Билет 57

Aвтор1, ..., AвторN

20 июня 2020 г.

Содержание

0.1	Билет эт: Равномерн	ыи предел	непрерывных	функции.	теорема	Стокса-Заиделя.	
	Пространство $\mathbb{C}(\mathbb{K})$ и	и его полно	га				1

Билет 57 СОДЕРЖАНИЕ

0.1. Билет 57: Равномерный предел непрерывных функций. Теорема Стокса—Зайделя. Пространство $\mathbb{C}(\mathbb{K})$ и его полнота.

Замечание. Момент с лекции: youtu.be

Записи Александра Игоревича с лекции: drive.google

Теорема 0.1.

$$f_n: E \to \mathbb{R}(\mathbb{C})$$

И f_n непрерывна в точке $a \in E$, $f_n \Rightarrow f$ на E

 $\implies f$ непрерывна в точке a.

Доказательство.

Если a не предельная точка в E, то все функции там непрерывны.

Пусть a – предельная точка множества E.

Тогда надо проверить, что $\lim f(x) = f(a)$

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in E \ |x - a| < \delta \implies |f(x) - f(a)| < \epsilon$$

По определению равномерной сходимости $\exists N \ \forall n > N \ \forall x \in E \ |f_n(x) - f(x)| < \frac{\epsilon}{3}$

Зафиксируем n > N. Функция f_n непрерывна в точке a.

$$\exists \delta > 0 \ \forall x \in E \ |x - a| < \delta \ |f_n(x) - f_n(a)| < \frac{\epsilon}{3}$$

Если
$$|x-a|<\delta$$
 и $x\in E$, то

$$|f(x) - f(a)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(a)| + |f_n(a) - f(a)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

Следствие (теорема Стокса-Зайделя).

$$f_n \in C(E)$$
 и $f_n \rightrightarrows f$ на E

$$\implies f \in C(E).$$

Определение 0.1.

Пусть K – компакт в каком-нибудь метрическом пространстве.

$$C(K) := \{ f : K \to \mathbb{R}(\mathbb{C}), \text{ непрерывные} \}$$

$$||f||_{C(K)} := \max_{x \in K} |f(x)|.$$

(Максимум и супремум в этом случае одно и то же, т.е. уже проверили, что это норма)

Замечание.

$$C(K)$$
 подпространство $l^{\infty}(K)$.

Теорема 0.2.

Замкнутое подпространство полного пространства – полное.

Доказательство.

$$Y \subset X Y$$
 – замкнуто.

$$\implies \{x_n\}$$
 – фундаментальная последовательность в Y .

$$\implies \exists \lim_{n \to \infty} x_n = x \in X$$

 $\implies x$ – предельная точка множества Y.

И т.к. Y замкнуто, то $x \in Y$.

$$\implies x_n$$
 сходится к x в пространстве Y .

Билет 57 COДЕРЖАНИЕ

Следствие.

C(K) – полное

Доказательство.

Надо доказать, что C(K) замкнуто в $l^\infty(K)$.

Т.е. если $||f_n-f|| \to 0$, где $f_n \in C(K)$, то $f \in C(K)$.

Но это теорема Стокса-Зайделя.