SUITES NUMERIQUES

I. DEFINITION

Une suite numérique est une application de $\mathbb N$ (ou d'une partie E de $\mathbb N$) dans $\mathbb R$.

$$U: \quad \mathbb{E} \ (\subseteq \mathbb{N}) \rightarrow \quad \mathbb{R}$$

$$n \quad \mapsto \quad U_n$$

Le réel U_n est appelé **terme général** de la suite U. La suite U peut aussi être notée (U_n) .

Principaux modes de génération d'une suite numérique :

• Mode explicite: $U_n = f(n)$

Exemple : (U_n) est la suite définie sur \mathbb{N} par : $\forall n \in \mathbb{N}$, $U_n = 3n - 4 \sin n$ La fonction f définie sur $[0, +\infty[$ par : $\forall x \in [0, +\infty[$, $f(x) = 3x - 4 \sin x$ est la **fonction numérique associée** à la suite (U_n) .

• Mode récurrent :

Exemple: (V_n) est la suite définie sur \mathbb{N} par : $V_0 = 4$ et, $\forall n \in \mathbb{N}$, $V_{n+1} = 3V_n - 4\sin V_n$

II. VARIATIONS

Soit (U_n) une suite numérique définie sur \mathbb{N} .

La suite (U_n) peut être : - stationnaire : si et seulement si $\forall n \in \mathbb{N}, \ U_{n+1} = U_n$ - croissante : si et seulement si $\forall n \in \mathbb{N}, \ U_{n+1} \geq U_n$ - décroissante : si et seulement si $\forall n \in \mathbb{N}, \ U_{n+1} \leq U_n$

Si la suite (U_n) possède une de ces trois qualités, on la qualifie de monotone.

Au contraire, si l'ordre dans lequel sont rangés U_n et U_{n+1} est changeant, la suite (U_n) n'est pas monotone.

La comparaison de deux nombres pouvant s'obtenir à partir du signe de leur différence, la connaissance des variations de la suite (U_n) peut donc être obtenue par l'étude du signe de $U_{n+1} - U_n$ $(\forall n \in \mathbb{N})$.

D'autre part, si la relation $U_n = f(n)$ est connue (mode explicite), les variations de (U_n) peuvent être obtenues à partir des variations de f:

- si f est croissante sur $[0, +\infty[$, alors (U_n) est croissante;
- si f est décroissante sur $[0, +\infty[$, alors (U_n) est décroissante ;
- si f n'est pas monotone sur $[0, +\infty[$, on ne peut rien en déduire quant aux variations de (U_n) .

III. BORNAGE

Soit (U_n) une suite numérique définie sur \mathbb{N} .

La suite (U_n) peut être : - majorée : si et seulement si il existe une constante réelle M telle que :

 $\forall n \in \mathbb{N}, U_n \leq M$

- minorée : si et seulement si il existe une constante réelle m telle que :

 $\forall \ n \in \mathbb{N}, \ U_n \geq m$

Si la suite (U_n) est majorée et minorée, on dit qu'elle est **bornée**.

Exemple: Soient (U_n) , (V_n) , (W_n) les suites numériques définie sur \mathbb{N} par :

$$\forall n \in \mathbb{N}$$
, $U_n = \left(\frac{1}{2}\right)^n$, $V_n = \sin n$ et $W_n = \cos n$

Ces trois suites sont bornées, car :

$$\forall n \in \mathbb{N}$$
, $0 \le \left(\frac{1}{2}\right)^n \le 1$, $-1 \le \sin n \le 1$ et $-1 \le \cos n \le 1$

Remarques: une suite croissante est minorée par son premier terme;

une suite décroissante est majorée par son premier terme

IV. COMPORTEMENT ASYMPTOTIQUE $(n \rightarrow +\infty)$

1. Notion de limite

 $\lim_{n \to +\infty} U_n = l \quad \Longleftrightarrow \quad \forall \ \varepsilon \in \mathbb{R}^{*+}, \ \exists \ N \in \mathbb{N} \quad \text{tel que} \quad n > N \Longrightarrow |U_n - l| < \varepsilon$

(la distance de tous les U_n à l est inférieure à n'importe quel nombre strictement positif à partir d'un rang N).

