Mathematik für Informatik II - Tutorium - Woche 4

Aufgabe 6

Berechnen Sie die Determinanten folgender Matrizen über \mathbb{R} :

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 3 & 4 & 5 & 6 \\ 1 & 4 & 6 & 8 & 10 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 8 & 9 & 14 & -8 \\ 3 & 1 & 3 & 4 & -4 & -1 \\ 4 & 0 & 0 & 3 & 9 & -1 \\ 0 & 0 & 0 & 0 & 7 & 6 \\ 0 & 0 & 0 & 0 & 8 & 7 \\ -2 & 0 & 0 & 0 & 0 & 11 \end{pmatrix}$$

Determinanten

Satz 9.1.5

Es sei $A=(a_{ik}\in M(n\times n,\mathbb{K}),\ \lambda\in\mathbb{K},\ \mathsf{dann}\ \mathsf{gilt}$

- (i) $\det A$ multipliziert sich mit λ , wenn man eine Zeile mit λ multipliziert.
- (ii) det A bleibt unverändert, wenn man ein Vielfaches einer Zeile von A zu einer anderen addiert.
- (iii) $\det I = 1$.

Aufgabe 6

Besonders einfach berechnet sich die Determinante für Dreiecksmatrizen und Matrizen mit vielen Nulleinträgen. Wir versuchen die Matrizen A und B entsprechend umzuformen und beginnen mit der Matrix A. Es gilt

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 3 & 4 & 5 & 6 \\ 1 & 4 & 6 & 8 & 10 \end{pmatrix} \xrightarrow{Z_4 - Z_1} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & -1 & 1 & -1 & 1 \\ 0 & 2 & 3 & 4 & 5 \\ 1 & 4 & 6 & 8 & 10 \end{pmatrix} \xrightarrow{Z_2 - Z_4} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 1 & -1 & 1 \\ 0 & 2 & 3 & 4 & 5 \\ 1 & 4 & 6 & 8 & 10 \end{pmatrix}$$

$$Z_{1,0,-Z_2} \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

(*) Satz 9.1.5 + Satz 9.1.12 (Laplacescher Entwicklungssatz, Entwicklung nach der 5-ten Zeile)

Aufgabe 6

Für die Matrix B entwickeln wir direkt nach der 6-ten Zeile:

$$\det B = -(-2) \cdot \det \begin{pmatrix} 2 & 8 & 9 & 14 & -8 \\ 1 & 3 & 4 & -4 & -1 \\ 0 & 0 & 3 & 9 & -1 \\ 0 & 0 & 0 & 7 & 6 \\ 0 & 0 & 0 & 8 & 7 \end{pmatrix} + 11 \cdot \det \begin{pmatrix} 1 & 2 & 8 & 9 & 14 \\ 3 & 1 & 3 & 4 & -4 \\ 4 & 0 & 0 & 3 & 9 \\ 0 & 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 0 & 8 \end{pmatrix}$$

$$= B_{1}$$

Wir können direkt det $B_2=0$ ablesen, da die vierte und fünfte Zeile linear abhängig sind. B_1 bringen wir in die obere Dreiecksform. Da in dieser nur die Hauptdiagonale von Interesse ist, reicht es, wenn wir die entsprechenden Einträge betrachten. Indem wir von der zweiten Zeile $\frac{1}{2}$ -mal die erste Zeile abziehen und von der fünften Zeile $\frac{8}{7}$ -mal die vierte Zeile, erhalten wir die Hauptdiagonale

$$(b_{11}, b_{22}, b_{33}, b_{44}, b_{55}) = (2, -1, 3, 7, \frac{1}{7}) \implies \det B = -(-2) \cdot 2 \cdot (-1) \cdot 3 \cdot 7 \cdot \frac{1}{7} = -12$$

Eigenwerte

Definition 9.3.1: Eigenwert und Eigenvektor

Es sei V ein \mathbb{K} -Vektorraum mit $\mathbb{K}=\mathbb{R}$ oder $\mathbb{K}=\mathbb{C}$ und weiter sei $F:V\to V$ eine lineare Abbildung. Eine reelle oder komplexe Zahl λ heißt *Eigenwert* von F, wenn es einen Vektor $x\in V$, $x\neq 0$, gibt mit

$$Fx = \lambda x$$

x heißt dann *Eigenvektor* von F zum Eigenwert λ .

