

Load Balancing for Traffic in Networks

(with Dóra Erdös)

Feiyu Shi 4/29/2014

Recap

- + Problem:
- + Given a set of k nodes, partition it into **two** groups such that the difference of total number of shortest paths covered by each group is minimal.
- + Steps: node centrality -> group centrality -> load balancing
- + Original setting: in Undirected Graph
- + Current setting: in Directed Acyclic Graph (DAG)

Example Graph

+ Given a group of nodes: A, B, C, D, E, F, divide this group into two groups, such that the difference of the group centralities of these two groups are minimized.

Node Centrality

- + Prefix: $PREFIX(v) = \#PATHS(S,v) = \sum \#PATHS(s,v)$
- + Suffix: $SUFFIX(v) = \#PATHS(v,T) = \sum_{t \in T} \#PATHS(v,t)$
- + Impact: $I(v) = PREFIX(v) \times SUFFIX(v)$
- + From general paths to shortest paths: check if parents of v are on a shortest path. If d(s,v) d(s,x) = 1, then x is in Pi'(v). Only includes parents from Pi'(v) in the computation of prefix and plist (suffix).

Compute Prefix

- + Observation: every path from source s to a node v has to go through one of v's parents.
- + Recurrence relation:
- + Base: PREFIX(s) = 1
- + Induction: $PREFIX(v) = \sum_{x \in Pi(v)} PREFIX(x)$
- + Order: topological order determines ancestors of v.
- + Thus, $PREFIX(v) = \#PATHS(S,v) = \sum_{x \in Pi(v)} \#PATHS(S,x)$

Compute Suffix

- + Plist_v: contains for every ancestor y of v the number of paths that go from y to v.
- + Another recurrence relation:
- + Base: $PLIST_{v}[y] = 1$
- + Induction: $PLIST_v[y] = \sum_{y \in Pi(y)} PLIST_x[y]$
- + Finally: $SUFFIX(v) = \sum_{t \in T} PLIST_t(v)$

Group Centrality

- + Suppose current set A's group centrality is C(A). After we add another node v to set A, we get the new group centrality C'(A).
- + Define the conditional impact: $I_A(v) = C'(A) C(A) \le I(v)$.
- + If A = empty set, $I_{\varnothing}(v) = I(v)$
- + It's the number of shortest paths that were not covered by A.
- + Set Prefix(a) to zero;
- + Set Plist_v(a) to zero.

Load Balancing: Problem

- + Let G(V,E) be a DAG, where |V| = n. Given a group of nodes, $V_0 \subseteq V$ where $|V_0| = k$. Find an assignment of two groups V1 and V2, where $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V_0$, such that the difference of group centralities of V1 and V2 is minimized.
- + Recall: brute-force algorithm and greedy algorithm

Baseline: Brute-force Algorithm

- + Enumerate all possible assignments: 2^k combinations.
- + The evaluate the group centralities of each possibility.
- + Find the solution having the minimal group centrality difference.
- + Slowest, but can find all the best assignments.

Implementation of Brute-force Alg.

- + First, find the power set of the set of k nodes.
- + For example for set of {A, B, C}, its power set is{∅, {A}, {B}, {C}, {A, B}, {A, C}, {B, C}, {A, B, C}}.
- + Second, compute the group centrality of each set in the power set.
- + Third, compute the difference of one set and its complement set. Find the minimum of the differences.
- + Finally, find all assignment of sets that equals the min diff.

Greedy Algorithm

- + Inspired by the concept of conditional impact.
- + If we move node v from G₁ to G₂, then the new centralities of two groups C₁' = C₁ $I_{G_1}(v)$, C₂' = C₂ + $I_{G_2}(v)$.
- + Then new difference: $C_{1}' C_{2}' = (C_{1} C_{2}) (I_{G_{1}}(v) + I_{G_{2}}(v))$.
- + Heuristic: choosing the node whose new difference is 'absolutely' closest to the previous difference.

Implementation of Greedy Algorithm

- + Input: G(V,E), Vo
- + Output: V1 or V2
- + 1. $V1 = V0, V2 = \emptyset$
- + 2. Compute diff = $C_{sp}(V_1) C_{sp}(V_2)$.
- + 3. Compute diff' = $C'_{sp}(V_1) C'_{sp}(V_2)$. Find v_i whose |diff'| is minimal (there may not be only one v_i , but randomly choose only one).
- + 4. Remove the node from V1 and add it to V2.
- + if |diff'| <= |diff| and V1 is not empty then
 - + 5. recursively solve the problem with new V1, V2.
- + else
 - + 6. return old V1 or V2.
- + end if.

Improvement: Greedy Search Alg.

- + Based on greedy algorithm.
- + Can find more than one solution if there exists many solutions. But it's not guaranteed that it can find all the solutions. (Remember brute-force alg. can find all the solutions.) The order to pick nodes matters.
- + New: Backtracking search. Try all possibilities. Then choose the best combination.
- + New: Pruning. Maintaining a list 'visited'.

Implementation of Greedy Search Alg.

- + Input: G(V,E), Vo
- + Output: A list of V1 or V2
- + 1. V1 = V0, V2 = Ø
- + 2. Compute diff = $C_{sp}(V_1) C_{sp}(V_2)$.
- + 3. Compute diff' = $C'_{sp}(V_1) C'_{sp}(V_2)$. Find all v_i whose |diff'| is minimal
- + Return a list of assignments by choosing the best ones with min |diff|.

