$Chapter\ 2-HW01$

2015 K 8 0 0 9 9 2 9 0 4 9 冯吕

2018年7月9日

2.2.1 解:

1) 生成串 aa + a* 的过程如下,以最左推导为例:

$$S \rightarrow S \ S * \rightarrow S \ S + S * \rightarrow a \ S + S * \rightarrow a \ a + S * \rightarrow a \ a + a *$$

2) 该串的语法分析树如下:

- 3) 该文法生成的语言是运算数全为 a, 带有加法和乘法运算的后缀算术表达式的集合。
- 4) 没有二义性。

proof:

- 先证明一个该文法产生串的长度的结论: 设串的推导过程中使用产生式 $S \to S$ S + 和 $S \to S$ S * 的次数为 m,则串的长度为 $L = 2 \times m + 1$,且串中包含 m 个运算符和 m + 1 个 a;
 - -1) 当 m=0 时,仅有 $S \to a$ 一种情况,此时 L=1,串由 1 个 a 和 0 个运算符构成,结论成立;
 - -2) 设当 $m < k(k \ge 1)$ 时结论成立,则当 m = k 时,第一步推导必然为

$$S \rightarrow S_1 S_2 \ op$$

op 为 + 或 *。设 $S_1 \rightarrow \alpha, S_2 \rightarrow \beta$, α, β 均为使用 $S \rightarrow S_1S_2$ op 少于 k 次得到的串,设二者推导过程中分别使用该产生式 k_1 和 k_2 次,根据假设有:

$$L(\alpha) = 2 * k_1 + 1, L(\beta) = 2 * k_2 + 1$$

则串长度 $L = L(\alpha) + L(\beta) + 1 = 2*(k_1 + k_2 + 1) + 1 = 2k + 1$; 且串中 a 的个数为 $(k_1 + 1) + (k_2 + 1) = k + 1$; 运算符的个数为 $k_1 + k_2 + 1 = k$, 故结论成立。

- 下面证明该文法无二义性,对串的长度做归纳。由前述证明可知,该文法产生的串长 L 可为任意非负奇数。对由该文法得到的长度为 K = 2 * k + 1 的串 w:
 - -1) 当 k=0 时, L=1, 只有 $S \rightarrow a$ 一种情况, 显然没有二义性;

- 2) 设当 k < n 时结论成立。 $S \to \omega$,根据 ω 末尾运算符可确定第一步推导使用的产生式,不妨设为:

$$S \to S_1 S_2 +$$

从后向前处理串 ω ,除去末尾的运算符,找到可以由 S 推导出的最短的串 α ,设 α 长度为 m_1 ,由前述结论可知 $m_1 = 2*k_1+1$,且 α 包含 k_1 个运算符和 k_1+1 个 a,由归纳假设可知 α 无二义性,存在唯一的最左推导 $S \to \alpha$;

设串 ω 剩余部分为 β ,设 β 的长度为 m_2 ,同理可得 $m_2 = 2 * k_2 + 1$, β 包含 k_2 个运算符与 $k_2 + 1$ 个 a,存在唯一最左推导 $S \to \beta$,且满足 $k = k_1 + k_2$ 。此时串 ω 可表示成如下形式:

$$\omega = \beta \alpha +$$

故存在唯一的最左推导:

$$S \to S S + \to \beta S + \to \beta \alpha +$$

此时, 仍不存在二义性。

综上所述,该文法不具有二义性。

2.2.5 解:

1)proof: 用归纳法证明: 当生成的串的语法树的节点 ≤ 3 时,生成的串有 11,1001,对应的十进制的值为 3,9,能够被 3 整除。假设节点数 < n 的语法树生成的二进制串均能够被 3 整除,考虑节点数为 n 的语法树,它有下面两种可能的结构:

• 情形一:

子树 num_1 的节点数 $\leq n$,因此, num_1 生成的二进制串(记为 w_1)能够被 3 整除,则 num 生成的二进制串(记为 w):

$$w = w_1 \times 2$$

也可以被3整除。

• 情形二:

子树 num_1 和 num_2 的节点数均小于 n,因此,它们生成的二进制串(分别记为 w_1 和 w_2)能够被 3 整除,则 num 生成的二进制串(记为 w):

$$w = w_1 \times 2^n + w_2$$

也能够被3整除。

综上,该文法生成的二进制串能够被3整除。

2) 不能。例如,对于二进制串 10101,它的值为 21,能够被 3 整除,但是不可以通过上面的文法推导出。

2.3.1 解:制导翻译方案如下:

```
E -> {print("+");} E1 + T
1
 2
         |{ print("-");} E1 - T
3
         |T|
4
   T -> { print("*");} T1 * F
5
         |{ print("/");} T1 / F
6
7
         F
8
9
   F -> digit { print ( digit ) }
10
         (expr)
```

表达式 9-5+2 对应的注释语法分析树如下:

表达式 9-5*2 对应的注释语法分析树如下:

