Development and Validation of a Risk Prediction Model of linezolid-induced thrombocytopenia in Vietnamese patients

Sunday, March 10, 2024

Write abstract here, note the indentation

Checklist

Table 1: TRIPOD-Cluster checklist of items to include when reporting a study developing or validating a multivariable prediction model using clustered data

	Iten	1	Page	
Section/topNo		Description		
Title and				
abstract				
Title	1	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted		
Abstract	2	Provide a summary of research objectives, setting, participants, data source, sample size, predictors, outcome, statistical analysis, results, and conclusions*		
Introduction	n			
Background and objectives	3a	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the prediction model, including references to existing models, and the advantages of the study design*		
	3b	Specify the objectives, including whether the study describes the development or validation of the model*		
Methods				

	Iten	n				
Section/top	o M o	Description	No			
Participants and data	4a	Describe eligibility criteria for participants and datasets*				
	4b	Describe the origin of the data, and how the data were identified, requested, and collected				
Sample size	5	Explain how the sample size was arrived at*				
Outcomes and predictors	6a	Define the outcome that is predicted by the model, including how and when assessed* $$				
•	6b	Define all predictors used in developing or validating the model, including how and when measured*				
Data prepara- tion	7a	Describe how the data were prepared for analysis, including any cleaning, harmonisation, linkage, and quality checks				
	7b	Describe the method for assessing risk of bias and applicability in the individual clusters (eg, using PROBAST)				
	7c	For validation, identify any differences in definition and measurement from the development data (eg, setting, eligibility criteria, outcome, predictors)*				
	7d	Describe how missing data were handled*				
Data analysis	8a	Describe how predictors were handled in the analyses				
ū	8b	Specify the type of model, all model building procedures (eg, any predictor selection and penalisation), and method for validation*				
	8c	Describe how any heterogeneity across clusters (eg, studies or settings) in model parameter values was handled				
	8d	For validation, describe how the predictions were calculated				
	8e	Specify all measures used to assess model performance (eg, calibration, discrimination, and decision curve analysis) and, if relevant, to compare multiple models				
	8f	Describe how any heterogeneity across clusters (eg, studies or settings) in model performance was handled and quantified				
	8g	Describe any model updating (eg, recalibration) arising from the validation, either overall or for particular populations or settings*				
Sensitivity analysis	9	Describe any planned subgroup or sensitivity analysis—eg, assessing performance according to sources of bias, participant characteristics, setting				
Results		,				

	Item	1	Pag			
Section/topNo		Description				
Participants and datasets	10a	Describe the number of clusters and participants from data identified through to data analysed; a flowchart might be helpful*				
	10b	Report the characteristics overall and where applicable for each data source or setting, including the key dates, predictors, treatments received, sample size, number of outcome events, follow-up time, and amount of missing data*				
	10c	For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors, and outcome)				
Risk of bias	11	Report the results of the risk-of-bias assessment in the individual clusters				
Model development and specification	12a	Report the results of any assessments of heterogeneity across clusters that led to subsequent actions during the model's development (eg, inclusion or exclusion of particular predictors or clusters)				
	12b	Present the final prediction model (ie, all regression coefficients, and model intercept or baseline estimate of the outcome at a given time point) and explain how to use it for predictions in new individuals*				
Model per- formance	13a	Report performance measures (with uncertainty intervals) for the prediction model, overall and for each cluster				
	13b	Report results of any heterogeneity across clusters in model performance				
Model updating	14	Report the results from any model updating (including the updated model equation and subsequent performance), overall and for each cluster*				
Sensitivity analysis Discussion	15	Report results from any subgroup or sensitivity analysis				
Interpretation 6a		Give an overall interpretation of the main results, including heterogeneity across clusters in model performance, in the context				
	16b	of the objectives and previous studies* For validation, discuss the results with reference to the model performance in the development data, and in any previous validations				
	16c	Discuss the strengths of the study and any limitations (eg, missing or incomplete data, non-representativeness, data harmonisation problems)				

Iten	1	Page		
Section/topNo	Description			
Implications 17	Discuss the potential use of the model and implications for future research, with specific view to generalisability and applicability of the model across different settings or (sub)populations			
Other	. , , , , , , , , , , , , , , , , , , ,			
informa-				
tion				
Supplementary 18	Provide information about the availability of supplementary			
informa-	resources (eg, study protocol, analysis code, datasets)*			
tion				
Funding 19	Give the source of funding and the role of the funders for the present study			

Introduction

Background and objectives

Methods

Participants and data

Sample size

There are [number] candidate predictors selected by clinical experts, and the BMS algorithm identified [number] additional predictors, for a total of [number] predictors.

