Statistiques descriptives

Examen final

Durée: 2H

Documents interdits, calculatrice UPPA autorisée.

La qualité de la rédaction sera prise en compte dans la note. Les réponses devront être justifiées. On donnera les résultats à 10^{-4} près sauf pour les pourcentages où on travaillera à 10^{-2} près.

Exercice 1 (5 points) Soit $\{(x_1, y_1), \dots, (x_n, y_n)\}$ une série statistique bivariée de deux variables quantitatives.

- 1. (a) Définir la moyenne, la variance et l'écart-type de la variable x à partir de la série.
 - (b) Énoncer le Théorème de Koening-Huygens pour la variance de la variable x.
- 2. Définir la covariance de x et y.
- 3. Définir le coefficient de corrélation linéaire $\rho_{x,y}$ entre x et y. Quels sont les valeurs possibles pour ce coefficient?

Exercice 2 (6 points) Suite à une étude mise à jour ¹ sur certains personnages de la série TV américaine *Game of Thrones* (aussi appelée *Le Trône de Fer*), trois variables ont été prises en compte : "Genre" (modalités : "homme" ou "femme"), "État du personnage" (modalités : "mort" ou "vivant") et "Famille" (modalités : "Stark" ou "Lannister"). Cela a conduit au tableau de contingence à trois dimensions donné ci-dessous :

	St	ark	Lannister			
	Mort	Vivant	Mort	Vivant		
Homme	20	15	15	17		
Femme	7	6	3	5		

- 1. Quelle est la population ? Quelle est la nature des variables étudiées ? Justifiez votre réponse. Quelle est la taille de la population ?
- 2. Pour l'ensemble des personnages, quel est la fréquence de la modalité "Mort" (pour la variable "État du personnage") ?
- 3. Construire les tableaux des effectifs marginaux et des fréquences marginales croisant les variables "État du personnage" et "Famille".
- 4. Calculer le coefficient de Pearson Φ^2 pour les variables "État du personnage" et "Famille". Peuvent-elles être considérées comme indépendantes ?
- 5. Calculer la fréquence conditionnelle de la modalité "Mort" (pour la variable "État du personnage") sachant que le personnage appartient à la famille Stark. Calculer la fréquence conditionnelle de la modalité "Mort" (pour la variable "État du personnage") sachant que le personnage appartient aux Lannister. Comparer.

Exercice 3 (10 points) On considère une automobile roulant sur une route mouillée à une certaine vitesse x. Cette automobile freine brusquement pour simuler un freinage d'urgence. On note y la distance de freinage qui est fonction de la vitesse x. Les données recueillies $\{(x_1, y_1), \dots, (x_{10}, y_{10})\}$ sont les suivantes :

Vitesse x (Km/h)										
Distance y (m)	10	21	34	49	66	85	106	129	154	181

- 1. Quelles sont les natures des deux variables étudiées ? Justifiez votre réponse.
- 2. Tracer le nuage de points. Quel est le signe du coefficient de corrélation linéaire (sans effectuer de calculs) ? Justifiez votre réponse.
- 3. Déterminer la droite de régression linéaire des distances en fonction des vitesses par la méthode des moindres carrés (c.-à-d. de la forme y=ax+b avec $a,b\in\mathbb{R}$). Tracer la droite sur le nuage de points.

^{1.} Analyse sur http://regressing.deadspin.com/valar-morghulis-a-statistical-guide-to-deaths-in-game-1618282560

- 4. Déterminer le coefficient de détermination R^2 de ce modèle linéaire. Peut-on considérer qu'il existe une dépendance linéaire forte entre y et x?
- 5. Quelle est la distance estimée de freinage si la vitesse est de 95 Km/h? 150 Km/h?
- 6. On suppose qu'il existe une relation quadratique simple entre les deux variables, i.e. une relation de la forme $y = \alpha x^2 + \beta$ avec $\alpha, \beta \in \mathbb{R}$.
 - (a) On donne les résultats numériques suivants à partir des données :

$$\frac{1}{10}\sum_{i=1}^{10}x_i^2 = 9100\;,\quad \frac{1}{10}\sum_{i=1}^{10}x_i^4 = 103558000\quad\text{et}\qquad \frac{1}{10}\sum_{i=1}^{10}x_i^2y_i = 1008540\;.$$

Déterminer α et β par la méthode des moindres carrés.

(b) Calculer le coefficient de détermination \mathbb{R}^2 pour ce modèle quadratique. Quel modèle faut-il retenir ? Expliquer pourquoi.