Falling Behind: Has Rising Inequality Fueled the American Debt Boom?

Moritz Drechsel-Grau <u>Fabian Greimel</u> University of Mannheim

ES European Winter Meeting | Rotterdam | December 16, 2019

Outline

Introduction

Model

Results

Conclusion

Facts I: US Household Debt Boom and Income Inequality

Source: US Flow of funds and World Inequality Database (Piketty et al.)

• alternative inequality measure

Facts II: Real Incomes Rise for Top 50%

Pre-tax incomes in the US. Base year: 1980. Based on Piketty et al. (2018).

Facts II: Real Incomes Rise for Top 50% – Mortgages Rise Across the Distribution

Income growth

Pre-tax incomes in the US. Base year: 1980. Based on Piketty et al. (2018).

Mortgage debt growth

Mean mortgage debt as a fraction of mean income by income group in the US. Data from Surveys of Consumer Finances (Fed)

Research Question and Method

Research Question

Can rising income inequality account for (part of) the boom in mortgage debt and house prices?

Research Question and Method

Research Question

Can rising income inequality account for (part of) the boom in mortgage debt and house prices?

Mechanism

Keeping up with the Joneses

Research Question and Method

Research Question

Can rising income inequality account for (part of) the boom in mortgage debt and house prices?

Mechanism

Keeping up with the Joneses

General Equilibrium Model

- · Heterogeneous agents (Bewley-Huggett-Aiyagari)
- · durable housing and non-durable consumption, mortgages
- social comparisons
- · state-of-the-art income process (Guvenen et al., 2019)

What We Do

1. Calibrate model to the US economy in 1980

What We Do

- 1. Calibrate model to the US economy in 1980
- 2. Main experiment: exogenously increase inequality in the permanent component of income to match observed increase (1980-2007)

What We Do

- 1. Calibrate model to the US economy in 1980
- 2. Main experiment: exogenously increase inequality in the permanent component of income to match observed increase (1980-2007)
- 3. Horse race: compare mechanisms with other suggested drivers of the mortgage and house price boom
 - · exogenous net capital inflow, lower interest rates (Global Saving Glut)
 - · looser collateral constraints (financial innovation/liberalization)

What We Find

- 1. Rising inequality and social comparisons generate about 50% of observed mortgage and house price booms
- 2. Saving glut does not generate strong house price boom

Analytical results

- that individual debt is increasing in the incomes of the reference group
- that aggregate debt-to-income ratio is increasing in top incomes when somebody cares about the rich

How Rising Income Inequality Leads to a Mortgage Boom

rising top inequality

Keeping up with the Joneses

mortgage boom

- 1. rich become richer (exogenously)
- 2. rich improve their houses, raise reference point
- 3. non-rich want to keep up with the richer Joneses
- 4. non-rich improve their houses using a mortage
- 5. higher debt-to-income ratios across the distribution

Note: non-rich \approx bottom 90 % (almost everyone!)

Outline

Introduction

Relation to the Literature

Model

Results

Conclusion

Relation to the Literature

- Macroeconomics with housing and mortgages, housing (debt) boom
 e.g. Kumhof et al. (2015, AER), Favilukis et al. (2017, JPE), Kaplan et al. (2019, JPE), Justiniano et al. (2019, JPE)
 new (demand-side) mechanism, extended time-horizon
- External habits (Keeping up with the Joneses)
 e.g. Abel (1990, AER P&P), Campbell and Cochrane (1999, JPE), Ljungqvist and Uhlig (2000, AER)
 heterogenous agent model, use micro-evidence for parameterization
- "Distributional macroeconomics"
 e.g. Kaplan and Violante (2014, Ecma), Kaplan et al. (2016, AER), Achdou et al. (2015)
 another reason why "inequality matters for macro"
- Empirical consumption externalities
 e.g. De Giorgi et al. (2019, REStud), Bertrand and Morse (2016, REStat), Bellet (2017)
 quantify effects on macroeconomic outcomes
- Network economics e.g. Ballester et al. (2006, Ecma), Ghiglino and Goyal (2010, JEEA)
 - → infinite-horizon network model

Outline

Introduction

Model

Results

Conclusion

Outline

Introduction

Model

Economic enviroment

Parameterization

Results

Conclusion

Economic environment

Bewley-Huggett-Aiyagari heterogenous agents model with housing

- 1. continuum of households
 - · ex-ante identical
 - heterogenous productivity (earnings)
 - constant mortality rate
 - · keeping up with the Joneses motive
- 2. borrowing subject to collateral constraint
- 3. production of final good (linear technology)
- 4. construction sector

- \cdot constant mortality rate m
- \cdot risky endowment income y
- non-durable consumption c, durable housing h
- asset a (savings device and mortgage)
- social comparisons
 - housing status $s(h, \bar{h})$
 - \cdot reference measure $ar{h}$
- \cdot house price p, interest rate r

