4. Instruction tables

Lists of instruction latencies, throughputs and micro-operation breakdowns for Intel, AMD and VIA CPUs

By Agner Fog. Technical University of Denmark. Copyright © 1996 – 2018. Last updated 2018-04-09.

Introduction

This is the fourth in a series of five manuals:

- 1. Optimizing software in C++: An optimization guide for Windows, Linux and Mac platforms.
- 2. Optimizing subroutines in assembly language: An optimization guide for x86 platforms.
- 3. The microarchitecture of Intel, AMD and VIA CPUs: An optimization guide for assembly programmers and compiler makers.
- 4. Instruction tables: Lists of instruction latencies, throughputs and micro-operation breakdowns for Intel, AMD and VIA CPUs.
- 5. Calling conventions for different C++ compilers and operating systems.

The latest versions of these manuals are always available from www.agner.org/optimize. Copyright conditions are listed below.

The present manual contains tables of instruction latencies, throughputs and micro-operation breakdown and other tables for x86 family microprocessors from Intel, AMD and VIA.

The figures in the instruction tables represent the results of my measurements rather than the official values published by microprocessor vendors. Some values in my tables are higher or lower than the values published elsewhere. The discrepancies can be explained by the following factors:

- My figures are experimental values while figures published by microprocessor vendors may be based on theory or simulations.
- My figures are obtained with a particular test method under particular conditions. It is possible that different values can be obtained under other conditions.
- Some latencies are difficult or impossible to measure accurately, especially for memory access and type conversions that cannot be chained.
- Latencies for moving data from one execution unit to another are listed explicitly in some of my tables while they are included in the general latencies in some tables published by Intel.

Most values are the same in all microprocessor modes (real, virtual, protected, 16-bit, 32-bit, 64-bit). Values for far calls and interrupts may be different in different modes. Call gates have not been tested.

Instructions with a LOCK prefix have a long latency that depends on cache organization and possibly RAM speed. If there are multiple processors or cores or direct memory access (DMA) devices then all locked instructions will lock a cache line for exclusive access, which may involve RAM access. A LOCK prefix typically costs more than a hundred clock cycles, even on single-processor systems. This also applies to the XCHG instruction with a memory operand.

If any text in the pdf version of this manual is unreadable, then please refer to the spreadsheet version.

Copyright notice

Introduction

This series of five manuals is copyrighted by Agner Fog. Public distribution and mirroring is not allowed. Non-public distribution to a limited audience for educational purposes is allowed. A creative commons license CC-BY-SA shall automatically come into force when I die. See https://creativecommons.org/licenses/by-sa/4.0/legalcode

Definition of terms

Instruction

The instruction name is the assembly code for the instruction. Multiple instructions or multiple variants of the same instruction may be joined into the same line. Instructions with and without a 'v' prefix to the name have the same values unless otherwise noted.

Operands

Operands can be different types of registers, memory, or immediate constants. Abbreviations used in the tables are: i = immediate constant, r = any general purpose register, r32 = 32-bit register, etc., mm = 64 bit mmx register, x or xmm = 128 bit xmm register, y = 256 bit ymm register, z = 512 bit zmm register, v = any vector register, sr = segment register, m = any memory operand including indirect operands, m64 means 64-bit memory operand, etc.

Latency

The latency of an instruction is the delay that the instruction generates in a dependency chain. The measurement unit is clock cycles. Where the clock frequency is varied dynamically, the figures refer to the core clock frequency. The numbers listed are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity may increase the latencies by possibly more than 100 clock cycles on many processors, except in move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results may give a similar delay. A missing value in the table means that the value has not been measured or that it cannot be measured in a meaningful way.

Some processors have a pipelined execution unit that is smaller than the largest register size so that different parts of the operand are calculated at different times. Assume, for example, that we have a long dependency chain of 128-bit vector instructions running in a fully pipelined 64-bit execution unit with a latency of 4. The lower 64 bits of each operation will be calculated at times 0, 4, 8, 12, 16, etc. And the upper 64 bits of each operation will be calculated at times 1, 5, 9, 13, 17, etc. as shown in the figure below. If we look at one 128-bit instruction in isolation, the latency will be 5. But if we look at a long chain of 128-bit instructions, the total latency will be 4 clock cycles per instruction plus one extra clock cycle in the end. The latency in this case is listed as 4 in the tables because this is the value it adds to a dependency chain.

Reciprocal throughput

The throughput is the maximum number of instructions of the same kind that can be executed per clock cycle when the operands of each instruction are independent of the preceding instructions. The values listed are the reciprocals of the throughputs, i.e. the average number of clock cycles per instruction when the instructions are not part of a limiting dependency chain. For example, a reciprocal throughput of 2 for FMUL means that a new FMUL instruction can start executing 2 clock cycles after a previous FMUL. A reciprocal throughput of 0.33 for ADD means that the execution units can handle 3 integer additions per clock cycle.

The reason for listing the reciprocal values is that this makes comparisons between latency and throughput easier. The reciprocal throughput is also called issue latency.

Definition of terms

The values listed are for a single thread or a single core. A missing value in the table means that the value has not been measured.

µops

Uop or μ op is an abbreviation for micro-operation. Processors with out-of-order cores are capable of splitting complex instructions into μ ops. For example, a read-modify instruction may be split into a read- μ op and a modify- μ op. The number of μ ops that an instruction generates is important when certain bottlenecks in the pipeline limit the number of μ ops per clock cycle.

Execution unit

The execution core of a microprocessor has several execution units. Each execution unit can handle a particular category of μ ops, for example floating point additions. The information about which execution unit a particular μ op goes to can be useful for two purposes. Firstly, two μ ops cannot execute simultaneously if they need the same execution unit. And secondly, some processors have a latency of an extra clock cycle when the result of a μ op executing in one execution unit is needed as input for a μ op in another execution unit.

Execution port

The execution units are clustered around a few execution ports on most Intel processors. Each µop passes through an execution port to get to the right execution unit. An execution port can be a bottleneck because it can handle only one µop at a time. Two µops cannot execute simultaneously if they need the same execution port, even if they are going to different execution units.

Instruction set

This indicates which instruction set an instruction belongs to. The instruction is only available in processors that support this instruction set. The different instruction sets are listed at the end of this manual. Availability in processors prior to 80386 does not apply for 32-bit and 64-bit operands. Availability in the MMX instruction set does not apply to 128-bit packed integer instructions, which require SSE2. Availability in the SSE instruction set does not apply to double precision floating point instructions, which require SSE2.

32-bit instructions are available in 80386 and later. 64-bit instructions in general purpose registers are available only under 64-bit operating systems. Instructions that use XMM registers (SSE and later) are only available under operating systems that support this register set. Instructions that use YMM registers (AVX and later) are only available under operating systems that support this register set.

How the values were measured

The values in the tables are measured with the use of my own test programs, which are available from www.agner.org/optimize/testp.zip

The time unit for all measurements is CPU clock cycles. It is attempted to obtain the highest clock frequency if the clock frequency is varying with the workload. Many Intel processors have a performance counter named "core clock cycles". This counter gives measurements that are independent of the varying clock frequency. Where no "core clock cycles" counter is available, the "time stamp counter" is used (RDTSC instruction). In cases where this gives inconsistent results (e.g. in AMD Bobcat) it is necessary to make the processor boost the clock frequency by executing a large number of instructions (> 1 million) or turn off the power-saving feature in the BIOS setup.

Instruction throughputs are measured with a long sequence of instructions of the same kind, where subsequent instructions use different registers in order to avoid dependence of each instruction on the previous one. The input registers are cleared in the cases where it is impossible to use different registers. The test code is carefully constructed in each case to make sure that no other bottleneck is limiting the throughput than the one that is being measured.

Instruction latencies are measured in a long dependency chain of identical instructions where the output of each instruction is needed as input for the next instruction.

Definition of terms

The sequence of instructions should be long, but not so long that it doesn't fit into the level-1 code cache. A typical length is 100 instructions of the same type. This sequence is repeated in a loop if a larger number of instructions is desired.

It is not possible to measure the latency of a memory read or write instruction with software methods. It is only possible to measure the combined latency of a memory write followed by a memory read from the same address. What is measured here is not actually the cache access time, because in most cases the microprocessor is smart enough to make a "store forwarding" directly from the write unit to the read unit rather than waiting for the data to go to the cache and back again. The latency of this store forwarding process is arbitrarily divided into a write latency and a read latency in the tables. But in fact, the only value that makes sense to performance optimization is the sum of the write time and the read time.

A similar problem occurs where the input and the output of an instruction use different types of registers. For example, the MOVD instruction can transfer data between general purpose registers and XMM vector registers. The value that can be measured is the combined latency of data transfer from one type of registers to another type and back again (A \rightarrow B \rightarrow A). The division of this latency between the A \rightarrow B latency and the B \rightarrow A latency is sometimes obvious, sometimes based on guesswork, μ op counts, indirect evidence, or triangular sequences such as A \rightarrow B \rightarrow Memory \rightarrow A. In many cases, however, the division of the total latency between A \rightarrow B latency and B \rightarrow A latency is arbitrary. However, what cannot be measured cannot matter for performance optimization. What counts is the sum of the A \rightarrow B latency and the B \rightarrow A latency, not the individual terms.

The µop counts are usually measured with the use of the performance monitor counters (PMCs) that are built into modern microprocessors. The PMCs for VIA processors are undocumented, and the interpretation of these PMCs is based on experimentation.

The execution ports and execution units that are used by each instruction or μ op are detected in different ways depending on the particular microprocessor. Some microprocessors have PMCs that can give this information directly. In other cases it is necessary to obtain this information indirectly by testing whether a particular instruction or μ op can execute simultaneously with another instruction/ μ op that is known to go to a particular execution port or execution unit. On some processors, there is a delay for transmitting data from one execution unit (or cluster of execution units) to another. This delay can be used for detecting whether two different instructions/ μ ops are using the same or different execution units.

Instruction sets

Instruction sets

Explanation of instruction sets for x86 processors

x86	This is the name of the common instruction set, supported by all processors in this lineage.
80186	This is the first extension to the x86 instruction set. New integer instructions: PUSH i, PUSHA, POPA, IMUL r,r,i, BOUND, ENTER, LEAVE, shifts and rotates by immediate \neq 1.
80286	System instructions for 16-bit protected mode.
80386	The eight general purpose registers are extended from 16 to 32 bits. 32-bit addressing. 32-bit protected mode. Scaled index addressing. MOVZX, MOVSX, IMUL r,r, SHLD, SHRD, BT, BTR, BTS, BTC, BSF, BSR, SETcc.
80486	BSWAP. Later versions have CPUID.
x87	This is the floating point instruction set. Supported when a 8087 or later coprocessor is present. Some 486 processors and all processors since Pentium/K5 have built-in support for floating point instructions without the need for a coprocessor.
80287	FSTSW AX
80387	FPREM1, FSIN, FCOS, FSINCOS.
Pentium	RDTSC, RDPMC.
PPro	Conditional move (CMOV, FCMOV) and fast floating point compare (FCOMI) instructions introduced in Pentium Pro. These instructions are not supported in Pentium MMX, but are supported in all processors with SSE and later.
MMX	Integer vector instructions with packed 8, 16 and 32-bit integers in the 64-bit MMX registers MM0 - MM7, which are aliased upon the floating point stack registers ST(0) - ST(7).
SSE	Single precision floating point scalar and vector instructions in the new 128-bit XMM registers XMM0 - XMM7. PREFETCH, SFENCE, FXSAVE, FXRSTOR, MOVNTQ, MOVNTPS. The use of XMM registers requires operating system support.
SSE2	Double precision floating point scalar and vector instructions in the 128-bit XMM registers XMM0 - XMM7. 64-bit integer arithmetics in the MMX registers. Integer vector instructions with packed 8, 16, 32 and 64-bit integers in the XMM registers. MOVNTI, MOVNTPD, PAUSE, LFENCE, MFENCE.
SSE3	FISTTP, LDDQU, MOVDDUP, MOVSHDUP, MOVSLDUP, ADDSUBPS, ADDSUPPD, HADDPS, HADDPD, HSUBPS, HSUBPD.
SSSE3	(Supplementary SSE3): PSHUFB, PHADDW, PHADDSW, PHADDD, PMADDUBSW, PHSUBW, PHSUBSW, PHSUBD, PSIGNB, PSIGNW, PSIGND, PMULHRSW, PABSB, PABSW, PABSD, PALIGNR.
64 bit	This instruction set is called x86-64, x64, AMD64 or EM64T. It defines a new 64-bit mode with 64-bit addressing and the following extensions: The general purpose registers are extended to 64 bits, and the number of general purpose registers is extended from eight to sixteen. The number of XMM registers is also extended from eight to sixteen, but the number of MMX and ST registers is still eight. Data can be addressed relative to the instruction pointer. There is no way to get access to these extensions in 32-bit mode
	Most instructions that involve segmentation are not available in 64 bit mode. Direct far jumps and calls are not allowed, but indirect far jumps, indirect far calls and far returns are allowed. These are used in system code for switching mode. Segment registers DS, ES, and SS cannot be used. The FS and GS segments and segment prefixes are available in 64 bit mode and are used for addressing thread environment blocks and processor environment blocks

Instruction sets

available in 64 bit mode

Instructions not The following instructions are not available in 64-bit mode: PUSHA, POPA, BOUND, INTO, BCD instructions: AAA, AAS, DAA, DAS, AAD, AAM, undocumented instructions (SALC, ICEBP, 82H alias for 80H opcode). SYSENTER, SYSEXIT, ARPL. On some early Intel processors, LAHF and SAHF are not available in 64 bit mode. Increment and decrement register instructions cannot be coded in the short one-byte opcode form because these codes have been reassigned as REX prefixes.

> Most instructions that involve segmentation are not available in 64 bit mode. Direct far jumps and calls are not allowed, but indirect far jumps, indirect far calls and far returns are allowed. These are used in system code for switching mode, PUSH CS, PUSH DS, PUSH ES, PUSH SS. POP DS. POP ES. POP SS. LDS and LES instructions are not allowed. CS, DS, ES and SS prefixes are allowed but ignored. The FS and GS segments and segment prefixes are available in 64 bit mode and are used for addressing thread environment blocks and processor environment blocks.

Monitor The instructions MONITOR and MWAIT are available in some Intel and AMD multiprocessor CPUs with SSE3

SSF4 1 MPSADBW, PHMINPOSUW, PMULDQ, PMULLD, DPPS, DPPD, BLEND... PMIN... PMAX... ROUND... INSERT... EXTRACT... PMOVSX... PMOVZX... PTEST, PCMPEQQ, PACKUSDW, MOVNTDQA

SSE4.2 CRC32, PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM, PCMPGTQ, POPCNT.

AES AESDEC, AESDECLAST, AESENC, AESENCLAST, AESIMC, AESKEYGENASSIST.

PCLMULQDQ. **CLMUL**

AVX

The 128-bit XMM registers are extended to 256-bit YMM registers with room for further extension in the future. The use of YMM registers requires operating system support. Floating point vector instructions are available in 256-bit versions. Almost all previous XMM instructions now have two versions: with and without zero-extension into the full YMM register. The zero-extension versions have three operands in most cases. Furthermore, the following instructions are added in AVX: VBROADCASTSS, VBROADCASTSD, VEXTRACTF128, VINSERTF128, VLDMXCSR, VMASKMOVPS, VMASKMOVPD, VPERMILPD, VPERMIL2PD, VPERMILPS, VPERMIL2PS, VPERM2F128, VSTMXCSR. VZEROALL, VZEROUPPER.

AVX2

Integer vector instructions are available in 256-bit versions. Furthermore, the following instructions are added in AVX2: ANDN, BEXTR, BLSI, BLSMSK, BLSR, BZHI, INVPCID, LZCNT, MULX, PEXT, PDEP, RORX, SARX, SHLX, SHRX, TZCNT, VBROADCASTI128, VBROADCASTSS, VBROADCASTSD, VEXTRACTI128, VGATHERDPD, VGATHERQPD, VGATHERDPS, VGATHERQPS, VPGATHERDD, VPGATHERQD, VPGATHERDQ, VPGATHERQQ, VINSERTI128, VPERM2I128, VPERMD, VPERMPD, VPERMPS, VPERMQ, VPMASKMOVD, VPMASKMOVQ, VPSLLVD, VPSLLVQ, VPSRAVD, VPSRLVD, VPSRLVQ.

FMA3

(FMA): Fused multiply and add instructions: VFMADDxxxPD, VFMADDxxxPS, VFMADDxxxSD, VFMADDxxxSS, VFMADDSUBxxxPD, VFMADDSUBxxxPS, VFMSUBADDxxxPD, VFMSUBADDxxxPS, VFMSUBxxxPD, VFMSUBxxxPS, VFMSUBxxxSD, VFMSUBxxxSS, VFNMADDxxxPD, VFNMADDxxPS, VFNMADDxxxSD, VFNMADDxxxSS, VFNMSUBxxxPD, VFNMSUBxxxPS, VFNMSUBxxxSD, VFNMSUBxxxSS.

FMA4

Same as Intel FMA, but with 4 different operands according to a preliminary Intel specification which is now supported only by AMD. Intel's FMA specification has later been changed to FMA3, which is now also supported by AMD.

MOVBE MOVBE

Instruction sets

POPCNT POPCNT PCLMUL PCLMULQDQ

XSAVE

XSAVEOPT

RDRAND RDRAND RDSEED RDSEED

BMI1 ANDN, BEXTR, BLSI, BLSMSK, BLSR, LZCNT, TXCNT BMI2 BZHI, MULX, PDEP, PEXT, RORX, SARX, SHRX, SHLX

ADX ADCX, ADOX, CLAC

AVX512F The 256-bit YMM registers are extended to 512-bit ZMM registers. The number

of vector registers is extended to 32 in 64-bit mode, while there are still only 8 vector registers in 32-bit mode. 8 new vector mask registers k0 – k7. Masked vector instructions. Many new instructions. Single- and double precision floating point vectors are always supported. Other instructions are supported if the various optional AVX512 variants, listed below, are supported as well.

AVX512BW Vectors of 8-bit and 16-bit integers in ZMM registers.

AVX512DQ Vectors of 32-bit and 64-bit integers in ZMM registers.

AVX512VL The vector operations defined for 512-bit vectors in the various AVX512 subsets.

including masked operations, can be applied to 128-bit and 256-bit vectors as

well.

AVX512CD Conflict detection instructions

AVX512ER Approximate exponential function, reciprocal and reciprocal square root

AVX512PF Gather and scatter prefetch SHA Secure hash algorithm

MPX Memory protection extensions

SMAP CLAC, STAC

CVT16 VCVTPH2PS, VCVTPS2PH.

3DNow (AMD only. Obsolete). Single precision floating point vector instructions in the

64-bit MMX registers. Only available on AMD processors. The 3DNow

instructions are: FEMMS, PAVGUSB, PF2ID, PFACC, PFADD,

PFCMPEQ/GT/GE, PFMAX, PFMIN, PFRCP/IT1/IT2, PFRSQRT/IT1, PFSUB,

PFSUBR, PI2FD, PMULHRW, PREFETCH/W.

3DNowE (AMD only. Obsolete). PF2IW, PFNACC, PFPNACC, PI2FW, PSWAPD.

PREFETCHW This instruction has survived from 3DNow and now has its own feature name

PREFETCHWT1 PREFETCHWT1

SSE4A (AMD only). EXTRQ, INSERTQ, LZCNT, MOVNTSD, MOVNTSS, POPCNT.

(POPCNT shared with Intel SSE4.2).

XOP

(AMD only). VFRCZPD, VFRCZPS, VFRCZSD, VFRCZSS, VPCMOV, VPCOMB, VPCOMD, VPCOMQ, PCOMW, VPCOMUB, VPCOMUD, VPCOMUQ, VPCOMUW, VPHADDBD, VPHADDBQ, VPHADDBW,

VPHADDDQ, VPHADDUBD, VPHADDUBQ, VPHADDUBW, VPHADDUDQ, VPHADDUWD, VPHADDUWQ, VPHADDWD, VPHADDWQ, VPHSUBBW, VPHSUBDQ, VPHSUBWD, VPMACSDD, VPMACSDQH, VPMACSDQL,

VPMACSSDD, VPMACSSDQH, VPMACSSDQL, VPMACSSWD,

VPMACSSWW, VPMACSWD, VPMACSWW, VPMADCSSWD, VPMADCSWD,

VPPERM, VPROTB, VPROTD, VPROTQ, VPROTW, VPSHAB, VPSHAD,

VPSHAQ, VPSHAW, VPSHLB, VPSHLD, VPSHLQ, VPSHLW.

Microprocessor versions tested

The tables in this manual are based on testing of the following microprocessors

Processor name	Microarchitecture Code name	Family number (hex)	Model number (hex)	Comment
AMD K7 Athlon		6	6	Step. 2, rev. A5
AMD K8 Opteron		F	5	Stepping A
AMD K10 Opteron		10	2	2350, step. 1
AMD Bulldozer	Bulldozer, Zambezi	15	1	FX-6100, step 2
AMD Piledriver	Piledriver	15	2	FX-8350, step 0. And others
AMD Steamroller	Steamroller, Kaveri	15	30	A10-7850K, step 1
AMD Ryzen	Zen	17	1	Ryzen 7 1800X, step 1
AMD Bobcat	Bobcat	14	1	E350, step. 0
AMD Kabini	Jaguar	16	0	A4-5000, step 1
ntel Pentium	P5	5	2	
ntel Pentium MMX	P5	5	4	Stepping 4
ntel Pentium II	P6	6	6	
ntel Pentium III	P6	6	7	
ntel Pentium 4	Netburst	F	2	Stepping 4, rev. B0
ntel Pentium 4 EM64T	Netburst, Prescott	F	4	Xeon. Stepping 1
ntel Pentium M	Dothan	6	D	Stepping 6, rev. B1
ntel Core Duo	Yonah	6	E	Not fully tested
ntel Core 2 (65 nm)	Merom	6	F	T5500, Step. 6, rev. B2
ntel Core 2 (45 nm)	Wolfdale	6	17	E8400, Step. 6
ntel Core i7	Nehalem	6	1A	i7-920, Step. 5, rev. D0
ntel 2nd gen. Core	Sandy Bridge	6	2A	i5-2500, Step 7
ntel 3rd gen. Core	Ivy Bridge	6	3A	i7-3770K, Step 9
ntel 4th gen. Core	Haswell	6	3C	i7-4770K, step. 3
ntel 5th gen. Core	Broadwell	6	56	D1540, step 2
ntel 6th gen. Core	Skylake	6	5E	Step. 3
ntel Atom 330	Diamondville	6	1C	Step. 2
ntel Bay Trail	Silvermont	6	37	Step. 3
ntel Apollo Lake	Goldmont	6	5C	Step. 9
ntel Xeon Phi	Knights Landing	6	57	Step. 1
VIA Nano L2200	_	6	F	Step. 2
/IA Nano L3050	Isaiah	6	F	Step. 8 (prerelease sample)

AMD K7

List of instruction timings and macro-operation breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB,

JNE, etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, xmm = 128 bit xmm register, sr = segment register, m = any memory operand including indirect operands, m64 means 64-bit memory oper-

and, etc.

Ops: Number of macro-operations issued from instruction decoder to schedulers. In-

structions with more than 2 macro-operations use microcode.

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latency listed does not include the memory oper-

and where the operand is listed as register or memory (r/m).

Reciprocal throughput: This is also called issue latency. This value indicates the average number of

clock cycles from the execution of an instruction begins to a subsequent independent instruction of the same kind can begin to execute. A value of 1/3 indicates that the execution units can handle 3 instructions per clock cycle in one thread. However, the throughput may be limited by other bottlenecks in the

pipeline.

Execution unit: Indicates which execution unit is used for the macro-operations. ALU means

any of the three integer ALU's. ALUO_1 means that ALU0 and ALU1 are both used. AGU means any of the three integer address generation units. FADD means floating point adder unit. FMUL means floating point multiplier unit. FMISC means floating point store and miscellaneous unit. FA/M means FADD or FMUL is used. FANY means any of the three floating point units can be used. Two macro-operations can execute simultaneously if they go to different

execution units.

Integer instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
MOV	r,r	1	1	1/3	ALU	
MOV	r,i	1	1	1/3	ALU	
						Any addr. mode. Add 1 clk if code segment base ≠
MOV	r8,m8	1	4	1/2	ALU, AGU	0
MOV	r16,m16	1	4	1/2	ALU, AGU	do.
MOV	r32,m32	1	3	1/2	AGU	do.
MOV	m8,r8H	1	8	1/2	AGU	AH, BH, CH, DH
MOV	m8,r8L	1	2	1/2	AGU	Any other 8-bit register
MOV	m16/32,r	1	2	1/2	AGU	Any addressing mode
MOV	m,i	1	2	1/2	AGU	
MOV	r,sr	1	2	1		

MOV	sr,r/m	6	9-13	8		
MOVZX, MOVSX	r,r	1	1	1/3	ALU	
MOVZX, MOVSX	r,m	1	4	1/2	ALU, AGU	
CMOVcc	r,r	1	1	1/3	ALU	
CMOVcc		1	'	1/3	ALU, AGU	
	r,m	3	2		ALU, AGU ALU	
XCHG	r,r	3		1	ALU	Timing donondo
XCHG	r,m	3	16	16	ALU, AGU	Timing depends on hw
XLAT		2	5		ALU, AGU	
PUSH	r	1		1	ALU, AGU	
PUSH	i '	1		1	ALU, AGU	
PUSH	m m	2		1	ALU, AGU	
PUSH		2		1	ALU, AGU	
	sr	1		1		
PUSHF(D)		9			ALU, AGU	
PUSHA(D)	_			4	ALU, AGU	
POP	r	2		1	ALU, AGU	
POP	m	3		1	ALU, AGU	
POP	DS/ES/FS/GS	6		10	ALU, AGU	
POP	SS	9		18	ALU, AGU	
POPF(D)		2		1	ALU, AGU	
POPA(D)		9		4	ALU, AGU	
LEA	r16,[m]	2	3	1	AGU	Any addr. size
LEA	r32,[m]	1	2	1/3	AGU	Any addr. size
LAHF		4	3	2	ALU	
SAHF		2	2	2	ALU	
SALC		1	1	1	ALU	
LDS, LES,	r,m	10		9		
BSWAP	r	1	1	1/3	ALU	
Arithmetic instructions						
ADD, SUB	r,r/i	1	1	1/3	ALU	
ADD, SUB	r,m	1	1	1/2	ALU, AGU	
ADD, SUB	m,r	1	7	2,5	ALU, AGU	
ADC, SBB	r,r/i	1	1	1/3	ALU	
ADC, SBB	r,m	1	1	1/2	ALU, AGU	
ADC, SBB	m,r/i	1	7	2,5	ALU, AGU	
CMP	r,r/i	1	1	1/3	ALU, ACU	
CMP		1	1	1/3		
	r,m	-	4		ALU, AGU	
INC, DEC, NEG	r	1	1 7	1/3	ALU	
INC, DEC, NEG	m	1	7	3	ALU, AGU	
AAA, AAS		9	5	5	ALU	
DAA		12	6	6	ALU	
DAS		16	7	7	ALU	
AAD		4	5		ALU0	
AAM		31	13		ALU	
MUL, IMUL	r8/m8	3	3	2	ALU0	
NAL II IN AL ''	40/ 10	^			A1110 1	latency ax=3,
MUL, IMUL	r16/m16	3	3	2	ALU0_1	dx=4
MUL, IMUL	r32/m32	3	4	3	ALU0_1	
IMUL	r16,r16/m16	2	3	2	ALU0	

	ı		1		
IMUL	r32,r32/m32	2	4	2,5	ALU0
IMUL	r16,(r16),i	2	4	1	ALU0
IMUL	r32,(r32),i	2	5	2	ALU0
IMUL	r16,m16,i	3		2	ALU0
IMUL	r32,m32,i	3		2	ALU0
DIV	r8/m8	32	24	23	ALU
DIV	r16/m16	47	24	23	ALU
DIV	r32/m32	79	40	40	ALU
IDIV	r8	41	17	17	ALU
IDIV	r16	56	25	25	ALU
IDIV	r32	88	41	41	ALU
IDIV	m8	42	17	17	ALU
IDIV	m16	57	25	25	ALU
IDIV	m32	89	41	41	ALU
CBW, CWDE	11102	1	1	1/3	ALU
CWD, CDQ		1	1	1/3	ALU
CVVD, CDQ		'	ı	1/3	ALO
Logic instructions					
AND, OR, XOR	r,r	1	1	1/3	ALU
AND, OR, XOR	r,m	1	1	1/2	ALU, AGU
AND, OR, XOR	m,r	1	7	2,5	ALU, AGU
TEST	r,r	1	1	1/3	ALU
TEST	r,m	1	1	1/2	ALU, AGU
NOT	r ',,,,,	1	1	1/3	ALU
NOT	m '	1	7	2,5	ALU, AGU
SHL, SHR, SAR	r,i/CL	1	1	1/3	ALU, AGU
ROL, ROR	r,i/CL	1	1	1/3	ALU
RCL, RCR	r,1	1	1	1/3	ALU
RCL RCL		9	4	4	ALU
RCR	r,i	7	3	3	ALU
RCL	r,i	9	3	3	
	r,CL				ALU
RCR	r,CL	7	3	3	ALU
SHL,SHR,SAR,ROL,ROR	m,i /CL	1	7	3	ALU, AGU
RCL, RCR	m,1	1	7	4	ALU, AGU
RCL	m,i	10	5	4	ALU, AGU
RCR	m,i	9	8	4	ALU, AGU
RCL	m,CL	9	6	4	ALU, AGU
RCR	m,CL	8	7	3	ALU, AGU
SHLD, SHRD	r,r,i	6	4	2	ALU
SHLD, SHRD	r,r,cl	7	4	3	ALU
SHLD, SHRD	m,r,i/CL	8	7	3	ALU, AGU
BT	r,r/i	1	1	1/3	ALU
ВТ	m,i	1		1/2	ALU, AGU
BT	m,r	5		2	ALU, AGU
BTC, BTR, BTS	r,r/i	2	2	1	ALU
BTC	m,i	5	7	2	ALU, AGU
BTR, BTS	m,i	4	7	2	ALU, AGU
BTC, BTR, BTS	m,r	8	6	3	ALU, AGU
BSF	r,r	19	7	7	ALU
BSR	r,r	23	9	9	ALU

DOE	"	20	0		ALII ACII	1
BSF	r,m	20	8	8	ALU, AGU	
BSR	r,m	23	10	10	ALU, AGU	
SETcc	r	1	1	1/3	ALU	
SETcc	m	1		1/2	ALU, AGU	
CLC, STC		1		1/3	ALU	
CMC		1	1	1/3	ALU	
CLD		2		1	ALU	
STD		3		2	ALU	
Control transfer instruction	ons					
JMP	short/near	1 1		2	ALU	
						low values = real
JMP	far	16-20	23-32			mode
JMP	r	1		2	ALU	
JMP	m(near)	1		2	ALU, AGU	
	, ,					low values = real
JMP	m(far)	17-21	25-33			mode
Jcc	short/near	1		1/3 - 2	ALU	rcp. t.= 2 if jump
J(E)CXZ	short	2		1/3 - 2	ALU	rcp. t.= 2 if jump
LOOP	short	7	3-4	3-4	ALU	, ,
CALL	near	3	2	2	ALU	
0,122	l loai		_	_	,	low values = real
CALL	far	16-22	23-32			mode
CALL	r	4	3	3	ALU	
CALL	m(near)	5	3	3	ALU, AGU	
CALL	iii(iieai)	5	J	3	ALO, AGO	low values = real
CALL	m(far)	16-22	24-33			mode
RETN	in(iai)	2	3	3	ALU	modo
RETN	i	2	3	3	ALU	
REIN	'		3	3	ALU	low values = real
RETF		15-23	24-35			mode
RETF	i	15-24	24-35			low values = real mode
IRET		32	81			real mode
INT	i	33	42			real mode
	'		72			values are for no
BOUND	m	6		2		jump
INTO		2		2		values are for no jump
				2		Jump
String instructions						
LODS		4	2	2		
REP LODS		5	2	2		values per count
STOS		4	2	2		·
REP STOS		3	1	1		values per count
MOVS		7	3	3		raidos por ocarr
REP MOVS		4	1-4	1-4		values per count
SCAS		5	2	2		values per count
REP SCAS		5	2	2		values per count
CMPS		7	6	6		values per count
						volues non secont
REP CMPS		6	3-4	3-4		values per count

		A	AMD K7			
Other NOP (90) Long NOP (0F 1F) ENTER		1 1 i,0	0 0 12	1/3 1/3 12	ALU ALU 12	
LEAVE		3		3		3 ops, 5 clk if 16 bit
CLI		8-9		5		
STI		16-17		27		
CPUID		19-28	44-74			
RDTSC		5		11		
RDPMC		9		11		

Floating point x87 instructions

Floating point x87 in		1_	I		I	. .
Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
FLD	r	1	2	1/2	FA/M	
FLD	m32/64	1	4	1/2	FANY	
FLD	m80	7	16	4		
FBLD	m80	30	41	39		
FST(P)	r	1	2	1/2	FA/M	
FST(P)	m32/64	1	3	1	FMISC	
FSTP	m80	10	7	5		
FBSTP	m80	260		188		
FXCH	r	1	0	0,4		
FILD	m	1	9	1	FMISC	
FIST(P)	m	1	7	1	FMISC, FA/M	
FLDZ, FLD1		1		1	FMISC	
						Low latency im-
						mediately after
FCMOVcc	st0,r	9	6	5	FMISC, FA/M	FCOMI
FFREE	r	1		1/3	FANY	
FINCSTP, FDECSTP		1	0	1/3	FANY	
						Low latency im-
ENICTOM/	AX	2	6-12	12	EMICC ALL	mediately after FCOM FTST
FNSTSW FSTSW	AX	3	6-12	12	FMISC, ALU FMISC, ALU	do.
FNSTSW	m16	2	0-12	8	FMISC, ALU	do.
FNSTCW	m16	3		1	FMISC, ALU	uo.
FINSTOW	11110	3		'	FIVIISC, ALU	faster if
FLDCW	m16	14		42	FMISC, ALU	
LDOW	11110	'-		72	1 WIGO, ALG	
Arithmetic instructions						
FADD(P),FSUB(R)(P)	r/m	1	4	1	FADD	
FIADD, FISUB(R)	m	2	4	1-2	FADD,FMISC	
FMUL(P)	r/m	1	4	1	FMUL	
FIMUL	m	2	4	2	FMUL,FMISC	
						Low values are
FDIV(R)(P)	r/m	1	11-25	8-22	FMUL	for round divisors

FIDIV(R)	m	2	12-26	9-23	FMUL,FMISC	do.
FABS, FCHS		1	2	1	FMUL	
FCOM(P), FUCOM(P)	r/m	1	2	1	FADD	
FCOMPP, FUCOMPP		1	2	1	FADD	
FCOMI(P)	r	1	3	1	FADD	
FICOM(P)	m	2		1	FADD, FMISC	
FTST		1	2	1	FADD	
FXAM		2		2	FMISC, ALU	
FRNDINT		5	10	3		
FPREM		1	7-10	8	FMUL	
FPREM1		1	8-11	8	FMUL	
Math						
FSQRT		1	35	12	FMUL	
FSIN		44	90-100			
FCOS		51	90-100			
FSINCOS		76	100-150			
FPTAN		46	100-200			
FPATAN		72	160-170			
FSCALE		5	8			
FXTRACT		7	11			
F2XM1		8	27			
FYL2X		49	126			
FYL2XP1		63	147			
Other						
FNOP		1	0	1/3	FANY	
(F)WAIT		1	0	1/3	ALU	
FNCLEX		7		24	FMISC	
FNINIT		25		92	FMISC	
FNSAVE		76		147		
FRSTOR		65		120		
FXSAVE		44		59		
FXRSTOR		85		87		

Integer MMX instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
MOVD	r32, mm	2	7	2	FMICS, ALU	
MOVD	mm, r32	2	9	2	FANY, ALU	
MOVD	mm,m32	1		1/2	FANY	
MOVD	m32, r	1		1	FMISC	
MOVQ	mm,mm	1	2	1/2	FA/M	
MOVQ	mm,m64	1		1/2	FANY	
MOVQ	m64,mm	1		1	FMISC	
MOVNTQ	m,mm	1		2	FMISC	
PACKSSWB/DW PACKUSWB	mm,r/m	1	2	2	FA/M	

PUNPCKH/LBW/WD PSHUFW MASKMOVQ PMOVMSKB PEXTRW PINSRW	mm,r/m mm,mm,i mm,mm r32,mm r32,mm,i mm,r32,i	1 1 32 3 2 2	2 2 5 12	2 1/2 24 3 2	FA/M FA/M FADD FMISC, ALU FA/M	
Arithmetic instructions PADDB/W/D PADDSB/W PADDUSB/W PSUBB/W/D PSUBSB/W PSUBUSB/W						
	mm,r/m	1	2	1/2	FA/M	
PCMPEQ/GT B/W/D	mm,r/m	1	2	1/2	FA/M	
PMULLW PMULHW	,					
PMULHUW	mm,r/m	1	3	1	FMUL	
PMADDWD	mm,r/m	1	3	1	FMUL	
PAVGB/W	mm,r/m	1	2	1/2	FA/M	
PMIN/MAX SW/UB	mm,r/m	1	2	1/2	FA/M	
PSADBW	mm,r/m	1	3	1	FADD	
Logic						
PAND PANDN POR		4		4/0	E A / N 4	
PXOR	mm,r/m	1	2	1/2	FA/M	
PSLL/RLW/D/Q PSRAW/D	mm,i/mm/m	1	2	1/2	FA/M	
Other						
EMMS		1		1/3	FANY	

Floating point XMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
MOVAPS	r,r	2	2	1	FA/M	
MOVAPS	r,m	2		2	FMISC	
MOVAPS	m,r	2		2	FMISC	
MOVUPS	r,r	2	2	1	FA/M	
MOVUPS	r,m	5		2		
MOVUPS	m,r	5		2		
MOVSS	r,r	1	2	1	FA/M	
MOVSS	r,m	2	4	1	FANY FMISC	
MOVSS	m,r	1	3	1	FMISC	
MOVHLPS, MOVLHPS	r,r	1	2	1/2	FA/M	
MOVHPS, MOVLPS	r,m	1		1/2	FMISC	
MOVHPS, MOVLPS	m,r	1		1	FMISC	
MOVNTPS	m,r	2		4	FMISC	
MOVMSKPS	r32,r	3		2	FADD	
SHUFPS	r,r/m,i	3	3	3	FMUL	

UNPCK H/L PS	r,r/m	2	3	3	FMUL	
Conversion						
CVTPI2PS	xmm,mm	1	4		FMISC	
CVT(T)PS2PI	mm,xmm	1	6		FMISC	
CVTSI2SS	xmm,r32	4		10	FMISC	
CVT(T)SS2SI	r32,xmm	2		3	FMISC	
Arithmetic						
ADDSS SUBSS	r,r/m	1	4	1	FADD	
ADDPS SUBPS	r,r/m	2	4	2	FADD	
MULSS	r,r/m	1	4	1	FMUL	
MULPS	r,r/m	2	4	2	FMUL	
						Low values are for round divi-
						sors, e.g. powers
DIVSS	r,r/m	1	11-16	8-13	FMUL	of 2.
DIVPS	r,r/m	2	18-30	18-30	FMUL	do.
RCPSS	r,r/m	1	3	1	FMUL	
RCPPS	r,r/m	2	3	2	FMUL	
MAXSS MINSS	r,r/m	1	2	1	FADD	
MAXPS MINPS	r,r/m	2	2	2	FADD	
CMPccSS	r,r/m	1	2	1	FADD	
CMPccPS	r,r/m	2	2	2	FADD	
COMISS UCOMISS	r,r/m	1	2	1	FADD	
Logic						
ANDPS/D ANDNPS/D						
ORPS/D XORPS/D	r,r/m	2	2	2	FMUL	
Math						
SQRTSS	r,r/m	1	19	16	FMUL	
SQRTPS	r,r/m	2	36	36	FMUL	
RSQRTSS	r,r/m	1	3	1	FMUL	
RSQRTPS	r,r/m	2	3	2	FMUL	
Other						
LDMXCSR	m	8		9		
STMXCSR	m	3		10		

3DNow instructions (obsolete)

better metadione (escende)										
Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes				
Move and convert instructions										
PREFETCH(W)	m	1		1/2	AGU					
PF2ID	mm,mm	1	5	1	FMISC					
PI2FD	mm,mm	1	5	1	FMISC					
PF2IW	mm,mm	1	5	1	FMISC	3DNow E				
PI2FW	mm,mm	1	5	1	FMISC	3DNow E				
PSWAPD	mm,mm	1	2	1/2	FA/M	3DNow E				

Integer instructions PAVGUSB	mm,mm	1	2	1/2	FA/M	
PMULHRW	mm,mm	1	3	1	FMUL	
Floating point instruction	ıs					
PFADD/SUB/SUBR	mm,mm	1	4	1	FADD	
PFCMPEQ/GE/GT	mm,mm	1	2	1	FADD	
PFMAX/MIN	mm,mm	1	2	1	FADD	
PFMUL	mm,mm	1	4	1	FMUL	
PFACC	mm,mm	1	4	1	FADD	
PFNACC, PFPNACC	mm,mm	1	4	1	FADD	3DNow E
PFRCP	mm,mm	1	3	1	FMUL	
PFRCPIT1/2	mm,mm	1	4	1	FMUL	
PFRSQRT	mm,mm	1	3	1	FMUL	
PFRSQIT1	mm,mm	1	4	1	FMUL	
Other						
FEMMS	mm,mm	1		1/3	FANY	

List of instruction timings and macro-operation breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB, JNE,

etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, xmm = 128 bit xmm register, sr = segment register, m = any memory operand including indirect operands, m64 means 64-bit memory operand, etc.

Ops: Number of macro-operations issued from instruction decoder to schedulers. In-

structions with more than 2 macro-operations use microcode.

Latency: This is the delay that the instruction generates in a dependency chain. The num-

bers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latency listed does not include the memory operand where the oper-

and is listed as register or memory (r/m).

Reciprocal through-

put:

This is also called issue latency. This value indicates the average number of clock cycles from the execution of an instruction begins to a subsequent independent instruction of the same kind can begin to execute. A value of 1/3 indicates that the

execution units can handle 3 instructions per clock cycle in one thread. However, the throughput may be limited by other bottlenecks in the pipeline.

Execution unit:

Indicates which execution unit is used for the macro-operations. ALU means any of the three integer ALU's. ALUO_1 means that ALUO and ALU1 are both used. AGU means any of the three integer address generation units. FADD means floating point adder unit. FMUL means floating point multiplier unit. FMISC means floating point store and miscellaneous unit. FA/M means FADD or FMUL is used. FANY means any of the three floating point units can be used. Two macro-opera-

tions can execute simultaneously if they go to different execution units.

Integer instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
MOV	r,r	1	1	1/3	ALU	
MOV	r,i	1	1	1/3	ALU	
MOV	r8,m8	1	4	1/2	ALU, AGU	Any addressing mode.
MOV	r16,m16	1	4	1/2	ALU, AGU	Add 1 clock if code
MOV	r32,m32	1	3	1/2	AGU	segment base ≠ 0
MOV	r64,m64	1	3	1/2	AGU	
MOV	m8,r8H	1	8	1/2	AGU	AH, BH, CH, DH
						Any other 8-bit regis-
MOV	m8,r8L	1	3	1/2	AGU	ter
MOV	m16/32/64,r	1	3	1/2	AGU	Any addressing mode
MOV	m,i	1	3	1/2	AGU	
MOV	m64,i32	1	3	1/2	AGU	
MOV	r,sr	1	2	1/2-1		
MOV	sr,r/m	6	9-13	8		
MOVNTI	m,r	1		2-3	AGU	

MOVZX, MOVSX	r,r	1	1	1/3	ALU	
MOVZX, MOVSX	r,m	1	4	1/3	ALU, AGU	
MOVSXD	r64,r32	1	1	1/2	ALU, AGU	
MOVSXD	r64,m32	1	'	1/3	ALU, AGU	
CMOVcc	· ·	1	1	1/2	ALU, AGU	
CMOVcc	r,r	1	ı	1/3	ALU, AGU	
	r,m		2		*	
XCHG	r,r	3	2	1	ALU	
XCHG	r,m	3	16	16	ALU, AGU	Timing depends on hw
XLAT	,	2	5		ALU, AGU	
PUSH	r	1	1	1	ALU, AGU	
PUSH	i	1	1	1	ALU, AGU	
PUSH	m	2	1	1	ALU, AGU	
PUSH	sr	2	1	1	ALU, AGU	
PUSHF(D/Q)	0.	5	2	2	ALU, AGU	
PUSHA(D)		9	4	4	ALU, AGU	
POP	r	2	1	1	ALU, AGU	
POP	m	3	1	1	ALU, AGU	
POP	DS/ES/FS/GS	4-6	8	8	ALU, AGU	
POP	SS	7-9	28	28	ALU, AGU	
	33	7-9 25	10	10		
POPF(D/Q)					ALU, AGU	
POPA(D)	-40 [1	9	4	4	ALU, AGU	A
LEA	r16,[m]	2	3	1	AGU	Any address size
LEA	r32,[m]	1	2	1/3	AGU	Any address size
LEA	r64,[m]	1	2	1/3	AGU	Any address size
LAHF		4	3	2	ALU	
SAHF		1	1	1/3	ALU	
SALC		1	1	1/3	ALU	
LDS, LES,	r,m	10		9		
BSWAP	r	1	1	1/3	ALU	
PREFETCHNTA	m	1		1/2	AGU	
PREFETCHT0/1/2	m	1		1/2	AGU	
SFENCE		6		8		
LFENCE		1		5		
MFENCE		7		16		
IN	r,i/DX	270				
OUT	i/DX,r	300				
Arithmetic instruction						
ADD, SUB	r,r/i	1	1	1/3	ALU	
ADD, SUB	r,m	1	1	1/3	ALU, AGU	
ADD, SUB	m,r	1	7	2,5	ALU, AGU	
ADC, SBB		1	1	1/3	ALU, AGU ALU	
ADC, SBB	r,r/i	1	1	1/3		
1	r,m		7		ALU, AGU	
ADC, SBB	m,r/i	1		2,5	ALU, AGU	
CMP	r,r/i	1	1	1/3	ALU	
CMP	r,m	1	4	1/2	ALU, AGU	
INC, DEC, NEG	r	1	1	1/3	ALU	
INC, DEC, NEG	m	1	7	3	ALU, AGU	
AAA, AAS		9	5	5	ALU	
DAA		12	6	6	ALU	
DAS		16	7	7	ALU	
AAD		4	5		ALU0	

AAM	1	31	13	1	ALU	
MUL, IMUL	r8/m8	1	3	1	ALU0	
MUL, IMUL	r16/m16	3	3-4	2	ALU0_1	latency ax=3, dx=4
MUL, IMUL	r32/m32	2	3-4	1	ALU0_1 ALU0_1	laterity ax-3, ux-4
MUL, IMUL	r64/m64	2	4-5	2	_	lotopov rov=4 rdv=5
I		1		1	ALU0_1	latency rax=4, rdx=5
IMUL	r16,r16/m16		3		ALU0	
IMUL	r32,r32/m32	1	3	1	ALU0	
IMUL	r64,r64/m64	1	4	2	ALU0_1	
IMUL	r16,(r16),i	2	4	1	ALU0	
IMUL	r32,(r32),i	1	3	1	ALU0	
IMUL	r64,(r64),i	1	4	2	ALU0	
IMUL	r16,m16,i	3		2	ALU0	
IMUL	r32,m32,i	3		2	ALU0	
IMUL	r64,m64,i	3		2	ALU0_1	
DIV	r8/m8	31	15	15	ALU	
DIV	r16/m16	46	23	23	ALU	
DIV	r32/m32	78	39	39	ALU	
DIV	r64/m64	143	71	71	ALU	
IDIV	r8	40	17	17	ALU	
IDIV	r16	55	25	25	ALU	
IDIV	r32	87	41	41	ALU	
IDIV	r64	152	73	73	ALU	
IDIV	m8	41	17	17	ALU	
IDIV	m16	56	25	25	ALU	
IDIV	m32	88	41	41	ALU	
IDIV	m64	153	73	73	ALU	
CBW, CWDE, CDQE		1	1	1/3	ALU	
CWD, CDQ, CQO		1	1	1/3	ALU	
Logic instructions	-	_	_			
AND, OR, XOR	r,r	1	1	1/3	ALU	
AND, OR, XOR	r,m	1	1 _	1/2	ALU, AGU	
AND, OR, XOR	m,r	1	7	2,5	ALU, AGU	
TEST	r,r	1	1	1/3	ALU	
TEST	r,m	1	1	1/2	ALU, AGU	
NOT	r	1	1	1/3	ALU	
NOT	m	1	7	2,5	ALU, AGU	
SHL, SHR, SAR	r,i/CL	1	1	1/3	ALU	
ROL, ROR	r,i/CL	1	1	1/3	ALU	
RCL, RCR	r,1	1	1	1/3	ALU	
RCL	r,i	9	3	3	ALU	
RCR	r,i	7	3	3	ALU	
RCL	r,CL	9	4	4	ALU	
RCR	r,CL	7	3	3	ALU	
SHL,SHR,SAR,ROL,R						
OR	m,i /CL	1	7	3	ALU, AGU	
RCL, RCR	m,1	1	7	4	ALU, AGU	
RCL	m,i	10	9	4	ALU, AGU	
RCR	m,i	9	8	4	ALU, AGU	
RCL	m,CL	9	7	4	ALU, AGU	
RCR	m,CL	8	8	3	ALU, AGU	
SHLD, SHRD	r,r,i	6	3	3	ALU	
SHLD, SHRD	r,r,cl	7	3	3	ALU	
1			1	I .	I .	r L

SHLD, SHRD BT BT BT BTC, BTR, BTS BTC BTR, BTS BTC BTR, BTS BSF BSF BSF BSF BSF BSF BSF C CLC, STC CMC CLD STD	m,r,i/CL r,r/i m,i m,r r,r/i m,i m,i m,r r16/32,r r64,r r,r r16,m r32,m r64,m r,m r	8 1 1 5 2 5 4 8 8 21 22 28 20 22 25 28 1 1 1 1	6 1 2 7 7 5 8 9 10 8 9 10 10	3 1/3 1/2 2 1 2 5 3 8 9 10 8 9 10 10 1/3 1/3 1/3 1/3	ALU, AGU ALU ALU ALU ALU ALU ALU ALU ALU, AGU ALU ALU ALU	
Control transfer instru	ıctions					
JMP	short/near	1		2	ALU	
JMP JMP JMP	far r m(near)	16-20 1 1	23-32	2 2	ALU ALU, AGU	low values = real mode
JMP	m(far)	17-21	25-33			low values = real mode
Jcc J(E/R)CXZ LOOP CALL	short/near short short near	1 2 7 3	3-4 2	1/3 - 2 1/3 - 2 3-4 2	ALU ALU ALU ALU	recip. thrp.= 2 if jump recip. thrp.= 2 if jump
CALL	far	16-22	23-32			low values = real mode
CALL	r	4	3	3	ALU	mode
CALL	m(near)	5	3	3	ALU, AGU	
CALL RETN RETN	m(far)	16-22 2 2	24-33 3 3	3	ALU ALU	low values = real mode
RETF		15-23	24-35			low values = real mode
RETF	i	15-24	24-35			low values = real mode
IRET		32	81			real mode
INT	i	33	42			real mode
BOUND INTO	m m	6 2		2 2		values are for no jump values are for no jump
String instructions						

LODS	4	2	2		
REP LODS	5	2	2		values are per count
STOS	4	2	2		
REP STOS	1.5 - 2	0.5 - 1	0.5 - 1		values are per count
MOVS	7	3	3		
REP MOVS	3	1-2	1-2		values are per count
SCAS	5	2	2		
REP SCAS	5	2	2		values are per count
CMPS	2	3	3		
REP CMPS	6	2	2		values are per count
Other					
NOP (90)	1	0	1/3	ALU	
Long NOP (0F 1F)	1	0	1/3	ALU	
ENTER	i,0	12	12	12	
LEAVE	2		3		3 ops, 5 clk if 16 bit
CLI	8-9		5		
STI	16-17		27		
CPUID	22-50	47-164			
RDTSC	6	10	7		
RDPMC	9	12	7		

Floating point x87 instructions

Instruction	Operands	Ops	Latency	Reciprocal	Execution	Notes
instruction	Operanus	Ops	Latericy	throughput	unit	Notes
Move instructions						
FLD	r	1	2	1/2	FA/M	
FLD	m32/64	1	4	1/2	FANY	
FLD	m80	7	16	4		
FBLD	m80	30	41	39		
FST(P)	r	1	2	1/2	FA/M	
FST(P)	m32/64	1	3	1	FMISC	
FSTP	m80	10	7	5		
FBSTP	m80	260	173	160		
FXCH	r	1	0	0,4		
FILD	m	1	9	1	FMISC	
FIST(P)	m	1	7	1	FMISC, FA/M	
FLDZ, FLD1		1		1	FMISC	
						Low latency immedi-
FCMOVcc	st0,r	9	4-15	4	FMISC, FA/M	ately after FCOMI
FFREE	r	1		2	FANY	
FINCSTP, FDECSTP		1	0	1/3	FANY	
						Low latency immediately after FCOM
FNSTSW	AX	2	6-12	12	FMISC, ALU	FTST
FSTSW	AX	3	6-12	12	FMISC, ALU	do.
FNSTSW	m16	2		8	FMISC, ALU	do.
FNSTCW	m16	3		1	FMISC, ALU	
FLDCW	m16	18		50	FMISC, ALU	faster if unchanged
Arithmetic instruction	 S					
FADD(P),FSUB(R)(P)	r/m	1	4	1	FADD	

FIADD,FISUB(R)	m	2	4	1-2	FADD,FMISC	
FMUL(P)	r/m	1	4	1	FMUL	
FIMUL	m	2	4	2	FMUL,FMISC	
1 111102		_		_	i wez,i wiec	Low values are for
FDIV(R)(P)	r/m	1	11-25	8-22	FMUL	round divisors
FIDIV(R)	m	2	12-26	9-23	FMUL,FMISC	do.
FABS, FCHS	***	1	2	1	FMUL	do.
FCOM(P), FUCOM(P)	r/m	1	2	1	FADD	
FCOMPP, FUCOMPP	1/111	1	2	1	FADD	
FCOMI(P)	r	1	3	1	FADD	
FICOM(P)	m	2		1	FADD, FMISC	
FTST	111	1	2	1	FADD, FMISC	
FXAM		2		1	FMISC, ALU	
FRNDINT		5	10	3	FIVIISC, ALU	
					EMI II	
FPREM		1	7-10	8 8	FMUL	
FPREM1		1	8-11	8	FMUL	
Math			07	40	EN 41 11	
FSQRT		1	27	12	FMUL	
FLDPI, etc.		1		1	FMISC	
FSIN		66	140-190			
FCOS		73	150-190			
FSINCOS		98	170-200			
FPTAN		67	150-180			
FPATAN		97	217			
FSCALE		5	8			
FXTRACT		7	12	7		
F2XM1		53	126			
FYL2X		72	179			
FYL2XP1		75	175			
Other						
FNOP		1	0	1/3	FANY	
(F)WAIT		1	0	1/3	ALU	
FNCLEX		8		27	FMISC	
FNINIT		26		100	FMISC	
FNSAVE		77		171		
FRSTOR		70		136		
FXSAVE		61		56		
FXRSTOR		101		95		

Integer MMX and XMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
MOVD	r32, mm	2	4	2	FMICS, ALU	
MOVD	mm, r32	2	9	2	FANY, ALU	
MOVD	mm,m32	1		1/2	FANY	
MOVD	r32, xmm	3	2	2	FMISC, ALU	
MOVD	xmm, r32	3	3	2		
MOVD	xmm,m32	2		1	FANY	
MOVD	m32, r	1		1	FMISC	

MOVD (MOVQ)	I					ſ	Moves 64 bits.Name
MOVD (MOVQ) mm,r64 2 9 2 FANY, ALU do. MOVD (MOVQ) xmm,r64 3 9 2 FANY, ALU do. MOVQ mm,mm 1 2 1/2 FANY, ALU do. MOVQ mm,mm 1 2 1/2 FANY, ALU do. MOVQ mm,mm 1 2 1/2 FANY, EMISC MOVQ mm,mm64 1 1/2 FANY, FMISC MOVQ m64,mm/x 1 1 FANY, FMISC MOVDQA xmm,mm 2 2 1 FAM MOVDQA xmm,mm 2 2 FMISC MOVDQU m,xmm 2 2 FMISC MOVDQU m,xmm 1 2 1/2 FA/M MOVDQU m,xmm 1 2 1/2 FA/M MOVDQQ m,xmm 1 2 1/2 FA/M MOVNTQ m,xmm 1 <t< td=""><td>MOVD (MOVO)</td><td>r64 mm/xmm</td><td>2</td><td>4</td><td>2</td><td>FMISC ALLI</td><td></td></t<>	MOVD (MOVO)	r64 mm/xmm	2	4	2	FMISC ALLI	
MOVD (MOVQ)	, , , , , , , , , , , , , , , , , , , ,						
MOVQ	, ,					•	
MOVQ	, , , , , , , , , , , , , , , , , , , ,						40.
MOVQ mm,m64 1 1/2 FANY MOVQ m64,mm/x 1 1 FANY, FMISC MOVDQA m64,mm/x 1 1 FANY MOVDQA xmm,xmm 2 2 1 FAM MOVDQA xmm,mm 2 2 FMISC MOVDQU xmm,mm 4 2 FMISC MOVDQU m,xmm 5 2 FMISC MOVDQUQ mm,xmm 5 2 FMISC MOVDQUQ mm,xmm 1 2 1/2 FA/M MOVDQQQ xmm,xmm 1 2 1/2 FA/M MOVDQDQ xmm,xmm 2 3 FMISC MOVNTQ m,xmm 2 3 FMISC MOVNTQ m,xmm 2 2 FA/M PACKSSWB/DW mm,r/m 1 2 2 FA/M PUNPCKH/LBWWD/D Q xmm,r/m 1 2 2 FA/M <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
MOVQ xmm,m64 2 1 FANY, FMISC MOVDQA m64,mm/x 1 1 FMISC MOVDQA xmm,mm 2 2 1 FA/M MOVDQA xmm,mm 2 2 FMISC MOVDQU xmm,mm 2 2 FMISC MOVDQQQ mx,xmm 5 2 FMISC MOVDQQQ mm,xmm 1 2 1/2 FA/M MOVDQQQ mm,xmm 1 2 1/2 FA/M MOVDQQQ mm,xmm 2 2 1 FA/M MOVDTQQ mm,xmm 2 2 1 FA/M MOVNTQ m,xmm 2 3 FMISC MOVNTDQ mx,xmm 2 3 FMISC MOVNEDW mm,r/m 1 2 2 FA/M PACKSSWB/DW mm,r/m 1 2 2 FA/M PACKSSWB/DW mm,r/m 1 2		· ·		_		· ·	
MOVQ m64,mm/x 1 1 1 FMISC MOVDQA xmm,xmm 2 2 1 FA/M MOVDQA xmm,m 2 2 FMISC MOVDQU m,xmm 2 2 FMISC MOVDQU m,xmm 4 2 MOVQQQQ MOVDQ2Q mm,xmm 1 2 1/2 FA/M MOVDQDQ xmm,mm 1 2 1/2 FA/M MOVDQQQ xmm,xmm 1 2 1/2 FA/M MOVDQDQ xmm,xmm 2 2 1 FA/M MOVNTOQ m,xmm 2 3 FMISC MOVNTOQ m,xmm 2 3 FMISC MOVNTOQ m,xmm 2 2 FA/M PACKUSWB mm,r/m 1 2 2 FA/M PUNPCKH/LBW/WD/D Q xmm,r/m 1 2 1 FA/M PUNPCKHQDQ xmm,r/m	1		-				
MOVDQA xmm,xmm 2 2 1 FA/M MOVDQA xmm,m 2 2 2 FMISC MOVDQU xmm,m 4 2 FMISC MOVDQU xmm,m 4 2 MMOVDQQ MOVDQQQ mm,xmm 1 2 11/2 FA/M MOVNTQ mm,mm 1 2 11/2 FA/M MOVNTQ m,mm 1 2 FMISC MOVNTQQ m,xmm 2 3 FMISC MOVNTQQ m,xmm 1 2 7 FA/M PACKSSWB/DW pACKSSWB/DW xmm,r/m 1 2 2 FA/M PACKSSWB/DW xmm,r/m 3 3 2 FA/M PACKSSWB/DW xmm,r/m 1 2 2 FA/M PUNPCKH/LBWWD/D Q xmm,r/m 1 2 2 FA/M PUNPCKHQLBWWD/D xmm,r/m 1 2 1/2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>· ·</td><td></td></td<>						· ·	
MOVDQA xmm,m 2 2 FMISC MOVDQU m,xmm 2 2 FMISC MOVDQU m,xmm 4 2 FMISC MOVDQQQ mm,xmm 1 2 11/2 FA/M MOVNTQ m,mm 1 2 1 FA/M, FMISC MOVNTQ m,mm 1 2 1 FA/M, FMISC MOVNTQ m,mm 1 2 7 FMISC MOVNTDQ m,xmm 2 3 FMISC MOVNTDQ m,xmm 1 2 7 FMISC MOVNTQ m,xmm 1 2 2 FA/M PACKSSWB/DW pACKUSWB mm,r/m 1 2 2 FA/M PUNPCKH/LBW/WD/D Q mm,r/m 1 2 2 FA/M PUNPCKH/LBW/WD/D Q xmm,r/m 2 2 1 FA/M PUNPCKHQDQ xmm,r/m 1 2 1/2 <td></td> <td>· .</td> <td></td> <td>2</td> <td>-</td> <td></td> <td></td>		· .		2	-		
MOVDQA m,xmm 2 2 FMISC MOVDQU xmm,m 4 2 MOVDQQQ m,xmm 5 2 MOVDQ2QQ xmm,mm 1 2 1/2 FA/M MOVNTQ m,mm 1 2 1 FA/M, FMISC MOVNTQ m,mm 1 2 FA/M MOVNTQ m,xmm 2 3 FMISC MOVNTQ m,xmm 2 2 FA/M PACKSSWB/DW xmm,r/m 1 2 2 FA/M PACKSSWB/DW xmm,r/m 1 2 2 FA/M PUNPCKH/LBW/WD/D Q xmm,r/m 1 2 1 FA/M PUNPCKH/LBW/WD/D <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td>				_			
MOVDQU xmm,m 4 2 MOVDQUQ mx,mm 5 2 MOVDQQQ xmm,mm 1 2 1/2 FA/M MOVNTQ m,mm 1 2 1 FA/M, FMISC MOVNTDQ m,mm 1 2 FMISC MOVNTDQ m,mm 1 2 FA/M PACKSSWB/DW PACKSSWB/DW PACKSSWB/DW FA/M PACKSSWB/DW xmm,r/m 1 2 2 FA/M PACKSSWB/DW xmm,r/m 1 2 2 FA/M PACKUSWB xmm,r/m 1 2 2 FA/M PUNPCKH/LBW/WD/D mm,r/m 1 2 2 FA/M PUNPCKH/LBW/WD/D xmm,r/m 2 2 1 FA/M PUNPCKHQDQ xmm,r/m 2 2 1 FA/M PUNPCKHQDQ xmm,r/m 1 2 1/2 FA/M PSHUFUHW mm,mm,mi 1							
MOVDQU							
MOVDQ2Q mm,xmm 1 2 1/2 FA/M MOVQ2DQ xmm,mm 2 2 1 FA/M, FMISC MOVNTQ m,mm 1 2 FMISC MOVNTQQ m,mm 1 2 FMISC MOVNTQQ m,xmm 2 3 FMISC PACKSSWB/DW PACKSSWB/DW PACKSSWB/DW PACKSSWB/DW PACKSSWB/DW xmm,r/m 1 2 2 FA/M PUNPCKHUSWWD/D Q xmm,r/m 1 2 2 FA/M PUNPCKHJBW/WD/D Q xmm,r/m 2 2 1 FA/M PUNPCKHQDQ xmm,r/m 2 2 1 FA/M PUNPCKLQDQ xmm,r/m 1 2 1/2 FA/M PSHUFD xmm,xmm,i 2 1 FA/M PSHUFW mm,mm 3 3 1,5 FA/M PSHUFW mm,r/m 1 2 1/2 FA/M <							
MOVQ2DQ xmm,mm 2 2 1 FA/M, FMISC MOVNTQ m,mm 1 2 FMISC MOVNTDQ m,mm 1 2 FMISC PACKSSWB/DW PACKUSWB mm,r/m 1 2 2 FA/M PACKUSWB xmm,r/m 3 3 2 FA/M PUNPCKH/LBW/WD/D Q mm,r/m 1 2 2 FA/M PUNPCKH/LBW/WD/D Q xmm,r/m 1 2 2 FA/M PUNPCKHQDQ xmm,r/m 2 2 1 FA/M PSHUFD xmm,xmm,i 1 2 1/2 FA/M PSHUFW mm,mm,i 1 2 1/2 FA/M PSHUFW mm,mm,i 1 2 1/2 FA/M PSHUFW mm,mm,m 3 3 1,5 FA/M PSHUFW mm,mm,m 2 2 1 FA/M MASKMOVDQU mm,r/m				2		FA/M	
MOVNTQ m,mm 1 2 FMISC MOVNTDQ m,xmm 2 3 FMISC PACKSSWB/DW pACKUSWB mm,r/m 1 2 2 FA/M PACKSSWB/DW pACKUSWB xmm,r/m 1 2 2 FA/M PUNPCKH/LBWWD/D Q mm,r/m 1 2 2 FA/M PUNPCKHQDQ xmm,r/m 2 2 2 FA/M PUNPCKHQDQ xmm,r/m 2 2 1 FA/M PUNPCKLQDQ xmm,r/m 1 2 1/2 FA/M PSHUFD xmm,xmm,i 1 2 1/2 FA/M PSHUFU/JHW xmm,xmm,i 1 2 1/2 FA/M PSHUFU/JHW xmm,xmm,i 2 1 FA/M PSHUFU/JHW xmm,xmm,i 2 1 FA/M PSHUFU/JHW xmm,xmm,i 2 1 FA/M MASKMOVQ mm,r/m 32 13							
MOVNTDQ				_		· ·	
PACKSSWB/DW PACKUSWB mm,r/m 1 2 2 FA/M PACKSSWB/DW PACKUSWB xmm,r/m 3 3 2 FA/M PUNPCKH/LBW/WD/D Q mm,r/m 1 2 2 FA/M PUNPCKH/LBW/WD/D Q xmm,r/m 1 2 2 FA/M PUNPCKHQDQ xmm,r/m 2 2 1 FA/M PUNPCKLQDQ xmm,r/m 1 2 1/2 FA/M PSHUFD xmm,xmm,i 1 2 1/2 FA/M PSHUFW mm,mm,mi 1 2 1/2 FA/M PSHUFL/HW xmm,xmm,i 2 2 1 FA/M PSHUFL/HW xmm,xmm,i 2 2 1 FA/M PSHUFL/HW xmm,xmm,i 4 26 13 MASKMOVQ MM,xmm,xmm 64 26 PMOVMSKB r32,mm/x,i 2 5 2 FMISC, ALU PINSRW mm,r32,i 3 12 3 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
PACKUSWB PACKSSWB/DW PACKUSWB PACKUSWB PUNPCKH/LBW/WD/D Q mm,r/m 1 2 2 FA/M PUNPCKH/LBW/WD/D Q mm,r/m 1 2 2 FA/M PUNPCKH/LBW/WD/D Q xmm,r/m 2 2 2 FA/M PUNPCKHQDQ xmm,r/m 2 2 1 FA/M PUNPCKLQDQ xmm,r/m 1 2 1/2 FA/M PSHUFD xmm,xmm,i 1 2 1/2 FA/M PSHUFW mm,mm,i 1 2 1/2 FA/M PSHUFL/HW xmm,xmm,i 1 2 1/2 FA/M PSHUFL/HW xmm,xmm,i 2 1 FA/M PSHUFW xmm,xmm 64 26 FA/M PMOVMSKB r32,mm/xmm 1 2 1 FADD PEXTRW r32,mm/xim 1 2 1 FA/M PINSRW mm,r32,i 3 12 3 FA/M Arithmetic instructions		,	_		· ·		
PACKSSWB/DW PACKUSWB xmm,r/m 3 3 2 FA/M PUNPCKH/LBW/WD/D Q mm,r/m 1 2 2 FA/M PUNPCKH/LBW/WD/D Q xmm,r/m 1 2 2 FA/M PUNPCKHQDQ xmm,r/m 2 2 1 FA/M PUNPCKLQDQ xmm,r/m 1 2 1/2 FA/M PSHUFD xmm,xmm,i 3 3 1,5 FA/M PSHUFD xmm,xmm,i 1 2 1/2 FA/M PSHUFW mm,mm,i 1 2 1/2 FA/M PSHUFL/HW xmm,xmm,i 2 2 1 FA/M MASKMOVQ mm,mm 32 13 MASKMOVQ MASKMOVQ TA/M PEXTRW r32,mm/x,i 2 5 2 FMISC, ALU PINSRW mm,r32,i 2 12 2 FA/M Arithmetic instructions PADDSB/W PADDSB/W PADDSB/W PADDSB/W PADSB/		mm.r/m	1	2	2	FA/M	
PACKUSWB		,	-	_	_		
PUNPCKH/LBW/WD/D Q		xmm.r/m	3	3	2	FA/M	
Q							
PUNPCKH/LBW/WD/D Q		mm,r/m	1	2	2	FA/M	
PUNPCKHQDQ xmm,r/m 2 2 1 1 FA/M PUNPCKLQDQ xmm,r/m 1 2 1/2 FA/M PSHUFD xmm,xmm,i 3 3 1,5 FA/M PSHUFW mm,mm,i 1 2 1/2 FA/M PSHUFL/HW xmm,xmm,i 2 2 1 1 FA/M MASKMOVQ mm,mm 32 13 MASKMOVDQU xmm,xmm 64 26 PMOVMSKB r32,mm/xm 1 2 1 FADD PEXTRW r32,mm/x,i 2 5 2 FMISC, ALU PINSRW mm,r32,i 2 12 2 FA/M PINSRW xmm,r32,i 3 12 3 FA/M Arithmetic instructions PADDB/W/D/Q PADDSB/W PSUBUSB/W PSUBUSB/W PSUBUSB/W PSUBUSB/W PSUBB/W/D/Q PSUBSB/W	PUNPCKH/LBW/WD/D	ŕ					
PUNPCKHQDQ xmm,r/m 2 2 1 FA/M PUNPCKLQDQ xmm,r/m 1 2 1/2 FA/M PSHUFD xmm,xmm,i 3 3 1,5 FA/M PSHUFW mm,mm,i 1 2 1/2 FA/M PSHUFL/HW xmm,xmm,i 1 2 1/2 FA/M PSHUFL/HW xmm,xmm,i 2 2 1 FA/M MASKMOVQ mm,mm 32 13 MASKMOVDQU xmm,xmm 64 26 PMOVMSKB r32,mm/x,i 2 5 2 FMISC, ALU PINSRW mm,r32,i 2 12 2 FA/M PADDB,W/D/Q pADDB,W/D/Q PADDUSB,W PADDUSB,W PADDUSB,W PSUBB,W/D/Q PSUBB,W/D/Q PSUBB,W/D/Q PSUBB,W/D/Q PSUBB,W/D/Q PSUBB,W/D/Q PSUBB,W/D/Q PSUBB,B/W PSUBB,B/W PSUBB,B/W PSUBB,B/W PSUBB,B/W PSUBB,B/W PSUBB,B/W PSUBB,B/W PSUBB,B/W P	Q	xmm,r/m	2	2	2	FA/M	
PSHUFD	PUNPCKHQDQ	xmm,r/m	2			FA/M	
PSHUFW PSHUFL/HW mm,mm,i xmm,xmm,i MASKMOVQ 1 mm,mm 2 32 1/2 13 FA/M MASKMOVQ mm,mm 32 xmm,xmm 13 26 FA/M PMOVMSKB r32,mm/xmm 1 2 1 FADD PEXTRW r32,mm/x,i 2 5 2 FMISC, ALU PINSRW mm,r32,i 2 12 2 FA/M PINSRW xmm,r32,i 3 12 3 FA/M Arithmetic instructions PADDB/W/D/Q PADDBS/W PADDUSB/W PADDBS/W/D/Q PSUBSB/W PSUBUSB/W mm,r/m 1 2 1/2 FA/M PADDB/W/D/Q PADDSB/W mm,r/m 1 2 1/2 FA/M PADDB/W/D/Q PADDSB/W PSUBSB/W PSUBSB/W/D/Q PSUBSB/W PSUB	PUNPCKLQDQ	xmm,r/m	1	2	1/2	FA/M	
PSHUFL/HW	PSHUFD	xmm,xmm,i	3	3	1,5	FA/M	
MASKMOVQ mm,mm 32 13 MASKMOVDQU xmm,xmm 64 26 PMOVMSKB r32,mm/xmm 1 2 1 FADD PEXTRW r32,mm/x,i 2 5 2 FMISC, ALU PINSRW mm,r32,i 2 12 2 FA/M PINSRW xmm,r32,i 3 12 3 FA/M Arithmetic instructions PADDB/W/D/Q PADDSB/W PADDUSB/W PADDUSB/W PSUBUSB/W mm,r/m 1 2 1/2 FA/M PADDSB/W/D/Q PADDSB/W ADDUSB/W PADDSB/W PADDSB/W/D/Q PSUBSB/W/D/Q PSUBSB/W/D/Q PSUBSB/W/D/Q PSUBSB/W/D/Q	PSHUFW	mm,mm,i	1	2	1/2	FA/M	
MASKMOVDQU xmm,xmm 64 26 FADD PMOVMSKB r32,mm/xmm 1 2 1 FADD PEXTRW r32,mm/x,i 2 5 2 FMISC, ALU PINSRW mm,r32,i 2 12 2 FA/M PINSRW xmm,r32,i 3 12 3 FA/M Arithmetic instructions PADDB/W/D/Q PADDSB/W PADDUSB/W PADDUSB/W PSUBUSB/W mm,r/m 1 2 1/2 FA/M PADDB/W/D/Q PADDSB/W mm,r/m 1 2 1/2 FA/M PADDSB/W ADDUSB/W PSUBSB/W/D/Q PSUBSB/W PSUBSB/W PSUBSB/W	PSHUFL/HW	xmm,xmm,i	2	2	1	FA/M	
PMOVMSKB	MASKMOVQ	mm,mm	32		13		
PEXTRW r32,mm/x,i 2 5 2 FMISC, ALU PINSRW mm,r32,i 2 12 2 FA/M PINSRW xmm,r32,i 3 12 3 FA/M Arithmetic instructions PADDB/W/D/Q PADDSB/W PADDUSB/W PADDB/W/D/Q PSUBBB/W/D/Q PSUBSB/W PSUBUSB/W PSUBUSB/W PSUBN/W/D/Q PSUBSB/W/D/Q PSUBSB/W PSUBNISSB/W PSUBNISSB/W PSUBNISSB/W	MASKMOVDQU	xmm,xmm	64		26		
PINSRW mm,r32,i 2 12 2 FA/M PINSRW xmm,r32,i 3 12 3 FA/M Arithmetic instructions PADDB/W/D/Q FA/M FA/M PADDSB/W PADDUSB/W PADDUSB/W PSUBUSB/W PSUBUSB/W PSUBUSB/W PSUBUSB/W PSUBUSB/W PSUBSB/W/D/Q PSUBSB/W PSUBUSB/W PSUBUSB/W PSUBUSB/W PSUBUSB/W	PMOVMSKB	r32,mm/xmm	1	2	1	FADD	
PINSRW xmm,r32,i 3 12 3 FA/M Arithmetic instructions PADDB/W/D/Q PADDSB/W PADDUSB/W PSUBB/W/D/Q PSUBSB/W PSUBUSB/W PSUBUSB/W PADDSB/W PADDSB/W PADDSB/W ADDUSB/W PSUBSB/W PSUBSB/W	PEXTRW	r32,mm/x,i	2	5	2	FMISC, ALU	
Arithmetic instructions PADDB/W/D/Q PADDSB/W PADDUSB/W PSUBB/W/D/Q PSUBSB/W PSUBUSB/W PADDB/W/D/Q PADDSB/W ADDUSB/W ADDUSB/W PSUBBB/W/D/Q PSUBSB/W PSUBSB/W PSUBSB/W PSUBSB/W	PINSRW	mm,r32,i	2	12		FA/M	
PADDB/W/D/Q PADDSB/W PADDUSB/W PSUBB/W/D/Q PSUBSB/W PSUBUSB/W PADDB/W/D/Q PADDSB/W ADDUSB/W PSUBB/W/D/Q PSUBSB/W PSUBSB/W PSUBSB/W PSUBSB/W	PINSRW	xmm,r32,i	3	12	3	FA/M	
PADDB/W/D/Q PADDSB/W PADDUSB/W PSUBB/W/D/Q PSUBSB/W PSUBUSB/W PADDB/W/D/Q PADDSB/W ADDUSB/W PSUBB/W/D/Q PSUBSB/W PSUBSB/W PSUBSB/W PSUBSB/W							
PADDSB/W PADDUSB/W PSUBB/W/D/Q PSUBSB/W PSUBUSB/W PADDB/W/D/Q PADDSB/W ADDUSB/W PSUBB/W/D/Q PSUBSB/W/D/Q PSUBSB/W/D/Q PSUBSB/W PSUBSB/W		S					
PADDUSB/W PSUBB/W/D/Q PSUBUSB/W PSUBUSB/W PADDB/W/D/Q PADDSB/W ADDUSB/W PSUBB/W/D/Q PSUBSB/W/D/Q PSUBSB/W/D/Q PSUBSB/W	1						
PSUBB/W/D/Q PSUBUSB/W PSUBUSB/W PADDB/W/D/Q PADDSB/W ADDUSB/W PSUBB/W/D/Q PSUBSB/W/D/Q PSUBSB/W/D/Q	I						
PSUBSB/W PSUBUSB/W PADDB/W/D/Q PADDSB/W ADDUSB/W PSUBB/W/D/Q PSUBSB/W PSUBSB/W PSUBSB/W	I						
PSUBUSB/W PADDB/W/D/Q PADDSB/W ADDUSB/W PSUBB/W/D/Q PSUBSB/W PSUBSB/W PSUBSB/W							
PADDB/W/D/Q PADDSB/W ADDUSB/W PSUBB/W/D/Q PSUBSB/W		mm r/m	1	2	1/2	E \(/ \/ \/	
PADDSB/W ADDUSB/W PSUBB/W/D/Q PSUBSB/W		111111,17111	•		1/2	I AVIVI	
ADDUSB/W PSUBB/W/D/Q PSUBSB/W	1						
PSUBB/W/D/Q PSUBSB/W							
DCLIDLICDAM	I						
PSUBUSB/W xmm.r/m 2 2 1 FA/M							
''''''','''' = = ''''''''	PSUBUSB/W	xmm,r/m	2	2	1	FA/M	
PCMPEQ/GT B/W/D mm,r/m 1 2 1/2 FA/M	PCMPEQ/GT B/W/D	mm,r/m	1		1/2	FA/M	
PCMPEQ/GT B/W/D xmm,r/m 2 2 1 FA/M	PCMPEQ/GT B/W/D	xmm,r/m	2	2	1	FA/M	

PMULLW PMULHW PMULHUW PMULUDQ	mm,r/m	1	3	1	FMUL	
PMULLW PMULHW PMULHUW PMULUDQ	xmm,r/m	2	3	2	FMUL	
PMADDWD	mm,r/m	1	3	1	FMUL	
PMADDWD	xmm,r/m	2	3	2	FMUL	
PAVGB/W	mm,r/m	1	2	1/2	FA/M	
PAVGB/W	xmm,r/m	2	2	1	FA/M	
PMIN/MAX SW/UB	mm,r/m	1	2	1/2	FA/M	
PMIN/MAX SW/UB	xmm,r/m	2	2	1	FA/M	
PSADBW	mm,r/m	1	3	1	FADD	
PSADBW	xmm,r/m	2	3	2	FADD	
Logic						
PAND PANDN POR PXOR	mm,r/m	1	2	1/2	FA/M	
PAND PANDN POR PXOR	xmm,r/m	2	2	1	FA/M	
PSLL/RL W/D/Q PSRAW/D	mm,i/mm/m	1	2	1/2	FA/M	
PSLL/RL W/D/Q PSRAW/D	x,i/x/m	2	2	1	FA/M	
PSLLDQ, PSRLDQ	xmm,i	2	2	1	FA/M	
Other						
EMMS		1		1/3	FANY	

Floating point XMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
MOVAPS/D	r,r	2	2	1	FA/M	
MOVAPS/D	r,m	2		2	FMISC	
MOVAPS/D	m,r	2		2	FMISC	
MOVUPS/D	r,r	2	2	1	FA/M	
MOVUPS/D	r,m	4		2		
MOVUPS/D	m,r	5		2		
MOVSS/D	r,r	1	2	1	FA/M	
MOVSS/D	r,m	2	4	1	FANY FMISC	
MOVSS/D	m,r	1	3	1	FMISC	
MOVHLPS, MOVLHPS	r,r	1	2	1/2	FA/M	
MOVHPS/D, MOVLPS/D	r,m	1		1	FMISC	
MOVHPS/D, MOVLPS/D	m,r	1		1	FMISC	
MOVDDUP	r,r	2	2	1		SSE3
MOVSH/LDUP	r,r	2	2	2		SSE3
MOVNTPS/D	m,r	2		3	FMISC	
MOVMSKPS/D	r32,r	1	8	1	FADD	

or
.g.

RSQRTPS	r,r/m	2	3	2	FMUL	
Other						
LDMXCSR	m	8		9		
STMXCSR	m	3		10		

List of instruction timings and macro-operation breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB,

JNE, etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, xmm = 128 bit xmm register, sr = segment register, m = any memory operand including indirect operands, m64 means 64-bit memory operand, etc.

Ops: Number of macro-operations issued from instruction decoder to schedulers. In-

structions with more than 2 macro-operations use microcode.

Latency: This is the delay that the instruction generates in a dependency chain. The num-

bers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latency listed does not include the memory operand where the oper-

and is listed as register or memory (r/m).

Reciprocal through-

put:

This is also called issue latency. This value indicates the average number of clock cycles from the execution of an instruction begins to a subsequent independent instruction of the same kind can begin to execute. A value of 1/3 indicates that the execution units can handle 3 instructions per clock cycle in one thread. However,

the throughput may be limited by other bottlenecks in the pipeline.

Execution unit: Indicates which execution unit is used for the macro-operations. ALU means any

of the three integer ALU's. ALU0_1 means that ALU0 and ALU1 are both used. AGU means any of the three integer address generation units. FADD means floating point adder unit. FMUL means floating point multiplier unit. FMISC means floating point store and miscellaneous unit. FA/M means FADD or FMUL is used. FANY means any of the three floating point units can be used. Two macro-opera-

tions can execute simultaneously if they go to different execution units.

Integer instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions				ougput		
MOV	r,r	1	1	1/3	ALU	
MOV	r,i	1	1	1/3	ALU	
MOV	r8,m8	1	4	1/2	ALU, AGU	Any addr. mode. Add
MOV	r16,m16	1	4	1/2	ALU, AGU	1 clock if code seg-
MOV	r32,m32	1	3	1/2	AGU	ment base ≠ 0
MOV	r64,m64	1	3	1/2	AGU	
MOV	m8,r8H	1	8	1/2	AGU	AH, BH, CH, DH
MOV	m8,r8L	1	3	1/2	AGU	Any other 8-bit reg.
MOV	m16/32/64,r	1	3	1/2	AGU	Any addressing mode
MOV	m,i	1	3	1/2	AGU	
MOV	m64,i32	1	3	1/2	AGU	
MOV	r,sr	1	3-4	1/2		
MOV	sr,r/m	6	8-26	8		from AMD manual
MOVNTI	m,r	1		1	AGU	
MOVZX, MOVSX	r,r	1	1	1/3	ALU	

MOVZX, MOVSX	r,m	1	4	1/2	ALU, AGU	
MOVSXD	r64,r32	1	1	1/3	ALU	
MOVSXD	r64,m32	1	4	1/2	ALU, AGU	
CMOVcc	· ·		1	1/3	ALU	
	r,r					
CMOVcc	r,m	1	4	1/2	ALU, AGU	
XCHG	r,r	2	1	1	ALU	
XCHG	r,m	2	21	19	ALU, AGU	Timing depends on hw
XLAT		2	5	5	ALU, AGU	
PUSH	r	1		1/2	ALU, AGU	
PUSH	i	1		1/2	ALU, AGU	
PUSH	m	2		1	ALU, AGU	
PUSH	sr	2		1	ALU, AGU	
	31			3		
PUSHF(D/Q)		9	•		ALU, AGU	
PUSHA(D)		9	6	6	ALU, AGU	
POP	r	1		1/2	ALU, AGU	
POP	m	3	3	1	ALU, AGU	
POP	DS/ES/FS/GS	6	10	8	ALU, AGU	
POP	SS	10	26	16	ALU, AGU	
POPF(D/Q)		28	16	11	ALU, AGU	
POPA(D)		9	6	6	ALU, AGU	
LEA	r16,[m]	2	3	1	ALU, AGU	Any address size
LEA	r32/64,[m]	1	1	1/3	ALU	≤ 2 source operands
LEA	r32/64,[m]	1	2	1/3	AGU	W. scale or 3 opr.
	132/04,[11]	4	3	2	ALU	vv. scale of 5 opt.
LAHF						
SAHF		1	1	1/3	ALU	
SALC		1	1	1	ALU	
LDS, LES,	r,m	10		10		
BSWAP	r	1	1	1/3	ALU	
PREFETCHNTA	m	1		1/2	AGU	
PREFETCHT0/1/2	m	1		1/2	AGU	
PREFETCH(W)	m	1		1/2	AGU	3DNow
SFENCE		6		8		
LFENCE		1		1		
MFENCE		4		33		
IN	r,i/DX	~270				
OUT	i/DX,r	~300				
001		300				
Arithmetic instruction	 ©					
ADD, SUB	r,r/i	1	1	1/3	ALU	
ADD, SUB	r,m		ı	1/2	ALU, AGU	
1			4	1/2		
ADD, SUB	m,r	1	4		ALU, AGU	
ADC, SBB	r,r/i	1	1	1/3	ALU	
ADC, SBB	r,m	1		1/2	ALU, AGU	
ADC, SBB	m,r/i	1	4	1	ALU, AGU	
CMP	r,r/i	1	1	1/3	ALU	
CMP	r,m	1		1/2	ALU, AGU	
INC, DEC, NEG	r	1	1	1/3	ALU	
INC, DEC, NEG	m	1	7	2	ALU, AGU	
AAA, AAS		9	5	5	ALU	
DAA		12	6	6	ALU	
DAS		16	7	7	ALU	
AAD		4	5	5	ALU0	
AAM		30	13	13	ALU	
/ V (IVI	I	50	10	10	ALU	1

NALII INALII	r0/m0	4	ا ء	1	A1.110	
MUL, IMUL	r8/m8	1	3	1	ALU0	latara arra O alsa A
MUL, IMUL	r16/m16	3	3	2	ALU0_1	latency ax=3, dx=4
MUL, IMUL	r32/m32	2	3	1	ALU0_1	
MUL, IMUL	r64/m64	2	4	2	ALU0_1	latency rax=4, rdx=5
IMUL	r16,r16/m16	1	3	1	ALU0	
IMUL	r32,r32/m32	1	3	1	ALU0	
IMUL	r64,r64/m64	1	4	2	ALU0_1	
IMUL	r16,(r16),i	2	4	1	ALU0	
IMUL	r32,(r32),i	1	3	1	ALU0	
IMUL	r64,(r64),i	1	4	2	ALU0	
IMUL	r16,m16,i	3	·	2	ALU0	
IMUL	r32,m32,i	3		2	ALU0	
IMUL		3		2		
	r64,m64,i	3	47		ALU0_1	
DIV	r8/m8		17	17	ALU	
IDIV	r8		19	19	ALU	
IDIV	m8		22	22	ALU	
DIV	r16/m16		15-30	15-30	ALU	Depends on number
DIV	r32/m32		15-46	15-46	ALU	of significant bits in
DIV	r64/m64		15-78	15-78	ALU	absolute value of divi-
IDIV	r16/m16		24-39	24-39	ALU	dend. See AMD soft-
IDIV	r32/m32		24-55	24-55	ALU	ware optimization
IDIV	r64/m64		24-87	24-87	ALU	guide.
CBW, CWDE, CDQE		1	1	1/3	ALU	
CWD, CDQ, CQO		1	1	1/3	ALU	
CVVD, CDQ, CQO		'	'	1/3	ALO	
Logic instructions						
AND, OR, XOR	r,r	1	1	1/3	ALU	
AND, OR, XOR	r,m	1		1/2	ALU, AGU	
AND, OR, XOR		1	4	1	ALU, AGU	
	m,r					
TEST	r,r	1	1	1/3	ALU	
TEST	r,m	1	_	1/2	ALU, AGU	
NOT	r	1	1	1/3	ALU	
NOT	m	1	7	1	ALU, AGU	
SHL, SHR, SAR	r,i/CL	1	1	1/3	ALU	
ROL, ROR	r,i/CL	1	1	1/3	ALU	
RCL, RCR	r,1	1	1	1	ALU	
RCL	r,i	9	3	3	ALU	
RCR	r,i	7	3	3	ALU	
RCL	r,CL	9	4	4	ALU	
RCR	r,CL	7	3	3	ALU	
SHL,SHR,SAR,ROL,RO		1	7	1	ALU, AGU	
RCL, RCR	m,1	1	7	1	ALU, AGU	
RCL	m,i	10	7	5	ALU, AGU	
RCR	· ·		7	6		
	m,i	9			ALU, AGU	
RCL	m,CL	9	8	6	ALU, AGU	
RCR	m,CL	8	7	5	ALU, AGU	
SHLD, SHRD	r,r,i	6	3	2	ALU	
SHLD, SHRD	r,r,cl	7	3	3	ALU	
SHLD, SHRD	m,r,i/CL	8	7,5	6	ALU, AGU	
BT	r,r/i	1	1	1/3	ALU	
ВТ	m,i	1		1/2	ALU, AGU	
ВТ	m,r	5	7	2	ALU, AGU	
BTC, BTR, BTS	r,r/i	2	2	1/3	ALU	
, , ,	, ,		ı	-		ı I

BTC BTR, BTS BTC BTR, BTS BSF BSR BSF BSR POPCNT LZCNT SETcc SETcc	m,i m,r m,r r,r r,r r,m r,m r,r/m r,r/m	5 4 8 8 6 7 7 8 1 1 1	9 9 8 8 4 4 7 7 2 2	1,5 1,5 10 7 3 3 3 1 1 1/3	ALU, AGU ALU, AGU ALU, AGU ALU ALU ALU, AGU ALU, AGU ALU, AGU ALU ALU ALU ALU ALU ALU	SSE4.A / SSE4.2 SSE4.A, AMD only
CLC, STC CMC CLD STD		1 1 1 2	1	1/3 1/3 1/3 2/3	ALU ALU ALU ALU	
Control transfer instru	1					
JMP	short/near	1		2	ALU	
JMP	far	16-20	23-32			low values = real mode
JMP	r	1		2 2	ALU	
JMP	m(near)	1	05.00	2	ALU, AGU	
JMP	m(far)	17-21	25-33	1/3 - 2	A111	low values = real mode
JCC	short/near	1 2		2/3 - 2	ALU ALU	recip. thrp.= 2 if jump
J(E/R)CXZ LOOP	short	7			ALU	recip. thrp.= 2 if jump
CALL	short	3	2	3 2	ALU	
CALL	near far	16-22	23-32		ALU	low volues = real made
CALL	r	4	3	3	ALU	low values = real mode
CALL	m(near)	5	3	3	ALU, AGU	
CALL	m(far)	16-22	24-33]	ALO, AGO	low values = real mode
RETN	iii(iai)	2	3	3	ALU	low values – real mode
RETN	i	2	3	3	ALU	
RETF	•	15-23	24-35		/ (20	low values = real mode
RETF	i	15-24	24-35			low values = real mode
IRET		32	81			real mode
INT	i	33	42			real mode
BOUND	m	6		2		values are for no jump
INTO		2		2		values are for no jump
String instructions			•			
LODS		4	2	2		
REP LODS		5	2	2		values are per count
STOS		4	2	2		values are nor sount
REP STOS		2 7	1 3	1 3		values are per count
MOVS REP MOVS		3	3 1	1		values are nor count
SCAS		5	2	2		values are per count
REP SCAS		5	2	2		values are per count
CMPS		7	3	3		values are per coulit
REP CMPS		3	3 1	1		values are per count
Other						
	J	1 1		I	I	1

NOP (90)	1	0	1/3	ALU		
Long NOP (0F 1F)	1	0	1/3	ALU		
ENTER	i,0	12		12		
LEAVE	2		3		3 ops, 5 clk if 16 bit	
CLI	8-9		5			
STI	16-17		27			
CPUID	22-50	47-164				
RDTSC	30		67			
RDPMC	13		5			

Floating point x87 instructions

Floating point x87	mstruction	15				
Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
FLD	r	1	2	1/2	FA/M	
FLD	m32/64	1	4	1/2	FANY	
FLD	m80	7	13	4		
FBLD	m80	20	94	30		
FST(P)	r	1	2	1/2	FA/M	
FST(P)	m32/64	1	2	1	FMISC	
FSTP	m80	10	8	7		
FBSTP	m80	218	167	163		
FXCH	r	1	0	1/3		
FILD	m	1	6	1	FMISC	
FIST(P)	m	1	4	1	FMISC	
FLDZ, FLD1		1		1	FMISC	
						Low latency immedi-
FCMOVcc	st0,r	9			FMISC, FA/M	ately after FCOMI
FFREE	r	1		1/3	FANY	
FINCSTP, FDECSTP		1	0	1/3	FANY	
,						Low latency immediately
FNSTSW	AX	2		16	FMISC, ALU	after FCOM FTST
FSTSW	AX	3		14	FMISC, ALU	do.
FNSTSW	m16	2		9	FMISC, ALU	do.
FNSTCW	m16	3		2	FMISC, ALU	
FLDCW	m16	12		14	FMISC, ALU	faster if unchanged
Arithmetic instruction	S					
FADD(P),FSUB(R)(P)	r/m	1	4	1	FADD	
FIADD,FISUB(R)	m	2		4	FADD,FMISC	
FMUL(P)	r/m	1	4	1	FMUL	
FIMUL	m	2		4	FMUL,FMISC	
FDIV(R)(P)	r/m	1	?	24	FMUL	
FIDIV(R)	m	2	31	24	FMUL,FMISC	
FABS, FCHS		1	2	2	FMUL	
FCOM(P), FUCOM(P)	r/m	1		1	FADD	
FCOMPP, FUCOMPP		1		1	FADD	
FCOMI(P)	r	1		1	FADD	
FICOM(P)	m	2		1	FADD, FMISC	
FTST		1		1	FADD	
FXAM		2		1	FMISC, ALU	
FRNDINT		6		37		

FPREM		1		7	FMUL	
FPREM1		1		7 7	FMUL	
Math						
FSQRT		1	35	35	FMUL	
FLDPI, etc.		1		1	FMISC	
FSIN		45	~51?			
FCOS		51	~90?			
FSINCOS		76	~125?			
FPTAN		45	~119			
FPATAN		9	151?	45?		
FSCALE		5	9	29		
FXTRACT		11	9	41		
F2XM1		8	65	30?		
FYL2X		8	13	30?		
FYL2XP1		12	114	44?		
Other						
FNOP		1	0	1/3	FANY	
(F)WAIT		1	0	1/3	ALU	
FNCLEX		8		28	FMISC	
FNINIT		26		103	FMISC	
FNSAVE	m	77	162	149		
FRSTOR	m	70	133	149		
FXSAVE	m	61	63	58		
FXRSTOR	m	85	89	79		

Integer MMX and XMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
MOVD	r32, mm	1	3	1	FADD	
MOVD	mm, r32	2	6	3		
MOVD	mm,m32	1	4	1/2	FANY	
MOVD	r32, xmm	1	3	1	FADD	
MOVD	xmm, r32	2	6	3		
MOVD	xmm,m32	1	2	1/2		
MOVD	m32,mm/x	1	2	1	FMISC	
						Moves 64 bits.Name
MOVD (MOVQ)	r64,(x)mm	1	3	1	FADD	of instruction differs
MOVD (MOVQ)	mm,r64	2	6	3		do.
MOVD (MOVQ)	xmm,r64	2	6	3	FMUL, ALU	do.
MOVQ	mm,mm	1	2	1/2	FA/M	
MOVQ	xmm,xmm	1	2,5	1/3	FANY	
MOVQ	mm,m64	1	4	1/2	FANY	
MOVQ	xmm,m64	1	2	1/2	?	
MOVQ	m64,(x)mm	1	2	1	FMISC	
MOVDQA	xmm,xmm	1	2,5	1/3	FANY	
MOVDQA	xmm,m	1	2	1/2	?	
MOVDQA	m,xmm	2	2	1	FMUL,FMISC	
MOVDQU	xmm,m	1	2	1/2		

MOVDQU	m,xmm	3	3	2		
MOVDQ2Q	mm,xmm	1	2	1/3	FANY	
MOVQ2DQ	xmm,mm	1	2	1/3	FANY	
MOVNTQ	m,mm	1		1	FMISC	
MOVNTDQ	m,xmm	2		1	FMUL,FMISC	
PACKSSWB/DW	,				,	
PACKUSWB	mm,r/m	1	2	1/2	FA/M	
PACKSSWB/DW	,					
PACKUSWB	xmm,r/m	1	3	1/2	FA/M	
PUNPCKH/LBW/WD/D	· ·					
Q	mm,r/m	1	2	1/2	FA/M	
PUNPCKH/LBW/WD/D		-	_		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Q	xmm,r/m	1	3	1/2	FA/M	
PUNPCKHQDQ	xmm,r/m	1	3	1/2	FA/M	
PUNPCKLQDQ	xmm,r/m	1	3	1/2	FA/M	
PSHUFD	xmm,xmm,i	1	3	1/2	FA/M	
PSHUFW	mm,mm,i	1	2	1/2	FA/M	
PSHUFL/HW	xmm,xmm,i	1	2	1/2	FA/M	
MASKMOVQ	mm,mm	32		13	FAVIVI	
MASKMOVDQU	1	32 64		24		
	xmm,xmm		2			
PMOVMSKB PEXTRW	r32,mm/xmm	1	3	1	FADD	
	r32,(x)mm,i	2	6	1	E 0 / 0 4	
PINSRW	(x)mm,r32,i	2	9	3	FA/M	00544 AMD
INSERTQ	xmm,xmm	3	6	2	FA/M	SSE4.A, AMD only
INSERTQ	xmm,xmm,i,i	3	6	2	FA/M	SSE4.A, AMD only
EXTRQ	xmm,xmm	1	2	1/2	FA/M	SSE4.A, AMD only
EXTRQ	xmm,xmm,i,i	1	2	1/2	FA/M	SSE4.A, AMD only
Arithmetic instruction	S					
PADDB/W/D/Q						
PADDSB/W PADDUSB/W						
PSUBB/W/D/Q						
PSUBSB/W						
PSUBUSB/W	mm/xmm,r/m	1	2	1/2	FA/M	
PCMPEQ/GT B/W/D	mm/xmm,r/m	1	2	1/2	FA/M	
PMULLW PMULHW			_	1/2	I AVIVI	
PMULHUW						
PMULUDQ	mm/xmm,r/m	1	3	1	FMUL	
PMADDWD	mm/xmm,r/m	1	3	1	FMUL	
PAVGB/W	mm/xmm,r/m	1	2	1/2	FA/M	
PMIN/MAX SW/UB	mm/xmm,r/m	1	2	1/2	FA/M	
PSADBW	mm/xmm,r/m	1	3	1	FADD	
I SADDVV		'	3	'	IADD	
Logic						
PAND PANDN POR						
PXOR	mm/xmm,r/m	1	2	1/2	FA/M	
PSLL/RL W/D/Q			_	1/2	I AVIVI	
PSRAW/D	mm,i/mm/m	1	2	1/2	FA/M	
PSLL/RL W/D/Q	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	'	_	1/2	I / VIVI	
PSRAW/D	x,i/(x)mm	1	3	1/2	FA/M	
PSLLDQ, PSRLDQ	xmm,i	1	3	1/2	FA/M	
I OLLDW, FOILDW	AIIIII,I	'		1/4	1 7/1/1	
1			l			

Other				
EMMS	1	1/3	FANY	

Floating point XMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
MOVAPS/D	r,r	1	2,5	1/2	FANY	
MOVAPS/D	r,m	1	2	1/2	?	
MOVAPS/D	m,r	2	2	1	FMUL,FMISC	
MOVUPS/D	r,r	1	2,5	1/2	FANY	
MOVUPS/D	r,m	1	2	1/2	?	
MOVUPS/D	m,r	3	3	2	FMISC	
MOVSS/D	r,r	1	2	1/2	FA/M	
MOVSS/D	r,m	1	2	1/2	?	
MOVSS/D	m,r	1	2	1	FMISC	
MOVHLPS, MOVLHPS	r,r	1	3	1/2	FA/M	
MOVHPS/D, MOVLPS/D	r,m	1	4	1/2	FA/M	
MOVHPS/D, MOVLPS/D	m,r	1		1	FMISC	
MOVNTPS/D	m,r	2		3	FMUL,FMISC	
MOVNTSS/D	m,r	1		1	FMISC	SSE4.A, AMD only
MOVMSKPS/D	r32,r	1	3	1	FADD	OOL 1.7 t, 7 tivil or ity
SHUFPS/D	r,r/m,i	1	3	1/2	FA/M	
UNPCK H/L PS/D	r,r/m	1	3	1/2	FA/M	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Conversion						
CVTPS2PD	r,r/m	1	2	1	FMISC	
CVTPD2PS	r,r/m	2	7	1		
CVTSD2SS	r,r/m	3	8	2		
CVTSS2SD	r,r/m	3	7	2		
CVTDQ2PS	r,r/m	1	4	1	FMISC	
CVTDQ2PD	r,r/m	1	4	1	FMISC	
CVT(T)PS2DQ	r,r/m	1	4	1	FMISC	
CVT(T)PD2DQ	r,r/m	2	7	1		
CVTPI2PS	xmm,mm	2	7	1		
CVTPI2PD	xmm,mm	1	4	1	FMISC	
CVT(T)PS2PI	mm,xmm	1	4	1	FMISC	
CVT(T)PD2PI	mm,xmm	2	7	1		
CVTSI2SS	xmm,r32	3	14	3		
CVTSI2SD	xmm,r32	3	14	3		
CVT(T)SD2SI	r32,xmm	2	8	1	FADD, FMISC	
CVT(T)SS2SI	r32,xmm	2	8	1	FADD,FMISC	
Arithmetic						
ADDSS/D SUBSS/D	r,r/m	1	4	1	FADD	
ADDPS/D SUBPS/D	r,r/m	1	4	1	FADD	
MULSS/D	r,r/m	1	4	1	FMUL	

K10

MULPS/D	r r/m	1	1 4	1	FMUL	I
	r,r/m		4	-		
DIVSS	r,r/m	1	16	13	FMUL	
DIVPS	r,r/m	1	18	15	FMUL	
DIVSD	r,r/m	1	20	17	FMUL	
DIVPD	r,r/m	1	20	17	FMUL	
RCPSS RCPPS	r,r/m	1	3	1	FMUL	
MAXSS/D MINSS/D	r,r/m	1	2	1	FADD	
MAXPS/D MINPS/D	r,r/m	1	2	1	FADD	
CMPccSS/D	r,r/m	1	2	1	FADD	
CMPccPS/D	r,r/m	1	2	1	FADD	
COMISS/D	,					
UCOMISS/D	r,r/m	1		1	FADD	
	,					
Logic						
ANDPS/D ANDNPS/D						
ORPS/D XORPS/D	r,r/m	1	2	1/2	FA/M	
Math						
SQRTSS	r,r/m	1	19	16	FMUL	
SQRTPS	r,r/m	1	21	18	FMUL	
SQRTSD	r,r/m	1	27	24	FMUL	
SQRTPD	r,r/m	1	27	24	FMUL	
RSQRTSS	r,r/m	1	3	1	FMUL	
RSQRTPS	r,r/m	1	3	1	FMUL	
	,					
Other						
LDMXCSR	m	12	12	10		
STMXCSR	m	3	12	11		

Obsolete 3DNow instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move and convert ins	structions					
PF2ID	mm,mm	1	5	1	FMISC	
PI2FD	mm,mm	1	5	1	FMISC	
PF2IW	mm,mm	1	5	1	FMISC	3DNow extension
PI2FW	mm,mm	1	5	1	FMISC	3DNow extension
PSWAPD	mm,mm	1	2	1/2	FA/M	3DNow extension
Integer instructions						
PAVGUSB	mm,mm	1	2	1/2	FA/M	
PMULHRW	mm,mm	1	3	1	FMUL	
Floating point instruc	tions					
PFADD/SUB/SUBR	mm,mm	1	4	1	FADD	
PFCMPEQ/GE/GT	mm,mm	1	2	1	FADD	
PFMAX/MIN	mm,mm	1	2	1	FADD	
PFMUL	mm,mm	1	4	1	FMUL	
PFACC	mm,mm	1	4	1	FADD	
PFNACC, PFPNACC	mm,mm	1	4	1	FADD	3DNow extension
PFRCP	mm,mm	1	3	1	FMUL	

K10

PFRCPIT1/2	mm,mm	1	4	1	FMUL	
PFRSQRT	mm,mm	1	3	1	FMUL	
PFRSQIT1	mm,mm	1	4	1	FMUL	
Other						
FEMMS	mm,mm	1		1/3	FANY	

Thank you to Xucheng Tang for doing the measurements on the K10.

AMD Bulldozer

List of instruction timings and macro-operation breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB, JNE,

etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, x = 128 bit xmm register, y = 256 bit ymm register, m = any memory operand including indirect operands, m64 means 64-bit memory operand, etc.

Ops: Number of macro-operations issued from instruction decoder to schedulers. In-

structions with more than 2 macro-operations use microcode.

Latency: This is the delay that the instruction generates in a dependency chain. The num-

bers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latency listed does not include the memory operand where the listing

for register and memory operand are joined (r/m).

Reciprocal through-

put:

This is also called issue latency. This value indicates the average number of clock cycles from the execution of an instruction begins to a subsequent independent instruction of the same kind can begin to execute. A value of 1/3 indicates that the execution units can handle 3 instructions per clock cycle in one thread. However, the throughput may be limited by other bottlenecks in the pipeline.

Execution pipe: Indicates which execution pipe or unit is used for the macro-operations:

Integer pipes:

EX0: integer ALU, division

EX1: integer ALU, multiplication, jump EX01: can use either EX0 or EX1 AG01: address generation unit 0 or 1 Floating point and vector pipes:

P0: floating point add, mul, div, convert, shuffle, shift

P1: floating point add, mul, div, shuffle, shift

P2: move, integer add, boolean P3: move, integer add, boolean, store

P01: can use either P0 or P1 P23: can use either P2 or P3

Two macro-operations can execute simultaneously if they go to different

execution pipes

Domain: Tells which execution unit domain is used:

ivec: integer vector execution unit. fp: floating point execution unit. fma: floating point multiply/add subunit.

inherit: the output operand inherits the domain of the input operand.

ivec/fma means the input goes to the ivec domain and the output comes from the

fma domain.

There is an additional latency of 1 clock cycle if the output of an ivec instruction goes to the input of a fp or fma instruction, and when the output of a fp or fma instruction goes to the input of an ivec or store instruction. There is no latency between the fp and fma units. All other latencies after memory load and before mem-

ory store instructions are included in the latency counts.

An fma instruction has a latency of 5 if the output goes to another fma instruction, 6 if the output goes to an fp instruction, and 6+1 if the output goes to an ivec or

store instruction.

Integer instructions

Integer Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Notes
Move instructions						
MOV	r,r	1	1	0.5	EX01	
MOV	r,i	1	1	0.5	EX01	
MOV	r,m	1	4	0.5	AG01	all addr. modes
MOV	m,r	1	4	1	EX01 AG01	all addr. modes
MOV	m,i	1		1		
MOVNTI	m,r	1	5	2		
MOVZX, MOVSX	r,r	1	1	0.5	EX01	
MOVSX	r,m	1	5	0.5	EX01	
MOVZX	r,m	1	4	0.5	EX01	
MOVSXD	r64,r32	1	1	0.5	EX01	
MOVSXD	r64,m32	1	5	0.5	EX01	
CMOVcc	r,r	1	1	0.5	EX01	
CMOVcc	r,m	1		0.5	EX01	
XCHG	r,r	2	1	1	EX01	
	1,1			-		Timing depends on
XCHG	r,m	2	~50	~50	EX01	hw
XLAT		2	6	2		
PUSH	r	1		1		
PUSH	i	1		1		
PUSH	m	2		1.5		
PUSHF(D/Q)		8		4		
PUSHA(D)		9		9		
POP	r	1		1		
POP	m	2		1		
POPF(D/Q)		34		19		
POPA(D)		14		8		
LEA	r16,[m]	2	2-3		EX01	any addr. size
LEA	r32,[m]	2	2-3		EX01	16 bit addr. size
						scale factor > 1
LEA	r32/64,[m]	1	2	0.5	EX01	or 3 operands
LEA	r32/64,[m]	1	1	0.5	EX01	all other cases
LAHF		4	3	2		
SAHF		2	2	1		
SALC		1	1	1		
BSWAP	r	1	1	0.5	EX01	
PREFETCHNTA	m	1		0.5		
PREFETCHT0/1/2	m	1		0.5		
PREFETCH/W	m	1		0.5		AMD 3DNow
SFENCE		6		89		
LFENCE		1		0,25		
MFENCE		6		89		
Arithmetic instruction	ns					
ADD, SUB	r,r	1	1	0.5	EX01	
ADD, SUB	r,i	1	1	0.5	EX01	

ADD, SUB ADD, SUB ADD, SUB ADC, SBB ADC, SBB ADC, SBB ADC, SBB ADC, SBB CMP CMP CMP	r,m m,r m,i r,r r,i r,m m,r m,i r,r r,i r,m	1 1 1 1 1 1 1 1 1	7-8 7-8 1 1 1 9 9	0.5 1 1 1 1 1 0.5 0.5 0.5	EX01 EX01 EX01 EX01 EX01 EX01 EX01 EX01
INC, DEC, NEG	r	1	1	0.5	EX01
INC, DEC, NEG	m	1	7-8	1	EX01
AAA, AAS		10	6		
DAA		16	9		
DAS		20	10		
AAD		4	6		
AAM		9	20	20	
MUL, IMUL	r8/m8	1	4	2	EX1
MUL, IMUL	r16/m16	2	4	2	EX1
MUL, IMUL	r32/m32	1	4	2	EX1
MUL, IMUL	r64/m64	1	6	4	EX1
IMUL	r16,r16/m16	1	4	2	EX1
IMUL	r32,r32/m32	1	4	2	EX1
IMUL	r64,r64/m64	1	6	4	EX1
IMUL IMUL	r16,(r16),i	2 1	5 4	2 2	EX1 EX1
IMUL	r32,(r32),i r64,(r64),i	1	6	4	EX1
IMUL	r164,(164 <i>)</i> ,1	2	0	2	EX1
IMUL	r32,m32,i	2		2	EX1
IMUL	r64,m64,i	2		4	EX1
DIV	r8/m8	14	20	20	EX0
DIV	r16/m16	18	15-27	15-28	EX0
DIV	r32/m32	16	16-43	16-43	EX0
DIV	r64/m64	16	16-75	16-75	EX0
IDIV	r8/m8	33	23	20	EX0
IDIV	r16/m16	36	23-33	20-27	EX0
IDIV	r32/m32	36	22-48	20-43	EX0
IDIV	r64/m64	36	22-79	20-75	EX0
CBW, CWDE, CDQE		1	1		EX01
CDQ, CQO		1	1	0.5	EX01
CWD		2	1	1	EX01
Logic instructions					
AND, OR, XOR	r,r	1	1	0.5	EX01
AND, OR, XOR	r,i	1	1	0.5	EX01
AND, OR, XOR	r,m	1		0.5	EX01
AND, OR, XOR	m,r	1	7-8	1	EX01
AND, OR, XOR	m,i	1	7-8	1	EX01
TEST	r,r	1	1	0.5	EX01

TEST	r,i	1	1	0.5	EX01	
TEST	m,r	1		0.5	EX01	
TEST	m,i	1		0.5	EX01	
NOT	r	1	1	0.5	EX01	
NOT	m	1	7	1	EX01	
SHL, SHR, SAR	r,i/CL	1	1	0.5	EX01	
ROL, ROR	r,i/CL	1	1	0.5	EX01	
RCL	r,1	1	1	0.5	EX01	
RCL		16			EX01	
	r,i		8			
RCL	r,cl	17	9		EX01	
RCR	r,1	1	1		EX01	
RCR	r,i	15	8		EX01	
RCR	r,cl	16	8		EX01	
SHLD, SHRD	r,r,i	6	3	3	EX01	
SHLD, SHRD	r,r,cl	7	4	3,5	EX01	
SHLD, SHRD	m,r,i/CL	8		3,5	EX01	
BT	r,r/i	1	1	0.5	EX01	
ВТ	m,i	1		0.5	EX01	
ВТ	m,r	7		3,5	EX01	
BTC, BTR, BTS	r,r/i	2	2	1	EX01	
BTC, BTR, BTS	m,i	4		2	EX01	
BTC, BTR, BTS	m,r	10		5	EX01	
BSF	r,r	6	3	3	EX01	
BSF	r,m	8	4	4	EX01	
BSR	r,r	7	4	4	EX01	
BSR	r,m	9	_	5	EX01	
LZCNT	r,r	1	2	2	EX0	SSE4.A
POPCNT	r,r/m	1	4	2	EX1	SSE4.2
SETcc	r	1	1	0.5	EX01	30L4.2
SETCC	m	1	'	1	EX01	
CLC, STC	111	1		0.5	EX01	
			4	0.5		
CMC		1	1	_	EX01	
CLD		2		3		
STD	10/00 10/00	2		4		00544
POPCNT	r16/32,r16/32	1	4	2		SSE4A
POPCNT	r64,r64	1	4	4		SSE4A
LZCNT	r,r	2	2	2	D4	SSE4A
EXTRO	x,i,i	1	3	1	P1	SSE4A
EXTRQ INSERTQ	X,X	1	3	1	P1	SSE4A
· ·	x,x,i,i	1	3	1	P1	SSE4A
INSERTQ	x,x	1	3	1	P1	SSE4A
0	-4"					
Control transfer instru		4			E)/4	
JMP	short/near	1		2	EX1	
JMP	r	1		2	EX1	
JMP	m	1		2	EX1	
Jcc	short/near	1		1-2	EX1	2 if jumping
fused CMP+Jcc	short/near	1		1-2	EX1	2 if jumping
J(E/R)CXZ	short	1		1-2	EX1	2 if jumping
LOOP	short	1		1-2	EX1	2 if jumping
LOOPE LOOPNE	short	1		1-2	EX1	2 if jumping

CALL	near	2		2	EX1	
CALL		2		2	EX1	
	r					
CALL	m	3		2	EX1	
RET	_	1		2	EX1	
RET	i	4		2-3	EX1	
BOUND	m	11		5		for no jump
INTO		4		24		for no jump
String instructions						
LODS		3		3		
REP LODS		6n		3n		
STOS		3		3		
REP STOS		2n		2n		small n
REP STOS		3 per 16B		3 per 16B		best case
MOVS		5		3		
REP MOVS		2n		2n		small n
REP MOVS		4 per 16B		3 per 16B		best case
SCAS		3		3		
REP SCAS		7n		4n		
CMPS		6		3		
REP CMPS		9n		4n		
Synchronization						
LOCK ADD	m,r	1	~55			
XADD	m,r	4	10			
LOCK XADD	m,r	4	~51			
CMPXCHG	m8,r8	5	15			
LOCK CMPXCHG		5	~51			
	m8,r8					
CMPXCHG	m,r16/32/64	6	14			
LOCK CMPXCHG	m,r16/32/64	6	~52			
CMPXCHG8B	m64	18	15			
LOCK CMPXCHG8B	m64	18	~53			
CMPXCHG16B	m128	22	52			
LOCK CMPXCHG16B	m128	22	~94			
Other						
NOP (90)		1		0.25	none	
Long NOP (0F 1F)		1		0.25	none	
PAUSE		40		43	HOHE	
	0.0	13		22		
ENTER	a,0					
ENTER	a,b	11+5b		16+4b		
LEAVE		2		4		
CPUID		37-63		112-280		
RDTSC		36		42		
RDPMC		22		300		
CRC32	r32,r8	3	3	2		
CRC32	r32,r16	5	5	5		
CRC32	r32,r32	5	6	6		
XGETBV		4		31		

Floating point x87 instructions								
Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Domain, notes		
Move instructions								
FLD	r	1	2	0.5	P01	fp		
FLD	m32/64	1	8	1		fp		
FLD	m80	8	14	4		fp		
FBLD	m80	60	61	40	P0 P1 P2 P3	fp		
FST(P)	r	1	2	0.5	P01	fp		
FST(P)	m32/64	2	8	1		fp		
FSTP	m80	13	9	20		fp		
FBSTP	m80	239	240	244	P0 P1 F3	fp		
FXCH	r	1	0	0.5	P01	inherit		
FILD	m	1	12	1	F3	fp		
FIST(P)	m	2	8	1	P0 F3	fp		
FLDZ, FLD1		1		0.5	P01	fp		
FCMOVcc	st0,r	8	3	3	P0 P1 F3	fp		
FFREE	r	1		0.25	none	•		
FINCSTP, FDECSTP		1	0	0.25	none	inherit		
FNSTSW	AX	4	~13	22	P0 P2 P3			
FNSTSW	m16	3	~13	19	P0 P2 P3			
FLDCW	m16	1		3				
FNSTCW	m16	3		2				
Arithmetic instructions	S							
FADD(P),FSUB(R)(P)	r/m	1	5-6	1	P01	fma		
FIADD,FISUB(R)	m	2		2	P01	fma		
FMUL(P)	r/m	1	5-6	1	P01	fma		
FIMUL	m	2		2	P01	fma		
FDIV(R)(P)	r	1	10-42	5-18	P01	fp		
FDIV(R)	m	2			P01	fp		
FIDIV(R)	m	2			P01	fp		
FABS, FCHS		1	2	0.5	P01	fp		
FCOM(P), FUCOM(P)	r/m	1		0.5	P01	fp		
FCOMPP, FUCOMPP		1		0.5	P01	fp		
FCOMI(P)	r	2	2	1	P0 P1 F3	fp		
FICOM(P)	m	2		1	P01	fp		
FTST		1		0.5	P01	fp		
FXAM		1	~20	0.5	P01	fp		
FRNDINT		1	4	1	P0	fp		
FPREM		1	19-62		P0	fp		
FPREM1		1	19-65		P0	fp		
Math								
FSQRT		1	10-53		P01			
FLDPI, etc.		1		0.5	P01			
FSIN		10-162	65-210	65-210	P0 P1 P3			
FCOS		160-170	~160	~160	P0 P1 P3			

FSINCOS		12-166	95-160	95-160	P0 P1 P3	
FPTAN		11-190	95-245	95-245	P0 P1 P3	
FPATAN		10-355	60-440	60-440	P0 P1 P3	
FSCALE		8	52		P0 P1 P3	
FXTRACT		12	10	5	P0 P1 P3	
F2XM1		10	64-71		P0 P1 P3	
FYL2X		10-175			P0 P1 P3	
FYL2XP1		10-175			P0 P1 P3	
Other						
FNOP		1		0.25	none	
(F)WAIT		1		0.25	none	
FNCLEX		18		57	P0	
FNINIT		31		170	P0	
FNSAVE	m864	103	300	300	P0 P1 P2 P3	
FRSTOR	m864	76	312	312	P0 P3	

Integer vector instructions

Integer vector instruction	Operands	Ops	Latency	Reciprocal	Execution	Notes
				throughput	pipes	
Move instructions						
MOVD	r32/64, mm/x	1	8	1		
MOVD	mm/x, r32/64	2	10	1		
MOVD	mm/x,m32	1	6	0.5		
MOVD	m32,mm/x	1	5	1		
MOVQ	mm/x,mm/x	1	2	0.5	P23	
MOVQ	mm/x,m64	1	6	0.5		
MOVQ	m64,mm/x	1	5	1	P3	
MOVDQA	xmm,xmm	1	0	0.25	none	inherit domain
MOVDQA	xmm,m	1	6	0.5		
MOVDQA	m,xmm	1	5	1	P3	
VMOVDQA	ymm,ymm	2	2	0.5	P23	
VMOVDQA	ymm,m256	2	6	1		
VMOVDQA	m256,ymm	4	5	3	P3	
MOVDQU	xmm,xmm	1	0	0.25	none	inherit domain
MOVDQU	xmm,m	1	6	0.5		
MOVDQU	m,xmm	1	5	1	P3	
LDDQU	xmm,m	1	6	0.5		
VMOVDQU	ymm,m256	2	6	1-2		
VMOVDQU	m256,ymm	8	6	10	P2 P3	
MOVDQ2Q	mm,xmm	1	2	0.5	P23	
MOVQ2DQ	xmm,mm	1	2	0.5	P23	
MOVNTQ	m,mm	1	6	2	P3	
MOVNTDQ	m,xmm	1	6	2	P3	
MOVNTDQA	xmm,m	1	6	0.5		
PACKSSWB/DW	(x)mm,r/m	1	2	1	P1	
PACKUSWB	(x)mm,r/m	1	2	1	P1	
PUNPCKH/LBW/WD/D						
Q	(x)mm,r/m	1	2	1 1	P1	

	,	l a	1 6	1	. . .	1
PUNPCKHQDQ	xmm,r/m	1	2	1	P1	
PUNPCKLQDQ	xmm,r/m	1	2	1	P1	
PSHUFB	(x)mm,r/m	1	3	1	P1	
PSHUFD	xmm,xmm,i	1	2	1	P1	
PSHUFW	mm,mm,i	1	2	1	P1	
PSHUFL/HW	xmm,xmm,i	1	2	1	P1	
PALIGNR	(x)mm,r/m,i	1	2	1	P1	
PBLENDW	xmm,r/m	1	2	0.5	P23	SSE4.1
MASKMOVQ	mm,mm	31	38	37	P3	
MASKMOVDQU	xmm,xmm	64	48	61	P1 P3	
PMOVMSKB	r32,mm/x	2	10	1	P1 P3	
PEXTRB/W/D/Q	r,x/mm,i	2	10	1	P1 P3	AVX
PINSRB/W/D/Q	x/mm,r,i	2	12	2	P1	
PMOVSXBW/BD/BQ/W						
D/WQ/DQ	xmm,xmm	1	2	1	P1	SSE4.1
PMOVZXBW/BD/BQ/W						
D/WQ/DQ	xmm,xmm	1	2	1	P1	SSE4.1
VPCMOV	x,x,x,x/m	1	2	1	P1	AMD XOP
VPCMOV	y,y,y,y/m	2	2	2	P1	AMD XOP
VPPERM	x,x,x,x/m	1	2	1	P1	AMD XOP
Arithmetic instructions	5					
PADDB/W/D/Q/SB/SW/						
USB/USW	(x)mm,r/m	1	2	0.5	P23	
PSUBB/W/D/Q/SB/SW/						
USB/USW	(x)mm,r/m	1	2	0.5	P23	
PHADD/SUB(S)W/D	x,x	3	5	2	P1 P23	SSSE3
PHADD/SUB(S)W/D	x,m	4	5	2	P1 P23	SSSE3
PCMPEQ/GT B/W/D	(x)mm,r/m	1	2	0.5	P23	
PCMPEQQ	(x)mm,r/m	1	2	0.5	P23	SSE4.1
PCMPGTQ	(x)mm,r/m	1	2	0.5	P23	SSE4.2
PMULLW PMULHW						
PMULHUW PMULUDQ	(-)	_	4	4	DO	
DAULU D	(x)mm,r/m	1	4	1	P0	00544
PMULLD	xmm,r/m	1	5	2	P0	SSE4.1
PMULDQ	xmm,r/m	1	4	1	P0	SSE4.1
PMULHRSW	(x)mm,r/m	1	4	1	P0	SSSE3
PMADDWD	(x)mm,r/m	1	4	1	P0	
PMADDUBSW	(x)mm,r/m	1	4	1	P0	
PAVGB/W	(x)mm,r/m	1	2	0.5	P23	
PMIN/MAX SB/SW/ SD						
UB/UW/UD	(x)mm,r/m	1	2	0.5	P23	
PHMINPOSUW	xmm,r/m	2	4	1	P1 P23	SSE4.1
PABSB/W/D	(x)mm,r/m	1	2	0.5	P23	SSSE3
PSIGNB/W/D	(x)mm,r/m	1	2	0.5	P23	SSSE3
PSADBW	(x)mm,r/m	2	4	1	P23	
MPSADBW	x,x,i	8	8	4	P1 P23	SSE4.1
						AMD XOP
VPCOMB/W/D/Q	x,x,x/m,i	1	2	0.5	P23	latency 0 if i=6,7
			_			AMD XOP
VPCOMUB/W/D/Q	x,x,x/m,i	1	2	0.5	P23	latency 0 if i=6,7

VPHADDBW/BD/BQ/				l		
WD/WQ/DQ	x,x/m	1	2	0.5	P23	AMD XOP
VPHADDUBW/BD/BQ/	7,7,7111	'	_	0.0	1 20	AWID AGI
WD/WQ/DQ	x,x/m	1	2	0.5	P23	AMD XOP
VPHSUBBW/WD/DQ	x,x/m	1	2	0.5	P23	AMD XOP
VPMACSWW/WD	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMACSDD	x,x,x/m,x	1	5	2	P0	AMD XOP
VPMACSDQH/L	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMACSSWW/WD	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMACSSDD	x,x,x/m,x	1	5	2	P0	AMD XOP
VPMACSSDQH/L	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMADCSWD	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMADCSSWD	x,x,x/m,x	1	4	1	P0	AMD XOP
Logic						
PAND PANDN POR						
PXOR	(x)mm,r/m	1	2	0.5	P23	
PSLL/RL W/D/Q	, ,					
PSRAW/D	(x)mm,r/m	1	3	1	P1	
PSLL/RL W/D/Q						
PSRAW/D	(x)mm,i	1	2	1	P1	
PSLLDQ, PSRLDQ	xmm,i	1	2	1	P1	
PTEST	xmm,r/m	2		1	P1 P3	SSE4.1
VPROTB/W/D/Q	x,x,x/m	1	3	1	P1	AMD XOP
VPROTB/W/D/Q	x,x,i	1	2	1	P1	AMD XOP
VPSHAB/W/D/Q	x,x,x/m	1	3	1	P1	AMD XOP
VPSHLB/W/D/Q	x,x,x/m	1	3	1	P1	AMD XOP
String instructions						
PCMPESTRI	x,x,i	27	17	10	P1 P2 P3	SSE4.2
PCMPESTRM	x,x,i	27	10	10	P1 P2 P3	SSE4.2
PCMPISTRI	x,x,i	7	14	3	P1 P2 P3	SSE4.2
PCMPISTRM	x,x,i	7	7	4	P1 P2 P3	SSE4.2
Encryption						
PCLMULQDQ	x,x/m,i	5	12	7	P1	pclmul
AESDEC	X,X,111,1	2	5	2	P01	aes
AESDECLAST	X,X X,X	2	5	2	P01	aes
AESENC	X,X X,X	2	5	2	P01	aes
AESENCLAST	X,X X,X	2	5	2	P01	aes
AESIMC	X,X X,X	1	5	1	P0	aes
AESKEYGENASSIST	x,x,i	1	5	1	P0	aes
ALONE I GENAGOIO I	^,^,1	'	5	1	FU	acs
Other						
EMMS		1		0.25		

Floating point XMM and YMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Domain, notes
Move instructions						

	I	l	1	I	1	1
MOVAPS/D MOVUPS/D	x,x	1	0	0.25	none	inherit domain
VMOVAPS/D	у,у	2	2	0.5	P23	ivec
MOVAPS/D	у, у	_	_	0.5	1 20	1400
MOVUPS/D	x,m128	1	6	0.5		
VMOVAPS/D	7,,20	•		0.0		
VMOVUPS/D	y,m256	2	6	1-2		
MOVAPS/D	3 ,					
MOVUPS/D	m128,x	1	5	1	P3	
VMOVAPS/D	m256,y	4	5	3	P3	
VMOVUPS/D	m256,y	8	6	10	P2 P3	
MOVSS/D	x,x	1	2	0.5	P01	fp
MOVSS/D	x,m32/64	1	6	0.5		
MOVSS/D	m32/64,x	1	5	1		
MOVHPS/D				·		
MOVLPS/D	x,m64	1	7	1		
MOVHPS/D	m64,x	2	8	1	P1 P3	
MOVLPS/D	m64,x	1	7	1	P3	
MOVLHPS MOVHLPS	x,x	1	2	1	P1	ivec
MOVMSKPS/D	r32,x	2	10	1	P1 P3	
VMOVMSKPS/D	r32,y	_		·		
MOVNTPS/D	m128,x	1	6	2	P3	
VMOVNTPS/D	m256,y			_		
MOVNTSS/SD	m,x	1		4	P3	SSE4A
SHUFPS/D	x,x/m,i	1	2	1	P1	ivec
VSHUFPS/D	y,y,y/m,i	2	2	2	P1	ivec
VPERMILPS/PD	x,x,x/m	1	3	1	P1	ivec
VPERMILPS/PD	y,y,y/m	2	3	2	P1	ivec
VPERMILPS/PD	x,x/m,i	1	2	1	P1	ivec
VPERMILPS/PD	y,y/m,i	2	2	2	P1	ivec
VPERM2F128		8	4	3	P23	ivec
VPERM2F128	y,y,y,i	10	4	4	P23	
BLENDPS/PD	y,y,m,i	10	2	0.5	P23	ivec
VBLENDPS/PD	x,x/m,i	-		0.5	P23	ivec
BLENDVPS/PD	y,y,y/m,i	2	2		P23	ivec
	x,x/m,xmm0		2	1		ivec
VBLENDVPS/PD	y,y,y/m,y	2	2 2	2	P1	ivec
MOVDDUP	X,X	1	2	1	P1	ivec
MOVDDUP	x,m64	1	0	0.5	D4	
VMOVDDUP	у,у	2	2	2	P1	ivec
VMOVDDUP	y,m256	2		1		
VBROADCASTSS	x,m32	1	6	0.5	500	
VBROADCASTSS	y,m32	2	6	0.5	P23	
VBROADCASTSD	y,m64	2	6	0.5	P23	
VBROADCASTF128	y,m128	2	6	0.5	P23	
MOVSH/LDUP	X,X	1	2	1	P1	ivec
MOVSH/LDUP	x,m128	1		0.5		
VMOVSH/LDUP	y,y	2	2	2	P1	ivec
VMOVSH/LDUP	y,m256	2		1		
UNPCKH/LPS/D	x,x/m	1	2	1	P1	ivec
VUNPCKH/LPS/D	y,y,y/m	2	2	2	P1	ivec
EXTRACTPS	r32,x,i	2	10	1	P1 P3	

EXTRACTPS	m32,x,i	2	14	1	P1 P3	
VEXTRACTF128	x,y,i	1	2	1	P23	ivec
VEXTRACTF128	m128,y,i	2	7	1	P23	
INSERTPS	x,x,i	1	2	1	P1	
INSERTPS	x,m32,i	1		1	P1	
VINSERTF128	y,y,x,i	2	2	1	P23	ivec
VINSERTF128	y,y,m128,i	2	9	1	P23	
VMASKMOVPS/D	x,x,m128	1	9	0.5	P01	
VMASKMOVPS/D	y,y,m256	2	9	1	P01	
VMASKMOVPS/D	m128,x,x	18	22	7	P0 P1 P2 P3	
VMASKMOVPS/D	m256,y,y	34	25	13	P0 P1 P2 P3	
VIVII COLLING VI GIB	111200, y, y					
Conversion						
CVTPD2PS	x,x	2	7	1	P01	fp
VCVTPD2PS	x,y	4	7	2	P01	fp
CVTPS2PD	X,X	2	7	1	P01	fp
VCVTPS2PD	y,x	4	7	2	P01	fp
CVTSD2SS	X,X	1	4	1	P0	fp
CVTSS2SD	X,X X,X	1	4	1	P0	fp
CVTDQ2PS	x,x x,x	1	4	1	P0	fp
VCVTDQ2PS		2	4	2	P0	fp
CVT(T) PS2DQ	у,у	1	4	1	P0	-
` '	X,X		4	2	P0	fp fp
VCVT(T) PS2DQ	y,y	2	7	1	P01	fp fp
CVTDQ2PD	X,X	2 4		2		fp
VCVTDQ2PD	y,x		8		P01	fp
CVT(T)PD2DQ	X,X	2	7	1	P01	fp
VCVT(T)PD2DQ	x,y	4	7	2	P01	fp
CVTPI2PS	x,mm	1	4	1	P0	fp
CVT(T)PS2PI	mm,x	1	4	1	P0	fp
CVTPI2PD	x,mm	2	7	1	P0 P1	fp
CVT(T) PD2PI	mm,x	2	7	1	P0 P1	fp
CVTSI2SS	x,r32	2	14	1	P0	fp
CVT(T)SS2SI	r32,x	2	13	1	P0	fp
CVTSI2SD	x,r32/64	2	14	1	P0	fp
CVT(T)SD2SI	r32/64,x	2	13	1	P0	fp
Arithmetic						
	/ma	4	F 6	0.5	D04	for a
ADDSS/D SUBSS/D	x,x/m	1	5-6	0.5	P01	fma
ADDPS/D SUBPS/D	x,x/m	1	5-6	0.5	P01	fma
VADDPS/D VSUBPS/D	y,y,y/m	2	5-6	1	P01	fma
ADDSUBPS/D	x,x/m	1	5-6	0.5	P01	fma
VADDSUBPS/D	y,y,y/m	2	5-6	1	P01	fma
W. (2002) 6/2	3,3,3,	_		·		
HADDPS/D HSUBPS/D	X,X	3	10	2	P01 P1	ivec/fma
HADDPS/D HSUBPS/D VHADDPS/D	x,m128	4		2	P01 P1	ivec/fma
VHSUBPS/D VHADDPS/D	y,y,y	8	10	4	P01 P1	ivec/fma
VHSUBPS/D	y,y,m	10		4	P01 P1	ivec/fma

	1
	fma
	fma
	fma
	fp
P01	fp
P01	fp
P01	fp
P01 P3	fp
P01	fp
	fp
P0	fp
	fp
	fma
	fma
P01 P3	fma
P01 P3	fma
P01 P23	fma
P01 P23	fma
P01	AMD FMA4
P01	AMD FMA4
P01	AMD FMA4
	AMD FMA4
P01	fp
P01	AMD XOP
P01	AMD XOP
P23	ivec
P23	ivec
	32 bit mode
	64 bit mode
	P01 P01 P01 P01 P01 P01 P01 P01 P0 P0 P0 P0 P01 P23 P01 P23 P01

VZEROALL		17		6	P2 P3	32 bit mode	
VZEROALL		32		10	P2 P3	64 bit mode	
LDMXCSR	m32	1	10	4	P0 P3		
STMXCSR	m32	2	19	19	P0 P3		
FXSAVE	m4096	67	136	136	P0 P1 P2 P3		
FXRSTOR	m4096	116	176	176	P0 P1 P2 P3		
XSAVE	m	122	196	196	P0 P1 P2 P3		
XRSTOR	m	177	250	250	P0 P1 P2 P3		

AMD Piledriver

List of instruction timings and macro-operation breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB, JNE,

etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, x = 128 bit xmm register, y = 256 bit ymm register, m = 256 any memory operand including indirect operands, m64 means 64-bit memory operand, etc.

Ops: Number of macro-operations issued from instruction decoder to schedulers. In-

structions with more than 2 macro-operations use microcode.

Latency: This is the delay that the instruction generates in a dependency chain. The num-

bers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latency listed does not include the memory operand where the listing

for register and memory operand are joined (r/m).

Reciprocal through-

put:

This is also called issue latency. This value indicates the average number of clock cycles from the execution of an instruction begins to a subsequent independent instruction of the same kind can begin to execute. A value of 1/3 indicates that the execution units can handle 3 instructions per clock cycle in one thread. However,

the throughput may be limited by other bottlenecks in the pipeline.

Execution pipe: Indicates which execution pipe or unit is used for the macro-operations:

Integer pipes:

EX0: integer ALU, division

EX1: integer ALU, multiplication, jump EX01: can use either EX0 or EX1 AG01: address generation unit 0 or 1 Floating point and vector pipes:

P0: floating point add, mul, div, convert, shuffle, shift

P1: floating point add, mul, div, shuffle, shift

P2: move, integer add, boolean P3: move, integer add, boolean, store

P01: can use either P0 or P1 P23: can use either P2 or P3

Two macro-operations can execute simultaneously if they go to different

execution pipes

Domain: Tells which execution unit domain is used:

ivec: integer vector execution unit.

fp: floating point execution unit.

fma: floating point multiply/add subunit.

inherit: the output operand inherits the domain of the input operand.

ivec/fma means the input goes to the ivec domain and the output comes from the

fma domain.

There is an additional latency of 1 clock cycle if the output of an ivec instruction goes to the input of a fp or fma instruction, and when the output of a fp or fma instruction goes to the input of an ivec or store instruction. There is no latency between the fp and fma units. All other latencies after memory load and before mem-

ory store instructions are included in the latency counts.

An fma instruction has a latency of 5 if the output goes to another fma instruction, 6 if the output goes to an fp instruction, and 6+1 if the output goes to an ivec or

store instruction.

