## CloakVM

## A Runtime System for Confidential Serverless Functions

Michael Hackl (michael.hackl@tum.de)

Advisors: Patrick Sabanic, Dimitrios Stavrakakis

Chair of Computer Systems

https://dse.in.tum.de/



### Serverless Functions & Confidentiality



- Serverless Functions (FaaS)
  - Developers focus on code (functions), not infrastructure
  - Provider manages scaling, OS, runtime
- Problem: sensitive data is exposed
  - Users must trust the provider/host OS/hypervisor

## Confidential Computing & TEEs



#### Confidential Computing

- Protects data during execution using hardware-based trusted execution environments
  (TEEs) from the host (OS, hypervisor, administrators)
- Provides confidentiality & integrity
- Remote attestation

#### TEE categories

- $\circ$  Process-based (e.g., Intel SGX)  $\rightarrow$  enclaves
- $\vee$  VM-based (e.g., AMD SEV-SNP, Intel TDX)  $\rightarrow$  confidential virtual machines (CVMs)

## FaaS & TEE Challenges



#### Straightforward approaches for confidential serverless functions:

- Function execution models
  - $\circ$  One TEE per function execution  $\rightarrow$  high startup overhead, inefficient chaining
  - A single TEE for multiple function executions → weak isolation, attestation
- TEE implementations
  - $\circ$  CVMs  $\rightarrow$  large TCB, long attestation
  - $\circ$  Enclaves  $\rightarrow$  inefficient communication

#### CloakVM:



## A Runtime System for Confidential Serverless Functions

#### CloakVM design goals:

- Confidentiality and integrity for functions
- Strong function isolation
- Small TCB
- Fast function startup
- Efficient function chaining

#### CloakVM:



## A Runtime System for Confidential Serverless Functions

#### CloakVM design goals:

- Confidentiality and integrity for functions
- Strong function isolation
- Small TCB
- Fast function startup
- Efficient function chaining

Secure and efficient execution of confidential serverless functions

#### Architecture



- Single CVM with AMD SEV-SNP
- Monitor
  - Manages security and function execution
- GuestOS
  - OS (e.g., Ubuntu) for networking, storage,
    and orchestration (e.g., OpenWhisk)
- Functions
  - Isolated function processes



## Design: Security



#### Small TCB

- Small Monitor + Function itself
- Host system + GuestOS are untrusted

#### Attestation

AMD SEV-SNP provides remote attestation

#### Isolation

- $\circ$  CVM from host  $\rightarrow$  hardware TEE
- Components from each other →
  Virtual Machine Privilege Levels (VMPLs)
  and separate address spaces





#### Startup overhead

- Copy-on-write & pre-initialized template processes (Zygotes)
- Incremental attestation
- Local attestation with Policies

#### Function chaining





#### Startup overhead

- Copy-on-write & pre-initialized template processes (Zygotes)
- Incremental attestation
- Local attestation with Policies

#### Function chaining





#### Startup overhead

- Copy-on-write & pre-initialized template processes (Zygotes)
- Incremental attestation
- Local attestation with Policies

#### Function chaining





#### Startup overhead

- Copy-on-write & pre-initialized template processes (Zygotes)
- Incremental attestation
- Local attestation with Policies

#### Function chaining



### Implementation: Workflow



#### System setup

- Packaging functions (Gramine LibOS, system libraries, runtime, dependencies, function code)
- Launching the CloakVM Monitor
- Remote attestation and configuring the Policy

#### Function execution

- Making a request
- Loading & verifying the Zygotes and Trustlets
- Executing Trustlets
- Returning the result

#### **Evaluation**



#### Comparison between:

- Native
- Gramine
- Kata Containers
- Virtual machine
- Confidential virtual machine
- CloakVM
  - Cold start
  - Lukewarm start
  - Warm start



### **Evaluation: Startup Time**







CloakVM warm and lukewarm starts are very fast; approach Native speed

#### **Evaluation: Measurement Cost**





CloakVM's incremental attestation is very effective for large Zygotes

## Evaluation: Application-level Benchmarks (end-to-end latency)









## Evaluation: Application-level Benchmarks (end-to-end latency)



#### **Cold and lukewarm start:**

Lower is better ↓

Faster than CVMs: 83 % for cold starts, 94 % for lukewarm starts

Slower than native: 318 % for cold starts, 35 % for lukewarm starts on average



## **Evaluation: Application-level Benchmarks** (end-to-end latency)



Warm start:





## Evaluation: Application-level Benchmarks (end-to-end latency)





## Summary



#### CloakVM runs confidential serverless functions with

- strong security
  - o small TCB
  - attestation
  - isolation
- high performance
  - fast function startup
  - fast chaining

# Backup

## Sequence Diagram





#### **Evaluation: Communication Cost**





CloakVM's shared memory channels are significantly faster than VM/CVM network communication