Lecture 06

이산 신호의 주파수 해석

■ 이산 코사인 신호

$$x(t) = \cos(2\pi f_0 t)$$

$$x[n] = \cos[2\pi f_0 T_s n] = \cos\left[2\pi \frac{f_0}{f_s} n\right]$$

- 이산 코사인 신호의 주파수
 - 정의 : $\hat{f} = \frac{f_0}{f_s}$
 - $f_s = \frac{1}{T_s}$: 샘플링 주파수
 - \hat{f} 는 연속 신호의 주파수 f_0 과 완전히 다른 물리적 의미를 가짐

$$x(t) = \cos(2\pi 5t)$$
 $x(t) = \cos(2\pi 1t)$

$$4 \text{Hz로 샘플링}$$

$$x[n] = \cos\left[2\pi \frac{5}{4}n\right] \quad x[n] = \cos\left[2\pi \frac{1}{4}n\right]$$

$$\cos\left[2\pi \frac{5}{4}n\right] = \frac{1}{2}e^{j2\pi \frac{5}{4}n} + \frac{1}{2}e^{-j2\pi \frac{5}{4}n}$$

$$= \frac{1}{2}e^{j2\pi \left(1 + \frac{1}{4}\right)n} + \frac{1}{2}e^{-j2\pi \left(1 + \frac{1}{4}\right)n}$$

$$= \frac{1}{2}e^{j2\pi \frac{1}{4}n}e^{j2\pi n} + \frac{1}{2}e^{-j2\pi \frac{1}{4}n}e^{-j2\pi n}$$

$$= \frac{1}{2}e^{j2\pi \frac{1}{4}n} + \frac{1}{2}e^{-j2\pi \frac{1}{4}n}$$

$$= \cos\left[2\pi \frac{1}{4}n\right]$$

- 이산 코사인 신호의 주파수
 - 두 이산 코사인 신호의 주파수의 차이가 정수이면 두 주파수는 동일한 주파수임

- 이산 코사인 신호의 주파수
 - 이산 신호의 주파수를 $0.5 \le \hat{f} < 0.5$ 사이로 한정하여도 모든 주파수 값을 빠짐없이 표시할 수 있음

■ 이산 코사인 신호의 스펙트럼

- 일반적인 코사인 신호와 사인 신호의 스펙트럼
 - 코사인 신호 : $x[n] = \cos[2\pi \hat{f}_0 n] = \cos[\omega_0 n]$

• 사인 신호 : $x[n] = \sin[2\pi \hat{f}_0 n] = \sin[\omega_0 n]$

■ 주어진 스펙트럼으로부터 이산 신호를 구함

$$x[n] = 1 + \cos[2\pi 0.4n]$$

■ 이산 시간 푸리에 급수

연속 주기 신호	이산 주기 신호
$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi f_0 kt} = \sum_{k=-\infty}^{\infty} X_k e^{j\frac{2\pi}{T}kt}$	$x[n] = \sum_{k=\langle N \rangle} X_k e^{j2\pi k n \hat{f}_0} = \sum_{k=\langle N \rangle} X_k e^{j\frac{2\pi}{N}kn}$
$X_k = \frac{1}{T} \int_{\langle T \rangle} x(t) e^{-j\frac{2\pi}{T}kt} dt$	$X_k = \sum_{k=\langle N \rangle} x[n] e^{-j\frac{2\pi}{N}kn}$

이산 시간 푸리에 시리즈(DTFS: Discrete-Time Fourier Series) 이산 시간 푸리에 급수 계수 ◆·······

■ x[n]이 실수인 경우:

$$x[n] = \sum_{k=0}^{M} A_k \cos\left[2\pi \hat{f}_0 k n + \phi_k\right] = \sum_{k=0}^{M} A_k \cos\left[\frac{2\pi}{N} k n + \phi_k\right]$$

■ 이산 시간 푸리에 급수 $X(\hat{f})$ $X_N = X_0$ $X_{-N} = X_0$ $X_{-2} X_{-1}$ N+1 $X(\omega)$ $2\pi X_{-N}$ $2\pi X_N$ $2\pi X_{-\frac{2}{4}} 2\pi X_{-1} \uparrow 2\pi X_{1}$ $2\pi X_2$ ω $-2\pi(N+1)$ 2π 2π 4π $2\pi(N+1)$ 4π

2024. 03. 04. 10

N

N

 -2π

- 이산 시간 푸리에 급수
 - 예,

주어진 신호 x[n]

$$X_{k,k\neq 0} = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-j\frac{2\pi}{N}kn}$$

$$= \frac{1}{5} \sum_{n=-1}^{1} (1) e^{-j\frac{2\pi}{5}kn}$$

$$= \frac{1}{5} \frac{e^{j\frac{2\pi}{5}k} (1 - e^{-j\frac{2\pi}{5}k3})}{1 - e^{-j\frac{2\pi}{5}k}}$$

$$= \frac{1}{5} \frac{e^{j\frac{2\pi}{5}k} e^{-j\frac{2\pi 3k}{5}} (e^{j\frac{2\pi 3k}{5}2} - e^{-j\frac{2\pi 3k}{5}2})}{e^{-j\frac{2\pi k}{5}2} (e^{j\frac{2\pi k}{5}2} - e^{-j\frac{2\pi k}{5}2})}$$

$$= \frac{1}{5} \frac{e^{-j\frac{2\pi k}{5}2} 2j \sin(\frac{2\pi 3k}{5}2)}{e^{-j\frac{2\pi k}{5}2} 2j \sin(\frac{2\pi 3k}{5}2)}$$

$$= \frac{1}{5} \frac{\sin(\frac{2\pi 3k}{5}2)}{\sin(\frac{2\pi k}{5}2)} = \frac{1}{5} \frac{\sin(\frac{3\pi}{5}k)}{\sin(\frac{\pi}{5}k)}$$

$$X_0 = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] = \frac{3}{5}$$

- 이산 시간 푸리에 급수
 - 예,

DTFS 계수

스펙트럼

- 이산 시간 푸리에 급수 성질
 - X_k 의 주기 성질 : 주기 N을 가지는 이산 신호의 이신 시간 푸리에 급수 계수는 주기 N을 가짐, 즉 $X_k = X_{k+N}$
 - X_k 와 X_{-k} 의 관계 : x[n]이 실수이면 $X_k = X_{-k}^*$ 관계가 성립함, 즉 $|X_k| = |X_{-k}|$
 - x[n]의 시간 이동 성질 : 주기 N인 이산 주기 신호 x[n]을 시간 축에서 이동시키면 이산 시간 푸리에 급수 계수의 위상이 변함

이산 주기 신호	이산 시간 푸	프리에 급수 계수
x[n]	X_k	
x[n-L]	$X_k e^{-j\frac{2\pi}{N}kL}$	$-rac{2\pi}{N}kL$ 위상 변화
x[n+L]	$X_k e^{j\frac{2\pi}{N}kL}$	$rac{2\pi}{N}kL$ 위상 변화

- 이산 시간 푸리에 변환
 - 이산 주기 신호의 주기 N이 무한대가 되면 이산 비주기 신호를 얻게 됨
 - $N \to \infty$ 이 되면 이산 주기 신호의 스펙트럼 $X(\hat{f})$ 가 연속 스펙트럼이 됨

■ 이산 시간 푸리에 변환(DTFT: Discrete-Time Fourier Transform)

$$X(\hat{f}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j2\pi\hat{f}n}$$
 혹은 $X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$

■ 이산 시간 푸리에 역변환

$$x[n] = \int_{\langle 1 \rangle} X(\hat{f}) e^{j2\pi \hat{f}n} d\hat{f}$$
 혹은 $x[n] = \frac{1}{2\pi} \int_{\langle 2\pi \rangle} X(\omega) e^{j\omega n} d\omega$

- 이산 시간 푸리에 변환
 - 예,

$$X(\hat{f}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j2\pi\hat{f}n}$$

$$= \sum_{n=-2}^{2} (1)e^{-j2\pi\hat{f}n}$$

$$= \frac{e^{j2\pi\hat{f}}\left(1 - e^{-j2\pi 5\hat{f}}\right)}{1 - e^{-j2\pi\hat{f}}}, \, \hat{f} \neq 0$$

$$= \frac{\sin\left(2\pi\frac{5}{2}\hat{f}\right)}{\sin\left(2\pi\frac{1}{2}\hat{f}\right)}$$

$$X(0) = \sum_{n=-\infty}^{\infty} x[n] = 5$$

- 이산 시간 푸리에 변환
 - 예,

- 주요 이산 시간 푸리에 변환 관계
 - 구형파 : 구파형의 스펙트럼이 반복되는 싱크(sinc) 함수이며, 구형파의 폭과 높이에 따라 $X(\hat{f}) = 0$ 이 되는 주파수와 X(0) 값이 걸정됨
 - 코사인 및 사인 신호:

코사인신호
$$x[n] = \cos[2\pi f_0 n]$$
 ---- $\hat{f}_0 - 1 + \hat{f}_0 - \hat{f}_0 = 0$ $\hat{f}_0 = 1 + \hat{f}_0 = 0$

사인 신호
$$x[n] = \sin[2\pi f_0 n]$$

- 주요 이산 시간 푸리에 변환 관계
 - 이산 펄스 신호와 상수 신호:

•
$$x[n] = e^{j2\pi an} \Leftrightarrow X(\hat{f}) = \sum_{k=-\infty}^{\infty} \delta(\hat{f} - a - k)$$

- 이산 시간 푸리에 변환 성질
 - 대칭 성질 : x[n]이 실수이면 $X(\hat{f})$ 는 좌우 복수 대칭임, 즉 $X(\hat{f}) = X^*(-\hat{f})$

복실수 x[n]의 스펙트럼 절댓값

- 이산 시간 푸리에 변환 성질
 - 시간 및 주파수 이동 성질:

$$x[n-a] \iff X(\hat{f})e^{-j2\pi\hat{f}a}$$

$$e^{j2\pi an}x[n] \iff X(\hat{f}-a)$$

■ Parseval 정리:

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \int_{\langle 1 \rangle} |X(\hat{f})|^2 d\hat{f}$$

- 이산 시간 푸리에 변환 성질
 - 컨벌루션 성질과 곱 성질:

$$x[n] \iff X(\hat{f})$$

$$y[n] \iff Y(\hat{f})$$

$$x[n] * y[n] \iff X(\hat{f})Y(\hat{f})$$

신호의 주파수 해석 정리

■ 주기 신호와 비주기 신호의 스펙트럼 관계

	연속 신호 x(t)	이산 신호 $x[n]$
주기	T	N
주파수	<u>1</u>	<u>1</u>
-	\overline{T}	\overline{N}

신호의 주파수 해석 정리

■ 연속 신호와 이산 신호의 스펙트럼 관계

신호의 주파수 해석 정리

신호와 스펙트럼 관계

(a) 시간 영역 신호와 주파수 영역 신호와의 관계

시간 영역 성질	주기	비주기
연속	이산, 비주기	연속, 비주기
이산	이산, 주기	연속, 주기

(b) 시간 영역의 성질에 따른 주파수 영역 성질

