Matrices et systèmes linéaires

Table des matières

1	Les	matrices	2
	1.1	Vocabulaire	2
	1.2	Opérations sur les matrices	3
	1.3	L'algèbre des matrices carrées	6
	1.4	Transposée d'une matrice	11
	1.5	Différentes interprétations du produit matriciel	12
	1.6	Trace d'une matrice	14
	1.7	Matrices décomposées en blocs	15
		1.7.1 Matrices extraites	15
		1.7.2 Matrices blocs	16
		1.7.3 Opérations sur les matrices blocs	17
2	Mat	trices et applications linéaires	18
	2.1	La notion de rang	18
		2.1.1 Rang d'une famille de vecteurs	18
		2.1.2 Rang d'une application linéaire	18
		2.1.3 Rang d'une matrice	19
	2.2	Matrice d'une application linéaire	20
3	Les	systèmes linéaires	25
	3.1	·	25
	3.2	- · · · · · · · · · · · · · · · · · · ·	27
	3.3	Méthode du pivot de Gauss	30
	3.4	Méthode du pivot total	32
	3.5	Méthode de Gauss-Jordan	34

Notation. K désigne un corps quelconque.

Selon le programme, "en pratique, \mathbb{K} est égal à \mathbb{R} ou \mathbb{C} ".

Notation. Symbole de Kronecker : Si i et j sont deux objets mathématiques, on convient que $\delta_{i,j} = 0$ lorsque $i \neq j$ et $\delta_{i,i} = 1$ lorsque i = j.

1 Les matrices

1.1 Vocabulaire

Définition. Soit $(n,p) \in \mathbb{N}^{*2}$. On appelle *matrice* à n lignes et à p colonnes (à coefficients dans \mathbb{K}) toute famille de scalaires indexée par $\mathbb{N}_n \times \mathbb{N}_p$.

Si $M = (m_{i,j})_{(i,j) \in \mathbb{N}_n \times \mathbb{N}_p} = (m_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$, on représente M sous la forme suivante :

$$M = \begin{pmatrix} m_{1,1} & \cdots & m_{1,p} \\ \vdots & & \vdots \\ m_{n,1} & \cdots & m_{n,p} \end{pmatrix},$$

où le $(i, j)^{\text{ème}}$ coefficient est situé à l'intersection de la $i^{\text{ème}}$ ligne et de la $j^{\text{ème}}$ colonne. Une matrice est donc un tableau de scalaires.

Notation.

- L'ensemble des matrices à coefficients dans \mathbb{K} , à n lignes et p colonnes est noté $\mathcal{M}_{\mathbb{K}}(n,p)$ ou $\mathcal{M}_{n,p}(\mathbb{K})$.
- De plus, $\mathcal{M}_{\mathbb{K}}(n,n)$ est souvent noté $\mathcal{M}_{\mathbb{K}}(n)$ ou $\mathcal{M}_{n}(\mathbb{K})$.

Définitions:

- Une *matrice ligne* est une matrice ne possédant qu'une ligne.
- Une *matrice colonne* est une matrice ne possédant qu'une colonne.
- Une *matrice carrée* est une matrice possédant autant de lignes que de colonnes.
- Soit $M = (m_{i,j}) \in \mathcal{M}_{\mathbb{K}}(n,p)$.
 - M est une **matrice triangulaire supérieure** si et seulement si $\forall (i,j) \in \mathbb{N}_n \times \mathbb{N}_p \ (i>j \Longrightarrow m_{i,j}=0).$
- M est une **matrice triangulaire inférieure** si et seulement si $\forall (i,j) \in \mathbb{N}_n \times \mathbb{N}_p \ (i < j \Longrightarrow m_{i,j} = 0).$
- M est une **matrice diagonale** si et seulement si $\forall (i,j) \in \mathbb{N}_n \times \mathbb{N}_p \quad (i \neq j \Longrightarrow m_{i,j} = 0).$
 - On note alors $M = \operatorname{diag}(m_{1,1}, \dots, m_{n,n})$.
- Soit M une matrice diagonale et carrée. On dit que M est une matrice scalaire si et seulement si tous ses coefficients diagonaux sont égaux.

En particulier, lorsque tous ses coefficients diagonaux sont égaux à 1, on obtient la matrice identité, notée I_n .

Ainsi, M est une matrice scalaire si et seulement s'il existe $\lambda \in \mathbb{K}$ tel que $M = \lambda I_n$.

Définition. Soit $M = (\alpha_{i,j}) \in \mathcal{M}_{\mathbb{K}}(n,p)$.

Pour $j \in \mathbb{N}_p$, on appelle $j^{\text{ème}}$ vecteur colonne de M la quantité $(\alpha_{1,j}, \ldots, \alpha_{n,j}) \in \mathbb{K}^n$. Pour $i \in \mathbb{N}_n$, on appelle $j^{\text{ème}}$ vecteur ligne de M la quantité $(\alpha_{i,1}, \ldots, \alpha_{i,p}) \in \mathbb{K}^p$.

Remarque. Lorqu'aucune ambiguïté n'est possible, on identifie \mathbb{K}^n avec $\mathcal{M}_{\mathbb{K}}(n,1)$ (ensemble des matrices colonnes).

Plus rarement, un vecteur de \mathbb{K}^n sera vu comme un élément de $\mathcal{M}_{\mathbb{K}}(1,n)$ (ensemble des matrices lignes).

1.2 Opérations sur les matrices

Définition. $\mathcal{M}_{\mathbb{K}}(n,p) = \mathbb{K}^{\mathbb{N}_n \times \mathbb{N}_p}$, or \mathbb{K} est un \mathbb{K} -espace vectoriel, donc $\mathcal{M}_{\mathbb{K}}(n,p)$ est un \mathbb{K} -espace vectoriel: On dispose ainsi des lois d'addition et de multiplication par un scalaire.

Exemple.
$$3\begin{pmatrix} 1 & 2 & -1 \\ 0 & 0 & 3 \end{pmatrix} - \begin{pmatrix} 0 & 4 & -1 \\ 2 & 3 & 1 \end{pmatrix} = \cdots$$

Propriété. Soit $n, p \in \mathbb{N}^*$. La base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$ est la famille de matrices $(E_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ définie par : Pour tout $i \in \{1, \ldots, n\}$ et $j \in \{1, \ldots, p\}$, $E_{i,j} = (\delta_{a,i}\delta_{b,j})_{\substack{1 \leq a \leq n \\ 1 \leq b \leq p}}$. $E_{i,j}$ est appelée la (i,j)-ième matrice élémentaire de $\mathcal{M}_{n,p}(\mathbb{K})$. Tous ses coefficients sont nuls, sauf celui de position (i,j) qui est égal à 1.

Ainsi, pour tout
$$M \in \mathcal{M}_{n,p}(\mathbb{K})$$
, $M = \sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} M_{i,j} E_{i,j}$.

On en déduit que $\dim(\mathcal{M}_{n,p}(\mathbb{K})) = np$.

Définition du produit matriciel : Soit $(n, p, q) \in (\mathbb{N}^*)^3$.

Soient $A = (a_{i,j}) \in \mathcal{M}_{\mathbb{K}}(n, \mathbf{p})$ et $B = (b_{j,k}) \in \mathcal{M}_{\mathbb{K}}(\mathbf{p}, q)$.

On appelle **produit des matrices** A et B la matrice $C = (c_{i,k}) \in \mathcal{M}_{\mathbb{K}}(n,q)$ définie par

$$\forall (i,k) \in \mathbb{N}_n \times \mathbb{N}_q \quad c_{i,k} = \sum_{j=1}^p a_{i,j} b_{j,k}.$$

Exemple. Soit
$$a \in \mathbb{K}$$
:
$$\begin{pmatrix} a & 1 \\ -a & a \\ 0 & 0 \end{pmatrix} \quad \begin{pmatrix} a+2 & 1-a \\ a & 2a \\ 0 & 0 \end{pmatrix}$$

Convention : sauf précision du contraire, lorsque A est une matrice, on notera $A_{i,j}$ son coefficient de position (i, j).

Ainsi, lorsque A et B sont deux matrices telles que le nombre p de colonnes de A est égal au nombre de lignes de B, la définition du produit matriciel se résume par :

$$AB_{i,j} = \sum_{k=1}^{p} A_{i,k} B_{k,j}.$$

Exercice. Soit $n, m, p \in \mathbb{N}^*$, calculer $E_{i,j}E_{h,k}$, où $E_{i,j}$ désigne la (i, j)-ème matrice élémentaire de $\mathcal{M}_{n,p}(\mathbb{K})$ et où $E_{h,k}$ désigne la (h, k)-ème matrice élémentaire de $\mathcal{M}_{p,m}(\mathbb{K})$.

Solution: Soit $a, c \in \mathbb{N}_n \times \mathbb{N}_m$. $[E_{i,j}E_{h,k}]_{a,c} = \sum_{b=1}^{p} [E_{i,j}]_{a,b} [E_{h,k}]_{b,c}$ $= \sum_{b=1}^{p} \delta_{i,a}\delta_{j,b}\delta_{h,b}\delta_{k,c}$ $= \delta_{i,a}\delta_{h,j}\delta_{k,c}$ $= \delta_{j,h}[E_{i,k}]_{a,c},$ donc $E_{i,j}E_{h,k} = \delta_{j,h}E_{j,k}$.

Formule pour le produit de trois matrices : Soit $(n, m, l, p) \in (\mathbb{N}^*)^4$. Soient $A = (a_{i,j}) \in \mathcal{M}_{\mathbb{K}}(n, \mathbf{m}), B = (b_{j,k}) \in \mathcal{M}_{\mathbb{K}}(\mathbf{m}, \mathbf{l})$ et $C = (c_{k,h}) \in \mathcal{M}_{\mathbb{K}}(\mathbf{l}, p)$. Pour tout $i, h \in \mathbb{N}_n \times \mathbb{N}_p$, $[(AB)C]_{i,h} = [A(BC)]_{i,h} = \sum_{\substack{1 \le j \le m \\ j \ne k l}} A_{i,j}B_{j,k}C_{k,h}$.

Démonstration.

Soit $(i,h) \in \mathbb{N}_n \times \mathbb{N}_p$.

$$[(AB)C]_{i,h} = \sum_{k=1}^{l} [AB]_{i,k} C_{k,h} = \sum_{k=1}^{l} \left(\sum_{j=1}^{m} A_{i,j} B_{j,k} \right) C_{k,h} = \sum_{j=1}^{m} \sum_{k=1}^{l} A_{i,j} B_{j,k} C_{k,h}. \square$$

Remarque. On pourrait généraliser en donnant l'expression des coefficients du produit de N matrices en fonction des coefficients de ces N matrices.

Exemple. On considère un ensemble $S = \{s_1, \ldots, s_n\}$ fini de cardinal n, dont les éléments sont appelés des sommets, et une partie A de S^2 , dont les éléments sont appelés des arêtes. On a ainsi défini un graphe orienté, dont l'ensemble des sommets est S et l'ensemble des arêtes est A.

La matrice d'adjacence de ce graphe est, par définition, la matrice $M \in \mathcal{M}_n(\mathbb{R})$ suivante : pour tout $i, j \in \{1, ..., n\}$, $M_{i,j} = 1$ si $(s_i, s_j) \in A$ et $M_{i,j} = 0$ sinon.

Alors, pour tout $p \in \mathbb{N}$, $[M^p]_{i,j}$ correspond au nombre de chemins de longueur p permettant de passer de s_i à s_j : en effet, $[M^p]_{i,j} = \sum_{1 \leq i_1, \dots, i_{p-1} \leq n} M_{i,i_1} M_{i_1,i_2} \cdots M_{i_{p-1},j}$, et

 $M_{i,i_1}M_{i_1,i_2}\cdots M_{i_{p-1},j}$ est égal à 1 si et seulement si le chemin $s_i\to s_{i_1}\to\cdots\to s_{i_{p-1}}\to s_j$ est bien une succession d'arêtes du graphe, et il est égal à 0 sinon.

Propriété. La multiplication matricielle est associative.

Propriété. La mutiplication matricielle est distributive par rapport à l'addition. **Démonstration.**

Soit
$$A \in \mathcal{M}_{n,p}$$
 et $B, C \in \mathcal{M}_{p,q}$. Alors $A(B+C) = AB + AC$
car $[A(B+C)]_{i,k} = \sum_{j=1}^{p} A_{i,j}(B_{j,k} + C_{j,k}) = \sum_{j=1}^{p} A_{i,j}B_{j,k} + \sum_{j=1}^{p} A_{i,j}C_{j,k} = [AB + AC]_{i,j}$.

De même, on montre que si $D \in \mathcal{M}_{n,p}(\mathbb{K}), (A+D)B = AB + DB. \square$

Propriété. Soit $A \in \mathcal{M}_{n,p}$, $B \in \mathcal{M}_{p,q}$ et $a \in \mathbb{K}$. Alors a(AB) = (aA)B = A(aB).

Démonstration.

$$[a(AB)]_{i,k} = \sum_{i=1}^{P} aA_{i,j}B_{j,k} = [(aA)B)]_{i,k} = [A(aB)]_{i,k}. \square$$

Propriété. Pour tout $M \in \mathcal{M}_{\mathbb{K}}(n,p)$, $I_nM = MI_p = M$.

Démonstration.

$$[I_nM]_{i,k} = \sum_{1 \le j \le n} \delta_{i,j} M_{j,k} = M_{i,k}. \ \Box$$

Propriété. Soit $n, p \in \mathbb{N}^*$ et $M \in \mathcal{M}_{\mathbb{K}}(n, p)$.

Pour tout $X \in \mathbb{K}^p = \mathcal{M}_{\mathbb{K}}(p,1), MX \in \mathcal{M}_{\mathbb{K}}(n,1) = \mathbb{K}^n$.

Si
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$$
, alors $\forall i \in \{1, \dots, n\}$, $[MX]_i = \sum_{j=1}^p M_{i,j} x_j$.

Si
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$$
, alors $MX = x_1 M_1 + \cdots x_p M_p$,

en notant M_1, \ldots, M_p les colonnes de M.

$D\'{e}monstration.$

$$[MX]_{i,1} = \sum_{j=1}^p M_{i,j}X_{j,1}$$
, donc avec d'autres notations, $[MX]_i = \sum_{j=1}^p M_{i,j}x_j$.

Ainsi,
$$[MX]_i = \sum_{j=1}^p x_j [M_j]_i$$
, où $[M_j]_i$ désigne la *i*-ème composante de M_j . \square

Propriété. Soit $n, p \in \mathbb{N}^*$ et $M \in \mathcal{M}_{\mathbb{K}}(n, p)$.

Soit $j \in \{1, \ldots, p\}$. La j-ème colonne de M est Mc_j , où $c_j = (\delta_{i,j})_{1 \le i \le n} \in \mathbb{K}^p$.

