Pszeudonyelv-definíció

TARTALOMJEGYZÉK

1.	Bevezetés	2
2.	Lefoglalt szavak	3
3.	Változóhasználat, típusok	4
4.	Típuskonverziók	6
5.	Operátorok	7
6.	Kifejezések	8
7.	Kommentezés	9
8.	Vezérlési szerkezetek	. 10
9.	I/O kezelés	. 11
10.	Tömbkezelés	. 12
11.	Nyelytan definíció	13

1. BEVEZETÉS

A nyelv a C# nyelvet veszi alapjául. Ami e dokumentumból nem derül ki egyértelműen, arra a C# nyelv szabályai érvényesek. Ez a nyelv funkcionalitására nem vonatkozik, azaz attól, hogy nincs jelezve, hogy nincsenek a C#-ban használatos lambda operátorok, még nem igaz, hogy léteznek.

A nyelv **nem** kisbetű-nagybetű érzékeny (non-case-sensitive).

Minden program

- elejét a program_kezd sor,
- végét a program_vége sor jelzi.

Definíció (whitespace karakter): Tabulátor vagy szóköz karakter.

Egy sorba csak egy utasítás írható. Minden nyelvi elem, azonosító, operátor, stb. előtt és után szerepelnie kell legalább egy whitespace karakternek; ellenkező esetben nem garantált a fordítóprogram hibásan működhet.

A nyelv nem definiál függvényeket, eljárásokat, osztályokat vagy más objektumorientált elvekben használt struktúrákat.

A kilép illetve kilépés utasítás használható a program futásának megszakítására.

2. LEFOGLALT SZAVAK

Lefoglalt szavak listája:

a) Kulcsszavak:

program_kezd

program_vége

kilép

kilépés

ha

akkor

különben

elágazás_vége

ciklus_amíg

ciklus_vége

beolvas

beolvas:

kiír

kiír:

létrehoz

egész

tört

logikai

szöveg

b) Logikai literálok:

igaz

hamis

c) Operátorok

Lásd Operátorok fejezet.

3. VÁLTOZÓHASZNÁLAT, TÍPUSOK

A változókat használat előtt deklarálni kell és minden változónak meg kell adni a típusát és kezdőértékét. A tömbök létrehozása és kezelése eltérő módon történik, ezt megtalálható a <u>Tömbkezelés</u> fejezetben.

Létrehozás módja: típus név = kezdőérték

Példa: egész x = 5

Értékadás:

Az értékadás az egyenlőségjel operátorral történik:

x = 3

Tömb típusok esetén létrehozáskor a tömb elemei az adott típus alapértelmezett értékét veszik fel, ez a következő táblázatban található.

Típusok:

Típus neve	Alapértelmezett érték
egész	0
tört	0,0
logikai	hamis
szöveg	"" (üres szöveg)

Literálok:

Legyen D ∈ $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ és jelöljük az üres karaktersorozatot ε –nal. Jelentse + az 1 vagy több darab karaktert, * a 0 vagy több darab karaktert, | a "vagy" kapcsolatot.

Típus neve	Literál szabályok	Példa:
egész	$(- \varepsilon)D^+$	-64
tört	$(- \varepsilon)(D^+,D^+)$	3,14
logikai	hamis igaz	hamis
szöveg	Két idézőjel ("") között tetszőleges, idézőjelet nem tartalmazó karaktersorozat.	"Tetszőleges szöveg"

Elnevezési konvenció:

A lefoglalt szavak nem használhatók változónévként.

Egy változónév

- első karaktere magyar betű,
- minden további karaktere magyar betű, arab számjegy vagy aláhúzás karakter (
 _) lehet

Elfogadott betűk listája (egykarakteres magyar betűk): a, á, b, c, d, e, é, f, g, h, i, í, j, k, l, m, n, o, ó, ö, ő, p, q, r, s, t, u, ú, ü, v, w, x, y, z, A, Á, B, C, D, E, É, F, G, H, I, Í, J, K, L, M, N, O, Ó, Ö, P, Q, R, S, T, U, Ú, Ü, Ü, V, W, X, Y, Z.

Elfogadott számjegyek listája: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Escape-szekvenciák:

Minden szöveg típusú értékbe beilleszthetők ún. escape-szekvenciák, amelyeknek speciális jelentése van az adott szövegen belül. Ezek az alábbi táblázatban találhatóak:

Jel	Név
\n	Új sor
\t	Vízszintes tabulátor
\"	Idézőjel
//	Fordított perjel

4. TÍPUSKONVERZIÓK

A nyelv erősen típusos, implicit típuskonverzió nem létezik. Explicit típuskonverzió a beépített konverziós függvények használatával végezhető el.

