DS5500 HW3

Surui Yang

In [1]: import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import csv import warnings warnings.filterwarnings('ignore')

Problem 1

Rank and visualize the states that take in the most federal funding (revenue).

```
In [2]: district_level_fiscal= pd.read_csv('Sdf16_1a.csv',sep='\t')
```

In [3]: federal_fund_state = district_level_fiscal[district_level_fiscal['TFEDREV']>0].groupby("STNA federal_fund_state

Out[3]:

	FIPST	YEAR	CCDNF	CENFILE	V33	MEMBERSCH	TOTALREV	TFEDR
STNAME								
California	6108	16288	1018	1017	6203559	6187037	89110947000	77092750
Texas	58368	19456	1216	1044	5296442	5296378	60768409000	61943170
New York	24732	10992	687	677	2591958	2572154	67051220000	33747940
Florida	804	1072	67	67	2776933	2776067	28125598000	31473290
Illinois	16524	15552	972	970	2029830	2007587	32884195000	2334945(
Pennsylvania	31836	12128	758	592	1700375	1701253	32814988000	20373150
Ohio	41340	16960	1059	702	1711138	1709658	24870176000	18379630
Georgia	2782	3424	214	196	1741838	1741990	19532968000	18152420
Michigan	23010	14160	885	595	1481694	1479649	20826612000	17310340
North Carolina	9953	4304	269	115	1543632	1543375	14119703000	15879760
Arizona	2416	9664	604	232	1078838	1073661	9830650000	13020100

New Jersey	22950	10800	675	580	1407891	1368021	30773538000	1249741(
Louisiana	3014	2192	137	69	716650	684744	9066633000	1115619(
Washington	16218	4896	306	303	1084022	1084684	14972096000	10983320
Tennessee	6674	2272	142	142	999260	983814	9586098000	10961820
Virginia	6732	2112	132	132	1283493	1283451	16208682000	10581460
Indiana	7146	6352	397	309	1042311	1042215	13107646000	10154760
Missouri	16153	8912	557	518	917389	916511	11199359000	959978(
Kentucky	3633	2768	173	173	686440	686094	7745928000	8802960
South Carolina	4185	1488	93	89	763011	762977	9436787000	8608670
Maryland	576	384	24	24	879196	879182	14409321000	823599(
Massachusetts	9925	6352	397	320	961272	950659	18176359000	804595(
Alabama	137	2192	137	135	743789	698300	7607098000	8039070
Wisconsin	23430	6816	426	425	857796	857615	11697023000	782647(
Colorado	1568	3136	196	195	895709	898376	10256106000	721719(
Oklahoma	22080	8832	552	520	692605	692467	6233064000	7032250
Mississippi	4032	2304	144	144	486245	371149	4755399000	6907240
Minnesota	14715	8720	545	374	861784	863166	12869206000	685055(
Arkansas	1350	4320	270	249	491251	491242	5513815000	6069460
Oregon	8815	3440	215	215	574225	566665	7418000000	5825600
New Mexico	5250	2400	150	89	334960	333323	3924863000	5162890
Connecticut	1791	3184	198	173	511441	525555	11552177000	4841860
Iowa	6555	5520	345	345	507996	500076	6919477000	4648520
Kansas	5720	4576	286	286	495545	488229	6069563000	4539220
Utah	7105	2320	145	41	647613	647613	5414412000	4196420
Nevada	576	288	18	17	467371	467371	4668171000	4057890
West Virginia	3510	1040	57	63	277436	277436	3420589000	3602830
Nebraska	8122	4192	262	262	315520	315513	4398811000	3468260
Alaska	108	864	54	54	132477	132477	2494691000	3073200
Hawaii	15	16	1	1	181995	181995	3030519000	261131(
Idaho	2448	2448	153	116	291737	291847	2378743000	2485460
District of Columbia	682	992	62	1	82962	82144	2138284000	2262020
Montana	12660	6752	422	422	145019	145039	1797849000	2203400

