



## TECNICAS DIGITALES III

# Instrumento Virtual Placa de Adquisición ACONDICIONAMIENTO DE SEÑAL CPU **FUENTE**

## Instrumento Virtual



#### STM32F106T8

#### **CPU**

#### **Features**

- Arm<sup>®</sup> 32-bit Cortex<sup>®</sup>-M3 CPU core
  - 72 MHz maximum frequency,
     1.25 DMIPS / MHz (Dhrystone 2.1)
     performance at 0 wait state memory access
  - Single-cycle multiplication and hardware division
- Memories
  - 64 or 128 Kbytes of Flash memory
  - 20 Kbytes of SRAM
- · Up to nine communication interfaces
  - Up to two I<sup>2</sup>C interfaces (SMBus/PMBus<sup>®</sup>)
  - Up to three USARTs (ISO 7816 interface, LIN, IrDA capability, modem control)
  - Up to two SPIs (18 Mbit/s)
  - CAN interface (2.0B Active)
  - USB 2.0 full-speed interface



- Debug mode
  - Serial wire debug (SWD) and JTAG interfaces

Table 2. STM32F103xx medium-density device features and peripheral counts

|               | Peripheral         |                                                                                                                                         | STM32F103Tx |        | F103Cx       | STM32F103Rx                |     | STM32F103Vx                       |  |
|---------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|--------------|----------------------------|-----|-----------------------------------|--|
| Flash         | ı - Kbytes         | 64                                                                                                                                      | 128         | 64     | 128          | 64                         | 128 | 64 128                            |  |
| SRAM - Kbytes |                    | 20                                                                                                                                      |             | 2      | 0            | 20                         |     | 20                                |  |
| Timers        | General-purpose    | 3                                                                                                                                       |             | ;      | 3            | 3                          |     | 3                                 |  |
| Ţ             | Advanced-control   | 1                                                                                                                                       |             |        | 1            | 1                          |     | 1                                 |  |
| Communication | SPI                | 1                                                                                                                                       | 1           | 2      | 2            | 2                          |     | 2                                 |  |
|               | I <sup>2</sup> C   | 1                                                                                                                                       |             | 2      | 2            | 2                          |     | 2                                 |  |
|               | USART              | 2                                                                                                                                       | 2           | ;      | 3            | 3                          |     | 3                                 |  |
|               | USB                | 1                                                                                                                                       |             | •      | 1            | 1                          |     | 1                                 |  |
| 0             | CAN                | 1                                                                                                                                       |             | •      | 1            | 1                          |     | 1                                 |  |
| GPIOs         |                    | 26                                                                                                                                      |             | 37     |              | 51                         |     | 80                                |  |
| 12-bit        | t synchronized ADC | 2                                                                                                                                       |             | 2      |              | 2                          |     | 2                                 |  |
| Numl          | ber of channels    | 10 cha                                                                                                                                  | annels      | 10 cha | annels       | 16 channels <sup>(1)</sup> |     | 16 channels                       |  |
| CPU           | frequency          | 72 MHz                                                                                                                                  |             |        |              |                            |     |                                   |  |
| Oper          | ating voltage      | 2.0 to 3.6 V                                                                                                                            |             |        |              |                            |     |                                   |  |
| Opera         | ating temperatures | Ambient temperatures: -40 to +85 °C / -40 to +105 °C (see <i>Table 9</i> )  Junction temperature: -40 to + 125 °C (see <i>Table 9</i> ) |             |        |              |                            |     |                                   |  |
| Pack          | ages               | VFQF                                                                                                                                    | PN36        |        | P48,<br>PN48 | LQFP64,<br>TFBGA64         |     | LQFP100,<br>LFBGA100,<br>UFBGA100 |  |



