Supplementary Material for

Graph Neural Networks in the Nephropathological Diagnosis of Antibody-Mediated Rejection

Israel Mateos-Aparicio-Ruiz Jan Ulrich Becker Anibal Pedraza Lucia Gonzalez-Perez Gloria Bueno

S.I. Complete multi-compartment graph classification performance metrics and ROC curves

A. Glomeruli + Arteries

			Precision		Sens	Sensitivity		cificity	F1-	Score	Balanced accuracy		Accuracy	
Feature extractor	Classifier	k	WSI-level	Biopsy-level	WSI-level	Biopsy-level	WSI-level	Biopsy-level	WSI-level	Biopsy-level	WSI-level	Biopsy-level	WSI-level	Biopsy-level
		1	0.8159	0.8537	0.8339	0.8434	0.7982	0.8644	0.8248	0.8485	0.8160	0.8539	0.8167	0.8542
	Graph-Transformer	2	0.8119	0.8353	0.8559	0.8554	0.7873	0.8418	0.8333	0.8452	0.8216	0.8486	0.8228	0.8484
	_	3	0.7966	0.8208	0.8627	0.8554	0.7636	0.8249	0.8283	0.8378	0.8132	0.8401	0.8149	0.8397
		1	0.8391	0.8580	0.8576	0.8373	0.8236	0.8701	0.8483	0.8476	0.8406	0.8537	0.8412	0.8542
	SimpleGCN	2	0.8516	0.8688	0.8559	0.8373	0.8400	0.8814	0.8538	0.8528	0.8480	0.8594	0.8482	0.8601
Swin		3	0.8550	0.8696	0.8695	0.8434	0.8418	0.8814	0.8622	0.8563	0.8557	0.8624	0.8561	0.8630
Swiii		1	0.8380	0.8625	0.8593	0.8313	0.8218	0.8757	0.8485	0.8466	0.8406	0.8535	0.8412	0.8542
	DenseGCN	2	0.8487	0.8580	0.8559	0.8373	0.8364	0.8701	0.8523	0.8476	0.8461	0.8537	0.8465	0.8542
		3	0.8548	0.8712	0.8678	0.8554	0.8418	0.8814	0.8612	0.8632	0.8548	0.8684	0.8553	0.8688
		1	0.8535	0.8727	0.8492	0.8675	0.8436	0.8814	0.8513	0.8701	0.8464	0.8744	0.8465	0.8746
	SimpleGAT	2	0.8530	0.8589	0.8458	0.8434	0.8436	0.8701	0.8494	0.8511	0.8447	0.8567	0.8447	0.8571
		3	0.8454	0.8683	0.8525	0.8735	0.8327	0.8757	0.8489	0.8709	0.8426	0.8746	0.8430	0.8746
		1	0.6345	0.6386	0.6356	0.6386	0.6073	0.6610	0.6351	0.6386	0.6214	0.6498	0.6219	0.6501
	Graph-Transformer	2	0.6689	0.6970	0.6780	0.6928	0.6400	0.7175	0.6734	0.6949	0.6590	0.7051	0.6596	0.7055
		3	0.6720	0.6948	0.6356	0.6446	0.6673	0.7345	0.6533	0.6688	0.6514	0.6895	0.6509	0.6910
	SimpleGCN	1	0.6303	0.6481	0.6356	0.6325	0.6000	0.6780	0.6329	0.6402	0.6178	0.6552	0.6184	0.6560
		2	0.6201	0.6306	0.6169	0.5964	0.5945	0.6723	0.6185	0.6130	0.6057	0.6344	0.6061	0.6356
MAE		3	0.6210	0.6203	0.6220	0.5904	0.5927	0.6610	0.6215	0.6049	0.6074	0.6257	0.6079	0.6268
MAE	DenseGCN	1	0.6479	0.6433	0.6424	0.6084	0.6255	0.6836	0.6451	0.6254	0.6339	0.6460	0.6342	0.6472
		2	0.6379	0.6623	0.6271	0.6024	0.6182	0.7119	0.6325	0.6309	0.6227	0.6571	0.6228	0.6589
		3	0.6339	0.6433	0.6339	0.6084	0.6073	0.6836	0.6339	0.6254	0.6206	0.6460	0.6211	0.6472
		1	0.6354	0.6646	0.6322	0.6566	0.6109	0.6893	0.6338	0.6606	0.6216	0.6729	0.6219	0.6735
	SimpleGAT	2	0.6265	0.6415	0.6254	0.6145	0.6000	0.6780	0.6260	0.6277	0.6127	0.6462	0.6132	0.6472
		3	0.6351	0.6415	0.6254	0.6145	0.6145	0.6780	0.6302	0.6277	0.6200	0.6462	0.6202	0.6472
		1	0.7082	0.7215	0.6746	0.6867	0.7018	0.7514	0.6910	0.7037	0.6882	0.7191	0.6877	0.7201
	Graph-Transformer	2	0.7082	0.7273	0.7034	0.7229	0.6891	0.7458	0.7058	0.7251	0.6962	0.7343	0.6965	0.7347
	_	3	0.7031	0.7205	0.6864	0.6988	0.6891	0.7458	0.6947	0.7095	0.6878	0.7223	0.6877	0.7230
		1	0.7208	0.7421	0.7000	0.7108	0.7091	0.7684	0.7102	0.7262	0.7045	0.7396	0.7044	0.7405
	SimpleGCN	2	0.7185	0.7375	0.7051	0.7108	0.7036	0.7627	0.7117	0.7239	0.7044	0.7368	0.7044	0.7376
SimCLR	_	3	0.7165	0.7278	0.7153	0.7410	0.6964	0.7401	0.7159	0.7343	0.7058	0.7405	0.7061	0.7405
SIMCLE		1	0.7095	0.7333	0.7203	0.7289	0.6836	0.7514	0.7149	0.7311	0.7020	0.7402	0.7026	0.7405
	DenseGCN	2	0.7243	0.7485	0.7034	0.7349	0.7127	0.7684	0.7137	0.7416	0.7081	0.7517	0.7079	0.7522
		3	0.7051	0.7375	0.6847	0.7108	0.6927	0.7627	0.6948	0.7239	0.6887	0.7368	0.6886	0.7376
		1	0.7257	0.7313	0.7220	0.7048	0.7073	0.7571	0.7239	0.7178	0.7147	0.7309	0.7149	0.7318
1	SimpleGAT	2	0.7158	0.7325	0.7000	0.6928	0.7018	0.7627	0.7078	0.7121	0.7009	0.7277	0.7009	0.7289
	-	3	0.6954	0.7101	0.7119	0.7229	0.6655	0.7232	0.7035	0.7164	0.6887	0.7230	0.6895	0.7230

