UK Patent Application (19) GB (11) 2 114 886 A

- (21) Application No 8304383
- (22) Date of filing 17 Feb 1983
- (30) Priority data
- (31) 8204958
- (32) 19 Feb 1982
- (33) United Kingdom (GB)
- (43) Application published 1 Sep 1983
- (51) INT CL³ A61K 7/00
- (52) Domestic classification A5B 161 FC FH
- (56) Documents cited
 None
- (58) Field of search A5B
- (71) Applicant
 Unilever PLC.,
 (Great Britain),
 Unilever House,
 Blackfriars,
 London EC4
- (72) Inventor

London, EC4P 4BQ

- Martin Richard Green
- (74) Agent and/or address for service
 R. J. Tonge,
 Patent Division,
 Unilever PLC.,
 P.O. Box 68,
 Unilever House,

- (54) Skin treatment compositions containing biotin antagonists
- (57) A cosmetically acceptable composition for topical application to human skin or hair in order to reduce greasiness comprises, at a concentration of from 0.0001M to

0.5M, a biotin antagonist which is capable of blocking the activity of the biotin dependent enzyme acetyl-SCoA-carboxylase implicated in sebum production; together with a carrier other than water as an aid to delivering the biotin antagonist to the sebaceous gland.

20

35

40

SPECIFICATION Skin treatment composition

The invention relates to cosmetic compositions for topical application to the skin or hair. particularly to compositions that are effective in reducing the amount of sebum which normally 5 accumulates on the skin surface.

Normal healthy human skin secretes a natural lubricant known as sebum, which usually serves to keep the skin surface soft, pliable, conditioned and, to some extent, protected.

Sebum, a complex mixture of lipid substances, is secreted from sebaceous glands associated with hair follicles over most of the body surface, in particular the scalp, face, upper chest and shoulders.

Normal healthy human skin also secretes sweat from eccrine and appropriate glands. Eccrine sweat 10 is associated with both the control of body temperature and the secretion of waste products: it consists mainly of water but contains also inorganic and organic components, notably sodium chloride and lactic acid. Apocrine sweat is associated with adrenergic stimulus and in addition to water and sodium chloride, also contains odour producing proteins, lipoproteins and lipids.

Whereas the secretion at the skin surface of sebum and sweat represents a normal and necessary 15 bodily function, excessive production of these secretions can result in a film on the skin surface which is oily or greasy in nature and which can be disliked to the extent that the human subject will go to considerable trouble to remove it, for example by tissue wiping, by excessive washing or by application of make-up, so as to block skin pores from which sebum and sweat are released onto the skin surface.

The control of lipids secreted onto the skin, to provide a proper balance whereby the skin remains supple and protected yet without being excessively greasy, has accordingly presented a problem to the cosmetician, and hitherto it has been difficult in a non-clinical environment to strike the proper balance by the simple application of a topical product. In any case, efforts in this direction have concentrated solely on the removal of excess sebum after secretion onto the skin surface.

It has, however, now been discovered that, by topical application to skin or hair of one or more special biotin antagonists dissolved in a suitable liquid carrier, the synthesis of sebum in the sebaceous glands can be suppressed so that a reduced amount of sebum is secreted onto the skin surface.

It has been proposed by Gunther in US-A-4 243 655 to employ very low concentrations of biotin antagonists in products such as toothpastes and mouthwashes for oral use. Gunther observed 30 that many of the microorganisms implicated in the production of dental caries require an outside source of biotin, usually present in saliva, and hence by blocking biotin uptake by application of a large excess of a biotin antagonist, conditions are made unfavourable for plaque and acid formation by the oral microflora. The concentrations of biotin antagonists avocated by Gunther were 0.00056% by weight for toothpastes, and 0.00004% by weight for mouthwashes, and 0.0011% for toothpowder.

We have shown that topically applied compositions containing as little as 0.002% by weight of biotin antagonist are insufficient to influence sebum production and that a higher concentration of these materials is accordingly required before any significant reduction in sebum production is observed.

By "biotin antagonist" is meant any compound which can inhibit the biological function of biotin.

While studying the effect of biotin antagonists on sebum secretion, it was discovered that most of 40 the biotin occurring naturally in skin is located in the sebaceous glands. It has also been noted that a biotin dependent enzyme, acetyl-SCoA-carboxylase, involved in lipid synthesis is located in the sebaceous gland, and that its activity can be impaired by the introduction of biotin antagonists. Hence the synthesis of lipids in the sebaceous glands is reduced and consequently the skin surfaces where sebaceous glands are found are less greasy.

The role of biotin in the function of acetyl-SCoA-carboxylase, the inactivation of this enzyme with biotin antagonists and evidence to support the interference by biotin antagonists of skin lipid synthesis will be outlined later in this specification.

The invention is accordingly concerned with the topical application of biotin antagonist at a 50 concentration sufficient to block the activity of biotin dependent enzymes located in the sebaceous gland which are implicated in lipid synthesis.

More particularly, the invention provides a cosmetically acceptable composition for topical application to human skin or hair which comprises, at a concentration of from 0.0001M to 0.5M, a biotin antagonist or a salt thereof, which is cable of blocking the activity of the biotin dependent 55 enzyme acetyl-SCoA-carboxylase; together with carrier other than water.

Any cosmetically acceptable biotin antagonist can be employed in the composition to block the activity of acetyl-SCoA-carboxylase and so reduce sebaceous lipid synthesis.

A preferred class of biotin antagonists is that having the structure (I):

5

25

30

35

45

50

5

20

30

35

where n is zero or 1

and when n is zero, X is —CH₃, and Y is —(CH₂)_mZ, and when n is 1,

5 R is chosen from 0, S, S=0 and S

X is
$$CH_2$$
, and Y is $CH(CH_2)_{m-1}Z_m$

where

30

m is an integer of from 1 to 8, and

Z is chosen from —CH₂COOH, —CH=CHCOOH, —CH(CH₃)COOH, —CH₂COOCH₃, —NHNH₂ and 10 —SO₃H 10 provided that when R is

s

and Z is -CH2COOH,

then m is an integer of from 1 to 3 or 5 to 8.

