UNIVERSIDAD NACIONAL DE LA MATANZA INTELIGENCIA DE NEGOCIOS

Modelo Dimensional - Parte 1

Profesor: Mg. Diego Basso

Curso 2017

CICLO DE VIDA DE UN PROYECTO DE BI

Modelo de datos

- Modelo de Entidad-Relación (OLTP)
 - Orientado a la implementación de los procesos transaccionales
 - Tareas operacionales
 - Entidades, Atributos y Relaciones
- Modelo Dimensional (OLAP)
 - Orientado a las características del negocio (variables del negocio)
 - Ofrece una visión de los datos orientada hacia el análisis y una rápida y flexible navegación por estos.

MODELO DIMENSIONAL

• "El modelo dimensional es una técnica de diseño que busca presentar los datos en un framework estándar, intuitivo y escalable, que permite un acceso a los datos altamente performante, basándose en el modelado relacional pero con algunas restricciones de diseño importantes".

MODELO DIMENSIONAL

- Busca acercar los datos a la manera en que estos serán convertidos en información útil para los usuarios del negocio.
- Componentes
 - □ Hechos (Fact) / Medidas / Indicadores de negocio
 - Dimensiones
 - Atributos
 - Elementos
 - Jerarquías
 - Relaciones

MODELO DIMENSIONAL

- o Representación de la estructura que va a tener el DW.
- o Define un nivel mínimo de detalle (granularidad).
- Se puede revisar con el profesional de negocios.
- El modelo de datos dimensional es lo que hace que un DW sea una base de datos **orientada al negocio**.
- La forma de representar la organización de los datos en un modelo dimensional es a través de un **cubo**.

ESQUEMA DE UN MODELO DIMENSIONAL

HECHOS O MEDIDAS (FACTS)

Hecho

• Es algo que ocurre en el tiempo (operación o actividad).

Medidas / Indicadores

- Son valores numéricos que describen el hecho analizado.
- Las medidas más usadas son aditivas.
- Ayudan a medir el desempeño del negocio.
- Tipos
 - **Básicas**: existen físicamente en el DW junto a los atributos que las caracterizan. Provienen de las fuentes de datos OLTP.
 - Calculadas o derivadas: construidas a partir de medidas básicas y pueden o no estar almacenadas en el DW.

HECHOS O MEDIDAS (FACTS)

Medidas / Indicadores

- Columnas agregables del DW
- Admiten sumas, promedios, consolidaciones, etc.
- Dan lugar a las métricas.

Ejemplos

- ✓ \$ Venta (en un supermercado)
- ✓ Unidades vendidas (en un supermercado)
- Minutos hablados (en una telefónica)
- Duración de la llamada (en una telefónica)
- ✓ Saldo \$ (en un banco)
- Todos los hechos, medidas o indicadores de negocio se guardan en la **tabla de hechos** y deben tener el mismo nivel de granularidad.

DIMENSIONES

- o Categorías para describir el contexto (variables del negocio) en el que se pueden analizar las medidas.
- o Contienen uno o más atributos de tipo texto agrupados lógicamente. Las dimensiones no comparten atributos.
- Sirven para mostrar, agrupar y filtrar información.
- Ejemplos
 - ✓ Tipo de llamada ✓ Empleados
 - ✓ Sucursales
 - ✓ Clientes
 - ✓ Productos

- ✓ Geografía
- ✓ Vendedores
- ✓ Año
- o Si hay valores numéricos deben ser categorizados.
 - □ *Ejemplos*: Rangos de edades, niveles de precios

DIMENSIONES CON ATRIBUTOS

 Las dimensiones definen los niveles de análisis (jerarquías). Esto permite obtener sumarización o agregación.

DIM Tiempo

DIM Geografía

ATRIBUTOS

- Representan categorías o clases de elementos que tienen el mismo nivel lógico dentro de una dimensión.
- Valores cualitativos de una transacción.
- Visualizar la información de las dimensiones a distintos **niveles de detalle** y **agrupar** datos para analizar las métricas.
- Son una agrupación de **elementos** (valores que toma).
- Son parecidos a las entidades del modelo E-R.
- Ejemplos
 - ✓ Provincia ✓ Empleado
 - ✓ Ciudad
 ✓ Edad
 - ✓ Mes ✓ Cliente
 - ✓ Ítem ✓ Año

JERARQUÍAS DE ATRIBUTOS

- o Ordenamiento lógico de atributos dentro de la dimensión.
- Contiene relaciones entre los atributos de una misma dimensión.
 - 1:1
 - 1:N
 - N:N
- Las jerarquías definidas permiten bajar el nivel de complejidad de los datos y ayudar al usuario a ver los datos en el nivel de detalle que necesita.

