Fracasso é uma possibilidade. Se as coisas não estão fracassando, você não está inovando o suficiente.

Elon Musk

😘 PENSADOI

Laboratório de Arquitetura de de Computadores

Jacinto Carlos Ascencio Cansado

Sequência – Semana-6 Qualidade da Rede Elétrica

Elon Musk is a South African-born American entrepreneur and businessman who founded X.com in 1999 (which later became PayPal), SpaceX in 2002 and Tesla Motors in 2003. **Musk** became a multimillionaire in his late 20s when he sold his start-up company, Zip2, to a division of Compaq Computers. 4 dias atrás

Avisos:

- Data importante: 20/10/2022 Avaliação N1
- Seminário
 - Formulário com Tema e Integrantes
 - Apresentação: 17/11/2022
- Atividades Datas específicas até 30/11/2022
 - In class
 - Formulários

Conteúdo

- Objetivos
- A rede elétrica
- Evitando problemas com a rede elétrica
- · Condicionadores de energia
- Filtros de linha
- Estabilizadores eletrônicos de tensão
- Cálculo de potência de um estabilizador
- Unidades de fornecimento ininterrupto de energia
- Energia elétrica em micros portáteis
- Atividades

Objetivos

Apresentar os meios mais utilizados para uma instalação elétrica adequada, comentando a respeito de sinais elétricos e demonstrar porque a prevenção é tão importante antes que liguemos a tomada do computador à rede elétrica.

Fonte: Conversor de Energia AC/DC

Entrada

Saída

Geração de Energia Elétrica

- 1 Vento faz hélices girarem
- (2) Eixo movimenta gerador para produzir eletricidade
- (3) Um transformador converte a energia em alta voltagem
- (4) Eletricidade transmitida pela rede elétrica

A rede elétrica

- Corrente contínua (Vcc)
- Corrente alternada (Vca)

Novo Padrão Brasileiro de Tomadas de acordo com a norma NBR 14136

Intercambiabilidade (equipamentos classe I e classe II)

Conexão do condutor terra antes dos demais Com o novo padrão e devido as suas características, o condutor terra sempre será conectado antes dos condutores de energia lembrando que o aterramento é obrigatório nas novas instalações desde julho de 2006, conforme a Lei 11.337, alem de ser fundamental para a segurança do usuário.

Segurança - Safety

Qualidade na Energia

- Disponibilidade
 - Tempo de disponibilidade de energia elétrica
- Estabilidade
 - Índice de variação da rede elétrica
- Isolamento
 - Isolar a rede elétrica de T.I. das demais redes elétricas

LH - Laboratório de Hardware - USCS

Qualidade na Energia

- Disponibilidade
 - Nobreak
 - Geradores
 - Bancos de baterias

Qualidade na Energia

- Estabilidade
 - Estabilizadores
 - Centralizado
 - Descentralizado
 - Filtros de linha

Qualidade na Energia

- Isolamento
 - Redes elétricas independentes e balanceadas

Qualidade na Energia

- Rede elétrica
 - Rede independente para a rede informatizada
 - Rede monitorada frequentemente
- Aterramento
 - Proteção contra descargas elétricas
 - Utilização de aterramento eficiente
- Utilização de pára-raios

março/2009 Proteção contraolítia i de Backup

Prevenção e Combate a Incêndio

- Monitoramento de incêndio
 - Sensores de fumaça
 - Câmeras de vídeo
 - Alarmes
 - Sonoros
 - Telefônicos
 - Mensagens
 - Outros

Prevenção e Combate a Incêndio

- Treinamento de pessoal
 - Programas de treinamento de pessoal para situações de emergência
 - Procedimentos
 - Brigada de emergência
- Instalação de extintores
 - Localização
 - Tipos de extintores

Prevenção e Combate a Incêndio

- Sinalização
 - Identificação das saídas de emergência
 - Rotas de saídas
 - Localização de extintores
 - Localização de hidrantes
 - Telefones
- Outros sistemas

Iluminação de Emergência

- Iluminação
 - Lâmpadas
 - Localização
 - Lanternas
 - Localização
 - Manutenção
 - Testes periódicos

Monitoramento e Condicionamento de Ambiente

- Segurança de acesso físico
 - Câmeras de vigilância
 - Sensores de presença
 - Seguranças profissionais
 - Barreiras físicas de acesso
 - Portas
 - Janelas
 - Blindagem

Monitoramento e Condicionamento de Ambiente

- Condicionamento do ambiente
 - Temperatura
 - Umidade relativa do ar
 - Iluminação
 - Poluição ambiental
 - Poluição sonora

Monitoramento e Condicionamento de Ambiente

- Monitoramento do ambiente
 - Regulagem dos equipamentos
 - Manutenção dos equipamentos
 - Sensores de monitoramento

Conclusão

- Segurança dos profissionais
- Segurança dos dados
- Segurança dos equipamentos
- Confiabilidade
- Durabilidade

Tipos de interferência na rede elétrica

- Sobretensão
- Subtensão
- Transiente
- Queda de tensão
- Pico de tensão
- Ruídos Espúrios

Problemas da rede elétrica

Identifique cada um dos números acima e qual equipamento deve ser utilizado para mitigar o problema?

