

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master's Thesis in Informatics

Formal Verification of an Earley Parser

Martin Rau

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master's Thesis in Informatics

Formal Verification of an Earley Parser Formale Verifikation eines Earley Parsers

Author: Martin Rau
Supervisor: Tobias Nipkow
Advisor: Tobias Nipkow
Submission Date: 15.06.2023

I confirm that this master's thesis in informatics is my own work and I have documented all sources and material used.					
Munich, 15.06.2023		Martin Rau			

Acknowledgments

I owe an enormous debt of gratitude to my family which always suported me throughout my studies. Thank you. I also would like to thank Prof. Tobias Nipkow for introducing me to the world of formal verification through Isabelle and for supervising both my Bachelor's and my Master's thesis. It was a pleasure to learn from and to work with you.

Abstract

TODO: Abstract

Contents

A	Acknowledgments				
A	bstrac	et	iv		
1	QUI	ESTIONS	1		
2	Snij	ppets	2		
	2.1	Earley	2		
	2.2	Scott	4		
	2.3	Aycock	6		
	2.4	Related Work	7		
		2.4.1 Related Parsing Algorithms	7		
		2.4.2 Related Verification Work	8		
	2.5	Future Work	8		
3	Intr	oduction	10		
	3.1	Motivation	10		
	3.2	Structure	10		
	3.3	Related Work	10		
	3.4	Contributions	10		
4	Earl	ey's Algorithm	11		
	4.1	Draft	11		
	4.2	Background Theory	11		
	4.3	Earley Recognizer	13		
5	Earl	ey Formalization	15		
	5.1	Draft	15		
	5.2	Definitions	15		
	5.3	Wellformedness	18		
	5.4	Soundness	19		
	5.5	Monotonicity and Absorption	20		
	5.6	Completeness	21		

Contents

	5.7	Finiteness	22
6	Draf	ft	23
7	Earle	ey Recognizer Implementation	25
	7.1	Definitions	25
	7.2	Wellformedness	28
	7.3	List to set	30
	7.4	Soundness	31
	7.5	Set to list	32
	7.6	Main Theorem	33
8	Earle	ey Parser Implementation	34
	8.1	Draft	34
	8.2	Pointer lemmas	34
	8.3	Trees and Forests	35
	8.4	A single parse tree	36
	8.5	Parse trees	39
	8.6	A word on completeness	42
9	Exar	nples	43
	9.1	epsilon free CFG	43
	9.2	Example 1: Addition	43
		9.2.1 Example 2: Cyclic reduction pointers	44
10	Con	clusion	46
	10.1	Summary	46
	10.2	Future Work	46
11	Tem	plates	47
	11.1	Section	47
		11.1.1 Subsection	47
Lis	st of l	Figures	49
Lis	st of 7	Гables	50

1 QUESTIONS

- How much explain the proofs?
- How reference thm names?

2 Snippets

2.1 Earley

Context-free grammars have been used extensively for describing the syntax of programming languages and natural languages. Parsing algorithms for context-free grammars consequently play a large role in the implementation of compilers and interpreters for programming languages and of programs which understand or translate natural languages. Numerous parsing algorithms have been developed. Some are general, in the sense that they can handle all context-free grammars, while others can handle only subclasses of grammars. The latter, restricted algorithms tend to be much more efficient The algorithm described here seems to be the most efficient of the general algorithms, and also it can handle a larger class of grammars in linear time than most of the restricted algorithms.

A language is a set of strings over a finite set of symbols. We call these terminal symbols and represent them by lowercase letters: a, b, c. We use a context-free grammar as a formal device for specifying which strings are in the set. This grammar uses another set of symbols, the nonterminals, which we can think of as syntactic classes. We use capitals for nonterminals: A, B, C. String of either terminals or non-terminals are represented by greek letters: alpha, beta, gamma. The empty string is epsilon. There is a finite set of productions or rewriting rules of the form A -> alpha. The nonterminal which stands for sentence is called the root R of the grammar. The productions with a particular nonterminal A on their left sides are called the alternatives of A. We write alpha => beta if exists gamma, delta, ny, A such taht a = gamma A delta and beta = gamma ny delta and A -> ny is a production. We write alpha =>* beta if exists alpha0, alpha1, ... alpham (m > =0) such that alpha = alpha0 => alpha1 => ... => alpham = beta The sequence alphai is called a derivation of beta from alpha. A sentential form is a string alpha such the troot $R = >^*$ alpha. A sentence is a sentential form consisting entirely of terminal symbols. The language defined by a grammar L(G) is the set of its sentences. We may represent any sentential form in at least one way as a derivation tree or parse tree reflecting the steps made in deriving it. The degree of ambiguity of a sentence is the number of its distinct derivation trees. A sentence is unambiguous if it has degree 1 of ambiguity. A grammar is unambiguous if each of its sentences is unambiguous. A grammar is reduced if every nonterminal appears in some derivation of some sentence. A recognizer is an algorithm which takes a input a string and either accepts or rejects it depending on whether or not the string is a sentence of the grammer. A parser is a recogizer which also outputs the set of all legal derivation trees for the string.

The algorithm scans an input string X1, ..., Xn from left to right. As each symbol Xi is scanned, a set of states Si is constructed which represents the condition of the recognition process at that point in the scan. Each state in the set represents (1) a production such that we are currently scanning a portion of the input string which is derived from its right side, (2) a point in that production which shows how much of the production's right side we have recognized so far, (3) a pointer back to the position in the input string at which we began to look for that instance of the production. In general, we operate on a state set Si as follows: we process the states in the set in order, performing one of three operatins on each one depending on the form of the state. These operations may add more states to Si and may also put states in a new state set Si+1. We describe the operations by example: ... The predictor operation is applicable to a state when there is a nonterminal to the right of the dot. It causes us to add one new state to Si for each alternative of that nonterminal. We put the dot at the beginning of the production in each new state, since we have not scanned any of its symbols yet. The pointer is set to i, since the state was created in Si. Thus the predictor adds to Si all the productions which might generate substrings beginning at Xi+1. The scanner is applicable in case there is a terminal to the right of the dot. The scanner compares that symbol with Xi+1 and if they match, it adds the state to Si+1 with the dot moved over one in the state to indicate that that terminal symbol has been scanned. If we finish processing Si and Si+1 remains empty an error has occurred in the input string. Otherwise, we start to process Si+1. The completer is applicable to a state if its dot is at the end of its production. It goes back to the state set indicated by its pointer and adds all states from this state set which have the dot in front of its nonterminal. It then moves over the dot. Intuitively, the origin state set is the state set we were in when we went looking for that nonterminal. We have now found it, so we go back to all the states which caused us to look for it, and move the dot over in these states to show that it has been successfully scanned. If the algorithm ever produces an Si+1 consisting of the single state S -> alpha dot, 0, n, then the sentence is part of the grammar. Note that the algorithm is in effect a top-down parser in which we carry along all possible parses simultaneously in such a way that we can often combine like subparses.

2.2 Scott

The Computer Science community has been able to automatically generate parsers for a very wide class of context free languages. However, many parsers are still written manually, either using tool support or even completely by hand. This is partly because in some application areas such as natural language processing and bioinformatics we don not have the luxury of designing the language so that it is amendable to know parsing techniques, but also it is clear that left to themselves computer language designers do not naturally write LR(1) grammars. A grammar not only defines the syntax of a language, it is also the starting point for the definition of the semantics, and the grammar which facilitates semantics definition is not usually the one which is LR(1). Given this difficulty in constructing natural LR(1) grammars that support desired semantics, the general parsing techniques, such as the CYK Younger [Younger:1967], Earley [Earley:1970] and GLR Tomita [Tomita:1985] algorithms, developed for natural language processing are also of interest to the wider computer science community. When using grammars as the starting point for semantics definition, we distinguish between recognizers which simply determine whether or not a given string is in the language defined by a given grammar, and parserwhich also return some form of derivation of the string, if one exists. In their basic form the CYK and Earley algorithms are recognizers while GLR-style algorithms are designed with derivation tree construction, and hence parsing, in mind.

There is no known liner time parsing or recognition algorithm that can be used with all context free grammars. In their recognizer forms the CYK algorithm is worst case cubic on grammars in Chomsky normal form and Earley's algorithm is worst case cubic on general context free grammers and worst case n2 on non-ambibuous grammars. General recognizers must, by definition, be applicable to ambiguous grammars. Tomita's GLR algorithm is of unbounded polynomial order in the worst case. Expanding general recognizers to parser raises several problems, not least because there can be exponentially many or even infinitely many derivations for a given input string. A cubic recognizer which was modified to simply return all derivations could become an unbounded parser. Of course, it can be argued that ambiguous grammars reflect ambiguous semantics and thus should not be used in practice. This would be far too extreme a position to take. For example, it is well known that the if-else statement in hthe AnSI-standard grammar for C is ambiguous, but a longest match resolution results in a linear time parser that attach the else to the most recent if, as specified by the ANSI-C semantics. The ambiguous ANSI-C grammar is certainly practical for parser implementation. However, in general ambiguity is not so easily handled, and it is well known that grammar ambiguity is in fact undecidable Hopcroft et al [Hopcroft:2006], thus we cannot expect a parser generator simply to check for ambiguity inthe grammar

and report the problem back to the user. Another possiblity is to avoid the issue by just returning one derivation. However, if only one derivation is returned then this creates problems for a user who wants all derivations and, even in the case where only one derivation is required, there is the issue of ensuring that it is the required derivationthat is returned. A truely general parser will reutrn all possible derivations in some form. Perhaps the most well known representation is the shared packed parse foreset SPPF described and used by Tomita [Tomita:1985]. Tomita's description of the representation does ont allow for the infinitely many derivations which arise from grammars which contain cycles, the source adapt the SPPF representation to allow these. Johnson [Johnson:1991] has shown that Tomita-style SPPFs are worst case unbounded polynomial size. Thus using such structures will alo turn any cubic recognition technique into a worst case unbounded polynomial parsing technique. Leaving aside the potential increase in complexity when turning a recogniser into a parser, it is clear that this process is often difficult to carry out correctly. Earley gave an algorithm for constructing derivations of a string accepted by his recognizer, but this was subsequently shown by Tomita [Tomita:1985] to return spurious derivations in certain cases. Tomita's original version of his algorithm failed to terminate on grammars with hidden left recursio and, as remarked above, had no mechanism for contructing complete SPPFs for grammers with cycles.

A shared packed parse forest SPPF is a representation designed to reduce the space required to represent multiple derivation trees for an ambiguous sentence. In an SPPF, nodes which have the same tree below them are shared and nodes which correspond to different derivations of the same substring from the same non-terminal are combined by creating a packed node for each family of children. Nodes can be packed only if their yields correspond to the same portion of the input string. Thus, to make it easier to determine whether two alternates can be packed under a given node, SPPF nodes are labelled with a triple (x,i,j) where $a_{j+1} \dots a_i$ is a substring matched by x. To obtain a cubic algorithm we use binarised SPPFs which contain intermediate additional nodes but which are of worst case cubic size. (EXAMPIE SPPF running example???)

We can turn earley's algorithm into a correct parser by adding pointers between items rather than instances of non-terminals, and labelling the pointers in a way which allows a binariesd SPPF to be constructed by walking the resulting structure. However, inorder to construct a binarised SPPF we also have to introduce additional nodes for grammar rules of length greater than two, complicating the final algorithm.

2.3 Aycock

Earley's parsing algorithm is a general algorithm, capable of parsing according to any context-free grammar. General parsing algorithms like Earley parsing allow unfettered expression of ambiguous grammar contructs which come up often in practice (REFERENCE).

