

Sistemas Baseados em Similaridade - SBS 2020

Mestrado Integrado em Engenharia Informática

Enunciado Prático 5

José Pinto A84590

Figura 1 - Configuração Joiner

●A ●B

Figura 2 - Vendas por tipo

Figura 3 - Soma das vendas semanais por loja

Figura 4 - Correlação entre features

a)

Figura 5 - Configuração Category To Number

b)

Figura 6 - Configuração String to Date&Time

Figura 7 - Extração do ano e mês

Figura 8 - Configuração GroupBy

Figura 9 - GroupBy aggregation

d)

Figura 10 - Configuração Normalizer

Figura 11 - Configuração Auto-Binner

f)

Figura 12 - Nodos para renomear os bin

S Sum(W	Ī
Medium	ľ
Medium	0
High	(
Medium	0
Medium	(
High	0
Medium	0
Medium	Ŀ
High	0
Medium	ŀ
High	ŀ
Medium	0
Medium	ŀ
Medium	0
High	0
Medium	0
Medium	0
High	0
Medium	0
High	0
Medium	ľ

Figura 13 - Bin finais

a)

Figura 14 - Decision Tree Learner

Figura 15 - Precisão

b)

Figura 16 - Nodos para a previsão de vendas dataset teste

Figura 17 - Excerto coluna de previsões

	Row ID	TruePo	FalsePo	TrueNe	FalseN	D Recall	D Precision	D Sensitivity	D Specificity	D F-meas	D Accuracy
	High	9	16	45	15	0.375	0.36	0.375	0.738	0.367	?
	Low	20	23	42	0	1	0.465	1	0.646	0.635	?
Г	Medium	2	15	49	19	0.095	0.118	0.095	0.766	0.105	?
Г	Very High	0	0	65	20	0	?	0	1	?	?
Г	Overall	?	?	?	?	?	?	?	?	?	0.365

Figura 18 - Precisão do modelo

c)

Row ID	High	Low	Medium	Very High
High	9	4	11	0
Low	0	20	0	0
Medium	0	19	2	0
Very High	16	0	4	0

Figura 19 - Matriz de confusão

Row ID	TruePo	Count (D Relativ	FalsePo	Count (D Relativ	TrueNe	Count (D Relativ	FalseN	Count (D Relativ
Row0	9	1	0.2	16	1	0.2	45	1	0.2	15	1	0.2
Row1	20	1	0.2	23	1	0.2	42	1	0.2	0	1	0.2
Row2	2	1	0.2	15	1	0.2	49	1	0.2	19	1	0.2
Row3	0	1	0.2	0	1	0.2	65	1	0.2	20	1	0.2
Row4	?	1	0.2	?	1	0.2	?	1	0.2	?	1	0.2

Figura 20 - Statistics Occurences Table

Figura 21 - Histograma com o resultado das previsões

a)

Figura 22 - Configuração Parameter Optimization Loop Start

b & c)

Figura 23 - Possiblidades qualidade e pruning

Figura 24 - Loop para testar possibilidades

Figura 25 - Decision Tree Learner Flow Variables

Figura 26 - Combinação de hiper-parâmetros e precisão dataset treino

Figura 27 - Precisão melhor combinação de hiper-parâmetros para dataset teste

Como podemos ver pela análise de resultados as melhores combinações de hiper-parâmetros são:

- Nrº de registos = 3, qualidade = Gain ratio, pruning = No pruning;
- Nrº de registos = 2, qualidade = Gain ratio, pruning = MDL;

Figura 28 - Split Criterion values

Parameter	Start value	Stop value	Step size	Integer?	
limit number of levels	10	100	10.0		
Minimum node size	2	10	1.0	~	

Figura 29 - maxLevels & minNodeSize values

Figura 30 - Random Forest flow variables

	Row ID	limit nu	Minimu	D Objecti	S Split Creation
Г	Row0	10	2	0.376	InformationGainRatio
	Row1	10	2	0.376	InformationGain
	Row2	10	2	0.365	Gini

Figura 31 - Precisão Random Forest dataset teste

À priori seria de esperar uma considerável subida de precisão ao passar de um modelo de decision tree para um com random forest. Isto porque uma random forest é na verdade um conjunto de decision trees, onde cada árvore individual faz uma previsão e a classe com mais votos torna-se a previsão do modelo. O que significa que à partida modelos que utilizem random forest terão melhores resultados que um modelo com apenas uma decision tree.

No entanto, a analise das performances dos dois modelos não vem defender o que inicialmente era previsto, visto que as melhores combinações dos dois modelos têm exatamente a mesma precisão. Para além disso, a precisão final em ambos os modelos para o dataset teste é extremamente baixa relativamente aos valores alcançados na precisão do dataset treino.

Estes resultados podem ser devidos à distribuição dos dados dos datasets, ou algum erro no desenvolvimento de ambos os modelos. Infelizmente, não foi possível apurar a verdadeira causa.