CHARMED MESONS $(C = \pm 1)$

 $D^+=c\overline{d},\ D^0=c\overline{u},\ \overline{D}{}^0=\overline{c}\,u,\ D^-=\overline{c}\,d,$ similarly for D^* 's

 \mathcal{D}^{\pm}

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass $m=1869.59\pm0.09$ MeV Mean life $au=(1040\pm7)\times10^{-15}$ s $c au=311.8~\mu\mathrm{m}$

c-quark decays

 $\Gamma(c \to \ell^+ \text{ anything})/\Gamma(c \to \text{ anything}) = 0.096 \pm 0.004^{[a]}$ $\Gamma(c \to D^*(2010)^+ \text{ anything})/\Gamma(c \to \text{ anything}) = 0.255 \pm 0.017$

CP-violation decay-rate asymmetries

 $A_{CP}(\mu^{\pm}\nu) = (8 \pm 8)\%$ $A_{CP}(K_I^0 e^{\pm} \nu) = (-0.6 \pm 1.6)\%$ $A_{CP}(K_S^{\bar{0}}\pi^{\pm}) = (-0.41 \pm 0.09)\%$ $A_{CP}(K^{\mp}2\pi^{\pm}) = (-0.18 \pm 0.16)\%$ $A_{CP}(K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{0}) = (-0.3 \pm 0.7)\%$ $A_{CP}(K_S^0 \pi^{\pm} \pi^0) = (-0.1 \pm 0.7)\%$ $A_{CP}(K_S^0 \pi^{\pm} \pi^{+} \pi^{-}) = (0.0 \pm 1.2)\%$ $A_{CP}(\pi^{\pm}\pi^{0}) = (2.9 \pm 2.9)\%$ $A_{CP}(\pi^{\pm}\eta) = (1.0 \pm 1.5)\%$ (S = 1.4) $A_{CP}(\pi^{\pm}\eta'(958)) = (-0.5 \pm 1.2)\%$ (S = 1.1) $A_{CP}(\overline{K}^0/K^0K^{\pm}) = (0.11 \pm 0.17)\%$ $A_{CP}(K_S^0K^{\pm}) = (-0.11 \pm 0.25)\%$ $A_{CP}(K^{+}K^{-}\pi^{\pm}) = (0.37 \pm 0.29)\%$ $A_{CP}(K^{\pm}K^{*0}) = (-0.3 \pm 0.4)\%$ $A_{CP}(\phi \pi^{\pm}) = (0.09 \pm 0.19)\%$ (S = 1.2) $A_{CP}(K^{\pm}K_0^*(1430)^0) = (8^{+7}_{-6})\%$ $A_{CP}(K^{\pm}K_{2}^{*}(1430)^{0}) = (43^{+20}_{-26})\%$ $A_{CP}(K^{\pm}K_0^*(800)) = (-12_{-13}^{+18})\%$ $A_{CP}(a_0(1450)^0\pi^{\pm}) = (-19_{-16}^{+14})\%$ $A_{CP}(\phi(1680)\pi^{\pm}) = (-9 \pm 26)\%$ $A_{CP}(\pi^+\pi^-\pi^\pm) = (-2 \pm 4)\%$ $A_{CP}(K_S^0 K^{\pm} \pi^+ \pi^-) = (-4 \pm 7)\%$ $A_{CP}(K^{\pm}\pi^{0}) = (-4 \pm 11)\%$

χ^2 tests of *CP*-violation (*CPV*)

Local *CPV* in
$$D^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm} = 78.1\%$$

Local *CPV* in $D^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm} = 31\%$

CP violating asymmetries of P-odd (T-odd) moments

$$A_T(K_S^0 K^{\pm} \pi^+ \pi^-) = (-12 \pm 11) \times 10^{-3} [b]$$

D⁺ form factors

$$\begin{array}{l} f_{+}(0) \big| V_{cs} \big| \text{ in } \overline{K^0} \ell^+ \nu_\ell = 0.725 \pm 0.015 \quad (\mathsf{S} = 1.7) \\ r_1 \equiv a_1/a_0 \text{ in } \overline{K^0} \ell^+ \nu_\ell = -1.8 \pm 0.4 \\ r_2 \equiv a_2/a_0 \text{ in } \overline{K^0} \ell^+ \nu_\ell = -3 \pm 12 \quad (\mathsf{S} = 1.5) \\ f_{+}(0) \big| V_{cd} \big| \text{ in } \pi^0 \ell^+ \nu_\ell = 0.146 \pm 0.007 \\ r_1 \equiv a_1/a_0 \text{ in } \pi^0 \ell^+ \nu_\ell = -1.4 \pm 0.9 \\ r_2 \equiv a_2/a_0 \text{ in } \pi^0 \ell^+ \nu_\ell = -4 \pm 5 \\ f_{+}(0) \big| V_{cd} \big| \text{ in } D^+ \rightarrow \eta \, e^+ \nu_e = 0.086 \pm 0.006 \\ r_1 \equiv a_1/a_0 \text{ in } D^+ \rightarrow \eta \, e^+ \nu_e = -1.8 \pm 2.2 \\ r_v \equiv V(0)/A_1(0) \text{ in } D^+ \rightarrow \omega \, e^+ \nu_e = 1.24 \pm 0.11 \\ r_2 \equiv A_2(0)/A_1(0) \text{ in } D^+, D^0 \rightarrow \omega \, e^+ \nu_e = 1.48 \pm 0.16 \\ r_v \equiv V(0)/A_1(0) \text{ in } D^+, D^0 \rightarrow \rho \, e^+ \nu_e = 0.83 \pm 0.12 \\ r_v \equiv V(0)/A_1(0) \text{ in } \overline{K^*}(892)^0 \ell^+ \nu_\ell = 1.49 \pm 0.05 \quad (\mathsf{S} = 2.1) \\ r_2 \equiv A_2(0)/A_1(0) \text{ in } \overline{K^*}(892)^0 \ell^+ \nu_\ell = 0.802 \pm 0.021 \\ r_3 \equiv A_3(0)/A_1(0) \text{ in } \overline{K^*}(892)^0 \ell^+ \nu_\ell = 0.0 \pm 0.4 \\ \Gamma_L/\Gamma_T \text{ in } \overline{K^*}(892)^0 \ell^+ \nu_\ell = 1.13 \pm 0.08 \\ \Gamma_+/\Gamma_- \text{ in } \overline{K^*}(892)^0 \ell^+ \nu_\ell = 0.22 \pm 0.06 \quad (\mathsf{S} = 1.6) \\ \end{array}$$

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2\Gamma(K_S^0)=\Gamma(\overline{K}^0)$.

D+ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	•
	Inclusive modes		
e^+ semileptonic	$(16.07\!\pm\!0.30)~\%$		_
μ^+ anything	$(17.6 \pm 3.2)\%$		_
K ⁻ anything	$(25.7 \pm 1.4)\%$		_
\overline{K}^0 anything $+ K^0$ anything	$(61 \pm 5)\%$		_
K^+ anything	$(5.9 \pm 0.8)\%$		_

$K^*(892)^-$ anything	$(6 \pm 5)\%$		_
$\overline{K}^*(892)^0$ anything	$(23 \pm 5)\%$		_
$K^*(892)^0$ anything	< 6.6 %	CL=90%	_
η anything	($6.3~\pm0.7$) %		_
η' anything	$(1.04\pm0.18)\%$		_
ϕ anything	$(1.03\pm0.12)\%$		_

Leptonic and semileptonic modes

Leptonic and	semileptonic	modes		
$e^+ u_e$	< 8.8	$\times 10^{-6}$	CL=90%	935
$\mu^+ u_{\mu}$	$(3.74\pm0.$	$17) \times 10^{-4}$		932
$ au^+ u_ au$	< 1.2	$\times 10^{-3}$	CL=90%	90
$\overline{K}^0 e^+ \nu_e$	(8.82 ± 0 .	13) %		869
$\overline{K}{}^0\mu^+\nu_{\mu}$	(8.74 ± 0 .	19) %		865
$K^-\pi^+e^+ u_e$	$(3.89\pm0.$	13) %	S=2.1	864
$\overline{K}^*(892)^0e^+ u_e$, $\overline{K}^*(892)^0 ightarrow$	$(3.66\pm0.$	12) %		722
$(K^-\pi^+)_{[0.8-1.0]\text{GeV}}e^+\nu_e$	(3.39±0.	09) %		864
$(K^-\pi^+)_{S-wave}e^+ u_e$	(2.28±0.	$11) \times 10^{-3}$		_
$\overline{K}^* (1410)^0 e^+ u_e$, $\overline{K}^* (1410)^0 ightarrow K^- \pi^+$	< 6	\times 10 ⁻³	CL=90%	-
$\overline{K}_{2}^{*}(1430)^{0} e^{+} \nu_{e}$,	< 5	\times 10 ⁻⁴	CL=90%	_
$\overline{K}_2^*(1430)^0 ightarrow K^-\pi^+$				
$\mathit{K}^-\pi^{ar{+}}e^+ u_e$ nonresonant	< 7	$\times 10^{-3}$	CL=90%	864
$\mathcal{K}^-\pi^+\mu^+ u_\mu$	$(3.65\pm0.$	34) %		851
$\overline{\mathcal{K}}^*$ (892) $^0\mu^+ u_\mu$,	$(3.52\pm0.$	10) %		717
$\overline{\mathit{K}}^*(892)^0 \rightarrow \ \mathit{K}^-\pi^+$				
$\mathcal{K}^-\pi^+\mu^+ u_\mu$ nonresonant	($1.9~\pm0.$	$5) \times 10^{-3}$		851
$K^-\pi^+\pi^0\mu^+\dot{ u}_{\mu}$	< 1.5	$\times10^{-3}$	CL=90%	825
$\pi^0 e^+ \nu_e$	(4.05±0.	18) \times 10 ⁻³		930
$\eta e^+ \nu_e$	(1.14±0.	$10) \times 10^{-3}$		855
$ ho^0 e^+ u_e$	$(2.18^{+0.}_{-0.}$	$^{17}_{25}) \times 10^{-3}$		774
$\rho^{0} \mu^{+} \nu_{\mu}$	($2.4 \pm 0.$	4) \times 10 ⁻³		770
$\omega e^+ \nu_e$	$(1.69\pm0.$	$11) \times 10^{-3}$		771
$\eta'(958)e^+\nu_e$	`	$5) \times 10^{-4}$		689
$\phi e^+ \nu_e$	< 1.3	× 10 ⁻⁵	CL=90%	657

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes.

