PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:	0 -	- 1	1) International Publication Number: WO 98/55621
C12N 15/19, C07K 14/52, 16/24, 19 A61K 38/19, C12Q 1/68, A61K 39/	-, 009	(4	3) International Publication Date: 10 December 1998 (10.12.98)
(21) International Application Number: (22) International Filing Date: 3 Ju	PCT/US98/ ne 1998 (03.0		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
(30) Priority Data: 60/048,776 6 June 1997 (06.0 60/066,387 21 November 199) (71) Applicant (for all designated States except L PHARMACEUTICALS, INC. [US/US]; River Road, Tarrytown, NY 10591-670	7 (21:11.97) /S): REGENI /777 Old Sav	US US ERON w Mill	TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). Published
(72) Inventors; and (75) Inventors/Applicants (for US only): MAS [PL/US]; Halter Lane, Box 44, Pleasant (US). VALENZUELA, David [CL/US]; Franklin Square, NY 11010 (US).	Valley, NY	12569	With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.
(74) Agents: COBERT, Robert, J.; Regeneron Pi 777 Old Saw Mill River Road, Tarrytov (US) et al.	narmaceutical vn, NY 10591	ls, Inc., 1–6707	
· · · · · · · · · · · · · · · · · · ·		٠.	
(54) Title: NTN-2 MEMBER OF TNF LIGAT	ND FAMILY	?	
	ed nucleic ac	cids are	provided. Included are HUMAN NTN-2 polypeptides comprising a . The polypeptides may be produced recombinantly from transformed nding agents and methods of making and using the subject compositions.
(57) Abstract HUMAN NTN-2 polypeptides and relate	ed nucleic ac	cids are	
(57) Abstract HUMAN NTN-2 polypeptides and relate	ed nucleic ac	cids are	
(57) Abstract HUMAN NTN-2 polypeptides and relate	ed nucleic ac	cids are	
(57) Abstract HUMAN NTN-2 polypeptides and relate	ed nucleic ac	cids are	
(57) Abstract HUMAN NTN-2 polypeptides and relate HUMAN NTN-2 domain having specific HUM host cells with the subject nucleic acids. Also pro-	ed nucleic ac IAN NTN-2 ovided are spo	cids are activity ecific bi	The polypepindes may be produced and using the subject compositions.
(57) Abstract HUMAN NTN-2 polypeptides and relate HUMAN NTN-2 domain having specific HUM host cells with the subject nucleic acids. Also pro-	ed nucleic ac IAN NTN-2 ovided are spo	cids are activity ecific bi	nding agents and methods of making and using the subject compositions.
(57) Abstract HUMAN NTN-2 polypeptides and relate HUMAN NTN-2 domain having specific HUM host cells with the subject nucleic acids. Also pro-	ed nucleic ac IAN NTN-2 ovided are spo	cids are activity ecific bi	nding agents and methods of making and using the subject compositions.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL AM AT AU AZ BB BB BB BC BJ BR CAF CCI CCI CCI CCI CCI CCI CCI CCI CCI CC	Albania Amenia Austria Austria Austrialia Azerbaijan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Germany Denmark Estonia	ES FI FR GAB GE GH IE IIS IT JKE KR KZ LLI LK LR	Spain Finland France Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Islay Japan Kenya Kyrgyzatan Democratic People's Republic of Korea Republic of Korea Kazakstan Saint Lucia Licchtenstein Sri Lanka Liberia	LS LT LUV MC MD MG MK ML MN MR MY MX NE NL NO NZ PL PT RO SE SG	Lesotho Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland Porrugal Romania Russian Federation Sudan Sweden Singapore	SI SK SZ TD TG TI TM TR TI UA UG UZ YY YU ZW	Slovenia Slovenia Slovenia Slovenia Scengal Swaziland Chad Togo Tajikistan Turkmenistan Turkey Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Viet Nam Yugoslavia Zimbabwe
---	--	--	---	---	---	--	--

NTN-2 MEMBER OF THE LIGAND FAMILY

All publications, patents and patent applications cited in this specification are hereby incorporated by reference as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference.

INTRODUCTION

10

15

20

5

Field of the Invention

The field of this invention is polypeptide molecules which regulate cell function, nucleic acid sequences encoding the polypeptides, and methods of using the nucleic acid sequences and the polypeptides.

Background

- Tumor necrosis factor-alpha (TNF-alpha) is a cytokine primarily produced by activated macrophages. TNF-alpha stimulates T-cell and B-cell proliferation and induces expression of adhesion molecules on endothelial cells. This cytokine also plays an important role in host defense to infection.
- 25 TNF-alpha activities are mediated through two distinct receptors, TNFR-p55 and TNFR-p75. These two receptors also mediate activities triggered by soluble lymphotoxin-alpha (LT-alpha) secreted mainly by activated lymphocytes. Specific stimulation of TNFR-p55 induces TNF activities such as in vitro tumor cell cytotoxicity, expression of adhesion molecules on endothelial cells and keratinocytes, activation of sphingomyelinase with concomitant increases of ceramide, activation of NF-kappaB and induction of manganese superoxide dismutase mRNA. Specific stimulation of TNFR-

1

p75 results in proliferative response of mouse and human thymocytes and cytoxic T cells, fibroblasts and natural killer cells and in GM-CSF secretion in PC60 cells.

TNF, especially in combination with gamma.-interferon (IFN-.gamma.), has the ability to selectively kill or inhibit malignant cell lines that is unmatched by any other combination of cytokines. Clinical trials in cancer patients with TNF-.alpha. antitumor therapy have been disappointing, however, because the toxic side effects of TNF have prevented obtaining effective dose levels in man. These toxic side effects have been attributed to TNF binding to the TNFR-p75 receptor while the cytotoxic activity on malignant cells has been attributed to binding of TNF to the TNFR-p55 receptor.

SUMMARY OF THE INVENTION

The subject invention is a molecule that is homologous to tumor necrosis—factor (TNF). The invention provides methods and compositions relating to the molecule, HUMAN NTN-2 polypeptide, and related nucleic acids. Included are polypeptides comprising a HUMAN NTN-2-specific domain and having HUMAN NTN-2 -specific activity. The polypeptides may be produced recombinantly from transformed host cells with the subject nucleic acids.—The invention provides binding agents such as specific———antibodies, and methods of making and using the subject compositions in diagnosis (e.g., genetic hybridization screens for HUMAN NTN-2 transcripts), therapy (e.g., gene therapy to modulate HUMAN NTN-2 gene expression) and in the biopharmaceutical industry (e.g., reagents for screening chemical libraries for lead pharmacological agents).

