Formula Practice

November 19, 2024

1 Inline math

My favorite math symbol is the nabla ∇ since its used in gradient descent $\theta_{t+1} = \theta_t - \eta \nabla \mathcal{L}$ which can helps us find the minimum of a function $\underset{\theta}{argmin} \mathbb{E}\left[\mathcal{L}(\hat{y}, y)\right]$. It is also used for the hessian of a function which is the transpose of the Jacobian of the gradient $\nabla^2 \mathcal{L} = \mathbf{J}(\nabla \mathcal{L})^{\top}$.

What is \mathcal{L} ? It is a loss function indicating, for example, how far off some model \mathcal{M} is from predicting correct outputs given some reference dataset \mathcal{D} . $\mathcal{D} = \{(x_i, y_i)\}_i^N$ consists of the inputs \mathbf{x} and outputs \mathbf{y} . The \mathcal{L} function might then be the squared error $\mathcal{L}(\hat{y}, y) = (\hat{y} - y)^2$ if $y \in \mathbb{R}$ where $\hat{y} = \mathcal{M}(x)$ the models prediction.

2 Practice with math blocks

My favorite distribution to draw samples from is the Gaussian or Normal distribution (eq. 1) parameterized by the mean μ and variance σ . The univariate case is:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \tag{1}$$

$$=\frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{(x-\mu)^2}{2\sigma^2})\tag{2}$$