15 Examples of biotin antagonists having the structure (I) where n is zero and where Z is

—CH,COOH are:

trisnordesthiobiotin, where m is 1
bisnordesthiobiotin, where m is 2
nordesthiobiotin, where m is 3
20 desthiobiotin, where m is 4
homodesthiobiotin, where m is 5
bishomodesthiobiotin, where m is 6
trishomodesthiobiotin, where m is 7

and 25 tetrahomodesthiobiotin, where m is 8 . 25

Further examples of biotin antagonists having the structure (I) where n is 1 and where R is S=

and where Z is --- CH2COOH are:

Trisnorbiotin sulphoxide, where m is 1
bisnorbiotin sulphoxide, where m is 2
norbiotin sulphoxide, where m is 3
biotin sulphoxide, where m is 4
homobiotin sulphoxide, where m is 5
bishomobiotin sulphoxide, where m is 5

and trishomobiotin sulphoxide, where m is 7

Further examples of biotin antagonists having the structure (I) where n is 1 and where R is

	and where Z is —CH ₂ COOH are:		
	trisnorbiotin sulphone,	where m is 1	
	bisnorbiotin sulphone,	where m is 2	
	norbiotin sulphone,	where m is 3	
5	biotin sulphone,	where m is 4	5
•	homobiotin sulphone,	where m is 5	•
	bishomobiotin sulphone,	where m is 6	
	and		
	trishomobiotin sulphone,	where m is 7.	
10	Further examples of biotin antagonists having the structure (I)	where n is 1 and where R is S	10
	and where Z is —CH ₂ COOH are:	/	
	trĪsnorbiotin,	where m is 1	
	bisnorbiotin,	where m is 2	
	norbiotin,	where m is 3	
15	homobiotin,	where m is 5	15
	bishomobiotin,	where m is 6	
	and .		
	trishomobiotin,	where m is 7	
	•	\	
	A further example of biotin antagonists having the structure (I) where n is 1 and where R is S	
		, where who is a single whole who	
20	and where Z is —CH=CHCOOH is:	/	20
	lpha-dehydroblotin,	where m is 3	
	, ,		
	A further example of biotin antagonist having the structure (I)	where n is 1 and where R is S	
	,		
	and where Z is —CH(CH _s)COOH is:	•	
	lpha-methyl biotin,	where m is 4	
25	Further examples of biotin antagonists having the structure (I)	where n is 1, and where R is O	25
	and where Z is —CH ₂ COOH are:		
	trisnoroxybiotin,	where m is 1	
	bisnoroxybiotin,	where m is 2	
	noroxybiotin,	where m is 3	
30	oxyblotin,	where m is 4	30
	homooxybiotin,	where m is 5	
	bishomooxybiotin,	where m is 6	
	and		
	trishomooxybiotin,	where m is 7	
35	Further examples of biotin antagonists having the structure (I) where n is 1 and where R is _O	35
	and where Z is —SO ₃ H are:		
	trisnoroxybiotin sulphonic acid,	where m is 2	
	bisnoroxybiotin sulphonic acid,	where m is 3	
	noroxybiotin sulphonic acid,	where m is 4	40
40	oxybiotin sulphonic acid,	where m is 5	40
	homooxybiotin sulphonic acid,	where m is 6	
	bishomooxybiotin sulphonic acid,	where m is 7	
	trishomooxybiotin sulphonic acid,	where m is 8	
	Further examples of biotin antagonists having the structure (I) and where n is 1 and R is S	
45	and where Z is —CH ₂ COOCH ₃ are:		45
•	trisnorbiotin methyl ester,	where m is 1	
	bisnorbiotin methyl ester,	where m is 2	
	norbiotin methyl ester,	where m is 3	
	biotin methyl ester,	where m is 4	
50	homobiotin methyl ester,	where m is 5	50
50	bishomobiotin methyl ester,	where m is 6	
	trishomobiotin methyl ester,	where m is 7	
	tetrahomobiotin methyl ester,	where m is 8	
	141.41.41.122.2411111111111111111111111		

j

A Company of the Comp

Further examples of biotin antagonists having the structure (I) and where n is 1 and R is

and where Z is --- CH2COOCH3 are: trisnorbiotin sulphone methyl ester, where m is 1 5 bisnorbiotin sulphone methyl ester, where m is 2 5 norbiotin sulphone methyl ester, where m is 3 biotin sulphone methyl ester, where m is 4 homobiotin sulphone methyl ester, where m is 5 bishomobiotin sulphone methyl ester, where m is 6 10 10 trishomobiotin sulphone methyl ester, where m is 7 tetrahomobiotin sulphone methyl ester, where m is 8 Further examples of biotin antagonists having the structure (I) where n is 1 and where R is and where Z is —NHNH₂ are:

trisnorbiotin hydrazide, where m is 2 15 bisnorbiotin hydrazide, where m is 3 15 norbiotin hydrazide, where m is 4 biotin hydrazide, where m is 5 homobiotin hydrazide, where m is 6 bishomobiotin hydrazide, where m is 7 20 trishomobiotin hydrazide, 20 where m is 8

A further class of biotin antagonists is that having the structure (II):

where p is 2 to 5

Specific examples of biotin antagonists having the structure (II) are:

25 p-(2,3-ureylenecyclohexyl)butyric acid, where p is 3 25 δ -(2,3-ureylenecyclohexyl)valeric acid, where p is 4 p-(3,4-ureylenecyclohexyl)butyric acid, where p is 3 and δ -(3,4-ureylenecyclohexyl)valeric acid, where p is 4

30 Examples of other biotin antagonists are: 30

It is to be understood that the above examples of biotin antagonists include all possible sterioisomers as appropriate.

25

35

The most preferred biotin antagonists for use in compositions according to the invention are:

biotin sulphone biotin sulphone methyl ester α -dehydrobiotin biotin hydrazide homobiotin homobiotin methyl ester

5

A biotin antagonist can be used alone in the composition or in admixture with one or more other biotin antagonists and/or biotin antagonist salts.

The blotin antagonists should be present in the composition in an amount which will effectively decrease the activity of the enzyme acetyl-SCoA-carboxylase and hence reduce the lipid synthesis in the sebaceous glands so that less sebum is produced. The composition should accordingly comprise a biotin antagonist at a concentration of from 0.0001M to 0.5M, preferably from 0.001M to 0.1M and most preferably from 0.01M to 0.1M.

