PROJECT NAME: IOT DEVICE

MOTIVATION FOR OUR PROJECT:

Building an IOT device similar to Alexa offers a range of benefits that can drive both the personal and academic growth. There are mainly a few reasons for undertaking this project:

- Hands-on learning experience: By building this project we can gain practical experience with hardware components, programming languages, and communication protocols.
- •Skill-development: We can improve our skills in areas like embedded systems, networking and cloud services.
- Cutting-edge technology exposure: For voice recognition features we can gain exposure to newest technologies like speech-totext(STT) and text-to-speech(TTS) engines. We can also learn how to integrate various IOT devices and services into a cohesive system.
- Problem-solving and innovation: Through this project we can develop innovative solutions to real-world problems, such as home automation and smart assistants. This can also help us overcome technical challenges, which can be highly rewarding and intellectually stimulating.

OVERVIEW

Objective:

To design and develop a voice-controlled IOT device capable of recognizing voice commands, processing them, and performing corresponding actions, similar to how Alexa operates.

Features:

- 1. Voice recognition: The device will listen for voice commands and convert them from speech to text.
- 2. Command processing: It will interpret the text commands and execute predefined functions.
- 3. Text-to-Speech: The device will provide verbal responses using a text-to-speech engine.
- 4. IOT-integration: The device will communicate with other IOT devices and services using MQTT or HTTP.
- 5. User-interaction: The device will handle various user requests as voice queries and supply them with adequate information in real-time.

Components:

- 1. Hardware:
 - Microcontroller: Raspberry Pi or Arduino
 - Microphone: USB Microphone for voice input
- •Speaker: USB or 3.5mm speaker for audio output
- Optional: Sensors and automators for additional

functionalities

- 2. Software:
 - Programming Languages: Python for high-level operations,
 C/C++ for low-level operations
 - Libraries: SpeechRecognition, gTTS, Paho MQTT, etc.
 - •Operating System: Raspbian OS for Raspberry Pi
- 3. Network and Communication:
 - •Protocols: MQTT for IOT communication, HTTP for web APIs.
 - Broker: Mosquitto or a cloud-based MQTT broker.

Implementation Steps:

- 1. Set up hardware:
 - Connect and configure the microphone and speaker.
 - Test the hardware components to ensure proper functionality.
- 2. Develop voice recognition:
 - •Implement speech-to-text functionality using libraries like SpeechRecognition.
 - Handle voice input and convert it to text for further processing.
- 3. Command processing:
 - •Use the OpenAl API to send voice queries (converted to text) to ChatGPT.
 - Retrieve and process the responses from ChatGPT.
- 4. Text-to-Speech:
 - •Use gTTS(Google Text-to-Speech) to convert text responses to speech.
 - •Ensure the device can audibly respond to user commands.
- 5. API Integration:
 - •Set up the ChatGPT API key and configure the device to make HTTP requests.
 - •Implement logic to handle API responses and convert them into spoken output.
- 6. Enhancements and Testing:
 - Test the device to ensure it can handle various voice queries and provide accurate responses.
 - •Optimize the speech recognition and text-to-speech components for better performance.

GLIMPSE OF THE FEATURES IN THE FINAL PROJECT:

1. Voice Recognition:

- Continuous Listening: The device continuously listens for user commands.
- Speech-to-Text Conversion: Captures spoken words and converts them into text using the SpeechRecognition library.
- 2. Natural Language Processing:
 - •ChatGPT Integration: Sends text queries to the ChatGPT API for processing and retrieves informative responses.
 - Dynamic Responses: Generates responses based on a wide range of topics and queries.

3. Text-to-Speech:

- Audio Feedback: Converts text responses from ChatGPT into spoken words using the gTTS library.
- Clear Output: Plays the audio responses through a connected speaker, ensuring clear and understandable feedback.

4. Customization:

- •Voice Settings: Allows customization of the assistant's voice (e.g. male/female, different accents).
- •Response Personalization: Tailors responses based on user preferences and past interactions.

REFERENCES:

- https://blog.arduino.cc/2019/11/12/create-a-voice-controlled-devi ce-with-alexa-and-arduino-iot-cloud-in-7-minutes/
- https://www.instructables.com/Arduino-IoT-Cloud-Smart-Home-With-Alexa-Using-Node/
- https://medium.com/@arthurltonelli/building-an-iot-device-with-al exa-aws-python-and-raspberry-pi-274d941ef3c3