

Features

- Compliant with AEC-Q200 Rev-C Stress Test Qualification for Passive Components in Automotive Applications
- Compact design to save board space -1206 footprint
- Small size results in very fast time to react to fault events
- Symmetrical design

- Low profile
- RoHS compliant* and halogen free**
- Agency recognition: **%** ♠

MF-NSMF Series - PTC Resettable Fuses

Electrical Characteristics

Model	V max. Volts		l _{hold}	I _{trip}	Resistance		Max. Time To Trip		Tripped Power Dissipation
			Amperes at 23 °C		Ohms at 23 °C		Amperes at 23 °C	Seconds at 23 °C	Watts at 23 °C
			Hold	Trip	R _{Min} .	R _{1Max} .			Тур.
MF-NSMF012	30.0	10	0.12	0.29	1.35	8.50	1.0	0.20	0.4
MF-NSMF020	24.0	10	0.20	0.46	0.60	2.60	1.0	0.60	0.6
MF-NSMF020X***	30.0	60	0.20	0.40	0.60	3.30	1.0	0.60	0.6
MF-NSMF035	6.0	100	0.35	0.75	0.30	1.20	8.0	0.10	0.6
MF-NSMF035X****	16.0	20	0.35	0.75	0.30	1.40	3.5	0.14	0.6
MF-NSMF050	13.2	100	0.50	1.00	0.15	0.70	8.0	0.10	0.4
MF-NSMF075	6.0	100	0.75	1.50	0.10	0.40	8.0	0.10	0.4
MF-NSMF110	6.0	100	1.10	2.20	0.06	0.20	8.0	0.10	0.6
MF-NSMF150	6.0	100	1.50	3.00	0.03	0.13	8.0	0.30	0.6
MF-NSMF150D	6.0	100	1.50	3.00	0.03	0.11	8.0	0.30	1.0
MF-NSMF200	6.0	100	2.00	4.00	0.02	0.085	8.0	1.00	0.7

^{****}Features Multifuse® freeXpansion Design™ for MF-NSMF Series (CSA/TÜV pending) *****Features Multifuse® freeXpansion Design™ for MF-NSMF Series (CSA pending)

Environmental Characteristics

Operating Temperature Maximum Device Surface Temperature	40 °C to +85 °C	
in Tripped State	125 °C	
	+85 °C, 1000 hours	±5 % typical resistance change
Humidity Aging	+85 °C, 85 % R.H. 1000 hours	±5 % typical resistance change
Thermal Shock	+85 °C to -40 °C, 20 times	±10 % typical resistance change
Solvent Resistance	MIL-STD-202, Method 215	No change
Vibration	MIL-STD-883C, Method 2007.1,	No change
	Condition A	•

Test Procedures And Requirements For Model MF-NSMF Series

Resistance	Test Conditions . Verify dimensions and materials	. Rmin ≤ R ≤ R1max . T ≤ max. time to trip (seconds) . No trip . No arcing or burning . No arcing or burning
UL File Number		J
CSA File Number	http://directories.csa-international.org/ Under "Ce enter 110338-0-000	ertification Record" and "File Number"
TÜV Certificate Number	H 02057213 http://www.tuvdotcom.com/ Follow link to "other c	certificates", enter File No. 2057213

Applications

- USB port protection USB 2.0, 3.0 & OTG
- Automotive electronic control modules
- HDMI 1.4 Source protection
- PC motherboards Plug and Play protection
- Mobile phones Battery and port protection
- PDAs / digital cameras
- Game console port protection

MF-NSMF Series - PTC Resettable Fuses

BOURNS

Thermal Derating Chart - Ihold (Amps)

Model	Ambient Operating Temperature									
wodei	-40 °C	-20 °C	0 °C	23 °C	40 °C	50 °C	60 °C	70 °C	85 °C	
MF-NSMF012	0.19	0.17	0.15	0.12	0.11	0.10	0.09	0.08	0.07	
MF-NSMF020	0.30	0.27	0.24	0.20	0.18	0.16	0.14	0.12	0.11	
MF-NSMF020X	0.30	0.27	0.24	0.20	0.18	0.16	0.14	0.12	0.10	
MF-NSMF035	0.51	0.46	0.40	0.35	0.30	0.27	0.24	0.22	0.18	
MF-NSMF035X	0.58	0.51	0.44	0.35	0.31	0.28	0.24	0.21	0.16	
MF-NSMF050	0.76	0.68	0.59	0.50	0.44	0.40	0.35	0.32	0.26	
MF-NSMF075	1.11	1.00	0.85	0.75	0.67	0.61	0.52	0.50	0.42	
MF-NSMF110	1.64	1.46	1.30	1.10	0.92	0.83	0.80	0.65	0.52	
MF-NSMF150	2.20	1.99	1.77	1.50	1.34	1.23	1.10	1.01	0.84	
MF-NSMF150D	2.20	1.99	1.77	1.50	1.34	1.23	1.10	1.01	0.84	
MF-NSMF200	2.88	2.61	2.28	2.00	1.80	1.66	1.51	1.39	1.19	

Typical Time to Trip at 23 °C

The Time to Trip curves represent typical performance of a device in a simulated application environment. Actual performance in specific customer applications may differ from these values due to the influence of other variables.

