

An Invitation to 3D Vision: Solving Problems

Sunglok Choi, Assistant Professor, Ph.D. Computer Science and Engineering Department, SEOULTECH sunglok@seoultech.ac.kr | https://mint-lab.github.io/

Table of Contents: Solving Problems

- Solving Linear Equations using Linear Algebra
- Solving Nonlinear Equations using Nonlinear Optimization
- Solving Linear Equations in 3D Vision
 - Affine transformation estimation
 - Planar homography estimation
 - Note) Image warping using homography
 - Fundamental matrix estimation
- Solving Nonlinear Equations in 3D Vision
 - Absolute camera pose estimation (PnP)
 - Camera calibration

Image: Jigsaw Puzzles Online

Getting Started from a Simple Problem

- Jane bought 3 apples and 4 oranges and paid 10,000 KRW.
- Daniel bought 5 apples and 2 orange and paid 12,000 KRW.
- Question) How much is an apple and an orange, respectively?
- Answer) Calculating the price of apple and orange
 - Unknown: the price apple x and the price of orange y
 - Constraints: 3x + 4y = 10000 and 5x + 2y = 12000
 - Solution using an inverse matrix

$$\begin{bmatrix} 3 & 4 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 10000 \\ 12000 \end{bmatrix} \rightarrow \mathbf{A}\mathbf{x} = \mathbf{b}$$

Solve
$$A\mathbf{x} = \mathbf{b} \rightarrow \mathbf{x} = A^{-1}\mathbf{b} = \begin{bmatrix} 2000 \\ 1000 \end{bmatrix}$$

Therefore, an apple is 2,000 KRW, and an orange is 1,000 KRW.

Getting Started from Line Fitting

Q) How about finding a line from three points?

- Line representation: y = ax + b $(y = -\frac{2}{3}x + \frac{14}{3})$
- Slope $a = \frac{2-4}{4-1} = -\frac{2}{3}$
- Y intercept $b = 4 a \cdot 1 = \frac{14}{3}$

- Example) Line fitting from two points, (1,4) and (4,2) Q) How about finding a line from three points?
 - Unknown: Line parameters a and b (line representation: y = ax + b)
 - Constraints: $a \cdot 1 + b = 4$ and $a \cdot 4 + b = 2$
 - Solution

import numpy as np

$$\begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \rightarrow \mathbf{A}\mathbf{x} = \mathbf{b}$$
$$\therefore \mathbf{x} = \mathbf{A}^{-1}\mathbf{b} = \frac{1}{3} \begin{bmatrix} -2 \\ 14 \end{bmatrix}$$

Example) Line fitting from two points, (1,4) and (4,2), using NumPy

- Example) Line fitting from more than two points such as (1,4), (4,2), and (7,1)
 - Unknown: Line parameters a and b (line representation: y = ax + b)
 - Constraints: $a \cdot 1 + b = 4$, $a \cdot 4 + b = 2$, and $a \cdot 7 + b = 1$
 - Solution

$$\begin{bmatrix} 1 & 1 \\ 4 & 1 \\ 7 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} \rightarrow \mathbf{A}\mathbf{x} = \mathbf{b}$$

 $\mathbf{x} = \mathbf{A}^{\dagger}\mathbf{b}$ where \mathbf{A}^{\dagger} is a pseudo-inverse (Note: $\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2}$)

- **Note**) Pseudo-inverse (~ a generalized matrix inverse)
 - Not necessarily square (A: $m \times n$ matrix, A^{\dagger} : $n \times m$ matrix)
 - Left inverse $(A^{\dagger}A = I_n)$: $A^{\dagger} = (A^{\dagger}A)^{-1}A^{\dagger}$
 - If A has linearly independent columns (rank(A) = n)
 - Right inverse $(AA^{\dagger} = I_m)$: $A^{\dagger} = A^{\dagger}(AA^{\dagger})^{-1}$
 - If A has linearly independent rows (rank(A) = m)

- Example) Line fitting from more than two points such as (1,4), (4,2), and (7,1)
 - Unknown: Line parameters a and b (line representation: y = ax + b)
 - Constraints: $a \cdot 1 + b = 4$, $a \cdot 4 + b = 2$, and $a \cdot 7 + b = 1$
 - Solution

$$\begin{bmatrix} 1 & 1 \\ 4 & 1 \\ 7 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} \rightarrow \mathbf{A}\mathbf{x} = \mathbf{b}$$

 $\mathbf{x} = \mathbf{A}^{\dagger} \mathbf{b}$ where \mathbf{A}^{\dagger} is a pseudo-inverse (Note: $\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2}$)

Example) Line fitting from more than two points such as (1,4), (4,2), and (7,1), using NumPy
 import numpy as np

```
A = np.array([[1., 1.], [4., 1.], [7., 1.]])
b = np.array([[4.], [2.], [1.]])
A_inv = np.linalg.pinv(A)
print(A_inv @ b) # [[-0.5], [ 4.33333333]]
```

Getting Started from Line Fitting

- Line representation: y = ax + b $(y = -\frac{2}{3}x + \frac{14}{3})$
- Slope $a = \frac{2-4}{4-1} = -\frac{2}{3}$
- Y intercept $b = 4 a \cdot 1 = \frac{14}{3}$
- Q) Can it represent a vertical line such as x = 1?