Eigenwerte

Definition 9.3.1: Eigenwert und Eigenvektor

Es sei V ein \mathbb{K} -Vektorraum mit $\mathbb{K}=\mathbb{R}$ oder $\mathbb{K}=\mathbb{C}$ und weiter sei $F:V\to V$ eine lineare Abbildung. Eine reelle oder komplexe Zahl λ heißt *Eigenwert* von F, wenn es einen Vektor $x\in V$, $x\neq 0$, gibt mit

$$Fx = \lambda x$$

x heißt dann *Eigenvektor* von F zum Eigenwert λ .

- $Fx = \lambda x \implies (Fx \lambda i d_V)x = 0 \implies (\lambda \text{ EV von } F \iff \det(F \lambda i d_V) = 0)$
- $lackbr{\blacksquare} P_F(\lambda) = \det(F \lambda \mathrm{id}_V)$ charakteristisches Polynom von F

Lemma 9.4.1: Notwendige Bedingung

Der \mathbb{C} - oder \mathbb{R} -Vektorraum V besitze eine Basis aus Eigenvektoren, dann ist das charakteristische Polynom von A ein Produkt von n Linearfaktoren.

Lemma 9.4.1: Notwendige Bedingung

Der \mathbb{C} - oder \mathbb{R} -Vektorraum V besitze eine Basis aus Eigenvektoren, dann ist das charakteristische Polynom von A ein Produkt von n Linearfaktoren.

- Hinreichend: $P_F(\lambda)$ besitzt n verschiedene Nullstellen
- Eigenvektoren zu paarweise verschiedenen Eigenwerte sind linear unabhängig!
- Der Grundkörper \mathbb{K} ist wichtig! $P_F(\lambda) = \lambda^2 + 1$ (z.B. gegeben durch $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$) ist über \mathbb{R} irreduzibel und besitzt über \mathbb{C} die Eigenwerte $\lambda_{1,2} = \pm i$.

Definition 9.4.5: Ähnlichkeit

Zwei n-reihige Matrizen A und A' heißen $\ddot{a}hnlich$, falls es eine invertierbare n-reihige Matrix B gibt mit

$$B^{-1}AB = A'$$

Ist A zu einer Diagonalmatrix ähnlich, so heißt A diagonalisierbar.

Definition 9.4.5: Ähnlichkeit

Zwei n-reihige Matrizen A und A' heißen $\ddot{a}hnlich$, falls es eine invertierbare n-reihige Matrix B gibt mit

$$B^{-1}AB = A'$$

Ist A zu einer Diagonalmatrix ähnlich, so heißt A diagonalisierbar.

- Ähnlichkeit/Diagonalisierbarkeit von $n \times n$ -Matrizen stellt eine Äquivalenzrelation dar (Reflexiv, Symmetrisch, Transitiv)
- Ähnliche Matrizen besitzen die gleichen Eigenwerte, aber i.A. nicht die gleichen Eigenvektoren! Gilt $Av = \lambda v$ folgt für $w = B^{-1}v$ das

$$A'w = B^{-1}ABB^{-1}v = B^{-1}Av = B^{-1}\lambda v = \lambda B^{-1}v = \lambda w$$

Beachte: $w = B^{-1}v = v$ nur in Spezialfällen!

Lemma 9.4.6: Gestalt der Transformationsmatrix

Für eine invertierbare Matrix B gilt

$$B^{-1}AB = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

genau dann, wenn die Spalten b_k von B Eigenvektoren von A zum Eigenwert λ_k sind.

Lemma 9.4.6: Gestalt der Transformationsmatrix

Für eine invertierbare Matrix B gilt

$$B^{-1}AB = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

genau dann, wenn die Spalten b_k von B Eigenvektoren von A zum Eigenwert λ_k sind.

- (1) Berechne die Nullstellen von $P_A(\lambda)$.
- (2) Löse $Ax = \lambda_i x$ für alle i, wobei λ_i die i-te Nullstelle von $P_A(\lambda)$.
- (3) Vergleiche zu mehrfachen Nullstellen die algebraische mit der geometrischen Vielfachheit.

