THE CYTOLOGY, MORPHOLOGY, AND SYSTEMATIC RELATIONSHIPS OF DELPHINIUM × BELLADONNA HORT. EX BERGM.*

MARILYN AMY GAGE

I. INTRODUCTION

Among the cultivated perennial Delphiniums the problem of the origin of the forms variously termed "garland larkspurs" (Bailey, 1930) or Belladonna types has been raised more than once. The group as it is known at present includes not only Delphinium × Belladonna Hort. ex Bergm., but at least the 45 variants listed by the Royal Horticultural Society (1949), and probably certain other hybrids of unknown origin some of which are no longer in cultivation but were recorded

in the literature of the last century.

Two main theories have been proposed regarding the nature of the assemblage. (1) L. H. Bailey, following the example of Huth (1895), the last monographer of the genus, considered these plants to be forms of D. cheilanthum Fisch. var. formosum; his grounds are wholly morphological. (2) Lawrence (1936), on the other hand, has suggested that D. Belladonna originated in gardens as a triploid hybrid between a tetraploid species and a diploid species, and that subsequent doubling of the chromosome number resulted in the fertile line now in cultivation. His hypothesis is in line with the known facts, for until early in the present century Belladonna was quite sterile and was propagated wholly vegetatively; moreover, the present fertile strain is a hexaploid.

In studying the origin of cultigens the historical method alone is obviously inadequate. Students of cultivated plants are well acquainted with the hazards of
attempting to place even well-known species into conventional taxonomic categories. Even with such a relatively recent variety as D. Belladonna, caution is
necessary in considering historical references, for it often happens that opinions
given in early descriptions are contradictory or suggest some parentage which, in
the light of present knowledge of cytology and genetics, is far from the truth.
One can accept, with caution, species listed in cultivation at a certain period, but
there must always be the reservation that morphologically similar species are subject to confusion, and that any of these species may, and probably do, differ from
their wild relatives as a result of horticultural "amelioration."

Morphological comparisons with known species have often been used in establishing the possible parentage of plants of unknown origin. This method is most useful in groups where there are clear-cut characters whose extreme and intermediate expressions are easily recognized. The genus Delphinium is, however, notoriously variable, and specific distinctions are based to a very great extent upon quantitative differences, such as width of leaf segments, degree of dissection of

^{*}An investigation carried out in the graduate laboratory of the Henry Shaw School of Botany of Washington University, and submitted as a thesis in partial fulfillment of the requirements for the degree of Doctor of Philosophy. During the last year the study was carried out under a predoctoral fellowship of the National Science Foundation.

(113)

the leaves, extent and type of axial branching, degree of incision of the "bee", length of spur, and the like. Every one of these characters is subject not only to genetical, but also, to a high degree, to environmental variability. Therefore, before employing such characters, it is important to understand to what extent each character may be modified by the environment.

A third method of general use in establishing relationships between species, that of cytological analysis, is often more reliable. A number of investigators have shown that degree of relationship between species may often be estimated by studying the morphology and especially the pairing affinities of the chromosomes (see Stebbins, 1950, for a review of the literature). However, where the chromosomes of the parental genomes are not strongly differentiated there must often remain doubt as to the sources of the chromosomes which are pairing in the hybrid. Especially in polyploids above the tetraploid level such problems are intensified by the presence in the same individual of several genomes, so that autopolyploidy and allopolyploidy may coexist.

The relationships of D. Belladonna must therefore be considered from a combination of several standpoints, and the solution must be based upon that hypothesis which best makes use of the information obtained by each method.

Of the materials employed in this study, families of various species and hybrids were grown in the experimental greenhouses of the Missouri Botanical Garden and of Washington University, in St. Louis. Herbarium specimens were made available by the Bailey Hortorium of Cornell University and from the collections of the Missouri Botanical Garden.

I wish to acknowledge my indebtedness to Dr. G. A. L. Mehlquist, of the University of Connecticut, formerly Research Horticulturist at the Missouri Botanical Garden, who suggested this problem and who stimulated my interest in it by his own enthusiasm. I am also indebted to Dr. Edgar Anderson and other members of the staff of the Missouri Botanical Garden who have aided me in many ways.

II. TAXONOMY AND MORPHOLOGY

A. NATURAL SPECIES

History of the Genus .-

Since the establishment of the genus in its modern form by Tournefort (1700), Delphinium has received various treatments. In his 'Species Plantarum' Linnaeus listed the six species, D. consolida, D. ajacis, D. peregrinum, D. grandiflorum, D. elatum, and D. Staphisagria. By the close of the eighteenth century only six more species had been added, but in the century and a half since then, the number of species described has increased to more than 300. A. P. DeCandolle was the author of 23 species, and in his 'Prodromus' (1824) he grouped 53 species into the four sections, Consolida, Delphinellum, Delphinastrum, and Staphisagria. K. Prantl, in Engler and Prantl's 'Die Natürlichen Pflanzenfamilien' (1888) merged DeCandolle's STAPHISAGRIA and DELPHINASTRUM into one section, STAPHISAGRIA;

and later, modifications were made by others—notably Asa Gray (1887), Robinson and Fernald (1908), and Huth (1895). The most recent treatment of the American species is that of Ewan (1945).

Huth published in 1895 his "Monographie der Gattung Delphinium," in which he attempted a natural classification of the 200 odd species treated. He recognizes two subgenera: CONSOLIDA, in which there is a single carpel, the petals are fused into one, and seeds are scaled and three-cornered; and EUDELPHINIUM, in which there is more than one carpel and the four petals are free. Within the second subgenus he distinguishes three sections:

ELATOPSIS-petals deep violet or black, lower petals bifid and bearded.

DIEDROPETALA—petals light, the same color as the sepals or dirty yellow, deeply bifid, lobes acute.

KOLOBOPETALA—color of petals as in DIEDROPETALA; limb of lower petals round or rectangular, entire or bilobed, lobes round or truncate at tip.

Of the species considered here, D. elatum L. belongs to the series RACEMOSA of section ELATOPSIS, and D. grandiflorum L., D. cheilanthum Fisch. ex DC., and D. tatsienense Franch. are included in the series CHEILANTHOIDEA of section KOLOBOPETALA. While D. Belladonna Hort. was not known to Huth, he included as varieties of D. cheilanthum several cultigens which are certainly very similar to it.

Further consideration of the taxonomic categories will be restricted to D. cheilanthum, since it alone has been confused with D. Belladonna. The other species (D. elatum, D. grandiflorum, and D. tatsienense) are taxonomically well-known, and while they include many natural and horticultural variants, there is no problem in determining the affinity of such variants.

Delphinium cheilanthum Fisch. ex DC .-

Apart from the question of any direct relationship between D. Belladonna and D. cheilanthum, a problem which will be discussed later, the two species are confused in herbaria and in gardens, where identifications must be made largely upon a morphological basis. The magnitude of the problem is amply brought out by L. H. Bailey in 'The Garden of Larkspurs' (1939), in which he attempts to trace the history of D. Belladonna as a derivative of D. cheilanthum. He bases his conclusions upon a comparison of certain historic plates and descriptions of D. cheilanthum and of certain horticultural varieties (D. formosum Hort. and D. Hendersoni Hort.). The last two will be taken up in the next section, and I shall discuss here only D. cheilanthum in order to clarify its position, since it is apparently infrequent in herbaria in this country.

Delphinium cheilanthum Fisch. ex DC. is based upon a specimen sent to A. P. De Candolle (1818) by Fischer from the region of Doroninsk in Dahuria (in

¹Bailey (1939) says: "Yet it is strange that cheilanthum does not appear as a native plant in the great herbaria to which I have had access. Specimens cited by Huth mostly are plants considered by him to be botanical varieties of D. cheilanthum."

trans-Baikal Siberia). In 1819 von Schrank figured and described the same plant (under the name of D. cheilanthes) in 'Plantae Rariores Horti Academici Monacensis' (pl. 7). Earlier, in 1769, J. G. Gmelin had described and illustrated in his 'Flora Sibirica' a plant which, according to De Candolle, Fischer had indicated was the same as his D. cheilanthum. In 1820 a plant grown near London from seed sent by Fischer was figured in the 'Botanical Register.'

In addition to the sources cited by Bailey, a number of accounts of the species given by collectors in Siberia and northern China (Ledebour, 1842; Regel, 1861; Trautvetter, 1847, 1877a, 1877b; Turczaninow, 1842; Glehn, 1876; Brühl, 1896; and Komarov and Schischkin, 1937) delimit D. cheilanthum Fisch. as a species or species complex, with well-defined characters and a distinct geographic distribution. From these accounts, and the Huth monograph, the species may be characterized as follows:

Delphinium Cheilanthum Fisch., in DC. Prodr. 1:53. 1824.—Stem tall, simple or branched; leaves glabrous or pubescent (especially on the under surfaces), 5-parted, parts oblong to narrowly lanceolate-acuminate; lower bracts many-parted. Inflorescence racemose to subcorymbose, peduncles bibracteolate; upper bractlets equal to spur. Flowers blue, rarely white; spur straight or slightly curved; sepals ovate, pubescent or puberulent externally; upper petals glabrous, pale yellow or blue, lower petals large, with ovate or subrotund limb, entire or rarely emarginate-bilobed, with yellow pubescence above. Carpels 3, glabrous or pubescent, tips curved at maturity, to 20–25 mm. long; seeds 3-angled, with winged margins, faces scarcely squamate. Flowers in June and July (pl. 9).

A number of varieties have been described, but undoubtedly any future monographer must rework the alliance. The exact limits of the species are still somewhat in question, since Huth describes Delphinium Middendorffii Trautv. as a distinct species, although in his natural key to the genus he lists it as a variety of D. cheilanthum, distinguished by having the apices of the sepals lanceolate. Moreover, he notes: "D. Middendorffii scheint eine verkümmerte Form des Delphinium cheilanthum mit verlängerten Kelchblättern zu sein." By 1877 Trautvetter, who originally described D. Middendorffii (1847), conceded that it was but another variety of cheilanthum, and added (translation):

"Delphinium cheilanthum Fisch. varieties grade into one another and are distinguishable with difficulty. This species possesses sometimes a low stem (var. Middendorffii) and sometimes a taller stem; and this latter form has flowers either larger (var. typica) or smaller (var. parviflora). Indeed, sometimes var. Middendorffii has larger, and sometimes smaller flowers, so that sometimes it approaches var. typica and sometimes var. parviflora."

An American species, D. chamissonis Pritz. (from the Bering Sea region and the Yukon valley) is also apparently a close ally of D. cheilanthum. Comparing D. chamissonis and D. Middendorffii, Ewan (1945) says: "All of the more than a score of collections examined show so much variation in spur length and, indeed, flower size as a whole, as to render it difficult to draw any distinction between the two species from these characters."

B. HYBRIDS OF THE BELLADONNA TYPE

The history of the cultivated Delphiniums is extremely complex (see Wilde, 1931; Bailey, 1939). As early as 1778 D. elatum L. and another form listed as D. azureum (not D. azureum Michx., which was not described until 1803) were offered in the trade, and at least by 1824 D. grandiflorum L. (two varieties) was offered. Other species were rapidly introduced and by the middle of the century hybridization was being carried on by a number of French growers, chief among whom was Victor Lemoine, originator of most of the first varieties of perennial garden Delphiniums. English plantsmen were somewhat later in the field, but particularly since the 1870's, when the first varieties of James Kelway were introduced, a large part of the development of new hybrids has been carried out in Britain.

As nearly as can be ascertained, most of the present forms were derived from relatively few species. D. grandiflorum and D. elatum have chiefly been involved, although hybrids with other species, including D. tatsienense Franch. (Lemoine, 1914), D. cardinale Hook. (Wilde, 1931), and D. nudicaule Torr. and Gray (Lawrence, 1936) have enjoyed some popularity. Horticultural literature has frequently not been reliable regarding species in cultivation, and allies of D. grandiflorum or D. elatum could have been confused with these species and so have been employed in crosses at a time antedating any existing records of their use.

As has been mentioned above, D. Belladonna first appeared some time after the middle of the last century; the earliest known mention of its name is in 'Floricultural Cabinet and Florist's Magazine' for 1857, where it is listed as a desirable form with large pale lavender-blue flowers. In the 1865 catalogue of James Backhouse & Son, of York, England, Belladonna is listed and described as "a lovely turquoise, perfectly hardy." There are sporadic references to the plant in various horticultural publications before 1880, in which year the English firm of Kelway introduced it to a wide market. For a long time Belladonna was reported to be sterile. However, in 1902 or 1903 a plant grown by G. Gibson, of Leeming Bar, yielded three pods, whose seeds produced five plants, two of which became the named varieties "Mrs. G. Gibson," and "Grandiflora" (Phillips, 1949); and in 1905 Sutton & Sons, of Reading, England, obtained seed from two plants. Thus it appears that a chromosome-doubling occurred at least twice within a few year's time. The fertile strain has always been true-breeding, in the sense that there has been no recovery of anything which resembles any diploid or tetraploid species which might be assumed to have been the original parents (although it will be demonstrated later that weak but measurable associations of characters present in such species are still to be found). It it true, nonetheless, that heterozygosity in these original amphidiploid forms must have been fairly high, judging from the large number of Belladonna varieties introduced within the next few years.

It is of interest that the 'Journal of the Royal Horticultural Society' (1907) says of Sutton's first seedlings: "Some . . . resembled Delphinium Belladonna very closely, but some more nearly approached Delphinium formosum, and one bore

flowers of a very beautiful deep blue tint." D. formosum referred to here is the horticultural form and not the species of Boissier and Huet. Like Belladonna, it was a garden hybrid of unknown origin, and, also like Belladonna, it is said to be a hexaploid (Propach, 1939, 1940; Mehlquist, unpublished). It was first offered in 1855, and according to Van Houtte (1857) it was already fertile. This, coupled with its superficial resemblance to the diploid species D. cheilanthum, caused Huth to list it as a variety of that species in his monograph, although it has never been reported in nature (pl. 8). It is suggested that formosum may have originated from an early and unrecorded doubling of the chromosome complement of Bella-

Text-fig. 1. Leaf types in Delphinium species and hybrids (X 1/4).

- 1. D. grandiflorum var. chinensis Blue Butterfly.
- 2. D. grandiflorum var. chinensis.
- 3. D. tatsienense.
- 4. D. cheilanthum, from specimen collected by Karo in Dahuria.
- 5. D. cheilanthum, from plant grown from seed at the Missouri Botanical Garden.
- 6-9. D. elatum, showing range of variation.
- 10-15. Belladonna types: 10, Lamartine; 11, Smith's Belladonna.
- 16-20. Experimentally produced triploids: 16, 50-15-3; 17, 50-40-2; 18, 48-27-4; 19, 48-27-6; 20, 48-27-10.

donna, or at any rate that it originated in the same manner as Belladonna. Certainly, there are no consistent differences between the two.

The following is a general description of D. Belladonna:

Delphinium X Belladonna Hort. ex Bergm.2—Racemose open-flowered perennial with simple or branched stem up to 1.5-2.0 m. tall; herbage pubescent or glabrous; leaves palmate or deeply 3-parted and strongly ribbed, the parts again divided or lobed, the degree of dissection of the parts gradually increasing from rosette leaves to bracts, the main division of the stem leaves narrow-cuneate to narrow-oblong, 0.2-2.0 cm. broad at base, the petioles nearly or quite as long as the blade. Inflorescences of relatively short and open (5- to 20-flowered) racemes, the peduncles with parted bracts at base and the pedicels usually long, with basal simple bracts and paired short bracteoles immediately subtending the flowers. Flowers large, single, occasionally semi-double, mostly light to dark blue and somewhat declined; sepals thinly pubescent outside, blunt; spur about equalling the sepals and straight or somewhat curved at the end; petals mostly white or light-colored, bearded with yellow, making a large "bee" which fills the throat of the flower. Follicles 3, pubescent or glabrous, up to 2.0 cm. long, the apex curved; seeds 3-angled with somewhat winged margins, not squamate. Flowering period prolonged by the production of successive shoots during the growing season (pl. 8).

Another variety of interest, Lamartine, originated with the French house of Lemoine & Son in 1903. Like Belladonna, it was at first sterile, and the present fertile strain had its origin in 1916-17 when doubling of the chromosome number apparently occurred among some plants growing at the Royal Moerheim Nurseries in Holland (Lawrence, 1936). The parentage of this variety is also obscure. In answer to my inquiry, the present head of the firm replied that they had no record of its antecedents, but that experimental work had suggested that the parents might have been an elatum type (sic, Pacific Giant) and D. grandiflorum. In habit, Lamartine is quite similar to Belladonna, being of the same height, with a loose, tapering spike, and fairly numerous lateral branch spikes. The leaves are similarly cut (text-fig. 1). The flowers are long-spurred, with sepals ultramarine suffused with purple, and the petals are dark-edged, shading to white, with a yellow beard. Like Belladonna, it has an extended blooming period.

There are also grown at present two triploid varieties, Moerheimi and Capri, which, while not directly related to Belladonna, have a close morphological similarity to that variety. The most complete and authoritative account of these triploids is that given by B. Ruys of the Royal Moerheim Nurseries (1911):

²D. Belladonna Hort. is equivalent to D. Belladonna Bergm., listed in 'Index Kewensis.' Bergmans, who published his binomial in 1925, is among those who believe the plant to have originated from a cross between elatum and cheilanthum. He lists no sources for his opinion.

