

Postulados e determinação

- 1. Postulados da existência
 - Existem ponto, reta e plano.

Numa reta, bem como fora dela, existem infinitos pontos.

Observação: os pontos A, B e C pertencem a uma mesma reta, portanto eles são colineares.

· Num plano, bem como fora dele, existem infinitos pontos.

Observação: os pontos A, B e C pertencem a um mesmo plano, portanto eles são coplanares.

- 2. Determinação de uma reta
 - Dois pontos distintos (Dois pontos distintos determinam uma única reta

- 3. Determinação de um plano
 - Três pontos não colineares

• Uma reta r e um ponto P fora dela

Posições relativas de duas retas

Revisãoenem

MRTEMAGICA CO

Poliedros

1. Poliedro convexo

Prismas

1. Paralelepípedo

1.1. reto-retangulo

1.2. (ortoedro)

$$D = \sqrt{a^2 + b^2 + c^2}$$

$$A_t = 2(ab + ac + bc)$$

$$A_{\ell} = 2(ac + bc)$$

$$V = abc$$

2. Teorema de Euler

A - número de arestas de um poliedro

F - número de faces de um poliedro

V - número de vértices de um poliedro

n - número de arestas em cada face de um poliedro

m - número de arestas em cada vértice de um poliedro

2.1. Fórmulas auxiliares

$$A = \frac{n \cdot F}{2} \qquad A = \frac{m \cdot V}{2}$$

2. Cubo

$$d_f = a\sqrt{2}$$

$$D = a\sqrt{3}$$

$$A_{\ell} = 4a^2$$

$$A_t = 6a^2$$

$$A_f = a^2$$

$$V = a^3$$

Prismas

1. Prisma

- 2. Prisma reto
 - Área lateral (A)

$$A_{\chi}$$
 = soma das áreas das faces

Área total (A₊)

$$A_t = A_\ell + 2 \cdot A_b$$

• Volume (V)

- 3. Prisma regular
- É o prisma que, além de ser reto, tem por base um polígono regular.

Pirâmides

Aresta de base

1. Elementos

- Área lateral (A ¿)
 - $\mathbf{A}_{\hat{x}}$ = soma das áreas das faces laterais
- Área total (A,)

$$A_t = A_{\hat{x}} + A_b$$

$$V = \frac{1}{3}A_b \cdot h$$

KBARREE HEHI

2. Piràmide regular

Uma piramide é chamada de piramide regular se, e somente se, a base é um poligono regular e a projeção ortogonal do vértice sobre o plano da base é o centro dessa base.

3. Apótema de uma pirâmide regular

Apótema de uma pirâmide regular é o segmento cujaextremidades são o vértice da pirâmide e o ponto médio de uma aresta da base.

Cálculo do apótema:

$$m^2 = h^2 + a^2$$

Pirâmides

Resumo

Área lateral (A,)

Área total (A,)

$$A_t = A_\ell + A_b$$

Volume

$$V = \frac{1}{3} A_b \cdot h$$

QUESTÕES DE SALA

01 - Analise as seguintes afirmações:

- a) () Existem dois planos distintos, passando ambos por um mesmo ponto e perpendiculares a uma reta.
- b) () Se dois planos forem perpendiculares, todo plano perpendicular a um deles será paralelo ao outro.
 -) () Duas retas paralelas a um plano são paralelas.
- d) () Se dois planos forem perpendiculares, toda reta paralela a um deles será perpendicular ao outro.
- e) () Uma reta perpendicular a duas retas concorrentes de um plano é perpendicular a esse plano.