xpt. No. 8.

Page No.

PRACTICAL - 8

AIM: WAP to plot Normal and Exponential Distribution.

SOFTWARE USED - Scilab

SOURCE CODE:

```
2 mean=input("Enter mean:")
3 | sigma=input("Enter sigma:")
4 lambda=input("Ener the lambda:")
5 x=linspace(-10,10,100)
6 normal=(1/(sigma*sqrt(2*%pi)))*exp(-0.5*((x-mean)/sigma).^2)
7 | exponential=lambda*exp(-lambda*x)
8 (clf();
9 subplot (2,1,1)
10 plot (x, normal, '-b')
11 xlabel('x')
12 ylabel ('Probability Density')
13 title ('Normal Distribution')
14 x=linspace(0,10,100)
15 subplot (2, 1, 2)
16 plot (x, exponential, "-g")
 17 xlabel('x')
 18 <u>ylabel('Probability Density')</u>
 19 title ('exponential Distribution');
 20
```

OUTPUT :

expt. No. 9.

Page No.

PRACTICAL -9

AM: Fitting of Linear pregnession line to the data set given in the cony.

SOFTWARE USED : SCILAB

SOURCE CODE :

```
x=[1 2 3 4 5 6 7];
(x) quib
y=[1.5 3.8 6.7 9.0 11.2 13.6 16]
disp(y)
n=length(x);
sum x=0;
sum_y=0;
sum_xy=0;
sum xx=0;
for i=1:n
    sum_x=sum_x+x(i);
   sum_y=sum_y+y(i);
   sum_xy=sum_xy+x(i) *Y(i);
   sum_xx=sum_xx+x(i) *x(i);
 slope=(n'sum_xy-sum_x'sum_y)/(n'sum_xx-sum_x'sum_x)
 intercept = (sum_y-slope*sum_x)/n;
 disp("slope")
 disp(slope)
 disp("intercept")
 disp(intercept)
 y_pred=slope x+intercept;
 mist (x, y, 'bo', 'MarkerSite', 8, 'LineWidth', 1.5);
 miot(x,y_pred,'s-','LineWidth',1.5);
 wlepsi(.x.):
 viabel('y');
 title ('Linear Regression');
 legend('data points','linear regression line'):
```

Teacher's Signature ____

THEORY:

1x	1	2	3	4	5	6	7
14	1.5	3.8	6.7	9.0	11.2	13	16

y = mx+k
where, m = slope of line
$$\hat{m} = y$$
-intercept

i) Calculating m, i.e, slope

$$m = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2} = \frac{2.41486}{}$$

ii) Calculate:

$$\theta = \frac{\Sigma y - m \cdot \Sigma x}{n} = \frac{61.8 - (2.414)(28)}{7} = 0.82857$$

iii) Final negatession line w.n.t m & 0
$$\Rightarrow$$
 y = mx + c

$$y = 2.4 \text{ m} + (-0.83)$$

$$y = 2.91 \text{ m} - 0.83$$

Expt. No.

Page No.

OUTPUT :

"data points"

1. 2. 3. 4. 5. 6. 7.

"data values"

1.5 3.8 6.7 9. 11.2 13.6 16.

"slope"

2.4142857

"intercept"

-0.8285714

PRACTICAL - 10

AIM: WAP in Scilab to solve assignment problem in Linear Program

SOFTWARE USED : Scilob

SOURCE CODE :

cle

```
n=input("how many workers and job do you have "%.
for i=1:n
      for j=1:n
      printf("worker %d job%d ".i.jr.
      T(i,j)=input(\\');
       end
end
printf("minDATA YOU ENTERED IS IN ");
for i=1:n
printf("htjob%d",i);
for i=1:n
printf("nworker%d ".i);
 for j=1:n
   printf("tit%d".T(i,j));
for i=1:n
for j=1:n
   if(T(i,j)<=minim(i)) then
   minim(i)=T(i,j);
```

	Date	
Expt. No.	Page No	
for i=1:n printf("inworker%d ".i); for j=1:n printf("ifft%d ".T(i,j)); end end		
zerc=[1000,1000,1000,1000,1000,1000]; zerc=[1000,1000,1000,1000,1000,1000];		
for i=1:n for j=1:n if(T(i,j)=0) then zerr(i)=0: zerc(j)=0:		
end end		
f=0: y=0;		
for i=1:n if(zerr(i)) then f=1:		
end end		1000
for i=1:n if(zerc(i)) then y=1:		-
end		17. 17. 17. 17. 17. 17. 17. 17. 17. 17.
ET y taen.		
mn=[1000.1000.1000.1000.1000.1000.1000.100		
fun(j)=T(i,j); end end		THE REAL PROPERTY.
for j=1:n		
for i=1:n T(i,j)=T(i,j)-nun(j): end end		
printi("\n'n""""""data after column minimum decrement is	B	
for i=1:n printf("rtitjob%d".i); end		
for i=1:n printf("nworker" id ".i):	Signature	
for jel:n		

Expt. No. 11.

Page No. ___

CONTENT BEYOND SYLLABUS

PRACTICAL - 11

AIM: To find the Figen values and Eigen vectore in Scilab

SOFTWARE USED : Scilab

QUTPUT:

"enter the Matrix"

15

14

11

13

"The characteristic equation is:"

 $n e^2 + n n_7 = n + n = 0$

"First Eigen value is:"

6.

"First Eigen vector is:"

4.

1.

"Second Eigen value is:"

1.

"Second Eigen vector is:"

4.

-4.

Teacher's Signature _

SOURCE CODE :

```
File Edit Format Options Window Execute ?
eigenval.sci 💥 eigenvector.sci 💥
1 510
 2 disp ('enter the Matrix')
3 for i=1:2
4 for j=1:2
5 A(i,j)=input('\');
 al end
7 |end
8 b=A(1,1)+A(2,2);
9 C=A(1,1) 'A(2,2)-A(1,2) 'A(2,1);
10 disp ('The characteristic equation is:')
11 disp(['-e'2 + ' string(-b) ''e + '-string(c) ' = 0'])
12 el= (b+sgrt (b^2-4*c))/2;
13 e2= (b-sqrt (b^2-4*c))/2;
14 if A(1,2) ~= 0
15 V1 = [A(1,2); e1-A(1,1)];
16 V2 = \{A(1,1); e2-A(1,1)\};
17 elseif A(2,1) ~= 0
18 V1 = [el-A(2,2); A(2,1)];
19 V2 = [e2-A(2,2); A(2,1)];
20 else
21 V1 = [1; 0];
22 V2 = [0; 1];
23 end
24 disp('First Eigen value is:'):
25 disp(el)
26 disp('First Eigen-vector is:');
27 disp (v1)
28 disp('Second Sigen value isl');
29 0185 (e2)
30 disp('Second Eigen vector is:');
31 disp (v2)
```