1. (a) Sta	ate Raoult's law of lowering of vapour pressure	(1mark)
vap	When 12.19g of a non-volatile solute, P was dissolved in 20 pour pressure of the solution was lowered by 1.72mmHg at conperature	_
	Determine the relative molecular mass of P.(vapour pressur the same temperature is 92.52mmHg)	re of pure water (3marks)
ait	the same temperature is 72.32mmrig)	, ,
•••••		
		••••••••••
•••••		
•••••		
(ii)	State assumptions you have made in (b)(i)	(2marks)
2. Comp	lete the following equations and in each case name the main	
(a)	CH ₃ CHCH ₃ Na Br Dry ether	(1½ marks)
Name of 1	product	•••••
(b)	$CH_3CH=CH_2 + HBr \xrightarrow{ROOR}$	(1½ marks)
Name of 1	product	
(c)	CH_3CH_2OH/KOH $CH_3CBr \longrightarrow heat \longrightarrow$	(1½ marks)

Na	ame of product	•••••
+		
3.	(a) Define the term "standard enthalpy of formation"	(1mark)
•••		•••••
••••	(b)(i) Draw a Born-Haber cycle for the formation of ethyne	(2marks)
••••		
•••	(ii)The enthalpies of combustion of carbon, hydrogen and ethyne are	
	-285.8 and -1310kJmol ⁻¹ respectively. Calculate the heat of formatio ethyne.	(2marks)
•••		•••••••••••
•••		
4.	Carbon monoxide and steam react according to the equation $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$	••••••
	(a) Write the expression for the equilibrium constant, K_c . (1)	mark)
••••		
	(b) Equimolar quantities of carbon monoxide and steam were made in 1 litre vessel and when equilibrium was attained, the vessel	
	tocontain 16.7% carbon dioxide. Calculate the	

(i)

amount of carbon monoxide, steam, carbon dioxide and hydrogen at equilibrium in moles per litre. (02½ marks)

		(ii) equilibrium constant, K_c , for the reaction (1 mark)
	(c)	State what would happen to the position of equilibrium when hydroxide solution is added to the equilibrium mixture. Give your answer.	a reason for I mark)
 5.	Both both (a) State (i)		1mark)
	(ii)	four properties in which silicon and boron show similarities	,
		e two other pairs of elements that show diagonal relationship	
••••			

6. Write equation for the re	eaction between sodium hydrox	xide solution and
(a) silicon(iv) oxid	de	
(b) beryllium oxid	le	
(c) Phosphorous(V	V) oxide	
7. Draw the structures and	name the shapes of the follows	ingspecies. (6 marks)
species	structure	Name
(a) HClO ₄		
(b) POCl ₃		
(c) SnCl ₂		
(d) ClO ₃		
8. Complete the following:	reaction equations and write th	ne accepted mechanisms.
(a) $(CH_3)_3CBr$	H ₂ O	
Mechanism	•	(2 marks)

•••				
•••				
•••				
•••	(b)	$CH_3CH = CHCH_3$ $Mechanism$	Br ₂ /H ₂ O	(3 marks)
 9.	 Write eq	uation for the reaction	on between water an	ad the hydride of
	(a) sodiu	ım		(1½marks)
•••	(b) silico	on		(1½marks)
•••	(c) sulph	ıur		(1½marks)
10	was in exdecrease solution.	xcess. The gaseous ped by 120 cm ³ on trea	oroduct occupied a value of a value of the concent	ed with 200 cm ³ of oxygen which colume of 155 cm ³ , which was rated potassium hydroxide (3½ marks)
•••				
•••				
•••				
•••				
•••		•••••		

•••••		•
(b)	Q forms a red precipitate on treatment with a solution of copper(I) chloride in aqueous ammonia Write	
	(i) the structural formula and IUPAC name of \mathbf{Q}	(1½ marks)
	(ii) equation for the reaction between \mathbf{Q} and copper(i)	
		(1 mark)
•••••	(iii) equations to show how Q can be obtained from an a	
		(3mark)
••••		
	quations to show how the following conversions can be care a case indicate the reagent and conditions for the reaction.	ried out. In
(a)	Cl 	
	CH ₃ —C—CH ₃ from 2-chloropropane	
	Cl	$(2\frac{1}{2} marks)$
••••••		•••••
••••••		
(b) CoC	$_{2}$ to ethanol	(03 marks)
(U) CaC		(OS marks)

•••••		
•••••		
(d)	CH ₃ to CH ₃	
•••••		
water. 2 solution with 0.0	of solution K containing chlorine was diluted to 250.5 cm ³ of the dilute solution was pippeted. 10 cm ³ of was added followed by 10 cm ³ of ethanoic acid. The 5 M sodium thiosulphate solution using starch indicquired for complete reaction.	potassium iodide is mixture was titrated
(a)	Write equations of reactions that took place.	(3 marks)
••••••		
(b)	Calculate the (i) number of moles of iodine that would be lib the dilute solution of K.	perated by 25 cm ³ of (2marks)