Propriété. Soit $n, p \in \mathbb{N}^*$ et $M \in \mathcal{M}_{\mathbb{K}}(n, p)$.

Alors l'application $\tilde{M}: \mathbb{K}^p \longrightarrow \mathbb{K}^n$ est une application linéaire que l'on appelle $X \longmapsto MX$

l'application linéaire canoniquement associée à la matrice ${\cal M}.$

Propriété. Soit $n, p \in \mathbb{N}^*$. Alors $M_{\mathbb{K}}(n, p) \longrightarrow L(\mathbb{K}^p, \mathbb{K}^n)$ est un isomorphisme d'espaces vectoriels.

Démonstration.

 \diamond Soit $A, B \in \mathcal{M}_{\mathbb{K}}(n, p)$ et $\lambda \in \mathbb{K}$. Pour tout $X \in \mathbb{K}^n$,

$$(\lambda \tilde{A} + B)(X) = (\lambda A + B)X = \lambda AX + BX = \lambda \tilde{A}(X) + \tilde{B}(X) = (\lambda \tilde{A} + \tilde{B})(X)$$
. Ceci prouve que $M \longmapsto \tilde{M}$ est linéaire.

 \diamond Soit $u \in L(\mathbb{K}^p, \mathbb{K}^n)$. S'il existe $M \in \mathcal{M}_{\mathbb{K}}(n,p)$ telle que $\tilde{M} = u$, alors, pour tout $j \in \{1,\ldots,p\}$, la j-ème colonne de M est égale à $Mc_j = \tilde{M}(c_j) = u(c_j)$. Donc si M existe, elle est unique.

Pour la synthèse, notons M la matrice de $\mathcal{M}_{\mathbb{K}}(n,p)$ dont la j-ème colonne est égale à $u(c_j) = M_j$, pour tout $j \in \{1, \ldots, p\}$. Ainsi, pour tout $j \in \{1, \ldots, p\}$, $u(c_j) = \tilde{M}(c_j)$.

Soit
$$X \in \mathbb{K}^p$$
. En posant $X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$, $X = \sum_{j=1}^p x_j c_j$,

donc
$$u(X) = \sum_{j=1}^{p} x_j u(c_j) = \sum_{j=1}^{p} x_j M_j = MX = \tilde{M}(X)$$
, donc $u = \tilde{M}$.

Ainsi, pour tout $u \in L(\mathbb{K}^p, \mathbb{K}^n)$, il existe une unique $M \in \mathcal{M}_{\mathbb{K}}(n, p)$ telle que $\tilde{M} = u$, ce qui prouve que $M \longmapsto \tilde{M}$ est une bijection. \square

Remarque. Avec les notations précédentes, pour tout $X \in \mathbb{K}^p$, $\tilde{M}(X) = MX$. Il est fréquent que l'on identifie M et \tilde{M} . Alors, pour tout $X \in \mathbb{K}^p$, M(X) = MX. Cette identification n'est pas systématique cependant.

Définition. Soit $M \in \mathcal{M}_{\mathbb{K}}(n, p)$.

$$\operatorname{Ker}(M) \stackrel{\Delta}{=} \operatorname{Ker}(\tilde{M}) = \{ X \in \mathbb{K}^p \ / \ MX = 0 \}.$$

$$\operatorname{Im}(M) \stackrel{\Delta}{=} \operatorname{Im}(\tilde{M}) = \{ MX / X \in \mathbb{K}^p \}.$$

Corollaire. Soit $(M, M') \in \mathcal{M}_{\mathbb{K}}(n, p)$. Alors,

$$(\forall X \in \mathbb{K}^p \quad MX = M'X) \Longleftrightarrow M = M'.$$

Démonstration.

Si $\forall X \in \mathbb{K}^p$ MX = M'X, alors $\widetilde{M} = \widetilde{M'}$, donc par injectivité, M = M'. \square

Propriété. Soit $n, p, q \in \mathbb{N}^*$, soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,q}(\mathbb{K})$. Alors $\widetilde{AB} = \widetilde{A} \circ \widetilde{B}$. **Démonstration.**

Pour tout
$$X \in \mathbb{K}^q$$
, $\tilde{A} \circ \tilde{B}(X) = \tilde{A}(BX) = ABX = \widetilde{AB}(X)$. \square

1.3 L'algèbre des matrices carrées

Notation. On fixe un entier n non nul.

Propriété. $(\mathcal{M}_n(\mathbb{K}), +, ., \times)$ est une \mathbb{K} -algèbre, non commutative dès que $n \geq 2$.

ATTENTION : $(\mathcal{M}_n(\mathbb{K}), +, ., \times)$ n'est pas intègre, dès que $n \geq 2$.

En effet,
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^2 = 0$$
.

Ainsi, lorsque $A, B, C \in \mathcal{M}_n(\mathbb{K}), AB = 0 \implies (A = 0) \vee (B = 0)$ et $(C \neq 0) \wedge (AC = BC) \implies A = B$.

Cependant, lorsque C est inversible, alors $AC = BC \Longrightarrow A = B$.

Définition. Soit $A \in \mathcal{M}_n(\mathbb{K})$.

On dit que A est nilpotente si et seulement si il existe $p \in \mathbb{N}^*$ tel que $A^p = 0$.

ATTENTION: L'anneau $(\mathcal{M}_n(\mathbb{K}), +, \times)$ n'est pas commutatif, ce qui nous prive d'un certain nombre de règles : si $A, B \in \mathcal{M}_n(\mathbb{K})$,

- $-(AB)^p \neq A^p B^p$;
- $(A-B)(A+B) \neq A^2-B^2$; plus généralement, la formule de Bernoulli n'est plus valable, lorsque A et B ne commutent pas.
- $(A+B)^2 \neq A^2 + B^2 + 2AB$. plus généralement, la formule de Newton n'est plus valable, lorsque A et B ne commutent pas.

 $\varphi: \mathcal{M}_{\mathbb{K}}(n) \longrightarrow L(\mathbb{K}^n)$ est un isomorphisme d'algèbres. Propriété.

$D\'{e}monstration.$

 $\varphi(I_n) = Id_{\mathbb{K}^n}.$

Pour tout $A, B \in \mathcal{M}_{\mathbb{K}}(n)$ et $X \in \mathbb{K}^n$,

$$(\widetilde{AB})(X) = (AB)X = A(BX) = \widetilde{A}(\widetilde{B}(X)) = [\widetilde{A} \circ \widetilde{B}](X). \square$$

Corollaire. Soit $A \in \mathcal{M}_{\mathbb{K}}(n)$. A est inversible dans $\mathcal{M}_{\mathbb{K}}(n)$ si et seulement si \tilde{A} est inversible dans $L(\mathbb{K}^n)$ et dans ce cas, $M^{-1} = \tilde{M}^{-1}$.

Corollaire. Soit $A \in \mathcal{M}_{\mathbb{K}}(n)$. A est inversible dans $\mathcal{M}_{\mathbb{K}}(n)$ si et seulement si, pour tout $Y \in \mathbb{K}^n$, il existe un unique $X \in \mathbb{K}^n$ tel que AX = Y.

Propriété. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors

A inversible dans $\mathcal{M}_n(\mathbb{K}) \iff A$ inversible à droite dans $\mathcal{M}_n(\mathbb{K})$

 \iff A inversible à gauche dans $\mathcal{M}_n(\mathbb{K})$

$D\'{e}monstration.$

A est inversible à droite dans $\mathcal{M}_n(\mathbb{K})$ si et seulement si il existe $B \in \mathcal{M}_n(\mathbb{K})$ telle que $BA = I_n$, i.e telle que $\tilde{B}\tilde{A} = Id_{\mathbb{K}^n}$, donc si et seulement si \tilde{A} est inversible à droite dans $L(\mathbb{K}^n)$.

De même, A est inversible à gauche dans $\mathcal{M}_n(\mathbb{K})$ si et seulement si \tilde{A} est inversible à gauche dans $L(\mathbb{K}^n)$.

De plus, on sait que A est inversible dans $\mathcal{M}_n(\mathbb{K})$ si et seulement si A est inversible dans $L(\mathbb{K}^n)$.

La propriété est alors démontrée car on a vu lors du cours sur les espaces vectoriels de dimension finie (page 27) que, lorsque E est un \mathbb{K} -espace vectoriel de dimension finie et $u \in L(E)$, alors u est inversible dans l'anneau L(E) si et seulement si u est inversible à droite (resp : est inversible à gauche).

Formule: Dans $\mathcal{M}_2(\mathbb{K})$, $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est inversible si et seulement si

 $det(M) \stackrel{\Delta}{=} ad - cb \neq 0$, et dans ce cas

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{\det(M)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

$D\'{e}monstration.$

 \diamond Supposons que $\det(M) \neq 0$.

On calcule
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} ad - bc & 0 \\ 0 & -cb + ad \end{pmatrix} = \det(M)I_2,$$

donc
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \frac{1}{\det(M)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = I_2.$$

De même on vérifie que $\frac{1}{\det(M)}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \times \begin{pmatrix} a & b \\ c & d \end{pmatrix} = I_2$,

donc M est inversible et $M^{-1} = \frac{1}{\det(M)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

 \diamond Supposons que ad - bc = 0.

Alors
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d \\ -c \end{pmatrix} = 0$$
 et $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} b \\ -a \end{pmatrix} = 0$, donc $\begin{pmatrix} d \\ -c \end{pmatrix}$, $\begin{pmatrix} b \\ -a \end{pmatrix} \in \text{Ker}(\tilde{M})$.

On en déduit que $Ker(M) \neq \{0\}$ lorsque $M \neq 0$, donc que M n'est pas inversible, puis que M n'est pas inversible. Lorsque M=0, comme dans tout anneau non nul, M n'est pas inversible. \square

Exemple.
$$\begin{pmatrix} 1 & 5 \\ -3 & 2 \end{pmatrix}^{-1} = \frac{1}{17} \begin{pmatrix} 2 & -5 \\ 3 & 1 \end{pmatrix}$$
.

On en déduit les formules de Cramer pour la résolution d'un système linéaire de deux équations à deux inconnues :

Formule de Cramer : Soit $a, b, c, d, e, f \in \mathbb{K}$. On considère le système linéaire (S) : $\begin{cases} ax + by = e \\ cx + dy = f \end{cases}$, en les inconnues $(x, y) \in \mathbb{K}^2$.

Lorsque
$$\det = ad - cb \stackrel{\triangle}{=} \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0, (S) \iff \begin{cases} x = \frac{\begin{vmatrix} e & b \\ f & d \end{vmatrix}}{\det} \\ y = \frac{\begin{vmatrix} a & e \\ c & f \end{vmatrix}}{\det} \end{cases}.$$

Démonstration.
Posons
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $X = \begin{pmatrix} x \\ y \end{pmatrix}$ et $Y = \begin{pmatrix} e \\ f \end{pmatrix}$. Alors $(S) \iff MX = Y$.

On suppose que $\det(M) \neq 0$, donc M est inversi

Alors
$$(S) \iff X = M^{-1}Y = \frac{1}{\det(M)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} e \\ f \end{pmatrix}$$
. \Box

Exemple.
$$\begin{cases} x + 5y &= 1 \\ -3x + 2y &= 1 \end{cases} \Longleftrightarrow \begin{cases} x = -\frac{3}{17} \\ y = \frac{4}{17} \end{cases}.$$

Notation. On note $GL_n(\mathbb{K})$ le groupe des inversibles de $\mathcal{M}_n(\mathbb{K})$. On l'appelle le groupe linéaire de degré n.

Exemple. Un automorphisme intérieur de $\mathcal{M}_n(\mathbb{K})$ est un automorphisme sur $\mathcal{M}_n(\mathbb{K})$ de la forme $M \longmapsto AMA^{-1}$ où $A \in GL_n(\mathbb{K})$.

Propriété. L'ensemble des matrices diagonales de $\mathcal{M}_n(\mathbb{K})$ est une sous-algèbre commutative de $\mathcal{M}_n(\mathbb{K})$.

Propriété. Pour tout $i \in \mathbb{N}_n$, on pose $c_i = (\delta_{i,j})_{1 \le j \le n} \in \mathbb{K}^n$.

Pour tout $i \in \{0, ..., n\}$, on note $F_i = \text{Vect}(c_k)_{1 \le k \le i}$. Ainsi, $F_0 = \{0\}$ et pour tout

$$i \in \{1, \dots, n\}, F_i = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_i \\ 0 \\ \vdots \\ 0 \end{pmatrix} / x_1, \dots, x_i \in \mathbb{K} \right\}.$$

Si $M \in \mathcal{M}_n(\mathbb{K})$, alors M est triangulaire supérieure si et seulement si, pour tout $j \in \{1, \ldots, n\}$, F_j est stable par \tilde{M} .

Démonstration.

M est triangulaire supérieure si et seulement si, pour tout $j \in \{1, ..., n\}$, la j-ème colonne de M, égale à $\tilde{M}(c_j)$, est une combinaison linéaire de $c_1, ..., c_j$, donc si et seulement si (C): $\forall j \in \{1, ..., n\}$, $\tilde{M}(c_j) \in F_j$.

Or si tous les F_j sont stables par \tilde{M} , alors pour tout j, sachant que $c_j \in F_j$, $\tilde{M}(c_j) \in F_j$, donc (C) est vérifiée.

Réciproquement, si l'on suppose (C), pour j fixé dans $\{1,\ldots,p\}$, pour tout $k \in \{1,\ldots,j\}, \, \tilde{M}(c_k) \in F_k \subset F_j, \, \text{donc Vect}(\{\tilde{M}(c_k)/1 \leq k \leq j\}) \subset F_j, \, \text{or}$

$$\operatorname{Vect}(\{\tilde{M}(c_k)/1 \le k \le j\}) = \{\sum_{k=1}^{j} \alpha_k \tilde{M}(c_k) / \alpha_1, \dots, \alpha_j \in \mathbb{K}\}$$
$$= \{\tilde{M}\left(\sum_{k=1}^{j} \alpha_k c_k\right) / \alpha_1, \dots, \alpha_j \in \mathbb{K}\}$$
$$= \tilde{M}(\operatorname{Vect}(\{c_k/1 \le k \le j\})),$$

donc $\operatorname{Vect}(\{\tilde{M}(c_k)/1 \leq k \leq j\}) = \tilde{M}(F_j)$, si bien que $\tilde{M}(F_j) \subset F_j$. \square

Propriété. On suppose que $n \geq 2$.

- L'ensemble des matrices triangulaires supérieures (respectivement : inférieures) de $\mathcal{M}_n(\mathbb{K})$ est une sous-algèbre non commutative de $\mathcal{M}_n(\mathbb{K})$.
- Le produit d'une matrice triangulaire supérieure dont la diagonale est (a_1, \ldots, a_n) par une matrice triangulaire supérieure dont la diagonale est (b_1, \ldots, b_n) est une matrice triangulaire supérieure dont la diagonale est (a_1b_1, \ldots, a_nb_n) .