Outcomes and predictors
Data preparation
Data analysis
Sensitivity analysis
Results
Participants and datasets
Risk of bias
Model development and specification
Model performance
Model updating
Sensitivity analysis
Discussion
Interpretation
Implications
Other information
Supplementary information
Funding
Objectives
 Investigating risk factors of linezolid-induced thrombocytopenia (LI-TP) Developing and validating a logistics regression model to predict LI-TP in Vietnamese patients

Data cleaning

Source: Article Notebook

Rows: 816 Columns: 58 <dbl> 90, 80, 79, 71, 72, 61, 60, 64, 92, 75, 86, 93, 6~ \$ patient_age \$ patient_sex <lgl> TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, TRU~ \$ LZD_dose_per_weight <dbl> 25.00000, 30.00000, 30.00000, 13.33333, 17.14286,~ <dbl> 27.22860, 63.15805, 29.93031, 50.89929, 10.87932,~ \$ baseline_CLCR <lg1> TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, T~ \$ dept_ER <lgl> FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE,~ \$ dept_ICU <dbl> 96, 101, 86, 94, 86, 99, 98, 119, 60, 118, 99, 10~ \$ baseline_HGB \$ baseline_WBC <dbl> 6.75, 11.91, 14.05, 14.61, 7.92, 21.79, 13.27, 6.~ <dbl> 244, 180, 259, 179, 236, 113, 196, 154, 147, 101,~ \$ baseline_PLT \$ LZD_duration <dbl> 6, 8, 15, 3, 7, 8, 22, 4, 3, 16, 14, 7, 13, 20, 6~ \$ invasive_ETI <lgl> FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, FAL~ <lgl> FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FAL~ \$ invasive_CVC <lgl> FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, F~ \$ invasive_IHD <lg1> FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, F~ \$ invasive CRRT \$ comorb_HTN <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE,~ \$ comorb DM <lgl> TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FAL~ <lgl> FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE~ \$ comorb_HF \$ comorb_angina <lg>| FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FA~ <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, F~ \$ comorb_cirr \$ comorb_COPD <lgl> FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, F~ <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~ \$ comorb_CVA \$ comorb_MI <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~ \$ comorb_K <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, F~ \$ comorb_hematological <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~ <lgl> FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, F~ \$ comorb hema <lgl> FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TR~ \$ infect_sepsis <lgl> FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FA \$ infect_CAP \$ infect_HAP <lgl> TRUE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, TRU~ <lgl> FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, T~ \$ infect SSTI \$ infect_CNS <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, F~ \$ infect_IAI <lgl> FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, FAL~ <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~ \$ infect_UTI \$ infect_BJI <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~ <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~ \$ infect_septicemia <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~ \$ comed_aspirin \$ comed_diclofenac <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~

\$ comed_ibuprofen	<1g1>	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~
\$ comed_paracetamol	<lg1></lg1>	TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE,~
\$ comed_penicillin	<lg1></lg1>	FALSE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE~
\$ comed_cepha	<lg1></lg1>	FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, F~
\$ comed_carbapenem	<lg1></lg1>	TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, ~
\$ comed_cotrimoxazol	<lg1></lg1>	FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, F~
\$ comed_vancomycin	<1g1>	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~
\$ comed_levofloxacin	<1g1>	FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, F~
\$ comed_teicoplanin	<lgl></lgl>	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~
\$ comed_ethambutol	<lgl></lgl>	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~
\$ comed_pyrazinamid	<lgl></lgl>	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~
\$ comed_rifampin	<lgl></lgl>	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~
\$ comed_heparin	<lgl></lgl>	FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FA-
\$ comed_clopidogrel	<lgl></lgl>	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~
\$ comed_enoxaparin	<lgl></lgl>	FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALS~
\$ ${\tt comed_dexamethason}$	<lgl></lgl>	FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, F~
\$ comed_amiodaron	<lgl></lgl>	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~
\$ comed_furosemid	<lgl></lgl>	FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE,~
\$ comed_haloperidol	<lgl></lgl>	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~
\$ comed_valproic	<lgl></lgl>	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~
\$ flag_ADR_TP_ID	<lgl></lgl>	FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FAL~
\$ site	<chr></chr>	"TN1", "TN1", "TN1", "TN1", "TN1", "TN1", "TN1", ~

Descriptive statistics

Source: Article Notebook

Characteristic	Overall , N = 816	FALSE , N = 552	TRUE, N = 264	OR	95% CI	p-value
patient_age	62 (50 - 73)	61 (47 - 72)	64 (54 - 74)	1.02	1.01,	<0.001
patient_sex	306 (38%)	206 (37%)	100 (38%)	1.02	$1.03 \\ 0.76,$	0.9
LZD_dose_per	:_ w^e.ig_(12 0.0 -	21.8 (20.0 -	21.8 (19.4 -	0.99	$1.38 \\ 0.96,$	0.8
baseline CLCF	24.0) R 48 (21 - 84)	24.0) 55 (26 - 88)	24.6) 32 (15 - 64)	0.99	1.03 0.99 ,	< 0.001
_	,	,	,		$0.99^{'}$	
$ m dept_ER$	$140 \ (17\%)$	95 (17%)	45 (17%)	0.99	$0.67, \\ 1.45$	>0.9

