

Modality-Agnostic Structural Image Representation Learning for Deformable Multi-Modality Medical Image Registration

```
Tony C. W. Mok<sup>1,2*</sup> Zi Li<sup>1,2*</sup> Yunhao Bai<sup>1</sup> Jianpeng Zhang<sup>1,2,4</sup> Wei Liu<sup>1,2</sup> Yan-Jie Zhou<sup>1,2,4</sup> Ke Yan<sup>1,2</sup> Dakai Jin<sup>1</sup> Yu Shi<sup>3</sup> Xiaoli Yin<sup>3</sup> Le Lu<sup>1</sup> Ling Zhang<sup>1</sup>

<sup>1</sup> DAMO Academy, Alibaba Group

<sup>2</sup> Hupan Lab, 310023, Hangzhou, China

<sup>3</sup> Shengjing Hospital of China Medical University, China

<sup>4</sup> College of Computer Science and Technology, Zhejiang University, China

cwmokab@connect.ust.hk
```

Motivation

Image Registration

Modified from Source: Ahmad Hammoudeh & Stéphane Dupont. (2023). Deep Learning in Medical Image Registration: Introduction and Survey. Qeios.

- Align images of the same object (scene)
 - taken from different perspectives
 - at different times
 - in different conditions

Modified from Source: Ahmad Hammoudeh & Stéphane Dupont. (2023). Deep Learning in Medical Image Registration: Introduction and Survey. Qeios.

- But also transform different sets of data into one coordinate system
- Applications:
 - o Image Fusion
 - Stereo Vision
 - Object Tracking
 - Medical Image Analysis

Modified from Source: MathWorks. Image Registration. Automatic registration using feature matching. https://de.mathworks.com/discovery/image-registration.html

Modified from Source:

MathWorks. Image Registration. Interactively comparing feature-based, intensity-based, and nonrigid registration techniques using the Registration Estimator app. https://de.mathworks.com/discovery/image-registration.html [06/25/2024].

Medical Image Registration

- Diagnostic settings
 - Combining information from multiple imaging modalities
- Studying disease progression (Longitudinal studies)
 - Monitoring changes in size, shape, position or image intensity over time

Pietro Gori. (2018). Introduction to medical image registration. Lecture Slides. Télécom Paris Tech

- Surgical planning & Image guided interventions or radiotherapy
 - Relating pre-operative images and surgical plans to the physical reality of the patient
- Post-operative evaluation

BioMedIA Reading Group | Yinsong & Sebastian

- Relate preoperative and postoperative images after surgery
- Patient comparison or atlas construction
 - Relating one individual's anatomy to another or to a standardized atlas

Nico Klingler. Image Registration and Its Applications. viso.ai https://viso.ai/computer-vision/image-registration/ [/06/25/2024

Background

Medical Image Registration - Taxonomy

- Dimensionality
 - o 2D 2D, **3D 3D**, 2D 3D
- Transformation
 - Rigid, Affine, **Deformable**
- Modalities
 - o Mono-modal, multi-modal
- Naming Convention
 - Moving image, fixed image

- Subject
 - o **Intra-subject**, inter-subject, atlas
- Domain
 - Local, global
- Object
 - Whole-body, organ, ...

Registration is an alignment problem

Medical Image Registration - Definition

- Spatial Transform that maps points from one image to corresponding points in another image
- Matching two images so that corresponding coordinate points in the two images correspond to the same physical region of the scene being imaged
- Also referred to as:
 - image fusion
 - superimposition
 - matching
 - o merge

Dr. Ulas Bagci. (2017). Medical Image Computing. Lecture 15. Lecture Slides. UCF

Mono- vs Multi-Modality

Mono-modality:

- A series of same modality images (CT/CT, MR/MR, Mammogram pairs, ...)
- Images may be acquired weeks or months apart (or taken from different viewpoints)
- Aligning images in order to detect subtle changes in intensity or shape

Multi-modality:

 Complementary anatomic and functional information from multiple modalities can be obtained for the precise diagnosis and treatment

Transformations

- Rigid Registration
 - Preserves distances between every pair of points
 - Rotations and translations
 - No compensation for motion or patient position
- Affine
 - Preserve parallelism and lines but no constraints on the preservation of distances
 - o Rotations, translations, skew and scaling
- Deformable Registration
 - Free-form mapping (do not preserve the rigidity or affinity constraints)
 - Crucial when structures have changed position or shape between or during scans due to voluntary or physiological motion or imperfect scanning protocols

Similarity Criteria

- Alignment based on comparing pixel values
- Simple and effective for high similarities
- High processing complexity

