# **Data Mining:**

#### 2. Assoziationsanalyse

A) Frequent Itemsets

#### **Transaction Data**

- A special type of record data, where
  - each record (a transaction) involves a set of items.
  - For example, consider a grocery store.
  - The set of products purchased by a customer during one shopping trip constitute a "transaction" or "market basket" [Warenkorb], while the individual products that were purchased are the items.

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Coke, Milk         |
| 2   | Beer, Bread               |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Coke, Diaper, Milk        |

# **Association Rule Mining**

 Given a set (a database) of transactions T, find rules that will describe (and hopefully predict) the occurrence of an item based on the occurrences of other items in the transaction.

#### **Market-Basket Transactions**

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### **Example of Association Rules**

```
{Diaper} → {Beer},
{Milk, Bread} → {Eggs,Coke},
{Beer, Bread} → {Milk}
```

Implication means co-occurrence, not causality!

#### **Definition: Frequent Itemset**

#### Itemset

- A collection of one or more items
- Example: {Milk, Bread, Diaper}

#### k-Itemset

- An itemset that contains k items
- Support count (σ) (of X in T)
  - Frequency of occurrence of an itemset X
  - E.g.  $\sigma(\{Milk, Bread, Diaper\}) = 2$
- Support (s) (of X in T)
  - Fraction of transactions that contain an itemset X
  - E.g.  $s(\{Milk, Bread, Diaper\}) = 2/5$

#### Frequent Itemset

 An itemset whose support is greater than or equal to a *minsup* threshold

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### **Definition: Association Rule**

#### Association Rule

- An implication expression of the form X → Y,
   where X and Y are disjoint itemsets
- Example:{Milk, Diaper} → {Beer}

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### Rule Evaluation Metrics

- Support s (of  $X \rightarrow Y$  in T)
  - Fraction of transactions that contain both X and Y = s(XuY)
- Confidence c (of  $X \rightarrow Y$  in T)
  - Measures how often all items of Y appear in transactions that contain X
  - estimates conditional probability of Y given X ( P(Y|X) )

#### Example:

$$\{Milk, Diaper\} \rightarrow Beer$$

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

# **Association Rule Mining Task**

- Given a set of transactions T, the goal of association rule mining is to find all rules having
  - support ≥ minsup threshold (interesting rules only)
  - confidence ≥ minconf threshold (reliable rules only)
- Brute-force approach:
  - List all possible association rules
  - Compute the support and confidence for each rule
  - Prune rules that fail the minsup and minconf thresholds
  - ⇒ Computationally prohibitive!

#### **Mining Association Rules**

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### Example of Rules:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67) 

{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0) 

{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67) 

{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67) 

{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5) 

{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

#### **Observations:**

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- If the itemset is infrequent, all such rules have low support, and can be pruned without checking confidence

#### **Mining Association Rules**

- Two-step approach:
  - 1. Frequent Itemset Generation
    - Generate all itemsets whose support ≥ minsup

#### 2. Rule Generation

- Generate high confidence rules from each frequent itemset,
   where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

#### **Frequent Itemset Generation**



#### **Frequent Itemset Generation**

- Brute-force approach:
  - Each itemset in the lattice is a candidate frequent itemset
  - Count the support of each candidate by scanning the transactions database and the list of candidates



- Match each transaction against every candidate and increment the candidate's support counter if contained
- Complexity ~ O(NMw) => expensive since M = 2d-1!!!

# **Computational Complexity**

- Given d unique items:
  - Total number of itemsets = 2<sup>d</sup>
  - Total number of possible association rules:



$$R = \sum_{k=1}^{d-1} \left[ \binom{d}{k} \times \sum_{j=1}^{d-k} \binom{d-k}{j} \right]$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, 
$$R=3^6-2^7+1=602$$
 rules

#### **Frequent Itemset Generation Strategies**

- Reduce the number of candidates (M)
  - Complete search: M=2<sup>d</sup>-1
  - Use pruning techniques to reduce M
- Reduce the number of comparisons (NM)
  - Use efficient data structures to store the candidates or transactions
  - No need to match every candidate against every transaction
- Reduce the number of transactions (N)
  - Reduce size of N as the size of itemset increases
  - Used by "DHP" and "vertical-based mining" algorithms

#### **Reducing Number of Candidates**

- Apriori principle:
  - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

#### **Illustrating Apriori Principle**



**Figure 6.3.** An illustration of the *Apriori* principle. If  $\{c, d, e\}$  is frequent, then all subsets of this itemset are frequent.