	Overall, N =	FALSE, N	TRUE, N		95%	
Characteristic	816	=552	= 264	\mathbf{OR}	\mathbf{CI}	p-value
$\overline{ ext{dept_ICU}}$	390 (48%)	240 (43%)	150 (57%)	1.71	1.27,	< 0.001
					2.30	
$baseline_HGB$	102 (89 - 120)	105 (91 -	98 (85 - 117)	0.99	0.98,	< 0.001
	10 (0 15)	121)	10 (0 10)		0.99	
baseline_WBC	12 (8 - 17)	12 (8 - 17)	12 (8 - 18)	1.01	0.99,	0.2
1 11 DIE	202 /1 12	224 (125	174 (100	0.00	1.03	.0.004
${\bf baseline_PLT}$	206 (143 -	234 (167 -	154 (103 -	0.99	0.99,	< 0.001
T. 7	288)	309)	211)	1.00	0.99	0.04=
LZD_duration	9.0 (6.0 -	9.0 (6.0 -	10.0 (6.0 -	1.03	1.01,	0.017
	14.0)	13.0)	14.0)	2.02	1.06	
$invasive_ETI$	$386 \ (47\%)$	$230 \ (42\%)$	156 (59%)	2.02	1.50,	< 0.001
	((~)	(~)		2.73	
$invasive_CVC$	423~(52%)	$246 \ (45\%)$	177~(67%)	2.53	1.87,	< 0.001
	(~)	(.= (~)		3.45	
$invasive_IHD$	$111 \ (14\%)$	64~(12%)	47 (18%)	1.65	1.09,	0.016
	– (((04)		2.48	
invasive_CRRT	147 (18%)	64~(12%)	83 (31%)	3.50	2.42,	< 0.001
					5.07	
$comorb_HTN$	$333 \ (41\%)$	218 (39%)	115 (44%)	1.18	0.88,	0.3
					1.59	
${ m comorb_DM}$	222~(27%)	150~(27%)	72~(27%)	1.01	0.72,	> 0.9
					1.39	
${ m comorb_HF}$	225~(28%)	131 (24%)	94 (36%)	1.78	1.29,	< 0.001
					2.44	
comorb_angina	32 (3.9%)	19 (3.4%)	$13 \ (4.9\%)$	1.45	0.69,	0.3
					2.96	
$\operatorname{comorb_cirr}$	48 (5.9%)	$20 \ (3.6\%)$	$28 \ (11\%)$	3.16	1.75,	< 0.001
					5.79	
$comorb_COPD$	39~(4.8%)	25~(4.5%)	14 (5.3%)	1.18	0.59,	0.6
		4 04			2.28	
$comorb_CVA$	93~(11%)	64~(12%)	29 (11%)	0.94	0.58,	0.8
		(04)	(0.4)		1.49	
${ m comorb_MI}$	20~(2.5%)	15~(2.7%)	5 (1.9%)	0.69	0.22,	0.5
					1.81	
${ m comorb}_{-}{ m K}$	67~(8.2%)	44~(8.0%)	23~(8.7%)	1.10	0.64,	0.7
	- (- (// -04	15 (5 - 54)		1.85	
comorb_hemate	$\mathbf{ologfic}(\mathbf{d}.6\%)$	$27 \ (4.9\%)$	19 (7.2%)	1.51	0.81,	0.2
					2.75	
comorb_hema	$61 \ (7.5\%)$	$37 \ (6.7\%)$	24 (9.1%)	1.39	0.81,	0.2
					2.36	

