

Tartalom

- Rendezési feladat
 - **Specifikáció**
 - Egyszerű cserés rendezés
 - Minimum-kiválasztásos rendezés
 - Buborékos rendezés
 - Javított buborékos rendezés
- <u>Rendezések hatékonysága</u> idő

- Beillesztéses rendezés
- Javított beillesztéses rendezés
- Szétosztó rendezés
- Számlálva szétosztó rendezés
- Számláló rendezés

- Algoritmusok rendezett sorozatokban
 - Keresés rendezett sorozatban
 - Rendezettek uniója, összefésülése
 - Összefésüléses rendezés
- Oszd meg és uralkodj!

Rendezési feladat

Specifikáció:

➤ Bemenet: $N \in \mathbb{N}$, $X_{1,N} \in \mathbb{H}^N$

 $\leq :H \times H \rightarrow L$

- \triangleright Kimenet: $Y_1 \in H^N$
- ➤ Előfeltétel: Rendezés(≤) és RendezettE_≤(H)
- > Utófeltétel: Rendezett $E_{\leq}(Y)$ és $Y \in Permutáció(X)$
- > Jelölések:
 - o Rendezett $E_{\leq}(X/H)$: X/H rendezett-e a \leq -ra?
 - o Y∈Permutáció(X): Y az X elemeinek egy permutációja-e?

Rendezési feladat

A rendezések egy részében olyan megvalósítást választunk, amiben a bemenetnek és a kimenetnek ugyanaz a tömb felel meg, azaz helyben rendezünk.

Specifikáció:

- ► Bemenet: $N \in \mathbb{N}$, $X_{1.N} \in \mathbb{H}^N$, $\leq :\mathbb{H} \times \mathbb{H} \to \mathbb{L}$
- \triangleright Kimenet: $X_1 \stackrel{!}{\sim} \in H^N$
- ➤ Előfeltétel: Rendezés(≤) és RendezettE<(H)</p>
- ➤ Utófeltétel: RendezettE<(X') és X'∈Permutáció(X)</p>
- > Jelölések:
 - o X': az X kimeneti (megálláskori) értéke
 - o Rendezett $E_{<}(X/H): X/H$ rendezett-e a \leq -ra?
 - o X'∈Permutáció(X): X' az X elemeinek egy permutációja-e?

Rendezések

(fontos új fogalmak, jelölések)

> Aposztróf a specifikációban:

Ha egy adat előfordul a bemeneten és kimeneten is, akkor az UF-ben együtt kell előfordulnia az adat bemenetkori és kimenetkori értéke. Megkülönböztetésül a kimeneti értéket "megaposztrofáljuk".

Pl.: Z':=a Z kimeneti (megálláskori) értéke.

- > A ≤ reláció **rendezés**, ha
 - 1. reflexiv: $\forall h \in H: h \leq h$
 - 2. antiszimmetrikus: $\forall h, i \in H$: $h \le i \le h \rightarrow h = i$
 - 3. tranzitív: $\forall h,i,j \in H$: $h \le i \text{ és } i \le j \rightarrow h \le j$

Rendezések

(fontos új fogalmak, jelölések)

- > H (teljesen) rendezett halmaz:
 - Rendezett $E(H):= \forall h, i \in H: h \le i \ vagy \ i \le h$
- > Rendezett sorozat:

RendezettE(Z):= $\forall i(1 \le i \le N-1): Z_i \le Z_{i+1}$

> Permutációhalmaz:

Permutáció(Z):=a $Z \in H^N$ sorozat elemeinek összes permutációját tartalmazó halmaz; amelynek tehát egyik eleme a kívánt rendezettségű sorozat...

Egyszerű cserés rendezés

A lényeg:

Hasonlítsuk az első elemet az összes mögötte levővel, s ha kell, cseréljük meg!

A minimum az "alsó" végére kerül.

Ezután ugyanezt csináljuk a második elemre!

> Végül az utolsó két elemre!

A pirossal jelöltek már a helyükön vannak

Egyszerű cserés rendezés

i,j:Egész

Algoritmus:

- > Hasonlítások száma: $1+2+...+N-1=N \cdot \frac{N-1}{N-1}$
- > Mozgatások száma: $0 ... 3 \cdot N \cdot \frac{N-1}{}$

Minimum-kiválasztásos rendezés

A lényeg:

> Határozzuk meg az 1..N elemek minimumát, s cseréljük meg min az 1.-vel!

