1 図の電流計は最大定格 $1\,\mathrm{mA}$ 、内部抵抗 $100\,\Omega$ である。この計器を使って多重範囲の電流計・電圧計を設計する。抵抗値 $R_1\sim R_4$ を求めなさい。

図 1

 $[+, A_1]$ における倍率は $\frac{100}{1} = 100$ であるため、

$$n_{1A} = 1 + \frac{100 + R_2}{R_1}$$

$$100R_1 = R_1 + 100 + R_2$$

$$99R_1 - R_2 = 100$$
(1)

 $[+, A_2]$ における倍率は $\frac{10}{1} = 10$ であるため、

$$n_{2A} = 1 + \frac{100}{R_1 + R_2}$$

$$10R_1 + 10R_2 = R_1 + R_2 + 100 + R_2$$

$$9R_1 + 8R_2 = 100$$
(2)

式 (1) \sim (2) より、 $R_1=1.12\,\Omega,\ R_2=11.2\,\Omega$ となる。また、

$$R_A = \frac{R \cdot (R_1 + R_2)}{R + R_1 + R_2}$$

$$= \frac{100(1.12 + 11.2)}{100 + 1.12 + 11.2}$$

$$= 10.97$$
(3)

となるから、 $[+,\ V_1]$ における倍率は $\frac{1}{0.001*100}=10$ であるため、

$$n_{1V} = 1 + \frac{R_3}{R_A}$$

$$10 \cdot 10.97 = 10.97 + R_3$$

$$R_3 = 10.97 \times 9$$

$$= 98.73 \Omega$$
(4)

 $[+,\ V_2]$ における倍率は $rac{10}{0.001*100}=100$ であるため、

$$100 = 1 + \frac{R_3 + R_4}{R_A}$$

$$100 \times 10.97 = 10.97 + 98.79 + R_4$$

$$R_4 = 987.24$$
(5)