#### Introdução a Ciências de Dados

# Aula 8: Classificação: SVM, Avaliação de modelos

Francisco A. Rodrigues ICMC/USP francisco@icmc.usp.br







## Aula 8: Classificação

- **Support Vector Machines**
- Avaliando Modelos de Classificação















#### Ideia básica:

Dada duas classes, como separá-las linearmente?









#### Equação de um plano:

$$\overrightarrow{PP_0} \cdot \overrightarrow{n} = (\overrightarrow{r} - \overrightarrow{r_0}) \cdot \overrightarrow{n} = (x - x_0, y - y_0, z - z_0) \cdot (a, b, c) = 0$$
$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$



$$ax + by + cz + d = 0$$

$$d = -(ax_0 + by_0 + cz_0)$$

• Usando a notação de ML:

$$w_0 + w_1 x_1 + \dots + w_d x_d + b = 0$$

$$\mathbf{w} \cdot \mathbf{x} + b = 0$$





#### Ideia básica:

• Objetivamos maximizar a margem e a separação entre as classes.







#### Método

Para classes linearmente separáveis, a região de separação:



$$\mathbf{w} \cdot \mathbf{x} + b = 0,$$

w e b são os parâmetros do modelo.

Se x<sub>a</sub> e x<sub>b</sub> são pontos na superfície de decisão:

$$\mathbf{w} \cdot \mathbf{x}_a + b = 0,$$
  
$$\mathbf{w} \cdot \mathbf{x}_b + b = 0.$$

Subtraindo:

$$\mathbf{w}\cdot(\mathbf{x}_b-\mathbf{x}_a)=0,$$

Ou seja, como o produto escalar é nulo, temos que w deve ser perpendicular à superfície de decisão.







#### Método

A regra de decisão:



$$y = \begin{cases} 1, & \text{if } \mathbf{w} \cdot \mathbf{z} + b > 0; \\ -1, & \text{if } \mathbf{w} \cdot \mathbf{z} + b < 0. \end{cases}$$

 Podemos estimar a margem de separação. Sejam dois hiperplanos paralelos:

$$b_{i1}: \mathbf{w} \cdot \mathbf{x} + b = 1,$$
  
 $b_{i2}: \mathbf{w} \cdot \mathbf{x} + b = -1.$ 

Subtraindo:

$$\mathbf{w} \cdot (\mathbf{x}_1 - \mathbf{x}_2) = 2$$
$$\|\mathbf{w}\| \times d = 2$$
$$\therefore d = \frac{2}{\|\mathbf{w}\|}.$$





#### Método

Ou seja, os parâmetros do modelo devem ser escolhidos tal que:

$$\mathbf{w} \cdot \mathbf{x_i} + b \ge 1 \text{ if } y_i = 1,$$
  
 $\mathbf{w} \cdot \mathbf{x_i} + b \le -1 \text{ if } y_i = -1.$ 

Essa relação pode ser representada por uma única equação:

$$y_i(\mathbf{w} \cdot \mathbf{x_i} + b) \ge 1, \quad i = 1, 2, \dots, N.$$

#### Método

- Como queremos maximizar a margem de separação, podemos definir o problema para classes linearmente separáveis:
- **Definição**: A tarefa de aprendizado usando SVM pode ser sumarizado pelo problema de otimização:

$$\min_{\mathbf{w}} \frac{\|\mathbf{w}\|^2}{2}$$
 subject to  $y_i(\mathbf{w} \cdot \mathbf{x_i} + b) \geq 1, \ i = 1, 2, \dots, N.$ 

$$\min_{\mathbf{w}} \frac{\|\mathbf{w}\|^2}{2}$$
 subject to  $y_i(\mathbf{w} \cdot \mathbf{x_i} + b) \geq 1, \ i = 1, 2, \dots, N.$ 

• Esse é um problema de otimização convexa e pode ser resolvido usando-se multiplicadores de Lagrange.