 $\lim_{n \to +\infty} U_n = +\infty \quad \Leftrightarrow \quad \forall \, A \in \mathbb{R} \,, \, \exists \, N \in \mathbb{N} \quad \text{tel que} \quad n > N \implies U_n > A$

(tous les U_n sont supérieurs à n'importe quel nombre à partir d'un rang N).

 $\lim_{n \to +\infty} U_n = -\infty \quad \Longleftrightarrow \quad \forall \ A \in \mathbb{R} \ , \ \exists \ N \in \mathbb{N} \quad \text{tel que} \quad n > N \Longrightarrow \ U_n < A$

(tous les U_n sont inférieurs à n'importe quel nombre à partir d'un rang N).

On dit que la suite (U_n) converge lorsque (U_n) possède une limite finie.

Proposition : si une suite converge, alors elle est bornée.

(la réciproque de cette implication est fausse, comme le montre l'exemple ci-dessous).

On dit que la suite (U_n) diverge lorsque (U_n) possède une limite infinie, ou lorsque (U_n) ne possède pas de limite.

Exemple: Soient (U_n) , (V_n) , (W_n) les suites numériques définie sur N par :

$$\forall n \in \mathbb{N}$$
, $U_n = (-1)^n$, $V_n = \sin n$ et $W_n = \cos n$

Aucune de ces trois suites ne possède de limite.

Si la suite (U_n) possède une fonction numérique associée f qui admet une limite en $+\infty$, alors :

$$\lim_{n\to+\infty}U_n=\lim_{x\to+\infty}f(x)$$

• Si (U_n) et (V_n) admettent une limite, et si $\exists N \in \mathbb{N}$ tel que $n > N \implies U_n \le V_n$,

alors
$$\lim_{n\to+\infty} U_n \le \lim_{n\to+\infty} V_n$$

Dès lors : si
$$\lim_{n \to +\infty} U_n = +\infty$$
 , alors $\lim_{n \to +\infty} V_n = +\infty$

si
$$\lim_{n \to +\infty} V_n = -\infty$$
 , alors $\lim_{n \to +\infty} U_n = -\infty$

• Si
$$\lim_{n \to +\infty} V_n = \lim_{n \to +\infty} W_n = l$$
, et si $\exists N \in \mathbb{N}$ tel que $n > N \Longrightarrow V_n \le U_n \le W_n$ alors $\lim_{n \to +\infty} U_n = l$ (Théorème des gendarmes)

3. Cas de suites monotones

Si (U_n) est une suite croissante :

- soit (U_n) n'est pas majorée, et on a alors : $\lim_{n \to \infty} U_n = +\infty$
- soit (U_n) est majorée par M, et on a alors : (U_n) est convergente et $\lim_{n \to +\infty} U_n \leq M$

Si (U_n) est une suite décroissante :

- soit (U_n) n'est pas minorée, et on a alors : $\lim_{n \to +\infty} U_n = -\infty$
- soit (U_n) est minorée par m, et on a alors : (U_n) est convergente et $\lim_{n \to +\infty} U_n \ge m$

4. Suites de référence

a)
$$U_n = n^{\alpha}$$
 (puissance)

si
$$\alpha>0$$
 , alors la suite (U_n) est croissante et $\lim_{n\to+\infty}U_n=+\infty$

si
$$\alpha = 0$$
, alors la suite (U_n) est stationnaire et $\lim_{n \to +\infty} U_n = 1$

si
$$\alpha < 0$$
, alors la suite (U_n) est décroissante et $\lim_{n \to +\infty} U_n = 0$

b)
$$U_n = a^n$$
 (exponentielle)

si
$$a > 1$$
, alors la suite (U_n) est croissante et $\lim_{n \to +\infty} U_n = +\infty$

si
$$a=1$$
, alors la suite (U_n) est stationnaire et $\lim_{n\to+\infty} U_n=1$

si
$$0 < a < 1$$
, alors la suite (U_n) est décroissante et $\lim_{n \to +\infty} U_n = 0$

si
$$a=0$$
, alors la suite (U_n) est stationnaire et $\lim_{n\to+\infty}U_n=0$

si
$$a < 0$$
, alors le signe de U_n change dès que n augmente de 1.