A minimum az "alsó" végére kerül.

- Ezután ugyanezt tegyük a 2..N elemre!

A pirossal jelöltek már a helyükön vannak

➤ Végül az utolsó két (N–1..N) elemre!

Minimum-kiválasztásos rendezés

Változó

MinI,

S:TH

i,j:Egész

Algoritmus:

- > Hasonlítások száma: $1+2+...+N-1=N \cdot \frac{N-1}{2}$
- ➤ Mozgatások száma: 3·(N–1)

10/59

Buborékos rendezés

A lényeg:

> Hasonlítsunk minden elemet a mögötte levővel, s ha kell, cseréljük meg!

A maximum a "felső" végére kerül.

Ezután ugyanezt csináljuk az utolsó elem nélkül!

2018.12.01. 16:33

Végül az első két elemre!

A többiek, is tartanak. a helyük felé.

A pirossal jelöltek már a helyükön vannak

Buborékos rendezés

i,j:Egész

S:TH

Algoritmus:

- > Hasonlítások száma: $1+2+...+N-1=N \cdot \frac{N-1}{-1}$
- > Mozgatások száma: $0 ... 3 \cdot N \cdot \frac{N-1}{}$

Javított buborékos rendezés

Megfigyelések:

- ➤ Ha a belső ciklusban egyáltalán nincs csere, akkor be lehetne fejezni a rendezést.
- ➤ Ha a belső ciklusban a K. helyen van az utolsó csere, akkor a K+1. helytől már biztosan jó elemek vannak, a külső ciklusváltozóval többet is léphetünk.

13/59

Javított buborékos rendezés

i,j:Egész

S:TH

CS,

Algoritmus: Változó i = Ni≥2 cs:=0j=1..i-1X[j]>X[j+1]S:=X[j]X[j]:=X[j+1]X[j+1]:=Scs:=i:=cs

Beillesztéses rendezés

A lényeg:

- > Egy elem rendezett.
- A másodikat vagy mögé, vagy elé tesszük, így már *ketten* is rendezettek.
- > ...
- Az i-ediket a kezdő, i–1 *rendezett*ben addig hozzuk előre **cserékkel**, amíg a helyére nem kerül; így már *i darab rendezett* lesz.
- > ...
- ➤ Az utolsóval ugyanígy! X X X ... X

Beillesztéses rendezés

i,j:Egész

S:TH

Algoritmus:

- \gt Hasonlítások száma: N-1 .. N $\cdot \frac{N-1}{}$
- > Mozgatások száma: $0 ... 3 \cdot N \cdot \frac{N-1}{2}$

Javított beillesztéses rendezés

A lényeg:

- > Egy elem rendezett.
- A másodikat vagy mögé, vagy elé tesszük, így már *ketten* is rendezettek.
- > ...
- > Az i-ediknél a nála nagyobbakat **tologassuk** hátra, majd illesszük be eléjük az i-ediket; így már *i darab rendezett* lesz.
- > ...
- > Az utolsóval ugyanígy! x x x ... x x

Javított beillesztéses rendezés

Algoritmus:

j:=j-1Hasonlítások száma: N $-1 \dots N \cdot \frac{N-1}{2}$ Mozgatások száma: $0 \dots 3 \cdot N \cdot \frac{N-1}{2}$

i=2..N

j>0 és X[j]>X[j+1]

ightharpoonup Hasonlítások száma: N-1 ... N $\cdot \frac{N-1}{}$

 \rightarrow Mozgatások száma: $2 \cdot (N-1) \dots (N+4) \cdot$

i:=i-1

S:=X[i]

X[j]:=X[j+1]

X[j+1]:=S

Szétosztó rendezés

A lényeg:

Ha a rendezendő sorozatról speciális tudásunk van, akkor megpróbálkozhatunk más módszerekkel is.

Specifikáció – rendezés N lépésben:

- > Bemenet: $N \in \mathbb{N}, X_1 \in \mathbb{Z}^N$
- \triangleright Kimenet: $Y_1 \in \mathbb{Z}^N$
- > Előfeltétel: X∈Permutáció(1,...,N)
- ➤ Utófeltétel:RendezettE(Y) és Y ∈ Permutáció(X)

Szétosztó rendezés

Változó

i:Egész

Algoritmus (másolás tétel):

i=1..N

Y[X[i]] := X[i]

▶ Persze ezt írhattuk volna így is: Y[i]:=i! ⑤ Azaz a feladat akkor érdekes, ha X[i] egy rekordként ábrázolható, amelynek csak egyik mezője (kulcsa) az 1 és N közötti egész szám:

X,Y:Tömb[1..N:Rekord(kulcs:1..N,...)]