4 D L 4 D L 4 D L 4 D L 6 O C

Vielfachheiten und Eigenraum

Es sei $A \in M(n \times n, \mathbb{K})$ mit $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$ und $\lambda_0 \in \mathbb{K}$ eine m-fache Nullstelle von $P_A(\lambda) = \det(A - \lambda I)$, dann heißt

- m die algebraische Vielfachheit von λ_0 ,
- dim ker $(A \lambda_0 I)$ =: dim N_{λ_0} geometrische Vielfachheit von λ_0 und
- $\ker(A \lambda_0 I) = N_{\lambda_0}$ der Eigenraum von A zu λ_0 .

Vielfachheiten und Eigenraum

Es sei $A \in M(n \times n, \mathbb{K})$ mit $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$ und $\lambda_0 \in \mathbb{K}$ eine m-fache Nullstelle von $P_A(\lambda) = \det(A - \lambda I)$, dann heißt

- m die algebraische Vielfachheit von λ_0 ,
- dim ker $(A \lambda_0 I)$ =: dim N_{λ_0} geometrische Vielfachheit von λ_0 und
- $\ker(A \lambda_0 I) = N_{\lambda_0}$ der Eigenraum von A zu λ_0 .

 \Rightarrow A ist diagonalisierbar, wenn für alle λ_i dim $N_{\lambda_0} = m$ (alg. = geom. Vielfachheit).

Definition 10.11: ε -Umgebung

Für $x_0 \in \mathbb{R}$ und $\varepsilon > 0$ heißt

$$U_{\varepsilon}(x_0) = \{x \in \mathbb{R} \mid |x - x_0| < \varepsilon\} = (x_0 - \varepsilon, x + \varepsilon)$$

die ε -Umgebung von x_0 und

$$\dot{U}_{\varepsilon}(x_0) = \{x \in \mathbb{R} \, | \, 0 < |x - x_0| < \varepsilon\} = U_{\varepsilon}(x_0) \setminus \{x_0\}$$

die punktierte ε -Umgebung von x_0 .

Funktionsgrenzwert: f konvergiert gegen a für $x \to x_0$, wenn

$$\forall \, \varepsilon > 0 \, \exists \, \delta > 0 \, \forall \, x \in \mathbb{R}(x \in \dot{U}_{\delta}(x_0) \Rightarrow |f(x) - a| < \varepsilon)$$

Funktionsgrenzwert: f konvergiert gegen a für $x \to x_0$, wenn

$$\forall \, \varepsilon > 0 \,\exists \, \delta > 0 \,\forall \, x \in \mathbb{R}(x \in \dot{U}_{\delta}(x_0) \Rightarrow |f(x) - a| < \varepsilon)$$

■ Beachte die punktierte x₀-Umgebung!

Für Stetigkeit auf D: Ersetze die punktierte x_0 -Umgebung durch $U_\delta(x_0) \cap D$.

Sei
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 mit $f(x,y) = x^2 + y - 3$. Zeige die Stetigkeit von f in $x_0 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$.

Sei
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 mit $f(x,y) = x^2 + y - 3$. Zeige die Stetigkeit von f in $x_0 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$.

Beweis:

- (1) Sei $\varepsilon > 0$ beliebig aber fest. "Rate" den Grenzwert a = 1 (= $f(x_0)$). Setze $\delta(\varepsilon) = ?$
- (2) Suche eine Teilmenge $U_{\delta}(\varepsilon)(x_0) \subset \mathbb{R}^2$ für die $\forall x \in \dot{U}_{\delta(\varepsilon)}(x_0)(|f(x)-1| < \varepsilon)$ erfüllt ist. (Wir suchen die offene Kreisscheibe mit Radius $\delta(\varepsilon)$ um x_0 , die unter f in das Intervall $(1-\varepsilon,1+\varepsilon)$ abgebildet wird)
- (3) Sei $\tilde{x} = x_0 + \begin{pmatrix} c & d \end{pmatrix}^T$

$$|f(\tilde{x})-1|=|(1+c)^2+(3+d)-3)-1|=|c^2+2c+d|<\varepsilon$$

Bedingung auf jeden Fall erfüllt, wenn $c=\frac{\sqrt{\varepsilon}}{4}=d$, womit $\delta(\varepsilon)=\frac{\sqrt{2\varepsilon}}{4}=\sqrt{\frac{\varepsilon}{2}}$ (Satz des Pythagoras, $\delta(\varepsilon)^2=c^2+d^2$)

Beachte:

- Für jedes ε darf ein **neues** $\delta(\varepsilon)$ gewählt werden.
- Die Abschätzung muss nicht optimal sein!