Rejection Sampling

Basic idea: Sample from instrumental proposal $q \neq \pi$; correct through rejection step to obtain a sample from π .

Given two densities π, q with $\pi(x) \leq Mq(x)$ for all x, and some M > 0, we can

generate a sample from π by

What is Rejection Sampling?

Intuition:

- ▶ Throw darts uniformly under $M \cdot q(x)$
- ▶ Keep only those under $\pi(x)$
- ▶ Kept points follow $\pi(x)$ exactly!

The Algorithm:

- 1. Sample $X \sim q(x)$
- 2. Sample $U \sim \text{Uniform}(0,1)$
- 3. Accept if $U \leq \frac{\pi(X)}{M \cdot q(X)}$

Why it works: We're sampling uniformly from the area under $\pi(x)$!

Mathematical Foundation

Proposition

The distribution of accepted samples is exactly $\pi(x)$

Proof: We need to show $P(X \in A|X \text{ accepted}) = \pi(A)$. From the definition of conditional probability: $P(X \in A|X \text{ accepted}) = \frac{P(X \in A,X \text{ accepted})}{P(X \text{ accepted})}$.

$$P(X \in A, X \text{ accepted}) = \int_{X} \int_{0}^{1} \mathbb{I}_{A}(x) \cdot \mathbb{I}\left(u \leq \frac{\pi(x)}{Mq(x)}\right) q(x) \, du \, dx$$
$$= \int_{X} \mathbb{I}_{A}(x) \cdot \frac{\pi(x)}{Mq(x)} \cdot q(x) \, dx$$
$$= \int_{X} \mathbb{I}_{A}(x) \cdot \frac{\pi(x)}{M} \, dx = \frac{\pi(A)}{M}$$

Similarly, $P(X \text{ accepted}) = \frac{1}{M}$. Therefore: $P(X \in A | X \text{ accepted}) = \frac{\pi(A)/M}{1/M} = \pi(A)$.

Does this work for un-normalised distributions?

Often we only know π and q up to some normalising constants; i.e.

$$\pi = rac{\pi}{Z_{\pi}}$$
 and $q = rac{q}{Z_{q}}$

where $\tilde{\pi}$, \tilde{q} are known but Z_{π} , Z_{q} are unknown. You still need to be able to sample from $q(\cdot)$. If you can upper bound:

$$\frac{\tilde{\pi}(x)}{\tilde{g}(x)} \leq \tilde{M},$$

then using $\tilde{\pi}$, \tilde{q} and \tilde{M} in the algorithm is correct.

Indeed we have

$$\frac{\tilde{\pi}(x)}{\tilde{q}(x)} \leq \tilde{M} \iff \frac{\pi(x)}{q(x)} \leq \tilde{M} \cdot \frac{Z_q}{Z_{\pi}} \stackrel{\text{def}}{=} M$$

- ► forudsætninger og konstant *M*
- ▶ waiting time to accepted sample is geometric with mean M
- ▶ find M kan være svært
- ► kan være ineffektiv hvis *M* er stor
- ▶ dimensionalitet

squeezing

► M storre end 1