

Test Report FCC Part15 Subpart C

Product Name : Cassia Personal Safety Sensor

Model No. : CNK1000

FCC ID : 2AGF9CNK1000

IC : 20842-CNK1000

Applicant: Beijing Cassia Networks Technology Co.,Ltd

Address: Room 206, Distrit B, 2/F, No. 12, Xinxi Road, Haidian

District, Beijing

Date of Receipt: Jan. 07, 2016

Test Date : Jan. 07, 2016~ Jan. 29, 2016

Issued Date : Mar. 15, 2016

Report No. : 1612020R-RF-US-P06V01

Report Version: V1.1

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date: Mar. 15, 2016

Report No. : 1612020R-RF-US-P06V01

Product Name : Cassia Personal Safety Sensor

Applicant : Beijing Cassia Networks Technology Co.,Ltd

Address : Room 206, Distrit B, 2/F, No. 12, Xinxi Road, Haidian

District, Beijing

Manufacturer : Beijing Cassia Networks Technology Co.,Ltd

Address : Room 206, Distrit B, 2/F, No. 12, Xinxi Road, Haidian

District, Beijing

Model No. : CNK1000

FCC ID : 2AGF9CNK1000 IC : 20842-CNK1000

EUT Voltage : DC 3.0V

Applicable Standard : FCC CFR Title 47 Part 15 Subpart C: 2015

ANSI C63.4: 2014; ANSI C63.10: 2013

KDB 558074 D01 DTS Meas Guidance v03r03

Industry Canada RSS-Gen Issue 4 / RSS-247 Issue 1

Test Result : Complied

Performed Location : Suzhou EMC Laboratory

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou,

215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

Documented By :

Mice Ni

(Senior Engineering Adm. Specialist: Alice Ni)

Reviewed By :

trankhe

(Senior Engineer: Frank He)

Approved By

Harry Then

(Engineering Manager: Harry Zhao)

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted(audited or listed) by the following related bodies in compliance with ISO 17025, EN 45001 and specified testing scope:

Taiwan R.O.C. : BSMI, NCC, TAF

USA : FCC
Japan : VCCI
China : CNAS

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site: http://www.quietek.com/english/about/certificates.aspx?bval=5
The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: http://www.quietek.com/index en.aspx

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory:

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C. TEL:+886-3-592-8859 E-Mail: service@guietek.com

LinKou Testing Laboratory:

No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C.

Suzhou Testing Laboratory:

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TABLE OF CONTENTS

Des	cription	Page
1.	General Information	7
1.1.	EUT Description	7
1.2.	Mode of Operation	8
1.3.	Tested System Details	9
1.4.	Configuration of Tested System	10
1.5.	EUT Exercise Software	11
2.	Technical Test	12
2.1.	Summary of Test Result	12
2.2.	Test Environment	14
3.	Conducted Emission	15
3.1.	Test Equipment	15
3.2.	Test Setup	15
3.3.	Limit	16
3.4.	Test Procedure	16
3.5.	Uncertainty	17
3.6.	Test Result	17
4.	Radiated Emission	18
4.1.	Test Equipment	18
4.2.	Test Setup	19
4.3.	Limit	20
4.4.	Test Procedure	20
4.5.	Uncertainty	21
4.6.	Test Result	22
5.	RF Antenna Conducted Spurious	25
5.1.	Test Equipment	25
5.2.	Test Setup	25
5.3.	Limit	25
5.4.	Test Procedure	26
5.5.	Uncertainty	26
5.6.	Test Result	27
6.	Radiated Emission Band Edge	32
6.1.	Test Equipment	
	Test Setup	
	Limit	
	Test Procedure	
	Uncertainty	
	Test Result	