$\overline{K}^*(892)^0 e^+ \nu_e$	(5.40±0.1	.0) %	S=1.1	722
\overline{K}^* (892) ⁰ $\mu^+ \nu_{\mu}$	(5.25 ± 0.1	.5) %		717
$\overline{K}_0^* (1430)^0 \mu^+ \nu_\mu \ \overline{K}^* (1680)^0 \mu^+ \nu_\mu$	< 2.3	$\times 10^{-4}$	CL=90%	380
$\overline{K}^*(1680)^0 \mu^+ \nu_{\mu}$	< 1.5	$\times 10^{-3}$	CL=90%	105

Hadronic modes with a \overline{K} or $\overline{K}K\overline{K}$ $(1.47\pm0.08)\%$ S = 3.0863 $(1.46\pm0.05)\%$ 863 S = 2.2[c] $(8.98\pm0.28)\%$ 846 $\frac{(K^-\pi^+)_{S-\text{wave}}\pi^+}{K_0^*(1430)^0\pi^+}$, $(7.20\pm0.25)\%$ 846 [d] $(1.19\pm0.07)\%$ 382 $\frac{\ddot{\kappa}}{K_0^*}(1430)^0 \to K^-\pi^+$ $\overline{K}^*(892)^0 \pi^+,$ $\overline{K}^*(892)^0 \to K^- \pi^+,$ $\overline{K}^*(1410)^0 \pi^+, \overline{K}^{*0} \to$ $(10.0 \pm 1.1) \times 10^{-3}$ 714 381 not seen $\frac{K^-\pi^+}{K_2^*(1430)^0\pi^+}$, [d] $(2.2 \pm 0.7) \times 10^{-4}$ 371 $K_{2}^{*}(1430)^{0} \rightarrow K^{-}\pi^{+}$ $K_{2}^{*}(1680)^{0}\pi^{+}$, $K_{3}^{*}(1680)^{0} \rightarrow K^{-}\pi^{+}$ [d] $(2.1 \pm 1.0) \times 10^{-4}$ 58 $K^{-}(2\pi^{+})_{I=2}$ $K^{0}_{S}\pi^{+}\pi^{0}$ $(1.39\pm0.26)\%$ [c] $(7.05\pm0.27)\%$ 845 $K_s^0 \rho^+$ $(5.9 \begin{array}{c} +0.6 \\ -0.4 \end{array}) \%$ 677 $K_S^0 \rho(1450)^+$, $\rho^+ \to \pi^+ \pi^0$ $(1.5 \begin{array}{c} +1.1 \\ -1.4 \end{array}) \times 10^{-3}$ $\overline{K}^*(892)^0 \pi^+,$ $\overline{K}^*(892)^0 \to K_S^0 \pi^0$ $\overline{K}^*_0(1430)^0 \pi^+, \overline{K}^*_0^0 \to K_S^0 \pi^0$ $(2.52\pm0.31)\times10^{-3}$ 714 $(2.6 \pm 0.9) \times 10^{-3}$ $(9 \quad ^{+7}_{-9} \quad) \times 10^{-4}$ $\overline{\kappa}^0\pi^+$, $\overline{\kappa}^0 \to K_S^0\pi^0$ $(5.4 \begin{array}{c} +5.0 \\ -3.5 \end{array}) \times 10^{-3}$ $K_S^0\pi^+\pi^0$ nonresonant $(3 \pm 4) \times 10^{-3}$ 845 $K_S^0 \pi^+ \pi^0$ nonresonant and $(1.31^{+0.21}_{-0.35})\%$ $(1.22^{+0.26}_{-0.32})\%$ $(K_S^0 \pi^0)_{S-wave} \pi^+$ 845 $K^- 2\pi^+ \pi^0$ [e] $(5.98\pm0.23)\%$ 816 $K_S^0 2\pi^+\pi^-$ [e] $(2.97\pm0.11)\%$ 814 $K^{-}3\pi^{+}\pi^{-}$ [c] $(5.5 \pm 0.5) \times 10^{-3}$ S = 1.1772 $\overline{K}^*(892)^0 2\pi^+\pi^-$, $(1.2 \pm 0.4) \times 10^{-3}$ 645 $\frac{\overrightarrow{K}^*(892)^0}{\overline{K}^*(892)^0} \xrightarrow{\rho^0} \frac{K^- \pi^+}{\pi^+},$ $(2.2 \pm 0.4) \times 10^{-3}$ 239 $\frac{\overline{K}^*(892)^0}{\overline{K}^*(892)^0} \rightarrow K^- \pi^+$ $\frac{\overline{K}^*(892)^0}{a_1(1260)^+}$ [f] $(8.9 \pm 1.8) \times 10^{-3}$ † $K^{-} \rho^{0} 2\pi^{+}$ $(1.65\pm0.27)\times10^{-3}$ 524

$K^-3\pi^+\pi^-$ nonresonant	$(3.9 \pm 2.8) \times 10^{-4}$		772
$K^{+}2K_{S}^{0}$	$(2.54\pm0.13)\times10^{-3}$		545
$K^{+}K^{-}K^{0}_{S}\pi^{+}$	$(2.3 \pm 0.5) \times 10^{-4}$		436
_	Pionic modes		
$\pi^+\pi^0$	$(1.17\pm0.06)\times10^{-3}$		925
$2\pi^+\pi^-$	$(3.13\pm0.19)\times10^{-3}$		909
$ ho^{f 0}\pi^+$	$(8.0 \pm 1.4) \times 10^{-4}$		767
$\pi^+(\pi^+\pi^-)_{S-wave}$	$(1.75\pm0.16)\times10^{-3}$		909
$\sigma\pi^+$, $\sigma ightarrow \pi^+\pi^-$	$(1.32\pm0.12)\times10^{-3}$		_
$f_0(980)\pi^+$,	$(1.50\pm0.32)\times10^{-4}$		669
$f_0(980) \to \pi^+ \pi^-$			
$f_0(1370)\pi^+$,	(8 ± 4) $ imes$ 10 ⁻⁵		_
$f_0(1370) \to \pi^+ \pi^-$			
$f_2(1270)\pi^+$,	$(4.8 \pm 0.8) \times 10^{-4}$		485
$f_2(1270) \to \pi^+\pi^-$			
$\rho(1450)^0 \pi^+$,	$<$ 8 \times 10 ⁻⁵	CL=95%	338
$ ho$ (1450) ⁰ $ ightarrow$ $\pi^+\pi^-$			
$f_0(1500)\pi^+$,	$(1.1 \pm 0.4) \times 10^{-4}$		_
$f_0(1500) \to \pi^+ \pi^-$			
$f_0(1710)\pi^{+}$,	$< 5 imes 10^{-5}$	CL=95%	_
$f_0(1710) \to \pi^+\pi^-$			
$f_0(1790)\pi^{+}$,	$<$ 6 \times 10 ⁻⁵	CL=95%	_
$f_0(1790) \to \pi^+\pi^-$			
$(\pi^+\pi^+)_{S-\text{wave}}\pi^-$	$< 1.2 \times 10^{-4}$	CL=95%	909
$2\pi^+\pi^-$ nonresonant	$< 1.1 \times 10^{-4}$	CL=95%	909
$\pi^{+} 2\pi^{0}$	$(4.5 \pm 0.4) \times 10^{-3}$		910
$2\pi^{+}\pi^{-}\pi^{0}$	(1.11±0.08) %		883
$3\pi^{+}2\pi^{-}$	$(1.59\pm0.16)\times10^{-3}$	S=1.1	845
	,		

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes.

$\eta \pi^+$	$(3.33\pm0.21)\times10^{-3}$	S=1.4	848
$\eta\pi^+\pi^0$	$(1.38\pm0.35)\times10^{-3}$		830
$\omega \pi^+$	$(2.8 \pm 0.6) \times 10^{-4}$		764
$\eta'(958)\pi^+$	$(4.60\pm0.31)\times10^{-3}$		681
$\eta'(958)\pi^{+}\pi^{0}$	$(1.6 \pm 0.5) \times 10^{-3}$		654

Hadronic modes with a
$$K\overline{K}$$
 pair $K^+K^0_S$ (2.83 \pm 0.16) \times 10⁻³ S=2.8 793 $K^+K^-\pi^+$ [c] (9.51 \pm 0.34) \times 10⁻³ S=1.6 744 $\phi\pi^+$, $\phi\to K^+K^-$ (2.64 \pm 0.11) \times 10⁻³ 647 $K^+\overline{K}^*(892)^0$, (2.44 $^+$ 0.11 $^-$ 0.15) \times 10⁻³ 613 $\overline{K}^*(892)^0\to K^-\pi^+$

A few poorly measured branching fractions:

