Fonctions

Marc Chevalier DI ENS

Septembre 2019

Définition 1 – Relation fonctionnelle

Nous appelons une relation fonctionnelle de l'ensemble A vers l'ensemble B une partie de $A \times B$ telle que pour tout élément $a \in A$, pour tout élément $b, b' \in B$, $(a, b) \in \mathcal{R}$ et $(a, b') \in \mathcal{R}$ alors b = b'. On peut l'écrire

$$\forall a \in A, \forall (b, b') \in B^2, (a, b) \in \mathcal{R} \land (a, b') \in \mathcal{R} \Rightarrow b = b'$$

Définition 2 – Relation applicative

Nous disons qu'une relation binaire \mathcal{R} entre un ensemble A et un ensemble B est une relation applicative, si et seulement si c'est une relation fonction et que pour tout élément $a \in A$ dans l'ensemble A, il existe un élément $b \in B$ dans l'ensemble B, tel que $(a,b) \in \mathcal{R}$.

On peut l'écrire

$$\forall a \in A, \exists! b \in B, (a, b) \in \mathcal{R}$$

Définition 3 – Fonctions

Une fonction est une paire (A, B, \mathcal{R}) tel que A et B soient deux ensembles et \mathcal{R} est une relation fonctionnelle entre A et B.

Nous appelons l'ensemble A le domaine de définition de la fonction (A, B, \mathcal{R}) , l'ensemble B le codomaine de la fonction (A, B, \mathcal{R}) , et la relation binaire \mathcal{R} le graphe de la fonction (A, B, \mathcal{R}) .

Proposition 1

Soit A et B deux ensembles, la collection des fonctions entre l'ensemble A et l'ensemble B est un ensemble. Nous notons cet ensemble B^A .

Notation 1

Lorsque $f := (A, B, \mathcal{R})$ est une fonction, nous notons b = f(a) pour dire que l'élément a de l'ensemble A et l'élément b de l'ensemble B sont en relation (pour \mathcal{R}).

Notation 2

Une fonction f entre l'ensemble A et l'ensemble B peut être noté de la manière suivante :

$$f : \left\{ \begin{array}{ccc} A & \to & B \\ x & \mapsto & f(x) \end{array} \right.$$

Définition 4 – Identité

Soit A un ensemble. La fonction suivante :

$$\begin{cases}
A & \to & A \\
a & \mapsto & a.
\end{cases}$$

est bien définie. Nous notons cette fonction Id_A .

Définition 5 – Égalité

Deux fonctions $f := (A, B, \mathcal{R})$ et $f' := (A', B', \mathcal{R}')$ sont égales si et seulement si les ensembles A et A' sont égaux, les ensembles B et B' sont égaux, et les ensemble \mathcal{R} et \mathcal{R}' sont égaux.

Proposition 2

Deux fonctions $f := (A, B, \mathcal{R})$ et $f' := (A', B', \mathcal{R}')$ sont égales si et seulement si les ensembles A et A' sont égaux, les ensembles B et B' sont égaux, et pour tout élément de A, nous avons f(a) = f'(a).

Définition 6 – Composition

Soient A, B, et C trois ensembles et soient f une fonction entre l'ensemble A et l'ensemble B et g une fonction entre l'ensemble B et l'ensemble C. Alors la fonction :

$$\begin{cases}
A \to C \\
a \mapsto g(f(a))
\end{cases}$$

est bien définie. Nous notons cette fonction $g \circ f$.

Soient A et B deux ensembles. Soit f une fonction entre l'ensemble A et l'ensemble B.

Définition 7 – Injection

Nous disons que f est une injection si et seulement si pour toute paire d'éléments $(a, a') \in A^2$, on a : $f(a) = f(a') \Rightarrow a = a'$.

Proposition 3

Soit $A \xrightarrow{f} B \xrightarrow{g} C$. Si f et g sont injectives, alors $g \circ f$ est injective.

Proposition 4

Soit A, B et C des ensembles et $f:A\to B$ et $g:B\to C$. Si $g\circ f$ est injective, alors f est injective.

Définition 8 – Surjection

Nous disons que f est une surjection si et seulement si pour tout élément $b \in B$ de l'ensemble B, il existe un élément $a \in A$ tel que f(a) = b.

Proposition 5

Soit $A \xrightarrow{f} B \xrightarrow{g} C$. Si f et g sont surjectives, alors $g \circ f$ est surjective.

Proposition 6

Soit A, B et C des ensembles et $f:A\to B$ et $g:B\to C$. Si $g\circ f$ est surjective, alors g est surjective.

Définition 9 – Bijection

Une fonction qui est à la fois injective et surjective est une bijection.

Proposition 7

La fonction f est bijective si et seulement si, pour tout élément $b \in B$ de l'ensemble B, il existe un unique élément $a \in A$ de l'ensemble A tel que b = f(a).

Proposition 8

Notons $f := (A, B, \mathcal{R})$ et supposons que f est une bijection. Alors le triplet

 $(B,A,\mathcal{S}),$ où la relation \mathcal{S} entre B et A est définie par :

$$bSa :\Leftrightarrow aRb$$

est une fonction bijective entre l'ensemble B et l'ensemble A. Nous appelons cette fonction l'inverse (ou bijection réciproque) de f, et la notons f^{-1} .

Proposition 9

Les deux propriétés suivantes sont vérifiées :

$$-- (f^{-1} \circ f) = Id_A;$$

$$-(f\circ f^{-1})=Id_B.$$

Corollaire 10

Soit $A \xrightarrow{f} B \xrightarrow{g} C$. Si f et g sont bijectives, alors $g \circ f$ est bijective.

Corollaire 11

Soit A, B et C des ensembles et $f: A \to B$ et $g: B \to C$. On suppose $g \circ f$ bijective, alors f est injective et q surjective.

Proposition 12

Soit g une fonction de l'ensemble B dans l'ensemble A. Si $g \circ f = Id_A$ et $f \circ g = Id_B$, alors f est bijective et son inverse est g.

Proposition 13

Soit f une bijection de A dans B et g une bijection de B dans A. Si $g \circ f = Id_A$ ou $f \circ g = Id_B$, alors g est la bijection réciproque de f.

Proposition 14

Soit $A \xrightarrow{f} B \xrightarrow{g} C$. On suppose que f et g sont bijectives. La bijection réciproque de $g \circ f$ est $f^{-1} \circ g^{-1}$.

Remarque 1

Il existe des fonctions f et g tel que $g \circ f = Id_A$ mais où f et g ne sont pas bijectives. Toujours le même exemple fait l'affaire.