7.	6dB Bandwidth and Occupied Bandwidth	43
7.1.	Test Equipment	43
7.2.	Test Setup	43
7.3.	Limit	43
7.4.	Test Procedure	43
7.5.	Uncertainty	44
7.6.	Test Result	45
8.	Power Output	47
8.1.	Test Equipment	47
8.2.	Test Setup	47
8.3.	Limit	47
8.4.	Test Procedure	47
8.5.	Uncertainty	48
8.6.	Test Result	49
9.	Power Spectral Density	50
9.1.	Test Equipment	50
9.2.	Test Setup	50
9.3.	Limit	50
9.4.	Test Procedure	50
9.5.	Uncertainty	51
9.6.	Test Result	52

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
1612020R-RF-US-P06V01	V1.0	Initial Issued Report	Feb. 02, 2016
1612020R-RF-US-P06V01	V1.1	Modified the test setup diagram	Mar. 15, 2016
		at page 10	

1. General Information

1.1. EUT Description

Product Name	Cassia Personal Safety Sensor
1 Toddot Harric	Oussia i croonal carety consor
Model No.	CNK1000
Working Voltage	DC 3.0V
Bluetooth Specification	V4.0
Frequency Range	2402- 2480 MHz
Channel Number	V4.0: 40
Channel Separation	V4.0: 2MHz
Type of Modulation	V4.0: GFSK
Data Rate	V4.0: 1Mbps(GFSK)
Antenna Type	Reference to Antenna List
Peak Antenna Gain	Reference to Antenna List

Note: The Bluetooth version is 4.0 but only supports low energy mode.

Bluetooth	Bluetooth Working Frequency of Each Channel: (For V4.0)						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
00	2402 MHz	01	2404 MHz	02	2406 MHz	03	2408 MHz
04	2410 MHz	05	2412 MHz	06	2414 MHz	07	2416 MHz
08	2418 MHz	09	2420 MHz	10	2422 MHz	11	2424 MHz
12	2426 MHz	13	2428 MHz	14	2430 MHz	15	2432 MHz
16	2434 MHz	17	2436 MHz	18	2438 MHz	19	2440 MHz
20	2442 MHz	21	2444 MHz	22	2446 MHz	23	2448 MHz
24	2450 MHz	25	2452 MHz	26	2454 MHz	27	2456 MHz
28	2458 MHz	29	2460 MHz	30	2462 MHz	31	2464 MHz
32	2466 MHz	33	2468 MHz	34	2470 MHz	35	2472 MHz
36	2474 MHz	37	2476 MHz	38	2478 MHz	39	2480 MHz

Bluetooth Antenna List

Antenna	Manufacturer	Model No.	Peak Gain
PCB Antenna	N/A	N/A	1.5dBi

1.2. Mode of Operation

QuieTek has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Test Mode

Mode 1: Transmit-1Mbps(GFSK_BLE)

Note:

- 1. Regards to the frequency band operation: the lowest、middle and highest frequency of channel were selected to perform the test, then shown on this report.
- 2. For portable device, radiated spurious emission was verified over X, Y, Z Axis, and shown the worst case on this report.
- 3. The reading values of all the test items contain cable loss. (Cable loss=0.5dBm)

1.3. Tested System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

Product	Manufacturer	Model No.	Serial No.	Power Cord
1 Notebook	Asus	N80V	8BN0AS226971468	N/A

1.4. Configuration of Tested System

1.5. EUT Exercise Software

1	Setup the EUT and simulators as shown on above.
2	Turn on the power of all equipment.
	Run the RF test software, and set the test mode and channel, then press OK to start continue Transmit.

Page: 11 of 53

2. Technical Test

2.1. Summary of Test Result

\boxtimes	No deviations from the test standards
	Deviations from the test standards as below description:

Performed Test Item	Normative References	Test	Deviation
r enormed restricin	Normalive Neierences	Performed	Deviation
Conducted Emission	FCC CFR Title 47 Part 15 Subpart C: 2015	Yes	No
	Section 15.207		
Radiated Emission	FCC CFR Title 47 Part 15 Subpart C: 2015	Yes	No
	Section 15.209		
RF Antenna Conducted Spurious	FCC CFR Title 47 Part 15 Subpart C: 2015	Yes	No
	Section 15.247(d)		
Radiated Emission Band Edge	FCC CFR Title 47 Part 15 Subpart C: 2015	Yes	No
	15.247(d)		
Operation Frequency Range of	FCC CFR Title 47 Part 15 Subpart C: 2015	Yes	No
20dB Bandwidth	15.215(c)		
6dB Bandwidth	FCC CFR Title 47 Part 15 Subpart C: 2015	Yes	No
	Section 15.247(a)(2)		
Power Output	FCC CFR Title 47 Part 15 Subpart C: 2015	Yes	No
	Section 15.247(b)(3)		
Power Spectral Density	FCC CFR Title 47 Part 15 Subpart C: 2015	Yes	No
	Section 15.247(e)		

Page: 12 of 53

Performed Test Item	Normative References	Test	Deviation	
		Performed	20110111011	
Conducted Emission	RSS-Gen Issue 4	Yes	No	
	Section 8.8			
Radiated Emission	RSS-Gen Issue 4	Yes	No	
	Section 8.9			
RF Antenna Conducted Spurious	RSS-247 Issue 1	Yes	No	
	Section A5.5			
Radiated Emission Band Edge	RSS-247 Issue 1	Yes	No	
	Section A5.5			
Occupied Bandwidth	RSS-Gen Issue 4	Yes	No	
	Section 6.6			
	RSS-247 Issue 1			
	Section A5.2(1)			
Power Output	RSS-247 Issue 1	Yes	No	
	Section A5.4(4)			
Power Spectral Density	RSS-247 Issue 1	Yes	No	
	Section A5.2(2)			

2.2. Test Environment

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	21
Humidity (%RH)	25-75	50
Barometric pressure (mbar)	860-1060	950-1000

Page: 14 of 53

3. Conducted Emission

3.1. Test Equipment

Conducted Emission / TR-1

Instrument	Manufacturer	Type No.	Serial No.	Cal. Due Date	
EMI Test Receiver	R&S	ESCI	100726	2016.03.30	
Two-Line V-Network	R&S	ENV216	100043	2016.03.30	
Two-Line V-Network	R&S	ENV216	100044	2016.09.16	
50ohm Coaxial Switch	Anritsu	MP59B	6200464462	2016.03.01	
50ohm Termination	SHX	TF2	07081401	2016.09.16	
Temperature/Humidity	zhiohona	ZC1-2	TR1-TH	2017.01.04	
Meter	zhicheng	ZU 1-2	וולו-וח	2017.01.04	

Note: All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

3.2. Test Setup

3.3. Limit

FCC Part 15 Subpart C Paragraph 15.207 Limits				
Frequency (MHz)	QP (dBuV)	AV (dBuV)		
0.15 - 0.50	66 - 56	56 – 46		
0.50 - 5.0	56	46		
5.0 - 30	60	50		

Note 1: The lower limit shall apply at the transition frequencies.

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

3.4. Test Procedure

According to FCC ANSI C63.4: 2014 & ANSI C63.10: 2013& FCC 47CFR 15.247& KDB 558074 D01v03r04& Industry Canada RSS-Gen Issue 4& RSS-247 Issue 1 According to KDB 174176 D01 Line Conducted FAQ v01r01, it is required to perform the AC power-line conducted emissions testing and demonstrate compliance with the AC power-line emission requirements in Sections 15.107 or 15.207.

FCC&IC

The EUT was setup according to ANSI C63.4, 2014 for compliance to FCC 47CFR 15.247 requirements. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs) Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

3.5. Uncertainty

The measurement uncertainty is defined as $\,\pm\,$ 2.02 dB

3.6. Test Result

Note: The EUT was powered by battery, so the test is not applicable.

