Binary Commutative Polymorphisms of Core Triads

Michael Wernthaler

January 7, 2021

Contents

1	TODO Task 1: Lemma	2
	1.1 Proof	2
	1.2 Notes	3
2	DONE Task 2: Arc-Consistency Procedure	4
	2.1 Notes	4
	2.2 Benchmarks	4
3	DONE Task 3: Core Triads	5
	3.1 Algorithm	5
	3.2 Notes	5
4	TODO Task 4: Commutative Polymorphisms	6
	4.1 Notes	6
5	Notes	7
	5.1 Deprecated	7
	5.2 Program	
	5.3 Todo	

1 TODO Task 1: Lemma

We need to prove the following lemma:

Lemma 1. Let \mathbb{T} be a finite tree. The following are equivalent:

- 1. \mathbb{T} is a core
- 2. $End(\mathbb{T}) = \{id\}$
- 3. $AC_{\mathbb{T}}(\mathbb{T})$ terminates with L(v) = v for all vertices v of \mathbb{T}

1.1 Proof

 \square "1. \Longrightarrow 2." Let \mathbb{T} be a core. Let's assume there is another homomorphism $f \in End(\mathbb{T})$ with $f \neq id$. Knowing that \mathbb{T} is a tree we conclude there must be a leaf u on which f is not the identity. We consider $p = u_0u_1...u_l$ to be the unique path from u to f(u), which maps to the unique path from f(u) to f(f(u)). Our claim is that there has to be a vertex v on p for which f(v) = v. To show this we take the orbit of u and the paths in between.

In the simple case we suppose that f(f(u)) = u. This implies $f(u_i) = u_{l-i}$ for $i \in \{0, 1, ..., l\}$. Since no double-edges are allowed, we conclude that l = 2m, which gives us $f(u_m) = u_m$.

For the general case, we consider the orbit of u to be of size $n \geq 3$. Because of $f(u_0) = u_l$ there is a greatest $m \leq l$ such that $f(u_i) = u_{l-i}$, for every $i \in \{0, 1, ..., m\}$ from which follows that there must be a cyclic path from u_m to $f^n(u_m) = u_m$ of length n(l-2m). Since \mathbb{T} is a tree, we require that n(l-2m) = 0. The latter equation can only be satisfied for l = 2m, and again we get $f(u_m) = u_m$.

Now let $\mathbb{T} = v(\xi_1, ..., \xi_k)$ with $\xi_a \to \xi_b$ for at least one pair ξ_a, ξ_b , where ξ_a contains u and ξ_b contains f(u). We then construct a nonbijective endomorphism h of \mathbb{T} by taking f on ξ_a . For every other component we define h as id. But then \mathbb{T} can't be a core, which means our assumption was wrong and $End(\mathbb{T})$ cannot contain such a f, but only id.

- \boxtimes "2. \Longrightarrow 1." If $End(\mathbb{T})=id$, then the only homomorphism $h:\mathbb{T}\to\mathbb{T}$ is id, which is an automorphism. Hence \mathbb{T} must be a core.
- \square "2. \Longrightarrow 3." **TODO** ... we can assume that AC solves $CSP(\mathbb{T})$. So if $AC_{\mathbb{T}}(\mathbb{T})$ derives L(v) such that it contains another vertex $u \neq v$,

there must be a homomorphism $h : \mathbb{T} \to \mathbb{T}$ such that h(v) = u. **TODO** Why must there be such a homomorphism? However, we know that $End(\mathbb{T}) = \{id\}$, so L(v) can not contain such a vertex u, but only v. Hence $L(v) = \{v\}$.

 \boxtimes "3. \Longrightarrow 2." It's obvious, that always $\{id\} \subseteq End(\mathbb{T})$. Since $AC_{\mathbb{T}}(\mathbb{T})$ derived L(v) = v for all vertices v of \mathbb{T} we know there can't be another homomorphism h for which $h(v) \neq v$, hence $End(\mathbb{T}) = \{id\}$.

1.2 Notes

- Undirected trees are always homomorphically equivalent to a path of length 1
- Proposed by Florian:
 - 1. There must be a leaf u on which f is not the identity.
 - 2. the (unique shortest) path from u to f(u) maps to the (unique shortest) path from f(u) to f(f(u))
 - 3. (simple case) if f(f(u)) = u then there is a vertex v on this path such that f(v) = v
 - 4. (in general) take the orbit of u and the paths in between, this gives a subtree, TODO show existence of v with f(v) = v in this subtree
 - 5. cut \mathbb{T} at v into pieces
 - 6. on the components containing u take f on other components take the identity, this gives a noninjective endomorphism

2 DONE Task 2: Arc-Consistency Procedure

Implement the arc-consistency procedure such that your algorithm runs in linear time in the size of the input.