"For about twenty years I have been interested in white Delphiniums and have purchased all the light-colored novelties which I could obtain, with a view to crossing them with large-flowered, light-blue varieties of strong constitution . . . [A few years ago] I found in a batch of seedlings one plant with five spikes. Of these, two spikes bore pure white flowers, two bore blue flowers, and some parti-colored, half-blue, half-white flowers. Next year, when the five divided plants flowered, I noticed that two had only white flowers, two only blue flowers, and one plant had some flowers white and others blue, whilst still others were half white and half blue."

Both the white and the blue variety were propagated and marketed, the former under the name of *Moerheimi*, and the latter as Capri. Aside from the color, there is no single definitive character to separate these and *Belladonna*, although, as mentioned above, these varieties are triploid.

In addition to the present-day varieties of the Belladonna type, a study of the literature reveals that other hybrids of similar appearance were known in the last century, though they have now passed from cultivation. Because of their bearing upon the possible constitution of D. Belladonna, some of these early hybrids are described below:

The earliest recorded *Delphinium* hybrid was *Barlowii*, figured by Lindley in the 'Botanical Register' of 1837. The plant, from a nursery in Tooting, had been received from an establishment in Manchester, and was believed to be the result of a chance cross between *D. grandiflorum* L. and *D. elatum* L. It was reported to be a continuous bloomer. 'Paxton's Magazine' described it the following year:

"Plant perennial, growing usually from 4-5 feet high. Leaves with 5 principal divisions, deeply lobed and jagged; serrations acute; deep green on surface, light green beneath, smooth. Flowers semi-double, of a most intense blue color, produced very numerously in terminal spikes. Sepals of the calyx greenish externally."

Neither the description nor the Lindley plate, which shows a rather dense spike of semi-double blooms and, in the background, part of a leaf in outline, is complete enough to indicate the affinities of this plant. Moreover, except that the flowers are semi-double in each case, the Lindley plate is quite different from the Paxton plate, which indicates that the plant had a brownish bee, and leaves more deeply incised than those in the earlier plate. Since both plates were drawn from living plants, one is confronted with the alternatives that *Barlowii* was a highly variable variety, or that the two artists had available two quite different varieties. The plant in the earlier illustration might easily belong to the group of hybrids which includes *Belladonna*; the later plate appears, rather, to be merely that of an elatum variety. Herbarium specimens of plants sold as *Barlowii* within the last 20 years or so are quite different from either of these, being single dark-blue types, and not different morphologically from *D. Belladonna*.

The next form of interest, D. Hendersonii Hort. (pl. 7) is of extremely dubious background. It was first mentioned by Moore and Ayres in the 'Gardeners' Magazine of Botany' (1850) and was described under the name D. cheilanthum var. Hendersonii A. Henfr.:

"Hardy herbaceous perennial with large showy rather distant flowers. Leaves five-parted, lobes oblong or acuminated, trifid or obscurely bi-trifid, 4 inches in diameter, on long petioles; floral leaves three parted, with the lobes broadly linear, acuminated, simple. Racemes axillary and terminal, lax; the pedicels larger than the bracts. Flowers large and showy, ultramarine blue, with veins a little deeper; two lower petals with a roundish ovate limb, obliquely inflexed and whitish in the middle, bearing a yellow beard, slightly irregular on the margins, with a few ciliary hairs at the apex. Ovaries 3, glabrous, green, veined with bluish lines."

The text states that the plant was grown by E. G. Henderson of St. John's Wood, from seedlings purchased from M. Chauvière of Paris.

Lemaire's 'Jardin Fleuriste', of 1851, figures the same plant as D. cheilanthum var. Chauvieri. Lemaire regarded it as merely a variant of the species, whose distribution and habitat he considered briefly. Quite in opposition to Lemaire, Harrison (1853), describing the same plant, stated: "It was raised by M. Chauvière, nurseryman of Paris, from D. chinense, impregnated by D. elatum-splendens." This author also noted that Hendersonii was a profuse bloomer, of bushy habit, flowering over a long period of time.

Hybrids of known parentage.—

During the past eight years there have been produced at the Missouri Botanical Garden a number of hybrid Delphiniums of particular interest. Several hundred pollinations were made between D. elatum and different strains of D. cheilanthum and D. grandiflorum var. chinense, in an effort to find out which, if either, of these hybrids more closely resembled the Belladonna assemblage. Up to this time there have been no successful pollinations of D. elatum by D. cheilanthum. However, the other cross (that between elatum and grandiflorum) has been successful four times, yielding two families of 3 plants each, one family of 2 plants, and one family of 13 plants.

1. 47-98-3 × D. grandiflorum var. chinense "Blue Butterfly".—Hybrid Nos. 48-27-1 through 13. (This and the following cross were made by Dr. G. A. L. Mehlquist.)

The seed parent was one of a line of white semi-double elatum forms developed by Dr. G. A. L. Mehlquist. The group is exceptional in being the only line of whites in which there has been an approach to homozygosity without concomitant weakening and loss of the line. 47-98-3 had dense spikes borne on the rather short main axes, and leaves of medium size, pubescent, and palmately divided, with relatively narrow segments (pl. 10). The pollen parent, on the other hand, was a low-growing plant with a branched, very open inflorescence of fairly large rich deep blue single flowers in few-flowered panicles. The leaves were relatively small, dull green, glabrous, and finely dissected. This form, too, was true-breeding, and the variety has been grown at least since 1910 when it was among the perennials planted at Wisley (Jour. Roy. Hort. Soc., 1910) (pl. 9 and text-fig. 1). The progeny of this cross included 13 individuals which were generally of intermediate habit and varied very little among themselves. The following description serves to characterize them and point out their chief differences from the parents.

Text-fig. 2. Pedigrees of major lines of triploids and hexaploids.

48-27- Series.—Racemose open-flowered perennials, with simple or usually branched stem up to 1.0-1.25 meters tall; herbage pubescent. Leaves palmate and deeply 5- or 3-parted and strongly ribbed, the parts again divided or lobed, the degree of dissection increasing progressively from the rosette to the bracts, the main divisions chiefly narrow-cuneate, up to about 1.0 cm. broad, the petioles as long as or slightly longer than the blade. Inflorescences not spiciform, the terminal one a 15- to 20-flowered raceme, the lateral of fewer flowers, the peduncles with 3-partite bracts at base and the pedicels with basal simple bracts, and paired bracteoles 0.8-1.0 cm. long subtending the flower. Flowers medium-sized, single, violet and cobalt, on long pedicels and somewhat declined; sepals thinly pubescent outside, blunt, the spur slightly longer than the limb and usually somewhat curved at the end; petals the same color as the sepals, bearded with short golden yellow hairs. Follicles 3, pubescent, not developing into fruits, apex curved. Flowering period prolonged by the production of successive shoots during the growing season (pl. 11 and text-fig. 1).

2. 48-2-3 × Blue Butterfly.—Hybrid Nos. 48-6-1 through 48-6-3.
48-2-3, the seed parent of this group, was a selection from Vetterle and Reinelt's

Galahad Series of their Pacific Giant Hybrids. The plant, a white semi-double, was not available to me.

The three hybrid individuals in this group were quite similar to the hybrids described above, the chief differences being the regular production of one or several additional petals of either sort, and the generally larger, less open flowers.

3. Summer Skies × D. grandiflorum (47031-1).—Hybrid Nos. 50-15-1,-3,-4.

The seed parent of this cross is a selected seedling from the Pacific Giant series, Summer Skies, an elatum type with semi-double flowers with sky-blue sepals and white petals in tapering, somewhat dense spikes (pl. 12). It has been found to be true-breeding for color (Mehlquist, unpublished). The pollen parent was from seed obtained from the Royal Botanic Gardens at Kew as D. tatsienense. However, determination of the plant, using Huth's key, showed that it must have been, rather, a corymbose variety of D. grandiflorum. Numerous attempts were made to obtain seed, but 47031-1 was completely seed-sterile.

The three hybrid individuals of this cross differ in a number of particulars from those of the other crosses, being taller, with a strong main axis which bears lateral spikes in the manner of D. elatum, but these more profuse and more strongly developed than in that species. Leaves of 50-15-3 are much like those of the 48-27- series, whereas those of the other two plants are considerably larger and have the ultimate divisions rounded rather than acute. The flowers are again mixed blue and violet (although the blue of these plants is somewhat more brilliant than in the other crosses) and are more or less semi-double, with spurs about ½ longer than the standard of the sepal (pl. 12, and text-fig. 1).

4. 47-98-3 × 47031-1.—Hybrid Nos. 50-40-1 and 2.

The seed parent was the white elatum used in producing the triploids of line 48-27; the pollen parent was also used to produce the triploids of line 50-15. The two individuals of this cross resembled those of 48-27, except that the leaves were more finely dissected, and the flower was the same brilliant cobalt noted in the 50-15 individuals (text-fig. 1).

5. Derived hexaploid hybrids .-

Since the fertile strain of D. Belladonna apparently originated from spikes whose chromosome numbers had been fortuitously doubled, it was hoped that it might be possible to produce doubling of the chromosomes of the hybrids described above. With this in view the developing rosettes were treated each year for three years with aqueous colchicine in various concentrations for varying lengths of time. In at least one case, doubling of the somatic chromosome number of the spike was achieved, judging not only from morphological features but from greatly increased amounts of "viable" pollen produced (Table I), but the 14 seeds obtained did not germinate.³ The other method employed, that of repeated selfing

³It is not known whether delayed planting or some undetermined genetic factors may have been the cause of the failure to germinate—certainly, one of the chief problems in the growing of Delphinium is storage of the seeds. Lots which have germinated well when planted immediately may not germinate at all after six months, even in cold storage.

124

ANNALS OF THE MISSOURI BOTANICAL GARDEN

POLLEN SIZE AND VIABILITY IN SPECIES AND HYBRIDS OF DELPHINIUM:
LIVING PLANTS.

Plant	% Viable	Pollen diar	neter in μ
A AGIIL	pollen	Range	Median
	Diploi	ds	
D. grandiflorum			
Blue Butterfly	97.0	18.8-37.6	23.5
47031-1	65.0	18.8-28.2	23.5
Tom Thumb	91.0	23.5-37.5	28.2
D. cheilanthum	98.0	23.5-32.9	28.2
	Tetraplo	oids	
47-98-3	1	1	
Summer Skies	64.6	23.5-37.5	30.6
Julililler 3kles	32.0	23.5-37.6	30.6
	Triploi	ds	
48-6-1	5.7	28.2-37.5	32.9
48-6-2	7.0	23.5-40.0	
48-27-1	16.0	25.9-40.0	32.9
48-27-3	14.0	23.5-37.6	30.6
48-27-4	6.0	LINE DESCRIPTION OF THE PROPERTY OF THE PROPER	32.9
48-27-5	21.0	21.2-47.0	35.3
48-27-6	3.2	23.5-42.3	32.9
48-27-7	9.0	23.5-37.6	35.3
48-27-8	4.0	23.5-36.5	32.9
48-27-10	16.3	23.5-42.3	32.9
48-27-11	and the same of th	21.2-51.7	37.6
48-27-12	5.0	23.5-37.6	30.6
50-15-1	2.7	23.5-47.0	32.9
50-15-3	1.5		
50-15-4	0.0		
50-40-2 (untreated)	2.5		
50-40-2 (untreated) 50-40-2 (treated)	2.0	21.2-37.6	30.6
Moerheimi	0.5	25.9-37.6	30.6
	Hexaplo	ids	
Smith's Belladonna			
	41.0-95.0	23.5-42.3	32.9
Cliveden Beauty			
-1	68.2	30.6-44.7	37.6
T5	80.5	25.9-37.6	32.9
Lamartine	82.5	23.5-32.9	30.6

of the triploids, proved even less satisfactory, only two inviable seeds being produced from upwards of a thousand individual pollinations made in several seasons. However, pollinations of the triploids by Belladonna proved more successful: eventually ten plants, representing five crosses, were obtained, and of these, five plants (representing three crosses) were used in establishing new hexaploid lines, both by selfing and by backcrossing to Belladonna. A detailed description of the cytology of these hybrids follows (chapter IV), but it is to be noted that in morphological characters and cytological details they do not deviate from

the Belladonna category except in being more variable; and in some cases fertility is already as high as in Belladonna.

C. DISCUSSION

Two major points are to be brought out here: First, while it has been demonstrated that there is indeed a resemblance between the Asiatic diploid species D. cheilanthum Fisch. ex DC. and the hexaploid cultigen, D. Belladonna, there are also important differences. The botanical species and its allies are restricted to Siberia, Mongolia, and North China, and to the islands of the Bering Sea and the Yukon, and it has not often been planted in gardens. Moreover, when one comes to compare the two entities, the first impression of similarity is modified by an appreciation of their subtle differences. Thus, the leaf of D. cheilanthum may often be incised so that the major divisions are of about the same width and degree of segmentation as in the Belladonnas, yet the latter will invariably have the ultimate divisions more acuminate, the segments often intricate, and the main lateral veins divergent in their departure, features rarely present in D. cheilanthum, and certainly never present in combination in that species. The flowers of D. cheilanthum are small but always have an extremely conspicuous bee; while the bee of Belladonna may be of the same absolute size, it is always smaller in proportion to the size of the flower. Lastly (and it is realized that the botanist will not often have access to the quantity of material necessary to make this distinction), if one has on hand a number of plants of both sorts, it is a relatively simple matter to separate the Belladonnas from D. cheilanthum, since the latter holds together by virtue of concordant variation, and the former is less cohesive on account of discordant variation (Anderson, 1951).

The second point brought out in this section is that Belladonna types have originated a number of times in the past, and always they have first been noted in gardens. From the evidence, it seems clear that Hendersoni, Lamartine, Moerbeimi, and the others, while not directly related, are quite similar in leaf shape, flowers, branching habit, and prolonged blooming periods. Several of them reproduce by seeds; others have been completely sterile. In no case has the exact origin of the plant been unquestioned. However, all of them have been found to be very much like certain hybrids produced by crossing Delphinium elatum and D. grandiflorum varieties. In the absence of direct evidence one cannot immediately exclude D. cheilanthum as one of the parents, but evidence against such a supposition will be given in the following pages.

III. CHARACTER ASSOCIATION AS AN AID IN ESTABLISHING RELATIONSHIPS

At least since the time of Gmelin, botanists faced with the necessity of classifying species of Delphinium have realized the difficulty of finding reliable specific characters. This is the result not so much of lack of genetic differentiation within the genus, as of the presence of numerous characters of a quantitative nature,

whose genetic basis may be modified or simulated by environmental factors. On account of this "inability to use one or two differentiae to distinguish species or subspecies," Ewan (1945) has based his treatment of the North American species on "maximum correlation of characters existing in combinations." A species characterized in such terms could be visualized, then, as a plexus of "typical" individuals, possessing the most pronounced correlation of the characters of the species, and a large number of individuals possessing these characters in lesser degree, but with no sharp discontinuities within the group. Such discontinuities, on the other hand, would be expected between species; and populations of hybrid origin might be expected to be largely coherent, but with some segregation if the parental genomes have sufficient segments in common that occasional heterogenetic pairing occurs (chap. IV).

The study of hybrid ancestry in such a group as this would not long ago have been considered a very difficult one from which to arrive at any very definite conclusions. However, the student of variation has been given a valuable tool in the graphic methods developed by Anderson (Anderson, 1948, '51, '52; Anderson and Gage, 1952), which permit the study of complex patterns of variation on the two-dimensional level of the scatter diagram and ideograph. As Stebbins (1952) has recently pointed out, the method of extrapolated correlates involves more than the mere random choice of characters; rather, the choice of a measure is determined by how well it expresses a feature of the plant, and how subject that feature is to environmental variation. While the methods are thus a compromise between pure statistical analysis and subjective intuition, their success in a number of cases indicates their great usefulness.

Before employing these methods in Delphinium, it was necessary to study thoroughly within-a-plant variation. Good material for such a study was available in pressed material, and in living plants of several vegetatively propagated individuals, chiefly hybrids of the 48-27 and 50-40 series and Smith's Belladonna. Preliminary measurements of a number of characters demonstrated what was already suspected, that only a few features of the leaf could be used. (Leaf variation in Delphinium has been the subject of various investigations: Brown, 1944; Lewis, 1947; Ashby, 1948.) By trial and error it was eventually possible to score a number of characters which exhibited low variation even on divisions of a plant grown in different years. In addition to the few leaf characters, those characters most effective for measurement were those of the flowers and inflorescence. (Certain definitive characters, such as internode pattern, mode of branching, etc. could not be employed because of the scanty amount of herbarium material.) With these measurable characters as guides, the three natural species (D. elatum, D. grandiflorum, and D. cheilanthum) and Belladonna were studied, and those features which could be used alone or in combinations as differential characters were selected for use in separating the units on a multiple-character basis. The characters used were the following:

Text-fig. 3. Floral and leaf characters used in constructing scatter diagrams.

Leaf .-

Length of median segment/length of C (text-fig. 3). Since both measures are about equally dependent on absolute size of leaf, their ratio expresses fairly well the depth of cutting of the segments.