Algoritmus:

i=1..N Y[X[i].kulcs]:=X[i] Változó i:Egész

Előfeltétel:

A rendezendő értékek 1 és M közötti egész számok, ismétlődhetnek.

Specifikáció:

 \triangleright Bemenet: N,M \in N, $X_{1..N}$ \in \mathbb{Z}^N

 \triangleright Kimenet: $Y_1 \in \mathbb{Z}^N$

 \gt Előfeltétel: M≥1 és $\forall i(1 \le i \le N)$: $1 \le X_i \le M$

> Utófeltétel:RendezettE(Y) és Y∈Permutáció(X)

A lényeg:

- Első lépésben számláljuk meg, hogy melyik értékből hány van a rendezendő sorozatban! (megszámolás)
- Ezután adjuk meg, hogy az első "i" értéket hova kell tenni: ez pontosan az i-nél kisebb számok száma a sorozatban +1! (rekurzív kiszámítás)
- Végül nézzük végig újra a sorozatot, s az "i" értékű elemet tegyük a helyére, majd módosítsunk: az első i értékű elemet ettől kezdve eggyel nagyobb helyre kell tenni. (*másolás*)

i:Egész

Első:Tömb[...]

Algoritmus:

Db[i]: hány darab van i-ből?

> Első[i]: hol az i. elsője?

	Változó
Db[1M]:=0	i:Egész
i=1N	Db, Első:To
Db[X[i]]:=Db[X[i]]+1	
Első[1]:=1	
i=1M-1	
Első[i+1]:=Első[i]+Db[i]	
i=1N	
Y[Első[X[i]]]:=X[i]	
Első[X[i]]:=Első[X[i]]+1	

- Mozgatások száma: N
- ➤ Additív műveletek száma: 2·M–2+2·N

Változó

Algoritmus:

i:Egész $\Lambda\Pi_{\bullet}$ Db, Első:Tömb[...]

Az alaphalmaz a **Z**, így a többi értékadást – mint mozgatást – is beleszámíthatjuk!

i=1N		
Db[X[i]]:=Db[X[i]]+1		
Első[1]:=1		
i=1M-1		
Első[i+1]:=Első[i]+Db[i]		
i=1N		
Y[Első[X[i]]]:=X[i]		
Első[X[i]]:=Első[X[i]]+1		

- ➤ Mozgatások száma: N+1+M+2·N=M+3·N
- ➤ Additív műveletek száma: 2·M–2+2·N

Számláló rendezés

A lényeg:

- ➤ Ha nem megy a számlálva szétosztó rendezés (ismeretlen az M, vagy M»N²), akkor először számláljunk (=határozzuk meg a sorrendet), csak azután osszunk szét (=tegyünk helyre...)!
- > Ehhez használhatjuk a legegyszerűbb cserés rendezés elvét.
- Jelentse Db[i] az i. elemnél kisebb, vagy az i.-kel egyenlő, de tőle balra levő elemek számát!

A Db[i]+1 használható az i. elemnek a rendezett sorozatbeli indexeként.

- Ehhez használhatjuk a legegyszerűbb, cserés rendezés elvét.
- > Jelentse Db[i] az i. elemnél kisebb, vagy az i.kel egyenlő, de tőle balra levő elemek számát!

Számláló rendezés

i,j:Egész

Db:Tömb[.

Algoritmus:

- > Hasonlítások száma: $1+2+..+N-1=N \cdot \frac{N-1}{}$
- ► Mozgatások száma: N
- ► Additív műveletek száma: ~hasonlítások száma

Rendezések hatékonysága

N² idejű rendezések:

- <u>してい</u> Egyszerű cserés rendezés
- > Minimum-kiválasztásos rendezés
- > Buborékos rendezés
- > Javított buborékos rendezés
- 4 14 14 14 > Beillesztéses rendezés
- > Javított beillesztéses rendezés
- > Számláló rendezés

Rendezések hatékonysága

N (N+M) idejű rendezések:

(de speciális feltétellel)

- > Szétosztó rendezés
- > Számlálva szétosztó rendezés

 \rightarrow

Kitekintés: (Algoritmusok tantárgy)

- Lesznek N·log(N) idejű rendezések.
- ➤ Nem lehet N·log(N)-nél jobb általános rendezés!
- https://www.youtube.com/watch?v=ZZuD6iUe3Pc
- http://www.sorting-algorithms.com/

Feladat:

Egy Y értéket keresünk egy rendezett X sorozatban.

