

קורס תיב"ם (מס' הקורס 30334)

צוות 27 שם הפרויקטון: **רובוט קרב**

המרצים: ד"ר מיכאל פרישמן גב' ג'ינה פרלשטיין

שם הסטודנט: דן פרידלנד

מספר תעודת זהות:322193277

שם הסטודנט: יוליה נרינסקי

מספר תעודת זהות:318009107

04.06.2020:תאריך ההגשה

3	בוא	1. מ.
	מהו רובוט?	1.1
5	סוגי רובוטים	1.2
c	טרות	2. מ
	מטרות הרובוט	2.1
6	מטרות לימודיות	2.2
7	רקע השיווקי וסקר מצב קיים	3. הו
8	קר שיטות ניהוג ומערכות הנעה	ю .4
8	מערכות הנעה	4.1
8	מנוע DC ללא מברשות	4.1.1
	מנוע DC בעל מברשות(פחמים) DC	4.1.2
9	מנוע STEP MOTOR DC	4.1.3
9	שיטות ניהוג	4.2
9	ניהוג דיפרנציאלי	4.2.1
	ניהוג סנכרוני	4.2.2
	ניהוג תלת-גלגלי	4.2.3
11	ניהוג רכבי	4.2.4
12	פרט מערכתי, מסמך דרישות ואפיון מערכתי	5. מפ
13	תוח חלופות ובחירת החלופה לפיתוח	6. ני
13	ניתוח חלופות שיטות ניהוג	6.1
	ניתוח חלופות מערכות הנעה	6.2
	ון ראשוני:	PDR- תכנו
	•	
14	רשים קינמטי של מערכת ההנעה	7. ת
15 ປ	ישוב כוחות משיכה F הנדרשים במצבי תנועה שונים של הרובוט	8. חי
15	מקרה 1- מישור אופקי בהתנעה	8.1
16	מקרה שני- מישור משופע, התנעה	8.2
16	בדיקת תנאי אי החלקת הרובוט בעמידה(חיכוך סטטי)	8.3
17	בדיקת תנאי אי החלקה של הרובוט בתנועה	8.4
רובוט)17	קביעת מידות כלליות (המרחק בין הגלגלים כתנאי יציבות הר	8.5
18	כן מערכת ההנעה של הרובוט	9. תי
18	חישוב ההספקים הנדרשים של מערכת ההנעה	9.1
18	הספק כולל הנדרש של מנועים לתנועה במישור	9.1.1
	הספק כולל הנדרש של מנועים לתנועה בעלייה	9.1.2
19	חישוב מומנטים הנדרשים של מערכת הנעה	9.2
	מומנט סיבוב הנדרש של מנוע אחד לתנועה במישור	9.2.1
19	מומנט סיבוב הנדרש של מנוע אחד לתנועה בעלייה	9.2.2

20	:חירה מנועים מקטלוגים של היצרנים	10. ב
20	תנאי בחירה	10.1
20	בדיקה	10.2
21		11. ב
21	י חישוב קיבולת Q הנדרשת של המצבר (Amh)	11.1
	בחירת מצבר מקטלוג	11.2
21	:חירת חומרים	12. ב
21	דרישות החומר	12.1
	שלדה	12.1.1
22		12.1.2
22	גל	12.1.3
22		12.1.4
22	חלופות חומרים	12.2
22	שלדה	12.2.1
	כיסוי	12.2.2
	גל	12.2.3
24		12.2.4
24	בחירת החומרים	12.3
26	מפורט:מפורט:	CDR-תכנון ו
26	נכן גל של גלגל לחוזקנכן גל של גלגל לחוזק	n .13
26	 קביעת הצורה הגאומטרית של הגל	13.1
27	חישוב כוחות תגובה ובניית דיאגראמות כוחות ומומנטים	13.2
28	צורה גאומטרית של הגל בהתאם לחשוב מקורב	13.3
28	:דיקת גל להתעייפות(שיטה מדויקת)	.14
	י , , , , , , , , , , , , , , , , , , ,	14.1
	חישוב מאמצים ומאמצים משולביםחישוב מאמצים ומאמצים משולבים	14.2
	קביעת מקדם בטיחות נדרש	14.3
	יוב עול ניון ם בס וווול נו ו ס חישוב מקדם בטיחות להתעייפות	14.3.1
		.15
	ונ <i>ר -</i> וונ <i>גר</i> בדיקת הגל לעומס סטטי	15.1
	·	
31	בדיקת הגל לאנליזה להתעייפות	15.2
32	חירת מסבים	16. ב
34	:חירה וחישוב שגמים:	17. ב
34	בדיקת השגם לגזירה ומעיכה	17.1
35	· בדיקת השגם לגזירה	17.1.1
35	בדיקת השגם למעיכה	17.1.2

בחירת מצמד(קבוע)	.18
מציאת עובי ריתוך השלדה	.19
חישוב ברגים	.20
41SolidWorks Simulation -אנליזת סוליד ממוחשבת	.21
43 אופטימיזציה	.22
47 Design Study Setup	22.1
סיכום ומסקנות:	.23
53	.24
נספחים	.25

1. מבוא

1.1מהו רובוט?

על-פי ההגדרה או התפיסה העממית המקובלת, רובוט הוא יצור מכני אוטומטי, המחליף את האדם בביצוע מטלות קשות או מסוכנות.

רובוטיקה היא תחום בהנדסה ובמדע העוסק במחקר, פיתוח ועיצוב של רובוטים, של סביבת העבודה שלהם ושל שימושיהם.

הגדרה שמצאנו לרובוט:" אוטומט המבצע פעולות מורכבות מסוימות, הנעשות בדרך- כלל על-ידי אדם חי ובר-דעת". לא סתם "עבודות שחוסכות מאמצי אנוש" ,אלא פעולות מורכבות מסוימות, הנעשות בדרך-כלל על-ידי אדם נבון .

כדי להגיע להגדרה סבירה של המושג רובוט, נפרט שלוש תכונות חשובות המאפיינות רובוטים: הרובוט (או חלק ממנו) יכול לבצע תנועה מורכבת בסביבה שבה הוא נמצא.

הרובוט מכיל יחידת עיבוד מרכזית (מעבד זעיר או בקר זעיר) ותנועתו מבוקרת על-ידי יחידה זו.

לרובוט יש מידה מסוימת של עצמאות (אוטונומיה) – הוא יכול לנוע ללא פיקוח ישיר של אדם; תנועתו נעשית תחת בקרה של תכנת מחשב, המושפעת מפקודות ומנתוני קלט משתנים.

בזכות כושר התנועה שלו, הרובוט אינו יכול להיות רק מחשב. בשל התנועה המורכבת של הרובוט לא ניתן להגדיר את מכונת הכביסה המשוכללת כרובוט, כי תנועתה מוגבלת לכמה פעולות ומתוכנתות מראש, שאינן ניתנות לשינוי (כלומר, חסרות לה התכונות א ו-ג(.בשל העצמאות של הרובוט (תכונה ג) אי אפשר להגדיר כרובוט את המנופים ואת כל ההתקנים הנגזרים מהם המבוקרים באופן ישיר על-ידי בני אדם (גם אם בהתקנים אלה משובץ מחשב(.

סוגיה אחת בתכונות שצוינו לעיל אינה ברורה עדיין – מהי "תנועה מורכבת"? נבהיר אותה בהמשך, כאשר ננתח את אופני התנועה של רובוט.

ההגדרה שלהלן מסכמת את התכונות שנדונו עד כה:

רובוט הוא מערכת בעלת יכולת תנועה וחישה משובצת ביחידת עיבוד מרכזית (מעבד זעיר או בקר זעיר),עם תוכנת בקרה אוטונומית הפועלת באינטראקציה עם הסביבה.

1.2 סוגי רובוטים

בעמוד הקודם למדנו כי אחת התכונות החשובות המאפיינות רובוט היא מידה מסוימת של כושר פעולה עצמאי (אוטונומי(.לפי תכונה זו, ניתן לסווג אוטומטים מכניים משובצי-מחשב לשתי קטגוריות עיקריות:

אוטומטים מכניים הקבועים במקומם ותנועתם מוגבלת לתנועה של אחד החלקים המרכיבים אותם. בהמשך נתייחס לאוטומטים אלו כאל רובוטים נייחים. דוגמה הידועה ביותר לרובוט מסוג זה היא הזרוע המכנית .רובוט שכל גופו בנוי למעשה מזרוע עם יחידת קצה בצורת יד, תופסן, או התקן דומה. כפי שנראה, עיקר השימוש של רובוטים אלו הוא בתעשייה וזהו גם מקור שמם – רובוטים תעשייתיים.

אוטונומיים ניידים או רובוטים ניידים (robotmobile) היכולים לנוע ממקום למקום באמצעות "רגליים", גלגלים, מסילות מיוחדות ועוד ותנועתם אינה מבוקרת בהכרח על-ידי אדם. רובוטים אלו נקראים לעיתים רובוטים עצמאיים (או אוטונומיים),אף כי קיימים רובוטים ניידים שאינם אוטונומיים כלל. הרובוטים הניידים, שלרבים מהם גם צורת אדם (ראש, רגליים, זרועות, גוף) שימשו (ומשמשים) כמקור לסיפורת העשירה (ולעיתים קרובות, סיפורת בדיונית) שהתפתחה בנושא זה החל מהמחצית השנייה של המאה העשרים.

שלא כמו הרובוטים הנייחים שפותחו בעיקר לשימוש בקווי ייצור תעשייתיים, את הרובוטים הניידים ניתן למצוא במגוון יישומים בכל תחומי החיים: החל בתעשייה הקלה והכבדה, עבור תעשיית הבידור, תחומי הביטחון, החינוך והמדע ועזרה בעבודות הבית. יתרה מזה, רובוטים אלו עומדים כיום בחזית הפיתוח המדעי-טכנולוגי, שבמסגרתו נעשה מאמץ להקנות להם מספר תכונות אנושיות (כגון רגשות אהבה, שנאה) ובמיוחד להקנות להם את הידע על קיומם של רגשות אלו (נוסף לתחושות או לגירויים מכניים של העולם החיצוני). חלק גדול ממאמץ זה מרוכז בפיתוח תוכנה ייעודית הכוללת אלגוריתמים הידועים גם בשם הכולל "אינטליגנציה מלאכותית".

כאמור, הרובוטים התעשייתיים בנויים בדרך-כלל מזרוע (או ממספר זרועות) שבקצה יד או תופסן. באמצעות היד יכול הרובוט לקיים מגע פיזי עם עצמים בסביבתו ולבצע עבודה ו/או חישה פיזית על-ידי הוראת התוכנה המפעילה אותו. לעומת זאת, לרובוט הנייד מבנה כללי המותאם יותר לייעודו : לרובוט אשר נועד לסיור לשם כיבוי שריפות מבנה שונה מזה של רובוט אשר נועד לניקוי שטיחים . בכל סוגי הרובוטים הניידים נוכל למצוא, נוסף ל"מוח" (המחשב), מספר מרכיבים בסיסיים .

