國立清華大學 物理系 碩士學位論文

利用 ATLAS 偵測器探討由向量玻色 子融合產生希格斯玻色子之 W 玻色 子對衰變與其 WW 背景估計

Estimation of the WW background in the Vector Boson Fusion $H\rightarrow WW^{(*)}$ Analysis with the ATLAS Detector

系所組別: 物理所物理組

學號姓名: 106022504 蔡孟儒 (Meng-Ju Tsai)

指導教授:徐百嫻 教授 (Prof. Pai-Hsien Hsu)

中華民國一〇八年一月

Estimation of the WW background in the Vector Boson Fusion $H\rightarrow WW^{(*)}$ Analysis with the ATLAS Detector

A Thesis Presented to
the Department of Physics at
National Tsing Hua University
in Partial Fulfillment for the Requirement of
the Master of Science Degree Program

By
Meng-Ju Tsai
Advisor
Dr. Pai-Hsien Hsu
January 2019

We present \dots

摘要

此論文探討...

Acknowledgements

特別感謝...

Contents

C	Contents	ii
Li	ist of Tables	iii
Li	ist of Figures	iv
1	Introduction	1
	1.1 The Discovery of the Higgs Boson	1
f 2	The ATLAS experiment	3
	2.1 The ATLAS detector	3
	2.2 Data and MC samples	3
	2.2.1 Data samples	3
	2.2.2 MC samples	3
3	${f VBF} H{ ightarrow} WW^*{ ightarrow} \ell u \ell u{f analysis}$	5
	3.1 Common event selection	5
	3.2 Construction of the VBF phase space	5

		3.2.1	Experimental signature of VBF Higgs boson	5
		3.2.2	Event selection for VBF-enriched phase space	6
	3.3	Result	s of VBF analysis in Run-2	6
4	The	estim	ation of WW background	8
	4.1	Norma	lization factor	8
	4.2	Constr	ruction of a WW CR	8
		4.2.1	m_T and m_{T2} variables	8
5	Con	clusion	n and Outlook	9
$\mathbf{A}_{\mathbf{l}}$	ppen	dix		9
\mathbf{A}	App	oendix	A UNIVERSITY OF THE PROPERTY O	10
	A.1	Event	displays for Higgs boson candidates	10
	A.2	Re-est	imation of WW theoretical uncertainties with the modified $p_T^{ m tot}$	
		variabl	le	10
	A.3	Optim	ization of the selections for VBF phase space	10
Re	efere	nce		11

List of Tables

3.1	Ranking of the BDT training variables [8]	6
3.2	Event yields in the VBF SR after fitting. Event yields in the highest	
	BDT bin are also presented. The uncertainties include systematic and	
	statistical uncertainties [9]	6

List of Figures

1.1	Expected cross-sections of the productions of the Higgs bosons (left). The	
	Feynman diagrams of the leading production modes of the Higgs boson	
	which further decays to $WW^{(*)}$ (right). Letter "V" represents a W or Z	
	boson [3]	1
1.2	Branching ratios of decays of Higgs bosons [5]	2
	STATE OF THE STATE	
2.1	The structure of ATLAS detector [6]	4
3.1	Distribution of BDT scores in the VBF SR after fitting is shown. The	
	hatched error band shows the total uncertainty of signal and background	
	MC prediction [9]	7

Introduction

1.1 The Discovery of the Higgs Boson

Figure 1.1: Expected cross-sections of the productions of the Higgs bosons (left). The Feynman diagrams of the leading production modes of the Higgs boson which further decays to $WW^{(*)}$ (right). Letter "V" represents a W or Z boson [3].

Figure 1.2: Branching ratios of decays of Higgs bosons [5].

The ATLAS experiment

2.1 The ATLAS detector

The ATLAS detector [3, 6] is used for this analysis. ..

...

2.2 Data and MC samples

2.2.1 Data samples

The data samples \dots

2.2.2 MC samples

...

Figure 2.1: The structure of ATLAS detector [6].

