Not all GKK τ -matrices are stable

Olga Holtz

Department of Mathematics
University of Wisconsin
Madison, Wisconsin 53706 U.S.A.
holtz@math.wisc.edu

Abstract

Hermitian positive definite, totally positive, and nonsingular M-matrices enjoy many common properties, in particular

- (A) positivity of all principal minors,
- (B) weak sign symmetry,
- (C) eigenvalue monotonicity,
- (D) positive stability.

The class of GKK matrices is defined by properties (A) and (B), whereas the class of nonsingular τ -matrices by (A) and (C). It was conjectured that

- $(A), (B) \Longrightarrow (D)$ [D. Carlson, J. Res. Nat. Bur. Standards Sect. B 78 (1974) 1-2],
- (A), (C) \Longrightarrow (D) [G.M. Engel and H. Schneider, Linear and Multilinear Algebra 4 (1976) 155-176],
- (A), (B) \Longrightarrow a property stronger than (D) [R. Varga, Numerical Methods in Linear Algebra, 1978, pp.5-15],
- (A), (B), (C) ⇒ (D) [Hershkowitz, Linear Algebra Appl. 171 (1992) 161-186].

We describe a class of unstable GKK τ -matrices, thus disproving all four conjectures.

1 Definitions and notation

Let

Given a matrix $A \in \mathbb{C}^{n \times n}$, let $A(\alpha, \beta)$ denote the submatrix of A whose rows are indexed by α and columns by β $(\alpha, \beta \in \langle n \rangle := \{1, \ldots, n\})$ and let $A[\alpha, \beta]$ denote det $A(\alpha, \beta)$ if $\#\alpha = \#\beta$ (where # stands for the cardinality of a set) with the convention $A[\emptyset, \emptyset] := 1$.

A matrix A is called a P-matrix if $A[\alpha, \alpha] > 0 \ \forall \alpha \subseteq \langle n \rangle$. A is weakly sign-symmetric if

$$A[\alpha, \beta]A[\beta, \alpha] \ge 0$$
 $\forall \alpha, \beta \in \langle n \rangle$, $\#\alpha = \#\beta = \#\alpha \cup \beta - 1$.

Weakly sign-symmetric P-matrices are also called GKK after Gantmacher, Krein, and Kotelyansky. It was proven by Gantmacher, Krein [5], and Carlson [2] that a P-matrix is GKK iff it satisfies the generalized Hadamard-Fisher inequality

$$A[\alpha, \alpha]A[\beta, \beta] \ge A[\alpha \cup \beta, \alpha \cup \beta]A[\alpha \cap \beta, \alpha \cap \beta] \qquad \forall \alpha, \beta \subseteq \langle n \rangle. \tag{1}$$

Carlson [3] conjectured that the GKK matrices are positive stable, i.e., $\operatorname{Re} \lambda > 0 \quad \forall \lambda \in \sigma(A)$ (here $\sigma(A)$ denotes, as usual, the spectrum of A), and showed his conjecture to be true for $n \leq 4$.

$$l(A) := \left\{ \begin{array}{ll} \min\{\lambda \in \sigma(A) \cap \mathrm{I\!R}\} & \text{if } \sigma(A) \cap \mathrm{I\!R} \neq \emptyset \\ \infty & \text{otherwise.} \end{array} \right.$$

A is called an ω -matrix if it has eigenvalue monotonicity

$$l(A(\alpha, \alpha)) \le l(A(\beta, \beta)) < \infty$$
 whenever $\emptyset \ne \beta \subseteq \alpha \subseteq \langle n \rangle$.

A is a τ -matrix if, in addition, $l(A) \geq 0$.

Engel and Schneider [4] asked if nonsingular τ -matrices or, equivalently, ω -matrices all whose principal minors are positive (see Remark 3.7 in [4]), are positive stable. Varga [9] conjectured even more than stability, viz.

 $|\arg(\lambda - l(A))| \le \frac{\pi}{2} - \frac{\pi}{n} \quad \forall \lambda \in \sigma(A).$

This inequality was proven for $n \leq 3$ by Varga (unpublished) and Hershkowitz and Berman [7] and for n=4 by Mehrmann [8]. In his survey paper [6], Hershkowitz posed the weaker conjecture that τ -matrices that are also GKK are stable.

