Graphical Representation Introduction to Probability Theory

Peter Büchel

HSLU W

SA: Week 2

Graphical Representation of Data

- Plotting data: Very important aspect of statistical data analysis
- Structure of data is often visible at a glance
- Often sees patterns that are not recognisable from key figures
- Two methods to graphically represent one-dimensional data:
 - ▶ Box plot
 - Histogram

Bad Graphical Representation of Data

- Choosing "wrong" graphical representation is not useful
- Important to choose "correct" graphical representation

Example: Not Useful Graphical Representation

- Simulate the IQ test of 200 persons
- Plot data in coordinate system:

- Horizontal axis (index): 200 peoble
- Vertical axis (iq) corresponding IQ
- Red dot: Corresponding to IQ (about) 110 of 87th person
- Obviously no clear pattern can be seen
- Reason: IQ of people are not ordered by ascending IQ
- This type of graph is therefore not useful
- Not every graphical representation is simply helpful in itself
- Graphical representations can be more confusing than helpful if they have been created inappropriately

Example

 Fox News showed following chart of what would happen if Bush tax cuts expired

Disastrous, right? Seems about a fivefold increase

- However, check scale: Starts at 34 and ends at 42
- \bullet All is not what it seems: Increase is only about 5 %

Boxplot: Schematically

- Box: Height is bounded by lower and upper quartile
- Height of box is interquartile range: Range of 50 % of middle observations
 - If height is small: Small spread
 - ▶ If height is large: Large spread
- Horizontal line in box: Median (black)
- Lines, which lead from box to the smallest or largest "normal" observation (blue)
 - ▶ Definition: "Normal" observation no more than 1.5 times the interquartile range from one of the two quartiles
 - ▶ Why 1.5? Introduced by inventor John Tukey (around 1970)
- Outlier: Small circles (red)

Remark

• Upper and lower whisker do not have to have the length:

R: Example Scale A

• Half of observations: Between upper quartile 80.04 and lower quartile 80.02, interquartile range 0.02

Median: 80.03

• "Normal" range of values: Between 80.00 and 80.05

Two outliers: 79.97 and 79.98

• First two points: Previously calculated

Boxplot: Median and quartiles graphically displayed

Examples: Grades

• Box plot of grade:

 Again: Values for median and quartiles correspond to values that already calculated

Comparison of Datasets

• Boxplot: Display of different groups

- Scale A larger values than scale B: Median of A is larger
- Boxes do not overlap
- Data from scale A have less spread than data from scale B
 - → Box less high (interquartile range!)
- R code axis (...): See lecture notes

Histogram

- Histogram: Graphical overview of occurring values
- Draw a bar for each class: Height proportional to number of observations in that class

Example: IQ test

• Figure: Histogram of result of an IQ test of 200 people

- Data simulated
- Width of classes: 10 IQ points, same for each class
- Height of bars: Number of people falling into that class
- Example: About 20 people fall into class between 120 and 130 points
- Shape of this histogram typical for many histograms: Normal distribution (later)

• Code: Histogram above

- rnorm(n = 200, mean = 100, sd = 15): Selects randomly 200 normally distributed data (see later) with mean 100 and standard deviation 15
- Command hist(iq, ...): Histogram for data iq
- Further options should be clear:
 - xlab: x-label, label of x-axis
 - ▶ ylab: y-label, label of y-axis
 - ► col: Colour
 - main: Main title

Choice of Classes

- Selection of number of classes relevant for interpretation of histogram
- There is no general rule how to choose number of classes
- Figure: IQ data of example with different number of classes

- Code: See lecture notes
- Histogram top left: Much too detailed to recognise a pattern
- Histogram bottom right too rough
- Default number of classes for R: Sturges rule (see lecture notes)
- Produces generally good results
- Change number of classes: Use option breaks =

Old Faithful Geyser (Yellowstone NP)

- Geyser Old Faithful (Yellowstone National Park): Known hot spring
- Time between two eruptions and duration of eruptions of great interest to spectators and National Park Service
- 299 measurements of successive eruptions
- Dataset included in R:

```
geyser <- faithful
head(geyser)

eruptions waiting
1    3.600    79
2    1.800    54
3    3.333    74
4    2.283    62
5    4.533    85
6    2.883    55</pre>
```

• Illustration Histograms:

- Duration of an outbreak (right)
- Time span between two outbreaks (left)

- For both histograms: Bimodal behaviour visible
- There are two "humps" in the histogram:
 - ► Time span between two outbreaks: Duration relatively short (around 50 minutes) or rather long (around 80 minutes)
 - ▶ Duration between two outbreaks not "evenly" distributed
 - ► Same behavior for the duration of an outbreak: Either outbreak is relatively short (about 1.5–2 minutes) or long (about 4–4.5 minutes)

