LocalGLMnet and more

Mario V. Wüthrich RiskLab, ETH Zurich

"Deep Learning with Actuarial Applications in R" Swiss Association of Actuaries SAA/SAV, Zurich October 14/15, 2021

Programme SAV Block Course

- Refresher: Generalized Linear Models (THU 9:00-10:30)
- Feed-Forward Neural Networks (THU 13:00-15:00)
- Discrimination-Free Insurance Pricing (THU 17:15-17:45)

- LocalGLMnet (FRI 9:00-10:30)
- Convolutional Neural Networks (FRI 13:00-14:30)
- Wrap Up (FRI 16:00-16:30)

Contents: LocalGLMnet and more

- Balance property for neural networks
- Multiplicity of equally good FNN models
- The nagging predictor
- LocalGLMnet: interpretable deep learning

• Balance Property for Neural Networks

Balance Property for FNN Models

	epochs	run	#	in-sample	out-of-sample	average
		time	param.	loss in 10^{-2}	loss in 10^{-2}	frequency
homogeneous model		_	1	32.935	33.861	10.02%
Model GLM1		20s	49	31.267	32.171	10.02%
Deep FNN One-Hot	250	152s	1'306	30.268	31.673	10.19%
Deep FNN Emb $(b=1)$	700	419s	719	30.245	31.506	9.90%
Deep FNN Emb $(b=2)$	600	365s	792	30.165	31.453	9.70%
Deep FNN Emb $(b=2)$ seed 1		365s	792	30.411	31.503	9.90%
Deep FNN Emb($b = 2$) seed 2		365s	792	30.352	31.418	10.23%
Deep FNN Emb($b = 2$) seed 3		365s	792	30.315	31.500	9.61%

- Balance property fails to hold for FNN regression models.
- The reason is early stopping which prevents from being in a critical point of the deviance loss $D^*(\mathbf{Y},\cdot)$ (under canonical link choice).

Critical Points of Deviance Loss Function

loss function (view 2)

Under the canonical link choice, the balance property is fulfilled in the critical points.

Failure of Balance Property of FNNs

balance property over 30 SGD calibrations

The failure of the balance property is significant.

Seeds and Randomness Involved in SGD

```
layer_dense(units=q1, activation = "tanh",
                        kernel_initializer = initializer_glorot_uniform(),
                        bias_initializer='zeros') %>%
 layer_dropout(rate=0.05)
6 model %>% fit(X, Y, validation_split = 0.2, batch_size = 10000, epochs = 500)
```


Representation Learning: Additional GLM Step

Network mapping with link g

$$\boldsymbol{x}_i \mapsto g(\widehat{\mu}_i) = g(\widehat{\mathbb{E}}[Y_i]) = \left\langle \widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{z}}^{(d:1)}(\boldsymbol{x}_i) \right\rangle,$$

with GDM fitted network parameter $\widehat{\vartheta} = (\widehat{\boldsymbol{w}}, \widehat{\boldsymbol{\beta}}) \in \mathbb{R}^r$.

- Mapping $x_i \mapsto \widehat{z}_i = \widehat{z}^{(d:1)}(x_i)$ should be understood as learned representation.
- Idea (with canonical link choice g = h): consider a GLM with new covariates \hat{z}_i .
- If design matrix $\widehat{\mathfrak{Z}} \in \mathbb{R}^{n \times (q_d+1)}$ has full rank $q_d+1 \leq n$, we have a unique MLE $\widehat{\boldsymbol{\beta}}^{\mathrm{MLE}}$, and the balance property will be fulfilled under canonical link choice.

Rectifying the Balance Property

ullet Network mapping with link g

$$\boldsymbol{x}_i \mapsto g(\widehat{\mu}_i) = g(\widehat{\mathbb{E}}[Y_i]) = \left\langle \widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{z}}^{(d:1)}(\boldsymbol{x}_i) \right\rangle,$$

with GDM fitted network parameter $\widehat{\vartheta} = (\widehat{\boldsymbol{w}}, \widehat{\boldsymbol{\beta}}) \in \mathbb{R}^r$.

• Choose $\widehat{\boldsymbol{\beta}}^{\mathrm{MLE}}$ for design matrix $\widehat{\boldsymbol{\mathfrak{Z}}} \in \mathbb{R}^{n \times (q_d+1)}$

$$\boldsymbol{x}_i \mapsto h(\widehat{\mu}_i) = h(\widehat{\mathbb{E}}[Y_i]) = \left\langle \widehat{\boldsymbol{\beta}}^{\mathrm{MLE}}, \widehat{\boldsymbol{z}}^{(d:1)}(\boldsymbol{x}_i) \right\rangle,$$

for canonical link h.