30

25

10

15

20

15

20

25

30

Preferred uses for the subject HUMAN NTN-2 polypeptides include modifying the physiology of a cell comprising an extracellular surface by contacting the cell or medium surrounding the cell with an exogenous HUMAN NTN-2 polypeptide under conditions whereby the added polypeptide specifically interacts with a component of the medium and/or the extracellular surface to effect a change in the physiology of the cell. Also preferred are methods for screening for biologically active agents, which methods involve incubating a HUMAN NTN-2 polypeptide in the presence of an extracellular HUMAN NTN-2 polypeptide-specific binding target and a candidate agent, under conditions whereby, but for the presence of the agent, the polypeptide specifically binds the binding target at a reference affinity; detecting the binding affinity of the polypeptide to the binding target to determine an agent-biased affinity, wherein a difference between the agent-biased affinity and the reference affinity indicates that the agent modulates the binding of the polypeptide to the binding target.

Based upon its homology to TNF, it is expected that HUMAN NTN-2 will be a mediator of immune regulation and inflammatory response, closely linked to the development of disease. It may be useful for regulating development, proliferation and death of cells of the lymphoid, hematopoitic and other lineages. Also, HUMAN NTN-2 may be of use in the prevention of septic shock, autoimmune disorders and graft-host disease. Furthermore, HUMAN NTN-2 polypeptide may be used to identify its receptor.

BRIEF DESCRIPTION OF THE FIGURE

FIGURE 1 - Northern analysis of various human tissue specific RNAs using a 608 nucleotide fragment of the HUMAN NTN-2 sequence as a probe.

Lanes 1 - 8 in order as follows: Heart, Brain, Placenta, Lung, Liver, Skeletal Muscle, Kidney and Pancreas.

30

DETAILED DESCRIPTION OF THE INVENTION

The invention provides HUMAN NTN-2 polypeptide which includes natural HUMAN NTN-2 polypeptide and recombinant polypeptides comprising a HUMAN NTN-2 amino acid sequence, or a functional HUMAN NTN-2 polypeptide domain thereof having an assay-discernable HUMAN NTN-2-specific activity. Accordingly, the polypeptides may be deletion mutants of the disclosed natural HUMAN NTN-2 polypeptides and may be provided as fusion products, e.g., with non-HUMAN NTN-2 polypeptides. The subject HUMAN NTN-2 polypeptide domains have HUMAN NTN-2-specific activity or function.

A number of applications for HUMAN NTN-2 are suggested from its properties. HUMAN NTN-2, may be useful in the study and treatment of conditions similar to those which are treated using TNF. Furthermore, the HUMAN NTN-2 cDNA may be useful as a diagnostic tool, such as through use of antibodies in assays for polypeptides in cell lines or use of oligonucleotides as primers in a PCR test to amplify those with sequence similarities to the oligonucleotide primer, and to see how much HUMAN NTN-2 is present. The isolation of HUMAN NTN-2, of course, also provides the key to isolate its putative receptor, other HUMAN NTN-2 binding polypeptides, and/or study its antagonistic properties.

HUMAN NTN-2-specific activity or function may be determined by convenient in vitro, cellbased, or in vivo assays - e.g., in vitro binding assays, cell culture assays, in animals (e.g., immune response, gene therapy, transgenics, etc.), etc. Binding assays encompass any assay where the specific molecular interaction of a HUMAN NTN-2 polypeptide with a binding target is evaluated. The binding target may be a natural binding target, or a non-natural binding target such as a specific immune polypeptide such as an antibody, or a HUMAN NTN-2 specific agent such as those identified in assays described below.

WO 98/55621

The claimed polypeptides may be isolated or pure - an "isolated" polypeptide is one that is no longer accompanied by some of the material with which it is associated in its natural state, and that preferably constitutes at least about 0.5%, and more preferably at least about 5% by weight of the total

polypeptide in a given sample; a "pure" polypeptide constitutes at least about 90%, and preferably at least about 99% by weight of the total polypeptide in a given sample. The subject polypeptides and polypeptide domains may be synthesized, produced by recombinant technology, or purified from cells. A wide variety of molecular and biochemical methods are available for biochemical synthesis, molecular expression and purification of the subject compositions, see e.g., Molecular Cloning, A Laboratory Manual (Sambrook, et al., Cold Spring Harbor Laboratory), Current Protocols in Molecular Biology (Eds. Ausubel, et al., Greene Publ. Assoc., Wiley-Interscience, NY).

15

20

25

30

10

The subject polypeptides find a wide variety of uses including use as immunogens, targets in screening assays, bioactive reagents for modulating cell growth, differentiation and/or function, etc. For example, the invention provides methods for modifying the physiology of a cell comprising an extracellular surface by contacting the cell or medium surrounding the cell with an exogenous HUMAN NTN-2 polypeptide under conditions whereby the added polypeptide specifically interacts with a component of the medium and/or the extracellular surface to effect a change in the physiology of the cell. According to these methods, the extracellular surface includes plasma membrane-associated receptors; the exogenous HUMAN NTN-2 refers to a polypeptide not made by the cell or, if so, expressed at non-natural levels, times or physiologic locales; and suitable media include in vitro culture media and physiological fluids such as blood, synovial fluid, etc. The polypeptides may be may be introduced, expressed, or repressed in specific populations of cells by any convenient way such as microinjection, promoter-specific expression of recombinant enzyme, targeted delivery of lipid vesicles, etc.

30

The invention provides natural and non-natural HUMAN NTN-2-specific binding agents, methods of identifying and making such agents, and their use in diagnosis, therapy and pharmaceutical development. HUMAN NTN-2-specific binding agents include HUMAN NTN-2-specific receptors, such as somatically recombined protein receptors like specific antibodies or T-cell antigen receptors (See, e.g., Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory) and also includes other natural binding agents identified with assays such as one-, two- and three-hybrid screens, and non-natural binding agents identified in screens of chemical libraries such as described below. Agents of particular interest modulate HUMAN NTN-2 function.

The invention provides HUMAN NTN-2 nucleic acids, which find a wide variety of applications including use as translatable transcripts, hybridization probes, PCR primers, diagnostic nucleic acids, etc., as well as use in detecting the presence of HUMAN NTN-2 genes and gene transcripts and in detecting or amplifying nucleic acids encoding additional HUMAN NTN-2 homologs and structural analogs.

