Traveling Salesman Problem Einführung zum Problem des Handlungsreisenden

Florian Weingarten

Betreuer:

Dr. Walter Unger Lehrstuhl für Informatik 1 Algorithmen und Komplexität RWTH Aachen

Aachen, 23. Januar 2008

- **Einleitung**
 - Was ist TSP?
- Komplexität
 - Grundlagen (Wdh.)
 - NP-Vollständigkeit
- Approximierbarkeit
 - Nicht-Approximierbarkeit von allgemeinem TSP
 - Metrisches TSP (Δ -TSP)
- Heuristiken
 - MST-Heuristik
 - Christofides Heuristik
 - Ausblick

Problemstellung

- jede Stadt genau einmal besuchen
- zum Ausgangsort zurück kehren
- zurückgelegte Strecke soll möglichst kurz sein

- "Stadt" und "Strecke" nicht wörtlich gemeint
- Tourenplanung
- Logistik
- Entwurf von Mikrochips

Problemstellung

Problem

Handlungsreisender soll Rundreise durch n Städte planen, dabei

- jede Stadt genau einmal besuchen
- zum Ausgangsort zurück kehren
- zurückgelegte Strecke soll möglichst kurz sein

Anwendung

- "Stadt" und "Strecke" nicht wörtlich gemeint
- Tourenplanung
- Logistik
- Entwurf von Mikrochips
- ...

Problemstellung

Problem

Handlungsreisender soll Rundreise durch n Städte planen, dabei

- jede Stadt genau einmal besuchen
- zum Ausgangsort zurück kehren
- zurückgelegte Strecke soll möglichst kurz sein

Anwendung

- "Stadt" und "Strecke" nicht wörtlich gemeint
- Tourenplanung
- Logistik
- Entwurf von Mikrochips

Einleitung 00000 Was ist TSP?

- G = (V, E) ungerichteter gewichteter Graph (V endlich)

- π heißt optimal, wenn die Summe der Kantengewichte minimal ist

Modellierung

Definition

- G = (V, E) ungerichteter gewichteter Graph (V endlich)
- Kostenfunktion $c: E \to \mathbb{N}$
- TSP-Tour (oder Rundreise) π ist ein Hamiltonkreis in G
- \bullet π heißt optimal, wenn die Summe der Kantengewichte minimal ist

Modellierung

Definition

- G = (V, E) ungerichteter gewichteter Graph (V endlich)
- Kostenfunktion $c: E \to \mathbb{N}$
- TSP-Tour (oder Rundreise) π ist ein Hamiltonkreis in G
- ullet π heißt optimal, wenn die Summe der Kantengewichte minimal ist

Optimierungsvariante

Finde eine optimale $\operatorname{Tsp-Tour}$

Entscheidungsvariante

Feststellen, ob Tsp-Tour existiert mit Kosten < b

Modellierung

Definition

- G = (V, E) ungerichteter gewichteter Graph (V endlich)
- Kostenfunktion $c: E \to \mathbb{N}$
- TSP-Tour (oder Rundreise) π ist ein Hamiltonkreis in G
- \bullet π heißt optimal, wenn die Summe der Kantengewichte minimal ist

Optimierungsvariante

Finde eine optimale TSP-Tour

Entscheidungsvariante

Feststellen, ob Tsp-Tour existiert mit Kosten < b

Lösungen

Anzahl der möglichen Lösunger

Anzahl ungerichteter Hamiltonkreise auf n Knoten: $\frac{1}{2}(n-1)!$

Kosten von optimalen Lösungen

Jede Lösung ist mindestens so teuer wie ein MST

Anzahl der möglichen Lösungen

Anzahl ungerichteter Hamiltonkreise auf *n* Knoten: $\frac{1}{2}(n-1)!$

Kosten von optimalen Lösungen

Jede Lösung ist mindestens so teuer wie ein MST

Anzahl der möglichen Lösungen

Anzahl ungerichteter Hamiltonkreise auf n Knoten: $\frac{1}{2}(n-1)!$

Kosten von optimalen Lösungen

Jede Lösung ist mindestens so teuer wie ein MST

Abbildung: Alle $\frac{1}{2} \cdot (5-1)! = 12$ Hamiltonkreise in K_5 mit fixem Startpunkt A

Brute Force

- Alle möglichen Lösungen generieren
- Für jede Lösung die Kosten bestimmen
- Lösung mit minimalen Kosten wählen

п	Anzahl möglicher Lösungen	Benötigte Zeit
5	12	
10	181440	
15	$4.36 \cdot 10^{10}$	
20	$6.08 \cdot 10^{16}$	
25	$3.10 \cdot 10^{23}$	
	$4.42 \cdot 10^{30}$	4.42 Nanosekunden
35	$1.48 \cdot 10^{38}$	0.15 Sekunden
40	$1.02 \cdot 10^{46}$	118 Tage
45	$1.33 \cdot 10^{54}$	4.21 · 10 ⁷ Jahre
50	$3.04 \cdot 10^{62}$	9.6 · 10 ¹⁵ Jahre

Brute Force

Naiver Ansatz

- Alle möglichen Lösungen generieren
- Für jede Lösung die Kosten bestimmen
- Lösung mit minimalen Kosten wählen

n	Anzahl möglicher Lösungen	Benötigte Zeit
5	12	
10	181440	
15	$4.36 \cdot 10^{10}$	
20	$6.08 \cdot 10^{16}$	
25	$3.10 \cdot 10^{23}$	
	$4.42 \cdot 10^{30}$	4.42 Nanosekunden
35	$1.48 \cdot 10^{38}$	0.15 Sekunden
40	$1.02 \cdot 10^{46}$	118 Tage
45	$1.33 \cdot 10^{54}$	$4.21 \cdot 10^{7}$ Jahre
50	$3.04 \cdot 10^{62}$	9.6 · 10 ¹⁵ Jahre

Brute Force

Naiver Ansatz

- Alle möglichen Lösungen generieren
- Für jede Lösung die Kosten bestimmen
- Lösung mit minimalen Kosten wählen

n	Anzahl möglicher Lösungen	Benötigte Zeit
5	12	
10	181440	
15	$4.36 \cdot 10^{10}$	
20	$6.08 \cdot 10^{16}$	
25	$3.10 \cdot 10^{23}$	
30	$4.42 \cdot 10^{30}$	4.42 Nanosekunden
35	$1.48 \cdot 10^{38}$	0.15 Sekunden
40	$1.02 \cdot 10^{46}$	118 Tage
45	$1.33 \cdot 10^{54}$	4.21 · 10 ⁷ Jahre
50	$3.04 \cdot 10^{62}$	9.6 · 10 ¹⁵ Jahre

(Annahme: 10³⁰ Lösungen pro Nanosekunde generieren)

Definition

NP ist die Klasse der **Entscheidungsprobleme**, die von einer NTM in Polynomialzeit entschieden werden können

Alternative Definition

- Lösungen lassen sich als Zertifikat polynomieller Länge kodieren
- es existiert Polynomialzeitverifizierer

Also:

- Mögliche Lösungen "kurz" kodieren
- Effizient testen, ob mögliche Lösung tatsächlich korrekt ist

