UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DIRETORIA DE PESQUISA E PÓS GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

JÔNATAS TRABUCO BELOTTI

IMPLEMENTAÇÃO PROJETO PRÁTICO 5.9: MLP PARA CLASSIFICAÇÃO DE PADRÕES

RELATÓRIO

PONTA GROSSA 2017

JÔNATAS TRABUCO BELOTTI

IMPLEMENTAÇÃO PROJETO PRÁTICO 5.9: MLP PARA CLASSIFICAÇÃO DE PADRÕES

Relatório apresentado como requisito parcial à obtenção de nota na disciplina de Fundamentos de Redes Neurais Artificiais do Programa de Pós-Graduação em Engenharia Elétrica, da Universidade Tecnológica Federal do Paraná—Campus Ponta Grossa.

Professor: Prof. Dr. Sérgio Okida

SUMÁRIO

1	INTRODUÇÃO	3
1.1	ESTUDO DE CASO	3
	DESENVOLVIMENTO DO PROJETO	
2.1	TREINAMENTO COM ALGORITMO BACKPROPAGATION	5
2.2	TREINAMENTO COM ALGORITMO BACKPROPAGATION COM MOMENTUM	7
2.3	3 ANÁLISE DOS TREINAMENTOS	8
2.4	TESTE DA REDE	9
3	CONCLUSÃO	11
RE	FERÊNCIAS	12
AP	ÊNDICE A - IMPLEMENTAÇÃO DA CLASSE MLP EM JAVA	13
AN	EXO A - CONJUNTO DE TREINAMENTO	24
ΑN	EXO B - CONJUNTO DE TESTE	28

1 INTRODUÇÃO

O *Perceptron* de Múltiplas Camadas (PMC, ou MLP do inglês *Multilayer Perceptron*) é constituído por um conjunto de neurônios artificiais dispostos em varias camadas, de modo que o sinal de entrada se propaga para frente através da rede, camada por camada. Dentre suas camadas existe a camada de entrada que recebe os sinais de entrada, a camada de saída que entrega o resultado obtido pela rede e no meio dessas podem existir quantas camadas forem necessárias. Essas camadas são chamadas intermediárias ou ocultas (HAYKIN, 2001). Note que uma MLP é constituida de pelo menos 2 camadas neurais, sendo uma camada de saída e pelo menos 1 camada escondida (SILVA; SPATTI; FLAUZINO, 2010).

As MLPs são consideradas uma das arquiteturas mais versáteis quanto a aplicabilidade, sendo utilizadas em diversas áreas do conhecimento. Dentre as utilizações da MLP estão: aproximação universal de funções, reconhecimento de padrões, identificação e controle de processos, previsão de series temporais e otimização de sistemas (SILVA; SPATTI; FLAUZINO, 2010).

Esse relatório tem como objetivo descrever o desenvolvimento do Projeto Prático 5.9 do livro Redes neurais artificias para engenharia e ciências aplicadas de Silva, Spatti e Flauzino (2010), o projeto consiste na implementação, treinamento e teste de uma rede neural do tipo *Perceptron* Multicamadas para ser usada como classificadora de padrões com o objetivo de auxiliar no processamento de bebidas.

1.1 ESTUDO DE CASO

O projeto prático 5.9 do livro Redes neurais artificias para engenharia e ciências aplicadas de Silva, Spatti e Flauzino (2010), mostra que no processamento de bebidas, é aplicado um conservante à bebida em função da analise de 4 características medidas em cada lote de bebida, definidas por x_1 (teor de água), x_2 (grau de acidez), x_3 (temperatura) e x_4 (tensão interfacial). Existem apenas 3 possibilidades de conservantes para serem adicionados as bebidas, denotados por $\bf A$, $\bf B$ e $\bf C$.

O objetivo do projeto é o desenvolvimento, treinamento e teste de uma MLP que determine qual dos conservantes deve ser adicionado a cada lote de bebida a partir da análise das 4 características medidas. É determinada que a arquitetura da rede, que deve conter 4 sinais de entrada, 2 camadas neurais, sendo 15 neurônios na camada escondida e 3 neurônios na camada de saída. A Figura 1 mostra detalhadamente a arquitetura que a MLP deve ter para a realização do projeto.

