Analysis of Categorical Data

SAS Institute April 2008

Binomial distribution

$$P(y|p) = {n \choose y} p^y (1-p)^{n-y}$$

$$= {n \choose y} (1-p)^n (\frac{p}{1-p})^y$$

$$= {n \choose y} (1-p)^n \exp(y \log(\frac{p}{1-p})).$$

Canonical parameter $log(\frac{p}{1-p})$

Poisson distribution

 λ , 0 < λ < ∞ er

$$P(y|\lambda) = \frac{\lambda^{y}}{y!} e^{-\lambda}$$
$$= \frac{1}{y!} e^{-\lambda} e^{y\log(\lambda)},$$

Canonical parameter $log(\lambda)$.

Generalized linear models (Nelder and Wedderburn (1972), JRSS A):

Random component:

 Y_1, \dots, Y_n iid from an natural exponential family.

The distribution of each Y_i depends on the parameter θ_i and has pdf of form:

$$f(y_i; \theta_i) = exp(y_i b(\theta_i) + c(\theta_i) + d(y_i))$$

Systematic component:

A set of parameters β and explanatory variables $\mathbf{X_1}, \dots, \mathbf{X_p}$, relating η_i - (a linear predictor)

$$\eta_i = \sum_j \beta_j x_{ij}$$

Link function:

connects the random and the systematic components

$$g(\mu_i) = \sum_j \beta_j x_{ij},$$

where

$$\mu_i = E(Y_i)$$

-or simply, a GLM is a linear model for the transformed mean of a response variable with distribution from a natural exponential family.

Contains:

Logistic regression
Logit models for multinomial responses
Poisson regression models - loglinear models
Contingency tables
Negative binomial regression
(and standard normality based linear models, gamma, inverse Gaussian ect.)

SAS: proc GENMOD

Random		Systematic	
Component	Link	Component	Model
Normal	Identity	Continous	Regression
Normal	Identity	Categorical	Analysis of variance
Normal	Identity	Mixed	Analysis of Covariance
Binomial	Logit	Mixed	Logistic regression
Poisson	Log	Mixed	Loglinear
Multinomial	Generalized	Mixed	Multinomial response
	logit		

 The GENMOD procedure fits a generalized linear model to the data by maximum likelihood estimation of the parameter vector. There is, in general, no closed form solution for the maximum likelihood estimates of the parameters. The GENMOD procedure estimates the parameters of the model numerically through an iterative fitting process. Covariances, standard errors, and are computed for the estimated parameters based on the asymptotic normality of maximum likelihood estimators.

Logistic regression model

Binary response Y - 0/1

$$\pi = P(Y=1)$$

Z: explanatory variable

$$logit(\pi) = \alpha + \beta Z,$$

which corresponds to

$$\pi = \frac{exp(\alpha + \beta Z)}{1 + exp(\alpha + \beta Z)}.$$

See figure . . .

$$logit(\pi) = \beta_0 + \beta_1 Z_1 + \beta_2 Z_2 + \ldots + \beta_k Z_k,$$

Interpretation

$$\pi = \frac{exp(\alpha + \beta Z)}{1 + exp(\alpha + \beta Z)}.$$

Poisson regression

```
data insure;

n c car$ age;

ln = log(n);

datalines;

500 42 small 1

1200 37 medium 1

100 1 large 1

400 101 small 2

500 73 medium 2

300 14 large 2;

run;
```

Model $log(\mu_i) = log(n_i) + X\beta$

```
proc genmod data=insure;
  class car age;
  model c = car age / dist =
  poisson link = log offset = ln;
  run;
```

Log-linear parameters

 $X_{11}, \dots X_{IJ}$, uafhængige, Poissonfordelte med parametre $\tau_{11}, \dots, \tau_{IJ}$ Log-linear parameters

$$\log \tau_{ij} = \lambda_{ij}^{XY} + \lambda_i^X + \lambda_j^Y + \lambda_0,$$

or equivalent

$$\tau_{ij} = \exp(\lambda_{ij}^{XY} + \lambda_i^X + \lambda_j^Y + \lambda_0)$$

Hypothesis: $\lambda_{ij}^{XY} = 0$

Poisson case

$$\tau_{ij} = \exp(\lambda_i^X + \lambda_j^Y + \lambda_0) = \alpha_i \beta_j \rho$$