Definition

NP ist die Klasse der **Entscheidungsprobleme**, die von einer NTM in Polynomialzeit entschieden werden können

Alternative Definition

- Lösungen lassen sich als Zertifikat polynomieller Länge kodieren
- es existiert Polynomialzeitverifizierer

Also

- Mögliche Lösungen "kurz" kodieren
- Effizient testen, ob mögliche Lösung tatsächlich korrekt ist

Definition

NP ist die Klasse der **Entscheidungsprobleme**, die von einer NTM in Polynomialzeit entschieden werden können

Alternative Definition

- Lösungen lassen sich als Zertifikat polynomieller Länge kodieren
- es existiert Polynomialzeitverifizierer

Also:

- Mögliche Lösungen "kurz" kodieren
- Effizient testen, ob mögliche Lösung tatsächlich korrekt ist

Definition

NP ist die Klasse der **Entscheidungsprobleme**, die von einer NTM in Polynomialzeit entschieden werden können

Alternative Definition

- Lösungen lassen sich als Zertifikat polynomieller Länge kodieren
- es existiert Polynomialzeitverifizierer

Also:

- Mögliche Lösungen "kurz" kodieren
- Effizient testen, ob mögliche Lösung tatsächlich korrekt ist

Definition

L' auf L reduzierbar (L' \leq L), wenn f existiert, mit $w \in$ L' \Leftrightarrow $f(w) \in$ L

Definition

L' auf L reduzierbar (L' \leq L), wenn f existiert, mit $w \in$ L' \Leftrightarrow $f(w) \in$ L

Definition

L heißt NP-hart (oder NP-schwer), wenn $L' \leq_p L$ für alle $L' \in NP$

Definition

L' auf L reduzierbar $(L' \leq L)$, wenn f existiert, mit $w \in L' \Leftrightarrow f(w) \in L$

Definition

L heißt NP-hart (oder NP-schwer), wenn $L' \leq_{p} L$ für alle $L' \in NP$

Definition

L heißt NP-vollständig wenn $L \in NP$ und L zusätzlich NP-schwer ist

Grundlagen (Wdh.)

NP-Vollständigkeit

- $TSP \in NP$

NP-Vollständigkeit

Ziel

Entscheidungsvariante von $T{\rm SP}$ ist $NP\text{-vollst"andig:}\ T{\rm SP}\in NPC$

Dazu

- $TSP \in NP$
- TSP ist NP-hard

NP-Vollständigkeit

Grundlagen (Wdh.)

Ziel

Entscheidungsvariante von $T{\rm SP}$ ist $NP\text{-vollst"andig:}\ T{\rm SP}\in NPC$

Dazu:

- $TSP \in NP$
- TSP ist NP-hart

- Eine Lösung ist ein Hamiltonkreis
- Eindeutig bestimmt durch die (geordnete) Angabe der Knoten
- Alle Knoten durchnummerieren: $V = \{1, ..., n\}$
- Pro Knoten werden [log₂(n)] Bits benötigt
- Kodierung des Kreises in $O(n \cdot \log n)$ möglich

Kodierung möglicher Lösungen

- Eine Lösung ist ein Hamiltonkreis
- Eindeutig bestimmt durch die (geordnete) Angabe der Knoten
- Alle Knoten durchnummerieren: $V = \{1, ..., n\}$
- Pro Knoten werden $\lceil \log_2(n) \rceil$ Bits benötigt
- Kodierung des Kreises in $O(n \cdot \log n)$ möglich

Testen ob Lösung korrekt ist

- Jeweils zwei Knoten einlesen
- Kosten von Kante in Kostenmatrix abrufer
- Kosten aller Kanten addieren
- Testen ob Summe kleiner als Schranke b ist

Kodierung möglicher Lösungen

- Eine Lösung ist ein Hamiltonkreis
- Eindeutig bestimmt durch die (geordnete) Angabe der Knoten
- Alle Knoten durchnummerieren: $V = \{1, ..., n\}$
- Pro Knoten werden $\lceil \log_2(n) \rceil$ Bits benötigt
- Kodierung des Kreises in $O(n \cdot \log n)$ möglich

Testen ob Lösung korrekt ist

- Jeweils zwei Knoten einlesen
- Kosten von Kante in Kostenmatrix abrufen
- Kosten aller Kanten addieren
- Testen ob Summe kleiner als Schranke b ist

TSP ist in NP: Beispiel einer Kodierung

$$\underbrace{101}_{5} \underbrace{010}_{2} \underbrace{011}_{3} \underbrace{100}_{4} \underbrace{001}_{1}$$

$$\underbrace{n \cdot \lceil log_2(n) \rceil}_{\in O(n \cdot log \ n)} = 5 \cdot 3 = 15 \text{ B}$$

NP-Vollständigkeit

TSP ist in NP: Beispiel einer Kodierung

$$\underbrace{101}_{5} \underbrace{010}_{2} \underbrace{011}_{3} \underbrace{100}_{4} \underbrace{001}_{1}$$

$$\underbrace{n \cdot \lceil \log_2(n) \rceil}_{\in O(n \cdot \log n)} = 5 \cdot 3 = 15 \text{ Bi}$$

Hamiltonkreis (5-2-3-4-1-5):

$$\underbrace{101}_{5} \underbrace{010}_{2} \underbrace{011}_{3} \underbrace{100}_{4} \underbrace{001}_{1}$$

NP-Vollständigkeit

$$\underbrace{n \cdot \lceil log_2(n) \rceil}_{\in O(n \cdot log_n)} = 5 \cdot 3 = 15 \text{ Bin}$$

NP-Vollständigkeit

TSP ist in NP: Beispiel einer Kodierung

Hamiltonkreis (5-2-3-4-1-5):

$$\underbrace{101}_{5} \underbrace{010}_{2} \underbrace{011}_{3} \underbrace{100}_{4} \underbrace{001}_{1}$$

Länge:

$$\underbrace{n \cdot \lceil log_2(n) \rceil}_{\in O(n \cdot log \ n)} = 5 \cdot 3 = 15 \text{ Bit}$$

- Test auf Korrektheit in Polynomialzeit

$$\Rightarrow$$
 Tsp \in NP

TSP ist in NP

Folgerung

- Lösungen lassen sich polynomiell kodieren
- Test auf Korrektheit in Polynomialzeit

$$\Rightarrow Tsp \in NP$$

TSP ist in NP

Folgerung

- Lösungen lassen sich polynomiell kodieren
- Test auf Korrektheit in Polynomialzeit

$$\Rightarrow Tsp \in NP$$

Bleibt zu zeigen

NP-Härte von TSP, d.h. $\forall L \in \text{NP} : L \leq_p \text{TSP}$

Feststellung

polynomielle Reduktion ist transitiv: $L \leq_p L' \wedge L' \leq_p L'' \Rightarrow L \leq_p L''$

Folgerung

L ist NP-hart, wenn anderes NP-hartes Problem L' existiert mit $L' \leq_p L$

Bekannte Reduktionen

- Richard P. Karp: $SAT \leq_p ... \leq_p HC$
- Satz von Cook: $SAT \in NPC$
- also: HC ist NP-schwer

