© Тычина К.А.

VI

Общий случай нагружения стержня.

Потенцциальная энергия стержня в общем случае нагружения

Двумя бесконечно близкими поперечными сечениями выделим из упругого стержня элементарный участок длиной dz:

Puc. VI.1.

Со стороны отброшенных частей стержня на торцы участка действуют, в общем случае, шесть внутренних силовых факторов: M_X , M_Y , $M_Z \triangleq M_{KP}$, Q_X , Q_Y и $Q_Z \triangleq N$.

При нагружении стержня каждый из этих внутренних силовых факторов совершает работу на перемещениях поперечных сечений (торцев участка):

$$dU = \frac{N^2}{2 \cdot E \cdot A} \cdot dz + \frac{M_{\kappa p}^2}{2 \cdot G \cdot I_{\kappa}} \cdot dz + \frac{M_{x}^2}{2 \cdot E \cdot I_{x}} \cdot dz + \frac{M_{y}^2}{2 \cdot E \cdot I_{y}} \cdot dz + K_{x} \cdot \frac{Q_{x}^2}{2 \cdot G \cdot A} \cdot dz + K_{y} \cdot \frac{Q_{y}^2}{2 \cdot G \cdot A} \cdot dz$$

$$+ K_{y} \cdot \frac{Q_{y}^2}{2 \cdot G \cdot A} \cdot dz$$
(VI.1)

где

 $K_{x},\ K_{y}$ — коэффициенты формы поперечного сечения

$$\bigcirc K_x = K_y = \frac{10}{9}$$
; $\bigcirc K_x = K_y = 2$; $\Box K_x = K_y = \frac{6}{5}$.

Потенциальная энергия деформации всего стержня получается интегрированием участков dz по всей его длине:

$$U = \int \frac{N^2}{2 \cdot E \cdot A} \cdot dz + \int \frac{M_{\kappa p}^2}{2 \cdot G \cdot I_{\kappa}} \cdot dz + \int \frac{M_x^2}{2 \cdot E \cdot I_x} \cdot dz + \int \frac{M_y^2}{2 \cdot E \cdot I_y} \cdot dz +$$

$$+ \int K_x \cdot \frac{Q_x^2}{2 \cdot G \cdot A} \cdot dz + \int K_y \cdot \frac{Q_y^2}{2 \cdot G \cdot A} \cdot dz$$

$$(VI.2)$$

Последние два слагаемых дают небольшой вклад в общую сумму и ними, как правило, пренебрегают.

На понятиях *«потенциальная энергия деформации»* и равной ей для упругого тела *«работа внешних сил»* основаны доказательства так называемых **энергетических теорем**:

- 1. Теорема Кастилиано;
- 2. Теорема Лагранжа;
- 3. Теорема Бетти (теорема о взаимности работ).

Теорема Кастилиано

производная от потенциальной энергии системы ПО обобщённой силе равна перемещению точки приложения силы ПО направлению этой силы (без доказательства):

$$\delta_i = \frac{\partial U}{\partial F_i} \tag{VI.3}$$

Пример | VI.1

$$\sum M_o = 0 \Rightarrow Y_c = \frac{1}{4} \cdot q \cdot l + \frac{M}{2 \cdot l}$$
$$\sum M_c = 0 \Rightarrow Y_o = \frac{3}{4} \cdot q \cdot l - \frac{M}{2 \cdot l}$$
$$\sum F_z = 0 \Rightarrow Z_o = 0$$

$$\sum M_{K_1} = 0$$

$$M_{X_1} = (\frac{3}{4} \cdot q \cdot l - \frac{M}{2 \cdot l}) \cdot z_1 - \frac{q \cdot z_1^2}{2}$$

$$\sum M_{K_2} = 0$$

$$M_{X_2} = (\frac{1}{4} \cdot q \cdot l - \frac{M}{2 \cdot l}) \cdot z_2$$

$$U = \int_{0}^{l} \frac{M_{x_{1}}^{2} \cdot dz_{1}}{2 \cdot E \cdot I_{x}} + \int_{0}^{l} \frac{M_{x_{2}}^{2} \cdot dz_{2}}{2 \cdot E \cdot I_{x}} = \frac{l}{12 \cdot E \cdot I_{x}} \cdot \left[\frac{17}{40} \cdot q^{2} \cdot l^{4} - \frac{1}{4} \cdot q \cdot M \cdot l^{2} + M^{2}\right]$$

