# UNCLASSIFIED AD 410282

## DEFENSE DOCUMENTATION CENTER

F03

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA



UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

# 

NOTES ON LARGE-SIZE FURNACES

FOR HEAT TREATING METAL ASSEMBLIES
(A Revision of DMIC Memo 63)

410282

DEFENSE METALS INFORMATION CENTER
BATTELLE MEMORIAL INSTITUTE
COLUMBUS 1, OHIO

The Defense Metals Information Center was established at Battelle Memorial Institute at the request of the Office of the Director of Defense Research and Engineering to provide Government contractors and their suppliers technical assistance and information on titanium, beryllium, magnesium, refractory metals, high-strength alloys for high-temperature service, corrosion- and oxidation-resistant coatings, and thermal-protection systems. Its functions, under the direction of the Office of the Secretary of Defense, are as follows:

- To collect, store, and disseminate technical information on the current status of research and development of the above materials.
- To supplement established Service activities in providing technical advisory services to producers, melters, and fabricators of the above materials, and to designers and fabricators of military equipment containing these materials.
- To assist the Government agencies and their contractors in developing technical data required for preparation of specifications for the above materials.
- 4. On assignment, to conduct surveys, or laboratory research investigations, mainly of a short-range nature, as required, to ascertain causes of troubles encountered by fabricators, or to fill minor gaps in established research programs.

Contract No. AF 33(616) -7747 Project No. 2(8-8975)

"The information in this report came from many sources, and the original language may have been extensively quoted. Quotations should credit the original authors and the originating agency. Where patent questions appear to be involved, the usual preliminary righted material is used, permission should be obtained for its

COPIES AVAILABLE FROM DTS \$

### NOTES ON LARGE-SIZE FURNACES FOR HEAT TREATING METAL ASSEMBLIES

H. J. Hucek, A. R. Elsea, A. M. Hall\*

### INTRODUCTION

This memorandum is a revision of DMIC Memorandum 63, dated August 25, 1960. The revision was initiated as a result of recent inquiries by defense contractors. Most of these inquiries concerned the availability of heat-treating facilities of larger size than those listed in the original memorandum.

The information given in this memorandum was obtained from telephone conversations with company representatives, company literature, the Defense Metals Information Center files, and published information.(1,2,3)\*\*\*
The names of the companies contacted are listed in the Appendix.

The technology of rockets and missiles has placed great emphasis on the heat treatment of the high-strength steels used in the manufacture of high-speed aircraft and missiles. For example, a rocket body, consisting of a thin-wall cylindrical tank, must be heat treated after fabrication so as to maintain very close dimensional tolerances and at the same time meet stringent specifications for mechanical properties. Decarburization must be held to a minimum, and in some cases no decarburization can be tolerated.

Surface reactions (such as decarburization) that occur during heat treatment are usually prevented, or at least minimized, by filling the heating chamber with a protective atmosphere or by heating in a neutral molten salt. The most familiar types of protective atmospheres are exothermic, endothermic, nitrogen, inert gases (chiefly argon), dry hydrogen, and vacuum. No one atmosphere is suitable for all heat treatments. The most common protective atmospheres, endothermic and exothermic, are obtained from the products of combustion of hydrocarbon fuel gases.

Exothermic gas is obtained from air-gas mixtures that will support combustion. These exothermic gases are saturated at about 10 F above the cooling-water temperature, and auxiliary drying equipment is needed to vary the water-vapor content (dew point) after the mixture leaves the generator.

The gas-air mixture used to produce endothermic gas is too rich to support combustion, and the reaction takes place in an externally heated retort. Within practical limits, the moisture content can be varied by adjusting the air-to-gas ratio without the use of auxiliary drying equipment. It has been established that the dew point of an endothermic atmosphere is a theoretical and practical measure of its carbon potential.

<sup>\*\*</sup>Ferrous and High-Alloy Metallurgy Division, Battelle Memorial Institute. \*\*\*References are listed at the end of this memorandum.

### AVAILABILITY OF LARGE FURNACES

The availability and location of extra-large-capacity furnaces is summarized in Table 1. Most of the companies listed as having furnaces also have metallurgical test facilities available which include Magnaflux, X-ray, tensile, and hardness testing. Many have additional facilities such as Magnaglo, ultrasonic inspection, spectrograph, chemical analysis, and metallographic laboratories.