$$L_P = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^N \lambda_i \bigg( y_i (\mathbf{w} \cdot \mathbf{x_i} + b) - 1 \bigg), \qquad \underbrace{\begin{array}{c} \partial L_p \\ \partial \mathbf{w} \end{array}}_{} = 0 \Longrightarrow \mathbf{w} = \sum_{i=1}^N \lambda_i y_i \mathbf{x}_i, \\ \frac{\partial L_p}{\partial b} = 0 \Longrightarrow \sum_{i=1}^N \lambda_i y_i = 0. \end{array}$$

#### Método

- Como não sabemos os valores do multiplicadores de Lagrange, não podemos resolver para w e b.
- Restringindo ao caso em que os multiplicadores são não-negativos, podemos usar as condições de Karush-Kuhn-Tucker (KKT):

$$\lambda_i \ge 0,$$
  
 $\lambda_i [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1] = 0.$ 

- Nesse caso, os multiplicadores são diferentes de zero apenas no caso em que i é um vetor de suporte (está no plano que define as margens).
- Usando esses resultados nas equações anteriores, obtemos uma nova versão da função:  $L_D = \sum_{i=1}^N \lambda_i \frac{1}{2} \sum_{i,i} \lambda_i \lambda_j y_i y_j \mathbf{x_i} \cdot \mathbf{x_j}.$

#### Método

$$L_D = \sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j \mathbf{x_i} \cdot \mathbf{x_j}.$$

- Resolvendo usando otimização quadrática, os multiplicadores de Lagrange.
- Inserindo em:

$$\frac{\partial L_p}{\partial \mathbf{w}} = 0 \Longrightarrow \mathbf{w} = \sum_{i=1}^N \lambda_i y_i \mathbf{x}_i,$$

$$\lambda_i \big[ y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1 \big] = 0.$$

- E resolvendo, obtemos os parâmetros w e b.
- A superfície de decisão pode ser expressa por:

$$\left(\sum_{i=1}^{N} \lambda_i y_i \mathbf{x_i} \cdot \mathbf{x}\right) + b = 0.$$



#### Método

 Para classificar uma nova observação z, basta verificar o sinal da função:

$$f(\mathbf{z}) = sign(\mathbf{w} \cdot \mathbf{z} + b) = sign\left(\sum_{i=1}^{N} \lambda_i y_i \mathbf{x_i} \cdot \mathbf{z} + b\right).$$

- f(z) > 0, z pertence à classe 1
- f(z) < 0, z pertence à classe -1</li>

#### **Exemplo:**



| <b>x</b> <sub>1</sub> | x <sub>2</sub> | у  | Lagrange<br>Multiplier |
|-----------------------|----------------|----|------------------------|
| 0.3858                | 0.4687         | 1  | 65.5261                |
| 0.4871                | 0.611          | -1 | 65.5261                |
| 0.9218                | 0.4103         | -1 | 0                      |
| 0.7382                | 0.8936         | -1 | 0                      |
| 0.1763                | 0.0579         | 1  | 0                      |
| 0.4057                | 0.3529         | 1  | 0                      |
| 0.9355                | 0.8132         | -1 | 0                      |
| 0.2146                | 0.0099         | 1  | 0                      |





#### Caso não separável

 Caso as classes não sejam perfeitamente separáveis linearmente, devemos estabelecer um equilíbrio entre o número de elementos classificados erroneamente e a largura da margem:







#### Caso não separável

 Nesse caso, devemos definir uma margem de folga.

 Assim, temos que o problema de classificação se torna:

$$\mathbf{w} \cdot \mathbf{x_i} + b \ge 1 - \xi_i \quad \text{if } y_i = 1,$$

$$\mathbf{w} \cdot \mathbf{x_i} + b \le -1 + \xi_i \quad \text{if } y_i = -1,$$

$$\xi_i > 0.$$









#### Caso não separável

Nesse caso, a nova função objetivo:

$$f(\mathbf{w}) = \frac{\|\mathbf{w}\|^2}{2} + C(\sum_{i=1}^{N} \xi_i)^k,$$

E a função de Lagrange:

$$L_P = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \lambda_i \{y_i(\mathbf{w} \cdot \mathbf{x_i} + b) - 1 + \xi_i\} - \sum_{i=1}^{N} \mu_i \xi_i,$$



