

Deformable Convolutional Networks (ICCV'17)

Graph Neural Networks (ICLR'17, ICLR'18)

Geometric Convolutions

Presented by: Anand Bhattad (2nd year of MS, CS)

CS598 BL: Adversarial Machine Learning Instructor: Prof. Bo Li

Outline

Deformable Convolutions

- Motivation and Contribution
- How they work?
- Benefits

Graph Neural Networks

- Why graph neural networks?
- How they are different from CNNs?
- Few problems using graph networks

Deformable Convolution Networks

Dai, Jifeng, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. "Deformable Convolutional Networks." ICCV (2017).

Fixed Geometric Structures in current CNNs

Fixed Geometric Structures in current CNNs

Invariant to Geometric Variations/Spatial Transformations

Fixed Geometric Structures in current CNNs

Invariant to Geometric Variations/Spatial Transformations

- Scale
- Pose
- Viewpoint
- Deformation
- Inter-class variation

Fixed Geometric Structures in current CNNs
Invariant to Geometric Variations/Spatial Transformations

- Scale
- Pose
- Viewpoint
- Deformation
- Inter-class variation

Generalization to new tasks

Contribution

Deformable convolution – Convolution + Learnable offset **Deformable Rol pooling** – Rol Polling + Learnable offset

Contribution

Deformable convolution – Convolution + Learnable offset **Deformable Rol pooling** – Rol Polling + Learnable offset

Two Branches

- Regular conv. layer
- another conv. layer to learn 2D offset

Generalized /"learnable" dilated convolution

Regular convolution

$$\mathbf{y}(\mathbf{p}_0) = \sum_{\mathbf{p}_n \in \mathcal{R}} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n)$$

$$\mathcal{R} = \{(-1, -1), (-1, 0), \dots, (0, 1), (1, 1)\}$$

Regular convolution

$$\mathbf{y}(\mathbf{p}_0) = \sum_{\mathbf{p}_n \in \mathcal{R}} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n)$$

Deformable convolution

$$\mathbf{y}(\mathbf{p}_0) = \sum_{\mathbf{p}_n \in \mathcal{R}} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n + \Delta \mathbf{p}_n)$$

$$\mathcal{R} = \{(-1, -1), (-1, 0), \dots, (0, 1), (1, 1)\}$$

Local, Dense and Adaptive

Local, Dense and Adaptive

Dynamic and learnable receptive field

Local, Dense and Adaptive

Dynamic and learnable receptive field

Local, Dense and Adaptive

Dynamic and learnable receptive field

Local, Dense and Adaptive

Dynamic and learnable receptive field

Attention embedded in Conv

Deformable Convolutions on Segmentation

usage of deformable	DeepLab	
convolution (# layers)	mIoU@V (%)	mIoU@C (%)
none (0, baseline)	69.7	70.4
res5c (1)	73.9	73.5
res5b,c (2)	74.8	74.4
res5a,b,c (3, default)	75.2	75.2
res5 & res4b22,b21,b20 (6)	74.8	75.1

Results of using deformable convolution in the last 1, 2, 3, and 6 convolutional layers (of 3×3 filter) in ResNet-101 (TABLE 1)

Deformable Convolutions vs Atrous Convolution

deformation modules	DeepLab
deformation modules	mIoU@V/@C
atrous convolution (2,2,2) (default)	69.7 / 70.4
atrous convolution (4,4,4)	73.1 / 71.9
atrous convolution (6,6,6)	73.6 / 72.7
atrous convolution (8,8,8)	73.2 / 72.4
deformable convolution	75.3 / 75.2
D N + 404 /TABLE 3\	

ResNet-101 (TABLE 3)

