Пространство ограниченных функций

Теорема 1. Если $f_n \in C^1[a,b], \, f_n \overset{[a,b]}{\rightrightarrows} f$ и $f_n' \overset{[a,b]}{\rightrightarrows} g$, тогда g=f'.

Rm: 1. Несколько замечаний к доказательству:

- (1) Из теоремы $\Rightarrow f \in C^1[a,b]$: равномерная сходимость сохраняет непрерывность $\Rightarrow f$ непрерывна, $f'=g\Rightarrow f$ дифференцируема и поскольку производная является равномерным пределом непрерывных функций, то она сама является непрерывной функцией;
- (2) Условие $f_n \stackrel{[a,b]}{\Rightarrow} f$ можно заменить на условие: $\exists x_0 \in [a,b] \colon f_n(x_0)$ сходится. Тогда утверждение будет звучать так: $\exists f \colon f_n \stackrel{[a,b]}{\Rightarrow} f$, f дифференцируема и f' = g. Почему возможна замена? Поскольку функции дифференцируема, то по теореме Лагранжа:

$$\exists c \in [a,b] : (f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0)) = (f'_n(c) - f'_m(c))(x - x_0) \Rightarrow$$

$$\Rightarrow \forall x \in [a,b], \exists c \in [a,b] : f_n(x) - f_m(x) = (f'_n(c) - f'_m(c))(x - x_0) + (f_n(x_0) - f_m(x_0)) \Rightarrow$$

$$\Rightarrow \sup_{[a,b]} |f_n(x) - f_m(x)| \leq |f_n(x_0) - f_m(x_0)| + \sup_{[a,b]} |f'_n(x) - f'_m(x)|(b - a) \xrightarrow{n,m \to \infty} 0$$

(3) В доказательстве не использовалась непрерывность f'_n , поскольку это необходимо для простоты формулировки теоремы;

Следствие 1. Линейное пространство $C^k[a,b]$ (k-раз дифференцируемые функции, производные - непрерывны) с нормой

$$||f|| = \max_{[a,b]} |f| + \max_{[a,b]} |f'| + \ldots + \max_{[a,b]} |f^{(k)}|$$

является банаховым пространством.

 \square Докажем для k=1, для более высоких порядков - аналогично. Факт, что ||f|| - норма проверяется на семинарах.

Пусть f_n - фундаментальная последовательность, тогда:

$$\forall \varepsilon > 0, \exists N : \forall n, m > N, \|f_n - f_m\| < \varepsilon \Rightarrow \max_{[a,b]} |f_n - f_m| < \varepsilon \land \max_{[a,b]} |f'_n - f'_m| < \varepsilon$$

Тогда f_n - фундаментальна в C[a,b], а поскольку это полное пространство, то

$$\exists f \in C[a,b] \colon f_n \Longrightarrow f \Leftrightarrow \max_{[a,b]} |f_n - f_m| \to 0$$

Вместе с этим, f_n' - фундаментальна в C[a,b]. Тогда

$$\exists g \in C[a,b] \colon f_n' \rightrightarrows g \Leftrightarrow \max_{[a,b]} |f_n' - g| \to 0$$

Тогда по теореме: $f'=g\Rightarrow f\in C^1[a,b].$ Тогда:

$$||f_n - f|| = \max_{[a,b]} |f_n - f| + \max_{[a,b]} |f'_n - f'| \to 0$$

то есть, фундаментальная последовательность сходится.

Придумаем пример двух норм, которые не будут эквивалентными.

Пример: Пространство $C^1[a,b]$, 1-ая норма: $||f||_0 = \max_{[a,b]} |f|$, 2-ая норма: $||f||_1 = \max_{[a,b]} |f| + \max_{[a,b]} |f'|$. Эти нормы не являются эквивалентными.

Нормы эквивалентны $\Leftrightarrow \exists c_1, c_2 \colon \|\cdot\|_0 \le c_1 \|\cdot\|_1 \wedge \|\cdot\|_1 \le c_2 \|\cdot\|_0$. Но в данном случае, не выполняется второе неравенство.

Если $\|\cdot\|_1 \le c_2 \|\cdot\|_0$, то max |f'| оцениваете через max |f|. Пусть $f_n(x) = \frac{1}{n} \sin{(n^2 x)}$. Тогда max $|f_n| \to 0$, но $f'_n = n \cos{(n^2 x)}$ и max $|f'_n| \to \infty$. То есть нормы не эквивалентны.

