머신러닝 실습

-기말 프로젝트

전자공학과 2022144007 김의진

데이터 통계 및 클래스 분포

총 **데이터 개수**: 7000개

클래스별 데이터 개수:

	11 - 1 - 1 - 1	l I •
청사과	(0):	700개
사과	(1):	700개
바나나	(2):	700개
블랙베리	(3):	700개
오이	(4):	700개
오렌지	(5):	700개
복숭아	(6):	700개
배	(7):	700개
토마토	(8):	700개
수박	(9):	700개

Training set , Validation set 비율 → 7:3

Training set 데이터 수: 4900개 (각 클래스별 490개)

Validation set 데이터 수: 2100개

(각 클래스별 210개)

전체 코드 흐름 요약

- 1. select_feature()
- 1) 특징 추출
- 2) 특징 추출 데이터 기반 클러스터링
- 3) 특정 목표 클래스 중심에 대한 거리 특징 추가

2. Training, Validation set 분할

1) 7:3 비율로 분할

3. Training set data 이용한 Two Layer Neural Network 학습

- 1) Hidden Layer node 수 80, Learning rate 0.01, epoch 1000, batch size 1
- 2) Weight 수: 1370개 (w_hidden(v): 560개, w_output(w): 810개)

4. 학습된 모델 검증

- 1) 학습된 weights로 Validation set을 이용한 forward propagation
- 2) Confusion matrix를 이용한 recall, precision, accuracy 확인

select_feature() 상세 구현

```
select_features(directory):
                                                #각 리스트에 각특징값 append
#이미지 파일 directory
                                                feature 1 list.append(feature 1)
                                                feature 2 list.append(feature 2)
#이미지 파일 directory 안의 파일 이름들 문자열 리스트로
                                                feature 3 list.append(feature 3)
file list = os.listdir(directory)
                                                feature 4 list.append(feature 4)
#특징 저장할 list
feature 1 list = []
                                            #각 특징 리스트들 numpy array로 변환
feature_2_list = []
                                            feature 1 list = np.array(feature 1 list)
feature_3_list = []
feature_4_list = []
                                            feature 2 list = np.array(feature 2 list)
                                            feature 3 list = np.array(feature 3 list)
            #정답 라벨
label = []
                                            feature 4 list = np.array(feature 4 list)
# file list에 있는 값들 반복
for name in file_list:
                                            #features 한군데에 모으기
                                            features = np.column stack([feature 1 list, feature 2 list, feature 3 list, feature 4 list])
  #경로 설정함
  path = os.path.join(directory, name)
                                            #clustering 이용
  #라벨 불러오기(파일명 첫 숫자)
                                            cluster_features, m = clustering(features)
  label.append(int(name.split('_', 1)[0]))
  #이미지 읽고 RGB(red, green, blue)값으로 변환하기
                                            #복숭아 군집 중심에 대한 거리 뽑는 함수!
  img GRB = cv2.imread(path)
                                            peach dist = extract class distance(features, label, cluster features, m, target label = 6)
  img_RGB = cv2.cvtColor(img_GRB, cv2.COLOR_BGR2RGB)
                                            #토마토 군집 중심에 대한 거리 뽑는 함수
  #특징추출하기
                                            tomato dist = extract class distance(features, label, cluster features, m, target label = 8)
  # 특징 1: 초록색 분류기
  feature_1 = No1_feature(img_RGB)
                                            #복숭아, 토마토, 사과 구분위한 특징까지 포함한 features
  # 특징 3: 빨간색 분류기
                                            features = np.column_stack([features, peach dist, tomato dist])
  feature 2 = No2 feature(img RGB)
                                            # features 정규화
  # 가로 전체 밝기 분산 ==> 줄무늬같은 패턴 탐지
                                            features = standard data(features)
  feature_3 = No3_feature(img_RGB)
  # 빨간색밝기 평균에 대한 파랑, 초록 밝기 평균 비율
                                            return features, label
                                                                                                                         #features와 label 반환
  feature 4 = No4 feature(img RGB)
```

- 1. 색체, 패턴 4개 특징 추출
- · 2. 특징 추출 데이터 클러스터링
- 3. 복숭아 군집, 토마토 군집에 대한 거리 특징 추가
- 4. 총 특징 추출 데이터 **정규화**
- 5. 특징 추출 데이터 features와 label 반환

clustering() 로직

```
def clustering(data):
   K = 10
   n, c = data.shape
   rand idx = np.random.choice(n, K, replace=False)
   m = data[rand_idx].copy()
   while(1):
       m_prev = m.copy()
       clus = np.zeros(n)
       # 한 데이터의 특징 수만큼 반복
       for i in range(n):
          d = (np.sum(((m - data[i]) ** 2), axis = 1)) ** (1 / 2)
          clus[i] = np.argmin(d)
       #군집 개수만큼 반복
       for j in range(K):
           clus p = data[clus == j]
          #j군집에 아무것도 없을 경우 방지
          if len(clus p) > 0:
              m[j] = np.mean(clus_p, axis = 0)
       #새로운 중심과 이전 중심과 비교(소수점이라 loop 탈출 못할 가능성 존재
       if np.allclose(m prev, m):
          break
   return clus, m
```

- 1. 군집 개수 10으로 설정
- → 분류 class 10개이기 때문에 이렇게 설정
- 2. 군집 중심 data중 하나로 random choice
- 3. 각 데이터를 가장 가까운 거리(유클리드, norm 2)에 할당함
- 4. 각 군집에 할당된 데이터들의 평균을 구해 새로운 군집 중심으로 update
- 5. 이전 군집 중심과 비교하여 위치가 거의 같아지면 update 중단
- 6. 군집 데이터와 군집 중심 반환

extract_class_distance() 로직

```
def extract_class_distance(data, labels, clus, m, target_label):
    labels = np.array(labels, dtype=int)
    clus = np.array(clus, dtype=int)
    max_count = 0

#m 길이만큼 반복

for k in range(m.shape[0]):
    cluster_labels = labels[clus == k]
    count = np.sum(cluster_labels == target_label)
    if count > max_count:
        class_clus = k
        max_count = count

center = m[class_clus]
    d = np.log1p(np.sum(((center - data) ** 2), axis = 1)) ** (1 / 2)
    d = d.reshape(-1, 1)

return d
```

- 1. Data label과 군집 데이터 numpy array로 변환, 군집 데이터 셀 count 초기화
- 2. 각 군집에 목표 class 개수 계산, 제일 많이 속한 군집 저장
- 3. 2번에서 저장한 군집 중심에 대한 데이터들의 거리(유클리드, norm 2) 계산
- 4. 거리 데이터 반환

분류 전/후 Confusion Matrix (validation set)

						" ' '					Recall
	0	1	2	3	4	5	6	7	8	9	10
	201										1
	1 0	196					2				0.989899
1	2 0		221								1
1				198							1
실제	4 0				213						1
데이터	5 0					219					1
	9	30					188		2		0.854545
	7 0							231			1
8	3 0	1					2		190		0.984456
9	0									206	1
Precision	10 1	0.863436	1	1	1	1	0.979167	1	0.989583	1	0.982381

accuracy

전체적인 recall, precision 모두 0.9가 넘고 accurac도 0.94임

Training set MSE ≈ 0.003 Accuracy ≈ 0.983

하지만 class 사과(1), 복숭아(6), 토마토(8)에 대한 분류가 아쉬움

→ 이 세 class에 대한 데이터의 분포가 비슷함

분류 전/후 Confusion Matrix (validation set)

	0	1	2	3	4	5	6	7	8	9	10
0	198										1
1		194					10				0.95098
2			247					1			0.995968
3				237							1
4					196						1
5						211					1
6		7					201		3		0.952607
7								200			1
8							4		199		0.980296
9										192	1
10	1	0.965174	1	1	1	1	0.934884	0.995025	0.985149	1	0.988095

Training set

MSE ≈ 0.003 Accuracy ≈ 0.987 특징 추출 데이터 기반으로 한 클러스터링 이용 특징 추가 후

- 몇몇 class의 recall 및 precision이 감소
- Class 1의 Precision, Class 6의 Recall 눈에 띄게 증가
- → 전체적으로 데이터 분류가 균형 잡힘, accuracy 소폭 상승

정량 성능 개선

전 Precision		후	
Precision			
-Class 1: 0.863436	\rightarrow	0.965174	0.101738 증가
-Class 6: 0.979167	\rightarrow	0.934884	0.044283 감소
-Class 7 : 1	\rightarrow	0.905025	0.094975 감소
-Class 8: 0.989583	\rightarrow	0.985149	0.004434 감소
Recall			
-Class 1: 0.989899	\rightarrow	0.98098	0.008918 감소
-Class 2 : 1	\rightarrow	0.995968	0.004032 감소
-Class 6: 0.864545	\rightarrow	0.952607	0.088062 증가
-Class 8: 0.984456	\rightarrow	0.980296	0.00416 감소
Accuracy			
0.982381	\rightarrow	0.988095	0.005714 증가

개선점

Clustering을 이용한 거리 기반 특징으로 극적인 효과를 보지 못함

다른 방식으로 clustering 이용한 특징 추출로 교체 or 추가

- -히스토그램을 이용한 클러스터링
- 1. 원리
- -1) 이미지 채널의 픽셀 분포를 히스토그램으로 요약함
- -2) 이 데이터를 k-means clustering
- -3) 각 이미지가 속한 군집과의 특징 추가 ex) 거리
- 2. 기대효과
- -1) 세밀한 분포차이 포착 가능
- -2) 위의 효과에 의한 유사 분포 클래스 미세 분리 도움