As shown in Table 1, most of the furnaces are bottom-open gantry furnaces using an endothermic protective atmosphere. This type of furnace allows loading from or quenching into a pit below the furnace without losing the protective atmosphere or exposing the part to the air. Also, holding the parts to be heat treated in a vertical position assists in reducing distortion during heat treatment.

The endothermic protective atmosphere is the most popular because it is easy to control the carbon potential with this gas by regulating the dew point. (4) The dew point in the furnace can be readily varied by regulating the mixture in the generator and the flow of atmosphere through the furnace. The regulation of the carbon potential of the furnace atmosphere is extremely important in heat treating parts which require close control or elimination of decarburization. An atmosphere which would be neutral to a 0.30 carbon steel could very readily decarburize a 0.40 carbon steel.

Table 1 is not intended to be a complete listing of all heat-treating facilities in the country. It is intended as a guide to the location of unusually large furnaces. Also, the information listed does not cover all available facilities at the various companies. Some of the facilities have a considerable flexibility which cannot be indicated in a brief table. For example, in some instances the same quench tanks and tempering units are available for more than one heating furnace. Other companies have furnaces and facilities which can be readily adapted for a wide range of work. Information as to the availability and uses of the facilities at any given time can best be obtained by contacting the company listed.

In contacting furnace manufacturers and heat treaters in order to bring up to date the list of furnaces in Table 1, most companies indicated they are waiting for definite sizes and material commitments from potential customers before installing any new large furnaces. Large gantry-type furnace installations are a major capital investment, and most companies are reluctant to spend such sums on the basis of speculation.

The largest heat-treating furnaces now available were built specifically to heat treat cases with diameters up to 120 inches. The only larger furnace presently available (204 inches in diameter; Item 11 in Table 1, Eastern Section) is stationary and is presently being used in manufacture of large glass-lined steel tanks. This furnace does not now have a protective atmosphere available. Engineering work has been completed on the design modifications to provide hoists which operate through the furnace arch. Also, shrouds with seals to enclose the work piece, a salt-quench bath, and a separate

preheating and tempering furnace have been designed. When a definite need develops for incorporating these features into the furnace, it could be done in a few months' time.

### REFERENCES

- (1) DMIC Report 119, "Heat Treatment of High-Strength Steels for Airframe Applications", R. J. Fiorentino, D. B. Roach, and A. M. Hall, OTS PB 151076.
- (2) "Survey of Special Furnaces for Rocket, Missile and Aircraft Components", Metal Treating, September-October, 1959, and April-May, 1960.
- (3) DMIC Memorandum 63, "Notes on Large-Size Furnaces for Heat Treating Metal Assemblies", H. J. Hucek, A. R. Elsea, and A. M. Hall (August 25, 1960).
- (4) Round Table on Atmosphere Generation, Metal Progress, <u>66</u>, N5, pp 81-123 (November, 1954)

