Dernière mise à jour	Performances des systèmes	Denis DEFAUCHY
16/11/2017	asservis	Fiche résumé

Performances des systèmes asservis

Fiche résumé

	20	Programme - Compétences
B226	Modéliser	Systèmes non linéaires · Modèle de non linéarité (hystérésis, saturation, seuil, retard); · Linéarisation du comportement des systèmes non linéaires continus.
B227	Modéliser	Modélisation des systèmes asservis · Stabilité : - définition, nature de l'instabilité (apériodique, oscillatoire), - contraintes technologiques engendrées, - interprétation dans le plan des pôles, - critère du revers, - marges de stabilité, - dépassement.
B228	Modéliser	 Pôles dominants et réduction de l'ordre du modèle; Performances et réglages; Précision d'un système asservi en régime permanent pour une entrée en échelon, une entrée en rampe, une entrée en accélération; Rapidité d'un système asservi: temps de réponse, bande passante.
B229	Modéliser	 Amélioration des performances d'un système asservi; - critères graphiques de stabilité dans les plans de Black, Bode, marges de stabilité; - influence et réglage d'une correction proportionnelle, intégrale, dérivée; - prise en compte d'une perturbation constante, créneau ou sinusoïdale.

Dernière mise à jour	Performances des systèmes	Denis DEFAUCHY
16/11/2017	asservis	Fiche résumé

Systèmes asservis

	1° ordre	2° ordre
Seul	$H(p) = \frac{K}{1 + \tau p}$	$H(p) = \frac{K}{1 + \frac{2z}{\omega_0}p + \frac{p^2}{{\omega_0}^2}}$
	$H(p) = \frac{K_{BF}}{1 + \tau_{BF}p}$	$H(p) = \frac{K_{BF}}{1 + \frac{2z_{BF}}{\omega_{0_{BF}}}p + \frac{p^2}{\omega_{0_{BF}}^2}}$
Bouclé Retour unitaire	$K_{BF} = \frac{K_{BO}}{1 + K_{BO}}$ $\tau_{BF} = \frac{\tau_{BO}}{1 + K_{BO}}$	$\omega_{0BF} = \omega_{0BO} \sqrt{1 + K_{BO}}$ $K_{BF} = \frac{K_{BO}}{1 + K_{BO}}$
	$\tau_{BF} = \frac{\tau_{BO}}{1 + K_{BO}}$	$z_{BF} = \frac{1 + K_{BO}}{\sqrt{1 + K_{BO}}}$

Performances des systèmes

Stabilité	Rapidité	Précision	Allure de la réponse
Pôles FTBF Revers FTBO $\Delta \varphi$ - ΔG	$tr_{5\%} \ t_m \ \omega_{c_0}$ - BP_0	$ \varepsilon_s $ $ \varepsilon_v $ Influence perturbations	2° ordre z & D _%

Dernière mise à jour Performances des systèmes **Denis DEFAUCHY** 16/11/2017 asservis Fiche résumé

Définition

Système stable

Entrée bornée ⇒ Sortie bornée Asymptotiquement stable : converge

Stabilité

Condition fondamentale de stabilité

Système stable $Re(P\hat{o}les\ FTBF) < 0$

Algébrique

Critères de stabilité

Graphique

Parties réelles des pôles : FTBF

Revers : FTBO

Critère graphique du Revers

Bode

Ordonnée Abscisse $G_{dB} \& \varphi^0$

Nyquist

Abscisse	Ordonnée	
Re(H)	Im(H)	

Black

Abscisse	Ordonnée		
φ^0	G_{dB}		

Stabilité de la FTBF Etude de la FTBO -

Critère du Revers = Cas particulier du critère de Nyquist

Etude du lieu de la FTBO par rapport au point critique :

$$(|H_{j\omega}|, \varphi_{j\omega}) = (1, -180^{\circ}) ou (G, \varphi_{j\omega}) = (0, -180^{\circ})$$

Condition d'application : FTBO stable mais en acceptant au plus 1 pôle nul

Critère de Nyquist simplifié

Un système en BF est asymptotiquement stable si le lieu de Nyquist complet de la BO ne fait pas le tour du point critique dans le sens horaire

Critère du Revers

Un système asservi est stable en BF si, en décrivant le lieu de transfert de la BO dans le sens des pulsations ω croissantes dans le plan de

