REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE 10/00/78	3. REPORT TYPE AN	D DATES COVERED
4. THIST NAMED SUBSTITUTE EVALUATION			5. FUNDING NUMBERS
6. AUTHOR(S) ASSELIN, M.; HILDEBRANDT, H.			
7. PERFORMING ORGANIZATION NAM	E(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
CHEMICAL SYSTEMS LABORATORY (U. ABERDEEN PROVING GROUND, MD	.s.). MUNITIONS DIVISION	-	REPORT NUMBER
			81324R09
9. SPONSORING/MONITORING AGENC		FTIC ECTE N.217.11995J	10. SPONSORING / MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES		B	
12a. DISTRIBUTION / AVAILABILITY STA	TEMENT		12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC REI	EASE; DISTRIBUTION	is UNLIMITED	ĕ .
13. ABSTRACT (Maximum 200 words) THIS DOCUMENT CONSISTS EVALUATION. TOPICS REV CONTRACTOR INFORMATION, EVALUATION, ENVIRONMENT RECOMMENDATIONS. THE C CONDUCT INTEREST SURVEY (3) ESTIMATE RECOVERY V PROCESSES, (5) IDENTIFY	TIEWED ARE: OBJECT RECOVERY ASPECTS, PAL ASPECTS, DISPOS OBJECTIVES ARE: (1) TO EVALUATE CAPAB VALUE OF BASIN F CO	IVES, BACKGROUND DISPOSAL SCENAR AL COSTS, CONCLUS REVIEW TECHNICAL ILITY AND INTERES NTENTS, (4) IDEN	, LITERATURE SURVEY, IOS, RMA INCINERATOR SION AND L LITERATURE, (2) ST OF PRIVATE INDUSTRY, IIFY WASTE TREATMENT

19950125 132

DATE CHARACTER DESCRIPTION S

14. SUBJECT TERMS			15. NUMBER OF PAGES
CHEMICALS, SEDIMENT ANALYSI	s		
			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
UNCLASSIFIED			*

DISPOSAL PLAN.

BASIN F DISPOSAL EVALUATION

BY
MICHAEL B. ASSELIN
HERMAN F. HILDEBRANDT

OCTOBER 1978

PROCESS TECHNOLOGY BRANCH
MUNITIONS DIVISION
CHEMICAL SYSTEMS LABORATORY

BASIN F DISPOSAL EVALUATION BRIEFING SUBJECTS

- 1. OBJECTIVES
- 2. BACKGROUND
- 3. LITERATURE SURVEY
- 4. CONTRACTOR INFORMATION
- 5. RECOVERY ASPECTS
- 6. DISPOSAL SCENARIOS
- 7. RMA INCINERATOR EVALUATION
- 8. ENVIRONMENTAL ASPECTS
- 9. DISPOSAL COSTS
- 10. CONCLUSIONS
- 11. RECOMMENDATIONS

Accession For	
NTIS GRA&I	9
DTIC TAB	
Unannounced	
Justification	
Ву	s - 1/2 2
Distribution	
Availability	Codes
Avail a	
Dist Speci	er
10, 11	Alson .

BASIN F DISPOSAL EVALUATION

OBJECTIVES

- 1. REVIEW TECHNICAL LITERATURE
- 2. CONDUCT INTEREST SURVEY TO EVALUATE CAPABILITY AND INTEREST OF PRIVATE INDUSTRY
- 3. ESTIMATE RECOVERY VALUE OF BASIN F CONTENTS
- 4. IDENTIFY WASTE TREATMENT PROCESSES
- 5. IDENTIFY ENVIRONMENTAL IMPACTS OF DISPOSAL
- 6. RECOMMEND DISPOSAL PLAN

