Aula 6: Geração da distribuição normal multivariada

Prof. Dr. Eder Angelo Milani

15/05/2023

Normal multivariada

Um vetor aleatório $X=(X_1,\ldots,X_d)$ tem distribuição normal multivariada d-dimensional, sendo denotada por $N_d(\mu,\Sigma)$, se a densidade de X é

$$f(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\{-(1/2)(x-\mu)'\Sigma^{-1}(x-\mu)\}$$

sendo que $x \in R^d$, $\mu = (\mu_1, \dots, \mu_d)'$ é o vetor de médias e Σ é uma matriz definida positiva de dimensão $d \times d$, com entradas $\sigma_{ij} = Cov(X_i, X_j)$, sendo que Σ^{-1} é a matriz inversa de Σ .

A distribuição normal bivariada e um caso especial e é denotada por $N_2(\mu, \Sigma)$.

Valores aleatórios da distribuição $N_d(\mu, \Sigma)$ podem ser gerados em dois passos, são eles:

 1° Passo - gerar $Z = (Z_1, \dots, Z_d)$, sendo que Z_1, \dots, Z_d são variáveis aleatórias independentes e identicamente disctribuídas normal padrão;

 2^{o} Passo - transforme o vetor aleatório Z para que ele tenha o vetor de média desejado μ e a estrutura de covariância Σ . A transformação requer fatorar a matriz de covariância Σ .

Lembre-se

Se $Z \sim N_d(\mu, \Sigma)$, então a transformação linear CZ + b é uma normal multivariada com média $C\mu + b$ e covariância $C\Sigma C'$. Então, se $Z \sim N_d(0, I_d)$, logo

$$CZ + b \sim N_d(b, CC')$$
.

Disto, se Σ pode ser fatorado como CC', ou seja, $\Sigma = CC'$, para alguma matriz C, então

$$CZ + \mu \sim N_d(\mu, \Sigma)$$
,

que é a transformação requerida.

A transformação de Σ pode ser obtida por decomposição de autovetores, fatoração de Cholesky ou alguma outra.

Método para gerar amostra da distribuição normal multivariada

Para gerar uma amostra aleatória de tamanho n da distribuição $N_d(\mu, \Sigma)$ siga os passos

- 1° Passo gerar uma matriz Z, de dimensão $n \times d$, contendo nd valores aleatórios da distribuição N(0,1);
- 2° Passo 2 obter a fatoração $\Sigma = Q'Q$;
- 3° Passo 3 aplicar a transformação $X = ZQ + J\mu'$, sendo que J é um vetor coluna unitário de dimensão n;
- 4° Passo 4 cada linha da matriz X é uma amostra da distribuição $N_d(\mu, \Sigma)$.

Exemplo 1

Gerar uma amostra de tamanho 1000 para a distribuição $N_2(\mu, \Sigma)$, sendo que $\mu = (1, 2)$ e $\Sigma = (1, 0.9, 0.9, 1)$.

Solução

A fatoração de Cholesky, pode ser obtida utilizando o comando chol, que para esse exemplo é dado por

```
Sigma <- matrix(c(1, 0.9, 0.9, 1), nrow=2, ncol=2, byrow=T)
{\tt Sigma}
##
        [,1] [,2]
## [1,] 1.0 0.9
## [2,] 0.9 1.0
Q <- chol(Sigma)
Q
        [,1]
                  [,2]
##
## [1,]
           1 0.9000000
## [2,]
           0 0.4358899
# verificando a fatoracao
t(Q)%*%Q
        [,1] [,2]
## [1,] 1.0 0.9
## [2,] 0.9 1.0
```

Seguindo os passos dados acima, obtemos o seguinte código.

```
set.seed(2023)
n <- 1000
d <- 2
mu <- c(1, 2)
Sigma <- matrix(c(1, 0.9, 0.9, 1), nrow=2, ncol=2, byrow=T)

# gerando valores da normal padrao
u <- runif(n)
v <- runif(n)
z1 <- sqrt(-2*log(u))*cos(2*pi*v)
z2 <- sqrt(-2*log(v))*cos(2*pi*u)

# verificando a geracao
summary(z1)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.140814 -0.668514 0.020420 0.008785 0.685732 2.988493
```

```
var(z1)
## [1] 1.00655
summary(z2)
                          Median
        Min. 1st Qu.
                                       Mean 3rd Qu.
                                                           Max.
## -3.442679 -0.714752 -0.004689 -0.036091 0.697788 3.230314
var(z2)
## [1] 1.043411
# criando a matriz z de valores da normal padrao
z \leftarrow cbind(z1,z2)
Q <- matrix(c(1, 0.9, 0, sqrt(0.19)), nrow=2, ncol=2, byrow=T)
X \leftarrow z\%*\%Q + matrix(mu, n, d, byrow=T)
head(X)
            [,1]
                    [,2]
## [1,] 1.904563 2.599352
## [2,] 0.460622 1.323237
## [3,] 1.434978 2.548744
## [4,] 2.196746 2.296793
## [5,] 1.720118 3.408747
## [6,] 2.822743 3.766575
# verificando
colMeans(X)
## [1] 1.008785 1.992175
var(X[,1])
## [1] 1.00655
var(X[,2])
## [1] 0.9981939
cov(X)
            [,1]
                       [,2]
## [1,] 1.006550 0.8973620
## [2,] 0.897362 0.9981939
```

```
# scatterplor 3D
library(scatterplot3d)
```

Warning: package 'scatterplot3d' was built under R version 4.2.2

```
# para calcular a densidade da normal multivariada
require(mvtnorm)
```

Carregando pacotes exigidos: mvtnorm

Exercícios

1. Gerar uma amostra de tamanho 1000 para a distribuição $N_2(\mu, \Sigma)$, sendo que $\mu=(1,0)$ e $\Sigma=(3,0.8,0.8,1)$. Faça o gráfico em 3D.

2. Gerar uma amostra de tamanho 1000 para a distribuição $N_3(\mu, \Sigma)$, sendo que $\mu=(1,0,2)$ e $\Sigma=(3,0,0.8,0,1,0.5,0.8,0.5,1)$. Apresente o resumo de cada coordenada e a matriz de variânica-covariância amostral.