Projekt Egzaminacyjny

Jan Milewczyk, Maciej Wojciechowski, Kajetan Lach December 11, 2024

1 Analizy log-zwrotów spółek

1.1 Vigo Photonics

1.1.1 Wstęp

Vigo Photonics to polskie przedsiębiorstwo specjalizujące się w wytwarzaniu materiałów i przyrządów półprzewodnikowych do zastosowań fotonicznych i mikroelektronicznych. Spółka jest liderem na światowym rynku fotonowych detektorów średniej podczerwieni, a wszystkie produkty opiera na własnej, unikalnej technologii.

1.1.2 Analiza log-zwrotów spółki (Vigo Photonics)

Pierwszy rozdział zawiera analizę log-zwrotów spółki.

1.1.3 Wykresy kursów zamknięcia oraz log-zwrotów:

Poniższy wykres ilustruje zmianę cen zamknięcia akcji w czasie.

Zmianę log-zwrotów, wyliczonych według wzoru

$$r_1 = \ln \frac{S_0}{S_1}, r_2 = \ln \frac{S_2}{S_1}, ..., r_n = \ln \frac{S_n}{S_{n-1}}$$

gdzie $s_0,s_1,...,s_n$ są kursami zamknięcia z kolejnych dni, na osi czasu ilustruje wykres poniżej.

1.1.4 Wartość oczekiwana:

Zakładając, że log-zwroty $r_1, r_2, ..., r_n$ są niezależnymi realizacjami zmiennej losowej X, wyliczamy μ przy użyciu nieobciążonego estymatora wartości oczekiwanej:

$$E(\overline{X}_n) = \frac{1}{n} \sum_{i=1}^n X_i = \mu$$

w wyniku czego otrzymujemy wynik

$$\mu = -0.0006787669$$

1.1.5 Wariancja i odchylenie standardowe:

Korzystając ze wzoru na nieobciążony estymator wariancji

$$\sigma^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X}_{n})^{2}$$

otrzymujemy $\sigma^2 = 0.0006189792$ oraz $\sigma = 0.02487929$.

1.1.6 Kwantyle:

Z wykorzystaniem klasycznego estymatora kwantyli wyestymowano kwantyle rzędu $\alpha = 5\%, 50\%i95\%$. Wyniki przedstawione zostały w tabeli poniżej:

\overline{x}_n	s_n^2	s_n	q(5%)	q(50%)	q(95%)
-0.0006787669	0.0006189792	0.02487929	-0.03620640	0	0.04055989

1.1.7 Histogram log-zwrotów:

Na histogramie dziennych log-zwrotów cen akcji na czerwono i niebiesko oznaczono odpowiednio wartość wyestymowanej średniej oraz wartości kwantyli przedstawionych wcześniej.

1.1.8 Dystrybuanta:

Z wykorzystaniem dystrybuanty empirycznej jako nieobciążonego estymatora

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n 1_{\{x_i \le x\}} = \left(\frac{\text{liczba elementów w próbie} \le x}{n}\right)$$

estymujemy dystrybuantę F zaprezentowaną na wykresie poniżej

1.1.9 Analiza dobroci dopasowania rozkładu normalnego i t-Studenta:

Korzystając z **estymatora największej wiarygodności (MLE)** parametru estymujemy parametry rozkładu normalnego i t-Studenta.

m	s	df
-0.0006787669	0.0248544	314.3698

1.1.10 Wykresy diagnostyczne

Poniższe wykresy prezentują kolejno porównania: histogram-gęstość wybranych rozkładów, kwantyl-kwantyl, dystrybuanta empiryczna-dystrybuanta teoretyczna wybranych rozkładów oraz prawdopodobieństwo teoretyczne wybranych rozkładów-prawdopodobieństwo empiryczne.

Na ich podstawie można stwierdzić, że rozkład normalny lepiej dopasowuje się do danych.

1.1.11 Weryfikacja wyboru z wykorzystainem statystyk oraz kryteriów informacyjnych:

Poniższe tabele prezentują wyniki testów statystycznych oraz kryteriów informacyjnych dla rozkładów normalnego i t-Studenta.

