Компьютерный практикум по статистическому анализу данных Лабораторная работа №7: Введение в Data Science

Кармацкий Никита Сергеевич

Российский университет дружбы народов, Москва, Россия

Цель лабораторной работы

• Изучить специализированные пакеты Julia для обработки данных.

Выполнение лабораторной работы. Julia для науки о данных

В Julia для обработки данных используются наработки из других языков программирования, в частности, из R и Python.

```
[1]: # Обновление окружения:
     using Pkg
     Pkg.update
     # Установка пакетов:
     usina Pka
     for p in ["CSV", "DataFrames", "RDatasets", "FileI0"]
         Pkg.add(p)
     end
     using CSV. DataFrames. DelimitedFiles
        Resolving package versions...
       No Changes to `~/.julia/environments/v1.11/Project.toml`
       No Changes to `~/.iulia/environments/v1.11/Manifest.toml`
        Resolving package versions...
       No Changes to `~/.julia/environments/v1.11/Project.toml`
       No Changes to `~/.julia/environments/v1.11/Manifest.toml`
        Resolving package versions...
       No Changes to `~/.julia/environments/v1.11/Project.toml`
       No Changes to `~/.iulia/environments/v1.11/Manifest.toml`
        Resolving package versions...
       No Changes to `~/.julia/environments/v1.11/Project.toml`
       No Changes to `~/.iulia/environments/v1.11/Manifest.toml`
```

Рис. 1: Установка пакетов

```
[2]: # Считывание данных и их запись в структуру:
     P = CSV.File("programminglanguages.csv") |> DataFrame
     # Функция определения по названию языка программирования года его создания:
     function language created year(P, language::String)
         loc = findfirst(P[:,2].==language)
         return P[loc,1]
     end
     # Пример вызова функции и определение даты создания языка Python:
     language_created_year(P,"Python")
```

5/47

[3]: #Пример вызова функции и определение даты создания языка Julia: language_created_year(P,"Julia")

[3]: 2012

...

```
[4]: # Пример вызова функции и определение даты создания языка Julia:
     language_created_year(P,"julia")
     MethodError: no method matching getindex(::DataFrame, ::Nothing, ::Int64)
     The function 'getindex' exists, but no method is defined for this combination of argument types
     Closest candidates are:
       getindex(::DataFrame, ::typeof(!), ::Union{Signed, Unsigned})
        @ DataFrames ~/.julia/packages/DataFrames/kcA9R/src/dataframe/dataframe.jl:548
       getindex(::DataFrame, ::Colon, ::Union{AbstractString, Signed, Symbol, Unsigned})
        @ DataFrames ~/.julia/packages/DataFrames/kcA9R/src/dataframe/dataframe.jl:542
       getindex(::DataFrame, ::InvertedIndex, ::Union{AbstractString, Signed, Symbol, Unsigned})
        @ DataFrames ~/.iulia/packages/DataFrames/kcA9R/src/dataframe/dataframe.il:538
```

```
[5]: # Функция определения по названию языка программирования
     # года его создания (без учёта регистра):
     function language created year v2(P, language::String)
         loc = findfirst(lowercase.(P[:,2]).==lowercase.(language))
         return P[loc,1]
     end
     # Пример вызова функции и определение даты создания языка julia:
     language created year v2(P,"julia")
```

```
[6]:
     # Построчное считывание данных с указанием разделителя:
     Tx = readdlm("programminglanguages.csv", ',')
[6]:
     74×2 Matrix{Anv}:
           "vear"
                    "language"
                    "Regional Assembly Language"
       1951
       1952
                    "Autocode"
                    "TPL"
       1954
       1955
                    "FLOW-MATTC"
       1957
                    "FORTRANI"
       1957
                    "COMTRAN"
       1958
                    "I TSP"
       1958
                    "ALGOL 58"
       1959
                    "FACT"
       1959
                    "COBOL"
       1959
                    "BPG"
       1962
                    "APL"
                    "Scala"
       2003
       2005
                    11 E #11
                    "PowerShell"
       2006
                    "Cloiure"
       2007
       2009
                    "Go"
       2010
                    "Bust"
                    "Dart"
       2011
       2011
                    "Kotlin"
       2011
                    "Red"
       2011
                    "Elixir"
       2012
                    "Julia"
       2014
                    "Swift"
     1.2. Запись данных в файл ¶
```

