

Biology Higher level Paper 3

Tuesday 15 May 2018 (morning)

Candidate session number													
					Ш								

1 hour 15 minutes

41 pages

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answers must be written within the answer boxes provided.
- A calculator is required for this paper.
- The maximum mark for this examination paper is [45 marks].

Section A	Questions
Answer all questions.	1 – 3

Section B	Questions
Answer all of the questions from one of the options.	
Option A — Neurobiology and behaviour	4 – 8
Option B — Biotechnology and bioinformatics	9 – 13
Option C — Ecology and conservation	14 – 18
Option D — Human physiology	19 – 22

[2]

Section A

Answer **all** questions. Answers must be written within the answer boxes provided.

1. Data was collected on rabbit red blood cells that were exposed to sodium chloride (NaCl) and scorpion venom. Under some osmotic conditions red blood cells swell and burst, releasing hemoglobin (hemolysis). The graph shows the response of red blood cells to different concentrations of sodium chloride, with and without scorpion venom.

[Source: Adapted from Mirakabadi A Z, et al., (2006), J. Venom. Anim. Toxins incl. Trop. Dis., 12 (1), pages 67–77 (London: BioMed Central)]

Outline the effect of the venom on the hemolysis of red blood cells.

· /	,	

(This question continues on the following page)

(a)

(Question 1 continued)

(b)	Describe how the variables would be controlled in an experiment to estimate the osmolarity of plant tissue.	[3

Turn over

2. The graph shows the ventilation rate and tidal volume of a well-trained runner during exercise on a treadmill. The tidal volume is the volume of air being moved in and out of the lungs in each breath.

[Source: The Editor In Chief of the Journal of Exercise Physiology online grants permission to publish the article by Amonette W E and Dupler T L, which was published in JEPonline 2002;5(2):29-35 issue.]

((a)	State the apparatus used to measure the tidal volume.	[1]

(This question continues on the following page)

(Question 2 continued)

(b)	Calculate the total volume of air inhaled during one minute during the highest velocity of the treadmill in this test, giving the units.	[2]
(c)	Compare and contrast the effect of increasing treadmill speed on the ventilation rate and tidal volume in this runner.	[2]

Turn over

[2]

3. Transpiration in plants can be measured using a bubble potometer or a mass potometer.

[Source: © International Baccalaureate Organization 2018]

(a)		S	ug	g	es	st	a	po	os	si	bl	le	re	es	ea	aro	ch	1 C	qu	e	st	io	n	th	at	С	Ol	ulo	l b	эе	ir	٦V	es	sti	ga	ate	ed	u	siı	ng	a	p	00	to	m	e	te	r.		
																	_																																	 _
	•		•		•			•		•			•		•			•			•			•		٠		•		•			•		-		•		•		-		•		•	•		•	 •	
	٠		٠		٠			•		•	•		•		•									•		٠	٠.	•		•					-		•				-				•	•		•	 •	
	٠		٠		٠					٠					٠	٠.											٠.	-		-			-								-							٠		
	٠				٠										٠				-					٠			٠.						-		-										-	٠				

(This question continues on the following page)

(Question 3 continued)

(b)	E۷	aı	uc	-	_	 _		 	 	-		<u>ч</u>	 	9	_	4	_	_	_	 _	 	 _	 _	 	_	-	9	а .	_	 у	_	<u>ч</u>	_	u	9	9 (_	 _	_	 (_	
					-															 																-						
												-																								-						
	 																			 																-						
			٠.																																	-						
			٠.		-		-																																			

Turn over

Section B

Answer **all** of the questions from **one** of the options. Answers must be written within the answer boxes provided.

Option A — Neurobiology and behaviour

4. The diagram shows one of the stages in neurulation.

[Source: https://en.wikipedia.org/wiki/Neural_tube#/media/File:Neural_crest.svg]

(a) Describe what happens next in neurulation.	[2]
(b) Explain the causes of spina bifida in vertebrates.	[2]
(c) Explain the process of neural pruning.	[2]

(Option A continued)

5. The table shows cerebral cortex mass, body mass and neuron count of different animals.

Removed for copyright reasons

(a)	(i)	State one function of the cerebral hemispheres.	[1]
	(ii)	Discuss briefly the claim that humans are more intelligent than elephants, using only the data in the table.	[2]

Turn over

(a)	The brain requires a large energy input. Suggest one reason for this.	[1]
(c)	Outline the functional magnetic resonance imaging (fMRI) technique for brain research.	[2]

(Option A continued)

6. The table shows the typical sound intensity of different sources.

Source	Sound intensity / dB
Soft whisper	20
Quiet library	40
Normal conversation	60
Busy traffic	80
Underground train	100
Jet plane taking off or loud rock concert	120

(a) (i) State the type of sensory receptors that detect sound.	[1]
(ii) Suggest one reason for hearing loss caused by extended exposure to high intensity sound.	[1]
(b) Outline the role of the ear in balance perception.	[2]

Turn over

(Option A continued)

7. Drug misuse and abuse are major health problems in the world. The diagram shows the correlation between physical harm and dependence for various psychoactive drugs.