The subject nucleic acids are of synthetic/non-natural sequences and/or are isolated, i.e., no longer accompanied by some of the material with which it is associated in its natural state, preferably constituting at least about 0.5%, more preferably at least about 5% by weight of total nucleic acid present in a given fraction, and usually recombinant, meaning they comprise a non-natural sequence or a natural sequence joined to nucleotide(s) other than that which it is joined to on a natural chromosome. Nucleic acids comprising the nucleotide sequence disclosed herein and fragments thereof, contain such sequence or fragment at a terminus, immediately flanked by a sequence other than that to which it is joined on a natural chromosome, or flanked by a native flanking region fewer than 10 kb, preferably fewer than 2 kb, which is immediately flanked by a sequence other than that to which it is joined on a natural chromosome. While the nucleic acids are usually RNA

. .5 .

10

20

25

30

or DNA, it is often advantageous to use nucleic acids comprising other bases or nucleotide analogs to provide modified stability, etc.

The amino acid sequences of the disclosed HUMAN NTN-2 polypeptide is used to back translate HUMAN NTN-2 polypeptide-encoding nucleic acids optimized for selected expression systems (Holler, et al. (1993) Gene 136: 323-328; Martin, et al. (1995) Gene 154: 150-166) or used to generate degenerate oligonucleotide primers and probes for use in the isolation of natural HUMAN NTN-2 encoding nucleic acid sequences ("GCG" software, Genetics Computer Group, Inc., Madison, WI). HUMAN NTN-2 encoding nucleic acids may be part of expression vectors and may be incorporated into recombinant host cells, e.g., for expression and screening, for transgenic animals, for functional studies such as the efficacy of candidate drugs for disease associated with HUMAN NTN-2 mediated signal transduction, etc. Expression systems are selected and/or tailored to effect HUMAN NTN-2 polypeptide structural and functional variants through alternative post-translational processing.

The invention also provides for nucleic acid hybridization probes and replication/amplification primers having a HUMAN NTN-2 cDNA specific sequence and sufficient to effect specific hybridization with SEQ. I.D. NO. 1. Demonstrating specific hybridization generally requires stringent conditions, for example, hybridizing in a buffer comprising 30% formamide in 5 x SSPE (0.18 M NaCl, 0.01 M NaPO₄, pH7.7, 0.001 M EDTA) buffer at a temperature of 42°C and remaining bound when subject to washing at 42°C with 0.2 x SSPE; preferably hybridizing in a buffer comprising 50% formamide in 5 x SSPE buffer at a temperature of 42°C and remaining bound when subject to washing at 42°C with 0.2x SSPE buffer at 42°C. HUMAN NTN-2 cDNA homologs can also be distinguished from other polypeptides using alignment algorithms, such as BLASTX (Altschul, et al. (1990) Basic Local Alignment Search Tool, J. Mol. Biol. 215: 403-410).

15

20

25.

30

HUMAN NTN-2 hybridization probes find use in identifying wild-type and mutant alleles in clinical and laboratory samples. Mutant alleles are used to generate allele-specific oligonucleotide (ASO) probes for high-throughput clinical diagnoses. HUMAN NTN-2 nucleic acids are also used to modulate cellular expression or intracellular concentration or availability of active HUMAN NTN-2. HUMAN NTN-2 inhibitory nucleic acids are typically antisense - single stranded sequences comprising complements of the disclosed natural HUMAN NTN-2 coding sequences. Antisense modulation of the expression of a given HUMAN NTN-2 polypeptide may employ antisense nucleic acids operably linked to gene regulatory sequences. Cells are transfected with a vector comprising a HUMAN NTN-2 sequence with a promoter sequence oriented such that transcription of the gene yields an antisense transcript capable of binding to endogenous HUMAN NTN-2 encoding mRNA. Transcription of the antisense nucleic acid may be constitutive or inducible and the vector may provide for stable extrachromosomal maintenance or integration. Alternatively, singlestranded antisense nucleic acids that bind to genomic DNA or mRNAencoding a given HUMAN NTN-2 polypeptide may be administered to the target cell, in or temporarily isolated from a host, at a concentration that results in a substantial reduction in expression of the targeted polypeptide. An enhancement in HUMAN NTN-2 expression is effected by introducing into the targeted cell type HUMAN NTN-2 nucleic acids which increase the functional expression of the corresponding gene products. Such nucleic acids may be HUMAN NTN-2 expression vectors, vectors which upregulate the functional expression of an endogenous allele, or replacement vectors for targeted correction of mutant alleles. Techniques for introducing the nucleic acids into viable cells are known in the art and include retroviralbased transfection, viral coat protein-liposome mediated transfection, etc.

The invention provides efficient methods of identifying agents, compounds or lead compounds for agents active at the level of HUMAN NTN-2 modulatable cellular function. Generally, these screening methods involve

assaying for compounds which modulate HUMAN NTN-2 interaction with a natural HUMAN NTN-2 binding target. A wide variety of assays for binding agents are provided including protein-protein binding assays, immunoassays, cell based assays, etc. Preferred methods are amenable to automated, cost-effective high throughput screening of chemical libraries for lead compounds.

In vitro binding assays employ a mixture of components including a HUMAN NTN-2 polypeptide, which may be part of a fusion product with another peptide or polypeptide, e.g., a tag for detection or anchoring, etc. The assay mixtures comprise a natural HUMAN NTN-2 binding target. While native binding targets may be used, it is frequently preferred to use portions thereof as long as the portion provides binding affinity and avidity to the subject HUMAN NTN-2 conveniently measurable in the assay. The assay mixture also comprises a candidate pharmacological agent. Candidate agents encompass numerous chemical classes, though typically they are organic compounds, preferably small organic compounds, and are obtained from a wide variety of sources including libraries of synthetic or natural compounds. A variety of other reagents such as salts, buffers, neutral proteins, e.g., albumin, detergents, protease inhibitors, nuclease inhibitors, antimicrobial agents, etc., may also be included. The mixture components can be added in any order that provides for the requisite bindings and incubations may be performed at any temperature which facilitates optimal binding. The mixture is incubated under conditions whereby, but for the presence of the candidate pharmacological agent, the HUMAN NTN-2 specifically binds the cellular binding target, portion or analog with a reference binding affinity. Incubation periods are chosen for optimal binding but are also minimized to facilitate rapid, high throughput screening.

30

25

10

15

20

After incubation, the agent-biased binding between the HUMAN NTN-2 and one or more binding targets is detected by any convenient way. For cell-

PCT/US98/11294 WO 98/55621

free binding type assays, a separation step is often used to separate bound from unbound components. Separation may be effected by precipitation, immobilization, etc., followed by washing by, e.g., membrane filtration or gel chromatography. For cell-free binding assays, one of the components usually comprises or is coupled to a label. The label may provide for direct detection as radioactivity, luminescence, optical or electron density, etc., or indirect detection such as an epitope tag, an enzyme, etc. A variety of methods may be used to detect the label depending on the nature of the label and other assay components, e.g., through optical or electron density, radiative emissions, nonradiative energy transfers, or indirectly detected with antibody conjugates, etc. A difference in the binding affinity of the HUMAN NTN-2 polypeptide to the target in the absence of the agent as compared with the binding affinity in the presence of the agent indicates that the agent modulates the binding of the HUMAN NTN-2 polypeptide to the corresponding binding target. A difference, as used herein, is statistically significant and preferably represents at least a 50%, more preferably at least a 90% difference.