10

It is apparent that if the composition contains the biotin antagonist at a concentration of less than 15 0.0001M, then the secretion of sebum at the skin surface is unlikely to be reduced, whereas if the ccomposition contains the biotin antagonist at a concentration of more than 0.5M, then it is unlikely that any extra benefit in terms of reduction of sebum secretion at the skin surface will be apparent compared with that obtained using a composition in which the biotin antagonist is present at a 20 concentration of 0.5M.

20

Expressed in terms of weight percentage, the biotin antagonist should form from about 0.004% to about 10%, preferably 0.03% to 2%, most preferably 0.2% to 2% by weight of the composition.

The composition should also comprise a carrier other than water to enable the biotin antagonist to be conveyed to the sebaceous gland.

The selection of a carrier for biotin antagonists in compositions of the invention presents a wide range of possibilities depending on the required product form of the composition. Suitable carriers can be classified as described hereinafter.

25

30

It should be explained that carriers are substances which can act as diluents, dispersants, or vehicles, as well as solvents for biotin antagonists, and which therefore ensure that they can be applied 30 to and distributed evenly over the skin at an appropriate concentration; the carrier is preferably one which can aid penetration of the biotin antagonist into the sebaceous glands, thus ensuring that the effectiveness of the applied biotin antagonists is prolonged because of improved substantivity. Compositions according to this invention can include water, which can act as a carrier, provided that there is also present at least one cosmetically acceptable carrier other than water.

Carriers other than water that can be used in compositions according to the invention can include 35 solids or liquids such as emollients, propellants, solvents, humectants, thickeners and powders. Examples of each of these types of carriers, which can be used singly or as mixtures of one or more carriers, are as follows: Emollients, such as stearyl alcohol, glyceryl monoricinoleate, glyceryl monostearate, propane-

40

40 1,2-diol, butane-1,3-diol, mink oil, cetyl alcohol, isopropyl isostearate, stearic acid, isobutyl palmitate, isocetyl stearate, oleyl alcohol, isopropyl laurate, hexyl laurate, decyl oleate, octadecan-2-ol, isocetyl alcohol, cetyl palmitate, dimethylpolysiloxane, di-n-butyl sebacate, isopropyl myristate, isopropyl palmitate, isopropyl stearate, butyl stearate, polyethylene glycol, triethylene glycol, lanolin, castor oil, acetylated lanolin alcohols, petrolatum, mineral oil, butyl myristate, isostearic acid, palmitic acid, isopropyl linoleate, lauryl lactate, myristyl lactate, decyl oleate, myristyl myristate;

45

50

Propellants, such as trichlorofluoromethane, dichlorodifluoromethane, dichlorotetrafluoroethane, monochlorodifluoromethane, trichlorotrifluoroethane, propane, butane, isobutane, dimethyl ether, carbon dioxide, nitrous oxide;

Solvents, such as ethyl alcohol, methylene chloride, isopropanol, castor oll, ethylene glycol 50 monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether;

Humectants, such as glycerin, sorbitol, sodium 2-pyrrolidone-5-carboxylate, soluble collagen, dibutyl phthalate, gelatin;

55

Powders, such as chalk, talc, fullers earth, kaolin, starch, gums, colloidal silicon dioxide, sodium polyacrylate, tetra alkyl and/or trialkyl aryl ammonium smectites, chemically modified magnesium 55 aluminium silicate, organically modified montmorillonite clay, hydrated aluminium silicate, fumed silica, carboxyvinyl polymer, sodium carboxymethyl cellulose, ethylene glycol monostearate.

The preferred carrier is a lower alkanol, preferably a C₁ to C₄ alkanol.

The most preferred C, to C, alkanol is ethanol or isopropanol or a mixture thereof.

The amount of carrier in the composition, including water if present, should preferably be 60 sufficient to carry at least a portion of the biotin antagonist to the sebaceous gland which is sufficient effectively to reduce sebum secretion onto the skin surface. The amount of liquid carrier can comprise the major portion of the composition, particularly where little or no other ingredients are present in the composition.

10

15

20

25

30

35

- 5

The composition will accordingly comprise from 50 to 99.996% and preferably from 90 to 99.5% by weight of the carrier or carriers.

The compositions according to the invention can contain ingredients other than those already mentioned, depending on the form of the intended product. It is, for example, possible to include antiseptics, preservatives, antioxidants, emulsifiers, perfumes, colouring agents and detergents.

The composition according to the invention can also be employed as a vehicle for a wide variety of cosmetically or pharmaceutically active ingredients, particularly ingredients which have some beneficial effect when applied to the skin or hair.

The composition thus provides a means whereby such active ingredients can be diluted,

10 dispersed, conveyed to and distributed on the skin surface or on the hair at an appropriate concentration.

Especially preferred examples of active ingredients include moisturisers, anti-acne agents, sunscreen agents, germicides, deodorants, antiperspirants, healing agents and detergents.

The invention also provides a process for the preparation of a cosmetic composition for topical application to skin or hair which comprises mixing a biotin antagonist with a suitable carrier to provide a concentration of from 0.0001M to 0.5M.

The compositions of the invention can be formulated as liquids, for example as a lotion or milk for use in conjunction with an applicator such as a roll-ball applicator, or a spray device such as an aerosol can containing propellant, or a container fitted with a pump to dispense the liquid product.

Alternatively, the compositions of the invention can be solid or semi-solid, for example creams or gels,

for use in conjunction with a suitable applicator or simply a tube, bottle or lidded jar.

The invention accordingly also provides a closed container containing a cosmetic composition as herein defined.

Compositions of the invention are intended especially for topical application to human skin or hair, in particular when the skin surface or the hair has become excessively greasy due to an accumulation of sebum.

Topical application of the composition will accordingly reduce the superficial "grease" without unduly defatting the skin. The skin or hair will then remain in a healthy, non-greasy condition, usually for several hours. It can also usefully be employed in the treatment of acne as excess sebum production is a universal accompaniment of acne.

