AMENDMENTS TO THE CLAIMS

1. (Previously Presented) A plating method comprising: providing on a wafer a die with a contact having a first surface area;

providing a supplemental plating structure on said wafer, said supplemental plating structure having a surface area larger than said first surface area;

conductively connecting said supplemental plating structure to said contact to create a conductive connection; and

plating said supplemental plating structure and said contact in an electroless bath.

- 2. (Original) The method of claim 1, further comprising discarding said supplemental plating structure after said plating step.
- 3. (Previously Presented) The method of claim 1, further comprising testing said die using said supplemental plating structure as a probe point.
- 4. (Original) The method of claim 1, wherein said supplemental plating structure is located in a street area of said wafer.
- 5. (Original) The method of claim 1, wherein said conductive connection is located at least in part in a street area of said wafer.
- 6. (Original) The method of claim 1, further comprising disconnecting said conductive connection after said plating operation.
- 7. (Original) The method of claim 1, wherein said supplemental plating structure is located on said wafer outside an area where dice are formed on said wafer.
- 8. (Original) The method of claim 1, wherein said supplemental plating structure is a sacrificial area which is located at least partly over said die.

9. (Original) The method of claim 1, wherein said conductive connection is located at least partly over said die.

10. (Canceled)

- 11. (Previously Presented) The method of claim 1, wherein said electroless bath comprises a nickel salt, a hypophosphite salt, an organic acid or a chelating agent, and a stabilizer.
 - 12. (Original) The method of claim 11, wherein said nickel salt is NiSO₄.
- 13. (Original) The method of claim 11, wherein said hypophosphite salt is NaH₂PO₂ or NH₄H₂PO₂.
- 14. (Original) The method of claim 11, wherein said stabilizer is selected from the group consisting of Pb, Cd, and CH₄N₂S.
 - 15. (Previously Presented) A die testing method comprising:

fabricating on a wafer a die with a contact feature having a first surface area; fabricating on said wafer a supplemental plating structure having a surface area larger than said first surface area;

fabricating a conductive connection between said supplemental plating structure and said contact feature;

plating said contact feature and said supplemental plating; and subsequently testing said die using said supplemental plating structure as a probe point.

16. (Canceled)

17. (Previously Presented) The die testing method of claim 15, wherein said plating occurs in an electroless bath.

- 18. (Original) The die testing method of claim 17, wherein said electroless bath comprises a nickel salt, a hypophosphite salt, a stabilizer, and an organic acid or a chelating agent.
 - 19. (Original) The method of claim 18, wherein said nickel salt is NiSO₄.
- 20. (Original) The method of claim 18, wherein said hypophosphite salt is NaH₂PO₂ or NH₄H₂PO₂.
- 21. (Original) The method of claim 18, wherein said stabilizer is selected from the group consisting of Pb, Cd, and CH_4N_2S .
 - 22. (Currently Amended) An integrated circuit wafer, comprising:
- a plurality of dice, each of said dice having a plurality of first platable features; and a plurality of second <u>sacrificial</u> platable features, wherein each first platable feature is conductively connected to more than one second platable feature, and each of said second
- platable features being is electrically connected to more than one first platable feature.
- 23. (Previously Presented) The wafer of claim 22, wherein said second platable features assist in plating said first platable features.
- 24. (Previously Presented) The wafer of claim 23, wherein each said second platable feature also functions as a probe point for testing said dice.

25. (Previously Presented) The wafer of claim 22, wherein said second platable features are square in shape.

26. (Canceled)

- 27. (Previously Presented) The wafer of claim 22, wherein the platable features are electrolessly-platable features.
- 28. (Previously Presented) The wafer of claim 27, wherein the electrolessly-platable features are plated in a bath that comprises a nickel salt, a hypophosphite salt, a stabilizer, and an organic acid or a chelating agent.
 - 29. (Original) A plating method comprising: providing a plating bath comprising:
 - a nickel salt;
 - a hypophosphite salt;
 - at least one organic acid or chelating agent; and
 - a stabilizer;

immersing in said plating bath a wafer, said wafer containing a plurality of dies each having contacts, and supplemental plating structures, said contacts and said supplemental plating structures being conductively connected; and

plating said contacts and said supplemental plating structures.

- 30. (Original) The plating method of claim 29, wherein said stabilizer is selected from the group consisting of Pb, Cd, and CH_4N_2S .
- 31. (Original) The plating method of claim 30, wherein said plating bath is an electroless bath.
 - 32. (Original) The plating method of claim 31, wherein said nickel salt is NiSO₄.

33. (Original) The plating method of claim 32, wherein said hypophosphite salt is NaH_2PO_2 or $NH_4H_2PO_2$.

- 34. (Original) The plating method of claim 33, wherein said supplemental plating structures are sacrificial.
- 35. (Previously Presented) The plating method of claim 29, wherein said supplemental plating structures are conductively connected by sacrificial conductive connections.
- 36. (Original) The plating method of claim 29, wherein at least one conductive connection is routed over at least one die.