The invention provides for a method for modifying the physiology of a cell comprising an extracellular surface in contact with a medium, said method comprising the step of contacting said medium with an exogenous HUMAN NTN-2 polypeptide under conditions whereby said polypeptide specifically interacts with at least one of a component of said medium and said extracellular surface to effect a change in the physiology of said cell.

25

30

10

15

20

The invention further provides for a method for screening for biologically active agents, said method comprising the steps of a) incubating a HUMAN NTN-2 polypeptide in the presence of an extracellular HUMAN NTN-2 polypeptide specific binding target and a candidate agent, under conditions whereby, but for the presence of said agent, said polypeptide specifically binds said binding target at a reference affinity; b) detecting the binding affinity of said polypeptide to said binding target to determine an agent-

PCT/US98/11294 WO 98/55621

biased affinity, wherein a difference between the agent-biased affinity and the reference affinity indicates that said agent modulates the binding of said polypeptide to said binding target.

One embodiment of the invention is an isolated HUMAN NTN-2 polypeptide comprising the amino acid sequence as set forth herein or a fragment thereof having HUMAN NTN-2-specific activity.

20

25

30

Another embodiment of the invention is a recombinant nucleic acid encoding HUMAN NTN-2 polypeptide comprising the amino acid sequence as set forth herein or a fragment thereof having HUMAN NTN-2-specific activity.

Still another embodiment is an isolated nucleic acid comprising a nucleotide sequence as set forth herein or a fragment thereof having at least 18 consecutive bases and sufficient to specifically hybridize with a nucleic acid having the sequence of set forth herein in the presence of natural HUMAN NTN-2 cDNA.

The present invention also provides for antibodies to the HUMAN NTN-2 polypeptide described herein which are useful for detection of the polypeptide in, for example, diagnostic applications. For preparation of monoclonal antibodies directed toward this HUMAN NTN-2 polypeptide, any technique which provides for the production of antibody molecules by continuous cell lines in culture may be used. For example, the hybridoma technique originally developed by Kohler and Milstein (1975, Nature 256:495-497), as well as the trioma technique, the human B-cell hybridoma technique (Kozbor et al., 1983, Immunology Today 4:72), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al., 1985, in "Monoclonal Antibodies and Cancer Therapy," Alan R. Liss, Inc. pp. 77-96) and the like are within the scope of the present invention.

WO 98/55621

The monoclonal antibodies for diagnostic or therapeutic use may be human monoclonal antibodies or chimeric human-mouse (or other species) monoclonal antibodies. Human monoclonal antibodies may be made by any of numerous techniques known in the art (e.g., Teng et al., 1983, Proc. Natl. Acad. Sci. U.S.A. 80:7308-7312; Kozbor et al., 1983, Immunology Today 4:72-79; Olsson et al., 1982, Meth. Enzymol. 92:3-16). Chimeric antibody molecules may be prepared containing a mouse antigen-binding domain with human constant regions (Morrison et al., 1984, Proc. Natl. Acad. Sci. U.S.A. 81:6851, Takeda et al., 1985, Nature 314:452).

10

15

Various procedures known in the art may be used for the production of polyclonal antibodies to epitopes of the HUMAN NTN-2 polypeptide described herein. For the production of antibody, various host animals can be immunized by injection with the HUMAN NTN-2 polypeptide, or a fragment or derivative thereof, including but not limited to rabbits, mice and rats. Various adjuvants may be used to increase the immunological response, depending on the host species, and including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (Bacille Calmette-Guerin) and Corynebacterium parvum.

20

A molecular clone of an antibody to a selected HUMAN NTN-2 polypeptide epitope can be prepared by known techniques. Recombinant DNA methodology (see e.g., Maniatis et al., 1982, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York) may be used to construct nucleic acid sequences which encode a monoclonal antibody molecule, or antigen binding region thereof.

30

25

WO 98/55621

The present invention provides for antibody molecules as well as fragments of such antibody molecules. Antibody fragments which contain the idiotype of the molecule can be generated by known techniques. For example, such fragments include but are not limited to: the F(ab')₂ fragment which can be produced by pepsin digestion of the antibody molecule; the Fab' fragments which can be generated by reducing the disulfide bridges of the F(ab')₂ fragment, and the Fab fragments which can be generated by treating the antibody molecule with papain and a reducing agent. Antibody molecules may be purified by known techniques, e.g., immunoabsorption or immunoaffinity chromatography, chromatographic methods such as HPLC (high performance liquid chromatography), or a combination thereof.

10

20

25

30

The following examples are offered by way of illustration and not by way of limitation.

EXAMPLE 1 - Cloning and Sequencing of Partial HUMAN NTN-2 Coding Sequence

Amino acid sequences of all the known human and mouse members of the TNF family were used as tblastn queries to search the NIH EST database of random fragments of mRNA sequences (Altschul, Stephen F., Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman (1990). Basic local alignment search tool. J. Mol. Biol. 215:403-10). Each query generated a list of hits, i.e. EST sequences with a substantial sequence similarity to the query sequence. Typically, the hits on top of the list corresponded to mRNA copies of the query protein, followed by ESTs derived from other members of the family and random-chance similarities.

A parser program was used to combine and sort all the hits from searches with all the members of the family. This allowed rapid subtraction of all the hits corresponding to known proteins. The remaining hits were analyzed for conservation of sequence motifs characteristic for the family. Additional

database searches were performed to identify overlapping ESTs. The partial nucleotide and deduced amino acid sequence of Human NTN-2 was determined as follows:

.

