Topic 5 - Work, Energy, Power

1 Work

1.1 Work done by a constant force

For a constant force F that acts at angle θ to the horizontal and displaces an object horizontally to the right over a displacement s, the work done by the constant force is given by

$$W = Fs \cos\theta$$

Work done by a constant force is the product of the force and the displacement in the direction of the force

- Work is a scalar quantity, and its S.I. unit is the joule(J)
- ullet 1 J is the work done by a force of 1 N when an object is displaced by 1 m in the direction of the force

1.2 Work done by a variable force

Work done by a variable force is equal to the area under the force-displacement graph

$$W = \int_{s_1}^{s_2} F ds$$

1.3 Work done by an external force on spring

By Hooke's Law, the external force needed to produce an extension or compression x in a spring (that has not exceeded its limit of proportionality) is F = kx wor done in stretching the spring by x is the area under the force-extension graph is

$$W = \frac{1}{2}Fx = \frac{1}{2}kx^2$$

1.4 Work done by a gas

For a system of gas in a cylinder with a frictionless piston, if the gas is heated such that it expands slowly at constant pressure, a force F is applied on the piston by the gas molecules to expand against external pressure

The work done by the gas is the work done by force F in displacing the piston of cross sectional area A through a small distance Δx

$$W_{qas} = F\Delta x = pA\Delta x$$

And since $A\Delta x = \Delta V$

$$W_{gas} = p\Delta V$$

- when the gas expands, ΔV is positive, and hence work done by gas is positive
- when the gas contracts, ΔV is negative and work done by gas is negative (work is hence done on gas)

2 Energy

2.1 Forms of energy

Name	Form of energy
Chemical potential energy	energy related to the structural arrangement of atoms or molecules in a substance
Nuclear energy	energy released from atomic nuclei
0.0	energy possessed by charge carriers moving under the influence of
Electrical energy	a potential difference
Internal energy	the sum of microscopic KE (associated with random motion) and PE (associated with interatomic of intermolecular forces)
Gravitational PE	energy due to the position of a mass in a gravtitational field
Electrical PE	energy due to the position of a charge in an electric field of another charge / sytem of charges
Elastic PE	energy stored due to the stretching or compressing of an object
Kinetic energy	energy due to motion of a body

2.2 Kinetic energy

In general, the KE of a body of mass m moving with velocity v can be expressed as

$$E_k = \frac{1}{2}mv^2$$

Derivation of KE

Consider a body of mass m moving with initial velocity u and accelerated by a constant force F. The body under goes constant acceleration a to a final velocity v over displacement s

Since force is in the direction of displacement

Since
$$v^2=u^2+2as$$

$$s=\frac{v^2-u^2}{2a}$$
 substituting into $W=(ma)s$
$$W=ma\left(\frac{v^2-u^2}{2a}\right)$$

$$W=\frac{1}{2}mv^2-\frac{1}{2}mu^2$$

$$W = \Delta E_k = E_{k, final} - E_{k, initial}$$

This is known as the **work-energy theorem**, where the net work done by all forces acting on a body is equal to the change in the KE of the body

2.3 Potential energy

Potential energy, usually expressed as U is the energy due to the **position or shape** of an object. The calculation of PE ususally requires a reference point with is defined to have a PE of 0

2.4 Gravitational potential energy

The GPE of an object of mass m and at height h above the surface of the earth is

$$E_p = mgh$$

where g is the aceeleration of free fall near Earth's surface

Derivation of GPE

Consider an object being raised upwards at constant velocity, from height h_1 to height h_2

Since v constant, a = 0, and the force required is F = wgWork done by F in displacing the body upwards is

$$F = Fs$$

$$= mg(h_2 - h_1)$$

$$= mgh_2 - mgh_1$$

2.5 Elastic potential energy

From earlier, work done in compressing or extending a spring is

$$W = \frac{1}{2}kx^2$$

The elastic potential energy stored is thus

$$U_E = \frac{1}{2}kx^2$$

2.6 Relationship between force and potential energy

For a field of force, the relationship bewteen F and PE U for one dimensional motion is given by

$$F = -\frac{dU}{dx}$$

- ullet the magnitude of a force at point x is equal to the **gradient of the PE curve at x**
- the direction of the force is in the direction of decreasing potential energy

3 Energy conversion and conservation

3.1 Law of conservation of energy

The **law of conservation of energy** states that energy cannot be created or destroyed, it can only be converted from one form to another

3.2 Total mechanical energy and work done on a system

In a non-isolated system where work is done by an external force, W_F , by law of conservation of energy

$$(E_p + E_k)_{initial} + W_F = (E_p + E_k)_{final}$$

• the sum of potential and kinetic energy is aclled mechanical energy

Mechanical energy =
$$E_p + E_k$$

- in an isolated system, mechanical energy is conserved
- \bullet in a non-isolated system, W_F may be positive or negative

3.3 Efficiency

$$Efficiency = \frac{useful\ energy\ output}{total\ energy\ input} \times 100$$

4 Power

Power is define as the rate of work or energy conversion wrt time

$$P=\frac{dW}{dt}$$

If total work ΔW is done over time interval Δt , then average power is

$$\langle P \rangle = \frac{\Delta W}{\Delta t}$$

4.1 Relationship between P, F, and v for a constant force

If a constnat force F is applied and does work by moving an object over displacement s parallel to the force in time t, then the power can be found by

$$P = \frac{dW}{dt} = \frac{d(FS)}{dt} = F\frac{ds}{dt}$$
$$P = Fv$$

4.2 Wind turbines and related calculations

KE removed from wind is converted into electrical energy Mass of air that passes through the area swept by the blades per second is

Mass per second =
$$\frac{dm}{dt} = \frac{d(\rho v)}{dt} = \rho \frac{d(Ax)}{dt} = \rho Av$$

Loss of KE per second is

$$\frac{1}{2}mv^2 - \frac{1}{2}mu^2$$