FLITFCLK to Flash programming interface 8 MHz HSI RC HSI USBCLK USB 48 MHz to USB interface Prescaler /2 /1, 1.5 HCLK 72 MHz max to AHB bus, core, memory and DMA Enable (3 bits) /8 to Cortex System timer SW PLLSRC FCLK Cortex PLLMUL free running clock HSI AHB APB1 SYSCLK ..., x16 PCLK1 72 MHz Prescaler Prescaler x2, x3, x4 PLLCLK to APB1 /1, 2..512 1, 2, 4, 8, 16 PLL Peripheral Clock peripherals max HSE Enable (13 bits) to TIM2, 3 and 4 TIM2,3, 4 TIMXCLK > If (APB1 prescaler =1) x1 CSS x2 Peripheral Clock Enable (3 bits) APB2 PLLXTPRE 72 MHz max PCLK2 Prescaler to APB2 OSC OUT 1, 2, 4, 8, 16 Peripheral Clock peripherals 4-16 MHz HSE OSC Enable (11 bits) OSC\_IN 12 TIM1 timer to TIM1 If (APB2 prescaler =1) x1 TIM1CLK else x2 Peripheral Clock Enable (1 bit) ADC to ADC OSC32 IN to RTC LSE OSC LSE Prescaler ADCCLK RTCCLK /2, 4, 6, 8 32.768 kHz OSC32\_OUT RTCSEL[1:0] to Independent Watchdog (IWDG) LSI RC 40 kHz IWDGCLK HSE = high-speed external clock signal HSI = high-speed internal clock signal Main -PLLCLK LSI = low-speed internal clock signal Clock Output LSE = low-speed external clock signal MCO HSI -HSE -SYSCLK ai14903

Figure 2. Clock tree

- 1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 64 MHz.
- For the availability of the USB function both HSE and PLL must be enabled, with USBCLK running at
- To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz, 28 MHz or 56 MHz.

|          | Table 5. Medium-density STM32F103xx pin definitions |                 |                   |        |         |          |                                    |                     |                            |                                                  |                                    |                    |  |
|----------|-----------------------------------------------------|-----------------|-------------------|--------|---------|----------|------------------------------------|---------------------|----------------------------|--------------------------------------------------|------------------------------------|--------------------|--|
|          |                                                     |                 | Pins              |        |         |          |                                    |                     |                            |                                                  | Alternate functions <sup>(4)</sup> |                    |  |
| LFBGA100 | UFBG100                                             | LQFP48/UFQFPN48 | TFBGA64           | LQFP64 | LQFP100 | VFQFPN36 | Pin name                           | Type <sup>(1)</sup> | I / O Level <sup>(2)</sup> | Main<br>function <sup>(3)</sup><br>(after reset) | Default                            | Remap              |  |
| A3       | B2                                                  | -               | •                 | -      | 1       | -        | PE2                                | I/O                 | FT                         | PE2                                              | TRACECK                            | -                  |  |
| В3       | A1                                                  | -               | -                 | -      | 2       | -        | PE3                                | I/O                 | FT                         | PE3                                              | TRACED0                            | -                  |  |
| C3       | B1                                                  | -               | -                 | -      | 3       | -        | PE4                                | I/O                 | FT                         | PE4                                              | TRACED1                            | -                  |  |
| D3       | C2                                                  | -               | -                 | -      | 4       | -        | PE5                                | I/O                 | FT                         | PE5                                              | TRACED2                            | -                  |  |
| E3       | D2                                                  | -               | -                 | -      | 5       | •        | PE6                                | I/O                 | FT                         | PE6                                              | TRACED3                            | -                  |  |
| B2       | E2                                                  | 1               | B2                | 1      | 6       | -        | V <sub>BAT</sub>                   | s                   | -                          | V <sub>BAT</sub>                                 | -                                  | -                  |  |
| A2       | C1                                                  | 2               | A2                | 2      | 7       | -        | PC13-TAMPER-<br>RTC <sup>(5)</sup> | I/O                 |                            | PC13 <sup>(6)</sup>                              | TAMPER-RTC                         | -                  |  |
| A1       | D1                                                  | 3               | A1                | 3      | 8       | -        | PC14-OSC32_IN <sup>(5)</sup>       | I/O                 | •                          | PC14 <sup>(6)</sup>                              | OSC32_IN                           | -                  |  |
| B1       | E1                                                  | 4               | B1                | 4      | 9       |          | PC15-<br>OSC32_OUT <sup>(5)</sup>  | I/O                 | •                          | PC15 <sup>(6)</sup>                              | OSC32_OUT                          | -                  |  |
| C2       | F2                                                  | -               | -                 | -      | 10      | -        | V <sub>SS_5</sub>                  | s                   |                            | V <sub>SS_5</sub>                                | -                                  | -                  |  |
| D2       | G2                                                  | -               | -                 | -      | 11      | -        | V <sub>DD_5</sub>                  | s                   | •                          | V <sub>DD_5</sub>                                | -                                  |                    |  |
| C1       | F1                                                  | 5               | C1                | 5      | 12      | 2        | OSC_IN                             | 1                   | •                          | OSC_IN                                           | -                                  | PD0 <sup>(7)</sup> |  |
| D1       | G1                                                  | 6               | D1                | 6      | 13      | 3        | OSC_OUT                            | 0                   | •                          | OSC_OUT                                          |                                    | PD1 <sup>(7)</sup> |  |
| E1       | H2                                                  | 7               | E1                | 7      | 14      | 4        | NRST                               | I/O                 | •                          | NRST                                             | -                                  | -                  |  |
| F1       | H1                                                  | -               | E3                | 8      | 15      | -        | PC0                                | I/O                 |                            | PC0                                              | ADC12_IN10                         | -                  |  |
| F2       | J2                                                  | -               | E2                | 9      | 16      | -        | PC1                                | I/O                 | -                          | PC1                                              | ADC12_IN11                         | -                  |  |
| E2       | J3                                                  | -               | F2                | 10     | 17      | -        | PC2                                | I/O                 | •                          | PC2                                              | ADC12_IN12                         | -                  |  |
| F3       | K2                                                  | -               | _(8)              | 11     | 18      | -        | PC3                                | I/O                 | -                          | PC3                                              | ADC12_IN13                         | -                  |  |
| G1       | J1                                                  | 8               | F1                | 12     | 19      | 5        | V <sub>SSA</sub>                   | s                   | -                          | V <sub>SSA</sub>                                 | -                                  | -                  |  |
| H1       | K1                                                  | -               | -                 | -      | 20      | -        | V <sub>REF-</sub>                  | s                   | -                          | V <sub>REF</sub> -                               | -                                  | -                  |  |
| J1       | L1                                                  | -               | G1 <sup>(8)</sup> | -      | 21      | -        | V <sub>REF+</sub>                  | s                   | -                          | V <sub>REF+</sub>                                | -                                  | -                  |  |
| K1       | M1                                                  | 9               | H1                | 13     | 22      | 6        | V <sub>DDA</sub>                   | s                   |                            | V <sub>DDA</sub>                                 | -                                  | -                  |  |