Page: 17 of 53

4. Radiated Emission

4.1. Test Equipment

Radiated Emission / AC-2

Instrument	Manufacturer	Type No.	Serial No.	Cal. Due Date
EMI Test Receiver	R&S	ESCI	100573	2016.03.28
Loop Antenna	R&S	HFH2-Z2	833799/003	2016.11.07
Bilog Antenna	Teseq GmbH	CBL6112D	27611	2016.10.10
Coaxial Cable	Huber+Suhner	SUCOFLEX 106	AC2-C	2016.03.01
Temperature/Humidity				
Meter	Zhicheng	ZC1-2	AC2-TH	2017.01.04

Radiated Emission / AC-5

Instrument	Manufacturer	Type No.	Serial No.	Cal. Due Date
Spectrum Analyzer Agilent		N9010A	MY48030494	2016.05.12
Preamplifier	Miteq	NSP1800-25	1364185	2016.05.03
Preamplifier	QuieTek	AP-040G	CHM-0906001	2016.05.03
Bilog Antenna	Teseq GmbH	CBL6112D	27612	2016.10.15
Broad-Band Horn				
Antenna	Schwarzbeck	BBHA9120D	499	2016.06.08
Broad-Band Horn				
Antenna	Schwarzbeck	BBHA9170	294	2016.04.10
Coaxial Cable	Huber+Suhner	SUCOFLEX 106	AC5-C1	2016.03.01
Coaxial Cable	Huber+Suhner	SUCOFLEX 106	AC5-C2	2016.03.01
Coaxial Cable	Huber+Suhner	SUCOFLEX 102	AC5-C3	2016.03.01
Temperature/Humidity				
Meter	Zhicheng	ZC1-2	AC5-TH	2017.01.04

Page: 18 of 53

4.2. Test Setup

Below 1GHz Test Setup:

Above 1GHz Test Setup:

4.3. Limit

FCC Part 15 Subpart C Paragraph 15.209				
Frequency (MHz)	Distance (m)	Level (dBuV/m)		
30 - 88	3	40		
88 - 216	3	43.5		
216 - 960	3	46		
Above 960	3	54		

Note 1: The lower limit shall apply at the transition frequency.

Note 2: Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

Note 3: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

4.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2014 and tested according to ANSI C63.10, 2013.

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from Antenna to the EUT was 3 meters.

The Antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the Antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2014 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

The frequency range from 30MHz to 10th harmonic is checked.

Note: When doing emission measurement above 1GHz, the horn Antenna will be bended down a little (as horn Antenna has the narrow beamwidth) in order to keeping the Antenna in the "cone of radiation" of EUT. The 3dB beamwidth is 10~60 degrees for H-plane and 10~90 degrees for E-plane.

If continuous transmission of the EUT (i.e., duty cycle \geq 98 percent) cannot be achieved and the duty cycle is not constant (i.e., duty cycle variations exceed \pm 2 percent), then the following

procedure shall be used:

- a) Set RBW = 1 MHz.
- b) Set VBW ≥ 1/T.
- c) Video bandwidth mode or display mode
- 1) The instrument shall be set to ensure that video filtering is applied in the power domain. Typically, this requires setting the detector mode to RMS and setting the Average-VBW Type to Power (RMS).
- 2) As an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode.
- d) Detector = Peak.
- e) Sweep time = auto.
- f) Trace mode = max hold.
- g) Allow max hold to run for at least 50 times (1/duty cycle) traces.

4.5. Uncertainty

The measurement uncertainty above 1GHz is defined as ± 3.9 dB below 1GHz is defined as ± 3.8 dB

4.6. Test Result

Mode 1: Transmitter-1Mbps(GFSK_BLE)

