Análise Matemática I 15 de Janeiro de 2003 LEBM, LEFT e LMAC

2º Teste — Perguntas 4, 5, 6 e 7 — 90 minutos 1º Exame — Todas as Perguntas — 3 horas

Apresente os cálculos

1. Calcule os limites das sucessões cujos termos gerais são:

a)
$$\frac{(n+1)^{18}(4n+1)^2}{(n+3)^{20}}$$
, (1)
b) $\left(\frac{n-3}{n}\right)^n$, (1)
c) $\frac{\pi^n}{n!}$.

2. Seja (x_n) a sucessão definida por recorrência por

$$\begin{cases} x_1 = 99, \\ x_{n+1} = \begin{cases} \sqrt{2x_n - 1} & \text{se } x_n \ge 1/2, \\ 0 & \text{se } x_n < 1/2. \end{cases}$$

- a) Prove, por indução, que $x_n \ge 0$, para todo o $n \in \mathbb{N}_1$. (1.5)
- b) Analise a monotonia da sucessão. (1.5)
- c) Analise a convergência da sucessão e, no caso de convergência, calcule o seu limite. (2)
- d) A resposta às alíneas anteriores seria diferente se $x_1 = 0.99$? Justifique. (1)
- **3.** Seja (x_n) uma sucessão limitada e $f: \mathbb{R} \to \mathbb{R}$ uma função contínua tal que $f(x_n) = x_n + \frac{1}{n}$. Então f tem pelo menos um ponto fixo. Justifique cuidadosamente. (1)
- 4. Analise a convergência das séries. Calcule também a soma de uma delas.

a)
$$\sum_{n=2}^{\infty} 4^{-n}$$
, (1)
b) $\sum_{n=0}^{\infty} \left(\frac{n+1}{n+100}\right)^{5}$, (0.5)
c) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$, (0.5)
d) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}\sqrt[3]{n+2}}$, (1)
e) $\sum_{n=1}^{\infty} \frac{[(2n)!]^{2}}{(4n)!}$. (1)

5. Calcule:

a)
$$\frac{d}{dx} \tan x,$$
(0.5)
b)
$$\frac{d}{dx} \frac{\arctan x}{\ln x},$$
(1)
c)
$$\frac{d}{dx} e^{\sqrt{x}},$$
(1)
d)
$$\frac{d}{dx} x^{x},$$
(1)
e)
$$\lim_{x \to 0} \frac{\sin(\sin x)}{x}.$$
(1)

$$\mathbf{d}) \frac{dy}{dx} x^x, \tag{1}$$

$$e) \lim_{x \to 0} \frac{\sin(\sin x)}{x}. \tag{1}$$

- **6.** Seja $f: \mathbb{R} \to \mathbb{R}$, definida por $f(x) = \sin \frac{1}{x}$, se $x \neq 0$, f(0) = 0. Analise a (1)continuidade de f. Justifique cuidadosamente a resposta no que concerne ao ponto 0.
- 7. Seja $f: \mathbb{R} \to \mathbb{R}$ diferenciável tal que $\lim_{\substack{x \to 0 \ x \neq 0}} f'(x) = 1$. Pode afirmar algo (0.5)acerca do valor de f'(0)? Justifique.