mpi* - lycée montaigne informatique

Informatique - MPI

On introduit trois variables propositionnelles A, B, M dont la sémantique est respectivement A est un Pur, B est un Pur et nous sommes sur l'île Maya.

Question 1.

- □ 1.1. Les dires de A se traduisent en $(B \land M)$ et ceux de B en $(\neg A \land M)$. Les contraintes de l'énoncé imposent que la formule $\varphi_1 = (A \leftrightarrow (B \land M)) \land (B \leftrightarrow (\neg A \land M))$ est vraie.
- □ 1.2. On utilise les règles du calcul propositionnel pour obtenir :

$$\varphi_1 \equiv (\neg A \lor B) \land (\neg A \lor M) \land (\neg B \lor \neg M \lor A) \land (\neg B \lor \neg A) \land (\neg B \lor M) \land (A \lor \neg M \lor B)$$

□ 1.3. Dans l'arbre obtenu, une seule feuille est étiquetée par \top : celle correspondant à la valuation v telle que v(A) = v(B) = v(M) = 0. On en déduit que A et B sont deux Pires et que le voyageur n'est pas sur l'île Maya.

Question 2.

- □ 2.1. De manière similaire, on obtient $\varphi_2 = (1) \land (2)$ avec $(1) = (A \leftrightarrow (\neg A \land \neg B \land M))$ représentant les contraintes dues aux dires de A et $(2) = (B \leftrightarrow (\neg A \lor \neg B) \land \neg M)$ celles dues à B.
- □ 2.2. On obtient la table de vérité suivante :

A	B	M	$(\neg A \land \neg B \land M)$	(1)	$((\neg A \vee \neg B) \wedge \neg M)$	(2)	φ_2
F	F	F	F	1	V	F	F
F	F	V	V	F	F	V	F
F	V	F	F	V	V	V	V
F	V	V	F	V	F	F	F
V	F	F	F	F	V	F	F
V	F	V	F	F	F	V	F
V	V	F	F	F	F	F	F
V	V	V	F	F	F	V	F

On en déduit que φ_2 est équivalente à la formule $\varphi = (\neg A \land B \land \neg M)$ qui est bien une formule sous forme normale disjonctive (à une clause).

 \square 2.3. D'après la question précédente, le voyageur n'est toujours pas arrivé. D'ailleurs, on connaît aussi la nature de A et B:A est Pire et B est Pur.