- Line representation: ax + by + c = 0 (2x + 3y - 14 = 0; 4x + 6y - 28 = 0)
 - \rightarrow additional constraint $a^2 + b^2 = 1$ Its shorter form: $\mathbf{n}^{\mathsf{T}}\mathbf{x} + c = 0$

$$(\mathbf{n} = \begin{bmatrix} a \\ b \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$)

Normal vector

- Example) Line fitting from two points, (1,4) and (4,2)
 - Unknown: Line parameters a, b, and c (line representation: ax + by + c = 0)
 - Constraints: $a \cdot 1 + b \cdot 4 + c = 0$ and $a \cdot 4 + b \cdot 2 + c = 0$
 - Solution

$$\begin{bmatrix} 1 & 4 & 1 \\ 4 & 2 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow A\mathbf{x} = \mathbf{0} \text{ (homogeneous equation)} \quad \mathbf{x} = \mathbf{A}^{\ddagger}\mathbf{b}$$

$$\mathbf{x} = \text{null}(A) = [2, 3, -14]^{\mathsf{T}} \rightarrow 2x + 3y - 14 = 0$$

- Note) Null space (a.k.a. <u>kernel</u>)
 - A set of vectors which map A (m-by-n matrix) to the zero vector null(A) = { $\mathbf{v} \in K^n \mid A\mathbf{v} = \mathbf{0}$ }
 - Rank-nullity theorem: rank(A) + nullity(A) = n

- Example) Line fitting from two points, (1,4) and (4,2)
 - Unknown: Line parameters a, b, and c (line representation: ax + by + c = 0)
 - Constraints: $a \cdot 1 + b \cdot 4 + c = 0$ and $a \cdot 4 + b \cdot 2 + c = 0$
 - Solution

$$\begin{bmatrix} 1 & 4 & 1 \\ 4 & 2 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow A\mathbf{x} = \mathbf{0} \text{ (homogeneous equation)} \quad \mathbf{x} = A^{\dagger}\mathbf{b}$$

$$\mathbf{x} = \text{null}(A) = [2, 3, -14]^{\mathsf{T}} \rightarrow 2x + 3y - 14 = 0$$

Example) Line fitting from two points, (1,4) and (4,2), using NumPy

```
import numpy as np
from scipy import linalg
```

- Q) How about finding a line from three points?
- A) No null space for $A = \begin{bmatrix} 1 & 4 & 1 \\ 4 & 2 & 1 \\ 7 & 1 & 1 \end{bmatrix}$ (:: full rank)

- Example) Line fitting from more than two points such as (1,4), (4,2), and (7,1)
 - Unknown: Line parameters a, b, and c (line representation: ax + by + c = 0)
 - Constraints: $a \cdot 1 + b \cdot 4 + c = 0$, $a \cdot 4 + b \cdot 2 + c = 0$, and $a \cdot 7 + b \cdot 1 + c = 0$
 - Solution

$$A = \begin{bmatrix} 1 & 4 & 1 \\ 4 & 2 & 1 \\ 7 & 1 & 1 \end{bmatrix} = USV^{T} \text{ using } \underline{\text{singular value decomposition (SVD)}}$$

```
\mathbf{x} is the last row of V^T. (Note: \hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} ||A\mathbf{x}||^2 with ||\mathbf{x}||^2 = 1 condition)
```

Example) Line fitting from more than two points such as (1,4), (4,2), and (7,1), using NumPy import numpy as np

Getting Started from Line Fitting

- Line representation: y = ax + b
- Algebraic distance $d_a = (ax_i + b) y_i$ (signed distance)
- Line fitting using $\hat{\mathbf{x}} = \mathbf{A}^{\dagger} \mathbf{b} \rightarrow \hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{A}\mathbf{x} \mathbf{b}\|_{2}^{2}$ $\hat{a}, \hat{b} = \underset{a,b}{\operatorname{argmin}} \sum_{i} (ax_{i} + b y_{i})^{2}$

 (x_i, y_i)

Q) Which line is more closer to the point?

