

Robert Bauer

Warnemünde, 04/17/2012

Day 1 - Agenda:

- ▶ What is **?**?
- ► Installation of Rand RStudio
- ▶ Importing Data
- Accessing Data
- Vector Operations
- ► Plots
- Exercises
- ► Help
- Literature

" is a freely available programming language for statistical analyses and graphics, much like S-Plus or SAS"

®'s Strengths

- Data management & manipulation
- Statistics
- Graphics
- Programming language (calculations repeatable)
- available for Windows, Linux and Mac OS X
- ► Free
- comes with lots of functions, still extendable
- no need to know all functions, but to know how to find them!
- HELP: Active user community

- ▶ Not very user friendly at start
- ► No commercial support
- ▶ Slower than other programming languages (Java, C++)

R

Mhat is R?
Contributors
Screenshots
What's new?

Download, Packages CRAN

R Project
Foundation
Members &
Donors
Mailing Lists
Bug Tracking
Developer Page
Conferences
Search

http://www.r-project.org/

The R Project for Statistical Computing

Installation of

required version: R 2.11.1 or higher

Windows:

- Download "base distribution" from CRAN, e.g. http://mirrors.softliste.de/cran/bin/ windows/base/R-2.15.0-win.exe
- run default installation process

Ubuntu:

- Run: System -> Administration -> Synaptic Package Manager
- search for "r-base" using the Quick-Filter and proceed installation process

http://rstudio.org/

- Download -> RStudio Desktop
- Choose recommended version

Windows:

- RStudio 0.95.265 Windows XP/Vista/7
- run default installation process

Ubuntu:

- RStudio 0.95.265 Debian 6+/Ubuntu 10.04+ (64-bit)
- Open deb package with "Ubuntu Software Center"

Getting Started!

Console & History

Arithmetic Operators

Operator	Description	Example
+	addition	4+3
-	subtraction	4-3
*	multiplication	4*3
^ or **	exponentiation	4^3
/	division	4/3
%%	modulus (x mod y)	4%%3
%/%	integer division	4%/%3

Run Code from Scripts - Another Way to Execute Commands

Arithmetic Functions

Operator	Description	Example
sqrt()	square root	sqrt(4)
<pre>sum(), prod()</pre>	sum, product	prod(3,4)
exp()	exponential function	exp(1)
log()	natural logarithm	log(exp(4))
log(x, base)	base specific logarithm	log(4,10)

Importing CSV-Files

Importing CSV-Files

CSV-Files

Data Import

read.table(file, header = FALSE, sep = "", dec = ".")

file path incl. filename header TRUE: read the first line as a header of column nan	
	ies
sep character separating values, (default: "" = white sp	ace)
dec character indicating decimal points	

further arguments and explanations ?read.table

```
seagrass <- read.table("path_to_file/seagrass.csv", header=T
, sep=',', dec=".") # load dataframe</pre>
```

```
seagrass <- read.table("path_to_file/seagrass.csv", header=T
, sep=',', dec=".") # load dataframe</pre>
```

```
seagrass <- read.table("path_to_file/seagrass.csv", header=T
    , sep=',', dec=".") # load dataframe

setwd("~/Dropbox/R_course/day1") # set working directory
seagrass <- read.table("seagrass.csv", header=T, sep=',',
    dec=".") # load dataframe</pre>
```

```
# accsess data:
seagrass # return entire table in console
View(seagrass) # open table in editor
head(seagrass) # show first 10 rows incl. header
```

```
seagrass <- read.table("path_to_file/seagrass.csv", header=T
    , sep=',', dec=".") # load dataframe

setwd("~/Dropbox/R_course/day1") # set working directory
seagrass <- read.table("seagrass.csv", header=T, sep=',',
    dec=".") # load dataframe

# accsess data:
seagrass # return entire table in console
View(seagrass) # open table in editor
head(seagrass) # show first 10 rows incl. header</pre>
```

```
colnames(seagrass) <- c("area", "n", "urchins") # rename
        columns
head(seagrass)</pre>
```

Selecting a single column - 3 ways to Rome

```
seagrass[,1] # selecting first column
seagrass$area # selecting column name
attach(seagrass) # load each column of dataframe as vector
area
```

