Chan and Golab Page Ronk

Introduction

PageRank is Google's way of determining the relevancy/importance of any given web page. It does this by tooking at a) the number of links going into a page

- b) how important the sources of those incoming links are
- c) how many other links the source of a given link has.

PageRank uses the "random surfer" model - a bored internet user mindlessly clicking on links available in a page. The actual PageRank value is the probability that this user will end up on some given page in a very large, but finite number of clicks.

Computational Varieties

Variant 1: Monte Carlo

- a) Choose a page (yertex) at random
- b) Choose a large integer k
- c) Follow a link on the page (an outgoing edge)
 k times uniformly at random
- d) Average the final results over a bunch of trials to determine probability

This is a totally okay variont, and isn't too difficult to understand. Given it's nature, though, it's hard to know how accurate your final result is.

mat's why	the linear algebra method exists
Variant 2:	Linear Algebra
a) Con Usi	Linear Algebra sider all possible starting positions simultaneously ng a stochastic vector onsider all possible out-edges simultaneously
b) Co	onsider all possible out-edges simultaneously ling a stochastic matrix
c) Ri	epeatedly multiply the vector by the matrix until converges or an iteration limit is reached
Okay, so woon example	what the fuck does that mean? Let's go through
ex.	This graph represents our network of connected
	[2] = 3 [4] who pages.
We'll solve	this using steps.
D Assign 1	uniformly random probabilities to edge transitions.
1 has 3 t	ransitions: $1 \rightarrow 2: \frac{1}{3}$ $1 \rightarrow 3: \frac{1}{3}$
2 has 2 t	ransitions: $2 \rightarrow 4: \frac{1}{2}$ $2 \rightarrow 3: \frac{1}{2}$
3 has 1 -	transition: 3 > 1:1 transitions: 4 > 1:1/2
T Mus a	4 -3: 1/2

2) Construct a transition matrix from the assigned probabilities.
Each column is one web page, and each row is the transition to a corresponding page's probability.
4 [0 0 1 ½] So A; (i=row, j=column) is 3 1/3 0 0 0 the probability of transitioning 2 1/3 ½ 0 0 1 1 2 3 4 A41 = ½, for example, as we've identified earlier. As these are representative of probabilities, each COLUMN must sum to 1 (not needed for rows).
3) Create an initial rank vector with even probability distribution.
We've got four nodes, so $v = \begin{bmatrix} 47 \\ 44 \\ 44 \end{bmatrix}$
4) Calculate Av, then A2v, then A3v, etc, until the result converges.
Quick reminder on matrix multiplication.
$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \times \begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix} = \begin{bmatrix} m_{11} \\ m_{21} \end{bmatrix}$ $(2) by 3 \qquad 3by (1) = (2) by (1)$ $boug to match$
match

where	m11 =	au x 611	+	012× 621	+	013631
	m21 =	021 x p11	+	azzxbai	+	a23 x 631

Assuch,

$$\begin{bmatrix}
0 & 0 & 1 & 1/2 \\
1/3 & 0 & 0 & 0 \\
1/3 & 1/2 & 0 & 1/2 \\
1/3 & 1/2 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
1/4 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1/4 & 0 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1/4 & 0 & 0 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1/4 & 0 & 0 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1/4 & 0 & 0 & 0 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1/4 & 0 & 0 & 0 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1/4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1/4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1/4 & 0 & 0 & 0 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1/4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$a_{11} = (0)(14) + (0)(14) + (1)(14) + (12)(14)$$

= 3/8

$$0.41 = (13)(14) + (12)(14) + (0)(14) + (0)(14)$$

:. Ay=	[3/8]	To spare us the	ATV = [0.38], A8V	= [0.38]
	1/12	calculation	0.12	0.12
	1/3	trouble,	0.29	0.29
	[5/24]	,	10.19]	Lo.19]

And since it converges, the pageranks of 1, 2, 3, 4 are 0.38, 0.12, 0.29, and 0.19, respectively.

This result is EXACTLY the eigenvector of A with $\lambda=1$. What closs this mean, again?

Let's put this another way. The eigenvalue (2) Must be 1. How do we get an eigenvector from A, knowing that?
$ \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 1/3 & 0 & 0 & 0 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 $
This is the expression for how to find the eigenvector. We can solve this by converting it to a system of equations.
$ \begin{cases} 0a + 0b + c + 1/2d = a & a = 0.38 \\ 1/3a + 0b + 0c + 0d = b = 7 & b = 0.12 \end{cases} $ $ \frac{1}{3}a + 1/2b + 0c + 1/2d = c & c = 0.29 $ $ \frac{1}{3}a + 1/2b + 0c + 0d = d & d = 0.19 $
Some questions: 1) Does an eigenvector for $\lambda = 1$ exist for A ? 2) Is there a unique eigenvector, with unique values? 3) Will the power method converge on the eigenvector? 4) Will the power method converge at all? I deally, all of these should be yes. But when are they no? We can answer these questions with another example.
ex. 1 Here, we have a dangling node - one with no outbound transitions
This creates $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$ $V = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$ doesn't sum to 1!

This creates
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
which converges at Av= 1/5 We've converged, but the 1/5 eigenvector doesn't have 1/5 unique values. We want 1/5 a distinct ordering of 1/5 pages, so this won't do, especially when 3/4/5 are arguably more important than 1/2 as they have more incoming links.
One more.
D=2=3
This one has no dangling nodes and its nodes area't disjoint, so we should expect it to work, right?
$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix} V = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$
$A_{V} = \begin{bmatrix} 1/6 \\ 2/3 \\ 1/6 \end{bmatrix} \qquad A_{V} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix} \qquad A_{V} = \begin{bmatrix} 1/6 \\ 2/3 \\ 1/6 \end{bmatrix}$
You thought wrong. The value never converges

0 #			
Convergence The	YYOS		
Theorem 1 (Perron	-Frobenius):		
A real	square matrix w	11th POSITIVE	
entries	has a dominant	real eigenvalue	
The con	rresponding eigen and contains a vec	rspace has dimer	sion
		tor with strictly	
Positive	components.		
Definition 1:			
A mate	ix is column stoc	hastic if it is	
	all entries are R		
	GATIVE, and all		
to one.			
Theorem 2:			
71	1 1	a cal	
The lan	gest real eigenval stic matrix is λ=1	ve of a column.	
Corollary:			
A colum	nn stochastic mo	atrix with positiv	e
	has a dominant		
Ainenvo	lue 2=1 with mi	Atiplicity one and	1 1+5
eigensq	pare contains ay	rector with positi	VC .
compar	nents		

So in summary, it means if we can make a) a square matrix
b) whose columns sum to 1
() and whose values are strictly positive
then that means we'll converge using the power method
But how do we avoid Os in our probability matrices?
We give the user a chance to get bored with a page and randomly browse to any other page.
We create a new matrix M:
$M = (1-d) \left[\frac{1}{n} \frac{1}{n} + d \left[a \right] \right]$
a mark hit v
vsergets bored probability user is still interested and keeps following
We add in a damping factor of as a probability that the
User is still interested. This allows us to create a column
stochastic matrix with only positive values, which by
the Perron-Frobenius theorem gives us an eigenvector of multiplicity one (unique values) with the eigenvalue $\lambda=1$.
We then perform MV, M2V, etc, until we converge on
the guaranteed eigenvector