# Querying with Transact-SQL

Graeme Malcolm | Senior Content Developer, Microsoft Geoff Allix | Principal Technologist, Content Master

#### Meet Your Instructors

#### Graeme Malcolm | @graeme\_malcolm

- Senior content developer at Microsoft
- Consultant, trainer, and author since SQL Server 4.2





#### Geoff Allix | @GeoffAllix

- Principal Technologist at Content Master
- SQL Server specialist consultant, author, and trainer

#### Course Topics

| Querying with Transact-SQL        |                              |
|-----------------------------------|------------------------------|
| 01   Introduction to Transact-SQL | 07   Using Table Expressions |

|        |                               | _          |          |                            |          |                     |
|--------|-------------------------------|------------|----------|----------------------------|----------|---------------------|
| $\cap$ | l Ouarvina Tablac with CELECT | $\cap$ 0 I | Craunina | $C_0+c_0$                  | Divotina | $D_{\alpha+\alpha}$ |
| UZ     | Querying Tables with SELECT   | UO I       | Grouping | Sets and                   | PIVOUNG  | Dala                |
|        |                               |            |          | <b>C C C C C C C C C C</b> |          | _ 0.00.             |

| 04   Using Set Operators | 10   Programming with Transact-SQL |
|--------------------------|------------------------------------|
|--------------------------|------------------------------------|

| 05   Using Functions and Aggregating Data | 11   Error Handling and Transactions |
|-------------------------------------------|--------------------------------------|
|-------------------------------------------|--------------------------------------|

06 | Using Subqueries and APPLY

#### Setting Expectations

- Target Audience
  - Aspiring database professionals
  - Application developers
  - Anyone preparing for SQL Server certification exams
- Course Materials
  - Online video presentations
  - Downloadable labs
- Suggested Approach
  - Complete each module and lab in turn
  - Engage with fellow students at Born To Learn

#### Course Lab Environment

- Labs are based on the AdventureWorksLT sample database in Azure SQL Database
  - Setup instructions are in the *Getting Started* guide
- There is a lab for each module, consisting of:
  - Challenges based on the techniques discussed in the module
  - References to relevant documentation
  - Suggested solution scripts

### DEMO

Using Azure SQL Database

#### SQL Server Training and Certification

- Microsoft Virtual Academy
  - www.microsoftvirtualacademy.com
- Microsoft Official Curriculum
  - www.microsoft.com/learning
- Microsoft Press
  - www.microsoftpressstore.com
- Microsoft Certified Professional Program
  - www.microsoft.com/learning
- Born to Learn
  - borntolearn.mslearn.net

#### 01 Introduction to Transact-SQL



Graeme Malcolm | Senior Content Developer, Microsoft Geoff Allix | Principal Technologist, Content Master

#### Module Overview

- What is Transact-SQL?
- Relational Databases
- Schemas and Object Names
- SQL Statement Types
- The SELECT Statement
- Working with Data Types
- Working with NULLs

#### What is Transact-SQL?

- Structured Query Language (SQL)
  - Developed by IBM in 1970s
  - Adopted as a standard by ANSI and ISO standards bodies
  - Widely used in industry
- Microsoft's implementation is Transact-SQL
  - Referred to as T-SQL
  - Query language for SQL Server and Azure SQL Database
- SQL is declarative, not procedural
  - Describe what you want, don't specify steps

#### Relational Databases

- Entities are represented as *relations* (tables), in which their attributes are represented as *domains* (columns)
- Most relational databases are *normalized*, with relationships defined between tables through *primary* and *foreign* keys



#### Schemas and Object Names

- Schemas are namespaces for database objects
- Fully-qualified names: [server\_name.][database\_name.][schema\_name.]object\_name
- Within database context, best practice is to include schema name:

schema\_name.object\_name





#### SQL Statement Types

| Data Manipulation Language (DML) | Data Definition Language (DDL) | Data Control Language (DCL) |
|----------------------------------|--------------------------------|-----------------------------|
| Statements for querying and      | Statements for defining        | Statements for assigning    |
| modifying data:                  | database objects:              | security permissions:       |
| • SELECT                         | • CREATE                       | • GRANT                     |
| • INSERT                         | • ALTER                        | • REVOKE                    |
| • UPDATE                         | • DROP                         | • DENY                      |
| • DELETE                         |                                |                             |