Statystyki	Rozkład normalny	Rozkład t-Studenta	
Kolmogorov-Smirnov	0.08251589	0.469477	
Cramer-von Mises	1.18780300	39.177553	
Anderson-Darling	6.95700925	183.184800	

Kryteria	Rozkład normalny	Rozkład t-Studenta
AIC	-2271.782	922.0439
BIC	-2263.353	926.2585

Powyższe wyniki potwierdzają, że rozkład normalny lepiej dopasowuje się do danych.

1.1.12 Test hipotezy równości rozkładów metodą Monte Carlo:

Testujemy hipotezę zerową o równości dystrybuant

$$H_0: F = F_0$$

przeciwko hipotezie alternatywnej (kontrhipotezie)

$$H_1: F \neq F_0$$

gdzie F_0 jest dystrybuantą rozkładu normalnego wybranego w poprzedniej podsekcji, a F dystrybuantą nieznaną.

Do przetestowania hipotezy zerowej o równości dystrybuant wykorzystamy metodę Monte Carlo przy użyciu statystyki Kołmogorowa-Smirnowa.

W tym celu generujemy N=10000 prób z rozkładu normalnego o parametrach

$$m = -0.0006787669 \text{ oraz } s = 0.0248544$$

wyestymowanych wcześniej oraz obliczamy wartość statystyki Kołmogorowa-Smirnowa dla każdej z nich.

Następnie obliczamy prawdopodobieństwo

$$p = P(D_n > d_n)$$

gdzie D_n to wartość statystyki dla wygenerowanych prób a d_n to jej wartość dla log-zwrotów spółki.

Ustalamy poziom istotności $\alpha=0.05$ i sprawdzamy czy $p<\alpha.$ W naszym przypadku

$$p = 0.0025 < \alpha = 0.05$$

co pozwala nam odrzucić hipotezę zerową na rzecz hipotezy alternatywnej.

1.2 Digitree

1.2.1 Wstęp

Digitree to polska spółka technologiczna specjalizująca się w kompleksowych rozwiązaniach z zakresu digital marketingu i wsparcia sprzedaży online.

1.2.2 Analiza log-zwrotów spółki DIGITREE

1.2.3 Spółka DIGITREE:

Poniżej przedstawiam wykres kursów zamknięcia wybranej spółki

Poniżej przedstawiam wykres log-zwrotów wybranej spółki

1.2.4 Podstawowa analiza statystyczna log-zwrotów:

Wartości log-zwrotów zostały obliczone jako różnice logarytmiczne dziennych kursów zamknięcia. Poniżej przedstawiono podstawowe statystyki log-zwrotów:

• Średnia log-zwrotów: $\overline{x}_n = 0.0005507787$

• Wariancja log-zwrotów: $s_n^2 = 0.0022445$

• Odchylenie standardowe log-zwrotów: $s_n = 0.04737616$

Table 1: Estymacja parametrów log-zwrotów

\overline{x}_n	s_n^2	s_n	q(5%)	q(50%)	q(95%)
0.0005507787	0.0022445	0.04737616	-0.06694173	0.00000000	0.07764551

Kwantyle 5

1.2.5 Histogram log-zwrotów z zaznaczoną średnią i kwantylami:

Poniżej zamieszczono histogram log-zwrotów z zaznaczonymi wartościami średniej oraz kwantyli $5\,$

1.2.6 Dystrybuanta empiryczna log-zwrotów:

Estymacja dystrybuanty empirycznej dla log-zwrotów została przeprowadzona przy użyciu wzoru empirycznej dystrybuanty $F_n(x)$. Wykres dystrybuanty empirycznej log-zwrotów znajduje się poniżej.

1.2.7 Analiza dobroci dopasowania rozkładów

1.2.8 Estymacja parametrów rozkładu normalnego i t-Studenta:

Parametry rozkładu normalnego i t-Studenta zostały wyestymowane przy użyciu estymatora największej wiarygodności (MLE):

- Rozkład normalny: średnia = 0.0005507787, odchylenie standardowe = 0.0472923802
- \bullet Rozkład t-Studenta: liczba stopni swobody = 307.2041

1.2.9 Wykresy diagnostyczne:

Poniżej przedstawiono wykresy diagnostyczne dla dopasowania rozkładów normalnego i t-Studenta do danych log-zwrotów, umożliwiające ocenę jakości dopasowania.