WASTE BASIN LIQUID ANALYSIS

		•
COMPONENT		COMPONENT ANALYSIS RANGE
		PARTS PER BILLION
ALDRIN		20 - 480
ISODRIN		<1 - 17
DIELDRIN		5 - 110
ENDRIN		5 - 42
DITHIANE .		<20 - 123
	. 7	PARTS PER MILLION
DIISOPROPYLMETHYLPHOSPHONATE		6 - 55
DIMETHYLMETHYLPHOSPHONATE	:	320 - 3.750
P-CHLOROPHENYLMETHYLSULFOXIDE		4 - 10
P-CHLOROPHENYLMETHYLSULFONE		19 - 76
CHLORIDE		47,500 - 57,500
SULFATE		20,500 - 32,500
COPPER		709 - 760
IRON		5 - 13
NITROGEN		112 - 150
ORTHOPHOSPHATE		99 - 131
HARDNESS (AS CACO3)		2,090 - 2,850
TOTAL SOLIDS	. *.	140,000 - 174,000
FLUORIDE		110 - 117
TOTAL PHOSPHORUS		2,060 - 2,170
ARSENIC		1.0 - 1.3
MAGNESIUM		35.6 - 41.2
MERCURY	· (a)	0.026 - 1.53
CYANIDE		1.44 - 1.53
COD	·	24,400 - 26,000
тос		20,200 - 22,800

WASTE BASIN SEDIMENT ANALYSIS

PARTS PER MILLION	
•	
ALDRIN 16 - 10,700	
ISODRIN 2 - 870	
DIELDRIN 4 - 3,600	6
ENDRIN 2 - 1,100	
	•
DDT <2 - 198	
1 10	
DIISOPROPYLMETHYLPHOSPHONATE 1 - 10	
DIMETHYLMETHYLPHOSPHONATE	
P-CHLOROPHENYLMETHYLSULFONE 14 - 290	
ama an ana	
COPPER 230 - 21,000	
IRON 190 - 11,000	
TOTAL PHOSPHATE <1 - 34,300	•

PROCESS EVALUATION

I. ORGANICS:

- A. STORAGE
- B. INCINERATION
- C. WET OXIDATION
- D. EVAPORATION
- E. REVERSE OSMOSIS
- F. BIOLOGICAL TREATMENT
- G. CHEMICAL DEGRADATION
- H. OZONE
- I. ADSORPTION
- J. ELECTRO-OXIDATION
- K. RADOX PROCESS

II. INORGANIC SALTS:

- A. EVAPORATION
- B. FREEZE CONCENTRATION
- C. CRYSTALLIZATION
- D. REVERSE OSMOSIS
- E. ELECTRODIALYSIS
- F. IONIC EXTRACTION
- G. IONIC ADSORPTION
- H. CHEMICAL FIXATION

III. HEAVY METALS:

- A. CHEMICAL PRECIPITATION
- B. CARBON ADSORPTION
- C. ION EXCHANGE
- D. REVERSE OSMOSIS
- E. CEMENTATION

LIQUID TREATMENT MATRIX (LITERATURE REVIEW)

		Ion	Electrolytic			let"				בסייסוסים	
Component	Carbon Exchan	Exchange	Technology*	R 0	Ozone	WAO	Lime	Kadox	Attmina	DIOIORICAL	
	Д			Д	×	×		Д-		×	
Aldin	, F			ρ.	<u>C</u>	d		ď		Д	
Isodrin	٠.			٠ ,	· >	· >		ρ		<u>d</u>	
Dieldrin	ы			۱ ۲۰	< :	خ د		, F		<u>.</u> ه	
Endrin	×		**************************************	٩	×	۲٠		ا بد		4 E	
Dithiane	Д			Д	വ	ы		٦,		Σų β	
Diasopropylmethylphosphonate	×			Ď.	×	*). D4 E	
Dimethylmethylphsophonate	ል	*		Ď,	ρ _ι	×		D4 1	•	λı t	
p-chlorophenylmethylsulfoxide	×			Ы	×	<u>с</u>		<u>م</u>	:	ן אב	
p-chlorophenylmethylsulfone	×			<u>Д</u>	×	Δ.		P4		ب د	
Chloride	×	×	×	×				·			
Sulfate							. ,, ,	•			
Copper	•	×	×			· ;	< ;				
Iron		•	×		×	×	≺ ,			. >	
Nitrogen		×			67		>	÷ .	, :	< ≻	
Orthophosphate	;			× .		•	< >	4	>	;	
Fluoride		×				, <i>*</i>	۲.	•	<		
Total Phosphorus				•	• • •		>		19		.:
Arsenic	×	•		· .,			خ				
Magnesium		•			, >			>		٠	
Cyanide		×	×		Κ.	>		₹		. · ×	
COD		*				≺ ;				; >	
TOC					×	×				٠ •	
Mercury	×	×	×			•			-		
*Dilution required to treat Basin F materia	sin F 1	naterial.			KEY	×.	■ Lite	rature	indicates	s process can	d.
		•		·	, ;	<u>Α</u>	= Autl	or feetreat.	ls process	s probably	

