

Course Handout Part-II

January 6,2015

Course Number: PHY F242 Course Title: Quantum Mechanics-I

Instructor-in-charge: RISHIKESH VAIDYA

Objective and Scope of the Course:

Quantum Mechanics-I is an introduction to the mechanics of atomic and sub-atomic systems. The course is roughly divided into three parts. The first part will begin with a historical perspective and will attempt to convey how radical quantum mechanical ideas were inevitably discovered when all the attempts to explain the experimental results within the classical framework of mechanics, electrodynamics and thermodynamics failed. The second part will then develop the rudiments of Schrodinger's wave mechanics and apply the same to some simple systems (mostly 1-dimensional) that will help clarify the novelty of quantum mechanical concepts. The third and the final part will then elaborate on the formal structure of quantum mechanics that will lay strong foundations for the advanced courses.

Text and reference books: The course will draw heavily from following text and reference books:

- 1. Quantum Mechanics by Bransden and Joachain (BJ) 2nd Edition Pearson Education
- 2. Quantum Mechanics Vol. 1 by Shin-Itiro Tomonaga Inter Science publishers
- 3. Quantum Mechanics by John Powell and Bernd Crassemann (PC) Narosa Publishing House
- 4. Quantum Mechanics by David Bohm, Dover Publications

Lec. #	Learning objectives	Topics to be covered	Ref. #
1-4 (4)	To understand the inevitable	Blackbody radiation, theory of	Ref. 2 chap.1,
	emergence of quantum mechanics	Specific heats and Plank's	Ref. 1 chap. 1,
	in explaining certain experimental results.	hypothesis	and class notes
5-6 (2)	Understanding particle nature of	Einstein's quantum theory of	Ref. 2 Chap.2,
	radiation and making sense of	Photoelectric effect, Compton effect,	Ref. 1 chap. 1.
	wave-particle duality	dual nature of electromagnetic radiation	and class notes.
7-8 (2)	Understanding the origin of	Atomic Spectra and Bohr Model of	Ref. 1, Sec. 1.4
	spectra in terms of Bohr model.	Hyrdrogen atom	
9-10 (2)	Quantization of Angular	Stern Gerlach experiment and De-	Ref. 1 Sec. 1.5,
	momentum	Broglie hypothesis	1.6
	and wave particle dualism.		
11-16	Coherent systhesis of wave	Interpretation of wave function, wave	Ref. 1 chap.2
	particle dualism	packets, and uncertainty principle.	
17-26(10)	Understanding the structure and	The Schrodinger equation,	Ref. 1 chap.3
	concepts related to the most	probability, expectation values and	
	important equation – the	operators, Ehrenfest theorem, energy	
	Schrodinger equation.	quantization and properties of energy	
		eigenfunctions, schrodinger equation	
		in momentum space	
27-33 (7)	To see quantum peculiarities in	1 dimensional problems such as	Ref. 1 chap. 4

	simple quantum systems	potential step, potential barrier,	
		square well, harmonic oscillator	
34-40 (7)	Introduction to the formal	State of a system, dynamical variables	Ref. 1 Sections
	structure of Quantum Mechanics	and operators, expansions in	5.1-5.4
		eigenfunctions, commuting	
		observables, compatibility and	
		Heisenberg uncertainty relations.	

Evaluation Scheme:

	Evaluation Comp.	Duration	Weightage	Date, time,	Nature of
				venue	component
1	Mid-semester test	90 min	30 %	16/3 9:00 -	Closed book
				10:30 AM	
2.	Tutorial/Assignments		25-30%		
3.	Comprehensive	3 hours	40-45%	9/5 FN	Open+Closed
	Examination				book