- Question: Is there a correlation between eruption duration and time span between two eruptions?
- Or in other words:
 - ▶ Does it take long after a long outbreak until there is another outbreak?
 - Or does an outbreak return very quickly?
 - Or is there no connection at all?
- Questions answered later

Skewness of Histograms

• Illustration:

- Left Histogram: Symmetrical with respect to approximately 5
- Data is similarly distributed by 5 on both sides
- Middle histogram: Data concentrated left and flatten out towards right: Called a right skewed histogram
- Right histogram: Data concentrated right and flatten out towards left: Left skewed histogram
- Term "right" and "left": Always refers to direction where it has less data (tail of distribution)

Normalised Histogram

- In histograms so far: Height of bars corresponds to number of observations in a class
- Often better interpretable: Select bar height such that bar area corresponds to percentage/proportion of respective observations in total number of observations
- Total area of all bars must be equal 1
- Density: Indicated on the vertical axis
- Important: Density values are not percentages

Example: Scale A

• Normalised histogram:

- Density of class of 80.02 80.04 is about 23
- Area of this bar (dark green area in figure):

$$(80.04 - 80.02) \cdot 23 = 0.46$$

- Area multiplied by 100: Percentage of data within this bar
- About 46 % of data lies between 80.02 and 80.04

R-Code

Code:

```
par(mar=c(4,4,2,0))
hist(scaleA,
    freq = F,
    main = "Histogram of balance A",
    col = "darkseagreen3",
    ylim = c(0, 25)
)
rect(80.02, 0, 80.04, 23.1, col="darkseagreen4")
```

- Option freq = F (frequency false): Histogram is drawn normalised
- Option ylim = c(0, 25): See lecture notes
- rect(80.02, 0, 80.04, 23.1, col = "darkseagreen4"): See lecture notes

Skewness in Boxplot

• Illustration:

- Symmetrical diagram left: Median in center of box
- Right skewed histogram (center): Median no longer in center of the box, but shifted to left
- Distance from lower quartile to median is smaller than distance from median to upper quartile
- From lower quartile to median: A lot of data lie within a small range
- From median to upper quartile: Much larger range is needed until 25 % of data lie within this interval
- Left skewed histogram: Interpretation other way round

Example: Old Faithful

• Figure: Histogram and box plot of time between two eruptions of Old Faithful:

- Data are left skewed
- Box plot: 50 % of "middle" time spans between 60 and 80 minutes
- Median is about 75 minutes
- Data between median and upper quartile are in a range of 5 minutes (from 75-80 minutes)
- There are a relatively large number of time spans in this area compared to 15-minute interval from lower quartile to median

Preliminaries: Reminder Set Theory

- Probability models: Using set theory as language
- Don't despair: Little more than notation is needed
- Set: Collection of "things"
- These "things" can be very general, but "our" sets are quite simple

Example

- Rolling a die
- Possible outcomes: Numbers 1 to 6
- Can regard these numbers as a collection of numbers, i.e. as a set
- Sets generally denoted by a capital letter
- Let's denote set above A:

$$A = \{1, 2, 3, 4, 5, 6\}$$

- Members or elements of a set: Written within curly brackets
- Say that 2 is an element of A and write

$$2 \in A$$

• Symbol \in : "... is element of ...".

• Number 7 is not an element of A:

- Symbol ∉: "... is not element of ..."
- Often interested in sets which are part of larger set
- Let:

$$B = \{2, 5\}$$

- B part of A: All elements of B are also elements of A
- B is a subset of A:

$$B \subset A$$

• Symbol \subset stands for "... is subset of ..."

A set is subset of itself:

$$A \subset A$$

- Set, which has no elements (unassuming but important): Empty set
 - $\{\}$ or \emptyset
- By definition: Empty set is subset of any set
 - $\{\} \subset A \quad \text{or} \quad \{\} \subset \{\}$

Probability

- Everybody has an intuitive feeling what probability is
 - Probability to roll a 4 with a fair die is one sixth
- But: Exact interpretation of probability surprisingly difficult
- Statement "It rains tomorrow with a probability of 80 %"
 - \rightarrow Anything but obvious what is meant
- See remarks end of Chapter 3 in lecture notes

Probability Model

- Random experiments: Outcome is not predictable:
 - ▶ Rolling a die
 - ► Tossing a coin
 - Number of calls to a call center in one hour
- Probability model consists of:
 - Events that are possible in such an experiment
 - Probabilities for different results occurring
- Example: Rolling a die
 - Possible results: 1, 2, 3, 4, 5, 6
 - ▶ Probability to roll one of these numbers: $\frac{1}{6}$ (if die is fair)

