

Question 4
Correct
Mark 1.00 out of 1.00

2

Let f(x) be a continuous function defined on $[a_0,\,b_0]$, if $f(a_0)$. $f(b_0)<0$, so root in in intervals $[a_0,b_0]$

Select one:

- True
- False

The correct answer is 'True'.

Question **5**Correct
Mark 1.00 out of

In numerical analysis, the absolute error can be misleading and the relative error more meaningful

Select one:

- True
- False

The correct answer is 'True'.

Question **6**Correct
Mark 1.00 out of

1.00

Determine the approximation function f(x) based on the divided difference table for the given data.

x	f(x)	First	Second	Third	Fourth	Fifth
		divided	divided	divided	divided	divided
		difference	difference	difference	difference	difference
1	3					
		14				
3	31		8			
		38		1		
4	69		12		0	
		62		1		0
5	131		16		0	
		110		1		
7	351		22			
		220				
10	1011					

Select one:

$$a. p(x) = x^5 - x + 1$$

$$b. p(x) = x^3 + x + 1$$

$$p(x) = x^5 + x + 2$$

$$p(x) = 2x^5 + x - 1$$

Your answer is correct.

The correct answer is: $p(x) = x^3 + x + 1$

Question **7**Correct
Mark 1.00 out of

1.00

The Floating-Point Arithmetic IEEE Standard 754 (Single Precision) is based on

Select one:

- True
- False ✓

The correct answer is 'False'.

Question 8 Correct Mark 1.00 out of 1.00	The bisection method is based on the Intermediate Mean-Value Theorem iteratively to find roots Select one: True ✓ False The correct answer is 'True'.
Question 9 Correct Mark 1.00 out of 1.00	The IEEE 754 Single precision is of 85.125 Select one: a. 0 11000101 01010100100000000000000000
Question 10 Correct Mark 1.00 out of 1.00	Your answer is correct. The correct answer is: 0 10000101 01010100100000000000000000

<u>Home</u> My	y courses <u>Numerical Methods - Spring - 2021/2022</u> <u>General</u> <u>Quiz</u>
Started	on Tuesday, 29 March 2022, 5:08 PM
	ate Finished
Completed	on Tuesday, 29 March 2022, 5:34 PM
	ken 25 mins 53 secs
Gra	ade 10.00 out of 10.00 (100%)
Question 1	The decimal value of the following binary number $(1010.01)_2$ is 12.25
Mark 1.00 out of	Select one:
1.00	○ True
	■ False
	The correct answer is 'False'.
Question 2 Correct	The bisection method is based on the Intermediate Mean-Value Theorem iteratively to find roots
Mark 1.00 out of 1.00	Select one:
	True ✓
	○ False
	The correct answer is 'True'.
Question 3 Correct	the minimum number of iterations needed in the Bisection Algorithm, given to
Mark 1.00 out of	$a_0 = 3$, $b_0 = 4.5$, and $\epsilon = 10^{-5}$.
1.00	Select one:
	a. 17 iterations
	O b. NA
	c. 18 iterations ✓
	d. 20 iterations
	Your answer is correct.
	The correct answer is: 18 iterations

Question 8Using the fixed-point iterative method find a root of Correct $f(x)=4x^2+2x-1$, $\varepsilon=0.005$ with interval [0,1] Mark 1.00 out of 1.00 Select one: a. 0.308

✓ B b. 1.308 2 c. 0.508 d. 0.108 Your answer is correct. The correct answer is: 0.308 Question 9 The decimal value of the following binary number $(1111.111)_2$ is 15.875Correct Mark 1.00 out of Select one: 1.00 ■ True False The correct answer is 'True'. Question 10 Consider finding the root of $f(x) = x^2-3$ and start with Correct the interval [1, 2] with N=3 iterations Mark 1.00 out of 1.00 Select one: a. 2.9475 b. 1.6875 🗸 c. -1.6875 d. 3.6875 Your answer is correct. The correct answer is: 1.6875

