Narzędzia informatyki

Excel_lab02

Użycie opcji wklejania specjalnego: wartości, formaty, transpozycja.

Wypełnianie kolumn i wierszy serią danych.
Zastosowanie funkcji: EXP(), PI(), RADIANY(), SIN(), COS().
Zastosowanie adresowania mieszanego i bezwzględnego (F4).
Użycie nazw zakresów komórek jako argumentów funkcji.
Tworzenie wykresów punktowych i powierzchniowych.
Formatowanie wyglądu wykresu, osi, etc.
Przenoszenie wykresu do innej lokalizacji.

Zadania:

- 1. Skonstruować tablicę funkcji $y=e^{x}$ dla x<-1,2>
 - a) tablicowanie argumentu x w 25 krokach:

Wpisujemy w kolumnie x w odpowiednie pola wartości -1 oraz 2; zaznaczamy w kolumnie x wszystkie pola od -1 do 2;

Menu Narzędzia główne→Wypełnienie→Seria danych - program może sam ustalić krok i wypełnić komórki danymi

				1
C3			✓ fx	=EXP(B3)
	Α	В	С	D
1				
2		X	e^x	
3	1	-1	0,367879	
4	2	-0,875	0,416862	
5	3	-0,75	0,472367	
6	4	-0,625	0,535261	
7	5	-0,5	0,606531	
8	6	-0,375	0,687289	
9	7	-0,25	0,778801	
10	8	-0,125	0,882497	
11	9	0	1	
12	10	0,125	1,133148	
13	11	0,25	1,284025	
14	12	0,375	1,454991	
15	13	0,5	1,648721	
16	14	0,625	1,868246	
17	15	0,75	2,117	
18	16	0,875	2,398875	
19	17	1	2,718282	
20	18	1,125	3,080217	
21	19	1,25	3,490343	
22	20	1,375	3,955077	
23	21	1,5	4,481689	
24	22	1,625	5,078419	
25	23	1,75	5,754603	
26	24	1,875	6,520819	
27	25	2	7,389056	
28				

- b) sporządzić wykres funkcji *y*; UWAGA: typ wykresu - punktowy (nie liniowy!) Wykres powinien zawierać:
 - tytuł,
 - legendę z opisem funkcji,
 - jednostki główne na osi x z krokiem co 0,75,
 - podpisane osie x oraz y, różne style linii osi
- c) przećwiczyć opcje formatowania wykresu (wypełnienia, linie siatki, ich brak),
- d) przećwiczyć umieszczanie wykresu na osobnym arkuszu (Narzędzia wykresów→ Projektowanie→Przenieś wykres)

Przykładowy wygląd wykresu:

2. Skonstruować tablicę funkcji y(alfa) = cos(A*alfa), dla kąta alfa z zakresu od -180° do 180°, w 40 krokach, A jest parametrem, będącym liczbą rzeczywistą

-	: ×	✓ fx =C0	OS(\$E\$1*C3)	
Α	В	С	D	Е
			A:	2
	alfa	RADIANY(alfa)	y=cos(RADIANY(a	alfa)*A)
1	-180	-3,141592654	1	
2	-170,769	-2,980485338	0,948536442	
3	-161,538	-2,819378022	0,799442763	
4	-152,308	-2,658270707	0,568064747	
5	-143,077	-2,497163391	0,278217464	
6	-133,846	-2,336056076	-0,04026594	
7	-124,615	-2,17494876	-0,354604887	
8	-115,385	-2,013841445	-0,632445376	
9	-106,154	-1,852734129	-0,845190086	
10	-96,9231	-1,691626813	-0,970941817	
40	180	3,141592654	1	

a) sporządzić wykres punktowy funkcji y

Przykładowy wygląd wykresu:

- b) dodać tablicę nowej funkcji, nazwanej OGR, zmieniającej się wg następujący zasad:
 - jeżeli y(alfa) >= GRANICA to OGR = GRANICA,
 - jeżeli y(alfa) < GRANICA to OGR = cos(A*alfa).