On dit alors que la suite (U_n) est alternée, et elle n'est bien sur pas monotone.

De plus, si
$$-1 < a < 0$$
, alors $\lim_{n \to +\infty} U_n = 0$
si $a \le -1$, alors la suite (U_n) n'a pas de limite.

5. Opérations sur les limites

a) Addition. Comportement asymptotique de $(U_n + V_n)$:

$$* \lim_{n \to +\infty} U_n = l$$
 et $\lim_{n \to +\infty} V_n = l'$ \Longrightarrow $\lim_{n \to +\infty} (U_n + V_n) = l + l'$

*
$$(U_n)$$
 est minorée et $\lim_{n \to +\infty} V_n = +\infty$ $\implies \lim_{n \to +\infty} (U_n + V_n) = +\infty$

$$*$$
 (U_n) est majorée et $\lim_{n \to +\infty} V_n = -\infty$ \Longrightarrow $\lim_{n \to +\infty} (U_n + V_n) = -\infty$

On obtient une forme indéterminée lorsque $\lim_{n \to +\infty} U_n = +\infty$ et $\lim_{n \to +\infty} V_n = -\infty$

b) Multiplication. Comportement asymptotique de (U_nV_n) :

$$* \quad \lim_{n \to +\infty} U_n = l \quad \text{et} \quad \lim_{n \to +\infty} V_n = l' \quad \Longrightarrow \quad \lim_{n \to +\infty} U_n V_n = ll'$$

*
$$\lim_{n \to +\infty} U_n = l \neq 0$$
 et $\lim_{n \to +\infty} V_n = \pm \infty$ $\implies \lim_{n \to +\infty} U_n V_n = \pm \infty$ (voir remarque ci – dessous)

*
$$(U_n)$$
 est bornée et $\lim_{n \to +\infty} V_n = 0 \implies \lim_{n \to +\infty} U_n V_n = 0$

On obtient une forme indéterminée lorsque $\lim_{n \to +\infty} U_n = 0$ et $\lim_{n \to +\infty} V_n = \pm \infty$

c) Division. Comportement asymptotique de $\left(\frac{U_n}{V_n}\right)$:

*
$$\lim_{n \to +\infty} U_n = l$$
 et $\lim_{n \to +\infty} V_n = l' \neq 0$ \Longrightarrow $\lim_{n \to +\infty} \frac{U_n}{V_n} = \frac{l}{l'}$

*
$$\lim_{n \to +\infty} U_n = \pm \infty$$
 et $\lim_{n \to +\infty} V_n = l' \implies \lim_{n \to +\infty} \frac{U_n}{V_n} = \pm \infty$ (voir remarque ci – dessous)

*
$$\lim_{n \to +\infty} U_n = 0$$
 et $(|V_n|)$ est minorée par un réel strictement positif $\implies \lim_{n \to +\infty} \frac{U_n}{V_n} = 0$

*
$$(U_n)$$
 est bornée et $\lim_{n\to+\infty}V_n=\pm\infty$ \Longrightarrow $\lim_{n\to+\infty}\frac{U_n}{V_n}=0$

*
$$\lim_{n \to +\infty} U_n = l \neq 0$$
 et $\lim_{n \to +\infty} V_n = 0$ \Longrightarrow $\lim_{n \to +\infty} \frac{U_n}{V_n} = \pm \infty$ (voir remarque ci – dessous)

On obtient une forme indéterminée lorsque
$$\lim_{n \to +\infty} U_n = \pm \infty$$
 et $\lim_{n \to +\infty} V_n = \pm \infty$ ainsi que lorsque $\lim_{n \to +\infty} U_n = \lim_{n \to +\infty} V_n = 0$

Remarque : lorsque la réponse est $\pm \infty$, la détermination du signe de cet infini s'opère grâce à la règle des signes de l'opération considérée (multiplication, division).

D'autre part, en présence d'une **forme indéterminée**, on peut généralement "lever l'indétermination" à l'aide de **factorisations**.