JERARQUÍAS DE ATRIBUTOS

- Importante: si en el modelo de la dimensión aparece un sólo nivel, prestar atención a la cardinalidad.
 - Cardinalidad alta: Hace necesaria la definición de jerarquías.
 - <u>Ejemplo</u>: Si hay 20.000 productos, hace falta definir niveles jerárquicos para poder analizar.
 - Cardinalidad baja: Aceptable no tener jerarquías.
 - <u>Ejemplo</u>: Dimensión Mercado tiene dos posibles valores (Local o Extranjero).

CUBO OLAP

- Es una base de datos que posee diversas dimensiones.
- o Cada dimensión es una "arista" del cubo.
- o En las celdas del cubo están las medidas (hechos).
- Es independiente de la forma en que realmente se almacenan los datos.

EJEMPLO DE CUBO OLAP

• Cubo que posee como medida la "Cantidad de pedidos" por Fecha, Producto y Sucursal.

EJEMPLO DE CUBO OLAP

• Cubo que posee como medida la "Duración de las Llamadas" y como dimensiones Tiempo, Tipo de Llamada y Organización Telefónica.

¿POR DÓNDE EMPEZAMOS?

- La variedad y disparidad de datos dentro de una empresa requiere un enfoque incremental.
- No se puede cargar todo y ver después quién lo va a usar.
- Este enfoque puede llevar al fracaso.
- Se pierde tiempo y esfuerzo sin obtener resultados.

¿POR DÓNDE EMPEZAMOS?

- o Por las necesidades de uso de información de los usuarios de negocios.
 - Es decir, por los *requerimientos*.
- Priorizar
 - Comenzar por lo más importante para la empresa.
 - ¿Qué valores numéricos necesitan analizar?
 - ¿Cuáles son el/los procesos de negocios que generan esos valores?

Proceso de Diseño Dimensional

Pasos

- 1. Elegir el **proceso** de negocios que a modelar (ventas diarias, manejo de stock, etc.).
- 2. Elegir la **granularidad** (nivel de detalle) del proceso de negocios con que se van a guardar los datos en el DW.
- 3. Elegir las dimensiones que van a intervenir.
- 4. Elegir los **hechos** y **medidas** que se van a utilizar en la tabla de hechos.

Metodología de Ralph Kimball para el armado incremental del DW

CASO DE ESTUDIO

Relevamiento

- Un supermercado posee distintas sucursales en distintos lugares del país en las que comercializa distintos productos.
- Cada producto pertenece a una familia y cada familia pertenece a un tipo de producto. <u>Ejemplo</u>: el producto Yogur A x 170gr pertenece a la familia yogur y al tipo lácteo.
- Registra los tickets de las ventas de sus sucursales en una BBDD.
- La información que se registra de cada producto vendido es :
 - Fecha
 - Hora
 - Sucursal
 - □ Nro. de ticket
 - Producto
 - Costo de cada producto
 - Cantidad de unidades
 - Precio unitario
 - Importe

CASO DE ESTUDIO

Relevamiento

- Quiere aprovechar esta información del año actual y los dos anteriores para ver, entre otras cosas.
 - > ¿Cuánto se vendió (en unidades e importes) por sucursal y tipo de producto en los distintos trimestres, del mismo año o año actual y alguno de los anteriores.
 - > ¿Cómo fueron las ventas en las distintas provincias en las que están las sucursales?
 - > ¿Cuál fue la ganancia obtenida en la venta de cada producto?
 - > ¿Cómo fueron las ventas mensuales con tarjetas (crédito y débito) respecto al pago en efectivo (por sucursal, por producto, por mes, o trimestre o año)?
 - > ¿Cómo evolucionaron las ventas en los últimos 12 meses?