Width of median segment.—

This was found to be the best measure expressing what may be termed the degree of dissection of the segments.

Inflorescence.—

Number of flowers. The absolute number of flowers on the main axis was used.

Density. This was computed as the length of the inflorescence in inches (measured from the attachment of the lowest flower on the main axis) divided by the number of flowers.

Flower.

Margin of bee. Scored in three grades: bifid, notched, and entire or emarginate. Length of standard divided by length of limb of the bee (text-fig. 3).

In laying out the scatter diagram (text-fig. 4), the ratios used as ordinate and abscissa were selected because, varying widely among the plants measured and expressed as individual grades, they permit a wide scattering of the points on the diagram. Moreover, the use of measures of one floral character and one leaf character lessens the possibility that they might be merely different manifestations of the same factor. The scoring of the other characters was then adjusted so that each could be expressed in three grades, to which ray lengths and positions were assigned (further details accompany text-fig. 5).

The "population" represented by the scatter diagram consists of herbarium specimens from the Missouri Botanical Garden and from the large collection of cultivated Delphiniums at the Bailey Hortorium of Cornell University. Extreme types such as double varieties and dwarf forms were excluded. All other measurable sheets were included in making the diagrams.

Since pollen measurements made from herbarium specimens were found to be reliable indicators of approximate polyploid level (chap. IV), an additional measure, determined by pollen grain size, is expressed by the size of the dots on the scatter-diagram, the smallest dots representing diploids, the intermediate dots, tetraploids, and the large dots, hexaploids.

A survey of the individuals thus diagrammed shows two distinct entities, D. grandiflorum in the lower left-hand corner, and D. elatum in the upper right-hand corner. Occupying the area between these species is the Belladonna complex, more variable than either but generally intermediate between the diploid and the tetraploid species. The position of D. cheilanthum just off the spindle but adjacent to Belladonna points out its notorious superficial similarity to Belladonna, but its actual physical distinctness is shown first by its diploid nature, and second by its almost "all or none" character with respect to the rays. It is seen to be not an intermediate between grandiflorum and elatum, but, rather, it possesses some characters in common with grandiflorum and some with elatum. (The plants of cheilanthum scored included two collections of two plants each, as well as two plants growing in the greenhouse at the Missouri Botanical Garden, and so shows more grouping of the dots than would a random selection.)

A graphic analysis of another sort, the internode diagram (text-fig. 6), points out clearly the differences in habit of the entities studied. Both D. elatum and D. cheilanthum have a relatively large number of nodes before the axis begins to branch; these increase somewhat in length from the highly shortened internodes of the rosette (not illustrated) but do not increase in a regular pattern and are generally not more than 7–8 cm. long. For D. elatum this was true not only of the cultigens, but of the wild species as well, where even dwarf alpine plants have a high node number, only the length of the internodes being shortened. In branching pattern these species may also be compared. On the whole (the exception being some garden types which are bred for a diffuse habit) side branches are few and much shorter than the main raceme which they subtend, generally decreasing in length from the lowest to the uppermost. The most evident distinction between

Text-fig. 4. Scatter diagram showing character correlations in Delphinium grandiflorum (small dots, rayless), D. cheilanthum (small dots, rayed), D. elatum (intermediate dots), and D. X Belladonna Hort. (large dots).

Text-fig. 5. Scatter diagram showing character correlations in members of the 4 triploid populations of this study. Distribution of D. Belladonna in outline.

these species, on the basis of habit, is that the inflorescences of D. elatum are relatively more highly compressed than those of D. cheilanthum.

The habit of D. grandiflorum is quite distinctive. Its nodal pattern is typically one of successively increasing internode length from the basal to the sixth rosette, the internodes reaching their maximum length usually by the sixth, and then becoming successively shorter through the inflorescence. While occasional varieties may branch very little, characteristically the plant is much-branched, the branches sometimes being placed at such an angle and being of such a length as to have the superficial appearance of dichotomies. (This is especially true in the closely

related species, D. tatsienense.) The branches may again branch in a similar manner (not figured). The maximum internode length in these relatively dwarf plants ranges from 5 to 18 cm., the higher numbers being quite common.

Variability in habit is characteristic of hybrid populations, as Anderson has repeatedly pointed out (see, for example, Anderson and Schregardus, 1944; Anderson and Gage, 1952). In allopolyploids such variability should be small if the variety is of the type termed by Stebbins a true allopolyploid (1947, 1950). If however, it is a segmental allopolyploid, more frequent pairing between members of the different genomes will result in a higher amount of segregation. Belladonna does, in fact, vary somewhat in habit, although the general tendency is for these plants to possess a more or less regular internode pattern, with branching common below the main inflorescence. In extreme cases the node number may be low, as in D. grandiflorum, and the aspect of pseudodichotomies may be found in the branching pattern; or they may be tall plants with short branches and internode lengths irregular below the inflorescence. On the whole, the direction of variation in this respect tends to be more toward D. grandiflorum than toward D. elatum.

POLLEN SIZE AND VIABILITY IN SPECIES AND HYBRIDS OF DELPHINIUM:
HERBARIUM SPECIMENS.*

Plant	% Viable	Pollen diar	neter in µ	
	pollen	Range	Median	
	Diploids			
D. grandiflorum, Vilmorin-Andrieux	98	200 250		
Slue Butterfly	96	20.0-25.0 17.5-25.0	22.5	
D. cheilanthum, coll. Karo	92	20.0-25.0	22.5	
		20.0 25.0	20.0	
	Tetraploid	ls		
. elatum, Bot. Gard., Cambridge	98	22 5 25 0		
). elatum, King of the Blues	60	22.5-25.0	25.0	
		22.5-25.0	25.0	
	Hexaploid	ls		
formosum Hort., N 71860	60	25.0-32.5	200	
). formosum Hort., Helms. 17/6/25	25	25.0-32.5	30.0	
formosum Hort., Dreer, July 1924	50	22.5-32.5	27.5	
formosum Hort., Fordhook	80	22.5-32.5	30.0	
Barlowii Hort.†	77	22.5-35.0	30.0	
Barlowii, Aug. 1†	31	22.5-32.5	30.0	
amartine, Aug. 20	79	25.0-32.5	30.0	

^{*}Specimens listed are in the herbarium of the Bailey Hortorium, Cornell University.

† The confusion as to the identity of D. Barlowii has been discussed on page 120. The specimens cited here are morphologically of the Belladonna sort.

Text-fig. 6. Internode diagrams to scale of diploid, tetraploid, and hexaploid Delphiniums. Ordinate, length of internode; abscissa, number of internode from rosette. Upright lines represent branches and are drawn to a scale 1/5 that employed for internodes. The black dots represent single flowers.

Text-fig. 5 is a scatter diagram for such of the triploids as were adequately represented by living or herbarium material, and an internode diagram of a typical triploid is shown in text-fig. 6. From the superimposed silhouette of the Belladonna distribution (fig. 5) all these plants are seen to be within the limits of that group, or to be intermediate between D. Belladonna and D. elatum. The same observation is borne out by the internode diagram, which shows the internode pattern of Belladonna, but with the high node number more characteristic of D. elatum.

Summary.—Through the medium of the scatter diagram it has been demonstrated that Belladonna may be visualized as a more-or-less variable group, intermediate between the diploid D. grandiflorum (vel aff.) and the tetraploid D. elatum, and having as the source of its variation the segregation of characters derived from these species. Further, the experimentally produced hybrids between D. elatum and D. grandiflorum have been shown to be very similar to Belladonna, deviating from it only in characters for which their D. elatum parents were extreme. The scatter diagram also amplifies the position of D. cheilanthum: it is instantly differentiated from D. Belladonna by its diploid constitution, and by constant morphological characters.

The same conclusion is supported by the internode diagrams: there is a greater amount of variability in D. Belladonna (extreme types were diagrammed, but are

not included in text-fig. 6) than in the three natural species, but on the whole it is intermediate between D. grandiflorum and D. elatum. In this respect D. cheilanthum is closer to D. elatum than to any other entity, differing chiefly in the development of its inflorescence.

On the basis of character association, then, it is to be concluded that D. grandiflorum and D. elatum fulfill the morphological requirements for the parents of Belladonna; but that D. cheilanthum could not have been the diploid parent, given D. elatum as the tetraploid parent. One cannot thereby rule out the possibility that a tetraploid species other than D. elatum was involved, but no other known tetraploid species possesses the required combination of characters, nor is any other tetraploid so commonly grown.

IV. CYTOLOGY OF DELPHINIUM

HISTORY

The chromosome complement of Delphinium has been studied by a number of workers (Hocquette, 1922; Tjebbes, 1927; Langlet, 1927, 1932; Tischler, 1927; Beckman, 1928; Lewitsky, 1931; Lawrence, 1936; Propach, 1939, 1940; Gregory, 1941; Mehlquist et al, 1943, and unpublished; Lewis et al, 1947; and Lewis and Epling, 1951), and it has now been generally established that the basic complement of the genus consists of one long chromosome with a median centromere, one long chromosome with a sub-median centromere, five medium-length chromosomes with sub-terminal centromeres, and one short chromosome with a sub-terminal centromere. Langlet (1932) reported that satellites occurred in the genus, but his results were not conclusive regarding their number and location. Lewitsky (1931) published some data regarding chromosome differentiation within the genus, and furnished ideograms for a number of species. Noting that in certain instances the four "homologous" chromosomes are not identical, he postulated amphidiploid origin for two tetraploid species, D. azureum4 and D. elatum. Moreover, he pointed out that two species belonging to two distinct sections of the genus, D. cardiopetalum and D. Staphisagria, have distinct types of ideograms from the other species he investigated. More recently, Lewis, Epling, Mehlquist and Wyckoff (1951), reported that the chromosomes of the California species of Delphinium (which according to Ewan (1945) include representatives of several of the Old World lines as well as a majority of endemics of uncertain affinities) are morphologically quite similar. They figure a composite ideogram from species included in Ewan's spiciform series, which shows one satellited chromosome (their E, which they report is otherwise very close in length to C, D, and F). That the situation is not so simple as this and that greater possibilities exist for identifying different chromosomes in certain cases have been made clear from the present study in which, apparently for the first time in Delphinium, Feulgen and acetolacmoid squashes have been employed for somatic material.

⁴D. azurem of Lewitsky was probably D. elatum; see footnote p. 164.

Numbers of chromosomes published so far in *Delphinium* are listed in the Appendix. Diploid species are by far the most numerous, tetraploids are occasional, and hexaploids are known only in cultivated forms.

Meiotic studies of *Delphinium* have been largely confined to the garden forms, the major exception being the work reported by Lewis, Epling, Mehlquist, and Wyckoff on the California species, where both diploids and tetraploids were analyzed. For the diploid species, metaphase bivalents fall into several easily recognized types, since terminalization regularly occurs and chiasma frequency for a given pair shows little variation, the large chromosomes having usually two chiasmata at metaphase (there may be three or rarely four at diplotene and diakinesis) and the others having regularly one chiasma only, and that in the longer arm (Mehlquist et al, 1943; Lewis et al, 1951).

In the tetraploids, the type of pairing varies, depending upon the origin of the tetraploid condition. Thus, in the California tetraploids, which are designated as races of the diploid species, D. Hanseni, D. gypsophilum, and D. variegatum, quadrivalents are formed by about 70 per cent of the long chromosomes with the subterminal centromere, and by about 45 per cent of the long chromosomes with the subterminal centromere. (Likelihood of multivalent formation by the other chromosomes is precluded by their known low chiasma frequency.) Anaphase separation is regular, and the plants are fully fertile. However, it was demonstrated that the chromosomes are not completely homologous, since anaphase bridges indicative of inversions were common.

Of other tetraploids studied, Lawrence (1936) recorded one to four univalents and an undetermined number of multivalents in *Delphinium Ruysii*, a garden hybrid possessing one *D. elatum* (n = 16) and two *D. nudicaule* (n = 8) genomes. A similar condition was found to exist in a group of tetraploid hybrids produced by Mehlquist (unpublished) from crossing *D. elatum* with artificially doubled *D. cardinale*, in which meiotic pairing was found to be primarily by bivalents and univalents, although segregation in succeeding generations indicated that some multivalent pairing occasionally occurred.

Particularly interesting in so far as this study is concerned are the varieties bred by K. Foerster of Bornim, Germany, and studied by Propach (1939, 1940). According to Propach, Foerster produced his hybrids by intercrossing D. Belladonna varieties and D. grandiflorum var. chinensis, obtaining in the first generation fully fertile tetraploids. Later, some of these hybrids were again crossed with D. grandiflorum to form sterile triploids (Appendix). Unfortunately, full cytological details were not given. Propach interpreted his results as indicating that there is little genomic differentiation in Delphinium and that autopolyploidy is involved.⁵

⁵However, Foerster (1929) does not give details about the parentage of his varieties in all cases, and of those which he discusses, some he terms elatum types and some elatum × grandiflorum var. chinense hybrids. Further, the accompanying plates confirm his statements; therefore a thorough cytological study of these forms is desirable before Propach's conclusions can be accepted.

The first object of this study was to discover whether any morphological differentiation of the chromosomes could be made among species of Delphinium, so that, if possible, the component genomes of the polyploid species might be identified. The second phase of the cytological work has dealt with the meiotic behavior of the chromosomes in the species and hybrids. Data obtained from chromosome studies have been supplemented by pollen studies which, to some extent, serve to indicate the degree of fertility of a plant; and pollen measurements have been used, especially of herbarium specimens, to give information (which could not be obtained by other means) on the probable polyploid level of these plants.

METHODS

1. Somatic Tissues—Chromosomes:

Although the paraffin method has been the one used by previous workers, it was seldom employed here. This was not only on account of the length of time required to prepare the mounts, but also because root tips from sectioned material did not show the structural features evident in acetic squashes, nor could counts of chromosome number be made so readily. For squash techniques, it was necessary to adapt the method to the particular requirements of the material. Pre-treatment with a spindle inhibitor was found to be essential since the chromosomes of metaphase plates were otherwise obtained in face-view only with the greatest difficulty; further, aceto-carmine did not give the degree of differentiation obtained with aceto-lacmoid. The schedule follows:

a. Actively growing root-tips were removed and treated with a saturated solution of paradichlorobenzene (Meyer, 1945) for 3 to 4 hours.

b. Tips were transferred to 7:3 acetic alcohol (Darlington & La Cour, 1947) for 1 to 5 days. Preparations from material preserved longer than this are not clear enough for studies of details of chromosome morphology, but are adequate for counts.

- c. Tips were hydrolyzed in a mixture of approximately 2 drops 0.1 normal HCl and 5-6 drops acetic-lacmoid stain (Darlington & La Cour, 1947), heating on a glass until vapor could be seen, and then letting the tips remain in the mixture for 10 to 20 minutes, or until they became soft. (Sometimes it was necessary to increase the proportion of HCl in the staining mixture in order to soften the tips sufficiently, but generally as little acid as possible was used since an excess decreases staining.)
- d. Root tips were rinsed in 45 per cent acetic acid for 5 minutes to about an hour.
- e. The deeply stained portion of a tip was transferred to a clean slide, and stain and cover-glass were added. The mount was heated and squashed and then sealed. After the cells were dispersed by gentle tapping, considerable pressure could be applied in order to spread out their contents.

The preparations will keep for about a week if stored in a cool place, but they are best within a few hours after being made.

2. Somatic Tissues-Nucleoli:

The Feulgen-fast green squash technique (Darlington & La Cour, 1947) was used. Hydrolysis time was about 20 to 40 minutes.

3. Meiotic Chromosomes:

The exact method used depended upon the age and condition of the material. In general, the following schedule was employed:

- a. Anthers were killed and fixed in acetic alcohol for several hours to a week or more. (Best results were obtained if mounts were made in about one to four days.)
- b. A whole anther was transferred to a slide, flattened with the needle, and stained.
 - 1. Fresh material: acetic lacmoid gave the best results.
 - 2. Older material: a mixture of aceto-lacmoid and aceto-carmine was employed, the relative amount of carmine being increased with increasing age of the material.
 - 3. If the material was not stored for more than two weeks, it could be transferred to 70 per cent ethanol, and thereafter stained with carmine, in which case mordanting was found to be necessary.
- c. A cover slip was added and the slide was squashed gently and sealed. After the slide had been sealed it could be heated and again squashed if necessary.

4. Pollen Studies:

Preparations were made with either aceto-carmine or acid fuchsin, at least three slides being made for each plant of which the pollen was available. The anthers were taken on different days and from different flowers so that the effect of environmental variation could be observed. A total of 200 pollen grains was counted on each slide, only the deeply staining, normally shaped grains being considered "viable." Where possible, 100 good grains of each individual were measured, but in the triploids the number is understandably considerably less.

Pollen preparations from herbarium specimens were made employing the fastgreen glycerine jelly method of Wodehouse (1935).

5. Illustrations:

Camera-lucida drawings were made with a Spencer Camera Lucida on a Spencer microscope with 15 × ocular and 95 × N.A. 1.40 apochromatic oil-immersion objective, giving a magnification of 2180 × at table height. Reductions are given with each figure. The photomicrographs were taken with a 1 × Bausch & Lomb fixed bellows camera; magnifications accompany the plates and text-figures.