BASIN F INDUSTRIAL SURVEY

GENERAL TYPES OF INDUSTRIAL EXPERIENCE

- I. LANDFILL DISPOSAL
 - A. BKK (WILMINGTON, CALIFORNIA)
 - B. IT ENVIRONMENTAL CORPORATION (MARTINEZ, CALIFORNIA)
- II. GENERAL DISPOSAL
 - A. CHEM-TROL (MODEL CITY, NEW YORK)
 - B. DYNALECTRON CORPORATION (BETHESDA, MARYLAND)
 - C. ECOLOGY PRODUCTS (SANTA BARBARA, CALIFORNIA)
 - D. NEWCO (NIAGARA FALLS, NEW YORK)
 - E. WES-CON (TWIN FALLS, IDAHO)
- III. ENGINEERING CONSULTANTS
 - A. BATTELLE (columbus, ohio)
 - B. CATALYTIC (PHILADELPHIA, PENNSYLVANIA)
 - C. MATRIX ENGINEERS (PITTSBURGH, PENNSYLVANIA)
 - D. MB ASSOCIATES (SAN RAMON, CALIFORNIA)
 - E. STEARNS-ROGER (DENVER, COLORADO)
 - F. VERSAR, INC. (SPRINGFIELD, VIRGINIA)
 - G. ZIMPRO (ROTHSCHILD, WISCONSIN)

BASIN F INDUSTRIAL SURVEY .

TYPES OF PROCESSES REGARDED AS HAVING POTENTIAL BY INDUSTRY

COMPANY	CONCENTRATION OR EVAPORATION	WET AIR OXIDATION	CARBON ADSORPTION	SOLVENT EXTRACTION	BIODEGRADATION	ION EXCHANGE	NEUTRALIZATION	METAL PRECIPITATION	RECOVERY TECHNOLOGIES	REJECTED RECOVERY	INCINERATION	PYROLYSIS	FIXATION	
BATELLE BKK CATALYTIC DYNALECTRON CORP. ECOLOGY PRODUCTS	X		×	X		XX		X	X	X	X X X	×	X X	
IT ENVIRONMENTAL CORP. MATRIX ENGINEERS MB ASSOCIATES NEWCO STEARNS-ROGER VERSAR, INC.	X X X X				X		x		. 5	X X	X X X X		X	
WES-CON ZIMPRO		X	x		i.			X		,	X		X	,
TOTAL OUT OF 13	7	1	3	1	1	2	1	2	2	4	10	2	6	
PERCENTAGE (%)	54	8	23	8	8	15	8	15	15	31	77	15	46	5

BASIN F RECOVERY VALUE

<u>COMPONENT</u> .	MARKET PRICE		VALUE
ALUMINUM (BASIN LIQUID)	\$ 0.53/LB	. \$	316
CADMIUM (BASIN LIQUID)	\$ 2.25/LB	. \$	128,311
CHROMIUM OXIDE (BASIN LIQUID)	\$ 0.96/LB	\$	162
COBALT OXIDE (BASIN LIQUID)	\$ 5.93/LB	\$	6,243
COPPER (BASIN LIQUID)	\$ 0.60/LB	\$	
COPPER (BASIN SEDIMENT)	\$ 0.60/LB	\$1	,073,400
IRON OXIDE (BASIN LIQUID)	\$ 0.36/LB	\$	3,771
LEAD DIOXIDE (BASIN LIQUID)	\$ 0.66/LB	\$	43
MAGNESIUM (BASIN LIQUID)	\$ 0.99/LB	\$	51,080
MANGANESE DIOXIDE (BASIN LIQUID)	\$ 0.08/LB	\$	128
MERCURY (BASIN LIQUID)	\$ 3.97/LB	\$	146
NICKEL (BASIN LIQUID)	\$ 2.11/LB	\$	16,044
SILVER (BASIN LIQUID)	\$70.25/LB	\$	5,844
ZINC (BASIN LIQUID)	\$ 0.29/LB	\$	512
	TOTAL	\$1,8	381,527

ENCAP. ENHANCED EVAP. OF BASIN

ENHANCED EVAP.