TABLE S.1 Performance metrics for the test set for hub-based graph (glomeruli + arteries) classification models on the WSIs. Each metric was computed from the aggregated confusion matrix of all 5 test folds, as they are disjoint sets. The best-performing model according to WSI-level accuracy is highlighted in bold, as well as the highest value across models for each metric.

			Precision		Sens	sitivity	Spe	cificity	F1-	Score	Balanced accuracy		Accuracy	
Feature extractor	Classifier	α	WSI-level	Biopsy-level	WSI-level	Biopsy-level	WSI-level	Biopsy-level	WSI-level	Biopsy-level	WSI-level	Biopsy-level	WSI-level	Biopsy-level
		0.15	0.8390	0.8742	0.8390	0.8373	0.8273	0.8870	0.8390	0.8554	0.8331	0.8622	0.8333	0.8630
	Graph-Transformer	0.3	0.8195	0.8553	0.8390	0.8193	0.8018	0.8701	0.8291	0.8369	0.8204	0.8447	0.8211	0.8455
		0.5	0.8260	0.8590	0.8288	0.8072	0.8127	0.8757	0.8274	0.8323	0.8208	0.8415	0.8211	0.8426
		0.15	0.8399	0.8704	0.8627	0.8494	0.8236	0.8814	0.8512	0.8598	0.8432	0.8654	0.8439	0.8659
Swin	SimpleGCN	0.3	0.8374	0.8780	0.8729	0.8675	0.8182	0.8870	0.8548	0.8727	0.8455	0.8772	0.8465	0.8776
		0.5	0.8467	0.8720	0.8797	0.8614	0.8291	0.8814	0.8628	0.8667	0.8544	0.8714	0.8553	0.8717
		0.15	0.8325	0.8528	0.8508	0.8373	0.8164	0.8644	0.8416	0.8450	0.8336	0.8509	0.8342	0.8513
	DenseGCN	0.3	0.8382	0.8659	0.8695	0.8554	0.8200	0.8757	0.8536	0.8606	0.8447	0.8656	0.8456	0.8659
		0.5	0.8438	0.8820	0.8695	0.8554	0.8273	0.8927	0.8564	0.8685	0.8484	0.8740	0.8491	0.8746
	Graph-Transformer	0.15	0.6750	0.7000	0.6407	0.6747	0.6691	0.7288	0.6574	0.6871	0.6549	0.7018	0.6544	0.7026
		0.3	0.6760	0.7059	0.6542	0.6506	0.6636	0.7458	0.6649	0.6771	0.6589	0.6982	0.6588	0.6997
		0.5	0.6490	0.6772	0.6424	0.6446	0.6273	0.7119	0.6457	0.6605	0.6348	0.6782	0.6351	0.6793
		0.15	0.6401	0.6581	0.6390	0.6145	0.6145	0.7006	0.6395	0.6355	0.6268	0.6575	0.6272	0.6589
MAE	SimpleGCN	0.3	0.6250	0.6316	0.6441	0.6506	0.5855	0.6441	0.6344	0.6409	0.6148	0.6473	0.6158	0.6472
		0.5	0.6130	0.6433	0.6068	0.6084	0.5891	0.6836	0.6099	0.6254	0.5979	0.6460	0.5982	0.6472
		0.15	0.6282	0.6494	0.6186	0.6024	0.6073	0.6949	0.6234	0.6250	0.6130	0.6487	0.6132	0.6501
	DenseGCN	0.3	0.6081	0.6380	0.6339	0.6265	0.5618	0.6667	0.6207	0.6322	0.5979	0.6466	0.5991	0.6472
		0.5	0.6432	0.6623	0.6051	0.6024	0.6400	0.7119	0.6236	0.6309	0.6225	0.6571	0.6219	0.6589
		0.15	0.7173	0.7677	0.6881	0.7169	0.7091	0.7966	0.7024	0.7414	0.6986	0.7567	0.6982	0.7580
	Graph-Transformer	0.3	0.7113	0.7346	0.6847	0.7169	0.7018	0.7571	0.6978	0.7256	0.6933	0.7370	0.6930	0.7376
		0.5	0.7163	0.7516	0.6932	0.6928	0.7055	0.7853	0.7046	0.7210	0.6993	0.7390	0.6991	0.7405
		0.15	0.7012	0.7246	0.6881	0.7289	0.6855	0.7401	0.6946	0.7267	0.6868	0.7345	0.6868	0.7347
SimCLR	SimpleGCN	0.3	0.6965	0.7246	0.7000	0.7289	0.6727	0.7401	0.6982	0.7267	0.6864	0.7345	0.6868	0.7347
		0.5	0.7075	0.7229	0.7051	0.7229	0.6873	0.7401	0.7063	0.7229	0.6962	0.7315	0.6965	0.7318
	DenseGCN	0.15	0.7180	0.7405	0.7034	0.7048	0.7036	0.7684	0.7106	0.7222	0.7035	0.7366	0.7035	0.7376
		0.3	0.7070	0.7284	0.7034	0.7108	0.6873	0.7514	0.7052	0.7195	0.6953	0.7311	0.6956	0.7318
		0.5	0.7101	0.7452	0.7017	0.7048	0.6927	0.7740	0.7059	0.7245	0.6972	0.7394	0.6974	0.7405

