

## CSE523 Machine Learning Weekly Project Report

Date: 08-04-2023

**Project title:** Big Mart Sales Prediction

## **Group 10**

| Name        | Enrolment no. |  |  |  |
|-------------|---------------|--|--|--|
| Meet Patel  | AU2040010     |  |  |  |
| Dev Patel   | AU2040056     |  |  |  |
| Kush Patel  | AU2040137     |  |  |  |
| Vatsal Shah | AU2040019     |  |  |  |

## 1. Task performed and outcomes of task performed this week

- We implemented hyperparameter tuning and regularization on the Random Forest model as it was overfitting on the training.
- The  $R^2$  value on training set was 0.93 and on test set was 0.57.
- There are many hyperparameters Random Forest model but we selected the six most important parameters to tune:
  - 1. **n\_estimators** (**number of trees**): Setting the number of trees informs the algorithm when to stop, to prevent over-fitting.
  - 2. max\_depth (maximum tree depth): The larger the tree depth, the higher the probability of over-fitting; therefore, it is prudent to increase it reluctantly and only by units of one and even then, probably never higher than 5
  - 3. **max\_features:** This hyperparameter controls the maximum number of features that are considered for splitting at each node. A larger value can lead to better performance, but also increases the risk of overfitting.
  - **4. min\_samples\_split:** This hyperparameter specifies the minimum number of samples required to split an internal node. Increasing this value can help prevent overfitting.
  - **5. min\_samples\_leaf:** This hyperparameter specifies the minimum number of samples required to be at a leaf node. Increasing this value can help prevent overfitting.
  - 6. ccp\_alpha: This hyperparameter controls the complexity of the decision trees by imposing a penalty on each tree's total number of splits. Increasing this value can lead to simpler trees, which may improve generalization performance.
- We tried different combinations of the values for the above-mentioned parameters to prevent the model from overfitting.

| R-squ  | ared   |              |          |           |          |          |           |
|--------|--------|--------------|----------|-----------|----------|----------|-----------|
| train  | test   | n_estimators | max_dept | max_featu | min_samp | min_samp | ccp_alpha |
| 0.6261 | 0.5915 | 300          | 8        | 3         | 12       | 10       | 0.001     |
| 0.6419 | 0.6038 | 200          | 8        | 5         | 10       | 10       | 0.01      |
| 0.6449 | 0.6044 | 200          | 8        | 6         | 15       | 10       | 0.001     |
| 0.6207 | 0.6037 | 100          | 6        | 7         | 5        | 5        | 0.01      |
| 0.622  | 0.6046 | 200          | 7        | 7         | 50       | 30       | 0.01      |
| 0.6116 | 0.6035 | 200          | 7        | 7         | 100      | 70       | 0.01      |
| 0.6061 | 0.6018 | 200          | 8        | 8         | 150      | 100      | 0.01      |
| 0.6063 | 0.6023 | 200          | 9        | 8         | 150      | 100      | 0.01      |
| 0.6232 | 0.6046 | 1000         | 9        | 7         | 90       | 50       | 0.01      |
| 0.623  | 0.6049 | 200          | 9        | 7         | 90       | 50       | 0.01      |

- We got the best result by using the following values for the parameters:
  - 1.  $n_{estimators} = 200$
  - 2.  $max_depth = 7$
  - 3.  $max_features = 7$
  - **4.** min\_samples\_split = **100**
  - 5.  $min_samples_leaf = 70$
  - 6.  $ccp_alpha = 0.01$
- The training set  $R^2$  value is 0.6116 and test set  $R^2$  value is 0.6035.
- We prevented the model from overfitting, but the accuracy decreased.

## 2. Tasks to be performed in the upcoming week

- We will run all the models again with more improvements and do the analysis of all the models.
- We will compare the results and errors of all the models.