2. מטרות

2.1 מטרות הרובוט

- התגברות על הגנות האויב ❖
 - יכולות תמרון אידאליות 💠
- 💠 הגנה מפני התקפת האויב

2.2 מטרות לימודיות

- לדעת לבצע תכן מכני באופן מלא 💠
- יישום הידע כול הידע ההנדסי שנרכש עד כה ברובוט 💠
 - ללמוד על בניית רובוט נייד מההתחלה ועד הסוף 💠
- ללמוד לגשת לספרות ולחפש את הידע ההנדסי שחסר לנו בפיתוח

3. הרקע השיווקי וסקר מצב קיים

תעשיית רובוטי הקרב קיימת כבר שנים רבות. ישנן תחרויות שונות בכל רחבי העולם בין הרובוטים.

שלוש תחרויות גדולות ומוכרות המתקיימות כסדרות טלוויזיה הן: Robot Wars, BattleBots שלוש תחרויות גדולות ומוכרות המתקיימות כסדרות טלוויזיה הן: Robotical-.

לרובוטים בתחרות ישנן קטגוריות משקל. האנשים שמתחרים בונים את הרובוטים בעצמם ולפי קטגוריית המשקל שברצונם להתחרות מוסיפים לרובוט נשקים שונים כגון: מסורים, פטישים וגם מרכיבים שונים שנועדו לעזור לרובוט להתגבר על רובוט האויב כגון: טריז, או גלגלים גדולים וגוף קטן..

המטרה המרכזית של רובוטים אלו היא להביס את רובוט האויב, להתגבר על יכולותיו. כל בונה רובוט מתכנן את הרובוט שלו כך שיוכל להביס את רובוט האויב בצורה מהירה וקטלנית.

4. סקר שיטות ניהוג ומערכות הנעה

4.1 מערכות הנעה

לאחר מחקר על הנושא, הרוב המוחלט של המנועים הם מנועים DC חשמליים. אנשים עושים שימוש במנוע ממקדחה או ציוד אלקטרוני כזה או אחר, יוצא יותר משתלם מלהזמין מנוע במיוחד בשביל הרובוט.

הנה כמה סוגי מנועים ששקלנו להשתמש בהם:

ללא מברשות DC מנוע 4.1.1

זהו סוג מתקדם יותר של מנוע חשמלי.

במנוע זה עיקרון השדה המגנטי המסתובב אינו מתבצע בצורה "מכאנית" אלא בצורה אלקטרונית ע"י מגבר מתאים. הורדת המגע הישיר בין הסלילים לפחמים מקנים אמינות ונצילות גבוהה יותר של המנוע, מה שמאפשר את הקטנתו ויחס "מומנט/נפח" טוב יותר. ניתן לשלוט על מנועים אלה בצורות מתקדמות ע"י אמצעי משוב ואמצעי בקרה מתאימים. (מהירות קבועה / מומנט קבוע / מיקום מדויק)

מונע זה מורכב מ-2 חלקים עיקריים:

סלילים המלופפים על חלקו הפנימי של המנוע (3 פאזות).

מגנטים הנמצאים על ציר המנוע (רוטור).

כדי לדעת איזה סליל צריך להצית חשמלית(להזרים זרם) נעזר בחיישנים המכונים *hall sensors,* שתפקידם לתת אינדיקציה על קוטביות הרוטור ביחס לסלילים

עיקרון הפעולה:

המגבר מזהה את קוטביות הרוטור ומעביר זרם דרך זוג הסלילים הרלוונטי. הזרם מתחיל לעבור בין 2 קצוות הסליל ויוצר שדה אלקטרומגנטי מנוגד לקטבי המגנט מה שגורם לסיבוב הרוטור ואתו ציר המנוע. סיבוב זה גורם לשינוי הקוטביות של הציר אל מול הסלילים ולכן המגבר מתחיל להעביר זרם דרך זוג הסלילים הבא, דבר היוצר שדה אלקטרומגנטי וכן האלה.

בעל מברשות(פחמים) DC בעל מברשות

הסוג הפשוט והבסיסי ביותר של מנועים חשמליים.

מנועים אלה מופעלים ע"י זרם ישר ומאפשרים תנועה חלקה ומהירה. בכדי לשלוט בצורה בסיסית על מהירות הסיבוב של מנוע זה, אין צורך במשוב ובחישה אלא רק בשינוי המתח הניתן לו בין 2 הקטבים. כמו כן ניתן לשלוט על מנועים אלה בצורות מתקדמות יותר ע"י אמצעי משוב ואמצעי בקרה מתאימים(מהירות קבועה / מומנט קבוע / מיקום מדויק).

מנועים אלה נחשבים אמינים ומצריכים תחזוקה בשימוש ממושך(בלאי של הפחמים).

מנועים אלה מורכבים מ-3 חלקים עיקריים:

סט מגנטים (מקוטבים) שנמצאים במעטפת הפנימית של המנוע.

סליל המלופף על הרוטור (החלק המסתובב במנוע) עם 2 קצוות בהפרש של 180 מעלות. זוג "פחמים" (מגעים חשמליים) שמעבירים זרם ל2- קצוות הסליל אליו הם מתחברים.

עיקרון הפעולה:

כאשר נוצר הפרש "פוטנציאל" על קטבי המנוע, זרם מתחיל לעבור בין 2 קצוות הסליל ויוצר שדה אלקטרומגנטי מנוגד לקטבי המגנט, מה שגורם לסיבוב הרוטור ואתו ציר המנוע. סיבוב זה גורם ל2 קצוות סליל נוספים לגעת בפחמים ולהעביר דרכם זרם, ליצור שדה אלקטרומגנטי וכן האלה.

STEP MOTOR DC מנוע 4.1.3

מנועי DC מוברשים מסתובבים ברציפות כאשר מתח DC מפעיל על המסופים שלהם. מנוע צעד ידוע בתכונה שלו להמיר רכבת של פולסי כניסה (בדרך כלל פולסי גל מרובעים) לתוספת מוגדרת במדויק במצב הפיר. כל דופק מעביר את הפיר בזווית קבועה.

מנועי צעד מכילים למעשה אלקטרומגנטים "שיניים" מרובות המסודרים סביב פיסת ברזל מרכזית בצורת הילוכים. האלקטרומגנטים מופעלים באמצעות מעגל נהגים חיצוני או בקר מיקרו. כדי לגרום לפיר המנוע להסתובב, ראשית, מקבלים אלקטרומגנט אחד כוח, שמושך בצורה מגנטית את שיני ההילוכים. כאשר שיני ההילוכים מיושרים לאלקטרומגנט הראשון, הם מתקזזים מעט מהאלקטרומגנט הבא. משמעות הדבר היא שכאשר האלקטרומגנט הבא מופעל והראשון נכבה, ההילוכים מסתובבים מעט כדי ליישר קו עם זה שאחריו. משם התהליך חוזר על עצמו. כל אחד מאותם סיבובים נקרא "צעד", עם מספר שלם של שלבים שעושים סיבוב מלא. באופן זה ניתן לסובב את המנוע בזווית מדויקת.

4.2 שיטות ניהוג

ישנם כמה סוגים עיקריים לניהוג וניווט הרובוט:

- ניהוג דיפרנציאלי
 - ניהוג סינכרוני
- ניהוג תלת-גלגלי
 - ניהוג רכבי

4.2.1 ניהוג דיפרנציאלי

הניהוג הפשוט ביותר מבחינת תכנות, בניה והפעלה. הניהוג הדיפרנציאלי מבוסס על שני גלגלים הנמצאים על ציר דמיוני משותף, כלומר כל גלגל מונע באופן בלתי תלוי בשני (בדרך כלל מיושם ע"י דיפרנציאל ומכאן שמו של הניהוג). באמצעות סידור זה, הרובוט מסוגל לנסוע ישר, להסתובב במקום או לנסוע במסלול קשתי.

בעיית תכנון חשובה עבור רובוט מבוסס ניהוג דיפרנציאלי הינה כיצד להבטיח את יציבותו. חוץ משני גלגלי הניהוג, נדרשת תמיכה נוספת כדי שהרובוט לא יאבד את שיווי משקלו. לרוב, בעיה זו נפתרת ע"י גלגל עזר אחד או שניים (גלגל "משוגע"- ראה הרחבה על בחירת גלגל "משוגע" בהמשך) אשר יוצר מערך גלגלים בצורת משולש (במקרה של אחד) או מעוין (במקרה של שניים). כמובן, שבתוספת גלגל יחיד, הרובוט עדיין פגיע לבעיית שווי המשקל בהתאם למיקום מרכז המסה שלו והתאוצות שמופעלות עליו. במבט תחתון. ניהוג דיפרנציאלי יראה כך:

ביתן לראות את זוג גלגלי הניהוג, בתוספת גלגל עזר אחד או שניים) בתרשים (caster אם הרובוט בנוי ללא גלגל העזר האופציונלי, ונע קדימה (ימינה) במהירות ולפתע עוצר, הוא יאבד את שיווי משקלו בכוון התנועה אלא אם מרכז המסה שלו ממוקם במידה מספקת בצדו האחורי (שמאל). כדי לפתור בעיה זו, אנו צוות המבנה מיקמנו את מירב ההתקנים בעלי המשקל הגדול בצדו האחורי של הרובוט.

פתרון אפשרי נוסף לבעיית היציבות הוא מערך גלגלים בצורת מעוין (בתוספת שני גלגלי עזר), אך מערך זה ייצור שתי בעיות חדשות:

הבעיה הראשונה, בעיית עבירות ממישור לשיפוע עולה חד, או במעבר מכשול גדול. הגלגל, שרדיוסו קטן יחסית, יתקע ולא יהיה מסוגל לעבור מכשול - הרובוט עלול להיתקע(הבעיה אמנם לא נוגעת אלינו כיוון שהמסלול נטול מכשולים אך יש לקחת אותה כגורם).

4.2.2 ניהוג סנכרוני

ניהוג זה מבוסס על הפעלה מתוזמנת של שלושת גלגלי הניהוג. במבט תחתון, ניהוג סינכרוני יראה כך: עקרון עבודת הניהוג הסינכרוני מבוסס על כיול המנועים וכיוון כל שלושת הגלגלים יחדיו בו זמנית. הגלגלים מקושרים בצורה כזו כך שכל נקודה על פני הרובוט נעה באותו כיוון בכל עת. תנועת הגוף הקשיח מבוצעת בצורת העתקה קווית ולא סביב ציר סיבוב נקודתי. כדי לשנות כיוון, מסובב הרובוט את כל גלגליו בו זמנית יחסית לציר אנכי (כפי שנראה בתרשים). באופן זה, כיוון תנועת הרובוט משתנה אך שלדת הרובוט ממשיכה להצביע על אותו הכיוון. במבנה של רובוטים מסוימים, קיימת חשיבות לחלוקה לאזור קדמי ואחורי, לכן יש להיעזר במחברים מכאניים שתפקידם לשמור על מבנה הרובוט כך שיצביע לכיוון הרצוי.