(ii) ma	ss of chlorine i	n the original	solution.	(2mark	s)
•••••	•••••		••••••	•••••	•••
	•••••		••••••	•••••	•••
					•••
(iii) per	centage of chlo	orine in K.		(2mark	s)
					•••
					•••
					•••
The data in the tabl		btained for the	reaction		•••
The data in the tabl 3A Time (hours)	→ Products	btained for the	reaction 4.0	5.3	
Time (hours)	Products 1.3			5.3 -0.74	
$ \begin{array}{c c} \hline \text{Time (hours)} \\ \hline \log_{10}[A] \end{array} $ (a) Plot a graph of least	Products $ \begin{array}{c c} \hline & 1.3 \\ \hline & -0.24 \\ \hline & og_{10}[A] \text{ agains} \end{array} $	2.0 -0.33	4.0		
Time (hours) log ₁₀ [A] (a) Plot a graph of log (b) From the graph,	Products $ \begin{array}{c c} \hline & 1.3 \\ \hline & -0.24 \\ \hline & og_{10}[A] \text{ agains} \end{array} $	2.0 -0.33 t time	4.0	-0.74	
Time (hours) log ₁₀ [A] (a) Plot a graph of log(b) From the graph,	Products 1.3 -0.24 og ₁₀ [A] agains determine the accentration of A	2.0 -0.33 t time	4.0	-0.74 (3n	na
Time (hours) log ₁₀ [A] (a) Plot a graph of log (b) From the graph, (i) initial con	Products 1.3 -0.24 og ₁₀ [A] agains determine the accentration of A	2.0 -0.33 t time	4.0 -0.57	-0.74 (3n (1n	na
Time (hours) log ₁₀ [A] (a) Plot a graph of log(b) From the graph, (i) initial con	Products 1.3 -0.24 og ₁₀ [A] agains determine the accentration of A	2.0 -0.33 t time	4.0 -0.57	-0.74 (3n (1n	1a
Time (hours) log ₁₀ [A] (a) Plot a graph of log (b) From the graph, (i) initial con (ii) order of the	Products 1.3 -0.24 og ₁₀ [A] agains determine the acentration of A	2.0 -0.33 t time	4.0 -0.57	-0.74 (3n (1n	na

14.(a) A chloride of aluminium X, contains 20% aluminium and 8	30% chlorine.
(i) Calculate the empirical formula of X.	(2marks)
(ii) Determine the molecular formula of X (The vapour density of X is 133.5)	(1½marks)
(iii) Write the structural formula of X	(1mark)
(b) (i) State how aluminum chloride can be prepared	(1mark)
(ii) State the type of bond and structure in the aluminum chlori	de
Type of bond	(½mark)
Structure	(½mark)
(c) Sodium carbonate solution was added to aqueous solution	
chloride. State what observed and write equation for the reaction Observation	on that takes place (1mark)
Equation	(1½marks)

15. The table below shows the atomic ra		e electron a	ffinity of	some
elements in group(VII) of the Period Element	F	Cl	Br	I
Atomic radius (nm)	1.36	1.81	1.95	2.16
First electron affinity(KJmol ⁻¹	-328	-349	-325	-295
(a) Explain	-320	-349	-323	-293
(i) how atomic radius of the e	lements var	ries down tl	ne group	(3marks)
(ii) the trend in the first electron	on affinity o	of the eleme	ents	(3marks)
(b) write equation for the reaction be (i) hot concentrated sodium hyd				(1½marks)
(ii) potassium bromide solution				(1½marks)
16. (a) (i) Define the term lattice energy				(1½marks)

(ii)	The standard enthalpy of formation of sodio elements is -416 kJ mol ⁻¹ . Write an equation		
 (c) The energy changes that take place during t shown in the table below	the formation of sodium	m oxide are
	Process	ΔH^{θ} / kJ mol ⁻¹	
	$Na(s)$ \longrightarrow $Na(g)$	+109	
	$Na_{(g)}$ \longrightarrow $Na_{(g)}^+ + e^-$	+494	
	$O_{2(g)}$ \longrightarrow $C \rightarrow$ $2O_{(g)}$	+496	
	$O_{(g)} + e^- \longrightarrow O_{(g)}^-$	-142	
	$ \begin{array}{cccc} O_{2(g)} & \xrightarrow{\mathcal{L}} & 2O_{(g)} \\ O_{(g)} & + e^{-} & \xrightarrow{\mathcal{D}} & O_{(g)}^{-} \\ O_{(g)}^{-} & + e^{-} & \xrightarrow{\mathcal{E}} & O_{(g)}^{2-} \end{array} $	+844	
(i)		ses (2	½marks)
	B C		
	E (ii) Calculate the standard enthalpy of form	nation of sodium oxide	

17.	_	bund, \mathbf{W}_{i} , on combustion gave 0.629g of carbon dioxide and 0	0.257g of
	water. (a) Determine	mine the empirical formula of W	(2½marks)
••••			
••••	•		••••••
	(b) When (i)	0.1g of W was vapourised, it occupied a volume of 53.3cm ³ a Calculate the molecular mass of W .	(1½marks)
••••	(ii)	Determine the molecular formula of W	(1mark)
••••			
••••	(iii)	Write the structural formula of W	(½mark)
•••••		equation to show how W can be converted into pent-2-yne	
,			
••••			