TABLE 1. DESCRIPTIONS OF SOME EXTRA-LARGE-CAPACITY

|     |                                                                            | Desci                        | ription of Furnace        |                                                              |            |                                                                 |
|-----|----------------------------------------------------------------------------|------------------------------|---------------------------|--------------------------------------------------------------|------------|-----------------------------------------------------------------|
|     |                                                                            |                              |                           | Size of Heating Chamber Furnace Opening, Length, inches feet |            | Types of Protective Atmospheres                                 |
|     | Company                                                                    | Type of Furnace              | Method of<br>Heating      |                                                              |            |                                                                 |
|     |                                                                            | Central Sec                  | tion                      |                                                              |            |                                                                 |
| 1.  | General Electric, Rocket Engine<br>Section, Cincinnati, Ohio               | Bottom-open, Gantry          | Electric                  | 120 dia                                                      | <b>3</b> 0 | Endothermic                                                     |
| 2.  | Army Ballistic Missile Agency,<br>Redstone Amenal, Alabama                 | Bottom-opening               | Electric                  | 96 dia                                                       | 10         | None (air)                                                      |
| 3.  | Lindberg Steel Treating Co.,<br>Melrose Park, Illinois                     | Bottom-open, Gantry          | Electric                  | 80 dia                                                       | 24         | Endothermic, nitrogen, argon                                    |
| 4.  | Thompson-Ramo-Wooldridge, Inc.,<br>Cleveland, Ohio                         | Bottom-open, Gantry          | Electric                  | 72 dia                                                       | 22         | High nitrogen, argon, endothermic                               |
| 5.  | Commercial Steel Treating Corp. Detroit, Michigan                          | Bottom-open, Gantry<br>Ditto | Radiant tube-gas<br>Ditto | 70 dia<br>70 dia                                             | 28<br>14   | Endothermic                                                     |
| 6.  | Goodyear Aircraft Corp.,<br>Akron, Ohio                                    | Bottom-open, Gantry          | Electric                  | 68 dia                                                       | 21         | Nitrogen                                                        |
| 7.  | Metallurgical Inc.,<br>Minneapolis, Minnesota                              | Bottom-open                  | Electric                  | 72 dia                                                       | 24         | Any atmosphere required                                         |
| 8.  | Wall Colmonoy Corp<br>Detroit, Michigan                                    | Vertical                     |                           | 72 dia                                                       | 10         | Dry hydrogen, argon,<br>nitrogen, carbon<br>dioxide, exothermic |
| 9.  | Ingersoll Kalamazoo Division,<br>Borg-Warner Corp.,<br>Kalamazoo, Michigan | Bottom -drop                 | Electric                  | 42 dia                                                       | 13         | Endothermic                                                     |
| 10. | A O. Smith, Milwaukee, Wis.                                                | Top-open pit<br>Ditto        | Electric                  | 60 dia<br>54 dia                                             | 10<br>12   | Inert or recarb. Ditto                                          |
| 11. | The National Acme Co.,<br>Cleveland, Ohio                                  | Top-open pit<br>Ditto        | Electric                  | 30 dia<br>30 dia                                             | 7.5<br>6.5 | Endothermic "                                                   |
| 12. | Allison Division, General Motors<br>Corp., Indianapolis, Ind.              | Bottom-open                  | For more                  | informatio                                                   | n contact  | Allison                                                         |

### FURNACE EQUIPMENT AVAILABLE IN THE UNITED STATES

| Maximum<br>Femperature,<br>F Quenching Media |              |                                   | Tempering Facilities                             |                              |                                                                                |  |  |
|----------------------------------------------|--------------|-----------------------------------|--------------------------------------------------|------------------------------|--------------------------------------------------------------------------------|--|--|
|                                              |              | Quenching Media                   | Size <sup>(a)</sup> Diam, inches;<br>Length, ft. | Maximum<br>Temperature,<br>F | Remarks                                                                        |  |  |
|                                              |              |                                   | Cen                                              | tral Section                 |                                                                                |  |  |
| 1.                                           | 2000         | Salt, water, air, oil (available) | 120" dia x 30' (two)                             | 1400                         | Salt quench can be heated 300 F to 1000 F; water quench can be heated to 180 F |  |  |
| 2.                                           | 1200         |                                   | 96" dia x 10'                                    | 1200                         |                                                                                |  |  |
| 3.                                           | 2050         | Salt, nitrogen<br>(gas), water    | 80" dia x 24' (two)                              | 1400                         |                                                                                |  |  |
| 4.                                           | 2050         | Salt, oil, water                  | 72" dia x 22'                                    | 1400                         |                                                                                |  |  |
| 5.                                           | 1850<br>1850 | Oil<br>Oil                        | 70" dia x 22'                                    | 1250                         |                                                                                |  |  |
| 6.                                           | 1950         | Salt, water                       | 72" dia x 22' (two)                              | 1400                         | Plan to add facilities to Gantry; add endothermic                              |  |  |
| 7.                                           | 2150         | Salt, oil, water                  | 84" dia x 24'                                    | 1250                         |                                                                                |  |  |
| 8.                                           |              |                                   |                                                  |                              | Furnace used for brazing and heat treating                                     |  |  |
| 9.                                           | 1800         | 011                               | 72" dia x 14'                                    | 1400                         |                                                                                |  |  |
| 10.                                          | 1750<br>1750 |                                   | 54" dia x 12' (two)                              | 1350                         |                                                                                |  |  |
| 11.                                          | 1900         |                                   | 30" dia x 7'-8"                                  | 800                          |                                                                                |  |  |
|                                              | 1900         |                                   | 30" dia x 6'-8"                                  | 800                          |                                                                                |  |  |
| 12.                                          |              |                                   | For more informa                                 | tion contact Alliso          | a.                                                                             |  |  |

