Моделиране на данните в склада от данни

Моделиране на данните в DW

- ER моделиране
- Дименсионно (Многомерно) моделиране
 - Dimensions Дименсии (Измерения)
 - Facts Факти
 - Measures (variables) Мерки
 - Cube куб с данни, представляващ многомерна матрица

Многомерният модел се изгражда от

- Дименсионни таблици (наричат се и lookup tables)
- 🎱 Факт-таблици
- Връзки между дименсионните таблици и факт-таблиците

Дименсии

- Дименсиите са параметрите (показателите), по които се прави анализ на данните.
- Пример за дименсии: групи стоки, стоки, клиенти, местоположение, подразделения на фирмата, времеви периоди, ...
- Всяка дименсия притежава собствени характеристики или атрибути, които се съхраняват в дименсионните таблици.

Йерархия на дименсиите

- Дименсиите категоризират данните по йерахичен начин.
- Примери:
 - дименсията време може да включва като членове:
 - дименсията месторазположение включва като членове: държава -> регион -> град
- В дименсионната таблица се съдържа по един ред за всеки член от по-ниското йерархично ниво на дименсията.

Концепция за йерархия: Пространствена дименсия

Многомерни данни

Обемът на продажбите е функция на дименсиите product, month и region

Факти

- Фактите представляват
 - Нещата, които трябва да се измерят и анализират;
 - Напр., количество продадени стоки, стойност на продажбите.
- № Съхраняват се в т.н. Факт таблици.
- Във факт таблиците се съхраняват идентификаторите на дименсиите (показателите) и фактите, които ще се измерват и анализират.

Най-често срещащи се типове факти

- Факти, свързани с транзакции (Transaction facts). Основават се на отделни събития (типични примери са посещение на сайта или теглене на пари от сметка от банкомат);
- Факти, свързани с «моментални снимки» (Snapshot facts). Основават се на състоянието на обекта (например, банкова сметка) в определен момент от времето, (напр. в края на деня или месеца наличните парични средства). Типични примери на такива факти са обем на продажбите за деня.

Най-често срещащи се типове факти

- Факти, свързани с елементи на документи (Line-item facts). Основават се на един или друг документ (напр., сметка за стока или услуги) и съдържат подробна информация за елементите на този документ (напр., количество, цена, процент отстъпка).
- → Факти, свързани със събития или състояния на обекта (Event or state facts). Представляват възникнали събития без подробности за тях (напр., просто фактът за продажба или фактът за отсъствие на такава без всякакви подробности).

Многомерният модел се изгражда от

- Дименсионни таблици и Факт-таблици, които са свързани помежду си.
- Дименсионните таблици се свързват с факт таблицата в отношение 1:М.
- Някои дименсионни таблици могат да се свързват с други дименсионни таблици в отношение 1:М.

Дименсионни таблици

- Дименсионната таблица съдържа непроменливи или рядко изменяеми данни.
- Структурата на дименсионната таблица включва:
 - Минимум една описателна колона (обикновено с името на члена на дименсията)
 - Колона ключ за еднозначна идентификация на члена на дименсията (като правило, целочислена колона - обикновено изкуствен ключ)
 - Допълнителни атрибути на членовете на дименсиите, съдържащи се в изходната оперативна база от данни (напр., адресите и телефоните на клиентите)

Пример на дименсионна таблица

ProductKey	ProductLab	ProductName	ProductSub	Manufactur	BrandName	ClassID	ClassName	StyleI
1	0101001	Contoso 512MB MP3 Pla	1	Contoso, Ltd	Contoso	1	Economy	1
2	0101002	Contoso 512MB MP3 Pla	1	Contoso, Ltd	Contoso	1	Economy	5
3	0101003	Contoso 1G MP3 Player	1	Contoso, Ltd	Contoso	1	Economy	1
4	0101004	Contoso 2G MP3 Player	1	Contoso, Ltd	Contoso	1	Economy	1
5	0101005	Contoso 2G MP3 Player	1	Contoso, Ltd	Contoso	1	Economy	1
6	0101006	Contoso 2G MP3 Player	1	Contoso, Ltd	Contoso	1	Economy	2
7	0101007	Contoso 2G MP3 Player	1	Contoso, Ltd	Contoso	1	Economy	1
8	0101008	Contoso 4G MP3 Player	1	Contoso, Ltd	Contoso	1	Economy	2
9	0101009	Contoso 4G MP3 Player	1	Contoso, Ltd	Contoso	1	Economy	1
10	0101010	Contoso 4G MP3 Player	1	Contoso, Ltd	Contoso	1	Economy	1
11	0101011	Contoso 4G MP3 Player	1	Contoso, Ltd	Contoso	1	Economy	1
12	0101012	Contoso 4GB Flash MP3	1	Contoso, Ltd	Contoso	1	Economy	3
13	0101013	Contoso 4GB Flash MP3	1	Contoso, Ltd	Contoso	1	Economy	4
14	0101014	Contoso 4GB Flash MP3	1	Contoso, Ltd	Contoso	1	Economy	1
15	0101015	Contoso 4GB Flash MP3	1	Contoso, Ltd	Contoso	1	Economy	4
16	0101016	Contoso 8GB Super-Slim	1	Contoso, Ltd	Contoso	2	Regular	3
17	0101017	Contoso 8GB Super-Slim	1	Contoso, Ltd	Contoso	2	Regular	1
18	0101018	Contoso 8GB Super-Slim	1	Contoso, Ltd	Contoso	2	Regular	3