DETERMINATION OF THE LEVEL OF PLOIDY

While the determination of polyploid level in the living plants was always made by chromosome counts from root-tip preparations, the impossibility of applying direct methods to plants represented only by herbarium material made necessary the use of the indirect method of pollen measurement. In studying the percentage of "viable" pollen produced by hybrid individuals, it had previously

been noted that diameter of the pollen grain was a good indicator of the polyploid level of the plant (Table I). For the plants measured there was good separation of diploids and tetraploids on this basis. The hexaploids and triploids generally produced the largest pollen, although there was some overlapping between these and D. elatum. It is to be noted that pollen production by the triploids is very low (except in the colchicine-treated spike of 50-40-2, which is presumed to have been doubled); the similarity in size of their few pollen grains to that of the hexaploids is an indication that the pollen from these plants is unreduced, and hence triploid.

For pollen grains of the herbarium specimens, size of pollen grain was again found to be a differential character for the polyploid level, although the actual sizes obtained were somewhat smaller in all classes, as might be expected on the basis of the difference in the suspending medium of the stain and from long drying of the material (Table II).

CYTOLOGY OF NATURAL SPECIES, DELPHINIUM BELLADONNA, AND THE TRIPLOIDS

Morphology of the Somatic Chromosomes .-

In view of the general similarities in size of the chromosomes already noted as characteristic of the genus, ideograms are presented here for two species only: D. grandiflorum var. chinensis and D. cheilanthum. The A and B chromosomes of these species probably are to be compared with similarly lettered chromosomes in the ideograms of Lewitsky (1931) and Lewis et al (1951), but because of the similar sizes of the smaller chromosomes it is not to be assumed that these are comparable to similarly lettered chromosomes in the other ideograms.

The major distinguishing features of the genomes figured here (pl. 13) have been the satellite-bearing chromosomes. The presence of nucleolar-organizing satellited chromosomes in the complement of many plants has been often noted since the classic papers of Heitz (1931), Navashin (1934), and McClintock (1934). Later, the discovery of polyploid species in which the satellite number was comparably increased led certain workers to assume that often, if not always, apparently diploid species which possessed several satellites in the gametic complements are actually of polyploid derivation. This was the view held by Gates, who published a comprehensive review on this subject in 1942. However, since many polyploids never have more than two satellites, and since, on the other hand, in such plants as Leontodon leysseri three of the four chromosomes of the haploid complement bear satellites (Elliot, 1950), inferences as to polyploid level based on satellite or nucleolar number alone must be regarded as unsound.

Another problem related to the existence of satellites must be considered in order to appreciate the variations in satellite number observed in the Delphinium hybrids, and that is differential amphiplasty. This phenomenon was first noted by Navashin (1927, quoted by him in 1934), who applied the term to the apparent loss of satellites which sometimes occurs in hybrids. The following year, McClintock, in her paper on the nucleolar organizing chromosome of Zea Mays,

discussed in detail Navashin's work, interpreting the loss of satellites in hybrid forms as being due to the inability of the chromosome to "organize" a nucleolus in the presence of another more "active" chromosome. Amphiplasty has recently been reported in the genus *Leontodon* (Elliot, 1950), and had been occasionally reported in other genera (Meurman and Therman, 1939; Levan, 1937).

While our present understanding of differential amphiplasty is by no means perfect, the cases cited above seem to show that under certain conditions such as obtain in some hybrid cells, the apparent morphology of nucleolar organizing chromosomes may be modified. Since the presence of a satellite at metaphase is usually directly related to the formation of a nucleolus in that region in the preceding telophase, then the causative factor is apparently related to nucleolar metabolism. Nevertheless, the actual physiological differences between individual nucleolar "organizers," which are the essence of the problem, are not known at all, and it is therefore the morphological aspect of the phenomenon which concerns us here.

Diploids.—In pl. 13 is given the ideogram of D. grandiflorum L. var. chinensis Fisch. hort. var. Blue Butterfly, pollen parent of the 48-27 and 48-6 series of triploids. The actual length of metaphase chromosomes ranges from 3.1 to 10.1 μ . (These measurements are based on chromosomes not artificially contracted by PDB, although the chromosomes measured were subjected to minimum treatment in order that the spindle would not interfere with their being well-flattened.) Of the shorter, subterminally constricted chromosomes, chromosome H is readily identified by its length as well as by the satellite; of the rest, chromosome C may be identified by its satellite and sometimes by the secondary constriction of the long arm. Chromosomes D through G are individually distinguishable only with difficulty; the lengths of their short arms, on the whole, were found to be more diagnostic than the long arms, which may be variously extended, being slower to complete their coiling cycle than the short arms.

A difference in the activity of the satellites was noted here. While usually both C's were satellited, no cells were ever observed in which at least one C did not bear a satellite; the satellite of the H chromosome, on the other hand, was commonly present in unicate, and sometimes was even missing altogether. This was generally true for all plants of D. grandiflorum and was statistically determined for two individuals (Table III).6

Related plants, including 47031-1 from the Royal Botanic Gardens at Kew, D. grandiflorum L. var. chinense Fisch. from Basel, and numerous plants of horticultural varieties such as Tom Thumb and White Butterfly were examined and found to have a similarly differentiated complement (pl. 13). 47031-1 was found to possess a telocentric fragment, about the length of the long arm of the H

⁶In the course of numerous observations, in one plant of this species a third satellite was noted on one of the intermediate chromosomes, but as it was not present in any other case it has been omitted from the ideogram.

chromosome. Though the numbers of fragments present in different cells of an individual have been found to vary somewhat, the fragment is commonly transmitted through the gametes, being found in plants three and four generations removed from 47031-1. Unfortunately, the original plant and the fragment-bearing triploids were lost before pairing affinities of the fragment could be determined, and there are sufficient irregularities in the descendant hexaploids to make its identification in PMC's doubtful.

Plants of D. tatsienense Franch., a species closely related to D. grandiflorum L., were found to possess a genome similarly differentiated except that in the individuals surveyed the satellite is as often developed on the H chromosome as on the C chromosome (see 51-311-9, Table III).

D. cheilanthum.—By contrast with D. grandiflorum, D. cheilanthum bears its satellites on the A and C chromosomes, that on the A being not only larger but also the more "active" of the two (Table III, 51-307-6 and 51-307-1). So far as can be ascertained, the chromosomes of the two species are otherwise similar, except that the satellite-bearing arm of A is slightly longer here than in D. grandiflorum.

TABLE III
SATELLITE EXPRESSION IN DELPHINIUM SPECIES AND HYBRIDS

Plant	Fraction of	chromosom satellite*	es bearing	Number	Theoretical	Actual average satellite number
	C	H	A	cells	number	Saccinico A
			Diploids			
grandiflorum						
51-312-6	0.94	0.48		100	2:2:0	1.8:1.0:0
51-315-6	0.91	0.62	-	100	2:2:0	1.8:1.2:0
tatsienense				LIMITE SEED		
51-311-9	0.85	0.80		100	2:2:0	1.7:1.6:0
cheilanthum				1000	The second	
51-307-6	0.47	-	0.95	100	2:0:2	1.0:0:1.9
51-307-1	0.49		0.98	100	2:0:2	1.0:0:1.9
			Tetraploid	S		
D. elatum						
51-318-2	0.56	0.12	0.83	21	4:2:2	2.2:0.25:1.6
51-318-4	0.50	0.07	0.92	71	4:2:2	2.0:0.15:1.8
			Triploids			
48-27-3	0.61	0.33	0.05	100	3:2:1	1.8:0.67:0.05
50-15-3	0.52	0.34	0.63	100	3:2:1	1.5:0.68:0.63
			Hexaploid	s		
Smith's	7 57 / 313					
Belladonna	0.63	0.10	0.84	25	6:4:2	3.6:0.4:1.6
51-232-4	0.45	0.25	0.13	60	6:4:2	3.6:0.4:1.6 2.7:1.0:0.3

^{*}Fraction is computed on the basis of the actual observed maximum number of satellites for that chromosome.

Other diploids.—A third situation with respect to satellite number and position was found in D. cardinale (pl. 13) and D. nudicaule from California, and a fourth in D. Zalil Aitch. and Hemsl. (native to Persia and Turkestan) and D. sulphureum Boiss. and Hausskn. (from north Syria). In the California species the satellite number is 3, and the satellites occur on the H and on two pairs of intermediate chromosomes, one of which may or may not correspond to C, the lengths of the chromosomes in these species being not exactly comparable to those of D. cheilanthum and D. grandiflorum. The third satellite is on the second shortest chromosome. Despite the high potential satellite number, the low number of nucleoli usually present at telophase and interphase (generally no more than 4) indicates that all are rarely active in a particular mitotic cycle. In D. Zalil and D. sulphureum satellites occur on A and on one of the intermediate chromosomes. However, the genome differs from that of D. cheilanthum in the arm lengths of the intermediate chromosomes, so that direct comparisons cannot be made.

In studying satellite development in the above diploid species a situation was noted which has apparently not been described before, namely, that even within old diploid species differential "activity" of satellited chromosomes may be common. With this in mind further variations in satellite development which are found in polyploid species may not be so unexpected. In order to avoid ambiguity here, I shall use the term "differential activity" to apply to the differences in satellite development such as characterize diploid species, and "amphiplasty" to refer to any pronounced alteration in differential activity which follows hybridization. Actually, however, it is not to be assumed on such scanty visual evidence that any physiological distinction is being made.

Tetraploids: D. elatum.-In D. elatum, the only tetraploid species observed, distinctions among the chromosomes are again difficult to make. There are 2 pairs of long, medianly constricted A chromosomes, 2 pairs of long, sub-medianly constricted B chromosomes, 10 pairs of intermediate chromosomes with subterminal constrictions, and two pairs of short chromosomes with subterminal constrictions. Amphiplasty obscures the satellite situation, the more active A and D satellites usually being the only ones present (Table III), but a study of a large number of cells, both in the species (accessions from Göteborg Botanic Garden, and the Royal Botanic Gardens at Kew) and of horticultural variants, indicates the presence of satellites on 1 A, 2 C's and 1 H of the haploid complement. Although the number of satellites in the tetraploids parental to the triploids could not be determined statistically, camera-lucida drawings of the complements of 47-98-3 and Summer Skies indicate that these plants were typical in this respect (pl. 14). As in D. cheilanthum, the satellited A chromosome stands out from its counterpart in the other genome by virtue of its longer satellited arm. Lewitsky (1931) noted this difference in length, but did not observe the satellite.

The nature of the chromosome differentiation in D. elatum is thus strongly suggestive of an allopolyploid origin by hybridization and subsequent doubling of the chromosome number of diploid forms whose chromosome complements were of

the types represented in present-day species D. grandiflorum and D. cheilanthum. That the chromosomes designated at C are truly comparable in the two genomes and are not different members of the medium-sized group is corroborated by the fact that both possess a secondary constriction of the longer arm.

Aneuploids are occasionally found, even among the plants from the botanic gardens. However, they do not possess the abnormal characteristics which ordinarily distinguish aneuploids on the diploid level, and fertility, as judged by

amount of seed produced, is apparently not greatly impaired.

Triploids.—All plants of the four groups of triploid hybrids were examined and found to be essentially similar in so far as the morphology of the chromosomes is concerned (pl. 14). The maximum satellite number in each is 6: 1 A, 3 C's, and 2 H's, as would be expected on the basis of the generally regular segregation of the parents. The precise situation as to satellite development has been thoroughly worked out only for two individuals, 48-27-3 and 50-15-3, most of the other plants having died before this part of the study was undertaken. An interesting case is 48-27-3, in which the satellited A chromosome, so active in D. elatum, is rarely developed. (Study of camera-lucida drawings of other plants of this line and of the very similar 48-6 line indicates that this is generally true of both groups.) However, in 50-15-3, the other triploid analyzed, the A satellite was observed in more than 80 per cent of the cells examined. Thus, in crosses of similar parentage, amphiplasty has been demonstrated in one case, but did not occur in another.

With regard to the centric fragment of their pollen parent 47031-1, triploids 50-15-1 and 50-15-4 were found to possess the fragment in most cells; 50-15-3, 50-40-1, and 50-40-2 lack the fragment.

Hexaploids.—The tendency already noted for partial suppression of the potential satellite number was especially evident in the hexaploids, of which Smith's Belladonna,⁷ Cliveden Beauty, Bellamosum, and Lamartine were observed in some detail, as well as in the derived hexaploids which are to be considered in chap. V. In most cases, cumulative records on these plants indicated a possible satellite number of 2 A's, 6 C's, and 4 H's of the diploid complement. However, the normal satellite number in individual cells is often only half this number (pl. 15).

When interplant variation in degree and type of amphiplasty was studied Smith's Belladonna was found to possess very active A SATs, but among its progeny obtained by selfing, all degrees of activity were found; this was also true of the F₁ obtained by crossing this plant with Bellamosum. At the other extreme are certain individuals of Bellamosum, in which the satellited A can rarely be distinguished (Table III).

Meiosis and Fertility.—

Meiotic studies have been made of the triploid hybrids and their parents, where these have been available, as well as of Belladonna varieties, in an effort to compare

⁷The plant termed "Smith's Belladonna" throughout this study is a selection from the horticultural variety "Cliveden Beauty."

Metaphase configurations						F	irst Anap	hase	Second Anaphase						
Plant	16 II	15 II, 2 I	14 II, 4 I	13 II, 6 I	12 II, 8 I	11 II, 10 I	Number of cells	Number cells structurally abnormal	Number cells structurally normal	Total	% abnormal	Number cells structurally abnormal	Number cells structurally normal	Total	% abnormal
47-98-3 Summer Skies	18	2 7	0 5	0	0	0	20 24	88	112	200	44.0	4 3	16	20	20.0

TABLE V. METAPHASE PAIRING IN THE TRIPLOIDS

Plant	8 II, 8 I	7 II, 10 I	6 II, 12 I	5 II, 14 I	4 II, 16 I	3 II, 18 I	2 II, 20 I	1 II, 22 I	24 I	1 III, 7 II, 7 I	1 III, 6 II, 9 I	1 III, 5 II, 11 I	1 III, 4 II, 13 I	1 III, 3 II, 15 I	1 III, 2 II, 17 I	1 III, 1 III, 19 I	1 III, 21 I	Total cells
48-27-2 48-27-3 48-27-5 48-27-6 48-27-12	20 20 2	2 14 18 3 1	7 9 20 5 3	7 9 18 7 5	5 8 6 1 6	2 1 5 2	6 1 1 2	2		3	2 2 1	1 2 1 1 3	2 2 1 4 1	1				37 74 92 30 25
48-6-1 8-6-3		2	1	1	3	1	1			1								5
50-15-1 50-15-3 50-15-4	30	7	7	6 1 1	2 2 3	5	1	1					2	2	1			19 47 15

chromosome homologies in the triploids and Belladonna. Early prophases are usually difficult to stain by squash methods, and while fair preparations can be made by paraffin sections, using gentian violet stain, the high number of chromosomes present makes prophases generally of less use than later stages, which can readily be stained by conventional squash methods. For the most part, configurations at diakinesis and metaphase were analyzed, and anaphase I and II were scored for structural abnormalities. However, counts of chromosome segregation were not made, since the frequent occurrence of aneuploids in all polyploid populations is sufficient evidence that hyperploid and hypoploid gametes are produced.

The approximate percentage of "viable" pollen produced by certain key plants is given in Table I. However, since samples from the same plant taken on different days may show a wide range of viability, the values given can scarcely be considered absolute indications of fertility. Moreover, apparently good grains may not survive until the pollen tube has reached the ovule, not only on account of some deficiency of the grain, but also, perhaps, because of incompatibility with the stylar tissue. Certainly, the particular environmental conditions prevailing at the time of pollen formation and shedding are not the least important factor in the production of functional pollen and its further development. It has repeatedly happened that a plant which produced a large amount of well-filled, staining pollen grains and set a high percentage of viable seeds at one time, produced little pollen and set few seeds at another time, or again, produced apparently good pollen but set no seed. The immediate cause of impaired fertility of this sort is often a prolonged hot spell, but other factors may have a similar effect.

Diploids.—Blue Butterfly is usually quite regular in meiosis. In almost every one of numerous cells examined at diakinesis and MI, pairing was in 8 bivalents (pl. 15). Chiasma frequencies ranged from 2 to 3 for chromosomes A and B, to 1 or occasionally 2 for the others. Anaphase separation is quite regular, bridges occurring in less than 1.0 per cent of the cells examined. A regular second division is followed by the simultaneous cleavage of the pollen mother cell into tetrads.

Unfortunately, metaphase pairing of 47031-1 was not observed during the first year and the plant was subsequently lost. In anaphase I, however, laggards (probably the fragment) were noted in 9 per cent of the cells, and bridges in 3 per cent of the cells. The amount of "viable" pollen was about 65 per cent. The presence of the fragment in two of the five triploid offspring of this plant is satisfactory indication that pollen fertility was not prevented by the possession of the fragment. However, whether the failure of the plant to set any seed when selfor cross-pollinated may indicate some deleterious effect of the fragment in the ovule cannot now be shown. This case thus appears to be quite different from that of the centric fragment studied by Rhoades in Zea (1940), where transmission of the fragment was largely through the egg, fragment-bearing pollen grains usually not competing successfully with normal pollen grains.

