

Probability and Stochastic Processes

Lecture 11: Measurable Function, Random Variable, Probability Law, Cumulative Distribution Function (CDF)

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

09 September 2025

Measurable Function

Definition (Measurable Function)

Let (E,\mathscr{E}) and (G,\mathscr{G}) be two measurable spaces. Consider a function $f:E\to G$. The function f is said to be measurable if

$$orall \ B \in \mathscr{G}, \qquad \underbrace{f^{-1}(B)}_{\mathsf{pre-image of } B} = \{e \in E : f(e) \in B\} \in \mathscr{E}.$$

Random Variable

Definition (Random Variable)

Fix a measurable space (Ω, \mathscr{F}) .

A function $X:\Omega\to\mathbb{R}$ is called a random variable if it is measurable, i.e.,

$$\forall B \in \mathscr{B}(\mathbb{R}), \qquad \underbrace{X^{-1}(B)}_{\mathsf{pre-image of }B} = \{\omega \in \Omega : X(\omega) \in B\} \in \mathscr{F}.$$

Random Variable

- A random variable is neither random nor a variable; it is a deterministic function
- A random variable assigns numerical values to outcomes
- The definition of a random variable is closely tied to the underlying σ -algebra ${\mathscr F}$
- If X is a random variable with respect to \mathscr{F} , it is said to be \mathscr{F} -measurable
- ullet The definition of a random variable does not involve ${\mathbb P}$

Properties of a Random Variable

Proposition (Random Variable Properties)

Let (Ω, \mathscr{F}) be a measurable space, and let $X : \Omega \to \mathbb{R}$ be a random variable.

- 1. For any $B \subseteq \mathbb{R}$, $X^{-1}(B^{\complement}) = (X^{-1}(B))^{\complement}$.
- 2. For any $B_1 \subseteq \mathbb{R}, B_2 \subseteq \mathbb{R}, \ldots$

$$X^{-1}\left(\bigcup_{n\in\mathbb{N}}B_n\right)=\bigcup_{n\in\mathbb{N}}X^{-1}(B_n).$$

3. Let \mathcal{B}_1 denote the collection

$$\mathscr{B}_1 \coloneqq \left\{ B \subseteq \mathbb{R} : X^{-1}(B) \in \mathscr{F} \right\}.$$
 (1)

Then, \mathscr{B}_1 is a σ -algebra of subsets of \mathbb{R} . Furthermore, $\mathscr{B}(\mathbb{R}) \subseteq \mathscr{B}_1$.

Proof of Proposition - 1

$$\omega' \in X^{-1}(B^{\complement}) \iff \qquad \iff X(\omega') \notin B$$

$$\iff \omega' \notin X^{-1}(B)$$

$$\iff \omega' \in \Omega \setminus X^{-1}(B)$$

$$\iff \omega' \in (X^{-1}(B))^{\complement}.$$

Proof of Proposition - 2

$$\omega' \in X^{-1} \left(\bigcup_{n \in \mathbb{N}} B_n \right) \iff \iff \exists n \in \mathbb{N} : X(\omega') \in B_n$$

$$\iff \exists n \in \mathbb{N} : \omega' \in X^{-1}(B_n)$$

$$\iff \omega' \in \bigcup_{n \in \mathbb{N}} X^{-1}(B_n).$$

Proof of Proposition - 3

• To show that $\emptyset \in \mathcal{B}_1$, note that

$$X^{-1}(\emptyset) = \emptyset \in \mathscr{F}.$$

• Suppose $B \in \mathcal{B}_1$. That is, by definition, $X^{-1}(B) \in \mathcal{F}$. Then, note that

$$X^{-1}(B^{\complement}) = (X^{-1}(B))^{\complement} \in \mathscr{F}.$$

This proves that $B^{\complement} \in \mathscr{B}_1$.

• For any $B_1, B_2, \ldots \in \mathcal{B}_1$, we have

$$X^{-1}\left(\bigcup_{n\in\mathbb{N}}B_n\right)=\bigcup_{n\in\mathbb{N}}X^{-1}(B_n)\in\mathscr{F}.$$

This proves that $\bigcup_{n\in\mathbb{N}} B_n \in \mathscr{B}_1$.

Generating Classes for $\mathscr{B}(\mathbb{R})$

 $\mathscr{B}(\mathbb{R})$

$$\mathscr{P}_1 = \Big\{(a,b): \ a,b \in \mathbb{R}, \ a \leq b\Big\}$$

$$\mathscr{P}_3 = \Big\{ [a,b): \;\; a,b \in \mathbb{R}, \;\; a \leq b \Big\}$$

$$\mathscr{P}_5 = \Big\{ (-\infty,\ x):\ \ x \in \mathbb{R} \Big\}$$

$$\mathscr{P}_7=\left\{(x,\;+\infty):\;x\in\mathbb{R}
ight\}$$

$$\mathscr{P}_2 = \Big\{ [a,b]: \;\; a,b \in \mathbb{R}, \;\; a \leq b \Big\}$$

$$\mathscr{P}_4 = \Big\{ (a,b]: \; a,b \in \mathbb{R}, \; a \leq b \Big\}$$

$$\mathscr{P}_6 = \Big\{ (-\infty, \ x]: \ \ x \in \mathbb{R} \Big\}$$

$$\mathscr{P}_8 = \Big\{ [x, \; +\infty): \; \; x \in \mathbb{R} \Big\}$$

Equivalent Definitions of Random Variable

Fix a measurable space (Ω, \mathscr{F}) .