Question 4 Correct Mark 1.00 out of 1.00	Select one: True False	eratively to find root	on the Intermediate Mean-Value s
Question 5 Correct Mark 1.00 out of 1.00	Select one: True False	✓	ving binary number $(1010.01)_2$ is 12.25
Question 6 Correct Mark 1.00 out of 1.00	Select one: True False	•	ring binary number (1111.111) ₂ is 15.875
Question 7 Correct Mark 1.00 out of	to the Floa	ting-Point Arithmeti	
1.00	0	10000011	00010010000000000000000
	Select one: a. 17 b17 c. 18 d18	.125 ✓ 7.725 .925 3.125 er is correct.	Mantissa
	Correct Mark 1.00 out of 1.00 Question 5 Correct Mark 1.00 out of 1.00 Question 7 Correct Mark 1.00 out of 1.00	Correct Mark 1.00 out of 1.00 Select one: True False The correct Mark 1.00 out of 1.00 True False The correct Mark 1.00 out of 1.00 True False The correct Mark 1.00 out of 1.00 True Select one: The decimal Select one: The correct What are the to the Float Mark 1.00 out of 1.00 Sign Select one: a. 17 b17 c. 18 d18	The orrect answer is 'True'. Question 5 Correct Mark 1.00 out of 1.00 True ✓ False The decimal value of the follow Select one: True False ✓ The correct answer is 'False'. The correct answer is 'False'. The correct answer is 'False'. Question 6 Correct Mark 1.00 out of 1.00 True False The decimal value of the follow Select one: True False The correct answer is 'False'. What are the decimal value of to the Floating-Point Arithmetic Question 7 Correct Mark 1.00 out of 1.00 Question 7 Correct Select one: True ✓ False The correct answer is 'True'. Select one: True ✓ False The correct answer is 'True'.

Question **9**Correct
Mark 1.00 out of 1.00

Consider finding the root of $f(x) = x^2-3$ and start with the interval [1, 2] with N=3 iterations

Select one:

- a. -1.6875
- b. 1.6875 ✓
- c. 3.6875
- d. 2.9475

Your answer is correct.

The correct answer is: 1.6875

Question 10
Incorrect
Mark 0.00 out of

1.00

Determine the approximation function f(x) based on the divided difference table for the given data.

x	f(x)	First	Second	Third	Fourth	Fifth
		divided	divided	divided	divided	divided
		difference	difference	difference	difference	difference
1	3					
		14				
3	31		8			
		38		1		
4	69		12		0	
		62		1		0
5	131		16		0	
		110		1		
7	351		22			
		220				
10	1011					

Select one

$$a. p(x) = x^5 + x + 2$$

$$b. p(x) = x^3 + x + 1$$

$$p(x) = 2x^5 + x - 1$$

$$d. p(x) = x^5 - x + 1$$

Your answer is incorrect.

The correct answer is: $p(x) = x^3 + x + 1$

<u>Home</u> My	courses <u>Numerical Methods -Spring - 2021/2022</u> <u>General</u> <u>Quiz_1</u>
	on Tuesday, 29 March 2022, 5:00 PM ate Finished
	on Tuesday, 29 March 2022, 5:13 PM
	xen 13 mins 1 sec
Gra	de 9.00 out of 10.00 (90%)
Question 1 Correct Mark 1.00 out of 1.00	The bisection method is based on the Intermediate Mean-Value Theorem iteratively to find roots Select one:
	True ✓
	○ False
	The correct answer is 'True'.
Question 2 Correct Mark 1.00 out of 1.00	the minimum number of iterations needed in the Bisection Algorithm, given to $a_0=3$, $b_0=4.5$, and $\epsilon=10^{-5}$.
	Select one:
	a. 20 iterations
	O b. NA
	© c. 18 iterations
	d. 17 iterations
	Your answer is correct.
	The correct answer is: 18 iterations
Question 3 Correct	The Floating-Point Arithmetic IEEE Standard 754 (Single Precision) is based on
Mark 1.00 out of	Select one:
1.00	O True
	False ✓
	The correct answer is 'False'.

