Khôlles de Mathématiques - Semaine 23

Hugo Vangilluwen

31 Mars 2024

Pour cette semaine, \mathbb{K} désigne un corps commutatif, E et F des \mathbb{K} -espaces vectoriels, E' et F' des sous-espaces vectoriels respectivement de E et de F, I un ensemble quelconque non vide.

1 L'ensemble des automorphisme d'un espace vectoriel muni de la loi de composition forme un groupe

Démonstration. Montrons que $(\mathcal{GL}_{\mathbb{K}}(E), \circ)$ est un sous-groupe de $(\mathcal{S}(E), \circ)$.

- $\mathcal{GL}_{\mathbb{K}}(E) \subset \mathcal{S}(E)$ et $(\mathcal{S}(E), \circ)$ est bien un groupe.
- $\mathcal{GL}_{\mathbb{K}}(E) \neq \emptyset$ puisque $Id_E \in \mathcal{GL}_{\mathbb{K}}$.
- Soit $(f,g) \in \mathcal{GL}(E)$. Montrons que $f \circ g^{-1} \in \mathcal{GL}(E)$. Soit $(\alpha,\beta,x,y) \in \mathbb{K}^2 \times E^2$ fixés quelconques.

$$(f \circ g^{-1}) (\alpha x + \beta y) = f (g^{-1} (\alpha x + \beta y))$$

$$= f (g^{-1} (\alpha g^{-1} (g(x)) + \beta g^{-1} (g(y))))$$

$$= f (g^{-1} (\alpha g (g^{-1}(x)) + \beta g (g^{-1}(y))))$$

$$= f (g^{-1} (g (\alpha g^{-1}(x) + \beta g^{-1}(y)))) \quad \text{car } g \text{ est linéaire}$$

$$= f (\alpha g^{-1}(x) + \beta g^{-1}(y))$$

$$= \alpha f (g^{-1}(x)) + \beta f (g^{-1}(y))$$

$$= \alpha (f \circ g^{-1}) (x) + \beta (f \circ g^{-1}) (y)$$

2 Caractérisation de la somme directe de p sous-espaces vectoriels

Soit $(E_i)_{i \in [\![1:p]\!]} \in E^p$ p sous-espace vectoriel de E avec $p \in \mathbb{N}^*$ fixé quelconque. Par définition, cette famille est en somme directe si tout vecteur de $E_1 + E_2 + \ldots + E_p$ peut s'écrire comme une somme unique d'élément de $E_1 \times E_2 \times \ldots \times E_p$. Formellement :

$$\forall x \in \sum_{i=1}^{p} E_i, \exists ! x \in \underset{i=1}{\times} E_i : x = \sum_{i=1}^{p} x_i$$
 (1)

Nous allons démontrer que E_1, E_2, \ldots et E_p sont en somme directe si et seulement si

$$\forall x \in \underset{i=1}{\overset{p}{\times}} E_i, \left(\sum_{i=1}^p x_i = 0_E \implies \forall i \in [1; p], x_i = 0_E \right)$$
 (2)

 $D\acute{e}monstration$. Supposons que $E_1, E_2, \dots E_p$ sont en somme directe.

Soient $x \in \sum_{i=1}^{p} E_i$ fixés quelconquestels que $x_1 + x_2 + \ldots + x_p = 0_E$.

Or
$$0_E = \underbrace{0_E}_{\in E_1} + \underbrace{0_E}_{\in E_2} + \ldots + \underbrace{0_E}_{\in E_p}$$
. Par unicité de l'écriture de x comme somme d'éléments de $\overset{p}{\underset{i=1}{\times}} E_i$, $\forall i \in []1; p], x_i = 0_E$.

Supposons maintenant l'équation de la caractérisation. Soit $x \in \mathop{\times}_{i=1}^p E_i$ tel que x puisse s'écrire comme somme de $x' \in \mathop{\times}_{i=1}^p E_i$ et somme de $x'' \in \mathop{\times}_{i=1}^p E_i$. Montrons que x' = x''.

$$\sum_{i=1}^{p} x_i' = x = \sum_{i=1}^{p} x_i''$$

Donc

$$\sum_{i=1}^{p} (x_i'' - x_i'') = 0_E$$

D'après l'équation de la caractérisation, $\forall i \in [1; p], x_i' - x_i'' = 0_E$. Donc $\forall i \in [1; p], x_i' = x_i''$