Integer instructions								
Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Notes		
Move instructions								
MOV	r8,r8	1	1	0.5	EX01			
MOV	r16,r16	1	1	0.5	EX01			
MOV	r32,r32	1	1	0.3	EX01 or AG01			
MOV	r64,r64	1	1	0.3	EX01 or AG01			
MOV	r,i	1	1	0.5	EX01			
MOV	r,m	1	4	0.5	AG01	all addr. modes		
MOV	m,r	1	4	1	EX01 AG01	all addr. modes		
MOV	m,i	1		1				
MOVNTI	m,r	1	4	2				
MOVZX, MOVSX	r16,r8	1	1	_ 1	EX01			
MOVZX, MOVSX	r32,r	1	1	0.5	EX01			
MOVZX, MOVSX	r64,r	1	1	0.5	EX01			
MOVSX	r,m	1	5	0.5	EX01			
MOVZX	r,m	1	4	0.5	EX01			
MOVSXD	r64,r32	1	1	0.5	EX01			
MOVSXD	r64,m32	1	5	0.5	EX01			
CMOVcc	r,r	1	1	0.5	EX01			
CMOVcc	r,m	1	•	0.5	EX01			
XCHG	r8,r8	2	1	1	EX01			
XCHG	r16,r16	2	1	1	EX01			
XCHG	r32,r32	2	1	0.5	EX01			
XCHG	r64,r64	2	1	0.5	EX01			
ACITO	104,104			0.5	EXUI	Timing depends on		
XCHG	r,m	2	~40	~40	EX01	hw		
XLAT	,,	2	6	2				
PUSH	r	1		_ 1				
PUSH	i	1		1				
PUSH	m	2		1				
PUSHF(D/Q)		8		4				
PUSHA(D)		9		9				
POP	r	1		1				
POP	m	2		1				
POPF(D/Q)		34		18				
POPA(D)		14		8				
LEA	r16,[m]	2	2-3		EX01	any addr. size		
LEA	r32,[m]	2	2-3		EX01	16 bit addr. size		
	.02,[]	_			2,101	scale factor > 1		
LEA	r32/64,[m]	1	2	0.5	EX01	or 3 operands		
LEA	r32/64,[m]	1	1	0.5	EX01	all other cases		
LAHF		4	3	2				
SAHF		2	2	1				
SALC		1	1	1				
BSWAP	r	1	1	0.5	EX01			
PREFETCHNTA	m	1		0.5				
PREFETCHT0/1/2	m	1		0.5				
PREFETCH/W	m	1		0.5		PREFETCHW		
SFENCE		7		81				

LFENCE		1		0,25	
MFENCE		7		81	
Arithmetic instructions	S				
ADD, SUB	r,r	1	1	0.5	EX01
ADD, SUB	r,i	1	1	0.5	EX01
ADD, SUB	r,m	1		0.5	EX01
ADD, SUB	m,r	1	7-8	1	EX01
ADD, SUB	m,i	1	7-8	1	EX01
ADC, SBB	r,r	1	1		EX01
ADC, SBB	r,i	1	1		EX01
ADC, SBB	r,m	1	1	1	EX01
ADC, SBB	m,r	1	9	1	EX01
ADC, SBB	m,i	1	9	1	EX01
CMP	r,r	1	1	0.5	EX01
CMP	r,i	1	1	0.5	EX01
CMP	r,m	1		0.5	EX01
CMP	m,i	1		0.5	EX01
INC, DEC, NEG	r	1	1	0.5	EX01
INC, DEC, NEG	m	1	7-8	1	EX01
AAA, AAS		10	6		
DAA		16	9		
DAS		20	10		
AAD		4	6		
AAM		10	15	15	
MUL, IMUL	r8/m8	1	4	2	EX1
MUL, IMUL	r16/m16	2	4	2	EX1
MUL, IMUL	r32/m32	1	4	2	EX1
MUL, IMUL	r64/m64	1	6	4	EX1
IMUL	r16,r16/m16	1	4	2	EX1
IMUL	r32,r32/m32	1	4	2	EX1
IMUL	r64,r64/m64	1	6	4	EX1
IMUL	r16,(r16),i	2	5	2	EX1
IMUL	r32,(r32),i	1	4	2	EX1
IMUL	r64,(r64),i	1	6	4	EX1
IMUL	r16,m16,i	2		2	EX1
IMUL	r32,m32,i	2		2	EX1
IMUL	r64,m64,i	2		4	EX1
DIV	r8/m8	9	17-22	13-22	EX0
DIV	r16/m16	7	13-26	13-22	EX0
DIV	r32/m32	2	12-40	12-40	EX0
DIV	r64/m64	2	13-71	13-71	EX0
IDIV	r8/m8	9	17-21	13-71	EX0
IDIV	r16/m16	7	13-26	13-16	EX0
IDIV	r32/m32	2	13-20	13-23	EX0
IDIV	r64/m64	2	13-40	13-40	EX0
CBW, CWDE, CDQE	10-7/110-4	1	13-71	10-71	EX01
CDQ, CQO		1	1	0.5	EX01
CWD		2	1	1	EX01
CVVD			'	1	LAU I
Logic instructions					
AND, OR, XOR	r,r	1	1	0.5	EX01
AND, OR, XOR	r,i	1	1	0.5	EX01
MIND, OIX, AOIX	1,1	ı •	· '	0.5	LAUI

AND, OR, XOR	r,m	1		0.5	EX01	
AND, OR, XOR	m,r	1	7-8	1	EX01	
AND, OR, XOR	m,i	1	7-8	1	EX01	
TEST	r,r	1	1	0.5	EX01	
TEST	r,i	1	1	0.5	EX01	
TEST	m,r	1		0.5	EX01	
TEST	m,i	1		0.5	EX01	
NOT	r	1	1	0.5	EX01	
NOT	m	1	7-8	1	EX01	
						DMIA
ANDN	r,r,r	1	1	0.5	EX01	BMI1
SHL, SHR, SAR	r,i/CL	1	1	0.5	EX01	
ROL, ROR	r,i/CL	1	1	0.5	EX01	
RCL	r,1	1	1		EX01	
RCL	r,i	16	7		EX01	
RCL	r,cl	17	7		EX01	
RCR		1	1		EX01	
I .	r,1					
RCR	r,i	15	7		EX01	
RCR	r,cl	16	6		EX01	
SHLD, SHRD	r,r,i	6	3	3	EX01	
SHLD, SHRD	r,r,cl	7	3	3	EX01	
SHLD, SHRD	m,r,i/CL	8		3,5	EX01	
BT	r,r/i	1	1	0.5	EX01	
BT				0.5		
I .	m,i	1			EX01	
BT	m,r	7		3,5	EX01	
BTC, BTR, BTS	r,r/i	2	2	1	EX01	
BTC, BTR, BTS	m,i	4	20		EX01	
BTC, BTR, BTS	m,r	10	21		EX01	
BSF	r,r	6	3	3	EX01	
BSF	r,m	8	4	4	EX01	
BSR		7	4	4	EX01	
	r,r		4			
BSR	r,m	9		5	EX01	
SETcc	r	1	1	0.5	EX01	
SETcc	m	1		1	EX01	
CLC, STC		1		0.5	EX01	
CMC		1	1		EX01	
CLD		2		3	2,70	
STD		2		4		
I .	-40/00 -40/00					00540
POPCNT	r16/32,r16/32	1	4	2		SSE4.2
POPCNT	r64,r64	1	4	4		SSE4.2
LZCNT	r,r	1	2	2	EX0	LZCNT
TZCNT	r,r	2	2	2		BMI1
BEXTR	r,r,r	2	2	0.67		BMI1
BEXTR	r,r,i	2	2	0.67		AMD TBM
BLSI		2	2	1		BMI1
I .	r,r					
BLSMSK	r,r	2	2	1		BMI1
BLSR	r,r	2	2	1		BMI1
BLCFILL	r,r	2	2	1		AMD TBM
BLCI	r,r	2	2	1		AMD TBM
BLCIC	r,r	2	2	1		AMD TBM
BLCMSK	r,r	2	2	1		AMD TBM
BLCS		2	2	1		AMD TBM
I .	r,r					
BLSFILL	r,r	2	2	1		AMD TBM
BLSI	r,r	2	2	1		AMD TBM

BLSIC	r,r	2	2	1		AMD TBM
T1MSKC	r,r	2	2	1		AMD TBM
TZMSK	r,r	2	2	1 1		AMD TBM
12mort	.,.	_	_			7
Control transfer instru	ctions					
JMP	short/near	1 1		2	EX1	
JMP	r	1		2	EX1	
JMP	m	1		2	EX1	
Jcc	short/near	1 1		1-2	EX1	2 if jumping
fused CMP+Jcc	short/near	1		1-2	EX1	2 if jumping
J(E/R)CXZ	short	1 1		1-2	EX1	2 if jumping
LOOP	short	1		1-2	EX1	2 if jumping
LOOPE LOOPNE	short	1 1		1-2	EX1	2 if jumping
CALL	near	2		2	EX1	2 ii juilipilig
CALL		2		2	EX1	
CALL	r	3		2	EX1	
RET	m			2	EX1	
		1 1				
RET	i	4		2	EX1	6
BOUND	m	11		5		for no jump
INTO		4		2		for no jump
Ctuing in atmostic no						
String instructions						
LODS	0/40	3		3		
REP LODS	m8/m16	6n		3n		
REP LODS	m32/m64	6n		2.5n		
STOS		3		3		
REP STOS		1n		1n		small n
REP STOS		3 per 16B		3 per 16B		best case
MOVS		5		3		
REP MOVS		1-3n		1n		small n
REP MOVS		4.5 pr 16B		3 per 16B		best case
SCAS		3		3		
REP SCAS		7n		3-4n		
CMPS		6		3		
REP CMPS		9n		4n		
Synchronization						
LOCK ADD	m,r	1	~40			
XADD	m,r	4	20			
LOCK XADD	m,r	4	~39			
CMPXCHG	m,r8/16	5	23			
LOCK CMPXCHG	m,r8/16	5	~40			
CMPXCHG	m,r32/64	6	20			
LOCK CMPXCHG	m,r32/64	6	~40			
CMPXCHG8B	m64	18	25			
LOCK CMPXCHG8B	m64	18	~42			
CMPXCHG16B	m128	22	66			
LOCK CMPXCHG16B	m128	22	~80			
Other						
NOP (90)		1		0.25	none	
Long NOP (0F 1F)		1		0.25	none	
PAUSE		40		40		

ENTER	a,0	13		21		
ENTER	a,b	20+3b		16+4b		
LEAVE		2		4		
CPUID		38-64		105-271		
XGETBV		4		30		
RDTSC		36		42		
RDPMC		21		310		
CRC32	r32,r8	3	3	2		
CRC32	r32,r16	5	5	5		
CRC32	r32,r32	5	6	6		

Floating point x87 instructions

Floating point x87						T
Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Domain, notes
Move instructions						
FLD	r	1	2	0.5	P01	fp
FLD	m32/64	1	7	1		fp
FLD	m80	8	20	4		fp
FBLD	m80	60	64	35	P0 P1 P2 P3	fp
FST(P)	r	1	2	0.5	P01	fp
FST(P)	m32/64	2	7	1		fp
FSTP	m80	13	22	20		fp
FBSTP	m80	239	220		P0 P1 F3	fp
FXCH	r	1	0	0.5	P01	inherit
FILD	m	1	11	1	F3	fp
FIST(T)(P)	m	2	7	1	P0 F3	fp
FLDZ, FLD1		1		0.5	P01	fp
FCMOVcc	st0,r	8	3	3	P0 P1 F3	fp
FFREE	r	1		0.25	none	'
FINCSTP, FDECSTP		1	0	0.25	none	inherit
FNSTSW	AX	3		19	P0 P2 P3	
FNSTSW	m16	2		17	P0 P2 P3	
FLDCW	m16	1		3		
FNSTCW	m16	2		2		
Arithmetic instructions	 S					
FADD(P),FSUB(R)(P)	r/m	1	5-6	1	P01	fma
FIADD,FISUB(R)	m	2		2	P01	fma
FMUL(P)	r/m	1	5-6	1	P01	fma
FIMUL	m	2		2	P01	fma
FDIV(R)(P)	r	1	9-40	4-16	P01	fp
FDIV(R)	m	1			P01	fp
FIDIV(R)	m	2			P01	fp
FABS, FCHS		1	2	0.5	P01	fp
FCOM(P), FUCOM(P)	r/m	1		0.5	P01	fp
FCOMPP, FUCOMPP		1		0.5	P01	fp
FCOMI(P)	r	2	2	1	P0 P1 F3	fp
FICOM(P)	m	2		1	P01	fp
FTST		1		0.5	P01	fp
FXAM		1	~20	0.5	P01	fp
FRNDINT		1	4	1	P0	fp

FPREM		1	17-60		P0	fp
FPREM1		1	17-60		P0	fp
						•
Math						
FSQRT		1	14-50	5-20	P01	
FLDPI, etc.		1		0.5	P01	
FSIN		10-162	60-210	60-146	P0 P1 P3	
FCOS		160-170	~154	~154	P0 P1 P3	
FSINCOS		12-166	86-141	86-141	P0 P1 P3	
FPTAN		11-190	166-231	86-204	P0 P1 P3	
FPATAN		10-355	60-352	60-352	P0 P1 P3	
FSCALE		8	44	5	P0 P1 P3	
FXTRACT		12	7	5	P0 P1 P3	
F2XM1		10	60-73		P0 P1 P3	
FYL2X		10-176			P0 P1 P3	
FYL2XP1		10-176			P0 P1 P3	
Other						
FNOP		1		0.25	none	
(F)WAIT		1		0.25	none	
FNCLEX		18		54	P0	
FNINIT		31		134	P0	
FNSAVE	m864	103	300	300	P0 P1 P2 P3	
FRSTOR	m864	76	236	236	P0 P3	

Integer vector instructions

integer vector instructions									
Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Notes			
Move instructions									
MOVD	r32/64, mm/x	1	8	1		P3			
MOVD	mm/x, r32/64	2	10	1					
MOVD	mm/x,m32	1	6	0.5					
MOVD	m32,mm/x	1	5	1		P3			
MOVQ	mm/x,mm/x	1	2	0.5	P23				
MOVQ	mm/x,m64	1	6	0.5					
MOVQ	m64,mm/x	1	5	1	P3				
MOVDQA	xmm,xmm	1	0	0.25	none	inherit domain			
MOVDQA	xmm,m	1	6	0.5					
MOVDQA	m,xmm	1	5	1	P3				
VMOVDQA	ymm,ymm	2	2	0.5	P23				
VMOVDQA	ymm,m256	2	6	1					
VMOVDQA	m256,ymm	4	11	17	P3				
MOVDQU	xmm,xmm	1	0	0.25	none	inherit domain			
MOVDQU	xmm,m	1	6	0.5					
MOVDQU	m,xmm	1	5	1	P3				
LDDQU	xmm,m	1	6	0.5					
VMOVDQU	ymm,m256	2	6	1					
VMOVDQU	m256,ymm	8	14	20	P2 P3				
MOVDQ2Q	mm,xmm	1	2	0.5	P23				
MOVQ2DQ	xmm,mm	1	2	0.5	P23				
MOVNTQ	m,mm	1	5	2	P3				

MOVNTDQ	m,xmm	1	5	2	P3	
MOVNTDQA	xmm,m	1	6	0.5		
PACKSSWB/DW	(x)mm,r/m	1	2	1	P1	
PACKUSWB	(x)mm,r/m	1	2	1	P1	
PUNPCKH/LBW/WD/D	, ,					
Q	(x)mm,r/m	1	2	1	P1	
PUNPCKHQDQ	xmm,r/m	1	2	1	P1	
PUNPCKLQDQ	xmm,r/m	1	2	1	P1	
PSHUFB	(x)mm,r/m	1	3	1	P1	
PSHUFD	xmm,xmm,i	1	2	1	P1	
PSHUFW	mm,mm,i	1	2	1	P1	
PSHUFL/HW	xmm,xmm,i	1	2	1	P1	
PALIGNR	(x)mm,r/m,i	1	2	1	P1	
PBLENDW	xmm,r/m	1	2	0.5	P23	SSE4.1
MASKMOVQ	mm,mm	31	36	59	P3	0021.1
MASKMOVDQU	xmm,xmm	64	59	92	P1 P3	
PMOVMSKB	r32,mm/x	2	10	1	P1 P3	
PEXTRB/W/D/Q	r,x/mm,i	2	10	1	P1 P3	SSE4.1
PINSRB/W/D/Q	x/mm,r,i	2	12	2	P1	33E4.1
EXTRQ		1	3	1	P1	AMD SSE4A
EXTRQ	x,i,i	1	1	1	P1	AMD SSE4A
	X,X					
INSERTQ	x,x,i,i	1	1	1	P1	AMD SSE4A
INSERTQ	x,x	1	1	1	P1	AMD SSE4A
PMOVSXBW/BD/BQ/W		_	_	4	D4	00544
D/WQ/DQ	x,x	1	2	1	P1	SSE4.1
PMOVZXBW/BD/BQ/W			_	4	D4	00544
D/WQ/DQ	X,X	1	2	1	P1	SSE4.1
VPCMOV	x,x,x,x/m	1	2	1	P1	AMD XOP
VPCMOV	y,y,y,y/m	2	2	2	P1	AMD XOP
VPPERM	x,x,x,x/m	1	2	1	P1	AMD XOP
A -: 141						
Arithmetic instructions	5					
PADDB/W/D/Q/SB/SW/ USB/USW	()		_	0.5	Doo	
	(x)mm,r/m	1	2	0.5	P23	
PSUBB/W/D/Q/SB/SW/ USB/USW			_	0.5	Doo	
	(x)mm,r/m	1	2	0.5	P23	00050
PHADD/SUB(S)W/D	X,X	3	5	2	P1 P23	SSSE3
PHADD/SUB(S)W/D	x,m	4	5	2	P1 P23	SSSE3
PCMPEQ/GT B/W/D	(x)mm,r/m	1	2	0.5	P23	00544
PCMPEQQ	(x)mm,r/m	1	2	0.5	P23	SSE4.1
PCMPGTQ	(x)mm,r/m	1	2	0.5	P23	SSE4.2
PMULLW PMULHW						
PMULHUW PMULUDQ		4			D 0	
DAMILL D	(x)mm,r/m	1	4	1	P0	00544
PMULLD	x,r/m	1	5	2	P0	SSE4.1
PMULDQ	x,r/m	1	4	1	P0	SSE4.1
PMULHRSW	(x)mm,r/m	1	4	1	P0	SSSE3
PMADDWD	(x)mm,r/m	1	4	1	P0	
PMADDUBSW	(x)mm,r/m	1	4	1	P0	
PAVGB/W	(x)mm,r/m	1	2	0.5	P23	
PMIN/MAX SB/SW/ SD				_		
UB/UW/UD	(x)mm,r/m	1	2	0.5	P23	
PHMINPOSUW	x,r/m	2	4	1	P1 P23	SSE4.1

PABSB/W/D	(x)mm,r/m	1	2	0.5	P23	SSSE3
PSIGNB/W/D	(x)mm,r/m	1	2	0.5	P23	SSSE3
PSADBW	(x)mm,r/m	2	4	1	P23	
MPSADBW	x,x,i	8	8	4	P1 P23	SSE4.1
	,,-			-		AMD XOP
VPCOMB/W/D/Q	x,x,x/m,i	1	2	0.5	P23	latency 0 if i=6,7
VI 99111271127Q	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_	0.0	. 20	AMD XOP
VPCOMUB/W/D/Q	x,x,x/m,i	1	2	0.5	P23	latency 0 if i=6,7
VPHADDBW/BD/BQ/	71,71,72111,1		_		0	
WD/WQ/DQ	x,x/m	1	2	0.5	P23	AMD XOP
VPHADDUBW/BD/BQ/	74,74		_		0	7 2 7 . 3 .
WD/WQ/DQ	x,x/m	1	2	0.5	P23	AMD XOP
VPHSUBBW/WD/DQ	x,x/m	1	2	0.5	P23	AMD XOP
VPMACSWW/WD	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMACSDD	x,x,x/m,x	1	5	2	P0	AMD XOP
VPMACSDQH/L	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMACSSWW/WD	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMACSSDD	x,x,x/m,x	1	5	2	P0	AMD XOP
VPMACSSDQH/L	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMADCSWD	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMADCSSWD	x,x,x/m,x	1	4	1	P0	AMD XOP
VI WIN AD COOVED	χ,χ,χ,τι,χ	•				7 WID 7(O)
Logic						
PAND PANDN POR						
PXOR	(x)mm,r/m	1	2	0.5	P23	
PSLL/RL W/D/Q						
PSRAW/D	(x)mm,r/m	1	3	1	P1	
PSLL/RL W/D/Q						
PSRAW/D	(x)mm,i	1	2	1	P1	
PSLLDQ, PSRLDQ	x,i	1	2	1	P1	
PTEST	x,r/m	2		1	P1 P3	SSE4.1
VPROTB/W/D/Q	x,x,x/m	1	3	1	P1	AMD XOP
VPROTB/W/D/Q	x,x,i	1	2	1	P1	AMD XOP
VPSHAB/W/D/Q	x,x,x/m	1	3	1	P1	AMD XOP
VPSHLB/W/D/Q	x,x,x/m	1	3	1	P1	AMD XOP
String instructions						
PCMPESTRI	x,x,i	27	16	10	P1 P2 P3	SSE4.2
PCMPESTRM	x,x,i	27	10	10	P1 P2 P3	SSE4.2
PCMPISTRI	x,x,i	7	13	3	P1 P2 P3	SSE4.2
PCMPISTRM	x,x,i	7	7	4	P1 P2 P3	SSE4.2
Encryption						
PCLMULQDQ	x,x/m,i	5	12	7	P1	pclmul
VPCLMULQDQ	x,x,x,i	6	12	7	P1	pclmul
PCLMULQDQ	x,x,m,i	7	12	7	P1	pclmul
AESDEC	x,x	2	5	2	P01	aes
AESDECLAST	x,x	2	5	2	P01	aes
AESENC	x,x	2	5	2	P01	aes
AESENCLAST	x,x	2	5	2	P01	aes
AESIMC	x,x	1	5	1	P0	aes
AESKEYGENASSIST	x,x,i	1	5	1	P0	aes

Other				
EMMS	1	0.25		

Instruction	Floating point XMM and YMM instructions								
MOVAPS/ID x,x 1 0 0.25 none inherit domain MOVAPS/ID y,y 2 2 0.5 P23 inherit domain MOVAPS/ID x,m128 1 6 0.5 P23 ivec MOVAPS/ID y,m256 2 6 1 F3 F3 MOVAPS/ID m128,x 1 5 1 P3 P0 MOVAPS/ID m256,y 4 11 17 P3 P0 MOVVIPS/ID m256,y 8 15 20 P2 P3 P0 MOVVIPS/ID m256,y 8 15 20 P2 P3 P0 MOVSS/ID m256,y 8 15 20 P2 P3 P0 MOVSS/ID m32/64,x 1 6 0.5 P01 fp MOVHPS/ID m32/64,x 1 7 0.5 P01 M0 MOVHPS/ID m64,x 1 7 0.5 P01 <t< th=""><th>Instruction</th><th>Operands</th><th>Ops</th><th>Latency</th><th></th><th></th><th>Domain, notes</th></t<>	Instruction	Operands	Ops	Latency			Domain, notes		
MOVUPS/ID	Move instructions								
VMOVAPS/ID MOVAPS/ID VMOVUPS/ID y,y 2 2 0.5 P23 ivec MOVAPS/ID VMOVUPS/ID VMOVUPS/ID x,m128 1 6 0.5 MOVAPS/ID MOVAPS/ID VMOVUPS/ID y,m256 2 6 1 P3 MOVAPS/ID VMOVUPS/ID m256,y 4 11 17 P3 VMOVUPS/ID m256,y 8 15 20 P2 P3 MOVSS/ID x,x 1 2 0.5 P01 fp MOVSS/ID x,x 1 2 0.5 P01 fp MOVSS/ID x,x 1 2 0.5 P01 fp MOVSS/ID x,m64 1 8 1 P1 MOVHPS/ID m64,x 1 7 0.5 P01 MOVHPS/ID m64,x 2 7 1 P1P3 MOVHPS/ID m64,x 1 6 1 P3 MOVHPS/ID m64,x 2 7 1 P1P3 MOVHPS/ID m64,x									
MOVAPS/D MOVUPS/D VMOVAPS/D VMOVAPS/D VMOVAPS/D x,m128 1 6 0.5 MOVAPS/D VMOVAPS/D VMOVAPS/D y,m256 2 6 1 MOVAPS/D VMOVAPS/D m128,x m256,y m256,y m256,y m256,y m256,y m32/64,x m32		X,X					inherit domain		
MOVUPS/D	VMOVAPS/D	y,y	2	2	0.5	P23	ivec		
VMOVAPS/D VMOVUPS/D MOVUPS/D y,m256 2 6 1 MOVAPS/D MOVUPS/D m128,x 1 5 1 P3 VMOVAPS/D MOVSS/D m256,y 4 11 17 P3 VMOVUPS/D MOVSS/D m256,y 8 15 20 P2 P3 MOVSS/D MOVSS/D x,m32/64,x 1 6 0.5 P01 fp MOVFS/D MOVHPS/D x,m64 1 6 0.5 P01 M0VHP3 MOVLPS/D MOVHPS/D x,m64 1 7 0.5 P01 P01 MOVLPS/D MOVHPS/D MOVMSKPS/D MOVNTPS/D m64,x 2 7 1 P1 P3 P1 MOVMSKPS/D MOVNTPS/D m128,x 1 2 1 P1 ivec MOVNTPS/D MOVNTPS/D m128,x 1 5 2 P3 AMD SSE4A SHUFPS/D VPERMILPS/PD x,x/m,i 1 2 2 P1 ivec VPERMILPS/PD y,y,y/m,i 2 2 2 P1									
VMOVUPS/D y,m256 2 6 1 MOVAPS/D m128,x 1 5 1 P3 VMOVAPS/D m256,y 4 11 17 P3 VMOVUPS/D m256,y 8 15 20 P2 P3 MOVSS/D x,m32/64 1 6 0.5 P01 fp MOVSS/D x,m64 1 6 0.5 P01 fp MOVHPS/D x,m64 1 8 1 P1 P1 MOVHPS/D x,m64 1 7 0.5 P01 P01 MOVHPS/D m64,x 2 7 1 P1 P3 P1 MOVHPS/D m64,x 1 6 1 P3 P01 MOVHPS/D m64,x 1 6 1 P3 P1 P1 MOVNTPS/D m128,x 1 5 2 P3 P01 MOVNTPS/D m128,x 1 5 2		x,m128	1	6	0.5				
MOVAPS/D MOVUPS/D m128,x m256,y m256,y m256,y m256,y m256,y m256,y m256,y m256,y m256,y m256,y m256,y m256,y m256,y m256,y m256,y m256,y m256,x			_	_					
MOVUPS/D		y,m256	2	6	1				
VMOVAPS/ID m256,y 4 11 17 P3 VMOVUPS/ID m256,y 8 15 20 P2 P3 MOVSS/ID x,x 1 2 0.5 P01 fp MOVSS/ID m32/64,x 1 6 0.5 M0 M0V		400		_					
VMOVUPS/D m256,y 8 15 20 P2 P3 MOVSS/D x,x 1 2 0.5 P01 fp MOVSS/D x,m32/64 1 6 0.5 N N MOVHPS/D m64,x 1 5 1 N N MOVLPS/D m64,x 2 7 1 P1 P3 N MOVLPS/D m64,x 2 7 1 P1 P3 N MOVLPS/D m64,x 1 6 1 P3 N MOVLPS/D m64,x 1 6 1 P3 N MOVHS/D r32,x 2 10 1 P1 P3 N MOVMSKPS/D r32,x 2 10 1 P1 P3 N MOVNTPS/D m128,x 1 5 2 P3 AMD SSE4A SHUFPS/D x,x/m,i 1 2 1 P1 ivec VPERMILPS/PD y,y,									
MOVSS/D x,x 1 2 0.5 P01 fp MOVSS/D x,m32/64,x 1 6 0.5 P01 fp MOVSS/D m32/64,x 1 5 1 P01 P01 MOVHPS/D x,m64 1 7 0.5 P01 P01 MOVLPS/D m64,x 2 7 1 P1 P3 P01 MOVLPS/D m64,x 1 6 1 P3 P01 MOVHPS/D m64,x 1 6 1 P1 P1 MOVHSPS/D r32,x 2 10 1 P1 P3 P1 MOVMSKPS/D r32,x 2 10 1 P1 P3 P1 P3 VMOVMSKPS/D r32,x 1 5 2 P3 P3 VMOVNTPS/D m128,x 1 5 2 P3 P3 VMOVNTSS/SD m,x 1 2 1 P1 ivec									
MOVSS/D x,m32/64,x 1 6 0.5 MOVSS/D m32/64,x 1 5 1 MOVHPS/D x,m64 1 8 1 P1 MOVLPS/D x,m64 1 7 0.5 P01 MOVHPS/D m64,x 2 7 1 P1 P3 MOVLPS/D m64,x 1 6 1 P3 MOVLHPS MOVHLPS x,x 1 2 1 P1 P3 MOVMSKPS/D r32,x 2 10 1 P1 P3 VMOVMSKPS/D r32,y 2 1 P1 P3 VMOVNTPS/D m128,x 1 5 2 P3 VMOVNTSS/SD m,x 1 4 P3 AMD SSE4A SHUFPS/D y,x,/m,i 1 2 1 P1 ivec VPERMILPS/PD y,x,x/m,i 1 2 2 P1 ivec VPERMILPS/PD y,y,y,i 1 2 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
MOVSS/D m32/64,x 1 5 1 P1 MOVHPS/D x,m64 1 8 1 P1 MOVLPS/D x,m64 1 7 0.5 P01 MOVHPS/D m64,x 2 7 1 P1 P3 MOVLPS/D m64,x 1 6 1 P3 MOVLPS/D m64,x 1 6 1 P3 MOVMSKPS/D r32,x 2 10 1 P1 P3 VMOVMSKPS/D r32,y 2 1 P1 P3 VMOVNTPS/D m128,x 1 5 2 P3 VMOVNTPS/D m256,y 4 18 AMD SSE4A SHUFPS/D x,x/m,i 1 2 1 P1 ivec VSHUFPS/D x,x/mi 1 2 1 P1 ivec VPERMILPS/PD x,x/mi 1 3 1 P1 ivec VPERMILPS/PD y,y,y,i 2		· ·	<u>-</u>			P01	tp		
MOVHPS/D x,m64 1 8 1 P1 MOVLPS/D x,m64 1 7 0.5 P01 MOVLPS/D m64,x 2 7 1 P1 P3 MOVLPS/D m64,x 1 6 1 P3 MOVHPS/D m64,x 1 6 1 P3 MOVMSKPS/D r32,x 2 10 1 P1 P3 VMOVMSKPS/D r32,y 2 1 P1 P3 VMOVNTPS/D m128,x 1 5 2 P3 VMOVNTPS/D m256,y 4 18 MOVNTSS/SD M,x 1 4 P3 AMD SSE4A SHUFPS/D x,x/m,i 1 2 1 P1 ivec VSHUFPS/D x,x/m,i 1 2 2 P1 ivec VPERMILPS/PD x,x/m,i 1 3 1 P1 ivec VPERMILPS/PD y,y,ym,i 2 2 2		1	·						
MOVLPS/D x,m64 1 7 0.5 P01 MOVHPS/D m64,x 2 7 1 P1 P3 MOVLPS/D m64,x 1 6 1 P3 MOVHPS MOVHLPS x,x 1 2 1 P1 ivec MOVMSKPS/D r32,x 2 10 1 P1 P3 VMOVMSKPS/D r32,x 2 10 1 P1 P3 VMOVMSKPS/D r32,y 2 1 P1 P1 ivec P0 VMOVMSKPS/D r32,y 2 1 P1 P1 VP VP P1 VP VP VP VP VP NMOVNTSS/SD MAMD SSE4A NMOVNTSS/SD MAMD SSE4A NMOVNTSS/SD MAMD SSE4A NMOVNTSS/SD P1 VP VP VP VP VP VP </td <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>D.4</td> <td></td>		-	-			D.4			
MOVHPS/D m64,x 2 7 1 P1 P3 MOVLPS/D m64,x 1 6 1 P3 MOVLHPS MOVHLPS x,x 1 2 1 P1 ivec MOVMSKPS/D r32,x 2 10 1 P1 P3 VMOVMSKPS/D r32,y 2 1 P1 P3 VMOVMSKPS/D r32,y 2 1 P1 P3 VMOVMSKPS/D WMOVMSKPS/D r32,y 2 1 P1 P3 VMOVMSKPS/D WMOVMSKPS/D r32,y 2 1 P1 P3 VMOVMSKPS/D WMOVMSKPS/D WMOVMSKPS/D R32,y 2 P3 VMOVMSKPS/D WMOVMSKPS/D WMOVMSKPS/D R4 P3 AMD SSE4A P3 AMD SSE4A P3 AMD SSE4A P1 ivec VPERMILPS/D x,x/m,i 1 2 1 P1 ivec VPERMILPS/D x,x/m,i 1 3 1 P1 ivec VPERMILPS/PD x,x/m,i 1 2 1 P1 ivec P23									
MOVLPS/D m64,x 1 6 1 P3 ivec MOVLHPS MOVHLPS x,x 1 2 1 P1 ivec MOVMSKPS/D r32,x 2 10 1 P1 P3 VOMOVMSPS/D r32,y 2 1 P1 P3 VOMOVMSPS/D M0VMSPS/D M0SMSPS/D M0SMSPS/D M0VMSP		1							
MOVLHPS MOVHLPS x,x 1 2 1 P1 ivec MOVMSKPS/D r32,x 2 10 1 P1 P3 ivec MOVNTS/D m128,x 1 5 2 P3 P3 VMOVNTPS/D m256,y 4 18 P1 ivec MOVNTS/SD m,x 1 4 P3 AMD SSE4A SHUFPS/D x,x/m,i 1 2 1 P1 ivec VSHUFPS/D y,y,y/m,i 2 2 2 P1 ivec VPERMILPS/PD x,x/m,i 1 3 1 P1 ivec VPERMILPS/PD y,y,y,i 1 2 1 P1 ivec VPERMILPS/PD y,y,y,i 8 4 3 P23 ivec VPERMILPS/PD y,y,m,i 1 2 2 P1 ivec VPERMILPS/PD y,y,m,i 1 2 0.5 P23 ivec <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>		-							
MOVMSKPS/D VMOVMSKPS/D r32,x r32,y r33,y r34	I .								
VMOVMSKPS/D r32,y 2 1 P3 MOVNTPS/D m128,x 1 5 2 P3 VMOVNTPS/D m256,y 4 18 P3 AMD SSE4A MOVNTSS/SD m,x 1 4 P3 AMD SSE4A SHUFPS/D x,x/m,i 1 2 1 P1 ivec VSHUFPS/D y,y,y/m,i 2 2 2 P1 ivec VPERMILPS/PD x,x/m,i 1 3 1 P1 ivec VPERMILPS/PD y,y,y/m,i 2 3 2 P1 ivec VPERMILPS/PD y,y/m,i 1 2 1 P1 ivec VPERMILPS/PD y,y,y,ii 8 4 3 P23 ivec VPERM2F128 y,y,y,m,i 10 4 P23 ivec VPERM2F128 y,y,y/m,i 2 2 1 P23 ivec VBLENDPS/PD x,x/m,i 1 <		· ·					ivec		
MOVNTPS/D m128,x 1 5 2 P3 VMOVNTPS/D m256,y 4 18 AMD SSE4A MOVNTSS/SD m,x 1 4 P3 AMD SSE4A SHUFPS/D x,x/m,i 1 2 1 P1 ivec VSHUFPS/D y,y,y/m,i 2 2 2 P1 ivec VPERMILPS/PD x,x,x/m 1 3 1 P1 ivec VPERMILPS/PD y,y,y/m 2 3 2 P1 ivec VPERMILPS/PD y,y,y/m,i 1 2 1 P1 ivec VPERMILPS/PD y,y,y,ii 8 4 3 P23 ivec VPERMILPS/PD y,y,y,ii 8 4 3 P23 ivec VPERM2F128 y,y,y,m,i 10 4 P23 ivec VBLENDPS/PD x,x/m,i 1 2 0.5 P23 ivec VBLENDVPS/PD y,y,y/m,i <td></td> <td>,</td> <td></td> <td>10</td> <td></td> <td>P1 P3</td> <td></td>		,		10		P1 P3			
VMOVNTPS/D m256,y 4 18 MOVNTSS/SD m,x 1 4 P3 AMD SSE4A SHUFPS/D x,x/m,i 1 2 1 P1 ivec VSHUFPS/D y,y,y/m,i 2 2 2 P1 ivec VPERMILPS/PD x,x,x/m 1 3 1 P1 ivec VPERMILPS/PD y,y,y/m 2 3 2 P1 ivec VPERMILPS/PD x,x/m,i 1 2 1 P1 ivec VPERMILPS/PD y,y,ym,i 2 2 2 P1 ivec VPERMILPS/PD y,y,y,i 8 4 3 P23 ivec VPERMILPS/PD y,y,y,i 8 4 3 P23 ivec VPERM2F128 y,y,y,i 8 4 3 P23 ivec VBLENDPS/PD x,x/m,i 1 2 0.5 P23 ivec VBLENDVPS/PD x		-		_		Do			
MOVNTSS/SD m,x 1 4 P3 AMD SSE4A SHUFPS/D x,x/m,i 1 2 1 P1 ivec VSHUFPS/D y,y,y/m,i 2 2 2 P1 ivec VPERMILPS/PD x,x,x/m 1 3 1 P1 ivec VPERMILPS/PD y,y,y/m,i 2 3 2 P1 ivec VPERMILPS/PD x,x/m,i 1 2 1 P1 ivec VPERMILPS/PD y,y,ym,i 2 2 2 P1 ivec VPERM2F128 y,y,y,i 8 4 3 P23 ivec VPERM2F128 y,y,ym,i 10 4 P23 ivec BLENDPS/PD x,x/m,i 1 2 0.5 P23 ivec VBLENDPS/PD y,y,y/m,i 2 2 1 P1 ivec WOVDDUP x,x 1 2 1 P1 ivec		· ·		5		Р3			
SHUFPS/D x,x/m,i 1 2 1 P1 ivec VSHUFPS/D y,y,y/m,i 2 2 2 P1 ivec VPERMILPS/PD x,x,x/m 1 3 1 P1 ivec VPERMILPS/PD y,y,y/m 2 3 2 P1 ivec VPERMILPS/PD x,x/m,i 1 2 1 P1 ivec VPERMILPS/PD y,y/m,i 1 2 1 P1 ivec VPERMILPS/PD y,y,y,ii 1 2 2 P1 ivec VPERMILPS/PD y,y,y,ii 8 4 3 P23 ivec VPERM2F128 y,y,y,ii 8 4 3 P23 ivec VBLENDPS/PD x,x/m,i 1 2 0.5 P23 ivec VBLENDPS/PD y,y,y/m,i 2 2 1 P1 ivec VBLENDVPS/PD x,x 1 2 1 P1		-				Do			
VSHUFPS/D y,y,y/m,i 2 2 2 P1 ivec VPERMILPS/PD x,x,x/m 1 3 1 P1 ivec VPERMILPS/PD y,y,y/m 2 3 2 P1 ivec VPERMILPS/PD x,x/m,i 1 2 1 P1 ivec VPERMILPS/PD y,y/m,i 1 2 2 P1 ivec VPERMILPS/PD y,y,y/m,i 1 2 1 P1 ivec VPERMILPS/PD y,y,ym,i 1 2 2 P1 ivec VPERMILPS/PD y,y,ym,i 10 4 P23 ivec VBLENDPS/PD x,x/m,i 1 2 0.5 P23 ivec VBLENDPS/PD x,x/m,xmm0 1 2 1 P1 ivec VBLENDVPS/PD x,x 1 2 1 P1 ivec MOVDDUP x,m64 1 0.5 P1 ivec <t< td=""><td></td><td>-</td><td></td><td>2</td><td></td><td></td><td></td></t<>		-		2					
VPERMILPS/PD x,x,x/m 1 3 1 P1 ivec VPERMILPS/PD y,y,y/m 2 3 2 P1 ivec VPERMILPS/PD x,x/m,i 1 2 1 P1 ivec VPERMILPS/PD y,y,m,i 1 2 2 P1 ivec VPERM2F128 y,y,y,i 8 4 3 P23 ivec VPERM2F128 y,y,m,i 10 4 P23 ivec BLENDPS/PD x,x/m,i 1 2 0.5 P23 ivec VBLENDPS/PD y,y,y/m,i 2 2 1 P1 ivec VBLENDVPS/PD x,x/m,xmm0 1 2 1 P1 ivec VBLENDVPS/PD y,y,y/m,y 2 2 2 P1 ivec MOVDDUP x,m64 1 0.5 P1 ivec VMOVDUP y,m256 2 1 P1 ivec VBROADCAS									
VPERMILPS/PD y,y,y/m 2 3 2 P1 ivec VPERMILPS/PD x,x/m,i 1 2 1 P1 ivec VPERMILPS/PD y,y/m,i 2 2 2 P1 ivec VPERM2F128 y,y,y,i 8 4 3 P23 ivec VPERM2F128 y,y,m,i 10 4 P23 ivec BLENDPS/PD x,x/m,i 1 2 0.5 P23 ivec VBLENDVPS/PD y,y,y/m,i 2 2 1 P1 ivec VBLENDVPS/PD x,x/m,xmm0 1 2 1 P1 ivec VBLENDVPS/PD y,y,y/m,i 2 2 2 P1 ivec WOVDDUP x,x 1 2 1 P1 ivec VMOVDDUP y,y,y 2 2 2 P1 ivec VBROADCASTSS y,m32 2 6 0.5 P23									
VPERMILPS/PD x,x/m,i 1 2 1 P1 ivec VPERMILPS/PD y,y/m,i 2 2 2 P1 ivec VPERM2F128 y,y,y,i 8 4 3 P23 ivec VPERM2F128 y,y,m,i 10 4 P23 ivec BLENDPS/PD x,x/m,i 1 2 0.5 P23 ivec VBLENDVPS/PD y,y,y/m,i 2 2 1 P1 ivec VBLENDVPS/PD y,y,y/m,y 2 2 2 P1 ivec VBLENDVPS/PD y,y,y/m,y 2 2 2 P1 ivec MOVDDUP x,x 1 2 1 P1 ivec VMOVDDUP y,m256 2 1 0.5 P23 ivec VBROADCASTSS y,m32 2 6 0.5 P23 P23		1 1							
VPERMILPS/PD y,y/m,i 2 2 2 P1 ivec VPERM2F128 y,y,m,i 8 4 3 P23 ivec VPERM2F128 y,y,m,i 10 4 P23 ivec BLENDPS/PD x,x/m,i 1 2 0.5 P23 ivec VBLENDPS/PD y,y,y/m,i 2 2 1 P1 ivec BLENDVPS/PD x,x/m,xmm0 1 2 1 P1 ivec VBLENDVPS/PD y,y,y/m,y 2 2 2 P1 ivec MOVDDUP x,x 1 2 1 P1 ivec MOVDDUP x,m64 1 0.5 0.5 P1 ivec VMOVDDUP y,m256 2 1 P1 ivec VBROADCASTSS y,m32 2 6 0.5 P23									
VPERM2F128 y,y,y,i 8 4 3 P23 ivec VPERM2F128 y,y,m,i 10 4 P23 ivec BLENDPS/PD x,x/m,i 1 2 0.5 P23 ivec VBLENDVPS/PD y,y,y/m,i 2 2 1 P23 ivec VBLENDVPS/PD x,x/m,xmm0 1 2 1 P1 ivec VBLENDVPS/PD y,y,y/m,y 2 2 2 P1 ivec MOVDDUP x,x 1 2 1 P1 ivec MOVDDUP x,m64 1 0.5 P1 ivec VMOVDDUP y,m256 2 1 VBROADCASTSS y,m32 1 6 0.5 P23									
VPERM2F128 y,y,m,i 10 4 P23 ivec BLENDPS/PD x,x/m,i 1 2 0.5 P23 ivec VBLENDPS/PD y,y,y/m,i 2 2 1 P23 ivec BLENDVPS/PD x,x/m,xmm0 1 2 1 P1 ivec VBLENDVPS/PD y,y,y/m,y 2 2 2 P1 ivec MOVDDUP x,x 1 2 1 P1 ivec MOVDDUP x,m64 1 0.5 0.5 P1 ivec VMOVDDUP y,m256 2 1 vec 1 vec VBROADCASTSS y,m32 2 6 0.5 P23 P23									
BLENDPS/PD x,x/m,i 1 2 0.5 P23 ivec VBLENDPS/PD y,y,y/m,i 2 2 1 P23 ivec BLENDVPS/PD x,x/m,xmm0 1 2 1 P1 ivec VBLENDVPS/PD y,y,y/m,y 2 2 2 P1 ivec MOVDDUP x,x 1 2 1 P1 ivec MOVDDUP x,m64 1 0.5 0.5 P1 ivec VMOVDDUP y,m256 2 1 VBROADCASTSS x,m32 1 6 0.5 P23 VBROADCASTSS y,m32 2 6 0.5 P23				7					
VBLENDPS/PD y,y,y/m,i 2 2 1 P23 ivec BLENDVPS/PD x,x/m,xmm0 1 2 1 P1 ivec VBLENDVPS/PD y,y,y/m,y 2 2 2 P1 ivec MOVDDUP x,x 1 2 1 P1 ivec MOVDDUP x,m64 1 0.5 0.5 P1 ivec VMOVDDUP y,m256 2 1 VBROADCASTSS x,m32 1 6 0.5 P23 VBROADCASTSS y,m32 2 6 0.5 P23				2					
BLENDVPS/PD x,x/m,xmm0 1 2 1 P1 ivec VBLENDVPS/PD y,y,y/m,y 2 2 P1 ivec MOVDDUP x,x 1 2 1 P1 ivec MOVDDUP x,m64 1 0.5 P1 ivec VMOVDDUP y,y 2 2 P1 ivec VMOVDDUP y,m256 2 1 VBROADCASTSS x,m32 1 6 0.5 P23 VBROADCASTSS y,m32 2 6 0.5 P23									
VBLENDVPS/PD y,y,y/m,y 2 2 2 P1 ivec MOVDDUP x,x 1 2 1 P1 ivec MOVDDUP x,m64 1 0.5 0.5 P1 ivec VMOVDDUP y,y 2 2 2 P1 ivec VBROADCASTSS x,m32 1 6 0.5 0.5 VBROADCASTSS y,m32 2 6 0.5 P23									
MOVDDUP x,x 1 2 1 P1 ivec MOVDDUP x,m64 1 0.5 P1 ivec VMOVDDUP y,y 2 2 2 P1 ivec VMOVDDUP y,m256 2 1 1 0.5 0.5 VBROADCASTSS x,m32 1 6 0.5 P23									
MOVDDUP x,m64 1 0.5 VMOVDDUP y,y 2 2 2 P1 ivec VMOVDDUP y,m256 2 1 1 0.5 VBROADCASTSS x,m32 1 6 0.5 0.5 VBROADCASTSS y,m32 2 6 0.5 P23									
VMOVDDUP y,y 2 2 2 P1 ivec VMOVDDUP y,m256 2 1 </td <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>1400</td>				_			1400		
VMOVDDUP y,m256 2 1 VBROADCASTSS x,m32 1 6 0.5 VBROADCASTSS y,m32 2 6 0.5 P23		*		2		P1	ivec		
VBROADCASTSS x,m32 1 6 0.5 VBROADCASTSS y,m32 2 6 0.5 P23				_			1400		
VBROADCASTSS y,m32 2 6 0.5 P23				6	•				
						P23			
VBROADCASTSD	VBROADCASTSD	y,m64	2	6	0.5	P23			
VBROADCASTF128		_							

MOVSH/LDUP	x,x	1	2	1	P1	ivec
MOVSH/LDUP	x,m128	1		0.5		
VMOVSH/LDUP	y,y	2	2	2	P1	ivec
VMOVSH/LDUP	y,m256	2		1		
UNPCKH/LPS/D	x,x/m	1	2	1	P1	ivec
VUNPCKH/LPS/D	y,y,y/m	2	2	2	P1	ivec
EXTRACTPS	r32,x,i	2	_	1	P1 P3	1700
EXTRACTPS	m32,x,i	2	6	1	P1 P3	
VEXTRACTF128		1	2	0.5	P23	ivec
VEXTRACTF128	x,y,i m128,y,i	2	6	1	P23	IVEC
	_				P1	
INSERTPS	x,x,i	1	2 7	1		
INSERTPS	x,m32,i	1		2	P1	
VINSERTF128	y,y,x,i	2	2	1	P23	ivec
VINSERTF128	y,y,m128,i	2	13	1	P23	
VMASKMOVPS/D	x,x,m128	1	7	0.5	P01	
VMASKMOVPS/D	y,y,m256	2	13	1	P01	
VMASKMOVPS/D	m128,x,x	18	~100	~90	P0 P1 P2 P3	
VMASKMOVPS/D	m256,y,y	34	~190	~180	P0 P1 P2 P3	
Conversion						
CVTPD2PS	x,x	2	8	1	P01	ivec/fp
VCVTPD2PS	x,y	4	7	2	P01	ivec/fp
CVTPS2PD	x,x	2	8	1	P01	ivec/fp
VCVTPS2PD	y,x	4	8	2	P01	ivec/fp
CVTSD2SS	x,x	1	4	1	P0	fp
CVTSS2SD	X,X	1	4	1	P0	fp
CVTDQ2PS	X,X X,X	1	4	1	P0	fp
VCVTDQ2PS	у,у у,у	2	4	2	P0	fp
CVT(T) PS2DQ	X,X	1	4	1	P0	fp
VCVT(T) PS2DQ	y,y	2	4	2	P0	fp
CVTDQ2PD	x,x	2	8	1	P01	ivec/fp
VCVTDQ2PD		4	8	2	P01	ivec/fp
CVT(T)PD2DQ	y,x	2	8	1	P01	fp/ivec
` '	X,X	4	7	2		•
VCVT(T)PD2DQ	x,y				P01	fp/ivec
CVTPI2PS	x,mm	2	8	1	P0 P23	ivec/fp
CVT(T)PS2PI	mm,x	1	4		P0	fp
CVT/T) PD2PI	x,mm	2	7 7	1	P0 P1	ivec/fp
CVT(T) PD2PI	mm,x	2		1	P0 P1	fp/ivec
CVTSI2SS	x,r32	2	13	1	P0	fp
CVT(T)SS2SI	r32,x	2	12	1	P0 P3	fp
CVTSI2SD	x,r32/64	2	13	1	P0	fp
CVT(T)SD2SI	r32/64,x	2	12	1	P0 P3	fp
VCVTPS2PH	x/m,x,i	2	8	2	P0 P1	F16C
VCVTPS2PH	x/m,y,i	4	8	2	P0 P1	F16C
VCVTPH2PS	x,x/m	2	8	2	P0 P1	F16C
VCVTPH2PS	y,x/m	4	8	2	P0 P1	F16C
Arithmetic						
ADDSS/D SUBSS/D	x,x/m	1	5-6	0.5	P01	fma
ADDPS/D SUBPS/D	x,x/m	1	5-6	0.5	P01	fma
VADDPS/D VSUBPS/D	y,y,y/m	2	5-6	1	P01	fma
ADDSUBPS/D	x,x/m	1	5-6	0.5	P01	fma
מיס ומססמם	^,^/111	'	J-0	0.5	1 01	iiila

			i ilculivei			
VADDSUBPS/D	y,y,y/m	2	5-6	1	P01	fma
HADDPS/D HSUBPS/D	x,x	3	10	2	P01 P1	ivec/fma
HADDPS/D HSUBPS/D VHADDPS/D	x,m	4		2	P01 P1	ivec/fma
VHSUBPS/D	y,y,y/m	8	10	4	P01 P1	ivec/fma
MULSS MULSD	x,x/m	1	5-6	0.5	P01	fma
MULPS MULPD	x,x/m	1	5-6	0.5	P01	fma
VMULPS VMULPD	y,y,y/m	2	5-6	1	P01	fma
DIVSS DIVPS	x,x/m	1	9-24	5-10	P01	fp
VDIVPS	y,y,y/m	2	9-24	9-20	P01	fp
DIVSD DIVPD	x,x/m	1	9-27	5-10	P01	fp
VDIVPD	y,y,y/m	2	9-27	9-18	P01	fp
RCPSS/PS	x,x/m	1	5	1	P01	fp
VRCPPS	y,y/m	2	5	2	P01	fp
CMPSS/D						•
CMPPS/D	x,x/m	1	2	0.5	P01	fp
VCMPPS/D	y,y,y/m	2	2	1	P01	fp
COMISS/D UCOMISS/D	x,x/m	2		1	P01 P3	fp
MAXSS/SD/PS/PD						
MINSS/SD/PS/PD	x,x/m	1	2	0.5	P01	fp
VMAXPS/D VMINPS/D	y,y,y/m	2	2	1	P01	fp
ROUNDSS/SD/PS/PD	x,x/m,i	1	4	1	P0	fp
VROUNDSS/SD/PS/						
PD	y,y/m,i	2	4	2	P0	fp
DPPS	x,x,i	16	25	6	P01 P23	SSE4.1
DPPS	x,m,i	18		7	P01 P23	SSE4.1
VDPPS	y,y,y,i	25	27	13	P01 P3	SSE4.1
VDPPS	y,m,i	29		13	P01 P3	SSE4.1
DPPD	x,x,i	15	15	5	P01 P23	SSE4.1
DPPD	x,m,i	17		6	P01 P23	SSE4.1
VFMADD132SS/SD	x,x,x/m	1	5-6	1	P01	FMA3
VFMADD132PS/PD	x,x,x/m	1	5-6	1	P01	FMA3
VFMADD132PS/PD	y,y,y/m	2	5-6	1	P01	FMA3
All other FMA3 instruction	l.	bove				FMA3
VFMADDSS/SD	x,x,x,x/m	1	5-6	0.5	P01	AMD FMA4
VFMADDPS/PD	x,x,x,x/m	1	5-6	0.5	P01	AMD FMA4
VFMADDPS/PD	y,y,y,y/m	2	5-6	1	P01	AMD FMA4
All other FMA4 instruction	ons: same as a	bove				AMD FMA4
Math						
SQRTSS/PS	x,x/m	1	13-15	5-12	P01	fp
VSQRTPS	y,y/m	2	14-15	9-24	P01	fp
SQRTSD/PD	x,x/m	1	24-26	5-15	P01	fp
VSQRTPD	y,y/m	2	24-26	9-29	P01	fp
RSQRTSS/PS	x,x/m	1	5	1	P01	fp
VRSQRTPS	y,y/m	2	5	2	P01	fp
VFRCZSS/SD/PS/PD	x,x	2	10	2	P01	AMD XOP
VFRCZSS/SD/PS/PD	x,m	3	10	2	P01	AMD XOP

Logic						
AND/ANDN/OR/XORPS/ PD	x,x/m	1	2	0.5	P23	ivec
VAND/ANDN/OR/XOR PS/PD	y,y,y/m	2	2	1	P23	ivec
	3.3.3					
Other						
VZEROUPPER		9		4	P2 P3	32 bit mode
VZEROUPPER		16		5	P2 P3	64 bit mode
VZEROALL		17		6	P2 P3	32 bit mode
VZEROALL		32		10	P2 P3	64 bit mode
LDMXCSR	m32	7		34	P0 P3	
STMXCSR	m32	2		17	P0 P3	
FXSAVE	m4096	67	136	136	P0 P1 P2 P3	
FXRSTOR	m4096	116	176	176	P0 P1 P2 P3	
XSAVE	m	122	196	196	P0 P1 P2 P3	
XRSTOR	m	177	250	250	P0 P1 P2 P3	

AMD Steamroller

List of instruction timings and macro-operation breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB, JNE,

etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, x = 128 bit xmm register, y = 256 bit ymm register, m = any memory operand including indirect operands, m64 means 64-bit memory operand, etc.

Ops: Number of macro-operations issued from instruction decoder to schedulers. In-

structions with more than 2 macro-operations use microcode.

Latency: This is the delay that the instruction generates in a dependency chain. The num-

bers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. The latency listed does not include the memory operand where the listing for register and memory operand are joined

(r/m).

Reciprocal through-

put:

This is also called issue latency. This value indicates the average number of clock cycles from the execution of an instruction begins to a subsequent independent instruction of the same kind can begin to execute. A value of 1/3 indicates that the execution units can handle 3 instructions per clock cycle in one thread. However, the throughput may be limited by other bottlenecks in the pipeline.

Execution pipe: Indicates which execution pipe or unit is used for the macro-operations:

Integer pipes:

EX0: integer ALU, division

EX1: integer ALU, multiplication, jump EX01: can use either EX0 or EX1 AG01: address generation unit 0 or 1 Floating point and vector pipes:

P0: floating point add, mul, div. Integer add, mul, bool P1: floating point add, mul, div. Shuffle, shift, pack

P2: Integer add. Bool, store P01: can use either P0 or P1 P02: can use either P0 or P2

Two macro-operations can execute simultaneously if they go to different

execution pipes

Domain: Tells which execution unit domain is used:

ivec: integer vector execution unit. fp: floating point execution unit. fma: floating point multiply/add subunit.

inherit: the output operand inherits the domain of the input operand.

ivec/fma means the input goes to the ivec domain and the output comes from the

fma domain.

There is an additional latency of 1 clock cycle if the output of an ivec instruction goes to the input of a fp or fma instruction, and when the output of a fp or fma instruction goes to the input of an ivec or store instruction. There is no latency between the fp and fma units. All other latencies after memory load and before mem-

ory store instructions are included in the latency counts.

An fma instruction has a latency of 5 if the output goes to another fma instruction, 6 if the output goes to an fp instruction, and 6+1 if the output goes to an ivec or

store instruction.

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Notes
Move instructions					• •	
MOV	r8,r8	1	1	0.5	EX01	
MOV	r16,r16	1	1	0.5	EX01	
MOV	r32,r32	1	1	0.25	EX01 or AG01	
MOV	r64,r64	1	1	0.25	EX01 or AG01	
MOV	r,i	1	1	0.5	EX01	
MOV	r,m	1	3	0.5	AG01	all addr. modes
MOV	m,r	1	4	1	EX01 AG01	all addr. modes
MOV	m,i	1		1		
MOVNTI	m,r	1	4	1		
MOVZX, MOVSX	r,r	1	1	0.5	EX01	
MOVSX	r,m	1	5	0.5	EX01	
MOVZX	r,m	1	4	0.5	EX01	
MOVSXD	r64,r32	1	1	0.5	EX01	
MOVSXD	r64,m32	1	5	0.5	EX01	
CMOVcc	r,r	1	1	0.5	EX01	
CMOVcc	r,m	1		0.5	EX01	
XCHG	r8,r8	2	1	1	EX01	
XCHG	r16,r16	2	1	1	EX01	
XCHG	r32,r32	2	1	0.5	EX01	
XCHG	r64,r64	2	1	0.5	EX01	
7.0110		_	•	0.0		Timing depends on
XCHG	r,m	2	~38	~38	EX01	hw
XLAT	ŕ	2	6	2		
PUSH	r	1		1		
PUSH	i	1		1		
PUSH	m	2		1		
PUSHF(D/Q)		8		4		
PUSHA(D)		9		9		
POP	r	1		1		
POP	m	2		1		
POPF(D/Q)		34		19		
POPA(D)		14		8		
POP	sp	1	2			
LEA	r16,[m]	2	2-3		EX01	any addr. size
LEA	r32,[m]	1	2		EX01	16 bit addr. size
	- /[]					scale factor > 1
LEA	r32/64,[m]	1	2	0.5	EX01	or 3 operands
LEA	r32/64,[m]	1	1	0.5	EX01	all other cases
LAHF	<i>7</i> . 3	4	3	2		
SAHF		2	2	1		
SALC		1	1	1		
BSWAP	r	1	1	0.5	EX01	
PREFETCHNTA	m	1		0.5		
PREFETCHT0/1/2	m	1		0.5		
PREFETCH/W	m	1		0.5		PREFETCHW
SFENCE		7		~80		
LFENCE		1		0,25		
MFENCE		7		~80		
Arithmetic instructions	S					

		`	olcum onc	'	
ADD, SUB	r,r	1	1	0.5	EX01
ADD, SUB	r,i	1	1	0.5	EX01
ADD, SUB	r,m	1		0.5	EX01
ADD, SUB	m,r	1	7	1	EX01
		· ·	7	1	
ADD, SUB	m,i	1		l	EX01
ADC, SBB	r,r	1	1		EX01
ADC, SBB	r,i	1	1		EX01
ADC, SBB	r,m	1	1	1	EX01
ADC, SBB	m,r	1	9	1	EX01
ADC, SBB	m,i	1	9	1	EX01
CMP	r,r	1	1	0.5	EX01
CMP	r,i	1	1	0.5	EX01
CMP	r,m	1		0.5	EX01
CMP	m,i	1		0.5	EX01
INC, DEC, NEG	r	1	1	0.5	EX01
INC, DEC, NEG	m	1	7	1	EX01
AAA, AAS	111	10	6	.	LXUI
DAA		16	8		
DAS		20	10		
AAD		4	6	_	
AAM		10	15	15	
MUL, IMUL	r8/m8	1	4	2	EX1
MUL, IMUL	r16/m16	2	4	2	EX1
MUL, IMUL	r32/m32	1	4	2	EX1
MUL, IMUL	r64/m64	1	6	4	EX1
IMUL	r16,r16/m16	1	4	2	EX1
IMUL	r32,r32/m32	1	4	2	EX1
IMUL	r64,r64/m64	1	6	4	EX1
IMUL	r16,(r16),i	2	5	2	EX1
IMUL	r32,(r32),i	1	4	2	EX1
IMUL	r64,(r64),i	1	6	4	EX1
IMUL	r16,m16,i	2		2	EX1
IMUL	r32,m32,i	2		2	EX1
		2		4	
IMUL	r64,m64,i		47.00		EX1
DIV	r8/m8	9	17-22	13-17	EX0
DIV	r16/m16	7	15-25	15-25	EX0
DIV	r32/m32	2	13-39	13-39	EX0
DIV	r64/m64	2	13-70	13-70	EX0
IDIV	r8/m8	9	17-22	13-17	EX0
IDIV	r16/m16	7	14-25	14-24	EX0
IDIV	r32/m32	2	13-39	13-39	EX0
IDIV	r64/m64	2	13-70	13-70	EX0
CBW, CWDE, CDQE		1	1		EX01
CDQ, CQO		1	1	0.5	EX01
CWD		2	1	1	EX01
					_
Logic instructions					
AND, OR, XOR	r,r	1	1	0.5	EX01
AND, OR, XOR	r,i	1	1	0.5	EX01
AND, OR, XOR	r,m	1		0.5	EX01
AND, OR, XOR	m,r	1	7	1	EX01
AND, OR, XOR	m,i	1	7	1	EX01
TEST		1	1	0.5	EX01
ILSI	r,r	'	1	0.5	EAUI

TEST	r,i	1	1	0.5	EX01	
TEST	m,r	1	-	0.5	EX01	
I .						
TEST	m,i	1		0.5	EX01	
NOT	r	1	1	0.5	EX01	
NOT	m	1	7	1	EX01	
ANDN	r,r,r	1	1	0.5	EX01	BMI1
						DIVIII
SHL, SHR, SAR	r,i/CL	1	1	0.5	EX01	
ROL, ROR	r,i/CL	1	1	0.5	EX01	
RCL	r,1	1	1		EX01	
RCL	r,i	16	7		EX01	
RCL	r,cl	17	7		EX01	
I .						
RCR	r,1	1	1		EX01	
RCR	r,i	15	7		EX01	
RCR	r,cl	16	7		EX01	
SHLD, SHRD	r,r,i	6	3	3	EX01	
SHLD, SHRD		7-8	4	4	EX01	
	r,r,cl		4			
SHLD, SHRD	m,r,i/CL	8		4	EX01	
BT	r,r/i	1	1	0.5	EX01	
ВТ	m,i	1		0.5	EX01	
BT	m,r	7		3,5	EX01	
I .	i i		_			
BTC, BTR, BTS	r,r/i	2	2	1	EX01	
BTC, BTR, BTS	m,i	4		2	EX01	
BTC, BTR, BTS	m,r	10		5	EX01	
BSF	r,r	6	3	3	EX01	
BSF		8	4	4	EX01	
I .	r,m					
BSR	r,r	7	4	4	EX01	
BSR	r,m	9		5	EX01	
SETcc	r	1	1	0.5	EX01	
SETcc	m	1		1	EX01	
CLC, STC		1		0.5	EX01	
				0.5		
CMC		1	1		EX01	
CLD		2		3		
STD		2		4		
POPCNT	r16/32,r16/32	1	4	2		SSE4.2
POPCNT	r64,r64	1	4			SSE4.2
				4	E)/0	
LZCNT	r,r	1	2	2	EX0	LZCNT
TZCNT	r,r	2	2	2		BMI1
BEXTR	r,r,r	2	2	1		BMI1
BEXTR	r,r,i	2	2	1		AMD TBM
BLSI		2	2	1		BMI1
	r,r		2			
BLSMSK	r,r	2	2	1		BMI1
BLSR	r,r	2	2	1		BMI1
BLCFILL	r,r	2	2	1		AMD TBM
BLCI	r,r	2	2	1		AMD TBM
I .		2	2			
BLCIC	r,r			1		AMD TBM
BLCMSK	r,r	2	2	1		AMD TBM
BLCS	r,r	2	2	1		AMD TBM
BLSFILL	r,r	2	2	1		AMD TBM
BLSI	r,r	2	2	1		AMD TBM
		2	2			
BLSIC	r,r			1		AMD TBM
T1MSKC	r,r	2	2	1		AMD TBM
TZMSK	r,r	2	2	1		AMD TBM
The state of the s	1		ii.		ı	1

Control transfer instru	ctions					
JMP	short/near	1 1		2	EX1	
JMP	r	1		2	EX1	
JMP	m	1		2	EX1	0.161
Jcc	short/near	1		1-2	EX1	2 if jumping
fused CMP+Jcc	short/near	1		1-2	EX1	2 if jumping
J(E/R)CXZ	short	1		1-2	EX1	2 if jumping
LOOP	short	1		1-2	EX1	2 if jumping
LOOPE LOOPNE	short	1		1-2	EX1	2 if jumping
CALL	near	2		2	EX1	,
CALL	r	2		2	EX1	
CALL	m	3		2	EX1	
RET	111	1		2	EX1	
				2		
RET	i	4			EX1	
BOUND	m	11		5		for no jump
INTO		4		2		for no jump
String instructions						
LODS		3		3		
REP LODS	m8/m16					
		6n		3n		
REP LODS	m32/m64	6n		2.5n		
STOS		3		3		
REP STOS		1n		~1n		small n
REP STOS		3 per 16B		2 per 16B		best case
MOVS		5		3		
REP MOVS		~1n		~1n		small n
REP MOVS		4-5 pr 16B		~2 per 16B		best case
SCAS		3		3		3331, 34,35
REP SCAS		7n		3-4n		
CMPS		6		3		
REP CMPS		9n		4n		
Synchronization						
LOCK ADD	m,r	1	~39			
XADD		4	9-12			
LOCK XADD	m,r	4	~39			
	m,r					
CMPXCHG	m,r8	5	15			
CMPXCHG	m,r16	6	15			
CMPXCHG	m,r32/64	6	13			
LOCK CMPXCHG	m8,r8	5	~40			
LOCK CMPXCHG	m16,r16	6	~40			
LOCK CMPXCHG	m,r32/64	6	~40			
CMPXCHG8B	m64	18	~14			
LOCK CMPXCHG8B	m64	18	~42			
CMPXCHG16B	m128	24	~47			
LOCK CMPXCHG16B	m128	24	~80			
	•		- •			
Other						
NOP (90)		1		0.25	none	
Long NOP (0F 1F)		1		0.25	none	
PAUSE		8		4		
ENTER	a,0	13		21		
ENTER	a,b	11+5b		20-30		
	۵,5			_0 00		I

LEAVE		2		3		
CPUID		38-64		100-300		
XGETBV		4		30		
RDTSC		44		78		
RDTSCP		44		105	rdtscp	
RDPMC		22		360		
CRC32	r32,r8	3	3	2		
CRC32	r32,r16	5	5	5		
CRC32	r32,r32	7	6	6		

Floating point x87 instructions

Instruction	Operands	Ops	Latency	Reciprocal	Execution	Domain, notes
• • • •				throughput	pipes	
Move instructions		4		0.5	D04	¢
FLD	r	1	2	0.5	P01	fp
FLD	m32/64	1	7	1		fp
FLD	m80	8	11	4		fp
FBLD	m80	60	52	34	P0 P1 P2	fp
FST(P)	r	1	2	0.5	P01	fp
FST(P)	m32/64	2	7	1		fp
FSTP	m80	13	14	19		fp
FBSTP	m80	239	222	222	P0 P1 P2	fp
FXCH	r	1	0	0.5	P01	inherit
FILD	m	1	11	1	P01	fp
FIST(T)(P)	m	2	7	1	P0 P2	fp
FLDZ, FLD1		1		0.5	P01	fp
FCMOVcc	st0,r	8	3	3	P0 P1 P2	fp
FFREE	r	1		0.25	none	
FINCSTP, FDECSTP		1	0	0.25	none	inherit
FNSTSW	AX	3	11	19	P0 P2	
FNSTSW	m16	2		17	P0 P2	
FLDCW	m16	1		3		
FNSTCW	m16	2		2		
Arithmetic instructions	S					
FADD(P),FSUB(R)(P)	r/m	1	5	1	P01	fma
FIADD,FISUB(R)	m	2		2	P01	fma
FMUL(P)	r/m	1	5	1	P01	fma
FIMUL	m	2		2	P01	fma
FDIV(R)(P)	r	1	9-37	4-16	P01	fp
FDIV(R)	m	1			P01	fp
FIDIV(R)	m	2		4	P01	fp
FABS, FCHS		1	2	0.5	P01	fp
FCOM(P), FUCOM(P)	r/m	1		0.5	P01	fp
FCOMPP, FUCOMPP		1		0.5	P01	fp
FCOMI(P)	r	2	2	1	P01 P2	fp
FICOM(P)	m	2		1	P01	fp
FTST		1		0.5	P01	fp
FXAM		1	26	0.5	P01	fp
FRNDINT		1	4	1	P0	fp
FPREM FPREM1		1	17-60	12-53	P0	fp

Math					
FSQRT		1	10-50	5-20	P01
FLDPI, etc.		1		0.5	P01
FSIN		10-164	60-210	60-165	P0 P1 P2
FCOS		18-166	76-158		P0 P1 P2
FSINCOS		12-168		90-165	P0 P1 P2
FPTAN		11-192	90-245	90-210	P0 P1 P2
FPATAN		10-365	60-440	60-365	P0 P1 P2
FSCALE		10	49	5	P0 P1 P2
FXTRACT		12	8	5	P0 P1 P2
F2XM1		10-18	60-74		P0 P1 P2
FYL2X		9-183	60-280		P0 P1 P2
FYL2XP1		206	~390		P0 P1 P2
Other					
FNOP		1		0.25	none
(F)WAIT		1		0.25	none
FNCLEX		18		63	P0
FNINIT		31		131	P0
FNSAVE	m864	98	256	256	P0 P1 P2
FRSTOR	m864	73	166	166	P0 P2

Integer vector instructions

integer vector instructions							
Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Notes	
Move instructions							
MOVD	r32/64, mm/x	1	4	1	P2		
MOVD	mm/x, r32/64	2	5	1			
MOVD	mm/x,m32	1	2	0.5			
MOVD	m32,mm/x	1	3	1			
MOVQ	mm/x,mm/x	1	2	0.5	P02		
MOVQ	mm/x,m64	1	2	0.5			
MOVQ	m64,mm/x	1	3	1			
MOVDQA	xmm,xmm	1	0	0.25	none	inherit domain	
MOVDQA	xmm,m	1	2	0.5			
MOVDQA	m,xmm	1	3	1	P2		
VMOVDQA	ymm,ymm	2	2	0.5	P02		
VMOVDQA	ymm,m256	2	3	1			
VMOVDQA	m256,ymm	2	4	1	P2		
MOVDQU	xmm,xmm	1	0	0.25	none	inherit domain	
MOVDQU	xmm,m	1	2	0.5			
MOVDQU	m,xmm	1	3	1	P2		
LDDQU	xmm,m	1	2	0.5			
VMOVDQU	ymm,m256	2	3	1			
VMOVDQU	m256,ymm	2	4	1			
MOVDQ2Q	mm,xmm	1	1	0.5	P02		
MOVQ2DQ	xmm,mm	1	1	0.5	P02		
MOVNTQ	m,mm	1	3	1	P2		
MOVNTDQ	m,xmm	1	3	1 1	P2		
MOVNTDQA	xmm,m	1	2	0.5			

PACKSSWB/DW	(x)mm,r/m	1	2	1	P1	
PACKUSWB	(x)mm,r/m	1	2	1	P1	
PUNPCKH/LBW/WD/D						
Q	(x)mm,r/m	1	2	1	P1	
PUNPCKHQDQ	xmm,r/m	1	2	1	P1	
PUNPCKLQDQ	xmm,r/m	1	2	1	P1	
PSHUFB	(x)mm,r/m	1	3	1	P1	
PSHUFD	xmm,xmm,i	1	2	1	P1	
PSHUFW	mm,mm,i	1	2	1	P1	
PSHUFL/HW	xmm,xmm,i	1	2	1	P1	
PALIGNR	(x)mm,r/m,i	1	2	1	P1	
PBLENDW	xmm,r/m	1	2	0.5	P02	SSE4.1
MASKMOVQ	mm,mm	31	32	16	P2	
MASKMOVDQU	xmm,xmm	65	45	31	P0 P1 P2	
PMOVMSKB	r32,mm/x	2	5	1	P1 P2	
PEXTRB/W/D/Q	r,x/mm,i	2	5	1	P1 P2	SSE4.1
PINSRB/W/D/Q	x/mm,r,i	2	6	1	P1	
EXTRQ	x,i,i	1	3	1	P1	AMD SSE4A
EXTRQ	x,x	1	1	1	P1	AMD SSE4A
INSERTQ	x,x,i,i	1	1	1	P1	AMD SSE4A
INSERTQ	x,x	1	1	1	P1	AMD SSE4A
PMOVSXBW/BD/BQ/W						
D/WQ/DQ	x,x	1	2	1	P1	SSE4.1
PMOVZXBW/BD/BQ/W						
D/WQ/DQ	X,X	1	2	1	P1	SSE4.1
VPCMOV	x,x,x,x/m	1	2	1	P1	AMD XOP
VPCMOV	y,y,y,y/m	2	2	2	P1	AMD XOP
VPPERM	x,x,x,x/m	1	2	1	P1	AMD XOP
Arithmetic instructions						
PADDB/W/D/Q/SB/SW/ USB/USW		4	_	0.5	DOO	
	(x)mm,r/m	1	2	0.5	P02	
PSUBB/W/D/Q/SB/SW/ USB/USW	(14) 100 100 11/100	4	_	0.5	DOO	
PHADD/SUB(S)W/D	(x)mm,r/m	1	2	0.5	P02	CCCE2
` '	X,X	3	5	2	P02 2P1	SSSE3
PCMPEQ/GT B/W/D	(x)mm,r/m	1	2	0.5	P02 P02	CCE4.4
PCMPEQQ PCMPGTQ	(x)mm,r/m	1 1	2 2	0.5 0.5	P02 P02	SSE4.1 SSE4.2
PMULLW PMULHW	(x)mm,r/m	ı		0.5	FU2	33E4.2
PMULHUW PMULUDQ						
I MOLITOW I MOLODQ	(x)mm,r/m	1	4	1	P0	
PMULLD	x,r/m	1	5	2	P0	SSE4.1
PMULDQ	x,r/m	1	4	1	P0	SSE4.1
PMULHRSW	(x)mm,r/m	1	4	1	P0	SSSE3
PMADDWD	(x)mm,r/m	1	4	1	P0	COOLO
PMADDUBSW	(x)mm,r/m	1	4	1	P0	
PAVGB/W	(x)mm,r/m	1	2	0.5	P02	
PMIN/MAX SB/SW/ SD	(*)************************************		_	0.5	1 02	
UB/UW/UD	(x)mm,r/m	1	2	0.5	P02	
PHMINPOSUW	x,r/m	2	4	1	P1 P02	SSE4.1
PABSB/W/D	(x)mm,r/m	1	2	0.5	P02	SSSE3
PSIGNB/W/D	(x)mm,r/m	1	2	0.5	P02	SSSE3
PSADBW	(x)mm,r/m	2	4	1	P02	
1	. ,,	_	1			ı

MPSADBW	x,x,i	8	8	4	P1 P02	SSE4.1
\ (DOOLAD !!!! D. (O	, .				500	AMD XOP
VPCOMB/W/D/Q	x,x,x/m,i	1	2	0.5	P02	latency 0 if i=6,7
\		4		0.5	D00	AMD XOP
VPCOMUB/W/D/Q	x,x,x/m,i	1	2	0.5	P02	latency 0 if i=6,7
VPHADDBW/BD/BQ/		4	_	0.5	DOO	AMD VOD
WD/WQ/DQ	x,x/m	1	2	0.5	P02	AMD XOP
VPHADDUBW/BD/BQ/ WD/WQ/DQ	v v/m	4	_	0.5	P02	AMD XOP
VPHSUBBW/WD/DQ	x,x/m	1 1	2 2	0.5 0.5	P02	AMD XOP
VPHSOBBW/WD/DQ VPMACSWW/WD	x,x/m x,x,x/m,x	1	4		P02	AMD XOP
VPMACSDD		1	5	1 2	P0	AMD XOP
VPMACSDD VPMACSDQH/L	x,x,x/m,x	1	4		P0	AMD XOP
VPMACSDQH/L VPMACSSWW/WD	x,x,x/m,x	1	4	1 1	P0	AMD XOP
VPMACSSWW/WD	x,x,x/m,x	1	5	2	P0	AMD XOP
VPMACSSDD VPMACSSDQH/L	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMADCSWD	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMADCSWD	x,x,x/m,x	1	4	1	P0	
VPIVIADCSSWD	x,x,x/m,x	I	4	l	PU	AMD XOP
Logio						
Logic PAND PANDN POR						
PXOR	(x)mm,r/m	1	2	0.5	P02	
PSLL/RL W/D/Q	(*)!!!!!,!/!!!	ı		0.5	102	
PSRAW/D	(x)mm,r/m	1	3	1	P1	
PSLL/RL W/D/Q	(*)************************************			'		
PSRAW/D	(x)mm,i	1	2	1	P1	
PSLLDQ, PSRLDQ	(x);;;;	1	2	1	P1	
PTEST	x,r/m	2	14		P1 P2	SSE4.1
VPROTB/W/D/Q	x,x,x/m	1	3		P1	AMD XOP
VPROTB/W/D/Q	X,X,X/111 X,X,İ	1	2		P1	AMD XOP
VPSHAB/W/D/Q	x,x,x/m	1	3	1	P1	AMD XOP
VPSHLB/W/D/Q	x,x,x/m	1	3	1	P1	AMD XOP
VI OIIEB/W/B/Q	Χ,Χ,ΧΙΙΙ	•		'		AWD AOI
String instructions						
PCMPESTRI	x,x,i	30	11	11	P0 P1 P2	SSE4.2
PCMPESTRM	x,x,i	30	10	10	P0 P1 P2	SSE4.2
PCMPISTRI	x,x,i	9	5	5	P0 P1 P2	SSE4.2
PCMPISTRM	x,x,i	8	6	6	P0 P1 P2	SSE4.2
	, ,					
Encryption						
PCLMULQDQ	x,x/m,i	7	11	7	P1	pclmul
VPCLMULQDQ	x,x,x,i	7	11	7	P1	pclmul
PCLMULQDQ	x,x,m,i	8		7	P1	pclmul
AESDEC	x,x	2	5	1	P01	aes
AESDECLAST	x,x	2	5	1	P01	aes
AESENC	x,x	2	5	1	P01	aes
AESENCLAST	x,x	2	5	1	P01	aes
AESIMC	x,x	1	5	1	P0	aes
AESKEYGENASSIST	x,x,i	1	5	1	P0	aes
Other						
EMMS		1		0.25		

Floating point XMM and YMM instructions								
Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Domain, notes		
Move instructions								
MOVAPS/D								
MOVUPS/D	x,x	1	0	0.25	none	inherit domain		
VMOVAPS/D	y,y	2	2	0.5	P02	ivec		
MOVAPS/D								
MOVUPS/D	x,m128	1	2	0.5				
VMOVAPS/D								
VMOVUPS/D	y,m256	2	2	1				
MOVAPS/D								
MOVUPS/D	m128,x	1	3	1	P2			
VMOVAPS/D	m256,y	2	3	2	P2			
VMOVUPS/D	m256,y	2	3	2	P2			
MOVSS/D	x,x	1	2	0.5	P01	fp		
MOVSS/D	x,m32/64	1	2	0.5				
MOVSS/D	m32/64,x	1	3	1	P2			
MOVHPS/D	x,m64	1	3	1	P1			
MOVLPS/D	x,m64	1	3	0.5	P01			
MOVHPS/D	m64,x	2	4	1	P1 P2			
MOVLPS/D	m64,x	1	3	1	P2			
MOVLHPS MOVHLPS	x,x	1	2	1	P1	ivec		
MOVMSKPS/D	r32,x	2	5	1	P1 P2			
VMOVMSKPS/D	r32,y	2	15	1	P1 P2			
MOVNTPS/D	m128,x	1	3	1	P2			
VMOVNTPS/D	m256,y	2	3	2-3	P2			
MOVNTSS/SD	m,x	1		3	P2	AMD SSE4A		
SHUFPS/D	x,x/m,i	1	2	1	P2	ivec		
VSHUFPS/D	y,y,y/m,i	2	2	2	P2	ivec		
VPERMILPS/PD	x,x,x/m	1	3	1	P1	ivec		
VPERMILPS/PD	y,y,y/m	2	3	2	P1	ivec		
VPERMILPS/PD	x,x/m,i	1	2	1	P1	ivec		
VPERMILPS/PD	y,y/m,i	2	2	2	P1	ivec		
VPERM2F128	y,y,y,i	8	4	3.5	P0 P2	ivec		
VPERM2F128	y,y,m,i	12		4	P0 P2	ivec		
BLENDPS/PD	x,x/m,i	1	2	0.5	P01	fp		
VBLENDPS/PD	y,y,y/m,i	2	2	1	P01	fp		
BLENDVPS/PD	x,x/m,xmm0	1	2	0.5	P01			
VBLENDVPS/PD	y,y,y/m,y	2	2	1	P01			
MOVDDUP	x,x	1	2	1	P1	ivec		
MOVDDUP	x,m64	1		0.5				
VMOVDDUP	y,y	2	2	2	P1	ivec		
VMOVDDUP	y,m256	2		1				
VBROADCASTSS	x,m32	1	8	0.5				
VBROADCASTSS	y,m32	2	8	0.5	P02			
VBROADCASTSD	y,m64	2	8	0.5	P02			
VBROADCASTF128	y,m128	2	8	0.5	P02			
MOVSH/LDUP	x,x	1	2	1	P1	ivec		
MOVSH/LDUP	x,m128	1		0.5				

VMOVSH/LDUP	y,y	2	2	2	P1	ivec
VMOVSH/LDUP	y,m256	2		1		
UNPCKH/LPS/D	x,x/m	1	2	1	P1	ivec
VUNPCKH/LPS/D	y,y,y/m	2	2	2	P1	ivec
EXTRACTPS	r32,x,i	2	_	1	P1 P2	1700
EXTRACTPS	m32,x,i	2	10	1	P1 P2	
		1	2		P02	ivoo
VEXTRACTF128	x,y,i			0.5		ivec
VEXTRACTF128	m128,y,i	2	10	1	P0 P2	
INSERTPS	x,x,i	1	2	1	P1	
INSERTPS	x,m32,i	1	9	2	P1	_
VINSERTF128	y,y,x,i	2	2	1	P02	ivec
VINSERTF128	y,y,m128,i	2	10	1	P02	
VMASKMOVPS/D	x,x,m128	1	9	0.5	P01	
VMASKMOVPS/D	y,y,m256	2	9	1	P01	
VMASKMOVPS/D	m128,x,x	20	~35	8	P0 P1 P2	
VMASKMOVPS/D	m256,y,y	41	~35	16	P0 P1 P2	
Conversion						
CVTPD2PS	x,x	2	6	1	P01	ivec/fp
VCVTPD2PS	x,y	4	6	2	P01	ivec/fp
CVTPS2PD	x,x	2	6	1	P01	ivec/fp
VCVTPS2PD	y,x	4	6	2	P01	ivec/fp
CVTSD2SS	x,x	1	4	1	P0	fp
CVTSS2SD	x,x	1	4	1	P0	fp
CVTDQ2PS	X,X X,X	1	4	1	P0	fp
VCVTDQ2PS		2	4	2	P0	fp
CVT(T) PS2DQ	у,у У У	1	4	1	P0	fp
` ,	X,X	2	4	2	P0	-
VCVT(T) PS2DQ	y,y	2	7	1		fp
CVTDQ2PD	x,x		7		P01	ivec/fp
VCVTDQ2PD	y,x	4		2	P01	ivec/fp
CVT(T)PD2DQ	x,x	2	7	1	P01	fp/ivec
VCVT(T)PD2DQ	x,y	4	7	2	P01	fp/ivec
CVTPI2PS	x,mm	2	6	1	P0 P2	ivec/fp
CVT(T)PS2PI	mm,x	1	5	1	P0	fp
CVTPI2PD	x,mm	2	7	1	P0 P1	ivec/fp
CVT(T) PD2PI	mm,x	2	7	1	P0 P1	fp/ivec
CVTSI2SS	x,r32	2	13	1	P0	fp
CVT(T)SS2SI	r32,x	2	12	1	P0 P2	fp
CVTSI2SD	x,r32/64	2	12	1	P0	fp
CVT(T)SD2SI	r32/64,x	2	12	1	P0 P2	fp
VCVTPS2PH	x/m,x,i	2	7	2	P0 P1	F16C
VCVTPS2PH	x/m,y,i	4	7	2	P0 P1	F16C
VCVTPH2PS	x,x/m	2	7	2	P0 P1	F16C
VCVTPH2PS	y,x/m	4	7	2	P0 P1	F16C
Arithmetic						
ADDSS/D SUBSS/D	x,x/m	1	5-6	1	P01	fma
ADDPS/D SUBPS/D	x,x/m	1	5-6	1	P01	fma
	23,20111			'		
VADDPS/D VSUBPS/D	y,y,y/m	2	5-6	2	P01	fma
ADDSUBPS/D	x,x/m	1	5-6	1	P01	fma
VADDSUBPS/D	y,y,y/m	2	5-6	1	P01	fma

		1	I			
HADDPS/D HSUBPS/D	X,X	4	10	2	P0 P1	ivec/fma
VHADDPS/D	,			_		
VHSUBPS/D	y,y,y/m	8	10	4	P01 P1	ivec/fma
MULSS MULSD	x,x/m	1	5-6	0.5	P01	fma
MULPS MULPD	x,x/m	1	5-6	0.5	P01	fma
VMULPS VMULPD	y,y,y/m	2	5-6	1	P01	fma
DIVSS DIVPS	x,x/m	1	9-17	4-6	P01	fp
VDIVPS	y,y,y/m	2	9-17	9-12	P01	fp
DIVSD DIVPD	x,x/m	1	9-32	4-13	P01	fp
VDIVPD	y,y,y/m	2	9-32	9-27	P01	fp
RCPSS/PS	x,x/m	1	5	1	P01	fp
VRCPPS	y,y/m	2	5	2	P01	fp
CMPSS/D						-
CMPPS/D	x,x/m	1	2	0.5	P01	fp
VCMPPS/D	y,y,y/m	2	2	1	P01	fp
COMISS/D						•
UCOMISS/D	x,x/m	2		1	P01 P2	fp
MAXSS/SD/PS/PD						
MINSS/SD/PS/PD	x,x/m	1	2	0.5	P01	fp
VMAXPS/D VMINPS/D	y,y,y/m	2	2	1	P01	fp
ROUNDSS/SD/PS/PD	x,x/m,i	1	4	1	P0	fp
VROUNDSS/SD/PS/						
PD	y,y/m,i	2	4	2	P0	fp
DPPS	x,x,i	9	25	4	P0 P1	SSE4.1
DPPS	x,m,i	10		5	P0 P1	SSE4.1
VDPPS	y,y,y,i	13	25	8	P0 P1	SSE4.1
VDPPS	y,m,i	15		8	P0 P1	SSE4.1
DPPD	x,x,i	7	14	3	P0 P1	SSE4.1
DPPD	x,m,i	8		4	P0 P1	SSE4.1
VFMADD132SS/SD	x,x,x/m	1	5-6	0.5	P01	FMA3
VFMADD132PS/PD	x,x,x/m	1	5-6	0.5	P01	FMA3
VFMADD132PS/PD	y,y,y/m	2	5-6	1	P01	FMA3
All other FMA3 instruction		bove	1			FMA3
VFMADDSS/SD	x,x,x,x/m	1	5-6	0.5	P01	AMD FMA4
VFMADDPS/PD	x,x,x,x/m	1	5-6	0.5	P01	AMD FMA4
VFMADDPS/PD	y,y,y,y/m	2	5-6	1	P01	AMD FMA4
All other FMA4 instruction		bove	1			AMD FMA4
Math						
SQRTSS/PS	x,x/m	1	12-13	4-9	P01	fp
VSQRTPS	y,y/m	2	12-13	9-18	P01	fp
SQRTSD/PD	x,x/m	1	26-29	4-18	P01	fp
VSQRTPD	y,y/m	2	27-28	9-37	P01	fp
RSQRTSS/PS	x,x/m	1	5	1	P01	fp
VRSQRTPS	y,y/m	2	5	2	P01	fp
VFRCZSS/SD/PS/PD	x,x	2	10	2	P01	AMD XOP
VFRCZSS/SD/PS/PD	x,m	4		2	P01	AMD XOP
Logic						
AND/ANDN/OR/XORPS/						
PD	x,x/m	1	2	0.5	P02	ivec

VAND/ANDN/OR/XOR PS/PD	y,y,y/m	2	2	1	P02	ivec
Other						
VZEROUPPER		9		4		32 bit mode
VZEROUPPER		16		5		64 bit mode
VZEROALL		17		6	P02	32 bit mode
VZEROALL		32		10	P02	64 bit mode
LDMXCSR	m32	9		36	P0 P2	
STMXCSR	m32	2		17	P0 P2	
FXSAVE	m4096	59-67		78	P0 P1 P2	
FXRSTOR	m4096	104-112		160	P0 P1 P2	
XSAVE	m	121-137		147-166	P0 P1 P2	
XRSTOR	m	191-209		291-297	P0 P1 P2	

AMD Ryzen

List of instruction timings and macro-operation breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB, JNE,

etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, x = 128 bit xmm register, y = 256 bit ymm register, m = any memory operand including indirect operands, m64 means 64-bit memory operand, etc.

Ops: Number of macro-operations issued from instruction decoder to schedulers.

Latency: This is the delay that the instruction generates in a dependency chain. The num-

bers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. The latency listed does not include the memory operand where the listing for register and memory operand are joined

(r/m).

Reciprocal through-

put:

This is also called issue latency. This value indicates the average number of clock cycles from the execution of an instruction begins to a subsequent independent instruction of the same kind can begin to execute. A value of 1/3 indicates that the execution units can handle 3 instructions per clock cycle in one thread. However, the throughput may be limited by other bottlenecks in the pipeline.

Execution pipe: Indicates which execution pipe or unit is used for the macro-operations:

P0: Floating point and vector pipe 0 P1: Floating point and vector pipe 1 P2: Floating point and vector pipe 2 P3: Floating point and vector pipe 3 P0 P1: Uses both P0 and P1

P01: Uses either P0 and P1

Where no unit is specified, it uses one or more integer pipe or address generation

units

Two micro-operations can execute simultaneously if they go to different

execution pipes

Domain: Tells which execution unit domain is used:

ivec: integer vector execution unit. fp: floating point execution unit.

inherit: the output operand inherits the domain of the input operand.

There is an additional latency of 1 clock cycle if the output of an ivec instruction goes to the input of a fp instruction, and when the output of a fp instruction goes to the input of an ivec instruction. All other latencies after memory load and before

memory store instructions are included in the latency counts.

Integer instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Notes
Move instructions	·					
MOV	r8,r8	1	1	0.25		
MOV	r16,r16	1	1	0.25		
MOV	r32,r32	1	0	0.3		renaming
MOV	r64,r64	1	0	0.2		renaming
MOV	r8,i	1		0.25		
MOV	r16,i	1		0.25		
MOV	r32,i	1		0.25		

MOV	r64,i	1		0.25	
MOV	r,m	1	3	0.5	
MOV	m,r	1	4	1	
MOV	m,i	1		1	
MOVNTI	m,r	1	high	1	
MOVZX, MOVSX		1	1 1	0.5	
	r,r		3		
MOVZX, MOVSX	r,m	1		0.5	
MOVSXD	r64,r32	1	1	0.5	
MOVSXD	r64,m32	1	3	0.5	
CMOVcc	r,r	1	1	0.25	
CMOVcc	r,m	1		0.5	
XCHG	r8,r8	2	1	1	
XCHG	r16,r16	2	1	1	
XCHG	r32,r32	2	0	0.33	renaming
XCHG	r64,r64	2	0	0.33	renaming
XCHG	r,m	2	~30	~30	depends on hw
XLAT	1,111	2	5	2	dopondo on niv
PUSH	_	1	3	1	
	r				
PUSH	i	1		1	
PUSH	m	2		1	
PUSHF(D/Q)		9		4	
PUSH	sp	2		1	
PUSHA(D)		9		8	
POP	r	1		0.5	
POP	m	2		1	
POPF(D/Q)		35		13	
POPA(D)		9		4	
POP	sp	1	2	2	
LEA	r16,[m]	2	2-3	1	
LLA	110,[111]		2-3	'	scale factor > 1
LEA	r22/64 [m]	4	2	0.5	or 3 operands
	r32/64,[m]	1			
LEA	r32,[m]	1	2	0.5	64 bit mode
LEA	r32/64,[m]		1	0.5	rip relative
LEA	r32/64,[m]	1	1	0.25	all other cases
LAHF		4	3	2	
SAHF		2	2	0.5	
SALC		1	1	1	
BSWAP	r	1	1	0.25	
MOVBE	r,[m]	1		0.5	MOVBE
MOVBE	[m],r	1		1	MOVBE
PREFETCHNTA	m	1		0.5	I WOVE
PREFETCHT0/1/2	m	1		0.5	
		-			DDEEETOLIM
PREFETCH/W	m	1		0.5	PREFETCHW
SFENCE		4		~20	
LFENCE		1		0,25	
MFENCE		7		~70	
Arithmetic instructions	 				
ADD, SUB	r,r	1	1	0.25	
ADD, SUB	r,i	1	1	0.25	
ADD, SUB	r,m	1		0.5	
ADD, SUB		1	6	1	
	m,r				
ADD, SUB	m,i	1	6	1	

			•		
ADC, SBB	r,r	1	1		
ADC, SBB	r,i	1	1		
				_	
ADC, SBB	r,m	-	1	1	
ADC, SBB	m,r	1	6	1	
ADC, SBB	m,i	1	6	1	
ADCX ADOX	r,r	1	1	1	ADX
CMP	r,r	1	1	0.25	
CMP	r,i	1	1	0.25	
CMP	r,m	1		0.5	
CMP	m,i	1		0.5	
INC, DEC, NEG		1	4	0.25	
	r	· ·	1		
INC, DEC, NEG	m	1	6	1	
AAA, AAS		10	6		
DAA		16	8		
DAS		20	9		
AAD		4	5		
AAM		4	13		
MUL, IMUL	r8/m8	1	3	1	
MUL, IMUL	r16/m16	3	3	2	
MUL, IMUL	r32/m32	2	3	2	
MUL, IMUL	r64/m64	2	3	2	
IMUL	r,r	1	3	1	
IMUL			3		
I	r,m	1		1	
IMUL	r16,r16,i	2	4	1	
IMUL	r32,r32,i	1	3	1	
IMUL	r64,r64,i	1	3		
IMUL	r16,m16,i	2		1	
IMUL	r32,m32,i	1		1	
IMUL	r64,m64,i	1		1	
MULX	r,r,r	2	4	2	BMI2
DIV	r8/m8	1	13-16	13-16	
DIV	r16/m16	2	14-21	14-21	depends on
DIV	r32/m32	2	14-30	14-30	operand values
DIV	r64/m64	2	14-46	14-30	oporana valaco
IDIV	r8/m8	1	13-16	13-16	
IDIV	r16/m16	2	13-21	14-22	
IDIV	r32/m32	2	14-30	14-30	
IDIV	r64/m64	2	14-47	14-45	
CBW		1	1	1	
CWDE, CDQE		1	1	0.5	
CDQ, CQO		1	1	0.25	
CWD		2	1	1	
Logic instructions					
AND, OR, XOR	r,r	1	1	0.25	
AND, OR, XOR	r,i	1	1	0.25	
AND, OR, XOR	r,m	1		0.5	
AND, OR, XOR		1	6	1	
AND, OR, XOR	m,r			1	
	m,i	1	6		
TEST	r,r	1	1	0.25	
TEST	r,i	1	1	0.25	
TEST	m,r	1		0.5	
TEST	m,i	1		0.5	

l	l I			1	1
NOT	r	1	1	0.25	
NOT	m	1	6	1	
ANDN	r,r,r	1	1	0.25	BMI1
SHL, SHR, SAR	r,i/CL	1	1	0.25	
ROL, ROR	r,i/CL	1	1	0.25	
RCL	r,1	1	1	1	
RCL	r,i	9	4	4	
RCL	r,cl	9	4	4	
RCR	r,1	1	1	1	
RCR		7	3		
	r,i			3	
RCR	r,cl	7	3	3	
SHLD, SHRD	r,r,i	6	3	3	
SHLD, SHRD	r,r,cl	7	3	3	
SHLD, SHRD	m,r,i/CL	8		3	
SARX	r,r,r	1	1	0.25	BMI2
SHLX	r,r,r	1	1	0.25	BMI2
SHRX	r,r,r	1	1	0.25	BMI2
RORX	r,r,i	1	1	0.25	BMI2
ВТ	r,r/i	1	1	0.25	
ВТ	m,i	1		0.5	
BT	m,r	5		3	
BTC, BTR, BTS	r,r/i	2	2	0.5	
BTC, BTR, BTS	m,i	4	_	2	
BTC, BTR, BTS	m,r	8		3	
BSF		6	3	3	
BSF	r,r	8	4	4	
BSR	r,m	6	4	4	
BSR	r,r	8	4	4	
SETcc	r,m	0 1	1		
	r		I	0.5	
SETcc	m	1			
CLC, STC		1		0.25	
CMC		1	1		
CLD		2		3	
STD		2		4	
POPCNT	r,r	1	1	0.25	SSE4.2
LZCNT	r,r	1	1	0.25	LZCNT
TZCNT	r,r	2	2	0.5	BMI1
BEXTR	r,r,r	1	1	0.25	BMI1
BLSI	r,r	2	2	0.5	BMI1
BLSMSK	r,r	2	2	0.5	BMI1
BLSR	r,r	2	2	0.5	BMI1
PDEP	r,r,r	6	18	18	BMI2
PEXT	r,r,r	7	18	18	BMI2
BZHI	r,r,r	1	1	0.25	BMI2
DZIII	1,1,1		•	0.20	DIVIIZ
Control transfer instru	ctions				
JMP	short/near	1		2	
JMP	r	1		2	
JMP	m	1		2	
Jcc	short/near	1		0.5-2	2 if jumping
fused CMP+Jcc	short/near	1		0.5-2	2 if jumping
J(E/R)CXZ	short	1		0.5-2	2 if jumping
0(2/10/0/	5.1011		l	0.0 2	Z ii jaiiipiiig

LOOP LOOPE LOOPNE CALL CALL	short short near r	1 1 2 2		2 2 2 2	2 if jumping 2 if jumping
CALL	m	6		2	
RET RET	i	1 2		2 2	
BOUND		11		3	for no jumn
INTO	m	4		2	for no jump for no jump
		4		2	ioi no jump
String instructions					
LODS		3		3	
REP LODS	m	6n		2n	
STOS		3		3	
REP STOS		1n		~1n	small n
REP STOS		3 per 16B		1 per 16B	best case
MOVS		5		3	
REP MOVS		~1n		~1n	small n
REP MOVS		4 pr 16B		1 per 16B	best case
SCAS		3		3	
REP SCAS		7n		2n	
CMPS		6		3	
REP CMPS		9n		3n	
Synchronization					
LOCK ADD	m,r	1	~17		
XADD	m,r	4	7		
LOCK XADD	m,r	4	~23		
CMPXCHG	m,r8	5	8		
CMPXCHG	m,r16	6	8		
CMPXCHG	m,r32/64	6	8		
LOCK CMPXCHG	m8,r8	5	~22		
LOCK CMPXCHG	m16,r16	6	~22		
LOCK CMPXCHG	m,r32/64	6	~22		
CMPXCHG8B	m64	18	8		
LOCK CMPXCHG8B	m64	18	~22		
CMPXCHG16B	m128	27	13		
LOCK CMPXCHG16B	m128	27	~21		
Other					
NOP (90)		1		0.2	
Long NOP (0F 1F)		1		0.2	
PAUSE		8		3	
ENTER	a,0	12		16	
ENTER	a,b	11+3b		~18+b	
LEAVE	-	2		3	
CPUID		37-50		125-133	
XGETBV				42	
RDTSC		37		36	
RDTSCP		64		64	rdtscp
RDPMC		20		20	
CRC32	r32,r8	3	3	3	

CRC32	r32,r16	3	3	3	
CRC32	r32,r32	3	3	3	
RDRAND RDSEED	r16/32	13		~1200	
RDRAND RDSEED	r64	19		~2500	

Floating point x87 instructions

Floating point x87 instructions								
Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Domain, notes		
Move instructions								
FLD	r	1	1	1	P3			
FLD	m32/64	1	6	1	P1			
FLD	m80	8	7	4				
FBLD	m80	24		24	P2 P3			
FST(P)	r	1	1	1	P3			
FST(P)	m32/64	2	5	1	P2 P3			
FSTP	m80	15	8	-				
FBSTP	m80	274		~145	P2 P3			
FXCH	r	1	0	0.25				
FILD	m	1	8	1	P3			
FIST(T)(P)	m	2	5	1	P2 P3			
FLDZ, FLD1		1		1	P3			
FCMOVcc	st0,r	7	3	3	P0 P1 P2 P3			
FFREE	r	1	0	0.25	10111213			
FINCSTP, FDECSTP		1	0	0.25				
FNSTSW	AX	3		16	P2 P3			
FNSTSW	m16	2		14	P2 P3			
FLDCW	m16	1		2	P3			
FNSTCW	m16	2		2	P2 P3			
INSIGW	11110			_	7273			
Arithmetic instructions	 							
FADD(P),FSUB(R)(P)	r/m	1	5	1	P0			
FIADD,FISUB(R)	m	2		1	P0 P3			
FMUL(P)	r/m	1	5	1	P0			
FIMUL	m	2		1	P0 P3			
FDIV(R)(P)	r	1	8-15	4-6	P3			
FDIV(R)	m	1			P3			
FIDIV(R)	m	2			P3			
FABS, FCHS		1	1	1	P3			
FCOM(P), FUCOM(P)	r/m	1		1	P0			
FCOMPP, FUCOMPP		1		1	P0			
FCOMI(P)	r	2		1	P2			
FICOM(P)	m	2		1	P0 P3			
FTST		1		1	P0			
FXAM		1		1	P3			
FRNDINT		1	4	3				
FPREM FPREM1		2		12-50				
Math								
FSQRT		1	8-21	4-10	P3			
FLDPI, etc.		1	J = .	1	P3			
FSIN		11-60	50-170		P0 P3			
	I .		1 33 3	I		T .		

FCOS		55	50-115			
FSINCOS		80-140	60-120		P0 P3	
FPTAN		11-52	~90	50-80		
FPATAN		11-82	50-160	45-150		
FSCALE		8	9	4	P0 P2 P3	
FXTRACT		13	10	7	P0 P2 P3	
F2XM1		10	~50		P2 P3	
FYL2X		10-25	~50	~50	P0 P2 P3	
FYL2XP1		69	~135	~135	P0 P2 P3	
Other						
FNOP		1		0.25		
(F)WAIT		1		0.25		
FNCLEX		20		45		
FNINIT		34		85		
FNSAVE	m864	99		~160		
FRSTOR	m864	77		~130		

Integer vector instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Notes
Move instructions				ougput	р.рос	
MOVD	r32, mm	1	3	1		
MOVD	mm, r32	2	3	1		
MOVD	r32/64, x	1	3	1		
MOVD	x, r32/64	1	3	1 1		
MOVD	mm/x,m32	1	4	0.5		
MOVD	m32,mm/x	1	4	1	P2	
MOVQ	mm/x,mm/x	1	1	0.25	P0123	
MOVQ	mm/x,m64	1	4	0.5		
MOVQ	m64,mm/x	1	4	1	P2	
MOVDQA	x,x	1	0	0.25		renaming
MOVDQA	x,m	1	3	0.5		
MOVDQA	m,x	1	4	1	P2	
VMOVDQA	y,y	2	1	0.5		lower half renamed
VMOVDQA	y,m256	2	3	1		
VMOVDQA	m256,y	2	4	2	P2	
MOVDQU	x,x	1	0	0.25		renaming
MOVDQU	x,m	1	3	0.5		
MOVDQU	m,x	1	4	1	P2	
LDDQU	x,m	1	3	0.5		
VMOVDQU	ymm,m256	2	3	1		
VMOVDQU	m256,ymm	2	4	2	P2	
MOVDQ2Q	mm,xmm	1	1	0.25	P0123	
MOVQ2DQ	xmm,mm	1	1	0.25	P0123	
MOVNTQ	m,mm	1	~900	1	P2	
MOVNTDQ	m,xmm	1	~900	1	P2	
MOVNTDQA	xmm,m	1	3	0.5		
PACKSSWB/DW	(x)mm,r/m	1	1	0.5	P12	
PACKUSWB	(x)mm,r/m	1	1	0.5	P12	
VPACKSSWB/DW	y,r/m	2	1	1	P12	

			=			
VPACKUSWB	y,r/m	2	1	1	P12	
PUNPCKH/LBW/WD/D		_	_	0.5	D40	
Q DUNDOK! (UODO	(x)mm,r/m	1	1	0.5	P12	ivec
PUNPCKL/HQDQ	xmm,r/m	1	1	0.5	P12	
VPUNPCKL/HQDQ	y,r/m	2	1	1	P12	
PSHUFB	(x)mm,r/m	1	1	0.5	P12	
VPSHUFB	y,r/m ·	2	1	1	P12	
PSHUFD	x,x,i	1	1	0.5	P12	
VPSHUFD	y,y,i	2	1	1	P12	
PSHUFW	mm,mm,i	1	1	0.5	P12	
PSHUFL/HW	x,x,i	1	1	0.5	P12	
VPSHUFL/HW	y,y,i	2	1	1	P12	
PALIGNR	(x)mm,r/m,i	1	1	0.5	P12	
VPALIGNR	y,r/m,i	2	1	1	P12	
PBLENDW	x,r/m,i	1	1	0.33	P013	SSE4.1
PBLENDW	y,r/m,i	2	1	0.67	P013	
MASKMOVQ	mm,mm	30	~3000	~9		
MASKMOVDQU	X,X	60	~3000	~18		
PMOVMSKB	r32,mm/x	1	3	1	P2	
VPMOVMSKB	r32,y	2	3	2	P2	
PEXTRB/W/D/Q	r,x/mm,i	2	3	1	P1 P2	SSE4.1
PINSRB/W/D/Q	x/mm,r,i	2	3	1	P12	
EXTRQ	x,i,i	2	6	4		AMD SSE4A
EXTRQ	X,X	1	4	4	P1	AMD SSE4A
INSERTQ	x,x,i,i	2	4	4	P0 P1	AMD SSE4A
INSERTQ	x,x	1	4	4	P1	AMD SSE4A
PMOVSXBW/BD/BQ/W		_		0.5	D40	00544
D/WQ/DQ	x,x	1	1	0.5	P12	SSE4.1
PMOVZXBW/BD/BQ/W D/WQ/DQ		_		0.5	D40	00544
	x,x	1	1	0.5	P12	SSE4.1
VINSERTI128	y,y,x,i	2	1	.67	P013	AVX2
VINSERTI128	y,y,m,i	2	4	1	P013	AVX2
VPBROADCAST B/W/D/Q	X,X	1	1	0.5	P12	AVX2
VPBROADCAST	Λ,Λ			0.0		7,47,42
B/W/D/Q	x,m	1	4	1		AVX2
VPBROADCAST	,					
B/W/D/Q	y,x	2	1	1	P12	AVX2
VPBROADCAST						
B/W/D/Q	y,m	2		0.5		AVX2
VBROADCASTI128	y,m128	2	3	0.5		AVX2
VPGATHERDD	x,[r+s*x],x	38		13	P0 P1 P2	AVX2
VPGATHERDD	y,[r+s*y],y	66		20	P0 P1 P2	AVX2
VPGATHERQD	x,[r+s*x],x	24		9	P0 P1 P2	AVX2
VPGATHERQD	x,[r+s*y],x	36		12	P0 P1 P2	AVX2
VPGATHERDQ	x,[r+s*x],x	23		9	P0 P1 P2	AVX2
VPGATHERDQ	y,[r+s*x],y	35		12	P0 P1 P2	AVX2
VPGATHERQQ	x,[r+s*x],x	23		9	P0 P1 P2	AVX2
VPGATHERQQ	y,[r+s*y],y	35		12	P0 P1 P2	AVX2
Arithmetic instructions	3					
PADDB/W/D/Q/SB/SW/				_		
USB/USW	(x)mm,r/m	1	1	0.33		ivec

		ı	ı	ı	1	1
VPADD	y,y,r/m	2	1	0.67		
PSUBB/W/D/Q/SB/SW/						
USB/USW	(x)mm,r/m	1	1	0.33		
VPSUB	y,y,r/m	2	1	0.67		
PHADD/SUB(S)W/D	X,X	4	2	2	P0 P1 P2 P3	SSSE3
VPHADD/SUB(S)W/D	y,y,y	8	3	3	P0 P1 P2 P3	
PCMPEQ B/W/D	(x)mm,r/m	1	1	0.33	P013	
VPCMPEQ B/W/D	y,y,r/m	2	2	0.67	P013	
PCMPEQQ	(x)mm,r/m	1	1	0.5	P03	
VPCMPEQQ	y,y,r/m	2	2	1	P03	
PCMPGT B/W/D	(x)mm,r/m	1	1	0.33	P013	
VPCMPGT B/W/D	y,y,r/m	2	2	0.67	P013	
PCMPGTQ	(x)mm,r/m	1	1	1	P0	
VPCMPGTQ	y,y,r/m	2		2	P0	
PMULLW PMULHW						
PMULHUW PMULDQ						
PMULUDQ	(x)mm,r/m	1	3	1	P0	
VPMULLW VPMULHW						
VPMULHUW						
VPMULDQ						
VPMULUDQ						
	y,y,r/m	2	3	2	P0	
PMULLD	x,r/m	1	4	2	P0	SSE4.1
VPMULLD	y,y,r/m	2	4	4	P0	
PMULHRSW	(x)mm,r/m	1	4	1	P0	SSSE3
VPMULHRSW	y,y,r/m	2	4	2	P0	
PMADDWD	(x)mm,r/m	1	3	1	P0	
VPMADDWD	y,y,r/m	2	3	2	P0	
PMADDUBSW	(x)mm,r/m	1	4	1	P0	
VPMADDUBSW	y,y,r/m	2	4	2	P0	
PAVGB/W	(x)mm,r/m	1	1	0.5	P03	
VPAVGB/W	(x)mm,r/m	2	1	1	P03	
PMIN/MAX SB/SW/ SD						
UB/UW/UD	(x)mm,r/m	1	1	0.33	P013	
VPMIN/MAX SB/SW/						
SD UB/UW/UD	y,y,r/m	2	1	0.67	P013	
PHMINPOSUW	x,r/m	1	3	2		SSE4.1
PABSB/W/D	(x)mm,r/m	1	1	0.5	P03	SSSE3
VPABSB/W/D	y,r/m	2	1	1	P03	
PSIGNB/W/D	(x)mm,r/m	1	1	0.5	P03	SSSE3
VPSIGNB/W/D	y,r/m	2	1	1	P03	SSSE3
PSADBW	(x)mm,r/m	1	3	1	P0	_
VPSADBW	y,y,r/m	1	3	2	P0	
MPSADBW	x,x,i	4	4	2	P0 P1 P2	SSE4.1
VMPSADBW	y,y,y,i	8	4	3		
	<i>,,,</i> ,,,,,		_			
Logic						
PAND PANDN POR						
PXOR	(x)mm,r/m	1	1	0.25	P0123	ivec
VPAND VPANDN	(/,					
VPOR VPXOR	y,y,r/m	2	1	0.5	P0123	
PSLL/RL W/D/Q	3,3,					
PSRAW/D	(x)mm,r/m	1	1	1	P2	
I	(,,			•	· -	ı

VDCLL /DL W/D/O VD	I	I	I		I	I
VPSLL/RL W/D/Q VP- SRAW/D	vvv/m	2	1	2	P2	
PSLL/RL W/D/Q	y,y,x/m		1	2	Γ2	
PSRAW/D	(x)mm,i	1	1	1	P2	
VPSLL/RL W/D/Q VP-	(*/************************************	'	'		12	
SRAW/D	y,y,i	2	1	2	P2	
PSLLDQ, PSRLDQ	X,i	1	1	0.5	P12	
VPSLLDQ VPSRLDQ	y,y,i	2	1	1	P12	
VPSLLVD/Q	<i>y,y,</i> .	_	•			
VPSRAVD						
VPSRLVD/Q	x,x,x	1	3	2	P1	AVX2
VPSLLVD/Q						
VPSRAVD						
VPSRLVD/Q	y,y,y	2	3	4	P1	AVX2
PTEST	x,r/m	1	2	1	P2	SSE4.1
VPTEST	y,y/m	3	4	2	P1 P2	
String instructions						
PCMPESTRI	x,x,i	6	8	3	P1 P2	SSE4.2
PCMPESTRI	x,m,i	12		4		SSE4.2
PCMPESTRM	x,x,i	7	8	3	P0 P1 P2	SSE4.2
PCMPESTRM	x,m,i	12		4		SSE4.2
PCMPISTRI	x,x,i	2	11	2	P1 P2	SSE4.2
PCMPISTRI	x,m,i	3		2		SSE4.2
PCMPISTRM	x,x,i	3	7	2	P1 P2	SSE4.2
PCMPISTRM	x,m,i	4		2		SSE4.2
Encryption						
PCLMULQDQ	x,x/m,i	4	4	2		pclmul
AESDEC	x,x	1	4	0.5	P01	aes
AESDECLAST	x,x	1	4	0.5	P01	aes
AESENC	x,x	1	4	0.5	P01	aes
AESENCLAST	x,x	1	4	0.5	P01	aes
AESIMC	x,x	1	4	0.5	P01	aes
AESKEYGENASSIST	x,x,i	1	4	0.5	P01	aes
SHA1RNDS4	x,x,i	1	6	4	P1	sha
SHA1NEXTE	x,x	1	1	1	P1	sha
SHA1MSG1	x,x	2	2	1	multi	sha
SHA1MSG2	x,x	1	1	0.5	P12	sha
SHA256RNDS2	x,x	1	4	2	P1	sha
SHA256MSG1	x,x	2	2	0.5	P0123	sha
SHA256MSG2	x,x	4	3	2	P0123	sha
Other						
EMMS		1		0.25		

Floating point XMM and YMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Domain, notes
Move instructions						

1	I.	ı	1	ı	1	1
MOVAPS/D MOVUPS/D	X,X	1	0	0.25	none	inherit
VMOVAPS/D		2	1	0.25	Hone	inherit
MOVAPS/D	y,y		'	0.5		IIIIIGIIL
MOVUPS/D	x,m128	1	3	0.5		
VMOVAPS/D	X,111120	'	3	0.5		
VMOVUPS/D	y,m256	2	5	1		
MOVAPS/D	y,111200	_		'		
MOVUPS/D	m128,x	1	4	1	P2	
VMOVAPS/D	111120,11					
VMOVUPS/D	m256,y	2	3	2	P2	
MOVSS/D	x,x	1	1	0.25	P0123	
MOVSS/D	x,m32/64	1	4	0.5		
MOVSS/D	m32/64,x	1	4	1	P2	
MOVHPS/D	x,m64	1	4	0.5	P12	
MOVLPS/D	x,m64	1	4	0.5	P12	
MOVHPS/D	m64,x	2	5	1	P1 P2	
MOVLPS/D	m64,x	1	4	1	P1 P2	
MOVLHPS MOVHLPS	X,X	1	1	0.5	P12	ivec
MOVMSKPS/D	r32,x	1	3	1	P2	IVEC
VMOVMSKPS/D	r32,y		3	1 1	P2	
MOVNTPS/D	m128,x		~950		P2	
VMOVNTPS/D	m256,y	2	~950	2	P2	
MOVNTSS/SD	m,x	1	330	4	P2	AMD SSE4A
SHUFPS/D		1	1	0.5	P12	
VSHUFPS/D	x,x/m,i	2	1	1 1	P12	ivec ived
VPERMILPS/PD	y,y,y/m,i	1	3	2	P1	iveu
VPERMILPS/PD	x,x,x/m	2	4	4	P1	
VPERMILPS/PD	y,y,y/m	1	1	0.5	P12	
VPERMILPS/PD	x,x/m,i y,y/m,i	2	1	1	P12	
VPERM2F128		8	3	3	P0 P1 P3	
VPERM2F128	y,y,y,i	12	3	4	P0 P1 P3	
VPERMPS	y,y,m,i	3	5	4	P0 P1 P2	AVX2
VPERMPS	у,у,у	4	5	4	FUF1F2	AVX2 AVX2
	y,y,m	-	_		P0 P1 P2 P3	AVX2 AVX2
VPERMPD	y,y,i	3	2	2 2	P0 P1 P2 P3	
VPERMPD	y,m,i	4				AVX2
BLENDPS/PD	x,x/m,i	1	1	0.5	P01	fp
VBLENDPS/PD	y,y,y/m,i	2	1	1	P01	
BLENDVPS/PD	x,x/m,xmm0	1	1	0.5	P01	
VBLENDVPS/PD	y,y,y/m,y	2	1	1	P01	•
MOVDDUP	X,X	1	1	0.5	P12	ivec
MOVDDUP	x,m64	1	4	0.5	D40	
VMOVDDUP	y,y	2	1	1	P12	
VMOVDDUP	y,m256	2	4	1	D40	
VBROADCASTSS/D	X,X	1	1	0.5	P12	
VBROADCASTSS/D	y,x	2	1	1	P12	
VBROADCASTSS/D	x,m	2 2	3	0.5		
VBROADCASTSS	y,m32	2	3	1 5		
VBROADCASTF128	y,m128		4		D40	
MOVSH/LDUP	x,x/m	1	1	0.5	P12	ivec
VMOVSH/LDUP	y,y/m	2	4	1	P12	
UNPCKH/LPS/D	x,x/m	1	1	0.5	P12	
VUNPCKH/LPS/D	y,y,y/m	2	1	1	P12	

EXTRACTPS EXTRACTPS VEXTRACTF128 VEXTRACTF128 INSERTPS INSERTPS VINSERTF128 VINSERTF128 VINSERTF128 VMASKMOVPS/D VMASKMOVPS/D VMASKMOVPS/D VMASKMOVPS/D VGATHERDPS VGATHERDPS VGATHERQPS VGATHERQPS VGATHERQPD VGATHERQPD VGATHERQPD	r32,x,i m32,x,i x,y,i m128,y,i x,x,i x,m32,i y,y,x,i y,y,m128,i x,x,m128 y,y,m256 m128,x,x m256,y,y x,[r+s*x],x y,[r+s*y],y x,[r+s*y],x x,[r+s*y],x x,[r+s*x],x y,[r+s*x],x	2 1 2 1 1 2 1 2 1 2 19 42 38 66 24 36 23 35 23 35	3 6 1 7 1 4 1 5 4 4 ~50 ~50	1 0.33 1 0.5 1 0.5 1 1 1 5 11 13 20 9 12 9 12 9	P1 P2 P1 P2 P013 P01 P2 P12 P12 P013 P013 P01 P01 P1 P2 P1 P2 P0 P1 P2	AVX2 AVX2 AVX2 AVX2 AVX2 AVX2 AVX2 AVX2
Conversion	_					
CVTPD2PS VCVTPD2PS	X,X	1	3	1	P3	fp
	x,y	2	5	2	P3	
CVTPS2PD	X,X	1	3	1	P3	
VCVTPS2PD	y,x	2	5	2	P3	
CVTSD2SS	X,X	1	3	1	P3	
CVTSS2SD	X,X	1	3	1	P3	
CVTDQ2PS	X,X	1	4	1	P3	
VCVTDQ2PS	y,y	2	4	2	P3	
CVT(T) PS2DQ	X,X	1	4	1	P3	mixed domain
VCVT(T) PS2DQ	y,y	2	4	2	P3	
CVTDQ2PD	X,X	2	6	1	P12 P3	
VCVTDQ2PD	y,x	4	6	2	P12 P3	
CVT(T)PD2DQ	X,X	2	6	1	P12 P3	
VCVT(T)PD2DQ	x,y	4	6	2	P12 P3	
CVT/T/DC2DI	x,mm	2	6	1	P12 P3	
CVT(T)PS2PI	mm,x	2	6	1	P12 P3	
CVTPI2PD	x,mm	2	6	1	P12 P3	
CVT(T) PD2PI	mm,x	2	6	1	P12 P3	
CVTSI2SS	x,r32	2	8	1	D0 D0	
CVT(T)SS2SI	r32,x	2	7	1	P2 P3	
CVTSI2SD	x,r32/64	2	8	1	D2 D2	
CVT(T)SD2SI	r32/64,x	2	7	1	P2 P3	
VCVTPS2PH	x/m,x,i	2	6	2	P1 P3	
VCVTPU2PS	x/m,y,i	4	6	2	P12 P3	
VCVTPH2PS	x,x/m	2	6	2	P1 P3	
VCVTPH2PS	y,x/m	4	6	2	P12 P3	
Arithmetic						
ADDSS/D SUBSS/D	x,x/m	1	3	0.5	P23	fp
ADDPS/D SUBPS/D	x,x/m	1	3	0.5	P23	fp

1		I	1 1		I	
VADDPS/D VSUBPS/D	,,,,,,/pa	2	9	1	P23	fo
	y,y,y/m	2	3	· ·		fp
ADDSUBPS/D	x,x/m	1	3	0.5	P23	fp
VADDSUBPS/D	y,y,y/m	2	3	1	P23	
HADDPS/D HSUBPS/D	X,X	4	7	2	P1 P2 P3	
VHADDPS/D						
VHSUBPS/D	y,y,y/m	8	7	3	P1 P2 P3	mixed domain
MULSS MULPS	x,x/m	1	3	0.5	P01	fp
MULSD MULPD	x,x/m	1	4	0.5	P01	fp
VMULPS	y,y,y/m	2	3	1	P01	fp
VMULPD	y,y,y/m	2	4	1	P01	fp
DIVSS DIVPS	x,x/m	1	10	3	P3	
VDIVPS	y,y,y/m	2	10	6	P3	
DIVSD DIVPD	x,x/m	1	8-13	4-5	P3	
VDIVPD	y,y,y/m	2	8-13	8-9	P3	
RCPSS/PS	x,x/m	1	5	1	P01	
VRCPPS	y,y/m	2	5	2	P01	
CMPSS/D	<i>y</i> , <i>y</i> ,	_		_		
CMPPS/D	x,x/m	1	1	0.5	P01	
VCMPPS/D	y,y,y/m	2	1	1	P01	
COMISS/D						
UCOMISS/D	x,x/m	2	4	1	P012	
MAXSS/SD/PS/PD						_
MINSS/SD/PS/PD	x,x/m	1	1	0.5	P01	fp
VMAXPS/D VMINPS/D	y,y,y/m	2	1	1	P01	
ROUNDSS/SD/PS/PD	x,x/m,i	1	4	1	P3	fp
VROUNDSS/SD/PS/						_
PD	y,y/m,i	2	4	2	P3	fp
DPPS	x,x,i	8	15	4	P0 P1 P2 P3	SSE4.1
DPPS	x,m,i	10		5	P0 P1 P2 P3	SSE4.1
VDPPS	y,y,y,i	13	16	5	P0 P1 P2 P3	SSE4.1
VDPPS	y,m,i	14		5	P0 P1 P2 P3	SSE4.1
DPPD	x,x,i	3	10	3	P0 P1 P2 P3	SSE4.1
DPPD	x,m,i	5		4	P0 P1 P2 P3	SSE4.1
VFMADD132SS/SD	x,x,x/m	1	5	0.5	P01	FMA3
VFMADD132PS/PD	x,x,x/m	1	5	0.5	P01	FMA3
VFMADD132PS/PD	y,y,y/m	2	5	1	P01	FMA3
All other FMA3 instruction	ns: same as a	bove			P01	FMA3
VFMADDSS/SD	x,x,x,x/m	1	5	0.5	P01	Not officially
VFMADDPS/PD	x,x,x,x/m	1	5	0.5	P01	supported.
VFMADDPS/PD	y,y,y,y/m	2	5	1	P01	Don't use!
All other FMA4 instruction	ons: same as a	bove				
Math						
SQRTSS/PS	x,x/m	1	9-10	4-5	P3	fp
VSQRTPS	y,y/m	2	9-10	8-10		ıρ
SQRTSD/PD	x,x/m	1	14-15	4-8		
VSQRTPD	y,y/m	2	14-15	8-16		
RSQRTSS/PS	y,y/III x,x/m	1	5	0-10 1	P01	
VRSQRTPS	y,y/m	2	5	2	P01	
	J1J''''	_		-		
Logic						

AND/ANDN/OR/XORPS/PD	x,x/m	1	1	0.25	P0123	fp
VAND/ANDN/OR/XOR		_				
PS/PD	y,y,y/m	2	1	0.5	P0123	
Other						
VZEROUPPER		10		4		32 bit mode
VZEROUPPER		17		6		64 bit mode
VZEROALL		18		6		32 bit mode
VZEROALL		33		11		64 bit mode
LDMXCSR	m32	1		16		
STMXCSR	m32	2		14		
FXSAVE	m4096	87		90		
FXRSTOR	m4096	121		140		
XSAVE	m	160		166		
XSAVEOPT	m	97		130		
XRSTOR	m	213		340		
XSAVEC	m	111		150		

AMD Bobcat

List of instruction timings and macro-operation breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB,

JNE, etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, xmm = 128 bit xmm register, m = any memory operand including

indirect operands, m64 means 64-bit memory operand, etc.

Ops: Number of micro-operations issued from instruction decoder to schedulers. In-

structions with more than 2 micro-operations are micro-coded.

Latency: This is the delay that the instruction generates in a dependency chain. The num-

bers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latencies listed do not include memory operands where the oper-

and is listed as register or memory (r/m).

The clock frequency varies dynamically, which makes it difficult to measure latencies. The values listed are measured after the execution of millions of similar instructions, assuming that this will make the processor boost the clock frequency

to the highest possible value.

Reciprocal throughput:

This is also called issue latency. This value indicates the average number of clock cycles from the execution of an instruction begins to a subsequent independent instruction of the same kind can begin to execute. A value of 1/2 indicates that the execution units can handle 2 instructions per clock cycle in one thread. However, the throughput may be limited by other bottlenecks in the pipe-

line.

Execution pipe: Indicates which execution pipe is used for the micro-operations. I0 means integer

pipe 0. I0/1 means integer pipe 0 or 1. FP0 means floating point pipe 0 (ADD). FP1 means floating point pipe 1 (MUL). FP0/1 means either one of the two floating point pipes. Two micro-operations can execute simultaneously if they go to

different execution pipes.

Integer instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipe	Notes
Move instructions	1					
MOV	r,r	1	1	0.5	I0/1	
MOV	r,i	1		0.5	10/1	
MOV	r,m	1	4	1	AGU	Any addr. mode
MOV	m,r	1	4	1	AGU	Any addr. mode
MOV	m8,r8H	1	7	1	AGU	AH, BH, CH, DH
MOV	m,i	1		1	AGU	
MOVNTI	m,r	1	6	1	AGU	
MOVZX, MOVSX	r,r	1	1	0.5	10/1	
MOVZX, MOVSX	r,m	1	5	1		
MOVSXD	r64,r32	1	1	0.5		
MOVSXD	r64,m32	1	5	1		
CMOVcc	r,r	1	1	0.5	10/1	
CMOVcc	r,m	1		1		
XCHG	r,r	2	1	1	IO/1	
XCHG	r,m	3	20			Timing dep. on hw

XLAT		2	5			
PUSH	r	1		1		
PUSH	i	1		1		
PUSH	m	3		2		
PUSHF(D/Q)		9		6		
PUSHA(D)		9		9		
POP	r	1		1		
POP	m	4		4		
POPF(D/Q)		29		22		
POPA(D)	40.5	9		8		
LEA	r16,[m]	2	3	2	10	Any address size
LEA	r32/64,[m]	1	1	0.5	10/1	no scale, no offset
LEA	r32/64,[m]	1	2-4	1	10	w. scale or offset
LEA	r64,[m]	1		0.5	10/1	RIP relative
LAHF		4	4	2		
SAHF		1	1	0.5	10/1	
SALC		1	1			
BSWAP	r	1	1	0.5	10/1	
	r	-	I			
PREFETCHNTA	m	1		1	AGU	
PREFETCHT0/1/2	m	1		1	AGU	
PREFETCH	m	1		1	AGU	AMD only
SFENCE		4		~45	AGU	
LFENCE		1		1	AGU	
MFENCE		4		~45	AGU	
Arithmetic instruction	s					
ADD, SUB	r,r/i	1	1	0.5	IO/1	
ADD, SUB	r,m	1		1		
ADD, SUB		1		1		
	m,r		_		10/4	
ADC, SBB	r,r/i	1	1	1	10/1	
ADC, SBB	r,m	1		1		
ADC, SBB	m,r/i	1	6-7			
CMP	r,r/i	1	1	0.5	10/1	
CMP	r,m	1		1		
INC, DEC, NEG	r	1	1	0.5	10/1	
INC, DEC, NEG	m	1	6			
AAA		9	5			
AAS		9	10			
DAA		12	7			
DAS		16	8			
AAD		4	5			
AAM		33	23	23		
MUL, IMUL	r8/m8	1	3	1	10	
MUL, IMUL	r16/m16	3	3-5		10	latency ax=3, dx=5
MUL, IMUL	r32/m32	2	3-4	2	10	latency eax=3, edx=4
MUL, IMUL	r64/m64	2	6-7		10	latency rax=6, rdx=7
IMUL	r16,r16/m16	1	3	1	10	-, -, -, -, -, -, -, -, -, -, -, -, -,
IMUL	r32,r32/m32	1	3	1	10	
			6			
IMUL	r64,r64/m64	1		4	10	
IMUL	r16,(r16),i	2	4	3	10	
IMUL	r32,(r32),i	1	3	1	10	
IMUL	r64,(r64),i	1	7	4	10	
DIV	r8/m8	1	27	27	10	

DIV	r16/m16	1	33	33	10	
DIV	r32/m32	1	49	49	10	
DIV	r64/m64	1	81	81	10	
IDIV	r8/m8	1	29	29	10	
IDIV	r16/m16	1	37	37	10	
IDIV	r32/m32	1	55	55	10	
IDIV			81	81	10	
1	r64/m64	1		81		
CBW, CWDE, CDQE		1	1		I0/1	
CWD, CDQ, CQO		1	1		10/1	
Logic instructions						
AND, OR, XOR	r,r	1	1	0.5	IO/1	
					10/1	
AND, OR, XOR	r,m	1		1		
AND, OR, XOR	m,r	1		1		
TEST	r,r	1	1	0.5	10/1	
TEST	r,m	1		1		
NOT	r	1	1	0.5	10/1	
NOT	m	1		1		
SHL, SHR, SAR	r,i/CL	1	1	0.5	10/1	
ROL, ROR	r,i/CL	1	1	0.5	10/1	
RCL, RCR	r,1	1	1	1	I0/1	
RCL	r,i	9	5	5		
RCR	r,i	7	4	4		
RCL	r,ĆL	9	6	5		
RCR	r,CL	9	5	4		
	1,01	9	J	7		
SHL,SHR,SAR,ROL,			_			
ROR	m,i /CL	1	7	1		
RCL, RCR	m,1	1	7	1		
RCL	m,i	10		~15		
RCR	m,i	9	18	~14		
RCL	m,ČL	9		15		
RCR	m,CL	8		15		
			2			
SHLD, SHRD	r,r,i	6	3	3		
SHLD, SHRD	r,r,cl	7	4	4		
SHLD, SHRD	m,r,i/CL	8	18	15		
BT	r,r/i	1		0.5		
ВТ	m,i	1		1		
ВТ	m,r	5		3		
BTC, BTR, BTS	r,r/i	2	2	1		
BTC, BTK, BTS		5		15		
	m,i					
BTR, BTS	m,i	4-5		15		
BTC	m,r	8	16	13		
BTR, BTS	m,r	8	15	15		
BSF, BSR	r,r	11	6	6		
BSF, BSR	r,m	11		6		
POPCNT	r,r/m	9	12	5		SSE4.A/SSE4.2
LZCNT	r,r/m	8	5	0.5		SSE4.A, AMD only
SETcc	r	1	1	0.5		
SETcc	m	1		1		
CLC, STC		1		0.5	10/1	
CMC		1	1	0.5	10/1	
CLD		1		1	10	
STD		2		2	10,11	
010		~	l		10,11	1

Control transfer instru	ictions					
JMP	short/near	1		2		
JMP	r	1		2		
JMP	m(near)	1		2		
Jcc	short/near	1		1/2 - 2		recip. t. = 2 if jump
J(E/R)CXZ	short	2		1 - 2		recip. t. = 2 if jump
LOOP	short	8		4		
CALL	near	2		2		
CALL	r	2		2		
CALL	m(near)	5		2		
RET		1		~3		
RET	i	4		~4		
BOUND	m	8		4		values for no jump
INTO		4		2		values for no jump
String instructions						
LODS		4		~3		
REP LODS		5		~3		values are per count
STOS		4		2		
REP STOS		2				best case 6-7 B/clk
MOVS		7		5		
REP MOVS		2				best case 5 B/clk
SCAS		5		3		
REP SCAS		6		3		values are per count
CMPS		7		4		
REP CMPS		6		3		values are per count
Other						
NOP (90)		1	0	0.5	10/1	
Long NOP (0F 1F)		1	0	0.5	10/1	
PAUSE		6		6		
ENTER		i,0	12		36	
ENTER		a,b	10+6b		34+6b	
LEAVE		2		3		32 bit mode
CPUID		30-52	70-830			
RDTSC		26		87		
RDPMC		14		8		

Floating point x87 instructions

1 loading point xo7 instructions									
Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipe	Notes			
Move instructions									
FLD	r	1	2	0.5	FP0/1				
FLD	m32/64	1	6	1	FP0/1				
FLD	m80	7	14	5					
FBLD	m80	21	30	35					
FST(P)	r	1	2	0.5	FP0/1				
FST(P)	m32/64	1	6	1	FP1				
FSTP	m80	16	19	9					
FBSTP	m80	217	177	180					
FXCH	r	1	0	1	FP1				

FILD	m	1	9	1	FP1
FIST(T)(P)	m	1	6	1	
FLDZ, FLD1		1		1	FP1
FCMOVcc	st0,r	12	7	7	FP0/1
FFREE	r	1		1	FP1
FINCSTP, FDECSTP		1	1	1	FP1
FNSTSW	AX	2	~20	10	FP1
FNSTSW	m16	2	~20	10	FP1
FNSTCW	m16	3		2	FP0
FLDCW	m16	12		10	FP1
Arithmetic instruction	 s				
FADD(P),FSUB(R)(P)	r	1	3	1	FP0
FADD(P),FSUB(R)(P)	m m	1	3	1	FP0
FIADD,FISUB(R)	m	2		3	FP0,FP1
FMUL(P)	r	1	5	3	FP1
FMUL(P)	m '		5	3	FP1
FIMUL		2	5	3	FP1
	m _	1	10	10	
FDIV(R)(P)	r	1	19	19	FP1
FDIV(R)(P)	m	1		19	FP1
FIDIV(R)	m m	2		19	FP1
FABS, FCHS		1	2	2	FP1
FCOM(P), FUCOM(P)	r	1		1	FP0
FCOM(P), FUCOM(P)	m	1		1	FP0
FCOMPP, FUCOMPP		1		1	FP0
FCOMI(P)	r	1	2	2	FP0
FICOM(P)	m	2		1	FP0, FP1
FTST		1		1	FP0
FXAM		2		2	FP1
FRNDINT		5	11		FP0, FP1
FPREM		1	11-16		FP1
FPREM1		1	11-19		FP1
Math					
FSQRT		1	31		FP1
FLDPI, etc.		1		1	FP0
FSIN		4-44	27-105	27-105	FP0, FP1
FCOS		11-51	51-94	51-94	FP0, FP1
FSINCOS		11-75	48-110	48-110	FP0, FP1
FPTAN		~45	~113	~113	FP0, FP1
FPATAN		9-75	49-163	49-163	FP0, FP1
FSCALE		5	8		FP0, FP1
FXTRACT		7	9		FP0, FP1
F2XM1		30-56	~60		FP0, FP1
FYL2X		8	29		FP0, FP1
FYL2XP1		12	44		FP0, FP1
Other					
FNOP		1	0	0.5	FP0, FP1
(F)WAIT		1	0	0.5	ALU
FNCLEX		9		30	FP0, FP1
FNINIT		26		78	FP0, FP1
FNSAVE	m	85		163	FP0, FP1

FRSTOR	m	80	123	FP0, FP1	
FXSAVE	m	71	105	FP0, FP1	
FXRSTOR	m	111	118	FP0, FP1	

Integer MMX and XMM instructions

Integer MMX and X	MIM Instruc	tions				
Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipe	Notes
Move instructions						
MOVD	r32, mm	1	7	1	FP0	
MOVD	mm, r32	1	7	3	FP0/1	
MOVD	mm,m32	1	5	1	FP0/1	
MOVD	r32, xmm	1	6	1	FP0	
MOVD	xmm, r32	3	6	3	FP1	
MOVD	xmm,m32	2	5	1	FP1	
MOVD	m32,(x)mm	1	6	2	FP1	
	, ,					Moves 64 bits.
MOVD (MOVQ)	r64,(x)mm	1	7	1	FP0	Name differs
MOVD (MOVQ)	mm,r64	2	7	3	FP0/1	do.
MOVD (MOVQ)	xmm,r64	3	7	3	FP0/1	do.
MOVQ	mm,mm	1	1	0.5	FP0/1	
MOVQ	xmm,xmm	2	1	1	FP0/1	
MOVQ	mm,m64	1	5	1	FP0/1	
MOVQ	xmm,m64	2	5	1	FP1	
MOVQ	m64,(x)mm	1	6	2	FP1	
MOVDQA	xmm,xmm	2	1 1	_ 1	FP0/1	
MOVDQA	xmm,m	2	6	2	AGU	
MOVDQA	m,xmm	2	6	3	FP1	
MOVDQU, LDDQU	xmm,m	2	6-9	2-5.5	AGU	
MOVDQU	m,xmm	2	6-9	3-6	FP1	
MOVDQ2Q	mm,xmm	1	1	0.5	FP0/1	
MOVQ2DQ	xmm,mm	2	1 1	1	FP0/1	
MOVNTQ	m,mm	1	13	1,5	FP1	
MOVNTDQ	m,xmm	2	13	3	FP1	
PACKSSWB/DW	111,7011111	_		Ü		
PACKUSWB	mm,r/m	1	1	0.5	FP0/1	
PACKSSWB/DW	,	'	•	0.0		
PACKUSWB	xmm,r/m	3	2	2	FP0/1	
PUNPCKH/LBW/WD/D	,,,,,,,,,		_	-		
Q	mm,r/m	1	1	0.5		
PUNPCKH/LBW/WD/D	,	_		0.0		
Q	xmm,r/m	2	1 1	1		
PUNPCKHQDQ	xmm,r/m	2	1	1	FP0, FP1	
PUNPCKLQDQ	xmm,r/m	1	1 1	0.5	FP0/1	
PSHUFB	mm,mm	1	2	1	FP0/1	Suppl. SSE3
PSHUFB	xmm,xmm	6	3	3	FP0/1	Suppl. SSE3
PSHUFD	xmm,xmm,i	3	2	2	FP0/1	- Capp COLO
PSHUFW	mm,mm,i	1	1	0.5	FP0/1	
PSHUFL/HW	xmm,xmm,i	2	2	2	FP0/1	
PALIGNR	xmm,xmm,i	20	19	12	FP0/1	Suppl. SSE3
MASKMOVQ	mm,mm	32	146-1400	130-1170	FP0, FP1	Cuppi. 00L0
MASKMOVDQU	xmm,xmm	64	279-3000		FP0, FP1	
PMOVMSKB	r32,(x)mm	1	8	2	FP0	

PEXTRW	r32,(x)mm,i	2	12	2	FP0, FP1	
PINSRW	mm,r32,i	2	10	6	FP0/1	
PINSRW	xmm,r32,i	3	10	_	FP0/1	
INSERTQ	xmm,xmm	3	3-4	3	FP0, FP1	SSE4.A, AMD only
INSERTQ	xmm,xmm,i,i	3	3-4	3	FP0, FP1	SSE4.A, AMD only
EXTRQ	xmm,xmm	1	1	1	FP0/1	SSE4.A, AMD only
EXTRQ	xmm,xmm,i,i	1	2	2	FP0/1	SSE4.A, AMD only
LXIIIQ	XIIIIII,XIIIIII,I,I	•	_	_	11 0/1	OOL+.A, AIVID ONLY
Arithmetic instruction						
PADDB/W/D/Q	5					
PADDSB/W						
PADDUSB/W						
PSUBB/W/D/Q						
PSUBSB/W						
PSUBUSB/W	mm,r/m	1	1	0.5	FP0/1	
PADDB/W/D/Q		-				
PADDSB/W						
ADDUSB/W						
PSUBB/W/D/Q						
PSUBSB/W						
PSUBUSB/W	xmm,r/m	2	1	1	FP0/1	
PHADD/SUBW/SW/D	mm,r/m	1	1	0.5	FP0/1	Suppl. SSE3
PHADD/SUBW/SW/D	xmm,r/m	2	4	1	FP0/1	Suppl. SSE3
PCMPEQ/GT B/W/D	mm,r/m	1	1	0.5	FP0/1	
PCMPEQ/GT B/W/D	xmm,r/m	2	1	1	FP0/1	
PMULLW PMULHW	,					
PMULHUW						
PMULUDQ	mm,r/m	1	2	1	FP0	
PMULLW PMULHW	,					
PMULHUW						
PMULUDQ	xmm,r/m	2	2	2	FP0	
PMULHRSW	mm,r/m	1	2	1	FP0	Suppl. SSE3
PMULHRSW	xmm,r/m	2	2	2	FP0	Suppl. SSE3
PMADDWD	mm,r/m	1	2	1	FP0	
PMADDWD	xmm,r/m	2	2	2	FP0	
PMADDUBSW	mm,r/m	1	2	1	FP0	Suppl. SSE3
PMADDUBSW	xmm,r/m	2	2	2	FP0	Suppl. SSE3
PAVGB/W	mm,r/m	1	1	0.5	FP0/1	''
PAVGB/W	xmm,r/m	2	1	1	FP0/1	
PMIN/MAX SW/UB	mm,r/m	1	1	0.5	FP0/1	
PMIN/MAX SW/UB	xmm,r/m	2	1	1	FP0/1	
PABSB/W/D	mm,r/m	1	1	0.5	FP0/1	Suppl. SSE3
PABSB/W/D	xmm,r/m	2	1	1	FP0/1	Suppl. SSE3
PSIGNB/W/D	mm,r/m	1	1	0.5	FP0/1	Suppl. SSE3
PSIGNB/W/D	xmm,r/m	2	1	1	FP0/1	Suppl. SSE3
PSADBW	mm,r/m	1	2	2	FP0	
PSADBW	xmm,r/m	2	2	2	FP0, FP1	
. 5, 65, 77	Ziiiii,i/III	_	_	_	0,	
Logic						
PAND PANDN POR	-					
PXOR	mm,r/m	1	1	0.5	FP0/1	
PAND PANDN POR		Ī	'	0.0	1.0/1	
PXOR	xmm,r/m	2	1	1	FP0/1	
1	^!!!!!,!/!!!	_	'	'	110/1	1

PSLL/RL W/D/Q PSRAW/D	mm,i/mm/m	1	1	1	FP0/1	
PSLL/RL W/D/Q PSRAW/D PSLLDQ, PSRLDQ	xmm,i/xmm/m xmm,i	2 2	1 1	1 1	FP0/1 FP0/1	
Other EMMS	,	1		0.5	FP0/1	

Floating point XMM instructions									
Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipe	Notes			
Move instructions									
MOVAPS/D	r,r	2	1	1	FP0/1				
MOVAPS/D	r,m	2	6	2	AGU				
MOVAPS/D	m,r	2	6	3	FP1				
MOVUPS/D	r,r	2	1	1	FP0/1				
MOVUPS/D	r,m	2	6-9	2-6	AGU				
MOVUPS/D	m,r	2	6-9	3-6	FP1				
MOVSS/D	r,r	1	1	0.5	FP0/1				
MOVSS/D	r,m	2	6	2	FP1				
MOVSS/D	m,r	1	5	2	FP1				
MOVHLPS, MOVLHPS									
	r,r	1	1	0.5	FP0/1				
MOVHPS/D,									
MOVLPS/D	r,m	1	6	2	AGU				
MOVHPS/D,									
MOVLPS/D	m,r	1	5	3	FP1				
MOVNTPS/D	m,r	2	12	3	FP1				
MOVNTSS/D	m,r	1	12	2	FP1	SSE4.A, AMD only			
MOVDDUP	r,r	2	2	1	FP0/1	SSE3			
MOVDDUP	r,m64	2	7	2	FP0/1	SSE3			
MOVSHDUP,									
MOVSLDUP	r,r	2	1	1	FP0/1				
MOVSHDUP,									
MOVSLDUP	r,m	2	12	3	AGU				
MOVMSKPS/D	r32,r	1	~6	2	FP0				
SHUFPS/D	r,r/m,i	3	2	2	FP0/1				
UNPCK H/L PS/D	r,r/m	2	1	1	FP0/1				
Conversion									
CVTPS2PD	r,r/m	2	5	2	FP1				
CVTPD2PS	r,r/m	4	5	3	FP0, FP1				
CVTSD2SS	r,r/m	3	5	3	FP0, FP1				
CVTSS2SD	r,r/m	1	4	1	FP1				
CVTDQ2PS	r,r/m	2	4	4	FP1				
CVTDQ2PD	r,r/m	2	5	2	FP1				
CVT(T)PS2DQ	r,r/m	2	4	4	FP1				
CVT(T)PD2DQ	r,r/m	4	6	3	FP0, FP1				
CVTPI2PS	xmm,mm	1	4	2	FP1				
CVTPI2PD	xmm,mm	2	5	2	FP1				
CVT(T)PS2PI	mm,xmm	1	4	1	FP1				

CVT(T)PD2PI	mm,xmm	3	6	2	FP0, FP1	
CVT(1)FD2F1	xmm,r32	3	12	3	FP0, FP1	
CVTSI2SS CVTSI2SD	-	2	11	3	FP1	
CVTSI2SD CVT(T)SS2SI	xmm,r32 r32,xmm	2	12	1	FP0, FP1	
, ,	•	2	11			
CVT(T)SD2SI	r32,xmm	2	11	1	FP0, FP1	
Arithmetic						
ADDSS/D SUBSS/D	r,r/m	1	3	1	FP0	
ADDPS/D SUBPS/D	r,r/m	2	3	2	FP0	
ADDSUBPS/D	r,r/m	2	3	2	FP0	SSE3
HADDPS/D	,					
HSUBPS/D	r,r/m	2	3	2	FP0	SSE3
MULSS	r,r/m	1	2	1	FP1	
MULSD	r,r/m	1	4	2	FP1	
MULPS	r,r/m	2	2	2	FP1	
MULPD	r,r/m	2	4	4	FP1	
DIVSS	r,r/m	1	13	13	FP1	
DIVPS	r,r/m	2	38	38	FP1	
DIVSD	r,r/m	1	17	17	FP1	
DIVPD	r,r/m	2	34	34	FP1	
RCPSS	r,r/m	1	3	1	FP1	
RCPPS	r,r/m	2	3	2	FP1	
MAXSS/D MINSS/D	r,r/m	1	2	1	FP0	
MAXPS/D MINPS/D	r,r/m	2	2	2	FP0	
CMPccSS/D	r,r/m	1	2	1	FP0	
CMPccPS/D	r,r/m	2	2	2	FP0	
COMISS/D	1,17111	_	_	_		
UCOMISS/D	r,r/m	1		1	FP0	
	.,					
Logic						
ANDPS/D ANDNPS/D						
ORPS/D XORPS/D	r,r/m	2	1	1	FP0/1	
Math						
SQRTSS	r,r/m	1	14	14	FP1	
SQRTPS	r,r/m	2	48	48	FP1	
SQRTSD	r,r/m	1	24	24	FP1	
SQRTPD	r,r/m	2	48	48	FP1	
RSQRTSS	r,r/m	1	3	1	FP1	
RSQRTPS	r,r/m	2	3	2	FP1	
Other		,-		4.5		
LDMXCSR	m	12		10	FP0, FP1	
STMXCSR	m	3		11	FP0, FP1	

AMD Jaguar

List of instruction timings and macro-operation breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB,

JNE, etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, xmm = 128 bit xmm register, m = any memory operand including

indirect operands, m64 means 64-bit memory operand, etc.