TABLE S.2 Performance metrics for the test set for edge-weighted graph (glomeruli + arteries) classification models on the WSIs. Each metric was computed from the aggregated confusion matrix of all 5 test folds, as they are disjoint sets. The best-performing model according to WSI-level accuracy is highlighted in bold, as well as the highest value across models for each metric.

Fig. S.1. ROC curve and average AUC on the test set of the WSIs across 5 folds for the best-performing graph (glomeruli + arteries) classification model configuration with each graph construction approach.

B. Glomeruli + Cortical TI tiles

			Precision		Sens	sitivity	Spe	cificity	F1-	Score	Balance	d accuracy	Accuracy	
Feature extractor	Classifier	k	WSI-level	Biopsy-level										
		1	0.8272	0.8402	0.8342	0.8503	0.8123	0.8475	0.8307	0.8452	0.8232	0.8489	0.8236	0.8488
	Graph-Transformer	2	0.8264	0.8563	0.8291	0.8563	0.8123	0.8644	0.8278	0.8563	0.8207	0.8603	0.8210	0.8605
		3	0.8342	0.8623	0.8342	0.8623	0.8213	0.8701	0.8342	0.8623	0.8277	0.8662	0.8280	0.8663
		1	0.8522	0.8743	0.8693	0.8743	0.8375	0.8814	0.8607	0.8743	0.8534	0.8778	0.8540	0.8779
	SimpleGCN	2	0.8607	0.8788	0.8693	0.8683	0.8484	0.8870	0.8650	0.8735	0.8589	0.8776	0.8593	0.8779
Swin		3	0.8499	0.8757	0.8727	0.8862	0.8339	0.8814	0.8612	0.8810	0.8533	0.8838	0.8540	0.8837
Swiii		1	0.8435	0.8614	0.8576	0.8563	0.8285	0.8701	0.8505	0.8589	0.8431	0.8632	0.8436	0.8634
	DenseGCN	2	0.8449	0.8596	0.8576	0.8802	0.8303	0.8644	0.8512	0.8698	0.8440	0.8723	0.8445	0.8721
		3	0.8550	0.8667	0.8593	0.8563	0.8430	0.8757	0.8571	0.8614	0.8511	0.8660	0.8514	0.8663
		1	0.8500	0.8772	0.8827	0.8982	0.8321	0.8814	0.8661	0.8876	0.8574	0.8898	0.8584	0.8895
	SimpleGAT	2	0.8476	0.8671	0.8760	0.8982	0.8303	0.8701	0.8616	0.8824	0.8532	0.8841	0.8540	0.8837
		3	0.8653	0.8916	0.8610	0.8862	0.8556	0.8983	0.8631	0.8889	0.8583	0.8923	0.8584	0.8924
		1	0.6465	0.6471	0.5913	0.5928	0.6516	0.6949	0.6177	0.6188	0.6215	0.6439	0.6203	0.6453
	Graph-Transformer	2	0.6838	0.6968	0.6449	0.6467	0.6787	0.7345	0.6638	0.6708	0.6618	0.6906	0.6612	0.6919
		3	0.6808	0.6774	0.6466	0.6287	0.6733	0.7175	0.6632	0.6522	0.6599	0.6731	0.6594	0.6744
	SimpleGCN	1	0.6070	0.6243	0.6415	0.6467	0.5523	0.6328	0.6238	0.6353	0.5969	0.6397	0.5986	0.6395