$D\'{e}monstration.$

Première démonstration :

- \diamond Notons \mathcal{T} l'ensemble des matrices supérieures. $I_n \in \mathcal{T}$, \mathcal{T} est stable pour l'addition et la multiplication par un scalaire, donc pour montrer que \mathcal{T} est une sous-algèbre, il reste à montrer qu'il est stable pour le produit. Or, si $A, B \in \mathcal{T}$, pour tout $i \in \{1, \ldots, n\}$, $\widehat{(AB)}(F_i) = \tilde{A}(\tilde{B}(F_i)) \subset \tilde{A}(F_i)$, car $B \in \mathcal{T}$ donc $\tilde{B}(F_i) \subset F_i$, donc $\widehat{(AB)}(F_i) \subset F_i$, ce qui prouve que $AB \in \mathcal{T}$.
- \diamond Soit $j \in \{1, ..., n\}$. Ac_j est la j-ème colonne de A et $A \in \mathcal{T}$, donc $Ac_j = A_{j,j}c_j + d$, où $d \in F_{j-1}$. De même, $Bc_j = B_{j,j}c_j + d'$, où $d' \in F_{j-1}$.

Ainsi, $(AB)c_j = A(B_{j,j}c_j + d') = B_{j,j}Ac_j + Ad' = A_{j,j}B_{j,j}c_j + B_{j,j}d + Ad'.$

Or $A \in \mathcal{T}$ et $d' \in F_{j-1}$, donc $Ad' \in F_{j-1}$ et $d \in F_{j-1}$. Ceci démontre que le coefficient de position (j, j) de AB est égal à $A_{j,j}B_{j,j}$.

Seconde démonstration : Par calcul matriciel direct.

 \diamond Soient $A = (a_{i,j})$ et $B = (b_{i,j})$ deux matrices triangulaires supérieures.

Soit $(i, j) \in \mathbb{N}_n^2$ avec i > j. Le coefficient de position (i, j) de AB vaut $\sum_{k=1}^n a_{i,k} b_{k,j}$. Mais,

pour tout $k \in \mathbb{N}_n$, i > k ou k > j (sinon, $i \le k \le j$, donc $i \le j$, ce qui est faux). Or A et B sont triangulaires supérieures, donc, pour tout $k \in \mathbb{N}_n$, $a_{i,k} = 0$ ou $b_{k,j} = 0$, ce qui prouve que le $(i,j)^{\text{ème}}$ coefficient de AB est nul. Ainsi AB est une matrice triangulaire supérieure.

 \diamond De plus, le coefficient de position (i,i) de AB vaut $\sum_{k=1}^{n} a_{i,k}b_{k,i}$. Mais, pour tout $k \in \mathbb{N}_n$, $a_{i,k}b_{k,i}$ est non nul si et seulement si $i \leq k$ et $k \leq i$, donc si et seulement si k = i. Ainsi, le $(i,i)^{\mathrm{ème}}$ coefficient de AB vaut $a_{i,i}b_{i,i}$. \square

Exercice. Soit $M \in \mathcal{M}_{\mathbb{K}}(n)$ une matrice triangulaire supérieure stricte, c'est-àdire triangulaire supérieure et de diagonale nulle.

Montrer que pour tout $k \in \{1, ..., n\}$, M^k est une matrice triangulaire supérieure dont les k diagonales supérieures (en partant de la diagonale principale) sont nulles. En déduire que M est nilpotente.

Solution : En adaptant ce qui précède, on montre que pour tout $i \in \{1, ..., n\}$, $\tilde{M}(F_i) \subset F_{i-1}$, puis par récurrence sur k que, pour tout $k \in \{1, ..., n\}$, et $i \in \{1, ..., n\}$, $\tilde{M}^k(F_i) \subset F_{i-k}$ en convenant que pour tout $h \in \mathbb{Z} \setminus \mathbb{N}$, $F_h = \{0\}$.

Propriété. Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice triangulaire supérieure, dont la diagonale est notée (a_1, \ldots, a_n) . Alors A est inversible si et seulement si pour tout $i \in \{1, \ldots, n\}$, $a_i \neq 0$, et dans ce cas, A^{-1} est encore triangulaire supérieure et sa diagonale est $\left(\frac{1}{a_1}, \ldots, \frac{1}{a_n}\right)$.

 $D\'{e}monstration.$

- \diamond Soit $A \in \mathcal{T}$ une matrice supposée inversible. L'application $D \mapsto AB$ est linéaire et injective car $AB = 0 \Longrightarrow A^{-1}AB = 0 \Longrightarrow B = 0$, or \mathcal{T} est de dimension finie, donc c'est un isomorphisme. En particulier, I_n possède un antécédent : il existe $B \in \mathcal{T}$ telle que $AB = I_n$. Ainsi $A^{-1} = B \in \mathcal{T}$.
- ♦ Les éléments diagonaux de

 $I_n = AA^{-1}$ sont égaux au produit des éléments diagonaux de A et de A^{-1} , donc les éléments diagonaux de A sont non nuls et les éléments diagonaux de A^{-1} sont les inverses des éléments diagonaux de A. On a ainsi montré le sens direct de la propriété.

 \diamond Réciproquement, supposons que pour tout $i \in \mathbb{N}_n$, $A_{i,i} \neq 0$.

Soit $X \in \mathbb{K}^n$ tel que AX = 0. Pour tout $i \in \mathbb{N}_n$, $(E_i) : 0 = [AX]_i = \sum_{j=1}^n A_{i,j}X_j = \sum_{j=i}^n A_{i,j}X_j, \text{ car } A \text{ est triangulaire supérieure.}$

Pour i = n, (E_n) se réduit à $A_{n,n}X_n = 0$, or $A_{n,n} \neq 0$, donc $X_n = 0$. Alors (E_{n-1}) se réduit à $A_{n-1,n-1}X_{n-1} = 0$, or $A_{n-1,n-1} \neq 0$, donc X_{n-1} . Par récurrence descendante,

on en déduit que X=0.

Ainsi $Ker(\tilde{A}) = \{0\}$, donc \tilde{A} est une application linéaire injective de \mathbb{K}^n dans lui-même, or \mathbb{K}^n est de dimension finie, donc A est un isomorphisme, ce qui prouve que A est inversible. \Box

1.4 Transposée d'une matrice

Définition. Soit $A = (\alpha_{i,j}) \in \mathcal{M}_{\mathbb{K}}(n,p)$. On appelle **transposée de la matrice** A et on note ${}^{t}A$ la matrice $(\beta_{i,j}) \in \mathcal{M}_{\mathbb{K}}(p,n)$ définie par

$$\forall (i,j) \in \mathbb{N}_p \times \mathbb{N}_n \ \beta_{i,j} = \alpha_{j,i}.$$

En résumé, $[{}^tA]_{i,j} = A_{j,i}$.

ATTENTION: Si $A = (\alpha_{i,j}) \in \mathcal{M}_{\mathbb{K}}(n,p)$, alors $(\alpha_{j,i})_{1 \le j \le n \atop 1 \le j \le n} = A$.

Exemples.

- ${}^tI_n = I_n$. Plus généralement, pour toute matrice diagonale $D \in \mathcal{M}_{\mathbb{K}}(n)$, ${}^tD = D$.
- La transposée de $\begin{pmatrix} 1 & 2 \\ 2 & 3 \\ 4 & 5 \end{pmatrix}$ est $\begin{pmatrix} 1 & 2 & 4 \\ 2 & 3 & 5 \end{pmatrix}$.
- La transposée d'une matrice triangulaire supérieure est triangulaire inférieure.

Propriété. Pour tout $A \in \mathcal{M}_{\mathbb{K}}(n,p)$, t(tA) = t

Propriété. L'application $M_{\mathbb{K}}(n,p) \longrightarrow M_{\mathbb{K}}(p,n)$ est un isomorphisme d'espaces vectoriels.

Propriété. Soit $(A, B) \in \mathcal{M}_{\mathbb{K}}(n, p) \times \mathcal{M}_{\mathbb{K}}(p, q)$. Alors, ${}^{t}(AB) = {}^{t}B {}^{t}A$.

 $D\'{e}monstration.$

Soit
$$i \in \{1, ..., n\}$$
 et $k \in \{1, ..., q\}$.

$$[{}^{t}B {}^{t}A]_{k,i} = \sum_{j=1}^{p} [{}^{t}B]_{k,j} [{}^{t}A]_{j,i} = \sum_{j=1}^{p} B_{j,k} A_{i,j} = [AB]_{i,k} = [{}^{t}(AB)]_{k,i}. \square$$

Corollaire. Si $A \in GL_n(\mathbb{K})$, ${}^tA \in GL_n(\mathbb{K})$ et $({}^tA)^{-1} = {}^t(A^{-1})$.

Démonstration.

Soit $A \in GL_n(\mathbb{K})$. Alors $AA^{-1} = I_n$, donc $I_n = {}^tI_n = {}^t(AA^{-1}) = {}^t(A^{-1}){}^tA$. De même, on montre que tA ${}^t(A^{-1}) = I_n$. \square

Définition. Soit $M \in \mathcal{M}_n(\mathbb{K})$.

M est une **matrice symétrique** si et seulement si ${}^{t}M = M$.

M est une matrice antisymétrique si et seulement si ${}^{t}M = -M$.

Exemples.
$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 2 \\ 1 & 2 & 4 \end{pmatrix}$$
 est symétrique et $\begin{pmatrix} 0 & a & 1 \\ -a & 0 & 2 \\ -1 & -2 & 0 \end{pmatrix}$ est antisymétrique.

Remarque. Lorsque $\operatorname{car}(\mathbb{K}) \neq 2$, si $M \in \mathcal{M}_n(\mathbb{K})$ est antisymétrique, sa diagonale est nulle.

Notation. $S_n(\mathbb{K})$ désigne l'ensemble des matrices symétriques d'ordre n. $A_n(\mathbb{K})$ désigne l'ensemble des matrices antisymétriques d'ordre n.

Propriété. $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$ sont des sous-espaces vectoriels de $\mathcal{M}_n(\mathbb{K})$, mais ce ne sont pas des sous-algèbres. Cependant, elles sont stables par passage à l'inverse : si $A \in S_n(\mathbb{K}) \cap GL_n(\mathbb{K})$ (resp : $A \in \mathcal{A}_n(\mathbb{K}) \cap GL_n(\mathbb{K})$), alors $A^{-1} \in S_n(\mathbb{K})$ (resp : $A \in \mathcal{A}_n(\mathbb{K})$).

Démonstration.

Notons T l'opérateur de tranposition. Alors $S_n(\mathbb{K}) = \text{Ker}(T - Id_{\mathcal{M}_n(\mathbb{K})})$ et $\mathcal{A}_n(\mathbb{K}) = \text{Ker}(T + Id_{\mathcal{M}_n(\mathbb{K})})$, donc ce sont des sous-espaces vectoriels.

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
, donc $\mathcal{S}_n(\mathbb{K})$ n'est pas stable pour le produit : ce n'est pas un sous-anneau.

 $I_n \notin \mathcal{A}_n(\mathbb{K})$, donc ce n'est pas un sous-anneau.

Soit A une matrice inversible. Si ${}^tA = A$, alors ${}^t(A^{-1}) = ({}^tA)^{-1} = A^{-1}$ donc A^{-1} est symétrique.

C'est analogue si A est antisymétrique. \square

1.5 Différentes interprétations du produit matriciel

Au niveau des coefficients:

Si
$$A \in \mathcal{M}_{\mathbb{K}}(n, \mathbf{p})$$
 et $B \in \mathcal{M}_{\mathbb{K}}(\mathbf{p}, q)$, $[AB]_{i,k} = \sum_{j=1}^{p} A_{i,j} B_{j,k}$.

Remarque. D'après cette formule, les coefficients de la k-ème colonne de AB ne dépendent que de A et de la k-ème colonne de B. Plus précisément, on voit que la k-ème colonne de AB est égale à AB_k si B_k désigne la k-ème colonne de B. D'où l'interprétation suivante :

Au niveau des colonnes de la matrice de droite :

Soit $A \in \mathcal{M}_{\mathbb{K}}(n, \mathbf{p})$ et $B \in \mathcal{M}_{\mathbb{K}}(\mathbf{p}, q)$.

Notons B_1, \ldots, B_q les colonnes de B, ce qui permet d'écrire $B = B_1 B_2 \cdots B_q$. Alors $AB = AB_1 AB_2 \cdots AB_q$. En résumé, si B_1, \ldots, B_q sont des vecteurs colonnes de \mathbb{K}^p , $A \times B_1 B_2 \cdots B_q = AB_1 AB_2 \cdots AB_q$.

En décomposant la matrice de droite en blocs de colonnes :

Soit $A \in \mathcal{M}_{\mathbb{K}}(n, \mathbf{p})$ et $B \in \mathcal{M}_{\mathbb{K}}(\mathbf{p}, q)$. Soit $r \in \{1, \dots, q-1\}$.

Notons B' la matrice constituée des r premières colonnes de B et B'' celle qui est constituée des colonnes suivantes : $B' = (B_{j,k})_{\substack{1 \le j \le p \\ 1 \le k \le r}}$ et $B' = (B_{j,k+r})_{\substack{1 \le j \le p \\ 1 \le k \le q-r}}$).

Ainsi, on peut décomposer B en blocs : B = B' B''. Alors AB = AB' AB''. En résumé, $A \times B' B'' = AB' AB''$.

Au niveau des colonnes de la matrice de gauche :

- Si $M \in \mathcal{M}_{\mathbb{K}}(n,p)$ et $X \in \mathbb{K}^p$, MX est une combinaison linéaire des colonnes de M. Plus précisément, si l'on note M_1, \ldots, M_p les colonnes de M et $X = \begin{pmatrix} \vdots \\ \vdots \end{pmatrix}$,
 - $\boxed{MX = x_1 M_1 + \dots + x_p M_p}.$
- Soient $A \in \mathcal{M}_{\mathbb{K}}(n,p)$ et $B \in \mathcal{M}_{\mathbb{K}}(p,q)$. Les colonnes de AB sont des combinaisons linéaires des colonnes de A: en notant A_1, \ldots, A_p les colonnes de A et $B = (b_{i,j}), \ [\text{la } j^{\text{\`e}me} \text{ colonne de } AB \text{ est \'egale \`a } b_{1,j}A_1 + \cdots + b_{p,j}A_p].$

Exemple. Si $M \in \mathcal{M}_{\mathbb{K}}(n,p)$, la j-ème colonne de M est égale à $M \times (\delta_{i,j})_{1 \leq j \leq p}$.

