

Vidyalankar Institute of Technology Technology Department of Computer Engineering

Semester	T.E. Semester VI – Computer Engineering
Subject	QA
Subject Professor In-charge	Prof. Kavita Shirsat

Group Members	Deep Salunkhee	21102A0014	
	Omkar Patil	21102A0003	
	Pranav Redij	21102A0005	
	Sukant Thombare	21102A0037	
	Shantanu Lagvankar	21102A0043	
Grade and Subject			
Teacher's Signature			

Mini Project	Multiple Regression	
Title	1	To s.
Resources /	Hardware:	Software:
Apparatus	Computer system	Python
Required	Theoretical Background	4.
Description		r Regression: The code implements multiple
	_	on, a statistical technique used to model the
		tween multiple independent variables (X1, X2,)
	and a depende	• •
	Ordinary Least	Squares (OLS): The method used to estimate the
	parameters of	the linear regression model is Ordinary Least
	Squares. OLS a	ims to minimize the sum of the squared
	differences bet	ween the observed and predicted values of the
	dependent var	iable.
	Assumptions of	f Linear Regression: The validity of the
	regression resu	ılts relies on several assumptions, including
	linearity, indep	endence of errors, homoscedasticity, and
	normality of er	rors.
	2. Mathematical Formul	ation:
	Model Equation	n: The model equation for multiple linear
	regression is re	epresented as:
	Y = b0 + b1*X1 + b2*X2 + .	+ bn*Xn + ε
	where Y is the dependent	variable, X1, X2,, Xn are the independent
	variables, b0 is the interce	ot term, b1, b2,, bn are the regression
	coefficients, and ε is the e	ror term.
	Coefficients Es	timation: The coefficients (b1, b2,, bn) are
		g the method of Ordinary Least Squares (OLS) to
		um of squared errors between the observed and
		es of the dependent variable.

Department of Computer Engineering

 Model Summary: The model.summary() function provides a detailed summary of the regression results, including coefficients, standard errors, t-values, p-values, and various statistics such as R-squared and adjusted R-squared.

3. Statistical Metrics:

- R-squared (R^2): R-squared is a measure of the proportion of variance in the dependent variable that is explained by the independent variables. It ranges from 0 to 1, where higher values indicate a better fit of the model to the data.
- **Total Sum of Squares (SST):** SST measures the total variance in the dependent variable.
- Regression Sum of Squares (SSR): SSR measures the variance explained by the regression model.
- **Error Sum of Squares (SSE):** SSE measures the unexplained variance or residual variance.
- **Mean Square Regression (MSR):** MSR is the average amount of variance explained by the regression model.
- Mean Square Error (MSE): MSE is the average amount of unexplained variance or residual variance.
- Degrees of Freedom: Degrees of freedom represent the number of independent pieces of information in the data used to estimate a statistic. In the context of regression, df_model represents the degrees of freedom for the model, and df_resid represents the degrees of freedom for the residuals.

Program

```
import pandas as pd
import statsmodels.api as sm

# Read data from Excel file
data = pd.read_excel("data.xlsx")

# Separate independent variables (X) and dependent variable (Y)
X = data[['X1', 'X2']]
Y = data['Y']

# Add constant term for intercept
X = sm.add_constant(X)

# Create and fit the regression model
model = sm.OLS(Y, X).fit()

# Print the model summary
print(model.summary())

# Calculate SST (Total Sum of Squares)
```


Department of Computer Engineering

```
y_mean = Y.mean()
SST = ((Y - y_mean) ** 2).sum()
# Calculate SSR (Regression Sum of Squares)
SSR = ((model.predict(X) - y mean) ** 2).sum()
# Calculate SSE (Error Sum of Squares)
SSE = ((Y - model.predict(X)) ** 2).sum()
# Calculate R-squared
R_squared = SSR / SST
# Calculate MSR (Mean Regression Sum of Squares)
MSR = SSR / model.df_model
# Calculate MSE (Mean Error Sum of Squares)
MSE = SSE / model.df_resid
# Print calculated values
print("SST:", SST)
print("SSR:", SSR)
print("SSE:", SSE)
print("R^2:", R_squared)
print("MSR:", MSR)
print("MSE:", MSE)
# Print model equation
print("Model Equation:")
print("Y = {:.2f} + {:.2f}*X1 + {:.2f}*X2".format(model.params[0],
model.params[1], model.params[2]))
```


Vidyalankar Institute of Technology vivexxit.cdit.iis Department of Computer Engineering

Out	put
-----	-----

	Α	В	С	D
1	Υ	X1	X2	
2	32	160	5.5	
3	15	80	6	
4	30	112	9.5	
5	34	185	5	
6	35	152	8	
7	10	90	3	
8	39	170	9	
9	26	140	5	
10	11	115	0.5	
11	23	150	1.5	
12				
13				
14				

Dep. Varia	ble:		Y R-squa	ared:		0.988
Model:		1		R-squared:		0.984
Method:		Least Squar		istic:		285.8
Date: Sa		t, 23 Mar 20		F-statistic	c):	1.95e-07
Time: No. Observations:		17:36	:50 Log-Li	Log-Likelihood:		
			10 AIC:			36.03
Df Residua	ls:		7 BIC:			36.93
Df Model:			2			
Covariance	Type:	nonrobu	ust			
	coef	std err	 t	P> t	[0.025	0.975]
const	-13.8246	1.795	-7 . 701	0.000	-18.069	-9.580
X1	0.2122	0.013	16.759	0.000	0.182	0.242
X2	1.9995	0.146	13.728	0.000	1.655	2.344
Omnibus:		0.5	======= 567 Durbir	 n-Watson:		2.132
Prob(Omnib	us):	0.7	753 Jarque	e-Bera (JB):		0.550
Skew:		0.7	240 Prob(3	IB):		0.759
Kurtosis:		1.9	956 Cond.	No.		610.

Y = -13.82 + 0.21*X1 + 2.00*X2