Map Projections II

GEOG380 Fall 2018

The round earth vs. a flat map/screen

- Map Projections I
 - The process of map projections
 - Geographic coordinates
 - Projected coordinates
 - Map projection characteristics
 - Distortion
 - Scale
- Map Projections II
 - More about projections
 - Selecting an appropriate map projection

Tissot's indicatrix

- A way to visually explore and understand distortion of different projections
- A symbol representing a really small point on the reference globe with unit radius

Tissot's indicatrix (cont.)

Each indicatrix gets projected onto the developable surface (projecting land masses and graticules from the reference globe) together with the geographic features

Tissot's indicatrix

- A way to visually explore and understand distortion of different projections
- A symbol representing a really small point on the reference globe with unit radius

Plate carrée (flat square)

- ▶ Equidistant preserves distance
- Cylindrical developable surface

Albers Equal Area Conic

- Equivalent Equal area
- Conic developable surface
- Works very well for areas in mid-latitudes

Adjusting projection center

- Latitude adjustment
- Ex. Albers equal area conic
 - North America
 - Standard parallels:20 and 60 degrees N
 - Contiguous US
 - Standard parallels29.5 and 45.5 N
- Why adjust the projection center?

Adjusting projection center (cont.)

- Longitude adjustment
- Ex. Albers equal area conic
 - Contiguous US
 - Central meridian 96° W
 - Standard parallels: 29.5°N and 45.5° N
 - Alaska
 - Central meridian 154° W
 - Standard parallels55°N and 65°N

Azimuthal projections (keeps direction)

Azimuthal - Gnomonic

 Any great circle arcs become a straight line

- Preserves direction
- cf. loxodrome <</p>
- Useful for navigation
- Extreme distortions away from the center
 - Only part of the globe is projected
 - Circles are not preserved

Azimuthal - Stereographic

- Conformal –preserves angles
 - Circles and circular arcs are preserved

Azimuthal – Equidistant, Equivalent

Equidistant

- Scale constant along radiating straight lines
- Preserves distance
- Antipode becomes a bounding circle

Equivalent

- Compression towards the antipode
- Preserves areas

(See the parallels)

Equal area Projections - Sinusoidal

Equal area Projections - Mollweide

Equal area Projections - Goode's homolosine

Robinson

Compromise – minimize distortion (shape+area+ angle...)

Choices, choices, choices...

- Snyder's projection selection guidelines
 - World (Table 9.1, p.155), hemisphere (Table 9.2, p.156) continent, ocean, or smaller areas (Table 9.3, p.158)

Region Mapped	Property	Characteristic	Named Projection
World	Conformal	Constant scale along Equator Constant scale along a meridian Constant scale along an oblique great circle No constant scale anywhere on the map	Mercator Transverse Mercator Oblique Mercator Lagrange August Eisenlohr
	Equivalent	Noninterrupted	Mollweide
	te estate m en endere m	quired, Snyner Maji Projecti ection Sayder, or Smaller Bra e that require Table 9.3 pp.	Eckert IV & VI McBryde or McBryde-Thomas Boggs Eumorphic Sinusoidal Other miscellaneous pseudocylindrica
		Interrupted Oblique aspect	Hammer (a modified azimuthal) Any of the above except Hammer Goode's Homolosine Briesemeister Oblique Mollweide
interior sub-	Equidistant	Centered on a pole	Polar azimuthal equidistant
		Centered on a city	Oblique azimuthal equidistant
	Straight rhumb lines		Mercator Management by
	Compromise		Miller cylindrical

Geographic vs. projected coordinates

- Because of projection a geographic coordinate grid will typically not be squareshaped (3D sphere)
- This is inconvenient in a flat map context and also in a GIS where digitizers and remote sensing data use square grids
- It also introduces errors in calculation of distance and area

geographic coordinate grid

Source: Goode's World Atlas

Measurement error example

- Using a
 geographic grid,
 distance between
 two points is
 calculated along
 great circles from
 a central point
 - Ex) 6,828km

Mercator distance

- Projected data as measured on a map will be distorted
- What really is 6,828km is measured to be about 11,700 km!

Azimuthal distance (keeps direction)

- Equidistant azimuthal projection centered on two different points can be used to measure the correct distance
- What is a straight line in Mercator projection is a curved line (loxodrome) in Azimuthal projection
- What really is 6,828km is measured to be about 6,832 km!

Some common map coordinate systems

Universal Transverse Mercator (UTM) grid

- Specified for 60 x 20 zones (ex. IIN)
- Measured in meter
- Distortions within I meter

Some common map coordinate systems (cont.)

- State plane coordinate systems (SPC)
 - Each state uses optimal projection
 - Measured in feet
 - Distortions less thanI foot
 - ▶ False Easting, Northing

California State has 6 SPCs

To do...

- Reading
 - Ch. II
- ► Test I: lecture notes #01~07
 - ▶ Sep. 25 (at the beginning of class, about 30 minutes)
 - ▶ Study guide & sample questions on the BeachBoard

