

a discrete distribution. Supprese that X.,..., XN ind F(.) and assume that NN Geo (0) TP(N=n) = 0 (1-0) n-1 0 < 0 < 1. Consider Y = min 1 x.,. , xn3 S(y) = P(Y > y) = I P(Y > y | N = n) P(N=n) Total probability $= \sum_{n \ge 1} (1 - F(y))^n \qquad (0 \ (1 - 0)^{n-1}$ S(n) = O(1 - F(n))G(n) = F(n) F(n) + OS(n)1-(1-0)(1-F(n)) $f(n, \lambda, \alpha, \alpha) = \alpha \lambda \alpha e^{-\lambda n} (1 - e^{-\lambda n})^{\alpha - 1} 1(n > 0)$ $(1 - (1 - 0)(1 - (1 - e^{-\lambda n})^{\alpha}))^{2}$ $f_{WE}(n,\alpha,\Delta) = \frac{\alpha}{\alpha+1} \Delta e^{-2n} (1 - e^{-\alpha 2n}) \Omega(n,\alpha)$ 6) Weighted Exponential distribution 7) & - Power Transfarmativen Method (APT Method) Cinen data; plot density FIT CDF/SF MLE estimates Goodness of fit test nearly (wywhelehoud IKS/p-value) Simulativer from the distributiver Package name : $F(u) = \begin{cases} \alpha^{F(u)} - 1 \end{cases}$ $\alpha > 0$, $\alpha \neq 1$

	APT				0	L - 1	-												
					F	m)				Q.	= 1								
					•														
	£ 1	aa .)	п	5	flr	r) L	ezlo	e) a	F(n)			~	> 0		~ +	1			
	APF	.00)				oc	- 1		F(n)		1		, 0	,	*	_			
					11	n)					,	-4							
											,	_	- 1						
	11	. 1	\	_		' a a a		/		l lui	a (ac)	١.		1.00	1 _	1 1			
	<i>E</i> (1	X ,)				1	n 1	- 2	æ	7(a) - 1)		wy.		v v	=, 0,		
						J («		A' = 1	E										