10

ACT GGT TAC TTT TTT ATA TAT GGT CAG GTT TTA TAT ACT GAT AAG ACC TAC GCC ATG Thr Gly Tyr Phe Phe Ile Tyr Gly Gln Val Leu Tyr Thr Asp Lys Thr Tyr Ala Het> 90 GGA CAT CTA ATT CAG AGG NAG AAG GTC CAT GTC TIT GGG GAT GAA TTG AGT CTG GTG Gly His Leu Ile Gln Arg XXX Lys Val His Val Phe Gly Asp Glu Leu Ser Leu Val> 140 ACT TTG TTT CGA TGT ATT CAA AAT ATG CCT.GAA ACA CTA CCC AAT AAT TCC TGC TAT Thr Leu Phe Arg Cys Ile Gln Asn Met Pro Glu Thr Leu Pro Asn Asn Ser Cys Tyr> 190 210 200 TCA GCT GGC ATT GCA AAA CTG GAA GAA GGA GAT GAA CTC CAA CTT GCA ATA CCA AGA Ser Ala Gly Ile Ala Lys Leu Glu Glu Gly Asp Glu Leu Gln Leu Ala Ile Pro Arg> GAA AAT GCA CAA ATA TCA CTG GAT GGA GAT GTC ACA TTT TTT GGT GCA TTG AAA CTG 250 Glu Asn Ala Cin Ile Ser Leu Asp Cly Asp Val Thr Phe Phe Gly Ala Leu Lys Leu> 290 CTG TGA

20

25

30

Using the nucleotide sequence of SEQ. I.D. NO. 1 as a query, additional database searches were performed to identify overlapping ESTs. Two additional clones from the I.M.A.G.E. consortium were discerned to contain homologous sequence. These clones, GeneBank Accession Nos. AA166695 and T87299 were obtained from Research Genetics, Inc. (Huntsville, AL) and sequenced using the ABI 373A DNA sequencer and Taq Dideoxy Terminator Cycle Sequencing Kit (Applied Biosystems, Inc., Foster City, CA). Alignment of the two additional clones with SEQ. I.D. NO. 1 indicated a total length of 680 nucleotides. Oligonucleotides were designed based on the partial human sequence and used as primers for the reverse transcriptase reaction and for PCR. A 608 nucleotide long sequence was obtained and used as a probe to isolate the full length sequence as described below.

20

ISOLATION AND SEQUENCING OF FULL LENGTH CDNA CLONE ENCODING HUMAN NTN-2

A human placenta cDNA library in lambda gt-10 was obtained from Clontech Laboratories, Inc. (Palo Alto, CA). Plaques were plated at a density of 1.25 x $10^6/20x20$ cm plate, and replica filters taken following standard procedures (Sambrook, et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., page 8.46, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York). Filters were screened at normal stringency (2 x SSC, 65°C) with a probe corresponding to nucleotides 216 to 824 of the hNTN-2 sequence shown in SEQ. I.D. NO. 3. The probe was hybridized at 65°C in hybridization solution containing 0.5 mg/ml salmon sperm DNA to decrease non-specific binding of the probe to the filter. Filters were washed in 2 x SSC at 65° C and exposed overnight to X-ray film. Five positive clones were picked that showed strong hybridization signals and also produced fragments when PCR-amplified using oligos from the cDNA vector.

Sequencing of hNTN-2

The coding region from each of the five clones was sequenced using the ABI 373A DNA sequencer and Taq Dyedeoxy Terminator Cycle Sequencing Kit (Applied Biosystems, Inc., Foster City, CA). The nucleotide and deduced amino acid sequence of the full length hNTN-2 coding sequence obtained from one of the clones is set forth as follows:

		10	20	30	40	50	60
		•	•.		ACT TOT TOO	CTT ANG ANA M	בא מאא
	SEO 10 #3	ATC GAT GAC TCC AC	Y CYY YOU CYC (CAG TOX COC CTS	The Ser Cys	Leu Lys Lys A	rg alus
	SEQ 10 #4	Het Asp Asp Ser Th	E CIM ALD CIM	GIn Ser 1		, .,	
	21 1 2F - 11	70	80	90	100	110	120
		70		• *	•		
		GAA_ATG AAA CTG AA	G GAG TGT GTT	TOO ATC CTC CC	Y COC YYC CYY	Acc ccc rer G	TC CGA
		GAA ATG AAA CTG AA Glu Het Lys Leu Ly	s Glu Cys Val	Ser Ile Leu Pr	o yang the can	Sar Pro Ser V	at via
_		014 .22			160	170	180
5		130	140	150		•	•
		•	•	NCT TT	יה כדום מדום פכו	י כום כום וכדי	roc roc
		TCC TCC AAA GAC GG . Ser Ser Lys Asp G	EN AND CIRC CIRC	Na Ala Thr Le	u Lau Leu Al	a Leu Leu Ser (Cys Cys>
		Ser Ser Lys Asp C	ly Lys Leu Leu	Ale his			
والمام والمساب			200	210	220	230	240
		190		•	•		
• • • • •		בדכ אבה הדה הדה ד	CT TTC TAC CAG	כעפ פכב פכב ב	עם כדוץ פספ פוץ	e end dee Ade	Lau Arm
4 T		CTC ACG GTG GTG T Leu Thr Val Val S	er Phe Tyr Gln	Val Ala Ala L	en GIM GIA V	p Deu Ala Ser	Dec ALy
	• 0				280	290	300
•		250	260	270	•	•	•
10		6CX CXC CTC CXC (*	- c1C 13C CTG C	CY CCY CCY CC	ex ccc ccc	AAG GCC
		GCA GAG CTG CAG (COC CAC CAC GC	Ou Lys. Leu P	ro Ala Gly A	La Gly Xla Pro	Lys Alax
		Ala Glu Leu Gln (31A HIR HIR WI	u			-
			320	330	340	350	360
		310		• .			CCT CCA
		محد حدد حدد حدد	CCT CCY CCL CL	c yee eee eey (TIG AAA AIC I	he Glu Pro Pro	Ala Pro>
		GGC CTG GAG GAA	Ala Pro Ala Va	I The Ala Gly	Ded Dys 110 .		
				390	400	410	420
		370	380			- •	•
		OCA GAN OCC AND	men ser cae at	AC AGC AGA AAT	AND COST COCC (אדו כאב סבד ככי	CAN CAN
15		GCA GAA GGC AAC	Ser Ser Gla A	sn Ser Arg Asn	Lys Ar y Ala \	Al Cln Gly Pro	Gin Gin
		GIA GIA GIA VZU	361 361 021	•		470	480
		430	440	450 .	460		ممتنسها بالمصافية
		אבא פוכ אבד כאא	• • • • • • • • • • • • • • • • • • • •		CAC ACT GAA	ACA CCA ACT 'AT	A CAN ANA
-		ACA GTC ACT CAA Thr Val Thr Gln	GAC TGC TTG C	AA CIG ANT GOA	Asp Ser Glu	The Pro The Il	e Gln Lys>
1 -		Thr Val Thr Gln	. Asp Cys Leu G	in Leu ile ile		530	540
		490	500	510	520	•	•
			•		THE NAME AND	CCA ACT CCC CT	A GAA GAA
		GGA TCT TAC ACC	TIT GIT CCA I	ICC CIT CIC ACC	Phe LVS ATG	Gly Ser Ala Le	u Glu Glu>
		Gly Ser Tyr Thu	: Phe Val Pro T	Lab Fer per per	•		
20	•		560	570	580	590	600
			300	•			•
		550	•	•			AG OUT TEA
		_	A ATA TIG GIC	ALL CAL ACT COT	TAC TIT TIT	ATA TAT OCT C	AG CTT TTA
		_	A ATA TTG GTC s lle Leu Val	ALA GAA ACT GGT Lys Glu Thr Gly	TAC TIT TIT	ATA TAT OCT C	AG GTT TTA In Val Leu>
		AAA GAG AAT AA Lys Glu Asn Ly	s lie Leu var	-,-			AG CTT TTA in Val Leu>
		ANA GAG AAT AA Lys Glu Asn Ly	620 ***	630	640 _	650	660
man uma sun. er bist s. m.s.	ه ساهم ديد ايد ي	ANA GAG AAT AA Lys Glu Asn Ly	620	630	640 _	650	660 TAT GTC TIT
engan yang seri beri di den		ANA GAG AAT AA Lys Glu Asn Ly	620	630	640 _	650	660
engan yang serberah di din		ANA GAG AAT AA Lys Glu Asn Ly	620	630	640 _	650	660 TAT GTC TIT
		ANA GAG AAT AA Lys Glu Asn Ly	620	ATG GGA CAT CT Het Gly His Lo	A ATT CAG AGE	650	660
25		TAT ACT GAT NAT TYPE THE ASPECT	620	ATG GGA CAT CT Het Gly His Le	A ATT CAG AGG	AAG AAG GTC C Lys Lys Val 1	AT CTC TTT His Val Phe>
25		ANA GAG AAT AA LYE GIU ASN LY 610 TAT ACT GAT N TYT THE ASP LY	620	ATG GGA CAT CT Het Gly His Le	A ATT CAG ACC THE Gln ACC	AAG AAG GTC C ; Lys Lys Val 1	660 CAT GTC TTT His Val Phe>
25		ANA GAG AAT AA LYE GIU ASN LY 610 TAT ACT GAT N TYT THE ASP LY	620	ATG GGA CAT CT Het Gly His Le	A ATT CAG ACC THE Gln ACC	AAG AAG GTC C ; Lys Lys Val 1	660 CAT GTC TTT His Val Phe>
25		ANA GAG AAT AA LYE GIU ASN LY 610 TAT ACT GAT N TYT THE ASP LY	620	ATG GGA CAT CT Het Gly His Le	A ATT CAG ACC TOO A TOT ATT CAG TO Cys Ile Gir	710 AAT ATG CTT C	660 CAT GTC TTT His Val Phe>
25		ANA GAG AAT AA Lys Glu Asn Ly 610 TAT ACT GAT AA TYT THE ASP LY 670 GCG GAT GAA T Gly ASP Glu L	620 MG ACC TAC GCC ys Thi TyT Ala 680 TO AGT CTG GTG eu Ser Leu Val	ACT TIG TIT CG Thr Leu Phe Ar	A ATT CAG ACC TOO A TOT ATT CAG TOO TOO TOO TOO TOO TOO TOO TOO TOO TO	710 AAT ATG CTT C	720 TAN ACA CTA THE LEUP 780
. 25		ANA GAG AAT AA Lys Glu Asn Ly 610 TAT ACT GAT A TYT Thr Asp Ly 670 GGG GAT GAA T Gly Asp Glu L	620	ATG GGA CAT CT Met Gly His Lo 690 ACT TTG TTT CG Thr Leu Phe Ar	A ATT CAG ACC TOO A TOT ATT CAU TO Cys Ile Gir 760	710 AAT ATG CTT C	AT GTC TTT His Val Phe> 720 TAA ACA CTA Clu Thr Leu> 780
25		ANA GAG AAT AA Lys Glu Asn Ly 610 TAT ACT GAT A TYT Thr Asp Ly 670 GGG GAT GAA T Gly Asp Glu L	620	ATG GGA CAT CT Met Gly His Lo 690 ACT TTG TTT CG Thr Leu Phe Ar	A ATT CAG ACC TOO A TOT ATT CAU TO Cys Ile Gir 760	710 AAT ATG CTT C	AT GTC TTT His Val Phe> 720 TAA ACA CTA Clu Thr Leu> 780