4.2.3 ניהוג תלת-גלגלי

שני הגלגלים המניעים מחוברים במקביל לאותו מנוע והגלגל המכוון לרוב אינו מחובר למנוע כלל. בשיטות אלו אין צורך לבצע דגימה ובקרה של מהירות המנועים כדי להבטיח נסיעה ישרה, זאת מפני שזוג הגלגלים המניעים מחוברים למעשה לאותו המנוע. יש לזכור כי מצב זה מתקיים בתנאי והגלגלים נעים על גבי משטחים בעלי מקדמי חיכוך שווים.

כדי לנוע בכיוון מסוים, כל שעל הרובוט לעשות הוא לסובב את הגלגל המכוון לכיוון זה. במקרים אלו, אמנם קיים יתרון בפשטות התנועה.

4.2.4 ניהוג רכבי

אלו.

דומה שיטת הניהוג התלת-גלגלי, רק שכאן נדרשת חוליית קישור בין שני הגלגלים הקדמיים. שני הגלגלים המניעים מחוברים במקביל לאותו מנוע והגלגל המכוון לרוב אינו מחובר למנוע כלל. בשיטות אלו אין צורך לבצע דגימה ובקרה של מהירות המנועים כדי להבטיח נסיעה ישרה, זאת מפני שזוג הגלגלים המניעים מחוברים למעשה לאותו המנוע. יש לזכור כי מצב זה מתקיים בתנאי והגלגלים נעים על גבי משטחים בעלי מקדמי חיכוך שווים. כדי לנוע בכיוון מסוים, כל שעל הרובוט לעשות הוא לסובב את הגלגל המכוון לכיוון זה. במקרים

5. מפרט מערכתי, מסמך דרישות ואפיון מערכתי

משקל ציוד / עצמי	מרכז	מהירות	רדיוס	שיפוע	סוג קרקע	תנאי	שעות	גחון
	כובד		סיבוב			סביבה	פעולה	
Payload/Weight	CM	Speed	Radius	Slope	Terrain		Run	Clearance
.,		- 1					time	
G0/Gmax	Нс	Vmax/Vmin	Rmin	α			Lh	h
				max				
N	m	m/s	m	grad			minutes	m
25/85	0.11	1-6.667	0.5	15	בטון/קרמיקה	indoor	60	0.02
	1							

6. ניתוח חלופות ובחירת החלופה לפיתוח

6.1 ניתוח חלופות שיטות ניהוג

5 מעולה, 1 גרוע

סינכרוני	תלת גלגלי	רכבי	משקל	קריטריון	
5	5	5	0.2	אמינות	1
4	5	4	0.1	ממדים	2
4	4	5	0.2	יציבות	3
4	5	4	0.1	מסה	4
5	4	4	0.4	ביצועים/תמרון	5
4.6	4.4	4.4	1	סיכום	

ניתן לראות כי שיטת הניהוג המתאימה לדרישותינו וצרכינו היא שיטת הניהוג הסינכרוני.

6.2 ניתוח חלופות מערכות הנעה

מנוע DC מנוע צעד	מנוע DC עם מברשת	מנוע DC ללא מברשת	משקל	קריטריון	
4	3	4	0.2	אמינות	1
3	5	5	0.2	ממדים	2
5	4	3	0.1	עמידות לתנאי הסביבה	3
3	4	4	0.2	מסה	4
4	4	4	0.2	ביצועים/תמרון	5
3	4	2	0.1	עלות	6
3.62	4	3.9	1	סה"כ	

יתכנון ראשוני: -PDR

הקדמה

בפרק זה נעסוק בתכנון הראשוני של הרובוט, נפרט על אופן בחירת חלקי הרובוט והחישובים שנדרשו לכך. נתאר את כל התכנונים הדרושים לבניית הרובוט.

סימנים מוסכמים של הנעת גלגלי הרובוט:

7. תרשים קינמטי של מערכת ההנעה

8. חישוב כוחות משיכה F הנדרשים במצבי תנועה שונים של הרובוט

(Payload) מסה (משקל) מטען (G) m

מסה (משקל) בסיס הרובוט -(G $_0$) m $_0$

תאוצה-a

∨- מהירות תנועה

-כוח משיכה של הגלגלים-F

כיח התנגדות גלילה (Crr) בין גלגלים (זחל) וקרקע-Fcrr

8.1 מקרה 1- מישור אופקי בהתנעה

$$v = v_0 + at$$

$$v = 6\frac{2}{3} \left[\frac{m}{s}\right]$$

$$v_0 = 0 \left[\frac{m}{s}\right]$$

$$6\frac{2}{3} = 0 + a * 5$$

$$a = \frac{4}{3} \left[\frac{m^2}{s}\right]$$

$$m_{tot} = 110 \ kg$$

 $Crr = 0.014$
 $f_c = 0.51$
 $G = m_{tot}g = 110 * 9.8 = 1078 \ N$

$$F_j = (m_{tot})a = 110 * \frac{4}{3} = 146.667 N$$

 $F_{crr} = Crr * G = 0.014 * 1078 = 15.092 N$
 $\Sigma F_x = 0$
 $F - F_{crr} - F_j = 0$

$$F = 15.092 + 183.333 = 162 N$$

$$F_{MAX} = 161.76 * 1.2 = 194 N$$

8.2 מקרה שני- מישור משופע, התנעה

$$\sum F_{x} = 0$$

$$F - (G) * sin\alpha - F_{f} - F_{j} = 0$$

$$\alpha = 15^{\circ}$$

$$F_{j} = (m_{tot})\alpha = 110 * \frac{4}{3} = 146.667 N$$

$$F_{f} = Crr * N$$

$$N = G \cos \alpha = 1078 * \cos 15 = 1041.26 N$$

$$F_{f} = 0.014 * 1041.26 = 14.57 N$$

$$F - 1078 * sin15 - 14.57 - 146.667 = 0$$

$$F = 440 N$$

$$F_{MAX} = 440 * 1.2 = 528 N$$

(חיכוך סטטי) בדיקת תנאי אי החלקת הרובוט בעמידה

$$\Sigma F_x(G) < F_f$$
 $F_f = \mu * N$
 $\mu = 0.5$
 $F_f = 0.51 * 1041.26 = 531 N$
 $F_x = 528 N$
 $528N < 531N$

במידה והתנאי זה לא מתקיים→

לפי הנוסחה אם התנאי לא היה מתקיים היינו יכולים לבחור צמיגים עם מקדם חיכוך יותר טוב, להעלות עוד קצת משקל או כשיקול אחרון להניע גם את הגלגל השלישי(פרקטית היינו משנים את הצמיגים ומעלים את מקדם החיכוך ואני לא חושב שהיינו מגיעים למצב שצריך להניע את הגלגל השלישי אבל רק לרשום שזה קיים כאופציה).

8.4 בדיקת תנאי אי החלקה של הרובוט בתנועה

 $F \leq F_{\mu}$:תנאי

$$F_{max} = \frac{F_{\mu}}{k} = \frac{N}{Z} * G * \mu_{S} * \cos \frac{\alpha}{k}$$

כוח חיכוך החלקה בין גלגלים וקרקע - Fµ

ר כוח משיכה מרבי של מערכת הנעה - F

N – מספר גלגלים ממונעים

Z-מספר גלגלים הכולל

(k=1.2-1.5)מקדם הבטחה נגד החלקה-K

N = 2 Z = 3 k = 1.2 $\mu_s = 0.5$ $\alpha = 15^{\circ}$

 $F_{\mu} = 0.51 * 1041.26 = 531 N$

$F_{max} = \frac{2}{3} * 1078 * 0.5 * \cos \frac{15}{1.2} = 351 N$ $351 \le 531$

8.5 קביעת מידות כלליות (המרחק בין הגלגלים כתנאי יציבות הרובוט)

$$F_C = \frac{mv^2}{R} = \frac{110*2.5^2}{0.5} = 1375N$$

תנאי יציבות הרובוט בסיבוב:

$$\Sigma Mo(G) > \Sigma Mo(Fc)$$

$$\sum M_o(Fc) = -Fc * 0.11 * cos15 - Fc * 0.5 * sin15 = -324Nm$$

$$\frac{\sum M_o(G)}{\sum M_o(Fc)} \ge S$$

$$\sum M_o(G) = G * 0.5 * cos15 - G * 0.11 * sin15 = 490 Nm$$

$$\frac{324}{489.94} = 1.5 \ge 1.2$$

$$S = 1.2$$
$$A = 1 m$$

9. תכן מערכת ההנעה של הרובוט

9.1 חישוב ההספקים הנדרשים של מערכת ההנעה

9.1.1 הספק כולל הנדרש של מנועים לתנועה במישור

$$F = 194 N$$

$$v = 6\frac{2}{3} \frac{m}{s}$$

$$\eta = 0.7$$

$$P = F * \frac{V}{n} = 194 * \frac{6\frac{2}{3}}{0.7} = 1850 W$$

9.1.2 הספק כולל הנדרש של מנועים לתנועה בעלייה

$$P_{max} = F_{max} * V_1 / \eta$$

$$F_{max} = 528 N$$

$$F_{max} = 528 N$$

$$v_1 = 4.5 \; \frac{m}{s}$$

$$P_{max} = 528.3 * \frac{4.5}{0.7} = 3396 W$$

η - נצילות של מערכת הנעה

F- כוח משיכה הכולל של מערכת הנעה

- V1, V – מהירות תנועה של הרובוט במישור ובעלייה

9.2 חישוב מומנטים הנדרשים של מערכת הנעה

9.2.1 מומנט סיבוב הנדרש של מנוע אחד לתנועה במישור

$$M_{to} = F * \frac{R}{N}$$

$$F = 194 N$$

$$N = 2$$

$$R = 0.11 \, m$$

$$M_{to} = 194.11 * \frac{0.11}{2} = 11 [Nm]$$

9.2.2 מומנט סיבוב הנדרש של מנוע אחד לתנועה בעלייה

$$Mt_{max} = F_{max} * R / N [Nm]$$

רדיוס גלגל מניע – R

 $R = 0.13 \ m$

F- כוח משיכה הכולל של מערכת הנעה

$$F_{max} = 528.3$$

$$N = 2$$

$$n_w = 60 * \frac{V}{\pi * D} = 60 * \frac{6_3^2}{\pi * 0.26} = 490RPM$$

$$Mtmax = 528.3 * 0.13 / 2 = 35 [Nm]$$

מכיוון שבחרנו לעשות את הרובוט עם 2 מנועים אז הצריכה שלנו מההספק ומהמומנט היא חצי מהתוצאות שהתקבלו (העומס מתחלק).

