第四节 函数的单调性与凹凸性

- 一、函数单调性、极值的判别
- 二、函数的凹凸性与拐点
- 三、函数的最大值与最小值

一、函数单调性及其判别法

各点处切线的斜率为正 各点处切线的斜率为负

若y = f(x)在区间(a, b)上单调递增 $\Rightarrow f'(x) > 0$

1. 函数单调性的判定方法

定理1 设y = f(x) 在区间[a, b]上连续, 在区间(a, b)内可导, 则对 $\forall x \in (a, b)$,

(1)若 f'(x) > 0,则 f(x) 在区间[a, b]内单调增加;

(2)若 f'(x) < 0,则 f(x) 在区间[a, b]内单调减少.

注意:函数的单调性是一个区间上的性质,要用导数在这一区间上的符号来判定,而不能用一点处的导数符号来判别一个区间上的单调性.

2. 单调区间.

若函数在其定义区间的某个子区间上是单调的,则该子区间称为函数的单调区间。

例1 讨论函数 $y = e^x - x - 1$ 的单调性.

解 函数定义域 $(-\infty, +\infty)$.

$$y'=e^x-1.$$

在 $(-\infty,0)$ 内,y'<0,:.函数单调减少;

在(0,+∞)内,y'>0,: 函数单调增加

故 $(-\infty,0)$ 是 f(x)的递减区间. $(0,+\infty)$ 是递增区间. $(-\infty,0]$ $[0,+\infty)$

说明:可疑的极值点:驻点.

例2 讨论函数 $y = x^{\frac{1}{3}}$ 的单调性

解 函数定义域 $(-\infty, +\infty)$.

$$y' = \frac{2}{3}x^{-\frac{1}{3}} = \frac{2}{3\sqrt[3]{x}}$$

在($-\infty$,**0**)内,y'<0,∴函数单调减少

在 $(0,+\infty)$ 内,y'<0,:函数单调增加. $[0,+\infty)$

故 $(-\infty,0)$ 是 f(x)的递减区间. $(0,+\infty)$ 是递增区间.

单调区间的分界点: $f'(x_0) = 0$ 或 $f'(x_0)$ 不存在.

说明:可疑的极值点:驻点和不可导点。

3. 函数极值的判定定理

定理2(极值第一充分条件)

设函数 f(x) 在 x_0 的某邻域内连续,且在空心邻域内有导数,当x由小到大通过 x_0 时,

- (1) f'(x) "左正右负"则f(x)在 x_0 处取极大值.
- (2) f'(x) "左负右正",则 f(x) 在 x_0 处取极小值;
- (3) f'(x) "不变号",则f(x)在 x_0 处无极值.

确定函数y = f(x) 的单调性的一般步骤是:

- (1) 确定函数定义域;
- (2) 确定 f'(x) = 0 及 f'(x) 不存在 的点, 以这些点为 分界点划分定义域为多个子区间;
- (3)确定 f'(x)在各子区间内的符号,从而定出 f(x)在各子区间的单调性.

例3 求函数 $f(x) = 2x^3 - 9x^2 + 12x - 3$ 的单调区间.

解 函数 f(x) 定义域为 $(-\infty, +\infty)$

$$f'(x) = 6x^2 - 18x + 12 = 6(x-1)(x-2)$$

由
$$f'(x) = 0$$
解得 $x_1 = 1$, $x_2 = 2$

将
$$(-\infty, +\infty)$$
分成 $(-\infty, 1), (1, 2), (2, +\infty)$

列表:

x	$(-\infty,1)$	1	(1,2)	2	$(2,+\infty)$
f'(x)	+		-		+
f(x)		极大值		极小值	

故($-\infty$,1],[2,+ ∞) 是f(x)的递增区间. [1,2] 是递减

区间. (端点可包括也可不包括)

求极值的步骤:

确定函数定义域;

- (1) 求出导数 f'(x);
- (2) 求出f(x)的全部驻点和不可导点 ;
- (3) 考察 f'(x) 在驻点和不可导点两侧的正负号,

判断极值点;并求出各极值点处的函数值.

例4 求出函数 $f(x) = x^3 - 3x^2 - 9x + 5$ 的极值.