Bode: à la pulsation

Marge de gain

 $\Delta G = -20 \log |H(j\omega_{-180^{\circ}})|$

 $\arg H(j\omega_{-180^{\circ}}) = -180^{\circ}$

Marge de gain minimale: 10 à

15 dB

- o Et à $\omega_{c_o}/G_{dB}=0$, $\varphi>-180^{\circ}$
- o Et à $\omega/\varphi = -180^{\circ}$, $G_{dB} < 0$
- Nyquist : le point critique est à gauche
- Black: le point critique est à droite

Cas particuliers dans Bode : se ramener à Black

 \nearrow $K_{BO} \Rightarrow \nearrow \omega_{c_0} \Rightarrow \searrow \varphi_{\omega_{c_0}} \Rightarrow \searrow \Delta \varphi \Rightarrow \searrow \text{Stabilité}$

Marge de phase

Remarque

Vérifier la stabilité d'un système avant d'utiliser le théorème de la valeur finale

Stabilité 1° et 2° ordre en BF

1° ou 2° ordre en BF : stable en BF grâce aux pôles 1° ou 2° ordre en BO : Stable en BF grâce au Revers Page 3 sur 7

Dernière mise à jour	Performances des systèmes	Denis DEFAUCHY
16/11/2017	asservis	Fiche résumé

Précision

Systèmes

$$= K_{BO} \frac{1 + a_1 p + a_2 p^2 + \dots + a_n p^n}{p^{\alpha} (1 + b_1 p + b_2 p^2 + \dots + b_m p^m)}$$

$$\alpha > 0 \quad ; \quad \alpha + m > n$$

e(t)	E(p)	Ecart au comparateur
au(t)	$\frac{a}{p}$	$arepsilon_{s}$ ou « Ecart statique »
atu(t)	$\frac{a}{p^2}$	$arepsilon_{v}$ ou « Ecart de traînage »

lpha : classe de la FTBO - Nombre d'intégrations

lpha+m : ordre de la FTBO - Degré du dénominateur

Expression générale de l'écart statique

Soit un système quelconque Fonction de transfert HGain statique K

$$H(p) = \frac{K}{p^{\alpha}} \frac{1 + a_1 p + a_2 p^2 + \dots + a_n p^n}{1 + b_1 p + b_2 p^2 + \dots + b_m p^m}$$

Système stable $\Rightarrow \alpha = 0$

$$\Rightarrow \lim_{p \to 0} (H(p)) = K \qquad \Rightarrow \varepsilon_s = E_0 (1 - K)$$

Dernière mise à jour	Performances des systèmes	Denis DEFAUCHY
16/11/2017	asservis	Fiche résumé

Ecart A (au comparateur) des systèmes bouclés (entrée e /sortie s) et classe de la FTBO

Nature de l'e	ntrée			Classe du	système	
e(t) Entrée système	E(p)		$\alpha = 0$	$\alpha = 1$	$\alpha = 2$	$\alpha > 2$
Dirac $e(t) = a\delta(t)$	а	$\beta = 0$	0	0	0	0
Echelon $e(t) = Eu(t)$	$\frac{E}{p}$	$\beta = 1$	$\frac{E}{1+K_{BO}}$	0	0	0
Rampe $e(t) = atu(t)$	$\frac{a}{p^2}$	$\beta = 2$	∞	$\frac{a}{K_{BO}}$	0	0

Conclusions

 \nearrow Classe \Rightarrow \nearrow Précision Si ε fini, \nearrow K_{BO} \Rightarrow \nearrow Précision Si Classe 0, $\varepsilon_{v} = \infty$

Remarques

Une intégration

⇒ Ecart statique nul et Ecart de traînage fini

 $\mathcal{L} \propto A$ Attention : entrée de boucle pour le calcul de A multipliée par G

Tab	leau de A'	
e(t)	$\alpha = 1$	$\alpha = n$ > 2
Dirac	0	0
Echelon E	0	0
Rampe at	$\frac{a}{K_{BO}}$	0

Dernière mise à jour	Performances des systèmes	Denis DEFAUCHY	
16/11/2017	asservis	Fiche résumé	

Expression de K_{BF} – FTBO de classe α

Retour unitaire $K_{CD} = K_{BO}$		Retour non unitaire G $K_{BO} = K_{CD}G$	
$\alpha = 0$	$\alpha \geq 1$	$\alpha = 0$	$\alpha \geq 1$
$K_{BF} = \frac{K_{CD}}{1 + K_{BO}}$	$K_{BF} = 1$ & $\varepsilon_s = 0$!	$K_{BF} = \frac{K_{CD}}{1 + K_{BO}}$	$K_{BF} = \frac{1}{G}$

