TEXT SUMMARIZE & BERTVIZ

OUTLINE

- 使用TRANSFORMER擷取文章摘要
- 使用BERTVIZ視覺化模型的ATTENTIONS

從Bert Finetune來處理摘要擷取(text summarization)

CLS: sentence embedding>用來後續的預測任務 E_A, E_B: segmentation embeddings>根據奇數偶數句來區分

BERT-SUM-TEXT

[1908.08345] TEXT SUMMARIZATION WITH PRETRAINED ENCODERS (ARXIV.ORG)

- 什麼是extractive summarization?
 - 對每個句子做Binary classification
 - 是重點/不是重點

簡單來說,既然前面已經對句子做embedding, 我們丟進去分類器的單位就不是token為單位,而是sentence

優點>取出的摘要都是完整的句子 缺點>沒有辦法重組句子(精煉)

Language Model: Unigram

Bigram: 詞語出現的機率和前一個詞有關 (考慮兩個詞的順序) Unigram: 假設詞語之間是互相獨立 (不考慮順序)

Language Model: Bigram (54 orole)

 $p(w_1, w_2, w_3, w_4, w_5 ... w_n)$ $= p(w_1) - p(w_1 | w_1) \cdot p(w_1 | w_2) - \cdots p(w_n | w_n) = p(w_n) \cdot \prod_{i=1}^n p(w_i | w_n)$ $p(\varphi \in \mathbb{R}, \mathbb{R},$

R1: Rouge 1 R2: Rouge 2 RL: RougeL

$$ROUGE-N = rac{\sum\limits_{S \in References} \sum\limits_{gram_n \in S} Count_{match}(gram_n)}{\sum\limits_{S \in References} \sum\limits_{gram_n \in S} Count(gram_n)}$$

$$egin{align} R_{lcs} &= rac{LCS(X,Y)}{m} \ P_{lcs} &= rac{LCS(X,Y)}{n} \ ROUGE - L &= F_{lcs} &= rac{(1+eta^2)R_{lcs}P_{lcs}}{R_{lcs}+eta^2P_{lcs}} \ \end{array}$$

+ R1 : police killed the gunman.

+ R2 : the gunman was shot down by police.

- C1 : police ended the gunman.

- C2 : the gunman murdered police.

Unigram:	句子出現的合理性(機率) 字詞出現的機率 $P(w_1,w_2,\cdots,w_m) = \prod_{i=1}^m P(w_i)$
Bigram:	$P(w_1, w_2, \dots, w_m) = \prod_{i=1}^m P(w_i w_{i-1})$
	10 3 3 8 2 3 7 2 9 6 9 2 3 6

Scoring	相對於誰	Calc	
R1	C1>R1,R2	(3+3)/(4+7)=6/11	C1和R1,R2個重複了3個詞
R1	C2>R1,R2	(3+3)/(4+7)=6/11	R1,R2分別有4,7個詞
R2	C1>R1,R2	(1+1)/(3+6)=2/9	重疊的bigram只有1個
R2	C2>R1,R2	(1+1)/(3+6)=2/9	(the gunman) R1,R2分別 有3,6個bigram
RL	C1>R1	Avg(3/4, 3/4)=3/8	LCS=police the gunman(3) R1,C1長度=4

有3分 Kills overlap higher is befrer Roibistam
Roibistam

Model	R1	R2	RL		
ORACLE	52.59	31.24	48.87		
ZEAD-3	40.42	17.62	36.67		
Extractive					
SUMMARUNNER (Nallapati et al., 2017)	39.60	16.20	35.30		
REFRESH (Narayan et al., 2018b)	40.00	18.20	36.60		
LATENT (Zhang et al., 2018)	41.05	18.77	37.54		
NEUSUM (Zhou et al., 2018)	41.59	19.01	37.98		
SUMO (Liu et al., 2019)	41.00	18.40	37.20		
TransformerEXT	40.90	18.02	37.17		
Abstractive					
PTGEN (See et al., 2017)	36.44	15.66	33.42		
PTGEN+COV (See et al., 2017)	39.53	17.28	36.38		
DRM (Paulus et al., 2018)	39.87	15.82	36.90		
BOTTOMUP (Gehrmann et al., 2018)	41.22	18.68	38.34		
DCA (Celikyilmaz et al., 2018)		19.47	37.92		
TransformerABS	40.21	17.76	37.09		
BERT-based					
BERTSUMEXT	43.25	20.24	39.63		
BERTSUMEXT w/o interval embeddings		20.22	39.59		
BERTSUMEXT (large)		20.34	39.90		
BERTSUMABS		19.39	38.76		
BERTSUMEXTABS	42.13	19.60	39.18		

DEMO

使用TRANSFORMER來判斷新聞摘要

BERTVIZ

JESSEVIG/BERTVIZ: BERTVIZ: VISUALIZE ATTENTION IN NLP MODELS (BERT, GPT2, BART, ETC.) (GITHUB.COM)

DEMO

使用BERTVIZ視覺化ATTENTION