GRANICA jest parametrem, który może przybierać wartości z przedziału <-1,1> z krokiem co 0,2. Wprowadzanie wartości GRANICY powinno się odbywać na zasadzie wyboru z listy (Menu Dane→Poprawność danych→lista)

	Α	В	С	D	E	F	G	
1				A:	2	granica <-1;1>:	0,6	7
2		alfa	RADIANY(alfa)	y=cos(RADIANY(alfa)*A)		OGR	-0,4	^
3	1	-180	-3,141592654	1		0,6	-0,2 0	
4	2	-170,7692	-2,980485338	0,948536442		0,6	0,2	
5	3	-161,5385	-2,819378022	0,799442763		0,6	0,4	
6	4	-152,3077	-2,658270707	0,568064747		0,568064747	0,6	
7	5	-143,0769	-2,497163391	0,278217464		0,278217464	1	~
8	6	-133,8462	-2,336056076	-0,04026594		-0,04026594		
9	7	-124,6154	-2,17494876	-0,354604887		-0,354604887		
10	8	-115,3846	-2,013841445	-0,632445376		-0,632445376		
11	9	-106,1538	-1,852734129	-0,845190086		-0,845190086		
12	10	-96,92308	-1,691626813	-0,970941817		-0,970941817		
13	11	-87,69231	-1,530519498	-0,996757308		-0,996757308		
14	12	-78,46154	-1,369412182	-0,919979444		-0,919979444		
15	13	-69,23077	-1,208304867	-0,748510748		-0,748510748		
16	14	-60	-1,047197551	-0,5		-0,5		
17	15	-50,76923	-0,886090236	-0,200025694		-0,200025694		
18	16	-41,53846	-0,72498292	0,12053668		0,12053668		
19	17	-32,30769	-0,563875604	0,428692561		0,428692561		
20	18	-23,07692	-0,402768289	0,692724354		0,6		
21	19	-13,84615	-0,241660973	0,885456026		0,6		

- c) dodać funkcję OGR jako drugą funkcję na wykresie,
- d) wykres powinien zawierać:
 - tytuł,
 - legendę z opisem funkcji,
 - jednostki główne na osi x,
 - podpisane osie x oraz y, różne style linii osi,
- e) umieścić wykres w niezależnym arkuszu.

Przykładowy wygląd wykresu:

Zadanie domowe:

- f) dodać tablicę następnej funkcji nazwanej OGR₁₂ zmieniającej się w następujący sposób:
 - jeżeli y(alfa) >= 0 i $y(alfa) >= G_1$ to $OGR_{12} = G_1$,
 - jeżeli y(alfa) >= 0 i $y(alfa) < G_1$ to $OGR_{12} = y(alfa)$,
 - jeżeli y(alfa) < 0 i $y(alfa) < G_2$ to $OGR_{12} = G_2$,
 - jeżeli y(alfa) < 0 i $y(alfa) >= G_2$ to $OGR_{12} = y(alfa)$, gdzie:

 G_1 jest parametrem, który może przybierać wartości z przedziału <0, 1>, G_2 jest parametrem, który może przybierać wartości z przedziału <0,-1>, zmianę granic G_1 i G_2 można zrealizować jako wybór z listy (Menu Dane \rightarrow Poprawność danych \rightarrow lista) (krok 0,2)

- g) sporządzić wykres zawierający funkcje y i OGR₁₂,
- h) umieścić wykres w niezależnym arkuszu.

Przykładowy wygląd wykresu:

3. Zadanie domowe

Stablicować funkcje: y = sin(A*alfa) oraz $y_1 = cos(B*alfa)$, dla kąta alfa z zakresu od –pi do pi, z liczbą kroków pozwalającą na sporządzenie "przyzwoitego" wykresu, np. 40,

- a) wstawić wykres funkcji y i y₁,
- b) sprawdzić wpływ parametrów A i B,
- c) wstawić wykres, dla którego argumentem jest funkcja y, a wartościami funkcja y₁.