Earley parsers operate by constructing a sequence of sets, sometime called Earley sets. Given an input $x_1x_2...x_n$ the parser builds n+1 sets: an initial set S_0 and one set S_i for each input symbol x_i . Elements of these sets are referred to as Earley items, which consist of three parts: a grammar rule, a position in the right-hand side of the rule indicating how much of that rule has been seen and a pointer to an earlier Earley set. Typically Earley items are written as ... where the position in the rule's right-hand side is denoted by a dot and j is a pointer to set S_j . An Earley set S_i is computed from an initial set of Earley items in S_i and S_{i+1} is initialized, by applying the followingn three steps to the items in S_i until no more can be added. ... An item is added to a set only if it is not in the set already. The initial set S_0 contains the items ... to begin with. If the final set contains the item ... then the input is accepted.

We have not used a lookahead in this description of Earley parsing since it's primary purpose is to increase the efficieny of the Earley parser on a large class of grammars (REFERENCE).

In terms of implementation, the Earley sets are built in increasing order as the input is read. Also, each set is typically represented as a list of items. This list representation of a set is particularly convenient, because the list of items acts as a work queue when building the sets: items are examined in order, applying the transformations as necessary: items added to the set are appended onto the end of the list.

At any given point i in the parse, we have two partially constructed sets. Scanner may add items to S_{i+1} and S_i may have items added to it by Predictor and Completer. It is this latter possibility, adding items to S_i while representing sets as lists, which causes grief with epsilon-rules. When Completer processes an item $A \rightarrow dot$, j which corresponds to the epsilon-rule $A \rightarrow dot$ epsilon, it must look through S_j for items with the dot before an A. Unfortunately, for epsilon-rule items, j is always equal to i. Completer is thus looking through the partially constructed set S_i . Since implementations process items in S_i in order, if an item $B \rightarrow dot A dot A dot A dot <math>S_i$ after Completer has processed S_i and indirectly from S_i and S_i will be omitted too. This effectively prunes protential derivation paths which might cause correct input to be rejected. (EXAMPLE) Aho *et al* [Aho:1972] propose the stay clam and keep running the Predictor and Completer in turn until neither has anything more to add. Earley himself suggest to have the Completer note that the dot needed to be moved over S_i

then looking for this whenever future items were added to S_i . For efficiency's sake the collection of on-terminals to watch for should be stored in a data structure which allows fast access. Neither approach is very satisfactory. A third solution [Aycoack:2002] is a simple modification of the Predictor based on the idea of nullability. A non-terminal A is said to be nullable if A derives star epsilon. Terminal symbols of course can never be nullable. The nullability of non-terminals in a grammar may be precomputed using well-known techniques [Appel:2003] [Fischer:2009] Using this notion the Predictor can be stated as follows: if A -> α dot B β , j is in S_i , add B -> dot γ , i to S_i for all rules B -> γ . If B is nullable, also add A -> α B dot β , j to S_i . Explanation why I decided against it. Involves every grammar can be rewritten to not contain epsilon productions. In other words we eagerly move the dot over a nonterminal if that non-terminal can derive epsilon and effectivley disappear. The source implements this precomputation by constructing a variant of a LR(0) deterministic finite automata (DFA). But for an earley parser we must keep track of which parent pointers and LR(0) items belong together which leads to complex and inelegant implementations [McLean:1996]. The source resolves this problem by constructing split epsilon DFAs, but still need to adjust the classical earley algorithm by adding not only predecessor links but also causal links, and to construct the split epsilon DFAs not the original grammar but a slightly adjusted equivalent grammar is used that encodes explicitly information that is crucial to reconstructing derivations, called a grammar in nihilist normal form (NNF) which might increase the size of the grammar whereas the authors note empirical results that the increase is quite modest (a factor of 2 at most).

Example: S -> AAAA, A -> a, A -> E, E -> epsilon, input a S_0 S -> dot AAAA,0, A -> dot a, 0, A -> dot E, 0, E -> dot, 0, A -> E dot, 0, S -> A dot AAA, 0 S_1 A -> a dot, 0, S -> A dot AAA, 0, S -> AA dot AA, 0, A -> dot a, 1, A -> dot E, 1, E -> dot, 1, A -> E dot, 1, S -> AAA dot A, 0

2.4 Related Work

2.4.1 Related Parsing Algorithms

Tomita [Tomita:1987] presents an generalized LR parsing algorithm for augmented context-free grammars that can handle arbitrary context-free grammars.

Izmaylova *et al* [**Izmaylova:2016**] develop a general parser combinator library based on memoized Continuation-Passing Style (CPS) recognizers that supports all context-free grammars and constructs a Shared Packed Parse Forest (SPPF) in worst case cubic time and space.

2.4.2 Related Verification Work

Obua *et al* [**Obua:2017**] introduce local lexing, a novel parsing concept which interleaves lexing and parsing whilst allowing lexing to be dependent on the parsing process. They base their development on Earley's algorithm and have verified the correctness with respect to its local lexing semantics in the theorem prover Isabelle/HOL. The background theory of this Master's thesis is based upon the local lexing entry [**LocalLexing-AFP**] in the Archive of Formal Proofs.

Lasser *et al* [Lasser:2019] verify an LL(1) parser generator using the Coq proof assistant.

Barthwal *et al* [Barthwal:2009] formalize background theory about context-free languages and grammars, and subsequently verify an SLR automaton and parser produced by a parser generator.

Blaudeau *et al* [Blaudeau:2020] formalize the metatheory on Parsing expression grammars (PEGs) and build a verified parser interpreter based on higher-order parsing combinators for expression grammars using the PVS specification language and verification system. Koprowski *et al* [Koprowski:2011] present TRX: a parser interpreter formally developed in Coq which also parses expression grammars.

Jourdan *et al* [Jourdan:2012] present a validator which checks if a context-free grammar and an LR(1) parser agree, producing correctness guarantees required by verified compilers.

Lasser *et al* [Lasser:2021] present the verified parser CoStar based on the ALL(*) algorithm. They proof soundness and completeness for all non-left-recursive grammars using the Coq proof assistant.

2.5 Future Work

Different approaches:

- (1) SPPF style parse trees as in Scott et al -> need Imperative/HOL for this Performance improvements:
- (1) Look-ahead of k or at least 1 like in the original Earley paper. (2) Optimize the representation of the grammar instead of single list, group by production, ... (3) Keep a set of already inserted items to not double check item insertion. (4) Use a queue instead of a list for bins. (5) Refine the algorithm to an imperative version using a single linked list and actual pointers instead of natural numbers.

Parse tree disambiguation:

Parser generators like YACC resolve ambiguities in context-free grammers by allowing the user the specify precedence and associativity declarations restricting the set of

allowed parses. But they do not handle all grammatical restrictions, like 'dangling else' or interactions between binary operators and functional 'if'-expressions.

Grammar rewriting:

Adams *et al* [Adams:2017] describe a grammar rewriting approach reinterpreting CFGs as the tree automata, intersectiong them with tree automata encoding desired restrictions and reinterpreting the results back into CFGs.

Afroozeh *et al* [Afroozeh:2013] present an approach to specifying operator precedence based on declarative disambiguation rules basing their implementation on grammar rewriting.

Thorup [**Thorup:1996**] develops two concrete algorithms for disambiguation of grammars based on the idea of excluding a certain set of forbidden sub-parse trees.

Parse tree filtering:

Klint *et al* [Klint:1997] propose a framework of filters to describe and compare a wide range of disambiguation problems in a parser-independent way. A filter is a function that selects from a set of parse trees the intended trees.

3 Introduction

3.1 Motivation

some introduction about parsing, formal development of correct algorithms: an example based on earley's recogniser, the benefits of formal methods, LocalLexing and the Bachelor thesis.

work with the snippets, reformulate!

3.2 Structure

standard blabla

3.3 Related Work

see folder and bibliography

3.4 Contributions

what did I do, what is new

4 Earley's Algorithm

4.1 Draft

- Introduce background theory about CFG
- Introduce the Earley recognizer in the abstract set form with pointer, note the original error in Earley's algorithm
- Introduce the running example $S \rightarrow x \mid S + S$ for input x + x + x
- Illustrate the complete bins generated by the example
- Illustrate Initial S -> .alpha,0,0, Scan A -> alpha.abeta,i,j | A -> alpha.beta,i,j+1, Predict A -> alpha.Bbeta,i,j and B -> gamma | B -> .gamma,j,j, Complete A -> alpha.Bbeta,i,j and B -> gamma.j,k | A -> alphaB.beta,i,k
- Define goal: A -> alpha.beta,i,j iff A =>* s[i..j)beta which implies S -> alpha.,0,n+1 iff S =>* s

TODO: Add nicer syntax for derives

4.2 Background Theory

```
type-synonym 'a rule = 'a × 'a list
type-synonym 'a rules = 'a rule list
type-synonym 'a sentence = 'a list
datatype 'a cfg =
CFG
(\mathfrak{N}: 'a list)
```

```
(\mathfrak{T}: 'a \ list)
    (\mathfrak{R}: 'a \ rules)
   (\mathfrak{S}: 'a)
definition derives1 :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a sentence \Rightarrow bool where
 derives1 \ cfg \ u \ v =
    (\exists x y N \alpha.
         u = x @ [N] @ y
       \wedge v = x @ \alpha @ y
       \land (N, \alpha) \in set (\Re cfg)
definition derivations1 :: 'a cfg \Rightarrow ('a sentence \times 'a sentence) set where
 derivations1 \ cfg = \{ (u,v) \mid u \ v. \ derives1 \ cfg \ u \ v \}
definition derivations :: 'a cfg \Rightarrow ('a sentence \times 'a sentence) set where
 derivations\ cfg = (derivations1\ cfg)^*
definition derives :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a sentence \Rightarrow bool where
 derives cfg u v = ((u, v) \in derivations cfg)
fun slice :: nat \Rightarrow nat \Rightarrow 'a \ list \Rightarrow 'a \ list where
 slice - - [] = []
 slice - 0 (x\#xs) = []
 slice 0 (Suc b) (x\#xs) = x \#slice 0 b xs
| slice (Suc a) (Suc b) (x#xs) = slice a b xs
lemma slice-induct:
  assumes \land a \ b. P \ a \ b []
  assumes \bigwedge a \ x \ xs. \ P \ a \ 0 \ (x \# xs)
 assumes \bigwedge b \ x \ xs. \ P \ 0 \ b \ xs \Longrightarrow P \ 0 \ (Suc \ b) \ (x \# xs)
  assumes \bigwedge a \ b \ x \ xs. \ P \ a \ b \ xs \Longrightarrow P \ (Suc \ a) \ (Suc \ b) \ (x\#xs)
 shows P a b xs
definition disjunct-symbols :: 'a cfg \Rightarrow bool where
 disjunct-symbols cfg \longleftrightarrow set (\mathfrak{N} \ cfg) \cap set (\mathfrak{T} \ cfg) = \{\}
definition valid-startsymbol :: 'a cfg \Rightarrow bool where
 valid-startsymbol cfg \longleftrightarrow \mathfrak{S} cfg \in set (\mathfrak{N} cfg)
definition valid-rules :: 'a \ cfg \Rightarrow bool \ \mathbf{where}
  valid-rules cfg \longleftrightarrow (\forall (N, \alpha) \in set (\Re cfg). N \in set (\Re cfg) \land (\forall s \in set \alpha. s \in set (\Re cfg) \cup set (\mathfrak{T})
cfg)))
```

definition distinct-rules :: 'a cfg \Rightarrow bool where distinct-rules cfg = distinct (\Re cfg)

definition wf-cfg :: 'a $cfg \Rightarrow bool$ **where** wf-cfg $cfg \longleftrightarrow disjunct$ -symbols $cfg \land valid$ -startsymbol $cfg \land valid$ -rules $cfg \land distinct$ -rules cfg

definition *is-terminal* :: 'a $cfg \Rightarrow 'a \Rightarrow bool$ **where** *is-terminal* $cfg \ s = (s \in set \ (\mathfrak{T} \ cfg))$

definition *is-nonterminal* :: 'a $cfg \Rightarrow$ 'a \Rightarrow bool **where** *is-nonterminal* $cfg \ s = (s \in set \ (\mathfrak{N} \ cfg))$

definition *is-symbol* :: $'a \ cfg \Rightarrow 'a \Rightarrow bool \ \mathbf{where}$ *is-symbol* $cfg \ s \longleftrightarrow is$ -terminal $cfg \ s \lor is$ -nonterminal $cfg \ s$

definition wf-sentence :: 'a cfg \Rightarrow 'a sentence \Rightarrow bool where wf-sentence cfg $s = (\forall x \in set \ s. \ is-symbol \ cfg \ x)$

definition *is-word* :: 'a $cfg \Rightarrow$ 'a sentence \Rightarrow bool where is-word $cfg \ s = (\forall \ x \in set \ s. \ is-terminal \ cfg \ x)$