La première colonne privée de la dernière est égale à M $\begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$.

Propriété. Pour tout $M \in \mathcal{M}_{\mathbb{K}}(n, p)$,

 $\operatorname{Im}(M)$ est l'espace vectoriel engendré par les colonnes de M.

Démonstration.

$$Im(M) = \{ MX / X \in \mathbb{K}^p \} = \{ \sum_{j=1}^p x_j M_j / x_1, \dots, x_j \in \mathbb{K} \}. \square$$

Remarque. En prenant la transposée de ces différentes relations, on obtient des interprétations au niveau des lignes des matrices :

Au niveau des lignes de la matrice de gauche :

Soit $A \in \mathcal{M}_{\mathbb{K}}(n, \mathbf{p})$ et $B \in \mathcal{M}_{\mathbb{K}}(\mathbf{p}, q)$. Notons ${}_{1}A, \ldots, {}_{n}A$ les lignes de A, ce qui permet

d'écrire
$$A = \begin{pmatrix} 1A \\ 1A \end{pmatrix}$$
. Alors $AB = \begin{pmatrix} 1AB \\ 1AB \end{pmatrix}$. En résumé, si $AB = AB$ vecteurs lignes de taille $AB = AB$ vecteurs lignes de taille AB vecteur

$D\'{e}monstration.$

En transposant l'égalité
$$A \times \boxed{B_1 \ B_2} \cdots \boxed{B_q} = \boxed{AB_1 \ AB_2} \cdots \boxed{AB_q}$$
 on obtient $\begin{pmatrix} t \ B_1 \end{pmatrix} \times tA = \begin{pmatrix} t \ B_1 tA \end{pmatrix} \cdot t$

En décomposant la matrice de gauche en blocs de lignes :

Soit $A \in \mathcal{M}_{\mathbb{K}}(n, \mathbf{p})$ et $B \in \mathcal{M}_{\mathbb{K}}(\mathbf{p}, q)$. Soit $r \in \{1, \dots, n-1\}$.

Notons A' la matrice constituée des r premières lignes de A et A'' celle qui est constituée des lignes suivantes : $A' = (A_{i,j})_{\substack{1 \leq i \leq r \\ 1 \leq j \leq p}}$ et $A'' = (A_{i+r,j})_{\substack{1 \leq i \leq n-r \\ 1 \leq j \leq p}}$.

Ainsi, on peut décomposer
$$A$$
 en blocs : $A = \begin{pmatrix} \boxed{A'} \\ \boxed{A''} \end{pmatrix}$. Alors $AB = \begin{pmatrix} \boxed{A'B} \\ \boxed{A''B} \end{pmatrix}$.

En résumé,
$$\boxed{\begin{pmatrix} \boxed{A'} \\ \boxed{A''} \end{pmatrix} \times B = \begin{pmatrix} \boxed{A'B} \\ \boxed{A''B} \end{pmatrix}}.$$

Au niveau des lignes de la matrice de droite :

- Si $M \in \mathcal{M}_{\mathbb{K}}(n,p)$ et $X \in \mathcal{M}_{1,n}$, XM est une combinaison linéaire des lignes de M. Plus précisément, si l'on note ${}_{1}M, \ldots, {}_{n}M$ les lignes de M et $X = (x_{1} \cdots x_{n})$, $XM = x_{1} \times {}_{1}M + \cdots + x_{n} \times {}_{n}M$.
- Soient $A \in \mathcal{M}_{\mathbb{K}}(n,p)$ et $B \in \mathcal{M}_{\mathbb{K}}(p,q)$. Les lignes de AB sont des combinaisons linéaires des lignes de B: en notant ${}_{1}B, \ldots, {}_{p}B$ les lignes de B et $A = (a_{i,j})$, la $i^{\text{ème}}$ ligne de AB est égale à $a_{i,1} \times {}_{1}B + \cdots + a_{i,p} \times {}_{p}B$.

Exemple. Notons $U \in \mathbb{K}^n$ le vecteur Attila, dont toutes les composantes sont égales à 1. Pour tout $A \in \mathcal{M}_n(\mathbb{K})$, AU est un vecteur colonne, obtenu en sommant toutes les colonnes de A, tUA est un vecteur ligne, obtenu en sommant toutes les lignes de A, et tUAU est un scalaire, égal à la somme de tous les coefficients de A.

1.6 Trace d'une matrice

Définition. Soit $M = (m_{i,j}) \in \mathcal{M}_n(\mathbb{K})$.

La trace de la matrice M est $Tr(M) = \sum_{i=1}^{n} m_{i,i}$.

Exemple. $Tr(I_n) = n$.

Propriété. La trace est une forme linéaire de $\mathcal{M}_n(\mathbb{K})$.

Propriété. Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,n}(\mathbb{K})$. Alors, $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$.

 $D\'{e}monstration.$

Notons $A = (a_{i,j})$ et $B = (b_{i,j})$.

$$\operatorname{Tr}(AB) = \sum_{i=1}^{n} \left(\sum_{k=1}^{p} a_{i,k} b_{k,i} \right) = \sum_{\substack{1 \le i \le n \\ 1 \le k \le p}} b_{k,i} a_{i,k} = \sum_{k=1}^{p} \left(\sum_{i=1}^{n} b_{k,i} a_{i,k} \right) = \operatorname{Tr}(BA). \square$$

Exemple. Soit
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{K}^n$$
. Alors $\text{Tr}(X \ ^t X) = {}^t X X = \sum_{i=1}^n x_i^2$.

Remarque. Si $A \in \mathcal{M}_{n,p}(\mathbb{R})$, $\operatorname{Tr}({}^{t}AA) = \sum_{i=1}^{p} \sum_{j=1}^{n} A_{j,i}^{2}$, donc $A = 0 \iff \operatorname{Tr}({}^{t}AA) = 0$.

ATTENTION: Si $(A, B, C) \in \mathcal{M}_n(\mathbb{K})^3$, on peut écrire

 $\operatorname{Tr}(ABC) = \operatorname{Tr}((AB)C) = \operatorname{Tr}(C(AB) = \operatorname{Tr}(CAB), \text{ ou } \operatorname{Tr}(ABC) = \operatorname{Tr}(BCA), \text{ mais en général } \operatorname{Tr}(ABC) \neq \operatorname{Tr}(ACB).$

Définition. Soit $A, B \in \mathcal{M}_n(\mathbb{K})$. On dit que A et B sont semblables si et seulement si il existe $P \in GL_n(\mathbb{K})$ telle que $B = PAP^{-1}$.

La relation de similitude ("être semblable à") est une relation d'équivalence sur $\mathcal{M}_n(\mathbb{K})$.

Remarque. Pour une matrice A donnée dans $\mathcal{M}_n(\mathbb{K})$, "réduire A", c'est trouver une matrice semblable à A aussi simple que possible.

La théorie de la réduction des matrices est au centre du programme d'algèbre de seconde année.

Définition. Une matrice de $\mathcal{M}_n(\mathbb{K})$ est diagonalisable (resp : trigonalisable) si et seulement si elle est semblable à une matrice diagonale (resp : triangulaire supérieure).

Propriété. Deux matrices semblables ont la même trace, mais la réciproque est fausse. $D\acute{e}monstration$.

- \diamond Soient $(M, M') \in \mathcal{M}_n(\mathbb{K})$ un couple de matrices semblables. Il existe $P \in GL_n(\mathbb{K})$ tel que $M' = P^{-1}MP$. Ainsi $Tr(M') = Tr((P^{-1}M)P) = Tr(P(P^{-1}M)) = Tr(M)$.
- ♦ Prenons $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$: Tr(A) = 0 = Tr(0), mais si A était semblable à la matrice nulle, il existerait $P \in GL_n(\mathbb{K})$ telle que $A = P0P^{-1} = 0$, ce qui est faux. □

1.7 Matrices décomposées en blocs

1.7.1 Matrices extraites

Définition. Soit $n, p \in \mathbb{N}$ et soit I et J deux parties de \mathbb{N} telles que |I| = n et |J| = p. Notons $0 \le i_1 \le i_2 \le \cdots \le i_n$ les éléments de I et $0 \le j_1 \le i_2 \le \cdots \le j_p$ les éléments de J.

Alors on convient d'identifier toute famille $(M_{i,j})_{(i,j)\in I\times J}$ de **scalaires** indexée par $I\times J$ avec la matrice $(M_{i_h,j_k})_{\substack{1\leq h\leq n\\1\leq k\leq p}}\in \mathcal{M}_{\mathbb{K}}(n,p)$.

Ainsi, on identifie globalement $\mathcal{M}_{\mathbb{K}}(n,p) = \mathbb{K}^{\mathbb{N}_n \times \mathbb{N}_p}$ avec $\mathbb{K}^{I \times J}$.

Exemple. Il est en particulier parfois pratique de faire débuter les indices de lignes et de colonnes à partir de 0.

Par exemple,
$$(\max(i,j))_{\substack{0 \le i \le 2 \\ 0 \le j \le 2}} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 2 \end{pmatrix}$$
.

Remarque. Lorsque I ou J est vide, $I \times J = \emptyset$ et $\mathbb{K}^{I \times J}$ possède un unique élément, que l'on appellera la matrice vide.

Définition. Soit $n, p \in \mathbb{N}^*$ et $M \in \mathcal{M}_{\mathbb{K}}(n, p)$. Une matrice extraite de M est une matrice de la forme $(M_{i,j})_{(i,j)\in I\times J}$, où $I\subset \mathbb{N}_n$ et $J\subset \mathbb{N}_p$.

Exemple. ...

1.7.2 Matrices blocs

Définition. Soient $(n_1, \ldots, n_a) \in (\mathbb{N}^*)^a$ et $(p_1, \ldots, p_b) \in (\mathbb{N}^*)^b$.

On pose
$$n = \sum_{i=1}^{a} n_i$$
 et $p = \sum_{j=1}^{b} p_j$.

Pour tout $(i, j) \in \mathbb{N}_a \times \mathbb{N}_b$, considérons une matrice $M_{i,j} \in \mathcal{M}_{\mathbb{K}}(n_i, p_j)$.

Alors la famille de ces matrices $M=(M_{i,j})_{\substack{1\leq i\leq a\\1\leq j\leq b}}$ peut être identifiée à une matrice possédant n lignes et p colonnes. On dit que M est une matrice décomposée en blocs, de dimensions (n_1,\ldots,n_a) et (p_1,\ldots,p_b) .

Exemple. Posons
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

 $\begin{pmatrix} A & A & B \\ B & B & A \end{pmatrix}$ est une matrice décomposée en blocs.

Elle est égale à
$$\begin{pmatrix} 0 & 1 & 0 & 1 & 1 & 1 \\ -1 & 0 & -1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & -1 & 0 \end{pmatrix}.$$

Remarque. Choisissons
$$A = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ et $C = \begin{pmatrix} -2 \\ 0 \end{pmatrix}$.

Au sens de la définition précédente, $\binom{A}{B}C$ n'est pas une matrice décomposée en blocs. Ainsi, le théorème ci-dessous, relatif au produit matriciel, ne s'applique pas à ce type de matrices. Cependant, cette décomposition peut être utilisée pour décrire une matrice.

Définition. La définition précédente peut être généralisée : Soit $n, p \in \mathbb{N}^*$. Soit $(I_i)_{1 \leq i \leq a}$ et $(J_j)_{1 \leq j \leq b}$ des partitions respectivement de \mathbb{N}_n et de \mathbb{N}_p . Alors on peut identifier toute matrice $M = (m_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ de $\mathcal{M}_{\mathbb{K}}(n,p)$ avec la famille des matrices extraites $(M_{i,j})_{\substack{1 \leq i \leq a \\ 1 \leq j \leq b}}$, où $M_{i,j} = (m_{h,k})_{(h,k) \in I_i \times J_j}$. On dit encore que $(M_{i,j})_{\substack{1 \leq i \leq a \\ 1 \leq j \leq b}}$ est une écriture par blocs de la matrice M, associée aux partitions $(I_i)_{1 \leq i \leq a}$ et $(J_j)_{1 \leq j \leq b}$. Avec ces notations, pour tout $\alpha, \beta \in \mathbb{N}_n \times \mathbb{N}_p$, $m_{\alpha,\beta} = [M_{i,j}]_{\alpha,\beta}$, où (i,j) est l'unique couple tel que $\alpha \in I_i$ et $\beta \in J_j$.

Définition. Reprenons les notations de la première définition.

La matrice $M = (M_{i,j})_{\substack{1 \leq i \leq a \\ 1 \leq j \leq b}}$ est une **matrice triangulaire supérieure par blocs** si et seulement si, pour tout $(i,j) \in \mathbb{N}_a \times \mathbb{N}_b$ tel que i > j, $M_{i,j} = 0$.

De même on définit la notion de matrice triangulaire inférieure par blocs.

La matrice $M = (M_{i,j})_{\substack{1 \le i \le a \\ 1 \le j \le b}}$ est une **matrice diagonale par blocs** si et seulement si, pour tout $(i,j) \in \mathbb{N}_a \times \mathbb{N}_b$ tel que $i \ne j$, $M_{i,j} = 0$.

1.7.3Opérations sur les matrices blocs

Combinaison linéaire de matrices décomposées en blocs :

Soient $M = (M_{i,j})_{\substack{1 \le i \le a \\ 1 \le j \le b}}$ et $N = (N_{i,j})_{\substack{1 \le i \le a \\ 1 \le j \le b}}$ deux matrices décomposées en blocs selon les mêmes partitions $(I_i)_{1 \leq i \leq a}$ et $(J_j)_{1 \leq j \leq b}$ respectivement de \mathbb{N}_n et de \mathbb{N}_p . Pour tout $(u, v) \in \mathbb{K}^2$, uM + vN se décompose en blocs selon la formule suivante :

$$uM + vN = (uM_{i,j} + vN_{i,j})_{\substack{1 \le i \le a \\ 1 \le j \le b}}$$

$D\'{e}monstration.$

Notons $M = (m_{\alpha,\beta})_{\substack{1 \leq \alpha \leq n \\ 1 \leq \beta \leq p}}$ et $N = (n_{\alpha,\beta})_{\substack{1 \leq \alpha \leq n \\ 1 \leq \beta \leq p}}$. Soit $\alpha \in \mathbb{N}_n$ et $\beta \in \mathbb{N}_p$. Il existe un unique $(i,j) \in \mathbb{N}_a \times \mathbb{N}_b$ tel que $\alpha \in I_i$ et $\beta \in J_j$. Alors $m_{\alpha,\beta} = [M_{i,j}]_{\alpha,\beta}$ et $n_{\alpha,\beta} = [N_{i,j}]_{\alpha,\beta}$, donc u $m_{\alpha,\beta} + v$ $n_{\alpha,\beta} = [u$ $M_{i,j} + v$ $N_{i,j}]_{\alpha,\beta}$.