#### 11 Analog-to-digital converter (ADC)

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

**High-density devices** are STM32F101xx and STM32F103xx microcontrollers where the Flash memory density ranges between 256 and 512 Kbytes.

XL-density devices are STM32F101xx and STM32F103xx microcontrollers where the Flash memory density ranges between 768 Kbytes and 1 Mbyte.

Connectivity line devices are STM32F105xx and STM32F107xx microcontrollers.

This section applies to the whole STM32F10xxx family, unless otherwise specified.

#### 11.1 ADC introduction

The 12-bit ADC is a successive approximation analog-to-digital converter. It has up to 18 multiplexed channels allowing it measure signals from sixteen external and two internal sources. A/D conversion of the various channels can be performed in single, continuous, scan or discontinuous mode. The result of the ADC is stored in a left-aligned or right-aligned 16-bit data register.

The analog watchdog feature allows the application to detect if the input voltage goes outside the user-defined high or low thresholds.

The ADC input clock is generated from the PCLK2 clock divided by a prescaler and it must not exceed 14 MHz, refer to *Figure 8* for low-, medium-, high- and XL-density devices, and to *Figure 11* for connectivity line devices.

#### 11.2 ADC main features

- 12-bit resolution
- Interrupt generation at End of Conversion, End of Injected conversion and Analog watchdog event
- Single and continuous conversion modes
- Scan mode for automatic conversion of channel 0 to channel 'n'
- Self-calibration
- Data alignment with in-built data coherency
- Channel by channel programmable sampling time
- External trigger option for both regular and injected conversion
- Discontinuous mode
- Dual mode (on devices with 2 ADCs or more)
- ADC conversion time:
  - STM32F103xx performance line devices: 1 µs at 56 MHz (1.17 µs at 72 MHz)
  - STM32F101xx access line devices: 1 µs at 28 MHz (1.55 µs at 36 MHz)
  - STM32F102xx USB access line devices: 1.2 µs at 48 MHz
  - STM32F105xx and STM32F107xx devices: 1 μs at 56 MHz (1.17 μs at 72 MHz)
- ADC supply requirement: 2.4 V to 3.6 V
- ADC input range: V<sub>REF-</sub> ≤ V<sub>IN</sub> ≤ V<sub>REF+</sub>
- DMA request generation during regular channel conversion

The block diagram of the ADC is shown in Figure 22.

Note:  $V_{REF-}$ , if available (depending on package), must be tied to  $V_{SSA}$ .

Figure 22. Single ADC block diagram



- 1. ADC3 has regular and injected conversion triggers different from those of ADC1 and ADC2.
- TIM8\_CH4 and TIM8\_TRGO with their corresponding remap bits exist only in High-density and XL-density products.



## Eclipse





## Eclipse