#### Caso não separável

Otimizando a Lagrangeana:

$$\frac{\partial L}{\partial w_j} = w_j - \sum_{i=1}^N \lambda_i y_i x_{ij} = 0 \implies w_j = \sum_{i=1}^N \lambda_i y_i x_{ij}.$$

$$\frac{\partial L}{\partial b} = -\sum_{i=1}^N \lambda_i y_i = 0 \implies \sum_{i=1}^N \lambda_i y_i = 0.$$

$$\frac{\partial L}{\partial \varepsilon_i} = C - \lambda_i - \mu_i = 0 \implies \lambda_i + \mu_i = C.$$

#### Caso não separável

Usando as condições de Karush-Kuhn-Tucker:

$$\xi_{i} \geq 0, \quad \lambda_{i} \geq 0, \quad \mu_{i} \geq 0,$$

$$\lambda_{i} \{y_{i}(\mathbf{w} \cdot \mathbf{x}_{i} + b) - 1 + \xi_{i}\} = 0,$$

$$\mu_{i} \xi_{i} = 0.$$

$$L_{D} = \frac{1}{2} \sum_{i,j} \lambda_{i} \lambda_{j} y_{i} \mathbf{x}_{i} \cdot \mathbf{x}_{j} + C \sum_{i} \xi_{i}$$

$$-\sum_{i} \lambda_{i} \{y_{i}(\sum_{j} \lambda_{j} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j} + b) - 1 + \xi_{i}\}$$

$$-\sum_{i} (C - \lambda_{i}) \xi_{i}$$

$$= \sum_{i=1}^{N} \lambda_{i} - \frac{1}{2} \sum_{i,j} \lambda_{i} \lambda_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j},$$

• O procedimento restante é similar ao caso separável.

#### Caso não separável

 O parâmetro C é definido pelo usuário.







#### Caso não linear:

 No caso não linear, a ideia é transformar os dados de forma que estes possam ser linearmente separados nesse novo espaço transformado.





$$y(x_1, x_2) = \begin{cases} 1 & \text{if } \sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} > 0.2, \\ -1 & \text{otherwise.} \end{cases}$$



#### Caso não linear:

• Ou seja, escolhemos a transformação:

$$\Phi: (x_1, x_2) \longrightarrow (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, 1).$$







#### Caso não linear:

O problema de otimização se torna:

$$\min_{\mathbf{w}} \frac{\|\mathbf{w}\|^2}{2}$$
 subject to  $y_i(\mathbf{w} \cdot \Phi(\mathbf{x}_i) + b) \geq 1, \ i = 1, 2, \dots, N.$ 

#### Caso não linear:

Onde a Lagrangeana é dada por:

$$L_D = \sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j)$$

 Procedendo como anteriormente, os parâmetros w e b são obtidos a partir das equações:

$$\mathbf{w} = \sum_{i} \lambda_{i} y_{i} \Phi(\mathbf{x}_{i})$$
$$\lambda_{i} \{ y_{i} (\sum_{i} \lambda_{j} y_{j} \Phi(\mathbf{x}_{j}) \cdot \Phi(\mathbf{x}_{i}) + b) - 1 \} = 0,$$





#### Caso não linear:

 Para classificar uma nova observação z, basta verificar o sinal da função:

$$f(\mathbf{z}) = sign(\mathbf{w} \cdot \Phi(\mathbf{z}) + b) = sign\left(\sum_{i=1}^{n} \lambda_i y_i \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{z}) + b\right).$$

- f(z) > 0, z pertence à classe 1
- f(z) < 0, z pertence à classe -1</li>







#### Função kernel:

- O cálculo do produto escalar Φ(xi)·Φ(xj) pode ser complicado e sofre com o problema da maldição da dimensionalidade.
- Esse produto escalar pode ser entendido como uma medida de similaridade entre as observações xi e xj no espaço transformado.
- Por exemplo, para a transformação:

Temos:

$$\Phi: (x_1, x_2) \longrightarrow (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, 1).$$

$$\begin{array}{lll} \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) & = & (u_1^2, u_2^2, \sqrt{2}u_1, \sqrt{2}u_2, 1) \cdot (v_1^2, v_2^2, \sqrt{2}v_1, \sqrt{2}v_2, 1) \\ & = & u_1^2v_1^2 + u_2^2v_2^2 + 2u_1v_1 + 2u_2v_2 + 1 \\ & = & (\mathbf{u} \cdot \mathbf{v} + 1)^2. \end{array} \qquad \qquad \text{A função kernel:} \\ K(\mathbf{u}, \mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^2.$$





#### Função kernel:

- A função kernel permite operar no espaço de características original sem calcular as coordenadas dos dados no espaço de dimensão maior.
- Ex:

$$K(\mathbf{u}, \mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^2.$$







#### Função kernel:

Ex: Região de separação obtida com kernel não-linear:

$$K(\mathbf{u}, \mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^2.$$



$$\begin{split} f(\mathbf{z}) &= sign(\sum_{i=1}^n \lambda_i y_i \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{z}) + b) \\ &= sign(\sum_{i=1}^n \lambda_i y_i K(\mathbf{x}_i, \mathbf{z}) + b) \\ &= sign(\sum_{i=1}^n \lambda_i y_i (\mathbf{x}_i \cdot \mathbf{z} + 1)^2 + b), \end{split}$$





#### Função kernel:

- Exemplos de funções kernel:
- Kernel polinomial:  $K(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i \cdot \mathbf{x}_j + 1)^d$
- Kernel gaussiano:  $K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{||\mathbf{x}_i \mathbf{x}_j||^2}{2\sigma^2})$
- Gaussian radial basis function (RBF)

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\gamma ||\mathbf{x}_i - \mathbf{x}_j||^2)$$

Hyperbolic tangent kernel

$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\kappa \mathbf{x}_i \cdot \mathbf{x}_j + c)$$

#### **Propriedades:**

- SVM pode ser formulado como um problema de otimização convexa, sendo que há diversos softwares eficientes para encontrar o mínimo global.
- SVM pode ser usado com variáveis categóricas, desde que façamos a sua transformação para inteiros ou usar one-hot-encoding.
- SVM pode ser estendido para mais de duas classes.













- Não existe técnica de AM universal, que se saia melhor em qualquer tipo de problema (*No free lunch theorem*).
- Mesmo que um único algoritmo seja escolhido, variações de parâmetros produzem diferentes modelos.
- Como comparar modelos e parâmetros dos modelos?
- Métricas para classificação:
  - Taxa de erro
  - Acurácia
- Métricas para regressão:
  - Erro quadrático médio
  - Distância absoluta média



#### Taxa de erro de um classificador:

$$E(f) = \frac{1}{n} \sum_{i=1}^{n} I(y_i \neq f(\mathbf{x}_i))$$

- Onde I(.) é a função indicadora, sendo igual a 1 se a entrada for verdadeira.
- E(f) varia entre zero e um, sendo melhor quando for próximo de zero.

#### Taxa de acerto (acurácia)

$$Ac(f) = 1 - E(f) = 1 - \frac{1}{n} \sum_{i=1}^{n} I(y_i \neq f(\mathbf{x}_i))$$

- Proporção de exemplos classificados corretamente em um conjunto com n objetos.
- Varia entre 0 e 1 e valores próximos de 1 são melhores.

#### Matriz de confusão

- Linhas representam classes verdadeiras.
- Colunas representam classes preditas.
  - Elemento Aij: número de exemplos da classe ci classificados como pertencentes à classe cj.
- Diagonal da matriz: acertos do classificador.
- Elementos fora da diagonal: erros cometidos.