Ops: Number of micro-operations issued from instruction decoder to schedulers. In-

structions with more than 2 micro-operations are micro-coded.

Latency: This is the delay that the instruction generates in a dependency chain. The num-

bers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latencies listed do not include memory operands where the oper-

and is listed as register or memory (r/m).

The clock frequency varies dynamically, which makes it difficult to measure latencies. The values listed are measured after the execution of millions of similar instructions, assuming that this will make the processor boost the clock frequency

to the highest possible value.

Reciprocal throughput: This is also called issue latency. This value indicates the average number of clock cycles from the execution of an instruction begins to a subsequent independent instruction of the same kind can begin to execute. A value of 1/2 indicates that the execution units can handle 2 instructions per clock cycle in one thread. How-

ever, the throughput may be limited by other bottlenecks in the pipeline.

Execution pipe: Indicates which execution pipe is used for the micro-operations. I0 means integer

pipe 0. I0/1 means integer pipe 0 or 1. FP0 means floating point pipe 0 (ADD). FP1 means floating point pipe 1 (MUL). FP0/1 means either one of the two floating point pipes. Two micro-operations can execute simultaneously if they go to

different execution pipes.

Integer instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipe	Notes
Move instructions						
MOV	r,r	1	1	0.5	10/1	
MOV	r,i	1		0.5	10/1	
MOV	r8/16,m	1	4	1	AGU	Any addressing mode
MOV	m,r8/16	1	4	1	AGU	Any addressing mode
MOV	r32/64,m	1	3	1	AGU	Any addressing mode
						Any addressing
MOV	m,r32/64	1	0	1	AGU	mode
MOV	m,i	1		1	AGU	
MOVNTI	m,r	1	6	1	AGU	
MOVZX, MOVSX	r,r	1	1	0.5	10/1	
MOVZX, MOVSX	r,m	1	4	1		
MOVSXD	r64,r32	1	1	0.5		

			9-			
MOVSXD	r64,m32	1	3	1		
CMOVcc	r,r	1	1	0.5	10/1	
		"	1		10/ 1	
CMOVcc	r,m	1		1		
XCHG	r8,r8	3	2	2	10/1	
XCHG	r,r	2	1	1	10/1	
						Timing depends on
XCHG	r,m	3	16			hw
XLAT	,,,,,	2	5	3		
	_		3			
PUSH	r	1		1		
PUSH	i	1		1		
PUSH	m	2		1		
PUSH	SP	2		1		
PUSHF(D/Q)		9		6		
PUSHA(D)		9		8		
POP	r	1		1		
POP	m	3		2		
POP	SP	1		2		
POPF(D/Q)		29		18		
POPA(D)		9		8		
LEA	r16,[m]	2	3	2	10	Any address size
LEA	r32/64,[m]	1	1	0.5	10/1	1-2 comp., no scale
LEA			2	1	10/1	1
	r32/64,[m]	1				3 comp. or scale
LEA	r64,[m]	1		0.5	10/1	RIP relative
LAHF		4	3	2		
SAHF		1	1	0.5	10/1	
SALC		1	1	1		
BSWAP	r	1	1	0.5	10/1	
MOVBE	r,m	1	•	1	107 1	MOVBE
MOVBE				1		MOVBE
	m,r	1			4.01.1	IVIOVBE
PREFETCHNTA	m	1		~100	AGU	
PREFETCHT0/1/2	m	1		~100	AGU	
PREFETCHW	m	1		~100	AGU	
LFENCE		1		0.5	AGU	
MFENCE		4		~45	AGU	
SFENCE		4		~45	AGU	
OI LIVOL		_		40	7100	
A with we of its impature of its m	_					
Arithmetic instructions		4	4	0.5	10/4	
ADD, SUB	r,r/i	1	1	0.5	10/1	
ADD, SUB	r,m	1		1		
ADD, SUB	m,r	1	6	1		
ADC, SBB	r,r/i	1	1	1	10/1	
ADC, SBB	r,m	1		1		
ADC, SBB	m,r/i	1	8			
CMP	r,r/i	1	1	0.5	10/1	
				1	10/1	
CMP	r,m	1	_		10/4	
INC, DEC, NEG	r	1	1	0.5	10/1	
INC, DEC, NEG	m	1	6	1		
AAA		9	5			
AAS		9	8			
DAA		12	6			
DAS		16	8			
AAD		4	5			
				10		
AAM		8	14	13		

ı			1	ı	I.	
MUL, IMUL	r8/m8	1	3	1	10	
MUL, IMUL	r16/m16	3	3	3	10	
MUL, IMUL	r32/m32	2	3	2	10	
MUL, IMUL	r64/m64	2	6	5	10	
IMUĹ	r16,r16/m16	1	3	1	10	
IMUL	r32,r32/m32	1	3	1	10	
IMUL	r64,r64/m64	1	6	4	10	
IMUL	r16,(r16),i	2	4	1	10	
1	1 ' '		3	1		
IMUL	r32,(r32),i	1			10	
IMUL	r64,(r64),i	1	6	4	10	
DIV	r8/m8	1	11-14	11-14	10	
DIV	r16/m16	2	12-19	12-19	10	
DIV	r32/m32	2	12-27	12-27	10	
DIV	r64/m64	2	12-43	12-43	10	
IDIV	r8/m8	1	11-14	11-14	10	
IDIV	r16/m16	2	12-19	12-19	10	
IDIV	r32/m32	2	12-27	12-27	10	
IDIV	r64/m64	2	12-43	12-43	10	
CBW, CWDE, CDQE		1	1		10/1	
CWD, CDQ, CQO		1	1		10/1	
OWD, ODQ, OQO		'			10/1	
Logio inotructiono						
Logic instructions	<u>.</u> .	4	4	0.5	10/1	
AND, OR, XOR	r,i	1	1	0.5	10/1	
AND, OR, XOR	r,r	1	1	0.5	I0/1	
AND, OR, XOR	r,m	1		1		
AND, OR, XOR	m,r	1	6	1		
ANDN	r,r,r	1	1	0.5		BMI1
ANDN	r,r,m	2		1		BMI1
TEST	r,i	1	1	0.5	10/1	
TEST	r,r	1	1	0.5	10/1	
TEST	r,m	1		1		
NOT	r	1	1	0.5	10/1	
NOT	m	1	6	1		
SHL, SHR, SAR	r,i/CL	1	1	0.5	10/1	
ROL, ROR	r,i/CL	1	1	0.5	10/1	
RCL, RCR	r,1	1	1	1	10/1	
RCL	r,i	9	5	5	10/1	
RCR	r,i	7	4	4		
RCL			5			
	r,CL	9		5		
RCR	r,CL	7	4	4		
SHL,SHR,SAR,ROL,				_		
ROR	m,i /CL	1	6	1		
RCL, RCR	m,1	1		1		
RCL	m,i	10		11		
RCR	m,i	9		11		
RCL	m,CL	9		11		
RCR	m,CL	8		11		
SHLD, SHRD	r,r,i	6	3	3		
SHLD, SHRD	r,r,cl	7	4	4		
SHLD, SHRD	m,r,i/CL	8		11		
BT	r,r/i	1		0.5		
BT	m,i	1		1		
BT		5		3		
וסן	m,r	၁	l	ی		

			9-			
BTC, BTR, BTS	r,r/i	2	2	1 1		
BTC	m,i	5	_	11		
BTR, BTS	m,i	4		11		
BTC, BTR, BTS	m,r	8		11		
BSF	r,r	7	4	4		
BSR	r,r	8	4	4		
BSF, BSR	r,m	8		4		
			4			00544/0054.0
POPCNT	r,r/m	1	1	0.5		SSE4A/SSE4.2
LZCNT	r,r	1	1	0.5		SSE4A/LZCNT
TZCNT	r,r	2	2	1		BMI1
BLSI BLSR	r,r	2	2	1		BMI1
BLSI BLSR	r,m	3	_	2		BMI1
		1	2	1		
BLSMSK	r,r	2				BMI1
BLSMSK	r,m	3		2		BMI1
BEXTR	r,r,r	1	1	0.5		BMI1
BEXTR	r,m,r	2		1		BMI1
SETcc	r	1 1	1	0.5		
SETcc	m	1		1		
	111				10/4	
CLC, STC		1		0.5	10/1	
CMC		1	1		IO/1	
CLD		1		1	10	
STD		2		2	10,11	
		-		_	,	
Control transfer instru	ctions					
				0		
JMP	short/near	1		2		
JMP	r	1		2		
JMP	m(near)	1		2		
Jcc	short/near	1		0.5 - 2		2 if jumping
J(E/R)CXZ	short	2		1 - 2		2 if jumping
LOOP	short	8		5		
		1				
LOOPE LOOPNE	short	10		6		
CALL	near	2		2		
CALL	r	2		2 2		
CALL	m(near)	5		2		
RET	()	1		3		
RET	i	4		3		
KEI	ı	4		3		_
				_		values are for no
BOUND	m	8		4		jump
						values are for no
INTO		4		2		jump
String instructions						
LODS		4		2		
REP LODS		~5n		~3n		
STOS		4		2		
REP STOS		~2n		~n		for small n
REP STOS		2/16B		1/16B		best case
MOVS		7		4		
						for season
REP MOVS		~2n		~1.5n		for small n
REP MOVS		2/16B		1/16B		best case
SCAS		5		3		
REP SCAS		~6n		~3n		
CMPS		7		4		
15						

REP CMPS		~6n		~3n		
Synchronization						
LOCK ADD	m,r	1	19			
XADD	m,r	4	11			
LOCK XADD	m,r	4	16			
CMPXCHG	m,r8	5	11			
LOCK CMPXCHG	m,r8	5	16			
CMPXCHG	m,r16/32/64	6	11			
LOCK CMPXCHG	m,r16/32/64	6	17			
CMPXCHG8B	m64	18	11			
LOCK CMPXCHG8B	m64	18	19			
CMPXCHG16B	m128	28	32			
LOCK CMPXCHG16B	m128	28	38			
Other						
NOP (90)		1		0.5	10/1	
Long NOP (0F 1F)		1		0.5	10/1	
PAUSE		37		46		
ENTER		i,0	12		18	
ENTER		a,b	10+6b	17+3b		
LEAVE		2		3		32 bit mode
CPUID		30-59	70-230			
XGETBV		5		5		
RDTSC		34		41		
RDTSCP		34		42		rdtscp
RDPMC		30		27		
CRC32	r,r	3	3	2		
CRC32	r,m	4		2		

Floating point x87 instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipe	Notes
Move instructions						
FLD	r	1	2	0.5	FP0/1	
FLD	m32/64	1	4	1	FP0/1	
FLD	m80	7	9	5		
FBLD	m80	21	24	29		
FST(P)	r	1	2	0.5	FP0/1	
FST(P)	m32/64	1	3	1	FP1	
FSTP	m80	10	9	7		
FBSTP	m80	217	167	168		
FXCH	r	1	0	1	FP1	
FILD	m	1	8	1	FP1	
FIST(T)(P)	m	1	4	1	FP1	
FLDZ, FLD1		1		1	FP1	
FCMOVcc	st0,r	12	7	7	FP0/1	
FFREE	r	1		1	FP1	
FINCSTP, FDECSTP		1	1	1	FP1	
FNSTSW	AX	2		11	FP1	
FNSTSW	m16	2		11	FP1	
FNSTCW	m16	3		2	FP0	

FLDCW m16 12 9 FP1	
Arithmetic instructions	
FADD(P),FSUB(R)(P)	
FADD(P),FSUB(R)(P) m 1 1 FP0	
FIADD,FISUB(R) m 2 FP0,FP1	
FMUL(P) r 1 5 3 FP1	
FMUL(P) m 1 3 FP1	
FIMUL m 1 FP1	
FDIV(R)(P) r 1 22 22 FP1	
FDIV(R)(P) m 1 22 FP1	
FIDIV(R) m 2 22 FP1	
FABS, FCHS 1 2 2 FP1	
FCOM(P), FUCOM(P) r 1 FP0	
FCOM(P), FUCOM(P) m 1 1 FP0	
FCOMPP, FUCOMPP 1 1 FP0	
FCOMI(P) r 1 2 FP0	
FICOM(P) m 2 1 FP0, FP1	
FTST 1 1 FP0	
FXAM 2 1FP1	
FRNDINT 5 8 4 FP0, FP1	
FPREM 1 11-54 FP1	
FPREM1 1 11-56 FP1	
11170	
Math	
FSQRT 1 35 35 FP1	
FLDPI, etc. 1 1 FP0	
FSIN 4-44 30-139 30-151 FP0, FP1	
FCOS 11-51 38-93 FP0, FP1	
FSINCOS 11-76 55-122 55-180 FP0, FP1	
FPTAN 11-45 55-177 55-177 FP0, FP1	
FPATAN 9-75 44-167 44-167 FP0, FP1	
FSCALE 5 27 FP0, FP1	
FXTRACT 7 9 6 FP0, FP1	
F2XM1 8 32-37 FP0, FP1	
FYL2X 8-51 30-120 30-120 FP0, FP1	
FYL2XP1 61 ~160 ~160 FP0, FP1	
Other	
FNOP 1 0.5 FP0/1	
(F)WAIT 1 0 0.5 ALU	
FNCLEX 9 32 FP0, FP1	
FNINIT 27 78 FP0, FP1	
FNSAVE m 88 138-150 138-150 FP0, FP1	
FRSTOR	

Integer vector instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipe	Notes
Move instructions						
MOVD	r32, mm	1	4	1	FP0	
MOVD	mm, r32	2	6	1	FP0/1	

MOVD	mm m22	1 4		4	ACI1	1
	mm,m32	1	4	1	AGU	
MOVD	r32, x	1	4	1	FP0	
MOVD	x, r32	2	6	1	FP1	
MOVD	x,m32	1	4	1	AGU	
MOVD	m32,(x)mm	1	3	1	FP1	
MOVD (MOVO	nC 4 (11) no no	_	_	4	EDO	Moves 64 bits.Name of instruction differs
MOVD / MOVQ	r64,(x)mm	1	4	1	FP0	
MOVQ	mm,r64	2	6	1	FP0/1	do.
MOVQ	x,r64	2	6	1	FP0/1	do.
MOVQ	mm,mm	1	1	0.5	FP0/1	
MOVQ	X,X	1	1	0.5	FP0/1	
MOVQ	(x)mm,m64	1	4	1	AGU	
MOVQ	m64,(x)mm	1	3	1	FP1	
MOVDQA	X,X	1	1 1	0.5	FP0/1	
VMOVDQA	y,y	2	1 1	1	FP0/1	AVX
MOVDQA	x,m	1	4	1	AGU	
VMOVDQA	y,m	2	4	2	AGU	AVX
MOVDQA	m,x	1	3	1	FP1	
VMOVDQA	m,y	2	3	2	FP1	AVX
MOVDQU, LDDQU	x.m	1	4	1	AGU	
MOVDQU	m,x	1	3	1	FP1	
MOVDQ2Q	mm,x	1	1	0.5	FP0/1	
MOVQ2DQ	x,mm	1	1	0.5	FP0/1	
MOVNTQ	m,mm	1	429	2	FP1	
MOVNTDQ	m,x	1	429	2	FP1	
PACKSSWB/DW						
PACKUSWB	mm,r/m	1	1	0.5	FP0/1	
PACKSSWB/DW						
PACKUSWB	x,r/m	1	2	0.5	FP0/1	
PUNPCKH/LBW/WD/D						
Q	mm,r/m	1	1	0.5	FP0/1	
PUNPCKH/LBW/WD/D						
Q	x,r/m	1	2	0.5	FP0/1	
PUNPCKH/LQDQ	x,r/m	1	2	0.5	FP0/1	
PSHUFB	mm,mm	1	1	0.5	FP0/1	Suppl. SSE3
PSHUFB	x,x	3	4	2	FP0/1	Suppl. SSE3
PSHUFD	x,x,i	1	2	0.5	FP0/1	
PSHUFW	mm,mm,i	1	1	0.5	FP0/1	
PSHUFL/HW	x,x,i	1	1	0.5	FP0/1	
PALIGNR	x,x,i	1	2	0.5	FP0/1	Suppl. SSE3
PBLENDW	x,r/m	1	1	0.5	FP0/1	SSE4.1
MASKMOVQ	mm,mm	32	432	17	FP0, FP1	
MASKMOVDQU	x,x	64	43-2210	34	FP0, FP1	
PMOVMSKB	r32,(x)mm	1	3	1	FP0	
PEXTRW	r32,(x)mm,i	1	4	1	FP0	
PINSRW	mm,r32,i	2	8	1	FP0/1	
PINSRB/W/D/Q	x,r,i	2	7	1	FP0/1	
PINSRB/W/D/Q	x,m,i	1		1	FP0/1	
PEXTRB/W/D/Q	r,x,i	1	3	1	FP0	SSE4.1
PEXTRB/W/D/Q	m,x,i	1		1	FP1	SSE4.1
INSERTQ	x,x	3	2	2	FP0, FP1	SSE4A, AMD only
INSERTQ	x,x,i,i	3	2	2	FP0, FP1	SSE4A, AMD only
EXTRQ	x,x	1	1	0.5	FP0/1	SSE4A, AMD only
1						, , , , , , , , , , , , , , , , , , ,

EXTRQ	x,x,i,i	1	1	0.5	FP0/1	SSE4A, AMD only
PMOVSXBW/BD/BQ/ WD/WQ/DQ	x,x	1	2	0.5	FP0/1	SSE4.1
PMOVZXBW/BD/BQ/ WD/WQ/DQ	x,x	1	2	0.5	FP0/1	SSE4.1
Arithmetic instruction	 e					
PADDB/W/D/Q	5					
PADDSB/W						
ADDUSB/W						
PSUBB/W/D/Q						
PSUBSB/W						
PSUBUSB/W	(x)mm,r/m	1	1	0.5	FP0/1	
PHADD/SUBW/SW/D	mm,r/m	1	1	0.5	FP0/1	Suppl. SSE3
PHADD/SUBW/SW/D	x,r/m	1	2	0.5	FP0/1	Suppl. SSE3
PCMPEQ/GT B/W/D	mm,r/m	1	1	0.5	FP0/1	
PCMPEQ/GT B/W/D	x,r/m	1	1	0.5	FP0/1	
PCMPEQQ	(x)mm,r/m	1	1	0.5	FP0/1	SSE4.1
PCMPGTQ	(x)mm,r/m	1	1	0.5	FP0/1	SSE4.2
PMULLW PMULHW						
PMULHUW						
PMULUDQ	(x)mm,r/m	1	2	1	FP0	
PMULLD	x,r/m	3	4	2	FP0 FP1	SSE4.1
PMULDQ	x,r/m	1	2	1	FP0	SSE4.1
PMULHRSW	(x)mm,r/m	1	2	1	FP0	Suppl. SSE3
PMADDWD	(x)mm,r/m	1	2	1	FP0	
PMADDUBSW	(x)mm,r/m	1	2	1	FP0	Suppl. SSE3
PAVGB/W	(x)mm,r/m	1	1	0.5	FP0/1	
PMIN/MAX SW/UB	(x)mm,r/m	1	1	0.5	FP0/1	
PABSB/W/D	(x)mm,r/m	1	1	0.5	FP0/1	Suppl. SSE3
PSIGNB/W/D	(x)mm,r/m	1	1	0.5	FP0/1	Suppl. SSE3
PSADBW	(x)mm,r/m	1	2	0.5	FP0/1	
MPSADBW	x,x,i	3	4	1	FP0/1	SSE4.1
Logic						
PAND PANDN POR						
PXOR	(x)mm,r/m	1	1	0.5	FP0/1	
PSLL/RL W/D/Q PSRAW/D		4	_	0.5	ED0/4	
	mm,i/mm/m	1	1	0.5	FP0/1	
PSLL/RL W/D/Q PSRAW/D		4	2	0.5	ED0/4	
	X,X	1		0.5	FP0/1	
PSLL/RL W/D/Q PSRAW/D		1	1	0.5	FP0/1	
PSLLDQ, PSRLDQ	x,i x,i	1	2	0.5	FP0/1	
PTEST		1	3	1	FP0/1	SSE4.1
FIESI	x,x/m	'	3	l	FFU	33E4.1
String instructions						
PCMPESTRI	x,x,i	9	5	5	FP0/1	SSE4.2
PCMPESTRI	x,m,i	10		5	FP0/1	SSE4.2
PCMPESTRM	x,x,i	9	9	9	FP0/1	SSE4.2
PCMPESTRM	x,m,i	10		9	FP0/1	SSE4.2
PCMPISTRI	x,x,i	3	2	2	FP0/1	SSE4.2
PCMPISTRI	x,m,i	4		2	FP0/1	SSE4.2

PCMPISTRM	x,x,i	3	8	8	FP0/1	SSE4.2
PCMPISTRM	x,m,i	4		2	FP0/1	SSE4.2
Encryption						
PCLMULQDQ	x,x/m,i	1	3	1	FP0	PCLMUL
AESDEC	x,x	2	5	1	FP0/1	AES
AESDECLAST	X,X	2	5	1	FP0/1	AES
AESENC	x,x	2	5	1	FP0/1	AES
AESENCLAST	x,x	2	5	1	FP0/1	AES
AESIMC	x,x	1	2	1	FP0/1	AES
AESKEYGENASSIST	x,x,i	1	2	1	FP0/1	AES
Other						
EMMS		1		0.5	FP0/1	

Floating point XMM instructions								
Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipe	Notes		
Move instructions								
MOVAPS/D	x,x	1	1	0.5	FP0/1			
VMOVAPS/D	y,y	2	1	1	FP0/1			
MOVAPS/D	x,m	1	4	1	AGU			
VMOVAPS/D	y,m	2	4	2	AGU			
MOVAPS/D	m,x	1	3	1	FP1			
VMOVAPS/D	m,y	2	3	2	FP1			
MOVUPS/D	x,x	1	1	0.5	FP0/1			
VMOVUPS/D	y,y	2	1	1	FP0/1			
MOVUPS/D	x,m	1	4	1	AGU			
VMOVUPS/D	y,m	2	4	2	AGU			
MOVUPS/D	m,x	1	3	1	FP1			
VMOVUPS/D	m,y	2	3	2	FP1			
MOVSS/D	X,X	1	1	0.5	FP0/1			
MOVSS/D	x,m	1	4	1	AGU			
MOVSS/D	m,x	1	3	1	FP1			
MOVHLPS, MOVLHPS								
	x,x	1	2	2	FP0/1			
MOVHPS/D,								
MOVLPS/D	x,m	1	5	1	FP0/1			
MOVHPS/D,								
MOVLPS/D	m,x	1	4	1	FP1			
MOVNTPS/D	m,x	1	429	1	FP1			
MOVNTSS/D	m,x	1		1	FP1	SSE4A, AMD only		
MOVDDUP	x,x	1	2	0.5	FP0/1	SSE3		
MOVDDUP	x,m64	1		1	AGU	SSE3		
VMOVDDUP	y,y	2	2	1	FP0/1	AVX		
VMOVDDUP	y,m	2		2	AGU	AVX		
MOVSH/LDUP	x,x	1	1	0.5	FP0/1			
MOVSH/LDUP	x,m	1		1	AGU			
VMOVSH/LDUP	y,y	2	1	1	FP0/1	AVX		
VMOVSH/LDUP	y,m	2		2	AGU	AVX		
MOVMSKPS/D	r32,x	1	3	1	FP0			
VMOVMSKPS/D	r32,y	1	3	1	FP0	AVX		

			- 3			
SHUFPS/D	x,x/m,i	1	2	0.5	FP0/1	
VSHUFPS/D	y,y,y,i	2	2	1	FP0/1	AVX
UNPCK H/L PS/D	x,x/m	1	2	0.5	FP0/1	
VUNPCK H/L PS/D	y,y,y	2	2	1	FP0/1	AVX
EXTRACTPS	r32,x,i	1	3	1	FP0	
EXTRACTPS	m32,x,i	1	3	1	FP1	
VEXTRACTF128	x,y,i	1	1	0.5	FP0/1	AVX
VEXTRACTF128	m128,y,i	1	12	1	FP1	AVX
INSERTPS	x,x,i	1		1	FP0/1	
INSERTPS	x,m32,i	1	6	1	FP0/1	
VINSERTF128	y,y,x,i	2	1	1	FP0/1	AVX
VINSERTF128	y,y,m128,i	2	13	2	FP0/1	AVX
VMASKMOVPS/D	x,x,m128	1	15	1	FP0/1	>300 clk if mask=0
VMASKMOVPS/D	y,y,m256	2	15	2	FP0/1	>300 clk if mask=0
VMASKMOVPS/D	m128,x,x	19	21	16	FP1	AVX
VMASKMOVPS/D	m256,y,y	36	32	22	FP1	AVX
	.,,,					
Conversion						
CVTPS2PD	x,x/m	1	3	1	FP1	
VCVTPS2PD	y,x/m	2	4	2	FP1	
CVTPD2PS	x,x/m	1	4	1	FP1	
VCVTPD2PS	x,y	3	6	2	FP0, FP1	
CVTSD2SS	x,x/m	2	5	8	FP1	
CVTSS2SD	x,x/m	2	4	7	FP1	
CVTDQ2PS/PD	x,x/m	1	4	1	FP1	
VCVTDQ2PS/PD	y,y	2	4	2	FP1	
CVT(T)PS2DQ	x,x/m	1	4	1	FP1	
VCVT(T)PS2DQ	y,y	2	4	2	FP1	
CVT(T)PD2DQ	x,x/m	1	4	1	FP1	
VCVT(T)PD2DQ	y,y	3	7	2	FP1	
CVTPI2PS	xmm,mm	1	4	1	FP1	
CVTPI2PD	xmm,mm	1	4	1	FP1	
CVT(T)PS2PI	mm,xmm	1	4	1	FP1	
CVT(T)PD2PI	mm,xmm	1	4	1	FP1	
CVTSI2SS	xmm,r32	2	9	1	FP1	
CVTSI2SD	xmm,r32	2	9	1	FP1	
CVT(T)SS2SI	r32,xmm	2	8	1	FP1	
CVT(T)SD2SI	r32,xmm	2	8	1	FP1	
VCVTPS2PH	x/m,x,i	1	4	1	FP1	F16C
VCVTPS2PH	x/m,y,i	3	6	2	FP0, FP1	F16C
VCVTPH2PS	x,x/m	1	4	1	FP1	F16C
VCVTPH2PS	y,x/m	2	5	2	FP1	F16C
Append Superd)	4	_	4	ED0	
ADDSS/D SUBSS/D	x,x/m	1	3	1	FP0	
ADDPS/D SUBPS/D	x,x/m	1	3	1	FP0	
VADDPS/D VSUBPS/D	y,y/m	2	3	2	FP0	0050
ADDSUBPS/D	x,x/m	1	3	1	FP0	SSE3
VADDSUBPS/D	y,y/m	2	3	2	FP0	0053
HADD/SUBPS/D	x,x/m	1	4	1	FP0	SSE3
VHADD/SUBPS/D	y,y/m	2	4	2	FP0	
MULSS/PS	x,x/m	1	2 2	1	FP1	
VMULPS	y,y/m	2	2	2	FP1	

			- 3			
MULSD/PD	x,x/m	1	4	2	FP1	
VMULPD	y,y/m	2	4	2	FP1	
DIVSS	x,x/m	1	14	14	FP1	
DIVPS	x,x/m	1	19	19	FP1	
		2	38		FP1	
VDIVPS	y,y/m			38		
DIVSD	x,x/m	1	19	19	FP1	
DIVPD	x,x/m	1	19	19	FP1	
VDIVPD	y,y/m	2	38	38	FP1	
RCPSS	x,x/m	1	2	1	FP1	
RCPPS	x,x/m	1	2	1	FP1	
VRCPPS	y,y/m	2	2	2	FP1	
MAXSS/D MINSS/D	x,x/m	1	2	1	FP0	
MAXPS/D MINPS/D	x,x/m	1	2	1	FP0	
VMAXPS/D VMINPS/D	y,y/m	2	2	2	FP0	
CMPccSS/D	x,x/m	1	2	1	FP0	
CMPccPS/D	x,x/m	1	2	1	FP0	
VCMPccPS/D		2	2	2	FP0	
	y,y/m					
(U)COMISS/D	x,x/m	1		1	FP0	
ROUNDSS/SD/PS/PD	x,x/m,i	1	4	1	FP1	
VROUNDSS/D/PS/D	y,y/m,i	2	4	2	FP1	
DPPS	x,x,i	5	11	4	FP0, FP1	SSE4.1
DPPS	x,m,i	6		4	FP0, FP1	SSE4.1
VDPPS	y,y,y,i	10	12	7	FP0, FP1	SSE4.1
VDPPS	y,m,i	12		7	FP0, FP1	SSE4.1
DPPD	x,x,i	3	9	3	FP0, FP1	SSE4.1
DPPD	x,m,i	4		3	FP0, FP1	SSE4.1
	, ,					
Logic						
ANDPS/D ANDNPS/D						
ORPS/D XORPS/D	x,x/m	1	1	0.5	FP0/1	
		2	1	1	FP0/1	
VANDPS/D, etc.	y,y/m		ı	ı	FFU/I	
Math						
Math			40	40	ED4	
SQRTSS	x,x/m	1	16	16	FP1	
SQRTPS	x,x/m	2	21	21	FP1	
VSQRTPS	y,y/m	2	42	42	FP1	
SQRTSD	x,x/m	1	27	27	FP1	
SQRTPD	x,x/m	2	27	27	FP1	
VSQRTPD	y,y/m	2	54	54	FP1	
RSQRTSS/PS	x,x/m	1	2	1	FP1	
VRSQRTPS	y,y/m	2	2	2	FP1	
	3.3					
Other						
LDMXCSR	m	12	9	8	FP0, FP1	
STMXCSR	m	3	13	12	FP0, FP1	
VZEROUPPER	•••	21		30	, , , , , ,	32 bit mode
VZEROUPPER		37		46		64 bit mode
VZEROOPPER		41		58		32 bit mode
		1				
VZEROALL		73		90		64 bit mode
FXSAVE		66	66	66		32 bit mode
FXSAVE		58	58	58		64 bit mode
FXRSTOR		115	189	189		32 bit mode
FXRSTOR		123	198	197		64 bit mode

XSAVE	130	145	145	32 bit mode
XSAVE	114	129	129	64 bit mode
XRSTOR	219	342	342	32 bit mode
XRSTOR	251	375	375	64 bit mode

Intel Pentium and Pentium MMX

List of instruction timings

Explanation of column headings:

Operands r = register, accum = al, ax or eax, m = memory, i = immediate data, sr =

segment register, m32 = 32 bit memory operand, etc.

Clock cycles The numbers are minimum values. Cache misses, misalignment, and

exceptions may increase the clock counts considerably.

Pairability u = pairable in u-pipe, v = pairable in v-pipe, uv = pairable in either pipe,

np = not pairable.

Integer instructions (Pentium and Pentium MMX)

Instruction Operands Clock cycles Pairability		integer instructions (Pentium and Pentium wwx)								
MOV r/m, r/m/i 1 uv MOV r/m, sr 1 np MOV sr, r/m >= 2 b) np MOV m, accum 1 uv h) XCHG (E)AX, r 2 np XCHG r, r 3 np XCHG r, m >15 np XLAT 4 np np PUSH r, m 2 np PUSH r, i 1 uv POP r 1 uv PUSH m 2 np POP m 3 np PUSH sr 1 b) np PUSH pop 4-6 np PUSH pop 5-9 i) np PUSH pop 1		Operands	-	Pairability						
MOV r/m, sr 1 np MOV sr, r/m >= 2 b) np MOV m, accum 1 uv h) XCHG (E)AX, r 2 np XCHG r, r 3 np XCHG r, m >15 np XLAT 4 np pp PUSH r, m 1 uv POP r 1 uv PUSH m 2 np POP m 3 np PUSH sr 1 b) np PUSHF 3-5 np POPF 4-6 np np PUSHAD POPAD 5-9 i) np np LEA r, r/m 3 a) np LEA r, m 1 uv LEA r, m 1 uv ADD SUB AND OR XOR r, r/i 1 uv ADD SUB AND OR XOR m, r/i 3 <td></td> <td></td> <td>=</td> <td>uv</td>			=	uv						
MOV sr, r/m >= 2 b) np MOV m, accum 1 uv h) XCHG (E)AX, r 2 np XCHG r, r 3 np XCHG r, m >15 np XLAT 4 np np PUSH r, m >1 uv POP r 1 uv POP m 3 np PUSH m 2 np POP m 3 np PUSH sr 1 b) np PUSH pop sr 5-9 i) np PUSHA POPA pop sr 5-9 i) np PUSHA POPA pop sr r, r/m 3 a)				uv						
MOV m, accum 1 uv h) XCHG (E)AX, r 2 np XCHG r, r 3 np XCHG r, r 3 np XLAT 4 np PV PUSH 4 np PV PUSH m 2 np POP m 3 np PUSH sr 1b) np POP sr 1b) np PUSH sr 1b) np PUSHF 3-5 np POPF 4-6 np PUSHAD POPAD 5-9 i) np LAHF SAHF 2 np MOVSX MOVZX r, r/m 3 a) np LEA r, m 1 uv LDS LES LFS LGS LSS m 4 c) np ADD SUB AND OR XOR r, r/ii 1 uv ADC SBB r, r/ii 1 u AD		,		np						
XCHG (E)AX, r 2 np XCHG r, r 3 np XCHG r, m >15 np XLAT 4 np PUSH r/i 1 uv POP r 1 uv POP m 2 np POP m 3 np PUSH sr 1 b) np POP sr 1 b) np PUSH sr 1 b) np POP sr 3-5 np POPF 4-6 np PUSHAP OPA 5-9 i) np PUSHF 2 np MOVSX MOVZX r, r/m 3 a) np LEA r, r/m 1 uv LDS LES LFS LGS LSS m 4 c) np ADD SUB AND OR XOR r, r/i 1 uv ADD SUB AND OR XOR m, r/i 3 uv ADC		·	>= 2 b)	np						
XCHG r,r 3 np XCHG r,m >15 np XLAT 4 np pp PUSH r/i 1 uv POP r 1 uv POP m 2 np POP m 3 np PUSH sr 1 b) np POP sr 1 b) np PUSH sr 1 b) np POP sr 1 b) np PUSH sr 1 b) np PUSHA POPA 5-9 i) np PUSHA POPA 5-9 i) np PUSHA POPA 5-9 i) np				uv h)						
XCHG r,m >15 np XLAT 4 np PUSH r/i 1 uv POP r 1 uv PUSH m 2 np POP m 3 np PUSH sr 1b) np POP sr 1b) np POPF 4-6 np np PUSHAP POPA 5-9 i) np np PUSHAP POPA 5-9 i) np np PUSHAP POPAD 5-9 i) np np LEA r, r/m 3 a) np LEA r, r/m 1 uv LEA r, r/m 1 uv ADD SUB AND OR XOR r, r/i 1 uv ADD SUB AND OR XOR r, r/i 3 uv ADC SBB r, r/i 1 u ADC SBB r, r/i 1 uv CMP r, r/i		(E)AX, r		np						
XLAT 4 np PUSH r/i 1 uv POP r 1 uv PUSH m 2 np POP m 3 np PUSH sr 1 b) np POP sr >= 3 b) np PUSHAP 3-5 np np PUSHAPOPA 5-9 i) np np PUSHAD POPAD 5 np np LAHF SAHF 2 np np MOVSX MOVZX r, r/m 3 a) np LEA r, m 1 uv LDS LES LFS LGS LSS m 4 c) np ADD SUB AND OR XOR r, r/i 1 uv ADD SUB AND OR XOR r, r/i 3 uv ADC SBB r, r/i 1 u ADC SBB r, r/i 1 u ADC SBB r, r/i 1 uv CMP r, r/i 1 uv TEST r, r 1 uv <td></td> <td>r,r</td> <td></td> <td>np</td>		r,r		np						
PUSH r/i 1 uv POP r 1 uv PUSH m 2 np POP m 3 np PUSH sr 1 b) np POP sr >= 3 b) np PUSHF 3-5 np np POPF 4-6 np np PUSHA POPA 5-9 i) np np PUSHA POPAD 5 np np LAHF SAHF 2 np np MOVSX MOVZX r, r/m 3 a) np LEA r, m 1 uv LDS LES LFS LGS LSS m 4 c) np ADD SUB AND OR XOR r, r/i 1 uv ADD SUB AND OR XOR r, r/i 3 uv ADC SBB r, r/i 1 u ADC SBB r, r/i 1 uv CMP r, r/i 1 uv TEST </td <td>XCHG</td> <td>r, m</td> <td></td> <td>np</td>	XCHG	r, m		np						
POP r 1 uv PUSH m 2 np POP m 3 np PUSH sr 1 b) np POP sr >= 3 b) np PUSHF 3-5 np POPF 4-6 np PUSHAD POPAD 5-9 i) np LAHF SAHF 2 np MOVSX MOVZX r, r/m 3 a) np LEA r, m 1 uv LDS LES LFS LGS LSS m 4 c) np ADD SUB AND OR XOR r, r/i 1 uv ADD SUB AND OR XOR r, r/i 1 u ADC SBB r, r/i 1 u ADC SBB r, r/i 1 u ADC SBB m, r/i 2 u CMP r, r/i 1 uv TEST r, r 1 uv TEST r, r 1 uv <t< td=""><td>XLAT</td><td></td><td>4</td><td>np</td></t<>	XLAT		4	np						
PUSH m 2 np POP m 3 np PUSH sr 1 b) np POP sr >= 3 b) np PUSHF 3-5 np POPF 4-6 np PUSHAD POPAD 5-9 i) np LAHF SAHF 2 np MOVSX MOVZX r, r/m 3 a) np LEA r, m 1 uv LEA r, m 1 uv ADD SUB AND OR XOR r, r/i 1 uv ADD SUB AND OR XOR m, r/i 3 uv ADC SBB r, r/i 1 u ADC SBB r, r/i 1 uv ADC SBB m, r/i 3 u CMP r, r/i 1 uv TEST r, r 1 uv TEST r, r 1 uv TEST r, i 1 r	PUSH	r/i		uv						
POP m 3 np PUSH sr 1 b) np POP sr >= 3 b) np PUSHF 3-5 np POPF 4-6 np PUSHAD POPAD 5-9 i) np LAHF SAHF 2 np MOVSX MOVZX r, r/m 3 a) np LEA r, m 1 uv LEA r, m 1 uv ADD SUB AND OR XOR r, r/i 1 uv ADD SUB AND OR XOR r, r/i 3 uv ADC SBB r, r/i 1 u ADC SBB r, r/i 1 u ADC SBB r, r/i 1 uv ADC SBB m, r/i 2 uv TEST r, r 1 uv TEST r, r 1 uv TEST r, r 1 uv TEST r, i 1 np	POP	r		uv						
PUSH sr 1 b) np POP sr >= 3 b) np PUSHF 3-5 np POPF 4-6 np PUSHAD POPAD 5-9 i) np LAHF SAHF 2 np MOVSX MOVZX r, r/m 3 a) np LEA r, m 1 uv LEA r, m 1 uv ADD SLES LFS LGS LSS m 4 c) np ADD SUB AND OR XOR r, r/i 1 uv ADD SUB AND OR XOR r, r/i 3 uv ADC SBB r, r/i 1 u ADC SBB r, r/i 1 uv ADC SBB m, r/i 3 u CMP r, r/i 1 uv TEST r,r 1 uv TEST r,r 1 np INC DEC r 1 uv		m		np						
POP sr >= 3 b) np PUSHF 3-5 np POPF 4-6 np PUSHAD POPAD 5-9 i) np LAHF SAHF 2 np MOVSX MOVZX r, r/m 3 a) np LEA r, m 1 uv LEA r, m 1 uv LDS LES LFS LGS LSS m 4 c) np ADD SUB AND OR XOR r, r/i 1 uv ADD SUB AND OR XOR m, r/i 3 uv ADC SBB r, r/i 1 u ADC SBB r, m 2 u ADC SBB m, r/i 3 u CMP r, r/i 1 uv CMP r, r/i 1 uv TEST r, r 1 uv TEST r, i 1 r LEA r, r/i 1 uv LEA r, r/i 1 uv </td <td>POP</td> <td>m</td> <td>3</td> <td>np</td>	POP	m	3	np						
PUSHF 3-5 np POPF 4-6 np PUSHA POPA 5-9 i) np PUSHAD POPAD 5 np LAHF SAHF 2 np MOVSX MOVZX r, r/m 3 a) np LEA r, m 1 uv LEA r, m 1 uv ADD SUB AND OR XOR r, r/i 1 uv ADD SUB AND OR XOR m, r/i 3 uv ADC SBB r, r/i 1 u ADC SBB r, r/i 1 u ADC SBB m, r/i 3 u CMP r, r/i 1 uv TEST m, r/i 2 uv TEST m, r 2 uv TEST r, i 1 np INC DEC r 1 uv	PUSH	sr	1 b)	np						
POPF 4-6 np PUSHAD POPAD 5-9 i) np LAHF SAHF 2 np MOVSX MOVZX r, r/m 3 a) np LEA r, m 1 uv LEA r, m 1 uv ADD SUB AND OR XOR r, r/i 1 uv ADD SUB AND OR XOR m, r/i 3 uv ADC SBB r, r/i 1 u ADC SBB r, r/i 1 u ADC SBB m, r/i 3 u CMP r, r/i 1 uv CMP r, r/i 1 uv TEST m, r/i 2 uv TEST r, i 1 uv TEST r, i 1 np INC DEC m 3 uv	POP	sr	>= 3 b)	np						
PUSHA POPA 5-9 i) np PUSHAD POPAD 5 np LAHF SAHF 2 np MOVSX MOVZX r, r/m 3 a) np LEA r, m 1 uv LEA r, r/m 1 uv ADD SUB AND OR XOR r, m 2 uv ADC SBB r, m 1 u ADC SBB r, m 2 u ADC SBB r, r/i 1 uv CMP r, r/i 1 uv TEST m, r 2 uv <	PUSHF		3-5	np						
PUSHAD POPAD 5 np LAHF SAHF 2 np MOVSX MOVZX r, r/m 3 a) np LEA r, m 1 uv ADC SUB AND OR XOR r, r/i 1 uv ADC SBB r, r/i 1 uv CMP r, r/i 1 uv	POPF		4-6	np						
LAHF SAHF 2 np MOVSX MOVZX r, r/m 3 a) np LEA r, m 1 uv LEA r, m 1 uv LES LES LES LGS LSS m 4 c) np ADD SUB AND OR XOR r, r/i 1 uv ADD SUB AND OR XOR m, r/i 3 uv ADC SBB r, r/i 1 u ADC SBB r, r/i 3 u ADC SBB m, r/i 3 u CMP r, r/i 1 uv CMP m, r/i 2 uv TEST r, r 1 uv TEST m, r 2 uv TEST m, i 2 np INC DEC m 3 uv	PUSHA POPA		5-9 i)	np						
MOVSX MOVZX r, r/m 3 a) np LEA r, m 1 uv LDS LES LFS LGS LSS m 4 c) np ADD SUB AND OR XOR r, r/i 1 uv ADD SUB AND OR XOR m, r/i 3 uv ADC SBB r, r/i 1 u ADC SBB r, m 2 u ADC SBB m, r/i 3 u CMP r, r/i 1 uv CMP m, r/i 2 uv TEST r, r 1 uv TEST m, r 2 uv TEST r, i 1 f) TEST r, i 1 np INC DEC m 3 uv	PUSHAD POPAD		5	np						
LEA r, m 1 uv LDS LES LFS LGS LSS m 4 c) np ADD SUB AND OR XOR r, r/i 1 uv ADD SUB AND OR XOR m, r/i 3 uv ADC SBB r, r/i 1 u ADC SBB r, m 2 u ADC SBB m, r/i 3 u CMP r, r/i 1 uv CMP m, r/i 2 uv TEST r, r 1 uv TEST m, r 2 uv TEST m, i 2 np INC DEC r 1 uv INC DEC m 3 uv	LAHF SAHF		2	np						
LDS LES LFS LGS LSS m 4 c) np ADD SUB AND OR XOR r, r/i 1 uv ADD SUB AND OR XOR r, m 2 uv ADC SBB r, r/i 1 u ADC SBB r, m 2 u ADC SBB m, r/i 3 u CMP r, r/i 1 uv CMP m, r/i 2 uv TEST r, r 1 uv TEST m, r 2 uv TEST r, i 1 f) TEST m, i 2 np INC DEC r 1 uv INC DEC m 3 uv	MOVSX MOVZX	r , r/m	3 a)	np						
ADD SUB AND OR XOR r, r/i 1 uv ADD SUB AND OR XOR r, m 2 uv ADC SBB r, r/i 1 u ADC SBB r, m 2 u ADC SBB m, r/i 3 u CMP r, r/i 1 uv CMP m, r/i 2 uv TEST r, r 1 uv TEST m, r 2 uv TEST r, i 1 f) TEST m, i 2 np INC DEC r 1 uv INC DEC m 3 uv	LEA	r, m	1	uv						
ADD SUB AND OR XOR r, m 2 uv ADD SUB AND OR XOR m, r/i 3 uv ADC SBB r, r/i 1 u ADC SBB m, r/i 3 u CMP r, r/i 1 uv CMP m, r/i 2 uv TEST r, r 1 uv TEST r, i 1 f) TEST m, i 2 np INC DEC r 1 uv INC DEC m 3 uv	LDS LES LFS LGS LSS	m	4 c)	np						
ADD SUB AND OR XOR m, r/i 3 uv ADC SBB r, r/i 1 u ADC SBB r, m 2 u ADC SBB m, r/i 3 u CMP r, r/i 1 uv CMP m, r/i 2 uv TEST r, r 1 uv TEST m, r 2 uv TEST r, i 1 f) TEST m, i 2 np INC DEC r 1 uv INC DEC m 3 uv	ADD SUB AND OR XOR	r , r/i	1	uv						
ADC SBB r, r/i 1 u ADC SBB r, m 2 u ADC SBB m, r/i 3 u CMP r, r/i 1 uv CMP m, r/i 2 uv TEST r, r 1 uv TEST m, r 2 uv TEST r, i 1 f) TEST m, i 2 np INC DEC r 1 uv INC DEC m 3 uv	ADD SUB AND OR XOR	r, m	2	uv						
ADC SBB r, m 2 u ADC SBB m, r/i 3 u CMP r, r/i 1 uv CMP m, r/i 2 uv TEST r, r 1 uv TEST m, r 2 uv TEST r, i 1 f) TEST m, i 2 np INC DEC r 1 uv INC DEC m 3 uv	ADD SUB AND OR XOR	m , r/i	3	uv						
ADC SBB m, r/i 3 u CMP r, r/i 1 uv CMP m, r/i 2 uv TEST r, r 1 uv TEST m, r 2 uv TEST r, i 1 f) TEST m, i 2 np INC DEC r 1 uv INC DEC m 3 uv	ADC SBB	r , r/i	1	u						
CMP r, r/i 1 uv CMP m, r/i 2 uv TEST r, r 1 uv TEST m, r 2 uv TEST r, i 1 f) TEST m, i 2 np INC DEC r 1 uv INC DEC m 3 uv	ADC SBB	r, m	2	u						
CMP m, r/i 2 uv TEST r, r 1 uv TEST m, r 2 uv TEST r, i 1 f) TEST m, i 2 np INC DEC r 1 uv INC DEC m 3 uv	ADC SBB	m , r/i	3	u						
TEST r,r 1 uv TEST m,r 2 uv TEST r,i 1 f) TEST m,i 2 np INC DEC r 1 uv INC DEC m 3 uv	CMP	r , r/i	1	uv						
TEST m,r 2 uv TEST r,i 1 f) TEST m,i 2 np INC DEC r 1 uv INC DEC m 3 uv	CMP	m , r/i	2	uv						
TEST r,i 1 f) TEST m,i 2 np INC DEC r 1 uv INC DEC m 3 uv	TEST	r,r	1	uv						
TEST m,i 2 np INC DEC r 1 uv INC DEC m 3 uv	TEST	m,r	2	uv						
INC DEC r 1 uv INC DEC m 3 uv	TEST	r,i	1	f)						
INC DEC r 1 uv INC DEC m 3 uv	TEST		2	1 '						
INC DEC m 3 uv	INC DEC			· .						
			3							
	NEG NOT	r/m	1/3							

MUL IMUL	r8/r16/m8/m16	11	np
MUL IMUL	all other versions	9 d)	np
DIV	r8/m8	17	np
DIV	r16/m16	25	np
DIV	r32/m32	41	np
IDIV	r8/m8	22	np
IDIV	r16/m16	30	np
IDIV	r32/m32	46	np
CBW CWDE	102/11102	3	np
CWD CDQ		2	np
SHR SHL SAR SAL	r,i	1	u
SHR SHL SAR SAL	m,i	3	u
SHR SHL SAR SAL	r/m, CL	4/5	np
ROR ROL RCR RCL	r/m, 1	1/3	u
ROR ROL	r/m, i(><1)	1/3	np
ROR ROL	r/m, CL	4/5	np
RCR RCL	r/m, i(><1)	8/10	
RCR RCL	r/m, CL	7/9	np nn
SHLD SHRD	r, i/CL	4 a)	np nn
SHLD SHRD	m, i/CL	5 a)	np np
BT	r, r/i	4 a)	np np
BT	m, i	4 a)	np np
BT	m, i	9 a)	np np
BTR BTS BTC	r, r/i	эа) 7 а)	np np
BTR BTS BTC	m, i	8 a)	np np
BTR BTS BTC	m, r	14 a)	np
BSF BSR	r , r/m	7-73 a)	np np
SETCC	r/m	1-73 a) 1/2 a)	np np
JMP CALL	short/near	1/2 a)	np v
JMP CALL	far	>= 3 e)	
conditional jump	short/near	1/4/5/6 e)	np v
CALL JMP	r/m	2/5 e	np
RETN	17111	2/5 e	np
RETN	i	3/6 e)	np
RETF	•	4/7 e)	np
RETF	i	5/8 e)	np
J(E)CXZ	short	4-11 e)	np
LOOP	short	5-10 e)	np
BOUND	r, m	8	np
CLC STC CMC CLD STD	, ,	2	np
CLI STI		6-9	np
LODS		2	np
REP LODS		7+3*n g)	np
STOS		3	np
REP STOS		10+n g)	np
MOVS		4	np
REP MOVS		12+n g)	np
SCAS		4	np
REP(N)E SCAS		9+4*n g)	
CMPS		9+4 ii g) 5	np np
		8+4*n g)	np np
REP(N)E CMPS			np
BSWAP	r	1 a)	np
CPUID		13-16 a)	np

RDTSC	6-13 a) j) np
Notes:	
а	This instruction has a 0FH prefix which takes one clock cycle extra to decode on a P1 unless preceded by a multi-cycle instruction.
b	versions with FS and GS have a 0FH prefix. see note a.
С	versions with SS, FS, and GS have a 0FH prefix. see note a.
d	versions with two operands and no immediate have a 0FH prefix, see
е	ମିଫୁନ values are for mispredicted jumps/branches.
f	only pairable if register is AL, AX or EAX.
g	add one clock cycle for decoding the repeat prefix unless preceded by a multi-cycle instruction (such as CLD).
h	pairs as if it were writing to the accumulator.
i	9 if SP divisible by 4 (imperfect pairing).
j	on P1: 6 in privileged or real mode; 11 in non-privileged; error in virtual mode. On PMMX: 8 and 13 clocks respectively.

Floating point instructions (Pentium and Pentium MMX)

Explanation of column headings

Operands r = register, m = memory, m32 = 32-bit memory operand, etc. Clock cycles The numbers are minimum values. Cache misses, misalignment,

denormal operands, and exceptions may increase the clock counts

considerably.

Pairability + = pairable with FXCH, np = not pairable with FXCH.

Overlap with integer instructions. i-ov = 4 means that the last four clock i-ov

cycles can overlap with subsequent integer instructions.

fp-ov Overlap with floating point instructions. fp-ov = 2 means that the last two

clock cycles can overlap with subsequent floating point instructions.

(WAIT is considered a floating point instruction here)

Instruction	Operand	Clock cycles	Pairability	i-ov	fp-ov
FLD	r/m32/m64	1	0	0	0
FLD	m80	3	np	0	0
FBLD	m80	48-58	np	0	0
FST(P)	r	1	np	0	0
FST(P)	m32/m64	2 m)	np	0	0
FST(P)	m80	3 m)	np	0	0
FBSTP	m80	148-154	np	0	0
FILD	m	3	np	2	2
FIST(P)	m	6	np	0	0
FLDZ FLD1		2	np	0	0
FLDPI FLDL2E etc.		5 s)	np	2	2
FNSTSW	AX/m16	6 q)	np	0	0
FLDCW	m16	8	np	0	0
FNSTCW	m16	2	np	0	0
FADD(P)	r/m	3	0	2	2
FSUB(R)(P)	r/m	3	0	2	2
FMUL(P)	r/m	3	0	2	2 n)
FDIV(R)(P)	r/m	19/33/39 p)	0	38 o)	2
FCHS FABS		1	0	0	0

FCOM(P)(P) FUCOM	r/m	1	0	0	0
FIADD FISUB(R)	m	6	np	2	2
FIMUL	m	6	np	2	2
FIDIV(R)	m	22/36/42 p)	np	38 o)	2
FICOM	m	4	np	0	0
FTST		1	np	0	0
FXAM		17-21	np	4	0
FPREM		16-64	np	2	2
FPREM1		20-70	np	2	2
FRNDINT		9-20	np	0	0
FSCALE		20-32	np	5	0
FXTRACT		12-66	np	0	0
FSQRT		70	np	69 o)	2
FSIN FCOS		65-100 r)	np	2	2
FSINCOS		89-112 r)	np	2	2
F2XM1		53-59 r)	np	2	2
FYL2X		103 r)	np	2	2
FYL2XP1		105 r)	np	2	2
FPTAN		120-147 r)	np	36 o)	0
FPATAN		112-134 r)	np	2	2
FNOP		1	np	0	0
FXCH	r	1	np	0	0
FINCSTP FDECSTP		2	np	0	0
FFREE	r	2	np	0	0
FNCLEX		6-9	np	0	0
FNINIT		12-22	np	0	0
FNSAVE	m	124-300	np	0	0
FRSTOR	m	70-95	np	0	0
WAIT		1	np	0	0

N	o	te	s	
---	---	----	---	--

r

m The value to store is needed one clock cycle in advance.

n 1 if the overlapping instruction is also an FMUL.
o Cannot overlap integer multiplication instructions.

p FDIV takes 19, 33, or 39 clock cycles for 24, 53, and 64 bit precision re-

spectively. FIDIV takes 3 clocks more. The precision is defined by bit 8-9

of the floating point control word.

q The first 4 clock cycles can overlap with preceding integer instructions.

Clock counts are typical. Trivial cases may be faster, extreme cases may

be slower.

s May be up to 3 clocks more when output needed for FST, FCHS, or

FABS.

MMX instructions (Pentium MMX)

A list of MMX instruction timings is not needed because they all take one clock cycle, except the MMX multiply instructions which take 3. MMX multiply instructions can be pipelined to yield a throughput of one multiplication per clock cycle.

The EMMS instruction takes only one clock cycle, but the first floating point instruction after an EMMS takes approximately 58 clocks extra, and the first MMX instruction after a floating point instruction takes approximately 38 clocks extra. There is no penalty for an MMX instruction after EMMS on the PMMX.

There is no penalty for using a memory operand in an MMX instruction because the MMX arithmetic unit is one step later in the pipeline than the load unit. But the penalty comes when you store data from an MMX register to memory or to a 32-bit register: The data have to be ready one clock cycle in advance. This is analogous to the floating point store instructions.

All MMX instructions except EMMS are pairable in either pipe. Pairing rules for MMX instructions are described in manual 3: "The microarchitecture of Intel, AMD and VIA CPUs".

Intel Pentium II and Pentium III

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm = 128 bit xmm

register, sr = segment register, m = memory, m32 = 32-bit memory operand, etc.

μορs: The number of μops that the instruction generates for each execution port.

p0: Port 0: ALU, etc.p1: Port 1: ALU, jumps

p01: Instructions that can go to either port 0 or 1, whichever is vacant first.

p2: Port 2: load data, etc.

p3: Port 3: address generation for store

p4: Port 4: store data

Latency: This is the delay that the instruction generates in a dependency chain. (This is

not the same as the time spent in the execution unit. Values may be inaccurate in situations where they cannot be measured exactly, especially with memory operands). The numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays by 50-150 clocks, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give a

similar delay.

Reciprocal throughput: The average number of clock cycles per instruction for a series of independent

instructions of the same kind.

Integer instructions (Pentium Pro. Pentium II and Pentium III)

Instruction	Operands	Operands µops						Latency	Reciprocal
		p0	p1	p01	p2	рЗ	p4		throughput
MOV	r,r/i			1					
MOV	r,m				1				
MOV	m,r/i					1	1		
MOV	r,sr			1					
MOV	m,sr			1		1	1		
MOV	sr,r	8						5	
MOV	sr,m	7			1			8	
MOVSX MOVZX	r,r			1					
MOVSX MOVZX	r,m				1				
CMOVcc	r,r	1		1					
CMOVcc	r,m	1		1	1				
XCHG	r,r			3					
XCHG	r,m			4	1	1	1	high b)	
XLAT				1	1				
PUSH	r/i			1		1	1		
POP	r			1	1				
POP	(E)SP			2	1				
PUSH	m			1	1	1	1		
POP	m			5	1	1	1		
PUSH	sr			2		1	1		
POP	sr			8	1				

DUOLIE(D)	I		I		I	۱ .	l .	I	I
PUSHF(D)		3		11		1	1		
POPF(D)		10		6	1	_			
PUSHA(D)				2	_	8	8		
POPA(D)				2	8				
LAHF SAHF				1					
LEA	r,m	1						1 c)	
LDS LES LFS LGS									
LSS	m			8	3				
ADD SUB AND OR XOR	r,r/i			1					
ADD SUB AND OR XOR	r,m			1	1				
ADD SUB AND OR XOR	m,r/i			1	1	1	1		
ADC SBB	r,r/i			2					
ADC SBB	r,m			2	1				
ADC SBB	m,r/i			3	1	1	1		
CMP TEST	r,r/i			1					
CMP TEST	m,r/i			1	1				
INC DEC NEG NOT	r			1					
INC DEC NEG NOT	m			1	1	1	1		
AAA AAS DAA DAS			1						
AAD		1		2				4	
AAM		1	1	2				15	
IMUL	r,(r),(i)	1						4	1
IMUL	(r),m	1			1			4	1
DIV IDIV	r8	2		1				19	12
DIV IDIV	r16	3		1				23	21
DIV IDIV	r32	3		1				39	37
DIV IDIV	m8	2		1	1			19	12
DIV IDIV	m16	2		1	1			23	21
DIV IDIV	m32	2		1	1			39	37
CBW CWDE				1					
CWD CDQ		1							
SHR SHL SAR ROR									
ROL	r,i/CL	1							
SHR SHL SAR ROR	1,								
ROL	m,i/CL	1			1	1	1		
RCR RCL	r,1	1		1					
RCR RCL	r8,i/CL	4		4					
RCR RCL	r16/32,i/CL	3		3					
RCR RCL	m,1	1		2	1	1	1		
RCR RCL	m8,i/CL	4		3	1	1	1		
RCR RCL	m16/32,i/CL	4		2	1	1	1		
SHLD SHRD	r,r,i/CL	2		_	'	'	'		
SHLD SHRD	m,r,i/CL	2		1	1	1	1		
BT	r,r/i	_		1	'	'	'		
BT	m,r/i	1		6	1				
BTR BTS BTC	r,r/i	'		1	'				
BTR BTS BTC	m,r/i	1		6	1	1	1		
BSF BSR		'	1	1	'	'	'		
BSF BSR	r,r		1	1	1				
SETcc	r,m		'	1	'				
OL 100	r	I		'	I	l	I	I	l

SETcc	m			1		1	1		
JMP	short/near		1	-			-		2
JMP	far	21	•		1				_
JMP	r		1						2
JMP	m(near)		1		1				2
JMP	m(far)	21	'		2				_
conditional jump	short/near	'	1		_				2
CALL	near		1	1		1	1		2
CALL	far	28	'	'	1	2	2		_
CALL	r	20	1	2	•	1	1		2
CALL	m(near)			4	1		1		2
CALL	m(far)	28		"	2	2	2		
RETN	iii(iai)	20	1	2	1	-			2
RETN	i			3	1				2
RETF	'	23	1	3	3				
	i				3				
RETF		23	4	4	٥				
J(E)CXZ	short		1	1					
LOOP	short	2	1	8					
LOOP(N)E	short	2	1	8					
ENTER	i,0		1.0	12		1	1		
ENTER	a,b	ca.	18	+4b		b-1	2b		
LEAVE				2	1				
BOUND	r,m	7		6	2				
CLC STC CMC				1					
CLD STD				4					
CLI		9							
STI		17							
INTO				5					
LODS					2				
REP LODS			10+6	'n					
STOS					1	1	1		
REP STOS			ca. 5	n	a)				
MOVS				1	3	1	1		
REP MOVS			ca. 6	n	a)				
SCAS				1	2				
REP(N)E SCAS			12+7	'n					
CMPS				4	2				
REP(N)E CMPS			12+9)n					
BSWAP	r	1		1					
NOP (90)				1					0,5
Long NOP (0F 1F)				1					1
CPUID		23-48							
RDTSC		31							
IN		18						>300	
OUT		18						>300	
PREFETCHNTA d)	m				1				
PREFETCHT0/1/2 d)	m				1				
SFENCE d)						1	1		6
Notes	l		1	1	L		-	I.	

Notes

- a) Faster under certain conditions: see manual 3: "The microarchitecture of Intel, AMD and VIA CPUs".
- b) Has an implicit LOCK prefix.
- c) 3 if constant without base or index register
- d) P3 only.

Floating point x87 instructions (Pentium Pro, II and III)

Instruction	Operands	J	<u> • •</u>	•	ops	Latency	Reciprocal		
	'	p0	p1	p01		рЗ	p4		throughput
FLD	r	1	<u> </u>	<u>'</u>	•	1	•		
FLD	m32/64				1			1	
FLD	m80	2			2				
FBLD	m80	38			2				
FST(P)	r	1							
FST(P)	m32/m64					1	1	1	
FSTP	m80	2				2	2		
FBSTP	m80	165				2	2		
FXCH	r							0	⅓ f)
FILD	m	3			1			5	ŕ
FIST(P)	m	2				1	1	5	
FLDZ		1							
FLD1 FLDPI FLDL2E etc.		2							
FCMOVcc	r	2						2	
FNSTSW	AX	3						7	
FNSTSW	m16	1				1	1		
FLDCW	m16	1		1	1			10	
FNSTCW	m16	1				1	1		
FADD(P) FSUB(R)(P)	r	1						3	1
FADD(P) FSUB(R)(P)	m	1			1			3-4	1
FMUL(P)	r	1						5	2 g)
FMUL(P)	m	1			1			5-6	2 g)
FDIV(R)(P)	r	1						38 h)	37
FDIV(R)(P)	m	1			1			38 h)	37
FABS		1							
FCHS		3						2	
FCOM(P) FUCOM	r	1						1	
FCOM(P) FUCOM	m	1			1			1	
FCOMPP FUCOMPP		1		1				1	
FCOMI(P) FUCOMI(P)	r	1						1	
FCOMI(P) FUCOMI(P)	m	1			1			1	
FIADD FISUB(R)	m	6			1				
FIMUL	m	6			1				
FIDIV(R)	m	6			1				
FICOM(P)	m	6			1				
FTST		1						1	
FXAM		1						2	
FPREM		23							
FPREM1		33							
FRNDINT		30							

FSCALE		56				
FXTRACT		15				
FSQRT		1			69	e,i)
FSIN FCOS		17-97		27-103	e)	
FSINCOS		18-110		29-130	e)	
F2XM1		17-48		66	e)	
FYL2X		36-54		103	e)	
FYL2XP1		31-53		98-107	e)	
FPTAN		21-102		13-143	e)	
FPATAN		25-86		44-143	e)	
FNOP		1				
FINCSTP FDECSTP		1				
FFREE	r	1				
FFREEP	r	2				
FNCLEX			3			
FNINIT		13				
FNSAVE		141				
FRSTOR		72				
WAIT			2			

Notes:

e) Not pipelined

f) FXCH generates 1 μop that is resolved by register renaming without going to any

port.

g) FMUL uses the same circuitry as integer multiplication. Therefore, the combined

throughput of mixed floating point and integer multiplications is 1 FMUL + 1 IMUL

per 3 clock cycles.

h) FDIV latency depends on precision specified in control word: 64 bits precision

gives latency 38, 53 bits precision gives latency 32, 24 bits precision gives latency 18. Division by a power of 2 takes 9 clocks. Reciprocal throughput is 1/(la-

tency-1).

i) Faster for lower precision.

Integer MMX instructions (Pentium II and Pentium III)

Instruction	Operands			μ	ops			Latency	Reciprocal
		p0	p1	p01	p2	рЗ	p4		throughput
MOVD MOVQ	r,r			1				1	0,5
MOVD MOVQ	mm,m32/64				1				1
MOVD MOVQ	m32/64,mm					1	1		1
PADD PSUB PCMP	mm,mm			1				1	0,5
PADD PSUB PCMP	mm,m64			1	1				1
PMUL PMADD	mm,mm	1						3	1
PMUL PMADD	mm,m64	1			1			3	1
PAND(N) POR PXOR	mm,mm			1				1	0,5
PAND(N) POR PXOR	mm,m64			1	1				1
PSRA PSRL PSLL	mm,mm/i		1					1	1
PSRA PSRL PSLL	mm,m64		1		1				1
PACK PUNPCK	mm,mm		1					1	1
PACK PUNPCK	mm,m64		1		1				1
EMMS		11						6 k)	
MASKMOVQ d)	mm,mm			1		1	1	2-8	2 - 30

PMOVMSKB d)	r32,mm		1					1	1	
MOVNTQ d)	m64,mm					1	1		1 - 30	
PSHUFW d)	mm,mm,i		1					1	1	
PSHUFW d)	mm,m64,i		1		1			2	1	
PEXTRW d)	r32,mm,i		1	1				2	1	
PINSRW d)	mm,r32,i		1					1	1	
PINSRW d)	mm,m16,i		1		1			2	1	
PAVGB PAVGW d)	mm,mm			1				1	0,5	
PAVGB PAVGW d)	mm,m64			1	1			2	1	
PMIN/MAXUB/SW d)	mm,mm			1				1	0,5	
PMIN/MAXUB/SW d)	mm,m64			1	1			2	1	
PMULHUW d)	mm,mm	1						3	1	
PMULHUW d)	mm,m64	1			1			4	1	
PSADBW d)	mm,mm	2		1				5	2	
PSADBW d)	mm,m64	2		1	1			6	2	

Notes:

d) P3 only.

The delay can be hidden by inserting other instructions between EMMS and any subsequent floating point instruction.

Floating point XMM instructions (Pentium III)

Instruction	Operands			μ	ops			Latency		
		p0	p1	p01	p2	рЗ	p4		throughput	
MOVAPS	xmm,xmm			2				1	1	
MOVAPS	xmm,m128				2			2	2	
MOVAPS	m128,xmm					2	2	3	2	
MOVUPS	xmm,m128				4			2	4	
MOVUPS	m128,xmm		1			4	4	3	4	
MOVSS	xmm,xmm			1				1	1	
MOVSS	xmm,m32			1	1			1	1	
MOVSS	m32,xmm					1	1	1	1	
MOVHPS MOVLPS	xmm,m64			1				1	1	
MOVHPS MOVLPS	m64,xmm					1	1	1	1	
MOVLHPS MOVHLPS	xmm,xmm			1				1	1	
MOVMSKPS	r32,xmm	1						1	1	
MOVNTPS	m128,xmm					2	2		2 - 15	
CVTPI2PS	xmm,mm		2					3	1	
CVTPI2PS	xmm,m64		2		1			4	2	
CVT(T)PS2PI	mm,xmm		2					3	1	
CVTPS2PI	mm,m128		1		2			4	1	
CVTSI2SS	xmm,r32		2		1			4	2	
CVTSI2SS	xmm,m32		2		2			5	2	
CVT(T)SS2SI	r32,xmm		1		1			3	1	
CVTSS2SI	r32,m128		1		2			4	2	
ADDPS SUBPS	xmm,xmm		2					3	2	
ADDPS SUBPS	xmm,m128		2		2			3	2	
ADDSS SUBSS	xmm,xmm		1					3	1	
ADDSS SUBSS	xmm,m32		1		1			3	1	

MULPS	xmm,xmm	2				4	2
MULPS	xmm,m128	2			2	4	2
MULSS	xmm,xmm	1				4	1 1
MULSS	xmm,m32	1			1	4	1 1
DIVPS	xmm,xmm	2				48	34
DIVPS	xmm,m128	2			2	48	34
DIVSS	xmm,xmm	1				18	17
DIVSS	xmm,m32	1			1	18	17
AND(N)PS ORPS XORPS	xmm,xmm		2			2	2
AND(N)PS ORPS XORPS	xmm,m128		2		2	2	2
MAXPS MINPS	xmm,xmm		2			3	2
MAXPS MINPS	xmm,m128		2		2	3	2
MAXSS MINSS	xmm,xmm		1			3	1 1
MAXSS MINSS	xmm,m32		1		1	3	1 1
CMPccPS	xmm,xmm		2			3	2
CMPccPS	xmm,m128		2		2	3	2
CMPccSS	xmm,xmm		1			3	1 1
CMPccSS	xmm,m32		1		1	3	1 1
COMISS UCOMISS	xmm,xmm		1			1	1 1
COMISS UCOMISS	xmm,m32		1		1	1	1 1
SQRTPS	xmm,xmm	2				56	56
SQRTPS	xmm,m128	2			2	57	56
SQRTSS	xmm,xmm	2				30	28
SQRTSS	xmm,m32	2			1	31	28
RSQRTPS	xmm,xmm	2				2	2
RSQRTPS	xmm,m128	2			2	3	2
RSQRTSS	xmm,xmm	1				1	1 1
RSQRTSS	xmm,m32	1			1	2	1 1
RCPPS	xmm,xmm	2				2	2
RCPPS	xmm,m128	2			2	3	2
RCPSS	xmm,xmm	1				1	1 1
RCPSS	xmm,m32	1			1	2	1 1
SHUFPS	xmm,xmm,i		2	1		2	2
SHUFPS	xmm,m128,i		2		2	2	2
UNPCKHPS UNPCKLPS	xmm,xmm		2	2		3	2
UNPCKHPS UNPCKLPS	xmm,m128		2		2	3	2
LDMXCSR	m32	11				15	15
STMXCSR	m32	6				7	9
FXSAVE	m4096	116				62	
FXRSTOR	m4096	89				68	

Intel Pentium M. Core Solo and Core Duo

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm =

128 bit xmm register, sr = segment register, m = memory, m32 =

32-bit memory operand, etc.

μops fused domain: The number of μops at the decode, rename, allocate and retire-

ment stages in the pipeline. Fused µops count as one.

μops unfused domain: The number of μops for each execution port. Fused μops count

as two.

p0: Port 0: ALU, etc.p1: Port 1: ALU, jumps

p01: Instructions that can go to either port 0 or 1, whichever is vacant

first.

p2: Port 2: load data, etc.

p3: Port 3: address generation for store

p4: Port 4: store data

Latency: This is the delay that the instruction generates in a dependency

chain. (This is not the same as the time spent in the execution unit. Values may be inaccurate in situations where they cannot be measured exactly, especially with memory operands). The numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays by 50-150 clocks, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give

a similar delay.

Reciprocal throughput: The average number of clock cycles per instruction for a series of

independent instructions of the same kind.

Integer instructions

Instruction	Operands	µops fused	μ	ops	unfus	ed d	Latency	Recipro- cal		
		domain	p0	p1	p01	p2	р3	p4		through- put
Move instructions										
MOV	r,r/i	1			1					0,5
MOV	r,m	1				1				1
MOV	m,r	1					1	1		1
MOV	m,i	2					1	1		1
MOV	r,sr	1			1					
MOV	m,sr	2			1		1	1		
MOV	sr,r	8	8						5	
MOV	sr,m	8	7			1			8	
MOVNTI	m,r32	2					1	1		2
MOVSX MOVZX	r,r	1			1				1	0,5
MOVSX MOVZX	r,m	1				1				1
CMOVcc	r,r	2	1		1				2	1,5
CMOVcc	r,m	2	1		1	1				
XCHG	r,r	3			3				2	1,5

XCHG	r,m	7			4	1	1	1	high b)	
XLAT		2			1	1				1
PUSH	r	1					1	1	1	1
PUSH	i	2					1	1	1	1
PUSH	m .	2				1	1	1	2	1
PUSH	sr	2			1		1	1	_	
PUSHF(D)	31	16	3		11		1			6
, ,			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					1	_	6
PUSHA(D)		18			2		8	8	8	8
POP	r	1			_	1				
POP	(E)SP	3			2	1				
POP	m m	2				1	1	1	2	1
POP	sr	10			9	1				
POPF(D)		17	10		6	1				16
POPA(D)		10			2	8			7	7
LAHF SAHF		1			1				1	1
SALC		2	1	1						1
LEA	r,m	1	1						1	1
BSWAP	r	2	1		1					
LDS LES LFS LGS LSS	m	11			8	3				
PREFETCHNTA	m	1				1				1
PREFETCHT0/1/2	m	1				1				1
SFENCE/LFENCE/MFENCE		2					1	1		6
IN	<u> </u>		18				'	'	>300	U
			18							
OUT			10						>300	
Arithmetic instructions										
ADD SUB	r r/i	1			1				4	0.5
ADD SUB	r,r/i	1				1			1 2	0,5
	r,m	1			1	1	4	,	2	1
ADD SUB	m,r/i	3			1	1	1	1		1
ADC SBB	r,r/i	2		1	1				2	2
ADC SBB	r,m	2		1	1	1				
ADC SBB	m,r/i	7			4	1	1	1		
CMP	r,r/i	1			1				1	0,5
CMP	m,r	1			1	1			1	1
CMP	m,i	2			1	1				1
INC DEC NEG NOT	r	1			1				1	0,5
INC DEC NEG NOT	m	3			1	1	1	1		
AAA AAS DAA DAS		1		1						
AAD		3	1		2				2	
AAM		4	1	1	2				15	
MUL IMUL	r8	1	1						4	1
MUL IMUL	r16/r32	3	3						5	1
IMUL	r,r	1	1						4	1
IMUL	r,r,i	1	1						4	1
MUL IMUL	m8	1	1			1			4	1
MUL IMUL	m16/m32	3	3			1			5	1
IMUL		1	1			1			4	1
IMUL	r,m	2				1			4	1
I	r,m,i	5	1		4	'				
DIV IDIV	r8		4		1				15-16 c)	12
DIV IDIV	r16	4	3		1				15-24 c)	12-20 c)
DIV IDIV	r32	4	3		1				15-39 c)	12-20 c)
DIV IDIV	m8	6	4		1	1			15-16 c)	12
DIV IDIV	m16	5	3		1	1		1	15-24 c)	12-20 c)

DIV IDIV	m32	5	3		1	1			15-39 c)	12-20 c)	
CBW CWDE		1		1					1	1	
CWD CDQ		1		1					1	1	
Logic instructions											
AND OR XOR	r,r/i	1			1				1	0,5	
AND OR XOR	r,m	1			1	1			2	1	
AND OR XOR	m,r/i	3			1	1	1	1		1	
TEST	r,r/i	1			1				1	0,5	
TEST	m,r	1			1	1			1	1	
TEST	m,i	2			1	1				1	
SHR SHL SAR ROR ROL	r,i/CL	1	1						1	1	
SHR SHL SAR ROR ROL	m,i/CL	3	1			1	1	1			
RCR RCL	r,1	2	1		1				2	2	
RCR	r8,i/CL	9	5		4				11		
RCL	r8,i/CL	8	4		4				10		
RCR RCL	r16/32,i/CL	6	3		3				9	9	
RCR RCL	m,1	7	2		2	1	1	1			
RCR	m8,i/CL	12	6		3	1	1	1			
RCL	m8,i/CL	11	5		3	1	1	1			
RCR RCL	m16/32,i/CL	10	5		2	1	1	1			
SHLD SHRD	r,r,i/CL	2	2						2	2	
SHLD SHRD	m,r,i/CL	4	1		1	1	1	1			
BT	r,r/i	1		1					1	1	
BT	m,r	8			7	1					
BT	m,i	2		1		1					
BTR BTS BTC	r,r/i	1		1							
BTR BTS BTC	m,r	10			7	1	1	1	6		
BTR BTS BTC	m,i	3		1		1	1	1			
BSF BSR	r,r	2		1	1						
BSF BSR	r,m	2		1	1	1					
SETcc	r	1		1							
SETcc	m	2		1			1	1			
CLC STC CMC		1		1						1	
CLD STD		4			4					7	
Control transfer instruction	ne										
JMP	short/near	1		1						1	
JMP	far	22	21	'		1				28	
JMP	r	1	'	1		'				1	
JMP	m(near)	2		1		1				2	
JMP	m(far)	25	23	•		2				31	
conditional jump	short/near	1		1		_				1	
J(E)CXZ	short	2		1	1					1	
LOOP	short	11	2	1	8					6	
LOOP(N)E	short	11	2	1	8					6	
CALL	near	4	_	1	1		1	1		2	
CALL	far	32	27			1	2	2		27	
CALL	r	4		1	2		1	1		9	
CALL	m(near)	4		1		1	1	1		2	
CALL	m(far)	35	29			2	2	2		30	
RETN		2		1	2	1				2	
•		,		•			•		•	. '	

RETN RETF RETF BOUND INTO	i i r,m	3 27 27 15 5	24 24 7	1	6 5	1 3 3 2				2 30 30 8 4
String instructions LODS REP LODS		2 6n			10+6r	2 1				4 0,5
STOS		3				1	1	1		1
REP STOS MOVS		5n 6		(¢a. 5r 1	a) 3	1	1		0,7
REP MOVS		6n			u ¢a. 6r		ı	I		0,7 0,5
SCAS		3			1	2				1,3
REP(N)E SCAS		7n			12+7r)				0,6
CMPS		6			4	2				0,7
REP(N)E CMPS		9n			12+9r	ו				0,5
Other										
NOP (90)		1			1					0,5
Long NOP (0F 1F)		1			1					1
PAUSE		2			2					
CLI			9							
STI			17							
ENTER	i,0	12			10		1	1		
ENTER	a,b		ca.	18	+4b		b-1	2b		
LEAVE		3			2	1				
CPUID		38-59	38-59	9					ca. 130	
RDTSC		13	13							42

Notes:

a) Faster under certain conditions: see manual 3: "The microarchitecture of Intel, AMD and VIA CPUs".

b) Has an implicit LOCK prefix.

c) High values are typical, low values are for round divisors. Core Solo/Duo is more efficient than Pentium M in cases with round values that allow an early-out algorithm.

Floating point x87 instructions

Instruction	Operands	µops fused	p0 p1 p01 p2 p3 p4 1<						Latency	Recipro- cal
		domain	p0	p1	p01	p2	р3	p4		through-
Move instructions										•
FLD	r	1	1						1	
FLD	m32/64	1				1			1	
FLD	m80	4	2			2				
FBLD	m80	40	38			2				
FST(P)	r	1	1							
FST(P)	m32/m64	1					1	1	1	
FSTP	m80	6	2				2	2		3
FBSTP	m80	169	165				2	2		167
FXCH	r	1							0	0.33 f)

			idiii iv	-						
FILD	m	4	3			1			5	2
FIST(P)	m	4	2				1	1	5	2
FISTTP g)	m	4	2				1	1	5	2
FLDZ		1	1							
FLD1 FLDPI FLDL2E etc.		2	2							
FCMOVcc	r	2	2						2	
FNSTSW	AX	3	3						7	3
FNSTSW	m16	2	1				1	1		
FLDCW	m16	3	1		1	1				19
FNSTCW	m16	3	1				1	1		3
FINCSTP FDECSTP	-	1	1						1	_
FFREE	r	1	1							1
FFREEP	r	2	2							2
FNSAVE		142	142							131
FRSTOR		72	72							91
Arithmetic instructions										
FADD(P) FSUB(R)(P)	r	1			1				3	1
FADD(P) FSUB(R)(P)	m	1			1	1			3	1
FMUL(P)	r	1	1			•			5	2
FMUL(P)	m	1	1			1			5	2
FDIV(R)(P)	r	1	1			•			9-38 c)	8-37 c)
FDIV(R)(P)	m	1	1			1			9-38 c)	8-37 c)
FABS	""	1	1			'			1	1
FCHS		1							1	1
FCOM(P) FUCOM	r	1	'	1					1	1
FCOM(P) FUCOM		1		1		1			1	1
FCOMPP FUCOMPP	m	2		1	1	'			1	1
	_	1		1	'					1
FCOMI(P) FUCOMI(P) FIADD FISUB(R)	r	6	9	1	1	4			1 3	3
` '	m		3	1	'	1				3
FIMUL	m	6	5			1			5	
FIDIV(R)	m	6	5	_		1			9-38 c)	8-37 c)
FICOM(P)	m	6	3	2		1				4
FTST		1		1						1
FXAM		1		1						1
FPREM FPREM1		26	26						37	
FRNDINT		15	15						19	
Math		00							40	
FSCALE		28	28		, _				43	
FXTRACT		15			15				9	
FSQRT		1	1					00.4	9 h)	8
FSIN FCOS		80-100	80-10					80-1		
FSINCOS		90-110	90-11	10				100-	130	
F2XM1		~ 20	~20					~45		
FYL2X		~ 40	~40					~60		
FYL2XP1		~ 55	~55					~65		
FPTAN		~ 100	~100					~140		
FPATAN		~ 85	~85					~140		
Other										
FNOP		1	1							1
WAIT		2		1	1					1

FNCLEX	3	3		13	
FNINIT	14	14		27	

Notes:

High values are typical, low values are for low precision or round divisors. c) f)

FXCH generates 1 µop that is resolved by register renaming without going to

any port.

SSE3 instruction only available on Core Solo and Core Duo. g)

Integer MMX and XMM instructions

Instruction	Operands	µops fused	μ	ops	unfus	ed d	lomai	in	Latency	Recipro- cal
		domain	p0	p1	p01	p2	р3	p4		through- put
Move instructions										
MOVD	r32,mm	1			1				1	0,5
MOVD	mm,r32	1			1				1	0,5
MOVD	mm,m32	1				1				1
MOVD	m32,mm	1					1	1		1
MOVD	r32,xmm	1		1					1	1
MOVD	xmm,r32	2			2					1
MOVD	xmm,m32	2			1	1				1
MOVD	m32, xmm	1					1	1		1
MOVQ	mm,mm	1			1					0,5
MOVQ	mm,m64	1				1				1
MOVQ	m64,mm	1					1	1		1
MOVQ	xmm,xmm	2			2				1	1
MOVQ	xmm,m64	2			1	1				1
MOVQ	m64, xmm	1					1	1		1
MOVDQA	xmm, xmm	2			2				1	1
MOVDQA	xmm, m128	2				2				2
MOVDQA	m128, xmm	2					2	2		2
MOVDQU	xmm, m128	4			2	2				2-10
MOVDQU	m128, xmm	8			5-6		2-3	2-3		4-20
LDDQU g)	xmm, m128	4								2
MOVDQ2Q	mm, xmm	1		1					1	1
MOVQ2DQ	xmm,mm	2		1	1				1	1
MOVNTQ	m64,mm	1					1	1		2
MOVNTDQ	m128,xmm	4					2	2		3
PACKSSWB/DW										
PACKUSWB	mm,mm	1	1						1	1
PACKSSWB/DW	,									
PACKUSWB	mm,m64	1	1			1			1	1
PACKSSWB/DW	,									
PACKUSWB	xmm,xmm	3	2	1					2	2
PACKSSWB/DW										
PACKUSWB	xmm,m128	4	1	1		2			2	2
PUNPCKH/LBW/WD/DQ	mm,mm	1	1						1	1
PUNPCKH/LBW/WD/DQ	mm,m64	1	1			1				1
PUNPCKH/LBW/WD/DQ	xmm,xmm	2	2						2	2
PUNPCKH/LBW/WD/DQ	xmm,m128	3	1			2				2
PUNPCKHQDQ	xmm,xmm	2		1	1				1	1
PUNPCKHQDQ	xmm, m128	3		1		2				1

PUNPCKLQDQ	xmm,xmm	1		1					1	1
PUNPCKLQDQ	xmm, m128	1				1				1
PSHUFW	mm,mm,i	1	1						1	1
PSHUFW	mm,m64,i	2	1			1				1
PSHUFD	xmm,xmm,i	3	2	1					2	2
PSHUFD	xmm,m128,i	4	1	1		2				2
PSHUFL/HW	xmm,xmm,i	2	1	1						1
PSHUFL/HW	xmm, m128,i	3		1		2				1
MASKMOVQ	mm,mm	3			1		1	1		
MASKMOVDQU	xmm,xmm	8		1			2	2		
PMOVMSKB	r32,mm	1	1						1	1
PMOVMSKB	r32,xmm	1	1	j)					1	1
PEXTRW	r32,mm,i	2	1	1					2	1
PEXTRW	r32,xmm,i	4	2	2					3	2
PINSRW	mm,r32,i	1	1	_					1	1
PINSRW	xmm,r32,i	2	2						1	2
	7,.02,.	_	_						•	_
Arithmetic instructions										
PADD/SUB(U)(S)B/W/D	mm,mm	1			1				1	0,5
PADD/SUB(U)(S)B/W/D	mm,m64	1			1	1			•	1
PADD/SUB(U)(S)B/W/D	xmm,xmm	2			2				1	1
PADD/SUB(U)(S)B/W/D	xmm,m128	4			2	2			•	2
PADDQ PSUBQ	mm,mm	2			2	_			2	1
PADDQ PSUBQ	mm,m64	2			2	1			_	1
PADDQ PSUBQ	xmm,xmm	4			4	'			2	2
PADDQ PSUBQ	xmm,m128	6			4	2			_	2
PCMPEQ/GTB/W/D	mm,mm	1			1	_			1	0,5
PCMPEQ/GTB/W/D	mm,m64	1			1	1			•	1
PCMPEQ/GTB/W/D	xmm,xmm	2			2	'			1	1
PCMPEQ/GTB/W/D	xmm,m128	2			2	2			•	2
PMULL/HW PMULHUW	mm,mm	1			1	_			3	1
PMULL/HW PMULHUW	mm,m64	1			1	1			3	1
PMULL/HW PMULHUW	xmm,xmm	2			2	'			3	2
PMULL/HW PMULHUW	xmm,m128	4			2	2			3	2
PMULUDQ	mm,mm	1	1		_	_			4	1
PMULUDQ	mm,m64	1				1			4	1
PMULUDQ	xmm,xmm	2	2			'			4	2
PMULUDQ	xmm,m128	4	2			2			4	2
PMADDWD	mm,mm	1	_		1	_			3	1
PMADDWD	mm,m64	1				1			3	1
PMADDWD	xmm,xmm	2			2	'			3	2
PMADDWD	xmm,m128	4			2	2			3	2
PAVGB/W	mm,mm	1			1				1	0,5
PAVGB/W	mm,m64	1			1	1			'	1
PAVGB/W	xmm,xmm	2			2	'			1	1
PAVGB/W	xmm,m128	4			2	2			'	2
PMIN/MAXUB/SW	mm,mm	1			1	_			1	0,5
PMIN/MAXUB/SW	mm,m64	1			1	1			'	1 1
PMIN/MAXUB/SW	xmm,xmm	2			2	'			1	1
PMIN/MAXUB/SW	xmm,m128	4			2	2			'	2
PSADBW	mm,mm	2			2	-			4	1
PSADBW	mm,m64	2			2	1			4	1
PSADBW	1	4			4	'			4	2
FOADOW	xmm,xmm	4			4	1			4	4

PSADBW	xmm,m128	6			4	2		4	2
Logic instructions									
PAND(N) POR PXOR	mm,mm	1			1			1	0,5
PAND(N) POR PXOR	mm,m64	1			1	1			1
PAND(N) POR PXOR	xmm,xmm	2			2			1	1
PAND(N) POR PXOR	xmm,m128	4			2	2			2
PSLL/RL/RAW/D/Q	mm,mm/i	1	1					1	1
PSLL/RL/RAW/D/Q	mm,m64	1	1			1			1
PSLL/RL/RAW/D/Q	xmm,i	2	2					2	2
PSLL/RL/RAW/D/Q	xmm,xmm	3	2	1				2	2
PSLL/RL/RAW/D/Q	xmm,m128	3		1		2			2
PSLL/RLDQ	xmm,i	4	3	1				3	3
Other									
EMMS		11			11			6 k)	6

Notes:

SSE3 instruction only available on Core Solo and Core Duo. g)

j) Also uses some execution units under port 1.

You may hide the delay by inserting other instructions between EMMS and any subsequent floating point instruction. k)

Floating point XMM instructions

Instruction	Operands	µops fused	μ	ops	unfus	sed d	oma	in	Latency	Recipro- cal
		domain	p0	p1	p01	p2	рЗ	p4		through- put
Move instructions										
MOVAPS/D	xmm,xmm	2			2				1	1
MOVAPS/D	xmm,m128	2				2			2	2
MOVAPS/D	m128,xmm	2					2	2	3	2
MOVUPS/D	xmm,m128	4				4			2	2
MOVUPS/D	m128,xmm	8			4		2	2	3	4
MOVSS/D	xmm,xmm	1		1					1	1
MOVSS/D	xmm,m32/64	2		1		1			1	1
MOVSS/D	m32/64,xmm	1					1	1	1	1
MOVHPS/D MOVLPS/D	xmm,m64	1		1		1			1	1
MOVHPS/D MOVLPS/D	m64,xmm	1					1	1	1	1
MOVLHPS MOVHLPS	xmm,xmm	1		1					1	1
MOVMSKPS/D	r32,xmm	1	1	j)					2	1
MOVNTPS/D	m128,xmm	2					2	2		3
SHUFPS/D	xmm,xmm,i	3	2	1					2	2
SHUFPS/D	xmm,m128,i	4	1	1		2				2
MOVDDUP g)	xmm,xmm	2							1	1
MOVSH/LDUP g)	xmm,xmm	2							2	2
MOVSH/LDUP g)	xmm,m128	4								
UNPCKH/LPS	xmm,xmm	4	2	2					3-4	5
UNPCKH/LPS	xmm,m128	4		2		2				5
UNPCKH/LPD	xmm,xmm	2		1	1				1	1
UNPCKH/LPD	xmm,m128	3		1	1	1				1

Conversion								
CVTPS2PD	xmm,xmm	4	2	2			3	3
CVTPS2PD	xmm,m64	4	1	2		1		3
CVTPD2PS	xmm,xmm	4	3	1			4	3
CVTPD2PS	xmm,m128	6	3	1		2		3
CVTSD2SS	xmm,xmm	2			2	_	4	2
CVTSD2SS	xmm,m64	3			2	1	-	2
CVTSS2SD	xmm,xmm	2	2			'	2	2
	,	3				4		2
CVTSS2SD	xmm,m64		2			1		
CVTDQ2PS	xmm,xmm	2			2	_	3	2
CVTDQ2PS	xmm,m128	4			2	2		2
CVT(T) PS2DQ	xmm,xmm	2			2		3	2
CVT(T) PS2DQ	xmm,m128	4			2	2		2
CVTDQ2PD	xmm,xmm	4			4		4	2
CVTDQ2PD	xmm,m64	5			4	1		2
CVT(T)PD2DQ	xmm,xmm	4			4		4	3
CVT(T)PD2DQ	xmm,m128	6			4	2		3
CVTPI2PS	xmm,mm	1		1			3	1
CVTPI2PS	xmm,m64	2		1		1		1
CVT(T)PS2PI	mm,xmm	1		1		'	3	1
CVT(T)PS2PI	mm,m128	2		1		1		1
CVT(1)I 32I I	· ·	4	2	2		'	5	2
CVTPI2PD	xmm,mm		2	2		4	3	2
	xmm,m64	5	2	2	_	1	_	
CVT(T) PD2PI	mm,xmm	3			3		4	2
CVT(T) PD2PI	mm,m128	5			3	2		2
CVTSI2SS	xmm,r32	2	1	1			4	1
CVT(T)SS2SI	r32,xmm	2		1	1		4	1
CVT(T)SS2SI	r32,m32	3		1	1	1		1
CVTSI2SD	xmm,r32	2	1	1			4	1
CVTSI2SD	xmm,m32	3	1	1		1		1
CVT(T)SD2SI	r32,xmm	2		1	1		4	1
CVT(T)SD2SI	r32,m64	3		1	1	1		1
Arithmetic								
ADDSS/D SUBSS/D	xmm,xmm	1			1		3	1
ADDSS/D SUBSS/D	xmm,m32/64	2			1	1	3	1
ADDPS/D SUBPS/D	xmm,xmm	2			2		3	2
ADDPS/D SUBPS/D	xmm,m128	4			2	2	3	2
ADDSUBPS/D g)	xmm,xmm	2			2		3	2
HADDPS HSUBPS g)	xmm,xmm	6?			?		7	4
HADDPD HSUBPD g)	xmm,xmm	3			3		4	2
MULSS	xmm,xmm	1	1				4	1
MULSD	xmm,xmm	1					5	2
MULSS	· ·	2				1	4	1
MULSD	xmm,m32		1 .					
	xmm,m64	2	1			1	5	2
MULPS	xmm,xmm	2	2				4	2
MULPD	xmm,xmm	2	2				5	4
MULPS	xmm,m128	4	2			2	4	2
MULPD	xmm,m128	4	2			2	5	4
DIVSS	xmm,xmm	1	1				9-18 c)	8-17 c)
DIVSD	xmm,xmm	1	1				9-32 c)	8-31 c)
DIVSS	xmm,m32	2	1			1	9-18 c)	8-17 c)
DIVSD	xmm,m64	2	1			1	9-32 c)	8-31 c)

vmm vmm	2	1 2				1		16 34 6	16-34 c)
								,	16-34 c) 16-62 c)
*					2				16-62 c) 16-34 c)
									16-34 c) 16-62 c)
*		4		4	2				10-02 ()
*	=			_	4			ა	•
*				-	1			2	1
*				ı				3	2 2
*				2	2				
*	-								1
*			1		1			_	1
*				_					1
*				-	1				1
									2
mm,m128	4			2	2				2
xmm,xmm	1		1					3	1
xmm,m32			1		1				1
xmm,xmm								3	2
mm,m128	4		2		2				2
xmm,xmm	2	2						6-30	4-28
xmm,m32	3	2			1				4-28
xmm,xmm	1	1						5-58	4-57
xmm,m64	2	1			1				4-57
xmm,xmm	2	2						8-56	16-55
xmm,xmm	2	2						16-114	16-114
mm,m128	4	2			2				16-55
mm,m128	4	2			2				16-114
xmm,xmm	1		1					3	1
xmm,m32	2		1		1				1
xmm,xmm	2		3					3	2
mm,m128	4		2		2				2
xmm,xmm	2			2				1	1
*	4				2				1
,	•			_	_				·
m32	9	9							20
	6	6							12
		32				43	43		63
		43			44				72
* C C * T * C * T * C * C * C * C * C *	xmm,m32 xmm,xmm xmm,m128 xmm,xmm xmm,m64 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m32 xmm,xmm xmm,m128	kmm,xmm 2 kmm,m128 4 kmm,m128 4 kmm,xmm 1 nm,m32/64 2 kmm,xmm 1 nm,m32/64 2 kmm,xmm 1 nm,m32/64 2 kmm,xmm 4 kmm,xmm 2 kmm,xmm 2 kmm,xmm 2 kmm,xmm 4 kmm,xmm 2 kmm,xmm 2 kmm,xmm 4 kmm,xmm 2 k	kmm,xmm 2 2 kmm,m128 4 2 kmm,m128 4 2 kmm,xmm 1 1 kmm,xmm 2 2 kmm,xmm 1 2 kmm,xmm 1 3 kmm,xmm 2 3 kmm,xmm 2 3 kmm,xmm 2 3 kmm,xmm 2 2 kmm,xmm 4 4 kmm,xmm 4 4 kmm,xmm 4 <	kmm,xmm 2 2 kmm,m128 4 2 kmm,m128 4 2 kmm,xmm 1 1 kmm,xmm 1 1 kmm,xmm 1 1 kmm,xmm 1 1 kmm,xmm 2 1 kmm,xmm 2 1 kmm,xmm 2 1 kmm,xmm 2 2 kmm,xmm 2 1 kmm,xmm 2 1 kmm,xmm 2 1 kmm,xmm 3 2 kmm,xmm 4 2 kmm,xmm 4 2 kmm,xmm 1 1 kmm,xmm 2 1 kmm,m128 4	kmm,xmm 2 2 kmm,m128 4 2 kmm,m128 4 2 kmm,xmm 1 1 kmm,xmm 2 2 kmm,xmm 1 1 kmm,xmm 1 1 kmm,xmm 1 1 kmm,xmm 2 1 kmm,xmm 2 2 kmm,xmm 1 1 kmm,xmm 2 2 kmm,xmm 2 2 kmm,xmm 2 2 kmm,xmm 1 1 kmm,xmm 2 2 kmm,xmm 2 2 kmm,xmm 2 2 kmm,xmm 1 1 kmm,xmm 2 1 kmm,xmm 2 2 kmm,xmm 3 2 kmm,xmm 1 1 kmm,xmm 2 2 kmm,xmm 3 2 kmm,xmm 3 3 kmm,xmm 4 <	cmm,xmm 2 2 cmm,m128 4 2 cmm,m128 4 2 cmm,xmm 1 1 cmm,xmm 2 2 cmm,xmm 1 1 cmm,xmm 1 1 cmm,xmm 1 1 cmm,xmm 1 1 cmm,xmm 2 2 cmm,xmm 2 2 cmm,xmm 2 2 cmm,xmm 1 1 cmm,xmm 2 2 cmm,xmm 2 2 cmm,xmm 2 2 cmm,xmm 1 1 cmm,xmm 2 2 cmm,xmm 1 1 cmm,xmm 2 2 cmm,xmm 3 2 cmm,xmm 3 <	cmm,xmm 2 2 cmm,m128 4 2 2 cmm,m128 4 2 2 cmm,xmm 1 1 1 nm,m32/64 2 1 1 cmm,xmm 1 1 1 nm,m32/64 2 1 1 cmm,xmm 1 1 1 nm,m32/64 2 1 1 cmm,xmm 2 2 2 cmm,xmm 1 1 1 nmm,m128 4 2 2 cmm,xmm 2 2 2 cmm,xmm 2 2 2 cmm,xmm 2 2 2 cmm,xmm 1 1 1 cmm,xmm 2 2 2 cmm,xmm 2 2 2 cmm,xmm 2 2 2 cmm,xmm 1 1 1 cmm,xmm 2 2 2 cmm,xmm 2 2 2 </td <td>cmm,xmm 2 2 cmm,m128 4 2 2 cmm,m128 4 2 2 cmm,mmm,m32/64 2 1 1 cmm,xmm 2 2 2 cmm,mmm,m128 4 2 2 2 cmm,xmm 1 1 1 1 nmm,m32/64 2 1 1 1 1 cmm,xmm 1</td> <td>cmm,xmm 2 2 cmm,m128 4 2 cmm,m128 4 2 cmm,mmm 1 1 nmm,mmm 1 1 nmm,xmm 2 2 cmm,xmm 2 2 cmm,xmm 2 2 cmm,xmm 1 1 nmm,m32/64 2 1 1 cmm,xmm 1 1 3 cmm,xmm 2 2 3 cmm,xmm 1 1 3 cmm,xmm 2 2 3 cmm,xmm 1 1 3 cmm,xmm 2 2 3 cmm,xmm 2 2 3 cmm,xmm 2 2 3 cmm,xmm 2 2 2 cmm,xmm 1 1 3 cmm,xmm 2 2 2 cmm,xmm 2 2 3 cmm,xmm 2 2 3 cmm,xmm 2</td>	cmm,xmm 2 2 cmm,m128 4 2 2 cmm,m128 4 2 2 cmm,mmm,m32/64 2 1 1 cmm,xmm 2 2 2 cmm,mmm,m128 4 2 2 2 cmm,xmm 1 1 1 1 nmm,m32/64 2 1 1 1 1 cmm,xmm 1	cmm,xmm 2 2 cmm,m128 4 2 cmm,m128 4 2 cmm,mmm 1 1 nmm,mmm 1 1 nmm,xmm 2 2 cmm,xmm 2 2 cmm,xmm 2 2 cmm,xmm 1 1 nmm,m32/64 2 1 1 cmm,xmm 1 1 3 cmm,xmm 2 2 3 cmm,xmm 1 1 3 cmm,xmm 2 2 3 cmm,xmm 1 1 3 cmm,xmm 2 2 3 cmm,xmm 2 2 3 cmm,xmm 2 2 3 cmm,xmm 2 2 2 cmm,xmm 1 1 3 cmm,xmm 2 2 2 cmm,xmm 2 2 3 cmm,xmm 2 2 3 cmm,xmm 2

Notes:

c) High values are typical, low values are for round divisors.

g) SSE3 instruction only available on Core Solo and Core Duo.

j) Also uses some execution units under port 1.

Intel Core 2 (Merom, 65nm)

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm = 128 bit xmm

register, (x)mm = mmx or xmm register, sr = segment register, m = memory,

m32 = 32-bit memory operand, etc.

μops fused domain: The number of μops at the decode, rename, allocate and retirement stages in

the pipeline. Fused µops count as one.

μορs unfused domain: The number of μορs for each execution port. Fused μορs count as two. Fused

macro-ops count as one. The instruction has μ op fusion if the sum of the numbers listed under p015 + p2 + p3 + p4 exceeds the number listed under μ ops fused domain. An x under p0, p1 or p5 means that at least one of the μ ops listed under p015 can optionally go to this port. For example, a 1 under p015 and an x under p0 and p5 means one μ op which can go to either port 0 or port 5, whichever is vacant first. A value listed under p015 but nothing under p0, p1 and p5 means that it is not known which of the three ports these μ ops go to.

p015: The total number of μops going to port 0, 1 and 5.
p0: The number of μops going to port 0 (execution units).
p1: The number of μops going to port 1 (execution units).
p5: The number of μops going to port 5 (execution units).
p2: The number of μops going to port 2 (memory read).

p3: The number of μops going to port 3 (memory write address).p4: The number of μops going to port 4 (memory write data).

Unit: Tells which execution unit cluster is used. An additional delay of 1 clock cycle

is generated if a register written by a μop in the integer unit (int) is read by a μop in the floating point unit (float) or vice versa. flt—int means that an instruction with multiple μops receive the input in the float unit and delivers the output in the int unit. Delays for moving data between different units are included under latency when they are unavoidable. For example, movd eax,xmm0 has an extra 1 clock delay for moving from the XMM-integer unit to the general purpose integer unit. This is included under latency because it occurs regardless of which instruction comes next. Nothing listed under unit means that additional delays are either unlikely to occur or unavoidable and therefore included in the

latency figure.

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays very much, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give a similar delay. The time unit used is core clock cycles, not the reference clock cycles

given by the time stamp counter.

Reciprocal throughput: The average number of core clock cycles per instruction for a series of inde-

pendent instructions of the same kind in the same thread.

Integer instructions

Instruction	Operands	μορs fused	μops unfused domain							Unit	Laten- cy	procal
		do- main	p015	p015 p0 p1 p5 p2 p3 p4							through- put	
Move instructions MOV	r,r/i	1	1	х	x	x				int	1	0,33

MOV a)	r,m	1					1			int	2	1
MOV a)	m,r	1						1	1	int	3	1
MOV	m,i	1						1	1	int	3	1
MOV	r,sr	1					1			int		1
MOV	m,sr	2					1	1	1	int		1
MOV	sr,r	8	4	x	x	x	4			int		16
MOV	sr,m	8	3	x		x	5			int		16
MOVNTI	m,r	2						1	1	int		2
MOVSX MOVZX	,											
MOVSXD	r,r	1	1	x	x	x				int	1	0,33
MOVSX MOVZX	r,m	1					1			int		1
CMOVcc	r,r	2	2	x	х	х				int	2	1
CMOVcc	r,m	2	2	x	x	x	1			int		
XCHG	r,r	3	3	×	x	x				int	2	2
XCHG	r,m	7	X				1	1	1	int	high b)	_
XLAT	,,,,,	2	1				1	_	•	int	4	1
PUSH	r	1	'				•	1	1	int	3	1
PUSH	i	1						1	1	int		1
PUSH	m '	2					1	1	1	int		1
PUSH	sr	2	1				'	1	1	int		1
PUSHF(D/Q)	31	17	15	x	x	x		1	1	int		7
PUSHA(D) i)		18	9	^	^	^		1	8	int		8
POP	_	10	9				4	!	0		2	1
POP	r (E/D)SD		3				1			int		ı
	(E/R)SP	4 2	3				1	4	4	int		4.5
POP	m						1	1	1	int		1,5
POP (D/O)	sr	10	9				1			int	00	17
POPF(D/Q)		24	23	X	X	Х	1			int	20	_
POPA(D) i)		10	2				8			int		7
LAHF SAHF		1	1	X	X	Х				int	1	0,33
SALC i)		2	2	X	Х	X				int	4	1
LEA a)	r,m	1	1	1						int	1	1
BSWAP	r	2	2	1		1				int	4	1
LDS LES LFS LGS LSS	m	11	11				1			int		17
PREFETCHNTA	m	1					1			int		1
PREFETCHT0/1/2	m	1					1			int		1
LFENCE		2						1	1	int		8
MFENCE		2						1	1	int		9
SFENCE	_	2						1	1	int		9
CLFLUSH	m8	4	2	X	Х	Х		1	1	int	240	117
IN										int		
OUT										int		
Arithmetic instructions	<u>,</u>	_										0.00
ADD SUB	r,r/i	1	1	X	Х	Х				int	1	0,33
ADD SUB	r,m	1	1	X	Х	Х	1			int		1
ADD SUB	m,r/i	2	1	X	X	Х	1	1	1	int	6	1
ADC SBB	r,r/i	2	2	Х	Х	Х				int	2	2
ADC SBB	r,m	2	2	Х	Х	Х	1			int	2	2
ADC SBB	m,r/i	4	3	X	Х	Х	1	1	1	int	7	
CMP	r,r/i	1	1	X	Х	Х				int	1	0,33
CMP	m,r/i	1	1	Х	Х	Х	1			int	1	1
INC DEC NEG NOT	r	1	1	Х	Х	Х				int	1	0,33
INC DEC NEG NOT	m m	3	1	X	X	X	1	1	1	int	6	1

AAAAS DAA DAS i)													
AAM i)	AAA AAS DAA DAS i)		1	1		1					int		1 1
AAM	I		3	3	x	х	х				int		1
MUL IMUL	,		4	4							int	17	
MULIMUL r16 3 3 x	1	r8	1	1		1							1 1
MULIMUL ri32 3 3 x x x x x x x x		r16	3	3	x	x	х				int		1.5
MULIMUL		1		1									
MUL													
MUL					^								
MUL						1							
MUL					1	١.							
IMUL					'	1							l I
MUL MUL MB													
MUL IMUL M16					1	'							
MUL IMUL M16					'	4		4					
MUL IMUL m32		1			١.,	-		-					
MUL IMUL m64 3 2 2 1 1 int 7 4 IMUL r16,m16 1				1									l I
MUL		1				X	X						l I
MUL					2			-					
MUL		· · · · · · · · · · · · · · · · · · ·				1							
IMUL		· · · · · · · · · · · · · · · · · · ·				1		-					
IMUL		· · · · · · · · · · · · · · · · · · ·			1							5	
IMUL		1 1	=			•		-					
DIV IDIV T8						1		1					
DIV IDIV DIV		1 1		1	1			1					
DIV DIV F32				1							int		
DIV r64 56 56 56	DIV IDIV	r16	5	5							int	18-26	12-20 c)
IDIV F64 56 56 56 56 56 56 56	DIV IDIV	r32	4	4							int	18-42	12-36 c)
DIV	DIV	r64	32	32							int	29-61	18-37 c)
DIV	IDIV	r64	56	56							int	39-72	28-40 c)
DIV DIV m32 5	DIV IDIV	m8	4	3				1			int	18	12
DIV m64 32 31	DIV IDIV	m16	6	5				1			int	18-26	12-20 c)
IDIV CBW CWDE CDQE CWD CDQ CQO	DIV IDIV	m32	5	4				1			int	18-42	12-36 c)
IDIV CBW CWDE CDQE CWD CDQ CQO	DIV	m64	32	31				1			int	29-61	18-37 c)
CBW CWDE CDQE CWD CDQ CQO 1 1 1 x x x x int 1 Logic instructions AND OR XOR AND OR XOR AND OR XOR r,r/i 1 1 x x int 1 0,33 AND OR XOR AND OR XOR r,m 1 1 x x 1 int 1 1 AND OR XOR AND OR XOR m,r/i 2 1 x x 1 int 1	IDIV	m64	56	55				1			int	39-72	
CWD CDQ CQO 1 1 x x int 1 Logic instructions r,r/i 1 1 x x int 1 AND OR XOR r,m 1 1 x x int 1 0,33 AND OR XOR r,m 1 1 x x 1 int 1 1 AND OR XOR m,r/i 2 1 x x 1 int 1 1 1 1 int 1 1 1 1 1 int 1<	CBW CWDE CDQE		1	1	x	x	х				int	1	,
Logic instructions	I												
AND OR XOR			-									-	
AND OR XOR	Logic instructions												
AND OR XOR AND OR XOR M,r/i TEST TEST TEST TEST TEST TEST TEST TES		r.r/i	1	1	x	x	х				int	1	0.33
AND OR XOR TEST	I	·						1				-	
TEST r,r/i 1 1 x x x x int 1 0,33 TEST m,r/i 1 1 x x int 1 0,33 SHR SHL SAR r,i/cl 1 1 x x int 1 0,5 SHR SHL SAR m,i/cl 3 2 x x 1 1 int 1 0,5 SHR SHL SAR m,i/cl 3 2 x x 1 1 1 0,5 SHR SHL SAR m,i/cl 3 2 x x 1 1 1 0,5 SHR SHL SAR m,i/cl 3 2 x x 1 1 1 1 0,5 SHR SHL SAR m,i/cl 3 2 x x 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1							1	1		6	
TEST m,r/i 1 1 x x x 1 int 1 SHR SHL SAR r,i/cl 1 1 x x int 1 0,5 SHR SHL SAR m,i/cl 3 2 x x 1 1 int 6 1 ROR ROL r,i/cl 1 1 x x int 1 1 ROR ROL m,i/cl 3 2 x x 1 1 int 6 1 RCR RCL r,1 2 2 x x x int 12 2 x x x int 12 2 x x x x x int 12 x <								•	•	·			
SHR SHL SAR r,i/cl 1 1 x x 1 1 0,5 SHR SHL SAR m,i/cl 3 2 x x 1 1 int 6 1 ROR ROL r,i/cl 1 1 x x int 1 1 ROR ROL m,i/cl 3 2 x x 1 1 int 6 1 RCR RCL r,1 2 2 x x int 12 2 2 x x int 12 2 2 x x x int 12 2 x		·						1					
SHR SHL SAR m,i/cl 3 2 x 1 1 int 6 1 ROR ROL r,i/cl 1 1 x x 1 1 int 1 1 ROR ROL m,i/cl 3 2 x x 1 1 int 1 1 RCR RCL r,1 2 2 x x x int 12 2 RCR r8,i/cl 9 9 x x x int 12 2 RCL r8,i/cl 8 8 x x x int 11 int 11 RCR RCL r16/32/64,i/cl 6 6 x x x x int 11 RCR m,1 4 3 x x x 1 1 int 17 RCR m8,i/cl 12 9 x x x 1 1		1				^		•				1	-
ROR ROL r,i/cl 1 1 x x 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td></t<>								1	1	1			
ROR ROL m,i/cl 3 2 x x 1 1 int 6 1 RCR RCL r,1 2 2 x x x int 2 2 RCR r8,i/cl 9 9 x x int 12 RCL r8,i/cl 8 8 x x int 11 RCR RCL r16/32/64,i/cl 6 6 x x x int 11 RCR RCL m,1 4 3 x x x 1 1 int 7 RCR m8,i/cl 12 9 x x x 1 1 int 14								'	'	'			
RCR RCL r,1 2 2 x		·						4	4	4			
RCR r8,i/cl 9 9 x x x int 12 RCL r8,i/cl 8 8 x x x int 11 RCR RCL r16/32/64,i/cl 6 6 x x x int 11 RCR RCL m,1 4 3 x x x 1 1 int 7 RCR m8,i/cl 12 9 x x x 1 1 int 14		· · ·		1					ı	1			l I
RCL r8,i/cl 8 8 x x x int 11 RCR RCL r16/32/64,i/cl 6 6 x x x int 11 RCR RCL m,1 4 3 x x x 1 1 int 7 RCR m8,i/cl 12 9 x x x 1 1 int 14													4
RCR RCL r16/32/64,i/cl 6 6 x x x int 11 RCR RCL m,1 4 3 x x x 1 1 int 7 RCR m8,i/cl 12 9 x x x 1 1 int 14	I	1 ' 1											
RCR RCL m,1 4 3 x x x 1 1 1 int 7 RCR m8,i/cl 12 9 x x x 1 1 1 int 14		1											
RCR m8,i/cl 12 9 x x x 1 1 1 int 14		· I											
	I			1				-					
RCL									-				
	RCL	m8,i/cl	11	8	X	X	X	1	1	1	int	13	

RCR RCL SHLD SHRD SHLD SHRD BT BT BT BT BT BTR BTS BTC BTR BTS BTC BTR BTS BTC BSF BSR SETCC SETCC CLC STC CMC CLD STD	m16/32/64,i/cl r,r,i/cl m,r,i/cl r,r/i m,r m,i r,r/i m,r r,r/i r,r m,i r,r m,i r,r m,i r,m r	10 2 3 1 10 2 1 11 3 2 2 1 2 1 7 6	7 2 2 1 9 1 1 8 1 2 2 1 1 7 6	x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x	1 1 1 1 1 1	1 1 1 1	1 1 1 1 1	int	13 2 7 1 1 5 6 2	1 1 5 1 1 2 1 1 0,33 4 14
Control transfer instruction JMP JMP i) JMP JMP JMP Conditional jump Fused compare/test and b J(E/R)CXZ LOOP LOOP(N)E CALL CALL CALL CALL CALL CALL RETN RETN RETF RETF BOUND i) INTO i)	short/near far r m(near) m(far) short/near	1 30 1 1 31 1 1 2 11 11 3 43 3 4 44 1 3 32 32 15 5	1 30 1 1 29 1 1 2 11 11 2 43 2 3 42 1 x 30 30 13 5	x x x x	x x x x	1 1 1 1 1 1 1 x x x	1 2 1 1 2 2 2	1 1 1	1 1 1	int	0 0 0 0	1-2 76 1-2 1-2 68 1 1-2 5 2 75 2 75 2 78 78 8 3
Estring instructions LODS REP LODS STOS REP STOS MOVS REP MOVS SCAS REP(N)E SCAS CMPS REP(N)E CMPS		3 4+7n - 4 8+5n - 8 1 7+7n - 4 7+8n - 7	2 20+1. 5 1 13+n 3 17+7r 5	 2n 1 1		 5 	1 1 1 1 1 2	 1 	1 1 	int int int int int int int int int	1+5n - 2 7+2n - 0 1+3n - 0 3+8n - 2 2+7n - 2	1 0.55n 0.63n 1 23+6n 3

Other											
NOP (90)		1	1	х	Х	Х				int	0,33
Long NOP (0F 1F)		1	1	х	Х	Х				int	1
PAUSE		3	3	х	Х	Х				int	8
ENTER	i,0	12	10					1	1	int	8
ENTER	a,b									int	
LEAVE		3	2				1			int	
CPUID		46-100								int	180-215
RDTSC		29								int	64
RDPMC		23								int	54

Notes:

a) Applies to all addressing modesb) Has an implicit LOCK prefix.

c) Low values are for small results, high values for high results.

e) See manual 3: "The microarchitecture of Intel, AMD and VIA CPUs" for restric-

tions on macro-op fusion.

i) Not available in 64 bit mode.

Floating point x87 instructions

Instruction	Operands	μορs fused	μops	un	fuse	d d	oma	су		Reci- procal		
		do- main	p015	p0	p1	р5	p2	р3	p4			through- put
Move instructions												
FLD	r	1	1	1						float	1	1
FLD	m32/64	1	1				1			float	3	1
FLD	m80	4	2	2			2			float	4	3
FBLD	m80	40	38				2			float	45	20
FST(P)	r	1	1	1						float	1	1
FST(P)	m32/m64	1						1	1	float	3	1
FSTP	m80	7	3	Х	x	Х		2	2	float	4	5
FBSTP	m80	170	166	Х	x	Х		2	2	float	164	166
FXCH	r	1	0 f)							float	0	1
FILD	m	1	1	1			1			float	6	1
FIST	m	2	1		1			1	1	float	6	1
FISTP	m	3	1		1			1	1	float	6	1
FISTTP g)	m	3	1		1			1	1	float	6	1
FLDZ		1	1	1						float		1
FLD1		2	2	1	1					float		2
FLDPI FLDL2E etc.		2	2		2					float		2
FCMOVcc	r	2	2	2						float	2	2
FNSTSW	AX	1	1	1						float		1
FNSTSW	m16	2	1	1				1	1	float		2
FLDCW	m16	2	1				1			float		10
FNSTCW	m16	3	1					1	1	float		8
FINCSTP FDECSTP		1	1	1						float	1	1
FFREE(P)	r	2	2	2						float		2
FNSAVE	m	142								float	184	192
FRSTOR	m	78								float	169	177
Arithmetic instructions												

FADD(P) FSUB(R)(P)	r	1	1		1			float	3	1
FADD(P) FSUB(R)(P)	m	1	1		1	1		float		1
FMUL(P)	r	1	1	1				float	5	2
FMUL(P)	m	1	1	1		1		float		2
FDIV(R)(P)	r	1	1	1				float	6-38 d)	5-37 d)
FDIV(R)(P)	m	1	1	1		1		float		5-37 d)
FABS		1	1	1				float	1	1
FCHS		1	1	1				float	1	1
FCOM(P) FUCOM	r	1	1		1			float		1
FCOM(P) FUCOM	m	1	1		1	1		float		1
FCOMPP FUCOMPP		2	2	1	1			float		
FCOMI(P) FUCOMI(P)	r	1	1		1			float		1
FIADD FISUB(R)	m	2	2	1	1	1		float		2
FIMUL	m	2	2	2		1		float		2
FIDIV(R)	m	2	2	2		1		float		5-37 d)
FICOM(P)	m	2	2	1	1	1		float		2
FTST		1	1		1			float		1
FXAM		1	1		1			float		1
FPREM FPREM1		21-27	21-27					float	16-56	
FRNDINT		7-15	7-15					float	22-29	
Math										
FSCALE		27	27					float	41	
FXTRACT		82	82					float	170	
FSQRT		1	1					float	6-69	
FSIN FCOS		~96	~96					float	~96	
FSINCOS		~100	~100					float	~115	
F2XM1		~19	~19					float	~45	
FYL2X FYL2XP1		~53	~53					float	~96	
FPTAN		~98	~98					float	~136	
FPATAN		~70	~70					float	~119	
Other										
FNOP		1	1	1				float		1
WAIT		2	2					float		1
FNCLEX		4	4					float		15
FNINIT		15	15					float		63

Notes:

d) Round divisors or low precision give low values.

f) Resolved by register renaming. Generates no μops in the unfused domain.

g) SSE3 instruction set.

Integer MMX and XMM instructions

Instruction	Operands	μοps fused	μορε	un	fuse	ed d	oma	ain	Unit	Laten- cy	Reci- procal	
		do- main	p015	p0	p1	p5	p2	p3	p4			through- put
Move instructions												
MOVD k)	r32/64,(x)mm	1	1	Х	Х	Х				int	2	0,33
MOVD k)	m32/64,(x)mm	1						1	1		3	1
MOVD k)	(x)mm,r32/64	1	1	X		Х				int	2	0,5
MOVD k)	(x)mm,m32/64	1 1					1			int	2	1

MOVQ	(x)mm, (x)mm	1	1	Х	х	Х				int	1	0,33
MOVQ	(x)mm,m64	1					1			int	2	1 1
MOVQ	m64, (x)mm	1						1	1		3	1 1
MOVDQA	xmm, xmm	1	1	x	x	x				int	1	0,33
MOVDQA	xmm, m128	1					1			int	2	1
MOVDQA	m128, xmm	1						1	1		3	1 1
MOVDQU	m128, xmm	9	4	X	X	X	1	2	2		3-8	4
MOVDQU	xmm, m128	4	2	X		X	2	_		int	2-8	2
LDDQU g)	xmm, m128	4	2	X		X	2			int	2-8	2
MOVDQ2Q	mm, xmm	1	1	X	X	X				int	1	0,33
MOVQ2DQ	xmm,mm	1	1	X	X	X				int	1	0,33
MOVNTQ	m64,mm	1	-					1	1		•	2
MOVNTDQ	m128,xmm	1						1	1			2
PACKSSWB/DW	mm,mm	1	1	1				•		int	1	1
PACKUSWB	mm,m64	1	1	1			1			int		1 1
PACKSSWB/DW	xmm,xmm	3	3	'			ľ			flt→int	3	2
PACKUSWB	xmm,m128	4	3				1			int		2
PUNPCKH/LBW/WD/DQ	mm,mm	1	1	1			ľ			int	1	1
PUNPCKH/LBW/WD/DQ	mm,m64	1	1	1			1			int		1 1
PUNPCKH/LBW/WD/DQ	xmm,xmm	3	3	'			'			flt→int	3	2
PUNPCKH/LBW/WD/DQ	xmm,m128	4	3				1			int	0	2
PUNPCKH/LQDQ	xmm,xmm	1	1				'			int	1	1
PUNPCKH/LQDQ	xmm, m128	2	1				1			int	'	1 1
PSHUFB h)	mm,mm	1				1	'			int	1	1 1
PSHUFB h)	mm,m64	2	1				1			int	'	1
PSHUFB h)	xmm,xmm	4	4			'	'			int	3	2
PSHUFB h)	xmm,m128	5	4				1			int	J	2
PSHUFW	mm,mm,i	1	1			1	'			int	1	1
PSHUFW	mm,m64,i	2					1			int	'	
PSHUFD	xmm,xmm,i	2	2				'			flt→int	3	1 1
PSHUFD		3	2	X	X		1			int	3	
PSHUFL/HW	xmm,m128,i	ა 1	1	X	X	1				_	1	
PSHUFL/HW	xmm,xmm,i	2	1			1	1			int	ı	1 1
	xmm, m128,i		2	١.,	.,	-				int	2	
PALIGNR h)	mm,mm,i	2		X	X	X	4			int	2	
PALIGNR h)	mm,m64,i	2	2	X	X	X	1			int	2	
PALIGNR h)	xmm,xmm,i	2	2 2	X	X	X	4			int	2	1
PALIGNR h)	xmm,m128,i	2	2	X	X	X	1			int		1
MASKMOVQ	mm,mm	4								int		2-5
MASKMOVDQU	xmm,xmm	10	,	_						int	0	6-10
PMOVMSKB	r32,(x)mm	1	1	1						int	2	1
PEXTRW	r32,mm,i	2	2							int	3	1
PEXTRW	r32,xmm,i	3	3			_				int	5	1
PINSRW	mm,r32,i	1	1			1	4			int	2	1
PINSRW	mm,m16,i	2	1			1	1			int	0	1
PINSRW	xmm,r32,i	3	3	X	X	X				int	6	1,5
PINSRW	xmm,m16,i	4	3	X	Х	X	1			int		1,5
Arithmetic instructions												
PADD/SUB(U)(S)B/W/D	(x)mm, (x)mm	1	1	Х		Х				int	1	0,5
PADD/SUB(U)(S)B/W/D	(x)mm,m	1	1	Х		Х	1			int		1
PADDQ PSUBQ	(x)mm, (x)mm	2	2	Х		Х				int	2	1
PADDQ PSUBQ	(x)mm,m	2	2	X		X	1			int		1

DI IA DD (O)AA	1 1		ı	ı	ı	ı	ı	l		1	1
PHADD(S)W PHSUB(S)W h)	mm mm	5	5						int	5	4
1 ' ' '	mm,mm	5	5						int	5	4
PHADD(S)W PHSUB(S)W h)	mm m64	6	5				1		int		4
1 ' ' '	mm,m64	0	5						int		4
PHADD(S)W PHSUB(S)W h)		7	_						int	6	4
1 ' ' '	xmm,xmm	7	7						int	О	4
PHADD(S)W	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	_				4		:4		4
PHSUB(S)W h)	xmm,m128	8	7				1		int	_	4
PHADDD PHSUBD h)	mm,mm	3	3						int	3	2
PHADDD PHSUBD h)	mm,m64	4	3				1		int	_	2
PHADDD PHSUBD h)	xmm,xmm	5	5						int	5	3
PHADDD PHSUBD h)	xmm,m128	6	5				1		int		3
PCMPEQ/GTB/W/D	(x)mm,(x)mm	1	1	X		Х			int	1	0,5
PCMPEQ/GTB/W/D	(x)mm,m	1	1	X		Х	1		int	_	1
PMULL/HW PMULHUW	(x)mm,(x)mm	1	1		1				int	3	1
PMULL/HW PMULHUW	(x)mm,m	1	1		1		1		int		1
PMULHRSW h)	(x)mm,(x)mm	1	1		1				int	3	1
PMULHRSW h)	(x)mm,m	1	1		1		1		int		1
PMULUDQ	(x)mm,(x)mm	1	1		1				int	3	1
PMULUDQ	(x)mm,m	1	1		1		1		int		1
PMADDWD	(x)mm,(x)mm	1	1		1				int	3	1
PMADDWD	(x)mm,m	1	1		1		1		int		1
PMADDUBSW h)	(x)mm,(x)mm	1	1		1				int	3	1
PMADDUBSW h)	(x)mm,m	1	1		1		1		int		1
PAVGB/W	(x)mm,(x)mm	1	1	X		Х			int	1	0,5
PAVGB/W	(x)mm,m	1	1	X		Х	1		int		1
PMIN/MAXUB/SW	(x)mm,(x)mm	1	1	X		Х			int	1	0,5
PMIN/MAXUB/SW	(x)mm,m	1	1	X		Х	1		int		1
PABSB PABSW PABSD	(x)mm,(x)mm	1	1	X		Х			int	1	0,5
h)	(x)mm,m	1	1	X		Х	1		int		1
PSIGNB PSIGNW	(x)mm,(x)mm	1	1	Х		Х			int	1	0,5
PSIGND h)	(x)mm,m	1	1	Х		Х	1		int		1
PSADBW	(x)mm,(x)mm	1	1		1				int	3	1
PSADBW	(x)mm,m	1	1		1		1		int		1
Logic instructions											
PAND(N) POR PXOR	(x)mm,(x)mm	1	1	x	Х	Х			int	1	0,33
PAND(N) POR PXOR	(x)mm,m	1	1	x	х	х	1		int		1
PSLL/RL/RAW/D/Q	mm,mm/i	1	1	1					int	1	1
PSLL/RL/RAW/D/Q	mm,m64	1	1	1			1		int		1
PSLL/RL/RAW/D/Q	xmm,i	1	1	1					int	1	1
PSLL/RL/RAW/D/Q	xmm,xmm	2	2	х	х				int	2	1
PSLL/RL/RAW/D/Q	xmm,m128	3	2	х	х		1		int		1
PSLL/RLDQ	xmm,i	2	2	Х	х				int	2	1
Other]										
EMMS		11	11	Х	Х	Х			float		6
Motoo:											

Notes:

g) h) SSE3 instruction set.

Supplementary SSE3 instruction set.