Porownanie dopasowania - gestosc

Porownanie dopasowania - kwantyle

Porownanie dopasowania - dystrybuanta

Empirical probabilities

Porownanie dopasowania - prawdopodobienstwo

1.2.10 Ocena dopasowania rozkładów

Na podstawie wykresów diagnostycznych oraz statystyk dopasowania:

- \bullet Statystyki dla rozkładu normalnego: KS = 0.1561, CM = 1.8659, AD = 9.3673, AIC = -919.9766, BIC = -912.6857
- \bullet Statystyki dla rozkładu t-Studenta: KS = 0.4424, CM = 21.0334, AD = 99.0999, AIC = 523.2149, BIC = 526.8603

Wyniki sugerują, że rozkład normalny lepiej dopasowuje się do danych log-zwrotów niż rozkład t-Studenta. Wybór rozkładu normalnego uzasadniają niższe wartości AIC i BIC oraz lepsze dopasowanie na wykresach diagnostycznych.

1.2.11 Test hipotezy o równości rozkładów:

Przeprowadzono test hipotezy o równości rozkładów dla wybranego rozkładu normalnego, wykorzystując statystykę Kolmogorova-Smirnova (KS). Wyniki testu przedstawiono poniżej:

- Statystyka testowa D: Obliczona wartość wynosi D=0.1561313. Statystyka D mierzy maksymalną różnicę pomiędzy dystrybuantą empiryczną danych a teoretyczną dystrybuantą rozkładu normalnego. Wysoka wartość D wskazuje na większą różnicę, co może sugerować, że dane nie pochodzą z badanego rozkładu.
- P-wartość (p): Obliczona p-wartość wynosi p = 0. Oznacza to, że przy założeniu prawdziwości hipotezy zerowej, prawdopodobieństwo uzyskania tak dużej lub większej różnicy D wynosi praktycznie zero. W rezultacie, hipoteza zerowa o zgodności rozkładu danych z rozkładem normalnym zostaje odrzucona na dowolnym poziomie istotności.

Interpretacja:

- Obliczona wartość statystyki D sugeruje, że istnieją istotne różnice pomiędzy rozkładem danych a teoretycznym rozkładem normalnym.
- Niska p-wartość (p=0) wskazuje, że te różnice są statystycznie istotne. Oznacza to, że dane najprawdopodobniej nie pochodzą z badanego rozkładu normalnego.

1.3 Wawel

1.3.1 Wprowadzenie

Wawel SA (WWL) jest polskim producentem słodyczy, znanym z produkcji czekolad, cukierków, wafli oraz innych wyrobów cukierniczych. Firma cieszy się długą tradycją na rynku i dostarcza wysokiej jakości produkty konsumentom zarówno w Polsce, jak i za granica.

Przeprowadzona analiza stanowi pierwszą część projektu zaliczeniowego, w której skupimy się na analizie log-zwrotów akcji spółki Wawel SA.

1.3.2 Wykresy kursów zamknięcia oraz log-zwrotów

Figure 1: Wykres cen akcji spółki Wawel SA (WWL)

Figure 2: Wykres log-zwrotów akcji spółki Wawel SA (WWL)

Wykresy powyżej ilustrują zmiany kursów zamknięcia oraz log-zwrotów akcji spółki Wawel SA w czasie. Widać na nich zmienność cen akcji oraz ich wpływ na log-zwroty.

1.3.3 Analiza log-zwrotów

Zakładamy, że log-zwroty r_1, r_2, \ldots, r_n są niezależnymi realizacjami zmiennej losowej X o dystrybuancie F, wartości oczekiwanej μ i wariancji σ^2 .

