Number Theory I : Classical therory

Written by Ikhan Choi Solved by Ikhan Choi

 $\mathrm{May}\ 23,\ 2019$

Contents

1	Diophantine equations	2
	1.1 Quadratic equations	3

Chapter 1

Diophantine equations

1.1 Quadratic equations

Problem 1.1. Consider a family of diophantine equations:

$$x^2 + y^2 - kxy - k = 0$$

for $k \in \mathbb{Z}$.

(1) Show that if (a, b) is a solution, then (b, b - ka) is also a solution.

(2) Show that the equation does not have a solution in the region xy < 0.

(3) Show that if it has a solution, then there is a solution on the x-axis.

(4) Let a and b be integers. Conclude that if ab + 1 divides $a^2 + b^2$, then

$$\frac{a^2 + b^2}{ab + 1}$$

is a perfect square.

Solution.

(1)

(2) Suppose $x, y \in \mathbb{Z}$ satisfy xy < 0. Since $xy \le -1$,

$$x^{2} + y^{2} - kxy - k \ge x^{2} + y^{2} + k - k > 0.$$

(3)

Problem 1.2. Consider a diophantine equation:

$$y^2 = x^3 + 7.$$

Suppose (x, y) is a solution.

(1) Show that x is even and y is odd.

(2) Show that $x^3 + 8$ is divided by a prime p such that $p \equiv 3 \pmod{4}$.

(3) Show that the equation has no solutions.