Getting Started from Line Fitting

- Line representation: ax + by + c = 0
- Geometric distance $d_g = \frac{ax_i + by_i + c}{\sqrt{a^2 + b^2}} = \frac{\mathbf{n}^T \mathbf{x}_i + c}{\|\mathbf{n}\|}$ (signed distance)
- Line fitting using \hat{a} , \hat{b} , $\hat{c} = \underset{a,b,c}{\operatorname{argmin}} \sum_{i} \left(\frac{ax_i + by_i + c}{\sqrt{a^2 + b^2}} \right)^2$

 (x_i, y_i)

Q) Which line is more closer to the point?

Solving Nonlinear Equation using Nonlinear Optimization

- <u>Nonlinear optimization</u> is the process of solving an optimization problem where some of the <u>constraints</u> or the <u>objective function</u> are **nonlinear**.
 - Alias: Nonlinear programming (NLP)
 - Mathematically, $\hat{\mathbf{x}} = \operatorname*{argmin} f(\mathbf{x})$ subject to $g_i(\mathbf{x}) \leq 0$ for each $i \in \{1, ..., m\}$ $h_j(\mathbf{x}) = 0$ for each $j \in \{1, ..., p\}$ $\mathbf{x} \in \mathbf{X}$ (X is a subset of \mathbb{R}^n)
 - $f(\mathbf{x})$: The <u>real-valued</u> <u>objective</u> function
 - $g_i(\mathbf{x})$: The *i*-th <u>real-valued</u> inequality <u>constraint</u> function
 - $h_j(\mathbf{x})$: The j-th <u>real-valued</u> equality <u>constraint</u> function
 - Example) The objective function $f(x,y) = 4 (x^2 + y^2)$ is nonlinear.

Nonlinear Optimization

Gradient descent

- A first-order iterative algorithm for finding a local minimum of a differentiable function by <u>pursuing to the</u>
 opposite direction of the gradient of the function at the current point
- Mathematically, $x_{t+1} = x_t \gamma f'(x_t)$
 - γ : The step size (a.k.a. learning rate)

Note) Stochastic gradient descent (SGD)

- SGD uses an <u>approximated gradient</u> (calculated from a randomly selected subset of the given data) instead of the actual gradient (calculated from the entire data).
- SGD variants: AdaGrad, RMSProp, Adam, ...

Nonlinear Optimization

Newton's method

- A second-order iterative algorithm for finding a local minimum of a differentiable function by <u>pursuing the</u>
 <u>minima of the locally approximated parabola</u> of the function at the current point
- Mathematically, $x_{t+1} = x_t \frac{f'(x_t)}{f''(x_t)}$
 - The step size is **not** required.

Note) <u>Gauss-Newton method</u>

- A special case for <u>non-linear least squares</u> problems
 - When the function has a form of $f(x) = r^2(x)$,
 - Newton's method becomes $x_{t+1} = x_t \frac{r(x_t)}{r'(x_t)}$ (without the 2nd-order derivative)

Solving Nonlinear Equation using Nonlinear Optimization

- Example) Line fitting from more than two points such as (1,4), (4,2), and (7,1), using SciPy
 - Unknown: Line parameters a, b, and c (line representation: ax + by + c = 0)
 - Cost function: $f(a, b, c) = \sum_{i} \left(\frac{ax_i + by_i + c}{\sqrt{a^2 + b^2}} \right)^2$
 - Optimizer: <u>Gauss-Newton method</u> (least squares)

```
import numpy as np
from scipy.optimize import least_squares

def geometric_error(line, pts):
    a, b, c = line
    err = [(a*x + b*y + c) / np.sqrt(a*a + b*b) for (x, y) in pts]
    return err

pts = [(1, 4), (4, 2), (7, 1)]
line_init = [1, 1, 0]
result = least_squares(geometric_error, line_init, args=(pts,))
line = result['x'] / -result['x'][1] # [-0.50372575, -1., 4.34823633]
```

Summary

Linear equations

- Inhomogeneous equations $A\mathbf{x} = \mathbf{b} \rightarrow \mathbf{x} = A^{\dagger}\mathbf{b}$ where A^{\dagger} is a pseudo-inverse
 - Formulation) $\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{A}\mathbf{x} \mathbf{b}\|_{2}^{2}$
- Homogeneous equation $A\mathbf{x} = \mathbf{0} \rightarrow \mathbf{x}$ is the last row of V^T where $A = USV^T$ (from singular value decomposition)
 - Formulation) $\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} ||\mathbf{A}\mathbf{x}||^2$ with $||\mathbf{x}||^2 = 1$ condition

Nonlinear equations

- Nonlinear optimization: Gradient descent, Newton's method, and Gauss-Newton method (for $f(x) = r^2(x)$)
 - Formulation) $\hat{\mathbf{x}} = \operatorname{argmin} f(\mathbf{x})$
 - Note) Let's use magic tools such as <u>scipy.optimize</u> and <u>Ceres Solver</u> for better performance.

