System Specifications

$$FSR := 1.5V$$

$$T_{ambient} := 25C \quad T_{max} := 125C$$

$$\Delta T := T_{max} - T_{ambient} = 100 \times 10^{0} C$$

$$V_{s buf} := 3.0V$$

$$V_{s \text{ spec}} := 3.3V$$

Conversions

$$dB(x) := \frac{1}{1000000} \frac{V}{V} \text{ ppm} := \frac{1}{1000000}$$

Resistor Divider Errors

Accuracy

$$E_{res tol} := \alpha_{res tol} = 1 \times 10^3 \cdot ppm$$

$$\mathrm{E}_{res_drift} \coloneqq \Delta T \!\cdot\! \delta_{res_drift} = 500 \times 10^0 \!\cdot\! ppm$$

Resistor Specifications

$$\alpha_{res_tol} \coloneqq 0.1\%$$

$$\delta_{res_drift} \coloneqq 5 \frac{ppm}{C}$$

Buffer Amplifier Errors

Buffer Specifications

$$V_{os\ max} := 0.25 \text{mV}$$

Accuracy

Vos_PSRR := dB(93) = 22.387 × 10⁰ ·
$$\frac{\mu V}{V}$$

$$E_{buf_Vos} := \frac{V_{os_max}}{FSR} = 166.667 \times 10^{0} \cdot ppm \qquad V_{os_drift} := 0.5 \cdot \frac{\mu V}{C}$$

$$E_{buf_PSRR} := \frac{\left(V_{s_spec} - V_{s_buf}\right) \cdot V_{os_PSRR}}{FSR} = 4.477 \times 10^{0} \cdot ppm$$

Drift

$$E_{buf_drift_Vos} := \frac{V_{os_drift}}{FSR} \cdot \Delta T = 33.333 \times 10^{0} \cdot ppm$$

Reference Errors

Accuracy

$$E_{REF_output} := \alpha_{REF_output} = 1 \times 10^{3} \cdot ppm$$

Drift

$$\mathsf{E}_{REF_drift} \coloneqq 165C \cdot \delta_{REF_drift_output} = 495 \times 10^{0} \cdot \mathsf{ppm}$$

Reference Specifications

 $\alpha_{REF_output} \coloneqq 0.1\%$

$$\delta_{\mbox{REF_drift_output}} \coloneqq 3 \, \frac{\mbox{ppm}}{\mbox{C}}$$

Alternate System Error

Vref Accuracy

$$E_{accuracy_vref} := E_{REF_output} = 1 \times 10^{3} \cdot ppm$$

Vref Drift

$$E_{drift_vref} := E_{REF_drift} = 495 \times 10^{0} \cdot ppm$$

Vref Total

$$E_{total_vref_RSS} := \sqrt{E_{accuracy_vref}^{\ \ 2} + E_{drift_vref}^{\ \ 2}} = 1.116 \times 10^{3} \cdot ppm$$

$$E_{total_vref} \coloneqq E_{accuracy_vref} + E_{drift_vref} = 1.495 \times 10^{3} \cdot ppm$$

Vbias Accuracy

$$\begin{split} &E_{accuracy_vbias_RSS} := \sqrt{E_{res_tol}^2 + E_{buf_Vos}^2 + E_{buf_PSRR}^2 + E_{REF_output}^2} = 1.424 \times 10^3 \cdot ppm \\ &E_{accuracy_vbias_total} := E_{res_tol} + E_{buf_Vos} + E_{buf_PSRR} + E_{REF_output} = 2.171 \times 10^3 \cdot ppm \end{split}$$

Vbias Drift

$$\mathrm{E}_{drift_vbias_RSS} := \sqrt{\mathrm{E}_{res_drift}^{2} + \mathrm{E}_{buf_drift_Vos}^{2} + \mathrm{E}_{REF_drift}^{2}} = 704.369 \times 10^{0} \cdot \mathrm{ppm}$$

$$E_{drift_vbias_total} := E_{res_drift} + E_{buf_drift_Vos} + E_{REF_drift} = 1.028 \times 10^{3} \cdot ppm$$

Vbias Total

$$E_{total_vbias_RSS} := \sqrt{E_{total_vref_RSS}^2 ...} = 1.941 \times 10^3 \cdot ppm$$

$$+ E_{accuracy_vbias_RSS}^2 + E_{drift_vbias_RSS}^2$$

 $E_{total_vbias} := E_{accuracy_vbias_total} + E_{drift_vbias_total} = 3.199 \times 10^{3} \cdot ppm$

Matching

$$\alpha_{\text{matching}} := \sqrt{\alpha_{\text{res_tol}}^2 + \left(\frac{V_{\text{os_max}}}{\text{FSR}}\right)^2} = 1.014 \times 10^{-3}$$

$$\alpha_{\text{matching}} = 1.014 \times 10^3 \cdot \text{ppm}$$

Tracking

$$\delta_{tracking_total} \coloneqq \delta_{res_drift} + \frac{V_{os_drift}}{FSR} = 5.333 \times 10^{0} \frac{1}{C} \cdot ppm$$

$$\delta_{tracking_RSS} := \sqrt{\delta_{res_drift}^2 + \left(\frac{V_{os_drift}}{FSR}\right)^2} = 5.011 \times 10^0 \frac{1}{C} \cdot ppm$$