Decision Trees with Numerical Attributes

Dealing with continuous-valued attributes

Initial definition of ID3 is restricted in dealing with discrete sets of values.

It handles symbolic attribute effectively.

However, we have to extend it sphere to continuous-valued attributes(numeric attribute) to fit the real world scenario.

No.	outlook	temperature	humidity	windy	play
1	sunny	85	85	FALSE	no
2	sunny	80	90	TRUE	no
3	overcast	83	86	FALSE	yes
4	rainy	70	96	FALSE	yes
5	rainy	68	80	FALSE	yes
6	rainy	65	70	TRUE	no
7	overcast	64	65	TRUE	yes
8	sunny	72	95	FALSE	no
9	sunny	69	70	FALSE	yes
10	rainy	75	80	FALSE	yes
11	sunny	75	70	TRUE	yes
12	overcast	72	90	TRUE	yes
13	overcast	81	75	FALSE	yes
14	rainy	71	91	TRUE	no

What we have done is to define new discrete valued attributes that partition the continuous-valued attribute into symbolic attribute again.

For a numeric attribute A, we need to create a new boolean value that is true when $A \le c$ and false otherwise

The only thing left is to compute the best threshold **c**.

For humidity attribute

humidity	play
85	no
90	no
86	yes
96	yes
80	yes
70	no
65	yes
95	no
70	yes
80	yes
70	yes
90	yes
75	yes
91	no

First we need to sort the data

humidity	play
65	yes
70	no
70	yes
70	yes
75	yes
80	yes
80	yes
85	no
86	yes
90	no
90	yes
91	no
95	no
96	yes

We need a threshold that produces the greatest information gain

humidity	play	
65	yes	67.5
70	no	07.3
70	yes	
70	yes	
75	yes	
80	yes	
80	yes	82.5
85	no	85.5
86	yes	88
90	no	00
90	yes	90.5
91	no	70.5
95	no	05.5
96	yes	95.5

Once sorting the numeric attribute values, then identifying adjacent examples that differ in their target classification

We can generate a set of candidate threshold

Then we compute **information gain** for each candidate and find the best one for splitting

$$Gain(S, A) = Entropy(S) - \sum_{v \in values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Entropy
$$(S) = -(p_+ \log_2 p_+) - (p_- \log_2 p_-)$$

Entropy
$$(S) = -(p_+ \log_2 p_+) - (p_- \log_2 p_-) =$$

= $-(9/14)\log_2(9/14) - (5/14)\log_2(5/14) = 0.94028$

humidity	play
65	yes
70	no
70	yes
70	yes
75	yes
80	yes
80	yes
85	no
86	yes
90	no
90	yes
91	no
95	no
96	yes

Entropy (humidity
$$\leq 67.5$$
) = 0

Entropy (humidity > 67.5) =

67.5

$$= -(8/13)\log_2(8/13) - (5/13)\log_2(5/13) = 0.9612$$

$$Gain(S, humidity) = Entropy(S) - \sum_{v \in values(humidity)} \frac{\left|S_{humidity=v}\right|}{\left|S\right|} Entropy(S_{humidity=v})$$

$$Gain(S, humidity) = Entropy(S) - \frac{\left|S_{humidity \le 67.5}\right|}{\left|S\right|}(0) - \frac{\left|S_{humidity > 67.5}\right|}{\left|S\right|}(0.9612)$$

$$Gain(S, humidity) = 0.9402 - (1/14)(0) - (13/14)(0.9612) = 0.0477$$

humidity	play		
65	yes	67	Gain(67.5) = 0.0477
70	no	07.	3 - 0.0477
70	yes		
70	yes		
75	yes		
80	yes		
80	yes	82.5	Gain(82.5) = 0.1518
85	no	85.5	
86	yes	88	Gain(88) = 0.1022
90	no		Gain(88) - 0.1022
90	yes	90.5	$C_{ain}(00.5) = 0.0702$
91	no		Gain(90.5) = 0.0793
95	no	02	Gain(93) = 0.0477
96	yes	93	0um(73) - 0.0477

The maximum gain is 0.1518 so the chosen threshold should be 82.5

temperature	play
85	no
80	no
83	yes
70	yes
68	yes
65	no
64	yes
72	no
69	yes
75	yes
75	yes
72	yes
81	yes
71	no

