

PART (C): MATHEMATICS

SECTION – I : SINGLE CORRECT ANSWER TYPE (Maximum Marks : 45)

This section contains 15 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONLY ONE is correct.

Marking Scheme: +3 for correct answer, 0 if not attempted and -1 in all other cases.

- 41. If equations $ax^2 + bx + c = 0$, $(a, b, c \in R, a \ne 0)$ and $2x^2 + 3x + 4 = 0$ have a common root then a : b : c equals
 - (A) 1:2:3
 - (B) 2:3:4
 - (C) 4:3:2
 - (D) 3:2:1
- 42. If $\log(abc) = 0$, then the value of $\frac{\log^2(ab).\log c + \log^2(bc)\log a + \log^2(ca)\log b}{\log(a)^{\log(b)^{\log(c)}}}$ (where a, b, c are

not unity) is equal to -

- (A) 1
- (B) 2
- (C) 3
- (D) 6
- 43. If $0 \le x < 2\pi$, then the number of real values of x, which satisfy the equation $\cos x + \cos 2x + \cos 3x + \cos 4x = 0$, is
 - (A) 9
 - (B) 3
 - (C) 5
 - (D) 7
- 44. If α and β are roots of the equation, $x^2 4\sqrt{2}kx + 2e^{4\ln k} 1 = 0$ for some k, and $\alpha^2 + \beta^2 = 66$, then $\alpha^3 + \beta^3$ is equal to
 - (A) $248\sqrt{2}$
 - (B) $280\sqrt{2}$
 - (C) $-32\sqrt{2}$
 - (D) $-280\sqrt{2}$

- 45. If $a+b+c>\frac{9c}{4}$ and equation $ax^2+2bx-5c=0$ has non-real complex roots, then
 - (A) a > 0, c > 0
 - (B) a > 0, c < 0
 - (C) a < 0, c < 0
 - (D) a < 0, c > 0
- 46. If $f(\theta) = \sin^2 \theta + \sin^2 \left(\theta + \frac{2\pi}{3}\right) + \sin^2 \left(\theta + \frac{4\pi}{3}\right)$, then $f\left(\frac{\pi}{15}\right)$ is equal to
 - (A) $\frac{2}{3}$
 - (B) $\frac{3}{2}$
 - (C) $\frac{1}{3}$
 - (D) $\frac{1}{2}$
- 47. If $2\sec^2\alpha \sec^4\alpha 2\csc^2\alpha + \csc^4\alpha = \frac{15}{4}$, then $\tan\alpha$ is equal to [Given: $\alpha \in (0, \pi/2)$]
 - $(A) \ \frac{1}{\sqrt{2}}$
 - (B) $\frac{1}{2}$
 - (C) $\frac{1}{2\sqrt{2}}$
 - (D) $\frac{1}{4}$
- 48. If $|x-3|-|x+2| \ge 5$, then x
 - (A) $(-\infty-2]$
 - (B) $[2, \infty)$
 - (C) $(-\infty, -5]$
 - (D) $(-\infty, -5)$
- 49. If $\frac{3\pi}{4} < \alpha < \pi$, then $\sqrt{2\cot\alpha + \frac{1}{\sin^2\alpha}}$ is equal to
 - (A) $1 + \cot \alpha$
 - (B) $-1-\cot\alpha$
 - (C) $1-\cot\alpha$
 - (D) $-1 + \cot \alpha$