OF BASIN

SCENARIO #6

AQUIFER DEWATERING

ENHANCED EVAPORATION OF BASIN

Aul report-81336 R19

EVALUATION OF THE ROCKY MOUNTAIN ARSENAL INCINERATORS FOR USE IN BASIN F DISPOSAL SCENARIOS

BY

HERMAN F. HILDEBRANDT

OBJECTIVE

TO EVALUATE THE POSSIBILITY OF USING EXISTING ROCKY MOUNTAIN ARSENAL INCINERATORS IN THE DISPOSAL SCENARIOS DEVELOPED AS PART OF THE BASIN F DISPOSAL EVALUATION.

MATERIAL TO BE PROCESSED - DRY BASIS

SCENARIOS 1, 4, 5

306,800 TONS

SCENARIO 6

45,350 TONS

OPERATING PERIOD - 4 YEARS

REQUIRED FEED RATES - DRY BASIS

SCENARIOS 1, 4, 5

10,65 TONS/HR

SCENARIO 6

1.6 TONS/HR

INCINERATOR SYSTEM CRITERIA

- 1. PRIMARY COMBUSTION AT 1500°F FOR 0.5 SEC.
- 2. ONE HOUR RESIDENCE TIME FOR SOLIDS.
- AFTERBURNER TEMPERATURE OF 2000°F WITH A
 2 SECOND RESIDENCE TIME.
- 4. MIXING OF SOLIDS DURING INCINERATION.
- 5. CONTINUOUS THROUGHPUT OF MATERIAL.

RMA INCINERATORS VS. BASIN F DISPOSAL INCINERATION REQUIREMENTS

	•				·		
	1500 ^o F PRIMARY COMBUSTION TEMPERATURE	ONE HOUR SOLIDS RESIDENCE TIME	DESIGNED FOR CONTINUOUS THROUGHPUT	SOLIDS MIXING DURING INCINERATION	EQUIPPED WITH AFTERBURNER	2000°F AFTERBURNER	ADEQUATE CAPACITY FOR 4 YEAR SCENARIOS
M34 FACILITY	· · · · · · · · · · · · · · · · · · ·		·	·		·	
DEACT FURNACE	X	X	X	. X			,
DECON FURNACE NORTH	X		X				,
DECON FURNACE SOUTH	X		Χ				
HONEST JOHN							
DEACT FURNACE	X	X(?)	X	X	X		
DECON FURNACE	X	Х					
MUSTARD FACILITY							
BULK AGENT FURNACE	X						
TC FURNACE EAST	X	Х			Х	,	
TC FURNACE WEST	X	X	,				
	₹ F	I	I	1	I	1	l

TIME TO INCINERATE, YEARS USING BOTH RMA ROTARY KILN INCINERATORS

SCENARIO	1, 4, OR 5	1. 6
TOTAL TONS OF FEED (WET BASIS)		6
	561,000 ¹	252,000
TOTAL TONS OF FEED (DRY BASIS)	306,800	45,350
MOISTURE CONTENT OF WET FEED, %	45	82
YEARS TO INCINERATE (AFTERBURNER RESIDENCE LIMITING)	22 ² (27)	17
YEARS TO INCINERATE (SOLIDS RESIDENCE LIMITING)3	27	4

¹ ASSUMES 75% OF THE BASIN F WATER HAS BEEN EVAPORATED.

²FOR THIS FEED MATERIAL THE THROUGHPUT IS LIMITED BY THE SOLIDS RESIDENCE TIME REQUIREMENT.

³ASSUMES MOISTURE CONTENT OF FEED HAS BEEN REDUCED TO 20% OR LESS BEFORE INCINERATION.

CONCLUSIONS

- 1. THE RMA INCINERATION CAPACITY IS INADEQUATE TO MEET THE INCINERATION REQUIREMENTS OF DISPOSAL SCENARIOS 1, 4, AND 5.
- 2. ONLY THE TWO ROTARY KILN DEACTIVATION FURNACES ARE SUITABLE FOR INCINERATION OF BASIN F SLUDGE.
- 3. THE HONEST JOHN INCINERATION SYSTEM WOULD BE AN EXCELLENT PILOT FACILITY FOR STUDYING INCINERATION OF BASIN F SLUDGE.
- 4. IF COMMERCIAL INCINERATION EQUIPMENT IS PURCHASED FOR BASIN F SLUDGE DISPOSAL, A ROTARY KILN TYPE SHOULD BE SELECTED.
- 5. THE TWO RMA ROTARY KILN FURNACES COULD INCINERATE THE SOLIDS OF SCENARIO 6 IN APPROXIMATELY 4 YEARS.

