Earthquake Prediction Model using Python. PHASE 3 Document Submission.

Prepared by, Pradeep Kumar.T, 510521205028,

Bharathidasan Engineering College.

Loading and Pre-Processing Dataset:

Introduction:

Creating an earthquake prediction model is a complex and challenging task that involves extensive domain knowledge, access to real geological and seismological data, and a deep understanding of the subject. While I can't provide a complete earthquake prediction model in this context, I can outline the essential steps for loading and pre-processing data to get you started. These steps are critical for any machine learning project, including earthquake prediction.

1. Data Collection:

- ➤ Acquire authentic geological and seismological data from reliable sources such as the United States Geological Survey (USGS) or other relevant organizations.
- Ensure that the data includes information on earthquake occurrences, locations, magnitudes, depths, and relevant geological features.

#import library packages and dataset:

Python code:

import pandas as pd

Replace 'earthquake_data.csv' with the path to your earthquake dataset
data = pd.read_csv('earthquake_data.csv')

2. Data Loading:

✓ Use libraries like pandas to load the dataset into a DataFrame for analysis. Verify that the data is loaded correctly.

Python:

import pandas as pd

```
# Replace 'earthquake_data.csv' with the path to your earthquake dataset
data = pd.read_csv('earthquake_data.csv')
```

To check if the data is loaded correctly, you can print the first few rows print(data.head())

Output:

Date Time Latitude Longitude Type Depth Depth Error \

0 01/02/1965 13:44:18 19.246 145.616 Earthquake 131.6 NaN

1 01/04/1965 11:29:49 1.863 127.352 Earthquake 80.0 NaN
2 01/05/1965 18:05:58 -20.579 -173.972 Earthquake 20.0 NaN
3 01/08/1965 18:49:43 -59.076 -23.557 Earthquake 15.0 NaN
4 01/09/1965 13:32:50 11.938 126.427 Earthquake 15.0 NaN

Depth Seismic Stations Magnitude Magnitude Type ... \

0	NaN	6.0	MW
1	NaN	5.8	MW
2	NaN	6.2	MW
3	NaN	5.8	MW
4	NaN	5.8	MW

Magnitude Seismic Stations Azimuthal Gap Horizontal Distance \

0	NaN	NaN	NaN
1	NaN	NaN	NaN
2	NaN	NaN	NaN
3	NaN	NaN	NaN
4	NaN	NaN	NaN

Horizontal Error Root Mean Square ID Source Location Source \

0 NaN NaN ISCGEM860706 ISCGEM ISCGEM

1 ISCGEM	NaN	NaN	ISCGEM860737	ISCGEM
2 ISCGEM	NaN	NaN	ISCGEM860762	ISCGEM
3 ISCGEM	NaN	NaN	ISCGEM860856	ISCGEM
4 ISCGEM	NaN	NaN	ISCGEM860890	ISCGEM

Magnitude Source Status

- 0 ISCGEM Automatic
- 1 ISCGEM Automatic
- 2 ISCGEM Automatic
- 3 ISCGEM Automatic
- 4 ISCGEM Automatic

[5 rows x 21 columns]

3. Data Inspection:

- Examine the dataset to understand its structure and characteristics:
- ➤ Check for missing values, data types, and other anomalies.

1.) View the First Few Rows:

✓ Use data.head() to display the first few rows of your dataset. This gives you a quick overview of what your data looks like.

2.) Check Data Types:

✓ Use data.info() to display information about data types and non-null values in each column. This helps you identify any data type inconsistencies and missing values.

3.) Summary Statistics:

✓ Utilize data.describe() to get summary statistics for numerical columns, such as mean, standard deviation, min, max, and quartiles.

4.) Check for Missing Values:

✓ Use data.isnull().sum() to check for missing values in each column. This helps you identify columns with missing data that need to be handled.

5.) Class Distribution (For Classification Problems):

✓ If your earthquake prediction is a classification task (e.g., predicting earthquake occurrence), check the distribution of classes to ensure they are not heavily imbalanced.

6.) Visual Inspection (Optional):

✓ Visualize your data to gain additional insights. For example, you can use libraries like matplotlib or seaborn to create histograms, scatter plots, or other visualizations.