Tetraploids.—Meiosis of Summer Skies is not entirely regular, the occurrence of 2 to 4 univalents at metaphase I being rather frequent. Further evidence of

structural hybridity is given by anaphase I and second-division configurations, bridges, fragments, and lagging chromosomes being present in 11.3 per cent of the A I and 23.3 per cent of the A II cells examined (Table IV). Pollen viability appeared to be rather low (Table I), but that the plant is highly fertile has been indicated by the amount of seed produced.

47-98-3 exhibited fairly regular pairing; only two of the twenty diakinesis and MI plates showed each 2 univalents. However, a higher proportion of the large chromosomes had reduced chiasma frequency, with sometimes only 1 chiasma per bivalent. Further evidence of chromosomal hybridity is seen in the rather high number of cells at anaphase I which showed visible abnormalities (44.0 per cent). Abnormalities of the second division were less frequent, being present in only four of twenty cells examined. Pollen viability was about 65 per cent.

47-2-3, the tetraploid parent of the 48-6 group, was not available for study.

Triploids.—Representatives of the several crosses have been analyzed. Since the number of PMC's examined in each case have not been large enough to permit separate discussion, the data have been somewhat grouped.

48-27: Numbers 2, 3, 5, 6, and 12 have been studied (Tables V and VI, pl. 15). Metaphase pairing is largely in bivalents and univalents, only 34 trivalents having been found in the 258 cells analyzed. Usually, the long chromosomes (A and B) were involved in the trivalent configurations, but trivalents formed by chromosomes of intermediate size were found at least twice. The low number of trivalents involving the intermediate chromosomes may be due in part to their observed low-chiasma frequency, but also to the presence of differentiated segments. The amount of even the A and B chromosomes present in trivalents is only 7.2 per cent.

In two individuals (48-27-3 and 48-27-5) bivalent formation is near the maximum number expected if normal chiasma frequencies prevail—that is, if those chromosomes which pair form the normal number of chiasmata. However, whether such pairing is ordinarily between the 8 chromosomes contributed by D. grandiflorum and 8 chromosomes of D. elatum, or whether pairing is primarily within the elatum complement only can not be determined precisely. The above-mentioned occurrence of occasional trivalents does indicate that some mixture of the two sorts prevails. That intragenomic pairing may occur in D. elatum is already known from the work of Lawrence (1936) and Mehlquist (unpublished); but the morphological similarity of one D. elatum genome to that of D. grandiflorum is equally strong indication that pairing between these chromosomes cannot be discounted.

Despite the rather high proportion of bivalents which may be formed in certain individuals, the frequency of univalents, which may sometimes number as many as 22, is indicative of structural differentiation of the chromosomes. This is further substantiated by the high percentage of structural abnormalities observed at anaphases I and II. At least one bridge-fragment was observed, on the average, in about 50 per cent of the cells examined, both at A I and at A II. Such config-

TABLE VI									
	MEIOTIC	ANAPHASES	OF	THE	TRIPLOIDS				

			A	naphas	e I	Anaphase II							
Plant	Bridges & fragments	Laggards	Both	Structurally normal	Total	Per cent abnormal	Bridges & fragments	Laggards	Both	Structurally normal	Total	Per cent abnormal	
48-27-2 48-27-3 48-27-5 48-27-6 48-27-12	16 41 29 10 44	17 61 33 21 25	10 14 12 9 16	21 92 33 23 39	64 208 107 63 124	67.2 55.8 69.2 63.0 68.4	7 16 12	1 15 7 —	5 11 5 —	17 25 35 —	30 67 59	43.3	
48-6-1 48-6-3	36 13	10	7	29 25	82 54	64.7 53.7	3 13	1 11	3 5	7 10	14	50.0 74.	
50-15-1 50-15-3 50-15-4	21 14 19	8 1 2	4 4 4	34 28 37	67 47 62	50.9 40.5 40.3	10	6 4	7 4	7 22 —	30 41	76.	

urations have been shown by others to be caused by crossing-over within inversions, by crossing-over involving certain types of duplication (McClintock, 1941) or, as suggested by Emsweller and Jones (1938), by pairing between chromosomes whose insertions are not opposite.

The number and behavior of the lagging chromosomes are of interest. The average number of laggards was less than one per cell in A I, and even lower in A II. As a result, except for the numerical imbalance of most of the gametes formed by these plants in natural consequence of their triploid constitution, the loss of univalent chromosomes, which is often characteristic of such plants, was not pronounced. This point will be considered further in the treatment of the hexaploids.

The number of microspores per tetrad is variable, 2 and 3 being the more common variants, but a fifth micrograin is occasionally formed. Micronuclei are extremely common, but are usually included with one of the other nuclei within a common wall.

The amount of apparently good pollen has been found to be quite small, and that which is formed is within the range of pollen size of the hexaploids, suggesting that such pollen is actually unreduced (Table I).

48-6-: Numbers 1 and 3 of this line were briefly analyzed. There was apparently a greater tendency to bivalent formation in 48-6-1, 7 II having been noted in several cases, while 2-6 II were found in 48-6-3. One trivalent was noted in 48-6-1. In anaphase I and anaphase II somewhat higher frequencies of abnormalities were noted in 48-6-1 than in 48-6-3.

Viable (unreduced) pollen grains were formed in 2.8 per cent of cases in 48-6-3 and 5.7 per cent in 48-6-1 (pl. 15).

50-15-: Numbers 1 and 4 have been examined and seem to differ somewhat in pairing relationships. Single trivalents involving the large chromosomes occurred in 5 of 18 figures in 50-15-1, whereas no trivalents were noted in the 15 cells of 50-15-4 analyzed. Structural abnormalities at A I were present in about 40 per cent of the cells of each, and there were many irregularities at A II. Pollen viability was determined at 1.5 per cent and 2.5 per cent for numbers 1 and 4 respectively.

50-40-: A survey of meiosis in 50-40-2 indicated that pairing was usually in 5 to 7 bivalents, with an occasional trivalent. Reduced chiasma frequency was evident in the A and B chromosomes, and abnormalities of later stages were frequent.

Moerheimi was lost early in the study, but preliminary observations indicated that meiosis was comparable to the three hybrid groups. Pollen viability was extremely low, less than 0.5 per cent unreduced pollen grains having been found.

Hexaploids.—Belladonna: Lawrence (1936) has reported that meiosis in this form is largely regular. In Cliveden Beauty, a light-blue Belladonna variety, 2 to 4 univalents (of small or intermediate chromosomes) were noted in 10 out of 16 MI cells, but the chiasma frequency of the A and B chromosomes was only slightly reduced. At anaphase I structural abnormalities were visible in 12.3 per cent of the cells. Anaphase II was quite regular, only 7 of 121 PMC's being visibly abnormal. Individuals of this variety were found to have from 63.2 to 80.5 per cent of good pollen.

Preparations of Smith's Belladonna showed somewhat less regular pairing at metaphase, with up to 8 univalents and the A and B chromosomes often with but one chiasma per pair. The actual amount of pairing was somewhat higher, however, for in diakinesis univalents were uncommon and the large chromosomes had

mostly two or three chiasmata in each bivalent (Table VII, pl. 15).

Table VII gives some indication of the irregularities which are found in D. Belladonna varieties, although the plants cited by no means represent a random sample. A certain number of univalents are almost always present, but they assort at random and do not commonly lag at the plate. Multivalents are rare, but were noted in 52-325-11 (Smith's Belladonna × self), where both the A chromosomes and intermediate chromosomes were observed in such configurations. However, although one A chromosome was lacking from this plant, the monosome was unusually unpaired.

The consequences of such irregularities as have been observed in Belladonna are indicated by somatic counts in various populations involving this variety. Text-fig. 7 compares the range in chromosome numbers of randomly selected progeny of various crosses. Thus, in 51-224 (Smith's Belladonna × Bellamosum, a dark blue Belladonna segregate) 8 of the 15 plants in the sample possessed 48 chromosomes, and in 52-311, produced by selfing a 48-chromosome individual of

TABLE VII
MEIOSIS IN BELLADONNA TYPES

	Metaphase 1										Anaphase II			
Plant	Chromosome number	Number of cells	Number bivalents per cell-range	Total number multivalents	Number multi, involving intermediate c-somes	Median number bivalents	Number of cells	Cells with laggards	Cells with other	% abnormal cells	Number of cells	Cells with laggards	Cells with other abnormalities	% abnormal cells
Smith's Belladonna*	48	55	24-20	0	0	23	12	2	2	33.3	Mostly	regula	r	
Cliveden Beauty-5	48	15	24-22	0	0	23	81	3	3	7.4	121	4	3	5.1
	47 (5A)	32	23-19	4	2	22	48	3	9	25.0		-	-	-
51-224-16	48	21	24-22	0	0.	23	29	4	7	35.9	14	1	0	0.7
51-232-47 Lamartine	49	45	24-19	0	0	23	100	9	34	43.0	65	4	19	35.4 12.5
TANDEST PRINCE	48	46	24-21	0	0	23	67	6	4	14.9	104		6	

*Of 21 late prophases observed. 17 showed 24 II, and 3 had each 23 II and 2 I. One cell had 6 univalents.

this population, chromosome numbers of 25 plants ranged from 41 to 49, only 7 individuals having the "normal" number. Again, among 25 individuals of cross 51-232 (Bellamosum × self) chromosome numbers ranged from 45 to 49, 11 plants having the 48 chromosomes expected. In a sample of 10 plants obtained by selfing Smith's Belladonna (not figured), numbers ranged from 46 to 48. In most of the above cases the additional or missing chromosomes were of the smaller classes, but one plant with 48 chromosomes (51-232-1) lacked an A; and 51-224-13, with 45 chromosomes, lacked a B. None of the aneuploids were visibly abnormal, and such observations of pollen viability as were made revealed no obvious correlation between chromosome number and pollen viability. Evidently, like many other polyploids, D. Belladonna can withstand the loss of a certain amount of genetic material without suffering the consequent weaknesses and abnormal development common when such losses occur at the diploid level.

Discussion and Summary.-

The cytological information given above bears on the problem of the identity of the genomes in D. Belladonna both from the standpoint of chromosomal morphology and of pairing homologies of the chromosomes in meiosis.

The somatic studies have made clear that the aspect of the chromosomal complement of D. Belladonna is just what might be expected if it had been produced by doubling the chromosome number of such a triploid as those produced here. The amphiplasty of the satellite of the A chromosome in different plants of Belladonna was also found in different triploids. That this differential activity is

Text-fig. 7. Frequency distributions of chromosome numbers in populations of D. Belladonna and of the derived hexaploids. Ordinates represent per cent of population; abscissa, number of chromosomes

A-51-224	D51-216	G-51-219	J-51-222
B-52-311	E-51-217	H-51-220	K-51-223
C-51-232	F-51-218	I-51-221	

not equivalent to morphological loss of the satellite was made evident by analyses of certain plants in which the rare occurrence of the satellite proved that its usual absence does not represent permanent loss. This condition is thus different from the actual morphological differences in satellite disposition between the chromosomes of the two diploids D. grandiflorum and D. cheilanthum.

Recognition of this difference is important for the interpretation of the satellite pattern in D. elatum, the various triploids, and D. Belladonna. Thus, D. elatum might be a derivative of two diploid species whose genomes were differentiated along the lines of present-day D. grandiflorum and D. cheilanthum. And, given D. elatum as the tetraploid parent of D. Belladonna, D. grandiflorum might be the diploid parent; but D. cheilanthum could not have been, unless drastic morphological alterations of the chromosomes have ensued since the time of origin of Belladonna. If the alternative supposition is made, that D. cheilanthum was the diploid parent of Belladonna, again, as with the morphological characters, there is the problem of finding a tetraploid other than D. elatum in the gardens of Europe—a tetraploid, moreover, both of whose genomes of the haploid complement are similarly differentiated.

Analysis of pairing homologies of the chromosomes has proved illuminating in some respects, though not so useful in others. This was not unexpected, since in polyploids above the tetraploid level all combinations of autopolyploidy, segmental allopolyploidy, and amphiploidy may exist within a single individual (Stebbins, 1947, 1950).

The triploid hybrids were found to exhibit neither the complete absence of pairing characteristic of the progeny of crosses between very distantly related species, nor the relatively complete pairing of some segmental allopolyploids, or of autopolyploids. True, as has been pointed out, the low metaphase chiasma frequency of the chromosomes would ordinarily prevent trivalent formation by all except the large A and B chromosomes, but the actual number of univalents was ordinarily higher than the eight expected if heterogenetic pairing either between grandiflorum and elatum chromosomes or within the elatum complement were of regular occurrence. Actually, the formation of occasional trivalents by the large chromosomes indicates that such pairing as does occur is a mixture of the two sorts.

It has repeatedly been noted that pairing of chromosomes in the F₁ of such a species cross cannot be taken to indicate that a polyploid derivative of the cross (here a hexaploid) would necessarily be characterized by corresponding multivalent formation (Darlington, 1937; Goodspeed and Bradley, 1942; Clausen, Keck and Hiesey, 1945; Stebbins, 1947, 1950). Rather, after doubling has occurred, differential affinity of the chromosomes may result in regular bivalent formation, not only in allopolyploids (Clausen and Goodspeed, 1925; Buxton and Newton, 1928; Kagawa and Nakajima, 1933) but even in known autopolyploids (Skirm, 1942).

Since each case must be considered individually and the direct hexaploid derivative has in this instance not been produced, the triploids can best be described as being the sort of plants which might well give rise to segmental allopolyploids, the low chiasma frequency of whose chromosomes would, on the whole, lead to more-or-less regular bivalent formation in the hybrid. One should expect, then, relatively little segregation in future generations, and the plants would continue to possess the more-or-less intermediate appearance of the triploids.

The cytology of *Delphinium Belladonna* itself suggests that this species behaves rather like a segmental allopolyploid, but with perhaps fewer aberrations than are generally found in polyploids of this type. Thus, while at first metaphase, pairing is primarily by bivalents, still the formation of univalents is not uncommon. Multivalents are rarely found.

A consequence of univalent formation in gametogenesis is the production of numerous aneuploids. The mere occurrence at the polyploid level of viable aneuploids of good fertility is not unknown (Sears, 1944; Clausen and Cameron, 1944), although their high frequency here was not anticipated. In Triticum aestivum and Nicotiana tabacum, most of the nomosomics and nullisomics are individually recognizable, and this has been found to be true in certain other polyploid hybrids where aneuploids have been found (Primula kewensis, Newton and

Pellew, 1929; Nicotiana tabacum, Clausen and Goodspeed, 1924; Nicotiana rustica, Lammerts, 1932; Nicotiana glauca × N. Langsdorffii, Kostoff, 1939). However, while a part of the variability within Belladonna may be owing to aneuploidy, still it has not been possible to isolate any characteristic monosomic phenotypes, even for the large chromosomes, suggesting that there must be a considerable amount of duplicated chromosomal and genetic material in D. Belladonna.

This conclusion is corroborated by a survey of the extent of hypoploidy which Belladonna tolerates. Plants having from 43 to 44 chromosomes, while apparently infertile, are not themselves weaker than their euploid sibs. In most allopolyploids with fully differentiated genomes, such aneuploids as occur are usually deficient for no more than one or two chromosomes (Newton and Pellew, 1929; Müntzing, 1937). It is in plants in which the genomes contain many homologous chromosomes or chromosomal segments that extreme aneuploids have generally been found (Müntzing, 1937; Myers and Hill, 1940; Myers, 1947; Love and Sunneson, 1945).

Since the univalent chromosomes are usually included in the daughter nuclei, the prevalence of hypoploids among the plants of all the Belladonna populations studied can be explained on the assumption that in these relatively balanced plants, a gamete deficient for one or several chromosomes is at an advantage over gametes containing chromosomes in excess. Therefore, those gametes which function would then include 24 or fewer chromosomes. It is not, however, to be concluded that Belladonna is insensitive to chromosome losses of indefinite extent: on the whole, aneuploids with 46 or 47 chromosomes are the most frequent, so that functional gametes must not, as a rule, lack more than one or two chromosomes. Further, though intervarietal crosses are easily made, the germinability of seeds produced is higher in selfs than in intervarietal crosses (Table XI). It seems, therefore, that such chromosomal differentiation as exists between varieties may result in sufficient deficiencies either in the embryo or in the endosperm that in consequence the hybrid seed is less viable. Finally, since fertility tends to be generally higher in the more nearly euploid individuals, and the progeny of the aneuploids do not vary more in chromosome number than do the progeny of normal individuals, D. Belladonna Hort. maintains itself approximately at the hexaploid level.

