I rok, Fizyka Wtorek, 8:00-10:15

Prowadząca: dr Iwona Mróz

Ćwiczenie nr 12

Laboratoryjny eksperyment symulujący powstawanie kraterów na planetach i księżycach, wskutek uderzeń meteorytów

1 Wstęp teoretyczny

Celem eksperymentu jest laboratoryjne odwzorowanie procesów powstawania kraterów na powierzchniach ciał niebieskich oraz weryfikacja zależności między energią kinetyczną uderzającego obiektu a wielkością powstałego krateru.

Podstawy fizyczne

• Spadek swobodny – ruch ciała pod wpływem wyłącznie siły grawitacji, opisany równaniami:

$$h = \frac{1}{2}gt^2$$
$$v = gt$$

gdzie h – wysokość, v – prędkość, g – przyspieszenie ziemskie, t – czas.

• Zasada zachowania energii – energia całkowita układu izolowanego pozostaje stała:

$$E_p + E_k = \text{const}$$

Dla kulki spadającej z wysokości h zachodzi przemiana energii potencjalnej w kinetyczną:

$$E_p = mgh \to E_k = \frac{1}{2}mv^2$$

- **Zderzenie niesprężyste** uderzenie spadającej kulki w piasek powoduje, że część energii kinetycznej zostaje przekształcona w energię deformacji ośrodka.
- Modele tworzenia kraterów rozpatrujemy dwie hipotezy dotyczące zależności między energią kinetyczną uderzającego obiektu a średnicą powstałego krateru:

Model I: $E_k \propto D^3$ (energia przeznaczona głównie na deformację objętości)

Model II: $E_k \propto D^4$ (część energii zamieniana na potencjalną materiału wyrzuconego)

Metoda logarytmowania

Aby zlinearyzować zależność potęgową, stosujemy logarytmowanie stronami:

$$E_k \propto D^n$$

$$E_k = AD^n$$

$$\log(E_k) = \log(A) + n\log(D)$$

Wykreślając zależność $\log(D)$ od $\log(E_k)$ w układzie współrzędnych, otrzymujemy linię prostą o współczynniku kierunkowym 1/n, co pozwala określić, który z modeli (n=3 czy n=4) lepiej opisuje eksperyment.

Opracowano na podstawie [1].

2 Opis doświadczenia

Doświadczenie polegało na zrzucaniu metalowych kulek o różnych masach z różnych wysokości na powierzchnię suchego, drobnoziarnistego piasku. Kulki były upuszczane swobodnie, bez nadawania im prędkości początkowej. Po każdym uderzeniu mierzono średnicę powstałego krateru.

Wykorzystano trzy kulki o różnych masach i średnicach (tabela 1). Pomiary wykonywano dla wysokości od 0,25 m do 2,0 m. Dla każdej kombinacji kulki i wysokości wykonano po 5 pomiarów średnicy krateru w celu zminimalizowania błędów przypadkowych.

Piasek przed każdą serią pomiarów był wyrównywany i delikatnie ubijany w celu zapewnienia jednorodnych warunków początkowych. Średnicę kraterów mierzono przy pomocy suwmiarki z dokładnością do $0,001~\rm cm$.

3 Opracowanie wyników pomiarów

3.1 Tabele pomiarowe

Rodzaj kulki	Masa [g]	Średnica [cm]
Mała	4,1	1,000
Średnia	14,0	1,500
Duża	31,7	2,000

Tabela 1: Parametry kulek używanych w doświadczeniu

Wysokość [m]	0,25	0,5	1,0	1,5	2,0
Nr pomiaru	Średnica krateru [cm]				
1	3,170	3,760	4,310	4,625	4,760
2	2,880	3,845	3,910	4,510	4,875
3	2,870	3,810	4,220	4,430	4,365
4	3,635	3,580	4,350	4,615	4,575
5	2,965	3,665	4,060	4,550	4,880

Tabela 2: Pomiary średnicy kraterów dla małej kulki

Wysokość [m]	0,5	1,0	1,5	2,0
Nr pomiaru	Średnica krateru [cm]			em]
1	4,760	5,265	6,210	6,995
2	4,750	5,270	6,055	6,890
3	4,920	5,380	6,355	6,885
4	4,930	5,800	6,155	6,610
5	5,120	5,600	6,225	6,775

Tabela 3: Pomiary średnicy kraterów dla średniej kulki

Wysokość [m]	1,5	2,0
Nr pomiaru	Średni	ca krateru [cm]
1	7,310	7,980
2	7,440	7,525
3	7,460	8,035
4	7,375	8,040
5	7,175	7,700

Tabela 4: Pomiary średnicy kraterów dla dużej kulki

3.2 Średnia średnica krateru, energia potencjalna kulki i logarytmy obu wielkości

Dla każdej kombinacji wysokości i rozmiaru kulki wykonano po pięć pomiarów średnicy powstałego krateru. Średnia średnica krateru \overline{D} została obliczona jako średnia arytmetyczna z tych pomiarów według wzoru:

$$\overline{D} = \frac{1}{5} \sum_{i=1}^{5} D_i$$

Energia potencjalna kulki została obliczona ze wzoru $E_p = mgh$, gdzie:

- m masa kulki [kg]
- g przyspieszenie ziemskie $\left[\frac{m}{s^2}\right]$
- \bullet h wysokość z jakiej upuszczono kulkę [m]

Następnie, w celu zlinearyzowania zależności potęgowej między energią a średnicą krateru, obliczono logarytmy dziesiętne obu wielkości:

$$\log_{10}(\overline{D})$$
 oraz $\log_{10}(E_p)$

Wartości te zostały wykorzystane do sporządzenia wykresu w układzie podwójnie logarytmicznym, co pozwoli na określenie wykładnika potęgowego badanej zależności.

Wysokość [m]	0,2	0,5	1,0	1,5	2,0
\overline{D} [m]	0,03104	0,03732	0,04170	0,04546	0,04691
E_p [J]	0,0101	0,0201	0,0402	0,0603	0,0804
$\log_{10}(\overline{D})$	-1,5081	-1,4281	-1,3799	-1,3424	-1,3287
$\log_{10}(E_p)$	-1,9976	-1,6966	-1,3955	-1,2195	-1,0945

Tabela 5: Wyniki pomiarów dla małej kulki

Wysokość [m]	0,5	1,0	1,5	2,0
\overline{D} [m]	0,04896	0,05463	0,06200	0,06831
E_p [J]	0,0687	0,1373	0,2060	0,2747
$\log_{10}(\overline{D})$	-1,3102	-1,2626	-1,2076	-1,1655
$\log_{10}(E_p)$	-1,1632	-0,8622	-0,6861	-0,5612

Tabela 6: Wyniki pomiarów dla średniej kulki

Wysokość [m]	1,5	2,0
\overline{D} [m]	0,07352	0,07856
E_p [J]	0,4665	0,6220
$\log_{10}(\overline{D})$	-1,1336	-1,1048
$\log_{10}(E_p)$	-0,3312	-0,2062

Tabela 7: Wyniki pomiarów dla dużej kulki

3.3 Wykres zależności średnicy krateru od energii potencjalnej

Za pomocą języka Python i biblioteki matplotlib został wygenerowany wykres zależności energii potencjalnej od średnicy krateru. Wykres został sporządzony w układzie podwójnie logarytmicznym i zamieszczony na rysunku 1.

3.4 Regresja liniowa - wyznaczenie wykładnika potęgi

Do analizy zależności między energią potencjalną a średnicą krateru wykorzystano regresję liniową w skali logarytmicznej. Dane zostały przetworzone przy użyciu języka Python i biblioteki NumPy.

Regresja liniowa została wykonana na zlogarytmowanych wartościach energii potencjalnej $(\log_{10}(E_p))$ i średnicy krateru $(\log_{10}(D))$. Wykorzystano funkcję numpy.polyfit, która dopasowuje wielomian (w tym przypadku pierwszego stopnia) do danych metodą najmniejszych kwadratów.

Otrzymana prosta ma postać:

$$\log_{10}(E_n) = a \log_{10}(D) + b$$

gdzie:

- a = 4,37 współczynnik kierunkowy prostej
- b = 4,61 wyraz wolny

Po przekształceniu wzoru na postać potęgową otrzymujemy:

$$E_p = 10^{4.61} \cdot D^{4.37} \approx 4,07 \cdot 10^4 \cdot D^{4.37}$$

4 Ekstrapolacja wyników

4.0.1 Energia potencjalna na podstawie obliczonej zależności

Korzystając z otrzymanego wcześniej wzoru:

$$E_p = 10^{4,61} \cdot D^{4,37} \approx 4,07 \cdot 10^4 \cdot D^{4,37}$$

Dla średnicy krateru $D = 1200 \,\mathrm{m}$ otrzymujemy:

$$E_p \approx 4,07 \cdot 10^4 \cdot (1200)^{4,37}$$

 $\approx 4,07 \cdot 10^4 \cdot 2,22 \cdot 10^{12}$
 $\approx 9,05 \cdot 10^{16} \text{ J}$

4.0.2 Energia kinetyczna na podstawie danych historycznych

Energię kinetyczną meteorytu obliczamy ze wzoru:

$$E_k = \frac{1}{2}mv^2$$

Dla danych:

• masa meteorytu: $m = 3 \cdot 10^8 \text{ kg}$

• prędkość meteorytu: v = 12000 m/s

otrzymujemy:

$$E_k = \frac{1}{2} \cdot (3 \cdot 10^8) \cdot (12000)^2$$
$$= 1, 5 \cdot 10^8 \cdot 1, 44 \cdot 10^8$$
$$= 2, 16 \cdot 10^{16} \text{ J}$$

5 Ocena niepewności pomiaru

Dla wszystkich przyrządów pomiarowych niepewność standardową typu B obliczono według wzoru:

$$u_B(x) = \frac{\Delta x}{\sqrt{3}} \tag{1}$$

gdzie Δx oznacza dokładność wzorcowania przyrządu pomiarowego.

5.1 Niepewność masy kulek

Masy kulek zapisane w tabeli 1 zmierzono za pomocą wagi analitycznej o dokładności wzorcowania $\Delta m = 0,1\,\mathrm{g}$.

Korzystajac ze wzoru (1), otrzymujemy:

$$u_B(m) = 5.8 \cdot 10^{-5} \,\mathrm{m}$$

5.2 Niepewność średnicy kulek

Do pomiaru średnicy kulek przedstawionych w tabeli 1 wykorzystano suwmiarkę o dokładności wzorcowania $\Delta d=0,05\,\mathrm{mm}$.

Zgodnie ze wzorem (1):

$$u_B(d) = 2,9 \cdot 10^{-5} \,\mathrm{m}$$

5.3 Niepewność wysokości

Do pomiaru wysokości została użyta miara metrowa o dokładności wzorcowania $\Delta h = 0,01\,\mathrm{m}.$

Stosując wzór (1):

$$u_B(h) = 0,0058 \,\mathrm{m}$$

5.4 Niepewność średnicy kraterów

Do obliczenia odchylenia standardowego średnicy kraterów $u_A(D)$ użyto poniższego wzoru:

$$u_A(D) = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (D_i - \bar{D})^2}$$

gdzie:

- \bullet D_i to wartość pojedynczego pomiaru,
- \bar{D} to średnia z pomiarów,
- n to liczba pomiarów.

Otrzmane wyniki przedstawia tabela 8.

Wysokość h [m]		$u_A(D)$ [m]	
	Mała kulka	Średnia kulka	Duża kulka
0,25	0,0032	-	-
0,5	0,0011	0,0015	-
1,0	0,0018	0,0023	-
1,5	0,00080	0,0011	0,0012
2,0	0,0022	0,0015	0,0023

Tabela 8: Odchylenie standardowe średnicy kraterów dla poszczególnych kulek

Następnie obliczono niepewność typu B średnicy kraterów $u_B(D)$ na podstawie wzoru (1) i otrzymano wartość:

$$u_B(D) = 0,029 \,\mathrm{m}$$

Następnie obliczono niepewność całkowitą średnicy kraterów $u_c(D)$ na podstawie wzoru:

$$u_c(D) = \sqrt{u_A(D)^2 + u_B(D)^2}$$

Otrzymane wyniki przedstawia tabela 9.

Wysokość h [m]		$u_c(D)$ [m]	
	Mała kulka	Średnia kulka	Duża kulka
0,25	0,0032	-	-
0,5	0,0011	0,0015	-
1,0	0,0018	0,0023	-
1,5	0,00080	0,0011	0,0012
2,0	0,0022	0,0015	0,0023

Tabela 9: Niepewność całkowita średnicy kraterów dla wszystkich kulek

Przykładowe obliczenie dla małej kulki przy wysokości $h = 1,5 \,\mathrm{m}$:

$$u_A(D) = \sqrt{\frac{\frac{1}{4}[(4,625 - 4,546)^2 + (4,510 - 4,546)^2 + (4,430 - 4,546)^2 + (4,615 - 4,546)^2 + (4,550 - 4,546)^2]}$$

= 0,00080 m

$$u_B(D) = \frac{0.05}{\sqrt{3}} = 0.029 \,\mathrm{m}$$

$$u_c(D) = \sqrt{(0,00080)^2 + (0,029)^2} = 0,029 \,\mathrm{m}$$

5.5 Niepewność energii potencjalnej

korzystając z prawa przenoszenia niepewności otrzymano:

$$u_c(E) = \sqrt{\left(\frac{\partial E}{\partial m}\right)^2 u_c(m)^2 + \left(\frac{\partial E}{\partial h}\right)^2 u_c(h)^2}$$

Po podstawieniu wzoru na energię potencjalną E = mgh otrzymano:

$$u_c(E) = \sqrt{g^2 h^2 u_c(m)^2 + g^2 m^2 u_c(h)^2} =$$
$$= g\sqrt{h^2 u_c(m)^2 + m^2 u_c(h)^2}$$

Dla wszystkich kulek i wszystkich wysokości otrzymano wartości niepewności energii potencjalnej przedstawione w tabeli 10.

Wysokość h [m]		$u_c(E)$ [J]	
	Mała kulka	Średnia kulka	Duża kulka
0,25	0,0024	-	-
0,5	0,0024	0,0083	-
1,0	0,0025	0,0083	-
1,5	0,0026	0,0083	0,019
2,0	0,0027	0,0083	0,019

Tabela 10: Niepewność całkowita energii potencjalnej dla wszystkich kulek

Przykładowe obliczenia niepewności energii potencjalnej dla małej kulki (o masie 4,1 g) na wysokości h=0,25 m:

$$u_c(E) = 9,81\sqrt{(0,25)^2\cdot(6,00\cdot10^{-5})^2 + (0,0041)^2\cdot(0,0058)^2} = 0,0024~\mathrm{J}$$

5.6 Niepewność pomiarowa współczynników prostej regresji liniowej

Niepewności pomiarowe dla wyznaczonej prostej regresji liniowej y=ax+b obliczono na podstawie odchylenia standardowego reszt s_y oraz rozkładu punktów pomiarowych wzdłuż osi x, korzystając z następujących wzorów:

$$s_y = \sqrt{\frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n - 2}}$$
$$u_a = s_y \sqrt{\frac{n}{n \sum x_i^2 - (\sum x_i)^2}}$$
$$u_b = s_y \sqrt{\frac{\sum x_i^2}{n \sum x_i^2 - (\sum x_i)^2}}$$

gdzie x_i to wartości zmiennej niezależnej, y_i to wartości zmierzone, \hat{y}_i to wartości przewidywane przez model regresji, a n to liczba punktów pomiarowych. Dzielnik n-2 wynika z faktu, że model regresji liniowej ma dwa parametry $(a \ i \ b)$.

Obliczone wartości niepewności dla współczynników prostej regresji wyniosły odpowiednio:

- $u_a = 0, 14$
- $u_b = 0,018$

6 Wnioski

Wykładnik potęgi a=4,37(14) sugeruje, że zależność między energią potencjalną a średnicą krateru jest bliższa modelowi II $(E_k \propto D^4)$ niż modelowi I $(E_k \propto D^3)$.

Ekstrapolując otrzymaną zależność do skali astronomicznej, możemy porównać przewidywania naszego modelu z rzeczywistymi danymi. Dla krateru w Arizonie o średnicy 1200 m i meteorytu o masie $3\cdot 10^8$ kg i prędkości 12000 m/s, energia kinetyczna meteorytu wynosiła:

- Według danych historycznych: $E_k = \frac{1}{2}mv^2 = 2,16 \cdot 10^{16} \text{ J}$
- Według naszego modelu ($E_k \propto D^{4,37}$): $E_k = 9.05 \cdot 10^{16} \text{ J}$

Wartość według naszego modelu jest o 76% większa od wartości historycznej. Jest to stosunkowo dobra zgodność biorąc pod uwagę, że ekstrapolujemy wyniki z eksperymentu laboratoryjnego (skala centymetrów) do zjawiska astronomicznego (skala kilometrów).

7 Wykresy

Rysunek 1: Wykres zależności energii potencjalnej od średnicy krateru (Źródło: opracowanie własne)

Literatura

[1] Instytut Fizyki Doświadczalnej UWr. Laboratoryjny eksperyment symulujący powstawanie kraterów na planetach i księżycach, wskutek uderzeń meteorytów. https://wfa.uwr.edu.pl/wp-content/uploads/sites/216/2024/02/Mech.12_wstep.pdf, 2024. Instrukcja do ćwiczenia nr 12, I Pracownia Fizyczna.