 $\stackrel{\cdot\cdot\cdot}{\mathsf{MASM}}$ uses the name MOVD rather than MOVQ for this instruction even when moving 64 bits.

k)

Floating point XMM instructions

Floating point XMM instructions Instruction Operands µops µops unfused domain Unit Laten- Reci-												
Instruction	Operands	μορs fused				,				Unit	Laten- cy	Reci- procal
		do- main	p015	p0	p1	p5	p2	p3	p4			through- put
Move instructions												
MOVAPS/D	xmm,xmm	1	1	х	X	x				int	1	0,33
MOVAPS/D	xmm,m128	1					1			int	2	1
MOVAPS/D	m128,xmm	1						1	1		3	1
MOVUPS/D	xmm,m128	4	2	1		1	2			int	2-4	2
MOVUPS/D	m128,xmm	9	4	x	X	X	1	2	2		3-4	4
MOVSS/D	xmm,xmm	1	1	x	X	x				int	1	0,33
MOVSS/D	xmm,m32/64	1					1			int	2	1
MOVSS/D	m32/64,xmm	1						1	1		3	1
MOVHPS/D MOVLPS/D	xmm,m64	2	1			1	1	-	-	int	3	1
MOVHPS/D	m64,xmm	2	1	1		'	ļ ·	1	1		5	1 1
MOVLPS/D	m64,xmm	1	'	'				1	1		3	1
MOVLHPS MOVHLPS	xmm,xmm	1	1	1				l '	'	float	1	1
MOVMSKPS/D	r32,xmm	1	1	1						float	1	1 1
MOVNTPS/D	m128,xmm	1	'	'				1	1	lioat	'	2-3
SHUFPS	xmm,xmm,i	3	3		3			'		flt→int	3	2-3
SHUFPS	xmm,m128,i	4	3		3		1			flt→int	3	2
SHUFPD	xmm,xmm,i	1	1	1	3		'			float	1	1
SHUFPD		2		1			1			float	'	1
MOVDDUP g)	xmm,m128,i	1		1			'			int	1	
G,	xmm,xmm	2		1			1			int	'	1
MOVDDUP g)	xmm,m64			'		1					1	1
MOVSH/LDUP g)	xmm,xmm	1 2	1			1	4			int	1	1
MOVSH/LDUP g)	xmm,m128		1			1	1			int		1
UNPCKH/LPS	xmm,xmm	3	3		3					flt→int	3	2
UNPCKH/LPS	xmm,m128	4	3		3		1			int		2
UNPCKH/LPD	xmm,xmm	1	1	1						float	1	1
UNPCKH/LPD	xmm,m128	2	1	1			1			float		1
Conversion												
CVTPD2PS	xmm,xmm	2	2							float	4	1
CVTPD2PS	xmm,m128	2	2				1			float		1
CVTSD2SS	xmm,xmm	2	2							float	4	1
CVTSD2SS	xmm,m64	2	2				1			float		1
CVTPS2PD	xmm,xmm	2	2	2						float	2	2
CVTPS2PD	xmm,m64	2	2	2			1			float		2
CVTSS2SD	xmm,xmm	2	2							float	2	2
CVTSS2SD	xmm,m32	2	2	2			1			float		2
CVTDQ2PS	xmm,xmm	1	1		1					float	3	1
CVTDQ2PS	xmm,m128	1	1		1		1			float		1
CVT(T) PS2DQ	xmm,xmm	1	1		1					float	3	1
CVT(T) PS2DQ	xmm,m128	1	1		1		1			float		1
CVTDQ2PD	xmm,xmm	2	2	1	1					float	4	1
CVTDQ2PD	xmm,m64	3	2	'	'		1			float		1
CVT(T)PD2DQ	xmm,xmm	2	2				'			float	4	1
CVT(T)PD2DQ	xmm,m128	2	2				1			float		1

CVTPI2PS	xmm,mm	1	1		1				float	3	3
CVTPI2PS	xmm,m64	1	1		1		1		float		3
CVT(T)PS2PI	mm,xmm	1	1		1				float	3	1
CVT(T)PS2PI	mm,m128	1	1		1		1		float		1
CVTPI2PD	xmm,mm	2	2	1	1				float	4	1
CVTPI2PD	xmm,m64	2	2	1	1		1		float		1
CVT(T) PD2PI	mm,xmm	2	2	1	1		•		float	4	1
CVT(T) PD2PI	mm,m128	2	2	1	1		1		float		1
			1	'			1			,	
CVTSI2SS	xmm,r32	1			1				float	4	3
CVTSI2SS	xmm,m32	1	1		1		1		float		3
CVT(T)SS2SI	r32,xmm	1	1		1				float	3	1
CVT(T)SS2SI	r32,m32	1	1		1		1		float		1
CVTSI2SD	xmm,r32	2	2	1	1				float	4	3
CVTSI2SD	xmm,m32	2	1		1		1		float		3
CVT(T)SD2SI	r32,xmm	1	1		1				float	3	1
CVT(T)SD2SI	r32,m64	1	1		1		1		float		1
Arithmetic											
ADDSS/D SUBSS/D	xmm,xmm	1	1		1				float	3	1
ADDSS/D SUBSS/D	xmm,m32/64	1	1		1		1		float		1
ADDPS/D SUBPS/D	xmm,xmm	1	1		1		•		float	3	1
ADDPS/D SUBPS/D	xmm,m128	1	1		1		1		float		1
		1	1		1		'		float	3	1
ADDSUBPS/D g)	xmm,xmm	•								3	
ADDSUBPS/D g)	xmm,m128	1	1		1		1		float		1
HADDPS HSUBPS g)	xmm,xmm	6	6						float	9	3
HADDPS HSUBPS g)	xmm,m128	7	6				1		float		3
HADDPD HSUBPD g)	xmm,xmm	3	3						float	5	2
HADDPD HSUBPD g)	xmm,m128	4	3				1		float		2
MULSS	xmm,xmm	1	1	1					float	4	1
MULSS	xmm,m32	1	1	1			1		float		1
MULSD	xmm,xmm	1	1	1					float	5	1
MULSD	xmm,m64	1	1	1			1		float		1
MULPS	xmm,xmm	1	1	1					float	4	1
MULPS	xmm,m128	1	1	1			1		float		1
MULPD	xmm,xmm	1	1	1			•		float	5	1
MULPD	xmm,m128	1	1	1			1		float		1
DIVSS	xmm,xmm	1	1	1			•		float	6-18 d)	5-17 d)
DIVSS	xmm,m32	1	1	1			1		float		5-17 d)
DIVSD	xmm,xmm	1	1	1			'		float	6-32 d)	5-17 d) 5-31 d)
DIVSD			1	1 .			1		float	0-32 u)	5-31 d) 5-31 d)
	xmm,m64	1		1			1			0 40 4	, ,
DIVPS	xmm,xmm	1	1	1					float	6-18 d)	5-17 d)
DIVPS	xmm,m128	1	1	1			1		float		5-17 d)
DIVPD	xmm,xmm	1	1	1					float	6-32 d)	5-31 d)
DIVPD	xmm,m128	1	1	1			1		float		5-31 d)
RCPSS/PS	xmm,xmm	1	1		1				float	3	2
RCPSS/PS	xmm,m	1	1		1		1		float		2
CMPccSS/D	xmm,xmm	1	1		1				float	3	1
CMPccSS/D	xmm,m32/64	1	1		1		1		float		1
CMPccPS/D	xmm,xmm	1	1		1				float	3	1
CMPccPS/D	xmm,m128	1	1		1		1		float		1
COMISS/D UCOMISS/D	xmm,xmm	1	1		1				float	3	1
COMISS/D UCOMISS/D	xmm,m32/64	1	1		1		1		float		1
MAXSS/D MINSS/D	xmm,xmm	1	1		1		-		float	3	1
3.00/D WIII 100/D	Allini,Allini	•	'	I	'	1 1		1		, ,	•

Merom

MAXSS/D MINSS/D	xmm,m32/64	1	1		1		1			float		1
MAXPS/D MINPS/D	xmm,xmm	1	1		1					float	3	1
MAXPS/D MINPS/D	xmm,m128	1	1		1		1			float		1
Math												
SQRTSS/PS	xmm,xmm	1	1	1						float	6-29	6-29
SQRTSS/PS	xmm,m	2	1	1			1			float		6-29
SQRTSD/PD	xmm,xmm	1	1	1						float	6-58	6-58
SQRTSD/PD	xmm,m	2	1	1			1			float		6-58
RSQRTSS/PS	xmm,xmm	1	1		1					float	3	2
RSQRTSS/PS	xmm,m	1	1		1		1			float		2
Logic												
AND/ANDN/OR/XORPS/D	xmm,xmm	1	1	х	х	х				int	1	0,33
AND/ANDN/OR/XORPS/D	xmm,m128	1	1	х	х	х	1			int		1
Other												
LDMXCSR	m32	14	13				1					42
STMXCSR	m32	6	4					1	1			19
FXSAVE	m4096	141									145	145
FXRSTOR	m4096	119									164	164

Notes:

d) Round divisors give low values.

g) SSE3 instruction set.

Intel Core 2 (Wolfdale, 45nm)

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm = 128 bit

xmm register, (x)mm = mmx or xmm register, sr = segment register, m =

memory, m32 = 32-bit memory operand, etc.

μops fused domain: The number of μops at the decode, rename, allocate and retirement stages in

the pipeline. Fused µops count as one.

μορs unfused domain: The number of μορs for each execution port. Fused μορs count as two. Fused

macro-ops count as one. The instruction has μ op fusion if the sum of the numbers listed under p015 + p2 + p3 + p4 exceeds the number listed under μ ops fused domain. An x under p0, p1 or p5 means that at least one of the μ ops listed under p015 can optionally go to this port. For example, a 1 under p015 and an x under p0 and p5 means one μ op which can go to either port 0 or port 5, whichever is vacant first. A value listed under p015 but nothing under p0, p1 and p5 means that it is not known which of the three ports these

μops go to.

p015: The total number of μops going to port 0, 1 and 5.
p0: The number of μops going to port 0 (execution units).
p1: The number of μops going to port 1 (execution units).
p5: The number of μops going to port 5 (execution units).
p2: The number of μops going to port 2 (memory read).

p3: The number of μops going to port 3 (memory write address).p4: The number of μops going to port 4 (memory write data).

Unit: Tells which execution unit cluster is used. An additional delay of 1 clock cycle

is generated if a register written by a µop in the integer unit (int) is read by a µop in the floating point unit (float) or vice versa. flt→int means that an instruction with multiple µops receive the input in the float unit and delivers the output in the int unit. Delays for moving data between different units are included under latency when they are unavoidable. For example, movd eax,xmm0 has an extra 1 clock delay for moving from the XMM-integer unit to the general purpose integer unit. This is included under latency because it occurs regardless of which instruction comes next. Nothing listed under unit means that additional delays are either unlikely to occur or unavoidable and therefore in-

cluded in the latency figure.

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays very much, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give a similar delay. The time unit used is core clock cycles, not the reference clock cycles

given by the time stamp counter.

Reciprocal throughput: The average number of core clock cycles per instruction for a series of inde-

pendent instructions of the same kind in the same thread.

Integer instructions

Instruction	Operands	μορs fused								Unit	- 3	procal
		do- main	p015	p0	p1	р5	p2	р3	р4			through- put
Move instructions												

			_									
MOV	r,r/i	1	1	Х	Х	Х				1	0,33	
MOV a)	r,m	1					1			2	1	
MOV a)	m,r	1						1	1	3	1	
MOV	m,i	1						1	1	3	1	
MOV	r,sr	1					1	-	_		1	
MOV	m,sr	2					1	1	1		1	
MOV			4		.,	.,	1	'	'			
	sr,r	8	4	Х	Х	X	4				16	
MOV	sr,m	8	3	Х		X	5	١.			16	
MOVNTI	m,r	2						1	1		2	
MOVSX MOVZX												
MOVSXD	r,r	1	1	Х	Х	X				1	0,33	
MOVSX MOVZX	r16/32,m	1					1				1	
MOVSX MOVSXD	r64,m	2	1	х	Х	х	1				1	
CMOVcc	r,r	2	2	x	x	x				2	1	
CMOVcc	r,m	2	2	x	X	X	1					
XCHG	r,r	3	3	X	X	X	'			2	2	
XCHG	r,m	7	X	^	^	^	1	1	1	high b)	2	
	1,111						1	'	'		4	
XLAT		2	1				1	١,	١,	4	1	
PUSH	r	1						1	1	3	1	
PUSH	i	1						1	1		1	
PUSH	m	2					1	1	1		1	
PUSH	sr	2	1					1	1		1	
PUSHF(D/Q)		17	15	х	х	x		1	1		7	
PUSHA(D) i)		18	9					1	8		8	
POP	r	1					1			2	1	
POP	(E/R)SP	4	3				1			_	•	
POP	m (L/TC)OI	2					1	1	1		1,5	
POP		10						'	'			
	sr		9				1				17	
POPF(D/Q)		24	23	Х	Х	Х	1			20	_	
POPA(D) i)		10	2				8				7	
LAHF SAHF		1	1	Х	Х	X				1 1	0,33	
SALC i)		2	2	Х	Х	Х				4	1	
LEA a)	r,m	1	1	1						1	1	
BSWAP	r	2	2	1		1				4	1	
LDS LES LFS LGS LSS	m	11	11				1				17	
PREFETCHNTA	m	1					1				1	
PREFETCHT0/1/2	m	1					1				1	
LFENCE	111	2					'	1	1		8	
		2						1			6	
MFENCE									1			
SFENCE		2	_			١.		1	1		9	
CLFLUSH	m8	4	2	1		1		1	1	120	90	
IN												
OUT												
Arithmetic instructions												
ADD SUB	r,r/i	1	1	х	х	x				1	0,33	
ADD SUB	r,m	1	1	х	X	x	1				1	
ADD SUB	m,r/i	2	1	X	X	X	1	1	1	6	1	
ADC SBB	r,r/i	2	2	X	X	x	'	'	ļ .	2	2	
ADC SBB		2	2				4			1	2	
I	r,m		1	X	X	X	1	_		2	2	
ADC SBB	m,r/i	4	3	Х	Х	Х	1	1	1	7	0.00	
CMP	r,r/i	1	1	Х	Х	X				1 1	0,33	
CMP	m,r/i	1	1	X	X	X	1			1	1	

INC DEC NEG NOT		1	1	١,,	v	_V	l		I	ĺ	1	0,33
INC DEC NEG NOT	r m	1 3	1 1	X	X	X	1	1	1		1 6	1
AAA AAS DAA DAS i)	""	1	1	^	1	^	'	'	'			1
AAD i)		3	3	x	X	x						1
AAM i)		5	5	X	×	X					17	
MUL IMUL	r8	1	1	^	1	^					3	1
MUL IMUL	r16	3	3	v							5	1,5
MUL IMUL	r32	3	3	X	X	X					5	
MUL IMUL	r64	3	3	X	X	X					7	1,5 4
IMUL	r16,r16	1	1	Х	1	X					3	1
IMUL		1	1		1						3	
IMUL	r32,r32	1	1 1	4	'						5	1
IMUL	r64,r64		1 1	1	4						3	2
	r16,r16,i	1			1						3	
IMUL	r32,r32,i	1	1	,	1							1
IMUL	r64,r64,i	1	1	1	_		_				5	2
MUL IMUL	m8 m16	1	1	١.,	1		1				3	1
MUL IMUL		3	3	X	X	X	1				5	1,5
MUL IMUL	m32	3	3	X	X	X	1				5	1,5
MUL IMUL	m64	3	2	2	,		1				7	4
IMUL	r16,m16	1	1		1		1				3	1
IMUL	r32,m32	1	1		1		1				3 5	1
IMUL	r64,m64	1	1	1			1				5	2
IMUL	r16,m16,i	1	1		1		1					2
IMUL	r32,m32,i	1	1		1		1					1
IMUL	r64,m64,i	1	1	1		١.	1					2
DIV IDIV	r8	4	4	1	2	1					9-18 c)	
DIV IDIV	r16	7	7	X	X	X					14-22 c)	
DIV IDIV	r32	7	7	2	3	2					14-23 c)	
DIV	r64	32-38	32-38	9	10	13					18-57 c)	
IDIV	r64	56-62	56-62	X	X	Х					34-88 c)	
DIV IDIV	m8	4	3	1	2		1				9-18	
DIV IDIV	m16	7	7	2	3	2	1				14-22 c)	
DIV IDIV	m32	7	6	Х	Х	Х	1				14-23 c)	
DIV	m64	32	31	X	X	X	1				34-88 c)	
IDIV	m64	56	55	X	X	X	1				39-72 c)	
CBW CWDE CDQE		1	1	X	X	X					1 1	
CWD CDQ CQO		1	1	Х		X						
Logic instructions												
AND OR XOR	r,r/i	1	1	x	x	x					1	0,33
AND OR XOR	r,m	1	1	X	X	X	1				'	1
AND OR XOR	m,r/i	2	1	X	X	X	1	1	1		6	1
TEST	r,r/i	1	1	X	X	X	'	'	ļ '		1	0,33
TEST	m,r/i	1	1	X	X	X	1				'	1
SHR SHL SAR	r,i/cl	1	1	x	^	x	'				1	0,5
SHR SHL SAR	m,i/cl	3	2	x		x	1	1	1		6	1
ROR ROL	r,i/cl	1	1	x		x	'	'	'		1	1
ROR ROL	m,i/cl	3	2	X		X	1	1	1		6	1
RCR RCL	r,1	2	2				'		'		2	2
RCR	r8,i/cl	9	9	X	X	X					12	_
RCL	r8,i/cl	8	8		X						11	
RCR RCL	r,i/cl	6	6	X	X	X					11	
RCR RCL	m,1	4	3	X	X	X	1	1	1		7	
INONTROL	111, 1	1 -	3	X	^	_ ^	'	'	'		'	

RCR RCL RCR RCL SHLD SHRD SHLD SHRD BT BT BT BT BTR BTS BTC BTR BTS BTC BTR BTS BTC BTR BTS BTC CBTR BTS BTC CCC CCC STCC CCLC STD	m8,i/cl m8,i/cl m8,i/cl m,i/cl r,r,i/cl m,r,i/cl r,r/i m,r m,i r,r/i m,r m,i r,r m,i r,r m,i r,r m,i r,r	12 11 10 2 3 1 9 3 1 10 3 2 2 1 2 1 6 6	9 8 7 2 1 8 2 1 7 1 2 2 1 1 6 6	X	X	X	1 1 1 1 1 1 1	1 1 1 1	1 1 1 1 1 1		14 13 13 22 77 11 15 66 22 11	1 1 4 1 1 1 0,33 3 14
Control transfer instructi JMP JMP i) JMP JMP JMP Conditional jump Fused compare/test and bi J(E/R)CXZ LOOP LOOP(N)E CALL CALL CALL CALL CALL RETN RETN RETF RETF BOUND i) INTO i)	short/near far r m(near) m(far) short/near	1 30 1 1 31 1 2 11 11 3 43 3 4 44 1 3 32 32 15 5	1 30 1 1 29 1 1 2 11 11 2 43 2 3 42 1 1 30 30 13 5	x x x	x x x	1 1 1 1 1 1 X X X X 1 1 1	1 2 1 1 2 2 2 2	1 1 1	1 1 1		0 0 0 0 0	1-2 76 1-2 1-2 68 1 1-2 5 5 2 75 2 75 2 75 2 78 78 8 3
String instructions LODS REP LODS STOS REP STOS MOVS REP MOVS REP MOVS SCAS REP(N)E SCAS CMPS		3 4+7n-1 4 8+5n-2 8 1 7+7n-1 4 7+8n-1	2 0+1.2 5 1 3+n 3	 		5	1 1 1 1 2	 1 	 1 	7+2 1+3	2n-0. 3n-0.	

REP(N)E CMPS		7+10n-	7+9n	1	I	I	ı	I	l	2+7n-22	2+5n
Other											
NOP (90)		1	1	Х	Х	Х					0,33
Long NOP (0F 1F)		1	1	х	х	х					1
PAUSE		3	3	Х	Х	x					8
ENTER	i,0	12	10					1	1		8
ENTER	a,b										
LEAVE		3	2				1				
CPUID		53-117									53-211
RDTSC		13									32
RDPMC		23									54

Notes:

a) Applies to all addressing modes Has an implicit LOCK prefix. b)

Low values are for small results, high values for high results. The reciprocal c)

throughput is only slightly less than the latency.

See manual 3: "The microarchitecture of Intel, AMD and VIA CPUs" for restrictions on macro-op fusion. e)

i) Not available in 64 bit mode.

Floating point x87 instructions

Instruction	Operands	μορs fused	µops	un	fuse	ed d	oma	ain		Unit	Laten- cy	Reci- procal
		do- main	p015	p0	p1	p5	p2	p3	p4			through- put
Move instructions												
FLD	r	1	1	1						float	1	1
FLD	m32/64	1	1				1			float	3	1
FLD	m80	4	2	2			2			float	4	3
FBLD	m80	40	38	Х	х	Х	2			float	45	20
FST(P)	r	1	1	1						float	1	1
FST(P)	m32/m64	1						1	1	float	3	1
FSTP	m80	7	3	Х	Х	Х		2	2	float	4	5
FBSTP	m80	171	167	Х	Х	Х		2	2	float	164	166
FXCH	r	1	0 f)							float	0	1
FILD	m	1	1		1		1			float	6	1
FIST	m	2	1		1			1	1	float	6	1
FISTP	m	3	1		1			1	1	float	6	1
FISTTP g)	m	3	1		1			1	1	float	6	1
FLDZ		1	1	1						float		1
FLD1		2	2	1	1					float		2
FLDPI FLDL2E etc.		2	2		2					float		2
FCMOVcc	r	2	2	2						float	2	2
FNSTSW	AX	1	1	1						float		1
FNSTSW	m16	2	1	1				1	1	float		2
FLDCW	m16	2	1				1			float		10
FNSTCW	m16	3	1			1		1	1	float		8
FINCSTP FDECSTP		1	1	1						float	1	1
FFREE(P)	r	2	2	Х	х	Х				float		2
FNSAVE	m	141	95	х	х	x	7	23	23	float		142

FRSTOR	m	78	51	x	х	x	27	float		177
Arithmetic instructions										
FADD(P) FSUB(R)(P)	r	1	1		1			float	3	1
FADD(P) FSUB(R)(P)	m	1	1		1		1	float		1
FMUL(P)	r	1	1	1				float	5	2
FMUL(P)	m	1	1	1			1	float		2
FDIV(R)(P)	r	1	1	1				float	6-21 d)	5-20 d)
FDIV(R)(P)	m	1	1	1			1	float	6-21 d)	5-20 d)
FABS		1	1	1				float	1	1
FCHS		1	1	1				float	1	1
FCOM(P) FUCOM	r	1	1		1			float		1
FCOM(P) FUCOM	m	1	1		1		1	float		1
FCOMPP FUCOMPP		2	2	1	1			float		
FCOMI(P) FUCOMI(P)	r	1	1		1			float		1
FIADD FISUB(R)	m	2	2		2		1	float	3	2
FIMUL	m	2	2	1	1		1	float	5	2
FIDIV(R)	m	2	2	1	1		1	float	6-21	5-20 d)
FICOM(P)	m	2	2		2		1	float		2
FTST		1	1		1			float		1
FXAM		1	1		1			float		1
FPREM		26-29	ı	х	х	x		float	13-40	
FPREM1		28-35		x	x	x		float	18-41	
FRNDINT		17-19	I	х	х	х		float	10-22	
Math										
FSCALE		28	28	х	х	x		float	43	
FXTRACT		53-84	I	х	х	х		float	~170	
FSQRT		1	1	1				float	6-20	
FSIN		18-85	1	х	х	х		float	32-85	
FCOS		76-100		х	х	х		float	70-100	
		18-								
FSINCOS		105		Х	х	х		float	38-107	
F2XM1		19	19	Х	х	х		float	45	
FYL2X FYL2XP1		57-65	,	Х	х	х		float	50-100	
FPTAN		19-100		Х	х	х		float	40-130	
FPATAN		23-87	I	х	х	х		float	55-130	
Other										
FNOP		1	1	1				float		1
WAIT		2	2	Х	х	х		float		1
FNCLEX		4	4		х	х		float		15
FNINIT		15	15	Х	х	х		float		63

Notes:

d) Round divisors or low precision give low values.

f) Resolved by register renaming. Generates no μops in the unfused domain.

g) SSE3 instruction set.

Integer MMX and XMM instructions

Instruction	Operands	μops	μops unfused domain	Unit	Laten-	Reci-
		fused			су	procal

		do-	p015	p0	p1	p5	p2	р3	р4			through
		main										put
Move instructions												
MOVD k)	r,(x)mm	1	1	Х	Х	Х				int	2	0,33
MOVD k)	m,(x)mm	1						1	1		3	1
MOVD k)	(x)mm,r	1	1	Х		Х				int	2	0,5
MOVD k)	(x)mm,m	1					1			int	2	1
MOVQ	V,V	1	1	Х	Х	Х				int	1	0,33
MOVQ	(x)mm,m64	1					1			int	2	1
MOVQ	m64, (x)mm	1						1	1		3	1
MOVDQA	xmm, xmm	1	1	Х	Х	Х				int	1	0,33
MOVDQA	xmm, m128	1					1			int	2	1
MOVDQA	m128, xmm	1						1	1		3	1
MOVDQU	m128, xmm	9	4	Х	х	х	1	2	2		3-8	4
MOVDQU	xmm, m128	4	2	х		X	2			int	2-8	2
_DDQU g)	xmm, m128	4	2	Х		X	2			int	2-8	2
MOVDQ2Q	mm, xmm	1	1	Х	Х	X				int	1	0,33
MOVQ2DQ	xmm,mm	1	1	x	x	x				int	1	0,33
MOVNTQ	m64,mm	1						1	1			2
MOVNTDQ	m128,xmm	1						1	1			2
MOVNTDQA j)	xmm, m128	1 1					1	'	'		2	1
PACKSSWB/DW	XIIIII, III 120	'					'				_	'
PACKUSWB	mm,mm	1	1	1						int	1	1
PACKSSWB/DW	111111,111111	'	'	'						1111	'	'
PACKUSWB	mm,m64	1	1	1			1			int		1
PACKSSWB/DW	111111,11104	'	'	'			'			1110		'
PACKUSWB	vmm vmm	1	1			1				int	1	1
PACKSSWB/DW	xmm,xmm	'	'			Į.				Ш	'	'
PACKUSWB	xmm,m128	1	1			1	1			int		1
		1	1			1	'			-	1	1
PACKUSDW j)	xmm,xmm						1			int	'	
PACKUSDW j)	xmm,m	1	1	4		1	1			int	1	1
PUNPCKH/LBW/WD/DQ	mm,mm	1	1	1						int	1	1
PUNPCKH/LBW/WD/DQ	mm,m64	1	1	1			1			int		1
PUNPCKH/LBW/WD/DQ	xmm,xmm	1	1			1				int	1	1
PUNPCKH/LBW/WD/DQ	xmm,m128	1	1			1	1			int		1
PUNPCKH/LQDQ	xmm,xmm	1	1			1				int	1	1
PUNPCKH/LQDQ	xmm, m128	2	1			1	1			int		1
PMOVSX/ZXBW j)	xmm,xmm	1	1			1				int	1	1
PMOVSX/ZXBW j)	xmm,m64	1	1			1	1			int		1
PMOVSX/ZXBD j)	xmm,xmm	1	1			1				int	1	1
PMOVSX/ZXBD j)	xmm,m32	1	1			1	1			int		1
PMOVSX/ZXBQ j)	xmm,xmm	1	1			1				int	1	1
PMOVSX/ZXBQ j)	xmm,m16	1	1			1	1			int		1
PMOVSX/ZXWD j)	xmm,xmm	1	1			1				int	1	1
PMOVSX/ZXWD j)	xmm,m64	1	1			1	1			int		1
PMOVSX/ZXWQ j)	xmm,xmm	1	1			1				int	1	1
PMOVSX/ZXWQ j)	xmm,m32	1	1			1	1			int		1
PMOVSX/ZXDQ j)	xmm,xmm	1	1			1				int	1	1
PMOVSX/ZXDQ j)	xmm,m64	1	1			1	1			int		1
PSHUFB h)	mm,mm	1	1			1	.			int	1	1
PSHUFB h)	mm,m64	2	1			1	1			int	'	1
PSHUFB h)	xmm,xmm	1	1			1	'			int	1	1
PSHUFB h)	xmm,m128	1	1			1	1			int	'	1

l= 0				ı	ı			ı	1 1			
PSHUFW	mm,mm,i	1	1			1				int	1	1
PSHUFW	mm,m64,i	2	1			1	1			int		1
PSHUFD	xmm,xmm,i	1	1			1				int	1	1
PSHUFD	xmm,m128,i	2	1			1	1			int		1
PSHUFL/HW	xmm,xmm,i	1	1			1				int	1	1
PSHUFL/HW	x, m128,i	2	1			1	1			int		1
PALIGNR h)	mm,mm,i	2	2			2				int	2	1
PALIGNR h)	mm,m64,i	3	3			3	1			int		1
PALIGNR h)	xmm,xmm,i	1	1			1				int	1	1
PALIGNR h)	xmm,m128,i	1	1			1	1			int		1
PBLENDVB j)	x,x,xmm0	2	2			2				int	2	2
PBLENDVB j)	x,m,xmm0	2	2			2	1			int		2
PBLENDW j)	xmm,xmm,i	1	1			1				int	1	1
PBLENDW j)	xmm,m,i	1	1			1	1			int		1
MASKMOVQ	mm,mm	4	1	1			1	1	1	int		2-5
MASKMOVDQU	xmm,xmm	10	4	1		3	2	2	3	int		6-10
PMOVMSKB	r32,(x)mm	1	1	1			-	_		int	2	1
PEXTRB j)	r32,xmm,i	2	2	X	x	x				int	3	1
PEXTRB j)	m8,xmm,i	2	2	x	x	x				int	3	1 1
PEXTRW	r32,(x)mm,i	2	2				1			int	3	1 1
	m16,(x)mm,i	2	2	X ?	X ?	X 1	'	1	1	int	3	1 1
PEXTRW j)	1 ' ' '	2	2	'		'		'	1		3	
PEXTRD j)	r32,xmm,i			X	X	X		_		int	3	1
PEXTRD j)	m32,xmm,i	2	1			1		1	1	int		1
PEXTRQ j,m)	r64,xmm,i	2	2	X	Х	X				int	3	1
PEXTRQ j,m)	m64,xmm,i	2	1			1		1	1	int		1
PINSRB j)	xmm,r32,i	1	1			1				int	1	1
PINSRB j)	xmm,m8,i	2	1			1	1			int		1
PINSRW	(x)mm,r32,i	1	1			1				int	2	1
PINSRW	(x)mm,m16,i	2	1			1	1			int		1
PINSRD j)	xmm,r32,i	1	1			1				int	1	1
PINSRD j)	xmm,m32,i	2	1			1	1			int		1
PINSRQ j,m)	xmm,r64,i	1	1			1				int	1	1
PINSRQ j,m)	xmm,m64,i	2	1			1	1			int		1
Arithmetic instructions												
PADD/SUB(U)(S)B/W/D	V,V	1	1	х		х				int	1	0,5
PADD/SUB(U)(S)B/W/D	(x)mm,m	1	1	Х		x	1			int		1
PADDQ PSUBQ	V,V	2	2	х		х				int	2	1
PADDQ PSUBQ	(x)mm,m	2	2	х		х	1			int		1
PHADD(S)W												
PHSUB(S)W h)	V,V	3	3	1		2				int	3	2
PHADD(S)W	,											
PHSUB(S)W h)	(x)mm,m64	4	3	1		2	1			int		2
PHADDD PHSUBD h)	V,V	3	3	1		2				int	3	2
PHADDD PHSUBD h)	(x)mm,m64	4	3	1		2	1			int		2
PCMPEQ/GTB/W/D	V,V	1	1	X		x	'			int	1	0,5
PCMPEQ/GTB/W/D	(x)mm,m	1		X		x	1			int		1
PCMPEQ/GTB/W/D	xmm,xmm	1	1	^		1	'			int	1	1
3,		1	1			1	1				'	
PCMPEQQ j)	xmm,m128				4					int	2	1
PMULL/HW PMULHUW	V,V	1	1		1		4			int	3	1
PMULL/HW PMULHUW	(x)mm,m	1	1		1		1			int		1
PMULHRSW h)	V,V	1	1		1		,			int	3	1
PMULHRSW h)	(x)mm,m	1	1		1		1			int		1

lova u v o v	1 1			1		۱ ۵		1	1		_	
PMULLD j)	xmm,xmm	4	4		2	2				int	5	2
PMULLD j)	xmm,m128	6	5	1	2	2	1			int	5	4
PMULDQ j)	xmm,xmm	1	1		1					int	3	1
PMULDQ j)	xmm,m128	1	1		1		1			int		1
PMULUDQ	V,V	1	1		1					int	3	1
PMULUDQ	(x)mm,m	1	1		1		1			int		1
PMADDWD	v,v	1	1		1					int	3	1
PMADDWD	(x)mm,m	1	1		1		1			int		1
PMADDUBSW h)	`´v,v	1	1		1					int	3	1
PMADDUBSW h)	(x)mm,m	1	1		1		1			int		1
PAVGB/W	\ ` v,v	1	1	х		x				int	1	0,5
PAVGB/W	(x)mm,m	1	1	X		x	1			int	-	1
PMIN/MAXSB j)	xmm,xmm	1	1	1		^	·			int	1	1
PMIN/MAXSB j)	xmm,m128	1	1	1			1			int	•	1
PMIN/MAXUB	V,V	1	1	X		x	'			int	1	0,5
PMIN/MAXUB	(x)mm,m	1	1	X		x	1			int		1
PMIN/MAXSW	V,V	1	1	x		x	'			int	1	0,5
PMIN/MAXSW	(x)mm,m	1					1				ı	1
	` '	1		X		X	'			int	4	· ·
PMIN/MAXUW j)	xmm,xmm	•	1	1			,			int	1	1
PMIN/MAXUW j)	xmm,m	1	1	_			1			int	4	1
PMIN/MAXSD j)	xmm,xmm	1	1	1						int	1	1
PMIN/MAXSD j)	xmm,m128	1	1	1			1			int	_	1
PMIN/MAXUD j)	xmm,xmm	1	1	1						int	1	1
PMIN/MAXUD j)	xmm,m128	1	1	1			1			int		1
PHMINPOSUW j)	xmm,xmm	4	4			4				int	4	4
PHMINPOSUW j)	xmm,m128	4	4			4	1			int		4
PABSB PABSW PABSD h)	V,V	1	1	Х		х				int	1	0,5
PABSB PABSW PABSD												
h)	(x)mm,m	1	1	Х		х	1			int		1
PSIGNB PSIGNW												
PSIGND h)	V,V	1	1	Х		х				int	1	0,5
PSIGNB PSIGNW												
PSIGND h)	(x)mm,m	1	1	Х		х	1			int		1
PSADBW	V,V	1	1		1					int	3	1
PSADBW	(x)mm,m	1	1		1		1			int		1
MPSADBW j)	xmm,xmm,i	3	3		1	2				int	5	2
MPSADBW j)	xmm,m,i	4	3		1	2	1			int		2
<i>,</i>	, ,											
Logic instructions												
PAND(N) POR PXOR	v,v	1	1	х	х	х				int	1	0,33
PAND(N) POR PXOR	(x)mm,m	1	1	х	х	х	1			int		1
PTEST j)	xmm,xmm	2	2	1	X	X				int	1	1
PTEST j)	xmm,m128	2	2	1	X	X	1			int	-	1
PSLL/RL/RAW/D/Q	mm,mm/i	1	1	1	^`	^	•			int	1	1
PSLL/RL/RAW/D/Q	mm,m64	1	1	1			1			int	•	1
PSLL/RL/RAW/D/Q	xmm,i	1	1	1						int	1	1
PSLL/RL/RAW/D/Q	xmm,xmm	2	2	X		x				int	2	1
PSLL/RL/RAW/D/Q	xmm,m128	3	2			X	1			int	4	1
		ა 1	1	X							1	1
PSLL/RLDQ	xmm,i	I	'	X		X				int	I	Į
Other												
EMMS		11	11	x	x	x				float		6
Notaci		- 11	11	^	_^	_ ^				iioat		

Notes:

- g) SSE3 instruction set.
- h) Supplementary SSE3 instruction set.
- j) SSE4.1 instruction set
- k) MASM uses the name MOVD rather than MOVQ for this instruction even
 - when moving 64 bits
- m) Only available in 64 bit mode

Floating point XMM instructions

Instruction	Operands	μορs fused	μops	un	fuse	ed d	oma	ain		Unit	Laten- cy	Reci- procal
		do-	p015	p0	p1	р5	p2	р3	p4	1		through-
Move instructions		main										put
MOVAPS/D	xmm,xmm	1	1	Х	Х	Х				int	1	0,33
MOVAPS/D	xmm,m128	1					1			int	2	1
MOVAPS/D	m128,xmm	1						1	1		3	1
MOVUPS/D	xmm,m128	4	2	1		1	2			int	2-4	2
MOVUPS/D	m128,xmm	9	4	Х	Х	Х	1	2	2		3-4	4
MOVSS/D	xmm,xmm	1	1	Х	Х	Х				int	1	0,33
MOVSS/D	x,m32/64	1					1			int	2	1
MOVSS/D	m32/64,x	1						1	1		3	1
MOVHPS/D MOVLPS/D	xmm,m64	2	1			1	1			int	3	1
MOVHPS/D	m64,xmm	2	1	1				1	1		5	1
MOVLPS/D	m64,xmm	1						1	1		3	1
MOVLHPS MOVHLPS	xmm,xmm	1	1	1						float	1	1
MOVMSKPS/D	r32,xmm	1	1	1						float	1	1
MOVNTPS/D	m128,xmm	1						1	1			2-3
SHUFPS	xmm,xmm,i	1	1			1				int	1	1
SHUFPS	xmm,m128,i	2	1			1	1			int		1
SHUFPD	xmm,xmm,i	1	1	1						float	1	1
SHUFPD	xmm,m128,i	2	1	1			1			float		1
BLENDPS/PD j)	xmm,xmm,i	1	1			1				int	1	1
BLENDPS/PD j)	xmm,m128,i	1	1			1	1			int		1
BLENDVPS/PD j)	x,x,xmm0	2	2			2				int	2	2
BLENDVPS/PD j)	x,m,xmm0	2	2			2	1			int		2
MOVDDUP g)	xmm,xmm	1	1	1						int	1	1
MOVDDUP g)	xmm,m64	2	1	1			1			int		1
MOVSH/LDUP g)	xmm,xmm	1	1			1				int	1	1
MOVSH/LDUP g)	xmm,m128	2	1			1	1			int		1
UNPCKH/LPS	xmm,xmm	1	1			1				int	1	1
UNPCKH/LPS	xmm,m128	1	1			1	1			int		1
UNPCKH/LPD	xmm,xmm	1	1	1						float	1	1
UNPCKH/LPD	xmm,m128	2	1	1			1			float		1
EXTRACTPS j)	r32,xmm,i	2	2	X	x	x				int	4	1
EXTRACTPS j)	m32,xmm,i	2	1			1		1	1	int		1
INSERTPS j)	xmm,xmm,i	1	1			1				int	1	1
INSERTPS j)	xmm,m32,i	2	1			1	1			int		1
Conversion												
CVTPD2PS	xmm,xmm	2	2	1	1					float	4	1
CVTPD2PS	xmm,m128	2	2	1	1		1			float		1
CVTSD2SS	xmm,xmm	2	2	1	1					float	4	1
CVTSD2SS	xmm,m64	2	2	1	1		1			float		1

CVTPS2PD xmm,xmm 2 1 2 2
CVTSS2SD xmm,xmm 2 2 2 1 float 2 2 2 CVTSS2SD xmm,mm22 2 2 2 1 float 2 2 2 CVTDQ2PS xmm,mmm 1 <th< td=""></th<>
CVTSS2SD xmm,m32 2 2 2 1 float 2 CVTDQ2PS xmm,xmm 1 <t< td=""></t<>
CVTDQ2PS xmm,xmm 1
CVTDQ2PS xmm,m128 1 1 1 1 1 float 1 CVT(T) PS2DQ xmm,xmm 1
CVT(T) PS2DQ
CVT(T) PS2DQ xmm,m128 1
CVT(T) PS2DQ xmm,m128 1
CVTDQ2PD xmm,xmm 2 2 1 1 float 4 1 CVTDQ2PD xmm,m64 2 2 1 1 float 4 1 CVT(T)PD2DQ xmm,mm 2 2 1 1 float 4 1 CVT(T)PD2DQ xmm,mm 2 2 1 1 1 float 4 1 CVTP12PS xmm,mm 2 2 1 1 1 float 3 3 CVT(T)P2PS xmm,m64 1 1 1 1 float 3 1 CVT(T)PS2PI mm,xmm 1 1 1 1 float 3 1 CVT(T)PS2PI mm,m128 1 1 1 1 float 4 1 CVT(T)PD2PI mm,mmm,mm 2 2 1 1 1 float 4 1 CVT(T)PD2PI mm,m128 2 2
CVTDQ2PD xmm,m64 2 2 1 1 float 1 CVT(T)PD2DQ xmm,xmm 2 2 1 1 float 4 1 CVT(T)PD2DQ xmm,m128 2 2 1 1 1 float 4 1 CVTP12PS xmm,mm 1 1 1 1 float 3 3 CVT(T)PS2PI mm,xmm 1 1 1 1 float 3 1 CVT(T)PS2PI mm,m128 1 1 1 1 float 3 1 CVTP12PD xmm,m128 1 1 1 float 4 1 CVT(T) PD2PI mm,xmm 2 2 1 1 float 4 1 CVT(T) PD2PI mm,m128 2 2 1 1 float 4 1 CVT(T)S2SS xmm,m32 1 1 1 float 3 1
CVT(T)PD2DQ xmm,xmm 2 2 1 1 float 4 1 CVT(T)PD2DQ xmm,m128 2 2 1 1 1 float 1 CVTPI2PS xmm,mm 1 1 1 1 float 3 3 CVTCIPSPSPI mm,xmm 1 1 1 1 float 3 1 CVT(T)PS2PI mm,xmm 1 1 1 1 float 3 1 CVT(T)PS2PI mm,mm 2 2 1 1 float 4 1 CVTPI2PD xmm,m64 2 2 1 1 float 4 1 CVT(T) PD2PI mm,xmm 2 2 1 1 float 4 1 CVTSI2SS xmm,m32 1 1 1 float 4 3 CVT(T)SS2SI r32,m32 1 1 1 float 3 1 <
CVT(T)PD2DQ xmm,m128 2 2 1 1 1 float 1 CVTPI2PS xmm,mm 1 1 1 1 1 float 3 3 CVTPI2PS xmm,m64 1 1 1 1 1 float 3 1 CVT(T)PS2PI mm,xmm 1 1 1 1 float 3 1 CVT(T)PS2PI mm,m128 1 1 1 float 4 1 CVTPI2PD xmm,m64 2 2 1 1 float 4 1 CVT(T)PD2PI mm,xmm 2 2 1 1 float 4 1 CVTS12SS xmm,r32 1 1 1 float 4 3 CVT(T)SS2SI r32,xmm 1 1 1 float 3 1 CVT(T)SD2SI r32,xmm 1 1 1 float 3 1 </td
CVTPI2PS xmm,mm 1 2 2 <
CVTPI2PS xmm,m64 1
CVT(T)PS2PI mm,xmm 1
CVT(T)PS2PI mm,m128 1
CVTPI2PD xmm,mm 2 2 1 1 float 4 1 CVTPI2PD xmm,m64 2 2 1 1 float 1 CVT(T) PD2PI mm,xmm 2 2 1 1 float 4 1 CVT(T) PD2PI mm,m128 2 2 1 1 1 float 4 1 CVTSI2SS xmm,r32 1 1 1 1 float 4 3 CVT(T)SS2SI r32,xmm 1 1 1 1 float 3 1 CVT(T)SS2SI r32,m32 1 1 1 float 3 1 CVTSI2SD xmm,r32 2 2 1 1 float 4 3 CVTSI2SD xmm,m32 2 1 1 1 float 3 1 CVT(T)SD2SI r32,xmm 1 1 1 float 3 1
CVTPI2PD xmm,m64 2 2 1 1 float 1 CVT(T) PD2PI mm,xmm 2 2 1 1 float 4 1 CVT(T) PD2PI mm,m128 2 2 1 1 1 float 4 1 CVTSI2SS xmm,r32 1 1 1 1 float 4 3 CVT(T)SS2SI r32,xmm 1 1 1 1 float 3 1 CVT(T)SS2SI r32,m32 1 1 1 1 float 1 1 CVT(T)SS2SI r32,m32 1 1 1 float 1 1 1 1 float 1 </td
CVT(T) PD2PI mm,xmm 2 2 1 1 float 4 1 CVT(T) PD2PI mm,m128 2 2 1 1 1 float 1 CVTSI2SS xmm,r32 1 1 1 1 float 4 3 CVTSI2SS xmm,m32 1 1 1 1 float 3 1 CVT(T)SS2SI r32,m32 1 1 1 1 float 1 1 CVTSI2SD xmm,r32 2 2 1 1 1 float 3 1 CVTSI2SD xmm,m32 2 1 1 1 float 3 1 CVT(T)SD2SI r32,xmm 1 1 1 float 3 1 1 1 float 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CVT(T) PD2PI mm,m128 2 2 1 1 float 1 CVTSI2SS xmm,r32 1 1 1 1 float 4 3 CVTSI2SS xmm,m32 1 1 1 1 float 3 1 CVT(T)SS2SI r32,xmm 1 1 1 float 3 1 CVTSI2SD xmm,r32 2 2 1 1 float 4 3 CVTSI2SD xmm,m32 2 1 1 1 float 3 1 CVT(T)SD2SI r32,xmm 1 1 1 float 3 1 CVT(T)SD2SI r32,m64 1 1 1 float 3 1 ADDSS/D SUBSS/D xmm,xmm 1 1 1 float 3 1 ADDPS/D SUBPS/D xmm,xmm 1 1 1 float 3 1 ADDPS/D SUBPS/D xmm,m12
CVTSI2SS xmm,r32 1 1 1 1 float 4 3 CVTSI2SS xmm,m32 1 1 1 1 float 3 CVT(T)SS2SI r32,xmm 1 1 1 float 3 1 CVTSI2SD xmm,r32 2 2 1 1 float 4 3 CVTSI2SD xmm,m32 2 1 1 1 float 3 1 CVT(T)SD2SI r32,xmm 1 1 1 float 3 1 CVT(T)SD2SI r32,xm64 1 1 1 float 3 1 Arithmetic ADDSS/D SUBSS/D x,m32/64 1 1 1 float 3 1 ADDPS/D SUBPS/D xmm,xmm 1 1 1 float 3 1 ADDPS/D SUBPS/D xmm,m128 1 1 1 1 float 3 1 </td
CVTSI2SS xmm,m32 1 1 1 1 float 3 CVT(T)SS2SI r32,xmm 1 1 1 1 float 3 1 CVT(T)SS2SI r32,m32 1 1 1 1 float 1 CVTSI2SD xmm,r32 2 2 1 1 1 float 3 CVT(SI2SD xmm,m32 2 1 1 1 float 3 CVT(T)SD2SI r32,xmm 1 1 1 float 3 1 CVT(T)SD2SI r32,m64 1 1 1 float 1 1 Arithmetic ADDSS/D SUBSS/D x,m32/64 1 1 1 float 3 1 ADDPS/D SUBPS/D xmm,xmm 1 1 1 1 float 3 1 ADDPS/D SUBPS/D xmm,m128 1 1 1 1 1 1
CVT(T)SS2SI r32,xmm 1
CVT(T)SS2SI r32,m32 1 1 1 1 float 1 CVTSI2SD xmm,r32 2 2 1 1 float 4 3 CVT(T)SD2SI r32,xmm 1 1 1 float 3 1 CVT(T)SD2SI r32,xmm 1 1 1 float 3 1 CVT(T)SD2SI r32,m64 1 1 1 float 3 1 Arithmetic ADDSS/D SUBSS/D xmm,xmm 1 1 1 float 3 1 ADDPS/D SUBPS/D xmm,xmm 1 1 1 float 3 1 ADDPS/D SUBPS/D xmm,xmm 1 1 1 float 3 1 ADDPS/D SUBPS/D xmm,m128 1 1 1 1 float 1
CVTSI2SD xmm,r32 2 2 1 1 float 4 3 CVTSI2SD xmm,m32 2 1 1 1 float 3 CVT(T)SD2SI r32,xmm 1 1 1 float 3 1 CVT(T)SD2SI r32,m64 1 1 1 float 1 Arithmetic xmm,xmm 1 1 1 float 3 1 ADDSS/D SUBSS/D x,m32/64 1 1 1 1 float 1 ADDPS/D SUBPS/D xmm,xmm 1 1 1 float 3 1 ADDPS/D SUBPS/D xmm,mm128 1 1 1 1 float 3 1
CVTSI2SD xmm,m32 2 1 1 1 float 3 CVT(T)SD2SI r32,xmm 1 1 1 1 float 3 1 CVT(T)SD2SI r32,m64 1 1 1 1 float 1 Arithmetic Xmm,xmm 1 1 1 float 3 1 ADDSS/D SUBSS/D x,m32/64 1 1 1 float 1 ADDPS/D SUBPS/D xmm,xmm 1 1 1 float 3 1 ADDPS/D SUBPS/D xmm,mm128 1 1 1 float 3 1
CVT(T)SD2SI r32,xmm 1 1 1 1 float 3 1 AVITHMETIC ADDSS/D SUBSS/D xmm,xmm 1 1 1 1 float 3 1 ADDSS/D SUBSS/D xmm,xmm 1 1 1 1 float 3 1 ADDPS/D SUBPS/D xmm,xmm 1 1 1 float 1 ADDPS/D SUBPS/D xmm,xmm 1 1 1 float 3 1 ADDPS/D SUBPS/D xmm,m128 1 1 1 1 float 1
CVT(T)SD2SI r32,m64 1 1 1 1 float 1 Arithmetic ADDSS/D SUBSS/D ADDSS/D SUBSS/D SUBSS/D SUBSS/D SUBSS/D SUBSS/D SUBPS/D SUBP
Arithmetic xmm,xmm 1 1 1 float 3 1 ADDSS/D SUBSS/D x,m32/64 1 1 1 float 1 ADDPS/D SUBPS/D xmm,xmm 1 1 1 float 3 1 ADDPS/D SUBPS/D xmm,xmm 1 1 1 float 3 1 ADDPS/D SUBPS/D xmm,m128 1 1 1 float 1
ADDSS/D SUBSS/D xmm,xmm 1 1 1 1 float 3 1 ADDSS/D SUBSS/D x,m32/64 1 1 1 1 float 1 ADDPS/D SUBPS/D xmm,xmm 1 1 1 float 3 1 ADDPS/D SUBPS/D xmm,m128 1 1 1 float 1
ADDSS/D SUBSS/D xmm,xmm 1 1 1 1 float 3 1 ADDSS/D SUBSS/D x,m32/64 1 1 1 1 float 1 ADDPS/D SUBPS/D xmm,xmm 1 1 1 float 3 1 ADDPS/D SUBPS/D xmm,m128 1 1 1 float 1
ADDSS/D SUBSS/D x,m32/64 1 1 1 1 float 1 ADDPS/D SUBPS/D xmm,xmm 1 1 1 1 float 3 1 ADDPS/D SUBPS/D xmm,m128 1 1 1 1 float 1
ADDPS/D SUBPS/D xmm,xmm 1 1 1 1 float 3 1 ADDPS/D SUBPS/D xmm,m128 1 1 1 1 float 1
ADDPS/D SUBPS/D xmm,m128 1 1 1 1 float 1
ADDSUBPS/D g) xmm,xmm 1 1 1 3 1
ADDSUBPS/D g) xmm,m128 1 1 1 1 float 1
HADDPS HSUBPS g) xmm,xmm 3 3 1 2 float 7 3
HADDPS HSUBPS g) xmm,m128 4 3 1 2 1 float 3
HADDPD HSUBPD g) xmm,xmm 3 3 x x x float 6 1,5
HADDPD HSUBPD g) xmm,m128 4 3 x x x 1 float 1,5
MULSS xmm,xmm 1 1 1 float 4 1
MULSS xmm,m32 1 1 1 1
MULSD xmm,xmm 1 1 1 1 1
MULSD xmm,m64 1 1 1 1 float 1
MULPS xmm,xmm 1 1 1 1 1
MULPS xmm,m128 1 1 1 1
MULPD xmm,xmm 1 1 1
MULPD xmm,m128 1 1 1 1 float 1
DIVSS xmm,xmm 1 1 1 1 float 6-13 d) 5-12 d)
DIVSS xmm,m32 1 1 1 1 float 5-12 d)
DIVSD xmm,xmm 1 1 1 1 float 6-21 d) 5-20 d)
DIVSD xmm,m64 1 1 1 1 float 5-20 d)
DIVPS xmm,xmm 1 1 1

DIVPS	xmm,m128	1	1	1			1			float		5-12 d)
DIVPD	xmm,xmm	1	1	1						float	6-21 d)	5-20 d)
DIVPD	xmm,m128	1	1	1			1			float		5-20 d)
RCPSS/PS	xmm,xmm	1	1		1					float	3	2
RCPSS/PS	xmm,m	1	1		1		1			float		2
CMPccSS/D	xmm,xmm	1	1		1					float	3	1
CMPccSS/D	x,m32/64	1	1		1		1			float		1
CMPccPS/D	xmm,xmm	1	1		1					float	3	1
CMPccPS/D	xmm,m128	1	1		1		1			float		1
COMISS/D UCOMISS/D	xmm,xmm	1	1		1					float	3	1
COMISS/D UCOMISS/D	x,m32/64	1	1		1		1			float		1
MAXSS/D MINSS/D	xmm,xmm	1	1		1					float	3	1
MAXSS/D MINSS/D	x,m32/64	1	1		1		1			float		1
MAXPS/D MINPS/D	xmm,xmm	1	1		1					float	3	1
MAXPS/D MINPS/D	xmm,m128	1	1		1		1			float		1
ROUNDSS/D j)	xmm,xmm,i	1	1		1					float	3	1
ROUNDSS/D j)	xmm,m128,i	1	1		1		1			float		1
ROUNDPS/D j)	xmm,xmm,i	1	1		1					float	3	1
ROUNDPS/D j)	xmm,m128,i	1	1		1		1			float		1
DPPS j)	xmm,xmm,i	4	4	2	2					float	11	3
DPPS j)	xmm,m128,i	4	4	2	2		1			float		3
DPPD j)	xmm,xmm,i	4	4	Х	х	х				float	9	3
DPPD j)	xmm,m128,i	4	4	х	х	x	1			float		3
Math												
SQRTSS/PS	xmm,xmm	1	1	1						float	6-13	5-12
SQRTSS/PS	xmm,m	2	1	1			1			float		5-12
SQRTSD/PD	xmm,xmm	1	1	1						float	6-20	5-19
SQRTSD/PD	xmm,m	2	1	1			1			float		5-19
RSQRTSS/PS	xmm,xmm	1	1		1					float	3	2
RSQRTSS/PS	xmm,m	1	1		1		1			float		2
Logic												
AND/ANDN/OR/XORPS/D	xmm,xmm	1	1	х	х	x				int	1	0,33
AND/ANDN/OR/XORPS/D	xmm,m128	1	1	X	X	X	1			int		1
Other	-											
LDMXCSR	m32	13	12	Х	Х	Х	1					38
STMXCSR	m32	10	8	Х	Х	Х		1	1			20
FXSAVE	m4096	151	67	Х	Х	Х	8	38	38			145
FXRSTOR	m4096	121	74	X	Х	X	47					150

Notes:

Round divisors give low values.

d) g) SSE3 instruction set.

Intel Nehalem

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm = 128 bit xmm

register, (x)mm = mmx or xmm register, sr = segment register, m = memory,

m32 = 32-bit memory operand, etc.

μops fused domain: The number of μops at the decode, rename, allocate and retirement stages in

the pipeline. Fused µops count as one.

μops unfused domain: The number of μops for each execution port. Fused μops count as two. Fused

macro-ops count as one. The instruction has μ op fusion if the sum of the numbers listed under p015 + p2 + p3 + p4 exceeds the number listed under μ ops fused domain. An x under p0, p1 or p5 means that at least one of the μ ops listed under p015 can optionally go to this port. For example, a 1 under p015 and an x under p0 and p5 means one μ op which can go to either port 0 or port 5, whichever is vacant first. A value listed under p015 but nothing under p0, p1 and p5 means that it is not known which of the three ports these μ ops go to.

p015: The total number of μops going to port 0, 1 and 5.
p0: The number of μops going to port 0 (execution units).
p1: The number of μops going to port 1 (execution units).
p5: The number of μops going to port 5 (execution units).
p2: The number of μops going to port 2 (memory read).

p3: The number of μops going to port 3 (memory write address).p4: The number of μops going to port 4 (memory write data).

Domain: Tells which execution unit domain is used: "int" = integer unit (general purpose

registers), "ivec" = integer vector unit (SIMD), "fp" = floating point unit (XMM and x87 floating point). An additional "bypass delay" is generated if a register written by a μ op in one domain is read by a μ op in another domain. The bypass delay is 1 clock cycle between the "int" and "ivec" units, and 2 clock cy-

cles between the "int" and "fp", and between the "ivec" and "fp" units.

The bypass delay is indicated under latency only where it is unavoidable because either the source operand or the destination operand is in an unnatural domain such as a general purpose register (e.g. eax) in the "ivec" domain. For example, the PEXTRW instruction executes in the "int" domain. The source operand is an xmm register and the destination operand is a general purpose register. The latency for this instruction is indicated as 2+1, where 2 is the latency of the instruction itself and 1 is the bypass delay, assuming that the xmm operand is most likely to come from the "ivec" domain. If the xmm operand comes from the "fp" domain then the bypass delay will be 2 rather than one. The flags register can also have a bypass delay. For example, the COMISS instruction (floating point compare) executes in the "fp" domain and returns the result in the integer flags. Almost all instructions that read these flags execute in the "int" domain. Here the latency is indicated as 1+2, where 1 is the latency of the instruction itself and 2 is the bypass delay from the "fp" domain to the "int" domain.

The bypass delay from the memory read unit to any other unit and from any unit to the memory write unit are included in the latency figures in the table. Where the domain is not listed, the bypass delays are either unlikely to occur or unavoidable and therefore included in the latency figure.

Latency:

This is the delay that the instruction generates in a dependency chain. The numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays very much, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give a similar delay. The time unit used is core clock cycles, not the reference clock cycles given by the time stamp counter.

Reciprocal throughput:

The average number of core clock cycles per instruction for a series of independent instructions of the same kind in the same thread.

Integer instructions

Instruction	Operands	μορs fused	μops		fus		loma		Do- Laten- main cy		Reci- procal	
		do-	p015	p0	p1	p5	p2	р3	p4			through-
Move instructions		main										put
MOV	r,r/i	1	1	Х	Х	Х				int	1	0.33
MOV a)	r,m	1					1			int	2	1
MOV a)	m,r	1						1	1	int	3	1
MOV	m,i	1						1	1	int	3	1
MOV	r,sr	1					1			int		1
MOV	m,sr	2					1	1	1	int		1
MOV	sr,r	6	3	Х	Х	х	3			int		13
MOV	sr,m	6	2	Х		х	4			int		14
MOVNTI	m,r	2						1	1	int	~270	1
MOVSX MOVZX												
MOVSXD	r,r	1	1	Х	Х	х				int	1	0.33
MOVSX MOVZX												
MOVSXD	r,m	1					1			int		1
CMOVcc	r,r	2	2	Х	Х	х				int	2	1
CMOVcc	r,m	2	2	Х	Х	х	1			int		
XCHG	r,r	3	3	X	Х	х				int	2	2
XCHG	r,m	7	Х				1	1	1	int	20 b)	
XLAT		2	1				1			int	5	1
PUSH	r	1						1	1	int	3	1
PUSH	i	1						1	1	int		1
PUSH	m	2					1	1	1	int		1
PUSH	sr	2	1					1	1	int		1
PUSHF(D/Q)		3	2	X	Х	х		1	1	int		1
PUSHA(D) i)		18	2	X	1	х		8	8	int		8
POP	r	1					1			int	2	1
POP	(E/R)SP	3	2	X	1	х	1			int		5
POP	m	2					1	1	1	int		1
POP	sr	7	2				5			int		15
POPF(D/Q)		8	7	X	X	х	1			int		14
POPA(D) i)		10	2				8			int		8
LAHF SAHF		1	1	x	х	Х				int	1	0.33
SALC i)		2	2	X	X	Х				int	4	1
LEA a)	r,m	1	1		1					int	1	1
BSWAP	r32	1	1		1					int	1	1
BSWAP	r64	1	1		1					int	3	1
LDS LES LFS LGS LSS	m	9	3	x	X	Х	6			int		15
PREFETCHNTA	m	1		``			1			int		1

PREFETCHT0/1/2 LFENCE MFENCE SFENCE	m	1 2 3 2	1	x	x	x	1	1 1 1	1 1 1 1	int int int int		1 9 23 5
OI LIVOL								'	'	1111		3
Arithmetic instructions												
ADD SUB	r,r/i	1	1	х	Х	Х				int	1	0.33
ADD SUB	r,m	1	1	Х	Х	Х	1			int		1
ADD SUB	m,r/i	2	1	Х	Х	Х	1	1	1	int	6	1
ADC SBB	r,r/i	2	2	Х	Х	Х				int	2	2
ADC SBB	r,m	2	2	х	х	х	1			int	2	2
ADC SBB	m,r/i	4	3	х	х	х	1	1	1	int	7	
CMP	r,r/i	1	1	х	х	х				int	1	0.33
CMP	m,r/i	1	1	х	х	Х	1			int	1	1
INC DEC NEG NOT	r	1	1	х	х	Х				int	1	0.33
INC DEC NEG NOT	m	3	1	x	х	х	1	1	1	int	6	1
AAA AAS DAA DAS i)		1	1		1					int	3	1
AAD i)		3	3	х	х	Х				int	15	2
AAM i)		5	5	x	х	х				int	20	7
MUL ÍMUL	r8	1	1		1					int	3	1
MUL IMUL	r16	3	3	х	Х	х				int	5	2
MUL IMUL	r32	3	3	х	Х	х				int	5	2
MUL IMUL	r64	3	3	x	Х	х				int	3	2
IMUL	r16,r16	1	1		1					int	3	1
IMUL	r32,r32	1	1		1					int	3	1
IMUL	r64,r64	1	1	1						int	3	1
IMUL	r16,r16,i	1	1		1					int	3	1
IMUL	r32,r32,i	1	1		1					int	3	1
IMUL	r64,r64,i	1	1	1						int	3	2
MUL IMUL	m8	1	1		1		1			int	3	1
MUL IMUL	m16	3	3	х	х	х	1			int	5	2
MUL IMUL	m32	3	3	х	Х	Х	1			int	5	2
MUL IMUL	m64	3	2	2			1			int	3	2
IMUL	r16,m16	1	1		1		1			int	3	1
IMUL	r32,m32	1	1		1		1			int	3	1
IMUL	r64,m64	1	1	1			1			int	3	1
IMUL	r16,m16,i	1	1		1		1			int		1
IMUL	r32,m32,i	1	1		1		1			int		1
IMUL	r64,m64,i	1	1	1			1			int		1
DIV c)	r8	4	4	1	2	1				int	11-21	7-11
DIV c)	r16	6	6	Х	4	Х				int	17-22	7-12
DIV c)	r32	6	6	Х	3	Х				int	17-28	7-17
DIV c)	r64	~40	Х	Х	Х	Х				int	28-90	19-69
IDIV c)	r8	4	4	1	2	1				int	10-22	7-11
IDIV c)	r16	8	8	Х	5	Х				int	18-23	7-12
IDIV c)	r32	7	7	Х	3	Х				int	17-28	7-17
IDIV c)	r64	~60	Х	Х	Х	Х				int	37-100	26-86
CBW CWDE CDQE		1	1	X	Х	X				int	1 1	1
CWD CDQ CQO		1	1	X		X				int	1	1
POPCNT ()	r,r	1	1		1					int	3	1
POPCNT ()	r,m	1	1		1		1			int		1
CRC32 ()	r,r	1	1		1					int	3	1
CRC32 ()	r,m	1	1		1		1			int		1

				l			l					
Logic instructions												
AND OR XOR	r,r/i	1	1	x	Х	Х				int	1 1	0.33
AND OR XOR	r,m	1	1	x	Х	х	1			int		1
AND OR XOR	m,r/i	2	1	X	Х	Х	1	1	1	int	6	1
TEST	r,r/i	1	1	X	Х	Х			•	int	1 1	0.33
TEST	m,r/i	1	1	X	X	X	1			int		1
SHR SHL SAR	r,i/cl	1	1	x	^	X				int	1	0.5
SHR SHL SAR	m,i/cl	3	2	x		X	1	1	1	int	6	1
ROR ROL	r,i/cl	1	1	x		X		'	'	int	1	1
ROR ROL	m,i/cl	3	2	x		X	1	1	1	int	6	1
RCR RCL	r,1	2	2	x	х	x		'	'	int	2	2
RCR	r8,i/cl	9	9							int	13	2
RCL	r8,i/cl	8	8	X	X	X				int	11	
RCR RCL	r16/32/64,i/cl	6	6	X	X	X				int	12-13	12-13
RCR RCL		4	3	X	X	X	4	4	1		7	12-13
RCR	m,1	4 12	9	X	X	X	1	1		int	16	
	m8,i/cl			X	X	X	1	1	1	int		
RCL DCD DCI	m8,i/cl	11	8	X	X	X	1	1	1	int	14	
RCR RCL	m16/32/64,i/cl	10	7	Х	Х	Х	1	1	1	int	15	4
SHLD	r,r,i/cl	2	2	Х	Х	Х		_		int	3	1
SHLD	m,r,i/cl	3	2	Х	Х	Х	1	1	1	int	8	
SHRD	r,r,i/cl	2	2	Х	Х	Х				int	4	1
SHRD	m,r,i/cl	3	2	Х	Х	Х	1	1	1	int	9	
ВТ	r,r/i	1	1	Х		Х				int	1	1
ВТ	m,r	9	8	Х		Х	1			int		5
ВТ	m,i	2	2	Х		Х	1			int		1
BTR BTS BTC	r,r/i	1	1	Х		Х				int	1	1
BTR BTS BTC	m,r	10	7	Х	Х	Χ	1	1	1	int	6	
BTR BTS BTC	m,i	3	3	Х		Х	1	1	1	int	6	
BSF BSR	r,r	1	1		1					int	3	1
BSF BSR	r,m	2	1		1		1			int	3	1
SETcc	r	1	1	Х		Х				int	1	1
SETcc	m	2	1	Х	Х	Х		1	1	int		1
CLC STC CMC		1	1	х	Х	Х				int	1	0.33
CLD		2	2	Х	Х	Х				int		4
STD		2	2	Х	Х	Х				int		5
Control transfer instructi												
JMP	short/near	1	1			1				int	0	2
JMP i)	far	31	31							int		67
JMP	r	1	1			1				int	0	2
JMP	m(near)	1	1			1	1			int	0	2
JMP	m(far)	31	31				11			int		73
Conditional jump	short/near	1	1			1				int	0	2
Fused compare/test and bi	ranch e)	1	1			1				int	0	2
J(E/R)CXZ	short	2	2	х	х	1				int		2
LOOP	short	6	6	х	х	х				int		4
LOOP(N)E	short	11	11	x	Х	х				int		7
CALL	near	2	2	?	?	1		1	1	int		2
CALL i)	far	46	46				9			int		74
CALL	r	3	2	?	?	1		1	1	int		2
CALL	m(near)	4	3	?	?	1	1	1	1	int		2
CALL	m(far)	47	47		•		1			int		79
- · · 	1(,	• •	1	I	l	l	١.	I	1 1		1 1	. •

RETN		1	1			1	1			int		2
RETN	i	3	2			1	1			int		2
RETF		39	39							int		120
RETF	i	40	40							int		124
BOUND i)	r,m	15	13				2			int		7
INTO i)	,	4	4							int		5
String instructions												
LODS		2	1	X	Χ	Χ	1			int		1
REP LODS		11+4n	ı		ı	1	ı		.	int	40+12n	
STOS		3	1	Х	Х	Χ		1	1	int		1
REP STOS	small n	60+n								int	12+n	
REP STOS	large n	2.5/16	bytes							int	1 clk / 1	6 bytes
MOVS		5	2	x	Х	Х	1	1	1	int		4
REP MOVS	small n	13+6n								int	12+n	
REP MOVS	large n	2/16 by	tes :							int	1 clk / 1	6 bytes
SCAS		3	2	x	Х	Х	1			int		1
REP SCAS		37+6n	'						.	int	40+2n	•
CMPS		5	3	x	Х	Х	2			int		4
REP CMPS		65+8n							.	int	42+2n	
Other			_									2.00
NOP (90)		1	1	X	Х	Χ				int		0.33
Long NOP (0F 1F)		1	1	X	Х	Х				int		1
PAUSE		5	5	X	Х	Х				int		9
ENTER	a,0	11	9	X	Х	Χ	1	1	1	int		8
ENTER	a,b	34+7b								int	79+5b	•
LEAVE		3	3				1			int		5
CPUID		25-100								int	~200	~200
RDTSC		22								int		24
RDPMC		28								int		40-60

Notes:

a) Applies to all addressing modesb) Has an implicit LOCK prefix.

c) Low values are for small results, high values for high results.

e) See manual 3: "The microarchitecture of Intel, AMD and VIA CPUs" for restric-

tions on macro-op fusion.

i) Not available in 64 bit mode.

e) SSE4.2 instruction set.

Floating point x87 instructions

Instruction	Operands	μοps fused	μops unfused domain							Do- main	in cy	procal
		do-	p015	p0	p1	р5	p2	р3	p4			through-
Move instructions		main										put
FLD	r	1	1	1						float	1	1
FLD	m32/64	1	1				1			float	3	1
FLD	m80	4	2	1	1		2			float	4	2
FBLD	m80	41	38	Х	Х	Х	3			float	45	20
FST(P)	r	1	1	1						float	1	1
FST(P)	m32/m64	1						1	1	float	4	1

FSTP	m80	7	3	Х	Х	Х		2	2	float	5	5
FBSTP	m80	208	204	x	x	х		2	2	float	242	245
FXCH	r	1	0 f)	\ \	^`	, ·		_	-	float	0	1
					4		4					
FILD	m	1	1		1		1			float	6	1
FIST(P)	m	3	1		1			1	1	float	7	1
FISTTP g)	m	3	1		1			1	1	float	7	1
FLDZ		1	1	1						float		1
FLD1		2	2	1	1					float		2
FLDPI FLDL2E etc.		2	2	'	2					float		2
					_						0.0	
FCMOVcc	r	2	2	2						float	2+2	2
FNSTSW	AX	2	2							float		1
FNSTSW	m16	3	2					1	1	float		2
FLDCW	m16	2	1				1			float	7	31
FNSTCW	m16	2	1	1				1	1	float	5	1
	11110							'	'			
FINCSTP FDECSTP		1	1	1						float	1	1
FFREE(P)	r	2	2	X	X	Х				float		4
FNSAVE	m	143	89	Х	Х	Х	8	23	23	float	178	178
FRSTOR	m	79	52	х	Х	Х	27			float	156	156
Arithmetic instructions												
FADD(P) FSUB(R)(P)	_	1	4		1					float	3	4
	r		1) s	1
FADD(P) FSUB(R)(P)	m	1	1		1		1			float		1
FMUL(P)	r	1	1	1						float	5	1
FMUL(P)	m	1	1	1			1			float		1
FDIV(R)(P)	r	1	1	1						float	7-27 d)	7-27 d)
FDIV(R)(P)	m	1	1	1			1			float	7-27 d)	7-27 d)
FABS	'''	1	1	1			'			float	1	1
		_									-	
FCHS		1	1	1						float	1	1
FCOM(P) FUCOM	r	1	1		1					float		1
FCOM(P) FUCOM	m	1	1		1		1			float		1
FCOMPP FUCOMPP		2	2	1	1					float		1
FCOMI(P) FUCOMI(P)	r	1	1		1					float		1
FIADD FISUB(R)	m .	2	2		2		1			float	3	2
` '		2	2	4			-				5	2
FIMUL	m m			1	1		1			float		
FIDIV(R)	m	2	2	1	1		1			float	7-27 d)	7-27 d)
FICOM(P)	m	2	2		2		1			float		1
FTST		1	1		1					float		1
FXAM		1	1		1					float		1
FPREM		25	25	х	Х	Х				float	14	
FPREM1		35	35							float	19	
				X	X	X						
FRNDINT		17	17	X	Х	Х				float	22	
Math												
FSCALE		24	24	Х	Х	Х				float	12	
FXTRACT		17	17	х	х	х				float	13	
FSQRT		1	1	1						float	~27	
FSIN		~100	~100	-	V	\ \				float	40-100	
				X	X	X						
FCOS		~100	~100	Х	Х	Х				float	40-100	
FSINCOS		~100	~100	Х	Х	Х				float	~110	
F2XM1		19	19	х	Х	Х				float	58	
FYL2X FYL2XP1		~55	~55	х	Х	х				float	~80	
FPTAN		~100	~100		Х	Х				float	~115	
FPATAN		~82	~82	X	X	X				float	~120	
1 7 7 7 7 7 7	I	02	02	^	^	^	1	l	ı l	noat	120	

Other									
FNOP	1	1	1				float	1	
WAIT	2	2	Х	Х	Х		float	1	
FNCLEX	3	3		Х	Х		float	17	
FNINIT	~190	~190	Χ	Х	Х		float	77	

Notes:

d) Round divisors or low precision give low values.

f) Resolved by register renaming. Generates no μops in the unfused domain.

g) SSE3 instruction set.

Integer MMX and XMM instructions

Instruction	Operands	μορs fused	μops	un	fus	ed d	lom	ain		Do- main	Laten- cy	Reci- procal
		do-	p015	p0	p1	р5	p2	р3	p4			through-
Move instructions		main										put
MOVD k)	r32/64,(x)mm	1	1	Х	Х	Х				int	1+1	0.33
MOVD k)	m32/64,(x)mm	1						1	1		3	1
MOVD k)	(x)mm,r32/64	1	1	Х	Х	Х				ivec	1+1	0.33
MOVD k)	(x)mm,m32/64	1					1				2	1
MOVQ	(x)mm, (x)mm	1	1	Х	Х	Х				ivec	1	0.33
MOVQ	(x)mm,m64	1					1				2	1
MOVQ	m64, (x)mm	1						1	1		3	1
MOVDQA	xmm, xmm	1	1	Х	Х	Х				ivec	1	0.33
MOVDQA	xmm, m128	1					1				2	1
MOVDQA	m128, xmm	1						1	1		3	1
MOVDQU	xmm, m128	1	1				1				2	1
MOVDQU	m128, xmm	1	1					1	1		3	1
LDDQU g)	xmm, m128	1	1				1				2	1
MOVDQ2Q	mm, xmm	1	1	Х	Х	Х				ivec	1	0.33
MOVQ2DQ	xmm,mm	1	1	Х	Х	Х				ivec	1	0.33
MOVNTQ	m64,mm	1						1	1		~270	2
MOVNTDQ	m128,xmm	1						1	1		~270	2
MOVNTDQA j)	xmm, m128	1					1				2	1
PACKSSWB/DW												
PACKUSWB	mm,mm	1	1		1					ivec	1	1
PACKSSWB/DW												
PACKUSWB	mm,m64	1	1		1		1					2
PACKSSWB/DW												
PACKUSWB	xmm,xmm	1	1	Х		Х				ivec	1	0.5
PACKSSWB/DW												
PACKUSWB	xmm,m128	1	1	Х		Х	1					2
PACKUSDW j)	xmm,xmm	1	1	Х		Х				ivec	1	2
PACKUSDW j)	xmm,m	1	1	Х		Х	1					2
PUNPCKH/LBW/WD/DQ	(x)mm, (x)mm	1	1	Х		Х				ivec	1	0.5
PUNPCKH/LBW/WD/DQ	(x)mm,m	1	1	Х		Х	1					2
PUNPCKH/LQDQ	xmm,xmm	1	1	х		Х				ivec	1	0.5
PUNPCKH/LQDQ	xmm, m128	2	1	х		Х	1					1
PMOVSX/ZXBW j)	xmm,xmm	1	1	х		Х				ivec	1	1
PMOVSX/ZXBW j)	xmm,m64	1	1	х		Х	1					2
PMOVSX/ZXBD j)	xmm,xmm	1	1	x		Х				ivec	1	1
PMOVSX/ZXBD j)	xmm,m32	1	1	х		Х	1					2

DMOVOV/ZVDO :)	l I	4	۱ ،	1	I		l	I			ا م	1 4
PMOVSX/ZXBQ j)	xmm,xmm	1	1	X		Χ				ivec	1	1
PMOVSX/ZXBQ j)	xmm,m16	1	1	X		Χ	1					2
PMOVSX/ZXWD j)	xmm,xmm	1	1	X		Х				ivec	1	1
PMOVSX/ZXWD j)	xmm,m64	1	1	X		Х	1			_		2
PMOVSX/ZXWQ j)	xmm,xmm	1	1	X		Х				ivec	1	1
PMOVSX/ZXWQ j)	xmm,m32	1	1	X		Х	1			_		2
PMOVSX/ZXDQ j)	xmm,xmm	1	1	Х		Х				ivec	1	1
PMOVSX/ZXDQ j)	xmm,m64	1	1	Х		Х	1					2
PSHUFB h)	(x)mm, (x)mm	1	1	Х		Х				ivec	1	0.5
PSHUFB h)	(x)mm,m	2	1	X		Х	1					1
PSHUFW	mm,mm,i	1	1	X		Χ				ivec	1	0.5
PSHUFW	mm,m64,i	2	1	Х		Х	1					1
PSHUFD	xmm,xmm,i	1	1	Х		Х				ivec	1	0.5
PSHUFD	xmm,m128,i	2	1	X		Х	1					1
PSHUFL/HW	xmm,xmm,i	1	1	X		Х				ivec	1	0.5
PSHUFL/HW	xmm, m128,i	2	1	х		Х	1					1
PALIGNR h)	(x)mm,(x)mm,i	1	1	Х		Х				ivec	1	1
PALIGNR h)	(x)mm,m,i	2	1	х		Х	1					1
PBLENDVB j)	x,x,xmm0	2	2	1		1				ivec	2	1
PBLENDVB j)	xmm,m,xmm0	3	2	1		1	1					1
PBLENDW j)	xmm,xmm,i	1	1	Х		Х				ivec	1	0.5
PBLENDW j)	xmm,m,i	2	1	Х		Х	1					1
MASKMOVQ	mm,mm	4	1	1			1	1	1	ivec		2
MASKMOVDQU	xmm,xmm	10	4	х	х	Х	2	2	х	ivec		7
PMOVMSKB	r32,(x)mm	1	1	1						float	2+2	1
PEXTRB j)	r32,xmm,i	2	2	x	х	Х				ivec	2+1	1
PEXTRB j)	m8,xmm,i	2	2	х		Х						1
PEXTRW	r32,(x)mm,i	2	2	x	Х	х				ivec	2+1	1
PEXTRW j)	m16,(x)mm,i	2	2	x		х		1	1			1
PEXTRD j)	r32,xmm,i	2	2	х	Х	х				ivec	2+1	1
PEXTRD j)	m32,xmm,i	2	1	x		Х		1	1			1
PEXTRQ j,m)	r64,xmm,i	2	2	X	х	Х		-		ivec	2+1	1
PEXTRQ j,m)	m64,xmm,i	2	1	X		Х		1	1			1
PINSRB j)	xmm,r32,i	1	1	X		Х		-		ivec	1+1	1
PINSRB j)	xmm,m8,i	2	1	X		Х	1				' '	1
PINSRW	(x)mm,r32,i	1	1	X		X	•			ivec	1+1	1
PINSRW	(x)mm,m16,i	2	1	X		X	1			.,,,,		1
PINSRD j)	xmm,r32,i	1	1	X		X	•			ivec	1+1	1
PINSRD j)	xmm,m32,i	2	1	X		X	1			.,,,,		1
PINSRQ j,m)	xmm,r64,i	1	1	X		X	'			ivec	1+1	1
PINSRQ j,m)	xmm,m64,i	2	1	X		X	1			1000	'''	1
i iivorvæ j,iii)	XIIIII,IIIO-1,I	_		^		^	'					•
Arithmetic instructions												
PADD/SUB(U)(S)B/W/D/Q												
171227002(0)(0)271177279	(x)mm, (x)mm	1	1	X		Х				ivec	1	0.5
PADD/SUB(U)(S)B/W/D/Q	` '	•		^		^				.,,,,		0.0
	(x)mm,m	1	1	X		Х	1					2
PHADD/SUB(S)W/D h)	(x)mm, (x)mm	3	3	X		X	'			ivec	3	1,5
PHADD/SUB(S)W/D h)	(x)mm,m64	4	3	X		X	1			.,,50		3
PCMPEQ/GTB/W/D	(x)mm,(x)mm	1	1	X		X	'			ivec	1	0.5
PCMPEQ/GTB/W/D	(x)mm,m	1	1	X		X	1			1400	'	2
PCMPEQQ j)	xmm,xmm	1	1	X		X	'			ivec	1	0.5
PCMPEQQ j)	xmm,m128	1	1	X		^ X	1			1400	'	2
i. Own Edd J/	, AIIIII,III 120	'	' '	_ ^		^	'	l				_

1	i i			ı	1 -	I	, ,	1	1.		, I
· · · · · · · · · · · · · · · · · · ·	mm,xmm	1	1		1				ivec	3	1
,	mm,m128	1	1		1		1			_	1
	mm,(x)mm	1	1		1				ivec	3	1
	(x)mm,m	1	1		1		1				1
1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 '	mm,(x)mm	1	1		1				ivec	3	1
, , ,	(x)mm,m	1	1		1		1				1
PMULLD j) xi	mm,xmm	2	2		2				ivec	6	2
PMULLD j) xr	mm,m128	3	2		2		1				
PMULDQ j) xi	mm,xmm	1	1		1				ivec	3	1
PMULDQ j) xr	mm,m128	1	1		1		1				1
PMULUDQ (x)	mm,(x)mm	1	1		1				ivec	3	1
PMULUDQ (x)mm,m	1	1		1		1				1
1 '	mm,(x)mm	1	1		1				ivec	3	1
	x)mm,m	1	1		1		1				1
	mm,(x)mm	1	1		1				ivec	3	1
, , , ,	x)mm,m	1	1		1		1				1
, , ,	mm,(x)mm	1	1	x		х			ivec	1	0.5
	x)mm,m	1	1	X		Х	1			•	1
'	mm,xmm	1	1	X		X	.		ivec	1	1
3,	mm,m128	1	1	X		X	1		1000	•	2
j	mm,(x)mm	1	1	X		X	'		ivec	1	0.5
1 ' '	(x)mm,m	1	1	X		X	1		1000	!	2
1 ,	mm,(x)mm	1	1				'		ivec	1	0.5
	. ,	1	1	X		X	1		ivec	1	2
	(x)mm,m	1	1	X		X	'		ivoo	1	1
	mm,xmm	-		X		X			ivec	1	
	xmm,m	1	1	Х		Х	1			4	2
3,	mm,xmm	1	1	Х		Х			ivec	1	1
3,	mm,m128	1	1	X		Х	1			0	2
3,	mm,xmm	1	1		1				ivec	3	1
3,	mm,m128	1	1		1		1				3
PABSB PABSW PABSD	()	4								4	0.5
1 ' '	mm,(x)mm	1	1	X		Х			ivec	1	0.5
PABSB PABSW PABSD	, ,										
	(x)mm,m	1	1	X		Х	1				1
PSIGNB PSIGNW										4	0 =
	mm,(x)mm	1	1	X		Х			ivec	1	0.5
PSIGNB PSIGNW											_
1	(x)mm,m	1	1	X		Х	1				2
	mm,(x)mm	1	1		1				ivec	3	1
	(x)mm,m	1	1		1		1				3
1	nm,xmm,i	3	3	Х	Х	Х			ivec	5	1
3/	xmm,m,i	4	3	X	Х	Х	1				2
,	nm,xmm,i									12	8
AESDEC, AESDECLAST,											
AESENC, AESENCLAST											
n)											
	mm,xmm									~5	~2
,	mm,xmm									~5	~2
AESKEYGENASSIST n) xn	nm,xmm,i									~5	~2
Logic instructions											
1 ' '	mm,(x)mm	1	1	Х	Х	Х			ivec	1	0.33
PAND(N) POR PXOR ((x)mm,m	1	1	X	Х	Χ	1				1

PTEST j)	xmm,xmm	2	2	Х	Х	Х			ivec	3	1
PTEST j)	xmm,m128	2	2	х	Х	х	1				1
PSLL/RL/RAW/D/Q	mm,mm/i	1	1		1				ivec	1	1
PSLL/RL/RAW/D/Q	mm,m64	1	1		1		1				2
PSLL/RL/RAW/D/Q	xmm,i	1	1		1				ivec	1	1
PSLL/RL/RAW/D/Q	xmm,xmm	2	2	Х	1	Х			ivec	2	2
PSLL/RL/RAW/D/Q	xmm,m128	3	2	Х	1	Х	1				1
PSLL/RLDQ	xmm,i	1	1	х		Х			ivec	1	1
Ctuing instructions											
String instructions											
PCMPESTRI ℓ)	xmm,xmm,i	8	8	Х	Χ	Х			ivec	14	5
PCMPESTRI ℓ)	xmm,m128,i	9	8	х	Χ	Х	1		ivec	14	6
PCMPESTRM ℓ)	xmm,xmm,i	9	9	х	Χ	Х			ivec	7	6
PCMPESTRM ℓ)	xmm,m128,i	10	10	Х	Χ	Х	1		ivec	7	6
PCMPISTRI ()	xmm,xmm,i	3	3	Х	Χ	Х			ivec	8	2
PCMPISTRI ()	xmm,m128,i	4	4	Х	Χ	Х	1		ivec	8	2
PCMPISTRM ℓ)	xmm,xmm,i	4	4	Х	Χ	Х			ivec	7	2
PCMPISTRM ()	xmm,m128,i	6	5	х	X	Х	1		ivec	7	5
Other											
EMMS		11	11	х	Х	Х			float		6

Notes:

g) SSE3 instruction set.

h) Supplementary SSE3 instruction set.

j) SSE4.1 instruction set

k) MASM uses the name MOVD rather than MOVQ for this instruction even when

moving 64 bits

(e) SSE4.2 instruction setm) Only available in 64 bit moden) Only available on newer models

Floating point XMM instructions

Instruction	Operands	µops fused	µops	un	fus	ed d	loma	ain		Do- main	Laten- cy	Reci- procal
		do-	p015	p0	p1	р5	p2	р3	p4	1		through
Move instructions		main										put
MOVAPS/D	xmm,xmm	1	1			1				float	1	1
MOVAPS/D	xmm,m128	1					1				2	1
MOVAPS/D	m128,xmm	1						1	1		3	1
MOVUPS/D	xmm,m128	1					1				2	1-4
MOVUPS/D	m128,xmm	1						1	1		3	1-3
MOVSS/D	xmm,xmm	1	1			1					1	1
MOVSS/D	xmm,m32/64	1					1				2	1
MOVSS/D	m32/64,xmm	1						1	1		3	1
MOVHPS/D MOVLPS/D	xmm,m64	2	1			1	1				3	2
MOVH/LPS/D	m64,xmm	2	1			1		1	1		5	1
MOVLHPS MOVHLPS	xmm,xmm	1	1			1				float	1	1
MOVMSKPS/D	r32,xmm	1	1	1						float	1+2	1
MOVNTPS/D	m128,xmm	1						1	1		~270	2
SHUFPS/D	xmm,xmm,i	1	1			1				float	1	1
SHUFPS/D	xmm,m128,i	2	1			1	1			float		1
BLENDPS/PD j)	xmm,xmm,i	1	1			1				float	1	1

BLENDPS/PD j) BLENDVPS/PD j) BLENDVPS/PD j) MOVDDUP g) MOVDDUP g) MOVSH/LDUP g) MOVSH/LDUP g) UNPCKH/LPS/D UNPCKH/LPS/D EXTRACTPS j) INSERTPS j) INSERTPS j)	xmm,m128,i x,x,xmm0 xmm,m,xmm0 xmm,xmm xmm,m64 xmm,xmm xmm,m128 xmm,xmm xmm,m128 r32,xmm,i m32,xmm,i xmm,xmm,i xmm,xmm,i	2 2 3 1 1 1 1 1 1 1 2 1 3	1 2 2 1 1 1 1 1 1 1 1 2			1 2 2 1 1 1 1 1 1 1 2	1 1 1 1	1	1	float float float float float float float float float float	2 1 2 1 1 1+2	1 2 2 1 1 1 1 1 1 1 1	
Conversion													
Conversion CVTPD2PS	vmm vmm	2	2		1	1				floot	4	1	
CVTPD2PS CVTPD2PS	xmm,xmm	2	2		1	'	1			float float	4	1	
CVTSD2SS	xmm,m128 xmm,xmm	2	2		1	1				float	4	1	
CVTSD2SS CVTSD2SS	xmm,m64	2	2	?	?	?	1			float	4	1	
CVTSD2SS CVTPS2PD	xmm,xmm	2	2	1	, ·	1	'			float	2	1	
CVTPS2PD	xmm,m64	2	2	1		1	1			float	2	1	
CVTSS2SD	xmm,xmm	1	1	1		'	'			float	1	1	
CVTSS2SD CVTSS2SD	xmm,m32	1	1	1			1			float	'	2	
CVT3323D CVTDQ2PS	xmm,xmm	1	1	'	1		'			float	3+2	1	
CVTDQ2PS	xmm,m128	1	1		1		1			float	312	1	
CVT(T) PS2DQ	xmm,xmm	1	1		1					float	3+2	1	
CVT(T) PS2DQ	xmm,m128	1	1		1		1			float	0.2	1	
CVTDQ2PD	xmm,xmm	2	2		1	1	Ċ			float	4+2	1	
CVTDQ2PD	xmm,m64	2	2		1	1	1			float		1	
CVT(T)PD2DQ	xmm,xmm	2	2		1	1				float	4+2	1	
CVT(T)PD2DQ	xmm,m128	2	2		1	1	1			float		1	
CVTPI2PS	xmm,mm	1	1		1					float	3+2	3	
CVTPI2PS	xmm,m64	1	1		1		1			float		3	
CVT(T)PS2PI	mm,xmm	1	1		1					float	3+2	1	
CVT(T)PS2PI	mm,m128	1	1		1		1			float		1	
CVTPI2PD	xmm,mm	2	2		1	1				ivec/float	6	1	
CVTPI2PD	xmm,m64	2	2		1	1	1					1	
CVT(T) PD2PI	mm,xmm	2	2	Х	1	Х				float/ived	6	1	
CVT(T) PD2PI	mm,m128	2	2	Х	1	Х	1					1	
CVTSI2SS	xmm,r32	1	1		1					float	3+2	3	
CVTSI2SS	xmm,m32	1	1		1		1			float		3	
CVT(T)SS2SI	r32,xmm	1	1		1					float	3+2	1	
CVT(T)SS2SI	r32,m32	1	1		1		1			float		1	
CVTSI2SD	xmm,r32	2	2	1	1					float	4+2	3	
CVTSI2SD	xmm,m32	2	1		1		1			float		3	
CVT(T)SD2SI	r32,xmm	1	1		1					float	3+2	1	
CVT(T)SD2SI	r32,m64	1	1		1		1			float		1	
Arithmetic		,	_		٨						•	_	
ADDSS/D SUBSS/D	xmm,xmm	1	1		1		_			float	3	1	
ADDSS/D SUBSS/D	xmm,m32/64	1	1		1		1			float	•	1	
ADDPS/D SUBPS/D	xmm,xmm	1	1		1		4			float	3	1	
ADDPS/D SUBPS/D	xmm,m128	1	1		1		1			float		1	

1	I	1 .	1 .		ι	1	ı	ı		l	1 . 1	
ADDSUBPS/D g)	xmm,xmm	1	1		1					float	3	1
ADDSUBPS/D g)	xmm,m128	1	1		1		1			float		1
HADDPS HSUBPS g)	xmm,xmm	3	3		1	2				float	5	2
HADDPS HSUBPS g)	xmm,m128	4	3		1	2	1			float		2
HADDPD HSUBPD g)	xmm,xmm	3	3		1	2				float	3	2
HADDPD HSUBPD g)	xmm,m128	4	3		1	2	1			float		2
MULSS MULPS	xmm,xmm	1	1	1						float	4	1
MULSS MULPS	xmm,m	1	1	1			1			float		1
MULSD MULPD	xmm,xmm	1	1	1			•			float	5	1
MULSD MULPD	xmm,m	1	1	1			1			float		1
DIVSS DIVPS	xmm,xmm	1	1	1			'			float	7-14	7-14
DIVSS DIVPS	xmm,m	1	1	1			1			float	7-14	7-1 4 7-14
		1	1	1			'			float	7-22	7-1 4 7-22
DIVSD DIVPD	xmm,xmm	· -	-				4				1-22	
DIVSD DIVPD	xmm,m	1	1	1			1			float		7-22
RCPSS/PS	xmm,xmm	1	1		1					float	3	2
RCPSS/PS	xmm,m	1	1		1		1			float		2
CMPccSS/D CMPccPS/D												
	xmm,xmm	1	1		1					float	3	1
CMPccSS/D CMPccPS/D												
	xmm,m	2	1		1		1			float		1
COMISS/D UCOMISS/D	xmm,xmm	1	1		1					float	1+2	1
COMISS/D UCOMISS/D	xmm,m32/64	1	1		1		1			float		1
MAXSS/D MINSS/D	xmm,xmm	1	1		1					float	3	1
MAXSS/D MINSS/D	xmm,m32/64	1	1		1		1			float		1
MAXPS/D MINPS/D	xmm,xmm	1	1		1					float	3	1
MAXPS/D MINPS/D	xmm,m128	1	1		1		1			float		1
ROUNDSS/D	, , , , , , , , , , , , , , , , , , ,						•					•
ROUNDPS/D j)	xmm,xmm,i	1	1		1					float	3	1
ROUNDSS/D	, , , , , , , , , , , , , , , , , , ,	'	'		'					liout		•
ROUNDPS/D j)	xmm,m128,i	2	1		1		1			float		1
DPPS j)	xmm,xmm,i	4	4	1	2	1	'			float	11	2
DPPS j)	xmm,m128,i	6				-	1			float	11	2
1 37			5	X	X	X	'					4
DPPD j)	xmm,xmm,i	3	3	Х	Х	Х	_			float	9	1
DPPD j)	xmm,m128,i	4	3	Х	Х	Х	1			float		3
Math										<u>.</u> .		
SQRTSS/PS	xmm,xmm	1	1	1						float	7-18	7-18
SQRTSS/PS	xmm,m	2	1	1			1			float		7-18
SQRTSD/PD	xmm,xmm	1	1	1						float	7-32	7-32
SQRTSD/PD	xmm,m	2	1	1			1			float		7-32
RSQRTSS/PS	xmm,xmm	1	1		1					float	3	2
RSQRTSS/PS	xmm,m	1	1		1		1			float		2
Logic												
AND/ANDN/OR/XORPS/D	xmm,xmm	1	1			1				float	1	1
AND/ANDN/OR/XORPS/D	xmm,m128	1	1			1	1			float		1
	7,						'					•
Other												
LDMXCSR	m32	6	6	x	x	х	1					5
STMXCSR	m32	2	1	^	^	1	'	1	1			1
	m4096	141	141		,,	-	E	38	38		90	90
FXSAVE				X	X	X	5	JÖ	٥٥		90	
FXRSTOR	m4096	112	90	Х	Х	Х	42					100

Notes:

g) SSE3 instruction set.

Intel Sandy Bridge

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, x = 128 bit xmm reg-

ister, (x)mm = mmx or xmm register, y = 256 bit ymm register, same = same register for both operands. m = memory operand, m32 = 32-bit memory oper-

and, etc.

μops fused domain: The number of μops at the decode, rename, allocate and retirement stages in

the pipeline. Fused µops count as one.

μορs unfused domain: The number of μορs for each execution port. Fused μορs count as two. Fused

macro-ops count as one. The instruction has μ op fusion if the sum of the numbers listed under p015 + p23 + p4 exceeds the number listed under μ ops fused domain. A number indicated as 1+ under a read or write port means a 256-bit read or write operation using two clock cycles for handling 128 bits each cycle. The port cannot receive another read or write μ op in the second clock cycle, but a read port can receive an address-calculation μ op in the second clock cycle. An x under p0, p1 or p5 means that at least one of the μ ops listed under p015 can optionally go to this port. For example, a 1 under p015 and an x under p0 and p5 means one μ op which can go to either port 0 or port 5, whichever is vacant first. A value listed under p015 but nothing under p0, p1 and p5 means that

it is not known which of the three ports these µops go to.

p015: The total number of μops going to port 0, 1 and 5.
p0: The number of μops going to port 0 (execution units).
p1: The number of μops going to port 1 (execution units).
p5: The number of μops going to port 5 (execution units).

p23: The number of μops going to port 2 or 3 (memory read or address calculation).

p4: The number of μops going to port 4 (memory write data).

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Where hyperthreading is enabled, the use of the same execution units in the other thread leads to inferior performance. Denormal numbers, NAN's and infinity do not increase the latency. The time unit used is core clock cycles, not the reference clock cycles given by the

time stamp counter.

Reciprocal throughput: The average number of core clock cycles per instruction for a series of inde-

pendent instructions of the same kind in the same thread.

The latencies and throughputs listed below for addition and multiplication using full size YMM registers are obtained only after a warm-up period of a thousand instructions or more. The latencies may be one or two clock cycles longer and the reciprocal throughputs double the values for shorter sequences of code.

There is no warm-up effect when vectors are 128 bits wide or less.

Integer instructions

	- •										
Instruction Op	Operands	μops	μops	un	fuse	ed d	loma	in	Latency	Reci-	Com-
		fused do- main	p015	p0	p1	р5	p23	p4		procal through- put	ments
Move instructions											
MOV	r,r/i	1	1	Х	х	х			1		

MOV	r,m	1					1		2	0.5	all ad- dressing modes
MOV	m,r	1					1	1	3	1	
MOV	m,i	1					1	1		1	
MOVNTI	m,r	2					1	1	~350	1	
MOVSX MOVZX MOVSXD	r,r	1	1	x	х	x			1		
MOVSX MOVZX MOVSXD	r,m	1					1			0.5	
CMOVcc	r,r	2	2	х	Х	Х			2	1	
CMOVcc	r,m	2	2	х	Х	х	1			1	
XCHG	r,r	3	3	х	Х	Х			2	1	
XCHG	r,m	8	Х				2	1	25		implicit lock
XLAT		3	2				1		7	1	
PUSH	r	1					1	1	3	1	
PUSH	i	1					1	1		1	
PUSH	m	2					2	1		1	
PUSHF(D/Q)		3	2	Х	Х	Х	1	1		1	
PUSHA(D)		16	0				8	8		8	not 64 bit
POP	r	1					1		2	0.5	
POP	(E/R)SP	1	0				1			0.5	
POP	m	2					2	1		1	
POPF(D/Q)		9	8	Х	Х	Х	1			18	
POPA(D)		18	10				8			9	not 64 bit
LAHF SAHF		1	1						1	1	
SALC		3	3						1	1	not 64 bit
LEA	r,m	1	1	Х	Х				1	0.5	simple
LEA	r,m	1	1		1				3	1	complex
											or rip rel- ative
DCMAD	*20	4	4		4				4	4	alive
BSWAP BSWAP	r32 r64	1 2	1 2		1 2				1 2	1	
PREFETCHNTA		1					4		2	0.5	
PREFETCHT0/1/2	m m						1			0.5	
LFENCE	m m	1 2					1	1		4	
MFENCE		3	1				1	1		33	
SFENCE		2	'				1	1		6	
Arithmetic instructions											
ADD SUB	r,r/i	1	1	х	Х	Х			1		
ADD SUB	r,m	1	1	Х	Х	Х	1			0.5	
ADD SUB	m,r/i	2	1	Х	Х	Х	2	1	6	1	
SUB	r,same	1	0						0	0.25	
ADC SBB	r,r/i	2	2	Х	Х	Х			2	1	
ADC SBB	r,m	2	2	Х	Х	Х	1		2	1	
ADC SBB	m,r/i	4	3	Х	Х	X	2	1	7	1,5	
CMP	r,r/i	1	1	Х	Х	Х			1	_	
CMP	m,r/i	1	1	Х	Х	Х	1		1	0.5	
INC DEC NEG NOT	r	1	1	Х	Х	Х	_		1		
INC DEC NEG NOT	m	3	1	X	X	X	2	1	6	2	

			,								
AAA AAS		2	2						4		not 64 bit
DAA DAS		3	3						4		not 64 bit
AAD		3	3						2		not 64 bit
AAM		8	8						20	11	not 64 bit
MUL IMUL	r8	1	1		1				3	1	I IOC OT DIC
MUL IMUL	r16	4	4		'				4	2	
MUL IMUL	r32	3	3						4	2	
MUL IMUL	r64	2	2						3	1	
IMUL	r,r	1	1		1				3	1	
IMUL	r16,r16,i	2	2						4	1	
IMUL	r32,r32,i	1	1		1				3	1	
IMUL	r64,r64,i	1	1		1				3	1	
MUL IMUL	m8	1	1		1		1		3	1	
MUL IMUL	m16	4	3				1			2	
MUL IMUL	m32	3	2				1			2	
MUL IMUL	m64	2	1				1			2	
IMUL	r,m	1	1		1		1			1	
IMUL	r16,m16,i	2	2				1			1	
IMUL	r32,m32,i	1	1		1		1			1	
IMUL	r64,m64,i	1	1		1		1			1	
DIV	r8	10	10						20-24	11-14	
DIV	r16	11	11						21-25	11-14	
DIV	r32	10	10						20-28	11-18	
DIV	r64	34-56	Х						30-94	22-76	
IDIV	r8	10	10						21-24	11-14	
IDIV	r16	10	10						21-25	11-14	
IDIV	r32	9	9						20-27	11-18	
IDIV	r64	59- 138	Х						40-103	25-84	
CBW		130	1						1	0.5	
CWDE		1	1			1			1	1	
CDQE		1	1			'			1	0.5	
CWD		2	2						1	1	
CDQ		1	1						1	1	
CQO		1	1						1	0.5	
POPCNT	r,r	1	1		1				3	1	SSE4.2
POPCNT	r,m	1	1		1		1		_	1	SSE4.2
CRC32	r,r	1	1		1				3	1	SSE4.2
CRC32	r,m	1	1		1		1			1	SSE4.2
Logic instructions											
AND OR XOR	r,r/i	1	1	x	x	х			1		
AND OR XOR	r,m	1	1	X	X	X	1			0.5	
AND OR XOR	m,r/i	2	1	X	X	X	2	1	6	1	
XOR	r,same	1	0						0	0.25	
TEST	r,r/i	1	1	X	х	Х			1		
TEST	m,r/i	1	1	х	х	Х	1			0.5	
SHR SHL SAR	r,i	1	1	х		х			1	0.5	
SHR SHL SAR	m,i	3	1				2	1		2	
SHR SHL SAR	r,cl	3	3						2	2	
SHR SHL SAR	m,cl	5	3				2	1		4	
ROR ROL	r,i	1	1						1	1	

			,	0							
ROR ROL	m,i	4	3				2	1		2	
ROR ROL	r,cl	3	3						2	2	
ROR ROL	m,cl	5	3				2	1		4	
RCR	r8,1	high						-	high	high	
RCR	r16/32/64,1	3	3						2	2	
RCR		8	8						5	5	
	r,i								5		
RCR	m,i	11	7				Х	X	_	6	
RCR	r,cl	8	8						5	5	
RCR	m,cl	11	7				Х	X		6	
RCL	r,1	3	3						2	2	
RCL	r,i	8	8						6	6	
RCL	m,i	11	7				Х	х		6	
RCL	r,cl	8	8						6	6	
RCL	m,cl	11	7				х	x		6	
SHRD SHLD	r,r,i	1	1							0.5	
SHRD SHLD	m,r,i	3					2	1		2	
SHRD SHLD		4	4				_	'	2	2	
	r,r,cl						2	4	۷	4	
SHRD SHLD	m,r,cl	5	3				2	1	_		
BT	r,r/i	1	1						1	0.5	
ВТ	m,r	10	8				Х			5	
BT	m,i	2	1				1			0.5	
BTR BTS BTC	r,r/i	1	1						1	0.5	
BTR BTS BTC	m,r	11	7				Х	х		5	
BTR BTS BTC	m,i	3	1				2	1		2	
BSF BSR	r,r	1	1						3	1	
BSF BSR	r,m	1	1		1		1			1	
SETcc	r	1	1	X	•	Х			1	0.5	
SETCC	m m	2	1				1	1	'	1	
CLC	""	1	0	X		Х	'	'		1	
										0.25	
STC CMC		1	1	X	Х	Х			1	_	
CLD STD		3	3							4	
Control transfer instructi	ons										
JMP	short/near	1	1			1			0	2	
JMP	r	1	1			1			0	2	
JMP	m	1	1			1	1		0	2	
Conditional jump	short/near	1	1			1			0	1-2	fast if not
Conditional jump	Short/near	1	'			ı			U	1-2	jumping
Fused arithmetic and		1	1			1			0	1-2	
branch											
J(E/R)CXZ	short	2	2	X	Х	1				2-4	
LOOP	short	7	7	'						5	
LOOP(N)E	short	11	11							5	
CALL	near	3	2			1	1	1		2	
CALL	r	2	1			1	1	1		2	
		3					2			2	
CALL	m		2			1		1			
RET		2	2			1	1			2	
RET	i	3	2			1	1			2	
BOUND	r,m	15	13							7	not 64 bit
INTO		4	4							6	not 64 bit
String instructions											
LODS	-	3	2				1			1	
T.	I .	1 -	1	1	I	1	1	1	1	I .	1 1

REP LODS STOS REP STOS		5n+12 3 2n	1		1	1	~2n n	1	worst case
REP STOS		1.5/16E	3				1/16B		best case
MOVS REP MOVS		5 2n					1.5 n	4	worst case
REP MOVS		3/16B					1/16B		best case
SCAS REP SCAS		3 6n+47					2n+45	1	
CMPS REP CMPS		5 8n+80					2n+80	4	
Other									
NOP (90) Long NOP (0F 1F)		1 1	0					0.25 0.25	decode only 1 per clk
PAUSE		7	7					11	
ENTER	a,0	12	10		2	1	04:05	8	
ENTER LEAVE	a,b	49+6b 3	3		1		84+3b	7	
CPUID		31-75	J		•		100-250	•	
RDTSC		21						28	
RDTSCP		23						36	
RDPMC		35						42	

Floating point x87 instructions

Instruction	Operands	μops	μops	un	fuse	ed d	loma	in	Latency	Reci-	Com-
		fused do- main	p015	p0	p1	p5	p23	p4		procal through- put	ments
Move instructions											
FLD	r	1	1	1					1	1	
FLD	m32/64	1	1				1		3	1	
FLD	m80	4	2	1	1		2		4	2	
FBLD	m80	43	40				3		45	21	
FST(P)	r	1	1	1					1	1	
FST(P)	m32/m64	1					1	1	4	1	
FSTP	m80	7	3				2	2	5	5	
FBSTP	m80	246								252	
FXCH	r	1	0						0	0.5	
FILD	m	1	1		1		1		6	1	
FIST(P)	m	3	1		1		1	1	7	2	
FISTTP	m	3	1		1		1	1	7	2	SSE3
FLDZ		1	1	1						2	
FLD1		2	2	1	1					2	
FLDPI FLDL2E etc.		2	2		2					2	
FCMOVcc	r	3	3						3	2	

FNSTSW FNSTSW FLDCW FNSTCW FINCSTP FDECSTP FFREE(P) FNSAVE FRSTOR	AX m16 m16 m16 r m	2 2 3 2 1 1 143 90	2 1 2 1 1 1	1 1			1 1 1	1	8 5 1	1 1 1 1 1 166 165	
Arithmetic instructions FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FMUL(P) FMUL(P) FDIV(R)(P) FDIV(R)(P) FABS FCHS FCOM(P) FUCOM FCOM(P) FUCOM FCOMPP FUCOMPP FCOMI(P) FUCOMI(P) FIADD FISUB(R) FIMUL FIDIV(R) FICOM(P) FTST FXAM FPREM FPREM1 FRNDINT	r m r m r m m m	1 2 1 1 1 1 1 1 2 3 2 2 2 2 2 2 2 41-87	1 2 1 1 1 1 1 1 1 2 3 2 2 2 1 2 28 17	1 1 1 1 1 1 1 1	1 1 1 1 1 1 2 1 1	1	1 1 1 1 1 1 1 1		3 5 10-24 1 1 3 4 21 26-50 22	1 1 1 10-24 10-24 1 1 1 1 1 1 2 1 2 21 26-50	
Math FSCALE FXTRACT FSQRT FSIN FCOS FSINCOS F2XM1 FYL2X FYL2XP1 FPTAN FPATAN		27 17 1 64-100 20-110 20-110 53-118 102 28-91	X X	1					12 10 10-24 47-100 47-115 43-123 61-69 130 93-146		
Other FNOP WAIT FNCLEX FNINIT		1 2 5 26	1 2 5 26	1						1 1 22 81	

Instruction	Operands	μops	μops	un	fus	ed d	oma	in	Latency	Reci-	Com-
		fused do- main	p015	_	_		p23	_		procal through- put	ments
Move instructions											
MOVD	r32/64,(x)mm	1	1	X	х	х			1		
MOVD	m32/64,(x)mm	1					1	1	3	1	
MOVD	(x)mm,r32/64	1	1	Х	X	Х			1		
MOVD	(x)mm,m32/64	1	-				1		3	0.5	
MOVQ	(x)mm,(x)mm	1	1	x	x	х			1		
MOVQ	(x)mm,m64	1	•	^			1		3	0.5	
MOVQ	m64, (x)mm	1					1	1	3	1	
MOVDQA	x,x	1	1	x	x	х		ļ .	1		
MOVDQA	x, m128	1	'	^	^		1		3	0.5	
MOVDQA	m128, x	1					1	1	3	1	
MOVDQU	x, m128	1	1				1	'	3	0.5	
MOVDQU	m128, x	1	1				1	1	3	1	
LDDQU	· ·	ļ -	1 -					'		1	SSE3
MOVDQ2Q	x, m128	1 2	1 2				1		3	0.5	೨೦೬೨
	mm, x								1	l	
MOVQ2DQ	x,mm	1	1					_	1		
MOVNTQ	m64,mm	1					1	1	~300	1	
MOVNTDQ	m128,x	1					1	1	~300		00544
MOVNTDQA	x, m128	1					1			0.5	SSE4.1
PACKSSWB/DW PACKUSWB	mm,mm	1	1	1					1	1	
PACKSSWB/DW PACKUSWB	mm,m64	1	1	1			1				
PACKSSWB/DW PACKUSWB	x,x	1	1		X	x			1	0.5	
PACKSSWB/DW	^, ^	'	'		^	^			'	0.5	
PACKUSWB	x,m128	1	1		x	х	1			0.5	
PACKUSDW	X,11120	1	1		x	X	'		1	0.5	SSE4.1
PACKUSDW	x,m	1	1		x	X	1			0.5	SSE4.1
PUNPCKH/LBW/WD/DQ	(x)mm,(x)mm	1	1				'		1	0.5	33L4.1
PUNPCKH/LBW/WD/DQ	' ' ' '	1	1		X	X	1		I	0.5	
PUNPCKH/LQDQ	(x)mm,m	1	1		X	X	'		1	0.5	
PUNPCKH/LQDQ	x,x x, m128	2	1		X	X	1		ı	0.5	
PMOVSX/ZXBW	1	1	1		X	X	1		1	0.5	SSE4.1
	X,X		-		X	X	4		1		
PMOVSX/ZXBW	x,m64	1	1		X	X	1		_	0.5	SSE4.1
PMOVSX/ZXBD	x,x	1	1		X	Х			1	0.5	SSE4.1
PMOVSX/ZXBD	x,m32	1	1		X	X	1		_	0.5	SSE4.1
PMOVSX/ZXBQ	X,X	1	1		X	Х			1	0.5	SSE4.1
PMOVSX/ZXBQ	x,m16	1	1		X	Х	1			0.5	SSE4.1
PMOVSX/ZXWD	X,X	1	1		X	Х			1	0.5	SSE4.1
PMOVSX/ZXWD	x,m64	1	1		X	Х	1			0.5	SSE4.1
PMOVSX/ZXWQ	X,X	1	1		X	Х			1	0.5	SSE4.1
PMOVSX/ZXWQ	x,m32	1	1		Х	Х	1			0.5	SSE4.1
PMOVSX/ZXDQ	X,X	1	1		Х	Х			1	0.5	SSE4.1
PMOVSX/ZXDQ	x,m64	1	1		Х	Х	1			0.5	SSE4.1
PSHUFB	(x)mm,(x)mm	1	1		Х	Х			1	0.5	SSSE3
PSHUFB	(x)mm,m	2	1		Х	Х	1			0.5	SSSE3
PSHUFW	mm,mm,i	1	1		Х	Х			1	0.5	
PSHUFW	mm,m64,i	2	1		Х	Х	1			0.5	

PSHUFD												
PSHUFL/HW	PSHUFD	x,x,i	1	1		Х	Х			1	0.5	
PSHUFU-HW	PSHUFD	x,m128,i	2	1		х	х	1			0.5	
PSHUFU-I/HW	PSHUFL/HW	x,x,i	1	1		х	х			1	0.5	
PALIGNR	PSHUFL/HW	x, m128,i	2	1		х	х	1			0.5	
PALLIONR			1	1		x	х			1		SSSE3
PBLENDVB		` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	2	1		x	x	1				
PBLENDVB		' '		-						2		
PBLENDW						1 -	· ·	1		_	-	
PBLENDW						"	-	•		1		
MASKMOVQ mm,mm 4 1 1 2 1 1 6 MASKMOVDQU x,x 10 4 4 x 6 PEXTRB r32,xi 2 2 1 x x 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 x x 1 1 1 SSE4.1 PEXTRW m6(x)mm,i 2 1 x x 1 1 1 SSE4.1 PEXTRD r32,xi 2 2 1 x x 1 1 2 SSE4.1 PEXTRD m64,xi 2 2 1 x x 1 1 SSE4.1 PEXTRD m64,xi 3 2 1 x x 1 1 SSE4.1 PEXTRD m64,xi 3 2 1 x x 1 1								1				
MASKMOVDQU				-	1	^	_ ^		1			002
PMOVMSKB			-						· .			
PEXTRB		· ·			1			7	^	2		
PEXTRB		,		-			_				-	SSE4 1
PEXTRW					'			1	1			
PEXTRW				-	1			'	'	2		33L4.1
PEXTRD		, ,			'			1	4			SSE4 1
PEXTRD		,		-	4			'	'	2		1
PEXTRQ		1 1			1 -			4	4			
PEXTRQ								ı	'	2		
PINSRB								4	4		-	
PINSRB	· ·							ı	'	2	-	
PINSRW								4				
PINSRW				-				1		_		55E4.1
PINSRD		, ,								2		
PINSRD		` '		-				1				00544
PINSRQ										2		
PINSRQ				-				1		_		1
Arithmetic instructions (x)mm, (x)mm 1 1 x x 1 0.5 PADD/SUB(U,S)B/W/D/Q (x)mm, (x)mm 1 1 x x 1 0.5 PHADD/SUB(S)W/D (x)mm, (x)mm 3 3 x x 2 1,5 SSSE3 PHADD/SUB(S)W/D (x)mm, (x)mm 3 3 x x 1 0.5 PSSE3 PCMPEQ/GTB/W/D (x)mm, (x)mm 1 1 x x 1 0.5 PSSE3 PCMPEQ/GTB/W/D (x)mm, (x)mm 1 1 x x 1 0.5 PSSE3 PCMPEQ/GTB/W/D (x)mm, (x)mm 1 1 x x 1 0.5 PSSE3 PCMPEQ/GTB/W/D (x)mm, (x)mm 1 1 x x 1 0.5 SSE4.1 1 0.5 SSE4.1 1 0.5 SSE4.1 1 1 1 1 1 1 1 1 1 1										2		1 ' 1
PADD/SUB(U,S)B/W/D/Q PADD/SUB(U,S)B/W/D/Q PHADD/SUB(S)W/D (x)mm, (x)mm 1 1 x x 1 0.5 0.5 PHADD/SUB(S)W/D PHADD/SUB(S)W/D PHADD/SUB(S)W/D (x)mm, (x)mm 3 3 x x 2 1,5 SSSE3 PHADD/SUB(S)W/D PCMPEQ/GTB/W/D (x)mm,m64 4 3 x x 1 1,5 SSSE3 PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D (x)mm,m 1 1 x x 1 0.5 PSSE3 PCMPEQ/GTB/W/D PCMPEQQ x,x 1 1 x x 1 0.5 PSSE3 PCMPEQQ x,x 1 1 x x 1 0.5 SSE4.1 PCMPGTQ x,m128 1 1 1 1 1 1 SSE4.2 PCMPGTQ x,same 1 0 0.25 0 0.25 0 0.25 PCMPEQX x,same 1 1 1 1 1 1 1 1 1 <td>PINSRQ</td> <td>x,m64,i</td> <td>2</td> <td>1</td> <td></td> <td>Х</td> <td>Х</td> <td>1</td> <td></td> <td></td> <td>0.5</td> <td>64 D</td>	PINSRQ	x,m64,i	2	1		Х	Х	1			0.5	64 D
PADD/SUB(U,S)B/W/D/Q PADD/SUB(U,S)B/W/D/Q PHADD/SUB(S)W/D (x)mm, (x)mm 1 1 x x 1 0.5 0.5 PHADD/SUB(S)W/D PHADD/SUB(S)W/D PHADD/SUB(S)W/D (x)mm, (x)mm 3 3 x x 2 1,5 SSSE3 PHADD/SUB(S)W/D PCMPEQ/GTB/W/D (x)mm,m64 4 3 x x 1 1,5 SSSE3 PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D (x)mm,m 1 1 x x 1 0.5 PSSE3 PCMPEQ/GTB/W/D PCMPEQQ x,x 1 1 x x 1 0.5 PSSE3 PCMPEQQ x,x 1 1 x x 1 0.5 SSE4.1 PCMPGTQ x,m128 1 1 1 1 1 1 SSE4.2 PCMPGTQ x,same 1 0 0.25 0 0.25 0 0.25 PCMPEQX x,same 1 1 1 1 1 1 1 1 1 <td>A!41</td> <td></td>	A!41											
PADD/SUB(U,S)B/W/D/Q PHADD/SUB(S)W/D (x)mm,m 1 1 1 x x 1 2 1,5 SSSE3 PHADD/SUB(S)W/D (x)mm,m64 4 3 x x 1 1,5 SSSE3 PCMPEQ/GTB/W/D (x)mm,m64 4 3 x x 1 1,5 SSSE3 PCMPEQ/GTB/W/D (x)mm,m 1 1 x x 1 0.5 SSE3 PCMPEQ/GTB/W/D (x)mm,m 1 1 x x 1 0.5 SSE4.1 PCMPEQ/GTB/W/D (x)mm,m 1 1 x x 1 0.5 SSE4.1 PCMPEQQ x,x 1 1 x x 1 0.5 SSE4.1 PCMPGTQ x,m128 1 1 1 1 1 1 SSE4.2 PCMPEQX x,same 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td></td><td>(v)mm (v)mm</td><td>4</td><td>4</td><td></td><td></td><td>.,</td><td></td><td></td><td>4</td><td>0.5</td><td></td></t<>		(v)mm (v)mm	4	4			.,			4	0.5	
PHADD/SUB(S)W/D (x)mm, (x)mm 3 3 x x 1 1,5 SSSE3 PHADD/SUB(S)W/D (x)mm,m64 4 3 x x 1 1,5 SSSE3 PCMPEQ/GTB/W/D (x)mm,(x)mm 1 1 x x 1 0.5 PCMPEQ/GTB/W/D (x)mm,m 1 1 x x 1 0.5 PCMPEQ/GTB/W/D (x)mm,m 1 1 x x 1 0.5 PCMPEQQ x,x 1 1 x x 1 0.5 SSE4.1 PCMPEQQ x,m128 1 1 1 x x 1 0.5 SSE4.1 PCMPGTQ x,m128 1 1 1 1 1 1 1 SSE4.2 PSUBxx, PCMPGTx x,same 1 0 0.25 0 0.5 5 PMUL/HW PMULHUW (x)mm,(x)mm 1 1 1 1 1	1							4		ı		
PHADD/SUB(S)W/D (x)mm,m64 4 3 x x 1 1,5 SSSE3 PCMPEQ/GTB/W/D (x)mm,m64 4 3 x x 1 0.5 PCMPEQ/GTB/W/D (x)mm,m 1 1 x x 1 0.5 PCMPEQQ x,x 1 1 x x 1 0.5 SSE4.1 PCMPEQQ x,m128 1 1 x x 1 0.5 SSE4.1 PCMPGTQ x,m128 1 1 1 1 1 SSE4.2 PSUBxx, PCMPGTx x,same 1 0 0.25 SSE4.2 PCMPEQx x,same 1 1 1 1 1 SSE4.2 PMULL/HW PMULHUW (x)mm,(x)mm 1		, , ·	-	-				I		_		00000
PCMPEQ/GTB/W/D (x)mm,(x)mm 1 1 x x 1 0.5 PCMPEQ/GTB/W/D (x)mm,m 1 1 x x 1 0.5 PCMPEQQ x,x 1 1 x x 1 0.5 SSE4.1 PCMPEQQ x,m128 1 1 x x 1 0.5 SSE4.1 PCMPGTQ x,m128 1 1 1 1 1 SSE4.2 PCMPGTQ x,m128 1 1 1 1 1 SSE4.2 PSUBxx, PCMPGTx x,same 1 0 0.25 0 0.25 PCMPEQx x,same 1 1 1 1 1 1 SSE4.2 PMULL/HW PMULHUW (x)mm,(x)mm 1 </td <td>\ '</td> <td>, , , , ,</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td>	\ '	, , , , ,	_					4				
PCMPEQ/GTB/W/D (x)mm,m 1 1 1 x x 1 0.5 PCMPEQQ x,x 1 1 x x 1 0.5 SSE4.1 PCMPEQQ x,m128 1 1 x x 1 0.5 SSE4.1 PCMPGTQ x,x128 1 1 1 1 1 SSE4.2 PCMPGTQ x,m128 1 1 1 1 SSE4.2 PSUBxx, PCMPGTx x,same 1 0 0.25 0 0.5 PCMPEQX x,same 1 1 0 0.5 0 0.5 PMULL/HW PMULHUW (x)mm,(x)mm 1 1 1 1 1 1 1 PMULHRSW (x)mm,(x)mm 1 1 1 1 1 SSE3 PMULLD x,x 1 1 1 1 1 SSE4.1 PMULDQ x,m128 1 1 1	` '	, ,						1		_		555E3
PCMPEQQ x,x 1 1 x x 1 0.5 SSE4.1 PCMPEQQ x,m128 1 1 x x 1 0.5 SSE4.1 PCMPGTQ x,x 1 1 1 1 1 SSE4.2 PCMPGTQ x,m128 1 1 1 1 1 SSE4.2 PSUBxx, PCMPGTx x,same 1 0 0.25 0 0.5 PCMPEQx x,same 1 1 0 0.5 0 0.5 PMULL/HW PMULHUW (x)mm,(x)mm 1 <	1	' ' ' '								1		
PCMPEQQ x,m128 1 1 x x 1 5 1 SSE4.1 PCMPGTQ x,m128 1 1 1 1 1 SSE4.2 PCMPGTQ x,m128 1 1 1 1 1 SSE4.2 PSUBxx, PCMPGTx x,same 1 0 0.25 0 0.5 PCMPEQx x,same 1 1 0 0.5 SSE4.2 PCMPEQx x,same 1 1 0 0.25 0 0.5 SSE4.2 PCMPEQx x,same 1 1 1 1 1 0 0.25 0 0.5 5 1		, , ,		-				1		_		00544
PCMPGTQ x,x 1 1 1 1 1 SSE4.2 PCMPGTQ x,m128 1 1 1 1 1 SSE4.2 PSUBxx, PCMPGTx x,same 1 0 0.25 0 0.5 PCMPEQx x,same 1 1 5 1 1 PMULL/HW PMULHUW (x)mm,(x)mm 1 1 1 1 1 PMULHRSW (x)mm,(x)mm 1 1 1 1 5 1 SSSE3 PMULLD x,x 1 1 1 1 1 SSE4.1 PMULDQ x,m128 2 1 1 1 1 SSE4.1 PMULDQ x,m128 1 1 1 1 1 SSE4.1 PMULDQ x,m128 1 1 1 1 1 SSE4.1 PMULDQ x,m128 1 1 1 1 1 SSE4.1 <t< td=""><td></td><td>· ·</td><td>·='</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td></t<>		· ·	·='	-						1		
PCMPGTQ x,m128 1 1 1 1 0 0.25 PSUBxx, PCMPGTx x,same 1 0 0.25 0 0.25 PCMPEQx x,same 1 1 1 5 1 PMULL/HW PMULHUW (x)mm,(x)mm 1 1 1 1 1 PMULHRSW (x)mm,(x)mm 1 1 1 1 5 1 SSSE3 PMULHRSW (x)mm,m 1 1 1 1 5 1 SSSE3 PMULLD x,x 1 1 1 5 1 SSE4.1 PMULDQ x,m128 2 1 1 1 5 1 SSE4.1 PMULDQ x,m128 1 1 1 1 1 SSE4.1 PMULUDQ (x)mm,(x)mm 1 1 1 1 1 SSE4.1		· ·	-			X	Х	1		_		
PSUBxx, PCMPGTx x,same 1 0 0 0.25 PCMPEQx x,same 1 1 0 0.5 PMULL/HW PMULHUW (x)mm,(x)mm 1 1 1 1 PMULHRSW (x)mm,(x)mm 1 1 1 5 1 SSSE3 PMULHRSW (x)mm,(x)mm 1 1 1 1 SSSE3 PMULLD x,x 1 1 1 5 1 SSE4.1 PMULDQ x,m128 2 1 1 1 5 1 SSE4.1 PMULDQ x,m128 1 1 1 1 SSE4.1 PMULUDQ (x)mm,(x)mm 1 1 1 1 SSE4.1			-		1 -					5		
PCMPEQx x,same 1 1 1 0 0.5 PMULL/HW PMULHUW (x)mm,(x)mm 1 1 1 1 1 PMULHRSW (x)mm,(x)mm 1 1 1 1 1 1 SSSE3 PMULHRSW (x)mm,m 1 1 1 1 1 SSSE3 PMULLD x,x 1 1 1 5 1 SSE4.1 PMULDQ x,m128 2 1 1 1 5 1 SSE4.1 PMULDQ x,m128 1 1 1 1 5 1 SSE4.1 PMULUDQ (x)mm,(x)mm 1 1 1 1 SSE4.1		· ·	·='		1			1		_		SSE4.2
PMULL/HW PMULHUW (x)mm,(x)mm 1 </td <td>-</td> <td></td> <td>-</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-		-	_								
PMULL/HW PMULHUW (x)mm,m 1 SSSE3 PMULHRSW (x)mm,m 1 1 1 1 1 SSSE3 PMULLD x,x 1 1 1 1 SSSE3 PMULLD 5 1 SSE4.1 PMULDQ 1 1 1 1 SSE4.1 PMULDQ x,m128 1 1 1 1 1 SSE4.1 PMULUDQ 1 SSE4.1 1 1 1 1 SSE4.1 1 1 1 SSE4.1 1 1 1 SSE4.1 1 1 SSE4.1 1 1 1 SSE4.1 1 1 1 1 SSE4.1 1 1 1 1 1 1 1 1 1 1 1 1	·	· ·	-	-								
PMULHRSW (x)mm,(x)mm 1 1 1 1 1 1 SSSE3 PMULHRSW (x)mm,m 1 1 1 1 SSSE3 PMULLD x,x 1 1 1 5 1 SSE4.1 PMULDQ x,m128 2 1 1 1 5 1 SSE4.1 PMULDQ x,m128 1 1 1 1 SSE4.1 PMULUDQ (x)mm,(x)mm 1 1 1 5 1 SSE4.1		' ' ' '	1	-	1 -					5	-	
PMULHRSW (x)mm,m 1 1 1 1 1 1 SSSE3 PMULLD x,x 1 1 1 5 1 SSE4.1 PMULDQ x,m128 2 1 1 1 SSE4.1 PMULDQ x,m128 1 1 1 5 1 SSE4.1 PMULDQ x,m128 1 1 1 1 SSE4.1 PMULUDQ (x)mm,(x)mm 1 1 1 5 1		, ,	-	-	1			1				
PMULLD x,x 1 1 1 5 1 SSE4.1 PMULLD x,m128 2 1 1 1 5 1 SSE4.1 PMULDQ x,x 1 1 1 5 1 SSE4.1 PMULDQ x,m128 1 1 1 1 SSE4.1 PMULUDQ (x)mm,(x)mm 1 1 1 5 1		, , , , ,	1		1					5		
PMULLD x,m128 2 1 1 1 SSE4.1 PMULDQ x,x 1 1 1 5 1 SSE4.1 PMULDQ x,m128 1 1 1 1 5 1 SSE4.1 PMULUDQ (x)mm,(x)mm 1 1 1 5 1 1		(x)mm,m		-	-			1				
PMULDQ x,x 1 1 1 5 1 SSE4.1 PMULDQ x,m128 1 1 1 1 1 SSE4.1 PMULUDQ (x)mm,(x)mm 1 1 1 5 1 SSE4.1		· ·		1	1					5		
PMULDQ x,m128 1 1 1 1 1 SSE4.1 PMULUDQ (x)mm,(x)mm 1 1 1 5 1	PMULLD	x,m128	2	1	1			1			1	SSE4.1
PMULUDQ (x)mm,(x)mm 1 1 1 5 1	PMULDQ	X,X	1	1	1					5	1	SSE4.1
	PMULDQ	x,m128	1	1	1			1			1	SSE4.1
PMULUDQ (x)mm,m 1 1 1 1 1 1	PMULUDQ	(x)mm,(x)mm	1	1	1					5	1	
	PMULUDQ	(x)mm,m	1	1	1			1			1	

DAAA DDIA/D	(1.1)			ا ا	ı	1		_	4	
PMADDWD	(x)mm,(x)mm	1	1	1				5	1	
PMADDWD	(x)mm,m	1	1	1			1	_	1	00050
PMADDUBSW	(x)mm,(x)mm	1	1	1				5	1	SSSE3
PMADDUBSW	(x)mm,m	1	1	1			1	_	1	SSSE3
PAVGB/W	(x)mm,(x)mm	1	1		Х	Х		1	0.5	
PAVGB/W	(x)mm,m	1	1		Х	Х	1	_	0.5	00544
PMIN/MAXSB	X,X	1	1		Х	Х		1	0.5	SSE4.1
PMIN/MAXSB	x,m128	1	1		Х	Х	1	_	0.5	SSE4.1
PMIN/MAXUB	(x)mm,(x)mm	1	1		Х	Х		1	0.5	
PMIN/MAXUB	(x)mm,m	1	1		X	Х	1		0.5	
PMIN/MAXSW	(x)mm,(x)mm	1	1		Х	Х		1	0.5	
PMIN/MAXSW	(x)mm,m	1	1		Х	Х	1		0.5	
PMIN/MAXUW	X,X	1	1		Х	Х		1	0.5	SSE4.1
PMIN/MAXUW	x,m	1	1		Х	Х	1		0.5	SSE4.1
PMIN/MAXU/SD	X,X	1	1		Х	Х		1	0.5	SSE4.1
PMIN/MAXU/SD	x,m128	1	1		Х	Х	1		0.5	SSE4.1
PHMINPOSUW	X,X	1	1	1				5	1	SSE4.1
PHMINPOSUW	x,m128	1	1	1			1		1	SSE4.1
PABSB/W/D	(x)mm,(x)mm	1	1		Х	Х		1	0.5	SSSE3
PABSB/W/D	(x)mm,m	1	1		Х	Х	1		0.5	SSSE3
PSIGNB/W/D	(x)mm,(x)mm	1	1		Х	Х		1	0.5	SSSE3
PSIGNB/W/D	(x)mm,m	1	1		Х	Х	1		0.5	SSSE3
PSADBW	(x)mm,(x)mm	1	1	1				5	1	
PSADBW	(x)mm,m	1	1	1			1		1	
MPSADBW	x,x,i	3	3	1	1	1		6	1	SSE4.1
MPSADBW	x,m,i	4	3	1	1	1	1		1	SSE4.1
Logic instructions										
PAND(N) POR PXOR	(x)mm,(x)mm	1	1	X	Х	х		1		
PAND(N) POR PXOR	(x)mm,m	1	1	Х	Х	х	1		0.5	
PXOR	x,same	1	0					0	0.25	
PTEST	X,X	1	2	1	Х	х		1	1	SSE4.1
PTEST	x,m128	1	2	1	Х	х	1		1	SSE4.1
PSLL/RL/RAW/D/Q	mm,mm/i	1	1	1				1	1	
PSLL/RL/RAW/D/Q	mm,m64	1	1	1			1		2	
PSLL/RL/RAW/D/Q	x,i	1	1	1				1	1	
PSLL/RL/RAW/D/Q	X,X	2	2	1	Х	х		2	1	
PSLL/RL/RAW/D/Q	x,m128	3	2	1	Х	х	1		1	
PSLL/RLDQ	x,i	1	1		Х	х		1	1	
String instructions										
PCMPESTRI	x,x,i	8	8					4	4	SSE4.2
PCMPESTRI	x,m128,i	8	7				1		4	SSE4.2
PCMPESTRM	x,x,i	8	8					11-12	4	SSE4.2
PCMPESTRM	x,m128,i	8	7				1		4	SSE4.2
PCMPISTRI	x,x,i	3	3					3	3	SSE4.2
PCMPISTRI	x,m128,i	4	3				1		3	SSE4.2
PCMPISTRM	x,x,i	3	3					11	3	SSE4.2
PCMPISTRM	x,m128,i	4	3				1		3	SSE4.2
Encryption instructions		4.0	10					4.4		01.547.11
PCLMULQDQ	x,x,i	18	18					14	8	CLMUL

AESDEC, AESDECLAST, AESENC, AESENCLAST									l
	x,x	2	2			8	4	AES	ı
AESIMC	X,X	2	2				2	AES	ı
AESKEYGENASSIST	x,x,i	11	11			8	8	AES	ı
									ì
Other									ı
EMMS		31	31				18		ı

Instruction		μops	μops	un	fus	ed d	oma	in	Latency	Reci-	Com- ments
		fused do- main	p015							procal through- put	
Move instructions											
MOVAPS/D	X,X	1	1			1			1	1	
VMOVAPS/D	y,y	1	1			1			1	1	AVX
MOVAPS/D MOVUPS/D	x,m128	1					1		3	0.5	
VMOVAPS/D											
VMOVUPS/D	y,m256	1					1+		4	1	AVX
MOVAPS/D MOVUPS/D	m128,x	1					1	1	3	1	
VMOVAPS/D											
VMOVUPS/D	m256,y	1					1	1+	3	1	AVX
MOVSS/D	x,x	1	1			1			1	1	
MOVSS/D	x,m32/64	1					1		3	0.5	
MOVSS/D	m32/64,x	1					1	1	3	1	
MOVHPS/D MOVLPS/D	x,m64	1	1			1	1		3	1	
MOVH/LPS/D	m64,x	1					1	1	3	1	
MOVLHPS MOVHLPS	x,x	1	1			1			1	1	
MOVMSKPS/D	r32,x	1	1	1					2	1	
VMOVMSKPS/D	r32,y	1	1	1					2	1	
MOVNTPS/D	m128,x	1					1	1	~300	1	
VMOVNTPS/D	m256,y	1					1	4	~300	25	AVX
SHUFPS/D	x,x,i	1	1			1			1	1	
SHUFPS/D	x,m128,i	2	1			1	1			1	
VSHUFPS/D	y,y,y,i	1	1			1			1	1	AVX
VSHUFPS/D	y, y,m256,i	2	1			1	1+			1	AVX
VPERMILPS/PD	x,x,x/i	1	1			1			1	1	AVX
VPERMILPS/PD	y,y,y/i	1	1			1			1	1	AVX
VPERMILPS/PD	x,x,m	2	1			1	1			1	AVX
VPERMILPS/PD	y,y,m	2				1	1+			1	AVX
VPERMILPS/PD	x,m,i	2	1			1	1			1	AVX
VPERMILPS/PD	y,m,i	2	1			1	1+			1	AVX
VPERM2F128	y,y,y,i	1	1			1			2	1	AVX
VPERM2F128	y,y,m,i	2	1			1	1+			1	AVX
BLENDPS/PD	x,x,i	1	1	х		Х			1	0.5	SSE4
BLENDPS/PD	x,m128,i	2	1	х		Х	1			0.5	SSE4
VBLENDPS/PD	y,y,i	1	1	х		Х			1	1	AVX
VBLENDPS/PD	y,m256,i	2	1	х		Х	1+			1	AVX
BLENDVPS/PD	x,x,xmm0	2	2	х		Х			2	1	SSE4
BLENDVPS/PD	x,m,xmm0	3	2	х		Х	1			1	SSE4
VBLENDVPS/PD	y,y,y,y	2	2	х		Х			2	1	AVX

