Příklad 1:

Házím 3 kostkami (červená, modrá, zelená). Předpokládám, že kostky jsou správné, hody isou na sobě nezávislé.

a) Co budou v tomto pokusu elementární jevy a kolik jich bude?

Řešení:

Elementární jevy jsou uspořádané trojice $(1,1,1),(1,1,2),\ldots$ (6,6,6). Je jich $6^3=216$.

- b) Uvažujme následující náhodné jevy:
 - A: Na červené kostce padlo č. 4.
 - B: Součet je liché číslo.
 - C: Součet je sudé číslo.
 - D: Ani jedno s čísel není liché.
 - E: Všechna čísla jsou stejná.
 - F: Právě jedno číslo je liché.
 - G: Rozdíl hodů na červené a modré kostce je 1.

Najděte nějaké podjevy. Najděte dvojici jevů opačných. Najděte jevy neslučitelné (ale ne opačné). Vymyslete nějaký jev jistý a jev nemožný.

Řešení:

Dvojice podjevů: $D \subseteq C$, $F \subseteq B$.

Jevy opačné: B a C.

Dvojice dalších jevů neslučitelných: B a D, C a F, D a F, D a G, E a F, E a G.

Příklad 2:

Spočítejme pravděpodobnosti jevů z příkladu 1.

Řešení:

$$P(A) = \frac{m_A}{m},$$

 $m = \text{počet el. jevů}, m_A = \text{počet el. jevů tvořících } A.$

$$P(A) = \frac{1}{6}$$

$$P(B) = {}^{0}P(C) = \frac{1}{2}$$

D: trojice ze 3 sudých (mohou se opakovat) - $3^3 = 27$

$$P(D) = \frac{27}{216} = \frac{1}{8}$$

$$P(E) = \frac{6}{216} = \frac{1}{36}$$

 $F\colon 27$ samá sudá, 27 samá lich
á $\to 216\text{-}54\text{=}162$ smíšená, z toho polovina budou 1 liché
+2 sudá \to těchto trojic bude 81

$$P(F) = \frac{81}{216} = \frac{3}{8}$$

G: červená a modrá: 1-2,2-1,2-3,3-2,3-4,4-3,4-5,5-4,5-6,6-5, tj 10 možností, k tomu cokoliv na zelené, takže 60 možností:

$$P(G) = \frac{60}{216} = \frac{10}{36} = \frac{5}{18}$$

Příklad 3:

Vsadili jste se, že na všech třech kostkách padnou stejná čísla nebo budou na všech třech kostkách sudá čísla. Jaká je pravděpodobnost takového jevu?

Řešení:

$$P(D \cup E) = P(D) + P(E) - P(D \cap E) = \frac{1}{8} + \frac{1}{36} - \frac{3}{216} = \frac{9+2-1}{72} = \frac{10}{72} = \frac{5}{36}$$

Příklad 4:

Tentokrát jste se vsadili, že na všech třech kostkách padnou stejná čísla a nebo bude právě jedno z čísel liché. Jaká je pravděpodobnost takového jevu?

Řešení:

Jevy E a F neslučitelné:

$$P(E \cup F) = P(E) + P(F) = \frac{1}{36} + \frac{3}{8} = \frac{2+27}{72} = \frac{29}{72}$$

Příklad 5:

Házejme tentokrát 3 kostkami (červenou, modrou a zelenou). Je vyšší pravděpodobnost, že součet je 11 nebo že součet je 12?

Řešení:

$$m = 6^3 = 216$$

Jev A: součet je 11

Zkusme zjistit, jaké kombinace hodů (teď bez ohledu na pořadí) dají součet 11:

$$(1,4,6), (1,5,5), (2,3,6), (2,4,5), (3,3,5), (3,4,4)$$

Kolika způsoby mohou tyto kombinace padnout? Pokud jsou čísla různá, tak 6 způsoby, pokud jsou 2 stejná, pouze 3 způsoby.

$$P(A) = \frac{6+3+6+6+3+3}{216} = \frac{27}{216} = \frac{1}{8} = 0.125$$

Jev B: součet je 12

Zkusme zjistit, jaké kombinace hodů (teď bez ohledu na pořadí) dají součet 12: (1,5,6), (2,4,6), (2,5,5), (3,3,6), (3,4,5), (4,4,4)

$$P(B) = \frac{6+6+3+3+6+1}{216} = \frac{25}{216} \doteq 0.116$$

Příklad 6:

Kolika způsoby mohu posadit k 19 počítačům 19 studentů?

Řešení:

$$19! = 1 \cdot 2 \cdot 3 \dots \cdot 18 \cdot 19 = 1.22 \cdot 10^{17}$$

Příklad 7:

Kolika způsoby mohu z 19 studentů vybrat dvojici?

Řešení:

$$\binom{19}{2} = \frac{19!}{2! \cdot 17!} = \frac{19 \cdot 18}{2} = 171$$

Příklad 8:

Kolika způsoby mohu sestavit písemku, pokud má obsahovat 3 příklady a vybírám je náhodně ze seznamu 27 příkladů?

Řešení:

$$\binom{27}{3} = \frac{27!}{3! \cdot 24!} = \frac{27 \cdot 26 \cdot 25}{6} = 2925$$

Příklad 9:

Ve výběru 27 příkladů je 8 těžkých a 19 lehkých příkladů. Jaká je pravděpodobnost, že když sestavím písemku ze 3 příkladů, bude v ní právě jeden těžký příklad?

Řešení:

$$\binom{8}{1} \cdot \binom{19}{2} = 8 \cdot \frac{19 \cdot 18}{2} = 8 \cdot 171 = 1368$$

$$P(A) = \frac{1368}{2925} = \frac{152}{325} = 0.468$$

Příklad 10:

Jaká je pravděpodobnost, že mezi námi budou aspoň dva lidé s narozeninami ve stejný den?

Řešení:

Předpoklady: neexistují přestupné dny, všechny dny jsou stejně pravděpodobné. Budeme řešit obecně: pro r lidí.

Kolik je možností narozenin pro r lidí: $m = 365^r$.

Jev A: aspoň dva mají narozeniny ve stejný den - těžko se to bude počítat - mohou nastat různé věci. Jednodušší je jev opačný:

 \bar{A} : Každý má narozeniny jindy.

Kolik možností tvoří jev \bar{A} ?:

$$m_{\bar{A}} = 365 \cdot 364 \cdot 363 \cdot \dots \cdot (365 - r + 1) = \frac{365!}{(365 - r)!}$$

$$P(\bar{A}) = \frac{m_{\bar{A}}}{m} = \frac{365 \cdot 364 \cdot ... \cdot (365 - r + 1)}{365^r} = \frac{365}{365} \cdot \frac{364}{365} \cdot \frac{363}{365} \cdot ... \cdot \frac{365 - r + 1}{365}$$

počet lidí	$P(\bar{A})$	$P(A) = 1 - P(\bar{A})$
5	0.9729	0.0271
10	0.8831	0.1169
12	0.8330	0.1670
13	0.8056	0.1944
14	0.7769	0.2231
15	0.7471	0.2529
16	0.7164	0.2836
17	0.6850	0.3150
18	0.6531	0.3469
19	0.6209	0.3791
20	0.5886	0.4114
30	0.2938	0.7062
40	0.1088	0.8912
50	0.0296	0.9704