Odpowiednie estymatory użyte w analizie to:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} r_i \tag{1}$$

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (r_i - \hat{\mu})^2$$
 (2)

$$\hat{\sigma} = \sqrt{\hat{\sigma}^2} \tag{3}$$

Korzystając z klasycznego estymatora kwantyli, wyestymowano kwantyle rzędu $\alpha=5\%,50\%,95\%$. Wyniki zostały przedstawione w tabeli poniżej:

Estymator	Wartość
Liczność próby (n)	499
Wartość oczekiwana $(\hat{\mu})$	0,000837
Wariancja $(\hat{\sigma}^2)$	0,000202
Odchylenie standardowe $(\hat{\sigma})$	0,014220
Kwantyl 5% $(q_{5\%})$	-0,020416
Kwantyl 50% ($q_{50\%}$)	0,000000
Kwantyl 95% $(q_{95\%})$	0,023786

Table 2: Podstawowe statystyki log-zwrotów akcji spółki Wawel SA (WWL)

Figure 3: Histogram log-zwrotów z zaznaczoną średnią i kwantylami

1.3.4 Interpretacja kwantyli

Każdy z kwantyli ma swoją specyficzną interpretację w kontekście log-zwrotów akcji:

- Kwantyl 5%: Wartość log-zwrotu, poniżej której znajduje się 5% najmniejszych obserwacji. Oznacza to, że istnieje 5% szans, że log-zwrot będzie niższy niż -0,020416.
- Kwantyl 50% (mediana): Wartość środkowa log-zwrotów. Oznacza to, że połowa log-zwrotów jest większa, a połowa mniejsza niż 0,000000.
- Kwantyl 95%: Wartość log-zwrotu, poniżej której znajduje się 95% obserwacji. Oznacza to, że tylko 5% log-zwrotów jest wyższych niż 0,023786.

1.3.5 Estymacja dystrybuanty

W celu estymacji dystrybuanty F wykorzystano empiryczny estymator dystrybuanty, którego wzór jest następujący:

$$\hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} I(r_i \le x), \tag{4}$$

gdzie $I(r_i \leq x)$ jest funkcją indykatora, a n oznacza liczbę obserwacji. Dystrybuanta empiryczna została przedstawiona na wykresie poniżej:

Dystrybuanta Empiryczna F

-0.05 0.00 0.05 Log-zwroty

Figure 4: Dystrybuanta empiryczna $\hat{F}(x)$ dla log-zwrotów

1.3.6 Analiza dobroci dopasowania rozkładu normalnego i t-Studenta

1.3.7 Estymacja parametrów:

Wykorzystując estymator największej wiarygodności (MLE) oraz bibliotekę fitdistrplus w R, wyestymowano parametry rozkładu normalnego i t-Studenta dla danych log-zwrotów.

1.3.8 Rozkład normalny

	Estymata	Błąd standardowy
Średnia $(\hat{\mu})$	0,000837	0,000636
Odchylenie standardowe $(\hat{\sigma})$	0,014205	0,000440

Table 3: Estymowane parametry rozkładu normalnego

1.3.9 Rozkład t-Studenta

	Estymata	Błąd standardowy
Liczba stopni swobody $(\hat{\nu})$	4,9764	1,1504
Średnia $(\hat{\mu})$	0,000344	0,000578
Skala $(\hat{\sigma})$	0,011042	0,000611

Table 4: Estymowane parametry rozkładu t-Studenta

1.3.10 Wykresy diagnostyczne

1.3.11 Histogram z nałożonymi gęstościami

Figure 5: Histogram log-zwrotów z nałożonymi funkcjami gęstości rozkładów normalnego i t-Studenta

Opis: Wykres histogramu przedstawia empiryczny rozkład danych, na który nałożono dopasowane gęstości rozkładów normalnego (niebieska linia) i t-Studenta (czerwona linia przerywana). Analiza wykazuje, że:

- Rozkład normalny (niebieski) lepiej odwzorowuje dane empiryczne, szczególnie w centralnym zakresie wartości.
- Rozkład t-Studenta (czerwony) jest znacząco niedopasowany.

1.3.12 Wykres kwantyl-kwantyl (Q-Q plot)

Figure 6: Wykres Q-Q dla rozkładów normalnego i t-Studenta

Opis: Wykres QQ porównuje kwantyle empiryczne danych z kwantylami teoretycznymi rozkładów normalnego i t-Studenta. Na wykresie zauważalne są następujące cechy:

- Punkty dla rozkładu normalnego (niebieskie) układają się niemal idealnie wzdłuż linii prostej, co sugeruje wysoką zgodność z danymi empirycznymi.
- Rozkład t-Studenta (czerwony) znacznie odstaje od linii prostej, wskazując na niedopasowanie tego rozkładu do danych.