Preferences

$$\mathbb{E}_0 \int_0^\infty e^{-(\rho+m)t} u(c_t, s(h_t, \bar{h}_t))$$

Endogenous States

$$\dot{a}_t = y_t + r_t a_t - c_t - p_t x_t$$
$$\dot{h}_t = -\delta h_t + x_t$$

$$-a_t \le \omega p_t h_t$$

- constant mortality rate m
- \cdot risky endowment income y
- non-durable consumption c, durable housing h
- asset a (savings device and mortgage)
- social comparisons
 - housing status $s(h, \bar{h})$
 - \cdot reference measure $ar{h}$
- \cdot house price p, interest rate r

Preferences

$$\mathbb{E}_0 \int_0^\infty e^{-(\rho + \mathbf{m})t} u(c_t, s(h_t, \bar{h}_t))$$

Endogenous States

$$\dot{a}_t = y_t + r_t a_t - c_t - p_t x_t$$
$$\dot{h}_t = -\delta h_t + x_t$$

$$-a_t \le \omega p_t h_t$$

- \cdot constant mortality rate m
- \cdot risky endowment income y
- non-durable consumption c, durable housing h
- asset a (savings device and mortgage)
- social comparisons
 - housing status $s(h, \bar{h})$
 - \cdot reference measure $ar{h}$
- \cdot house price p, interest rate r

Preferences

$$\mathbb{E}_0 \int_0^\infty e^{-(\rho+m)t} u(c_t, s(h_t, \bar{h}_t))$$

Endogenous States

$$\dot{a}_t = \mathbf{y}_t + r_t a_t - c_t - p_t x_t$$
$$\dot{h}_t = -\delta h_t + x_t$$

$$-a_t \le \omega p_t h_t$$

- \cdot constant mortality rate m
- \cdot risky endowment income y
- non-durable consumption c, durable housing h
- asset a (savings device and mortgage)
- social comparisons
 - housing status $s(h, \bar{h})$
 - \cdot reference measure $ar{h}$
- \cdot house price p, interest rate r

Preferences

$$\mathbb{E}_0 \int_0^\infty e^{-(\rho+m)t} u(\mathbf{c_t}, s(h_t, \bar{h}_t))$$

Endogenous States

$$\dot{a}_t = y_t + r_t a_t - \frac{c_t}{c_t} - p_t x_t$$
$$\dot{h}_t = -\delta h_t + x_t$$

$$-a_t \le \omega p_t h_t$$

- \cdot constant mortality rate m
- \cdot risky endowment income y
- non-durable consumption c, durable housing h
- asset a (savings device and mortgage)
- social comparisons
 - housing status $s(h, \bar{h})$
 - \cdot reference measure $ar{h}$
- \cdot house price p, interest rate r

Preferences

$$\mathbb{E}_0 \int_0^\infty e^{-(\rho+m)t} u(c_t, s(\frac{\mathbf{h_t}}{h_t}, \bar{h}_t))$$

Endogenous States

$$\dot{a}_t = y_t + r_t a_t - c_t - p_t x_t$$
$$\dot{h}_t = -\delta h_t + x_t$$

$$-a_t \le \omega p_t h_t$$

- \cdot constant mortality rate m
- \cdot risky endowment income y
- non-durable consumption c, durable housing h
- asset a (savings device and mortgage)
- social comparisons
 - housing status $s(h, \bar{h})$
 - \cdot reference measure $ar{h}$
- \cdot house price p, interest rate r

Preferences

$$\mathbb{E}_0 \int_0^\infty e^{-(\rho+m)t} u(c_t, s(h_t, \bar{h}_t))$$

Endogenous States

$$\dot{\mathbf{a}}_t = y_t + r_t \mathbf{a}_t - c_t - p_t x_t$$
$$\dot{h}_t = -\delta h_t + x_t$$

$$-a_t \le \omega p_t h_t$$

- \cdot constant mortality rate m
- \cdot risky endowment income y
- non-durable consumption c, durable housing h
- asset a (savings device and mortgage)
- social comparisons
 - housing status $s(h, \bar{h})$
 - \cdot reference measure $ar{h}$
- \cdot house price p, interest rate r

Preferences

$$\mathbb{E}_0 \int_0^\infty e^{-(\rho+m)t} u(c_t, \underline{s(h_t, \bar{h}_t)})$$

Endogenous States

$$\dot{a}_t = y_t + r_t a_t - c_t - p_t x_t$$
$$\dot{h}_t = -\delta h_t + x_t$$

$$-a_t \le \omega p_t h_t$$

Social comparisons

Status function $s(h, \bar{h})$

· ratio specification (as in Abel, 1990)

$$s(h,\bar{h}) = \frac{h}{\bar{h}^{\phi}}$$

 \cdot ϕ is the sensitivity w.r.t reference housing

$$\phi = -\frac{\text{elasticity of utility w.r.t } \bar{h}}{\text{elasticity of utility w.r.t } h}$$