CASO DE ESTUDIO ANÁLISIS DE LOS REQUERIMIENTOS

- 1. Ventas por sucursal y tipo de producto en los distintos trimestres, del mismo año o año actual y alguno de los anteriores.
 - Medidas básicas: cantidad de unidades, importe de venta
 - □ Ver el detalle de las medidas por **sucursal**. El supermercado posee distintas sucursales.
 - Las medidas están referidas a un **producto** y a su vez se desea verlos agrupados por **tipo de producto**.
 - A su vez cada producto pertenece a una familia y cada familia pertenece a un tipo de producto.
 - Ver la evolución de las ventas en el transcurso del tiempo, detallados por trimestre o año.
- ✓ Para satisfacer estas necesidades debemos crear las dimensiones SUCURSAL, PRODUCTO y TIEMPO. ☐

CASO DE ESTUDIO ANÁLISIS DE LOS REQUERIMIENTOS

- 2. Ventas en las distintas provincias en las que están las sucursales.
 - Las información de las ventas por **sucursal** requiere que también pueda visualizarse por **provincia** asociada.
- 3. Ganancia obtenida en la venta de cada producto.
 - Medidas básicas: costo del producto
 - Medidas derivadas ó calculadas: ganancia de venta
- 4. Ventas mensuales con tarjetas (crédito y débito) y pago en efectivo (por sucursal, por producto, por mes, o trimestre o año)
 - Analizar las ventas por diferentes formas de pago.
 - Ver evolución de las ventas en el transcurso del tiempo, detallados por trimestre, año o mes. La información del ticket permite conocer hasta la fecha y hora.

CASO DE ESTUDIO ANÁLISIS DE LOS REQUERIMIENTOS

• Resumen de los requerimientos, agrupar por apertura de las dimensiones y comenzar a definir los cubos a crear.

Hecho a medir: Venta de Productos			
	Dimensiones		
Medidas	Tiempo	Sucursal	Producto
Cantidad	X	X	X
Importe	X	X	X
Costo	X	X	X
Ganancia	X	X	X

Proceso de negocio a modelar: Ventas

Modelo Dimensional "Conceptual" (Grupo de Hechos y Granularidad)

RELACIONES ENTRE ATRIBUTOS

1:1 (uno-a-uno)

- A cada código de artículo le corresponde una descripción.
- A cada descripción le corresponde un código de artículo.
- o Ambos atributos forman parte de la misma dimensión.

1:N (uno-a-muchos)

- Analicemos la dimensión *Producto*
- Cada **producto** pertenece a una **familia** y cada familia pertenece a un **tipo de producto**.
 - Una familia de productos comprende varios productos
 - Un tipo de producto comprende varias familias

DIMENSIÓN PRODUCTO

• La relación jerárquica es:

DIMENSIÓN TIEMPO

- o ¿De qué manera se quiere analizar la información?
 - Monto de ventas por sucursal y tipo de producto en distintos **trimestres**, del mismo **año** o año actual.
 - Evolución de ventas en los últimos 12 meses.
- La relación jerárquica es:

DIMENSIONES CON JERARQUÍAS MÚLTIPLES

- Puede ocurrir que además de agrupar los productos por tipo y familia sea útil agruparlos por *nivel de precio* (caro, mediano, barato)
- Esto se representa con una doble jerarquía:

DIM Producto

RELACIONES ENTRE ATRIBUTOS

N:N (muchos-a-muchos)

- En el caso de estudio: "El supermercado posee distintas sucursales en distintos lugares del país en las que comercializa distintos productos."
 - Cada producto se vende en varias sucursales
 - En cada sucursal se venden varios productos
- Los atributos Sucursal y Producto corresponden a dimensiones diferentes.
- Se relacionan a través la **tabla de hechos** y representan la relación muchos a muchos que existe entre las dimensiones.

Modelo Dimensional "Lógico" Caso de Estudio

DIM Sucursal

Provincia

Sucursal

Granularidad de la tabla de hechos:

Producto x Sucursal x Fecha

CASO DE ESTUDIO - CONCLUSIONES

- Al consultar los datos y usar los metadatos con las estructuras jerárquicas de las dimensiones se pueden obtener totales por varias cosas:
 - ✓ Importes totales por tipo de producto, provincia, mes.
 - ✓ Importes totales mensuales por Familia de productos de la provincia de Córdoba o Buenos Aires.
 - ✓ Comparar el total de unidades vendidas de un mismo producto en diferentes sucursales o provincias.
- Recordar que las **dimensiones** sirven para:
 - Mostrar
 - Filtrar
 - Agrupar

CASO DE ESTUDIO - CONCLUSIONES

- Si un usuario nos pregunta:
 - ¿Voy a poder obtener los totales trimestrales de los importes de todas las provincias? SI
 - ¿Voy a poder obtener los totales trimestrales de los impuestos de todas las provincias? NO
 - □ No hay una medida para el valor del impuesto
 - ¿Voy a poder obtener los totales mensuales de los descuentos de todas las provincias? NO
 - □ No hay una medida para el descuento
 - ¿Voy a poder obtener los totales anuales de los importes de los productos "Yogur A" vendidos en cada sucursal de CABA? SI

