On the solvability of Burton–Miller-type boundary integral equations

Kei MATSUSHIMA

June 15, 2024

1 Exterior problems

Throughout this note, we assume that Ω is a bounded subset of \mathbb{R}^d (d=2 or 3) which is the open complement of an unbounded domain of class C^2 . Namely, the open and bounded subset Ω is not necessarily connected.

Given a constant $k \in \mathbb{C}$, we shall consider

• Exterior Dirichlet problem: find $u \in C^2(\mathbb{R}^d \setminus \overline{\Omega}) \cap C^1(\mathbb{R}^d \setminus \Omega)$ such that

$$\begin{cases} \Delta u + k^2 u = 0 & \text{in } \Omega, \\ u = f & \text{on } \partial \Omega, \\ r^{(d-1)/2} \left(\frac{\partial u}{\partial r} - \mathrm{i} k u \right) \to 0 & \text{uniformly as } |x| =: r \to \infty \end{cases}$$
 (1)

• Exterior Neumann problem: find $u \in C^2(\mathbb{R}^d \setminus \overline{\Omega}) \cap C^1(\mathbb{R}^d \setminus \Omega)$ such that

$$\begin{cases} \Delta u + k^2 u = 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu}\Big|_{+} = g & \text{on } \partial \Omega, \\ r^{(d-1)/2} \left(\frac{\partial u}{\partial r} - iku\right) \to 0 & \text{uniformly as } |x| =: r \to \infty \end{cases}$$
 (2)

where f and g are given functions on $\partial\Omega$. The normal derivative should be understood in the sense of uniform convergence with parallel surfaces. For a function $\varphi \in C^1(\Omega)$, we define

$$\frac{\partial \varphi}{\partial \nu}\Big|_{-}(x) := \lim_{h \to +0} \nu(x) \cdot \nabla \varphi(x - h\nu(x)) \quad \text{on } \partial\Omega$$
 (3)

when it converges uniformly on $\partial\Omega$, where ν is the unit normal vector on $\partial\Omega$ outward to Ω . Similarly, for a function $\varphi \in C^1(\mathbb{R}^d \setminus \overline{\Omega})$, we define

$$\frac{\partial \varphi}{\partial \nu}\Big|_{+}(x) := \lim_{h \to +0} \nu(x) \cdot \nabla \varphi(x + h\nu(x)) \quad \text{on } \partial\Omega$$
 (4)

when it converges uniformly on $\partial\Omega$.

The well-posedness of the exterior Dirichlet and Neumann problems can be established via layer-potential techniques.

Theorem 1.1 (Colton and Kress [1], Theorem 3.11). Let k > 0 and $f \in C(\partial\Omega)$. Then the exterior Dirichlet problem (1) is uniquely solvable.

Theorem 1.2 (Colton and Kress [1], Theorem 3.12). Let k > 0 and $g \in C(\partial\Omega)$. Then the exterior Neumann problem (2) is uniquely solvable.

As a consequence, we immediately obtain the following results.

Corollary 1.3. Suppose that a function $\varphi \in C^2(\mathbb{R}^d \setminus \overline{\Omega})$ solves the Helmholtz equation

$$\Delta \varphi + k^2 \varphi = 0 \quad in \ \mathbb{R}^d \setminus \overline{\Omega}$$

for some k > 0 and

$$\lim_{h \to +0} \varphi(x + h\nu(x)) = 0 \tag{5}$$

uniformly on $\partial\Omega$. Then $\varphi(x) = 0$ for all $x \in \mathbb{R}^d \setminus \overline{\Omega}$.

Proof. Define a function u by

$$u(x) := \begin{cases} \varphi(x) & x \in \mathbb{R}^d \setminus \overline{\Omega} \\ 0 & x \in \partial \Omega \end{cases}.$$

It is easy to see that u belongs to $C^2(\mathbb{R}^d \setminus \overline{\Omega}) \cap C^1(\mathbb{R}^d \setminus \Omega)$ from the uniform convergence (6). Since $u \in C^2(\mathbb{R}^d \setminus \overline{\Omega}) \cap C^1(\mathbb{R}^d \setminus \Omega)$ solves the exterior Dirichlet problem (1), the unique solvability (Theorem 1.1) ensures that u = 0 in $\mathbb{R}^d \setminus \overline{\Omega}$.

Corollary 1.4. Suppose that a function $\varphi \in C^2(\mathbb{R}^d \setminus \overline{\Omega})$ solves the Helmholtz equation

$$\varDelta\varphi+k^2\varphi=0 \quad \ in \ \mathbb{R}^d\setminus\overline{\Omega}$$

for some k > 0 and

$$\frac{\partial \varphi}{\partial \nu}\Big|_{+} := \lim_{h \to +0} \nu(x) \cdot \nabla \varphi(x + h\nu(x)) = 0$$
 (6)

uniformly on $\partial\Omega$. Then $\varphi(x) = 0$ for all $x \in \mathbb{R}^d \setminus \overline{\Omega}$.

Proof. It is easy to see that there exists a unique extension $u \in C^2(\mathbb{R}^d \setminus \overline{\Omega}) \cap C^1(\mathbb{R}^d \setminus \Omega)$ of $\varphi \in C^2(\mathbb{R}^d \setminus \overline{\Omega})$ such that $\varphi = u$ in $\mathbb{R}^d \setminus \overline{\Omega}$ with the uniform convergence

$$\frac{\partial u}{\partial \nu}\Big|_{+} = \lim_{h \to +0} \nu(x) \cdot \nabla u(x + h\nu(x)) = 0.$$

The statement immediately follows from Theorem 1.2, i.e., the unique solvability of the exterior Neumann problem (2).

2 Layer potentials and boundary integral operators

References

[1] David L Colton and Rainer Kress. *Inverse acoustic and electromagnetic scattering theory*, volume 93. Springer, fourth edition, 2019.