Produit matriciel de deux matrices décomposées en blocs : soit $n, p, q \in \mathbb{N}^*$. Soit $M = (M_{i,j})_{\substack{1 \le i \le a \\ 1 \le j \le b}}$ une matrice décomposée en blocs selon les partitions $(I_i)_{1 \le i \le a}$ et $(J_j)_{1 \leq j \leq b}$ respectivement de \mathbb{N}_n et de \mathbb{N}_p .

Soit $N=(N_{j,k})_{\substack{1\leq j\leq b\\1\leq k\leq c}}$ une matrice décomposée en blocs selon la même partition $(J_j)_{1 \leq j \leq b}$ de \mathbb{N}_p et une partition $(K_k)_{1 \leq k \leq c}$ de \mathbb{N}_q .

Alors MN peut être vue comme une matrice décomposée en blocs selon les partitions $(I_i)_{1 \leq i \leq a}$ de \mathbb{N}_n et $(K_k)_{1 \leq k \leq c}$ de \mathbb{N}_q et :

$$MN = \left(\sum_{j=1}^{b} M_{i,j} N_{j,k}\right)_{\substack{1 \le i \le a \\ 1 \le k \le c}}.$$

En résumé, le produit de deux matrices par blocs se comporte comme le produit matriciel usuel.

Démonstration.

Notons $M = (m_{\alpha,\beta})_{\substack{1 \le \alpha \le n \\ 1 \le \beta \le p}}$ et $N = (n_{\beta,\gamma})_{\substack{1 \le \beta \le p \\ 1 \le \gamma \le q}}$. Soit $\alpha, \gamma \in \mathbb{N}_n \times \mathbb{N}_q$.

Il s'agit de montrer que $\sum_{\beta=1}^{r} m_{\alpha,\beta} n_{\beta,\gamma} = \left[\sum_{i=1}^{s} M_{i,j} N_{j,k}\right]_{\alpha,\gamma}$, où (i,k) est l'unique couple

tel que $\alpha \in I_i$ et $\gamma \in K_k$. Or,

$$\left[\sum_{j=1}^{b} M_{i,j} N_{j,k}\right]_{\alpha,\gamma} = \sum_{j=1}^{b} [M_{i,j} N_{j,k}]_{\alpha,\gamma} = \sum_{j=1}^{b} \sum_{\beta \in J_j} [M_{i,j}]_{\alpha,\beta} [N_{j,k}]_{\beta,\gamma}, \text{ donc}$$

$$\left[\sum_{j=1}^{b} M_{i,j} N_{j,k}\right]_{\alpha,\gamma} = \sum_{j=1}^{b} \sum_{\beta \in J_j} m_{\alpha,\beta} n_{\beta,\gamma} = \sum_{\beta=1}^{p} m_{\alpha,\beta} n_{\beta,\gamma}. \square$$

Application: Produit de matrices triangulaires (resp.: diagonales) par blocs, puissances de telles matrices.

2 Matrices et applications linéaires

2.1 La notion de rang

2.1.1 Rang d'une famille de vecteurs

Définition. Soient E un espace vectoriel et x une famille de vecteurs de E. Le rang de x est $\operatorname{rg}(x) \stackrel{\Delta}{=} \dim(\operatorname{Vect}(x)) \in \mathbb{N} \cup \{+\infty\}$.

Propriété. Pour une famille x de vecteurs d'un \mathbb{K} -espace vectoriel E,

- $rg(x) \le \#(x)$. Lorsque rg(x) est fini, il y a égalité si et seulement si x est libre.
- $rg(x) \leq dim(E)$. Lorsque rg(x) est fini, il y a égalité si et seulement si x est génératrice.

Démonstration.

 \diamond x est une famille génératrice de Vect(x), donc son cardinal est plus grand que la dimension de Vect(x), égale au rang de x.

De plus, il y a égalité si et seulement si x est une base de Vect(x), donc si et seulement si x est une famille libre.

 \diamond Vect(x) est un sous-espace vectoriel de E, donc sa dimension est inférieure à la dimension de E. De plus, il y a égalité si et seulement si Vect(x) = E, c'est-à-dire si et seulement si x est une famille génératrice de E. \Box

Propriété.

Soient E et F deux espaces vectoriels, x une famille de vecteurs de E et $u \in L(E, F)$. Alors $rg(u(x)) \le rg(x)$. Lorsque rg(x) est fini, il y a égalité lorsque u est injective.

Démonstration.

Notons
$$G = \operatorname{Vect}(x)$$
 et $x = (x_i)_{i \in I}$. $\operatorname{rg}(u(x)) = \dim(\operatorname{Vect}(u(x)))$. Or $\operatorname{Vect}(u(x)) = \operatorname{Vect}(u(x_i))_{i \in I} = u\Big(\operatorname{Vect}(x_i)_{i \in I}\Big) = u(G)$, donc $\operatorname{rg}(u(x)) = \dim(u(G))$. La propriété résulte alors du fait que $\dim(u(G)) \leq \dim(G)$, avec égalité lorsque u est injective. \square

Propriété. Soit $(x_i)_{i\in I}$ une famille de vecteurs d'un \mathbb{K} -espace vectoriel E. Alors $\operatorname{rg}((x_i)_{i\in I})$ n'est pas modifié si l'on échange l'ordre de deux vecteurs, si l'on multiplie l'un des vecteurs x_i par un scalaire non nul, ou bien si l'on ajoute à l'un des x_i une combinaison linéaire des autres x_j .

2.1.2 Rang d'une application linéaire

Théorème. Soit $u \in L(E, F)$.

Si H est un supplémentaire de Ker(u) dans E, alors $u|_{H}^{Im(u)}$ est un isomorphisme. Ainsi Im(u) est isomorphe à tout supplémentaire de Ker(u).

Remarque. Soit $u \in L(E, F)$ et H un sous-espace vectoriel de E. On a toujours $Ker(u|_H) = \{x \in H \mid u(x) = 0\} = H \cap Ker(u)$.

Démonstration.

Posons $v = u|_H^{\text{Im}(u)}$. Ker $(v) = H \cap \text{Ker}(u) = \{0\}$, donc v est injective. Soit $y \in \text{Im}(u)$. Il existe $x \in E$ tel que y = u(x), or $E = H \oplus \text{Ker}(u)$, donc il existe $(h,k) \in H \times \text{Ker}(u)$ tel que x = h + k. Ainsi y = u(h) + u(k) = u(h) = v(h), car u(k) = 0 et $h \in H$. Ceci prouve que v est surjective. \square

Définition. Soient E et F deux espaces vectoriels et $u \in L(E, F)$. On note $rg(u) = \dim(\operatorname{Im}(u)) \in \mathbb{N} \cup \{+\infty\}$: il s'agit du rang de l'application linéaire u.

Propriété. Si e est une base de E, alors rg(u) = rg(u(e)).

Démonstration.

$$\operatorname{rg}(u(e)) = \dim(\operatorname{Vect}(u(e))) = \dim(u(\operatorname{Vect}(e))) = \dim(\operatorname{Im}(u)) = \operatorname{rg}(u). \square$$

Formule du rang. Soient E un \mathbb{K} -espace vectoriel de dimension finie et F un second \mathbb{K} -espace vectoriel de dimension quelconque. Soit $u \in L(E, F)$. Alors Im(u) est de dimension finie et

$$\left| \dim(\operatorname{Im}(u)) + \dim(\operatorname{Ker}(u)) = \dim(E). \right|$$

Démonstration.

Avec les notations du théorème précédent, $\operatorname{Im}(u)$ est isomorphe à H qui est de dimension finie, donc $\operatorname{Im}(u)$ est de dimension finie et $\operatorname{rg}(u) = \dim(H) = \dim(E) - \dim(\operatorname{Ker}(u))$. \square

Propriété. Soient E et F deux espaces vectoriels et $u \in L(E, F)$.

Alors $\operatorname{rg}(u) \leq \min(\dim(E), \dim(F))$. De plus,

lorsque E est de dimension finie, $rg(u) = \dim(E)$ si et seulement si u est injective et lorsque F est de dimension finie, $rg(u) = \dim(F)$ si et seulement si u est surjective.

Démonstration.

Lorsque E est de dimension finie, $\operatorname{rg}(u) = \dim(E) - \dim(\operatorname{Ker}(u))$, donc $\operatorname{rg}(u) = \dim(E)$ si et seulement si $\dim(\operatorname{Ker}(u)) = 0$, c'est-à-dire si et seulement si u est injective. \square

Théorème. Soient E, F et G 3 espaces vectoriels. Soient $u \in L(E, F)$ et $v \in L(F, G)$ tels que $\operatorname{Im}(u)$ et $\operatorname{Im}(v)$ sont de dimensions finies. Alors $\left[\operatorname{rg}(v \circ u) \leq \operatorname{inf}(\operatorname{rg}(u), \operatorname{rg}(v))\right]$. De plus, si u est bijective, alors $\operatorname{rg}(v \circ u) = \operatorname{rg}(v)$ et si v est bijective, $\operatorname{rg}(v \circ u) = \operatorname{rg}(u)$. Ainsi, on ne modifie par le rang d'une application linéaire en la composant avec un isomorphisme (à sa gauche ou à sa droite).

Démonstration.

```
\operatorname{rg}(vu) = \dim(v(\operatorname{Im}(u))) \leq \dim(\operatorname{Im}(u)), avec égalité lorsque v est injective. \operatorname{rg}(vu) = \dim(v(u(E))) \leq \dim(v(E)), avec égalité lorsque u est surjective. \square
```

2.1.3 Rang d'une matrice

Définition. Si $M \in \mathcal{M}_{\mathbb{K}}(n,p)$, le rang de M est $\operatorname{rg}(M) \stackrel{\Delta}{=} \operatorname{rg}(\tilde{M}) = \dim(\operatorname{Im}(M))$. Le rang d'une matrice est aussi le rang de la famille de ses vecteurs colonnes.

Démonstration.

On a déjà vu que $\operatorname{Im}(M)$ est l'espace vectoriel engendré par les colonnes de M. \square

Exemple. Le rang de $\begin{pmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & 2 & 1 \\ 1 & 1 & 2 & 2 \end{pmatrix}$ est 2, car les deux premières colonnes sont

libres et les suivantes sont des combinaisons linéaires des deux premières.

Propriété. Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions finies, munis de bases e et f et soit $u \in L(E, F)$. Alors $\operatorname{rg}(\operatorname{mat}(u, e, f)) = \operatorname{rg}(u)$.

Démonstration.

Notons $e = (e_1, \ldots, e_p)$ et $f = (f_1, \ldots, f_n)$. Alors les colonnes de $\max(u, e, f)$ sont les $\Psi_f^{-1}(u(e_j))$, donc $\operatorname{rg}(\max(u, e, f)) = \operatorname{rg}(\Psi_f^{-1}(u(e_j))_{1 \leq j \leq p}) = \operatorname{rg}(u(e))$ car Ψ_f^{-1} est injective. De plus, e étant une base de E, on a déjà vu que $\operatorname{rg}(u(e)) = \operatorname{rg}(u)$. \square

Propriété. $M \in \mathcal{M}_n(\mathbb{K})$ est inversible si et seulement si rg(M) = n.

Propriété. Soit $(A, B) \in \mathcal{M}_{\mathbb{K}}(n, p) \times \mathcal{M}_{\mathbb{K}}(p, q)$. Alors, $\operatorname{rg}(AB) \leq \min(\operatorname{rg}(A), \operatorname{rg}(B))$. On ne modifie pas le rang d'une matrice en la multipliant à gauche ou à droite par une matrice inversible.

2.2 Matrice d'une application linéaire

Remarque. On a vu que pour construire une application linéaire u de E dans F, si $(e_i)_{i\in I}$ est une base de E, il suffit de donner la famille $(u(e_i))_{i\in I}$ des images des e_i par u.

Par exemple, on peut définir un endomorphisme u sur $\mathbb{R}_3[X]$ par les conditions : $u(X^3) = X$, $u(X^2) = X^2 + 1$, $u(X) = X^3 - X$, et u(1) = 1. u est nécessairement l'unique endomorphisme tel que : pour tout $P = a_3X^3 + a_2X^2 + a_1X + a_0$, $u(P) = a_3X + a_2(X^2 + 1) + a_1(X^3 - X) + a_0$.

Définition. Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions respectives p>0 et n>0. Soient $e=(e_1,\ldots,e_p)$ une base de E et $f=(f_1,\ldots,f_n)$ une base de F. Si $u\in L(E,F)$, on appelle matrice de l'application linéaire u dans les bases e et f la matrice notée $\max(u,e,f)=(\alpha_{i,j})\in\mathcal{M}_{\mathbb{K}}(n,p)$ définie par : pour tout $i\in\{1,\ldots,n\}$ et $j\in\{1,\ldots,p\}$, $\alpha_{i,j}$ est la $i^{\text{ème}}$ coordonnée du vecteur $u(e_j)$ dans la base f.

C'est donc l'unique matrice $(\alpha_{i,j}) \in \mathcal{M}_{\mathbb{K}}(n,p)$ vérifiant : $\forall j \in \mathbb{N}_p \quad u(e_j) = \sum_{i=1}^n \alpha_{i,j} f_i$.

C'est l'unique matrice dont la j-ème colonne contient les coordonnées de $u(e_j)$ dans la base f, pour tout j: la j-ème colonne est égale à $\Psi_f^{-1}(u(e_j))$.

On peut également dire que la matrice de u dans les bases e et f est définie par $[\max(u,e,f)]_{i,j}=f_i^*(u(e_j))$, pour tout $i\in\mathbb{N}_n$ et $j\in\mathbb{N}_p$.

Interprétation tabulaire : Avec les notations précédentes,

$$\operatorname{mat}(u, e, f) = \begin{pmatrix} u(e_1) & \cdots & u(e_p) \\ m_{1,1} & \cdots & m_{1,p} \\ \vdots & & \vdots \\ m_{n,1} & \cdots & m_{n,n} \end{pmatrix} \quad f_n$$

Notation. Lorsque E = F et que l'on choisit e = f, on note mat(u, e) au lieu de mat(u, e, e).

Exemple. L'endomorphisme u de $\mathbb{R}_3[X]$ défini ci-dessus a pour matrice dans la base

canonique:
$$mat(u, (1, X, X^2, X^3)) = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

Exemple. La forme linéaire $u : \mathbb{K}^4 \longrightarrow \mathbb{K}$ définie par $u \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = x + y - 2z + 3t$ a

pour matrice dans les bases canoniques de \mathbb{K}^4 et \mathbb{K} la matrice ligne (1 1 - 2 3). Plus généralement la matrice d'une forme linéaire est toujours une matrice ligne.