$$\theta_{\!\scriptscriptstyle B} = \frac{\partial U}{\partial M} = \frac{l}{12 \cdot E \cdot I_{\scriptscriptstyle X}} \cdot [-\frac{1}{4} \cdot q \cdot l^2 + 2 \cdot M] > 0 \implies$$
 поворот по направлению M

$$M = \frac{1}{2} \cdot q \cdot l^2$$
 : $\theta_B = \frac{q \cdot l^3}{16 \cdot E \cdot I_x}$ - сравнить с примером $V.5$

Доказательство теоремы Кастилиано:

Определим работу, которую совершают сила F и её бесконечно малое приращение dF при прямом и обратном порядке приложения к упругому телу

dW — приращение работы внешних сил при приложении к системе силы dF.

$$W = \frac{1}{2} \cdot dF \cdot d\delta + \frac{1}{2} \cdot F \cdot \delta + dF \cdot \delta$$

W = W — система линейна, результат от порядка приложения сил не зависит.

$$\frac{1}{2}\cdot F\cdot \delta + \frac{\partial W}{\partial F}\cdot \mathcal{A}F = \frac{1}{2}\cdot \mathcal{A}F\cdot d\delta + \frac{1}{2}\cdot F\cdot \delta + \mathcal{A}F\cdot \delta$$

$$\frac{\partial W}{\partial F} = \delta \quad \Rightarrow \quad \frac{\partial U}{\partial F} = \delta$$
 В упругой системе $U=W$

Теорема Лагранжа

Теорема Лагранжа обратна теореме Кастилиано.

Без доказательства: частная производная от потенциальной энергии системы по обобщённому перемещению равна обобщённой силе, действующей в направлении этого перемещения:

$$F_i = \frac{\partial U}{\partial \delta_i} \tag{VI.4}$$

Теорема о взаимности работ (теорема Бетти)

Обязательным условием доказательства является соблюдение принципа независимости действия сил, поэтому применима теорема только к линейным системам.

Рассмотрим упругое тело, к которому в точке I приложена сила F_I , а в точке 2 — сила F_2 . Определим работу, которую совершают силы F_I и F_2 при прямом и обратном порядке приложения:

Формулировка теоремы:

Работа первой силы на перемещение точки её приложения под действием второй силы равна работе второй силы на перемещении точке её приложения под действием первой силы.

Здесь речь идет об <u>обобщённых</u> силах (силах и моментах) и <u>обобщённых</u> перемещениях (линейных перемещениях и углах поворота), на которых эти силы совершают работу.

Следствия из теоремы о взаимности работ:

1) Если,
$$F_1 = F_2$$
 то $\Delta_{12} = \Delta_{21}$ (VI.6)

Теорема о взаимности перемещений:

Перемещение точки 1 под действием силы, приложенной в точке 2, равно перемещению точки 2 под действием такой же силы, приложенной в точке 1 (puc.VI.3).

2) Если F_I = F_2 =I, то перемещения Δ_{ij} становятся податливостями δ_{ij} :

$$\delta_{ij} = \delta_{ji}$$
 (VI.7)

Это свойство линейных систем используют при решении статически неопределимых задач.

Интеграл Мора

Основной вклад в потенциальную энергию (VI.2) плоской стержневой конструкции вносит внутренний изгибающий момент M_x :

По теореме Кастилиано найдём перемещение точки "К" конструкции.

Для этого в интересующем нас направлении приложим в точки "K" фиктивную силу Φ , равную нулю и возьмём производную по ней от потенциальной энергии:

 $M_{x} = M_{x}^{F} + M_{x}^{\Phi}$ - принцип независимости действия сил;

где

 M_x^F — внутренний изгибающий момент в системе от внешней нагрузки; $M_x^\Phi = M_x^1 \times \Phi$ — —//— от фиктивной силы Φ ; $M_x^1 = -$ //— от единичной силы в точке «К» по направлению Φ .

