A QUASI-RANDOM GRAPH SEQUENCE

MILES KRETSCHMER

Fix a prime p. Let $q = p^r$ be a power of p, and F_q the field with q elements. We let F_q^+ denote its additive group and F_q^{\times} its multiplicative group. We then have the Artin-Schreier homomorphism

$$\tau: F_q^+ \to F_q^+$$
$$t \mapsto t^p - t$$

This fits into an exact sequence

$$0 \longrightarrow F_p^+ \longrightarrow F_q^+ \stackrel{\tau}{\longrightarrow} F_q^+ \longrightarrow F_q^+/\tau F_q^+ \longrightarrow 0$$

Therefore, $\left[F_q^+:\tau F_q^+\right]=p$. We form a graph G_q with vertex set F_q , connecting $x\neq y$ by an edge if $x\cdot y\in \tau F_q^+$. For $x\in F_q^\times$, x is connected to exactly those $y\in x^{-1}\tau F_q^+$ which are not equal to x. As multiplication by x^{-1} is an automorphism of F_q^+ , this is also a subgroup of index p. Thus the neighborhood N(x) of x has size q/p or q/p-1.

Theorem 1. The sequence of graphs G_q for $q = p^r$, r a natural number, is quasi-random with edge density 1/p.

Proof. We use the following criterion. For x, y vertices, let $n(x, y) = |N(x) \cap N(y)|$. It then suffices to show that

$$\sum_{x,y} \left| n(x,y) - \frac{q}{p^2} \right| = o(q^3)$$

We will in fact show that this sum is bounded by a constant multiple of q^2 . We first replace n(x,y) with a quantity that is easier to count. Let $N^{\star}(x)$ be $x^{-1}\tau F_q^+$ if $x\in F_q^{\times}$, and F_q if x=0. This differs from N(x) only in that it may contain x. We define

$$n^{\star}(x,y) = |N^{\star}(x) \cap N^{\star}(y)|$$

Now $|n^*(x,y) - n(x,y)| \le 2$, so

$$\sum_{x,y} \left| n(x,y) - \frac{q}{p^2} \right| \le \sum_{x,y} \left| n^*(x,y) - \frac{q}{p^2} \right| + 2q^2$$

Therefore, it suffices to bound the latter quantity by a constant multiple of q^2 .

Now, note that $N^*(x) \cap N^*(y)$ is either

- (1) all of F_q , if x = y = 0
- (2) a subgroup of index p, if one of x and y is nonzero and the other is 0
- (3) an intersection of two subgroups of index p, if x and y are both nonzero

We see that in each case, $n^*(x,y) \ge q/p^2$. Therefore, we can get rid of the absolute value in the sum, and bound the quantity

$$\sum_{x,y} n^{\star}(x,y) - \frac{q^3}{p^2}$$

The sum

$$\sum_{x,y} n^{\star}(x,y)$$

Date: August 2024.

is the number of triples (x, y, z) such that $xz \in \tau F_q^+$ and $yz \in \tau F_q^+$. We will count these triples by counting the number of 5-tuples in the set

$$S = \{(x, y, z, s, t) \in F_q^5 \mid xz = t^p - t \text{ and } yz = s^p - s\}$$

Each triple (x, y, z) then corresponds to p^2 5-tuples in S, as the fibers of τ have size p. Consequently,

$$\sum_{x,y} n^{\star}(x,y) = \frac{|S|}{p^2}$$

To count the number of elements in S, we let

$$S_z = \{(x, y, s, t) \in F_q^4 \mid (x, y, z, s, t) \in S\}$$

For z = 0 we have $S_0 = F_q \times F_q \times F_p \times F_p$, so $|S_0| = q^2 p^2$. For $z \in F_q^{\times}$, a choice $(x, y, s, t) \in S_z$ is determined by any choice of (s, t), so $|S_z| = q^2$ in this case. Summing over all z, we have

$$|S| = q^2p^2 + (q-1)q^2$$

Therefore,

$$\frac{|S|}{p^2} = q^2 + \frac{(q-1)q^2}{p^2} = \left[1 - \frac{1}{p^2}\right]q^2 + \frac{q^3}{p^2}$$

and so

$$\sum_{x,y} \left| n^{\star}(x,y) - \frac{q}{p^2} \right| = \sum_{x,y} n^{\star}(x,y) - \frac{q^3}{p^2} = \left[1 - \frac{1}{p^2} \right] q^2$$

which is a constant multiple of q^2 , as required. We conclude that the graph sequence $\{G_q\}$ is quasi-random with edge density $\frac{1}{p}$.

