Unsupervised learning

Hierarchical clustering

Example

Run single-link distance based hierarchical clustering:

	1	2	3	4	5	6
1	0	4	13	24	12	8
2		0	10	22	11	10
3			0	7	3	9
4				0	6	18
5					0	8.5
6						0

1 of 3 9/8/20, 1:03 PM

Sum-of-squares Methods


```
In [18]: import numpy as np
import matplotlib.pyplot as plt

# Some random experiments with 2D Gaussians
mu1 = [165,60]
    cov1 = [[10,0],[0,5]]
    mu2 = [180,80]
    cov2 = [[6,0],[0,10]]
    x1 = np.random.multivariate_normal(mu1, cov1, 100)
    x2 = np.random.multivariate_normal(mu2, cov2, 100)
    plt.plot(x1[:,0],x1[:,1],'rx')
    plt.plot(x2[:,0],x2[:,1],'gx')
```

Out[18]: [<matplotlib.lines.Line2D at 0x7f5f7e121be0>]

2 of 3 9/8/20, 1:03 PM

```
In [19]: # Let's test k-means clustering
         from sklearn.cluster import KMeans
         kmeans = KMeans(init="random", n clusters=3, n init=1, max iter=10)
         X = np.row_stack((x1, x2))
         kmeans.fit(X)
         print(kmeans.cluster centers )
         plt.plot(x1[:,0],x1[:,1],'rx')
         plt.plot(x2[:,0],x2[:,1],'gx')
         plt.plot(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],'kd')
         [[179.78244427 79.56641538]
          [161.85265932 60.38321698]
          [167.48526126 59.88957398]]
Out[19]: [<matplotlib.lines.Line2D at 0x7f5f7e1016a0>]
          85
          80
          75
          70
          65
          60
          55
```

In [20]: # K-means clustering of Cifar-10 images (10 clusters) to see how well unsuperv
ised learning
works against supervised

180

185

References

155

160

165

A.R. Webb and K.D. Copsey (2011), Statistical Pattern Recognition, 3rd Edition, Chapter 11.

170

175

3 of 3 9/8/20, 1:03 PM