Focus of this course

#### The SELECT Statement

|   | et .     |                                |                                  |
|---|----------|--------------------------------|----------------------------------|
| _ | Element  | Expression                     | Role                             |
| 5 | SELECT   | <select list=""></select>      | Defines which columns to return  |
| 1 | FROM     |                                | Defines table(s) to query        |
| 2 | WHERE    | <search condition=""></search> | Filters rows using a predicate   |
| 3 | GROUP BY | <group by="" list=""></group>  | Arranges rows by groups          |
| 4 | HAVING   | <search condition=""></search> | Filters groups using a predicate |
| 6 | ORDER BY | <order by="" list=""></order>  | Sorts the output                 |
| A |          | SELECT OrderDate.              | COUNT(OrderID)                   |

Order of execution

```
SELECT OrderDate, COUNT(OrderID)
FROM Sales.SalesOrder
WHERE Status = 'Shipped'
GROUP BY OrderDate
HAVING COUNT(OrderID) > 1
ORDER BY OrderDate DESC;
```

#### Basic SELECT Query Examples

All columns

```
SELECT * FROM Production.Product;
```

Specific columns

```
SELECT Name, ListPrice
FROM Production.Product;
```

Expressions and Aliases

```
SELECT Name AS Product, ListPrice * 0.9 AS SalePrice FROM Production.Product;
```

## DEMO

Basic SELECT Queries

# Working with Data Types Transact-SQL Data Types

| <b>Exact</b> Numeric | <b>Approximate</b> Numeric | Character | Date/Time      | Binary    | Other            |
|----------------------|----------------------------|-----------|----------------|-----------|------------------|
| tinyint              | float                      | char      | date           | binary    | cursor           |
| smallint             | real                       | varchar   | time           | varbinary | hierarchyid      |
| int                  |                            | text      | datetime       | image     | sql_variant      |
| bigint               |                            | nchar     | datetime2      |           | table            |
| bit                  |                            | nvarchar  | smalldatetime  |           | timestamp        |
| decimal/numeric      |                            | ntext     | datetimeoffset |           | uniqueidentifier |
| numeric              |                            |           |                |           | xml              |
| money                |                            |           |                |           | geography        |
| smallmoney           |                            |           |                |           | geometry         |

Unusual (Unicode) character (Japanese, ...)

# Working with Data Types Data Type Conversion

- Implicit Conversion
  - Compatible data types can be automatically converted
- Explicit Conversion
  - Requires an explicit conversion function

## DEMO

Converting Data Types

# Working with NULLs NULL Values

- NULL represents a missing or unknown value
- ANSI behaviour for NULL values:
  - The result of any expression containing a NULL value is NULL
    - 2 + NULL = NULL
    - 'MyString: ' + NULL = NULL
  - Equality comparisons always return false for NULL values
    - NULL = NULL returns *false*
    - NULL IS NULL returns true

## Working with NULLs NULL Functions

- ISNULL(column/variable, value)
  - Returns *value* if the column or variable is NULL
- NULLIF(column/variable, value)
  - Returns NULL if the column or variable is *value*
- COALESCE (column/variable1, column/variable2,...)
  - -Returns the value of the first non-NULL column or variable in the list

Choose the left stated variable first

## DEMO

Working with NULLs

#### Introduction to Transact-SQL

- What is Transact-SQL?
- Relational Databases
- Schemas and Object Names
- SQL Statement Types
- The SELECT Statement
- Working with Data Types
- Working with NULLs

Lab: Introduction to Transact-SQL



©2014 Microsoft Corporation. All rights reserved. Microsoft, Windows, Office, Azure, System Center, Dynamics and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.