Basic Vector Functions

Function	Description
length()	length of vector
unique()	unique values of a vector
min(), max()	minimum, maximum
<pre>mean(), median()</pre>	average, median
sd(), var()	standard deviation, variance
<pre>sum(), prod()</pre>	sum, product
<pre>cumsum(), cumprod()</pre>	cumulative sum/ product
range()	min() and max()
<pre>summary()</pre>	min, 1st quart., median, mean, 3rd quart., max

e.g. length(area)

Subsetting Data

```
seagrass$n[seagrass$urchins == "ja"]
n[urchins == "ja"] # seagrass density at areas with sea
    urchins
subset(n, urchins == "ja")
subset(seagrass, urchins == "ja" & area > 40)
which(n > 40) # index of areas where n > 40
```

Logical Operators

Operator	Description	Example (a=2, b=1)
<	less than	a <b false<="" td="" →="">
<=	less than or equal to	a<=b → FALSE
>	greater than	a>b → TRUE
>=	greater than or equal to	a>=b → TRUE
==	equal to	a==b → FALSE
! =	not equal to	a!=b → TRUE
1	or	a b → TRUE
&	and	a&b → FALSE
isTRUE(x)	test if x is TRUE	isTRUE(a) → FALSE

Exercises

- 1. In which areas was the seagrass density less than 30 or greater than 50?
- 2. What is the range of the seagrass density per area type?
- 3. What is the average seagrass density for areas with and without sea urchins?

Results

```
# 1.In which areas was the seagrass density less than 30 or
    greater than 50?
> which(n < 30 | n > 50) # index of areas!
[1] 3 6 10 12 15 16 22 23 24
# 2. What is the range of the seagrass density per area type?
> range(n[urchins == "ja"])
[1] 42 70
> range(n[urchins == "nein"])
[1] 22 52
# 3. What is the average seagrass density for areas with and
    without sea urchins?
> mean(n[urchins == "ja"])
[1] 52.09091
> mean(n[urchins == "nein"])
[1] 35.71429
```

```
attach(seagrass) # load each column of dataframe as vector
boxplot(n[urchins == "ja"], n[urchins == "nein"], data =
    seagrass) # boxplot of specified categories
```

```
attach(seagrass) # load each column of dataframe as vector
boxplot(n[urchins == "ja"], n[urchins == "nein"], data =
    seagrass) # boxplot of specified categories
```

```
boxplot(n~urchins, data = seagrass) # boxplot of all
  categories given in urchins
```

```
attach(seagrass) # load each column of dataframe as vector
boxplot(n[urchins == "ja"], n[urchins == "nein"], data =
      seagrass) # boxplot of specified categories

boxplot(n~urchins, data = seagrass) # boxplot of all
      categories given in urchins
```

```
boxplot(n~urchins, data = seagrass, las=1) # rotate y-axis
  values by 90 degrees
```

```
attach(seagrass) # load each column of dataframe as vector
boxplot(n[urchins == "ja"], n[urchins == "nein"], data =
    seagrass) # boxplot of specified categories

boxplot(n~urchins, data = seagrass) # boxplot of all
    categories given in urchins

boxplot(n~urchins, data = seagrass, las=1) # rotate y-axis
    values by 90 degrees
```

```
boxplot(n~urchins, data = seagrass, las=1, xlab="sea urchins
    ", ylab="seagrass density", names=c("available", "not
    available")) # set axes labels & name boxplot categories
```

Exercises

- ▶ Import "Fish.csv" (mind not available values!)
- ▶ Which was the maximum, which was the minimum size of each caught species?
- Create box-plots of the length distribution of both species and both sexes
- ► Create species specific box-plots of the full, empty and liver weight
- ▶ Define a new vector: Hepta Somatic Index $HSI = \frac{liver\ weight*100}{total\ weight}$
- ▶ What is the median & the range of the HSI per species?

Help

Functions

```
help("mean")
?mean
```

Official Manuals

```
http://cran.r-project.org/manuals.html
An Introduction to R
R Data Import/Export
R Installation and Administration
Writing R Extensions
```

Frequently asked questions (FAQ)

```
http://cran.r-project.org/doc/manuals/R-FAQ.html
```

Mailing List

```
https://stat.ethz.ch/mailman/listinfo/r-help
```

Literature

Uwe Ligges - Programmieren mit R. Springer-Verlag, Heidelberg, 2005. (free copy available on:

http://dx.doi.org/10.1007/978-3-540-79998-6)