#### **Illustrating Apriori Principle**



# **Illustrating Apriori Principle**

| Item   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

Items (1-itemsets)



| Itemset        | Count |
|----------------|-------|
| {Bread,Milk}   | 3     |
| {Bread,Beer}   | 2     |
| {Bread,Diaper} | 3     |
| {Milk,Beer}    | 2     |
| {Milk,Diaper}  | 3     |
| {Beer,Diaper}  | 3     |

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

#### Minimum Support = 3/5





Triplets (3-itemsets)

| Itemset             | Count |
|---------------------|-------|
| {Bread,Milk,Diaper} | 3     |



# **Apriori Algorithm**

#### Method:

- Let k=1
- Generate frequent itemsets of length 1
- Repeat the following steps
   until no new frequent itemsets are identified:
  - ♦ k=k+1
  - Generate length k candidate itemsets from length (k-1) frequent itemsets,
  - but prune candidate itemsets containing subsets of length (k-1) that are infrequent
  - Count the support of each candidate by scanning the DB
  - Eliminate candidates that are infrequent, leaving only those that are frequent

# **Apriori Algorithm**

```
1: k = 1.
2: F_k = \{ i \mid i \in I \land \sigma(\{i\}) \geq N \times minsup \}. {Find all frequent 1-itemsets}
3: repeat
    k = k + 1.
4:
    C_k = \operatorname{apriori-gen}(F_{k-1}). {Generate and prune candidate k-itemsets}
6: for each transaction t \in T do
    C_t = \operatorname{subset}(C_k, t). {Identify all candidates that belong to t}
         for each candidate itemset c \in C_t do
            \sigma(c) = \sigma(c) + 1. {Increment support count}
 9:
         end for
10:
      end for
11:
      F_k = \{ c \mid c \in C_k \land \sigma(c) \geq N \times minsup \}. {Extract the frequent k-itemsets}
13: until F_k = \emptyset
14: Result = \bigcup F_k.
```

- T given set (database) of transactions, N number of transactions
- $C_k$  set of candidate itemsets of length k,  $F_k$  set of frequent item sets of length k
- Note: Every given or constructed itemset or transaction is represented by an ordered nonrepetitive sequence of items

# Candidate Generation and Pruning?



Figure 6.6. A brute-force method for generating candidate 3-itemsets.

# Apriori Alg.: Candidate Generation and Pruning

1st version



**Figure 6.7.** Generating and pruning candidate k-itemsets by merging a frequent (k-1)-itemset with a frequent item.

apriori-gen $(F_{k-1})$ , generation := all k-itemsets in  $(F_{k-1} \text{ crossjoin } F_1)$  [cartesian product]

# Apriori Alg.: Candidate Generation and Pruning

2nd version



**Figure 6.7.** Generating and pruning candidate k-itemsets by merging a frequent (k-1)-itemset with a frequent item.

apriori-gen $(F_{k-1})$ , generation := all k-itemsets in  $(F_{k-1} < -join F_1)$  [join on ordering condition]

# Apriori Alg.: Candidate Generation and Pruning

3rd version



**Figure 6.8.** Generating and pruning candidate k-itemsets by merging pairs of frequent (k-1)-itemsets.

apriori-gen $(F_{k-1})$ , generation := all k-itemsets in  $(F_{k-1}$  equijoin  $F_{k-1}$  using the first k-2 positions)  $a_1...a_{k-2}\,a_{k-1}$  and  $b_1...b_{k-2}b_{k-1}$  are joined to  $a_1...a_{k-2}a_{k-1}b_{k-1}$  if  $a_i$ = $b_i$  (i=1,...k-2) and  $a_{k-1} < b_{k-1}$ 

# **Reducing Number of Comparisons**

- Candidate counting:
  - Determine for each transaction which candidate items are supported by the transaction.
  - To reduce the number of comparisons, store the candidates in a hash structure
    - Instead of matching each transaction against every candidate, match it against candidates corresponding hash buckets.



