MODELOS AUTOREGRESSIVOS-AR

Modelo Autorregressivo de Ordem 1 AR(1)

Um processo autorregressivo de ordem 1 é definido como:

$$y_t = c + \emptyset y_{t-1} + \in_t$$

Condição necessária: $\emptyset < 1$ \in_t seja um ruído branco

Comparando as duas figuras abaixo: o processo em que \emptyset =0,8 parece mais resistente a mudanças que um processo \emptyset =0,5.

Da mesma forma, o processo a esquerda parece ser mais volátil, embora ambos tenham sido gerados com mesmo valor para variância.

Essa volatilidade reflete sobre os valores da autocovariância. Quando Ø=0 é difícil definir um padrão para os dados, tratando-se de um ruído branco.

sãojudas

Modelo Autorregressivo de Ordem p AR(p)

De forma geral, o processo regressivo de ordem *p* é dado por:

$$y_t = c + \emptyset_1 y_{t-1} + \dots + \emptyset_p y_{t-p} + \in_t$$

sāojudas)

Operador de Defasagem

Outra forma de escrever os processos autorregressivos é utilizando o operador de defasagens. Suas propriedades básicas:

$$1) Ly_t = y_{t-1}$$

2)
$$Lc = c$$

3)
$$L^2 y_t = L\{Ly_t\} = Ly_{t-1} = y_{t-2}$$

4)
$$(1-L)y_t = y_t - Ly_t = y_t - y_{t-1} = \Delta y_t$$

5)
$$L(1-L)y_t = (1-L)Ly_t = (1-L)y_{t-1} = \Delta y_{t-1}$$

Autocorrelação

Assumindo estacionaridade fraca, podemos definir a k-ésima ordem de autocovariância, y, como:

$$y_k = cov\{y_t, y_{t-k}\} = cov\{y_t, y_{t+k}\}$$

A autocovariância de um processo estocástico pode ser normalizada e apresentada como uma função de autocorrelação, ho_k :

$$\rho_k = \frac{cov\{y_t, y_{t-k}\}}{V\{y_t\}}$$

Função de Autocorrelação - FAC

A Função de Autocorrelação — FAC ou ACF do inglês - nos ajuda a caracterizar a influência de y_t ao longo do tempo.

Ela nos mostra o quão forte o valor observado hoje está correlacionado com os valores observados no passado.

Nos auxilia a identificar sazonalidades

Gera insights de como choques hoje afetarão os valores futuros da variável em questão.

Função de Autocorrelação - FAC

Função de Autocorrelação Parcial - FACP

A Função de Autocorrelação Parcial –FACP ou PACF, do inglês - nos dá correlação entre a variável no instante t e uma de suas defasagens, retirado os efeitos das outras defasagens.

Por exemplo o:

$$y_t = c + \emptyset_1 y_{t-1} + \emptyset_2 y_{t-2} + \epsilon_t$$

A FACP irá capitar o efeito \emptyset_1 direto de y_{t-1} sobre sobre y_t sem considerar $\emptyset_2 y_{t-2}$ e o o efeito \emptyset_2 direto de y_{t-2} sobre sobre y_t sem considerar $\emptyset_1 y_{t-1}$.

Função de Autocorrelação Parcial - FACP


```
library(readx1)
library(urca)
```



```
IPCA <- read_excel("C:/Econometria/IPCA.xls", col_types = c("date","numeric"))
Inflacao <- ts(IPCA,start = 2008-01, frequency = 12)
Inflacao <- Inflacao[,-1]</pre>
```

view(Inflacao)

_	±
1	0.5196
2	0.1898
3	0.3132
4	0.5376
5	1.2286
6	0.9565
7	0.4505
8	0.3794
9	0.3794
10	0.4979
11	0.3880
12	0.1603
4.5	0.1515

sãojudas

TesteDF <- summary(ur.df(Inflacao, type="none", lags=0)) TesteDF</pre>

```
# Augmented Dickey-Fuller Test Unit Root Test #
Test regression none
call:
lm(formula = z.diff \sim z.lag.1 - 1)
Residuals:
   Min
         10 Median
                        3Q
                              Max
-0.7824 -0.1219 0.0827 0.2890 1.3882
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
z.lag.1 -0.20984 0.05443 -3.856 0.000184 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3461 on 125 degrees of freedom
Multiple R-squared: 0.1063, Adjusted R-squared: 0.09914
F-statistic: 14.87 on 1 and 125 DF, p-value: 0.0001837
Value of test-statistic is: -3.8556
Critical values for test statistics:
    1pct 5pct 10pct
tau1 -2.58 -1.95 -1.62
```


Inflacao Mensal

Função de Autocorrelação Parcial - FACP

pacf(IPCA\$IPCA, main="Inflacao Mensal")

Inflacao Mensal

sāojudas

```
AR1 <- arima(Inflacao,order = c(1,0,0))
AR1
```

$$y_t = 0.4404 + 0.4648_1 y_{t-1} + \in_t$$
 (0.0513) (0.0781)

```
AR2 <- arima(Inflacao, order=c(2,0,0))
AR2
```


$$y_t = 0.4405 + 0.4342_1 y_{t-1} + 0.0636_1 y_{t-1} + \epsilon_t$$

(0.0544) (0.0891) (0.0899)