TABLE 1.

|     |                                                                          | Desc                                         | ription of Furnace   |                               |                |                                   |
|-----|--------------------------------------------------------------------------|----------------------------------------------|----------------------|-------------------------------|----------------|-----------------------------------|
|     |                                                                          |                                              |                      | Size of Heating<br>Chamber    |                |                                   |
|     | Company                                                                  | Type of Furnace                              | Method of<br>Heating | Furnace<br>Opening,<br>inches | Length,        | Types of Protective<br>Atmosphere |
|     |                                                                          | Eastern Sec                                  | tion                 |                               |                |                                   |
| 1.  | J. W. Rex Company,<br>Lansdale, Pennsylvania                             | On Bottom-open, Gantry                       | Electric             | 71 dia                        | 22             | Endothermic                       |
|     |                                                                          | Bottom-open, Gantry<br>Bottom-open, vertical | Electric             | 60 dia<br>144 dia             | 15<br>32       | Endothermic<br>Endothermic        |
| 2.  | H. K. Porter Company, Inc.<br>Ambridge, Pennsylvania                     | Bottom-open, Gantry<br>Ditto                 | Gas<br>Gas           | 48 dia<br>36 dia              | 13<br>18       | Endothermic<br>"                  |
| 3.  | Alco Products Manufacturing<br>Company, Dunkirk, N. Y.                   | Bottom-opening                               | Electric             | 44 dia                        | 13.5           | Endothermic                       |
| 4.  | Pittsburgh Commercial Heat Treating<br>Co., Pittsburgh, Pennsylvania     | Bottom-opening                               | Electric             | 44 dia                        | 10             | Endothermic                       |
| 5.  | Metlab Company, Philadelphia,<br>Pennsylvania                            | Bottom-opening                               | Propane gas          | 36 dia                        | 14             | Endothermic or exothermic         |
| 6.  | Parish Pressed Steel,<br>Reading, Pennsylvania                           | Top-open pit                                 |                      | 30 dia                        | 12'-11"        | Products of com-<br>bustion       |
| 7.  | S. D. Hicks, Ashville,<br>North Carolina                                 | Salt pot                                     | Gas                  | 72 sq                         | 20             | Neutral salt                      |
| 8.  | The Hicks Corporation, Boston, Massachusetts                             | Salt pot<br>Salt pot <sup>(b)</sup>          | Electric and gas     | 48 sq<br>33 dia               | 15<br>16       | Neutral salt Ditto                |
| 9.  | M. W. Kellogg Company,<br>Jersey City, N. J.                             | Salt pot<br>Salt por(b)<br>Salt por(b)       | Electric<br>Electric | 48 sq<br>30 dia<br>30 dia     | 15<br>10<br>10 | Neutral salt<br>Ditto             |
| 10. | Pratt-Whitney, East Hartford,<br>Connecticut                             | Gantry-type                                  | Electric             | 90 dia                        | 12             | Endothermic and nitrogen          |
| 11. | The Pfaudler Co. Division of Pfaudler Permutit, Inc. Rochester, New York | Vertical,<br>Bottom-open                     | Natural gas          | 204 dia                       | 33             | Can be made available             |