_	Overall, N =	FALSE, N	TRUE, N		95%	
Characteristic	816	$=552^{\circ}$	= 264	\mathbf{OR}	\mathbf{CI}	p-value
infect_sepsis	134 (16%)	66 (12%)	68 (26%)	2.55	1.75,	< 0.001
					3.73	
$infect_CAP$	$118 \ (14\%)$	$70 \ (13\%)$	48~(18%)	1.53	1.02,	0.038
					2.28	
${f infect_HAP}$	375~(46%)	255~(46%)	120~(45%)	0.97	0.72,	0.8
					1.30	
$infect_SSTI$	133~(16%)	$100 \ (18\%)$	33~(13%)	0.65	0.42,	0.043
		(0.4)	(0.4)		0.98	
$infect_CNS$	68~(8.3%)	46~(8.3%)	$22 \ (8.3\%)$	1.00	0.58,	> 0.9
	7 0 (0.107)	24 (2.207)	10 (0 104)	0.00	1.68	
${f infect_IAI}$	$50 \ (6.1\%)$	34~(6.2%)	16 (6.1%)	0.98	0.52,	> 0.9
· C · TITT	50 (0 50 4)	97 (9.704)	10 (0 107)	0.00	1.79	0.7
${ m infect_UTI}$	$53 \ (6.5\%)$	$37 \ (6.7\%)$	16 (6.1%)	0.90	0.48,	0.7
. C DII	11 (1.907)	10 (1.007)	1 (0 407)	0.01	1.62	0.19
$infect_BJI$	$11 \ (1.3\%)$	$10 \ (1.8\%)$	1 (0.4%)	0.21	0.01,	0.13
infoat contiacn	oin 227 (2007)	148 (27%)	89 (34%)	1.39	1.08 1.01 ,	0.043
infect_septicen	ma 231 (2970)	146 (21/0)	09 (34/0)	1.39	1.01, 1.90	0.043
comed_aspirin	47 (5.8%)	30 (5.4%)	17 (6.4%)	1.20	0.64,	0.6
comed_aspirm	47 (0.070)	30 (3.470)	17 (0.470)	1.20	2.19	0.0
comed_diclofer	nac 27 (3.3%)	20 (3.6%)	7 (2.7%)	0.72	0.28,	0.5
comed_dicioici	(6.670)	20 (9.070)	(2.170)	0.12	1.66	0.0
comed_ibuprof	Gen 26 (3.2%)	15(2.7%)	$11 \ (4.2\%)$	1.56	0.69,	0.3
	(0.2,0)	_= (, , ,	(,_,)		3.42	0.0
comed_paracet	am 31 7 (44%)	246 (45%)	111 (42%)	0.90	0.67,	0.5
<u></u> -	,	,	,		$1.21^{'}$	
comed_penicill	in 123 (15%)	78 (14%)	45 (17%)	1.25	0.83,	0.3
			, ,		1.86	
$comed_cepha$	208~(25%)	150~(27%)	58~(22%)	0.75	0.53,	0.11
					1.06	
$comed_carbape$	ene 56 8 (72%)	385~(70%)	203~(77%)	1.44	1.03,	0.034
					2.04	
$comed_cotrimo$	$\mathbf{xaz67} (8.2\%)$	$39 \ (7.1\%)$	28 (11%)	1.56	0.93,	0.087
					2.59	
comed_vancom	nyci667 (8.2%)	$41 \ (7.4\%)$	26 (9.8%)	1.36	0.81,	0.2
			/		2.27	
comed_levoflox	(31%) (aci260	162~(29%)	$88 \ (33\%)$	1.20	0.88,	0.2
	• 0= (4 =04)	22 (4 204)	1.4 (F 204)	1.00	1.65	<u> </u>
comed_teicopla	aning (4.5%)	$23 \ (4.2\%)$	14 (5.3%)	1.29	0.64,	0.5
					2.52	

	Overall, N =	FALSE, N	TRUE, N		95%	
Characteristic	816	= 552	= 264	\mathbf{OR}	\mathbf{CI}	p-value
$\overline{\mathrm{comed_ethamb}}$	utol (1.0%)	5 (0.9%)	3 (1.1%)	1.26	0.26,	0.8
					5.16	
comed_pyrazina	amið (1.5%)	6 (1.1%)	6~(2.3%)	2.12	0.66,	0.2
	(, -~)	~ (~)	- (~)		6.83	
comed_rifampin	n 15 (1.8%)	8 (1.4%)	7 (2.7%)	1.85	0.64,	0.2
1 1	007 (0507)	100 (0007)	00 (9707)	0.40	5.21	20.001
comed_heparin	207 (25%)	109 (20%)	98 (37%)	2.40	1.73,	< 0.001
comed_clopidog	mall() (4,0%)	30 (5.4%)	10 (3.8%)	0.69	3.33 0.31 ,	0.3
comed_cropidog	31 CH (4.970)	30 (3.470)	10 (3.670)	0.09	1.38	0.0
comed_enoxapa	rin52 (43%)	235 (43%)	117 (44%)	1.07	0.80,	0.6
соптец_сполара	(1070)	200 (10/0)	111 (11/0)	1.01	1.44	0.0
comed_dexame	thas6n(13%)	72 (13%)	34 (13%)	0.99	0.63,	>0.9
<u> </u>	(1, 1)	(-, •)	- (-, 0)		1.51	
comed_amiodar	ron36 (4.4%)	17 (3.1%)	19(7.2%)	2.44	1.24,	0.009
	,	, ,	, ,		4.82	
$comed_furosem$	$\mathbf{id}436\ (53\%)$	260~(47%)	176~(67%)	2.25	1.66,	< 0.001
					3.06	
comed_haloperi	ido $33 (6.5\%)$	36~(6.5%)	17~(6.4%)	0.99	0.53,	> 0.9
		(04)	. (04)		1.76	
comed_valproic	32 (3.9%)	$23 \ (4.2\%)$	9 (3.4%)	0.81	0.35,	0.6
1 1 6	0 (004)	0 (004)	0 (007)		1.72	
comed_aceclofe	` /	0 (0%)	0 (0%)			
comed_naproxecomed_daptom	, ,	$0 (0\%) \\ 0 (0\%)$	$0 (0\%) \\ 1 (0.4\%)$			
comed_cetirizin	- ,	5 (0.9%)	1 (0.4%) $1 (0.4%)$			
comed_simvas	0 (0%)	0 (0%)	0 (0%)			
comed_bisoprol	` /	4(0.7%)	2(0.8%)			
comed diltiazer	` '	0 (0%)	0 (0%)			
comed_eptifibat	(/	0 (0%)	0 (0%)			
comed_quinidin	` '	0 (0%)	0 (0%)			
$comed_carbama$	$\mathbf{aze}\mathbf{\beta}\mathbf{i}(1.0\%)$	8 (1.4%)	0 (0%)			
$comed_phenyto$	` /	0 (0%)	0 (0%)			
comed_mirtaza	, ,	0 (0%)	0 (0%)			
$comed_quetiapi$,	4 (0.7%)	0 (0%)			
comed_ondanse	` '	4(0.7%)	2(0.8%)			
comed_palonose	, ,	0 (0%)	0 (0%)			
comed_oseltam	` '	1(0.2%)	1 (0.4%)			
comed_quinin	0 (0%)	0 (0%)	0 (0%)			
comed_pembro	TIZ (TIVITĄWO%)	0 (0%)	0 (0%)			