#### **Generate Hash Tree**

Suppose you have 15 candidate itemsets of length 3:

```
{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}
```

#### You need:

- Hash function on items, here h(p) = left|down|right corresponding to 1|2|0 = p mod 3
- Start with hashing the first item position
- Max leaf size: max number of itemsets stored in a leaf node, here 3
- If number of itemsets exceeds max leaf size, split the node by hashing the next item position
- Max depth k (no more splitting on this level)

#### **Support Counting: Hash tree**





# **Subset Operation**





Figure 6.10. Counting the support of itemsets using hash structure.







# **Factors Affecting Complexity**

- Choice of minimum support threshold
  - lowering support threshold results in more frequent itemsets
  - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
  - more space is needed to store support count of each item
  - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
  - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
  - transaction width increases with denser data sets
  - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

# **Factors Affecting Complexity**



Figure 6.13. Effect of support threshold on the number of candidate and frequent itemsets.

# **Factors Affecting Complexity**



(a) Number of candidate itemsets.

(b) Number of Frequent Itemsets.

Figure 6.14. Effect of average transaction width on the number of candidate and frequent itemsets.

#### **Compact Representation of Frequent Itemsets**

 Some itemsets are redundant because they have identical support as their supersets. Consider an extreme example:

| TID | <b>A1</b> | <b>A2</b> | <b>A3</b> | <b>A4</b> | <b>A5</b> | <b>A6</b> | A7 | <b>A8</b> | <b>A9</b> | A10 | B1 | B2 | <b>B</b> 3 | B4 | <b>B5</b> | B6 | B7 | B8 | B9 | B10 | C1 | C2 | C3 | C4 | C5 | C6 | <b>C7</b> | C8 | C9 | C10 |
|-----|-----------|-----------|-----------|-----------|-----------|-----------|----|-----------|-----------|-----|----|----|------------|----|-----------|----|----|----|----|-----|----|----|----|----|----|----|-----------|----|----|-----|
| 1   | 1         | 1         | 1         | 1         | 1         | 1         | 1  | 1         | 1         | 1   | 0  | 0  | 0          | 0  | 0         | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 2   | 1         | 1         | 1         | 1         | 1         | 1         | 1  | 1         | 1         | 1   | 0  | 0  | 0          | 0  | 0         | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 3   | 1         | 1         | 1         | 1         | 1         | 1         | 1  | 1         | 1         | 1   | 0  | 0  | 0          | 0  | 0         | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 4   | 1         | 1         | 1         | 1         | 1         | 1         | 1  | 1         | 1         | 1   | 0  | 0  | 0          | 0  | 0         | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 5   | 1         | 1         | 1         | 1         | 1         | 1         | 1  | 1         | 1         | 1   | 0  | 0  | 0          | 0  | 0         | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 6   | 0         | 0         | 0         | 0         | 0         | 0         | 0  | 0         | 0         | 0   | 1  | 1  | 1          | 1  | 1         | 1  | 1  | 1  | 1  | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 7   | 0         | 0         | 0         | 0         | 0         | 0         | 0  | 0         | 0         | 0   | 1  | 1  | 1          | 1  | 1         | 1  | 1  | 1  | 1  | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 8   | 0         | 0         | 0         | 0         | 0         | 0         | 0  | 0         | 0         | 0   | 1  | 1  | 1          | 1  | 1         | 1  | 1  | 1  | 1  | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 9   | 0         | 0         | 0         | 0         | 0         | 0         | 0  | 0         | 0         | 0   | 1  | 1  | 1          | 1  | 1         | 1  | 1  | 1  | 1  | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 10  | 0         | 0         | 0         | 0         | 0         | 0         | 0  | 0         | 0         | 0   | 1  | 1  | 1          | 1  | 1         | 1  | 1  | 1  | 1  | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 11  | 0         | 0         | 0         | 0         | 0         | 0         | 0  | 0         | 0         | 0   | 0  | 0  | 0          | 0  | 0         | 0  | 0  | 0  | 0  | 0   | 1  | 1  | 1  | 1  | 1  | 1  | 1         | 1  | 1  | 1   |
| 12  | 0         | 0         | 0         | 0         | 0         | 0         | 0  | 0         | 0         | 0   | 0  | 0  | 0          | 0  | 0         | 0  | 0  | 0  | 0  | 0   | 1  | 1  | 1  | 1  | 1  | 1  | 1         | 1  | 1  | 1   |
| 13  | 0         | 0         | 0         | 0         | 0         | 0         | 0  | 0         | 0         | 0   | 0  | 0  | 0          | 0  | 0         | 0  | 0  | 0  | 0  | 0   | 1  | 1  | 1  | 1  | 1  | 1  | 1         | 1  | 1  | 1   |
| 14  | 0         | 0         | 0         | 0         | 0         | 0         | 0  | 0         | 0         | 0   | 0  | 0  | 0          | 0  | 0         | 0  | 0  | 0  | 0  | 0   | 1  | 1  | 1  | 1  | 1  | 1  | 1         | 1  | 1  | 1   |
| 15  | 0         | 0         | 0         | 0         | 0         | 0         | 0  | 0         | 0         | 0   | 0  | 0  | 0          | 0  | 0         | 0  | 0  | 0  | 0  | 0   | 1  | 1  | 1  | 1  | 1  | 1  | 1         | 1  | 1  | 1   |

