北京理工大学__2020_ - _2021_学年 第_二_学期

_2020_级_电路分析基础_课程试卷_A_卷

开课学院:	<u>信息与</u>	电子学院	_	任课教师:		
试卷用途:	□期中	☑期末	□补考			
考试形式:	□开卷	□半开卷	☑闭卷			
考试日期:	2021	年 6 月 6	<u> </u>	所需时间:	分钟	
考试允许带	;	文具、计算	22	_入场		
班级:		学号:		姓名:		

考生承诺:"我确认在次考试是完全通过自己的劳力完成的。"

考生签名:_____

题号	_	1 1	111	四					总分	
				1	2	3	4	5	6	
满分	27	10	10	8	8	8	9	10	10	100
得分										

注意: 1. 考试允许用计算器; 2. 试卷不允许拆开,可撕下最后一张作为演算纸; 3. 答案全部写在各个试题相应空白位置处; 4. 计算题要写清过程,数值保留 2 位小数。

一、填空题(本题共27分,每空3分)

1、题图 1.1 电路中,欲使 $u_1 = \frac{1}{3}u$,则 R_1 和 R_2 的关系应为_____。

2、	题图 1.2 月	电路中,	欲使 $i_1 = 0.25i_S$,	则 R_1 和 R_2 的关系应为	0
----	----------	------	----------------------	-----------------------	---

- $3.10 \,\mu\,\text{F}$ 的电容,两端电压 $u(t) = 20\sin 5000t\,\,\text{V}$ 。若电流与电压参考方向一致,则在 t=0 时,电流为_____。
- 4、电感 L 两端电压为 $u(t) = 5\sin 0.2t \text{ mV}$,电流为 $i(t) = -0.1\cos 0.2t \text{ A}$,则电感量 L 为_____。
- 5、某一阶电路中有响应 $i(t) = (4-3e^{-2.5t}) A$ 。若将初始状态量增加为二倍,此响应成为 $i'(t) = (4-2e^{-2.5t}) A$ 。 则原响应 i(t) 中的零输入响应分量和零状态响应分量各为______。
- 6. 题图 1.6 所示 RLC 并联电路,已知各电流有效值分别为 I=10A, $I_R=6$ A, $I_L=2$ A,则 I_C 应为____。

题图 1.6

- 7、若 RL 串联电路对基波的阻抗为 $(1+j4)\Omega$,则对二次谐波的阻抗为。
- 8、某二端网络,端口电压、电流分别为 $u(t) = (10 + 20\cos\omega t + 10\cos2\omega t)V$,
- $i(t) = (2 + 10\cos\omega t + 5\cos4\omega t)$ A,电压、电流为关联参考方向。端口平均功率 P为_____。

二、电路化简。(本题共10分,每题5分)

将题图 2 中的各电路简化为最简电路。

三、简单计算题(本题共10分,每题5分)

1、电路如题图 3.1 所示,要使电流 I 增加为 2I,则 18Ω 电阻应替换为何值?

2、正弦信号电路如题图 3.2,已知 ω =10 rad/s, $\frac{1}{\omega C}$ =100 Ω 。若开关断开和闭合时,电流表读数不变,求 L 的值。

题图 3.2

四、计算题(本题共53分)

1、(1)题图 4.1(a)电路中,试以图示网孔顺序和绕行方向列写网孔方程; (2)以题图 4.1(b)所示节点编号列写电路的节点方程。(本题 8 分)

题图 4.1 (a)

题图 4.1 (b)

2、电路如题图 4.2 所示,当t=0时开关闭合,闭合前电路已达稳态。试求i(t), $t\geq 0$ 。 (本题 8 分)

题图 4.2

3、题图 4.3 所示电路中,正弦电压源 $u_s(t)=4\sqrt{2}\cos t$ V, 直流电流源 $I_s=6$ A, 求电流 $i_1(t)\ ,\ i_2(t)\ ,\ i_3(t)\ ,\ \ (本题 8 分)$

4、题图 4.4 所示电路,已知电压源 $u_s(t)=10+14.1\cos(10^3t+30^\circ)+8\cos(2\times 10^3t+45^\circ)$ V,电流源 $i_s(t)=1$ A, $i(t)=1.41\cos(10^3t+30^\circ)$ A,电阻 R_1 流过电流 i_{R1} 的直流分量为 0.5A,方向向左,求电阻 R_1 、电阻 R_2 ,以及 R_2 两端压降u(t)。(本题 9 分)

5、电路如题图 4.5 所示,开关闭合前电路已达稳态。求电路在开关 K 闭合后电容两端的电压 $u_c(t)$,并定性画出其波形图。(本题 10 分)

- 6、稳态电路如题图 4.6 所示。 $u_{S}(t) = \cos t V$, $i_{S}(t) = \cos t A$ 。 (本题 10 分)
 - (1) $Z_L = ?$ 时获得最大功率? (Z_L 实部、虚部均可变), 并求 P_{Lmax} ;
 - (2) 若 $Z_L = R_L$ (纯电阻) 时,应如何实现功率匹配?再求 P'_{Lmax} 。

题图 4.6