Algorithm 1: $AC_{\mathbb{T}}$ (\mathbb{T} is a triad)

1 Input: digraph \mathbb{G} , initial lists $L: G \mapsto P(T)$ Output: Is there a homomorphism $h: \mathbb{G} \mapsto \mathbb{T}$ such that $h(v) \in L(v)$ for all $v \in G$

2.1 Notes

- Can we optimize AC for paths?
- Done by implementing AC-3 for graphs

2.2 Benchmarks

```
Algorithm 2: Algorithm for finding core triads
Input: An unsigned integer m
Output: A list of all core triads whose arms each have a length \leq m
// Finding a list of RCAs
armlist \leftarrow [\ ];
foreach arm p with length(p) \leq m do
    if ACR_p(p) didn't derive L(v) \neq v for any vertex v then
     put p in armlist
// Assembling the RCAs to core triads
triadlist \leftarrow [];
foreach \{p_1, p_2\} in armlist do
    if ACR_{p_1p_2}(p_1p_2) derived L(v) \neq v for some vertex v then
        Drop the pair and cache the two indices;
foreach triad \mathbb{T} = \{p_1, p_2, p_3\} do
    if \mathbb{T} contains a cached index pair then
     Drop \mathbb{T} and continue;
    if AC_{\mathbb{T}}(\mathbb{T}) didn't derive L(v) \neq v for some vertex v then
     | Put T in triadlist;
return triadlist
```

3 DONE Task 3: Core Triads

Write an algorithm that enumerates all core triads up to a fixed path-length.

3.1 Algorithm

Algorithm 2 displays the pseudo-code of the entire core triad generation.

3.2 Notes

3.2.1 Observations

- If maxlength(p) = n then number of possible paths is $\sum_{i=1}^{n} 2^{i}$
- Let $\theta = (p_1p_2p_3)$ be a core triad, then there's no $\{p_a, p_b\}$ such that $p_a \to p_b$
- A triad with two identical arms is obviously not a core triad

- ACR names a "pre-colored" Arc-Consistency Procedure that precolors the root r that has degree 3 with $L(r) = \{r\}$
- "Rooted core arm" (RCA) names an arm a for which $ACR_a(a)$ did derive $L(v) = \{v\}$ for every vertex v
- A triad with an arm that is not a RCA can't be a core triad

3.2.2 Algorithm

• Running AC on an arm, doesn't gain helpful information about the triad

$AC \rightarrow id$	no statement
$AC \not\rightarrow id$	no statement
$ACR \rightarrow id$	no statement
$ACR \nrightarrow id$	triad cannot be a core

- "100" serves as an example for an arm, where AC doesn't derive only id, yet ("100", "11", "00") is still a core
- Only if ACR does not derive only id, we can drop the arm

3.2.3 Optimizations

- Derive sister triads, e.g. ("01","0","11") from ("10","1","00")
- Optimize arc consistency for endomorphisms (don't check for emtpy lists)

4 TODO Task 4: Commutative Polymorphisms

Write an algorithm that enumerates all core triads that do not have a commutative polymorphism up to a fixed path-length. For every triad $\mathbb T$ there is a unique homomorphism

4.1 Notes

• If conjecture is true, then singleton-arc-consistency can be used to check commutative polymorphisms in the same way like path-consistency can be used to check majority polymorphisms

- Singleton-arc-consistency receives the following graph as its input:
 - Calculate the product graph of $\mathbb T$ with itself
 - Merge every pair of vertices (x, y) and (y, x) to one vertex

5 Notes

5.1 Deprecated

5.1.1 Task 1

 \boxtimes "3. \Longrightarrow 1." If $AC_{\mathbb{T}}(\mathbb{T})$ terminates with L(v) = v for all vertices v of \mathbb{T} , we know that, if there was a homomorphism $h: \mathbb{T} \to \mathbb{T}$, h would map each vertex v to itself. We see that h is obviously an automorphism, hence \mathbb{T} must be a core.

5.2 Program

5.2.1 Flags

- \bullet -v be verbose
- -l NUM max arm length of triad
- -p NAME polymorphism to check
- (-s save triads to file)

5.3 Todo

5.3.1 TODO Task 1 2 \Longrightarrow 3

Exercise in script contains a proof, where one direction uses tree duality. Use it to show this implication

5.3.2 TODO Serialize triads

5.3.3 TODO Explain notation in context of triads

e.g. $(p_1p_2p_3)$