- Robust to changes in lighting & intensities
- Depends on challenging edge detection

- Identifying & matching key points/landmarks
- Effective for reliable & distinctive landmarks
- Can be difficult in featureless or homogeneous regions

Feature Based

- Utilizes extracted, distinctive features (e.g edges)
- Robust to changes in scale, rotation, and lighting
- Can struggle with images lacking distinct features

Intensity Based

- Alignment based on similarity of intensity values
- Utilizes the entire image information
- Less effective when there are intensity differences

Information Theory (Mutual Information) Based

- Based on maximizing MI of statistical dependency between intensities
- Does not require images to have same intensities
- May require careful parameter tuning

Deep Learning Based

- Learn transformation directly from image pairs
- Learn complex transformations and handle distortions
- Large amount of data required + computationally heavy

Optical Flow

Estimates the motion of objects between consecutive frames or images by computing the apparent flow of intensity patterns

> Nico Klingler, Image Registration and Its Applications, viso.ai. https://viso.ai/computer-vision/image-registration/ [/06/25/2024]

Deep Learning Based - Registration

Supervised

- Input images are fed into NN
- NN produces registration field (RF)
- RF is applied to the moving image
- Ground truth registration field or resulting wrapped image are used for supervision

Unsupervised

- Inherently difficult for multi-modal registration
- Input images are fed into NN
- NN produces registration field (RF)
- RF is applied to the moving image
- Instead of relying on GT alignment,
 minimize cost function between fixed image
 Ahmad Hammouden & Stept Learning in Medica

Ahmad Hammoudeh & Stéphane Dupont. (2023). Deep Learning in Medical Image Registration: Introduction and Survey. Qeios.

Contribution

Contribution

- Analyze and expose the limitations of self-similarity-based feature descriptors and mutual information-based methods in multi-modality registration
- Propose a novel self-supervised structural image representation learning paradigm dedicated to learning expressive deep structural image representations (DSIRs) without the need for anatomical delineations or perfectly aligned training image pair for supervision.
- Introduce the **Deep Neighbour Self-similarity** (DNS), which can capture long-range and complex structural information from medical images addressing the ambiguity in classical feature descriptors and similarity metrics
- Propose a novel contrastive learning strategy with non-linear intensity transformation, maximizing the
 discriminability of the feature representation across anatomical positions with homogeneous and heterogeneous
 intensity distribution
- Reduces the multimodal registration problem to a monomodal one, in which existing well-established monomodal registration algorithms can be applied

Modality-Agnostic Structural Image Representation Learning for Deformable Multi-Modality Medical Image Registration

```
Tony C. W. Mok<sup>1,2*</sup> Zi Li<sup>1,2*</sup> Yunhao Bai<sup>1</sup> Jianpeng Zhang<sup>1,2,4</sup> Wei Liu<sup>1,2</sup> Yan-Jie Zhou<sup>1,2,4</sup> Ke Yan<sup>1,2</sup> Dakai Jin<sup>1</sup> Yu Shi<sup>3</sup> Xiaoli Yin<sup>3</sup> Le Lu<sup>1</sup> Ling Zhang<sup>1</sup>

DAMO Academy, Alibaba Group

Hupan Lab, 310023, Hangzhou, China

Shengjing Hospital of China Medical University, China

Cwmokab@connect.ust.hk
```

Method

Modality-Agnostic Deep Structural Representation Network

1. Feature Extraction

 A 4-level encoder-decoder structure with skip connection

 Take an input image and output a feature map with same size

2. Deep Neighbourhood Self-similarity (DNS)

$$\mathbf{S}(\boldsymbol{h}, x, y) = \exp\left(-\sum_{y' \in \mathcal{N}(x)} \frac{(\boldsymbol{h}(y) - \boldsymbol{h}(y'))^2}{\sigma^2}\right), y' \neq y, \quad \boldsymbol{h} \in \mathbb{R}^{C_h \times H \times W \times D}$$

Compute 12 pair-wise distances between different neighbour location

Output: 5D DNS feature map $m{h}^s \in \mathbb{R}^{C_h \times H \times W \times D \times 24}$