· follow estimate by Bellet (2017):

$$\phi = 0.7$$

Social comparisons

Status function $s(h, \bar{h})$

· ratio specification (as in Abel, 1990)

$$s(h,\bar{h}) = \frac{h}{\bar{h}^{\phi}}$$

• ϕ is the sensitivity w.r.t reference housing

$$\phi = -\frac{\text{elasticity of utility w.r.t } \bar{h}}{\text{elasticity of utility w.r.t } h}$$

• follow estimate by Bellet (2017):

Reference measure $ar{h}$

- strongest reaction with respect to the 90th percentile (Bellet, 2017)
- · set $\bar{h} = P90$ of housing distribution

Social comparisons

Status function $s(h, \bar{h})$

· ratio specification (as in Abel, 1990)

$$s(h,\bar{h}) = \frac{h}{\bar{h}^{\phi}}$$

• ϕ is the sensitivity w.r.t reference housing

$$\phi = -\frac{\text{elasticity of utility w.r.t } \bar{h}}{\text{elasticity of utility w.r.t } h}$$

· follow estimate by Bellet (2017):

Reference measure \bar{h}

- strongest reaction with respect to the 90th percentile (Bellet, 2017)
- · set $\bar{h}=$ P90 of housing distribution

Flow utility

$$\frac{\left((1-\xi)c^{\varepsilon} + \xi\left(\frac{h}{h^{\phi}}\right)^{\varepsilon}\right)^{\frac{1-\gamma}{\varepsilon}}}{1-\gamma}$$

Production

Construction sector

(from Kaplan et al., 2019)

- \cdot inputs: labor N_h and land permits $ar{L}$
- \cdot aggregate productivity Θ
- housing investment

$$I_h = (\Theta N_h)^{\alpha} (\bar{L})^{1-\alpha}$$
 with $\alpha \in (0,1)$

· $\max_{N_h} p_t I_h - w N_h$

Production

Construction sector

(from Kaplan et al., 2019)

- \cdot inputs: labor N_h and land permits $ar{L}$
- \cdot aggregate productivity Θ
- housing investment $I_h = (\Theta N_h)^{\alpha} (\bar{L})^{1-\alpha} \text{ with } \alpha \in (0,1)$
- · $\max_{N_h} p_t I_h w N_h$

Consumption good

linear production: $Y_c = \Theta(1 - N_h)$

Production

Construction sector

(from Kaplan et al., 2019)

- \cdot inputs: labor N_h and land permits $ar{L}$
- \cdot aggregate productivity Θ
- · housing investment $I_h = (\Theta N_h)^{\alpha} (\bar{L})^{1-\alpha} \text{ with } \alpha \in (0,1)$
- $\max_{N_h} p_t I_h w N_h$

Consumption good

linear production: $Y_c = \Theta(1 - N_h)$

Financial markets

- · exogenous net supply of assets a^S
- borrowing subject to collateral constraint

Equilibrium

A stationary equilibrium is a joint distribution $\mu(a,h,y)$, policy functions $c(a,h,y,\bar{h})$, $h(a,h,y,\bar{h})$, $a(a,h,y,\bar{h})$, prices (p,r) and a reference measure \bar{h} such that

- policy functions are consistent with agents' optimal choices $(c_t, h_t, a_t)_{t>0}$ given incomes $(y_t)_{t>0}$, prices p, r and reference measure \bar{h}
- markets clear
 - asset market: $\int a(a,h,y)d\mu = a^S$
 - housing investment equals housing production
- the reference measure is consistent with choices: $\bar{h}=\bar{h}(\mu)$

Outline

Introduction

Model

Economic enviroment

Parameterization

Results

Conclusion

Calibration strategy

- 1. adapt estimated earnings process (Guvenen et al., 2019)
- 2. set 6 parameters externally to match 1980 target moments
- 3. calibrate two parameters internally to match 1980 target moments

- Taken from Guvenen et al. (2019)
 - · Captures both lifetime-inequality and income risk
 - estimated using administrative data from 1994–2013
- $y_{it} = (1 \nu_{it}) \exp(\tilde{\alpha}_i + z_{it} + \epsilon_{it})$

- Taken from Guvenen et al. (2019)
 - · Captures both lifetime-inequality and income risk
 - estimated using administrative data from 1994–2013
- $y_{it} = (1 v_{it}) \exp(\tilde{\alpha}_i + z_{it} + \epsilon_{it})$
 - · state-dependent non-employment risk $u_{it} \in \{0,1\}$

- Taken from Guvenen et al. (2019)
 - · Captures both lifetime-inequality and income risk
 - estimated using administrative data from 1994–2013
- $y_{it} = (1 \nu_{it}) \exp(\tilde{\alpha}_i + z_{it} + \epsilon_{it})$
 - · state-dependent non-employment risk $u_{it} \in \{0,1\}$
 - permanent component $\tilde{\alpha}_i \sim N(\mu_{\alpha}, \sigma_{\alpha}^2)$

