

Deterministic Online Bi-partite Edge Coloring

presented by

Ali Ahsan, Hamza Raza

Problem Setting

- We have a bipartite graph (two sides: "offline" nodes known up front, "online" nodes arriving one by one).
- Each time a new online node arrives, all its edges must be colored immediately and permanently, with no two edges sharing a node getting the same color.

Performance Measure

ullet Offline optimal uses Δ colors (maximum degree) by König's theorem.

 An online algorithm is α-competitive if it never uses more than α·Δ colors.

Greedy Baseline

- The naïve "use the smallest available color" rule is $(2-1/\Delta)$ -competitive ($\approx 2\times\Delta$ colors).
- It was previously believed that, to outperform greedy randomization is necessary.

Main Breakthrough

A deterministic online algorithm achieving a competitive ratio (e/(e-1))+o(1)≈1.58

for any $\Delta \gg \log n$ -strictly better than 2.

Partial-Coloring Subroutine

1. Palettes: Give each offline node a set of about $(1 + \varepsilon)\Delta$ colors, where

$$\varepsilon = \Theta(\sqrt{\frac{\ln n}{\Delta}})$$
.

- 2. **Random Pick**: When an online node arrives, each incident edge independently samples one color from its server's palette and then removes that color from the palette.
- 3. **Contention Resolution**: For each color, among all edges that sampled it, run a CRS (contention resolution scheme) to select exactly one edge to paint with that colorothers remain uncolored.
- 4. **Outcome**: Each round colors about **1 -e**⁻¹≈63% of the remaining edges, using only (1+ε)Δ colors.

Contention Resolution Scheme CRS

Ensures that if element i shows up with probability xi, then

$$\Pr[i ext{ wins}] \ \geq \ x_i imes rac{1 - \prod_j (1 - x_j)}{\sum_j x_j}$$

so every contender keeps a fair fraction of its sampling chance.

Symbol	Meaning
i	Edge (u, v_t) trying to get a color
x_i	Probability that edge i picks the color
x_j	Probability of other edges picking the color
$\sum_{j} x_{j}$	Expected number of edges picking the color
$\prod_{j}(1-x_{j})$	Probability no edge picks the color
$1-\prod_{j}(1-x_{j})$	Probability at least one edge tries it
$\Pr[i \in O]$	Probability edge i is chosen (wins)

Final Outcome of Algorithm

- ~63% of edges are successfully colored in each round
- Martingales were used to track how load builds up on color groups as edges choose colors.
- Freedman's Inequality guarantees load stays within safe limits.
- Together, they ensured that the randomized coloring step behaves reliably, allowing the overall algorithm to be both efficient and derandomizable.

Total Color Count

Summing the geometric reduction gives

$$\Delta \left(1 + e^{-1} + e^{-2} + \cdots \right) \; = \; \Delta \, rac{e}{e-1} \; + \; o(\Delta),$$

hence competitive ratio $\frac{e}{e-1} + o(1)$. ≈ 1.58

Robustness to Adaptive Adversary

- Standard random-order analyses fail when the adversary sees your coin flips.
- Here, we prove strong concentration of color-loads using a martingale construction and Freedman's inequality, obtaining failure probabilities like $\Omega(\Delta^2)$.
- This is sharp enough to union-bound over all adversarial choices.

Derandomization

Lemma 2.1: If there exists a competitive randomized online edge-coloring algorithm against adaptive adversaries, then there exists a deterministic competitive online edge-coloring algorithm.

Why It Matters

- First deterministic algorithm beating the long-standing greedy ratio of ${\bf 2}$ for large Δ .
- Introduces a novel blend of contention resolution and martingale concentration against adaptive adversaries.
- Offers a blueprint for derandomizing other online covering/matching problems.

Thank you!