		2	0.6042	0.6364	0.6214	0.6287	0.5614	0.6610	0.6127	0.6325	0.5914	0.6449	0.5925	0.6453
MAE		3	0.6091	0.6358	0.6499	0.6587	0.5505	0.6441	0.6288	0.6471	0.6002	0.6514	0.6021	0.6512
MAE	DenseGCN	1	0.6182	0.6159	0.6482	0.6048	0.5686	0.6441	0.6329	0.6103	0.6084	0.6244	0.6099	0.6250
		2	0.6013	0.6289	0.6064	0.5988	0.5668	0.6667	0.6038	0.6135	0.5866	0.6327	0.5873	0.6337
		3	0.6211	0.6410	0.6315	0.5988	0.5848	0.6836	0.6262	0.6192	0.6082	0.6412	0.6090	0.6424
		1	0.6127	0.6433	0.6147	0.6048	0.5812	0.6836	0.6137	0.6235	0.5980	0.6442	0.5986	0.6453
	SimpleGAT	2	0.6190	0.6688	0.6231	0.6287	0.5866	0.7062	0.6210	0.6481	0.6049	0.6675	0.6056	0.6686
		3	0.6038	0.6296	0.5846	0.6108	0.5866	0.6610	0.5940	0.6201	0.5856	0.6359	0.5856	0.6366
		1	0.7325	0.7375	0.6834	0.7066	0.7310	0.7627	0.7071	0.7217	0.7072	0.7346	0.7063	0.7355
	Graph-Transformer	2	0.7140	0.7389	0.6734	0.6946	0.7094	0.7684	0.6931	0.7160	0.6914	0.7315	0.6907	0.7326
		3	0.7082	0.7152	0.6951	0.6766	0.6913	0.7458	0.7016	0.6954	0.6932	0.7112	0.6933	0.7122
		1	0.7416	0.7605	0.7353	0.7605	0.7238	0.7740	0.7384	0.7605	0.7296	0.7672	0.7298	0.7674
	SimpleGCN	2	0.7547	0.7673	0.7320	0.7305	0.7437	0.7910	0.7432	0.7485	0.7378	0.7607	0.7376	0.7616
SimCLR		3	0.7414	0.7799	0.7253	0.7425	0.7274	0.8023	0.7333	0.7607	0.7264	0.7724	0.7263	0.7733
SHICLK		1	0.7325	0.7702	0.7203	0.7425	0.7166	0.7910	0.7264	0.7561	0.7184	0.7667	0.7185	0.7674
	DenseGCN	2	0.7337	0.7607	0.7337	0.7425	0.7130	0.7797	0.7337	0.7515	0.7233	0.7611	0.7237	0.7616
		3	0.7356	0.7688	0.7270	0.7365	0.7184	0.7910	0.7313	0.7523	0.7227	0.7637	0.7228	0.7645
	SimpleGAT	1	0.7317	0.7410	0.7219	0.7365	0.7148	0.7571	0.7268	0.7387	0.7184	0.7468	0.7185	0.7471
		2	0.7402	0.7622	0.7253	0.7485	0.7256	0.7797	0.7327	0.7553	0.7255	0.7641	0.7255	0.7645
		3	0.7300	0.7396	0.7337	0.7485	0.7076	0.7514	0.7318	0.7440	0.7206	0.7500	0.7211	0.7500

TABLE S.3 Performance metrics for the test set for hub-based graph (glomeruli + cortical TI tiles) classification models on the WSIs. Each metric was computed from the aggregated confusion matrix of all 5 test folds, as they are disjoint sets. The best-performing model according to WSI-level accuracy is highlighted in bold, as well as the highest value across models for each metric.