RECOMMENDATIONS

- 1. IT IS RECOMMENDED THAT BASIN F SLUDGE INCINERATION PARA-METERS BE DETERMINED USING THE HONEST JOHN FACILITY FOR PILOT STUDIES.
- 2. A ROTARY KILN INCINERATOR SHOULD BE USED FOR THE INCINERATION OF BASIN F SLUDGE IN DISPOSAL SCENARIOS 1, 4, AND 5.
- 3. IF SCENARIO 6 IS SELECTED, THE POSSIBILITY OF INCINERATING THE BASIN F LIQUID WITHOUT PRETREATMENT IN A VERTICALLY FIRED LIQUID WASTE INCINERATOR SHOULD BE TESTED.
- 4. WHEN THE PILOT STUDIES IN RECOMMENDATION 1 HAVE BEEN CONDUCTED, THE DESIRABILITY OF USING THE TWO RMA ROTARY KILN FURNACES FOR THE SCENARIO 6 INCINERATION TASK SHOULD BE DETERMINED.

STATUTES REVIEWED

- O FEDERAL LAWS
- CLEAN AIR ACT
- FEDERAL WATER POLLUTION CONTROL ACT
- FEDERAL DRINKING WATER ACT
- RESOURCE CONSERVATION AND RECOVERY ACT
- D STATE OF COLORADO LAWS
- COLORADO AIR POLLUTION CONTROL ACT OF 1970
- COLORADO WATER QUALITY CONTROL ACT
- COLORADO SOLID WASTE DISPOSAL SITES AND FACILI

POTENTIAL ENVIRONMENTAL PROBLEMS

- EMISSION OF TOXIC OR HAZARDOUS SUBSTANCES TO THE ATMOSPHERE
- ADVERSE HEALTH EFFECTS
- o CONTAMINATION OF SURFACE OR GROUNDWATER
- DRINKING WATER
- · IRRIGATION WATER

INFORMATION REQUIREMENTS FOR PERMITS

- O QUALITY AND QUANTITY OF EMISSIONS AND DISCHARGES
- POLLUTANTS EMITTED
- POLLUTANT CONCENTRATION
 - FLOW RATES
- ENGINEERING SPECIFICATIONS
- WASTE STREAM RATES
- OPERATING DESIGN CAPACITY
 - · TREATMENT REQUIREMENTS
- EMISSION CONTROL EQUIPMENT SPECIFICATI
- CHEMICAL AND PHYSICAL PROPERTIES
- VOLATILITY
- REACTIVITY
- TOXICITY
- PERSISTANCE
- COMBUSTIBILITY
- HEALTH EFFECTS
- THRESHOLD LIMIT VALUES

EXAMPLES OF OTHER INFORMATION REQUIREMENTS

DESIGN ENGINEERING

- QUALITY AND QUANTITY OF EMISSIONS
 - CHEMICAL AND PHYSICAL PROPERTIES
- CORROSIVITY AND COMPATIBILITY OF CHEMICAL SUBSTANCES
 - PROCESS METHODS
- COMPATIBILITY OF CHEMICAL SUBSTANCES WITH MATERIALS OF CONSTRUC
 - PROCESS EFFICIENCIES

BASIN F DISPOSAL EVALUATION SUMMARY OF SCENARIO INFORMATION (Basis: FY 78 Constant Dollars)

A. MINIMUM LEAKAGE	SIX INCHES BELOW LINER:	
<u>SCENARIO</u>	ESTIMATED TIME (YEARS)	ESTIMATED COST (\$MILLIONS)
#1 CONC INCIN. #2	7	36.9
W.A.O.*	7	35.6
#3 TRANSPORTATION #4	5	70.9
EVAP ENCAP.	9	30.1
#5 EVAP LANDFILL	9	20.6
#6 CONTAINMENT - EVAP. FILL-IN	- 10	12.6
B. LEAKAGE SIX FEET	BELOW LINER:	
SCENARIO	ESTIMATED TIME (YEARS)	ESTIMATED COST (\$MILLIONS)
#1 CONC INCIN.	14	87.7
#2 W.A.O.*	14	82.7
#3 TRANSPORTATION	9	125.9
#4 EVAP ENCAP.	14	76.7
#5 EVAP LANDFILL	14	48.4
#6 CONTAINMENT - EVAP. FILL-IN	- 10	12.6

