

TRAINING COURSE IN Computational Methods for Epitranscriptomics

Using Nanopore sequencing to detect RNA modifications

Theoretical introduction to the various tools and techniques to identify RNA modifications from Nanopore data.

The world of RNA mods

- Highly conserved features found in archaea, bacteria, and eukarya
- Impact on RNA structure and interaction properties

Modifications are widespread in mRNAs

RNA modifications are dynamic

RNA modifications have been implicated in diseases, such as cancer

There are ~170 known naturally occuring RNA modifications

Lorenz C, Lünse CE, Mörl M., Biomolecules (2017)

Boccaletto P et al., Nucleic Acids Research (2017)

Established techniques for detecting RNA modifications

Mass Spectrometry

- Highly quantitative
- Highly specific
- Hard to set up
- Low throughput
- Hard to obtain sequence specificity

NGS based methods

- Transcriptome-wide
- Cross reactivity (antibody, chemical treatment)
- Need for specific assays/antibody for each modification
- Variable resolution

An emerging approach: nanopore sequencing

- Direct RNA nanopore sequencing (DRS) reads RNA molecules directly, bypassing cDNA conversion
- This avoids RT bias
- This avoids PCR bias
- The RNA modifications remain intact on the molecules during sequencing
- The RNA molecules are sequenced as they existed in the cell

Science 2016 Epitranscriptomics

Nat.Med 2018 Direct RNA Sequencing

Direct RNA nanopore sequencing

The nanopore sensor directly interacts with the nucleotides

Typical direct RNA nanopore ionic current trace

Modified nucleotides alter the ionic current in nanopore traces relative to canonical nucleotides

Two general strategies to detect RNA modifications from direct RNA nanopore data

More than 15 software tools exist to detect RNA modifications from direct RNA nanopore data

EpiNano

EpiNano-Error

EpiNano-SVM

Feature extraction

Prediction of RNA-modified sites

Epinano_Variants

Per-site and per-kmer feature extraction of:

- Quality
- Insertion
- Deletion
- Mismatch

Epinano_Diff_Error

- Compute Sum of Errors
- Outlier Detection
- Per-transcript plots (WT-KO)
- Features Scatterplots (WT vs KO)

Epinano_Variants

EpiNano Current

Per-site and per-kmer feature extraction of:

- Quality
- Insertion
- Deletion
- Mismatch
- Current intensity

Epinano_Predict

- Train SVM models
- Predict RNA mods using pre-trained models (ProbM)

ELIGOS

Tombo

MODIFIED BASE DETECTION

Tombo provides three methods for the identification of non-standard bases

	Advantages	Disadvantages
Alternative Model	Known alt. baseExact alt. loc.Good accuracy	Requires alt. model estimation
De novo	 Apply to any sample 	High error rateInexact locationAlt. base unknown
Sample Compare	Best AUCMost robust	Inexact locationAlternative base unknown

1 | Nanopore Community Meeting 2017 | @NanoporeConf #NanoporeConf

Xpore

m6Anet

Nanocompore

- Identifies signal-level differences between conditions (e.g. WT vs IVT/KD/KO)
- Based on Nanopolish resquiggling
- Robust and flexible statistical framework
- Takes into account biological variability
- Allows for complex statistical designs (e.g. multi-factor designs, batch effects, etc.)

Nanocompore analysis pipeline

Detecting m⁶A on ACTB transcripts

Detecting m⁶A on ACTB transcripts

m6A in 7sk snRNA protein binding sites

Present Black boxes and caveats

- How the modified base interacts with the pore:
 - Kmer-size
 - Dwell Time
 - Base Stacking and RNA secondary structure (unfolding)

- Lessons from rRNA and tRNA:
 - RNA mods often appear in *clusters*
 - RNA mods often depend on each other

Future perspectives

Development of layered multiple-tool pipelines

- Multi-step approaches may be beneficial
 - Pre-computed priors
 - Ad hoc trained model for deep learning
 - Comparison with a negative set

Questions?