Below we describe a class of GKK τ -matrices which are not even nonnegative stable, i.e., have eigenvalues with negative real part. We construct Toeplitz Hessenberg matrices $A_{n,k,t}$ of size n for $k \in \mathbb{N}$ and $t \in \mathbb{R}$. We show that $A_{n,k,t}$ is GKK for any $t \in (0,1)$, a τ -matrix if $n \leq 2k+2$ and $t \in (0,1)$ is sufficiently small, and that $A_{2k+2,k,t}$ is unstable for sufficiently large k and sufficiently small positive t. This provides a counterexample to the Hershkowitz conjecture and, therefore, to the Carlson, Engel and Schneider, and Varga conjectures as well.

In what follows, we shall use the following notation

$$p:q:=\begin{cases} \{p,p+1,\ldots,q\} & \text{if } p\leq q\\ \emptyset & \text{otherwise} \end{cases} \quad \forall p,q\in\mathbb{N}, \qquad x_+:=\begin{cases} x & \text{if } x>0\\ 0 & \text{otherwise} \end{cases} \quad \forall x\in\mathbb{R}.$$

2 Counterexample

Given $k, n \in \mathbb{N}$, and $t \in (0,1)$, let $A_{n,k,t}$ be the following Toeplitz Hessenberg matrix. If $n \leq k+1$, set

$$A_{n,k,t} := \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 1 & 1 \end{pmatrix}.$$

Otherwise let

$$A_{n,k,t} := \begin{pmatrix} & & & & & & & & & & & \\ 1 & 0 & \cdots & 0 & 0 & a_1^{k,t} & a_2^{k,t} & \cdots & a_{n-k-2}^{k,t} & a_{n-k-1}^{k,t} \\ 1 & 1 & \cdots & 0 & 0 & 0 & a_1^{k,t} & \cdots & a_{n-k-3}^{k,t} & a_{n-k-2}^{k,t} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & 0 & \cdots & a_1^{k,t} & a_2^{k,t} \\ 0 & 0 & \cdots & 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 & 1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 1 & 1 \end{pmatrix}_{n \times n}$$

where $a_j^{k,t}$'s are chosen so that $A_{n,k,t}[\langle k+j+1\rangle, \langle k+j+1\rangle] = t^j$. This definition makes sense for all $j=1,\ldots,n-k-1$. Indeed, the expansion of $A_{n,k,t}[\langle k+j+1\rangle, \langle k+j+1\rangle]$ by the first row gives

$$A_{n,k,t}[(k+j+1),(k+j+1)](=\det A_{k+j+1,k,t})=$$

$$A_{n,k,t}[2:k+j+1,2:k+j+1] + \sum_{l=1}^{j} (-1)^{k+l} a_l^{k,t} A_{n,k,t}[k+l+2:k+j+1,k+l+2:k+j+1] = \sum_{l=1}^{j} (-1)^{k+l} a_l^{k,t} A_{n,k,t}[k+l+2:k+j+1] + \sum_{l=1}^{j} (-1)^{k+l} a_l^{k,t} A_{n,k,t}[k+l+2:k+j+1] = \sum_{l=1}^{j} (-1)^{k+l} a_l^{k,t$$

$$\det A_{k+j,k,t} + \sum_{l=1}^{j} (-1)^{k+l} a_l^{k,t} \det A_{j-l,k,t}$$
(2)

(recall that $A_{n,k,t}[\emptyset,\emptyset] = 1$, so the last term in the sum is well defined). As the coefficient of $a_j^{k,t}$ in Eq. (2) is equal to $(-1)^{k+j}$, the equation $A_{n,k,t} = s$ (linear in $a_j^{k,t}$) has a solution for any right hand side s, in particular, for $s := t^j$. Since $A_{n,k,t}$ is Toeplitz, this implies $A_{n,k,t}[i:i+j-1,i:i+j-1] = t^{(j-k-1)+}$.