25		ANA GAG AAT AA Lys Glu Asn Ly 610 TAT ACT GAT A TYT Thr Asp Ly 670 GGG GAT GAA T Gly Asp Glu L	620	ATG GGA CAT CT Met Gly His Lo 690 ACT TTG TTT CG Thr Leu Phe Ar	A ATT CAG ACC TOO A TOT ATT CAU TO Cys Ile Gir 760	710 AAT ATG CTT C A CAA CGA CAT U Glu Gly Asp	AT GTC TTT His Val Phe> 720 TAA ACA CTA Clu Thr Leu> 780
25		ANA GAG AAT AA Lys Glu Asn Ly 610 TAT ACT GAT AA TYT Thr Asp Ly 670 GGG GAT GAA T Gly Asp Glu L 730 CCC AAT AAT T Pro Asn Asn S	620	ATG GGA CAT CT Met Gly His Lo 690 ACT TTG TTT CG Thr Leu Phe Ar 750 GGT GGC ATT GG Ala Gly Ile A	A ATT CAG ACC TOO A TOT ATT CAT TOO CA AAA CTG GA LYS Leu Gl	A CAA GGA GAT ATG ATA GGA GGA GAT ATG GGA GGA	720 TAA ACA CTA Clu Thr Leu> 780 GAA CTC CAA Glu Leu Gln>
25		ANA GAG AAT AA Lys Glu Asn Ly 610 TAT ACT GAT AA TYT THE ASP Ly 670 CCC GAT GAA T Gly Asp Glu L 730 CCC AAT AAT T PEO Asn Asn S	620	ATG CGA CAT CT Het Gly His Le 690 ACT TTG TTT CG Thr Leu Phe Ar 750 CGCT CGC ATT CG Ala Gly Tle A	A ATT CAG ACK TOO A TOT ATT CAG TOO CA TOT ATT CAG TOO CA LOS Ile Gir TOO CA ANA CTG GA LYS Leu Gi	A CAA CGA CAT A CAA CGA CAT A CAA CGA CAT A CAA CGA CAT B Glu Gly Asp	TAT GTC TTT His Val Phe> 720 GAA ACA CTA Glu Thr Leu> 780 GAA CTC CAA Glu Leu Gln> 840
		ANA GAG AAT AA Lys Glu Asn Ly 610 TAT ACT GAT AA TYT THE ASP Ly 670 CCC GAT GAA T Gly Asp Glu L 730 CCC AAT AAT T PEO Asn Asn S	620	ATG CGA CAT CT Het Gly His Le 690 ACT TTG TTT CG Thr Leu Phe Ar 750 CGCT CGC ATT CG Ala Gly Tle A	A ATT CAG ACK TOO A TOT ATT CAG TOO CA TOT ATT CAG TOO CA LOS Ile Gir TOO CA ANA CTG GA LYS Leu Gi	A CAA CGA CAT U Glu Gly Asp	TAT GTC TTT His Val Phe> 720 GAA ACA CTA Glu Thr Leu> 780 GAA CTC CAA Glu Leu Gln> 840
25		ANA GAG AAT AA Lys Glu Asn Ly 610 TAT ACT GAT AA TYT THE ASP Ly 670 CCC GAT GAA T Gly Asp Glu L 730 CCC AAT AAT T PEO Asn Asn S	620	ATG CGA CAT CT Het Gly His Le 690 ACT TTG TTT CG Thr Leu Phe Ar 750 CGCT CGC ATT CG Ala Gly Tle A	A ATT CAG ACK TOO A TOT ATT CAG TOO CA TOT ATT CAG TOO CA LOS Ile Gir TOO CA ANA CTG GA LYS Leu Gi	A CAA CGA CAT U Glu Gly Asp	TAT GTC TTT His Val Phe> 720 GAA ACA CTA Glu Thr Leu> 780 GAA CTC CAA Glu Leu Gln> 840
		ANA GAG AAT AA Lys Glu Asn Ly 610 TAT ACT GAT AA TYT THE ASP Ly 670 CCC GAT GAA T Gly Asp Glu L 730 CCC AAT AAT T PEO Asn Asn S	620	ATG GGA CAT CT Met Gly His Lo 690 ACT TTG TTT CG Thr Leu Phe Ar 750 GGT GGC ATT GG Ala Gly Ile A	A ATT CAG ACK TOO A TOT ATT CAG TOO CA TOT ATT CAG TOO CA LOS Ile Gir TOO CA ANA CTG GA LYS Leu Gi	A CAA CGA CAT U Glu Gly Asp	TAT GTC TTT His Val Phe> 720 GAA ACA CTA Glu Thr Leu> 780 GAA CTC CAA Glu Leu Gln> 840
		ANA GAG AAT AA Lys Glu Asn Ly 610 TAT ACT GAT AA TYT THE ASP Ly 670 CCC GAT GAA T Gly Asp Glu L 730 CCC AAT AAT T PEO Asn Asn S	620	ATG CGA CAT CT Het Gly His Le 690 ACT TTG TTT CG Thr Leu Phe Ar 750 CGCT CGC ATT CG Ala Gly Tle A	A ATT CAG ACK TOO A TOT ATT CAG TOO CA TOT ATT CAG TOO CA LOS Ile Gir TOO CA ANA CTG GA LYS Leu Gi	A CAA CGA CAT U Glu Gly Asp	TAT GTC TTT His Val Phe> 720 GAA ACA CTA Glu Thr Leu> 780 GAA CTC CAA Glu Leu Gln> 840
		ANA GAG ANT AN Lys Glu Asn Ly 610 TAT ACT GAT AN TYT THE ASP LY 670 CCC GAT GAA T Gly Asp Glu L 730 CCC AAT AAT T Pro Asn Asn S 791 CTT GCA ATA Leu Ala Ile	620 AG ACC TAC CCC ys Thi Tyr Ala 680 TO AGT CTG GTG EU Ser Leu Val 740 TCC TGC TAT TCA Ser Cys Tyr Ser 0 800 CCA AGA GAA AA Pro Arg Glu As	ATG CGA CAT CT Het Gly His Le 690 ACT TTG TTT CG Thr Leu Phe Ar 750 CGCT CGC ATT CG Ala Gly Tle A	A ATT CAG ACK TOO A TOT ATT CAG TOO CA TOT ATT CAG TOO CA LOS Ile Gir TOO CA ANA CTG GA LYS Leu Gi	A CAA CGA CAT U Glu Gly Asp	TAT GTC TTT His Val Phe> 720 GAA ACA CTA Glu Thr Leu> 780 GAA CTC CAA Glu Leu Gln> 840
		ANA GAG ANT AN Lys Glu Asn Ly 610 TAT ACT GAT AN TYT THE ASP LY 670 GGG GAT GAA T Gly ASP Glu L 730 CCC ANT ANT T PRO ASN ASN S 791 CTT GCA ATA Leu Ala Ile 85	620	ATG CGA CAT CT Het Gly His Le 690 ACT TTG TTT CG Thr Leu Phe Ar 750 CGCT CGC ATT CG Ala Gly Tle A	A ATT CAG ACK TOO A TOT ATT CAG TOO CA TOT ATT CAG TOO CA LOS Ile Gir TOO CA ANA CTG GA LYS Leu Gi	A CAA CGA CAT U Glu Gly Asp	TAT GTC TIT His Val Phe> 720 TAA ACA CTA THE Leu> 780 GAA CTC CAA Glu Leu Gln> 840
		ANA GAG ANT AN Lys Glu Asn Ly 610 TAT ACT GAT AN TYT THE ASP LY 670 GGG GAT GAA T Gly ASP Glu L 730 CCC ANT ANT T PRO ASN ASN S 791 CTT GCA ATA Leu Ala Ile 85	620 AG ACC TAC CCC ys Thi Tyr Ala 680 TO AGT CTG GTG EU Ser Leu Val 740 TCC TGC TAT TCA Ser Cys Tyr Ser 0 800 CCA AGA GAA AA Pro Arg Glu As	ATG CGA CAT CT Het Gly His Le 690 ACT TTG TTT CG Thr Leu Phe Ar 750 CGCT CGC ATT CG Ala Gly Tle A	A ATT CAG ACK TOO A TOT ATT CAG TOO CA TOT ATT CAG TOO CA LOS Ile Gir TOO CA ANA CTG GA LYS Leu Gi	A CAA CGA CAT U Glu Gly Asp	TAT GTC TTT His Val Phe> 720 GAA ACA CTA Glu Thr Leu> 780 GAA CTC CAA Glu Leu Gln> 840