On peut éventuellement utiliser aussi les résultats suivants :

• A l'infini, un polynôme se comporte comme son terme de plus haut degré.

•
$$\forall a \in]1, +\infty[$$
, $\forall \alpha \in]0, +\infty[$, $\lim_{n \to +\infty} \frac{a^n}{n^{\alpha}} = +\infty$ et $\lim_{n \to +\infty} \frac{\ln n}{n^{\alpha}} = 0$

V. SUITES NUMERIQUES PARTICULIERES

1. Suites arithmétiques

Définition : Soit (U_n) une suite numérique définie sur \mathbb{N} .

 (U_n) est une suite arithmétique si et seulement si :

$$\forall n \in \mathbb{N}, \quad U_{n+1} - U_n = constante$$

La valeur de cette constante est alors appelée la "raison" de la suite arithmétique (U_n) .

Propriété : Si (A_n) est une suite arithmétique (définie sur \mathbb{N}) de raison r, alors :

$$\forall n \in \mathbb{N}, \quad \forall p \in \mathbb{N}, \quad A_n = A_p + (n-p)r$$

2. Suites géométriques

Définition : Soit (U_n) une suite numérique définie sur $\mathbb N$ dont aucun terme n'est nul.

 (U_n) est une suite géométrique si et seulement si :

$$\forall n \in \mathbb{N}, \quad \frac{U_{n+1}}{U_n} = constante$$

La valeur de cette constante est alors appelée la "raison" de la suite géométrique (U_n) .

Propriété : Si (G_n) est une suite géométrique (définie sur \mathbb{N}) de raison q, alors :

$$\forall n \in \mathbb{N}, \quad \forall p \in \mathbb{N}, \quad G_n = G_p \times q^{n-p}$$

Somme de termes consécutifs :

Si (G_n) est une suite géométrique (définie sur \mathbb{N}) de raison q (avec $q \neq 1$), alors :

$$\sum_{i=0}^{i=n} G_i = G_0 \frac{1 - q^{n+1}}{1 - q}$$

VI. COMPARAISON DE SUITES NUMERIQUES

1. Définitions

Soient (a_n) et (b_n) deux suites numériques, avec

 $n > N \implies b_n \neq 0$ (la suite numérique (b_n) est non nulle à partir d'un certain rang).

* On dit que a_n est négligeable devant b_n , ce qui se note $a_n \ll b_n$, lorsque $\lim_{n \to +\infty} \frac{a_n}{b_n} = 0$

$$a_n \ll b_n \iff \lim_{n \to +\infty} \frac{a_n}{b_n} = 0$$

* On dit que a_n est équivalent à b_n , ce qui se note $a_n \sim b_n$, lorsque $\lim_{n \to +\infty} \frac{a_n}{b_n} = 1$

$$a_n \sim b_n \iff \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$$

2. Propriétés

* **Réflexivité** : $a_n \sim a_n$

* **Symétrie**: $a_n \sim b_n \iff b_n \sim a_n$

* **Transitivit**é: $a_n \ll b_n$ et $b_n \ll c_n \implies a_n \ll c_n$

 $a_n \sim b_n$ et $b_n \sim c_n \implies a_n \sim c_n$

* **Relations mixtes**: $a_n \sim b_n$ et $c_n \ll b_n \implies c_n \ll a_n$

 $a_n \ll b_n \implies a_n + b_n \sim b_n$

* Produit par des constantes réelles non nulles : $\forall \alpha \in \mathbb{R}^*, \ \forall \beta \in \mathbb{R}^*$,

$$a_n \ll b_n \iff \alpha \ a_n \ll \beta \ b_n$$

 $a_n \sim b_n \iff \alpha \ a_n \sim \alpha \ b_n$

* **Multiplication**: $a_n \ll c_n$ et $b_n \ll d_n \implies a_n b_n \ll c_n d_n$

$$a_n \sim c_n$$
 et $b_n \sim d_n \implies a_n b_n \sim c_n d_n$

* **Puissance**: $\forall p \in \mathbb{R}^{*+}$, $a_n \ll b_n \iff a_n^p \ll b_n^p$

$$\forall p \in \mathbb{R}^*, \quad a_n \sim b_n \iff a_n^p \sim b_n^p$$

* **Inverse** : si (a_n) et (b_n) sont non nulles à partir d'uncertain rang :

$$a_n \ll b_n \iff \frac{1}{b_n} \ll \frac{1}{a_n}$$

$$1 \qquad 1$$

$$a_n \sim b_n \quad \Longleftrightarrow \quad \frac{1}{a_n} \sim \frac{1}{b_n}$$

