4. GAIA: LENGOAIA ERABAKIGARRIAK, LENGOAIA BEREIZGARRIAK ETA LENGOAIA BEREIZTEZINAK

1. L_{bai} lengoaia bereizgarria da (0,150 puntu)

Bereizgarria den kasuetan, makinak bakarrik ondo erantzungo du baiezko kasuetan.

2. L_{bai} lengoaia erabakiezina da (0,250 puntu)

V existitzen bada, Y eraiki egiten dugu

3. L_{halt} lengoaia bereizgarria da (0,150 puntu)

 $L_{\text{halt}} = \{ hT, \, w_i \mid T \text{ Turing-en makinak w hitza ematen zaionean, "Bai" edo "Ez" erantzuten du \}$

4. L_{halt} lengoaia erabakiezina da (0,250 puntu)

Demagun erabakigarria dela H-ren bidez

H existitzen bada, G eraiki dezakegu

G makinak L_{bai} erantzuteko balio du, baina L_{bai} ez da erabakigarria \to Kontraesana \to H ez da existitzen

5. Bereiztezinak diren lengoaiak badira (0,150 puntu)

- Lengoai bat bereizgarria bada, T makina bat existituko da lengoaia horrentzat.
- <T> hitz bat izango da A alfabeto baten gainean.
- A* zenbagarria da.
- 2^{A^*} zenbaezina \rightarrow Makina kop. lengoai baino txikiagoa da lengoaia batzuentzat

6. L_{bai} bereiztezina da (0,250 puntu)

 $Demagun L_{bai} bereizgarria dela J makinaren bidez$

 $Badakigu\ L_{bai}\ bereizgarria\ dela$

J existitzen bada, K eraiki dezakegu

 $<\!\!\mathrm{T,W}\!\!>\in\mathrm{T_{bai}}$ edo $<\!\!\mathrm{T,W}\!\!>\in\mathrm{T_{bai}}$ denez, U makinak
edo J makinak bai erantzungo du.

Baina K existitzen bada, L_{bai} erabakigarria izango litzateke eta 1. ariketan ikusi dugu ez dela erabakigarria \rightarrow Kontraesana \rightarrow J ez da existitzen