- Taken from Guvenen et al. (2019)
 - · Captures both lifetime-inequality and income risk
 - estimated using administrative data from 1994–2013
- $y_{it} = (1 \nu_{it}) \exp(\tilde{\alpha}_i + \mathbf{z}_{it} + \epsilon_{it})$
 - · state-dependent non-employment risk $u_{it} \in \{0,1\}$
 - permanent component $\tilde{\alpha}_i \sim N(\mu_{\alpha}, \sigma_{\alpha}^2)$
 - persistent component (think "AR(1)")

- Taken from Guvenen et al. (2019)
 - · Captures both lifetime-inequality and income risk
 - estimated using administrative data from 1994–2013

•
$$y_{it} = (1 - \nu_{it}) \exp(\tilde{\alpha}_i + z_{it} + \epsilon_{it})$$

- · state-dependent non-employment risk $u_{it} \in \{0,1\}$
- · permanent component $\tilde{\alpha}_i \sim N(\mu_{\alpha}, \sigma_{\alpha}^2)$
- persistent component (think "AR(1)")
- transitory component (think "iid")

Earnings process (2): Adjustments for 1980

 take into account changes in cross-sectional income distribution since 1980

Source: Guvenen et al. (2018)

Earnings process (2): Adjustments for 1980

 take into account changes in cross-sectional income distribution since 1980

Source: Guvenen et al. (2018)

- most of the increase in cross-sectional variation due to increase in permanent component (Kopczuk et al., 2010; Guvenen et al., 2014)
- adjust permanent component of incomes (σ_{α}^2) to match difference in P90/P50 ratio between 1980 and 2004

Parameter description		Source	Value
Preferences			
ϕ	strength of keeping up motive	Bellet (2017)	0.7
ρ	discount rate	internal	0.02
ξ	utility weight of housing	internal	0.277
$\frac{1}{1-\varepsilon}$	intra-temporal elasticity of substitution	Flavin and Nakagawa (2008, AER)	0.15
γ	inverse intertemporal elasticity of substitution	standard	1.5
$\frac{1}{m}$	constant mortality rate	45 years worklife	45.0
Housing and financial technogy			
$\frac{\alpha}{1-\alpha}$	price elasticity of housing supply	Saiz (2010, QJE)	1.5
δ	depreciation rate of housing	Bureau of Economic Analysis	0.021
ω	maximum loan-to-value ratio	P95 of LTV	0.85
a^S/\bar{y}	exogenous net asst supply	cum. current account	-0.01
Taxation and Unemployment Insurance			
$ au_0$	level of taxes	internal	0.932
$ au_1$	progressivity	Heathcote et al. (2017)	0.15
b	replacement rate	Dept of Labor	0.32

Parameter description		Source	Value	
Prefer	Preferences			
ϕ	strength of keeping up motive	Bellet (2017)	0.7	
ρ	discount rate	internal	0.02	
ξ	utility weight of housing	internal	0.277	
$\frac{1}{1-\varepsilon}$	intra-temporal elasticity of substitution	Flavin and Nakagawa (2008, AER)	0.15	
γ	inverse intertemporal elasticity of substitution	standard	1.5	
$\frac{1}{m}$	constant mortality rate	45 years worklife	45.0	
Housi	Housing and financial technogy			
$\frac{\alpha}{1-\alpha}$	price elasticity of housing supply	Saiz (2010, QJE)	1.5	
δ	depreciation rate of housing	Bureau of Economic Analysis	0.021	
ω	maximum loan-to-value ratio	P95 of LTV	0.85	
$a^S/ar{y}$	exogenous net asst supply	cum. current account	-0.01	
Taxati	Taxation and Unemployment Insurance			
$ au_0$	level of taxes	internal	0.932	
$ au_1$	progressivity	Heathcote et al. (2017)	0.15	
b	replacement rate	Dept of Labor 0		

Parameter description		Source	Value	
Prefer	Preferences			
ϕ	strength of keeping up motive	Bellet (2017)	0.7	
ho	discount rate	internal	0.02	
ξ	utility weight of housing	internal	0.277	
$\frac{1}{1-\varepsilon}$	intra-temporal elasticity of substitution	Flavin and Nakagawa (2008, AER)	0.15	
γ	inverse intertemporal elasticity of substitution	standard	1.5	
$\frac{1}{m}$	constant mortality rate	45 years worklife	45.0	
Housing and financial technogy				
$\frac{\alpha}{1-\alpha}$	price elasticity of housing supply	Saiz (2010, QJE)	1.5	
δ	depreciation rate of housing	Bureau of Economic Analysis	0.021	
ω	maximum loan-to-value ratio	P95 of LTV		
a^S/\bar{y}	exogenous net asst supply	cum. current account	-0.01	
Taxati	Taxation and Unemployment Insurance			
$ au_0$	level of taxes	internal	0.932	
$ au_1$	progressivity	Heathcote et al. (2017)	0.15	
b	replacement rate	Dept of Labor	0.32	

