Problem 9.1: ADMM and Scaled Form ADMM

In this exercise, we derive a scaled form for the Alternating Direction Method of Multipliers (ADMM). Let $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^m \to \mathbb{R}$ be convex functions. Consider the following optimization problem

$$\min_{x \in \mathcal{X}} f(x) + g(z) \tag{1}$$

$$\min_{x,z} f(x) + g(z)$$
 (1) subject to: $Ax + Bz = c$ (2)

with variables $x \in \mathbb{R}^n$ and $z \in \mathbb{R}^m$. Assume that the problem data is $A \in \mathbb{R}^{p \times n}$, $B \in \mathbb{R}^{p \times m}$, and $c \in \mathbb{R}^p$. Notice that the objective function has two independent sets of variables x and z. Let us define the augmented Lagrangian of (1) - (2) as

$$L_{\rho}(x,z,y) = f(x) + g(z) + y^{\top}(Ax + Bz - c) + \frac{\rho}{2}||Ax + Bz - c||_{2}^{2}.$$
 (3)

with dual variables $y \in \mathbb{R}^p$ and penalty parameter $\rho > 0$. The augmented Lagrangian (3) can be seen as the (unaugmented) Lagrangian of the problem

$$\min_{x,z} f(x) + g(z) + \frac{\rho}{2} ||Ax + Bz - c||_2^2$$
(4)

subject to:
$$Ax + Bz = c$$
 (5)

The problem (4) - (5) is equivalent to the problem (1) - (2): for any feasible solution (x, z), the additional term in the objective (4) evaluates to zero. Solving the augmented Lagrangian (3) by ADMM consists of the following iterations

$$x^{k+1} = \operatorname*{argmin}_{x} L_{\rho}(x, z^{k}, y^{k}) \tag{6}$$

$$z^{k+1} = \underset{\sim}{\operatorname{argmin}} L_{\rho}(x^{k+1}, z, y^k) \tag{7}$$

$$y^{k+1} = y^k + \rho(Ax^{k+1} + Bz^{k+1} - c) \tag{8}$$

- Motivate a suitable stopping criterion for the ADMM iterations (6) (8). (a)
- Derive the scaled form for the ADMM iterations (6) (8) by defining the primal residual r and the scaled dual variables u as

$$r = Ax + Bz - c$$
 and $u = \frac{y}{\rho}$ (9)

Hint: Apply the definitions or r and u to (3) and rewrite the ADMM iterations (6) – (8) by replacing the original dual variables y by their scaled counterparts u.

Problem 9.2: ADMM for Quadratic Optimization Problems

Consider the following standard form quadratic optimization problem

$$\min_{x} \frac{1}{2} x^{\top} P x + q^{\top} x \tag{10}$$

subject to:
$$Ax = b$$
 (11)

$$x \ge 0 \tag{12}$$

with variables $x \in \mathbb{R}^n$. Assume that $P \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix, $q \in \mathbb{R}^n$, $A \in \mathbb{R}^{p \times n}$, and $b \in \mathbb{R}^p$. We can express the problem (10) – (12) in ADMM form as

$$\min_{x,z} f(x) + g(z) \tag{13}$$

$$\min_{x,z} f(x) + g(z)$$
 subject to: $x = z$ (14)

where

$$f(x) = \frac{1}{2}x^{\top}Px + q^{\top}x$$
 with $\operatorname{dom} f = \{x \in \mathbb{R}^n : Ax = b\}$

is the original objective with a restricted domain, and $g:\mathbb{R}^n\to\{0,\infty\}$ is the indicator function of the nonnegative orthant \mathbb{R}^n_+ corresponding to the constraint $x \geq 0$. Write the augmented Lagrangian for (13) – (14) using the scaled dual variables, and write the corresponding scaled form ADMM iterations using the results of Exercise 9.1.