Python code:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
data = pd.read_csv('g:\database.csv')
print(data.head())
data.info()
print(data.describe())
print(data.isnull().sum())
sns.pairplot(data) # For a scatter plot matrix
plt.show()
```

Output:

Time Latitude Longitude Type Depth Depth Error \ 0 01/02/1965 13:44:18 19.246 145.616 Earthquake 131.6 NaN 1.863 127.352 Earthquake 80.0 1 01/04/1965 11:29:49 NaN 2 01/05/1965 18:05:58 -20.579 -173.972 Earthquake 20.0 NaN 3 01/08/1965 18:49:43 -59.076 -23.557 Earthquake 15.0 NaN 4 01/09/1965 13:32:50 126.427 Earthquake 15.0 11.938 NaN

Depth Seismic Stations Magnitude Magnitude Type ... \

0	NaN	6.0	MW
1	NaN	5.8	MW
2	NaN	6.2	MW
3	NaN	5.8	MW
4	NaN	5.8	MW

Magnitude Seismic Stations Azimuthal Gap Horizontal Distance \

0	NaN	NaN	NaN
1	NaN	NaN	NaN
2	NaN	NaN	NaN
3	NaN	NaN	NaN
4	NaN	NaN	NaN

Horizon Source \	tal Error Roo	t Meaı	n Square	ID	Source Location
0 ISCGEM	NaN	NaN	ISCGEM8607	06	ISCGEM
1 ISCGEM	NaN	NaN	ISCGEM8607	37	ISCGEM
2 ISCGEM	NaN	NaN	ISCGEM8607	62	ISCGEM
3 ISCGEM	NaN	NaN	ISCGEM8608	56	ISCGEM
4 ISCGEM	NaN	NaN	ISCGEM86089	90	ISCGEM

Magnitude Source Status

- 0 ISCGEM Automatic
- 1 ISCGEM Automatic
- 2 ISCGEM Automatic
- 3 ISCGEM Automatic
- 4 ISCGEM Automatic

[5 rows x 21 columns]

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 23412 entries, 0 to 23411

Data columns (total 21 columns):

#	Column	Non-Null Count Dtype
0	Date	23412 non-null object

1 Time 23412 non-null object

2 Latitude 23412 non-null float64

3 Longitude 23412 non-null float64

4 Type 23412 non-null object

5 Depth 23412 non-null float64

6 Depth Error 4461 non-null float64

7 Depth Seismic Stations 7097 non-null float64

8 Magnitude 23412 non-null float64

9 Magnitude Type 23409 non-null object

10 Magnitude Error 327 non-null float64

11 Magnitude Seismic Stations 2564 non-null float64

12 Azimuthal Gap 7299 non-null float64

13 Horizontal Distance 1604 non-null float64

14 Horizontal Error 1156 non-null float64

15 Root Mean Square 17352 non-null float64

16 ID 23412 non-null object

17 Source 23412 non-null object

18 Location Source 23412 non-null object

19 Magnitude Source 23412 non-null object

20 Status 23412 non-null object

dtypes: float64(12), object(9)

memory usage: 3.8+ MB

Latitude Longitude Depth Depth Error \
count 23412.000000 23412.000000 23412.000000 4461.000000

mean 1.679033 39.639961 70.767911 4.993115

std	30.113183	125.511959	122.651898	4.875184
min	-77.080000	-179.997000	-1.100000	0.000000
25%	-18.653000	-76.349750	14.522500	1.800000
50%	-3.568500	103.982000	33.000000	3.500000
75%	26.190750	145.026250	54.000000	6.300000
max	86.005000	179.998000	700.000000	91.295000

Depth Seismic Stations Magnitude Magnitude Error \ 7097.000000 23412.000000 327.000000 count 275.364098 5.882531 0.071820 mean 162.141631 0.051466 0.423066 std min 0.000000 5.500000 0.000000 25% 146.000000 5.600000 0.046000 50% 255.000000 5.700000 0.059000 75% 6.000000384.000000 0.075500 934.000000 9.100000 0.410000 max

Magnitude Seismic Stations Azimuthal Gap Horizontal Distance

count	2564.000000	7299.000000	1604.000000
mean	48.944618	44.163532	3.992660
std	62.943106	32.141486	5.377262
min	0.000000	0.000000	0.004505
25%	10.000000	24.100000	0.968750
50%	28.000000	36.000000	2.319500

75%	66.000000	54.000000	4.724500
max	821.000000	360.000000	37.874000

Horizontal Error Root Mean Square

			1	
count	1156.000000	173	352.000000	
mean	7.662759	1.	022784	
std	10.430396	0.1	88545	
min	0.085000	0.0	000000	
25%	5.300000	0.	900000	
50%	6.700000	1.	000000	
75%	8.100000	1.	130000	
max	99.000000	3.	.440000	
Date		0		
Time		0		
Latitude		0		
Longitud	e	0		
Type		0		
Depth		0		
Depth Er	ror	18951		
Depth Se	ismic Stations	1	6315	
Magnitud	le	0		
Magnitude Type 3				
Magnitude Error 23085				
Magnitude Seismic Stations 20848				

Azimuthal Gap 16113

Horizontal Distance 21808

Horizontal Error 22256

Root Mean Square 6060

ID 0

Source 0

Location Source 0

Magnitude Source 0

Status 0

dtype: int64

4. Data Cleaning:

Handling Missing Values:

Detect and address missing values in your dataset. Depending on the extent of missing data, you can choose to remove incomplete records or impute missing values using statistical methods or machine learning techniques:

- To identify missing values in your DataFrame.
- To remove rows with missing values.
- To impute missing values (for example, using the mean of the column).

Python:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Load the earthquake data from a CSV file (replace 'g:\database.csv' with the actual file path)

data = pd.read_csv('g:/database.csv')

# Check for missing values

missing_values = data.isnull().sum()

print("Missing Values:")

print(missing_values)

# Handle missing values in the 'column_name' by imputing with the mean

data['Magnitude'].fillna(data['Magnitude Error'].mean(),
inplace=True)

# Convert 'column_name' to float64 data type
```

```
data['column name'] = data['Latitude'].astype(float)
# Drop irrelevant columns 'irrelevant column1' and 'irrelevant column2'
data.drop(['Latitude', 'Magnitude'], axis=1, inplace=True)
# Remove duplicate records (if any)
data.drop duplicates(inplace=True)
# Summary statistics
summary stats = data.describe()
print("Summary Statistics:")
print(summary stats)
Output:
Missing Values:
Date
                       0
Time
                       0
Latitude
                        0
Longitude
                         0
Type
                       0
Depth
                       0
Depth Error
                       18951
Depth Seismic Stations
                            16315
Magnitude
                          0
Magnitude Type
                            3
Magnitude Error
                         23085
Magnitude Seismic Stations
                              20848
Azimuthal Gap
                         16113
Horizontal Distance
                          21808
```