Rol Pooling

Deformable Rol Pooling

Don't predict the raw offset

Deformable Rol Pooling

Don't predict the raw offset

Normalize offsets – invariant to ROI size

Deformable Rol Pooling

PS deformable RoI Pooling

PS Deformable Rol Pooling

Object Detection (PASCAL VOC)

usage of deformable	class-aw	are RPN	Faster l	R-CNN	R-F	CN
convolution (# layers)	mAP@0.5 (%)	mAP@0.7 (%)	mAP@0.5 (%)	mAP@0.7 (%)	mAP@0.5 (%)	mAP@0.7 (%)
none (0, baseline)	68.0	44.9	78.1	62.1	80.0	61.8
res5c (1)	73.5	54.4	78.6	63.8	80.6	63.0
res5b,c (2)	74.3	56.3	78.5	63.3	81.0	63.8
res5a,b,c (3, default)	74.5	57.2	78.6	63.3	81.4	64.7
res5 & res4b22,b21,b20 (6)	74.6	57.7	78.7	64.0	81.5	65.4

Model Complexity and Runtime Comparison

	net. forward	runtime
# params	(sec)	(sec)
46.0 M	0.610	0.650
46.1 M	0.656	0.696
46.0 M	0.084	0.094
46.1 M	0.088	0.098
46.0 M	0.142	0.323
46.1 M	0.152	0.334
58.3 M	0.147	0.190
59.9 M	0.192	0.234
47.1 M	0.143	0.170
49.5 M	0.169	0.193
	46.1 M 46.0 M 46.1 M 46.0 M 46.1 M 58.3 M 59.9 M 47.1 M	# params (sec) 46.0 M

Robustness

We found that rotation-equivariant networks are significantly less vulnerable to geometric-based attacks than regular networks on the MNIST, CIFAR-10, and ImageNet datasets.

Robustness

Test Accuracy	Regular CNN	Deformable CNN
Regular MNIST	98.74%	97.27%
Scaled MNIST	57.01%	92.55%

deformable convolution is able to more effectively utilize already learned feature map to represent geometric distortion.

Questions to think about

Can Deformable Conv add stability to a 'fooling' from affine transform? [1]

Can spatially transformed adversarial examples be contained? [2]

- 1. Geometric robustness of deep networks: analysis and improvement (CVPR 2018)
- 2. Spatially Transformed Adversarial Examples (ICLR 2018)

Related Work

Spatial Transformer Network (NIPS 2015)

Related Work

Spatial Transformer Network (NIPS 2015)

Dynamic Filter Networks (NIPS 2016)

- Conditioned on Input features like Deformable Convolutions
- Filters weights are learned and not sampling locations

Does this reduce data augmentation?

Does this reduce data augmentation?

Are they equally adaptable to Pooling and multiple conv kernels?

Does this reduce data augmentation?

Are they equally adaptable to Pooling and multiple conv kernels?

Do they reduce model complexity if trained from scratch?

Does this reduce data augmentation?

Are they equally adaptable to Pooling and multiple conv kernels?

Do they reduce model complexity if trained from scratch?

Vulnerable to attacks?

Graph Neural Networks

Graph Convolutional Network

Applications

- Social Networks
- Protein-Protein Interaction
- 3D Meshes
- Clustering
- Scene Graphs

Survey: Bronstein, Michael M., et al. "Geometric deep learning: going beyond euclidean data." *IEEE Signal Processing Magazine*34.4 (2017): 18-42.

CNN vs GCNN

How Graph Convolutions work

Convolution "kernel" depends on Graph structure

Given a set of nodes, each with some observed numeric attributes x_i

Given a set of nodes, each with some observed numeric attributes x_i

For each node, predict an output or label y_i

Given a set of nodes, each with some observed numeric attributes x_i

For each node, predict an output or label y_i

We observe these labels for some, but not all, of the nodes

Given a set of nodes, each with some observed numeric attributes x_i

For each node, predict an output or label y_i

We observe these labels for some, but not all, of the nodes

A set of weighted edges, an adjacency matrix A

Given a set of nodes, each with some observed numeric attributes x_i

For each node, predict an output or label y_i

We observe these labels for some, but not all, of the nodes

A set of weighted edges, an adjacency matrix A

Message Passing like graphical models

Eq 2 of the paper

$$\mathbf{x}_l^{(k+1)} = \operatorname{Gc}(\mathbf{x}^{(k)}) = \rho \left(\sum_{B \in \mathcal{A}} B \mathbf{x}^{(k)} \theta_{B,l}^{(k)} \right) , \ l = d_1 \dots d_{k+1}$$