An explanation of the role of biotin in the function of acetyl-SCoA-carboxylase and the inactivation of this enzyme with biotin antagonists

Biotin is an essential cofactor for acetyl-SCoA-carboxylase, an enzyme which converts acetyl-CoA into malonyl-CoA. This step is thought to determine the rate at which fatty acids, such as palmitate are synthesised in the sebaceous gland from precursors. This synthetic pathway can be illustrated as follows:

Enzymes involved in fatty acid synthesis

- 1. Acetyl-SCoA carboxylase
- 2. Fatty acid synthetase
- 3. Deacylase

40

Palmitate and other fatty acids are the basic building blocks for triglycerides and provide some of

10

15

20

25

35

40

the precursors for wax and sterol esters. These lipid classes make up the bulk of human sebum. Therefore, it can be seen that inhibition of the enzyme acetyl-SCoA-carboxylase, which can be achieved by inhibiting blotin function using blotin antagonists, can significantly reduce the ability of sebaceous glands to synthesise lipids. This will, in turn, deplete the skin surface of lipids and reduce 5 greasiness.

It is believed that at the molecular level, biotin functions to transfer and to help activate carbon dioxide derived from bicarbonate. The carbon dioxide must be transferred precisely from one enzymatic site to another; and be delivered in the correct orientation and state of activation by the biotin attached to the carrier protein as shown above. If this is not achieved, then the enzyme will not function. Hence 10 it can be predicted that small perturbations in the biotin molecule, for example lengthening or shortening the biotin side chain, altering the charge distribution of biotin or altering the shape of the biotin molecule, can render the acetyl-SCoA-carboxylase molecule inactive. Hence a very wide range of analogues of biotin, herein referred to as biotin antagonists, are biologically inactive with respect to the essential requirements of acetyl-SCoA-carboxylase. It can be deduced that any antagonist of biotin 15 function of whatever nature can inhibit the activity of acetyl-SCoA-carboxylase.

Evidence of the effect of biotin antagonists on acetyl-SCoA-carboxylase activity

Experiments as described below were carried out using biotin sulphone as an example of a biotin antagonist.

1. In vitro experiments using cultured human fibroblasts

In preliminary experiments the ability of biotin sulphone to reduce the activity of acetyl-SCoA-20 carboxylase in an in vitro assay was accessed using cultured human dermal fibroblasts as described in Ghneim et al (1981) Biochem. Soc. Trans. 9, 405—6 and references therein. Human dermal fibroblasts were maintained in culture for 3 days with 1 μ m blotin sulphone in the presence of a nutrient medium containing 10% foetal calf serum. The level of naturally occurring biotin was about 10 nM. 25 Enzyme activity was assayed in the cell pellet by the fixation of ¹⁴C-sodium bicarbonate into protein in the presence of acetyl-CoA under appropriate conditions. Control experiments were done in the absence of biotin sulphone and enzyme activities were calculated with respect to protein. The results obtained are shown in Table 1 below:

30		Table 1 nCi ¹⁴ C-bicarbonate fixed per mg protein	Acetyi-SCoA- carboxylase activity (%)	30
	Control	4.46	100	
	Test $(+1\mu M)$ biotin sulphone)	3.26	73	

35 These results show that there was a 27% reduction in acetyl-SCoA-carboxylase activity as a result of culture in the presence of biotin sulphone. A similar reduction was observed when the results were calculated in terms of nCi ¹⁴C-bicarbonate incorporated into protein per mg of DNA.

2. In vivo experiments using rats

Experimental methodology 40 Ten, 3 week male weanling rats, clipped on left and right flanks, were divided into two groups of five animals. One group was untreated on the left flank while the right flank received the test solution (1 mg/ml biotin sulphone in 70% ethanol:30% water) twice a day (once per day at weekends) for six weeks. The second group received the ethanol/water carrier on the left flank and the test solution on the right. At the end of the treatment the rats were killed, skin removed and divided approximately into 45 epidermis and dermis using a 0.2 mm keratatome cut. Samples of dermis containing most of the 45 sebaceous tissue from either untreated (UN), vehicle (V) or test (T) treated skin was incubated in a nutrient medium (basal eagles medium+10% foetal calf serum, 20 mM hepes pH 7.4, antibiotics, 100 μM sodium acetate) containing 1 μCi/ml sodium (1-14C) acetate for 19 hours at 37°C. The 14C-acetate is metabolically incorporated into lipids and gives a "snap shot" of the lipid synthesis profile over the 50 19 hour time period. At the end of the incubation samples were washed in ice cold medium without ¹⁴C-acetate, quenched in ice cold 5% trichloroacetic acid (TCA), homogenised and centrifuged to separate insoluble residue from TCA soluble material ("TCA" fraction). The TCA fraction contains nucleotides, small metabolites especially succinate, amino acids, small peptides and free 14C-acetate. Lipids were extracted in chloroform:methanol and subject to Folch washing essentially as described by 55 55 Prottey et al, Brit. J. Dermatol. (1972) 87, 586—607 generating the following fractions: "lipids", "aqueous methanol" containing only a small proportion of skin lipids with a very low 14C count and an extracted "solid residue". The total 14C count in all these fractions was determined.

The radioactive lipids were fractionated into free fatty acids (FFA) monoglycerides (MG),

15

20

25

5

10

15

20

diglycerides (trace only) and triglycerides (TG) using a standard, neutral solvent, thin layer chromatography system.

Results

The following ratio provides a measure of lipid synthesis per unit volume of skin, that is the total ¹⁴C-acetate uptake into lipids (i.e. amount of lipid synthesis) divided by the 14C-acetate uptake into the remaining tissue fractions (i.e. a measure of sample size). (Remaining tissue="TCA" fraction+"solid residue").

The ratios derived in each of the ten rats are recorded in Table 2 below.