10. בחירה מנועים מקטלוגים של היצרנים

10.1 תנאי בחירה

$$n_{catalog} = 245$$

$$12NM = Mt_{catalog} > Mt_0 = \frac{11}{2} = 5.5NM$$

10.2 בדיקה

$$Mtmax_{catalog} > Mt_{max} = \frac{35}{2} = 17.5$$

89JC Series :לפי הנתונים נבחר מנוע

89JC Series

Gear type: Hybrid Gear Manual Override: No Dynamic braking: Yes Holding brake: Brake Motor connection: Connector

89 series Type	Voltage (VDC)	Noload speed (r/min)	Rated torque (N.m)	Rated speed (r/min)	Noload current (≤A)	Brake voltage (VDC)	Ratio	Braking torque (N.m)	Clutch Type
90ZY24-550-89JC02	24	236	12	222	22.5	12	20:1	3	Brake

11. בחירה ראשונית של מצבר / מיכל דלק

(Amh) חישוב קיבולת Q הנדרשת של המצבר 11.1

$$Q = Q_{Motor} = \left(\frac{P_m}{U}\right) \cdot Lh[Amh]$$

אנחנו הולכים לעשות 3 מנועים סה"כ שמהם 2 יהיו זהים לטובת הגלגלים ו1 לנשק.

ביגלל זה נשתמש ב2 מצברים שאחד יהיה לטובת הגלגלים ואחד לטובת הנשק.

$$Q_{wheel} = \left(\frac{P_m}{U}\right) \cdot Lh = \left(\frac{875}{24}\right) \cdot 2 = 73[Amh]$$

-QMotor [Amh] קיבולת מצבר הנדרשת למערכת

-U [Volt] מתח העבודה

שעות פעולה הנדרשים – Lh [hours]

רספק מנוע משוקלל בעומס (מישור/עלייה) יחסי לזמן פעולה -Pm [Watt]

כוח משיכה משוקלל (מישור/עלייה) יחסי לזמן פעולה – Fm [N]

שהירות נסיעה ממוצעת – Vm [m/s]

η- נצילות מערכת הנעה (הערכה)

$$P_m = F_m * \frac{V_m}{\eta} = 194 * \frac{4}{0.75} = 875W$$

11.2 בחירת מצבר מקטלוג

מצבר Trojan פריקה עמוקה ג'ל 77 אמפר כולל התקנה

שם מוצר	Gel-24 TROJAN
מק"ט שנפ	628
קיבול אמפר ל- 20 שעות	77
מתח וולט	12
אורך (מ"מ)	276
רוחב (מ"מ)	171
גובה (מ"מ)	236
חודשי אחריות	12
מצבר אטום ג'ל	Cl

12. בחירת חומרים

12.1 דרישות החומר

12.1.1 שלדה

השלדה צריכה להיות חזקה, אך קלה. צריך שכל חלקי הרובוט יישארו מחוברים יחדיו בקרב ולא יתפרקו. השלדה ברובוט שלנו צריכה "להגן" על מרכיביו הקריטיים של הרובוט. השלדה צריכה להיות קלה להרכבה.

12.1.2 כיסוי

חומר הכיסוי של הרובוט, בעצם ה"מכסה" של הרובוט, צריך להיות חומר קל ודק יחסית. בגלל שרובוט הקרב נלחם ברובוטים אחרים, הוא צריך להיות עמיד לתנאי הסביבה, זה אומר עמיד לנשקי רובוט האויב, זה למה לא נוכל להשתמש בפלסטיק כחומר כיסוי והחומר לא יכול להיות דק מידי. רובוטי האויב יכולים לבוא עם מגוון רחב של נשקים, נשקים אלו יכולים לחורר, לשבור, לחתוך ולגמרי לפרק את כיסוי הרובוט. אם כיסוי הרובוט יפורק, מרכיבי הרובוט יהיו חשופים לפגיעה והריסה.

12.1.3 גל

הגל צריך להיות חזק, עמיד בחוזק להתעייפות. משקלו יחסית זניח לשאר מרכיבי הרובוט. מודל האלסטיות של הרובוט צריך להיות גבוה, אסור שהגל יהיה אלסטי/ גמיש, ולכן ניקח פלדה עם אחוז פחמן בינוני שניתן לחסם אותה או פלדת מסג משולבת עם כרום/ניקל, מה שגורם לה להיות חזקה יותר.

12.1.4 נשק

בחרנו "ספינר" כנשק. הספינר ממוקם בקדמת הרובוט. הוא נראה כמו מסור חשמלי, הפרופלור יסתובב מהר, וכשהרובוט יתקרב לאויב, הפרופלור יפגע בו ויעשה לו נזק לשלדה/ כיסוי/ גלגלים. הנשק צריך להיות מחומר חזק, לפגיעה מקסימלית באויב, לא כבד מידי, לא מצריך ריתוך.

12.2 חלופות חומרים

12.2.1 שלדה

SAE 4130 פלדה כרום-מוליבדן

- בעלת חוזק גבוה ועמידה בשחיקה
- משמשת לגלים, צירים, פינים וחלקים בשחיקה -
 - אפשרות לריתוך -

SAE 52100 פלדה

- פלדת סגסוגת כרום.
- בעלת כושר חיסום טוב. בעלת חוזק גבוה ועמידה בשחיקה
 - משמשת למסבים, צירים וחלקים שעומדים בהתעייפות.

ST52 / 355JR

- פלדה דלת פחמן, משמשת לבניית מסגרות, ריתוכים
 - נמכרת בצורת מוטות עגולים, שטוחים, פלטות
 - בעלת מאמץ מותר 52 ק"ג לממ"ר -

12.2.2 כיסוי

אלומיניום 7074

- מתאים לעיבוד שבבי
 - חוזק גבוה
 - ניתן לכיפוף וערגול -

אלומיניום 1050

- חומר רך ניתן לערגול וכיפוף -
 - חוזק נמוך
 - ניתן לריתוך

פלדה 1518

- מתאימה לריתוך וכיפוף
- בעלת תכונות מכניות משופרות
 - פלדה דלת פחמן

12.2.3 גל

SAE 52100 פלדה

- פלדת סגסוגת כרום. בעלת כושר חיסום טוב.
 - בעלת חוזק גבוה ועמידה בשחיקה
- משמשת למסבים, צירים וחלקים שעומדים בהתעייפות.

SAE 1040 פלדה

- חוזק גבוה
- מודל האלסטיות Gpa 200

SAE 4130 פלדה

- חוזק גבוה
- Gpa 200 מודל האלסטיות -
 - עמידות טובה לשחיקה

12.2.4 נשק

SAE D2 פלדת כלים

- יכולה להגיע לחוזק גבוה -
- עמידות גבוהה בפני שחיקה

1045 SAE

- חוזק בינוני
- ניתנת לטיפול תרמי

אלומיניום 2030

- חוזק מכני גבוה
- חוזק להתעייפות גבוה

12.3 בחירת החומרים

שלדה:

ST52 / 355JR	SAE 52100	4130 SAE	משקל	קריטריון	
5	3	4	0.3	חוזק	1
3	3	3	0.3	משקל	2
5	5	5	0.3	עמידות לשחיקה	3
5	5	5	0.1	ניתנת לריתוך	4
4.4	3.8	4.1	1	סה"כ	

ניתן לראות כי הפלדה השלישית היא עם הנתונים הטובים ביותר. חזקה, ניתנת לריתוך ועמידה לשחיקה.

כיסוי:

פלדה 1518	אלומיניום 1050	אלומיניום 7074	משקל	קריטריון	
5	2	5	0.2	חוזק	1
3	5	5	0.3	משקל	2
5	3	5	0.4	עמידות לתנאי סביבה	3
5	5	0	0.1	ניתנת לריתוך	4
4.4	3.6	4.5	1	סה"כ	

ניתן לראות כי לכיסוי, החומר המתאים ביותר הוא אלומיניום 7074, הדבר היחיד שהחומר לא מתאים בו, הוא זה שלא ניתן לרתכו.

:גל

	קריטריון	משקל	SAE 52100	4130 SAE Annealed	1040 SAE
1	חוזק	0.3	4	5	5
2	משקל	0.1	3	3	3
3	עמידות לתנאי סביבה	0.3	5	5	5
4	מודל אלסטיות	0.3	5	5	5
	סה"כ	1	4.5	4.8	4.8

אנו יכולים לראות כי יצאו לנו שתי פלדות שמתאימות לייצור הגל. אנו נבחר ב4130 SAE כי ניתן לעשות טיפול בחום/קור.

נשק:

אלומיניום 2030	D2 SAE	1045SAE	משקל	קריטריון	
5	5	3	0.3	חוזק	1
5	5	5	0.1	משקל	2
5	5	5	0.3	עמידות לתנאי סביבה	3
3	4	5	0.3	מודל אלסטיות	4
4.4	4.7	4.4	1	סה"כ	

מבין כל התכונות יצא לנו כי פלדת כלים 2D הכי מתאימה.

-תכנון מפורט: CDR

- א. קביעת צורה ומידות חלקי הבסיס הרובוט ,בדיקת חלקים לחוזק לעומס סטטי/התעייפות.
- ב. אופטימיזציה של חלקי בסיס הרובוט לפי מסה מזערית, באמצעות אנליזה.
 - ג. בחירת חלקים תקניים.
 - ד. חישובי חיבורים קבועים.
 - ה. שרטוט הרכבה סופי.
 - . שרטוטי הייצור של חלקי הבסיס.
 - ז. הגדרת דרישות למערכת בקרה.

