

Graphics Overview

Multimedia Techniques & Applications Yu-Ting Wu

Outline

- Overview
- Graphical modeling approaches

Outline

- Overview
- Graphical modeling approaches

Graphics

- The software and hardware technologies used in a computer system to create, modify and display still images in a digital form
- Important because
 - Images are usually more expressive than pure texts
 - Images are the fundamentals of video, animation, and fonts

Digital Images

Digital images can come from several ways

digitalization

captured in digital form

created by artists

3D graphics

visualization

generated by programs

Image Display

- Monitor display pictures as a rectangular array of pixels (small, usually square, dots of color)
 - Merge optically when viewed at a suitable distance to produce the impression of continuous tones

Image Display (cont.)

- Monitor display pictures as a rectangular array of pixels (small, usually square, dots of color)
 - Merge optically when viewed at a suitable distance to produce the impression of continuous tones

Image Coordinate

- The coordinate of a 2D image depends on libraries and applications
- The following layout is the most common one
 - Painter
 - OpenCV library

Outline

- Overview
- Graphical modeling approaches

Two Approaches for Graphical Modeling

bitmapped graphics

vector graphics

Image resolution

Bitmapped Graphics

- An image is modeled by an array of pixel values
- Distinction between
 - Logical pixels
 - Stored value in an image file
 - Physical pixels

Physical dots on a display screen

- Operations for displaying
 - Scaling
 - Clipping

physical pixels

Bitmapped Graphics Examples

Vector Graphics

 An image is modeled by the mathematical description of a collection of individual objects making up the image

- Lines
 - End points
- Curves
 - Control points
- Shapes
 - Shape-dependent parameters

object-oriented graphics!

Vector Graphics (cont.)

128 128 128 setrgbcolor
0 0 128 128 rectfill
0 0 0 setrgbcolor
32 32 64 64 rectfill

Vector Graphics (cont.)

- Displaying a vector image requires some computation to be performed in order to interpret the model and generate an array of pixels to be displayed
- Example: line

Given $p1(x_1, y_1)$ and $p2(x_2, y_2)$ located on a line y = mx+b

→ Compute *m*

Assume 0 < m <= 1, we can draw the line by filling

$$y_{k+1} = y_k + m$$

 $x_{k+1} = x_k + 1$

Vector Graphics Examples

Bitmapped v.s. Vector Graphics

- Bitmapped images provide better control of pixel values, thus being more suitable for natural images
- Vector graphics are resolution independent, thus being more suitable for texts and icons

Which model should you use?

Depends on the type (target) of the image

Spoilers

 For the next few weeks, we will introduce more details about the bitmapped and vector graphics!