VBLENDVPS/PD												
MOVDDUP	VBLENDVPS/PD	y,y,m,y	3	2	X		Х	1+			1	AVX
MOVDDUP	MOVDDUP	1	1	1			1			1	1	SSE3
MOVDDUP		· ·	1				-	1			0.5	1
\(\text{VMOVDUP} \) \(\text{VMOXDUP} \) \(\text{VMOXDLASTSS} \) \(\text{V,m32} \) 1 \\ \text{VMROADCASTSS} \) \(\text{V,m32} \) 1 \\ \text{VMROADCASTSS} \) \(\text{V,m32} \) 2 \\ \text{1} \\ \text{1} \\ \text{1} \\ \text{1} \\ \text{1} \\ \text{1} \\ \text{VMROADCASTSS} \) \(\text{V,m64} \\ \text{2} \\ \text{2} \\ \text{1} \\ \text{2} \\ \text{MOVSHLDUP} \\ \text{V,m128} \\ \text{2} \\ \text{1} \\ \text{2} \\ \text{1} \\ \text{1} \\ \text{1} \\ \text{1} \\ \text{2} \\ \text{1} \\ \text{1} \\ \text{1} \\ \text{1} \\ \text{2} \\ \text{1} \\ \text{1} \\ \text{1} \\ \text{1} \\ \text{2} \\ \text{1} \\ \text{1} \\ \text{1} \\ \text{2} \\ \text{1} \\ \text{1} \\ \text{1} \\ \text{2} \\ \text{2} \\ \text{1} \\ \text{1} \\ \text{1} \\ \text{2} \\ \text{2} \\ \text{2} \\ \text{1} \\ \text{1} \\ \text{1} \\ \text{2} \\		,	_	1			1	·				1
VBROADCASTSS			_	'			'	1_		=		1
VBROADCASTSS			_							3		1
VBROADCASTSD y,m64 2 1 1 1 1 AVX VBROADCASTF128 y,m128 2 1 1 1 1 1 AVX MOVSH/LDUP x,m128 1 1 1 1 1 1 1 1 1 1 1 1 AVX VMOVSH/LDUP y,m266 1 1 1 1 1 1 AVX UNPCKH/LPS/D x,x 1 1 1 1 1 1 AVX VUNPCKH/LPS/D y,y,m256 1 1 1 1 1 AVX VEXTRACTPS r32,xi 2 1 1 1 <		· ·						· ·				
VBROADCASTF128 y,m128 2 1 1 1 1 1 AVX MOVSHILDUP x,x 1 1 1 1 3 0.5 SSE3 VMOVSHILDUP y,y 1 1 1 1 1 1 AVX VMPOKHILDUP y,m256 1 1 1 1 1 1 1 AVX VMPCKHILPS/D x,x 1 1 1 1 1 1 3 0.5 SSE3 VUNPCKHILPS/D y,y,y 1 1 1 1 1 1 1 AVX VUNPCKHILPS/D y,y,y 1 1 1 1 1 1 AVX VUNPCKHILPS/D y,y,y 1 1 1 1 1 1 AVX VUNPCKHILPS/D y,y,y 1 1 1 1 1 AVX VUNPCKHILPS/D y,y,y 1 1 1		J .										1
MOVSH/LDUP x,x 1 1 1 1 1 1 3 0.5 SSE3 MOVSH/LDUP y,y 1 1 1 1 1 1 1 1 1 AVX VMOVSH/LDUP y,m256 1 1 1 1 1 1 1 AVX UNPCKH/LPS/D x,m128 1 1 1 1 1 1 1 3 SSE3 VUNPCKH/LPS/D y,y,y 1 1 1 1 1 1 1 3 SSE3 VUNPCKH/LPS/D y,y,m256 1		J .	2	1			1	1			1	1
MOVSH/LDUP	VBROADCASTF128	y,m128	2	1			1	1			1	AVX
VMOVSH/LDUP	MOVSH/LDUP	X,X	1	1			1			1	1	SSE3
VMOVSH/LDUP	MOVSH/LDUP	x,m128	1					1		3	0.5	SSE3
VMOVSH/LDUP y,m256 1 2 1 2 1 2 1 2 1 2 1 AVX VXX	VMOVSH/LDUP		1	1			1			1	1	AVX
UNPCKH/LPS/D UNPCK			1				-	1+			1	1
UNPCKH/LPS/D		•	-	1			1				1	1
VUNPCKH/LPS/D y,y,y 1 2 1 AVX VX VX VX 1 1 1 1 1 1 1		· ·	_					1		'		1
VUNPCKH/LPS/D yy,m256 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 AVX EXTRACTPS m32,x,i 2 2 1 2 1 1		· · · · · · · · · · · · · · · · · · ·	_				-	'		4		1
EXTRACTPS r32,xi 2 2 1 1 2 1 SSE4.1 EXTRACTPS m32,xi 3 2 1 1 1 1 1 SSE4.1 EXTRACTPS m32,xi 3 2 1 1 1 1 1 SSE4.1 VEXTRACTF128 x,yi 1 1 1 1 1 1 SSE4.1 VEXTRACTF128 m128,yi 2 1 1 1 1 1 AVX INSERTPS x,xi 1 1 1 1 1 1 SSE4.1 INSERTPS x,m32,i 2 1 1 1 1 1 SSE4.1 INSERTPS x,m32,i 2 1 1 1 1 SSE4.1 VINSERTF128 y,y,xi 1 1 1 2 1 AVX VINSERTF128 y,y,m128,i 2 1 1 1 1 AVX VMASKMOVPS/ID x,x,m128 3 2 1 1 1 AVX VMASKMOVPS/ID m128,xx 4 2 1 1 1 AVX VMASKMOVPS/ID m128,xx 4 2 1 1 1 AVX VMASKMOVPS/ID m256,y,y 4 2 1 1 1 AVX VMASKMOVPS/ID m256,y,y 4 2 1 1 1 AVX VCOTPD2PS x,m128 2 2 1 1 1 AVX VCVTPD2PS x,m256 2 2 1 1 AVX VCVTPD2PS x,m256 2 2 1 1 AVX VCVTPD2PS x,m256 2 2 1 1 AVX VCVTSD2SS x,m64 2 2 1 1 AVX VCVTS2SD x,m64 2 2 1 1 AVX VCVTPS2PD x,m64 2 1 1 AVX VCVTPS2PD x,m64 2 1 1 AVX VCVTPS2PD y,m128 3 2 1 1 AVX VCVTPS2PD x,m32 2 1 1 AVX VCVTS2SD x,m32 2 1 1 AVX VCVTS2SD x,m32 2 1 1 AVX VCVTDQ2PS x,m128 1 1 1 AVX VCVTDQ2PD x,x 1 1 1 AVX VCVTIQ2PD x,x 1 1 1 1 AVX VCVTIQ2PD x,x 1 1 1 1 AVX VCVTIQ2PD x,x 2 2 1 1 1 AVX VCVTIQ2PD x,x 2 2 1 1 AVX VCVTIQ2PD x,x			_				1			1		1
EXTRACTPS M32,x,i 3 2		1	_	1 -			-	1+				
VEXTRACTF128 x,y,i 1 3 2 1 1 1 1 AVX VX XVX 2 1 1 1 AVX XVX XVX 2 1 1 1 AVX XVX XVX 2 2 1				2	1		1			2	1	1
VEXTRACTF128 m128,y,i 2 1 1 1 1 AVX INSERTPS x,x,i 1 3 2 1 1 1 1 AVX VX VX VX VX XX	EXTRACTPS	m32,x,i	3	2			1	1	1		1	SSE4.1
INSERTPS	VEXTRACTF128	x,y,i	1	1			1			2	1	AVX
INSERTPS	VEXTRACTF128	m128,y,i	2	1				1	1		1	AVX
INSERTPS	INSERTPS		1	1			1			1	1	SSE4.1
VINSERTF128 y,y,x,i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 AVX VINSERTF128 y,y,m128,i 2 1 1 1 1 AVX VMASKMOVPS/D y,y,m256 3 2 1 1 1 AVX VMASKMOVPS/D m128,xx 4 2 1 1 1 AVX VMASKMOVPS/D m256,y,y 4 2 1 1 1 AVX CVTPD2PS x,m128 2 2 1 1 1 AVX VCVTPD2PS x,m64 2			2	1				1		-	1	1
VINSERTF128 y,y,m128,i 2 1 1 1 AVX VMASKMOVPS/D x,x,m128 3 2 1 1 1 AVX VMASKMOVPS/D y,y,m256 3 2 1+ 1 AVX VMASKMOVPS/D m128,x,x 4 2 1 1 1 AVX VMASKMOVPS/D m256,y,y 4 2 1 1 1 1 AVX Covresion x,x 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1							1			2		1
VMASKMOVPS/D x,x,m128 3 2 1 1 AVX VMASKMOVPS/D y,y,m256 3 2 1+ 1 AVX VMASKMOVPS/D m128,x,x 4 2 1 1 1 AVX VMASKMOVPS/D m256,y,y 4 2 1 1 1+ 2 AVX COTPSCPD x,m256,y,y 4 2 2 1 1 1+ 2 AVX CVTPD2PS x,m128 2 2 1 1 1 AVX				_			-	1		2		1
VMASKMOVPS/D y,y,m256 3 2 1+ 1 AVX VMASKMOVPS/D m128,x,x 4 2 1 1 1 AVX VMASKMOVPS/D m256,y,y 4 2 1 1 1 AVX Conversion CVTPD2PS x,x 2 2 1 1 1 4 1 CVTPD2PS x,m128 2 2 1 1 1 4 1 AVX VCVTPD2PS x,m128 2 2 1 1 1 4 1 AVX VCVTPD2PS x,m256 2 2 1 1 1 AVX CVTSD2SS x,m64 2 2 1 1 1 AVX CVTPS2PD x,x 2 2 1 1 1 AVX VCVTPS2PD y,m128 3 2 1 1 1 AVX CVTS2SD x,m32												1
VMASKMOVPS/D m128,x,x 4 2 1 1 1 AVX VMASKMOVPS/D m256,y,y 4 2 1 1 1 1 AVX Conversion x,x 2 2 1 1 4 1 AVX CVTPD2PS x,m128 2 2 1 1 4 1 AVX VCVTPD2PS x,m128 2 2 1 1 4 1 AVX VCVTPD2PS x,m256 2 2 1 1 4 1 AVX CVTSD2SS x,m64 2 2 1 1 1 AVX CVTPS2PD x,x 2 2 1 1 1 1 4 1 AVX VCVTPS2PD y,m128 3 2 1 1 1 4 1 AVX VCVTS2SDD x,x 2 2 1 1 1 3								-				1
Conversion x,x 2 1 1 1+ 2 AVX Conversion x,x 2 2 1 1 4 1 CVTPD2PS x,m128 2 2 1 1 4 1 VCVTPD2PS x,m128 2 2 1 1 4 1 AVX VCVTPD2PS x,m256 2 2 1 1 1 AVX CVTSD2SS x,m64 2 2 1 1 1 AVX CVTPS2PD x,x 2 2 1 1 1 1 AVX VCVTPS2PD x,m64 2 1 1 1 1 AVX VCVTPS2PD y,x 2 2 1 1 1 AVX VCVTPS2PD y,m128 3 2 1 1 1 AVX VCVTS2SDD x,x 2 2 1 1 1			_									
Conversion								1	1 - 1		1 -	
CVTPD2PS x,x 2 2 1 1 4 1 CVTPD2PS x,m128 2 2 1 1 1 4 1 AVX VCVTPD2PS x,y 2 2 1 1 1 4 1 AVX VCVTPD2PS x,m256 2 2 1 1 1 4 1 AVX CVTSD2SS x,x 2 2 1 1 1 1 AVX CVTSD2SS x,m64 2 2 1 2 1 1 1 1 1 2 1 1 1 1 1 4 1 AVX 2 2 1 1 1 1 1 AVX 2 2 1	VMASKMOVPS/D	m256,y,y	4	2				1	1+		2	AVX
CVTPD2PS x,x 2 2 1 1 4 1 CVTPD2PS x,m128 2 2 1 1 1 4 1 AVX VCVTPD2PS x,y 2 2 1 1 1 4 1 AVX VCVTPD2PS x,m256 2 2 1 1 1 4 1 AVX CVTSD2SS x,x 2 2 1 1 1 1 AVX CVTSD2SS x,m64 2 2 1 2 1 1 1 1 1 2 1 1 1 1 1 4 1 AVX 2 2 1 1 1 1 1 AVX 2 2 1												
CVTPD2PS x,m128 2 2 1 1 1 AVX VCVTPD2PS x,y 2 2 1 1 4 1 AVX VCVTD2PS x,m256 2 2 1 1 1 AVX CVTSD2SS x,x 2 2 1 1 1 AVX CVTSD2SS x,m64 2 2 1 1 1 1 CVTPS2PD x,x 2 2 1 1 1 1 1 CVTPS2PD x,m64 2 1 1 1 1 1 1 1 AVX VCVTPS2PD y,x 2 2 1 1 1 4 1 AVX VCVTPS2PD y,m128 3 2 1 1 1 AVX CVTSS2SD x,x 2 2 1 1 1 3 1 CVTDQ2PS x,m128												
VCVTPD2PS x,y 2 2 1 1 4 1 AVX VCVTPD2PS x,m256 2 2 1 1 1 AVX CVTSD2SS x,x 2 2 1 1 1 AVX CVTSD2SS x,m64 2 2 1 1 1 1 CVTPS2PD x,x 2 2 1 1 1 1 CVTPS2PD x,m64 2 1 1 1 4 1 AVX VCVTPS2PD y,x 2 2 1 1 4 1 AVX VCVTPS2PD y,m128 3 2 1 1 4 1 AVX VCVTPS2PD y,m128 3 2 1 1 1 1 AVX CVTSS2SD x,m32 2 1 1 1 1 1 1 1 1 1 1 1 <td< td=""><td>CVTPD2PS</td><td>X,X</td><td>2</td><td>2</td><td></td><td>1</td><td>1</td><td></td><td></td><td>4</td><td>1</td><td></td></td<>	CVTPD2PS	X,X	2	2		1	1			4	1	
VCVTPD2PS x,m256 2 2 1 1 1 AVX CVTSD2SS x,x 2 2 1 1 1 AVX CVTSD2SS x,m64 2 2 1 1 1 1 CVTPS2PD x,x 2 2 1 1 1 1 CVTPS2PD x,m64 2 1 1 1 4 1 AVX VCVTPS2PD y,x 2 2 1 1 1 4 1 AVX VCVTPS2PD y,m128 3 2 1 1 1 AVX VCVTPS2PD y,m128 3 2 1 1 1 AVX VCVTS2SDD x,x 2 2 1 1 1 3 1 CVTDQ2PS x,m32 2 1 1 1 1 1 1 1 1 1 1 1 1 1	CVTPD2PS	x,m128	2	2		1	1	1			1	
VCVTPD2PS x,m256 2 2 1 1 1 AVX CVTSD2SS x,x 2 2 1 1 1 AVX CVTSD2SS x,m64 2 2 1 1 1 1 CVTPS2PD x,x 2 2 1 1 1 1 CVTPS2PD x,m64 2 1 1 1 4 1 AVX VCVTPS2PD y,x 2 2 1 1 1 4 1 AVX VCVTPS2PD y,m128 3 2 1 1 1 1 AVX VCVTPS2PD y,m128 3 2 1 1 1 1 AVX VCVTS2S2SD x,x 2 2 1 1 1 3 1 CVTDQ2PS x,m32 2 1 1 1 1 1 1 1 1 1 1	VCVTPD2PS	X,V	2	2		1	1			4	1	AVX
CVTSD2SS x,x 2 2 1 1 3 1 CVTSD2SS x,m64 2 2 1 1 1 1 CVTPS2PD x,x 2 2 1 1 3 1 CVTPS2PD x,m64 2 1 1 1 4 1 AVX VCVTPS2PD y,x 2 2 1 1 4 1 AVX VCVTPS2PD y,m128 3 2 1 1 1 AVX VCVTSS2SD x,x 2 2 1 1 3 1 CVTSS2SD x,m32 2 1 1 1 3 1 CVTDQ2PS x,m32 2 1 1 1 3 1 CVTDQ2PS x,m128 1 1 1 1 1 4 AVX VCVT(T) PS2DQ x,m128 1 1 1 1 1			2	2		1	1	1+			1	
CVTSD2SS x,m64 2 2 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 2 3 1 2 1 1 1 1 2 3 1 1 1 2 3 1 3 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>3</td><td></td><td></td></t<>								-		3		
CVTPS2PD x,x 2 2 1 1 3 1 CVTPS2PD x,m64 2 1 1 1 1 VCVTPS2PD y,x 2 2 1 1 4 1 AVX VCVTPS2PD y,m128 3 2 1 1 1 AVX CVTSS2SD x,x 2 2 1 1 3 1 CVTSS2SD x,m32 2 1 1 1 1 1 CVTDQ2PS x,x 1 1 1 1 1 1 CVTDQ2PS x,m128 1 1 1 1 1 1 1 AVX VCVTDQ2PS y,m256 1 1 1 1 1 AVX CVT(T) PS2DQ x,m128 1 1 1 1 1 1 AVX VCVT(T) PS2DQ y,m256 1 1 1 1 1<		· ·				1 -		1		Ū		
CVTPS2PD x,m64 2 1 1 1 4 1 AVX VCVTPS2PD y,x 2 2 1 1 4 1 AVX VCVTPS2PD y,m128 3 2 1 1 1 AVX CVTSS2SD x,x 2 2 1 1 3 1 CVTDQ2PS x,m32 2 1 1 1 1 1 CVTDQ2PS x,m128 1 1 1 1 1 1 VCVTDQ2PS y,y 1 1 1 1 1 AVX VCVTDQ2PS y,m256 1 1 1 1 1 AVX CVT(T) PS2DQ x,x 1 1 1 1 1 1 AVX VCVT(T) PS2DQ y,m256 1 1 1 1 3 1 AVX VCVT(T) PS2DQ y,m256 1 1 1					1	'	1	'		2		
VCVTPS2PD y,x 2 2 1 1 4 1 AVX VCVTPS2PD y,m128 3 2 1 1 1 AVX CVTSS2SD x,x 2 2 1 1 3 1 CVTSS2SD x,m32 2 1 1 1 1 1 CVTDQ2PS x,x 1 1 1 1 3 1 CVTDQ2PS x,m128 1 1 1 1 1 AVX VCVTDQ2PS y,m256 1 1 1 1 1 AVX CVT(T) PS2DQ x,x 1 1 1 1 1 1 VCVT(T) PS2DQ y,y 1 1 1 1 1 AVX VCVT(T) PS2DQ y,m256 1 1 1 1 1 AVX VCVT(T) PS2DQ y,m256 1 1 1 1 1 AVX					1 -			4		3		
VCVTPS2PD y,m128 3 2 1 1 1 AVX CVTSS2SD x,x 2 2 1 1 3 1 CVTDQ2PS x,m32 2 1 1 1 1 1 CVTDQ2PS x,x 1 1 1 1 1 1 VCVTDQ2PS y,y 1 1 1 1 1 AVX VCVTDQ2PS y,m256 1 1 1 1 1 AVX CVT(T) PS2DQ x,x 1 1 1 1 1 1 1 VCVT(T) PS2DQ y,y 1 1 1 1 1 1 AVX VCVT(T) PS2DQ y,m256 1 1 1 1 1 AVX CVTDQ2PD x,x 2 2 1 1 1 4 1				1 -	1 .			1		4		A) () (
CVTSS2SD x,x 2 2 1 1 3 1 CVTSS2SD x,m32 2 1 1 1 1 1 CVTDQ2PS x,x 1 1 1 1 1 1 CVTDQ2PS x,m128 1 1 1 1 1 1 VCVTDQ2PS y,y 1 1 1 1 1 AVX VCVTDQ2PS y,m256 1 1 1 1 1 AVX CVT(T) PS2DQ x,x 1 1 1 1 1 1 VCVT(T) PS2DQ y,y 1 1 1 1 1 AVX VCVT(T) PS2DQ y,m256 1 1 1 1 1 AVX CVTDQ2PD x,x 2 2 1 1 1 4 1		1			1 -					4		1
CVTSS2SD x,m32 2 1 1 1 3 1 CVTDQ2PS x,x 1 1 1 1 3 1 CVTDQ2PS x,m128 1 1 1 1 1 1 VCVTDQ2PS y,y 1 1 1 1 1 AVX VCVT(T) PS2DQ x,x 1 1 1 1 1 AVX CVT(T) PS2DQ x,m128 1 1 1 1 1 1 AVX VCVT(T) PS2DQ y,y 1 1 1 1 1 AVX VCVT(T) PS2DQ y,m256 1 1 1 1 1 AVX CVTDQ2PD x,x 2 2 1 1 1 4 1		y,m128			1 -		1	1			1	AVX
CVTDQ2PS x,x 1 AVX VX VX VX VX VX VX YX YX <td>CVTSS2SD</td> <td>X,X</td> <td></td> <td>2</td> <td> 1</td> <td></td> <td>1</td> <td></td> <td></td> <td>3</td> <td>1</td> <td></td>	CVTSS2SD	X,X		2	1		1			3	1	
CVTDQ2PS x,m128 1 1 1 1 1 1 1 1 1 1 AVX 1 1 1 1 1 AVX 1 1 1 1 1 AVX 1 <td>CVTSS2SD</td> <td>x,m32</td> <td>2</td> <td>1</td> <td> 1</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td>	CVTSS2SD	x,m32	2	1	1			1			1	
VCVTDQ2PS y,y 1 1 1 1 3 1 AVX VCVTDQ2PS y,m256 1 1 1 1+ 1 AVX CVT(T) PS2DQ x,x 1 1 1 3 1 CVT(T) PS2DQ x,m128 1 1 1 1 1 VCVT(T) PS2DQ y,y 1 1 1 1 AVX VCVT(T) PS2DQ y,m256 1 1 1 1 AVX CVTDQ2PD x,x 2 2 1 1 4 1	CVTDQ2PS	X,X	1	1		1				3	1	
VCVTDQ2PS y,y 1 1 1 1 1 AVX VCVTDQ2PS y,m256 1 1 1 1+ 1 AVX CVT(T) PS2DQ x,x 1 1 1 3 1 AVX CVT(T) PS2DQ x,m128 1 1 1 1 1 1 1 VCVT(T) PS2DQ y,y 1 1 1 1 3 1 AVX VCVT(T) PS2DQ y,m256 1 1 1 1 4 1 AVX CVTDQ2PD x,x 2 2 1 1 4 1	CVTDQ2PS	x,m128	1	1		1		1			1	
VCVTDQ2PS y,m256 1 1 1 1+ 1 AVX CVT(T) PS2DQ x,x 1 1 1 1 3 1 CVT(T) PS2DQ x,m128 1 1 1 1 1 VCVT(T) PS2DQ y,y 1 1 1 3 1 AVX VCVT(T) PS2DQ y,m256 1 1 1 1 AVX CVTDQ2PD x,x 2 2 1 1 4 1		· · · · · · · · · · · · · · · · · · ·	1	1		1				3	1	AVX
CVT(T) PS2DQ x,x 1 1 1 1 3 1 CVT(T) PS2DQ x,m128 1 1 1 1 1 1 VCVT(T) PS2DQ y,y 1 1 1 3 1 AVX VCVT(T) PS2DQ y,m256 1 1 1 1+ 1 AVX CVTDQ2PD x,x 2 2 1 1 4 1			-	-		1 -		1+		•	1	
CVT(T) PS2DQ x,m128 1 1 1 1 1 VCVT(T) PS2DQ y,y 1 1 1 3 1 AVX VCVT(T) PS2DQ y,m256 1 1 1 1+ 1 AVX CVTDQ2PD x,x 2 2 1 1 4 1				-		1 -		' '		3		'\\
VCVT(T) PS2DQ y,y 1 1 1 3 1 AVX VCVT(T) PS2DQ y,m256 1 1 1 1+ 1 AVX CVTDQ2PD x,x 2 2 1 1 4 1			_	-				4		3		
VCVT(T) PS2DQ y,m256 1 1 1 1+ 1 AVX CVTDQ2PD x,x 2 2 1 1 4 1		· ·	-	-		1 -		'		•		A) () (
CVTDQ2PD	1 ' '					1 -				3		1
	1 ' '	_	_	_		1 -		1+			1	AVX
CVTDQ2PD						1	1			4		
	CVTDQ2PD	x,m64	2	2		1	1	1			1	

LOVET CODE	I			ı				1	_		41.04
VCVTDQ2PD	y,x	2	2		1	1			5	1	AVX
VCVTDQ2PD	y,m128	3	2		1	1	1			1	AVX
CVT(T)PD2DQ	X,X	2	2		1	1			4	1	
CVT(T)PD2DQ	x,m128	2	2		1	1	1			1	
VCVT(T)PD2DQ	x,y	2	2		1	1			5	1	AVX
VCVT(T)PD2DQ	x,m256	2	2		1	1	1+			1	AVX
CVTPI2PS	x,mm	1	1		1				4	2	
CVTPI2PS	x,m64	1	1		1		1			2	
CVT(T)PS2PI	mm,x	2	2		1	1			4	1	
CVT(T)PS2PI	mm,m128	2	1		1		1			1	
CVTPI2PD	x,mm	2	2		1	1			4	1	
CVTPI2PD	x,m64	2	2		1	1	1			1	
CVT(T) PD2PI	mm,x	2	2						4	1	
CVT(T) PD2PI	mm,m128	2	2				1			1	
CVTSI2SS	x,r32	2	2		1	1			4	1,5	
CVTSI2SS	x,m32	1	1		1	•	1		·	1,5	
CVT(T)SS2SI	r32,x	2	2	1	1		.		4	1	
CVT(T)SS2SI	r32,m32	2	2	'	1		1		7	1	
CVTSI2SD	x,r32	2	2	1	1		'		4	1,5	
CVTSI2SD	x,m32	1	1	'	1		1		7	1,5	
CVTSI2SD CVT(T)SD2SI	r32,x	2	2	1	1		'		4	1,5	
CVT(T)SD2SI	r32,m64	2	2	1	1		1		4	1	
CV1(1)SD2S1	132,11104	2		!	'					I	
Arithmetic											
ADDSS/D SUBSS/D		1	1		1				3	1	
ADDSS/D SUBSS/D	X,X	1	1		1		1		3	1	
	x,m32/64	-	_		· ·		'		3	-	
ADDPS/D SUBPS/D	X,X	1	1		1				3	1	
ADDPS/D SUBPS/D	x,m128	1	1		1		1		•	1	A) () (
VADDPS/D VSUBPS/D	у,у,у	1	1		1				3	1	AVX
VADDPS/D VSUBPS/D	y,y,m256	1	1		1		1+		•	1	AVX
ADDSUBPS/D	X,X	1	1		1				3	1	SSE3
ADDSUBPS/D	x,m128	1	1		1		1		_	1	SSE3
VADDSUBPS/D	y,y,y	1	1		1				3	1	AVX
VADDSUBPS/D	y,y,m256	1	1		1		1+			1	AVX
HADDPS/D HSUBPS/D	X,X	3	3		1	2			5	2	SSE3
HADDPS/D HSUBPS/D	x,m128	4	3		1	2	1			2	SSE3
VHADDPS/D											
VHSUBPS/D	y,y,y	3	3		1	2			5	2	AVX
VHADDPS/D											
VHSUBPS/D	y,y,m256	4	3		1	2	1+			2	AVX
MULSS MULPS	X,X	1	1	1					5	1	
MULSS MULPS	x,m	1	1	1			1			1	
VMULPS	y,y,y	1	1	1					5	1	AVX
VMULPS	y,y,m256	1	1	1			1+			1	AVX
MULSD MULPD	X,X	1	1	1					5	1	
MULSD MULPD	x,m	1	1	1			1			1	
VMULPD	y,y,y	1	1	1					5	1	AVX
VMULPD	y,y,m256	1	1	1			1+			1	AVX
DIVSS DIVPS	x,x	1	1	1					10-14	10-14	
DIVSS DIVPS	x,m	1	1	1			1			10-14	
VDIVPS	y,y,y	3	3	2		1			21-29	20-28	AVX
VDIVPS	y,y,m256	4	3	2		1	1+		. =•	20-28	AVX
DIVSD DIVPD	x,x	1	1	1			•		10-22	10-22	''
	1 7,7	1 '	1 *	' '	I	l	1 1	l	. 5	. 5	ı l

			- ,	- 5								
DIVSD DIVPD	x,m	1	1	1			1			10-22		
VDIVPD	y,y,y	3	3	2		1		2	21-45	20-44	AVX	
VDIVPD	y,y,m256	4	3	2		1	1+			20-44	AVX	
RCPSS/PS	X,X	1	1	1					5	1		
RCPSS/PS	x,m128	1	1	1			1			1		
VRCPPS	y,y	3	3	2		1			7	2	AVX	
VRCPPS	y,m256	4	3	-			1+		•	2	AVX	
CMPccSS/D CMPccPS/D	<i>y</i> , _									_	/ ((/)	
GIVII CCCC/B GIVII CCI G/B	X,X	1	1		1				3	1		
CMPccSS/D CMPccPS/D	λ,λ		'		'				O	'		
GIVII CCCC/B GIVII CCI G/B	x,m128	2	1		1		1			1		
VCMPccPS/D		1	1		1		'		3	1	AVX	
VCMPccPS/D	y,y,y y,y,m256	2	1		1		1+		J	1	AVX	
COMISS/D UCOMISS/D		2	2	1	1		' '		2	1	_ ^v^	
COMISS/D UCOMISS/D	x,x x,m32/64	2	2	1	1		1		2	1		
MAXSS/D MINSS/D		1	1	'	1		'		3	1		
MAXSS/D MINSS/D	X,X		-				1		3			
	x,m32/64	1	1		1		1		0	1		
MAXPS/D MINPS/D	X,X	1	1		1				3	1		
MAXPS/D MINPS/D	x,m128	1	1		1		1		_	1	A) () (
VMAXPS/D VMINPS/D	у,у,у	1	1		1				3	1	AVX	
VMAXPS/D VMINPS/D	y,y,m256	1	1		1		1+			1	AVX	
ROUNDSS/SD/PS/PD	x,x,i	1	1		1				3	1	SSE4.1	
ROUNDSS/SD/PS/PD	x,m128,i	2	1		1		1			1	SSE4.1	
VROUNDSS/SD/PS/PD	y,y,i	1	1		1				3	1	AVX	
VROUNDSS/SD/PS/PD	y,m256,i	2	1		1		1+			1	AVX	
DPPS	x,x,i	4	4	1	2	1			12	2	SSE4.1	
DPPS	x,m128,i	6	5				1			4	SSE4.1	
VDPPS	y,y,y,i	4	4	1	2	1			12	2	AVX	
VDPPS	y,m256,i	6	5				1+			4	AVX	
DPPD	x,x,i	3	3	1	1	1			9	2	SSE4.1	
DPPD	x,m128,i	4	3				1			2	SSE4.1	
Math												
SQRTSS/PS	X,X	1	1	1				1	10-14	10-14		
SQRTSS/PS	x,m128	1	1	1			1			10-14		
VSQRTPS	y,y	3	3							21-28	AVX	
VSQRTPS	y,m256	4	3				1+			21-28	AVX	
SQRTSD/PD	X,X	1	1	1				1	10-21	10-21		
SQRTSD/PD	x,m128	2	1	1			1			10-21		
VSQRTPD	y,y	3	3					2	21-43	21-43	AVX	
VSQRTPD	y,m256	4	3				1+			21-43	AVX	
RSQRTSS/PS	X,X	1	1	1					5	1		
RSQRTSS/PS	x,m128	1	1	1			1			1		
VRSQRTPS	у,у	3	3	_					7	2	AVX	
VRSQRTPS	y,m256	4	3				1+		·	2	AVX	
	,, <u></u>	'								_		
Logic												
AND/ANDN/OR/XORPS/PD	x,x	1	1			1			1	1		
AND/ANDN/OR/XORPS/PD	x,m128	1	1			1	1			1		
VAND/ANDN/OR/XORPS/	,		•			•						
PD	y,y,y	1	1			1			1	1	AVX	
VAND/ANDN/OR/XORPS/			'						•			
PD	y,y,m256	1	1			1	1+			1	AVX	
l	y, y,111200	l '	1 '		I	'	1	1			/3//	l

(V)XORPS/PD	x/y,x/y,same	1	0					0	0.25	
Other										
VZEROUPPER		4						2	1	AVX
VZEROALL		12							11	AVX, 32 bit
										AVX,
VZEROALL		20							9	64 bit
LDMXCSR	m32	3	3			1			3	
STMXCSR	m32	3	3	1	1	1	1		1	
VSTMXCSR	m32	3	3	1	1	1	1		1	AVX
FXSAVE	m4096	130							68	
FXRSTOR	m4096	116							72	
XSAVEOPT	m	100-16	1					60-500		

Intel Ivy Bridge

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, x = 128 bit xmm

register, (x)mm = mmx or xmm register, y = 256 bit ymm register, same = same register for both operands. m = memory operand, m32 = 32-bit memory

operand, etc.

μops fused domain: The number of μops at the decode, rename, allocate and retirement stages in

the pipeline. Fused uops count as one.

μορε unfused domain: The number of μορε for each execution port. Fused μορε count as two. Fused

macro-ops count as one. The instruction has μ op fusion if the sum of the numbers listed under p015 + p23 + p4 exceeds the number listed under μ ops fused domain. A number indicated as 1+ under a read or write port means a 256-bit read or write operation using two clock cycles for handling 128 bits each cycle. The port cannot receive another read or write μ op in the second clock cycle, but a read port can receive an address-calculation μ op in the second clock cycle. An x under p0, p1 or p5 means that at least one of the μ ops listed under p015 can optionally go to this port. For example, a 1 under p015 and an x under p0 and p5 means one μ op which can go to either port 0 or port 5, whichever is vacant first. A value listed under p015 but nothing under p0, p1 and p5 means that it is not known which of the three ports these μ ops go to.

p015: The total number of μops going to port 0, 1 and 5.
p0: The number of μops going to port 0 (execution units).
p1: The number of μops going to port 1 (execution units).
p5: The number of μops going to port 5 (execution units).

p23: The number of μops going to port 2 or 3 (memory read or address calculation).

p4: The number of upps going to port 4 (memory write data).

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Where hyperthreading is enabled, the use of the same execution units in the other thread leads to inferior performance. Denormal numbers, NAN's and infinity do not increase the latency. The time unit used is core clock cycles, not the reference clock cycles given by

the time stamp counter.

Reciprocal throughput: The average number of core clock cycles per instruction for a series of inde-

pendent instructions of the same kind in the same thread.

The latencies and throughputs listed below for addition and multiplication using full size YMM registers are obtained only after a warm-up period of a thousand instructions or more. The latencies may be one or two clock cycles longer and the reciprocal throughputs double the values for shorter sequences of code.

There is no warm-up effect when vectors are 128 bits wide or less.

Integer instructions

		μοps fused	μορs ι	ınfuse	ed d	oma	in	Latency	Reci- procal	Com- ments
	do- main	p015 p	0 p1	р5	p23	p4		through- put		

Move instructions]		I	ı			I	l			1 1
MOV	r,i	1	1		v	v			1	0.33	
	·			X	X	X					
MOV	r8/16,r8/16	1	1	X	Х	Х			1	0.33	
MOV	r32/64,r32/64	1	1	X	Х	Х			0-1	0.25	may be elimin.
MOV	r8/16,m8/16	1	1	x	х	х	1		2	0.5	
MOV	r32/64,m32/64	1					1		2	0.5	
MOV	r,m	1					1		2	1	64 b abs
1407		4					_		•	4	address
MOV	m,r	1					1	1	3	1	
MOV	m,i	1					1	1		1	
MOVNTI	m,r	2					1	1	~340	1	
MOVSX MOVSXD	r,r	1	1	X	Х	Х			1	0.33	
MOVZX	r16,r8	1	1	X	Х	Х			1	0.33	
MOVZX	r32/64,r8	1	1	x	Х	х			0-1	0.25	may be elimin.
MOVZX	r32/64,r16	1	1	x	х	х			1	0.33	Cilitiiii.
MOVSX MOVZX	r16,m8	2	1	x	х	х	1		3	0.5	
MOVSX MOVZX	r32/64,m	1					1		2	0.5	
MOVSXD	102/01,111	•							_	0.0	
CMOVcc	r,r	2	2	X	Х	Х			2	0.67	
CMOVcc	r,m	2	2	X	Х	X	1		_	~0.8	
XCHG	r,r	3	3	x	X	X	'		2	1	
XCHG	r,m	7	X	^	^	^	2	3	25	1	implicit
XCI IG	1,111	,	^				_		25		lock
XLAT		3	2				1		7	1	
PUSH	r	1					1	1	3	1	
PUSH	i	1					1	1		1	
PUSH	m	2					2	1		1	
PUSH	(E/R)SP	2	1	X	Х	х	1	1	3	1	
PUSHF(D/Q)	(=/: 1/0:	3	2	X	Х	X	1	1		1	
PUSHA(D)		19	3	X	Х	X	8	8		8	not 64 bit
POP	r	1		^			1		2	0.5	
POP	(E/R)SP	3	2		v	v	1			0.5	
	, ,			X	Х	Х	_	4			
POPE(D/O)	m	2 9	0	,,		.,	2	1		1	
POPF(D/Q)			8	X	X	X	1			18	not 64 bit
POPA(D)		18	10	X	Х	Х	8			9	HOL 64 DIL
LAHF SAHF		1	1	X		Х			1	1	
SALC	40	3	3	X	X	Х			1	1	not 64 bit
LEA	r16,m	2	2	X	1	Х			2-4	1	
LEA	r32/64,m	1	1	X	Х				1	0.5	1-2 components
LEA	r32/64,m	1	1		1				3	1	3 com-
	,										ponents
BSWAP	r32	1	1		1				1	1	or RIP
BSWAP	r64	2	2		1	v			2	1	
				X	ı	Х	4			=	
PREFETCHNTA	m	1					1			43	
PREFETCHT0/1/2	m	1					1			43	
LFENCE		2					_			4	
MFENCE		3					1	1		36	
SFENCE		2					1	1		6	

	ı			_	ı	ı	ı	ı			1
Arithmetic instructions											
		4	4						_	0.00	
ADD SUB	r,r/i	1	1	Х	Х	Х			1	0.33	
ADD SUB	r,m	1	1	Х	Х	Х	1			0.5	
ADD SUB	m,r/i	2	1	X	Х	Х	2	1	6	1	
ADC SBB	r,r/i	2	2	X	Х	Х			2	1	
ADC SBB	r,m	2	2	Х	Х	Х	1		2	1	
ADC SBB	m,r/i	4	3	Х	Х	Х	2	1	7-8	2	
CMP	r,r/i	1	1	Х	Х	Х			1	0.33	
CMP	m,r/i	1	1	Х	Х	Х	1		1	0.5	
INC DEC NEG NOT	r	1	1	X	Х	Х			1	0.33	
INC DEC NEG NOT	m m	3	1	Х	Х	Х	2	1	6	1	
AAA AAS		2	2	X	1	Х			4		not 64 bit
DAA DAS		3	3						4		not 64 bit
AAD		3	3						2		not 64 bit
AAM		8	8						20	8	not 64 bit
MUL IMUL	r8	1	1		1				3	1	
MUL IMUL	r16	4	4						4	2	
MUL IMUL	r32	3	3						4	2	
MUL IMUL	r64	2	2						3	1	
IMUL	r,r	1	1		1				3	1	
IMUL	r16,r16,i	2	2						4	1	
IMUL	r32,r32,i	1	1		1				3	1	
IMUL	r64,r64,i	1	1		1				3	1	
MUL IMUL	m8	1	1		1		1		3	1	
MUL IMUL	m16	4	3				1			2	
MUL IMUL	m32	3	2				1			2	
MUL IMUL	m64	2	1				1			2	
IMUL	r,m	1	1		1		1			1	
IMUL	r16,m16,i	2	2				1			1	
IMUL	r32,m32,i	1	1		1		1			1	
IMUL	r64,m64,i	1	1		1		1			1	
DIV	r8	11	11						19-22	9	
DIV	r16	11	11						20-24	10	
DIV	r32	10	10						19-27	11	
DIV	r64	35-57	Х						29-94	22-76	
IDIV	r8	11	11						20-23	8	
IDIV	r16	11	11						20-24	8	
IDIV	r32	9	9						19-26	8-11	
IDIV	r64	59-	х						28-103	26-88	
		134	^						20 .00	20 00	
CBW		1	1	x	х	х			1	0.33	
CWDE		1	1	X	X	X			1	2.00	
CDQE		1	1	x	X	X			1 1		
CWD		2	2	x	X	X			1 1		
CDQ		1	1	x	^	X			1 1		
CQO		1	1	x		X			1 1	0.5	
POPCNT	r,r	1	1	^	1	^			3	1	SSE4.2
POPCNT	r,m	1	1		1		1			1	SSE4.2
CRC32		1	1		1		'		3	1	SSE4.2
CRC32	r,r	1	1 1		1		1		3	1	SSE4.2 SSE4.2
UNUJZ	r,m	'	1		'						33E4.2
Logic instructions											
	,			1			i		' '		

AND OR XOR T,r/fi 1 1 1 x x x x 1 0.5 AND OR XOR TEST T,r/fi 1 1 1 x x x x 1 0.33 TEST T,r/fi 1 1 1 x x x x 1 0.5 SHR SHL SAR T,i 1 1 1 x x x x 1 0.5 SHR SHL SAR T,i 1 1 1 x x x x 1 0.5 SHR SHL SAR T,i 1 1 1 x x x x 1 0.5 SHR SHL SAR T,i 1 1 1 x x x x 1 1 0.5 SHR SHL SAR T,i 1 1 1 x x x x 1 1 0.5 SHR SHL SAR T,i 1 1 1 x x x x 1 1 0.5 SHR SHL SAR T,i 1 1 1 x x x x 1 1 0.5 SHR SHL SAR T,i 1 1 1 x x x x 1 1 0.5 SHR SHL SAR T,i 1 1 1 x x x x 1 1 0.5 SHR SHL SAR T,i 1 1 1 x x x x 1 1 0.5 SHR SHL SAR T,i 1 1 1 x x x x 1 1 0.5 SHR SHL SAR T,i 1 1 1 x x x x 1 1 0.5 SHR SHL SAR T,i 1 1 1 x x x x 1 1 0.5 SHR SHL SAR T,i 1 1 1 x x x x 1 1 1 1 1 1 1 1 1 1 1 1 1				,	•							
AND OR XOR TEST TEST T, r,	AND OR XOR	r,r/i	1	1	Х	Х	Х			1	0.33	
TEST	AND OR XOR	r,m	1	1	Х	Х	х	1			0.5	
TEST	AND OR XOR	m,r/i	2	1	x	х	х	2	1	6	1	
TEST				1	x	х	х				0.33	
SHR SHL SAR r,i 1 1 1 x x 1 0.5 A C 2 1 0.5 C								1				
SHR SHL SAR m,i 3 1 1 2 1 1 2 1 2 1 1 1 3 3 2 2 1 1 1 3 3 2 2 1 4 4 3 3 2 2 1 4 <						^`				1		
SHR SHL SAR r,cl 2 2 1 1 1 1 4 Short form SHR SHL SAR m,cl 5 3 x x 1 1 4 4 4 1 1 1 1 1 4 4 4 3 x x 1 0.5 Short form Short form Short form ROR ROL r,1 2 2 x x 1 1 1 4 4 3 x x 1 0.5 ROR ROL m,cl r,cl 2 2 1 x x 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.5 Short form 3 x x x 1 0.5 Short form 1 1 1 1 1 1 1 1 1 1 1 1 1 1					^			2	1	•		
SHR SHL SAR m,cl 5 3 x 2 1 4 4 About form ROR ROL r,1 2 2 x x 1 1 1 1 0.5 Short form ROR ROL r,i 1 1 1 x x 1 1 1 0.5 Short form ROR ROL r,i 1 1 1 x x 1 1 1 0.5 ROR ROL r,cl 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1					1		1	_	'	1		
ROR ROL r,1 2 2 x x 1 1 1 0.5 ROR ROL m,i 4 3 2 1 1 0.5 ROR ROL m,i 4 3 2 1 1 1 ROR ROL m,cl 5 3 2 1 1 1 ROR ROL m,cl 5 3 2 1 1 1 ROR ROL m,cl 5 3 2 1 1 1 ROR ROL m,cl 5 3 2 1 1 1 ROR ROL m,cl 3 3 x x x 2 1 4 ROR ROL m,cl 3 3 x x x 2 2 2 2 2 2 2 2 1 4 4 X X X 2 1 0.5 5 4 X					'		'	2	4	'		
ROR ROL ROL ROR ROL ROL ROR ROL					١.,		.,	_	' '	4		chart form
ROR ROL m,i 4 3 2 2 1 2 ROR ROL r,cl 2 2 2 x x 1 1 1 ROR ROL m,cl 5 3 x x x 2 1 4 4 2 R x x x 2 2 1 4 4 4 X x x x x 2 1 0 5 4 X X X 2 1 0 5<												SHOLLIOITH
ROR ROL r,cl 2 2 2 x x 1 1 ROR ROL m,cl 5 3 x x x 2 1 4 RCL RCR r,1 3 3 x x x 2 2 2 RCL RCR r,i 8 8 x x x 2 1 4 RCL RCR m,i 11 8 x x x 2 1 6 RCL RCR m,cl 11 8 x x x 2 1 6 SHRD SHLD m,r,i 3 3 x x 2 1 2 SHRD SHLD m,r,i 3 3 x x 2 1 2 SHRD SHLD m,r,cl 5 4 x 1 x 2 2 SHRD SHLD m,r,cl 5 4 x 1 x					X		Х			1		
ROR ROL m,cl 5 3 x x x 2 1 4 RCL RCR r,1 3 3 x x x x 5 5 5 RCL RCR m,i 111 8 x x x 2 1 6 RCL RCR m,cl 11 8 x x x 2 1 6 SHRD SHLD m,r,i 1 1 x x 2 1 0.5 SHRD SHLD m,r,i 3 3 x x 2 1 2 SHRD SHLD m,r,cl 5 4 x 1 x 2 2 SHRD SHLD m,r,cl 5 4 x 1 x 2 2 2 SHRD SHLD m,r 1 1 x x 1 0.5 8 x x x 1 0.5 8 1								2	1			
RCL RCR r,1 3 3 x x x 2 2 2 RCL RCR r,i 8 8 x x x 2 1 6 RCL RCR m,i 11 8 x x x 2 1 6 RCL RCR r,cl 8 8 x x x 2 1 6 SHRD SHLD r,r,i 1 1 x x 2 1 0.5 SHRD SHLD m,r,i 3 3 x x 2 1 2 SHRD SHLD m,r,cl 5 4 x 1 x 2 2 SHRD SHLD m,r,cl 5 4 x 1 x 2 2 2 SHRD SHLD m,r,cl 5 4 x 1 x 1 0.5 BT m,r 1 1 x x					X		Х	_		1		
RCL RCR r,i 8 8 x x x z d 5 5 5 RCL RCR m,i 11 8 x x x x 2 1 6 6 RCL RCR r,cl 8 8 x x x x 2 1 6 6 RCL RCR r,cl 8 8 x x x x x 2 1 6 6 CRCL RCR r,cl 8 8 x x x x 2 1 6 CRCL RCR r,cl 8 8 x x x x 2 1 6 S 5 5 5 5 6 S 6 SHED 8 8 x x x 2 1 0.5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td> 1 </td> <td></td> <td></td> <td></td>								2	1			
RCL RCR m,i 11 8 x x 2 1 6 RCL RCR m,cl 11 8 8 x x x 2 1 6 SHRD SHLD r,r,i 1 1 x x x 2 1 0.5 SHRD SHLD m,r,i 3 3 x x x 2 1 2 SHRD SHLD m,r,cl 5 4 x 1 x 2 2 SHRD SHLD m,r,cl 5 4 x 1 x 2 2 SHRD SHLD m,r,cl 5 4 x 1 x 2 1 4 BT m,r,cl 1 1 1 x x 1 0.5 BT m,r,r/i 1 1 x x 1 0.5 BTR BTS BTC m,r 11 1 x x 1 0.5 BTR BTS BTC m,i 3 2 x x 1 <					X	Х	Х					
RCL RCR r,cl 8 8 x x x z 5 5 RCL RCR m,cl 11 8 x x x 2 1 6 SHRD SHLD r,r,i 1 1 x x 2 1 2 SHRD SHLD r,r,cl 4 4 x 1 x 2 2 SHRD SHLD m,r,cl 5 4 x 1 x 2 1 4 BT r,r/i 1 1 x x 1 0.5 BT m,r 10 9 x x 1 0.5 BTR BTS BTC r,r/i 1 1 x x 1 0.5 BTR BTS BTC m,r 11 8 x x 2 1 5 BTR BTS BTC m,i 3 2 x x 1 1 2 BSF BSR					X	Х	Х			5		
RCL RCR m,cl 11 8 x x 2 1 6 SHRD SHLD r,r,i 1 1 x x 2 1 0.5 SHRD SHLD m,r,i 3 x x x 2 1 2 SHRD SHLD m,r,cl 4 4 x 1 x 2 2 SHRD SHLD m,r,cl 5 4 x 1 x 2 1 4 BTR DSHLD m,r,cl 5 4 x 1 x 2 1 4 BTR DSHLD m,r,cl 5 4 x 1 x 1 0.5 BTR DSHLD m,r,cl 1 1 x x 1 0.5 BT m,r 10 9 x x x 1 0.5 BTR BTS BTC m,r 11 1 x x x 1 1 <td< td=""><td></td><td></td><td></td><td></td><td>X</td><td>Х</td><td>Х</td><td>2</td><td>1</td><td></td><td></td><td></td></td<>					X	Х	Х	2	1			
SHRD SHLD r,r,i 1 1 x x 1 0.5 SHRD SHLD m,r,i 3 3 x x 2 1 2 SHRD SHLD r,r,cl 4 4 x 1 x 2 2 SHRD SHLD m,r,cl 5 4 x 1 x 2 1 4 BTR DS BLD m,r,cl 5 4 x 1 x 1 0.5 BT m,r,cl 10 9 x x 1 0.5 BT m,r 10 9 x x 1 0.5 BTR BTS BTC m,i 2 1 x x 1 0.5 BTR BTS BTC m,i 3 2 x x 1 1 2 BSF BSR r,r 1 1 1 1 1 1 1 1 1 1 1 1		r,cl			X	Х	Х			5		
SHRD SHLD m,r,i 3 3 x x 2 1 2 SHRD SHLD r,r,cl 4 4 x 1 x 2 2 SHRD SHLD m,r,cl 5 4 x 1 x 4 BT m,r,cl 5 4 x 1 x 1 0.5 BT m,r 10 9 x x 1 0.5 BTR BTS BTC m,i 2 1 x x 1 0.5 BTR BTS BTC m,r/i 1 1 x x 1 0.5 BTR BTS BTC m,r 11 8 x x x 1 0.5 BTR BTS BTC m,i 3 2 x x 1 1 2 BSF BSR r,r 1 1 1 1 1 1 1 1 1 1 1 1 1		m,cl	11	8	Х	Х	Х	2	1		6	
SHRD SHLD r,r,cl 4 4 x 1 x 2 2 SHRD SHLD m,r,cl 5 4 x 1 x 2 1 4 BT r,r/i 1 1 x x 1 0.5 BT m,r 10 9 x x 1 0.5 BTR BTS BTC m,i 2 1 x x 1 0.5 BTR BTS BTC m,r 11 8 x x 2 1 5 BTR BTS BTC m,i 3 2 x x 1 1 2 BSF BSR r,r 1 1 1 1 3 1 BSF BSR r,m 1 1 1 1 1 1 1 SETcc r 1 1 x x 1 1 0.25 STC CMC 1 1 x <	SHRD SHLD	r,r,i	1	-	X		Х			1		
SHRD SHLD m,r,cl 5 4 x 1 x 2 1 4 BT r,r/i 1 1 x x 1 0.5 BT m,r 10 9 x x 1 5 BTR BTS BTC m,i 2 1 x x 1 0.5 BTR BTS BTC m,r 11 8 x x x 2 1 5 BTR BTS BTC m,i 3 2 x x 1 1 2 BSF BSR r,r 1 1 1 1 2 3 1 BSF BSR r,m 1 0.5 1 1 1 <td>SHRD SHLD</td> <td>m,r,i</td> <td>3</td> <td>3</td> <td>х</td> <td>Х</td> <td>Х</td> <td>2</td> <td>1</td> <td></td> <td>2</td> <td></td>	SHRD SHLD	m,r,i	3	3	х	Х	Х	2	1		2	
BT r,r/i 1 1 x x 1 0.5 BT m,r 10 9 x x 1 5 BTR BTS BTC m,i 2 1 x x 1 0.5 BTR BTS BTC m,r 11 8 x x 2 1 5 BTR BTS BTC m,i 3 2 x x 1 1 2 BSF BSR r,r 1 1 1 1 1 2 BETCC r 1 1 1 1 1 1 1 SETCC r 1 1 x x 1 1 0.5 SETCC m 2 1 x x 1 1 0.25 STC CMC 1 1 x x x 1 0.33 CLD STD 3 3 x x x 1	SHRD SHLD	r,r,cl	4	4	х	1	Х			2	2	
BT m,r 10 9 x x 1 5 BTR BTS BTC m,i 2 1 x x 1 0.5 BTR BTS BTC m,r 11 8 x x 2 1 5 BTR BTS BTC m,i 3 2 x x 1 1 2 BSF BSR r,r 1 1 1 1 1 2 BSF BSR r,m 1 1 1 1 1 1 1 SETcc r 1 1 x x 1 1 0.5 SETcc m 2 1 x x 1 1 1 CLD STD 3 3 x x x 1 0.33 Control transfer instructions 4 4	SHRD SHLD	m,r,cl	5	4	Х	1	х	2	1		4	
BT m,i 2 1 x x 1 0.5 BTR BTS BTC m,r 11 1 x x 1 0.5 BTR BTS BTC m,r 11 8 x x x 2 1 5 BTR BTS BTC m,i 3 2 x x 1 1 2 BSF BSR r,r 1 1 1 1 3 1 BETCC r 1 1 x x 1 0.5 SETCC m 2 1 x x 1 1 1 CLC 1 0 0.25 0.25 0.25 0.33	ВТ	r,r/i	1	1	Х		х			1	0.5	
BTR BTS BTC r,r/i 1 1 x x 1 0.5 BTR BTS BTC m,r 11 8 x x 2 1 5 BTR BTS BTC m,i 3 2 x x 1 1 2 BSF BSR r,r 1 1 1 1 3 1 BSF BSR r,m 1 1 1 1 1 1 1 SETcc r 1 1 x x 1 1 0.5 SETcc m 2 1 x x 1 1 1 CLC 1 0 0.25	ВТ	m,r	10	9	х	Х	х	1			5	
BTR BTS BTC m,r 11 8 x x x 2 1 5 BTR BTS BTC m,i 3 2 x x 1 1 2 BSF BSR r,r 1 1 1 1 1 1 1 SETcc r 1 1 x x 1 0.5 1	BT	m,i	2	1	x		х	1			0.5	
BTR BTS BTC m,i 3 2 x 1 1 2 BSF BSR r,m 1	BTR BTS BTC	r,r/i	1	1	Х		х			1	0.5	
BSF BSR r,r 1 0.5 1 <td< td=""><td>BTR BTS BTC</td><td></td><td>11</td><td>8</td><td>Х</td><td>Х</td><td>х</td><td>2</td><td>1</td><td></td><td>5</td><td></td></td<>	BTR BTS BTC		11	8	Х	Х	х	2	1		5	
BSF BSR r,r 1 0.5 1 <td< td=""><td>BTR BTS BTC</td><td></td><td>3</td><td>2</td><td>х</td><td></td><td>х</td><td>1</td><td>1</td><td></td><td>2</td><td></td></td<>	BTR BTS BTC		3	2	х		х	1	1		2	
BSF BSR r,m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.5 SETcc m 2 1 x x 1	BSF BSR			1		1				3	1	
SETCC r 1 1 x x x 1 1 0.5 SETCC m 2 1 x x 1 1 1 1 1 1 1 1 1 1 1 0.25 1 0.33 1 0.33 2 1 0.33 4 4 0.00 0.0			1	1		1		1			1	
SETcc m 2 1 x x 1 1 1 1 0.25 STC CMC 1 1 1 x x x x 1 0.33 CLD STD 3 3 x x x x 4			1	1	x		х			1	0.5	
CLC 1 0 0.25 STC CMC 1 1 x x x 1 0.33 CLD STD 3 3 x x x 4 Control transfer instructions								1	1			
STC CMC 1 1 x x x x x x 4 Control transfer instructions 1 0.33 4 4 4		•••			^			•				
CLD STD 3 3 x x x 4 Control transfer instructions 4					×	x	x			1		
Control transfer instructions										•	1	
	025 015				^	^						
	Control transfer instruction	ons										
	JMP	short/near	1	1			1			0	2	
JMP												
JMP m 1 1 1 1 0 2								1				
							-	•				fast if no
jump	Conditional jump	Shorthear	'	'			'			U	1-2	I I
	Fused arithmetic and		1	1			1			Ο	1_2	fast if no
branch jump			'	'			'			U	1-2	I I
		chort	2	2		v	1				1.2	Jamp
J(E/R)CXZ					X	X	1					
LOOP(N)E short 11 11 6							4	4				
CALL near 2 1 1 1 1 2											2	
CALL r 2 1 1 1 1 2									1 - 1			
CALL m 3 1 1 2 1 2		m					-		1			
RET 2 1 1 1 2 2							_					
RET i 3 2 x x 1 1 1 2	KE	I	3	2	X	X	1	1			2	

BOUND	r,m	15	13				2			7	not 64 bit
INTO		4	4	X	Х	Х				6	not 64 bit
String instructions											
String instructions LODS		3	2	,	v	v	1			1	
REP LODS		~5n	2	X	Х	Х	'		~2n	'	
STOS		3	1	.,	.,	.,	4	1	~211	1	
			I	X	Х	Х	1	'	_	I	
REP STOS		many							n		worst case
REP STOS		many							1/16B		best
MOVS		5	2	×	x	х	2	1		4	case
REP MOVS		2n	_	^	^	^	_	'	n		worst
TET WOVE		211							"		case
REP MOVS		4/16B							1/16B		best
											case
SCAS		3	2	х	Х	х	1			1	
REP SCAS		~6n							~2n		
CMPS		5	3	X	х	х	2			4	
REP CMPS		~8n							~2n		
Synchronization instruct											
XADD	m,r	4	3	Х	Х	Х	1	1	7		
LOCK XADD	m,r	8	5	Х	Х	Х	2	1	22		
LOCK ADD	m,r	7	5	Х	Х	Х	1	1	22		
CMPXCHG	m,r	5	3	Х	Х	Х	2	1	7		
LOCK CMPXCHG	m,r	9	6	Х	Х	Х	2	1	22		
CMPXCHG8B	m,r	14	11	Х	Х	Х	2	1	7		
LOCK CMPXCHG8B	m,r	18	15	х	Х	х	2	1	22		
CMPXCHG16B	m,r	22	19	х	Х	х	2	1	16		
LOCK CMPXCHG16B	m,r	24	21	x	х	х	2	1	27		
Other											
NOP / Long NOP	-	1	0							0.25	
PAUSE		7	7							10	
ENTER	a,0	12	9	_	v	v	2	1		8	
ENTER			Э	X	Х	Х		'	84+3b	٥	
	a,b	45+7b	0	,,	,,	,,	4		04+30	6	
LEAVE		3	2	X	Х	Х	1			6	VCETDV
XGETBV		8							100 040	9	XGETBV
CPUID		37-82							100-340		
RDTSC		21								27	
RDPMC		35	4-							39	
RDRAND	r	13	12	X	Х	Х	1			104-117	RDRAND
	l .								1	<u> </u>	

Floating point x87 instructions

Instruction Ope	Operands	μορs fused	µops	un	fuse	ed d	oma	in			Com- ments
		do- main	p015	p0	p1	р5	p23	p4		through- put	
Move instructions											

		• • •	y Dila	90							
FLD	r	1	1			1			1	1	
FLD	m32/64	1					1		3	1	
FLD	m80	4	2		1	1	2		5	2	
					'	'	3				
FBLD	m80	43	40				3		45	21	
FST(P)	r	1	1			1			1	1	
FST(P)	m32/m64	1					1	1	4	1	
FSTP	m80	7	3				2	2	5	5	
FBSTP	m80	243								252	
FXCH	r	1	0						0	0.5	
FILD	m	1	1		1		1		6	1	
FIST(P)	m	3	1		1		1	1	7	1	
FISTTP		3	1		1		1	1	7	2	SSE3
	m				'		'	'	<i>'</i>		SSES
FLDZ		1	1			1					
FLD1		2	2		1	1					
FLDPI FLDL2E etc.		2	2	1	1					2	
FCMOVcc	r	3	3	1		2			2	2	
FNSTSW	AX	2	2	1	Х	Х			4	1	
FNSTSW	m16	2	1				1	1		1	
FLDCW	m16	3	2			2	1			3	
FNSTCW	m16	2	1			1	1	1		1	
FINCSTP FDECSTP		1	1			1	i i	'	1	1	
FFREE(P)		1	1			1			'	1	
, ,	r					'					
FNSAVE	m	143								167	
FRSTOR	m m	90								162	
Arithmetic instructions											
FADD(P) FSUB(R)(P)	r	1	1		1				3	1	
FADD(P) FSUB(R)(P)	m	2	1		1		1			1	
FMUL(P)	r	1	1	1					5	1	
FMUL(P)	m .	2	1	1			1			1	
		1					'		10.04	8-18	
FDIV(R)(P)	r		1	1					10-24		
FDIV(R)(P)	m	2	1	1			1			8-18	
FABS		1	1			1			1	1	
FCHS		1	1			1			1	1	
FCOM(P) FUCOM	r	1	1		1				3	1	
FCOM(P) FUCOM	m	1	1		1		1			1	
FCOMPP FUCOMPP		2	2		1	1			4	1	
FCOMI(P) FUCOMI(P)	r	3	3	1	1	1			5	1	
FIADD FISUB(R)	m	2	2		2		1			2	
FIMUL	m	2	2	1	1		1			2	
FIDIV(R)	m	2	2	1	1		1			_	
FICOM(P)	m	2	2	'	2		1			2	
	""	1					'				
FTST			1		1					1	
FXAM		2	2		2				04.55	2	
FPREM		28	28						21-26	12	
FPREM1		41							27-50	19	
FRNDINT		17	17						22	11	
Math											
FSCALE		25	25	x	х	х			49	49	
FXTRACT		17	17	X	X	Х			10	10	
FSQRT		1	1	1	^`	``			10-23	8-17	
FSIN		21-78		×	х	х			47-106	47-106	
On a		21-10	I	_ ^	^	^	1	1	+1-100	77-100	

FCOS	23-100		Х	Х	Х	48-115	48-115	
FSINCOS	20-110		Х	Х	Х	50-123	50-123	
F2XM1	16-23		Х	Х	х	~68	~68	
FYL2X	42	42	Х	Х	х	90-106		
FYL2XP1	56	56	Х	Х	Х	82		
FPTAN	102	102	Х	Х	Х	130		
FPATAN	28-72		Х	х	х	94-150		
Other								
FNOP	1	1			1		1	
WAIT	2	2	Х	Х	1		1	
FNCLEX	5	5	Х	Х	х		22	
FNINIT	26	26	Х	Х	х		80	

Instruction	Operands	μοps fused	µops	un	fuse	ed d	loma	in	Latency	procal	Com- ments
		do- main	p015	p0	p1	p5	p23	p4	-	through- put	
Move instructions											
MOVD	r32/64,(x)mm	1	1	1					1	1	
MOVD	m32/64,(x)mm	1					1	1	3	1	
MOVD	(x)mm,r32/64	1	1			1			1	1	
MOVD	(x)mm,m32/64	1					1		3	0.5	
MOVQ	(x)mm,(x)mm	1	1	Х	Х	Х			1	0.33	
MOVQ	(x)mm,m64	1					1		3	0.5	
MOVQ	m64, (x)mm	1					1	1	3	1	
MOVDQA MOVDQU	X,X	1	1	Х	Х	Х			0-1	0.25	eliminat
MOVDQA MOVDQU	x, m128	1					1		3	0.5	
MOVDQA MOVDQU	m128, x	1					1	1	3	1	
LDDQU	x, m128	1	1				1		3	0.5	SSE3
MOVDQ2Q	mm, x	2	2	X	х	1			1	1	
MOVQ2DQ	x,mm	1	1						1	0.33	
MOVNTQ	m64,mm	1					1	1	~360	1	
MOVNTDQ	m128,x	1					1	1	~360	1	
MOVNTDQA	x, m128	1					1		3	0.5	SSE4.1
PACKSSWB/DW PACKUSWB	mm,mm	1	1	1					1	1	
PACKSSWB/DW PACKUSWB	mm,m64	1	1	1			1			1	
PACKSSWB/DW PACKUSWB	x,x	1	1		x	x			1	0.5	
PACKSSWB/DW											
PACKUSWB	x,m128	1	1		Х	Х	1		1	0.5	
PACKUSDW	X,X	1	1		Х	Х			1	0.5	SSE4.1
PACKUSDW	x,m	1	1		Х	Х	1			0.5	SSE4.1
PUNPCKH/LBW/WD/DQ	(x)mm,(x)mm	1	1		Х	Х			1	0.5	
PUNPCKH/LBW/WD/DQ	(x)mm,m	1	1		Х	Х	1			0.5	
PUNPCKH/LQDQ	x,x	1	1		Х	X			1	0.5	
PUNPCKH/LQDQ	x, m128	2	1		Х	Х	1			0.5	
PMOVSX/ZXBW	X,X	1	1		Х	Х			1	0.5	SSE4.1

			,	3-							
PMOVSX/ZXBW	x,m64	1	1		х	Х	1			0.5	SSE4.1
PMOVSX/ZXBD	x,x	1	1		х	х			1	0.5	SSE4.1
PMOVSX/ZXBD	x,m32	1	1		Х	Х	1			0.5	SSE4.1
PMOVSX/ZXBQ	X,X	1	1		Х	Х			1	0.5	SSE4.1
PMOVSX/ZXBQ	x,m16	1	1		Х	Х	1			0.5	SSE4.1
PMOVSX/ZXWD	X,X	1	1		Х	Х			1	0.5	SSE4.1
PMOVSX/ZXWD	x,m64	1	1		х	х	1			0.5	SSE4.1
PMOVSX/ZXWQ	X,X	1	1		х	х			1	0.5	SSE4.1
PMOVSX/ZXWQ	x,m32	1	1		х	х	1			0.5	SSE4.1
PMOVSX/ZXDQ	x,x	1	1		Х	Х			1	0.5	SSE4.1
PMOVSX/ZXDQ	x,m64	1	1		х	х	1			0.5	SSE4.1
PSHUFB	(x)mm,(x)mm	1	1		х	х			1	0.5	SSSE3
PSHUFB	(x)mm,m	2	1		х	х	1			0.5	SSSE3
PSHUFW	mm,mm,i	1	1		Х	Х			1	0.5	
PSHUFW	mm,m64,i	2	1		X	X	1		·	0.5	
PSHUFD	xmm,x,i	1	1		X	X	ľ		1	0.5	
PSHUFD	x,m128,i	2	1		X	X	1			0.5	
PSHUFL/HW	x,x,i	1	1		X	X	i i		1	0.5	
PSHUFL/HW	x, m128,i	2	1		X	X	1		'	0.5	
PALIGNR	(x)mm,(x)mm,i	1	1		X	X	'		1	0.5	SSSE3
PALIGNR	(x)mm,m,i	2	1		X	X	1		'	0.5	SSSE3
PBLENDVB	x,x,xmm0	2	2		1	1	'		2	1	SSE4.1
PBLENDVB	x,m,xmm0	3	2		1	1	1			1	SSE4.1
PBLENDW	x,111,X111110 x,x,i	3 1	1		X	X	'		1	0.5	SSE4.1
PBLENDW	x,m,i	2	1		X	X	1		'	0.5	SSE4.1
MASKMOVQ		4	1	1	^	^	2	1		1	33E4.1
MASKMOVDQU	mm,mm	4 10	4	-	1	v	4	2		6	
PMOVMSKB	X,X	10	1	X 1	I	Х	4	~	2	1	
PEXTRB	r32,(x)mm r32,x,i	2	2			v			2	1	SSE4.1
PEXTRB	m8,x,i	2	1	'	X	X	1	1		1	SSE4.1
PEXTRW	r32,(x)mm,i	2	1	1			'	'	2	1	33E4.1
PEXTRW	. , , .	2	1	'	X	X	1	1		1	SSE4.1
PEXTRD	m16,(x)mm,i	2	2	1	X	X	'	'	2	1	SSE4.1
PEXTRD	r32,x,i	2		'	X	X	4	4			1 1
	m32,x,i		1	1	X	X	1	1	_	1	SSE4.1
PEXTRO	r64,x,i	2 2	2	1	X	X	4	4	2	1	SSE4.1
PEXTRQ	m64,x,i		1		X	X	1	1	2	1	CCE4.4
PINSRB	x,r32,i	2 2	2		X	X	4			1	SSE4.1
PINSRB	x,m8,i		1		X	X	1			0.5	SSE4.1
PINSRW	(x)mm,r32,i	2	2		X	X	4		2	1	
PINSRW	(x)mm,m16,i	2	1		X	X	1			0.5	00544
PINSRD	x,r32,i	2	1		Х	Х			2	1	SSE4.1
PINSRD	x,m32,i	2	1		Х	Х	1			0.5	SSE4.1
PINSRQ	x,r64,i	2	1		Х	Х			2	1	SSE4.1
PINSRQ	x,m64,i	2	1		Х	Х	1			0.5	SSE4.1
Arithmetic instructions	()()	4	4						4	0.5	
PADD/SUB(U,S)B/W/D/Q	(x)mm, (x)mm	1	1		X	X			1	0.5	
PADD/SUB(U,S)B/W/D/Q	(x)mm,m	1	1		X	X	1		2	0.5	00000
PHADD/SUB(S)W/D	(x)mm, (x)mm	3	3		X	X	4		3	1,5	SSSE3
PHADD/SUB(S)W/D	(x)mm,m64	4	3		X	X	1		_	1,5	SSSE3
PCMPEQ/GTB/W/D	(x)mm,(x)mm	1	1		X	X	4		1	0.5	
PCMPEQ/GTB/W/D	(x)mm,m	1	1		X	X	1		_	0.5	00544
PCMPEQQ	X,X	1	1		Х	Х			1	0.5	SSE4.1

DOMPEGO		4	ı .	ı	l	١	a	1		0.5	00544
PCMPEQQ	x,m128	1	1		Х	Х	1		_	0.5	SSE4.1
PCMPGTQ	X,X	1	1	1					5	1	SSE4.2
PCMPGTQ	x,m128	1	1	1			1		_	1	SSE4.2
PMULL/HW PMULHUW	(x)mm,(x)mm	1	1	1					5	1	
PMULL/HW PMULHUW	(x)mm,m	1	1	1			1		_	1	
PMULHRSW	(x)mm,(x)mm	1	1	1					5	1	SSSE3
PMULHRSW	(x)mm,m	1	1	1			1			1	SSSE3
PMULLD	X,X	1	1	1					5	1	SSE4.1
PMULLD	x,m128	2	1	1			1			1	SSE4.1
PMULDQ	X,X	1	1	1					5	1	SSE4.1
PMULDQ	x,m128	1	1	1			1			1	SSE4.1
PMULUDQ	(x)mm,(x)mm	1	1	1					5	1	
PMULUDQ	(x)mm,m	1	1	1			1			1	
PMADDWD	(x)mm,(x)mm	1	1	1					5	1	
PMADDWD	(x)mm,m	1	1	1			1			1	
PMADDUBSW	(x)mm,(x)mm	1	1	1					5	1	SSSE3
PMADDUBSW	(x)mm,m	1	1	1			1			1	SSSE3
PAVGB/W	(x)mm,(x)mm	1	1		х	Х			1	0.5	
PAVGB/W	(x)mm,m	1	1		Х	Х	1			0.5	
PMIN/MAXSB	x,x	1	1		х	Х			1	0.5	SSE4.1
PMIN/MAXSB	x,m128	1	1		Х	Х	1			0.5	SSE4.1
PMIN/MAXUB	(x)mm,(x)mm	1	1		х	Х			1	0.5	
PMIN/MAXUB	(x)mm,m	1	1		х	Х	1			0.5	
PMIN/MAXSW	(x)mm,(x)mm	1	1		х	Х			1	0.5	
PMIN/MAXSW	(x)mm,m	1	1		х	Х	1			0.5	
PMIN/MAXUW	x,x ,	1	1		Х	х			1	0.5	SSE4.1
PMIN/MAXUW	x,m	1	1		Х	Х	1		•	0.5	SSE4.1
PMIN/MAXU/SD	x,x	1	1		Х	Х			1	0.5	SSE4.1
PMIN/MAXU/SD	x,m128	1	1		X	Х	1		·	0.5	SSE4.1
PHMINPOSUW	x,x	1	1	1					5	1	SSE4.1
PHMINPOSUW	x,m128	1	1	1			1		· ·	1	SSE4.1
PABSB/W/D	(x)mm,(x)mm	1	1	'	Х	х	'		1	0.5	SSSE3
PABSB/W/D	(x)mm,m	1	1		X	X	1		•	0.5	SSSE3
PSIGNB/W/D	(x)mm,(x)mm	1	1		X	X	'		1	0.5	SSSE3
PSIGNB/W/D	(x)mm,m	1	1		X	X	1		•	0.5	SSSE3
PSADBW	(x)mm,(x)mm	1	1	1	^	^	'		5	1	OOOLO
PSADBW	(x)mm,m	1	1	1			1		Ü	1	
MPSADBW	x,x,i	3	3	1	1	1	'		6	1	SSE4.1
MPSADBW	x,m,i	4	3	1	1	1	1		Ü	1	SSE4.1
WII GADBVV	Α,ιιι,ι	7		'	'	'	'			'	0024.1
Logic instructions											
PAND(N) POR PXOR	(x)mm,(x)mm	1	1	X	х	х			1	0.33	
PAND(N) POR PXOR	(x)mm,m	1	1	X	X	X	1		•	0.5	
PTEST	x,x	2	2	1	X	X	'		1	1	SSE4.1
PTEST	x,m128	3	2	1	X	X	1		'	1	SSE4.1
PSLL/RL/RAW/D/Q	mm,mm/i	3 1	1	1	^	^			1	1	001-7.1
PSLL/RL/RAW/D/Q	mm,m64	1	1	1			1		1	1	
PSLL/RL/RAW/D/Q PSLL/RL/RAW/D/Q	xmm,i	1	1	1					1	1 1	
PSLL/RL/RAW/D/Q PSLL/RL/RAW/D/Q	· ·	2	2	1	V	v			2	1 1	
PSLL/RL/RAW/D/Q PSLL/RL/RAW/D/Q	x,x x,m128	3	2	1	X	X	1		2	1	
PSLL/RL/RAW/D/Q PSLL/RLDQ	·	ა 1	1	'	X	X			1		
FOLL/KLDQ	x,i	ı	'		Х	Х			ı	0.5	
String instructions											
J #	ı l		1	1	T.	l .	1	1			1 1

T.	ı	ı	i .		i.	i .	1	II.		
PCMPESTRI	x,x,i	8	8	3	1	4		4	4	SSE4.2
PCMPESTRI	x,m128,i	8	7	3	1	3	1		4	SSE4.2
PCMPESTRM	x,x,i	8	8	3	1	4		12	4	SSE4.2
PCMPESTRM	x,m128,i	8	7	3	1	3	1		4	SSE4.2
PCMPISTRI	x,x,i	3	3	3				3		SSE4.2
PCMPISTRI	x,m128,i	4	3	3			1		3	SSE4.2
PCMPISTRM	x,x,i	3	3	3				11		SSE4.2
PCMPISTRM	x,m128,i	4	3	3			1		3	SSE4.2
Encryption instructions										
PCLMULQDQ	x,x,i	18	18	x	x	х		14	8	CLMUL
PCLMULQDQ	x,m,i	18	17	X	X	X	1		8	CLMUL
AESDEC, AESDECLAST,	7,,			^	^					
AESENC, AESENCLAST										
	X,X	2	2	х	х	1		4	1	AES
AESDEC, AESDECLAST,										
AESENC, AESENCLAST										
	x,m	3	2	Х	Х	1	1		1	AES
AESIMC	x,x	2	2			2		14	2	AES
AESIMC	x,m	3	2			2	1		2	AES
AESKEYGENASSIST	x,x,i	11	11	Х	Х	х		10	8	AES
AESKEYGENASSIST	x,m,i	11	10	x	х	х	1		7	AES
Other										
EMMS		31	31						18	

Floating point XMM and YMM instructions

Instruction	Operands	μοps fused	μops	un	fus	ed d	loma	in	Latency	procal	Com- ments
		do- main	p015	p0	p1	p5	p23	p4		through- put	
Move instructions											
MOVAPS/D	X,X	1	1			1			0-1	≤1	elimin.
VMOVAPS/D	y,y	1	1			1			0-1	≤1	elimin.
MOVAPS/D MOVUPS/D	x,m128	1					1		3	0.5	
VMOVAPS/D											
VMOVUPS/D	y,m256	1					1+		4	1	AVX
MOVAPS/D MOVUPS/D	m128,x	1					1	1	3	1	
VMOVAPS/D											
VMOVUPS/D	m256,y	1					1	1+	4	2	AVX
MOVSS/D	x,x	1	1			1			1	1	
MOVSS/D	x,m32/64	1					1		3	0.5	
MOVSS/D	m32/64,x	1					1	1	3	1	
MOVHPS/D MOVLPS/D	x,m64	2	1			1	1		4	1	
MOVH/LPS/D	m64,x	2					1	1	3	1	
MOVLHPS MOVHLPS	X,X	1	1			1			1	1	
MOVMSKPS/D	r32,x	1	1	1					2	1	
VMOVMSKPS/D	r32,y	1	1	1					2	1	
MOVNTPS/D	m128,x	1					1	1	~380	1	
VMOVNTPS/D	m256,y	1					1	1+	~380	2	AVX
SHUFPS/D	x,x,i	1	1			1			1	1	

SHUFPS/ID VSHUFPS/ID V				,	J -							
VSHUFPSID		·		-			-	1		1		_^
VPERMILPS/PD			-				_	۱.		J		
VPERMILPS/PD		• •						1+		_	<u> </u>	
VPERMILPS/PD X,X,m 2 1 1 1 AVX VPERMILPS/PD y,y,m 2 1 1 1 1 AVX VPERMILPS/PD y,m,i 2 1 1 1 1 1 AVX VPERMILPS/PD y,m,i 2 1 1 1 1 AVX VPERMILPS/PD y,m,i 2 1 1 1 4 AVX VPERMILPS/PD y,m,i 2 1 1 1 4 2 1 AVX VPERMILPS/PD x,x,i 1 1 x x 1 0.5 SSE4.1 VBLENDPS/PD y,m,256,i 2 1 x x 1 1 AVX VBLENDVPS/PD y,y,my 3 2 x x 2 1 AVX VBLENDVPS/PD y,y,my 3 2 x x 1 1 AVX VBLENDVPS/PD			-	1			_				1	
VPERMILPS/PD			•				1 -			1		
VPERMILPS/PD		x,x,m		-			-					
VPERMILPS/PD y,m,i 2 1 1 1 1 1 AVX VPERMZF128 y,y,mi 2 1 1 1 1 2 1 AVX VPERMZF128 y,y,mi 2 1 1 1 1 1 AVX BLENDPS/PD X,X,i 1 1 X X 1 0.5 SSE4.1 BLENDPS/PD X,X,xmm0 2 1 X X 1 0.5 SSE4.1 BLENDVPS/PD y,m256,i 2 1 X X 1 0.5 AVX BLENDVPS/PD y,m256,i 2 2 X X 1 1 AVX VBLENDVPS/PD y,x,xmm0 3 2 X X 1 1 AVX VBLENDVPS/PD y,y,y,y,y 2 2 X X 1 1 AVX VBLENDVPS/PD y,y,m2 2 X X 1		1		-			1	1+			<u> </u>	
VPERMZF128 Vy.y.i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 AVX VPERMZF128 y.y.m.i. 1 1 1 1 1 1 1 1 1 AVX BLENDPS/PD x.m.int28,i 2 1 x x 1 0.5 SSE4.1 VBLENDPS/PD y.m.intxmm0 3 2 x x 1 0.5 SSE4.1 BLENDVPS/PD x.m.xmm0 3 2 x x 1 1 AVX VBLENDVPS/PD x.m.xmm0 3 2 x x 1 1 SSE4.1 VBLENDVPS/PD y.y.m.y 3 2 x x 1 4 AVX VBLENDVPS/PD y.y.m.y 3 2 x x 1 4 AVX VBLENDVPS/PD y.y.m.y 3 2		x,m,i		1			1				1	
VPERM2F128	_	· ·					_	1+			1	
BLENDPS/PD		y,y,y,i		1			1			2	1	
BLENDPS/PD		y,y,m,i	2				1	1+			1	
VBLENDPS/PD y,y,i 1 1 x x 1 0.5 AVX VBLENDPS/PD y,m256,i 2 1 x x 1 1 AVX BLENDVPS/PD y,x,mm0 2 2 x x 1 1 SSE4.1 VBLENDVPS/PD y,y,my 2 2 x x 1 1 SSE4.1 VBLENDVPS/PD y,y,my 2 2 x x 1 1 SSE4.1 VBLENDVPS/PD y,y,my 2 2 x x 1 1 AVX VBLENDVPS/PD y,y,my 2 2 x x 1 1 AVX VBLENDVPS/PD y,y,my 2 2 x x 1 1 AVX VBLENDVPS/PD y,y,my 1 1 1 1 AVX VBCODADCASTS y,m256 1 1 1 1 1 1 AVX			•	1	X		Х			1		
VBLENDPS/PD y,m256,i 2 1 x x 1+ 1 AVX BLENDVPS/PD x,x,xmm0 2 2 x x 2 1 SSE4.1 VBLENDVPS/PD y,y,y,y 2 2 x x 1 1 SSE4.1 VBLENDVPS/PD y,y,m,y 3 2 x x 1 1 AVX VBLENDVPS/PD y,y,m,y 3 2 x x 1 1 AVX VBLENDVPS/PD y,y,m,y 3 2 x x 1 1 AVX VBLENDVPS/PD y,y,m,y 3 2 x x 1 1 AVX VBLENDVPS/PD y,y,m,y 3 2 x x 1 1 AVX VBLENDVPS/PD y,y,m,y 3 2 x x 1 1 AVX VBOODDVP x,m64 1 1 1 1 1		x,m128,i	2	1	X		Х	1			0.5	SSE4.1
BLENDVPS/PD BLENDVPS/PD BLENDVPS/PD Vy.y.y.y BLENDVPS/PD Vy.y.y.y VBLENDVPS/PD VX.X VX.X VBLENDVPS/PD VX.X VX.X VBLENDVPS/PD VX.X VX.X VBLENDVPS/PD VX.X VX.X VX.X VX.X VX.X VX.X VX.X VX.	VBLENDPS/PD	y,y,i	1	1	X		Х			1	0.5	AVX
BLENDVPS/PD	VBLENDPS/PD	y,m256,i		1	X		Х	1+			1	AVX
VBLENDVPS/PD y,y,y,y 2 2 x x 1 AVX VBLENDVPS/PD y,y,m,y 3 2 x x 1+ 1 AVX MOVDDUP x,m64 1 1 1 1 1 1 1 AVX VMOVDDUP y,m256 1 1+ 3 0.5 SSE3 VMOVDDUP y,m256 1 1+ 3 1 AVX VBROADCASTSS x,m32 1 1+ 3 1 AVX VBROADCASTSD y,m64 2 1 1 1 5 1 AVX VBROADCASTSD y,m64 2 1 1 1 5 1 AVX VBROADCASTF128 y,m128 2 1 1 1 5 1 AVX VBROADCASTF128 y,m128 2 1 1 1 5 1 AVX VBROADCASTF128 y,m128 1 <td>BLENDVPS/PD</td> <td>x,x,xmm0</td> <td></td> <td>2</td> <td>X</td> <td></td> <td>Х</td> <td></td> <td></td> <td>2</td> <td>1</td> <td>SSE4.1</td>	BLENDVPS/PD	x,x,xmm0		2	X		Х			2	1	SSE4.1
VBLENDVPS/PD yy,m,y 3 2 x 1+ 1 AVX MOVDDUP x,x 1 1 1 1 1 SSE3 MOVDDUP y,m64 1 1 1 1 1 1 AVX VMOVDDUP y,m256 1 1 1 1 1 1 AVX VBROADCASTSS y,m32 2 1 1 1 4 0.5 AVX VBROADCASTSD y,m64 2 1 1 1 5 1 AVX VBROADCASTF128 y,m128 2 1 1 1 5 1 AVX VBROADCASTF128 y,m128 2 1 1 1 5 1 AVX VBROADCASTF128 y,m128 2 1 1 1 1 1 SSE3 MOVSH/LDUP x,m128 1 1 1 1 1 1 1 1	BLENDVPS/PD	x,m,xmm0	3	2	x		Х	1			1	SSE4.1
MOVDDUP X,X 1 1 1 1 1 3 0.5 SSE3 MOVDDUP y,y 1 1 1 1 3 0.5 SSE3 VMOVDDUP y,m256 1 1 1 1 1 AVX VBROADCASTSS x,m32 1 1 4 0.5 AVX VBROADCASTSD y,m64 2 1 1 1 5 1 AVX VBROADCASTSD y,m64 2 1 1 1 5 1 AVX VBROADCASTSD y,m64 2 1 1 1 5 1 AVX VBROADCASTF128 y,m128 2 1 1 1 5 1 AVX VBROADCASTF128 y,m128 1 1 1 1 1 3 0.5 SSE3 MOVSH/LDUP x,x 1 1 1 1 1 1 1 <	VBLENDVPS/PD	y,y,y,y	2	2	x		Х			2	1	AVX
MOVDDUP x,m64 1 1 1 3 0.5 SSE3 VMOVDDUP y,y 1 1 1 1 1 1 AVX VBROADCASTSS x,m32 1 1 4 0.5 AVX VBROADCASTSD y,m32 2 1 1 1 5 1 AVX VBROADCASTSD y,m64 2 1 1 1 5 1 AVX VBROADCASTF128 y,m128 2 1 1 1 5 1 AVX VBROADCASTF128 y,m128 2 1 1 1 5 1 AVX VBROADCASTF128 y,m128 1 1 1 1 5 1 AVX VBROADCASTF128 y,m128 1 1 1 1 1 1 1 1 1 1 3 0.5 SSE3 NMX NMX NMX NMX NMX NMX	VBLENDVPS/PD	y,y,m,y	3	2	x		Х	1+			1	AVX
VMOVDDUP y,y 1 1 1 1 1 1 AVX VMOVDDUP y,m256 1 1 1 1 4 0.5 AVX VBROADCASTSS y,m32 2 1 1 1 5 1 AVX VBROADCASTSD y,m64 2 1 1 1 5 1 AVX VBROADCASTF128 y,m128 2 1 1 1 5 1 AVX VBROADCASTF128 y,m128 2 1 1 1 5 1 AVX VBROADCASTF128 y,m128 2 1 1 1 1 1 AVX WBROADCASTF128 y,m128 2 1 1 1 1 1 AVX WONDSH/LDUP x,m128 1 1 1 1 1 1 1 1 1 AVX VNDPCKH/LPS/D x,m2,x 1 1 1 <td>MOVDDUP</td> <td>x,x</td> <td>1</td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td>1</td> <td>SSE3</td>	MOVDDUP	x,x	1	1			1			1	1	SSE3
VMOVDDUP y,m256 1 1 1+ 3 1 AVX VBROADCASTSS x,m32 1 1 1 4 0.5 AVX VBROADCASTSS y,m32 2 1 1 1 5 1 AVX VBROADCASTSD y,m64 2 1 1 1 5 1 AVX VBROADCASTF128 y,m128 2 1 1 1 5 1 AVX VBROADCASTF128 y,m128 2 1 1 1 5 1 AVX MOVSH/LDUP x,m128 1 1 1 1 1 1 AVX VMOVSH/LDUP y,m256 1 1 1 1 1 1 AVX VMOYSH/LDUP y,m256 1 1 1 1 1 1 AVX VMOYSH/LDUP x,m128 1 1 1 1 1 1 1 1	MOVDDUP	x,m64	1					1		3	0.5	SSE3
VBROADCASTSS x,m32 1 1 1 4 0.5 AVX VBROADCASTSS y,m32 2 1 1 1 5 1 AVX VBROADCASTSD y,m64 2 1 1 1 5 1 AVX VBROADCASTF128 y,m128 2 1 1 1 5 1 AVX WBOVSH/LDUP x,x 1 1 1 1 1 1 SSE3 VMOVSH/LDUP y,m256 1 1 1 1 1 1 AVX VMOVSH/LDUP y,m256 1 1 1 1 1 1 AVX VMOVSH/LDUP y,m256 1 1 1 1 1 1 AVX VMOYEKH/LPS/D x,x 1 1 1 1 1 1 AVX VUNPCKH/LPS/D y,y,m256 1 1 1 1 1 1 AVX <td>VMOVDDUP</td> <td>y,y</td> <td>1</td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td>1</td> <td>AVX</td>	VMOVDDUP	y,y	1	1			1			1	1	AVX
VBROADCASTSS y,m32 2 1 1 1 5 1 AVX VBROADCASTSD y,m64 2 1 1 1 5 1 AVX VBROADCASTF128 y,m128 2 1 1 1 5 1 AVX MOVSH/LDUP x,x 1 1 1 1 1 1 1 SSE3 VMOVSH/LDUP y,m256 1 1 1 1 1 AVX VMOVSH/LPS/D x,x 1 1 1 1 1 AVX VMOVSH/LPS/D x,x 1 1 1 1 1 AVX VMOVSH/LPS/D x,x 1	VMOVDDUP		1					1+		3	1	AVX
VBROADCASTSD y,m64 2 1 1 1 5 1 AVX VBROADCASTF128 y,m128 2 1 1 1 1 5 1 AVX MOVSH/LDUP x,m128 1 1 1 1 1 1 SSE3 VMOVSH/LDUP y,m256 1 1 1 1 1 AVX VMOVSH/LDUP y,m256 1 1 1 1 AVX UNPCKH/LPS/D x,x 1 1 1 1 1 1 AVX VUNPCKH/LPS/D y,y,m2 1 1 1 1 1 1 AVX VUNPCKH/LPS/D y,y,m2 1 1 1	VBROADCASTSS	x,m32	1					1		4	0.5	AVX
VBROADCASTSD y,m64 2 1 1 1 5 1 AVX VBROADCASTF128 y,m128 2 1 1 1 1 5 1 AVX MOVSH/LDUP x,x 1 1 1 1 1 1 SSE3 VMOVSH/LDUP y,m256 1 1 1 1 1 AVX VMOVSH/LDUP y,m256 1 1 1 1 AVX VMOVSH/LDUP y,m256 1 1 1 1 AVX UNPCKH/LPS/D y,m256 1 1 1 1 1 SSE3 VUNPCKH/LPS/D y,y,m256 1 1 1 1 1 AVX VUNPCKH/LPS/D y,y,m256 1 1 1 1 1 AVX VEXTRACTPS r32,x,i 2 2 x x 2 1 SSE4.1 VEXTRACTF128 m128,yi 2 <td< td=""><td>VBROADCASTSS</td><td>· · · · · · · · · · · · · · · · · · ·</td><td>2</td><td>1</td><td></td><td></td><td>1</td><td>1</td><td></td><td>5</td><td>1</td><td>AVX</td></td<>	VBROADCASTSS	· · · · · · · · · · · · · · · · · · ·	2	1			1	1		5	1	AVX
VBROADCASTF128 y,m128 2 1 1 1 1 1 1 1 1 1 SSE3 MOVSH/LDUP x,m128 1 1 1 1 1 1 1 SSE3 VMOVSH/LDUP y,m256 1 1 1 1 1 AVX VMOVSH/LDUP y,m256 1 1 1 1 1 AVX VMOVSH/LDUP y,m256 1 1 1 1 AVX VMOVSH/LDUP y,m256 1 1 1 1 AVX VMOVSH/LDUP y,m256 1 1 1 1 1 AVX VMOVEH/LPS/D x,m128 1 1 1 1 1 AVX VUNPCKH/LPS/D y,y,y 1 1 1 1 1 AVX VUNPCKH/LPS/D y,y,m256 1 1 1 1 AVX VEXTRACTPS m32,x,i 2 <td>VBROADCASTSD</td> <td> </td> <td>2</td> <td>1</td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td>5</td> <td>1</td> <td>AVX</td>	VBROADCASTSD		2	1			1	1		5	1	AVX
MOVSH/LDUP x,x 1 1 1 1 1 1 3 0.5 SSE3 MOVSH/LDUP y,y 1 1 1 1 1 1 1 AVX VMOVSH/LDUP y,m256 1 1+ 1 1 AVX UNPCKH/LPS/D x,x 1 1 1 1 1 SSE3 UNPCKH/LPS/D x,m128 1 1 1 1 1 SSE3 VUNPCKH/LPS/D y,y,m256 1 1 1 1 1 1 SSE3 VUNPCKH/LPS/D y,y,m256 1 1 1 1 1 AVX VUNPCKH/LPS/D y,y,m256 1 1 1 1 1 AVX VUNPCKH/LPS/D y,y,m256 1 1 1 1 1 AVX VEXTRACTPS r32,xi 2 2 x x 1 1 AVX VEXTRACTF128 <td>VBROADCASTF128</td> <td> </td> <td>2</td> <td>1</td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td>5</td> <td>1</td> <td>AVX</td>	VBROADCASTF128		2	1			1	1		5	1	AVX
MOVSH/LDUP x,m128 1 1 1 3 0.5 SSE3 VMOVSH/LDUP y,y 1 1 1 1 1 1 AVX VMOVSH/LDUP y,m256 1 1 1 1 1 1 AVX UNPCKH/LPS/D x,m128 1 1 1 1 1 1 SSE3 UNPCKH/LPS/D y,y,m256 1 1 1 1 1 1 AVX VUNPCKH/LPS/D y,y,m256 1 1 1 1 1 1 AVX VUNPCKH/LPS/D y,y,m256 1 1 1 1 1 AVX VUNPCKH/LPS/D y,y,m256 1 1 1 1 1 AVX VNPCKH/LPS/D y,y,m256 1 1 1 1 1 AVX EXTRACTPS m32,x,i 3 2 x x 1 1 AVX VEXTRACTF12			1	1			1			1	1	SSE3
VMOVSH/LDUP y,y 1 1 1 1 1 1 AVX VMOVSH/LDUP y,m256 1 1 1 1 1 1 AVX UNPCKH/LPS/D x,m128 1 1 1 1 1 1 1 1 3 5 3 2 1	MOVSH/LDUP		1					1		3	0.5	SSE3
VMOVSH/LDUP y,m256 1 1 1+ 1 AVX UNPCKH/LPS/D x,x 1 1 1 1 1 1 1 SSE3 VUNPCKH/LPS/D y,y,y 1 1 1 1 1 1 AVX VUNPCKH/LPS/D y,y,m256 1 1 1 1 1 1 AVX VUNPCKH/LPS/D y,y,m256 1 1 1 1 1 1 AVX VUNPCKH/LPS/D y,y,m256 1 1 1 1 1 1 AVX VUNPCKH/LPS/D y,y,m256 1 1 1 1 1 AVX VUNPCKH/LPS/D y,y,m256 1 1 1 1 1 AVX EXTRACTPS r32,xi 3 2 x x 1 1 AVX VEXTRACTF128 m128,yi 2 0 1 1 4 1 AVX	VMOVSH/LDUP		1	1			1			1	1	
UNPCKH/LPS/D UNPCKH/LPS/D UNPCKH/LPS/D VUNPCKH/LPS/D VINPCKH/LPS/D VINPC	VMOVSH/LDUP		1					1+			1	AVX
UNPCKH/LPS/D	UNPCKH/LPS/D	-	1	1			1			1	1	SSE3
VUNPCKH/LPS/D y,y,y 1 1 1 1 1 AVX VUNPCKH/LPS/D y,y,m256 1 1 1 1 1 1 AVX EXTRACTPS r32,x,i 2 2 x x 2 1 SSE4.1 EXTRACTPS m32,x,i 3 2 x x 1 1 1 SSE4.1 VEXTRACTF128 x,y,i 1 1 1 2 1 AVX VEXTRACTF128 m128,y,i 2 0 1 1 4 1 AVX VEXTRACTF128 m128,y,i 2 0 1 1 4 1 AVX VEXTRACTF128 x,x,i 1 1 1 1 4 1 AVX INSERTPS x,m32,i 2 1 1 1 1 3 SSE4.1 VINSERTF128 y,y,x,i 1 1 1 4 1 AVX <			1	1			1	1				
VUNPCKH/LPS/D y,y,m256 1 1 1 1 1 1 4VX EXTRACTPS r32,x,i 2 2 x x 2 1 SSE4.1 EXTRACTPS m32,x,i 3 2 x x 1 1 1 SSE4.1 VEXTRACTF128 x,y,i 1 1 1 2 1 AVX VEXTRACTF128 m128,y,i 2 0 1 1 4 1 AVX VEXTRACTF128 m128,y,i 2 0 1 1 4 1 AVX INSERTPS x,x,ii 1 1 1 1 1 1 SSE4.1 VINSERTF128 y,y,x,i 1 1 1 1 2 1 AVX VMASKMOVPS/D x,x,m128,i 2 1 x x 1 4 1 AVX VMASKMOVPS/D m128,x,x 4 2 x x	VUNPCKH/LPS/D	·	1	1			1			1	1	AVX
EXTRACTPS r32,x,i 2 2 x x			1				1	1+		-	1	
EXTRACTPS M32,x,i 3 2 x x 1 1			2		×			-		2	1	
VEXTRACTF128 x,y,i 1 1 1 2 1 AVX VEXTRACTF128 m128,y,i 2 0 1 1 4 1 AVX INSERTPS x,x,i 1 1 1 1 1 1 1 SSE4.1 INSERTPS x,m32,i 2 1 1 1 1 2 1 AVX VINSERTF128 y,y,x,i 1 1 1 2 1 AVX VINSERTF128 y,y,m128,i 2 1 x x 1 4 1 AVX VMASKMOVPS/D x,x,m128 3 2 x x 1 4 1 AVX VMASKMOVPS/D m128,x,x 4 2 x x 1 1 1 AVX VMASKMOVPS/D m256,y,y 4 2 x x 1 1 1 AVX COTPD2PS x,m128 2 2								1	1	_	1	
VEXTRACTF128 m128,y,i 2 0 1 1 4 1 AVX INSERTPS x,x,i 1 2 1 AVX VVX VVX VVX 2 1 1 1 1 1 1 AVX AVX VX VX 1 1 1 1 1 1 1 AVX XX 1 1 <td< td=""><td></td><td></td><td></td><td></td><td> </td><td></td><td>1</td><td>-</td><td></td><td>2</td><td></td><td></td></td<>							1	-		2		
INSERTPS		· -						1	1			
INSERTPS							1	-				
VINSERTF128 y,y,x,i 1 1 2 1 AVX VINSERTF128 y,y,m128,i 2 1 x x 1 4 1 AVX VMASKMOVPS/D x,x,m128 3 2 x x 1 4 1 AVX VMASKMOVPS/D m128,x,x 4 2 x x 1 1 1 AVX VMASKMOVPS/D m256,y,y 4 2 x x 1 1+ 2 AVX Conversion x,x 2 2 1 1 4 1 AVX CVTPD2PS x,m128 2 2 1 1 1 AVX VCVTPD2PS x,y 2 2 1 1 1 AVX			2	-			1 -	1		·		
VINSERTF128 y,y,m128,i 2 1 x x 1 4 1 AVX VMASKMOVPS/D x,x,m128 3 2 x x 1 4 1 AVX VMASKMOVPS/D y,y,m256 3 2 x x 1 1 AVX VMASKMOVPS/D m128,x,x 4 2 x x 1 1 AVX VMASKMOVPS/D m256,y,y 4 2 x x 1 1+ 2 AVX Conversion x,x 2 2 1 1 4 1 CVTPD2PS x,m128 2 2 1 1 1 4 1 VCVTPD2PS x,y 2 2 1 1 4 1 AVX							1 -	ľ		2		
VMASKMOVPS/D x,x,m128 3 2 x 1 4 1 AVX VMASKMOVPS/D y,y,m256 3 2 x 1+ 5 1 AVX VMASKMOVPS/D m128,x,x 4 2 x x 1 1 AVX VMASKMOVPS/D m256,y,y 4 2 x x 1 1+ 2 AVX Conversion CVTPD2PS x,x 2 2 1 1 4 1 CVTPD2PS x,m128 2 2 1 1 1 4 1 VCVTPD2PS x,y 2 2 1 1 4 1 AVX		1	2	-	×		1 -	1			-	
VMASKMOVPS/D y,y,m256 3 2 1+ 5 1 AVX VMASKMOVPS/D m128,x,x 4 2 x x 1 1 AVX VMASKMOVPS/D m256,y,y 4 2 x x 1 1+ 2 AVX Conversion CVTPD2PS x,x 2 2 1 1 4 1 CVTPD2PS x,m128 2 2 1 1 1 4 1 VCVTPD2PS x,y 2 2 1 1 4 1 AVX		1						-				
VMASKMOVPS/D m128,x,x 4 2 x x 1 1 AVX VMASKMOVPS/D m256,y,y 4 2 x x 1 1+ 2 AVX Conversion CVTPD2PS x,x 2 2 1 1 4 1 CVTPD2PS x,m128 2 2 1 1 1 1 VCVTPD2PS x,y 2 2 1 1 4 1 AVX		1 ' '					_ ^					
VMASKMOVPS/D m256,y,y 4 2 x x 1 1+ 2 AVX Conversion CVTPD2PS x,x 2 2 1 1 4 1 CVTPD2PS x,m128 2 2 1 1 1 1 VCVTPD2PS x,y 2 2 1 1 4 1 AVX		• •			Y	Y			1			
CVTPD2PS x,x 2 2 1 1 4 1 CVTPD2PS x,m128 2 2 1 1 1 1 VCVTPD2PS x,y 2 2 1 1 4 1 AVX												1
CVTPD2PS x,x 2 2 1 1 4 1 CVTPD2PS x,m128 2 2 1 1 1 1 VCVTPD2PS x,y 2 2 1 1 4 1 AVX	Conversion											
CVTPD2PS x,m128 2 2 1 1 1 1 AVX VCVTPD2PS x,y 2 2 1 1 4 1 AVX		x,x	2	2		1	1			4	1	
VCVTPD2PS x,y 2 2 1 1 4 1 AVX		· ·					1	1				
		· ·				1	1			4	1	AVX
		-				1	1	1+				1

			,	3 -							
CVTSD2SS	X,X	2	2		1	1			4	1	
CVTSD2SS	x,m64	2	2		1	1	1			1	
CVTPS2PD	X,X	2	2	1		1			1	1	
CVTPS2PD	x,m64	2	1	1			1			1	
VCVTPS2PD	y,x	2	2	1		1			4	1	AVX
VCVTPS2PD	y,m128	3	2	1		1	1			1	AVX
CVTSS2SD	x,x	2	2	1		1			2	1	
CVTSS2SD	x,m32	2	1	1			1			1	
CVTDQ2PS	x,x	1	1		1				3	1	
CVTDQ2PS	x,m128	1	1		1		1			1	
VCVTDQ2PS	y,y	1	1		1				3	1	AVX
VCVTDQ2PS	y,m256	1	1		1		1+			1	AVX
CVT(T) PS2DQ	x,x	1	1		1				3	1	' ' '
CVT(T) PS2DQ	x,m128	1	1		1		1			1	
VCVT(T) PS2DQ	y,y	1	1		1		i i		3	1	AVX
VCVT(T) PS2DQ	y,m256	1	1		1		1+			1	AVX
CVTDQ2PD	x,x	2	2		1	1	١.		4	1	AVA
CVTDQ2PD	x,m64	2	2		1	1	1		,	1	
VCVTDQ2PD	y,x	2	2		1	1	'		5	1	AVX
VCVTDQ2PD	y,m128	2	2		1	1	1		J	1	AVX
CVT(T)PD2DQ	1	2	2		1	1	'		4	1	AVA
CVT(T)PD2DQ CVT(T)PD2DQ	x,x x,m128	2	2		1	1	1		4	1	
1 ' '		2	2		1	1	'		5	1	AVX
VCVT(T)PD2DQ	X,y	2	2			1	4.		5		1
VCVT(T)PD2DQ	x,m256				1	1	1+		4	1	AVX
CVTPI2PS	x,mm	1	1		1		4		4	_	
CVT/TVPS2PI	x,m64	1	1		1		1		4	3	
CVT(T)PS2PI	mm,x	2	2		1	1			4	1	
CVT(T)PS2PI	mm,m128	2	1		1		1		_	1	
CVTPI2PD	x,mm	2	2		1	1			4	1	
CVTPI2PD	x,m64	2	2		1	1	1		_	1	
CVT(T) PD2PI	mm,x	2	2		1	1			4	1	
CVT(T) PD2PI	mm,m128	2	2		1	1	1		_	1	
CVTSI2SS	x,r32	2	2		1	1			4	3	
CVTSI2SS	x,m32	1	1	١.	1		1		_	3	
CVT(T)SS2SI	r32,x	2	2	1	1				4	1	
CVT(T)SS2SI	r32,m32	2	2	1	1		1			1	
CVTSI2SD	x,r32	2	2		1	1			4	3	
CVTSI2SD	x,m32	2	1		1		1			3	
CVT(T)SD2SI	r32,x	2	2	1	1				4	1	
CVT(T)SD2SI	r32,m64	2	2	1	1		1			1	
VCVTPS2PH	x,v,i	3	3	1	1	1			10	1	F16C
VCVTPS2PH	m,v,i	3	2	1	1		1	1		1	F16C
VCVTPH2PS	V,X	2	2	1		1			6	1	F16C
VCVTPH2PS	v,m	2	1		1		1			1	F16C
Arithmetic	_								_		
ADDSS/D SUBSS/D	X,X	1	1		1		_		3	1	
ADDSS/D SUBSS/D	x,m32/64	1	1		1		1		_	1	
ADDPS/D SUBPS/D	X,X	1	1		1				3	1	
ADDPS/D SUBPS/D	x,m128	1	1		1		1		_	1	
VADDPS/D VSUBPS/D	y,y,y	1	1		1				3	1	AVX
VADDPS/D VSUBPS/D	y,y,m256	1	1		1		1+			1	AVX
ADDSUBPS/D	X,X	1	1		1				3	1	SSE3

		1 V	y Dila	ge						
ADDSUBPS/D	x,m128	1	1		1		1		1	SSE3
VADDSUBPS/D	y,y,y	1	1		1			3	1	AVX
VADDSUBPS/D	y,y,m256	1	1		1		1+		1	AVX
HADDPS/D HSUBPS/D	x,x	3	3		1	2		5	2	SSE3
HADDPS/D HSUBPS/D	x,m128	4	3		1	2	1		2	SSE3
VHADDPS/D	,									
VHSUBPS/D	y,y,y	3	3		1	2		5	2	AVX
VHADDPS/D	,,,,,								_	
VHSUBPS/D	y,y,m256	4	3		1	2	1+		2	AVX
MULSS MULPS	x,x	1	1	1				5	1	
MULSS MULPS	x,m	1	1	1			1		1	
VMULPS	y,y,y	1	1	1				5	1	AVX
VMULPS	y,y,m256	1	1	1			1+		1	AVX
MULSD MULPD	x,x	1	1	1			'	5	1	/\\
MULSD MULPD	x,m	1	1	1			1		1	
VMULPD	y,y,y	1	1	1			'	5	1	AVX
VMULPD	y,y,y y,y,m256	1	1	1			1+		1	AVX
DIVSS DIVPS	y,y,111230 X,X	1	1	1			' ·	10-13	7	
DIVSS DIVPS	·	1	1	1			1	10-13	7	
VDIVPS	x,m	3	3	2		1	1	19-21	, 14	AVX
VDIVPS	y,y,y y,y,m256	4	3	2		1	1+	19-21	14	AVX
DIVSD DIVPD			1	1		ı	1	10.20	8-14	AVA
DIVSD DIVPD	x,x	1		1			1	10-20		
	x,m	1	1	2		4	1	20.25	8-14	A\/\
VDIVPD	y,y,y	3	3	1		1	۱. ا	20-35	16-28	AVX
VDIVPD	y,y,m256	4		2		1	1+	_	16-28	AVX
RCPSS/PS	X,X	1	1	1				5	1	
RCPSS/PS	x,m128	1	1	1			1	_	1	A) () (
VRCPPS	у,у	3	3	2		1	4.	7	2	AVX
VRCPPS	y,m256	4	3	2		1	1+		2	AVX
CMPccSS/D CMPccPS/D										
0.45 00/5 0.45 50/5	x,x	1	1		1			3	1	
CMPccSS/D CMPccPS/D	400									
VOMB BOXB	x,m128	2	1		1		1		1	A) () (
VCMPccPS/D	y,y,y 2 7 2	1	1		1			3	1	AVX
VCMPccPS/D	y,y,m256	2	1		1		1+		1	AVX
COMISS/D UCOMISS/D	X,X	2	2	1	1				1	
COMISS/D UCOMISS/D	x,m32/64	2	2	1	1		1		1	
MAXSS/D MINSS/D	X,X	1	1		1			3	1	
MAXSS/D MINSS/D	x,m32/64	1	1		1		1		1	
MAXPS/D MINPS/D	x,x	1	1		1			3	1	
MAXPS/D MINPS/D	x,m128	1	1		1		1		1	
VMAXPS/D VMINPS/D	y,y,y	1	1		1			3	1	AVX
VMAXPS/D VMINPS/D	y,y,m256	1	1		1		1+		1	AVX
ROUNDSS/SD/PS/PD	x,x,i	1	1		1			3	1	SSE4.1
ROUNDSS/SD/PS/PD	x,m128,i	2	1		1		1		1	SSE4.1
VROUNDSS/SD/PS/PD	y,y,i	1	1		1			3	1	AVX
VROUNDSS/SD/PS/PD	y,m256,i	2	1		1		1+		1	AVX
DPPS	x,x,i	4	4	1	2	1		12	2	SSE4.1
DPPS	x,m128,i	6	5	1	2	2	1		4	SSE4.1
VDPPS	y,y,y,i	4	4	1	2	1		12	2	AVX
VDPPS	y,m256,i	6	5	1	2	2	1+		4	AVX
DPPD	x,x,i	3	3	1	1	1		9	1	SSE4.1
DPPD	x,m128,i	4	3	1	1	1	1		1	SSE4.1

Math										
SQRTSS/PS	x,x	1	1	1				11	7	
SQRTSS/PS	x,m128	1	1	1		1			7	
VSQRTPS	y,y	3	3	2	1			19	14	AVX
VSQRTPS	y,m256	4	3	2	1	1+			14	AVX
SQRTSD/PD	x,x	1	1	1				16	8-14	
SQRTSD/PD	x,m128	1	1	1		1			8-14	
VSQRTPD	y,y	3	3	2	1			28	16-28	AVX
VSQRTPD	y,m256	4	3	2	1	1+			16-28	AVX
RSQRTSS/PS	x,x	1	1	1				5	1	
RSQRTSS/PS	x,m128	1	1	1		1			1	
VRSQRTPS	y,y	3	3	2	1			7	2	AVX
VRSQRTPS	y,m256	4	3	2	1	1+			2	AVX
Logic										
AND/ANDN/OR/XORPS/PD	x,x	1	1		1			1	1	
AND/ANDN/OR/XORPS/PD	x,m128	1	1		1	1			1	
VAND/ANDN/OR/XORPS/										
PD	y,y,y	1	1		1			1	1	AVX
VAND/ANDN/OR/XORPS/										
PD	y,y,m256	1	1		1	1+			1	AVX
Other										
VZEROUPPER		4	0						1	AVX
VZEROALL		12	2						11	32 bit
VZEROALL		20	2						9	64 bit
LDMXCSR	m32	3	2	1	1	1		6	3	
STMXCSR	m32	3	2	1	1	1	1	7	1	
FXSAVE	m4096	130							66	
FXRSTOR	m4096	116							68	
XSAVEOPT	m	100-16	1					60-500		

Intel Haswell

List of instruction timings and µop breakdown

Explanation of column headings:

Instruction: Name of instruction. Multiple names mean that these instructions have the same data.

Instructions with or without V name prefix behave the same unless otherwise noted.

Operands: i = immediate data, r = register, mm = 64 bit mmx register, x = 128 bit xmm register,

(x)mm = mmx or xmm register, y = 256 bit ymm register, v = any vector register (mmx, xmm, ymm). same = same register for both operands. <math>m = memory operand, m32 = 32-

bit memory operand, etc.

μορs fused domain:

The number of µops at the decode, rename and allocate stages in the pipeline. Fused

uops count as one.

μops unfused domain:

The total number of µops for all execution port. Fused µops count as two. Fused macro-

ops count as one. The instruction has upon fusion if this number is higher than the number under fused domain. Some operations are not counted here if they do not go to any

execution port or if the counters are inaccurate.

μορs each port: The number of μορs for each execution port. p0 means a μορ to execution port 0.

p01means a μop that can go to either port 0 or port 1. p0 p1 means two μops going to

port 0 and 1, respectively.

Port 0: Integer, f.p. and vector ALU, mul, div, branch

Port 1: Integer, f.p. and vector ALU

Port 2: Load Port 3: Load Port 4: Store

Port 5: Integer and vector ALU Port 6: Integer ALU, branch

Port 7: Store address

Latency: This is the delay that the instruction generates in a dependency chain. The numbers are

minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Where hyperthreading is enabled, the use of the same execution units in the other thread leads to inferior performance. Denormal numbers, NAN's and infinity do not increase the latency. The time unit used is core clock cycles, not the refer-

ence clock cycles given by the time stamp counter.

Reciprocal throughput:

The average number of core clock cycles per instruction for a series of independent in-

structions of the same kind in the same thread.

Integer instructions

Instruction Move instructions	Operands	μορs fused domain	μορs unfused domain	μops each port	Latency	Recipro- cal through put	Comments
MOV	- r,i	1	1	p0156		0.25	
MOV	r8/16,r8/16	1	1	p0156	1	0.25	
MOV	r32/64,r32/64	1	1	p0156	0-1	0.25	may be elim.
MOV	r8l,m	1	2	p23 p0156		0.5	
MOV	r8h,m	1	1	p23		0.5	
MOV	r16,m	1	2	p23 p0156		0.5	
MOV	r32/64,m	1	1	p23	2	0.5	all addressing modes
MOV	m,r	1	2	p237 p4	3	1	

MOV	m,i	1	2	p237 p4		1	
MOVNTI	m,r	2	2	p23 p4	~400	1	
MOVSX MOVZX	r,r	1	1	p0156	1	0.25	
MOVSXD							
MOVSX MOVZX	r16,m8	1	2	p23 p0156		0.5	
MOVSX MOVZX	r,m	1	1	p23		0.5	all other
MOVSXD							combinations
CMOVcc	r,r	2	2	2p0156	2	0.5	
CMOVcc	r,m	3	3	2p0156 p23		1	
XCHG	r,r	3	3	3p0156	2	1	
XCHG	r,m	8	8	•	21		implicit lock
XLAT	,	3	3		7	2	•
PUSH	r	1	2	p237 p4	3	1	
PUSH	i	1	2	p237 p4		1	
PUSH	l m	2	3	p4 2p237		1	
PUSH	stack pointer	2	3	p0156 p237 p4		1	
PUSHF(D/Q)	,	3	4	p1 p4 p237 p06		1	
PUSHA(D)		11	19			8	not 64 bit
POP	r	1	1	p23	2	0.5	
POP	stack pointer	3	3	p23 2p0156	_	4	
POP	m	2	3	2p237 p4		1	
POPF(D/Q)		9	9	_p_0. p.		18	
POPA(D)		18	18			9	not 64 bit
LAHF SAHF		1	1	p06	1	1	1100 0 1 510
SALC		3	3	3p0156	1	1	not 64 bit
LEA	r16,m	2	2	p1 p0156	4	1	16 or 32 bit
	110,111	_	_	p1 p0100	7		address size
LEA	r32/64,m	1	1	p15	1	0.5	1 or 2 compo-
	102/01,	•		p.0	•	0.0	nents in
							address
LEA	r32/64,m	1	1	p1	3	1	3 components
	,			'			in address
LEA	r32/64,m	1	1	p1		1	rip relative
	,			'			address
BSWAP	r32	1	1	p15	1	0.5	
BSWAP	r64	2	2	p06 p15	2	1	
MOVBE	r16,m16	3	3	2p0156 p23		0.5	MOVBE
MOVBE	r32,m32	2	2	p15 p23		0.5	MOVBE
MOVBE	r64,m64	3	3	2p0156 p23		0.5	MOVBE
MOVBE	m16,r16	2	3	p06 p237 p4		1	MOVBE
MOVBE	m32,r32	2	3	p15 p237 p4		1	MOVBE
MOVBE	m64,r64	3	4	p06 p15 p237 p4		1	MOVBE
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-	F			
PREFETCHNTA/	m	1	1	p23		0.5	
0/1/2							
LFENCE		2		none counted		4	
MFENCE		3	2	p23 p4		33	
SFENCE		2	2	p23 p4		5	
Arithmetic in-							
structions							
ADD SUB	r,r/i	1	1	p0156	1	0.25	
ADD SUB	r,m	1	2	p0156 p23		0.5	
1	· · · · · · · · · · · · · · · · · · ·		i .				ı

			110				
ADD SUB	m,r/i	2	4	2p0156 2p237 p4	6	1	
ADC SBB	r,r/i	2	2	2p0156	2	1	
ADC SBB	r,m	2	3	2p0156 p23	_	1	
ADC SBB	m,r/i	4	6	3p0156 2p237 p4	7	2	
7.00 000	111,171	_		оролоо дрдол р .	,	_	
CMP	r,r/i	1	1	p0156	1	0.25	
CMP	m,r/i	1	2	p0156 p23	1	0.5	
INC DEC NEG	r	1	1	p0156	1	0.25	
NOT							
INC DEC NOT	m	3	4	p0156 2p237 p4	6	1	
NEG	m	2	4	p0156 2p237 p4	6	1	
AAA		2	2	p1 p0156	4		not 64 bit
AAS		2	2	p1 p56	6		not 64 bit
DAA DAS		3	3	p1 2p0156	4		not 64 bit
AAD		3	3	p1 2p0156	4		not 64 bit
AAM		8	8	p0 p1 p5 p6	21	8	not 64 bit
MUL IMUL	r8	1	1	p1	3	1	
MUL IMUL	r16	4	4	p1 p0156	4	2	
MUL IMUL	r32	3	3	p1 p0156	4 3	2	
MUL IMUL	r64	2	2	p1 p6	3	1	
MUL IMUL	m8	1	2	p1 p23		1	
MUL IMUL	m16	4	5	p1 3p0156 p23		2	
MUL IMUL	m32	3	4	p1 2p0156 p23		2	
MUL IMUL	m64	2	3	p1 p6 p23		1	
IMUL	r,r	1	1	p1	3	1	
IMUL	r,m	1	2	p1 p23	4	1	
IMUL	r16,r16,i	2	2	p1 p0156	4	1	
IMUL IMUL	r32,r32,i r64,r64,i	1 1	1 1	p1	3	1 1	
IMUL	r164,164,1	2	3	p1 p1 p0156 p23	3	1	
IMUL	r32,m32,i	1	2	p1 p0190 p23		1	
IMUL	r64,m64,i	1	2	p1 p23		1	
MULX	r32,r32,r32	3	3	p1 2p056	4	1	BMI2
MULX	r32,r32,m32	3	4	p1 2p056 p23		1	BMI2
MULX	r64,r64,r64	2	2	p1 p6	4	1	BMI2
MULX	r64,r64,m64	2	3	p1 p6 p23		1	BMI2
DIV	r8	9	9	p0 p1 p5 p6	22-25	9	Bivii 2
DIV	r16	11	11	p0 p1 p5 p6	23-26	9	
DIV	r32	10	10	p0 p1 p5 p6	22-29	9-11	
DIV	r64	36	36	p0 p1 p5 p6	32-96	21-74	
IDIV	r8	9	9	p0 p1 p5 p6	23-26	8	
IDIV	r16	10	10	p0 p1 p5 p6	23-26	8	
IDIV	r32	9	9	p0 p1 p5 p6	22-29	8-11	
IDIV	r64	59	59	p0 p1 p5 p6	39-103	24-81	
CBW		1	1	p0156	1		
CWDE		1	1	p0156	1		
CDQE		1	1	p0156	1		
CWD		2	2	p0156	1		
CDQ		1	1	p06	1		
CQO		1	1	p06	1		
POPCNT	r,r	1	1	p1	3	1	SSE4.2
POPCNT	r,m	1	2	p1 p23		1	SSE4.2

CRC32					iowen			
Logic instructions	CRC32	r,r	1	1	p1	3	1	SSE4.2
NAND OR XOR	CRC32	r,m	1	2	p1 p23		1	SSE4.2
NAND OR XOR								
AND OR XOR AND OR XOR Mn,rii 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 4								
AND OR XOR	AND OR XOR	r,r/i	1	1	p0156	1	0.25	
TEST	AND OR XOR	r,m	1	2	p0156 p23		0.5	
TEST	AND OR XOR	m,r/i	2	4	2p0156 2p237 p4	6	1	
SHR SHL SAR r,i 1 1 1 p06 1 0.5 SHR SHL SAR m,i 3 4 2p06 p237 p4 2 2 SHR SHL SAR r,cl 3 3 3p06 2 2 SHR SHL SAR m,cl 5 6 3p06 2p23 p4 4 4 ROR ROL r,1 2 2 2p06 1 1 short form ROR ROL r,i 1 1 p06 1 0.5 short form ROR ROL r,i 1 1 p06 1 0.5 short form ROR ROL r,i 3 3 3p06 2 2 2 ROR ROL r,cl 4 4 2p06 p0156 2		r,r/i	1			1		
SHR SHL SAR RNcl SHR SHL SAR RNcl ROR ROL ROR	TEST	m,r/i	1	2	p0156 p23		0.5	
SHR SHL SAR r,cl 3 3 3p06 2 2 2 SHR SHL SAR m,cl 5 6 3p06 2p23 p4 4 4 ROR ROL r,1 2 2 2p06 1 1 short form ROR ROL r,i 1 1 p06 1 0.5 short form ROR ROL m,i 4 5 2p06 2p237 p4 2 2 2 2 2 ROR ROL m,0 5 6 6 8 8 2p06 p0156 2 <td>SHR SHL SAR</td> <td>r,i</td> <td>1</td> <td>1</td> <td>p06</td> <td>1</td> <td>0.5</td> <td></td>	SHR SHL SAR	r,i	1	1	p06	1	0.5	
SHR SHL SAR m,cl 5 6 3p06 2p23 p4 4 4 short form ROR ROL r,1 2 2 2p06 1 1 short form ROR ROL r,i 1 1 p06 1 0.5 RCR RCR RCR 2 2 RCR RCR 2 2 RCR RCR RCR RCR 4 RCR RCR RCR 4 RCR RCR RCR RCL r,1 3 3 3p06 2 2 2 RCR RCR RCL r,1 3 3 2p06 p0156 2 2 2 RCR RCR RCL r,1 3 3 2p06 p0156 7 7 7 7 7 7	SHR SHL SAR	m,i	3	4	2p06 p237 p4		2	
ROR ROL ROR ROR ROR ROL ROR RO	SHR SHL SAR	r,cl	3	3	3p06	2	2	
ROR ROL r,i 1 1 1 p06 1 0.5 ROR ROL m,i 4 5 2p06 2p237 p4 2 2 ROR ROL m,cl 5 6 4 8 8 2p06 p0156 2 2 2 RCR RCL r,1 3 3 2p06 p0156 2 3 3 3 3 3 3 3 3 3 3 3 3 4 3 4 <td< td=""><td>SHR SHL SAR</td><td>m,cl</td><td>5</td><td>6</td><td>3p06 2p23 p4</td><td></td><td>4</td><td></td></td<>	SHR SHL SAR	m,cl	5	6	3p06 2p23 p4		4	
ROR ROL m,i 4 5 2p06 2p237 p4 2 2 ROR ROL r,cl 3 3 3p06 2 2 ROR ROL m,cl 5 6 4 4 RCR RCL r,1 3 3 2p06 p0156 2 2 RCR RCL m,1 4 6 8 8 p0156 6 6 RCR RCL r,i 8 8 p0156 6 6 6 RCR RCL m,i 11 11 11 6 6 6 RCR RCL m,cl 11 11 p1 3 1 6 SHRD SHLD m,r,i 3 5 2 2 5 2 2 5 1 4 4 p0156 3 2 2 5 5 1 4 4 p0156 4 2 2 2 5 5 1 4 4 <t< td=""><td>ROR ROL</td><td>r,1</td><td>2</td><td>2</td><td>2p06</td><td>1</td><td>1</td><td>short form</td></t<>	ROR ROL	r,1	2	2	2p06	1	1	short form
ROR ROL r,cl 3 3 3p06 2 2 ROR ROL m,cl 5 6 4 4 RCR RCL r,1 3 3 2p06 p0156 2 2 RCR RCL m,1 4 6 3 8 RCR RCL 3 RCR RCL r,i 8 8 p0156 6 6 6 RCR RCL m,i 11 11 11 6 6 6 6 RCR RCL m,cl 11 11 p1 3 1 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 4 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 <t< td=""><td>ROR ROL</td><td>r,i</td><td>1</td><td>1</td><td>p06</td><td>1</td><td>0.5</td><td></td></t<>	ROR ROL	r,i	1	1	p06	1	0.5	
ROR ROL m,cl 5 6 2 206 p0156 2 8 8 8 p0156 6 6 6 6 6 8 8 P0156 6 6 6 8 8 P0156 7 9 9 1 2 2 2 2 2 2 2 2 2 2 2 2 2 <	ROR ROL	m,i	4	5	2p06 2p237 p4		2	
RCR RCL r,1 3 3 2p06 p0156 2 2 RCR RCL m,1 4 6 3 3 RCR RCL 3 3 RCR RCL 3 3 RCR RCL 3 RCR RCL m,1 12 12 12 14	ROR ROL	r,cl	3	3	3p06	2	2	
RCR RCL m,1 4 6 p0156 6 6 RCR RCL r,i 8 8 p0156 6 6 RCR RCL m,i 11 11 11 6 6 RCR RCL m,cl 11 11 11 6 6 RCR RCL m,cl 11 11 6 6 6 RCR RCL m,cl 11 11 6 6 6 RCR RCL m,cl 11 11 11 6 6 6 RCR RCL m,cl 11 11 p1 6 6 6 6 RCR RCL m,cl 11 11 p1 3 1 1 6 6 6 6 6 6 6 6 6 6 8 8 8 p0156 4 2 2 9 8 1 2 9 9 6 1 0.5	ROR ROL	m,cl	5	6			4	
RCR RCL m,1 4 6 p0156 6 6 RCR RCL r,i 8 8 p0156 6 6 RCR RCL m,i 11 11 11 6 6 RCR RCL m,cl 11 11 11 6 6 SHRD SHLD r,r,i 1 1 p1 3 1 SHRD SHLD m,r,i 3 5 2 SHRD 4 2 SHRD SHLD m,r,cl 4 4 p0156 4 2 SHRD SHLD m,r,cl 5 7 4 2 SHRD 4 2 SHRD SHLD m,r,cl 5 7 4 4 2 3 2 SHRD SHLD m,r,cl 5 7 4 4 2 3 0.5 BMI2 SHRD SHLD m,r,cl 5 7 1 1 0.05 BMI2 0.5 BMI2	RCR RCL	r,1	3	3	2p06 p0156	2	2	
RCR RCL r,i 8 8 p0156 6 6 6 RCR RCL m,i 11 11 11 6 6 6 RCR RCL r,cl 8 8 p0156 6 6 6 RCR RCL m,cl 8 8 p0156 6 6 6 RCR RCL m,cl 1 11 11 p1 3 1 SHRD SHLD r,r,cl 4 4 p0156 3 2 2 SHRD SHLD m,r,cl 5 7 4 4 p0156 4 2 2 SHRD SHLD 4 4 p0156 4 2 2 p06 p23 0.5 BMI2 SHRD SHLD SHLD m,r,cl 1 1 p06 1 0.5 BMI2 SHRD SHZ SHX r,m,r 2 2 p06 p23 0.5 BMI2 BMI2 RORX r,r,i 1 1 p06 1 0.5 <	RCR RCL	m,1	4	6			3	
RCR RCL m,i 11 11 11 11 11 6 6 RCR RCL r,cl 8 8 8 p0156 6 6 RCR RCL m,cl 11 11 p1 3 1 SHRD SHLD m,r,cl 4 4 p0156 3 2 SHRD HLD m,r,cl 5 7 4 4 2 SHRD SHLD m,r,cl 5 7 4 4 2 4 4 2 4 4 8 <td>RCR RCL</td> <td>1</td> <td>8</td> <td>8</td> <td>p0156</td> <td>6</td> <td>6</td> <td></td>	RCR RCL	1	8	8	p0156	6	6	
RCR RCL m,cl 11 11 p1 3 1 SHRD SHLD r,r,i 1 1 p1 3 1 SHRD SHLD m,r,cl 3 5 p0156 3 2 SHLD r,r,cl 4 4 p0156 4 2 SHRD SHLD m,r,cl 5 7 4 4 p0156 4 2 SHRD SHLD m,r,cl 5 7 4 4 p0156 4 2 SHRD SHLD m,r,cl 5 7 4 4 p0156 4 2 SHRD SHLD m,r,cl 4 4 p0156 4 2 4 4 SHRD SHLD m,r,r,cl 5 7 1 1 p06 1 0.5 BMI2 SHRD SHRD r,r,i 1 1 p06 1 0.5 BMI2 BT m,r 10 10 0 0.5	RCR RCL	1	11	11			6	
RCR RCL m,cl 11 11 p1 3 1 SHRD SHLD r,r,i 1 1 p1 3 1 SHRD SHLD m,r,cl 3 5 p0156 3 2 SHLD r,r,cl 4 4 p0156 4 2 SHRD SHLD m,r,cl 5 7 4 4 p0156 4 2 SHRD SHLD m,r,cl 5 7 4 4 p0156 4 2 SHRD SHLD m,r,cl 5 7 4 4 p0156 4 2 SHRD SHLD m,r,cl 4 4 p0156 4 2 4 4 2 2 p066 p23 0.5 BMI2 8 BMI2 1 1 1 p06 1 0.5 BMI2 8 BMI2 1 1 1 p06 1 0.5 BMI2 1 1 1 1 p06 <td>RCR RCL</td> <td></td> <td>8</td> <td>8</td> <td>p0156</td> <td>6</td> <td></td> <td></td>	RCR RCL		8	8	p0156	6		
SHRD SHLD r,r,i 1 1 p1 3 1 SHRD SHLD m,r,i 3 5 p0156 3 2 SHRD r,r,cl 4 4 p0156 4 2 SHRD SHLD m,r,cl 5 7 4 4 SHLX SHRX SARX r,r,r 1 1 p06 1 0.5 BMI2 SHLX SHRX SARX r,m,r 2 2 p06 p23 0.5 BMI2 RORX r,r,i 1 1 p06 1 0.5 BMI2 RORX r,r,i 1 1 p06 1 0.5 BMI2 RORX r,r,i 1 1 p06 1 0.5 BMI2 BT r,r/i 1 1 p06 1 0.5 BMI2 BT m,r 10 10 0 0.5 BMI2 0.5 BMI2 BT m,r 10 1 p	RCR RCL		11	11				
SHRD SHLD m,r,i 3 5 p0156 3 2 SHRD r,r,cl 4 4 p0156 4 2 SHRD SHLD m,r,cl 5 7 4 4 4 SHLX SHRX SARX r,r,r,r 1 1 p06 1 0.5 BMI2 BMI2 SHLX SHRX SARX r,m,r 2 2 p06 p23 0.5 BMI2 BMI2 SHI2	SHRD SHLD		1	1	p1	3	1	
SHLD r,r,cl 4 4 4 p0156 3 2 SHRD r,r,cl 4 4 p0156 4 2 SHRD SHLD m,r,cl 5 7 4 4 SHLX SHRX SARX r,r,r 1 1 p06 1 0.5 BMI2 SHLX SHRX SARX r,m,r 2 2 p06 p23 0.5 BMI2 RORX r,m,i 1 1 p06 1 0.5 BMI2 RORX r,m,i 2 2 p06 p23 0.5 BMI2 RORX r,m,i 1 1 p06 1 0.5 BMI2 BT m,r 10 10 5 BMI2 BMI2 BMI2 BTR BTS BTC m,r 1 1 p06 1 0.5 BMI2 BTR BTS BTC m,r 10 11 5 BMI2 2 BSF BSR r,r 1 1 p1 p23	SHRD SHLD	1	3	5	·		2	
SHRD r,r,cl 4 4 4 p0156 4 2 SHRD SHLD m,r,cl 5 7 p06 1 0.5 BMI2 SHLX SHRX SARX r,r,r 1 1 p06 p23 0.5 BMI2 RORX r,r,i 1 1 p06 p23 0.5 BMI2 RORX r,m,i 2 2 p06 p23 0.5 BMI2 BT r,r/i 1 1 p06 1 0.5 BMI2 BT m,r 10 10 5 BMI2 BMI2 BT m,r/i 1 1 p06 1 0.5 BMI2 BT m,r/i 1 1 p06 1 0.5 BMI2 BT m,r/i 1 1 p06 1 0.5 BMI2 BT m,r 10 10 1 0.5 BMI2 0.5 BMI2 BT m,r	SHLD		4	4	p0156	3		
SHRD SHLD m,r,cl 5 7 p06 1 0.5 BMI2 SHLX SHRX SARX r,r,r 1 1 p06 p23 0.5 BMI2 RORX r,r,i 1 1 p06 p23 0.5 BMI2 RORX r,m,i 2 2 p06 p23 0.5 BMI2 BT r,r/i 1 1 p06 1 0.5 BMI2 BT r,r,r/i 1 1 p06 1 0.5 BMI2 BT m,r 10 10 5 BMI2 0.5 BMI2 BT m,r 10 10 0.5 BMI2 0.5 BMI2 BT m,r 10 10 0.5 BMI2 0.5 BMI2 BT m,r 10 10 0.5 0.5 BMI2 0.5 0.5 BMI2 BT m,r 10 10 0.5 0.5 0.5 0.5	SHRD	1	4	4				
SHLX SHRX SARX r,r,r 1 1 p06 1 0.5 BMI2 SHLX SHRX SARX r,m,r 2 2 p06 p23 0.5 BMI2 RORX r,r,i 1 1 p06 1 0.5 BMI2 RORX r,m,i 2 2 p06 p23 0.5 BMI2 BT r,r/i 1 1 p06 1 0.5 BMI2 BT m,r 10 10 5 BMI2 BMI2 BTR BTS BTC m,r 10 10 5 BMI2 BTR BTS BTC m,r 10 11 5 BMI2 BTR BTS BTC m,r 10 11 5 BMI2 BFR BTS BTC m,r 1 1 p06 1 0.5 BMI2 BFR BTS BTC m,r 1 1 p1 3 1 BMI2 1 BMI2 1 D.5 BMI2 1 D.5	SHRD SHLD		5	7				
SHLX SHRX SARX r,m,r 2 2 p06 p23 0.5 BMI2 RORX r,r,r,i 1 1 p06 1 0.5 BMI2 RORX r,m,i 2 2 p06 p23 0.5 BMI2 BT r,r/i 1 1 p06 1 0.5 BMI2 BT m,r 10 10 5 BMI2 BMI2 BTR BTS BTC m,i 1 1 p06 1 0.5 BMI2 BTR BTS BTC m,r 10 11 p06 1 0.5 BMI2 BTR BTS BTC m,r 10 11 p06 1 0.5 BT 1 1 p1 3 1 p1 3 1 p1 3 1 p1 3 1 p1 p1 3 1 p1 p2 p2 <td< td=""><td>SHLX SHRX SARX</td><td>1</td><td>1</td><td>1</td><td>p06</td><td>1</td><td>0.5</td><td>BMI2</td></td<>	SHLX SHRX SARX	1	1	1	p06	1	0.5	BMI2
RORX r,r,i 1 1 p06 1 0.5 BMI2 RORX r,m,i 2 2 p06 p23 0.5 BMI2 BT r,r/i 1 1 p06 1 0.5 BMI2 BT m,r 10 10 5 0.5 BMI2 BTR BTS BTC m,i 2 2 p06 p23 0.5 0.5 BTR BTS BTC m,r 10 11 p06 1 0.5 0.5 BTR BTS BTC m,r 10 11 p1 3 1 5 0.5	SHLX SHRX SARX		2	2	· ·		0.5	BMI2
RORX r,m,i 2 2 p06 p23 0.5 BMI2 BT r,r/i 1 1 p06 1 0.5 BMI2 BT m,r 10 10 10 5 5 BBMI2 BTR BTS BTC m,i 2 2 p06 p23 0.5 BBMI2 BTR BTS BTC m,r 10 11 p06 1 0.5 BBMI2 BTR BTS BTC m,r 10 11 p06 1 0.5 BBMI2 BTR BTS BTC m,r 10 11 p06 1 0.5 BBMI2 BTR BTS BTC m,i 3 4 2p06 p23 p4 2 2 BSF BSR r,r 1 1 p1 p23 1 1 D.5 BTS BSR 1 1 0.5 BTS BSC 1 1 0.5 1 0.5 BTS BSC 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5	RORX		1	1		1	0.5	BMI2
BT r,r/i 1 1 p06 1 0.5 BT m,r 10 10 5 BT m,i 2 2 p06 p23 0.5 BTR BTS BTC m,r/i 1 1 p06 1 0.5 BTR BTS BTC m,r 10 11 5 BBTR BTS BTC m,i 3 4 2p06 p23 p4 2 2 BSF BSR r,r 1 1 p1 3 1 1 1 BTR BTS BTC 1 1 p1 3 1 2 1 1 1 1 1 1 <td>RORX</td> <td></td> <td>2</td> <td>2</td> <td>·</td> <td></td> <td>0.5</td> <td>BMI2</td>	RORX		2	2	·		0.5	BMI2
BT m,r 10 10 5 0.5 BTR BTS BTC m,i 2 2 p06 p23 0.5 BTR BTS BTC m,r/i 1 1 p06 1 0.5 BTR BTS BTC m,r 10 11 5 1 5 BTR BTS BTC m,i 3 4 2p06 p23 p4 2 2 BSF BSR r,r 1 1 p1 3 1 1 SETcc r 1 1 p06 1 0.5 1 SETcc r 1 1 p06 p237 p4 1 1 1 1 1 0.25 <	ВТ			I .		1		
BT m,i 2 2 p06 p23 0.5 BTR BTS BTC r,r/i 1 1 p06 1 0.5 BTR BTS BTC m,r 10 11 5 5 BTR BTS BTC 5 BTR BTS BTC 11 1 p1 3 1 2 p1 p23 p4 2 2 BSF BSR r,r 1 1 p1 3 1 p1 3 1 p1 p2 p2<	ВТ	1	10	10			5	
BTR BTS BTC r,r/i 1 1 p06 1 0.5 BTR BTS BTC m,r 10 11 5 BTR BTS BTC m,i 3 4 2p06 p23 p4 2 BSF BSR r,r 1 1 p1 3 1 BSF BSR r,m 1 2 p1 p23 1 1 SETcc r 1 1 p06 1 0.5 1 SETcc m 2 3 p06 p237 p4 1 1 1 0.5 1 0.25 0	ВТ		2	2	p06 p23		0.5	
BTR BTS BTC m,r 10 11 5 BTR BTS BTC m,i 3 4 2p06 p23 p4 2 BSF BSR r,r 1 1 p1 3 1 BSF BSR r,m 1 2 p1 p23 1 1 SETcc r 1 1 p06 1 0.5 1 SETcc m 2 3 p06 p237 p4 1 1 1 0.5 1 0.25	BTR BTS BTC		1	1		1	0.5	
BTR BTS BTC m,i 3 4 2p06 p23 p4 2 BSF BSR r,r 1 1 p1 3 1 BSF BSR r,m 1 2 p1 p23 1 1 SETcc r 1 1 p06 1 0.5 1 SETcc m 2 3 p06 p237 p4 1 1 0.25 STC 1 1 p0156 0.25 0.25 CMC 1 1 p0156 1 0.25 CLD STD 3 3 p15 p6 4 4 LZCNT r,r 1 1 p1 p23 1 LZCNT TZCNT r,r 1 1 p1 p23 1 LZCNT TZCNT r,r 1 1 p1 p23 1 BMI1	BTR BTS BTC		10	11				
BSF BSR r,r 1 1 p1 3 1 BSF BSR r,m 1 2 p1 p23 1 SETcc r 1 1 p06 1 0.5 SETcc m 2 3 p06 p237 p4 1 1 CLC 1 0 none 0.25 0.25 STC 1 1 p0156 0.25 CMC 1 1 p0156 1 CLD STD 3 3 p15 p6 4 LZCNT r,r 1 1 p1 p23 1 LZCNT LZCNT r,m 1 2 p1 p23 1 LZCNT TZCNT r,r 1 1 p1 p23 3 1 BMI1	BTR BTS BTC		3	4	2p06 p23 p4			
BSF BSR r,m 1 2 p1 p23 1 SETcc r 1 1 p06 1 0.5 SETcc m 2 3 p06 p237 p4 1 1 CLC 1 0 none 0.25 0.25 STC 1 1 p0156 0.25 CMC 1 1 p0156 1 CLD STD 3 3 p15 p6 4 LZCNT r,r 1 1 p1 p23 1 LZCNT LZCNT r,m 1 2 p1 p23 1 LZCNT TZCNT r,r 1 1 p1 p23 3 1 BMI1	BSF BSR		1	1		3		
SETcc r 1 1 p06 1 0.5 SETcc m 2 3 p06 p237 p4 1 1 CLC 1 0 none 0.25 0.25 STC 1 1 p0156 0.25 CMC 1 1 p0156 1 CLD STD 3 3 p15 p6 4 LZCNT r,r 1 1 p1 p23 1 LZCNT LZCNT r,r 1 2 p1 p23 1 LZCNT TZCNT r,r 1 1 p1 p2 3 1 BMI1	BSF BSR		1	2			1	
SETcc m 2 3 p06 p237 p4 1 CLC 1 0 none 0.25 STC 1 1 p0156 0.25 CMC 1 1 p0156 1 CLD STD 3 3 p15 p6 4 LZCNT r,r 1 1 p1 3 1 LZCNT LZCNT r,m 1 2 p1 p23 1 LZCNT TZCNT r,r 1 1 p1 3 1 BMI1	SETcc		1			1	0.5	
CLC 1 0 none 0.25 STC 1 1 p0156 0.25 CMC 1 1 p0156 1 CLD STD 3 3 p15 p6 4 LZCNT r,r 1 1 p1 3 1 LZCNT LZCNT r,m 1 2 p1 p23 1 LZCNT TZCNT r,r 1 1 p1 3 1 BMI1	SETcc	m	2	3	-		1	
STC 1 1 p0156 0.25 CMC 1 1 p0156 1 CLD STD 3 3 p15 p6 4 LZCNT r,r 1 1 p1 3 1 LZCNT LZCNT r,m 1 2 p1 p23 1 LZCNT TZCNT r,r 1 1 p1 3 1 BMI1			1				0.25	
CMC 1 1 p0156 1 CLD STD 3 3 p15 p6 4 LZCNT r,r 1 1 p1 3 1 LZCNT LZCNT r,m 1 2 p1 p23 1 LZCNT TZCNT r,r 1 1 p1 3 1 BMI1			1	1				
CLD STD 3 3 p15 p6 4 LZCNT r,r 1 1 p1 3 1 LZCNT LZCNT r,m 1 2 p1 p23 1 LZCNT TZCNT r,r 1 1 p1 3 1 BMI1			1			1		
LZCNT r,r 1 1 p1 3 1 LZCNT LZCNT r,m 1 2 p1 p23 1 LZCNT TZCNT r,r 1 1 p1 3 1 BMI1			3		· ·		4	
LZCNT r,m 1 2 p1 p23 1 LZCNT TZCNT r,r 1 1 p1 3 1 BMI1		r.r				3		LZCNT
TZCNT r,r 1 1 p1 3 1 BMI1				I .	1	-		
					I I	3		
					·			