Affine transformation estimation

- Unknown: Affine transformation H (6 DOF)
- Given: Point correspondence $(\mathbf{x}_1, \mathbf{x}_1')$, ..., $(\mathbf{x}_n, \mathbf{x}_n')$
- Constraints: $n \times affine transformation \mathbf{x}'_i = H\mathbf{x}_i$
- Solutions $(n \ge 3)$
 - OpenCV: cv::getAffineTransform()
 - Affine transformation estimation

- Affine transformation:
$$\begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} = \begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix}$$

- For
$$n$$
 pairs of points,
$$\begin{bmatrix} x_1 & y_1 & 0 & 0 & 1 & 0 \\ 0 & 0 & x_1 & y_1 & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n & y_n & 0 & 0 & 1 & 0 \\ 0 & 0 & x_n & y_n & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{12} \\ a_{21} \\ a_{22} \\ t_x \\ t_y \end{bmatrix} = \begin{bmatrix} x_1' \\ y_1' \\ \vdots \\ x_n' \\ y_n' \end{bmatrix} \rightarrow \mathbf{A}\mathbf{x} = \mathbf{k}$$

- Solve Ax = b and organize H from x

Affine transformation estimation [affine_estimation_implement.py]

```
import numpy as np
import cv2 as cv
def getAffineTransform(src, dst):
    if len(src) == len(dst):
        # Solve 'Ax = b'
        A, b = [], []
        for p, q in zip(src, dst):
            A.append([p[0], p[1], 0, 0, 1, 0])
            A.append([0, 0, p[0], p[1], 0, 1])
            b.append(q[0])
            b.append(q[1])
        x = \frac{\text{np.linalg.pinv}(A)}{\text{0}}
        # Reorganize `x` as a matrix
        H = np.array([[x[0], x[1], x[4]], [x[2], x[3], x[5]]))
        return H
if name == ' main ':
    src = np.array([[115, 401], [776, 180], [330, 793]], dtype=np.float32)
    dst = np.array([[0, 0], [900, 0], [0, 500]], dtype=np.float32)
    my H = getAffineTransform(src, dst)
    cv H = cv.getAffineTransform(src, dst) # Note) It accepts only 3 pairs of points.
    . . .
```

 $\begin{bmatrix} x_1 & y_1 & 0 & 0 & 1 & 0 \\ 0 & 0 & x_1 & y_1 & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n & y_n & 0 & 0 & 1 & 0 \\ 0 & 0 & x_n & y_n & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{12} \\ a_{21} \\ a_{22} \\ t_x \\ t_y \end{bmatrix} = \begin{bmatrix} x_1' \\ y_1' \\ \vdots \\ x_n' \\ y_n' \end{bmatrix}$

Planar <u>homography</u> estimation

- Unknown: Planar homography H (8 DOF ← up to scale)
- Given: Point correspondence $(\mathbf{x}_1, \mathbf{x}_1'), ..., (\mathbf{x}_n, \mathbf{x}_n')$
- Constraints: n x projective transformation $\mathbf{x}_{i}^{t} = H\mathbf{x}_{i}$

$$\begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ v_1 & v_2 & 1 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} = \begin{bmatrix} u_i \\ v_i \\ w_i \end{bmatrix} \rightarrow \mathbf{x}'_i = \begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} = \frac{1}{w_i} \begin{bmatrix} u_i \\ v_i \\ w_i \end{bmatrix}$$

- Modified constraints: $n \times transformation \mathbf{x}'_i \sim H\mathbf{x}_i$ (similarity) or $\mathbf{x}'_i = \lambda_i H\mathbf{x}_i$ or $\mathbf{x}'_i \times (H\mathbf{x}_i) = \mathbf{0}$
 - Note) The last element of \mathbf{x}_i and \mathbf{x}_i' in homogeneous coordinates are not necessary to be 1.
- Solutions $(n \ge 4) \rightarrow 4$ -point algorithm
 - OpenCV: cv::getPerspectiveTransform() and cv::findHomography()

Planar **homography** estimation

- Unknown: Planar homography H (8 DOF ← up to scale)
- Given: Point correspondence $(\mathbf{x}_1, \mathbf{x}_1'), ..., (\mathbf{x}_n, \mathbf{x}_n')$
- Constraints: $n \times transformation \mathbf{x}'_i \times (H\mathbf{x}_i) = \mathbf{0}$
- Solutions $(n \ge 4) \rightarrow 4$ -point algorithm
 - OpenCV: cv::getPerspectiveTransform() and cv::findHomography()
 - 4-point algorithm