Specifikáció:

► Bemenet: $N \in \mathbb{N}, X_{1} \in \mathbb{N}$

Y∈H —

- \triangleright Kimenet: Van \in L, Ind \in N
- ➤ Előfeltétel: RendezettE(X)
- > Utófeltétel:Van= $\exists i(1 \le i \le N): X_i = Y$ és Van→ $1 \le Ind \le N$ és $X_{Ind} = Y$
- Definíció (emlékeztető):

RendezettE(X_1 N):= $\forall i(1 \le i < N): X_i \le X_{i+1}$

Specifikáció:

- > Bemenet: N∈N, X∈H^N
- ➤ Kimenet: Van ∈ L, Ind ∈ N
- > Előfeltétel: -
- > Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és Van→1≤Ind≤N és T(X_{Ind})

T-tulajdonság: T(x):=(x=Y)

Konkretizáljuk: legyen növekvő!

Feladat:

Egy Y értéket keresünk egy rendezett X sorozatban.

Specifikáció:

► Bemenet: $N \in \mathbb{N}, X_{1} \in \mathbb{N}$

Y∈H ___

- \triangleright Kimenet: Van \in L, Ind \in N
- ➤ Előfeltétel: RendezettE(X)
- ➤ Utófeltétel: (Van,Ind)= Keres i i=1

 $X_i = Y$

> Definíció (emlékeztető): RendezettE(X_1 N):= $\forall i(1 \le i < N): X_i \le X$

Specifikáció:

- \triangleright Bemenet: N \in N, X \in H^N
- ≻ Kimenet: Van∈L, Ind∈N
- Előfeltétel: –
- > Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és Van→1≤Ind≤N és T(X_{Ind})

T-tulajdonság: T(x):=(x=Y)

Konkretizáljuk: legyen növekvő!

Ötlet:

Ha már a keresett elem értékénél nagyobbnál tartunk, akkor biztos nem lesz a sorozatban, megállhatunk.

Észrevétel:

Van megoldás ↔ azért álltunk meg keresés közben, mert megtaláltuk a keresett értéket.

Specifikáció:

➤ Bemenet: $N \in \mathbb{N}, X_{1,N} \in \mathbb{H}^{\mathbb{N}}$

Y∈H

- \triangleright Kimenet: Van \in L, Ind \in N
- ➤ Előfeltétel: N>0 és RendezettE(X)
- > Utófeltétel:Van= $\exists i(1 \le i \le N)$: $X_i = Y$ és Van→ $1 \le Ind \le N$ és $X_{Ind} = Y$

Programparaméterek:

Konstans

MaxN:Egész(???)

Típus

THk=**Tömb**[1..MaxN:TH]

Változó

N:**Egész**, X:THk

Y:TH

Van:**Logikai**, Ind:**Egész**

Ötlet és – tömb esetén – lehetőség:

Először a középső elemmel hasonlítsunk! Ha nem a keresett, akkor vagy előtte, vagy mögötte kell tovább keresni!

Algoritmus:

Változó

e,k,u:**Egész**

Itt akkor van megoldás, ha megtaláltuk a keresett érték

valamelyikét.

e:=1		
u:=N		
k:=(e+u) div 2		
	X[k]>Y	X[k] < Y
	u:=k-1	e:=k+1
e≤u és X[k]≠Y		
Van:=X[k]=Y		
	,	

Specifikáció:

Bemenet: N∈N, X∈H^N
Y∈H
 Kimenet: Van∈L, Ind∈N

➤ Előfeltétel: N>0 és RendezettE(X)
 ➤ Utófeltétel: Van=∃i(1≤i≤N): X_i=Y és

Van→1≤Ind≤N és X_{Ind}=Y

További kérdések – tételvariánsok:

- ➤ Hány lépés alatt találjuk meg a keresett elemet?
 (→Logaritmikus v. bináris keresés.)
- > Ha több egyforma elem is van a sorozatban, akkor ez a módszer melyiket találja meg?
- > Hogyan lehetne az összes Y-értékű elemet megtalálni?

Rendezettek uniója

Összefuttatás.

Feladat:

Adott két rendezett halmaz, adjuk meg az uniójukat!