ANDN		4	1 4		4	0.5	BMI1
ANDN	r,r,r	1 1	1 2	p15	1 1	0.5	BMI1
BLSI BLSMSK	r,r,m		1	p15 p23	1	0.5	BMI1
BLSR	r,r	'		p15	ı		
BLSI BLSMSK BLSR	r,m	1	2	p15 p23		0.5	BMI1
BEXTR	r,r,r	2	2	2p0156	2	0.5	BMI1
BEXTR	r,m,r	3	3	2p0156 p23		1	BMI1
BZHI	r,r,r	1 1	1	p15	1	0.5	BMI2
BZHI	r,m,r	1 1	2	p15 p23		0.5	BMI2
PDEP	r,r,r	1 1	1	p1	3	1	BMI2
PDEP	r,r,m	1 1	2	p1 p23		1	BMI2
PEXT	r,r,r	1 1	1	p1	3	1	BMI2
PEXT	r,r,m	1	2	p1 p23		1	BMI2
Control transfer i	nstructions						
JMP	short/near	1 1	1	p6		1-2	
JMP	r	1	1	p6		2	
JMP	m	1 1	2	p23 p6		2	
Conditional jump	short/near	1	1	p6		1-2	predicted taken
Conditional jump	short/near	1	1	р06		0.5-1	predicted not taken
Fused arithmetic and branch		1	1	р6		1-2	predicted taken
Fused arithmetic and branch		1	1	p06		0.5-1	predicted not taken
J(E/R)CXZ	short	2	2	p0156 p6		0.5-2	
LOOP	short	7	7	po 100 po		5	
LOOP(N)E	short	11	11			6	
CALL	near	2	3	p237 p4 p6		2	
CALL	r	2	3	p237 p4 p6		2	
CALL	m	3	4	2p237 p4 p6		3	
RET	•••	1	2	p237 p6		1	
RET	i	3	4	p23 2p6 p015		2	
BOUND	r,m	15	15	p20 2p0 p0 10		8	not 64 bit
INTO	.,	4	4			5	not 64 bit
String instruc-							
LODSB/W		3	3	2p0156 p23		1	
LODSD/Q		2	2	p0156 p23			
REP LODS		5n+12	_	p0100 p20		~2n	
STOS		3	3	p23 p0156 p4		1	
REP STOS		<2n		P20 P0 100 P4		~0.5n	worst case
REP STOS		2.6/32B				1/32B	best case aligned by 32
MOVS		5	5	2p23 p4 2p0156		4	angiled by 52
REP MOVS		~2n)	2p23 p4 2p0130		~1.5 n	worst case
		1					best case
REP MOVS		4/32B				1/32B	aligned by 32
SCAS		3	3	p23 2p0156		1	angiled by 62
REP SCAS		3 ≥6n	ا	p23 2p0 130		ı ≥2n	
NEF SUAS		2011				4	

CMPS		5	5	2p23 3p0156		4	
REP CMPS		≥8n				≥2n	
Synchronization	instructions						
XADD	m,r	4	5			7	
LOCK XADD	m,r	9	9			19	
LOCK ADD	m,r	8	8			19	
CMPXCHG	m,r	5	6			8	
LOCK CMPXCHG	m,r	10	10			19	
CMPXCHG8B	m,r	15	15			9	
LOCK CMPXCHG8B	m,r	19	19			19	
CMPXCHG16B	m,r	22	22			15	
LOCK CMPXCHG16B	m,r	24	24			25	
Other							
NOP (90)		1	0	none		0.25	
Long NOP (0F 1F)		1	0	none		0.25	
PAUSE		5	5	p05 3p6		9	
ENTER	a,0	12	12			8	
ENTER	a,b	~14+7b	~45+7b		~87+2b		
LEAVE		3	3	2p0156 p23		6	
XGETBV		8	8			9	XGETBV
RDTSC		15	15			24	
RDPMC		34	34			37	
RDRAND	r	17	17	p23 16p0156		~320	RDRAND

Floating point x87 instructions

Instruction	Operands	μορs fused domain	µops unfused domain	μορs each port	Latency	Recipro- cal through put	Comments
Move instruc- tions							
FLD	r	1	1	p01	1	0.5	
FLD	m32/64	1	1	p23	3	0.5	
FLD	m80	4	4	2p01 2p23	4	2	
FBLD	m80	43	43		47	22	
FST(P)	r	1	1	p01	1	0.5	
FST(P)	m32/m64	1	2	p4 p237	4	1	
FSTP	m80	7	7	3p0156 2p23 2p4	1	5	
FBSTP	m80	238	226			265	
FXCH	r	2	0	none	0	0.5	
FILD	m	1	2	p01 p23	6	1	
FIST(P)	m	3	3	p1 p23 p4	7	1	
FISTTP	m	3	3	p1 p23 p4	7	2	SSE3
FLDZ		1	1	p01		1	
FLD1		2	2	2p01		2	
FLDPI FLDL2E e	tc.	2	2	2p01		2	
FCMOVcc	r	3	3	2p0 p5	2	2	
FNSTSW	AX	2	2	p0 p0156		1	
FNSTSW	m16	2	3	p0 p4 p237	6	1	
FLDCW	m16	3	3	p01 p23 p6	7	2	

FNSTCW FINCSTP FDECS FFREE(P) FNSAVE FRSTOR	m16 TP r m m	2 1 1 147 90	3 1 1 147 90	p237 p4 p6 p01 p01	0	1 0.5 0.5 150 164	
Arithmetic in- structions							
FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P)	r m	1	1 2	p1 p1 p23	3	1	
FMUL(P) FMUL(P) FDIV(R)(P) FDIV(R)(P)	r m r m	1 1 1 1	1 2 1 2	p0 p0 p23 p0 p0 p23	5 10-24	1 1 8-18 8-18	
FABS FCHS FCOM(P) FUCOM FCOM(P) FUCOM	r m	1 1 1 1	1 1 1 2	p0 p0 p1 p1 p23	1	1 1 1 1	
FCOMPP FUCON FCOMI(P) FUCON FIADD FISUB(R) FIMUL		2 3 2 2	2 3 3 3	2p01 3p01 2p1 p23 p0 p1 p23		1 1.5 2 2	
FIDIV(R) FICOM(P) FTST FXAM	m m	2 2 1 2	3 3 1 2	p0 p1 p23 2p1 p23 p1 2p1		2 1 2	
FPREM FPREM1 FRNDINT		28 41 17	28 41 17		19 27 11	13 17 23	
Math FSCALE FXTRACT		25-75 17	17		49-125 15	11	
FSQRT FSIN FCOS FSINCOS F2XM1		1 71-100 110 70-120 58-89	1	р0	10-23 47-106 112 52-123 63-68	8-17	
FYL2X FYL2XP1 FPTAN FPATAN		55-417 55-228 110-121 78-160			58-680 58-360 130 96-156		
Other FNOP WAIT FNCLEX FNINIT		1 2 5 26	1 2 5 26	p01 p01 p0156		0.5 1 22 83	

Integer vector instructions

		μops	μops			Recipro-	
4 4	0	fused	unfused			through	0
Instruction Move instruc-	Operands	domain	domain	μops each port	Latency	put	Comments
tions							
MOVD	r32/64,(x)mm	1	1	р0	1	1	
MOVD	m32/64,(x)mm		2	p237 p4	3	1	
MOVD	(x)mm,r32/64	1	1	p5	1	1	
MOVD	(x)mm,m32/64		1	p23	3	0.5	
MOVQ	r64,(x)mm	1	1	p0	1	1	
MOVQ	(x)mm,r64	1	1	p5	1	1	
MOVQ	(x)mm,(x)mm	1		p015	1	0.33	
MOVQ	(x)mm,m64	1	1	p23	3	0.5	
MOVQ	m64, (x)mm	1	2	p237 p4	3	1	
MOVDQA/U	X,X	1	1	p015	0-1	0.33	may be elim.
MOVDQA/U	x, m128	1	1	p23	3	0.55	may be eiiii.
MOVDQA/U	m128, x	1	2	p237 p4	3	1	
MOVDQA/U	111120, X	'		p237 p4	3	l I	A) 0/
VMOVDQA/U	.,,,	1	1	n015	0.4	0.33	AVX
	y,y	1	1	p015	0-1		may be elim.
VMOVDQA/U	y,m256	1	1	p23	3	0.5	AVX
VMOVDQA/U	m256,y	1	2	p237 p4	4	1	AVX
LDDQU	x, m128	1	1	p23	3	0.5	SSE3
MOVDQ2Q	mm, x	2	2	p01 p5	1	1	
MOVQ2DQ	x,mm	1	1	p015	1	0.33	
MOVNTQ	m64,mm	1	2	p237 p4	~400	1	
MOVNTDQ	m128,x	1	2	p237 p4	~400	1	
VMOVNTDQ	m256,y	1	2	p237 p4	~400	1	AVX2
MOVNTDQA	x, m128	1	1	p23	3	0.5	SSE4.1
VMOVNTDQA	y,m256	1	1	p23	3	0.5	AVX2
PACKSSWB/DW							
PACKUSWB	mm,mm	3	3	p5	2	2	
PACKSSWB/DW							
PACKUSWB	mm,m64	3	3	p23 2p5		2	
PACKSSWB/DW							
PACKUSWB	x,x / y,y,y	1	1	p5	1	1	
PACKSSWB/DW							
PACKUSWB	x,m / y,y,m	1	2	p23 p5		1	
PACKUSDW	x,x / y,y,y	1	1	p5	1	1	SSE4.1
PACKUSDW	x,m / y,y,m	1	2	p23 p5		1	SSE4.1
PUNPCKH/L							
BW/WD/DQ	v,v / v,v,v	1	1	p5	1	1	
PUNPCKH/L							
BW/WD/DQ	v,m / v,v,m	1	2	p23 p5		1	
PUNPCKH/L							
QDQ	x,x / y,y,y	1	1	p5	1	1	
PUNPCKH/L							
QDQ	x,m / y,y,m	2	2	p23 p5		1	
PMOVSX/ZX BW	,,,,,						
BD BQ DW DQ	x,x	1	1	p5	1	1	SSE4.1
PMOVSX/ZX BW							
BD BQ DW DQ	x,m	1	2	p23 p5		1	SSE4.1
VPMOVSX/ZX BW							
BD BQ DW DQ	y,x	1	1	p5	3	1	AVX2

I	l I	ı	I	1		I	I
VPMOVSX/ZX BW		2	2	nF n22		4	AVX2
BD BQ DW DQ	y,m			p5 p23	4	1	
PSHUFB	v,v / v,v,v	1	1	p5	1	1	SSSE3
PSHUFB	v,m / v,v,m	2	2	p23 p5	4	1	SSSE3
PSHUFW	mm,mm,i	1	1	p5	1	1	
PSHUFW	mm,m64,i	2	2	p23 p5	_	1	
PSHUFD	V,V,İ	1	1	p5	1	1	
PSHUFD	v,m,i	2	2	p23 p5	_	1	
PSHUFL/HW	V,V,İ	1	1	p5	1	1	
PSHUFL/HW	v,m,i	2	2	p23 p5		1	
PALIGNR	v,v,i / v,v,v,i	1	1	p5	1	1	SSSE3
PALIGNR	v,m,i / v,v,m,i	2	2	p23 p5		1	SSSE3
PBLENDVB	x,x,xmm0	2	2	2p5	2	2	SSE4.1
PBLENDVB	x,m,xmm0	3	3	2p5 p23		2	SSE4.1
VPBLENDVB	V,V,V,V	2	2	2p5	2	2	AVX2
VPBLENDVB	v,v,m,v	3	3	2p5 p23		2	AVX2
PBLENDW	x,x,i / v,v,v,i	1	1	p5	1	1	SSE4.1
PBLENDW	x,m,i / v,v,m,i	2	2	p23 p5		1	SSE4.1
VPBLENDD	v,v,v,i	1	1	p015	1	0.33	AVX2
VPBLENDD	v,v,m,i	2	2	p015 p23		0.5	AVX2
VPERMD	y,y,y	1	1	p5	3	1	AVX2
VPERMD	y,y,m	1	2	p5 p23		1	AVX2
VPERMQ	y,y,i	1	1	p5	3	1	AVX2
VPERMQ	y,m,i	2	2	p5 p23		1	AVX2
VPERM2I128	y,y,y,i	1	1	p5	3	1	AVX2
VPERM2I128	y,y,m,i	2	2	p5 p23		1	AVX2
MASKMOVQ	mm,mm	4	4	p0 p4 2p23	13-413	1	
MASKMOVDQU	x,x	10	10	4p04 2p56 4p23	14-438	6	
VPMASKMOVD/Q	v,v,m	3	3	p23 2p5	4	2	AVX2
VPMASKMOVD/Q	m,v,v	4	4	p0 p1 p4 p23	13-14	1	AVX2
PMOVMSKB	r,v	1	1	p0	3	1	
PEXTRB/W/D/Q	r32,x,i	2	2	p0 p5	2	1	SSE4.1
PEXTRB/W/D/Q	m8,x,i	2	3	p23 p4 p5		1	SSE4.1
VEXTRACTI128	x,y,i	1	1	p5	3	1	AVX2
VEXTRACTI128	m,y,i	2	2	p23 p4	4	1	AVX2
PINSRB	x,r32,i	2	2	p5	2	2	SSE4.1
PINSRB	x,m8,i	2	2	p23 p5		1	SSE4.1
PINSRW	(x)mm,r32,i	2	2	p5	2	2	
PINSRW	(x)mm,m16,i	2	2	p23 p5	_	1	
PINSRD/Q	x,r32,i	2	2	p5	2	2	SSE4.1
PINSRD/Q	x,m32,i	2	2	p23 p5	_	1	SSE4.1
VINSERTI128	y,y,x,i	1	1	p5	3	1	AVX2
VINSERTI128	y,y,x,i y,y,m,i	2	2	p015 p23	4	0.5	AVX2
VPBROADCAST	y, y, 111,1	_	_	p010 p20	T	0.0	7.07.2
B/W/D/Q	x,x	1	1	p5	1	1	AVX2
VPBROADCAST	·						
B/W	x,m8/16	3	3	p01 p23 p5	5	1	AVX2
VPBROADCAST							
D/Q	x,m32/64	1	1	p23	4	0.5	AVX2
VPBROADCAST		_			•		A) () (0
B/W/D/Q	y,x	1	1	p5	3	1	AVX2
VPBROADCAST B/W	y,m8/16	3	3	p01 p23 p5	7	1	AVX2

I	I	I	I	I	ı	ı	l I
VPBROADCAST D/Q	y,m32/64	1	1	p23	5	0.5	AVX2
VBROADCASTI128	y,11132/04 y,m128	1	1 1	p23	3	0.5	AVX2 AVX2
VPGATHERDD	x,[r+s*x],x	20	20	μ23	3	9	AVX2 AVX2
VPGATHERDD		34	34			12	AVX2 AVX2
VPGATHERDD	y,[r+s*y],y	15	15			8	AVX2 AVX2
	x,[r+s*x],x					o 7	
VPGATHERDD	x,[r+s*y],x	22	22				AVX2
VPGATHERDQ	x,[r+s*x],x	12	12			7	AVX2
VPGATHERDQ	y,[r+s*x],y	20	20			9	AVX2
VPGATHERQQ	x,[r+s*x],x	14	14			7	AVX2
VPGATHERQQ	y,[r+s*y],y	22	22			9	AVX2
Arithmetic in-							
structions							
PADD/SUB(S,US)							
B/W/D/Q	v,v / v,v,v	1	1	p15	1	0.5	
PADD/SUB(S,US)	,			45.00			
B/W/D/Q	v,m / v,v,m	1	2	p15 p23		0.5	
PHADD(S)W/D	,			40.5		•	00050
PHSUB(S)W/D	v,v / v,v,v	3	3	p1 2p5	3	2	SSSE3
PHADD(S)W/D	,			40 = 00		•	00050
PHSUB(S)W/D	v,m / v,v,m	4	4	p1 2p5 p23		2	SSSE3
PCMPEQB/W/D	,	_					
PCMPGTB/W/D	v,v / v,v,v	1	1	p15	1	0.5	
PCMPEQB/W/D						_	
PCMPGTB/W/D	v,m / v,v,m	1	2	p15 p23		0.5	
PCMPEQQ	v,v / v,v,v	1	1	p15	1	0.5	SSE4.1
PCMPEQQ	v,m / v,v,m	1	2	p15 p23		0.5	SSE4.1
PCMPGTQ	v,v / v,v,v	1	1	p0	5	1	SSE4.2
PCMPGTQ	v,m / v,v,m	1	2	p0 p23		1	SSE4.2
PMULL/HW							
PMULHUW	v,v / v,v,v	1	1	p0	5	1	
PMULL/HW							
PMULHUW	v,m / v,v,m	1	2	p0 p23		1	
PMULHRSW	v,v / v,v,v	1	1	p0	5	1	SSSE3
PMULHRSW	v,m / v,v,m	1	2	p0 p23		1	SSSE3
PMULLD	x,x / y,y,y	2	2	2p0	10	2	SSE4.1
PMULLD	x,m / y,y,m	3	3	2p0 p23		2	SSE4.1
PMULDQ	x,x / y,y,y	1	1	p0	5	1	SSE4.1
PMULDQ	x,m / y,y,m	1	2	p0 p23		1	SSE4.1
PMULUDQ	v,v / v,v,v	1	1	p0	5	1	
PMULUDQ	v,m / v,v,m	1	2	p0 p23		1	
PMADDWD	v,v / v,v,v	1	1	р0	5	1	
PMADDWD	v,m / v,v,m	1	2	p0 p23		1	
PMADDUBSW	v,v / v,v,v	1	1	p0	5	1	SSSE3
PMADDUBSW	v,m / v,v,m	1	2	p0 p23		1	SSSE3
PAVGB/W	v,v / v,v,v	1	1	p15	1	0.5	
PAVGB/W	v,m / v,v,m	1	2	p15 p23		0.5	
PMIN/PMAX	' ' '						
SB/SW/SD							
UB/UW/UD	x,x / y,y,y	1	1	p15	1	0.5	SSE4.1
PMIN/PMAX							
SB/SW/SD							
UB/UW/UD	x,m / y,y,m	1	2	p15 p23		0.5	SSE4.1
							'

PHMINPOSUW	x,x	1	1	p0	5	1	SSE4.1
PHMINPOSUW	x,m128	1	2	p0 p23		1	SSE4.1
PABSB/W/D	V,V	1	1	p15	1	0.5	SSSE3
PABSB/W/D	v,m	1	2	p15 p23		0.5	SSSE3
PSIGNB/W/D	v,v / v,v,v	1	1	p15	1	0.5	SSSE3
PSIGNB/W/D	v,m / v,v,m	1	2	p15 p23		0.5	SSSE3
PSADBW	v,v / v,v,v	1	1	p0	5	1	
PSADBW	v,m / v,v,m	1	2	p0 p23		1	
MPSADBW	x,x,i / v,v,v,i	3	3	p0 2p5	6	2	SSE4.1
MPSADBW	x,m,i / v,v,m,i	4	4	p0 2p5 p23		2	SSE4.1
Logic instruc- tions							
PAND PANDN							
POR PXOR	v,v / v,v,v	1	1	p015	1	0.33	
PAND PANDN							
POR PXOR	v,m / v,v,m	1	2	p015 p23		0.5	
PTEST	V,V	2	2	p0 p5	2	1	SSE4.1
PTEST	v,m	2	3	p0 p5 p23		1	SSE4.1
PSLLW/D/Q PSRLW/D/Q PSRAW/D/Q	mm,mm	1	1	p0	1	1	
PSLLW/D/Q	''''''	'	'	Po	'		
PSRLW/D/Q PSRAW/D/Q	mm,m64	1	2	p0 p23		1	
PSLLW/D/Q							
PSRLW/D/Q PSRAW/D/Q	x,x / v,v,x	2	2	p0 p5	2	1	
PSLLW/D/Q							
PSRLW/D/Q PSRAW/D/Q	x,m / v,v,m	2	2	p0 p23		1	
PSLLW/D/Q							
PSRLW/D/Q PSRAW/D/Q	v,i / v,v,i	1	1	р0	1	1	
VPSLLVD/Q VPSRAVD							
VPSRLVD/Q	V,V,V	3	3	2p0 p5	2	2	AVX2
VPSLLVD/Q							
VPSRAVD							
VPSRLVD/Q	v,v,m	4	4	2p0 p5 p23		2	AVX2
PSLLDQ	.,			_			
PSRLDQ	x,i / v,v,i	1	1	p5	1	1	
String instruc- tions							
PCMPESTRI	x,x,i	8	8	6p05 2p16	11	4	SSE4.2
PCMPESTRI	x,m128,i	8	8	3p0 2p16 2p5 p23		4	SSE4.2
PCMPESTRM	x,x,i	9	9	3p0 2p16 4p5	10	5	SSE4.2
PCMPESTRM	x,m128,i	9	9	6p05 2p16 p23		5	SSE4.2
PCMPISTRI	x,x,i	3	3	3p0	11	3	SSE4.2
PCMPISTRI	x,m128,i	4	4	3p0 p23		3	SSE4.2
PCMPISTRM	x,x,i	3	3	3p0	10	3	SSE4.2
PCMPISTRM	x,m128,i	4	4	3p0 p23		3	SSE4.2

Encryption instru	ıctions						
PCLMULQDQ	x,x,i	3	3	2p0 p5	7	2	CLMUL
PCLMULQDQ	x,m,i	4	4	2p0 p5 p23		2	CLMUL
AESDEC, AESDECLAST, AESENC, AESENCLAST	x,x	1	1	p 5	7	1	AES
AESDEC, AESDECLAST, AESENC, AESENCLAST	x,m	2	2	p5 p23		1.5	AES
AESIMC	X,X	2	2	2p5	14	2	AES
AESIMC	x,m	3	3	2p5 p23	17	2	AES
AESKEYGENAS	Χ,			2po p2o		_	7120
SIST	x,x,i	10	10	2p0 8p5	10	9	AES
AESKEYGENAS							
SIST	x,m,i	10	10	2p0 p23 7p5		8	AES
Other							
EMMS		31	31			13	

Floating point XMM and YMM instructions

Instruction	Operands	µops fused domain	µops unfused domain	μορs each port	Latency	Recipro- cal through put	Comments
Move instruc- tions							
MOVAPS/D	x,x	1	1	p5	0-1	1	may be elim.
VMOVAPS/D	y,y	1	1	p5	0-1	1	may be elim.
MOVAPS/D MOVUPS/D VMOVAPS/D VMOVUPS/D	x,m128 y,m256	1	1	p23	3	0.5	AVX
MOVAPS/D MOVUPS/D VMOVAPS/D	m128,x	1	2	p237 p4	3	1	, wa
VMOVUPS/D	m256,y	1	2	p237 p4	4	1	AVX
MOVSS/D	x,x	1	1	p5	1	1	
MOVSS/D	x,m32/64	1	1	p23	3	0.5	
MOVSS/D	m32/64,x	1	2	p237 p4	3	1	
MOVHPS/D	x,m64	1	2	p23 p5	4	1	
MOVHPS/D	m64,x	1	2	p4 p237	3	1	
MOVLPS/D	x,m64	1	2	p23 p5	4	1	
MOVLPS/D	m64,x	1	2	p4 p237	3	1	
MOVHLPS	x,x	1	1	p5	1	1	
MOVLHPS	x,x	1	1	p5	1	1	
MOVMSKPS/D	r32,x	1	1	p0	3	1	
VMOVMSKPS/D	r32,y	1	1	p0	2	1	
MOVNTPS/D	m128,x	1	2	p4 p237	~400	1	
/MOVNTPS/D	m256,y	1	2	p4 p237	~400	1	AVX
SHUFPS/D	x,x,i / v,v,v,i	1	1	p5	1	1	
SHUFPS/D	x,m,i / v,v,m,i	2	2	p5 p23		1	

VPERMILPS/PD	v,v,i	1	1	p5	1	1	AVX
VPERMILPS/PD	v,m,i	2	2	p5 p23		1	AVX
VPERMILPS/PD	V,V,V	1	1	p5	1	1	AVX
VPERMILPS/PD	v,v,m	2	2	p5 p23		1	AVX
VPERM2F128	y,y,y,i	1	1	p5	3	1	AVX
VPERM2F128	y,y,m,i	2	2	p5 p23		1	AVX
VPERMPS	y,y,y	1	1	p5	3	1	AVX2
VPERMPS	y,y,m	1	2	p5 p23		1	AVX2
VPERMPD	y,y,i	1	1	p5	3	1	AVX2
VPERMPD	y,m,i	2	2	p5 p23		1	AVX2
BLENDPS/PD	x,x,i / v,v,v,i	1	1	p015	1	0.33	SSE4.1
BLENDPS/PD	x,m,i / v,v,m,i	2	2	p015 p23		0.5	SSE4.1
BLENDVPS/PD	x,x,xmm0	2	2	2p5	2	2	SSE4.1
BLENDVPS/PD	x,m,xmm0	3	3	2p5 p23		2	SSE4.1
VBLENDVPS/PD	, v,v,v,v	2	2	2p5	2	2	AVX
VBLENDVPS/PD	v,v,m,v	3	3	2p5 p23		2	AVX
MOVDDUP	v,v	1	1	p5	1	1	SSE3
MOVDDUP	v,m	1	1	p23	3	0.5	SSE3
VBROADCASTSS	x,m32	1	1	p23	4	0.5	AVX
VBROADCASTSS	y,m32	1	1	p23	5	0.5	AVX
VBROADCASTSS	x,x	1	1	p5	1	1	AVX2
VBROADCASTSS	y,x	1	1	p5	3	1	AVX2
VBROADCASTSD	y,m64	1	1	p23	5	0.5	AVX
VBROADCASTSD	y,x	1	1	p5	3	1	AVX2
VBROADCASTF128	y,m128	1	1	p23	3	0.5	AVX
MOVSH/LDUP	V,V	1	1	p5	1	1	SSE3
MOVSH/LDUP	v,m	1	1	p23	3	0.5	SSE3
UNPCKH/LPS/D	x,x / v,v,v	1 1	1	p5	1	1	SSE3
UNPCKH/LPS/D	x,m / v,v,m	1	2	p5 p23		1	SSE3
EXTRACTPS	r32,x,i	2	2	p0 p5		1	SSE4.1
EXTRACTPS	m32,x,i	3	3	p0 p5 p23	4	1	SSE4.1
VEXTRACTF128	x,y,i	1	1	p5 p5 p25	3	1	AVX
VEXTRACTF128	m128,y,i	2	2	p23 p4	4	1	AVX
INSERTPS	x,x,i	1	1	p5	1	1	SSE4.1
INSERTPS	x,m32,i	2	2	p23 p5	4	1	SSE4.1
VINSERTF128	y,y,x,i	1	1	p5	3	1	AVX
VINSERTF128	y,y,m128,i	2	2	p015 p23	4	2	AVX
VMASKMOVPS/D	v,v,m	3	3	2p5 p23	4	2	AVX
VMASKMOVPS/D	m128,x,x	4	4	p0 p1 p4 p23	13	1	AVX
VMASKMOVPS/D	m256,y,y	4	4	p0 p1 p4 p23	14	2	AVX
VGATHERDPS	x,[r+s*x],x	20	20	ρο ρ. ρ. ρ. ρ.		9	AVX2
VGATHERDPS	y,[r+s*y],y	34	34			12	AVX2
VGATHERQPS	x,[r+s*x],x	15	15			8	AVX2
VGATHERQPS	x,[r+s*y],x	22	22			7	AVX2
VGATHERDPD	x,[r+s*x],x	12	12			7	AVX2
VGATHERDPD	y,[r+s*x],y	20	20			9	AVX2
VGATHEROPD	x,[r+s*x],x	14	14			7	AVX2
VGATHERQPD	y,[r+s*y],y	22	22			9	AVX2
Conversion		_	_		_		
CVTPD2PS	X,X	2	2	p1 p5	4	1	
CVTPD2PS	x,m128	2	3	p1 p5 p23		1	
VCVTPD2PS	x,y	2	2	p1 p5	5	1	AVX

	i			1			
VCVTPD2PS	x,m256	2	3	p1 p5 p23		1	AVX
CVTSD2SS	X,X	2	2	p1 p5	4	1	
CVTSD2SS	x,m64	2	3	p1 p5 p23		1	
CVTPS2PD	x,x	2	2	p0 p5	2	1	
CVTPS2PD	x,m64	2	2	p0 p23		1	
VCVTPS2PD	y,x	2	2	p0 p5	5	1	AVX
VCVTPS2PD	y,m128	2	2	p0 p23		1	AVX
CVTSS2SD	X,X	2	2	p0 p5	2	1	
CVTSS2SD	x,m32	2	2	p0 p23		1	
CVTDQ2PS	X,X	1	1	p1	3	1	
CVTDQ2PS	x,m128	1	2	p1 p23		1	
VCVTDQ2PS	y,y	1	1	p1	3	1	AVX
VCVTDQ2PS	y,m256	1	2	p1 p23	_	1	AVX
CVT(T) PS2DQ	x,x	1	1	p1	3	1	
CVT(T) PS2DQ	x,m128	1	2	p1 p23		1	
VCVT(T) PS2DQ	y,y	1	1	p1	3	1	AVX
VCVT(T) PS2DQ	y,m256	1	2	p1 p23		1	AVX
CVTDQ2PD	x,x	2	2	p1 p5	4	1	/ (/ /
CVTDQ2PD	x,m64	2	2	p1 p23		1	
VCVTDQ2PD	-	2	2	p1 p25	6		AVX
VCVTDQ2PD VCVTDQ2PD	y,x y,m128	2	2	p1 p3	0	1	AVX
CVT(T)PD2DQ	_	2	2		4	1	AVA
	X,X	2	3	p1 p5	4		
CVT(T)PD2DQ	x,m128	1		p1 p5 p23	_	1	A) ()/
VCVT(T)PD2DQ	x,y	2	2	p1 p5	6	1	AVX
VCVT(T)PD2DQ	x,m256	2	3	p1 p5 p23		1	AVX
CVTPI2PS	x,mm	1	1	p1	4	4	
CVTPI2PS	x,m64	1	2	p1 p23		3	
CVT(T)PS2PI	mm,x	2	2	p1 p5	4	1	
CVT(T)PS2PI	mm,m128	2	2	p1 p23	_	1	
CVTPI2PD	x,mm	2	2	p1 p5	4	1	
CVTPI2PD	x,m64	2	2	p1 p23		1	
CVT(T) PD2PI	mm,x	2	2	p1 p5	4	1	
CVT(T) PD2PI	mm,m128	2	3	p1 p5 p23		1	
CVTSI2SS	x,r32	2	2	p1 p5	4	3	
CVTSI2SS	x,m32	1	2	p1 p23		3	
CVT(T)SS2SI	r32,x	2	2	p0 p1	4	1	
CVT(T)SS2SI	r32,m32	2	3	p0 p1 p23		1	
CVTSI2SD	x,r32/64	2	2	p1 p5	4	3	
CVTSI2SD	x,m32	2	2	p1 p23		3	
CVT(T)SD2SI	r32/64,x	2	2	p0 p1	4	1	
CVT(T)SD2SI	r32,m64	2	3	p0 p1 p23		1	
VCVTPS2PH	x,v,i	2	2	p1 p5	4	1	F16C
VCVTPS2PH	m,v,i	4	4	p1 p4 p5 p23		1	F16C
VCVTPH2PS	V,X	2	2	p1 p5	4	1	F16C
VCVTPH2PS	v,m	2	2	p1 p23		1	F16C
Arithmetic							
ADDSS/D PS/D							
SUBSS/D PS/D	x,x / v,v,v	1	1	p1	3	1	
ADDSS/D PS/D SUBSS/D PS/D	x,m / v,v,m	1	2	p1 p23		1	
ADDSUBPS/D	x,x / v,v,v	1	1	p1	3	1	SSE3
ADDSUBPS/D	x,m / v,v,m	1	2	p1 p23		1	SSE3

1	 		I	l I		I	
HADDPS/D		0		-1.0-5	_	_	0050
HSUBPS/D	x,x / v,v,v	3	3	p1 2p5	5	2	SSE3
HADDPS/D	v m / v v m	4	4	n1 2n5 n22		2	CCE2
HSUBPS/D MULSS/D PS/D	x,m / v,v,m	4 1	4	p1 2p5 p23	5		SSE3
	x,x / v,v,v		1	p01	5	0.5	
MULSS/D PS/D	x,m / v,v,m	1	2	p01 p23	40.40	0.5	
DIVSS DIVPS	x,x	1	1	p0	10-13	7	
DIVSS DIVPS	x,m	1	2	p0 p23	40.00	7	
DIVSD DIVPD	X,X	1	1	p0	10-20	8-14	
DIVSD DIVPD	x,m	1	2	p0 p23	40.04	8-14	A) 0.4
VDIVPS	y,y,y	3	3	2p0 p15	18-21	14	AVX
VDIVPS	y,y,m256	4	4	2p0 p15 p23		14	AVX
VDIVPD	y,y,y	3	3	2p0 p15	19-35	16-28	AVX
VDIVPD	y,y,m256	4	4	2p0 p15 p23		16-28	AVX
RCPSS/PS	X,X	1	1	p0	5	1	
RCPSS/PS	x,m128	1	2	p0 p23		1	
VRCPPS	y,y	3	3	2p0 p15	7	2	AVX
VRCPPS	y,m256	4	4	2p0 p15 p23		2	AVX
CMPccSS/D							
CMPccPS/D	x,x / v,v,v	1	1	p1	3	1	
CMPccSS/D							
CMPccPS/D	x,m / v,v,m	2	2	p1 p23		1	
(U)COMISS/D	x,x	1	1	p1		1	
(U)COMISS/D	x,m32/64	2	2	p1 p23		1	
MAXSS/D PS/D							
MINSS/D PS/D	x,x / v,v,v	1	1	p1	3	1	
MAXSS/D PS/D							
MINSS/D PS/D	x,m / v,v,m	1	2	p1 p23		1	
		•			•	_	00544
ROUNDSS/D PS/D	v,v,i	2	2	2p1	6	2	SSE4.1
	v m i	3	3	251 522		2	SSE4.1
ROUNDSS/D PS/D DPPS	v,m,i	3 4	4	2p1 p23	14	2 2	SSE4.1 SSE4.1
DPPS	x,x,i / v,v,v,i			2p0 p1 p5	14	4	SSE4.1
DPPD	x,m,i / v,v,m,i	6 3	6 3	2p0 p1 p5 p23 p6	0	1	SSE4.1
	X,X,İ	-		p0 p1 p5	9		
DPPD	x,m128,i	4	4	p0 p1 p5 p23		1	SSE4.1
VFMADD		4	_	~01	_	0.5	EN4 0
(all FMA instr.)	V,V,V	1	1	p01	5	0.5	FMA
VFMADD		4	_	m04 m02		0.5	EN4 0
(all FMA instr.)	v,v,m	1	2	p01 p23		0.5	FMA
Math							
SQRTSS/PS	VV	1	1	0q	11	7	
SQRTSS/PS	X,X v m129	1	2	p0 p23	11	7	
VSQRTPS	x,m128	3	3		19	14	AVX
	y,y		4	2p0 p15	19	14	AVX
VSQRTPS	y,m256	4		2p0 p15 p23	16		AVA
SQRTSD/PD	X,X	1	1	p0	16	8-14	
SQRTSD/PD	x,m128	1	2	p0 p23	00.00	8-14	A) /)/
VSQRTPD	y,y	3	3	2p0 p15	28-29	16-28	AVX
VSQRTPD	y,m256	4	4	2p0 p15 p23	_	16-28	AVX
RSQRTSS/PS	X,X	1	1	p0	5	1	
RSQRTSS/PS	x,m128	1	2	p0 p23	_	1	A) 04
VRSQRTPS	y,y	3	3	2p0 p15	7	2	AVX

VRSQRTPS	y,m256	4	4	2p0 p15 p23		2	AVX
Logic AND/ANDN/OR/XO RPS/PD AND/ANDN/OR/XO RPS/PD	x,x / v,v,v x,m / v,v,m	1	1 2	p5 p5 p23	1	1	
Other							
VZEROUPPER		4	4	none		1	AVX
							AVX,
VZEROALL		12	12	none		10	32 bit
VZEROALL		20	20	none		8	AVX, 64 bit
LDMXCSR	m32	3	3	p0 p6 p23	6	3	04 510
STMXCSR	m32	3	4	p0 p4 p6 p237	7	1	
VSTMXCSR	m32	3	_	ρο ρ- ρο ρ201	,	1	AVX
FXSAVE	m4096	130				68	
FXRSTOR	m4096	116				72	
XSAVE		224				84	
XRSTOR		173				111	
XSAVEOPT	m						

Intel Broadwell

List of instruction timings and µop breakdown

Explanation of column headings:

Instruction: Name of instruction. Multiple names mean that these instructions have the same data.

Instructions with or without V name prefix behave the same unless otherwise noted.

Operands: i = immediate data, r = register, mm = 64 bit mmx register, x = 128 bit xmm register,

(x)mm = mmx or xmm register, y = 256 bit ymm register, v = any vector register (mmx, xmm, ymm). same = same register for both operands. <math>m = memory operand, m32 = 32-

bit memory operand, etc.

μορs fused domain:

The number of µops at the decode, rename and allocate stages in the pipeline. Fused

uops count as one.

μops unfused domain:

The total number of µops for all execution port. Fused µops count as two. Fused macroops count as one. The instruction has uop fusion if this number is higher than the num-

ber under fused domain. Some operations are not counted here if they do not go to any

execution port or if the counters are inaccurate.

μορs each port: The number of μops for each execution port. p0 means a μop to execution port 0.

p01means a μop that can go to either port 0 or port 1. p0 p1 means two μops going to

port 0 and 1, respectively.

Port 0: Integer, f.p. and vector ALU, mul, div, branch

Port 1: Integer, f.p. and vector ALU

Port 2: Load Port 3: Load Port 4: Store

Port 5: Integer and vector ALU Port 6: Integer ALU, branch Port 7: Store address

Latency:

This is the delay that the instruction generates in a dependency chain. The numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Where hyperthreading is enabled, the use of the same execution units in the other thread leads to inferior performance. Denormal numbers, NAN's and infinity do not increase the latency. The time unit used is core clock cycles, not the reference clock cycles given by the time stamp counter.

Reciprocal throughput:

The average number of core clock cycles per instruction for a series of independent in-

structions of the same kind in the same thread.

Integer instructions

Instruction	Operands	µops fused domain	µops unfused domain	μops each port	Latency	Recipro- cal through put	Comments
Move instruc- tions							
MOV	r,i	1	1	p0156		0.25	
MOV	r8/16,r8/16	1	1	p0156	1	0.25	
MOV	r32/64,r32/64	1	1	p0156	0-1	0.25	may be elim.
MOV	r8l,m	1	2	p23 p0156		0.5	
MOV	r8h,m	1	1	p23		0.5	
MOV	r16,m	1	2	p23 p0156		0.5	
MOV	r32/64,m	1	1	p23	2	0.5	all addressing modes
MOV	m,r	1	2	p237 p4	3	1	

Broadwell

MOV	m,i	1	2	p237 p4		1	1
MOVNTI	· ·	1 2	2	p23 p4	~400	1	
MOVSX MOVZX	m,r	1	1	p0156	~ 4 00	0.25	
MOVSXD	r,r	I		p0156	ı	0.25	
MOVSX MOVZX	r16,m8	1	2	p23 p0156		0.5	
MOVSX MOVZX MOVSXD	r,m	1	1	p23		0.5	all other combinations
CMOVcc	r,r	1	1	p06	1	0.5	
CMOVcc	r,m	2	2	p06 p23		0.5	
XCHG	r,r	3	3	3p0156	2	1	
XCHG	r,m	8	8		21		implicit lock
XLAT		3	3	p23 2p0156	7	2	
PUSH	r	1	2	p237 p4	3	1	
PUSH	i	1	2	p237 p4		1	
PUSH	m	2	3	p4 2p237		1	
PUSH	stack pointer	2	3	p0156 p237 p4		1	
PUSHF(D/Q)		3	4	p1 p4 p237 p06		1	
PUSHA(D)		11	19			8	not 64 bit
POP	r	1	1	p23	2	0.5	
POP	stack pointer	3	3	p23 2p0156		4	
POP	m	2	3	2p237 p4		1	
POPF(D/Q)		9	9			18	
POPA(D)		18	18			8	not 64 bit
LAHF SAHF		1	1	p06	1	1	
SALC		3	3	3p0156	1	1	not 64 bit
LEA	r16,m	2	2	p1 p05	2-4	1	16 or 32 bit address size
LEA	r32/64,m	1	1	p15	1	0.5	1 or 2 compo- nents in address
LEA	r32/64,m	1	1	p1	3	1	3 components in address
LEA	r32/64,m	1	1	p1		1	rip relative address
BSWAP	r32	1	1	p15	1	0.5	
BSWAP	r64	2	2	p06 p15	2	1	
MOVBE	r16,m16	3	3	2p0156 p23		0.5-1	MOVBE
MOVBE	r32,m32	2	2	p15 p23		0.5	MOVBE
MOVBE	r64,m64	3	3	2p0156 p23		0.5	MOVBE
MOVBE	m16,r16	2	3	p06 p237 p4		1	MOVBE
MOVBE	m32,r32	2	3	p15 p237 p4		1	MOVBE
MOVBE	m64,r64	3	4	p06 p15 p237 p4		1	MOVBE
PREFETCHNTA/ 0/1/2	m	1	1	p23		0.5	
PREFETCHW	m	1	1	p23		1	PREFETCHW
LFENCE		2		none counted		4	
MFENCE		3	3	p23 p4		33	
SFENCE		2	2	p23 p4		6	
Arithmetic in- structions							
ADD SUB	r,r/i	1	1	p0156	1	0.25	

ADD CLID	rm	1	ا م	n0156 n22		0.5	l I
ADD SUB	r,m	1 2	2 4	p0156 p23	6	0.5	
ADD SUB	m,r/i	2	4	2p0156 2p237 p4	6	1	
ADC SBB	r,r/i	1	1	p06	1	1	
ADC SBB	r,m	2	2	p06 p23	•	1	
ADC SBB	m,r/i	4	6	3p0156 2p237 p4	7	2	
ADC ODD	111,171	7		opo 100 2p207 p+	,	2	
CMP	r,r/i	1	1	p0156	1	0.25	
CMP	m,r/i	1	2	p0156 p23	1	0.5	
INC DEC NEG	r	1	1	p0156	1	0.25	
NOT				'			
INC DEC NOT	m	3	4	p0156 2p237 p4	6	1	
NEG	m	2	4	p0156 2p237 p4	6	1	
AAA		2	2	p1 p56	4		not 64 bit
AAS		2	2	p1 p056	6		not 64 bit
DAA DAS		3	3	p1 2p056	4		not 64 bit
AAD		3	3	p1 2p056	6		not 64 bit
AAM		8	8	p0 p1 p5 p6	21	7	not 64 bit
MUL IMUL	r8	1	1	p1	3	1	
MUL IMUL	r16	4	4	p1 p0156	4	2	
MUL IMUL	r32	3	3	p1 p0156	4	2	
MUL IMUL	r64	2	2	p1 p6	3	1	
MUL IMUL	m8	1	2	p1 p23		1	
MUL IMUL	m16	4	5	p1 3p0156 p23		2	
MUL IMUL	m32	3	4	p1 2p0156 p23		2	
MUL IMUL	m64	2	3	p1 p6 p23		1	
IMUL	r,r	1	1	p1 p1	3	1	
IMUL	r,m	1	2	p1 p23	Ū	1	
IMUL	r16,r16,i	2	2	p1 p0156	4	1	
IMUL	r32,r32,i	1	1	p1	3	1	
IMUL	r64,r64,i	1	1	p1	3	1	
IMUL	r16,m16,i	2	3	p1 p0156 p23	-	1	
IMUL	r32,m32,i	1	2	p1 p23		1	
IMUL	r64,m64,i	1	2	p1 p23		1	
MULX	r32,r32,r32	3	3	p1 2p056	4	1	BMI2
MULX	r32,r32,m32	3	4	p1 2p056 p23		1	BMI2
MULX	r64,r64,r64	2	2	p1 p5	4	1	BMI2
MULX	r64,r64,m64	2	3	p1 p6 p23		1	BMI2
DIV	r8	9	9	p0 p1 p5 p6	22-25	9	
DIV	r16	11	11	p0 p1 p5 p6	23-26	9	
DIV	r32	10	10	p0 p1 p5 p6	22-29	9	
DIV	r64	36	36	p0 p1 p5 p6	32-95	21-73	
IDIV	r8	9	9	p0 p1 p5 p6	23-26	6	
IDIV	r16	10	10	p0 p1 p5 p6	23-26	6	
IDIV	r32	9	9	p0 p1 p5 p6	22-29	6	
IDIV	r64	59	59	p0 p1 p5 p6	39-103	24-81	
CBW	-	1	1	p0156	1		
CWDE		1	1	p0156	1		
CDQE		1	1	p0156	1		
CWD		2	2	p0156	1		
CDQ		1	1	p06	1		
CQO		1	1	p06	1		
- ~~	1	•	'			ı	ı

POPCNT	r,r	1	1 1	p1	3	1	SSE4.2
POPCNT	r,m	1	2	p1 p23		1	SSE4.2
CRC32	r,r	1	1	p1	3	1	SSE4.2
CRC32	r,m	1	2	p1 p23		1	SSE4.2
0.1002	,,		_	p . p=0			0022
Logic instruc- tions							
AND OR XOR	r,r/i	1	1	p0156	1	0.25	
AND OR XOR	r,m	1	2	p0156 p23		0.5	
AND OR XOR	m,r/i	2	4	2p0156 2p237 p4	6	1	
TEST	r,r/i	1	1	p0156	1	0.25	
TEST	m,r/i	1	2	p0156 p23	1	0.5	
SHR SHL SAR	r,i	1	1	p0100 p20	1	0.5	
SHR SHL SAR	m,i	3	4	2p06 p237 p4	•	2	
SHR SHL SAR	r,cl	3	3	3p06	2	2	
SHR SHL SAR	m,cl	5	6	3p06 2p23 p4		4	
ROR ROL	r,1	2	2	2p06	1	1	short form
ROR ROL	r,i	1	1	p06	1	0.5	3110111101111
ROR ROL	m,i	4	5	2p06 2p237 p4	ı	2	
ROR ROL	r,cl	3	3	3p06	2	2	
ROR ROL	m,cl	5	6	3p06 p23 p4	2	4	
RCR RCL		3	3	2p06 p0156	2	2	
RCR RCL	r,1	4	6	2p00 p0130	2	3	
RCR RCL	m,1	8	8	20156	6	6	
RCR RCL	r,i m i	11	11	p0156	O	6	
RCR RCL	m,i	8	8	20156	6		
RCR RCL	r,cl	11	11	p0156	O	6 6	
SHRD SHLD	m,cl	1	1	n1	3	1	
	r,r,i	1	5	p1	3		
SHRD SHLD SHLD	m,r,i	3	4	20156	2	2 2	
SHRD	r,r,cl	4		p0156	3	2	
SHRD SHLD	r,r,cl	4 5	4 7	p0156	4	4	
SHLX SHRX SARX	m,r,cl	1	1	206	1		BMI2
SHLX SHRX SARX	r,r,r	2	2	p06	1	0.5 0.5	BMI2
RORX	r,m,r	1	1	p06 p23	1	0.5	BMI2
RORX	r,r,i	2	2	p06	I	0.5	BMI2
BT	r,m,i	1	1	p06 p23 p06	1	0.5	DIVIIZ
BT	r,r/i m r	10	10	ροσ	ı	5	
BT	m,r	2	2	n06 n22		0.5	
BTR BTS BTC	m,i	1	1	p06 p23 p06	1	0.5	
BTR BTS BTC	r,r/i	10	10	ροσ	I	5	
BTR BTS BTC	m,r	2		206 222			
	m,i		2	p06 p23	_	0.5	
BSF BSR	r,r	1	1	p1	3	1	
BSF BSR	r,m	1	2	p1 p23	4	1	
SETcc SETcc	r	1 2	1 3	p06	1	0.5	
	m			p06 p237 p4		1	
CLC		1	0	none		0.25	
STC		1	1	p0156	4	0.25	
CMC		1	1	p0156	1	1	
CLD STD		3	3	p15 p6	•	4	1.70
LZCNT	r,r	1	1	p1	3	1	LZCNT
LZCNT	r,m	1	2	p1 p23		1	LZCNT

I I	l	1 .		1		I .	1 1
TZCNT	r,r	1	1	p1	3	1	BMI1
TZCNT	r,m	1	2	p1 p23		1	BMI1
ANDN	r,r,r	1	1	p15	1	0.5	BMI1
ANDN	r,r,m	1	2	p15 p23	1	0.5	BMI1
BLSI BLSMSK BLSR	r,r	1	1	p15	1	0.5	BMI1
BLSI BLSMSK BLSR	r,m	1	2	p15 p23		0.5	BMI1
BEXTR	r,r,r	2	2	2p0156	2	0.5	BMI1
BEXTR	r,m,r	3	3	2p0156 p23	_	1	BMI1
BZHI	r,r,r	1	1	p15	1	0.5	BMI2
BZHI		1	2	p15 p23		0.5	BMI2
	r,m,r				3		
PDEP	r,r,r	1	1	p1	3	1	BMI2
PDEP	r,r,m	1	2	p1 p23	0	1	BMI2
PEXT	r,r,r	1	1	p1	3	1	BMI2
PEXT	r,r,m	1	2	p1 p23		1	BMI2
Control transfer						4.0	
JMP	short/near	1	1	p6		1-2	
JMP	r	1	1	p6		2	
JMP	m	1	2	p23 p6		2	
Conditional jump	short/near	1	1	p6		1-2	predicted taken
Conditional jump	short/near	1	1	p06		0.5-1	predicted not taken
Fused arithmetic and branch		1	1	p6		1-2	predicted taken
Fused arithmetic and branch		1	1	p06		0.5-1	predicted not taken
J(E/R)CXZ	short	2	2	p0156 p6		0.5-2	
LOOP	short	7	7	posse pe		5	
LOOP(N)E	short	11	11			6	
CALL	near	2	3	p237 p4 p6			
CALL	r	2	3	p237 p4 p6		2 2	
CALL	m	3	4	2p237 p4 p6		3	
RET	111	1	2	p237 p4 p0		1	
RET	i	3	4	p23 2p6 p015		2	
BOUND	-			p23 2p6 p013		8	not 64 bit
	r,m	15	15				
INTO		4	4			5	not 64 bit
String instruc- tions							
LODSB/W		3	3	2p0156 p23		1	
LODSD/Q		2	2	p0156 p23		1	
REP LODS		5n+12		' '		~2n	
STOS		3	3	p23 p0156 p4		1	
REP STOS		<2n	-	, , , , , , ,		~0.5n	worst case
REP STOS		2.6/32B				1/32B	best case aligned by 32
MOVS		5	5	2p23 p4 2p0156		4	J
REP MOVS		~2n		_p20 p i 2p0 i00		< 1n	worst case
REP MOVS		4/32B				1/32B	best case
							aligned by 32

SCAS		3	3	p23 2p0156		1	
REP SCAS		≥6n				≥2n	
CMPS		5	5	2p23 3p0156		4	
REP CMPS		≥8n				≥2n	
Synchronization	instructions						
XADD	m,r	4	5			6	
LOCK XADD	m,r	9	9			21	
LOCK ADD	m,r	8	8			21	
CMPXCHG	m,r	5	6			7	
LOCK CMPXCHG	m,r	10	10			21	
CMPXCHG8B	m,r	15	15			8	
LOCK CMPXCHG8B	m,r	19	19			21	
CMPXCHG16B	m,r	22	22			15	
LOCK CMPXCHG16B	m,r	24	24			27	
Other							
NOP (90)		1	0	none		0.25	
Long NOP (0F 1F)		1	0	none		0.25	
PAUSE		5	5	p05 3p6		9	
ENTER	a,0	12	12			8	
ENTER	a,b	~14+7b	~45+7b		~87+2b		
LEAVE		3	3	2p0156 p23		5	
XGETBV		8	8			5	XGETBV
RDTSC		15	15			24	
RDTSCP		21	21			30	RDTSCP
RDPMC		34	34			37	
RDRAND	r	16	16	p23 15p0156		~230	RDRAND
RDSEED	r	16	16	p23 15p0156		~230	RDSEED

Floating point x87 instructions

Instruction	Operands	μορs fused domain	μορs unfused domain	μορs each port	Latency	Recipro- cal through put	Comments
Move instruc- tions					_		
FLD	r	1	1	p01	1	0.5	
FLD	m32/64	1	1	p23	3	0.5	
FLD	m80	4	4	2p01 2p23	4	2	
FBLD	m80	43	43		47	22	
FST(P)	r	1	1	p01	1	0.5	
FST(P)	m32/m64	1	2	p4 p237	4	1	
FSTP	m80	7	7	3p0156 2p23 2p4	5	5	
FBSTP	m80	238	226		269	267	
FXCH	r	2	0	none	0	0.5	
FILD	m	1	2	p01 p23	6	1	
FIST(P)	m	3	3	p1 p23 p4	7	1	
FISTTP	m	3	3	p1 p23 p4	7	2	SSE3
FLDZ		1	1	p01		1	
FLD1		2	2	2p01		2	

				advven		
FLDPI FLDL2E et FCMOVcc FNSTSW FNSTSW FLDCW FNSTCW FINCSTP FDECS FFREE(P) FNSAVE FRSTOR	r AX m16 m16 m16	2 3 2 2 3 2 1 1 152 95	2 3 2 3 3 1 1 152 95	2p01 2p0 p5 p0 p0156 p0 p4 p237 p01 p23 p6 p237 p4 p6 p01 p01	2 6 6 7 6 0 173 175	2 1 1 2 1 0.5 0.5 173 175
Arithmetic in- structions FADD(P)						
FSUB(R)(P) FADD(P)	r	1	1	р1	3	1
FSUB(R)(P) FMUL(P) FMUL(P) FDIV(R)(P) FDIV(R)(P) FABS FCHS FCOM(P) FUCOM FCOM(P) FUCOM FCOMI(P) FUCOMI(P) FUCOMI(P) FIADD FISUB(R)	r m	1 1 1 1 1 1 1 1 2	2 1 2 1 1 1 2 2 3 3	p1 p23 p0 p0 p23 p0 p0 p23 p0 p0 p1 p1 p23 2p01 3p01 2p1 p23	5 10-15 1 1 3	1 1 4-5 4-5 1 1 1 1.5 2
FIMUL FIDIV(R) FICOM(P) FTST FXAM FPREM FPREM1 FRNDINT	m m m	2 2 1 2 28 28 17	3 3 1 2 28 28 17	p0 p1 p23 p0 p1 p23 2p1 p23 p1 2p1	3 6 20-24 23-48 11	2 1 2 13 13 23
Math FSCALE FXTRACT FSQRT FSIN FCOS FSINCOS F2XM1 FYL2X FYL2XP1 FPTAN FPATAN		27 17 1 75-100 70-100 70-110 16-86 55-96 56 71-102 27-71	27 17 1	p0	125 12 10-23 48-106 49-112 52-124 63-68 92 74 132 97-147	130 11 4-9
Other FNOP		1	1	p01		0.5

WAIT	2	2	p01	1	
FNCLEX	5	5	p0156	22	
FNINIT	26	26		84	

Integer vector instructions

Integer vector	Operands	μορs fused domain	µops unfused domain	μορs each port	Latency	Recipro- cal through put	Comments
Move instruc- tions							
MOVD	r32/64,(x)mm	1	1	р0	1	1	
MOVD	m32/64,(x)mm	1	2	p237 p4	3	1	
MOVD	(x)mm,r32/64	1	1	p5	1	1	
MOVD	(x)mm,m32/64	1	1	p23	3	0.5	
MOVQ	r64,(x)mm	1	1	p0	1	1	
MOVQ	(x)mm,r64	1	1	p5	1	1	
MOVQ	(x)mm,(x)mm	1		p015	1 1	0.33	
MOVQ	(x)mm,m64	1	1	p23	3	0.5	
MOVQ	m64, (x)mm		2	p237 p4	3	1	
MOVDQA/U	, ,	1	1	p237 p4	0-1	0.25	may be elim
MOVDQA/U	X,X	1		·			may be elim.
· ·	x, m128	1 .	1	p23	3	0.5	
MOVDQA/U	m128, x	1	2	p237 p4	3	1	
\				0.45	0.4	0.05	AVX
VMOVDQA/U	y,y	1	1	p015	0-1	0.25	may be elim.
VMOVDQA/U	y,m256	1	1	p23	3	0.5	AVX
VMOVDQA/U	m256,y	1	2	p237 p4	4	1	AVX
LDDQU	x, m128	1	1	p23	3	0.5	SSE3
MOVDQ2Q	mm, x	2	2	p01 p5	1	1	
MOVQ2DQ	x,mm	1	1	p015	1	0.33	
MOVNTQ	m64,mm	1	2	p237 p4	~400	1	
MOVNTDQ	m128,x	1	2	p237 p4	~400	1	
VMOVNTDQ	m256,y	1	2	p237 p4	~400	1	AVX2
MOVNTDQA	x, m128	1	1	p23	3	0.5	SSE4.1
VMOVNTDQA	y,m256	1	1	p23	3	0.5	AVX2
PACKSSWB/DW	J.						
PACKUSWB	mm,mm	3	3	p5	2	2	
PACKSSWB/DW	,			,			
PACKUSWB	mm,m64	3	3	p23 2p5		2	
PACKSSWB/DW	, -						
PACKUSWB	x,x / y,y,y	1	1	p5	1	1	
PACKSSWB/DW	7,77 ,7,7,7			Po	•		
PACKUSWB	x,m / y,y,m	1	2	p23 p5		1	
PACKUSDW	x,x / y,y,iii	1	1	p5	1	1	SSE4.1
PACKUSDW	x,m / y,y,m	1 1	2	p23 p5	'	1	SSE4.1
PUNPCKH/L	^,!!! / y,y,!!!	'		ρ23 ρ3		'	JOL4.1
BW/WD/DQ	v,v / v,v,v	1	1	n5	1	1	
	v, v / v, v, v	'	'	p5	'	'	
PUNPCKH/L	\m\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4	2	n22 nE		4	
BW/WD/DQ	v,m / v,v,m	1		p23 p5		1	
PUNPCKH/L						4	
QDQ	x,x / y,y,y	1	1	p5	1	1	
PUNPCKH/L				- 00 5			
QDQ	x,m / y,y,m	2	2	p23 p5		1	

PMOVSX/ZX BW							
BD BQ DW DQ	X,X	1	1	p5	1	1	SSE4.1
PMOVSX/ZX BW BD BQ DW DQ	x,m	1	2	p23 p5		1	SSE4.1
VPMOVSX/ZX BW BD BQ DW DQ	y,x	1	1	p5	3	1	AVX2
VPMOVSX/ZX BW BD BQ DW DQ	y,m	2	2	p5 p23		1	AVX2
PSHUFB	v,v / v,v,v	1	1	p5	1	1	SSSE3
PSHUFB	v,m / v,v,m	2	2	p23 p5		1	SSSE3
PSHUFW	mm,mm,i	1	1	p5	1	1	
PSHUFW	mm,m64,i	2	2	p23 p5		1	
PSHUFD	v,v,i	1	1	p5	1	1	
PSHUFD	v,m,i	2	2	p23 p5		1	
PSHUFL/HW	v,v,i	1	1	p5	1	1	
PSHUFL/HW	v,m,i	2	2	p23 p5		1	
PALIGNR	v,v,i / v,v,v,i	1	1	p5	1	1	SSSE3
PALIGNR	v,m,i / v,v,m,i	2	2	p23 p5		1	SSSE3
PBLENDVB	x,x,xmm0	2	2	2p5	2	2	SSE4.1
PBLENDVB	x,m,xmm0	3	3	2p5 p23	_	2	SSE4.1
VPBLENDVB	V,V,V,V	2	2	2p5	2	2	AVX2
VPBLENDVB	v,v,m,v	3	3	2p5 p23	_	2	AVX2
PBLENDW	x,x,i / v,v,v,i	1	1	p5	1	1	SSE4.1
PBLENDW	x,m,i / v,v,m,i	2	2	p23 p5		1	SSE4.1
VPBLENDD	v,v,v,i	1	1	p015	1	0.33	AVX2
VPBLENDD	v,v,m,i	2	2	p015 p23		0.5	AVX2
VPERMD	y,y,y	1	1	p5	3	1	AVX2
VPERMD	y,y,m	1	2	p5 p23		1	AVX2
VPERMQ	y,y,ii	1	1	p5	3	1	AVX2
VPERMQ	y,y,i y,m,i	2	2	p5 p23		1	AVX2
VPERM2I128	y,y,y,i y,y,y,i	1	1	p5	3	1	AVX2
VPERM2I128	y,y,m,i	2	2	p5 p23		1	AVX2
MASKMOVQ	mm,mm	4	4	p0 p4 2p23	18-500	1	, , , , , ,
MASKMOVDQU	x,x	10	10	4p04 2p56 4p23	18-500	6	
VPMASKMOVD/Q	v,v,m	3	3	p23 2p5	4	2	AVX2
VPMASKMOVD/Q	m,v,v	4	4	p0 p1 p4 p23	15	1	AVX2
PMOVMSKB	r,v	1	1	p0	3	1	/ ///-
PEXTRB/W/D/Q	r32,x,i	2	2	p0 p5	2	1	SSE4.1
PEXTRB/W/D/Q	m8,x,i	2	3	p23 p4 p5	_	1	SSE4.1
VEXTRACTI128	x,y,i	1	1	p5	3	1	AVX2
VEXTRACTI128	m,y,i	2	2	p23 p4	4	1	AVX2
PINSRB	x,r32,i	2	2	p5	2	2	SSE4.1
PINSRB	x,m8,i	2	2	p23 p5	_	1	SSE4.1
PINSRW	(x)mm,r32,i	2	2	p5	2	2	0021.1
PINSRW	(x)mm,m16,i	2	2	p23 p5	_	1	
PINSRD/Q	x,r32,i	2	2	p5	2	2	SSE4.1
PINSRD/Q	x,m32,i	2	2	p23 p5		1	SSE4.1
VINSERTI128	y,y,x,i	1	1	p5	3	1	AVX2
VINSERTI128	y,y,x,i y,y,m,i	2	2	p015 p23	4	0.5	AVX2 AVX2
VPBROADCAST	y, y, 111,1			ρυ 13 μ23	7	0.5	7,474
B/W/D/Q	x,x	1	1	р5	1	1	AVX2
VPBROADCAST B/W	x,m8/16	3	3	p01 p23 p5	5	1	AVX2

l	ı	I	I	l	I	1 1	
VPBROADCAST D/Q	x,m32/64	1	1	p23	4	0.5	AVX2
VPBROADCAST	X,11102/04	'	'	ρ20		0.5	AVAL
B/W/D/Q	y,x	1	1	p5	3	1	AVX2
VPBROADCAST	, , , , , , , , , , , , , , , , , , ,						
B/W	y,m8/16	3	3	p01 p23 p5	7	1	AVX2
VPBROADCAST							
D/Q	y,m32/64	1	1	p23	5	0.5	AVX2
VBROADCASTI128	y,m128	1	1	p23	3	0.5	AVX2
VPGATHERDD	x,[r+s*x],x	10	10			6	AVX2
VPGATHERDD	y,[r+s*y],y	14	14			7	AVX2
VPGATHERQD	x,[r+s*x],x	9	9			6	AVX2
VPGATHERQD	x,[r+s*y],x	10	10			6	AVX2
VPGATHERDQ	x,[r+s*x],x	7	7			5	AVX2
VPGATHERDQ	y,[r+s*x],y	9	9			6	AVX2
VPGATHERQQ	x,[r+s*x],x	7	7			5	AVX2
VPGATHERQQ	y,[r+s*y],y	9	9			6	AVX2
Arithmetic in-							
structions							
PADD/SUB(S,US)	,						
B/W/D/Q	v,v / v,v,v	1	1	p15	1	0.5	
PADD/SUB(S,US) B/W/D/Q		_		m1F m00		0.5	
	v,m / v,v,m	1	2	p15 p23		0.5	
PHADD(S)W/D				-1 O-5			00050
PHSUB(S)W/D	v,v / v,v,v	3	3	p1 2p5	3	2	SSSE3
PHADD(S)W/D		4	4	n4 0n5 n00			CCCE2
PHSUB(S)W/D	v,m / v,v,m	4	4	p1 2p5 p23		2	SSSE3
PCMPEQB/W/D		_	_	m15	_	0.5	
PCMPGTB/W/D	v,v / v,v,v	1	1	p15	1	0.5	
PCMPEQB/W/D		1	2	n15 n22		0.5	
PCMPGTB/W/D	v,m / v,v,m	1	2	p15 p23	_	0.5	00544
PCMPEQQ	v,v / v,v,v	1	1	p15	1	0.5	SSE4.1
PCMPEQQ PCMPGTQ	v,m / v,v,m	1	2	p15 p23	_	0.5	SSE4.1
	v,v / v,v,v	1	1	p0	5	1 1	SSE4.2
PCMPGTQ	v,m / v,v,m	1	2	p0 p23		1	SSE4.2
PMULL/HW		1	1	-0	5	4	
PMULHUW	v,v / v,v,v	1	1	р0	5	1	
PMULL/HW PMULHUW	um luum	4	2	n0 n22		1	
PMULHRSW	v,m / v,v,m	1 1		p0 p23	5	1 1	SSSE3
	v,v / v,v,v	ļ -	1 2	p0	5	1 1	SSSE3
PMULHRSW	v,m / v,v,m	1		p0 p23	10	1	SSE4.1
PMULLD	x,x / y,y,y	2 3	2	2p0	10	2 2	
PMULLD	x,m / y,y,m		3	2p0 p23	_		SSE4.1
PMULDQ	x,x / y,y,y	1	1	p0	5	1 1	SSE4.1
PMULDQ	x,m / y,y,m	1	2	p0 p23	_	1	SSE4.1
PMULUDQ	v,v / v,v,v	1	1	p0	5	1	
PMULUDQ	v,m / v,v,m	1	2	p0 p23	_	1	
PMADDWD	v,v / v,v,v	1	1	p0	5	1 1	
PMADDWD	v,m / v,v,m	1	2	p0 p23	_	1 1	00050
PMADDUBSW	v,v / v,v,v	1	1	p0	5	1	SSSE3
PMADDUBSW	v,m / v,v,m	1	2	p0 p23		1	SSSE3
PAVGB/W	v,v / v,v,v	1	1	p15	1	0.5	
PAVGB/W	v,m / v,v,m	1	2	p15 p23		0.5	

PMIN/PMAX							
SB/SW/SD UB/UW/UD	x,x / y,y,y	1	1	p15	1	0.5	SSE4.1
PMIN/PMAX SB/SW/SD							
UB/UW/UD	x,m / y,y,m	1	2	p15 p23		0.5	SSE4.1
PHMINPOSUW	X,X	1	1	p0	5	1	SSE4.1
PHMINPOSUW	x,m128	1	2	p0 p23		1	SSE4.1
PABSB/W/D	V,V	1	1	p15	1	0.5	SSSE3
PABSB/W/D	v,m	1	2	p15 p23		0.5	SSSE3
PSIGNB/W/D	v,v / v,v,v	1	1	p15	1	0.5	SSSE3
PSIGNB/W/D	v,m / v,v,m	1	2	p15 p23		0.5	SSSE3
PSADBW	v,v / v,v,v	1	1	p0	5	1	
PSADBW	v,m / v,v,m	1	2	p0 p23		1	
MPSADBW	x,x,i / v,v,v,i	3	3	p0 2p5	6	2	SSE4.1
MPSADBW	x,m,i / v,v,m,i	4	4	p0 2p5 p23		2	SSE4.1
Logic instruc- tions							
PAND PANDN]						
POR PXOR	v,v / v,v,v	1	1	p015	1	0.33	
PAND PANDN							
POR PXOR	v,m / v,v,m	1	2	p015 p23		0.5	
PTEST	V,V	2	2	p0 p5	2	1	SSE4.1
PTEST	v,m	2	3	p0 p5 p23		1	SSE4.1
PSLLW/D/Q PSRLW/D/Q							
PSRAW/D/Q	mm,mm	1	1	p0	1	1	
PSLLW/D/Q							
PSRLW/D/Q							
PSRAW/D/Q	mm,m64	1	2	p0 p23		1	
PSLLW/D/Q							
PSRLW/D/Q							
PSRAW/D/Q	x,x / v,v,x	2	2	p0 p5	2	1	
PSLLW/D/Q							
PSRLW/D/Q							
PSRAW/D/Q	x,m / v,v,m	2	2	p0 p23		1	
PSLLW/D/Q							
PSRLW/D/Q							
PSRAW/D/Q	v,i / v,v,i	1	1	p0	1	1	
VPSLLVD/Q							
VPSRAVD							
VPSRLVD/Q	V,V,V	3	3	2p0 p5	2	2	AVX2
VPSLLVD/Q							
VPSRAVD							
VPSRLVD/Q	v,v,m	4	4	2p0 p5 p23		2	AVX2
PSLLDQ							
PSRLDQ	x,i / v,v,i	1	1	p5	1	1	
String instruc- tions							
PCMPESTRI	x,x,i	8	8	6p05 2p16	4	4	SSE4.2
PCMPESTRI	x,m128,i	8	8	3p0 2p16 2p5 p23		4	SSE4.2
PCMPESTRM	x,x,i	9	9	3p0 2p16 4p5	11	11	SSE4.2
1			1		•		'

PCMPESTRM	x,m128,i	9	9	6p05 2p16 p23		5	SSE4.2
PCMPISTRI	x,111120,1 x,x,i	3	3	3p0	3	3	SSE4.2
	, ,			1 - 1	J	3	
PCMPISTRI	x,m128,i	4	4	3p0 p23	44	_	SSE4.2
PCMPISTRM	x,x,i	3	3	3p0	11	11	SSE4.2
PCMPISTRM	x,m128,i	4	4	3p0 p23		3	SSE4.2
Encryption instru	ıctions						
PCLMULQDQ	x,x,i	1	1	p0	5	1	CLMUL
PCLMULQDQ	x,m,i	2	2	p0 p23		1	CLMUL
AESDEC,							
AESDECLAST,							
AESENC,							
AESENCLAST	X,X	1	1	p5	7	1	AES
AESDEC,	,			r ·			
AESDECLAST,							
AESENC,							
AESENCLAST	x,m	2	2	p5 p23		1.5	AES
AESIMC	X,X	2	2	2p5	14	2	AES
AESIMC	x,m	3	3	2p5 p23		2	AES
	λ,ιιι			Ζρο ρ2ο			ALO
AESKEYGENAS SIST	v v i	10	10	200 005	10	9	AES
	x,x,i	10	10	2p0 8p5	10	9	ALS
AESKEYGENAS		4.0	4.0				
SIST	x,m,i	10	10	2p0 p23 7p5		8	AES
Other							
EMMS		31	31			12	

Floating point XMM and YMM instructions

Instruction	Operands	μορs fused domain	µops unfused domain	μορs each port	Latency	Recipro- cal through put	Comments
Move instruc- tions							
MOVAPS/D	X,X	1	1	p5	0-1	1	may be elim.
VMOVAPS/D	y,y	1	1	p5	0-1	1	may be elim.
MOVAPS/D MOVUPS/D VMOVAPS/D	x,m128	1	1	p23	3	0.5	
VMOVUPS/D	y,m256	1	1	p23	3	0.5	AVX
MOVAPS/D MOVUPS/D VMOVAPS/D	m128,x	1	2	p237 p4	3	1	
VMOVUPS/D	m256,y	1	2	p237 p4	4	1	AVX
MOVSS/D	X,X	1	1	p5	1	1	
MOVSS/D	x,m32/64	1	1	p23	3	0.5	
MOVSS/D	m32/64,x	1	2	p237 p4	3	1	
MOVHPS/D	x,m64	1	2	p23 p5	4	1	
MOVHPS/D	m64,x	1	2	p4 p237	3	1	
MOVLPS/D	x,m64	1	2	p23 p5	4	1	
MOVLPS/D	m64,x	1	2	p4 p237	3	1	
MOVHLPS	x,x	1	1	p5	1	1	
MOVLHPS	x,x	1	1	p5	1	1	

				1 -			I
MOVMSKPS/D	r32,x	1	1	p0	3	1	
VMOVMSKPS/D	r32,y	1	1	p0	3	1	
MOVNTPS/D	m128,x	1	2	p4 p237	~400	1	
VMOVNTPS/D	m256,y	1	2	p4 p237	~400	1	AVX
SHUFPS/D	x,x,i / v,v,v,i	1	1	p5	1	1	
SHUFPS/D	x,m,i / v,v,m,i	2	2	p5 p23		1	
VPERMILPS/PD	v,v,i	1	1	p5	1	1	AVX
VPERMILPS/PD	v,m,i	2	2	p5 p23		1	AVX
VPERMILPS/PD	V,V,V	1	1	p5	1	1	AVX
VPERMILPS/PD	v,v,m	2	2	p5 p23		1	AVX
VPERM2F128	y,y,y,i	1	1	p5	3	1	AVX
VPERM2F128	y,y,m,i	2	2	p5 p23		1	AVX
VPERMPS	y,y,y	1	1	p5	3	1	AVX2
VPERMPS	y,y,m	1	2	p5 p23	-	1	AVX2
VPERMPD	y,y,i	1	_ 1	p5	3	1	AVX2
VPERMPD	y,m,i	2	2	p5 p23		1	AVX2
BLENDPS/PD	x,x,i / v,v,v,i	1	1	p015	1	0.33	SSE4.1
BLENDPS/PD	x,m,i / v,v,m,i	2	2	p015 p23	· ·	0.5	SSE4.1
BLENDVPS/PD	x,x,xmm0	2	2	2p5	2	2	SSE4.1
BLENDVPS/PD	x,m,xmm0	3	3	2p5 p23		2	SSE4.1
VBLENDVPS/PD		2	2	2p5 p25 2p5	2	2	AVX
	V,V,V,V	3	3	· ·		2	AVX
VBLENDVPS/PD	v,v,m,v		1	2p5 p23	4	1	
MOVDDUP	V,V	1		p5	1	· •	SSE3
MOVDDUP	v,m	1	1	p23	3	0.5	SSE3
VBROADCASTSS	x,m32	1	1	p23	4	0.5	AVX
VBROADCASTSS	y,m32	1	1	p23	5	0.5	AVX
VBROADCASTSS	x,x	1	1	p5	1	1	AVX2
VBROADCASTSS	y,x	1	1	p5	3	1	AVX2
VBROADCASTSD	y,m64	1	1	p23	5	0.5	AVX
VBROADCASTSD	y,x	1	1	p5	3	1	AVX2
VBROADCASTF128	y,m128	1	1	p23	4	0.5	AVX
MOVSH/LDUP	V,V	1	1	p5	1	1	SSE3
MOVSH/LDUP	v,m	1	1	p23	3	0.5	SSE3
UNPCKH/LPS/D	x,x / v,v,v	1	1	p5	1	1	SSE3
UNPCKH/LPS/D	x,m / v,v,m	1	2	p5 p23		1	SSE3
EXTRACTPS	r32,x,i	2	2	p0 p5		1	SSE4.1
EXTRACTPS	m32,x,i	2	3	p0 p5 p23	4	1	SSE4.1
VEXTRACTF128	x,y,i	1	1	p5	3	1	AVX
VEXTRACTF128	m128,y,i	2	2	p23 p4	4	1	AVX
INSERTPS	x,x,i	1	1	p5	1	1	SSE4.1
INSERTPS	x,m32,i	2	2	p23 p5	4	1	SSE4.1
VINSERTF128	y,y,x,i	1	1	p5	3	1	AVX
VINSERTF128	y,y,m128,i	2	2	p015 p23	4	2	AVX
VMASKMOVPS/D	v,v,m	3	3	2p5 p23	4	2	AVX
VMASKMOVPS/D	m128,x,x	4	4	p0 p1 p4 p23	15	1	AVX
VMASKMOVPS/D	m256,y,y	4	4	p0 p1 p4 p23	16	1	AVX
VGATHERDPS	x,[r+s*x],x	10	10		_	6	AVX2
VGATHERDPS	y,[r+s*y],y	14	14			7	AVX2
VGATHERQPS	x,[r+s*x],x	9	9			6	AVX2
VGATHERQPS	x,[r+s*y],x	10	10			6	AVX2
VGATHERQFO	x,[r+s*x],x	7	7			5	AVX2
VGATHERDPD	y,[r+s*x],y	9	9			6	AVX2
VGATHEROPD	x,[r+s*x],x	7	7			5	AVX2
VOI II I LI I VOI D	, ,,, · · · · · · · · · · · · · · · · ·	ı '	, <i>'</i>	I	l	, ,	, \V /\ <u>L</u>

VGATHERQPD	y,[r+s*y],y	9	9			6	AVX2
Conversion							
CVTPD2PS	x,x	2	2	p1 p5	4	1	
CVTPD2PS	x,m128	2	3	p1 p5 p23		1	
VCVTPD2PS	x,y	2	2	p1 p5	5	1	AVX
VCVTPD2PS	x,m256	2	3	p1 p5 p23		1	AVX
CVTSD2SS	x,x	2	2	p1 p5	4	1	
CVTSD2SS	x,m64	2	3	p1 p5 p23		1	
CVTPS2PD	x,x	2	2	p0 p5	2	1	
CVTPS2PD	x,m64	2	2	p0 p23		1	
VCVTPS2PD	y,x	2	2	p0 p5	5	1	AVX
VCVTPS2PD	y,m128	2	2	p0 p23		1	AVX
CVTSS2SD	x,x	2	2	p0 p5	2	1	
CVTSS2SD	x,m32	2	2	p0 p23		1	
CVTDQ2PS	x,x	1	1	p1	3	1	
CVTDQ2PS	x,m128	1	2	p1 p23		1	
VCVTDQ2PS	y,y	1	1	p1	3	1	AVX
VCVTDQ2PS	y,m256	1	2	p1 p23		1	AVX
CVT(T) PS2DQ	x,x	1	1	p1	3	1	7
CVT(T) PS2DQ	x,m128	1	2	p1 p23		1	
VCVT(T) PS2DQ	y,y	1	1	p1	3	1	AVX
VCVT(T) PS2DQ	y,m256	1	2	p1 p23		1	AVX
CVTDQ2PD	x,x	2	2	p1 p5	4	1	7
CVTDQ2PD	x,m64	2	2	p1 p23		1	
VCVTDQ2PD	y,x	2	2	p1 p5	6	1	AVX
VCVTDQ2PD	y,m128	2	2	p1 p23		1	AVX
CVT(T)PD2DQ	x,x	2	2	p1 p5	4	1	7
CVT(T)PD2DQ	x,m128	2	3	p1 p5 p23		1	
VCVT(T)PD2DQ	x,y	2	2	p1 p5	6	1	AVX
VCVT(T)PD2DQ	x,m256	2	3	p1 p5 p23		1	AVX
CVTPI2PS	x,mm	1	1	p1	4	4	
CVTPI2PS	x,m64	1	2	p1 p23		3	
CVT(T)PS2PI	mm,x	2	2	p1 p5	4	1	
CVT(T)PS2PI	mm,m128	2	2	p1 p23		1	
CVTPI2PD	x,mm	2	2	p1 p5	4	1	
CVTPI2PD	x,m64	2	2	p1 p23		1	
CVT(T) PD2PI	mm,x	2	2	p1 p5	4	1	
CVT(T) PD2PI	mm,m128	2	3	p1 p5 p23		1	
CVTSI2SS	x,r32	2	2	p1 p5	4	3	
CVTSI2SS	x,r64	3	3	p1 2p5	5	4	
CVTSI2SS	x,m32	1	2	p1 p23		3	
CVT(T)SS2SI	r32,x	2	2	p0 p1	4	1	
CVT(T)SS2SI	r32,m32	2	3	p0 p1 p23		1	
CVTSI2SD	x,r32/64	2	2	p1 p5	4	3	
CVTSI2SD	x,m32	2	2	p1 p23		3	
CVT(T)SD2SI	r32/64,x	2	2	p0 p1	4	1	
CVT(T)SD2SI	r32,m64	2	3	p0 p1 p23		1	
VCVTPS2PH	x,v,i	2	2	p1 p5	4-6	1	F16C
VCVTPS2PH	m,v,i	3	3	p1 p4 p23		1	F16C
VCVTPH2PS	V,X	2	2	p1 p5	4-6	1	F16C
VCVTPH2PS	v,m	2	2	p1 p23		1	F16C

1							
Arithmetic							
ADDSS/D PS/D							
SUBSS/D PS/D	x,x / v,v,v	1	1	p1	3	1	
ADDSS/D PS/D							
SUBSS/D PS/D	x,m / v,v,m	1	2	p1 p23		1	
ADDSUBPS/D	x,x / v,v,v	1	1	p1	3	1	SSE3
ADDSUBPS/D	x,m / v,v,m	1	2	p1 p23		1	SSE3
HADDPS/D HSUBPS/D	x,x / v,v,v	3	3	p1 2p5	5	2	SSE3
HADDPS/D HSUBPS/D	x,m / v,v,m	4	4	p1 2p5 p23		2	SSE3
MULSS/D PS/D	x,x / v,v,v	1	1	p01	3	0.5	
MULSS/D PS/D	x,m / v,v,m	1	2	p01 p23		0.5	
DIVSS	x,x	1	1	p0	11	2.5	
DIVPS	X,X	1	1	p0	11	5	
DIVSS DIVPS	x,m	1	2	p0 p23		3-5	
DIVSD	X,X	1	1	p0	10-14	4-5	
DIVPD	x,x	1	1	p0	10-14	8	
DIVSD DIVPD	x,m	1	2	p0 p23	4-7	4-5	A
VDIVPS	y,y,y	3	3	2p0 p15	17	10	AVX
VDIVPS VDIVPD	y,y,m256	4 3	4 3	2p0 p15 p23	19-23	10 16	AVX AVX
VDIVPD	y,y,y	3 4	4	2p0 p15	19-23	16	AVX
RCPSS/PS	y,y,m256	1	1	2p0 p15 p23	5	1	AVA
RCPSS/PS	x,x x,m128	1	2	p0 p0 p23	5	1	
VRCPPS	y,y	3	3	2p0 p15	7	2	AVX
VRCPPS	y,y y,m256	4	4	2p0 p15 p23	,	2	AVX
CMPccSS/D	y,200	•		_ροριορ_ο		_	
CMPccPS/D	x,x / v,v,v	1	1	p1	3	1	
CMPccSS/D	. , ,			·			
CMPccPS/D	x,m / v,v,m	2	2	p1 p23		1	
(U)COMISS/D	x,x	1	1	p1		1	
(U)COMISS/D	x,m32/64	2	2	p1 p23		1	
MAXSS/D PS/D							
MINSS/D PS/D	x,x / v,v,v	1	1	p1	3	1	
MAXSS/D PS/D	,			4 00			
MINSS/D PS/D	x,m / v,v,m	1	2	p1 p23		1	
ROUNDSS/D PS/D	v,v,i	2	2	2p1	6	2	SSE4.1
ROUNDSS/D PS/D	v,m,i	3	3	2p1 p23		2	SSE4.1
DPPS	x,x,i / v,v,v,i	4	4	2p0 p1 p5	12	2	SSE4.1
DPPS	x,m,i / v,v,m,i	6	6	2p0 p1 p5 p23 p6		4	SSE4.1
DPPD	x,x,i	3	3	p0 p1 p5	7	1	SSE4.1
DPPD	x,m128,i	4	4	p0 p1 p5 p23		1	SSE4.1
VFMADD							
(all FMA instr.)	V,V,V	1	1	p01	5	0.5	FMA
VFMADD							
(all FMA instr.)	v,v,m	1	2	p01 p23		0.5	FMA
B 41-							
Math		4			44		
SQRTSS	X,X	1	1	p0	11	4	

SQRTSS/PS x,m128 1 2 p0 p23 4-7 4-7 VSQRTPS y,y 3 3 2p0 p15 p23 14 AVX VSQRTPS y,m256 4 4 2p0 p15 p23 14 AVX SQRTSD x,x 1 1 p0 15-16 8-14 SQRTSD/PD SQRTSD/PD x,x 1 1 p0 15-16 8-14 SQRTSD/PD X,x 1 1 p0 p23 4-14 AVX YSQRTPD y,m256 4 4 2p0 p15 p23 16-28 AVX AVX RSQRTSS/PS x,x 1 1 p0 5 1 AVX XX 1 1 p0 p23 1 1 AVX XX 1 1 p0 p23 1 1 AVX XX 1 1 p0 p23 1 1 AVX XX XX 1 1 p0 p23 1 1 AVX XX XX XX YX	SQRTPS	X,X	1	1	p0	11	7	
VSQRTPS y,y 3 3 2p0 p15 19 14 AVX VSQRTSD y,m256 4 4 2p0 p15 p23 14 AVX SQRTSD x,x 1 1 p0 15-16 4-8 SQRTPD x,x 1 1 p0 15-16 8-14 SQRTSD/PD x,m128 1 2 p0 p23 4-14 4-14 VSQRTPD y,m256 4 4 2p0 p15 p23 16-28 AVX VSQRTPS y,m256 4 4 2p0 p15 p23 16-28 AVX VSQRTSS/PS x,m128 1 2 p0 p23 1 1 VRSQRTSS/PS x,m128 1 2 p0 p23 1 1 VRSQRTPS y,m256 4 4 2p0 p15 7 2 AVX VRSQRTPS y,m256 4 4 2p0 p15 7 2 AVX Logic x,x/y,v,v,v 1								
VSQRTPS	VSQRTPS	У,У	3	3		19	14	AVX
SQRTPD x,x 1 1 p0 p0 p23 4-14 v2 p0 p23 4-14 v2 p0 p23 4-14 v2 p0 p15 p23 1	VSQRTPS		4	4	2p0 p15 p23		14	AVX
SQRTSD/PD x,m128 1 2 p0 p23 4-14 4-14 AVX VSQRTPD y,y 3 3 2p0 p15 27-29 16-28 AVX VSQRTPD y,m256 4 4 2p0 p15 p23 16-28 AVX RSQRTSS/PS x,x 1 1 p0 5 1 respectively VRSQRTPS x,x 1 1 p0 p23 1 respectively 1 2 AVX VRSQRTPS y,y 3 3 2p0 p15 7 2 AVX VRSQRTPS y,m256 4 4 2p0 p15 p23 2 AVX Logic AND/ANDN/OR/XOR x,x / v,v,v 1 1 p5 1 1 AND/ANDN/OR/XOR x,m / v,v,m 1 2 p5 p23 1 1 Other VZEROALL 12 12 none 1 AVX AVX VZEROALL 12 2 20 n	SQRTSD	x,x	1	1	p0	15-16	4-8	
VSQRTPD y,y 3 3 2p0 p15 27-29 16-28 AVX VSQRTPD y,m256 4 4 2p0 p15 p23 16-28 AVX RSQRTSS/PS x,x 1 1 p0 5 1 XX RSQRTSS/PS x,m128 1 2 p0 p23 1 YX VRSQRTPS y,m256 4 4 2p0 p15 p23 7 2 AVX VRSQRTPS y,m256 4 4 2p0 p15 p23 2 AVX Logic AND/ANDN/OR/XOR/AND/AND/OR/XORPS/PD x,x / v,v,v 1 1 p5 p23 1 1 AND/AND/OR/XORPS/PD x,m / v,v,m 1 2 p5 p23 1 1 Other VZEROJEPER 4 4 none 1 AVX VZEROALL 12 12 none 10 32 bit VZEROALL 20 none 8 64 bit VZEROALL 20 none	SQRTPD	x,x	1	1	p0	15-16	8-14	
VSQRTPD y,m256 4 4 2p0 p15 p23 16-28 AVX RSQRTSS/PS x,x 1 1 p0 5 1 RSQRTSS/PS x,m128 1 2 p0 p23 1 V VRSQRTPS y,y 3 3 2p0 p15 p23 2 AVX VRSQRTPS y,m256 4 4 2p0 p15 p23 2 AVX Logic AND/ANDN/OR/XO RPS/PD x,x / v,v,v 1 1 p5 1 1 AND/ANDN/OR/XO RPS/PD x,m / v,v,m 1 2 p5 p23 1 1 Other VZEROJEPER 4 4 none 1 AVX VZEROALL 12 12 none 10 32 bit VZEROALL 20 20 none 8 64 bit VZEROALL 12 12 none 8 64 bit VZEROALL 20 20 none 8 64 bit	SQRTSD/PD	x,m128	1	2	p0 p23		4-14	
RSQRTSS/PS RSQRTSS/PS RSQRTSS/PS RSQRTSS/PS RSQRTSS/PS RSQRTSS/PS RSQRTPS SQRTPD	y,y	3	3	2p0 p15	27-29	16-28	AVX	
RSQRTSS/PS X,m128	VSQRTPD	y,m256	4	4	2p0 p15 p23		16-28	AVX
VRSQRTPS y,y 3 3 2p0 p15 7 2 AVX VRSQRTPS y,m256 4 4 2p0 p15 p23 7 2 AVX Logic AND/ANDN/OR/XO RPS/PD x,x / v,v,v 1 1 p5 1 1 AND/ANDN/OR/XO RPS/PD x,m / v,v,m 1 2 p5 p23 1 1 Other VZEROUPPER 4 4 none 1 AVX VZEROALL 12 12 none 10 32 bit AVX, AVX, AVX, AVX, AVX, AVX, AVX, AVX,	RSQRTSS/PS	x,x	1	1	p0	5	1	
VRSQRTPS y,m256 4 4 2p0 p15 p23 2 AVX Logic AND/ANDN/OR/XO RPS/PD x,x / v,v,v 1 1 p5 1 1 AND/ANDN/OR/XO RPS/PD x,m / v,v,m 1 2 p5 p23 1 Other VZEROUPPER 4 4 none 1 AVX AVX, AVX, AVX, AVX, AVX, AVX, AVX, 64 bit VZEROALL LDMXCSR m32 3 3 p0 p6 p23 6 3 STMXCSR m32 3 4 p0 p4 p6 p237 7 1 FXSAVE m4096 111 66 66 66 64 bit mode FXRSTOR m4096 115 80 80 80 32 bit mode FXRSTOR m4096 115 80 80 64 bit mode XSAVE 174 70 70 32 bit mode XRSTOR 172 111 111 111 111 111 111 111 112 64 bit mode XRSTOR 173 <t< td=""><td>RSQRTSS/PS</td><td>x,m128</td><td>1</td><td>2</td><td>p0 p23</td><td></td><td>1</td><td></td></t<>	RSQRTSS/PS	x,m128	1	2	p0 p23		1	
Logic	VRSQRTPS	y,y	3	3	2p0 p15	7	2	AVX
AND/ANDN/OR/XO RPS/PD	VRSQRTPS	y,m256	4	4	2p0 p15 p23		2	AVX
AND/ANDN/OR/XO RPS/PD								
RPS/PD								
AND/ANDN/OR/XO RPS/PD					_			
Other VZEROUPPER 4 4 4 none 1 AVX AVX, AVX, AVX, AVX, AVX, AVX, AVX, A		x,x / v,v,v	1	1	p5	1	1	
Other VZEROUPPER 4 4 4 none 1 AVX AVX, AVX, AVX, AVX, AVX, AVX, AVX, A			_		- F - OO		4	
VZEROUPPER 4 4 none 1 AVX AVX, AVX, AVX, AVX, AVX, AVX, AVX, A	KF3/FD	x,m / v,v,m	1		p5 p23		1	
VZEROUPPER 4 4 none 1 AVX AVX, AVX, AVX, AVX, AVX, AVX, AVX, A	Other							
VZEROALL 12 12 none 10 32 bit AVX, AVX, AVX, AVX, AVX, AVX, AVX, AVX,			1	4	none		1	۸۱/۲
VZEROALL 12 12 none 10 32 bit AVX, AVX, AVX, AVX, AVX, AVX, AVX, AVX,	VZEROOFFER			7	Tione			
VZEROALL 20 20 none 8 AVX, 64 bit LDMXCSR m32 3 3 p0 p6 p23 6 3 STMXCSR m32 3 4 p0 p4 p6 p237 7 1 FXSAVE m4096 111 66 66 66 32 bit mode FXRSTOR m4096 107 80 80 32 bit mode FXRSTOR m4096 115 80 80 64 bit mode XSAVE 174 70 70 32 bit mode XSAVE 224 84 84 64 bit mode XRSTOR 172 111 111 111 111 111 32 bit mode XRSTOR 173 173 112 112 64 bit mode	VZEROALI		12	12	none		10	
VZEROALL 20 20 none 8 64 bit LDMXCSR m32 3 3 p0 p6 p23 6 3 STMXCSR m32 3 4 p0 p4 p6 p237 7 1 FXSAVE m4096 111 66 66 66 32 bit mode FXRSTOR m4096 107 80 80 32 bit mode FXRSTOR m4096 115 80 80 64 bit mode XSAVE 174 70 70 32 bit mode XSAVE 224 84 84 64 bit mode XRSTOR 172 111 111 111 111 111 64 bit mode	VZLINOALL		12	12	Hone		10	
LDMXCSR m32 3 p0 p6 p23 6 3 STMXCSR m32 3 4 p0 p4 p6 p237 7 1 FXSAVE m4096 111 66 66 66 32 bit mode FXRSTOR m4096 107 80 80 32 bit mode FXRSTOR m4096 115 80 80 64 bit mode XSAVE 174 70 70 32 bit mode XSAVE 224 84 84 64 bit mode XRSTOR 172 111 111 111 32 bit mode XRSTOR 173 112 112 64 bit mode	VZEROALI		20	20	none		8	
STMXCSR m32 3 4 p0 p4 p6 p237 7 1 FXSAVE m4096 111 66 66 32 bit mode FXRSTOR m4096 107 80 80 32 bit mode FXRSTOR m4096 115 80 80 64 bit mode XSAVE 174 70 70 32 bit mode XSAVE 224 84 84 64 bit mode XRSTOR 172 111 111 111 32 bit mode XRSTOR 173 112 112 64 bit mode		m32				6		0.5.0
FXSAVE m4096 111 66 66 32 bit mode FXSAVE m4096 141 66 66 64 bit mode FXRSTOR m4096 107 80 80 32 bit mode FXRSTOR m4096 115 80 80 64 bit mode XSAVE 174 70 70 32 bit mode XSAVE 224 84 84 64 bit mode XRSTOR 172 111 111 32 bit mode XRSTOR 173 112 112 64 bit mode								
FXSAVE m4096 141 66 66 64 bit mode FXRSTOR m4096 107 80 80 32 bit mode FXRSTOR m4096 115 80 80 64 bit mode XSAVE 174 70 70 32 bit mode XSAVE 224 84 84 64 bit mode XRSTOR 172 111 111 32 bit mode XRSTOR 173 112 112 64 bit mode			_	_	ρο ρ- ρο ρ2ο/		-	32 bit mode
FXRSTOR m4096 107 80 80 32 bit mode FXRSTOR m4096 115 80 80 64 bit mode XSAVE 174 70 70 32 bit mode XSAVE 224 84 84 64 bit mode XRSTOR 172 111 111 32 bit mode XRSTOR 173 112 112 64 bit mode								
FXRSTOR m4096 115 80 80 64 bit mode XSAVE 174 70 70 32 bit mode XSAVE 224 84 84 64 bit mode XRSTOR 172 111 111 32 bit mode XRSTOR 173 112 112 64 bit mode								
XSAVE 174 70 70 32 bit mode XSAVE 224 84 84 64 bit mode XRSTOR 172 111 111 32 bit mode XRSTOR 173 112 112 64 bit mode								
XSAVE 224 84 84 64 bit mode XRSTOR 172 111 111 32 bit mode XRSTOR 173 112 112 64 bit mode		1111000						
XRSTOR 172 111 111 32 bit mode XRSTOR 173 112 112 64 bit mode								
XRSTOR 173 112 112 64 bit mode						_	_	
	XSAVEOPT	m	114			51	51	

Intel Skylake

List of instruction timings and µop breakdown

Explanation of column headings:

Instruction: Name of instruction. Multiple names mean that these instructions have the same data.

Instructions with or without V name prefix behave the same unless otherwise noted.

Operands: i = immediate data, r = register, mm = 64 bit mmx register, x = 128 bit xmm register,

(x)mm = mmx or xmm register, y = 256 bit ymm register, v = any vector register (mmx, xmm, ymm). same = same register for both operands. <math>m = memory operand, m32 = 32-

bit memory operand, etc.

μορs fused domain: The number of µops at the decode, rename and allocate stages in the pipeline. Fused

μops count as one.

μops unfused domain:

The total number of µops for all execution port. Fused µops count as two. Fused macroops count as one. The instruction has µop fusion if this number is higher than the num-

ber under fused domain. Some operations are not counted here if they do not go to any

execution port or if the counters are inaccurate.

μορs each port: The number of μops for each execution port. p0 means a μop to execution port 0.

p01means a μop that can go to either port 0 or port 1. p0 p1 means two μops going to

port 0 and 1, respectively.

Port 0: Integer, f.p. and vector ALU, mul, div, branch

Port 1: Integer, f.p. and vector ALU

Port 2: Load Port 3: Load Port 4: Store

Port 5: Integer and vector ALU Port 6: Integer ALU, branch Port 7: Store address

Latency:

This is the delay that the instruction generates in a dependency chain. The numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Where hyperthreading is enabled, the use of the same execution units in the other thread leads to inferior performance. Denormal numbers, NAN's and infinity do not increase the latency. The time unit used is core clock cycles, not the reference clock cycles given by the time stamp counter.

Reciprocal throughput:

The average number of core clock cycles per instruction for a series of independent in-

structions of the same kind in the same thread.

Integer instructions

Instruction	Operands	μορs fused domain	μορs unfused domain	μορs each port	Latency	Recipro- cal through put	Comments
Move instruc- tions							
MOV	r,i	1	1	p0156		0.25	
MOV	r8/16,r8/16	1	1	p0156	1	0.25	
MOV	r32/64,r32/64	1	1	p0156	0-1	0.25	may be elim.
MOV	r8l,m	1	2	p23 p0156		0.5	
MOV	r8h,m	1	1	p23		0.5	
MOV	r16,m	1	2	p23 p0156		0.5	
MOV	r32/64,m	1	1	p23	2	0.5	all addressing modes

N40)/			۰ .		0	4	1 1
MOV	m,r	1	2	p237 p4	2	1	
MOV	m,i	1	2	p237 p4		1	
MOVNTI	m,r	2	2	p23 p4	~400	1	
MOVSX MOVZX MOVSXD	r,r	1	1	p0156	1	0.25	
MOVSX MOVZX	r16,m8	1	2	p23 p0156		0.5	
MOVSX MOVZX MOVSXD	r,m	1	1	p23		0.5	all other combinations
CMOVcc	r,r	1	1	p06	1	0.5	
CMOVcc	r,m	2	2	p06 p23		0.5	
XCHG	r,r	3	3	3p0156	2	1	
XCHG	r,m	8	8	'	23		implicit lock
XLAT	ŕ	3	3	p23 2p0156	7	2	
PUSH	r	1	2	p237 p4	3	1	
PUSH	i	1	2	p237 p4		1	
PUSH	m	2	3	p4 2p237		1	
PUSH	stack pointer	2	3	p0156 p237 p4		1	
PUSHF(D/Q)	otdok politici	3	4	p1 p4 p237 p06		1	
PUSHA(D)		11	19	p : p : p20 / p00		8	not 64 bit
POP	r	1	1	p23	2	0.5	1100 04 510
POP	stack pointer	3	3	p23 2p0156	_	3	
POP	m	2	3	2p237 p4		1	
POPF(D/Q)	111	9	9	2ρ237 ρ4		20	
POPA(D)		18	18			8	not 64 bit
				200	4		HOL 64 DIL
LAHF SAHF		1	1	p06	1	1	+ C4 bit
SALC	10	3	3	3p0156	1	1	not 64 bit
LEA	r16,m	2	2	p1 p05	2-4	1	16 or 32 bit address size
LEA	r32/64,m	1	1	p15	1	0.5	1 or 2 compo- nents in address
LEA	r32/64,m	1	1	p1	3	1	3 components in address
LEA	r32/64,m	1	1	p1		1	rip relative address
BSWAP	r32	1	1	p15	1	0.5	
BSWAP	r64	2	2	p06 p15	2	1	
MOVBE	r16,m16	3	3	2p0156 p23		0.5-1	MOVBE
MOVBE	r32,m32	2	2	p15 p23		0.5	MOVBE
MOVBE	r64,m64	3	3	2p0156 p23		0.75	MOVBE
MOVBE	m16,r16	2	3	p06 p237 p4		1	MOVBE
MOVBE	m32,r32	2	3	p15 p237 p4		1	MOVBE
MOVBE	m64,r64	3	4	p06 p15 p237 p4		1	MOVBE
PREFETCHNTA/ 0/1/2	m	1	1	p23		0.5	
PREFETCHW	m	1	1	p23		1	PREFETCHW
LFENCE		2		none counted		4	
MFENCE		4	4	p23 p4		33	
SFENCE		2	2	p23 p4		6	
Arithmetic in- structions							

A D.D. GUID	l "	1 4		1 04=0			l I
ADD SUB	r,r/i	1	1	p0156	1	0.25	
ADD SUB	r,m	1	2	p0156 p23	_	0.5	
ADD SUB	m,r/i	2	4	2p0156 2p237 p4	5	1	
ADC SBB	r,r/i	1	1	p06	1	1	
ADC SBB	r,m	2	2	p06 p23		1	
ADC SBB	m,r/i	4	6	3p0156 2p237 p4	5	2	
ADC 3BB	111,171	7	0	ορο 100 2p207 p+	3	2	
CMP	r,r/i	1	1	p0156	1	0.25	
CMP	m,r/i	1	2	p0156 p23	1	0.5	
INC DEC NEG	r	1	1	p0156	1	0.25	
NOT							
INC DEC NOT	m	3	4	p0156 2p237 p4	5-6	1	
NEG	m	2	4	p0156 2p237 p4	5-6	1	
AAA		2	2	p1 p56	4		not 64 bit
AAS		2	2	p1 p056	4		not 64 bit
DAA DAS		3	3	p1 2p056	4		not 64 bit
AAD		3	3	p1 2p056	4		not 64 bit
AAM		11	11	p0 p1 p5 p6	23	7	not 64 bit
MUL IMUL	r8	1	1	p1	3	1	
MUL IMUL	r16	4	4	p1 p0156	4	2	
MUL IMUL	r32	3	3	p1 p0156	4	1	
MUL IMUL	r64	2	2	p1 p6	3	1	
MUL IMUL	m8	1	2	p1 p23		1	
MUL IMUL	m16	4	5	p1 3p0156 p23		2	
MUL IMUL	m32	3	4	p1 2p0156 p23		2	
MUL IMUL	m64	2	3	p1 p6 p23		1	
IMUL	r,r	1	1	p1	3	1	
IMUL	r,m	1	2	p1 p23		1	
IMUL	r16,r16,i	2	2	p1 p0156	4	1	
IMUL	r32,r32,i	1	1	p1	3	1	
IMUL	r64,r64,i	1	1	p1	3	1	
IMUL	r16,m16,i	2	3	p1 p0156 p23		1	
IMUL	r32,m32,i	1	2	p1 p23		1	
IMUL	r64,m64,i	1	2	p1 p23		1	
MULX	r32,r32,r32	3	3	p1 2p056	4	1	BMI2
MULX	r32,r32,m32	3	4	p1 2p056 p23		1	BMI2
MULX	r64,r64,r64	2	2	p1 p5	4	1	BMI2
MULX	r64,r64,m64	2	3	p1 p6 p23		1	BMI2
DIV	r8	10	10	p0 p1 p5 p6	23	6	
DIV	r16	10	10	p0 p1 p5 p6	23	6	
DIV	r32	10	10	p0 p1 p5 p6	26	6	
DIV	r64	36	36	p0 p1 p5 p6	35-88	21-83	
IDIV	r8	11	11	p0 p1 p5 p6	24	6	
IDIV	r16	10	10	p0 p1 p5 p6	23	6	
IDIV	r32	10	10	p0 p1 p5 p6	26	6	
IDIV	r64	57	57	p0 p1 p5 p6	42-95	24-90	
CBW		1	1	p0156	1		
CWDE		1	1	p0156	1		
CDQE		1	1	p0156	1		
CWD		2	2	p0156	1		
CDQ		1	1	p06	1		

POPCNT	CQO	1	1 1	1 1	p06	1		
POPCNT							4	CCE4.2
CRC32			-			ა		
CRC32 r,m 1 2 p1 p23 1 SSE4.2 Logic instructions Logic instructions r,r/ii 1 1 2 p1 p23 1 SSE4.2 AND OR XOR r,r/ii 1 1 p0156 p23 0.5 0.5 AND OR XOR r,m 1 2 p0156 p23 0.5 0.5 AND OR XOR r,m 1 2 p0156 p23 0.5 0.5 AND OR XOR r,m 1 2 p0156 p23 0.5 0.5 AND OR XOR r,m 1 2 p0156 p23 0.5 0.5 AND OR XOR r,m 1 1 p0156 p23 0.5 0.5 SHS SHL SAR r,i 1 1 p016 p0156 p23 1 0.5 SHR SHL SAR r,i 3 4 2p06 p237 p4 2 2 SHR SHL SAR m,i 1 1 p06 1 0.5 SHR SHL SAR r,i								
Logic instructions AND OR XOR AND OR XOR AND OR XOR AND OR XOR AND OR XOR M, r, r, r, r, r, r, r, r, r, r, r, r, r,					-	3		
AND OR XOR	CRC32	r,m	1	2	p1 p23		1	SSE4.2
AND OR XOR AND OR XOR AND OR XOR m,r/ii 2 4 2 4 2 2 2 2 2 2 2 2 2	Logic instruc- tions							
AND OR XOR	AND OR XOR	r,r/i	1	1	p0156	1	0.25	
TEST	AND OR XOR	r,m	1	2	p0156 p23		0.5	
TEST	AND OR XOR	m,r/i	2	4	2p0156 2p237 p4	5	1	
SHR SHL SAR SHR SHL SAR SHR SHL SAR SHR SHL SAR SHR SHL SAR R,cl 3 3 3 3066 2 2 2 SHR SHL SAR R,cl 3 3 3 3066 2 2 2 SHR SHL SAR ROR ROL R,1 2 2 2 2 2066 1 1 1 5 ROR ROL R,1 1 1 1 006 1 0.5 ROR ROL R,1 1 1 1 006 1 0.5 ROR ROL R,1 1 1 1 006 1 0.5 ROR ROL ROR ROL R,1 3 3 3 3066 2 2 2 ROR ROL R,1 1 1 1 006 1 0.5 ROR ROL R,1 3 3 3 3066 2 2 2 ROR ROL R,1 3 3 3 3066 2 2 2 ROR ROL R,1 3 3 3 3066 2 2 2 ROR ROL R,1 3 3 3 3066 2 2 2 ROR ROL R,1 3 3 3 3066 2 2 2 ROR ROL R,1 3 3 3 3066 2 2 2 ROR ROL R,1 3 3 3 3066 2 2 2 ROR ROL R,1 3 3 3 2066 p23 p4 4 ROR ROL R,1 3 3 3 2066 p0156 2 2 2 ROR RCL R,1 3 3 3 2066 p0156 2 2 2 ROR RCL R,1 3 3 3 2066 p0156 2 2 2 ROR RCL R,1 3 3 5 p0156 6 6 6 ROR RCL R,1 1 1 11 ROR RCR RCL R,1 1 1 11 ROR RCR RCL R,1 1 1 1 p1 3 1 SHRD SHLD SHRD SHLD R,1 1 1 1 p1 3 1 SHRD SHLD R,1 1 1 1 p1 3 1 SHRD SHLD R,1 1 1 1 p06 1 0.5 SHRD SHLD R,1 1 1 1 p06 1 0.5 SHRD SHLD R,1 1 1 1 p06 1 0.5 SHRD SHLD R,1 1 1 1 p06 1 0.5 SHIZ RORX R,R,1 1 1 1 p06 1 0.5 SHIZ RORX R,R,1 1 1 1 p06 1 0.5 SHIZ RORX R,R,1 1 1 1 p06 1 0.5 SHIZ SHIX SHRS SARX R,R,1 1 1 p06 1 0.5 SHIZ SHR SHS BTC R,R 1 1 1 p06 1 0.5 SHIZ SHR SHS BTC R,R 1 1 1 p06 1 0.5 SHIZ SHR SHS BTC R,R 1 1 1 p06 1 0.5 SHIZ SHR SHS BTC R,R 1 1 1 p06 1 0.5 SHIZ SHR SHS BTC R,R 1 1 p1 3 1 SHIZ SHR STS BTC R,R 1 1 p06 1 0.5 SHIZ SHR STS BTC R,R 1 1 p1 3 1 SHIZ SHR STS BTC R,R 1 1 p1 3 1 SHIZ SHR STS BTC R,R 1 1 p1 3 1 STR BTS BTC R,R 1 1 p1 3 1 STR BTS BTC R,R 1 1 p1 3 1 STR BTS BTC R,R 1 1 p1 3 1 STR BTS BTC R,R 1 1 p06 1 0.5 SETCC R 1 1 p0156 1 0.5 SETCC R 1 1 p0156 1 1 CLC STC CLC STC CLC STC CLC STC CLC STC CLC STC CLC STC CLC STC CLC STC STC CLC STC STC CLC STC CLC STC STC CLC STC STC CLC STC STC CLC STC STC CLC STC STC STC STC STC STC STC STC STC ST	TEST	r,r/i	1	1	p0156	1	0.25	
SHR SHL SAR SHR SHL SAR SHR SHL SAR SHR SHL SAR SHR SHL SAR R, cl 33 33 3006 22 28 SHR SHL SAR ROR ROL R, 1, 1 22 22 2006 11 11 206 11 0.5 ROR ROL ROR ROL R, 1, 1 11 11 11 11 11 11 11 11 11 11 11 11 1	TEST	m,r/i	1	2	p0156 p23	1	0.5	
SHR SHL SAR SHR SHL SAR SHR SHL SAR R,cl 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	SHR SHL SAR	r,i	1	1	p06	1	0.5	
SHR SHL SAR r,cl 3 3 3p06 2p23 p4 2 2 SHR SHL SAR m,cl 5 6 3p06 2p23 p4 4 4 ROR ROL r,1 2 2 2p06 1 1 short form ROR ROL r,i 1 1 p06 1 0.5 short form ROR ROL m,i 4 5 2p06 2p23 p4 2 2 2 2 2 2 2 2 2 8 8 2	SHR SHL SAR		3	4	·		2	
SHR SHL SAR m,cl 5 6 3p06 2p23 p4 4 4 And the policy of	SHR SHL SAR		3	3		2	2	
ROR ROL ROR ROR ROR ROL ROR ROL ROR ROR ROR ROL ROR ROR ROR ROL ROR ROR ROR RO								
ROR ROL r,i 1 1 p06 1 0.5 ROR ROL m,i 4 5 2p06 2p237 p4 2 2 ROR ROL r,cl 3 3 3p06 2 2 2 ROR ROL m,cl 5 6 3p06 p23 p4 4 4 4 8 2 3 3 2 3 3 2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>short form</td>						1		short form
ROR ROL m,i 4 5 2p06 2p237 p4 2 2 ROR ROL ROR ROL r,cl 3 3p06 2 2 ROR ROL ROR ROL m,cl 5 6 3p06 p23 p4 4 4 4 RCR RCL r,cl 8 2p06 p0156 2 3 2 3 2 3 2 3 3 <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>011011111111111111111111111111111111111</td>			1					011011111111111111111111111111111111111
ROR ROL r,cl 3 3 3p06 p23 p4 4 ROR ROL m,cl 5 6 3p06 p23 p4 4 RCR RCL r,1 3 3 2p06 p0156 2 2 RCR RCL m,1 4 6 3 3 RCR RCL m,1 11 11 6 6 RCR RCL m,i 11 11 6 6 RCR RCL m,cl 11 11 6 6 SHRD SHLD m,r,i 3 5 2 2 SHRD SHLD m,r,cl 4 4 p0156 4 2 SHRD SHLD m,r,cl 4 4 p0156 4 2 SHRD SHLD m,r,cl 4 4 p0156 4 2 SHRD SHRD m,r,cl 5 7 4 4 4 2 SHRD SHLD m,r,cl 5 7 4 5 6 <					·			
ROR ROL m,cl 5 6 3p06 p23 p4 4 RCR RCL r,1 3 3 2p06 p0156 2 2 RCR RCL m,1 4 6 3 3 RCR RCL m,1 11 11 6 6 RCR RCL m,cl 11 11 6 6 RCR RCL m,cl 11 11 6 6 SHRD SHLD r,r,cl 1 1 1 1 1 6 SHRD SHLD m,r,cl 3 5 2 2 1<			1			2		
RCR RCL r,1 3 3 2p06 p0156 2 2 RCR RCL m,1 4 6 p0156 6 6 RCR RCL r,i 8 8 p0156 6 6 RCR RCL m,i 11 11 6 6 RCR RCL m,cl 11 11 6 6 SHCD SHLD m,r,cl 3 5 2 2 SHLD r,r,cl 4 4 p0156 4 2 SHRD SHLD m,r,cl 4 4 p0156 4 2 SHRD SHRD r,r,r,r 1 1 p06 1 0.5 BMI2			1			_		
RCR RCL m,1 4 6 p0156 6 6 RCR RCL m,i 11 11 6 6 RCR RCL m,i 11 11 6 6 RCR RCL m,cl 8 8 p0156 6 6 RCR RCL m,cl 11 11 91 3 1 SHRD SHLD m,r,i 3 5 2 2 SHRD SHLD m,r,cl 4 4 p0156 3 2 SHRD SHLD m,r,cl 4 4 p0156 4 2 SHRD SHLD m,r,cl 4 4 p0156 4 2 SHRD SHLD m,r,cl 5 7 4 4 p0156 4 2 SHRD SHLD m,r,cl 4 4 p0156 4 2 SHRD SHLD m,r,r,r 1 1 p06 1 0.5 BMI2 SHLX SHRX SARX			1			2		
RCR RCL r,i 8 8 p0156 6 6 RCR RCL m,i 11 11 11 6 6 RCR RCL r,cl 8 8 p0156 6 6 SHRD SHLD m,cl 11 11 p1 3 1 SHRD SHLD m,r,cl 4 4 p0156 3 2 SHRD SHLD m,r,cl 5 7 4 2 SHRD SHLD m,r,cl 5 7 4 2 SHRD SHLD m,r,cl 5 7 4 4 2 4 2 SHRD SHLD m,r,cl 5 7 4 4 2 4 4 2 4 8 8 8 8 8 8 2 2 8 8 8 2 2 2 5 7 4 4 2 2 8 8 8 8 8 2 <td></td> <td></td> <td></td> <td></td> <td>2p00 p0130</td> <td></td> <td></td> <td></td>					2p00 p0130			
RCR RCL m,i 11 11 11 11 6 6 RCR RCL m,cl 8 8 p0156 6 6 SHRD SHLD r,r,i 1 1 p1 3 1 SHRD SHLD m,r,cl 4 4 p0156 3 2 SHRD SHLD m,r,cl 5 7 4 2 SHRD SHLD SHLD m,r,cl 5 7 4 2 SHRD SHLD SHLD SHLD SHLD SHLD SHLD SHLD SHL			1		20156	6		
RCR RCL r,cl 8 8 p0156 6 6 RCR RCL m,cl 11 11 p1 3 1 SHRD SHLD m,r,i 3 5 2 5 SHLD r,r,cl 4 4 p0156 3 2 SHRD SHLD m,r,cl 5 7 4 p0156 4 2 SHRD SHLD m,r,cl 5 7 4 p0156 4 2 SHRD SHLD m,r,cl 5 7 4 p0156 4 2 SHRD SHLD m,r,cl 5 7 4 p0156 4 2 SHRD SHLD m,r,r,cl 5 7 4 p0156 4 2 SHRD SHLD m,r,r,r 1 1 p06 1 0.5 BMI2 SHRD SHR SARX r,r,ri 1 1 p06 1 0.5 BMI2 BT m,r 10					pu 156	0		
RCR RCL m,cl 11 11 11 p1 3 1 SHRD SHLD r,r,i 1 1 1 p0156 3 2 SHLD r,r,cl 4 4 p0156 3 2 SHRD SHLD m,r,cl 5 7 4 SHLX SHRX SARX r,r,r 1 1 p06 1 0.5 BMI2 SHLX SHRX SARX r,m,r 2 2 p06 p23 0.5 BMI2 RORX r,r,i 1 1 p06 1 0.5 BMI2 RORX r,m,i 2 2 p06 p23 0.5 BMI2 BT n,r/i 1 1 p06 1 0.5 BMI2 BT n,r/i 1 1 p06 1 0.5 BMI2 BT n,r/i 1 1 p06 1 0.5 BMI2 BT m,r 10 10 5					~04FC	6		
SHRD SHLD r,r,i 1 1 p1 3 1 SHRD SHLD m,r,i 3 5 p0156 3 2 SHLD r,r,cl 4 4 p0156 4 2 SHRD SHLD m,r,cl 5 7 4 2 SHLX SHRX SARX r,r,r 1 1 p06 1 0.5 BMI2 SHLX SHRX SARX r,m,r 2 2 p06 p23 0.5 BMI2 RORX r,m,i 1 1 p06 1 0.5 BMI2 RORX r,m,i 2 2 p06 p23 0.5 BMI2 BT m,r 10 10 5 BMI2 BT m,r 10 10 5 BMI2 BTR BTS BTC m,r 10 11 5 BMI2 BTR BTS BTC m,r 1 1 p06 p4 p23 1 1 BSF BSR r,r <td< td=""><td></td><td></td><td></td><td></td><td>pu 156</td><td>0</td><td></td><td></td></td<>					pu 156	0		
SHRD SHLD m,r,i 3 5 p0156 3 2 SHRD r,r,cl 4 4 p0156 4 2 SHRD SHLD m,r,cl 5 7 4 4 p0156 4 2 SHLX SHRX SARX r,r,r 1 1 p06 1 0.5 BMI2 SHLX SHRX SARX r,m,r 2 2 p06 p23 0.5 BMI2 RORX r,r,ii 1 1 p06 1 0.5 BMI2 RORX r,m,i 2 2 p06 p23 0.5 BMI2 BT n,r 10 10 5 BMI2 BMI2 BT m,r 10 10 5 BMI2 BMI2 BT m,r 10 10 5 BMI2 BMI2 BMI2 BT m,r 10 10 5 BMI2 BMI2 BMI2 BMI2 BMI2 BMI2 BMI2					4			
SHLD r,r,cl 4 4 p0156 3 2 SHRD r,r,cl 4 4 p0156 4 2 SHRD SHLD m,r,cl 5 7 4 4 4 90156 4 2 4 8 9			1		p1	3		
SHRD r,r,cl 4 4 4 p0156 4 2 SHRD SHLD m,r,cl 5 7 p06 1 0.5 BMI2 SHLX SHRX SARX r,r,r,r 1 1 p06 p23 0.5 BMI2 RORX r,r,i 1 1 p06 p23 0.5 BMI2 RORX r,m,i 2 2 p06 p23 0.5 BMI2 BT m,r 10 10 5 BMI2 1 0.5 BMI2 1 0.5 1 0.5 1 <t< td=""><td></td><td></td><td></td><td></td><td>-0450</td><td></td><td></td><td></td></t<>					-0450			
SHRD SHLD SHLX SHRX SARX SHLX SHRX SARX m,r,cl r,r,r 1 1 p06 1 0.5 BMI2 BMI2 BMI2 BMI2 BMI2 BMI2 BMI2 BMI2					· ·			
SHLX SHRX SARX r,r,r 1 1 p06 1 0.5 BMI2 SHLX SHRX SARX r,m,r 2 2 p06 p23 0.5 BMI2 RORX r,r,i 1 1 p06 1 0.5 BMI2 RORX r,m,i 2 2 p06 p23 0.5 BMI2 BT r,r/i 1 1 p06 1 0.5 BMI2 BT m,r 10 10 5 BMI2 0.5 BMI2 BTR BTS BTC m,i 1 1 p06 1 0.5 0.5 BMI2 BTR BTS BTC m,r 10 11 5 0.5 <	-				p0156	4		
SHLX SHRX SARX r,m,r 2 2 p06 p23 0.5 BMI2 RORX r,r,i 1 1 p06 p23 0.5 BMI2 RORX r,m,i 2 2 p06 p23 0.5 BMI2 BT r,r/i 1 1 p06 1 0.5 BMI2 BT m,r 10 10 5 BMI2 0.5 BMI2 BTR BTS BTC m,i 2 2 p06 p23 0.5 0.5 0.5 BMI2 BTR BTS BTC m,r/i 1 1 p06 1 0.5								5.46
RORX r,r,i 1 1 p06 1 0.5 BMI2 RORX r,m,i 2 2 p06 p23 0.5 BMI2 BT r,r/i 1 1 p06 1 0.5 BMI2 BT m,r 10 10 5 0.5 <td< td=""><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td></td></td<>			1			1		
RORX r,m,i 2 2 p06 p23 0.5 BMI2 BT r,r/i 1 1 p06 1 0.5 BMI2 BT m,r 10 10 5 0.5						_		
BT r,r/i 1 1 p06 1 0.5 BT m,r 10 10 5 BT m,i 2 2 p06 p23 0.5 BTR BTS BTC m,i 1 1 p06 1 0.5 BTR BTS BTC m,r 10 11 5 1 1 5 BTR BTS BTC m,i 3 4 p06 p4 p23 1 1 BSF BSR r,r 1 1 p1 3 1 BSF BSR r,m 1 2 p1 p23 1 SETcc r 1 1 p06 1 0.5 SETcc m 2 3 p06 p237 p4 1 1 CLC 1 0 none 0.25 0.25 STC 1 1 p0156 1 1 CMC 1 1 p0156 1 1 CLD STD			1		·	1		
BT m,r 10 10 5 BT m,i 2 2 p06 p23 0.5 BTR BTS BTC r,r/i 1 1 p06 1 0.5 BTR BTS BTC m,r 10 11 5 1 1 5 BTR BTS BTC m,i 3 4 p06 p4 p23 1 1 BSF BSR r,r 1 1 p1 3 1 BSF BSR r,m 1 2 p1 p23 1 SETcc r 1 1 p06 1 0.5 SETcc m 2 3 p06 p237 p4 1 1 CLC 1 0 none 0.25 0.25 STC 1 1 p0156 0.25 CMC 1 1 p0156 1 1 CLD STD 3 3 p15 p6 4						_		BMI2
BT m,i 2 2 p06 p23 0.5 BTR BTS BTC r,r/i 1 1 p06 1 0.5 BTR BTS BTC m,r 10 11 5 5 BTR BTS BTC m,i 3 4 p06 p4 p23 1 BSF BSR r,r 1 1 p1 3 1 BSF BSR r,m 1 2 p1 p23 1 1 SETcc r 1 1 p06 1 0.5 1 SETcc m 2 3 p06 p237 p4 1 1 0.25 1 STC 1 1 p0156 0.25 0.25 0.25 CMC 1 1 p0156 1 1 1 CLD STD 3 3 p15 p6 4 4					p06	1		
BTR BTS BTC r,r/i 1 1 p06 1 0.5 BTR BTS BTC m,r 10 11 5 BTR BTS BTC m,i 3 4 p06 p4 p23 1 BSF BSR r,r 1 1 p1 3 1 BSF BSR r,m 1 2 p1 p23 1 1 SETcc r 1 1 p06 1 0.5 SETcc m 2 3 p06 p237 p4 1 1 CLC 1 0 none 0.25 0.25 STC 1 1 p0156 0.25 CMC 1 1 p0156 1 1 CLD STD 3 3 p15 p6 4			1					
BTR BTS BTC m,r 10 11 5 BTR BTS BTC m,i 3 4 p06 p4 p23 1 BSF BSR r,r 1 1 p1 3 1 BSF BSR r,m 1 2 p1 p23 1 SETcc r 1 1 p06 1 0.5 SETcc m 2 3 p06 p237 p4 1 1 CLC 1 0 none 0.25 STC 1 1 p0156 0.25 CMC 1 1 p0156 1 1 CLD STD 3 3 p15 p6 4								
BTR BTS BTC m,i 3 4 p06 p4 p23 1 BSF BSR r,r 1 1 p1 3 1 BSF BSR r,m 1 2 p1 p23 1 SETcc r 1 1 p06 1 0.5 SETcc m 2 3 p06 p237 p4 1 1 CLC 1 0 none 0.25 0.25 STC 1 1 p0156 0.25 CMC 1 1 p0156 1 1 CLD STD 3 3 p15 p6 4		r,r/i	1		p06	1		
BSF BSR r,r 1 1 p1 3 1 BSF BSR r,m 1 2 p1 p23 1 SETcc r 1 1 p06 1 0.5 SETcc m 2 3 p06 p237 p4 1 1 CLC 1 0 none 0.25 STC 1 1 p0156 0.25 CMC 1 1 p0156 1 1 CLD STD 3 3 p15 p6 4		m,r	1	11			5	
BSF BSR r,m 1 2 p1 p23 1 SETcc r 1 1 p06 1 0.5 SETcc m 2 3 p06 p237 p4 1 1 CLC 1 0 none 0.25 STC 1 1 p0156 0.25 CMC 1 1 p0156 1 1 CLD STD 3 3 p15 p6 4	BTR BTS BTC	m,i	3	4	p06 p4 p23		1	
SETCC r 1 1 p06 1 0.5 SETCC m 2 3 p06 p237 p4 1 1 CLC 1 0 none 0.25 STC 1 1 p0156 0.25 CMC 1 1 p0156 1 1 CLD STD 3 3 p15 p6 4	BSF BSR	r,r	1	1	p1	3	1	
SETcc m 2 3 p06 p237 p4 1 CLC 1 0 none 0.25 STC 1 1 p0156 0.25 CMC 1 1 p0156 1 1 CLD STD 3 3 p15 p6 4	BSF BSR	r,m	1	2	p1 p23		1	
SETCC m 2 3 p06 p237 p4 1 CLC 1 0 none 0.25 STC 1 1 p0156 0.25 CMC 1 1 p0156 1 1 CLD STD 3 3 p15 p6 4	SETcc	r	1	1	p06	1	0.5	
CLC 1 0 none 0.25 STC 1 1 p0156 0.25 CMC 1 1 p0156 1 1 CLD STD 3 3 p15 p6 4	SETcc	m	2	3			1	
STC 1 1 p0156 0.25 CMC 1 1 p0156 1 1 CLD STD 3 3 p15 p6 4	CLC		1	0			0.25	
CMC 1 1 p0156 1 1 CLD STD 3 3 p15 p6 4	STC		1	1			0.25	
CLD STD 3 3 p15 p6 4	CMC		1		· ·	1		
			3				4	
	LZCNT	r,r	1		p1	3	1	LZCNT

I ZONT	r m	4	ا م	n1 n22		1 4	LZCNT
LZCNT	r,m	1	2	p1 p23	_	1	LZCNT
TZCNT	r,r	1	1	p1	3	1	BMI1
TZCNT	r,m	1	2	p1 p23		1	BMI1
ANDN	r,r,r	1	1	p15	1	0.5	BMI1
ANDN	r,r,m	1	2	p15 p23	1	0.5	BMI1
BLSI BLSMSK BLSR	r,r	1	1	p15	1	0.5	BMI1
BLSI BLSMSK BLSR	r,m	1	2	p15 p23		0.5	BMI1
BEXTR	r,r,r	2	2	2p0156	2	0.5	BMI1
BEXTR	r,m,r	3	3	2p0156 p23		1	BMI1
BZHI	r,r,r	1	1	p15	1	0.5	BMI2
BZHI	r,m,r	1	2	p15 p23		0.5	BMI2
PDEP	r,r,r	1	1	p1	3	1	BMI2
PDEP	r,r,m	1 1	2	p1 p23		1	BMI2
PEXT	r,r,r	1	1	p1	3	1	BMI2
PEXT		1	2		3		BMI2
PEAT	r,r,m	!		p1 p23		' '	DIVIIZ
Control transfer i	instructions						
JMP	short/near	1	1	p6		1-2	
JMP	r	1	1	p6		2	
JMP	m	1	2	p23 p6		2	
Conditional jump	short/near	1	1	p6		1-2	predicted taken
Conditional jump	short/near	1	1	p06		0.5-1	predicted not taken
Fused arithmetic and branch		1	1	p6		1-2	predicted taken
Fused arithmetic and branch		1	1	p06		0.5-1	predicted not taken
J(E/R)CXZ	short	2	2	p0156 p6		0.5-2	tanon
LOOP	short	7	7	p0130 p0		5	
LOOP(N)E	short	11	11			6	
CALL		2	3	p237 p4 p6		3	
CALL	near						
	r	2	3	p237 p4 p6		2	
CALL	m	3	4	2p237 p4 p6		3	
RET		1	2	p237 p6		1	
RET	i	4-	2			2	
BOUND	r,m	15	15			8	not 64 bit
INTO		5	5			6	not 64 bit
String instruc-							
LODSB/W		3	3	2n0156 n23		1	
LODSB/W LODSD/Q		2	2	2p0156 p23		1	
		_		p0156 p23		•	
REP LODS		5n+12	_	m00 =0450 = 4		~2n	
STOS		3	3	p23 p0156 p4		1	
REP STOS		<2n				~0.5n	worst case
REP STOS		2.6/32B				1/32B	best case aligned by 32
MOVS		5	5	2p23 p4 2p0156		4	
REP MOVS		~2n				< 1n	worst case

REP MOVS		4/32B				1/32B	best case aligned by 32
SCAS		3	3	p23 2p0156		1	
REP SCAS		≥6n				≥2n	
CMPS		5	5	2p23 3p0156		4	
REP CMPS		≥8n				≥2n	
Synchronization	instructions						
XADD	m,r	4	5			5	
LOCK XADD	m,r	9	9			18	
LOCK ADD	m,r	8	8			18	
CMPXCHG	m,r	5	6			6	
LOCK CMPXCHG	m,r	10	10			18	
CMPXCHG8B	m,r	16	16			11	
LOCK CMPXCHG8B	m,r	20	20			19	
CMPXCHG16B	m,r	23	23			16	
LOCK CMPXCHG16B	m,r	25	25			26	
Other							
NOP (90)		1	0	none		0.25	
Long NOP (0F 1F)		1	0	none		0.25	
PAUSE		4	4	p6			
ENTER	a,0	12	12	·		8	
ENTER	a,b	~14+7b	~45+7b		~87+2b		
LEAVE		3	3	2p0156 p23		5	
XGETBV		15	15			9	XGETBV
RDTSC		20	20			25	
RDTSCP		22	22			32	RDTSCP
RDPMC		35	35			40	
RDRAND	r	16	16	p23 15p0156		~460	RDRAND
RDSEED	r	16	16	p23 15p0156		~460	RDSEED

Floating point x87 instructions

Instruction	Operands	μορs fused domain	μορs unfused domain	μops each port	Latency	Recipro- cal through put	Comments
Move instruc- tions							
FLD	r	1	1	p05	1	0.5	
FLD	m32/64	1	1	p23	3	0.5	
FLD	m80	4	4	2p01 2p23	4	2	
FBLD	m80	43	43		46	22	
FST(P)	r	1	1	p05	1	0.5	
FST(P)	m32/m64	1	2	p4 p237	3	1	
FSTP	m80	7	7	3p0156 2p23 2p4	4	5	
FBSTP	m80	244	226		264	266	
FXCH	r	2	0	none	0	0.5	
FILD	m	1	2	p05 p23	5	1	
FIST(P)	m	3	3	p5 p23 p4	7	1	
FISTTP	m	3	3	p1 p23 p4	7	2	SSE3

FLDZ FLD1 FLDPI FLDL2E etc. FCMOVcc r FNSTSW AX FNSTSW m16 FLDCW m16 FNSTCW m16 FINCSTP FDECSTP FFREE(P) r FNSAVE m FRSTOR m	1 2 2 4 2 2 3 2 1 1 133 89	1 2 2 4 2 3 3 3 1 1 133 89	p05 2p05 2p05 p0 p1 p56 p0 p0156 p0 p4 p237 p01 p23 p6 p237 p4 p6 p05 p05	3 6 6 7 6 0 176 175	1 2 2 2 1 2 1 0.5 0.5 176 175
Arithmetic in- structions					
FADD(P) FSUB(R)(P) FADD(P)	1	1	p5	3	1
FSUB(R)(P) m FMUL(P) r	2	3 1	p5 p23 p0	5	1 1
FMUL(P) m	2	3	p0 p23]	1 1
FDIV(R)(P) r	1	1	p0	14-16	4-5
FDIV(R)(P) m	1	2	p0 p23		4-5
FABS	1	1	p0	1	1
FCHS	1	1	p0	1	1 1
FCOM(P) FUCOM r FCOM(P) FUCOM m	1 1	1 2	p5 p5 p23	3	1 1
FCOMPP FUCOMPP	2	2	p0 p5		1 1
FCOMI(P)	-	_	po po		
FUCOMI(P) r	3	3	p5		1
FIADD FISUB(R) m	3	4	2p5 p23		2
FIMUL m	2	3	p0 p5 p23		1
FIDIV(R) m FICOM(P) m	2 2	3	p0 p5 p23 2p5 p23		2
FTST	1	1	p5	3	1
FXAM	2	2	2p5	6	2
FPREM	31	31		26-30	17
FPREM1	31	31		30-57	17
FRNDINT	17	17		21	11
Math					
FSCALE	27	27		130	130
FXTRACT	17	17		11	11
FSQRT	1	1	p0	14-21	4-7
FSIN FCOS	53-105			50-120	
FSINCOS	53-105 55-120			50-130 55-150	
F2XM1	16-90			65-80	
FYL2X	40-100			103	
FYL2XP1	56			77	
FPTAN	40-112			140-160	
FPATAN	30-160			100-160	