Of the many allopolyploids which have been analyzed (Stebbins, 1947, 1950) the one perhaps most similar to D. Belladonna is the segmental allopolyploid Anemone Jancewskii (= A. sylvestris \times A. multifida var. magellanica), first synthesized by Jancewski before 1892, resynthesized by Gajewski (1946), and further, occasionally spontaneous in botanic gardens. Morphologically, the hybrid is intermediate between the parents and is quite constant, even aneuploids not being of abnormal appearance. A cytological study of the parents and the hybrids by Gajewski revealed that in the triploid (24 chromosomes) at MI from 3 to 8 bivalents are formed, the remaining chromosomes being unpaired. In the F_2 generation produced by the functioning of unreduced gametes (Jancewski reported two instances of somatic doubling but Gajewski did not obtain any hexa-

ploids by this means), in addition to cells in which 24 bivalents occur, in other cells there were some univalents and from 1 to 3 multivalents. Seed and pollen fertility in different individuals of this generation ranged from rather high to rather low, and in the F_3 there was a general increase in fertility. The chromosome numbers were uniformly about 48 in Gajewski's plants, but in the accessions from botanic gardens they ranged from 42 to 48. The chief respect in which A. Jancewskii seems to differ from D. Belladonna and from the hybrids synthesized here is in the complete absence of trivalents in the triploid and in the higher frequency of multivalents in the hexaploid. The first may be due to greater differentiation of the parental genomes; the second may well be the result of the much higher chiasma frequency of the chromosomes of this hybrid.

To summarize, then, although D. Belladonna has previously been considered an amphidiploid on the basis of its largely regular meiosis and its relatively constant appearance, intermediate between certain diploid and tetraploid species of cultivation, the garden hexaploid has been shown to have somewhat less regular meiosis than is characteristic of true amphidiploids. This is indicated both by the common occurrence of univalents and other irregularities in meiosis, and in the higher production of viable, fertile aneuploids than is characteristic of such plants. Rather, D. Belladonna may better be classed as a segmental allopolyploid, in which the low chiasma frequencies of the chromosomes tend to enforce bivalent formation, and morphological constancy is further enhanced by the quantitative mode of inheritance of many of the differentiating characters.

DERIVED HEXAPLOIDS

For descriptive purposes, all of those plants having in their ancestry one of the triploids and *Belladonna* have been termed "derived hexaploids." The pedigrees of the major lines are given in text-fig. 2.

First-generation Hybrids: Triploids X Belladonna Varieties .-

The dangers of making decisions regarding the nature of polyploidy in a hybrid, whether it be a segmental allopolyploid or an amphiploid, have been pointed out by Stebbins (1947, 1950). Neither external morphology of the chromosomes nor the nature of chromosome association can be used as a single criterion in identifying the chromosomes of a hybrid. Therefore, whenever it is at all possible, "the form in question should be hybridized with its putative diploid ancestor or ancestors, or better yet, it should be resynthesized." However, since repeated attempts to produce hybrids between Belladonna and either D. grandiflorum or D. elatum have been unsuccessful and direct doubling of the chromosome number of the triploids has not been achieved, a compromise has been made in the production and study of hybrids between the triploids and Smith's Belladonna.

By using the triploids as female parents and pollinating them with Belladonna 23 F₁ seeds were obtained, of which 7 yielded plants which reached maturity. Unfortunately, these hexaploids, which are of the greatest interest in this study, are not known in as great detail as is desirable, since all but one were lost in the

TABLE VIII
MEIOSIS IN THE DERIVED HEXAPLOIDS

			Meta	phase	I			Ana	phase I			Ana	phase II	
Plant	Chromosome Number	Number of cells	Number bivalents per cell-range	Total number multivalents	Number multivalents involving intermediate chromosomes	Median number bivalents	Number of cells	Cells with laggards	Cells with other abnormalities	% abnormal cells	Number of cells	Cells with laggards	Cells with other abnormalities	% abnormal cells
51-213-3	48, 2F	45	24-19	3	1	23	139	6	13	13.7	60	9	2	18.3
51-216-6	49, 2F	6	24-20	2	0	_	-	La	rgely reg	ular	-	_	-	
51-216-10	50 (7A)	29	24-22	8	2	24	45	1	4	11.1	Abor	ut 15%	o irreg.	
51-216-16	50 (7A)	31	24-20	4	0	24	65	9	9	27.7		_	-	-
51-219-4	46	55	22-17	0	0	21	50	8	2	20.0	37	2	2	11.2
51-220-4	48	10	23-20	1	0	-	25	3	2	20.0	-	-	-	-
51-221-11	48	20	24-21	0	0	23	82	8	8	19.5	70	5	13	25.7
51-222-21	47	33	23-20	1	0	21	83	17	4	25.0	45	7	5	26.6
51-222-38	48	23	24-21	0	0	23	32	7	5	37.3	22	7	3	45.4
51-223-5	47	33	23-21	2	1	23	-	-	_		-	-		
51-223-31	44	7	22-17	0	0	A 50	61	8	2	16.7	36	7	5	25.0

unusually severe winter of 1951-52 following their first flowering, and most of the meiotic material available for study was a few buds embedded in paraffin.

Of the plants which were surveyed, 50-20-1 (48-6-2 × Smith's Belladonna) formed mostly bivalents at MI, but 6-12 univalents were commonly present, and reduced chiasma frequency in the long chromosomes was observed. At first anaphase, abnormalities were observed in 28.0 per cent of the cells studied, but in only 10.0 per cent of cells at anaphase II. Pollen viability was 41.4 per cent, and a fair amount of seed was set both by selfing and by backcrossing to Belladonna.

51-209-1 (48-27-5 × Smith's Belladonna) exhibited fairly regular pairing at MI. Usually no more than 4 univalents were found, and frequently 24 bivalents were present. Anaphase I was visibly normal in about 45 per cent of all cases, and AII was somewhat more regular. Pollen viability was in the neighborhood of 85 per cent. This plant produced a heavy set of viable seed, whether selfed or further backcrossed to Belladonna.

51-213-1 (50-15-4 × Smith's Belladonna) was studied in sectioned material, in which only approximate counts could be obtained. There was apparently relatively good pairing at MI—many PMC's appeared to be quite regular, and usually no more than 4 univalents were evident. Several times, a single trivalent involving one of the larger chromosomes was observed. Al's were regular in 60 per cent of the cases, as were most of the AII's. Pollen viability was as high as 91 per cent. Again, both selfs and backcrosses to Belladonna proved successful. A sister seedling, 51-213-2, showed metaphase pairing with generally 2-4 univalents, the remaining chromosomes being in bivalent configurations. AI segregation in this plant appeared to be about 55 per cent normal.

51-213-3, studied in some detail (Table VIII), had at least 23 bivalents in two-thirds of the cells at MI, and both anaphase divisions were highly regular. Little trivalent formation was recorded, however.

Two other hexaploids, 51-211-1 and 51-211-2 (50-15-1 × Cliveden Beauty), could not be analyzed; of these, the former yielded a good set of seed upon selfing. The other plant was not pollinated.

The advanced generations among the derived hexaploids had their origin, as may be seen in text-fig. 2, from five F₁ individuals. Of these, two of the parental triploids had different white elatum parents but the same blue grandiflorum parent, while the triploid parent of the third line was the offspring of an azure elatum variety and the fragment-bearing cobalt diploid, 47031-1. In general, as will be seen, the lines derived from the last cross are distinct in cytological behavior from the other two.

Somatic Chromosome Morphology .-

Because of the number of plants represented by these populations, studies of somatic chromosomes have been restricted to root-tip counts. The total number of each of the easily identified A and B chromosomes was counted, gross morphological alterations of the chromosomes were noted, and in instances where staining was good enough, average satellite number and disposition were determined.

TABLE IX
CHROMOSOME NUMBER IN D. BELLADONNA AND THE DERIVED HEXAPLOIDS

				Ну	poploid	ls					H	yperplo	oids				48 chr	
Line	Aneuploid	Fragment	5A	5.B	7.A	7.B	Other	Total	Aneuploid	Fragment	5A	5 B	7.A	7B	Other	Total	Fragment	Normal
51-216	0	2	0	0	0	0	7A, 7B—1	3	2	5	0	0	6	0	8A-2	16	4	1
51-217	1	0	0	0	1	0	0	2	0	0	0	0	3	0	7A, 7B—1 7A, 7B—1	4	1	2
51-218	0	4	0	1	0	0	0	5	0	9	0	0	0	1	0	10	8	3
51-219 51-220	6	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0	0	1
51-221	5	0	1	0	0	0	0	6	4	0	0	0	0	1	0	5	0	13
51-222	8	0	0	1	0	1	0	10	5	0	0	0	2	0	8A-1	8	1	27
51-223	8	0	0	0	0	0	0	8	3	0	0	0	0	0	0	3	0	9
51-224	6	0	0	1	0	0	0	7	0	0	0	0	0	0	0	0	0	8
52-311 51-232	15	1	0	1	1	0	0	18	0	0	0	0	0	1	0	1	0	6
51-232	10	1	1	0	0	0	0	12	2	0	0	0	0	0	0	2	0	11

As to the number of satellites present, the chief difference noted among the various populations was in the expression of the A-SAT, which is potentially present on two of the 6 A chromosomes in all lines, since the triploid and the Belladonna parent each should have contributed one. However, while plants in the three populations descended from the 51-213 individuals usually revealed one or two satellited A's, this satellite was not strongly manifested by the other populations. Apparently, this difference had its origin in the triploid parents, since, as was mentioned above, the 50-15 individuals were characterized by possessing a more "active" A than the other lines.

Aneuploidy is common in all populations, as it is within Belladonna; however, the various lines have characteristic differences (text-fig. 7, Tables IX and X). Thus, while Belladonna populations contain many hypoploids with as few as 41 chromosomes and only occasional hyperploids, this pattern occurred only in 51-219 and 51-220 (51-202-3 X self, and X Smith) among the derived hexaploids. A somewhat intermediate situation was found in 51-222 and 51-223 (51-209-1 X self, and X Smith) and in 51-221 (51-202-7 X 50-20-1) in which plants with 48 chromosomes were frequent and both hypoploids and hyperploids occurred. A third situation was found in lines 51-216, 51-217, and 51-218, derived from the fragment-bearing individuals 51-213-1 and 51-213-2. In these populations, hyperploid individuals were most numerous, though an occasional plant with as few as 45 or 46 chromosomes was found. In addition, the centric fragment was quite common, being found in 17 out of 24 individuals of 51-216, and 23 of 26 individuals of 51-218. In 51-217, which was a backcross to Smith's Belladonna, the fragment occurred in 4 of 8 individuals examined. The exact number of fragments present in each individual is not given, since the fragment does not always segregate regularly and may occasionally vary from root-tip to root-tip

TABLE X
IRREGULAR DISTRIBUTION OF CHROMOSOMES IN THE HEXAPLOIDS

Line Number		Nui	mber chrom deficient		Number chromosomes in excess			
	of plants	A	В	Other	A	В	Other	
51-216	24	0	0				17	
51-217	9	0	0	8	11	1	1/	
1-218	26	0	1	7	4	1	14	
51-219	12	0	1	18	0	1	0	
1-220	7	0	0		0	0	0	
51-221	24	0	1	12	0	0	6	
1-222	45	0	1	18	0	1	6	
51-223	20	0	0		4	0	3	
1-224	15	0	1	16	0	0	0	
2-311	25	0	1	49	0	0	0	
1-232	25	1	0	22	0	1	2	
	-	-	_				_	
Total	232	1	6	173	19	5	51	

of a given plant. It is not known to what extent it may be possible to accumulate fragments in future generations, but in samples of two F₃ populations, each of whose progenitors bore two fragments, no more than three fragments were observed in a total of fifteen individuals; on the other hand, all but one of the remainder possessed one or two fragments. Since transmission of the fragment through both the pollen and the ovule has been demonstrated (in the pollen, on the diploid and hexaploid levels, and in the ovule, on the triploid and hexaploid levels), it may well be that the failure to find many individuals with an augmented fragment number reflects some lethal effect of numerous fragments. It may be noted that the formation of isochromosomes by misdivision of the fragment, such as was noted by Darlington in *Fritillaria* (1940) and by Rhoades in Zea (1940) has never been observed here, although such a chromosome should be easily recognized by its distinct morphology.

Fertility of the Derived Hexaploids .-

A systematic study of all the plants has not been made, since they number now well over 1000. As has been noted above, the initial triploid × hexaploid hybrids were of good fertility. In succeeding generations (to the F₄ and various backcrosses to Belladonna) plants exhibiting all degrees of fertility have been found,

as evidenced particularly by seed set.

Detailed meiotic studies have been made in only a few of these plants (Table VIII), but the degree of pairing has generally been found to agree well with that characteristic of D. Belladonna. Thus, 51-221-11 forms no more than 6 univalents and usually only 2 at MI; no multivalents were noted; and both anaphases are fairly regular. A similar situation, with slightly more numerous irregularities in the anaphases, was found in 51-222-38. In aneuploid individuals, irregularities were, to be sure, more frequent. Thus, 51-216-10 and 51-216-16, both of which possessed an A chromosome in excess as well as one other excess chromosome, often formed 24 bivalents, but were also characterized by low multivalent formation, chiefly involving the extra A chromosome. A hypoploid (51-219-4; 46 chromosomes) averaged 21 bivalents, but the anaphases were not especially irregular. As in Belladonna, the number of laggards at anaphase was always much less than that of univalents at metaphase.

While infertile plants have been found both among the aneuploids and among apparently normal plants with 48 chromosomes, a study of seed germinability among those plants which have set some seed shows that, on the whole, the highest number of viable seeds were produced by plants with 48 chromosomes. However, even in this group, germinability ranged from 0 to about 90 per cent, and, with one exception, the production of seed with at least 40 per cent germinability was

confined to plants having 47-49 chromosomes (Table XI).

Segregation in the Derived Hexaploids.—

On the whole, each line within this group exhibits considerable uniformity by the F3 (or equivalent) generation. However, there are few individuals in each

TABLE XI
SEED GERMINABILITY IN DELPHINIUM BELLADONNA AND DERIVED HEXAPLOIDS

Plant	Chromosome number	Number seeds sown	Number	% Germin- ability
Smith × self	48	27	21	78
Smith X Bellamosum	48 X ?	86	25	29
Lamartine X self	48	24	14	57
Lamartine X Smith	48 × 48	52	0	17
51-216-3 × self	48	4	0	10
51-216-4 × self	49, 2F	2	0	0
51-216-12 × self	48, 2F	75	15	20
51-216-13 × self		75	15	20
51-218-2 × self	52 40 F	15	0	27
51-218-9 × self	49, F	1.4	,	37
51-218-16 × self	48	14	2	14
51-218-18 × self	48, 3F	42	23	55
51-218-19 X self	49, 2F	20	0	0
	46, 2F	29	18	62
51-218-29 × self 51-218-39 × self	50, 2F	68	23	34
	48, F	8	2	25
51-221-2 × self	49	50	30	60
51-222-11 × self	48	3	0	0
51-222-13 × self	47	36	4	11
51-222-19 × self	48	11	0	0
51-222-28 × self	48	4	0	0
51-222-7 × self	48	200	165	82
51-222-8 × self	48	47	21	44
51-222-14 X self	48	23	17	73
51-222-36 × self	48	12	0	0
51-222-37 × self	48	32	14	44
51-222-43 × self	47	22	3	13
51-222-46 × self	48	8	1	13
51-222-50 X self	46	33	16	48
51-222-54 × self	49	20	1	5
51-222-61 × self	48	22	13	59
51-222-67 × self	48	5	0	0
51-222-77 × self	48	9	4	45
51-222-95 X self	49	15	7	47
51-222-100 × self	48	7	1	14
51-223-1 × self	49	3	0	0
51-223-21 × self	48	10	6	60
51-223-22 × self	48	15	5	33
51-223-38 × self	48	14	5	34
51-223-44 × self	47	7	0	0

group which deviate noticeably from the rest, especially in leaf shape. In only one instance (an F₃ family derived from 51-209) have more than a few individuals deviated in the direction of either D. grandiflorum or D. elatum, and the variation here is in the direction of rather more finely dissected leaves than generally occur in D. Belladonna. Taken as a whole, however, the general aspect of the assemblage is that of a Belladonna population in which a few individuals are more or less branched, shorter or taller, or with leaves more or less finely dissected than in D. Belladonna Hort. (pl. 10).

Color inheritance in these forms is such as to raise some interesting questions, but detailed treatment of this subject will be reserved for future consideration.

Discussion and Summary .-

Although the analysis of meiosis in the first-generation hybrids was not complete, it is still clear from the above that while somewhat more irregular than in Belladonna, the meiotic process does not appear to be greatly disturbed, and in only one individual (51-213-1) was the regular production of multivalents noted.

Chromosome numbers among the progeny of these plants suggest for the various crosses what homologies and disharmonies may have been operative in their parents. Crosses 51-219-, 51-220-, and 51-223- are most similar to Belladonna in that chiefly euploids and hypoploids were produced. In the first two of these lines, which represent the self and backcross to Smith's Belladonna, respectively, of the F_2 of the cross $48-6-2 \times Smith$'s Belladonna, there has been no intentional building up of the Belladonna complement by backcrossing. Therefore, unless the introduced chromosomes of the triploid have been appreciably eliminated, no strong barriers of chromosomal differentiation appear to exist between the parental triploid and Belladonna. The aneuploidy thus seems to be of the same nature as in D. Belladonna Hort.

On the other hand, 51-223 is a first backcross to Smith's Belladonna of the original hybrid between 48-27-5 and Smith's Belladonna. Since the same hybrid when selfed gave rise to line 51-222 (in which both hyperploids and hypoploids were frequent, and in which excessive numbers of supernumerary A chromosomes were found), it seems in this case that occasional formation of multivalents involving the large chromosomes must occur, and perhaps that more pronounced structural differences may exist between the parental genomes than in the previous instance. The first conclusion is based on the occurrence of 4 A chromosomes out of a total of 10 chromosomes extra in the hyperploid individuals of line 51-222, more than three times the expectancy if this chromosome were segregated irregularly only as often as the small chromosomes, and even more unlikely as a random event if the higher chiasma frequency of this chromosome is considered.