Analisando a arquitetura proposta na Figura 1 nota-se que a MLP possuirá 3 sinais de saída, como a resposta da MLP deve ser o tipo de conservante (A, B ou C) se faz necessário padronizar quais combinações de saída representarão cada conservante. Essa padronização pode

Figura 1 – Arquitetura proposta rede *Perceptron* Multicamadas

Fonte: (SILVA; SPATTI; FLAUZINO, 2010).

ser vista na Tabela 1.

Tabela 1 – Padronização da saída da MLP

Tipo de conservante	$\mathbf{y_1}$	$\mathbf{y_2}$	y_3
Tipo A	1	0	0
Tipo B	0	1	0
Tipo C	0	0	1

Fonte: Autoria própria.

2 DESENVOLVIMENTO DO PROJETO

A rede MLP proposta na Seção 2.4 foi desenvolvida na linguagem Java, a classe MLP é a responsável por implementar o funcionamento da rede, seu código fonte está disponível no Apêndice A. Com o intuito de facilitar o acesso a rede desenvolvida todo o código fonte, juntamente com o programa já compilado e os arquivos de treinamento e de teste estão disponíveis em um repositório do *GitHub* ¹ que pode ser acessado pelo link https://github.com/jonatastbelotti/MLPClassificacaoPadrao.

As seções 2.1, 2.2, 2.3 e 2.4 apresentam as discussões a respeito dos treinamentos e testes realizados na MLP.

2.1 TREINAMENTO COM ALGORITMO BACKPROPAGATION

A rede neural Perceptron Multicamadas foi treinada utilizando o algoritmo de aprendizagem *backpropagation*. Para tanto os pesos sinápticos iniciais foram gerados de forma aleatória com valores entre 0 e 1. Os valores inciais dos pesos sinápticos são apresentados a seguir:

```
Pesos camada escondida:
N1 = 0,107536 \ 0,287204 \ 0,988448 \ 0,269921 \ 0,595165
N2 = 0,778432 \ 0,468819 \ 0,848750 \ 0,809264 \ 0,984074
N3 = 0,870440 \ 0,929182 \ 0,649449 \ 0,641384 \ 0,600356
N4 = 0,134505 0,718753 0,872210 0,824644 0,652206
N5 = 0,755379 \ 0,247501 \ 0,331459 \ 0,701983 \ 0,818383
N6 = 0,065348 \ 0,447899 \ 0,400095 \ 0,730609 \ 0,207458
N7 = 0,465652 \ 0,559282 \ 0,787082 \ 0,451635 \ 0,363438
N8 = 0,429271 \ 0,148211 \ 0,786839 \ 0,353487 \ 0,504985
N9 = 0,654516 \ 0,102525 \ 0,924824 \ 0,307877 \ 0,023243
N10 = 0,605466 \ 0,607867 \ 0,480391 \ 0,517105 \ 0,454927
N11 = 0,642867 \ 0,624359 \ 0,211529 \ 0,400999 \ 0,098983
N12 = 0,061225 0,929147 0,661139 0,761268 0,095299
N13 = 0,758948 \ 0,876337 \ 0,279626 \ 0,420834 \ 0,832334
N14 = 0,751103 \ 0,656794 \ 0,029495 \ 0,689504 \ 0,900353
N15 = 0,141663 0,346921 0,136945 0,501500 0,989760
Pesos camada de saída:
N1 = 0,355341 \ 0,970452 \ 0,581492 \ 0,354469 \ 0,143825 \ 0,317984 \ 0,156232
     0,780592 0,668531 0,642778 0,983764 0,386072 0,502407 0,639562
```

No repositório do GitHub o caminho para acessar a classe MLP.java é 'MLPClassificaoPadrao/src/Modelo/MLP.java'

```
0,392809 0,838261
N2 = 0,007120 \ 0,355295 \ 0,504662 \ 0,657817 \ 0,669543 \ 0,870788 \ 0,179184
     0,216368 0,310969 0,790655 0,184540 0,033314 0,499279 0,606461
     0,415555 0,622651
N3 = 0,772612 \ 0,721538 \ 0,466979 \ 0,192461 \ 0,217666 \ 0,555839 \ 0,505676
     0,957716 0,536568 0,685324 0,179671 0,691314 0,983315 0,412770
     0,252200 0,408747
```

Foram utilizadas uma taxa de aprendizagem $\eta = 0, 1$ e uma precisão de $\varepsilon = 10^{-6}$. O conjunto de dados utilizado para o treinamento da MLP está disponível no Anexo A.

