

Claims:

1. A stabilizer mixture containing

(I) two different sterically hindered amine compounds, and

(II) at least one compound selected from the group consisting of an organic salt of Zn, an inorganic salt of Zn, Zn oxide, Zn hydroxide, an organic salt of Mg, an inorganic salt of Mg, Mg oxide and Mg hydroxide;

with the proviso that component (I) is different from the combination of the compounds

(B-8-a) and (B-8-b)

(B-8-a)

(B-8-b)

wherein n_2 and n_2^* are a number from 2 to 50; and

with the proviso that, when

component (I) is the combination of the compounds (B-1-a-1) and (B-7-a);

wherein b_1 is a number from 2 to 50,

wherein n_1 is a number from 2 to 50; and,

at the same time, component (II) is a Zn carboxylate;

the stabilizer mixture additionally contains as a further component

(X-1) a pigment or

(X-2) an UV absorber or

(X-3) a pigment and an UV absorber.

2. A stabilizer mixture according to claim 1 wherein the two different sterically hindered amine compounds of component (I) are selected from the group consisting of

(α -1) a compound of the formula (A-1)

in which

E_1 is hydrogen, C₁-C₈alkyl, O⁻, -OH, -CH₂CN, C₁-C₁₈alkoxy, C₅-C₁₂cycloalkoxy, C₃-C₆alkenyl,

C₇-C₉phenylalkyl unsubstituted or substituted on the phenyl by 1, 2 or 3 C₁-C₄alkyl; or

C₁-C₈acyl,

m_1 is 1, 2 or 4,

if m_1 is 1, E_2 is C₁-C₂₅alkyl,

if m_1 is 2, E_2 is C₁-C₁₄alkylene or a group of the formula (a-I)

(a-I)

wherein E_3 is C_1-C_{10} alkyl or C_2-C_{10} alkenyl, E_4 is C_1-C_{10} alkylene, and E_5 and E_6 independently of one another are C_1-C_4 alkyl, cyclohexyl or methylcyclohexyl, and if m_1 is 4, E_2 is C_4-C_{10} alkanetetrayl;

(α -2) a compound of the formula (A-2)

(A-2)

in which

two of the radicals E_7 are $-COO-(C_1-C_{20}$ alkyl), and
two of the radicals E_7 are a group of the formula (a-II)

(a-II)

with E_8 having one of the meanings of E_1 ;

(α -3) a compound of the formula (A-3)

(A-3)

in which

E_9 and E_{10} together form C_2-C_{14} alkylene,
 E_{11} is hydrogen or a group $-Z_1-COO-Z_2$,

Z_1 is C_2 - C_{14} alkylene, and

Z_2 is C_1 - C_{24} alkyl, and

E_{12} has one of the meanings of E_1 ;

(α -4) a compound of the formula (A-4)

wherein

the radicals E_{13} independently of one another have one of the meanings of E_1 ,

the radicals E_{14} independently of one another are hydrogen or C_1 - C_{12} alkyl, and

E_{15} is C_1 - C_{10} alkylene or C_3 - C_{10} alkylidene;

(α -5) a compound of the formula (A-5)

wherein

the radicals E_{16} independently of one another have one of the meanings of E_1 ;

(α -6) a compound of the formula (A-6)

in which

E_{17} is C_1 - C_{24} alkyl, and

E_{18} has one of the meanings of E_1 ;

(α -7) a compound of the formula (A-7)

(A-7)

in which

E_{19} , E_{20} and E_{21} independently of one another are a group of the formula (a-III)

(a-III)

wherein E_{22} has one of the meanings of E_1 ;

(α -8) a compound of the formula (A-8)

(A-8)

wherein

the radicals E_{23} independently of one another have one of the meanings of E_1 ,
and E_{24} is hydrogen, C_1-C_{12} alkyl or C_1-C_{12} alkoxy;

(α -9) a compound of the formula (A-9)

(A-9)

wherein

m_2 is 1, 2 or 3,

E_{25} has one of the meanings of E_1 , and

when m_2 is 1, E_{26} is a group $\text{---CH}_2\text{CH}_2\text{---NH---C}_6\text{H}_11$,

when m_2 is 2, E_{26} is $C_2\text{-C}_{22}\text{alkylene}$, and

when m_2 is 3, E_{26} is a group of the formula (a-IV)

