APPENDIX A EXPERIMENTAL RESULTS ON 250K ZINC DATASET

A. Effect of noise sampling methods on performance.

 $\label{table a.1} \textbf{TABLE A.1}$ Effect of noise sampling methods on Performance.

Sampling method	Sampling size	Validity ↑	Uniqueness ↑	Novelty ↑	Diversity ↑
Normal	100	85 (85.00%)	80 (94.11%)	36 (45.00%)	0.93
	300	251 (83.60%)	216 (86.05%)	98 (45.00%)	0.93
	500	412 (82.40%)	335 (81.31%)	142 (42.39%)	0.93
Normai	700	546 (78.00%)	416 (76.19%)	183 (43.99%)	0.93
	900	703 (78.33%)	501 (71.26%)	218 (43.51%)	0.93
	1000	779 (77.90%)	524 (67.26%)	226 (43.12%)	0.93
Uniform	100	68 (68.00%)	62 (91.17%)	27 (43.54%)	0.91
	300	209 (69.67%)	176 (84.21%)	74 (42.04%)	0.91
	500	343 (68.60%)	251 (73.17%)	101 (40.23%)	0.91
	700	441 (63.00%)	283 (64.17%)	113 (39.92%)	0.91
	900	564 (62.67%)	349 (61.87%)	136 (38.96%)	0.91
	1000	619 (61.90%)	366 (59.12%)	142 (28.79%)	0.91

B. Effect of training epochs on performance.

 $\label{eq:table A.2} \textbf{Effect of training epochs on Performance}.$

Epochs	Sampling size	Validity ↑	Uniqueness ↑	Novelty ↑	Diversity ↑
100	100	79 (79.00%)	74 (93.6%)	26 (35.13%)	0.89
	500	385 (77.00%)	301 (73.95%)	108 (35.88%)	0.89
	1000	723 (72.30%)	446 (61.69%)	161 (36.10%)	0.89
150	100	85 (85.00%)	80 (94.11%)	36 (45.00%)	0.93
	500	412 (82.40%)	335 (81.31%)	142 (42.39%)	0.93
	1000	779 (77.90%)	524 (67.26%)	226 (43.12%)	0.93
200	100	83 (83.00%)	76 (91.57%)	31(40.79%)	0.93
	500	403 (80.60%)	341 (84.62%)	139 (40.76%)	0.93
	1000	753 (75.30%)	552 (73.31%)	231 (41.85%)	0.93

C. Effect of training data volumes on performance.

APPENDIX B EXPERIMENTAL RESULTS ON 5K ZINC SUBSET

- A. Effect of noise sampling methods on performance.
- B. Effect of training epochs on performance.

 $\begin{tabular}{ll} TABLE~A.3\\ Effect~of~training~data~volumes~on~performance. \end{tabular}$

Training data	Sampling size	Validity ↑	Uniqueness ↑	Novelty ↑	Diversity ↑
	100	79 (79.00%)	69 (87.34%)	67 (97.10%)	0.94
	300	233 (77.66%)	193 (82.83%)	185 (95.85%)	0.94
ZINC 25k	500	386 (77.20%)	294 (76.16%)	276 (93.88%)	0.94
ZINC_23k	700	536 (76.57%)	387 (72.20%)	365 (94.32%)	0.94
	900	658 (73.11%)	425 (64.58%)	394 (92.71%)	0.94
	1000	723 (72.30%)	453 (62.65%)	412 (90.95%)	0.94
	100	85 (85.00%)	80 (94.11%)	36 (45.00%)	0.93
	300	251 (83.60%)	216 (86.05%)	98 (45.00%)	0.93
ZINC 250k	500	412 (82.40%)	335 (81.31%)	142 (42.39%)	0.93
ZINC_230K	700	546 (78.00%)	416 (76.19%)	183 (43.99%)	0.93
	900	703 (78.33%)	501 (71.26%)	218 (43.51%)	0.93
	1000	779 (77.90%)	524 (67.26%)	226 (43.12%)	0.93

Fig. A.1. Distribution plots of QED, LogP, and SA scores on ZINC and generated data.

Fig. B.1. Distribution plots of QED, LogP, and SA scores on 5K ZINC and generated data.

 $\label{table B.1} \textbf{TABLE B.1}$ Effect of noise sampling methods on Performance.

Sampling method	Sampling size	Validity ↑	Uniqueness ↑	Novelty ↑	Diversity ↑
Normal	100	62 (62.00%)	30 (48.38%)	30 (100.00%)	0.85
	300	198 (66.00%)	89 (44.94%)	89 (100.00%)	0.85
	500	350 (70.00%)	164 (46.85%)	160 (97.56%)	0.85
Normai	700	446 (63.71%)	221 (49.55%)	215 (97.28%)	0.85
	900	606 (67.30%)	276 (45.54%)	253 (91.33%)	0.85
	1000	693 (69.30%)	313 (45.16%)	284 (90.73%)	0.85
Uniform	100	55 (55.00%)	25 (45.46%)	24 (96.00%)	0.83
	300	183 (67.30%)	81 (44.26%)	89 (97.53%)	0.83
	500	321 (64.20%)	146 (45.48%)	138 (94.52%)	0.83
	700	422 (60.28%)	191 (45.26%)	183 (95.81%)	0.83
	900	580 (64.44%)	241 (40.91%)	233 (96.68%)	0.83
	1000	669 (66.90%)	282 (42.15%)	270 (95.74%)	0.83

TABLE B.2 EFFECT OF TRAINING EPOCHS ON PERFORMANCE.

Epochs	Sampling size	Validity ↑	Uniqueness ↑	Novelty ↑	Diversity ↑
15	100	62 (62.00%)	30 (48.38%)	30 (100.00%)	0.85
	500	350 (70.00%)	164 (46.85%)	160 (97.56%)	0.85
	1000	693 (69.30%)	313 (45.16%)	284 (90.73%)	0.85
30	100	65 (65.00%)	32 (87.84%)	32 (98.46%)	0.84
	500	331 (66.20%)	214 (56.91%)	205 (95.79%)	0.84
	1000	667 (66.70%)	346 (47.07%)	329 (95.09%)	0.84
50	100	58 (58.00%)	30 (51.85%)	30 (100.00%)	0.84
	500	334 (66.80%)	159 (47.60%)	156 (98.11%)	0.83
	1000	675 (67.50%)	302 (44.74%)	284 (93.11%)	0.84