

Design and Implementation of a Data-Driven Simulation Service System

October 17, 2016

Ki Yong Lee, YoonJae Shin, YeonJeong Choe, SeonJeong Kim Sookmyung Women's University

Young-Kyoon Suh, Jeong Hwan Sa, Kum Won Cho

Korea Institute of Science and Technology Information (KISTI)

Outline

- Introduction
- Related Work
- Our Simulation Service System
- Performance Evaluation
- Conclusions

Introduction

- Computer simulations are widely used in various fields of science and engineering
 - Computational fluid dynamics (CFD), astrophysics, particle physics,
 climate science, evolutionary biology, ecology, medicine, epidemiology

(c) Airfoil flow simulation

- Simulation program
 - Input: the values of the system's state variables
 - Output: the system's next state calculated with numerical algorithms

Increasing Cost of Simulations

- As the demand for the accuracy and quality of simulations grows, the cost of executing simulations is also *rapidly increasing*
 - (ex) the number of equations to be solved becomes larger

- To make matters worse, simulations are often repeatedly executed for different values of input parameters
 - In this case, the cost of simulations may be prohibitively high

Simulations with Different Input Values

Example: Airfoil simulation

- Users execute simulations for various values of input parameters
 - Angle of attack: 0°, 1°, 2°, ..., 15°
 - Mach number: 0.05, 0.1, 0.15, ..., 0.5
 - Reynolds number: 1×10⁵, 2×10⁵, 3×10⁵, ..., 1×10⁶
 - Other input parameters

(a) Lift coefficients for *various values* of angles of attack

(b) Pressure fluctuations for *various values* of Mach numbers

Improving Simulation Performance

- Because the cost of executing simulations is increasing, it is very important to reduce the cost of executing simulations
- Approach 1: improve the performance of computer hardware
 - Multi-core CPUs or Multi-core GPUs (on a single computer)
 - A computer cluster (a group of computers connected together)
- Approach 2: optimize numerical algorithms used in simulation
 - For many numerical problems, there are many alternative algorithms that vary in speed and performance
 - Equation solving, matrix decomposition, maximization/minimization, regression, clustering, etc.
 - Thus, a good algorithm is essential to reduce the execution time

Our Approach (1/2)

- Until now, the *reuse* of previously obtained simulation results to improve the execution of later simulations has not been much investigated yet
- Most existing simulation service systems
 - Conduct the same (perhaps long-running) simulations from scratch each time it is requested
 - Or provide only limited ability to search the previous simulation results
- If we store and utilize previously obtained simulation results...
 - We can avoid redundant computations
 - We can reduce the execution time of a simulation
 - We can reduce the burden on the simulation service system

Our Approach (2/2)

- Data-driven application system (DDAS)
 - A system where execution flow is governed by data it processed
 - Obtained data can be incorporated in to the execution of the application
- In this paper, we develop a *data-driven* simulation service system
 - Executes requested simulations and returns the result back to the user
 - Utilizes the previous simulation results to improve the execution of later simulations
- The main functionality of our system
 - 1 Loading simulation results into the database
 - ② Reusing simulation results for requested simulations
 - 3 Predicting simulation results upon request

Main Functionality of Our System

1 Loading simulation results

- The user can load the result of a completed simulation into the database
- A bulk loading feature is also provided

② Reusing simulation results

 If the result of a requested simulation already exists in the database, the system returns the result without executing the simulation again

③ Predicting simulation results

- If the result of a requested simulation does not exist in the database, the system predicts the simulation result based on the previous data
- We employed several popular statistical machine learning techniques
 - Linear regression, support vector machine, neural networks, *k*-nearest neighbor interpolation, decision trees, etc.

Existing Simulation Service Systems

DataSpaces

Provides a shared-space abstraction for simulation data indexing and querying

BIGNASim

A NoSQL database portal for nucleic acids simulation data

SciDrive

 A free open-source scientific data publishing platform with the simplicity of Dropbox

DCMS (Database-Centric Molecular Simulation) system

 Stores molecular simulation data in a relation database to query and search simulation results

Existing Simulation Service Systems

iBIOMES

 A storage and querying system for large biomolecular simulation and computational chemistry datasets

Scibox

 A cloud-based simulation data sharing and storage system providing a Dropbox-like interface

✓ Limitations of existing simulation service systems

- They do not provide the ability to *reuse* the existing simulation results automatically without user involvement
- They do not provide the ability to *predict* the result of a simulation based on the previous simulation results

Developed System Architecture

Main Components

1. Simulation data transform-loader

Transforms simulation results into JSON documents and loads it into the simulation database

2. Simulation database

Stores simulation results

3. Simulation query interface

- Receives a user request and returns the simulation result to the user
- If the requested result is in the database, returns the result to the user
- Otherwise, allows the user to predict the simulation result