Multinomial case

$$p_{ij} = \frac{\tau_{ij}}{\tau_{..}} = \frac{\exp(\lambda_i^X + \lambda_j^Y)}{\sum_i \sum_j \exp(\lambda_i^X + \lambda_j^Y)} = p_i q_j$$

Stratified sampling

$$p_{ij} = \frac{\tau_{ij}}{\tau_{i.}} = \frac{\exp(\lambda_i^X + \lambda_j^Y)}{\sum_j \exp(\lambda_i^X + \lambda_j^Y)} = \frac{\exp(\lambda_j^Y)}{\sum_j \exp(\lambda_j^Y)} = p_j$$

Three-way tables

Conditional associations given the level of Z

$$\log \mu_{ijk} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY} + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ} + \lambda_{ijk}^{XYZ}$$

Associations

X, Y, Z mutually independent:

$$\log \mu_{ijk} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z$$

X and Y **conditional independent** given Z if X and Y are independent in each partial table:

$$\log \mu_{ijk} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ}$$

Homogeneous X-Y association:

No interaction between X and Y in their effect on Z:

$$\log \mu_{ijk} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY} + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ}$$

- Conditional independence *does not* imply marginal independence.
- Conditional independence is a special case of homogeneous association.
- Homogeneous XY association implies homogeneity for the other associations too (a symmetric property).
- If homogeneous association there is said to be *no interaction* between two variables in their effect on the other variable.

Associations in three way tables

Equivalent log-linear and logit models for three-way table with binary response Y

Loglinear model	Logit model
(Y,XZ)	eta_0
(XY,XZ)	$eta_0 + eta_i^X$
(YZ,XZ)	$eta_0 + eta_k^Z$
(XY,YZ,XZ)	$\beta_0 + \beta_i^X + \beta_k^Z$
(XYZ)	$\beta_0 + \beta_i^X + \beta_k^Z + \beta_{ik}^{XZ}$

Multicategory Logit Models

Y nominal variable with J categories p_1, \ldots, p_J response probabilities such that

$$P(Y=i) = p_i$$
 and $\sum_i p_i = 1$

Multicategory logit models simultaneously refer to all pairs of categories.

Nominal Responses Baseline-Category Logits

Y nominal variable with J categories

 p_1, \ldots, p_J response probabilities

$$\log(\frac{p_i}{p_J}) = \alpha_i + \beta_i z, i = 1, \dots, J - 1$$

J-1 logit equations, with separate parameters.

If J=2: ordinary logistic regression model.

Here the last category (J) is the baseline, but any category can be used

$$\widehat{p}_{i} = \frac{\exp(\widehat{\alpha}_{i} + \widehat{\beta}_{i}z)}{1 + \sum_{1}^{J-1} \exp(\widehat{\alpha}_{i} + \widehat{\beta}_{i}z)},$$

$$\widehat{p}_{J} = \frac{1}{1 + \sum_{1}^{J-1} \exp(\widehat{\alpha}_{i} + \widehat{\beta}_{i}z)},$$

Baseline-category logit model

Baseline Category Alligator Food Choice

59 alligators, sampled in Florida Alligator length (L) in meters

```
I 1.24
       I 1.30
               I 1.30
                       F 1.32
                               F 1.32
                                       F 1.40
                                              I 1.42
                                                      F 1.42
                                              I 1.55
I 1.45
       O 1.45
               I 1.47 F 1.47
                               I 1.50
                                      I 1.52
                                                      I 1.60
I 1.63
       O 1.65 I 1.65 F 1.65 F 1.68
                                              I 1.70
                                                      O 1.73
               O 1.78 I 1.80 F 1.80
I 1.78
       I 1.78
                                     I 1.85
                                              I 1.88
                                                      I 1.93
I 1.98 F 2.03 F 2.03 F 2.16 F 2.26 F 2.31
                                             F 2.31
                                                      F 2.36
```

F=Fish, I=Invertebrates, O=Other

Alligator Food Choice

Model:

$$log(\frac{p_i}{p_3}) = \alpha_i + \beta_i L$$
 , i=1, 2

Parameter estimates and Standard Errors (in parentheses):

Parameter	Fish/Other	Invertebrate/Other
Intercept	1.490	5.716
Length	-0.070 (.521)	-2.473 (.901)

Alligator Food Choice

Ordinal responses Cumulative Logit Models

Cumulative logits model:

$$\operatorname{logit}(P(Y \leq i)) = \operatorname{log}(\frac{P(Y \leq i)}{1 - P(Y \leq i)}) = \alpha_i + \beta z$$
 i=1, ...,J-1

NOTE: no subscript on β , so identical effect of x for all J-1 collapsings of the response into binary outcomes.

