A:

Step 1: Do not modify $f(n) = (\log(n))^2$; But modify this equation $g(n) = \log_2(n^{\log_2 n})^2$ by formula logarithm power rule $2*\log_2(n^{\log_2 n})$, use formula logarithm power rule again we can get $2*\log_2(n*\log_2(n))$

Step 2: The big O notation $f(n) = O(\log(n))$, and for all $n \ge n0$ such that $C^*f(n) \ge g(n)$; also $g(n) = O(\log(n))$ and for all $n \ge n0$ such that $C^*g(n) \ge f(n)$. These two equations have the properties of f(n) = O(g(n)) and $f(n) = \Omega(g(n))$; thus, f(n) and g(n) have the same asymptotic growth rate. Then they should be both, so $f(n) = \theta(g(n))$.

B:

Given:
$$f(n) = n^{10}$$
; $g(n) = 2^{\sqrt[10]{n}}$

Step 1:

Do the logarithm for both functions. $\log f(n) = 2^{\log_2 n^{10}}$; $\log g(n) = 2^{\frac{\log_2 n^{10}}{n}}$ we can compare the power of two functions as $\log f(n) = 10 \log n$; $\log g(n) = n^{0.1}$

Step 2:

Apply the L' Hopital's rule, then it will be $\lim_{x\to\infty} \frac{g'(x)}{f'(x)} ==>$

 $\lim_{n\to\infty}\frac{0.1*n^{-0.9}}{\displaystyle\frac{1}{n}\ln 2}$, if n is approach to infinite, then the value is

approaching to infinite as well.

Step 3:

So, $0 \le cg(n) \le f(n)$, for all $n \ge n0$. The increasing rate infinite, g(x) is the upper bound of f(x); g(x) = O(f(x)) which is $g(x) = \Omega(f(x))$.

C:

Given
$$f(n) = n^{1+(-1)^n}$$
, $g(n) = n$.

Step 1:

There are two cases, When n is odd number then f(n) = 1, when n is even number $f(n) = n^2$.

Step 2:

If number n is odd number, f(n) = 1, g(n) = n. Then g(n) is the upper bound of f(n), then g(n) = O(f(n)).

If number is even number, $f(n) = n^2$, g(n) = n. Then $0 \le c g(n) \le f(n)$, so that, $f(n) = \Omega(g(n))$.

However in a single function f(n), There is none a fixed n_0 could satisfied the condition of such that $0 \le c*g(n) \le f(n)$ and $0 \le f(n) \le c*g(n)$, for all $n \ge n_0$. So, it is neither.