СН	Antenna	Frequency	Reading	Factor	Measure	Limit	Margin	Detector
		(MHz)	Level	(dB)	Level	(dBuV/m)	(dB)	
			(dBuV/m)		(dBuV/m)			
	Н	4804.0	42.1	8.0	50.1	54(note3)	-3.9	PK
	V	4808.0	42.2	8.0	50.2	54(note3)	-3.8	PK
	Н	7206.0	39.5	12.8	52.3	54(note3)	-1.7	PK
0	V	7205.0	42.0	12.8	54.8	74	-19.2	PK
	V	7206.8	29.4	12.9	42.3	54	-11.7	AV
	Н	9608.0	35.0	16.1	51.0	54(note3)	-3.0	PK
	V	9608.0	35.7	16.1	51.7	54(note3)	-2.3	PK
	Н	4880.0	40.4	8.5	48.9	54(note3)	-5.1	PK
	V	4876.0	44.0	8.5	52.5	54(note3)	-1.5	PK
19	Н	7320.0	37.4	13.2	50.6	54(note3)	-3.4	PK
19	V	7320.0	37.6	13.2	50.8	54(note3)	-3.2	PK
	Η	9760.0	35.8	16.1	51.9	54(note3)	-2.1	PK
	V	9760.0	35.5	16.1	51.6	54(note3)	-2.4	PK
	Н	4961.0	45.5	8.5	54.0	74	-20.0	PK
	Η	4961.9	41.0	8.6	49.6	54	-4.4	AV
	V	4961.0	44.7	8.5	53.2	54(note3)	-0.8	PK
39	Н	7440.0	36.6	13.2	49.8	54(note3)	-4.2	PK
	٧	7440.0	37.4	13.2	50.6	54(note3)	-3.4	PK
	Н	9920.0	36.2	16.1	52.2	54(note3)	-1.8	PK
	V	9920.0	37.1	16.1	53.2	54(note3)	-0.8	PK

Note: 1. Measure Level = Reading Level + Factor.

- 2. The test frequency range, 9kHz~30MHz, 18GHz~25GHz, both of the worst case are at least 6dB below the limits, therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

The worst case of Radiated Emission below 1GHz:

Site: AC3	Time: 2016/01/25
Limit: FCC_Part15.109_RE(3m)_ClassB	Margin: 0
Probe: CB7_CBL6112_0726	Polarity: Horizontal
EUT: Cassia Personal Safety Sensor	Power: By BatteryBy Battery
Note: Mode 1: Transmitter-1Mbps(GESK_BLE)	

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1		37.902	33.130	41.463	-6.870	40.000	-8.333	QP
2		149.625	26.682	37.837	-16.818	43.500	-11.155	QP
3	*	253.695	40.778	49.218	-5.222	46.000	-8.440	QP
4		265.623	39.673	47.765	-6.327	46.000	-8.092	QP
5		379.240	35.304	40.714	-10.696	46.000	-5.410	QP
6		855.020	35.905	34.820	-10.095	46.000	1.085	QP

Site: AC3	Time: 2016/01/25			
Limit: FCC_Part15.109_RE(3m)_ClassB	Margin: 0			
Probe: CB7_CBL6112_0726	Polarity: Vertical			
EUT: Cassia Personal Safety Sensor	Power: By BatteryBy Battery			

Note: Mode 1: Transmitter-1Mbps(GFSK_BLE)

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1	*	38.235	34.790	43.316	-5.210	40.000	-8.526	QP
2		55.802	32.592	47.594	-7.408	40.000	-15.002	QP
3		81.952	29.526	44.250	-10.474	40.000	-14.724	QP
4		252.814	39.845	48.426	-6.155	46.000	-8.581	QP
5		415.502	36.541	40.937	-9.459	46.000	-4.396	QP
6		831.355	38.574	37.593	-7.426	46.000	0.981	QP

5. RF Antenna Conducted Spurious

5.1. Test Equipment

RF Antenna Conducted Spurious / TR-8

Instrument	Manufacturer	Туре No.	Serial No.	Cal. Due Date
Spectrum Analyzer	Agilent	E4446A	MY45300103	2017.01.04
Temperature/Humidity Meter	zhicheng	ZC1-2	TR8-TH	2016.04.09
ivieter				

Note: All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

5.2. Test Setup

5.3. Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.4. Test Procedure

According to ANSI C63.10: 2013& ANSI C63.4: 2014

Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20dB bandwidth, centered on a hopping channel

RBW ≥ 1% of the 20dB bandwidth

VBW ≧ RBW

Sweep = auto

Detector function = peak

Trace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation.