Exemple. Considérons $u: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ (2x+y) (3x-y) (3x-y)

u est une application linéaire et, si l'on note $B = (b_1, b_2)$ et $C = (c_1, c_2, c_3)$ les bases canoniques de \mathbb{R}^2 et de \mathbb{R}^3 respectivement,

$$\operatorname{mat}(u, B, C) = \begin{pmatrix} 2 & 1 \\ 0 & 1 \\ 3 & -1 \end{pmatrix}. \text{ En effet, } u(b_1) = u \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}$$

et
$$u(b_2) = u \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
.

En fait, si l'on pose $M=\begin{pmatrix}2&1\\0&1\\3&-1\end{pmatrix}$, on voit que pour tout $\begin{pmatrix}x\\y\end{pmatrix}\in\mathbb{R}^2$,

 $u\begin{pmatrix} x \\ y \end{pmatrix} = M\begin{pmatrix} x \\ y \end{pmatrix}$, donc u n'est autre que l'application linéaire canoniquement associée à M.

Remarque. Plus généralement, si $M \in \mathcal{M}_{\mathbb{K}}(n,p)$, on a défini $\tilde{M} \in L(\mathbb{K}^p, \mathbb{K}^n)$ par : $\forall X \in \mathbb{K}^p, \ \tilde{M}(X) = MX$.

On a vu que, si l'on note $c=(c_1,\ldots,c_p)$ la base canonique de \mathbb{K}^p , alors pour tout $j\in\mathbb{N}_p$, $\tilde{M}(c_j)=Mc_j$ est la j-ème colonne de M, donc :

Propriété. Pour tout $n, p \in \mathbb{N}^*$, pour tout $M \in \mathcal{M}_{\mathbb{K}}(n, p)$, $\left| \operatorname{mat}(\tilde{M}, c, c') = M \right|$, en notant c et c' les bases canoniques de \mathbb{K}^p et de \mathbb{K}^n .

Remarque. Nous disposons maintenant de deux manières équivalentes de définir l'application linéaire canoniquement associée à une matrice $M \in \mathcal{M}_{\mathbb{K}}(n,p)$: c'est l'application $M: \mathbb{K}^p$ $X \mapsto \tilde{M}(X) = MX$, ou bien c'est l'unique application $\tilde{M} \in L(\mathbb{K}^p, \mathbb{K}^n)$ telle que $mat(\tilde{M}, c, c') = M$.

Exemple. Reprenons l'exemple précédent, et déterminons la matrice de u pour un autre couple de bases : Posons $e_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $e_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

$$\det(e_1, e_2) = -2 \neq 0, \text{ donc } E = (e_1, e_2) \text{ est une base de } \mathbb{R}^2.$$

$$\text{Posons } f_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, f_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \text{ et } f_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

On vérifie que $F = (f_1, f_2, f_3)$ est une base de \mathbb{R}^3 .

En effet, si $a_1f_1 + a_2f_2 + a_3f_3 = 0$, où $a_1, a_2, a_3 \in \mathbb{R}$, alors $0 = a_1 + a_2 = a_2 = a_1 + a_3$, donc $0 = a_2 = a_1 = a_3$. Ainsi F est libre, de cardinal 3, or dim(\mathbb{R}^3) = 3, donc c'est bien une base de \mathbb{R}^3 .

Soit
$$(\alpha, \beta) \in \mathbb{R}^2$$
. $u(\alpha e_1 + \beta e_2) = \alpha u \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \beta u \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \alpha \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}$,
donc $u(\alpha e_1 + \beta e_2) = xf_1 + yf_2 + zf_3$, où
$$\begin{cases} 3\alpha + \beta &= x + y \\ \alpha - \beta &= y \\ 2\alpha + 4\beta &= x + z \end{cases}$$
, donc $y = \alpha - \beta$,

$$x = 2\alpha + 2\beta$$
 et $z = 2\beta$. On en déduit que $mat(u, E, F) = \begin{pmatrix} 2 & 2 \\ 1 & -1 \\ 0 & 2 \end{pmatrix}$.

Nous verrons plus loin une formule de changement de bases qui permet d'obtenir mat(u, E, F) par un calcul purement matriciel.

Propriété. Soient E et F deux K-espaces vectoriels de dimensions respectives p > 0et n > 0. Soient $e = (e_1, \ldots, e_p)$ une base de E et $f = (f_1, \ldots, f_n)$ une base de F.

L'application $L(E,F) \longrightarrow \mathcal{M}_{\mathbb{K}}(n,p)$ est un isomorphisme d'espaces vectoriels.

$D\'{e}monstration.$

 \diamond Soit $u, v \in L(E, F)$ et $\lambda \in \mathbb{K}$.

Posons $U = \max(u, e, f)$, $V = \max(v, e, f)$ et $M = \max(\lambda u + v, e, f)$.

Soit $i \in \mathbb{N}_n$ et $j \in \mathbb{N}_p$. $M_{i,j}$ est la *i*-ème coordonnée de $(\lambda u + v)(e_j)$ dans la base f. C'est donc $f_i^*(\lambda u(e_i) + v(e_i))$, or f_i^* est linéaire,

donc $M_{i,j} = \lambda f_i^*(u(e_j)) + f_i^*(v(e_j)) = \lambda U_{i,j} + V_{i,j}$, donc $M = \lambda U + V$,

c'est-à-dire $mat(\lambda u + v, e, f) = \lambda mat(u, e, f) + mat(v, e, f)$. Ceci prouve la linéarité.

Soit $M = (\alpha_{i,j}) \in \mathcal{M}_{\mathbb{K}}(n,p)$ et $u \in L(E,F)$. On a vu que $M = \max(u,e,f)$ si et

seulement si pour tout $j \in \mathbb{N}_p$, $u(e_j) = g_j$, où $g_j = \sum_{i=1}^n \alpha_{i,j} f_i$, or on a déjà énoncé

qu'il existe une unique $u \in L(E, F)$ telle que, pour tout $j \in \mathbb{N}_p$, $u(e_j) = g_j$ (i.e.: une application linéaire est uniquement déterminée par la donnée des images des vecteurs d'une base de l'espace de départ). Ainsi, M possède un unique antécédent : l'application est bijective. \square

Remarque. En particulier, lorsque $E = \mathbb{K}^p$ et $F = \mathbb{K}^n$, où $n, p \in \mathbb{N}^*$, en notant c_n et c_p les bases canoniques de \mathbb{K}^n et de \mathbb{K}^p , on vient de montrer que

 C_p les bases canoniques de $\mathbb{Z}_{\mathbb{Z}}$ de $\mathbb{Z}_{\mathbb{Z}}$ $\mathbb{Z}_{\mathbb{Z}}$ est un isomorphisme. On le savait déjà car c'est l'isomorphisme réciproque de $\mathcal{M}_{\mathbb{K}}(n,p)$ \longrightarrow $L(\mathbb{K}^p,\mathbb{K}^n)$ \longrightarrow M \longrightarrow M

Théorème. Soient E, F et G trois K-espaces vectoriels de dimensions respectives q, pet n, munis de bases e, f et g. Soient $u \in L(E, F)$ et $v \in L(F, G)$. Alors, $mat(v \circ u, e, g) = mat(v, f, g) \times mat(u, e, f)$.

Démonstration.

Posons $U = \max(u, e, f) \in \mathcal{M}_{\mathbb{K}}(p, q), V = \max(v, f, g) \in \mathcal{M}_{\mathbb{K}}(n, p)$ et $M = \max(v \circ u, e, g) \in \mathcal{M}_{\mathbb{K}}(n, q)$. Soit $k \in \mathbb{N}_q$ et $i \in \mathbb{N}_n$.

$$M_{i,k} = g_i^*(vu(e_k)) = g_i^* \left[v \left(\sum_{j=1}^p U_{j,k} f_j \right) \right] = \sum_{j=1}^p U_{j,k} g_i^* [v(f_j)],$$

donc
$$M_{i,k} = \sum_{j=1}^{p} U_{j,k} V_{i,j} = [VU]_{i,k}$$
, ce qui prouve que $M = VU$. \square

Exemple. On peut ainsi remplacer un calcul matriciel par un calcul sur des applications linéaires. Par exemple, on peut retrouver que, dans $\mathcal{M}_{\mathbb{K}}(n)$, $E_{i,j}E_{h,k}=\delta_{j,h}E_{i,k}$: Notons $e = (e_1, \ldots, e_n)$ la base canonique de \mathbb{K}^n .

Pour $(i,j) \in \mathbb{N}_n^2$, notons $u_{i,j}$ l'endomorphisme de \mathbb{K}^n canoniquement associé à $E_{i,j}$. Pour tout $k \in \mathbb{N}_n$, $u_{i,j}(e_k) = \delta_{k,j}e_i$.

Soit $l \in \mathbb{N}_n$. $u_{i,j} \circ u_{h,k}(e_l) = u_{i,j}(\delta_{k,l}e_h) = \delta_{k,l}\delta_{j,h}e_i$, donc $u_{i,j} \circ u_{h,k}(e_l) = \delta_{j,h}u_{i,k}(e_l)$. Ainsi, $u_{i,j} \circ u_{h,k} = \delta_{j,h} u_{i,k}$, puis en prenant les matrices de ces endomorphismes, $E_{i,j}E_{h,k} = \delta_{i,h}E_{i,k}$.

Propriété. Soient E et F deux K-espaces vectoriels de dimensions respectives p > 0et n > 0, munis des bases $e = (e_1, \ldots, e_p)$ et $f = (f_1, \ldots, f_n)$, et soit $u \in L(E, F)$. On note M la matrice de u dans les bases e et f.

Soit $(x,y) \in E \times F$. On note X la matrice colonne des coordonnées de x dans la base e,

et Y celle des coordonnées de y dans la base f. C'est-à-dire qu'en posant $x=\sum x_j e_j$,

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$$
, et qu'en posant $y = \sum_{i=1}^n y_i f_i$, $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$.

C'est aussi dire que $X=\Psi_e^{-1}(x)$ et $Y=\Psi_f^{-1}(y).$

On écrira également que X = mat(x, e) et Y = mat(y, f). Alors,

$$u(x) = y \Longleftrightarrow MX = Y.$$

$D\'{e}monstration.$

On pourrait bien sûr passer aux coordonnées et mener un calcul analogue à celui de la démonstration de la propriété précédente. Essayons plutôt d'utiliser cette dernière propriété.

Si
$$x \in E$$
, notons $\hat{x}: \mathbb{K} \longrightarrow E$
 $\lambda \longmapsto \lambda x: \hat{x} \in L(\mathbb{K}, E).$

Si $x \in E$, notons $\hat{x}: \mathbb{K} \longrightarrow E$ $\lambda \longmapsto \lambda x : \hat{x} \in L(\mathbb{K}, E)$. L'application $E \longrightarrow L(\mathbb{K}, E)$ est un isomorphisme, dont la bijection réciproque est

$$L(\mathbb{K},E) \longrightarrow E$$

 $a \longmapsto a(1)$. De même, à tout $y \in F$, on associe $\hat{y} = (\lambda \longmapsto \lambda y) \in L(\mathbb{K},F)$.

On vérifie que $\widehat{u(x)} = u \circ \hat{x}$, car pour tout $\lambda \in \mathbb{K}$, $\widehat{u(x)}(\lambda) = \lambda u(x) = u(\lambda x) = u(\hat{x}(\lambda))$. Alors $y \longmapsto \hat{y}$ étant injective,

$$u(x) = y \iff \widehat{u(x)} = \widehat{y}$$

$$\iff \max(u \circ \widehat{x}, 1, f) = \max(\widehat{y}, 1, f)$$

$$\iff M \times \max(\widehat{x}, 1, e) = \max(\widehat{y}, 1, f).$$

Or $mat(\hat{x}, 1, e)$ est une matrice colonne dont les composantes sont les coordonnées de $\hat{x}(1) = x$ dans la base e, donc $\max(\hat{x}, 1, e) = X$, et de même, $\max(\hat{y}, 1, e) = Y$. \square

Propriété.

On reprend les notations de la propriété précédente et on suppose de plus que n=p. Alors u est un isomorphisme si et seulement si M est une matrice inversible et dans ce cas, $mat(u, e, f)^{-1} = mat(u^{-1}, f, e)$.

Démonstration.

u est bijective si et seulement si pour tout $y \in F$, il existe un unique $x \in E$ tel que u(x) = y, donc si et seulement si pour tout $Y \in \mathbb{K}^n$, il existe un unique $X \in \mathbb{K}^n$ tel que MX = Y, c'est-à-dire si et seulement si M est inversible.

Dans ce cas, posons $N = \text{mat}(u^{-1}, f, e)$.

Alors
$$MN = \max(uu^{-1}, f, f) = \max(Id_F, f, f) = I_n, \text{ donc } N = M^{-1}. \square$$

Exercice. Pour tout $i, j \in \{0, ..., n\}$, on note $m_{i,j}$ le coefficient binomial

$$m_{i,j} = \binom{j}{i}$$
, en convenant que $\binom{j}{i} = 0$ lorsque $i > j$.
Montrer que $M = (m_{i,j})_{\substack{0 \le i \le n \\ 0 \le j \le n}}$ est inversible et calculer son inverse.

Solution: Notons $u : \mathbb{K}_n[X] \longrightarrow \mathbb{K}_n[X]$ définie par u(P) = P(X+1). Notons c la base canonique de $\mathbb{K}_n[X]$. Pour tout $j \in \{0, \ldots, n\}$,

$$(X+1)^j = \sum_{i=0}^j {j \choose i} X^i$$
, donc $M = \text{mat}(u, c)$.

Or u est inversible et $u^{-1}: P \longmapsto P(X-1)$, donc M est une matrice inversible et $M^{-1} = \max(u^{-1}, c)$. Pour tout $j \in \{0, ..., n\}$,

$$(X-1)^j = \sum_{i=0}^j \binom{j}{i} X^i (-1)^{j-i}, \text{ donc } M^{-1} = \left(\binom{j}{i} (-1)^{j-i} \right)_{\substack{1 \le i \le n \\ 1 \le j \le n}}.$$

Propriété. Soit E un \mathbb{K} -espace vectoriel de dimension finie égale à n, muni d'une base e. L'application $U \mapsto \mathcal{M}_n(\mathbb{K})$ est un isomorphisme d'algèbres.

Remarque. Si e' est une seconde base de E, L'application $U(E) \longrightarrow \operatorname{mat}(u, e, e')$ n'est pas un morphisme d'algèbres, par exemple car $\operatorname{mat}(Id_E, e, e') \neq I_n$. C'est pourquoi, le plus souvent, lorsque l'on considère la matrice d'un endomorphisme, on choisit la base d'arrivée égale à la base de départ.

Propriété. Si E est un \mathbb{K} -espace vectoriel de dimension finie égale à n, muni d'une base e, l'application U $\longrightarrow U$ $\longrightarrow U$ $\longrightarrow U$ est un isomorphisme de groupes.