Feststellung

polynomielle Reduktion ist transitiv: $L \leq_{p} L' \wedge L' \leq_{p} L'' \Rightarrow L \leq_{p} L''$

- Richard P. Karp: $SAT \leq_p ... \leq_p HC$

Feststellung

polynomielle Reduktion ist transitiv: $L \leq_p L' \wedge L' \leq_p L'' \Rightarrow L \leq_p L''$

Folgerung

L ist NP-hart, wenn anderes NP-hartes Problem L' existiert mit $L' \leq_p L$

- Richard P. Karp: $SAT \leq_p ... \leq_p HC$

Feststellung

polynomielle Reduktion ist transitiv: $L \leq_p L' \wedge L' \leq_p L'' \Rightarrow L \leq_p L''$

Folgerung

L ist NP-hart, wenn anderes NP-hartes Problem L' existiert mit $L' \leq_p L$

Bekannte Reduktionen

- Richard P. Karp: $SAT \leq_p ... \leq_p HC$
- Satz von Cook: SAT ∈ NPC
- also: HC ist NP-schwer

Zie

Reduktion des Hamiltonkreisproblems auf TSP

Vorgehen

Polynomialzeit-Algorithmus finden, um

- Eingaben von HC zu Eingaben von TSP zu transformieren
- HC-Instanz ist Ja-Instanz genau dann, wenn die Transformation eine Ja-Instanz von TSP ist

Ziel

Reduktion des Hamiltonkreisproblems auf T_{SP}

Vorgeher

Polynomialzeit-Algorithmus finden, um

- Eingaben von HC zu Eingaben von TSP zu transformieren
- HC-Instanz ist Ja-Instanz genau dann, wenn die Transformation eine Ja-Instanz von TSP ist

Ziel

Reduktion des Hamiltonkreisproblems auf T_{SP}

Vorgehen

Polynomialzeit-Algorithmus finden, um

- ullet Eingaben von HC zu Eingaben von Tsp zu transformieren
- HC-Instanz ist Ja-Instanz **genau dann, wenn** die Transformation eine Ja-Instanz von Tsp ist

Beweisidee: $HC \leq_p T_{SP}$ (Transformation)

 ${\rm NP\text{-}Vollst\"{a}ndigkeit}$

Beweisidee: $HC \leq_p T_{SP}$ (Transformation)

NP-Vollständigkeit

Beweisidee: $HC \leq_{p} T_{SP}$ (Transformation)

NP-Vollständigkeit

Beweisidee: $HC \leq_p T_{SP}$ (Transformation)

 ${\rm NP\text{-}Vollst\"{a}ndigkeit}$

Beweisidee: $HC \leq_p T_{SP}$ (Transformation)

Beweisidee: $HC \leq_{p} T_{SP}$ (Transformation)

$$b := |V| = 5$$

NP-Vollständigkeit

NP-Vollständigkeit

TSP ist NP-hart (Reduktion von HC)

Zu zeigen

G enthält Hamiltonkreis $\Leftrightarrow K_b$ enthält Tsp-Tour mit Kosten $\leq b$

- Jeder Hamiltonkreis enthält genau b = |V| Knoten und Kanten
- Jede Kante des Kreises ist in G enthalten
- Die Summe der b Kanten mit jeweils Gewicht 1 ist also b
- $b \le b$, also existiert in K_b ein Hamiltonkreis mit Kosten $\le b$

- Jeder Hamiltonkreis enthält genau b = |V| Knoten und Kanten
- Jede Kante des Kreises ist in G enthalten
- Jede Kante hat in K_b also Gewicht 1 (nach Def. von c)
- Die Summe der b Kanten mit jeweils Gewicht 1 ist also b
- $b \le b$, also existiert in K_b ein Hamiltonkreis mit Kosten $\le b$

- Jeder Hamiltonkreis enthält genau b = |V| Knoten und Kanten
- Jede Kante des Kreises ist in G enthalten
- Jede Kante hat in K_b also Gewicht 1 (nach Def. von c)
- Die Summe der b Kanten mit jeweils Gewicht 1 ist also b
- b < b, also existiert in K_b ein Hamiltonkreis mit Kosten < b

- Jeder Hamiltonkreis enthält genau b = |V| Knoten und Kanten
- Jede Kante des Kreises ist in G enthalten
- Jede Kante hat in K_b also Gewicht 1 (nach Def. von c)
- Die Summe der b Kanten mit jeweils Gewicht 1 ist also b
- b < b, also existiert in K_b ein Hamiltonkreis mit Kosten < b

```
"⇒"
```

- Jeder Hamiltonkreis enthält genau b = |V| Knoten und Kanten
- Jede Kante des Kreises ist in G enthalten
- Jede Kante hat in K_b also Gewicht 1 (nach Def. von c)
- b < b, also existiert in K_b ein Hamiltonkreis mit Kosten < b

```
"⇒"
```

- Jeder Hamiltonkreis enthält genau b = |V| Knoten und Kanten
- Jede Kante des Kreises ist in G enthalten
- Jede Kante hat in K_b also Gewicht 1 (nach Def. von c)
- Die Summe der b Kanten mit jeweils Gewicht 1 ist also b
- $b \le b$, also existiert in K_b ein Hamiltonkreis mit Kosten $\le b$

```
"⇒"
```

- Jeder Hamiltonkreis enthält genau b = |V| Knoten und Kanten
- Jede Kante des Kreises ist in G enthalten
- Jede Kante hat in K_b also Gewicht 1 (nach Def. von c)
- Die Summe der b Kanten mit jeweils Gewicht 1 ist also b
- $b \le b$, also existiert in K_b ein Hamiltonkreis mit Kosten $\le b$

```
,, <del>=</del>
```

- Ang. es ex. TSP-Tour mit Kosten $\leq b$ in K_b
- $c(i,j) \ge 1$ für alle Kanten der Tour
- Summe der Kosten mindestens b
- Nach Annahme: Summe ist nicht größer als b
- Summe **genau** b
- ullet Jede Kante der Tour in K_b hat Kosten 1, d.h. kommt auch in G vor
- G ist hamiltonsch

- Ang. es ex. TSP-Tour mit Kosten $\leq b$ in K_b
- $c(i,j) \ge 1$ für alle Kanten der Tour
- Summe der Kosten mindestens b
- Nach Annahme: Summe ist **nicht größer** als b
- Summe **genau** b
- ullet Jede Kante der Tour in K_b hat Kosten 1, d.h. kommt auch in G vor
- G ist hamiltonsch

- Ang. es ex. Tsp-Tour mit Kosten $\leq b$ in K_b
- $c(i,j) \ge 1$ für alle Kanten der Tour
- Nach Annahme: Summe ist nicht größer als b
- Summe genau b
- Jede Kante der Tour in K_b hat Kosten 1, d.h. kommt auch in G vor
- G ist hamiltonsch.

```
"⇐"
```