Sometimes called a proportional odds model:

McCullagh (1980)

$$logit(P(Y \le i|x_1)) - logit(P(Y \le i|x_2)) = \beta(x_i - x_2)$$

Ordinal response categories

Collapsibility property:

Effect parameters are invariant to the choice of categories for Y - α_i will be affected.

Appropriateness can be tested:

Score test is provided by SAS –compares the model with a more complex model with varying parameters for the effects

If poor fit try baseline-category logit model or a nonsymmetric link (eg log-log)

Complementary log-log link:

$$\log(-\log[1 - P(Y \le i|x)]) = \alpha_i + \beta x$$

$$P(Y > i|x_1) = (P(Y > i|x_2))^{exp(\beta(x_1 - x_2))}$$

Proportional hazards model for survival data for grouped survival times.

	Males		Females	
Life length	White	Black	White	Black
0-20	2.4	3.6	1.6	2.7
20-40	3.4	7.5	1.4	2.9
40-50	3.8	8.3	2.2	4.4
50-60	17.5	25.0	69.9	16.3
Over60	72.9	55.6	84.9	73.7

$$P(Y > i | G = male, R = r) = (P(Y > i | G = female, R = r))^{1.93}$$

Diagnostics.

Deviance $D(y; \hat{\mu}) = -2(l(\hat{\mu}; y) - l(y; y))$ or χ^2 goodness-of-fit not too large compared to N-p

Overdispersion D/(N-p) is larger than expected (=1) indicates inadequate model - eg wrong link or missing explanatory variables

More complex model: include an extra parameter

Dispersion models

$$f(y) = f(y) = \exp\left\{\frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi)\right\}$$

 ϕ is called the dispersion parameter. (ϕ known just exp.family) θ the natural parameter.

Poisson:

$$f(y) = \frac{\mu^y e^{-\mu}}{y!} y = 0, 1, 2, \dots \quad \phi = 1 , Var(Y) = \mu$$

Binomial:

$$f(y) = \binom{n}{r} \mu^r (1-\mu)^{n-r} \ y = \frac{r}{n}, r = 0, 1, 2, ..., n \ \phi = 1, Var(Y) = \frac{\mu(1-\mu)}{n}$$

$$\mu = E(Y)$$

$$Var(Y) = \frac{V(\mu)\phi}{w}$$

Overdispersion $\phi > 1$

Poisson: $Var(\mu) = \phi \mu$

Binomial: $Var(\mu) = \phi \mu (1 - \mu)$

Estimates for parameters β 's are the same as ML estimates in the poisson resp. binomial model - but inflates their standard error.

The estimated $cov(\hat{\beta})$ is ϕ times that for the standard model.

Estimate ϕ by Pearson/N-p or D/N-p. That is multiply the std errors by $\sqrt{\phi}$

```
data a;
input yes n temp moisture co2 freshair dust ventil;
cards;
18 19 22.0 30 0.09 8.5 0.20 230
16 20 21.5 25 0.11 6.1 0.08 230
4 19 21.5 25 0.11 4.8 0.06 230
13 18 18.5 25 0.09 9.2 0.07 236
12 14 20.0 25 0.05 8.7 0.08 236
4 18 20.0 25 0.11 5.2 0.12 236
14 17 20.5 30 0.08 13.1 0.09 249
18 19 21.0 30 0.08 12.5 0.06 249
9 16 21.5 30 0.09 8.7 0.07 215
8 18 21.0 30 0.07 9.3 0.09 215
data b;
set a;
proc genmod;
make 'obstats' out=pred;
model yes/n=freshair temp moisture dust ventil co2/
         dist=bin link=logit obstats type1;
title1 "Eksempel fra E.B. Andersen (1991):";
title2 " The Statistical Analysis of Categorical Data. Springer-Verlag.";
```

Criteria For Assessing Goodness Of Fit

•	Criterion	DF		Value	Value/DF
•	Deviance	3		6.4741	2.1580
•	Scaled Deviance		3	6.4741	2.1580
•	Pearson Chi-Squa	re	3	7.6520	2.5507
•	Scaled Pearson X	2	3	7.6520	2.5507
•	Log Likelihood			-88.0226	

Algorithm converged.