*WET-AIR-OXIDATION

TABLE C

BASIN F DISPOSAL EVALUATION SUMMARY OF SCENARIO INFORMATION*

(Basis: Inflated Dollars Over Project Years)

A. MINIMUM LEAKAGE (SIX INCHES BELOW LINER):

SCENARIO #1	ESTIMATED TIME (Years)	ESTIMATED COSTS (\$ Millions)
Conc Incin Encap		
Landfill #2	7	45.7
W.A.O.** - Encap Landfill	7	47.0
#3 Transportation		43.8
#4	5	84.8
Evap Encap Landfill #5	9	42.1
Evap Landfill #6	9	28.5
Containment - Evap Fill-In	10	16.7
B. LEAKAGE SIX FEET BELOW LINI	<u>R</u> :	,
SCENARIO ES	TIMATED TIME (Years)	ESTIMATED COSTS (\$ Millions)
Conc Incin Encap Landfill	•	•
#2	14	128.9
W.A.O.** - Encap Landfil #3	14	116.0
Transportation #4	9	169.2
Evap Encap Landfill #5	14	120.0
Evap Landfill #6	14	72.4
Containment - Evap Fill-In	10	16.8

^{*}Includes time and cost for process development work, process construction, process operation and shutdown and labor.

^{**}Wet-Air-Oxidation

BASIN F DISPOSAL EVALUATION

LEAKAGE SIX FEET BELOW LINER

(Basis: FY 78 Constant Dollars)

<u>SCENARIO</u>	ESTIMATED TIME(YEARS)	ESTIMATED COSTS (\$ millions)
#1 CONC INCIN.	14	56.8 - 87.7
#2 W.A.O.	14	55.0 - 82.7
#3 TRANSPORTATION	9	125.9
#4 EVAP ENCAP.	14	51.5 - 76.7
#5 EVAP LANDFILL	14	41.7 - 48.4
#6 CONTAINMENT - EVAP FILL-IN	10	8.8 - 12.6

CONTAMINANT ISOLATION SCENARIO

A. ADVANTAGES:

- LOWER COSTS COMPARED TO THE DISPOSAL OPTIONS DISCUSSED BY THE BASIN F DISPOSAL EVALUATION STUDY.
- 2. AMOUNT OF SOIL CONTAMINATION UNDER BASIN F HAS NO IMPACT UPON COSTS.
- 3. BASIN F CONTAMINANTS WILL BE CONTAINED AND REMAIN IMMOBILE PROVIDING WATER DOES NOT RE-ENTER THE ISOLATED SYSTEM.
- 4. MATERIAL HANDLING OF BASIN F WASTE IS AVOIDED.

B. DISADVANTAGES:

- 1. THE HAZARDOUS ORGANIC WASTES ARE NOT DESTROYED.
- 2. THE POTENTIAL OF FUTURE MIGRATION EXISTS SINCE THE INDEFINITE LIFE OF THE CLAY BARRIER CANNOT BE GUARANTEED.

BASIN F DISPOSAL EVALUATION

CONCLUSIONS

- 1. INDUSTRY IS INTERESTED IN DISPOSAL OF BASIN F.
- 2. NECESSARY TECHNOLOGY AND CAPABILITY EXISTS.
- 3. RECOVERY IS NOT ECONOMICAL.
- 4. AMOUNT OF CONTAMINATED SOIL UNDER BASIN LINER HAS A SIGNIFICANT IMPACT ON DISPOSAL COSTS (WITH EXCEPTION OF SCENARIO #6).
- 5. SCENARIOS #1 5 DISPOSAL OPTIONS ARE NOT ECONOMICALLY JUSTIFIABLE.
- 6. SCENARIO #6 IS MOST COST EFFECTIVE CONTROL OPTION IDENTIFIED.

BASIN F DISPOSAL EVALUATION

RECOMMENDATIONS

- BASIN F DISPOSAL OPTTONS SHOULD NOT BE CONSIDERED FURTHER.
- 2. "CONTAMINANT ISOLATION SCENARIO" (SCENARIO #6) SHOULD BE IMPLEMENTED AT BASIN F, ROCKY MOUNTAIN ARSENAL.
- 3. ASSESSMENT OF ENHANCED EVAPORATION TECHNOLOGY.
- 4. ASSESSMENT OF INCINERATION ASPECTS TO CONCENTRATE LIQUID.
- 5. EVALUATE NEED FOR TREATMENT OF GROUNDWATER FROM DEWATERING WELLS