13. תכן גל של גלגל לחוזק

נתונים:

- חומר החלק –4130 SAE.
- $F_t = 1375N$ משיכה $F_r = rac{mg}{N} = 110 * rac{9.8}{3} = 359N$ כוחות על הגלגל: תגובה מהקרקע
 - $F = \sqrt{(F_r^2 + F_t^2)} = 1421N$
 - R = 0.13[m] רדיוס גלגל
 - N- כמות גלגלים כללית
 - מקדם בטיחות נדרש 2.5
 - מהירות סיבוב של הגלגל 222 RPM
 - אורך חיים של בסיס הרובוט 510 שעות עבודה

(בערך שעתיים בשבוע למשך כ5 שנים מכיוון שזהו רובוט קרב שנתון למאמצים משתנים (ולא תמיד צפויים) אז כנראה שאורך חייו של הגל יהיה אפילו קצת פחות)

13.1 קביעת הצורה הגאומטרית של הגל

13.2 חישוב כוחות תגובה ובניית דיאגראמות כוחות ומומנטים

$$M_t = F_t * R = 1375 * 0.13 = 178.75[Nm]$$

 $M_b = F * 0.0645 = 1421 * 0.0645 = 91.65[Nm]$

$$k_{fb} = 2.1$$

$$k_{fs} = 2$$

$$Me = \sqrt{(k_{fb} * M_b)^2 + 0.75 * (k_{fs} * M_t)^2}$$

$$Me = \sqrt{(2.1 * 91.65)^2 + 0.75 * (2 * 178.75)^2} = 364.55[Nm]$$

$$\sigma_{yt}(Anealled) = 460 \, Mpa$$
 $\sigma_{ut} = 560 \, Mpa$

$$[\sigma] = \frac{\sigma_{yt}}{S} = \frac{460}{3.5} = 131.42$$

$$d \ge \sqrt[3]{\frac{32 * M_e * 10^3}{\pi * [\sigma]}} = 30.45 \ mm \approx 30 \ mm$$

בחרנו 30 מ"מ באישור של מיכאל לומרות שלפי הנוסחה היינו צריכים לבחור מעל 30.45 מ"מ.

13.3 צורה גאומטרית של הגל בהתאם לחשוב מקורב

14. בדיקת גל להתעייפות(שיטה מדויקת)

Se קביעת חוזק גבולי להתעייפות החלק

$$S_e = C_{load} * C_{size} * C_{surf} * C_{temp} * C_{realiab}(B * S_{ut}) = 167.86[MPA]$$

$$C_{load} = 1$$

$$C_{size} = 1.2d^{-0.1} = 1.2 * 30^{-0.1} = 0.854$$

$$C_{surf} \approx 0.78$$

 $C_{temp=1}$

$$C_{realiab} = 0.9$$

$$S_{ut} = 560 Mpa$$

$$B = 0.5$$

$$S_e = 1 * 0.854 * 0.78 * 1 * 0.9(0.5 * 560) = 167.86[MPA]$$

 $: \mathcal{C}_{surf}$ ככה מצאנו את

14.2 חישוב מאמצים ומאמצים משולבים

מתיחה:

$$\sigma_t = k_{f(t)} * \frac{F_a}{A} = 0$$

כפיפה:

$$\sigma_a = k_{f(b)} * M_b * \frac{y}{I_x} = K_{f(b)} * \frac{M_b}{Z_b} = 1.574 * \frac{91.65 * 1000}{2650} = 54.44[Mpa]$$

פיתול:

$$\tau_{m(tr)} = K_{f(tr)} * M_t * \frac{r}{I_0} = K_{f(tr)} * \frac{M_t}{Z_0} = 1.4 * \frac{178.75 * 1000}{5301} = 47.21[Mpa]$$

מאמצים משולבים:

$$\sigma_m = (\sigma^2 + 3\tau^2)^{0.5} = (54.44^2 + 3*47.21^2)^{0.5} = 98.23[Mpa]$$

$$\frac{D}{d} = \frac{42}{30} = 1.4$$
 $\frac{r}{d} = \frac{3}{30} = 0.1$ $M_t = 178.75[Nm]$ $M_b = 91.65[Nm]$

$$K_{f(tr)} = 1 + q(K_t - 1) = K_t = 1.4$$

$$K_{f(b)} = 1 + q(K_t - 1) = 1 + 0.82(1.7 - 1) = 1.574$$

$$Z_b = \frac{\pi * d^3}{32} = \frac{\pi * 30^3}{32} = 2650[mm^3]$$
 $Z_0 = \frac{\pi * d^3}{16} = \frac{\pi * 30^3}{16} = 5301[mm^3]$

14.3 קביעת מקדם בטיחות נדרש

Knowledge of Loads\Stress	Knowledge of Environments	Knowledge of Material	Factor of Safety	
ידע על עומס מאמצים\	ידע על תנאי הסביבה	ידע על תכונות החומר	מקדם בטיחות	
מוגדרים במדויק	תנאים מוגדרים במדויק	מוגדר מדיוק	1.25 ÷1.5	1
מוגדרים בדיוק בינוני	תנאים מוגדרים בדיוק בינוני	מוגדר מדיוק	1.5 ÷ 2.0	2

נבחר FOS]=1.5

14.3.1 חישוב מקדם בטיחות להתעייפות

$$n_f = \sqrt{\frac{1}{(\frac{\sigma_a}{S_e})^2 + (\frac{\sigma_m}{S_{yt}})^2}} = \sqrt{\frac{1}{(\frac{54.44}{167.86})^2 + (\frac{98.23}{460})^2}} = 2.575 > [FOS] = 1.5$$

Notch Sensitivity Factors (Torsion Example)

Notch Sensitivity Factors (Bending Example)

מסקנה: הגל עומד בבדיקה לפי שיטת האליפסה

15. אנליזת גל

15.1 בדיקת הגל לעומס סטטי

 $\sigma_{max}=267~MPa$:המאמץ המרבי המתקבל באנליזת עומס סטטי $\sigma_{max}=\frac{\sigma_{yt}}{s}=\frac{460}{1.5}=306.66~MPa$:המאמץ המרבי המותר שהתקבל בחישוב $\sigma_{max}<[\sigma]$

מסקנה: הגל עומד בחוזק לעומס סטטי.

15.2 בדיקת הגל לאנליזה להתעייפות

מקדם הבטיחות לפי האנליזה: 0.277

 $n_f = 2.575\,$ מקדם הבטיחות המחושב:

0.277 < 2.575

מסקנה: הגל לא עומד באנליזה להתעייפות אנחנו נגדיל את הרדיוס ובמידת הצורך נשנה את החומר

16. בחירת מסבים

$$C = P * L^{\frac{1}{a}} * f_w * f_t < C_{catalog}$$

-C כושר דינמי הנדרש, של המסב

P- עומס על המסב

AIL REV -אורך החיים של המסב ב- L

a=3 מקדם צורת גוף הגלילה a=3 לכדור

-fw מקדם עומס דינמי

-ft מקדם עומס סטטי

קטלוג- כושר דינמי לפי קטלוג היצרן C

מקדם העומס הדינמי

מקדם העומס הדינמי "f	דוגמות שימוש	תנאי העבודה
1+1.2	מנועים חשמליים, מכונות	עבודה רצופה, ללא
	עיבוד, מאווררים ומזגנים	תנודות וחבטות
1.2 + 1.5	ממסרים גלגלי שיניים, מדחסים, מתקני הרמה,	עבודה עם תנודות בינוניות
3.0 + 1.5	מכונות ערגול, ממסרות רצועה, מנועי שריפה פנימית	עבודה עם תנודות וחבטות

נבחר 1.1=fw

מקדם הטמפרטורה בקדם

300	250	200	<150	טמפרטורת העבודה
				של המסב [℃]
1.7	1.3	1.1	1.0	$\mathbf{f_{T}}$ מקדם הטמפרטורה

1=ft נבחר

מסב העמוס בכוח רדיאלי:

$$P = F_r = 359 N$$

אורך החיים L: L- אורך החיים בשעות עבודה n- מהירות סיבות הגל

$$L_h = 510 \ hr$$

$$n = 490 \ rpm$$

$$L = L_h * n * 60 * 10^{-6} = 510 * 490 * 60 * 10^{-6} = 14.994$$

$$C = 359 * 14.994^{\frac{1}{3}} * 1.1 * 1 = 973.77$$

	Oper	туре		Shiel	ded Type ZZ	Seal	Contact ed Type VV		Sealed Ty DD - DDI	pe	With Sna Ring Groo N			Snap	Ring R
Bou	ndary [(m	Dimen m)	sions	(Basic Load F N)	- M	gf)	Factor	Limiting	Speeds	(min ⁻¹)	Bea		ng Nu	mbers
d	D	В	r min.	$C_{\rm r}$	C_{0r}	$C_{\rm r}$	C_{0r}	f_0	Open Z · ZZ V · VV	DU	Open Z	Open	Shielde	d S	ealed
25	37 42 47	7 9 8	0.3 0.3 0.3	4 500 7 050 8 850	3 150 4 550 5 600	455 715 905	320 460 570	16.1 15.4 15.1	18 000 16 000 15 000	10 000 10 000	22 000 19 000 18 000	6805 6905 16005	ZZ	VV VV	DD DDU
	47 52 62	12 15 17	0.6 1 1.1	10 100 14 000 20 600	5 850 7 850 11 200	1 030 1 430 2 100	595 800 1 150	14.5 13.9 13.2	15 000 13 000 11 000	9 500 9 000 8 000	18 000 15 000 13 000	6005 6205 6305	ZZ ZZ ZZ	VV VV	DDU DDU DDU
28	52 58 68	12 16 18	0.6 1 1.1	12 500 16 600 26 700	7 400 9 500 14 000	1 270 1 700 2 730	755 970 1 430	14.5 13.9 12.4	14 000 12 000 10 000	8 500 8 000 7 500	16 000 14 000 13 000	60/28 62/28 63/28	ZZ ZZ ZZ	VV VV	DDU DDU DDU
30	42 47 55	7 9	0.3 0.3 0.3	4 700 7 250 11 200	3 650 5 000 7 350	740 1 150	370 510 750	16.4 15.8 15.2	15 000 14 000 13 000	9 000 8 500	18 000 17 000 15 000	6806 6906 16006	77	VV -	DDU
	55 62 72	13 16 19	1 1 1.1	13 200 19 500 26 700	8 300 11 300 15 000	1 350 1 980 2 720	845 1 150 1 530	14.7 13.8 13.3	13 000 11 000 9 500	8 000 7 500 6 700	15 000 13 000 12 000	6006 6206 6306	ZZ	VV	DDU DDU DDU
32	58 65 75	13 17 20	1 1 1.1	15 100 20 700 29 900	9 150 11 600 17 000	1 530 2 120 3 050	935 1 190 1 730	14.5 13.6 13.2	12 000 10 000 9 000	7 500 7 100 6 300	14 000 12 000 11 000	60/32 62/32 63/32	ZZ ZZ ZZ	VV	DDU DDU DDU
35	47 55 62	7 10 9	0.3 0.6 0.3	4 900 10 600 11 700	4 100 7 250 8 200	500 1 080 1 190	420 740 835	16.7 15.5 15.6	14 000 12 000 11 000	7 500 7 500	16 000 15 000 13 000	6807 6907 16007	ZZ	VV -	DDU
	62 72 80	14 17 21	1 1.1 1.5	16 000 25 700 33 500	10 300 15 300 19 200	1 630 2 620 3 400	1 050 1 560 1 960	14.8 13.8 13.2	11 000 9 500 8 500	6 700 6 300 6 000	13 000 11 000 10 000	6007 6207 6307	ZZ ZZ ZZ	VV	DDU DDU DDU
40	52 62 68	7 12 9	0.3 0.6 0.3	6 350 13 700 12 600	5 550 10 000 9 650	1 390 1 290	565 1 020 985	17.0 15.7 16.0	12 000 11 000 10 000	6 700 6 300	14 000 13 000 12 000	6808 6908 16008	ZZ	VV VV	DDU
	68 80 90	15 18 23	1 1.1 1.5	16 800 29 100 40 500	11 500 17 900 24 000	1 710 2 970 4 150	1 180 1 820 2 450	15.3 14.0 13.2	10 000 8 500 7 500	6 000 5 600 5 300	12 000 10 000 9 000	6008 6208 6308	ZZ ZZ ZZ	VV	DDU DDU DDU
45	58 68 75	7 12 10	0.3 0.6 0.6	6 600 14 100 14 900	6 150 10 900 11 400	670 1 440 1 520	625 1 110 1 160	17.2 15.9 15.9	11 000 9 500 9 000	6 000 5 600	13 000 12 000 11 000	6809 6909 16009	ZZ	VV VV	DD DDU
	75 85 100	16 19 25	1 1.1 1.5	20 900 31 500 53 000	15 200 20 400 32 000	2 140 3 200 5 400	1 550 2 080 3 250	15.3 14.4 13.1	9 000 7 500 6 700	5 300 5 300 4 800	11 000 9 000 8 000	6009 6209 6309	ZZ ZZ ZZ	VV	DDU DDU DDU