A rede foi iniciada com um Erro quadrático médio de $E_{\rm qm}=0,969800$ e ao final de 7,13segundos o treinamento foi finalizado, tendo levado 1167 épocas para obter $E_{qm}=0,025987$.

```
Os pesos sinápticos obtidos ao final do treinamento foram:
Pesos camada escondida:
N1 = -1,510861 \ 0,088077 \ 0,566373 \ -0,324799 \ 0,183600
N2 = 9,523669 \ 2,555060 \ 3,787443 \ 4,998849 \ 3,577444
N3 = 7,589782 \ 3,520399 \ 5,458402 \ 5,619990 \ 3,920627
N4 = 4,907093 \ 2,808587 \ 4,240590 \ 3,951884 \ 2,922394
N5 = 4,963422 2,221356 4,043916 3,976752 3,265644
N6 = -0,226388 \ 0,561020 \ 0,857369 \ 0,641873 \ 0,383079
N7 = 6,813671 \ 2,049162 \ 2,741281 \ 3,374751 \ 2,467509
N8 = 0,066571 \ 0,249918 \ 1,001865 \ 0,292513 \ 0,644953
N9 = 0,548289 - 0,229772 0,527223 - 0,181457 - 0,468084
N10 = -1,980162 -0,423890 -1,213491 -1,518960 -1,018689
N11 = 4,743890 1,693819 1,762479 2,292896 1,713066
N12 = 4,001849 1,457595 1,813445 2,198073 1,125105
N13 = 5,027010 1,727022 1,737807 2,292377 2,174540
N14 = 5,671584 1,716370 1,858657 2,760279 2,490358
N15 = -2,381570 -0,745227 -1,577350 -1,661411 -0,724918
Pesos camada de saída:
N1 = -2,935681 0,996104 -3,221576 -4,831441 -2,296207 -3,823373 -0,643523
     -1,742724 -0,262937 0,455740 2,399089 -1,341618 -1,948689 -1,811138
     -1,974467 2,733235
N2 = 2,840502 -1,615977 -7,153427 8,517873 5,696752 4,820299 -1,341960
     -4,811377 -1,422140 -0,161324 -0,825257 -3,281889 -2,147716 -3,096454
     -3,801467 -0,563837
N3 = 6,791618 -1,701707 5,681341 1,158218 -1,585635 1,801072 -0,655237
```

4,039734 -0,323526 -0,677612 -3,162048 2,678222 2,728488 3,157097

3,287382 -3,453343

2.2 TREINAMENTO COM ALGORITMO BACKPROPAGATION COM MOMENTUM

A MLP também foi treinada com a utilização do algoritmo de aprendizagem *backpropagation* com *momentum*, que é uma variação do algoritmo de aprendizagem *backpropagation* utilizada na Seção 2.1. Para esse treinamento foram utilizadas as mesmas matrizes de pesos sinápticos iniciais geradas no treinamento da Seção 2.1. Foram utilizadas uma taxa de aprendizagem $\eta=0,1$, uma precisão de $\varepsilon=10^{-6}$ e fator *momentum* de $\alpha=0,9$.