Parameter description		Source	Value
Preferences			
ϕ	strength of keeping up motive	Bellet (2017)	0.7
ρ	discount rate	internal	0.02
ξ	utility weight of housing	internal	0.277
$\frac{1}{1-\varepsilon}$	intra-temporal elasticity of substitution	Flavin and Nakagawa (2008, AER)	0.15
γ	inverse intertemporal elasticity of substitution	standard	1.5
$\frac{1}{m}$	constant mortality rate	45 years worklife	45.0
Housing and financial technogy			
$\frac{\alpha}{1-\alpha}$	price elasticity of housing supply	Saiz (2010, QJE)	1.5
δ	depreciation rate of housing	Bureau of Economic Analysis	0.021
ω	maximum loan-to-value ratio	P95 of LTV	0.85
a^S/\bar{y}	exogenous net asst supply	cum. current account	-0.01
Taxati	Taxation and Unemployment Insurance		
$ au_0$	level of taxes	internal	0.932
$ au_1$	progressivity	Heathcote et al. (2017)	0.15
b	replacement rate	Dept of Labor	0.32

Parameter description		Source	Value
Preferences			
ϕ	strength of keeping up motive	Bellet (2017)	0.7
ρ	discount rate	internal	0.02
ξ	utility weight of housing	internal	0.277
$\frac{1}{1-\varepsilon}$	intra-temporal elasticity of substitution	Flavin and Nakagawa (2008, AER)	0.15
γ	inverse intertemporal elasticity of substitution	standard	1.5
$\frac{1}{m}$	constant mortality rate	45 years worklife	45.0
Housing and financial technogy			
$\frac{\alpha}{1-\alpha}$	price elasticity of housing supply	Saiz (2010, QJE)	1.5
δ	depreciation rate of housing	Bureau of Economic Analysis	0.021
ω	maximum loan-to-value ratio	P95 of LTV	0.85
a^S/\bar{y}	exogenous net asst supply	cum. current account	-0.01
Taxation and Unemployment Insurance			
$ au_0$	level of taxes	internal	0.932
$ au_1$	progressivity	Heathcote et al. (2017)	0.15
b	replacement rate	Dept of Labor	0.32

Parameter description		Source	Value	
Prefer	Preferences			
ϕ	strength of keeping up motive	Bellet (2017)	0.7	
ρ	discount rate	internal	0.02	
ξ	utility weight of housing	internal	0.277	
$\frac{1}{1-\varepsilon}$	intra-temporal elasticity of substitution	Flavin and Nakagawa (2008, AER)	0.15	
γ	inverse intertemporal elasticity of substitution	standard	1.5	
$\frac{1}{m}$	constant mortality rate	45 years worklife	45.0	
Housing and financial technogy				
$\frac{\alpha}{1-\alpha}$	price elasticity of housing supply	Saiz (2010, QJE)	1.5	
δ	depreciation rate of housing	Bureau of Economic Analysis	0.021	
ω	maximum loan-to-value ratio	P95 of LTV	0.85	
a^S/\bar{y}	exogenous net asst supply	cum. current account	-0.01	
Taxati	Taxation and Unemployment Insurance			
$ au_0$	level of taxes	internal	0.932	
$ au_1$	progressivity	Heathcote et al. (2017)	0.15	
b	replacement rate	Dept of Labor	0.32	

Model fit: Targeted moments

moment	model	data (80/83)
aggregate loan-to-value	0.24	0.24
aggregate networth-to-income	4.63	4.6
tax-revenue-to-income	0.14	0.14

Outline

Introduction

Model

Results

Conclusion

Outline

Introduction

Model

Results

Inequality experiment

Horse race against alternative mechanisms

Conclusion

Rising inequality, mortgages and house prices 1980–2007 (1)

inequality rises

Source: Guvenen et al. (2018)

Rising inequality, mortgages and house prices 1980–2007 (1)

inequality rises

Source: Guvenen et al. (2018)

- adjust permanent component of incomes (σ_{α}^2) to match difference in P90/P50 ratio between 1980 and 2007
- all other parameters are kept constant

Rising inequality, mortgages and house prices 1980–2007 (2)

Take-away: Inequality & keeping up with the Joneses generate

- 40% of the observed mortgage boom
- 55% of the observed house price boom

Social Comparisons are an Important Amplifier — Rising Inequality is not Enough

Note: Keeping reference measure \bar{h} constant at \bar{h}_{1980} .