- Ang. es ex. Tsp-Tour mit Kosten $\leq b$ in K_b
- $c(i, j) \ge 1$ für alle Kanten der Tour
- Nach Annahme: Summe ist nicht größer als b
- Summe genau b
- Jede Kante der Tour in K_b hat Kosten 1, d.h. kommt auch in G vor
- G ist hamiltonsch.

```
"⇐"
```

- Ang. es ex. Tsp-Tour mit Kosten $\leq b$ in K_b
- $c(i,j) \ge 1$ für alle Kanten der Tour
- Summe der Kosten mindestens b
- Nach Annahme: Summe ist nicht größer als b
- Summe genau b
- ullet Jede Kante der Tour in K_b hat Kosten 1, d.h. kommt auch in G vor
- G ist hamiltonsch.

```
"⇐"
```

- Ang. es ex. Tsp-Tour mit Kosten $\leq b$ in K_b
- $c(i,j) \ge 1$ für alle Kanten der Tour
- Summe der Kosten mindestens b
- Nach Annahme: Summe ist **nicht größer** als b
- Summe genau b
- ullet Jede Kante der Tour in K_b hat Kosten 1, d.h. kommt auch in G vor
- G ist hamiltonsch.

```
"⇐"
```

- Ang. es ex. Tsp-Tour mit Kosten $\leq b$ in K_b
- $c(i,j) \ge 1$ für alle Kanten der Tour
- Summe der Kosten mindestens b
- Nach Annahme: Summe ist **nicht größer** als b
- Summe genau b
- ullet Jede Kante der Tour in K_b hat Kosten 1, d.h. kommt auch in G vor
- G ist hamiltonsch

```
"⇐"
```

- Ang. es ex. Tsp-Tour mit Kosten $\leq b$ in K_b
- $c(i,j) \ge 1$ für alle Kanten der Tour
- Summe der Kosten mindestens b
- Nach Annahme: Summe ist **nicht größer** als b
- Summe genau b
- Jede Kante der Tour in K_b hat Kosten 1, d.h. kommt auch in G vor
- G ist hamiltonsch

```
"⇐"
```

- Ang. es ex. Tsp-Tour mit Kosten $\leq b$ in K_b
- $c(i, j) \ge 1$ für alle Kanten der Tour
- Summe der Kosten mindestens b
- Nach Annahme: Summe ist nicht größer als b
- Summe **genau** b
- Jede Kante der Tour in Kb hat Kosten 1, d.h. kommt auch in G vor
- G ist hamiltonsch

Komplexität von Tsp: Zusammenfassung

Komplexität von Tsp: Zusammenfassung

Wir haben also gezeigt:

TSP ist NP-vollständig

Folgerung

 Tsp ist deterministisch in Exponentialzeit lösbar (da $\operatorname{NP} \subseteq \mathit{EXPTIME}$)

Folgerung II

Tsp ist deterministisch **nicht effizient lösbar** (es sei denn P = NP)

NP-Vollständigkeit

Komplexität von Tsp: Zusammenfassung

Wir haben also gezeigt:

TSP ist NP-vollständig

Folgerung I

TSP ist deterministisch in Exponentialzeit lösbar (da NP \subseteq EXPTIME)

Komplexität von Tsp: Zusammenfassung

Wir haben also gezeigt:

TSP ist NP-vollständig

Folgerung I

TSP ist deterministisch in Exponentialzeit lösbar (da NP \subseteq EXPTIME)

Folgerung II

 T_{SP} ist deterministisch nicht effizient lösbar (es sei denn P = NP)

Frage

Können wir TSP denn wenigstens effizient approximieren?

Antwort

Nein! (zumindest nicht ohne Einschränkungen an die Eingaben)

Satz

Frage

Können wir Tsp denn wenigstens effizient approximieren?

Antwort

Nein! (zumindest nicht ohne Einschränkungen an die Eingaben)

Satz

Frage

Können wir TSP denn wenigstens effizient approximieren?

Antwort

Nein! (zumindest nicht ohne Einschränkungen an die Eingaben)

Satz

Frage

Können wir T_{SP} denn wenigstens effizient approximieren?

Antwort

Nein! (zumindest nicht ohne Einschränkungen an die Eingaben)

Satz

Frage

Können wir T_{SP} denn wenigstens effizient approximieren?

Antwort

Nein! (zumindest nicht ohne Einschränkungen an die Eingaben)

Satz

Nicht-Approximierbarkeit von allgemeinem ${\rm Tsp\,}$

Nicht-Approximierbarkeit von allgemeinem ${\rm Tsp\,}$

Nicht-Approximierbarkeit von allgemeinem $\ensuremath{\mathrm{TSP}}$

Nicht-Approximierbarkeit von allgemeinem Tsp

Nicht-Approximierbarkeit von allgemeinem $\ensuremath{\mathrm{Tsp}}$

$$b := |V| = 5$$

Angenommen G ist hamiltonsch

- Es existiert ein Hamiltonkreis (n Knoten, n Kanten) in G
- ullet In Tsp Instanz hat dieser Kreis die Kosten n
- A_{α} findet Tour, deren Kosten höchstens $\alpha \cdot n$ sind

Angenommen ${\it G}$ ist ${\it nicht}$ hamiltonsch

- In K_n existiert aufjedenfall ein Hamiltonkreis
- Da in G keiner existiert, enthält Kreis eine Kante, die nicht in G enthalten ist
- Kante hat Kosten $\alpha \cdot n$
- Kosten jeder TSP-Tour sind also mindestens $\alpha \cdot n + (n-1) \cdot 1$
- Kosten der Tour, die A_{α} findet, sind damit auch mindestens $\alpha \cdot n + (n-1) > \alpha \cdot n$

- Es existiert ein Hamiltonkreis (n Knoten, n Kanten) in G
- A_{α} findet Tour, deren Kosten höchstens $\alpha \cdot n$ sind

- In K_n existiert aufjedenfall ein Hamiltonkreis
- Da in G keiner existiert, enthält Kreis eine Kante, die nicht in G
- Kosten jeder Tsp-Tour sind also mindestens $\alpha \cdot n + (n-1) \cdot 1$
- Kosten der Tour, die A_{α} findet, sind damit auch mindestens

Angenommen G ist hamiltonsch

- Es existiert ein Hamiltonkreis (n Knoten, n Kanten) in G
- In T_{SP} Instanz hat dieser Kreis die Kosten n
- A_{α} findet Tour, deren Kosten höchstens $\alpha \cdot n$ sind

Angenommen $\it G$ ist $\it nicht$ $\it hamiltonsch$

- \bullet In K_n existiert aufjedenfall ein Hamiltonkreis
- Da in G keiner existiert, enthält Kreis eine Kante, die nicht in G enthalten ist
- Kante hat Kosten $\alpha \cdot n$
- Kosten jeder TSP-Tour sind also mindestens $\alpha \cdot n + (n-1) \cdot 1$
- Kosten der Tour, die A_{α} findet, sind damit auch mindestens $\alpha \cdot n + (n-1) > \alpha \cdot n$

Angenommen G ist hamiltonsch

- Es existiert ein Hamiltonkreis (n Knoten, n Kanten) in G
- In T_{SP} Instanz hat dieser Kreis die Kosten n
- A_{α} findet Tour, deren Kosten höchstens $\alpha \cdot n$ sind