A rede foi iniciada com um Erro quadrático médio de $E_{qm}=0,969800$ e ao final de 1,63 segundos o treinamento foi finalizado, tendo levado 285 épocas para obter $E_{qm}=0,027476$. Os pesos sinápticos obtidos ao final do treinamento foram:

```
Pesos camada escondida:
N1 = 0,364231 -0,101421 0,478615 -0,515954 0,050560
N2 = 5,744250 1,212367 2,394739 3,021475 2,333066
N3 = 3,580229 1,993885 2,992756 3,151278 2,242548
N4 = 5,273199 2,790674 3,928003 4,560609 3,062594
N5 = 4,146302 \ 0,870298 \ 1,483484 \ 2,253496 \ 1,862166
N6 = 0,285704 \ 0,087872 \ -0,111363 \ -0,103668 \ -0,338788
N7 = 2,588926 \ 0,737709 \ 1,262036 \ 1,129330 \ 0,830946
N8 = 1,320428 \ 0,101101 \ 0,805437 \ 0,294167 \ 0,504498
N9 = 1,388367 \ 0,114231 \ 1,003829 \ 0,358607 \ 0,047355
N10 = 1,612350 \ 0,604587 \ 0,545561 \ 0,574071 \ 0,535121
N11 = 1,439040 0,728675 0,331504 0,470565 0,230423
N12 = 0,867900 \ 0,859955 \ 0,680834 \ 0,720724 \ 0,019922
N13 = 4,175834 1,413048 1,391555 1,865061 1,814576
N14 = 4,111459 1,247607 1,159302 2,066459 1,907613
N15 = -0,005413 -0,131148 -0,702680 -0,600535 0,227005
Pesos camada de saída:
N1 = -9,858128 \ 0,740417 \ -7,236521 \ -8,399917 \ -4,192569 \ -4,444404 \ 1,294910
     -2,781377 -0,872503 -0,849482 -0,765183 -0,037756 -1,061603 -4,119547
     -3,645823 2,788173
N2 = 4,792244 -1,954569 -9,790357 9,205573 19,638707 -6,618097 -1,602220
     -4,128565 -2,710568 -2,269847 -2,980937 -2,647401 -0,663291 -6,989166
     -6,994032 -1,123327
N3 = 15,010818 -2,783439 9,925807 4,975526 -2,800946 7,104502 -2,854327
     3,528069 0,093214 0,188790 0,927912 0,314883 -0,053431 6,482948
     6,376826 -3,627838
```

2.3 ANÁLISE DOS TREINAMENTOS

Perceba que apesar de os 2 treinamentos das seções 2.1 e 2.2 terem sido iniciados com as mesmas matrizes de pesos sinápticos, as matrizes de pesos sinápticos resultantes, o Erro quadrático médio resultante, o número de épocas necessárias para o treinamento e o tempo necessário para o treinamento foram diferentes.

A adição do termo de *momentum* no treinamento da MLP resulta no aceleramento da conversão dos pesos sinápticos para os valores finais. De forma que quanto mais longe os pesos sinapticos estiverem dos valores finais maior será o ajuste sofrido por eles (SILVA; SPATTI; FLAUZINO, 2010). Isso fica evidente ao compararmos o número de épocas do treinamento sem *momentum* (1167 épocas) com o número de épocas do treinamento com *momentum* (285 épocas), a aceleração do treinamento pelo termo de *momentum* gerou um treinamento com 882 épocas a menos. Consequentemente, menos épocas resultam em um menor tempo necessário para o treinamento.

Os gráficos da Figura 2 apresentam a relação dos valores de Erro quadrático médio em função de cada época de treinamento, tanto para o treinamento com *momentum* como sem.

Figura 2 – Comparação dos treinamentos

Fonte: Autoria própria.

Analisando os gráficos da Figura 2 nota-se que o comportamento das duas curvas são

similares, ambas tem um período onde a velocidade de decaimento do E_{qm} é maior, e ao decorrer das épocas essa velocidade vai diminuindo até ser menor que a precisão estabelecida e o treinamento ter então o seu fim. No treinamento com *momentum* o período com maior velocidade de decaimento do E_{qm} vai da época 0 até a época 50, por sua vez no treinamento sem *momentum* esse período é compreendido entre as épocas 0 e 200.

Pelos gráficos da Figura 2 mais uma vez é possível notar que a velocidade de decaimento do E_{qm} é maior no treinamento realizado pelo algoritmo *backpropagation* com *momentum*.

