	Amoust 2024	
International University - VNUHCM	August 2024 Midtown	Student Name:
Department of Physics	riverso	Student ID:
her		
QUESTIONS $h=1 \rightarrow d_1$ $h=2 \rightarrow d_1$ $h=3 \rightarrow d_1$	=0.65m; dz	=1.15m
h=2 > d1	=0.4m; d2:	= 1.4m
Question 1 (20 marks) Two identical loudspeakers driven in phase at 686 Hz by a common audio oscillator are		
£		
turned to face each other at a distance of 180 cm. Use 343 m/s for the speed of sound.		
a) Compute the wavelength of the sound. $\lambda = \frac{V}{\xi} = \frac{343}{686} = 0.5 \text{ m}$.		
b) Locate the points between the speakers along a line joining them for which the sound intensity is maximum.		
Question 2 (20 marks) A string fixed at both ends is 3.00 m long. There is a standing wave in its second harmonic		
at a frequency of 60.0 Hz. What are the wavelength and the speed of waves on the string? $\frac{\lambda}{2} = \frac{6m}{3m}$		
Question 3 (20 marks) A listener is moving 80 m/s away from a stationary source that is at rest.		
Find the frequency heard by the listener. Assume that the source emits sound at a frequency of 200 Hz and the		
sound travels through still air at 343 m/s.	153.4Hz f	= 1 + (- NMZ) t
Question 4 (20 marks) Light of wavelength 633 nm from a helium-neon laser is shone normally on a plane Λ .		
containing two slits in Young's experiment. The first interference maximum is 82 cm from the central maximum		
on a screen 12 m away.		
a) Find the separation of the slits. $d = \frac{L}{i} \lambda = 9.263 \times 10^{-6} \text{ m}$.		
b) How many interference maxima is it, in principle, possible to observe? 29		
Question 5 (20 marks) Light of wavelength 500 nm is incident normally on a diffraction grating. The third-order		
maximum of the diffraction pattern is obse		(32) = 3 × 500 mil 9
a) What is the number of rulings per centimeter for the grating? $d = 2.83006 \times 10^{-4} \text{ m}$		
b) Determine the total number of primary maxima that can be observed in this situation.		
11		

- END OF QUESTIONS -