Formalising Modal Embeddings of Call-by-Name and Call-by-Value

Floris Reuvers

Supervisor: dr. N.M. van der Weide Second Reader: dr. E.G.M. Hubbers

June 18, 2025

Radboud University

Introduction

Context

Functional Programming Languages

• OCaml, F#, SML, Haskell, Clean

Evaluation Strategies

- Call-by-value (cbv)
 - Evaluate the argument first, then substitute
 - OCaml, F#, SML
- Call-by-name (cbn) / lazy
 - Substitute the argument, evaluate only when needed
 - Haskell, Clean

Let f be defined as

$$f(x) = x * x$$

Let f be defined as

$$f(x) = x * x$$

cbn and cbv evaluation of f (3 + 3)

Let f be defined as

$$f(x) = x * x$$

cbn and cbv evaluation of f(3 + 3)

cbn:

cvb:

Let f be defined as

$$f(x) = x * x$$

cbn and cbv evaluation of f (3 + 3)

cbn:

cvb:

$$f(3+3) \rightarrow (3+3) * (3+3)$$
 $f(3+3) \rightarrow f(6)$

$$f(3+3) \rightarrow f(6)$$

Let f be defined as

$$f(x) = x * x$$

cbn and cbv evaluation of f(3 + 3)

cbn: cvb:
$$f(3+3) \to (3+3)*(3+3)$$
 $f(3+3) \to f(6)$ $f(3+3) \to 6*6$

Let f be defined as

$$f(x) = x * x$$

cbn and cbv evaluation of f (3 + 3)

cbn:
 cvb:

$$f(3+3) \rightarrow (3+3)*(3+3)$$
 $f(3+3) \rightarrow f(6)$
 $\rightarrow 6*(3+3)$
 $\rightarrow 6*6$
 $\rightarrow 6*6$
 $\rightarrow 36$

Let f be defined as

$$f(x) = x * x$$

cbn and cbv evaluation of f (3 + 3)

cbn:
 cvb:

$$f(3+3) \rightarrow (3+3)*(3+3)$$
 $f(3+3) \rightarrow f(6)$
 $\rightarrow 6*(3+3)$
 $\rightarrow 6*6$
 $\rightarrow 6*6$
 $\rightarrow 36$
 $\rightarrow 36$

Reasons to Unify cbn and cbv

Pros/Conns of cbn and cbv

Sometimes arguments are used:

- zero times: cbn is more efficient
- multiple times: cbv is more efficient

Reasons to Unify cbn and cbv

Pros/Conns of cbn and cbv

Sometimes arguments are used:

- zero times: cbn is more efficient
- multiple times: cbv is more efficient

Reasons to Unify cbn and cbv

Pros/Conns of cbn and cbv

Sometimes arguments are used:

- zero times: cbn is more efficient
- multiple times: cbv is more efficient

Unification

- Best of both worlds
- Universal Framework

Approaches to Unification

Thunks and CPS Translation

Wrappers around expressions to delay evaluation Continuous Passing Style translation

Approaches to Unification

Thunks and CPS Translation

Wrappers around expressions to delay evaluation Continuous Passing Style translation

Linear Logic

Explicit control over resources

Arguments correspond to resources

Approaches to Unification

Thunks and CPS Translation

Wrappers around expressions to delay evaluation Continuous Passing Style translation

Linear Logic

Explicit control over resources

Arguments correspond to resources

Modal Logic

Adds box modality

Boxed terms are treated as values

Main Contribution

A formalisation of the unification of call-by-name and call-by-value using modal logic

Background

Grammar Lambda Calculus (λ -calculus)

 λ -terms and Types

$$M, N, P, Q ::= x \mid \lambda x. M \mid MN \qquad A ::= X \mid A \rightarrow A'$$

Grammar Lambda Calculus (λ -calculus)

 λ -terms and Types

$$M, N, P, Q ::= x \mid \lambda x. M \mid MN \qquad A ::= X \mid A \rightarrow A'$$

λ -terms and Types

$$M, N, P, Q ::= x \mid \lambda x. M \mid MN \qquad A ::= X \mid A \rightarrow A'$$

Example terms

X

λ -terms and Types

$$M, N, P, Q ::= x \mid \lambda x. M \mid MN \qquad A ::= X \mid A \rightarrow A'$$

Example terms

X

$$\lambda x.x$$

λ -terms and Types

$$M, N, P, Q ::= x \mid \lambda x. M \mid MN \qquad A ::= X \mid A \rightarrow A'$$

Example terms

X

 $\lambda x.x$

 $\lambda y.yz$

λ -terms and Types

$$M, N, P, Q ::= x \mid \lambda x. M \mid MN \qquad A ::= X \mid A \rightarrow A'$$

Example terms

X

 $\lambda x.x$

 $\lambda y.yz$

 $(\lambda y.y)z$

λ -terms and Types

$$M, N, P, Q ::= x \mid \lambda x. M \mid MN \qquad A ::= X \mid A \rightarrow A'$$

