PROGRAMMABLE INTERVAL TIMER 8253 / 8254

By Dr. Ashish Mathur

WHY 8253???

NOT POSSIBLE TO **GENERATE ACCURATE** TIME **DELAYS USING DELAY ROUTINES** IN 8085

INTEL'S PROGRAMMABLE COUNTER/ TIMER DEVICE (8253) FACILITATES

- ACCURATE TIME DELAYS
- MINIMIZES LOAD ON MP
- REAL TIME CLOCK
- EVENT COUNTER
- DIGITAL ONE SHOT
- SQUARE WAVE GENERATOR
- COMPLEX WAVEFORM GENERATOR

8253 VS 8254

8253

• 8253 CAN OPERATE AT FREQUENCY FROM DC TO 2MHZ

8254-ADVANCED VERSION OF 8253

- 8254 CAN OPERATE WITH HIGHER CLOCK FREQUENCY RANGE
 (DC to 8 MHz AND 10 MHz FOR 8254-2)
- INCLUDES STATUS READ BACK COMMAND THAT LATCHES THE COUNT AND STATUS OF COUNTERS

THREE INDEPENDENT 16-BIT COUNTERS

8-BIT BIDIRECTIONAL DATA
BUFFER

READ/WRITE CONTROL LOGIC

CONTROL WORD REGISTER

INTERNAL BLOCK DIAGRAM OF 8254

• THREE COUNTERS - C1,C2 & C3 • EACH 16 BIT IDENTICAL PRESETTABLE DOWN COUNTER • OPERATES IN BCD /Binary • CONTROLLED BY LOADING COUNT TO COMMAND WORD REGISTER	CONTROL LOGIC CS' - LOGIC 0 - ENABLES 8254 RD' - LOGIC 0 - TELLS MP READS COUNT FROM 8254 WR' - LOGIC 0 - TELLS MP WRITES COUNT/ COMMAND INTO 8254 A1,A0 - ADDRESS INPUT PINS TO SELECT MODES AND COUNTERS	DATA BUFFERS 8 BIT BIDIRECTIONAL DO-D7 CONNECTED TO DATA BUS OF MP IN → READS DATA FROM PERIPHERAL OUT → WRITES DATA TO PERIPHERAL	CONTROL WORD REGISTER • ACCEPTS 8 BIT CONTROL WORD WRITTEN BY MP • CAN ONLY BE WRITTEN (NOT READ) • CONTROL WORD CHOOSES ONE OF THE SIX MODES OF OPERATION
---	--	--	--

INTERNAL BLOCK DIAGRAM OF 8254

CS	RD	WR	A1	AO	selected operation
0	1	0	0	0	Write counter 0
0	1	0	0	1	Write counter 1
0	1	0	1	0	Write counter 2
0	1	0	1	1	Write control word
0	0	1	0	0	read counter 0
0	0	1	0	1	read counter 1
0	0	1	1	0	read counter 2
0	0	1	1	1	No operation
0	1	1	х	х	no operation
1	x	x	X	х	disable

8254 PIN DIAGRAM

LOGIC PINOUT

- 24 PIN IC
- DIP PACKAGE
- +5V POWERSUPPLY

MODE 0
INTERRUPT
ON
TERMINAL
COUNT

MODE 5
HARDWARE
TRIGGERED
STROBE

8254 modes of operation MODE 1
PROGRAMA
-BLE
MONOSHOT

MODE 4
SOFTWARE
TRIGGERED
STROBE

MODE 2 RATE GENERATOR

MODE 3
SQUARE
WAVE
GENERATOR

8254 Operating Modes

MODE 0: INTERRUPT ON TERMINAL COUNT.

MODE 1: HARDWARE RETRIGGERABLE ONE SHOT.

MODE 2: RATE GENERATOR.

MODE 3: SQUARE WAVE GENERATOR.

MODE 4: SOFTWARE TRIGGERED STROBE.

MODE 5: HARDWARE TRIGGERED STROBE.

- > Mode 0: INTERRUPT ON TERMINAL COUNT
- The output becomes a logic 0 when the control word is written
- > Remains low even after count value loaded in counter
- > Counter starts decrementing after falling edge of clock
- >The OUT goes high upon reaching the terminal count & remains high till reloading
- > OUT can be used as interrupt
- >Writing a count register, when previous counting is in process \rightarrow first byte when loaded stops the previous count, \rightarrow second byte when loaded starts new count
- **→ Gate high →** normal counting
- ➤ Gate low → counting terminated and current count latched till GATE goes high again

Mode 0: INTERRUPT ON TERMINAL COUNT

The output becomes a logic 0 when the control word is written Counting starts with falling edge of each clock pulse WR should be high Gate should be high o/p pin will be LOW

What happen if gate pulse becomes low during the counting in mode 0 then 4 remains store in latch whenever gate pulse become high again and then count starts (assume count =5)

Mode 1: One-shot mode.

