

Common Problems

- There are some very common problems that we use computers to solve:
 - Searching through a lot of records for a specific record or set of records
 - Sorting, or placing records in a desired order
- At times we need to use both of these techniques as part of solving the same problem.

Common Problems

- There are numerous algorithms to perform searches and sorts.
- Over the remaining lessons in this course, we will briefly explore a few common search and sort algorithms.
 - We begin with search algorithms as applied to simple arrays.
 - Techniques can be extended to arrays of structures.

Search Algorithms

- Search: A search algorithm is a method of locating a specific item of information in a larger collection of data.
- There are two primary algorithms used for searching the contents of an array:
 - Linear or Sequential Search
 - Binary Search

Linear Search

- This is a very simple algorithm.
- It uses a loop to sequentially step through an array, starting with the first element.
- It compares each element with the value being searched for (key) and stops when that value is found or the end of the array is reached.

An Example: Parallel Arrays

Corresponding position in each array refers to a different piece of data which is an item of data belonging to the same logical entity, e.g.,

Searching an Array of structs

- Same process as for a simple array
- Use one of the fields to search

e.g., birthdays[listindex].month

Returns position in array as before

Linear Search

```
Algorithm pseudocode:
    set found to false; set position to -1; set index to 0
     while index < number of elemts. and found is false
       if list[index] is equal to search value
         found = true
         position = index
       end if
       add 1 to index
     end while
     return position
```

Linear Search Function

Linear searching is easy to program

```
int itemInArray(char item, char[] arr, int validEntries)
   int index = -1;
   for (int i = 0; i < validEntries; i++)
      if (item == arr[i])
        index = i;
   return index;
```

Linear Search Example

Array numlist contains:

- Searching for the the value 11, linear search examines 17, 23, 5, and 11
- Searching for the the value 7, linear search examines 17, 23, 5, 11, 2, 29, and 3

Linear Search Tradeoffs

- Benefits:
 - Easy algorithm to understand
 - Array can be in any order
- Disadvantages:
 - Inefficient (slow): for array of N elements, examines N/2 elements on average for value in array, N elements for value not in array

Binary Search

Requires array elements to be in order

- 1. Divides the array into three sections:
 - middle element
 - elements on one side of the middle element
 - elements on the other side of the middle element
- 2. If the middle element is the correct value, done. Otherwise, go to step 1. using only the half of the array that may contain the correct value.
- 3. Continue steps 1. and 2. until either the value is found or there are no more elements to examine

Binary Search Example

Array numlist2 contains:

- Searching for the the value 11, binary search examines 11 and stops
- Searching for the the value 7, linear search examines 11, 3, 5, and stops

How a Binary Search Works

Always look at the center value. Each time you get to discard half of the remaining list.

Is this fast?

Binary Search Program

/* This program demonstrates the binarySearch function, that performs a binary search on an integer array. */

```
#include <stdio.h>
```

```
/* Function prototype */
int binarySearch(int [], int, int);
```

```
/* constant for array size */
const int arrSize = 20;
```

declarations

Binary Search Program

```
int main(void)
   int tests[] = \{101, 142, 147, 189, 199, 207, 222, 234, 289, 296, ...
                 310, 319, 388, 394, 417, 429, 447, 521, 536, 600};
   int results, empID;
   printf("Enter the Employee ID you wish to search for: ");
   scanf("%d", &empID);
   results = binarySearch(tests, arrSize, empID);
   if (results == -1)
        printf("That number does not exist in the array.\n");
   else
        printf("That ID is found at element %d", results);
        printf(" in the array\n");
   return 0;
```

main function

Binary Search Program

```
int binarySearch(int array[], int numElems, int value)
   int first = 0, last = numElems - 1, middle, position = -1;
   int found = 0;
   while (!found && first <= last)
        middle = (first + last) / 2;
                                               /* Calculate mid point */
        if (array[middle] == value)
                                          /* If value is found at mid */
        { found = 1;
           position = middle;
                                          /* If value is in lower half */
        else if (array[middle] > value)
            last = middle - 1;
        else
            first = middle + 1;
                                          /* If value is in upper half */
   return position;
                                                          search function
```

How Fast is a Binary Search?

- Worst case: 11 items in the list took 4 tries
- How about the worst case for a list with 32 items?
 - 1st try list has 16 items
 - 2nd try list has 8 items
 - 3rd try list has 4 items
 - 4th try list has 2 items
 - 5th try list has 1 item

How Fast is a Binary Search?

List has 250 items

1st try - 125 items

2nd try - 63 items

3rd try - 32 items

4th try - 16 items

5th try - 8 items

6th try - 4 items

7th try - 2 items

8th try - 1 item

List has 512 items

1st try - 256 items

2nd try - 128 items

3rd try - 64 items

4th try - 32 items

5th try - 16 items

6th try - 8 items

7th try - 4 items

8th try - 2 items

9th try - 1 item

What's the Pattern?

