SISTEMI DISTRIBUITI E CLOUD COMPUTING A.A. 2019/2020

Seconda prova intermedia - 5/2/2020

Cognome	Nome
Matricola	<u>_</u>

Domanda 1 (punti 7)

- a) Si spieghi il significato delle componenti del clock logico vettoriale di un processo P_i e si descriva il protocollo di aggiornamento del clock logico vettoriale.
- b) Si spieghi qual è l'obiettivo del multicasting causalmente ordinato e perché si applica il clock logico vettoriale in questo algoritmo e non quello scalare.
- c) Si determinino i valori del clock scalare e del clock vettoriale di tutti gli eventi nel sottostante diagramma temporale.
- d) Si discuta se, dato il valore del clock sia scalare che vettoriale determinato al punto c), quali delle seguenti affermazioni è falsa, motivando opportunamente la risposta:
 - 1. $e_1 \rightarrow e_3$
 - 2. $e_1 \rightarrow e_5$
 - 3. $e_2 \rightarrow e_3$
 - 4. $e_1 \rightarrow e_4$

Domanda 2 (punti 6)

- a) Si definiscano la consistenza linearizzabile e la consistenza causale e se ne evidenzino le differenze.
- b) Qual è il massimo grado di consistenza data centrica soddisfatto dall'archivio di dati sottostante? Motivare la risposta.

P1:	W(y)0	W(x)1	R(x)1	R(y)0
P2:		W(y)1	R(y)1	R(x)1
P3:		R(x)1	R(y)0	
P4:	W(x)0	R(v)0	R(x)0	

c) Qual è il massimo grado di consistenza data centrica soddisfatto dall'archivio di dati sottostante? Motivare la risposta.

P1:	W(x)0	W(x)1	R(x)2	W(x)3
P2:	R(x)0	W(x)2	R(x)3	
P3:	R(x)1	R(x)1	R(x)2	

Domanda 3 (punti 7)

- a) Si descriva un algoritmo di elezione a scelta tra quelli esaminati a lezione, indicando anche quali sono le assunzioni sul modello del sistema.
- b) Si discuta cosa accade se durante l'elezione condotta in base all'algoritmo descritto al punto a):
 - due processi partecipanti avviano contemporaneamente l'elezione;
 - uno dei processi partecipanti subisce un crash;

- avviene una partizione di rete.
- c) Perché l'algoritmo di Paxos può essere usato per l'elezione di un leader in un sistema distribuito (ad es. in Zookeeper)? Quali eventuali vantaggi presenta rispetto all'algoritmo descritto al punto a)?
- d) Si può usare l'algoritmo dei generali bizantini per l'elezione di un leader ed eventualmente con quali vantaggi e svantaggi rispetto all'algoritmo descritto al punto a)?

Domanda 4 (punti 6)

- a) Si presenti un algoritmo di mutua esclusione distribuita a scelta tra Ricart-Agrawala e Maekawa.
- b) Quali sono le differenze tra i due algoritmi in termini di distribuzione delle decisioni, prestazioni, safety, livenesse ordinamento delle richieste di accesso in sezione critica?
- c) Si può usare l'algoritmo di Raft per la mutua esclusione distribuita ed eventualmente con quali vantaggi e svantaggi rispetto all'algoritmo considerato al punto a)?

Domanda 5 (punti 6)

- a) Si descrivano l'obiettivo, le assunzioni rispetto ai modelli di sistema e di failure considerati di un algoritmo di consenso a scelta tra Paxos e Raft, spiegandone il funzionamento.
- b) Si supponga che un sistema composto da 2 proposer e 3 acceptor stia usando l'algoritmo di Paxos e che durante il primo round della fase di prepare uno dei due proposer subisca un crash e successivamente riprenda a funzionare. Cosa accade?
- c) Si supponga che un sistema composto da 2 proposer e 3 acceptor stia usando l'algoritmo di Paxos e che durante il primo round della fase di accept uno dei tre acceptor subisce un crash e successivamente riprenda a funzionare. Cosa accade?
- d) Perché l'algoritmo di Raft è tollerante alle partizioni di rete?