Analysis Of Parameter Estimates

•	Parameter	DF	Standard Estimate		5% Confide Limits			· ChiSq
•	Intercept	1	4.6563	9.0648	-13.1103	22.4230	0.26	0.6075
•	freshair	1	1.4486	0.3269	0.8080	2.0893	19.64	<.0001
•	temp	1	1.3204	0.3420	0.6501	1.9908	14.90	0.0001
•	moisture	1	-1.1412	0.2941	-1.7175	-0.5648	15.06	0.0001
•	dust	1	25.3048	7.5654	10.4769	40.1326	11.19	0.0008
•	ventil	1	-0.0705	0.0363	-0.1417	0.0006	3.78	0.0519
•	co2	1	20.2955	17.7058	-14.4073	54.9983	1.31	0.2517
•	Scale	0	1.0000	0.0000	1.0000	1.0000		

• NOTE: The scale parameter was held fixed.

Categorical Data Analysis

Deviance	3	6.47	741	2.1580	
Scale	d Deviand	e	3	3.0000	1.0000
Pears	son Chi-So	luare	3	7.6520	2.5507
Scale	d Pearsor	1 X2	3	3.5458	1.1819
Log L	ikelihood		-4	40.788	

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-								
Parameter	DF	Estimat	e Error	Limit	s Squ	iare Pr	> ChiSq	
Intercept	1	4.6563	13.3164	-21.4433	30.7560	0.12	0.7266	
freshair	1	1.4486	0.4802	0.5075	2.3898	9.10	0.0026	
temp	1	1.3204	0.5024	0.3357	2.3052	6.91	0.0086	
moisture	1	-1.1412	0.4320	-1.9878	-0.2945	6.98	0.0082	
dust	1	25.3048	11.1138	3.5222	47.0873	5.18	0.0228	
ventil	1	-0.0705	0.0533	-0.1750	0.0340	1.75	0.1858	
co2	1	20.2955	26.0104	-30.6839	71.2749	0.61	0.4352	
Scale	0	1.4690	0.0000	1.4690	1.4690			

NOTE: The scale parameter was estimated by the square root of DEVIANCE/DOF.

 The dispersion parameter is also estimated by maximum likelihood or, optionally, by the residual deviance or by Pearson's chi-square divided by the degrees of freedom

- Models for matched pairs
- Repeated Categorical response data
- Random effects GLMM
- Graphical models (directed)

Reference:

Agresti A, 2002, Categorical Data Analysis, Wiley (homepage with SAS programs)

Estimation

$$1(\underline{\tau}|\underline{x}) = \sum_{i} \sum_{j} x_{ij} \tau_{ij}^{AB} + \sum_{i} x_{i.} \tau_{i}^{A} + \sum_{j} x_{.j} \tau_{j}^{B} + x_{..} \tau_{0}$$
$$- \sum_{i} \sum_{j} \log x_{ij}! - \sum_{i} \sum_{j} \exp(\tau_{ij}^{AB} + \tau_{i}^{A} + \tau_{j}^{B} + \tau_{0}),$$

 x_{ij} er sufficient for τ_{ij}^{AB} , $x_{i.}$ er sufficient for τ_{i}^{A} , $x_{.j}$ er sufficient for τ_{j}^{B} og $x_{..}$ er sufficient for τ_{0}

$$x_{ij}=E(X_{ij}),$$
 $i=1,\dots,I-1,j=1,\dots,J-1,$
 $x_{i.}=E(X_{i.}),$ $i=1,\dots,I-1,$
 $x_{.j}=E(X_{.j}),$ $j=1,\dots,J-1,$
 $x_{..}=E(X_{..}).$

Multiple Logistic regression With dummies at two levels

Two binary predictors, X and Z.

