Methods

Bias	Formula	Variables	Interpretation
Disposition Effect	Proportion of gains realized (PGR) = $\frac{\text{Realized gains}}{\text{Realized gains}}$; Proportion of losses realized (PLR) = $\frac{\text{Realized losses}}{\text{Realized losses}}$.	account identifier, buy/sell indicator, number of shares traded, commission paid, principal amount. inside quote data (from NASTRAQ)	We examined the PLR/PGR ratio. If > 1 ② a stock whose value was up was more than 50% was more likely to be sold from day to day than a stock whose value was down. Disposition-prone = investors for which PGR > PLR.
Disposition Effect	Calculating Duration We calculated the duration between the opening transaction and the subsequent roundtrip trade. (If a roundtrip trade closed out more than one opening transaction, we used a weighted average of the various opening positions). 3 duration: roundtrip, by time of day, by trade size $Dur = \frac{1}{P} \left(C \frac{(1+ai)(1+i)^m - (1+i) - (m-1+a)i}{i^2(1+i)^{(m-1+a)}} + \frac{FV(m-1+a)}{(1+i)^{(m-1+a)}} \right)$	trader's identification, time the order, volume, price, order type (limit order, stop limit order, etc.), action taken (buy, sell, short, cover), location of the trade, contra parties on the trade. FV = par value C = coupon payment per period i = discount rate per period a = fraction of a period remaining until next coupon payment m = number of full coupon periods until maturity P = bond price (present value of cash	We examined the mean and median differences in holding times for roundtrip trades on both winning and losing roundtrips. The higher the mean and median are, the longer the losers/winners are kept.

	Calculating Trading Profits	Contract: the size of the contract in the	(same)
	To determine the trading profit on a	base currency	
Disposition Effect	roundtrip transaction, we matched the		
'	opening trade for each stock in each	ClosePrice: the rate when the position is	
	trader's account with the subsequent trade	closed	
	of the opposite sign each day.		
	We calculated the average absolute price	OpenPrice: the rate when the position is	
	change and average absolute trading profit	opened	
	for all winning and losing roundtrips.		
	For Buy Positions: Profit/Loss = (Contract ×		
	ClosePrice) - (Contract × OpenPrice)		
	(Some decay open rise,		
	For Sell Positions: Profit/Loss = (Contract ×		
	OpenPrice) - (Contract × ClosePrice)		
		W: Disposition proxy	$W \uparrow$ for stocks for which
		S_{lt} : Sells-at-loss for a day t	% disposition investors↓
Disposition Effect	Disposition proxy:	S_{gt} : Sells-at-gain for a day t	W ↑ →volatility/return↓
-	(6 6)		
	$W_t = \frac{(S_{lt} - S_{gt})}{(S_{lt} + S_{gt})}$	W represents the % of the disposition	Result: on average the high-
	$(S_{lt} + S_{gt})$	investors in the market (μ) and should be	disposition portfolios
		negatively related to both stock volatility and return.	underperform the low- disposition ones.
		anu return.	uisposition ones.