Table 2

Treatment **CONTROL TEST** Rat UN or V ratio test ratio Α 0.74 0.43 В 0.94 0.23 C 0.37 0.59 D 0.65 0.44 Ε 0.58 0.52 F 0.25 0.53 G 0.55 0.58 Н 0.63 0.39 ١ 0.75 0.73

Rats A—E received vehicle on their left flank Rats F—J received no treatment on their left flank

25

30

35

The data show that topical application of blotin sulphone has caused an overall 18% reduction in ¹⁴C-acetate uptake into dermal lipids. However ¹⁴C-acetate is also incorporated into the cholesterol synthetic pathway which should be largely unaffected by the biotin sulphone treatment. This will cause a "dilution" of the reduction seen above. Accordingly, the lipids whose synthesis is dependent on acetyl-SCoA-carboxylase have been isolated. These are free fatty acids (FFA), monoglyceride (MG), diglyceride (trace) and triglyceride (TG). It is predicted that a greater reduction in the incorporation of ¹⁴C-acetate into "triglyceride" lipid should now be observed. As fatty acids are the primary product made by the acetyl-SCoA-carboxylase pathway in the sebaceous gland, results for this lipid class have been included separately, as well as for total "triglyceride" lipid; values for six of the rats are given in Table 3 below:

0.53

Av. 0.59

0.43

Av. 0.49-18%

Table 3
Treatment

			i i batilibi	IL		
		FFA s	synthesis		ride" lipid ^(b) Inthesis	
40	Rat	V+UN	Test	V+UN	Test	40
	Α	1 (a)	0.78	19.58	13.93	
	В	3.27	0.41	41.92	8.58	
	С	1.12	0.60	11.41	15.17	
	F	1.29	1.67	6.52	15.38	
45	G	1.05	0.78	14.24	14.74	45
	Н	1.27	1.22	15.74	9.85	
		Av. 1.50	Av. 0.91 39%	Av. 18.24	Av. 12.94 29%	

Notes: (a) 1≡41,151 DPM ¹⁴C-acetate incorporated into lipid including a correction for sample size, namely the ¹⁴C-acetate uptake into the remaining tissue, as in Table 2.

(b) "Triglyceride" lipid values are the sum of FFA+MG+TG.

50

Perfume Water to

5	The results show that biotin sulphone treatmer "Triglyceride" (i.e. FFA+MG+TG) synthesis by 29% antagonists on acetyl-SCoA-carboxylase activity a 29% reduction in FFA+MG+TG sebaceous lipid sy SCoA carboxylase activity found for the <i>in vitro</i> cell sulphone treatment can be equally effective in reduculture system and in the rat sebaceous gland. The invention is illustrated by the following expressions.	% confirmi nd on lipid nthesis clo I culture as ucing acet	ng the inhib synthesis i ssely paralle ssay system	itory action the sebace is the 27% suggesting	of biotin eous gland. The drop in acetyl- I that the biotin	5
10	Example 1 This Example illustrates a lotion according to application to the skin of the face in order to reduce the lotion has the following formulation:			um at the sl		10
				% w/w		
	biotin sulphone			0.005		
15	ethanol			99.995		15
	perfume			q.s.		
	This Example illustrates a hair tonic which is reducing the accumulation of sebum on the hair or	r scalp.	or applicatio	n to greasy	hair or scalp fo	r 20
20	The hair tonic has the following formulation:					20
				% w/w		
	biotin sulphone			0.01		
	ethanol			50		
	water			49.99		0.5
25	perfume			q.s.		25
30	Example 3 This Example also illustrates a lotion which is face in order to reduce the secretion of sebum at the The lotion has the following formulation: homobiotin propan-2-ol ethanol perfume		face.	% w/w % w/w 0.015 10 89.985 q.s.	o the skin of the	30
35	Example 4					35
33	This Example also illustrates a hair tonic which for reducing the accumulation of sebum on the hair the hair tonic has the following formulation:			cation to gr	easy hair or sca	
40	lpha-dehydrobiotin			0.02		40
-	ethanol			40		
	water			59.98		
	perfume			q.s.		
45	Examples 5—8 The following formulations represent lotions greasy and/or acneic skin.	which car		pically in th	e treatment of	45
		5	6 % w	7	8	
		J	ð		<u> </u>	
	Hydroxyethyl cellulose	0.4		0.4		
	Absolute ethanol	25	<u></u> 25	25	25	50
50	Propane-1,2-diol	~ ·		38.4	38.4	
		38.4	38.8			
	Butane-1,3-diol	0.2	0.2	0.2	0.2	
	Paramethyl benzoate bisnordesthiobiotin	0.2	V.Z	<u> </u>		
		0.05	0.01		<u> </u>	55
55	nordesthiobiotin		0.01	0.009	_	55
	homobiotin	_		0.009	0.15	
	homobiotin methyl ester	1	1	1	1	

 The following formulations represent lotions which can be used topically in the treatment of greasy and/or acneic skin.

5		9	10	11	12	5
	Ethanol	10	10	10	10	
	Propane-1,2-diol	30		55	_	
	Butane-1,3-diol	_	30	_	55	
	bishomodesthiobiotin	0.1	_	_	_	
10	trishomodesthiobiotin		0.2	_		10
	desthiobiotin			_	0.15	
	perfume	q.s.	q.s.	q.s.	q.s.	
	Water to	100	100	100	100	

Examples 13-16

The following formulations represent creams which can be used in the treatment of greasy skin.

15

35

40

45

	% w/w				
	13	14	15	16	
Cetyl alcohol polyoxyethylene	4	4	Δ.	Δ	
- · · ·	4	4	4	4	20
Mineral oil	4	2		<u> </u>	
Paraffin wax	_	2	4		
Partial glyceride of palmitic					
and stearic acids			_	4	
biotin sulphone		_		1	25
homobiotin sulphoxide	0.1	_			
bishomobiotin sulphoxide	_	0.15			
trishomobiotin sulphoxide	-		0.2		
Triethanolamine	0.75	0.75	0.75	0.75	
Butane-1,3-diol	3	3	3	3	30
Xanthan gum	0.3	0.3	0.3	0.3	
Preservative	0.4	0.4	0.4	0.4	
perfume	q.s.	q.s.	q.s.	q.s.	
Water to	100	100	100	100	
	(10) Cetyl alcohol Mineral oil Paraffin wax Partial glyceride of palmitic and stearic acids biotin sulphone homobiotin sulphoxide bishomobiotin sulphoxide trishomobiotin sulphoxide Triethanolamine Butane-1,3-diol Xanthan gum Preservative perfume	Cetyl alcohol polyoxyethylene (10) 4 Cetyl alcohol 4 Mineral oil 4 Paraffin wax — Partial glyceride of palmitic and stearic acids — biotin sulphone — homobiotin sulphoxide 0.1 bishomobiotin sulphoxide — trishomobiotin sulphoxide — Triethanolamine 0.75 Butane-1,3-diol 3 Xanthan gum 0.3 Preservative 0.4 perfume 4,s.	13 14 Cetyl alcohol polyoxyethylene (10) 4 4 Cetyl alcohol 4 4 Mineral oil 4 2 Paraffin wax — 2 Partial glyceride of palmitic — — and stearic acids — — biotin sulphone — — homobiotin sulphoxide 0.1 — bishomobiotin sulphoxide — — trishomobiotin sulphoxide — — Triethanolamine 0.75 0.75 Butane-1,3-diol 3 3 Xanthan gum 0.3 0.3 Preservative 0.4 0.4 perfume q.s. q.s.	13 14 15 Cetyl alcohol polyoxyethylene (10) 4 4 4 Cetyl alcohol 4 4 4 Mineral oil 4 2 — Paraffin wax — 2 4 Partial glyceride of palmitic — — — and stearic acids — — — biotin sulphone — — — homobiotin sulphoxide 0.1 — — bishomobiotin sulphoxide — — 0.15 — trishomobiotin sulphoxide — — 0.2 0.75 0.75 0.75 Butane-1,3-diol 3 3 3 3 3 Xanthan gum 0.3 0.3 0.3 0.3 Preservative 0.4 0.4 0.4 perfume q.s. q.s. q.s.	Cetyl alcohol polyoxyethylene (10)

