DILLAN MARROQUIN MATH 331.1001 SCRIBING WEEK 8 Due. 18 October 2021

Lecture 19

Theorem (19.1). Let $H \subseteq G$ be a normal subgroup.

- 1. The set of left cosets G/H is a group with binary operation xH * yH = xyH and identity element $e_{G/H} := e_G H = H$.
- 2. The group structure from 1. makes $\pi: G \to G/H$, $\pi(g) := gH$ a surjective group homomorphism.

Proof.

- 1. The main point is to check that the binary operation is well-defined (since all group axioms will follow immediately from those on *G*). Suppose x'H = xH and y'H = yH. WTS x'y'H = xyH. The first two equalities imply $\exists h, \tilde{h} \in H$ such that x' = xh and y' = yh. WTS $\exists h'$ such that x'y' = xyh. Consider $x'y' = xhy\tilde{h} = xehy\tilde{h} = xyy^{-1}hy\tilde{h}$. Since $H \subseteq G$, $ghg^{-1} \in H$, where $g := y^{-1}$. Therefore $\exists h' \in H$ such that $y^{-1}hy = h'$ which implies that the RHS= $xyh'\tilde{h} \in xyH$. Thus $x'y' \in xyH$.
- 2. This is straightforward: $\pi(xy) = xyH = xH * yH = \pi(x) * \pi(y)$. This is surjective vacuously.

Basic Examples of Quotient Groups

Remark. Groups of the form *G/H* are called **Quotient/Factor Groups**.

Example. Let $G = S_3$, $H = \langle \sigma \rangle$. Note $G/H = \{H, \tau H\}$ is a group of order [G : H] = 2. So $G/H \cong \mathbb{Z}/2$ by theorem 15.2.

Proposition (19.2). Let $\varphi: G \to G'$ be a group homomorphism. Then $\ker \varphi$ is a normal subgroup of G.

Remark. Proposition 19.2 implies that if $H \le G$ is a subgroup and there exists a function $\varphi : G \to G'$ such that $H = \ker \varphi$, then $H \le G$.

Proposition (19.3). Let $H \subseteq G$ be a normal subgroup. Then the kernel of $\pi : G \to G/H$ is H.

Lecture 20

<u>Notation:</u> Let *G* be abelian, $H \le G$ a subgroup. If we write *G* additively, then we write cosets of *H* as a + H = aH. We write the group operation in G/H as x + H + y + H := (x + y) + H. i.e. \mathbb{Z}/n : $k + n\mathbb{Z}$ and for \mathbb{Q}/\mathbb{Z} : $\frac{a}{b} + \mathbb{Z}$.

Example of Analyzing G/H via Proposition 19.2/19.3

- Consider $\det: GL_2(\mathbb{R}) \to \mathbb{R}^{\times}$. $\ker(\det) = \{A \in GL_2 | \det A = 1\} := SL_2(\mathbb{R})$. Proposition 19.2 implies $\ker(\det) \unlhd GL_2$. Note: SL_2 is not abelian.
- We will be analyzing $GL_2/SL_2 := \{ASL_2 | A \in SL_2\}$.
- We will also analyze left cosets:

Lemma (20.1). Let $H \le G$ be a subgroup. Then xH = yH iff $x^{-1}y \in H$.

Proof. This will be #1 on PS 5. He tricked us!

Observations:

- 1. By the above Lemma, $ASL_2 = BSL_2$ iff $A^{-1}B \in SL_2$ iff $\det(A^{-1}B) = 1$ iff $\det A^{-1} \det B = 1$ iff $\det A = \det B$.
- 2. $\forall A \in GL_2$, $ASL_2 = \begin{bmatrix} \det A & 0 \\ 0 & 1 \end{bmatrix} SL_2$ which implies that as a set, $GL_2/SL_2 := \left\{ \begin{bmatrix} r & 0 \\ 0 & 1 \end{bmatrix} SL_2 | r \in \mathbb{R} \setminus \{0\} \right\}$.
- 3. Note: $\begin{bmatrix} r & 0 \\ 0 & 1 \end{bmatrix} SL_2 = \begin{bmatrix} r' & 0 \\ 0 & 1 \end{bmatrix} SL_2$ iff r = r'.

But what about the group operation? By definition,

 $\begin{bmatrix} r & 0 \\ 0 & 1 \end{bmatrix} SL_2 * \begin{bmatrix} s & 0 \\ 0 & 1 \end{bmatrix} SL_2 = \begin{bmatrix} rs & 0 \\ 0 & 1 \end{bmatrix} SL_2 = \begin{bmatrix} sr & 0 \\ 0 & 1 \end{bmatrix} SL_2 = \begin{bmatrix} s & 0 \\ 0 & 1 \end{bmatrix} SL_2 * \begin{bmatrix} r & 0 \\ 0 & 1 \end{bmatrix} SL_2.$ Therefore, GL_2/SL_2 is abelian! This is AMAZINGLY important because G and H are non-abelian, thus G, H being non-abelian does NOT imply

that G/H is non-abelian.

Observation 1 implies that we have a well-defined function $\overline{\det}: GL_2/SL_2 \to \mathbb{R}\setminus\{0\}, \overline{\det}\left(\left[\begin{smallmatrix} r & 0 \\ 0 & 1 \end{smallmatrix}\right]SL_2\right) := r = \det\left(\left[\begin{smallmatrix} r & 0 \\ 0 & 1 \end{smallmatrix}\right]\right).$

 $\overline{\det}$ is a group homomorphism. Also, it is surjective since $\det: GL_2 \to \mathbb{R}^{\times}$ is surjective. It is also injective by Observation 3. Therefore, $\overline{\det}$ is a group isomorphism and thus $GL_2/SL_2 \cong \mathbb{R}^{\times}$.

1st Isomorphism for Groups

Theorem (20.2). Let $\varphi: G \to G'$ be a group homomorphism. Then the function $\overline{\varphi}: G/\ker \varphi \to \operatorname{im} \varphi, \overline{\varphi}(x \ker \varphi) :=$ $\varphi(x)$ is a group isomorphism.

Proof. (See Paulin).

Example. Let $\varphi: \mathbb{Z} \to S_3$, $\varphi(k) := \sigma^k$ be a group homomorphism such that $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$. Hence, $\operatorname{im} \varphi = \langle \sigma \rangle = 1$ $\{e,\sigma,\sigma^2\}$. Then $\ker \varphi = \{k \in \mathbb{Z} | \sigma^k = e\}$. Lemma 14.3 says if $\sigma^k = e$, then $|\sigma| | k$ which implies $k \in 3\mathbb{Z}$. By Theorem 20.2, $\mathbb{Z}/3 \cong \langle \sigma \rangle$ on $\overline{\varphi}$.

Q: 2 subgroups from $\varphi: G \to H$: $\ker \varphi \leq G$ and $\operatorname{im} \varphi \leq H$. We've already seen that $\ker \varphi$ is always normal, but $\overline{\text{wh}}$ at about im φ in H??