* **Division**: $\operatorname{si}(b_n)$ et (d_n) sont non nulles à partir d'uncertain rang :

$$a_n \ll c_n \text{ et } b_n \ll d_n \implies \frac{a_n}{d_n} \ll \frac{c_n}{b_n}$$

$$a_n \sim c_n$$
 et $b_n \sim d_n$ \Longrightarrow $\frac{a_n}{b_n} \sim \frac{c_n}{d_n}$

3. Incompatibilités

* Problème de l'addition :

Si $a_n \ll c_n$ et $b_n \ll d_n$, on n'a pas forcément $a_n + b_n \ll c_n + d_n$ Si $a_n \sim c_n$ et $b_n \sim d_n$, on n'a pas forcément $a_n + b_n \sim c_n + d_n$ Exemple: $a_n = n^3 + n^2 + 5n + 3$ $b_n = -n^3 + n^2 + 5n + 3$ $c_n = n^3$ $d_n = -n^3 + n^2$ On a: $a_n \sim c_n$ car $\lim_{n \to +\infty} \frac{n^3 + n^2 + 5n + 3}{n^3} = 1$ et $b_n \sim d_n$ car $\lim_{n \to +\infty} \frac{-n^3 + n^2 + 5n + 3}{-n^3 + n^2} = \lim_{n \to +\infty} \left(1 + \frac{-5n + 3}{-n^3 + n^2}\right) = 1$ Mais: $a_n + b_n$ n'est pas équivalent à $c_n + d_n$ car $\lim_{n \to +\infty} \frac{2n^2 + 10n + 6}{n^2} = 2$

* Problème de la composition avec une fonction :

f étant une fonction numérique :

Si $a_n \ll b_n$, on n'a pas forcément $f(a_n) \ll f(b_n)$

Si $a_n \sim b_n$, on n'a pas forcément $f(a_n) \sim f(b_n)$

Exemple: $n+1 \sim n$ car $\lim_{n \to +\infty} \frac{n+1}{n} = 1$

Mais: e^{n+1} n'est pas équivalent à e^n car $\lim_{n \to +\infty} \frac{e^{n+1}}{e^n} = e^{n+1}$

4. Utilisation avec les limites

*
$$\lim_{n \to +\infty} a_n = l$$
 et $l \neq 0$ \iff $a_n \sim l$

*
$$\lim_{n \to +\infty} a_n = 0 \iff a_n \ll 1$$

Remarque : hormis dans le cas très particulier où la suite numérique (a_n) est nulle à partir d'un certain rang, les écritures $a_n \sim 0$ et $a_n \ll 0$ sont erronées.

- * Si $a_n \sim b_n$ et (b_n) admet une limite, alors (a_n) admet une limite et $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n$
- * Si $a_n \sim b_n$ et (b_n) n'admet pas de limite, alors (a_n) n'admet pas de limite.

a)
$$\forall \alpha \in]0, +\infty[$$
, $\forall \alpha \in]1, +\infty[$,

$$\ln n \ll n^{\alpha} \ll a^{n} \ll n! \ll n^{n}$$

b) Tout polynôme est équivalent à son terme de plus haut degré.

$$\sum_{i=0}^{i=p} a_i n^i \sim a_p n^p$$

c) Autres équivalences

A partir de développements limités au voisinage de 0, on peut obtenir les équivalences suivantes :

Si
$$\lim_{n \to +\infty} U_n = 0$$
 ,

Alors:
$$ln(1+U_n) \sim U_n$$

$$e^{U_n}-1\sim U_n$$

$$(1 + U_n)^{\alpha} - 1 \sim \alpha U_n$$
 où α est une constante réelle quelconque.

$$\sin U_n \sim U_n$$

$$\tan U_n \sim U_n$$

$$\cos U_n - 1 \sim -\frac{1}{2} U_n^2$$

VII. DEMONSTRATION PAR RECURRENCE

Lorsqu'on doit démonter qu'une relation P(n), dépendante d'un entier naturel n, est vraie pour tout entier naturel n (ou pour tout entier naturel n supérieur ou égal à un entier naturel n_0 donné), on peut effectuer une démonstration par récurrence.

