License Plate Detection

ALGORITHM

- Detect and localize the license plate
- Extract the characters from the license plate
- Apply OCR (Optical Character Recognition) to recognize the characters

FIRST STEP

- Define the accepted license plate ratio of the rectangular license plate
 - Usually 4:1 or 5:1 meaning the width is 4 or 5 times greater than the height
- Read a colored image
- Transform it into a grayscale image
- Apply Blackhat Transform to reveal dark regions on a light background

- Find regions in the image that are light and may contain license plate characters
- Fill holes in the image using closing operation
- Perform binary thresholding using Otsu's method to reveal light areas

 Use Scharr gradient (on the blackhat image) to emphasize the boundaries of the characters in the license plate

License plate charac
 from the rest of the i
 Scharr gradient

- Apply a Gaussian Blur to the gradient image to smooth out noise
- Apply a closing operation with a wide structuring element (17, 3) to connect broken edges and fill small gaps inside shapes
- Apply a binary thresholding again using Otsu's method to clearly separate the license plate from the background
- The image is not clear

 Perform a 4 erosions and 6 dilations in an attempt to denoise threshold image

 Perform a bitwise-AND between the last image and the light image obtained after the first Otsu threshold application to the original image

- Now based on our last image we find the contours (connected white components) using findCountours OpenCV function which returns a vector of vectors of Points, representing each contour.
- Further, we iterate over all contours and find the smallest bounding rectangle that fully contains the contour.
- We compute the aspect ratio of each rectangle and and find the largest rectangle that has the appropriate ratio.
- In the end we will find the best fit.
- We process the initial grayscale region to prepare it for the OCR by computing the Otsu threshold and applying a binary thresholding.

• The python script loads the binary image of the license plate and then transforms the image to a string of characters using pytesseract.

Detected Plate Text: KL55R 2473

RESULTS

- I implemented all the steps mentioned above in c++, and for the OCR I used a python script that detects characters in the picture provided by the c++ script.
- In the next slide I will provide some photos regarding my results.

HERE WE CAN SEE THE FINAL RESULTS OF THE C++ SCRIPT

HERE WE CAN SEE THE RESULTS OF THE PYTHON SCRIPT

```
import cv2 import pytesseract

# Make sure Tesseract is installed: sudo apt install tesseract-ocr
# Optional: check if it works with: tesseract --version

image_path = '/mnt/c/Users/tudor/Desktop/facultate/an3_sem2/IP/License_plate_project/images/images/detected_plate.png'
image = cv2.imread(image_path)

# OCR
text = pytesseract.image_to_string(image, config='--psm 7')
print(f"Detected Plate Text: {text.strip()}")

Detected Plate Text: ~PG°MN112
```

Thank you!

TUDOR BARTHA