CASO DE ESTUDIO - CONCLUSIONES

- Si un usuario nos pregunta:
 - ¿Voy a poder obtener los totales mensuales de los importes de todas las provincias por forma de pago? NO
 - □ El ticket no contiene información sobre la Forma de Pago.
 - No hay una dimensión Forma de Pago.
 - ¿Voy a poder obtener los totales mensuales de los importes de todas las sucursales grandes de todas las provincia? NO
 - □ En este modelo no está la información sobre las sucursales para saber si son grandes o chicas.
 - Se puede resolver fácilmente agregando otra jerarquía para la dimensión Sucursal y teniendo una fuente de datos que traiga esa información.

- Presenta la información de una manera estándar, sencilla y sobre todo intuitiva para los usuarios.
- Resiste cambios inesperados en la conducta del usuario.
- Todas las dimensiones son equivalentes y pueden ser pensadas como puntos de acceso a la tabla de hechos.
- Facilidad para adaptarse a cambios.
 - □ Agregar hechos o medidas a la tabla de hechos, siempre que sean consistentes con el mayor nivel de detalle de las dimensiones.
 - Agregar atributos a las dimensiones.
 - □ Agregar nuevas dimensiones.

Facilidad para adaptarse a cambios

1. Agregar un nuevo hecho no planeado, siempre y cuando sea compatible con la granularidad definida.

Fecha	SKU	Volumen
05/04/2011	Agua 1.5 L	10
05/04/2011	Agua 2.25 L	35
05/04/2011	Cola 1 L	15
06/04/2011	Cola 1.5 L	10

Facilidad para adaptarse a cambios

- > Supongamos que quiero agregar el *importe*:
 - Agrego una columna a la tabla de hechos.
 - Completo los valores para los registros existentes.
 - Con algún valor por defecto.
 - Voy al transaccional a buscar el valor correcto (muy costoso).

Fecha	SKU	Volumen	Importe	e
05/04/2011	Agua 1.5 L	10	0	
05/04/2011	Agua 2.25 L	35	0	
05/04/2011	Cola 1 L	15	0	
06/04/2011	Cola 1.5 L	10	0	
10/04/2011	Agua 1.5 L	5	20	

✓ El nuevo hecho respeta la granularidad ya definida.

Facilidad para adaptarse a cambios

- Supongamos que trabajo todas bebidas línea Coca Cola y me doy cuenta, que tener la línea de productos es importante:
 - □ ¿La línea de productos respeta la granularidad de la tabla?

Fecha	SKU	Volumen
05/04/2011	Agua 1.5 L	10
05/04/2011	Agua 2.25 L	35
05/04/2011	Cola 1 L	15
06/04/2011	Cola 1.5 L	10

Facilidad para adaptarse a cambios

Si agrego la línea de productos a la tabla, los hechos no varían, entonces respeta la granularidad.

Fecha	Línea	SKU	Volumen
05/04/2011	Coca Cola	Agua 1.5 L	10
05/04/2011	Coca Cola	Agua 2.25 L	35
05/04/2011	Coca Cola	Cola 1 L	15
06/04/2011	Coca Cola	Cola 1.5 L	10

✓ Simplemente es agregar una columna y completarla con los valores correspondientes.

Facilidad para adaptarse a cambios

- 2. Agregar en una dimensión un atributo que no había sido planteado.
 - Supongamos que tengo la dimensión País y quiero agregar la densidad poblacional:

DIM País

Id_pais	Desc_pais
1	Argentina
2	Chile
3	Perú

Facilidad para adaptarse a cambios

- Es un atributo directamente relacionado con la dimensión.
- No tiene ningún impacto en la tabla de hechos.
- Se agrega un nuevo campo a la dimensión con el nuevo valor.

DIM País

Id_pais	Desc_pais	Desc_densi
1	Argentina	1000
2	Chile	700
3	Perú	500

Facilidad para adaptarse a cambios

- 3. Romper una dimensión existente llevándola a un nivel de granularidad menor, a partir de un momento dado.
 - □ Quiero quedarme con menos nivel de detalle.
 - □ Se puede ver que en la tabla de hechos que la dimensión Tiempo está a nivel de fecha.
 - Dejar sólo el nivel superior de la dimensión (ej. mes)

Group by MES

SUM

Fecha	SKU	Volumen
05/04/2011	Agua 1.5 L	10
05/04/2011	Agua 2.25 L	35
05/04/2011	Cola 1 L	15
06/05/2011	Cola 1.5 L	10