Show that the matrices $A_{n,k,t}$ are GKK for any $t \in (0,1)$. Since $A_{n,k,t}$ is Hessenberg, the submatrix $A_{n,k,t}(\langle n \rangle \setminus i: i+j-1, \langle n \rangle \setminus i: i+j-1)$ is block upper triangular if $1 < i \le i+j-1 < n$, so

$$A_{n,k,t}[\alpha \cup \beta, \alpha \cup \beta] = A_{n,k,t}[\alpha, \alpha] A_{n,k,t}[\beta, \beta] \quad \text{whenever} \quad i < j-1 \text{ for all } i \in \alpha, \ j \in \beta.$$
 (3)

This shows that $A_{n,k,t}$ is a P-matrix. Moreover, since 0 < t < 1 and

$$(x+y-k-1)_+ + (x+z-k-1)_+ < (x-k-1)_+ + (x+y+z-k-1)_+$$
 $\forall x, y, z > 0$,

we have

$$A_{n,k,t}[i:i+j-1,i:i+j-1] \cdot A_{n,k,t}[l:l+m-1,l:l+m-1] = t^{(j-k-1)++(m-k-1)+} \ge t^{(l+m-i-k-1)++(i+j-l-k-1)+} = \text{if } l \le i+j-1.$$

$$A_{n,k,t}[i:l+m-1,i:l+m-1] \cdot A_{n,k,t}[l:i+j-1,l:i+j-1]$$

$$(4)$$

Together with Eq. (3), Eq. (4) shows that $A_{n,k,t}$ satisfies Eq. (1) if α , β are sets of consecutive integers.

To prove Eq. (1) in general, first make a definition. Call the subsets α , $\beta \subseteq \langle n \rangle$ separated if |p-q| > 1 $\forall p \in \alpha, q \in \beta$. Suppose $\alpha, \beta_1, \ldots, \beta_j \subseteq \langle n \rangle$ are sets of consecutive integers, β_i $(i = 1, \ldots, j)$ are separated, and

for any
$$i = 1, ..., j$$
, there exist $p \in \beta_i$ and $q \in \alpha$ such that $|p - q| \le 1$. (5)

Then $A_{n,k,t}$, α , and $\beta := \bigcup_{i=1}^{j} \beta_i$ satisfy Eq. (1). Indeed, Eq. (1) holds for α and β_1 . If $1 \leq l < j$, then, assuming Eq. (1) for α and $\gamma_l := \bigcup_{i=1}^{l} \beta_i$, we have

$$\begin{split} A_{n,k,t}[\alpha,\alpha]A_{n,k,t}[\gamma_{l+1},\gamma_{l+1}] &= A_{n,k,t}[\alpha,\alpha]A_{n,k,t}[\gamma_{l},\gamma_{l}]A_{n,k,t}[\beta_{l+1},\beta_{l+1}] \geq \\ A_{n,k,t}[\alpha \cup \gamma_{l},\alpha \cup \gamma_{l}]A_{n,k,t}[\alpha \cap \gamma_{l},\alpha \cap \gamma_{l}]A_{n,k,t}[\beta_{l+1},\beta_{l+1}]. \end{split}$$

Due to Eq. (5), $\alpha \cup \gamma_l$ is a set of consecutive integers, so an application of Eq. (1) yields

$$A_{n,k,t}[\alpha \cup \gamma_l, \alpha \cup \gamma_l]A_{n,k,t}[\beta_{l+1}, \beta_{l+1}] \ge A_{n,k,t}[\alpha \cup \gamma_{l+1}, \alpha \cup \gamma_{l+1}]A_{n,k,t}[(\alpha \cup \gamma_l) \cap \beta_{l+1}, (\alpha \cup \gamma_l) \cap \beta_{l+1}].$$

But $(\alpha \cup \gamma_l) \cap \beta_{l+1} = \alpha \cap \beta_{l+1}$ since the sets β_i are pairwise disjoint. So,

$$A_{n,k,t}[\alpha,\alpha]A_{n,k,t}[\gamma_{l+1},\gamma_{l+1}] \geq A_{n,k,t}[\alpha \cup \gamma_{l+1},\alpha \cup \gamma_{l+1}]A_{n,k,t}[\alpha \cap \gamma_{l},\alpha \cap \gamma_{l}]A_{n,k,t}[\alpha \cap \beta_{l+1},\alpha \cap \beta_{l+1}] = A_{n,k,t}[\alpha \cup \gamma_{l+1},\alpha \cup \gamma_{l+1}]A_{n,k,t}[\alpha \cap \gamma_{l+1},\alpha \cap \gamma_{l+1}].$$

