Tutorial 9

Simplify each Boolean expression

$$A(A+\overline{A})+B$$

•
$$A(A+\overline{A})+B$$

$$=AA+A\overline{A}+B$$

$$= A + O + B$$

$$=A+B$$

by the distributive law

because
$$AA = A$$
 and $A \overline{A} = 0$

because
$$A + 0 = A$$

Simplify each Boolean expression

$$(A+B)(\overline{A} + B)\overline{B}$$

$$=(A+B)(\overline{AB}+B\overline{B})$$

$$= (A+B)(\overline{A}\overline{B} + 0)$$

$$= (A+B)(\overline{A}B)$$

$$=A\overline{A}\overline{B}+B\overline{A}\overline{B}$$

$$= \overline{B}O + \overline{A}O$$

= 0

by the distributive law

because $B\overline{B} = 0$

because $\overline{AB}+0=\overline{AB}$

by the distributive law

because $A\overline{A} = 0$ and $B\overline{B} = 0$

because 0 ANDed with anything is 0

Simplify each Boolean expression
 (A + B)(A + C)

$$(A + B)(A + C)$$

$$= AA + AC + AB + BC$$

$$= A + AC + AB + BC$$

$$= A(1 + C) + AB + BC$$

$$= A. 1 + AB + BC$$

$$= A(1 + B) + BC$$

$$= A(1 + B) + BC$$

$$= A(1 + B) + BC$$

$$= A + BC$$

$$= A + BC$$
Distributive law
$$1 + C = 1$$

$$1 + C = 1$$

$$1 + B = 1$$

$$1$$

Simplify the following expression

$$A(\overline{BC} + BC)$$

Simplification

$$\overline{\mathbf{A}(\overline{\mathbf{B}}\overline{\mathbf{C}} + \mathbf{B}\mathbf{C})} = \overline{\mathbf{A}} + (\overline{\overline{\mathbf{B}}\overline{\mathbf{C}}} + \overline{\mathbf{B}}\overline{\mathbf{C}})$$

$$= \overline{\mathbf{A}} + (\overline{\overline{\mathbf{B}}\overline{\mathbf{C}}})(\overline{\mathbf{B}}\overline{\mathbf{C}})$$

$$= \overline{\mathbf{A}} + (\mathbf{B} + \mathbf{C})(\overline{\mathbf{B}} + \overline{\mathbf{C}})$$

Summary of 2-input Logic Gates

Inputs		Truth Table Outputs For Each Gate					
Α	В	AND	NAND	OR	NOR	EX-OR	EX-NOR
0	0	0	1	0	1	0	1
0	1	0	1	1	0	1	0
1	0	0	1	1	0	1	0
1	1	1	0	1	0	0	1

Truth Table of output Y?

Α	В	Ā	Υ
0	0	1	0
0	1	1	1
1	0	0	0
1	1	0	0

Truth Table of output Y?

А	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

 How many truth table entries are necessary for a four-input circuit?

- a) 4
- b) 8
- c) 12
- d) 16

 Which input values will cause an AND logic gate to produce a HIGH output?

- a) At least one input is HIGH
- b) At least one input is LOW
- c) All inputs are HIGH
- d) All inputs are LOW

 The basic logic gate whose output is the complement of the input is the

- a) OR gate
- b) AND gate
- c) INVERTER gate
- d) XOR gate

The expression for Absorption law is given by

a)
$$A + AB = A$$

b)
$$A + AB = B$$

c)
$$AB + AA' = A$$

$$d) A + B = B + A$$

Which of following are known as universal gates?

- a) NAND & NOR
- b) AND & OR
- c) XOR & OR
- d) EX-NOR & XOR

The output of OR gate is 1

- a) If both inputs are zero
- b) If either or both inputs are 1
- c) Only if both inputs are 1
- d) If either input is zero

 Which of the following logical operations is represented by the + sign in Boolean algebra?

- A.inversion
- B.AND
- **C.**OR
- D.complementation