Példa konverziós függvény használatára:

```
egész y = törtből egészbe(5,4) // y értéke 5 lesz
```

Minden két különböző alaptípus között (egész, tört, szöveg, logikai) értelmezett konverziós függvény, ezek elnevezési sémája a következő:

forrástípusból céltípusba

Azaz ha a forrástípus egész, a céltípus logikai, akkor a függvény neve:

egészből_logikaiba

Így a következő függvények alakulnak ki:

- egészből_logikaiba
- egészből_törtbe
- egészből szövegbe
- törtből egészbe
- törtből logikaiba
- törtből_szövegbe
- logikaiból egészbe
- logikaiból törtbe
- logikaiból szövegbe
- szövegből_egészbe
- szövegből törtbe
- szövegből logikaiba

5. OPERÁTOROK

A használható típusok oszlopban ha egy adott operátornál egy típust jelöltem meg, akkor adott típusú literálon és változón (illetve többoperandusú operátorok között azok között) használható, vagy azok egy kifejezésén.

Jel	Név	Példa	Használható típusok
[]	tömbindexelő	t[x] (t tömb x. elemére való hivatkozás)	Tömbindex csak egész lehet.
-	numerikus negáció	-X	
!	logikai negáció	! d	logikai
()	kerek zárójelpár		bármilyen

Jel	Név	Példa	Használható típusok
=	értékadás	x = 1	17 1 17
==	egyenlőség-vizsgálat	y == 4	bármilyen két azonos típus között
!=	nem-egyenlőség vizsgálat	s!=8	
és	feltételes és művelet	z és y	logikai
vagy	feltételes vagy művelet	k vagy s	logikai
>		x > 3	
>=	relációs operátorok	y >= 3	
<		x < 4	
<=		y <= 4	szám típusok: egész, tört
+	összeadás	g + h	
-	kivonás	i-j	
*	szorzás	k * 1	
/	osztás	m / n	
mod	maradékos osztás	o mod p	
•	szöveg összefűzés	"alma"."körte"	szöveg

6. KIFEJEZÉSEK

A nyelv korlátozott kifejezésfelismerési képességekket definiál. Ez a nyelv kifejezőerejét nem csökkenti, de a használat módját kényelmetlenebbé teszi.

Példák:

Ha a következő kifejezést szeretnénk leírni a nyelvben:

egész
$$a = 2 * (3 + 4) - 2$$

Akkor azt a fenti forma helyett így kell leírnunk:

egész
$$a = 3 + 4$$

 $a = 2 * a$

$$a = a - 2$$

Ezek pontosabb szabályai kiolvashatóak a szintaktikus nyelvtan definícióból.

7. KOMMENTEZÉS

A nyelv kommentezési lehetőségei megegyeznek a C# nyelvben lévőkkel:

Jel	Név	Példa
//	egysoros komment	egész $x = 4 //x$ értéke 4
/* */	többsoros komment	/* A sorozatszámítás egyszerű programozási tétel. */

^{//} után az adott sorban minden karaktert kommentként értelmez.

^{/*} és */ karakterpárok között minden karaktert kommentként értelmez.

8. VEZÉRLÉSI SZERKEZETEK

Szelekció:
ha feltétel akkor
utasítás(ok)
elágazás_vége
ha feltétel akkor
utasítás(ok)
különben
utasítás(ok)
elágazás_vége
Iteráció:
ciklus_amíg bennmaradási_feltétel
utasítás(ok)
ciklus_vége
Vezérlés folyamata:
1. Bennmaradási feltétel megvizsgálása. Ha hamis, ugorj a ciklus_vége utáni sorra.
2. Ciklusmag utasításainak végrehajtása. Ugorj az 1. pontra.

9. I/O KEZELÉS

Az input és output kezelésére a következő utasítások használhatók:

Beolvasás:

Utasítás: beolvas

Példa: beolvas x

Leírás: beolvassa az aktuális input streamről a következő sort, majd a beolvasott szöveget megpróbálja átalakítani szöveg típusra. Ha sikertelen, akkor futási idejű hiba keletkezik.

Megjegyzés: x-et a használat (beolvasás) előtt deklarálni kell!