#### Dados da Iris

| Clase<br>Predita | Classe Correcta |            |           |  |
|------------------|-----------------|------------|-----------|--|
|                  | Setosa          | Versicolor | Virgínica |  |
| Setosa           | 15              | 0          | 0         |  |
| Versicolor       | 0               | 14         | 1         |  |
| Virginica        | 0               | 1          | 4         |  |





#### Problema de duas classes:

• Tipos de erros:







#### Problema de duas classes:

Medidas de desempenho:

| ~1      | -    |      |
|---------|------|------|
| ( 12000 | Drac | 1110 |
| Classe  | LICC | шa   |

|          | Positivo               | Negativo                    |
|----------|------------------------|-----------------------------|
| itivo    | Verdadeiro             | Falso                       |
| Posi     | Positivo (VP)          | Negativo (FN)               |
| Negativo | Falso<br>Positivo (FP) | Verdadeiro<br>Negativo (VN) |

Sensibilidade: VP/(VP + FN)

Precisão: VP/(VP + FP)

Especificidade: VN/(VN + FP)





#### Problema de duas classes:

- Medidas de desempenho:
  - Erro total:

$$E(f) = \frac{FP + FN}{n}$$

Acurácia total:

$$Ac(f) = \frac{VP + VN}{n}$$

o Precisão:

$$\operatorname{Prec}(f) = \frac{VP}{VP + FP}$$

| Verdadeiro    | Falso         |  |
|---------------|---------------|--|
| Positivo (VP) | Negativo (FN) |  |
| Falso         | Verdadeiro    |  |
| Positivo (FP) | Negativo (VN) |  |





#### Problema de duas classes:

- Medidas de desempenho:
  - Sensibilidade ou revocação:

$$S(f) = \frac{VP}{VP + FN}$$

Especificidade:

$$\operatorname{Esp}(f) = \frac{VN}{VN + FP}$$

o Medida F1:

$$F1(f) = \frac{2S(f)\operatorname{Prec}(f)}{S(f) + \operatorname{Prec}(F)}$$

| Verdadeiro    | Falso         |  |
|---------------|---------------|--|
| Positivo (VP) | Negativo (FN) |  |
| Falso         | Verdadeiro    |  |
| Positivo (FP) | Negativo (VN) |  |





#### Problema de duas classes:

Exemplo:

• Acurácia:

$$Ac(f) = \frac{VP + VN}{n} = \frac{70 + 60}{200} = 0.65$$

• Precisão:

$$Prec(f) = \frac{VP}{VP + FP} = \frac{70}{70 + 40} = 0.64$$

· Sensitividade:

$$S(f) = \frac{VP}{VP + FN} = \frac{70}{70 + 30} = 0.7$$

• Especificidade:

$$Esp(f) = \frac{VN}{VN + FP} = \frac{60}{60 + 40} = 0.60$$







#### Problema de duas classes:

 Curva ROC (Receiving Operating Characteristics):







#### Problema de duas classes:

Curva ROC (Receiving Operating Characteristics):







#### Problema de duas classes:

 Curva ROC (Receiving Operating Characteristics):







#### Problema de duas classes:

Curva ROC (Receiving Operating Characteristics):





#### Problema de duas classes:

- Curva ROC (Receiving Operating Characteristics):
  - Área sob a curva ROC:
  - Produz valores no intervalo [0,1]
  - Valores mais próximos de 1 são considerados melhores.









### Propriedades da Curva ROC:

- Permite realizar medidas de desempenho independentes do limiar de classificação e de custos associados às classificações incorretas e distribuição das classes.
- Uso de diferentes limiares representa maior ou menor ênfase à classe positiva.
- Taxa de erro/acerto é bastante sensível a desbalanceamentos (ex. Conjunto com 90 + e 10 -, taxa de acerto de 0,90 não necessariamente indica bom desempenho preditivo
- Desvantagem: análise originalmente limitada a classificação binária.





# Sumário

- Support Vector Machines
- Avaliação de modelos





### Leitura adicional

 Introduction to Data Mining, Tan, Steinbach, Karpatne, Kumar, Pearson, 2013.