Greedy Search Alg. (Cont.)

- + for each v_i do
 - + 4. Remove v_i from V1 and add it to V2.
 - + If neither new V1 nor new V2 is in the list 'visited' then
 - + 5. Compute the new diff'.
 - + If |diff'| < |diff| and V1 is not empty then
 - + If diff' = o then add new V1, V2 to list 'assign' and 'visited'. end if
 - + 6. recursively solve the problem with new V1, V2.
 - + else
 - + 7. add old V1or V2 to list 'assign' and 'visited'.
 - + end if
 - + end if
 - + 8. Return a list of assignments from 'assign' with min difference
- + end for

Search Graph of Greedy Search Alg.

Full Search Algorithm

- + Similar to greedy search algorithm, but need to compute group centralities for each node and relax the constraint:
 - + Instead of using greedy heuristic, we loop over all possible nodes.
- + Give all possible solutions, the same as brute-force method.
- + Spends more time (even more than brute-force).

Time Complexity Analysis

- + Recall: the time complexity for computing group centrality is $O(k \mid E \mid \Delta)$. Node centrality is $O(\mid E \mid \Delta)$.
- + Brute-force: $O(2^k k | E | \Delta)$.
- + Greedy: k level. 1 node / level. So $O(k^2|E|\Delta)$.
- + Full search: worst case k!(1+1+1/2!+1/3!+...+1/(k-1)!) ≈ k! e. So $O(k! \ k|E|\Delta)$.
- + Greedy search: somewhere between $O(k^2|E|\Delta)$ and $O(k!|E|\Delta)$, and usually $< O(2^k k|E|\Delta)$ (from test result).

Dataset (Thanks to Dóra)

- + Synthetic DAG dataset:
- + Three parameters: n, d, l. n is the number of nodes in the graph, d is a density parameter and l is a limit.
- + Node are labeled as integers. For every node i to node j, we try to generate an edge with probability d if i < j <= i+l. d*l = expected degree of every node. |E|≈d*l*n.
- + We generated
 - + Dataset1: 10 graphs with varying d from 0.1 to 1.0 (n=200, l=10).
 - + Dataset2: 10 graphs with varying n from 100 to 1000 (not used).
 - + Data: 1 DAG, n = 50, d = 0.4, l = 5.
- + We compare performance of three algorithms on these datasets.

Dataset (cont.)

- + Dataset1: Choose first 10 nodes as sources, last 10 nodes as destinations.
- + DAG 50_0.4_5: first 5 nodes as sources, last 5 nodes as destinations.
- + Choice of group:
 - + Dataset1: 5 nodes. For graph with n nodes, choose 0.4n, 0.45n, 0.5n, 0.55n, 0.6n.
 - + DAG 50_0.4_5: 10 groups with number of nodes from 4 to 13. Smaller group ⊆ larger group.

Tests

- + Two aspects: validation and time complexity.
 - + Validation: test if the algorithm returns (all) the correct answer.
 - + Time complexity: measure the running time for each alg. in ms.
- + Two set of experiments:
 - + On dataset1: focus on validation
 - + On DAG 50_0.4_5: focus on time complexity (k).

Dataset1: Validation

Test	1	2	3	4	5	6	7	8	9	10
num.	16	16	16	8	4	2	1	1	1	1
G	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
GS#	16	16	16	7	3	1	1	1	1	1
GS	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
R %	100	100	100	87.5	75	50	100	100	100	100
FS#	16	16	16	8	4	2	1	1	1	1
FS	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
R %	100	100	100	100	100	100	100	100	100	100

- 1. num.: total number of solutions (from baseline method).
- 2. G: greedy validation.
- 3. GS #: number of solutions from greedy search method.
- 4. GS: greedy search validation.
- 5. R %: retrieval rate of greedy search method; GS # / num.

Dataset1: Validation (cont.)

- + Special cases:
 - + 1. o vs. o (test 1)
 - + 2. largest vs. o (test 2, 3)
- + Sample test results:
 - + 227568 vs. 19836
 - + 32148083 vs. 43532838

Dataset1: Time Complexity

DAG 50_0.4_5: Validation

k	4	5	6	7	8	9	10	11	12	13
num.	1	1	2	4	4	8	8	8	8	8
G	Υ	Υ	Υ	Υ	Υ	Υ	N	Υ	Υ	N
GS#	1	1	1	3	3	7	0	7	7	0
GS	Υ	Υ	Υ	Υ	Υ	Υ	N	Υ	Υ	N
R %	100	100	50	75	75	87.5	0	87.5	87.5	0
FS#	1	1	2	4	4	8	8	8	8	8
FS	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
R %	100	100	100	100	100	100	100	100	100	100

Note:

Impacts from greedy-like alg (k = 10): 751 vs. 733. Baseline: 711 vs. 700.

DAG 50_0.4_5: Time Complexity

DAG 50_0.4_5: Time Complexity

Conclusions

- + Greedy algorithm is good enough (90% chance) sometimes.
- + Greedy search algorithm works as good as greedy algorithm. But it might be suitable when there is a need for more than one possible solutions.
- + Brute-force and full search algorithms are able to get all possible solutions.
- + Future study may be applying these algorithms to undirected graphs.

Questions?