Открытые и замкнутые множества в метрических пространствах

Пусть (X, ρ) - метрическое пространство.

Опр: 1. Множество $\mathcal{U} \subset X$ называется открытым, если $\forall a \in \mathcal{U}, \exists B(a,r) \subset \mathcal{U}$.

Опр: 2. Множество $F \subset X$ называется замкнутым, если $X \setminus F$ - открытое.

Примеры:

- (1) Открытый шар открытое множество;
- (2) Замкнутый шар замкнутое множество;

(1) Возьмем шар $B(a,r) = \{x \mid \rho(a,x) < r\}$, возьмем точку b внутри этого шара, покажем, что она будет входить в B(a,r) с некоторой своей окрестностью.

Пусть $\delta = r - \rho(a, b)$, возьмем шар $B(b, \delta)$. Проверим, что $\forall x \in B(b, \delta), x \in B(a, r)$:

$$\rho(a, x) \le \rho(a, b) + \rho(b, x) < \rho(a, b) + \delta = \rho(a, b) + (r - \rho(a, b)) = r$$

Рис. 1: Открытый шар - открытое множество.

(2) (Упр.): Возьмем шар $\overline{B}(a,r) = \{ x \mid \rho(a,x) \leq r \}$, покажем, что $X \setminus \overline{B}(a,r)$ - открытое множество. Возьмем точку $b \notin \overline{B}(a,r)$, покажем, что она будет входить в $X \setminus \overline{B}(a,r)$ с некоторой своей окрестностью.

Поскольку $b \in X \setminus \overline{B}(a,r) \Rightarrow \rho(a,b) > r \Rightarrow$ пусть $\delta = \rho(a,b) - r > 0$, возьмем шар $B(b,\delta)$. Проверим, что $\forall x \in B(b,\delta), \, x \in X \setminus \overline{B}(a,r)$:

$$\rho(a,b) \le \rho(a,x) + \rho(x,b) \Rightarrow \rho(x,a) \ge \rho(a,b) - \rho(x,b) > \rho(a,b) - \delta = \rho(a,b) - \rho(a,b) + r = r$$

Утв. 1. Пусть $(X, \|\cdot\|)$ и $F \subset X$ - конечномерное подпространство. Тогда F - замкнуто.

 \square Пусть $F=L(e_1,\ldots,e_n)$, где e_1,\ldots,e_n - линейно независимые вектора, а L - линейная оболочка, тогда

$$F = L(e_1, \dots, e_n) = \{ c_1 e_1 + \dots + c_n e_n \}, c_i \in \mathbb{R}$$

Возьмем $a \notin F$, для доказательства достаточно найти шар $B(a,r) : B(a,r) \cap F = \emptyset$.

Рис. 2: Шар B(a,r): $B(a,r) \cap F = \emptyset$.

Рассмотрим новое пространство: $F_{n+1} = L(e_1, \dots, e_n, e_{n+1}), e_{n+1} = a$, ясно, что они все линейно независимы, иначе a выразился бы через e_1, \dots, e_n и тогда бы $a \in F$, но $a \notin F$. Тогда:

$$\forall x \in F_{n+1}, \ x = c_1 e_1 + \ldots + c_n e_n + c_{n+1} e_{n+1}, \ c_i \in \mathbb{R}$$

Введем на этом пространстве норму (проверка, что это норма - точно такая же, как и в \mathbb{R}^n для координат):

$$||x||_2 = \sqrt{c_1^2 + \ldots + c_n^2 + c_{n+1}^2}$$

По этой норме, каково расстояние от векторов e_{n+1} до рассматриваемой плоскости F?

 $F = \{c_{n+1} = 0\}$ в пространстве F_{n+1} ($F \subset F_{n+1}$). Пусть $x = (c_1, \dots, c_n, 0) \in F$, тогда

$$e_{n+1} = (0, \dots, 0, 1) \Rightarrow ||x - e_{n+1}||_2 = \sqrt{c_1^2 + \dots + c_n^2 + 1^2} \ge 1$$

Если взять множество $\{x \in F_{n+1} \colon ||x - e_{n+1}||_2 < 1\}$, то оно не будет пересекаться с F.

