IMN-359

Labo FFT

T.F discrète

La transformée de Fourier

Notion de transformée de Fourier (TF)

Analogie : son = vibration qui se propage dans le temps

On entend non pas une vibration (fonction du temps) mais une note donc une fréquence

Temps

Temps

Temps

Transformée de Fourier : donner le « poids » relatif d'une fréquence

dans un signal

Intensité

Exercice 1D

 Faites-moi le plot d'un cos qui oscille k0 fois par période de N pts (ici k0 = 4) y = cos(2*pi/N*k0*n)

Exercice 1D

1. En theorie, la TF analytique de: TF[cos(k0*t)] = dirac(w-k0) + dirac(w+k0) (ici k0 = 20)

- 2. Faites la FFT de votre cos numérique
 - Visualiser-le (real, abs, imag)

Observations

- Il y a toujours des petits complexes qui trainent. Le real ou abs seront nécessaires pour faire les plot
- La TFD du cosinus qui oscille à la fréquence k0 sur N points allume une fréquence à k0 et à -k0 (N - k0 dans un tableau python)

l. En utilisant la TF, connect faire un plot de f(x) = cos(2T kox). $f(k) = \sum_{i=1}^{N-1} cos\left(\frac{2\pi i}{N}k_0N\right)e^{-2\pi i}nk_1$ $= \frac{N-1}{2} \left(\frac{2\pi k_{i} x_{i}}{N} + \frac{2\pi k_{i} x_{i}}{N} \right) - \frac{2\pi i n k_{i}}{N}$ $=\frac{1}{2}\sum_{k=1}^{N-1}\frac{i\partial n}{\partial k}(k_1-k_0)+e^{-2\pi i n}(k_1+k_0)$

Exercice 1D #2

- Générez-moi un cos qui oscille N fois par période sans utiliser la fonction cos!
 - Remplir un vecteur de Fourier vide
 - Allumer les bonnes fréquences
 - Visualiser la ifft

(attention au shift et imaginaires)

2D discrete Fourier Basis

2D discrete Fourier basis: $N = N_0 \times N_0$ pixels

$$e_m[n] = \frac{1}{\sqrt{N}} e^{\frac{2i\pi}{N_0} m_1 n_1 + \frac{2i\pi}{N_0} m_2 n_2} = e_{m_1}[n_1] e_{m_2}[n_2]$$

Frequency $m = (m_1, m_2) \in \{0, \dots, N_0 - 1\} \times \{0, \dots, N_0 - 1\}$

**OUne image peut elle aussi être vue comme une somme d'ondes qui oscillent à différentes fréquences

Image
T.F.

**OUne image peut elle aussi être vue comme une somme d'ondes qui oscillent à différentes fréquences

e ...

Image

T.F.

**OUne image peut elle aussi être vue comme une somme d'ondes qui oscillent à différentes fréquences

Image

T.F.

**OUne image peut elle aussi être vue comme une somme d'ondes qui oscillent à différentes fréquences

Image

T.F.

TP pratique

Générer une texture horizontale en utilisant la ifft

Pour les curieux: une vague en 2D

http://www.math.ubc.ca/~cass/courses/m309-03a/a1/clayton/part4.html

TP pratique

Générer une texture verticale en utilisant la ifft

TP pratique

Générer une texture diagonale en utilisant la ifft