15

20

25

EXAMPLE 3 - TISSUE SPECIFIC EXPRESSION OF hNTN-2

A fragment corresponding to nucleotides 216 to 824 of the hNTN-2 sequence shown in SEQ. I.D. NO. 3 was radiolabeled and utilized in Northern analysis of various human tissue specific RNAs. The Northern blot containing polyA+ RNA from several human tissues was obtained from Clontech Laboratories, Inc. (Palo Alto, CA) and was hybridized at 65°C to the radiolabeled hNTN-2 probe in the presence of 0.5M NaPO4 (pH 7), 1% bovine serum albumin (Fraction V, Sigma), 7% SDS, 1 mM EDTA and 100 ng/ml sonicated, denatured salmon sperm DNA. The filter was washed at 65°C with 2X SSC, 0.1% SDS and subjected to autoradiography for 16 hours with one intensifying screen and X-ray film at -70°C.

The hNTN-2 probe hybridized strongly to a 2.7 kb transcript in human heart, placenta, pancreas and lung tissue (Figure 1) and hybridized weakly to RNA from brain and liver. Weaker levels of expression could also be found in skeletal muscle and kidney. High expression of hNTN-2 in heart tissue may suggest that the present invention may be utilized to treat heart disease. Expression of hNTN-2 in lung and pancreas tissue may suggest that the present invention may be utilized to treat lung and/or pancreas related disorders.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

WHAT IS CLAIMED IS:

- 1. An isolated nucleic acid molecule encoding HUMAN NTN-2.
- An isolated nucleic acid molecule according to claim 1, having a sequence selected from the group consisting of:
 - the nucleotide sequence comprising the coding region of the HUMAN NTN-2 as set forth in SEQ. I.D. NO. 3;
 - (b) a nucleotide sequence that hybridizes under stringent conditions to the nucleotide sequence of (a) and which encodes a molecule having the biological activity of the HUMAN NTN-2; or
 - (c) a nucleotide sequence which, but for the degeneracy of the genetic code would hybridize to a nucleotide sequence of (a) or (b), and which encodes a molecule having the biological activity of the HUMAN NTN-2.
 - 3. A vector which comprises a nucleic acid molecule of claim 1 or 2.
 - 4. A vector according to claim 3, wherein the nucleic acid molecule is operatively linked to an expression control sequence capable of directing its expression in a host cell.
 - 5. A vector according to claim 3 or 4, which is a plasmid
 - 6. Isolated HUMAN NTN-2 polypeptide encoded by the nucleic acid molecule of claim 1 or 2.
 - 7. Isolated HUMAN NTN-2 polypeptide, having the amino acid sequence as set forth in SEQ. I.D. NO. 4.
 - 8. A host-vector system for the production of HUMAN NTN-2 which comprises a vector of claim 3 or 4, in a host cell.

- 9. A host-vector system according to claim 8, wherein the host cell is a bacterial, yeast, insect or mammalian cell.
- 10. A method of producing HUMAN NTN-2 which comprises growing cells of a host-vector system of claim 8 or 9, under conditions permitting production of the cerberus, and recovering the HUMAN NTN-2 so produced.
- 11. An antibody which specifically binds the HUMAN NTN-2 of claim 6 or 7.
- 12. An antibody according to claim 11, which is a monoclonal antibody.
- 13. A pharmaceutical composition comprising HUMAN NTN-2 according to claim 6 or 7, and a pharmaceutically acceptable carrier.
- 14. A pharmaceutical composition comprising an antibody according to claim 11 or 12, and a pharmaceutically acceptable carrier.
- 15. HUMAN NTN-2 according to claim 6 or 7, an antibody according to claim 11 or 12, or a composition according to claim 13 or 14, for use in a method of treatment of the or animal body, or in a method of diagnosis.
- 16. A polypeptide produced by the method of claim 10.
- 17., A ligandbody which comprises HUMAN NTN-2 fused to an immunoglobulin constant region.
- 18. The ligandbody of claim 17, wherein the immunoglobulin constant region is the Fc portion of human IgG1.

- 19. A ligandbody according to claim 17 or 18, for use in a method of treatment of the human or animal body, or in a method of diagnosis.
- 20. A polypeptide comprising the amino acid sequence as set forth in SEQ. I.D. NO. 4.

1/1

Fig. 1

INTERNATIONAL SEARCH REPORT

PCT/US 98/11294

CLASSIFICATION OF SUBJECT MATTER PC 6 C12N15/19 C07K C07K19/00 A61K38/19 C07K16/24 A. CLASS C07K14/52 A61K39/395 C12Q1/68 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C12N C07K IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant possages Category ' 1.2 L. HILLIER ET AL: "WashU-NCI human EST project, zo85e02.sl Stratagene ovarian cancer(#9372219) Homo sapiens cDNA clone 593690 3'" EMBL DATABASE ENTRY HSAA66695, ACCESSION NUMBER AA1166695,21 December 1996, XP002072308 cited in the application see abstract 1,2 L. HILLIER ET AL: "The WashU-Merck EST Α... project, yd89b02.sl Homo sapiens cDNA clone 115371 3'" EMBL DATABASE ENTRY HS29950, ACCESSION NUMBER T87299.31 March 1995, XP002078459 cited in the application see abstract Patent family members are listed in annex. Further documents are listed in the continuation of box C. T later document published after the international filling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention * Special categories of cited documents : document defining the general state of the art which is not considered to be of particular relevance. document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "E" earlier document but published on or after the international filing date document of particular relevance; the dalmed invention document of particular relevance; the dalmed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person-skilled in the art. "L" document which may throw doubts on priority daim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report-Date of the actual completion of theinternational search 09/10/1998 23 September 1998 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 551 epo ni, Fax: (+31-70) 340-3016 . Le Cornec, N

INTERNATIONAL SEARCH REPORT

PCT/US 98/11294

C.(Contin	ration) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to daim No.
P,X	WO 98 18921 A (HUMAN GENOME SCIENCES, INC.) 7 May 1998 * see the whole document especially	1-13,15, 16,20
-	sequences ID 1 and 2, claims, examples, pages 50-55 *	·
E	WO 98 27114 A (SCHERING CORPORATION) 25 June 1998	1-13,15, 16,20
	* see the whole document especially sequences ID 3 and 4*	
-		
		,
-		
-		
		:

INTERNATIONAL SEARCH REPORT Information on patent tamily members					Inter anal Application No PCT/US 98/11294 -			
Patent document cited in search report		Publication date	Patent (amily member(s)			Publication date		
WO 9818921	1 A	07-05-1998	AU	76745	96 A	. 22-05-1998		
WO 9827114		25-06-1998	AU	57058	398 A	15-07-1998		
					,			
	· ·	· · · · · · · · · · · · · · · · · · ·		·				
		· · · · · · · · · · · · · · · · · · ·			. , 0	, , , , , , , , , , , , , , , , , , ,		
	v		٠.					
		(m) = 1						
manufacture and also server a manufacture of the server of		and a constant of a second			. 	##### ## 1772	, j •	
					- 			
		·	•			•		
					•		•	