3 Les systèmes linéaires

3.1 Trois interprétations d'un système linéaire

Définition. Une équation linéaire à p inconnues scalaires est une équation de la forme (E): $\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_p x_p = b$, où $\alpha_1, \ldots, \alpha_p, b \in \mathbb{K}$ sont des paramètres, et où $x_1, \ldots, x_p \in \mathbb{K}$ sont les inconnues.

Exemples.

- (E): 2x 5y + z = 5 est une équation linéaire.
- -(E): 2x = 1 + 2z est aussi linéaire.
- (E) : $x^2 + y + z t = 2$ n'est pas linéaire.

Notation. Fixons $(n, p) \in \mathbb{N}^{*2}$ et considérons un système linéaire à n équations et p inconnues, c'est-à-dire un système d'équations de la forme suivante :

$$(S): \begin{cases} \alpha_{1,1}x_1 + \cdots + \alpha_{1,p}x_p = b_1 \\ \vdots & \vdots \\ \alpha_{i,1}x_1 + \cdots + \alpha_{i,p}x_p = b_i \\ \vdots & \vdots \\ \alpha_{n,1}x_1 + \cdots + \alpha_{n,p}x_p = b_n \end{cases}$$

où, pour tout $(i, j) \in \{1, \dots, n\} \times \{1, \dots, p\}$, $\alpha_{i, j} \in \mathbb{K}$, pour tout $i \in \{1, \dots, n\}$, $b_i \in \mathbb{K}$, les p inconnues étant x_1, \dots, x_p , éléments de \mathbb{K} .

Le vecteur $\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$ est appelé le second membre du système, ou bien le membre constant.

Lorsqu'il est nul, on dit que le système est homogène.

Première interprétation. Combinaison linéaire de vecteurs.

Notons
$$C_1 = \begin{pmatrix} \alpha_{1,1} \\ \vdots \\ \alpha_{i,1} \\ \vdots \\ \alpha_{n,1} \end{pmatrix}$$
, $C_2 = \begin{pmatrix} \alpha_{1,2} \\ \vdots \\ \alpha_{i,2} \\ \vdots \\ \alpha_{n,2} \end{pmatrix}$, ..., $C_p = \begin{pmatrix} \alpha_{1,p} \\ \vdots \\ \alpha_{i,p} \\ \vdots \\ \alpha_{n,p} \end{pmatrix}$, et $B = \begin{pmatrix} b_1 \\ \vdots \\ b_i \\ \vdots \\ b_n \end{pmatrix}$. Il s'agit de

$$(S) \Longleftrightarrow x_1C_1 + x_2C_2 + \dots + x_pC_p = B.$$

Définition. On dit que (S) est compatible si et seulement s'il admet au moins une solution.

Propriété. (S) est compatible si et seulement si $B \in \text{Vect}(C_1, \dots, C_p)$.

Démonstration.

S est compatible si et seulement s'il existe $(x_1,\ldots,x_p)\in\mathbb{K}^p$ tel que $B=x_1C_1+x_2C_2+\cdots x_pC_p$, c'est-à-dire si et seulement si $B\in\mathrm{Vect}(C_1,\ldots,C_p)$. \square

Deuxième interprétation. Matricielle.

Notons M la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ dont les colonnes sont C_1, \ldots, C_p , et $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Alors

$$(S) \iff MX = B.$$

Définition. On dit que (S) est un **système de Cramer** si et seulement si n = p et si M est inversible. Dans ce cas, (S) admet une unique solution.

$D\'{e}monstration.$

Si M est inversible, $(S) \iff X = M^{-1}B$. \square

Troisième interprétation. A l'aide d'une application linéaire.

Soient E et F des \mathbb{K} -espaces vectoriels de dimensions p et n munis de bases $e = (e_1, \ldots, e_p)$ et $f = (f_1, \ldots, f_n)$. On note u l'unique application linéaire de L(E, F) telle que $\max(u, e, f) = M$, x le vecteur de E dont les coordonnées dans e sont X et e le vecteur de e dont les coordonnées dans e sont e sont e le vecteur de e dont les coordonnées dans e sont e sont e le vecteur de e dont les coordonnées dans e sont e sont e le vecteur de e dont les coordonnées dans e sont e le vecteur de e dont les coordonnées dans e sont e le vecteur de e dont les coordonnées dans e sont e le vecteur de e dont les coordonnées dans e sont e le vecteur de e dont les coordonnées dans e sont e le vecteur de e dont les coordonnées dans e sont e le vecteur de e dont les coordonnées dans e sont e le vecteur de e dont les coordonnées dans e sont e le vecteur de e dont les coordonnées dans e sont e le vecteur de e dont les coordonnées dans e sont e le vecteur de e dont les coordonnées dans e sont e le vecteur de e dont les coordonnées dans e sont e le vecteur de e dont les coordonnées dans e sont e le vecteur de e dont les coordonnées dans e sont e le vecteur de e dont les coordonnées dans e le vecteur de e dont les coordonnées dans e le vecteur de e dont les coordonnées dans e le vecteur de e dont les coordonnées de e dont les coordonnées de e le vecteur de e dont les coordonnées de e

$$(S) \Longleftrightarrow u(x) = b.$$

Définition. On dit que (S) est un **système homogène** si et seulement si b=0.

Définition. Le système homogène associé à (S) est (S_H) : u(x) = 0.

Propriété. L'ensemble des solutions de (S_H) est Ker(u).

D'après la formule du rang, c'est un sous-espace vectoriel de dimension p-r, où r désigne le rang de u (ou de M).

3.2 Les opérations élémentaires

Définition. On appelle manipulations ou opérations élémentaires sur les lignes d'une matrice, les applications de $\mathcal{M}_{\mathbb{K}}(n,p)$ dans $\mathcal{M}_{\mathbb{K}}(n,p)$ suivantes :

1) Ajouter à une ligne le multiple d'une autre, opération notée :

$$L_i \leftarrow L_i + \lambda L_j$$
, où $i \neq j$ et $\lambda \in \mathbb{K}$. C'est une transvection.

2) Multiplier une ligne par un scalaire non nul, notée :

$$L_i \leftarrow \alpha L_i$$
, où $\alpha \in \mathbb{K}^*$. C'est une affinité.

3) Permuter deux lignes, notée :

$$L_i \longleftrightarrow L_j$$
, où $i \neq j$. C'est une transposition.

Remarque. On définirait de même les opérations sur les colonnes.

Définition. Si $\sigma \in \mathcal{S}_n$, on note $P_{\sigma} = (\delta_{i,\sigma(j)}) \in \mathcal{M}_n(\mathbb{K})$.

Ainsi, pour tout $j \in \{1, ..., n\}$, la $j^{\text{ème}}$ colonne de P_{σ} est constituée de 0, sauf pour le $\sigma(j)^{\text{ème}}$ coefficient qui vaut 1.

Propriété. Pour tout $(\sigma, \sigma') \in \mathcal{S}_n^2$, $P_{\sigma\sigma'} = P_{\sigma}P_{\sigma'}$.

$D\'{e}monstration.$

Notons $e = (e_1, \ldots, e_n)$ la base canonique de \mathbb{K}^n . Si $s \in \mathcal{S}_n$, notons u_s l'endomorphisme canoniquement associé à la matrice P_s : Pour tout $j \in \{1, \ldots, n\}$, $u_s(e_j) = e_{s(j)}$. Soit $j \in \{1, \ldots, n\}$: $(u_{\sigma} \circ u_{\sigma'})(e_j) = u_{\sigma}(e_{\sigma'(j)}) = e_{\sigma(\sigma'(j))} = u_{\sigma \circ \sigma'}(e_j)$,

donc $u_{\sigma} \circ u_{\sigma'} = u_{\sigma\sigma'}$. En prenant les matrices de ces endomorphismes dans la base e, on en déduit que $P_{\sigma\sigma'} = P_{\sigma}P_{\sigma'}$. \square

Propriété.

En notant $(E_{i,j})_{(i,j)\in\{1,\ldots,n\}^2}$ la base canonique de $\mathcal{M}_n(\mathbb{K})$, si $\lambda \in \mathbb{K}^*$ et $(i,j) \in \{1,\ldots,n\}^2$ avec $i \neq j$, alors

$$L_{i} \longleftarrow L_{i} + \lambda L_{j} : \mathcal{M}_{\mathbb{K}}(n, p) \longrightarrow \mathcal{M}_{\mathbb{K}}(n, p)$$

$$M \longmapsto (I_{n} + \lambda E_{i,j})M$$

$$L_{i} \longleftarrow \lambda L_{i} : \mathcal{M}_{\mathbb{K}}(n, p) \longrightarrow \mathcal{M}_{\mathbb{K}}(n, p)$$

$$M \longmapsto (I_{n} + (\lambda - 1)E_{i,i})M$$

$$L_{i} \longleftrightarrow L_{j} : \mathcal{M}_{\mathbb{K}}(n, p) \longrightarrow \mathcal{M}_{\mathbb{K}}(n, p)$$

$$M \longmapsto P_{(i,j)}M$$

De même, en notant $(E_{i,j})_{(i,j)\in\{1,\ldots,p\}^2}$ la base canonique de $\mathcal{M}_p(\mathbb{K})$, si $\lambda\in\mathbb{K}^*$ et $(i,j)\in\{1,\ldots,p\}^2$ avec $i\neq j$, alors

$$C_{i} \longleftarrow C_{i} + \lambda C_{j} : \mathcal{M}_{\mathbb{K}}(n, p) \longrightarrow \mathcal{M}_{\mathbb{K}}(n, p)$$

$$M \longmapsto M(I_{p} + \lambda E_{j,i})$$

$$C_{i} \longleftarrow \lambda C_{i} : \mathcal{M}_{\mathbb{K}}(n, p) \longrightarrow \mathcal{M}_{\mathbb{K}}(n, p)$$

$$M \longmapsto M(I_{p} + (\lambda - 1)E_{i,i})$$

$$C_{i} \longleftrightarrow C_{j} : \mathcal{M}_{\mathbb{K}}(n, p) \longrightarrow \mathcal{M}_{\mathbb{K}}(n, p)$$

$$M \longmapsto MP_{(i,j)}$$

Propriété. Si l'on effectue une série d'opérations élémentaires sur les lignes d'une matrice M, alors on a multiplié M à gauche par une certaine matrice inversible. Si l'on effectue une série d'opérations élémentaires sur les colonnes d'une matrice M, alors on a multiplié M à droite par une certaine matrice inversible.

Propriété. Si l'on passe de la matrice M à la matrice M' par une succession d'opérations élémentaires sur les lignes ou sur les colonnes, alors rg(M) = rg(M').

Démonstration.

Provient de la propriété précédente et de la dernière propriété du paragraphe 2.1.2.

Notation. Soit (S): MX = B un système linéaire de matrice $M \in \mathcal{M}_{n,p}(\mathbb{K})$ et de vecteur constant $B \in \mathbb{K}^n$.

On appellera matrice globale de (S) la matrice à n lignes et p+1 colonnes dont les p premières colonnes sont celles de M et dont la dernière colonne est égale à B.

Propriété. Soient (S): MX = B et (S'): M'X = B'. On suppose que l'on peut passer de la matrice **globale** de (S) à celle de (S') à l'aide d'une série d'opérations élémentaires portant uniquement sur les lignes.

Alors ces deux systèmes sont équivalents.

$D\'{e}monstration.$

Une opération du type 1) revient à ajouter à l'équation i du système λ fois l'équation j. Le système après cette manipulation est équivalent au système avant cette manipulation.

Une opération du type 2) revient à multiplier une équation par un scalaire non nul, et une opération du type 3) revient à permuter l'ordre de deux équations du système. A chaque étape on ne change pas l'espace des solutions du système. □

En pratique : Pour résoudre un système linéaire, on tente de modifier la matrice globale du système par des manipulations élémentaires, afin de se ramener à une matrice qui, privée de sa dernière colonne, est diagonale ou bien triangulaire supérieure. Dans ce cas en effet, le système est simple à résoudre.

Remarque. Dans le système (S): MX = B, permuter les colonnes de M revient à modifier l'ordre des inconnues. On peut donc autoriser ce type d'opération pour la résolution d'un système linéaire, mais il faudra les mémoriser pour connaître la position de chaque inconnue.

©Éric Merle 28 MPSI2, LLG

Propriété. Soit $M \in \mathcal{M}_n(\mathbb{K})$. On suppose que l'on peut transformer, par des opérations élémentaires portant uniquement sur les lignes, la matrice blocs $\overline{M[I_n]} \in \mathcal{M}_{\mathbb{K}}(n,2n)$ en une matrice de la forme $\overline{I_n[N]} \in \mathcal{M}_{\mathbb{K}}(n,2n)$. Alors M est inversible et $M^{-1} = N$.

$D\'{e}monstration.$

Il existe une matrice $P \in GL_n(\mathbb{K})$ telle que $I_n N = P \times M I_n$, or $P \times M I_n = PM P \times I_n$, donc $I_n = PM$ et N = P, ce qui montre bien que Mest inversible et que son inverse est N. \square

Exemple. Inversion de la matrice de taille 4

$$M = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \quad :$$

$$\begin{pmatrix} 3 & 3 & 3 & 3 & | & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & | & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & | & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & | & 0 & 0 & 0 & 1 \end{pmatrix}.$$
 On divise ensuite la première ligne par 3, ce qui

suite les lignes autres que la première par
$$-1$$
, ce qui fournit :
$$\begin{pmatrix} 1 & 1 & 1 & 1 & | & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 1 & 0 & 0 & | & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & 0 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 0 & | & -\frac{2}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 1 & 0 & 0 & | & -\frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 1 & 0 & 0 & | & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 1 & 0 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & | & \frac{1}{3} & \frac{1}{3} & \frac{1}$$

versible est son inverse vaut
$$M^{-1} = \begin{pmatrix} -\frac{2}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \end{pmatrix}$$
.

Remarque. Pour cette matrice, généralisée à une matrice de taille n, une autre méthode plus rapide consiste à remarquer que $(M+I_n)^2=n(M+I_n)$, donc $M^2+(2-n)M+(1-n)I_n=0$, puis $M(M+(2-n)I_n)=(n-1)I_n$, ce qui montre que M est inversible et que $M^{-1}=\frac{1}{n-1}(M+(2-n)I_n)$.

Cette méthode se généralise à toute matrice pour laquelle on peut trouver simplement un polynôme annulateur.

