18th Iberoamerican Congress on Pattern Recognition, Havana CUBA

Auto-encoder Based Data Clustering

Chunfeng Song¹, Feng Liu², Yongzhen Huang¹, Liang Wang¹ and Tieniu Tan¹

- 1. NLPR, Chinese Academy of Sciences
- 2. Southeast University

Data clustering

Previous clustering method

- ✓ K-means
- ✓ Spectral clustering
- ✓ N-cut

Perform bad for bad distributed data.

Data clustering

Previous clustering method

- √ K-means
- ✓ Spectral clustering
- ✓ N-cut

Can not deal with this similar images

3 8 5 5 3

Original Data Space

Data clustering

Previous clustering method

- √ K-means
- ✓ Spectral clustering
- ✓ N-cut

Perform bad for bad distributed data.

✓ Auto-encoder based clustering can provide non-linear mapping.

Basic single-layer auto-encoder

Is a kind of BP-NN

supervised

Encoder function Sigmiod-type
$$h_i = f(x_i) = \frac{1}{1 + \exp(-(W_1 x_i + b_1))}$$
 Decoder function
$$x'_i = g(h_i) = \frac{1}{1 + \exp(-(W_2 h_i + b_2))}$$

$$\min \frac{1}{N} \sum_{i=1}^{N} ||x_i - x_i||^2$$

Basic single-layer auto-encoder

Is a kind of BP-NN

Encoder function S

Sigmiod-type

$$h_i = f(x_i) = \frac{1}{1 + \exp(-(W_1 x_i + b_1))}$$

Decoder function

$$x'_{i} = g(h_{i}) = \frac{1}{1 + \exp(-(W_{2}h_{i} + b_{2}))}$$

$$\min \frac{1}{N} \sum_{i=1}^{N} ||x_i - x_i||^2$$

Basic single-layer auto-encoder

Is a kind of BP-NN

Encoder function S

Sigmiod-type

$$h_i = f(x_i) = \frac{1}{1 + \exp(-(W_1 x_i + b_1))}$$

Decoder function

$$x'_{i} = g(h_{i}) = \frac{1}{1 + \exp(-(W_{2}h_{i} + b_{2}))}$$

$$\min \frac{1}{N} \sum_{i=1}^{N} ||x_i - x_i||^2$$

Basic single-layer auto-encoder

Is a kind of BP-NN

Decoder function

$$x'_{i} = g(h_{i}) = \frac{1}{1 + \exp(-(W_{2}h_{i} + b_{2}))}$$

$$\min \frac{1}{N} \sum_{i=1}^{N} ||x_i - x_i||^2$$

Basic single-layer auto-encoder

Is a kind of BP-NN

Basic single-layer auto-encoder

Basic single-layer auto-encoder

x' Reconstructed image no-label feature X image unsupervised

multi-layers auto-encoders

Decoder 1000 g(H)Why so deep? W_5 code layer W_3 f(x) W_2 1000 Encoder unsupervised Basic Auto-encoder

Why so deep?

- ✓ Deep makes more accurate results.
- ✓ Deep networks can learn better.
- ✓ Deep networks can provide better non-linear mapping.

Why so deep?

- ✓ Deep makes more accurate results
- ✓ Deep networks can learn better
- ✓ Deep networks can provide better non-linear mapping

Is auto-encoder perfect for clustering?

Why so deep?

- ✓ Deep makes more accurate results
- ✓ Deep networks can learn better
- ✓ Deep networks can provide better non-linear mapping

Is auto-encoder perfect for clustering?

Not enough.

Clustering Based on Auto-encoder

Basic auto-encoder
$$\min_{W,b} \frac{1}{N} \sum_{i=1}^{N} \|x_i - x_i'\|^2$$

Clustering Based on Auto-encoder

proposed

✓ Restrains added to achieve compact distribution in feature layer

Algorithm

$$\min_{W,b} \frac{1}{N} \sum_{i=1}^{N} \|x_i - x_i'\|^2 - \lambda \cdot \sum_{i=1}^{N} \|f^t(x_i) - c_i^*\|^2$$
 (4)

$$c_i^* = \arg\min_{c_j^{t-1}} \|f^t(x_i) - c_j^{t-1}\|^2,$$
(5)

$$c_j^t = \frac{\sum_{x_i \in C_j^{t-1}} f^t(x_i)}{|C_j^{t-1}|},\tag{6}$$

Algorithm 1 Auto-encoder based data clustering algorithm

- 1: **Input:** Dataset X, the number of clusters K, hyper-parameter λ , the maximum number of iterations T.
- 2: **Initialize** sample assignment C^0 randomly.
- 3: **Set** *t* to 1.
- 4: repeat
- 5: Update the mapping network by minimizing Eqn. (4) with stochastic gradient descent for one epoch.
- 6: Update cluster center c^t via Eqn. (6).
- 7: Partition X into K clusters and update the sample assignment C^t via Eqn. (5).
- 8: t = t + 1.
- 9: **until** t > T
- 10: Output: Final sample assignment C.

Iteration

ACC: the cluster accuracy. Distance: the sum of distances between 10 clusters in feature layer.

epoch	ACC	Distance	Visu	ualizatio	n of 10) cluster	· center	s(the r	econstr	uction (of featu	ıre)
1	0.30	0.003	8	8	8	8	8	8	8	8	8	8
2	0.46	0.296	9	9	0	6	3	9	8	0	3	0
3	0.53	0.432	9	9	0	6	3	7	0	0	1	0
4	0.56	0.493	9	9	0	6	3	7	8	0	1	9
ŗ	0.59	0.515	9	9	$\boldsymbol{\mathscr{G}}$	6	3	7	Q	0	1	8
e	0.61	0.526	9	9	8	6	3	7	2	0	1	8
7	0.63	0.534	9	9	5	6	3	7	2	0	1	8
3	0.65	0.537	9	9	5	6	3	7	2	0	1	8
g	0.67	0.538	9	9	5	6	3	7	2	0	1	8
10	0.68	0.539	9	9	5	6	3	7	2	0	1	8

Test on MNIST datasets (including 60000 images with 28*28 resolution)

• Experiments

✓ Influence of the iteration number on three databases

✓ Performance comparison of clustering algorithms on three databases

Datasets MNIST		USPS			YaleB	
Criterion	NMI	ACC	NMI	ACC	NMI	ACC
K-means	0.494	0.535	0.615	0.674	0.866	0.793
Spectral	0.482	0.556	0.662	0.693	0.881	0.851
N-cut	0.507	0.543	0.657	0.696	0.883	0.821
Proposed	0.669	0.760	0.651	0.715	0.923	0.902

• Experiments

Distribution of data over ten clusters and the visualized images of cluster centers on MNIST

Experiments

Performance comparison in three different spaces with k-means

*Original means the images(pixel) space.

Auto-encoder means the feature space trained by auto-encoder nets.

Proposed means the feature space trained by restrains added auto-encoder nets.

Conclusions

- ✓ Auto-encoder can provide good non-linear mapping.
- ✓ Auto-encoder nets can provide data-stable network.
- ✓ Restrains added can ensure compact.

Conclusions

- ✓ Auto-encoder can provide good non-linear mapping.
- ✓ Auto-encoder nets can provide data-stable network.
- ✓ Restrains added can ensure compact.

Is good for clustering.

Thank you!

Any questions?