Specifikáció:

 \triangleright Bemenet: N,M \in N, $X_{1.N}\in H^N$, $Y_{1.M}\in H^M$

 \triangleright Kimenet: $Db \in N, Z_{1,N+M} \in H^{N+M}$ Db-ig kitöltve

> Előfeltétel: HalmazE(X) és HalmazE(Y) és

RendezettE(X) és RendezettE(Y)

Rendezettek uniója

> Utófeltétel₁:
$$Db = N + \sum_{\substack{j=1 \ Y_i \notin X}}^{M} 1$$
 és

$$\forall i(1 \le i \le Db): Z_i \in X \text{ vagy } Z_i \in Y \text{ és}$$

HalmazE(Z) és RendezettE(Z)

➤ Utófeltétel₂: (Db,Z)=Unió(N,X,M,Y) és RendezettE(Z)

Ötlet:

Az eredmény első eleme vagy az X, vagy az Y első eleme lehet. A kettő közül a rendezettség szerintit tegyük az eredménybe, majd a maradékra ugyanezt az elvet alkalmazhatjuk.

Algoritmus elé:

> Amíg van mit hasonlítani:

Algoritmus elé:

> Amíg van mit hasonlítani:

Algoritmus elé:

> Amíg van mit hasonlítani:

Algoritmus elé:

> Ha már nincs mit hasonlítani:

Változ

i,j:Eg

Algoritmus₁:

Specifikáció:

- \gt Bemenet: N,M \in N, X \in H^N, Y \in H^M
- \gt Kimenet: $Db \in \mathbb{N}$, $Z \in H^{Db}$
- > Előfeltétel: HalmazE(X) és HalmazE(Y) és
- RendezettE(X) 'es RendezettE(Y) > Utófeltétel₁: Db = N + $\sum_{i=1}^{M} 1$ ´es

 $\forall i (1 \le i \le Db): Z_i \in X \text{ vagy } Z_i \in Y \text{ és}$ HalmazE(Z) és RendezettE(Z)

Van miket hasonlítani

Z:=X		
Db:=N		
j=1M		
i:=1		
i≤N és X[i]≠Y[j]	
i:=i+1		
// i>N	Sal Sal	
Db:=Db+1		
Z[Db]:=Y[j]	_	

2018.12.01. 16:33

i:=1			
j:=1			
Db:=0			

i≤N és j≤M

X[i] < Y[j]	X[i]=Y[j]	X[i]>Y[j]
Z[Db]:=X[i]	Z[Db]:=X[i]	Z[Db]:=Y[j]
i:=i+1	i:=i+1	j:=j+1
	i:=i+1	

. . .

Változ

i,j:Eg

Algoritmus₁:

Specifikáció:

- \triangleright Bemenet: N,M \in N, X \in H^N, Y \in H^M
- \succ Kimenet: $Db \in \mathbb{N}$, $Z \in H^{Db}$
- ➤ Előfeltétel: HalmazE(X) és HalmazE(Y) és RendezettE(X) és RendezettE(Y)
- > Utófeltétel₁: $Db = N + \sum_{j=1}^{M} 1$ és

 $\forall i (1 \le i \le Db): Z_i \in X \text{ vagy } Z_i \in Y \text{ és}$ HalmazE(Z) és RendezettE(Z)

Van miket hasonlítani

Z:=X		
Db:=N		
j=1M		
i:=1		
i≤N és X[i]≠Y[j]		
i:=i+1		
i>N		
Db:=Db+1		
Z[Db]:=Y[j]		

i:=1			
i:=1	 		

___i≤N és j≤M

Db = Db + 1

3753 /3753

Db:=0

$X[1] \leq Y[1]$	X[i] = Y[j]	
Z[Db]:=X[i]	Z[Db]:=X[i]	Z[Db]:=Y[j]
i:=i+1	i:=i+1	j:=j+1
	l e e e e e e e e e e e e e e e e e e e	

 $XZ \Gamma = XZ \Gamma =$

j:=j+1

Specifikáció:

- \gt Bemenet: N,M \in N, X \in H^N, Y \in H^M
- \succ Kimenet: $Db \in N$, $Z \in H^{Db}$
- ➤ Előfeltétel: HalmazE(X) és HalmazE(Y) és RendezettE(X) és RendezettE(Y)
- ➤ Utófeltétel₁: $Db = N + \sum_{j=1}^{M} 1$ és

 $\forall i (1 \le i \le Db): Z_i \in X \text{ vagy } Z_i \in Y$ HalmazE(Z) és Rendeze

Nincs Y-beli.