In the absence of any indication of multivalent formation by the smaller chromosomes, it is necessary to assume that some other factor is operative in producing individuals possessing these chromosomes in excess. This may be accounted for if gametes hyperploid for these chromosomes are not at the selective disadvantage which appears to occur in *D. Belladonna*. Such an hypothesis can best be explained if certain euploid combinations in these individuals are actually deficient for necessary genetic material, which may be supplied by the extra chromosomes.

The extreme frequency of hyperploidy in the 51-213 derivatives, where hyperploids represent the bulk of the populations, seems to indicate both high multivalent formation by the A chromosomes, occasional multivalent formation by the B chromosomes, and to a greater extent than in the preceding case, the operation of some factors which favor the functioning of gametes hyperploid for the smaller

chromosomes. This is particularly true of 51-216 and 51-217, the F₂ and first backcross respectively of 51-213-1, the plant in which multivalents were noted above. That transmission of the excess large chromosomes may be through the pollen grain as well as through the egg is suggested by the fact that a comparable excess of large chromosomes was present in 51-217, the backcross line, as compared with 51-216.

As to the fertility of the derived hexaploids, it has already been noted that euploid chromosome numbers and fertility are not necessarily related, but that, on the whole, more plants which yield seeds with good germination have about 48 chromosomes than have chromosomes either much in excess or in deficiency of this number. The tendency to preserve the hexaploid number appears to be almost as strong as in the *Belladonna* lines themselves.

So far as the homologies of the genomes derived from triploid and hexaploid sources are concerned, it seems that they must be very nearly similar, since there has been no strong morphological or cytological disharmony in the derived hexaploids as compared with D. Belladonna. In fact, the differences are very slight indeed if one contrasts the behavior of these plants with that of the intervarietal crosses between Belladonna and Bellamosum. Although the latter variety was derived from the former, yet reduced seed germinability and more frequent aneuploid production have been found to occur in their hybrids than characterize either variety when it is selfed.

GENERAL DISCUSSION

It is concluded that D. Belladonna Hort. is an allopolyploid hybrid between the tetraploid species D. elatum L. and the diploid species complex of D. grandiflorum L. In general, D. Belladonna may best be classed as a complex segmental allopolyploid, but it should be emphasized that classification is especially difficult since strong chromosomal barriers to hybridization do not seem to exist between even distantly related species of Delphinium (e.g., D. elatum and D. nudicaule or D. cardinale). Unlike many other segmental allopolyploids, however, D. Belladonna is easily distinguished from both parents. It has already been suggested that regularity in pairing, enforced by differential affinity of the chromosomes, as well as by the not insignificant effect of low chiasma frequency, is probably responsible in large part for this behavior. Moreover, the quantitative mode of inheritance of many of the characters tends to keep D. Belladonna in its intermediate morphological position between the parents.

Undoubtedly, a large part of the success of D. Belladonna (as opposed to the frequent failure of such hybrids to be perpetuated in nature; Clausen, Keck and Hiesey, 1945) has been the result of its being a garden plant. Thus, in the first place, it was vegetatively propagated for an unknown number of years before the first occurrence of fertility was reported; second, it has been subject to the care and selection of gardeners and plant breeders over the years, so that the difficulties (for instance, multivalent formation by the large chromosomes) such a hybrid would encounter during the first few generations in nature were mostly obviated.

Several explanations may be offered to account for the elatum tendencies noted in the experimentally produced triploids. First, while D. grandiflorum has a number of varieties, those varieties grown in gardens are, on the whole, similar with respect to the features which they contribute to the phenotype of Belladonnathe large self-colored bee, the wide open flower, the few-flowered inflorescence, the finely dissected leaves, and much-branched habit. D. elatum, on the other hand, exists in many natural and horticultural variants; probably a D. elatum bred for a showy "bee," with a relatively open inflorescence and rather narrow leaf segments, would yield offspring of the type characteristic of Belladonna when such a variety was crossed with grandiflorum. However, the elatum variety Summer Skies, seed parent of triploids 50-15, has a small bee, broad leaf segments, and very dense strong main spike with numerous flowers; the triploids plotted in text-fig. 5 are indeed intermediate with respect to their known parents. All one can say of the presumptive elatum parent of Belladonna is that it was almost certainly a smaller, less extreme variety than those grown today, judging from historical plates of Delphiniums cultivated in the middle of the last century.

The question of the nomenclature of the triploid and hexaploid garden Delphiniums may be viewed in three very different aspects: first, as it concerns the taxonomist, second, the geneticist, and third, the gardener or nurseryman. While the first two views may be reconciled to a certain extent, the unfortunate truth is that the people most concerned with these Delphiniums (which are, after all, cultivated plants) will probably perpetuate the past errors and contribute new cases of mistaken identity in the future.

For the geneticist, it is desirable that the exact parentage, insofar as it is possible, be given for every hybrid where it is known. Convenience in the herbarium, on the other hand, requires that some category be devised which will adequately contain the assemblage. Thus, according to the International Code of Botanical Nomenclature (Lanjouw, ed., 1952), "hybrids or putative hybrids between two species of the same genus are designated by a formula, and whenever it seems useful or necessary, by a name." In the latter case, the specific name is to be preceded by "X." Further, where different hybrids of the same parentage exist, they may be united in a collective taxon in which the forms are recognized as nothomorphs, "designated by an epithet preceded by the binary name of the hybrid group and the term "nothomorph." While the general practice in systematics is to give priority to the earliest validly published name, for cultivated plants provision is made that the most generally employed name may be used. Of the early names applied to hybrids of D. grandiflorum and D. elatum, only D. formosum and D. Belladonna are in wide usage. Since the name Delphinium formosum was given in 1856 to a wild species (Boissier and Huet), it seems advisable to maintain D. X Belladonna Hort. ex Bergm. (see footnote, p. 119) as the epithet of the hexaploid Delphiniums and their triploid allies. Varieties such as Lamartine, Capri, Moerheimi, and the triploids and derived hexaploids of this study may then be considered as nothomorphs of this species.

SUMMARY

1. Previous workers have postulated that D. Belladonna Hort. originated either as a variety of D. cheilanthum Fisch. ex DC., or as a hybrid of D. cheilanthum with some unknown other species, or by hybridization between such diploid and tetraploid species as D. grandiflorum L. and D. elatum L. It is pointed out that solution of the problem must be based upon a combination of methods, including historical research, morphological analysis, and cytogenetic data.

2. A study of the taxonomic and horticultural literature indicates that D. cheilanthum is a coherent diploid species, rare in gardens, native to Siberia, Mongolia, and Kumaon (China), with relatives in adjacent areas; D. Belladonna, on the other hand, is a hexaploid, known only in gardens, where it has arisen upon

different occasions.

3. Hybrids between various lines of D. elatum and D. grandiflorum var. chinensis have been produced and have been found to be morphologically comparable to D. \times Belladonna Hort. ex Bergm. and, moreover, within the limits im-

posed by their triploid condition, interfertile with the "species."

4. Character analysis of the various species and hybrids indicates that both Belladonna and the experimentally produced triploids are intermediate with regards to D. elatum and D. grandiflorum, but that D. cheilanthum is morphologically and cytologically distinct from D. Belladonna and could not have been the diploid parent of the latter if D. elatum was the tetraploid parent.

5. Methods are given for the study of somatic and meiotic chromosomes and

of pollen mounts.

- 6. It is pointed out that for the species and hybrids studied, size of pollen grain may be used as an indicator of polyploid level in both living plants and herbarium material.
- 7. Study of the morphology of the somatic chromosomes has shown that the genomes of the two diploid types which have been considered possible parents of D. Belladonna may de distinguished on the basis of their satellite distribution. In D. grandiflorum, satellites occur on chromosomes C and H, while in D. cheilanthum the A and the C chromosomes are satellited. Further, the length of the satellited arm of chromosome A in D. cheilanthum is longer than the corresponding arm of the same chromosome in D. grandiflorum, suggesting that there has been a translocation of the satellite-bearing segment in the evolution of the genome.
- 8. Differential activity of the satellites was found to characterize even the diploid species: in D. grandiflorum the C satellite is about twice as "active" as the H satellite; in the closely related D. tatsienense, both are equally active. In D. cheilanthum the A satellite is about twice as active as the C satellite.
- 9. The tetraploid species D. elatum was found to have a gametic complement corresponding to the summation of the grandiflorum and the cheilanthum genomes. Amphiplasty of the H satellite occurs.
- 10. In all of the experimentally produced triploids the potential satellite number was found to be 1 A, 3 C's, and 2 H's, but in triploids of lines 48-27 and

- 48-6, the A satellite was rarely evident on account of amphiplasty. The morphology of the chromosomes of Belladonna supports the hypothesis of similar parentage for these types, since the total Belladonna complement has double the potential satellite number of the triploids. In both the triploids and in Belladonna, amphiplasty of the A satellite was found in some individuals.
- 11. Meiosis in D. grandiflorum and D. elatum is largely regular, the chromosomes forming bivalents (rarely some univalents in the latter species), and assorting on the whole regularly.
- 12. In the triploid hybrids, prophase and metaphase pairing is chiefly in univalents and bivalents, trivalents being formed only rarely and only by the A or B chromosomes. Chiasma frequency is somewhat reduced and both intergenomal and intra-genomal pairing of the chromosomes occurs. Bridges and fragments are characteristic of both anaphase divisions, although the number of chromosomes lagging at anaphase is considerably less than that of univalents at metaphase. Micronuclei are frequent, and rare viable unreduced pollen grains are produced.
- 13. Meiosis in Belladonna is more or less regular, but the production of univalents commonly occurs, and aneuploid gametes are produced and function. Chromosome numbers as low as 41 have been found, but ordinarily only those plants with about the hexaploid number are fully fertile. It is suggested that D. Belladonna is a segmental allopolyploid which preserves a uniform appearance because low chiasma frequencies of the chromosomes enforce bivalent formation and because of the quantitative mode of inheritance of many characters.
- 14. Lines of derived hexaploids have been produced by pollinating various triploids with pollen of Smith's Belladonna, and further selfing or backcrossing of the plants produced. On the whole, these lines are only slightly more variable than is D. Belladonna, and fertility is only slightly impaired as compared with that "species." A small amount of multivalent formation characterizes some of these lines.
- 15. It is concluded that D. X Belladonna Hort. ex Bergm. embraces the entire assemblage of present-day varieties derived from crossing D. elatum with D. grandiflorum, as well as a number of hybrids of the last century which are no longer in cultivation.
- 16. A telocentric fragment has been transmitted from a D. grandiflorum pollen parent through four generations. No isochromosomes have been observed.

BIBLIOGRAPHY

Anonymous, (1907). Roy. Hort. Soc. Jour. 32:lxxviii. (1911). Delphinium Moorheimii. Gard. Chron. III, 50:352-353. , (1910). Miscellaneous annuals etc. at Wisley. Delphinium. Roy. Hort. Soc. Jour. 36:704.

(1949). A tentative checklist of Delphinium names. Publ. Roy. Hort. Soc., London. Anderson, E. (1948). Introgressive Hybridization. John Wiley & Son, N. Y. (1951). Concordant versus discordant variation in relation to introgression. Evolution

5:133-141.

Anderson, E. (1952). Plants, Man, and Life. Little, Brown & Co., Boston.

, and A. Gage (1952). Introgressive hybridization in Phlox bifida. Amer. Jour. Bot. 39:399-404.

, and D. Schregardus (1944). A method for recording and analyzing variations of internode pattern. Ann. Mo. Bot. Gard. 31:239-247.

Ashby, E. (1948). Studies in the morphogenesis of leaves. I. An essay on leaf shape. New Phytol. 47:153-176.

Bailey, L. H. (1939). The Garden of Larkspurs. The MacMillan Co., New York. , and E. Z. Bailey (1930). Hortus. The MacMillan Co., New York.

Beckman, I. (1928). Kreuzungsuntersuchungen an Delphinium orientale. Hereditas 11:107-128. Bergmans, John (1924). Vaste Planten en Rotscheesters, Haarlem.

Brown, S. W. (1944-5). Studies of development in larkspur. I. Form sequence in the first ten mature leaves. Bot. Gaz. 106:103-108.

Brühl, P. (1896). Some new or critical Ranunculaceae from India and adjacent regions. Roy. Bot. Gard. Calcutta, Ann. 5:71-115.

Buxton, B. H., and W. C. T. Newton (1928). Hybrids of Digitalis ambigua and Digitalis purpurea, their fertility and cytology. Jour. Genet. 19:269-279.

Clausen, J., D. Keck, and W. M. Hiesey (1945). Experimental studies on the nature of species. II. Plant evolution through amphidiploidy and autoploidy, with examples from the Madiinae. Carn. Inst. Wash. Publ. 564.

Clausen, R. E., and D. R. Cameron (1944). Inheritance in Nicotiana tabacum. XVIII. Monosomic analysis. Genetics 29:447-477.

, and T. H. Goodspeed (1924). Inheritance in Nicotiana tabacum. IV. The trisomic character, "enlarged." Ibid. 9:181-199.

, (1925). Interspecific hybridization in Nicotiana. II. A tetraploid glutinosa-tabacum hybrid, an experimental verification of Winge's hypothesis. Ibid. 10:278-284.

Darlington, C. D. (1937). Recent Advances in Cytology. 2nd ed., London.

, (1939). Misdivision and the genetics of the centromere. Jour. Genet. 37:341-364. , (1940). The origin of isochromosomes. Ibid. 39:351-361.

, and F. La Cour (1947). The Handling of Chromosomes. 2nd ed., London.

De Candolle, A. P. (1818). Regni vegetabilis systema naturale 1:340-364. (1824). Prodromus systematis naturalis regni vegetabilis 1:51-56.

Dietz, R. (1952). Variation in the perfoliate Uvularias. Ann. Mo. Bot. Gard. 39:219-247. Elliot, E. (1950). A new phase of amphiplasty in Leontodon. New Phytol. 49:345-349.

Emsweller, S. L., and H. H. Jones (1938). Crossing-over, fragmentation, and formation of new chromosomes in an Allium species hybrid. Bot. Gaz. 99:729-772.

Engler, A., and K. Prantl (1891). Delphinium, in Die natürlichen Pflanzenfamilien 32:59-60. Epling, C., and H. Lewis (1952). Increase of the adaptive range of the genus Delphinium. Evolution 6:253-267.

Ewan, J. (1945). A synopsis of the North American species of Delphinium. Univ. Colo. Studies, Ser. D:55-244.

Foerster, K. (1929). Die Neue Rittersporn. Berlin.

(1933). Foerster's strain of Delphiniums. Delphinium. L. H. Leonian, ed. pp. 37-40. Gajewski, W. (1946). Cytogenetic investigation on Anemone L. I. Anemone janczewskii, a new amphidiploid species of hybrid origin. Soc. Bot. Poloniae, Acta 17:129-194.

Gates, R. R. (1942). Nucleoli and related nucleolar structures. Bot. Rev. 8:337-410. Glehn, P. v. (1876). Verzeichniss der im Witim-Olekma-Lande . . . gesammelten Pflanzen. Hortus Petropol., Acta 4:1-96.

Gmelin, J. G. (1769). Flora Sibirica sive historia plantarum Sibiriae 4:187-188 and pl. 76.

Goodspeed, T. H., and M. V. Bradley (1942). Amphidiploidy. Bot. Rev. 8:271-316. Goualt, A. (1854). Delphinium Hendersoni. Rev. Hort. IV, 3:441.

Gray, Asa (1887). Delphinium, an attempt to distinguish the North American species. Bot. Gaz. 12:49-54.

Gregory, W. C. (1941). Phylogenetic and cytological studies in the Ranunculaceae. Am. Phil. Soc. Trans., N. S. 31:443-521.

Hall, M. T. (1952). Variation and hybridization in Juniperus. Ann. Mo. Bot. Gard. 39:1-64.

Harrison, J. (1853). Delphinium Hendersoni. Floricult. Cab. and Flor. Mag. 21:25. , (1857). Questions, answers, and remarks. Ibid. 21:85.

Heitz, E. (1931). Die Ursache der gesetzmässigen Zahl, Lage, Form und Grösse pflanzlicher Nukleolen. Planta 12:775-844.

Hocquette, M. (1922). Observations sur le nombre des chromosomes chez quelques Renonculacées. Soc. Biol. Compt. Rend. 87:1301.

Huth, E. (1895). Monographie der Gattung Delphinium. Engler's Bot. Jahrb. 20:322-499.

Kagawa, F., and Nakajima, G. (1933). Genetical and cytological studies on species hybrids in Quamoclit. Jap. Jour. Bot. 6:315-327.

Kostoff, D. (1939). Studies on polyploid plants. XXI. Cytogenetic behavior of the allopolyploid hybrids Nicotiana glauca Grah. X N. Langsdorffii Weinm. and their evolutionary significance. Jour. Genet. 37:129-209.

Lanjouw, J. (1952). International code of botanical nomenclature. Utrecht.