			Precision		Sensitivity		Specificity		F1-Score		Balanced accuracy		Accuracy	
Feature extractor	Classifier	α	WSI-level	Biopsy-level	WSI-level	Biopsy-level	WSI-level	Biopsy-level	WSI-level	Biopsy-level	WSI-level	Biopsy-level	WSI-level	Biopsy-level
		0.15	0.8537	0.8773	0.8308	0.8563	0.8466	0.8870	0.8421	0.8667	0.8387	0.8716	0.8384	0.8721
	Graph-Transformer	0.3	0.8559	0.8647	0.8358	0.8802	0.8484	0.8701	0.8458	0.8724	0.8421	0.8751	0.8419	0.8750
	-	0.5	0.8463	0.8712	0.8392	0.8503	0.8357	0.8814	0.8427	0.8606	0.8375	0.8658	0.8375	0.8663
		0.15	0.8697	0.8889	0.8610	0.8623	0.8610	0.8983	0.8653	0.8754	0.8610	0.8803	0.8610	0.8808
Swin	SimpleGCN	0.3	0.8636	0.8909	0.8693	0.8802	0.8520	0.8983	0.8664	0.8855	0.8607	0.8893	0.8610	0.8895
		0.5	0.8661	0.8951	0.8559	0.8683	0.8574	0.9040	0.8610	0.8815	0.8567	0.8861	0.8566	0.8866
		0.15	0.8634	0.8795	0.8576	0.8743	0.8538	0.8870	0.8605	0.8769	0.8557	0.8806	0.8558	0.8808
	DenseGCN	0.3	0.8682	0.8830	0.8827	0.9042	0.8556	0.8870	0.8754	0.8935	0.8692	0.8956	0.8697	0.8953
		0.5	0.8506	0.8596	0.8677	0.8802	0.8357	0.8644	0.8590	0.8698	0.8517	0.8723	0.8523	0.8721
	Graph-Transformer	0.15	0.6394	0.6689	0.6030	0.5928	0.6336	0.7232	0.6207	0.6286	0.6183	0.6580	0.6177	0.6599
		0.3	0.6087	0.6207	0.6332	0.6467	0.5614	0.6271	0.6207	0.6334	0.5973	0.6369	0.5986	0.6366
		0.5	0.6094	0.6129	0.5879	0.5689	0.5939	0.6610	0.5985	0.5901	0.5909	0.6149	0.5908	0.6163
	SimpleGCN	0.15	0.6079	0.6287	0.6415	0.6287	0.5542	0.6497	0.6243	0.6287	0.5978	0.6392	0.5995	0.6395
MAE		0.3	0.6015	0.6215	0.6549	0.6587	0.5325	0.6215	0.6271	0.6395	0.5937	0.6401	0.5960	0.6395
		0.5	0.6069	0.6273	0.6231	0.6048	0.5650	0.6610	0.6149	0.6159	0.5940	0.6329	0.5951	0.6337
		0.15	0.6003	0.6194	0.5863	0.5749	0.5794	0.6667	0.5932	0.5963	0.5828	0.6208	0.5830	0.6221
	DenseGCN	0.3	0.6010	0.6145	0.6332	0.6108	0.5469	0.6384	0.6166	0.6126	0.5900	0.6246	0.5917	0.6250
		0.5	0.5967	0.5951	0.6047	0.5808	0.5596	0.6271	0.6007	0.5879	0.5821	0.6040	0.5830	0.6047
		0.15	0.7327	0.7415	0.6566	0.6527	0.7419	0.7853	0.6926	0.6943	0.6992	0.7190	0.6977	0.7209
	Graph-Transformer	0.3	0.7303	0.7432	0.6533	0.6587	0.7401	0.7853	0.6897	0.6984	0.6967	0.7220	0.6950	0.7238
		0.5	0.7331	0.7578	0.7085	0.7305	0.7220	0.7797	0.7206	0.7439	0.7153	0.7551	0.7150	0.7558
		0.15	0.7436	0.7563	0.7286	0.7246	0.7292	0.7797	0.7360	0.7401	0.7289	0.7521	0.7289	0.7529
SimCLR	SimpleGCN	0.3	0.7387	0.7673	0.7387	0.7305	0.7184	0.7910	0.7387	0.7485	0.7286	0.7607	0.7289	0.7616
		0.5	0.7286	0.7531	0.7286	0.7305	0.7076	0.7740	0.7286	0.7416	0.7181	0.7523	0.7185	0.7529
	DenseGCN	0.15	0.7174	0.7333	0.7102	0.7246	0.6986	0.7514	0.7138	0.7289	0.7044	0.7380	0.7046	0.7384
		0.3	0.7268	0.7515	0.7219	0.7425	0.7076	0.7684	0.7244	0.7470	0.7148	0.7554	0.7150	0.7558
		0.5	0.7131	0.7301	0.6951	0.7126	0.6986	0.7514	0.7040	0.7212	0.6968	0.7320	0.6968	0.7326

TABLE S.4 Performance metrics for the test set for edge-weighted graph (glomeruli + cortical TI tiles) classification models on the WSIs. Each metric was computed from the aggregated confusion matrix of all 5 test folds, as they are disjoint sets. The best-performing model according to WSI-level accuracy is highlighted in bold, as well as the highest value across models for each metric.

Fig. S.2. ROC curve and average AUC on the test set of the WSIs across 5 folds for the best-performing graph (glomeruli + cortical TI tiles) classification model configuration with each graph construction approach.