Рис. 6: Построчное считывание данных

1.2. Запись данных в файл

```
[8]: # Запись данных в CSV-файл: CSV.write("programming_languages_data2.csv", P)
```

[8]: "programming_languages_data2.csv"

Запись данных в файл

```
[9]: # Пример записи данных в текстовый файл с разделителем ',': writedlm("programming_languages_data.txt", Tx, ',')
```

```
[10]: # Пример записи данных в текстовый файл с разделителем '-': writedlm("programming_languages_data2.txt", Tx, '-')
```

Запись данных в файл

```
# Построчное считывание данных с указанием разделителя:
P new delim = readdlm("programming languages data2.txt", '-')
74×2 Matrix{Anv}:
     "year"
             "language"
 1951
              "Regional Assembly Language"
 1952
              "Autocode"
 1954
             "TPI"
 1955
              "FLOW-MATTC"
 1957
             "FORTRAN"
 1957
             "COMTRAN"
 1958
             "I TSP"
 1958
             "ALGOL 58"
 1959
             "FACT"
 1959
              "COBOL"
 1959
              "RPG"
 1962
              "APL"
 2003
              "Scala"
 2005
              "F#"
 2006
             "PowerShell"
 2007
              "Cloiure"
              "Go"
 2009
 2010
              "Rust"
 2011
              "Dart"
 2011
             "Kotlin"
 2011
             "Red"
 2011
             "Flixir"
 2012
             "Julia"
 2014
             "Swift"
```

Рис. 9: Проверка корректности считывания созданного текстового файла

▼ 1.3. Словари

```
[13]: # Инициализация словаря:
dict = Dict{Integer, Vector{String}}()
```

[13]: Dict{Integer, Vector{String}}()

Словари

```
[14]: # Инициализация словаря:
dict2 = Dict()
```

[14]: Dict{Any, Any}()

```
[15]: # Заполнение словаря данными:
      for i = 1:size(P,1)
          year, lang = P[i,:]
          if year in keys(dict)
              dict[year] = push!(dict[year],lang)
          else
              dict[year] = [lang]
          end
```

Словари

```
[16]: #Пример определения в словаре языков программирования, созданных в 2003 году: dict[2003]
```

```
[16]: 2-element Vector{String}:
    "Groovy"
    "Scala"
```

DataFrames

```
1.4. DataFrames
      # Подгружаем пакет DataFrames:
[18]:
      using DataFrames
[19]: # Задаём переменную со структурой DataFrame:
      df = DataFrame(year = P[:,1], language = P[:,2])
      # Вывод всех значения столбца vear:
      df[!,:year]
      # Получение статистических сведений о фрейме:
      describe(df)
     2x7 DataFrame
[19]:
      Row variable mean
                            min
                                      median max
                                                      nmissing eltype
           Symbol
                    Union... Any
                                      Union... Any
                                                      Int64
                                                                DataType
         1 vear
                    1982.99
                            1951
                                      1986.0
                                              2014
                                                             0 Int64
                            ALGOL 58
                                                             0 String31
        2 language
                                              dBase III
```

Рис. 14: Пример создания структуры DataFrame

1.5. RDatasets

```
[21]: # Подгружаем пакет RDatasets:
using RDatasets

# Задаём структуру данных в виде набора данных:
iris = dataset("datasets", "iris")
# Определения типа переменной:
typeof(iris)
```

[22]: DataFrame

RDatasets

[23]: describe(iris)

