Quentin Choullet Céline de Roland Johan Ravery

TP INFO 724

NP-COMPLÉTUDE DE MIN-COUPE-CIRCUIT EN UTILISANT LE PROBLÈME DE COUVERTURE DES ARÊTES

TABLE DES MATIÈRES

Description et encodage des problèmes	2
1) Description de P1	
2) Encodage de P1	
3) Description de P2	
4) Encodage de P2	
5) Description et encodage du certificat	
Vérificateur et réducteur.	
Solver	2
Instances proposées	
==== -== F = F = = = = = · · · · · · · · · · ·	

DESCRIPTION ET ENCODAGE DES PROBLÈMES

1) Description de P1

Le problème P1 est appelé Min-Coupe-Circuit (abrégé Min dans nos noms de fichiers) :

« Etant donné un graphe orienté G et un entier n, est-il possible d'éliminer tous les cycles de G en lui ôtant n arêtes »

2) Encodage de P1

```
Une instance de P1 s'écrit :

Digraph {

Liste des sommets séparés par des espaces (les noms des sommets doivent être des entiers consécutifs)
```

Liste des arêtes séparées par des sauts de ligne

```
(une arête s'écrit numéroSommetSource -> numéroSommetCible)
}
Entier {
UnNombreEntier (correspond au nombre n de la définition)
```

3) Description de P2

Le problème P2 est appelé Couverture des Arêtes (abrégé CA dans nos noms de fichiers) :

« Etant donné un graphe non orienté G et un entier n, est-il possible de colorier n sommets tels que l'ensemble des arêtes touchant les sommets coloriés soit égal à l'ensemble des arêtes du graphe G »

4) Encodage de P2

```
Une instance de P2 s'écrit :
```

```
Graph {
```

}

Liste des sommets séparés par des espaces (les noms des sommets doivent être des entiers consécutifs)

Liste des arêtes séparées par des sauts de ligne

(une arête s'écrit numéroSommetSource -- numéroSommetCible, contrairement au cas du graphe orienté, les sommets source et cible sont interchangeables)

```
}
Entier {
```

UnNombreEntier (correspond au nombre n de la définition)

}

5) Description et encodage du certificat

Un certificat pour le problème P2 est un ensemble de n arêtes à couper pour éliminer tous les cycles.

Un certificat s'écrit :

Digraph {

Liste des sommets séparés par des espaces (les noms des sommets doivent être des entiers consécutifs)

Liste des arêtes à couper séparées par des sauts de ligne

(une arête s'écrit numéroSommetSource -> numéroSommetCible)

}

Entier {

UnNombreEntier (correspond au nombre n de la définition)

VÉRIFICATEUR

}

RÉDUCTEUR

SOLVER

INSTANCES PROPOSÉES