[Source: Adapted from https://commons.wikimedia.org/wiki/File:Rational_scale_to_assess_the_harm_of_drugs_(mean_physical_harm_and_mean_dependence).svg]

(a)	lde	en	tify	y a	an	е	Xa	an	ηp	le	C	of	in	ıh	ib	ito	ory	y (dr	uç	9 9	sh	۱0۱	IW	n i	in	th	ne	d	lia	gı	ra	m	•									[1]
	 																											-												 				
	 																											-													-			

(b)	Addiction may be affected by social environment. Outline one other named factor that can affect addiction to drugs.	[2]
(c)	Distinguish between innate behaviour and learned behaviour in the development of birdsong.	[3]
(d)	Outline an example of a change in animal behaviour as a result of natural selection.	[2]

(Option A continues on page 15)

Turn over

Please **do not** write on this page.

Answers written on this page will not be marked.

(Option A continued)

End of Option A

Turn over

Option B — Biotechnology and bioinformatics

9. The diagram shows an industrial anaerobic fermenter.

[Source: Adapted from Tilley, E., Ulrich, L., Lüthi, C., Reymond, Ph., Zurbrügg, C. - Compendium of Sanitation Systems and Technologies - (2nd Revised Edition). Swiss Federal Institute of Aquatic Science and Technology (Eawag),

Duebendorf, Switzerland.]

(a) (i) State one fuel that can be produced in this fermenter.	[1]
(ii) Outline one variable that must be controlled in an industrial fermenter.	[1]
(b) Explain factors that affect the rate of activity of microorganisms in fermenters.	[3]

(Option B, question 9 continued)

The diagram represents the cell walls of Gram-positive and Gram-negative bacteria.

[Source: © International Baccalaureate Organization 2018]

(c)	Label the layers I, II and III.	[3]
l:		
II:		
III:		

(Option B continues on page 19)

Turn over

Please **do not** write on this page.

Answers written on this page will not be marked.

(Option B continued)

(a)

10. The graph shows the trends of the use of genetically modified corn in the United States (USA) from 2000 to 2015, including herbicide tolerant varieties (HT), insect resistant varieties (Bt) and varieties with both traits combined.

[Source: Adoption of Genetically Engineered Crops in the U.S. [Online]. US Department of Agriculture – Economic Research Service, Washington, DC (2017). Available: https://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us/recent-trends-in-ge-adoption/ [13 June 2017].]

Compare and contrast the use of genetically modified corn in the USA in the years

2000 an	10 2015.	[2]

(b))	I	Ξx	pl	air	n I	าด	W	tl	he	; E	3t	а	an	d	H	łΤ	Ю	m	ıb	in	ie	d	С	ro	р	W	va	S	р	ro	dı	uc	е	d.											[2]
												-																					-													
				-							٠	-																																-		
													٠.									٠							٠					٠.	٠				 ٠					-		

(Option B continues on the following page)

Turn over

(Option B continued)

11. Some microorganisms can form a biofilm on living or non-living surfaces. The image shows a *Staphylococcus aureus* biofilm inside a medical catheter.

[Source: https://en.wikipedia.org/wiki/Biofilm#/media/File:Staphylococcus_aureus_biofilm_01.jpg, CDC/ Rodney M. Donlan, Ph.D.; Janice Carr (PHIL #7488), 2005]

(a)	(i)		D	efir	ne I	oio ¹	filn	n.																									[1]
													-																		 	 	
	(ii)	Ex	xpla	ain	the	e d	liffic	cul	ties	s o	f tr	ea	atir	ng	mi	cr	001	rga	ınis	sm	ıs (gro	wi	ng	in	bi	ofil	ms	·			[3]
					٠.					٠.	٠.		-															٠.			 	 	
					٠.					٠.	٠.		-															٠.			 	 	
										٠.	٠.	٠.	-												٠.		٠.				 	 	
					٠.					٠.	٠.		-															٠.			 	 	

(Option B, question 11 continued)

				 	 																						_	 _	_	_	 	_		_
						 				-	 	 						-																
						 					 							-																

(Option B continues on the following page)

Turn over

(Option B continued)

Caenorhabditis elegans, a nematode, was the first multicellular organism whose genome was completely sequenced.