5.5. Uncertainty

The measurement uncertainty is defined as ± 1.27 dB

5.6. Test Result

Product	:	Cassia Personal Safety Sensor
Test Item	• •	RF Antenna Conducted Spurious
Test Site	• •	TR-8
Test Mode	:	Mode 1: Transmit-1Mbps(GFSK_BLE)

Channel 00 (2402MHz)

Channel 19 (2440MHz)

Channel 39 (2480MHz)

6. Radiated Emission Band Edge

6.1. Test Equipment

⊠Radiated Emission Band Edge / AC-5

Ziradiated Ziriiosion Band Zugo / / to 0							
Instrument	Manufacturer	Type No.	Serial No.	Cal. Due Date			
Spectrum Analyzer	Agilent	N9020A	MY49100159	2016.03.30			
Preamplifier	Miteq	NSP1800-25	1364185	2016.05.03			
Preamplifier	QuieTek	AP-040G	CHM-0906001	2016.05.03			
Bilog Antenna	Teseq GmbH	CBL6112D 27612		2016.10.15			
DRG Horn	ETS-Lindgren	3117	00123988	2017.01.04			
Coaxial Cable	Huber+Suhner	SUCOFLEX 106	AC5-C1	2016.03.01			
Coaxial Cable	Huber+Suhner	SUCOFLEX 106	AC5-C2	2016.03.01			
Coaxial Cable	Huber+Suhner	SUCOFLEX 102	AC5-C3	2016.03.01			
EMI Receiver	Agilent	N9038A	MY51210196	2016.08.07			
Temperature/Humidity							
Meter	Zhicheng	ZC1-2	AC5-TH	2017.01.04			

Note 1: All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

6.2. Test Setup

6.3. Limit

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

6.4. Test Procedure

According to FCC ANSI C63.4: 2014 & ANSI C63.10: 2013& FCC 47CFR 15.247& KDB 558074 D01v03r04& Industry Canada RSS-Gen Issue 4& RSS-247 Issue 1

This test is required for any spurious emission or modulation product that falls in a Restricted Band, as defined in Section 15.205 of FCC part 15. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1GHz

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.4 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a

high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b) of FCC part 15.

Now set the VBW ≥ 1 / T (the minimum transmission duration), while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209 of FCC Part 15.

If the emission on which a radiated measurement must be made is located at the edge of the authorized band of operation, then the alternative "marker-IP-STB" method may be employed.

6.5. Uncertainty

The measurement uncertainty above 1GHz is defined as ± 3.9 dB

6.6. Test Result

Engineer: Damon			
Site: AC5	Time: 2016/01/25 - 13:26		
Limit: FCC_Part15.209_RE(3m)	Margin: 0		
Probe: Horn_3117_00167055(1-18GHz)	Polarity: Horizontal		
EUT: Cassia Personal Safety Sensor	Power: By Battery		
Note: Mode 1:Transmit at channel 2402Mhz by BLE			

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1		2327.860	57.873	20.133	-16.127	74.000	37.740	PK
2		2390.000	55.486	17.623	-18.514	74.000	37.863	PK
3	*	2402.055	95.063	57.223	21.063	74.000	37.840	PK

Engineer: Damon		
Site: AC5	Time: 2016/01/25 - 13:27	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: Horn_3117_00167055(1-18GHz)	Polarity: Horizontal	
EUT: Cassia Personal Safety Sensor	Power: By Battery	
Note: Mode 1:Transmit at channel 2402Mhz by BLE		

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1		2390.000	42.797	4.934	-11.203	54.000	37.863	AV
2	*	2402.008	94.489	56.649	40.489	54.000	37.840	AV

Engineer: Damon				
Site: AC5	Time: 2016/01/25 - 13:30			
Limit: FCC_Part15.209_RE(3m)	Margin: 0			
Probe: Horn_3117_00167055(1-18GHz)	Polarity: Vertical			
EUT: Cassia Personal Safety Sensor	Power: By Battery			
Note: Mode 1:Transmit at channel 2402Mhz by BLE				

