USN

MATDIP401

Fourth Semester B.E. Degree Examination, June/July 2016 Advanced Mathematics – II

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions.

- 1 a. Find the angle between any two diagonals of a cube. (07 Marks)
 - b. Prove that the general equation of first degree in x, y, z represents a plane. (07 Marks)
 - c. Find the angle between the lines,

$$\frac{x-1}{1} = \frac{y-5}{0} = \frac{z+1}{5} \text{ and } \frac{x+3}{3} = \frac{y}{5} = \frac{z-5}{2}.$$
 (06 Marks)

2 a. Prove that the lines,

$$\frac{x-5}{3} = \frac{y-1}{1} = \frac{z-5}{-2} \text{ and } \frac{x+3}{1} = \frac{y-5}{3} = \frac{z}{5} \text{ are perpendicular.}$$
 (07 Marks)

b. Find the shortest distance between the lines.

$$\frac{x-8}{3} = \frac{y+9}{-16} = \frac{z-10}{7}$$
 and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$. (07 Marks)

- c. Find the equation of the plane containing the point (2, 1, 1) and the line, $\frac{x+1}{2} = \frac{y-2}{3} = \frac{z+1}{-1}$ (06 Marks)
- 3 a.- Find the constant 'a' so that the vectors $2\hat{i} \hat{j} + \hat{k}$, $\hat{i} + 2\hat{j} 3\hat{k}$ and $3\hat{i} + a\hat{j} + 5\hat{k}$ are co-planar. (07 Marks)
 - b. If $\vec{a} = 2\hat{i} + 3\hat{j} 4\hat{k}$ and $\vec{b} = 8\hat{i} 4\hat{j} + \hat{k}$ then prove that \vec{a} is perpendicular to \vec{b} and also find $|\vec{a} \times \vec{b}|$. (07 Marks)
 - c. Find the volume of the parallelopiped whose co-terminal edges are represented by the vectors,

$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\vec{b} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{c} = \hat{i} - \hat{j} - \hat{k}$ (06 Marks)

- 4 a. Find the velocity and acceleration of a particle moves along the curve $\vec{r} = e^{-2t}\hat{i} + 2\cos 5t\hat{j} + 5\sin 2t\hat{k}$ at any time 't'. (07 Marks)
 - b. Find the directional derivative of x^2yz^3 at (1, 1, 1) in the direction of $\hat{i} + \hat{j} + 2\hat{k}$. (07 Marks)
 - c. Find the divergence of the vector $\vec{F} = (xyz + y^2z)\hat{i} + (3x^2 + y^2z)\hat{j} + (xz^2 y^2z)\hat{k}$. (06 Marks)
- 5 a. $F = (x + y + 1)\hat{i} + \hat{j} (x + y)\hat{k}$, show that $\vec{F} \cdot \text{curl } \vec{F} = 0$. (07 Marks)
 - b. Show that the vector field, $\vec{F} = (3x + 3y + 4z)\hat{i} + (x 2y + 3z)\hat{j} + (3x + 2y z)\hat{k}$ is solenoidal. (07 Marks)
 - c. Find the constants a, b, c such that the vector field,

$$\vec{F} = (x + y + az)\hat{i} + (x + cy + 2z)\hat{j} + (bx + 2y - z)\hat{k} \text{ is irrotational.}$$
 (06 Marks)

1 of 2

MATDIP401

- 6 a. Prove that $L(\sin at) = \frac{a}{s^2 + a^2}$.
 - (07 Marks) b. Find L[sin t sin 2t sin 3t]. (07 Marks)
 - c. Find L[cos3 t].

- (06 Marks)
- a. Find the inverse Laplace transform of $\frac{1}{(s+1)(s+2)(s+3)}$.

(07 Marks)

b. Find $L^{-1} \left[log \left(1 + \frac{a^2}{s^2} \right) \right]$.

(07 Marks)

c. Find $L^{-1} \left[\frac{s+2}{s^2 - 4s + 13} \right]$.

- (06 Marks)
- 8 a. Solve the differential equation, $y'' + 2y' + y = 6te^{-t}$ under the conditions y(0) = 0 = y'(0) by Laplace transform techniques. (10 Marks)
 - b. Solve the differential equation, y'' 3y' + 2y = 0 y(0) = 0, y'(0) = 1 by Laplace transform techniques. (10 Marks)