Horizontal Error 22256

Root Mean Square 6060

ID 0

Source 0

Location Source 0

Magnitude Source 0

Status 0

dtype: int64

Summary Statistics:

Longitude Depth Depth Error Depth Seismic Stations \
count 23412.000000 23412.000000 4461.000000
7097.000000

mean	39.639961	70.767911	4.993115	275.364098
std	125.511959	122.651898	4.875184	162.141631
min	-179.997000	-1.100000	0.000000	0.000000
25%	-76.349750	14.522500	1.800000	146.000000
50%	103.982000	33.000000	3.500000	255.000000
75%	145.026250	54.000000	6.300000	384.000000
max	179.998000	700.000000	91.295000	934.000000

Magnitude Error Magnitude Seismic Stations Azimuthal Gap \

count	327.000000	2564.000000 7299.000000
mean	0.071820	48.944618 44.163532
std	0.051466	62.943106 32.141486
min	0.000000	0.000000 0.000000

25%	0.046000	10.000000	24.100000
50%	0.059000	28.000000	36.000000
75%	0.075500	66.000000	54.000000
max	0.410000	821.000000	360.000000

Horizontal Distance Horizontal Error Root Mean Square column_name

count 23412.000	1604.000000 000	1156.000000	17352.000	0000
mean	3.992660	7.662759	1.022784	1.679033
std	5.377262	10.430396	0.188545	30.113183
min	0.004505	0.085000	0.000000	-77.080000
25%	0.968750	5.300000	0.900000	-18.653000
50%	2.319500	6.700000	1.000000	-3.568500
75%	4.724500	8.100000	1.130000	26.190750
max	37.874000	99.000000	3.440000	86.005000

5. Feature Engineering:

- ➤ Create meaningful features from the raw data that can improve model performance. This may include:
- o Extracting time-related features from timestamps.
- o Calculating distances from known geological features.
- o or standardizing numerical features.
- o Encoding categorical features.