$$[x_i' \quad y_i' \quad w_i'] \times \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ w_i \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \rightarrow \begin{array}{l} w_i'(x_i h_{21} + y_i h_{22} + w_i h_{23}) - y_i'(x_i h_{31} + y_i h_{32} + w_i h_{33}) = 0 \\ \rightarrow w_i'(x_i h_{11} + y_i h_{12} + w_i h_{13}) - x_i'(x_i h_{31} + y_i h_{32} + w_i h_{33}) = 0 \\ y_i'(x_i h_{11} + y_i h_{12} + w_i h_{13}) - x_i'(x_i h_{21} + y_i h_{22} + w_i h_{23}) = 0 \end{array}$$

$$[x'_{i} \quad y'_{i} \quad w'_{i}] \times \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x_{i} \\ y_{i} \\ w_{i} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{w'_{i}(x_{i}h_{11} + y_{i}h_{12} + w_{i}h_{13}) - x'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) = 0} \\ y'_{i}(x_{i}h_{11} + y_{i}h_{12} + w_{i}h_{13}) - x'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) = 0 \\ y'_{i}(x_{i}h_{11} + y_{i}h_{12} + w_{i}h_{13}) - x'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) = 0 \\ y'_{i}(x_{i}h_{11} + y_{i}h_{12} + w_{i}h_{13}) - x'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) = 0 \\ w'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) - x'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) = 0 \\ y'_{i}(x_{i}h_{11} + y_{i}h_{12} + w_{i}h_{13}) - x'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) = 0 \\ w'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) - x'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) = 0 \\ w'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) - x'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) = 0 \\ w'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) - x'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) = 0 \\ w'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) - x'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) = 0 \\ w'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) - x'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) = 0 \\ w'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) - x'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) = 0 \\ w'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) - x'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) = 0 \\ w'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) - x'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) = 0 \\ w'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) - x'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) = 0 \\ w'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) - x'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) = 0 \\ w'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) - x'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) = 0 \\ w'_{i}(x_{i}h_{31} + y_{i}h_{32} + y_{i}h_{33} + w_{i}h_{33}) - x'_{i}(x_{i}h_{31} + y_{i}h_{32} + w_{i}h_{33}) = 0 \\$$

Solve Ax = 0 and reorganize H (3x3 matrix)

Planar homography estimation [homography_estimation_implement.py] import numpy as np import cv2 as cv def getPerspectiveTransform(src, dst): if len(src) == len(dst): # Make homogeneous coordiates if necessary **if** src.shape[1] == 2: src = np.hstack((src, np.ones((len(src), 1), dtype=src.dtype))) **if** dst.shape[1] == 2: dst = np.hstack((dst, np.ones((len(dst), 1), dtype=dst.dtype))) # Solve 'Ax = 0'A = []for p, q in zip(src, dst): A.append([0, 0, 0, q[2]*p[0], q[2]*p[1], q[2]*p[2], -q[1]*p[0], -q[1]*p[1], -q[1]*p[2]]) A.append([q[2]*p[0], q[2]*p[1], q[2]*p[2], 0, 0, 0, -q[0]*p[0], -q[0]*p[1], -q[0]*p[2]]) _, _, Vt = np.linalg.svd(A, full_matrices=True) x = Vt[-1]# Reorganize `x` as a matrix H = x.reshape(3, -1) / x[-1] # Normalize the last element as 1return H if name == ' main ':

Appendix) Image Warping

Example) Image warping using homography

Target: Transformed image I'

Source: Original image I

- Relationship: $I'(\mathbf{x}') = I(\mathbf{x})$ where $\mathbf{x}' = H\mathbf{x}$

- Method #1) Select a pair of points, $\mathbf{x} \in \{(0,0),(0,1),...,(1,0),(1,1),...\}$ and $\mathbf{x}' = H\mathbf{x}$

- Method #2) Select a pair of points, $\mathbf{x}' \in \{(0,0), (0,1), ..., (1,0), (1,1), ...\}$ and $\mathbf{x} = \mathbf{H}^{-1}\mathbf{x}'$

Example) Image warping using homography [image_warping_implement_py]

```
import cv2 as cv
def warpPerspective1(src, H, dst size):
    # Generate an empty image
    width, height = dst size
    channel = src.shape[2] if src.ndim > 2 else 1
    dst = np.zeros((height, width, channel), dtype=src.dtype)
    # Copy a pixel from `src` to `dst`
    for py in range(img.shape[0]):
        for px in range(img.shape[1]):
            q = H @ [px, py, 1]
            qx, qy = int(q[0]/q[-1] + 0.5), int(q[1]/q[-1] + 0.5)
            if qx >= 0 and qy >= 0 and qx < width and <math>qy < height:
                dst[qy, qx] = src[py, px]
    return dst
def warpPerspective2(src, H, dst size):
    # Generate an empty image
    width, height = dst size
    channel = src.shape[2] if src.ndim > 2 else 1
    dst = np.zeros((height, width, channel), dtype=src.dtype)
    # Copy a pixel from `src` to `dst`
    H inv = np.linalg.inv(H)
    for qy in range(height):
        for qx in range(width):
            p = H inv @ [qx, qy, 1]
            px, py = int(p[0]/p[-1] + 0.5), <math>int(p[1]/p[-1] + 0.5)
            if px >= 0 and py >= 0 and px < img.shape[1] and py < img.shape[0]:
                dst[qy, qx] = src[py, px]
    return dst
```