Eq 2 of the paper

$$\mathbf{x}_{l}^{(k+1)} = \text{Gc}(\mathbf{x}^{(k)}) = \rho \left(\sum_{B \in \mathcal{A}} B \mathbf{x}^{(k)} \theta_{B,l}^{(k)} \right), \ l = d_{1} \dots d_{k+1}$$

Eq 2 of the paper

$$\mathbf{x}_{l}^{(k+1)} = Gc(\mathbf{x}^{(k)}) = \rho \left(\sum_{B \in \mathcal{A}} B\mathbf{x}^{(k)} \theta_{B,l}^{(k)} \right), \ l = d_{1} \dots d_{k+1}$$

 $\begin{array}{c} GNN \\ \hline A_{i,j}^{(k)} = \varphi_{\bar{\partial}}(\mathbf{x}_i^{(k)},\mathbf{x}_j^{(k)}) \\ \hline V (nodes) \end{array}$

Eq 2 of the paper

$$\mathbf{x}_{l}^{(k+1)} = \text{Gc}(\mathbf{x}^{(k)}) = \rho \left(\sum_{B \in \mathcal{A}} B \mathbf{x}^{(k)} \theta_{B,l}^{(k)} \right), \ l = d_{1} \dots d_{k+1}$$

Eq 2 of the paper

$$\mathbf{x}_{l}^{(k+1)} = \text{Gc}(\mathbf{x}^{(k)}) = \rho \left(\sum_{B \in \mathcal{A}} B \mathbf{x}^{(k)} \theta_{B,l}^{(k)} \right), \ l = d_{1} \dots d_{k+1}$$

Adjacency Matrix (Eq 4 of the paper)

$$\varphi_{\tilde{\theta}}(\mathbf{x}_i^{(k)}, \mathbf{x}_j^{(k)}) = \text{MLP}_{\tilde{\theta}}(abs(\mathbf{x}_i^{(k)} - \mathbf{x}_j^{(k)}))$$

$$\mathcal{T} = \{\{(x_1, l_1), \dots (x_s, l_s)\}, \{\tilde{x}_1, \dots, \tilde{x}_r\}, \{\bar{x}_1, \dots, \bar{x}_t\} \; ; \; l_i \in \{1, K\}, x_i, \tilde{x}_j, \bar{x}_j \sim \mathcal{P}_l(\mathbb{R}^N)\}$$

$$Y = (y_1, \dots, y_t) \in \{1, K\}^t$$

$$t: number of images to classify$$

$$\mathcal{T} = \{\{(x_1, l_1), \dots (x_s, l_s)\}, \{\tilde{x}_1, \dots, \tilde{x}_r\}, \{\bar{x}_1, \dots, \bar{x}_t\} \; ; \; l_i \in \{1, K\}, x_i, \tilde{x}_j, \bar{x}_j \sim \mathcal{P}_l(\mathbb{R}^N)\}$$

$$Y = (y_1, \dots, y_t) \in \{1, K\}^t$$

$$t: number of images to classify$$

Few Shot Learning: r=0, t=1, s=qk (q-shot, k-way learning)

$$\mathcal{T} = \{\{(x_1, l_1), \dots (x_s, l_s)\}, \{\tilde{x}_1, \dots, \tilde{x}_r\}, \{\bar{x}_1, \dots, \bar{x}_t\} \; ; \; l_i \in \{1, K\}, x_i, \tilde{x}_j, \bar{x}_j \sim \mathcal{P}_l(\mathbb{R}^N)\}$$

$$Y = (y_1, \dots, y_t) \in \{1, K\}^t$$

$$t: number of images to classify$$

Few Shot Learning: r=0, t=1, s=qk (q-shot, k-way learning)