4. Data-driven simulation predictor

Predicts the result of a simulation based on the previous results

5. Metadata database

Stores the information about simulation programs

1. Simulation Data Transform-Loader

- Allows the user to *load* the result of a completed simulation into the simulation database
 - Makes a JSON document from the output files and loads it into DB
- Needed for each specific simulation program
 - Because different simulation programs have different result structures
- Example: simulation data transform-loader for EDISON KFLOW

2. Simulation Database

- We adopt *MongoDB* as the simulation database
- MongoDB
 - A open-source document-oriented NoSQL database
 - Supports storing JSON documents with dynamic schemas

- Two desirable features of MongoDB for our system
 - It supports dynamic schemas
 - We can insert data of any structure without a predefined schema
 - Thus, it is easy to store simulation results with various structures
 - It supports storing large volumes of data on a large cluster
 - Because the volume of simulation data is rapidly growing, this scalability is quite important for our simulation service system

3. Simulation Query Interface

- Receives a user request and returns the result to the user
 - If the result of the requested simulation exists in the database
 - Returns the found result back to the user
 - If not, provides the user with two options:
 - Execute the requested simulation from scratch
 - 2 Predict the result of the requested simulation without executing it

4. Data-driven Simulation Predictor

- The end goal is to reduce the burden on the system
 - We need not to execute the requested simulation actually
- To predict the result of a simulation, we employ a number of statistical machine learning techniques
 - Linear regression, support vector machine, CART, MARS, local regression, k-nearest neighbor regression, neural networks, etc.
- We used R library to implement the prediction methods

Airfoil Simulation Predicted Data

Cdt: 0.01616928 Cdp: 0.003518366 Cdf: 0.01265091

CI: -0.001211863

Cm: -0.0001265551

5. Metadata Database

- One important requirement for our simulation service system
 - To support *various* simulation programs
- Thus, we store the metadata for each simulation program
 - Simulation program: name, version, etc.
 - Input parameters: name, datatype, required or optional, etc.
 - Output parameters: name, datatype, display option, etc.

Prediction Performance Evaluation

Dataset

- EDISON KFLOW simulation dataset (provided by KISTI)
 - Input parameters: thickness, Mach number, angle of attack, Reynolds number
 - Output parameters: Cl, Cdt, Cdp, Cdf, Cm
 - The total number of records: 7680

Prediction model training

- The number of records in the training data: 6200 (80% of all data)
- The number of records in the test data: 1479 (20% of all data)
- We use 10-fold cross validation (i.e., 9:1 partition for the training data)

Prediction models

Multiple linear regression, GAM, SVM, CART, random forests, GBM, MARS,
 local regression, k-nearest neighbor regression, neural networks

Evaluation Results

Prediction Model	Cl	Cdt	Cdp	Cdf	Cm
Multiple Linear Regression	12.6%	46.3%	153%	10.9%	59.3%
Generalized Additive Model (GAM)	10.6%	41.1%	130.0%	8.7%	65.1%
Support Vector Machine (SVM) regression	3.7%	6.9%	19.6%	2.5%	21.4%
Classfication and regression trees (CART)	5.8%	7.2%	15.2%	3.5%	17.4%
Random Forests	0.9%	1.6%	2.6%	1.2%	7.5%
Generalized Boosted Model (GBM)	23.7%	3.4%	7.8%	2.2%	18.3%
Multivariate Adaptive Regression Spline (MARS)	3.9%	9.3%	20.7%	3.7%	30.9%
Local Regression	1.3%	1.7%	2.7%	1.1%	7.4%
k-Nearest Neighbor (k-NN) Regression	3.0%	3.7%	6.5%	2.0%	10.3%
Multilayer Neural Networks	2.1%	2.8%	13.8%	3.0%	10.6%

- Note that we use **the average relative error** (= $|true - estimate|/true \cdot 100\%$) as the performance measure, instead of root-mean-square error (RMSE)

Result Analysis

- Nearest-neighbor based regressions show relatively good performance
 - Local regression, k-nearest neighbor regression
- Regressions that produce a single prediction function covering the whole dataset show relatively *poor* performance
 - Multiple linear regression, generalized additive model (GAM)
- The performance of decision trees based regressions improves as the number of trees included in the model increases
 - CART, GBM < Random Forests</p>
- It appears that 1 or 2 are enough for the number of hidden layers for multilayer neural networks

Conclusions

- In this paper, we designed and implemented a data-driven simulation service system
- Unlike the existing systems, our system utilizes the previous simulation results to improve the execution of later simulations
 - Reuse of the previous simulation results
 - Prediction based on the previous simulation results
- Advantages of our system
 - Redundant or unnecessary computation is avoided, resulting in a reduced response time and saved computing resources
 - Consequently, a greater number of users can be served with less amount of computing resources
- We hopes that many scientists and engineers will utilize their simulation results more effectively using our system

Thank you!

Any Question?