Filtros de linha

Componentes Interno De um Filtro de Linha

Estabilizadores eletrônicos de tensão

 Tenta evitar oscilações e picos de tensão na rede

Diagrama Elétrico de um Estabilizador de Voltagem

Estabilizador de Voltagem

Cálculo de potência de um estabilizador

 A potência dos estabilizadores é informada em VA (Volt*Ampère) e o consumo da CPU e dos periféricos, em Watts. Portanto, faz-se necessário o uso de uma fórmula para conversão entre essas grandezas:

Potência em Watts

Potência em VA = -----

Fator de Potência x Rendimento

Carga Resistiva, corrente (I) em fase com a tensão (V) = φ = 0

Carga Indutiva, corrente (I) atrasada em relação a tensão (V)

Carga Capacitiva, corrente (I) adiantada em relação a tensão (V)

Consumo típico de energia de alguns periféricos

Equipamento	Potência em Watts	Potência em VA
Monitor color SVGA	120	240
CPU (fonte de alimentação)	200	450
Impressora matricial	40	80
Impressora a jato de tinta	30	60
Impressora a laser	700	1.400

Cálculo de potência de um estabilizador

 Podemos então calcular a potência de um estabilizador para um conjunto formado por uma CPU com monitor SVGA color e uma impressora a jato de tinta:

450 + 240 + 60 = 750VA ou 0.75KVA

Unidades de fornecimento ininterrupto de energia

- Short-Breaks
- No-Breaks

Energia elétrica em micros portáteis

- Baterias de Níquel-Cádmio
- Baterias de hidreto de níquel
- Baterias de íon de lítio

Atividades

Evitando problemas com a rede elétrica - Aterramento

Fig. 9 – O recuo dos contatos da tomada em relação à face de contato com o plugue, somado à exigência de rebaixo e superfície protetora (ou, o que dá no mesmo, colarinho, ou misto de rebaixo e colarinho com superfície protetora), elimina o risco de contato acidental com pinos vivos

Problemas Elétricos Potenciais

Existem diversas falhas elétricas que podem comprometer o funcionamento de equipamentos, principalmente os eletrônicos, que são constituídos de circuitos sensíveis a estas falhas. Na tabela a seguir, temos a descrição das principais falhas elétricas e as suas consequências aos computadores.

Eventos	Causas	Efeitos
Quedas curtas de tensão Estas ocorrências são representadas por quedas breves na voltagem. Este é o problema mais comum no fornecimento de energia, sendo responsável por 87% de todos os distúrbios, segundo estudo malizado pela Bell Labs.	Tipicamente causadas pela demanda de energia inicial de muitos dispositivos elétricos (entre eles motores, compressores, elevadores, ferramentas de oficina, etc.).	Causa o travamento co computador, podendo o teclado ficar congelado. Perda e corrupção de arquivos.
Blackout Interrupção do fornecimento de energia.	Demanda acima de niveis admissiveis, descargas atmosféricas, panes em subestações e linhas de transmissão.	Perda de dados contidos em memórias voláteis, falha na FAT do HD.

Sobretensão Aumento da tensão em um determinado tempo, da ordem de milissegundos a poucos minutos.	Restabelecimento do fornecimento de energia ou descarga atmosférica nas linhas de transmissão ou subestações.	Pode ocorrer a queima de circuitos internos do computador e, em alguns casos, a perda total do computador.
Pico de tensão ou transientes Aumento da tensão em curtissimos espaços de tempo, da ordera de um bilionêsimo a um milionêsimo de segundo.	Quando equipamentos de elevado consumo são desligados, geram uma dissipação de energia, a qual seria consumida por esses equipamentos, se estivessem ligados.	Pode ocorrer a queima de circuitos internos do computador, e em alguns casos, a perda total do computador.
Ruido Interferências EMI (Interferência Eletromagnética) e RFI (Interferência por Rádio frequência)	Presença de geradores, motores e transmissores de RF nos circuitos nos quais os computadores se encontram.	Falhas intermitentes no sistema, interferência nas frequências de varredura horizontal e vertical de monitores.

Equipamentos de Proteção Contra Falhas Elétricas

Filtro de Linha

Este dispositivo tem como finalidade filtrar a energia elétrica que será fornecida ao computador. O circuito do filtro de linha deve eliminar a presença de transientes e interferências EMI (Interferência Eletromagnética) e RFI (Interferência de Rádio Frequência). Infelizmente a maioria dos filtros de linha comercializados no Brasil não passam de uma simples extensão de tomadas, em que não há nenhum circuito funcional a fim de suprir a sua real finalidade.