(a-IV)

wherein the radicals E_{27} independently of one another are $C_2\text{-C}_{12}\text{alkylene}$, and
the radicals E_{28} independently of one another are $C_1\text{-C}_{12}\text{alkyl}$ or $C_5\text{-C}_{12}\text{cycloalkyl}$;

(α-10) a compound of the formula (A-10)

(A-10)

wherein

the radicals E_{29} independently of one another have one of the meanings of E_1 , and

E_{30} is $C_2\text{-C}_{22}\text{alkylene}$, $C_5\text{-C}_7\text{cycloalkylene}$, $C_1\text{-C}_4\text{alkylenedi(C}_5\text{-C}_7\text{cycloalkylene)}$, phenylene or
phenylenedi($C_1\text{-C}_4\text{alkylene}$);

(β-1) a compound of the formula (B-1)

in which

R₁, R₃, R₄ and R₅ independently of one another are hydrogen, C₁-C₁₂alkyl, C₅-C₁₂cycloalkyl, C₁-C₄-alkyl-substituted C₅-C₁₂cycloalkyl, phenyl, phenyl which is substituted by -OH and/or C₁-C₁₀alkyl; C₇-C₉phenylalkyl, C₇-C₉phenylalkyl which is substituted on the phenyl radical by -OH and/or C₁-C₁₀alkyl; or a group of the formula (b-I)

R₂ is C₂-C₁₈alkylene, C₅-C₇cycloalkylene or C₁-C₄alkylenedi(B₅-C₇cycloalkylene), or

the radicals R₁, R₂ and R₃, together with the nitrogen atoms to which they are bonded, perform a 5- to 10-membered heterocyclic ring, or

R₄ and R₅, together with the nitrogen atom to which they are bonded, form a 5- to 10-membered heterocyclic ring,

R₆ is hydrogen, C₁-C₈alkyl, O[·], -OH, -CH₂CN, C₁-C₁₈alkoxy, C₅-C₁₂cycloalkoxy, C₃-C₆alkenyl, C₇-C₉phenylalkyl unsubstituted or substituted on the phenyl by 1, 2 or 3 C₁-C₄alkyl; or C₁-C₆acyl, and

b₁ is a number from 2 to 50,

with the proviso that at least one of the radicals R₁, R₃, R₄ and R₅ is a group of the formula (b-I);

(β-2) a compound of the formula (B-2)

TOSOZD 10-35-160600

wherein

R_7 and R_{11} independently of one another are hydrogen or C_1-C_{12} alkyl,

R_8 , R_9 and R_{10} independently of one another are C_2-C_{10} alkylene, and

X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 and X_8 independently of one another are a group of the formula (b-II),

in which R_{12} is hydrogen, C_1-C_{12} alkyl, C_5-C_{12} cycloalkyl, C_1-C_4 alkyl-substituted

C_5-C_{12} cycloalkyl, phenyl, -OH- and/or C_1-C_{10} alkyl-substituted phenyl, C_7-C_9 phenylalkyl,

C_7-C_9 phenylalkyl which is substituted on the phenyl radical by -OH and/or C_1-C_{10} alkyl; or a group of the formula (b-I) as defined above, and

R_{13} has one of the meanings of R_6 :

(β-3) a compound of the formula (B-3)

in which

R_{14} is C_1-C_{10} alkyl, C_5-C_{12} cycloalkyl, C_1-C_4 alkyl-substituted C_5-C_{12} cycloalkyl, phenyl or

C_1-C_{10} alkyl-substituted phenyl,

R_{15} is $C_3\text{-}C_{10}$ alkylene,
 R_{16} has one of the meanings of R_6 , and
 b_2 is a number from 2 to 50;

(β -4) a compound of the formula (B-4)

in which

R_{17} and R_{21} independently of one another are a direct bond or a $-N(X_9)\text{-CO-X}_{10}\text{-CO-N}(X_{11})-$ group, where X_9 and X_{11} independently of one another are hydrogen, $C_1\text{-}C_8$ alkyl,

$C_5\text{-}C_{12}$ cycloalkyl, phenyl, $C_7\text{-}C_9$ phenylalkyl or a group of the formula (b-I),

X_{10} is a direct bond or $C_1\text{-}C_4$ alkylene,

R_{18} has one of the meanings of R_6 ,

R_{19} , R_{20} , R_{23} and R_{24} independently of one another are hydrogen, $C_1\text{-}C_{30}$ alkyl,