Nincs X-beli.

Z:=X
Db:=N
j=1M
i:=1
i≤N és X[i]≠Y[j]
i:=i+1
i>N
Db:=Db+1
Z[Db]:=Y[j]

i≤N

Db := Db + 1

Z[Db]:=X[i]

i = i + 1

j≤M

Db = Db + 1

Z[Db]:=Y[j]

| j:=j+⁻

Specifikáció:

- ► Bemenet: $N,M \in \mathbb{N}, X \in \mathbb{H}^N, Y \in \mathbb{H}^M$
- \succ Kimenet: $Db \in \mathbb{N}$, $Z \in H^{Db}$
- Előfeltétel: HalmazE(X) és HalmazE(Y) és RendezettE(X) és RendezettE(Y)
- ➤ Utófeltétel₁: Db = N + $\sum_{j=1}^{M} 1$ és

 $\forall i (1 \le i \le Db): Z_i \in X \text{ vagy } Z_i \in Y$ HalmazE(Z) és Rendezen

Nincs Y-beli.

Nincs X-beli.

i≤N Db:=Db+1Z[Db]:=X[i]i = i + 1 $\leq M$ Db := Db + 1Z[Db]:=Y[i]

Vegyük észre: ha az X és Y utolsó elemei egyenlők, akkor ez a két ciklus nem kell!

Változ

Algoritmus₂:

Specifikáció:

- \gt Bemenet: N,M \in N, X \in H N , Y \in H M
- \succ Kimenet: $Db \in \mathbb{N}, Z \in H^{Db}$
- Előfeltétel: HalmazE(X) és HalmazE(Y) és RendezettE(X) és RendezettE(Y)
- ➤ Utófeltétel₁: Db = N + $\sum_{j=1}^{M} 1$ és

 $\forall i (1 \le i \le Db): Z_i \in X \text{ vagy } Z_i \in Y \text{ és}$ HalmazE(Z) és RendezettE(Z)

•		1
1 •	=	
1.		Τ

i = 1

Db:=0

$$X[N+1] := +\infty$$

$$Y[M+1] := +\infty$$

... és utoljára? $Z[Db]:=+\infty$

D	b:=]	Db	+1
	\sim -	\sim	_

X[i] < Y[j]	X[i]=Y[j]	$\setminus X[i]>Y[j]$
Z[Db]:=X[i]	Z[Db]:=X[i]	Z[Db]:=Y[j]
i:=i+1	i:=i+1	j:=j+1
	i:=i+1	

Változ

Algoritmus₂:

Specifikáció:

- \gt Bemenet: N,M \in N, X \in H N , Y \in H M
- \succ Kimenet: $Db \in \mathbb{N}$, $Z \in H^{Db}$
- Előfeltétel: HalmazE(X) és HalmazE(Y) és RendezettE(X) és RendezettE(Y)
- ➤ Utófeltétel₁: Db = N + $\sum_{j=1}^{M} 1$ és

 $\forall i (1 \le i \le Db): Z_i \in X \text{ vagy } Z_i \in Y \text{ és}$ HalmazE(Z) és RendezettE(Z)

... és utoljára? $Z[Db]:=+\infty$

	١
i:=1	
j:=1	
Db:=0	
$X[N+1]:=+\infty$	Ì

B B. B B. 1		
X[i] < Y[j]	X[i]=Y[j]	
Z[Db]:=X[i]	Z[Db]:=X[i]	Z[Db]:=Y[j]
i:=i+1	i:=i+1	j:=j+1
	i:=i+1	

Algoritmus₂ javítása:

Spe	cifil	các	ić	5:	
_		_	_	_	

- \triangleright Bemenet: N,M \in N, X \in H^N, Y \in H^M
- \succ Kimenet: $Db \in N$, $Z \in H^{Db}$
- Előfeltétel: HalmazE(X) és HalmazE(Y) és RendezettE(X) és RendezettE(Y)
- > Utófeltétel₁: $Db = N + \sum_{j=1}^{M} 1$ és

