UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CURSO SUPERIOR DE TÉCNOLOGIA EM AUTOMAÇÃO INDUSTRIAL LABORATÓRIO DE SISTEMAS DE POTÊNCIA DISCIPLINA: NOME DA DISCIPLINA

DOCENTE: NOME DO PROFESSOR

AQUI VAI O TITULO DO TRABALHO QUE SERA TRANSMFORMADO EM TODAS MAIUSCULAS

NOME DO PRIMEIRO AUTOR NOME DO SEGUNDO AUTOR NOME DO TERCEIRO AUTOR

> CORNÉLIO PROCÓPIO JANEIRO DE 2012

SUMÁRIO

1	INTRODUÇÃO	6
2	EXEMPLOS ÚTEIS DE EQUAÇÕES PARA QUEM ESTÁ COMECANDO	7

LISTA DE SÍMBOLOS

LISTA DE FIGURAS

FIGURA 1	 Sistema hidrotérmico formado por uma usina hidrelétrica e uma usina 	
	térmica	8

LISTA DE TABELAS

TABELA 1 – Variação da demanda no intervalos de tempo considerados	• • •	8
--	-------	---

1 INTRODUÇÃO

Aqui vai a introdução do trabalho.

Nesse arquivo de exemplo aparecem algumas dicas para quem está começando a trabalhar em LATEX, principalmente na área de Engenharia Elétrica, cujos trabalhos normalmente envolvem uma grande quantidade de equações, tabelas e figuras. Esse documento não tem a pretensão de ser um manual, tampouco uma apostila de LATEX, visto que existe uma grande quantidade desse tipo de material de boa qualidade disponíveis na internet. É recomendado também ler os manuais das classes PGTEX e ABNTEX, pois muitas das futuras dúvidas podem estar respondidas lá.

2 EXEMPLOS ÚTEIS DE EQUAÇÕES PARA QUEM ESTÁ COMEÇANDO

No LATEX, você pode inserir elementos matemáticos no meio do texto, como por exemplo algumas variáveis " h_i , $i=1,\ldots,N$ ", ou equações simples $a^2=b^2+c^2$ e até mais complexas como $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$.

Um exemplo de equação muito utilizada na pós graduação da engenharia elétrica, é a representação de um problema de otimização do tipo:

min
$$c(p_t) = \sum_{1}^{N} c(p_{t_i}) \times h_i$$

$$\begin{cases}
P_L + \ell(p_t, p_h) - p_t - p_h = 0 \\
h^T q(p_h) - V_{esp} = 0
\end{cases}$$
s.a.:
$$\begin{cases}
p_t - \bar{p}_t + \bar{s}_t = 0 \\
-p_t + \underline{p}_t + \underline{s}_t = 0 \\
p_h - \bar{p}_h + \bar{s}_h = 0 \\
-p_h + \underline{p}_h + \underline{s}_h = 0
\end{cases}$$
(2)

onde

 $c(p_{t_i})$: Custo da unidade térmica no intervalo i, em homega/h;

 p_t : Vetor $N \times 1$ das potencias térmicas geradas nos N intervalos;

 p_h : Vetor $N \times 1$ das potencias hidráulicas geradas nos N intervalos;

 $q(p_h)$: Vetor $N \times 1$ das potencias turbinadas nos N intervalos;

 p_L : Vetor $N \times 1$ das cargas elétricas nos N intervalos;

 $\ell(p_t, p_h)$: Vetor $N \times 1$ das perdas de transmissão nos N intervalos;

 \bar{p}_t, p_t : Limites superiores e inferiores das potências térmicas geradas;

 $\bar{p}_h, \underline{p}_h$: Limites superiores e inferiores das potências hidráulicas geradas;

 $\bar{s}_t, \underline{s}_t$: Variáveis de folga correspondentes aos limites de p_t ;

 $\bar{s}_h, \underline{s}_h$: Variáveis de folga correspondentes aos limites de p_h ;

É muito comum também querer expressar a dimensão dos elementos de um vetor ou matriz, da seguinte forma:

$$s = \begin{bmatrix} \bar{s}_t \\ \underline{s}_t \\ \bar{s}_h \\ \underline{s}_h \end{bmatrix} \begin{cases} N \times 1 \\ N \times 1 \\ N \times 1 \end{cases} \qquad \pi = \begin{bmatrix} \bar{\pi}_t \\ \underline{\pi}_t \\ \bar{\pi}_h \\ N \times 1 \\ \underline{\pi}_h \\ N \times 1 \end{cases} \qquad (4)$$

Em problemas de otimização, a função lagrangeana pode ser escrita em LATEX da seguinte forma:

$$\mathcal{L}(\mathbf{P}_T, \lambda) = F(\mathbf{P}_T) + \lambda^T (\mathbf{P}_L + \ell(\mathbf{P}_T, \mathbf{P}_H) - \mathbf{P}_T - \mathbf{P}_H) \dots$$
 (6)

Para inserir uma figura, é utilizado o ambiente \figure. Considera-se a figura 1. O comando \caption{} define a legenda da figura e o comando \label{}, o nome pelo qual a figura será referenciada no arquivo .tex.

Considere-se o segundo sistema:

Figura 1: Sistema hidrotérmico formado por uma usina hidrelétrica e uma usina térmica

A grande maioria das tabelas utilizadas em LAT_EXsão simples, apenas com um cabeçalho e os dados abaixo, com a seguinte tabela:

Tabela 1: Variação da demanda no intervalos de tempo considerados

Intervalo	Duração (hs)	Carga (MW)
1	7,0	400,0
2	8,0	900,0
3	5,0	1.600,0
4	4,0	1.300,0

Isso não quer dizer que tabelas mais complexas não possam ser elaboradas de acordo com a necessidade. Para citar uma referência no meio do texto, basta usar o comando \cite{} no local onde será inserido a informação bibliográfica, e o comando no final do trabalho \bibliography{a onde "arquivo" é o arquivo .bib contendo as referências. Por exemplo, se neste parágrafo tivesse sido utilizado como referência o livro "Power Generation, Operation and Control" dos autores WOOD, A. J. e WOLLENBERG, B. F, ao final da frase apareceria (??), e no final do arquivo seria criada a seção de referências, como aparece nesse arquivo de exemplo.

REFERÊNCIAS

WOOD, A. J.; WOLLENBERG, B. F. *Power Generation, Operation and Control.* New York, U.S.A: John Wiley & Sons, 1984.