Using R as a glue for land use and caribou

Mesachie June 4, 2019

Kyle Lochhead

Outline

- Motivation
- Objectives
- Why R?
- SpaDES
- Modules

Motivation

Motivation

- Scale issue
 - Herds cross different administrative boundaries
 - Matrix habitat of adjacent management units
- Different disturbances impact caribou differently
 - Roads vs cutblocks vs fire
 - Incompatibility between disturbance thresholds and policies e.g., 500 m buffer? Partial cuts?
- Accounting for cumulative land-use impacts

Caribou and Land-Use Simulator (CLUS)

- Built in R using <u>SpaDES</u>
- Use(s)
 - Simulate historical and future impacts of land uses on indicators of the caribou-land-use system
 - Compare proposed policy scenarios at a range of scales and study areas
 - Provide a transparent model structure for rapid feedback when exploring the decision space
 - Communicate decision spaces for any herd across the province

Why R?

Pros

- Free
- Well supported comprehensive library
- Documentation
- Post hoc communication piece
 - Visuals and reporting
- Flexible for supporting many languages

Cons

- "Its slow..." default implementation is interpreted
- Not all packages are "useful" takes time to dive into what is going on

SpaDES an R package

- Developed by <u>NRCan</u>
- <u>Spa</u>tial <u>Discrete Event-based Simulation</u>
- Attempts to overcome -> many models, low integration
- Principles
 - Transparency
 - Visualization
 - Reproducibility
 - Modularity
 - Scalability
 - Traceability
 - Sensitivity

CLUS Concept

- Build spatial scenarios in real time via <u>Scenario</u>
 <u>Tool</u>
- Build a SQLite database <u>clusdb</u>
- Use R to traverse: data manipulation, linkages to other languages and reporting/visualization

CLUS Concept

- Transparent, all data and information are in a structured designed database. All code freely available. Adding new or improving old is encouraged and easy via SpaDES + github
- Reproducible, connects to Postgresql which supports back and forth between vector and raster. Reproducible package supports version control of cached outputs.
- **Modular**, each process is itself a "model". Connect to other "modules" for insects, fire, growth, birds, wolves, moose, etc
- **Scalable**, SQL is optimized to handle large queries. Leverages data.table package on R-side (millions of records in seconds)
- Traceability, basic error/warning reporting, can save/print out any line of code, procedural R code
- Sensitivity, core SpaDES was developed to handle caching of many runs. I implement <u>parallel</u> instances across <u>multi-workstations</u> for some modules (i.e., blocking). Spades.core::experiment() stores many replications of stochastic components of models

Modules

- Data Prep (<u>dataloaderCLUS</u>)
 - leverages PostgreSQL
- Growth and yield (growingStockCLUS)
 - leverages SQLite
- Resource Selection Function (<u>rsfCLUS</u>)
 - leverages R
 - Caribou habitat selection model (Tyler)
- Roads (<u>roadsCLUS</u>)
 - leverages C++
 - "snap", "lcp", "mst"
- Blocking (<u>blockingCLUS</u>)
 - leverages Java
 - "pre-solve", "dynamic"
- Harvesting (<u>forestryCLUS</u>)
 - leverages SQLite
 - Spatial harvest simulator. S.T. various management constraints
 - Harvest queue based on a simple priority
 - Future –add optimization (Q3)

Motivation