Angenommen G ist **nicht** hamiltonsch

- \bullet In K_n existiert aufjedenfall ein Hamiltonkreis
- Da in G keiner existiert, enthält Kreis eine Kante, die nicht in G enthalten ist
- Kante hat Kosten $\alpha \cdot n$
- Kosten jeder $\operatorname{Tsp-Tour}$ sind also mindestens $\alpha \cdot n + (n-1) \cdot 1$
- Kosten der Tour, die A_{α} findet, sind damit auch mindestens $\alpha \cdot n + (n-1) > \alpha \cdot n$

- G ist hamiltonsch $\Rightarrow A_{\alpha}$ findet Tour mit Kosten $< \alpha \cdot n$
- G ist **nicht** hamiltonsch \Rightarrow A_{α} findet **keine** Tour mit Kosten $< \alpha \cdot n$

Das heisst: G ist hamiltonsch $\Leftrightarrow A_{\alpha}$ findet Tour mit Kosten $< \alpha \cdot n$

Folgerung

 A_{lpha} entscheidet das Hamiltonkreisproblem

Widerspruch

 A_{α} ist **Polynomialzeitalgorithmus**, aber HC ist NP-hart

- G ist hamiltonsch \Rightarrow A_{α} findet Tour mit Kosten $< \alpha \cdot n$
- G ist **nicht** hamiltonsch \Rightarrow A_{α} findet **keine** Tour mit Kosten $< \alpha \cdot n$

Das heisst: G ist hamiltonsch $\Leftrightarrow A_lpha$ findet Tour mit Kosten $< lpha \cdot n$

Folgerung

 A_{α} entscheidet das Hamiltonkreisproblem

Widerspruch

 A_{α} ist **Polynomialzeitalgorithmus**, aber HC ist NP-hart

- *G* ist hamiltonsch \Rightarrow A_{α} findet Tour mit Kosten $< \alpha \cdot n$
- G ist **nicht** hamiltonsch \Rightarrow A_{α} findet **keine** Tour mit Kosten $< \alpha \cdot n$

Das heisst: G ist hamiltonsch $\Leftrightarrow A_{\alpha}$ findet Tour mit Kosten $< \alpha \cdot n$

Folgerung

 A_{lpha} entscheidet das Hamiltonkreisproblem

Widerspruch

 A_{α} ist **Polynomialzeitalgorithmus**, aber HC ist NP-hart

- G ist hamiltonsch \Rightarrow A_{α} findet Tour mit Kosten $< \alpha \cdot n$
- *G* ist **nicht** hamiltonsch \Rightarrow A_{α} findet **keine** Tour mit Kosten $< \alpha \cdot n$

Das heisst: G ist hamiltonsch $\Leftrightarrow A_{\alpha}$ findet Tour mit Kosten $< \alpha \cdot n$

Folgerung

 A_{α} entscheidet das Hamiltonkreisproblem

Widerspruch

 A_{lpha} ist **Polynomialzeitalgorithmus**, aber HC ist NP-hart

- *G* ist hamiltonsch \Rightarrow A_{α} findet Tour mit Kosten $< \alpha \cdot n$
- *G* ist **nicht** hamiltonsch \Rightarrow A_{α} findet **keine** Tour mit Kosten $< \alpha \cdot n$

Das heisst: G ist hamiltonsch $\Leftrightarrow A_{\alpha}$ findet Tour mit Kosten $< \alpha \cdot n$

Folgerung

 A_{α} entscheidet das Hamiltonkreisproblem

Widerspruch

 A_{α} ist **Polynomialzeitalgorithmus**, aber HC ist NP-hart!

Metrisches $\mathrm{Tsp}\ (\Delta\text{-}\mathrm{Tsp})$

Was jetzt?

Problen

- TSP ist nicht effizient optimal lösbar
- TSP ist auch nicht effizient approximierbar

Metrisches $\mathrm{Tsp}~(\Delta\text{-}\mathrm{Tsp})$

Was jetzt?

Problem

- $\bullet \ \mathrm{Tsp}$ ist nicht effizient optimal lösbar
- ullet TSP ist auch nicht effizient approximierbar

Metrisches TSP (Δ -TSP)

Metrisches Tsp: Idee

Kosten

$$cost(13) = 10 > 2 = 1 + 1 = cost(123)$$

Metrisches TSP (Δ -TSP)

Metrisches Tsp: Idee

Koster

$$cost(13) = 10 > 2 = 1 + 1 = cost(123)$$

Metrisches TSP (Δ -TSP)

Metrisches Tsp: Idee

Kosten

$$cost(13) = 10 > 2 = 1 + 1 = cost(123)$$

In der Praxi gilt aber oft:

Dreiecksungleichung: $a \le b + c$

In der Praxi gilt aber oft:

Dreiecksungleichung: $a \le b + c$

Wichtige Folgerung:

Wir können Knoten "überspringen" ohne die Kosten zu erhöhen

Metrisches TSP

Definition

Abbildung c heißt Metrik wenn

- c(i, i) = 0 und c(i, j) > 0 für alle $i \neq j$ (c ist positiv definit)
- c(i,j) = c(j,i) (c ist symmetrisch)
- $c(i,k) \le c(i,j) + c(j,k)$ (c erfüllt **Dreiecksungleichung**)

Wenn die Kostenfunktion c eine Metrik ist, so spricht man von metrischem TSP (Δ -TSP)

MST-Heuristik

Metrisches Tsp ist 2-approximierbar

Christofides-Heuristi

Metrisches TSP ist sogar $\frac{3}{2}$ -approximierbar

Metrisches T_{SP}

Definition

Abbildung c heißt Metrik wenn

- c(i, i) = 0 und c(i, j) > 0 für alle $i \neq j$ (c ist positiv definit)
- c(i,j) = c(j,i) (c ist symmetrisch)
- $c(i,k) \le c(i,j) + c(j,k)$ (c erfüllt **Dreiecksungleichung**)

Wenn die Kostenfunktion c eine Metrik ist, so spricht man von metrischem $\mathrm{TSP}\ (\Delta\mathrm{-TSP})$

MST-Heuristik

Metrisches Tsp ist 2-approximierba

Christofides-Heuristik

Metrisches T_{SP} ist sogar $\frac{3}{2}$ -approximierbar

Metrisches ${ m Tsp}$

Definition

Abbildung c heißt Metrik wenn

- c(i, i) = 0 und c(i, j) > 0 für alle $i \neq j$ (c ist positiv definit)
- c(i,j) = c(j,i) (c ist symmetrisch)
- $c(i,k) \le c(i,j) + c(j,k)$ (c erfüllt **Dreiecksungleichung**)

Wenn die Kostenfunktion c eine Metrik ist, so spricht man von metrischem $\mathrm{TSP}\ (\Delta\mathrm{-TSP})$