Take-away: Keeping up with the Joneses contributes 61% of the mortgage debt increase and 30% of the house price increase

Outline

Introduction

Model

Results

Inequality experiment

Horse race against alternative mechanisms

Conclusion

Horse race against alternative mechanisms

Global Saving Glut

- cumulative current accout deficit pprox net foreign debt position $=-a^S$
- exogenous rise in net supply of credit $-a^S$ (Justiniano et al., 2014)

Source: US BEA, FRED

Horse race against alternative mechanisms

Global Saving Glut

- · cumulative current accout deficit pprox net foreign debt position $=-a^S$
- exogenous rise in net supply of credit $-a^S$ (Justiniano et al., 2014)

Source: US BEA, FRED

Looser borrowing standards

- · loosening of collateral constraints
- result of financial liberalization (e.g. Favilukis et al., 2017)
- \cdot proxy ω with P95 of LTV distribution

Source: SCF 21/25

Take-away

1. Saving Glut generates stronger debt boom, but weaker house price boom

Take-away

1. Saving Glut generates stronger debt boom, but weaker house price boom

Take-away

1. Saving Glut generates stronger debt boom, but weaker house price boom

Take-away

- 1. Saving Glut generates stronger debt boom, but weaker house price boom
- 2. inequality and keeping up with the Joneses contributes about 50% to mortgages and 95% of to prices

Changes over the income distribution

Changes over the income distribution

Take-away

Inequality and keeping up with the Joneses gets the inverse-U for house value

Outline

Introduction

Model

Results

Conclusion

We formalize a causal link between rising top incomes and the debt boom based on "keeping up with the richer Joneses"

We formalize a causal link between rising top incomes and the debt boom based on "keeping up with the richer Joneses"

1. rising inequality and social comparisons generate about half of the observed mortgage and house price booms

We formalize a causal link between rising top incomes and the debt boom based on "keeping up with the richer Joneses"

- 1. rising inequality and social comparisons generate about half of the observed mortgage and house price booms
- 2. the Saving Glut generates as strong debt boom, but no house price boom

We formalize a causal link between rising top incomes and the debt boom based on "keeping up with the richer Joneses"

- 1. rising inequality and social comparisons generate about half of the observed mortgage and house price booms
- 2. the Saving Glut generates as strong debt boom, but no house price boom
- 3. in a decomposition, inequality and keeping up with the Joneses account for about half the of total debt boom and 95% of total house price boom

Conclusion

We formalize a causal link between rising top incomes and the debt boom based on "keeping up with the richer Joneses"

- 1. rising inequality and social comparisons generate about half of the observed mortgage and house price booms
- 2. the Saving Glut generates as strong debt boom, but no house price boom
- 3. in a decomposition, inequality and keeping up with the Joneses account for about half the of total debt boom and 95% of total house price boom

Analytical results

- that individual debt is increasing in the incomes of the reference group
- that aggregate debt-to-income ratio is increasing in top incomes when somebody cares about the rich

Thank you!

References i

- ABEL, A. B. (1990): "Asset Prices under Habit Formation and Catching Up with the Joneses," *American Economic Review*, 80, 38–42.
- ACHDOU, Y., J. HAN, J.-M. LASRY, P.-L. LIONS, AND B. MOLL (2015): "Heterogeneous Agent Models in Continuous Time," .
- BALLESTER, C., A. CALVÓ-ARMENGOL, AND Y. ZENOU (2006): "Who's Who in Networks. Wanted: The Key Player," *Econometrica*, 74, 1403–1417.
- Bellet, C. (2017): "The Paradox of the Joneses Superstar Houses and Mortgage Frenzy in Suburban America," CEP Discussion Paper 1462, Center for Economic Performance.
- BERTRAND, M. AND A. MORSE (2016): "Trickle-down Consumption," Review of Economics and Statistics.
- CAMPBELL, J. Y. AND J. H. COCHRANE (1999): "By Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior," *Journal of Political Economy*, 107, 205–251.

References ii

- DE GIORGI, G., A. FREDERIKSEN, AND L. PISTAFERRI (2019): "Consumption Network Effects," The Review of Economic Studies.
- FAVILUKIS, J., S. C. LUDVIGSON, AND S. VAN NIEUWERBURGH (2017): "The macroeconomic effects of housing wealth, housing finance, and limited risk sharing in general equilibrium," *Journal of Political Economy*, 125, 140–223.
- FLAVIN, M. AND S. NAKAGAWA (2008): "A model of housing in the presence of adjustment costs: A structural interpretation of habit persistence," *American Economic Review*, 98, 474–95.
- GHIGLINO, C. AND S. GOYAL (2010): "Keeping up with the Neighbors: Social Interaction in a Market Economy," *Journal of the European Economic Association*, 8, 90–119.
- GUVENEN, F., G. KAPLAN, J. SONG, AND J. WEIDNER (2018): "Lifetime incomes in the United States over six decades," .
- GUVENEN, F., F. KARAHAN, S. OZKAN, AND J. SONG (2019): "What Do Data on Millions of U.S. Workers Reveal About Life-Cycle Earnings Dynamics?" Tech. rep.