1.3.13 Porównanie dystrybuant (CDF)

Figure 7: Porównanie dystrybuant empirycznej z teoretycznymi dla rozkładów normalnego i t-Studenta

Opis: Wykres porównuje empiryczną dystrybuantę danych z teoretycznymi dystrybuantami rozkładów normalnego i t-Studenta. Główne obserwacje:

- Dystrybuanta rozkładu normalnego (niebieska linia) doskonale pokrywa się z empiryczną dystrybuantą danych.
- Dystrybuanta rozkładu t-Studenta (czerwona linia przerywana) wykazuje znaczne rozbieżności, co wskazuje na niedopasowanie.

1.3.14 Wykres P-P (Probability-Probability plot)

Figure 8: Wykres P-P dla rozkładów normalnego i t-Studenta

Opis: Wykres PP ilustruje zgodność empirycznych prawdopodobieństw z teoretycznymi dla rozkładu normalnego. Natomiast dane rozkładu T-Studenta znaczaco odbiegają od danych rzeczywistych. Z analizy wynika:

- Punkty dla rozkładu normalnego (niebieskie) układają się niemal idealnie wzdłuż linii przekątnej, co potwierdza bardzo dobre dopasowanie do danych.
- Rozkład t-Studenta (czerwony) pokazuje znaczne odstępstwa od linii przekątnej, co sugeruje istotne niedopasowanie.

1.3.15 Ocena dopasowania rozkładów

Analiza jednoznacznie wskazuje, że dane empiryczne są znacznie lepiej modelowane przez rozkład **normalny** niż przez rozkład t-Studenta. **Wnioski:**

- Rozkład normalny charakteryzuje się bliskim dopasowaniem zarówno w centralnej części, jak i w ogonach.
- Rozkład t-Studenta znacząco odbiega od danych, co czyni go nieodpowiednim w tym przypadku.

Interpretacja statystyk dopasowania rozkładów Statystyki dopasowania (Goodness-of-fit statistics)

Statystyka	Normalny	t-Studenta	
Kolmogorov-Smirnov	0.1047	0.4811	
Cramer-von Mises	0.6771	40.0829	
Anderson-Darling	3.5170	186.7583	

Table 5: Porównanie statystyk dopasowania rozkładów

Interpretacja:

- Rozkład normalny uzyskał znacznie niższe wartości dla wszystkich trzech statystyk, co wskazuje na lepsze dopasowanie do danych w porównaniu z rozkładem t-Studenta.
- Szczególnie wartość statystyki Andersona-Darlinga dla rozkładu t-Studenta (186.7583) podkreśla jego niedopasowanie.

Kryteria dopasowania (Goodness-of-fit criteria)

Kryterium	Normalny	t-Studenta
Akaike's Information Criterion (AIC)	-2825.534	919.8094
Bayesian Information Criterion (BIC)	-2817.109	924.0220

Table 6: Porównanie kryteriów dopasowania rozkładów

Interpretacja:

- Zarówno kryterium Akaike'go (AIC), jak i kryterium Bayesowskie (BIC) wskazują, że rozkład normalny jest znacznie lepiej dopasowany niż rozkład t-Studenta.
- Niższe wartości dla rozkładu normalnego (-2825.534 dla AIC oraz -2817.109 dla BIC) wskazują na przewagę tego modelu w uwzględnianiu dopasowania i prostoty modelu.

Podsumowanie

Na podstawie przedstawionych statystyk i kryteriów dopasowania:

- Rozkład **normalny** jest znacznie lepszy w modelowaniu danych niż rozkład t-Studenta.
- Rozkład t-Studenta charakteryzuje się dużymi odstępstwami w dopasowaniu, co czyni go nieodpowiednim w tym przypadku.

1.3.16 Test hipotezy metodą Monte Carlo

Dla wybranego rozkładu t-Studenta przeprowadzono test hipotezy o równości rozkładów, wykorzystując statystykę Kolmogorowa-Smirnowa (KS) oraz metodę Monte Carlo. Wyniki testu przedstawiono w tabeli 5.

Wynik	Wartość
Zaobserwowana statystyka KS	0,0893735
P-wartość z symulacji Monte Carlo	0

Table 7: Wyniki testu hipotezy metodą Monte Carlo

Interpretacja: P-wartość równa 0 wskazuje na silne podstawy do odrzucenia hipotezy zerowej, że dane pochodzą z rozkładu t-Studenta z wyestymowanymi parametrami. Oznacza to, że mimo lepszego dopasowania w porównaniu z rozkładem normalnym, rozkład t-Studenta nie jest w stanie w pełni opisać danych log-zwrotów.