MST-Heuristik

Metrisches T_{SP} ist 2-approximierbar

Christofides-Heuristik

Metrisches TSP ist sogar $\frac{3}{2}$ -approximierbar

Metrisches T_{SP}

Definition

Abbildung c heißt Metrik wenn

- c(i, i) = 0 und c(i, j) > 0 für alle $i \neq j$ (c ist positiv definit)
- c(i,j) = c(j,i) (c ist symmetrisch)
- $c(i,k) \le c(i,j) + c(j,k)$ (c erfüllt **Dreiecksungleichung**)

Wenn die Kostenfunktion c eine Metrik ist, so spricht man von metrischem TSP (Δ -TSP)

MST-Heuristik

Metrisches T_{SP} ist 2-approximierbar

Christofides-Heuristik

Metrisches T_{SP} ist sogar $\frac{3}{2}$ -approximierbar

Heuristiken 000000000

Grundlagen

- Kreis, der alle **Kanten** eines Graphen enthält, heißt *Eulertour*
- Graph, der eine Eulertour enthält, heißt eulersch

- Testen ob Graph eulersch ist
- Eulertour in eulerschen Graphen bestimmen auch effizient möglich

Definition

- Kreis, der alle Kanten eines Graphen enthält, heißt Eulertour
- Graph, der eine Eulertour enthält, heißt eulersch

Satz

G ist genau dann eulersch, wenn Grad jedes Knoten gerade ist

Eulerkreisproblem

- Testen ob Graph eulersch ist
- Eulerkreisproblem ∈ P
- Eulertour in eulerschen Graphen bestimmen auch effizient möglich

Grundlagen

MST-Heuristik

Definition

- Kreis, der alle Kanten eines Graphen enthält, heißt Eulertour
- Graph, der eine Eulertour enthält, heißt eulersch

Satz

G ist genau dann eulersch, wenn Grad jedes Knoten gerade ist

Eulerkreisproblem

- Testen ob Graph eulersch ist
- Eulerkreisproblem ∈ P
- Eulertour in eulerschen Graphen bestimmen auch effizient möglich

Heuristiken 000000000

Grundlagen

Definition

- Kreis, der alle Kanten eines Graphen enthält, heißt Eulertour
- Graph, der eine Eulertour enthält, heißt eulersch

Satz

G ist genau dann eulersch, wenn Grad jedes Knoten gerade ist

Eulerkreisproblem

- Testen ob Graph eulersch ist
- EULERKREISPROBLEM ∈ P
- Eulertour in eulerschen Graphen bestimmen auch effizient möglich

Heuristiken 00000000

Der MST Algorithmus

MST-Heuristik

Sei c eine Metrik

Heuristiken 00000000

Der MST Algorithmus

Sei c eine Metrik

Algorithmus

- Erzeuge MST T von G
- Verdopple jede Kante in T
- Bestimme einen Eulerkreis K in T
- \bullet Erzeugen neuen Graph K' durch überspringen doppelt besuchter Knoten in K

MST-Heuristik Beispiel

MST-Heuristik
Beispiel

Heuristiken

Approximiationsgüte

- K' besucht jeden Knoten genau einmal
- K' ist also Hamiltonkreis und damit TSP-Tour

- c ist Metrik, also erhöht überspringen von Knoten die Kosten nicht

$$cost(K') \le cost(K) = 2 \cdot cost(T) \le 2 \cdot opt(G)$$

Satz

MST-Heuristik ist polynomieller 2-Approximationsalgorithmus für Δ -Tsp

- K' besucht jeden Knoten genau einmal
- K' ist also Hamiltonkreis und damit TSP-Tour

- c ist Metrik, also erhöht überspringen von Knoten die Kosten nicht

$$cost(K') \le cost(K) = 2 \cdot cost(T) \le 2 \cdot opt(G)$$

Satz

MST-Heuristik

MST-Heuristik ist polynomieller 2-Approximationsalgorithmus für Δ -Tsp

Beweis

- K' besucht jeden Knoten genau einmal
- K' ist also Hamiltonkreis und damit TSP-Tour

- c ist Metrik, also erhöht überspringen von Knoten die Kosten nicht

$$cost(K') \le cost(K) = 2 \cdot cost(T) \le 2 \cdot opt(G)$$

Satz

MST-Heuristik ist polynomieller 2-Approximationsalgorithmus für Δ -TSP

Beweis

- K' besucht jeden Knoten genau einmal
- ullet K' ist also Hamiltonkreis und damit Tsp-Tour
- $cost(T) \leq opt(G)$, da T minimaler Spannbaum ist
- $cost(K) = 2 \cdot cost(T)$, da jede Kante doppelt vorkommt
- c ist Metrik, also erhöht überspringen von Knoten die Kosten nicht

$$cost(K') \le cost(K) = 2 \cdot cost(T) \le 2 \cdot opt(G)$$

Satz

MST-Heuristik ist polynomieller 2-Approximationsalgorithmus für Δ -Tsp

Beweis

- K' besucht jeden Knoten genau einmal
- K' ist also Hamiltonkreis und damit TSP-Tour
- $cost(T) \leq opt(G)$, da T minimaler Spannbaum ist
- c ist Metrik, also erhöht überspringen von Knoten die Kosten nicht

$$cost(K') \le cost(K) = 2 \cdot cost(T) \le 2 \cdot opt(G)$$

Satz

MST-Heuristik ist polynomieller 2-Approximationsalgorithmus für Δ -Tsp

Beweis

- K' besucht jeden Knoten genau einmal
- ullet K' ist also Hamiltonkreis und damit Tsp-Tour
- $cost(T) \le opt(G)$, da T minimaler Spannbaum ist
- $cost(K) = 2 \cdot cost(T)$, da jede Kante doppelt vorkommt
- c ist Metrik, also erhöht überspringen von Knoten die Kosten nicht

$$cost(K') \le cost(K) = 2 \cdot cost(T) \le 2 \cdot opt(G)$$

Satz

MST-Heuristik ist polynomieller 2-Approximationsalgorithmus für Δ -TSP

Beweis

- K' besucht jeden Knoten genau einmal
- ullet K' ist also Hamiltonkreis und damit Tsp-Tour
- $cost(T) \le opt(G)$, da T minimaler Spannbaum ist
- $cost(K) = 2 \cdot cost(T)$, da jede Kante doppelt vorkommt
- c ist Metrik, also erhöht überspringen von Knoten die Kosten nicht

$$cost(K') \le cost(K) = 2 \cdot cost(T) \le 2 \cdot opt(G)$$

Satz

MST-Heuristik ist polynomieller 2-Approximationsalgorithmus für Δ -TSP

Beweis

- K' besucht jeden Knoten genau einmal
- ullet K' ist also Hamiltonkreis und damit Tsp-Tour
- $cost(T) \le opt(G)$, da T minimaler Spannbaum ist
- $cost(K) = 2 \cdot cost(T)$, da jede Kante doppelt vorkommt
- c ist Metrik, also erhöht überspringen von Knoten die Kosten nicht

$$cost(K') \le cost(K) = 2 \cdot cost(T) \le 2 \cdot opt(G)$$

Satz

MST-Heuristik ist polynomieller 2-Approximationsalgorithmus für Δ -Tsp

Beweis

- K' besucht jeden Knoten genau einmal
- K' ist also Hamiltonkreis und damit TSP-Tour
- $cost(T) \leq opt(G)$, da T minimaler Spannbaum ist
- $cost(K) = 2 \cdot cost(T)$, da jede Kante doppelt vorkommt
- c ist Metrik, also erhöht überspringen von Knoten die Kosten nicht

$$cost(K') \le cost(K) = 2 \cdot cost(T) \le 2 \cdot opt(G)$$

Heuristiken

Christofides Algorithmus

Christofides Heuristik Christofides Algorithmus

Definition

 $M \subseteq E$ heißt perfektes Matching in G = (V, E), falls **jeder** Knoten aus V zu **genau einer** Kante aus M inzident ist