Mark 1.00 out of 1.00	0	10000011	00010010000000000000000
	Sign	Exponent	Mantissa
	Select one		
		8.125	
	O b. 18	8.925	
		7.725	
		7.125 ✓	
	Your answ	ver is correct.	
	The correct	et answer is: 17.125	
Question 5			
Correct	Using the	e fixed-point iterative	method find a root of
Mark 1.00 out of	f(x)=4x	$x^2 + 2x - 1 , \varepsilon = 0.0$	005 with interval [0,1]
1.00	Select one):	
	a. 0.	308 🗸	
	O b. 0.	.108	
	O c. 1.	308	
	O d. 0.	508	
	V		
		er is correct.	
	The correc	ct answer is: 0.308	
Question 6	Canaid	or finding the rea	$t \circ f f(y) = y^2 2$ and start with
Correct Mark 1.00 out of		rval [1, 2] with N	t of $f(x) = x^2-3$ and start with =3 iterations
1.00	Select one	: :	
	a. 3.	6875	
	b. 1.	.6875 🗸	
	O c1	.6875	
	O d. 2.	.9475	
	Vour answ	ver is correct.	
		et answer is: 1.6875	
Question 7	The Newto	on's Method for root t	finding is based on the approximation $x_n = x_n$
Correct			
Mark 1.00 out of 1.00	Select one):	
	O True		
	False	• ✔	

ß,

Q

 $\hat{\Box}$

 $\hat{\Box}$

Started on	Tuesday,	20	March	2022	5.15	DМ
Started on	Tuesuay,	25	iviaicii	ZUZZ,	5.45	LIAI

State Finished

Completed on Tuesday, 29 March 2022, 5:49 PM

Time taken 4 mins 20 secs

Grade 9.00 out of 10.00 (90%)

Question 1

Correct

Mark 1.00 out of 1.00

the minimum number of iterations needed in the Bisection Algorithm, given to

$$a_0 = 3$$
 , $b_0 = 4.5$, and $\epsilon = 10^{-5}$.

Select one:

- a. 20 iterations
- b. 17 iterations
- O c. NA
- d. 18 iterations 🗸

Your answer is correct.

The correct answer is: 18 iterations

Question ${f 2}$

Correct

Mark 1.00 out of 1.00

Determine the approximation function f(x) based on the divided difference table for the given data.

x	f(x)	First	Second	Third	Fourth	Fifth
		divided	divided	divided	divided	divided
		difference	difference	difference	difference	difference
1	3					
		14				
3	31		8			
		38		1		
4	69		12		0	
		62		1		0
5	131		16		0	
		110		1		
7	351		22			
		220				
10	1011					

Select one:

$$a. p(x) = x^5 + x + 2$$

$$p(x) = x^5 - x + 1$$

$$\bigcirc$$
 $_{C.} p(x) = x^3 + x + 1$

$$d_{1} p(x) = 2x^{5} + x - 1$$

Your answer is correct.