	Overall, N =	FALSE, N	TRUE, N		95%	
Characteristic	816	= 552	= 264	\mathbf{OR}	\mathbf{CI}	p-value
$\overline{\mathrm{comed_trastuz}}$	umab (0%)	0 (0%)	0 (0%)			
$comed_atezoliz$	$\mathbf{zuma}(0\%)$	0 (0%)	0 (0%)			
$comed_durvalu$	$\mathbf{mab}0 \ (0\%)$	0 (0%)	0 (0%)			
${\it comed_IVIG}$	0 (0%)	0 (0%)	0 (0%)			
$comed_tacrolin$	$\mathbf{mus} \ 1 \ (0.1\%)$	0 (0%)	1~(0.4%)			
comed_fluorou	racil0 (0%)	0 (0%)	0 (0%)			
comed_irinoted	can $0(0\%)$	0 (0%)	0 (0%)			
comed_leucovo	orin 0 (0%)	0 (0%)	0 (0%)			
comed_oxalipla	atin 0 (0%)	0 (0%)	0 (0%)			

Source: Article Notebook

	BM1,		ND1,	ND2,	TN1,	TN2,	
${\bf Overall},$	N =	BM2,	N =	N =	N =	N =	р-
CharacterisMic= 816	125	N = 77	179	116	100	219	value
patient_age62 (50 -	58 (43 -	60 (45 -	60 (45 -	59 (46 -	69 (60 -	66 (58 -	<0.001
73)	69)	72)	68)	68)	78)	78)	
patient_sex 306	54	27	73	28	48	76	0.004
(38%)	(43%)	(35%)	(41%)	(24%)	(48%)	(35%)	
LZD_dose_pær8_we	eigh 2 2.6	21.4	21.4	21.8	24.0	21.8	0.028
(20.0 -	(20.0 -	(19.0 -	(19.4 -	(20.0 -	(20.0 -	(19.7 -	
24.0)	(25.5)	24.0)	24.0)	24.0)	24.6)	24.0)	
baseline_CllCll -	50 (24 -	40 (17 -	70 (41 -	60 (27 -	29 (14 -	35 (17 -	< 0.001
84)	80)	86)	104)	95)	54)	67)	
dept_ER 140	7	9 (12%)	67	15	16	26	< 0.001
(17%)	(5.6%)		(37%)	(13%)	(16%)	(12%)	
dept_ICU 390	10	23	73	42	77	165	< 0.001
(48%)	(8.0%)	(30%)	(41%)	(36%)	(77%)	(75%)	
baseline_H@B(89 -	105 (91	99 (83 -	105 (89	100 (88	99 (89 -	104 (91	0.2
120)	- 124)	118)	- 123)	- 118)	116)	- 120)	
baseline_WBC(8 -	11 (7 -	11 (7 -	12 (8 -	11 (7 -	12 (8 -	13 (9 -	0.023
17)	16)	17)	18)	15)	18)	18)	
baseline_ PLO 6 (143	195	234	207	$22\overset{'}{5}$	172	225	< 0.001
- 288)	(139 -	(160 -	(129 -	(127 -	(122 -	(161 -	
,	247)	318)	293)	310)	245)	299)	