Theorem (Equivalent Definitions of Random Variable)

 $X:\Omega\to\mathbb{R}$ is a random variable if and only if:

1.
$$X^{-1}(B) \in \mathscr{F}$$
 for all $B \in \mathscr{P}_1$.

2.
$$X^{-1}(B) \in \mathscr{F}$$
 for all $B \in \mathscr{P}_2$.

3.
$$X^{-1}(B) \in \mathscr{F}$$
 for all $B \in \mathscr{P}_3$.

4.
$$X^{-1}(B) \in \mathscr{F}$$
 for all $B \in \mathscr{P}_4$.

5.
$$X^{-1}(B) \in \mathscr{F}$$
 for all $B \in \mathscr{P}_5$.

6.
$$X^{-1}(B) \in \mathscr{F}$$
 for all $B \in \mathscr{P}_6$.

7.
$$X^{-1}(B) \in \mathscr{F}$$
 for all $B \in \mathscr{P}_7$.

8.
$$X^{-1}(B) \in \mathscr{F}$$
 for all $B \in \mathscr{P}_8$.

Proof of Theorem (Considering \mathcal{P}_6)

· Recall that

$$\mathscr{P}_6 = \left\{ (-\infty, x] : x \in \mathbb{R} \right\}.$$

• If *X* is a random variable, then by definition,

$$\forall B \in \mathscr{B}(\mathbb{R}), \qquad X^{-1}(B) \in \mathscr{F}.$$

Because $\mathscr{P}_6 \subseteq \mathscr{B}(\mathbb{R})$, it follows that

$$X$$
 random variable \Longrightarrow $X^{-1}\Big((-\infty,x]\Big)\in\mathscr{F}$ $\forall x\in\mathbb{R}.$

Proof of Theorem (Considering \mathcal{P}_6)

• Suppose now that $X^{-1}\bigg((-\infty,\ x]\bigg)\in\mathscr{F}$ for all $x\in\mathbb{R}.$ In other words.

$$X^{-1}(B) \in \mathscr{F} \qquad \forall \ B \in \mathscr{P}_6.$$

• This implies that

$$\mathscr{P}_6 \subseteq \mathscr{B}_1$$
 (defined in (1)).

• In turn, this implies that

$$\sigma(\mathscr{P}_6) \subseteq \sigma(\mathscr{B}_1),$$
 i.e., $\mathscr{B}(\mathbb{R}) \subseteq \mathscr{B}_1.$

This verifies that

$$X^{-1}(B) \in \mathscr{F} \ \ \forall \ B \in \mathscr{P}_6 \quad \implies \quad X^{-1}(B) \in \mathscr{F} \ \ \forall \ B \in \mathscr{B}(\mathbb{R}) \quad \implies \quad X \text{ random variable}.$$

Random Variable Simplified

Definition (Random Variable)

Fix a measurable space (Ω, \mathcal{F}) .

A function $X:\Omega\to\mathbb{R}$ is called a random variable with respect to \mathscr{F} if and only if

$$\forall \mathbf{x} \in \mathbb{R}, \qquad \underbrace{\mathbf{X}^{-1}((-\infty, \mathbf{x}])}_{\text{pre-image of }(-\infty, \ \mathbf{x}]} = \{\omega \in \Omega : \mathbf{X}(\omega) \leq \mathbf{x}\} \in \mathscr{F}.$$

•
$$\Omega = \{1, 2, \dots, 6\}, \qquad \mathscr{F} = \Big\{\emptyset, \Omega\Big\}, \qquad X(\omega) = \omega$$
 Is X a random variable with respect to \mathscr{F} ?

• What functions X are random variables with respect to \mathscr{F} ?

• $\Omega = [0, 1]$, $\mathscr{F} = \left\{\emptyset, \Omega, A, A^c\right\}$ for a fixed $A \subseteq \Omega$ What functions X are random variables with respect to \mathscr{F} ?

•
$$\Omega = \{1, 2, 3, 4, 5\}, \qquad \mathscr{F} = \sigma\left(\left\{\{1\}, \{2, 3\}\right\}\right)$$

What functions X are random variables with respect to

What functions X are random variables with respect to \mathscr{F} ?

• $\Omega=\mathbb{N}, \qquad \mathscr{F}=2^{\Omega}$ What functions X are random variables with respect to \mathscr{F} ?

• Provide an example construction of (Ω, \mathscr{F}) and a function $X : \Omega \to \mathbb{R}$ that is NOT a random variable (with respect to \mathscr{F}).

Indicator Functions

Fix a sample space Ω .

Fix a subset $A \subseteq \Omega$.

Definition (Indicator Function)

The indicator function of set A is the function $\mathbf{1}_A:\Omega\to\mathbb{R}$ defined as

$$\mathbf{1}_\mathtt{A}(\omega) = egin{cases} 1, & \omega \in \mathtt{A}, \ 0, & \omega \in \mathtt{A}^c. \end{cases}$$

Exercise

Fix a measurable space (Ω, \mathscr{F}) . Show that

 $\mathbf{1}_A$ is a random variable \iff $A \in \mathscr{F}$.