Так как F_{n+1} - конечномерно, то $\|\cdot\|_2$ эквивалентно исходной норме $\|\cdot\|$ на F_{n+1} , в частности

$$\exists C > 0 \colon \|\cdot\|_2 \le C\|\cdot\|$$

Шар $B(e_{n+1}, \frac{1}{C}) \cap F_{n+1} \subset \{ x \in F_{n+1} \colon ||x - e_{n+1}||_2 < 1 \}$ и, следовательно, не пересекается с $F \Rightarrow B(e_{n+1}, \frac{1}{C}) \cap F = \emptyset$

Упр. 1. Показать на примере, что конечномерность важна (привести пример линейного подпространства, которое бесконечномерно, но не является замкнутым).

Свойства открытых и замкнутых множеств

Теорема 2. Верны следующие свойства:

- (1) Объединение всякого набора открытых множеств и пересечение конечного набора открытых множеств, является открытым множеством;
- (2) Пересечение всякого набора замкнутых множеств и объединение конечного набора замкнутых множеств, является замкнутым множеством;
- \square (1) Пусть $\{\mathcal{U}_{\alpha}\}$ набор открытых множеств, возьмем точку $a \in \bigcup_{\alpha} \mathcal{U}_{\alpha} \Rightarrow \exists \alpha_0 \colon a \in \mathcal{U}_{\alpha_0} \Rightarrow \mathcal{U}_{\alpha}$

$$\exists B(a,r) \subset \mathcal{U}_{\alpha_0} \Rightarrow B(a,r) \subset \bigcup_{\alpha} \mathcal{U}_{\alpha}$$

Таким образом, объединение всякого набора открытых множеств является открытым множеством.

Пусть $\{\mathcal{U}_1,\ldots,\mathcal{U}_N\}$ - набор открытых множеств, возьмем точку $a\in\bigcap_{k=1}^N\mathcal{U}_k\Rightarrow a\in\mathcal{U}_k,\,\forall k\Rightarrow$

$$\forall k, \exists B(a, r_k) \subset \mathcal{U}_k \Rightarrow r = \min\{r_1, \dots, r_N\} \Rightarrow \forall k, B(a, r) \subset \mathcal{U}_k \Rightarrow B(a, r) \subset \bigcap_{k=1}^N \mathcal{U}_k$$

Таким образом, пересечение конечного набора открытых множеств является открытым множеством;

(2) Указание: $X \setminus F$ - открытое множество и используем формулу Моргана (см. прошлый семестр);

Rm: 2. Всякое открытое множество есть объединение открытых шаров:

$$\mathcal{U} = \bigcup_{a \in \mathcal{U}} B(a, r)$$

Топология точек множества метрического пространства

Пусть (X, ρ) - метрическое пространство и $A \subset X$.

Опр: 3. Точка $a \in A$ называется внутренней, если $\exists B(a,r) \subset A$.

Rm: 3. В открытом множестве все точки - внутренние.

Опр: 4. Точка a называется граничной, если $\forall B(a,r), B(a,r) \cap A \neq \emptyset \land B(a,r) \cap (X \setminus A) \neq \emptyset$.

Опр: 5. Точка a называется предельной (для множества A), если $\forall B(a,r), B(a,r) \cap A$ - бесконечное множество.

Опр: 6. Проколотый шар с центром в точке a радиуса r это множество: $B'(a,r) = B(a,r) \setminus \{a\}$.

Утв. 2. Точка a - предельная точка множества $A \Leftrightarrow \forall B(a,r), B'(a,r) \cap A \neq \emptyset$.

 (\Rightarrow) Очевидно, так как выкидывание одной точки из бесконечного множества ни на что не влияет и $\forall B(a,r),\ B'(a,r)\cap A\neq\varnothing.$

(\Leftarrow) (От противного): Пусть точка $a: \forall B(a,r), B'(a,r) \cap A \neq \varnothing$ - не является предельной точкой, тогда $\exists B'(a,r_0)$ в котором лежит не более, чем конечное множество точек из $A: B(a,r_0) \cap A$ - конечное множество.

Рис. 3: Уменьшение шара.

Пусть $R = \min_{x \in C} \rho(a, x), C = B'(a, r_0) \cap A \Rightarrow$ уменьшим радиус шара таким образом, что $r_1 < R \Rightarrow B'(a, r_1) \cap A = \varnothing \Rightarrow$ противоречие.