South Dakota	6900	2400	150	150	134045	133668	1455737000	196644(
Rhode Island	2728	992	62	40	141733	140353	2549378000	1882040
Maine	5451	3792	236	231	180137	176148	2848422000	1865230
New Hampshire	5610	2720	170	170	179664	173966	3146745000	1691660
North Dakota	7676	3232	202	202	108285	106412	1787486000	155453(
Delaware	470	752	47	19	134845	134306	2222987000	1447070
Wyoming	2688	768	48	48	94511	94511	2044669000	1230120
Vermont	9650	3088	193	193	59806	59305	1627661000	111891(

51 rows × 132 columns

```
In [4]: f, ax = plt.subplots(figsize=(28, 15))
plt.tight_layout()
sns.barplot(x='TFEDREV',y='STNAME',data =federal_fund_state.reset_index())
plt.ylabel('State',fontsize=28)
plt.xlabel('Sum of Federal Funding',fontsize=28)
plt.title('Rank for Sum of Federal Funding in States ',fontsize=28)
```

Out[4]: Text(0.5, 1, 'Rank for Sum of Federal Funding in States ')

Which states spend the most federal funding per student?

In [5]: federal_fund_state['spend_fd_pstu'] = federal_fund_state['TFEDREV']/federal_fund_state['V federal_fund_state.sort_values(by='spend_fd_pstu',ascending= False)['spend_fd_pstu']

OUTLIANT

∪uι[∪]. OTNAIVI⊏

District of Columbia 2726.573612 2319.798908 Alaska Vermont 1870.899241 Louisiana 1556.713877 New Mexico 1541.345235 Montana 1519.387115 1466.999888 South Dakota North Dakota 1435.591264 Hawaii 1434.825133 Mississippi 1420.526689 Rhode Island 1327.877065 New York 1302.024956 Wyoming 1301.562781 West Virginia 1298.616618 Kentucky 1282.407785 California 1242.718091 Arkansas 1235.510971 Arizona 1206.863310 Pennsylvania 1198.156289 Texas 1169.524182 Michigan 1168.280360 Illinois 1150.315544 Florida 1133.383124 South Carolina 1128.249789 Nebraska 1099.220335 Tennessee 1096.993775 Alabama 1080.826686 Ohio 1074.117342 1073.135823 Delaware Missouri 1046.424145 Georgia 1042.141692 Maine 1035.450796 North Carolina 1028.727054 Oklahoma 1015.333415 Oregon 1014.515216 Washington 1013.200839 Indiana 974.254325 Connecticut 946.709396 New Hampshire 941.568706 Maryland 936.763816 Kansas 916.005610 lowa 915.070197 Wisconsin 912.392923 New Jersey 887.668861 Nevada 868.237439 Idaho 851.952272 Massachusetts 837.010752 824.426779 Virginia Colorado 805.751645

Minnesota 794.926571 Utah 647.982669 Name: spend_fd_pstu, dtype: float64

Based on the above data, we konw that District of Columbia spent the most federal funding per student

Problem 2

Visualize the relationship between school districts' total revenue and expenditures.

In [6]: school_districts_state = district_level_fiscal[district_level_fiscal['TOTALREV']>0].groupby("Sschool_districts_state

Out[6]:

	FIPST	YEAR	CCDNF	CENFILE	V33	MEMBERSCH	TOTALREV	TFEDR
STNAME								
Alabama	137	2192	137	135	743789	698300	7607098000	8039070
Alaska	108	864	54	54	132477	132477	2494691000	3073200
Arizona	2632	10528	658	236	1096992	1091693	9980177000	13020100
Arkansas	1355	4336	271	249	491603	491594	5517204000	6069460
California	6300	16800	1050	1049	6203499	6186951	89224004000	77092750
Colorado	1584	3168	198	197	895704	898770	10260558000	7217190
Connecticut	1809	3216	199	174	512461	526575	11552645000	4841860
Delaware	500	800	50	19	134841	134302	2223576000	1447070
District of Columbia	715	1040	65	1	82955	82175	2170632000	2262020
Florida	804	1072	67	67	2776933	2776067	28125598000	31473290
Georgia	2808	3456	216	196	1755985	1756137	19610778000	18152420
Hawaii	15	16	1	1	181995	181995	3030519000	261131(
Idaho	2480	2480	155	116	292082	292192	2382012000	2485460
Illinois	16779	15792	986	984	2029801	2007855	32918922000	23349450
Indiana	7326	6512	407	313	1045066	1044966	13143063000	10154760
Iowa	6555	5520	345	345	507996	500076	6919477000	4648520
Kansas	5720	4576	286	286	495545	488229	6069563000	4539220
Kentucky	3633	2768	173	173	686440	686094	7745928000	8802960

