1. Complejidad de los Algoritmos

a) $(T_A(n) = 2n^3 - 3n^2 + 1)$ es $(O(n^3))$

Para demostrar que ($T_A(n) = 2n^3 - 3n^2 + 1$) es ($O(n^3)$), debo encontrar una constante (C) y un valor (n_0) tales que ($T_A(n)$ leq C cdot n^3) para todo (n geq n_0).

- 1. Observando ($T_A(n)$), el término dominante es ($2n^3$). Los términos ($-3n^2$) y (1) son menores comparados con (n^3).
- 2. Para (n geq 1), (2n^3 3n^2 + 1 leq 2n^3) siempre se cumple.
- 3. Tomando (C = 3) y ($n_0 = 1$), tenemos que ($T_A(n)$ leq $3n^3$) para todo (n geq 1). Así, ($T_A(n)$) es ($O(n^3)$).

b) $(T_A(n) = n^5 + 42 - sqrt(n) + 1) es (O(n^5))$

- 1. Observando ($T_A(n)$), el término dominante es (n^5). Los términos (42), (-sqrt{n})y (1) son mucho menores en comparación con (n^5).
- 2. Para (n geq 1), ($n^5 + 42 \sqrt{n} + 1 \log n^5 + (42 \sqrt{n} + 1)$) se cumple porque ($42 \sqrt{n} + 1$) es insignificante comparado con (n^5).
- 3. Tomando (C = 2) y ($n_0 = 1$), ($T_A(n) \leq 2n^5$) para todo ($n \neq 1$). Así, ($T_A(n)$) es ($O(n^5)$).

c) $(T_A(n) = n^2 \log n + 2n^4 + 2 \operatorname{sqrt}\{n\}) \operatorname{es} (O(n^4))$

Para demostrar que ($T_A(n) = n^2 \log n + 2n^4 + 2 \operatorname{sqrt}\{n\}$) es ($O(n^4)$), debo encontrar una constante (C) y un valor (n_0) tales que ($T_A(n)$ leq C cdot n^4) para todo (n geq n_0).

1. Observando ($T_A(n)$), el término dominante es ($2n^4$). Los términos ($n^2 \log n$) y ($2 \operatorname{sqrt}\{n\}$) son menores comparados con (n^4).

- 2. Para (n geq 1), ($n^2 \log n + 2n^4 + 2 \operatorname{sqrt}\{n\} \log n + 2 \operatorname{sqrt}\{n\}$) porque ($n^2 \log n$) y ($2 \operatorname{sqrt}\{n\}$) son insignificantes comparados con (n^4).
- 3. Tomando (C = 3) y ($n_0 = 1$), ($T_A(n) = 3n^4$) para todo (n = 1). Así, ($T_A(n)$) es ($O(n^4)$).

2. Análisis de la Complejidad del Algoritmo

Vamos a analizar la complejidad del siguiente algoritmo:

- 1. Primer bucle:
- Itera con un incremento exponencial hasta que el valor supera (n).
- El número de iteraciones es aproximadamente (log_5(n)), lo que corresponde a (O(log n)).
- 2. Dentro del primer bucle:
 - Segundo bucle:
 - Itera con un incremento lineal en pasos de 2 hasta (n).
 - El número de iteraciones es aproximadamente (frac{n}{2}), que se simplifica a {O(n)].
 - Tercer bucle:
 - Itera con una división exponencial hasta llegar a 1.
- El número de iteraciones es aproximadamente ($\log_2(n)$], lo que corresponde a [O($\log n$)].
- 3. Complejidad total:
- El primer bucle tiene (O(log n)) iteraciones.
- Dentro de este bucle, el segundo bucle tiene (O(n)) iteraciones.
- Dentro del mismo primer bucle, el tercer bucle tiene (O(log n)) iteraciones.

La complejidad total del algoritmo es el producto de las complejidades de estos bucles:

```
[O(\log n) \text{ times } O(n) \text{ times } O(\log n) = O(n (\log n)^2)]
```

Por lo tanto, la complejidad total del algoritmo es $[O(n (log n)^2)]$

3. Análisis Adicional

- 1. `buscar(a, elem)` tiene (O(n log n)).
- 2. El primer bucle tiene (O(n)).
- 3. El segundo bucle tiene ($O(n^2)$) (anidado dentro del primero).