R Code for Implementing the Balance Property

- The R code considers the Poisson model with canonical link $g = h = \log$.
- If we do not have canonical link we still need to adjust the intercept $\widehat{\beta}_0^{\text{MLE}}$.
- The additional GLM step may lead to over-fitting, if the size q_d of the last hidden FNN layer is not too large, there won't be over-fitting.

Balance Property for FNN Models

	epochs	run	#	in-sample	out-of-sample	average
		time	param.	loss in 10^{-2}	loss in 10^{-2}	frequency
homogeneous model		_	1	32.935	33.861	10.02%
Model GLM1		20s	49	31.267	32.171	10.02%
Deep FNN One-Hot	250	152s	1'306	30.268	31.673	10.19%
Deep FNN Emb $(b=1)$	700	419s	719	30.245	31.506	9.90%
Deep FNN Emb $(b=2)$	600	365s	792	30.165	31.453	9.70%
Deep FNN Emb $(b=2)$ seed 1		365s	792	30.411	31.503	9.90%
Deep FNN Emb($b = 2$) seed 2		365s	792	30.352	31.418	10.23%
Deep FNN Emb($b = 2$) seed 3		365s	792	30.315	31.500	9.61%
Reg. FNN Emb $(b=2)$ seed 1		+7s	792	30.408	31.488	10.02%
Reg. FNN Emb $(b=2)$ seed 2		+7s	792	30.346	31.418	10.02%
Reg. FNN Emb $(b=2)$ seed 3		+7s	792	30.303	31.462	10.02%

Balance Property for FNN Models

in-sample losses over 30 SGD calibrations

out-of-sample losses over 30 SGD calibrations

• The "Best" FNN Regression Model

Multiplicity of Equally Good FNN Models

loss function (view 2)

- Many network parameters ϑ produce the same loss figure for a given objective function $\vartheta \mapsto D^*(\mathbf{Y}, \vartheta)$, i.e. they are "equally good" (on portfolio level).
- The chosen network solution will depend in the initial seed of the algorithm.
- This is very troublesome for insurance pricing!

Scatter Plot: In-Sample vs. Out-of-Sample Losses

scatter plot of in-sample and out-of-sample losses

This example is taken from Richman–Wüthrich (2020) and the in-sample losses are smaller than in the table above because we used different data cleaning.

• The Nagging Predictor

The Nagging Predictor

- Breiman (1996) uses bootstrap aggregating = bagging to reduce noise in predictors.
- Aggregate over different network predictors of different calibrations $j \geq 1$

$$\bar{\mu}_i^{(M)} = \frac{1}{M} \sum_{j=1}^M \widehat{\mu}_i^{(j)} = \frac{1}{M} \sum_{j=1}^M \mu_{\widehat{\vartheta}(j)}(\boldsymbol{x}_i).$$

• Theorem (generalization loss). Under suitable assumptions we have for deviance loss $D^*(Y_i, \cdot)$

$$\mathbb{E}\left[D^*\left(Y_i, \bar{\mu}_i^{(M)}\right)\right] \geq \mathbb{E}\left[D^*\left(Y_i, \bar{\mu}_i^{(M+1)}\right)\right] \geq \mathbb{E}\left[D^*(Y_i, \mu_i)\right],$$

and there is also a corresponding asymptotic normality result (CLT).

Nagging Predictor: Car Insurance Example

- After M=20 iterations: the out-of-sample loss on portfolio has converged.
- After M=40 iterations: confidence bounds are narrow.

Car Insurance Frequency Poisson Example

	epochs	run	#	in-sample	out-of-sample	average
		time	param.	loss in 10^{-2}	loss in 10^{-2}	frequency
homogeneous model		_	1	32.935	33.861	10.02%
Model GLM1		20s	49	31.267	32.171	10.02%
Deep FNN One-Hot	250	152s	1'306	30.268	31.673	10.19%
Deep FNN Emb $(b=1)$	700	419s	719	30.245	31.506	9.90%
Deep FNN Emb $(b=2)$	600	365s	792	30.165	31.453	9.70%
Deep FNN Emb $(b=2)$ seed 1		365s	792	30.411	31.503	9.90%
Deep FNN Emb $(b=2)$ seed 2		365s	792	30.352	31.418	10.23%
Deep FNN Emb($b = 2$) seed 3		365s	792	30.315	31.500	9.61%
Reg. FNN Emb $(b=2)$ seed 1		+7s	792	30.408	31.488	10.02%
Reg. FNN Emb $(b=2)$ seed 2		+7s	792	30.346	31.418	10.02%
Reg. FNN Emb($b = 2$) seed 3		+7s	792	30.303	31.462	10.02%
Nagging predictor for $M=400$				30.060	31.272	10.02%

The nagging predictor leads to a clear model improvement.