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1		2382.722	57.477	19.586	-16.523	74.000	37.890	PK
2		2390.000	55.035	17.172	-18.965	74.000	37.863	PK
3	*	2402.292	88.185	50.345	14.185	74.000	37.840	PK

Engineer: Damon				
Site: AC5	Time: 2016/01/25 - 13:30			
Limit: FCC_Part15.209_RE(3m)	Margin: 0			
Probe: Horn_3117_00167055(1-18GHz)	Polarity: Vertical			
EUT: Cassia Personal Safety Sensor	Power: By Battery			
Note: Mode 1:Transmit at channel 2402Mhz by BLE				

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1		2390.000	42.740	4.877	-11.260	54.000	37.863	AV
2	*	2402.198	87.318	49.478	33.318	54.000	37.840	AV

Engineer: Damon				
Site: AC5	Time: 2016/01/25 - 13:33			
Limit: FCC_Part15.209_RE(3m)	Margin: 0			
Probe: Horn_3117_00167055(1-18GHz)	Polarity: Horizontal			
EUT: Cassia Personal Safety Sensor	Power: By Battery			
Note: Mode 1:Transmit at channel 2480Mhz by BLE				

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1	*	2480.046	96.699	58.685	22.699	74.000	38.014	PK
2		2483.500	56.293	18.255	-17.707	74.000	38.038	PK

Engineer: Damon				
Site: AC5	Time: 2016/01/25 - 13:34			
Limit: FCC_Part15.209_RE(3m)	Margin: 0			
Probe: Horn_3117_00167055(1-18GHz)	Polarity: Horizontal			
EUT: Cassia Personal Safety Sensor	Power: By Battery			
Note: Mode 1:Transmit at channel 2480Mhz by BLE				

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1	*	2480.178	95.497	57.482	41.497	54.000	38.014	AV
2		2483.500	42.887	4.849	-11.113	54.000	38.038	AV

Engineer: Damon				
Site: AC5	Time: 2016/01/25 - 13:36			
Limit: FCC_Part15.209_RE(3m)	Margin: 0			
Probe: Horn_3117_00167055(1-18GHz)	Polarity: Vertical			
EUT: Cassia Personal Safety Sensor	Power: By Battery			
Note: Mode 1:Transmit at channel 2480Mhz by BLE				

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1	*	2480.288	87.640	49.625	13.640	74.000	38.016	PK
2		2483.500	56.461	18.423	-17.539	74.000	38.038	PK

Engineer: Damon				
Site: AC5	Time: 2016/01/25 - 13:36			
Limit: FCC_Part15.209_RE(3m)	Margin: 0			
Probe: Horn_3117_00167055(1-18GHz)	Polarity: Vertical			
EUT: Cassia Personal Safety Sensor	Power: By Battery			
Note: Mode 1:Transmit at channel 2480Mhz by BLE				

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1	*	2480.145	87.518	49.504	33.518	54.000	38.014	AV
2		2483.500	42.584	4.546	-11.416	54.000	38.038	AV

7. 6dB Bandwidth and Occupied Bandwidth

7.1. Test Equipment

Occupied Bandwidth / TR-8

Instrument	Manufacturer	Туре No.	Serial No.	Cal. Due Date
Spectrum Analyzer	Agilent	E4446A	MY45300103	2017.01.04
Temperature/Humidity	zhicheng	ZC1-2	TR8-TH	2016.04.09
Meter	Zilicheng			

Note: All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

7.2. Test Setup

7.3. Limit

The minimum 6dB bandwidth shall be at least 500 kHz.

7.4. Test Procedure

According to FCC ANSI C63.4: 2014 & ANSI C63.10: 2013& FCC 47CFR 15.247& KDB 558074 D01v03r04& Industry Canada RSS-Gen Issue 4& RSS-247 Issue 1

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Use the -6dBm function of the instrument (if available) and report the measured

bandwidth.