解 函数定义域 $(-\infty, +\infty)$.

$$f'(x) = 3x^2 - 6x - 9 = 3(x+1)(x-3)$$

令 f'(x) = 0, 得驻点 $x_1 = -1, x_2 = 3$. 列表讨论

x	$(-\infty,-1)$	-1	(-1,3)	3	(3,+∞)
f'(x)	+	0	_	0	+
f(x)		极大值		极小值	

极大值 f(-1) = 10, 极小值 f(3) = -22.

例5. 求函数 $f(x) = (x-1) \cdot \sqrt[3]{x^2}$ 的极值.

解: 函数定义域 $(-\infty, +\infty)$.

1) 求导数
$$f'(x) = x^{\frac{2}{3}} + (x-1) \cdot \frac{2}{3} x^{-\frac{1}{3}} = \frac{5x-2}{3\sqrt[3]{x}}$$

2) 令
$$f'(x) = 0$$
, 得 $x_1 = \frac{2}{5}$, $x_2 = 0$ (不可导点)

3) 列表判别

X	$(-\infty,0)$	0	$(0,\tfrac{2}{5})$	<u>2</u> 5	$\left(\frac{2}{5},+\infty\right)$
f'(x)	+	不存在		0	+
f(x)		极大值 0		极小值 - 0.33	
		f(0)		$f(\frac{2}{2})$	

定理3(极值第二充分条件)

设 f(x) 在 x_0 处具有二阶导数,且 $f'(x_0) = 0$, $f''(x_0) \neq 0$

- (1)当 $f''(x_0) < 0$ 时,函数 f(x) 在 x_0 处取得极大值;
- (2)当 $f''(x_0) > 0$ 时,函数 f(x) 在 x_0 处取得极小值;

分析:

$$f''(x_0) = \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0}$$
 (利用保号性)

注意: $f''(x_0) = 0$, 判别方法失效,需要改用定理2的方法.

例6 求函数 $f(x) = (x^2 - 1)^3 + 1$ 的极值.

解:
$$f'(x) = 6x(x^2-1)^2$$
, $f''(x) = 6(x^2-1)^2 + 24x^2(x^2-1)$

令
$$f'(x) = 0$$
, 得驻点 $x_1 = -1$, $x_2 = 0$, $x_3 = 1$

因
$$f''(0) = 6 > 0$$
, 故 $f(0) = 0$ 为极小值;

又
$$f''(-1) = f''(1) = 0$$
, 故需用第一判别法判别.

当
$$x \in (-\infty, -1), (-1,0)$$
时, $f'(x) < 0$ 不变号, $x = -1$ 无极值.

当
$$x \in (0,1), (1,+∞)$$
时, $f'(x) > 0$ 不变号, $x = 1$ 无极值.

7. a为何值时,函数
$$f(x) = a \sin x + \frac{1}{3} \sin 3x$$
在 $x = \frac{\pi}{3}$

处取得极值?它是极大值还是极小值?并求此极值.

$$f'(\frac{\pi}{3}) = (a\cos x + \cos 3x)\Big|_{x=\frac{\pi}{3}} = 0 \qquad \frac{a}{2} - 1 = 0$$

$$\Rightarrow a = 2.$$

$$f'(x) = 2\cos x + \cos 3x \qquad f''(x) = -2\sin x - 3\sin 3x$$
$$f''(\frac{\pi}{3}) = -\sqrt{3} < 0$$

$$\therefore f(\frac{\pi}{3}) = \sqrt{3}$$
为极大值.

4. 函数单调性的应用

——证明不等式和判断方程根的个数.

例8 证明不等式 $e^x \ge x+1$ $(x \ge 0)$;

$$i$$
E $\Leftrightarrow f(x) = e^x - x - 1$

因为
$$f(0)=0$$
, 而 $f'(x)=e^x-1\geq 0$ $(x\geq 0)$

则 f(x) 单增. 当 $x \ge 0$ 时, $f(x) \ge f(0)$.

故 $e^x \ge x+1$.

例 9 证明方程 $x^5 + x + 1 = 0$ 在区间 (-1,0) 内有且只有一个实根.

