

Architectural Design Campus Placement Prediction

Revision Number: 1.8

Last date of revision: 03/06/2023

KARTIK

Document Version Control

Date Issued	Version	Description	Author
4 JUNE 2023	1.1	First Draft	KARTIK
5 JUNE 2023	1.2	Added Workflow chart	KARTIK
11 JUNE 2023	1.3	Added Exception Scenarios Overall, Constraints	KARTIK
15 JUNE 2023	1.5	Added user I/O flowchart	KARTIK
30 JUNE 2023	1.7	Added dataset overview and updated user I/O flowchart.	KARTIK
03 JULY 2023	1.8	Restructure and reformat LLD	KARTIK

Contents

D	ocume	nt Version Control	2
1	Intr	oduction	4
	1.1	Why this Low-Level Design Document?	4
	1.2	Scope	5
	1.3	Constraints	5
	1.4	Risks	5
	1.5	Out of Scope	5
2	Tec	hnical specifications	6
	2.1	Dataset	6
	2.1.1	Campus placement prediction dataset overview	6
	File de	escriptions	6
	Data f	ields	7
	2.1.2	Input schema	7
	2.2 Pr	edicting the results	8
	2.3 Lc	ogging	8
3	Tec	hnology stack	9
4	Pro	posed Solution	9
5	Mo	del training/validation workflow	10
6	Use	r I/O workflow	11
7	Exc	reptional scenarios	11
8	Tes	t cases	11

Abstract

Placement of students is one of the most important objective of an educational institution. Reputation and yearly admissions of an institution invariably depend on the placements it provides it students with. Institutions make great efforts to achieve placements for their students'. This will always be helpful to the institution. The objective is to predict the students getting placed for the current year by analyzing the data collected from previous year's students. This model is proposed with an algorithm to predict the same. The data has been collected by the institution for which prediction is going to be done and by applying suitable data pre-processing techniques. This model is prepared by using Support Vector Machine [SVM] algorithm. This algorithm independently predict the results and we then compare the efficiency of the algorithm, which is based on the dataset. This model will helps the placement cell to focus on the potential students and help them to improve their technical and social skills.

1 Introduction

1.1 Why this Low-Level Design Document?

The purpose of this document is to present a detailed description of the Campus Placement Prediction System. It will explain the purpose and features of the system, the interfaces of the system, what the system will do, the constraints under which it must operate and how the system will react to external stimuli. This document is intended for both the stakeholders and the developers of the system and will be proposed to the higher management for its approval.

The main objective of the project is to predict whether a student is placed or not based on the given dataset.

1.2 Scope

We have designed a models for checking prediction of student getting placed or not in a campus drive this model will help both student and institutions for preparing well in advance for campus recruitment. The main objective of this model is to know the capability of the student and where he stands by predicting the probability of getting placed. This also help the students and institutions to improve performance of the potential students. This model will consider the academic history of the student such as percentage as well as their domains and specializations which are tested by companies. We used SVM algorithm on the student's data gathered from the institution of previous year. This model take scores of student in secondary education along with academic CGPA of both UG and PG.in the technical education till date and also some parameters which adds weightage to kick start the career.

1.3 Constraints

We will only be selecting a few of the educational parameters.

1.4 Risks

Document specific risks that have been identified or that should be considered.

1.5 Out of Scope

Delineate specific activities, capabilities, and items that are out of scope for the project.

2 Technical specifications

2.1 Dataset

Parameters	Finalized	Source
 gender - sex of the student secondary education percentage-marks obtained in secondary education higher secondary percentage-marks obtained in higher secondary education degree percentage-marks obtained in degree Undergraduation(Degree-type)-Field of degree education Work-experience Employability-test-package specialisation-field of study 	yes	https://www.kaggle.com/c/ml-with-python-course-project/data

2.1.1 Campus placement prediction dataset overview

File descriptions

- train.csv the training set
- test.csv the test set
- SampleSubmission.csv a sample submission file in the correct format.

Data fields

- gender sex of the student
- secondary education percentage-marks obtained in secondary education
- higher secondary percentage-marks obtained in higher secondary education
- degree percentage-marks obtained in degree
- Under-graduation(Degree-type)-Field of degree education
- Work-experience
- Employability-test-package
- specialisation-field of study

There are a total of 250 students in the training set.