[23]: 5×7 DataFrame

variable	mean	min	median	max	nmissing	eltype
Symbol	Union	Any	Union	Any	Int64	DataType
SepalLength	5.84333	4.3	5.8	7.9	0	Float64
SepalWidth	3.05733	2.0	3.0	4.4	0	Float64
PetalLength	3.758	1.0	4.35	6.9	0	Float64
PetalWidth	1.19933	0.1	1.3	2.5	0	Float64
Species		setosa		virginica	0	CategoricalValue{String, UInt8}
	Symbol SepalLength SepalWidth PetalLength PetalWidth	SymbolUnionSepalLength5.84333SepalWidth3.05733PetalLength3.758PetalWidth1.19933	Symbol Union Any SepalLength 5.84333 4.3 SepalWidth 3.05733 2.0 PetalLength 3.758 1.0 PetalWidth 1.19933 0.1	Symbol Union Any Union SepalLength 5.84333 4.3 5.8 SepalWidth 3.05733 2.0 3.0 PetalLength 3.758 1.0 4.35 PetalWidth 1.19933 0.1 1.3	Symbol Union Any Union Any SepalLength 5.84333 4.3 5.8 7.9 SepalWidth 3.05733 2.0 3.0 4.4 PetalLength 3.758 1.0 4.35 6.9 PetalWidth 1.19933 0.1 1.3 2.5	Symbol Union Any Union Any Int64 SepalLength 5.84333 4.3 5.8 7.9 0 SepalWidth 3.05733 2.0 3.0 4.4 0 PetalLength 3.758 1.0 4.35 6.9 0 PetalWidth 1.19933 0.1 1.3 2.5 0

▼ 1.6. Работа с переменными отсутствующего типа (Missing Values)

```
[25]: # Отсутствующий тип:
a = missing
typeof(a)
```

[25]: Missing

```
[26]: # Пример операции с переменной отсутствующего типа: a + 1
```

[26]: missing

```
[27]: # Определение перечня продуктов:
      foods = ["apple", "cucumber", "tomato", "banana"]
      # Определение калорий:
      calories = [missing, 47, 22, 105]
      # Определение типа переменной:
      typeof(calories)
```

[27]: Vector{Union{Missing, Int64}} (alias for Array{Union{Missing, Int64}, 1})

```
[28]: # Подключаем пакет Statistics:
      using Statistics
      # Определение среднего значения:
      mean(calories)
      # Определение среднего значения без значений с отсутствующим типом:
      mean(skipmissing(calories))
```

```
[29]: # Задание сведений о ценах:
prices = [0.85,1.6,0.8,0.6]
# Формирование данных о калориях:
dataframe_calories = DataFrame(item=foods,calories=calories)
# Формирование данных о ценах:
dataframe_prices = DataFrame(item=foods,price=prices)
# Объединение данных о калориях и ценах:
DF = innerjoin(dataframe_calories,dataframe_prices,on=:item)
```

[29]: 4×3 DataFrame

Row	item	calories	price		
	String	Int64?	Float64		
1	apple	missing	0.85		
2	cucumber	47	1.6		
3	tomato	22	0.8		
4	banana	105	0.6		
	1 2	String 1 apple 2 cucumber 3 tomato	String Int64? 1 apple missing 2 cucumber 47 3 tomato 22		

Рис. 21: Формирование таблиц данных и их объединение в один фрейм

1.7. FileIO

```
[54]: # Подключаем пакет FileIO: using FileIO

[55]: # Подключаем пакет ImageIO:
```

import Pkg
Pkg.add("ImageI0")

```
Resolving package versions...
No Changes to `~/.julia/environments/v1.11/Project.toml`
```

No Changes to 'a/ julia/onvironments/v1 11/Manifest teml'

```
[56]: X1 = load("figure_karmatskiy.png")
      display(X1)
      400×600 Array{RGBA{N0f8},2} with eltype ColorTypes.RGBA{FixedPointNumbers.N0f8}:
       RGBA{N0f8}(1.0,1.0,1.0,1.0)
                                       RGBA{N0f8}(1.0,1.0,1.0,1.0)
                                       RGBA{N0f8}(1.0,1.0,1.0,1.0)
       RGBA{N0f8}(1.0,1.0,1.0,1.0)
       RGBA{N0f8}(1.0,1.0,1.0,1.0)
                                       RGBA{N0f8}(1.0,1.0,1.0,1.0)
       RGBA{N0f8}(1.0,1.0,1.0,1.0)
                                       RGBA{N0f8}(1.0,1.0,1.0,1.0)
                                                                                           26/47
```

```
[110]: @show typeof(X1);
     @show size(X1);
     typeof(X1) = Matrix{RGBA{FixedPointNumbers.N0f8}}
     size(X1) = (400, 600)
```