- List of 11 took 4 tries
- List of 32 took 5 tries
- List of 250 took 8 tries
- List of 512 took 9 tries

- \bigcirc 32 = 2^5 and 512 = 2^9
- 128 < 250 < 256 2⁷ < 250 < 2⁸

A Very Fast Algorithm!

How long (worst case) will it take to find an item in a list 30,000 items long?

 $2^{10} = 1024$

 $2^{11} = 2048$

 $2^{12} = 4096$

 $2^{13} = 8192$

 $2^{14} = 16384$

 $2^{15} = 32768$

So, it will take only 15 tries!

Log₂(n) Efficiency

- We say that the binary search algorithm runs in $log_2(n)$ time.
 - also written as lg(n)
- Log₂(n) means the log to the base 2 of some value of n.
- $@8 = 2^3 \log_2(8) = 3$ $16 = 2^4 \log_2(16) = 4$
- There are no algorithms that run faster than $\log_2(n)$ time.

Binary Search Tradeoffs

- Benefits:
 - Much more efficient than linear search. For array of n elements, performs at most log₂(n) comparisons
- Disadvantages:
 - Requires that array elements be sorted

Searching

- A question you should always ask when selecting a search algorithm is "How fast does the search have to be?"
 - The reason is that, in general, the faster the algorithm is, the more complex it is.
- Bottom line: you don't always need to use or should use the fastest algorithm.

Binary Search "Game"

- Number guessing game:
 - Program selects a number in a range
 - Player guesses
 - Program feedback "low" or "high"
 - Player guesses
 - Repeat until allowed number of guesses is reached or number is guessed

Comparing Algorithms

- Before we can compare different methods of searching (or sorting, or any algorithm), we need to think a bit about the time requirements for the algorithm to complete its task.
- We could also compare algorithms by the amount of memory needed
 - For the code
 - For execution (work space)

Comparing Algorithms

- An algorithm can require different times to solve different problems of the same size (a measure of efficiency)
- For example, the time it takes an algorithm to search for the integer '1' in an array of 100 integers depends on the nature of the array
 - are they sorted already?
 - if so, '1' may be at the start or end

Order: A Comparison Tool

- Most of the time we consider the maximum amount of time that an algorithm can require
- We call this worst-case analysis
- Worst-case analysis states that an algorithm is O(f(n)) if it will not take anymore time than k* f(n) time units for all but a finite number of values n.
- Read the 'big-O', O(...), as 'on the order of'
- f(n) is a function describing how the time or memory requirements increase with increasing problem size (increasing values of n).

Order

- The worst-case scenario doesn't mean the algorithm will always be slow, but that it is guaranteed never to take more time then the given bound
- This is called an asymptotic bound
 - Remember those asymptotes from algebra (same thing)
- Sometimes, the worst-case happens very rarely (if at all) in practice

Average Performance

- A harder to calculate metric is an algorithm's average-case performance
- Average-case analysis uses probabilities of problem sizes and problems of a given size to determine how it will act on average
- We won't worry about calculating the average-case performance at this point

Sequential Search

- If the item we are looking for is the first item, the search is O(1).
 - This is the best-case scenario
- If the target item is the last item (item n), the search takes O(n).
 - This is the worst-case scenario.
- On average, the item will tend to be near the middle (n/2) but this can be written $(\frac{1}{2}*n)$, and as we will see, we can ignore multiplicative coefficients. Thus, the average-case is still O(n)

Sequential Search

- So, the time that sequential search takes is proportional to the number of items to be searched
- Another way of saying the same thing using the Big-O notation is:
 - **■** O(n)
 - A sequential search is of order n

Binary Search

- We also have looked at the binary search algorithm
- How much more efficient (if at all) is a binary search when compared to a sequential search?
- We can use "order" to help find the answer

Binary Search

- Considering the worst-case for binary search:
 - We don't find the item until we have divided the array as far as it will divide
- We first look at the middle of n items, then we look at the middle of n/2 items, then n/22 items, and so on...
- We will divide until n/2^k = 1, k is the number of times we have divided the set (when we have divided all we can, the above equation will be true)
- n/2k = 1 when n = 2k, so to find out how many times we divided the set, we solve for k
 - $k = log_2 n$
- Thus, the algorithm takes O(log n), the worst-case (we ingore logarithmic base)

Comparing Search Algorithms

- We know
 - sequential search is O(n) worst-case
 - binary search is O(log₂ n) worst-case
- Which is better?
- Given n = 1,000,000 items
 - O(n) = O(1,000,000) /* sequential */
 - $O(\log_2 n) = O(19)$ /* binary */
- Clearly binary search is better in worst-case for large values of n, but there is always trade-offs that must be considered
 - Binary search requires the array to be sorted
 - If the item to be found is near the extremes of the array, sequential may be faster