

UNDERSTANDING MUSIC WITH HIGHER ORDER NETWORK

CSSS 18

Josefine Bohr Brask Ricky Laishram Carlos Marcelo Xindi Wang

QUESTION

- Can we use machine to understand how music is composed and structured?
- What makes music different between different genres, eras, and composers?

DATA AND PROCESSING

- MIDI files from "The Largest MIDI Collection on the Internet"
- MIDI coding: 0 127, 12 notes across 11 octaves
- Using music2 I to detect the tonal note, re-index each note relative to the tonal note

DATA AND PROCESSING

- MIDI files from "The Largest MIDI Collection on the Internet"
- MIDI coding: 0 127, 12 notes across 11 octaves
- Using music2 I to detect the tonal note, re-index each note relative to the tonal note

Snippet of Twinkle, Twinkle Little Star

Original coding: 60 60 67 67 69 69 67 Relative coding: 0 0 7 7 9 9 7

Snippet of Twinkle, Twinkle Little Star

Snippet of Twinkle, Twinkle Little Star

Simple Network

Snippet of Twinkle, Twinkle Little Star

Simple Network

Two-order Network

Snippet of Twinkle, Twinkle Little Star

Simple Network

Two-order Network

Higher-order Network

Snippet of Twinkle, Twinkle Little Star

Simple Network

Two-order Network

Higher-order Network

Node: rules

Edges: Transition Probability

FEATURES FROM HON

- Abruptness
- Branching
- Melodic

•

ABRUPTNESS

Abrupt if the note pitch change difference of the two end is large

BRANCHING

MELODIC

The length of extracted rules

REVERSE ENGINEERING IDENTIFY GENRES USING FEATURES

EIGENVALUES OF HON

CONCLUSIONS

- Features from higher order network can capture characteristics across different music genres
- Eigenvalues of higher order network need further inspection

FUTURE PLAN

- · Better understanding of higher order networks and its eigenvalues
- Multilayer network to incorporate different instruments
- Add temporal information to capture rhythm
- and so much more! 65

Questions?

MIDI CODETABLE

Note	Octave										
	-1	0	1	2	3	4	5	6	7	8	9
С	0	12	24	36	48	60	72	84	96	108	120
C#	1	13	25	37	49	61	73	85	97	109	121
D	2	14	26	38	50	62	74	86	98	110	122
D#	3	15	27	39	51	63	75	87	99	111	123
E	4	16	28	40	52	64	76	88	100	112	124
F	5	17	29	41	53	65	77	89	101	113	125
F#	6	18	30	42	54	66	78	90	102	114	126
G	7	19	31	43	55	67	79	91	103	115	127
G#	8	20	32	44	56	68	80	92	104	116	
Α	9	21	33	45	57	69	81	93	105	117	
A#	10	22	34	46	58	70	82	94	106	118	
В	11	23	35	47	59	71	83	95	107	119	

OTHER FEATURES FROM HON

- Repeatedness
- Pitch range
 - · Pitch range within the piece
 - Pitch range between rules
 - · Pitch range between adjacent rules