2.5 Rack and Pinion

2.5.1 Anatomy

2.5.2 Nomenclature

 $P_d = \text{diametral pitch (teeth/in)}$

 $N_p =$ number of teeth on the pinion

 $D_p = \text{pitch diameter (in)}$

 $n_P = \text{angular speed of the pinion (rpm)}$

 $v_t = \text{pitch line velocity of the pinion}$

B = distance from pitch line to back (in) (tab. 8-10)

B-C= distance from back of the rack to the pinion centerline (in)

75

 $V_{\text{rack}} = \text{speed of rack (ft/min)}$

 $s_{\text{rack}} = \text{distance rack travels (ft)}$

t = time (s)

 θ_p = number of revolutions of the pinion (rev)

2.5.3 Formulae

pitch line speed:
$$v_t = \frac{D_P n_P}{2}$$
 speed of rack: $V_{\rm rack} = \frac{\pi D_P n_P}{12}$ distance rack travels: $s_{\rm rack} = \frac{D_P \theta_P}{2}$

2.5.4 Analysis Method

1. Find pitch diameter D_p

$$D_p = \frac{N}{P_d}$$

2. Find distance from pitch line to back B from the table

TABLE 8-10	Example rack specifications			
Diametral pitch	Pitch line to back (B)	Overall thickness	Face width	Nominal length [ft]
64	0.109	0.125	0.125	2
48	0.104	0.125	0.125	2
32	0.156	0.187	0.187	4
24	0.208	0.250	0.25	4
20	0.450	0.500	0.5	6
16	0.688	0.750	0.75	6
12	0.917	1.000	1	6
10	1.150	1.250	1.25	6
8	1.375	1.500	1.5	6
6	1.333	1.500	2	6
5	1.300	1.500	2.5	6
4	1.750	2.000	3.5	6

3. Find distance from back of the rack to the pinion centerline B-C

$$B - C = B + \frac{D_p}{2}$$

4. Find the velocity of the rack V_{rack}

$$V_{\text{rack}} = \left(\frac{\pi}{6}\right) \left(\frac{D_p n_p}{2}\right)$$

5. Find the time it takes to move the rack some distance

$$t = 60 \left(\frac{s_{\text{rack}}}{V_{\text{rack}}} \right)$$

6. Find the number of revolutions required to move the rack that far

$$\theta_p = \left(\frac{6}{\pi}\right) \left(\frac{2s_{\text{rack}}}{D_p}\right)$$

2.6 Gear Trains

train value:
$$TV = (VR)_1(VR)_2 \cdots = \frac{N_{\text{output}}}{N_{\text{input}}} = \frac{n_{\text{input}}}{n_{\text{output}}}$$

3 Fucking Fluids

3.1 Regenerative vs Non-Regenerative Circuits

There may be a question about the suitability of regenerative vs non regenerative circuits. They have their own advantages and disadvantages.