

[영역] 5.기하

5-3-2.특수한 각의 삼각비, 사분원에서 삼각비의 값 구하기

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2016-10-25

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

계산시 참고사항

1. 특수한 각의 삼각비

A 삼각비	0 °	30 °	45 °	60 °	90°
$\sin\!A$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos A$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan A	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	정할 수 없다.

참고 \circ $\sin 30^{\circ} = \cos 60^{\circ}$

 $\sin 60^{\circ} = \cos 30^{\circ}$

2. 사분원을 이용한 삼각비의 값 구하기

반지름의 길이가 1인 사분원에서 임의의 예각 x에 대하여

1)
$$\sin x = \frac{\overline{AB}}{\overline{OA}} = \frac{\overline{AB}}{1} = \overline{AB}$$

2)
$$\cos x = \frac{\overline{OB}}{\overline{OA}} = \frac{\overline{OB}}{1} = \overline{OB}$$

3)
$$\tan x = \frac{\overline{\text{CD}}}{\overline{\text{OD}}} = \frac{\overline{\text{CD}}}{1} = \overline{\text{CD}}$$

● △AOB∽△COD임을 이용하여 tanx의 값을 나타낸다.

특수한 각의 삼각비

☑ 다음 삼각비의 값을 구하여라.

1. sin0°

cos90°

3. tan0°

4. sin90°

5. $\cos 0$ °

☑ 다음을 계산하여라.

6. $\sin 45^{\circ} + \cos 45^{\circ}$

7. $\sin 90^{\circ} + \cos 0^{\circ}$

 $\cos 0$ ° $+ \tan 0$ °

9. $\cos 90^{\circ} - \sin 90^{\circ}$

10. sin60°-tan30°

11.	cin60°	$\times \cos 60^{\circ}$

12.
$$\cos 30^{\circ} \times \tan 60^{\circ}$$

13.
$$\sin 30^{\circ} \div \cos 45^{\circ}$$

15.
$$\sin^2 30^{\circ} + \cos^2 30^{\circ}$$

16.
$$\cos 30^{\circ} \times \sin 90^{\circ}$$

18.
$$\tan 45^{\circ} - \sqrt{3} \tan 60^{\circ}$$

19.
$$\sin 60^{\circ} + \cos 30^{\circ}$$

20.
$$\tan 45^{\circ} - \cos 60^{\circ}$$

21.
$$\sin 45^{\circ} \times \cos 45^{\circ}$$

22.
$$\tan 60^{\circ} \times \tan 30^{\circ}$$

23.
$$\sin 60^{\circ} \div \cos 30^{\circ}$$

24.
$$\tan 45^{\circ} \div \tan 60^{\circ}$$

25.
$$\cos 0^{\circ} \times \sin 90^{\circ}$$

27.
$$\sin 30^{\circ} + \cos 60^{\circ}$$

28.
$$\tan 60^{\circ} + \frac{1}{\tan 30^{\circ}}$$

30.
$$\cos^2 30^{\circ} + \sin^2 30^{\circ}$$

31.
$$\sin 30^{\circ} \times 2 \tan 45^{\circ} \div \cos 60^{\circ}$$

32.
$$\tan 30^{\circ} \times \tan 45^{\circ} \times \cos 45^{\circ}$$

33.
$$(\tan 45^{\circ} - \cos 60^{\circ}) \times \sin 30^{\circ}$$

34.
$$3(\cos 90^{\circ} + \sin 90^{\circ}) - \sqrt{3} \tan 30^{\circ}$$

35.
$$\cos 0^{\circ} \times \sin 30^{\circ} + \sin 90^{\circ} \times \cos 60^{\circ}$$