937.77 < 4700

17. בחירה וחישוב שגמים

Keyway and Key Size Dimension Reference

Metric Dimensions:

Keyway: W x h

Key: W x T

Metric Standard Parallel Keyway and Key Sizes								
Shaft Di (m			way im)	Key (mm)*				
From	То	Width (W)	Depth (h)	Width (W)	Depth (T)			
6	8	2	1.0	2	2			
9	10	3	1.4	3	3			
11	12	4	1.8	4	4			
13	17	5	2.3	5	5			
18	22	6	2.8	6	6			
23	30	8	3.3	8	7			
31	38	10	3.3	10	8			
39	44	12	3.3	12	8			
45	50	14	3.8	14	9			
51	58	16	4.3	16	10			
59	65	18	4.4	18	11			
66	75	20	4.9	20	12			
76	86	22	5.4	22	14			
86	96	25	5.4	25	14			
96	110	28	6.4	28	16			
111	130	32	7.4	32	18			
131	150	36	8.4	36	20			
151	170	40	9.4	40	22			
171	200	45	10.4	45	25			
201	230	50	11.4	50	28			
231	260	56	12.4	56	32			
261	290	63	12.4	63	32			
291	330	70	14.4	70	36			
331	380	80	15.4	80	40			
381	440	90	17.4	90	45			
441	500	100	19.5	100	50			

לפי קוטר הגל בחרנו את ממדי השגמים שלנו. יהיו לנו שני שגמים אחד שיחבר את המנוע לגל והשני יחבר את הגלגל לגל.

17.1 בדיקת השגם לגזירה ומעיכה

17.1.1 בדיקת השגם לגזירה

$$\tau_S = \frac{F_S}{A_S} = \frac{2 * M_t}{d_1 * b * l_1} \le [\tau_S]$$

מומנט סיבוב -Mt

מאמץ גזירה קיים -Ts

מאמץ גזירה מותר [Ts]

 $M_t = 178.75[Nm]$

 $d_1 = 30 mm$

:גלגל

 $l_1 = 40 mm$

b = 8 mm

 $[\tau_s] = 0.6$

$$\tau_s = \frac{2 * 178.75}{30 * 8 * 40} = 0.037 \le [\tau_s]$$

:מנוע

 $l_1 = 88 \, mm$

b = 8 mm

 $[\tau_s] = 0.6$

$$\tau_s = \frac{2 * 178.75}{30 * 8 * 88} = 0.017 \le [\tau_s]$$

17.1.2 בדיקת השגם למעיכה

$$\sigma_{lc} = \frac{F_{lc}}{A_{lc}} = \frac{4*M_t}{d_1*h*l_1} \leq [\sigma_{lc}]$$

h = 7 mm

$$[\sigma_{lc}] = 0.3$$

:גלגל

$$\sigma_{lc} = \frac{4*178.75}{30*7*40} = 0.085 \le [\sigma_{lc}]$$

:מנוע

$$\sigma_{lc} = \frac{4 * 178.75}{30 * 7 * 88} = 0.038 \le [\sigma_{lc}]$$

ניתן לראות כי השגמים עומדים בכל התנאים.

18. בחירת מצמד(קבוע)

Oldham Coupling, MJC Series (MJC-50-10X20)

Configured Specifications

Туре	Oldham Type	Allowable Misalignment	Angular Misalignment / Eccentricity
Application	Standard / Servo Motor / Stepping Motor / Encoder	Allowable Torque Range(N•m)	20.01~50.00
For Shaft Size D1(mm)	10	For Shaft Size D2(mm)	20
Outer Dia. A(Ø)	50	Overall Length W(mm)	59.7
Feature	High accuracy / High durability / Backlash 0 / Vibration Absorption	Body Material	[Aluminum] Aluminum Alloy
Allowable Torque(N•m)	30	Allowable Angular Misalignment(de g)	1

19. מציאת עובי ריתוך השלדה

$$a \geq \frac{\rho_e}{[\tau]}$$

$$[\sigma] = \frac{\sigma_{yt}}{S} = \frac{415}{3.5} = 118.57$$

$$[\tau] = 0.65[\sigma] = 77.07$$

-ρε המאמץ הקווי השקול בתפר

המאמץ השקול בתפר - $T_{\rm e}$

רמאמץ המותר בתפר [T]

מאמץ קווי למתיחה:

$$\rho_t = \frac{F}{\sum l}$$
$$F = 0$$

:מאמץ קווי לגזירה

$$\rho_s = \frac{F}{\sum l}$$

$$F = 359 N$$

$$l = 30 * 4 = 120mm$$

$$\rho_s = \frac{359}{120} = 2.99 \frac{N}{mm}$$

$$\rho_b = \frac{M_b}{Z_b}$$

$$M_b = 91654.5[Nmm]$$

$$Z_b = 30 * 30 + \frac{30^2}{3} = 1200 \text{ mm}^2$$
$$\rho_b = \frac{91654.5}{1200} = 76.37 \frac{N}{mm}$$

$$\rho_{tr} = \frac{M_t * r}{I_0}$$

$$M_t = 178750[Nmm]$$

$$r = 15\sqrt{2} mm$$

$$\rho_{tr} = \frac{178750 * 15\sqrt{2}}{36000} = 105.33 \; \frac{N}{mm}$$

המאמץ הקווי השקול בתפר:

$$\overrightarrow{\rho_e} = \overrightarrow{\rho_t} + \overrightarrow{\rho_b} + \overrightarrow{\rho_s} + \overrightarrow{\rho_{tr}}$$

<i>a</i> ;	מומנט התנגדות קווי Zb	מומנט התמד קיטבי קווי 10	מרכז כובד
ε <u>β</u> ×	$bh + \frac{h^2}{3}$	$\frac{(b+h)^3}{6}$	x _C =0,y _C =0

$$\sum \rho_x = 105.33\cos 45 = 74.48 \frac{N}{mm}$$

$$\sum \rho_y = 105.33\sin 45 - 2.99 = 71.49 \frac{N}{mm}$$

$$\sum \rho_z = 76.37 \frac{N}{mm}$$

$$\sum \rho_e = \sqrt{\rho_x^2 + \rho_y^2 + \rho_z^2} = 128.41 \frac{N}{mm}$$

$$a \ge \frac{128.41}{82.42} = 1.55 mm = 2mm$$

20. חישוב ברגים

נסתכל שוב בתרשים שעשינו בעבר, ומכאן נחשב את הכוחות הפועלים על אחד המסבים בשביל חישוב הברגים.

נסתכל על מסב B. אם נסתכל מצד ימין הכוחות המשפיעים עליו הם Ft,Fr ומדובר במקרה:

נבחר קבוצת חוזק:

כלה 4.10 כונות החוזק	של הפלד	יות המשו	משות לברגי הידוק					
חוזק גבולי זזערי - אום [MPa]	דרגת חוזק אום	סימן הראש	חומר בורג	גבול כניעה ס _y [MPa]	חוזק גבולי מתיחה - σ _в [MPa]	גבול אלסטיות ס _e MPA	תחום השימוש	קבוצת חוזק
400	4	4.5	פלדה דלת־פחמן או פלדה בינונית	240	400	225	M5-M36	4.6
400	4	48	B 88.4 18	340	420	310	M1.6-M16	4.8
500	5	5.8	1 2	420	530	380	M5-M24	_ 5.8
800	8	819	פלדת פחמן בינונית*	660	830	600	M1.6-M36	8.8
900	9	9.8	L	720	900	650	M1.6-M16	9.8
1000	10	10.9		940	1040	830	M5-M36	10.9
1200	12	12.9	פלדת מסג*	1100	1220	970	M1.6-M36	12.9

נתונים:

8		קבוצת חוזק
660 Mpa	גבול כניעה	σ_y
1.5	מקדם בטיחות	S
0.2	מקדם חיכוך בין הפלטות	μ_0
1.4	מקדם עומס	f_k
2	מספר הברגים	i
2	מספר משטחי מגע	n
2	מספר הברגים בשורה	i_i

עבור מקרה 5 – נציב את הנתונים בנוסחא:

$$Q_{max} = \frac{M * a_{max}}{\sum (a_i^2 * i_i)} = \frac{27.4635 * 0.0035}{0.0035 * 2} = 13.73[N]$$

$$M = F_r * L = 359 * 0.0765 = 27.4635[Nm]$$

עבור מקרה 4:

$$Q_{tot} = Q_F + Q_M = 107593$$

$$Q_F = \frac{f_k * F_t}{i * \mu_0 * n} = \frac{1.4 * 1375}{2 * 0.2 * 2} = 2406.25$$

$$Q_{M} = \frac{f_{k} * M * R_{max}}{n * \mu_{0} * \sum R_{i}^{2}} = \frac{1.4 * 105.1875 * 0.0035}{2 * 0.2 * 0.0035^{2}} = 105187$$

$$M = F_t * L = 1375 * 0.0765 = 105.1875[Nm]$$

עבור 2 המקרים יחד נקבל Q משותף:

$$Q_{4+5} = Q_{max} + Q_{tot} = 13.73 + 107593 = 107607.23$$

$$[\sigma_t] = \frac{\sigma_y}{S} = 440 \ [Mpa]$$

$$A \ge 1.25 * Q/[\sigma_t] = 305.7$$

$$d_1 \ge \sqrt{\frac{4A}{\pi}} \approx 20 \ [mm]$$

קוטר הבורג הנדרש:

$$d_1 = 20 [mm]$$

תקן ISO לתבריג מטרי

מידות תבריגי הידוק מטריים חיצוניים לפי ISO (ת"י 665)

