IterNet: Retinal Image Segmentation Utilizing Structural Redundancy in Vessel Networks

Liangzhi Li, Manisha Verma, Yuta Nakashima, Hajime Nagahara, Ryo Kawasaki

Background

- Retinal vessel segmentation is important in finding diseases.
- · However, it is difficult to make complete yet accurate segmentation.
- Labeled data are very limited. (Training samples ≤ 20 in most datasets)
- Also, for clinical uses, doctors need well-connected vessel maps
- A new metric is necessary to show the performance of connectivity.

Motivation

- Although much important information is missing in raw images, humans may still be able to infer where the actual vessels are from these resulting vessel maps.
- To give segmentation model the ability to refine its results, the key is how to provide enough labeled defective samples (=> "sharing weights").

Segmentation Performance

Experimental Results

Table 1. Performance comparison on the DRIVE dataset (with mask).

Methods	C	AUC	F1	Sens.	Spec.	Acc.
U-Net	0.7948	0.9752	0.8174	0.7822	0.9808	0.9555
Residual UNet		0.9779	0.8149	0.7726	0.9820	0.9553
Recurrent UNet		0.9782	0.8155	0.7751	0.9816	0.9556
R2UNet		0.9784	0.8171	0.7792	0.9813	0.9556
DenseNet	0.8332	0.9756	0.8146	0.7928	0.9776	0.9541
DUNet	0.8314	0.9778	0.8190	0.7863	0.9805	0.9558
IterNet	0.9193	0.9816	0.8205	0.7735	0.9838	0.9573

IterNet Model

Figure 1. IterNet consists of one UNet and iteration of N-1 mini-Unets (*sharing weights*).

Vessel Connectivity

- AUC is in pixel level and can not reflect the performance on the vessel network level.
- Therefore, we adopt a new metric called connectivity [3,4]

- segments when threshold is θ ; Sa is ground-truth number; S_{Max} is a pre-defined maximum number.
- ·With this definition, we can draw the curve of θ versus $C(\theta)$. (=> Figure 4)
- •The area under this curve is adopted as the connectivity
- An example from CHASE-DB1 dataset is shown in Figure 5.

Figure 4. Connectivity versus threshold on three datasets.

Figure 5. Vessel segments and C value. (threshold=110)

Other Datasets (without Fine-tuning)

References

1] I. P. Chatziralli, E. D. Kanonidou, P. Keryttopoulos, P. Dimitriadis, and L. E. Papazisis, "The value of fundoscopy in general practice," The Open Ophthalmology Journal, vol. 6, pp. 4–5, 2012. [2] F. Caliva, M. Aletti, B. Al-Diri, and A. Hunter, "A new tool to connect blood vessels in fundus retinal images," in *EMBC*, 2015, pp. 4343–4346.

[3] S. Moccia, E. D. Momi, S. E. Hadji, and L. S. Mattos, "Blood vessel segmentation algorithms: review of methods, datasets and evaluation metrics," Computer Methods and Programs a Biomedicine, vol. 158, pp. 71–91, 2018.

[4] M. E. Gegundez-Arias, A. Aquino, J. M. Bravo, and D. Marin, "A function for quality evaluation of retinal vessel segmentations," IEEE TMI, vol. 31, no. 2, pp. 231–239, 2012.

Future Works

- A/V Classification A model utilizes IterNet to
- A post-processing algorithm to refine the results.

perform vessel classification.

Submitted to MIDL2020.

Arteriolosclerosis

- A method uses IterNet to extract arteriovenous patches.
- A validation and grading model for diagnosing artery hardening.
- Submitted to MICCAI2020.