 $\mathbf{ii} \quad \diamondsuit f(x) = x^5 + x + 1,$

因 f(x) 在闭区间 [-1,0] 上连续,且 $f(-1)\cdot f(0) < 0$, 由零点定理知 f(x) 在 (-1,0) 内至少有一个零点.

另一方面,对于任意实数 x,有 $f'(x) = 5x^4 + 1 > 0$,

所以 f(x) 在 $(-\infty, +\infty)$ 内单调增加,因此曲线

y = f(x)与 x 轴至多只有一个交点.

综上所述,方程 $x^5 + x + 1 = 0$ 在区间(-1,0) 内有且只有一个实根.

函数的凹凸性与拐点

曲线的凹凸性 如何研究曲线的弯曲方向?

图形上任意弧段位 于所张弦的下方

$$f(\frac{x_1+x_2}{2}) < \frac{f(x_1)+f(x_2)}{2}, \ f(\frac{x_1+x_2}{2}) > \frac{f(x_1)+f(x_2)}{2}$$

图形上任意弧段位 于所张弦的上方

$$f(\frac{x_1+x_2}{2}) > \frac{f(x_1)+f(x_2)}{2},$$

定义. 设函数 f(x) 在区间 I 上连续 $, \forall x_1, x_2 \in I$

- (1) 若恒有 $f(\frac{x_1 + x_2}{2}) < \frac{f(x_1) + f(x_2)}{2}$,则称f(x)的图形是凹的;
- (2) 若恒有 $f(\frac{x_1 + x_2}{2}) > \frac{f(x_1) + f(x_2)}{2}$,则称 f(x)的图形是凸的.

连续曲线上凹凸分界点 称为拐点.

2. 曲线凸性的判定

(1)向上凸曲线从点A移到点B 时,对应的切线斜率f'(x)单调减少的. f''(x) < 0

(2)向下凹曲线从点A移到点B时,

对应的切线斜率f'(x)单调增加的.

$$f''(x) > 0$$

定理4 设函数y = f(x)在I内有二阶导数,则

(1) $\forall x \in (a,b)$,均有 f''(x) > 0, y = f(x)在(a,b)上 是向下凹的;

(2) $\forall x \in (a,b)$,均有 f''(x) < 0, y = f(x) 在(a,b)上 是向上凸的.

例10判断曲线 $y = x^3$ 的凹凸性.

当x < 0时,y'' < 0, : 曲线在($-\infty$,0]为向上凸的;

当x > 0时,y'' > 0,∴曲线在[0,+∞)为向下凹的;

注 点(0,0)是曲线由向上凸变向下凹的分界点.

注: 凹凸性的分界点 $f''(x_0)=0$ 或 $f''(x_0)$ 不存在的点.

定理5(拐点判别定理)设函数y = f(x)在 x_0 的某邻域内

二阶可导,且 $f''(x_0) = 0$ 或 $f''(x_0)$ 不存在,

(1) 若在点 x_0 的两侧,f''(x)异号,则点 $(x_0,f(x_0))$

为曲线 y = f(x) 的拐点.

(2)若在点 x_0 两侧,二阶导数同号,则点 $(x_0, f(x_0))$

不为曲线 y = f(x) 的拐点.

判别曲线的凹凸性及拐点的方法步骤:

- (1) 确定函数定义域;
- (2) 求出f'(x)、f''(x)
- (3) 求出使f''(x) = 0的点及f''(x)不存在的点;
- (4)检查在这些点左右两边的符号,从而决定曲线的凹凸区间及拐点。

例1球曲线 $y = 3x^4 - 4x^3 + 1$ 的拐点及凹、凸的区间.

解 函数的定义域为 $(-\infty, +\infty)$, $y' = 12x^3 - 12x^2$,

$$y'' = 36x\left(x - \frac{2}{3}\right)$$
. $\Leftrightarrow y'' = 0$, $\Leftrightarrow x_1 = 0$, $x_2 = \frac{2}{3}$.

x	$(-\infty,0)$	0	(0,2/3)	2/3	$(2/3,+\infty)$
f''(x)	+	0	_	0	+
f(x)	凹	拐点 (0,1)	凸	拐点 (2/3,11/27)	山

曲线的凹间为 $(-\infty,0]$, $[2/3,+\infty)$, 凸区间为 [0,2/3], 拐点为 (0,1)和 (2/3,11/27).