Disposition effect	$DE_i = PGR_i - PLR_i$ $PGR_i = \frac{N_{gr}^i}{N_{gr}^i + N_{gp}^i}, PLR_i = \frac{N_{lr}^i}{N_{lr}^i + N_{lp}^i}$	where N_{gr}^i (N_{lr}^i) is the number of trades by investor i with a realized gain (loss), and N_{gp}^i (N_{lp}^i) is the number of potential trades for investor i with a gain (loss).	
Disposition effect	$DE_i = rac{N_{gr}^i - N_{lr}^i}{N_{gr}^i + N_{lr}^i}$	where N_{gr}^i (N_{gr}^i) is the number of trades by investor i with a realized gain (loss), and N_{gp}^i (N_{lp}^i) is the number of potential trades for investor i with a gain (loss).	Measure the disposition effect on investor i
Disposition effect	$DE_i = rac{N_{gr}^i}{N_{lr}^i} - rac{N_{gp}^i}{N_{lp}^i}$	where N_{gr}^i (N_{lr}^i) is the number of trades by investor i with a realized gain (loss), and N_{gp}^i (N_{lp}^i) is the number of potential trades for investor i with a gain (loss).	(same)
Overreaction and Underreaction	Cumulative Abnormal Return: $CAR_{p,z,t} = \sum_{t=1}^{T} (\frac{1}{N} \sum_{i=1}^{N} \mu_{i,t})$ Abnormal Return (AR): $\mu_{i,t} = R_{i,t} - E(R_{i,t})$	p : type of portfolio (winner/loser/arbitrage) Z : the period T : number of months in the period $R_{i,t}$: actual return for firm/stock i on month t $E(R_{i,t})$: expected return for firm/stock i on month t	Cumulative Abnormal Returns are usually calculated over small windows, often only days. This is because evidence has shown that compounding daily abnormal returns can create bias in the results.

	Average Cumulative Abnormal Return:	Overreaction:	Over- (resp. Under-)reaction:
		$ACAR_L > 0$ (losers)	$ACAR_{p}$: an indicator to
	$\sum_{z=1}^{Z} CAR_{p,z,t}$	$ACAR_W < 0$ (winners)	whether there are negative
	$ACAR_{p,t} = \frac{\sum_{z=1}^{Z} CAR_{p,z,t}}{Z}$	$ACAR_A \neq 0$ (arbitrage)	(resp. positive = Momentum)
		losing portfolio (value stocks) strongly	autocorrelations in the
Overreaction and	\rightarrow the grand mean for Z periods' CAR	outperformed the winning portfolio	returns in the long run (resp.
Underreaction		(growth stocks) = overreaction	short run).
		Underreaction:	Investors first overreact by
		$ACAR_L < 0$ (losers)	excessively favoring stocks,
		$ACAR_W > 0$ (winners)	and then underreact to this
		$ACAR_A \neq 0$ (arbitrage)	asset mispricing.
			To calculate the monthly
Overreaction and	Somme(purchases+sales per month for		average turnover per
overconfidence	each investor) / respective end of month		investor, we only consider
	portfolio stock option		investors who have at least
			five end of stock portfolio.
		Rit return of stock i in month t	
		Sht number of stocks held by individual h	-
		in month t	comparée au nombre de
Overreaction and	$P_{it}n_{iht}$		trade du mois suivant.
overconfidence	$R_{ht}^{gr} = \sum_{i=1}^{S_{ht}} w_{iht} R_{it}$ with $w_{iht} = \frac{P_{it} n_{iht}}{\sum_{i=1}^{S_{ht}} P_{it} n_{iht}}$	Pit the price of stock i at the begining of	
	<i>i</i> -1	month t	Possibilité de changer la
			fréquence du test.
		niht is the number of stocks of company i	
		held by investor h in month t	
		Wiht is the hagining of month t market	
		Wiht is the begining of month t market	
		valueof the whole stock portfolio of	
		investor h	

Herding effect	$H_{ 1 }^{qs} = \left rac{b^{qs}}{n^{qs}} - \hat{\pi}^q ight - \underbrace{E\left[\left rac{ ilde{b}^{qs}}{n^{qs}} - \hat{\pi}^q ight : ilde{b}^{qs} \sim B(\hat{\pi}^q, n^{qs}) ight]}_{AF^{qs}}$	Traditional measure of herding effect
Herding effect	$H_2^{\mathcal{A}} \equiv \sqrt{\mathbb{H}_2^{\mathcal{A}}}.$ $\mathbb{H}_2^{q_3} = \frac{(b^{q_3} - \hat{\pi}^q n^{q_3})^2 - n^{q_3} \hat{\pi}^q (1 - \hat{\pi}^q)}{n^{q_3} (n^{q_3} - 1)} ,$	Measure created for the study.