Semi-Supervised Learning: r>0 and t =1

$$\mathcal{T} = \{\{(x_1, l_1), \dots (x_s, l_s)\}, \{\tilde{x}_1, \dots, \tilde{x}_r\}, \{\bar{x}_1, \dots, \bar{x}_t\} \; ; \; l_i \in \{1, K\}, x_i, \tilde{x}_j, \bar{x}_j \sim \mathcal{P}_l(\mathbb{R}^N)\}$$

$$Y = (y_1, \dots, y_t) \in \{1, K\}^t$$

$$t: number of images to classify$$

Few Shot Learning: r=0, t=1, s=qk (q-shot, k-way learning) Semi-Supervised Learning: r>0 and t =1

Active Learning: Request labels for $\{\tilde{x}_1, \dots, \tilde{x}_r\}$

Few Shot Learning Experiments

	5-Way		20-Way	
Model	1-shot	5-shot	1-shot	5-shot
Pixels Vinyals et al. (2016)	41.7%	63.2%	26.7%	42.6%
Siamese Net Koch et al. (2015)	97.3%	98.4%	88.2%	97.0%
Matching Networks Vinyals et al. (2016)	98.1%	98.9%	93.8%	98.5%
N. Statistician Edwards & Storkey (2016)	98.1%	99.5%	93.2%	98.1%
Res. Pair-Wise Mehrotra & Dukkipati (2017)	-	-	94.8%	-
Prototypical Networks Snell et al. (2017)	97.4%	99.3%	95.4%	98.8%
ConvNet with Memory Kaiser et al. (2017)	98.4%	99.6%	95.0%	98.6%
Agnostic Meta-learner Finn et al. (2017)	$98.7 \pm 0.4\%$	$99.9 \pm 0.3\%$	$95.8 \pm 0.3\%$	$98.9 \pm 0.2\%$
Meta Networks Munkhdalai & Yu (2017)	98.9%	-	97.0%	-
TCML Mishra et al. (2017)	$98.96\% \pm 0.20\%$	$99.75\% \pm 0.11\%$	$97.64\% \pm 0.30\%$	$99.36\% \pm 0.18\%$
Our GNN	99.2%	99.7%	97.4%	99.0%

Table 1: Few-Shot Learning — Omniglot accuracies. Siamese Net results are extracted from Vinyals et al. (2016) reimplementation.

Few Shot Learning Experiments

	5-Way		
Model	1-shot	5-shot	
Matching Networks Vinyals et al. (2016)	43.6%	55.3%	
Prototypical Networks Snell et al. (2017)	$46.61\% \pm 0.78\%$	$65.77\% \pm 0.70\%$	
Model Agnostic Meta-learner Finn et al. (2017)	$48.70\% \pm 1.84\%$	$63.1\% \pm 0.92\%$	
Meta Networks Munkhdalai & Yu (2017)	$49.21\% \pm 0.96$	-	
Ravi & Larochelle Ravi & Larochelle (2016)	$43.4\% \pm 0.77\%$	$60.2\% \pm 0.71\%$	
TCML Mishra et al. (2017)	$55.71\% \pm 0.99\%$	$68.88\% \pm 0.92\%$	
Our metric learning + KNN	$49.44\% \pm 0.28\%$	$64.02\% \pm 0.51\%$	
Our GNN	$50.33\% \pm 0.36\%$	$66.41\% \pm 0.63\%$	

Table 2: Few-shot learning — Mini-Imagenet average accuracies with 95% confidence intervals.

Semi-Supervised Experiments

 Model
 20%-labeled
 40%-labeled
 100%-labeled

 GNN - Trained only with labeled
 99.18%
 99.59%
 99.71%

 GNN - Semi supervised
 99.59%
 99.63%
 99.71%

Table 3: Semi-Supervised Learning — Omniglot accuracies.