Stability on Individual Policy Level

volatility in estimated frequencies

$$\widehat{\text{CoV}}_i = \frac{\widehat{\sigma}_i}{\overline{\mu}_i^{(M)}} = \sqrt{\frac{1}{M-1} \sum_{j=1}^M \left(\widehat{\mu}_i^{(j)} - \overline{\mu}_i^{(M)}\right)^2} / \overline{\mu}_i^{(M)}.$$

• Individual policy level: average over 400 networks to get coefficient of variation (CoV) of $1/\sqrt{400} = 5\%$.

Fit Meta Model to Nagging Predictor

scatter plot: nagging vs. meta model

• LocalGLMnet: interpretable deep learning

Explainability of Deep FNN Predictors

- Network predictors are criticized for not being explainable (black box).
- There are many tools to make network predictors explainable a posteriori:
 - ⋆ partial dependence plots (PDPs)
 - ★ accumulated local effects (ALEs)
 - ★ locally interpretable model-agnostic explanation (LIME)
 - ★ SHapley Additive exPlanation (SHAP)
 - ★ marginal attribution by conditioning on quantiles (MACQ)
- Network predictors do not allow for variable selection.
- LocalGLMnet is an architecture that is explainable and allows for variable selection.

LocalGLMnet Architecture

ullet A GLM has the following regression structure for parameter $oldsymbol{eta} \in \mathbb{R}^q$

$$g(\mu(\boldsymbol{x})) = \beta_0 + \langle \boldsymbol{\beta}, \boldsymbol{x} \rangle = \beta_0 + \sum_{j=1}^q \beta_j x_j.$$

- Idea: Estimate regression parameter $\beta = \beta(x)$ with a FNN.
- Define regression attentions through a deep FNN

$$oldsymbol{eta}: \mathbb{R}^q \;\; o \;\; \mathbb{R}^q \ oldsymbol{x} \;\; \mapsto \;\; oldsymbol{eta}(oldsymbol{x}) = oldsymbol{z}^{(d:1)}(oldsymbol{x}) = \left(oldsymbol{z}^{(d)} \circ \cdots \circ oldsymbol{z}^{(1)}
ight)(oldsymbol{x}).$$

The LocalGLMnet is defined by the additive decomposition

$$g(\mu(\boldsymbol{x})) = \beta_0 + \langle \boldsymbol{\beta}(\boldsymbol{x}), \boldsymbol{x} \rangle = \beta_0 + \sum_{j=1}^q \beta_j(\boldsymbol{x}) x_j.$$

Interpretation of LocalGLMnet Architecture

The LocalGLMnet is defined by the additive decomposition

$$g(\mu(\boldsymbol{x})) = \beta_0 + \langle \boldsymbol{\beta}(\boldsymbol{x}), \boldsymbol{x} \rangle = \beta_0 + \sum_{j=1}^q \beta_j(\boldsymbol{x}) x_j.$$

- We consider the different cases of regression attentions $\beta_j(x)$:
 - \star If $\beta_i(\mathbf{x}) \equiv \beta_i$: GLM term $\beta_i x_i$.
 - \star If $\beta_i(\boldsymbol{x}) \equiv 0$: drop term x_i .
 - * If $\beta_j(\boldsymbol{x}) = \beta_j(x_j)$: no interactions with covariates $x_{j'}$ for $j' \neq j$.
 - * Test for interactions: Calculate and analyze gradients

$$\nabla \beta_j(\boldsymbol{x}) = \left(\frac{\partial}{\partial x_1} \beta_j(\boldsymbol{x}), \dots, \frac{\partial}{\partial x_q} \beta_j(\boldsymbol{x})\right)^{\top} \in \mathbb{R}^q.$$

 \star Careful, there is no identifiability: $\beta_j(\boldsymbol{x})x_j = x_{j'}$.

Implementation of LocalGLMnet

Line 10 is needed to bring in the intercept β_0 ; but there are other ways to do so, see also next slide for explanation.

Remarks and Preparation of Example

There are other ways in implementing the intercept. Current solution:

$$g(\mu(\boldsymbol{x})) = \alpha_0 + \alpha_1 \sum_{j=1}^q \beta_j(\boldsymbol{x}) x_j.$$

- Categorical variables should either use:
 - ★ one-hot encoding
 - * dummy coding with normalization to centering and unit variance
 - ➤ These codings will allow for interaction of all levels.
- We normalize all covariates to centering and unit variance: comparability!
- Fitting is done completely analogously to a FNN with SGD. Resulting networks are competitive with classical FNNs.

Example: Regression Attentions LocalGLMnet

Confidence Bounds for Variable Selection

Add (two) purely random covariates (with different distributions)

$$x_{i,q+1} \overset{\text{i.i.d.}}{\sim} U\left[-\sqrt{3}, \sqrt{3}\right]$$
 and $x_{i,q+2} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0,1).$

These covariates are standardized.