37.
$$\sin^2 90^{\circ} + \cos^2 90^{\circ} \times \cos 90^{\circ}$$

- 39. $4 \times \tan 60^{\circ} \times \cos 30^{\circ} \frac{3}{\sin^2 30^{\circ}}$
- 40. $\sin 30^{\circ} \times \cos 0^{\circ} + \tan 45^{\circ} \times \cos^2 30^{\circ} \times \sin 90^{\circ}$
- 41. $-2\sin 60^{\circ} + \sqrt{3}\tan 45^{\circ} \times \tan 60^{\circ}$
- 42. $\sin 0^{\circ} \times \sin 45^{\circ} + \cos 60^{\circ}$
- 43. $\sin 60^{\circ} \times \tan 30^{\circ} \cos 60^{\circ}$
- 44. $\sin 45^{\circ} \div \cos 45^{\circ} \times \tan 45^{\circ}$
- 45. $\sqrt{3} \tan 30^{\circ} \sin 90^{\circ} \times \sin 30^{\circ}$
- 46. $\sin 0^{\circ} + \cos 90^{\circ} + \tan 0^{\circ}$
- 47. $(\cos 0^{\circ} 2\sin 0^{\circ})(\sin 90^{\circ} 2\cos 90^{\circ})$
- 48. $\frac{\cos 30^{\circ}}{\cos 60^{\circ}} \times \tan 30^{\circ} + \tan 45^{\circ}$
- 49. $\cos 60^{\circ} \div \sin 30^{\circ} + \sin 60^{\circ} \div \cos 30^{\circ}$
- 50. $(\sin 30^{\circ} \cos 30^{\circ})(\cos 60^{\circ} + \sin 60^{\circ})$

삼각비의 값을 이용하여 변의 길이, 각의 크기 구하기

Arr 삼각비의 값을 이용하여 다음 그림에서 x의 값을 구하여라. 51.

52.

53.

54.

55.

56.

57.

58.

 $lacksymbol{\square}$ 삼각비의 값을 이용하여 다음 그림에서 $x,\ y$ 의 값을 각각 구하여라.

59.

60.

61.

62.

63.

64.

65.

66.

71.

67.

72.

68.

73.

69.

74.

70.

 \square $0^{\circ} < A < 90^{\circ}$ 일 때, 다음을 만족하는 $\angle A$ 의 크기를 구하여

$$75. \quad \cos A = \frac{\sqrt{2}}{2}$$

76.
$$\sin A = \frac{1}{2}$$

77.
$$\tan A = \sqrt{3}$$

$$78. \quad \sin A = \frac{\sqrt{3}}{2}$$

$$79. \quad \cos A = \frac{\sqrt{3}}{2}$$

80.
$$\tan A = 1$$

81.
$$\cos A = \frac{1}{2}$$

82.
$$\sin A = \frac{\sqrt{2}}{2}$$

83.
$$\tan A = \frac{\sqrt{3}}{3}$$

사분원에서 삼각비의 값 구하기

☑ 다음 그림과 같이 반지름의 길이가 1인 사분원에서 옳은 것 에는 ○표, 옳지 않은 것에는 ×표를 하여라. 또, 옳지 않은 것을 바르게 고쳐라.

84.
$$\sin x = \overline{AB}$$
 (

85.
$$\cos x = \overline{\text{CD}}$$

86.
$$\sin y = \overline{OA}$$

87.
$$\cos y = \overline{\text{OB}}$$
 ()

88.
$$\sin z = \overline{OB}$$
 ()

89.
$$\cos z = \overline{AB}$$

☑ 다음 그림과 같이 반지름의 길이가 1인 사분원에서 다음 삼 각비의 값을 나타내는 선분을 찾아라.

- 90. $\sin x$
- 91. $\cos x$
- 92. $\tan x$
- 93. $\sin y$
- 94. $\cos y$
- 95. $\sin z$
- 96. $\cos z$

□ 다음 그림과 같이 좌표평면 위의 원점 ○를 중심으로 하고 반지름의 길이가 1인 사분원에서 다음 삼각비의 값을 구하 여라.

- 97. sin55°
- 98. cos55°
- 99. tan55°
- 100 sin35°
- 101. cos35°

☑ 반지름의 길이가 1인 사분원에서 다음 삼각비의 값을 구하 여라.

- 102 sin50°
- 103 cos50°
- 104 tan 50°
- 105 sin40°
- 106. cos40°

☑ 다음 물음에 답하여라.

107 다음 그림과 같이 반지름의 길이가 1인 사분원에서 $\cos 46 \, ^{\circ} + \tan 46 \, ^{\circ}$ 의 값을 구하여라.

108 다음은 반지름의 길이가 1인 사분원에 두 직각삼각형을 그 린 것이다. $\sin 56^{\circ} + \cos 56^{\circ} + \tan 56^{\circ}$ 의 값을 구하여라.