	BM1,		ND1,	ND2 ,	TN1,	TN2,	
${\bf Overall},$	N =	$\mathbf{BM2},$	N =	N =	N =	N =	p -
CharacterisMe= 816	125	N = 77	179	116	100	219	value
LZD_duration(6.0 -	8.0 (6.0	10.0	10.0	9.0 (6.0	11.0	9.0 (6.0	0.3
14.0)	- 13.0)	(6.0 -	(6.0 -	- 12.0)	(6.0 -	- 12.0)	
,	,	14.0)	(14.0)	,	(15.0)	,	
invasive_ETI386	63	30	111	49	48	85	< 0.0
(47%)	(50%)	(39%)	(62%)	(42%)	(48%)	(39%)	
invasive_CVQ23	75	30	99	48	50	121	0.008
(52%)	(60%)	(39%)	(55%)	(41%)	(50%)	(55%)	
$nvasive_IHD$ 111	17	16	9	0 (0%)	27	42	< 0.0
(14%)	(14%)	(21%)	(5.0%)		(27%)	(19%)	
nvasive_CRR47	17	9 (12%)	52	5	20	44	< 0.0
(18%)	(14%)	•	(29%)	(4.3%)	(20%)	(20%)	
comorb_HTN33	42	31	49	28	59	124	< 0.0
(41%)	(34%)	(40%)	(27%)	(24%)	(59%)	(57%)	
${f comorb_DM}222$	28	24	28	27	31	84	<0.0
(27%)	(22%)	(31%)	(16%)	(23%)	(31%)	(38%)	
comorb_HF 225	55	11	14	7	70	68	< 0.0
(28%)	(44%)	(14%)	(7.8%)	(6.0%)	(70%)	(31%)	
comorb_angina	0 (0%)	0 (0%)	1	0 (0%)	13	18	< 0.0
(3.9%)	, ,	, ,	(0.6%)	, ,	(13%)	(8.2%)	
comorb_cirr 48	6	1	10	5	12	14	0.078
(5.9%)	(4.8%)	(1.3%)	(5.6%)	(4.3%)	(12%)	(6.4%)	
comorb_COP10	3	0 (0%)	2	$\overline{2}$	9	23	< 0.0
(4.8%)	(2.4%)	` ,	(1.1%)	(1.7%)	(9.0%)	(11%)	
comorb_C y3 (11%)	19	11	6	4	16	37	< 0.0
	(15%)	(14%)	(3.4%)	(3.4%)	(16%)	(17%)	
comorb_MI 20	10	3	$\stackrel{\cdot}{2}$	0 (0%)	1	4	< 0.0
(2.5%)	(8.0%)	(3.9%)	(1.1%)	. ,	(1.0%)	(1.8%)	
comorb_K 67	5	5	8	6	11	32	< 0.0
(8.2%)	(4.0%)	(6.5%)	(4.5%)	(5.2%)	(11%)	(15%)	
comorb_hemattologi	ical 9	12	10	5	8	2	< 0.0
(5.6%)	(7.2%)	(16%)	(5.6%)	(4.3%)	(8.0%)	(0.9%)	
$comorb_hem$ $a61$	13	17	14	2	13	2	< 0.0
(7.5%)	(10%)	(22%)	(7.8%)	(1.7%)	(13%)	(0.9%)	
$\mathbf{nfect} \mathbf{_sepsis} \ 134$	10	14	16	15	44	35	< 0.0
(16%)	(8.0%)	(18%)	(8.9%)	(13%)	(44%)	(16%)	
nfect_CAP 118	7	6	11	1	26	67	< 0.0
(14%)	(5.6%)	(7.8%)	(6.1%)	(0.9%)	(26%)	(31%)	
nfect_HAP 375	38	33	93	59	52	100	0.003
- (46%)	(30%)	(43%)	(52%)	(51%)	(52%)	(46%)	