$$U = \int \frac{M_x^2 \cdot dz}{2 \cdot E \cdot I_x} = \int \frac{\left(M_x^F + M_x^1 \cdot \Phi\right)^2}{2 \cdot E \cdot I_x} \cdot dz = \int \frac{\left(M_x^F\right)^2 + 2 \cdot M_x^F \cdot M_x^1 \cdot \Phi + \left(M_x^1 \cdot \Phi\right)^2}{2 \cdot E \cdot I_x} \cdot dz$$

$$\delta_K = \frac{\partial U}{\partial \Phi} = \int \frac{2 \cdot M_x^F \cdot M_x^1 + 2 \cdot \left(M_x^1\right)^2 \cdot \Phi}{2 \cdot E \cdot I_x} \cdot dz$$

$$m{\Phi} = 0$$
: $egin{bmatrix} \delta_K = \int rac{m{M}_x^F \cdot m{M}_x^1}{E \cdot m{I}_x} \cdot dz \end{bmatrix}$ Интеграл Мора для плоской стержневой системы. (VI.8)

При этом δ - обобщённое перемещение. То есть:

- если в точке «K» приложена единичная сила, то δ_K линейное перемещение точки в направлении этой силы;
- если в точке «K» приложен единичный момент, то δ_K угол поворота точки по направлению действия этого момента.

В общем случае:

$$\begin{split} \mathcal{S} &= \int \frac{N^{F} \cdot N^{1}}{E \cdot A} \cdot dz + \int \frac{M_{\kappa p}^{F} \cdot M_{\kappa p}^{1}}{G \cdot I_{\kappa}} \cdot dz + \int \frac{M_{x}^{F} \cdot M_{x}^{1}}{E \cdot I_{x}} \cdot dz + \\ &+ \int \frac{M_{y}^{F} \cdot M_{y}^{1}}{E \cdot I_{y}} \cdot dz + \int K_{x} \cdot \frac{Q_{x}^{F} \cdot Q_{x}^{1}}{G \cdot A} \cdot dz + \int K_{y} \cdot \frac{Q_{y}^{F} \cdot Q_{y}^{1}}{G \cdot A} \cdot dz \end{split}$$

(VI.9)

Способ Верещагина

Графоаналитический способ вычисления определённого интеграла от произведения двух функций, одна из которых линейна.

Строго говоря, <u>способ</u> Верещагина относится к математическому анализу и к механике прямого отношения не имеет, но изобретён и применяется для подсчёта интеграла Мора. Применим к расчёту плоских и пространственных конструкций, состоящих из прямых стержней, ибо вторая функция обязательно должна быть линейна.

$$\int f_1(z) \cdot f_2(z) \cdot dz = \int f_1(z) \cdot (a+b \cdot z) \cdot dz =$$

$$= a \cdot \underbrace{\int f_1(z) \cdot dz}_{\text{M}} + b \cdot \underbrace{\int z \cdot f_1(z) \cdot dz}_{\text{площадь}} = a \cdot \omega + b \cdot \omega \cdot z_c = \omega \cdot \underbrace{(a+b \cdot z_c)}_{\text{значение линейной функции под центром полоски}}_{\text{мигуры}}$$

Площади и расположение центров тяжести некоторых простых фигур:

Фигура:	Z_C	ω
Π рямоугольник: $h \qquad \qquad \stackrel{Z_C}{ \qquad \qquad } C$	$\frac{b}{2}$	$b \cdot h$
J инейный треугольник: $h \qquad \qquad c \qquad \qquad b$	<u>b</u> 3	$\frac{1}{2} \cdot b \cdot h$
Π араболический треугольник: $h \qquad \qquad \stackrel{Z_C}{\underset{napaболы}{\longleftarrow}} b$	$\frac{b}{4}$	$\frac{1}{3} \cdot b \cdot h$
Горбушка (отсечённая прямой часть параболы):	$\frac{b}{2}$	$\frac{q \cdot b^3}{12}$

 ${\it q}\,$ – внешняя распределённая нагрузка на участке с горбушкой.