4.3 Earley Recognizer

Init
$$\frac{A \to \alpha \bullet \alpha \beta, i, j}{A \to \alpha \bullet \alpha \bullet \beta, i, j + 1} = \frac{A \to \alpha \bullet B \beta, i, j}{A \to \alpha \bullet B \beta, i, j} = \frac{A \to \alpha \bullet B \beta, i, j}{B \to \gamma, j, j}$$

$$\frac{Complete}{A \to \alpha \bullet B \beta, i, j} = \frac{A \to \alpha \bullet B \beta, i, j}{A \to \alpha B \bullet \beta, i, k}$$

Figure 4.1: Earley inference rules

$$A \to \alpha \bullet \beta, i, j \text{ iff } A \stackrel{*}{\Rightarrow} slice \ i \ j \ inp$$

$$\mathfrak{S} \ cfg \to \alpha \bullet, 0, |inp| + 1 \text{ iff } \mathfrak{S} \ cfg \stackrel{*}{\Rightarrow} inp$$

$$S \to x S \to S + S$$

Table 4.1: Earley items for the CFG $S \rightarrow x$, $S \rightarrow S + S$

0	1	2
$S \to \bullet x, 0, 0$ $S \to \bullet S + S, 0, 0$	$\begin{vmatrix} S \to x \bullet, 0, 1 \\ S \to S \bullet + S, 0, 1 \end{vmatrix}$	$ \begin{vmatrix} S \to S + \bullet S, 0, 2 \\ S \to \bullet x, 2, 2 \\ S \to \bullet S + S, 2, 2 \end{vmatrix} $
3	4	5
$S \rightarrow x \bullet, 2, 3$ $S \rightarrow S + S \bullet, 0, 3$ $S \rightarrow S \bullet + S, 2, 3$ $S \rightarrow S \bullet + S, 0, 3$	$S \rightarrow S + \bullet S, 2, 4$ $S \rightarrow S + \bullet S, 0, 4$ $S \rightarrow \bullet x, 4, 4$ $S \rightarrow \bullet S + S, 4, 4$	$S \rightarrow x \bullet, 4, 5$ $S \rightarrow S + S \bullet, 2, 5$ $S \rightarrow S + S \bullet, 0, 5$ $S \rightarrow S \bullet + S, 4, 5$ $S \rightarrow S \bullet + S, 2, 5$ $S \rightarrow S \bullet + S, 0, 5$

5 Earley Formalization

5.1 Draft

- explain the auxiliary definitions until earley_recognized, the small ones incorporated into text, the big ones as definitions
- explain Init, Scan, Predict, Complete REFERENCE and relate them back to the previous chapter
- explain fixpoint iteration REFERENCE and iteration over all bins
- illustrate the running example in this algorithm
- explain wellformedness proof
- explain soundness definitions and proof
- explain monotonicity and absorption proofs
- explain completeness proof, this one in great detail!
- explain finiteness proof

5.2 Definitions

definition rule-head :: 'a rule \Rightarrow 'a where rule-head = fst

```
definition rule-body :: 'a rule \Rightarrow 'a list where
 rule-body = snd
datatype 'a item =
 Item
   (item-rule: 'a rule)
   (item-dot: nat)
   (item-origin: nat)
   (item-end: nat)
type-synonym 'a items = 'a item set
definition item-rule-head :: 'a item \Rightarrow 'a where
 item-rule-head x = rule-head (item-rule x)
definition item-rule-body :: 'a item \Rightarrow 'a sentence where
 item-rule-body x = rule-body (item-rule x)
definition item-\alpha :: 'a item \Rightarrow 'a sentence where
 item-\alpha x = take (item-dot x) (item-rule-body x)
definition item-\beta :: 'a item \Rightarrow 'a sentence where
 item-\beta x = drop (item-dot x) (item-rule-body x)
definition init-item :: 'a rule \Rightarrow nat \Rightarrow 'a item where
 init-item\ r\ k = Item\ r\ 0\ k\ k
definition is-complete :: 'a item \Rightarrow bool where
 is-complete x = (item-dot \ x \ge length \ (item-rule-body \ x))
definition next-symbol :: 'a item \Rightarrow 'a option where
 next-symbol x = (if is-complete x then None else Some ((item-rule-body x) ! (item-dot x)))
definition inc-item :: 'a item \Rightarrow nat \Rightarrow 'a item where
 inc-item x k = Item (item-rule x) (item-dot x + 1) (item-origin x) k
definition bin :: 'a items \Rightarrow nat \Rightarrow 'a items where
 bin I k = \{ x \cdot x \in I \land item\text{-end } x = k \}
definition wf-item :: 'a cfg \Rightarrow 'a sentence => 'a item \Rightarrow bool where
 wf-item cfg inp x = (
  item-rule x \in set(\Re cfg) \land
  item-dot \ x \leq length \ (item-rule-body \ x) \ \land
  item-origin x \leq item-end x \wedge
```

```
item-end x \leq length inp)
definition wf-items :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a items \Rightarrow bool where
 wf-items cfg inp I = (\forall x \in I. \text{ wf-item cfg inp } x)
definition is-finished :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a item \Rightarrow bool where
 is-finished cfg inp x \longleftrightarrow (
   item-rule-head x = \mathfrak{S} cfg \wedge
   item-origin x = 0 \land
   item-end x = length inp \land
   is-complete x)
definition earley-recognized :: 'a items \Rightarrow 'a cfg \Rightarrow 'a sentence \Rightarrow bool where
 earley-recognized I cfg inp = (\exists x \in I. is-finished cfg inp x)
definition Init :: 'a cfg \Rightarrow 'a items where
 Init cfg = \{ init-item \ r \ 0 \mid r. \ r \in set \ (\Re \ cfg) \land fst \ r = (\mathfrak{S} \ cfg) \}
definition Scan :: nat \Rightarrow 'a \ sentence \Rightarrow 'a \ items \Rightarrow 'a \ items  where
 Scan k inp I =
   { inc-item x (k+1) | x a.
       x \in bin\ I\ k \land
       inp!k = a \land
       k < length inp \land
       next-symbol x = Some \ a 
definition Predict :: nat \Rightarrow 'a \ cfg \Rightarrow 'a \ items \Rightarrow 'a \ items
 Predict k cfg I =
   \{ init-item \ r \ k \mid r \ x. \}
       r \in set (\Re cfg) \land
       x \in bin\ I\ k \land
       next-symbol x = Some (rule-head r) }
definition Complete :: nat \Rightarrow 'a \text{ items} \Rightarrow 'a \text{ items} where
 Complete kI =
   \{ inc\text{-item } x \ k \mid x \ y. \}
       x \in bin\ I\ (item-origin\ y)\ \land
       y \in bin I k \wedge
       is-complete y \land
       next-symbol x = Some (item-rule-head y) }
fun funpower :: ('a \Rightarrow 'a) \Rightarrow nat \Rightarrow ('a \Rightarrow 'a) where
 funpower f 0 x = x
| funpower f (Suc n) x = f (funpower f n x)
```

```
definition natUnion :: (nat \Rightarrow 'a set) \Rightarrow 'a set where natUnion f = \bigcup \{fn \mid n. True \}

definition limit :: ('a set \Rightarrow 'a set) \Rightarrow 'a set \Rightarrow 'a set where limit f x = natUnion (\lambda n. funpower f n x)

definition \pi-step :: nat \Rightarrow 'a cfg \Rightarrow 'a sentence \Rightarrow 'a items \Rightarrow 'a items where \pi-step k cfg inp I = I \cup Scan k inp I \cup Complete k I \cup Predict k cfg I

definition \pi :: nat \Rightarrow 'a cfg \Rightarrow 'a sentence \Rightarrow 'a items \Rightarrow 'a items where \pi k cfg inp I = limit (\pi-step k cfg inp) I

fun \mathcal{I} :: nat \Rightarrow 'a cfg \Rightarrow 'a sentence \Rightarrow 'a items where \mathcal{I} 0 cfg inp = \pi 0 cfg inp (Init cfg)

= \mathcal{I} 0 cfg inp = \pi 0 cfg inp (Init cfg)

= \mathcal{I} 0 cfg inp = \pi 0 cfg inp (Init cfg)

definition = \mathcal{I} 0 cfg inp = \pi 0 cfg inp (Init cfg)

definition = \mathcal{I} 0 cfg inp = \pi 0 cfg inp (Init cfg)

= \mathcal{I} 0 cfg inp = \pi 0 cfg inp (Init cfg)
```

5.3 Wellformedness

```
lemma wf-Init:
 assumes x \in Init\ cfg
 shows wf-item cfg inp x
  by definition
lemma wf-Scan-Predict-Complete:
 assumes wf-items cfg inp I
 shows wf-items cfg inp (Scan k inp I \cup Predict \ k \ cfg \ I \cup Complete \ k \ I)
  by definition
lemma wf-\pi-step:
 assumes wf-items cfg inp I
 shows wf-items cfg inp (\pi-step k cfg inp I)
  wf-Scan-Predict-Complete by definition
lemma wf-funpower:
 assumes wf-items cfg inp I
 shows wf-items cfg inp (funpower (\pi-step k cfg inp) n I)
  wf-\pi-step, by induction on n
lemma wf-\pi:
```

```
assumes wf-items cfg inp I
 shows wf-items cfg inp (\pi k cfg inp I)
  wf-funpower by definition
lemma wf-\pi0:
 shows wf-items cfg inp (\pi 0 cfg inp (Init cfg))
  wf-Init wf-\pi by definition
lemma wf-\mathcal{I}:
 shows wf-items cfg inp (\mathcal{I} n cfg inp)
  wf-\pi 0 wf-\pi by induction on n
lemma wf-3:
 shows wf-items cfg inp (3 cfg inp)
  wf-\mathcal{I} by definition
5.4 Soundness
definition sound-item :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a item \Rightarrow bool where
 sound-item cfg inp x = derives cfg [item-rule-head x] (slice (item-origin x) (item-end x) inp @ item-\beta
x)
definition sound-items :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a items \Rightarrow bool where
 sound-items cfg inp I = (\forall x \in I. \text{ sound-item cfg inp } x)
lemma sound-Init:
 shows sound-items cfg inp (Init cfg)
lemma sound-item-inc-item:
 assumes wf-item cfg inp x sound-item cfg inp x
 assumes next-symbol x = Some \ a \ k < length \ inp \ inp!k = a \ item-end \ x = k
 shows sound-item cfg inp (inc-item x (k+1))
lemma sound-Scan:
 assumes wf-items cfg inp I sound-items cfg inp I
 shows sound-items cfg inp (Scan k inp I)
lemma sound-Predict:
 assumes sound-items cfg inp I
 shows sound-items cfg inp (Predict k cfg I)
lemma sound-Complete:
 assumes wf-items cfg inp I sound-items cfg inp I
 shows sound-items cfg inp (Complete k I)
lemma sound-\pi-step:
 assumes wf-items cfg inp I sound-items cfg inp I
```

```
shows sound-items cfg inp (\pi\text{-step }k\ cfg\ inp\ I)
lemma sound-funpower:
  assumes wf\text{-items }cfg\ inp\ I\ sound\text{-items }cfg\ inp\ I\ shows\ sound\text{-items }cfg\ inp\ (funpower\ (\pi\text{-step }k\ cfg\ inp)\ n\ I)
lemma sound\text{-}\pi:
  assumes wf\text{-items }cfg\ inp\ I\ sound\text{-items }cfg\ inp\ I\ shows\ sound\text{-items }cfg\ inp\ (\pi\ k\ cfg\ inp\ I)
lemma sound\text{-}\pi0:
  shows sound\text{-items }cfg\ inp\ (\pi\ 0\ cfg\ inp\ (Init\ cfg))
lemma sound\text{-}\mathcal{I}:
  shows sound\text{-items }cfg\ inp\ (\mathcal{I}\ k\ cfg\ inp)
lemma sound\text{-}\mathcal{I}:
  shows sound\text{-items }cfg\ inp\ (\mathcal{I}\ k\ cfg\ inp)
theorem sound\text{-ness}:
  shows sound\text{-items }cfg\ inp\ (\mathcal{I}\ cfg\ inp)
theorem sound\text{-ness}:
  shows sound\text{-items }cfg\ inp\ (\mathcal{I}\ cfg\ inp)
```