Estabilizador

O objetivo do estabilizador é manter estável o nível de tensão que alimenta o computador. Para manter a tensão de saída do estabilizador em uma faixa especificada, o equipamento tenta compensar as variações da tensão de entrada. Assim, quando a tensão de entrada cai, o estabilizador eleva um pouco a tensão, compensando a queda, e vice-versa. Para possibilitar este mecanismo de compensação, a solução mais comum é usar um transformador com múltiplas saídas.

No-Break

De forma geral, os sistemas ininterruptos de energia têm como principal característica fornecer energia elétrica sem interrupção nas situações de blecaute, mas muitos no-breaks apresentam recursos internos para filtrar, estabilizar e até mesmo isolar o circuito do cliente da rede de distribuição das concessionárias, o que no final acaba resultando em um equipamento mais completo do ponto de vista da proteção elétrica.

No-Break Off-line

Nesse no-break, a alimentação de entrada é fornecida diretamente à saída do equipamento e ao retificador/carregador. Quando há uma falha no fornecimento de energia, um circuito comutador fará o chaveamento do circuito de saída, que deixará de receber a energia diretamente da entrada, passando a receber alimentação proveniente da bateria.

No-Break On-Line

Nesse no-break, a alimentação de entrada alimenta diretamente o retificador/carregador; o mesmo carrega a bateria continuamente e esta fornece energia para o inversor, que irá disponibilizar a alimentação ao circuito de saída. Quando há uma falha no fornecimento de energia, não há chaveamento, porque a carga está sendo alimentada continuamente pela bateria.

Características	Off-line	On-line
Funcionamento dependente de comutação	SIM	NÃO
Isolamento entre a rede e a carga	NÃO	SIM
Vida útil da bateria	MAIOR	MENOR
Qualidade da energia fornecida à carga	MENOR	MAIOR
Confiabilidade	MENOR	MAIOR
Custo	MENOR	MAIOR

Verificação da Resistência de Aterramento

Para instalações computacionais, o ideal é obter uma resistência de aterramento menor ou igual a 3 Ω . Mas, por ser um valor baixo em relação à resistividade da maioria dos solos, muitas vezes é necessária a utilização de técnicas com diversas hastes interligadas e até gel redutor de resistência à base de bentonita sódica, a fim de compensar a alta resistividade do solo.

Tipo de solo	Resistividade (Ω.m)	
Alagadiços	5 a 30	
Lodo	20 a 100	
Húmus	10 a 150	
Argila compacta	100 a 200	
Areia silicosa	200 a 3.000	
Solo pedregoso	1500 a 3.000	
Granito	100 a 10.000	

Tabela de resistividade do solo

Tipo	Dimensões mínimas	Detalhes
Chapa de cobre	0,20 m² de área e 2 mm de espessura.	Profundidade mínima do centro da chapa de 1 m. Posição vertical.
Haste de cobre	Diâmetro de 15 mm com 2,40 m de comprimento	Enterramento total na posição vertical
Tubo de aço zincado	2,40 m de comprimento e diâmetro nominal de 25 mm	Enterramento total na posição vertical.

	FILTROS DE LINHA EMI/RFI	FILTRO SINTONIZADO OU PASSA BAIXA	TRANSFOR- MADOR ISOLADOR
RUÍDOS EMI/RFI	Parcial (1)	sim	não
SPIKES DE CHAVEAMENTO	Parcial (1)	sim	não
HARMÔNICO DE REDE	não	parcial	não
DESBALANCEAMENTO DE REDE	não	não	sim
NÍVEL DC NA REDE	não	não	sim
PERDA DE NEUTRO	não	não	não
SUB/SOBRETENSÃO DE REDE	não	não	não
SAG, SWELL FLICKER	não	não	não
SURTOS DE TENSÃO	Parcial (5)	Parcial (5)	não
BROWN-OUT BLACK-OUT	não	não	não
VARIAÇÕES DE FREQÜÊNCIA	não	não	não

	ESTABILIZADOR DE TENSÃO	REGENERADOR DE REDE	NOBREAK DEDICADO
RUÍDOS EMI/RFI	Parcial (2)	sim	sim
SPIKES DE CHAVEAMENTO	Parcial (2)	sim	sim
HARMÔNICO DE REDE	não	sim	sim
DESBALANCEAMENTO DE REDE	não	parcial (3)	sim
NÍVEL DC NA REDE	não	sim	sim
PERDA DE NEUTRO	Parcial (4)	sim	sim
SUB/SOBRETENSÃO DE REDE	Parcial (4)	sim	sim
SAG, SWELL FLICKER	Parcial (4)	sim	sim
SURTOS DE TENSÃO	Parcial (5)	sim	sim
BROWN-OUT BLACK-OUT	não	não	sim
VARIAÇÕES DE FREQÜÊNCIA	não	sim	sim