$C_5\text{-}C_{12}$ cycloalkyl or phenyl,

R_{22} is hydrogen, $C_1\text{-}C_{30}$ alkyl, $C_5\text{-}C_{12}$ cycloalkyl, phenyl, $C_7\text{-}C_9$ phenylalkyl or a group of the formula (b-I), and

b_3 is a number from 1 to 50;

(β -5) a compound of the formula (B-5)

(B-5)

in which

R_{25} , R_{26} , R_{27} , R_{28} and R_{29} independently of one another are a direct bond or

C₁-C₁₀alkylene,

R_{30} has one of the meanings of R_6 , and

b_4 is a number from 1 to 50;

(β-6) a product (B-6) obtainable by reacting a product, obtained by reaction of a polyamine of the formula (B-6-1) with cyanuric chloride, with a compound of the formula (B-6-2)

in which

b'_5 , b''_5 and b'''_5 independently of one another are a number from 2 to 12,

R_{31} is hydrogen, C_1 - C_{12} alkyl, C_5 - C_{12} cycloalkyl, phenyl or C_7 - C_9 phenylalkyl, and

R_{32} has one of the meanings of R_6 ;

(β-7) a compound of the formula (B-7)

wherein A_1 is hydrogen or C_1-C_4 alkyl,
 A_2 is a direct bond or C_1-C_{10} alkylene, and
 n_1 is a number from 2 to 50;

(β-8) at least one compound of the formulae (B-8-a) and (B-8-b)

wherein n_2 and n_2^* are a number from 2 to 50;

(β-9) a compound of the formula (B-9)

(B-9)

wherein A_3 and A_4 independently of one another are hydrogen or C_1-C_8 alkyl, or A_3 and A_4

together form a C_2-C_{14} alkylene group, and

the variables n_3 independently of one another are a number from 1 to 50; and

(B-10) a compound of the formula (B-10)

(B-10)

wherein n_4 is a number from 2 to 50,

A_5 is hydrogen or C_1-C_4 alkyl,

the radicals A_6 and A_7 independently of one another are C_1-C_4 alkyl or a group of the formula (b-I),

with the proviso that at least 50 % of the radicals A_7 are a group of the formula (b-I).

3. A stabilizer mixture according to claim 2, wherein

the two different sterically hindered amine compounds of component (I) are selected from the group consisting of the classes (α -1), (α -2), (α -3), (α -4), (α -5), (α -6), (α -7), (α -8), (α -9) and (α -10).

4. A stabilizer mixture according to claim 2, wherein

the two different sterically hindered amine compounds of component (I) are selected from the group consisting of the classes (β-1), (β-2), (β-3), (β-4), (β-5), (β-6), (β-7), (β-8), (β-9) and (β-10).

5. A stabilizer mixture according to claim 2, wherein

one of the two different sterically hindered amine compounds of component (I) is selected from the group consisting of the classes (α-1), (α-2), (α-3), (α-4), (α-5), (α-6), (α-7), (α-8), (α-9) and (α-10), and

the other of the two different sterically hindered amine compounds of component (I) is selected from the group consisting of the classes (β-1), (β-2), (β-3), (β-4), (β-5), (β-6), (β-7), (β-8), (β-9) and (β-10).

6. A stabilizer mixture according to claim 2, wherein

one of the two different sterically hindered amine compounds of component (I) is selected from the class (β-1).

7. A stabilizer mixture according to claim 2, wherein

one of the two different sterically hindered amine compounds of component (I) is selected from the class (β-1), and

the other of the two different sterically hindered amine compounds of component (I) is selected from the class (α-1) or (β-7).

8. A stabilizer mixture according to claim 2, wherein

one of the two different sterically hindered amine compounds of component (I) is selected from the class (β-7), and

the other of the two different sterically hindered amine compounds of component (I) is selected from the class (β-2).

9. A stabilizer mixture according to claim 2, wherein

the two different sterically hindered amine compounds of component (I) are selected from different classes.

10. A stabilizer mixture according to claim 2, wherein

TOP SECRET EULE

m_1 is 1, 2 or 4.

if m_1 is 1, E_2 is C_{12} - C_{20} alkyl,

if m_1 is 2, E_2 is C_2-C_{10} alkylene or a group of the formula (a-l)

E_3 is C₁-C₄alkyl.