Doubly Cabibbo-suppressed modes

$(1.81\pm0.27)\times10^{-4}$	S=1.4	864
$(1.02\pm0.16)\times10^{-4}$		776
$(1.73\pm0.22)\times10^{-4}$		571
$(5.19\pm0.26)\times10^{-4}$		846
$(2.0 \pm 0.5) \times 10^{-4}$		679
$(2.4 \pm 0.4) \times 10^{-4}$		714
_		
$(4.6 \pm 2.8) \times 10^{-5}$		_
· · · · · · · · · · · · · · · · · · ·		
$(4.2 \pm 2.8) \times 10^{-3}$		_
not seen		846
(8.5 ± 2.0) $\times 10^{-5}$		550
	(1.02 ± 0.16) \times 10^{-4} (1.73 ± 0.22) \times 10^{-4} (5.19 ± 0.26) \times 10^{-4} (2.0 ±0.5) \times 10^{-4} (2.4 ±0.4) \times 10^{-4} (4.6 ±2.8) \times 10^{-5} (4.2 ±2.8) \times 10^{-5}	$(1.02\pm0.16) \times 10^{-4}$ $(1.73\pm0.22) \times 10^{-4}$ $(5.19\pm0.26) \times 10^{-4}$ $(2.0\pm0.5) \times 10^{-4}$ $(2.4\pm0.4) \times 10^{-4}$ $(4.6\pm2.8) \times 10^{-5}$ $(4.2\pm2.8) \times 10^{-5}$

$\Delta C = 1$ weak neutral current (C1) modes, or Lepton Family number (LF) or Lepton number (L) violating modes

, , , , , , , , , , , , , , , , , , , ,	
$\pi^{+} e^{+} e^{-}$ C1 < 1.1 $\times 10^{-6}$ CL=90%	930
$\pi^+\phi$, $\phi ightarrow e^+e^-$ [g] (1.7 $^{+1.4}_{-0.9}$) $ imes$ 10 $^{-6}$	_
$\pi^{+}\mu^{+}\mu^{-}$ C1 < 7.3 × 10 ⁻⁸ CL=90%	918
$\pi^{+} \phi$, $\phi \rightarrow \mu^{+} \mu^{-}$ [g] (1.8 ±0.8) × 10 ⁻⁶	_
$\rho^{+}\mu^{+}\mu^{-}$ C1 < 5.6 × 10 ⁻⁴ CL=90%	757
$K^+ e^+ e^-$ [h] < 1.0 × 10 ⁻⁶ CL=90%	870

HTTP://PDG.LBL.GOV Page 6 Created: 5/30/2017 17:13

$K^+\mu^+\mu^-$		[h] < 4.3	$\times10^{-6}$	CL=90%	856
$\pi^{+} e^{+} \mu^{-}$	LF	< 2.9	$\times 10^{-6}$	CL=90%	927
$\pi^+e^-\mu^+$	LF	< 3.6	$\times 10^{-6}$	CL=90%	927
$K^+\mathrm{e}^+\mu^-$	LF	< 1.2	\times 10 ⁻⁶	CL=90%	866
$K^+\mathrm{e}^-\mu^+$	LF	< 2.8	\times 10 ⁻⁶	CL=90%	866
π^- 2e $^+$	L	< 1.1	\times 10 ⁻⁶	CL=90%	930
$\pi^{-}2\mu^{+}$	L	< 2.2	\times 10 ⁻⁸	CL=90%	918
$\pi^-e^+\mu^+$	L	< 2.0	\times 10 ⁻⁶	CL=90%	927
$ ho^-$ 2 μ^+	L	< 5.6	\times 10 ⁻⁴	CL=90%	757
$K^{-}2e^{+}$	L	< 9	\times 10 ⁻⁷	CL=90%	870
$K^-2\mu^+$	L	< 1.0	\times 10 ⁻⁵	CL=90%	856
$K^-e^+\mu^+$	L	< 1.9	\times 10 ⁻⁶	CL=90%	866
$K^*(892)^- 2\mu^+$	L	< 8.5	× 10 ⁻⁴	CL=90%	703

D^0

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass
$$m=1864.83\pm0.05$$
 MeV $m_{D^\pm}-m_{D^0}=4.75\pm0.08$ MeV Mean life $\tau=(410.1\pm1.5)\times10^{-15}$ s $c\tau=122.9~\mu{\rm m}$

Mixing and related parameters

$$\begin{array}{l} \left|m_{D_{1}^{0}}-m_{D_{2}^{0}}\right|=(0.95_{-0.44}^{+0.41})\times10^{10}~\hbar~\mathrm{s}^{-1}\\ (\Gamma_{D_{1}^{0}}-\Gamma_{D_{2}^{0}})/\Gamma=2y=(1.29_{-0.18}^{+0.14})\times10^{-2}\\ \left|q/\mathrm{p}\right|=0.92_{-0.09}^{+0.12}\\ K^{+}\pi^{-}~\mathrm{relative~strong~phase:~cos~}\delta=0.97\pm0.11\\ K^{-}\pi^{+}\pi^{0}~\mathrm{coherence~factor~}R_{K\pi\pi^{0}}=0.82\pm0.06\\ K^{-}\pi^{+}\pi^{0}~\mathrm{average~relative~strong~phase~}\delta^{K\pi\pi^{0}}=(199\pm14)^{\circ}\\ K^{-}\pi^{-}2\pi^{+}~\mathrm{coherence~factor~}R_{K3\pi}=0.53_{-0.21}^{+0.18}\\ K^{-}\pi^{-}2\pi^{+}~\mathrm{average~relative~strong~phase~}\delta^{K3\pi}=(125_{-14}^{+22})^{\circ}\\ D^{0}\to K^{-}\pi^{-}2\pi^{+},~R_{K3\pi}~(y~\mathrm{cos}\delta^{K3\pi}-x~\mathrm{sin}\delta^{K3\pi})=(-3.0\pm0.7)\times10^{-3}~\mathrm{TeV}^{-1}\\ K_{S}^{0}K^{+}\pi^{-}~\mathrm{coherence~factor~}R_{K_{S}^{0}K\pi}=0.70\pm0.08\\ K_{S}^{0}K^{+}\pi^{-}~\mathrm{average~relative~strong~phase~}\delta^{K_{S}^{0}K\pi}=(0\pm16)^{\circ}\\ K^{*}K~\mathrm{coherence~factor~}R_{K^{*}K}=0.94\pm0.12\\ K^{*}K~\mathrm{average~relative~strong~phase~}\delta^{K^{*}K}=(-17\pm18)^{\circ}\\ \end{array}$$

CP-violation decay-rate asymmetries (labeled by the D^0 decay)

$$\begin{split} &A_{CP}(K^+K^-) = (-0.07 \pm 0.11)\% \\ &A_{CP}(2K_S^0) = (-5 \pm 5)\% \\ &A_{CP}(\pi^+\pi^-) = (0.13 \pm 0.14)\% \\ &A_{CP}(\pi^0\pi^0) = (0.0 \pm 0.6)\% \\ &A_{CP}(\phi\gamma) = (6 \pm 15) \times 10^{-2} \\ &A_{CP}(\phi\gamma) = (-9 \pm 7) \times 10^{-2} \\ &A_{CP}(\pi^0\pi^0) = (0.3 \pm 0.4)\% \\ &A_{CP}(\rho(770)^+\pi^- \to \pi^+\pi^-\pi^0) = (1.2 \pm 0.9)\%^{[i]} \\ &A_{CP}(\rho(770)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-3.1 \pm 3.0)\%^{[i]} \\ &A_{CP}(\rho(770)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-1.0 \pm 1.7)\%^{[i]} \\ &A_{CP}(\rho(1450)^+\pi^- \to \pi^+\pi^-\pi^0) = (-1.0 \pm 1.7)\%^{[i]} \\ &A_{CP}(\rho(1450)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-20 \pm 40)\%^{[i]} \\ &A_{CP}(\rho(1450)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-5 \pm 14)\%^{[i]} \\ &A_{CP}(\rho(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-5 \pm 14)\%^{[i]} \\ &A_{CP}(\rho(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (0 \pm 35)\%^{[i]} \\ &A_{CP}(\rho(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (0 \pm 35)\%^{[i]} \\ &A_{CP}(f_0(1500)\pi^0 \to \pi^+\pi^-\pi^0) = (0 \pm 18)\%^{[i]} \\ &A_{CP}(f_0(1700)\pi^0 \to \pi^+\pi^-\pi^0) = (0 \pm 24)\%^{[i]} \\ &A_{CP}(f_0(1700)\pi^0 \to \pi^+\pi^-\pi^0) = (0 \pm 24)\%^{[i]} \\ &A_{CP}(f_0(1700)\pi^0 \to \pi^+\pi^-\pi^0) = (-1.3 \pm 23)\%^{[i]} \\ &A_{CP}(\pi^0(1700)\pi^0 \to \pi^+\pi^-\pi^0) = (-1.3 \pm 23)\%^{[i]} \\ &A_{CP}(K^*(892)^+K^- \to K^+K^-\pi^0) = (-0.9 \pm 1.3)\%^{[i]} \\ &A_{CP}(K^*(1410)^+K^- \to K^+K^-\pi^0) = (-1.1 \pm 2.2)\%^{[i]} \\ &A_{CP}(f_0(980)\pi^0 \to K^+K^-\pi^0) = (-3 \pm 19)\%^{[i]} \\ &A_{CP}(f_0(980)\pi^0 \to K^+K^-\pi^0) = (-1.1 \pm 2.2)\%^{[i]} \\ &A_{CP}(K^*(892)^-K^+ \to K^+K^-\pi^0) = (-1.1 \pm 2.9)\%^{[i]} \\ &A_{CP}(K^*(892)^-K^- \to K^+K^-\pi^0) = (-1.1 \pm 2.9)\%^{[i]} \\ &A_{CP}(K^*(980)^0 \to K^+K^-\pi^0) = (-1.1 \pm 2.9)\%^{[i]} \\ &A_{CP}(K^*(980)^-K^- \to K^+K^-\pi^0) = (-1.1 \pm 2.9)\%^{[i]} \\ &A_{CP}(K^*(990)^-K^- \to K^+K^-\pi^0) = (-1.1 \pm 40)\%^{[i]} \\ &A_{CP}(K^*(990)^-K^- \to K^+K^-\pi^0) = (-1.1 \pm 40)\%^{[i]} \\ &A_{CP}(K^*(990)^-K^- \to K^+K^-\pi^0) = (-1.1 \pm 40)\%^{[i]} \\ &A_{CP}(K^*(990)^-K^- \to K^+K^-\pi^0) = (-1.0 \pm 40)\%^{[i]} \\ &A_{CP}(K^*(990)^-K^- \to K^+K^-\pi^0) =$$

