Electricity Markets and Stochastic Producers

Salvador Pineda Morente

Lunch meeting 09/12/13

Outline

- Introduction
- Day-ahead market
- Balancing market
- Coordination day-ahead and balancing
- Generation expansion

Outline

- Introduction
- Day-ahead market
- Balancing market
- Coordination day-ahead and balancing
- Generation expansion

What is the same?

People who needs products	People who produces those products	Place to trade the products
		APPLES
		nord pool

What is different?

Product	Stored	Transportation	Demand
		PARIS (50Kg) ROME (80Kg)	\$4
		i_4 v_g i_3	

Outline

- Introduction
- Day-ahead market
- Balancing market
- Coordination day-ahead and balancing
- Generation expansion

- Large fuel-based units (economy of scale)
- Technical constraints (required a schedule)
- Far from consumption centers (transmission)

- Demand level easily forecast
- Known daily, weekly, and yearly patterns
- High inflexibility

Characteristics of the players:

Day-ahead market

- Power producers submit offers to sell electricity for the next 24 hours
- The demand for the next day is forecast
- The cheapest offers are accepted up to the forecast demand

Characteristics of the players:

Minimize $\mathcal{C}^{\mathrm{D}}\left(p_{G}\right)$

s.t.
$$h^{D}(p_{G}) - l = 0 : \lambda^{D}$$

 $g^{D}(p_{G}) \leq 0$

Outline

- Introduction
- Day-ahead market
- Balancing market
- Coordination day-ahead and balancing
- Generation expansion

What about the wind?

We need to deal with forecast errors

Nowadays: balancing market

2020 target: 20% renewable

Week 43:

- 56% (one week)
- 89% (one day)
- 122% (one hour)

Characteristics of the players:

Balancing market

- Power producers submit offers to deviate from schedule
- The demand and wind is known
- The cheapest offers are accepted until deviations are balanced out

Minimize
$$\mathcal{C}^{\mathrm{B}}(y_{\omega'})$$

s.t. $h^{\mathrm{B}}(y_{\omega'}, \delta_{\omega'}, \delta^{0*}) + W_{\omega'} - p_W^* = 0 : \lambda_{\omega'}^{\mathrm{B}}$
 $g^{\mathrm{B}}(y_{\omega'}, \delta_{\omega'}, p_G^*; W_{\omega'}) \leq 0$

Low wind power penetration

24-36h ahead

Shorter horizon

High wind power penetration

Outline

- Introduction
- Day-ahead market
- Balancing market
- Coordination day-ahead and balancing
- Generation expansion

Coordination between day-ahead and balancing

Conventional MC

Day-ahead dispatch compute disregarding balancing operation

Stochastic MC

Day-ahead dispatch takes into account balancing operation

Coordination between day-ahead and balancing

Conv MC

Minimize
$$\mathcal{C}^{D}(p_{G}, p_{W})$$

s.t. $h^{D}(p_{G}, p_{W}, \delta^{0}) - l = 0 : \lambda^{D}$
 $g^{D}(p_{G}, \delta^{0}) \leq 0$
 $p_{W} \leq \widehat{W}$

$$\begin{aligned} & \underset{y_{\omega'}, \delta_{\omega'}}{\text{Minimize}} \quad \mathcal{C}^{\text{B}}\left(y_{\omega'}\right) \\ & \text{s.t.} \quad h^{\text{B}}\left(y_{\omega'}, \delta_{\omega'}, \delta^{0*}\right) + W_{\omega'} - p_W^* = 0 : \lambda_{\omega'}^{\text{B}} \\ & \quad g^{\text{B}}\left(y_{\omega'}, \delta_{\omega'}, p_G^*; W_{\omega'}\right) \leq 0 \end{aligned}$$