35 Example 17

The following formulation represents a lotion which can be used in the treatment of greasy and/or acneic skin.

		% w/w	
	Butane-1,3-diol	20	
40	Ethanol	45	
	homobiotin sulphone	0.5	
	Perfume	q.s.	
	Water to	100	

Example 18

This example illustrates a water-in-oil high internal phase emulsion containing bisnorbiotin sulphone according to the invention.

The emulsion consisted of 10% by volume oily phase and 90% by weight aqueous phase.

The oily phase and the aqueous phase had the following constitution:

	Olly phase	% w/w	
50	Sorbitan monooleate	20	50
	Quarternium-18 hectorite	5	
	Liquid paraffin	75	
	Aqueous phase		
	bisnorbiotin sulphone	0.5	
55	Xanthan gum	1	55
	Preservative	0.3	
	Perfume	q.s.	
	Sodium chloride (1% w/w solution)	to 100	

The emulsion was prepared by taking 10 parts by volume of the oily phase and to it adding slowly with stirring 90 parts by volume of the aqueous phase.

The high internal phase water-in-oil emulsion so formed can be applied topically to improve skin condition generally or to alleviate greasiness and in the treatment of acne.

. 5 Example 19

5

This example illustrates a water-in-oil high internal phase emulsion containing homobiotin sulphone according to the invention.

The emulsion consisted of 10% by volume oily phase and 90% by weight aqueous phase.

The oily phase and the aqueous phase had the following constitution:

10	Oily phase	% w/w	10
. •	Castor oil polyglyceryl ester	20	
	Hydrophobic silica	5	
	Sunflower seed oil	75	
	Aqueous phase		
15	homobiotin sulphone	0.8	15
	Xanthan gum	1	
	Preservative	0.3	
	Perfume	q.s.	
	Sodium chloride (1% w/w solution)	97.9	

The emulsion was prepared by taking 10 parts by volume of the oily phase and to it adding slowly with stirring 90 parts by volume of the aqueous phase.

The high internal phase water-in-oil emulsion so formed can be applied topically to improve skin condition generally or to alleviate greasiness and in the treatment of acne.

Examples 20 to 23

25

The following formulations represent lotions which can be used in the treatment of greasy and/or 25

	% w/w				
•	20	21	22	23	
Hydroxyethyl cellulose	0.4	_	0.4		
Absolute ethanol	20	15	21	21	30
Propane-1,2-diol		_	38.4	38.4	
Butane-1,3-diol	38.4	38.8			
Para methyl benzoate	0.2	0.2	0.2	0.2	
	0.2		_		
•		2			35
			5		
•	 '			1	•
Perfume	1	1	1	1	
Water	to 100	100	100	100	
	Propane-1,2-diol Butane-1,3-diol Para methyl benzoate homobiotin sulphone bishomobiotin sulphone trishomobiotin sulphone bisnorbiotin sulphone Perfume	Hydroxyethyl cellulose 0.4 Absolute ethanol 20 Propane-1,2-diol — Butane-1,3-diol 38.4 Para methyl benzoate 0.2 homobiotin sulphone 0.2 bishomobiotin sulphone — trishomobiotin sulphone — bisnorbiotin sulphone — Perfume 1	20 21	20 21 22 Hydroxyethyl cellulose	20 21 22 23

40 Examples 24 to 27

40

The following formulations represent lotions which can be used in the treatment of greasy and/or acneic skin.

	% w/w					
		24	25	26	27	
45	<i>j</i> Ethanol	10	10	8	5	45
45	Propane-1,2-diol	30	0	55	0	
	Butane-1,3-diol	0	30	0	55	
	Ethyl lactate	6	9	11	14	
	norbiotin methyl ester	0.8		_		
50	homobiotin methyl ester		1.2		_	50
00	bishomobiotin methyl ester	_		1.5	_	
	trishomobiotin methyl ester	_	_		0.7	
	perfume water	q.s. to 100	q.s. 100	q.s. 100	q.s. 100	
	water	10 100				

55 The following examples 28 to 32 illustrate shampoos for use in the treatment of greasy hair and 55 scalp.

		0//:	
	Sodium lauryl ether sulphate (2 EO): 21% AD	% w/w 41.1	
_	Lauryl dimethylamino acetic acid bentaine: 30% AD	4	
5	Coconut fatty acid diethanolamide	1.5	5
	Oleyl triethoxy phosphate (BRIPHOS 03D)	1	_
	Polyglycol-polyamine condensation resin (POLYQUART H): 50% active		
	Preservative, colouring matter, salt	1.5	
0	Oxyblotin sulphonic acid	0.58	
	Perfume	5	10
	Water	q.s. to 00	
Ex	ample 29		
_	Coding to the terminal control of	% w/w	
5	Sodium lauryl ether sulphate (2 EO): 100% AD	12	15
	POLYQUART H: 50% active BRIPHOS 03D	2.5	
•	γ-(2,3-ureylenecyclohexyl)butyric acid	2.5	
•	Perfume	4	
0	Water	q.s. to 100	20
Ex	ample 30		
	Adamastica at the territory of the second	% w/w	•
	Monoethanolamine lauryl sulphate: 100% AD POLYQUART H: 50% active	20	
5	BRIPHOS 03D	3_	
.	Coconut diethanolamide	1.7	25
	Biotin sulphone	5 1	
	Perfume	q.s.	
	Water	to 100	
0	pH adjusted to 6.5.	10 100	30
Exa	imple 31		
	Sodium lauryl ether sulphate (3 EO): 100% AD	% w/w	
	POLYQUART H: 50% active	12 0.3	
5	BRIPHOS 03D	1	35
	γ-(3,4-ureylenecyclohexyl)valeric acid	2	
	Perfume	q.s.	
	Water pH adjusted to 6.5.	to 100	
O Exa	ample 32		40
	···•	% w/w	40
	Sodium lauryl ether sulphate (2 EO): 100% AD	12	
	POLYQUART H: 50% active	3	
_	BRIPHOS 03D	. 1	
5	Opacifier	9	45
	2-oxo-4-imidazolidine caproic acid	5	
	Perfume	q.s.	
	Water	to 100	

