18.

(a) Proposition: Suppose $b^2 - 4c \ge 0$. Then $x = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$ satisfy $x^2 + bx + c = 0$.

Proof.

Let $x = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$. By substitution,

$$x^{2} + bx + c = \left(\frac{-b \pm \sqrt{b^{2} - 4c}}{2}\right)^{2} + b\left(\frac{-b \pm \sqrt{b^{2} - 4c}}{2}\right) + c$$

$$= \frac{1}{4}(-b \pm \sqrt{b^{2} - 4c})^{2} + \frac{2}{4}b(-b \pm \sqrt{b^{2} - 4c}) + c$$

$$= \frac{1}{4}(b^{2} \mp 2b\sqrt{b^{2} - 4c} + b^{2} - 4c) + \frac{1}{4}(-2b^{2} \pm 2b\sqrt{b^{2} - 4c}) + c$$

$$= \frac{1}{4}(b^{2} + b^{2} - 2b^{2} \mp 2b\sqrt{b^{2} - 4c} \pm 2b\sqrt{b^{2} - 4c} - 4c) + c$$

$$= \frac{1}{4}(-4c) + c$$

$$= -c + c$$

$$= 0.$$

(b) Proposition If $b^2 - 4c < 0$, then there are no numbers x satisfying $x^2 + bx + c = 0$. In fact, if $b^2 - 4c < 0$, then $x^2 + bx + c > 0$ for all x.

Proof.

Suppose for the sake of contradiction that $b^2 - 4c < 0$ and there exists a number x satisfying $x^2 + bx + c = 0$. Note that

$$0 = x^{2} + bx + c$$

$$= (x^{2} + \frac{b}{2}x + \frac{b}{2}x + \frac{b^{2}}{4} - \frac{b^{2}}{4}) + c$$

$$= (x^{2} + \frac{b}{2}x + \frac{b}{2}x + \frac{b^{2}}{4}) - \frac{b^{2}}{4} + c$$

$$= (x + \frac{b}{2})^{2} - \frac{b^{2}}{4} + c$$

$$\frac{b^{2}}{4} - c = (x + \frac{b}{2})^{2}.$$

Since $b^2 - 4c < 0$, we know $\frac{b^2}{4} - c < 0$. But $(x + \frac{b}{2})^2 \ge 0$. Thus $\frac{b^2}{4} - c \ne (x + \frac{b}{2})^2$, a contradiction. In fact, since $-\frac{b^2}{4} + c > 0$ and $(x + \frac{b}{2})^2 \ge 0$, it follows that $x^2 + bx + c = (x + \frac{b}{2})^2 - \frac{b^2}{4} + c > 0$.

(c) Proposition If $x \neq 0$ or $y \neq 0$, then $x^2 + xy + y^2 > 0$.

Proof.

By Proposition 18.b, $y^2 - 4(y^2) = -3y^2 < 0$ implies $x^2 + xy + y^2 > 0$.

(d) Proposition When a < 2 or a > -2, and x and y are not both zero, $x^2 + axy + y^2 > 0$.

Proof.

WLOG, let $y \neq 0$. By Proposition 18.b, $x^2 + axy + y^2 > 0$ if $(ay)^2 - 4y^2 < 0$. Note that $(ax)^2 - 4x^2 < 0$ if we instead let $x \neq 0$. Observe that $(ay)^2 - 4y^2 = y^2(a^2 - 4) < 0$. Since $y^2 > 0$, $a^2 - 4 < 0$, so $a^2 < 4$. Thus a < 2 or $-a < 2 \Longrightarrow a > -2$.

(e).1 Proposition The minimal value of $x^2 + bx + c$ is $-\frac{b^2}{4} + c$.

Proof.

$$x^{2} + bx + c = \left(x^{2} + \frac{b}{2}x + \frac{b}{2}x + \frac{b^{2}}{4} - \frac{b^{2}}{4}\right) + c$$

$$= \left(x^{2} + \frac{b}{2}x + \frac{b}{2}x + \frac{b^{2}}{4}\right) - \frac{b^{2}}{4} + c$$

$$= \left(x + \frac{b}{2}\right)^{2} - \frac{b^{2}}{4} + c.$$

The minimal value of $(x+\frac{b}{2})^2 \ge 0$ is 0 when $x=-\frac{b}{2}$. Thus the minimal value of x^2+bx+c is $(0)-\frac{b^2}{4}+c=-\frac{b^2}{4}+c$. (e).2 Proposition The minimal value of ax^2+bx+c is $-\frac{b^2}{4}+c$. Proof.

$$ax^{2} + bx + c = a(x^{2} + \frac{b}{a}x) + c$$

$$= a(x^{2} + \frac{b}{2a}x + \frac{b}{2a}x + \frac{b^{2}}{4a^{2}} - \frac{b^{2}}{4a^{2}}) + c$$

$$= a(x^{2} + \frac{b}{2a}x + \frac{b}{2a}x + \frac{b^{2}}{4a^{2}}) - \frac{b^{2}}{4a} + c$$

$$= a(x + \frac{b}{2a})^{2} - \frac{b^{2}}{4a} + c.$$

The minimal value of $(x+\frac{b}{2a})^2 \ge 0$ is 0 when $x=-\frac{b}{2a}$. Thus the minimal value of ax^2+bx+c is $a(0)-\frac{b^2}{4a}+c=-\frac{b^2}{4a}+c$.