2. Обработка данных: стандартные алгоритмы машинного обученияв Julia

2.1. Кластеризация данных. Метод к-средних

[63]: # Загрузка пакетов:

```
import Pkg
Pkg.add("DataFrames")
Pkg.add("Statistics")
using DataFrames
using CSV
import Pkg
Pkg.add("Plots")
   Resolving package versions...
  No Changes to `~/.julia/environments/v1.11/Project.toml`
  No Changes to `~/.julia/environments/v1.11/Manifest.toml`
   Resolving package versions...
  No Changes to `~/.julia/environments/v1.11/Project.toml`
  No Changes to `~/.julia/environments/v1.11/Manifest.toml`
                                                                                                 28/47
   Resolving package versions...
```

[116]:	hous	es = CSV.File("houses.csv	") >DataFrame										
116]:	985×1	2 DataFrame									960 rd	ws omitted	
	Row	street	city	zip	state	beds	baths	sqft	type	sale_date	price	latitude	longitude
		String	String15	Int64	String3	Int64	Int64	Int64	String15	String31	Int64	Float64	Float64
	1	3526 HIGH ST	SACRAMENTO	95838	CA	2	1	836	Residential	Wed May 21 00:00:00 EDT 2008	59222	38.6319	-121.435
	2	51 OMAHA CT	SACRAMENTO	95823	CA	3	1	1167	Residential	Wed May 21 00:00:00 EDT 2008	68212	38.4789	-121.431
	3	2796 BRANCH ST	SACRAMENTO	95815	CA	2	1	796	Residential	Wed May 21 00:00:00 EDT 2008	68880	38.6183	-121.444
	4	2805 JANETTE WAY	SACRAMENTO	95815	CA	2	1	852	Residential	Wed May 21 00:00:00 EDT 2008	69307	38.6168	-121.439
	5	6001 MCMAHON DR	SACRAMENTO	95824	CA	2	1	797	Residential	Wed May 21 00:00:00 EDT 2008	81900	38.5195	-121.436
	6	5828 PEPPERMILL CT	SACRAMENTO	95841	CA	3	1	1122	Condo	Wed May 21 00:00:00 EDT 2008	89921	38.6626	-121.328
	7	6048 OGDEN NASH WAY	SACRAMENTO	95842	CA	3	2	1104	Residential	Wed May 21 00:00:00 EDT 2008	90895	38.6817	-121.352
	8	2561 19TH AVE	SACRAMENTO	95820	CA	3	1	1177	Residential	Wed May 21 00:00:00 EDT 2008	91002	38.5351	-121.481
	9	11150 TRINITY RIVER DR Unit 114	RANCHO CORDOVA	95670	CA	2	2	941	Condo	Wed May 21 00:00:00 EDT 2008	94905	38.6212	-121.271
	10	7325 10TH ST	RIO LINDA	95673	CA	3	2	1146	Residential	Wed May 21 00:00:00 EDT 2008	98937	38.7009	-121.443
	11	645 MORRISON AVE	SACRAMENTO	95838	CA	3	2	909	Residential	Wed May 21 00:00:00 EDT 2008	100309	38.6377	-121.452
	12	4085 FAWN CIR	SACRAMENTO	95823	CA	3	2	1289	Residential	Wed May 21 00:00:00 EDT	106250	38.4707	-121.459

29/47

30/47

Рис. 27: Построение графика цен на недвижимость в зависимости от площади

31/47

Рис. 28: Построение графика без "артефактов"

32/47

Рис. 29: Построение графика с кластерами разных цветов

33/47

Кластеризация данных. Метод k ближайших соседей

Рис. 31: Отображение на графике соседей выбранного объекта недвижимости

Кластеризация данных. Метод k ближайших соседей

```
[70]: # Фильтрация по районам соседних домов:
      cities = filter houses[idxs,:city]
[70]: 10-element PooledArrays.PooledVector{String15, UInt32, Vector{UInt32}}:
       "SACRAMENTO"
       "ELK GROVE"
       "SACRAMENTO"
       "SACRAMENTO"
       "SACRAMENTO"
       "SACRAMENTO"
       "ELK GROVE"
       "ELK GROVE"
                                                                                         35/47
       "ELK GROVE"
```