Christofides Algorithmus

Definition

 $M \subseteq E$ heißt perfektes Matching in G = (V, E), falls **jeder** Knoten aus V zu **genau einer** Kante aus M inzident ist

Algorithmus von Christofides

- Bestimme MST T in G
- ② Bestimme $V' = \{v \in V \mid v \text{ hat ungeraden Grad in } T\} \subseteq V$
- 3 Finde perfektes Matching mit minimalen Kosten M auf V'
- Finde Euler-Tour auf den Kanten von $H := T \cup M$
- Uberspringe wiederholt vorkommende Kanten in Euler-Tour

Christofides Algorithmus

Definition

 $M \subseteq E$ heißt perfektes Matching in G = (V, E), falls **jeder** Knoten aus V zu **genau einer** Kante aus M inzident ist

Algorithmus von Christofides

- Bestimme MST T in G
- ② Bestimme $V' = \{v \in V \mid v \text{ hat ungeraden Grad in } T\} \subseteq V$
- ullet Finde perfektes Matching mit minimalen Kosten M auf V'
- Finde Euler-Tour auf den Kanten von $H := T \cup M$
- Uberspringe wiederholt vorkommende Kanten in Euler-Tour

Satz

Christofides ist polynomieller $\frac{3}{2}$ -Approximationsalgorithmus für Δ -TSP

Christofides Heuristik

Christofides Heuristik

Christofides Heuristik

- Euler-Tour in H ist TSP-Tour
- $cost(T) \leq opt$
- Sei au eine optimale TSP-Tour, d.h. cost(au) = opt
- Betrachte Kreis τ' , der Knoten aus V' verbindet, indem in τ alle Knoten übersprungen werden, die nicht zu V' gehören
- $cost(\tau') \leq cost(\tau)$
- ullet Zerlege au' in zwei perfekte Matchings
- Günstigere der beiden Matchings hat höchstens die Kosten $\frac{1}{2} \cdot cost(\tau')$
- $\frac{1}{2}cost(\tau') \leq \frac{1}{2}cost(\tau) = \frac{1}{2}opt$
- ullet Günstigstes perfektes Matching auf V' hat höchstens Kosten $rac{1}{2} \cdot op$

Christofides Heuristik

• Euler-Tour in H ist T_{SP} -Tour

- $cost(T) \leq opt$
- Sei τ eine optimale TSP-Tour, d.h. $cost(\tau) = opt$
- Betrachte Kreis τ' , der Knoten aus V' verbindet, indem in τ alle Knoten übersprungen werden, die nicht zu V' gehören
- $cost(\tau') \leq cost(\tau)$
- Zerlege τ' in zwei perfekte Matchings
- Günstigere der beiden Matchings hat höchstens die Kosten $\frac{1}{2} \cdot cost(au')$
- $\frac{1}{2}cost(\tau') \leq \frac{1}{2}cost(\tau) = \frac{1}{2}opt$
- ullet Günstigstes perfektes Matching auf V' hat höchstens Kosten $rac{1}{2} \cdot op$

- Euler-Tour in H ist TSP-Tour
- $cost(T) \leq opt$
- Sei τ eine optimale Tsp-Tour, d.h. $cost(\tau) = opt$
- Betrachte Kreis τ' , der Knoten aus V' verbindet, indem in τ alle
- $cost(\tau') < cost(\tau)$
- Zerlege τ' in zwei perfekte Matchings
- Günstigere der beiden Matchings hat höchstens die Kosten
- $\frac{1}{2}cost(\tau') \leq \frac{1}{2}cost(\tau) = \frac{1}{2}opt$

- Euler-Tour in H ist TSP-Tour
- $cost(T) \leq opt$
- Sei τ eine optimale Tsp-Tour, d.h. $cost(\tau) = opt$
- Betrachte Kreis τ' , der Knoten aus V' verbindet, indem in τ alle
- $cost(\tau') < cost(\tau)$
- Zerlege τ' in zwei perfekte Matchings
- Günstigere der beiden Matchings hat höchstens die Kosten
- $\frac{1}{2}cost(\tau') \leq \frac{1}{2}cost(\tau) = \frac{1}{2}opt$
- Günstigstes perfektes Matching auf V' hat höchstens Kosten $\frac{1}{2} \cdot opt$

- Euler-Tour in H ist TSP-Tour
- $cost(T) \leq opt$
- Sei τ eine optimale Tsp-Tour, d.h. $cost(\tau) = opt$
- Betrachte Kreis τ' , der Knoten aus V' verbindet, indem in τ alle Knoten übersprungen werden, die nicht zu V' gehören
- $cost(\tau') < cost(\tau)$
- Zerlege τ' in zwei perfekte Matchings
- Günstigere der beiden Matchings hat höchstens die Kosten
- $\frac{1}{2}cost(\tau') \leq \frac{1}{2}cost(\tau) = \frac{1}{2}opt$
- Günstigstes perfektes Matching auf V' hat höchstens Kosten $\frac{1}{2} \cdot opt$

- Euler-Tour in H ist TSP-Tour
- $cost(T) \leq opt$
- Sei τ eine optimale Tsp-Tour, d.h. $cost(\tau) = opt$
- Betrachte Kreis τ' . der Knoten aus V' verbindet, indem in τ alle Knoten übersprungen werden, die nicht zu V' gehören
- $cost(\tau') < cost(\tau)$
- Zerlege τ' in zwei perfekte Matchings
- Günstigere der beiden Matchings hat höchstens die Kosten
- $\frac{1}{2}cost(\tau') \leq \frac{1}{2}cost(\tau) = \frac{1}{2}opt$
- Günstigstes perfektes Matching auf V' hat höchstens Kosten $\frac{1}{2} \cdot opt$

- Euler-Tour in H ist TSP-Tour
- $cost(T) \leq opt$
- Sei τ eine optimale Tsp-Tour, d.h. $cost(\tau) = opt$
- Betrachte Kreis τ' , der Knoten aus V' verbindet, indem in τ alle Knoten übersprungen werden, die nicht zu V' gehören
- $cost(\tau') < cost(\tau)$
- Zerlege τ' in zwei perfekte Matchings
- Günstigere der beiden Matchings hat höchstens die Kosten
- $\frac{1}{2}cost(\tau') \leq \frac{1}{2}cost(\tau) = \frac{1}{2}opt$
- Günstigstes perfektes Matching auf V' hat höchstens Kosten $\frac{1}{2} \cdot opt$