7.5. Uncertainty

The measurement uncertainty is defined as \pm 1 kHz

7.6. Test Result

Product	:	Cassia Personal Safety Sensor	
Test Item	•	dB Bandwidth & 99% Occupied Bandwidth	
Test Site	• •	R-8	
Test Mode	:	Mode 1: Transmit-1Mbps(GFSK_BLE)	

Channel No.	Frequency	6dB Bandwidth	Occupied	Limit	Result
	(MHz)	(kHz)	Bandwidth (kHz)	(kHz)	
00	2402	738.0	1074.5	>500	Pass
19	2440	704.4	1067.6	>500	Pass
39	2480	734.1	1081.2	>500	Pass

Channel 00 (2402MHz)

Channel 19 (2440MHz)

Channel 39 (2480MHz)

8. Power Output

8.1. Test Equipment

Power Output / TR-8

Instrument	Manufacturer	Type No.	Serial No.	Cal. Due Date
Wideband Peak Power Meter	Anritsu	ML2495A	0905006	2016.11.10
Power Sensor	Anritsu	MA2411B	0846014	2016.11.10
Temperature/Humidity Meter	zhicheng	ZC1-2	TR8-TH	2016.04.09

Note: All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

8.2. Test Setup

8.3. Limit

The maximum peak power shall be less 1 Watt (30dBm).

Note: the conducted output power limit specified above is based on the use the antennas with directional gains that do not exceed 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values above, as appropriate, by the amount in dB that the directional gain of antenna exceeds 6 dBi.

For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. Except as provided in Section 5.4(5), the e.i.r.p. shall not exceed 4 W.

8.4. Test Procedure

According to FCC ANSI C63.4: 2014 & ANSI C63.10: 2013& FCC 47CFR 15.247& KDB

558074 D01v03r04& Industry Canada RSS-Gen Issue 4& RSS-247 Issue 1

- 1. Power meter and sensor's minimum video bandwidth is 50MHz, larger than 802.11n(40MHz) bandwidth;
- 2. Fast responding diode sensors respond immediately to changes in power level to reduce total test time.
- 3. Use PK detector to test.

8.5. Uncertainty

The measurement uncertainty is defined as \pm 1.27 dB

8.6. Test Result

Product	:	Cassia Personal Safety Sensor	
Test Item	:	ower Output	
Test Site	:	TR8	
Test Mode	:	Mode 1: Transmit-1Mbps(GFSK_BLE)	

Channel No.	Frequency (MHz)	Power Output (dBm)	Output Power Limit (dBm)	Result
00	2402	4.84	30.00	Pass
19	2440	4.71	30.00	Pass
39	2480	4.36	30.00	Pass

9. Power Spectral Density

9.1. Test Equipment

Power Spectral Density / TR-8

Instrument	Manufacturer	Туре No.	Serial No.	Cal. Due Date
Spectrum Analyzer	Agilent	E4446A	MY45300103	2017.01.04
Temperature/Humidity Meter	zhicheng	ZC1-2	TR8-TH	2016.04.09

Note: All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

9.2. Test Setup

9.3. Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiated to the Antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

9.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2014; tested according to DTS test procedure of KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

The maximum power spectral density using KDB 558074 section 10.2 PKPSD (peak PSD) method.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.

- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$. (Actually we use 3 kHz RBW)
- d) Set the VBW \geq 3 × RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the band.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

9.5. Uncertainty

The measurement uncertainty is defined as ± 1.27 dB

9.6. Test Result

Product	:	Cassia Personal Safety Sensor	
Test Item	:	ower Spectral Density	
Test Site	:	TR-8	
Test Mode		Mode 1: Transmit-1Mbps(GFSK_BLE)	

Channel No.	Frequency (MHz)	Measurement PPSD (dBm)	Limit (dBm)	Result
00	2402	-4.959	8	Pass
19	2440	-6.260	8	Pass
39	2480	-7.363	8	Pass

Channel 00 (2402MHz)

Channel 19 (2440MHz)

Channel 39 (2480MHz)

The End