Examples 33-36

The following formulations represent lotions which can be used in the treatment of greasy and/or

5	·	<i>33</i>	34	<i>35</i>	<i>36</i>	5
	Hydroxyethyl cellulose	0.4		0.4		
	Absolute ethanol	25	25	25	25	
	Propane-1,3-diol			38.4	38.4	
	Butane-1,3-diol	38.4	38.8	_		
10		0.2	0.2	0.2	0.2	10
	Thiazolidine	5				
	Methyl-1,3-acetyl-4-thiazolidine					
	carboxylate	***	0.3	_		
	1,3-propyl-2-acetyl-4-thiazolidine				•	
15	carboxylate			0.8		15
	2-piperidone-6-carboxylic acid hydrazide	_			1.2	
	Perfume	1	1	1	1	
	Water	to 100	100	100	100	
					•	

Examples 37—41
The following formulations represent lotions which can be used in the treatment of greasy and/or 20

			% w/w				
		<i>37</i>	38	39	40	41	
	Ethanol	10	10	10	10	10	
25	Propane-1,2-diol	30		55		30	25
	Butane-1,3-diol y-(2-carboxy-3-indolyi)butyric		30		55	_	
	acid hydrazide 2-imidazoline-4-caproic	0.004	_	-	_	-	
30	acid hydrazide 2-imidazoline-4-valeric		0.008	_	_	_	30
	acid hydrazide			0.04			
	Biotin sulphone				0.9		
	Biotin hydrazide	_	_	_		0.1	
35	Perfume Water	q.s. to 100	q.s. 100	q.s. 100	q.s. 100	q.s. 100	35

Examples 42-47

The following Examples 42 to 47 Illustrate powder compositions according to the invention which can be applied topically to moist, greasy skin.

40	time, can be applied topically	or motor, group, o	% w/w				40		
		42	43	44	45	46	47		
	Chemically modified							-	
	starch	5		5		5			
	Chemically modified					_			
45	cellulose		5		5	_	5	45	
	Boric acid	10	10	10	10	10	10		
	Zinc oxide	5	5	5	5	5	5		
	Biotin sulphone	5		_		_	_		
	Biotin sulphone								
50	methyl ester	_	10		_			50	
	Homobiotin sulphone		_	2					
	Homobiotin sulphone								
	methyl ester		_		4	-			
	Bishomobiotin sulphone		_			1			
55	Bishomobiotin sulphone							55	
	methyl ester			_	_		3		
	Perfume	q.s.	q.s.	q.s.	q.s.	q.s.	q.s.		
	Chalk	10	10	10	10	10	10		
	Talc	to 100	100	100	100	100	100	•	

Claims

1. A cosmetically acceptable composition for topical application to human skin or hair which comprises, at a concentration of from 0.0001M to 0.5M, a biotin antagonist, or a salt thereof, or mixtures thereof, which is capable of blocking the activity of the biotin-dependent enzyme acetyl-SCoA-carboxylase; together with a liquid carrier other than water.

5

10

15

30

40

2. A composition according to claim 1, in which the biotin antimetabolite has the structure (I):

where n is zero or 1

and when

10

15

25

30

n is zero,

X is ---CH₃, and Y is —(CH₂)_mZ

and when

n is 1,

R is chosen from
$$O$$
, S , $S=0$ or S
 O

X is $CH_{2'}$ and Y is $CH(CH_{2})_{m-1}Z$

where

m is an integer of from 1 to 8, and

Z is chosen from —CH₂COOH, —CH=CHCOOH, —CH(CH₃)COOH, —CH₂COOCH₃, —NHNH₂ and 20

provided that when n is 1, R is

and Z is --- CH₂COOH, then m is an integer of from 1 to 3, or 5 to 8.

3. A composition according to claim 2, in which, in the structure of the biotin antagonist,

n is zero, and

Z is -CH2COOH

25

4. Composition according to claim 3, in which the biotin antagonist is chosen from trisnordesthiobiotin, bisnordesthiobiotin, nordesthiobiotin, desthiobiotin, homodesthiobiotin, bishomodesthiobiotin, trishomodesthiobiotin, tetrahomodesthiobiotin, and mixtures thereof.

5. A composition according to claim 2, in which, in the structure of the biotin antagonist,

n iz zero, and Z is -CH(CH₃)COOH

6. A composition according to claim 5, in which the biotin antagonist is α -methyldesthiobiotin. 7. A composition according to claim 2, in which, in the structure of the biotin antagonist,

n is 1,

and

8. A composition according to claim 7, in which the biotin antagonist is chosen from trisnorbiotin sulphoxide, bisnorbiotin sulphoxide, norbiotin sulphoxide, biotin sulphoxide, homobiotin sulphoxide, bishomobiotin sulphoxide, trishomobiotin sulphoxide and mixtures thereof.

9. A composition according to claim 2, in which, in the structure of the biotin antagonist,

n is 1,

10

15

20

30

35

and

Z is ---CH₂COOH

10. A composition according to claim 9, in which the biotin antagonist is chosen from
 trisnorbiotin sulphone, bisnorbiotin sulphone, norbiotin sulphone, biotin sulphone, homobiotin sulphone, bishomobiotin sulphone, trishomobiotin sulphone and mixtures thereof.

11. A composition according to claim 2, in which, in the structure of the blotin antagonist, n is 1,

R is S

10 Z is —CH₂COOH or —CH₂COOCH₃, and

m is an integer of from 1 to 3 or 5 to 8.