<u>Fundamental matrix</u> estimation

- Unknown: Fundamental matrix F (7 DOF ← up to scale, rank(F) = 2)
- Given: Point correspondence $(\mathbf{x}_1, \mathbf{x}_1'), ..., (\mathbf{x}_n, \mathbf{x}_n')$
- Constraints: $n \times pipolar$ constraint $\mathbf{x}'^{\mathsf{T}} \mathbf{F} \mathbf{x} = 0$
- Solutions $(n \ge 7) \rightarrow 7$ -point and 8-point algorithms
 - OpenCV: cv::findFundamentalMat()

8-point algorithm

- Epipolar constraint:
$$\begin{bmatrix} x'_i & y'_i & w'_i \end{bmatrix} \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ w_i \end{bmatrix} = 0$$

- For
$$n$$
 pairs of points,
$$\begin{bmatrix} x_1'x_1 & x_1'y_1 & x_1'w_1 & y_1'x_1 & y_1'y_1 & y_1'w_1 & w_1'x_1 & w_1'y_1 & w_1'w_1 \\ \vdots & \vdots \\ x_n'x_n & x_n'y_n & x_n'w_n & y_n'x_n & y_n'y_n & y_n'w_n & w_n'x_n & w_n'y_n & w_n'w_n \end{bmatrix} \begin{bmatrix} f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f \end{bmatrix} = 0 \rightarrow A\mathbf{x} = 0$$

- Solve Ax = 0 and reorganize F (3x3 matrix)
- Enforce rank(F) = 2 using <u>singular value decomposition (SVD)</u>

Fundamental matrix estimation [fundamental_mat_estimation_implement.py] import numpy as np import cv2 as cv def findFundamentalMat(pts1, pts2): if len(pts1) == len(pts2): # Make homogeneous coordiates if necessary if pts1.shape[1] == 2: pts1 = np.hstack((pts1, np.ones((len(pts1), 1), dtype=pts1.dtype))) if pts2.shape[1] == 2: pts2 = np.hstack((pts2, np.ones((len(pts2), 1), dtype=pts2.dtype))) # Solve 'Ax = 0'A = []for p, q in zip(pts1, pts2): A.append([q[0]*p[0], q[0]*p[1], q[0]*p[2], q[1]*p[0], q[1]*p[1], q[1]*p[2], q[2]*p[0], q[2]*p[1], q[2]*p[2], q[2]*p[2],_, _, Vt = np.linalg.svd(A, full_matrices=True) x = Vt[-1]# Reorganize `x` as `F` and enforce 'rank(F) = 2' F = x.reshape(3, -1)U, S, Vt = np.linalg.svd(F) S[-1] = 0F = U @ np.diag(S) @ Vtreturn F / F[-1,-1] # Normalize the last element as 1 if __name__ == ' main__':

. . .

- Triangulation (point localization)
 - Unknown: Position of a 3D point X (3 DoF)
 - Given: Point correspondence (x, x') and projection matrices (P, P')
 - Constraints: $\mathbf{x} = P\mathbf{X}$, $\mathbf{x}' = P'\mathbf{X}$
 - Solutions
 - OpenCV: cv::triangulatePoints()
 - Linear triangulation

$$x(\mathbf{p}_{3}^{\mathsf{T}}\mathbf{X}) - w(\mathbf{p}_{1}^{\mathsf{T}}\mathbf{X}) = 0$$

$$- \text{ Projection: } \mathbf{x} = \mathbf{P}\mathbf{X} \to \mathbf{x} \times (\mathbf{P}\mathbf{X}) = \mathbf{0} \to y(\mathbf{p}_{3}^{\mathsf{T}}\mathbf{X}) - w(\mathbf{p}_{2}^{\mathsf{T}}\mathbf{X}) = 0 \text{ where } \mathbf{P} = \begin{bmatrix} \mathbf{p}_{1}^{\mathsf{T}} \\ \mathbf{p}_{2}^{\mathsf{T}} \\ x(\mathbf{p}_{2}^{\mathsf{T}}\mathbf{X}) - y(\mathbf{p}_{1}^{\mathsf{T}}\mathbf{X}) = 0 \end{bmatrix}$$

