作业1

noflowerzzk

2025.2.23

1

证明. 一方面,任意 $f(x)=a_0+a_1x+\cdots+a_nx^n$,有若 2|n, 则 $g(x)=a_0+a_2x^2+\cdots+a_nx^n\in U$, $h(x)=a_1x+\cdots+a_{n-1}x^{n-1}\in W$. 故 U+W=V.

另一方面,显然 $U \cap W = \{0\}$.

因此 $U \oplus W = V$.

$\mathbf{2}$

证明.

 $(1) \Rightarrow (2)$ 对 n 归纳.

n=2 时,上课已经证明

假设 $n=k\geq 2$ 时,有 $\bigoplus_{i=1}^n W_i=V$ 有 $\forall \alpha\in V$,有唯一分解 $\alpha=\alpha_1+\dots+\alpha_k,\,\alpha_i\in W_i$. 则 n=k+1

时,有 $V = \bigoplus_{i=1}^{k+1} W_i$,有 $W_{k+1} \cap \sum_{i=1}^{k} W_i = \{0\}$. 故由归纳假设 n=2 情形, $\forall \alpha \in V$, α 可唯一分解

为 $\alpha = \alpha'_k + \alpha_{k+1}$, 其中 $\alpha'_k \in \sum_{i=1}^k W_i, \alpha_{k+1} \in W_{k+1}$. 又由归纳假设, α'_k 有在 $\sum_{i=1}^k W_i$ 的唯一分解

 $\alpha'_k = \sum_{i=1}^k \alpha_i$, 且 α_{k+1} 与 α_i $(i \le k)$ 互不相同. 故是唯一分解.

- $(2) \Rightarrow (3)$ 显然
- $(3) \Rightarrow (4)$ 对 n 归纳, n=2 时, 上课已经证明.

假设 n=k 时, $W_i, i=1,2,\cdots k$ 的基构成 $\sum_{i=1}^k W_i$ 的一组基, 则 n=k+1 时, 由于 $\mathbf 0$ 在 $W_1,\cdots W_k$

中有唯一分解,且由于 $\mathbf{0}$ 在 $\sum_{i=1}^k W_i$ 和 W_{k+1} 中有唯一分解,由归纳假设, $\sum_{i=1}^k W_i$ 和 W_{k+1} 的基构

成 $\sum_{i=1}^{k+1} W_i$ 的基. 因此 W_i 的基构成 $\sum_{i=1}^{l+1} W_i$ 的基.

 $(4) \Rightarrow (1)$ 对 n 归纳, n=2 时, 上课已经证明.

假设 $n=k\geq 2$ 时有 $W_i\cap\sum_{j=1}^{i-1}W_i=\{0\}$,则 n=k+1 时,由 n=2 的结论,有 $W_{k+1}\cap\sum_{i=1}^kW_i=\{0\}$,

即有
$$\bigoplus_{i=1}^{k+1} W_i$$

作业 1 2025.2.23

3

证明. 由维数公式, $\dim U \leq \sum_{i=1}^n \dim U_i$. 故"="成立有 $\forall i, \dim U_i + \dim(U_1 + \dots + U_{i-1}) = \dim(U_1 + \dots + U_{i-1})$

$$\cdots + U_i$$
), 即根据 $n = 2$ 的情形, $U_i \cap \sum_{j=1}^{i-1} U_j = \{0\}$, 即 $V = \bigoplus_{i=1}^n U_i$.

4

证明. 一方面,任意 $\alpha, \alpha' \in W$,有 $\forall u \in U$, $(\alpha, u) = (\alpha', u) = 0$. 故 $(\alpha + \alpha', u) = 0$, 有 $\aleph + \alpha' \in W$. 另一方面,任意 $k \in F$,有 $(k\alpha, u) = k(\alpha, u) = 0$, $k\alpha \in W$. 故 W 是 V 的子空间.

5

C到B的过渡矩阵是

$$P = \begin{pmatrix} 1 & 3 & 0 \\ -2 & -5 & 2 \\ 1 & 4 & 3 \end{pmatrix}$$

因此B到C的过渡矩阵为

$$P^{-1} = \begin{pmatrix} -23 & -9 & 6 \\ 8 & 3 & -2 \\ -3 & -1 & 1 \end{pmatrix}$$

1+2t 在 \mathbf{C} 中为 $\alpha=(1,2,0)^T$, 故在 \mathbf{B} 中为

$$P\alpha = \begin{pmatrix} 7 \\ -12 \\ 9 \end{pmatrix}$$

6

C 到 B 的过渡矩阵是

$$P = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ -3 & -5 & 0 \end{pmatrix}$$

因此 B 到 C 的过渡矩阵为

$$P^{-1} = \begin{pmatrix} 10 & -5 & 3 \\ -6 & 3 & -2 \\ 3 & -1 & 1 \end{pmatrix}$$

 t^2 在 \mathbf{C} 中为 $\alpha = (0,0,1)^T$, 故在 \mathbf{B} 中为

$$P\alpha = \begin{pmatrix} 1\\2\\0 \end{pmatrix}$$

作业 1 2025.2.23

7

(1)

$$P\begin{pmatrix} u_1 u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

故由

$$P^{-1} = \begin{pmatrix} 5 & 8 & 5 \\ -3 & -5 & -3 \\ -2 & -2 & -1 \end{pmatrix}$$

有

$$v_1 = \begin{pmatrix} -109 \\ 60 \\ 61 \end{pmatrix} \quad v_2 = \begin{pmatrix} 67 \\ -37 \\ -37 \end{pmatrix} \quad v_3 = \begin{pmatrix} 27 \\ -16 \\ -16 \end{pmatrix}$$

(2) 同理有

$$w_1 = \begin{pmatrix} -11\\10\\1 \end{pmatrix} \quad w_2 = \begin{pmatrix} 46\\-31\\-19 \end{pmatrix} \quad w_3 = \begin{pmatrix} -63\\40\\30 \end{pmatrix}$$

8

证明. 易验证
$$2^{k+3} - 2 \cdot 2^{k+2} + 9 \cdot 2^{k+1} - 18 \cdot 2^k = 0$$
. 令 $z = 3\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$, 有 $z^k = 3^k\cos\frac{k\pi}{2} + i\sin\frac{k\pi}{2}$. 由于

$$z^{k+3} - 2z^{k+2} + 9z^{k+1} - 18z^k = z^k (z^3 - 2z^2 + 9z - 18).$$

又 z 是方程 $z^3 - 2z^2 + 9z - 18 = 0$ 的根,故 $z^{k+3} - 2z^{k+2} + 9z^{k+1} - 18z^k = 0$, 即其实部虚部均为 0. 取 k = 0, 有 Casorati 矩阵

$$C(0) = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 0 \\ 4 & 0 & -9 \end{pmatrix}$$

易验证 C(0) 可逆, 故三个型号线性无关,构成其解集的一组基.

9

- (1) 由于 $\dim(S+T) = \dim S + \dim T \dim(S\cap T)$. 由于 $\dim(S+T) \leq 10$, $1 \leq \dim(S\cap T)$. 又 $\dim(S\cap T) \leq \dim S$, 有 $\dim(S\cap T)$ 取值为 1 或 2.
- (2) $1 \le \dim(S \cap T) \le 2$ 有 $\dim(S + T)$ 取值为 7 或 8.
- (3) $\dim S^{\perp} + \dim S = 10$, $\dim S^{\perp} = 8$