which you might connect.

172.31.0.0/16

Recommended: RFC1918 range

Recommended: /16 (64K addresses)

Adding a secondary IPv4 address range

Adding a secondary IPv4 address range

Primary CIDR

172.31.0.0/20

172.31.16.0/20

172.31.32.0/20

Adding a secondary IPv4 address range

Primary CIDR

172.31.0.0/20

172.31.16.0/20

172.31.32.0/20

172.31.112.0/20

IPv6 in Amazon VPC – Dual-stack

172.31.0.0/16

2001:db8:1234:1a00::/56

Amazon Global Unicast Addresses (GUA) – Internet Routable

Associate an /56 IPv6 CIDR (Automatically allocated)

Subnets

VPC subnets and Availability Zones

VPC subnets and Availability Zones – IPv6

VPC subnet recommendations

- /16 VPC (64K IPv4 addresses)
- /24 subnets (251 IPv4 addresses)
- One subnet per Availability Zone

VPC subnet recommendations

- /16 VPC (64K IPv4 addresses)
- /24 subnets (251 IPv4 addresses)
- One subnet per Availability Zone

For IPv6 -

- /56 Allocated per VPC (Lots of addresses)
- /64 subnets (256 Subnets)

Route to the Internet

Routing in your VPC

- Route tables contain rules for which packets go where
- Your VPC has a default route table
- ... but you can assign different route tables to different subnets

Internet Gateway

Network security in VPC: Network ACLs / Security Groups

Network ACLs: Stateless firewalls

Can be applied on a subnet basis

Security groups example: web servers

Security groups example: backends

Security groups in VPC: additional notes

- Follow the Principle of Least Privilege
- VPC allows creation of egress as well as ingress Security Group rules
- Many application architectures lend themselves to a 1:1 relationship between security groups (who can reach me) and IAM roles (what I can do).

Connectivity options for VPCs

Beyond Internet connectivity

Connecting to other VPCs

Connecting to your corporate network

Restricting Internet access: Routing by subnet

Routing by subnet

Outbound-only Internet access: NAT gateway

IPv6 GUAs

- For IPv6, Amazon VPC instances receive Global Unicast Addresses (GUA), which are Internet routable
- GUAs directly assigned to instances; there is no 1:1 NAT in the case of Internet access
- Using GUAs does not mean losing security or privacy—to have Internet access, you also need to have proper route tables, security groups, and gateways

IPv6 Egress-only Internet Gateway

- A new virtual device that provides egress-only Internet access over IPv6
 - No middle box to perform NAT, and no additional cost
 - No performance/availability/ connection limits

Example VPC peering use: shared services VPC

Common/core services

- Authentication/directory
- Monitoring
- Logging
- Remote administration
- Scanning

Security groups across peered VPCs

Establish a VPC peering: initiate request

Establish a VPC peering: accept request

Establish a VPC peering: create route

Connecting to on-premises networks: Virtual Private Network & Direct Connect

Extend an on-premises network into your VPC

AWS VPN basics

VPN and **AWS** Direct Connect

 Both allow secure connections between your network and your VPC

- VPN is a pair of IPSec tunnels over the Internet
- DirectConnect is a dedicated line with lower per-GB data transfer rates
- For highest availability: Use both

VPC and the rest of AWS

VPC and the rest of AWS

AWS Services in Your VPC

VPC Endpoints for Amazon S3 & DynamoDB

DNS in-VPC with Amazon Route 53

Logging VPC Traffic with VPC Flow Logs

Example: Amazon RDS database in your VPC

Example: AWS Lambda function in your VPC

Best practices for in-VPC AWS services

- Many AWS services support running in-VPC.
- Use security groups for Least-Privilege network access.
- For best availability, use multiple Availability Zones.
 - Examples:
 - Multi-zone RDS deployments
 - Use a zonal mount point for EFS access

VPC Endpoints for Amazon S3

VPC Endpoints for DynamoDB

S3, DynamoDB and your VPC

AWS VPC endpoints

S3

DynamoDB

IAM policy for VPC endpoints

VPC DNS options

Amazon Route 53 private hosted zones

VPC Flow Logs: VPC traffic metadata in Amazon

CloudWatch Logs

VPC Flow Logs

Visibility into effects of security group rules

Troubleshooting network connectivity

Ability to analyze traffic

VPC Flow Logs: setup

VPC Flow Logs data in CloudWatch Logs

ter events		all 30s 5m 1h
Time (UTC -04:00) Message	
16:48	nis? -short -x 109.236.86.32 etpolice.co.	7 56934 8080 6 5 373 1474750017 1474750073 ACCEPT OK 0 8080 47928 6 5 650 1474750081 1474750133 ACCEPT OK 0 8080 47954
16:48:01	2 280328680831 eni-	0.0.0.100 8080 47946 UDP Port 53 = DNS ТОК
16:48:01	2 280328680831 eni-19	10.0.0.100 8080 4793 <mark>8 0 0 00 00 000 147470010070021 1</mark> OK
16:48:01	2 280328680831 eni-1911 .100	10.0.0.117 47954 8080 6 5 373 0081 1474750133 ACCEPT
16:48:01	2 280328680831 eni-19116	10.0.0.117 56978 8080 6 5 373 50081 1474750133 ACCEPT
16:48:01	2 280328680831 eni-19116c4 0.117	10.0.1.239 8080 56950 6 5 650 1 750081 1474750133 ACCEPT
16:48:01	2 280328680831 eni-19116c47 .0.117	10.0.1.239 8080 56970 6 5 650 14 4750081 1474750133 ACCEPT
4.0-4.0-0.4	0.000000000000000000000000000000000000	00 40 0 0 447 555C7 00 C 4 40 4474750004 4474750400 DE IEOX OV
16:48:01	2 280328680831 eni-19116c47 109.236.86	32 10.0.0.117 60000 27015 17 1 53 1474750081 1474750133 REJECT OF
10.40.01	Z Z003Z000003T C III-19T10C4 <i>T</i> 10.0.0.100	10.0.0.117 47920 0000 0 0 070 1474700001 1474700100 ACCEPT ON
16:48:01	2 280328680831 eni-19116c47 10.0.0.100	10.0.0.117 47946 8080 6 5 373 1474750081 1474750133 ACCEPT OK
16:48:01	2 280328680831 eni-19116c47 10.0.1.239	10.0.0.117 56950 8080 6 5 373 1474750081 1474750133 ACCEPT OK

VPC: your private network in AWS

The VPC network

VPC network security

VPC connectivity

Pop-up Loft LONDON

Thank you!

Steve Seymour Principal Solutions Architect

