ENGR 102 INTRO TO ENGINEERING II

Week 3

Discussion- Why do engineers need Guard Rails?

- Over time Engineers have adopted methods of analysis for complex systems
- These methods attempt to manage the risk of making bad designs.
- These "Guard Rails" can be thought of as "Best Practices" for how to design complex things.

Guard Rails

- Going into great detail on all the various codes and standards out there
 is beyond the scope of this course.
- I am going to mention a few of the bigger ones to paint a landscape of controls that affect what engineers do on a daily basis.
- Top Tier Legal codes
 - Federal codes for products (FMVSS for automobiles, FAA Part 25 for airliners, Mil-Stds for military equipment) as examples
 - State by State Professional licensure rules. building codes, Boiler codes.

Guard Rails

- Going into great detail on all the various codes and standards out there
 is beyond the scope of this course.
- I am going to mention a few of the bigger ones to paint a landscape of controls that affect what engineers do on a daily basis.
- Top Tier Legal codes and regulations with the force of law.
 - Federal codes for products (FMVSS for automobiles, FAA Part 25 for airliners, Mil-Stds for military equipment) as examples
 - State by State Professional licensure rules. building codes, boiler safety codes. https://reason.com/2019/01/02/judge-confirms-that-oregon-engineer-has/
- Second tier Industry regulations
 - ISO 9002, AS9100, QS9000, Business and Quality standards
 - ASME, ASQ, SME, ASME industry standards,

Guard Rails

- Going into great detail on all the various codes and standards out there
 is beyond the scope of this course.
- I am going to mention a few of the bigger ones to paint a landscape of controls that affect what engineers do on a daily basis.
- Top Tier Legal codes and regulations with the force of law.
 - Federal codes for products (FMVSS for automobiles, FAA Part 25 for airliners, Mil-Stds for military equipment) as examples
 - State by State Professional licensure rules. building codes, boiler safety codes. https://reason.com/2019/01/02/judge-confirms-that-oregon-engineer-has/
- Second tier Industry regulations
 - ISO 9002, AS9100, QS9000, Business and Quality standards
 - ASME, ASQ, SME, ASME industry standards,
- Third tier Internal Company standards

Design Engineering Best Practices

- In recent years, many best practices have been incorporated in company engineering standards. In fact many companies will stipulate in purchasing agreements that certain best practices be used by subcontractors.
- Examples are many including as just a small subset:
 - Design for Manufacturability (DfM)
 - Design for Assembly (DfA)
 - Design for Maintainability (DfM)
 - Design for Disposal (DfD)
- One important technique used extensively in automotive and aerospace is Design Failure Modes and Effects Analysis

- Design Failure Modes and Effects Analysis (DFMEA)
 - A systematic format to evaluate every design decision as to the risk of a mistake being made in the design process and what the potential consequences of that mistake are
 - Typically done on a large spreadsheet
 - Performed by the engineers during the design process
 - Assumes an almost perfect world where any design is turned into a product manufactured perfectly; the only errors occur when the designer makes a mistake
- Failure Modes and Effects Analysis
 - Same method except assumes a perfect design and all errors occur in the manufacturing process selection and control

CENTRAL OREGON community college

DFMEA / FMEA

Product Number: PT34325-4053 Market: Japan							Team: Alex Drinal, Peter Loombard, Katie Samdras, Lin Woodlord											
Product Name/Description: Ball Point Pen							Design Engineer Leader: Lin Woodlord				Document Number: DF325-12			Orginal Date: Feb 10, 2019				
Model: HandFree-P6 Year: 2019						Approved by: Mike Handson				Revis	sion No.: 002	Revision Date: May 14, 2019						
					_								Responsibili	Action Results				
Item / Function	Requirements	Potential Failure Mode	Potential Effect(s) of Failure	Severity	Classification	Potential Causes(s) of Failure	Current Design Controls Prevention	Occurrence	Current Design Controls Detection	Detection	RPN	Recommended Action(s)	ty & Target Completion Date	Actions Taken & Effective Date	Severity	Occurrence	Detection	RPN
disperses ink onto paper smoothly Tip Ball Holder	Delivery proper ink amount onto paper	Not enough ink	Pen skip or Required heavy pressure while writing	7	A	Ball diameter is too big	Study tolerance of ball diameter and line weight and color	6	Writing test to detect if problem occurs	3	126							
						Narrow pen angle when writing	Study common range of writing angle	4		10	280	Writing Test with varying pen angles of the pen	Katie Nov, 24		7	3	2	42
						Not enough presure on the pen	Study the minimum presure of users and make sure ink can be dispnersed with minium presure	4	Writing test with minum presure on the paper	2	56							
		Too much ink	Globs or drip left behind the letters	7	A	Ball diameter is too small	Study tolerance of ball diameter and its effects to line weith and color	3	Writing test to detect if problem occurs	3	63							
						Pressure of user on the pen too much	Study user's pressure range	3	Writing test with high presure	3	63							
	The ball runs smoothly	Smoothly	Inconsistent line Skip or Glob left behind	8		Inproper selection of dimenson of the ball and ball socket	Study the tolerance of ball and ball socket and select the correct range	4	Writing test with miniumum presure on the paper	2	64							
						Improper selection of the ball roughness tolerance	Select surface roughness base on the standard	2	Check the prototype capability of ball surface	3	48							

CENTRAL OREGON community college

DFMEA / FMEA

Design Failure Modes and Effects Analysis (DFMEA)

Q

Failure Modes and Effects Analysis (FMEA, sometimes called Process FMEA)

DFMEA Experience

- Now it's your turn. We will break up into 3 teams of 5. Each of your teams will be responsible to create a Design FMEA for a product that your will be given.
- Assume a world that makes stuff is perfect and never makes mistakes. It always makes things the way you design them.
- Assume the only people who can screw up the design are the design engineers
- Dissect all the functions of the product you will be given and break it down into components and what they do.
- Review all the features and dimensions of each component and determine all the dimensions and specifications that you as a design engineering team have responsibility for and then assess the risks you may create by screwing up.