By Sverre Aarseth, for NBODY6; NBODY6++GPU may

Basic Code Structure

Input Read input parameters

Initial conditions Generate m, r, \dot{r}

Initialization $\mathbf{F}, \dot{\mathbf{F}} \& \Delta t$

Scheduling Block-step distribution

Prediction All N particles

Force calculation Forces and derivatives

Particle integration Sequential $F\&\dot{F}$

Corrector Fourth order

New time-steps Relative criterion

New block-steps Determine next group

Results Cluster parameters

Stellar Evolution

Stellar HR types

$$K^* = 0, ..., 15$$

Fast look-up (Pop I & II)

$$r^*(t), m_c(t), L^*(t), K^*(t)$$

Wind mass loss

$$\dot{m} = -2 \times 10^{-13} \, r^* \, L^* / m$$

Single stars

$$\Delta m/m > 1\%$$
, new r^*

Updating times

$$T_{\rm ev} = t + \min(\Delta t_{\rm ev}, \Delta t_{\rm rem})$$

Stellar rotation

$$\Delta J_{\rm spin} = 2\Delta m r^2 \Omega_{\rm rot}/3$$

White dwarfs

cooling curves, $\Delta t_{\rm ev} = 10^6 \, {\rm yr}$

Supernova outburst

$$m_{\rm c} > m_{\rm chandra} \Rightarrow {\rm SN}$$

NS velocity kick

$$v >> v_{\infty} \sim 2 \, km/s$$

Binary mass loss

$$m a = \text{const}$$

Synthetic HR diagram

binaries and single stars

Energy conservation

$$\Delta E = \Delta m \left(\frac{1}{2} v^2 + \Phi \right)$$

Three-Body Dynamics

Basic interactions $B + S \Rightarrow \tilde{B} + \tilde{S}$

Fast escapers Resonance or radial intruder

Formation of hierarchy $B + B \Rightarrow \tilde{B} + S + \tilde{S} \Rightarrow T + \tilde{S}$

Hierarchical stability Constant inner period

Induced collision Kozai cycles $\Rightarrow e_{\text{max}}$

Gravitational slingshot Internal/external effects

PN Scenarios

Unperturbed binaries BH or NS

Globular clusters BH or NS + N^*

Galactic centres $IMBH + BH + N^*$

Supermassive systems $SMBH + IMBH + N^*$

Energy considerations $\frac{m_1 m_2}{2a^*} = \kappa |E_{\text{tot}}|, \quad E_{\text{tot}} = -0.25$

Super-hard binary $m_1 = 10\bar{m}, \quad \kappa = 0.1, \quad a^* = \frac{2000}{N^2}$

Schwarzschild radius $R_{\rm Sch} = \frac{2M}{c^2}$

GR radiation time-scale $t_{\rm GR} \propto \frac{c^5 a^5}{m_1^2} (1 - e^2)^{7/2}, \quad c = \frac{3 \times 10^5}{V^*}$

For some variants of NBODY6++GPU:Treat