Теорема 3. Следующие утверждения равносильны:

1) A - замкнуто;

- 2) A содержит все свои граничные точки;
- 3) A содержит все свои предельные точки;
- 4) Если $a_n \in A$ и $a_n \to a$, то $a \in A$;

1) ⇒ 2) Пусть a - граничная точка A, предположим, что $a \notin A$, так как A замкнуто, то $X \setminus A$ - открытое множество ⇒ $\exists B(a,r) : B(a,r) \cap A = \emptyset$ ⇒ противоречие с определением граничной точки.

Рис. 4: В шаре B(a,r) нет точек из $A \Rightarrow$ противоречие с определением граничной точки.

 $(2) \Rightarrow 3)$ Пусть (a) - предельная точка (a), предположим, что $(a) \notin (A)$, тогда (a) - граничная, так как для предельной точки в её окрестности есть бесконечно много точек из (a) и сама точка (a) (a) - (a) Противоречие.

Рис. 5: Точка $a \notin A$ - предельная \Rightarrow это граничная точка $\Rightarrow a \in A \Rightarrow$ противоречие.

3) \Rightarrow 4) Возьмем последовательность точек $a_n \in A, \, a_n \to a.$ Если $\exists \, n \colon a_n = a \Rightarrow$ выполнено.

Если $\forall n, a_n \neq a$, тогда a - предельная точка, поскольку $a_n \to a \Rightarrow$ в любой проколотой окрестности B'(a,r) найдутся точки из $a_n \Rightarrow a \in A$.

Рис. 6: $\forall n, a_n \neq a$, тогда a - предельная точка $\Rightarrow a \in A$.

 $(4) \Rightarrow 1)$ Предположим, что $X \setminus A$ не является открытым, тогда возьмем точку $a \in X \setminus A$, такую что не существует окрестности с центром в a, которая целиком бы лежала в $X \setminus A$:

$$\forall B\left(a, \frac{1}{n}\right), \exists a_n \in B\left(a, \frac{1}{n}\right)$$

Рис. 7: Точки $a_n \in B\left(a, \frac{1}{n}\right) \Rightarrow a_n \to a \Rightarrow a \in A \Rightarrow$ противоречие.

Тогда получим последовательность $a_n \in A \colon \rho(a_n, a) \to 0 \Rightarrow a_n \to a \Rightarrow a \in A \Rightarrow$ противоречие.

Опр: 7. Множество $\overline{A} = A \cup \{$ граничные точки $A\}$, называется <u>замыканием</u> множества A.

Утв. 3. Следующие утверждения верны:

- 1) \overline{A} замкнутое множество;
- 2) \overline{A} наименьшее замкнутое множество, содержащее A: $\overline{A} = \bigcap_{A \subset F} F$, где F замкнутые;
- 3) A замкнуто $\Leftrightarrow A = \overline{A}$;

1) Пусть b - граничная точка $\overline{A} \Rightarrow$ в любой окрестности точки b будет точка из \overline{A} . По определению, \overline{A} содержит два типа точек: либо это точка из A, либо это граничная точка A.

В случае, когда это граничная точка из $A \Rightarrow$ можно взять окрестность этой точки, внутри окрестности точки b и она обязательно будет содержать точки из A (как граничная точка из A).

Рис. 8: b - граничная точка $\overline{A} \Rightarrow$ если \exists граничная точка $A \Rightarrow$ в её окрестности найдем точку из A.

Таким образом, в любой окрестности точки b есть точки из A и точки не из \overline{A} (поскольку это граничная точка) $\Rightarrow b$ - граничная точка A и $b \in \overline{A}$;

- 2) Надо проверить, что в любом замкнутом множестве лежит $\overline{A} \Rightarrow$ если F замкнуто и $A \subset F \Rightarrow$ граничные точки $A \subset F$.
 - Пусть $a \notin F$ граничная точка $A \Rightarrow$ так как, в любой окрестности есть элементы из $A \subset F$, а сама точка не из F, то a граничная для F и должна в F лежать (так как, F замкнутое множество);

Рис. 9: $a \notin F$ - граничная точка $A \Rightarrow$ в её окрестности есть элементы из $A \Rightarrow a$ - граничная для F.

3) Уже доказали - смотри выше теорему. Если A замкнуто, то оно содержит все свои граничные точки $\Rightarrow A = \overline{A}$. И наоборот, если A содержит все свои граничные точки, то A - замкнуто;

_