Other				
FNOP	1	1	p05	0.5
WAIT	2	2	p05	2
FNCLEX	5	5	p156	22
FNINIT	18	18		78

Integer vector instructions

integer vector	TITSUTUCUOUS	>		I			
Instruction	Operands	μορs fused domain	μορs unfused domain	μορs each port	Latency	Recipro- cal through put	Comments
Move instruc-	- региние			роро одон рого		Par	
tions							
MOVD	r32/64,(x)mm	1	1	р0	2	1	
MOVD	m32/64,(x)mm	1	2	p237 p4	3	1	
MOVD	(x)mm,r32/64	1	1	p5	2	1	
MOVD	(x)mm,m32/64	1	1	p23	2	0.5	
MOVQ	r64,(x)mm	1	1	p0	2	1	
MOVQ	(x)mm,r64	1	1	p5	1	1	
MOVQ	mm,mm	1		p05	1	0.5	
MOVQ	x,x	1		p015	1	0.33	
MOVQ	(x)mm,m64	1	1	p23	2	0.5	
MOVQ	m64, (x)mm	1	2	p237 p4	3	1	
MOVDQA/U	x,x	1 1	1	p015	0-1	0.25	may eliminate
MOVDQA/U	x, m128	1 1	1 1	p23	2	0.5	Thay chirminate
MOVDQA/U	m128, x	1	2	p237 p4	3	1	
VMOVDQA/U	y,y	1	1	p015	0-1	0.25	may eliminate
VMOVDQA/U	y,m256	1	1	p23	3	0.25	AVX
VMOVDQA/U	m256,y	1	2	p237 p4	3	1	AVX
LDDQU	x, m128	1	1	p237 p4	3	0.5	SSE3
MOVDQ2Q	mm, x	2	2	p0 p5	2	1	JOLJ
MOVQ2DQ	x,mm	2	2	p0 p3	2	1	
MOVNTQ	m64,mm	1	2	p237 p4	~418	1	
MOVNTDQ	m128,x	1	2	p237 p4	~450	1	
VMOVNTDQ	m256,y	1	2	p237 p4	~400	1	AVX2
MOVNTDQA	x, m128	2	2	p237 p4 p23 p015	3	0.5	SSE4.1
VMOVNTDQA	y,m256	2	2	p23 p015	3	0.5	AVX2
PACKSSWB/DW	y,111230			μ23 μ013	3	0.5	AVAZ
PACKUSWB	mm mm	3	3	p5	2	2	
PACKSSWB/DW	mm,mm	3	3	μο			
PACKUSWB	mm,m64	3	3	p23 2p5		2	
PACKSSWB/DW	111111,11104	3	3	μ23 2μ3			
PACKUSWB	x,x / y,y,y	1	1	p5	1	1	
PACKSSWB/DW	X,X / y,y,y	'		μο	ľ	'	
PACKUSWB	v m / v v m	1	2	p23 p5		1	
PACKUSDW	x,m / y,y,m	1	1		1	1	SSE4.1
PACKUSDW	x,x / y,y,y	1	2	p5	'	1	SSE4.1
	x,m / y,y,m	1		p23 p5		'	JSE4.1
PUNPCKH/L BW/WD/DQ	VV I VVV	1	1	p.5	1	1	
	V,V / V,V,V	1	'	p5	'	'	
PUNPCKH/L BW/WD/DQ	ym/yym	1	2	n22 n5		1	
	v,m / v,v,m	'		p23 p5		'	
PUNPCKH/L	V V / V V V	1	1	p.5	4	1	
QDQ	x,x / y,y,y	1	1	p5	1	1	

I	I	I	I	1		I	I
PUNPCKH/L	,	_		00.5		_	
QDQ	x,m / y,y,m	1	2	p23 p5		1	
PMOVSX/ZX BW BD BQ DW DQ	x,x	1	1	р5	1	1	SSE4.1
PMOVSX/ZX BW BD BQ DW DQ	x,m	1	2	p23 p5		1	SSE4.1
VPMOVSX/ZX BW BD BQ DW DQ	y,x	1	1	p5	3	1	AVX2
VPMOVSX/ZX BW				·			
BD BQ DW DQ	y,m	2	2	p5 p23		1	AVX2
PSHUFB	v,v / v,v,v	1	1	p5	1	1	SSSE3
PSHUFB	v,m / v,v,m	2	2	p23 p5		1	SSSE3
PSHUFW	mm,mm,i	1	1	p5	1	1	
PSHUFW	mm,m64,i	2	2	p23 p5		1	
PSHUFD	v,v,i	1	1	p5	1	1	
PSHUFD	v,m,i	1-2	2	p23 p5		1	
PSHUFL/HW	v,v,i	1	1	p5	1	1	
PSHUFL/HW	v,m,i	2	2	p23 p5		1	
PALIGNR	v,v,i / v,v,v,i	1	1	p5	1	1	SSSE3
PALIGNR	v,m,i / v,v,m,i	2	2	p23 p5		1	SSSE3
PBLENDVB	x,x,xmm0	1	1	p015	1	1	SSE4.1
PBLENDVB	x,m,xmm0	2	2	p015 p23		2	SSE4.1
VPBLENDVB	V,V,V,V	2	2	2p015	2	1	AVX2
VPBLENDVB	v,v,m,v	3	3	2p015 p23		2	AVX2
PBLENDW	x,x,i / v,v,v,i	1	1	p5	1	1	SSE4.1
PBLENDW	x,m,i / v,v,m,i	2	2	p23 p5		1	SSE4.1
VPBLENDD	v,v,v,i	1	1	p015	1	0.33	AVX2
VPBLENDD	v,v,m,i	2	2	p015 p23		0.5	AVX2
VPERMD	y,y,y	1	1	p5	3	1	AVX2
VPERMD	y,y,m	1	2	p5 p23		1	AVX2
VPERMQ	y,y,i	1	1	p5	3	1	AVX2
VPERMQ	y,m,i	2	2	p5 p23		1	AVX2
VPERM2I128	y,y,y,i	1	1	p5	3	1	AVX2
VPERM2I128	y,y,m,i	2	2	p5 p23		1	AVX2
MASKMOVQ	mm,mm	4	4	p0 p4 2p23	~450	2	7.07.
MASKMOVDQU	x,x	10	10	4p04 2p56 4p23	18-500	6	
VPMASKMOVD/Q	v,v,m	2	2	p23 p015	4	0.5	AVX2
VPMASKMOVD/Q	m,v,v	3	3	p0 p4 p23	14	1	AVX2
PMOVMSKB	r,v	1	1	p0	2-3	1	/ / / / /
PEXTRB/W/D/Q	r32,x,i	2	2	p0 p5	3	1	SSE4.1
PEXTRB/W/D/Q	m8,x,i	2	3	p23 p4 p5	Ū	1	SSE4.1
VEXTRACTI128	x,y,i	1	1	p5	3	1	AVX2
VEXTRACTI128	m,y,i	2	2	p23 p4	4	1	AVX2
PINSRB	x,r32,i	2	2	2p5	3	2	SSE4.1
PINSRB	x,n8,i	2	2	p23 p5	0	1	SSE4.1
PINSRW	(x)mm,r32,i	2	2	p25 p5	3	2	JUL-4.1
PINSRW	(x)mm,m16,i	2	2	p23 p5	3	1	
PINSRD/Q	x,r32,i	2	2	2p5	3	2	SSE4.1
PINSRD/Q PINSRD/Q	x,132,1 x,m32,i	2	2	· ·	3	1	SSE4.1
VINSERTI128		1	1	p23 p5	2	1	AVX2
	y,y,x,i	2	2	p5	3 3		
VINSERTI128	y,y,m,i			p015 p23	3	0.5	AVX2
VPBROADCAST B/W/D/Q	x,x	1	1	p5	1	1	AVX2

1	l	I	ı	I	I	I	
VPBROADCAST B/W	x,m8/16	2	2	p23 p5	7	1	AVX2
VPBROADCAST D/Q	x,m32/64	1	1	p23	4	0.5	AVX2
VPBROADCAST B/W/D/Q	y,x	1	1	p5	3	1	AVX2
VPBROADCAST B/W	y,m8/16	2	2	p23 p5	7	1	AVX2
VPBROADCAST	<i>3.</i>			' '			
D/Q	y,m32/64	1	1	p23	3	0.5	AVX2
VBROADCASTI128	y,m128	1	1	p23	3	0.5	AVX2
VPGATHERDD	x,[r+s*x],x	4	4	p0 p1 p23 p5		4	AVX2
VPGATHERDD	y,[r+s*y],y	4	4	p0 p1 p23 p5		5	AVX2
VPGATHERQD	x,[r+s*x],x	5	5	p0 p1 p23 p5		2	AVX2
VPGATHERQD	x,[r+s*y],x	4	4	p0 p1 p23 p5		4	AVX2
VPGATHERDQ	x,[r+s*x],x	5	5	p0 p1 p23 p5		2	AVX2
VPGATHERDQ	y,[r+s*x],y	4	4	p0 p1 p23 p5		4	AVX2
VPGATHERQQ	x,[r+s*x],x	5	5	p0 p1 p23 p5		2	AVX2
VPGATHERQQ	y,[r+s*y],y	4	4	p0 p1 p23 p5		4	AVX2
Arithmetic in- structions							
PADD/SUB(S,US) B/W/D/Q	v,v / v,v,v	1	1	p015	1	0.33	
PADD/SUB(S,US) B/W/D/Q	v,m / v,v,m	1	2	p015 p23		0.5	
PHADD(S)W/D PHSUB(S)W/D	v,v / v,v,v	3	3	p01 2p5	3	2	SSSE3
PHADD(S)W/D PHSUB(S)W/D	v,m / v,v,m	4	4	p01 2p5 p23		2	SSSE3
PCMPEQB/W/D	, , ,						
PCMPGTB/W/D PCMPEQB/W/D	mm,mm	1	1	р0	1	1	
PCMPGTB/W/D	x,x / y,y,y	1	1	p01	1	0.5	
PCMPEQB/W/D	v m / v v m	1	2	201 222		0.5	
PCMPGTB/W/D PCMPEQQ	x,m / y,y,m	1	2	p01 p23	4	0.5	SSE4 1
	v,v / v,v,v	· ·	1	p01	1	0.5	SSE4.1 SSE4.1
PCMPEQQ	v,m / v,v,m	1	2	p01 p23	_	0.5	
PCMPGTQ	v,v / v,v,v	1 1	1 2	p5	3	1 1	SSE4.2 SSE4.2
PCMPGTQ	v,m / v,v,m	l I		p5 p23		1	33E4.2
PMULL/HW	mm mm	1	1	20	5	1	
PMULHUW	mm,mm	I	'	p0	5	'	
PMULL/HW PMULHUW	v v / v v v	1	1	201	5	0.5	
	x,x / y,y,y	I	'	p01	5	0.5	
PMULL/HW	v m / v v m	4	2	n01 n22		0.5	
PMULHUW	x,m / y,y,m	1		p01 p23		0.5	CCCE2
PMULHRSW	mm,mm	1	1	p0	5 5	1	SSSE3
PMULHRSW	x,x / y,y,y	1	1	p01	ာ	0.5	SSSE3 SSSE3
PMULHRSW	x,m / y,y,m	1 2	2 2	p01 p23	10	0.5	
PMULLD	x,x / y,y,y	3		2p01	10	1 1	SSE4.1
PMULLD PMULDO	x,m / y,y,m	3	3	2p01 p23	_		SSE4.1
PMULDQ	x,x / y,y,y		1	p01	5	0.5	SSE4.1
PMULDQ PMULUDO	x,m / y,y,m	1	2	p01 p23	F	0.5	SSE4.1
PMULUDQ	mm,mm	1	1	p0	5	1	

1			1	-			1
PMULUDQ	x,x / y,y,y	1	1	p01	5	0.5	
PMULUDQ	x,m / y,y,m	1	2	p01 p23		0.5	
PMADDWD	mm,mm	1	1	р0	5	1	
PMADDWD	x,x / y,y,y	1	1	p01	5	0.5	
PMADDWD	x,m / y,y,m	1	2	p01 p23		0.5	
PMADDUBSW	mm,mm	1	1	p0	5	1	SSSE3
PMADDUBSW	x,x / y,y,y	1	1	p01	5	0.5	SSSE3
PMADDUBSW		1	2		3	0.5	SSSE3
	x,m / y,y,m			p01 p23			SSSES
PAVGB/W	mm,mm	1	1	p0	1	1	
PAVGB/W	x,x / y,y,y	1	1	p01	1	0.5	
PAVGB/W	x,m / y,y,m	1	2	p01 p23		0.5	
PMIN/PMAX							
SB/SW/SD							
UB/UW/UD	mm,mm	1	1	p0	1	1	SSE4.1
PMIN/PMAX							
SB/SW/SD							
UB/UW/UD	x,x / y,y,y	1	1	p01	1	0.5	SSE4.1
PMIN/PMAX							
SB/SW/SD							
UB/UW/UD	x,m / y,y,m	1	2	p01 p23		0.5	SSE4.1
PHMINPOSUW	x,x	1	1	p0	4	1	SSE4.1
PHMINPOSUW	x,m128	1	2	p0 p23	•	1	SSE4.1
PABSB/W/D	mm,mm	1	1	p0	1	1 1	SSSE3
PABSB/W/D	l I	1	1	p01	1	0.5	SSSE3
	x,x / y,y				Į į		
PABSB/W/D	x,m / y,m	1	2	p01 p23		0.5	SSSE3
PSIGNB/W/D	mm,mm	1	1	p0	1	1	SSSE3
PSIGNB/W/D	x,x / y,y,y	1	1	p01	1	0.5	SSSE3
PSIGNB/W/D	x,m / y,y,m	1	2	p01 p23		0.5	SSSE3
PSADBW	v,v / v,v,v	1	1	p5	3	1	
PSADBW	v,m / v,v,m	1	2	p5 p23		1	
MPSADBW	x,x,i / v,v,v,i	2	2	2p5	4	2	SSE4.1
MPSADBW	x,m,i / v,v,m,i	3	3	2p5 p23		2	SSE4.1
Logic instruc-							
tions							
PAND PANDN							
POR PXOR	mm,mm	1	1	p05	1	0.5	
	111111,111111		'	ρ05	'	0.5	
PAND PANDN POR PXOR	N V / V V V	1	1	2015	1	0.33	
	x,x / y,y,y	I	l	p015	l	0.55	
PAND PANDN	,	_		0.45 0.0		0.5	
POR PXOR	v,m / v,v,m	1	2	p015 p23	_	0.5	
PTEST	V,V	2	2	p0 p5	3	1	SSE4.1
PTEST	v,m	2	3	p0 p5 p23		1	SSE4.1
PSLLW/D/Q							
PSRLW/D/Q							
PSRAW/D/Q	mm,mm	1	1	р0	1	1	
PSLLW/D/Q				-			
PSRLW/D/Q							
PSRAW/D/Q	mm,m64	2	2	p0 p23		1	
PSLLW/D/Q	, -						
PSRLW/D/Q							
PSRAW/D/Q	x,x / v,v,x	2	2	p01 p5	1	1	
	,*	_	_	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			ı

DOLLAWD 10							
PSLLW/D/Q PSRLW/D/Q							
PSRAW/D/Q	x,m / v,v,m	2	2	p01 p23		0.5	
PSLLW/D/Q							
PSRLW/D/Q							
PSRAW/D/Q	mm,i	1	1	p0	1	1	
PSLLW/D/Q							
PSRLW/D/Q	.,.	4		0.4	4	0.5	
PSRAW/D/Q	x,i / y,y,i	1	1	p01	1	0.5	
VPSLLVD/Q							
VPSRAVD VPSRLVD/Q	, , , , , , , , , , , , , , , , , , ,	1	1	p01	1	0.5	AVX2
	V,V,V	ı	'	ροι	I	0.5	AVAZ
VPSLLVD/Q VPSRAVD							
VPSRLVD/Q	v,v,m	1	2	p01 p23		0.5	AVX2
PSLLDQ	, ,						
PSRLDQ	x,i / v,v,i	1	1	p5	1	1	
				·			
String instruc-							
tions							
PCMPESTRI	x,x,i	8	8	6p05 2p16	12	4	SSE4.2
					9		
					40		
				1	12		
					0		
				1	9		
PCIVIPISTRIVI	X,111120,1	4	4	3pu p23		3	33E4.2
Encryption instru	uctions						
		1	1	p5	7	1	CLMUL
					·		
	73,,	_	_	po p=0			
AESDECLAST,							
AESENC,							
AESENCLAST	x,x	1	1	p0	4	1	AES
AESDEC,							
		•		-0-00		4.5	450
					0		
				1	ŏ		
	λ,ΙΙΙ	S	3	Ζρυ μΖο			AES
	y y i	13	13	n0 n5	12	12	AFS
	^,^,1	13		ρο ρο	14	12	ALO
	x.m.i	13	13			12	AES
	,,						0
Other							
EMMS		10	10	p05		6	
PCMPESTRI PCMPESTRM PCMPISTRI PCMPISTRI PCMPISTRI PCMPISTRM PCMPISTRM PCMPISTRM PCMULQDQ PCLMULQDQ AESDEC, AESDECLAST, AESENC, AESENCLAST AESENC, AESENCLAST AESIMC AESIMC AESIMC AESKEYGENAS SIST AESKEYGENAS SIST	x,m128,i x,x,i x,m128,i x,x,i x,m128,i x,x,i x,m128,i uctions	8 9 9 3 4 3 4 1 2 1 2 3 13 13	8 9 9 3 4 3 4 1 2 1 2 2 3 13	3p0 2p16 2p5 p23 3p0 2p16 4p5 6p05 2p16 p23 3p0 3p0 p23 3p0 3p0 p23 p5 p5 p23 p0 p0 p0 p23 2p0 2p0 p23 p0 p5	9 12 9	4 5 5 3 3 3 1 1 1 1 1 12	SSE4.2 SSE4.2 SSE4.2 SSE4.2 SSE4.2 SSE4.2 CLMUL

Floating point XMM and YMM instructions

Instruction	Operands	µops fused domain	µops unfused domain	μορs each port	Latonov	Recipro- cal through put	Comments
Move instruc-	Operanus	uomam	uomam	pops each port	Latericy	put	Comments
tions							
MOVAPS/D	X,X	1	1	p015	0-1	0.25	may eliminate
VMOVAPS/D			1	p015	0-1	0.25	may eliminate
	y,y	!	'	ρ013	0-1	0.23	may eminiate
MOVAPS/D MOVUPS/D	x,m128	1	1	p23	2	0.5	
VMOVAPS/D VMOVUPS/D	y,m256	1	1	p23	3	0.5	AVX
MOVAPS/D							
MOVUPS/D	m128,x	1	2	p237 p4	3	1	
VMOVAPS/D							
VMOVUPS/D	m256,y	1	2	p237 p4	3	1	AVX
MOVSS/D	X,X	1	1	p5	1	1	
MOVSS/D	x,m32/64	1	1	p23	3	0.5	
MOVSS/D	m32/64,x	1	2	p237 p4	3	1	
MOVHPS/D	x,m64	1	2	p23 p5	4	1	
MOVHPS/D	m64,x	1	2	p4 p237	3	1	
MOVLPS/D	x,m64	1	2	p23 p5	4	1	
MOVLPS/D	m64,x	1	2	p4 p237	3	1	
MOVHLPS	x,x	1	1	p5	1	1	
MOVLHPS	x,x	1	1	p5	1	1	
MOVMSKPS/D	r32,x	1	1	p0	2	1	
VMOVMSKPS/D	r32,y	1	1	p0	3	1	
MOVNTPS/D	m128,x	1 1	2	p4 p237	~400	1	
VMOVNTPS/D	m256,y	1	2	p4 p237	~400	1	AVX
SHUFPS/D	x,x,i / v,v,v,i		1	p4 p237	1	1	AVA
SHUFPS/D	x,m,i / v,v,m,i	2	2	p5 p23	'	1 1	
VPERMILPS/PD		1	1		1		AVX
	V,V,İ	2	2	p5	'	· ·	AVX
VPERMILPS/PD	v,m,i	1	1	p5 p23	4	1	
VPERMILPS/PD	V,V,V	2		p5	1	1 1	AVX
VPERMILPS/PD	v,v,m		2	p5 p23			AVX
VPERM2F128	y,y,y,i	1	1	p5	3	1	AVX
VPERM2F128	y,y,m,i	2	2	p5 p23		1	AVX
VPERMPS	y,y,y	1	1	p5	3	1	AVX2
VPERMPS	y,y,m	1	2	p5 p23		1	AVX2
VPERMPD	y,y,i	1	1	p5	3	1	AVX2
VPERMPD	y,m,i	2	2	p5 p23		1	AVX2
BLENDPS/PD	x,x,i / v,v,v,i	1	1	p015	1	0.33	SSE4.1
BLENDPS/PD	x,m,i / v,v,m,i	2	2	p015 p23		0.5	SSE4.1
BLENDVPS/PD	x,x,xmm0	1	1	p015	1	1	SSE4.1
BLENDVPS/PD	x,m,xmm0	2	2	p015 p23		1	SSE4.1
VBLENDVPS/PD	V,V,V,V	2	2	2p015	2	1	AVX
VBLENDVPS/PD	v,v,m,v	3	3	2p015 p23		1	AVX
MOVDDUP	V,V	1	1	p5	1	1	SSE3
MOVDDUP	v,m	1	1	p23	3	0.5	SSE3
VBROADCASTSS	x,m32	1	1	p23	2	0.5	AVX
VBROADCASTSS	y,m32	1	1	p23	3	0.5	AVX
VBROADCASTSS	x,x	1	1	p5	1	1	AVX2
VBROADCASTSS	y,x	1	1	p5	3	1	AVX2

l			l 4				l a .o. l
VBROADCASTSD	y,m64	1	1	p23	3	0.5	AVX
VBROADCASTSD	y,x	1	1	p5	3	1	AVX2
VBROADCASTF128	y,m128	1	1	p23	3	0.5	AVX
MOVSH/LDUP	V,V	1	1	p5	1	1	SSE3
MOVSH/LDUP	v,m	1	1	p23	3	0.5	SSE3
UNPCKH/LPS/D	x,x / v,v,v	1	1	p5	1	1	SSE3
UNPCKH/LPS/D	x,m / v,v,m	1	2	p5 p23		1	SSE3
EXTRACTPS	r32,x,i	2	2	p0 p5		1	SSE4.1
EXTRACTPS	m32,x,i	2	3	p4 p5 p23	5	1	SSE4.1
VEXTRACTF128	x,y,i	1	1	p5	3	1	AVX
VEXTRACTF128	m128,y,i	2	2	p23 p4	6	1	AVX
INSERTPS	x,x,i	1	1	p5	1	1	SSE4.1
INSERTPS	x,m32,i	2	2	p23 p5	4	1	SSE4.1
VINSERTF128	y,y,x,i	1	1	p5	3	1	AVX
VINSERTF128	y,y,m128,i	2	2	p015 p23	5	0.5	AVX
VMASKMOVPS/D	v,v,m	2	2	p015 p23	3	0.5	AVX
VMASKMOVPS/D	m128,x,x	4	4	p0 p4 p23	13	1	AVX
VMASKMOVPS/D	m256,y,y	4	4	p0 p4 p23	13	1	AVX
VGATHERDPS	x,[r+s*x],x	4	4	p0 p1 p23 p5	12	4	AVX2
VGATHERDPS	y,[r+s*y],y	4	4	p0 p1 p23 p5	13	5	AVX2
VGATHERQPS	x,[r+s*x],x	5	5	p0 p1 p23 p5		2	AVX2
VGATHERQPS	x,[r+s*y],x	4	4	p0 p1 p23 p5		4	AVX2
VGATHERDPD	x,[r+s*x],x	5	5	p0 p1 p23 p5		2	AVX2
VGATHERDPD	y,[r+s*x],y	4	4	p0 p1 p23 p5		4	AVX2
VGATHEROPD	x,[r+s*x],x	5	5	p0 p1 p23 p5		2	AVX2
VGATHERQPD	y,[r+s*y],y	4	4	p0 p1 p23 p5 p0 p1 p23 p5		4	AVX2
VGATTIERQFD	y,[i · 3 y],y	7		ρο ρτ ρ23 ρ3			AVAZ
Comversion							
Conversion CVTPD2PS	V V	2	2	n01 n5	5	1	
CVTPD2PS	X,X	2	3	p01 p5	5		
	x,m128	2	2	p01 p5 p23	7	1	A) //
VCVTPD2PS	x,y	1	1	p01 p5	/	1	AVX
VCVTPD2PS	x,m256	2	3	p01 p5 p23	_	1	AVX
CVTSD2SS	X,X	2	2	p01 p5	5	1	
CVTSD2SS	x,m64	2	3	p01 p5 p23	_	1	
CVTPS2PD	X,X	2	2	p01 p5	5	1	
CVTPS2PD	x,m64	1	2	p01 p5 p23	_	0.5	
VCVTPS2PD	y,x	2	2	p01 p5	7	1	AVX
VCVTPS2PD	y,m128	1	2	p01 p5 p23	_	0.5	AVX
CVTSS2SD	X,X	2	2	p01 p5	5	2	
CVTSS2SD	x,m32	1	2	p01 p5 p23		2	
				p01	1	0.5	
CVTDQ2PS	X,X	1	1		4		
CVTDQ2PS	x,m128	1	2	p01 p23		0.5	
CVTDQ2PS VCVTDQ2PS	x,m128 y,y		2 1	p01 p23 p01	4	0.5 0.5	AVX
CVTDQ2PS VCVTDQ2PS VCVTDQ2PS	x,m128	1	2 1 2	p01 p23 p01 p01 p23		0.5 0.5 0.5	AVX AVX
CVTDQ2PS VCVTDQ2PS	x,m128 y,y y,m256 x,x	1 1	2 1 2 1	p01 p23 p01 p01 p23 p01		0.5 0.5 0.5 0.5	
CVTDQ2PS VCVTDQ2PS VCVTDQ2PS	x,m128 y,y y,m256	1 1 1	2 1 2 1 2	p01 p23 p01 p01 p23 p01 p01 p23	4	0.5 0.5 0.5	
CVTDQ2PS VCVTDQ2PS VCVTDQ2PS CVT(T) PS2DQ	x,m128 y,y y,m256 x,x	1 1 1 1	2 1 2 1 2	p01 p23 p01 p01 p23 p01	4	0.5 0.5 0.5 0.5	
CVTDQ2PS VCVTDQ2PS VCVTDQ2PS CVT(T) PS2DQ CVT(T) PS2DQ	x,m128 y,y y,m256 x,x x,m128	1 1 1 1 1	2 1 2 1 2 1 2	p01 p23 p01 p01 p23 p01 p01 p23	4	0.5 0.5 0.5 0.5 0.5	AVX
CVTDQ2PS VCVTDQ2PS VCVTDQ2PS CVT(T) PS2DQ CVT(T) PS2DQ VCVT(T) PS2DQ	x,m128 y,y y,m256 x,x x,m128 y,y	1 1 1 1 1 1 1 1 2	2 1 2 1 2 1 2 2	p01 p23 p01 p01 p23 p01 p01 p23 p01	4	0.5 0.5 0.5 0.5 0.5 0.5	AVX AVX
CVTDQ2PS VCVTDQ2PS VCVTDQ2PS CVT(T) PS2DQ CVT(T) PS2DQ VCVT(T) PS2DQ VCVT(T) PS2DQ	x,m128 y,y y,m256 x,x x,m128 y,y y,m256	1 1 1 1 1 1 1	2 1 2 1 2 1 2	p01 p23 p01 p01 p23 p01 p01 p23 p01 p01 p23	4 4 4	0.5 0.5 0.5 0.5 0.5 0.5	AVX AVX
CVTDQ2PS VCVTDQ2PS VCVTDQ2PS CVT(T) PS2DQ CVT(T) PS2DQ VCVT(T) PS2DQ VCVT(T) PS2DQ CVT(T) PS2DQ CVTDQ2PD	x,m128 y,y y,m256 x,x x,m128 y,y y,m256 x,x	1 1 1 1 1 1 1 1 2	2 1 2 1 2 1 2 2	p01 p23 p01 p01 p23 p01 p01 p23 p01 p01 p23 p01 p5	4 4 4	0.5 0.5 0.5 0.5 0.5 0.5 0.5	AVX AVX
CVTDQ2PS VCVTDQ2PS VCVTDQ2PS CVT(T) PS2DQ CVT(T) PS2DQ VCVT(T) PS2DQ VCVT(T) PS2DQ VCVT(T) PS2DQ CVTDQ2PD CVTDQ2PD	x,m128 y,y y,m256 x,x x,m128 y,y y,m256 x,x x,m64	1 1 1 1 1 1 1 2 2	2 1 2 1 2 1 2 2 2	p01 p23 p01 p01 p23 p01 p01 p23 p01 p01 p23 p01 p5 p01 p23	4 4 4 5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 1	AVX AVX AVX

1	1		I .	- I			1
CVT(T)PD2DQ	x,m128	3	3	p01 p23 p5		1	
VCVT(T)PD2DQ	x,y	2	2	p01 p5	7	1	AVX
VCVT(T)PD2DQ	x,m256	2	3	p01 p23 p5		1	AVX
CVTPI2PS	x,mm	2	2	p0 p1	6	2	
CVTPI2PS	x,m64	1	2	p01 p23		3	
CVT(T)PS2PI	mm,x	2	2	p0 p5	7	1	
CVT(T)PS2PI	mm,m128	2	2	p0 p23		1	
CVTPI2PD	x,mm	2	2	p01 p5	5	1	
CVTPI2PD	x,m64	1	2	p01 p23		0.5	
CVT(T) PD2PI	mm,x	2	2	p01 p5	5	1	
CVT(T) PD2PI	mm,m128	2	3	p01 p23 p5		1	
CVTSI2SS	x,r32	2	2	p01 p5	6	2	
CVTSI2SS	x,r64	3	3	p01 2p5	7	2	
CVTSI2SS	x,m32	1	2	p1 p23		3	
CVT(T)SS2SI	r32,x	2	2	2p01	6	1	
CVT(T)SS2SI	r64,x	3	3	2p01 p5	7	1	
CVT(T)SS2SI	r32,m32	3	3	2p01 p0	'	1	
CVTSI2SD	x,r32/64	2	2	p01 p5	6	2	
CVTSI2SD	x,n32/04 x,m32	1	2	p01 p3		2	
CVT(T)SD2SI	r32/64,x	2	2		6	1	
	l '	3	3	p0 p1	0	1	
CVT(T)SD2SI	r32,m64	2		2p01 p23	F 7		F460
VCVTPS2PH	x,v,i		2	p01 p5	5-7	1	F16C
VCVTPS2PH	m,v,i	3	3	p01 p4 p23		1	F16C
VCVTPH2PS	V,X	2	2	p01 p5	5-7	1	F16C
VCVTPH2PS	v,m	1	2	p01 p23		1	F16C
Arithmetic							
ADDSS/D PS/D	,						
SUBSS/D PS/D	x,x / v,v,v	1	1	p01	4	0.5	
ADDSS/D PS/D	,			0.4 00			
SUBSS/D PS/D	x,m / v,v,m	1	2	p01 p23		0.5	
ADDSUBPS/D	x,x / v,v,v	1	1	p01	4	0.5	SSE3
ADDSUBPS/D	x,m / v,v,m	1	2	p01 p23		0.5	SSE3
HADDPS/D		_	_		_	_	
HSUBPS/D	x,x / v,v,v	3	3	p01 2p5	6	2	SSE3
HADDPS/D							
HSUBPS/D	x,m / v,v,m	4	4	p1 2p5 p23		2	SSE3
MULSS/D PS/D	x,x / v,v,v	1	1	p01	4	0.5	
MULSS/D PS/D	x,m / v,v,m	1	2	p01 p23		0.5	
DIVSS	X,X	1	1	p0	11	3	
DIVPS	X,X	1	1	p0	11	3	
DIVSS DIVPS	x,m	1	2	p0 p23		3-5	
DIVSD	x,x	1	1	p0	13-14	4	
DIVPD	x,x	1	1	p0	13-14	4	
DIVSD DIVPD	x,m	1	2	p0 p23		4	
VDIVPS	y,y,y	1	1	p0	11	5	AVX
VDIVPS	y,y,m256	1	2	p0 p23		5	AVX
VDIVPD	y,y,y	1	1	p0	13-14	8	AVX
VDIVPD	y,y,m256	4	4	p0 p23		8	AVX
RCPSS/PS	V,V	1	1	p0	4	1	
RCPSS/PS	v,m	1	2	p0 p23		1	
CMPccSS/D	-,		_	F - F		·	
CMPccPS/D	x,x / v,v,v	1	1	p01	4	0.5	
I	1,			l 6.			ı

				,			
CMPccSS/D							
CMPccPS/D	x,m / v,v,m	2	2	p01 p23		0.5	
(U)COMISS/D	x,x	1	1	p0		1	
(U)COMISS/D	x,m32/64	2	2	p0 p23		1	
` '	X,11102/04	_	_	po p20		'	
MAXSS/D PS/D	,		_	0.4		0.5	
MINSS/D PS/D	x,x / v,v,v	1	1	p01	4	0.5	
MAXSS/D PS/D							
MINSS/D PS/D	x,m / v,v,m	1	2	p01 p23		0.5	
ROUNDSS/D PS/D	v,v,i	2	2	2p01	8	1	SSE4.1
ROUNDSS/D PS/D	v,m,i	3	3	2p01 p23		1	SSE4.1
DPPS	x,x,i / v,v,v,i	4	4	3p01 p5	13	1.5	SSE4.1
DPPS	x,m,i / v,v,m,i	6	6	3p01 p23 p5 p6		1.5	SSE4.1
DPPD	x,x,i	3	3	2p01 p5	9	1	SSE4.1
DPPD	x,m128,i	4	4	2p01 p3 2p01 p23 p5	9	1	SSE4.1
	X,111120,1	4	4	2p01 p23 p3		'	3354.1
VFMADD		_		- 04	4	0.5	- N 4 A
(all FMA instr.)	V,V,V	1	1	p01	4	0.5	FMA
VFMADD							
(all FMA instr.)	v,v,m	1	2	p01 p23		0.5	FMA
Math							
SQRTSS/PS	x,x	1	1	p0	12	3	
SQRTSS/PS	x,m128	1	2	p0 p23		3	
VSQRTPS	у,у	1	1	p0	12	6	AVX
VSQRTPS	y,y y,m256	4	4	p0 p23	12	6	AVX
		-			15-16	4-6	
SQRTSD	x,x	1	1	p0			
SQRTPD	X,X	1	1	p0	15-16	4-6	
SQRTSD/PD	x,m128	1	2	p0 p23		4-6	
VSQRTPD	y,y	1	1	p0	15-16	9-12	AVX
VSQRTPD	y,m256	4	4	p0 p23		9-12	AVX
RSQRTSS/PS	V,V	1	1	p0	4	1	
RSQRTSS/PS	v,m	1	2	p0 p23		1	
	,			F - F -			
Logic							
AND/ANDN/OR/XO							
RPS/PD	x,x / v,v,v	1	1	p015	1	0.33	
AND/ANDN/OR/XO	X,X / V, V, V	'		poro		0.00	
RPS/PD	x,m / v,v,m	1	2	p015 p23		0.5	
	X,1117 V, V,111		_	p010 p20		0.0	
Other							
VZEROUPPER		4	4	nono		4	A\ /\
VZEROUPPER		4	4	none		1	AVX
\/ZEDOALI		0.5	0.5	0 4 5 0		40	AVX,
VZEROALL		25	25	p0 p1 p5 p6		12	32 bit
							AVX,
VZEROALL		34	34	p0 p1 p5 p6		12	64 bit
LDMXCSR	m32	4	4	p0 p5 p6 p23	5	3	
STMXCSR	m32	3	4	p0 p4 p6 p237	5	2	
FXSAVE	m4096	106			78	78	32 bit mode
FXSAVE	m4096	136			64	64	64 bit mode
FXRSTOR	m4096	105			76	76	32 bit mode
FXRSTOR	m4096	121			77	77	64 bit mode
XSAVE	1117030	247			107	107	32 bit mode
XSAVE		304			107	107	64 bit mode

XRSTOR		257	122	122	32 bit mode
XRSTOR		257	122	122	64 bit mode
XSAVEOPT	m	168	74	74	

Intel Pentium 4

List of instruction timings and uop breakdown

This list is measured for a Pentium 4, model 2. Timings for model 3 may be more like the values for P4E. listed on the next sheet

Explanation of column headings:

Instruction: Instruction name, cc means any condition code. For example, Jcc can be JB,

JNE. etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

> mmx register, xmm = 128 bit xmm register, sr = segment register, m = any memory operand including indirect operands, m64 means 64-bit memory op-

erand, etc.

Number of pops issued from instruction decoder and stored in trace cache. μops:

Microcode: Number of additional µops issued from microcode ROM.

Latency: This is the delay that the instruction generates in a dependency chain if the

next dependent instruction starts in the same execution unit. The numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latency of moves to and from memory cannot be measured accurately because of the problem with memory intermediates explained

above under "How the values were measured".

This number is added to the latency if the next dependent instruction is in a Additional latency:

different execution unit. There is no additional latency between ALU0 and

ALU1.

Reciprocal This is also called issue latency. This value indicates the number of clock cythroughput:

cles from the execution of an instruction begins to a subsequent independent

instruction can begin to execute in the same execution subunit. A value of

0.25 indicates 4 instructions per clock cycle in one thread.

The port through which each uop goes to an execution unit. Two independent Port:

μops can start to execute simultaneously only if they are going through differ-

ent ports.

Execution unit: Use this information to determine additional latency. When an instruction with

more than one uop uses more than one execution unit, only the first and the

last execution unit is listed.

Execution subunit: Throughput measures apply only to instructions executing in the same sub-

unit.

Instruction set Indicates the compatibility of an instruction with other 80x86 family micropro-

cessors. The instruction can execute on microprocessors that support the in-

struction set indicated.

Integer instructions

Instruction	Operands	pops	Microcode	Latency	Additional latency	Reciprocal through- put	Port	Execution unit	Subunit	Instruction set	Notes
Move instructions											
MOV	r,r	1	0	0,5	0.5-1	0,25	0/1	alu0/1		86	С
MOV	r,i	1	0	0,5	0.5-1	0,25	0/1	alu0/1		86	
MOV	r32,m	1	0	2	0	1	2	load		86	
MOV	r8/16,m	2	0	3	0	1	2	load		86	
MOV	m,r	1	0	1		2	0	store		86	b, c
MOV	m,i	3	0			2	0,3	store		86	
MOV	r,sr	4	2			6				86	
MOV	sr,r/m	4	4	12	0	14				86	a, q
MOVNTI	m,r32	2	0			≈33				sse2	
MOVZX	r,r	1	0	0,5	0.5-1	0,25	0/1	alu0/1		386	С
MOVZX	r,m	1	0	2	0	1	2	load		386	
MOVSX	r,r	1	0	0,5	0.5-1	0,5	0	alu0		386	С
MOVSX	r,m	2	0	3	0.5-1	1	2,0			386	
CMOVcc	r,r/m	3	0	6	0	3				ppro	a, e
XCHG	r,r	3	0	1,5	0.5-1	1	0/1	alu0/1		86	
XCHG	r,m	4	8	>100						86	
XLAT		4	0	3						86	
PUSH	r	2	0	1		2				86	
PUSH	i	2	0	1		2				186	
PUSH	m	3	0			2				86	
PUSH	sr	4	4			7				86	
PUSHF(D)		4	4			10				86	
PUSHA(D)		4	10	١.	_	19				186	
POP	r	2	0	1	0	1				86	
POP	m	4	8			14				86	
POP (D)	sr	4	5			13				86	
POPF(D)		4	8			52				86	
POPA(D)	n [n n/i]	4	16	٥.	0 - 4	14	0/4	al: .0/4		186	
LEA	r,[r+r/i]	1	0		0.5-1			alu0/1		86	
LEA LEA	r,[r+r+i]	2 3	0	1	0.5-1 0.5-1	0,5	0/1	alu0/1		86 386	
LEA	r,[r*i]	2	0	4	0.5-1	1	1	int,alu		386	
LEA	r,[r+r*i] r,[r+r*i+i]	3	0	4	0.5-1	1	1	int,alu int,alu		386	
LAHF	1,[171 171]	1	0	4	0.5-1	4	1	int		86	
SAHF		1	0	0,5	0.5-1	0,5	0/1	alu0/1		86	d
SALC		3	0	5	0.5-1	1	1	int		86	u
LDS, LES,	r,m	4	7	3		15	'	li it		86	
BSWAP	r	3	0	7	0	2		int,alu		486	
IN, OUT	r,r/i	8	64	'		>100	0	iiit,aiu	86	700	
PREFETCHNTA	m 1,171	4	2			6				sse	
PREFETCHT0/1/2	m	4	2			6				sse	

SFENCE LFENCE		4	2 2			40 38				sse sse2	
MFENCE		4	2			100				sse2	
Arithmetic instructions											
ADD, SUB	r,r	1	0	0,5	0.5-1	0,25	0/1	alu0/1		86	С
ADD, SUB	r,m	2	0	1	0.5-1	1				86	С
ADD, SUB	m,r	3	0	≥ 8		≥ 4				86	С
ADC, SBB	r,r	4	4	6	0	6	1	int,alu		86	
ADC, SBB	r,i	3	0	6	0	6	1	int,alu		86	
ADC, SBB	r,m	4	6	8	0	8	1	int,alu		86	
ADC, SBB	m,r	4	7	≥ 9		8				86	
CMP	r,r	1	0	0,5	0.5-1	0,25	0/1	alu0/1		86	С
CMP	r,m	2	0	1	0.5-1					86	С
INC, DEC	r	2	0	0,5	0.5-1		0/1	alu0/1		86	
INC, DEC	m	4	0	4		≥ 4				86	
NEG	r	1	0	0,5	0.5-1		0	alu0		86	
NEG	m	3	0	- , -		≥ 3				86	
AAA, AAS		4	27	90						86	
DAA, DAS		4	57	100						86	
AAD		4	10	22			1	int	fpmul	86	
AAM		4	22	56			1	int	fpdiv	86	
MUL, IMUL	r8/32	4	6	16	0	8	1	int	fpmul	86	
MUL, IMUL	r16	4	7	17	0	8	1	int	fpmul	86	
MUL, IMUL	m8/32	4	7-8	16	0	8	1	int	fpmul	86	
MUL, IMUL	m16	4	10	16	0	8	1	int	fpmul	86	
IMUL	r32,r	4	0	14	0	4,5	1	int	fpmul	386	
IMUL	r32,(r),i	4	0	14	0	4,5	1	int	fpmul	386	
IMUL	r16,r	4	5	16	0	9	1	int	fpmul	386	
IMUL	r16,r,i	4	5	15	0	8	1	int	fpmul	186	
IMUL	r16,m16	4	7	15	0	10	1	int	fpmul	386	
IMUL	r32,m32	4	0	14	0	8	1	int	fpmul	386	
IMUL	r,m,i	4	7	14	0	10	1	int	fpmul	186	
DIV	r8/m8	4	20	61	0	24	1	int	fpdiv	86	а
DIV	r16/m16	4	18	53	0	23	1	int	fpdiv	86	a
DIV	r32/m32	4	21	50	0	23	1	int	fpdiv	386	a
IDIV	r8/m8	4	24	61	0	24	1	int	fpdiv	86	а
IDIV	r16/m16	4	22	53	0	23	1	int	fpdiv	86	a
IDIV	r32/m32	4	20	50	0	23	1	int	fpdiv	386	a
CBW	102/11102	2	0	1	0.5-1		0	alu0	ipaiv	86	"
CWD, CDQ		2	0	1	0.5-1		0/1	alu0/1		86	
CWDE, CDQ		1	0	0,5	0.5-1	0,5	0	alu0		386	
OVVDL		'		0,5	0.5-1	0,5		aluo		300	
Logic instructions											
AND, OR, XOR	r,r	1	0	0,5	0.5-1	0,5	0	alu0		86	С
AND, OR, XOR	r,m	2	0	≥ 1	0.5-1	≥ 1				86	С
AND, OR, XOR	m,r	3	0	≥ 8		≥ 4				86	С
TEST	r,r	1	0	0,5	0.5-1		0	alu0		86	С
TEST	r,m	2	0	≥ 1	0.5-1					86	С
NOT	r	1	0		0.5-1		0	alu0		86	
1 -				-,-	1	, -, -	-		I .	,	1 1

				Cittle							
NOT	m	4	0			≥ 4				86	
SHL, SHR, SAR	r,i	1	0	4	1	1	1	int	mmxsh	186	
SHL, SHR, SAR	r,CL	2	0	6	0	1	1	int	mmxsh	86	d
ROL, ROR	r,i	1	0	4	1	1	1	int	mmxsh	186	d
ROL, ROR	r,CL	2	0	6	0	1	1	int	mmxsh	86	d
RCL, RCR	r,1	1	0	4	1	1	1	int	mmxsh	86	d
RCL, RCR	r,i	4	15	16	0	15	1	int	mmxsh	186	d
RCL, RCR	r,CL	4	15	16	0	14	1	int	mmxsh	86	d
SHL,SHR,SAR,ROL,	, -										
ROR	m,i/CL	4	7-8	10	0	10	1	int	mmxsh	86	d
RCL, RCR	m,1	4	7	10	0	10	1	int	mmxsh	86	d
RCL, RCR	m,i/CL	4	18	18-28	3	14	1	int	mmxsh	86	d
SHLD, SHRD	r,r,i/CL	4	14	14	0	14	1	int	mmxsh	386	
SHLD, SHRD	m,r,i/CL	4	18	14	0	14	1	int	mmxsh	386	
ВТ	r,i	3	0	4	0	2	1	int	mmxsh	386	d
ВТ	r,r	2	0	4	0	1	1	int	mmxsh	386	d
вт	m,i	4	0	4	0	2	1	int	mmxsh	386	d
вт	m,r	4	12	12	0	12	1	int	mmxsh	386	d
BTR, BTS, BTC	r,i	3	0	6	0	2	1	int	mmxsh	386	
BTR, BTS, BTC	r,r	2	0	6	0	4	1	int	mmxsh	386	
BTR, BTS, BTC	m,i	4	7	18	0	8	1	int	mmxsh	386	
BTR, BTS, BTC	m,r	4	15	14	0	14	1	int	mmxsh	386	
BSF, BSR	r,r	2	0	4	0	2	1	int	mmxsh	386	
BSF, BSR	r,m	3	0	4	0	3	1	int	mmxsh	386	
SETcc	r	3	0	5	0	1	1	int		386	
SETcc	m	4	0	5	0	3	1	int		386	
CLC, STC		3	0	10	0	2				86	d
CMC		3	0	10	0	2				86	
CLD		4	7	52	0	52				86	
STD		4	5	48	0	48				86	
CLI		4	5	35		35				86	
STI		4	12	43		43				86	
Control transfer instruct	tions										
JMP	short/near	1	0	0	0	1	0	alu0	branch	86	
JMP	far	4	28	118		118	0			86	
JMP	r	3	0	4		4	0	alu0	branch	86	
JMP	m(near)	3	0	4		4	0	alu0	branch	86	
JMP	m(far)	4	31	11		11	0			86	
Jcc	short/near	1	0	0		2-4	0	alu0	branch	86	
J(E)CXZ	short	4	4	0		2-4	0	alu0	branch	86	
LOOP	short	4	4	0		2-4	0	alu0	branch	86	
CALL	near	3	0	2		2	0	alu0	branch	86	
CALL	far	4	34				0			86	
CALL	r	4	4	8			0	alu0	branch	86	
CALL	m(near)	4	4	9			0	alu0	branch	86	
CALL	m(far)	4	38				0			86	
RETN		4	0	2			0	alu0	branch	86	
RETN	i	4	0	2			0	alu0	branch	86	
RETF		4	33	11			0			86	
•	,			•		. '			, 1		

RETF	i	4	33	11			0			86	
IRET		4	48	24			0			86	
ENTER	i,0	4	12	26		26				186	
ENTER	i,n	4	45+2	4n		128+	16n		186		
LEAVE		4	0	3		3				186	
BOUND	m	4	14	14		14				186	
INTO		4	5	18		18				86	
INT	i	4	84	644						86	
String instructions											
LODS		4	3	6		6				86	
REP LODS		4	5n	≈ 4n-	+36			86			
STOS		4	2	6		6				86	
REP STOS		4	2n+3	≈ 3n-	⊦ 10			86			
MOVS		4	4	6		4				86	
REP MOVS		4	≈163·	+1.1n				86			
SCAS		4	3			6				86	
REP SCAS		4	≈ 40+	-6n	≈4n				86		
CMPS		4	5			8				86	
REP CMPS		4	≈ 50+	-8n	≈4n				86		
Other											
NOP (90)		1	0	0		0,25	0/1	alu0/1		86	
Long NOP (0F 1F)		1	0	0		0,25	0/1	alu0/1 alu0/1			
PAUSE		4	2	U		0,23	0/ 1	aluu/ I		ppro sse2	
CPUID		4	39-81	 	200-5	: :00		n5		3362	
RDTSC		4	7	! 	200-8	80		р5		p5	
אטואט		4	/			00				μb	

Notes:

a) Add 1 µop if source is a memory operand.

Uses an extra µop (port 3) if SIB byte used. A SIB byte is needed if the memb)

ory operand has more than one pointer register, or a scaled index, or ESP is

used as base pointer.

Add 1 µop if source or destination, but not both, is a high 8-bit register (AH, c)

BH, CH, DH).

d) Has (false) dependence on the flags in most cases.

Not available on PMMX e)

q) Latency is 12 in 16-bit real or virtual mode, 24 in 32-bit protected mode.

Floating point x87 instructions

Instruction	Operands	nops	Microcode	Latency	Additional latency	Reciprocal through-	Port	Execution unit	Subunit	Instruction set	Notes
Move instructions											
FLD	r	1	0	6	0	1	0	mov		87	
FLD	m32/64	1	0	≈ 7	0	1	2	load		87	

FLD	m80	3	4			6	2	load		87	
FBLD	m80	3	75			90	2	load		87	
FST(P)	r	1	0	6	0	1	0	mov		87	
FST(P)	m32/64	2	0	≈ 7		2-3	0	store		87	
FSTP	m80	3	8			8	0	store		87	
FBSTP	m80	3	311			400	0	store		87	
FXCH	r	1	0	0	0	1	0	mov		87	
FILD	m16	3	3	≈ 10	J	6	2	load		87	
FILD	m32/64	2	0	≈ 10		1	2	load		87	
FIST	m16	3	0	≈ 10		2-4	0	store		87	
FIST	m32/64	2	0	~ 10 ≈ 10		2-4	0	store		87	
FISTP		3	0	~ 10 ≈ 10		2-3	0			87	
	m	_	_	~ 10			_	store			
FLDZ		1	0			2	0	mov		87	
FLD1	10	2	0			2	0	mov		87	
FCMOVcc	st0,r	4	0	2-4	1	4	1	fp		PPro	е
FFREE	r	3	0	_	_	4	0	mov		87	
FINCSTP, FDECSTP		1	0	0	0	1	0	mov		87	
FNSTSW	AX	4	0	11	0	3	1			287	
FSTSW	AX	6	0	11	0	3	1			287	
FNSTSW	m16	4	4			6	0			87	
FNSTCW	m16	4	4			6	0			87	
FLDCW	m16	4	7	(3)		(8)	0,2			87	f
Arithmetic instructions											
FADD(P),FSUB(R)(P)	r	1	0	5	1	1	1	fp	add	87	
FADD,FSUB(R)	m	2	0	5	1	1	1	fp	add	87	
FIADD,FISUB(R)	m16	3	4	6	0	6	1	fp	add	87	
FIADD,FISUB(R)	m32	3	0	5	1	2	1	fp	add	87	
FMUL(P)	r	1	0	7	1	2	1	fp	mul	87	
FMUL		2	0	7	1	2	1			87	
	m 16	3	4	7				fp	mul		
FIMUL	m16				1	6	1	fp	mul	87	
FIMUL	m32	3	0	7	1	2	1	fp	mul	87	
FDIV(R)(P)	r	1	0	43	0	43	1	fp	div	87	g, h
FDIV(R)	m	2	0	43	0	43	1	fp	div	87	g, h
FIDIV(R)	m16	3	4	43	0	43	1	fp	div	87	g, h
FIDIV(R)	m32	3	0	43	0	43	1	fp	div	87	g, h
FABS		1	0	2	1	1	1	fp	misc	87	
FCHS		1	0	2	1	1	1	fp	misc	87	
FCOM(P), FUCOM(P)	r	1	0	2	0	1	1	fp	misc	87	
FCOM(P)	m	2	0	2	0	1	1	fp	misc	87	
FCOMPP, FUCOMPP		2	0	2	0	1	1	fp	misc	87	
FCOMI(P)	r	3	0	10	0	3	0,1	fp	misc	PPro	
FICOM(P)	m16	4	4			6	1	fp	misc	87	
FICOM(P)	m32	3	0	2	0	2	1,2	fp	misc	87	
FTST		1	0	2	0	1	1	fp	misc	87	
FXAM		1	0	2	0	1	1	fp	misc	87	
FRNDINT		3	15	23	0	15	0,1	.14		87	
FPREM		6	84	212		.5	1	fp		87	
FPREM1		6	84	212			1	fp		387	
			5-	_ '-			'	٠,٢			
1	l	I	1	1		1	I		1	l	1 1

Math										
FSQRT	1	0	43	0	43	1	fp	div	87	g, h
FLDPI, etc.	2	0			3	1	fp		87	
FSIN	6	≈150	≈180		≈170	1	fp		387	
FCOS	6	≈175	≈207		≈207	1	fp		387	
FSINCOS	7	≈178	≈216		≈211	1	fp		387	
FPTAN	6	≈160	≈230		≈200	1	fp		87	
FPATAN	3	92	≈187		≈153	1	fp		87	
FSCALE	3	24	57		66	1	fp		87	
FXTRACT	3	15	20		20	1	fp		87	
F2XM1	3	45	≈165		63	1	fp		87	
FYL2X	3	60	≈200		90	1	fp		87	
FYL2XP1	11	134	≈242		≈220	1	fp		87	
Other										
FNOP	1	0	1	0	1	0		mov	87	
(F)WAIT	2	0	0	0	1	0		mov	87	
FNCLEX	4	4			96	1			87	
FNINIT	6	29			172				87	
FNSAVE	4	174	456		420	0,1			87	
FRSTOR	4	96	528		532				87	
FXSAVE	4	69	132		96				sse	i
FXRSTOR	4	94	208		208				sse	i

Notes:

e) Not available on PMMX

f) The latency for FLDCW is 3 when the new value loaded is the same as the

value of the control word before the preceding FLDCW, i.e. when alternating between the same two values. In all other cases, the latency and reciprocal

throughput is 143.

g) Latency and reciprocal throughput depend on the precision setting in the F.P.

control word. Single precision: 23, double precision: 38, long double precision

(default): 43.

h) Throughput of FP-MUL unit is reduced during the use of the FP-DIV unit.

i) Takes 6 μops more and 40-80 clocks more when XMM registers are disabled.

Integer MMX and XMM instructions

Instruction	Operands	nops	Microcode	Latency	Additional latency	Reciprocal through-	Port	Execution unit	Subunit	Instruction set	Notes
Move instructions											
MOVD	r32, mm	2	0	5	1	1	0	fp		mmx	
MOVD	mm, r32	2	0	2	0	2	1	mmx	alu	mmx	
MOVD	mm,m32	1	0	≈ 8	0	1	2	load		mmx	
MOVD	r32, xmm	2	0	10	1	2	0	fp		sse2	

MOVD	vmm r20	2	0	6	4		1	mmy	ob:ff	2002	1 1
MOVD	xmm, r32	2 1	0	6 ≈8	1 0	2	1 2	mmx	shift	sse2	
MOVD	xmm,m32	2	0	~ o ≈ 8	U	2		load		sse2	
	m32, r		-		0		0,1	ma a		mmx	
MOVQ	mm,mm	1	0	6	0	1	0	mov	- I- :£4	mmx	
MOVQ	xmm,xmm	1	0	2	1	2	1	mmx	shift	sse2	
MOVQ	r,m64	1	0	≈ 8		1	2	load		mmx	
MOVQ	m64,r	2	0	≈ 8		2	0	mov		mmx	
MOVDQA	xmm,xmm	1	0	6	0	1	0	mov		sse2	
MOVDQA	xmm,m	1	0	≈ 8		1	2	load		sse2	
MOVDQA	m,xmm	2	0	≈ 8		2	0	mov		sse2	
MOVDQU	xmm,m	4	0			2	2	load		sse2	k
MOVDQU	m,xmm	4	6			2	0	mov		sse2	k
MOVDQ2Q	mm,xmm	3	0	8	1	2	0,1	mov-mmx	sse2		
MOVQ2DQ	xmm,mm	2	0	8	1	2	0,1	mov-mmx	sse2		
MOVNTQ	m,mm	3	0			75	0	mov		sse	
MOVNTDQ	m,xmm	2	0			18	0	mov		sse2	
PACKSSWB/DW											
PACKUSWB	mm,r/m	1	0	2	1	1	1	mmx	shift	mmx	а
PACKSSWB/DW											
PACKUSWB	xmm,r/m	1	0	4	1	2	1	mmx	shift	mmx	а
PUNPCKH/LBW/WD/	,		•				_		1 :6		
DQ	mm,r/m	1	0	2	1	1	1	mmx	shift	mmx	а
PUNPCKHBW/WD/DQ/			0						- 1- 164		_
QDQ	xmm,r/m	1	0	4	1	2	1	mmx	shift	sse2	а
PUNPCKLBW/WD/DQ/QDQ		4	0	2	4	_	4	ma max	ah:ff	2	
	xmm,r/m	1	0	2	1	2	1	mmx	shift	sse2	а
PSHUFD	xmm,xmm,i	1	0	4	1	2	1	mmx	shift	sse2	
PSHUFL/HW	xmm,xmm,i	1	0	2	1	2	1	mmx	shift	sse2	
PSHUFW	mm,mm,i	1	0	2	1	1	1	mmx	shift	mmx	
MASKMOVQ	mm,mm	4	4			7	0	mov		sse	
MASKMOVDQU	xmm,xmm	4	6	_		10	0	mov		sse2	
PMOVMSKB	r32,r	2	0	7	1	3	0,1	mmx-alu0	sse		
PEXTRW	r32,mm,i	3	0	8	1	2	1	mmx-int	sse		
PEXTRW	r32,xmm,i	3	0	9	1	2	1	mmx-int	sse2		
PINSRW	mm,r32,i	2	0	3	1	2	1	int-mmx	sse		
PINSRW	xmm,r32,i	2	0	4	1	2	1	int-mmx	sse2		
Arithmetic instructions											
PADDB/W/D											
PADD(U)SB/W	r,r/m	1	0	2	1	1,2	1	mmx	alu	mmx	a,j
PSUBB/W/D	1,1/111	'	U		'	1,2	'	111111	aiu	1111117	a,j
PSUB(U)SB/W	r,r/m	1	0	2	1	1,2	1	mmx	alu	mmx	a,j
PADDQ, PSUBQ	mm,r/m	1	0	2	1	1	1	mmx	alu	sse2	a
PADDQ, PSUBQ	xmm,r/m	<u> </u>	0	4	1	2	1	fp	add	sse2	a
PCMPEQB/W/D	AIIIII,I/III	'	U	7	'	_	'	ıρ	auu	3362	a
PCMPGTB/W/D	r,r/m	1	0	2	1	1,2	1	mmx	alu	mmx	a,j
PMULLW PMULHW	r,r/m	1	0	6	1	1,2	1	fp	mul	mmx	a,j
PMULHUW	r,r/m	1	0	6	1	1,2	1	fp	mul	sse	a,j a,j
PMADDWD		1	0	6	1 1	1,2	1				- 1
	r,r/m	- 1	-					fp	mul	mmx	a,j
PMULUDQ	r,r/m	1	0	6	1	1,2	1	fp	mul	sse2	a,j
PAVGB/W	r,r/m	1	0	2	1	1,2	1	mmx	alu	sse	a,j

PMIN/MAXUB	r,r/m	1	0	2	1	1,2	1	mmx	alu	sse	a,j
PMIN/MAXSW	r,r/m	1	0	2	1	1,2	1	mmx	alu	sse	a,j
PSADBW	r,r/m	1	0	4	1	1,2	1	mmx	alu	sse	a,j
Logic											
PAND, PANDN	r,r/m	1	0	2	1	1,2	1	mmx	alu	mmx	a,j
POR, PXOR	r,r/m	1	0	2	1	1,2	1	mmx	alu	mmx	a,j
PSLL/RLW/D/Q,											
PSRAW/D	r,i/r/m	1	0	2	1	1,2	1	mmx	shift	mmx	a,j
PSLLDQ, PSRLDQ	xmm,i	1	0	4	1	2	1	mmx	shift	sse2	а
Other											
EMMS		4	11	12		12	0			mmx	

Notes:

a) Add 1 µop if source is a memory operand.

j) Reciprocal throughput is 1 for 64 bit operands, and 2 for 128 bit operands.

k) It may be advantageous to replace this instruction by two 64-bit moves

Floating point XMM instructions

Floating point Awiw			-	_		~ ~	_	-	10	_	_
Instruction	Operands	hobs	Microcode	Latency	Additional latency	Reciprocal through- put	Port	Execution unit	Subunit	Instruction set	Notes
Move instructions											
MOVAPS/D	r,r	1	0	6	0	1	0	mov		sse	
MOVAPS/D	r,m	1	0	≈ 7	0	1	2			sse	
MOVAPS/D	m,r	2	0	≈ 7		2	0			sse	
MOVUPS/D	r,r	1	0	6	0	1	0	mov		sse	
MOVUPS/D	r,m	4	0			2	2			sse	k
MOVUPS/D	m,r	4	6			8	0			sse	k
MOVSS	r,r	1	0	2	0	2	1	mmx	shift	sse	
MOVSD	r,r	1	0	2	1	2	1	mmx	shift	sse	
MOVSS, MOVSD	r,m	1	0	≈ 7	0	1	2			sse	
MOVSS, MOVSD	m,r	2	0			2	0			sse	
MOVHLPS	r,r	1	0	4	0	2	1	mmx	shift	sse	
MOVLHPS	r,r	1	0	2	0	2	1	mmx	shift	sse	
MOVHPS/D, MOVLPS/D											
	r,m	3	0			4	2			sse	
MOVHPS/D, MOVLPS/D											
MOVALTEDO (D	m,r	2	0			2	0			sse	
MOVNTPS/D	m,r	2	0			4	0	c -		sse/2	
MOVMSKPS/D	r32,r	2	0	6	1	3	1	fp	- 1- 16	sse	
SHUFPS/D	r,r/m,i	1	0	4	1	2	1	mmx	shift	sse	
UNPCKHPS/D	r,r/m	1	0	4	1	2	1	mmx	shift	sse	
UNPCKLPS/D	r,r/m	1	0	2	1	2	1	mmx	shift	sse	

		I		1							
Conversion											
CVTPS2PD	r,r/m	4	0	7	1	4	1	mmx	shift	sse2	а
CVTPD2PS	r,r/m	2	0	10	1	2	1	fp-mmx	sse2	а	
CVTSD2SS	r,r/m	4	0	14	1	6	1	mmx	shift	sse2	а
CVTSS2SD	r,r/m	4	0	10	1	6	1	mmx	shift	sse2	а
CVTDQ2PS	r,r/m	1	0	4	1	2	1	fp		sse2	а
CVTDQ2PD	r,r/m	3	0	9	1	4	1	mmx-fp	sse2	a	_
CVT(T)PS2DQ	r,r/m	1	0	4	1	2	1	fp	5552	sse2	а
CVT(T)PD2DQ	r,r/m	2	0	9	1	2	1	fp-mmx	sse2	a	_
CVTPI2PS	xmm,mm	4	0	10	1	4	1	mmx	0002	sse	а
CVTPI2PD	xmm,mm	4	0	11	1	5	1	fp-mmx	sse2	a	
CVT(T)PS2PI	mm,xmm	3	0	7	0	2	0,1	fp-mmx	sse	a	
CVT(T)PD2PI	mm,xmm	3	0	11	1	3	0,1	fp-mmx	sse2	a	
CVTSI2SS	xmm,r32	3	0	10	1	3	1	fp-mmx	sse	a	
CVTSI2SD	xmm,r32	4	0	15	1	6	1	fp-mmx	sse2	a	
CVT(T)SD2SI	r32,xmm	2	0	8	1	2,5	1	fp	3362	sse2	а
CVT(T)SS2SI	r32,xmm	2	0	8	1	2,5	1				
CV1(1)55251	132,811111		U	0	'	2,5	'	fp		sse	а
Arithmetic											
ADDPS/D ADDSS/D	r,r/m	1	0	4	1	2	1	fp	add	sse	а
SUBPS/D SUBSS/D	r,r/m	1	0	4	1	2	1	fp	add	sse	а
MULPS/D MULSS/D	r,r/m	1	0	6	1	2	1	fp	mul	sse	а
DIVSS	r,r/m	1	0	23	0	23	1	fp	div	sse	a,h
DIVPS	r,r/m	1	0	39	0	39	1	fp	div	sse	a,h
DIVSD	r,r/m	1	0	38	0	38	1	fp	div	sse2	a,h
DIVPD	r,r/m	1	0	69	0	69	1	fp	div	sse2	a,h
RCPPS RCPSS	r,r/m	2	0	4	1	4	1	mmx		sse	a
MAXPS/D	,										
MAXSS/DMINPS/D											
MINSS/D	r,r/m	1	0	4	1	2	1	fp	add	sse	а
CMPccPS/D											
CMPccSS/D	r,r/m	1	0	4	1	2	1	fp	add	sse	а
COMISS/D UCOMISS/D	r,r/m	2	0	6	1	3	1	fp	add	sse	а
Logic											
ANDPS/D ANDNPS/D											
ORPS/D XORPS/D	r,r/m	1	0	2	1	2	1	mmx	alu	sse	а
	,										
Math											
SQRTSS	r,r/m	1	0	23	0	23	1	fp	div	sse	a,h
SQRTPS	r,r/m	1	0	39	0	39	1	fp	div	sse	a,h
SQRTSD	r,r/m	1	0	38	0	38	1	fp	div	sse2	a,h
SQRTPD	r,r/m	1	0	69	0	69	1	fp	div	sse2	a,h
RSQRTSS	r,r/m	2	0	4	1	3	1	mmx		sse	а
RSQRTPS	r,r/m	2	0	4	1	4	1	mmx		sse	а
Othor											
Other			0	00		100	4			600	
LDMXCSR	m	4	8	98		100	1			sse	
STMXCSR Notes:	m	4	4			6	1			sse	

Notes:

a)	Add 1 µop if source is a memory operand.
h)	Throughput of FP-MUL unit is reduced during the use of the FP-DIV unit.
k)	It may be advantageous to replace this instruction by two 64-bit moves.

Intel Pentium 4 w. EM64T (Prescott)

List of instruction timings and µop breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB,

JNE, etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, xmm = 128 bit xmm register, sr = segment register, m = any memory operand including indirect operands, m64 means 64-bit memory oper-

and, etc., mabs = memory operand with 64-bit absolute address.

μορs: Number of μops issued from instruction decoder and stored in trace cache.

Microcode: Number of additional μops issued from microcode ROM.

Latency: This is the delay that the instruction generates in a dependency chain if the next

dependent instruction starts in the same execution unit. The numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latency of moves to and from memory cannot be measured accurately because of the problem with memory intermediates explained above under

"How the values were measured".

Additional latency: This number is added to the latency if the next dependent instruction is in a dif-

ferent execution unit. There is no additional latency between ALU0 and ALU1.

ReciprocalThis is also called issue latency. This value indicates the number of clock cycles throughput:
from the execution of an instruction begins to a subsequent independent in-

struction can begin to execute in the same execution subunit. A value of 0.25

indicates 4 instructions per clock cycle in one thread.

Port: The port through which each μop goes to an execution unit. Two independent

μops can start to execute simultaneously only if they are going through different

ports.

Execution unit: Use this information to determine additional latency. When an instruction with

more than one μ op uses more than one execution unit, only the first and the

last execution unit is listed.

Execution subunit: Throughput measures apply only to instructions executing in the same subunit.

Instruction set Indicates the compatibility of an instruction with other 80x86 family micropro-

cessors. The instruction can execute on microprocessors that support the in-

struction set indicated.

Integer instructions

Instruction	Operands	Pops	Microcode	Latency	Additional latency	Reciprocal throughput	Port	Execution unit	Subunit	Instruction set	Notes
Move instructions											
MOV	r,r	1	0	1	0	0,25	0/1	alu0/1		86	С
MOV	r8/16/32,i	1	0	1	0	0,25	0/1	alu0/1		86	
MOV	r64,i32	1	0		0	0,5	0/1	alu0/1		x64	

MOV	r64,i64	2	0		0	1	1	alu4		v64	
MOV	r64,164 r8/16,m	2	0	3	0	1 1	1 2	alu1		x64 86	
MOV		1		2	0		2	load		86 86	
	r32/64,m	-	0		U	1		load			
MOV	m,r	1	0			2	0	store		86	b,c
MOV	m,i	2	0			2	0,3	store		86	
MOV	m64,i32	2	0			2	0,3	store		x64	
MOV	r,sr	1	2			8				86	
MOV	sr,r/m	1	8			27				86	a,q
MOV	r,mabs	3	0			1				x64	
MOV	mabs,r	3	0			2				x64	I
MOVNTI	m,r32	2	0			2				sse2	
MOVZX	r,r	1	0	1	0	0,25	0/1	alu0/1		386	С
MOVZX	r16,r8	2	0	2	0	1	0/1	alu0/1		386	С
MOVZX	r,m	1	0	2	0	1	2	load		386	
MOVSX	r16,r8	2	0	2	0	1	0	alu0		386	a,c,o
MOVSX	r32/64,r8/16	1	0	1	0	0,5	0	alu0		386	a,c,o
MOVSX	r,m	2	0	3	0	1	2	load		386	
MOVSXD	r64,r32	1	0	1	0	0,5	0	alu0		x64	а
CMOVcc	r,r/m	3	0	9,5	0	3				PPro	a,e
XCHG	r,r	3	0	2	0	1	0/1	alu0/1		86	
XCHG	r,m	2	6	≈100						86	
XLAT		4	0	6						86	
PUSH	r	2	0	2		2				86	
PUSH	i	2	0	2		2				186	
PUSH	m	3	0	2		2				86	
PUSH	sr	1	3			9				86	
PUSHF(D/Q)		1	3			9				86	
PUSHA(D)		1	9			16				186	m
POP	r	2	0	1	0	1				86	
POP	m	2	6	-		10				86	
POP	sr	1	8			30				86	
POPF(D/Q)		1	8			70				86	
POPA(D)		2	16			15				186	m
LEA	r,[m]	1	0			0,25	0/1	alu0/1		86	p
LEA	r,[r+r/i]	1	0	2,5	0	0,25	0/1	alu0/1		86	
LEA	r,[r+r+i]	2	0	3,5	0	0,5	0/1	alu0/1		86	
LEA	r,[r*i]	3	0	3,5	0	1	1	alu		386	
LEA	r,[r+r*i]	2	0	3,5	0	1	0,1	alu0,1		386	
LEA	r,[r+r*i+i]	3	0	3,5	0	1 1	1	aluo, i		386	
LAHF	1,[1 '1 1'1]	1	0	4	0	'	1	int		86	n
SAHF		1	0	5	0		0/1	alu0/1		86	n
			_	5		1					d,n
SALC		2	0		0	1	1	int		86	m
LDS, LES,	r,m	2	10			28				86	m
LODS		1	3	8		8		00		86	
REP LODS		1	5n	≈ 4n+	-5U			86		00	
STOS		1	2	8		8		0.0		86	
REP STOS		1	2.5n	≈ 3n				86			
MOVS		1	4	8		8				86	
REP MOVSB		9	≈.3n					86			
REP MOVSW		1	≈.5-1.1r	1-6. ≈¦	I.4n			86			

T.	ı	ı	1	ı		1	ı	İ	I	ı	
REP MOVSD		1	≈1.1n					86			
REP MOVSQ		1	≈1.1n					x64			
BSWAP	r	1	0	1	0	1		alu		486	
IN, OUT	r,r/i	1	52			>100	0		86		
PREFETCHNTA	m	1	0			1				sse	
PREFETCHT0/1/2	m	1	0			1				sse	
SFENCE		1	2			50				sse	
LFENCE		1	2			50				sse2	
MFENCE		1	4			124				sse2	
Arithmetic instructions											
ADD, SUB	r,r	1	0	1	0	0,25	0/1	alu0/1		86	С
ADD, SUB	r,m	2	0	1	0	1				86	c
ADD, SUB	m,r	3	0	5		2				86	c
ADC, SBB	r,r/i	3	0	10	0	10	1	int,alu		86	
ADC, SBB	r,m	2	5	10	0	10	1	int,alu		86	
ADC, SBB	m,r	2	6	20		10	'	iiit,aia		86	
ADC, SBB	m,i	3	5	22		10				86	
CMP	r,r	1	0	1	0	0,25	0/1	alu0/1		86	С
CMP	r,n	2	0	1	0	1	0/1	aluo/ i		86	c
INC, DEC	r	2	0	1	0	0,5	0/1	alu0/1		86	
INC, DEC		4	0	5	U	3	0/1	aluu/ i		86	
NEG	m	1	0	1	0		0	alu0		86	
NEG	r	3	0	5	U	0,5	U	aiuu			
1	m	ე 1	_			3				86	
AAA, AAS			10	26						86	m
DAA, DAS		1	16	29						86	m
AAD		2	5	13			1	int	mul	86	m
AAM	•	2	17	71			1	int	fpdiv	86	m
MUL, IMUL	r8	1	0	10	0		1	int	mul	86	
MUL, IMUL	r16	4	0	11	0		1	int	mul	86	
MUL, IMUL	r32	3	0	11	0		1	int	mul	86	
MUL, IMUL	r64	1	5	11	0		1	int	mul	x64	
MUL, IMUL	m8	2	0	10	0		1	int	mul	86	
MUL, IMUL	m16	2	5	11	0		1	int	mul	86	
MUL, IMUL	m32	3	0	11	0		1	int	mul	86	
MUL, IMUL	m64	2	6	11	0		1	int	mul	x64	
IMUL	r16,r16	1	0	10	0	2,5	1	int	mul	386	
IMUL	r16,r16,i	2	0	11	0	2,5	1	int	mul	186	
IMUL	r32,r32	1	0	10	0	2,5	1	int	mul	386	
IMUL	r32,(r32),i	1	0	10	0	2,5	1	int	mul	386	
IMUL	r64,r64	1	0	10	0	2,5	1	int	mul	x64	
IMUL	r64,(r64),i	1	0	10	0	2,5	1	int	mul	x64	
IMUL	r16,m16	2	0	10	0	2,5	1	int	mul	386	
IMUL	r32,m32	2	0	10	0	2,5	1	int	mul	386	
IMUL	r64,m64	2	0	10	0	2,5	1	int	mul	x64	
IMUL	r,m,i	3	0	10	0	1-2.5	1	int	mul	186	
DIV	r8/m8	1	20	74	0	34	1	int	fpdiv	86	а
DIV	r16/m16	1	19	73	0	34	1	int	fpdiv	86	а
DIV	r32/m32	1	21	76	0	34	1	int	fpdiv	386	а
DIV	r64/m64	1	31	63	0	52	1	int	fpdiv	x64	а

IDIV IDIV IDIV CBW CWD CDQ CQO CWDE CDQE SCAS REP SCAS CMPS REP CMPS	r8/m8 r16/m16 r32/m32 r64/m64	1 1 1 1 2 2 1 1 1 2 1 1 1 1	21 19 19 58 0 0 0 0 0 0 3 ≈ 54+6 5 ≈ 81+8		0 0 0 0 0 0 0 0 0 0 ≈ 4n	34 34 91 1 1 1 1 8	1 1 1 0 0/1 0/1 0/1 0/1 0/1	int int int alu0 alu0/1 alu0/1 alu0/1 alu0/1	fpdiv fpdiv fpdiv fpdiv 86	86 86 386 x64 86 386 x64 386 x64 86	a a a
Logic											
AND, OR, XOR	r,r	1	0	1	0	0,5	0	alu0		86	С
AND, OR, XOR	r,m	2	0	1	0	1				86	С
AND, OR, XOR	m,r	3	0	5		2				86	С
TEST	r,r	1	0	1	0	0,5	0	alu0		86	С
TEST	r,m	2	0	1	0	1				86	С
NOT	r	1	0	1	0	0,5	0	alu0		86	
NOT	m	3	0	5		2				86	
SHL	r,i	1	0	1	0	0,5	1	alu1		186	
SHR, SAR	r8/16/32,i	1	0	1	0	0,5	1	alu1		186	
SHR, SAR	r64,i	1	0	7	0	2	1	alu1		x64	
SHL	r,CL	2	0	2	0	2	1	alu1		86	
SHR, SAR	r8/16/32,CL	2	0	2	0	2	1	alu1		86	
SHR, SAR	r64,CL	2	0	8	0		1	alu1		x64	
ROL, ROR	r8/16/32,i	1	0	1	0	1	1	alu1		186	d
ROL, ROR	r64,i	1	0	7	0	7	1	alu1		x64	d
ROL, ROR	r8/16/32,CL	2	0	2	0	2	1	alu1		86	d
ROL, ROR	r64,CL	2	0	8	0	8	1	alu1		x64	d
RCL, RCR	r,1	1	0	7	0	7	1	alu1		86	d
RCL	r,i	2	11	31	0	31	1	alu1		186	d
RCR	r,i	2	11	25	0	25	1	alu1		186	d
RCL	r,CL	1	11	31	0	31	1	alu1		86	d
RCR	r,CL	1	11	25	0	25	1	alu1		86	d
SHL, SHR, SAR	m8/16/32,i	3	6	10	0		1	alu1		86	
ROL. ROR	m8/16/32,i	3	6	10	0		1	alu1		86	d
SHL, SHR, SAR	m8/16/32,cl	2	6	10	0		1	alu1		86	
ROL. ROR	m8/16/32,cl	2	6	10	0		1	alu1		86	d
RCL, RCR	m8/16/32,1	2	5	27	0	27	1	alu1		86	d
RCL, RCR	m8/16/32,i	3	13	38	0	38	1	alu1		86	d
RCL, RCR	m8/16/32,cl	2	13	37	0	37	1	alu1		86	d
SHLD, SHRD	r8/16/32,r,i	3	0	8	0	7	1	alu1		386	
SHLD	r64,r64,i	4	5	10	0		1	alu1		x64	
SHRD	r64,r64,i	3	7	10	0		1	alu1		x64	
SHLD, SHRD	r8/16/32,r,cl	4	0	9	0	8	1	alu1		386	
SHLD	r64,r64,cl	4	5	14	0		1	alu1		x64	

SHRD SHLD, SHRD SHLD, SHRD BT BT BT BT BT, BTS, BTC BTR, BTS, BTC BTR, BTS, BTC BTR, BTS, BTC BTR, BTS, BTC CBT	r64,r64,cl m,r,i m,r,CL r,i r,r m,i m,r r,r m,i m,r r,r/m r	3 3 2 1 2 3 2 1 2 3 2 2 2 2 3 2 3 2 3 1	8 8 8 0 0 7 0 0 6 10 0 0 0 0 8	12 20 8 9 8 10 8 9 28 14 16 9 9		10 10 8 9 8 10 8 9 10 14 4 1 2 8	1 1 1 1 1 1 1 1 1 1	alu1 alu1 alu1 alu1 alu1 alu1 alu1 alu1		x64 386 386 386 386 386 386 386 386 386 386	d d d d
Control transfer instruct JMP JMP JMP JMP JMP JCC J(E)CXZ LOOP CALL CALL CALL CALL CALL RETN RETN RETF RETF IRET BOUND INT INTO	short/near far r m(near) m(far) short/near short near far r m(near) i i m i	1 2 3 3 2 1 4 4 3 3 4 4 4 2 1 2 1 2 2 1	0 25 0 0 28 0 0 0 29 0 0 32 0 0 30 49 11 67 4	0	0	1 154 15 10 157 2-4 4 7 160 7 9 160 7 7 160 325 12 470 26	0 0 0 0 0 0 0 0 0 0 0 0 0 0	alu0 alu0 alu0 alu0 alu0 alu0 alu0 alu0	branch branch branch branch branch branch branch branch branch	86 86 86 86 86 86 86 86 86 86 86 86 86 8	m m m
Other NOP (90) Long NOP (0F 1F) PAUSE LEAVE CLI STI CPUID RDTSC		1 1 1 4 1 1	0 0 2 0 5 11 49-90	0 0 5	300-5	0,25 0,25 50 5 52 64 500	0/1 0/1	alu0/1 alu0/1		86 ppro sse2 186 86 86	

RDPMC (bit 31 = 1)	1	37	100	p5	
RDPMC (bit 31 = 0)	4	154	240	p5	
MONITOR					(sse3)
MWAIT					(sse3)

Notes:

a) Add 1 μop if source is a memory operand.b) Uses an extra μop (port 3) if SIB byte used.

c) Add 1 µop if source or destination, but not both, is a high 8-bit register (AH, BH,

CH, DH).

d) Has (false) dependence on the flags in most cases.

e) Not available on PMMX

I) Move accumulator to/from memory with 64 bit absolute address (opcode A0 -

A3).

m) Not available in 64 bit mode.

n) Not available in 64 bit mode on some processors.

o) MOVSX uses an extra μop if the destination register is smaller than the biggest

register size available. Use a 32 bit destination register in 16 bit and 32 bit mode, and a 64 bit destination register in 64 bit mode for optimal performance.

p) LEA with a direct memory operand has 1 μop and a reciprocal throughput of

0.25. This also applies if there is a RIP-relative address in 64-bit mode. A sign-extended 32-bit direct memory operand in 64-bit mode without RIP-relative address takes 2 μ ops because of the SIB byte. The throughput is 1 in this case.

You may use a MOV instead.

q) These values are measured in 32-bit mode. In 16-bit real mode there is 1 mi-

crocode µop and a reciprocal throughput of 17.

Floating point x87 instructions

Instruction	Operands	sdorl	Mic	Late	Adc	Rec	Port	Exe	Sub	Inst	Notes
		S	Microcode	Latency	Additional latency	Reciprocal through- put	-	Execution unit	Subunit	Instruction set	es
Move instructions											
FLD	r	1	0	7	0	1	0	mov		87	
FLD	m32/64	1	0		0	1	2	load		87	
FLD	m80	3	3			8	2	load		87	
FBLD	m80	3	74			90	2	load		87	
FST(P)	r	1	0	7	0	1	0	mov		87	
FST(P)	m32/64	2	0	7		2	0	store		87	
FSTP	m80	3	6			10	0	store		87	
FBSTP	m80	3	311			400	0	store		87	
FXCH	r	1	0	0	0	1	0	mov		87	
FILD	m16	3	2			8	2	load		87	
FILD	m32/64	2	0			2	2	load		87	
FIST(P)	m	3	0			2,5	0	store		87	
FISTTP	m	3	0			2,5	0	store		sse3	
FLDZ		1	0			2	0	mov		87	

			-									
FLD1		2	0			2	0	mov		87		
FCMOVcc	st0,r	4	0	5	1	4	1	fp		PPro	е	
FFREE	r	3	0			3	0	mov		87		
FINCSTP, FDECSTP		1	0	0	0	1	0	mov		87		
FNSTSW	AX	4	0		0	3	1			287		
FSTSW	AX	6	0		0	3	1			287		
FNSTSW	m16	2	3			8	0			87		
FNSTCW	m16	4	0			3	0			87		
FLDCW	m16	3	6			10	0,2			87	f	
A vitle ve eti e i e et ve eti e ve												
Arithmetic instructions	_	,		_	4		_	£		0.7		
FADD(P),FSUB(R)(P)	r	1	0	6	1	1	1	fp	add	87		
FADD,FSUB(R)	m 10	2	0	6	1	1	1	fp	add	87		
FIADD,FISUB(R)	m16	3	3	7	1	6	1	fp	add	87		
FIADD,FISUB(R)	m32	3	0	6	1	2	1	fp	add	87		
FMUL(P)	r	1	0	8	1	2	1	fp	mul	87		
FMUL	m	2	0	8	1	2	1	fp	mul	87		
FIMUL	m16	3	3	8	1	8	1	fp	mul	87		
FIMUL	m32	3	0	8	1	3	1	fp	mul	87		
FDIV(R)(P)	r	1	0	45	1	45	1	fp	div	87	g,h	
FDIV(R)	m	2	0	45	1	45	1	fp	div	87	g,h	
FIDIV(R)	m16	3	3	45	1	45	1	fp	div	87	g,h	
FIDIV(R)	m32	3	3	45	1	45	1	fp	div	87	g,h	
FABS		1	0	3	1	1	1	fp	misc	87		
FCHS		1	0	3	1	1	1	fp	misc	87		
FCOM(P), FUCOM(P)	r	1	0	3	0	1	1	fp	misc	87		
FCOM(P)	m	2	0	3	0	1	1	fp	misc	87		
FCOMPP, FUCOMPP		2	0	3	0	1	1	fp	misc	87		
FCOMI(P)	r	3	0			3	0,1	fp	misc	PPro		
FICOM(P)	m16	3	3			8	1	fp	misc	87		
FICOM(P)	m32	3	0			2	1,2	fp	misc	87		
FTST		1	0			1	1	fp	misc	87		
FXAM		1	0			1	1	fp	misc	87		
FRNDINT		3	14	28	1	16	0,1			87		
FPREM		8	86	220	1		1	fp		87		
FPREM1		9	92	220	1		1	fp		387		
Math												
FSQRT		1	0	45	1	45	1	fp	div	87	g,h	
FLDPI, etc.		2	0			2	1	fp		87		
FSIN, FCOS		3	≈100	≈200		≈200	1	fp		387		
FSINCOS		5	≈150	≈200		≈200	1	fp		387		
FPTAN		8	≈170			≈270	1	fp		87		
FPATAN		4	97	≈250		≈250		fp		87		
FSCALE		3	25	96			1	fp		87		
FXTRACT		4	16	27			1	fp		87		
F2XM1		3	190	~270			1	fp		87		
FYL2X		3	63	≈170			1	fp		87		
FYL2XP1		3	58	≈170			1	fp		87		
								F				

Other										
FNOP	1	0	1	0	1	0	mov	87		
(F)WAIT	2	0	0	0	1	0	mov	87		
FNCLEX	1	4			120	1		87		
FNINIT	1	30			200			87		
FNSAVE	2	181	500			0,1		87		
FRSTOR	2	96	570					87		
FXSAVE	2	121			160			sse	i	
FXRSTOR	2	118			244			sse	i	

Notes:

e) Not available on PMMX

The latency for FLDCW is 3 when the new value loaded is the same as the value of the control word before the preceding FLDCW, i.e. when alternating be-

tween the same two values. In all other cases, the latency and reciprocal

throughput is > 100.

g) Latency and reciprocal throughput depend on the precision setting in the F.P.

control word. Single precision: 32, double precision: 40, long double precision

(default): 45.

h) Throughput of FP-MUL unit is reduced during the use of the FP-DIV unit.

i) Takes fewer microcode µops when XMM registers are disabled, but the

throughput is the same.

Integer MMX and XMM instructions

Instruction	Operands	Rops	Microcode	Latency	Additional latency	Reciprocal through- put	Port	Execution unit	Subunit	Instruction set	Notes
Move instructions											
MOVD	r32, mm	2	0	6	1	1	0	fp		mmx	
MOVD	mm, r32	1	0	3	1	1	1	mmx	alu	mmx	
MOVD	mm,m32	1	0			1	2	load		mmx	
MOVD	r32, xmm	1	0	7	1	1	0	fp		sse2	
MOVD	xmm, r32	2	0	4	1	2	1	mmx	shift	sse2	
MOVD	xmm,m32	1	0			1	2	load		sse2	
MOVD	m32, r	2	0			2	0,1			mmx	
MOVQ	mm,mm	1	0	7	0	1	0	mov		mmx	
MOVQ	xmm,xmm	1	0	2	1	2	1	mmx	shift	sse2	
MOVQ	r,m64	1	0			1	2	load		mmx	
MOVQ	m64,r	2	0			2	0	mov		mmx	
MOVDQA	xmm,xmm	1	0	7	0	1	0	mov		sse2	
MOVDQA	xmm,m	1	0			1	2	load		sse2	
MOVDQA	m,xmm	2	0			2	0	mov		sse2	
MOVDQU	xmm,m	4	0			23	2	load		sse2	k
MOVDQU	m,xmm	4	2			8	0	mov		sse2	k
LDDQU	xmm,m	4	0			2,5	2	load		sse3	
MOVDQ2Q	mm,xmm	3	0	10	1	2	0,1	mov-mmx	sse2		

MOVQ2DQ	xmm,mm	2	0	10	1	2	0,1	mov-mmx	sse2		
MOVNTQ	m,mm	3	0			4	0	mov		sse	
MOVNTDQ	m,xmm	2	0			4	0	mov		sse2	
MOVDDUP	xmm,xmm	1	0	2	1	2	1	mmx	shift	sse3	
MOVSHDUP											
MOVSLDUP	xmm,xmm	1	0	4	1	2	1	mmx	shift	sse3	
PACKSSWB/DW											
PACKUSWB	mm,r/m	1	0	2	1	2	1	mmx	shift	mmx	а
PACKSSWB/DW											
PACKUSWB	xmm,r/m	1	0	4	1	4	1	mmx	shift	mmx	а
PUNPCKH/LBW/WD/											
DQ	mm,r/m	1	0	2	1	2	1	mmx	shift	mmx	а
PUNPCKHBW/WD/DQ/											
QDQ	xmm,r/m	1	0	4	1	4	1	mmx	shift	sse2	а
PUNPCKLBW/WD/DQ/Q											
DQ	xmm,r/m	1	0	2	1	2	1	mmx	shift	sse2	а
PSHUFD	xmm,xmm,i	1	0	4	1	2	1	mmx	shift	sse2	
PSHUFL/HW	xmm,xmm,i	1	0	2	1	2	1	mmx	shift	sse	
PSHUFW	mm,mm,i	1	0	2	1	1	1	mmx	shift	sse	
MASKMOVQ	mm,mm	1	4			10	0	mov		sse	
MASKMOVDQU	xmm,xmm	1	6			12	0	mov		sse2	
PMOVMSKB	r32,r	2	0	7		3	0,1	mmx-alu0	sse		
PEXTRW	r32,mm,i	2	0	7		2	1	mmx-int	sse		
PEXTRW	r32,xmm,i	2	0	7		3	1	mmx-int	sse2		
PINSRW	r,r32,i	2	0	4		2	1	int-mmx	sse		
Arithmetic instructions											
PADDB/W/D											
PADD(U)SB/W	r,r/m	1	0	2	1	1,2	1	mmx	alu	mmx	a,j
PSUBB/W/D	,										"
PSUB(U)SB/W	r,r/m	1	0	2	1	1,2	1	mmx	alu	mmx	a,j
PADDQ, PSUBQ	mm,r/m	1	0	2	1	1	1	mmx	alu	sse2	a
PADDQ, PSUBQ	xmm,r/m	1	0	5	1	2	1	fp	add	sse2	a
PCMPEQB/W/D	,										
PCMPGTB/W/D	r,r/m	1	0	2	1	1,2	1	mmx	alu	mmx	a,j
PMULLW PMULHW	r,r/m	1	0	7	1	1,2	1	fp	mul	mmx	a,j
PMULHUW	r,r/m	1	0	7	1	1,2	1	fp	mul	sse	a,j
PMADDWD	r,r/m	1	0	7	1	1,2	1	fp	mul	mmx	a,j
PMULUDQ	r,r/m	1	0	7	1	1,2	1	fp	mul	sse2	a,j
PAVGB/W	r,r/m	1	0	2	1	1,2	1	mmx	alu	sse	a,j
PMIN/MAXUB	r,r/m	1	0	2	1	1,2	1	mmx	alu	sse	a,j
PMIN/MAXSW	r,r/m	1	0	2	1	1,2	1	mmx	alu	sse	a,j
PSADBW	r,r/m		0	4	1	1,2	1	mmx	alu	sse	a,j
FOADDVV	1,1/111	'	U	7	'	1,2	' '	111111	aiu	330	a,j
Logic											
PAND, PANDN	r r/m	1	0	2	1	1,2	1	mmy	olu:	mmy	,
	r,r/m		0	2				mmx	alu	mmx	a,j
POR, PXOR	r,r/m	1	U	~	1	1,2	1	mmx	alu	mmx	a,j
PSLL/RLW/D/Q, PSRAW/D	r i/r/m	,	0	2	4	1 2	4	mmy	ob:ft	mmy	
	r,i/r/m	1	0		1	1,2	1	mmx	shift	mmx	a,j
PSLLDQ, PSRLDQ	xmm,i	1	0	4	1	2	1	mmx	shift	sse2	

Other								
EMMS	10	10		12	0		mmx	

Notes:

a) Add 1 µop if source is a memory operand.

j) Reciprocal throughput is 1 for 64 bit operands, and 2 for 128 bit operands.

k) It may be advantageous to replace this instruction by two 64-bit moves or LD-

DQU.

Floating point XMM instructions

Instruction	Operands	sdorl	<u> </u>	La	Ad	Rec	Port	m ×	Su	Ins	N _O
		ps	Microcode	Latency	Additional latency	Reciprocal through-	Ā	Execution unit	Subunit	Instruction set	Notes
Move instructions											
MOVAPS/D	r,r	1	0	7	0	1	0	mov		sse	
MOVAPS/D	r,m	1	0	'	0	1	2			sse	
MOVAPS/D	m,r	2	0			2	0			sse	
MOVUPS/D	r,r	1	0	7	0	1	0	mov		sse	
MOVUPS/D	r,m	4	0			2	2			sse	k
MOVUPS/D	m,r	4	2			8	0			sse	k
MOVSS	r,r	1	0	2	1	2	1	mmx	shift	sse	
MOVSD	r,r	1	0	4	1	2	1	mmx	shift	sse	
MOVSS, MOVSD	r,m	1	0		0	1	2			sse	
MOVSS, MOVSD	m,r	2	0			2	0			sse	
MOVHLPS	r,r	1	0	4	1	2	1	mmx	shift	sse	
MOVLHPS	r,r	1	0	2	1	2	1	mmx	shift	sse	
MOVHPS/D, MOVLPS/D	r,m	2	0			2	2			sse	
MOVHPS/D, MOVLPS/D	m,r	2	0			2	0			sse	
MOVSH/LDUP	r,r	1	0	4	1	2	1			sse3	
MOVDDUP	r,r	1	0	2	1	2	1			sse3	
MOVNTPS/D	m,r	2	0			4	0			sse	
MOVMSKPS/D	r32,r	2	0	5	1	3	1	fp		sse	
SHUFPS/D	r,r/m,i	1	0	4	1	2	1	mmx	shift	sse	
UNPCKHPS/D	r,r/m	2	0	4	1	2	1	mmx	shift	sse	
UNPCKLPS/D	r,r/m	1	0	2	1	2	1	mmx	shift	sse	
Conversion											
CVTPS2PD	r,r/m	1	0	4	1	4	1	mmx	shift	sse2	а
CVTPD2PS	r,r/m	2	0	10	1	2	1	fp-mmx	sse2	а	
CVTSD2SS	r,r/m	3	0	14	1	6	1	mmx	shift	sse2	а
CVTSS2SD	r,r/m	2	0	8	1	6	1	mmx	shift	sse2	а
CVTDQ2PS	r,r/m	1	0	5	1	2	1	fp		sse2	а
CVTDQ2PD	r,r/m	3	0	10	1	4	1	mmx-fp	sse2	а	
CVT(T)PS2DQ	r,r/m	1	0	5	1	2	1	fp		sse2	а
CVT(T)PD2DQ	r,r/m	2	0	11	1	2	1	fp-mmx	sse2	а	
CVTPI2PS	xmm,mm	4	0	12	1	6	1	mmx		sse	а

CVTPI2PD	xmm,mm	4	0	12	1	5	1	fp-mmx	sse2	а	
CVT(T)PS2PI	mm,xmm	3	0	8	0	2	0,1	fp-mmx	sse	а	
CVT(T)PD2PI	mm,xmm	4	0	12	1	3	0,1	fp-mmx	sse2	а	
CVTSI2SS	xmm,r32	3	0	20	1	4	1	fp-mmx	sse	а	
CVTSI2SD	xmm,r32	4	0	20	1	5	1	fp-mmx	sse2	а	
CVT(T)SD2SI	r32,xmm	2	0	12	1	4	1	fp		sse2	а
CVT(T)SS2SI	r32,xmm	2	0	17	1	4	1	fp		sse	а
								-			
Arithmetic											
ADDPS/D ADDSS/D	r,r/m	1	0	5	1	2	1	fp	add	sse	а
SUBPS/D SUBSS/D	r,r/m	1	0	5	1	2	1	fp	add	sse	а
ADDSUBPS/D	r,r/m	1	0	5	1	2	1	fp	add	sse3	а
HADDPS/D HSUBPS/D	r,r/m	3	0	13	1	5-6	1	fp	add	sse3	а
MULPS/D MULSS/D	r,r/m	1	0	7	1	2	1	fp	mul	sse	а
DIVSS	r,r/m	1	0	32	1	23	1	fp	div	sse	a,h
DIVPS	r,r/m	1	0	41	1	41	1	fp	div	sse	a,h
DIVSD	r,r/m	1	0	40	1	40	1	fp	div	sse2	a,h
DIVPD	r,r/m	1	0	71	1	71	1	fp	div	sse2	a,h
RCPPS RCPSS	r,r/m	2	0	6	1	4	1	mmx		sse	а
MAXPS/D											
MAXSS/DMINPS/D								_			
MINSS/D	r,r/m	1	0	5	1	2	1	fp	add	sse	а
CMPccPS/D CMPccSS/D		,	^	_				c .	1-1		
	r,r/m	1	0	5	1	2	1	fp	add	sse	a
COMISS/D UCOMISS/D	r,r/m	2	0	6	1	3	1	fp	add	sse	а
Logic											
ANDPS/D ANDNPS/D											
ORPS/D XORPS/D	r,r/m	1	0	2	1	2	1	mmx	alu	sse	а
Math											
SQRTSS	r,r/m	1	0	32	1	32	1	fp	div	sse	a,h
SQRTPS	r,r/m	1	0	41	1	41	1	fp	div	sse	a,h
SQRTSD	r,r/m	1	0	40	1	40	1	fp	div	sse2	a,h
SQRTPD	r,r/m	1	0	71	1	71	1	fp	div	sse2	a,h
RSQRTSS	r,r/m	2	0	5	1	3	1	mmx		sse	а
RSQRTPS	r,r/m	2	0	6	1	4	1	mmx		sse	а
Other											
LDMXCSR	m	2	11			13	1			sse	
STMXCSR	m	3	0			3	1			sse	
OTWACOIN	111	J	U			J				ಾತಿರ	

Notes:

a) Add 1 µop if source is a memory operand.

h) Throughput of FP-MUL unit is reduced during the use of the FP-DIV unit.

k) It may be advantageous to replace this instruction by two 64-bit moves or LDDQU.

Intel Atom

List of instruction timings and µop breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB,

JNE, etc.

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm = 128 bit

xmm register, (x)mm = mmx or xmm register, sr = segment register, m =

memory, m32 = 32-bit memory operand, etc.

μops: The number of μops from the decoder or ROM.

Unit: Tells which execution unit is used. Instructions that use the same unit cannot

execute simultaneously.

ALU0 and ALU1 means integer unit 0 or 1, respectively.

ALU0/1 means that either unit can be used. ALU0+1 means that both units

are used.

Mem means memory in/out unit.

FP0 means floating point unit 0 (includes multiply, divide and other SIMD in-

structions).

FP1 means floating point unit 1 (adder).

MUL means multiplier, shared between FP and integer units. DIV means divider, shared between FP and integer units.

np means not pairable: Cannot execute simultaneously with any other in-

struction.

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays very much, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give

a similar delay.

Reciprocal throughput: The average number of clock cycles per instruction for a series of indepen-

dent instructions of the same kind in the same thread.

Integer instructions

	Operands	μops	Unit	Latency	Reciprocal throughput	Remarks
Move instructions						
MOV	r,r	1	ALU0/1	1	1/2	
MOV	r,i	1	ALU0/1	1	1/2	
MOV	r,m	1	ALU0, Mem	1-3	1	All addr. modes
MOV	m,r	1	ALU0, Mem	1	1	All addr. modes
MOV	m,i	1	ALU0, Mem		1	
MOV	r,sr	1		1	1	
MOV	m,sr	2			5	
MOV	sr,r	7			21	
MOV	sr,m	8			26	
MOVNTI	m,r	1	ALU0, Mem		2,5	
MOVSX MOVZX MOVSXD	r,r/m	1	ALU0	1	1	
CMOVcc	r,r	1	ALU0+1	2	2	
CMOVcc	r,m	1			3	
XCHG	r,r	3		6	6	
XCHG	r,m	4		6	6	Implicit lock

XLAT		3		6	6	
PUSH	r	1	np	1	1	
PUSH	i	1	np		1	
PUSH	m	2			5	
PUSH	sr	3			6	
PUSHF(D/Q)	J	14			12	
PUSHA(D)		9			11	Not in x64 mode
POP	r	1	np	1	1	Not in Xo i mode
POP	(E/R)SP	1	np	1	1	
POP	m (L/TC)OI	3	116	•	6	
POP	sr	7			31	
POPF(D/Q)	31	19			28	
POPA(D)		16			12	Not in x64 mode
			AL 110 . 4	_		Not in x04 mode
LAHF		1	ALU0+1	2	2	
SAHF		1	ALU0/1	1	1/2	
SALC		2		7	5	Not in x64 mode
			1 40114			4 clock latency
LEA	r,m	1	AGU1	1-4	1	on input register
BSWAP	r	1	ALU0	1	1	
LDS LES LFS LGS LSS	m	10		30	30	
PREFETCHNTA	m	1	Mem		1	
PREFETCHT0/1/2	m	1	Mem		1	
LFENCE		1			1/2	
MFENCE		1			1	
SFENCE		1			1	
Arithmetic instructions						
ADD SUB	r,r/i	1	ALU0/1	1	1/2	
ADD SUB	r,m	1	ALU0/1, Mer	n	1	
I				2		
ADD SUB	m,r/i	1			1	
ADD SUB ADC SBB	m,r/i r,r/i	1		2	1 2	
ADC SBB	r,r/i r,m	1		2	2	
ADC SBB ADC SBB ADC SBB	r,r/i r,m m,r/i	1 1	ALU0/1	2 2	2 2 2	
ADC SBB ADC SBB ADC SBB CMP	r,r/i r,m m,r/i r,r/i	1 1 1	ALU0/1	2 2 2	2 2 2 1/2	
ADC SBB ADC SBB ADC SBB CMP CMP	r,r/i r,m m,r/i r,r/i m,r/i	1 1 1 1		2 2 2 1	2 2 2 1/2 1	
ADC SBB ADC SBB ADC SBB CMP CMP INC DEC NEG NOT	r,r/i r,m m,r/i r,r/i m,r/i r	1 1 1 1 1	ALU0/1 ALU0/1	2 2 2 1	2 2 2 1/2	
ADC SBB ADC SBB ADC SBB CMP CMP INC DEC NEG NOT INC DEC NEG NOT	r,r/i r,m m,r/i r,r/i m,r/i	1 1 1 1 1 1 1		2 2 2 1	2 2 2 1/2 1	Not in x64 mode
ADC SBB ADC SBB ADC SBB CMP CMP INC DEC NEG NOT INC DEC NEG NOT AAA	r,r/i r,m m,r/i r,r/i m,r/i r	1 1 1 1 1 1 1 1 13		2 2 2 1 1 1 1	2 2 2 1/2 1	Not in x64 mode
ADC SBB ADC SBB ADC SBB CMP CMP INC DEC NEG NOT INC DEC NEG NOT AAA AAS	r,r/i r,m m,r/i r,r/i m,r/i r	1 1 1 1 1 1 1 13 13		2 2 1 1 1 16 12	2 2 2 1/2 1	Not in x64 mode
ADC SBB ADC SBB ADC SBB CMP CMP INC DEC NEG NOT INC DEC NEG NOT AAA AAS DAA	r,r/i r,m m,r/i r,r/i m,r/i r	1 1 1 1 1 1 1 1 13 13 20		2 2 2 1 1 1 16 12 20	2 2 2 1/2 1	Not in x64 mode Not in x64 mode
ADC SBB ADC SBB ADC SBB CMP CMP INC DEC NEG NOT INC DEC NEG NOT AAA AAS DAA DAS	r,r/i r,m m,r/i r,r/i m,r/i r	1 1 1 1 1 1 1 13 13 20 21		2 2 2 1 1 1 16 12 20 25	2 2 2 1/2 1	Not in x64 mode Not in x64 mode Not in x64 mode
ADC SBB ADC SBB ADC SBB CMP CMP INC DEC NEG NOT INC DEC NEG NOT AAA AAS DAA DAS AAD	r,r/i r,m m,r/i r,r/i m,r/i r	1 1 1 1 1 1 1 13 13 20 21 4		2 2 2 1 1 1 16 12 20 25 7	2 2 2 1/2 1	Not in x64 mode Not in x64 mode Not in x64 mode Not in x64 mode
ADC SBB ADC SBB ADC SBB CMP CMP INC DEC NEG NOT INC DEC NEG NOT AAA AAS DAA DAS AAD	r,r/i r,m m,r/i r,r/i m,r/i r	1 1 1 1 1 1 1 13 13 20 21 4	ALU0/1	2 2 2 1 1 1 16 12 20 25 7 24	2 2 2 1/2 1 1/2	Not in x64 mode Not in x64 mode Not in x64 mode
ADC SBB ADC SBB ADC SBB CMP CMP INC DEC NEG NOT INC DEC NEG NOT AAA AAS DAA DAS AAD AAM MUL IMUL	r,r/i r,m m,r/i r,r/i m,r/i r m	1 1 1 1 1 1 1 13 13 20 21 4 10 3	ALU0/1	2 2 2 1 1 1 16 12 20 25 7 24 7	2 2 2 1/2 1 1/2	Not in x64 mode Not in x64 mode Not in x64 mode Not in x64 mode
ADC SBB ADC SBB ADC SBB CMP CMP INC DEC NEG NOT INC DEC NEG NOT AAA AAS DAA DAS AAD AAM MUL IMUL MUL IMUL	r,r/i r,m m,r/i r,r/i m,r/i r m	1 1 1 1 1 1 1 13 13 20 21 4 10 3 4	ALU0/1 ALU0, Mul	2 2 2 1 1 1 16 12 20 25 7 24 7 6	2 2 2 1/2 1 1/2	Not in x64 mode Not in x64 mode Not in x64 mode Not in x64 mode
ADC SBB ADC SBB ADC SBB CMP CMP INC DEC NEG NOT INC DEC NEG NOT AAA AAS DAA DAS AAD AAM MUL IMUL MUL IMUL	r,r/i r,m m,r/i r,r/i m,r/i r m	1 1 1 1 1 1 1 13 13 20 21 4 10 3 4 3	ALU0/1 ALU0, Mul ALU0, Mul ALU0, Mul	2 2 2 1 1 1 16 12 20 25 7 24 7 6	2 2 2 1/2 1 1/2 7 6 6	Not in x64 mode Not in x64 mode Not in x64 mode Not in x64 mode
ADC SBB ADC SBB ADC SBB CMP CMP INC DEC NEG NOT INC DEC NEG NOT AAA AAS DAA DAS AAD AAM MUL IMUL MUL IMUL MUL IMUL MUL IMUL	r,r/i r,m m,r/i r,r/i m,r/i r m	1 1 1 1 1 1 1 13 13 20 21 4 10 3 4 3 8	ALU0, Mul ALU0, Mul ALU0, Mul ALU0, Mul	2 2 2 1 1 1 16 12 20 25 7 24 7 6 6 6 14	2 2 1/2 1 1/2 7 6 6 14	Not in x64 mode Not in x64 mode Not in x64 mode Not in x64 mode
ADC SBB ADC SBB ADC SBB CMP CMP INC DEC NEG NOT INC DEC NEG NOT AAA AAS DAA DAS AAD AAM MUL IMUL MUL IMUL MUL IMUL IMUL IMUL IMUL IMUL IMUL IMUL IMUL	r,r/i r,m m,r/i r,r/i m,r/i r m	1 1 1 1 1 1 1 13 13 20 21 4 10 3 4 3 8 2	ALU0, Mul ALU0, Mul ALU0, Mul ALU0, Mul ALU0, Mul	2 2 2 1 1 1 16 12 20 25 7 24 7 6 6 14 6	2 2 1/2 1 1/2 7 6 6 14 5	Not in x64 mode Not in x64 mode Not in x64 mode Not in x64 mode
ADC SBB ADC SBB ADC SBB CMP CMP INC DEC NEG NOT INC DEC NEG NOT AAA AAS DAA DAS AAD AAM MUL IMUL MUL IMUL MUL IMUL IMUL IMUL IMUL IMUL IMUL IMUL IMUL	r,r/i r,m m,r/i r,r/i m,r/i r m	1 1 1 1 1 1 1 13 13 20 21 4 10 3 4 3 8 2	ALU0/1 ALU0, Mul ALU0, Mul ALU0, Mul ALU0, Mul ALU0, Mul ALU0, Mul	2 2 2 1 1 16 12 20 25 7 24 7 6 6 14 6 5	2 2 1/2 1 1/2 7 6 6 14 5 2	Not in x64 mode Not in x64 mode Not in x64 mode Not in x64 mode
ADC SBB ADC SBB ADC SBB CMP CMP INC DEC NEG NOT INC DEC NEG NOT AAA AAS DAA DAS AAD AAM MUL IMUL MUL IMUL MUL IMUL IMUL IMUL IMUL IMUL IMUL IMUL IMUL	r,r/i r,m m,r/i r,r/i m,r/i r m	1 1 1 1 1 1 1 13 13 20 21 4 10 3 4 3 8 2	ALU0, Mul ALU0, Mul ALU0, Mul ALU0, Mul ALU0, Mul	2 2 2 1 1 1 16 12 20 25 7 24 7 6 6 14 6	2 2 1/2 1 1/2 7 6 6 14 5	Not in x64 mode Not in x64 mode Not in x64 mode Not in x64 mode

IMUL	r32,r32,i	1	ALU0, Mul	5	2	
IMUL	r64,r64,i	7	ALU0, Mul	14	14	
MUL IMUL	m8	3	ALU0, Mul	6		
MUL IMUL	m16	5	ALU0, Mul	7		
MUL IMUL	m32	4	ALU0, Mul	7		
MUL IMUL	m64	8	ALU0, Mul	14		
DIV	r/m8	9	ALU0, Div	22	22	
DIV	r/m16	12	ALU0, Div	33	33	
DIV	r/m32	12	ALU0, Div	49	49	
DIV	r/m 64	38	ALU0, Div	183	183	
IDIV	r/m8	26	ALU0, Div	38	38	
IDIV	r/m16	29	ALU0, Div	45	45	
IDIV	r/m32	29	ALU0, Div	61	61	
IDIV	r/m64	60	ALU0, Div	207	207	
CBW	1/11104	2	ALU0, DIV	5	207	
				1		
CWDE		1	ALU0	•		
CDQE		1	ALU0	1 -		
CWD		2	ALU0	5		
CDQ		1	ALU0	1		
CQO		1	ALU0	1		
Logic instructions	<u>.</u>			_		
AND OR XOR	r,r/i	1	ALU0/1	1	1/2	
AND OR XOR	r,m		ALU0/1, Mer		1	
AND OR XOR	m,r/i	1	ALU0/1, Me	1	1	
TEST	r,r/i	1	ALU0/1	1	1/2	
TEST	m,r/i		ALU0/1, Mer	n	1	
SHR SHL SAR	r,i/cl	1	ALU0	1	1	
SHR SHL SAR	m,i/cl	1	ALU0	1	1	
ROR ROL	r,i/cl	1	ALU0	1	1	
ROR ROL	m,i/cl	1	ALU0	1	1	
RCR	r,1	5	ALU0	7		
RCL	r,1	2	ALU0	1		
RCR	r/m,i/cl	12-17	ALU0	12-15		
RCL	r/m,i/cl	14-20	ALU0	14-18		
SHLD	r16,r16,i	10	ALU0	10		1-2 more if mem
SHLD	r32,r32,i	2	ALU0	5		1-2 more if mem
SHLD	r64,r64,i	10	ALU0	11		1-2 more if mem
SHLD	r16,r16,cl	9	ALU0	9		1-2 more if mem
SHLD	r32,r32,cl	2	ALU0	5		1-2 more if mem
SHLD	r64,r64,cl	9	ALU0	10		1-2 more if mem
SHRD	r16,r16,i	8	ALU0	8		1-2 more if mem
SHRD	r32,r32,i	2	ALU0	5		1-2 more if mem
SHRD	r64,r64,i	10	ALU0	9		1-2 more if mem
SHRD	r16,r16,cl	7	ALU0	8		1-2 more if mem
SHRD	r32,r32,cl	2	ALU0	5		1-2 more if mem
SHRD	r64,r64,cl	9	ALU0	9		1-2 more if mem
BT	r,r/i	1	ALU1	1	1	1-2 INDIG II IIIGIII
BT		9	ALUT	10	'	
	m,r			5		
BT	m,i	2	I	၂ ၁		

BTR BTS BTC	r,r/i	1	ALU1	1 1	1	
BTR BTS BTC	m,r	10	ALU1	11		
BTR BTS BTC	m,i	3	ALU1	6		
BSF BSR	r,r/m	10		16		
SETcc	r	1	ALU0+1	2	2	
SETcc	m	2		_	5	
CLC STC		1	ALU0/1		1/2	
CMC		1	7120071	2	2	
CLD		5		_	7	
STD		6			25	
Control transfer instruction						
		4	A1 1 14		0	
JMP	short/near	1	ALU1		2	Notice 204 as a de
JMP	far	29			66	Not in x64 mode
JMP	r	1			4	
JMP	m(near)	2			7	
JMP	m(far)	30			78	
Conditional jump	short/near	1	ALU1		2	
J(E/R)CXZ	short	3			7	
LOOP	short	8			8	
LOOP(N)E	short	8			8	
CALL	near	1			3	
CALL	far	37			65	Not in x64 mode
CALL	r	1			18	
CALL	m(near)	2			20	
CALL	m(far)	38			64	
RETN	, ,	1	np		6	
RETN	i	1	np		6	
RETF		36	•		80	
RETF	i	36			80	
BOUND	r,m	11			10	Not in x64 mode
INTO	.,	4			6	Not in x64 mode
String instructions						
LODS		3		6		
REP LODS		5n+11		3n+50		
STOS		2		5		
REP STOS		3n+10		2n+4		
MOVS		4		6		
REP MOVS		4n+11		2n - 4n		fastest for high n
SCAS		3		6		iastest for high h
REP SCAS		5n+16		3n+60		
CMPS		5		7		
REP CMPS		6n+16		4n+40		
Other						
NOP (90)		1	ALU0/1		1/2	
Long NOP (0F 1F)		1	ALU0/1		1/2	
PAUSE		5		24		
ENTER	a,0	14		23		

ENTER	a,b	20+6b			
LEAVE		4		6	
CPUID		40-80	100-170		
RDTSC		16	29		
RDPMC		24	48		

Floating point x87 instructions

Floating point x87 ins					1	
	Operands	µops	Unit	Latency	Reciprocal throughput	Remarks
Move instructions						
FLD	r	1		1	1	
FLD	m32/m64	1		3	1	
FLD	m80	4		9	10	
FBLD	m80	52		92	92	
FST(P)	r	1		1	1	
FST(P)	m32/m64	3		7	9	
FSTP	m80	8		12	13	
FBSTP	m80	189		221	221	
FXCH	r	1		1	1	
FILD	m	1		7	6	
FIST(P)	m	3		11	9	
FISTTP	m	3		11	9	SSE3
FLDZ		1			1	
FLD1		2			8	
FLDPI FLDL2E etc.		2			10	
FCMOVcc	r	3		9	9	
FNSTSW	AX	4			10	
FNSTSW	m16	4			10	
FLDCW	m16	2			8	
FNSTCW	m16	3			9	
FINCSTP FDECSTP		1		1	1	
FFREE(P)		1			1	
FNSAVE	m	166		321	321	
FRSTOR	m	83		177	177	
Arithmetic instructions						
FADD(P) FSUB(R)(P)	r/m	1		5	1	
FMUL(P)	r/m	1	Mul	5	2	
FDIV(R)(P)	r/m	1	Div	71	71	
FABS		1		1	1	
FCHS		1		1	1	
FCOM(P) FUCOM	r/m	1		1	1	
FCOMPP FUCOMPP		1		1	1	
FCOMI(P) FUCOMI(P)	r	5			10	
FIADD FISUB(R)	m	3			9	
FIMUL	m	3	Mul		9	
FIDIV(R)	m	3	Div		73	
FICOM(P)	m	3			9	
FTST		1		1	1	

FXAM FPREM	1 26		1 ~110	1	
FPREM1	37		~130		
FRNDINT	19		48		
Math					
FSCALE	30		56		
FXTRACT	15		24		
FSQRT	1	Div	71		
FSIN FCOS	9		~260		
FSINCOS	112		~260		
F2XM1	25		~100		
FYL2X FYL2XP1	63		~220		
FPTAN	100		~300		
FPATAN	91		~300		
Other					
FNOP	1			1	
WAIT	2		5	5	
FNCLEX	4			26	
FNINIT	23		74		

Integer MMX and XMM instructions

	Operands	µops	Unit	Latency	Reciprocal throughput	Remarks
Move instructions						
MOVD	r32/64,(x)mm	1		4	2	
MOVD	m32/64,(x)mm	1	Mem	5	1	
MOVD	(x)mm,r32/64	1		3	1	
MOVD	(x)mm,m32/64	1	Mem	4	1	
MOVQ	(x)mm, (x)mm	1	FP0/1	1	1/2	
MOVQ	(x)mm,m64	1	Mem	4	1	
MOVQ	m64, (x)mm	1	Mem	5	1	
MOVDQA	xmm, xmm	1	FP0/1	1	1/2	
MOVDQA	xmm, m128	1	Mem	4	1	
MOVDQA	m128, xmm	1	Mem	5	1	
MOVDQU	m128, xmm	3	Mem	6	6	
MOVDQU	xmm, m128	4	Mem	6	6	
LDDQU	xmm, m128	4	Mem	6	6	
MOVDQ2Q	mm, xmm	1		1	1	
MOVQ2DQ	xmm,mm	1		1	1	
MOVNTQ	m64,mm	1	Mem	~400	1	
MOVNTDQ	m128,xmm	1	Mem	~450	3	
PACKSSWB/DW						
PACKUSWB	(x)mm, (x)mm	1	FP0	1	1	
PUNPCKH/LBW/WD/DQ	(x)mm, (x)mm	1	FP0	1	1	
PUNPCKH/LQDQ	(x)mm, (x)mm	1	FP0	1	1	

PSHUFB	mm mm	1	FP0	1 1	1 1	
PSHUFB	mm,mm	4		1	1 6	
PSHUFW	xmm,xmm		FP0	6	1	
	mm,mm,i	1				
PSHUFL/HW	xmm,xmm,i	1	FP0	1	1	
PSHUFD	xmm,xmm,i	1	FP0	1	1	
PALIGNR	xmm, xmm,i	1	FP0	1	1	
MASKMOVQ	mm,mm	1	Mem		2	
MASKMOVDQU	xmm,xmm	2	Mem		7	
PMOVMSKB	r32,(x)mm	1		4	2	
PINSRW	(x)mm,r32,i	1		3	1	
PEXTRW	r32,(x)mm,i	2		5	5	
Arithmetic instructions						
PADD/SUB(U)(S)B/W/D	(x)mm, (x)mm	1	FP0/1	1	1/2	
PADDQ PSUBQ	(x)mm, (x)mm	2		5	5	
PHADD(S)W PHSUB(S)W	(x)mm, (x)mm	7		8	8	
PHADDD PHSUBD	(x)mm, (x)mm	3		6		
PCMPEQ/GTB/W/D	(x)mm,(x)mm	1	FP0/1	1	1/2	
PMULL/HW PMULHUW	` '			4		
	mm,mm	1	FP0, Mul		1 2	
PMULL/HW PMULHUW	xmm,xmm	1	FP0, Mul	5		
PMULHRSW	mm,mm	1	FP0, Mul	4	1	
PMULHRSW	xmm,xmm	1	FP0, Mul	5	2	
PMULUDQ	mm,mm	1	FP0, Mul	4	1	
PMULUDQ	xmm,xmm	1	FP0, Mul	5	2	
PMADDWD	mm,mm	1	FP0, Mul	4	1	
PMADDWD	xmm,xmm	1	FP0, Mul	5	2	
PMADDUBSW	mm,mm	1	FP0, Mul	4	1	
PMADDUBSW	xmm,xmm	1	FP0, Mul	5	2	
PSADBW	mm,mm	1	FP0, Mul	4	1	
PSADBW	xmm,xmm	1	FP0, Mul	5	2	
PAVGB/W	(x)mm,(x)mm	1	FP0/1	1	1/2	
PMIN/MAXUB	(x)mm,(x)mm	1	FP0/1	1	1/2	
PMIN/MAXSW	(x)mm,(x)mm	1	FP0/1	1	1/2	
PABSB PABSW PABSD	(x)mm,(x)mm	1	FP0/1	1	1/2	
PSIGNB PSIGNW PSIGND						
	(x)mm,(x)mm	1	FP0/1	1	1/2	
Lania in atmostico						
Logic instructions					4.0	
PAND(N) POR PXOR	(x)mm,(x)mm	1	FP0/1	1 -	1/2	
PSLL/RL/RAW/D/Q	(x)mm,(x)mm	2	FP0	5	5	
PSLL/RL/RAW/D/Q	(x)xmm,i	1	FP0	1	1	
PSLL/RLDQ	xmm,i	1	FP0	1	1	
Other						
EMMS		9			9	
		-	l .			

Floating point XMM instructions

Operands	μops	Unit	Latency	Reciprocal	Remarks
				throughput	

Move instructions						
		4	ED0/4	_	1/0	
MOVAPS/D	xmm,xmm	1	FP0/1	1	1/2	
MOVAPS/D	xmm,m128	1	Mem	4	1	
MOVAPS/D	m128,xmm	1	Mem	5	1	
MOVUPS/D	xmm,m128	4	Mem	6	6	
MOVUPS/D	m128,xmm	3	Mem	6	6	
MOVSS/D	xmm,xmm	1	FP0/1	1	1/2	
MOVSS/D	xmm,m32/64	1	Mem	4	1	
MOVSS/D	m32/64,xmm	1	Mem	5	1	
MOVHPS/D MOVLPS/D	xmm,m64	1	Mem	5	1	
MOVHPS/D	m64,xmm	1	Mem	4	1	
MOVLPS/D	m64,xmm	1	Mem	4	1	
MOVLHPS MOVHLPS	xmm,xmm	1	FP0	1	1	
MOVMSKPS/D	r32,xmm	1		4	2	
MOVNTPS/D	m128,xmm	1	Mem	~500	3	
SHUFPS	xmm,xmm,i	1	FP0	1	1	
SHUFPD	xmm,xmm,i	1	FP0	1	1	
MOVDDUP	xmm,xmm	1	FP0	1	1	
MOVSH/LDUP	xmm,xmm	1	FP0	1	1	
UNPCKH/LPS	xmm,xmm	1	FP0	1	1	
UNPCKH/LPD	xmm,xmm	1	FP0	1		
ON GIVINEI B	AIIIII, AIIIII	'	110	'		
Conversion						
CVTPD2PS	xmm,xmm	4		11	11	
CVTSD2SS	xmm,xmm	3		10	10	
CVTPS2PD	xmm,xmm	4		7	6	
CVTSS2SD	xmm,xmm	3		6	6	
CVTDQ2PS	xmm,xmm	3		6	6	
CVT(T) PS2DQ	xmm,xmm	3		6	6	
CVTDQ2PD		3		7	6	
CVT(T)PD2DQ	xmm,xmm	3		6	6	
CVTPI2PS	xmm,xmm					
	xmm,mm	1		6	5	
CVT(T)PS2PI	mm,xmm	1		4	1	
CVTPI2PD	xmm,mm	3		7	6	
CVT(T) PD2PI	mm,xmm	4		7	7	
CVTSI2SS	xmm,r32	3		7	6	
CVT(T)SS2SI	r32,xmm	3		10	8	
CVTSI2SD	xmm,r32	3		8	6	
CVT(T)SD2SI	r32,xmm	3		10	8	
A with we at! -						
Arithmetic	-	_		_		
ADDSS SUBSS	xmm,xmm	1	FP1	5	1	
ADDSD SUBSD	xmm,xmm	1	FP1	5	1	
ADDPS SUBPS	xmm,xmm	1	FP1	5	1	
ADDPD SUBPD	xmm,xmm	3	FP1	6	6	
ADDSUBPS	xmm,xmm	1	FP1	5	1	
ADDSUBPD	xmm,xmm	3	FP1	6	6	
HADDPS HSUBPS	xmm,xmm	5	FP0+1	8	7	
HADDPD HSUBPD	xmm,xmm	5	FP0+1	8	7	
MULSS	xmm,xmm	1	FP0, Mul	4	1	

MULSD	xmm,xmm	1	FP0, Mul	5	2	
MULPS	xmm,xmm	1	FP0, Mul	5	2	
MULPD	xmm,xmm	6	FP0, Mul	9	9	
DIVSS	xmm,xmm	3	FP0, Div	31	31	
DIVSD	xmm,xmm	3	FP0, Div	60	60	
DIVPS	xmm,xmm	6	FP0, Div	64	64	
DIVPD	xmm,xmm	6	FP0, Div	122	122	
RCPSS	xmm,xmm	1	110, 51	4	1	
RCPPS	xmm,xmm	5		9	8	
CMPccSS/D	xmm,xmm	1	FP0	5	1	
CMPccPS/D	xmm,xmm	3	FP0	6	6	
COMISS/D UCOMISS/D	xmm,xmm	4	FP0	9	9	
MAXSS/D MINSS/D	xmm,xmm	1	FP0	5	1	
MAXPS/D MINPS/D	xmm,xmm	3	FP0	6	6	
5 5/2 5/2	7					
Math						
SQRTSS	xmm,xmm	3	FP0, Div	31	31	
SQRTPS	xmm,xmm	5	FP0, Div	63	63	
SQRTSD	xmm,xmm	3	FP0, Div	60	60	
SQRTPD	xmm,xmm	5	FP0, Div	121	121	
RSQRTSS	xmm,xmm	1	FP0	4	1	
RSQRTPS	xmm,xmm	5	FP0	9	8	
Logic						
ANDPS/D	xmm,xmm	1	FP0/1	1	1/2	
ANDNPS/D	xmm,xmm	1	FP0/1	1	1/2	
ORPS/D	xmm,xmm	1	FP0/1	1	1/2	
XORPS/D	xmm,xmm	1	FP0/1	1	1/2	
Other						
LDMXCSR	m32	4		5	6	
STMXCSR	m32	4		14	15	
FXSAVE	m4096	121		142	144	
FXRSTOR	m4096	116		149	150	

Intel Silvermont

List of instruction timings and µop breakdown

Explanation of column headings:

Instruction: Name of instruction. Multiple names mean that these instructions have the

same data. Instructions with or without V name prefix behave the same un-

less otherwise noted.

Operands: i = immediate data, r = register, mm = 64 bit mmx register, x = 128 bit xmm

register, (x)mm = mmx or xmm register, m = memory, m32 = 32-bit memory

operand, etc.

μορs: The number of μορs from the decoder or ROM. A μορ that goes to multiple

units is counted as one.

Unit: Tells which execution unit is used. Instructions that use the same unit cannot

execute simultaneously.

IP0 and IP1 means integer port 0 or 1 and their associated pipelines

IP0/1 means that either integer unit can be used.

IP0+1 means that the μop is split in two, using both units.

Mem means memory execution cluster

FP0 means floating point port 0 (includes multiply, divide, convert and shuf-

tle).

FP1 means floating point port 1 (adder).

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays very much, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give

a similar delay.

Reciprocal throughput: The average number of clock cycles per instruction for a series of indepen-

dent instructions of the same kind in the same thread. Delays in the decoders are included in the latency and throughput timings. Values of 4 or more are often caused by bottlenecks in the decoders and microcode ROM

rather than the execution units.

Integer instructions

_	Operands	µops	Unit	Latency	Reciprocal throughput	Remarks
Move instructions						
MOV	r,r	1	IP0/1	1	0.5	
MOV	r,i	1	IP0/1	1	0.5	
MOV	r,m	1	Mem	4	1	All addr. modes
MOV	m,r	1	Mem	3	1	All addr. modes
MOV	m,i	1	Mem		1	
MOVNTI	m,r	1	Mem		2	
MOVSX MOVZX MOVSXD	r16,r8	2	IP0		4	
MOVSX MOVZX MOVSXD	r16,m8	3	IP0		10	
MOVSX MOVZX MOVSXD	r32/64,r/m	1	IP0	1	1	
CMOVcc	r,r	1	IP0/1	2	1	
CMOVcc	r,m	1			1	
XCHG	r,r	3	IP0/1	8	8	
XCHG	r,m	3		24	24	Implicit lock
XLAT		4		8	8	

		Silv	vermont			
PUSH PUSH PUSH PUSHF(D/Q) PUSHA(D) POP POP POP POP POPF(D/Q) POPA(D) LAHF SAHF SALC LEA LEA LEA LEA LEA LEA LEA LEA LEA LEA	r i m r (E/R)SP m r,[r+r*s] r,[r+r*s+d] r,[rip+d] r16,[m] r r16,m16 r32/64,m32/64 m,r m m m	1 1 3 18 10 2 6 21 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IP0+1 IP0+1 IP0+1 IP0+1 IP0+1 IP0/1 IP1 IP0/1 IP0/1 IP0	1 2 6 1 1 2 4 1	1 1 5 29 10 1 3 6 47 14 1 1 4 1 1 2 0.5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Not in x64 mode Not in x64 mode Not in x64 mode
Arithmetic instructions ADD SUB ADD SUB ADD SUB ADC SBB ADC SBB ADC SBB ADCX ADCX ADCX ADOX CMP CMP INC DEC NEG NOT INC DEC NEG NOT AAA AAS DAA DAS AAM MUL IMUL MUL IMUL	r,r/i r,m m,r/i r,r/i r,m m,r/i r32,r32 r64,r64 r,r/i m,r/i r m	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IP0/1 IP0/1, Mem IP0/1, Mem IP0/1 IP0+1 IP0+1 IP0/1 IP0/1 IP0/1 IP0/1	1 6 2 6 2 6 2 6 1 1 1 6 12 16 16 5 24 5 5	0.5 1 1 2 2 2 6 2 6 0.5 1 1 0.5 1	latency to flag=2 Not in x64 mode Not in x64 mode Not in x64 mode Not in x64 mode Not in x64 mode Not in x64 mode Not in x64 mode

MUL IMUL	r32	3	IP0	5	5	
MUL IMUL	r64	3	IP0	7	7	
IMUL	r16,r16	2	IP0	4	4	
IMUL	r32,r32	1	IP0	3	1	
IMUL	r64,r64	1	IP0	5	2	
IMUL	r16,r16,i	2	IP0	4	4	
IMUL	r32,r32,i	1	IP0	3	1	
IMUL	r64,r64,i	1	IP0	5	2	
MUL IMUL	m8	3	IP0		_	
MUL IMUL	m16	5	IP0			
MUL IMUL	m32	4	IP0			
MUL IMUL	m64	4	IP0	14		
		3-4	IP0	8	8	
MULX	r,r,r			0		
MULX	r,r,m	4	IP0	0.4	8-10	
DIV	r/m8	9	IP0, FP0	24	19	
DIV	r/m16	12	IP0, FP0	25-29	19-23	
DIV	r/m32	12	IP0, FP0	25-39	19-31	
DIV	r/m 64	23	IP0, FP0	34-94	25-94	
IDIV	r/m8	26	IP0, FP0	24-35	25	
IDIV	r/m16	29	IP0, FP0	37-41	30-32	
IDIV	r/m32	29	IP0, FP0	29-46	29-38	
IDIV	r/m64	44	IP0, FP0	47-107	47-107	
CBW		2	IP0	4		
CWDE		1	IP0	1		
CDQE		1	IP0	1		
CWD		2	IP0	4		
CDQ		1	IP0	1		
CQO		1	IP0	1		
POPCNT	r16,r16	2		4	4	
POPCNT	r32,r32	1		3	1	
POPCNT	r64,r64	1		3	1	
CRC32	r32,r8	2		4	4	
CRC32	r32,r16	1		6	6	
CRC32	r32,r32	1		3	1	
Logic instructions						
AND OR XOR	r,r/i	1	IP0/1	1	0.5	
AND OR XOR	r,m	1	IP0/1, Mem		1	
AND OR XOR	m,r/i	1	IP0/1, Mem	6	1	
TEST	r,r/i	1	IP0/1	1	0.5	
TEST	m,r/i	1	IP0/1, Mem		1	
SHR SHL SAR	r,i/cl	1	IP0	1	1	
SHR SHL SAR	m,i/cl	1	IP0			
ROR ROL	r,i/cl	1	IP0	1	1	
ROR ROL	m,i/cl	1	IP0	I	1	
				_	'	
RCR	r,1	7	IP0	9 2	_	
RCL	r,1	1	IP0		2	
RCR	r,i/cl	11	IP0	12		
RCR	m,i/cl	14	IP0	13		
RCL	r,i/cl	13	IP0	12		
RCL	m,i/cl	16	IP0	14		
SHLD	r16,r16,i	10	IP0	10		2 more if mem
SHLD	r32,r32,i	1	IP0	2		4 more if mem

SHLD SHLD SHLD SHLD SHRD SHRD SHRD SHRD SHRD SHRD SHRD BT BT BT BT BT BTBTSBTC BTR BTS BTC BTR BTS BTC BTR BTS BTC CCC CLC STC CMC CLD STD	r64,r64,i r16,r16,cl r32,r32,cl r64,r64,cl r16,r16,i r32,r32,i r64,r64,i r16,r16,cl r32,r32,cl r64,r64,cl r,r/i m,r m,i r,r/i m,r m,i r,r/m r/m	10 9 2 9 8 2 8-10 7 2 2 1 7 1 1 8 1 10 1 1 1 4 5	IP0 IP0 IP0 IP0 IP0 IP0 IP0 IP0 IP0+1 IP0+1 IP0+1 IP0+1 IP0+1 IP0+1 IP0+1	10 10 4 10 10 4 10 10 4 4 1 9 1 1	1 10 1 10 1 1 1 7 35	2 more if mem 2 more if mem 2 more if mem 2 more if mem 3 more if mem 3 more if mem 2 more if mem 2 more if mem 2 more if mem 2 more if mem
Control transfer instruction	ns short/near	1	IP1		2	
JMP	r	1			2	
JMP	m(near)	1			2	
Conditional jump	short/near	1	IP1		1-2	
J(E/R)CXZ	short	2			2-15	
LOOP	short	7			10-20	
LOOP(N)E	short	8			•	
CALL	near	1 1			2	
CALL CALL	r	1 2			9 14	
RET	m	3 1			3	
RET	i	1 1			3	
BOUND	r,m	10			10	Not in x64 mode
INTO	-,	4			7	Not in x64 mode
String instructions						
LODS		3		5		
REP LODS		~4n		~2n		
STOS		2		4		per byte, best
REP STOS		~0.12B		~0.1B		case
MOVS		5		6		
DED 1407.0						per byte, best
REP MOVS		~ 0.2B		~0.15B		case
SCAS		3		5		
REP SCAS		~5n 6		~3n 6		
CMPS REP CMPS		~6n		~3n		
I CIVII O		011		JII		

Synchronization instruction	ons					
XADD	m,r	6		6		
LOCK XADD	m,r	4		10		
LOCK ADD	m,r	1		10		
CMPXCHG	m,r	8		10		
LOCK CMPXCHG	m,r	6		11		
CMPXCHG8B	m,r	13		14		
LOCK CMPXCHG8B	m,r	11		14		
CMPXCHG16B	m,r	19		24		
LOCK CMPXCHG16B	m,r	17		27		
Other						
NOP (90)		1	IP0/1		0.5	
Long NOP (0F 1F)		1	IP0/1		0.5	
PAUSE		6		24		
ENTER	a,0	15		14		
ENTER	a,b	19+6b		59+5b		
LEAVE		4			5	
CPUID		31-80		54-108		
RDTSC		13		29		
RDTSCP		15		25		
RDPMC		19		19		
RDRAND	r	15			~1472	

Floating point x87 instructions

	Operands	µops	Unit	Latency	Reciprocal throughput	Remarks
Move instructions						
FLD	r	1		1	0.5	
FLD	m32/m64	1		4	1	
FLD	m80	5		9	8	
FBLD	m80	59		68	68	
FST(P)	r	1		1	0.5	
FST(P)	m32/m64	1		3	2	
FSTP	m80	8		9	9	
FBSTP	m80	204		239	239	
FXCH	r	2	FP0+1	1	1	
FILD	m	1		6	2	
FIST(P)	m	6		9	9	
FISTTP	m	7		6	13	
FLDZ		1			1	
FLD1		1			7	
FLDPI FLDL2E etc.		2			7	
FCMOVcc	r	3		6	6	
FNSTSW	AX	2		~9	9	
FNSTSW	m16	4			11	
FLDCW	m16	2		~6	4	
FNSTCW	m16	4		~5	5	
FINCSTP FDECSTP		1		1	0.5	
FFREE(P)		1			0.5	
FNSAVE	m	166		240	240	

FRSTOR	m	82		174	174	
Arithmetic instructions						
FADD(P) FSUB(R)(P)	r/m	1	FP1	3	1	
FMUL(P)	r/m	1	FP0	5	2	
FDIV(R)(P)	r/m	1	FP0	39	37	
FABS	1/111	1	110	1	1	
FCHS		1		1	1	
FCOM(P) FUCOM	r/m	1		5	1	
FCOMPP FUCOMPP	,,,,,	1		5	1	
FCOMI(P) FUCOMI(P)	r	1		5	1	
FIADD FISUB(R)	m .	3			5	
FIMUL	m m	3			6	
FIDIV(R)	m m	3			39	
FICOM(P)	m	3			5	
FTST		1		6	1	
FXAM		1		7	1	
FPREM		27		32-57	32-57	
FPREM1		27		32-57	32-57	
FRNDINT		18		26	26	
Math						
FSCALE		27			66	
FXTRACT		15		20	20	
FSQRT		1		13-40	13-40	
FSIN FCOS		18		40-170	40-170	
FSINCOS		110		40-170		
F2XM1		9		39-90		
FYL2X		34		80-140		
FYL2XP1		61		154		
FPTAN		101		45-200		
FPATAN		63		85-190		
Other						
FNOP		1			0.5	
WAIT		2			4	
FNCLEX		4			24	
FNINIT		19			65	

Integer MMX and XMM instructions

	Operands	µops	Unit	Latency	Reciprocal throughput	Remarks
Move instructions						
MOVD MOVQ	r32/64,(x)mm	1		4	1	
MOVD MOVQ	m,(x)mm	1	Mem	3	1	
MOVD MOVQ	(x)mm,r32/64	1		3	1	
MOVD MOVQ	(x)mm,m	1	Mem	4	1	
MOVQ	(x)mm, (x)mm	1	FP0/1	1	0.5	
MOVDQA	x, x	1	FP0/1	1	0.5	
MOVDQA MOVDQU	x, m128	1	Mem	4	1	

MOVDQA MOVDQU	m128, x	1	Mem	3	1	
LDDQU	x, m128	1	Mem	4	1	
MOVDQ2Q	mm, x	1		1	1	
MOVQ2DQ	x,mm	1		1	1	
MOVNTQ	m64,mm	1	Mem	~370	1	
MOVNTDQ	m128,x	1	Mem	~370	1	
MOVNTDQA	x, m128	1		4	1	
PACKSSWB/DW						
PACKUSWB	(x)mm, (x)mm	1	FP0	1	1	
PACKUSDW	x,x	1	FP0	1	1	
PUNPCKH/LBW/WD/DQ	(x)mm, (x)mm	1	FP0	1	1	
PUNPCKH/LQDQ	(x)mm, (x)mm	1	FP0	1	1	
PMOVSX/ZX BW BD BQ DW						
DQ	X,X	1		1	1	
PMOVSX/ZX BW BD BQ DW						
DQ	x,m	1		1	1	
PSHUFB	mm,mm	1	FP0	1	1	
PSHUFB	X,X	4	FP0	5	5	
PSHUFW	mm,mm,i	1	FP0	1	1	
PSHUFL/HW	x,x,i	1	FP0	1	1	
PSHUFD	x,x,i	1	FP0	1	1	
PALIGNR	x,x,i	1	FP0	1	1	
PBLENDVB	x,x,xmm0	2	FP0	4	4	
PBLENDVB	x,m,xmm0	3	FP0		5	
PBLENDW	x,x/m,i	1	FP0	1	1	
MASKMOVQ	mm,mm	1	Mem	~370	1	
MASKMOVDQU	X,X	3	Mem	~370	5	
PMOVMSKB	r32,(x)mm	1		4	1	
PINSRW	(x)mm,r32,i	1		3	1	
PINSRB/D/Q	x,r32,i	1		3	1	
PINSRB/D/Q	x,m8,i	1			1	
PEXTRW	r32,(x)mm,i	2		5	4	
PEXTRB/W	r32,x,i	2		5	4	
PEXTRQ	r64,x,i	2		7	7	
PEXTRB/W	m8/16,x,i	5		,	6	
PEXTRD	m32,x,i	4			5	
PEXTRQ	m64,x,i	4			8	
LXING	11104,7,1	7			U	
Arithmetic instructions						
PADD/SUB(U)(S)B/W/D	(x)mm, (x)mm	1	FP0/1	1	0.5	
PADDQ PSUBQ	(x)mm, (x)mm	2	110/1	4	4	
PADDQ PSUBQ	(x)mm, m	3			5	
PHADD(S)W PHSUB(S)W	mm, mm	5		6	6	
PHADD(S)W PHSUB(S)W	x, x/m	7-8		9	9	
PHADDD PHSUBD	(x)mm, (x)mm	7-6 3-4		5-6	5-6	
PCMPEQ/GTB/W/D	' ' '		FP0/1	1	0.5	
PCMPEQQ	(x)mm,(x)mm	1 2	FFU/I	4	0.5 4	+1 if mem
	X, X		ED0			+ i ii mem
PCMPGTQ	X, X	1	FP0	5	2	
PMULL/HW PMULHUW	mm,mm	1	FP0	4	1	
PMULL/HW PMULHUW	X, X	1	FP0	5	2	
PMULHRSW	mm,mm	1	FP0	4	1	
PMULHRSW	x, x	1	FP0	5	2	14:6
PMULLD	X, X	7	FP0	11	11	+1 if mem

DM II D O	1					1
PMULDQ	X, X	1	FP0	5	2	
PMULUDQ	mm,mm	1	FP0	4	1	
PMULUDQ	X, X	1	FP0	5	2	
PMADDWD	mm,mm	1	FP0	4	1	
PMADDWD	X, X	1	FP0	5	2	
PMADDUBSW	mm,mm	1	FP0	4	1	
PMADDUBSW	X, X	1	FP0	5	2	
PSADBW	mm,mm	1	FP0	4	1	
PSADBW	X, X	1	FP0	5	2	
MPSADBW	x,x,i	3		7	6	
MPSADBW	x,m,i	4			6	
PAVGB/W	(x)mm,(x)mm	1	FP0/1	1	0.5	
PMIN/MAXUB	(x)mm,(x)mm	1	FP0/1	1	0.5	
PMIN/MAXSW	(x)mm,(x)mm	1	FP0/1	1	0.5	
PMIN/PMAX						
SB/SW/SD						
UB/UW/UD	x,x	1		1	1	
PHMINPOSUW	x,x	1	FP0	5	2	
PABSB PABSW PABSD	(x)mm,(x)mm	1	FP0/1	1	0.5-1	
PSIGNB PSIGNW PSIGND)					
	(x)mm,(x)mm	1	FP0/1	1	0.5-1	
Logic instructions						
PAND(N) POR PXOR	(x)mm,(x)mm	1	FP0/1	1	0.5	
PTEST	X,X	1		1	1	
PSLL/RL/RAW/D/Q	(x)mm,(x)mm	2	FP0	2	2	
PSLL/RL/RAW/D/Q	(x)mm,i	1	FP0	1	1	
PSLL/RLDQ	x,i	1	FP0	1	1	
String instructions						
PCMPESTRI	x,x,i	9	FP0	21	21	+1 if mem
PCMPESTRM	x,x,i	8	FP0	17	17	+1 if mem
PCMPISTRI	x,x,i	6	FP0	17	17	+1 if mem
PCMPISTRM	x,x,i	5	FP0	13	13	+1 if mem
Encryption instructions						
PCLMULQDQ	x,x,i	8	FP0	10	10	+1 if mem
1 OLIVIOLQDQ	^,X,I	U	11-0	10	10	1 11 1116111
Other						
EMMS	7	9			10	

Floating point XMM instructions

	Operands	μops	Unit	Latency	Reciprocal throughput	Remarks
Move instructions						
MOVAPS/D	x, x	1	FP0/1	1	0.5	
MOVAPS/D	x,m128	1	Mem	4	1	
MOVAPS/D	m128,x	1	Mem	3	1	
MOVUPS/D	x,m128	1	Mem	4	1	
MOVUPS/D	m128,x	1	Mem	3	1	
MOVSS/D	x, x	1	FP0/1	1	0.5	
MOVSS/D	x,m32/64	1	Mem	4	1	

			7CITIOIIL			
MOVSS/D	m32/64,x	1	Mem	3	1	
MOVHPS/D MOVLPS/D	x,m64	1	Mem	4	1	
MOVHPS/D MOVLPS/D	m64,x	1	Mem	3	1	
MOVLHPS MOVHLPS	x,x	1	FP0	1	1	
BLENDPS/PD	x,x/m,i	1	110		1	
		-	ED0.4	-	-	
BLENDVPS/PD	x,x,xmm0	2	FP0+1	4	4	
BLENDVPS/PD	x,m,xmm0	3	FP0+1	5	5	
INSERTPS	x,x,i	1		1	1	
INSERTPS	x,m32,i	3		5	5	
EXTRACTPS	r32,x,i	2			4	
EXTRACTPS	m32,x,i	4		4	5	
MOVMSKPS/D	r32,x	1	FP0	4	1	
MOVNTPS/D	m128,x	1	Mem	~370	1	
SHUFPS	x,x,i	1	FP0	1	1	
SHUFPD	x,x,i	1	FP0	1	1	
MOVDDUP	X, X	1	FP0	1	1	
MOVSH/LDUP		1	FP0	1	1	
	X, X					
UNPCKH/LPS	x, x	1	FP0	1	1	
UNPCKH/LPD	X, X	1	FP0	1	1	
Conversion						
CVTPD2PS	X, X	1	FP0	5	2	
CVTSD2SS	x, x	1	FP0	4	2	
CVTPS2PD	x, x	1	FP0	5	2	
CVTSS2SD	x, x	1	FP0	4	2	
CVTDQ2PS	x, x	1	FP0	5	2	
CVT(T) PS2DQ	x, x	1	FP0	5	2	
CVTDQ2PD	x, x	1	FP0	5	2	
CVT(T)PD2DQ	x, x	1	FP0	5	2	
CVTPI2PS	x,mm	1	FP0	4	2	
			FP0	4	2	
CVT(T)PS2PI	mm,x	1				
CVTPI2PD	x,mm	1	FP0	5	2	
CVT(T) PD2PI	mm,x	1	FP0	5	2	
CVTSI2SS	x,r32	1	FP0	5	2	
CVT(T)SS2SI	r32,x	1	FP0	5	1	
CVTSI2SD	xm,r32	1	FP0	5	2	
CVT(T)SD2SI	r32,x	3	FP0	5	1	
Arithmetic						
ADDSS SUBSS	x, x	1	FP1	3	1	
ADDSD SUBSD	x, x	1	FP1	3	1	
ADDPS SUBPS	x, x	1	FP1	3	1	
ADDPD SUBPD		1	FP1	4	2	
	X, X					
ADDSUBPS	x, x	1	FP1	3	1	
ADDSUBPD	x, x	1	FP1	4	2	
HADDPS HSUBPS	x, x	4		6	6	+1 if mem
HADDPD HSUBPD	X, X	4		6	5	+1 if mem
MULSS	X, X	1	FP0	4	1	
MULSD	x, x	1	FP0	5	2	
MULPS	x, x	1	FP0	5	2	
MULPD	x, x	1	FP0	7	4	
DIVSS	x, x	1	FP0	19	17	
DIVSD	x, x	1	FP0	34	32	
1 -	,	· ·	1			

DIVPS	x, x	6	FP0	39	39	
DIVPD	x, x	6	FP0	69	69	
RCPSS	x, x	1	FP0	4	1	
RCPPS	X, X	5	FP0	9	8	
CMPccSS/D PS/D	x, x	1	FP1	3	1	
COMISS/D UCOMISS/D	x, x	1	FP1		1	
MAXSS/D MINSS/D	x, x	1	FP1	3	1	
MAXPS MINPS	x, x	1	FP1	3	1	
MAXPD MINPD	x, x	1	FP1	4	2	
ROUNDSS/D	x,x,i	1	FP0	4	2	
ROUNDPS/D	x,x,i	1	FP0	5	2	
DPPS	x,x,i	9	FP0	15	12	+1 if mem
DPPD	x,x,i	5	FP0	12	8	+1 if mem
Math						
SQRTSS	x, x	1	FP0	20	18	
SQRTPS	x, x	5	FP0	40	40	
SQRTSD	x, x	1	FP0	35	33	
SQRTPD	x, x	5	FP0	70	70	
RSQRTSS	x, x	1	FP0	4	1	
RSQRTPS	x, x	5	FP0	9	8	
Logic						
ANDPS/D	x, x	1	FP0/1	1	0.5	
ANDNPS/D	x, x	1	FP0/1	1	0.5	
ORPS/D	x, x	1	FP0/1	1	0.5	
XORPS/D	X , X	1	FP0/1	1	0.5	
Other						
LDMXCSR	m32	5		10	8	
STMXCSR	m32	4		12	11	
FXSAVE	m4096	115		132	132	32 bit mode
FXSAVE	m4096	123		143	143	64 bit mode
FXRSTOR	m4096	114		118	118	32 bit mode
FXRSTOR	m4096	123		122	122	64 bit mode

Intel Goldmont

List of instruction timings and µop breakdown

Explanation of column headings:

Instruction: Name of instruction. Multiple names mean that these instructions have the

same data.