References iii

- GUVENEN, F., S. OZKAN, AND J. SONG (2014): "The Nature of Countercyclical Income Risk," *Journal of Political Economy*, 122, 621–660.
- HEATHCOTE, J., K. STORESLETTEN, AND G. L. VIOLANTE (2017): "Optimal tax progressivity: An analytical framework," *The Quarterly Journal of Economics*, 132, 1693–1754.
- Huggett, M. (1993): "The risk-free rate in heterogeneous-agent incomplete-insurance economies," *Journal of economic Dynamics and Control*, 17, 953–969.
- JUSTINIANO, A., G. E. PRIMICERI, AND A. TAMBALOTTI (2014): "The effects of the saving and banking glut on the US economy," *Journal of International Economics*, 92, S52–S67.
- —— (2019): "Credit Supply and the Housing Boom," *Journal of Political Economy*, 127, 1317–1350.
- KAPLAN, G., K. MITMAN, AND G. L. VIOLANTE (2019): "The housing boom and bust: Model meets evidence," *Journal of Political Economy*.
- KAPLAN, G., B. MOLL, AND G. L. VIOLANTE (2016): "Monetary Policy According to HANK," Working Paper 21897, National Bureau of Economic Research.

References iv

- KAPLAN, G. AND G. L. VIOLANTE (2014): "A Model of the Consumption Response to Fiscal Stimulus Payments," *Econometrica*, 82, 1199–1239.
- KOPCZUK, W., E. SAEZ, AND J. SONG (2010): "Earnings Inequality and Mobility in the United States: Evidence from Social Security Data since 1937," *The Quarterly Journal of Economics*, 125, 91–128.
- Кимноғ, М., R. Rancıère, and P. Winant (2015): "Inequality, Leverage, and Crises," American Economic Review, 105, 1217–45.
- LJUNGQVIST, L. AND H. UHLIG (2000): "Tax policy and aggregate demand management under catching up with the Joneses," *American Economic Review*, 356–366.
- PIKETTY, T., E. SAEZ, AND G. ZUCMAN (2018): "Distributional National Accounts: Methods and Estimates for the United States," *The Quarterly Journal of Economics*, qjx043.
- SAIZ, A. (2010): "The geographic determinants of housing supply," *The Quarterly Journal of Economics*, 125, 1253–1296.

Model

- · durable houses h, non-durable consumption c
- asset a (mortgage if a < 0)
- Keeping up with the Joneses
 - \cdot reference measure $ar{h}$
 - status function $s(h, \bar{h})$
- \cdot house price p, interest rate r

Preferences

$$\mathbb{E}_0 \int_0^\infty e^{-(\rho+m)t} u(c, \underline{s(h, \bar{h})}) dt$$

Endogenous States

- $\dot{a}_t = y_t + r_t a_t c_t p_t x_t$
- $\cdot \dot{h}_t = -\delta h_t + x_t$
- a_0, h_0 given.

Model — Tractable Version

- · durable houses h, non-durable consumption c
- asset a (mortgage if a < 0)
- · Keeping up with the Joneses
 - \cdot reference measure $ar{h}$
 - status function $s(h, \bar{h})$
- house price p, interest rate r

For now:

- finite number of types j
- constant incomes y^j

Preferences

$$\mathbb{E}_0 \int_0^\infty e^{-(
ho+m)t} u(c, extbf{ extit{s}}(ar{ extit{h}}, ar{ extit{h}})) dt$$

Endogenous States

- $\dot{a}_t = y_t + r_t a_t c_t p_t x_t$
- $\cdot \dot{h}_t = -\delta h_t + x_t$
- a_0, h_0 given.

- life-time borrowing constraint
- $r = \rho, \delta = m = 0$

Modelling Keeping up with the Joneses: Example with three income types

$$u(c, s(h, \bar{h})) = \frac{\left(c_t^{1-\xi} \left(h_t - \phi \bar{h}_t^j\right)^{\xi}\right)^{1-\gamma}}{1-\gamma}$$

(a) Preferences

$$\begin{pmatrix} \bar{h}_P \\ \bar{h}_M \\ \bar{h}_R \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & g_{PM} & g_{PR} \\ 0 & 0 & g_{MR} \\ 0 & 0 & 0 \end{pmatrix}}_{G \text{ (adjacency matrix)}} \begin{pmatrix} h_P \\ h_M \\ h_R \end{pmatrix}$$

(b) Reference consumption

(c) Corresponding graph

Result: Debt Is Increasing in Others' Incomes

(Individually) optimal debt (given p, r, \bar{h}) is

$$-\begin{pmatrix} a_P \\ a_M \\ a_R \end{pmatrix} = \pi_1 \begin{pmatrix} y_P \\ y_M \\ y_R \end{pmatrix} + \pi_2 \phi \begin{pmatrix} 0 & \tilde{\phi} \cdot g_{PM} & \tilde{\phi} \cdot g_{PR} + \tilde{\phi}^2 \cdot g_{PM} \cdot g_{MR} \\ 0 & 0 & \tilde{\phi} \cdot g_{MR} \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} y_P \\ y_M \\ y_R \end{pmatrix}$$

where $\pi_1,\pi_2>0$ depend on prices and parameters. Sketch of proof

- Results hold more generally: debt is increasing in incomes of all (directly and indirectly) linked agents
- income-weighted Bonacich centrality—reminiscent of Ballester et al. (2006, Ecma)

