С. В. Коваль¹, Н. И. Кускова²

- ¹ Учебно-научный центр ОНУ им. И.И.Мечникова (г. Николаев)
- ² Институт импульсных процессов и технологий НАН Украины (г. Николаев)

Теплофизические характеристики жидких металлов

Описаны оптические методы измерения температуры и радиуса расширяющейся цилиндрической проволочки при пропускании через нее импульса тока плотностью $j \sim 10^{11} \ A/m^2$. Получены температурные зависимости плотности и удельной теплоемкости жидких никеля и меди. Проведено сравнение полученных данных с результатами других авторов.

Вступление

Решение широкого класса прикладных задач приводит к необходимости использования теплофизических характеристик жидких металлов. Одним из широко используемых методов исследования свойств жидких металлов является электрический взрыв проводника (ЭВП) [1-4]. Большой интерес к этому методу обусловлен широким диапазоном параметров вещества (температура, плотность, давление) и скоростей протекающих процессов, реализующихся при ЭВП. Нагревание проводника мощными импульсами тока приводит к фазовым превращениям металла. При некоторых режимах электрического взрыва цилиндрические проводники однородны по сечению до начала кипения, и осевые неустойчивости в них не развиваются [5,6], что позволяет использовать его для нахождения неизвестных температурных зависимостей теплофизических характеристик жидких металлов.

1. Диагностика микросекундного электрического взрыва проводников

Измерение интегральных параметров электрического взрыва проводника (тока I(t), напряжения U(t), радиуса a(t) и температуры проводника T(t)) позволяет исследовать эволюцию термодинамического состояния и высокотемпературных теплофизических характеристик металлов.

Основными средствами для измерения высоких ($T > 10^3$ K) температур служат оптико-электронные системы. В данной работе для исследования высокотемпературных состояний металлов был использован пирометр спектрального отношения. Оптическая система пирометра спектрального отношения, предназначенная для регистрации и спектральной фильтрации света, находится вне камеры, в которой происходит взрыв проводника. Изоб-

ражение нагреваемого током проводника фокусируется в плоскость диафрагмы, вырезающей ограниченный участок, поток излучения от которого коллимируется и направляется на оптический разделительный кубик, формирующий два оптических канала. Каждый из каналов имеет фотодетектор (18ЭЛУ-ФМ), преобразующий импульсы излучения (в видимом и инфракрасном диапазоне) в электрические сигналы. Выходные сигналы детекторов и изменения электрических характеристик I(t), U(t) регистрировались одновременно двумя двухлучевыми запоминающими осциллографами С8-17. Спектральная фильтрация света каждым из оптических каналов осуществлялась интерференционным светофильтром. Для расширения диапазона измеряемых температур было использовано 6 интерференционных светофильтров, длины волн λ_i которых в максимуме пропускания охватывали всю область спектральной чувствительности фотодетекторов (от 400 до 700 нм), а ширины пропускания $\Delta \lambda_i \sim 10$ нм.

Тепловое состояние объекта можно охарактеризовать условной температурой — интегральной цветовой температурой, определяемой выражением [7,8]

$$\int_{a_{i}^{*}}^{b_{i}^{*}} \varepsilon(\lambda, T) r(\lambda, T) \psi_{1j}(\lambda) d\lambda = \int_{a_{i}^{*}}^{b_{i}^{*}} r(\lambda, T_{ic}) \psi_{1i}(\lambda) d\lambda$$

$$\int_{a_{j}^{*}}^{\varepsilon} \varepsilon(\lambda, T) r(\lambda, T) \psi_{2j}(\lambda) d\lambda = \int_{a_{j}^{*}}^{b_{i}^{*}} r(\lambda, T_{ic}) \psi_{2j}(\lambda) d\lambda , \qquad (1)$$

где $\varepsilon(\lambda, T)$ — излучательная способность;

 $r(\lambda, T)$ — спектральная плотность излучения черного тела;

 T_{ic} — интегральная цветовая температура;

 ψ_{ij}, ψ_{2j} - аппаратные функции каналов пирометра; $(a_i^*, b_i^*) = (\lambda_i - 0.5\Delta\lambda_i, \lambda_i + 0.5\Delta\lambda_i)$ — рабочий интервал i-го интерференционного светофильтра.