E_4 is C_1 - C_6 alkylene, and

E_5 and E_6 independently of one another are C_1 - C_4 alkyl, and

if m_1 is 4, E_2 is C₄-C₈ alkanetetracyl;

two of the radicals E₇ are -COO-(C₁₀-C₁₅alkyl), and

two of the radicals E₇ are a group of the formula (a-II);

E_9 and E_{10} together form $C_9\text{-}C_{13}$ alkylene,

E_{11} is hydrogen or a group $-Z_1\text{-COO-}Z_2$,

Z_1 is C_2 - C_6 alkylene, and

Z_2 is $C_{10}-C_{16}$ alkyl;

E_{14} is hydrogen, and

E₁₅ is C₂-C₆alkylene or C₃-C₅alkylidene;

E₁₇ is C₁₀-C₁₄alkyl;

E_{24} is C_1 - C_4 alkoxy;

m_2 is 1, 2 or 3,

when m_2 is 1, E_{26} is a group —CH₂CH₂NH—C₆H₁₁ ,

when m_2 is 2, E_{26} is C₂-C₆alkylene, and

when m_2 is 3, E_{26} is a group of the formula (a-IV)

the radicals E_{27} independently of one another are C_2 - C_6 alkylene, and

the radicals E_{28} independently of one another are C_1 - C_4 alkyl or C_5 - C_8 cycloalkyl; and

E_{30} is C₂-C₈alkylene;

R_1 and R_3 independently of one another are a group of the formula (b-1),

R_2 is C_2 - C_8 alkylene.

R_4 and R_5 independently of one another are hydrogen, $C_1\text{-}C_{12}$ alkyl, $C_5\text{-}C_6$ cycloalkyl or a group of the formula (b-I), or the radicals R_4 and R_5 , together with the nitrogen atom to which they are bonded, form a 5- to 10-membered heterocyclic ring, and

b_1 is a number from 2 to 25:

R₇ and R₁₁ independently of one another are hydrogen or C₁-C₄alkyl.

R₈, R₉ and R₁₀ independently of one another are C₂-C₄alkylene, and

$X_1, X_2, X_3, X_4, X_5, X_6, X_7$ and X_8 independently of one another are a group of the formula

(b-II),

R₁₂ is hydrogen, C₁-C₄alkyl, C₅-C₈cycloalkyl or a group of the formula (b-I);

R₁₄ is C₁-C₄alkyl,

R₁₅ is C₃-C₆alkylene, and

b₂ is a number from 2 to 25;

R₁₇ and R₂₁ independently of one another are a direct bond or a group

-N(X₉)-CO-X₁₀-CO-N(X₁₁)-,

X₉ and X₁₁ independently of one another are hydrogen or C₁-C₄alkyl,

X₁₀ is a direct bond,

R₁₉ and R₂₃ are C₁-C₂₅alkyl or phenyl,

R₂₀ and R₂₄ are hydrogen or C₁-C₄alkyl,

R₂₂ is C₁-C₂₅alkyl or a group of the formula (b-I), and

b₃ is a number from 1 to 25;

R₂₅, R₂₆, R₂₇, R₂₈ and R₂₉ independently of one another are a direct bond or

C₁-C₄alkylene, and

b₄ is a number from 1 to 25;

b'₅, b"₅ and b'"₅ independently of one another are a number from 2 to 4, and

R₃₁ is hydrogen, C₁-C₄alkyl, C₅-C₈cycloalkyl, phenyl or benzyl;

A₁ is hydrogen or methyl,

A₂ is a direct bond or C₂-C₆alkylene, and

n₁ is a number from 2 to 25;

n₂ and n₂* are a number from 2 to 25;

A₃ and A₄ independently of one another are hydrogen or C₁-C₄alkyl, or A₃ and A₄ together form a C₉-C₁₃alkylene group, and

the variables n₃ independently of one another are a number from 1 to 25;

n₄ is a number from 2 to 25,

A₅ and A₆ independently of one another are C₁-C₄alkyl, and

A₇ is C₁-C₄alkyl or a group of the formula (b-I)

with the proviso that at least 50 % of the radicals A₇ are a group of the formula (b-I).