109 다음 그림과 같이 좌표평면 위의 원점 O를 중심으로 하고, 반지름의 길이가 1인 사분원에서 $tan35\degree - cos55\degree$ 의 값을 구하여라.

110 다음 그림과 같이 반지름의 길이가 1인 사분원을 이용하여 sin 55 ° - tan 55 ° 의 값을 구하여라.

정답 및 해설

- 1) 0
- 2) 0
- 3) 0
- 4) 1
- 5) 1
- \Rightarrow $\sin 45^{\circ} + \cos 45^{\circ} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \sqrt{2}$
- 7) 2
- $\Rightarrow \sin 90^{\circ} + \cos 0^{\circ} = 1 + 1 = 2$
- \Rightarrow $\cos 0^{\circ} + \tan 0^{\circ} = 1 + 0 = 1$
- 9) -1
- \Rightarrow $\cos 90^{\circ} \sin 90^{\circ} = 0 1 = -1$
- 10) $\frac{\sqrt{3}}{6}$
- \Rightarrow $\sin 60^{\circ} \tan 30^{\circ} = \frac{\sqrt{3}}{2} \frac{\sqrt{3}}{3} = \frac{\sqrt{3}}{6}$
- 11) $\frac{\sqrt{3}}{4}$
- $\Rightarrow \sin 60^{\circ} \times \cos 60^{\circ} = \frac{\sqrt{3}}{2} \times \frac{1}{2} = \frac{\sqrt{3}}{4}$
- 12) $\frac{3}{2}$
- $\Rightarrow \cos 30^{\circ} \times \tan 60^{\circ} = \frac{\sqrt{3}}{2} \times \sqrt{3} = \frac{3}{2}$
- 13) $\frac{\sqrt{2}}{2}$
- $\Rightarrow \sin 30^{\circ} \div \cos 45^{\circ} = \frac{1}{2} \div \frac{\sqrt{2}}{2} = \frac{1}{2} \times \frac{2}{\sqrt{2}} = \frac{\sqrt{2}}{2}$
- 14) $2\sqrt{3}$
- \Rightarrow tan60° \div sin30° = $\sqrt{3} \div \frac{1}{2} = \sqrt{3} \times 2 = 2\sqrt{3}$
- 15) 1
- $\Rightarrow \sin^2 30^\circ + \cos^2 30^\circ = \left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{3}{4} = 1$

- 16) $\frac{\sqrt{3}}{2}$
- $\Rightarrow \cos 30^{\circ} \times \sin 90^{\circ} = \frac{\sqrt{3}}{2} \times 1 = \frac{\sqrt{3}}{2}$
- \Rightarrow 2tan45° cos0° = 2×1-1=1
- $\Rightarrow \tan 45^{\circ} \sqrt{3} \tan 60^{\circ} = 1 \sqrt{3} \times \sqrt{3} = 1 3 = -2$
- 19) $\sqrt{3}$
- $\Rightarrow \sin 60^{\circ} + \cos 30^{\circ} = \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \sqrt{3}$
- $\Rightarrow \tan 45^{\circ} \cos 60^{\circ} = 1 \frac{1}{2} = \frac{1}{2}$
- 21) $\frac{1}{2}$
- $\Rightarrow \sin 45^{\circ} \times \cos 45^{\circ} = \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} = \frac{1}{2}$
- $\Rightarrow \tan 60^{\circ} \times \tan 30^{\circ} = \sqrt{3} \times \frac{\sqrt{3}}{3} = 1$
- $\Rightarrow \sin 60^{\circ} \div \cos 30^{\circ} \frac{\sqrt{3}}{2} \div \frac{\sqrt{3}}{2} = 1$
- 24) $\frac{\sqrt{3}}{2}$
- \Rightarrow $\tan 45^{\circ} \div \tan 60^{\circ} = 1 \div \sqrt{3} = \frac{\sqrt{3}}{3}$
- $\Rightarrow \cos 0^{\circ} \times \sin 90^{\circ} = 1 \times 1 = 1$
- \Rightarrow 2tan0° cos90° = 2×0-0=0
- 27) 1
- $\Rightarrow \sin 30^{\circ} + \cos 60^{\circ} = \frac{1}{2} + \frac{1}{2} = 1$
- 28) $2\sqrt{3}$
- $\Rightarrow \tan 60^{\circ} + \frac{1}{\tan 30^{\circ}} = \sqrt{3} + \frac{1}{\frac{1}{\sqrt{3}}} = 2\sqrt{3}$
- 29) $\frac{1}{2}$

$$\Rightarrow \sin 60^{\circ} \div \tan 60^{\circ} = \frac{\sqrt{3}}{2} \div \sqrt{3} = \frac{1}{2}$$