- 50. The value of $\cos\left(\frac{\pi}{2^2}\right) \cdot \cos\left(\frac{\pi}{2^3}\right) \dots \cos\left(\frac{\pi}{2^{10}}\right) \cdot \sin\left(\frac{\pi}{2^{10}}\right)$ is
 - (A) $\frac{1}{512}$
 - (B) $\frac{1}{1024}$
 - (C) $\frac{1}{256}$
 - (C) $\frac{1}{2}$
- 51. If number of solutions of the equations $8\cos x \left[\cos\left(\frac{\pi}{6} + x\right) \cdot \cos\left(\frac{\pi}{6} x\right) \frac{1}{2}\right] = 1$ in $[0, \pi]$ is k, then
 - *k* is equal to
 - (A) 3
 - (B) 2
 - (C) 4
 - (D) 1
- 52. The sum of the solutions of the equation $\left| \sqrt{x} 2 \right| + \sqrt{x} \left(\sqrt{x} 4 \right) + 2 = 0$, (x > 0) is equal to
 - (A) 7
 - (B) 8
 - (C) 10
 - (D) 12
- 53. If $x^2 + 5 = 2x 4\cos(a + bx)$, where $a, b \in (0, 5)$ is satisfied for at least one real x, then the maximum value of a + b is equal to
 - (A) 3π
 - (B) 2π
 - (C) π
 - (D) None of these
- 54. If $A = \tan 6^{\circ} \cdot \tan 42^{\circ}$ and $B = \cot 66^{\circ} \cdot \cot 78^{\circ}$, then
 - (A) A = 2B
 - (B) $A = \frac{1}{3}$
 - (C) A = B
 - (D) 3A = 2B

- 55. If $\max(\sin x, \cos x) = 1$ has exactly 5 solutions in interval $\left[0, \frac{k\pi}{2}\right]$, then value of k is equal to
 - (A) 6
 - (B) 7
 - (C) 8
 - (D) 9

SECTION – II : MULTIPLE CORRECT ANSWER TYPE (Maximum Marks : 15)

This section contains 5 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which ONE OR MORE than ONE option can be correct.

Marking Scheme: +3 for correct answer, 0 if not attempted and 0 in all other cases.

- 56. What can be said about the range of the rational expression $\frac{3x}{1+x^2}$?
 - (A) The maximum value of this expression is 2
 - (B) The minimum value of this expression is $-\frac{3}{2}$
 - (C) The largest integer that lies in the range of this rational function is 1.
 - (D) None of these
- 57. Which of the following is/are greater than $4^{\sqrt{\log_{16} 2}}$?
 - (A) $2^{\sqrt{\log_{16} 2}}$
 - (B) $16^{\sqrt{\log_{16} 2}}$
 - (C) $16^{\sqrt{\log_2 4}}$
 - (D) $2^{\sqrt{\log_4 16}}$
- 58. If $\alpha + \beta = \frac{\pi}{3}$ and $\cos \alpha + \cos \beta = 1$, then
 - (A) $\cos(\alpha \beta) = \frac{1}{3}$
 - (B) $\left|\cos\alpha \cos\beta\right| = \sqrt{\frac{2}{3}}$
 - (C) $\cos(\alpha \beta) = -\frac{1}{3}$
 - (D) $\left|\cos\alpha \cos\beta\right| = \frac{1}{2\sqrt{3}}$

- 59. If the range of a quadratic polynomial P(x) with leading coefficient one is $\left[\frac{13+36k-9k^2}{4},\infty\right] \forall x \in \mathbb{R} \text{, then interval of } k \text{ for which } P(x)=0 \text{ has } -$
 - (A) real & unequal roots is $\left[-\frac{1}{3}, \frac{13}{3} \right]$
 - (B) imaginary roots is $\left(-\frac{1}{3}, \frac{13}{3}\right)$
 - (C) real & unequal roots is $\left(-\infty, -\frac{1}{3}\right) \cup \left(\frac{13}{3}, \infty\right)$
 - (D) equal roots is $\left\{-\frac{1}{3}, \frac{13}{3}\right\}$
- 60. For the equation $\sin x 3\sin 2x + \sin 3x = \cos x 3\cos 2x + \cos 3x$
 - (A) Number of principal solutions are 4
 - (B) General solution is $\frac{n\pi}{2} + \frac{\pi}{8}$, $n \in I$
 - (C) General solution is $n\pi + \frac{\pi}{8}$, $n \in I$
 - (D) Number of principal solutions are exactly 2.