5.5 Monotonicity and Absorption

```
lemma \pi-idem:
 shows \pi k cfg inp (\pi k cfg inp I) = \pi k cfg inp I
lemma Scan-bin-absorb:
 shows Scan \ k \ inp \ (bin \ I \ k) = Scan \ k \ inp \ I
lemma Predict-bin-absorb:
 shows Predict k cfg (bin I k) = Predict k cfg I
lemma Complete-bin-absorb:
 shows Complete k (bin I k) \subseteq Complete k I
lemma Scan-Predict-Complete-sub-mono:
 assumes I \subseteq J
 shows Scan k inp I \subseteq Scan k inp J Predict k cfg I \subseteq Predict k cfg J Complete k J
lemma \pi-step-sub-mono:
 assumes I \subseteq J
 shows \pi-step k cfg inp I \subseteq \pi-step k cfg inp J
lemma funpower-sub-mono:
 assumes I \subseteq J
 shows funpower (\pi-step k cfg inp) n I \subseteq funpower (\pi-step k cfg inp) n J
lemma \pi-sub-mono:
 assumes I \subseteq J
 shows \pi k cfg inp I \subseteq \pi k cfg inp J
lemma Scan-Predict-Complete-\pi-step-mono:
 shows Scan k inp I \cup Predict k cfg I \cup Complete k I \subseteq \pi-step k cfg inp I
lemma \pi-step-\pi-mono:
 shows \pi-step k cfg inp I \subseteq \pi k cfg inp I
lemma Scan-Predict-Complete-\pi-mono:
```

```
shows Scan k inp I \cup Predict k cfg I \cup Complete k I \subseteq \pi k cfg inp I
lemma \pi-mono:
 shows I \subseteq \pi k cfg inp I
lemma Scan-bin-empty:
 assumes i \neq k i \neq k+1
 shows bin (Scan k inp I) i = \{\}
lemma Predict-bin-empty:
 assumes i \neq k
 shows bin (Predict k cfg I) i = \{\}
lemma Complete-bin-empty:
 assumes i \neq k
 shows bin (Complete kI) i = \{\}
lemma \pi-step-bin-absorb:
 assumes i \neq k i \neq k+1
 shows bin (\pi-step k cfg inp I) i = bin I i
lemma funpower-bin-absorb:
 assumes i \neq k i \neq k+1
 shows bin (funpower (\pi-step k cfg inp) n I) i = bin I i
lemma \pi-bin-absorb:
 assumes i \neq k i \neq k+1
 shows bin (\pi k \operatorname{cfg} \operatorname{inp} I) i = \operatorname{bin} I i
```

5.6 Completeness

```
lemma Scan-I:
 assumes i+1 \le k \ k \le length inp \ x \in bin (\mathcal{I} \ k \ cfg \ inp) \ i
 assumes next-symbol x = Some a inp!i = a
 shows inc-item x (i+1) \in \mathcal{I} k cfg inp
lemma Predict-I:
 assumes i \le k \ x \in bin \ (\mathcal{I} \ k \ cfg \ inp) \ i \ next-symbol \ x = Some \ N \ (N,\alpha) \in set \ (\Re \ cfg)
 shows init-item (N,\alpha) i \in \mathcal{I} k cfg inp
lemma Complete-I:
 assumes i \le j \ j \le k \ x \in bin \ (\mathcal{I} \ k \ cfg \ inp) \ i \ next-symbol \ x = Some \ N \ (N,\alpha) \in set \ (\Re \ cfg)
 assumes i = item-origin y y \in bin (\mathcal{I} k cfg inp) j item-rule <math>y = (N,\alpha) is-complete y
 shows inc-item x j \in \mathcal{I} k cfg inp
type-synonym 'a derivation = (nat \times 'a \ rule) list
definition Derives 1 :: 'a cfg \Rightarrow 'a sentence \Rightarrow nat \Rightarrow 'a rule \Rightarrow 'a sentence \Rightarrow bool where
 Derives 1 cfg u i r v =
    (\exists x y N \alpha.
        u = x @ [N] @ y
       \wedge v = x @ \alpha @ y
       \land (N, \alpha) \in set (\Re cfg)
```

```
\wedge r = (N, \alpha) \wedge i = length x
fun Derivation :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a derivation \Rightarrow 'a sentence \Rightarrow bool where
 Derivation - a [] b = (a = b)
| Derivation cfg a (d#D) b = (\exists x. Derives1 cfg a (fst d) (snd d) x \land Derivation cfg x D b)
definition partially-completed :: nat \Rightarrow 'a \ cfg \Rightarrow 'a \ sentence \Rightarrow 'a \ items \Rightarrow ('a \ derivation \Rightarrow bool) \Rightarrow
bool where
 partially-completed k cfg inp IP = (
   \forall i j x a D.
    i \leq j \wedge j \leq k \wedge k \leq length inp \wedge
    x \in bin\ I\ i \land next\text{-symbol}\ x = Some\ a \land
    Derivation cfg [a] D (slice i j inp) \wedge P D \longrightarrow
    inc-item x j \in I
 )
lemma fully-completed:
 assumes j \le k \ k \le length inp
 assumes x = Item(N,\alpha) dij x \in I wf-items cfg inp I
 assumes Derivation cfg (item-\beta x) D (slice j k inp)
 assumes partially-completed k cfg inp I (\lambda D'. length D' \leq length D)
 shows Item (N,\alpha) (length \alpha) i k \in I
lemma partially-completed-I:
 assumes wf-cfg cfg
 shows partially-completed k cfg inp (\mathcal{I} k cfg inp) (\lambda-. True)
lemma partially-completed-3:
 assumes wf-cfg cfg
 shows partially-completed (length inp) cfg inp (\Im cfg inp) (\lambda-. True)
theorem completeness:
 assumes derives cfg [\mathfrak{S} cfg] inp is-word cfg inp wf-cfg cfg
 shows earley-recognized (3 cfg inp) cfg inp
corollary
 assumes wf-cfg cfg is-word cfg inp
 shows earley-recognized (\Im cfg inp) cfg inp \longleftrightarrow derives cfg [\Im cfg] inp
5.7 Finiteness
```

```
lemma finiteness-UNIV-wf-item:
 shows finite \{x \mid x. wf-item cfg inp x\}
theorem finiteness:
 shows finite (\Im cfg inp)
```

6 Draft

- introduce auxiliary definitions: filter_with_index, pointer, entry in more detail most everything else in text
- overview over earley implementation with linked list and pointers and the mapping into a functional setting
- introduce Init_it, Scan_it, Predict_it and Complete_it, compare them with the set notation and discuss performance improvements (Grammar in more specific form) Why do they all return a list?!
- discus bin(s)_upd(s) functions. Why bin_upds like this -> easier than fold for proofs!
- discuss pi_it and why it is a partial function -> only terminates for valid input and foreshadow how this is done in isabelle
- introduce remaining definitions (analog to sets)
- discuss wf proofs quickly and go into detail about isabelle specifics about termination and the custom induction scheme using finiteness
- outline the approach to proof correctness aka subsumption in both directions
- discuss list to set proofs
- discuss soundness proofs (maybe omit since obvious)

- discuss completeness proof focusing on the complete case shortly explaining scan and predict which don't change via iteration and order does not matter
- highlight main theorems

