

Índice

Point Quadtree

Idea general

Point QuadTree

Point QuadTree

Point QuadTree

A: (7,10)

G: (14,15)

B: (9,11)

H: (16,3)

C: (3,4)

I: (13,13)

D: (4,5)

J: (5,6)

E: (1,1)

K: (8,9)

F: (12,2)

L: (15,12)

¿Qué estrategia seguirían para borrar datos insertados en Point QuadTree?

Paso 1:

Seleccionar nodos candidatos. Un candidato por cada cuadrante.

Paso 1:

Seleccionar nodos candidatos. Un candidato por cada cuadrante.

Paso 2: Seleccionar el mejor candidato

Criterio 1

Seleccionar el candidato que esté más cerca de cada uno de sus ejes limítrofes que cualquier otro candidato y que esté en el mismo lado de estos ejes

Paso 2: Seleccionar el mejor candidato

Criterio 1 Seleccionar el candidato que esté más cerca de cada uno de sus ejes limítrofes que cualquier otro candidato y que esté en el mismo lado de estos ejes

Criterio 2 Minimizar distancia Manhattan

CUIDADO!! Criterio 2 no garantiza Criterio 1

Paso 2: Seleccionar el mejor candidato

Criterio 1 Seleccionar el candidato que esté más cerca de cada uno de sus ejes limítrofes que cualquier otro candidato y que esté en el mismo lado de estos ejes

Criterio 2 Minimizar distancia Manhattan

Ganan **D**

Pero que haríamos si existiera empate?

Paso 2: Seleccionar el mejor candidato

Criterio 1 Seleccionar el candidato que esté más cerca de cada uno de sus ejes limítrofes que cualquier otro

candidato y que esté en el mismo lado de estos ejes

Criterio 2 Minimizar distancia Manhattan

Criterio 3 Seleccionar el nodo hoja

Criterio 4 Elección aleatoria

Existe una incertidumbre en las regiones resaltadas

Todos los nodos en estas regiones serán reinsertados

Antes

Después

