Environment, Energy, Security & Sustainability (E2S2)

Modeling Your Way Through EISA

Patrick N. Deliman, PhD
Environmental Laboratory
US Army Engineer Research and Development
Center

US Army Corps of Engineers
BUILDING STRONG®

maintaining the data needed, and of including suggestions for reducing	lection of information is estimated to completing and reviewing the collection this burden, to Washington Headquuld be aware that notwithstanding and DMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate or mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE JUN 2010		2. REPORT TYPE		3. DATES COVE 00-00-201 0	RED to 00-00-2010
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER
Modeling Your Wa	ay Through EISA			5b. GRANT NUM	/BER
				5c. PROGRAM E	LEMENT NUMBER
6. AUTHOR(S)				5d. PROJECT NU	JMBER
				5e. TASK NUMB	ER
				5f. WORK UNIT	NUMBER
Army Engineer Re	zation name(s) and ac search and Develop Ialls Ferry Road Wa MS,39180-6199	ment Center,Enviro		8. PERFORMING REPORT NUMB	G ORGANIZATION ER
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	ND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited			
13. SUPPLEMENTARY NO Presented at the N held 14-17 June 20	DIA Environment, I	Energy Security & S	Sustainability (E2	S2) Symposi	um & Exhibition
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	CATION OF:		17. LIMITATION OF	18. NUMBER	19a. NAME OF
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 24	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

EISA Section 438

Energy Independence and Security Act

"Storm water runoff requirements for federal development projects. The sponsor of any development or redevelopment project involving a Federal facility with a footprint that exceeds 5,000 square feet shall use site planning, design, construction, and maintenance strategies for the property to maintain or restore, to the maximum extent technically feasible, the predevelopment hydrology of the property with regard to the temperature, rate, volume, and duration of flow."

Pre and Post-Development Hydrology (USDA)

DOD EISA Flowchart

EPA Technical Guidance

EPA 841-B-09-001 December 2009 www.epa.gov/owow/nps/lid/section438 United States Environmental Protection Agency office of Water (4503T) Vashington, DC 20460 EPA 841-B-09-001 December 2009 www.epa.gov/owow/nps/lid/section438

Technical Guidance on Implementing the Stormwater Runoff Requirements for Federal Projects under Section 438 of the Energy Independence and Security Act

Performance Design Objective

Option 1: Control 95th Percentile Rainfall Event (Flow = Precipitation x Area) or

Runoff = [(Precipitation * Impervious Area) + (Precipitation * Pervious Area)]/Total Area

- 1) Calculate or verify the precipitation amount from the 95th percentile storm.
- 2) Employ onsite stormwater management controls to the maximum extent technically feasible (METF) that infiltrate, evapotranspire, or harvest and then use the appropriate design volume.

Option 2: <u>Preserve predevelopment hydrology</u> (rate, volume, duration & temperature)

- Conduct hydrologic and hydraulic analyses.
- 2) Quantify post-construction hydrographs for the 1, 2, 10, 25, 50 and 100 year 24 hour storm events.
- 3) Maintain pre-development hydrographs for these storm events.

EISA Compliance Methodology

- Design objective is to maintain the pre-development hydrology
 - Pre-development conditions (temperature, rate, volume, and duration)
 - Design volume
- Use modeling or other recognized tools to establish objective
 - TR-55 curve number method is easy to apply and understand a number of modeling systems employ this method.
- Evaluate design options (Low Impact Development/Projects) to meet objective to the maximum extent technically feasible (METF).
- Accountability
 - Site evaluation and soil analysis
 - Calculations for the 95th percentile rainfall event of the predevelopment runoff volumes
 - The site design and stormwater management practices (LID) employed on the site
 - Design calculations for each stormwater management practice
 - The respective volume of stormwater managed by each practice
 - Waiver, if applicable
- Complete a post construction analysis of features

Developing the 95th Percentile Storm (NAVFAC)