תבריגים רגילים					תבריגים עדינים			
קוטר	פסיעה	שטח חתד	קוטר	קוטר	פסיעה	שטח חתך	קוטר	קוטר
חיצוני		מתיחה	פנימי	אפקטיבי		מתיחה	פנימי	אפקטיבי
d [mm]	p [mm]	A [mm²]	d ₁ [mm]	d ₂ [mm]	p [mm]	A [mm²]	d ₁ [mm]	d ₂ [mm]
2	0.40	1.79	1.509	1.740				
2.5	0.45	2.98	1.948	2.200			* * *	
3	0.5	4.47	2.387	2.675		1		
3.5	0.6	6.00	2.764	3.110				
4	0.7	7.75	3.141	3.545			14	
5	0.8	12.7	4.079	4.420				
6	1	17.9	4.773	5.350				
8	1.25	32.8	6.466	7.188	1	36.0	6.773	7.35
10	1.5	52.3	8.160	9.026	1.25	56.3	8.466	9.18
12	1.75	76.3	9.853	10.863	1.25	86.0	10.466	10.64
14	2	104	11.546	12.701	1.5	116	12.160	13.02
16	2	144	13.546	14.701	1.5	157	14.160	15.02
20	2.5	225	16.933	18.376	. 1.5	259	18.760	19.02
24	3	324	20.319	22.051	2	365	21.546	22.70
30	3.5	519	25.706	27.727	2	596	27.546	28.70
36	4	759	31.092	33.402	2	884	33.546	34.70
42	4	1050	36.779	39.077	2	1230	39.546	40.70
48	5	1380	41.866	44.752	2	1630	45.456	46.70
56	5.5	1910	49.252	52.428	2	2250	53.516	54.76
64	6	2520	56.639	60.639	2	2980	61.546	62.70

מסקנה: הבורג עומד בדרישות

SolidWorks Simulation - אנליזת סוליד ממוחשבת. 21. אנליזת שילדה

שילדה מרותכת עשויה מפרופילים ריבועיים של 2.6X30X30 מפלדת JR355. עמוסה בכוחות פרוסים,

$$\begin{split} m_{Battery} &= 31~kg~;~m_{weap_{eng}} = 19kg;~m_{wheel_motor} = 3~kg;~m_{weap} = 15.2kg \\ F_1 &= \frac{(m_{gal} + m_{barring}) * g + F_{wheel_{bearing}}}{2} = 720 \\ F_2 &= \frac{g\left(m_{weap_{eng}} + m_{Battery}\right)}{2} = 245N \\ F_3 &= \frac{g * m_{wheel_{motor}}}{2} = 14.5N \quad ; F_4 = g * m_{weap} = 139.7N \end{split}$$

לפי אנליזת השילדה ניתן לראות שהמאמץ המקסימלי הוא <u>בחיבור של הקורות, והוא 39.7 מגה</u> פסקל, מכיוון שהמאמץ נמוך מהצפוי אנו רואים שהחומר לא מנוצל עד הסוף ואפשר לשנות לחומר יותר זול או לשנות מימדים ע"י אופטימיזציה שנבצע בהמשך.

לפי אנליזת השקיעה אנו רואים שיש לנו כמה שינוי לעשות בהמשך כגון, להוסיף תמיכות או לשנות את עובי הקורות, חשוב לציין שיש לנו מצמד שמתקן שגיאות זוויתיות אבל עדיים נירצה להקטין מאט את השקיעה.

22. אופטימיזציה

קל לראות שהקורה לא מנוצלת כמו שצריך לכן נבצע אופטימיזציה.

Description OPTIMIZATION

Simulation of Low lvl profile optimization

2020 יוני 2020יום שלישי 12 יוני)Date: Designer: Solidworks Study name: Design Study 1 Analysis type: Design Study

Table of Contents

45 Description

45 Model Information

46 Study Properties

47 Units

47 Design Study Setup

48 Study Results

Error! Bookmark not defined. Conclusion

Model Information

Document Name	Configuration	Document Path	Date Modified
Low IvI profile optimization	Default <as Machined></as 	C:\Users\Dan.Fridland\Downloads\OPTIMIZATION\L ow lvl profile optimization.SLDPRT	Jun 1 18:41:17 2020

Study Properties

Study name Design Study 1

Analysis type Design Study(Optimization)

Design Study Quality High quality (slower)

Result folder SOLIDWORKS

document(C:\Users\Dan.Fridland\Downloads\OPTIMIZATION)

Design Study Setup 22.1

Design Variables

1	Name	Туре	Value	Units
ŀ	h	Range with Step	Min:20 Max:50 Step:10	mm
1	t	Range with Step	Min:1.3 Max:3.1 Step:0.6	mm
k	b	Range with Step	Min:20 Max:50 Step:10	mm

Constraints

Sensor name	Condition	Bounds	Units	Study name
Stress1	is less than	Max:140	N/mm^2 (MPa)	Static 1

Goals

Name	Goal	Properties	Weight	Study name
Mass1	Minimize	Mass	10	-

Units

Unit system:	SI (MKS)
Length/Displacement	mm
Temperature	Kelvin
Angular velocity	Rad/sec
Pressure/Stress	N/m^2

Study Results

57 of 66 scenarios ran successfully.

Component name	Units	Current	Initial	Optimal	Scenario1	Scenario2
h	mm	40	40	30	20	30
t	mm	2.6	2.6	1.3	1.3	1.3
b	mm	40	40	30	20	20
Stress1	N/mm^2 (MPa)	32.613	32.613	93.411	90.162	-
Mass1	g	914.16942	914.16942	475.30597	502.78909	-

Component name	Units	Scenario3	Scenario4	Scenario5	Scenario6	Scenario7
h	mm	40	50	20	30	40
t	mm	1.3	1.3	1.9	1.9	1.9
b	mm	20	20	20	20	20
Stress1	N/mm^2 (MPa)	-	-	52.605	-	-
Mass1	g	-	-	721.71381	-	-

Component name	Units	Scenario8	Scenario9	Scenario10	Scenario11	Scenario12
h	mm	50	20	30	40	50
t	mm	1.9	2.5	2.5	2.5	2.5
b	mm	20	20	20	20	20
Stress1	N/mm^2 (MPa)	-	37.912	-	-	-
Mass1	g	-	932.34635	-	-	-

Component name	Units	Scenario13	Scenario14	Scenario15	Scenario16	Scenario17
h	mm	20	30	40	50	20

t	mm	3.1	3.1	3.1	3.1	1.3
b	mm	20	20	20	20	30
Stress1	N/mm^2 (MPa)	30.273	30.263	30.263	30.263	93.952
Mass1	g	1134.7	1132.3	1132.3	1132.3	476.32536

Component name	Units	Scenario18	Scenario19	Scenario20	Scenario21	Scenario22
h	mm	30	40	50	20	30
t	mm	1.3	1.3	1.3	1.9	1.9
b	mm	30	30	30	30	30
Stress1	N/mm^2 (MPa)	93.411	93.411	93.411	53.567	53.499
Mass1	g	475.30597	475.30597	475.30597	683.87656	682.38669

Component name	Units	Scenario23	Scenario24	Scenario25	Scenario26	Scenario27
h	mm	40	50	20	30	40
t	mm	1.9	1.9	2.5	2.5	2.5
b	mm	30	30	30	30	30
Stress1	N/mm^2 (MPa)	53.499	53.499	33.947	34.379	34.379
Mass1	g	682.38669	682.38669	883.66486	881.70451	881.70451

Component name	Units	Scenario28	Scenario29	Scenario30	Scenario31	Scenario32
h	mm	50	20	30	40	50
t	mm	2.5	3.1	3.1	3.1	3.1
b	mm	30	30	30	30	30
Stress1	N/mm^2 (MPa)	34.379	26.868	27.706	27.706	27.706
Mass1	g	881.70451	1075.7	1073.3	1073.3	1073.3

Component name	Units	Scenario33	Scenario34	Scenario35	Scenario36	Scenario37
h	mm	20	30	40	50	20
t	mm	1.3	1.3	1.3	1.3	1.9
b	mm	40	40	40	40	40
Stress1	N/mm^2 (MPa)	93.125	93.646	93.646	93.646	53.973
Mass1	g	476.32536	475.30597	475.30597	475.30597	683.87656

Component name	Units	Scenario38	Scenario39	Scenario40	Scenario41	Scenario42
h	mm	30	40	50	20	30
t	mm	1.9	1.9	1.9	2.5	2.5
b	mm	40	40	40	40	40
Stress1	N/mm^2 (MPa)	54.085	54.085	54.085	33.957	34.42
Mass1	g	682.38669	682.38669	682.38669	883.66486	881.70451

Component name	Units	Scenario43	Scenario44	Scenario45	Scenario46	Scenario47
h	mm	40	50	20	30	40
t	mm	2.5	2.5	3.1	3.1	3.1
b	mm	40	40	40	40	40
Stress1	N/mm^2 (MPa)	34.42	34.42	27.2	28.255	28.255
Mass1	g	881.70451	881.70451	1075.7	1073.3	1073.3

Component name	Units	Scenario48	Scenario49	Scenario50	Scenario51	Scenario52
h	mm	50	20	30	40	50
t	mm	3.1	1.3	1.3	1.3	1.3
b	mm	40	50	50	50	50
Stress1	N/mm^2 (MPa)	28.255	92.268	92.985	92.985	92.985

	Mass1	g	1073.3	476.32536	475.30597	475.30597	475.30597
--	-------	---	--------	-----------	-----------	-----------	-----------

Component name	Units	Scenario53	Scenario54	Scenario55	Scenario56	Scenario57
h	mm	20	30	40	50	20
t	mm	1.9	1.9	1.9	1.9	2.5
b	mm	50	50	50	50	50
Stress1	N/mm^2 (MPa)	53.671	54.163	54.163	54.163	34.397
Mass1	g	683.87656	682.38669	682.38669	682.38669	883.66486

Component name	Units	Scenario58	Scenario59	Scenario60	Scenario61	Scenario62
h	mm	30	40	50	20	30
t	mm	2.5	2.5	2.5	3.1	3.1
b	mm	50	50	50	50	50
Stress1	N/mm^2 (MPa)	34.43	34.43	34.43	27.487	27.142
Mass1	g	881.70451	881.70451	881.70451	1075.7	1073.3

Component name	Units	Scenario63	Scenario64
h	mm	40	50
t	mm	3.1	3.1
b	mm	50	50
Stress1	N/mm^2 (MPa)	27.142	27.142
Mass1	g	1073.3	1073.3

מסקנה:

אבל 30X30 אבל אחרי האופטימיזציה ניתן לראות כי נשארנו עם אותו גודל פרופיל 30X30 אבל הקטנו את העובי פי 2 וכך גם המשקל.

