Introduction to Machine Learning

Covariance Functions for GPs

Learning goals

- Covariance functions encode key assumptions about the GP
- Know common covariance functions like squared exponential and Matérn

COVARIANCE FUNCTION OF A GP

The marginalization property of the Gaussian process implies that for any finite set of input values, the corresponding vector of function values is Gaussian:

$$\textbf{\textit{f}} = \left[f\left(\textbf{\textit{x}}^{(1)}\right),...,f\left(\textbf{\textit{x}}^{(n)}\right) \right] \sim \mathcal{N}\left(\textbf{\textit{m}},\textbf{\textit{K}}\right),$$

- The covariance matrix K is constructed based on the chosen inputs {x⁽¹⁾, ..., x⁽ⁿ⁾}.
- Entry \mathbf{K}_{ij} is computed by $k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$.
- Technically, for **every** choice of inputs $\{\mathbf{x}^{(1)}, ..., \mathbf{x}^{(n)}\}$, K needs to be positive semi-definite in order to be a valid covariance matrix.
- A function k(.,.) satisfying this property is called **positive definite**.

COVARIANCE FUNCTION OF A GP

 Recall, the purpose of the covariance function is to control to which degree the following is fulfilled:

If two points $\mathbf{x}^{(i)}, \mathbf{x}^{(j)}$ are close in \mathcal{X} -space, their function values $f(\mathbf{x}^{(i)}), f(\mathbf{x}^{(j)})$ should be close (**correlated**!) in \mathcal{Y} -space.

• Closeness of two points $\mathbf{x}^{(i)}$, $\mathbf{x}^{(j)}$ in input space \mathcal{X} is measured in terms of $\mathbf{d} = \mathbf{x}^{(i)} - \mathbf{x}^{(j)}$:

$$k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = k(\mathbf{d})$$

COVARIANCE FUNCTION OF A GP: EXAMPLE

- Let $f(\mathbf{x})$ be a GP with $k(\mathbf{x}, \mathbf{x}') = \exp(-\frac{1}{2} ||\mathbf{d}||^2)$ with $\mathbf{d} = \mathbf{x} \mathbf{x}'$.
- Consider two points $\mathbf{x}^{(1)} = 3$ and $\mathbf{x}^{(2)} = 2.5$.
- If you want to know how correlated their function values are, compute their correlation!

COVARIANCE FUNCTION OF A GP: EXAMPLE

• Assume we observed a value $y^{(1)} = -0.8$, the value of $y^{(2)}$ should be close under the assumption of the above Gaussian process.

COVARIANCE FUNCTION OF A GP: EXAMPLE

- Let us compare another point $\mathbf{x}^{(3)}$ to the point $\mathbf{x}^{(1)}$
- We again compute their correlation
- Their function values are not very much correlated; $y^{(1)}$ and $y^{(3)}$ might be far away from each other

COVARIANCE FUNCTIONS

There are three types of commonly used covariance functions:

- k(., .) is called stationary if it is as a function of $\mathbf{d} = \mathbf{x} \mathbf{x}'$, we write $k(\mathbf{d})$.
 - Stationarity is invariance to translations in the input space:

$$k(\boldsymbol{x},\boldsymbol{x}+\boldsymbol{d})=k(\boldsymbol{0},\boldsymbol{d})$$

- k(.,.) is called isotropic if it is a function of $r = ||\mathbf{x} \mathbf{x}'||$, we write k(r).
 - Isotropy is invariance to rotations of the input space and implies stationarity.
- k(.,.) is a dot product covariance function if k is a function of $\mathbf{x}^T \mathbf{x}'$