$$(6)$$

Now, given a set of consecutive integers $\alpha \subseteq \langle n \rangle$ and any index set $\beta \subseteq \langle n \rangle$, write $\beta = \gamma_1 \cup \gamma_2$ where $\gamma_1 := \bigcup_{i=1}^{l} \beta_i$, $\gamma_2 := \bigcup_{i=l+1}^{l+m} \beta_i$, all β_i ($i=1,\ldots,l+m$) are separated, and β_i satisfies Eq. (5) if and only if $i \leq l$. Then

$$A_{n,k,t}[\alpha,\alpha]A_{n,k,t}[\beta,\beta] = A_{n,k,t}[\alpha,\alpha]A_{n,k,t}[\gamma_1,\gamma_1]A_{n,k,t}[\gamma_2,\gamma_2] \ge A_{n,k,t}[\alpha \cup \gamma_1,\alpha \cup \gamma_1]A_{n,k,t}[\alpha \cap \gamma_1,\alpha \cap \gamma_1]A_{n,k,t}[\gamma_2,\gamma_2] = A_{n,k,t}[\alpha \cup \gamma_1 \cup \gamma_2,\alpha \cup \gamma_1 \cup \gamma_2]A_{n,k,t}[\alpha \cap \gamma_1,\alpha \cap \gamma_1] = A_{n,k,t}[\alpha \cup \beta,\alpha \cup \beta]A_{n,k,t}[\alpha \cap \beta,\alpha \cap \beta].$$

In other words, $A_{n,k,t}$ satisfies Eq. (1) if $\alpha \subseteq \langle n \rangle$ is a set of consecutive integers and $\beta \subseteq \langle n \rangle$ is arbitrary.

Finally, if α_1 , α_2 , $\beta \subseteq \langle n \rangle$, the sets α_i (i = 1, 2) are separated, Eq. (1) holds for α_1 and β , and α_2 is a set of consecutive integers, then Eq. (1) holds for $\alpha := \alpha_1 \cup \alpha_2$ and β :

$$\begin{split} A_{n,k,t}[\alpha,\alpha]A_{n,k,t}[\beta,\beta] &= A_{n,k,t}[\alpha_1,\alpha_1]A_{n,k,t}[\alpha_2,\alpha_2]A_{n,k,t}[\beta,\beta] \geq \\ A_{n,k,t}[\alpha_1 \cup \beta,\alpha_1 \cup \beta]A_{n,k,t}[\alpha_1 \cap \beta,\alpha_1 \cap \beta]A_{n,k,t}[\alpha_2,\alpha_2] \geq \\ A_{n,k,t}[(\alpha_1 \cup \beta) \cup \alpha_2,(\alpha_1 \cup \beta) \cup \alpha_2]A_{n,k,t}[(\alpha_1 \cup \beta) \cap \alpha_2,(\alpha_1 \cup \beta) \cap \alpha_2]A_{n,k,t}[\alpha_1 \cap \beta,\alpha_1 \cap \beta] = \\ A_{n,k,t}[\alpha \cup \beta,\alpha \cup \beta]A_{n,k,t}[\alpha_1 \cap \beta,\alpha_1 \cap \beta]A_{n,k,t}[\alpha_2 \cap \beta,\alpha_2 \cap \beta] = \\ A_{n,k,t}[\alpha \cup \beta,\alpha \cup \beta]A_{n,k,t}[\alpha \cap \beta,\alpha \cap \beta]. \end{split}$$

So, by induction on the number of 'components' of α , Eq. (1) holds for any α , $\beta \subseteq \langle n \rangle$. Thus, by the Gantmacher-Krein-Carlson theorem, $A_{n,k,t}$ is GKK for any $t \in (0,1)$ and any $k, n \in \mathbb{N}$.

Now check that $A_{n,k,t}$ have eigenvalue monotonicity if $n \leq 2k+2$ and $t \in (0,1)$ is sufficiently small. Let $\varphi_i^{k,t}(\lambda) := \det(A_{k+j+1,k,t} - \lambda I)$ for $j = 1, \dots, k+1$. Show by induction that

$$\varphi_{j}^{k,t}(\lambda) = \begin{cases} (1-\lambda)^{k+2} - (1-t) & \text{if } j=1\\ (1-\lambda)^{j+k+1} - j(1-t)(1-\lambda)^{j-1} + (j-1)(1-t)^{2}(1-\lambda)^{j-2} + \\ \frac{t(1-t)^{2}}{((1-\lambda)-t)^{2}} [t^{j-1} - (j-1)t(1-\lambda)^{j-2} + (j-2)(1-\lambda)^{j-1}] & \text{if } j > 1, \end{cases}$$
(7)