Пример на дименсионна таблица за дименсия време DimDate

	Datekey	FullDateLa	CalendarYe	CalendarYe	CalendarH	CalendarQ	CalendarM	CalendarW	CalendarDay	FiscalYear
	2005-01-01	2005-01-01	2005	Year 2005	H1	Q1	January	Week 1	Saturday	2005
Ī	2005-01-02	2005-01-02	2005	Year 2005	H1	Q1	January	Week 2	Sunday	2005
	2005-01-03	2005-01-03	2005	Year 2005	H1	Q1	January	Week 2	Monday	2005
	2005-01-04	2005-01-04	2005	Year 2005	H1	Q1	January	Week 2	Tuesday	2005
I	2005-01-05	2005-01-05	2005	Year 2005	H1	Q1	January	Week 2	Wednesday	2005
	2005-01-06	2005-01-06	2005	Year 2005	H1	Q1	January	Week 2	Thursday	2005
	2005-01-07	2005-01-07	2005	Year 2005	H1	Q1	January	Week 2	Friday	2005
	2005-01-08	2005-01-08	2005	Year 2005	H1	Q1	January	Week 2	Saturday	2005
	2005-01-09	2005-01-09	2005	Year 2005	H1	Q1	January	Week 3	Sunday	2005
	2005-01-10	2005-01-10	2005	Year 2005	H1	Q1	January	Week 3	Monday	2005
	2005-01-11	2005-01-11	2005	Year 2005	H1	Q1	January	Week 3	Tuesday	2005
ı	2005-01-12	2005-01-12	2005	Year 2005	H1	Q1	January	Week 3	Wednesday	2005
	2005-01-13	2005-01-13	2005	Year 2005	H1	Q1	January	Week 3	Thursday	2005
	2005-01-14	2005-01-14	2005	Year 2005	H1	Q1	January	Week 3	Friday	2005
	2005-01-15	2005-01-15	2005	Year 2005	H1	Q1	January	Week 3	Saturday	2005
Ī	2005-01-16	2005-01-16	2005	Year 2005	H1	Q1	January	Week 4	Sunday	2005
Ī	2005-01-17	2005-01-17	2005	Year 2005	H1	Q1	January	Week 4	Monday	2005
	2005-01-18	2005-01-18	2005	Year 2005	H1	Q1	January	Week 4	Tuesday	2005

Факт таблица - основна таблица в склада от данни

- Съдържа сведения за обектите или събитията, съвкупността от които ще бъдат анализирани.
- Факт таблицата съдържа само числови данни и индекси, които съответстват на първичните ключове на свързаните дименсионни таблици.
- Като правило, съдържа уникален съставен ключ, обединяващ първичните ключове на дименсионните таблици.

Факт- таблица, съдържаща данни за продажбите в магазините на фирма....

SalesKey	DateKey	channelKey	StoreKey	ProductKey	Promotion	CurrencyKey	UnitCost	UnitPrice	SalesQu
7077	2008-04-13	1	297	1086	17	1	139,8000	304,0000	9
7078	2009-06-14	1	203	904	1	1	38,7400	75,9900	20
7079	2009-11-01	3	200	221	22	1	275,4600	599,0000	13
7080	2008-12-11	1	162	1132	13	1	207,7400	627,0000	13
7081	2007-04-16	1	265	693	6	1	75,8700	229,0000	18
7082	2007-06-08	1	185	222	1	1	261,6600	569,0000	10
7084	2007-05-08	2	306	282	1	1	208,5200	409,0000	10
7085	2009-09-22	2	307	381	1	1	321,4400	699,0000	10
7087	2009-08-13	3	200	504	21	1	287,9200	869,0000	6
7088	2008-09-25	4	308	437	12	1	254,8600	499,9000	24
7089	2008-12-29	3	200	1029	13	1	66,2600	200,0000	39
7091	2009-01-18	1	267	1146	14	1	291,0900	633,0000	13
7092	2007-06-27	1	174	1244	1	1	90,7500	178,0000	5
7094	2007-09-21	1	97	1541	3	1	137,5000	299,0000	12
7095	2008-08-15	2	199	458	12	1	117,2100	229,9000	96
7096	2009-10-04	3	200	310	1	1	152,4400	299,0000	10
7097	2009-07-28	3	200	966	21	1	84,8400	184,5000	12
7098	2007-02-15	1	232	962	8	1	86,4500	188,0000	12