30) 1

$$\Rightarrow \cos^2 30^{\circ} + \sin^2 30^{\circ} = \left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{3}{4} + \frac{1}{4} = 1$$

31) 2

$$\Rightarrow \sin 30^{\circ} \times 2 \tan 45^{\circ} \div \cos 60^{\circ} = \frac{1}{2} \times 2 \times 1 \div \frac{1}{2} = 2$$

32) $\frac{\sqrt{6}}{6}$

$$\Rightarrow \tan 30^{\circ} \times \tan 45^{\circ} \times \cos 45^{\circ} = \frac{\sqrt{3}}{3} \times 1 \times \frac{\sqrt{2}}{2} = \frac{\sqrt{6}}{6}$$

33) $\frac{1}{4}$

$$\Rightarrow (\tan 45^{\circ} - \cos 60^{\circ}) \times \sin 30^{\circ} = \left(1 - \frac{1}{2}\right) \times \frac{1}{2} = \frac{1}{4}$$

34) 2

$$\Rightarrow 3(\cos 90^{\circ} + \sin 90^{\circ}) - \sqrt{3} \tan 30^{\circ}$$
$$= 3(0+1) - \sqrt{3} \times \frac{\sqrt{3}}{3} = 3 - 1 = 2$$

35) 1

$$\Rightarrow \cos 0^{\circ} \times \sin 30^{\circ} + \sin 90^{\circ} \times \cos 60^{\circ}$$
$$= 1 \times \frac{1}{2} + 1 \times \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = 1$$

36)
$$-\frac{\sqrt{3}}{2}$$

$$\Rightarrow 2\sin 45 \degree \times \cos 90 \degree - \sin 90 \degree \times \cos 30 \degree$$
$$= 2 \times \frac{\sqrt{2}}{2} \times 0 - 1 \times \frac{\sqrt{3}}{2} = 0 - \frac{\sqrt{3}}{2} = -\frac{\sqrt{3}}{2}$$

37) 1

$$\Rightarrow \sin^2 90^\circ + \cos^2 90^\circ \times \cos 90^\circ = 1 + 0 \times 0 = 1$$

38) $-\frac{3}{2}$

$$\Rightarrow (\tan 60^{\circ} + \sin 0^{\circ})(\cos 90^{\circ} - \cos 30^{\circ})$$
$$= (\sqrt{3} + 0)\left(0 - \frac{\sqrt{3}}{2}\right) = \sqrt{3} \times \left(-\frac{\sqrt{3}}{2}\right) = -\frac{3}{2}$$

39) -6

$$\Rightarrow 4 \tan 60^{\circ} \times \cos 30^{\circ} - \frac{3}{\sin^{2} 30^{\circ}}$$
$$= 4 \times \sqrt{3} \times \frac{\sqrt{3}}{2} - 3 \div \left(\frac{1}{2}\right)^{2} = 6 - 12 = -6$$

40) $\frac{5}{4}$

$$\Rightarrow \sin 30^{\circ} \times \cos 0^{\circ} + \tan 45^{\circ} \times \cos^2 30^{\circ} \times \sin 90^{\circ}$$

$$=\frac{1}{2}\times1+1\times\left(\frac{\sqrt{3}}{2}\right)^2\times1=\frac{1}{2}+\frac{3}{4}=\frac{5}{4}$$

41) $3 - \sqrt{3}$

$$\Rightarrow -2\sin 60^{\circ} + \sqrt{3}\tan 45^{\circ} \times \tan 60^{\circ}$$
$$= -2 \times \frac{\sqrt{3}}{2} + \sqrt{3} \times 1 \times \sqrt{3} = -\sqrt{3} + 3$$

42) $\frac{1}{2}$

$$\Rightarrow \sin 0^{\circ} \times \sin 45^{\circ} + \cos 60^{\circ} = 0 \times \frac{\sqrt{2}}{2} + \frac{1}{2} = \frac{1}{2}$$