Pour cette matrice, c'est facile car elle est combinaison linéaire de I_n et de la matrice U dont tous les coefficients sont égaux à 1. C'est plus généralement le cas de toute

matrice de la forme
$$\begin{pmatrix} a & b & \cdots & b \\ b & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \cdots & b & a \end{pmatrix}.$$

3.3 Méthode du pivot de Gauss

Notation. On souhaite résoudre le système (S): MX = B de n équations à p inconnues. La matrice globale du système sera notée $(a_{i,j}) \in \mathcal{M}_{\mathbb{K}}(n, p+1)$. Pour simplifier les notations, si on transforme $(a_{i,j})$ par des opérations élémentaires, le

Pour simplifier les notations, si on transforme $(a_{i,j})$ par des opérations élémentaires, le résultat sera encore noté $(a_{i,j})$: C'est la matrice globale d'un système équivalent à (S).

But: On veut transformer la matrice globale en une matrice $(a_{i,j})$ de dimensions (n, p+1) telle que

$$\forall (i,j) \in \{1,\ldots,n\} \times \{1,\ldots,p\} \quad i > j \Longrightarrow a_{i,j} = 0.$$

Le système correspondant est alors triangulaire et facile à résoudre.

Pour cela on procède en min(p,n) étapes, en imposant qu'à l'étape r, la matrice globale commence comme une matrice triangulaire supérieure sur ses r premières colonnes, c'est-à-dire que

$$(E_r): \forall (i,j) \in \{1,\ldots,n\} \times \mathbb{N}_r \quad i > j \Longrightarrow a_{i,j} = 0.$$

Pour r = 0: (E_0) est toujours vérifiée.

 $Pour\ 0 < r \leq min(n,p)$: On suppose que l'étape r-1 est réalisée et on effectue l'étape r de la manière suivante :

Premier cas: $\forall i \in \{r, \dots, n\}$ $a_{i,r} = 0$.

Dans ce cas, il n'y a rien à faire car (E_r) est déjà vérifiée.

Second cas : $\exists i_0 \in \{r, \dots, n\}$ $a_{i_0,r} \neq 0$: On dit que $a_{i_0,r}$ est le pivot de l'étape r.

©Éric Merle 30 MPSI2, LLG

On permute d'abord les lignes L_{i_0} et L_r . Ainsi $a_{r,r} \neq 0$. Ensuite on effectue la série d'opérations élémentaires suivante :

for
$$i$$
 from $r+1$ to n do $L_i \longleftarrow L_i - \frac{a_{i,r}}{a_{r,r}} L_r$ od;

La nouvelle matrice vérifie (E_r) .

Remarque. Replaçons-nous dans la situation du début du second cas :

Il existe différentes stratégies pour choisir le pivot parmi les $a_{i,r} \neq 0$ où $i \in \{r, \ldots, n\}$: Stratégie du pivot partiel: On choisit comme pivot un coefficient $a_{i,r}$ dont le module est maximum. Cela présente l'avantage de minimiser les erreurs d'arrondis commises lorsque l'on divise par le pivot. C'est la stratégie la plus couramment utilisée lorsque cet algorithme est programmé en langage informatique.

Stratégie humaine : Dans les cas où on applique l'algorithme du pivot à la main, on souhaite éviter autant que possible l'apparition de fractions compliquées lors de la division par le pivot. La stratégie humaine consiste donc à choisir comme pivot 1 ou -1 quand c'est possible, sinon 2 ou -2, etc. . .

Remarque. Comme on n'effectue que des opérations élémentaires sur les lignes, les lignes de la matrice finale du système engendrent le même espace vectoriel que les lignes de la matrice initiale. La méthode du pivot permet donc de déterminer une base de l'espace vectoriel engendré par les lignes (ou les colonnes en opérant sur les colonnes) d'une matrice.

La méthode du pivot permet aussi de déterminer une base de l'image d'une application linéaire : On considère sa matrice dans des bases données et on détermine une base de ses vecteurs colonnes en appliquant la méthode du pivot au niveau des colonnes.

Remarque. Le système final présente une matrice triangulaire supérieure, la dernière colonne exceptée. On dit que le système est échelonné.

Cependant, comme les pivots peuvent être nuls, il est assez difficile de programmer la résolution de ce système échelonné.

Exercice. Soit $\lambda \in \mathbb{R}$. Déterminez la compatibilité et les éventuelles solutions du système suivant :

$$\begin{cases} \lambda x + y + z + t = 1\\ x + \lambda y + z + t = \lambda\\ x + y + \lambda z + t = \lambda^2\\ x + y + z + \lambda t = \lambda^3 \end{cases}$$

 $R\'{e}solution: \text{La matrice globale du syst\`eme est} \begin{pmatrix} \lambda & 1 & 1 & 1 & 1 \\ 1 & \lambda & 1 & 1 & \lambda \\ 1 & 1 & \lambda & 1 & \lambda^2 \\ 1 & 1 & \lambda & \lambda^3 \end{pmatrix}.$

Le pivot de la première étape est 1 (on adopte la stratégie 'humaine'). On obtient comme nouvelle matrice :

$$\begin{pmatrix} 1 & \lambda & 1 & 1 & \lambda \\ 0 & 1-\lambda^2 & 1-\lambda & 1-\lambda & 1-\lambda^2 \\ 0 & 1-\lambda & \lambda-1 & 0 & \lambda(\lambda-1) \\ 0 & 1-\lambda & 0 & \lambda-1 & \lambda(\lambda^2-1) \end{pmatrix}.$$

$$Premier \ cas : \text{Si } \lambda \neq 1, \text{ on simplifie les \'equations par } 1-\lambda. \text{ On obtient ainsi}$$

$$\begin{pmatrix} 1 & \lambda & 1 & 1 & \lambda \\ 0 & 1+\lambda & 1 & 1 & 1+\lambda \\ 0 & 1 & -1 & 0 & -\lambda \\ 0 & 1 & 0 & -1 & -\lambda(1+\lambda) \end{pmatrix}. \text{ Pour la seconde \'etape, le pivot choisi est } 1.$$

$$\begin{pmatrix} 0 & 1 & \lambda & 1 & 1 & \lambda \\ 0 & 1 & -1 & 0 & -\lambda \\ 0 & 0 & 2+\lambda & 1 & (1+\lambda)^2 \\ 0 & 0 & 1 & -1 & -\lambda^2 \end{pmatrix}. \text{ Pour la troisi\`eme \'etape, le pivot choisi est } 1.$$

$$\begin{pmatrix} 1 & \lambda & 1 & 1 & \lambda \\ 0 & 1 & -1 & 0 & -\lambda \\ 0 & 0 & 2+\lambda & 1 & (1+\lambda)^2 \\ 0 & 0 & 1 & -1 & -\lambda^2 \end{pmatrix}. \text{ Pour la troisi\`eme \'etape, le pivot choisi est } 1.$$

$$\begin{pmatrix} 1 & \lambda & 1 & 1 & \lambda \\ 0 & 1 & -1 & 0 & -\lambda \\ 0 & 0 & 1 & -1 & -\lambda^2 \\ 0 & 0 & 0 & 3+\lambda & (1+\lambda)^2 + \lambda^2(\lambda+2) \end{pmatrix}.$$

$$1.1 : \text{Si } \lambda \neq -3, \text{ le syst\`eme est de Cramer et l'unique solution est donn\'ee par :}$$

$$t = \frac{\lambda^3 + 3\lambda^2 + 2\lambda + 1}{\lambda + 3}, z = -\lambda^2 + \frac{\lambda^3 + 3\lambda^2 + 2\lambda + 1}{\lambda + 3} = \frac{2\lambda + 1}{\lambda + 3},$$

$$y = -\lambda + \frac{2\lambda + 1}{\lambda + 3} = \frac{-\lambda^2 - \lambda + 1}{\lambda + 3},$$

$$x = \lambda + \frac{-\lambda^3 - 3\lambda^2 - 2\lambda - 1 - 2\lambda - 1 + \lambda^3 + \lambda^2 - \lambda}{\lambda + 3} = \frac{-\lambda^2 - 2\lambda - 2}{\lambda + 3}.$$

$$1.2 : \text{Si } \lambda = -3, \text{ le syst\`eme est incompatible.}$$

$$Second \ cas : \text{Si } \lambda = 1, \text{ le syt\`eme est compatible,}$$

$$\text{et } (S) \Longleftrightarrow x = 1 - y - z - t.$$

3.4 Méthode du pivot total

Notation. On reprend les notations du paragraphe précédent.

But: On veut transformer la matrice globale en une matrice $(a_{i,j})$ de dimensions (n, p+1) telle qu'il existe $s \in \{0, \min(n, p)\}$ vérifiant

$$(F): \begin{array}{ccc} \forall (i,j) \in \mathbb{N}_s^2 & i > j \Longrightarrow a_{i,j} = 0, \\ \forall r \in \mathbb{N}_s & a_{r,r} \neq 0 & , \text{ et} \\ \forall (i,j) \in \{s+1,\ldots,n\} \times \{1,\ldots,p\} & a_{i,j} = 0 & . \end{array}$$

 \diamond Pour cela on procède en au plus min(p,n) étapes, en imposant qu'à l'étape r, la matrice globale commence comme une matrice triangulaire supérieure sur ses r premières colonnes, les coefficients diagonaux étant non nuls, c'est-à-dire que

$$(F_r): (\forall (i,j) \in \{1,\ldots,n\} \times \mathbb{N}_r \quad i > j \Longrightarrow a_{i,j} = 0) \text{ et } (\forall i \in \mathbb{N}_r \quad a_{i,i} \neq 0).$$

- \diamond Pour $r = 0 : (F_0)$ est toujours vérifiée.
- \diamond $Pour 0 < r \le min(n,p)$: On suppose que l'étape r-1 est réalisée et on effectue l'étape r de la manière suivante :

Premier cas: $\forall (i,j) \in \{r,\ldots,n\} \times \{r,\ldots,p\} \quad a_{i,j} = 0.$

Dans ce cas, avec s = r - 1, la matrice vérifie (F): on arrête l'algorithme.

Second cas : $\exists (i_0, j_0) \in \{r, \dots, n\} \times \{r, \dots, p\}$ $a_{i_0, j_0} \neq 0$: on dit que a_{i_0, j_0} est le pivot de l'étape r.

On permute les colonnes C_{j_0} et C_r , ce qui revient à modifier l'ordre des inconnues (il faudra mémoriser ce nouvel ordre). La suite de l'algorithme est identique à celui présenté au b).

- \diamond A la fin de l'algorithme, on obtient la matrice globale d'un système équivalent à (S), vérifiant (F).
- \diamond Le système est compatible si et seulement si $\forall i \in \{s+1,\ldots,n\}$ $a_{i,p+1}=0$.

Si le vecteur $B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$ du système est quelconque, ces conditions de compatibilité

s'expriment en fonction de b_1, \ldots, b_n . Elles constituent un système d'équations de l'espace vectoriel engendré par les colonnes de (S), car (S) est compatible si et seulement si B appartient à cet espace vectoriel.

Si la matrice de (S) est celle d'une application linéaire u dans des bases e et f, ces conditions de compatibilité constituent un système d'équations de Im(u) dans la base f.

♦ En cas de compatibilité, le système triangulaire final peut être facilement résolu :

Définition. Résoudre un système (S): MX = B à n équations et p inconnues, c'est déterminer une partie I de $\{1, \ldots, p\}$ et deux familles de scalaires $(b_{i,j})_{(i,j)\in(\{1,\ldots,p\}\setminus I)\times I}$ et $(c_i)_{i\in\mathbb{N}_p\setminus I}$ telles que :

$$\forall i \in \{1, \dots, p\} \setminus I, \quad x_i = c_i + \sum_{j \in I} b_{i,j} x_j.$$

On dit que $(x_j)_{j\in I}$ est la famille des inconnues principales et que $(x_i)_{i\in\{1,\dots,p\}\setminus I}$ est la famille des inconnues secondaires (Attention : Le choix de la partie I n'est en général pas unique).

En résumé, résoudre un système, c'est exprimer les inconnues secondaires en fonction des inconnues principales.

Après déroulement de l'algorithme du pivot total, la résolution du système triangulaire final se fait en prenant naturellement comme inconnues principales x_{s+1}, \ldots, x_n .

Attention : Ces inconnues ne sont pas nécessairement les n-s dernières inconnues du système d'origine, car d'éventuelles permutations de colonnes ont peut-être modifiées l'ordre des inconnues.

©Éric Merle 33 MPSI2, LLG

3.5 Méthode de Gauss-Jordan

Notation. On reprend les notations du b), en supposant que (S) est un système de Cramer, c'est-à-dire que $M \in GL_n(\mathbb{K})$.

But: On veut transformer la matrice globale en une matrice de dimension (n, n + 1) dont les n premières colonnes correspondent à la matrice I_n , en utilisant uniquement des opérations élémentaires sur les lignes.

Pour cela on procède en n étapes, en imposant qu'à l'étape r, la matrice globale commence comme la matrice I_n sur ses r premières colonnes.

 $Pour\ 0 < r \le n$: On suppose que l'étape r-1 est réalisée et on effectue l'étape r de la manière suivante :

La matrice obtenue après l'étape r-1, que l'on notera encore M, est égale au produit d'une matrice inversible avec la matrice initiale, donc elle est encore inversible. Alors, il existe $i_0 \in \{r, \ldots, n\}$ $a_{i_0,r} \neq 0$.

En effet, si pour tout
$$i \in \{r, \dots, n\}$$
, $a_{i,r} = 0$, alors on vérifie que $M \begin{pmatrix} \vdots \\ a_{r-1,r} \\ -1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 0$, ce

qui contredit l'inversibilité de la matrice M.

 $a_{i_0,r}$ est le pivot de l'étape r.

On permute alors les lignes L_{i_0} et L_r . Ainsi $a_{r,r} \neq 0$. Ensuite on effectue la série d'opérations élémentaires suivante :

$$\forall i \in \{1, \dots, n\} \setminus \{r\}, \quad L_i \longleftarrow L_i - \frac{a_{i,r}}{a_{r,r}} L_r \quad .$$

Enfin, on réalise l'opération

$$L_r \longleftarrow \frac{1}{a_{r\,r}} L_r$$
.

Les r premières colonnes de la nouvelle matrice sont bien celles de la matrice I_n .

A la fin de l'algorithme, le système est immédiatement résolu puisque

$$(S) \Longleftrightarrow \forall i \in \{1, \dots, n\} \quad x_i = a_{i,n+1}.$$

Remarque. Le dernier théorème du paragraphe 3.2 montre comment modifier cet algorithme pour calculer l'inverse d'une matrice. Ce nouvel algorithme sera encore appelé algorithme de Gauss-Jordan.

Remarque. Si, lors de la recherche du pivot de l'étape r, pour tout $i \in \{r, ..., n\}$, $a_{i,r} = 0$, c'est que la matrice initiale du système n'était pas inversible. L'algorithme de Gauss-Jordan peut donc constituer un test efficace d'inversibilité d'une matrice.

Remarque. Ceci montre que toute matrice inversible est un produit de matrices de permutation, d'affinités et de transvections.