	5-Way 5-shot			
Model	20%-labeled	40%-labeled	100%-labeled	
GNN - Trained only with labeled	$50.33\% \pm 0.36\%$	$56.91\% \pm 0.42\%$	$66.41\% \pm 0.63\%$	
GNN - Semi supervised	$52.45\% \pm 0.88\%$	$58.76\% \pm 0.86\%$	$66.41\% \pm 0.63\%$	

Table 4: Semi-Supervised Learning — Mini-Imagenet average accuracies with 95% confidence intervals.

Active Learning Experiments

Method	5-Way 5-shot 20%-labeled	Method	5-Way 5-shot 20%-labeled
GNN - AL	99.62%	GNN - AL	55.99% ±1.35%
GNN - Random	99.59%	GNN - Random	$52.56\% \pm 1.18\%$

Table 5: Omniglot (left) and Mini-Imagneet (right), average accuracies are shown at both tables, the GNN-AL is the learned criterion that performs Active Learning by selecting the sample that will maximally reduce the loss of the current classification. The GNN - Random is also selecting one sample, but in this case a random one. Mini-Imagenet results are presented with 95% confidence intervals.

Generalization of convolutions, and easiest to define in spectral domain

Generalization of convolutions, and easiest to define in spectral domain

Fourier transform scales poorly with size of data so we need relaxations

Generalization of convolutions, and easiest to define in spectral domain

Fourier transform scales poorly with size of data so we need relaxations

First order approximation in Fourier-domain to obtain an efficient linear-time graph-CNNs

Generalization of convolutions, and easiest to define in spectral domain

Fourier transform scales poorly with size of data so we need relaxations

First order approximation in Fourier-domain to obtain an efficient linear-time graph-CNNs

Modelling power is **severely impoverished**, due to the first-order and other approximations made.

Limitations

Brittle – Also see, On Computational Hardness with Graph Neural Networks. Joan Bruna [video]

Limitations

Brittle – Also see, On Computational Hardness with Graph Neural Networks. Joan Bruna [video]

How powerful are graph neural networks? [arXiv, 10/01/2018]

GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs in capturing different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then

Attacks on Language-Vision problems?

Image Captioning [this]

Visual Dialog

Scene Graph Generation

10/25 Adversarial Attacks on Graphs

- Adversarial Attack on Graph Structured Data
- Adversarial Attacks on Neural Networks for Graph Data

Related Work

- Bronstein, Michael M., et al. "Geometric deep learning: going beyond euclidean data." *IEEE Signal Processing Magazine*34.4 (2017): 18-42. [paper]
- Schlichtkrull, Michael, et al. "Modeling relational data with graph convolutional networks." *European Semantic Web Conference*. Springer, Cham, 2018. [paper]
- Wang, Nanyang, et al. "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images." ECCV (2018). [paper]
- Yang, Jianwei, et al. "Graph R-CNN for Scene Graph Generation." ECCV (2018). [paper]

Other Questions on g-sheets

- In "Deformable Convolutional Networks", for position-sensitive Rol pooling, why do we need C+1 for C object classes? [Background]
- I don't see how deformable convolution can help against adversarial examples since everything is differentiable too. [Can break classifiers, will make detectors more robust]
- On Deformable Conv, How is this different from using a large kernel with dropout per filter application [Not sure]
- Few-Shot Learning with Graph Neural Networks: Why the particular choice of pointwise abs in Eq 4, as opposed to something else? (Like pointwise squared distance) [features are more representative]

Other Questions on g-sheets

- Deformoable convolution is just an extreme case of self attention. Why don't the authors use self attention? [Yes, but self-attention doesn't provide invariance properties to CNN]
- In GCN, is there a way to use GCN as an unsupervised feature extractor on graph to learn node embedding. [GCN are inherently clustering nodes maybe extract mean features of each cluster]
- Have trouble understanding the graph operations. Would like to get an explanation [Hopefully, it's clear now]
- Deformable Convolutional Networks": Could the deformable convolutional layers be extended to be useful in generative models as well? [Interesting question - I don't think they would add anything substantial]