Operands: i = immediate data, r = register, mm = 64 bit mmx register, x = 128 bit xmm

register, v = mmx or xmm vector register, m = memory, m32 = 32-bit memory

operand, etc.

μops: The number of μops from the decoder or ROM. A μop that goes to multiple

units is counted as one.

Unit: Tells which execution unit is used. Instructions that use the same unit cannot

execute simultaneously.

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays very much, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give

a similar delay.

Reciprocal throughput: The average number of clock cycles per instruction for a series of indepen-

dent instructions of the same kind in the same thread. Delays in the decoders are included in the latency and throughput timings. Values of 4 or more are often caused by bottlenecks in the decoders and microcode ROM

rather than the execution units.

Integer instructions

	Operands	μops	Unit	Latency	Reciprocal throughput	Remarks
Move instructions						
MOV	r,r	1		1	0.33	
MOV	r,i	1		1	0.33	
MOV	r,m	1		3	1	All addr. modes
MOV	m,r	1		2	1	All addr. modes
MOV	m,i	1			1	
MOVNTI	m,r	2		2	2	
MOVSX MOVZX	r16,r8	2			4	
MOVSX MOVZX	r16,m8	3			4	
MOVSX MOVZX MOVSX	r32/64,r	1		1	1	
MOVSX MOVSXD	r32/64,m	1		3	1	
MOVZX	r32/64,m	1		2	1	
CMOVcc	r,r	1		2	1	
CMOVcc	r,m	1			1	
XCHG	r,r	3		4	4	
XCHG	r,m	3		13	13	Implicit lock
XLAT		4		5	5	
PUSH	r	1			1	
PUSH	İ	1			1	
PUSH	m	2			1	
PUSH	sp	2			1	
PUSHF(D/Q)		16			26	
PUSHA(D)		10			8	Not in x64 mode
POP	r	1			1	

POP	m	6		5	
POP	sp	1		2.5	
POPF(D/Q)	96	22		42	
, ,		17		10	Not in x64 mode
POPA(D)					Not ill x04 illoue
LAHF		1	2	2	
SAHF		1	1	1	
SALC		2	4	4	Not in x64 mode
LEA	r16,[m]	2	5	4	
LEA	r,[r+d]	1	1	1	
LEA	r,[r+r*1]	1	1	1	
LEA	r32,[r+r*s]	1	2	2	
LEA	r64,[r+r*s]	1	1	1	
LEA	r,[r+r*s+d]	1	2	2	
LEA	r,[rip+d]	1		0.5	
BSWAP	r	1	1	1	
MOVBE	r,m	1		1	
MOVBE	m,r	1		1	
PREFETCHNTA	m	1		1	
PREFETCHT0/1/2	m	1		1	
PREFETCHNTW	m	1		1	
	111	-			
LFENCE		3		8	
MFENCE		3		22	
SFENCE		1		2	
CLFLUSH	m	1		165	
CLFLUSHOPT	m	4		165	
Arithmetic instructions					
ADD SUB	r,r/i	1	1	0.33	
ADD SUB	r,m	1		1	
ADD SUB	m,r/i	1	5	1	
ADC SBB		1	2	2	
	r,r/i	-			
ADC SBB	r,m	1		2	
ADC SBB	m,r/i	1	6	2	
CMP	r,r/i	1	1	0.33	
CMP	m,r/i	1		1	
INC DEC	r	1	1	1	latency to flag=2
NEG NOT	r	1	1 1	0.33	
INC DEC NEG NOT	m	1	5	1	
AAA		14	10		Not in x64 mode
AAS		14	10		Not in x64 mode
DAA		21	13		Not in x64 mode
DAS		22			Not in x64 mode
			14		
AAD		4	5		Not in x64 mode
AAM	_	5	14	11	Not in x64 mode
MUL IMUL	r8	2	4	4	
MUL IMUL	r16	4	5	5	
MUL IMUL	r32	2	4	2	
MUL IMUL	r64	2	6	2	
IMUL	r16,r16	2	4	4	
IMUL	r32,r32	1	3	1	
IMUL	r64,r64	1	5	2	
IMUL	r164,164	-	4	4	
		2			
IMUL	r32,r32,i	1	3	1	

IMUL	r64,r64,i	1	5	2	
MUL IMUL	m8	3		_	
MUL IMUL	m16	5			
MUL IMUL	m32	2		1	
MUL IMUL	m64	2		2	
DIV	r8	3	13-14	11-12	
DIV	r16	6	14-19	13-18	
DIV	r32	6	14-27	13-26	
DIV	r64	6	14-43	13-42	
IDIV	r8	3	13-14	11-12	
IDIV	r16	6	14-19	13-18	
IDIV	r32	6	14-27	13-26	
IDIV	r64	6	14-43	13-42	
CBW		2	4		
CWDE		1	1		
CDQE		1	1		
CWD		2	4		
CDQ		1	1		
CQO		1	1		
POPCNT	r16,r16	2	4	4	
POPCNT	r32,r32	1	3	1	
POPCNT	r64,r64	1	3	1	
CRC32	r32,r8	1	3	1	
CRC32	r32,r16	1	3	2	
CRC32	r32,r32	1	3	1	
	- , -				
Logic instructions					
AND OR XOR	r,r/i	1	1	0.33	
AND OR XOR	r,m	1		1	
AND OR XOR	m,r/i	1	5	1	
TEST	r,r/i	1	1	0.33	
TEST	m,r/i	1		1	
SHR SHL SAR	r,i/cl	1	1	1	
SHR SHL SAR	m,i/cl	1		1	
ROR ROL	r,i/cl	1	1	1	
ROR ROL	m,i/cl	1		1	
RCL	r,1	1	2	2	
RCL	r,i	16	14	14	2 more if mem
RCL	r,cl	16	16	16	2 more if mem
RCR	r,1	10	11	11	3 more if mem
RCR	r,i	14	12	12	2 more if mem
RCR	r,cl	14	14	14	2 more if mem
SHLD	r16,r16,i	10	15	15	4 more if mem
SHLD	r32,r32,i	2	2	2	6 more if mem
SHLD	r64,r64,i	13	12	12	2 more if mem
SHLD	r16,r16,cl	10	17	17	4 more if mem
SHLD	r32,r32,cl	2	4	4	6 more if mem
SHLD	r64,r64,cl	12	14	14	2 more if mem
SHRD	r16,r16,i	10	11	11	3 more if mem
SHRD	r32,r32,i	2	2	2	6 more if mem
SHRD	r64,r64,i	13	12	12	2 more if mem
SHRD	r16,r16,cl	10	13	13	2 more if mem
SHRD	r32,r32,cl	2	4	4	6 more if mem

SHRD BT BT BT BT BTR BTS BTC BTR BTS BTC BTR BTS BTC BTR BTS BTC CBSF BSR SETcc CLC STC CMC CLD STD	r64,r64,cl r,r/i m,r m,i r,r/i m,r m,i r,r/m	12 1 10 1 1 10 1 11 1 1 1 3 4	14 1 1 12 10 2 1	14 1 12 1 1 10 2 8 1 1 1 7 35	2 more if mem
Control transfer instruc	tions				
JMP	short/near	1		2	
JMP	r	1		2	
JMP	m(near)	1		2	
Conditional jump	short/near	1		1-2	
J(E/R)CXZ	short	2		4-18	
LOOP	short	9		10-23	
LOOP(N)E	short	9		12-24	
CALL	near	1		2	
CALL	r	1		8	
CALL	m	3		11	
RET		1		2-3	
RET	i	2		2	
BOUND	r,m	9		9	Not in x64 mode
INTO		4		7	Not in x64 mode
String instructions					
LODS		3	4		
REP LODS		~5n	~2n		
STOS		2	4		
					per byte, best
REP STOS		~0.13B	~0.07B		case
MOVS		5	5		
DED 140) (0		0.00	0.075		per byte, best
REP MOVS SCAS		~ 0.2B	~0.07B 4		case
REP SCAS		~6n	~2n		
CMPS		6	4		
REP CMPS		~8n	~3n		
TKET OWN O		011			
Synchronization instruc	tions				
XADD	m,r	6	5		
LOCK XADD	m,r	6	13		
LOCK ADD	m,r	1	13		
CMPXCHG	m,r	8	8		
LOCK CMPXCHG	m,r	8	14		
CMPXCHG8B	m,r	14	9		
LOCK CMPXCHG8B	m,r	14	16		
CMPXCHG16B	m,r	19	23		

LOCK CMPXCHG16B	m,r	19	30		
Other					
NOP (90)		1		0.33	
Long NOP (0F 1F)		1		1	
PAUSE		3	147		
ENTER	a,0	14	10		
ENTER	a,b	17+6b	~75+3b		
LEAVE		2		3	
CPUID		37-78	69-2800		
RDTSC		19		20	
RDTSCP		22		31	
RDPMC		13		9	
RDRAND	r	17		~3100	
RDSEED	r	17		~3100	

Floating point x87 instructions

	Operands	μops	Unit	Latency	Reciprocal throughput	Remarks
Move instructions					tinougnput	
FLD	r	1		1	0.5	
FLD	m32/m64	1		3	1	
FLD	m80	1		3	1	
FBLD	m80	54		56	50	
FST(P)	r	1		1	0.5	
FST(P)	m32/m64	1		3	2	
FSTP	m80	1		3	2	
FBSTP	m80	195		190	190	
FXCH	r	2		1	1	
FILD	m	1		7	1	
FIST(P)	m	8		6	10	
FISTTP	m	8		6	13	
FLDZ		1			1	
FLD1		2			6	
FLDPI FLDL2E etc.		2			3	
FCMOVcc	r	4		5	5	
FNSTSW	AX	2			10	
FNSTSW	m16	3			11	
FLDCW	m16	4			15	
FNSTCW	m16	3			4	
FINCSTP FDECSTP		1		1	0.5	
FFREE(P)		1			0.5	
FNSAVE	m	151		173	173	
FRSTOR	m	85		155	155	
Arithmetic instructions						
FADD(P) FSUB(R)(P)	r	1		3	1	
FADD(P) FSUB(R)(P)	m	2			2	
FMUL(P)	r	1		5	2	
FMUL(P)	m	2			2	
FDIV(R)(P)	r	1		39	38	
FDIV(R)(P)	m	2			38	

FABS		1	1	1	
FCHS		1	1	1	
FCOM(P) FUCOM	r/m	1		1	
FCOMPP FUCOMPP		1		1	
FCOMI(P) FUCOMI(P)	r	1		1	
FIADD FISUB(R)	m	3		5	
FIMUL	m	3		5	
FIDIV(R)	m	4		38	
FICOM(P)	m	3		4	
FTST		1		1	
FXAM		1		1	
FPREM		29	37-42	37-42	
FPREM1		29	37-42	37-42	
FRNDINT		19	41	41	
Math					
FSCALE		30	32	32	
FXTRACT		16	22	22	
FSQRT		1	10-40	40-40	
FSIN FCOS		17-100	45-150	45-150	
FSINCOS		17-110	48-135	48-135	
F2XM1		9-27	40-90	40-90	
FYL2X		34-61	88-130	88-130	
FYL2XP1		61	140	140	
FPTAN		16-100	45-180	45-180	
FPATAN		33-65	85-190	85-190	
Other					
FNOP		1		0.5	
WAIT		2		6	
FNCLEX		4		24	
FNINIT		14		49	

Integer MMX and XMM instructions

	Operands	µops	Unit	Latency	Reciprocal throughput	Remarks
Move instructions						
MOVD MOVQ	r32/64,v	1		4	1	
MOVD MOVQ	m,v	1		3	1	
MOVD MOVQ	v,r32/64	1		4	1	
MOVD MOVQ	v,m	1		3	1 1	
MOVQ	V,V	1		1	0.5	
MOVDQA	x, x	1		1	0.5	
MOVDQA MOVDQU	x, m128	1		3	1	
MOVDQA MOVDQU	m128, x	1		3	1	
LDDQU	x, m128	1		3	1	
MOVDQ2Q	mm, x	1		1	0.5	
MOVQ2DQ	x,mm	1		1	0.5	
MOVNTQ	m64,mm	1		3	1	
MOVNTDQ	m128,x	1		3	1	

1.40.417004	400		1			1
MOVNTDQA	x, m128	1		3	1	
PACKSSWB/DW		4		4	0.5	
PACKUSWB	V,V	1		1	0.5	
PACKUSDW PUNPCKH/LBW/WD/DQ	x,x	1		1	0.5	
	V,V	1		1	0.5	
PUNPCKH/LQDQ	V,V	1		1	0.5	
PMOVSX/ZX BW BD BQ DW DQ	x,x	1		1	0.5	
PMOVSX/ZX BW BD BQ	Λ,Λ				0.0	
DW DQ	x,m	1		1	1	
PSHUFB	mm,mm	1		1	0.5	
PSHUFB	x,x	1		1	1	
PSHUFW	mm,mm,i	1		1	0.5	
PSHUFL/HW	x,x,i	1		1	0.5	
PSHUFD	x,x,i	1		1	0.5	
PALIGNR	x,x,i	1		1	0.5	
PBLENDVB	x,x,xmm0	2		4	4	
PBLENDVB	x,m,xmm0	3			4	
PBLENDW	x,x/m,i	1		1	0.5	
MASKMOVQ	mm,mm	1		~350	1	
MASKMOVDQU	x,x	3		~360	1	
PMOVMSKB	r32,v	1		4	1	
PINSRW	v,r32,i	1		4	1	
PINSRB/D/Q	x,r32,i	1		4	1	
PINSRB/D/Q	x,m8,i	1			1	
PEXTRB/W/D/Q	r,v,i	1		4	1	
PEXTRB/W/D/Q	m,v,i	4			4	
Arithmetic instructions						
PADD/SUB(U)(S)B/W/D	V,V	1		1	0.5	
PADDQ PSUBQ	V,V	1		2	1	
PHADD(S)W PHSUB(S)W	mm, mm	5		7	7	
PHADD(S)W PHSUB(S)W	x, x/m	7		6	6	+1 if mem
PHADDD PHSUBD	V,V	3		4	4	+1 if mem
PCMPEQ/GTB/W/D	V,V	1		1	0.5	
PCMPEQQ	X, X	1		2	1	
PCMPGTQ	X, X	1		2	1	
PMULL/HW PMULHUW	V,V	1		4	1	
PMULHRSW	V,V	1		4	1	
PMULLD	X, X	1		5	2	
PMULDQ	X, X	1		4	1	
PMULUDQ	V,V	1		4	1	
PMADDWD	V,V	1		4	1	
PMADDUBSW	V,V	1		4	1	
PSADBW	V,V	1		4	1	
MPSADBW	x,x,i	3		5	4	+1 if mem
PAVGB/W	V,V	1		1	0.5	
PMIN/MAXUB	V,V	1		1	0.5	
PMIN/PMAX						
SB/SW/SD	W. W.	4		4	0.5	
UB/UW/UD	X,X	1		1 5	0.5	
PHMINPOSUW	x,x	1		5	2	
PABSB PABSW PABSD	V,V	1		1	0.5	

PSIGNB PSIGNW PSIGND	V,V	1	1	0.5	
Logic instructions			4	0.5	
PAND(N) POR PXOR	V,V	1	1	0.5	
PTEST	x,x	1	1	1	
PSLL/RL/RAW/D/Q	V,V	1	2	1	
PSLL/RL/RAW/D/Q	V,İ	1	1	0.5	
PSLL/RLDQ	x,i	1	1	0.5	
String instructions					
PCMPESTRI	x,x,i	10	13	13	+1 if mem
PCMPESTRM	x,x,i	9	14	14	+1 if mem
PCMPISTRI	x,x,i	6	8	8	+1 if mem
PCMPISTRM	x,x,i	5	12	12	+1 if mem
Encryption instructions					
PCLMULQDQ	x,x,i	3	6	4	
AESDEC	x,x,	1	6	2	+1 if mem
AESDECLAST	x,x	1	6	2	+1 if mem
AESENC	x,x	1	6	2	+1 if mem
AESENCLAST	x,x	1	6	2	+1 if mem
AESIMC	x,x	1	5	2	
AESKEYGENASSIST	x,x,i	1	5	2	
SHA1RNDS4	x,x,i	1	5	2	
SHA1NEXTE	x,x	1	3	1	
SHA1MSG1	x,x	1	3	1	
SHA1MSG2	x,x	1	3	1	
SHA256RNDS2	x,x	3	8	4	
SHA256MSG1	x,x	1	3	1	
SHA256MSG2	x,x	1	3	1	
Other					
EMMS		13		23	

Floating point XMM instructions

	Operands	µops	Unit	Latency	Reciprocal throughput	Remarks
Move instructions						
MOVAPS/D	x, x	1		0-1	0.5	
MOVAPS/D	x,m128	1		3	1	
MOVAPS/D	m128,x	1		3	1	
MOVUPS/D	x,m128	1		3	1	
MOVUPS/D	m128,x	1		3	1	
MOVSS/D	x, x	1		1	0.5	
MOVSS/D	x,m32/64	1		3	1	
MOVSS/D	m32/64,x	1		3	1	
MOVHPS/D MOVLPS/D	x,m64	1		4	1	
MOVHPS/D MOVLPS/D	m64,x	1		3	1	
MOVLHPS MOVHLPS	x,x	1		1	0.5	
BLENDPS/PD	x,x/m,i	1		1	0.5	
BLENDVPS/PD	x,x,xmm0	2		4	4	+1 if mem

INSERTPS INSERTPS EXTRACTPS EXTRACTPS MOVMSKPS/D MOVNTPS/D SHUFPS SHUFPD MOVDDUP	x,x,i x,m32,i r32,x,i m32,x,i r32,x m128,x x,x,i x,x,i x, x	1 3 1 1 1 1 1 1		1 4 4 4 4 3 1 1	0.5 4 1 2 1 1 0.5 0.5	
MOVSH/LDUP	x, x	1		1	0.5	
UNPCKH/LPS/PD	X, X	1		1	0.5	
Conversion						
CVTPD2PS	x, x	1		4	1	
CVTPS2PD	x, x	1		4	1	
CVTSD2SS	x, x	1		4	2	
CVTSS2SD	x, x	1		4	2	
CVTDQ2PS	x, x	1		4	_ 1	
CVT(T) PS2DQ	x, x	1		4	1	
CVTDQ2PD	x, x	1		4	1	
CVT(T)PD2DQ	x, x	1		4	1	
CVTPI2PS	x,mm	1		4	2	
CVT(T)PS2PI	mm,x	1		4	1	
CVTPI2PD	x,mm	1		4	1	
CVT(T) PD2PI	mm,x	1		4	1	
CVTSI2SS	x,r32	1		6	2	
CVT(T)SS2SI	r32,x	1		5	1	
CVTSI2SD	xm,r32	1		6	2	
CVT(T)SD2SI	r32,x	1		5	1	
Arithmetic						
ADDSS/SD/PS/PD	x, x	1		3	1	
SUBSS/SD/PS/PD		1		3	1	
ADDSUBPS/PD	X, X X, X	1		3	1	
HADDPS HSUBPS	X, X X, X	4		6	6	+1 if mem
HADDPD HSUBPD	x, x	4		5	5	+1 if mem
MULSS/SD/PS/PD	x, x x, x	1		4	1	· i ii iiiciii
DIVSS	x, x x, x	1		19	18	
DIVSD	x, x	1		34	33	
DIVPS	x, x	1		36	35	
DIVPD	x, x	1		66	65	
RCPSS	x, x	1		4	1	
RCPPS	x, x	5		9	6	+1 if mem
CMPccSS/SD/PS/PD	x, x	1		3	1	
(U)COMISS/SD	x, x	1		4	1	
MAXSS/SD/PS/PD	x, x	1		3	1	
MINSS/SD/PS/PD	x, x	1		3	1	
ROUNDSS/SD/PS/PD	x,x,i	1		4	1	
DPPS	x,x,i	9		14	10	+1 if mem
DPPD	x,x,i	10		8	8	+1 if mem
Math						
SQRTSS	x, x	1		20	19	
1		1	1	1	'	ı

SQRTPS SQRTSD SQRTPD RSQRTSS RSQRTPS	x, x x, x x, x x, x x, x	1 1 1 1 5		38 35 68 4 9	37 34 67 1 6	
Logio						
Logic ANDPS/D	x, x	1		1	0.5	
ANDNPS/D		1	FP0/1	1	0.5	
ORPS/D	X, X X, X	'1	110/1		0.5	
XORPS/D		1			0.5	
XOIN 3/D	X, X	'			0.5	
Other						
LDMXCSR	m32	6		18	18	
STMXCSR	m32	3		12	12	
FXSAVE	m4096	202		130	130	32 bit mode
FXSAVE	m4096	123		143	143	64 bit mode
FXRSTOR	m4096	160		218	218	32 bit mode
FXRSTOR	m4096	128		155	155	64 bit mode
XSAVEC	m	241		160	160	
XSAVEOPT	m	227		144	144	

Intel Knights Landing

List of instruction timings and µop breakdown

Explanation of column headings:

Instruction: Name of instruction. Multiple names mean that these instructions have the

same data. Instructions with or without V name prefix behave the same unless

otherwise noted.

Operands: i = immediate data, r = register, mm = 64 bit mmx register, x = 128 bit xmm

register, (x)mm = mmx or xmm register, y = 256 bit ymm register, z = 512 bit zmm register, v = any vector register (mmx, xmm, ymm, zmm), k = mask register. same = same register for both operands. m = memory operand, m32 = 32-

bit memory operand, etc.

μορs: The number of μops from the decoder or ROM. A μop that goes to multiple

units is counted as one.

Unit: Tells which execution unit is used. Instructions that use the same unit cannot

execute simultaneously.

IP0 and IP1 means integer port 0 or 1 and their associated pipelines

IP0/1 means that either integer unit can be used.

IP0+1 means that the μop is split in two, using both units.

Mem means memory execution cluster

FP0 means floating point port 0 (includes multiply, divide, convert and shuffle).

FP1 means floating point port 1.

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays very much, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give a similar de-

lay.

Some instructions have a range of latencies. For example VPSHUFD has a latency of 3-6. The short latency is measured in a chain of similar instructions. The long latency is measured when the input comes from an instruction of a different type and the output goes to an instruction of a different type, for example a move instruction. The long latency will apply in most cases. Division and some square root instructions have latencies that depend on the values of

the operands.

Reciprocal throughput: The average number of clock cycles per instruction for a series of independent

instructions of the same kind in the same thread. Delays in the decoders are included in the latency and throughput timings. Values of 4 or more are often caused by bottlenecks in the decoders and microcode ROM rather than the

execution units.

Integer instructions

	Operands	µops	Unit	Latency	Reciprocal throughput	Remarks
Move instructions						
MOV	r,r	1	IP0/1	1	0.5	
MOV	r,i	1	IP0/1	1	0.5	
MOV	r,m	1	Mem	4	1	All addr. modes
MOV	m,r	1	Mem	3	1	All addr. modes
MOV	m,i	1	Mem		1	
MOVNTI	m,r	1	Mem		2	

		3				
MOVSX MOVZX MOVSXD	r16,r8	2	IP0	7	7	
MOVSX MOVZX MOVSXD	r16,m8	3	IP0	7	8	
MOVSX MOVZX MOVSXD	r32/64,r	1	IP0	1	1	
MOVSX MOVZX MOVSXD	r32/64,m	1	IP0	4	1	
CMOVcc	r,r	1	IP0/1	2	1	
CMOVcc	r,m	1	11 0/1	2	1	
XCHG		3	IP0/1	8	8	
XCHG	r,r		IFU/I			Implicit look
	r,m	3		24	24	Implicit lock
XLAT	_	4		8		
PUSH	r	1	ID0.4		1	
PUSH	i	1	IP0+1		1	
PUSH	m	3	IP0+1		8	
PUSHF(D/Q)		18	IP0+1		28	
PUSHA(D)		10			10	Not in x64 mode
POP	r	2			1	
POP	(E/R)SP	2			4	
POP	m	6			9	
POPF(D/Q)		21			48	
POPA(D)		17			15	Not in x64 mode
LAHF		1	IP0	1	1	
SAHF		1	IP0	2	1	
SALC		2		9	7	Not in x64 mode
LEA	r,[r+d]	1	IP0/1	1	0.5	
LEA	r,[r+r*s]	1	IP1	1	1	
LEA	r,[r+r*s+d]	1	IP0+1	2	1	
LEA	r,[rip+d]	1	IP0/1	_	0.5	
LEA	r16,[m]	2	11 0/1	7	0.5	
BSWAP	r 10,[iii]	1	IP0	1	1	
MOVBE	r16,m16	1	11.0	1	1	
MOVBE	r/m32/64	1			1	
MOVBE	m,r	1			1	
PREFETCHNTA	m	1			0.5	
PREFETCHT0/1/2	m	1			0.5	
PREFETCHNTW	m	1			0.5	
LFENCE		2			8	
MFENCE		2			17	
SFENCE		1			10	
Arithmetic instructions						
ADD SUB	r,r/i	1	IP0/1	1	0.5	
ADD SUB	r,m	1	IP0/1, Mem	•	1	
ADD SUB	m,r/i	1	IP0/1, Mem	7	1	
ADC SBB	r,r/i	1	IP0+1	2	2	
ADC SBB	r,m	1	" 0 1	_	2	
ADC SBB	m,r/i	1		7	2	
ADC 3BB ADCX ADOX	r32,r32	1	IP0+1	2	2	
ADCX ADOX ADCX ADOX	r64,r64	1	IP0+1	2	6	due to decoder
						due to decoder
CMP	r,r/i	1	IP0/1	1	0.5	
CMP	m,r/i	1	IDO.	4.0	1	
INC DEC	r	1	IP0/1	1-2	1	
NEG NOT	r	1	IP0/1	1	0.5	
INC DEC NEG NOT	m	1		7	1	
AAA AAS		13		13		Not in x64 mode

		3	3			
DAA		20		17		Not in x64 mode
DAS		21		17		Not in x64 mode
AAD		4		8		Not in x64 mode
AAM		10		30	14	Not in x64 mode
MUL IMUL	r8	3	IP0	8		
MUL IMUL	r16	4	IP0	8		
MUL IMUL	r32	3	IP0	8		
MUL IMUL	r64	3	IP0	8		
IMUL	r16,r16	2	IP0	7	7	
IMUL	r32,r32	1	IP0	3	1	
IMUL	r64,r64	1	IP0	5	2	
IMUL	r16,r16,i	2	IP0	7	7	
IMUL	r32,r32,i	1	IP0	3	1	
IMUL	r64,r64,i	1	IP0	5	2	
MUL IMUL	m8	3	IP0			
MUL IMUL	m16	3	IP0			
MUL IMUL	m32	4	IP0			
MUL IMUL	m64	3	IP0			
DIV	r/m8	9	IP0, FP0	30	12	
DIV	r/m16	12	IP0, FP0	30-35	13-15	
DIV	r/m32	12	IP0, FP0	29-42	13-23	
DIV	r/m 64	23	IP0, FP0	39-95	22-95	
IDIV	r/m8	26	IP0, FP0	39	20	
IDIV	r/m16	29	IP0, FP0	38-42	22	
IDIV	r/m32	29	IP0, FP0	37-49	22-26	
IDIV	r/m64	44	IP0, FP0	53-108	36-107	
CBW		2	IP0	7		
CWDE		1	IP0	1		
CDQE		1	IP0	1		
CWD		2	IP0	7		
CDQ		1	IP0	1		
CQO		1	IP0	1		
POPCNT	r16,r16	2	•	7	7	
POPCNT	r32,r32	1		3	1	
POPCNT	r64,r64	1		3	1	
CRC32	r32,r8	2		7	2	
CRC32	r32,r16	1		6	6	
CRC32	r32,r32	1		3	1	
CRC32	r64,r64	1		6	1	
CICO2	104,104	'		0	'	
Logic instructions						
AND OR XOR	r,r/i	1	IP0/1	1	0.5	
AND OR XOR	r,m	1	IP0/1, Mem	'	1	
AND OR XOR	m,r/i	1	IP0/1, Mem	6	1	
TEST	r,r/i	1	IP0/1	1	0.5	
TEST	m,r/i	1	IP0/1, Mem	1	1	
SHR SHL SAR	r,i/cl	1	IP0	1	1	
SHR SHL SAR	m,i/cl	1	IP0	1	1	
ROR ROL	r,i/cl	1	IP0	1	1	
ROR ROL	m,i/cl	1	IP0	'	1	
RCR	r,1	7	IP0	10	10	
RCL	r,1	1	IP0	2	2	
RCR	r,i/cl	11	IP0	13	13	
INOIN	1,1/01	11	IFU	13	13	

		J	J		
RCR	m,i/cl	14	IP0	13	
RCL	r,i/cl	13	IP0	13	13
RCL	m,i/cl	16	IP0	16	16
SHLD	r16,r16,i	10	IP0	11	11
SHLD	r16,m16,i	13	IP0	13	13
SHLD	r32,r32,i	1	IP0	2	2
SHLD	r32,m32,i	6	IP0	9	9
SHLD	r64,r64,i	10	IP0	11	11
SHLD	r64,m64,i	13	IP0	13	13
SHLD	r16,r16,cl	9	IP0	11	11
SHLD	r16,m16,cl	12	IP0	13	13
SHLD	r32,r32,cl	2	IP0	7	7
SHLD	r32,m32,cl	6	IP0	9	9
SHLD	r64,r64,cl	9	IP0	11	11
SHLD	r64,m64,cl	12	IP0	13	13
SHRD	r16,r16,i	8	IP0	11	11
SHRD	r16,m16,i	11	IP0	12	12
SHRD	r32,r32,i	2	IP0	7	7
SHRD	r32,n32,i	6	IP0	9	9
SHRD	r64,r64,i	10	IP0	11	11
SHRD	r64,m64,i	13	IP0	15	15
SHRD	r16,r16,cl	7	IP0	11	11
SHRD	r16,m16,cl	10	IP0	12	12
SHRD	r32,r32,cl	2	IP0	7	7
SHRD		6	IP0 IP0	9	9
	r32,r32,cl	9		11	11
SHRD	r64,r64,cl		IP0	14	
SHRD	r64,m64,cl	12	IP0		14
SHLX SHRX SARX	r,r,r	1 1	IP0 IP0	2	1 1
RORX BT	r,r,i	1	IP0 IP0+1	1 1	1
BT	r,r/i	7	120+1	10	
BT	m,r	1		10	10 1
BTR BTS BTC	m,i	1	IP0+1	1	1
BTR BTS BTC	r,r/i	8	IFU+1	11	11
	m,r	_	IP0+1		
BTR BTS BTC BSF BSR	m,i	1 10	IP0+1 IP0/1	1 11	1 11
SETCC	r,r/m r/m	10	IP0/1	2	1
CLC STC	1/111	1	IP0		1
CMC		1	IP0	1	1
CLD		4	IP0/1		8
STD		5	IP0/1 IP0/1		36
LZCNT	r,r/m	1	11 0/ 1	3	1
TZCNT	r,r/m	1		3	1
ANDN	r,r,r	1		1	0.5
ANDN	r,r,m	1			1
BLSI BLSMSK BLSR	r,r/m	1		1	1
BEXTR	r,r,r	2		7	7
BEXTR	r,r,m	3		'	8
BZHI	r,r,r	1		3	1
PDEP		1		3	1
PEXT	r,r,r r r r	1		3	1
	r,r,r	'		3	'
Control transfer instruction	ns				

JMP JMP JMP Conditional jump J(E/R)CXZ LOOP LOOP(N)E CALL CALL CALL RET RET BOUND INTO	short/near r m(near) short/near short short short near r m	1 1 1 1 2 7 8 1 1 3 1 1 10 4	IP1 IP1 IP1 IP1		2 2 1-2 7-18 14-23 14-23 2 2 14 2 2 11	Not in x64 mode Not in x64 mode
String instructions LODS REP LODS STOS REP STOS MOVS REP MOVS SCAS REP SCAS CMPS REP CMPS		3 ~4n 2 ~0.07B 5 ~ 0.1B 3 ~5n 6 ~6n			8 ~2n 7 ~0.054B 9 ~0.08B 8 ~3n 9 ~3n	per byte, best case per byte, best case
Synchronization instruction XADD LOCK XADD LOCK ADD LOCK ADD CMPXCHG LOCK CMPXCHG CMPXCHG8B LOCK CMPXCHG8B CMPXCHG16B LOCK CMPXCHG16B	m,r m,r m,r m,r m,r m,r m,r m,r	6 4 1 8 6 13 11 19		9 24 13 11 26 15 29 31 48		
Other NOP (90) Long NOP (0F 1F) PAUSE ENTER ENTER LEAVE XGETBV CPUID RDTSC RDTSCP RDPMC RDRAND RDSEED	a,0 a,b r r	1 6 15 19+6b 4 7 40-83 15 17 19	IP0/1 IP0/1	25 14 66+4b 8 63-270 30 36 20	0.5 0.5 5 14 200 200	

Floating point x87 instructions

	Operands	μops	Unit	Latency	Reciprocal throughput	Remarks
Move instructions						
FLD	r	1		2	1	
FLD	m32/m64	1		8	1	
FLD	m80	5		9	12	
FBLD	m80	52			66	
FST(P)	r	1		2	1	
FST	m32/m64	5		14	13	
FSTP	m32/m64	6		14	13	
FSTP	m80	8		11	14	
FBSTP	m80	189		''	264	
FXCH	r	3	FP0+1	9	9	
FILD	m	1	11011	5	2	
		6		18	12	
FIST(P)	m			10		
FISTTP	m	6			14	
FLDZ		1			1	
FLD1		2			10	
FLDPI FLDL2E etc.		2			10	
FCMOVcc	r	3		9		
FNSTSW	AX	3			12	
FNSTSW	m16	4			13	
FLDCW	m16	3			15	
FNSTCW	m16	5			15	
FINCSTP FDECSTP		1		1	1	
FREE(P)		1			1	
Arithmetic instructions						
FADD(P) FSUB(R)(P)	r	1	FP0	6	1.5	
FADD(P) FSUB(R)(P)	m	1	FP0		12	
FMUL(P)	r	1	FP0	7	2	
FMUL(P)	m	1	FP0	7	12	
FDIV(R)(P)	r	1	FP0	41	37	
FDIV(R)(P)	m	1	FP0	41	44	
FABS		1		2		
FCHS		1		2		
FCOM(P) FUCOM	r	1			1	
FCOM(P) FUCOM	m	1			2	
FCOMPP FUCOMPP	""	1			1	
FCOMI(P) FUCOMI(P)	<u>_</u>	3			9	
. ,	r	3			17	
FIADD FISUB(R)	m					
FIMUL	m	3			17	
FIDIV(R)	m	3			41	
FICOM(P)	m	3			8	
-TST		1			1	
FXAM		1			1	
FPREM		27		26-47	25-32	
FPREM1		27		33-72	25-32	
FRNDINT		18		36	36	

Math				
FSCALE	30	31		
FXTRACT	15	19	18	
FSQRT	1	15-42	11-38	
FSIN FCOS	16-100	40-250	40-250	
FSINCOS	17-110	50-250	50-250	
F2XM1	9-24	100-400		
FYL2X	34-61	126-190	98-190	
FYL2XP1	61	190	190	
FPTAN	17-100	50-280	50-280	
FPATAN	33-63	125-265	125-265	
Other				
FNOP	1		1	
WAIT	2		7	
FNCLEX	5		26	
FNINIT	15		63	

Integer MMX and XMM instructions

	Operands	µops	Unit	Latency	Reciprocal throughput	Remarks
Move instructions						
MOVD MOVQ	r32/64,(x)mm	1		4	1	
MOVD MOVQ	(x)mm,r32/64	1		5	1	
MOVD MOVQ	m32/64,(x)mm	1	Mem	5	1	
MOVD MOVQ	(x)mm,m32/64	1	Mem	5	0.5	
MOVQ	(x)mm, (x)mm	1	FP0/1	2	0.5	
(V)MOVDQA/U	V,V	1	FP0/1	2	0.5	
(V)MOVDQA/U	v,m	1	Mem	5	0.5	
VMOVDQA/U	v{k},m	1	Mem	7	0.5	
(V)MOVDQA/U	m,v	1	Mem	5	1	
VMOVDQA/U	m{k},v	1	Mem	9	1	
LDDQU	x, m128	1	Mem	5	0.5	
MOVDQ2Q	mm, x	1	FP0/1	2	0.5	
MOVQ2DQ	x,mm	1	FP0/1	2	0.5	
MOVNTQ	m64,mm	1	Mem	~650	1	
MOVNTDQ	m128,x	1	Mem	~550	1	
(V)MOVNTDQA	v, m	1	Mem	5	0.5	
MASKMOVQ	mm,mm	6	Mem	~550	12	
MASKMOVDQU	X,X	6	Mem	~550	12	
VPMASKMOVD/Q	v,v,m	5	Mem	7	9	
VPMASKMOVD/Q	m,v,v	4	Mem	6	8	
VPACKSSWB/DW						
VPACKUSWB/DW	(x)mm, (x)mm	1	FP0	2-6	1	
VPACKSSWB/DW VPACKUSWB/DW	y/z,y/z,y/z	5		11-14	9	
VPACKSSWB/DW VPACKUSWB/DW	y/z,y/z,m	6			9	
PUNPCKH/LBW/WD/DQ	(x)mm, (x)mm	1	FP0	2-6	1	
VPUNPCKH/LBW/WD	y/z,y/z,y/z	5		11-14	9	
VPUNPCKH/LBW/WD	y/z,y/z,m	6			9	

PUNPCKH/LQDQ	(x)mm, (x)mm	1	FP0	2-6	1
VPUNPCKH/L(Q)DQ	y/z,y/z,y/z	1	FP0	4-7	2
(V)PMOVSX BW BD BQ DW DQ	V,V	2		8	7-8
(V)PMOVZX BW BD BQ DW DQ	V,V	1		3	2
VPMOV QB QW QD DB DW	V,V	1	FP0	3	1
VPMOV(U)S QB QW QD DB DW	V,V	2		8	7
PSHUFB	mm,mm	1	FP0	2-6	1 1
PSHUFB	X,X	5	FP0	11-13	10
PSHUFB	x,m	6	FP0		10
VPSHUFB	y,y,y	12	FP0	23-25	12
VPSHUFB	y,y,m	13	FP0		13
PSHUFW	mm,mm,i	1	FP0	2-6	1
PSHUFL/HW	x,x,i	1	FP0	2-6	1 1
VPSHUFL/HW	y,y,i	4	FP0	11-14	8
VPSHUFL/HW	y,m,i	5	FP0		9
(V)PSHUFD	v,v,i	1	FP0	3-6	1 1
PALIGNR	mm,mm,i	1	FP0	2-6	1
PALIGNR	x,x,i	1	FP0	2-6	2
VPALIGNR	y,y,y,i	5	FP0	11-14	9
VPALIGNR	y,y,m,i	6	FP0		9
VALIGND/Q	z,z,z,i	1	FP0	3-6	1 1
VPCOMPRESSD/Q	z{k},z	1		3-6	3
VPEXPANDD/Q	z{k},z	1		3-6	3
PBLENDVB	x,x,xmm0	5	FP0	9-10	9
PBLENDVB	x,m,xmm0	6	FP0	0 10	9
VPBLENDVB	V,V,V,V	4	110	8-10	8
PBLENDW	x,x/m,i	1		2	2
VPBLENDW	y,y,y/m,i	1		2	0.5
VPBLENDD	v,v,v/m,i	1	FP0/1	2	0.5
VPBLENDMD/Q	z{k},z,z	1	FP0/1	2	0.5
VPERMD	V,V,V	1	FP0	3-6	1
VPERMQ	v,v,v v,v,i	1	FP0	3-6	1 1
VPERM2I128		1	FP0	4-7	2
VPERMI2D VPERMT2D	V,V,V,İ	1	FP0	4-7	2
VPERMI2Q VPERMT2Q	V,V,V	1	FP0	4-7	_
VSHUFI32X4	V,V,V	1	FP0	4-7	2 2
VSHUFI64X2	Z,Z,Z,İ	1	FP0	4-7	2
PMOVMSKB	Z,Z,Z,İ	4	FFU	14	8
PMOVMSKB	r32,mm r32,x	5		19	8
PMOVMSKB		12			12
PEXTRB/W/D	r32,y			26 8	7
PEXTRO/W/D	r32,x,i	2 2		8	
VEXTRACTI128	r64,x,i	1	ED0		10
	x,y,i	4	FP0	3-6	1
VEXTRACTI128	m128,y,i		ED0	7	8 1
PINSRB/W	x,r32,i	1	FP0	5	
PINSRD	x,r32,i	1	FP0	4	1.5
PINSRQ	x,r64,i	1	FP0	4	6
VINSERTI128	y,y,x,i	1	FP0	3-6	1 1
VINSERTI32X4	Z,Z,X,İ	1	FP0	3-6	1 1
VINSERTI64X4	z,z,y,i	1	FP0	3-6	1 1
VPBROADCASTB/W	V,X	2	FD6	8	7
VPBROADCASTD/Q	V,X	1	FP0	3	1
VBROADCASTI128	y,m128	1		5	0.5

1	ı .	I.	1 _	1
·	-			0.5
z,m256	1		5	0.5
x,[r+s*x],x	6			12
y,[r+s*y],y	6			12
z,[r+s*z],z	1			11
x,[r+s*x],x	6			12
x,[r+s*y],x	6			12
y,[r+s*z],y	1			7
x,[r+s*x],x	6			12
y,[r+s*x],y	6			12
z,[r+s*y],z	1			7
x,[r+s*x],x	6			12
y,[r+s*y],y	6			12
z,[r+s*z],z	1			7
z,[r+s*z],z	4			17
y,[r+s*z],y	4			11
	4			11
z,[r+s*z],z	4			11
(x)mm, (x)mm	1	FP0/1	2	0.5
1 ' ' ' '		FP0/1	2	0.5
			18	9
		FP0		28
				28
		FP0	23	9
				8
				9
				8
	1	FP0/1		0.5
` ' `	1	FP0/1		0.5
1	1		2	2
	1	FP0/1	2	0.5
				0.5
				0.5
		FP0		1
		FP0	7	2
			16	9
	1			1
	1		7	2
				2
			7	1
	1		6	2
	1	FP0/1		0.5
	1	FP0/1	6	0.5
	1	FP0/1		0.5
	1			1
	1	FP0	7	2
	1			1
	1	FP0	7	2
	5	FP0	16	9
	y,[r+s*y],y z,[r+s*z],z x,[r+s*x],x x,[r+s*y],x y,[r+s*z],y x,[r+s*x],x y,[r+s*x],y z,[r+s*y],z x,[r+s*y],y z,[r+s*z],z z,[r+s*z],z y,[r+s*z],z y,[r+s*z],z y,[r+s*z],y	x, r+s*x, x 6 y, r+s*y, y 6 z, r+s*x, x 6 y, r+s*x, x 6 x, r+s*x, x 6 x, r+s*x, x 6 y, r+s*x, x 6 y, r+s*x, x 6 y, r+s*x, x 6 y, r+s*x, x 6 y, r+s*x, x 6 y, r+s*x, x 6 y, r+s*x, x 6 y, r+s*x, x 6 y, r+s*x, x 6 y, r+s*x, x 6 y, r+s*x, x 6 y, r+s*x, x 6 y, r+s*x, x 6 y, r+s*x, x 6 y, r+s*x, x 6 y, r+s*x, x 6 x, r 7 y, r+s*x, x 4 x, x 3 y, y, y 7 mm, mm 5 x, x 6 x, m 7 y, y 7 mm, mm 4 x, x 3 y, y, y 7 mm, mm 4 x, x 3 y, y, y 7 mm, mm 4 x, x 3 y, y, y 7 mm, mm 1 x, x 1 y, y, y 1 x, x	z,m256 1 x,[r+s*x],x 6 y,[r+s*y],y 6 z,[r+s*z],z 1 x,[r+s*x],x 6 x,[r+s*x],x 6 y,[r+s*x],y 6 z,[r+s*x],x 6 y,[r+s*x],y 6 z,[r+s*x],z 1 x,[r+s*z],z 1 z,[r+s*z],z 4 y,[r+s*z],z 4 z,[r+s*z],z 4 z,[r	x, [r+s*x], x 6 y, [r+s*y], y 6 z, [r+s*x], x 6 y, [r+s*x], x 6 x, [r+s*x], x 6 x, [r+s*x], x 6 x, [r+s*x], x 6 y, [r+s*x], x 6 y, [r+s*x], x 6 y, [r+s*x], x 6 y, [r+s*x], x 6 y, [r+s*x], x 6 y, [r+s*x], x 6 y, [r+s*x], x 6 y, [r+s*x], x 6 y, [r+s*x], x 6 y, [r+s*x], x 4 z, [r+s*z], x 4 z, [r+s*z], x 4 z, [r+s*z], x 4 z, [r+s*z], x 4 z, [r+s*z], x 4 z, [r+s*z], x 4 z, [r+s*x], x 4 z, [r+s*x], x 4 z, [r+s*x], x 5 y, y, y 7 FP0 23 x, x 11 x, y, y, y 3 x, x

l======	1 1					I
PSADBW	mm,mm	1	FP0	6	1	
PSADBW	X, X	1	FP0	7	2	
PSADBW	y,y,y	5	FP0	16	9	
MPSADBW	x,x,i	3		9	9	
VMPSADBW	y,y,y,i	9		19	13	
PAVGB/W	(x)mm,(x)mm	1	FP0/1	2	0.5	
PAVGB/W	y,y,y	1	FP0/1	2	0.5	
PMIN/MAXUB/SW	(x)mm,(x)mm	1	FP0/1	2	2	
VPMIN/MAXUB/SW/D/Q	y,y,y	1	FP0/1	2	0.5	
PHMINPOSUW	x,x	1	FP0	3	2	
PABSB/W/D	mm,mm	1	FP0/1	2	0.5	
PABSB/W/D	x,x	1	FP0/1	2	2	
VPABSB/W/D/Q	y,y	1	FP0/1	2	0.5	
PSIGNB/W/D	mm,mm	1	FP0/1	2	0.5	
PSIGNB/W/D	x,x	1	FP0/1	2	2	
VPSIGNB/W/D		1	FP0/1	2	0.5	
VESIGNO/W/D	у,у	I	FP0/1		0.5	
Logic instructions						
PAND(N)/OR/XOR	(x)mm,(x)mm	1	FP0/1	2	0.5	
VPAND(N)/OR/XOR	y,y,y	1	FP0/1	2	0.5	
VPAND(N)/OR/XORD/Q	z,z,z	1	FP0/1	2	0.5	
VPTERNLOGD/Q	z,z,z,i	1	FP0+1	2	1	
PTEST	X,X	4		9	9	
VPTEST(N)MD/Q	k,z,z	1	FP0/1	2	0.5	
VPTEST	y,y	4	110/1	9	8	
PSLL/RL/RAW/D/Q	mm,mm	1	FP0	2	1	
PSLL/RL/RAW/D/Q		2	FP0	13	13	
PSLL/RL/RAW/D/Q	X,X	1	FP0	2		
	(x)mm,i	•			1	
VPSLL/RL/RAW/D/Q	y,y,i	4	FP0	11	8	
VPSLL/RA/RLVD/Q	Z,Z,Z	1	FP0	2	1	
VPROL/RD/Q	z,z,i	1	FP0	2	1	
VPROL/RVD/Q	Z,Z,Z	1	FP0	2	1	
VPLZCNTD/Q	Z,Z	1	FP0	2	1	
VPCONFLICTD/Q	z,z	1	FP0	3	1	
String instructions						
PCMPESTRI	x,x,i	9	FP0	21	21	+1 if mem
PCMPESTRM	x,x,i	8	FP0	17	17	+1 if mem
PCMPISTRI	x,x,i	6	FP0	17	17	+1 if mem
PCMPISTRM	x,x,i x,x,i	5	FP0	13	13	+1 if mem
F GIVIFIS I KIVI	X,X,I	5		13	13	+ i ii iiieiii
Encryption instructions	1					
PCLMULQDQ	x,x,i	1	FP0	3-6	2	+1 if mem
AESDEC, AESDECLAST,						
AESENC, AESENCLAST,						
AESIMC,						
AESKEYGENASSIST	X,X	1		3-6	2	
Othor						
Other EMMS	-	10			13	
EIVIIVIO		10			13	

Floating point XMM instructions

	Operands	µops	Unit	Latency	Reciprocal throughput	Remarks
Move instructions						
(V)MOVAPS/D	V,V	1	FP0/1	2	0.5	
(V)MOVAPS/D	v,m	1	Mem	5	0.5	
(V)MOVAPS/D	m,v	1	Mem	5	1	
(V)MOVUPS/D	v,m	1	Mem	5	0.5	
(V)MOVUPS/D	m,v	1	Mem	5	1 1	
VMOVAPS/D VMOVUPS/D	z{k},m	1	Mem	7	0.5	
VMOVAPS/D VMOVUPS/D	m{k},z	1	Mem	9	1 1	
MOVSS/D	x, x	1	FP0/1	2	0.5	
MOVSS/D	x,m	1	Mem	5	0.5	
MOVSS/D	m,x	1	Mem	5	1	
MOVHPS/D	x,m64	1	Mem	6	1.5	
MOVHPS/D	m64,x	4	Mem	9	1 1	
MOVLPS/D	x,m64	1	Mem	6	1.5	
MOVLPS/D	m64,x	1	Mem	6	1.5	
(V)MOVNTPS/D	m,v	1	Mem	~500	'	
MOVMSKPS/D	r32,x	2	FP0	6	7	
MOVLHPS MOVHLPS		1	FP0 FP0	3-6	1	
	x,x	-			· .	
MOVDDUP	x,x	1	FP0	3-6	1	
MOVDDUP	x,m	1		14		
VMOVDDUP	V,V	1		3-6	1	
(V)MOVSH/LDUP	V,V	1	FP0	3-6	1	
VBROADCASTSS/D	V,X	1		3-6	1	
VBROADCASTSS/D	v,m	1		5	0.5	
VBROADCASTF128	y,m128	1		5	0.5	
VBROADCASTF32X4	v,m128	1		5	0.5	
VBROADCASTF64X4	z,m256	1		5	0.5	
UNPCKH/LPS/D	x,x	1	FP0	2	2	
VUNPCKH/LPS/D	V,V,V	1	FP0	4-7	2	
INSERTPS	x,x,i	2		8	7	
INSERTPS	x,m32,i	4		17	8	
INSERTF128	y,x	1		3-6	1 1	
INSERTF128	y,m128	1		7	1 1	
VINSERTF32X4	Z,Z,X	1		3-6	1 1	
VINSERTF32X4	z,z,m128	1		7	1 1	
VINSERTF64X4	z,z,y	1		3-6	1 1	
VINSERTF64X4	z,z,m256	1		7	1 1	
EXTRACTPS	r32,x,i	2		8	7	
EXTRACTPS	m32,x,i	4		7	8	
VEXTRACTF128		1		3-6	1	
VEXTRACTF128	x,y,i m128,y	4		7	8	
VEXTRACTF126 VEXTRACTF32X4	1	1			1	
	X,Z	-		3-6	8	
VEXTRACTF32X4	m128,z	4		7		
VEXTRACTF64X4	y,z	1		3-6	1	
VEXTRACTF64X4	m256,z	4	ED6/4	7	8	
BLENDPS/PD	x,x/m,i	1	FP0/1	2	2	
VBLENDPS/PD	V,V,V,İ	1	FP0/1	2	0.5	
(V)BLENDVPS/PD	V,V,V	2		7	7	
BLENDVPS/PD	x,m,xmm0	3			8	
VBLENDMPS/D	z{k},z,z	1	FP0/1	2	0.5	
SHUFPS/D	x,x,i	1	FP0	4	2	

		3	J		
VSHUFPS/D	v,v,v,i	1	FP0	4-7	2
VSHUFF32X4	z,z,z,i	1	FP0	4-7	2
VSHUFF64X2	z,z,z,i	1	FP0	4-7	2
VPERMILPS/PD	v,v/m,i	1	FP0	3-6	1
VPERMILPS/PD	v,v,v/m	1	FP0	3-6	1
VPERM2F128	y,y,y/m,i	1	FP0	4-7	2
VPERMPS/PD	v,v,v/m	1	FP0	3-6	1
VPERMI2PS/PD	z,z,z/m	1	FP0	4-7	2
VCOMPRESSPS/D	z{k},z	1		3-6	3
VEXPANDPS/D	z{k},z	1		3-6	3
Gather and scatter					
VPGATHERDPS	x,[r+s*x],x	6			12
VPGATHERDPS	y,[r+s*y],y	6			12
VPGATHERDPS	z,[r+s*z],z	1			11
VPGATHERQPS	x,[r+s*x],x	6			12
VPGATHERQPS	x,[r+s*y],x	6			12
VPGATHERQPS	y,[r+s*z],y	1			7
VPGATHERDPD	x,[r+s*x],x	6			12
VPGATHERDPD		6			
	y,[r+s*x],y				12
VPGATHEROPD	z,[r+s*y],z	1			7
VPGATHERQPD	x,[r+s*x],x	6			12
VPGATHERQPD	y,[r+s*y],y	6			12
VPGATHERQPD	z,[r+s*z],z	1			7
VGATHERPF0DPS	z,[r+s*z],z	1			~200
VGATHERPF0QPS	y,[r+s*z],y	1			~100
VGATHERPF0DPD	z,[r+s*y],z	1			~100
VGATHERPF0QPD	z,[r+s*z],z	1			~100
VGATHERPF1DPS	z,[r+s*z],z	1			~200
VGATHERPF1QPS	y,[r+s*z],y	1			~100
VGATHERPF1DPD	z,[r+s*y],z	1			~100
VGATHERPF1QPD	z,[r+s*z],z	1			~100
VPSCATTERDPS	z,[r+s*z],z	4			17
VPSCATTERQPS	y,[r+s*z],y	4			11
VPSCATTERDPD	z,[r+s*y],z	4			11
VPSCATTERQPD	z,[r+s*z],z	4			11
VSCATTERPF0DPS	z,[r+s*z],z	1			~200
VSCATTERPF0QPS	y,[r+s*z],y	1			~100
VSCATTERPF0DPD	z,[r+s*y],z	1			~100
VSCATTERPF0QPD	z,[r+s*z],z	1			~100
VSCATTERPF1DPS	z,[r+s*z],z	1			~200
VSCATTERPF1QPS	y,[r+s*z],y	1			~100
VSCATTERPF1DPD	z,[r+s*y],z	1			~100
VSCATTERPF1QPD	z,[r+s*z],z	1			~100
Conversion					
(V)CVTSD2SS	x,x	1	FP0	2	1
(V)CVTSS2SD	x,x	1	FP0	2	1
(V)CVTPD2PS	V,V	2	FP0	7	7
(V)CVTPS2PD	V,V V,V	2	FP0	7	7
VCVTPS2PH		2	1 1 5 0	7	7
VCVTPS2PH	V,V	5		'	9
VCVTPH2PS	m,v	2		7	7
VUVIFIIZFO	V,V		l	,	, <i>,</i>

		35			
VCVTPH2PS	v,m	3			8
(V)CVT(T)SS2(U)SI	r32/64,x	2	FP0	6	7
(V)CVT(U)SI2SS	x,r32/64	1	FP0	5	1
(V)CVT(T)SD2(U)SI	r32/64,x	2	FP0	6	7
(V)CVT(U)SI2SD	x,r32/64	1	FP0	5	1
CVT(T)PS2PI		1	FP0	3	1
` '	mm,x			7	
CVTPI2PS	x,mm	2	FP0		7
CVT(T) PD2PI	mm,x	2	FP0	7	7
CVTPI2PD	x,mm	2	FP0	7	7
(V)CVT(T) PS2DQ	V,V	1	FP0	2	1
(V)CVTDQ2PS	V,V	1	FP0	2	1
(V)CVT(T)PD2DQ	V,V	2	FP0	7	7
(V)CVTDQ2PD	V,V	2	FP0	7	7
VCVT(T)PS2UDQ	z,z	1	FP0	2	1
VCVTUDQ2PS	z,z	1	FP0	2	1
		2	FP0	7	7
VCVT(T)PD2UDQ	Z,Z		1		
VCVTUDQ2PD	Z,Z	2	FP0	7	7
Arithmetic					
ADDSS SUBSS	X,X	1	FP0/1	6	0.5
ADDSS SUBSS		1	FP0/1	6	0.5
	X,X	-			
ADDPS SUBPS	X,X	1	FP0/1	6	0.5
VADDPS VSUBPS	V,V,V	1	FP0/1	6	0.5
ADDPD SUBPD	X,X	1	FP0/1	6	0.5
VADDPD VSUBPD	V,V,V	1	FP0/1	6	0.5
ADDSUBPS/D	X,X	1	FP0/1	6	0.5
VADDSUBPS/D	V,V,V	1	FP0/1	6	0.5
HADDPS/D HSUBPS/D	x,x	3		15	8
VHADDPS/D VHSUBPS/D	yy,y,	3		15	8
MULSS/D	x,x	1	FP0/1	6	0.5
MULPS/D		1	FP0/1	6	0.5
	X,X		_	6	
VMULPS/D	V,V,V	1	FP0/1		0.5
DIVSS	X,X	3	FP0	27	17
DIVSD	X,X	3	FP0	42	42
DIVPS	X,X	18	FP0	32	20
VDIVPS	V,V,V	18	FP0	32	32
DIVPD	X,X	18	FP0	32	20
VDIVPD	V,V,V	18	FP0	32	32
RCPSS	x,x	1	FP0	7	2
(V)RCPPS	v,v	1	FP0	8	3
VRCP14SS	x,x,x	1	FP0	7	2
VRCP149S	V,V	1	FP0	8	3
VRCP28SS		1	FP0	7	2
	X,X,X				
VRCP28PS	V,V	1	FP0	8	3
VRCP28SD	X,X,X	1	FP0	7	2
VRCP28PD	V,V	1	FP0	7	2
CMPccSS/D PS/D	X,X	1	FP0/1	2	0.5
VCMPccPS/D	k,z,z	1	FP0/1	2	0.5
COMISS/D UCOMISS/D	x,x	2		7	7
COMISS/D UCOMISS/D	x,m	3			8
MAXSS/D MINSS/D	x,x	1	FP0/1	2	0.5
MAXPS/D MINPS/D	x,x x,x	1	FP0/1	2	0.5
VMAXPS/D VMINPS/D		1	FP0/1	2	0.5
A INITAL 21D A INITIAL 21D	V,V,V	'	1 F U/ I	4	0.5

ROUNDSS/D	x,x,i	1		6	2	
(V)ROUNDPS/D	v,v,i	1		6	0.5	
VRNDSCALESS/D	x,x,x,i	1		6	0.5	
VRNDSCALESS/D VRNDSCALEPS/D		1		6	0.5	
	v,v,i	=	ED0/4			
VSCALEFSS/D	X,X,X	1	FP0/1	6	0.5	
VSCALEFPS/D	Z,Z,Z	1	FP0/1	6	0.5	
DPPS	x,x,i	14		36	14	
VDPPS	y,y,y,i	14		36	13	
DPPD	x,x,i	12		24	13	
VFMADD (all FMA instr.)	V,V,V	1		6	0.5	
Math						
SQRTSS	x,x	3	FP0	28	18	
SQRTPS	x,x	18	FP0	38	16	
VSQRTPS	v,v	18	FP0	38	16	
SQRTSD	x,x	30	FP0	43	35	
SQRTPD	x,x	18	FP0	37	16	
VSQRTPD		18	FP0	37	16	
	V,V					
RSQRTSS	X,X	1	FP0	7	2	
RSQRTPS	x,x	1	FP0	8	3	
VRSQRTPS	V,V	1	FP0	7	3	
VRSQRT14SS	V,V,V	1	FP0	7	2	
VRSQRT14PS	V,V	1	FP0	7	3	
VRSQRT28SS	V,V,V	1	FP0	7	2	
VRSQRT28PS	V,V	1	FP0	7	3	
VRSQRT28SD	V,V,V	1	FP0	7	2	
VRSQRT28PD	V,V	1	FP0	6	2	
VEXP2PS	v,v	2		10	7	
VEXP2PD	v,v	2		9	7	
VFIXUPIMMSS/D/PS/D	v,v,i	1	FP0	2	1	
VGETEXPSS/D		1	FP0/1	6	0.5	
VGETEXPPS/D	V,V,V	1	FP0/1	6	0.5	
	V,V	-				
VGETMANTSS/D	V,V,V	1	FP0/1	6	0.5	
VGETMANTPS/D	V,V	1	FP0/1	6	0.5	
VFIXUPIMMSS/SD/PS/PD	V,V,V	1	FP0	2	1	
Logic						
ANDPS/D ANDNPS/D	X,X	1	FP0/1	2	0.5	
ORPS/D XORPS/D	X,X	1	FP0/1	2	0.5	
VANDPS/D VANDNPS/D	V,V,V	1	FP0/1	2	0.5	
VORPS/D VXORPS/D	V,V,V	1	FP0/1	2	0.5	
Other						
VZEROUPPER		11			30	32 bit mode
VZEROUPPER		19			36	64 bit mode
VZEROALL		11			30	32 bit mode
VZEROALL		19			36	64 bit mode
LDMXCSR	m32	6			21	0.5000
STMXCSR	m32	5			15	
FXSAVE		90			113	32 bit mode
	m					64 bit mode
FXSAVE	m	98			119	
FXRSTOR	m	98			122	32 bit mode
FXRSTOR	m	114			130	64 bit mode

FNSAVE	m m	135	205	205	
FRSTOR	m	78	191	191	
XSAVE	m	251		396	32 bit mode
XSAVE	m	291		430	64 bit mode
XRSTOR	m	116		231	32 bit mode
XRSTOR	m	157		273	64 bit mode
XSAVEOPT	m	251		396	32 bit mode
XSAVEOPT	m	291		428	64 bit mode

Mask register instructions

	Operands	μops	Unit	Latency	Reciprocal throughput	Remarks
Move instructions						
KMOVW	k,k	1	FP0/1	2	0.5	
KMOVW	k,m	1		7	0.5	
KMOVW	m,k	1		7	1	
KMOVW	k,r	1	FP0	5	1	
KMOVW	r,k	1		4	1	
KUNPCKBW	k,k,k	1	FP0/1	2	0.5	
VPBROADCASTMB2Q	v,k	1	FP0	6	1	
VPBROADCASTMW2D	v,k	1	FP0	6	1	
Arithmetic						
KSHIFTLW	k,k,i	1	FP0/1	2	0.5	
KSHIFTRW	k,k,i	1	FP0/1	2	0.5	
Logic						
KANDW KANDNW	k,k,k	1	FP0/1	2	0.5	
KORW KXORW KXNORW	k,k,k	1	FP0/1	2	0.5	
KNOTW	k,k	1	FP0/1	2	0.5	
KORTESTW	k,k	1	FP1	5	1	

VIA Nano 2000 series

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm = 128 bit xmm

register, (x)mm = mmx or xmm register, sr = segment register, m = memory,

m32 = 32-bit memory operand, etc.

μορs: The number of micro-operations from the decoder or ROM. Note that the VIA

Nano 2000 processor has no reliable performance monitor counter for $\mu\text{ops}.$ Therefore the number of μops cannot be determined except in simple cases.

Port: Tells which execution port or unit is used. Instructions that use the same port

cannot execute simultaneously.

Integer add, Boolean, shift, etc.Integer add, Boolean, move, jump.

I12: Can use either I1 or I2, whichever is vacant first.MA: Multiply, divide and square root on all operand types.MB: Various Integer and floating point SIMD operations.

MBfadd: Floating point addition subunit under MB.

SA: Memory store address.

ST: Memory store. LD: Memory load.

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays very much, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give a similar de-

lay.

Note: There is an additional latency for moving data from one unit or subunit to another. A table of these latencies is given in manual 3: "The microarchitecture of Intel, AMD and VIA CPUs". These additional latencies are not included in the listings below where the source and destination operands are of the same type.

Reciprocal throughput: The average number of clock cycles per instruction for a series of independent instructions of the same kind in the same thread.

Integer instructions

	Operands	μops	Port	Latency	Reciprocal thruoghput	Remarks
Move instructions						
MOV	r,r	1	12	1	1	
MOV	r,i	1	12	1	1	
						Latency 4 on
MOV	r,m	1	LD	2	1	pointer register
MOV	m,r	1	SA, ST	2	1,5	
MOV	m,i	1	SA, ST		1,5	
MOV	r,sr				1	
MOV	m,sr				2	
MOV	sr,r			20	20	
MOV	sr,m			20	20	

MOVNTI	m,r		SA, ST	2	1,5	
MOVSX MOVSXD						
MOVZX	r,r	1	12	1	1	
MOVSX MOVSXD	r,m	2	LD, I2	3	1	
MOVZX	r,m	1	LD	2	1	
CMOVcc	r,r	2	I1, I2	2	1	
CMOVcc	r,m		LD, I1	5	2	
XCHG	r,r	3	12	3	3	
XCHG	r,m			20	20	Implicit lock
XLAT	m			6		Implicit rook
PUSH	r		SA, ST	Ū	1-2	
PUSH	i i		SA, ST		1-2	
PUSH	m		Ld, SA, ST		2	
PUSH	sr		Lu, 0A, 01		17	
PUSHF(D/Q)	31			8	8	
PUSHA(D)				O	15	Not in x64 mode
POP	•		LD			Not in X04 mode
POP	r (E/D)CD		LD		1,25	
	(E/R)SP				4	
POP	m				5	
POP	sr			•	20	
POPF(D/Q)				9	9	
POPA(D)					12	Not in x64 mode
LAHF		1	I1	1	1	
SAHF		1	l1	1	1	
SALC				9	6	Not in x64 mode
LEA	r,m	1	SA	1	1	3 clock latency on input register
BSWAP	r	1	12	1	1	
LDS LES LFS LGS LSS						
	m			30	30	
PREFETCHNTA	m		LD		1-2	
PREFETCHT0/1/2	m		LD		1-2	
LFENCE					14	
MFENCE					14	
SFENCE					14	
Arithmetic instructions						
ADD SUB	r,r/i	1	l12	1	1/2	
ADD SUB	r,m	2	LD I12		1	
ADD SUB	m,r/i	3	LD I12 SA ST	5	2	
ADC SBB	r,r/i	1	I1	1	1	
ADC SBB	r,m	2	LD I1		1	
ADC SBB	m,r/i	3	LD I1 SA ST	5	2	
CMP	r,r/i	1	l12	1	1/2	
CMP	m,r/i	2	LD I12		1	
INC DEC NEG NOT	r	1	l12	1	1/2	
INC DEC NEG NOT	m	3	LD I12 SA ST	5		
AAA					37	Not in x64 mode
AAS					37	Not in x64 mode
DAA					22	Not in x64 mode

DAS					24	Not in x64 mode
AAD					23	Not in x64 mode
AAM					30	Not in x64 mode
						Extra latency to
MUL IMUL	r8		MA	7-9		other ports
MUL IMUL	r16		MA	7-9		do.
MUL IMUL	r32		MA	7-9		do.
MUL IMUL	r64		MA	8-10		do.
IMUL	r16,r16		MA	4-6	1	do.
IMUL	r32,r32		MA	4-6	1	do.
IMUL	r64,r64		MA	5-7	2	do.
IMUL	r16,r16,i		MA	4-6	1	do.
IMUL	r32,r32,i		MA	4-6	1	do.
IMUL	r64,r64,i		MA	5-7	2	do.
DIV	r8		MA	26	26	do.
DIV	r16		MA	27-35	27-35	do.
DIV	r32		MA	25-41	25-41	do.
DIV	r64		MA	148-183	148-183	do.
IDIV	r8		MA	26	26	do.
IDIV	r16		MA	27-35	27-35	do.
IDIV	r32		MA	23-39	23-39	do.
IDIV	r64		MA	187-222	187-222	do.
CBW CWDE CDQE		1	I1	1	1	
CWD CDQ CQO		1	I1	1	1	
Logic instructions						
AND OR XOR	r,r/i	1	l12	1	1/2	
AND OR XOR	r,m	2	LD I12		1	
AND OR XOR	m,r/i	3	LD I12 SA ST	5	2	
TEST	r,r/i	1	I12	1	1/2	
TEST	m,r/i	2	LD I12		1	
SHR SHL SAR	r,i/cl	1	I1	1	1	
ROR ROL	r,i/cl	1	I1	1	1	
RCR RCL	r,1	1	I1	1	1	
RCR RCL	r,i/cl		I1	28+3n	28+3n	
SHLD SHRD	r16,r16,i		I1	11	11	
SHLD SHRD	r32,r32,i		I1	7	7	
SHLD	r64,r64,i		I1	33	33	
SHRD	r64,r64,i		I1	43	43	
SHLD SHRD	r16,r16,cl		I1	11	11	
SHLD SHRD	r32,r32,cl		I1	7	7	
SHLD	r64,r64,cl		I1	33	33	
SHRD	r64,r64,cl		I1	43	43	
BT	r,r/i	1	I1	1	1	
BT	m,r		I1		8	
BT	m,i	2	I1		1	
BTR BTS BTC	r,r/i	2	I1	2	2	
BTR BTS BTC	m,r		I1	10	10	
BTR BTS BTC	m,i		I1	8	8	
BSF BSR	r,r		l1	3	2	

SETcc	r		I1	2	1	
SETcc	m				1	
CLC STC CMC			I1	3	3	
CLD STD				3	3	
Control transfer instruc	tions					
	,					8 if >2 jumps in 16
JMP	short/near	1	12	3	3	bytes block
JMP	far			58		Not in x64 mode
						8 if >2 jumps in 16
JMP	r		12	3	3	bytes block
JMP	m(near)			3	3	do.
JMP	m(far)			55		
Conditional jump	short/near			1-3-8	1-3-8	1 if not jumping. 3 if jumping.
						8 if >2 jumps in 16
						bytes block
J(E/R)CXZ	short			1-3-8	1-3-8	do.
LOOP	short			1-3-8	1-3-8	do.
LOOP(N)E	short			25	25	.
2001 (11)2	S. IOIT					8 if >2 jumps in 16
CALL	near			3	3	bytes block
CALL	far			72	72	Not in x64 mode
07.122				. –		8 if >2 jumps in 16
CALL	r			3	3	bytes block
CALL	m(near)			4	3	do.
CALL	m(far)			72	72	
	()					8 if >2 jumps in 16
RETN				3	3	bytes block
RETN	i			3	3	do.
RETF				39	39	
RETF	i			39	39	
BOUND	r,m				13	Not in x64 mode
INTO	1,111				7	Not in x64 mode
String instructions						
LODSB/W/D/Q					1	
REP LODSB/W/D/Q					3n+22	
STOSB/W/D/Q					1-2	
REP STOSB/W/D/Q					Small: 2n+2,	
					Big: 6 bytes	
					per clock	
MONOR WAVE 12						
MOVSB/W/D/Q					2	
REP MOVSB/W/D/Q					Small: 2n+45,	
					Big: 6 bytes per clock	
					per clock	
SCASB/W/D/Q					1	
REP SCASB					2.2n	
j 00, 10D	1	1		1	2.211	1

REP SCASW/D/Q					Small: 2n+50 Big: 5 bytes per clock	
CMPSB/W/D/Q					6	
REP CMPSB/W/D/Q					2.4n+24	
Other						
NOP (90)		1	All		1	Blocks all ports
Long NOP (0F 1F)		1	l12		1/2	
PAUSE					25	
ENTER	a,0				23	
ENTER	a,b				52+5b	
LEAVE				4	4	
CPUID				53-173		
RDTSC					39	
RDPMC				40	40	

Floating point x87 instructions

	Operands	µops	Port and Unit	Latency	Reciprocal thruoghput	Remarks
Move instructions						
FLD	r	1	MB	1	1	
FLD	m32/m64	2	LD MB	4	1	
FLD	m80	2	LD MB	4	1	
FBLD	m80			54	54	
FST(P)	r	1	MB	1	1	
FST(P)	m32/m64	3	MB SA ST	5	1-2	
FSTP	m80	3	MB SA ST	5	1-2	
FBSTP	m80			125	125	
FXCH	r	1	12	0	1	
FILD	m16			7		
FILD	m32			5		
FILD	m64			5		
FIST(T)(P)	m16			6		
FIST(T)(P)	m32			5		
FIST(T)(P)	m64			5		
FLDZ FLD1		1	MB		1	
FLDPI FLDL2E etc.					10	
FCMOVcc	r			2	2	
FNSTSW	AX				5	
FNSTSW	m16				3	
FLDCW	m16			13	13	
FNSTCW	m16				2	
FINCSTP FDECSTP		1	12	0	1	
FFREE(P)		1	MB		1	
FNSAVE	m			321	321	
FRSTOR	m			195	195	
Arithmetic instructions						

						Lower precision:
FADD(P) FSUB(R)(P)	r/m	1	MB	2	1	Lat: 4, Thr: 2
FMUL(P)	r/m	1	MA	4	2	
FDIV(R)(P)	r/m		MA	15-42	15-42	
FABS		1	MB	1	1	
FCHS		1	MB	1	1	
FCOM(P) FUCOM	r/m	1	MB		1	
FCOMPP FUCOMPP		1	MB		1	
FCOMI(P) FUCOMI(P)	r	1	MB		1	
FIADD FISUB(R)	m		MB		2	
FIMUL	m				4	
FIDIV(R)	m				42	
FICOM(P)	m	1			2	
FTST		1	MB		1	
FXAM					41	
FPREM				151-171		
FPREM1				106-155		
FRNDINT				29		
Math						
FSCALE				39		
FXTRACT				36-57		
FSQRT				73		
FSIN FCOS				51-159		
FSINCOS				270-360		
F2XM1				50-200		
FYL2X				~60		
FYL2XP1				~170		
FPTAN				300-370		
FPATAN				~170		
Other						
FNOP		1	MB		1	
WAIT		1	l12	0	1/2	
FNCLEX					57	
FNINIT					85	

Integer MMX and XMM instructions

	Operands	µops	Port and Unit	Latency	Reciprocal thruoghput	Remarks
Move instructions						
MOVD	r32/64,(x)mm	1		3	1	
MOVD	n32/64,(x)mn	1	SA ST	2-3	1-2	
MOVD	(x)mm,r32/64			4	1	
MOVD	x)mm,m32/64	1	LD	2-3	1	
MOVQ	x)mm, (x)mm	1	MB	1	1	
MOVQ	(x)mm,m64	1	LD	2-3	1	
MOVQ	m64, (x)mm	1	SA ST	2-3	1-2	
MOVDQA	xmm, xmm	1	MB	1	1	
MOVDQA	xmm, m128	1	LD	2-3	1	

	1		I	l	ı
MOVDQA	m128, xmm	1	SA ST	2-3	1-2
MOVDQU	m128, xmm	1	SA ST	2-3	1-2
MOVDQU	xmm, m128	1	LD	2-3	1
LDDQU	xmm, m128	1	LD	2-3	1
MOVDQ2Q	mm, xmm	1	MB	1	1
MOVQ2DQ	xmm,mm	1	MB	1	1
MOVNTQ	m64,mm	3		~300	2
MOVNTDQ	m128,xmm	3		~300	2
PACKSSWB/DW	111120,2111111	3		300	_
PACKUSWB	V,V	1	МВ	1	1
PUNPCKH/LBW/WD/	V, V		IVID	'	'
DQ	V,V	1	MB	1	1
PUNPCKH/LQDQ	,	1	MB	1	1
	V,V	-		•	-
PSHUFB	V,V .	1	MB	1	1
PSHUFW	mm,mm,i	1	MB	1	1
PSHUFL/HW	x,x,i	1	MB	1	1
PSHUFD	x,x,i	1	MB	1	1
PALIGNR	x,x,i	1	MB	1	1
MASKMOVQ	mm,mm				1-3
MASKMOVDQU	xmm,xmm				1-3
PMOVMSKB	r32,(x)mm			3	1
PEXTRW	r32 ,(x)mm,i			3	1
PINSRW	(x)mm,r32,i			9	9
FINSKW	(X)IIIII,I32,I			9	9
Arithmetic instructions	I				
PADD/SUB(U)(S)B/W/D		4	MD	4	4
DA DDO DOLIDO	V,V	1	MB	1	1
PADDQ PSUBQ	V,V	1	MB	1	1
PHADD(S)W		2	MD	2	_
PHSUB(S)W	V,V	3	MB	3	3
PHADDD PHSUBD	V,V	3	MB	3	3
PCMPEQ/GTB/W/D	V,V	1	MB	1	1
PMULL/HW PMULHUW	V,V	1	MA	3	1
PMULHRSW	V,V	1	MA	3	1
PMULUDQ	V,V	1	MA	3	1
PMADDWD	V,V			4	2
PMADDUBSW	V,V			10	8
PSADBW	V,V		MB	2	1
PAVGB/W	V,V	1	MB	1	1
PMIN/MAXUB	V,V	1	MB	1	1
PMIN/MAXSW	V,V	1	MB	1	1
PABSB PABSW PABSD					
	V,V	1	MB	1	1
PSIGNB PSIGNW					
PSIGND	V,V	1	MB	1	1
Logic instructions]				
PAND(N) POR PXOR	V,V	1	MB	1	1
PSLL/RL/RAW/D/Q	V,V	1	MB	1	1
PSLL/RL/RAW/D/Q	v,i	1	MB	1	1
PSLL/RLDQ	x,i	1	MB	1	1
1	. !		•	1	

Other				
EMMS	1	MB	1	

Floating point XMM instructions

Floating point XIVIIV			.	1	. .	Damania
	Operands	µops	Port and Unit	Latency	Reciprocal thruoghput	Remarks
Move instructions						
MOVAPS/D	xmm,xmm	1	MB	1	1	
MOVAPS/D	xmm,m128	1	LD	2-3	1	
MOVAPS/D	m128,xmm	1	SA ST	2-3	1-2	
MOVUPS/D	xmm,m128	1	LD	2-3	1	
MOVUPS/D	m128,xmm	1	SA ST	2-3	1-2	
MOVSS/D	xmm,xmm	1	MB	1	1	
MOVSS/D	x,m32/64	1	LD	2-3	1	
MOVSS/D	m32/64,x	1	SA ST	2-3	1-2	
MOVHPS/D	xmm,m64			6	1	
MOVLPS/D	xmm,m64			6	1	
MOVHPS/D	m64,xmm			6	1-2	
MOVLPS/D	m64,xmm			2	1-2	
MOVLHPS MOVHLPS	xmm,xmm	1	MB	1	1	
MOVMSKPS/D	r32,xmm			3	1	
MOVNTPS/D	m128,xmm			~300	2,5	
SHUFPS	xmm,xmm,i	1	MB	1	1	
SHUFPD	xmm,xmm,i	1	MB	1	1	
MOVDDUP	xmm,xmm	1	MB	1	1	
MOVSH/LDUP	xmm,xmm	1	MB	1	1	
UNPCKH/LPS	xmm,xmm	1	MB	1	1	
UNPCKH/LPD	xmm,xmm	1	MB	1	1	
Conversion						
CVTPD2PS	xmm,xmm			3-4		
CVTSD2SS	xmm,xmm			15		
CVTPS2PD	xmm,xmm			3-4		
CVTSS2SD	xmm,xmm			15		
CVTDQ2PS	xmm,xmm			3		
CVT(T) PS2DQ	xmm,xmm			2		
CVTDQ2PD	xmm,xmm			4		
CVT(T)PD2DQ	xmm,xmm			3		
CVTPI2PS	xmm,mm			4		
CVT(T)PS2PI	mm,xmm			3		
CVTPI2PD	xmm,mm			4		
CVT(T) PD2PI	mm,xmm			3		
CVTSI2SS	xmm,r32			5		
CVT(T)SS2SI	r32,xmm			4		
CVTSI2SD	xmm,r32			5		
CVT(T)SD2SI	r32,xmm			4		
Arithmetic						
ADDSS SUBSS	xmm,xmm	1	MBfadd	2-3	1	

ADDSD SUBSD	xmm,xmm	1	MBfadd	2-3	1	
ADDSD SUBSD	xmm,xmm	1	MBfadd	2-3	1	
ADDPD SUBPD	xmm,xmm	1	MBfadd	2-3	1	
ADDSUBPS	xmm,xmm	1	MBfadd	2-3	1	
ADDSUBPD	xmm,xmm	1	MBfadd	2-3	1	
HADDPS HSUBPS	xmm,xmm	'	MBfadd	5	3	
HADDPD HSUBPD	xmm,xmm		MBfadd	5	3	
MULSS	xmm,xmm	1	MA	3	1	
MULSD	xmm,xmm	1	MA	4	2	
MULPS	xmm,xmm		MA	3	1	
MULPD	xmm,xmm		MA	4	2	
DIVSS	xmm,xmm		MA	15-22	15-22	
DIVSD	xmm,xmm		MA	15-36	15-36	
DIVPS	xmm,xmm		MA	42-82	42-82	
DIVPD	xmm,xmm		MA	24-70	24-70	
RCPSS	xmm,xmm			5	5	
RCPPS	xmm,xmm			14	11	
CMPccSS/D	xmm,xmm	1	MBfadd	2	1	
CMPccPS/D	xmm,xmm	1	MBfadd	2	1	
COMISS/D UCOMISS/D	,			_		
	xmm,xmm			3	1	
MAXSS/D MINSS/D	xmm,xmm	1	MBfadd	2	1	
MAXPS/D MINPS/D	xmm,xmm	1	MBfadd	2	1	
Math						
SQRTSS	xmm,xmm		MA	33	33	
SQRTPS	xmm,xmm		MA	126	126	
SQRTSD	xmm,xmm		MA	62	62	
SQRTPD	xmm,xmm		MA	122	122	
RSQRTSS	xmm,xmm			5	5	
RSQRTPS	xmm,xmm			14	11	
Logic		_	MD		4	
ANDPS/D	xmm,xmm	1	MB	1	1	
ANDNPS/D	xmm,xmm	1	MB	1	1	
ORPS/D	xmm,xmm	1	MB	1	1	
XORPS/D	xmm,xmm	1	MB	1	1	
Other						
LDMXCSR	m32			45	29	
	m4096					
FXRSTOR	m4096			232	232	
STMXCSR FXSAVE				45 13 208 232	29 13 208 232	

VIA-specific instructions

The specime mentioners								
Instruction	Conditions	Clock cycles, approximately						
XSTORE	Data available	160-400 clock giving 8 bytes						
XSTORE	No data available	50-80 clock giving 0 bytes						
REP XSTORE	Quality factor = 0	4800 clock per 8 bytes						
REP XSTORE	Quality factor > 0	19200 clock per 8 bytes						

REP XCRYPTECB	128 bits key	44 clock per 16 bytes
REP XCRYPTECB	192 bits key	46 clock per 16 bytes
REP XCRYPTECB	256 bits key	48 clock per 16 bytes
REP XCRYPTCBC	128 bits key	54 clock per 16 bytes
REP XCRYPTCBC	192 bits key	59 clock per 16 bytes
REP XCRYPTCBC	256 bits key	63 clock per 16 bytes
REP XCRYPTCTR	128 bits key	43 clock per 16 bytes
REP XCRYPTCTR	192 bits key	46 clock per 16 bytes
REP XCRYPTCTR	256 bits key	48 clock per 16 bytes
REP XCRYPTCFB	128 bits key	54 clock per 16 bytes
REP XCRYPTCFB	192 bits key	59 clock per 16 bytes
REP XCRYPTCFB	256 bits key	63 clock per 16 bytes
REP XCRYPTOFB	128 bits key	54 clock per 16 bytes
REP XCRYPTOFB	192 bits key	59 clock per 16 bytes
REP XCRYPTOFB	256 bits key	63 clock per 16 bytes
REP XSHA1		3 clock per byte
REP XSHA256		4 clock per byte

VIA Nano 3000 series

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm = 128 bit xmm

register, (x)mm = mmx or xmm register, sr = segment register, m = memory,

m32 = 32-bit memory operand, etc.

μορs: The number of micro-operations from the decoder or ROM. Note that the VIA

Nano 3000 processor has no reliable performance monitor counter for μ ops. Therefore the number of μ ops cannot be determined except in simple cases.

Port: Tells which execution port or unit is used. Instructions that use the same port

cannot execute simultaneously.

Integer add, Boolean, shift, etc.Integer add, Boolean, move, jump.

I12: Can use either I1 or I2, whichever is vacant first.MA: Multiply, divide and square root on all operand types.MB: Various Integer and floating point SIMD operations.

MBfadd: Floating point addition subunit under MB.

SA: Memory store address.

ST: Memory store.
LD: Memory load.

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays very much, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give a similar de-

lay.

Note: There is an additional latency for moving data from one unit or subunit to another. A table of these latencies is given in manual 3: "The microarchitecture of Intel, AMD and VIA CPUs". These additional latencies are not included in the listings below where the source and destination operands are of the same

type.

Reciprocal throughput: The average number of clock cycles per instruction for a series of independent instructions of the same kind in the same thread.

Integer instructions

	Operands	µops	Port	Latency	Reciprocal thruogh- put	Remarks
Move instructions						
MOV	r,r	1	12	1	1	
MOV	r,i	1	l12	1	1/2	
						Latency 4 on pointer
MOV	r,m	1	LD	2	1	register
MOV	m,r	1	SA, ST	2	1,5	
MOV	m,i	1	SA, ST		1,5	
MOV	r,sr		l12		1/2	
MOV	m,sr				1,5	
MOV	sr,r			20	20	

la a sa a d		ı	I			1
MOV	sr,m			20	20	
MOVNTI	m,r		SA, ST	2	1,5	
MOVSX MOVZX	r,r	1	l12	1	1/2	
MOVSXD	r64,r32	1		1	1	
MOVSX MOVSXD	r,m	2	LD, I12	3	1	
MOVZX	r,m	1	LD	2	1	
CMOVcc	r,r	1	l12	1	1/2	
CMOVcc	r,m		LD, I12	5	1	
XCHG	r,r	3	l12	3	1,5	
XCHG	r,m			18	18	Implicit lock
XLAT	m	3	LD, I1	6	2	
PUSH	r	1	SA, ST		1-2	
PUSH	i	1	SA, ST		1-2	
PUSH	m		LD, SA, ST		2	
PUSH	sr				6	
PUSHF(D/Q)		3		2	2	
PUSHA(D)		9			15	Not in x64 mode
POP	r	2	LD		1,25	
POP	(E/R)SP				4	
POP	m	3			2	
POP	sr				11	
POPF(D/Q)		3			1	
POPA(D)		16			12	Not in x64 mode
LAHF		1	l1	1	1	
SAHF		1	l1	1	1	
SALC		2		10	6	Not in x64 mode
		_		. •		Extra latency to other
LEA	r,m	1	SA	1	1	ports
BSWAP	r	1	12	1	1	
LDS LES LFS LGS LSS						
	m	12		28	28	
PREFETCHNTA	m	1	LD		1	
PREFETCHT0/1/2	m	1	LD		1	
LFENCE MFENCE						
SFENCE					15	
Arithmetic instructions						
ADD SUB	r,r/i	1	l12	1	1/2	
ADD SUB	r,m	2	LD I12		1	
ADD SUB	m,r/i	3	LD I12 SA ST	5	2	
ADC SBB	r,r/i	1	l1	1	1	
ADC SBB	r,m	2	LD I1		1	
ADC SBB	m,r/i	3	LD I1 SA ST	5	2	
CMP	r,r/i	1	l12	1	1/2	
CMP	m,r/i	2	LD I12		1	
INC DEC NEG NOT	r	1	l12	1	1/2	
INC DEC NEG NOT	m	3	LD I12 SA ST	5		
AAA		12			37	Not in x64 mode
AAS		12			22	Not in x64 mode
DAA		14			22	Not in x64 mode

DAS		14			24	Not in x64 mode
AAD		7			24	Not in x64 mode
AAM		13			31	Not in x64 mode
MUL IMUL	r8	1	12	2		
MUL IMUL	r16	3	12	3		
MUL IMUL	r32	3	12	3		
						Extra latency to other
MUL IMUL	r64	3	MA	8	8	ports
IMUL	r16,r16	1	12	2	1	
IMUL	r32,r32	1	12	2	1	
						Extra latency to other
IMUL	r64,r64	1	MA	5	2	ports
IMUL	r16,r16,i	1	12	2	1	
IMUL	r32,r32,i	1	12	2	1	
				_	_	Extra latency to other
IMUL	r64,r64,i	1	MA	5	2	ports
DIV	r8		MA	22-24	22-24	
DIV	r16		MA	24-28	24-28	
DIV	r32		MA	22-30	22-30	
DIV	r64		MA	145-162	145-162	
IDIV	r8		MA	21-24	21-24	
IDIV	r16		MA	24-28	24-28	
IDIV	r32		MA	18-26	18-26	
IDIV	r64		MA	182-200	182-200	
CBW CWDE CDQE		1	12	1	1	
CWD CDQ CQO		1	12	1	1	
Logic instructions			140	_	4.10	
AND OR XOR	r,r/i	1	l12	1	1/2	
AND OR XOR	r,m	2	LD I12	_	1	
AND OR XOR	m,r/i	3	LD I12 SA ST	5	2	
TEST	r,r/i	1	l12	1	1/2	
TEST	m,r/i	2	LD I12		1	
SHR SHL SAR	r,i/cl	1	I12	1	1/2	
ROR ROL	r,i/cl	1	l1	1	1	
RCR RCL	r,1	1	l1	1	1	
RCR RCL	r,i/cl	5+2n	l1	28+3n	28+3n	
SHLD SHRD	r16,r16,i/cl	2	l1	2	2	
SHLD SHRD	r32,r32,i/cl	2	I1	2	2	
SHLD	r64,r64,i/cl	16	l1	32	32	
SHRD	r64,r64,i/cl	23	l1	42	42	
BT	r,r/i	1	I1	1	1	
BT	m,r	6	l1		8	
BT	m,i	2	l1		1	
BTR BTS BTC	r,r/i	2	I1	2	2	
BTR BTS BTC	m,r	8	l1	10	10	
BTR BTS BTC	m,i	5	l1	8	8	
BSF BSR	r,r	2	l1	2	2	
SETcc	r8	1	l1	1	1	
SETcc	m	2			2	

CLC STC CMC		3	I1	3	3	
CLD STD		3	I1	3	3	
Control transfer instruc	tions					
Control transfer instruc	tions					8 if >2 jumps in 16
JMP	short/near	1	12	3	3	bytes block
JMP	far	14			50	Not in x64 mode
IMP			10			8 if >2 jumps in 16
JMP JMP	r m(noor)	2 2	12	3	3 3	bytes block do.
JMP	m(near) m(far)	17		3	42	do.
Olvii	in(iai)	17			72	1 if not jumping.
						3 if jumping.
						8 if >2 jumps in 16
Conditional jump	short/near	1	12	1-3-8	1-3-8	bytes block
J(E/R)CXZ	short	2		1-3-8	1-3-8	
LOOP	short	2 5		1-3-8 24	1-3-8 24	
LOOP(N)E	short	5		24	24	8 if >2 jumps in 16
CALL	near	2		3	3	bytes block
CALL	far	17			58	Not in x64 mode
						8 if >2 jumps in 16
CALL	r	2		3	3	bytes block
CALL	m(near)	3		4	3	do.
CALL	m(far)	19			54	0.15
RETN		3		3	3	8 if >2 jumps in 16 bytes block
RETN	i	4		3	3	do.
RETF		20			49	40.
RETF	i	20			49	
BOUND	r,m	9			13	Not in x64 mode
INTO	·	3			7	Not in x64 mode
String instructions						
LODSB/W/D/Q		2			1	
REP LODSB/W/D/Q		3n			3n+27	
STOSB/W/D/Q		1			1-2	
					Small:	
					n+40, Big: 6-7	
REP STOSB/W/D/Q					bytes/clk	
MOVSB/W/D/Q		3			2	
MO VOB/W/B/Q					Small:	
					2n+20,	
DED MOVOS 144/2 (2					Big: 6-7	
REP MOVSB/W/D/Q					bytes/clk	
SCASB/W/D/Q		3			1 2.45	
REP SCASB					2.4n Small:	
					2n+31,	
					Big: 5	
REP SCASW/D/Q					bytes/clk	

CMPSB/W/D/Q		5			6	
REP CMPSB/W/D/Q					2.2n+30	
Other						
NOP (90)		0-1	l12	0	1/2	Sometimes fused
long NOP (0F 1F)		0-1	l12	0	1/2	
PAUSE		2			6	
ENTER	a,0	10			21	
ENTER	a,b				52+5b	
LEAVE		3		2	2	
CPUID				55-146		
RDTSC					37	
RDPMC					40	

Floating point x87 instructions

	Operands	µops	Port	Latency	Reciprocal thruogh- put	Remarks
Move instructions						
FLD	r	1	MB	1	1	
FLD	m32/m64	2	LD MB	4	1	
FLD	m80	2	LD MB	4	1	
FBLD	m80	36		54	54	
FST(P)	r	1	MB	1	1 1	
FST(P)	m32/m64	3	MB SA ST	5	1-2	
FSTP	m80	3	MB SA ST	5	1-2	
FBSTP	m80	80		125	125	
FXCH	r	1	12	0	1 1	
FILD	m16	3		7		
FILD	m32	2		5		
FILD	m64	2		5		
FIST(T)(P)	m16	3		6		
FIST(T)(P)	m32	3		5		
FIST(T)(P)	m64	3		5		
FLDZ FLD1		1	MB		1	
FLDPI FLDL2E etc.		3			10	
FCMOVcc	r	1	MB	2	2	
FNSTSW	AX	1			1	
FNSTSW	m16	3			2	
FLDCW	m16	5			8	
FNSTCW	m16	3			2	
FINCSTP FDECSTP		1	12	0	1	
FFREE(P)		1	MB		1	
FNSAVE	m	122		319	319	
FRSTOR	m	115		196	196	
Arithmetic instructions	1					
FADD(P) FSUB(R)(P)	r/m	1	MB	2	1	

FMUL(P)	r/m	1	MA	4	2	
FDIV(R)(P)	r/m	'	MA	14-23	14-23	
FABS	1/111	1	MB	14-23	14-23	
FCHS		1	MB	1	1	
FCOM(P) FUCOM	r/m	1	MB	'	1	
FCOMPP FUCOMPP	1/111	1	MB		1	
FCOMI(P) FUCOMI(P)	r	1	MB	2	1	
FIADD FISUB(R)	m	3	MB		2	
FIMUL	m	3	IVID		4	
FIDIV(R)	m	3			16	
FICOM(P)	m	3			2	
FTST	'''	1	MB	2	1	
FXAM		15	IVID	38	38	
FPREM		13		~130	30	
FPREM1				~130		
FRNDINT		11		27		
TRADIA		''				
Math						
FSCALE		22		37		
FXTRACT		13		57		
						Less at lower
FSQRT				73		precision
FSIN FCOS				~150		
FSINCOS				270-360		
F2XM1				50-200		
FYL2X				~50		
FYL2XP1				~50		
FPTAN				300-370		
FPATAN				~180		
Other						
FNOP		1	MB		1	
WAIT		1	l12	0	1/2	
FNCLEX					59	
FNINIT					84	

Integer MMX and XMM instructions

	Operands	µops	Port	Latency	Reciprocal thruogh- put	Remarks
Move instructions						
MOVD	r,(x)mm	1	MB	3	1	
MOVD	m,(x)mm	1	SA ST	2	1-2	
MOVD	(x)mm,r	1	12	4	1	
MOVD	(x)mm,m	1	LD	2	1	
MOVQ	V,V	1	MB	1	1	
MOVQ	(x)mm,m64	1	LD	2	1	
MOVQ	m64, (x)mm	1	SA ST	2	1-2	
MOVDQA	x,x	1	MB	1	1	

MOVDQA	l		_	1	l _	
MOVDQU m128, x 1 SAST 2 1-2 MOVDQU x, m128 1 LD 2 1 LDDQU x, m128 1 LD 2 1 MOVDQQQ mm, x 1 MB 1 1 MOVNTQ m64,mm 2 ~360 2 MOVNTDQA m128,x 2 ~360 2 MOVNTDQA x,m128 1 2 1 PACKSSWB/DW pACKUSDW v,v 1 MB 1 1 PACKUSDW x,x 1 MB 1 1 1 PACKUSDW x,x 1 MB 1		'	-			
MOVDQU		·				. –
LDDQU			1	SA ST		
MOVDQ2Q mm, x 1 MB 1 1 MOVDQ2DQ x,mm 1 MB 1 1 MOVNTQ m64,mm 2 ~360 2 MOVNTDQA m128,x 2 ~360 2 MOVNTDQA x,m128 1 2 1 PACKUSDW x,m128 1 2 1 PACKUSDW x,x 1 MB 1 1 PACKUSDW x,x 1 MB 1 1 PACKUSDW x,x 1 MB 1 1 PACKUSDW x,x 1 MB 1 1 PACKUSDW x,x 1 MB 1 1 PACKUSDW x,x 1 MB 1 1 PACKUSDW x,x 1 MB 1 1 PSHUEB x,x 1 MB 1 1 PSHUEB x,x,i 1 MB <td< td=""><td></td><td>x, m128</td><td>1</td><td>LD</td><td></td><td></td></td<>		x, m128	1	LD		
MOVQ2DQ x,mm 1 MB 1 1 MOVNTQ m64,mm 2 -360 2 MOVNTDQ m128,x 2 -360 2 MOVNTDQA m128,x 2 -360 2 MOVNTDQA x,m128 1 2 1 PACKUSDW x,x 1 MB 1 1 PACKUSDW x,x 1 MB 1 1 PUNPCKH/LBW/WD/DQ v,v 1 MB 1 1 PUNPCKH/LQDQ v,v 1 MB 1 1 PSHUFB v,v 1 MB 1 1 PSHUFW mm,mm,i 1 MB 1 1 PSHUFW mm,mm,i 1 MB 1 1 PSHUFW x,x,i 1 MB 1 1 PSHUFW x,x,i 1 MB 1 1 PSHUFW x,x,i 1 MB	LDDQU	x, m128	1	LD	2	· ·
MOVNTQ m64,mm 2 -360 2 MOVNTDQA m128,x 2 -360 2 MOVNTDQA x,m128 1 2 1 PACKSSWB/DW x,m128 1 2 1 PACKSSWB/DW x,x 1 MB 1 1 PACKSSWB/DW x,x 1 MB 1 1 PACKUSDW x,x 1 MB 1 1 PACKSSWB/DW x,x 1 MB 1 1 PACKSWB/DW x,x 1 MB 1 1 PACKSWB/DW x,x 1 MB 1 1 PACKSWB/DWD x,x 1 MB 1 1 1 PSHUFU MB 1	MOVDQ2Q	mm, x	1	MB	1	
MOVNTDQA m128,x 2 ~360 2 MOVNTDQA x,m128 1 2 1 PACKSSWB/DW x,x 1 MB 1 1 PACKUSWB v,v 1 MB 1 1 PACKUSWB v,v 1 MB 1 1 PACKUSWB v,v 1 MB 1 1 PACKUSWB v,v 1 MB 1 1 PACKUSWB v,v 1 MB 1 1 PACKUSWB v,v 1 MB 1 1 PUNPCKH/LQDQ v,v 1 MB 1 1 PSHUFD mMB 1<	MOVQ2DQ	x,mm	1	MB	1	
MOVNTDQA	MOVNTQ	m64,mm	2		~360	2
PACKSSWB/DW PACKUSWB PACKUSWB PACKUSWB PACKUSWB PACKUSWB PACKUSWB PACKUSWB PACKUSWB PACKUSWB PACKUSWB PACKUSWB PACKUSWB PACKUSWB PACKUSWB PACKUSWB PACKUSWB PACKUSWB PACKUSWB V,V 1 MB 1 1 PUNPCKH/LQDQ V,V 1 MB 1 1 PUNPCKH/LQDQ V,V 1 MB 1 1 PSHUFB PSHUFW PSHUFW PSHUFL/HW PSHUFD X,x,i 1 MB 1 1 PBLENDVB X,x,xi 1 MB 1 1 PBLENDVB X,x,xi 1 MB 1 1 PBLENDVB X,x,xi 1 MB 1 1 PBLENDW X,x,i 1 MB 1 1 PBLENDW X,x,i 1 MB 1 1 PBLENDW X,x,i 1 MB 1 1 PALIGNR X,x,i 1 MB 1 1 PALIGNR X,x,i 1 MB 1 1 PALIGNR X,x,i 1 MB 3 1 1 PALIGNR X,x,i 1 MB 1 1 PALIGNR X,x,i 1 MB 1 1 PALIGNR X,x,i 1 MB 1 1 PALIGNR X,x,i 1 MB 1 1 PALIGNR X,x,x 1 MB 1 1 PEXTRW PEXTRW PEXTRW PEXTRW PEXTRW PEXTRB/D/Q PINSRW (x)mm,r32,i 2 MB 3 1 PINSRB/D/Q PMOVSX/ZXBW/BD/ BQ/WD/WQ/DQ X,x 1 MB 1 1 PADDQ PSUBQ V,V 1 MB 1 1 PADDQ PSUBQ V,V 1 MB 1 1 PADDQ PSUBQ V,V 1 MB 1 1 PADDQ PSUBQ PHADDD PHSUBD PCMPEQ/GTB/W/D V,V 1 MB 1 1 PCMPEQQ X,x 1 MB 1 1 PCMPEQQ X,x 1 MB 1 1 PCMPEQQ X,x 1 MB 1 1 PCMPEQQ X,x 1 MB 1 1 PCMPEQQ X,x 1 MB 1 1 PCMPEQQ X,x 1 MB 1 1 PCMPEQQ X,x 1 MB 1 1 PMULL/HW PMULHUW V,V 1 MA 3 1 PMULLD X,X 1 MA 3 1 PMULLD X,X 1 MA 3 1 PMULLDQ Y,V 1 MA 3 1 PMULLDQ Y,V 1 MA 3 1 PMULDQ Y,V 1 MA 3 1 PMULDQ PMADDUBSW V,V 7 MA 3 1 PMADDUBSW V,V 1 MA 3 1 PMULDQ PMADDUBSW V,V 1 MA 3 1 PMSADBW X,x,i 1 MB 2 1	MOVNTDQ	m128,x	2		~360	2
PACKUSWB v,v 1 MB 1 1 PACKUSDW x,x 1 MB 1 1 PUNPCKH/LBWWD/DQ v,v 1 MB 1 1 PUNPCKH/LQDQ v,v 1 MB 1 1 PSHUFB v,v 1 MB 1 1 PSHUFW mm,mm,i 1 MB 1 1 PSHUFW mm,mm,i 1 MB 1 1 PSHUFL/HW x,x,i 1 MB 1 1 PSHUFD x,x,i 1 MB 1 1 PSHUFD x,x,i 1 MB 1 1 PSHUFD x,x,i 1 MB 1 1 PSHUFD x,x,i 1 MB 1 1 PBLENDVB x,x,x,i 1 MB 1 1 PBLENDW x,x,i 1 MB 1 1 <td< td=""><td>MOVNTDQA</td><td>x,m128</td><td>1</td><td></td><td>2</td><td>1 </td></td<>	MOVNTDQA	x,m128	1		2	1
PACKUSDW	PACKSSWB/DW					
PUNPCKH/LBWWD/DQ	PACKUSWB	V,V	1	MB	1	1
PUNPCKH/LQDQ	PACKUSDW	x,x	1	MB	1	1
PSHUFB	PUNPCKH/LBW/WD/DQ	V,V	1	MB	1	1
PSHUFW	PUNPCKH/LQDQ	V,V	1	MB	1	1
PSHUFL/HW	PSHUFB	V,V	1	MB	1	1
PSHUFD	PSHUFW	mm,mm,i	1	MB	1	1
PBLENDVB x,x,xmm0 1 MB 2 2 PBLENDW x,x,i 1 MB 1 1 PALIGNR x,x,i 1 MB 1 1 MASKMOVQ mm,mm 1-2 1 MB 1 1 MASKMOVDQU x,x 1 MB 1 1 1 MASKMOVDQU x,x 132,(x)mm 3 1 1-2 1-2 PMOVBKB r32,(x)mm,i 1 MB 3 1	PSHUFL/HW	x,x,i	1	MB	1	1 1
PBLENDW x,x,i 1 MB 1 1 PALIGNR x,x,i 1 MB 1 1 MASKMOVQ mm,mm 1-2 1-2 MASKMOVDQU x,x 1-2 MASKMOVDQU x,x 1-2 MASKMOVDQU x,x 1-2 PMOVMSKB r32,(x)mm 1 MB 3 1 PEXTRW r32,(x)mm,i 1 MB 3 1 PEXTRB/D/Q r32/64,x,i 1 MB 3 1 PINSRB/D/Q x,r32/64,i 2 MB 5 1 PINSRB/D/Q x,r32/64,i 2 MB 5 1 PMOVSX/ZXBW/BD/BQ x,x 1 MB 1 1 Arithmetic instructions PADD/SUB(U)(S)B/W/D v,v 1 MB 1 1 PADDQ PSUBQ v,v 1 MB 1 1 1 PADDQ PSUBQ v,v 3 MB 3 </td <td>PSHUFD</td> <td>x,x,i</td> <td>1</td> <td>MB</td> <td>1</td> <td>1 1</td>	PSHUFD	x,x,i	1	MB	1	1 1
PALIGNR x,x,i 1 MB 1 1 MASKMOVQ mm,mm 1-2 1-2 MASKMOVDQU x,x 1-2 1-2 PMOVMSKB r32,(x)mm 3 1 PEXTRW r32,(x)mm,i 1 MB 3 1 PEXTRB/D/Q r32/64,x,i 1 MB 3 1 PINSRW (x)mm,r32,i 2 MB 5 1 PINSRB/D/Q x,r32/64,i 2 MB 5 1 PMOVSX/ZXBW/BD/BQ/WD/WD/WQ/DQ x,x 1 MB 1 1 Arithmetic instructions PADD/SUB(U)(S)B/W/D v,v 1 MB 1 1 PADDQ PSUBQ v,v 1 MB 1 1 1 PHADDD PHSUBD v,v 3 MB 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PBLENDVB	x,x,xmm0	1	MB	2	2
PALIGNR	PBLENDW	x,x,i	1	MB	1	1 1
MASKMOVQ mm,mm x,x 1-2 MASKMOVDQU x,x 1-2 PMOVMSKB r32,(x)mm 3 1 PEXTRW r32,(x)mm,i 1 MB 3 1 PEXTRB/D/Q r32/64,x,i 1 MB 3 1 PINSRW (x)mm,r32,i 2 MB 5 1 PINSRB/D/Q x,r32/64,i 2 MB 5 1 PMOVSX/ZXBW/BD/BQ/WD/WQ/DQ x,x 1 MB 1 1 Arithmetic instructions PADD/SUB(U)(S)B/W/D v,v 1 MB 1 1 PADDQ PSUBQ v,v 1 MB 1 1 1 PHADD(S)W v,v 3 MB 3 3 3 1	PALIGNR		1	MB	1	1 1
MASKMOVDQU x,x r32,(x)mm 3 1 PEXTRW r32,(x)mm,i 1 MB 3 1 PEXTRB/D/Q r32/64,x,i 1 MB 3 1 PINSRW (x)mm,r32,i 2 MB 5 1 PINSRB/D/Q x,r32/64,i 2 MB 5 1 PMOVSX/ZXBW/BD/BQ/WD/WQ/DQ x,x 1 MB 1 1 Arithmetic instructions PADD/SUB(U)(S)B/W/D v,v 1 MB 1 1 PADDQ PSUBQ v,v 1 MB 1 1 1 PHADD(S)W v,v 3 MB 3 3 3 PHADDD PHSUBD v,v 3 MB 3 3 3 PCMPEQ/GTB/W/D v,v 1 MB 1 1 1 PMULL/HW PMULHUW v,v 1 MA 3 1 PMULLDQ x,x 1 MA 3 1 <td>MASKMOVQ</td> <td></td> <td></td> <td></td> <td></td> <td>1-2</td>	MASKMOVQ					1-2
PMOVMSKB r32,(x)mm 3 1 PEXTRW r32,(x)mm,i 1 MB 3 1 PEXTRB/D/Q r32/64,x,i 1 MB 3 1 PINSRW (x)mm,r32,i 2 MB 5 1 PINSRB/D/Q x,r32/64,i 2 MB 5 1 PMOVSX/ZXBW/BD/BQ/WD/WQ/DQ x,x 1 MB 1 1 Arithmetic instructions PADD/SUB(U)(S)B/W/D v,v 1 MB 1 1 PADDQ PSUBQ v,v 1 MB 1 1 1 PHADD(S)W v,v 3 MB 3 3 3 PHADDD PHSUBD v,v 3 MB 3 3 3 PCMPEQ/GTB/W/D v,v 1 MB 1 1 1 PCMPEQQ x,x 1 MB 1 1 1 PMULL/HW PMULHUW v,v 1 MA 3 1	MASKMOVDQU					1-2
PEXTRW r32 (x)mm,i 1 MB 3 1 PEXTRB/D/Q r32/64,x,i 1 MB 3 1 PINSRW (x)mm,r32,i 2 MB 5 1 PINSRB/D/Q x,r32/64,i 2 MB 5 1 PMOVSX/ZXBW/BD/BQ/WD/WQ/DQ x,x 1 MB 1 1 Arithmetic instructions PADD/SUB(U)(S)B/W/D v,v 1 MB 1 1 PADD/SUBQ PSUBQ v,v 1 MB 1 1 1 PHADD(S)W v,v 3 MB 3 3 3 PHADDQ PSUBQ v,v 3 MB 3 3 PHADD(S)W N,v 3 MB 3 3 3 PHADDQ PSUBQ v,v 3 MB 3 3 3 PHADDQ(S)W N,v 3 MB 3 3 3 PMPCQ/GTB/W/D v,v 1 MB 1 1 1 PMULQ N,v	· ·	· .			3	1 1
PEXTRB/D/Q r32/64,x,i 1 MB 3 1 PINSRW (x)mm,r32,i 2 MB 5 1 PINSRB/D/Q x,r32/64,i 2 MB 5 1 PMOVSX/ZXBW/BD/BQ/WD/WQ/DQ x,x 1 MB 1 1 Arithmetic instructions PADD/SUB(U)(S)B/W/D v,v 1 MB 1 1 PADDQ PSUBQ v,v 1 MB 1 1 1 PHADD(S)W PHSUB(S)W v,v 3 MB 3 3 3 PHADDD PHSUBD v,v 3 MB 3 3 PCMPEQ/GTB/W/D v,v 1 MB 1 1 1 PCMPEQ/GTB/W/D v,v 1 MB 1 1 1 PMULL/HW PMULHUW v,v 1 MA 3 1 PMULHRSW v,v 1 MA 3 1 PMULUDQ x,x 1 MA 3 1 PMULDQ x,x 1 MA		· ' /	1	MB		
PINSRW (x)mm,r32,i 2 MB 5 1 PINSRB/D/Q x,r32/64,i 2 MB 5 1 PMOVSX/ZXBW/BD/BQ/BQ/WD/WQ/DQ x,x 1 MB 1 1 Arithmetic instructions PADD/SUB(U)(S)B/W/D v,v 1 MB 1 1 PADDQ PSUBQ v,v 1 MB 1 1 1 PHADD(S)W PHSUB(S)W v,v 3 MB 3 3 3 PHADDD PHSUBD v,v 3 MB 3 3 3 PCMPEQ/GTB/W/D v,v 1 MB 1 1 1 1 PCMPEQ/GTB/W/D v,v 1 MB 1 1 1 PCMPEQ/GTB/W/D v,v 1 MB 1 1 1 PCMPEQ/GTB/W/D v,v 1 MB 1 1 1 PCMPEQ/GTB/W/D v,v 1 MA 3 1 1 PMULL/HW PMULHUW v,v 1 MA 3 1<		1 ' '				
PINSRB/D/Q x,r32/64,i 2 MB 5 1 PMOVSX/ZXBW/BD/BQ/WD/WQ/DQ x,x 1 MB 1 1 Arithmetic instructions PADD/SUB(U)(S)B/W/D v,v 1 MB 1 1 PADDQ PSUBQ v,v 1 MB 1 1 1 PHADD(S)W PHADDD PHSUBD v,v 3 MB 3 3 3 PCMPEQ/GTB/W/D v,v 1 MB 1 1 1 PCMPEQ/GTB/W/D v,v 1 MB 1 1 1 PCMPEQQ x,x 1 MB 1 1 1 1 PMULL/HW PMULHUW v,v 1 MA 3 1 <td>· ·</td> <td></td> <td></td> <td></td> <td></td> <td></td>	· ·					
PMOVSX/ZXBW/BD/BQ/WD/WQ/DQ x,x 1 MB 1 1 Arithmetic instructions PADD/SUB(U)(S)B/W/D v,v 1 MB 1 1 PADDQ PSUBQ v,v 1 MB 1 1 PHADD(S)W PHSUB(S)W v,v 3 MB 3 3 PHADDD PHSUBD v,v 3 MB 3 3 PCMPEQ/GTB/W/D v,v 1 MB 1 1 PCMPEQ/GTB/W/D v,v 1 MB 1 1 PCMPEQ/GTB/W/D v,v 1 MB 1 1 PCMPEQ/GTB/W/D v,v 1 MB 1 1 PMULL/HW PMULHUW v,v 1 MA 3 1 PMULHRSW v,v 1 MA 3 1 PMULUDQ v,v 1 MA 3 1 PMULDQ x,x 1 MA 3 1 <t< td=""><td></td><td> ` ′ </td><td></td><td></td><td></td><td></td></t<>		` ′				
BQ/WD/WQ/DQ x,x 1	· ·	X,102/04,1	_	IVID		'
Arithmetic instructions		x.x	1	MB	1	1 1
PADD/SUB(U)(S)B/W/D v,v 1 MB 1 1 PADDQ PSUBQ v,v 1 MB 1 1 PHADD(S)W v,v 3 MB 3 3 PHADDD PHSUBD v,v 3 MB 3 3 PCMPEQ/GTB/W/D v,v 1 MB 1 1 PCMPEQQ x,x 1 MB 1 1 PMULL/HW PMULHUW v,v 1 MA 3 1 PMULHRSW v,v 1 MA 3 1 PMULUDQ v,v 1 MA 3 1 PMULUDQ v,v 1 MA 3 1 PMADDWD v,v 1 MA 3 1 PMADDUBSW v,v 7 10 8 PSADBW v,v 1 MB 2 1 MPSADBW x,x,i 1 MB 2 1		7,7	•	2	•	
PADD/SUB(U)(S)B/W/D v,v 1 MB 1 1 PADDQ PSUBQ v,v 1 MB 1 1 PHADD(S)W v,v 3 MB 3 3 PHADDD PHSUBD v,v 3 MB 3 3 PCMPEQ/GTB/W/D v,v 1 MB 1 1 PCMPEQQ x,x 1 MB 1 1 PMULL/HW PMULHUW v,v 1 MA 3 1 PMULHRSW v,v 1 MA 3 1 PMULUDQ v,v 1 MA 3 1 PMULUDQ v,v 1 MA 3 1 PMADDWD v,v 1 MA 3 1 PMADDUBSW v,v 7 10 8 PSADBW v,v 1 MB 2 1 MPSADBW x,x,i 1 MB 2 1	Arithmetic instructions					
PADDQ PSUBQ v,v 1 MB 1 1 PHADD(S)W V,v 1 MB 1 1 PHADD(S)W V,v 3 MB 3 3 PHADDD PHSUBD V,v 3 MB 3 3 PCMPEQ/GTB/W/D V,v 1 MB 1 1 PCMPEQ/GTB/W/D V,v 1 MB 1 1 PCMPEQ/GTB/W/D V,v 1 MB 1 1 PCMPEQ/GTB/W/D V,v 1 MB 1 1 PMULL/HW PMULHUW V,v 1 MA 3 1 PMULHRSW V,v 1 MA 3 1 PMULUDQ V,v 1 MA 3 1 PMULUDQ X,x 1 MA 3 1 PMADDWD V,v 1 MA 4 2 PMADDUBSW V,v 1 MB 2 1						
PADDQ PSUBQ v,v 1 MB 1 1 PHADD(S)W V,v 3 MB 3 3 PHADDD PHSUBD V,v 3 MB 3 3 PCMPEQ/GTB/W/D V,v 1 MB 1 1 PCMPEQQ x,x 1 MB 1 1 PMULL/HW PMULHUW V,v 1 MA 3 1 PMULHRSW V,v 1 MA 3 1 PMULUD x,x 1 MA 3 1 PMULUDQ v,v 1 MA 3 1 PMULDQ x,x 1 MA 3 1 PMADDWD v,v 1 MA 4 2 PMADDUBSW v,v 7 10 8 PSADBW v,v 1 MB 2 1 MPSADBW x,x,i 1 MB 2 1	., ., ., ., ., ., ., ., ., ., ., ., ., .	V.V	1	MB	1	1 1
PHADD(S)W PHSUB(S)W v,v 3 MB 3 3 PHADDD PHSUBD v,v 3 MB 3 3 PCMPEQ/GTB/W/D v,v 1 MB 1 1 PCMPEQQ x,x 1 MB 1 1 PCMPEQQ x,x 1 MB 1 1 PMULL/HW PMULHUW v,v 1 MA 3 1 PMULHRSW v,v 1 MA 3 1 PMULLD x,x 1 MA 3 1 PMULUDQ v,v 1 MA 3 1 PMULDQ x,x 1 MA 3 1 PMADDWD v,v 1 MA 4 2 PMADDUBSW v,v 7 10 8 PSADBW v,v 1 MB 2 1 MPSADBW x,x,i 1 MB 2 1	PADDQ PSUBQ		1	MB	1	1 1
PHSUB(S)W v,v 3 MB 3 3 PHADDD PHSUBD v,v 3 MB 3 3 PCMPEQ/GTB/W/D v,v 1 MB 1 1 PCMPEQQ x,x 1 MB 1 1 PCMPEQQ x,x 1 MB 1 1 PMULL/HW PMULHUW v,v 1 MA 3 1 PMULHRSW v,v 1 MA 3 1 PMULUD x,x 1 MA 3 1 PMULUDQ v,v 1 MA 3 1 PMULDQ x,x 1 MA 3 1 PMADDWD v,v 1 MA 4 2 PMADDUBSW v,v 7 10 8 PSADBW v,v 1 MB 2 1 MPSADBW x,x,i 1 MB 2 1	PHADD(S)W					
PCMPEQ/GTB/W/D v,v 1 MB 1 1 PCMPEQQ x,x 1 MB 1 1 PMULL/HW PMULHUW v,v 1 MA 3 1 PMULHRSW v,v 1 MA 3 1 PMULLD x,x 1 MA 3 1 PMULUDQ v,v 1 MA 3 1 PMULDQ x,x 1 MA 3 1 PMADDUBQ v,v 1 MA 4 2 PMADDUBSW v,v 7 10 8 PSADBW v,v 1 MB 2 1 MPSADBW x,x,i 1 MB 2 1		V,V	3	MB	3	3
PCMPEQQ x,x 1 MB 1 1 PMULL/HW PMULHUW v,v 1 MA 3 1 PMULHRSW v,v 1 MA 3 1 PMULLD x,x 1 MA 3 1 PMULUDQ v,v 1 MA 3 1 PMULDQ x,x 1 MA 3 1 PMADDWD v,v 1 MA 4 2 PMADDUBSW v,v 7 10 8 PSADBW v,v 1 MB 2 1 MPSADBW x,x,i 1 MB 2 1	PHADDD PHSUBD	V,V	3	MB	3	3
PMULL/HW PMULHUW v,v 1 MA 3 1 PMULHRSW v,v 1 MA 3 1 PMULLD x,x 1 MA 3 1 PMULUDQ v,v 1 MA 3 1 PMULDQ x,x 1 MA 3 1 PMADDWD v,v 1 MA 4 2 PMADDUBSW v,v 7 10 8 PSADBW v,v 1 MB 2 1 MPSADBW x,x,i 1 MB 2 1	PCMPEQ/GTB/W/D	V,V	1	MB	1	1
PMULHRSW v,v 1 MA 3 1 PMULLD x,x 1 MA 3 1 PMULUDQ v,v 1 MA 3 1 PMULDQ x,x 1 MA 3 1 PMADDWD v,v 1 MA 4 2 PMADDUBSW v,v 7 10 8 PSADBW v,v 1 MB 2 1 MPSADBW x,x,i 1 MB 2 1	PCMPEQQ	x,x	1	MB	1	1 1
PMULLD x,x 1 MA 3 1 PMULUDQ v,v 1 MA 3 1 PMULDQ x,x 1 MA 3 1 PMADDWD v,v 1 MA 4 2 PMADDUBSW v,v 7 10 8 PSADBW v,v 1 MB 2 1 MPSADBW x,x,i 1 MB 2 1	PMULL/HW PMULHUW	V,V	1	MA	3	1 1
PMULUDQ v,v 1 MA 3 1 PMULDQ x,x 1 MA 3 1 PMADDWD v,v 1 MA 4 2 PMADDUBSW v,v 7 10 8 PSADBW v,v 1 MB 2 1 MPSADBW x,x,i 1 MB 2 1	PMULHRSW	V,V	1	MA	3	1 1
PMULDQ x,x 1 MA 3 1 PMADDWD v,v 1 MA 4 2 PMADDUBSW v,v 7 10 8 PSADBW v,v 1 MB 2 1 MPSADBW x,x,i 1 MB 2 1	PMULLD	x,x	1	MA	3	1 1
PMADDWD v,v 1 MA 4 2 PMADDUBSW v,v 7 10 8 PSADBW v,v 1 MB 2 1 MPSADBW x,x,i 1 MB 2 1	PMULUDQ	V,V	1	MA	3	1
PMADDUBSW v,v 7 10 8 PSADBW v,v 1 MB 2 1 MPSADBW x,x,i 1 MB 2 1	PMULDQ	x,x	1	MA	3	1
PSADBW v,v 1 MB 2 1 MPSADBW x,x,i 1 MB 2 1	PMADDWD	V,V	1	MA	4	2
MPSADBW x,x,i 1 MB 2 1		v,v	7		10	8
	PSADBW	v,v	1	MB		1
PAVGB/W		x,x,i	1		2	1
	PAVGB/W	v,v	1	MB	1	1

PMIN/MAXSW	V,V	1	MB	1	1	
PMIN/MAXUB	V,V	1	MB	1	1	
PMIN/MAXSB/D	x,x	1	MB	1	1	
PMIN/MAXUW/D	x,x	1	MB	1	1	
PHMINPOSUW	x,x	1	MB	2	1	
PABSB PABSW PABSD						
	V,V	1	MB	1	1	
PSIGNB PSIGNW						
PSIGND	V,V	1	MB	1	1	
Logic instructions						
PAND(N) POR PXOR	V,V	1	MB	1	1	
PTEST	V,V	1	MB	3	1	
PSLL/RL/RAW/D/Q	V,V	1	MB	1	1	
PSLL/RL/RAW/D/Q	(x)xmm,i	1	MB	1	1	
PSLL/RLDQ	x,i	1	MB	1	1	
Other						
EMMS		1	MB		1	

Floating point XMM instructions

	Operands	µops	Port	Latency	Reciprocal thruogh-	Remarks
Move instructions					put	
MOVAPS/D	x,x	1	MB	1	1	
MOVAPS/D	x,m128	1	LD	2	1	
MOVAPS/D	m128,x	1	SA ST	2	1 1	
MOVUPS/D	x,m128	1	LD	2	1 1	
MOVUPS/D	m128,x	2	SA ST	2	1	
MOVSS/D	x,x	1	MB	1	1 1	
MOVSS/D	x,m32/64	1	LD	2-3	1	
MOVSS/D	m32/64,x	2	SA ST	2-3	1-2	
MOVHPS/D	x,m64	2		6	1	
MOVLPS/D	x,m64	2		6	1	
MOVHPS/D	m64,x	3		6	1-2	
MOVLPS/D	m64,x	1		2	1-2	
MOVLHPS MOVHLPS	x,x	1		1	1	
MOVMSKPS/D	r32,x			3	1	
MOVNTPS/D	m128,x	2		~360	1-2	
SHUFPS	x,x,i	1	MB	1	1	
SHUFPD	x,x,i	1	MB	1	1	
MOVDDUP	x,x	1	MB	1	1	
MOVSH/LDUP	x,x	1	MB	1	1	
UNPCKH/LPS	x,x	1	MB	1	1	
UNPCKH/LPD	x,x	1	MB	1	1	
Conversion						
CVTPD2PS	x,x	2		5	2	
CVTSD2SS	x,x	1		2		
CVTPS2PD	x,x	2		5	1 1	

CVTSS2SD	X,X	1		2	
CVTDQ2PS	x,x	1	MB	3	1
CVT(T) PS2DQ	x,x	1		2	1
CVTDQ2PD	x,x	2		5	1
CVT(T)PD2DQ	x,x			4	2
CVTPI2PS	x,mm	2		5	2
CVT(T)PS2PI	mm,x	1		4	1
CVTPI2PD	x,mm	2		4	1
CVT(T) PD2PI	mm,x	2		4	2
CVTSI2SS	x,r32	2		5	
CVT(T)SS2SI	r32,x	1		4	1
CVTSI2SD	x,r32	2		5	
CVT(T)SD2SI	r32,x	1		4	1
0 1 (1)00201	102,7	'			'
Arithmetic					
ADDSS SUBSS	X,X	1	MBfadd	2	1
ADDSD SUBSD	x,x	1	MBfadd	2	1
ADDPS SUBPS	x,x	1	MBfadd	2	1
ADDPD SUBPD	x,x	1	MBfadd	2	1
ADDSUBPS	x,x	1	MBfadd	2	1
ADDSUBPD	X,X	1	MBfadd	2	1
HADDPS HSUBPS	X,X	3	MBfadd	5	3
HADDPD HSUBPD	X,X	3	MBfadd	5	3
MULSS	X,X	1	MA	3	1
MULSD	X,X X,X	1	MA	4	2
MULPS	X,X X,X	1	MA	3	1
MULPD	X,X X,X	1	MA	4	2
DIVSS	X,X X,X	1	MA	13	13
DIVSD	x,x x,x	1	MA	13-20	13-20
DIVPS		1	MA	24	24
DIVPD	X,X	1	MA	21-38	21-38
RCPSS	X,X		MA	5	
	X,X	1			5
RCPPS	X,X	3	MA	14	11
CMPccSS/D	X,X	1	MBfadd	2 2	1 1
CMPccPS/D COMISS/D UCOMISS/D	X,X	1	MBfadd		l
COMISS/D OCOMISS/D	x,x	1	MBfadd	3	1
MAXSS/D MINSS/D	X,X X,X	1	MBfadd	2	1
MAXPS/D MINPS/D	X,X X,X	1	MBfadd	2	1
WAXI O/D WIIN O/D	^,^	'	Mibiadd		ı
Math					
SQRTSS	X,X	1	MA	33	33
SQRTPS	x,x	1	MA	64	64
SQRTSD	X,X	1	MA	62	62
SQRTPD	x,x	1	MA	122	122
RSQRTSS	x,x	1		5	5
RSQRTPS	x,x	3		14	11
Logic					
ANDPS/D	X,X	1	MB	1	1

ANDNPS/D	x,x	1	MB	1	1	
ORPS/D	X,X	1	MB	1	1	
XORPS/D	x,x	1	MB	1	1	
Other						
LDMXCSR	m32				31	
STMXCSR	m32				13	
FXSAVE	m4096				97	
FXRSTOR	m4096				201	

VIA-specific instructions

Instruction	Conditions	Clock cycles, approximately
XSTORE	Data available	160-400 clock giving 8 bytes
XSTORE	No data available	50-80 clock giving 0 bytes
REP XSTORE	Quality factor = 0	1300 clock per 8 bytes
REP XSTORE	Quality factor > 0	5455 clock per 8 bytes
REP XCRYPTECB	128 bits key	15 clock per 16 bytes
REP XCRYPTECB	192 bits key	17 clock per 16 bytes
REP XCRYPTECB	256 bits key	18 clock per 16 bytes
REP XCRYPTCBC	128 bits key	29 clock per 16 bytes
REP XCRYPTCBC	192 bits key	33 clock per 16 bytes
REP XCRYPTCBC	256 bits key	37 clock per 16 bytes
REP XCRYPTCTR	128 bits key	23 clock per 16 bytes
REP XCRYPTCTR	192 bits key	26 clock per 16 bytes
REP XCRYPTCTR	256 bits key	27 clock per 16 bytes
REP XCRYPTCFB	128 bits key	29 clock per 16 bytes
REP XCRYPTCFB	192 bits key	33 clock per 16 bytes
REP XCRYPTCFB	256 bits key	37 clock per 16 bytes
REP XCRYPTOFB	128 bits key	29 clock per 16 bytes
REP XCRYPTOFB	192 bits key	33 clock per 16 bytes
REP XCRYPTOFB	256 bits key	37 clock per 16 bytes
REP XSHA1		5 clock per byte
REP XSHA256		5 clock per byte