Une démonstration par récurrence comporte trois phases :

1) Initialisation : cette phase consiste à vérifier que $P(n_0)$ est vraie (autrement dit : la relation P(n) est vraie pour le plus petit entier n envisagé).

2) Hérédité : cette phase consiste à vérifier que : si P(k) est vraie, alors P(k+1) est vraie.

3) Conclusion : si la phase d'initialisation et la phase d'hérédité sont satisfaites, on conclut en affirmant que la relation P(n) est vraie pour tout entier naturel n supérieur ou égal à n_0 .

EXERCICE 1: Déterminer les variations de la suite (U_n) dans chacun des cas suivants :

a)
$$\forall n \in \mathbb{N}$$
, $U_n = e^{n^2 + 1}$

a)
$$\forall n \in \mathbb{N}$$
, $U_n = e^{n^2 + 1}$ b) $\forall n \in \mathbb{N}$, $U_n = \ln\left(\frac{1}{1 + n}\right)$

c)
$$\forall n \in \mathbb{N}, \ U_n = (-3)^n$$

c)
$$\forall n \in \mathbb{N}, \ U_n = (-3)^n$$
 d) $\forall n \in \mathbb{N}, \ U_n = 2500 + 300n - 1500 \times 0.8^n$

(rappel:
$$0.8^x = e^{x \ln 0.8}$$
)

EXERCICE 2: Soit la suite
$$(U_n)$$
 définie sur \mathbb{N} par : $U_n = \frac{4n+20}{n+4}$

Démontrer que $\forall n \in \mathbb{N}, 4 \leq U_n \leq 5$

(On pourra pour cela étudier le signe de $U_n - 4$ et de $U_n - 5$).

EXERCICE 3: (U_n) est une suite géométrique définie sur \mathbb{N} telle que $U_1 = 16$ et $U_4 = 2$.

Déterminer sa raison et l'expression de U_n en fonction de n.

EXERCICE 4: On considère la suite (U_n) définie par : $U_0 = 5$ et $\forall n \in \mathbb{N}$, $U_{n+1} = \frac{1}{2}U_n + 2$ et la suite (V_n) définie par : $\forall n \in \mathbb{N}$, $V_n = U_n - 3$

- a) Montrer que (V_n) est une suite géométrique dont on précisera la raison.
- b) Exprimer V_n , puis U_n , en fonction de n.
- c) En déduire la limite de la suite (U_n) .

EXERCICE 5: Déterminer la limite éventuelle de la suite (U_n) dans chacun des cas suivants :

