EXPRRIMENT-5

Measurement of Self Inductance by Maxwell Bridge

AIM

To determine the self-inductance of an unknown coil.

Theory

This bridge circuit measures an inductance by comparison with variable standard self inductance. The connections for balance condition is shown in Fig. 1.

Fig 1: Circuit Diagram for Measurement of Self Inductance by Maxwell Bridge

Let, L₁= Unknown self Inductance of resistance R₁,

 L_2 = variable inductance of fixed resistance r_2 ,

 R_2 = variable resistance connected in series with inductor L_2 ,

R₃,R₄= known non inductive resistances,

At balance condition,

$$(R_1 + j\omega L_1) * R_4 = (R_2 + r_2 + j\omega L_2) * R_3...(1)$$

Equating both the real and imaginary parts in eq.(1) and seperating them,

$$L_1 = (\frac{R_3}{R_4})L_2...(2)$$

$$R_1 = (rac{R_3}{R_4})*(R_2 + r_2)...(3)$$

Resistors R_3 and R_4 are normally a selection of values from 10, 100, 1000 and 10,000 Ω . r_2 is a decade resistance box.

Procedure

Fig 1: Circuit Diagram for Measurement of Self Inductance by Maxwell Bridge

- 1. Apply Supply voltage from the signal generator with arbitrary frequency. (V =3v). Also set the unknown Inductance value from 'Set Inductor Value' tab.
- 2. Then switch on the supply to get millivoltmeter deflection.
- 3. Choose the values of L_2 , r_2 , R_2 , R_3 and R_4 from the inductance and resistance box. Varry the values to some particular values to achieve "NULL".
- 4. Observe the millivoltmeter pointer to achieve "NULL".
- 5. If "NULL" is achieved, switch to 'Measure Inductor Value' tab and click on 'Simulate'. Observe the calculated values of unknown inductance (L_1) and it's

internal resistance (R_1) of the inductor.

6. Also observe the Dissipation factor of the unknwown inductor which is defined as

$$rac{\omega L}{R} \ Where, \omega = 2\pi f$$

SIMULATION

AIR CORE

Measure Inductor Value

IRON CORE

Measure Inductor Value

RESULT

Thus the unknown inductance is found using maxwell bridge