- Solve
$$A\mathbf{X} = 0$$
 where $A = \begin{bmatrix} x\mathbf{p}_3^{\mathsf{T}} - w\mathbf{p}_1^{\mathsf{T}} \\ y\mathbf{p}_3^{\mathsf{T}} - w\mathbf{p}_2^{\mathsf{T}} \\ x'\mathbf{p'}_3^{\mathsf{T}} - w'\mathbf{p'}_1^{\mathsf{T}} \\ y'\mathbf{p'}_3^{\mathsf{T}} - w'\mathbf{p'}_2^{\mathsf{T}} \end{bmatrix}$


```
Triangulation (point localization) [triangulation_implement.py]
     import numpy as np
     import cv2 as cv
    def triangulatePoints(P0, P1, pts0, pts1):
          Xs = []
          for (p, q) in zip(pts0.T, pts1.T):
               # Solve 'AX = 0'
                                                                                                  A = \begin{bmatrix} x\mathbf{p}_{3}^{\mathsf{T}} - w\mathbf{p}_{1}^{\mathsf{T}} \\ y\mathbf{p}_{3}^{\mathsf{T}} - w\mathbf{p}_{2}^{\mathsf{T}} \\ x'\mathbf{p'}_{3}^{\mathsf{T}} - w'\mathbf{p'}_{1}^{\mathsf{T}} \\ y'\mathbf{p'}_{3}^{\mathsf{T}} - w'\mathbf{p'}_{2}^{\mathsf{T}} \end{bmatrix}
               A = np.vstack((p[0] * P0[2] - P0[0]),
                                   p[1] * P0[2] - P0[1],
                                   q[0] * P1[2] - P1[0],
                                   q[1] * P1[2] - P1[1])
               _, _, Vt = np.linalg.svd(A, full_matrices=True)
               Xs.append(Vt[-1])
          return np.vstack(Xs).T
     if name == ' main ':
          f, cx, cy = 1000., 320., 240.
          pts0 = np.loadtxt('../bin/data/image formation0.xyz')[:,:2]
          pts1 = np.loadtxt('../bin/data/image formation1.xyz')[:,:2]
          output file = '../bin/triangulation implement.xyz'
          # Estimate relative pose of two view
          F, = cv.findFundamentalMat(pts0, pts1, cv.FM 8POINT)
          K = np.array([[f, 0, cx], [0, f, cy], [0, 0, 1]])
          E = K.T @ F @ K
          _, R, t, _ = cv.recoverPose(E, pts0, pts1)
```

```
Triangulation (point localization) [triangulation_implement.py]
   if __name__ == '__main__':
       f, cx, cy = 1000., 320., 240.
       pts0 = np.loadtxt('../bin/data/image formation0.xyz')[:,:2]
       pts1 = np.loadtxt('../bin/data/image_formation1.xyz')[:,:2]
       output file = '../bin/triangulation implement.xyz'
       # Estimate relative pose of two view
       F, = cv.findFundamentalMat(pts0, pts1, cv.FM 8POINT)
       K = np.array([[f, 0, cx], [0, f, cy], [0, 0, 1]])
       E = K.T @ F @ K
       _, R, t, _ = cv.recoverPose(E, pts0, pts1)
       # Reconstruct 3D points (triangulation)
       P0 = K @ np.eye(3, 4, dtype=np.float32)
       Rt = np.hstack((R, t))
       P1 = K @ Rt
       X = triangulatePoints(P0, P1, pts0.T, pts1.T)
       X /= X[3]
       X = X.T
       # Write the reconstructed 3D points
       np.savetxt(output_file, X)
```


triangulation_implement.xyz

- Absolute camera pose estimation (perspective-n-point; PnP)
 - Unknown: Camera pose R and t (6 DOF)
 - Given: 3D points X_1 , X_2 , ..., X_n , their projected points x_1 , x_2 , ..., x_n , and camera matrix K
 - Constraints: $n \times projection x_i = K[R|t]X_i$
 - New constraints: $\mathbf{x}_i = \text{proj}(\mathbf{X}_i; \mathbf{R}, \mathbf{t})$ where $\mathbf{x}_i = [x_i, y_i]^T$
 - Note) The projection π generates 2D points on the image plane (not in homogeneous coordinates) considering nonlinear lens distortion.
 - Solutions $(n \ge 3) \rightarrow 3$ -point algorithm
 - OpenCV: cv::solvePnP() and cv::solvePnPRansac()
 - Iterative 3-point algorithm using local optimization
 - Cost function

$$\widehat{\mathbf{R}}, \widehat{\mathbf{t}} = \underset{\mathbf{R}, \mathbf{t}}{\operatorname{argmin}} \sum_{i=1}^{n} ||\mathbf{x}_i - \operatorname{proj}(\mathbf{X}_i; \mathbf{R}, \mathbf{t})||_2^2$$

