

Group Report

speaker: Xiongyi Li 17th Nov 2023

Outline

- Deep Reinforcement Learning
 - basics
- Views in Self Direction
 - soliding
 - personal thoughts

Basics

First part Machine Learning Fundamentals

Monte Carlo
Reinforcement Learning Basic
Concepts

Machine Learning Fundamentals

1.1 Linear models

eg. house purchasing considering price, distance to work, size, years of construction....

$$m{x} = egin{bmatrix} x_1, x_2, \cdots, x_d \end{bmatrix}^T.$$
 weights(权重 ω) $f(m{x}; m{w}, b) \triangleq m{x}^T m{w} + b.$ offset(偏移量b) $f(m{x}; m{w}, b) \triangleq w_1 x_1 + w_2 x_2 + \cdots + w_d x_d + b.$ training data $\widehat{y}' = f(m{x}'; \widehat{m{w}}, \widehat{b}),$ loss(损失函数) $L(m{w}, b) = rac{1}{2n} \sum_{i=1}^n \left[f(m{x}_i; m{w}, b) - y_i
ight]^2.$

Monte Carlo

2.1 random variable

probability mass function(概率质量函数)

probability density function(概率密度函数)

expectation(期望)

$$\mathbb{E}_{X \sim p(\cdot)} \big[h(X) \big] \ = \ \sum_{x \in \mathcal{X}} p(x) \cdot h(x).$$

$$\mathbb{E}_{X \sim p(\cdot)} \big[h(X) \big] \ = \ \int_{\mathcal{X}} p(x) \cdot h(x) \ dx.$$

- Monte Carlo
- 2.2Monte Carlo estimation

抽到的红色的点可能落在绿色的圆内部,也可能落在外部。

estimation of
$$\pi$$

$$p(green) = \frac{\pi}{4}$$

all dots = n; dots in green = variable M

expectation[M] =
$$\frac{\pi n}{4}$$

In experiment, we find that m dots in green.

when n is big enough, number m is very close to expectation[M]

so m
$$\approx \frac{\pi n}{4}$$
, then $\pi \approx \frac{4m}{n}$

Reinforcement Learning Basic Concepts

3.1 Terminology

environment(环境)

agent(智能体)

state(状态s)

action(动作a)

policy(决策π)

reward(奖励r)

当前时刻 状态 s 智能体 对作 a 环境

trajectory(轨迹): all states actions rewards

Markov property: $\mathbb{P}(S_{t+1} | S_t, A_t) = \mathbb{P}(S_{t+1} | S_1, A_1, S_2, A_2, \dots, S_t, A_t)$.

Reinforcement Learning Basic Concepts

3.2 Return

return: cumulative future reward (U_t)

$$U_t = R_t + R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_n.$$

optimum policy(最优策略): maximize expectation[return] discounted return(折扣回报)

$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \cdots$$

Reinforcement Learning Basic Concepts

3.3 Value function(价值函数)

U_t is a variable ——> unknown action-value function(动作价值函数):

$$Q_{\pi}(s_t,a_t) = \mathbb{E}_{S_{t+1},A_{t+1},\cdots,S_n,A_n} \Big[U_t \, \Big| \, S_t = s_t, A_t = a_t \Big].$$
 related to \mathbf{s}_t , \mathbf{a}_t , π

optimal action-value function(最优动作价值函数):

$$Q_{\star}(s_t, a_t) = \max_{\pi} Q_{\pi}(s_t, a_t), \quad \forall s_t \in \mathcal{S}, \quad a_t \in \mathcal{A}.$$

state-value function(状态价值函数):

$$V_{\pi}(s_t) = \sum_{a \in \mathcal{A}} \pi(a|s_t) \cdot Q_{\pi}(s_t, a).$$

related to $s_t \& \pi$

Views in Self Direction

knowledge to solid

personal thoughts

Views in Self Direction

knowledge to solid

1. deep learning2. computer vision3. robotic control

There is still a lot to learn

Views in Self Direction

personal thoughts

application:

- DRL for more intelligent NPC
- robots with DPL for like somewhat boxing learning (from video or live, may be applied for other areas)

Thank You!

Avenida da Universidade, Taipa, Macau, China

Email: mc35289@um.edu.mo Website: www.um.edu.mo

