序列 (sequence)

注意到当 i 为奇数时, $a_i + a_{i+1} = n+1$;当 i 为偶数时, $a_i + a_{i+1} = n+2$ 。那么:

- 若 l 是奇数,r 是偶数,那么 $\sum_{i=l}^r a_i = (n+1) rac{r-l+1}{2}$ 。判断 s 是否是 n+1 的倍数即可。
- ullet 若 l 是偶数,r 是奇数,那么 $\sum_{i=l}^r a_i = (n+2) rac{r-l+1}{2}$ 。判断 s 是否是 n+2 的倍数即可。
- 若 l 是奇数,r 是奇数,那么 $\sum_{i=l}^r a_i = (n+1)\frac{r-\overline{l}}{2} + a_r$ 。根据 s 模 n+1 的余数可以确定 a_r ,从而确定 r。
- 若 l 是偶数,r 是偶数,那么 $\sum_{i=l}^r a_i = (n+2)\frac{r-l}{2} + a_r$ 。 根据 s 模 n+2 的余数可以确定 a_r ,从而确定 r。

时间复杂度 O(q)。

函数 (function)

做法一

当 $R<2^{20}$ 时,考虑对每个 $y\in[0,2^{20})$ 预处理出是否存在 x 使得 f(x)=y。

这里根据做法二中的分析可以证明(但事实上选手可以猜),一个 $y\in[0,2^{20})$ 如果存在对应的 x,就一定能在 $[0,2^{21})$ 范围内找到一个 x。

那么直接对每个 $x \in [0, 2^{21})$ 算出它们的 f(x) 即可。时间复杂度 O(T+R)。可以获得 40 分。

做法二

注意到 x 和 f(x) 的 popcount 最多相差 1。假设 b = popcount(y)。若存在 x 使得 f(x) = y,则必然 是以下两种情况之一:

- x 第 b+1 位 (最低位是第 0 位) 原来是 1,然后将这一位异或之后变成了 y。
- x 第 b-1 位原来是 0,然后将这一位异或之后变成了 y。

容易发现这就是等价条件。也就是说, y 合法当且仅当 y 的第 b+1 位为 0 或第 b-1 位为 1。

为了方便,我们用 [0,R] 的答案减去 [0,L) 的答案。然后对于 [0,R],可以像数位 DP 一样将其划分为 $O(\log R)$ 个区间,使得每个区间的数形如 "低 k 位 0/1 任取,而高位已经被确定"。然后我们枚举 b,硬点好 y 的第 b+1 位和第 b-1 位后,剩下的位的填法就是一个组合数问题。

时间复杂度 $O(T \log^2 R)$ 。

游戏 (game)

假设 Alice 在 n 个商店中分别购买了 c_1,\ldots,c_n 件商品,而 Bob 在 m 个商店中分别购买了 d_1,\ldots,d_m 件商品。那么接下来 Alice 和 Bob 玩的就是 nim 游戏,Alice 必胜当且仅当 $c_1\oplus\cdots\oplus c_n\oplus d_1\oplus\cdots\oplus d_m\neq 0$ 。那么在 Alice 已经购买好商品的情况下,Bob 为了要赢,就是要 看是否存在 d_1,\ldots,d_m 使得 $d_1\oplus\cdots\oplus d_m=c_1\oplus\cdots\oplus c_n$ 且 $d_1+\cdots+d_m\leq m$ 。但注意到 $d_1\oplus\cdots\oplus d_m\leq d_1+\cdots+d_m\leq m$,所以 Bob 能赢当且仅当 $c_1\oplus\cdots\oplus c_n\leq m$ 。

那么现在问题变为,统计 $c_1,\ldots,c_n\geq 0$ 的数量,使得 $\sum c_i a_i\leq k$ 且 $\bigoplus c_i>m$ 。

考虑按位 DP。假设已经确定了 c_1,\ldots,c_n 的低 b 位,我们只需记录 $\sum c_i a_i$ 低 b 位和 k 低 b 位的大小关系,当前 $\sum c_i a_i$ 往第 b 位以后的进位是多少,以及 $\bigoplus c_i$ 低 b 位和 m 低 b 位的大小关系。注意到当前的 c_i 都小于 2^b ,而它们乘上 a_i 再累加后,往第 b 位以后的进位不会超过 $\sum a_i$ 。于是第二维的大小只有 $\sum a_i$ 级别。

对于第 b+1 位依次 DP 每个 c_i 在这位的取值并做转移,注意此时记录进位的那一维大小要翻倍(c_i 变成小于 2^{b+1} ,但我们过程中记录的仍是第 b 位以后的进位)。时间复杂度 $O(n\cdot\sum a_i\cdot\max(\log k,\log m))$ 。

硬币 (coin)

题目是自适应的,那么根据信息论可知我们至少需要 $\lceil \log_2(2n+1) \rceil$ 次称量,因为每一次称量会有两种不同的结果,那么 M 次称量只能区分至多 2^M 种结果。发现数据范围确实要求达到这个操作次数下界,那么就要求我们每次称量都能排除差不多一半的情况。具体地,我们要在过程中一直保证 $2^{lambda k \# \ell \#}$ $\geq _{rak{R}}$ $\frac{1}{2}$ $\frac{1}{2}$

为了方便,我们下面先考虑 $n=2^{k-1}-1$ 的情况,这样 $k=\lceil \log_2(2n+1)\rceil$ 且 n 尽可能大。对 $n<2^{k-1}-1$ 的情况,可以想象将硬币补为 $2^{k-1}-1$ 个,且我们还另外知道补充的硬币都是真的。

设 $h = \lceil \frac{n}{2} \rceil$, $q = \lceil \frac{h}{2} \rceil$ 。首先,将 $1, 2, \ldots, h$ 放在左盘、 $h + 1, h + 2, \ldots, n$ 放在右盘。如果左右盘数量不同($2 \nmid n$),就用 0 号硬币补齐右盘。

如果天平偏向右侧,那么我们就知道一定有假币了。进一步地,如果假币在左盘,它一定比真币更轻;如果假币在右盘,它一定比真币更重。从而在 2n+1 种情况中,我们排除了 n+1 种情况。

如果天平偏向左侧,那么我们还不知道是否一定有假币,但我们还是能知道:左盘的硬币不可能是更轻的假币,右盘的硬币不可能是更重的假币。那么还是有 n 种情况被排除。由于 $2^k \geq 2n+1$,那么 $2^k \geq 2n+2$,从而 $2^{k-1} \geq n+1$,条件仍然保持。

接着,我们将左盘中的 $1,2,\ldots,q$ 和右盘的 $h+1,h+2,\ldots,h+q$ 交换位置,再进行称量。

如果天平的偏向和原来不同,那么假币一定在我们刚刚交换的部分,还剩 2q 种情况;如果天平的偏向和原来的相同,那么我们刚刚交换的部分中一定没有假币,排除了 2q 种情况。而 $2q=2^{k-2}$,故条件仍然保持。

接着我们就可以递归地做上述过程:对于天平的偏向和原来不同的情况,对 $1,2,\ldots,q$ 和 $h+1,h+2,\ldots,h+q$,我们已经知道了它们之间的称量关系,那么再将它们各自划分为两部分,并将第一部分交换;对于天平的偏向和原来相同的情况,对 $q+1,q+2,\ldots,h$ 和 $h+q+1,\ldots,n$ 做类似的事情。

时间复杂度 O(n)。