$$a_j^{k,t} = \begin{cases} (-1)^k (1-t) & \text{if } j=1\\ (-1)^{k+j} t^{j-2} (1-t)^2 & \text{if } j>1, \end{cases}$$

$$\tag{8}$$

$$g_{j}^{k,t}(\lambda) := (-1)^{k+1} \det \begin{pmatrix} (1-\lambda) & 0 & \dots & 0 & a_{j}^{k,t} \\ 1 & (1-\lambda) & \dots & 0 & a_{j-1}^{k,t} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & (1-\lambda) & a_{2}^{k,t} \\ 0 & 0 & \dots & 1 & a_{1}^{k,t} \end{pmatrix} = -(1-t)(1-\lambda)^{j-1} + (1-t)^{2} \frac{(1-\lambda)^{j-1} - t^{j-1}}{(1-\lambda) - t} \qquad \forall j \in \mathbb{N}.$$
 (9)

By direct calculation, $\varphi_1^{k,t}(\lambda) = (1-\lambda)^{k+2} - (-1)^k a_1^{k,t}$, so, since $\varphi_1^{k,t}(0) = t$, we have $a_1^{k,t} = (-1)^k (1-t)$. Thus Eqs. (7)–(9) hold for j=1. Now suppose that $j\geq 2$ and our formulas are true for j-1. Expansion of $\varphi_i(\lambda)$ by its last row gives

$$\varphi_j^{k,t}(\lambda) = (1 - \lambda)\varphi_{j-1}^{k,t}(\lambda) + g_j^{k,t}(\lambda). \tag{10}$$

Since $\varphi_j^{k,t}(0) = t^j \ \forall j \in \mathbb{N}$, this implies $g_j^{k,t}(0) = t^j - t^{j-1}$. On the other hand, expanding $g_j^{k,t}(\lambda)$ by its first row, we get

$$g_j^{k,t}(\lambda) = (1 - \lambda)g_{j-1}^{k,t}(\lambda) + (-1)^{j+k}a_j^{k,t}, \tag{11}$$

so $a_j^{k,t}=(-1)^{k+j}[g_j^{k,t}(\lambda)-(1-\lambda)g_{j-1}^{k,t}(\lambda)]_{\lambda=0}=(-1)^{j+k}t^{j-2}(1-t)^2$, which gives Eq. (8). Now, using Eq. (11) again together with the inductive hypothesis on $g_{j-1}^{k,t}$, we get Eq. (9):

$$g_j^{k,t}(\lambda) = -(1-t)(1-\lambda)^{j-1} + (1-t)^2 \frac{(1-\lambda)^{j-1} - (1-\lambda)t^{j-2}}{(1-\lambda) - t} + t^{j-2}(1-t)^2 = -(1-t)(1-\lambda)^{j-1} + (1-t)^2 \frac{(1-\lambda)^{j-1} - t^{j-1}}{(1-\lambda) - t}.$$

Finally, substituting the expression for $\varphi_{j-1}^{k,t}(\lambda)$ and the just verified expression for $g_j^{k,t}(\lambda)$ into Eq. (10) yields Eq. (7).

If $\langle n \rangle \supseteq \alpha = \bigcup_{i=1}^{j} \alpha_i$ is the union of separated sets of consecutive integers, then $\det(A_{n,k,t}(\alpha,\alpha) - \lambda I) =$ $\prod_{i=1}^{j} \det(A(\alpha_i, \alpha_i) - \lambda I)$ since $A_{n,k,t} - \lambda I$ is Hessenberg (the same observation earlier led to Eq. (3)). Since $A_{n,k,t} - \lambda I$ is Toeplitz, the product in the right hand side equals $\prod_{i=1}^{j} \det(A_{n,k,t}(\langle \#\alpha_i \rangle, \langle \#\alpha_i \rangle) - \lambda I)$. Hence, to prove eigenvalue monotonicity of $A_{n,k,t}$ for $n \leq 2k+2$ it is enough to prove it for leading principal submatrices of $A_{n,k,t}$ only, i.e., to show

$$l(A_{k+j+1,k,t}) \le l(A_{k+j,k,t}) \quad \forall j \in \mathbb{N},$$

i.e., that $\varphi_j^{k,t}$ has a root in (0,1] for any $j \leq k+1$, and

$$\min\{\lambda \in (0,1] : \varphi_j(\lambda) = 0\} \le \min\{\lambda \in (0,1] : \varphi_{j-1}(\lambda) = 0\}, \quad j = 2, \dots, k+1$$