3. Feature Squeezing

Anatomy-aware Contrastive Learning

Multimodal image registration using DNS

Experiments

Liver Multiphase CT

Method	Metric	$Pre\text{-contrast} \leftarrow Venous \& Arterial$				Arterial ← Venous & Pre-contrast					
		Tumour		Organ		$ J_{\phi} < 0 \downarrow$	Tumour		Organ		$\% J_{\phi} < 0 \downarrow$
		DSC ↑	HD95 ↓	DSC ↑	HD95 ↓	70 0φ (0 ψ	DSC↑	HD95 ↓	DSC ↑	HD95 ↓	70 0φ <0 ψ
Initial	=	75.51 ± 20.64	4.12 ± 4.00	88.03 ± 8.77	3.80 ± 3.31	-	77.84 ± 19.86	3.61 ± 3.19	90.15 ± 7.41	3.15 ± 2.68	=
ANTs	MI	76.52 ± 20.16	3.97 ± 3.15	87.40 ± 9.75	3.88 ± 2.91	0.00 ± 0.00	80.18 ± 18.47	3.42 ± 2.73	90.07 ± 8.04	3.22 ± 2.80	0.00 ± 0.00
NiftyReg	MI	77.10 ± 17.00	3.54 ± 2.54	90.87 ± 6.57	2.98 ± 2.10	0.35 ± 1.20	79.22 ± 16.54	3.18 ± 2.07	92.39 ± 5.61	2.53 ± 1.79	0.29 ± 1.18
DEEDs	MIND	79.65 ± 15.30	3.14 ± 1.98	93.90 ± 3.47	2.09 ± 1.50	0.23 ± 0.72	80.57 ± 15.23	3.42 ± 2.06	94.80 ± 2.75	1.84 ± 1.04	0.12 ± 0.13
VM	NMI	75.78 ± 17.35	3.62 ± 2.69	91.70 ± 4.43	2.81 ± 1.89	0.00 ± 0.00	76.62 ± 18.19	3.23 ± 2.30	92.69 ± 3.81	2.45 ± 1.63	0.00 ± 0.00
VM	MIND	75.16 ± 17.07	3.94 ± 5.51	91.70 ± 4.92	2.77 ± 2.05	0.00 ± 0.00	75.18 ± 17.71	3.63 ± 5.11	92.15 ± 4.39	2.55 ± 1.65	0.00 ± 0.00
LapIRN	NMI	78.80 ± 15.37	3.33 ± 2.80	93.53 ± 3.75	2.35 ± 1.52	0.01 ± 0.02	80.17 ± 15.38	2.87 ± 2.00	94.48 ± 3.72	1.97 ± 1.53	0.02 ± 0.16
LapIRN	MIND	77.50 ± 16.71	3.96 ± 3.28	93.32 ± 4.41	2.46 ± 1.81	0.00 ± 0.01	79.49 ± 15.00	3.19 ± 2.44	94.29 ± 4.19	2.07 ± 1.77	0.01 ± 0.04
LapIRN (ours)	DNS	79.72 ± 14.44	3.06 ± 2.23	94.07 ± 3.36	2.08 ± 1.45	0.00 ± 0.01	80.66 ± 14.56	2.71 ± 1.85	94.73 ± 3.09	1.84 ± 1.25	$\boldsymbol{0.02 \pm 0.18}$
IO	MIND	76.27 ± 16.44	3.66 ± 2.74	92.54 ± 3.41	2.63 ± 1.32	0.08 ± 0.37	76.91 ± 16.14	3.54 ± 2.23	92.74 ± 3.45	2.70 ± 1.31	0.12 ± 0.51
IO (ours)	DNS	80.43 ± 13.72	2.94 ± 2.23	94.26 ± 3.32	2.10 ± 1.50	0.03 ± 0.20	81.07 ± 13.83	2.74 ± 1.80	94.89 ± 2.92	1.85 ± 1.22	0.06 ± 0.35