[Source: https://en.wikipedia.org/wiki/Caenorhabditis_elegans#/media/File:CelegansGoldsteinLabUNC.jpg by Bob Goldstein]

(a)		utlir							9							ayı.	9 5	,0110							
(b)	D	esc	ribe	ho	w E	3L/	AST	cai	n be	e us	ed to	o es	tablis	sh pl	hylo	gen	etic	rela	ition	ishi	ps l	betv	veer	1	
(b)		esc ever						caı	n be	e us	ed to	o es	tablis	sh pl	hylo	gen	etic	rela	ition	ishi	ps l	betv	veer	1	
(b)								caı	n be	e us	ed to	o es	tablis	sh pl	hylo	gen	etic	rela	ition	ishi	ps l	betv	veer	1	
(b)								· caı	n be	e us	ed to	o es	tablis	sh pl	nylo	gen	etic	rela	ition	ishi	ps l	betw 	veer		
(b)									n be	e us	ed to	o es	tablis	sh ph	nylo:	gen	etic	rela	ition		ps		veer		- -
(b)								· caı	n be		ed to	o es			nylo	gen					ps l		veer		- -
(b)									n be			o es				gen					ps				
(b)								·				o es				gen					ps l				

(Option B continued)

13.	Explain the process of gene therapy using viral vectors.	[6]

End of Option B

Turn over

Please **do not** write on this page.

Answers written on this page will not be marked.

Option C — Ecology and conservation

14. The sea star *Pisaster ochraceus* is identified as a keystone species in the Pacific Ocean.

Pisaster ochraceus

[Source: https://en.wikipedia.org/wiki/Pisaster_ochraceus#/media/File:Ochre_sea_star.jpg by D. Gordon E. Robertson]

(a)	Outline the characteristics of keystone species in an ecosystem.	[1]
(b)	Outline one example of mutualism.	[2]
(c)	Distinguish between fundamental niche and realized niche.	[1]

(Option C continues on the following page)

Turn over

(Option C continued)

15. A retreating glacier leaves an environment of lifeless glacial deposits, including sands and gravels. Retreating glaciers often offer suitable sites for primary succession.

[Source: climatica.org.uk]

(a)	State one abiotic factor that will determine the type of ecosystem in a succession.	[1]
(b)	Predict the process of succession that takes place on exposed bare ground as the glacier retreats.	[3]

(Option C, question 15 continued)

()	Ĭ	npa							-		_	Ū	 	 							•																	
		 •	•	 •	•	•	•	• •	•	•	 •	•	•	 •		•	•	•			 •	•	•		•	•	•	•			•		•	•	•	 •		
		 	•	 	•		•		•		 •		 •	 •		•		•	• •	•	 •		 •	•		•		•		•	•	 •		•	•	 •	٠.	•
		 	•	 	٠		•		•		 ٠		•	 •	٠.	•		•		٠	 ٠		•	•	•	•		•	٠.	٠	•	 •	٠.		•	 ٠	٠.	٠

Turn over

(Option C continued)

16. The graph shows the total number of alien species in marine ecosystems estimated by the European Environment Agency.

[Source: Data from NOBANIS. Available from http://www.NOBANIS.org. Date of access 08/2008]

(a)	ı	De	HI	те	ın	IVa	IS	IV	е	aı	ıe	n	S	þ	е	316	35	Š.																												L	IJ
											_					_	_																														
	٠.	٠.		٠.	•				•			•											 			•	•		-		٠				-		•										
																							 						-																		
																			 	 	 	 		 	 		 	 	 		 	 	 												(a) Define invasive alien species.		

(Option C, question 16 continued)

(b)	Discuss the global impacts of invasive alien species.	[3]
(c)	Using one example, outline biological control of an invasive alien species.	[2]

Turn over

(Option C, question 16 continued)

The map shows an area of the Pacific Ocean characterized by exceptionally high concentrations of plastics and other debris that have been trapped by the currents of the North Pacific Gyre.

[Source: Spry895 https://commons.wikimedia.org/wiki/Category:Maps_of_the_Pacific_Ocean#/media/File:Pacific-centric-map.png]

(d)	Outline one consequence of marine plastic pollution.	[1]
(e)	Explain the consequences of biomagnification.	[2]

(Option C continued)

17. In 1911, twenty-five reindeer (*Rangifer tarandus*) were introduced onto Saint Paul Island in Alaska and the population was recorded for 40 years.

[Source: From V B Scheffer, "The Rise and Fall of a Reindeer Herd", *The Scientific Monthly*, Vol. 73, No. 6 (Dec., 1951), pp. 356-362. Reprinted with permission from AAAS.]