Rainfall (in)		
0.10		
0.10	_	
0.10	Percentile	Rainfall (in)
0.10	0%	0.10
0.10	5%	0.10
0.10	10 %	0.11
0.10	15%	0.12
0.10	20 %	0.14
0.10	25%	0.15
0.10	30 %	0.16
0.10	35%	0.19
0.10	40 %	0.21
0.10	45 %	0.22
0.10	50 %	0.24
0.10	55%	0.26
0.11	60 %	0.29
0.11	65%	0.31
0.11	70 %	0.37
0.11	75%	0.42
0.11	80%	0.48
0.11	85%	0.53
0.11	90 %	0.69
0.11	95%	0.98
0.11	100%	3.98
0.11		
0.11	95th Pero	entile Rain
0.11	P=	0.9835

- 1. Obtain 24-hr precipitation data set (NCDC)
 - http://www.ncdc.noaa.gov/oa/ncdc.html
- 2. Import into spreadsheet and aggregate into a single column
 - Eliminate storms with rainfall less than 0.1"
- 3. Calculate using PERCENTILE function or graphically

0.11

0.11 0.11 0.12

0.12

0.12

Example 95th Percentile Storms

City	95 th Percentile Event Rainfall Total (in)	City	95 th Percentile Event Rainfall Total (in)
Atlanta, GA	1.8	Kansas City, MO	1.7
Baltimore, MD	1.6	Knoxville, TN	1.5
Boston, MA	1.5	Louisville, KY	1.5
Buffalo, NY	1.1	Minneapolis, MN	1.4
Burlington, VT	1.1	New York, NY	1.7
Charleston, WV	1.2	Salt Lake City, UT	0.8
Coeur D'Alene, ID	0.7	Phoenix, AZ	1.0
Cincinnati, OH	1.5	Portland, OR	1.0
Columbus, OH	1.3	Seattle, WA	1.6
Concord, NH	1.3	Washington, DC	1.7
Denver, CO	1.1		

Low Impact Development Strategies

- Bioretention
- Soil Amendments
- Filter Strips
- Vegetated Buffers
- Grassed Swales
- Dry Wells
- Infiltration Basins/Trenches
- Inlet Pollution Removal Devices
- Rainwater Harvesting (Rain Barrels and Cisterns)
- Tree Box Filters
- Vegetated Roofs
- Permeable Pavers

Potential Methods for Analyzing Control Measures

Model C	onsiderations	Rational Method	TR-55	SWMM	Direct Determination	HSPF	QUALHYMO
Temporal	Single Event	Yes	Yes	Yes	Yes	Yes	Yes
Scale	Continuous Simulation	No	No	Yes	Possible	Yes	Yes
	Lot-level	Yes	Yes	Yes	Yes	No	No
Spatial Scale	Neighborhood	Yes	Yes	Yes	Yes	Possible	Possible
Scale	Regional	Yes	Yes	Yes	No	Yes	Yes
	Peak Discharge	Yes	Yes	Yes	No	Yes	Yes
	Runoff Volume	Yes	Yes	Yes	Yes	Yes	Yes
Outputs	Hydrograph	Yes	Yes	Yes	No	Yes	Yes
	Water Quality	No	No	Yes	Possible	Yes	Yes

Comparison of Approaches

Method	Strengths	Weaknesses
Direct Determination	 Methodology (Manning's Eq.) for runoff determination is same as SWMM Models basic hydrologic processes directly (explicit) Simple spreadsheet can be used 	 Direct application of Horton's method may estimate higher infiltration loss, especially at the beginning of a storm Does not consider flow routing
Rational Method	Method is widely usedSimple to use and understand	Cannot directly model storage-oriented onsite control measures
TR-55	Method is widely usedSimple to use and understand	May not be appropriate for estimating runoff from small storm events because depression storage is not well accounted for
SWMM	 Method is widely used Can provide complete hydrologic and water quality process dynamics in stormwater analysis 	 Needs a number of site-specific modeling parameters Generally requires more extensive experience and modeling skills

