UNIVERSITE IBN ZOHR FACULTÉ DES SCIENCES DÉPARTEMENT DE PHYSIQUE AGADIR

Élément de module ''Electricité 2'' Module ''Physique 3'' SMP3-SMC3 Série N°2

Théorème d'Ampère, Théorème de Maxwell & Induction électromagnétique

I. Théorème d'Ampère-Fil et cylindre indéfinis

- 1) Un fil indéfini de diamètre négligeable est parcouru par un courant I. Déterminer l'induction magnétique \vec{B} crée par ce courant à la distance r du fil.
- 2) On tient compte du rayon du fil. Celui-ci est considéré comme un cylindre indéfini, de rayon R, parcouru par un courant de densité J uniforme. Les lignes de courants sont orientées suivant l'axe du cylindre.
- a) Déterminer l'induction magnétique B en tout point M de l'espace (Utiliser les coordonnées cylindriques)
- b) En déduire le potentiel vecteur \overrightarrow{A} en tout point de l'espace (On admettra que \overrightarrow{A} s'annule à la surface du cylindre)
 - c) Tracer B(r) et A(r).

II. Théorème d'Ampère- Solénoïde infini et nappe de courant

1) Nappe de courant infinie.

Calculer le champ magnétique crée par une nappe infinie, plane et uniforme de courant i par unité de largeur ; en un point situé à une distance h de la nappe.

2) Solénoïde infini.

On considère un solénoïde de longueur infini, constitué de n spires jointives par unité de longueur. Chacune des spires est parcourue par un courant i.

Déterminer le champ d'induction magnétique à l'intérieur du solénoïde en appliquant le théorème d'Ampère.

III. Théorème de Maxwell. Courant rectangulaire dans une induction non uniforme

Un fil vertical indéfini z'oz est parcouru par un courant I dans le sens z'oz . Un cadre rectangulaire conducteur indéformable ABCD est situé dans un plan vertical xoz passant par le fil . Le côté AB =a parallèle au fil est à la distance x_o du fil ; le côté CD =a est à la distance $b+x_o$ du fil ; le côté BC = b est perpendiculaire au fil. Le cadre comporte n spires.

On donne $a=x_0 = 0.20m$; b = 0.10m; n = 100; I = 10A.

- 1) a) Calculer le flux envoyé par le fil à travers le cadre.
- b) Le cadre rectangulaire est parcourue par un courant i=1A dans le sens ABCD. On déplace le cadre dans la direction Ox parallèle à BC. x_o passant de 0.20m à 0.80m. Calculer le travail des forces électromagnétiques qui agissent sur le cadre.
 - c) Calculer la résultante des forces qui agissent sur le cadre lorsque $x_0 = 0.20$ m.
- 2) Alors que x_o = 0.20m, on tourne le cadre autour de AB d'un angle θ dans le sens qui amène ox sur oy. Calculer :
- a) La force résultante et le moment au point O', milieu de AB, du torseur des forces électromagnétiques qui agissent sur le cadre.
 - b) Le flux ϕ envoyé par le fil à travers le cadre, à la fin de la rotation.
 - c) le travail des forces électromagnétiques au cours de la rotation.

IV. Induction mutuelle. Solénoïdes coaxiaux

On considère deux solénoïdes coaxiaux S_1 et S_2 , de longueurs respectives l_1 et l_2 , de rayons R_1 et R_2 ($R_1 < R_2$) possédant N_1 et N_2 spires et parcourus par les courants i_1 et i_2 de sens opposés. Les solénoïdes sont supposés très long par rapport aux rayons (de façon à négliger les effets de bord).

1) Calculer les inductances propres L_1 et L_2 , l'inductance mutuelle M et le coefficient de couplage $k = \frac{M}{\sqrt{L_1 L_2}}$ de S_1 et S_2 .

Application numérique : N_1 =3000 spires ; R_1 =3cm ; l_1 =1m ; N_2 =2000 spires ; R_2 =3.5cm et l_2 =0.8m .

2) Retrouver les résultas ci dessus par une méthode énergétique.

V – Induction électromagnétique - Loi de Lenz

Une barre homogène MN, de masse m est assujettie à se déplacer sur deux rails verticaux distants de l, reliés par une résistance électrique R entre les points A et B. Le tout est plongé dans un champ magnétique B_0 uniforme et normal au plan des rails.

En admettant que la barre est abandonnée à l'instant t=0 sans vitesse initiale. Calculer :

- 1) La variation du flux magnétique d ϕ induite par le mouvement de la barre si sa vitesse à un instant t est égale à v.
 - 2) La force électromotrice d'induction e ainsi que le courant i circulant dans la résistance R.
 - 3) La force électromagnétique F agissant sur la barre.
 - 4) La loi v(t), supposant qu'il n'y a pas de frottement.