Louisiana	3058	2224	139	69	717223	685317	9082765000	11156190
Maine	6118	4256	258	259	180278	176223	2861888000	1865230
Maryland	576	384	24	24	879196	879182	14409321000	8235990
Massachusetts	9950	6368	398	320	961325	950712	18177253000	8045950
Michigan	23322	14352	897	598	1486090	1484043	20863260000	17310340
Minnesota	15066	8928	558	386	861866	863429	12889641000	6850550
Mississippi	4032	2304	144	144	486245	371149	4755399000	6907240
Missouri	16153	8912	557	518	917389	916511	11199359000	9599780
Montana	12870	6864	429	429	145149	145169	1800909000	2203400
Nebraska	8122	4192	262	262	315520	315513	4398811000	3468260
Nevada	608	304	19	17	467527	467527	4670678000	4057890
New Hampshire	5808	2816	176	176	179652	173954	3150473000	1691660
New Jersey	23494	11056	691	584	1408142	1368280	30820854000	1249741(
New Mexico	5285	2416	151	89	335316	333679	3928180000	5162890
New York	24912	11072	691	682	2591962	2572171	67055472000	33747940
North Carolina	10101	4368	273	115	1544648	1544391	14128774000	15879760
North Dakota	7866	3312	207	207	108320	106437	1788749000	1554530
Ohio	42354	17376	1085	712	1712745	1711257	24929540000	18379630
Oklahoma	22160	8864	554	520	692658	692519	6237553000	7032250
Oregon	8856	3456	216	216	574223	566663	7418055000	5825600
Pennsylvania	32214	12272	766	595	1701007	1701886	32857966000	20373150
Rhode Island	2728	992	62	40	141733	140353	2549378000	1882040
South Carolina	4185	1488	93	89	763011	762977	9436787000	8608670
South Dakota	6900	2400	150	150	134045	133668	1455737000	1966440
Tennessee	6674	2272	142	142	999260	983814	9586098000	10961820
Texas	59088	19696	1231	1046	5299681	5299615	60776728000	61943170
Utah	7448	2432	152	41	647599	647599	5415569000	4196420
Vermont	15900	5088	318	316	86335	84124	2133017000	111891(
Virginia	6783	2128	132	133	1283491	1283449	16259274000	10581460
Washington	16271	4912	307	304	1084025	1084687	14972163000	10983320
West Virginia	3510	1040	57	63	277436	277436	3420589000	3602830
Wisconsin	23485	6832	427	426	857794	857612	11698660000	7826470

Wyoming 2688 768 48 48 94511 94511 2044669000 1230120

51 rows × 132 columns

```
In [7]: plt.tight_layout()
    sns.scatterplot(x='TOTALREV',y='TOTALEXP',data=school_districts_state)
    plt.ylabel('School Districts' Total Expenditures')
    plt.xlabel('School Districts' Total Revenue')
    plt.title('Relationship')
```

Out[7]: Text(0.5, 1.0, 'Relationship')

Based on the above plot, we could knnw that there is a obvious positive linear relationship between school districts' total revenue and expenditures

Which states have the most debt per student?

```
school_districts_state['debt_pstu'] = (school_districts_state['_41F'] + school_districts_state[
In [8]:
In [9]:
        school_districts_state.sort_values(by='debt_pstu',ascending=False)['debt_pstu']
Out[9]: STNAME
        South Carolina
                             18375.689210
        Minnesota
                            15607.783577
        Texas
                           14836.154289
        Pennsylvania
                             14489.936255
        Michigan
                            12354.998688
                            12017.822344
        Oregon
        New York
                            11487.475897
                           11238.315390
        Kansas
```