- Number of frequent itemsets in example =  $3 \times \sum_{k=1}^{10} {10 \choose k}$
- Need a compact representation; here, 3 would suffice.

#### **Maximal Frequent Itemset**

An itemset is maximal frequent if none of its immediate supersets is frequent. Then: frequent itemset  $\Leftrightarrow$  subset of a maximal frequent itemset!



#### **Closed Itemset**

 An itemset is closed if none of its immediate supersets has the same support as the itemset

| TID | Items         |
|-----|---------------|
| 1   | {A,B}         |
| 2   | $\{B,C,D\}$   |
| 3   | $\{A,B,C,D\}$ |
| 4   | $\{A,B,D\}$   |
| 5   | $\{A,B,C,D\}$ |

| Itemset | Support |
|---------|---------|
| {A}     | 4       |
| {B}     | 5       |
| {C}     | 3       |
| {D}     | 4       |
| {A,B}   | 4       |
| {A,C}   | 2       |
| {A,D}   | 3       |
| {B,C}   | 3       |
| {B,D}   | 4       |
| {C,D}   | 3       |

| Itemset       | Support |
|---------------|---------|
| {A,B,C}       | 2       |
| {A,B,D}       | 3       |
| {A,C,D}       | 2       |
| {B,C,D}       | 3       |
| $\{A,B,C,D\}$ | 2       |

closed itemsets

# **Maximal vs Closed Itemsets**



# **Maximal vs Closed Frequent Itemsets**



# **Maximal vs Closed Frequent Itemsets**



- Traversal of Itemset Lattice
  - General-to-specific vs Specific-to-general



- Traversal of Itemset Lattice
  - Equivalence Classes, e.g. level-wise, or based on common prefixes/suffixes:



- Traversal of Itemset Lattice
  - Breadth-first vs Depth-first



(a) Breadth first



(b) Depth first



**Figure 6.22.** Generating candidate itemsets using the depth-first approach.

- Representation of Database
  - horizontal vs vertical data layout

Horizontal Data Layout

| TID | Items   |
|-----|---------|
| 1   | A,B,E   |
| 2   | B,C,D   |
| 3   | C,E     |
| 4   | A,C,D   |
| 5   | A,B,C,D |
| 6   | A,E     |
| 7   | A,B     |
| 8   | A,B,C   |
| 9   | A,C,D   |
| 10  | В       |

