MY472 – Week 1: Overview and Fundamentals

Friedrich Geiecke

MY472: Data for Data Scientists

28 September 2020

Course website: lse-my472.github.io

What is this course about?

The 80/20 rule of data science: 80% data manipulation, 20% data analysis

It is about the 80%

In more detail

Course tries to provide "data science literacy"

- ▶ What is data?
 - Basic data types and structures
- ► How to collect data?
 - How to scrape data from the internet
 - How to work with APIs
- ► How to clean and process data?
 - ► How to format, organize, and reshape data
 - Cloud computing to process very large datasets
- How to store and query data?
 - How to create and use databases
 - How to create and manage (online) databases

Tools applicable in a wide range of fields

For example

- Private sector
- Public sector
- ► Healthcare
- ► Non-profit
- ▶ Data journalism
- Research

Plan for today

- ► Administration and logistics
- On the history of data and databases
- Data types and storage units
- Introduction to R
- Markdown in brief
- git and Github for version control

Course outline

- 1. Introduction to data
- 2. The shape of data
- 3. HTML and CSS
- 4. Using data from the internet
- 5. Working with APIs
- 6. (Reading week)
- 7. Textual data
- 8. Data visualization
- 9. Creating and managing databases
- 10. Interacting with online databases
- 11. Cloud computing

Prerequisites and software

- Introductory course no prerequisites (only completion of R preparatory course required!)
- ► Lab computers are available, but we strongly recommend bringing your own laptop
- Software:
 - ► R 4.0.2 Install from https://www.r-project.org/
 - RStudio Install from https://www.rstudio.com/products/rstudio/download/
 - GitHub Desktop Install from https://desktop.github.com/
 - → Please install before lab session this week
- Mirrors similar tool usage and learning in other Methodology courses

About me

- Assistant Professor of Computational Social Science at the London School of Economics
 - ▶ PhD in Economics, London School of Economics, 2020

Research:

- Topics at the boundary of machine learning and economics
- Innovation, macroeconomic fluctuations, economic policy
- Natural language processing, reinforcement learning, statistical machine learning

▶ Contact:

- f.c.geiecke@lse.ac.uk
- https://sites.google.com/view/friedrichgeiecke/

Your turn

- 1. Name?
- 2. MSc/PhD Programme?
- 3. Previous experience with R?
- 4. Why are you interested in this course and what would you most like to learn?

Course philosophy

How to learn the techniques in this course?

- Lecture approach: not ideal for learning how to code
- You can only learn by doing
- ightarrow We will cover each concept three times during each week
 - 1. Introduction to the topic in lecture
 - 2. Guided coding session in lecture and lab
 - 3. Course assignments
- We will move relartively fast

Readings

Course webpage: https://lse-my472.github.io/

- Mixed set of readings, very specific to each week
 - Often freely available online, otherwise, available for purchase (often in electronic versions)
 - Some books are (freely) available online and in print, and the online version may be more recent
- Please do the readings!

Course meetings

- Pre-recorded lectures
- Ten one-hour Q&A via Zoom
 - ► Group 1: Tuesdays 09:00–10:00 via Zoom
 - ► Group 2: Tuesdays 15:00–16:00 via Zoom
- ► Ten one-hour classes ("labs")
 - ► Group 1: Thursdays 10:00–11:00 in CLM.3.02 and via Zoom
 - ▶ Group 2: Fridays 16:00–17:00 in LRB.R.21 and via Zoom
- No lecture/class in Week 6
- Office hours (book via StudentHub)
 - Friedrich: Tuesdays 16:00-18:00 via Zoom
 - Martin: Mondays 14:00-17:00 via Zoom

Assessment

- ▶ 5 assignments will be assessed (50%).
 - Submitted via GitHub (more in lab)
 - ▶ Only "knitted" R-markdown assignments in HTML accepted
 - At least one will be collaborative; rest will be individual submissions
- ► Take-home exam (50%)
 - Work with a dataset to answer a series of question
 - More open-ended format than assignments
 - Deadline: 15 January 2020, 14:00

A note on collaboration

- ► All assignments are individual unless we instruct you otherwise
- ► For individual assignments:
 - ► You can discuss solutions with peers
 - ► However, you are not allowed to copy-paste code you need to write the code yourself
 - Submissions with identical code (where we shouldn't expect to see it) will be considered plagiarism
- You can use online resources but always give credit in comments if you borrow code/solutions

Plan for today

- ► Administration and logistics
- On the history of data and databases
- Data types and storage units
- Introduction to R
- Markdown in brief
- git and GitHub for version control

History of data

Rosetta Stone, British Museum

- Great book on the history of information and data: The Information by James Gleick (not on the formal reading list)
- ► Early example of database often government records: Who is paying taxes and how much, census of citizens, etc.

