Численное интегрирование

Рассмотрим некоторую непрерывную функцию f(x) на отрезке [a,b], разбитом на N+1 точку $x_k=a+kh, h=\frac{b-a}{N}, k=\overline{0..N}$. Интерполируем функцию при помощи полинома Лагранжа:

$$L(x) = \sum_{k=0}^{N} f(x_k) l_k(x)$$

$$l_k(x) = \prod_{j=0, j \neq k}^{N} \frac{x - x_j}{x_k - x_j}$$

Тогда интеграл принимает следующий вид:

$$\int f(x)dx \approx \int L(x)dx = \sum_{k=0}^{N} f(x_k) \int l_k(x)dx$$

Обратите внимание, что внутренний интеграл не зависит от f, а только от взятого разбиения. Обозначим $A_k = \int l_k(x) dx$, тогда

$$\int f(x)dx \approx \sum_{k=0}^{N} A_k f(x_k)$$

Сумма в правой части называется *квадратурой*. В нашем случае коэффициенты квадратуры можно вычислить следующим образом. Учтём, что $x_k = a + kh$ и сделаем замену переменных: x = a + th. Получим:

$$l_k(x) = \prod_{j=0, j \neq k}^{N} \frac{(a+th) - (a+jh)}{(a+kh) - (a+jh)} = \prod_{j=0, j \neq k}^{N} \frac{(t-j)h}{(k-j)h} = \prod_{j=0, j \neq k}^{N} \frac{(t-j)}{(k-j)}$$
$$A_k = h \prod_{j=0, j \neq k}^{N} \frac{1}{(k-j)} \cdot \int \prod_{j=0, j \neq k}^{N} (t-j) dt$$

Под знаком интеграла обычный полином.

Беря разные N и вычисляя коэффициенты, получим семейство *квадратурных* формул Ньютона-Котеса (или просто формулами Котеса, в честь Роджера Котса).

Другие квадратурные формулы можно получить, используя другие методы интерполирования.

Благодаря аддиктивности интегралов, мы можем распространить данные формулы на любое количество точек, деля интервал интегрирования на подынтервалы.

1. Метод левых прямоугольников

$$\int_{a}^{b} f(x)dx = h(f(x_0) + f(x_1) + f(x_2) + \dots + f(x_{N-1})) + E(f)$$

погрешность:

$$|E(f)| \le \frac{(b-a)h}{2} \max |f'(x)|$$

2. Метод трапеций

$$\int_{a}^{b} f(x)dx = h\left(\frac{f(x_0)}{2} + f(x_1) + f(x_2) + \dots + f(x_{N-1}) + \frac{f(x_N)}{2}\right) + E(f)$$

погрешность:

$$|E(f)| \le \frac{(b-a)h^2}{12} \max |f''(x)|$$

3. Метод Симпсона

$$\int_{a}^{b} f(x)dx = \frac{h}{3} (f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \dots + 4f(x_{N-1}) + f(x_N)) + E(f)$$

погрешность:

$$|E(f)| \le \frac{(b-a)h^4}{2880} \max |f^{IV}(x)|$$