Result: Debt Is Increasing in Others' Incomes

(Individually) optimal debt (given p, r, \bar{h}) is

$$-\begin{pmatrix} a_P \\ a_M \\ a_R \end{pmatrix} = \pi_1 \begin{pmatrix} y_P \\ y_M \\ y_R \end{pmatrix} + \pi_2 \phi \begin{pmatrix} 0 & \tilde{\phi} \cdot g_{PM} & \tilde{\phi} \cdot g_{PR} + \tilde{\phi}^2 \cdot g_{PM} \cdot g_{MR} \\ 0 & 0 & \tilde{\phi} \cdot g_{MR} \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} y_P \\ y_M \\ y_R \end{pmatrix}$$

where $\pi_1,\pi_2>0$ depend on prices and parameters. Sketch of proof

- Results hold more generally: debt is increasing in incomes of all (directly and indirectly) linked agents
- income-weighted Bonacich centrality—reminiscent of Ballester et al. (2006, Ecma)

→ Households need not be directly linked! (effects trickle-down)

1. others' houses (and \bar{h}) increase in others' incomes

- 1. others' houses (and \bar{h}) increase in others' incomes
- 2. own house increases with others' houses

$$h = c \left(\frac{\xi}{(1 - \xi)rp} \right)^{\frac{1}{1 - \varepsilon}} + \phi \bar{h}$$

- 1. others' houses (and \bar{h}) increase in others' incomes
- own house increases with others' houses
- 3. bigger house means more debt
 - use debt to smooth payments

- 1. others' houses (and \bar{h}) increase in others' incomes
- own house increases with others' houses
- 3. bigger house means more debt
 - use debt to smooth payments

- 1. others' houses (and \bar{h}) increase in others' incomes
- own house increases with others' houses
- 3. bigger house means more debt
 - use debt to smooth payments
 - bigger house means more debt

- 1. others' houses (and \bar{h}) increase in others' incomes
- own house increases with others' houses
- 3. bigger house means more debt
 - use debt to smooth payments
 - bigger house means more debt

- 1. others' houses (and \bar{h}) increase in others' incomes
- own house increases with others' houses
- bigger house means more debt
 - use debt to smooth payments
 - bigger house means more debt

- 1. others' houses (and \bar{h}) increase in others' incomes
- own house increases with others' houses
- 3. bigger house means more debt
 - use debt to smooth payments
 - bigger house means more debt

- 1. others' houses (and \bar{h}) increase in others' incomes
- 2. own house increases with others' houses
- 3. bigger house means more debt
 - use debt to smooth payments
 - bigger house means more debt

→ Own credit demand is increasing in others' income!

Lemma

If initial endowments are sufficiently low (e.g. $a_0=0$), households optimally choose to be indebted.

Lemma

If households substitute houses for consumption, they optimally increase their debt.

Proposition

Optimal debt is increasing in the incomes of one's reference group (and the incomes of the reference group of the reference group, etc.)

Proposition

If social comparisons are upward-looking, total demand for debt is increasing in top incomes.

Lemma

If initial endowments are sufficiently low (e.g. $a_0=0$), households optimally choose to be indebted.

Lemma

If households substitute houses for consumption, they optimally increase their debt.

Proposition

Optimal debt is increasing in the incomes of one's reference group (and the incomes of the reference group of the reference group, etc.)

Proposition

If social comparisons are upward-looking, total demand for debt is increasing in top incomes.

Lemma

If initial endowments are sufficiently low (e.g. $a_0=0$), households optimally choose to be indebted.

Lemma

If households substitute houses for consumption, they optimally increase their debt.

Proposition

Optimal debt is increasing in the incomes of one's reference group (and the incomes of the reference group of the reference group, etc.)

Proposition

If social comparisons are upward-looking, total demand for debt is increasing in top incomes.

Lemma

If initial endowments are sufficiently low (e.g. $a_0=0$), households optimally choose to be indebted.

Lemma

If households substitute houses for consumption, they optimally increase their debt.

Proposition

Optimal debt is increasing in the incomes of one's reference group (and the incomes of the reference group of the reference group, etc.)

Proposition

If social comparisons are upward-looking, total demand for debt is increasing in top incomes.

Lemma

If initial endowments are sufficiently low (e.g. $a_0=0$), households optimally choose to be indebted.

Lemma

If households substitute houses for consumption, they optimally increase their debt.

Proposition

Optimal debt is increasing in the incomes of one's reference group (and the incomes of the reference group of the reference group, etc.)

Proposition

If social comparisons are upward-looking, total demand for debt is increasing in top incomes.