Stoc MC

$$\underset{p_{G}, p_{W}, \delta^{0}; y_{\omega}, \delta_{\omega}, \forall \omega}{\operatorname{Minimize}} \quad \mathcal{C}^{D} \left(p_{G}, p_{W} \right) + \mathbb{E}_{\omega} \left[\mathcal{C}^{B} \left(y_{\omega} \right) \right] \\
\text{s.t.} \quad h^{D} \left(p_{G}, p_{W}, \delta^{0} \right) - l = 0 : \lambda^{D} \\
g^{D} \left(p_{G}, \delta^{0} \right) \leq 0 \\
p_{W} \leq \overline{W} \\
h^{B} \left(y_{\omega}, \delta_{\omega}, \delta^{0} \right) + W_{\omega} - p_{W} = 0 , \quad \forall \omega \in \Omega \\
g^{B} \left(y_{\omega}, \delta_{\omega}, p_{G}; W_{\omega} \right) \leq 0 , \quad \forall \omega \in \Omega$$

Minimize
$$\mathcal{C}^{\mathrm{B}}(y_{\omega'})$$

s.t. $h^{\mathrm{B}}(y_{\omega'}, \delta_{\omega'}, \delta^{0*}) + W_{\omega'} - p_W^* = 0 : \lambda_{\omega'}^{\mathrm{B}}$
 $g^{\mathrm{B}}(y_{\omega'}, \delta_{\omega'}, p_G^*; W_{\omega'}) \leq 0$

Coordination between day-ahead and balancing

Coordination between day-ahead and balancing

Conv MC Stoc MC

- DA dispatch: cheaper go first
- Balancing operation not included
- Minimizes day-ahead cost
- Higher imbalance cost
- All units obtain profits

- DA dispatch: out of merit-order
- Balancing operation included
- Minimizes total cost
- Reduces imbalance cost
- Flexible units may incur losses

Outline

- Introduction
- Day-ahead market
- Balancing market
- Coordination day-ahead and balancing
- Generation expansion

Power producer

 $\underset{p_{G}^{max}}{\operatorname{Maximize}} \quad \Pi^{\mathrm{D}}\left(p_{G}, \lambda^{\mathrm{D}}\right) - \mathcal{C}^{\mathrm{I}}\left(p_{G}^{max}\right)$

s.t. $i(p_G^{max}) \leq 0$

 p_G^{max}

 $p_G, \lambda^{\mathrm{D}}$

Market operator

 $\operatorname{Min}_{p_G,\delta^0} \quad \mathcal{C}^{\mathrm{D}}\left(p_G\right)$

s.t. $h^{\mathrm{D}}(p_G, \delta^0) - l = 0 : \lambda^{\mathrm{D}}$ $g^{\mathrm{D}}(p_G, \delta^0, p_G^{max}) \leq 0$

Bilevel programming

 $\underset{p_{G}^{max}}{\operatorname{Maximize}} \quad \Pi^{\mathrm{D}}\left(p_{G}, \lambda^{\mathrm{D}}\right) - \mathcal{C}^{\mathrm{I}}\left(p_{G}^{max}\right)$

s.t. $i\left(p_G^{max}\right) \leq 0$

$$(p_{G}, \lambda^{D}) \in \arg \begin{cases} \min_{p_{G}, \delta^{0}} & \mathcal{C}^{D}(p_{G}) \\ \text{s.t.} & h^{D}(p_{G}, \delta^{0}) - l = 0 : \lambda^{D} \\ & g^{D}(p_{G}, \delta^{0}, p_{G}^{max}) \leq 0 \end{cases}$$

Solve replacing lower-level problem by its KKT conditions

- Where would you locate new wind generating units?
- What about wind forecast errors?
- We need to model both day-ahead and balancing markets
- Will the coordination between DA-B affect investment?

Investment under Conv MC

Power producer Decide new units Maximize profit Capacities Dispatch & location & prices Market operator Day-ahead Balancing

Investment under Stoc MC

Investment under Conv MC

Investment under Stoc MC

Stoc MC

Paper with all details

Submitted to *Operations Research* manuscript (Please, provide the manuscript number!)

Modeling the Impact of Imbalance Costs on Generating Expansion of Stochastic Units

Salvador Pineda University of Copenhagen, s.pineda@math.ku.dk

Juan M. Morales
Technical University of Denmark, jmmgo@imm.dtu.dk

Thanks for your attention! Questions?