- Optimizer: Gauss-Newton method

Absolute camera pose estimation (perspective-n-point; PnP) [pose_estimation_implement.py] import numpy as np from scipy.optimize import least squares from scipy.spatial.transform import Rotation import cv2 as cv def project no distort(X, rvec, t, K): R = Rotation.from rotvec(rvec.flatten()).as matrix() XT = X @ R.T + t# Transpose of 'X = R @ X + t'# Transpose of 'x = KX' xT = xT / xT[:,-1].reshape((-1, 1)) # Normalizereturn xT[:,0:2] def reproject_error_pnp(unknown, X, x, K): rvec, tvec = unknown[:3], unknown[3:] xp = project no distort(X, rvec, tvec, K) err = x - xpreturn err.ravel() def solvePnP(obj pts, img pts, K): unknown_init = np.array([0, 0, 0, 0, 0, 1.]) # Sequence: rvec(3), tvec(3) result = least_squares(reproject_error_pnp, unknown_init, args=(obj_pts, img_pts, K)) return result['success'], result['x'][:3], result['x'][3:]

Camera calibration

- Unknown: Intrinsic + m x extrinsic parameters (3* + m x 6 DOF)
- Given: 3D points \mathbf{X}_1 , \mathbf{X}_2 , ..., \mathbf{X}_n and their projected points, \mathbf{x}_i^j , on the j-th image
 - Note) m: the number of images, n: the number of 3D points
- Constraints: $m \times n \times projection \mathbf{x}_{i}^{j} = K[R_{j} | \mathbf{t}_{j}] \mathbf{X}_{i}$
- New constraints: $\mathbf{x}_i^j = \text{proj}(\mathbf{X}_i; K, R_j, \mathbf{t}_j)$ where $\mathbf{x}_i^j = \left[x_i^j, y_i^j\right]^T$
- Solutions [Tools]
 - OpenCV: cv::calibrateCamera() and cv::initCameraMatrix2D()
 - Camera calibration using local optimization
 - Cost function

$$\widehat{\mathbf{K}}, \widehat{\mathbf{R}}_{\dots}, \widehat{\mathbf{t}}_{\dots} = \underset{\mathbf{K}, \mathbf{R}_{\dots}, \mathbf{t}_{\dots}}{\operatorname{argmin}} \sum_{j=1}^{m} \sum_{i=1}^{n} \left\| \mathbf{x}_{i}^{j} - \operatorname{proj}(\mathbf{X}_{i}; \mathbf{K}, \mathbf{R}_{j}, \mathbf{t}_{j}) \right\|_{2}^{2}$$

Optimizer: Gauss-Newton method


```
    Camera calibration [camera calibration implement.py]

   import numpy as np
   def fcxcy to K(f, cx, cy):
       return np.array([[f, 0, cx], [0, f, cy], [0, 0, 1]])
   def reproject error calib(unknown, Xs, xs):
       K = fcxcy to K(*unknown[0:3])
       err = []
       for i in range(len(xs)):
           offset = 3 + 6 * i
           rvec, tvec = unknown[offset:offset+3], unknown[offset+3:offset+6]
           xp = project_no_distort(Xs[i], rvec, tvec, K)
           err.append(xs[i] - xp)
       return np.vstack(err).ravel()
   def calibrateCamera(obj_pts, img_pts, img_size):
       img n = len(img pts)
       unknown init = np.array([img size[0], img size[0]/2, img size[1]/2] \
                    + img n * [0, 0, 0, 0, 0, 1.]) # Sequence: f, cx, cy, img n * (rvec, tvec)
       result = least squares(reproject error calib, unknown init, args=(obj pts, img pts))
       K = fcxcy to K(*result['x'][0:3])
       rvecs = [result['x'][(6*i+3):(6*i+6)] for i in range(img_n)]
       tvecs = [result['x'][(6*i+6):(6*i+9)] for i in range(img n)]
       return result['cost'], K, np.zeros(5), rvecs, tvecs
```

Summary

Linear equations

- Inhomogeneous equations $A\mathbf{x} = \mathbf{b} \rightarrow \mathbf{x} = A^{\dagger}\mathbf{b}$ where A^{\dagger} is a pseudo-inverse
 - Formulation) $\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{A}\mathbf{x} \mathbf{b}\|_{2}^{2}$
 - Example) Affine transformation estimation
- Homogeneous equation $A\mathbf{x} = \mathbf{0} \rightarrow \mathbf{x}$ is the last row of V^{T} where $A = USV^{\mathsf{T}}$ (from singular value decomposition)
 - Formulation) $\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{A}\mathbf{x}\|^2$ with $\|\mathbf{x}\|^2 = 1$ condition
 - Example) Planar homography estimation
 - Example) Fundamental matrix estimation
 - Example) Triangulation

Nonlinear equations

- Nonlinear optimization: Magic tools such as <u>scipy.optimize</u> and <u>Ceres Solver</u>
 - Formulation) $\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} f(\mathbf{x})$
 - Example) Absolute camera pose estimation (PnP)
 - Example) Camera calibration