11. A stabilizer mixture according to claim 1, wherein

the two different sterically hindered amine compounds of component (I) are selected from the group consisting of the compounds of the formulae (A-1-a), (A-1-b), (A-1-c), (A-1-d),

(A-2-a), (A-3-a), (A-3-b), (A-4-a), (A-4-b), (A-5), (A-6-a), (A-7), (A-8-a), (A-9-a), (A-9-b), (A-9-c), (A-10-a), (B-1-a), (B-1-b), (B-1-c), (B-1-d), (B-2-a), (B-3-a), (B-4-a), (B-4-b) and (B-4-c), a product (B-6-a) and the compounds of the formulae (B-7-a), (B-8-a), (B-8-b), (B-9-a) and (B-10-a);

wherein E₁ is hydrogen, C₁-C₈alkyl, O⁻, -OH, -CH₂CN, C₁-C₁₈alkoxy, C₅-C₁₂cycloalkoxy, C₃-C₆alkenyl, C₇-C₉phenylalkyl unsubstituted or substituted on the phenyl by 1, 2 or 3 C₁-C₄alkyl; or C₁-C₈acyl;

(A-2-a)

in which two of the radicals E_7 are $-\text{COO-C}_{13}\text{H}_{27}$ and

two of the radicals E_7 are

and E_8 has one of the meanings

of E_1 :

(A-3-a)

(A-3-b)

wherein E_{12} has one of the meanings of E_1 :

(A-4-a)

(A-4-b)

wherein E_{13} has one of the meanings of E_1 ;

(A-5)

wherein E_{16} has one of the meanings of E_1 ;

(A-6-a)

wherein E_{18} has one of the meanings of E_1 ;

(A-7)

in which E_{19} , E_{20} and E_{21} independently of one another are a group of the formula (a-III)

(a-III)

wherein E_{22} has one of the meanings of E_1 ;

wherein E_{23} has one of the meanings of E_1 :

wherein E_{25} has one of the meanings of E_1 ;

wherein E_{29} has one of the meanings of E_1 :

wherein b_1 is a number from 2 to 20 and R_6 is hydrogen, $C_1\text{-}C_8$ alkyl, O^\cdot , $-\text{OH}$, $-\text{CH}_2\text{CN}$, $C_1\text{-}C_{18}$ alkoxy, $C_5\text{-}C_{12}$ cycloalkoxy, $C_3\text{-}C_6$ alkenyl, $C_7\text{-}C_9$ phenylalkyl unsubstituted or substituted on the phenyl by 1, 2 or 3 $C_1\text{-}C_4$ alkyl; or $C_1\text{-}C_8$ acyl;

wherein R_{13} has one of the meanings of R_6 ,

wherein b_2 is a number from 2 to 20 and R_{16} has one of the meanings of R_6 ;

wherein b_3 is a number from 1 to 20 and R_{18} has one of the meanings of R_6 ;

wherein b_4 is a number from 1 to 20 and R_{30} has one of the meanings of R_6 ;

a product (B-6-a) obtainable by reacting a product, obtained by reaction of a polyamine of the formula (B-6-1-a) with cyanuric chloride, with a compound of the formula (B-6-2-a)

in which R_{32} has one of the meanings of R_6 ;

wherein n_1 is a number from 2 to 20;

wherein n_2 and n_2^* are a number from 2 to 20;

(B-9-a)

wherein the variables n_3 independently of one another are a number from 1 to 20;

(B-10-a)

wherein n_4 is a number from 2 to 20, and

at least 50 % of the radicals A_7 are a group of the formula (b-I)

(b-I)

wherein R_6 is hydrogen, C_1-C_8 alkyl, O^\cdot , -OH, $-CH_2CN$, C_1-C_{18} alkoxy, C_5-C_{12} cycloalkoxy, C_3-C_6 alkenyl, C_7-C_9 phenylalkyl unsubstituted or substituted on the phenyl by 1, 2 or 3 C_1-C_4 alkyl; or C_1-C_8 acyl,
and the remaining radicals A_7 are ethyl.

12. A stabilizer mixture according to claim 11 wherein

the two different sterically hindered amine compounds of component (I) are

- 1) a compound of the formula (A-1-b) wherein E_1 is hydrogen, and a compound of the formula (B-1-a) wherein R_6 is hydrogen;
- 2) a compound of the formula (B-1-a) wherein R_6 is hydrogen, and a compound of the formula (B-7-a); or

3) a compound of the formula (B-2-a) wherein R₁₃ is methyl, and a compound of the formula (B-7-a).