Washington	10514.506584
Alaska	10360.492765
	10277.136527
California	10176.304050
Indiana	10076.635351
Nebraska	8746.675330
Arkansas	8672.959685
	8544.569081
Kentucky District of Columb	
Nevada	8160.241013
Alabama	8040.434855
Colorado	7992.523200
Missouri	7777.783470
lowa	7423.564359
Ohio	7309.893767
South Dakota	6914.260137
North Dakota	6779.579025
	6549.746745
Virginia New Mexico	6473.475766
	6383.432228
Rhode Island	
Wisconsin	6198.518525
Tennessee	5817.083642
Montana	5729.326416
Louisiana	5636.000240
Massachusetts	5585.114295
Florida	5277.146046
Maryland	5039.002680
Maine	5024.046195
New Jersey	4996.889518
New Hampshire	4944.804400
Idaho	4935.572887
Utah	4870.878429
North Carolina	4860.249066
Connecticut	4843.035860
Delaware	4639.123115
Arizona	4595.944182
Mississippi	3342.946457
Oklahoma	3147.769895
Vermont	2987.733828
Georgia	2587.274379
West Virginia	1246.413587
Wyoming	664.578726
Hawaii	0.000000
Name: debt_pstu,	dtype: float64

Based on the above data, we konw that South Carolina had the most debt per student

Problem 3

```
In [10]:
        district_level_performance= pd.read_csv('math-achievement-lea-sy2015-16.csv')
        ALL_MTH00PCTPROF_1516 is a blurred metric and I will use this as my performance matric
        district_level_performance.groupby('ALL_MTH00PCTPROF_1516').count().reset_index()['ALL
In [11]:
Out[11]: 0
                10
             10-14
        1
        2
                11
        3
              11-19
                12
        4
        132
               LE<sub>10</sub>
        133
               LE20
        134
                LE5
        135
               LT50
                 PS
        136
        Name: ALL_MTH00PCTPROF_1516, Length: 137, dtype: object
        type(district_level_performance['ALL_MTH00PCTPROF_1516'][0])
In [12]:
```

```
In [13]:
         def process_blur(data):
            for i in range(len(data)):
               if 'LT' in data[i]:
                  temp = int(data[i][2:])
                  data[i] = np.mean([0,temp-1]) # if it is LT (less than), take mean of 0 and that nun
               elif 'LE' in data[i]:
                  temp = int(data[i][2:])
                  data[i] = np.mean([0,temp]) # if it is LE (less than or equal to), take mean of 0 and
               elif 'GT' in data[i]:
                  temp = int(data[i][2:])
                  data[i] = np.mean([temp+1,100]) # if it is GT (greater than), take mean of 100 and
               elif 'GE' in data[i]:
                  temp = int(data[i][2:])
                  data[i] = np.mean([temp,100]) # if it is GE (less than), take mean of 100 and that n
               elif 'PS' in data[i]:
                  data[i] = 'temp' # if it is suppressed to protect student privacy, wait for input
               elif '-' in data[i]:
                  temp = data[i].split('-')
                  data[i] = np.mean([int(temp[0]),int(temp[1])]) # if it is a range, take mean of start r
               else:
                  data[i] = int(data[i])
            input_avg =np.mean(data[data!='temp'])
            for i in range(len(data)):
               if data[i]=='temp':
                  data[j] = input_avg
            return data
```

In [14]: district_level_performance['ALL_MTH00PCTPROF_1516'] = process_blur(district_level_performance['ALL_MTH00PCTPROF_1516']

```
In [15]: sns.distplot(district_level_performance['ALL_MTH00PCTPROF_1516']) plt.title('Distribution of ALL_MTH00PCTPROF_1516 ')
```

Out[15]: Text(0.5, 1.0, 'Distribution of ALL_MTH00PCTPROF_1516 ')

Problem 4

You are tasked with cutting 15% of the U.S. federal budget currently being spent on funding school districts. How much money is this?

```
In [16]: cut_money = 0.15*federal_fund_state['TFEDREV'].sum() cut_money
```