$$A_{CP}(K^-\pi^+) = (0.3 \pm 0.7)\%$$

$$A_{CP}(K^+\pi^-) = (0.0 \pm 1.6)\%$$

$$A_{CP}(D_{CP}(\pm 1) \rightarrow K^+\pi^\pm) = (12.7 \pm 1.5)\%$$

$$A_{CP}(K^-\pi^+\pi^0) = (0.1 \pm 0.5)\%$$

$$A_{CP}(K^0_S\pi^+\pi^-) = (-0.1 \pm 0.8)\%$$

$$A_{CP}(K^0_S\pi^+\pi^-) = (-0.1 \pm 0.8)\%$$

$$A_{CP}(K^*(892)^-\pi^+ \rightarrow K^0_S\pi^+\pi^-) = (1.4 \pm 0.5)\%$$

$$A_{CP}(K^*(892)^+\pi^- \rightarrow K^0_S\pi^+\pi^-) = (1.4 \pm 0.5)\%$$

$$A_{CP}(K^0_S\theta^-) \rightarrow K^0_S\pi^+\pi^-) = (-0.1 \pm 0.5)\%$$

$$A_{CP}(K^0_S\theta^-) \rightarrow K^0_S\pi^+\pi^-) = (-0.1 \pm 0.5)\%$$

$$A_{CP}(K^0_S\theta^-) \rightarrow K^0_S\pi^+\pi^-) = (-0.4 \pm 2.7)\%$$

$$A_{CP}(K^0_S\theta^-) \rightarrow K^0_S\pi^+\pi^-) = (-0.4 \pm 2.7)\%$$

$$A_{CP}(K^0_S\theta^-) \rightarrow K^0_S\pi^+\pi^-) = (-1 \pm 9)\%$$

$$A_{CP}(K^0_S\theta^-) \rightarrow K^0_S\pi^+\pi^-) = (-1 \pm 10)\%$$

$$A_{CP}(K^0_S\theta^-) \rightarrow K^0_S\pi^+\pi^-) = (-1 \pm 10)\%$$

$$A_{CP}(K^0_S(1430)^-\pi^+ \rightarrow K^0_S\pi^+\pi^-) = (12 \pm 15)\%$$

$$A_{CP}(K^0_S(1430)^+\pi^- \rightarrow K^0_S\pi^+\pi^-) = (12 \pm 15)\%$$

$$A_{CP}(K^0_S(1430)^+\pi^- \rightarrow K^0_S\pi^+\pi^-) = (-10 \pm 32)\%$$

$$A_{CP}(K^0_S(1430)^+\pi^- \rightarrow K^0_S\pi^+\pi^-) = (-10 \pm 13)\%$$

$$A_{CP}(K^0_S(1430)^+\pi^- \rightarrow K^0_S\pi^+\pi^-) = (-10 \pm 14)\%$$

$$A_{CP}(K^0_S(1430)^+\pi^- \rightarrow K^0_S\pi^-K^+) = (-10 \pm 13)\%$$

$$A_{CP}(K^0_S(1430)^+\pi^- \rightarrow K^0_S\pi^-K^-) = (-10 \pm 13)\%$$

$$A_{CP}(K^0_S(1430)^+\pi^- \rightarrow K^0_S\pi^-K^-)$$

CP-violation asymmetry difference

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = (-0.12 \pm 0.13)\%$$
 (S = 1.8)

χ^2 tests of *CP*-violation (*CPV*)

Local *CPV* in
$$D^0$$
, $\overline{D}{}^0 \rightarrow \pi^+\pi^-\pi^0 = 4.9\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \rightarrow \pi^+\pi^-\pi^+\pi^- = 41\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \rightarrow K_S^0\pi^+\pi^- = 96\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \rightarrow K^+K^-\pi^0 = 16.6\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \rightarrow K^+K^-\pi^+\pi^- = 9.1\%$

T-violation decay-rate asymmetry

$$A_T(K^+K^-\pi^+\pi^-) = (1.7 \pm 2.7) \times 10^{-3}$$
 [b]

CPT-violation decay-rate asymmetry

$$A_{CPT}(K^{\mp}\pi^{\pm}) = 0.008 \pm 0.008$$

Form factors

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2\Gamma(K_S^0)=\Gamma(\overline{K}^0)$.

D ⁰ DECAY MODES	F	raction	(Γ_i/Γ)		dence leve(M	•
	Topolog	ical m	odes			
0-prongs	[<i>j</i>]	(15	\pm 6) %		_
2-prongs		(70	\pm 6) %		_
4-prongs			\pm 0.5			_
6-prongs	[/]	(6.4	\pm 1.3	$) \times 10^{-4}$		_
	Inclusion	ve mo	des			
e^+ anything	[<i>n</i>]	(6.49	± 0.11	.) %		_
μ^+ anything		(6.7	\pm 0.6) %		_
K^- anything		(54.7	± 2.8) %	S=1.3	-

HTTP://PDG.LBL.GOV

Page 10

\overline{K}^0 anything $+ K^0$ anything	$(47 \pm 4)\%$		_		
K^+ anything	$(3.4 \pm 0.4)\%$		_		
$K^*(892)^-$ anything	(15 \pm 9) %		_		
$\overline{K}^*(892)^0$ anything	$(9 \pm 4)\%$		_		
$K^*(892)^+$ anything	< 3.6 %	CL=90%	_		
$K^*(892)^0$ anything	(2.8 ± 1.3) %		_		
η anything	(9.5 \pm 0.9) %		_		
η' anything	(2.48 ± 0.27) %		_		
ϕ anything	(1.05 ± 0.11) %		_		
invisibles	$< 9.4 \times 10^{-5}$	CL=90%	_		
Semilentonic modes					

Semileptonic modes

	Commeptonie modes		
$K^-e^+ u_e$	$(3.530 \pm 0.028) \%$	S=1.1	867
$\mathcal{K}^-\mu^+ u_\mu$	(3.31 ± 0.13) %		864
$K^*(892)^- e^+ \nu_e$	(2.15 ± 0.16) %		719
$K^*(892)^- \mu^+ u_{\mu}$	(1.86 ± 0.24) %		714
$K^-\pi^0e^+\nu_e$	$(\begin{array}{ccc} 1.6 & + & 1.3 \\ - & 0.5 \end{array})\%$		861
$\overline{K}{}^0\pi^-e^+ u_e$	$\left(\begin{array}{ccc}2.7&+&0.9\\&-&0.7\end{array}\right)\%$		860
$K^-\pi^+\pi^-e^+\nu_e$	$(2.8 + 1.4 - 1.1) \times 10^{-4}$		843
$K_1(1270)^-e^+ u_e$	$(7.6 \begin{array}{cc} + & 4.0 \\ - & 3.1 \end{array}) \times 10^{-4}$		498
$\mathcal{K}^-\pi^+\pi^-\mu^+ u_\mu$	$< 1.2 \times 10^{-3}$	CL=90%	821
$(\overline{K}^*(892)\pi)^- \mu^+ \nu_{\mu}$	$< 1.4 \times 10^{-3}$	CL=90%	692
$\pi^- e^+ \nu_e$	$(2.91 \pm 0.04) \times 10^{-3}$	S=1.1	927
$\pi^-\mu^+ u_\mu$	$(2.37 \pm 0.24) \times 10^{-3}$		924
$\rho^- e^+ \nu_e$	(1.77 \pm 0.16) \times 10 ⁻³		771

Hadronic modes with one K							
$K^-\pi^+$		(3.89	\pm 0.04) %	S=1.1	861	
$K^+\pi^-$		(1.385	5± 0.02	$(7) \times 10^{-4}$		861	
$K_S^0 \pi^0$		(1.19	± 0.04) %		860	
$K_S^0 \pi^0$ $K_L^0 \pi^0$ $K_S^0 \pi^+ \pi^-$		(10.0	\pm 0.7	$) \times 10^{-3}$		860	
$K_S^0 \pi^+ \pi^-$	[c]	(2.75	± 0.18) %	S=1.1	842	
$K_S^0 ho^0$		(6.2	+ 0.6 - 0.8	$) \times 10^{-3}$		674	
$K^0_S\omega$, $\omega o\pi^+\pi^-$		(2.0	\pm 0.6	$) \times 10^{-4}$		670	
$K_{\mathcal{S}}^{ar{0}}(\pi^+\pi^-)_{\mathcal{S}-wave}$		(3.3	\pm 0.7	$) \times 10^{-3}$		842	
${\mathcal K}^0_{\mathcal S} f_0(980)$, $f_0(980) ightarrow \ \pi^+ \pi^-$		(1.18	+ 0.40 - 0.23) × 10 ⁻³		549	
$K_S^0 f_0(1370), f_0 \to \pi^+ \pi^-$		(2.7	$^{+\ 0.8}_{-\ 1.3}$	$) \times 10^{-3}$		†	
$K_S^0 f_2(1270), f_2 \to \pi^+ \pi^-$		(9	$^{+10}_{-6}$	$) \times 10^{-5}$		262	

HTTP://PDG.LBL.GOV Page 12

Fractions of many of the following modes with resonances have already appeared above as submodes of particular charged-particle modes. (Modes for which there are only upper limits and $\overline{K}^*(892)\,\rho$ submodes only appear below.)

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update							
$K^- a_2(1320)^+$	<	2			× 10 ⁻³	CL=90%	198
$\frac{1}{K}$ *(892) ⁰ $\pi^+\pi^-$ total		(2.4		0.5		02 0070	685
$\overline{K}^*(892)^0_1\pi^+\pi^-$ 3-body		、 (1.48			*		685
$\overline{K}^*(892)^0 \rho^0$		` (1.58			•		417
$\overline{K}^*(892)^0 \rho^0$ transverse		(1.7	\pm	0.6) %		417
$\overline{K}^*(892)^0 \rho^0 S$ -wave		(3.0	\pm	0.6) %		417
$\overline{K}^*(892)^0 \rho^0 S$ -wave long.	<	3			$\times 10^{-3}$	CL=90%	417
$\overline{K}^*(892)^0 \rho^0 P$ -wave	<	3			$\times 10^{-3}$	CL=90%	417
$\overline{K}^*(892)^0 ho^0$ <i>D</i> -wave		(2.1	\pm	0.6) %		417
$K_1(1270)^-\pi^+$	[p]	(1.6	\pm	8.0) %		484
$K_1(1400)^-\pi^+$	<				%	CL=90%	386
$K^*(892)^0 \pi^+ \pi^- \pi^0$		(1.9) %		643
$K^-\pi^+\omega$		(3.0		0.6) %		605
$\overline{K}^*(892)^0 \omega$		(1.1) %		410
$K^-\pi^+\eta'(958)$		(7.5	土	1.9	$) \times 10^{-3} \times 10^{-3}$	CI 000/	479
$\overline{K}^*(892)^0 \eta'(958)$	<	1.1			\times 10 $^{\circ}$	CL=90%	119
Hadronic					_		
$K_S^0 K^+ K^-$		(4.35	\pm	0.32	$) \times 10^{-3}$		544
$K_S^0 K^+ K^- \ K_S^0 a_0 (980)^0$, $a_0^0 \to K^+ K^-$		(4.35 (2.9	± ±	0.32 0.4	$) \times 10^{-3}$ $) \times 10^{-3}$		544 —
$K_S^0 K^+ K^-$ $K_S^0 a_0 (980)^0$, $a_0^0 \to K^+ K^-$ $K^- a_0 (980)^+$, $a_0^+ \to K^+ K_S^0$		(4.35 (2.9	± ±	0.32 0.4	$) \times 10^{-3}$ $) \times 10^{-3}$ $) \times 10^{-4}$		544 — —
$K_S^0 K^+ K^-$ $K_S^0 a_0 (980)^0$, $a_0^0 \to K^+ K^-$ $K^- a_0 (980)^+$, $a_0^+ \to K^+ K_S^0$ $K_S^+ a_0 (980)^-$, $a_0^- \to K^- K_S^0$		(4.35 (2.9 (5.8	± ±	0.32 0.4	$) \times 10^{-3}$ $) \times 10^{-3}$ $) \times 10^{-4}$ $\times 10^{-4}$	CL=95%	544 — — —
$K_S^0 K^+ K^-$ $K_S^0 a_0 (980)^0$, $a_0^0 \to K^+ K^-$ $K^- a_0 (980)^+$, $a_0^+ \to K^+ K_S^0$ $K^+ a_0 (980)^-$, $a_0^- \to K^- K_S^0$ $K_S^0 f_0 (980)$, $f_0 \to K^+ K^-$		(4.35 (2.9 (5.8 1.1	± ±	0.32 0.4	$) \times 10^{-3}$ $) \times 10^{-3}$ $) \times 10^{-4}$	CL=95% CL=95%	544 — — — —
$K_S^0 K^+ K^-$ $K_S^0 a_0 (980)^0$, $a_0^0 o K^+ K^-$ $K^- a_0 (980)^+$, $a_0^+ o K^+ K_S^0$ $K^+ a_0 (980)^-$, $a_0^- o K^- K_S^0$ $K_S^0 f_0 (980)$, $f_0 o K^+ K^-$ $K_S^0 \phi$, $\phi o K^+ K^-$	<	(4.35 (2.9 (5.8 1.1 9	± ± ±	0.32 0.4 1.7	$) \times 10^{-3}$ $) \times 10^{-3}$ $) \times 10^{-4}$ $\times 10^{-4}$		544 - - - - 520
$K_S^0 K^+ K^-$ $K_S^0 a_0 (980)^0$, $a_0^0 o K^+ K^-$ $K^- a_0 (980)^+$, $a_0^+ o K^+ K_S^0$ $K^+ a_0 (980)^-$, $a_0^- o K^- K_S^0$ $K_S^0 f_0 (980)$, $f_0 o K^+ K^-$ $K_S^0 \phi$, $\phi o K^+ K^-$ $K_S^0 f_0 (1370)$, $f_0 o K^+ K^-$	<	(4.35 (2.9 (5.8 1.1 9	± ± ±	0.32 0.4 1.7	$) \times 10^{-3}$ $) \times 10^{-3}$ $) \times 10^{-4}$ $\times 10^{-4}$ $\times 10^{-5}$		- - -
$K_S^0 K^+ K^-$ $K_S^0 a_0 (980)^0$, $a_0^0 o K^+ K^-$ $K^- a_0 (980)^+$, $a_0^+ o K^+ K_S^0$ $K^+ a_0 (980)^-$, $a_0^- o K^- K_S^0$ $K_S^0 f_0 (980)$, $f_0 o K^+ K^-$ $K_S^0 \phi$, $\phi o K^+ K^-$	<	(4.35 (2.9 (5.8 1.1 9 (2.00 (1.7	± ± ± ± ±	0.32 0.4 1.7 0.15 1.1	$) \times 10^{-3}$ $) \times 10^{-3}$ $) \times 10^{-4}$ $\times 10^{-4}$ $\times 10^{-5}$ $) \times 10^{-3}$		- - -
$K_{S}^{0}K^{+}K^{-}$ $K_{S}^{0}a_{0}(980)^{0}$, $a_{0}^{0} \rightarrow K^{+}K^{-}$ $K^{-}a_{0}(980)^{+}$, $a_{0}^{+} \rightarrow K^{+}K_{S}^{0}$ $K^{+}a_{0}(980)^{-}$, $a_{0}^{-} \rightarrow K^{-}K_{S}^{0}$ $K_{S}^{0}f_{0}(980)$, $f_{0} \rightarrow K^{+}K^{-}$ $K_{S}^{0}\phi$, $\phi \rightarrow K^{+}K^{-}$ $K_{S}^{0}f_{0}(1370)$, $f_{0} \rightarrow K^{+}K^{-}$ $3K_{S}^{0}$ $K^{+}2K^{-}\pi^{+}$	<	(4.35 (2.9 (5.8 1.1 9 (2.00 (1.7 (7.5	± ± ± ± ±	0.32 0.4 1.7 0.15 1.1 0.6	$\begin{array}{c}) \times 10^{-3} \\) \times 10^{-3} \\) \times 10^{-4} \\ \times 10^{-4} \\ \times 10^{-5} \\) \times 10^{-3} \\) \times 10^{-4} \end{array}$	CL=95%	- - - - 520
$K_{S}^{0}K^{+}K^{-}$ $K_{S}^{0}a_{0}(980)^{0}$, $a_{0}^{0} \rightarrow K^{+}K^{-}$ $K^{-}a_{0}(980)^{+}$, $a_{0}^{+} \rightarrow K^{+}K_{S}^{0}$ $K^{+}a_{0}(980)^{-}$, $a_{0}^{-} \rightarrow K^{-}K_{S}^{0}$ $K_{S}^{0}f_{0}(980)$, $f_{0} \rightarrow K^{+}K^{-}$ $K_{S}^{0}\phi$, $\phi \rightarrow K^{+}K^{-}$ $K_{S}^{0}f_{0}(1370)$, $f_{0} \rightarrow K^{+}K^{-}$ $3K_{S}^{0}$ $K^{+}2K^{-}\pi^{+}$ $K^{+}K^{-}\overline{K}^{*}(892)^{0}$, $\overline{K}^{*0} \rightarrow$	<	(4.35 (2.9 (5.8 1.1 9 (2.00 (1.7 (7.5	± ± ± ± ±	0.32 0.4 1.7 0.15 1.1 0.6 0.31	$\begin{array}{c})\times 10^{-3} \\)\times 10^{-3} \\)\times 10^{-4} \\ \times 10^{-4} \\ \times 10^{-5} \\)\times 10^{-3} \\)\times 10^{-4} \\)\times 10^{-4} \end{array}$	CL=95%	- - - 520 - 539
$K_{S}^{0}K^{+}K^{-}$ $K_{S}^{0}a_{0}(980)^{0}$, $a_{0}^{0} \rightarrow K^{+}K^{-}$ $K^{-}a_{0}(980)^{+}$, $a_{0}^{+} \rightarrow K^{+}K_{S}^{0}$ $K^{+}a_{0}(980)^{-}$, $a_{0}^{-} \rightarrow K^{-}K_{S}^{0}$ $K_{S}^{0}f_{0}(980)$, $f_{0} \rightarrow K^{+}K^{-}$ $K_{S}^{0}\phi$, $\phi \rightarrow K^{+}K^{-}$ $K_{S}^{0}f_{0}(1370)$, $f_{0} \rightarrow K^{+}K^{-}$ $K_{S}^{0}f_{0}(1370)$, $f_{0} \rightarrow K^{+}K^{-}$ $K^{+}2K^{-}\pi^{+}$ $K^{+}K^{-}\overline{K}^{*}(892)^{0}$, $\overline{K}^{*0} \rightarrow K^{-}\pi^{+}$	<	(4.35 (2.9 (5.8 1.1 9 (2.00 (1.7 (7.5 (2.22 (4.4	± ± ± ± ± ±	0.32 0.4 1.7 0.15 1.1 0.6 0.31 1.7	$\begin{array}{c}) \times 10^{-3} \\) \times 10^{-3} \\) \times 10^{-4} \\ \times 10^{-4} \\ \times 10^{-5} \\) \times 10^{-3} \\) \times 10^{-4} \\) \times 10^{-4} \\) \times 10^{-5} \\ \end{array}$	CL=95%	- - 520 - 539 434 †
$K_{S}^{0}K^{+}K^{-}$ $K_{S}^{0}a_{0}(980)^{0}$, $a_{0}^{0} \rightarrow K^{+}K^{-}$ $K^{-}a_{0}(980)^{+}$, $a_{0}^{+} \rightarrow K^{+}K_{S}^{0}$ $K^{+}a_{0}(980)^{-}$, $a_{0}^{-} \rightarrow K^{-}K_{S}^{0}$ $K_{S}^{0}f_{0}(980)$, $f_{0} \rightarrow K^{+}K^{-}$ $K_{S}^{0}\phi$, $\phi \rightarrow K^{+}K^{-}$ $K_{S}^{0}\phi$, $\phi \rightarrow K^{+}K^{-}$ $K_{S}^{0}f_{0}(1370)$, $f_{0} \rightarrow K^{+}K^{-}$ $K^{+}K^{-}K^{-}K^{+}(892)^{0}$, $\overline{K}^{*0} \rightarrow K^{-}K^{+}K^{-}K^{-}K^{+}K^{-}K^{-}K^{+}K^{-}K^{-}K^{+}K^{-}K^{-}K^{-}K^{+}K^{-}K^{-}K^{-}K^{-}K^{-}K^{-}K^{-}K^{-$	<	(4.35 (2.9 (5.8 1.1 9 (2.00 (1.7 (7.5 (2.22 (4.4	± ± ± ± ± ± ±	0.32 0.4 1.7 0.15 1.1 0.6 0.31 1.7	$) \times 10^{-3}$ $) \times 10^{-4}$ $\times 10^{-4}$ $\times 10^{-5}$ $) \times 10^{-3}$ $) \times 10^{-4}$ $) \times 10^{-4}$	CL=95%	- - - 520 - 539 434 †
$K_{S}^{0}K^{+}K^{-}$ $K_{S}^{0}a_{0}(980)^{0}$, $a_{0}^{0} \rightarrow K^{+}K^{-}$ $K^{-}a_{0}(980)^{+}$, $a_{0}^{+} \rightarrow K^{+}K_{S}^{0}$ $K^{+}a_{0}(980)^{-}$, $a_{0}^{-} \rightarrow K^{-}K_{S}^{0}$ $K_{S}^{0}f_{0}(980)$, $f_{0} \rightarrow K^{+}K^{-}$ $K_{S}^{0}\phi$, $\phi \rightarrow K^{+}K^{-}$ $K_{S}^{0}\phi$, $\phi \rightarrow K^{+}K^{-}$ $K_{S}^{0}f_{0}(1370)$, $f_{0} \rightarrow K^{+}K^{-}$ $K^{+}K^{-}K^{-}K^{+}(892)^{0}$, $\overline{K}^{*0} \rightarrow K^{-}K^{+}K^{-}K^{-}K^{+}K^{-}K^{-}K^{+}K^{-}K^{-}K^{+}K^{-}K^{-}K^{-}K^{+}K^{-}K^{-}K^{-}K^{-}K^{-}K^{-}K^{-}K^{-$	<	(4.35 (2.9 (5.8 1.1 9 (2.00 (1.7 (7.5 (2.22 (4.4 (4.0 (1.06	± ± ± ± ± ± ± ±	0.32 0.4 1.7 0.15 1.1 0.6 0.31 1.7 1.7	$\begin{array}{c})\times 10^{-3} \\)\times 10^{-4} \\ \times 10^{-4} \\ \times 10^{-5} \\)\times 10^{-3} \\)\times 10^{-4} \\)\times 10^{-4} \\)\times 10^{-5} \\)\times 10^{-5} \\)\times 10^{-5} \\)\times 10^{-4} \end{array}$	CL=95%	- - - 520 - 539 434 †
$K_{S}^{0}K^{+}K^{-}$ $K_{S}^{0}a_{0}(980)^{0}$, $a_{0}^{0} \rightarrow K^{+}K^{-}$ $K^{-}a_{0}(980)^{+}$, $a_{0}^{+} \rightarrow K^{+}K_{S}^{0}$ $K^{+}a_{0}(980)^{-}$, $a_{0}^{-} \rightarrow K^{-}K_{S}^{0}$ $K_{S}^{0}f_{0}(980)$, $f_{0} \rightarrow K^{+}K^{-}$ $K_{S}^{0}\phi$, $\phi \rightarrow K^{+}K^{-}$ $K_{S}^{0}\phi$, $\phi \rightarrow K^{+}K^{-}$ $K_{S}^{0}f_{0}(1370)$, $f_{0} \rightarrow K^{+}K^{-}$ $3K_{S}^{0}$ $K^{+}2K^{-}\pi^{+}$ $K^{+}K^{-}\overline{K}^{*}(892)^{0}$, $\overline{K}^{*0} \rightarrow K^{-}\pi^{+}$ $K^{-}\pi^{+}\phi$, $\phi \rightarrow K^{+}K^{-}$	<	(4.35 (2.9 (5.8 1.1 9 (2.00 (1.7 (7.5 (2.22 (4.4 (4.0 (1.06	± ± ± ± ± ± ± ±	0.32 0.4 1.7 0.15 1.1 0.6 0.31 1.7 1.7 0.20	$\begin{array}{c}) \times 10^{-3} \\) \times 10^{-4} \\ \times 10^{-4} \\ \times 10^{-5} \\) \times 10^{-3} \\) \times 10^{-4} \\) \times 10^{-4} \\) \times 10^{-5} \\) \times 10^{-5} \\ \end{array}$	CL=95%	- - - 520 - 539 434 †

Pionic modes

Created: 5/30/2017 17:13

	10.110 1110465		
$\pi^+\pi^-$	$(1.407 \pm 0.025) \times 10^{-3}$	S=1.1	922
$2\pi^0$	$(8.22 \pm 0.25) \times 10^{-4}$		923
$\pi^+\pi^-\pi^0$	(1.47 ± 0.06) %	S=2.1	907
$ ho^+\pi^-$	$(10.0 \pm 0.4) \times 10^{-3}$		764
$ ho^{0}\pi^{0}$	$(3.81 \pm 0.23) \times 10^{-3}$		764
$ ho^-\pi^+$	$(5.08 \pm 0.25) \times 10^{-3}$		764
$ ho$ (1450) $^+\pi^-$, $ ho^+ ightarrow~\pi^+\pi^0$	$(1.6 \pm 2.0) \times 10^{-5}$		_
$ ho$ (1450) $^0\pi^0$, $ ho^0 ightarrow~\pi^+\pi^-$	$(4.4 \pm 1.9) \times 10^{-5}$		_
$ ho$ (1450) $^-\pi^+$, $ ho^- ightarrow~\pi^-\pi^0$	$(2.6 \pm 0.4) \times 10^{-4}$		_

HTTP://PDG.LBL.GOV

Page 14

$ ho$ (1700) $^+\pi^-$, $ ho^+ ightarrow~\pi^+\pi^0$				$1.5)\times 10^{-4}$		_
$ ho(1700)^0\pi^0$, $ ho^0 ightarrow~\pi^+\pi^-$				1.7) \times 10 ⁻⁴		_
$ ho(1700)^-\pi^+$, $ ho^- ightarrow~\pi^-\pi^0$				1.1) \times 10 ⁻⁴		_
$f_0(980)\pi^0$, $f_0 \to \pi^+\pi^-$				0.8) $\times 10^{-5}$		- - - -
$f_0(500)\pi^0$, $f_0 \to \pi^+\pi^-$				$0.21) \times 10^{-4}$		_
$f_0(1370)\pi^0$, $f_0 \to \pi^+\pi^-$				$2.1) \times 10^{-5}$		_
$\mathit{f}_{0}(1500)\pi^{0}$, $\mathit{f}_{0} ightarrow \pi^{+}\pi^{-}$		(5.7	\pm	1.6) \times 10 ⁻⁵		_
$f_0(1710)\pi^0$, $f_0 \to \pi^+\pi^-$		(4.5	\pm	1.6) \times 10 ⁻⁵		_
$\mathit{f}_{2}(1270)\pi^{0}$, $\mathit{f}_{2} ightarrow \pi^{+}\pi^{-}$		(1.94	\pm	$0.21) \times 10^{-4}$		_
$\pi^+\pi^-\pi^0$ nonresonant		(1.2	\pm	$0.4) \times 10^{-4}$		907
$3\pi^0$	•	< 3.5		$\times 10^{-4}$	CL=90%	908
$2\pi^{+}2\pi^{-}$		(7.45	\pm	$0.20) \times 10^{-3}$		880
$a_1(1260)^+\pi^-$, $a_1^+ ightarrow$		(4.47	\pm	$0.31) \times 10^{-3}$		_
$2\pi^+\pi^-$ total						
$\mathit{a}_{1}(1260)^{+}\pi^{-}$, $\mathit{a}_{1}^{+} ightarrow$		(3.23	\pm	$0.25) \times 10^{-3}$		_
$ ho^0\pi^+$ S-wave						
$a_1(1260)^+\pi^-$, $a_1^+ o$		(1.9	\pm	0.5) $\times 10^{-4}$		_
$\rho^0\pi^+$ D-wave						
$a_1(1260)^+\pi^-$, $a_1^+\to$		(6.2	\pm	0.7) \times 10 ⁻⁴		_
-		•		,		
$\sigma\pi^+$ 2 $ ho^0$ total		(1.83	\pm	$0.13) \times 10^{-3}$		518
$2 ho^0$, parallel helicities				$3.2) \times 10^{-5}$		_
$2 ho^0$, perpendicular helici-				$0.6) \times 10^{-4}$		_
ties						
$2 ho^{f 0}$, longitudinal helicities				$0.10) \times 10^{-3}$		_
Resonant $(\pi^+\pi^-)\pi^+\pi^-$		(1.49	\pm	$0.12) \times 10^{-3}$		_
3-body total						
$\sigma \pi^+ \pi^-$		(6.1	\pm	$0.9) \times 10^{-4}$		_
$f_0(980)\pi^+\pi^-, f_0 \rightarrow$		(1.8	\pm	0.5) \times 10 ⁻⁴		_
$\pi^{+}\pi^{-}$		(0 =		0.6 \ 10-4		
$f_2(1270)\pi^+\pi^-, f_2 \rightarrow$		(3.7	土	0.6) \times 10 ⁻⁴		_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(1 00	+	0.09) %		882
$\eta \pi^0$	[<i>r</i>]			$0.6) \times 10^{-4}$		846
$\omega \pi^0$		•		$0.35) \times 10^{-4}$		761
$2\pi^{+}2\pi^{-}\pi^{0}$	r, 1	•		$0.50^{\circ}) \times 10^{-3}$		844
$\eta \pi^+ \pi^-$	[<i>r</i>]			$0.16) \times 10^{-3}$		827
$\omega \pi^+ \pi^-$	[r]			$0.5) \times 10^{-3}$		738
$3\pi^{+}3\pi^{-}$	r. 1			1.2) \times 10 ⁻⁴		795
$\eta'(958)\pi^0$				1.4) \times 10 ⁻⁴		678
$\eta'(958)\pi^{+}\pi^{-}$				$1.7) \times 10^{-4}$		650
2η				$0.20) \times 10^{-3}$		754
$\eta \eta'(958)$				$0.26) \times 10^{-3}$		537
11 (300)		, 1.00		2.20 J A 20		551

Hadronic modes with a $K\overline{K}$ pair

V+ V-	٠ ر		٠,) 10-3		701
K+K-					$) \times 10^{-3}$	S=1.4	791
$2K_S^0$					$) \times 10^{-4}$		789
$K_{S}^{0}K^{-}\pi^{+}$					$) \times 10^{-3}$	S=1.1	739
$\overline{K}^*(892)^0 K_S^0, \overline{K}^{*0} \rightarrow$	(8.1	\pm	1.6	$) \times 10^{-5}$		608
$K^-\pi^+ K^*(892)^+K^-, K^{*+} \rightarrow$							
	(1.86	\pm	0.30	$) \times 10^{-3}$		_
$K_S^0\pi^+$							
$\overline{K}^*(1410)^0K^0_{S},\ \overline{K}^{*0} \to$	(1.2	\pm	1.8	$) \times 10^{-4}$		_
$\kappa^-\pi^+$							
$K^*(1410)^+ K^-, K^{*+} \rightarrow$	(3.1	\pm	1.9	$) \times 10^{-4}$		_
$K_S^0\pi^+$							
$(K^-\pi^+)_{S-wave}K^0_{\mathcal{S}}$	(5.9	\pm	2.8	$) \times 10^{-4}$		739
$(\kappa_S^0\pi^+)_{S-wave}\kappa^-$) × 10 ⁻⁴		739
$a_0(980)^-\pi^+, a_0^- \to K_S^0K^-$) × 10 ⁻⁴		_
$a_0(1450)^-\pi^+, a_0^- \rightarrow$					$) \times 10^{-5}$		_
•	(2.4	_	2.0) × 10		
$K_0^{\mathcal{S}}K^-$. 6		
$a_2(1320)^-\pi^+, a_2^- \to$	(5	\pm	5	$) \times 10^{-6}$		_
$K_S^0 K^-$							
$ ho(1450)^-\pi^+$, $ ho^- o K_S^0K^-$	(4.6	\pm	2.5	$) \times 10^{-5}$		_
$K_S^0 K^+ \pi^-$	(2.13	\pm	0.34	$) \times 10^{-3}$	S=1.1	739
$K^*(892)^0 K^0_S, K^{*0} \rightarrow$					$) \times 10^{-4}$		608
$K^+\pi^-$	`				,		
$K^*(892)^-K^+, K^{*-} \to$	(6.1	\pm	1.0	$) \times 10^{-4}$		_
$\kappa_{\rm S}^0 \pi^-$	`				,		
$K^*(1410)^0K^0_S,\;\;K^{*0} ightarrow$	(5	+	8	$) \times 10^{-5}$		_
$K^+\pi^+$	`				, , , ,		
$K^*(1410)^-K^+$, $K^{*-} \rightarrow$	(2.5	\pm	2.0	$) \times 10^{-4}$		_
$\kappa_{\rm S}^0\pi^{-}$	`				,		
$(K^+\pi^-)_{S-wave}K^0_{\mathcal{S}}$	(3.6	\pm	1.9	$) \times 10^{-4}$		739
$(\kappa_S^0\pi^-)_{S-wave}K^+$) × 10 ⁻⁴		739
$a_0(980)^+\pi^-, a_0^+ \rightarrow K_S^0K^+$					$) \times 10^{-4}$		-
$a_0(1450)^+\pi^-$, $a_0^+ o$	(3.2	土	2.5	$) \times 10^{-5}$		_
$K_S^0K^+$					_		
$ ho(1700)^{+}\pi^{-}, \ \rho^{+} ightarrow K_{S}^{0}K^{+}$					$) \times 10^{-5}$		_
$K^+K^-\pi^0$	(3.37	\pm	0.15	$) \times 10^{-3}$		743
$K^*(892)^+ K^-$, $K^*(892)^+ o$					$) \times 10^{-3}$		_
$K^+\pi^0$					4		
$K^*(892)^- K^+, K^*(892)^- \rightarrow$	(5.4	\pm	0.4	$) \times 10^{-4}$		_
$(K^{-}\pi^{0})_{S-wave}K^{-}$,	2.40		0 17) v 10-3		742
$(N-\pi)S-wave$ N					$) \times 10^{-3}$		743
$(K^-\pi^0)_{S-wave}K^+$	(1.3	土	0.5	$) \times 10^{-4}$		743

Other $K\overline{K}X$ modes. They include all decay modes of the ϕ , η , and ω .

Radiative modes

Doubly Cabibbo suppressed (DC) modes or $\Delta C = 2$ forbidden via mixing (C2M) modes

HTTP://PDG.LBL.GOV

Page 17

$\Delta C = 1$ weak neutral current (C1) modes, Lepton Family number (LF) violating modes, Lepton (L) or Baryon (B) number violating modes

$\gamma \gamma$	C1	< 8.5	$\times 10^{-7}$	CL=90%	932
e^+e^-	C1	< 7.9	$\times 10^{-8}$	CL=90%	932
$\mu^+\mu^-$	C1	< 6.2	$\times 10^{-9}$	CL=90%	926
$\pi^{0} e^{+} e^{-}$	C1	< 4.5	$\times 10^{-5}$	CL=90%	928
$\pi^{0} \mu^{+} \mu^{-}$	C1	< 1.8	$\times 10^{-4}$	CL=90%	915
$\eta\mathrm{e^+e^-}$	C1	< 1.1	$\times 10^{-4}$	CL=90%	852
$\eta \mu^+ \mu^-$	C1	< 5.3	$\times 10^{-4}$	CL=90%	838
$\pi^{+}\pi^{-}e^{+}e^{-}$	C1	< 3.73	$\times 10^{-4}$	CL=90%	922
$ ho^0e^+e^-$	C1	< 1.0	$\times 10^{-4}$	CL=90%	771
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	C1	< 5.5	$\times 10^{-7}$	CL=90%	894
$ ho^0 \mu^+ \mu^-$	C1	< 2.2	$\times 10^{-5}$	CL=90%	754
$\omega e^+ e^-$	C1	< 1.8	$\times 10^{-4}$	CL=90%	768
$\omega \mu^+ \mu^-$	C1	< 8.3	$\times 10^{-4}$	CL=90%	751
$K^- K^+ e^+ e^-$	C1	< 3.15	$\times 10^{-4}$	CL=90%	791
ϕe^+e^-	C1	< 5.2	$\times 10^{-5}$	CL=90%	654
$K^-K^+\mu^+\mu^-$	C1	< 3.3	$\times 10^{-5}$	CL=90%	710
$\phi \mu^+ \mu^-$	C1	< 3.1	$\times 10^{-5}$	CL=90%	631
$\overline{K}{}^0 e^+ e^-$		[h] < 1.1	$\times 10^{-4}$	CL=90%	866
$\overline{K}{}^0\mu^+\mu^-$		[h] < 2.6	$\times 10^{-4}$	CL=90%	852
$K^-\pi^+e^+e^-$	C1	< 3.85	$\times 10^{-4}$	CL=90%	861
$\overline{K}^*(892)^0 e^+ e^-$		[h] < 4.7	$\times10^{-5}$	CL=90%	719
$\mathcal{K}^-\pi^+\mu^+\mu^-$	C1	< 3.59	$\times 10^{-4}$	CL=90%	829
$\mathit{K}^-\pi^+\mu^+\mu^-$, 675 $<$		(4.2 ± 0.4	$) \times 10^{-6}$		_
$m_{\mu\mu}~<$ 875 MeV					
$\overline{K}^*(892)^0 \mu^+ \mu^-$		[h] < 2.4	$\times10^{-5}$	CL=90%	700
. , , .		= =			

$\pi^{+}\pi^{-}\pi^{0}\mu^{+}\mu^{-}$	C1		0.1	10-4	CL 000/	060
· · ·	C1		8.1	\times 10 ⁻⁴	CL=90%	863
$\mu^{\pm} e^{\mp}$	LF	[s]	1.3	$\times 10^{-8}$	CL=90%	929
$\pi^0e^\pm\mu^\mp$	LF	[s]	8.6	$\times 10^{-5}$	CL=90%	924
$\etae^{\pm}\mu^{\mp}$	LF	[s]	1.0	$\times 10^{-4}$	CL=90%	848
$\pi^+\pi^-e^\pm\mu^\mp$	LF	[s] <	1.5	$\times 10^{-5}$	CL=90%	911
$ ho^{0}e^{\pm}\mu^{\mp}$	LF	[s]	4.9	$\times 10^{-5}$	CL=90%	767
$\omega e^\pm \mu^\mp$	LF	[s]	1.2	$\times 10^{-4}$	CL=90%	764
$K^-K^+e^\pm\mu^\mp$	LF	[s]	1.8	$\times 10^{-4}$	CL=90%	754
$\phie^\pm\mu^\mp$	LF	[s]	3.4	$\times 10^{-5}$	CL=90%	648
$\overline{K}^0 e^{\pm} \mu^{\mp}$	LF	[s]	1.0	$\times 10^{-4}$	CL=90%	863
$\mathit{K}^-\pi^+e^\pm\mu^\mp$	LF	[s]	5.53	$\times 10^{-4}$	CL=90%	848
$\overline{K}^*(892)^0 e^{\pm} \mu^{\mp}$	LF	[s] <	8.3	$\times 10^{-5}$	CL=90%	714
$2\pi^{-}2e^{+}$ + c.c.	L	<	1.12	$\times 10^{-4}$	CL=90%	922
$2\pi^{-}2\mu^{+}$ + c.c.	L	<	2.9	$\times 10^{-5}$	CL=90%	894
$K^-\pi^-2e^+ + \text{c.c.}$	L	<	2.06	$\times 10^{-4}$	CL=90%	861
$K^-\pi^-2\mu^+ + { m c.c.}$	L	<	3.9	\times 10 ⁻⁴	CL=90%	829
$2K^{-}2e^{+}$ + c.c.	L	<	1.52	$\times 10^{-4}$	CL=90%	791
$2K^{-}2\mu^{+}$ + c.c.	L	<	9.4	$\times10^{-5}$	CL=90%	710
$\pi^-\pi^-e^+\mu^++$ c.c.	L	<	7.9	$\times10^{-5}$	CL=90%	911
$K^-\pi^-e^+\mu^++$ c.c.	L	<	2.18	$\times 10^{-4}$	CL=90%	848
$2K^{-}e^{+}\mu^{+}+$ c.c.	L	<	5.7	$\times10^{-5}$	CL=90%	754
pe ⁻	L,B	[t] <	1.0	$\times10^{-5}$	CL=90%	696
<u>'</u> ₱e ⁺	L,B	[u] <	1.1	$\times 10^{-5}$	CL=90%	696

$D^*(2007)^0$

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Mass
$$m=2006.85\pm0.05$$
 MeV (S = 1.1) $m_{D^{*0}}-m_{D^0}=142.016\pm0.030$ MeV (S = 1.5) Full width Γ < 2.1 MeV, CL = 90%

 $\overline{D}^*(2007)^0$ modes are charge conjugates of modes below.

D*(2007) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0\pi^0$	(64.7±0.9) %	43
$D^0\gamma$	$(35.3\pm0.9)~\%$	137

$D^*(2010)^{\pm}$

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Mass
$$m=2010.26\pm0.05$$
 MeV $m_{D^*(2010)^+}-m_{D^+}=140.67\pm0.08$ MeV $m_{D^*(2010)^+}-m_{D^0}=145.4257\pm0.0017$ MeV Full width $\Gamma=83.4\pm1.8$ keV

 $D^*(2010)^-$ modes are charge conjugates of the modes below.

$D^*(2010)^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0\pi^+$	(67.7±0.5) %	39
$D^+\pi^0$	$(30.7 \pm 0.5) \%$	38
$D^+\gamma$	$(1.6\pm0.4)\%$	136

$D_0^*(2400)^0$

$$I(J^P) = \frac{1}{2}(0^+)$$

Mass
$$m=2318\pm29$$
 MeV (S = 1.7) Full width $\Gamma=267\pm40$ MeV

$D_0^*(2400)^0$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^+\pi^-$	seen	385

$D_1(2420)^0$

$$I(J^P) = \frac{1}{2}(1^+)$$
I needs confirmation.

Mass $m=2420.8\pm0.5$ MeV (S = 1.3) $m_{D_1^0}-m_{D^{*+}}=410.6\pm0.5$ (S = 1.3) Full width $\Gamma=31.7\pm2.5$ MeV (S = 3.5)

 $\overline{D}_1(2420)^0$ modes are charge conjugates of modes below.

D ₁ (2420) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^*(2010)^+\pi^-$	seen	353
$D^0\pi^+\pi^-$	seen	425
$D^+\pi^-$	not seen	472
$D^{st 0}\pi^+\pi^-$	not seen	279

$D_2^*(2460)^0$

$$I(J^P) = \frac{1}{2}(2^+)$$

Created: 5/30/2017 17:13

 $J^P = 2^+$ assignment strongly favored.

Mass
$$m=2460.7\pm0.4$$
 MeV (S = 3.1) $m_{D_2^{*0}}-m_{D^+}=591.1\pm0.4$ MeV (S = 2.6) $m_{D_2^{*0}}-m_{D^{*+}}=450.4\pm0.4$ MeV (S = 2.9) Full width $\Gamma=47.5\pm1.1$ MeV (S = 1.8)

 $\overline{D}_2^*(2460)^0$ modes are charge conjugates of modes below.

D*(2460)0 DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^+\pi^-$	seen	505
$D^*(2010)^+\pi^- \ D^0\pi^+\pi^-$	seen	389
	not seen	462
$D^{*0}\pi^{+}\pi^{-}$	not seen	324

$D_2^*(2460)^{\pm}$

$$I(J^P) = \frac{1}{2}(2^+)$$

 $J^P = 2^+$ assignment strongly favored.

Mass
$$m=2465.4\pm1.3~{
m MeV}~{
m (S}=3.1)$$
 $m_{D_2^*(2460)^\pm}-m_{D_2^*(2460)^0}=2.4\pm1.7~{
m MeV}$ Full width $\Gamma=46.7\pm1.2~{
m MeV}$

 $D_2^*(2460)^-$ modes are charge conjugates of modes below.

$D_2^*(2460)^{\pm}$ DECAY MODES	Fraction (Γ_{i}/Γ)	p (MeV/c)
$D^0\pi^+$	seen	513
$D^{*0}\pi^+$	seen	396
$D^+\pi^+\pi^-$	not seen	462
$D^{*+}\pi^{+}\pi^{-}$	not seen	326

NOTES

- [a] This result applies to $Z^0 \to c \, \overline{c}$ decays only. Here ℓ^+ is an average (not a sum) of e^+ and μ^+ decays.
- [b] See the Particle Listings for the (complicated) definition of this quantity.
- [c] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers in the Particle Listings.
- [d] These subfractions of the $K^-2\pi^+$ mode are uncertain: see the Particle Listings.
- [e] Submodes of the $D^+ \to K^- 2\pi^+ \pi^0$ and $K^0_S 2\pi^+ \pi^-$ modes were studied by ANJOS 92C and COFFMAN 92B, but with at most 142 events for the first mode and 229 for the second not enough for precise results. With nothing new for 18 years, we refer to our 2008 edition, Physics Letters **B667** 1 (2008), for those results.

- [f] The unseen decay modes of the resonances are included.
- [g] This is *not* a test for the $\Delta C=1$ weak neutral current, but leads to the $\pi^+\ell^+\ell^-$ final state.
- [h] This mode is not a useful test for a $\Delta C=1$ weak neutral current because both quarks must change flavor in this decay.
- [i] In the 2010 *Review*, the values for these quantities were given using a measure of the asymmetry that was inconsistent with the usual definition.
- [j] This value is obtained by subtracting the branching fractions for 2-, 4- and 6-prongs from unity.
- [k] This is the sum of our $K^-2\pi^+\pi^-$, $K^-2\pi^+\pi^-\pi^0$, $\overline{K}^02\pi^+2\pi^-$, $K^+2K^-\pi^+$, $2\pi^+2\pi^-$, $2\pi^+2\pi^-\pi^0$, $K^+K^-\pi^+\pi^-$, and $K^+K^-\pi^+\pi^-\pi^0$, branching fractions.
- [/] This is the sum of our $K^-3\pi^+2\pi^-$ and $3\pi^+3\pi^-$ branching fractions.
- [n] The branching fractions for the $K^-e^+\nu_e$, $K^*(892)^-e^+\nu_e$, $\pi^-e^+\nu_e$, and $\rho^-e^+\nu_e$ modes add up to 6.19 \pm 0.17 %.
- [o] This is a doubly Cabibbo-suppressed mode.
- [p] The two experiments measuring this fraction are in serious disagreement. See the Particle Listings.
- [q] Submodes of the $D^0 \to K_S^0 \pi^+ \pi^- \pi^0$ mode with a K^* and/or ρ were studied by COFFMAN 92B, but with only 140 events. With nothing new for 18 years, we refer to our 2008 edition, Physics Letters **B667** 1 (2008), for those results.
- [r] This branching fraction includes all the decay modes of the resonance in the final state.
- [s] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [t] This limit is for either D^0 or $\overline{D}{}^0$ to pe^- .
- [u] This limit is for either D^0 or $\overline{D}{}^0$ to $\overline{p}e^+$.