(a)	(i)	State the type of growth of this population up to 1940.	[1]
	(ii)	Suggest one possible cause for the decrease of the number of animals after 1940.	[1]
• • • •			

Turn over

(Option C, question 17 continued)

(b)	E	^٢	ıa	111	 יוכ	<u></u>	9	_	J!	او	0	Р	 ı	_	ıc	а с	<i>_</i>	 '1 .	<u> </u>	١		16	a (. !		-	/	_	<i>a</i>	12		-	u	15	_	_	11	_	_	u	V (71	-	,3	_		"	''	a	 <i>1</i> 11	_	_	_	3	_	 	73	٠.			
																																					-																								
																																							-	-					-	٠				-									-		
															-			-			•				•			•	•		•		•	-		•	-											•					-								
																												•																																	

Turn over

(Option C continued)

explain how human activities could affect the phosphorus cycle.

End of Option C

Option D — Human physiology

19. The image shows an example of a label showing nutritional information.

Serving Size 2/3 cup Servings Per Contain	
Amount Per Serving Calories 230	Calories from Fat 72
Calories 230	
	% Daily Value*
Total Fat 8g	12%
Saturated Fat 1g	5%
Trans Fat 0g	
Cholesterol 0mg	0%
Sodium 160mg	7 %
Total Carbohydra	te 37g 12%
Dietary Fiber 4g	16%
Sugars 1g	
Protein 3g	
Vitamin A	10%
Vitamin C	8%
Calcium	20%
Iron	45%

[Source: U.S. Food and Drug Administration]

(a)	(i)	State the importance of including vitamins in our diet.	[1]
	(ii)	Suggest one limitation of the information about vitamins shown on this label.	[1]

Turn over

[3]

(Option D, question 19 continued)

	/I \	D: (: : 1 1 (
- 1	n	I lictinguich hotwoon	Agetric IIIIca	ana	nancroatic	II IICA LICIN	a tha tania
١	(b)	Distinguish between	uasilic luice	anu	Danioleano	iuice usiii	u liie labie.

Gastric juice Pancreatic juice

(c	;))e	S	cr	ib	е	tl	he	9	m	0	d	е	0	f	а	C	tic	or	1 (of	S	te	er	0	ic	1	ho	or	'n	าด	or	e	S																						[3]
•	-	 •		•	-			•	•	٠				•	•	•	•	•	•			•	•	•	•	•				•	•	•	•	•	•	 	•	•	•	٠	•	•		 •	•	•	 •	•	•	 	•	•		 	•	•		
	-														•																					 				٠										 				 	٠			
	-																																			 														 				 				
																																				 							-							 			-	 				
																																				 							-							 			-	 				
	-																																			 														 				 				

(d)	Many animals, including humans, maintain strongly acidic conditions in part of their digestive systems. Explain two benefits of this to the animal.	[2]

(Option D continued)

20. The diagram shows the liver and its main blood vessels.

[Source: VectorStock]

(a)	(i)	Label the hepatic portal vein bringing blood to the liver.	[1]
	(ii)	Outline the circulation of blood through liver tissue.	[3]

Turn over

(Option D, question 20 continued)

																									_	_	_	_			_
													 		-													-			
													 		-																
													 				-														
							 ٠			•			 ٠.				-												 ٠		
										•			 																		

(Option D continued)

21.	(a)	Outline the role of the sinoatrial node in the contraction of the heart.	[2]
-----	-----	--	-----

The graph shows the results of a study of the incidence of coronary heart disease (CHD) in different age groups of men participating in a study carried out by the National Heart, Blood and Lung Institute.

[Source: © International Baccalaureate Organization 2018]

(b)	(i)	Comment on the claim that the bar chart prov	ves that old age causes CHD.	[1]	
-----	-----	--	------------------------------	-----	--

.....

(Option D continues on the following page)

Turn over

Option D	question	21 continued)
----------	----------	---------------

	(11)	,			of C		Oth	CI I	ша	II a	ige	aı	iu i	ιуρ	CIL	CH	SIU	ii u	ıaı	13	COI	161	alc	5u	VVIL	ii u	ic	[′	1]
(c)					s b ens		ıgg	est	ed	as	а	pos	ssib	ole	caı	use	e of	· Cl	HD	. Е	Ξхр	lai	n tl	he	ро	ssi	ble	[(3]
			 	 		 			٠.				٠.				٠.					٠.	٠.						
			 ٠.	 	٠.	 	٠.		٠.				٠.				٠.		٠.			٠.	٠.				٠.		
			 	 	٠.	 			٠.				٠.				٠.		٠.				٠.				٠.		
			 	 	٠.	 																							
			 	 	• •	 	• •																						

(Option D continued)

ZZ.	hemoglobin in the tissue.	[6]

End of Option D