(since $A_{k+j,k,t}$ is a P-matrix, the coefficients of its characteristic polynomial are strictly alternating, so $A_{k+j,k,t}$ has no nonpositive eigenvalues). Observe that $\varphi_j^{k,t}(\lambda) = t^j - \lambda \widetilde{\varphi}_j^{k,t}(\lambda)$ where

$$\begin{split} \widetilde{\varphi}_{j}^{k,t}(0) &= -\frac{d\varphi_{j}^{k,t}(\lambda)}{d\lambda}\bigg|_{\lambda=0} \xrightarrow{t\to 0+} = -\frac{d\nu_{j}^{k}(\lambda)}{d\lambda}\bigg|_{\lambda=0}, \\ \nu_{j}^{k}(\lambda) &:= \lim_{t\to 0+} \varphi_{j}^{k,t}(\lambda) = (1-\lambda)^{j+k+1} - j(1-\lambda)^{j-1} + (j-1)(1-\lambda)^{j-2}. \end{split}$$

So, $\lim_{t\to 0+} \widetilde{\varphi}_{j}^{k,t}(0) = k+3-j \ge 2 \ \forall j=1,\ldots,k+1.$

Since 0, the minimal real root of ν_j^k , is simple, the minimal real root λ_j of $\varphi_j^{k,t}$ is positive and simple for all $j=1,\ldots,k+1$ whenever t is sufficiently small. But then $\tilde{\varphi}_j^{k,t}(\lambda_j)$ is bounded below by a positive constant for any $j=1,\ldots,k+1$, hence

$$\lambda_j = \frac{t^j}{\widehat{\varphi}_j^{k,t}(\lambda_j)} < \frac{t^{j-1}}{\widehat{\varphi}_{j-1}^{k,t}(\lambda_{j-1})} = \lambda_{j-1} \qquad \forall j = 1, \dots, k+1$$

if t is small. So, for any $k \in \mathbb{N}$ and $n \leq 2k + 2$, there exists $t(k) \in (0,1)$ such that $A_{n,k,t}$ is a τ -matrix for all $t \in (0,t(k))$.

Now let $B_k := \lim_{t\to 0+} A_{2k+2,k,t}$. The matrix B_k is Toeplitz with first column

$$(1,1,\underbrace{0,\ldots,0}_{2k \text{ times}})^T$$

and first row

$$(1,\underbrace{0,\ldots,0}_{k \text{ times}},(-1)^k,(-1)^k,\underbrace{0,\ldots,0}_{k-1 \text{ times}}).$$

Show that there exists $K \in \mathbb{N}$ such that, for all k > K, B_k has an eigenvalue λ with $\operatorname{Re} \lambda < 0$. As the eigenvalues depend continuously on the entries of the matrix, this will demonstrate that, for any k > K, there exists $t \in (0,1)$ such that the GKK τ -matrix $A_{2k+2,k,t}$ has an eigenvalue with negative real part.

The polynomial ν_{k+1}^k has a root with negative real part iff the polynomial ψ_k where

$$\psi_k(\lambda) := \frac{\nu_{k+1}^k(-\lambda)}{(1+\lambda)^{k-1}} = (1+\lambda)^{k+3} - (k+1)(1+\lambda) + k$$

has a root with positive real part. Since

$$\psi_k(\lambda) = \lambda \left[\sum_{j=0}^{k+1} \binom{k+3}{j} \lambda^{k+3-j-1} + 2 \right],$$

it is, in turn, enough to show that η_k where

$$\eta_k(\lambda) := \lambda^{k+3} \psi_k\left(\frac{1}{\lambda}\right) = 2\lambda^{k+2} + \sum_{j=2}^{k+3} \binom{k+3}{j} \lambda^{k+3-j}$$