### (Continued)

|      |           |                 | Tempering Faci                      | lities       |                              |
|------|-----------|-----------------|-------------------------------------|--------------|------------------------------|
|      | ximum     |                 |                                     | Maximum      |                              |
| [emp | perature, |                 | Size <sup>(a)</sup> Diam, inches;   | Temperature, |                              |
|      | F         | Quenching Media | Length, ft.                         | F            | Remarks                      |
|      |           |                 | Easte                               | rn Section   |                              |
| 1.   | 1950      | Caustic, oil    | 71" x 22' (two)                     | 1500         |                              |
|      |           | salt, water     | 71" x 15' (two)                     | 1500         | _                            |
|      | 1950      | Oil, caustic    | 71" x 8'                            | 1500         | On same track                |
|      | 1950      |                 | 60" x 13'                           | 1500         |                              |
|      | 1850      | Salt            | 157" x 44'                          | 1250         | 20 tons                      |
| •    | 1500      |                 |                                     |              |                              |
| 2.   | 1700      |                 | 60" x 57" x 12'-6"                  | 850          |                              |
|      |           |                 | 36" x 13'                           | 1700         |                              |
|      | 1700      |                 | 48" x 18'                           | 1700         |                              |
| 3.   | 1950      | Oil or water    | 72" x 48" x 20' (horiz.)            | 1250         |                              |
|      |           |                 | 44" x 13'-8" (vert.)                | 1250         |                              |
| 4.   | 1900      |                 | 40" x 10'                           | 1850         |                              |
| 5,   | 1850      |                 | Available according to requirements |              |                              |
| 6.   | 1650      |                 | 36" x 68" x 23'-4 (horiz.)          | 1300         |                              |
| 7.   |           | Oil             |                                     |              |                              |
|      |           |                 |                                     |              |                              |
| 8.   | 1700      |                 | 72" sq x 20' (horiz.)               | 1300         |                              |
|      |           |                 |                                     |              |                              |
| 9,   | 1700      |                 | 36" sq x 12'                        | 1300         |                              |
|      | 1300      |                 | 36" sq x 6'                         | 1300         |                              |
| 10.  | 2000      | Temperin        | ng facilities will be available     |              | Proposed future construction |
| 11.  | 2500      | Will be m       | ade available as needed             |              | 50 ton max. work load        |

TABLE 1.