How to Order

Typical Part Marking

Represents total content. Layout may vary.

BIWEEKLY DATE CODE WILL APPEAR ON THE PACKAGING LABEL: WEEK 1 AND 2 = A WEEK 51 AND 52 = Z

MF-NSMF Series - PTC Resettable Fuses

Product Dimensions

Model	l A	4	l	3			D	Ctyle
Wodei	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Style
MF-NSMF012	3.00	3.40	1.40	1.80	0.70	1.10	0.25	1
IVII -INOIVII 012	(0.118)	(0.134)	(0.055)	(0.071)	(0.028)	(0.043)	(0.010)	'
MF-NSMF020	3.00	3.40	1.40	1.80	_0.48_	0.85	0.25	1 1
IVII -INGIVII 020	(0.118)	(0.134)	(0.055)	(0.071)	(0.019)	(0.033)	(0.010)	'
MF-NSMF020X	3.00	3.40	1.40	1.80	0.40	0.85	0.25	2
IVII -INOIVII UZUX	(0.118)	(0.134)	(0.055)	(0.071)	(0.016)	(0.033)	(0.010)	
MF-NSMF035	_3.00_	3.40	1.40	_1.80_	_0.48_	_0.85_	0.25	1
IVII -INGIVII 000	(0.118)	(0.134)	(0.055)	(0.071)	(0.019)	(0.033)	(0.010)	'
MF-NSMF035X	3.00_	3.40	1.40	1.80	_0.40_	0.85	0.25	2
IVII -INGIVII 000X	(0.118)	(0.134)	(0.055)	(0.071)	(0.016)	(0.033)	(0.010)	
MF-NSMF050	_3.00_	3.40	1.40	_1.80_	_0.48_	0.85	0.25	1
IVII -INGIVII 030	(0.118)	(0.134)	(0.055)	(0.071)	(0.019)	(0.033)	(0.010)	
MF-NSMF075	3.00	3.40	1.40	1.80	_0.40_	0.70	0.25	1 1
IVII IVOIVII 073	(0.118)	(0.134)	(0.055)	(0.071)	(0.016)	(0.028)	(0.010)	'
MF-NSMF110	3.00	3.40	1.40	1.80	_0.40_	0.70	0.25	1
IVII -INOIVII 110	(0.118)	(0.134)	(0.055)	(0.071)	(0.016)	(0.028)	(0.010)	' '
MF-NSMF150	3.00_	3.40	1.40	1.80	_0.40_	0.70	0.25	1 1
	(0.118)	(0.134)	(0.055)	(0.071)	(0.016)	(0.028)	(0.010)	'
MF-NSMF150D	3.00	3.40	1.40	1.80	_0.40_	0.75	0.25	1 1
IVII TVOIVII TOOD	(0.118)	(0.134)	(0.055)	(0.071)	(0.016)	(0.030)	(0.010)	'
MF-NSMF200	3.00	3.50	1.40	1.80	0.70	1.60	0.25	4
IVII -INGIVII 200	(0.118)	(0.138)	(0.055)	(0.071)	(0.028)	(0.063)	(0.010)	'

Packaging: 3000 pcs. per reel.

MM DIMENSIONS: (INCHES)

Terminal material:

Electroless Ni under immersion Au

Termination pad solderability:

Standard Au finish:
Meets ANSI/J-STD-002 Category 2.

Recommended Storage: 40 °C max./70 % RH max.

MF-NSMF Series - PTC Resettable Fuses

BOURNS

Solder Reflow Recommendations

Notes:

- MF-NSMF models cannot be wave soldered. Please contact Bourns for hand soldering recommendations.
- If reflow temperatures exceed the recommended profile, devices may not meet the performance requirements.
- · Compatible with Pb and Pb-free solder reflow profiles.
- Excess solder may cause a short circuit, especially during hand soldering. Please refer to the Multifuse® Polymer PTC Soldering Recommendation guidelines.