Обработка данных. Метод главных компонент

2.3. Обработка данных. Метод главных компонент

```
[72]: # Фрейм с указанием площади и цены недвижимости:
      F = filter houses[[:sq ft.:price]]
      # Конвертация данных в массив:
      F = convert(Array{Float64,2},F)'
      # Подключение пакета MultivariateStats:
      import Pka
      Pkg.add("MultivariateStats")
      using MultivariateStats
      # Приведение типов данных к распределению для РСА:
      M = fit(PCA. F)
      # Выделение значений главных компонент в отдельную переменную:
      Xr = reconstruct(M. v)
      # Построение графика с выделением главных компонент:
      scatter(F[1,:],F[2,:])
      scatter!(Xr[1,:],Xr[2,:])
```

Рис. 33: Попытка уменьшения размера данных о цене и площади из набора данных домов

Обработка данных. Линейная регрессия

2.4. Обработка данных. Линейная регрессия

Рис. 34: Исходные данные

Обработка данных. Линейная регрессия

Рис. 35: Применение функции для построения графика

Обработка данных. Линейная регрессия

```
[76]: xvals = 1:100000:
      xvals = repeat(xvals.inner=3):
      vvals = 3 + xvals + 2*rand(length(xvals)) - 1:
      @show size(xvals)
      @show size(vvals)
      @time a,b = find_best_fit(xvals,yvals)
      import Pkg
      Pkg.add("PyCall")
      Pkg.add("Conda")
      using PvCall
      using Conda
      pv"""
      import numpy
      def find best fit python(xvals.vvals):
          meanx = numpv.mean(xvals)
          meanv = numpv.mean(vvals)
          stdx = numpv.std(xvals)
          stdy = numpy.std(yvals)
          r = numpy.corrcoef(xvals,yvals)[0][1]
          a = r*stdv/stdx
          b = meanv - a*meanx
          return a.b
      xpv = Pv0biect(xvals)
      vpv = Pv0biect(vvals)
      @time a.b = find best fit python(xpv.vpv)
      import Pkg
      Pkg.add("BenchmarkTools")
      using BenchmarkTools
      @btime a.b = find best fit python(xvals.vvals)
      @btime a,b = find_best_fit(xvals,yvals)
      size(xvals) = (300000.)
      size(vvals) = (300000.)
        0.098020 seconds (29.73 k allocations: 1.527 MiB. 95.77% compilation time)
```

Рис. 36: Сравнение

Рис. 37: Решение задания №1

1.2) Регрессия (метод наименьших квадратов в случае линейной регрессии)

Часть 1. []: # Генерация данных X = randn(1000, 3)a0 = rand(3)v = X * a0 + 0.1 * randn(1000)# Добавляем столбец единиц в X для учета свободного члена X2 = hcat(ones(1000), X)# Применяем ридж-регрессию с небольшим значением регуляризации ridge result = ridge(X2, v, 1e-4) println("Ридж-регрессия, коэффициенты:") println(ridge result) # Сравнение с использованием GLM.il # Преобразуем X2 в DataFrame, чтобы использовать его с GLM df = DataFrame(X2 = hcat(ones(1000), X)..., v = v) # Распаковываем X2 в отдельные столбиы model = lm(@formula(y ~ X2), df) println("Результаты с использованием GLM.jl:") println(coef(model))

Рис. 39: Решение задания N_2

Рис. 40: Решение задания №3

```
# Генерация 10 траекторий
paths = [create_path(S, r, sigma, T, n) for _ in 1:10]
# Построение всех траекторий на одном графике
for path in paths
   plot!(path, label="Trajectory", xlabel="Time Step", ylabel="Price", title="Multiple Stock Price Trajectories")
end
```

and

```
C.
using Threads
# Функция для параллельной генерации траекторий
function parallel paths(n paths)
   paths = Vector{Array{Float64, 1}}(undef, n paths)
   Threads.@threads for i in 1:n paths
       paths[i] = create_path(S, r, sigma, T, n)
   end
   return paths
end
# Генерация траекторий с использованием многозадачности
paths parallel = parallel paths(10)
# Построение всех параллельных траекторий
for path in paths parallel
   plot!(path, label="Trajectory", xlabel="Time Step", ylabel="Price", title="Parallel Stock Price Trajectories")
```

Вывод

• В ходе выполнения лабораторной работы были изучены специализированные пакеты Julia для обработки данных.

Список литературы. Библиография

[1] Julia Documentation: https://docs.julialang.org/en/v1/