Game Theory

- 1. Introduction
 - 1.1. Rational Agents, History, Course Outline

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller

Summer semester 2020

Rational Agents

Consider rationally acting agents:

Rational agents maximize their (expected) utility:

- decision theory
- Markov decision processes (MDPs)
- reinforcement learning
- Al planning
 -

Rational Agents in Game Theory

Situation in game theory:

Rational Agents in Game Theory

Multiple rational agents interacting in strategic decision situations

- resulting utility depends on what other agents do
- all agents know that other agents are rational (this is even common knowledge)

Interesting questions:

- how to model such strategic situations
- how to solve such strategic situations
- how to design games that have desired solutions

Game theory is the study and analysis of such strategic decision situations.

History of Game Theory

- originally part of mathematics and theoretical economics
- today ubiquitous
- here: artificial intelligence and computer science perspective
 - rationality assumptions ("homo economicus") more warranted for artificial agents than for humans
 - interesting algorithmic questions

Rationality

Rationality:

- General assumption: All players want to maximize their own utility and nothing else.
- Contrasts:
 - Altruistic agents want to maximize utility of other agents
 - Cooperative agents want to maximize group utility
 - Byzantine agents want to minimize utility of other agents

Limitations:

- agents may not foresee all consequences of their decisions (bounded rationality)
- agents may not know all relevant information about the game structure (incomplete information)
- agents may not know all relevant information about the current state of the game (imperfect information)

Course Outline

- strategic games
- extensive games (with perfect and imperfect information)
- repeated games
- social choice theory
- mechanism design

- 1. Introduction
 - 1.2. Application Examples

UNI FREIBURG

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller

Summer semester 2020

Two-player board and card games:

- very special
- whatever is good for one player is bad for the other (strictly competitive games)
- recent visible success in heads-up no-limit hold'em Poker:
 Libratus (Brown and Sandholm, 2018)

Successful extension to multi-player variant:

■ Pluribus (Brown and Sandholm, 2019)

Auctions: think of eBay, Google AdWords, ...

- setting: one object should be allocated to one out of a number of bidders
- questions:
 - what bidding protocol to use?
 - who is the winner?
 - what does the winning bidder have to pay?

Congestion games: road network with travel costs dependent on the number of agents choosing a particular road

Question: Assume that there are n = 100 agents. Which routes will they choose?

Average travel cost per agent: ?

Congestion games: road network with travel costs dependent on the number of agents choosing a particular road

Question: Assume that there are n = 100 agents. Which routes will they choose?

Average travel cost per agent: 1.6

Congestion games: road network with travel costs dependent on the number of agents choosing a particular road

Question: Assume that there are n = 100 agents. Which routes will they choose now (with free new road)?

Average travel cost per agent: ?

Congestion games: road network with travel costs dependent on the number of agents choosing a particular road

Question: Assume that there are n = 100 agents. Which routes will they choose now (with free new road)?

Average travel cost per agent: 2 > 1.6

Security games:

- setting: a facility (e.g., an airport) has to be guarded to avoid attacks
- possible methods:
 - visit all critical places
 - choose the places probabilistically
 - find a probability distribution for the routing that minimizes expected damage even under the assumption that the attacker can observe the guards

- setting: a set of alternatives (candidates) and a set of voters, determine winner or ranking
- questions:
 - what questions to ask?
 - how to determine a winner / ranking?
 - what is the computational complexity of determining a winner?
 - can the protocol be made manipulation-safe?