Lawrence, W. J. C. (1936). On the origin of new forms in Delphinium. Genetica 18:109-115. Ledebour, C. F. (1842). Flora Rossica sive enumeratio plantarum in totius Rossici. 1:60-65; 737.

Lemaire, C. (1851). Delphinium cheilanthum var. Chauvieri (var. Hendersonii Hort. Angl.). Jard. Fleur. 1:t. 49.

Lemoine & Son (1914). Catalogue No. 186. Nancy, France.

Levan, A. (1937). Cytological studies in the Allium paniculatum group. Hereditas 23:317-370. Lewis, H. (1947). Leaf variation in Delphinium variegatum. Bull. Torr. Bot. Club 74:57-59.

Californian Delphiniums and their geographical occurrence. Ann. Mo. Bot. Gard. 38:101-118. Lewitsky, G. A. (1931). The karyotype in systematics. Bull. Appl. Bot. 27:187-240.

Lindley, J. (1820). Delphinium cheilanthum. Edwards' Bot. Reg. 6:t. 473.

, (1837). Delphinium Barlowii. Ibid. 23:t. 1944.

Linnaeus, C. (1753). Delphinium, in Species Plantarum 1:530-531.

Love, M., and C. A. Sunneson (1945). Cytogenetics of certain Triticum-Agropyron hybrids and their fertile derivatives. Amer. Jour. Bot. 32:451-456.

McClintock, B. (1934). The relationship of a particular chromosomal element to the development of the nucleoli in Zee Mesus. Zeitsche f. Zellforsch. 21,294-328

of the nucleoli in Zea Mays. Zeitschr. f. Zellforsch. 21:294-328.

Mehlquist, G. A. L., C. O. Blodgett, and L. Bruscia (1943). Colchicine induced tetraploidy in Delphinium cardinale. Jour. Hered. 34:187-192.

Meurman, O., and E. Therman (1939). Studies on the chromosome morphology and structural hybridity in the genus Clematis. Cytologia 10:1-14.

Meyer, J. R. (1945). Prefixing with paradichlorobenzene to facilitate chromosome study. Stain

Tech. 20:121-125.

Moore, T. (1850). Delphinium cheilanthum var. Hendersonii A. Henfr. Gard. Mag. Bot. 2:57.

Müntzing, A. (1932). Cytogenetic investigations on synthetic Galeopsis tetrahit. Hereditas 16:105-

154.

(1937). The effects of chromosomal variation in Dactylis. Ibid. 23:113-235.

Navashin, M. (1934). Chromosome alterations caused by hybridization and their bearing upon certain general constitution of Correlation 5.169, 203

Newton, W. C. F., and C. Pellew (1929). Primula kewensis and its derivatives. Jour. Genet. 20:405-467.

Paxton, W. (1838). Delphinium Barlowii. Paxt. Mag. Bot. 5:265.

Phillips, G. A. (1949). Delphiniums, Their History and Cultivation. Eyre & Spottiswoode, London. Propach, H. (1939). Was ist eigentlich unsere Rittersporne? Gartenschönh. 20:283-284.

Entstehung der Gartenformen. Die Gartenbauwissenschaft 14:642-650.

Regel, E. (1861). Aufzählung der . . . in Baikalien, Dahurien, und am Amur Gesammelten

Pflanzen. I. Abt. Soc. Imp. Nat. Moscou Bull. 34:1-211.
Rhoades, M. M. (1940). Studies of a telocentric chromosome in maize with reference to the

Robinson, B. L., and M. L. Fernald (1908). "Delphinium (Tourn.) L. Larkspur," in Gray's New Man. Bot., pp. 405-406.

Ruys, B. (1933). "The first red Delphinium," in Delphinium, L. Leonian, ed. pp. 35-37.

Schischkin, B. K. (1937). "Delphinium," in V. L. Komarov, Flora URSS 7:101-183.

Sears, E. R. (1944). Cytogenetic studies with polyploid species of wheat. II. Additional chromosomal aberrations in Triticum vulgare. Genetics 29:232-246.

Schrank, P. von (1819). "Delphinium cheilanthes." Plantae rariores Horti Academici Monacencis.

Fol. 52.
Skirm, G. W. (1942). Bivalent pairing in an induced tetraploid of Tradescantia. Genetics 27:635-640.

- Stebbins, G. L. (1947). Types of polyploids: their classification and significance, in M. Demerec, Advances in Genetics 1:403-427.
- (1950). Variation and Evolution in Plants. Columbia Univ. Press, New York. (1952). The evolution of cultivated plants and weeds. Evolution 6:445-448.

Tjebbes, K. (1927). The chromosomes of three Delphinium species. Hereditas 10:160-164.

Tournefort, J. P. (1700). Delphinium. Pié d'Aloüette, in Inst. Rei Herb. 1:426-428.

- Trautvetter, E. R. (1847). Florula taimyrensis phanerogama, in A. T. Middendorff, Sibirische Reise 1:17-64.
- Acta 5:1-146. Plantas Sibiriae borealis ab A. Czekanowski et F. Mueller. Hortus Petropol.

, (1877b). Flora riparia Kolymensis. Ibid. 5:497-574.

- Turczaninow, N. (1842). Flora Baicalensi-dahurica . . . Part I. Soc. Imp. Nat. Moscou, Bull. 15:1-180.
- Vanderbilt, N. F. (1933). American Pioneers. I. The Vanderbilts. In Delphinium. L. Leonian ed. pp. 40-47.

Van Houtte, L. (1857). Delphinium formosum, Hortul. Fl. des Serres, II, 2:7, t. 1185.

Wilde, E. (1931). Studies of the genus Delphinium. Cornell Exp. Sta. Bull. 519.

Wodehouse, R. P. (1935). Pollen Grains, Their Structure, Identification, and Significance in Science and Medicine. New York.

APPENDIX CHIROMOSOME NUMBERS OCCURRING IN THE SPECIES OF DELPHINIUM

Species	2n number	Author and date
Ajacis L.	16	Langlet 1927, Tichhan 1927, Carrent 1941
Andersoni Gray	16	Langlet, 1927; Tjebbes, 1927; Gregory, 1941 Lewis et al, 1951
azureum Michx.*	32?	Lewis & at, 1991 Lewis & 1021. Carrent 1041
Belladonna Hort.	48	Lewitsky, 1931; Gregory, 1941
Blochmanae Greene	16	Langlet, 1927; Lawrence, 1936; Propach, 1939, 1940
brachycentrum Ledeb.	16	Lewis et al, 1951
Brunonianum Royle	16	Langlet, 1932
bulleyanum Forrest		Lewitsky, 1931; Propach, 1940
californicum T. & G.	32	Gregory, 1941
cardinale Hook.	16	Lewis et al, 1951
cardiopetalum D.C.	16	Propach, 1940; Mehlquist, 1943; Lewis et al, 1951
carolinianum Walt.*	16	Tjebbes, 1927; Lewitsky, 1931; Gregory, 1941
cashimirianum Royle	32?	Gregory, 1941
caucasicum C. A. Mey.	16	Propach, 1940
cheilanthum Fisch. ex DC.	16	Gregory, 1941
Consolida L.	16	Propach, 1939
Consorred L.	16	Hocquette, 1922; Tjebbes, 1927; Langlet, 1927;
cuyamacae Abrams		Lewitsky, 1931; Gregory, 1941
decorum Fisch, and	16	Lewis et al, 1951
Mey, ssp. Tracyi Ewan Delaveyi Franch.	16	Lewis et al, 1951
Dubmbergi Huth	16	Lewitsky, 1931; Propach, 1940
Dubmbergi Fluth	32	Lewitsky, 1931
Jatana T	16	Propach, 1940
elatum L.	32	Lewitsky, 1931; Propach, 1940; Gregory, 1941
fissum Waldst. & Kit.	32	Hocquette, 1922; Propach, 1940
flexuosum Raf.	32	Gregory, 1941
formosum Boiss. & Huet.	32	Gregory, 1941
gayanum Willmott	16	Gregory, 1941
glaucum Wats.	16	Lewis et al, 1951
gracilentum Greene	16	Lewis et al, 1951
grandiflorum L.	16	Propach, 1940

^{*}Mehlquist (unpublished) has determined these American species as diploid. His studies were of plants from the native habitat, whereas the other determinations were probably made from material sent out from European botanical gardens, which often confuse D. elatum with D. carolinianum and D. azureum.

Species	2n number	Author and date
gypsophilum Ewan	16, 32	Lewis et al, 1951
Hanseni Greene	16, 32	Lewis et al, 1951
hesperium Gray	16	Lewis et al, 1951
besperium f. pallescens		
Ewan	16	Lewis et al, 1951
iliense Huth	16	Propach, 1940
inopinum (= D. parishit		
var. inopinum Jeps.)	16	Lewis et al, 1951
Lamartine Hort.	48	Lawrence, 1936
Moerheimii Hort.	24	Lawrence, 1936
nudicaule Torr. & Gray	16	Tjebbes, 1927; Propach, 1940; Gregory, 1941; Lewis et al, 1951
Nuttallianum Pritz.	16	Lewis et al, 1951
orientale (?)		
(D. orientale Losc.;		
D. orientale S. Gav)	16	Beckman, 1928; Gregory, 1941
Parishii Gray	16	Lewis, et al, 1951
Parryi Gray	16	Lewis, et al, 1951
Parryi ssp. seditiosum		
(Jeps.) Ewan	16	Lewis, et al, 1951
batens Benth.	16	Lewis, et al, 1951
Penardi Huth	16	Gregory, 1941
beregrinum L.	16	Gregory, 1941
dictum Willd.	16	Gregory, 1941
polycladon Eastw.	16	Lewis et al, 1951
Purpusii Brandg.	16	Lewis et al, 1951
ecurvatum Greene	16	Lewis et al, 1951
Ruysii Hort	32	Lawrence, 1936
copulorum Gray	16	Gregory, 1941
peciosum (?)		
(D. speciosum Janka =		
D. elatum L.;		
D. speciosum Bieb.)	16	Langlet, 1927
taphisagria L.	16	Hocquette, 1922; Langlet, 1927; Lewitsky, 1931; Gregory, 1941
ulphureum Boiss. & Hausskn	16	Gage, this paper
atsienense Franch.	16	Lewitsky, 1931; Propach, 1940
ricorne Michx.	16	Gregory, 1941
rolliifolium Grav	16	Lewis et al, 1951
runcatum Lang.	16	Langlet, 1927
liginosum Curran	16	Lewis et al, 1951
mbraculorum nom, nud.	16	Lewis et al, 1951
ariegatum Torr. & Grav	16, 32	Lewis et al, 1951
unnanense Franch.	16	Gregory, 1941
Calil Aitch. & Hemsl.	16	Gage, this paper

CHROMOSOME NUMBERS OCCURRING IN THE HYBRIDS DETERMINED BY H. PROPACH, 1940

Variety	Breeder or Source	Chromosome Number
Eisberg	E. Benary, Erfurt	16
Blauglut	K. Foerster, Bornim	24
Blautanne	33	24
Alpenbote	99	32
Berghimmel	"	***
Blaurake	"	39
Blickfang	***	99

Dein blaues Wunder	K. Foerster, Bornim	32	
Enzianherold	32	33	
Enzianturm	>>	33	
Ernst von Borsig	***	33	
Fön	"	"	
Glasfenster	"	"	
Gletscherwasser	>>	"	
Gnom	33	23	
Grossenwahn	99	99	
Gute Nacht	22	"	
Havelland	>>	***	
Kirchenfenster	>>	>>	
Kreuzritter	>>	>>	
Lautsprecher	"	>>	
Leuchtturm	***	"	
Morgenstrahl	39	"	
Münsterturm	23	23	
Nachtauge	33	23	
Nachthorn	>>	93	
Nostradamus	33	**	
Opalsäule	33	33	
Perlmutterbaum	22		
Purpurritter	33	22	
Rosenquarz	***	**	
Sontagskind	,,	33	
Stichflamme	***	>>	
Tante Clothilde	22	22	
	***	33	
Tempelgong		**	
Troppenacht	72	33	

PLATE 7

- Fig. 1. Delphinium cheilanthum Fisch., reproduced from von Schrank, 'Plantae Rariores Horti Academici Monacensis,' pl. 52. 1819.
 - Fig. 2. Delphinium Hendersoni, from Revue Horticole. 1854.

PLATE 8

- Fig. 1. Delphinium Belladonna, Smith's selection from "Cliveden Beauty."
- Fig. 2. Delphinium formosum, from Flore des Serres. 1857.

PLATE 9

Figs. 1 and 2. Habit and detail of inflorescence of Delphinium cheilanthum Fisch. ex DC., grown at the Missouri Botanical Garden from seed received from Uppsala.

Figs. 3 and 4. Habit and detail of Delphinium grandiflorum L. var. chinensis Fisch., "Blue Butterfly."

GAGE-DELPHINIUM X BELLADONNA HORT.

PLATE 10

- Figs. 1 and 2. Inflorescence and detail of chimaeric derived hexaploid 51-222-7.
- Fig. 3. Delphinium elatum L. Plant 47-98-3, seed parent of the 48-27 series of triploids.

PLATE 11

Triploid 48-27-3 (1), habit, (2), detail.

GAGE-DELPHINIUM X BELLADONNA HORT.

PLATE 12

Figs. 1 and 2. Habit and detail of Delphinium elatum L., horticultural variety "Summer Skies," seed parent of lines 50-15 and 50-40.

Figs. 3 and 4. Inflorescence and detail of triploid 50-15-4.

GAGE-DELPHINIUM X BELLADONNA HORT.

PLATE 13

Photographs, X 1600; camera-lucida drawings, X 1450.

- Fig. 1. Ideogram of the haploid chromosome complement of D. grandiflorum var. chinense, horticultural form "Blue Butterfly."
 - Fig. 2. Ideogram of the haploid chromosome complement of D. cheilanthum.
- Fig. 3. Photograph of somatic metaphase of a white variety of D. grandiflorum var. chinense, showing satellites on one C and two H's.
- Fig. 4. Photograph of somatic metaphase of the same plant, showing heterochromatic regions as well as three of the satellites.
- Fig. 5. Somatic metaphase of D. cheilanthum, showing the four satellited chromosomes.
 - Fig. 6. Camera-lucida drawing of the cell in fig. 5.
- Fig. 7. Photograph of metaphase chromosomes of "Blue Butterfly" from a root-tip preparation.
- Fig. 8. Camera-lucida drawing of somatic chromosomes of "Blue Butterfly" showing satellites on both C's and both H's.
 - Fig. 9. Camera-lucida drawing of somatic metaphase of 47031-1, showing fragment.
- Fig. 10. Somatic complement of D. cardinale showing satellites on six chromosomes of the diploid complement.
 - Fig. 11. Drawing of the cell in fig. 10.

GAGE-DELPHINIUM X BELLADONNA HORT.

PLATE 14

Magnification of photographs as indicated; camera-lucida drawings, X 1350.

- Fig. 1. Photograph of somatic chromosomes of 48-27-2. X 1500.
- Fig. 2. Drawing of the cell in fig. 1.
- Fig. 3. Camera-lucida drawing of the chromosomes in a root-tip preparation of 48-6-2, showing satellites on one A, three C's, and one H.
- Fig. 4. Drawing of the somatic chromosomes of "Summer Skies," showing satellites on two A's, two C's, and two H's.
- Fig. 5. Camera-lucida drawing of the somatic chromosomes of tetraploid 47-98-3. Satellites visible on two A's, three C's, and two H's.
 - Fig. 6. Photograph of the cell in fig. 7. X 1500.
 - Fig. 7. Camera-lucida drawing of MI of triploid 48-27-3, showing 8 II and 8 I.
- Fig. 8. MI of triploid 48-27-5, showing maximum amount of pairing observed: 1 III, 7 II, and 7 I. Five bivalents of the intermediate chromosomes have two chiasmata.
 - Fig. 9. MI of triploid 48-27-5, showing greatly reduced pairing: 5 II and 14 I.
 - Fig. 10. Pollen of "Cliveden Beauty." Pollen mostly viable. X 350.
 - Fig. 11. Pollen of triploid 48-6-1, showing one unreduced grain. X 350.
- Fig. 12. Pollen of 50-20-1, an F1 between Smith's Belladonna and triploid 48-6-2, showing aborted pollen grains. X 350.

GAGE-DELPHINIUM X BELLADONNA HORT.

PLATE 15

Photographs, X 1600; camera-lucida drawings, X 1450.

- Fig. 1. Diakinesis and early metaphase I of "Blue Butterfly," showing eight II's.
- Fig. 2. Photograph of the somatic chromosomes of D. Belladonna.
- Fig. 3. Anaphase I of 47031-1 with lagging fragment.
- Fig. 4. Diakinesis of "Summer Skies," showing essentially regular pairing.
- Fig. 5. Photograph of MI of Smith's Belladonna, showing eight univalents and only two of the large bivalents with two chiasmata. This was among the most extreme cases of lack of pairing observed in this plant.
 - Fig. 6. Drawing of the cell in fig. 2, showing satellites on one A, six C's, and one H.
- Fig. 7. Camera-lucida drawing of diakinesis of Smith's Belladonna, showing six univalents.
 - Fig. 8. Camera-lucida drawing of the cell in fig. 5.

GAGE-DELPHINIUM X BELLADONNA HORT.