43) 0

$$\Rightarrow \sin 60^{\circ} \times \tan 30^{\circ} - \cos 60^{\circ} = \frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{3}} - \frac{1}{2} = 0$$

44)

$$\Rightarrow \sin 45^{\circ} \div \cos 45^{\circ} \times \tan 45^{\circ} = \frac{\sqrt{2}}{2} \div \frac{\sqrt{2}}{2} \times 1 = 1$$

45) $\frac{1}{2}$

$$\Rightarrow \sqrt{3} \tan 30^{\circ} - \sin 90^{\circ} \times \sin 30^{\circ}$$
$$= \sqrt{3} \times \frac{\sqrt{3}}{3} - 1 \times \frac{1}{2} = \frac{1}{2}$$

46) 0

$$\Rightarrow$$
 $\sin 0^{\circ} + \cos 90^{\circ} + \tan 0^{\circ} = 0 + 0 + 0 = 0$

47)

$$\Rightarrow (\cos 0^{\circ} - 2\sin 0^{\circ})(\sin 90^{\circ} - 2\cos 90^{\circ}) \\ = (1 - 2 \times 0)(1 - 2 \times 0) = 1 \times 1 = 1$$

48) 2

$$\Rightarrow \frac{\cos 30^{\circ}}{\cos 60^{\circ}} \times \tan 30^{\circ} + \tan 45^{\circ}$$
$$= \frac{\sqrt{3}}{2} \div \frac{1}{2} \times \frac{\sqrt{3}}{3} + 1 = 1 + 1 = 2$$

49) 2

$$\Rightarrow \cos 60^{\circ} \div \sin 30^{\circ} + \sin 60^{\circ} \div \cos 30^{\circ}$$
$$= \frac{1}{2} \div \frac{1}{2} + \frac{\sqrt{3}}{2} \div \frac{\sqrt{3}}{2} = 1 + 1 = 2$$

50) $-\frac{1}{2}$

$$\Rightarrow (\sin 30^{\circ} - \cos 30^{\circ})(\cos 60^{\circ} + \sin 60^{\circ})$$
$$= \left(\frac{1}{2} - \frac{\sqrt{3}}{2}\right) \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right) = \frac{1}{4} - \frac{3}{4} = -\frac{1}{2}$$

51) 6

$$\Leftrightarrow \cos 60^\circ = \frac{1}{2}$$
이므로 $\frac{x}{12} = \frac{1}{2}$ $\therefore x = 6$

52) 6

$$\Rightarrow \sin 30^\circ = \frac{1}{2}$$
이므로 $\frac{\overline{BC}}{\overline{AC}} = \frac{3}{x} = \frac{1}{2}$ $\therefore x = 6$

53) $4\sqrt{3}$

$$\Rightarrow \sin 60^{\circ} = \frac{\sqrt{3}}{2}$$
이므로 $\frac{x}{8} = \frac{\sqrt{3}}{2}$ $\therefore x = 4\sqrt{3}$

54) 4

$$\cos 45^{\circ} = \frac{\sqrt{2}}{2}$$
이므로 $\frac{\overline{AB}}{\overline{AC}} = \frac{2\sqrt{2}}{x} = \frac{\sqrt{2}}{2}$

55) 5

$$\Rightarrow \tan 45^{\circ} = 10$$
 으로 $\frac{x}{5} = 1$ $\therefore x = 5$

56) 14

$$\Rightarrow$$
 $\triangle ABD에서 $\sin 45^\circ = \frac{\sqrt{2}}{2}$ 이므로 $\frac{\overline{AD}}{7\sqrt{2}} = \frac{\sqrt{2}}{2}$ $\therefore \overline{AD} = 7$ $\triangle ACD에서 $\sin 30^\circ = \frac{1}{2}$ 이므로 $\frac{7}{x} = \frac{1}{2}$ $\therefore x = 14$$$

57)
$$3\sqrt{3}-3$$

$$\Rightarrow$$
 $\triangle ADC$ 에서 $\tan 45^\circ = 1$ 이므로 $\overline{AC} = 3$
 $\triangle ABC$ 에서 $\tan 30^\circ = \frac{\sqrt{3}}{3}$ 이므로
$$\frac{\overline{AC}}{x+3} = \frac{\sqrt{3}}{3} \qquad \therefore \quad x = 3\sqrt{3} - 3$$

