

Avaliação de Desempenho de Sistemas de Vigilância: Métricas

IDASH

Acrónimos

ML Machine Learning

IA Inteligencia Artificial

EDA Análisis Exploratorio de Datos

EDA Análise Exploratória de Dados

IDASH Informática y Ciencia de Datos para la Salud

SIS Sistemas de Información de Salud

Tabela de Conteúdo

1	Con	nto de dados	6
	1.1	eitura de dados	6
2	Aná	e exploratória de Dados (EDA) e Preparação de dados	8
	2.1	alecido	8
	2.2	lospitalizado	9
		.2.1 Preparação e correção de datas	.1
	2.3	ositivo	.3
		.3.1 Preparação de dados e correção de datas	4
3	Qua	ade dos dados 1	.5
	3.1	Completitude	5
			5
			5
			6
	3.2	alidez	7
		.2.1 Hospitalizados	7
		•	8
4	Con	ısões 1	g

Lista de Figuras

2.1	Categorias de variáveis de tipo fatorial	9
2.2	Categorias de variáveis de tipo fatorial	11
2.3	Categorias de variáveis de tipo fatorial	14

Lista de Tabelas

3.1	Tabla de completitud del conjunto de datos fallecidos	15
3.2	Tabela de completude do conjunto de dados de hospitalizado	16
3.3	Tabela de completude do conjunto de dados positivo	17

1 Conjunto de dados

Os dados são armazenados em 3 arquivos compactados e estão disponíveis no repositório indicado:

- Fallecidos (data/fallecidos.csv.gz)
- Hospitalizados (data/hospitalizados.csv.gz)
- Positivos (data/positivos.csv.gz)

O dicionário de dados está localizado no mesmo repositório, no arquivo data-dictionary-pt.pdf

Para o processamento de dados, serão usados os seguintes pacotes: tidyverse, dlookr, inspectdf, skimr, lubridate, janitor, kableExtra

1.1 Leitura de dados

```
fallecidos <- read_csv("data/fallecidos.csv.gz",
    col_types = cols(
        fecha_fallecimiento = col_date(format = "%Y-%m-%d"),
        edad_declarada = col_integer(),
        sexo = col_character(),
        clasificacion_def = col_character(),
        departamento = col_factor(),
        provincia = col_factor(),
        distrito = col_factor(),
        uuid = col_character(),
        age_group = col_factor(),
    )
)</pre>
```



```
hospitalizados <- read_csv("data/hospitalizados.csv.gz",
  col_types = cols(
    eess_nombre = col_factor(),
    id_persona = col_character(),
    edad = col_integer(),
    sexo = col_factor(),
    fecha_ingreso_hosp = col_character(),
    fecha_ingreso_uci = col_character(),
    fecha ingreso ucin = col character(),
    con_oxigeno = col_logical(),
    con_ventilacion = col_logical(),
    fecha_segumiento_hosp_ultimo = col_character(),
    evolucion_hosp_ultimo = col_factor(),
    flag_vacuna = col_factor(),
    fecha_dosis1 = col_character(),
    fabricante_dosis1 = col_factor(),
    fecha_dosis2 = col_character(),
    fabricante_dosis2 = col_factor(),
    fecha_dosis3 = col_character(),
    fabricante_dosis3 = col_factor(),
    cdc_positividad = col_logical(),
    cdc_fecha_fallecido_covid = col_character(),
    cdc_fallecido_covid = col_logical(),
    dep domicilio = col factor(),
    prov_domicilio = col_factor(),
    dist_domicilio = col_factor(),
)
```

```
positivos <- read_csv(
   "data/positivos.csv.gz",
   col_types = cols(
     departamento = col_factor(),
     provincia = col_factor(),
     distrito = col_factor(),
     metododx = col_factor(),
     edad = col_integer(),
     sexo = col_factor(),
     fecha_resultado = col_character(),
     id_persona = col_character()
))</pre>
```

2 Análise exploratória de Dados (EDA) e Preparação de dados

A Análise Exploratória de Dados (EDA) é um processo de investigação, visualização e resumo das principais características e padrões de um conjunto de dados, geralmente usando técnicas estatísticas gráficas e descritivas. Seu principal objetivo é entender os dados em profundidade, descobrir anomalias, identificar relações entre variáveis e extrair percepções iniciais que possam orientar análises mais formais subsequentes ou a criação de modelos.

2.1 Falecido

diagnose(fallecidos)

```
# A tibble: 9 x 6
 variables
                     types missing_count missing_percent unique_count unique_rate
  <chr>
                                    <int>
                                                      <dbl>
                                                                    <int>
                                                                                 <dbl>
1 fecha_fallecimie~ Date
                                     9479
                                                  10.0
                                                                      298
                                                                            0.00314
2 edad_declarada
                     inte~
                                        0
                                                   0
                                                                      110
                                                                            0.00116
3 sexo
                                        0
                                                   0
                                                                        2
                                                                            0.0000211
                     char~
4 clasificacion_def char~
                                        0
                                                   0
                                                                        7
                                                                            0.0000738
                                        0
                                                   0
                                                                            0.000274
5 departamento
                                                                       26
                     fact~
                                        5
6 provincia
                     fact~
                                                   0.00527
                                                                       21
                                                                            0.000222
7 distrito
                                        5
                                                   0.00527
                                                                            0.000464
                     fact~
                                                                       44
8 uuid
                                     1382
                                                   1.46
                                                                    93402
                                                                            0.985
                     char~
                                                                            0.0000527
9 age_group
                     fact~
```

diagnose numeric(fallecidos)

```
# A tibble: 1 x 10
 variables
                          Q1 mean median
                                              QЗ
                   min
                                                   max zero minus outlier
  <chr>
                 <int> <dbl> <dbl>
                                    <dbl> <dbl> <int> <int> <int>
                                                                      <int>
1 edad_declarada
                     0
                          57 66.5
                                        68
                                              77
                                                   113
                                                          91
                                                                       1526
```


Seis variáveis categóricas foram identificadas no conjunto de dados e a distribuição das categorias de cada variável é mostrada abaixo.

```
var_cat <- inspect_cat(fallecidos[, c(3:7, 9)])
show_plot(var_cat)+
    labs(
    title = "Distribuição das categorias de variáveis",
    subtitle = "Conjunto de dados de falecido",
    x = "Categoria")</pre>
```

Distribuição das categorias de variáveis Conjunto de dados de falecido

Figura 2.1: Categorias de variáveis de tipo fatorial

2.2 Hospitalizado

<chr>

1 eess_nombre

<chr>

fact~

<int>

98

<dbl>

12.0

<dbl>

0.00180

<int>

6546

2	id_persona	char~	0	0	54242	0.994
3	edad	inte~	3580	6.56	104	0.00191
4	sexo	fact~	2851	5.23	3	0.0000550
5	fecha_ingreso_h~	char~	0	0	295	0.00541
6	fecha_ingreso_u~	char~	50636	92.8	295	0.00541
7	fecha_ingreso_u~	char~	52394	96.0	272	0.00499
8	con_oxigeno	logi~	6	0.0110	3	0.0000550
9	con_ventilacion	logi~	15	0.0275	3	0.0000550
10	fecha_segumient~	char~	1	0.00183	375	0.00687
# :	i 14 more rows					

```
tbdhosp<- diagnose(hospitalizados)</pre>
```

```
diagnose_numeric(hospitalizados)
```

O número de IDs exclusivos é c(id_persona = 54242) e o número de registros é 54556, portanto, há pacientes que foram hospitalizados mais de uma vez.

As variáveis categóricas do conjunto de dados hospitalizados são mostradas no gráfico abaixo.

```
var_cat_h <- inspect_cat(hospitalizados[, -c(2,5,6,7,10,15,13,17,20)])
show_plot(var_cat_h)+
    labs(
    title = "Distribuição das categorias de variáveis",
    subtitle = "Conjunto de dados de hospitalizado",
    x = "Categoria")</pre>
```


Distribuição das categorias de variáveis Conjunto de dados de hospitalizado

Figura 2.2: Categorias de variáveis de tipo fatorial

2.2.1 Preparação e correção de datas

Agora, analisamos a variabilidade dos registros de variáveis de data que existem no conjunto de dados.

Quando atribuímos o formato ano-mês-dia (ymd), confirma-se que as observações não têm esse formato e a coluna está corrompida. Como podemos ver na revisão, as datas estão no formato dia-mês-ano.

```
hospitalizados$fecha_dosis1 <- dmy(hospitalizados$fecha_dosis1)
```

Quando atribuímos o formato ano-mês-dia (ymd), confirma-se que as observações não têm esse formato e a coluna está corrompida. Como podemos ver na revisão, as datas estão no formato dia-mês-ano.

```
hospitalizados$fecha_dosis3 <- dmy(hospitalizados$fecha_dosis3)
```


2.3 Positivo

```
diagnose(positivos)
```

```
# A tibble: 8 x 6
 variables
                  types
                          missing_count missing_percent unique_count unique_rate
  <chr>
                  <chr>
                                   <int>
                                                   <dbl>
                                                                <int>
                                                                             <dbl>
                                   52912
                                                                    27 0.0000264
1 departamento
                  factor
                                                 5.17
                                                                   35 0.0000342
                  factor
                                   48942
                                                 4.79
2 provincia
3 distrito
                                   48942
                                                 4.79
                                                                   54 0.0000528
                  factor
4 metododx
                  factor
                                       0
                                                 0
                                                                     3 0.00000293
5 edad
                                      55
                                                                   115 0.000112
                                                 0.00538
                  integer
                                       0
                                                 0
                                                                     2 0.00000196
6 sexo
                  factor
7 fecha_resultado charac~
                                       0
                                                 0
                                                                   592 0.000579
8 id_persona
                  charac~
                                   16980
                                                 1.66
                                                               989414 0.968
```

```
diagnose_numeric(positivos)
```

```
# A tibble: 1 x 10
 variables min
                    Q1 mean median
                                       QЗ
                                            max zero minus outlier
 <chr>
           <int> <dbl> <dbl> <dbl> <int> <int> <int> <int>
                                                              <int>
1 edad
               0
                    29
                        42.0
                                 41
                                       54
                                            120 5920
                                                               2389
```

O número de identificações exclusivas é 989414, portanto, há pacientes que foram diagnosticados como Covid positivo mais de uma vez.

As variáveis categóricas são mostradas no gráfico a seguir.

```
var_cat_p <- inspect_cat(positivos[,-c(5,7,8)])
show_plot(var_cat_p)+
    labs(
    title = "Distribuição de categorias de variáveis",
    subtitle = "Conjunto de dados de casos positivo de Covid-19",
    x = "Categoria")</pre>
```


Distribuição de categorias de variáveis Conjunto de dados de casos positivo de Covid-19

Figura 2.3: Categorias de variáveis de tipo fatorial

2.3.1 Preparação de dados e correção de datas

3 Qualidade dos dados

3.1 Completitude

3.1.1 Falecido

A integridade é uma característica de qualidade que se refere ao grau em que um conjunto de dados inclui todos os valores ou atributos esperados.

A tabela a seguir mostra a análise da integridade das variáveis no conjunto de dados.

```
na_fallecidos <- inspect_na(fallecidos)
na_fallecidos <- na_fallecidos |>
    mutate(pcnt = round(pcnt, 2)) |>
    filter(pcnt!=0)

kbl(na_fallecidos, col.names = c("Variável", "Valores ausentes",
    "Porcentagem(%)")) |>
    kable_styling()
```

Tabla 3.1: Tabla de completitud del conjunto de datos fallecidos.

Variável	Valores ausentes	Porcentagem(%)
fecha_fallecimiento	9479	10.00
uuid	1382	1.46
provincia	5	0.01
distrito	5	0.01

As maiores porcentagens de perda de dados são encontradas nas variáveis: fecha_fallecimiento a uuid.

3.1.2 Hospitalizado

Tabla 3.2: Tabela de completude do conjunto de dados de hospitalizado.

Variável	Valores ausentes	Porcentagem(%)
eess_nombre	6546	12.00
edad	3580	6.56
sexo	2851	5.23
evolucion_hosp_ultimo	1113	2.04
prov_domicilio	45	0.08

3.1.3 Positivo

```
tr_na_pos <- inspect_na(positivos)

tr_na_pos <- tr_na_pos |>
    mutate(pcnt = round(pcnt, 2)) |>
    filter(pcnt!=0)

kbl(tr_na_pos, col.names = c("Variável", "Valores ausentes",
    "Porcentagem(%)")) |>
    kable_styling()
```


பாரா வ	σ	1	1 / 1 1	• 1	1 1 1	• , •
Table 3 31		do comr	Notudo da	o continto (40 A 04	oc nocitivo
1 (4) (1(4) (1) (1)	-1 a 0 0 1 0	ւ սԵ ՀԾՈՈւ	ленисе си	o comunico c	ie uau	os positivo.

Variável	Valores ausentes	Porcentagem(%)
fecha_resultado_f	122712	12.00
departamento	52912	5.17
provincia	48942	4.79
distrito	48942	4.79
id_persona	16980	1.66
edad	55	0.01

3.2 Validez

3.2.1 Hospitalizados

```
dosis1_valid <- hospitalizados |>
   group_by(flag_vacuna, fecha_dosis1) |>
   count()

dosis1_valid
```

A tibble: 1,026 x 3

i 1,016 more rows

Groups: flag_vacuna, fecha_dosis1 [1,026]

	flag_vacuna	fecha_dosis1	n
	<fct></fct>	<date></date>	<int></int>
1	3	2021-02-09	21
2	3	2021-02-10	96
3	3	2021-02-11	143
4	3	2021-02-12	69
5	3	2021-02-13	44
6	3	2021-02-14	5
7	3	2021-02-15	37
8	3	2021-02-16	21
9	3	2021-02-17	11
10	3	2021-02-18	28

Como pode ser visto, não há datas atribuídas à variável fecha_dosis1 incorretamente, considerando a variável flag_vacuna(valores = 0). Portanto, o cálculo da métrica de validade não se aplica.


```
dosis2_valid <- hospitalizados |>
  group_by(flag_vacuna, fecha_dosis2) |>
  count()

dosis2_NO_valid <- dosis2_valid |>
  filter(flag_vacuna == "0" & !is.na(fecha_dosis2))

dosis2_NO_valid$flag_vacuna <- as.character(dosis2_NO_valid$flag_vacuna)</pre>
```

Há casos 12 em que a variávelflag_vacuna registra um valor de 0, portanto, há um problema de validade na variável 0.

A métrica de validade para a variávelflag_vacuna seria 0.02

```
dosis3_valid <- hospitalizados |>
  group_by(flag_vacuna, fecha_dosis3) |>
  count()

dosis3_valid$flag_vacuna <- as.character(dosis3_valid$flag_vacuna)</pre>
```

Todos os registros da variável fecha_dosis3são considerados consistentes, considerando as informações da variável flag_vacuna. Portanto, o cálculo da métrica de validade não se aplica.

3.2.2 Positivo

```
validez_fecha_resultado <- (num_na_val_fec/nrow(positivos)*100)</pre>
```

A métrica de validade da variável de data do resultado no conjunto de dados positivos (casos positivos) corresponde à 12% de datas formatadas incorretamente a serem corrigidas.

4 Conclusões

Nesta seção, desenvolva as conclusões das métricas apresentadas. Se considerar que outras métricas poderiam ser incluídas, comente se os dados são suficientes ou se são necessárias outras fontes.