	BM1,		ND1,	ND2,	TN1 ,	TN2,	
${\bf Overall},$	N =	$\mathbf{BM2},$	N =	N =	N =	N =	p -
Characterishic= 816	125	N = 77	179	116	100	219	value
infect_SSTI 133	33	34	1	4	23	38	< 0.00
(16%)	(26%)	(44%)	(0.6%)	(3.4%)	(23%)	(17%)	
infect_CNS 68	0 (0%)	5	24	20	4	15	< 0.00
(8.3%)		(6.5%)	(13%)	(17%)	(4.0%)	(6.8%)	
infect_IAI 50	8	8 (10%)	1	2	12	19	< 0.00
(6.1%)	(6.4%)		(0.6%)	(1.7%)	(12%)	(8.7%)	
infect_UTI 53	6	8 (10%)	10	5	4	20	0.2
(6.5%)	(4.8%)		(5.6%)	(4.3%)	(4.0%)	(9.1%)	
infect_BJI 11	3	0(0%)	0 (0%)	2	1	5	0.2
(1.3%)	(2.4%)			(1.7%)	(1.0%)	(2.3%)	
infect_septicemia	35	24	57	60	7	54	< 0.00
(29%)	(28%)	(31%)	(32%)	(52%)	(7.0%)	(25%)	
comed_aspirin47	8	9 (12%)	3	0(0%)	5	22	< 0.00
(5.8%)	(6.4%)	,	(1.7%)	, ,	(5.0%)	(10%)	
comed_diclofe27ac	24	0 (0%)	0(0%)	1	0(0%)	2	< 0.00
(3.3%)	(19%)	, ,	` ,	(0.9%)	, ,	(0.9%)	
comed_ibuproffen	0 (0%)	0 (0%)	0(0%)	$\stackrel{\cdot}{2}$	0 (0%)	24	< 0.00
(3.2%)	` /	, ,	, ,	(1.7%)	, ,	(11%)	
comed_paracetamol	66	0~(0%)	92	69	47	83	< 0.00
(44%)	(53%)	,	(51%)	(59%)	(47%)	(38%)	
comed_penicil2in	0(0%)	5	34	19	17	48	< 0.00
(15%)	,	(6.5%)	(19%)	(16%)	(17%)	(22%)	
comed_cepha208	12	10	36	33	11	106	< 0.00
(25%)	(9.6%)	(13%)	(20%)	(28%)	(11%)	(48%)	
comed_carbapanem	,	46	158	78	80	174	< 0.00
- (72%)	(42%)	(60%)	(88%)	(67%)	(80%)	(79%)	
comed_cotrin67xazol	,	5	20	14	9	19	0.007
- (8.2%)	,	(6.5%)	(11%)	(12%)	(9.0%)	(8.7%)	
comed_vanconycin	8	3	10	22	$\stackrel{\cdot}{3}$	21	< 0.00
- (8.2%)	(6.4%)	(3.9%)	(5.6%)	(19%)	(3.0%)	(9.6%)	
comed_levofl@x@cin	27	6	24	20	34	139	< 0.00
- (31%)	(22%)	(7.8%)	(13%)	(17%)	(34%)	(63%)	
comed_teicoplanin	0 (0%)	0 (0%)	7	2	0 (0%)	28	< 0.00
- (4.5%)	` /	` /	(3.9%)	(1.7%)	` /	(13%)	
comed_ethanibuxol	0 (0%)	0 (0%)	2	6	0 (0%)	0 (0%)	< 0.00
_ (' ')	(/	(/	(1.1%)	(5.2%)	(/	(/	
comed_pyrazihamid	0 (0%)	0 (0%)	5	7	0 (0%)	0 (0%)	< 0.00
(1.5%)	(/	(/	(2.8%)	(6.0%)	(/	(/	

	BM1 ,		ND1,	ND2,	TN1,	TN2,	
Overall,	N =	BM2,	N =	N =	N =	N =	р-
Characterishic= 816	125	N = 77	179	116	100	219	value
comed_rifamplin	0 (0%)	0 (0%)	5	9	1	0 (0%)	<0.001
(1.8%)	, ,	, ,	(2.8%)	(7.8%)	(1.0%)	, ,	
comed_hepar207	12	2	74	24	33	62	< 0.001
- (25%)	(9.6%)	(2.6%)	(41%)	(21%)	(33%)	(28%)	
comed_clopid@rel	7	4	1	0(0%)	8	20	< 0.001
(4.9%)	(5.6%)	(5.2%)	(0.6%)	, ,	(8.0%)	(9.1%)	
comed_enoxabarin	33	13	119	44	40	103	< 0.001
(43%)	(26%)	(17%)	(66%)	(38%)	(40%)	(47%)	
comed_dexanh@thase	on (0%)	0(0%)	75	20	2	9	< 0.001
(13%)			(42%)	(17%)	(2.0%)	(4.1%)	
comed_amiodatron	8	0 (0%)	14	5	4	5	0.026
(4.4%)	(6.4%)		(7.8%)	(4.3%)	(4.0%)	(2.3%)	
comed_furosetifid	72	15	81	49	71	148	< 0.001
(53%)	(58%)	(19%)	(45%)	(42%)	(71%)	(68%)	
comed_haloperidol	3	4	21	4	5	16	0.015
(6.5%)	(2.4%)	(5.2%)	(12%)	(3.4%)	(5.0%)	(7.3%)	
comed_valproi2	0 (0%)	1	10	5	3	13	0.029
(3.9%)		(1.3%)	(5.6%)	(4.3%)	(3.0%)	(5.9%)	
comed_acedoffenac	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
comed_napro(nem)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
comed_dapit out vein	0 (0%)	0 (0%)	0 (0%)	1	0 (0%)	0 (0%)	0.4
				(0.9%)			
\mathbf{comed} _ $\mathbf{cetirizin}\%)$	0 (0%)	0~(0%)	0 (0%)	0 (0%)	0 (0%)	6	0.015
						(2.7%)	
$comed_sim vas 0\%)$	0 (0%)	0~(0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
comed_bis6p(fc)781)	4	0 (0%)	1	1	0 (0%)	0 (0%)	0.029
	(3.2%)		(0.6%)	(0.9%)			
comed_diltiaz(effa)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
comed_eptifile and	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
$\mathbf{comed} \underline{\mathbf{quinidin}}$	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
comed_carbaimazepi	$\mathbf{in}0 \ (0\%)$	0 (0%)	7	0 (0%)	0 (0%)	1	0.003
			(3.9%)			(0.5%)	
comed_pheny(tolin)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
comed_mirtazanin	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
comed_queti(apin)	1	1	0 (0%)	0 (0%)	0 (0%)	2	0.5
	(0.8%)	(1.3%)				(0.9%)	
comed_onda(iset/r)on	2	1	0~(0%)	3	0 (0%)	0 (0%)	0.016
	(1.6%)	(1.3%)		(2.6%)			
comed_palonos at ror	n 0 (0%)	0 (0%)	0~(0%)	0 (0%)	0~(0%)	0 (0%)	