58)
$$2\sqrt{6}$$

$$Arr$$
 Arr Arr

59)
$$x = 4\sqrt{2}$$
, $y = 4\sqrt{2}$

$$\Rightarrow \frac{x}{8} = \frac{\sqrt{2}}{2} \text{ MM} \quad x = 4\sqrt{2} \; , \quad \frac{y}{8} = \frac{\sqrt{2}}{2} \text{ MM} \quad y = 4\sqrt{2}$$

60)
$$x = 10$$
, $y = 5\sqrt{3}$

$$\Rightarrow \frac{5}{x} = \frac{1}{2}$$
 에서 $x = 10$, $\frac{5}{y} = \frac{1}{\sqrt{3}}$ 에서 $y = 5\sqrt{3}$

61)
$$x = 6$$
, $y = 6\sqrt{3}$

$$\Rightarrow \frac{x}{12} = \frac{1}{2} \text{ MM} \quad x = 6, \quad \frac{y}{12} = \frac{\sqrt{3}}{2} \text{ MM} \quad y = 6\sqrt{3}$$

$$\Rightarrow \frac{4\sqrt{3}}{x} = \sqrt{3} \text{ old } x = 4, \quad \frac{4\sqrt{3}}{y} = \frac{\sqrt{3}}{2} \text{ old } y = 8$$

63) $x = 8\sqrt{2}$. y = 8

$$\sin 45^\circ = \frac{8}{x}$$
이므로 $x = \frac{8}{\sin 45^\circ}$ $\therefore x = 8\sqrt{2}$ $\tan 45^\circ = \frac{8}{y}$ 이므로 $y = \frac{8}{\tan 45^\circ}$ $\therefore y = 8$

64) x = 6, $y = 6\sqrt{3}$

$$\Rightarrow \sin 30^\circ = \frac{x}{12}$$
이므로 $x = 12\sin 30^\circ$ $\therefore x = 6$ $\cos 30^\circ = \frac{y}{12}$ 이므로 $y = 12\cos 30^\circ$ $\therefore y = 6\sqrt{3}$

65)
$$x = 2\sqrt{2}$$
, $y = \frac{2\sqrt{6}}{3}$

$$ightharpoonup \triangle ABC에서 $x=rac{2}{\sin 45\,^\circ}=2\,\sqrt{2}$ $\triangle BCD에서 $y=2\,\sqrt{2}\,\tan 30\,^\circ=rac{2\,\sqrt{6}}{3}$$$$

66)
$$x = \frac{4\sqrt{3}}{3}$$
, $y = 4$

⇒ 직각삼각형 ABC에서 $x = 4 \tan 30^{\circ} = 4 \times \frac{\sqrt{3}}{2} = \frac{4\sqrt{3}}{2}$ 직각삼각형 BCD에서 $u=4\tan 45^\circ=4\times 1=4$

67)
$$x = 2, y = 2\sqrt{2}$$

$$\Rightarrow$$
 \triangle ABD에서 $\sin 30^{\circ} = \frac{x}{4} = \frac{1}{2}$ $\therefore x = \frac{1}{2} \times 4 = 2$ \triangle ACD에서 $\sin 45^{\circ} = \frac{2}{y} = \frac{\sqrt{2}}{2}$ $\therefore y = 2 \times \frac{2}{\sqrt{2}} = 2\sqrt{2}$

68)
$$x = 4\sqrt{3}, y = 12$$

$$\triangle$$
 ABD에서 $\sin 60^\circ = \frac{x}{8} = \frac{\sqrt{3}}{2}$
 $\therefore x = \frac{\sqrt{3}}{2} \times 8 = 4\sqrt{3}$
 \triangle ACD에서 $\tan 30^\circ = \frac{x}{y} = \frac{4\sqrt{3}}{y} = \frac{\sqrt{3}}{3}$
 $\therefore y = 4\sqrt{3} \times \frac{3}{\sqrt{3}} = 12$