C. Glomeruli + Arteries + Cortical TI tiles

			Precision		Sensitivity		Spe	cificity	F1-Score		Balanced accuracy		Accuracy	
Feature extractor	Classifier	k	WSI-level	Biopsy-level	WSI-level	Biopsy-level	WSI-level	Biopsy-level	WSI-level	Biopsy-level	WSI-level	Biopsy-level	WSI-level	Biopsy-level
		1	0.6990	0.7176	0.7188	0.7305	0.6643	0.7288	0.7088	0.7240	0.6915	0.7297	0.6926	0.7297
	Graph-Transformer	2	0.6883	0.7072	0.7238	0.7665	0.6444	0.7006	0.7056	0.7356	0.6841	0.7335	0.6857	0.7326
		3	0.6868	0.7039	0.7371	0.7545	0.6354	0.7006	0.7111	0.7283	0.6862	0.7275	0.6883	0.7267
		1	0.6724	0.6837	0.7854	0.8024	0.5848	0.6497	0.7245	0.7383	0.6851	0.7261	0.6892	0.7238
	SimpleGCN	2	0.6749	0.7016	0.7704	0.8024	0.5975	0.6780	0.7195	0.7486	0.6839	0.7402	0.6874	0.7384
Swin		3	0.6710	0.7021	0.7704	0.7904	0.5903	0.6836	0.7173	0.7437	0.6803	0.7370	0.6840	0.7355
Swiii		1	0.6739	0.6989	0.7704	0.7784	0.5957	0.6836	0.7189	0.7365	0.6830	0.7310	0.6866	0.7297
	DenseGCN	2	0.6799	0.7120	0.7671	0.7844	0.6083	0.7006	0.7209	0.7464	0.6877	0.7425	0.6909	0.7413
		3	0.6799	0.7059	0.7704	0.7904	0.6065	0.6893	0.7223	0.7458	0.6884	0.7398	0.6918	0.7384
		1	0.6778	0.6979	0.7770	0.8024	0.5993	0.6723	0.7240	0.7465	0.6882	0.7374	0.6918	0.7355
	SimpleGAT	2	0.6709	0.6935	0.7837	0.8263	0.5830	0.6554	0.7229	0.7541	0.6834	0.7409	0.6874	0.7384
		3	0.6815	0.6952	0.7621	0.7784	0.6137	0.6780	0.7196	0.7345	0.6879	0.7282	0.6909	0.7267
		1	0.6513	0.6646	0.6123	0.6287	0.6444	0.7006	0.6312	0.6462	0.6284	0.6647	0.6277	0.6657
	Graph-Transformer	2	0.6580	0.6731	0.6339	0.6287	0.6426	0.7119	0.6458	0.6502	0.6383	0.6703	0.6381	0.6715
		3	0.6632	0.6774	0.6423	0.6287	0.6462	0.7175	0.6526	0.6522	0.6442	0.6731	0.6442	0.6744
	SimpleGCN	1	0.5808	0.6199	0.6156	0.6347	0.5181	0.6328	0.5977	0.6272	0.5668	0.6337	0.5688	0.6337
		2	0.6010	0.6242	0.5840	0.5868	0.5794	0.6667	0.5924	0.6049	0.5817	0.6267	0.5818	0.6279
MAE		3	0.5867	0.5943	0.6473	0.6228	0.5054	0.5989	0.6155	0.6082	0.5763	0.6108	0.5792	0.6105
I III IL	DenseGCN	1	0.5821	0.5890	0.6073	0.5749	0.5271	0.6215	0.5945	0.5818	0.5672	0.5982	0.5688	0.5988
		2	0.5997	0.6257	0.6506	0.6407	0.5289	0.6384	0.6241	0.6331	0.5897	0.6396	0.5922	0.6395
		3	0.5909	0.5976	0.6273	0.5868	0.5289	0.6271	0.6086	0.5921	0.5781	0.6070	0.5801	0.6076
		1	0.6117	0.6460	0.6290	0.6228	0.5668	0.6780	0.6202	0.6341	0.5979	0.6504	0.5991	0.6512
	SimpleGAT	2	0.6165	0.6456	0.6206	0.6108	0.5812	0.6836	0.6186	0.6277	0.6009	0.6472	0.6017	0.6483
		3	0.6100	0.6585	0.6090	0.6467	0.5776	0.6836	0.6095	0.6526	0.5933	0.6652	0.5939	0.6657
		1	0.7097	0.7296	0.7038	0.6946	0.6877	0.7571	0.7068	0.7117	0.6958	0.7258	0.6961	0.7267
	Graph-Transformer	2	0.7219	0.7500	0.6522	0.6826	0.7274	0.7853	0.6853	0.7147	0.6898	0.7340	0.6883	0.7355
		3	0.7152	0.7515	0.7188	0.7425	0.6895	0.7684	0.7170	0.7470	0.7042	0.7554	0.7048	0.7558
		1	0.7409	0.7764	0.7421	0.7485	0.7184	0.7966	0.7415	0.7622	0.7303	0.7726	0.7307	0.7733
	SimpleGCN	2	0.7441	0.7744	0.7404	0.7605	0.7238	0.7910	0.7423	0.7674	0.7321	0.7757	0.7325	0.7762
SimCLR		3	0.7429	0.7818	0.7404	0.7725	0.7220	0.7966	0.7417	0.7771	0.7312	0.7845	0.7316	0.7849
		1	0.7262	0.7391	0.7371	0.7126	0.6986	0.7627	0.7316	0.7256	0.7178	0.7376	0.7186	0.7384
1	DenseGCN	2	0.7347	0.7391	0.7188	0.7126	0.7184	0.7627	0.7267	0.7256	0.7186	0.7376	0.7186	0.7384
		3	0.7243	0.7412	0.7388	0.7545	0.6949	0.7514	0.7315	0.7478	0.7169	0.7530	0.7177	0.7529
1	SimpleGAT	1	0.7265	0.7654	0.7205	0.7425	0.7058	0.7853	0.7235	0.7538	0.7131	0.7639	0.7134	0.7645
1		2	0.7298	0.7607	0.7371	0.7425	0.7040	0.7797	0.7334	0.7515	0.7205	0.7611	0.7212	0.7616
		3	0.7294	0.7500	0.7354	0.7365	0.7040	0.7684	0.7324	0.7432	0.7197	0.7524	0.7203	0.7529