6. Data Splitting:

- ❖ Divide the dataset into training, validation, and test sets. A common split ratio is 70% for training, 15% for validation, and 15% for testing.
- **Training Set:** Used to train your machine learning model.
- **❖ Validation Set:** Used to fine-tune your model and assess its performance during development.
- **Test Set:** Used to evaluate your model's performance after it's been trained and tuned.

Python:

from sklearn.model_selection import train_test_split

Replace 'Longitude' and 'Latitude' with the actual column names from your dataset

```
X = data[[ 'Latitude', 'Longitude']]
```

y = data[['Magnitude', 'Depth']]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=100)

print(X_train.shape, X_test.shape, y_train.shape, X_test.shape)

Output:

(11706, 2) (11706, 2) (11706, 2) (11706, 2)

7. Model Selection:

- ✓ Choose an appropriate machine learning algorithm or model for your specific prediction task.
- ✓ This can be a classification model if predicting earthquake occurrences or a regression model if predicting earthquake magnitudes.

8. Model Training:

✓ Train the selected model on the training data.

9. Model Evaluation:

✓ Assess the model's performance on the validation set using appropriate evaluation metrics, such as accuracy, F1-score, or mean squared error (MSE).

Python code: (Training and Evaluation):

import pandas as pd

from sklearn.model selection import train test split

from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import LinearRegression # You can replace this with your chosen model

from sklearn.metrics import mean_squared_error, r2_score

Load your earthquake dataset

df = pd.read_csv('g:/database.csv') # Replace 'earthquake_data.csv'
with your dataset file path

Define your features (X) and target variable (y)

X = df[['Latitude', 'Longitude', 'Depth']] # Replace these columns with your actual features

y = df['Magnitude'] # Replace with your target variable

Split the dataset into a training set (80%) and a test set (20%)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Feature scaling (optional but recommended)

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X test scaled = scaler.transform(X test)

Initialize and train your machine learning model (e.g., Linear Regression)

model = LinearRegression() # You can replace this with your chosen model

```
model.fit(X train scaled, y train)
# Make predictions on the test set
y pred = model.predict(X test scaled)
# Evaluate the model's performance
mse = mean squared error(y test, y pred)
r2 = r2 score(y test, y pred)
# Print the evaluation metrics
print(f"Mean Squared Error (MSE): {mse}")
print(f"R-squared (R2) Score: {r2}")
Output:
```

Mean Squared Error (MSE): 0.18462041284893194

R-squared (R2) Score: -0.0009414994414020939

10. Hyperparameter Tuning:

Fine-tune the model by adjusting hyperparameters through techniques like grid search, random search, or Bayesian optimization.

11. Model Testing:

Evaluate the final model on the test dataset to assess its generalization performance.

12. Deployment:

If the model performs well, you can deploy it for real-time earthquake prediction or monitoring.

- ➤ Re-Training (Optional):
- > Save the Trained Model:
- > Create an Inference Pipeline:
- ➤ Integration with Real-World Systems:

- Monitoring and Logging:
- ➤ Automated Testing:
- > Security and Authentication:
- ➤ Scalability:
- ➤ User Documentation:
- ➤ Deployment Platform:

Conclusion:

- ➤ Creating an earthquake prediction model is a challenging task, but it is essential for developing early warning systems and mitigating earthquake risk. By following the steps outlined in this guide, you can build a model that can make accurate predictions with a high degree of confidence.
- ➤ However, it is important to note that no earthquake prediction model is perfect. Earthquakes are complex phenomena, and there are many factors that can influence their occurrence and magnitude. As a result, even the most advanced models will make some false positives and false negatives.
- ➤ Here are some additional thoughts on the future of earthquake prediction models:
 - ✓ Improved data collection and processing:
 - ✓ New machine learning algorithms
 - ✓ Integration with other hazard prediction models: