1 Here are two vectors.	$\overrightarrow{AB} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$	$\overrightarrow{CB} = \begin{pmatrix} -2\\4 \end{pmatrix}$	
Find, as a column vector, \overrightarrow{AC}			
		(Total for Question 1 is 2 marks)	
		,	_

2	Here	are	two	vectors.

$$\overrightarrow{AB} = \begin{pmatrix} 6 \\ -9 \end{pmatrix} \qquad \overrightarrow{CB} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

Find the magnitude of \overrightarrow{AC} .

(Total for Question 2 is 3 marks)

3 The diagram shows parallelogram *ABCD*.

$$\overrightarrow{AB} = \begin{pmatrix} 2 \\ 7 \end{pmatrix} \quad \overrightarrow{AC} = \begin{pmatrix} 10 \\ 11 \end{pmatrix}$$

The point B has coordinates (5, 8)

(a) Work out the coordinates of the point C.

(3)

The point E has coordinates (63, 211)

(b) Use a vector method to prove that ABE is a straight line.

4 ABCDEF and GHIJKL are regular hexagons each with centre O.

 GHIJKL is an enlargement of ABCDEF , with centre O and scale factor 2

$$\overrightarrow{OA} = \mathbf{a}$$
 $\overrightarrow{OB} = \mathbf{b}$

- (a) Write the following vectors, in terms of **a** and **b**. Simplify your answers.
 - (i) \overrightarrow{AB}

(1)

(ii) \overrightarrow{KI}

(2)

(iii) \overrightarrow{LD}

.....

The triangle OAB has an area of 5 cm^2	
(b) Calculate the area of the shaded region.	
	С
	(3)
	(Total for Question 4 is 8 marks)

Diagram **NOT** accurately drawn

ABC is a triangle.
The midpoint of BC is M.
P is a point on AM.

$$\overrightarrow{AB} = 4\mathbf{a}$$

$$\overrightarrow{AC} = 2\mathbf{b}$$

$$\overrightarrow{AP} = \frac{3}{2}\mathbf{a} + \frac{3}{4}\mathbf{b}$$

Find the ratio *AP*: *PM*

6 OAB is a triangle.
$\overrightarrow{OA} = \mathbf{a} \qquad \overrightarrow{OB} = \mathbf{b}$
The point C lies on OA such that $OC : CA = 1 : 2$ The point D lies on OB such that $OD : DB = 1 : 2$
Using a vector method, prove that ABDC is a trapezium.
(Total for Question 6 is 3 marks)

OAB is a triangle.

Q is the point on AB such that OQP is a straight line.

$$\overrightarrow{OA} = 4\mathbf{a}$$
 $\overrightarrow{OB} = 6\mathbf{b}$ $\overrightarrow{AP} = 2\mathbf{a} + 8\mathbf{b}$

Using a vector method, find the ratio AQ:QB

8 ABCD is a parallelogram and ADM is a straight line.

$$\overrightarrow{AB} = \mathbf{a}$$
 $\overrightarrow{BC} = \mathbf{b}$ $\overrightarrow{DM} = \frac{1}{2}\mathbf{b}$

K is the point on *AB* such that $AK:AB = \lambda:1$ *L* is the point on *CD* such that $CL:CD = \mu:1$ *KLM* is a straight line.

Given that $\lambda: \mu = 1:2$

use a vector method to find the value of λ and the value of μ

 $\lambda = \dots$

 $\mu = \dots$

(Total for Question 8 is 5 marks)

$$\overrightarrow{OA} = \mathbf{a}$$
 $\overrightarrow{OC} = \mathbf{c}$ $\overrightarrow{AB} = 2\mathbf{c}$

P is the point on AB such that AP : PB = 3 : 1 Q is the point on AC such that OQP is a straight line.

Use a vector method to find AQ : QCShow your working clearly.

10 OXYZ is a trapezium.

$$\overrightarrow{OX} = \mathbf{a}$$

$$\overrightarrow{XY} = \mathbf{b}$$

$$\overrightarrow{OZ} = 3\mathbf{b}$$

M is the midpoint of OX

N is the point such that MNZ and ONY are straight lines.

Given that $ON: OY = \lambda: 1$

use a vector method to find the value of λ

$\lambda = \dots$
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
 (Total for Question 10 is 5 marks)

11 *OACB* is a trapezium.

$$\overrightarrow{OA} = 2\mathbf{a}$$
 $\overrightarrow{OB} = 5\mathbf{b}$ $\overrightarrow{AC} = 3\mathbf{b}$

The diagonals, OC and AB, of the trapezium intersect at the point P.

Find and simplify an expression, in terms of **a** and **b**, for \overrightarrow{OP} Show your working clearly.

\rightarrow
$\overrightarrow{OP} = \dots$
$\overrightarrow{OP} = \dots$ (Total for Question 11 is 5 marks)

12 The diagram shows triangle *OAB*

$$\overrightarrow{OA} = 8\mathbf{a}$$
 $\overrightarrow{OB} = 6\mathbf{b}$

M is the point on OB such that OM: MB = 1:2 N is the midpoint of AB P is the point of intersection of ON and AM

Using a vector method, find \overrightarrow{OP} as a simplified expression in terms of **a** and **b** Show your working clearly.

$\overrightarrow{OP} =$
$\overrightarrow{OP} =$ (Total for Question 12 is 5 marks)

13 *OAB* is a triangle.

$$\overrightarrow{OA} = \mathbf{a} \qquad \overrightarrow{OB} = \mathbf{b}$$

C is the midpoint of *OA*.

D is the point on AB such that AD:DB = 3:1

E is the point such that $\overrightarrow{OB} = 2\overrightarrow{BE}$

Using a vector method, prove that the points C, D and E lie on the same straight line.

(Total for Question 13 is 5 marks)

14 The diagram shows trapezium *OACB*.

$$\overrightarrow{OA} = 3\mathbf{a}$$
 $\overrightarrow{OB} = 6\mathbf{b}$ $\overrightarrow{AC} = 4\mathbf{b}$

N is the point on OC such that ANB is a straight line.

Find \overrightarrow{ON} as a simplified expression in terms of **a** and **b**.

(Total for Question 14 is 5 marks)

OAN, OMB, APB and MPN are straight lines.

$$OA:AN = 1:4$$

$$OM: MB = 1:1$$

$$\overrightarrow{OA} = 2\mathbf{a}$$
 $\overrightarrow{OB} = 2\mathbf{b}$

By using a vector method, find the ratio AP:PB Give your answer in its simplest form.

16 *OAB* is a triangle.

$$\overrightarrow{OA} = 2\mathbf{a}$$
 and $\overrightarrow{OB} = 2\mathbf{b}$

M is the midpoint of AB.

N is the point on OB such that ON: NB = 2:1

P is the point on AN such that OPM is a straight line.

Use a vector method to find OP:PM

Show your working clearly.