• Consider extended regression function for $\mathbf{x}^+ = (x_1, \dots, x_q, x_{q+1}, x_{q+2})^\top \in \mathbb{R}^{q+2}$

$$g(\mu(\mathbf{x}^+)) = \beta_0^+ + \langle \boldsymbol{\beta}^+(\mathbf{x}^+), \mathbf{x}^+ \rangle = \beta_0^+ + \sum_{j=1}^{q+2} \beta_j^+(\mathbf{x}^+) x_j.$$

• Magnitudes of $\widehat{\beta}_{q+1}^+(x^+)$ and $\widehat{\beta}_{q+2}^+(x^+)$ determine size of insignificant components.

Confidence Bounds for Variable Selection

- Magnitudes of $\widehat{\beta}_{q+1}^+(x^+)$ and $\widehat{\beta}_{q+2}^+(x^+)$ determine size of insignificant components.
- Determine empirical mean and standard deviations for j = q + 1, q + 2

$$\bar{b}_j = \frac{1}{n} \sum_{i=1}^n \widehat{\beta}_j^+(\boldsymbol{x}_i^+) \quad \text{ and } \quad \widehat{s}_j = \sqrt{\frac{1}{n-1} \sum_{i=1}^n \left(\widehat{\beta}_j^+(\boldsymbol{x}_i^+) - \bar{b}_j\right)^2}.$$

• Null hypothesis $H_0: \beta_j(\boldsymbol{x}) = 0$ for component j on significance level $\alpha \in (0, 1/2)$ can be rejected if the coverage ratio of the following interval

$$I_{\alpha} = \left[q_{\mathcal{N}}(\alpha/2) \cdot \widehat{s}_{q+1}, \ q_{\mathcal{N}}(1 - \alpha/2) \cdot \widehat{s}_{q+1} \right]$$

is substantially smaller than $1-\alpha$, where $q_{\mathcal{N}}(p)$ denotes the standard Gaussian quantile on level $p \in (0,1)$.

Variable Selection with Cyan Confidence Bounds

Covariate Contributions $\widehat{\beta}_j(\boldsymbol{x})x_j$

Interactions between Covariate Components

interactions of feature component Driver's Age

interactions of feature component Vehicle Age

$$\nabla \beta_j(\boldsymbol{x}) = \left(\frac{\partial}{\partial x_1} \beta_j(\boldsymbol{x}), \dots, \frac{\partial}{\partial x_q} \beta_j(\boldsymbol{x})\right)^{\top} \in \mathbb{R}^q.$$

Calculation of Gradients in keras

In different TensorFlow/keras versions this may be slightly different.

Variable/Term Importance

$$VI_{j} = \frac{1}{n} \sum_{i=1}^{n} \left| \widehat{\beta}_{j}(\boldsymbol{x}_{i}) \right|.$$

Categorical Covariate Components

feature contribution: French Regions

LASSO regularization within LocalGLMnets: see Richman–Wüthrich (2021b).

References

- Breiman (1996). Bagging predictors. Machine Learning 24, 123-40.
- Efron, Hastie (2016). Computer Age Statistical Inference: Algorithms, Evidence, and Data Science. Cambridge UP.
- Ferrario, Noll, Wüthrich (2018). Insights from inside neural networks. SSRN 3226852.
- Goodfellow, Bengio, Courville (2016). Deep Learning. MIT Press.
- Hastie, Tibshirani, Friedman (2009). The Elements of Statistical Learning. Springer.
- Lorentzen, Mayer (2020). Peeking into the black box: an actuarial case study for interpretable machine learning.
 SSRN 3595944.
- Noll, Salzmann, Wüthrich (2018). Case study: French motor third-party liability claims. SSRN 3164764.
- Richman (2020a/b). Al in actuarial science a review of recent advances part 1/2. Annals of Actuarial Science.
- Richman, Wüthrich (2020). Nagging predictors. Risks 8/3, 83.
- Richman, Wüthrich (2021a). LocalGLMnet: interpretable deep learning for tabular data. SSRN 3892015.
- Richman, Wüthrich (2021b). LASSO regularization within the LocalGLMnet architecture. SSRN 3927187.
- Schelldorfer, Wüthrich (2019). Nesting classical actuarial models into neural networks. SSRN 3320525.
- Schelldorfer, Wüthrich (2021). LocalGLMnet: a deep learning architecture for actuaries. SSRN 3900350.
- Wüthrich (2020). Bias regularization in neural network models for general insurance pricing. European Actuarial Journal 10/1, 179-202.
- Wüthrich, Buser (2016). Data Analytics for Non-Life Insurance Pricing. SSRN 2870308, Version September 10, 2020.
- Wüthrich, Merz (2019). Editorial: Yes, we CANN! ASTIN Bulletin 49/1, 1-3.
- Wüthrich, Merz (2021). Statistical Foundations of Actuarial Learning and its Applications. SSRN 3822407.