Artificial Intelligence Midterm Project

In this project, you will build a regression model and a classification model from scratch. Please follow the instructions closely, and only use Python's Numpy, Pandas, and matplotlib library to complete this project. Using functions from sklearn is not allowed.

Part I dues on Monday, March 22nd at 11:59 PM. Part II dues on Monday, April 12th at 11:59 PM.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
```

Part I: A Regression Model

In this part, please build a multilinear regression model that extracts the relationship between housing prices and other relevant variables. The training data is shown in the table below:

```
data1 = pd.DataFrame({
    "YearBuilt": [1974, 1996, 1968, 1962, 1960],
    "YearSold": [2015, 2017, 2020, 2010, 2016],
    "Bedrooms": [3, 10, 4, 5, 6],
    "TotalArea": [1500, 4000, 1700, 2500, 2000],
    "Quality": [7.5, 6, 4, 5.5, 5],
    "Price": [358500, 452600, 352100, 341300, 342200]
})
```

data1

₽		YearBuilt	YearSold	Bedrooms	TotalArea	Quality	Price
	0	1974	2015	3	1500	7.5	358500
	1	1996	2017	10	4000	6.0	452600
	2	1968	2020	4	1700	4.0	352100
	3	1962	2010	5	2500	5.5	341300
	4	1960	2016	6	2000	5.0	342200

▼ Task 1: Data Transformation (10 pts)

Create a new column named "Age" that represents the age of each house when it was sold.

```
# Your Code Here
data1["Age"] = data1["YearSold"] - data1["YearBuilt"]
data1
```

	YearBuilt	YearSold	Bedrooms	TotalArea	Quality	Price	Age
0	1974	2015	3	1500	7.5	358500	41
1	1996	2017	10	4000	6.0	452600	21
2	1968	2020	4	1700	4.0	352100	52
3	1962	2010	5	2500	5.5	341300	48
4	1960	2016	6	2000	5.0	342200	56

▼ Task 2: Train a Multilinear Model (20 pts)

Assume that the price can be expressed as a linear combination of age, bedrooms, total area, and quality:

$$Price = \theta_0 + \theta_1 \cdot Age + \theta_2 \cdot Bedrooms + \theta_3 \cdot TotalArea + \theta_4 \cdot Quality.$$

Apply the normal equation to find the best values for the parameters:

- 1. Construct matrix \mathbf{X} and \mathbf{y} (the matrices are defined in Week 6 notebook and Chapter 4 of the textbook).
- 2. Calculate the parameter vector using the normal equation $heta = \left(\mathbf{X}^T \cdot \mathbf{X} \right)^{-1} \cdot \mathbf{X}^T \cdot \mathbf{y}$

```
[452600]
[352100]
[341300]
[342200]]
Theta: [[ 5.92376387e+05]
[-3.83925328e+03]
[ 1.17271948e+04]
[-3.11089808e+01]
[-8.66468214e+03]]
```

▼ Task 3: Make A Prediction (10 pts)

Suppose that there is another house with the following attribute:

YearBuilt: 1985YearSold: 2021Bedrooms: 6Total Area: 2500Quality: 5.5

Use the parameter values that you have calculated to make a prediction on its sale price.

```
# Your Code Here
parameter_vector = np.array([ 5.92376387e+05, -3.83925328e+03,1.17271948e+04,-3.11089808e+01,
feature_vector = np.array([1, 36, 6, 2500, 5.5])
prediction = parameter_vector.dot(feature_vector)
print(prediction)

399098.23395
```

▼ Part II: A Classification Model

In this part, we will build a logistic regression model and evaluate its performance on the classifying the data. The dataset is as follows:

	x1	x2	class
0	5.0	2.0	1
1	6.2	3.4	1
2	4.9	3.6	0
3	6.2	2.2	1
4	5.7	3.0	1
5	1 A	2 <i>1</i>	Λ

▼ Task 1: Data Visualization (10 pts)

Visualize the data as a scatter plot. Show class 0 records as green dots and class 1 records as blue dots. Display the following items:

- Title of the plot: Distribution of the training data
- Label for x axis: x1
- Label for y axis: x2
- Legend
- # Your Code Here

▼ Task 2: Apply A Logistic Regression Model (10 pts)

Suppose that you are given a logistic regression model with explicity paramter values:

$$p = \sigma(\mathbf{x} \cdot \theta^T).$$

where

- p: the probability that the point belongs to class 1.
- $\mathbf{x} = (1, x_1, x_2)$.
- $\theta = (\theta_0, \theta_1, \theta_2) = (-2.15, 0.92, -0.82).$
- $\sigma(t)=rac{1}{1+e^{-t}}$

Find the model's prediction on the following test set:

	x1	x2	class
0	5.1	3.4	0
1	6.5	2.8	1
2	5.8	2.7	1
3	4.6	3.1	0

▼ Task 3: Model Evaluation (40 pts)

Calculate the following model metrics regarding the performance on the test set:

- · classification accuracy
- precision score
- · recall score
- F-1 score
- # Classification Accuracy
- # Precision Score
- # Recall Score
- # F-1 Score