7 Earley Recognizer Implementation

7.1 Definitions

```
fun filter-with-index' :: nat \Rightarrow ('a \Rightarrow bool) \Rightarrow 'a \ list \Rightarrow ('a \times nat) \ list \ \mathbf{where}
 filter-with-index' - - [] = []
| filter-with-index' i P(x\#xs) = (
   if P x then (x,i) # filter-with-index' (i+1) P xs
   else filter-with-index' (i+1) P xs)
definition filter-with-index :: ('a \Rightarrow bool) \Rightarrow 'a \ list \Rightarrow ('a \times nat) \ list where
 filter-with-index P xs = filter-with-index ' 0 P xs
datatype pointer =
 Null
 | Pre nat
 | PreRed nat \times nat \times nat (nat \times nat \times nat) list
datatype 'a entry =
 Entry
 (item: 'a item)
 (pointer: pointer)
type-synonym 'a bin = 'a entry list
type-synonym 'a bins = 'a bin list
definition items :: 'a bin \Rightarrow 'a item list where
 items b = map item b
definition pointers :: 'a bin \Rightarrow pointer list where
 pointers b = map pointer b
definition bins-eq-items :: 'a bins \Rightarrow 'a bins \Rightarrow bool where
 bins-eq-items bs0 bs1 \longleftrightarrow map items bs0 = map items bs1
definition bins-items :: 'a bins \Rightarrow 'a items where
 bins-items bs = \bigcup \{ set (items (bs!k)) | k. k < length bs \}
```

```
definition bin-items-upto :: 'a bin \Rightarrow nat \Rightarrow 'a items where
 bin-items-up to b i = \{ items \ b \mid j \mid j, j < i \land j < length (items b) \}
definition bins-items-upto :: 'a bins \Rightarrow nat \Rightarrow nat \Rightarrow 'a items where
 bins-items-upto bs k i = \bigcup \{ \text{ set (items (bs ! l))} \mid l. l < k \} \cup \text{ bin-items-upto (bs ! k) } i
definition wf-bin-items :: 'a cfg \Rightarrow 'a sentence \Rightarrow nat \Rightarrow 'a item list \Rightarrow bool where
 wf-bin-items cfg inp k xs = (\forall x \in set xs. wf-item cfg inp <math>x \land item-end x = k)
definition wf-bin :: 'a \ cfg \Rightarrow 'a \ sentence \Rightarrow nat \Rightarrow 'a \ bin \Rightarrow bool \ where
 wf-bin cfg inp k b \longleftrightarrow distinct (items b) \land wf-bin-items cfg inp k (items b)
definition wf-bins :: 'a cfg \Rightarrow 'a list \Rightarrow 'a bins \Rightarrow bool where
 wf-bins cfg inp bs \longleftrightarrow (\forall k < length bs. wf-bin cfg inp k (bs!k))
definition nonempty-derives :: 'a \ cfg \Rightarrow bool \ \mathbf{where}
 nonempty-derives cfg = (\forall N. N \in set (\mathfrak{N} cfg) \longrightarrow \neg derives cfg [N] [])
definition Init-it :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a bins where
 Init-it\ cfg\ inp = (
   let rs = filter (\lambda r. rule-head r = \mathfrak{S} cfg) (\mathfrak{R} cfg) in
   let b0 = map(\lambda r. (Entry(init-item r 0) Null)) rs in
   let bs = replicate (length inp + 1) ([]) in
   bs[0 := b0]
definition Scan-it :: nat \Rightarrow 'a sentence \Rightarrow 'a \Rightarrow 'a item \Rightarrow nat \Rightarrow 'a entry list where
 Scan-it k inp a \times pre = (
   if inp!k = a then
     let x' = inc-item x (k+1) in
     [Entry x' (Pre pre)]
   else [])
definition Predict-it :: nat \Rightarrow 'a \ cfg \Rightarrow 'a \Rightarrow 'a \ entry \ list where
 Predict-it k \operatorname{cfg} X = (
   let rs = filter(\lambda r. rule-head r = X)(\Re cfg) in
   map (\lambda r. (Entry (init-item r k) Null)) rs)
definition Complete-it :: nat \Rightarrow 'a \text{ item} \Rightarrow 'a \text{ bins} \Rightarrow nat \Rightarrow 'a \text{ entry list } \mathbf{where}
 Complete-it k y bs red = (
   let orig = bs! (item-origin y) in
   let is = filter-with-index (\lambda x. next-symbol x = Some (item-rule-head y)) (items orig) in
   map (\lambda(x, pre), (Entry (inc-item x k) (PreRed (item-origin y, pre, red) []))) is)
fun bin-upd :: 'a entry \Rightarrow 'a bin \Rightarrow 'a bin where
```

```
\mathit{bin}\text{-}\mathit{upd}\; e'\,[] = [e']
| bin-upd e'(e\#es) = (
   case (e', e) of
     (Entry\ x\ (PreRed\ px\ xs),\ Entry\ y\ (PreRed\ py\ ys)) \Rightarrow
       if x = y then Entry x (PreRed py (px#xs@ys)) # es
      else e # bin-upd e' es
      if item e' = item e then e # es
      else e # bin-upd e' es)
fun bin-upds :: 'a entry list \Rightarrow 'a bin \Rightarrow 'a bin where
 bin-upds [] b = b
| bin-upds (e\#es) b = bin-upds es (bin-upd e b)
definition bins-upd :: 'a bins \Rightarrow nat \Rightarrow 'a entry list \Rightarrow 'a bins where
 bins-upd bs k es = bs[k := bin-upds es (bs!k)]
partial-function (tailrec) \pi-it' :: nat \Rightarrow 'a cfg \Rightarrow 'a sentence \Rightarrow 'a bins \Rightarrow nat \Rightarrow 'a bins where
  \pi-it' k cfg inp bs i = (
   if i \ge length (items (bs!k)) then bs
   else
     let x = items (bs!k) ! i in
    let bs' =
      case next-symbol x of
        Some a \Rightarrow
          if is-terminal cfg a then
            if k < length inp then bins-upd bs (k+1) (Scan-it k inp a x i)
          else bins-upd bs k (Predict-it k cfg a)
       | None \Rightarrow bins-upd bs k (Complete-it k x bs i)
     in \pi-it' k cfg inp bs'(i+1)
definition \pi-it :: nat \Rightarrow 'a \ cfg \Rightarrow 'a \ sentence \Rightarrow 'a \ bins \Rightarrow 'a \ bins \ \mathbf{where}
 \pi-it k cfg inp bs = \pi-it' k cfg inp bs 0
fun \mathcal{I}-it :: nat \Rightarrow 'a cfg \Rightarrow 'a sentence \Rightarrow 'a bins where
 I-it 0 cfg inp = \pi-it 0 cfg inp (Init-it cfg inp)
| \mathcal{I}-it (Suc n) cfg inp = \pi-it (Suc n) cfg inp (\mathcal{I}-it n cfg inp)
definition \Im-it :: 'a \ cfg \Rightarrow 'a \ sentence \Rightarrow 'a \ bins \ \mathbf{where}
 \mathfrak{I}-it cfg inp = \mathcal{I}-it (length inp) cfg inp
```

7.2 Wellformedness

```
lemma distinct-bin-upd:
 assumes distinct (items b)
 shows distinct (items (bin-upd e b))
lemma distinct-bin-upds:
 assumes distinct (items b)
 shows distinct (items (bin-upds es b))
lemma distinct-bins-upd:
 assumes distinct (items (bs ! k))
 shows distinct (items (bins-upd bs k ips ! k))
lemma distinct-Scan-it:
 shows distinct (items (Scan-it k inp a x pre))
 sorry
lemma distinct-Predict-it:
 assumes wf-cfg cfg
 shows distinct (items (Predict-it k \text{ cfg } X))
lemma distinct-Complete-it:
 assumes wf-bins cfg inp bs item-origin y < length bs
 shows distinct (items (Complete-it k y bs red))
lemma wf-bin-bin-upd:
 assumes wf-bin cfg inp k b wf-item cfg inp (item e) \land item-end (item e) = k
 shows wf-bin cfg inp k (bin-upd e b)
lemma wf-bin-bin-upds:
 assumes wf-bin cfg inp k b distinct (items es)
 assumes \forall x \in set (items es). wf-item cfg inp x \land item-end x = k
 shows wf-bin cfg inp k (bin-upds es b)
lemma wf-bins-bins-upd:
 assumes wf-bins cfg inp bs distinct (items es)
 assumes \forall x \in set (items es). wf-item cfg inp x \land item-end x = k
 shows wf-bins cfg inp (bins-upd bs k es)
lemma wf-bins-Init-it:
 assumes wf-cfg cfg
 shows wf-bins cfg inp (Init-it cfg inp)
lemma wf-bins-Scan-it:
 assumes wf-bins cfg inp bs k < length bs x \in set (items (bs!k)) k < length inp next-symbol x \neq set
None
 shows \forall y \in set (items (Scan-it k inp a x pre)). wf-item cfg inp y \land item-end y = (k+1)
lemma wf-bins-Predict-it:
 assumes wf-bins cfg inp bs k < length bs k \leq length inp wf-cfg cfg
 shows \forall y \in set (items (Predict-it k cfg X)). wf-item cfg inp y \land item-end y = k
lemma wf-bins-Complete-it:
 assumes wf-bins cfg inp bs k < length bs y \in set (items (bs ! k))
```

```
shows \forall x \in set (items (Complete-it k y bs red)). wf-item cfg inp x \wedge item-end x = k
definition wellformed-bins :: (nat \times 'a cfg \times 'a sentence \times 'a bins) set where
 well formed-bins = \{
   (k, cfg, inp, bs) \mid k cfg inp bs.
    k \leq length inp \land
    length\ bs = length\ inp + 1 \land
    wf-cfg cfg \wedge
    wf-bins cfg inp bs
typedef 'a wf-bins = wellformed-bins::(nat \times 'a cfg \times 'a sentence \times 'a bins) set
lemma wellformed-bins-Init-it:
 assumes k \leq length inp wf-cfg cfg
 shows (k, cfg, inp, Init-it cfg inp) \in wellformed-bins
lemma wellformed-bins-Complete-it:
 assumes (k, cfg, inp, bs) \in wellformed-bins \neg length (items <math>(bs ! k)) \le i
 assumes x = items (bs!k)! i next-symbol x = None
 shows (k, cfg, inp, bins-upd bs k (Complete-it k x bs red)) \in wellformed-bins
lemma wellformed-bins-Scan-it:
 assumes (k, cfg, inp, bs) \in wellformed-bins \neg length (items <math>(bs ! k)) \le i
 assumes x = items (bs!k)! i next-symbol x = Some a
 assumes is-terminal cfg a k < length inp
 shows (k, cfg, inp, bins-upd bs (k+1) (Scan-it k inp a x pre)) \in wellformed-bins
lemma wellformed-bins-Predict-it:
 assumes (k, cfg, inp, bs) \in wellformed-bins \neg length (items <math>(bs ! k)) \le i
 assumes x = items (bs!k)! i next-symbol x = Some a \neg is-terminal cfg a
 shows (k, cfg, inp, bins-upd bs k (Predict-it k cfg a)) \in wellformed-bins
fun earley-measure :: nat \times 'a cfg \times 'a sentence \times 'a bins \Rightarrow nat \Rightarrow nat where
 earley-measure (k, cfg, inp, bs) i = card \{ x \mid x. wf-item cfg inp x \land item-end x = k \} - i
lemma \pi-it'-induct:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes base: \bigwedge k cfg inp bs i. i \ge length (items (bs!k)) \Longrightarrow P k cfg inp bs i
 assumes complete: \bigwedge k cfg inp bs i \ x. \ \neg i \ge length (items (bs ! k)) \Longrightarrow x = items (bs ! k) ! i \Longrightarrow
          next-symbol x = None \Longrightarrow P \ k \ cfg \ inp \ (bins-upd \ bs \ k \ (Complete-it \ k \ x \ bs \ i)) \ (i+1) \Longrightarrow P \ k
cfg inp bs i
 assumes scan: \bigwedge k cfg inp bs i \times a. \neg i \ge length (items (bs \mid k)) \Longrightarrow x = items (bs \mid k) \mid i \Longrightarrow
         next-symbol x = Some \ a \Longrightarrow is-terminal cfg \ a \Longrightarrow k < length \ inp \Longrightarrow
          P k cfg inp (bins-upd bs (k+1) (Scan-it k inp a x i)) (i+1) \Longrightarrow P k cfg inp bs i
 assumes pass: \bigwedge k cfg inp bs i \times a. \neg i \ge length (items (bs \mid k)) \Longrightarrow x = items (bs \mid k) \mid i \Longrightarrow
          next-symbol x = Some \ a \Longrightarrow is-terminal cfg a \Longrightarrow \neg \ k < length \ inp \Longrightarrow
         P \ k \ cfg \ inp \ bs \ (i+1) \Longrightarrow P \ k \ cfg \ inp \ bs \ i
```

```
assumes predict: \bigwedge k cfg inp bs i x a. \neg i \geq length (items (bs!k)) \Longrightarrow x = items (bs!k)! i \Longrightarrow
         next-symbol x = Some \ a \Longrightarrow \neg is-terminal cfg \ a \Longrightarrow \neg is
         P k cfg inp (bins-upd bs k (Predict-it k cfg a)) (i+1) \Longrightarrow P k cfg inp bs i
 shows P k cfg inp bs i
lemma wellformed-bins-\pi-it':
 assumes (k, cfg, inp, bs) \in wellformed-bins
 shows (k, cfg, inp, \pi-it'k cfg inp bs i) \in wellformed-bins
lemma wellformed-bins-\pi-it:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 shows (k, cfg, inp, \pi\text{-it } k cfg inp bs) \in wellformed-bins
lemma wellformed-bins-I-it:
 assumes k \le length inp wf-cfg cfg
 shows (k, cfg, inp, \mathcal{I}\text{-}it \ k \ cfg \ inp) \in wellformed-bins
lemma wellformed-bins-3-it:
 assumes k \leq length inp wf-cfg cfg
 shows (k, cfg, inp, \Im\text{-it } cfg inp) \in wellformed-bins
lemma wf-bins-\pi-it':
 assumes (k, cfg, inp, bs) \in wellformed-bins
 shows wf-bins cfg inp (\pi-it' k cfg inp bs i)
lemma wf-bins-\pi-it:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 shows wf-bins cfg inp (\pi-it k cfg inp bs)
lemma wf-bins-I-it:
 assumes k \leq length inp wf-cfg cfg
 shows wf-bins cfg inp (\mathcal{I}-it k cfg inp)
lemma wf-bins-3-it:
 assumes wf-cfg cfg
 shows wf-bins cfg inp (\Im-it cfg inp)
```