- 1 Classe 1 et retour unitaire : $K_{BF}=1$ & $arepsilon_{\it S}=0$
- 2 Connaissant K_{BF} , on retrouve $\varepsilon_{\mathcal{S}} = E(1-K_{BF})$
- 3 Dans le cas du système général précédent, le gain statique du système complet s'écrit $K_{Comp} = K_E K_S K_{BF}$ et $\Sigma = E (1 K_{Comp})$

Conclusions

La classe de la partie en amont d'une perturbation influence l'écart qu'elle engendre Une intégration en amont d'une perturbation de type impulsion ou échelon annule son effet Si $\varepsilon_s{}^\delta \neq 0: \nearrow K \ de \ F1 \Rightarrow \searrow \varepsilon_s{}^\delta$

Dernière	mise à jour
16/1	/2017

Performances des systèmes asservis

Denis DEFAUCHY Fiche résumé

Rapidité

$$S_{\infty} = \lim_{t \to +\infty} s(t) \qquad \forall t > tr_{X\%}, \left(1 - \frac{X}{100}\right) S_{\infty} < s(t) < \left(1 + \frac{X}{100}\right) S_{\infty} \qquad t_{m} = \min_{i} t_{i} / s(t_{i}) = S_{\infty}$$

$$\omega_{c_{0}} = \omega / |H_{j\omega}| = 1; G_{dB} = 0 \qquad \qquad \omega_{c} = \omega / G_{dB} = G_{o} - 3$$

$$BP_{o} = [0; \omega_{c_{0}}]; |H_{j\omega}| > 1; G_{dB} > 0 \qquad \qquad BP = [0; \omega_{c}]$$

	1° ordre	2° ordre	
Seul	$tr_{5\%} = 3\tau$ $\omega_c = \omega_0$ $\omega_{c_0} = \omega_0 \sqrt{K^2 - 1}$	$\begin{aligned} \omega_0 t_m &\approx 3 \\ tr_{5\%} \omega_0 &= k(z) \\ k(0,7) &= 3 - \text{Plus rapide} \\ k(1) &= 5 - \text{Plus rapide sans dépassement} \\ \omega_c &= \omega_0 \sqrt{\sqrt{(2z^2-1)^2+1} - (2z^2-1)} \\ \omega_{c_0} &= \omega_0 \sqrt{\sqrt{(2z^2-1)^2+(K^2-1)} + (1-2z^2)} \end{aligned}$	
Bouclé Retour unitaire	$K_{BF} = rac{K_{BO}}{1 + K_{BO}}$ $ au_{BF} = rac{1}{\omega_{0_{BF}}} = rac{ au_{BO}}{1 + K_{BO}}$	$egin{aligned} {\omega_0}_{BF} &= {\omega_0}_{BO} \sqrt{1 + K_{BO}} \ K_{BF} &= rac{K_{BO}}{1 + K_{BO}} \ z_{BF} &= rac{z_{BO}}{\sqrt{1 + K_{BO}}} \end{aligned}$	
	$\nearrow K_{BO} \Rightarrow \nearrow \omega_{0_{BF}} \Rightarrow \nearrow t_m \Leftrightarrow \nearrow Rapidit\'e$		
	$\nearrow K_{BO} \Rightarrow \left(\nearrow \omega_{c_{0}}_{BO} \Leftrightarrow \nearrow BP_{o}_{BO}\right)$ $\nearrow K_{BO} \Rightarrow \nearrow \omega_{0}_{BF} \Rightarrow \nearrow \left(\omega_{c_{0}}_{BF} \Leftrightarrow BP_{o}_{BF}\right)$		
	Attention : $\nearrow K_{BO} \Rightarrow tr_{5\%}$ tant que $z_{BF} \geq 0$,7		

Allure de la réponse

Système du second ordre

Siz < 1

 $D_{1\%}=e^{\frac{-\pi z}{\sqrt{1-z^2}}}$

$$t_1 = \frac{\pi}{\omega_0 \sqrt{1 - z^2}}$$

Bouclage d'un 2° ordre

$$z_{BF} = \frac{z_{BO}}{\sqrt{1+K_{BO}}} < z_{BO}$$

⇒ Diminution d'amortissement

⇒ Apparition ou augmentation du dépassement