TABLE S.5 Performance metrics for the test set for hub-based graph (glomeruli + arteries + cortical TI tiles) classification models on the WSIs. Each metric was computed from the aggregated confusion matrix of all 5 test folds, as they are disjoint sets. The best-performing model according to WSI-level accuracy is highlighted in bold, as well as the highest value across models for each metric.

			Precision		Sens	sitivity	Spe	cificity	F1-	Score	Balanced accuracy		Accuracy	
Feature extractor	Classifier	α	WSI-level	Biopsy-level	WSI-level	Biopsy-level	WSI-level	Biopsy-level	WSI-level	Biopsy-level	WSI-level	Biopsy-level	WSI-level	Biopsy-level
		0.15	0.6874	0.6957	0.7537	0.7665	0.6282	0.6836	0.7190	0.7293	0.6910	0.7250	0.6935	0.7238
	Graph-Transformer	0.3	0.6882	0.7151	0.7637	0.7665	0.6245	0.7119	0.7240	0.7399	0.6941	0.7392	0.6970	0.7384
		0.5	0.6785	0.6811	0.7654	0.7545	0.6065	0.6667	0.7193	0.7159	0.6859	0.7106	0.6892	0.7093
		0.15	0.6696	0.6935	0.7587	0.7725	0.5939	0.6780	0.7114	0.7309	0.6763	0.7252	0.6797	0.7238
Swin	SimpleGCN	0.3	0.6706	0.6923	0.7554	0.7545	0.5975	0.6836	0.7105	0.7221	0.6764	0.7191	0.6797	0.7180
		0.5	0.6681	0.6919	0.7637	0.7665	0.5884	0.6780	0.7127	0.7273	0.6761	0.7222	0.6797	0.7209
		0.15	0.6734	0.7090	0.7754	0.8024	0.5921	0.6893	0.7208	0.7528	0.6837	0.7458	0.6874	0.7442
	DenseGCN	0.3	0.6760	0.7027	0.7671	0.7784	0.6011	0.6893	0.7186	0.7386	0.6841	0.7339	0.6874	0.7326
		0.5	0.6779	0.7021	0.7704	0.7904	0.6029	0.6836	0.7212	0.7437	0.6866	0.7370	0.6900	0.7355
	Graph-Transformer	0.15	0.6254	0.6282	0.6140	0.5868	0.6011	0.6723	0.6196	0.6068	0.6075	0.6296	0.6078	0.6308
		0.3	0.6043	0.6108	0.6023	0.6108	0.5722	0.6328	0.6033	0.6108	0.5873	0.6218	0.5879	0.6221
		0.5	0.6096	0.6205	0.6106	0.6168	0.5758	0.6441	0.6101	0.6186	0.5932	0.6304	0.5939	0.6308
		0.15	0.5945	0.6296	0.6073	0.6108	0.5505	0.6610	0.6008	0.6201	0.5789	0.6359	0.5801	0.6366
MAE	SimpleGCN	0.3	0.5746	0.5965	0.6090	0.6108	0.5108	0.6102	0.5913	0.6036	0.5599	0.6105	0.5619	0.6105
		0.5	0.5792	0.5989	0.6206	0.6347	0.5108	0.5989	0.5992	0.6163	0.5657	0.6168	0.5680	0.6163
		0.15	0.6000	0.6221	0.6439	0.6407	0.5343	0.6328	0.6212	0.6313	0.5891	0.6367	0.5913	0.6366
	DenseGCN	0.3	0.5898	0.6319	0.5957	0.6168	0.5505	0.6610	0.5927	0.6242	0.5731	0.6389	0.5740	0.6395
		0.5	0.5990	0.6273	0.6140	0.6048	0.5542	0.6610	0.6064	0.6159	0.5841	0.6329	0.5853	0.6337
		0.15	0.7314	0.7547	0.7022	0.7186	0.7202	0.7797	0.7165	0.7362	0.7112	0.7491	0.7108	0.7500
	Graph-Transformer	0.3	0.7138	0.7197	0.6722	0.6766	0.7076	0.7514	0.6924	0.6975	0.6899	0.7140	0.6892	0.7151
		0.5	0.7237	0.7134	0.6755	0.7006	0.7202	0.7345	0.6988	0.7069	0.6979	0.7175	0.6970	0.7180
		0.15	0.7405	0.7619	0.7454	0.7665	0.7166	0.7740	0.7430	0.7642	0.7310	0.7702	0.7316	0.7703
SimCLR	SimpleGCN	0.3	0.7399	0.7785	0.7288	0.7365	0.7220	0.8023	0.7343	0.7569	0.7254	0.7694	0.7255	0.7703
		0.5	0.7458	0.7711	0.7321	0.7665	0.7292	0.7853	0.7389	0.7688	0.7307	0.7759	0.7307	0.7762
	DenseGCN	0.15	0.7152	0.7394	0.7354	0.7305	0.6823	0.7571	0.7252	0.7349	0.7089	0.7438	0.7100	0.7442
		0.3	0.7033	0.7440	0.7338	0.7485	0.6643	0.7571	0.7182	0.7463	0.6990	0.7528	0.7004	0.7529
		0.5	0.7169	0.7381	0.7205	0.7425	0.6913	0.7514	0.7187	0.7403	0.7059	0.7470	0.7065	0.7471