COMMONLY USED COVARIANCE FUNCTIONS

Name	$k(\boldsymbol{x}, \boldsymbol{x}')$ σ_0^2
constant	σ_0^2
linear	$\sigma_0^2 + oldsymbol{x}^{ au} oldsymbol{x}'$
polynomial	$(\sigma_0^2 + \boldsymbol{x}^T \boldsymbol{x}')^p$
squared exponential	$\exp(-\frac{\ \mathbf{x}-\mathbf{x}'\ ^2}{2\ell^2})$
Matérn	$ \frac{1}{2^{\nu}\Gamma(\nu)} \left(\frac{\sqrt{2\nu}}{\ell} \ \boldsymbol{x} - \boldsymbol{x}'\ \right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu}}{\ell} \ \boldsymbol{x} - \boldsymbol{x}'\ \right) $
exponential	$\exp\left(-\frac{\ \mathbf{x}-\mathbf{x}'\ }{\ell}\right)$

 $K_{\nu}(\cdot)$ is the modified Bessel function of the second kind.

COMMONLY USED COVARIANCE FUNCTIONS

- Random functions drawn from Gaussian processes with a Squared Exponential Kernel (left), Polynomial Kernel (middle), and a Matérn Kernel (right, $\ell=1$).
- The length-scale hyperparameter determines the "wiggliness" of the function.
- ullet For Matérn, the u parameter determines how differentiable the process is.

SQUARED EXPONENTIAL COVARIANCE FUNCTION

The squared exponential function is one of the most commonly used covariance functions.

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\ell^2}\right).$$

Properties:

- It depends merely on the distance $r = \|\mathbf{x} \mathbf{x}'\| \to \text{isotropic}$ and stationary.
- Infinitely differentiable → sometimes deemed unrealistic for modeling most of the physical processes.

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2\ell^2} \|\mathbf{x} - \mathbf{x}'\|^2\right)$$

 ℓ is called **characteristic length-scale**. Loosely speaking, the characteristic length-scale describes how far you need to move in input space for the function values to become uncorrelated. Higher ℓ induces smoother functions, lower ℓ induces more wiggly functions.

For $p \ge 2$ dimensions, the squared exponential can be parameterized:

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2} \left(\mathbf{x} - \mathbf{x}'\right)^{\top} \mathbf{M} \left(\mathbf{x} - \mathbf{x}'\right)\right)$$

Possible choices for the matrix **M** include

$$extbf{\emph{M}}_1 = \ell^{-2} extbf{\emph{I}} \qquad extbf{\emph{M}}_2 = \text{diag}(\ell)^{-2} \qquad extbf{\emph{M}}_3 = \Gamma \Gamma^\top + \text{diag}(\ell)^{-2}$$

where ℓ is a p-vector of positive values and Γ is a $p \times k$ matrix.

The 2nd (and most important) case can also be written as

$$k(\mathbf{d}) = \exp\left(-\frac{1}{2}\sum_{i=1}^{p} \frac{d_j^2}{l_j^2}\right)$$

What is the benefit of having an individual hyperparameter ℓ_i for each dimension?

- The ℓ_1, \ldots, ℓ_p hyperparameters play the role of **characteristic** length-scales.
- Loosely speaking, ℓ_i describes how far you need to move along axis i in input space for the function values to be uncorrelated.
- Such a covariance function implements **automatic relevance determination** (ARD), since the inverse of the length-scale ℓ_i determines the relevancy of input feature i to the regression.
- If ℓ_i is very large, the covariance will become almost independent of that input, effectively removing it from inference.
- If the features are on different scales, the data can be automatically **rescaled** by estimating ℓ_1, \ldots, ℓ_D

For the first plot, we have chosen $\mathbf{M} = \mathbf{I}$: the function varies the same in all directions. The second plot is for $\mathbf{M} = \operatorname{diag}(\ell)^{-2}$ and $\ell = (1,3)$: The function varies less rapidly as a function of x_2 than x_1 as the length-scale for x_1 is less. In the third plot $\mathbf{M} = \Gamma\Gamma^T + \operatorname{diag}(\ell)^{-2}$ for $\Gamma = (1,-1)^T$ and $\ell = (6,6)^T$. Here Γ gives the direction of the most rapid variation. (Image from Rasmussen & Williams, 2006)