Drawing Lewis Structures

Some examples

$$PO_4^{3-}$$

$$SO_2$$

Resonance

- The two resonance structures for SO_2 .
- The "real" structure is a hybrid of the two structures.
- The double arrow indicates the structures are resonance structures.
- How do we know this is right? Experimentally both S–O bonds are equal in length.

Resonance

- The two resonance structures for benzene.
- Indicates the two ways to distribute 3 double bonds among 6 carbon atoms.
- The true structure is an average of the two resonance structures.

Formal Charge

If two nonequivalent Lewis Structures are possible, how do we decide?

- Calculate formal charges on each atom
 - I. Assign each lone pair electron solely to its atom
 - 2. Assign half of the bonding electrons to the atom

Formal Charge = $(\# \text{ of valence } e^-)$ - $(\# \text{ of assigned } e^-)$

- Choose structure with lowest formal charge
- Examples: CO₂, CH₂O

Bonding orbitals in polyatomics

In polyatomics, the bonding geometry is often incompatible with our s and p orbitals on atoms

• BeCl₂ is linear Cl–B–Cl

• BF₃ is triangular planar

CH₄ is tetrahedral

Bonding orbitals in polyatomics

Look first at BeCl₂

Be does not have two orbitals oriented at 180° that can bond to each of the F atoms. How can we form such orbtials - We construct hybrid orbitals

The energy gained by bonding can overcome the 2s/2p energy difference and these 2 orbitals can hybridize to form 2 sp hybrid orbitals

Bonding using sp hybrid orbitals

First
$$sp$$
 orbital = $\frac{1}{\sqrt{2}} [\phi_{2s} + \phi_{2p_x}]$
Second sp orbital = $\frac{1}{\sqrt{2}} [\phi_{2s} - \phi_{2p_x}]$

Bonding in BeCl₂ then comes from the overlap of the H atom 1*s* orbitals with the *sp* hybrid orbitals on Be

Other types of hybrid orbitals

• sp^2 hybrid orbitals (triangular planar geometry)

Here the sp^2 orbitals on B overlap with the $2p_z$ orbitals on F to form the bonds in BF₃

Other types of hybrid orbitals

• sp^3 hybrid orbitals (triangular planar geometry)

First
$$sp^{3}$$
 orbital $=\frac{1}{2}[\phi_{2s}+\phi_{2p_{s}}+\phi_{2p_{s}}+\phi_{2p_{s}}]$
Second sp^{3} orbital $=\frac{1}{2}[\phi_{2s}+\phi_{2p_{s}}-\phi_{2p_{s}}-\phi_{2p_{s}}]$
Third sp^{3} orbital $=\frac{1}{2}[\phi_{2s}-\phi_{2p_{s}}+\phi_{2p_{s}}-\phi_{2p_{s}}]$
Fourth sp^{3} orbital $=\frac{1}{2}[\phi_{2s}-\phi_{2p_{s}}-\phi_{2p_{s}}+\phi_{2p_{s}}]$

Here the sp^3 orbitals on C overlap with the 1s orbitals on H to form the bonds in CH₄ (methane)