Пример VI.2 :

3 1		Z,=V,=?	
ZB (1B) MRB YB	F Z	$\sum F_{g} = 0 = Y_{g} - F$ $\sum F_{x} = 0 = Z_{g}$ $\sum M_{g} = 0 = M_{RB} - M_{RB}$	
F	+ Qy =		
-FR	+ Mx = 1	$\mathcal{U}_{x} = F(Z-E)$	
$0=\mathbb{Z}_{B}^{\prime}$ \mathbb{Z}_{B}^{\prime} $$	+ 4	$\mathcal{U}_{\chi}^{\dagger} = I(Z - \ell) = Z - \ell$	2
Kicacciviecroe Carrier	e e	$\int dz = \frac{F}{FJ_X} \int_0^{2} z ^2 2\ell z$	$+\ell'/\ell\ell Z = F - \ell^3$ $3EJ_X$
Crococ Bepergaruna: $y_{0} = \frac{1}{EJ_{X}} \left[-\left(\frac{1}{2} \ell E e \right) \cdot \left(-\frac{2}{3} \ell E \right) \right]$	e)]= = = = = 3 EJx		Listoff.

Пример VI.3 :

umerpara Mapa (Og): Mx, = 19l.Z, - 921 Insopa Mx Mx. = = 286 Z2 $\mathcal{U}_{x_i}' = \frac{1}{2\ell} \mathcal{Z}_{\ell}$ Inrapa Mx $\mathcal{U}_{x_2}^{1} = \frac{1}{2\ell} Z_2$ OB = Jula Madz = $=\int \frac{dlx_{1}}{dlx_{1}} \frac{dlx_{2}}{dlx_{1}} \frac{dlx_{2}}{dlx_{2}} \frac{dlx_{2}}{dlx_{2}} dlx_{2} =$ $= \frac{1}{EJ_{x}} \left[\int \left(\frac{1}{2} g \ell Z_{1} - \frac{g Z_{1}^{2}}{2} \right) \left(\frac{Z_{1}}{2} \ell Z_{2} + \int \left(\frac{1}{2} g \ell Z_{2} \right) \left(\frac{Z_{2}}{2} \ell Z_{2} \right) \right] - \frac{1}{2} \left[-\frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{2} \right] = \frac{1}{2} \left[-\frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{2} + \frac{1}{2} \ell Z_{2} \right] = \frac{1}{2} \left[-\frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{2} \right] = \frac{1}{2} \left[-\frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{2} + \frac{1}{2} \ell Z_{2} \right] = \frac{1}{2} \left[-\frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{2} + \frac{1}{2} \ell Z_{2} \right] = \frac{1}{2} \left[-\frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{2} + \frac{1}{2} \ell Z_{2} \right] = \frac{1}{2} \left[-\frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{2} + \frac{1}{2} \ell Z_{2} \right] = \frac{1}{2} \left[-\frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{2} + \frac{1}{2} \ell Z_{2} + \frac{1}{2} \ell Z_{2} \right] = \frac{1}{2} \left[-\frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{2} + \frac{1}{2} \ell Z_{2} + \frac{1}{2} \ell Z_{2} \right] = \frac{1}{2} \left[-\frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{2} + \frac{1}{2} \ell Z_{2} \right] = \frac{1}{2} \left[-\frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{2} + \frac{1}{2} \ell Z_{2} \right] = \frac{1}{2} \left[-\frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{2} + \frac{1}{2} \ell Z_{2} \right] = \frac{1}{2} \left[-\frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{2} + \frac{1}{2} \ell Z_{2} \right] = \frac{1}{2} \left[-\frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{2} + \frac{1}{2} \ell Z_{2} \right] = \frac{1}{2} \left[-\frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{2} + \frac{1}{2} \ell Z_{2} \right] = \frac{1}{2} \left[-\frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{2} + \frac{1}{2} \ell Z_{2} \right] = \frac{1}{2} \left[-\frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{2} + \frac{1}{2} \ell Z_{2} \right] = \frac{1}{2} \left[-\frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{2} + \frac{1}{2} \ell Z_{2} \right] = \frac{1}{2} \ell Z_{1} + \frac{1}{2} \ell Z_{2} + \frac{1}{2}$ $= \frac{9}{44EJ_{X}} \left[-e \cdot \frac{Z_{3}}{3} \right] + \frac{Z_{4}}{4} + e \cdot \frac{Z_{2}}{3} = \frac{1}{3}$ $= \frac{g e^3}{4EJ_X} \left[-\frac{1}{3} + \frac{1}{4} + \frac{1}{3} \right] = \frac{g e^3}{16EJ_X}$

Рассмотрение сложной фигуры на эпюре M_x , как суммы нескольких простых фигур называется **расслоением** эпюры.