Интегральная цветовая температура T_{ic} — это такая температура черного тела, при которой отношение сигналов двух спектральных каналов пирометра, визированного на объект, равно отношению аналогичных сигналов пирометра, визированного на черное тело [7].

Для того, чтобы иметь возможность находить интегральную цветовую температуру объекта в интервале от 10³ до 10⁴ К (большем, чем рабочий диапазон формулы Вина), для определения спектральной плотности излучения абсолютно черного тела была использована формула Планка

$$r(\lambda, T) = \frac{C_1}{\lambda^5} \left[\exp\left(\frac{C_2}{\lambda T}\right) - 1 \right]^{-1}, \tag{2}$$

где $C_{_1}$ и $C_{_2}$ — постоянные формулы Планка.

2. Методика расчета

Интегральная цветовая температура находилась методами численного интегрирования из уравнения

$$\frac{b_{1}(\lambda_{i})}{b_{2}(\lambda_{j})} = S_{ij} \frac{\int_{a_{i}^{*}}^{b_{i}^{*}} r(\lambda, T_{ic}) \Psi_{1i}(\lambda) d\lambda}{\int_{a_{i}^{*}}^{b_{i}^{*}} r(\lambda, T_{ic}) \Psi_{2j}(\lambda) d\lambda},$$
(3)

где b_i — сигнал і-го канала пирометра; S_{ij} — коэффициент относительной градуировки чувствительностей каналов пирометра (для каждой пары светофильтров), полученный из (3) при калибровке, выполненной с помощью лампы накаливания СИРШ 8,5-200-1.

Применение пирометра спектрального отношения позволяет рассчитывать расширение проводника, так как при нахождении Т, по отношению полученных сигналов b₁/b₂ исключается влияние расширения, тогда как каждый из сигналов содержит информацию об изменении площади излучающего участка проводника, вырезанного диафрагмой.

Тогда выражение, определяющее отношение радиуса в любой момент времени к начальному радиусу, имеет вид

$$\frac{a(t)}{a(t^0)} = \frac{b(\lambda_i, t)}{b(\lambda_i, t^0)} \cdot \frac{f(T_{ic}^0)}{f(T_{ic})},\tag{4}$$

где

$$f(T) = \int_{a_i^*}^{b_i^*} r[\lambda, T_{ic}(t)] \cdot \psi_{1i}(\lambda) d(\lambda),$$
$$T_{ic}^0 = T_{ic}(t^0).$$

3. Результаты экспериментальных исследований

Реализация методик определения эволюции температуры и расширения жидкого проводника, нагреваемого импульсным током, и синхронного определения тока и напряжения позволяет рассчитать температурные зависимости таких характеристик жидкого металла, как плотность γ и удельная теплоемкость с. Удельная теплоемкость рассчитывалась по формуле

$$c = \frac{IU}{m(dT/dt)},\tag{5}$$

где т — масса проводника.

Проведены исследования однородного подводного электрического взрыва [9] медных и никелевых цилиндрических проводников в следующем диапазоне параметров:

начальный радиус $a_0=(1\text{-}2)\cdot 10^{\text{-}4}$ м, длина проводника $l=(5\text{-}11)\cdot 10^{\text{-}2}$ м, индуктивность $L=(4\text{-}6)\cdot 10^{\text{-}6}$ Гн, емкость $C=6\cdot 10^{\text{-}6}$ Ф, начальное напряжение $U_0=(5\text{-}30)\cdot 10^3$ В.

Плотность тока имела величину $j \approx 10^{11} \text{ A/m}^2$.

Получены температурные зависимости плотностей меди и никеля в диапазоне от температуры плавления до температуры кипения, которые приведены на рисунках 1а и 1б. Проведено сравнение полученных результатов с известными из работ [1,2,10,12].

На рисунках 2a и 2б приведено сравнение полученных в эксперименте зависимостей удельных теплоемкостей меди и никеля от температуры с данными работ [10-13].

Выводы

Проведенные эксперименты и применение для определения интегральной цветовой температуры и радиуса расширяющегося проводника предложенных авторами расчетных методов явились эффективным средством получения достоверной информации. Благодаря усовершенствованиям методики расчета (учет конечности ширины пропускания интерференционных фильтров и аппаратных функций каналов пирометра, использование вместо формулы Вина формулы Планка и численных методов) удалось значительно уменьшить погрешность определения как термодинамических параметров (температура, объем), так и теплофизических характеристик жидких металлов.