"When you observe an interesting property of numbers, ask if perhaps you are not seeing, in the 1×1 case, an interesting property of matrices" -Olga Taussky

Indeed, we can generalize this to matrices over finite fields. We define G_q^n to be a graph whose vertex set is $M_n(F_q)$, the set of $n \times n$ matrices over F_q , where we connect $a \neq b$ by an edge if $\operatorname{tr}(ab) \in \tau F_q^+$. Note that this is a symmetric relation by properties of trace, despite multiplication being non-commutative.

Theorem 2. For fixed n, the sequence of graphs G_q^n for $q = p^r$, r ranging over natural numbers, is quasi-random with edge density 1/p.

Note that the previous theorem is the n=1 case.

Proof. The strategy is similar to the previous proof. The trace map is a surjective abelian group homomorphism

$$\operatorname{tr}: \operatorname{M}_n(F_q) \to F_q^+$$

Therefore $(tr)^{-1}(\tau F_q^+)$ is an additive subgroup of $M_n(F_q)$ of index p. We denote this subgroup by H. We will show as before that

$$\sum_{a,b} \left| n(a,b) - \frac{q^{n^2}}{p^2} \right| = o(q^{3n^2})$$

We define, in a similar way as before

$$N^{\star}(a) = \{ b \in \mathcal{M}_n(F_q) \mid ab \in H \}$$

$$n^{\star}(a,b) = |N^{\star}(a) \cap N^{\star}(b)|$$

Again we have

$$\sum_{a,b} \left| n(a,b) - \frac{q}{p^2} \right| \le \sum_{a,b} \left| n^*(a,b) - \frac{q^{n^2}}{p^2} \right| + 2q^{2n^2}$$

so it suffices to bound this latter sum. $N^*(a)$ is the preimage of H under the endomorphism of the additive group $M_n(F_q)$ given by left multiplication by a, so is a subgroup of index at most p. Therefore $N^*(a) \cap N^*(b)$

is the intersection of two subgroups of index at most p, so a subgroup of index at most p^2 . Thus $n^*(a,b) \ge q^{n^2}/p^2$. We can therefore remove the absolute value signs, and bound

$$\sum_{a,b} n^{\star}(a,b) - \frac{q^{3n^2}}{p^2}$$

As before, the sum is the number of triples (a, b, c) such that $ac \in H$ and $bc \in H$. Let T be the set of such triples. We let

$$T_c = \{(a, b) \in M_n(F_q) \times M_n(F_q) \mid (a, b, c) \in T\}$$

For $c \in GL_n(F_q)$, $T_c = Hc^{-1} \times Hc^{-1}$, the Cartesian product of two copies of the image of H under right multiplication by c^{-1} . Therefore, $|T_c| = q^{2n^2}/p^2$ in this case.

For $c \notin GL_n(F_q)$, we have in any case that $|T_c| \le q^{2n^2}$. We will now bound the size of the set of singular matrices

$$M_n(F_q) \setminus GL_n(F_q)$$

A matrix is in this set if either its first column is 0, or its first column is nonzero and its second column is a scalar multiple of its first, or its first two columns are linearly independent and its third is a linear combination of them, etc. This gives a rough bound

$$|\mathcal{M}_n(F_q) \setminus \mathrm{GL}_n(F_q)| \le q^{n(n-1)} + q \cdot q^{n(n-1)} + q^2 \cdot q^{n(n-1)} + \dots + q^{n-1} \cdot q^{n(n-1)}$$

 $\le n \cdot q^{n-1} \cdot q^{n(n-1)} = n \cdot q^{n^2-1}$

Together with the fact that $|GL_n(F_q)| \leq q^{n^2}$, we have the bound

$$|T| = \sum_{c} |T_c| \le q^{n^2} \cdot \frac{q^{2n^2}}{p^2} + n \cdot q^{n^2 - 1} \cdot q^{2n^2} = \frac{q^{3n^2}}{p^2} + n \cdot q^{3n^2 - 1}$$

And therefore,

$$\sum_{a,b} \left| n(a,b) - \frac{q^{n^2}}{p^2} \right| \le \sum_{a,b} \left| n^*(a,b) - \frac{q^{n^2}}{p^2} \right| + 2q^{2n^2} = \sum_{a,b} n^*(a,b) - \frac{q^{3n^2}}{p^2} + 2q^{2n^2} = |T| - \frac{q^{3n^2}}{p^2} + 2q^{2n^2} \\
< n \cdot q^{3n^2 - 1} + 2q^{2n^2} = o(q^{3n^2})$$

as required. We conclude that for fixed n, $\{G_a^n\}$ is quasi-random with edge density 1/p.