Comparison of Approaches

	Models								
Attribute	HSPF	SWMM	TR-55/TR-20	HEC-HMS	Rational Method				
Sponsoring agency	U.S. EPA	U.S. EPA	NRCS	USACE	N/A				
Simulation type	Continuous	Continuous	Single Event	Continuous	Single Event				
Water Quality analysis	Yes	Yes	None	Under Dev.	None				
Rainfall/Runoff analysis	Yes	Yes	Yes	Yes	Yes				
Sewer system flow routing	None	Yes	Yes	Yes	None				
Dynamic flow routing equations	None	Yes	Yes	None	None				
Regulators, overflow structures	None	Yes	None	None	None				
Storage analysis	Yes	Yes	Yes	Yes	Possible*				
Treatment analysis	Yes	Yes	None	None	None				
Data and personnel requirements	High	High	Medium	Medium	Low				
Overall model complexity	High	High	Low	High	Low				

Fort McPherson, Atlanta, GA

LID Runoff Curve Number

- TR-55 model
- LID implementation alters the on site infiltration capacity
- Factors to consider
 - Land Cover Type
 - Percent of Imperviousness
 - Hydrologic Soils Group
 - Hydrologic Condition
 - Disconnectivity of Impervious Area
 - Storage and Infiltration

Impact of LID Techniques

Storage and Infiltration	Disconnectivity of Impervious Area	Hydrologic Condition	Hydrologic Soils Group	Percent of Imperviousness	Land Cover Type	Suggested Options Affecting Curve Number (CN)	
	١,			۲		Limit use of sidewalks	
	۲			۲		Reduce road length and width	
	۲			<		Reduce driveway length and width	
		<	۲		<	Conserve natural resources and areas	
		<			5	Minimize disturbance	
		۲	۲			Preserve infiltratable soils	
۲						Preserve natural depression areas	
				۲	5	Use transition zones	
					•	Use vegetated swales	
1	1	1	1	1	I		

Preserve vegetation

Source: Prince George's County, MD, 1999

5

LID Techniques to Maintain Onsite Hydrology

	Low Impact Development Technique									
Low Impact Development Objective	On-lot bioretention	Wider and flatter swales	Maintain sheet flow	Clusters of trees and shrubs in flow path	Provide tree conservation/ transition zones	Minimize storm drain pipes	Disconnect impervious areas	Save trees	Preserve existing topography	LID drainage and infiltration zones
Minimize disturbance	~		~	~	~	~	~	~	~	
Flatten grades		V	~			~			~	~
Reduce height of slopes						~			~	~
Increase flow path (divert and redirect)		~	~	~		~	~	~		
Increase roughness "n"	~	-	V	~	~	~	~	~		~

Source: Prince George's County, MD, 1999

TR 55 Curve Numbers

Cover description			Curve m hydrologic	imbers for soil group		
Av	erage percent					
Cover type and hydrologic condition imp	ervious area 2	A	В	С	D	
Fully developed urban areas (vegetation established)						
Open space (lawns, parks, golf courses, cemeteries, etc.) 3:						
Poor condition (grass cover < 50%)		68	79	86	89	
Fair condition (grass cover 50% to 75%)		49	69	79	84	
Good condition (grass cover > 75%)		39	61	74	80	
Impervious areas:						
Paved parking lots, roofs, driveways, etc.						
(excluding right-of-way)		98	98	98	98	
Streets and roads:						
Paved; curbs and storm sewers (excluding						
right-of-way)		98	98	98	98	
Paved; open ditches (including right-of-way)		83	89	92	93	
Gravel (including right-of-way)		76	85	89	91	
Dirt (including right-of-way)		72	82	87	86	
Western desert urban areas:					-	
Natural desert landscaping (pervious areas only) #		63	77	85	88	
Artificial desert landscaping (impervious weed barrier.		-		-		
desert shrub with 1- to 2-inch sand or gravel mulch						
and basin borders)		96	96	96	96	
Urban districts:		50	20	50		
Commercial and business	85	89	92	94	9.5	
Industrial		81	88	91	93	
Residential districts by average lot size:	***	0.	00			
1/8 acre or less (town houses)	65	77	85	90	90	
1/4 acre		61	75	83	87	
1/3 acre	30	57	72	81	86	
1/2 acre		54	70	80	85	
1 acre		51	68	79	84	
2 acres	12	46	65	77	82	
s act vo	10	40	00		OLS	
Developing urban areas						
Newly graded areas						
(pervious areas only, no vegetation) □		77	86	91	94	
dle lands (CN's are determined using cover types						
similar to those in table 2-2c).						