has a root with positive real part. The Hurwitz matrix for the polynomial η_k is

$$H_k := \begin{pmatrix} \binom{k+3}{2} & \binom{k+3}{4} & \binom{k+3}{6} & \binom{k+3}{8} & \binom{k+3}{10} & \cdots \\ 2 & \binom{k+3}{3} & \binom{k+3}{5} & \binom{k+3}{7} & \binom{k+3}{9} & \cdots \\ 0 & \binom{k+3}{2} & \binom{k+3}{4} & \binom{k+3}{6} & \binom{k+3}{8} & \cdots \\ 0 & 2 & \binom{k+3}{3} & \binom{k+3}{5} & \binom{k+3}{7} & \cdots \\ 0 & 0 & \binom{k+3}{2} & \binom{k+3}{4} & \binom{k+3}{6} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}_{(k+2)\times(k+2)}$$

Compute the minor $H_k[2:5,2:5]$, taking out the factors $\binom{k+3}{2}$, $\binom{k+3}{4}$, $\binom{k+3}{6}$ from its second, third, and fourth columns respectively. We obtain

$$H_k[2:5,2:5] = -\frac{1}{132300}(3k^3 - 49k^2 - 210k - 318)(k+4)^2(k+5)\binom{k+3}{2}\binom{k+3}{4}\binom{k+3}{6}.$$

It follows that $H_k[2:5,2:5] < 0$ for k large enough, precisely, for all k > 20. But the Hurwitz matrix of a nonpositive stable polynomial is totally nonnegative (see [1]). So, for k > 20, η_k has a zero with positive real part, therefore, ν_{k+1}^k has a zero with negative real part. This completes the proof that the GKK τ -matrices $A_{2k+2,k,t}$ are unstable for sufficiently large k and small t.

Remark To illustrate the result, consider the matrix $A_{44,21,1/2}$, i.e., the Toeplitz matrix whose first column is

$$(1,1,\underbrace{0,\ldots,0}_{42 \text{ times}})^T$$

and first row is

$$(1, \underbrace{0, \dots, 0}_{\text{21 times}}, -1/2, -1/2^2, 1/2^3, -1/2^4, \dots, -1/2^{22})$$

and the limit matrix B_{21} , with the same first column as $A_{44,21,1/2}$ and first row equal to

$$(1, \underbrace{0, \dots, 0}_{\text{21 times}}, -1, -1, \underbrace{0, \dots, 0}_{\text{20 times}}).$$

According to MATLAB, the two eigenvalues with minimal real part of the first matrix are

$$-2.809929189497896 \cdot 10^{-2} \pm 3.275076252367531 \cdot 10^{-1}i$$

those of the second are

$$-3.420708309454068 \cdot 10^{-2} \pm 3.400425852703498 \cdot 10^{-1}i$$
.

Acknowledgements

I am grateful to Professor Hans Schneider for many valuable remarks and suggestions and to the referee for careful reading.

References

- [1] T. Ando, Totally positive matrices, Linear Algebra Appl. 90 (1987) 165–219.
- [2] D. Carlson, Weakly sign-symmetric matrices and some determinantal inequalities, Colloq. Math. 17 (1967) 123–129.
- [3] D. Carlson, A class of positive stable matrices, J. Res. Nat. Bur. Standards Sect. B 78 (1974) 1–2.
- [4] G. M. Engel and H. Schneider, The Hadamard-Fisher inequality for a class of matrices defined by eigenvalue monotonicity, Linear and Multilinear Algebra 4 (1976) 155–176.
- [5] F.R. Gantmacher, M.G. Krein, Oscillation matrices and kernels and small vibrations of mechanical systems (in Russian), Moscow, Gostechizdat, 1950.
- [6] D. Hershkowitz, Recent directions in matrix stability, Linear Algebra Appl. 171 (1992) 161–186.
- [7] D. Hershkowirz and A. Berman, Notes on ω and τ -matrices, Linear Algebra Appl. 58 (1984) 169–183.
- [8] V. Mehmann, On some conjectures on the spectra of τ -matrices, Linear and Multilinear Algebra 16 (1984) 101–112.
- [9] R. Varga, Recent results in linear algebra and its applications (in Russian), in: Numerical Methods in Linear Algebra, Proceedings of the Third Seminar of Numerical Applied Mathematics, Akad. Nauk SSSR Sibirsk. Otdel. Vychisl. Tsentr, Novosibirsk, 1978, pp. 5-15.