|     |                                                                           | Desci                        | ription of Furnace           |                                         |          |                                          |
|-----|---------------------------------------------------------------------------|------------------------------|------------------------------|-----------------------------------------|----------|------------------------------------------|
|     | •                                                                         |                              |                              | Size of 1                               | _        |                                          |
|     |                                                                           |                              |                              | Chamber<br>Furnace                      |          |                                          |
|     |                                                                           |                              | Method of                    | Opening,                                | Length.  | Types of Protective                      |
|     | Company                                                                   | Type of Furnace              | Heating                      | inches                                  | feet     | Atmospheres                              |
|     |                                                                           | Western Sec                  | tion                         |                                         |          |                                          |
| 1   | Aerojet-General Corp.                                                     | Bottom-open, Gantry          | Electric                     | 100 dia                                 | 21       | Endothermic                              |
|     | Azusa, California                                                         | pottom open, canty           | Liceure                      | 200 02                                  |          |                                          |
|     | Sacramento, California                                                    | Bottom-open, Gantry          | Electric                     | 96 diz                                  | 20       | Endothermic                              |
| 2.  | North American Aviation,<br>Los Angeles, California                       | Bottom-open, Gantry          | Electric                     | 84 dia                                  | 29       | Exothermic nitrogen base                 |
| 3.  | Menasco Manufacturing Co.,                                                | Bottom-open, Gantry          |                              | 80 dia                                  | 24       | Endothermic                              |
|     | Fort Worth, Texas                                                         | bonom open, o-m.,            |                              | 57                                      |          |                                          |
| 4.  | Lindberg Steel Treating Co.                                               | Bottom-open, Gantry          | Electric                     | 80 dia                                  | 16       | Exothermic, argon,                       |
|     | Los Angeles, California                                                   |                              |                              |                                         |          | nitrogen                                 |
| 5.  | The Marquardt Corp.,                                                      | Bottom-opening               | Electric                     | 80 dia                                  | 10       | Endothermic and                          |
|     | Ogden, Utah                                                               |                              |                              |                                         |          | exothermic                               |
| 6.  | Marquardt Aircraft Co. ,<br>Van Nuys, California                          | Bottom-open, Gantry          | Electric                     | 72 dia                                  | 10       | Endothermic                              |
| 7   | Norris-Thermador,                                                         | Bettom cones Cantin          | Con                          | 60 dia                                  | 11       | Endothermic                              |
| ••  | Los Angeles, California                                                   | Bottom-open, Gantry<br>Ditto | Gas<br>"                     | 96 dia                                  | 20       | " Effortiering                           |
| 8.  | Douglas Aircraft Company, Inc.,                                           | Bottom-open, Gantry          | Electric                     | 74 dia                                  | 18       | Endothermic and                          |
|     | Torrance, California                                                      | (two)<br>Bottom-opening      | Electric                     | 48 dia                                  | 10       | exothermic<br>Exothermic                 |
| Q   | Menasco Manufacturing Co.,                                                | Vertical                     | Electric                     | 72 dia                                  | 13       | Endothermic                              |
| ٠.  | Burbank, California                                                       | V CI (ICA)                   | Electric                     | /2 U.S                                  | 10       | Elidogicilliac                           |
| 10. | California-Doran Heat Treating Co.,                                       | Bottom-open, Gantry          | Radiant tube-gas             | 60 dia                                  | 16       | Exothermic, nitrogen                     |
|     | Los Angeles, California                                                   | Top-open pit                 | Gas                          | 60 dia                                  | 6        | Endothermic, or argon<br>Endothermic and |
|     |                                                                           |                              |                              | • • • • • • • • • • • • • • • • • • • • | -        | exothermic                               |
|     |                                                                           | Bottom-open, Gantry          | Gas                          | 154 dia                                 | 14       |                                          |
| 11. | Boeing Airplane Company,<br>Seattle, Washington                           | Gantry                       | Electric                     | 60 dia                                  | 14       | Endothermic                              |
| 12. | Lockheed Aircraft Corp.,                                                  | Bottom-open, Gantry          | Electric                     | 60 dia                                  | 15       | Endothermic                              |
|     | Burbank, California                                                       |                              |                              |                                         |          |                                          |
| 13. | E and J Heat Treating Inc.                                                | Bottom-open, Gantry          | Radiant tube-gas<br>Electric | 84 dia<br>48 dia                        | 10<br>16 | Endothermic<br>Endothermic               |
|     |                                                                           | Top-open pit                 | Elecuic                      | 40 014                                  | 10       | Endomerime                               |
| 14. | Solar, A Subdivision of International<br>Harvester, San Diego, California | Top-open pit                 | Electric                     | 108 dia                                 | 30       | Endothermic, nitrogen<br>hydrogen, argon |
| 15. | North American Aviation,<br>Downey, California                            | Horizontal                   |                              | 78 dia                                  | 40       | Vacuum or inert gas                      |
| 16. | Convair, Astronautics                                                     | Vacuum                       | Electric                     | 72 dia                                  | 10       | Vacuum                                   |

<sup>(</sup>a) Vertical unless noted.