69)
$$x = 7, y = 14$$

$$\Rightarrow$$
 \triangle ACD에서 $\sin 45^{\circ} = \frac{x}{7\sqrt{2}} = \frac{\sqrt{2}}{2}$

$$\therefore x = \frac{\sqrt{2}}{2} \times 7\sqrt{2} = 7$$

$$\triangle$$
ABD에서 $\sin 30^\circ = \frac{7}{y} = \frac{1}{2}$

$$\therefore y = 7 \times 2 = 14$$

70)
$$x = 8, y = 4\sqrt{6}$$

$$\Rightarrow$$
 \triangle ABD에서 $\cos 60^{\circ} = \frac{4}{x} = \frac{1}{2}$ $\therefore x = 4 \times 2 = 8$

또,
$$\tan 60^{\circ} = \frac{\overline{AD}}{4} = \sqrt{3}$$
이므로 $\overline{AD} = 4\sqrt{3}$

$$\triangle$$
ACD에서 $\sin 45^{\circ} = \frac{4\sqrt{3}}{y} = \frac{\sqrt{2}}{2}$

$$\therefore y = 4\sqrt{3} \times \frac{2}{\sqrt{2}} = 4\sqrt{6}$$

71)
$$x = 3\sqrt{3}, y = \frac{3}{2}\sqrt{6}$$

$$\Rightarrow$$
 \triangle ABC에서 $\tan 30^{\circ} = \frac{3}{x} = \frac{\sqrt{3}}{3}$

$$\therefore x = 3 \times \frac{3}{\sqrt{3}} = 3\sqrt{3}$$

$$\triangle$$
BCD에서 $\sin 45^{\circ} = \frac{y}{3\sqrt{3}} = \frac{\sqrt{2}}{2}$

$$\therefore y = \frac{\sqrt{2}}{2} \times 3\sqrt{3} = \frac{3}{2}\sqrt{6}$$

72)
$$x = 8, y = 4\sqrt{3}$$

$$\Rightarrow$$
 \triangle BCD에서 $\tan 45^{\circ} = \frac{y}{4\sqrt{3}} = 1$ $\therefore y = 4\sqrt{3}$

$$\triangle$$
ABC에서 $\cos 30$ $^{\circ} = \frac{4\sqrt{3}}{x} = \frac{\sqrt{3}}{2}$

$$\therefore x = 4\sqrt{3} \times \frac{2}{\sqrt{3}} = 8$$

73)
$$x = 2\sqrt{3}, y = 3\sqrt{2}$$

$$\Rightarrow$$
 \triangle ABC에서 $\sin 30^{\circ} = \frac{x}{4\sqrt{3}} = \frac{1}{2}$

$$\therefore x = \frac{1}{2} \times 4\sqrt{3} = 2\sqrt{3}$$

또,
$$\cos 30^\circ = \frac{\overline{AC}}{4\sqrt{3}} = \frac{\sqrt{3}}{2}$$
이므로

$$\overline{AC} = \frac{\sqrt{3}}{2} \times 4\sqrt{3} = 6$$

$$\triangle$$
ACD에서 $\sin 45^{\circ} = \frac{y}{6} = \frac{\sqrt{2}}{2}$

$$\therefore y = \frac{\sqrt{2}}{2} \times 6 = 3\sqrt{2}$$

74)
$$x = 3\sqrt{3}, y = 6$$

$$\Rightarrow$$
 \triangle ACD에서 $\tan 60^{\circ} = \frac{x}{3} = \sqrt{3}$ $\therefore x = 3\sqrt{3}$

$$\triangle$$
ABC에서 $\tan 30^\circ = \frac{3\sqrt{3}}{y+3} = \frac{\sqrt{3}}{3}$ 이므로

$$y+3=3\sqrt{3}\times\frac{3}{\sqrt{3}}=9 \qquad \therefore y=6$$

$$\Leftrightarrow \cos 45^{\circ} = \frac{\sqrt{2}}{2}$$
이므로 $\angle A = 45^{\circ}$

