Sampling vs. Analysis Transitions

Full rate matrix:

From\To	Α	В	С
A		K _{A→B}	$K_{A \to C}$
В	K _{B→A}		K _{B→C}
С	$k_{C \rightarrow A}$	K _{C→B}	

All the rates we can calculate (one per transition)

Call these "analysis transitions," or just "transitions"

Sampling vs. Analysis Transitions

Focus on rates leaving *A*

From\To	Α	В	С
A		K _{A→B}	KA→C

$$k_{A\to B} = \Phi_{A_0} P(\lambda_{A_m} | \lambda_{A_0}) P(B | \lambda_{A_m})$$
$$k_{A\to C} = \Phi_{A_0} P(\lambda_{A_m} | \lambda_{A_0}) P(C | \lambda_{A_m})$$

Flux and crossing probability are identical. Difference: conditional transition probability