Przykładowy wygląd wykresów dla A=2 oraz B=2:

4. Sporządzić wykres powierzchniowy funkcji: $f(x, y) = \sin^k(ax) + \sin(by)$ dla:

$$x \in <0^{\circ}; 360^{\circ} >$$

 $y \in <0^{\circ}; 360^{\circ} >$
 $x, y \ co \ 5^{\circ}$

parametry a, b, k są liczbami rzeczywistymi; dla celów testowych można przyjąć a=0,5 b=0,5 k=1. UWAGA: należy pamiętać o zamianie stopni na radiany!

a) dane do wykresu powinny mieć czytelną postać, a wartości funkcji powinny być wyświetlone z dokładnością do drugiego miejsca po przecinku,

Fragment przykładowych danych:

Tragment przyklade wyen danyen.										
D5	5 \rightarrow : \times \checkmark f_x =SIN(\$G\$2*RADIANY(\$B5))^\$1\$2+SIN(\$H\$2*RADIANY(D\$3))									
	Α	В	С	D	E	F	G	Н	1	J
1			,	k	. , ,		а	b	k	
2		J	$(x,y) = \sin x$	k(ax)	+ sin(by))	0,5	0,5	1	
3			0	5	10	15	20	25	30	35
4		0	0,00	0,04	0,09	0,13	0,17	0,22	0,26	0,30
5		5	0,04	0,09	0,13	0,17	0,22	0,26	0,30	0,34
6		10	0,09	0,13	0,17	0,22	0,26	0,30	0,35	0,39
7		15	0,13	0,17	0,22	0,26	0,30	0,35	0,39	0,43
8		20	0,17	0,22	0,26	0,30	0,35	0,39	0,43	0,47
9		25	0,22	0,26	0,30	0,35	0,39	0,43	0,48	0,52
10		30	0,26	0,30	0,35	0,39	0,43	0,48	0,52	0,56
11		35	0,30	0,34	0,39	0,43	0,47	0,52	0,56	0,60
12		40	0,34	0,39	0,43	0,47	0,52	0,56	0,60	0,64
13		45	0,38	0,43	0,47	0,51	0,56	0,60	0,64	0,68
14		50	0,42	0,47	0,51	0,55	0,60	0,64	0,68	0,72
15		55	0,46	0,51	0,55	0,59	0,64	0,68	0,72	0,76

- b) wykres powierzchniowy umieścić na osobnym arkuszu,
- c) wykres ma przedstawiać tylko funkcję (bez legendy, osi, podpisów osi, siatki pionowej, siatki poziomej, tła).

Przykładowy wygląd wykresu dla a=0.5 b=0.5 k=1

5. Zadanie domowe

Sporządzić wykres powierzchniowy funkcji: f(x, y) = sin(ax)*cos(by) dla:

$$x \in <0^{\circ}; 360^{\circ} >$$

 $y \in <0^{\circ}; 360^{\circ} >$
 $x, y \ co \ 5^{\circ}$

- a) $a, b \in R$ i dla celów testowych można przyjąć a = 1, b = 1,
- b) sprawdzić różne typy wykresów powierzchniowych.

Przykładowy wygląd wykresu dla *a*=1 oraz *b*=1

6. Zadanie domowe

Sporządzić wykres powierzchniowy funkcji: $z = \left(1 - \frac{\cos(x^2 + y^2)}{x^2 + y^2}\right) * k$

dla:

- a) $x, y \in \langle -pi, pi \rangle$, wartości funkcji obliczyć np. w 25 krokach,
- b) dla celów testowych można przyjąć k=1,
- c) skalę wartości funkcji z dopasować tak, aby wykres był czytelny,
- d) sprawdzić inne typy wykresów powierzchniowych

Przykładowy wygląd wykresu dla *k*=1