76) 30°

$$\Rightarrow \sin 30^{\circ} = \frac{1}{2}$$
이므로 $\angle A = 30^{\circ}$

77) 60°

$$\Rightarrow$$
 tan60° = $\sqrt{3}$ 이므로 $\angle A = 60$ °

78) 60°

$$\Rightarrow \sin 60^{\circ} = \frac{\sqrt{3}}{2}$$
이므로 $\angle A = 60^{\circ}$

79) 30°

$$\Rightarrow \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$
이므로 $\angle A = 30^{\circ}$

$$\Leftrightarrow \cos 60^{\circ} = \frac{1}{2}$$
이므로 $\angle A = 60^{\circ}$

$$\Rightarrow \sin 45^\circ = \frac{\sqrt{2}}{2}$$
이므로 $\angle A = 45^\circ$

$$\Rightarrow$$
 tan30° = $\frac{\sqrt{3}}{3}$ 이므로 $\angle A = 30$ °

84) 🔾

85)
$$\times$$
, $\cos x = \overline{OB}$

86)
$$\times$$
, $\sin y = \overline{OB}$

87)
$$\times$$
, $\cos y = \overline{AB}$

88) 🔾

$$\Rightarrow \sin x = \frac{\overline{AB}}{\overline{OA}} = \frac{\overline{AB}}{1} = \overline{AB}$$

91) OB

$$\Rightarrow \cos x = \frac{\overline{OB}}{\overline{OA}} = \frac{\overline{OB}}{1} = \overline{OB}$$

92) CD

$$\Rightarrow \tan x = \frac{\overline{CD}}{\overline{OD}} = \frac{\overline{CD}}{1} = \overline{CD}$$

93) OB

$$\Rightarrow \sin y = \frac{\overline{OB}}{\overline{OA}} = \frac{\overline{OB}}{1} = \overline{OB}$$

94) AB

$$\Rightarrow \cos y = \frac{\overline{AB}}{\overline{OA}} = \frac{\overline{AB}}{1} = \overline{AB}$$

95) OB

$$\Rightarrow \sin z = \sin y = \overline{OB}$$

96) AB

$$\Rightarrow \cos z = \cos y = \overline{AB}$$

97) 0.8192

98) 0.5736

99) 1.4281

100) 0.5736

101) 0.8192

102) 0.77

$$\Rightarrow \sin 50^{\circ} = \frac{\overline{AB}}{\overline{OB}} = \frac{0.77}{1} = 0.77$$

103) 0.64

$$\Rightarrow \cos 50^{\circ} = \frac{\overline{OA}}{\overline{OB}} = \frac{0.64}{1} = 0.64$$

104) 1.19

$$\Rightarrow \tan 50^{\circ} = \frac{\overline{\text{CD}}}{\overline{\text{OD}}} = \frac{1.19}{1} = 1.19$$

105) 0.64

$$\Rightarrow$$
 \triangle AOB에서 \angle OBA $=$ 90 $^{\circ}$ $-$ 50 $^{\circ}$ $=$ 40 $^{\circ}$

$$\sin 40^{\circ} = \frac{\overline{OA}}{\overline{OB}} = \frac{0.64}{1} = 0.64$$

106) 0.77

$$\Rightarrow \cos 40^{\circ} = \frac{\overline{AB}}{\overline{OB}} = \frac{0.77}{1} = 0.77$$

107) 1.73

$$\Rightarrow \cos 46 \degree = \frac{\overline{OA}}{\overline{OB}} = \frac{0.69}{1} = 0.69,$$
$$\tan 46 \degree = \frac{\overline{CD}}{\overline{OC}} = \frac{1.04}{1} = 1.04$$

$$\therefore \cos 46^{\circ} + \tan 46^{\circ} = 0.69 + 1.04 = 1.73$$

108) 2.87

$$\Rightarrow \sin 56^{\circ} + \cos 56^{\circ} + \tan 56^{\circ}$$

$$= \frac{0.83}{1} + \frac{0.56}{1} + \frac{1.48}{1} = 0.83 + 0.56 + 1.48 = 2.87$$

109) 0.13

$$\Rightarrow$$
 $\tan 35$ ° $=\frac{0.70}{1}=0.70$, $\cos 55$ ° $=\frac{0.57}{1}=0.57$ 이므로 $\tan 35$ ° $-\cos 55$ ° $=0.13$

110) -0.6089

$$\Rightarrow \sin 55^{\circ} = \overline{AB} = 0.8192, \ \tan 55^{\circ} = \overline{CD} = 1.4281$$

 $\therefore \sin 55^{\circ} - \tan 55^{\circ} = 0.8192 - 1.4281 = -0.6089$