12. A composition according to claim 11, in which the biotin antagonist is chosen from trisnorbiotin, bisnorbiotin, norbiotin, homobiotin, bishomobiotin, trischomobiotin, and mixtures thereof.

13. A composition according to claim 2, in which, in the structure of the biotin antagonist,

R is S,

and

15

Z is —CH=CHCOOH or —CH₃(CH₃)COOH.

14. A composition according to claim 13, in which the biotin antagonist is chosen from α dehydrobiotin, α -methylbiotin and a mixture thereof.

15. A composition according to claim 2, in which, in the structure of the biotin antagonist, n is 1.

R is.

and

25

30

Z is —CH₂COOH. 25

16. A composition according to claim 15, in which the biotin antagonist is chosen from trisnoroxybiotin, bisnoroxybiotin, noroxybiotin, oxybiotin, homooxybiotin, bishomooxybiotin, trishomooxybiotin, and mixtures thereof.

17. A composition according to claim 2, in which, in the structure of the biotin antagonist, n is 1

R is O,

and

Z is —SO₂H.

18. A composition according to claim 17, in which the biotin antagonist is chosen from trisnoroxybiotin sulphonic acid, bisnoroxybiotin sulphonic acid, noroxybiotin sulphonic acid, oxybiotin
sulphonic acid, homooxybiotin sulphonic acid, bishomooxybiotin sulphonic acid, trishomooxybiotin
sulphonic acid, and mixtures thereof.

19. A composition according to claim 2, in which, in the structure of the biotin antagonist, n is 1,

40 R is S

40

and

Z is —CH₂COOCH₃.

15

30

35

40

20. A composition according to claim 19, in which the biotin antagonist is chosen from trisnorbiotin methyl ester, bisnorbiotin methyl ester, norbiotin methyl ester, homobiotin methyl ester, bishomobiotin methyl ester, trishomobiotin methyl ester, tetrahomobiotin methyl ester, and mixtures

21. A composition according to claim 2, in which, in the structure of the biotin antagonist,

5

and

Z is -CH,COOCH3.

22. A composition according to claim 21, in which the biotin antagonist is chosen from 10 trisnorbiotin sulphone methyl ester, bisnorbiotin sulphone methyl ester, norbiotin sulphone methyl ester, biotin sulphone methyl ester, homobiotin sulphone methyl ester, bishomobiotin sulphone methyl ester, trishomobiotin sulphone methyl ester, tetrahomobiotin sulphone methyl ester, and mixtures thereof.

10

23. A composition according to claim 2, in which, in the structure of the biotin antagonist, n is 1.

15

and

20 24. a composition according to claim 23, in which the biotin antagonist is chosen from trisnorblotin hydrazide, bisnorbiotin hydrazide, norblotin hydrazide, biotin hydrazide, homobiotin hydrazide, bishomobiotin hydrazide, trishomibiotin hydrazide, and mixtures thereof.

20

25. A composition according to claim 1, in which the biotin antagonist has the structure:

25 where p is 2 to 5.

25

26. A composition according to claim 25, in which the biotin antagonist having the structure (II) is chosen from:

y-(2,3-ureylenecyclohexyl)butyric acid,

δ-(2,3-ureylenecyclohexyl)valeric acid,

y-(3,4-ureylenecyclohexyl)butyric acid,

30

 δ -(3,4-ureylenecyclohexyl)valeric acid, and mixtures thereof.

27. A composition according to claim 1, in which the biotin antagonist is chosen from:

2-oxo-4-imidazolidine caproic acid, thiazolidine, methyl-1,3-acetyl-4-thiazolidine carboxylate, 1,2-propyl-2-acetyl-4-thiazolidine carboxylate methyl ester, and its hydrazide,

35

2-piperidone-6-carboxylic acid hydrazlde.

y-(2-carboxy-3-indolyl)butyric acid hydrazide,

2-imidazoline-4-carboxylic acid hydrazide,

2-imidazoline-4-caproic acid hydrazide,

40

2-imidazoline-4-valeric acid hydrazide, ureylenetetrahydrofuryl aliphatic sulphonic acids, benzyl thio esters,

semicarbazides of biotin. bishydrazides of suberic acid and sebacic acids, and mixtures thereof.

28. A composition according to any preceding claim, in which the concentration of the biotin 45 antimetabolite is from 0.001M to 0.1M.

	29. A composition according to any preceding claim, in which the concentration of the biotin antimetabolite is from 0.01M to 0.1M.	
	30. A composition according to any of claims 1 to 29, in which the biotin antimetabolite forms	
	from 0.004 to 10% by weight of the composition.	
5	31. A composition according to any of claims 1 to 29, in which the biotin antimetabolite forms	5
	from 0.03 to 2% by weight of the composition.	
	32. A composition according to any of claims 1 to 29, in which the biotin antimetabolite forms	
	from 0.2 to 2% by weight of the composition.	
	33. A composition according to any preceding claim, in which the carrier other than water is a C ₁	
10	to C ₄ alkanol and mixtures thereof.	10
	34. The composition according to claim 33, in which the alkanol is chosen from ethanol,	
	propane-1-ol, propane-2-ol and mixtures thereof.	
	35. A composition according to any of claims 1 to 32, in which the carrier is a powder. 36. A composition according to any preceding claim, in which the carrier other than water forms	
15	from 50 to 99.996% by weight of the composition.	15
	37. A composition according to any preceding claim, in which the carrier other than water forms	. •
	from 90 to 99.5% by weight of the composition.	
	38. A composition according to any preceding claim, which further comprises water.	
	39. A process for preparing a composition according to any preceding claim, which comprises the	
20	step of mixing a biotin antagonist with a sultable carrier other than water, the concentration of the	20
	biotin antagonist being from 0.0001M to 0.5M.	
	40. A method of treating the human skin or hair to reduce greasiness, which comprises the step	
	of contacting the skin or hair with an effective amount of the composition according to any of claims 1	
25	to 38. 41. The use of biotin antagonists and compositions containing them according to any of claims 1	25
25	to 38 in the treatment of greasy human skin or hair.	25
	to oo in the treatment of greasy number skill of helf.	

Printed for Her Majesty's Stationery Office by the Courier Press, Learnington Spa. 1983. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.