Electronics Lab Course Experiment #0: Introduction and Preparational Experiment

Christopher Jörn

April 12, 2015

Contents

1	Aims of the experiment	2
2	Preperational exercises	3
	2.1 0.2.1.A	3
	2.2 0.2.1.B	3
	2.3 0.2.2.C	3
	2.3.1 0.2.2.C.1	3
	2.3.2 0.2.2.C.2	4
	2.4 0.3.3.E	4
3	Procedure	5
	3.1 0.4.1.a	5
	3.2 0.4.1.b	5
4	Measurement	6
5	Evaluation	7
6	Conclusion	8

1 Aims of the experiment

The aim of this experiment is to understand the tools used in the electronics lab course, which shall be archieved by determination of the ramp-up time of the oszilloscope.

2 Preperational exercises

2.1 0.2.1.A

$$U(t) = U_0 \cdot \sin(\omega t)$$

$$U_{PP} = 2 \cdot U_0$$

$$U_P = U_0$$

$$U_{RMS} = \frac{U_0}{\sqrt{2}}$$

2.2 0.2.1.B

For a symmetrical rectangular voltage¹

$$U_{RMS} = \frac{U_0}{\sqrt{2}}$$
$$= 7.07 \,\mathrm{V}$$

2.3 0.2.2.C

2.3.1 0.2.2.C.1

To proof:
$$R_i = \frac{U_2 - U_1}{I_1 - I_2}$$

$$U_n = U_0 \frac{R_n}{R_n + R_i}$$

$$I_n = \frac{U_n}{R_n}$$

$$\Leftrightarrow I_n = U_0 \frac{1}{R_n + R_i}$$

$$U_2 - U_1 = U_0 \left(\frac{R_2}{R_2 + R_i} - \frac{R_1}{R_1 + R_i}\right)$$

$$I_1 - I_2 = U_0 \left(\frac{1}{R_1 + R_i} - \frac{1}{R_2 - R_i}\right)$$

$$\Rightarrow \frac{U_2 - U_1}{I_1 - I_2} = \frac{\left(\frac{R_2}{R_2 + R_i} - \frac{R_1}{R_1 + R_i}\right)}{\left(\frac{1}{R_1 + R_i} - \frac{1}{R_2 + R_i}\right)}$$

$$= \frac{R_2 (R_1 + R_i) - R_1 (R_2 + R_i)}{R_2 + R_i - R_1 - R_i}$$

$$= \frac{R_i (R_2 - R_1)}{R_2 - R_1}$$

$$= R_i$$

¹In this case with $U_P = 10 \,\mathrm{V}$

2.3.2 0.2.2.C.2

$$U_0 = 10 \text{ V}$$

$$U_n(50 \Omega) = 5 \text{ V}$$

$$U_n = U_0 \frac{R_n}{R_n + R_i}$$

$$\Rightarrow R_i = 50 \Omega$$

2.4 0.3.3.E

To proof:
$$B\Delta t = 0.35$$

$$B = \frac{1}{2\pi\tau}$$

$$\Delta t = t(0.9U_0) - t(0.1U_0)$$
Decharging-function of a capacitor: $U(t) = U_0 \exp\left(-\frac{t}{\tau}\right)$

$$\frac{0.1}{0.9} = \exp\left(-\frac{\Delta t}{\tau}\right)$$

$$\Leftrightarrow \Delta t = -\ln\left(\frac{1}{9}\right)\tau$$

$$= 2.197\tau$$

$$\Rightarrow B\Delta t = \frac{2.197}{2\pi}$$

$$\approx 0.35$$

3 Procedure

3.1 0.4.1.a

Different signals at different frequencies and amplitudes shall be observed at the oscilloscope.

3.2 0.4.1.b

 Δt of a rectangular voltage shall be determined by measuring the delay from $0.1U_0$ to $0.9U_0$ with the oscilloscope. 2

 $^{^2\}mathrm{We}$ must also pay attention to the bandwidth of the oscilloscope which is - so says the manual - $60\,\mathrm{MHz}$

4 Measurement

Evaluation

6 Conclusion