INTEGRALE IMPROPRII; INTEGRALE CU PARAMETRU

INTEGRALE IMPROPRII CU PARAMETRU

1. INTEGRALE IMPROPRII

O funcție $f:[a,b] \to \mathbb{R}$ este mărginită, deci $\int_a^b f(x) dx \in \mathbb{R}$.

Dacă domeniul de definiție NU este compact (de exemplu [a,b] cu $b\in\mathbb{R}$ sau $b=+\infty$ sau interval de forma (a,b] cu $a\in\mathbb{R}$ sau $a=-\infty$) atunci $\int_a^b f(x)dx$ este **integrală improprie**.

<u>Definiție</u>: O funcție $f:D\to\mathbb{R}$ se numește *local integrabilă* dacă este integrabilă pe orice compact $[a,b]\subseteq D$.

Observații:

- 1) Dacă f este integrabilă \Rightarrow local integrabilă;
- 2) Dacă f este continuă \Rightarrow local integrabilă (pentru că orice funcție continuă este integrabilă);
- 3) Dacă f este monotonă \Rightarrow local integrabilă.

CONVERGENȚA INTEGRALELOR IMPROPRII

Fie $f:[a,b)\to\mathbb{R}$ (cu $b\in\mathbb{R}$ sau $b=+\infty$), local integrabilă. Atunci integrala improprie (în b)

$$\int_a^b f(x) dx \text{ este } \textbf{\textit{convergent}} \textbf{\textit{d}} \text{ dacă } \underline{\text{există și e finită limita}} \colon \lim_{\substack{y \to b \\ y < b}} \int_a^y f(x) dx \,.$$

Observații:

- 1) Pentru $f:(-\infty,a] \to \mathbb{R}$ avem $\lim_{v \to -\infty} \int_v^a f(x) dx$;
- 2) Pentru $f:(-\infty,+\infty) \to \mathbb{R}$, fixăm un $a \in \mathbb{R}$ (arbitrar) și scriem:

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{+\infty} f(x) dx \text{ iar integral a improprie } \int_{-\infty}^{+\infty} f(x) dx \text{ este:}$$

- <u>Convergentă</u> dacă $\int_{-\infty}^{a} f(x) dx$ și $\int_{a}^{+\infty} f(x) dx$ sunt ambele convergente;
- <u>Divergentă</u> dacă $\int_{-\infty}^{a} f(x) dx$ sau $\int_{a}^{+\infty} f(x) dx$ este divergentă (NU ambele simultan).

<u>Definiție</u>: Fie $f:[a,b) \to \mathbb{R}$ (cu $b \in \mathbb{R}$ sau $b=+\infty$), local integrabilă. Atunci integrala improprie $\int_a^b f(x) dx \text{ este } \textbf{absolut convergentă} \text{ dacă } \int_a^b \left| f(x) \right| dx \text{ este convergentă}.$

Observație: Dacă $\int_a^b f(x) dx$ este absolut convergentă $\Rightarrow \int_a^b f(x) dx$ convergentă. Reciproc NU.

1

CRITERII DE CONVERGENȚĂ

Fie $f,g:[a,b)\to\mathbb{R}$ (cu $b\in\mathbb{R}$ sau $b=+\infty$), <u>local integrabile</u>, pozitive, cu $0\le f(x)\le g(x)$.

- 1. Criteriul de comparație cu inegalități:
 - a) dacă $\int_a^b g(x)dx$ este convergentă $\Rightarrow \int_a^b f(x)dx$ convergentă;
 - **b)** dacă $\int_a^b f(x) dx$ divergentă $\Rightarrow \int_a^b g(x) dx$ divergentă.
- 2. Criteriul de comparație la limită: Dacă există $\lim_{x \to b} \frac{f(x)}{g(x)} = L$, atunci:
 - a) dacă $L \in [0, +\infty)$ ($L \neq +\infty$) și $\int_a^b g(x) dx$ convergentă $\Rightarrow \int_a^b f(x) dx$ convergentă;
 - **b)** dacă $L \in (0, +\infty]$ ($L \neq 0$) și $\int_a^b g(x) dx$ divergentă $\Rightarrow \int_a^b f(x) dx$ divergentă.

Cum alegem funcția g(x)?

- pentru $[a,+\infty)$: $g(x) = \frac{1}{x^{\alpha}}$ pentru $(-\infty,a]$: $g(x) = \frac{1}{(-x)^{\alpha}}$ $\int_{a}^{b} g(x) dx \text{ este convergentă pentru } \alpha > 1$ divergentă pentru $\alpha \le 1$
- pentru [a,b]: $g(x) = \frac{1}{(b-x)^{\alpha}}$ pentru (a,b]: $g(x) = \frac{1}{(x-a)^{\alpha}}$ $\int_{a}^{b} g(x) dx \text{ este convergentă pentru } \alpha < 1$ $divergentă pentru \alpha \ge 1$
- $\qquad \text{pentru } \left(-\infty,+\infty\right) \text{ "rupem" după un } a \in \mathbb{R} \text{ arbitrar, fixat, în } \left(-\infty,a\right] \text{ și } \left[a,+\infty\right).$

2