5G Spectrum and Key 5G Technologies

Rohit Budhiraja

Simulation-Based Design of 5G Wireless Standards (EE698H)

Agenda for today

- Spectrum for 5G
- Discuss one of the key technologies used in 5G-NR
- Reference Chap3 of the 5G-NR book for spectrum discussion
- Reference Chap10.1 and 10.2 of LTE Baker book for adaptive modulation and coding

3GPP documents

- 3GPP documents are divided into releases
 - Each release has a set of features added compared to the previous release
- LTE is defined from Release 8 and onwards
- Release 15 is New Radio (NR)
 - first set of the specifications was published in December 2017
 - full specifications were due in mid-2018
- 3GPP Technical Specifications (TS) are organized in multiple series
- Following series of specifications are of interest to us:
 - 38-series: Transceiver design aspects for NR.

Spectrum for mobile systems

- Frequency bands operating frequency range
- Frequency band for 1G and 2G around 800 to 900 MHz, but also in a few lower and higher bands
- When 3G (IMT-2000) was rolled out, focus was on the 2 GHz band
- With 3G and 4G, new bands were added at both lower and higher frequencies, presently spanning from 450 MHz to around 6 GHz
- Bands at different frequencies have different characteristics
- Bands at lower frequencies have good propgation properties
 - Good for wide-area coverage deployments, in urban, suburban, and rural environments
- Propagation properties of higher frequencies make them difficult to use for wide-area coverage
 - Used for boosting bit-rate in dense indoor deployments

Spectrum for 5G/NR

- With 5G, the eMBB usage scenario even higher data rates and high capacity in dense deployments
 - Frequency range 1 (FR1) includes all existing and new bands below 6 GHz
 - Frequency range 2 (FR2) includes new bands in the range 24.25 to 52.6 GHz
- Frequency bands where NR will operate are in both paired (FDD) and unpaired (TDD) spectra
- Operating bands have a number, where NR bands are numbered n1, n2, n3
- 3GPP Release 15 for NR specifies 26 operating bands in FR1, and 3 in FR2

Example NR frequency bands

• For frequency range 1 (FR1)

NR Band	Uplink Range (MHz)	Downlink Range (MHz)	Duplex Mode	Main Region(s)
n41	2496-2690	2496-2690	TDD	US, China
n50	1432-1517	1432-1517	TDD	
n51	1427-1432	1427-1432	TDD	
n66	1710-1780	2110-2200	FDD	Americas
n70	1695-1710	1995-2020	FDD	
n71	663-698	617-652	FDD	Americas
n74	1427-1470	1475-1518	FDD	Japan
n75	N/A	1432-1517	SDL	Europe
n76	N/A	1427-1432	SDL	Europe
n77	3300-4200	3300-4200	TDD	Europe, Asia
n78	3300-3800	3300-3800	TDD	Europe, Asia

• For frequency range 2 (FR2)

NR Band	Uplink and Downlink Range (MHz)	Duplex Mode	Main Region(s)
n257	26,500-29,500	TDD	Asia, Americas (global)
n258	24,250-27,500	TDD	Europe, Asia (global)
n259	37,000-40,000	TDD	US (global)

Key technologies of 4G/5G systems

- Adaptive modulation and coding
- OFDM
- MIMO
- Scheduling and Hybrid ARQ

Adaptive modulation and coding (AMC) (1)

• Capacity of AWGN single-antenna channel y = x + n is log(1 + SNR) bps/Hz when x is Gaussian

- AMC helps us achieve capacity using discrete constellations e.g., M-QAM with M=2/4/16/64/256
- If SNR is 5 dB, capacity is 2 bps/Hz, using 4-QAM achieves capacity, BLER \approx 0 is achieved

Adaptive modulation and coding (AMC) (2)

• Capacity of AWGN single-antenna channel y = x + n is log(1 + SNR) bps/Hz when x is Gaussian

- \bullet If SNR is ≈ 12 dB, capacity is 4 bps/Hz, using 16-QAM achieves capacity, BLER ≈ 0 is achieved
- Idea of switching modulation, according to SNR is called adaptive modulation
- Achieve other points on capacity curve? For example, when SNR is 2.5 dB, capacity is 1.5 bps/Hz

Adaptive modulation and coding (AMC) (3)

- All the points on capacity curve are achieved using adaptive modulation and (error control) coding
- Block diagram of capacity achieving transceiver

- FEC encoder code rate $r = \frac{\text{Number of FEC input bits}}{\text{Number of FEC output bits}}$
- FEC encoder code rate r is always ≤ 1

Adaptive modulation and coding (AMC) (4)

- All the points on capacity curve are achieved using adaptive modulation and (error control) coding
- Block diagram of capacity achieving transceiver

- FEC encoder adds parity bits to input message bits to guarantee a low BLER
- FEC encoder should use large code-block lengths to guarantee a low BLER
- If SNR is 2.5 dB, capacity is 1.5 bps/Hz, we will use 4-QAM with a code rate of 3/4

Capacity achieving codes

• 5G NR uses capacity achieving LDPC codes

 Capacity achieving – Provide low BLER with reasonable code block length at reasonable SNR offset from the capacity curve