Примеры расслоений:

Фигура коварна! Это может оказаться параболический треугольник (см. Таблицу), а может — сумма линейного и параболического треугольников. Носик парабалического треугольника всегда является вершиной параболы — его гипотенузы- (проверяется по эпюре Q_y : в этой точке Q_y пересекает ноль). В противном случае, расслаивайте фигуру на линейный треугольник и горбушку:

Расчёт витых пружин

Витая пружина представляет собой упругий стержень (круглая проволока), завитый, для компактности, петлями.

В зависимости от вида воспринимаемых рабочих нагрузок, витые пружины подразделяют на

- пружины растяжения (puc. VI.4a);
- пружины сжатия (*puc. VI.46*);
- пружины кручения (*puc. VI.4в*).

Puc. VI.4

На расчётных схемах пружину подробно ($puc.\ VI.5a$) не изображают, ограничиваясь её упругой осью ($puc.\ VI.56$).

Puc. VI.5

В расчётах пружин на прочность и жёсткость используют следующие их характеристики (рис. VI.6):

d – диаметр проволоки;

D — средний диаметр витка;

i — число витков.

Puc.VI.6

Проволока пружин растяжения и сжатия работает на кручение, проволока пружин кручения – на изгиб.

Далее рассматривать будем только витые пружины растяжения (сжатия).

Расчёт пружины на прочность:

При нагружении в поперечных сечениях проволоки, из которой они навиты, возникают два внутренних силовых фактора: перерезывающая сила Q и крутящий момент $M_{\kappa p}$ ($puc.\ VI.7$).

Q = F ; в расчётах на прочность и жёсткость действием Q можно пренебречь по сравнению с действием $M_{_{\mathit{KP}}}$.

$$M_{\kappa p} \quad M_{\kappa p} = F \cdot \frac{D}{2} .$$

Максимальные касательные напряжения в поперечных сечениях круглой проволоки:

На практике пользуются полуэмпирической формулой:

$$\tau_{\text{max}} = \frac{8 \cdot F \cdot D}{\pi \cdot d^3} \cdot x_{\tau}$$
 (VI.10)

где $x_{\tau} = \frac{4 \cdot C + 2}{3 \cdot C - 3}$ – эмпирический коэффициент;

$$C = \frac{D}{d}$$
 – индекс пружины ($4 < C < 10$).

Расчётный коэффициент запаса прочности:

$$n = \frac{\tau_{np}}{\tau_{\text{max}}}$$
 (VI.11)

где $au_{np} = au_{T} -$ хрупкие материалы при создании пружин не используются.

Расчёт пружины на жёсткость:

$$\lambda = \int\limits_0^\ell rac{M_{\kappa p}^F \cdot M_{\kappa p}^1}{G \cdot I_\kappa} \, dS$$
 - интеграл Мора.

где $G \cdot I_{\kappa}$ – жесткость проволоки на кручение;

 ℓ – общая длина проволоки;

S – дуговая координата по длине.

 $M_{\kappa p}^{F} = F \cdot \frac{D}{2}$ – по длине проволоки момент постоянен;

$$M_{\kappa p}^1 = 1 \cdot \frac{D}{2}$$
;

$$I_{\kappa} = \frac{\pi \cdot d^4}{32} \; ;$$

$$\ell = i \cdot \pi \cdot D$$

$$\lambda = \int_{0}^{i\pi \cdot D} \frac{F \cdot \frac{D}{2} \cdot \frac{D}{2}}{G \cdot \frac{\pi \cdot d^{4}}{32}} \cdot dS = \frac{F \cdot D^{2} \cdot 8}{G \cdot \pi \cdot d^{4}} \cdot \int_{0}^{i\pi \cdot D} dS = \frac{8 \cdot F \cdot D^{2}}{G \cdot \frac{\pi}{2} \cdot d^{4}} \cdot i \cdot \frac{\pi}{2} \cdot D = \frac{8 \cdot F \cdot D^{3} \cdot i}{G \cdot d^{4}}$$

$$\lambda = \frac{8 \cdot F \cdot D^3 \cdot i}{G \cdot d^4}$$
 (VI.12)