• Student information table with various parameters

1	А	В	C	D	E	F	G	Н	1	J	K	L	M	N	0
1	sl_no	gender	ssc_p	ssc_b	hsc_p	hsc_b	hsc_s	degree_p	degree_t	workex	etest_p	specialisat	mba_p	status	salary
2	1	C	67	Others	91	Others	Commerce	58	Sci&Tech	No	55	Mkt&HR	58.8	Placed	270000
3	2	C	79.33	Central	78.33	Others	Science	77.48	Sci&Tech	Yes	86.5	Mkt&Fin	66.28	Placed	200000
4	3	C	65	Central	68	Central	Arts	64	Comm&M	No	75	Mkt&Fin	57.8	Placed	250000
5	4	C	56	Central	52	Central	Science	52	Sci&Tech	No	66	Mkt&HR	59.43	Not Place	d
6	5	C	85.8	Central	73.6	Central	Commerce	73.3	Comm&M	No	96.8	Mkt&Fin	55.5	Placed	425000
7	6	C	55	Others	49.8	Others	Science	67.25	Sci&Tech	Yes	55	Mkt&Fin	51.58	Not Place	d
8	7	1	46	Others	49.2	Others	Commerce	79	Comm&M	No	74.28	Mkt&Fin	53.29	Not Place	d
9	8	C	82	Central	64	Central	Science	66	Sci&Tech	Yes	67	Mkt&Fin	62.14	Placed	252000
10	9	C	73	Central	79	Central	Commerce	72	Comm&M	No	91.34	Mkt&Fin	61.29	Placed	231000
11	10	C	58	Central	70	Central	Commerce	61	Comm&M	No	54	Mkt&Fin	52.21	Not Place	d
12	11	C	58	Central	61	Central	Commerce	60	Comm&M	Yes	62	Mkt&HR	60.85	Placed	260000
13	12	C	69.6	Central	68.4	Central	Commerce	78.3	Comm&M	Yes	60	Mkt&Fin	63.7	Placed	250000
14	13	1	. 47	Central	55	Others	Science	65	Comm&M	No	62	Mkt&HR	65.04	Not Place	d
15	14	1	. 77	Central	87	Central	Commerce	59	Comm&M	No	68	Mkt&Fin	68.63	Placed	218000

2.1.2 Input schema

Feature name	Datatype	Size	Null/Required
Gender	char	10	Required
Secondary education percentage[10 th %]	float	5	Required

Higher Secondary education percentage[12 th %]	float	5	Required
Specialisation in higher secondary education	String	20	Required
Degree percentage	float	5	Required
Under graduation	String	10	Required
Work Experience	char	1	Required
Employability test percentage	float	5	Required
Specialisation	String	10	Required
MBA percentage	float	5	Required

2.2 Predicting the results

- The system displays the choices to various fields as mentioned.
- The User chooses the target by clicking one of the available options.
- The system presents the set of inputs required from the user.
- The user gives required information.
- The system should be able to predict whether the student gets placed or not based on the user information.

2.3 Logging

- We should be able to log every activity done by the user. The System identifies at what step logging required.
- The System should be able to log each and every system flow.
- Developers can choose logging methods. You can choose database logging/ File logging as well.

 System should not hang even after using so many loggings. Logging just because we can easily debug issues so logging is mandatory to do.

2.5 Deployment

1. HEROKU

3 Technology stack

Front End	HTML/CSS/JS
Backend	Python Flask
Deployment	HEROKU

4 Proposed Solution

The placement prediction model considers only academic performances of the students so that the prediction of the student getting placed or not can be done. We cannot consider the placement of students just by their academic performances because some students may be good at aptitude, technical and communication skills due to their low score in their academic that may tend to be their drawback. For predicting the placement of a Student needs parameters like cgpa, logical and technical skills Academic performances may be important but the model is design to predict the placements based on the parameters of the student.

5 Model training/validation workflow

6 User I/O workflow

7 Exceptional scenarios

Step	Exception	Mitigation	Module
24th JUNE 2023	1.1	First Draft	KARTIK
1 st JULY 2023	1.2	Added Workflow chart	KARTIK

8 Test cases

Test case	Steps to perform test case	Module	Pass/Fail