Analyse

- Euler-Tour in H ist TSP-Tour
- $cost(T) \leq opt$
- Sei τ eine optimale Tsp-Tour, d.h. $cost(\tau) = opt$
- Betrachte Kreis τ' , der Knoten aus V' verbindet, indem in τ alle Knoten übersprungen werden, die nicht zu V' gehören
- $cost(\tau') < cost(\tau)$
- Zerlege τ' in zwei perfekte Matchings
- Günstigere der beiden Matchings hat höchstens die Kosten $\frac{1}{2} \cdot cost(\tau')$
- $\frac{1}{2}cost(\tau') < \frac{1}{2}cost(\tau) = \frac{1}{2}opt$
- Günstigstes perfektes Matching auf V' hat höchstens Kosten $\frac{1}{2} \cdot opt$

Analyse

Christofides Heuristik

- Euler-Tour in *H* ist Tsp-Tour
- $cost(T) \leq opt$
- Sei au eine optimale Tsp-Tour, d.h. cost(au) = opt
- Betrachte Kreis τ' , der Knoten aus V' verbindet, indem in τ alle Knoten übersprungen werden, die nicht zu V' gehören
- $cost(\tau') \leq cost(\tau)$
- ullet Zerlege au' in zwei perfekte Matchings
- Günstigere der beiden Matchings hat höchstens die Kosten $\frac{1}{2} \cdot cost(\tau')$
- $\frac{1}{2}cost(au') \leq \frac{1}{2}cost(au) = \frac{1}{2}opt$
- ullet Günstigstes perfektes Matching auf V' hat höchstens Kosten $\frac{1}{2} \cdot opt$

Analyse

Christofides Heuristik

- Euler-Tour in *H* ist TSP-Tour
- $cost(T) \leq opt$
- Sei au eine optimale Tsp-Tour, d.h. cost(au) = opt
- Betrachte Kreis τ' , der Knoten aus V' verbindet, indem in τ alle Knoten übersprungen werden, die nicht zu V' gehören
- $cost(\tau') \leq cost(\tau)$
- ullet Zerlege au' in zwei perfekte Matchings
- Günstigere der beiden Matchings hat höchstens die Kosten $\frac{1}{2} \cdot cost(\tau')$
- $\frac{1}{2}cost(au') \leq \frac{1}{2}cost(au) = \frac{1}{2}opt$
- ullet Günstigstes perfektes Matching auf V' hat höchstens Kosten $\frac{1}{2} \cdot opt$

Approximationsgüte

Die Euler-Tour (= TSP-Tour) hat also die Kosten:

$$cost(H) \leq cost(M) + cost(T) \leq opt + \frac{1}{2}opt = \frac{3}{2}op$$

Heuristiken 00000000

Approximationsgüte

Die Euler-Tour (= Tsp-Tour) hat also die Kosten:

$$cost(H) \leq cost(M) + cost(T) \leq opt + \frac{1}{2}opt = \frac{3}{2}opt$$

Approximationsgüte

Die Euler-Tour (= Tsp-Tour) hat also die Kosten:

$$cost(H) \leq cost(M) + cost(T) \leq opt + \frac{1}{2}opt = \frac{3}{2}opt$$

Frage

Ausblick

Geht es noch besser

Antwor

Kein polynomieller Approximationsalgorithmus bekannt mit $lpha < rac{3}{2}$

Frage

Kann es überhaupt einen besseren geben?

- Für $\alpha < \frac{220}{219}$ kann es **keinen** α -Approximationsalgorithmus geben
- Ob es für $\alpha < \frac{3}{2}$ einen geben kann ist nicht bekannt

Frage

Ausblick

Geht es noch besser?

Antwor

Kein polynomieller Approximationsalgorithmus bekannt mit $lpha < rac{3}{2}$

Frage

Kann es überhaupt einen besseren geben?

- Für $\alpha < \frac{220}{219}$ kann es **keinen** α -Approximationsalgorithmus geben
- Ob es für $\alpha < \frac{3}{2}$ einen geben kann ist nicht bekannt

Frage

Ausblick

Geht es noch besser?

Antwort

Kein polynomieller Approximationsalgorithmus bekannt mit $\alpha < \frac{3}{2}$

Frage

Kann es überhaupt einen besseren geben?

- Für $\alpha < \frac{220}{219}$ kann es **keinen** α -Approximationsalgorithmus geben
- Ob es für $\alpha < \frac{3}{2}$ einen geben kann ist nicht bekannt

Frage

Ausblick

Geht es noch besser?

Antwort

Kein polynomieller Approximationsalgorithmus bekannt mit $lpha < rac{3}{2}$

Frage

Kann es überhaupt einen besseren geben?

- Für $\alpha < \frac{220}{219}$ kann es **keinen** α -Approximationsalgorithmus geben
- Ob es für $\alpha < \frac{3}{2}$ einen geben kann ist nicht bekannt

Frage

Ausblick

Geht es noch besser?

Antwort

Kein polynomieller Approximationsalgorithmus bekannt mit $\alpha < \frac{3}{2}$

Frage

Kann es überhaupt einen besseren geben?

- Für $\alpha < \frac{220}{219}$ kann es **keinen** α -Approximationsalgorithmus geben
- Ob es für $\alpha < \frac{3}{2}$ einen geben kann ist nicht bekannt

- Was ist TSP?
- Entscheidungsvariante von TSP ist NP-vollständig
- TSP ist nicht effizient lösbar (ausser P = NP)
- Nur eingeschränkte Versionen von TSP effizient approximierbar
- Beste bekannte Approximation für Δ -Tsp: $\alpha = \frac{3}{2}$

- Was ist TSP?
- Entscheidungsvariante von TSP ist NP-vollständig
- TSP ist nicht effizient lösbar (ausser P = NP)
- Nur eingeschränkte Versionen von TSP effizient approximierbar
- Beste bekannte Approximation für Δ -Tsp: $\alpha = \frac{3}{2}$

- Was ist TSP?
- Entscheidungsvariante von TSP ist NP-vollständig
- TSP ist nicht effizient lösbar (ausser P = NP)
- Beste bekannte Approximation für Δ -Tsp: $\alpha = \frac{3}{2}$

- Was ist TSP?
- \bullet Entscheidungsvariante von $T{\rm SP}$ ist $NP\mbox{-vollst\"{a}}{\rm ndig}$
- Tsp ist nicht effizient lösbar (ausser P = NP)
- ullet Nur eingeschränkte Versionen von Tsp effizient approximierbar
- Beste bekannte Approximation für Δ -Tsp: $\alpha = \frac{3}{2}$

- Was ist TSP?
- Entscheidungsvariante von TSP ist NP-vollständig
- TSP ist nicht effizient lösbar (ausser P = NP)
- Nur eingeschränkte Versionen von TSP effizient approximierbar

- Was ist TSP?
- Entscheidungsvariante von TSP ist NP-vollständig
- TSP ist nicht effizient lösbar (ausser P = NP)
- Nur eingeschränkte Versionen von TSP effizient approximierbar
- Beste bekannte Approximation für Δ -Tsp: $\alpha = \frac{3}{2}$

Ende

Vielen Dank fürs Zuhören!