Early example of a database index

Index cards used in a library catalog of books

- ► Initially developed to catalog species by botanist Carl Linnaeus (19th century)
- Units (species, books) are a record; records are indexed using a specific reference / sorting system

Each record looked like this:

Dewey decimal system

- ► A proprietary library classification system first published in the United States by Melvil Dewey in 1876
- Scheme is made up of ten classes, each divided into ten divisions, each having ten sections
- The system's notation uses Arabic numbers, with three whole numbers making up the main classes and sub-classes and decimals creating further divisions
- Example:

```
500 Natural sciences and mathematics
510 Mathematics
516 Geometry
```

516.3 Analytic geometries 516.37 Metric differential geometries 516.375 Finsler Geometry

- Problem: Cards only sorted in one way. Re-referencing literally a manual operation
- Contrast with the idea of electronic indices, where assets are stored once and many indexing and referencing systems can be applied

Relational databases

► Codd, E.F. (1970) "A Relational Model of Data for Large Shared Data Banks." *Communications of the ACM*.

School Table

-ID	Name
S001	University of Technology
S002	University of Applied Science

Student Table

School ID	ID	Name	DOB
S001	UT-1000	Tommy	05/06/1995
S001	UT-1000	Better	16/04/1995
S002	UAS-1000	Linda	02/09/1995
S002	UAS-1000	Jonathan	22/06/1995

Recent developments in data storage/management

NoSQL: beyond relational structure; flexible; more scalable & compatible with distributed cloud storage (Big Data)

Trying to define Big Data

- 1. Volume: Around 8 billion mobile phones, around 2.5 billion Facebook users, 500+ million tweets per day...
- Velocity: How quickly is data flowing? Personal, spatial and temporal granularity
- 3. Variability: Images, networks, long and short text, geographic coordinates, streaming...

Dumbill (2012), Monroe (2013)

Big Data: Data that is so large, complex, and/or variable that some new tools to understand it must be created

Plan for today

- ► Administration and logistics
- On the history of data and databases
- Data types and storage units
- Introduction to R
- Markdown in brief
- git and Github for version control

Changes in the world of data

- ▶ Volume of data in the modern world: Very large fraction of the world's data has been generated in the last *two years*
- ► Facebook processes 500+ terabytes of data each day
- Square Kilometer Array (SKA) telescope
 - Southern hemisphere radio telescope with a total of 1km² of data sensors
 - Will generate 1 exabyte $daily = 10^{18}$ bytes

- ► Compare this with the Apollo Guidance Computer (1966), which guided the first humans to the moon:
 - Magnetic core memory: 16-bit word length, 2048 words RAM
 4KB
 - Core rope memory: 36,864 words. 73KB

Basic units of data

- Bits
 - Smallest unit of storage; a 0 or 1
 - ightharpoonup With *n* bits, can store 2^n patterns
- Bytes
 - ▶ 8 bits = 1 byte (why 1 byte can store 256 patterns)
 - "eight bit encoding" used to represent characters, such as A represented as 65 = 01000001

