Discussion - Sep 19

Definitions you should know: · Span {\vec{a}_1, ..., \vec{a}_n} } = {(\vec{a}_1 + ... + C_n \vec{a}_n) | C_1, ..., C_n \vec{R}} or = {AZ | Z & R } with A = [a, --- an] fact: this is a subspace of IRM (assuming a, ..., an ERM) · A set of vectors is a spanning set if · A set of vectors is an independent set if ... (non-trivial)...

· Null A = {\forall \mathbb{Z} \in \bar{R} \bar{A} \times \in \bar{R}^{\alpha} \bar{B} \times \times \bar{R}^{\alpha} \bar{A} \times \bar{R}^{\alpha} \bar{B} \times \times \times \bar{R}^{\alpha} \bar{A} \times \bar{R}^{\alpha} \bar{B} \times \ · A subspace W of Mn is a subset of Rn (WCRn)

such that a) of W b) a, b'eW > a+b'eW <) a EW, c eR > caeW. · A basis of a subspace W is a linearly independent spanning set of vectors from W (IR" has standard basis ei, ..., e'u) "The dimension of a subspace is the number of vectors in a basis. · rank A = dim (ol A Fact: rank $A + \dim NulA = n$ (A is mxn) # pivot cols + # free cols = # cols

fact: the columns of an nxn invertible matrix are a basis of the (Uhy?) fact: given a basis $B = \{b_1, ..., b_p\}$ for a subspace $W \subset IR^n$, every vector $X \in W$ can be written as $X = (1b_1 + \cdots + c_p b_p)$ for some $Z \in IR^p$ in exactly one way (why?)

Notation: $[X]_B = Z$.

fact: both NUIIA and COIA have a finite basis.
(How do you colculate them?)

fact: if $B=\{\vec{b}_1,\dots,\vec{b}_p\}$ is a basis of subspace $W\subset \mathbb{R}^n$, then $W=\operatorname{Span}\{\vec{b}_1,\dots,\vec{b}_p\}$ (why?)