Histogram logarytmicznych zwrotów

Opis: Histogram przedstawia empiryczny rozkład logarytmicznych zwrotów danych:

Figure 9: Histogram logarytmicznych zwrotów

1.3.17 Podsumowanie:

Przeprowadzona analiza log-zwrotów akcji spółki Wawel SA wykazała, że:

- Średnia log-zwrotów jest bliska zeru, co sugeruje brak wyraźnego trendu wzrostowego lub spadkowego w badanym okresie.
- Odchylenie standardowe wskazuje na umiarkowaną zmienność log-zwrotów.
- Kwantyle pokazują asymetrię w rozkładzie log-zwrotów, co jest typowe dla danych finansowych.
- Rozkład normalny lepiej dopasowuje się do danych niż rozkład T-Studenta, co potwierdzają statystyki dobroci dopasowania i kryteria informacyjne.
- Test hipotezy metodą Monte Carlo sugeruje odrzucenie hipotezy, że dane pochodzą z rozkładu t-Studenta, wskazując na lepsze dopasowanie wyników otrzymanych z rozkładu normalnego.

2 Analiza łącznego rozkładu log-zwrotów

2.1 Wstęp

Poniższy rozdział poświęcony jest analizie wektorów log-zwrotów trzech akcji spółek: Wawel SA, Digitree oraz Vigo Photonics. Analiza zostanie przeprowadzona na parach spółek, tak aby zbadać zależności między każdą z nich.

Zakładamy, że log-zwroty akcji spółek są realizacjami zmiennych losowych, które oznaczamy jako W, D, V - kolejno: Wawel, Digitree oraz Vigo Photonics. Zakładamy, żelog-zwroty dwóch akcji są niezależnymi realizacjami wektora losowego (X,Y) o nieznanej gęstości f, wektorze średnich (μ_1,μ_2) , współczynniku korelacji ρ , macierzy kowariancji Σ i macierzy korelacji P.

2.2 Estymacja wektora srednich

Z wykorzystaniem estymatora wartości oczekiwanej

$$\hat{\mu} = (\overline{X}_n, \overline{Y}_n) = (\frac{1}{n} \sum_{i=1}^n X_i, \frac{1}{n} \sum_{i=1}^n Y_i)$$

estymujemy wektor średnich log-zwrotów dla każdej pary. Otrzymujemy następujące wyniki:

$$\hat{\mu}_1 = (\overline{W}_n, \overline{D}_n) =$$

$$\hat{\mu}_2 = (\overline{W}_n, \overline{V}_n) =$$

$$\hat{\mu}_3 = (\overline{V}_n, \overline{D}_n) =$$

2.3 Estymacja współczynnika korelacji

Korzystając z estymatora współczynnika korelacji

$$\hat{\rho} = R_{xy} = \frac{S_{xy}}{S_x \cdot S_y} = \frac{\sum_{i=1}^{n} (X_i - \overline{X}_n)(Y_i - \overline{Y}_n)}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X}_n)^2} \sqrt{\sum_{i=1}^{n} (Y_i - \overline{Y}_n)^2}},$$

gdzie S_x^2 i S_y^2 są nieobciążonymi estymatorami wariancji

$$S_x^2 = \sigma_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2, S_y^2 = \sigma_2^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \overline{Y}_n)^2$$

wyestymowujemy współczynnik korelacji dla każdej pary. Otrzymujemy następujące wyniki:

$$\hat{\rho}_1 = R_{wd} =$$

$$\hat{\rho}_2 = R_{wv} =$$

$$\hat{\rho}_3 = R_{vd} =$$

2.4 Estymacja macierzy kowariancji

Korzystając z estymatora macierzy kowariancji

$$\hat{\Sigma} = \begin{bmatrix} S_x^2 & S_{xy}^2 \\ S_{xy}^2 & S_y^2 \end{bmatrix}$$

estymujemy macierz kowariancji dla każdej pary. Otrzymujemy następujące wyniki:

$$\hat{\Sigma}_1 = \begin{bmatrix} S_w^2 & S_{wd}^2 \\ S_{wd}^2 & S_d^2 \end{bmatrix} =$$

$$\hat{\Sigma}_2 = \begin{bmatrix} S_w^2 & S_{wv}^2 \\ S_{wv}^2 & S_v^2 \end{bmatrix} =$$

$$\hat{\Sigma}_3 = \begin{bmatrix} S_v^2 & S_{vd}^2 \\ S_{vd}^2 & S_d^2 \end{bmatrix} =$$