		BM1,		ND1,	ND2,	TN1,	TN2,	
O	verall,	N =	$\mathbf{BM2},$	N =	N =	N =	N =	р-
Characterishic	≈ 816	125	N = 77	179	116	100	219	value
comed_oselt&	omi wir	1	1	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0.14
		(0.8%)	(1.3%)					
comed_quinii	$\mathbf{n}(0\%)$	0 (0%)	0~(0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
comed_pemb	(%%)	$\mathbf{nab}(0\%)$	0~(0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
$\operatorname{comed_tras} \theta_{l}$	(2007n)nak	o 0 (0%)	0~(0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
comed_atez@	li@hima	$\mathbf{b} \ 0 \ (0\%)$	0~(0%)	0~(0%)	0 (0%)	0 (0%)	0 (0%)	
comed_dur@	(10%)ab	0~(0%)	0~(0%)	0~(0%)	0 (0%)	0 (0%)	0 (0%)	
$comed_IVIG$	(0%)	0(0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
$comed_tacilo($	lonhvis	1	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0.5
		(0.8%)						
comed_fluof	(w/acil	0(0%)	0(0%)	0(0%)	0 (0%)	0 (0%)	0 (0%)	
comed_irin@t	(CAn	0 (0%)	0(0%)	0(0%)	0(0%)	0(0%)	0(0%)	
$comed_leuc$	vô%in	0 (0%)	0(0%)	0(0%)	0 (0%)	0(0%)	0 (0%)	
comed_oxal@r	(12 %)n	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
flag_ADR_T	,	34	22	59	$\stackrel{\circ}{35}$	38	76	0.5
	32%)	(27%)	(29%)	(33%)	(30%)	(38%)	(35%)	
ADR_CTCA	$\mathbf{E}_{\mathbf{max}}$	x	, ,	,	, ,	, ,	, ,	< 0.00
1 85	(32%)	11	9 (41%)	17	7 (20%)	7 (18%)	34	
	,	(32%)	, ,	(29%)	,	, ,	(45%)	
2 78	(30%)	10	6(27%)	12	6 (17%)	17	27	
	` /	(29%)	, ,	(20%)	,	(45%)	(36%)	
3 49	(19%)	4(12%)	3 (14%)	17	7 (20%)	6 (16%)	12	
	,	,	,	(29%)	,	,	(16%)	
4 52	(20%)	9 (26%)	4 (18%)	13	15	8 (21%)	3	
	,	,	()	(22%)	(43%)	,	(3.9%)	
ADR_onset.0) f(12s0t -	2.0 (1.0	3.5(2.0)	4.0 (2.0	6.0 (2.5)	4.0 (2.0	6.0 (2.0	0.15
	.0.0)	- 9.8)	- 7.8)	- 9.0)	- 11.0)	- 9.0)	- 11.0)	
ADR PLT 1	,	0.55	0.39^{-}	$0.37^{'}$	$0.30^{'}$	0.36	$0.35^{'}$	0.077
	0.22 -	(0.26 -	(0.21 -	(0.26 -	(0.16 -	(0.20 -	(0.25 -	
`	0.52)	0.64)	(0.58)	(0.50)	(0.45)	0.48)	(0.50)	

Model Performance

performance_type	C_{index}	calibration_intercept	calibration_slope
Apparent Bootstrap K-fold	0.7860397	0.0000000	1.0000000
	0.7534568	-0.0188899	0.8139667
	0.7519437	-0.0261553	0.8719934