MF-NSMF Series Tape and Reel Specifications

BOURNS

Tape Dimensions	MF-NSMF012 & MF-NSMF200 per EIA 481-1	MF-NSMF020 ~ MF-NSMF050 & MF-NSMF150D per EIA 481-1	MF-NSMF075 ~ MF-NSMF150 per EIA 481-1	MF-NSMF020X & MF-NSMF035X per EIA 481-1
W	$\frac{8.0 \pm 0.30}{(0.315 \pm 0.012)}$	$\frac{8.0 \pm 0.30}{(0.315 \pm 0.012)}$	$\frac{8.0 \pm 0.30}{(0.315 \pm 0.012)}$	$\frac{8.0 \pm 0.30}{(0.315 \pm 0.012)}$
$\overline{P_0}$	$\frac{4.0 \pm 0.10}{(0.157 \pm 0.004)}$	$\frac{4.0 \pm 0.10}{(0.157 \pm 0.004)}$	$\frac{4.0 \pm 0.10}{(0.157 \pm 0.004)}$	$\frac{4.0 \pm 0.10}{(0.157 \pm 0.004)}$
P ₁	$\frac{4.0 \pm 0.10}{(0.157 \pm 0.004)}$	$\frac{4.0 \pm 0.10}{(0.157 \pm 0.004)}$	$\frac{4.0 \pm 0.10}{(0.157 \pm 0.004)}$	$\frac{4.0 \pm 0.10}{(0.157 \pm 0.004)}$
P ₂	$\frac{2.0 \pm 0.05}{(0.079 \pm 0.002)}$	$\frac{2.0 \pm 0.05}{(0.079 \pm 0.002)}$	$\frac{2.0 \pm 0.05}{(0.079 \pm 0.002)}$	$\frac{2.0 \pm 0.05}{(0.079 \pm 0.002)}$
A ₀	$\frac{1.90 \pm 0.10}{(0.075 \pm 0.004)}$	$\frac{1.90 \pm 0.10}{(0.075 \pm 0.004)}$	$\frac{1.90 \pm 0.10}{(0.075 \pm 0.004)}$	$\frac{1.90 \pm 0.10}{(0.075 \pm 0.004)}$
В0	$\frac{3.50 \pm 0.10}{(0.138 \pm 0.004)}$	$\frac{3.45 \pm 0.10}{(0.136 \pm 0.004)}$	$\frac{3.45 \pm 0.10}{(0.136 \pm 0.004)}$	$\frac{3.55 \pm 0.10}{(0.140 \pm 0.004)}$
B ₁ max.	4.35 (0.171)	<u>4.35</u> (0.171)	4.35 (0.171)	4.35 (0.171)
D ₀	$\frac{1.5 + 0.10/-0.0}{(0.059 + 0.004/-0)}$	$\frac{1.5 + 0.10/-0.0}{(0.059 + 0.004/-0)}$	$\frac{1.5 + 0.10/-0.0}{(0.059 + 0.004/-0)}$	$\frac{1.5 + 0.10/-0.0}{(0.059 + 0.004/-0)}$
F	$\frac{3.5 \pm 0.05}{(0.138 \pm 0.002)}$	$\frac{3.5 \pm 0.05}{(0.138 \pm 0.002)}$	$\frac{3.5 \pm 0.05}{(0.138 \pm 0.002)}$	$\frac{3.5 \pm 0.05}{(0.138 \pm 0.002)}$
E ₁	$\frac{1.75 \pm 0.10}{(0.069 \pm 0.004)}$	$\frac{1.75 \pm 0.10}{(0.069 \pm 0.004)}$	$\frac{1.75 \pm 0.10}{(0.069 \pm 0.004)}$	$\frac{1.75 \pm 0.10}{(0.069 \pm 0.004)}$
E ₂ min.	6.25 (0.246)	6.25 (0.246)	<u>6.25</u> (0.246)	6.25 (0.246)
T max.	$\frac{0.6}{(0.024)}$	0.6 (0.024)	$\frac{0.6}{(0.024)}$	<u>0.6</u> (0.024)
T ₁ max.	<u>0.1</u> (0.004)	<u>0.1</u> (0.004)	<u>0.1</u> (0.004)	0.1 (0.004)
κ ₀	$\frac{1.35 \pm 0.10}{(0.053 \pm 0.004)}$	$\frac{1.04 \pm 0.10}{(0.041 \pm 0.004)}$	$\frac{0.85 \pm 0.10}{(0.033 \pm 0.004)}$	$\frac{0.80 \pm 0.10}{(0.032 \pm 0.004)}$
Leader min.	390 (15.35)	<u>390</u> (15.35)	<u>390</u> (15.35)	<u>390</u> (15.35)
Trailer min.	<u>160</u> (6.30)	<u>160</u> (6.30)	<u>160</u> (6.30)	160 (6.30)
Reel Dimensions				
A max.	<u>185</u> (7.28)	<u>185</u>	<u>185</u> (7.28)	<u>185</u> (7.28)
N min.	<u>50</u> (1.97)	<u>50</u> (1.97)	<u>50</u> (1.97)	50 (1.97)
W ₁	8.4 + 1.5/-0.0 (0.331 + 0.059/-0.0)	8.4 + 1.5/-0.0 (0.331 + 0.059/-0.0)	8.4 + 1.5/-0.0 (0.331 + 0.059/-0.0)	8.4 + 1.5/-0.0 (0.331 + 0.059/-0.0)
W ₂ max.	14.4 (0.567)	14.4 (0.567)	14.4 (0.567)	14.4 (0.567)

