Topic: Radians and arc length

Question: What is the radian measure of an arc of a circle with a radius of 12 centimeters and an associated central angle of 30° ?

Answer choices:

Α π

B $\frac{\pi}{2}$

 $C \qquad \frac{2\pi}{3}$

D 2π

Solution: D

We can only use an angle defined in radians in the arc length formula, so we'll need to convert 30° to radians.

$$30^{\circ} \left(\frac{\pi}{180^{\circ}} \right) = \frac{\pi}{6}$$

Now we'll plug what we know into the arc length formula.

$$s = r\theta$$

$$s = 12\left(\frac{\pi}{6}\right)$$

$$s = 2\pi$$

Topic: Radians and arc length

Question: In radius of circle O is 25, and the measure of arc AB is 150°. Find the approximate length of arc AB.

Answer choices:

A 65

B 94

C 21

D 131

Solution: A

We can only use an angle defined in radians in the arc length formula, so we'll need to convert 150° to radians.

$$150^{\circ} \left(\frac{\pi}{180^{\circ}} \right) = \frac{5\pi}{6}$$

Now we'll plug what we know into the arc length formula.

$$s = r\theta$$

$$s = 25 \left(\frac{5\pi}{6}\right)$$

$$s \approx 65$$

Topic: Radians and arc length

Question: Approximately how many radians make up 252°?

Answer choices:

A 1.4

B 4.4

C 0.4

D 2.2

Solution: B

If we want to convert an angle from degrees to radians, we multiply it by $\pi/180^{\circ}$.

$$252^{\circ} \left(\frac{\pi}{180^{\circ}} \right)$$

 1.4π

1.4(3.14)

4.4