例12证明不等式

$$\frac{1}{2}(x^n + y^n) > (\frac{x+y}{2})^n \quad (x > 0, y > 0, x \neq y, n > 1)$$

证明 设
$$f(t) = t^n$$
, 则 $f''(t) = n(n-1)t^{n-2}$

当n>1时,在 $(0,+\infty)$,f''(t)>0,

所以在 $(0,+\infty)$ 内,f(t)是凹函数,

対
$$\forall x, y > 0, x \neq y$$
, 満足 $f\left(\frac{x+y}{2}\right) < \frac{f(x)+f(y)}{2}$,

即
$$\left(\frac{x+y}{2}\right)^n < \frac{1}{2}(x^n + y^n)$$
,所以 $\frac{1}{2}(x^n + y^n) > \left(\frac{x+y}{2}\right)^n$

三、最值的求法

若函数 f(x) 在 [a,b] 上连续,则 f(x) 在 [a,b]上的最大值与最小值存在 .

区域内部的最值点一定 是极值点。

步骤:

- 1.求驻点和不可导点;
- 2.求区间端点及驻点和不可导点的函数值,比较大小,

最大的就是最大值,最小的就是最小值.

例12 求函数 $y = 2x^3 + 3x^2$ 在[-2,1]上的最大最小值。

$$y' = 6x^2 + 6x = 6x(x+1)$$

$$y'=0, x_1=0, x_2=-1.$$

$$f(0) = 0, f(-1) = 1, f(-2) = -4, f(1) = 5.$$

比较得函数的最大值为f(1) = 5

最小值为 f(-2) = -4

例13求函数 $y = |x^2 - 3x + 2|$ 的在[-3,4]上的最大

值与最小值.

$$f(x) = \begin{cases} x^2 - 3x + 2 & x \in [-3,1] \cup [2,4] \\ -x^2 + 3x - 2 & x \in (1,2) \end{cases}$$

$$f'(x) = \begin{cases} 2x - 3 & x \in (-3,1) \cup (2,4) \\ -2x + 3 & x \in (1,2) \end{cases}$$
解方程 $f'(x) = 0$, 得 $x_1 = \frac{3}{2}$

不可导点为 $x_2 = 1, x_3 = 2$.

计算
$$f\left(\frac{3}{2}\right) = \frac{1}{4}$$
; $f(1) = 0$; $f(2) = 0$ $f(-3) = 20$ $f(4) = 6$;

比较得 最大值 f(-3) = 20, 最小值 f(1) = f(2) = 0.

2. 实际问题的最值

(1)建立目标函数;

(2)求最值;

若目标函数只有唯一驻点,则该点的函数值,

即为所求的最 (或最小)值.

例14 铁路上 AB 段的距离为100 km,工厂 C 距 A 处20 km, $AC \perp AB$,要在 AB 线上选定一点 D 向工厂修一条公路,已知铁路与公路每公里货运价之比为 3:5,为使货物从 B 运到工厂 C 的运费最省, $A \times D$ $A \times D$

问D点应如何选取?

解: 设 AD = x (km), 则 $CD = \sqrt{20^2 + x^2}$, 总运费 $y = 5k\sqrt{400 + x^2} + 3k(100 - x) \quad (0 \le x \le 100)$

$$y = 5k\sqrt{400 + x^2 + 3k(100 - x)}$$

$$y' = k \left(\frac{5x}{\sqrt{400 + x^2}} - 3 \right),$$

所以x=15为唯一的极小点,从而为最小值点,

故 AD =15 km 时运费最省.

内容小结

1. 可导函数单调性判别

$$f'(x) > 0, x \in I \Longrightarrow f(x)$$
在 I 上单调递增 $f'(x) < 0, x \in I \Longrightarrow f(x)$ 在 I 上单调递减

2. 驻点和不可导点统称为临界点.

函数的极值必在临界点取得.

3.判别法 第一充分条件; (注意使用条件) 第二充分条件;

4. 曲线凹凸与拐点的判别

5. 实际问题求最值的步骤.