7.3 List to set

```
lemma Init-it-eq-Init:

shows bins-items (Init-it cfg inp) = Init cfg

lemma Scan-it-sub-Scan:

assumes wf-bins cfg inp bs bins-items bs \subseteq I x \in set (items (bs!k))

assumes k < length bs k < length inp

assumes next-symbol x = Some a

shows set (items (Scan-it k inp a x pre)) \subseteq Scan k inp I

lemma Predict-it-sub-Predict:

assumes wf-bins cfg inp bs bins-items bs \subseteq I x \in set (items (bs!k)) k < length bs

assumes next-symbol x = Some X

shows set (items (Predict-it k cfg X)) \subseteq Predict k cfg I

lemma Complete-it-sub-Complete:
```

```
assumes wf-bins cfg inp bs bins-items bs \subseteq I y \in set (items (bs!k)) k < length bs
 assumes next-symbol y = None
 shows set (items (Complete-it k y bs red)) \subseteq Complete k I
lemma \pi-it'-sub-\pi:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes bins-items bs \subseteq I
 shows bins-items (\pi-it' k cfg inp bs i) \subseteq \pi k cfg inp I
lemma \pi-it-sub-\pi:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes bins-items bs \subseteq I
 shows bins-items (\pi-it k cfg inp bs) \subseteq \pi k cfg inp I
lemma \mathcal{I}-it-sub-\mathcal{I}:
 assumes k \leq length inp wf-cfg cfg
 shows bins-items (\mathcal{I}-it k cfg inp) \subseteq \mathcal{I} k cfg inp
lemma 3-it-sub-3:
 assumes wf-cfg cfg
 shows bins-items (\Im-it cfg inp) \subseteq \Im cfg inp
```

7.4 Soundness

```
lemma sound-Scan-it:
 assumes wf-bins cfg inp bs bins-items bs \subseteq I x \in set (items (bs!k)) k < length bs k < length inp
 assumes next-symbol x = Some a wf-items cfg inp I sound-items cfg inp I
 shows sound-items cfg inp (set (items (Scan-it k inp a x i)))
lemma sound-Predict-it:
 assumes wf-bins cfg inp bs bins-items bs \subseteq I x \in set (items (bs!k)) k < length bs
 assumes next-symbol x = Some X sound-items cfg inp I
 shows sound-items cfg inp (set (items (Predict-it k cfg X)))
lemma sound-Complete-it:
 assumes wf-bins cfg inp bs bins-items bs \subseteq I y \in set (items (bs!k)) k < length bs
 assumes next-symbol y = None wf-items cfg inp I sound-items cfg inp I
 shows sound-items cfg inp (set (items (Complete-it k y bs i)))
lemma sound-\pi-it':
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes sound-items cfg inp (bins-items bs)
 shows sound-items cfg inp (bins-items (\pi-it' k cfg inp bs i))
lemma sound-\pi-it:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes sound-items cfg inp (bins-items bs)
 shows sound-items cfg inp (bins-items (\pi-it k cfg inp bs))
```

7.5 Set to list

```
lemma impossible-complete-item:
 assumes wf-cfg cfg wf-item cfg inp x sound-item cfg inp x
 assumes is-complete x item-origin x = k item-end x = k nonempty-derives cfg
 shows False
lemma Complete-Un-eq-terminal:
 assumes next-symbol z = Some a is-terminal cfg a wf-items cfg inp I wf-item cfg inp z wf-cfg cfg
 shows Complete k (I \cup \{z\}) = Complete k I
lemma Complete-Un-eq-nonterminal:
 assumes next-symbol z = Some a is-nonterminal cfg a sound-items cfg inp I item-end z = k
 assumes wf-items cfg inp I wf-item cfg inp z wf-cfg cfg nonempty-derives cfg
 shows Complete k (I \cup \{z\}) = Complete k I
lemma Complete-sub-bins-Un-Complete-it:
 assumes Complete k \ I \subseteq bins-items bs I \subseteq bins-items bs is-complete z \ wf-bins cfg inp bs wf-item cfg
inp z
 shows Complete k (I \cup \{z\}) \subseteq bins-items bs \cup set (items (Complete-it k z bs red))
lemma \pi-it'-mono:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 shows bins-items bs \subseteq bins-items (\pi-it' k cfg inp bs i)
lemma \pi-step-sub-\pi-it':
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes \pi-step k cfg inp (bins-items-upto bs k i) \subseteq bins-items bs
 assumes sound-items cfg inp (bins-items bs) is-word cfg inp nonempty-derives cfg
 shows \pi-step k cfg inp (bins-items bs) \subseteq bins-items (\pi-it' k cfg inp bs i)
lemma \pi-step-sub-\pi-it:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes \pi-step k cfg inp (bins-items-upto bs k 0) \subseteq bins-items bs
 assumes sound-items cfg inp (bins-items bs) is-word cfg inp nonempty-derives cfg
 shows \pi-step k cfg inp (bins-items bs) \subseteq bins-items (\pi-it k cfg inp bs)
lemma \pi-it'-bins-items-eq:
 assumes (k, cfg, inp, as) \in wellformed-bins
 assumes bins-eq-items as bs wf-bins cfg inp as
 shows bins-eq-items (\pi-it' k cfg inp as i) (\pi-it' k cfg inp bs i)
lemma \pi-it'-idem:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes i \le j sound-items cfg inp (bins-items bs) nonempty-derives cfg
 shows bins-items (\pi-it' k cfg inp (\pi-it' k cfg inp bs i) j) = bins-items (\pi-it' k cfg inp bs i)
lemma \pi-it-idem:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes sound-items cfg inp (bins-items bs) nonempty-derives cfg
 shows bins-items (\pi-it k cfg inp (\pi-it k cfg inp bs)) = \text{bins-items} (\pi-it k cfg inp bs)
lemma funpower-\pi-step-sub-\pi-it:
 assumes (k, cfg, inp, bs) \in wellformed-bins
```

```
assumes \pi-step k cfg inp (bins-items-upto bs k 0) \subseteq bins-items bs sound-items cfg inp (bins-items bs) assumes is-word cfg inp nonempty-derives cfg shows funpower (\pi-step k cfg inp) n (bins-items bs) \subseteq bins-items (\pi-it k cfg inp bs) lemma \pi-sub-\pi-it: assumes (k, cfg, inp, bs) \in wellformed-bins assumes <math>\pi-step k cfg inp (bins-items-upto bs k 0) \subseteq bins-items bs sound-items cfg inp (bins-items bs) assumes is-word cfg inp nonempty-derives cfg shows \pi k cfg inp (bins-items bs) \subseteq bins-items (\pi-it k cfg inp bs) lemma \pi-sub-\pi-it: assumes k \le l length inp \pi-cfg cfg assumes is-word cfg inp nonempty-derives cfg shows \pi \pi cfg inp \pi bins-items (\pi-it \pi cfg inp) lemma \pi-sub-\pi-it: assumes \pi-cfg cfg is-word cfg inp nonempty-derives cfg shows \pi \pi cfg inp \pi bins-items (\pi-it cfg inp)
```

7.6 Main Theorem

```
definition earley-recognized-it :: 'a bins \Rightarrow 'a cfg \Rightarrow 'a sentence \Rightarrow bool where earley-recognized-it I cfg inp = (\exists x \in set \ (items \ (I ! length \ inp)). is-finished cfg inp x) theorem earley-recognized-it-iff-earley-recognized: assumes wf-cfg cfg is-word cfg inp nonempty-derives cfg shows earley-recognized-it (\mathfrak{I}-it cfg inp) cfg inp \longleftrightarrow earley-recognized (\mathfrak{I} cfg inp) cfg inp corollary correctness-list: assumes wf-cfg cfg is-word cfg inp nonempty-derives cfg shows earley-recognized-it (\mathfrak{I}-it cfg inp) cfg inp \longleftrightarrow derives cfg [\mathfrak{S} cfg] inp
```

8 Earley Parser Implementation

8.1 Draft

8.2 Pointer lemmas

```
definition predicts :: 'a item \Rightarrow bool where
 predicts x \longleftrightarrow item\text{-}origin \ x = item\text{-}end \ x \land item\text{-}dot \ x = 0
definition scans :: 'a sentence \Rightarrow nat \Rightarrow 'a item \Rightarrow 'a item \Rightarrow bool where
 scans inp k \ x \ y \longleftrightarrow y = inc\text{-item} \ x \ k \land (\exists a. \ next\text{-symbol} \ x = Some \ a \land inp!(k-1) = a)
definition completes :: nat \Rightarrow 'a item \Rightarrow 'a item \Rightarrow 'a item \Rightarrow bool where
 completes k \ x \ y \ z \longleftrightarrow y = inc\text{-item} \ x \ k \land is\text{-complete} \ z \land item\text{-origin} \ z = item\text{-end} \ x \land
   (\exists N. next\text{-symbol } x = Some \ N \land N = item\text{-rule-head } z)
definition sound-null-ptr :: 'a entry \Rightarrow bool where
 sound-null-ptr e = (pointer \ e = Null \longrightarrow predicts \ (item \ e))
definition sound-pre-ptr :: 'a sentence \Rightarrow 'a bins \Rightarrow nat \Rightarrow 'a entry \Rightarrow bool where
 sound-pre-ptr inp bs k e = (\forall pre. pointer e = Pre pre \longrightarrow
   k > 0 \land pre < length (bs!(k-1)) \land scans inp k (item (bs!(k-1)!pre)) (item e))
definition sound-prered-ptr :: 'a bins \Rightarrow nat \Rightarrow 'a entry \Rightarrow bool where
 sound-prered-ptr bs k = (\forall p \text{ ps } k' \text{ pre red. pointer } e = \text{PreRed } p \text{ ps } \land (k', \text{pre, red}) \in \text{set } (p \text{\#ps}) \longrightarrow
   k' < k \land pre < length (bs!k') \land red < length (bs!k) \land completes k (item (bs!k'!pre)) (item e) (item
(bs!k!red)))
definition sound-ptrs :: 'a sentence \Rightarrow 'a bins \Rightarrow bool where
 sound-ptrs inp bs = (\forall k < length bs. \forall e \in set (bs!k).
   sound-null-ptr e \wedge
   sound-pre-ptr inp bs k \in \Lambda
   sound-prered-ptr bs k e)
definition mono-red-ptr :: 'a bins \Rightarrow bool where
 mono-red-ptr bs = (\forall k < length bs. \forall i < length (bs!k).
   \forall k' \text{ pre red ps. pointer } (bs!k!i) = PreRed (k', pre, red) \text{ ps} \longrightarrow red < i)
```

```
lemma sound-ptrs-bin-upd:
 assumes sound-ptrs inp bs k < length bs es = bs!k distinct (items es)
 assumes sound-null-ptr e sound-pre-ptr inp bs k e sound-prered-ptr bs k e
 shows sound-ptrs inp (bs[k := bin-upd \ e \ es])
lemma mono-red-ptr-bin-upd:
 assumes mono-red-ptr bs k < length bs es = bs!k distinct (items es)
 assumes \forall k' pre red ps. pointer e = PreRed(k', pre, red) ps \longrightarrow red < length es
 shows mono-red-ptr (bs[k := bin-upd \ e \ es])
lemma sound-mono-ptrs-bin-upds:
 assumes sound-ptrs inp bs mono-red-ptr bs k < length bs b = bs!k distinct (items b) distinct (items
es)
 assumes \forall e \in set es. sound-null-ptr e \land sound-pre-ptr inp bs k e \land sound-prered-ptr bs k e
 assumes \forall e \in set \ es. \ \forall k' \ pre \ red \ ps. \ pointer \ e = PreRed \ (k', pre, red) \ ps \longrightarrow red < length \ b
 shows sound-ptrs inp (bs[k := bin-upds es b]) \land mono-red-ptr <math>(bs[k := bin-upds es b])
lemma sound-mono-ptrs-\pi-it':
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes sound-ptrs inp bs sound-items cfg inp (bins-items bs)
 assumes mono-red-ptr bs
 assumes nonempty-derives cfg wf-cfg cfg
 shows sound-ptrs inp (\pi-it' k cfg inp bs i) \wedge mono-red-ptr (\pi-it' k cfg inp bs i)
lemma sound-mono-ptrs-\pi-it:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes sound-ptrs inp bs sound-items cfg inp (bins-items bs)
 assumes mono-red-ptr bs
 assumes nonempty-derives cfg wf-cfg cfg
 shows sound-ptrs inp (\pi-it k cfg inp bs) \land mono-red-ptr (\pi-it k cfg inp bs)
lemma sound-ptrs-Init-it:
 shows sound-ptrs inp (Init-it cfg inp)
lemma mono-red-ptr-Init-it:
 shows mono-red-ptr (Init-it cfg inp)
lemma sound-mono-ptrs-I-it:
 assumes k \le length inp wf-cfg cfg nonempty-derives cfg wf-cfg cfg
 shows sound-ptrs inp (\mathcal{I}-it k cfg inp) \wedge mono-red-ptr (\mathcal{I}-it k cfg inp)
lemma sound-mono-ptrs-\Im-it:
 assumes wf-cfg cfg nonempty-derives cfg
 shows sound-ptrs inp (\mathfrak{I}-it cfg inp) \wedge mono-red-ptr (\mathfrak{I}-it cfg inp)
```

