

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO

CRYPTOGRAPHY

Alumnos: Caballero Huesca Carlos Eduardo

Martínez García Brando Josué

Grupo: 3CV1

Profesora: Díaz Santiago Sandra

Mixcolumn

Fecha: 23 de Octubre del 2016

1.- Su información personal, la fecha de la sesión de laboratorio y el tema que estamos estudiando en esta sesión de laboratorio.

Caballero Huesca Carlos Eduardo

Martínez García Brando Josué

18 de octubre del 2016

Sesión 8

Mixcolumn

2.- Sólo las funciones más importantes de su código fuente, explicando lo que hacen.

Pasa un arreglo binario a su equivalente en decimal. Cada que encuentra un

```
40 pint BinarioDecimal(int polinomio[N]) {
41
42
         int j,decimal=0;
43
44
         for (j=0;j<N;j++) {</pre>
45
46 🖨
         if(polinomio[j]==0 || polinomio[j]==1) {
47
48
         decimal = polinomio[7-j]*pow(2,j)+decimal;
49
50 🖨
         else{
             printf("Los coeficientes ingresados estan fuera del espacio GF(2)\n");
51
52
53
54
55
          return decimal;
56
```

Pasa un número decimal a su equivalente en binario.

```
□void DecimalBinario(int decimal, int binario[N]) {
 78
79
         int aux,i,arrAux[N];
80
81 🛱
         for (i=0;i<N;i++) {</pre>
         arrAux[i]=0;
82
 83
         binario[i]=0;
84
85
86
         aux = decimal;
87
88 中
         for(i=0;decimal!=0;i++){
89
         arrAux[i] = decimal%2;
                                    //RESIDUO
90
         decimal = decimal/2;
91
92
93 自
         for (i=0;i<N;i++) {</pre>
         94
 95
96
97
         for (i=0;i<N;i++) {</pre>
98
         printf("%d\t",binario[i]); //IMPRIME
99
100
         printf("\n");
101
102
    L }
103
```

Realiza la multiplicación del polinomio .

Primero recorremos el numero binario de cualquiera de los dos polinomios, cada que encuentre un 1 lo recorreremos n bits (dependiendo de la posición en que se encuentre el 1) y vamos haciendo XOR con estos resultados.

```
105 pint multiplicacionPolinomio(int polinomio[N],int polinomio2){
106
107
          int aux=0,i;
108
109 白
          for (i=0;i<N;i++) {</pre>
110
111 🖨
          if(polinomio[7-i]==1){
112
113
              aux^=(polinomio2<<i)
114
115
          }
116
          }
117
118
          return aux;
119
120
```

Indica la posición en la que se encuentra el primer 1 al recorrer un arreglo.

Recorremos el arreglo, cuando encuentre un ${\bf 1}$ rompe el ciclo y retorna el valor que tiene ${\bf i}$.

```
149
150
    □int posicionPrimerUno(int polinomio[15]){
151
152
          int i;
153
154
    自自
               for(i=0;i<15;i++){
                   if(polinomio[i] == 1){
155
156
                       break;
157
                   }
158
159
          return i;
160
161
     L }
```

3.- Impresión de pantallas mostrando cómo sus programas trabajan.

```
:\Users\Carlos\Desktop\practica06>mixcolumn.cmd
:\Users\Carlos\Desktop\practica06>gcc mixcolumn.c fun.c -o a
C:\Users\Carlos\Desktop\practica06>a
Introduce el segundo polinomio con bas<u>e al siguiente orden:</u> (presionar TAB despues de colocar cada bit)
Introduce el segundo polinomio con bas<mark>e al siguience orden:</mark>
                                                                       (presionar TAB despues de colocar cada bit)
                                     x3
0
                  x5
        0
                  0
                            0
                                                         0
                  x5
0
                                     x3
0
                                               x2
0
                                                                   1:
1
                                                         х
0
```


X6	rodu <u>ce e</u>	1 segundo	nolinomi	o con ha	se al si	guiente	orden:	(presionar	TAB	despues	de	colocar	cada	bit)
roduce el segundo polinomio con mase al siguiente orden (presionar TAB despues de colocar cada bit x6 x5 x4 x3 x2 x 1: 0 0 0 0 0 0 0 0	х6	_x5	x4	х3	x2	X	1:							
x6 x5 x4 x3 x2 x 1: 0 0 0 0 0 0 x6 x5 x4 x3 x2 x 1:	. 1	0	0	1	0	0	1							
0 0 0 0 0 0 0 0 x6 x5 x4 x3 x2 x 1:	roduce e	I Segundo	polinomi v4	n con na	rse al si	gillente	orgen.	(presionar	TAB	despues	de	colocar	cada	bit)
x6 x5 x4 x3 x2 x 1:														
					,									
0 0 0 0 0 0	х6	x5	x4	x 3	x2	Х	1:							
	0	0	0	0	0	0	0							

x7 3	x6 0	x5 0	x4 0	x3 0	x2 0	х 0	1: 0							
C:\Use	C:\Users\Carlos\Desktop\practica06>mixcolumn.cmd													
C:\Use	C:\Users\Carlos\Desktop\practica06>gcc mixcolumn.c fun.c -o a													
		os\Deskt			so al si	guionto		presionar	TAD	dospues	do	colocan	cada	hi+\
x7 a	x6 0	x5 a	x4 0	x3 0	x2 0	x a	1:	oresionar.	IAD	despues	ue (COTOCAL	Caua	DIC)
Introd x7		segunde x5		e sen be x3	se el si x2	iguiente X	enden: (presionar	TAB	despues	de	colocar	cada	bit)
9	1	1	1	0	1	î	1	J						
x7	x6	x5	x4	x3	x2	X	1:							
9	1	1	1	0	1	1	1							