Kiírás:

Utasítás: kiír

Példa: kiír x

Leírás: kiírja az aktuális output streamre az x változó tartalmát.

"Összetett" kiírás:

Egy változó értékét hozzáfűzhetjük a kiírandó szöveghez.

Példa: kiír "x értéke: ". x

Magyarázat: Összefűzi az "x értéke: " szöveget az x változó értékének szövegbeli reprezentációjával, majd kiírja a konzolra.

Működési példa: ha x értéke 12, akkor ez kerül az aktuális output streamre:

x értéke: 12

10.TÖMBKEZELÉS

A tömbindexelés nullától történik. Tömbindexként csak egész literálok illetve egész típusú változók használhatók.

A nyelvben csak az egydimenziós tömbök támogatottak.

Tömblétrehozás:

```
egész[] x = létrehoz[N]

ahol:

N a tömb mérete (pozitív egész szám)
```

Egy tömb deklarációja és definíciója egy sorba is vonható:

```
Példa: egész[] tömb = létrehoz[6]
```

A tömb elemeire való hivatkozás:

x[0] = 5 Beállítja az x tömb 0. elemének értékét az 5 értékre.

11. NYELVTAN DEFINÍCIÓ

"literál"

Itt található a nyelvtan szintaktikájának definíciója Backus-Naur formában.

```
Kezdő mondat szimbólum: < Program>
<Program> ::= "program_kezd" "újsor" <Állítások> "program_vége"
<Állítások> ::= <Állítás> "újsor" <Állítások>
| <Állítás> "újsor"
<Állítás> ::= <VáltozóDeklaráció>
  <Értékadás>
  <IoParancs>
  "kilép"
   "ha" <NemTömbLétrehozóKifejezés> "akkor" "újsor" <Állítások>
"különben" "újsor" <Állítások> "elágazás vége"
   "ha" <NemTömbLétrehozóKifejezés> "akkor" "újsor" <Állítások>
"elágazás vége"
"ciklus_amíg" <NemTömbLétrehozóKifejezés> "újsor" <Állítások>
"ciklus vége"
                              <AlapTípus> "azonosító"
<VáltozóDeklaráció>
                    ::=
<NemTömbLétrehozóKifejezés>
   <TömbTípus> "azonosító" "=" "azonosító"
  <TömbTípus> "azonosító" "=" <TömbLétrehozóKifejezés>
       <AlapTípus> "azonosító" "="
                                          <BelsőFüggvény>
                                                             "("
<NemTömbLétrehozóKifejezés> ")"
<Értékadás> ::= "azonosító" "=" <NemTömbLétrehozóKifejezés>
"azonosító" "=" <TömbLétrehozóKifejezés>
             "azonosító"
                                       <BelsőFüggvény>
<NemTömbLétrehozóKifejezés> ")"
      "azonosító" "[" <NemTömbLétrehozóKifejezés>
<NemTömbLétrehozóKifejezés>
<Operandus> ::= <UnárisOperátor> "azonosító"
  <UnárisOperátor> "literál"
  "azonosító" "[" <Operandus> "]"
  "azonosító"
```

```
<NemTömbLétrehozóKifejezés> ::= <BinárisKifejezés>
<Operandus>
                                                            "["
<TömbLétrehozóKifejezés>
                                          "létrehoz"
                         ::=
<NemTömbLétrehozóKifejezés> "]"
<BinárisKifejezés> ::= <Operandus> <BinárisOperátor> <Operandus>
<BinárisOperátor> ::= "=="
  "!="
  "és"
  "vagy"
  ">"
  ">="
  "<"
  "<="
  "+"
  "*"
  "/"
  "mod"
   "."
<AlapTípus> ::= "egész"
   "tört"
   "szöveg"
    "logikai"
<TömbTípus> ::= "egész tömb"
   "tört tömb"
   "szöveg tömb"
    "logikai tömb"

<IoParancs> ::= "beolvas" "azonosító"

   "kiír" "azonosító"
<BelsőFüggvény> ::= "egészből_logikaiba"
    "egészből törtbe"
    "egészből_szövegbe"
   "törtből egészbe"
```

```
"törtből_logikaiba"
"törtből_szövegbe"
"logikaiból_egészbe"
"logikaiból_törtbe"
"logikaiból_szövegbe"
"szövegből_egészbe"
"szövegből_törtbe"
"szövegből_logikaiba"

<UnárisOperátor> ::= "-"
"!"
```