First we need to sort the data

temperature	play
64	yes
65	no
68	yes
69	yes
70	yes
71	no
72	no
72	yes
75	yes
75	yes
80	no
81	yes
83	yes
85	no

temperature	play		
64	yes	64.5	Gain(64.5) = 0.0477
65	no	64.5	,
68	yes	00.3	Gain(66.5) = 0.0103
69	yes		
70	yes	70.5	Gain(70.5) = 0.0645
71	no	70.5	<i>Gum</i> (70.3) = 0.0013.
72	no		
72	yes		
75	yes		
75	yes	77.5	Gain(77) = 0.0.00048
80	no	80.5	Gain(80.5) = 0.0103
81	yes	00.5	23337(20.2) 3.0102
83	yes	0.4	C: (04) 0.0410
85	no	84	Gain(84) = 0.0419

The maximum gain is 0.06455 so the chosen threshold should be 70.5

```
Gain(S,Oulook)=
Entropy(S)-(5/14)Entropy(sunny)-(4/14)Entropy(overlast)-(5/14)Entropy(rainy)=

0.2467498
```

```
Gain(S,Windy)=
= Entropy(S)-(8/14)Entropy(FALSE)-(6/14)Entropy(TRUE)= 0.04812703
```

Gain(S,temperature)= = Entropy(S)-(5/14)Entropy(≤ 70.5)-(9/14)Entropy(≥ 70.5)= **0.06455**

Gain(S,humidity)= = Entropy(S)-(7/14)Entropy(≤ 82.5)-(7/14)Entropy(> 82.5)= **0.1518**

Oulook=sunny

No.	outlook	temperature	humidity	windy	play
1	sunny	85	85	FALSE	no
2	sunny	80	90	TRUE	no
3	overcast	83	86	FALSE	yes
4	rainy	70	96	FALSE	yes
5	rainy	68	80	FALSE	yes
6	rainy	65	70	TRUE	no
7	overcast	64	65	TRUE	yes
8	sunny	72	95	FALSE	no
9	sunny	69	70	FALSE	yes
10	rainy	75	80	FALSE	yes
11	sunny	75	70	TRUE	yes
12	overcast	72	90	TRUE	yes
13	overcast	81	75	FALSE	yes
14	rainy	71	91	TRUE	no

No.	outlook	temperature	humidity	windy	play
1	sunny	85	85	FALSE	no
2	sunny	80	90	TRUE	no
8	sunny	72	95	FALSE	no
9	sunny	69	70	FALSE	yes
11	sunny	75	70	TRUE	yes

$$Gain(S) = -(2/5)\log_2(2/5) - (3/5)\log_2(3/5) = 0.9709$$

No.	outlook	temperature	humidity	windy	play
9	sunny	69	70	FALSE	yes
11	sunny	75	70	TRUE	yes
1	sunny	85	85	FALSE	no
2	sunny	80	90	TRUE	no
8	sunny	72	95	FALSE	no

 $Entropy(humidity \le 80) = 0$ Entropy(humidity > 80) = 0

Gain(Outlook=sunny, humidity)= 0.9709

77 5

No.	outlook	temperature	humidity	windy	play
1	sunny	85	85	FALSE	no
2	sunny	80	90	TRUE	no
8	sunny	72	95	FALSE	no
9	sunny	69	70	FALSE	yes
11	sunny	75	70	TRUE	yes

$$Gain(S) = -(2/5)\log_2(2/5) - (3/5)\log_2(3/5) = 0.9709$$

No.	outlook	temperature	humidity	windy	play	
9	sunny	69	70	FALSE	yes	70.5
8	sunny	72	95	FALSE	no	73.5
11	sunny	75	70	TRUE	yes	77.5
2	sunny	80	90	TRUE	no	77.5
1	sunny	85	85	FALSE	no	

Gain(Outlook=sunny, temperatura(70.5))= 0.3218

Gain(Outlook=sunny, temperatura(73.5))= 0.0199

Gain(Outlook=sunny, temperatura(77.5))= 0.4199

No.	outlook	temperature	humidity	windy	play
1	sunny	85	85	FALSE	no
2	sunny	80	90	TRUE	no
8	sunny	72	95	FALSE	no
9	sunny	69	70	FALSE	yes
11	sunny	75	70	TRUE	yes

$$Gain(S) = -(2/5)\log_2(2/5) - (3/5)\log_2(3/5) = 0.9709$$

Gain(Outlook=sunny, Windy)= 0.0199