 $\forall i (1 \le i \le Db): Z_i \in X \text{ vagy } Z_i \in Y \text{ és}$ HalmazE(Z) és RendezettE(Z)

i:=1	
j:=1	
Db:=0	
$X[N+1]:=+\infty$	
$Y[M+1]:=+\infty$	

 $i \le N+1$ és $j \le M+1$

Db:=Db+1	-	
X[i] <y[j]< td=""><td>X[i]=Y[j]</td><td>X[i]>Y[j]</td></y[j]<>	X[i]=Y[j]	X[i]>Y[j]
Z[Db]:=X[i]	Z[Db]:=X[i]	Z[Db]:=Y[j]
i:=i+1	i:=i+1	j:=j+1
	j:=j+1	

i:=1	
j:=1	
Db:=0	
$X[N+1]:=+\infty$	
$Y[M+1]:=+\infty$	
i < N+1 vacy i < M+1	

$\setminus X[i] < Y[j]$	X[i]=Y[j]	
Z[Db]:=X[i]	Z[Db]:=X[i]	Z[Db]:=Y[j]
i:=i+1	i:=i+1	j:=j+1
	i:=i+1	-

Db = Db + 1

Algoritmus₂ javítása:

Specifikáció:	
---------------	--

- \triangleright Bemenet: N,M \in N, X \in H^N, Y \in H^M
- \succ Kimenet: $Db \in N$, $Z \in H^{Db}$
- ➤ Előfeltétel: HalmazE(X) és HalmazE(Y) és RendezettE(X) és RendezettE(Y)
- ➤ Utófeltétel₁: $Db = N + \sum_{j=1}^{M} 1$ és

 $\forall i (1 \le i \le Db): Z_i \in X \text{ vagy } Z_i \in Y \text{ \'es}$ HalmazE(Z) és RendezettE(Z)

i:=1			
j:=1			
Db:=0			
$X[N+1]:=+\infty$			
$Y[M+1]:=+\infty$			
i≤N+1 és j≤M+1			
Db:=Db+1	Db:=Db+1		
X[i] <y[j]< td=""><td>X[i]=Y[j]</td><td>X[i]>Y[j]</td></y[j]<>	X[i]=Y[j]	X[i]>Y[j]	
Z[Db]:=X[i]	Z[Db]:=X[i]	Z[Db]:=Y[j]	
i·=i+1	i·=i+1	i·=i+1	

j:=j+1

vitas	• A •
i:=1	
j:= 1	
Db	:= 0
XD	$\sqrt{1+1}$:=+ ∞
Y[N	$(1+1]:=+\infty$
	i≤N vagy j≤M
	Db:=Db+1

X[i] <y[j]< th=""><th>X[i]=Y[j]</th><th></th></y[j]<>	X[i]=Y[j]	
Z[Db]:=X[i]	Z[Db]:=X[i]	Z[Db]:=Y[j]
i:=i+1	i:=i+1	j:=j+1
	j:=j+1	

100000			
i:	=1		
j:	=1		
D	b:=0		
		i≤N és j≤M	
	Db:=Db+1		
	X[i] <y[j]< td=""><td>X[i]=Y[j]</td><td>/</td></y[j]<>	X[i]=Y[j]	/
	Z[Db]:=X[i]	Z[Db]:=X[i]	Z[Db]:=Y[j]
	i:=i+1	i:=i+1	j:=j+1
		j:=j+1	
		i≤N	
	Db:=Db+1		
	Z[Db]:=X[i]		
	i:=i+1		
		j≤M	
	Db:=Db+1		
	Z[Db]:=Y[j]		
	j:=j+1		
	Z[Db]:=X[i] i:=i+1 Db:=Db+1 Z[Db]:=Y[j]		

i:=1		
j:=1		
Db:=0		
$X[N+1]:=+\infty$		
Y[M+1]:=+∞		
i≤N vagy j≤M		
Db:=Db+1		
X[i] <y[j] x[i]="Y[j]</td" =""><td> /</td></y[j]>	/	
Z[Db]:=X[i] Z[Db]:=X[i]	Z[Db]:=Y[j]	
i:=i+1 i:=i+1	j:=j+1	
j:=j+1		

Kérdések:

- Jobb lett ez a módszer az előzőnél az idő szempontból?
 - ← Hány lépés alatt kapjuk meg a megoldást?
- > Meg lehetne ugyanezt tenni a metszettel is?

Tapasztalat:

- Jobb lett ez a módszer bonyolultság szempontjából. (Ciklus-/elágazás-szám.)
- Ez a módszer a kimenet szerint halad egyesével és nem a bemenet szerint (mint a korábbiak).

Rendezettek összefésülése

Feladat:

Adott két rendezett sorozat, adjuk meg az összefésülésüket!