Сравнение полученных температурных зависимостей плотности для твердой и жидкой меди, а также плотностей и теплоемкостей твердых меди и никеля показало достаточно хорошее совпадение с известными результатами. Температурные зависимости теплоемкостей жидких меди и никеля, а также плотности жидкого никеля получены впервые.

Рис. 1а. Температурная зависимость плотности меди

* — наши данные, \blacksquare — [1], \spadesuit — [2], \blacktriangle — [10], \triangle — [11], \diamondsuit — [12]

Рис. 16. Температурная зависимость плотности никеля * — наши данные, ● — [2], ▲ — [10]

Рис. 2б.Температурная зависимость удельной теплоемкости никеля * — наши данные, \blacktriangle — [10], + — [13]

Список литературы

- Gathers G.R. Dynamic methods for investigating thermophysical properties of matter at very high temperatures and pressures// Rep. Prog. Phys. 1986. 49. P. 341-396.
- 2. Лебедев С.В., Савватимский А.П. Металлы в процессе быстрого нагревания электрическим током большой плотности // Успехи физич. наук. 1984. Т. 144, в.2. С.215-250.
- Коваль С.И., Кускова Н.И., Ткаченко С.И. Исследование механизма электрического взрыва проводников и теплофизических характеристик жидких металлов//Теплофиз. высок. температур. 1997. Т. 35, № 6, С.876-879
- 4. Коваль С.В., Кускова Н.И. Исследование динамики жидкого проводника при однородном электрическом взрыве //Письма в журн. технич. физики. 1995. Т. 21, в. 6. С. 36-40.
- 5. Кускова Н.И., Ткаченко С.И. Исследование радиальной однородности жидкого расширяющегося проводника, нагреваемого импульсом тока// Письма в журн. технич. физики. 1996. Т. 22, в. 10. С.30-34.
- С.В.Коваль, Е.В.Кривицкий, Г.Б.Раковский. Исследование высокотемпературных свойств металлов методом подводного электрического взрыва проводников. Николаев. — (Препринт ПКБЭ АН УССР; № 7). 1989, 32 с.
- Снопко В.Н. Анализ методик определения цветовой температуры широкополосным пирометром с кремниевым и германиевым фотодиодами// Измерит. техника. — 1992, № 9, — С.37-39.
- Kuskova N.I., Tkachenko S.I., Koval S.V. Inwestigation of the Heating Dynamics and Properties of Liquid Tungsten// Intern. Journ. of Thermophysics. — 1998, Vol.19, N.1. — P.341-345.
- 9. Коваль С.В., Кускова Н.И., Ткаченко С.И. Экспериментальное и теоретическое исследование динамики электрического взрыва проводников и теплофизические характеристики жидких металлов. (Препринт ИИПТ АН Укр., № 27). 1996, 53 с.
- 10. Зиновьев В.Е. Теплофизические свойства металлов при высоких температурах. Справочник. М.: Металлургия. 1989. 384 с.
- 11. Кнопфель Г. Сверхсильные импульсные магнитные поля. М.:Мир, 1972. 391с.
- 12. Hixson R.S. and Winkler M.A. Thermophysical Properties of Solid and Liquid Tungsten// Intern. Journ. Thermophys. 1990, V. 11. P.709-718.
- 13. Физические величины: Справочник / Под ред. И.С. Григорьева, 3. Мейлихова. М.: Энергоатомиздат, 1991. 1232с.

С. В. Коваль, Н. І. Кускова Теплофізичні характеристики рідких металів

АНОТАЦІЯ

Описано оптичні методи вимірювання температури і радіуса циліндричного дроту, що розширюється, при пропусканні через нього імпульса струму густиною $j \sim 10^{11} \ {\rm A/m^2}.$ Отримано температурні залежності густини і питомої теплоємності рідких нікеля і міді. Проведено порівняння отриманих даних з результатами інших авторів.

Koval S. V., Kuskova N.I. Thermophysical properties of liquid metals.

SUMMARY

The optical methods have been described for temperature measuring and determination radius of an expanding cylindrical wire to which a current pulse with density $j \sim 10^{11} \, \mathrm{A/m^2}$ has been applied. The temperature dependences of density, and specific heat of liquid nickel, and copper have been obtained. The data obtained have been compared with other known data.