Example Episode: Player Loses

Step	State (Player Sum, Dealer, Usable Ace)	Action A	Reward <i>G</i>	Next State
1	(15, 10, False)	Hit	0	(19, 10, F)
2	(19, 10, False)	Hit	– 1	BUST

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$
 New value of state to of value of state to (= Expected return starting at that state) Learning Return at Rate timestep to (= Expected return starting at that state) Return at timestep to (= Expected return starting at that state)

State	Return G	N(s)	OldV(s)	New V(s)
(15,10,False)	-1	1	0	0
(19,10,False)	-1	1	0	0

- a. State =(15,10,F)
- b. Number of Visits: N(15,10,False) = 0
- c. V(15,10,False) = 0
- d. Increment visit count: N(15,10,False) = 1
- e. Update value function: $V(15,10,\text{False}) = 0 + \frac{1}{1}(-1 0) = -1$

State	Return G	N(s)	$\mathbf{Old}V(s)$	$\mathbf{New}V(s)$
(15,10,False)	– 1	1	0	– 1
(19,10,False)	– 1	0	0	0

$V(S_t) \leftarrow$	$-V(S_t)$ -	$+\underline{\alpha}[$	G_t –	$-V(S_t)]$
New value of state t	Former estimation of value of state t (= Expected return starting at that state)	Learning Rate	Return at timestep t	Former estimation of value of state t (= Expected return starting at that state)

- a. State =(19,10,F)
- b. Number of Visits: N(19,10,False) = 0
- c. V(19,10,False) = 0
- d. Increment visit count: N(19,10,False) = 1
- e. Update value function: $V(19,10,\text{False}) = 0 + \frac{1}{1}(-1 0) = -1$

State	Return G	N(s)	$\mathbf{Old}V(s)$	New V(s)
(15,10,False)	-1	1	0	-1
(19,10,False)	-1	1	0	-1

$V(S_t) \leftarrow$	$-V(S_t)$ -	$+ \underline{\alpha}$	G_t –	$-V(S_t)]$
New value of state t	Former estimation of value of state t (= Expected return starting at that state)	Learning Rate	Return at timestep t	Former estimation of value of state t (= Expected return starting at that state)

Sample Temporal Difference (0) Update

Step 1

Start with V(s) = 0.

Update each step immediately using

- a. State = (15,10,F)
- b. Reward r = 0,
- c. Next state = (19,10,F)
- d. Update: V(15,10,F) = 0 + 0.5(0 + V(19,10,F) 0) = 0

Step	State s	Reward r	Next State s'	OldV(s)	$\mathbf{New}V(s)$
1	(15,10,F)	0	(19,10,F)	0	0
2	-	-	-	-	-

Sample Temporal Difference(0) Update

 $V(S_t) \leftarrow V(S_t) + lpha[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$

- b. Reward r = -1,
- c. Next state = BUST
- d. Update value function: V(15,10,F) = 0 + 0.5(-1 + 0 0) = 0

Step	State s	Reward r	Next State s'	OldV(s)	$\mathbf{New}V(s)$
1	(15,10,F)	0	(19,10,F)	0	0
2	(19,10,F)	-1	BUST	0	-0.5

Example Episode: Player Wins

Step	State (Player Sum, Dealer, Usable Ace)	Action A	Reward <i>G</i>	Next State
1	(17, 6, False)	Hit	0	(21, 6, False)
2	(21, 6, False)	Stand	+1	WIN

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$
New value of state t Former estimation of value of state t (= Expected return starting at that state) Former estimation of value of state t (= Expected return starting at that state)

State	Return G	N(s)	OldV(s)	New V(s)
(17,6,False)	+1	1	0	0
(21,6,False)	+1	1	0	0

- a. State =(17,6,False)
- b. Number of Visits: N(17,6,False) = 0
- c. V(17,6,False) = 0
- d. Increment visit count: N(17,6,False) = 1
- e. Update value function: $V(17,6,\text{False}) = 0 + \frac{1}{1}(1-0) = 1$

State	Return G	N(s)	$\mathbf{Old}V(s)$	$\mathbf{New}V(s)$
(17,6,False)	+1	1	0	1
(21,6,False)	+1	0	0	0

$V(S_t) \leftarrow$	$-V(S_t)$ -	$+\underline{\alpha}[$	G_t –	$-V(S_t)]$
New value of state t	Former estimation of value of state t (= Expected return starting at that state)	Learning Rate	Return at timestep t	Former estimation of value of state t (= Expected return starting at that state)

- a. State =(21,6,False)
- b. Number of Visits: N(21,6,False) = 0
- c. V(21,6,False) = 0
- d. Increment visit count: N(21,6,False) = 1
- e. Update value function: $V(21,6,\text{False}) = 0 + \frac{1}{1}(1-0) = 1$

State	Return G	N(s)	$\mathbf{Old}V(s)$	New V(s)
(17,6,False)	+1	1	0	1
(21,6,False)	+1	1	0	1

$V(S_t) \leftarrow$	$-V(S_t)$ -	$+\underline{\alpha}[$	G_t –	$-V(S_t)]$
New value of state t	Former estimation of value of state t (= Expected return starting at that state)	Learning Rate	Return at timestep t	Former estimation of value of state t (= Expected return starting at that state)

Sample Temporal Difference (0) Update

Step 1

Start with V(s) = 0.

Update each step immediately using

- a. State = (17,6,False)
- b. Reward r = 0,
- c. Next state = (21,6,False)
- d. Update: V(17,6,False) = 0 + 0.5(0 + V(21,6,False) 0) = 0

Step	State s	Reward r	Next State s'	OldV(s)	$\mathbf{New}V(s)$
1	(17,6, False)	0	(21,6, False)	0	0
2	-	-	-	-	-

Sample Temporal Difference(0) Update

Step 2

Update next state immediately using

- a. State = (21,6,False)
- b. Reward r = +1,
- c. Next state = NONE/WIN
- d. Update value function: V(21,6,F) = 0 + 0.5(1 + 0 0) = 0

Step	State s	Reward r	Next State s'	Old V(s)	New $V(s)$
1	(17,6, False)	0	(21,6, False)	0	0
2	(21,6, False)	+1	NONE/WIN	0	+0.5

$V(S_t)$ \leftarrow	$-V(S_t)$ -	$\vdash \alpha[R_i]$	$_{t+1}$ +	$\gamma V(S_{t+1}) - V(S_{t+1})$	$[S_t]$
New value of state t	Former estimation of value of state		Reward	Discounted value of next state	
	t			ΓD Target	

Sample Temporal Difference(0) Update

Step 3

Update all previously visited states using

- a. State = (17,6,False)
- b. Reward r = +1,
- c. Next state = (21,6,False)
- d. Update value function: V(17,6,F) = 0 + 0.5(1 + 0.5 0) = 0.25

Step	State s	Reward r	Next State s'	OldV(s)	$\mathbf{New}V(s)$
1	(17,6, False)	0	(21,6, False)	0	0.25
2	(21,6, False)	+1	NONE/WIN	0	+0.5