The correct answer is: $p(x) = x^3 + x + 1$

Correct	The decimal value of the following binary number (1010.01) ₂ is 12.25
Mark 1.00 out of	Select one:
1.00	O True
	● False ✓
	The correct engages is 'Feles'
	The correct answer is 'False'.
Question 4 Correct	The IEEE 754 Single precision is of 85.125
Mark 1.00 out of 1.00	Select one:
1.00	a. 0 10000101 0101010010000000000000
	b. 0 11000101 01010100100000000000000000
	c. 0 10000101 01010100000000000000000000
	d. 0 10001101 01010100000000000000000000
	Your answer is correct.
	The correct answer is: 0 10000101 01010100100000000000000000
Question 5	The binary number of the following decimal value $(105.625)_{10}$ is 1101001.1
Correct	
Mark 1.00 out of 1.00	Select one:
1.00	True ✓
	○ False
	The correct answer is 'True'.
Question 6 Correct	
Correct Mark 1.00 out of	Let $f(x)$ be a continuous function defined on $[a_0, b_0]$, if $f(a_0)$. $f(b_0) < 0$, root in in intervals $[a_0, b_0]$
Correct	Let $f(x)$ be a continuous function defined on $[a_0,b_0]$, if $f(a_0)$. $f(b_0)<0$, root in in intervals $[a_0,b_0]$ Select one:
Correct Mark 1.00 out of	Let $f(x)$ be a continuous function defined on $[a_0, b_0]$, if $f(a_0)$. $f(b_0) < 0$ root in in intervals $[a_0, b_0]$ Select one: True \checkmark
Correct Mark 1.00 out of	Let $f(x)$ be a continuous function defined on $[a_0, b_0]$, if $f(a_0)$. $f(b_0) < 0$, root in in intervals $[a_0, b_0]$ Select one:
Correct Mark 1.00 out of	Let $f(x)$ be a continuous function defined on $[a_0, b_0]$, if $f(a_0)$. $f(b_0) < 0$ root in in intervals $[a_0, b_0]$ Select one: True \checkmark
Correct Mark 1.00 out of 1.00	Let $f(x)$ be a continuous function defined on $[a_0, b_0]$, if $f(a_0)$. $f(b_0) < 0$, root in in intervals $[a_0, b_0]$ Select one: True \checkmark False The correct answer is 'True'.
Correct Mark 1.00 out of	Let $f(x)$ be a continuous function defined on $[a_0, b_0]$, if $f(a_0)$. $f(b_0) < 0$, root in in intervals $[a_0, b_0]$ Select one: True \checkmark False
Correct Mark 1.00 out of 1.00	Let $f(x)$ be a continuous function defined on $[a_0, b_0]$, if $f(a_0)$. $f(b_0) < 0$, root in in intervals $[a_0, b_0]$ Select one: True \checkmark False The correct answer is 'True'.
Correct Mark 1.00 out of 1.00 Question 7 Correct	Let $f(x)$ be a continuous function defined on $[a_0, b_0]$, if $f(a_0) \cdot f(b_0) < 0$ root in in intervals $[a_0, b_0]$ Select one: True \checkmark False The correct answer is 'True'. The bisection method is based on the Intermediate Mean-Value Theorem iteratively to find roots Select one:
Correct Mark 1.00 out of 1.00 Question 7 Correct Mark 1.00 out of	Let $f(x)$ be a continuous function defined on $[a_0, b_0]$, if $f(a_0)$. $f(b_0) < 0$ root in in intervals $[a_0, b_0]$ Select one: True \checkmark False The correct answer is 'True'. The bisection method is based on the Intermediate Mean-Value Theorem iteratively to find roots
Correct Mark 1.00 out of 1.00 Question 7 Correct Mark 1.00 out of	Let $f(x)$ be a continuous function defined on $[a_0, b_0]$, if $f(a_0) \cdot f(b_0) < 0$ root in in intervals $[a_0, b_0]$ Select one: True \checkmark False The correct answer is 'True'. The bisection method is based on the Intermediate Mean-Value Theorem iteratively to find roots Select one:
Correct Mark 1.00 out of 1.00 Question 7 Correct Mark 1.00 out of	Let $f(x)$ be a continuous function defined on $[a_0, b_0]$, if $f(a_0) \cdot f(b_0) < 0$, root in in intervals $[a_0, b_0]$ Select one: True \checkmark False The correct answer is 'True'. The bisection method is based on the Intermediate Mean-Value Theorem iteratively to find roots Select one: True \checkmark

Ω,

Q

 $\hat{\Box}$

B

2

Question 4 Correct Mark 1.00 out of 1.00	The IEEE 754 Single precision is of 85.125 Select one: a. 0 10001101 01010100100000000000000000
Question 5 Correct Mark 1.00 out of 1.00	Suppose that p^* is an approximation to p . So, the relative error is $ p-p^* $ Select one: True False \checkmark
Question 6 Correct Mark 1.00 out of 1.00	The Floating-Point Arithmetic IEEE Standard 754 (Single Precision) is based on Select one: True False ✓
Question 7 Correct Mark 1.00 out of 1.00	The correct answer is 'False'. The decimal value of the following binary number (1111.111)₂ is 15.875 Select one: True ✓ False
	The correct answer is 'True'.

B

2