13. A stabilizer mixture according to claim 2 wherein E₁, E₈, E₁₂, E₁₃, E₁₆, E₁₈, E₂₂, E₂₃, E₂₅, E₂₉, R₆, R₁₃, R₁₆, R₁₈, R₃₀ and R₃₂ are hydrogen, C₁-C₄alkyl, C₁-C₁₀alkoxy, cyclohexyloxy, allyl, benzyl or acetyl.

14. A stabilizer mixture according to claim 11 wherein E₁, E₈, E₁₂, E₁₃, E₁₆, E₁₈, E₂₂, E₂₃, E₂₅, E₂₉, R₆, R₁₃, R₁₆, R₁₈, R₃₀ and R₃₂ are hydrogen or methyl and E₁ and R₆ additionally are C₁-C₈alkoxy.

15. A stabilizer mixture according to claim 1, wherein the compound of component (II) is selected from the group consisting of Mg carboxylates, Zn carboxylates, Mg oxides, Zn oxides, Mg hydroxides, Zn hydroxides, Mg carbonates and Zn carbonates.

16. A stabilizer mixture according to claim 1, which additionally contains as a further component

- (X-1) a pigment or
- (X-2) an UV absorber or
- (X-3) a pigment and an UV absorber.

17. A stabilizer mixture according to claim 1, which additionally contains as a further component

- (XX) an organic salt of Ca, an inorganic salt of Ca, Ca oxide or Ca hydroxide.

18. A composition comprising an organic material subject to degradation induced by light, heat or oxidation and a stabilizer mixture according to claim 1.

19. A composition according to claim 18 wherein the organic material is a synthetic polymer.

20. A composition according to claim 18 wherein the organic material is a polyolefin.

FOREGO 88465860

21. A composition according to claim 18 wherein the organic material is polyethylene, polypropylene, a polyethylene copolymer or a polypropylene copolymer.

22. Polypropylene containing a compound of the formula (B-1), a compound of the formula (B-7) and a Zn-carboxylate;

in which

R_1 , R_3 , R_4 and R_5 independently of one another are hydrogen, $\text{C}_1\text{-}\text{C}_{12}$ alkyl, $\text{C}_5\text{-}\text{C}_{12}$ cycloalkyl, $\text{C}_1\text{-}\text{C}_4$ -alkyl-substituted $\text{C}_5\text{-}\text{C}_{12}$ cycloalkyl, phenyl, phenyl which is substituted by -OH and/or $\text{C}_1\text{-}\text{C}_{10}$ alkyl; $\text{C}_7\text{-}\text{C}_9$ phenylalkyl, $\text{C}_7\text{-}\text{C}_9$ phenylalkyl which is substituted on the phenyl radical by -OH and/or $\text{C}_1\text{-}\text{C}_{10}$ alkyl; or a group of the formula (b-I)

R_2 is $\text{C}_2\text{-}\text{C}_{18}$ alkylene, $\text{C}_5\text{-}\text{C}_7$ cycloalkylene or $\text{C}_1\text{-}\text{C}_4$ alkylenedi($\text{B}_5\text{-}\text{C}_7$ cycloalkylene),

or

the radicals R_1 , R_2 and R_3 , together with the nitrogen atoms to which they are bonded, perform a 5- to 10-membered heterocyclic ring, or

R_4 and R_5 , together with the nitrogen atom to which they are bonded, form a 5- to 10-membered heterocyclic ring,

R_6 is hydrogen, $\text{C}_1\text{-}\text{C}_8$ alkyl, O⁻, -OH, - CH_2CN , $\text{C}_1\text{-}\text{C}_{18}$ alkoxy, $\text{C}_5\text{-}\text{C}_{12}$ cycloalkoxy, $\text{C}_3\text{-}\text{C}_6$ alkenyl, $\text{C}_7\text{-}\text{C}_9$ phenylalkyl unsubstituted or substituted on the phenyl by 1, 2 or 3 $\text{C}_1\text{-}\text{C}_4$ alkyl; or $\text{C}_1\text{-}\text{C}_8$ acyl, and

b_1 is a number from 2 to 50,

with the proviso that at least one of the radicals R_1 , R_3 , R_4 and R_5 is a group of the formula (b-I);

wherein A₁ is hydrogen or C₁-C₄alkyl,
 A₂ is a direct bond or C₁-C₁₀alkylene, and
 n₁ is a number from 2 to 50.

23. A method for stabilizing an organic material against degradation induced by light, heat or oxidation, which comprises incorporating into the organic material a stabilizer mixture according to claim 1.