.23 סיכום ומסקנות:

פיתוחים עתידיים:

- ע"י אופטימיזציה ניתן להקטין את משקל הרובוט באופן משמעותי ולחסוך בעליות ↔ רחלקים.(אולי שינוי לחומר זול יותר עבור השלדה)
 - הוספת האפשרות לשליטה מרחוק במערכות הרובוט.
 - בניית השלדה צורה יעילה יותר, יותר תמיכות להורדת השקיעה של השלדה.
 - מיגון טוב ומערכות הגנה נגד רובוט אחרים. 💠

מסקנות הצוות מהפרויקט:

מטרתנו בפרויקט זה היה לתכנן רובוט קרב אשר יוכל להשתתף בתחרויות, הרובוט אחרים צריך להיות צריך להיות מחומר חזק שיוכל לקבל את ההתקפות השונות מרובוט אחרים ובעל התקפה שתוכל לנצח רובוטים אחרים, מרכז כובד נמוך וממשק ידידותי למשתמש. ייעודו של רובוט זה הכתיב לנו את התנאים ההנדסיים שאותם נאלצנו לפתור בצורה יצירתית ,בזמן תכנונו ניסינו להשתמש בחומרים ורכיבים הנמצאים כיום במדפים, במידה ולא מצאנו משהו תואם נאלצנו להתמודד ו'לייצר' אותו בעצם.

מתחילת התהליך נתקלנו בבעיות רבות שאיתם נאלצנו להתמודד ולפתור משלבי הרעיון עד לתכנון ראשוני ומפורט דרך הכרת נושא האנליזות ובדיקת חומרים בצורה ממוחשבת בתוכנת הSolidWorks בעזרתם הרבה של ד"ר מיכאל פרשימן וגברת ג'ינה פרלשטיין.

בתחילת הפרויקט התחלנו עם סקירת השוק וחיפוש אחר פתרונות רלוונטיים ובדיקה של יתרונם וחסרונם וכך הגדרנו את מטרתנו.

לאחר מכן התקדמנו לתכן הראשוני (PDR) חיפשנו ובדקנו פתרונות טכנולוגיים הקיימים היום לכל מערכת וערכנו השוואה בניהם עד למציאת החלופה האולטימטיבית המתאימה לנו ,לאחר מכן ערכנו סדרה של חישובים כדי לבדוק את עמידתם בעומס בזמן עבודה ומנוחה ,לאחר מכן בחרנו מנוע, מצבר,גיר מקטלוגים של חברות שונות. המשכנו אל התכן המפורט (CDR) שבו תכננו את הגל המניע המחבר בין הגלגלים למנוע תוך בדיקה בצורה ממוחשבת בתוכנת הSolidWorks .

בבדיקה זאת התחשבנו בפרמטרים כגון כוחות ועומסים שונים וכן בהתעייפות החומר , כמו כן בחרנו את המסבים ברגים מצמד ושגמים מקטלוגים קיימים .בנוסף עשינו אנליזת אופטימיזציה על השלדה.

לבסוף לאחר בנית כלל המרכיבים יצרנו שרטוטים הנדסיים מפורטים על כל חלקיו של הרובוט לפי תקן ISO.

נרצה לציין כי התהליך שעשינו במהלך הקורס היה מהנה ,מעניין ,מורכב ומאתגר שכן זהו הפרויקט הראשון הגדול שלנו כסטודנטים ,דבר שעזר לנו לצבור ניסיון וידע רב שנוכל ליישם בתהליך פרויקט הגמר.

נרצה להודות לגב' ג'ינה פרלשטיין ולד"ר מיכאל פרישמן על הליווי ,התמיכה ,העזרה , הסבלנות וההקשבה לאורך הסמסטר.

אין שאלה שנשארה ללא תשובה ועל כך אנחנו מודים לכם.

דן פרידלנד , יוליה נרינסקי הנדסה מכנית ,מכללת אפקה

24. ביבליוגרפיה

:ספרים

רפי יהל, משה קלרטג וגיל ארצי, **מבוא לרובוטיקה**, תשס"ט - 2009

Marco Antonio Meggiolaro, RioBotz Combot Tutorial, March 2009

:אינטרנט

http://robots.eitan.ac.il/index.php?page=BuildingNihug שיטות ניהוג

סוגי מנועים

http://www.abiry.com/%D7%9E%D7%A0%D7%95%D7%A2%D7%99 DC %D7%A2%D7%9D %D 7%9E%D7%91%D7%A8%D7%A9%D7%95%D7%AA -

%D7%9E%D7%A0%D7%95%D7%A2%D7%99 %D7%A4%D7%97%D7%9E%D7%99%D7%9D/

https://www.matsberim.co.il/site/detail/detail/detailDetail.asp?detail_id=5497072 מצברים

https://www.alibaba.com/product-detail/Dc-Motor-24v-Wheelchair-12v- מנוע נבחר
24v_62516976242.html?spm=a2700.7724857.normalList.1.4d8790ee2yOeOm&s=p&bypass=tru
<u>e</u>

חומרים-

https://www.azom.com/article.aspx?ArticleID=6742 4130

S355

https://www.thyssenkrupp-

steel.com/media/content 1/publikationen/precision steel/produktinformationen 1/baustahl/t hyssenkrupp s355jr product information precision steel en.pdf

https://www.astmsteel.com/product/52100-bearing-steel-aisi/ 52100

https://www.substech.com/dokuwiki/doku.php?id=carbon steel sae 1020 1020

https://www.azom.com/article.aspx?ArticleID=6130 1045

D2

 $\underline{\text{https://www.makeitfrom.com/material-properties/SAE-AISI-D2-T30402-Chromium-Cold-}} \ \underline{\text{Work-Steel}}$

https://www.makeitfrom.com/material-properties/2030-T3-Aluminum 2030 אלומיניום

https://www.azom.com/article.aspx?ArticleID=6525 1040

https://datafiles.scope.static.scope-metal.com/01- פלדות ושימושים <u>03 Scope Steel Catalogue HE.pdf</u>

אלומיניום ושימושים

https://www.scope.co.il/catalogues/Scope_HE/Scope_Aluminium_Catalogue_HE/files/assets/common/downloads/Scope_Aluminium_Catalogue_HE.pdf

סוגי אלומיניום

https://www.global-

lcs.com/%D7%90%D7%9C%D7%95%D7%9E%D7%99%D7%A0%D7%99%D7%95%D7%9D/%D7%A
A%D7%9B%D7%95%D7%A0%D7%95%D7%AA-%D7%A9%D7%9C-

%D7%A1%D7%92%D7%A1%D7%95%D7%92%D7%95%D7%AA-

%D7%90%D7%9C%D7%95%D7%9E%D7%99%D7%A0%D7%99%D7%95%D7%9D.aspx

סוגי פלדות https://www.ds-advance.com/steel

: http://www.nsk.com/common/data/ctrgPdf/e1102m.pdf

חלקים מוכנים לסוליד כגון (מנוע, מצבר, מסב)-

https://grabcad.com/

https://www.mcmaster.com/

25. נספחים

שרטוט המנוע:

Configured Specifications

Туре	Oldham Type	Allowable Misalignment	Angular Misalignment / Eccentricity
Application	Standard / Servo Motor / Stepping Motor / Encoder	Allowable Torque Range(N•m)	20.01~50.00
For Shaft Size D1(mm)	10	For Shaft Size D2(mm)	20
Outer Dia. A(Ø)	50	Overall Length W(mm)	59.7
Feature	High accuracy / High durability / Backlash 0 / Vibration Absorption	Body Material	[Aluminum] Aluminum Alloy
Allowable Torque(N•m)	30	Allowable Angular Misalignment(de g)	1

:שרטוט הגל

הרכבה כללית:

48	B18.2.4.1M - Hex nut, Style 1, M4 x 0.7D- N	AISI 1030	
47	B18.3.4M - 8 x 1.25 x 40 SBHCSN	Screw	12
46	pach_bottom	7075	1
45	our_pach	7075	1
44	WEP HOLDER	AISI 1020	2
43	Key ISO 2491 5x3-10-A	Shegem	- 1
42	B18.2.4.5M - Hex jam nut, M10 x 1.5, with 16mm WAF D-N	Nut	21
41	B18.2.3.4M - Hex flange screw, M10 x 1.5 x 45 - 26N	Screw	6
40	B18.2.2.4M - Hex flange nut, M6 x 1N	AISI 1030	8
39	B18.2.3.9M - Heavy hex flange screw, M6 x 1.0 x 25 - 25N	Screw	8
38	Free Wheel	Stainless steel	- 1
37	Ball Free whel	RUBBER	1
36	AM B18.6.7M 4x16- 14.6-N	Screw	5
35	AM B18.6.7M 4x40- 38.6-N	Screw	- 1
34	2.Inner Chain	Chain	36
33	1.Outer Chain	Chain	36
32	Sprocket	Sprocket	- 1
31	WEAPON_ENG_COVE	AISI 1020	1
30	adapter	AISI 1020 Steel cold rolled	1
29	battery_holder	SAE 1020	2
28	91290A448	Screw	8
27	90370A101	AISI 1030	20
26	91290A446	Screw	12
25	59825K51	Motor	1
24	B18.2.4.2M - Hex nut, Style 2, M4 x 0.7 D-N	Nut	6
23	B18.6.7M - M4 x 0.7 x 40 Indented HFMS 40N	Screw	- 6
22	B18.2.4.5M - Hex jam nut, M6 x 1D-N	Nut	8
21	B18.6.7M - M6 x 1.0 x 60 Type I Cross Recessed PHMS38N	Screw	8
20	3.Sprocket	Sprocker	- 1
19	blade	Chrome stainless steel	- 3
18	WEAPON_BODY	SAE 1040 cold drawn	1
16	91290A148	AISI 1020	4
15	coupling	SAE 1035	2
14	COUPLING 2	SAE 1035	2
13	98541A123	Sealing ring	2
12	9262K267	Bearing	2
11	Key ISO 2491 5x3-10-A	Shegem	3
10	Whell Ruber	Rubber	2
9	wheel	SAE 1020	2
6	Bearing housing	MILD STEEL	4
5	GAL	AISI 4130 Anealled	2
4	NEMA 34 86mm W PLANETARY GEARBOX	NEMA 34 86MM	1
3	BATTERY	Battery	- 1
2	6655K79	AISI 1030	2
1	BASE	355JR	- 1