CZ2101 Example Class 2 Dijkstra's Algorithm

Yi Hao, Sahithya, Joel and Saori

Table of contents

- 1) Dijkstra Algorithm
- 2) Adjacency Matrix and Priority Queue (Array) implementation
 - Pseudocode
 - Theoretical time complexity
 - Empirical time complexity
- 3) Adjacency List and Priority Queue (Heap) implementation
 - Pseudocode
 - Theoretical time complexity
 - Empirical time complexity
- 4) Comparison (Analysis)
 - Theoretical
 - Empirical
 - Conclusion

Dijkstra's Algorithm

- Find the shortest paths between **source vertex** and **other connected vertices** in a graph
- Works on non-negative edge weights only
- Implemented via Adjacency Matrix and Adjacency List

Dijkstra's Algorithm

Iteration	Vertex 1 (Source)	Vertex 2	Vertex 3	Vertex 4
1	0	∞	∞	∞
2	0	5	∞	∞
3	0	5	5+3=8	∞
4	0	5	8	8+9=17

Input Graphs for Dijkstra's Algorithm

Adjacency Matrix/Priority Queue (Array)

Implementation

Pseudocode

```
void dijkstra(int adj matrix[][], int d[], int pq[]){
                                                         int minDistance(int d[], int pq[],int sz){
                                                             int lowest = \infty, min index=0;
    while S has vertices with unfinalized distances:
                                                             for(int i=0; i<sz; i++) {
                                                                 if(pq[i] == 0 \&\& d[i] \le lowest) {
        int u = minDistance(d, pq, vertices);
                                                                     lowest = d[i];
        set u to be finalized;
                                                                     min index= i;
        for each v adjacent to u:
                                                             return min index;
            if(d[v] > d[u] + adj matrix[u][v]){
                set d[v] = d[u] + adj matrix[u][v]
    return;
```

Time & Space Complexity (Theoretical)

	Best/Average/Worst	
Array Priority Queue/ minDistance()	$\theta(V)$	
Set U to be finalized	0(1)	
Loop over each v adjacent to u	$\theta(V)$	
Total	$\theta(V) * (2\theta(V) + 1) = \theta(V^2)$	

Adjacency Matrix: Space Complexity: O(V^2)

Time Complexity (Empirical)

At n = 10,

	Best	Average	Worst
	(One Path)	(Random)	(Complete)
Time Taken (in s)	0.000038	0.000041	0.000045

Time Complexity (Empirical)

No.of vertices

At V = 10,000

Adjacency List/Priority Queue (MinHeap)

Implementation

Pseudocode

```
void dijkstra(Graph G,int src)
    for(each vertex v in G)
       d[v] = infinity;
    d[s] = 0;
    enqueue all nodes in priority queue Q;
    while(Q != NULL)
       u = extractMin(Q);
       for(each vertex v adjacent to u)
           if(d[u] + w[u,v] < d[v])
              d[v] = d[u] + w[u,v];
              decreaseKey(Q,v,d[v]);
```

Time & Space complexity (theoretical)

Average case:

```
Number of vertices * Cost of extracting min Vertex + Number of edges * Cost of decreasing weight  = O(V * \log V) + O(E * \log V) 
 = O[(V + E) \log V] 
 \frac{\text{Worst case: } E = O(V^2)}{O(V * \log V) + O(V^2 * \log V)} 
 = O(V^2 \log V) 
 = O(E * \log V)
```

Space Complexity: O(V+E)

Time Complexity (Empirical)

At V = 10,

	Best	Average	Worst
	(One Path)	(Random)	(Complete)
Time Taken (in s)	0.0000329	0.0000364	0.0000388

Time Complexity (Empirical)

No.of vertices

V = 100

V = 1000

V = 10000

Comparison between Graph Implementations

List VS Matrix

Theoretical Comparison

$$O(E \log V + V \log V) - O(V^{2}) < 0$$

$$E \log V + V \log v < V^{2}$$

$$E \log V < V^{2} - V \log V$$

$$E < \frac{V^{2} - V \log V}{\log V}$$

$$E < \frac{V^{2}}{\log V} - V$$

Finding at which range of edges a graph implementation of adjacency list will perform better than adjacency matrix

Empirical comparison

Sparse Graph:

List outperforms Matrix

Dense Graph:

Matrix outperforms List

No.of vertices

Theoretical Vs Empirical

Edge / Vertices	V = 10	V = 100	V = 1000
Theoretical Edge No.	20	1405	99,843
Empirical Edge No.	5	400	100,000

Factors for difference :

- 1) Constant multiplier to time complexity
- 2) Memory space
- 3) Computer system

Conclusion

Graph Type / Priority	Memory Space	Runtime
Dense	Adjacency List / Adjacency Matrix	Adjacency Matrix
Sparse	Adjacency List	Adjacency List

Comparison

Adjacency Matrix add edges easier than Adjacency List

Compare DENSE vs SPARSE graphs

Theoretical comparison

- Adjacency list will run faster than adjacency matrix up to a certain edge number
- Better to represent denser graph as adjacency matrix as it has larger number of edges