8.3 Trees and Forests

```
datatype 'a tree =

Leaf 'a

| Branch 'a 'a tree list
```

```
fun yield-tree :: 'a tree \Rightarrow 'a sentence where
 yield-tree (Leaf a) = [a]
| yield-tree (Branch - ts) = concat (map yield-tree ts)
fun root-tree :: 'a tree \Rightarrow 'a where
 root-tree (Leaf a) = a
| root-tree (Branch N -) = N
fun wf-rule-tree :: 'a cfg \Rightarrow 'a tree \Rightarrow bool where
 wf-rule-tree - (Leaf a) \longleftrightarrow True
| wf-rule-tree cfg (Branch N ts) \longleftrightarrow (
   (\exists r \in set \ (\Re \ cfg). \ N = rule-head \ r \land map \ root-tree \ ts = rule-body \ r) \land
   (\forall t \in set \ ts. \ wf-rule-tree \ cfg \ t))
fun wf-item-tree :: 'a cfg \Rightarrow 'a item \Rightarrow 'a tree \Rightarrow bool where
 wf-item-tree cfg - (Leaf a) \longleftrightarrow True
| wf-item-tree cfg x (Branch N ts) \longleftrightarrow (
   N = item-rule-head x \land map root-tree ts = take (item-dot x) (item-rule-body x) \land
   (\forall t \in set \ ts. \ wf-rule-tree \ cfg \ t))
definition wf-yield-tree :: 'a sentence \Rightarrow 'a item \Rightarrow 'a tree \Rightarrow bool where
 wf-yield-tree inp x \ t \longleftrightarrow yield-tree t = slice (item-origin x) (item-end x) inp
datatype 'a forest =
 FLeaf 'a
 | FBranch 'a 'a forest list list
fun combinations :: 'a list list \Rightarrow 'a list list where
 combinations [] = [[]]
| combinations (xs\#xss) = [x\#cs \cdot x < -xs, cs < -combinations xss]
fun trees :: 'a forest \Rightarrow 'a tree list where
 trees(FLeaf a) = [Leaf a]
| trees (FBranch N fss) = (
   let tss = (map (\lambda fs. concat (map (\lambda f. trees f) fs)) fss) in
   map (\lambda ts. Branch N ts) (combinations tss)
 )
```

8.4 A single parse tree

```
partial-function (option) build-tree' :: 'a bins \Rightarrow 'a sentence \Rightarrow nat \Rightarrow 'a tree option where build-tree' bs inp k i = ( let e = bs!k!i in (
```

```
case pointer e of
     Null \Rightarrow Some (Branch (item-rule-head (item e)) [])
   | Pre pre \Rightarrow (
      do {
        t \leftarrow build-tree' bs inp (k-1) pre;
        case t of
          Branch N ts \Rightarrow Some (Branch N (ts @ [Leaf (inp!(k-1))]))
        | - \Rightarrow None
      })
   | PreRed(k', pre, red) \rightarrow (
      do {
        t \leftarrow build-tree' bs inp k' pre;
        case t of
         Branch N ts \Rightarrow
           do {
             t \leftarrow build-tree' bs inp k red;
             Some (Branch N (ts @ [t]))
        | - \Rightarrow None
      })
 ))
definition build-tree :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a bins \Rightarrow 'a tree option where
 build-tree cfg inp bs = (
   let k = length bs - 1 in (
   case filter-with-index (\lambda x. is-finished cfg inp x) (items (bs!k)) of
     ] \Rightarrow None
   |(-,i)\#-\Rightarrow build\text{-tree'} bs inp k i
 ))
definition wellformed-tree-ptrs :: ('a bins \times 'a sentence \times nat \times nat) set where
 well formed-tree-ptrs = \{
   (bs, inp, k, i) \mid bs inp k i.
    sound-ptrs inp bs \wedge
    mono-red-ptr\ bs\ \land
    k < length bs \land
    i < length (bs!k)
  }
fun build-tree'-measure :: ('a bins \times 'a sentence \times nat \times nat) \Rightarrow nat where
 build-tree'-measure (bs, inp, k, i) = foldl (+) 0 (map length (take k bs)) + i
lemma wellformed-tree-ptrs-pre:
```

```
assumes (bs, inp, k, i) \in wellformed-tree-ptrs
 assumes e = bs!k!i pointer e = Pre pre
 shows (bs, inp, (k-1), pre) \in wellformed-tree-ptrs
lemma wellformed-tree-ptrs-prered-pre:
 assumes (bs, inp, k, i) \in wellformed-tree-ptrs
 assumes e = bs!k!i pointer e = PreRed(k', pre, red) ps
 shows (bs, inp, k', pre) \in wellformed-tree-ptrs
lemma wellformed-tree-ptrs-prered-red:
 assumes (bs, inp, k, i) \in wellformed-tree-ptrs
 assumes e = bs!k!i pointer e = PreRed(k', pre, red) ps
 shows (bs, inp, k, red) \in wellformed-tree-ptrs
lemma build-tree'-induct:
 assumes (bs, inp, k, i) \in wellformed-tree-ptrs
 assumes \land bs inp k i.
   (\land e \ pre. \ e = bs!k!i \Longrightarrow pointer \ e = Pre \ pre \Longrightarrow P \ bs \ inp \ (k-1) \ pre) \Longrightarrow
   (\bigwedge e \ k' \ pre \ red \ ps. \ e = bs! \ k! i \Longrightarrow pointer \ e = PreRed \ (k', pre, red) \ ps \Longrightarrow P \ bs \ inp \ k' \ pre) \Longrightarrow
   (\land e \ k' \ pre \ red \ ps. \ e = bs!k!i \Longrightarrow pointer \ e = PreRed \ (k', pre, red) \ ps \Longrightarrow P \ bs \ inp \ k \ red) \Longrightarrow
  P bs inp k i
 shows P bs inp k i
lemma build-tree'-termination:
 assumes (bs, inp, k, i) \in wellformed-tree-ptrs
 shows \exists N ts. build-tree' bs inp k i = Some (Branch N ts)
lemma wf-item-tree-build-tree':
 assumes (bs, inp, k, i) \in wellformed-tree-ptrs
 assumes wf-bins cfg inp bs
 assumes k < length bs i < length (bs!k)
 assumes build-tree' bs inp k i = Some t
 shows wf-item-tree cfg (item (bs!k!i)) t
lemma wf-yield-tree-build-tree':
 assumes (bs, inp, k, i) \in wellformed-tree-ptrs
 assumes wf-bins cfg inp bs
 assumes k < length bs i < length (bs!k) k \leq length inp
 assumes build-tree' bs inp k i = Some t
 shows wf-yield-tree inp (item (bs!k!i)) t
theorem wf-rule-root-yield-tree-build-tree:
 assumes wf-bins cfg inp bs sound-ptrs inp bs mono-red-ptr bs length bs = length inp + 1
 assumes build-tree cfg inp bs = Some t
 shows wf-rule-tree cfg t \land root-tree t = \mathfrak{S} cfg \land yield-tree t = inp
corollary wf-rule-root-yield-tree-build-tree-3-it:
 assumes wf-cfg cfg nonempty-derives cfg
 assumes build-tree cfg inp (\mathfrak{I}-it cfg inp) = Some t
 shows wf-rule-tree cfg t \land root-tree t = \mathfrak{S} cfg \land yield-tree t = inp
theorem correctness-build-tree-J-it:
 assumes wf-cfg cfg is-word cfg inp nonempty-derives cfg
```

shows $(\exists t. build-tree \ cfg \ inp \ (\Im-it \ cfg \ inp) = Some \ t) \longleftrightarrow derives \ cfg \ [\Im \ cfg] \ inp$