TABLE S.6 Performance metrics for the test set for edge-weighted graph (glomeruli + arteries + cortical TI tiles) classification models on the WSIs. Each metric was computed from the aggregated confusion matrix of all 5 test folds, as they are disjoint sets. The best-performing model according to WSI-level accuracy is highlighted in bold, as well as the highest value across models for each metric.

Fig. S.3. ROC curve and average AUC on the test set of the WSIs across 5 folds for the best-performing graph (glomeruli + arteries + cortical TI tiles) classification model configuration with each graph construction approach.

S.II. Aggregated confusion matrices

A. Mini-dataset

1) Baseline classification models

Fig. S.4. Normalized confusion matrices for the test set for baseline classification models on the mini-dataset. The confusion matrices of all 5 test folds were aggregated and normalized.

2) Graph classification models

Fig. S.5. Normalized confusion matrices on the test set of the mini-dataset for the best-performing graph classification model, Graph-Transformer using MAE as feature extractor to construct the graphs. The confusion matrices of all 5 test folds were aggregated and normalized.

B. WSIs

1) Baseline classification models

Fig. S.6. Normalized confusion matrices on the test set for baseline classification models on the WSIs. The confusion matrices of all 5 test folds were aggregated and normalized.

2) Graph classification models

Fig. S.7. Normalized confusion matrix on the test set of the WSIs for the best-performing glomeruli-only graph classification model, SimpleGCN using Swin as feature extractor to construct the graphs. The confusion matrices of all 5 test folds were aggregated and normalized.

Fig. S.8. Normalized confusion matrix on the test set of the WSIs for the best-performing graph (glomeruli + arteries) classification model configuration with each graph construction approach at the WSI level. The confusion matrices of all 5 test folds were aggregated and normalized.

Fig. S.9. Normalized confusion matrix on the test set of the WSIs for the best-performing graph (glomeruli + arteries) classification model configuration with each graph construction approach at the biopsy level. The confusion matrices of all 5 test folds were aggregated and normalized.

Fig. S.10. Normalized confusion matrix on the test set of the WSIs for the best-performing graph (glomeruli + cortical TI tiles) classification model configuration with each graph construction approach at the WSI level. The confusion matrices of all 5 test folds were aggregated and normalized.

Fig. S.11. Normalized confusion matrix on the test set of the WSIs for the best-performing graph (glomeruli + cortical TI tiles) classification model configuration with each graph construction approach at the biopsy level. The confusion matrices of all 5 test folds were aggregated and normalized.

Fig. S.12. Normalized confusion matrix on the test set of the WSIs for the best-performing graph (glomeruli + arteries + cortical TI tiles) classification model configuration with each graph construction approach at the WSI level. The confusion matrices of all 5 test folds were aggregated and normalized.

Fig. S.13. Normalized confusion matrix on the test set of the WSIs for the best-performing graph (glomeruli + arteries + cortical TI tiles) classification model configuration with each graph construction approach at the biopsy level. The confusion matrices of all 5 test folds were aggregated and normalized.