Схеми в многомерния модел на данни

- Основават се на връзките между дименсионните таблици и факттаблиците
- Star schema (схема звезда)
- Snowflake schema (схема снежинка)
- Fact constellations или galaxy schema (галактика, плеяда, съзвездие)

Star schema

- Факт-таблицата е в центъра и е свързана с няколко дименсионни таблици. По този начин се получава структура, имаща вид на звезда
- Връзката на всяка дименсионна таблица с факт таблицата се основава на общи колони, които представляват идентификатор на дименсията.

Пример на схема "звезда"

Snowflake schema

- Факт таблицата се свързва с множество дименсионни таблици, някои от които са свързани с други дименсионни таблици
- Схемата снежинка е усъвършенствана схема звезда, в която йерархиите от дименсии са нормализирани в набор от по-малки дименсионни таблици.
- По този начин дименсията има йерархия, която се задава чрез съединяването на дименсионните таблици (напр. Категории стоки и Стоки)
- Само една от свързаните дименсионни таблици се свързва с факт таблицата

Пример на схема "снежинка"

Galaxy schema (Fact constellations)

- Моделът съдържа няколко факттаблици и множество дименсионни таблици.
- Факт-таблиците поделят дименсионните таблици.
- Изглежда като колекция от звезди, затова схемата се нарича галактика или съвездие.

Пример на схема "галактика"

Куб от данни (Data Cube)

- Кубът от данни позволява данните, съхранявани в склада от данни, да бъдат показани чрез множество измерения.
- Дефинира се чрез
 - Дименсионни таблици;
 - Факт таблица, която съдържа мерки (measures) и ключове (keys) за всяка от свързаните дименсионни таблици.
- Мерките на куба се създават от колоните на факт таблицата.

Мерки (Measures)

- Мерките са числови стойности, съдържащи се в клетките на куба.
- Мерките се създават въз основа на числовите колони на факт таблицата по зададена агрегатна функция − Sum(), Min(), Count(), Avg(), standard_deviation(), median(), mode(), rank(),
- Мерките представляват точки в многомерното пространство

Пример на куб с данни

Пример на куб с данни с три измерения – местонахождение, продукт и време

Измерение Местонахождение

Типични OLAP операции

- Slice and dice (резен, разрез и зар):
 - Проекция и селекция
- Pivot (rotate):
 - Преорентиране на куба,
 визуализация, 3D към серия от 2D
 план (схема).

Типични OLAP операии

- Roll up (drill-up): обобщаване на данните
 - От по-ниско ниво на обобщение към повисоко (изкачване нагоре по йерархията или редукция на дименсията).
- Drill down (roll down): обратно на roll-up
 - От по-високо ниво на обобщение към пониско ниво на обобщение или детайлни данни, или въвеждане на нова дименсия.

Slice and Dice

Pivot (rotate):

Roll up (drill-up) (dimension reduction example) Gro

Group by date, country

- reduced product dimension

U.S.A
Canada
Mexico

Group by country

reduced date dimension

Group by nothing

- reduced all dimensions

Roll up (drill-up)

Drill down (roll-down)

Три начина за съхраняване на изходните и агрегатните данни при обработка на куба

- MOLAP (Multidimensional OLAP)
- ROLAP (Relational OLAP)
- HOLAP (Hybrid OLAP)

MOLAP (Multidimensional OLAP)

- Изходните и агрегатните данни се съхраняват в многомерна база от данни.
- Съхраняването на данните в многомерни структури позволява да се манипулира с данните като с многомерни масиви, благодарение на което скоростта на изчисляване на агрегатните стойности е еднаква за всяко от измеренията.

ROLAP (Relational OLAP)

- Изходните данни остават в същата релационна база от данни, в която те първоначално са се намирали.
- Агрегатните данни се разполагат в специално създадени за тяхното съхраняване служебни таблици в същата база от данни.

HOLAP (Hybrid OLAP)

- Изходните данни остават в същата релационна база от данни, където първоначално са се намирали.
- Агрегатните данни се съхраняват в многомерната база от данни.

- http://www.1keydata.com/datawarehousing/
- http://www.learndatamodeling.com
- http://www.kimballgroup.com/

Power Pivot for SQL Server 2012

- http://office.microsoft.com/ bg-bg/support/results.aspx?qu= PowerPivot&ex=2&filter=1&av=zxl
- http://technet.microsoft.com/ en-us/library/hh965697.aspx