

Invertebrate Vision

Jan M Hemmi

School of Biological Sciences

THE UNIVERSITY OF
WESTERN AUSTRALIA

What makes a good eye?

Eye space is limited!

→ light sensitivity & spatial resolution are **traded off** in all eyes! Colour vision, polarisation vision make things worse

Spatial resolution 1: Sampling resolution

The effectiveness of sampling arrays of different densities in reconstructing the viewed grating

Nyquist limit (2 sensors per stimulus cycle (1 dark and 1 white bar))

Nyquist limit

Undersampling leads to aliasing (distortion)

Spatial resolution 1: Sampling resolution

Inter-ommatidial angle $\Delta\phi$: (sampling resolution)
 $\Delta\phi = A/R$ ($= d/f$ in lens eye) [radians]

Acceptance angle $\Delta\phi$: (optical resolution)
 $\Delta\phi = d/f$ [radians]

with:

A: diameter of the lens
d: diameter of the receptor
f: focal length of the lens
x: length of the receptor (rhabdom)
R: radius of the eye
C: centre of radius
N: nodal point of the lens

$$\Delta\phi = d/f \text{ [radians]}$$

[degrees = $180/\pi$ radians]

Eyes with **high sampling resolution** are large, have small **lenses (A)**, narrow **receptors (d)** and a long **focal length (f)**
(however, small lenses produce blur (see optical resolution - yet another conflict))

Spatial resolution 2:

Optical resolution measures optical quality of the eye
(not sampling density)

- Rayleigh criterion → minimum separable angle ($\Delta\theta$) of the eye
- Wider apertures (D) give better ('optical resolution') - the ability to perceive two points of light as distinct entities (if allowed by sampling resolution)

$$\text{Rayleigh Criterion : } \sin \Delta\theta \approx \Delta\theta = \frac{1.22 \cdot \lambda}{D}$$

1. Sampling Resolution: 'pixelation' - determined by no. of receptors

2. Optical Resolution: 'blurring' - determined by receptive field size

What determines light sensitivity?

The fraction S of photons emitted by a surface which is absorbed by the visual pigment in a photoreceptor depends on:

$$S = (\pi/4)^2 A^2 (d/f)^2 kx/(2.3 + kx)$$

with:

A: diameter of the lens
d: diameter of the receptor
f: focal length of the lens
x: length of the receptor (rhabdom)
k: absorption coefficient
R: radius of compound eye
C: centre of radius of compound eye
N: nodal point of the lens in lens eye
 $\Delta\rho$: acceptance angle

Eyes with **high light sensitivity** are **large**, have **large lenses (A)**, **long receptors (x)** with **large diameter (d)** and a **short focal length (f)**

Sensitivity vs Resolution trade-off!

- In all eyes there is a trade-off between resolution and sensitivity
- Wider receptors have bigger $\Delta\rho$ and catch more light, but at the cost of resolving power
 - *Cirolana* $\Delta\rho = 47^\circ$ (0.02 cycles deg^{-1})
 - *Callinectes* $\Delta\rho = 2^\circ$ (0.5 cycles deg^{-1})
 - *Cirolana* ~ 4000 x more sensitive

Main Concepts: What makes a good eye?

- Light sensitivity & spatial resolution are traded off (colour vision too as it requires several types of receptors)
- Large eyes are almost always better:
 - Long focal length (low minimum resolvable angle)
 - Wide aperture
 - reduced diffraction
 - more light
- Eyes with high spatial resolution are large, have large lenses (aperture), narrow receptors and a **long** focal length
- Sensitive eyes are large, have large lenses (aperture), long receptors with large diameter and a **short** focal length