Out[16]: 8340411300.0

First Round(National Wide 10%)

```
In [17]: school =district_level_fiscal[district_level_fiscal['TFEDREV']>0]
first_round_cut= 0.1*school['TFEDREV'].sum()
first_round_cut_list = school
first_round_cut_list['1_TFEDREV'] = 0.1*first_round_cut_list['TFEDREV']
first_round_cut_list['TFEDREV_after1'] = 0.9*first_round_cut_list['TFEDREV']
```

Second Round(Performance Focused)

```
In [18]: threshold = np.percentile(district_level_performance['ALL_MTH00PCTPROF_1516'],75)
threshold

Out[18]: 62.0

In [19]: cut_off_list = district_level_performance[district_level_performance['ALL_MTH00PCTPROF_In [20]: second_round_cut_list = pd.merge(cut_off_list,first_round_cut_list, on='LEAID',how='left')
total_have = second_round_cut_list['TFEDREV_after1'].sum()
percent = 100*(cut_money-first_round_cut)/total_have
percent # cut off percent of target school

Out[20]: 17.488760817082923

In [21]: second_round_cut_list['2_TFEDREV'] = round((percent/100)*second_round_cut_list['TFEDREV'])
```

In [22]: final_cut_off = pd.merge(first_round_cut_list,second_round_cut_list,on='LEAID',how='left') final_cut_off

Out[22]:

	LEAID	CENSUSID_x	FIPST	CONUM_x	CSA_x	CBSA_x	NAME_x	STNAME_x 5
0	100005	01504840100000	1	01095	290	10700	Albertville City	Alabama
1	100006	01504800100000	1	01095	290	10700	Marshall County	Alabama
2	100007	01503740100000	1	01073	142	13820	Hoover City	Alabama
3	100008	01504530100000	1	01089	290	26620	Madison City	Alabama
4	100011	01503710100000	1	01073	142	13820	Leeds City	Alabama
16534	5605762	51501900200000	56	56037	N	40540	Sweetwater County School District #2	Wyoming
16535	5605820	51502200300000	56	56043	N	N	Washakie County School District #2	Wyoming
16536	5605830	51502000200000	56	56039	N	27220	Teton County School District #1	Wyoming
16537	5606090	51502300200000	56	56045	N	N	Weston County School District #7	Wyoming
16538	5606240	51502200400000	56	56043	N	N	Washakie County School District #1	Wyoming

 $16539 \text{ rows} \times 752 \text{ columns}$

In [23]: final_cut_off.fillna({'1_TFEDREV_x':0,'2_TFEDREV':0},inplace=True) final_cut_off['Amount of Funding Cut'] = final_cut_off['1_TFEDREV_x']+final_cut_off['2_TFEI]

In [24]: final_cut_off['Amount of Funding Cut'].sum()

Out[24]: 8340411301.700001

2019/11/11 下午3:40 ds5500 HW3 - Jupyter Notebook

In [25]: final_cut_off[['LEAID','Amount of Funding Cut']]

Out[25]:

	LEAID	Amount of Funding Cut
0	100005	1873091.4
1	100006	1994068.9
2	100007	608800.0
3	100008	500700.0
4	100011	391761.0
16534	5605762	533073.0
16535	5605820	66408.9
16536	5605830	476960.1
16537	5606090	56370.3
16538	5606240	410293.8

16539 rows × 2 columns

Problem 5

If we are required to cut 15% of the U.S. federal budget currently being spent on funding school districts, I suggest conduct this by two rounds cutting off. The first round will be a national wide one, which cut off 10% of federal budget currently being spent on funding of every school districts. This will not make sure this plan highly biased, which is fair for the school districts in the second round list. The second round will focus on school districts that have undesirable performance. I use ALL_MTH00PCTPROF_1516 as metric and cut off the founds for those whose performance is below the 75 percentage. This is reasonable, because punishment mechanism should be considered and it make this plan fair to the the school districts that perform well. Then, I calculate the average cuf off percentage for the second round, which is around 17.5%. The last step is adding the amount of cutting in two rounds.