Example terms

 $\lambda x.\lambda t.xt(\lambda s.w)wy$

$$\begin{array}{c}
x \\
\lambda x.x \\
\lambda y.yz \\
(\lambda y.y)z
\end{array}$$

Grammar Lambda Calculus (λ -calculus)

λ -terms and Types

$$M, N, P, Q ::= x \mid \lambda x. M \mid MN \qquad A ::= X \mid A \rightarrow A'$$

$$\begin{array}{ccc}
x & & & & & X \\
\lambda x.x & & & & X \\
\lambda y.yz & & & & X
\end{array}$$

$$\begin{array}{cccc}
(\lambda y.y)z & & & & & \\
\lambda x.\lambda t.xt(\lambda s.w)wy & & & & & \end{array}$$

λ -terms and Types

$$M, N, P, Q ::= x \mid \lambda x. M \mid MN$$
 $A ::= X \mid A \rightarrow A'$

λ -terms and Types

$$M, N, P, Q$$
 ::= $x \mid \lambda x.M \mid MN$ A ::= $X \mid A \rightarrow A'$

Call-by-name evaluation λ -calculus

 β -reduction

$$(\lambda x.M)N \to M[x \mapsto N]$$
 (β_n)

Closure rule

$$\frac{M \to M'}{MN \to M'N} (\mu)$$

cbn evaluation

 β -reduction together with the μ closure rule

Call-by-box λ -calculus

λ -terms

$$M, N, P, Q ::= \varepsilon(x) \mid \lambda x. M \mid MN \mid box(N)$$

Idea

- ε : unbox operator
- box: box operator
- paramters of abstractions are boxed

Types

$$A ::= X \mid B \rightarrow A \mid B$$
 $B ::= \Box A$

Call-by-box evaluation

β -reduction

$$(\lambda x.M)$$
box $(N) \to M[\varepsilon(x) \mapsto N]$ (β_b)

Closure rules

$$\frac{M \to M'}{MN \to M'N} (\mu) \qquad \frac{N \to N'}{MN \to MN'} (\nu)$$

cbb evaluation

 β -reduction together with the μ and ν closure rule

Embeddings into λ_b

Girard's and Gödel's Translation

- ullet Translate standard λ -calculus into λ_b
- **Girard's** translation: λ_n into λ_b
- Gödel's translation: λ_{v} into λ_{b}
- Call-by-box evaluation simulates
 - cbn under Girard's embedding
 - cbv under Gödel's embedding
- Notation: M° is the Girard translation of λ -term M
- Main propositions

Girard's Embedding

Translation from cbn λ -terms to λ_b

$$X^{\circ} = X$$
 $x^{\circ} = \varepsilon(x)$ $(A_1 \to A_2)^{\circ} = \Box A_1^{\circ} \to A_2^{\circ}$ $(\lambda x.M)^{\circ} = \lambda x.M^{\circ}$ $(MN)^{\circ} = M^{\circ} box(N^{\circ})$

Embedding of $(\lambda x.x)y$

$$((\lambda x.x)y)^{\circ} = (\lambda x.x)^{\circ} box(y^{\circ})$$

$$= (\lambda x.x^{\circ}) box(\varepsilon(y))$$

$$= (\lambda x.\varepsilon(x)) box(\varepsilon(y))$$

Girard's Image

Well-typed terms after translation

$$M, N ::= \varepsilon(x) \mid \lambda x.M \mid Mbox(N)$$

- Eliminates the ν closure rule
- \bullet Only the μ rule remains
- Call-by-box becomes deterministic
- If M evaluates to N with cbn, then M° evaluates to N° with cbb

Agda

Functional programming language

Functional programming language Inspired by Haskell

Functional programming language Inspired by Haskell Proof assistant

Functional programming language Inspired by Haskell Proof assistant Dependently typed

Functional programming language
Inspired by Haskell
Proof assistant
Dependently typed
Hole-based programming

Some Agda code

Girard's Embedding for Types

$$(A_1 \to A_2)^{\circ} = \Box A_1^{\circ} \to A_2^{\circ}$$
$$X^{\circ} = X$$

Embedding in Agda

```
embedType : Type \to Typeb embedType (C \Rightarrow D) = \square (embedType C) \Rightarrowb embedType D embedType X = X
```

Challenges

- Variables
 - Use of de Bruijn indices
 - Variables represented as natural numbers
- Ill-typed terms
 - λ -term $y(\lambda x.x)$ is not typeable
 - Solution: restrict to well-typed λ -terms
- Formal definition of substitution
- Formal definition of raise in Gödel's translation

Experience Working with Agda

- Intersting learning experience
- High learning curve
- Hole based programming is amazing
- Error message are not always helpful
- But give it a try!
 - Follow the online PLFA book (Programming Language Foundations in Agda)
 - https://plfa.github.io/

Conslusions

Conclusion

- ullet Recap of the λ -calculus
- Explained λ_b
- Defined the unifying relation cbb
- Girard's translation
- Formally proved the main properties of the translations