Specifikáció:

- ► Bemenet: N,M∈N, $X_{1..N}$ ∈H^N, $Y_{1..M}$ ∈H^M
- \triangleright Kimenet: $Z_{1 N+M} \in H^{N+M}$
- > Előfeltétel: HalmazE(X) és HalmazE(Y) és

RendezettE(X) és RendezettE(Y)

Rendezettek összefésülése

➤ Utófeltétel: Z∈Permutáció(X⊕Y) és RendezettE(Z)

Ötlet:

A megoldás olyan, mint az összefuttatás, csak az egyforma elemeket is berakjuk az eredménybe, tehát egy-egy érték multiplicitása lehet 1-nél nagyobb is (már kezdetben is!).

Rendezettek összefésülése

Algoritmus:

Specifikáció:

- > Bemenet: N,M \in N, X \in H^N, Y \in H^M
- > Kimenet: Z∈H^{N+M}
- \succ Előfeltétel: RendezettE(X) és RendezettE(Y)
- > Utófeltétel: $Z \in Permutáció(X \oplus Y)$ és RendezettE(Z)

i:=1	
j:=1	
Db:=0	
$X[N+1]:=+\infty$	
$Y[M+1] := +\infty$	
i≤N vagy j≤M	
Db:=Db+1	
$X[i] \le Y[j]$	
Z[Db]:=X[i]	Z[Db]:=Y[j]
i:=i+1	j:=j+1

Összefésüléses rendezés

Ötlet:

Az összefésülés elvére alapozhatjuk az összefésüléses

rendezést: amennyiben egy sorozat nem egyelemű, akkor középen vágjuk ketté, mindkét felét rendezzük (rekurzívan), majd a két rendezett

sorozatot fésüljük össze!

- Az előző algoritmus (illetve a logaritmikus keresés) alapján megfogalmazhatunk egy általános tervezési elvet: Több részfeladatra bontás, amelyek hasonlóan oldhatók meg,
- o a triviális eset (amikor nincs rekurzív hívás)
- felosztás (megadjuk a részfeladatokat, amikre a feladat lebontható)
- o uralkodás (rekurzívan megoldjuk az egyes részfeladatokat)
- összevonás (az egyes részfeladatok megoldásából előállítjuk az eredeti feladat megoldását)

lépései:

Ezek alapján a következőképpen fogunk gondolkodni:

- > Mi a leállás (triviális eset) feltétele? Hogyan oldható meg ilyenkor a feladat?
- Mi az általános feladat alakja? Mik a paraméterei? Ebből kapjuk meg a rekurzív eljárásunk specifikációját.
- Milyen paraméter értékekre kapjuk a konkrét feladatot? Ezekre fogjuk meghívni kezdetben az eljárást!
- > Hogyan vezethető vissza a feladat hasonló, de egyszerűbb részfeladatokra? Hány részfeladatra vezethető vissza?
- Melyek ilyenkor az általános feladat részfeladatainak a paraméterei? Ezekkel kell majd meghívni a rekurzív eljárást!
- Hogyan építhető fel a részfeladatok megoldásaiból az általános feladat megoldása?

A korábban megismert helyben szétválogatás algoritmusra építhetjük ezen az elven a gyorsrendezés algoritmusát:

Gyorsrendezés (quicksort):

- > felbontás: $X_1,...,X_{k-1}$ X_k $X_{k+1},...,X_n$ szétválogatás ahol $\forall i,j \ (1 \le i < k; k < j \le n): X_i \le X_k \text{ és } X_k \le X_i$
- > uralkodás: mindkét részt ugyanazzal a módszerrel felbontjuk két részre, rekurzívan
- > összevonás: automatikusan történik a helyben szétválogatás miatt
- ➤ triviális eset: n≤1

Gyorsrendezés (quicksort):

Tartalom

- > Rendezési feladat
 - **Specifikáció**
 - Egyszerű cserés rendezés
 - Minimum-kiválasztásos rendezés
 - Buborékos rendezés
 - Javított buborékos rendezés

- Beillesztéses rendezés
- Javított beillesztéses rendezés
- Szétosztó rendezés
- Számlálva szétosztó rendezés
- Számláló rendezés

- Rendezések hatékonysága idő
- Algoritmusok rendezett sorozatokban
 - Keresés rendezett sorozatban
 - Rendezettek uniója, összefésülése
 - Összefésüléses rendezés
- Oszd meg és uralkodj!

