

Pruebas de acceso a enseñanzas universitarias oficiales de grado

Castilla y León

MATEMÁTICAS II

EJERCICIO

Nº Páginas: 2

INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo desarrollar los cuatro ejercicios de la misma en el orden que desee.

2.- CALCULADORA: Se permitirá el uso de **calculadoras no programables** (que no admitan memoria para texto ni representaciones gráficas).

CRITERIOS GENERALES DE EVALUACIÓN: Los 4 primeros ejercicios se puntuarán sobre un máximo de 2,25 puntos, y el quinto ejercicio sobre un máximo de 1 punto. Se observarán fundamentalmente los siguientes aspectos: Correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones. **Deben figurar explícitamente las operaciones no triviales**, de modo que puedan reconstruirse la argumentación lógica y los cálculos.

OPCIÓN A

E1.- Sean
$$A = \begin{pmatrix} 1 & -4 \\ -1 & 3 \end{pmatrix}$$
 y $B = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$.

a) Estudiar si A y B tienen inversa y calcularla cuando sea posible. (1 punto)

b) Determinar X tal que AX = 2B + I siendo $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. (1,25 puntos)

E2.- Determinar la recta r que es paralela al plano $\pi = x - y - z = 0$ y que corta perpendicularmente a la recta $s = \frac{x-1}{1} = \frac{y+3}{2} = \frac{z-2}{-4}$ en el punto P(2,-1,-2). (2,25 puntos)

E3.- a) Enunciar el teorema de Bolzano e interpretarlo geométricamente. (1 punto)

b) Encontrar un intervalo en el que $P(x) = x^6 + x^4 - 1$ tenga al menos una raíz. (1,25 puntos)

E4.- a) Calcular la recta tangente a la curva $f(x) = 4e^{x-1}$ en el punto (1, f(1)). (1 punto) b) Calcular el área de la región delimitada en el primer cuadrante por la gráfica de la función $g(x) = x^3$ y la recta y = 4x. (1,25 puntos)

E5.- Se lanzan dos dados (con forma cúbica) al aire. ¿Cuál es la probabilidad de que la suma de los puntos sea 8? (1 punto)

OPCIÓN B

E1.- a) Discutir el siguiente sistema de ecuaciones según los valores del parámetro λ:

$$\begin{cases} x + \lambda y + \lambda z = 1 \\ x + y + z = 1 \\ x + 2y + 4z = 2 \end{cases}$$
 (1,25 puntos)

b) Resolverlo para $\lambda = 1$.

(1 punto)

E2.- Dado el plano $\pi = 3x + y + z - 2 = 0$ y los puntos P(0,1,1), Q(2,-1,-3) que pertenecen al plano π , determinar la recta del plano π que pasa por el punto medio entre P y Q y es perpendicular a la recta que une estos puntos. (2,25 puntos)

E3.- a) Dado el polinomio $P(x) = \frac{x^3}{3} - \frac{3x^2}{2} + 2x + C$, hallar C para que el valor de P(x) en su mínimo relativo sea 1. (1,25 puntos)

b) Calcular
$$\lim_{x\to 0+} x \ln x$$
.

(1 punto)

E4.- Sea
$$f(x) = \begin{cases} (x-1)^2 & si & x \le 1 \\ a + \ln x & si & x > 1 \end{cases}$$

a) Encontrar a para que la función sea continua.

(1 punto)

b) Hallar el área de la región delimitada por la gráfica de f(x) y las rectas x = 1, y = 1.

(1,25 puntos)

E5.- La probabilidad de obtener cara al lanzar una moneda es $\frac{1}{2}$. ¿Cuál es la probabilidad de sacar 3 caras en tres lanzamientos? (1 punto)