8.5 Parse trees

```
fun insert-group :: ('a \Rightarrow 'k) \Rightarrow ('a \Rightarrow 'v) \Rightarrow 'a \Rightarrow ('k \times 'v \ list) \ list \Rightarrow ('k \times 'v \ list) \ list where
 insert-group K V a [] = [(K a, [V a])]
| insert-group K V a ((k, vs) # xs) = (
   if K a = k then (k, V a \# vs) \# xs
   else (k, vs) # insert-group K V a xs
fun group-by :: ('a \Rightarrow 'k) \Rightarrow ('a \Rightarrow 'v) \Rightarrow 'a \text{ list} \Rightarrow ('k \times 'v \text{ list}) \text{ list where}
 group-by KV[] = []
| group-by \ K \ V \ (x\#xs) = insert-group \ K \ V \ x \ (group-by \ K \ V \ xs)
partial-function (option) build-trees' :: 'a bins \Rightarrow 'a sentence \Rightarrow nat \Rightarrow nat set \Rightarrow 'a forest list
option where
 build-trees' bs inp k i I = (
   let e = bs!k!i in (
   case pointer e of
     Null \Rightarrow Some ([FBranch (item-rule-head (item e)) []])
   | Pre pre \Rightarrow (
       do {
        pres \leftarrow build\text{-}trees' bs inp (k-1) pre \{pre\};
         those (map (\lambda f.
          case f of
            FBranch N fss \Rightarrow Some (FBranch N (fss @ [[FLeaf (inp!(k-1))]]))
          | - \Rightarrow None
        ) pres)
       })
   | PreRed p ps \Rightarrow (
       let ps' = filter(\lambda(k', pre, red). red \notin I)(p#ps) in
       let gs = group-by (\lambda(k', pre, red), (k', pre)) (\lambda(k', pre, red), red) ps' in
       map-option concat (those (map (\lambda((k', pre), reds)).
        do {
          pres \leftarrow build-trees' bs inp k' pre \{pre\};
          rss \leftarrow those \ (map \ (\lambda red. \ build-trees' \ bs \ inp \ k \ red \ (I \cup \{red\})) \ reds);
          those (map (\lambda f.
            case f of
              FBranch \ N \ fss \Rightarrow Some \ (FBranch \ N \ (fss @ [concat \ rss]))
            | - \Rightarrow None
          ) pres)
```

```
) gs))
definition build-trees :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a bins \Rightarrow 'a forest list option where
 build-trees cfg inp bs = (
  let k = length bs - 1 in
  let finished = filter-with-index (\lambda x. is-finished cfg inp x) (items (bs!k)) in
  map-option concat (those (map (\lambda(-, i). build-trees' bs inp k i \{i\}) finished))
definition wellformed-forest-ptrs :: ('a bins \times 'a sentence \times nat \times nat \times nat set) set where
 well formed-forest-ptrs = \{
   (bs, inp, k, i, I) \mid bs inp k i I.
    sound-ptrs inp bs \wedge
    k < length bs \land
    i < length (bs!k) \land
    I \subseteq \{0..< length\ (bs!k)\} \land
    i \in I
 }
fun build-forest'-measure :: ('a bins \times 'a sentence \times nat \times nat \times nat set) \Rightarrow nat where
 build-forest'-measure (bs, inp, k, i, I) = foldl (+) 0 (map length (take (k+1) bs)) - card I
lemma wellformed-forest-ptrs-pre:
 assumes (bs, inp, k, i, I) \in wellformed-forest-ptrs
 assumes e = bs!k!i pointer e = Pre pre
 shows (bs, inp, (k-1), pre, \{pre\}) \in wellformed-forest-ptrs
lemma wellformed-forest-ptrs-prered-pre:
 assumes (bs, inp, k, i, I) \in wellformed-forest-ptrs
 assumes e = bs!k!i pointer e = PreRed p ps
 assumes ps' = filter (\lambda(k', pre, red). red \notin I) (p#ps)
 assumes gs = group-by(\lambda(k', pre, red).(k', pre))(\lambda(k', pre, red). red) ps'
 assumes ((k', pre), reds) \in set gs
 shows (bs, inp, k', pre, \{pre\}) \in wellformed-forest-ptrs
lemma wellformed-forest-ptrs-prered-red:
 assumes (bs, inp, k, i, I) \in wellformed-forest-ptrs
 assumes e = bs!k!i pointer e = PreRed p ps
 assumes ps' = filter (\lambda(k', pre, red). red \notin I) (p#ps)
 assumes gs = group-by (\lambda(k', pre, red), (k', pre)) (\lambda(k', pre, red), red) ps'
 assumes ((k', pre), reds) \in set gs red \in set reds
 shows (bs, inp, k, red, I \cup \{red\}) \in wellformed-forest-ptrs
lemma build-trees'-induct:
 assumes (bs, inp, k, i, I) \in well formed-forest-ptrs
```

```
assumes \land bs inp \ k \ i \ I.
   (\land e \ pre. \ e = bs!k!i \Longrightarrow pointer \ e = Pre \ pre \Longrightarrow P \ bs \ inp \ (k-1) \ pre \ \{pre\}) \Longrightarrow
   (\land e \ p \ ps \ ps' \ gs \ k' \ pre \ reds. \ e = bs!k!i \Longrightarrow pointer \ e = PreRed \ p \ ps \Longrightarrow
    ps' = filter (\lambda(k', pre, red). red \notin I) (p#ps) \Longrightarrow
    gs = group-by(\lambda(k', pre, red).(k', pre))(\lambda(k', pre, red). red) ps' \Longrightarrow
    ((k', pre), reds) \in set \ gs \Longrightarrow P \ bs \ inp \ k' \ pre \ \{pre\}) \Longrightarrow
   (\wedge e p p s p s' q s k' p r e red reds reds'. <math>e = b s! k! i \Longrightarrow p o inter e = P r e R e d p p s \Longrightarrow
    ps' = filter (\lambda(k', pre, red). red \notin I) (p#ps) \Longrightarrow
    gs = group-by \ (\lambda(k', pre, red). \ (k', pre)) \ (\lambda(k', pre, red). \ red) \ ps' \Longrightarrow
    ((k', pre), reds) \in set \ gs \Longrightarrow red \in set \ reds \Longrightarrow P \ bs \ inp \ k \ red \ (I \cup \{red\})) \Longrightarrow
   P bs inp k i I
 shows P bs inp k i I
lemma build-trees'-termination:
 assumes (bs, inp, k, i, I) \in wellformed-forest-ptrs
 shows \exists fs. build-trees' bs inp k i I = Some fs \land (\forall f \in set fs. \exists N fss. f = FBranch N fss)
lemma wf-item-tree-build-trees':
 assumes (bs, inp, k, i, I) \in wellformed-forest-ptrs
 assumes wf-bins cfg inp bs
 assumes k < length bs i < length (bs!k)
 assumes build-trees' bs inp k i I = Some fs
 assumes f \in set fs
 assumes t \in set (trees f)
 shows wf-item-tree cfg (item (bs!k!i)) t
lemma wf-yield-tree-build-trees':
 assumes (bs, inp, k, i, I) \in well formed-forest-ptrs
 assumes wf-bins cfg inp bs
 assumes k < length bs i < length (bs!k) k < length inp
 assumes build-trees' bs inp k i I = Some fs
 assumes f \in set fs
 assumes t \in set (trees f)
 shows wf-yield-tree inp (item (bs!k!i)) t
theorem wf-rule-root-yield-tree-build-trees:
 assumes wf-bins cfg inp bs sound-ptrs inp bs length bs = length inp + 1
 assumes build-trees cfg inp bs = Some fs f \in set fs t \in set (trees f)
 shows wf-rule-tree cfg t \land root-tree t = \mathfrak{S} cfg \land yield-tree t = inp
corollary wf-rule-root-yield-tree-build-trees-3-it:
 assumes wf-cfg cfg nonempty-derives cfg
 assumes build-trees cfg inp (\mathfrak{I}-it cfg inp) = Some fs f \in set fs t \in set (trees f)
 shows wf-rule-tree cfg t \land root-tree t = \mathfrak{S} cfg \land yield-tree t = inp
theorem soundness-build-trees-3-it:
 assumes wf-cfg cfg is-word cfg inp nonempty-derives cfg
 assumes build-trees cfg inp (\mathfrak{I}-it cfg inp) = Some fs f \in set fs t \in set (trees f)
 shows derives cfg [\mathfrak{S} cfg] inp
theorem termination-build-tree-3-it:
```

assumes wf-cfg cfg nonempty-derives cfg derives cfg $[\mathfrak{S} \ cfg]$ inp **shows** \exists fs. build-trees cfg inp $(\mathfrak{I}$ -it cfg inp) = Some fs

8.6 A word on completeness

9 Examples

9.1 epsilon free CFG

```
definition \varepsilon-free :: 'a cfg \Rightarrow bool where \varepsilon-free cfg \longleftrightarrow (\forall r \in set \ (\Re \ cfg). \ rule-body r \neq [])

lemma \varepsilon-free-impl-non-empty-deriv: \varepsilon-free cfg \Longrightarrow N \in set \ (\Re \ cfg) \Longrightarrow \neg \ derives \ cfg \ [N] \ []
```

9.2 Example 1: Addition

```
datatype t1 = x \mid plus
datatype n1 = S
datatype s1 = Terminal \ t1 \mid Nonterminal \ n1
definition nonterminals1 :: s1 list where
 nonterminals1 = [Nonterminal S]
definition terminals1 :: s1 list where
 terminals1 = [Terminal x, Terminal plus]
definition rules1 :: s1 rule list where
 rules1 = [
  (Nonterminal S, [Terminal x]),
  (Nonterminal S, [Nonterminal S, Terminal plus, Nonterminal S])
definition start-symbol1 :: s1 where
 start-symbol1 = Nonterminal S
definition cfg1 :: s1 cfg where
 cfg1 = CFG \ nonterminals1 \ terminals1 \ rules1 \ start-symbol1
definition inp1 :: s1 list where
 inp1 = [Terminal x, Terminal plus, Terminal x, Terminal plus, Terminal x]
lemma wf-cfg1:
```

```
shows wf-cfg cfg1
lemma is-word-inp1:
 shows is-word cfg1 inp1
lemma nonempty-derives1:
 shows nonempty-derives cfg1
lemma correctness1:
 shows earley-recognized-it (3-it cfg1 inp1) cfg1 inp1 \longleftrightarrow derives cfg1 [\mathfrak S cfg1] inp1
fun size-bins :: 'a bins <math>\Rightarrow nat where
 size-bins bs = fold (+) (map \ length \ bs) 0
value 3-it cfg1 inp1
value size-bins (3-it cfg1 inp1)
value earley-recognized-it (3-it cfg1 inp1) cfg1 inp1
value build-trees cfg1 inp1 (3-it cfg1 inp1)
value map-option (map trees) (build-trees cfg1 inp1 (3-it cfg1 inp1))
value map-option (foldl (+) 0 \circ map length) (map-option (map trees) (build-trees cfg1 inp1 (3-it cfg1
inp1)))
9.2.1 Example 2: Cyclic reduction pointers
datatype t2 = x
datatype n2 = A \mid B
datatype s2 = Terminal t2 \mid Nonterminal n2
definition nonterminals2 :: s2 list where
 nonterminals2 = [Nonterminal A, Nonterminal B]
definition terminals2 :: s2 list where
 terminals2 = [Terminal x]
definition rules2 :: s2 rule list where
 rules2 = [
  (Nonterminal B, [Nonterminal A]),
  (Nonterminal A, [Nonterminal B]),
   (Nonterminal A, [Terminal x])
definition start-symbol2 :: s2 where
 start-symbol2 = Nonterminal A
definition cfg2 :: s2 cfg where
 cfg2 = CFG nonterminals2 terminals2 rules2 start-symbol2
definition inp2 :: s2 list where
```

```
inp2 = [Terminal \ x]
lemma \ wf-cfg2: shows \ wf-cfg \ cfg2
lemma \ is-word-inp2: shows \ is-word \ cfg2 \ inp2
lemma \ nonempty-derives2: shows \ nonempty-derives \ cfg2
lemma \ correctness2: shows \ earley-recognized-it \ (\Im-it \ cfg2 \ inp2) \ cfg2 \ inp2 \longleftrightarrow derives \ cfg2 \ [\mathfrak{S} \ cfg2] \ inp2
value \ \Im-it \ cfg2 \ inp2
value \ earley-recognized-it \ (\Im-it \ cfg2 \ inp2) \ cfg2 \ inp2
value \ build-trees \ cfg2 \ inp2 \ (\Im-it \ cfg2 \ inp2)
value \ map-option \ (map \ trees) \ (build-trees \ cfg2 \ inp2 \ (\Im-it \ cfg2 \ inp2))
```

10 Conclusion

- 10.1 Summary
- 10.2 Future Work

11 Templates

11.1 Section

Citation test [latex].

11.1.1 Subsection

See Table 11.1, Figure 11.1, Figure 11.2, Figure 11.3.

Table 11.1: An example for a simple table.

A	В	C	D
1	2	1	2
2	3	2	3

Figure 11.1: An example for a simple drawing.

Figure 11.2: An example for a simple plot.

```
SELECT * FROM tbl WHERE tbl.str = "str"
```

Figure 11.3: An example for a source code listing.

List of Figures

4.1	Earley Inference Rules	13
11.1	Example drawing	47
11.2	Example plot	48
11.3	Example listing	48

List of Tables

4.1	Earley Items	14
11.1	Example table	47