A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 2EE

Bookmark

Show all steps: (

ON

Problem

Prove part:

If p > 2 is a prime and $a \neq \pmod{p}$, then

$$a^{(p-1)/2} \equiv \pm 1 \pmod{p}$$

Step-by-step solution

Step 1 of 3

Consider any arbitrary odd prime number p, that is, p > 2. Suppose that $a \neq 0 \pmod{p}$.

Objective is to prove that

$$a^{(p-1)/2} \equiv \pm 1 \pmod{p}$$

Since $a \neq 0 \pmod{p}$, it show that there is no common factor between a and p. That is, $\gcd(a, p) = 1$. By Fermat's theorem,

$$a^{p-1} \equiv 1 \pmod{p}$$

or

$$a^{p-1}-1\equiv 0 \pmod{p}$$

Comment

Step 2 of 3

Note that, $a^{p-1}-1$ can be factorise in the following way:

$$a^{p-1}-1=(a^{(p-1)/2}+1)(a^{(p-1)/2}-1)$$

by using the formula $(a^2-b^2)=(a+b)(a-b)$. So, $(a^{(p-1)/2}+1)(a^{(p-1)/2}-1)\equiv 0 \pmod p.$ It implies that, either $a^{(p-1)/2}+1\equiv 0 \pmod p$, or $a^{(p-1)/2}-1\equiv 0 \pmod p$. That is, either $a^{(p-1)/2}\equiv -1 \pmod p$, or $a^{(p-1)/2}\equiv -1 \pmod p$.

Comment

Step 3 of 3

Hence, if $a \neq 0 \pmod{p}$ then $a^{(p-1)/2} \equiv \pm 1 \pmod{p}$.

Comment