$$a) \quad U_n = \frac{1}{n+3}$$

$$b) \ \ U_n = \frac{2n}{n+1}$$

c)
$$U_n = \frac{2n^2 - 3n + 2}{1 - n}$$

d)
$$U_n = \sqrt{n^3 - 4n + 1}$$
 e) $U_n = \sqrt{n+1} + \sqrt{n}$

$$e) \quad U_n = \sqrt{n+1} + \sqrt{n}$$

$$f) \quad U_n = \sqrt{n+1} - \sqrt{n}$$

g)
$$U_n = n - \sqrt{(n+1)(n+2)}$$
 h) $U_n = \ln\left(\frac{1}{1+n}\right)$

$$h) \quad U_n = \ln\left(\frac{1}{1+n}\right)$$

$$i) \quad U_n = \frac{n + e^n}{2n + e^n}$$

$$j) \quad U_n = \frac{n^2 + 1}{\ln n}$$

$$k) \quad U_n = \frac{2^n}{n^2}$$

$$l) \quad U_n = 3 \times (-2)^n$$

$$m) \ \ U_n = 7 + \frac{5}{3} \left(-\frac{1}{4} \right)^n$$

$$n) \ U_n = 5^n - 4^n$$

$$0) \ \ U_n = \frac{3^n + 2}{8^n - 1}$$

$$p) \ \ U_n = \frac{2^n + 3^n}{2^n - 3^n}$$

$$q) \quad U_n = n - \sin n^2$$

$$r) \quad U_n = \frac{n + \cos n}{n - \sin n}$$

$$S) U_n = \frac{n + (-1)^n}{n^2 + 1}$$

t)
$$U_n = \frac{2n + (-1)^n}{3n + (-1)^{n+1}}$$

EXERCICE 6 : Dans chacun des cas suivants, déterminer un équivalent de \mathcal{U}_n le plus simple possible, et en déduire la limite éventuelle de la suite (U_n) :

a)
$$U_n = n^2 + n$$

$$b) \ \ U_n = e^n + n^2$$

c)
$$U_n = \frac{n^2 + \sin(e^n)}{n^{1000} - e^{n+1}}$$

d)
$$U_n = \frac{n^{1000} + 2^n}{3^{-n} + (n+2)^{1000}}$$
 $e)$ $U_n = \frac{n^2 + n! + 1000^n}{(n+2)! + 1002^n}$

e)
$$U_n = \frac{n^2 + n! + 1000^n}{(n+2)! + 1002^n}$$

$$f) \ \ U_n = \frac{n! + n^n}{n^{n+3} - 1000^n}$$

g)
$$U_n = \sqrt{n} + (\ln n)^{12} + \sin n$$
 h) $U_n = \sqrt{n+1} + \sqrt{n}$

$$h) \quad U_n = \sqrt{n+1} + \sqrt{n}$$

$$i) \quad U_n = \sqrt{n+1} - \sqrt{n}$$

j)
$$U_n = \frac{n(-1)^n + 1}{n + \sqrt{n}}$$
 k) $U_n = \frac{\tan\frac{1}{n}}{a^{\frac{1}{n}} - 1}$

$$k) \quad U_n = \frac{\tan\frac{1}{n}}{e^{\frac{1}{n}} - 1}$$

$$l) \quad U_n = \sin\frac{n+1}{n^2+1}$$

$$m) \ \ U_n = \left(1 - \frac{1}{n^2}\right)^4 - 1$$

m)
$$U_n = \left(1 - \frac{1}{n^2}\right)^4 - 1$$
 n) $U_n = \sin\left[\frac{1}{n} + \frac{1}{n^2} + \ln\left(1 + \frac{1}{\sqrt{n}}\right)\right]$ o) $U_n = \left[1 + \frac{(-1)^n}{\sqrt{n}} - 1\right]$

$$0) \ \ U_n = \sqrt{1 + \frac{(-1)^n}{\sqrt{n}}} - 1$$

$$p) \quad U_n = \ln \frac{n^2 + 2}{n^2}$$

$$q) \quad U_n = \left(1 + \frac{1}{n}\right)^n$$

(indication: utiliser $a^n = e^{n \ln a}$)

EXERCICE 7: On considère la suite (U_n) définie par : $U_0 = 2$ et $\forall n \in \mathbb{N}$, $U_{n+1} = \frac{U_n^2 + 3}{\sqrt{n}}$ Démontrer par récurrence que $\forall n \in \mathbb{N}, 1 \leq U_n \leq 2$

EXERCICE 8: Démontrer par récurrence que $\forall n \in \mathbb{N}^*$, $\sum_{i=1}^{n-1} i = \frac{n(n+1)}{2}$

En déduire la valeur de la somme : $1 + 2 + 3 + \cdots + 100$

EXERCICE 9: On considère la suite (U_n) définie sur \mathbb{N} par :

$$U_n = \sum_{i=0}^{i=n} a^i$$
 (où a désigne un réel non nul)

a) On suppose $a \neq 1$. Montrer par récurrence que :

$$\forall n \in \mathbb{N}, \qquad U_n = \frac{1 - a^{n+1}}{1 - a}$$

- b) Déterminer U_n lorsque a = 1.
- c) Etudier la limite de (U_n) selon la valeur de a.