\mathbb{R}^n の空でない星状開集合 U は \mathbb{R}^n と微分同相

tko919

U が星状 $\stackrel{\mathrm{def}}{\Longleftrightarrow} \exists x_0 \in U, \forall x \in U, 0 \leq \forall t \leq 1, (1-t)x_0 + tx \in U$

Fact として次を認める。

 \mathbb{R}^n の閉集合 V に対し、 C^∞ 級関数 $f:\mathbb{R}^n\to\mathbb{R}$ で $f(V)=0,0\notin f(V^c)$ となるものが存在する。 証明は "Bump function" 等で調べれば出てくるが、本筋ではないので割愛する。

定理 0.1. \mathbb{R}^n の空でない星状開集合 U は \mathbb{R}^n と微分同相である。

Proof. 平行移動によって $x_0 = 0$ としてよい。

微分同相写像 ƒ の構成

Fact より C^{∞} 級関数 $\phi: \mathbb{R}^n \to \mathbb{R}_{>0}$ で $\phi^{-1}(0) = U^c$ となるものが取れる。このとき、

$$g: U \to \mathbb{R}$$

$$x \mapsto \left(\int_0^1 \frac{dt}{\phi(xt)} \right)^2 \cdot ||x||^2$$

$$f: U \to \mathbb{R}$$

$$x \mapsto g(x) \cdot x$$

と定義する。

$f:C^{\infty}$ 級関数

 ϕ は C^∞ 級なので $\frac{1}{\phi}$ および $\int_0^1 \frac{dt}{\phi(xt)}$ は $U \perp C^\infty$ 級。また $||x||^2$ は各成分の多項式で表せるので特に C^∞ 級。よって g および f は $U \perp C^\infty$ 級。

f: 単射

 $x \neq y$ を U の元とする。 $x=0, y \neq 0$ ならば ϕ は $\{ty: 0 \leq t \leq 1\}$ 上で正なので g(y)>0 。 $\dot{x}=\frac{x}{||x||}$ として、 $\dot{x}\neq\dot{y}$ ならば $f(\dot{x})\neq f(\dot{y})$ より $f(x)\neq f(y)$ 。

また $\dot{x}=\dot{y}$ ならば一般性を失わず ||x||<||y|| 。また置換積分によって $g(x)=(\int_0^{||x||}\frac{dt}{\phi(t\dot{x})})^2$ よりノルムの大きさに対して狭義単調増加。よって g(x)< g(y), ||f(x)||=g(x)||x||< g(y)||y||=||f(y)|| 。

f: 全射

 $A(x) = \{t \ge 0 : t\dot{x} \in U\}$ と置く。

(i) $A(x) = +\infty$ のとき

 $L=(\int_0^1 rac{dt}{\phi(t\dot{x})})^2$ とすると、 $||x||\geq 1\Rightarrow L\leq g(x)$ 。 よって $||f(x)||=g(x)\cdot||x||\leq L||x||\xrightarrow{||x||\to +\infty}+\infty$ 。 (ii) $A(x)<+\infty$ のとき

 ϕ は C^{∞} 級なので、平均値の定理より $\forall t \in [0,1), \exists u \in [t,1], \text{s.t.} \frac{|\phi(A(x)\dot{x}) - \phi(t\dot{x})|}{A(x) - t} = \phi'(u\dot{x})$ 。 よって $M = \sup\{\phi'(u\dot{x}) : u \in [0,1]\}$ とすると、 ϕ' は C^{∞} 級かつ [0,1]: cpt より M は有限。 このとき $\phi(A(x)\dot{x}) = 0$ より $\forall t \in [0,1), \phi(t\dot{x}) \leq M(A(x) - t)$ より

$$\begin{split} g(x) &= (\int_0^u \frac{dt}{\phi(t\dot{x})})^2 \\ &\geq (\int_0^u \frac{dt}{M(A(x)-t)})^2 \\ &\geq \frac{1}{M} (\int_{A(x)-u}^{A(x)} \frac{dt}{t})^2 \xrightarrow{u \to A(x)} +\infty \end{split}$$

したがって連続性から中間値の定理を用いて f は全射である。

$f^{-1}:C^{\infty}$ 級関数

逆関数定理の系を用いると、 $\forall x \in U, h \neq 0$ について $d_h f(x) \neq 0$ となることを言えばよい。背理法で示す。

chain rule により $d_h f(x) = g(x)h + d_h g(x)x = 0$ となり、 $h \neq 0$ より h, x は一次従属。 よって $h = \mu x (\mu \neq 0, x \neq 0)$ とおくと、 $g(x) + d_x g(x) = 0$ が成り立つ。

しかし $0 \le g(x)$ であり、 $\lambda: \mathbb{R} \to \mathbb{R}, t \mapsto g(tx)$ とすると狭義単調増加性より $d_x g(x) = \lambda'(1) > 0$ 。 これは 仮定に反する。