VBF $H \rightarrow WW^* \rightarrow \ell\nu\ell\nu$ analysis

This chapter is organized as follow. Section 3.1 provides \dots

3.1 Common event selection

- Exactly two opposite charged and different flavor leptons $(e\mu + \mu e)$
- $p_{\mathrm{T}}^{\mathrm{lead}} > 22$ GeV, $p_{\mathrm{T}}^{\mathrm{sublead}} > 15$ GeV
- $m_{\ell\ell} > 10 \text{ GeV}$

3.2 Construction of the VBF phase space

3.2.1 Experimental signature of VBF Higgs boson

The VBF production is characterized ...

3.2.2 Event selection for VBF-enriched phase space

After the common event selection ...

Table 3.1: Ranking of the BDT training variables [8].

Ranking	Variable	Importance [%]	
1	$ m m_{jj}$	19	
2	Ујј	ZZ	
3	$ m m_{ll}$	XX	
4	m_T	уу	
5	lepton η centrality	zz	
6	$\phi_{ m ll}$	aa	
7	$\sum_{ m l,j} { m M_{lj}}$	bb	
8	$\begin{array}{c} \sum_{l,j} M_{lj} \\ p_{tot}^T \end{array}$	cc	

Table 3.2: Event yields in the VBF SR after fitting. Event yields in the highest BDT bin are also presented. The uncertainties include systematic and statistical uncertainties [9].

	7 /10	1	10	7 MB. B	
Process	$N_{ m jet}\!\geq\!2~{ m VBF}$				
	Inclusive BDT: [0.86, 1.0]				
$H_{ m ggF}$	42	E	16	W 6	\pm 3
$H_{ m VBF}$	XX	±	уу	zz	± xx
WW	xx	±	уу	zz	± xx
VV	XX	\pm	уу	ZZ	\pm xx
$t\bar{t}/Wt$	XX	\pm	уу	ZZ	\pm xx
Mis-Id	XX	\pm	уу	ZZ	\pm xx
Z/γ^*	XX	±	уу	zz	± xx
Total	XX	±	уу	zz	± xx
Observed	2164			60	

3.3 Results of VBF analysis in Run-2

The signal strength μ is the ratio of the measured signal yields to the signal yields predicted by the SM. The signal strength for VBF analysis in our final publication [9] is shown below:

Figure 3.1: Distribution of BDT scores in the VBF SR after fitting is shown. The hatched error band shows the total uncertainty of signal and background MC prediction [9].

$$\mu_{\text{VBF}} = 0.62^{+0.29}_{-0.27}(\text{stat.})^{+0.12}_{-0.13}(\text{theo syst.}) \pm 0.15(\text{exp syst.}) = 0.62^{+0.36}_{-0.35}. \tag{3.1}$$

The estimation of WW background

In this chapter, ...

- 4.1 Normalization factor
- 4.2 Construction of a WW CR
- 4.2.1 m_T and m_{T2} variables

Conclusion and Outlook

Appendix A

Appendix

- A.1 Event displays for Higgs boson candidates
- A.2 Re-estimation of WW theoretical uncertainties with the modified $p_T^{
 m tot}$ variable
- A.3 Optimization of the selections for VBF phase space

Bibliography

- [1] The ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B B716 (2012) 1-29.
- [2] The CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30.
- [3] The ATLAS Collaboration, Observation and measurement of Higgs boson decays to WW* with the ATLAS detector, Phys. Rev. D 92, 012006 (2015).
- [4] The LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, arXiv: 1307.1347.
- [5] M. Tanabashi et al. (Particle Data Group), 2018 Review of Particle Physics, Phys. Rev. D 98, 030001 (2018).
- [6] The ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003.
- [7] Christian Lippmann, Particle identification, Nucl.Instrum.Meth. A666 (2012) 148-172.
- [8] Claudia Bertella et al., Measurements of the Higgs boson production cross section via ggF and VBF in $H \to WW^{(*)} \to l\nu l\nu$ with 36.1 fb⁻¹ of data collected with the ATLAS detector at \sqrt{s} =13 TeV, ATL-COM-PHYS-2017-1094.
- [9] The ATLAS Collaboration, Measurements of gluon-gluon fusion and vector-boson fusion Higgs boson production cross-sections in the $H \rightarrow WW^* \rightarrow \ell\nu\ell\nu$ decay channel in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Phys. Lett. B 789 (2019) 508.