

Removing Background Noise with Phased Array Signal Processing

Gary Podboy NASA GRC

David Stephens NASA GRC

Acoustics Technical Working Group

Oct 20 - 21, 2015

Support Provided by the Advanced Air Transport Technology Project

The Problem

The models we test in the 9 x 15 Ft Wind Tunnel have been getting quieter, but the wind tunnel has not.

Approach

Remove wind tunnel background noise using an in-flow array and phased array signal processing techniques.

Approach

Remove wind tunnel background noise using an in-flow array and phased array signal processing techniques.

Continuation of work at NASA Ames by Clif Horne and Nate Burnside.

Approach

Remove wind tunnel background noise using an in-flow array and phased array signal processing techniques.

Continuation of work at NASA Ames by Clif Horne and Nate Burnside.

Use

- 1) Functional Beamforming developed by Optinav
 - increases dynamic range of phased array measurements

Approach

Remove wind tunnel background noise using an in-flow array and phased array signal processing techniques.

Continuation of work at NASA Ames by Clif Horne and Nate Burnside.

Use

- 1) Functional Beamforming developed by Optinav
 - increases dynamic range of phased array measurements
- 2) Cross Spectral Matrix (CSM) subtraction
 - method for “turning off” noise sources

CSM Subtraction

Acquire background data.

Acquire background + signal data.

$$\text{CSM}_{\text{signal}} = \text{CSM}_{\text{background+signal}} - \text{CSM}_{\text{background}}$$

Process $\text{CSM}_{\text{signal}}$ using Functional Beamforming to determine the amplitude of the signal

Test Setup at NATR

Four Array Configurations

Flush

Kevlar

Thin Weave SS
325 x 325 threads/inch

Dense Weave SS
600 x 200 threads/inch

Conventional Single Microphone

The “Correct” Answer

Acoustic driver signal measured by FITE microphone with no background ($M = 0$)

Another “Correct” Answer

Driver signal measured by Grid Cap microphone ($M = 0$)

Off

Off

Off

Max

Off

Max-3dB

Off

Max-6dB

Off

Max-9dB

Off

Max-12dB

Off

Max-15dB

Off

Max-18dB

Off

Max-21dB

Off

Max-18dB

Max

Off

Max-3dB

Off

Max-6dB

Off

Max-9dB

Off

Summary

These results are encouraging. They indicate that combining Functional Beamforming with CSM subtraction is an effective method for pulling signals out of background noise.

Future Work

More work needs to be done to understand how the angular position of the source relative to the array impacts the results.

Need to test with a source that extends higher in frequency.