For the $2\times2\times2$ contingency table the model for $\pi=P(Y=1)$ is

$$logit(\pi) = \alpha + \beta_1 x + \beta_2 z,$$

Denote the levels for each predictor variable by (0,1). For each level of Z the conditional OR is

$$OR(x = 1/x = 0) = exp(\beta_1)$$

The same as homogeneous association.

Conditional independence between X and Y given Z if

$$logit(\pi) = \alpha + \beta_2 z,$$

Multiple Logistic regression With dummies at two levels

Two binary predictors, X and Z.

For the $2\times2\times2$ contingency table the model for $\pi=P(Y=1)$ is

$$logit(\pi) = \alpha + \beta_1 x + \beta_2 z,$$

Denote the levels for each predictor variable by (0,1). At fixed levels for Z the effect on logit changing x from 0 to 1 is

$$= (\alpha + \beta_1 \cdot 1 + \beta_2 z) - (\alpha + \beta_1 \cdot 0 + \beta_2 z) = \beta_1$$

so, $log(odds_{x=1}) - log(odds_{x=0}) = \beta_1$ and therefore

$$OR(x = 1/x = 0) = exp(\beta_1)$$

If levels of x are (-1,1)

$$OR(x = 1/x = -1) = exp(2\beta_1)$$

Estimation

Disse ligninger har samme løsning som

$$x_{ij} = E(X_{ij}), i = 1, \cdots, I, j = 1, \cdots, J$$

Da
$$E(X_{ij}) = \lambda_{ij}$$
, er $\hat{\lambda_{ij}} = x_{ij}$

 x_{ij} , $x_{i.}$, $x_{.j}$ og $x_{..}$ kaldes for de **sufficiente marginaler**

Estimation under H_0 : $\tau_{ij}^{AB} = 0$

$$1(\underline{\tau}|\underline{x}) = \sum_{i} x_{i.} \tau_{i}^{A} + \sum_{j} x_{.j} \tau_{j}^{B} + x_{..} \tau_{0} - \sum_{i} \sum_{j} \log x_{ij}!$$
$$- \sum_{i} \sum_{j} \exp(\tau_{i}^{A} + \tau_{j}^{B} + \tau_{0}),$$

De sufficiente marginaler er x_i , x_j og x_i , og likelihoodligningerne er

$$x_{i.}=E(X_{i.}),$$
 $i=1,\dots,I-1,$
 $x_{.j}=E(X_{.j}),$ $j=1,\dots,J-1,$
 $x_{..}=E(X_{..}).$

```
data a;
input year collisions miles @@;
lmiles=log(miles);
cards;
1970
             281
                     1977
                                   264
       3
                             4
1971
             276
                     1978
                                   267
       6
                             1
1972
             268
                                   265
       4
                     1979
                             7
1973
             269
                     1980
                                   267
                             3
1974
             281
                     1981
                             5
                                   260
       6
1975
             271
       2
                     1982
                             6
                                   231
             265
                     1983
1976
                             1
                                   249
run;
proc genmod;
model collisions = /dist=poisson offset = Imiles;
run;
proc genmod;
model collisions = year /dist=poisson offset = Imiles;
run;
proc print;
```

Deviance 12 15.8992 1.3249

Analysis Of Parameter Estimates

Parameter	D F	Estimate	Standard Error	Wald 95% Confidence Limits		Chi-Square	Pr > ChiSq
Intercept	1	22.0562	65.4260	-106.176	150.2887	0.11	0.7360
year	1	-0.0133	0.0331	-0.0782	0.0516	0.16	0.6885
Scale	0	1.0000	0.0000	1.0000	1.0000		

Deviance 13 16.0602 1.2354

Analysis Of Parameter Estimates

Parameter	D F	Estimate	Standard Error	Wald 95% Con	Wald 95% Confidence Limits		Pr > ChiSq
Intercept	1	-4.1768	0.1325	-4.4364	-3.9172	994.41	<.0001
Scale	0	1.0000	0.0000	1.0000	1.0000		

$$exp(-4.1768) = 0.01534$$

 $exp(-4.1768 \pm 1.96 * 0.1325) = (0.0118, 0.0199)$