Liver Multiphase CT

Method	Metric	Venous ← Arterial & Pre-contrast					Average Score across Three Tasks				
		Tumour		Organ		$% J_{\phi} < 0 \downarrow$	The rage seems allows Times Tusks				
		DSC ↑	HD95 ↓	DSC ↑	HD95 ↓	70 0φ <0 φ	DSC ↑	HD95 ↓	$% J_{\phi} < 0 \downarrow$	T_{Test}	# Param
Initial	-	78.10 ± 19.85	3.59 ± 3.07	88.96 ± 7.49	3.50 ± 2.41	-	83.10 ± 12.60	3.63 ± 2.97	-	_	15-0
ANTs	MI	81.14 ± 17.14	3.37 ± 2.69	89.20 ± 8.28	3.52 ± 2.46	0.00 ± 0.00	84.09 ± 12.84	3.56 ± 2.60	0.00 ± 0.00	250.05 ± 367.42*	-
NiftyReg	MI	78.53 ± 17.05	3.32 ± 2.28	91.19 ± 6.80	2.90 ± 2.06	0.32 ± 1.19	84.88 ± 9.92	3.07 ± 1.98	0.32 ± 1.19	$79.17 \pm 30.77*$	_
DEEDs	MIND	81.28 ± 14.65	3.32 ± 1.87	94.58 ± 2.44	2.11 ± 1.14	0.11 ± 0.14	87.46 ± 8.97	2.65 ± 1.72	0.15 ± 0.43	$47.92 \pm 12.77*$	-
VM	NMI	77.20 ± 17.33	3.28 ± 2.09	92.65 ± 3.31	2.60 ± 1.43	0.00 ± 0.00	84.44 ± 9.47	3.00 ± 1.83	0.00 ± 0.00	0.14 ± 0.01	1.14M
VM	MIND	75.94 ± 17.18	3.34 ± 1.54	92.25 ± 4.07	2.63 ± 1.54	0.00 ± 0.00	83.73 ± 9.33	3.14 ± 2.57	0.00 ± 0.00	0.16 ± 0.01	1.14M
LapIRN	NMI	81.37 ± 14.05	2.86 ± 2.12	94.22 ± 3.46	2.24 ± 1.57	0.00 ± 0.00	87.10 ± 8.89	2.61 ± 1.91	0.00 ± 0.01	0.19 ± 0.01	1.59M
LapIRN	MIND	81.03 ± 14.56	3.09 ± 2.61	93.99 ± 3.98	2.33 ± 1.82	0.00 ± 0.00	86.61 ± 9.81	2.85 ± 2.29	0.00 ± 0.01	0.18 ± 0.01	1.59M
LapIRN (ours)	DNS	81.62 ± 13.42	2.81 ± 1.99	94.37 ± 3.03	2.08 ± 1.41	0.00 ± 0.00	87.53 ± 8.65	2.43 ± 1.70	0.01 ± 0.01	0.18 ± 0.01	1.59M
IO	MIND	77.44 ± 16.26	3.48 ± 2.37	93.02 ± 3.30	2.56 ± 1.42	0.01 ± 0.02	84.82 ± 9.83	3.10 ± 1.90	0.07 ± 0.30	4.75 ± 0.44	-
IO (ours)	DNS	81.51 ± 13.67	2.79 ± 1.94	94.53 ± 3.01	2.11 ± 1.48	0.00 ± 0.01	87.78 ± 8.41	2.42 ± 1.70	0.03 ± 0.19	5.05 ± 0.47	=

Abdomen MR-CT & Brain MR T1w-T2w

Method	Metric	Abdomer	$n MR \leftarrow CT$	$Brain\ MR\ T1w \leftrightarrow T2w$			
Welloa	Medite	DSC ↑	T_{Test}	$DSC_{T1\leftarrow T2} \uparrow$	$DSC_{T2\leftarrow T1} \uparrow$	T_{Test}	
Initial	<u>127</u> 1	37.32 ± 17.23	2 <u>—</u> 2	53.90 ± 0.70	53.90 ± 0.70	_	
DEEDs	MIND	83.53 ± 8.58	165.21 ± 25.14*	61.47 ± 0.96	60.70 ± 0.83	14.45 ± 0.54	
ANTs	MI	39.43 ± 17.67	$38.54 \pm 3.51*$	61.00 ± 1.00	52.80 ± 1.10	18.46 ± 1.33	
NiftyReg	MI	48.60 ± 31.60	$37.88 \pm 10.95*$	63.90 ± 1.10	61.90 ± 0.70	34.75 ± 3.04	
IO (ours)	DNS	85.61 ± 5.95	4.52 ± 0.50	62.66 ± 0.73	61.91 ± 0.66	5.84 ± 0.54	

Ablation Studies

Methods	DSC ↑	HD95 ↓
Initial	81.77 ± 16.96	3.96 ± 3.66
Backbone network feature (Random initialization)	75.38 ± 21.03	5.90 ± 5.46
+Deep Neighbourhood Self-similarity	$86.50 \pm 13.43 (+11.12)$	2.79 ± 2.30 (-3.11)
+Nonlinear Intensity & Contrastive Learning	$87.13 \pm 12.06 (+0.63)$	$2.57 \pm 1.95 (-0.22)$
+Gaussian Smoothing	$87.35 \pm 12.14 (+0.22)$	$2.52 \pm 1.95 (\text{-0.05})$

Conclusion

• Proposes a deep structural image representation learning method for multi-modal medical image registration

- Leverages deep neighbourhood self-similarity to learn highly discriminative, contrast invariance structural representations
- Anatomy-aware contrastive learning to further enhance the expressiveness and discriminability of the structural representation, reducing the ambiguity in matching anatomical correspondence

Thank you for your attention!