- Probability models have following components:
 - Sample space Ω : Contains all possible elementary events ω
 - Events A, B, C: Subsets of sample space
 - Probabilities P associated with events A, B, C
- Elementary event: Possible result (outcome) of random experiment
- All elementary events form sample space:

$$\Omega = \{\underbrace{\text{all possible elementary events }\omega}_{\text{all possible outcomes/results}}\}$$

Example: Rolling a Die

• Sample space (all possible results):

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

- Element $\omega = 2$ is an elementary event
- Interpretation: Number 2 rolled
- ullet Number 7: Not an elementary event, because not in sample space Ω

Example: Incoming Calls to Call Center

- Number of calls in one hour to call center
- Sample space (at least theoretically any number of calls possible):

$$\Omega = \{0, 1, 2, 3, 4, \dots\}$$

ullet Elementary event $\omega=6$: Six incoming calls in one hour

Example: Tossing Coin Twice

- Tossing coin twice
- Notation *H*: "head", *T*: "tail"
- All possible results of experiment (sample space)

$$\Omega = \{HH, HT, TH, TT\}$$

- Elementary event: $\omega = HT$ for example
- Tossing *H* first, then *T*
- Note: HT and TH are different elementary events

Event

- Event: More general and more important than elementary events, but consist of these
- Event A: Subset of Ω :

$$A \subset \Omega$$

ullet "Event A occurs": Result ω of experiment belongs to A

Example: Tossing Coin Twice

- Event A: Exactly one H is tossed
- Event A: Consists of elementary events HT and TH
- Event A is set

$$A = \{HT, TH\}$$

- Tossing TT: Event A does not occur
- Probability that A occurs (if coin is fair):

$$P(A) = \frac{2}{4} = \frac{1}{2}$$

• Statistics: Probabilities often denoted by P or p

Example: Rolling a Die

- Event A: "Number rolled is odd"
 - ► Then

$$A = \{1, 3, 5\}$$

- ▶ Event A occurs, e.g. if number 5 is rolled
- ▶ Probability that *A* occurs (fair die):

$$P(A) = \frac{3}{6} = \frac{1}{2}$$

- Event B: "Toss a number smaller than 7"
 - ► Of course, this is always the case and therefore

$$B = \Omega$$

- B: Certain event
- ▶ Probability that *B* occurs (fair die):

$$P(B) = \frac{6}{6} = 1$$

- Event C: "Rolling a 7"
 - ► This is impossible:

$$C = \{\}$$

- ▶ Empty set {} (or ∅) contains no element
- ► Event *C*: *Impossible* event
- ▶ Probability that *C* occurs (fair die):

$$P(C) = \frac{0}{6} = 0$$

New Sets from Known Ones

• Operations of set theory for events:

Name	symbol	meaning
Union	$A \cup B$	A <i>or</i> B, non-exclusive "or"
Intersection	$A \cap B$	A and B
Complement	\overline{A}	not A
Difference	$A \setminus B = A \cap \overline{B}$	A without B

• Graphically:

Example: Rolling a Die

• Event A: Number rolled is even:

$$A = \{2, 4, 6\}$$

• Event *B*: Number rolled is prime:

$$B = \{2, 3, 5\}$$

Ω as usual:

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

• Figure:

• Union: All elements that are either in A or in B or in both sets:

$$A \cup B = \{2, 3, 4, 5, 6\}$$

Figure:

► Element 2 is in set A and in set B

• Intersection: All elements that are in A and in B:

$$A \cap B = \{2\}$$

Figure:

▶ Element 2 only element that is both in set A and in B

• Complement: All elements of Ω that are not in corresponding set:

$$\overline{A} = \{1, 3, 5\}, \qquad \overline{B} = \{1, 4, 6\}$$

► Figure:

► Set \overline{A} : Odd numbers

• Difference: All elements of set A, but which are not in set B:

$$A \backslash B = \{4, 6\}$$

Figure:

▶ 2 is in A and in B and therefore does not belong to difference

Axioms of Probability

Properties of probabilities

Kolmogorov Axioms of Probability

Each event Aa probability P(A) is assigned, with properties:

- $P(A) \geq 0$
- $P(\Omega) = 1$ $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \{\}$
- Notation P(A): Probability that event A occurs
- Event A: Rolling an odd number (with fair die)

$$P(A) = \frac{1}{2}$$

• Letter P stands for probability

- A1: Probability cannot be negative
- A2: With $P(\Omega) = 1$: Probability of an event between 0 and 1
- Mathematics (Statistics): Probabilities almost never in percent
- A3: For two *disjoint* events:

- Probability that one of the two occurs, equals to add probabilities of the two events
- ▶ A3 does *not* apply, if events are *not* disjoint

Example for Not Disjoint Sets

- Example fair die: $A = \{2, 4, 6\}, B = \{2, 3, 5\}$
- ▶ Then $P(A) = P(B) = \frac{1}{2}$
- ► $A \cup B = \{2, 3, 4, 5, 6\}$
- ► Apply A3:

$$P(A \cup B) = P(A) + P(B) = \frac{1}{2} + \frac{1}{2} = 1$$

- Can't be, because $P(A \cup B) = \frac{5}{6}$
- ▶ Reason why A3 fails: $A \cap B = \{2\} \neq \{\}$

Example

Tossing different two coins:

$$\Omega = \{HH, HT, TH, TT\}$$

- Plausible that all 4 elements of are equally probable (if coin fair)
- Because $P(\Omega) = 1$: Probabilities must add up to one:

$$P(KK) + P(KZ) + P(ZK) + P(ZZ) = 1$$

Because all elementary events equally probable:

$$P(HH) = P(HT) = P(TH) = P(TT) = \frac{1}{4}$$

Deriving Rules from Axioms

Laws for Calculating Probabilities

If A, B and $A_1, \ldots A_n$ events, then

$$P(\overline{A}) = 1 - P(A) \qquad \qquad \text{for all } A$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \qquad \text{for all } A \text{ and } B$$

$$P(A_1 \cup \ldots \cup A_n) \leq P(A_1) + \ldots + P(A_n) \qquad \qquad \text{for all } A_1, \ldots, A_n$$

$$P(B) \leq P(A) \qquad \qquad \text{for all } A \text{ and } B \text{ with } B \subseteq A$$

$$P(A \backslash B) = P(A) - P(B)$$
 for all A and B with $B \subseteq A$

- Probabilities as areas in Venn diagrams
- ullet Total area of Ω equal to 1 or $P(\Omega)=1$
- Laws obvious

1st Rule

• Illustration:

- P(A): Area of A
- $P(\overline{A})$: Remaining area in Ω
- Obviously, following applies:

$$P(A) + P(\overline{A}) = P(\Omega) = 1$$

And so:

$$P(\overline{A}) = 1 - P(A)$$

2nd Rule

• Illustration:

• $P(A \cap B)$ with P(A) + P(B): Counted twice, subtract once:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Example

$$P(A) + P(B)$$

$$P(A) - P(A \cap B)$$

Discrete Probability Models

- Now: Discrete probability models
- Means: Sample space finite or infinite and discrete
- Term "discrete": finite set, like:

$$\Omega = \{0, 1, \dots, 10\}$$

• Infinite, but still discrete set, like

$$\Omega = \mathbb{N}_0 = \{0, 1, 2, \dots\}$$

- Set $\Omega = \mathbb{R}$ (set of all decimal fractions): *Not* discrete
- Will play a very important role for measurement data later

Probabilities for Discrete Models

Calculation of probabilities for discrete models

Probability of event

$$A = \{\omega_1, \omega_2, \dots, \omega_n\}$$

is determined by sum of probabilities $\textit{P}(\omega)$ of corresponding elementary events:

$$P(A) = P(\omega_1) + P(\omega_2) + \ldots + P(\omega_n) = \sum_{\omega_i \in A} P(\omega_i)$$

- All probabilities of elementary events from event A are added up
- Follows from axioms 1–3

Example: Tossing Coin Twice

• Event A: "Tossing H exactly once":

$$A = \{HT, TH\}$$

• Probability P(A):

$$P(A) = P(HT) + P(TH) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

- Event B: "At least one head tossed"
- Probability of $B = \{HT, TH, HH\}$ occurring:

$$P(B) = P(HT) + P(TH) + P(HH) = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}$$

- Easier to calculate with so-called complementary probability
- The complement \overline{B} of B is

$$\overline{B} = \{TT\}$$

• From first calculation law (see above):

$$P(B) = 1 - P(\overline{B}) = 1 - \frac{1}{4} = \frac{3}{4}$$

Example: Unfair (Biased) Die

• Probabilities to roll different numbers are not equal:

• From A1:

$$P(\Omega) = P(1) + P(2) + P(3) + P(4) + P(5) + P(6)$$

$$= \frac{1}{3} + \frac{1}{6} + \frac{1}{12} + \frac{1}{4} + \frac{1}{12} + \frac{1}{12}$$

$$= 1$$

• Probability of $A = \{1, 2, 4\}$ occurring:

$$P(A) = P(1) + P(2) + P(4)$$

$$= \frac{1}{3} + \frac{1}{6} + \frac{1}{4}$$

$$= \frac{3}{4}$$

- Note: Result not the same if die would be fair: $\frac{1}{2}$
- Example: Calculate probability to roll a number smaller than 6
- Event B:

$$B = \{1, 2, 3, 4, 5\}$$

• Probability for B occurring:

$$P(B) = P(1) + P(2) + P(3) + P(4) + P(5)$$

$$= \frac{1}{3} + \frac{1}{6} + \frac{1}{12} + \frac{1}{4} + \frac{1}{12}$$

$$= \frac{11}{12}$$

- Simpler with complementary probability: $P(\overline{B})$
- 1. calculation rule: Complement \overline{B} from B:

$$\overline{B} = \{6\}$$

Then it follows:

$$P(B) = 1 - P(\overline{B}) = 1 - P(6) = 1 - \frac{1}{12} = \frac{11}{12}$$

Laplace Model

- Assume: Every elementary event has same probability
- Event $E = \{\omega_1, \omega_2, ..., \omega_f\}$
- Sample space p Elements
- Probabilities of all elementary elements add up to 1:

$$P(\omega_k) = \frac{1}{|\Omega|} = \frac{1}{p}$$

Event E: Laplace model:

$$P(E) = \frac{f}{p} = \sum_{k:\omega_k \in E} P(\omega_k)$$

 Divides number of "favorable" elementary events by number of "possible" elementary events

Example: Laplace Model

- Two different (blue and red) dice are rolled
- What is probability that eye sum is 7?
- Elementary event describes numbers on both dice
- Result in form 14
- Result 14 is not equal to 41
- Convention: First digit result of blue die, second digit red die
- All elementary events:

$$\Omega = \{11, 12, \dots, 16, 21 \dots, 65, 66\}$$

Number of elementary events:

$$|\Omega| = 36$$

- Event E: Rolling eye sum 7
- There are 6 elementary events:

$$E = \{16, 25, 34, 43, 52, 61\}$$

• All elementary events have equal probability: Probability for event E:

$$P(E) = \frac{|E|}{|\Omega|} = \frac{6}{36} = \frac{1}{6}$$

Stochastic Independence

• Already seen:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

- Question: How to calculate $P(A \cap B)$?
- No general rule: If P(A) and P(B) are known, value $P(A \cap B)$ cannot be calculated generally from P(A) and P(B)
- Important special case: Calculation of $P(A \cap B)$ from P(A) and P(B) with product formula:

If events A and B are stochastically independent, then

$$P(A \cap B) = P(A) \cdot P(B)$$

- But what does "stochastically independent" means?
- Outcome of event A has no influence on outcome of event B and vice versa

- Event A: Roll 1 or 2 with a fair die: $P(A) = \frac{1}{3}$
- Event *B*: Head when tossing a fair coin: $P(B) = \frac{1}{2}$
- Tossing a coin has no influence on outcome of rolling a die
- Use formula above:

$$P(A \cap B) = P(A) \cdot P(B) = \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6}$$

- Event E: Tokyo is shaken by an earthquake on certain day
- Event F: On this day a typhoon sweeps over the city
- Unlikely that earthquake would have any influence on occurrence of typhoon
- Hence both events are stochastically independent

- Tossing a coin twice
- Outcome of first toss has no influence on result of second toss
- However: Only correct if coin is ideal
- Real coin: Minimal changes due to impact
- These have influence on probability of tossing head (or tail) for next toss
- But changes so small that they are negligible

- 20 lottery tickets with 5 winning tickets
- Draw ticket twice without replacing
- Event A: Win in first draw
- Event B: Win in second draw
- These two events are not stochastically independent
- Draw a winning ticket in first draw: Probability that A occurs:

$$P(A) = \frac{5}{20}$$

• If win in 1st draw: Probability to win in 2nd draw:

$$P(B)=\frac{4}{19}$$

• Drawing first a blank: Probability to win in 2nd draw:

$$P(B) = \frac{5}{19}$$

- Depending on whether event A occurs or not, probability of B occurring is different
- Events are not stochastically independent

- Event A: Tomorrow is fine weather
- Event B: Person is in a good mood tomorrow
- Most people more cheerful in good weather than in bad weather
- Occurrence of A has influence on occurrence of B
- Events are not stochastically independent

Caution

Formula

$$P(A \cap B) = P(A) \cdot P(B)$$

applies only if events A and B are stochastically independent

• If events are *not* stochastically independent, there is no general formula to calculate $P(A \cap B)$