MATH 1210 Assignment 1 Winter 2014

1. Use mathematical induction on positive integer n to prove each of the following:

Due date: January 31

- (a) $1^2 + 4^2 + 7^2 + \dots + (3n-2)^2 = \frac{1}{2}n(6n^2 3n 1)$, for $n \ge 1$;
- (b) $3+7+11+\ldots+(8n-1)=2n(4n+1)$, for $n \ge 1$;
- (c) $2^{4n} 3^{2n}$ is divisible by 7 for $n \ge 1$.
- **2.** Consider the sum $(5)^2 + (11)^2 + (17)^2 + \cdots + (18n-1)^2$:
 - (a) Write the sum in sigma notation.
 - (b) Use identities $\sum_{k=1}^{m} k = \frac{1}{2} \left[m(m+1) \right]$ and $\sum_{k=1}^{m} k^2 = \frac{1}{6} \left[m(m+1)(2m+1) \right]$ to prove that $(5)^2 + (11)^2 + (17)^2 + \dots + (18n-1)^2 = 3n \left(108n^2 + 36n + 1 \right)$.
- 3. Prove that $\sum_{\ell=1}^n \ell(\ell+2) = \frac{1}{6} \left[n(n+1)(2n+7) \right]$ by each of the following two methods:
 - (a) By mathematical induction on positive integer $n \ge 1$.
 - (b) By using the identities mentioned in part (b) of question 2.
- 4. For each of the following sums, rewrite the sum such that it starts from the given number. Keep your answer in sigma notation but simplify it.
 - (a) $\sum_{j=6}^{25} \left[(3j-15)^3 + j(j-10) + 25 \right]$ starting with j=1.
 - (b) $\sum_{k=-3}^{n-3} \left[(6+2k)^2 + \frac{k+3}{k(k+4)} \right]$ starting with k=0.
- 5. Find all $4^{\rm th}$ roots of -17 in Cartesian form. Simplify as much as possible.
- 6. Let $z=\frac{1}{2}i-\frac{\sqrt{3}}{2}$, evaluate $z^{123}+2i\,\overline{z}+\frac{-3+\sqrt{3}i}{1+\sqrt{3}i}$. Simplify as much as possible.
- 7. For each of the following statements, if it is true prove it, and if it is false give a counter example.
 - (a) $\bar{z} = \frac{|z|^2}{z}, \quad (z \neq 0);$
 - (b) $\arg(z) = \arg(\overline{z});$
 - (c) $z(z+z|z|) = |z|^2 (1+|z|);$
 - (d) $\frac{e^{i\theta^2}(e^{i\theta})^2}{e^{i^3}} = \cos(\theta+1)^2 + i\sin(\theta+1)^2$.