|                         |              |                                                   | Tempering Faci                    | litie-                            |                                                                                                                     |  |  |
|-------------------------|--------------|---------------------------------------------------|-----------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|
| Maximum<br>Temperature, |              |                                                   | Size <sup>(a)</sup> Diam, inches; | Maximum<br>Temperature,           |                                                                                                                     |  |  |
|                         | F            | Quenching Media                                   | Length, ft                        | F                                 | Remarks                                                                                                             |  |  |
|                         |              |                                                   | West                              | tern Section                      |                                                                                                                     |  |  |
| 1.                      | 2050         |                                                   | 100" dia x 21'                    | 1450                              |                                                                                                                     |  |  |
|                         |              | Salt, oil                                         |                                   |                                   |                                                                                                                     |  |  |
| 2.                      | 2050         | Nitrogen-base<br>atmosphere water,                | 84" dia x 29'                     | 1450                              | Subzero cooling chamber 84" x 29' cools to -110 F                                                                   |  |  |
| 3.                      | 2050         | Salt, water                                       | 80" dia x 24'                     | 1250                              |                                                                                                                     |  |  |
| 4.                      | 2050         | Salt, water                                       |                                   | 1400                              |                                                                                                                     |  |  |
| 5.                      | 2000         |                                                   | 80" dia x 10'                     | 1000                              |                                                                                                                     |  |  |
| 6.                      | 2000         |                                                   | 72" dia x 10'                     | 1000                              |                                                                                                                     |  |  |
| 7.                      | 1800         | Salt                                              | 60" dia x 16'                     | 1300                              |                                                                                                                     |  |  |
| 8.                      | 2000         | Oil, water, salt atmosp.                          | 74" dia x 18'                     | 1450 F                            | 11 pit stations                                                                                                     |  |  |
|                         | 1800         | Oil                                               |                                   | 1250                              |                                                                                                                     |  |  |
| 9.                      | 2000         | Water, oil, salt                                  | 72" dia x 13'                     |                                   |                                                                                                                     |  |  |
| 10.                     | 1900<br>1800 | Water                                             | 60" dia x 16'                     | 1150                              |                                                                                                                     |  |  |
| 11.                     | 1900<br>2050 |                                                   | 42" dia x 16'<br>60" dia x 14'    | 1700<br>1 <b>4</b> 50             |                                                                                                                     |  |  |
| 12.                     | 2050         |                                                   | 60" dia x 15'                     | 1450                              |                                                                                                                     |  |  |
| 13.                     | 1950<br>1900 | Oil, water<br>Oil, water                          | 48" x 16'<br>72" x 20'            | 1250 Quench pits for both fumaces | Can temper in Gantry (has circulating fan) also,<br>a 48" x 16' pit is available for subzero treatment<br>to -110 F |  |  |
| 14.                     | 1950         | Air                                               | 108" dia x 30'                    | 1950                              |                                                                                                                     |  |  |
| 15.                     | 2250         | Cooled inside fur-<br>nace by inert<br>atmosphere |                                   |                                   | Furnace used for degassing, heat treatment and brazing                                                              |  |  |
| 16.                     |              | •                                                 |                                   |                                   |                                                                                                                     |  |  |

<sup>(</sup>b) Two sait pots of this size.

APPENDIX

### A-1 and A-2

### APPENDIX

Companies and individuals contacted in the survey of extra-large-capacity furnace equipment available in the United States.

General Electric Corporation Rocket Engine Section Cincinnati, Ohio Mr. N. C. White

Lindberg Steel Treating Co. Melrose Park, Illinois Mr. G. H. Bodeen Mr. J. Boerema

J. W. Rex Company Lansdale, Pennsylvania Mr. John E. King

Commercial Steel Treating Company Detroit, Michigan Mr. Patterson

Thompson-Ramo-Wooldridge, Inc. Cleveland, Ohio Mr. Jim Long

Metallurgical, Inc.
Minneapolis, Minnesota
Mr. Paul Wallace

Pacific Scientific Company Los Angeles 22, California Mr. Bob Grossman

Surface Combustion Division of Midland-Ross Corporation Toledo, Ohio Mr. Koch

Allison Division of General Motors Corporation Indianapolis, Indiana Mr. Roger Fleming Sunbeam Equipment Corporation 162 Mercer Street Meadville, Pennsylvania Mr. Dain

Excelco Developments, Inc. Silver Creek, New York Mr. W. D. Abbott

Goodyear Aircraft Corporation Akron, Ohio Mr. Ed Saneoska Mr. Bob Barch

Rheem Manufacturing Downey, California Mr. Sykes

E and J Heat Treating, Inc. Los Angeles 58, California Mr. D. Leach

General Electric Corporation Industrial Heating Department Shelbyville, Indiana Mr. Richardson

Lindberg Engineering Company Chicago, Illinois Mr. Norbert K. Koebel

Pfaudler Company Rochester, New York Mr. William Galloway Mr. J. W. Glenn

# LIST OF DMIC MEMORANDA ISSUED (Continued)

A list of DMIC Memoranda 1-164 may be obtained from DMIC, or see previously issued memoranda.

| DMIC<br>Memorandum<br>Number | Title                                                                                                                                                          |  |  |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 165                          | Review of Uses for Depleted Uranium and Nonenergy Uses for Natural Uranium,                                                                                    |  |  |  |  |
|                              | February 1, 1963                                                                                                                                               |  |  |  |  |
| 166                          | Literature Survey on the Effect of Sonic and Ultrasonic Vibrations in Controlling Grain Size During Solidification of Steel Ingots and Weldments, May 15, 1963 |  |  |  |  |