2.5 Estymacja macierzy korelacji

Macierze korelacji

$$R = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$$

dla każdej z par wyglądają następująco:

$$R_1 =$$

$$R_2 =$$

$$R_3 =$$

2.6 Wykresy rozrzutów z histogramami rozkładów brzegowych

Poniżej przedstawione zostały wykresy rozrzutów z histogramami rozkładów brzegowych dla każdej z par spółek:

Punkty koncentrują się w okolicach wartości zerowych, sugerując niewielkie wahania dzienne. Rozkłady pozostają stabilne, a obserwacje nie wskazują na znaczące zniekształcenia lub nieliniowości.

2.7 Wzór gęstości rozkładu normalnego

Wzór gęstości rozkładu normalnego o wyestymowanych wcześniej parametrach:

$$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2} \right] \right)$$

dla każdej z par wygląda następująco:

$$f(w,d) =$$

$$f(w, v) =$$

$$f(v,d) =$$

Wykresy gęstości łącznej prezentują się następująco:

Sęstość łączna rozkładu normalnego dla log-zwrotów WWL-DTR

Gęstość łączna rozkładu normalnego dla log-zwrotów WWL-VG

estość łączna rozkładu normalnego dla log-zwrotów VGO-DTR

Każdy wykres to trójwymiarowa powierzchnia, gdzie na osi poziomej oraz głębokościowej (x i y) umieszczono wartości logarytmicznych zmian cen poszczególnych spółek, a na osi pionowej (z) zaprezentowano wartość gęstości prawdopodobieństwa wynikającą z przyjętego modelu rozkładu normalnego dwuwymiarowego. Kształt powierzchni z wyraźnym szczytem sugeruje, że najbardziej prawdopodobne wartości to niewielkie dzienne zmiany cen obu analizowanych aktywów. W miarę oddalania się od punktu (0,0) w stronę większych lub mniejszych stóp zwrotu, wysokość powierzchni opada, wskazując na mniejsze prawdopodobieństwo wystąpienia takich skrajnych zdarzeń.

2.8 Wzory gęstości rozkładów brzegowych

Korzystając z zależności

$$f_1(x) = \int_{-\infty}^{\infty} f(x, y) dy, f_2(y) = \int_{-\infty}^{\infty} f(x, y) dx,$$

wyznaczamy wzory gęstości rozkładów brzegowych dla każdej pary. Otrzymujemy:

$$f_1(x) =$$

$$f_2(x) =$$

$$f_3(x) =$$

Poniżej przedstawiono wykresy gęstości rozkładów brzegowych:

Rozkłady marginalne poszczególnych spółek są dobrze aproksymowane przez rozkład normalny – krzywe mają kształt zbliżony do krzywej Gaussa. Szczyt gęstości w okolicach zera ponownie potwierdza niewielkie, dominujące dzienne zmiany cen.

2.9 Wstępna ocena dobroci rozkładu normalnego z wyestymowanymi parametrami

Wygenerowano próbę liczności danych z rozkładu normalnego z wyestymowanymi wcześniej parametrami. W tej części porównane zostaną wykresy rozrzutu wygenerowanych prób z wykresami rozrzutu danych i na ich podstawie oceniona zostanie wstępnie dobroć rozkładu normalnego dla wyestymowanych parametrów.

W przypadku pary WWL-VGO Dane empiryczne i dane wygenerowane wykazują podobną strukturę rozrzutu logarytmicznych stóp zwrotu, co sugeruje, że rozkład normalny z parametrami wyestymowanymi wcześniej jest dobrze dopasowany do prawdziwych danych. W przypadku par WWL-DTR oraz VGO-DTR, można zauważyć rozbieżności w skrajnych przypadkach.