Analiza II.1*

Rozwiązanie zadań z serii nr. 3

KONRAD KACZMARCZYK

11 kwietnia 2025

Zadanie. Niech $U = \mathbb{R}^3 \setminus \{0\}$, $\omega = x \mathrm{d} y \wedge \mathrm{d} z + y \mathrm{d} z \wedge \mathrm{d} x + z \mathrm{d} x \wedge \mathrm{d} y$ oraz $f \in C^\infty(U)$. Wykazać, że $\mathrm{d}(f(y\,dx-x\,dy))$ jest proporcjonalna do formy ω wtedy i tylko wtedy gdy f jest dodatnio jednorodna stopnia -2. Jaki warunek na f jest równoważny równaniu $\mathrm{d}(f(y\,\mathrm{d} x - x \mathrm{d} y)) = 0$?

Zadanie. Niech

$$\omega = \frac{(x-1)dy - ydx}{(x-1)^2 + y^2} - \frac{(x+1)dy - ydx}{(x+1)^2 + y^2}$$

- (a) Wykazać, że nie istnieje funkcja $f \in C^{\infty}(\mathbb{R}^2 \setminus \{\pm 1, 0\})$ taka, że $\omega = \mathrm{d}f$.
- (b) Czy istnieje funkcja $f \in C^{\infty}(\mathbb{R}^2 \setminus \{[-1,1] \times 0\})$ taka, że $\omega = df$?

Zadanie. Niech U będzie dopełnieniem w \mathbb{R}^3 półprostej $\{x=y=0,z\leq 0\},\ W=\{(u,v,w):w>0\}$ oraz $\phi:W\to U$ dane jest wzorem

$$\phi(u, v, w) = \left(uw, vw, \frac{1}{2}(-u^2 - v^2 + w^2)\right).$$

Dana jest 2-forma $\omega \in \Omega^2(U)$: $\omega = \frac{1}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} (x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy)$

1

- (a) Wykazać, że ϕ jest dyfeomorfizmem W na U.
- **(b)** Obliczyć $\phi * \omega$.
- (c) Znaleźć 1-formę $\alpha \in \Omega^1(W)$ taką, że $d\alpha = \phi * \omega$.
- (d) Wywnioskować, że istnieje 1-forma $\beta\in\Omega^1(U)$ taka, że $\mathrm{d}\beta=\omega$