Dec Hx Oct Char	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html C	hr
0 0 000 NUL (null)	32	20	040	6#32;	Space	64	40	100	a#64;	0	96	60	140	a#96;	*
1 1 001 SOH (start of heading)	33	21	041	6#33;	1	65	41	101	«#65;	A	97	61	141	6#97;	a
2 2 002 STX (start of text)	34	22	042	6#3 4 ;	"	66	42	102	B	В	98	62	142	6#98;	b
3 3 003 ETX (end of text)	35			6#35;		67	43	103	a#67;	C	99	63	143	6#99;	C
4 4 004 EOT (end of transmission)	36			\$		68			D					d	
5 5 005 ENQ (enquiry)	37			6#37;		69			E					e	
6 6 006 ACK (acknowledge)	38			&		70			a#70;					f	
7 7 007 BEL (bell)	39			'		71			6#71;					g	
8 8 010 BS (backspace)	40			(72			6#72;					a#104;	
9 9 011 TAB (horizontal tab)	41)					6#73;					i	
10 A 012 LF (NL line feed, new line)				&# 4 2;					«#74;					j	
11 B 013 VT (vertical tab)				6#43;					a#75;					k	
12 C 014 FF (NP form feed, new page)				6#44;					a#76;					l	
13 D 015 CR (carriage return)	45			6# 4 5;					6#77;					a#109;	
14 E 016 SO (shift out)	46			.					a#78;					n	
15 F 017 SI (shift in)	47			6#47;		79			6#79;					o	
16 10 020 DLE (data link escape)	48			6#48;		80			6#80;					p	
17 11 021 DC1 (device control 1)	49			6#49;		81			Q					6#113;	
18 12 022 DC2 (device control 2)	50			6#50;		82			6#82;					r	
19 13 023 DC3 (device control 3)				3					%#83 ;					s	
20 14 024 DC4 (device control 4)				4					 4 ;					t	
21 15 025 NAK (negative acknowledge)				6#53;					U					u	
22 16 026 SYN (synchronous idle)				 4 ;					V					v	
23 17 027 ETB (end of trans. block)	55			7		87			W					w	
24 18 030 CAN (cancel)	56			8		88			X					x	
25 19 031 EM (end of medium)	57			9		89			%#89 ;					y	
26 1A 032 SUB (substitute)	58			:		90			%#90 ;					z	
27 1B 033 ESC (escape)	59			;		91			@#91;					{	
28 1C 034 FS (file separator)	60			<		92			@#92;						
29 1D 035 GS (group separator)	61			=					6#93;					}	
30 1E 036 RS (record separator)				>					@#9 4 ;					~	
31 1F 037 US (unit separator)	63	ЗF	077	?	?	95	5F	137	6#95;	_	127	7F	177		DEL

Source: www.LookupTables.com

Basic units of data

Multi-byte units:

unit	abbreviation	total bytes	nearest decimal equivalent
kilobyte	КВ	1,024^1	1000^1
megabyte	MB	1,024^2	1000^2
gigabyte	GB	1,024^3	1000^3
terabyte	ТВ	1,024^4	1000^4
petabyte	РВ	1,024^5	1000^5
exabyte	EB	1,024^6	1000^6
zettabyte	ZB	1,024^7	1000^7
yottabyte	YB	1,024^8	1000^8

Plan for today

- Administration and logistics
- On the history of data and databases
- ► Data types and storage units
- ► Introduction to R
- Markdown in brief
- git and Github for version control

Why we're using R

- Becoming lingua franca of statistical analysis in academia
- ▶ Often demanded by employers in the private sector
- ▶ It's free and open-source
- ► Flexible and extensible through *packages* (over 10,000 and counting!)
- Powerful tool to conduct automated text analysis, social network analysis, and data visualization, with packages such as quanteda, igraph or ggplot2
- Command-line interface and scripts favor reproducibility
- Excellent documentation and online help resources

R is also a full programming language; once you understand how to use it, you can learn other languages too.

RStudio

Plan for today

- Administration and logistics
- On the history of data and databases
- ► Data types and storage units
- ► Introduction to R
- R markdown in brief
- git and Github for version control

Exemplary markdown files

01-RMarkdown.Rmd 02-intro-to-R.Rmd

Plan for today

- ► Administration and logistics
- On the history of data and databases
- ► Data types and storage units
- ► Introduction to R
- ► Markdown in brief
- ▶ git and Github for version control

Introduction to git/GitHub

Git is a type of version control system or VCS

- ➤ A VCS keeps records of your changes: It helps track who made changes when
- Possibility of reverting any changes and go back to previous state
- Distributed (entire code and history on each machine) allows for collaborative development
- ► Git: Created by Linus Torvalds in 2005 to facilitate Linux kernel development
- Other options: Mercurial, Subversion
- GitHub allows you to host repositories and adds extra functionalities (UI, documentation, issues, user profiles...)

Basic concepts of git

- Code lives in a repository: Collection of all files (and history)
- Every time you make changes, you need to make a commit:
 - Creates a snapshot of your code
 - Informs how files have changed
 - You need to add a message explaining changes
- ► After you commit, you need to push the changes to the repository on GitHub so that others can see them
- Note − you also need to pull first to receive changes from other people
- When you start from a repository someone created, you will have to first fork it (create a copy on GitHub) and then clone it (download) to your computer