Vertical Data Layout

| Α           | В       | С                     | D | Ш |
|-------------|---------|-----------------------|---|---|
| 1           | 1       | 2                     | 2 | 1 |
| 4           | 2       | 3                     | 4 | 3 |
| 4<br>5<br>6 | 2<br>5  | 4                     | 5 | 6 |
| 6           | 7       | 2<br>3<br>4<br>8<br>9 | 9 |   |
| 7           | 8<br>10 | 9                     |   |   |
| 8           | 10      |                       |   |   |
| 9           |         |                       |   |   |

Item TIDs

### **Using vertical layout**

Determine support of any k-itemset by intersecting TID-lists (maybe bit vectors) of two of its (k-1)-subsets.



- Advantage: very fast support counting
- Disadvantage: intermediate TID-lists may become too large for main memory

# FP ("Frequent pattern") - Growth Algorithm

- Uses a compressed representation of the transaction database by means of an FP-tree
- Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to extract the frequent itemsets from this tree
- Preliminarily, support counting of items should be done; infrequent items should be ignored and others be sorted by decreasing support counts (not in the example).
- Then, transactions are mapped to overlapping paths in the FPtree.

| TID | Items         |
|-----|---------------|
| 1   | {A,B}         |
| 2   | $\{B,C,D\}$   |
| 3   | $\{A,C,D,E\}$ |
| 4   | $\{A,D,E\}$   |
| 5   | $\{A,B,C\}$   |
| 6   | $\{A,B,C,D\}$ |
| 7   | {B,C}         |
| 8   | $\{A,B,C\}$   |
| 9   | $\{A,B,D\}$   |
| 10  | $\{B,C,E\}$   |





#### **After reading TID=3:**

| TID | Items         |
|-----|---------------|
| 1   | {A,B}         |
| 2   | $\{B,C,D\}$   |
| 3   | $\{A,C,D,E\}$ |
| 4   | $\{A,D,E\}$   |
| 5   | $\{A,B,C\}$   |
| 6   | $\{A,B,C,D\}$ |
| 7   | {B,C}         |
| 8   | $\{A,B,C\}$   |
| 9   | $\{A,B,D\}$   |
| 10  | $\{B,C,E\}$   |





#### Transaction Data Set

| TID | Items     |
|-----|-----------|
| 1   | {a,b}     |
| 2   | {b,c,d}   |
| 3   | {a,c,d,e} |
| 4   | {a,d,e}   |
| 5   | {a,b,c}   |
| 6   | {a,b,c,d} |
| 7   | {a}       |
| 8   | {a,b,c}   |
| 9   | {a,b,d}   |
| 10  | {b,c,e}   |



Figure 6.24. Construction of an FP-tree.



**Figure 6.25.** An FP-tree representation for the data set shown in Figure 6.24 with a different item ordering scheme.

#### **FP-Growth Algorithm: Frequent Itemset Generation**



**Figure 6.26.** Decomposing the frequent itemset generation problem into multiple subproblems, where each subproblem involves finding frequent itemsets ending in e, d, c, b, and a.

## **FP-Growth Algorithm: Frequent Itemset Generation**



(a) Prefix paths ending in e



(c) Prefix paths ending in de



(e) Prefix paths ending in ce



(b) Conditional FP-tree for e



(d) Conditional FP-tree for de



(f) Prefix paths ending in ae

#### Subproblem:

generate frequent itemsets ending with e from initial (null-conditional) FP-tree

- 1. Check support\_count(e)
- 2. If {e} is frequent:

output e; new subproblems: generate freq.itemsets

ending with de,ce,be, or ae from e-conditional FP-tree

Construct e-conditional FP-tree (to represent patterns before e) from null-conditional FP-tree:

- O. Traverse paths backwards from all occurrences of e
- 1. Adapt counts
- 2. Omit e-conditionally infrequent items

**Figure 6.27.** Example of applying the FP-growth algorithm to find frequent itemsets ending in *e*.