- known as monostable multivibrator
- > GATE input is used as trigger input
- > output remains high till the count is loaded
- ➤ After application of trigger, output goes low and remains low till count becomes zero
- > Another count loaded, when output already low
- →it does not disturb counting until a new trigger is applied at the gate
- ➤ New counting starts after new trigger pulse

Mode 1: One-shot mode

Mode 1: One-shot mode.

The G input triggers the counter to output a 0 pulse for `count' clocks. Counter reloaded if G is pulsed a

If trigger pulse goes low during the counting ... or new count loaded in counter then counter starts again from the previous counting not disturbing that when trigger pulse goes high.

► Mode 2: RATE GENERATOR / DIVIDE BY N COUNTER

- ➤When N is loaded as count → after N pulses → OUT goes low for only one clock cycle → then, count N is reloaded → OUT becomes high for N clock pulses
- >The number of clock pulses between the two low pulses is equal to the count loaded
- \rightarrow gate \rightarrow logic 0 \rightarrow no counting
- Gate → logic 1 → normal counting

Mode 2: Counter generates a series of pulses 1 clock pulse wide.

The separation between pulses is determined by the count.

The cycle is repeated until reprogrammed or G pin set to 0.

N counter
Load count value
WR high
Work on falling edge
o/p low for I clock cycle and count from N-1
GATE should be high

IF OUTPUT HIGH but gate LOW during COUNT then counter not COUNT and when GATE goes high count again start on next –ive falling edge

Mode 3: SQUARE WAVE RATE GENERATOR

- ■When count N loaded is even → output remains HIGH for half the count and LOW for the rest half of the count
- ■When count N loaded is odd \rightarrow output remains HIGH for (N+1)/2 and low for (N-1)/2.
- Repeated operation gives square wave
- Generates a continuous square-wave with GATE set to 1.
- ■If count is even, 50% duty cycle otherwise OUT is high 1 cycle longer.

MODE 3 also called square wave generator.

Mode 4: Software triggered Strobe

- ➤ After mode is set output goes high when WR and GATE high
- >When count is loaded counting down starts
- ➤On reaching terminal count output goes low for only one clock cycle, and then again output goes HIGH
- ➤ The above said low pulse can be used as a strobe Pulse for interfacing MP with peripherals

- ➤ When GATE is LOW → counting is inhibited and count is latched (remain 4 until GATE again high)
- ➤If a new count is loaded while counting, previous counting stops and new counting started in next clock cycle

Mode 5: Hardware triggered Strobe

- ➤ This mode generates a strobe in response to the rising edge at the trigger
- ➤ Mode is used to generate a delayed strobe in response to an externally generated signal
- ➤Once mode is programmed and counter loaded, OUT goes HIGH
- ➤ Counter starts counting after the rising edge of the trigger (GATE)
- The OUTPUT goes LOW for one clock period, when the terminal count is reached (next pulse use as strobe)
- ➤ Output will not go LOW until the counter content becomes zero after the rising edge of any trigger
- >GATE is used as trigger input

If GATE goes low during the COUNT then count latch the count 4 until GATE remains HIGH completely for all input cycles

8254 CONTROL WORD REGISTER

M2	М1	M0	SELECT MODE		
0	0	0	MODE 0		
0	0	1	MODE 1		
X	1	0	MODE 2		
X	1	1	MODE 3		
1	0	0	MODE 4		
1	0	1	MODE 5		

1 = BCD COUNT

Status register:

- shows the state of the output pin
- check the counter is in NULL state (0) or not
- how the counter is programmed

D₅-D₀ Counter programmed

D ₇	D_6	D ₅	D_4	D_3	D_2	D_1	D ₀	
Output	Null Count	RW1	RW0	M2	М1	МО	BCD	
D ₇ 1 = OUT Pin is 1 0 = OUT Pin is 0								
D_6 1 = Null Count 0 = Count available for reading								

8254 PROGRAMMABLE INTERVAL TIMER

Example

Write a program to initialize counter 2 in mode 0 with a count of C030H. Assume address for control register = 0BH, counter 0 = 08H, counter 1 = 09H and counter 2 = 0AH.

Sol.: Control word

D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	E
SC_1	SC ₂	RW ₁	RW ₀	M_2	M ₁	M_0	BCD	
1	0	1	1	0	0	0	0	=

B₀H

Source Program

MOV AL, BOH

OUT OBH, AL

; Loads control word (BOH) in the control

; register.

MOV AL, 30H

OUT OAH, AL

; Loads lower byte of (30H)the count.

MOV AL, OCOH

OUT OAH, AL

; Loads higher byte (COH) of the count.