Average runoff condition, and I_a = 0.28.

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 96, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

³ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type.

⁴ Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

⁸ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

Hydrologic Soil Groups

Group B - Soils in this group have moderately low runoff potential when thoroughly wet. Water transmission through the soil is unimpeded. Group B soils typically have between 10 percent and 20 percent clay and 50 percent to 90 percent sand and have loamy sand or sandy loam textures. Some soils having loam, silt loam, silt, or sandy clay loam textures may be placed in this group if they are well aggregated, of low bulk density, or contain greater than 35 percent rock fragments.

Group C - Soils in this group have moderately high runoff potential when thoroughly wet. Water transmission through the soil is somewhat restricted. Group C soils typically have between 20 percent and 40 percent clay and less than 50 percent sand and have loam, silt loam, sandy clay loam, clay loam, and silty clay loam textures. Some soils having clay, silty clay, or sandy clay textures may be placed in this group if they are well aggregated, of low bulk density, or contain greater than 35 percent rock fragments.

Fort McPherson, Atlanta, GA

Fort McPherson Example

A 21-acre site with 70% impervious area was selected in Atlanta, Georgia.

If the 95th percentile rainfall event (1.77 inches) occurred on the existing site (i.e., with no control measures), 1.17 inches of runoff would be generated and require management.

The runoff from the 95th percentile rainfall event could not be adequately retained solely with bioretention systems.

Based on the technical considerations of constructing and maintaining control measures at the site, it was assumed that up to 15% of the pervious area could be converted into bioretention cells and up to 40% of paved area could be converted into a paver block system.

If the stormwater management techniques used on the site includes both bioretention and paver blocks, then all runoff for the 95th percentile rainfall event would be controlled.

Example – Fort McPherson

Total Area (acres)	2	21			
Estimated Imperviousness (%)		70	70%		
95th Percentile Rainfall Event (inches)		1.7	77		
Expected Runoff for the 95th Percentile	Rainfall Event (inches)	1.3	17		
Stormwater Management Area Require	Hydrologic Soil Group				
		В	С		
Bioretention estimated by the Dir	rect Determination (acres)	0.	9		
Paver block area estimated by the Dir	rect Determination (acres)	0.9	3.2*		
Biorete	ntion estimated by TR-55	0.8**	0.9		
Paver block	area estimated by TR-55	0**	1.84		
Off-site storage necessary to control	With onsite controls	5.85	6.62		
10-yr event of 6.0 inches (acre-ft)	Without onsite controls	7.25	8.49		

^{*}The size of porous pavement was increased because the bioretention already reached its maximum size based on the site-specific design assumptions.

^{**}Because TR-55 estimated smaller runoff in this scenario, bioretention can retain all of the 95th percentile runoff if the site has soil group B.

Summary

- Implementation of Section 438 of the EISA can be achieved by incorporation of GI/LID
- EPA 841-B-09-001 provides technical guidance on implementing the stormwater runoff requirements
- Several models are available to support stormwater modeling analysis efforts
- Defensible and consistent hydrologic assessment tools should be used and documented

Questions