2.4 TESTE DA REDE

Após o treinamento da rede a mesma foi submetida a um teste, com o objetivo de validar o poder de abstração da rede obtido pelo processo de treinamento. O teste foi realizado mediante a comparação dos valores fornecidos pela rede com os valores desejadas para cada amostra de teste. A Tabela 2 apresenta o conjunto de teste utilizado. Esse mesmo conjunto de teste está disponível no Anexo B.

Tabela 2 – Conjunto de padrões de teste

Amostra	X ₁	$\mathbf{x_2}$	X ₃	$\mathbf{x_4}$	d_1	$\mathbf{d_2}$	d_3
1	0,8622	0,7101	0,6236	0,7894	0	0	1
2	0,2741	0,1552	0,1333	0,1516	1	0	0
3	0,6772	0,8516	0,6543	0,7573	0	0	1
4	0,2178	0,5039	0,6415	0,5039	0	1	0
5	0,7260	0,7500	0,7007	0,4953	0	0	1
6	0,2473	0,2941	0,4248	0,3087	1	0	0
7	0,5682	0,5683	0,5054	0,4426	0	1	0
8	0,6566	0,6715	0,4952	0,3951	0	1	0
9	0,0705	0,4717	0,2921	0,2954	1	0	0
10	0,1187	0,2568	0,3140	0,3037	1	0	0
11	0,5673	0,7011	0,4083	0,5552	0	1	0
12	0,3164	0,2251	0,3526	0,2560	1	0	0
13	0,7884	0,9568	0,6825	0,6398	0	0	1
14	0,9633	0,7850	0,6777	0,6059	0	0	1
15	0,7739	0,8505	0,7934	0,6626	0	0	1
16	0,4219	0,4136	0,1408	0,0940	1	0	0
17	0,6616	0,4365	0,6597	0,8129	0	0	1
18	0,7325	0,4761	0,3888	0,5683	0	1	0

Fonte: Adaptado de Silva, Spatti e Flauzino (2010).

A rede foi testada tanto com o treinamento realizado por meio do algoritmo de aprendizagem *backpropagation* (Seção 2.1) como com o treinamento realizado por meio do algoritmo de aprendizagem *backpropagation* com *momentum* (Seção 2.2). Os resultados obtidos pelos pesos de cada treinamento para cada uma das amostras de teste da Tabela 2 podem ser vistos na Tabela 3.

Tabela 3 – Conjunto de padrões de teste

Amostro	$\mathbf{d_1}$	d_2	d_3		propag			omenti	
Amostra		$\mathbf{u_2}$	u ₃	$\mathbf{y_1^{pós}}$	$\mathbf{y}_{2}^{ ext{pós}}$	$\mathbf{y_3^{pós}}$	$\mathbf{y_1^{pós}}$	$\mathbf{y}_{2}^{ ext{pós}}$	$\mathbf{y}_{3}^{ ext{pós}}$
1	0	0	1	0	0	1	0	0	1
2	1	0	0	1	0	0	1	0	0
3	0	0	1	0	0	1	0	0	1
4	0	1	0	0	1	0	0	1	0
5	0	0	1	0	0	1	0	0	1
6	1	0	0	1	0	0	1	0	0
7	0	1	0	0	1	0	0	1	0
8	0	1	0	0	1	0	0	1	0
9	1	0	0	1	0	0	1	0	0
10	1	0	0	1	0	0	1	0	0
11	0	1	0	0	1	0	0	1	0
12	1	0	0	1	0	0	1	0	0
13	0	0	1	0	0	1	0	0	1
14	0	0	1	0	0	1	0	0	1
15	0	0	1	0	0	1	0	0	1
16	1	0	0	1	0	0	1	0	0
17	0	0	1	0	0	1	0	0	1
18	0	1	0	0	1	0	0	1	0
Total de	acer	tos (°	7o)		100%			100%	

Fonte: Autoria própria.

Na Tabela 3 além da resposta fornecida pela MLP (após o pós-processamento) mediante cada treinamento é possível verificar o porcentual de acerto de cada treinamento. Apesar dos valores de Erro quadrático médio obtidos pelos treinamentos com o algoritmo *backpropagation* e *backpropagation* com *momentum* terem sido diferentes, os 2 treinamentos apresentaram o mesmo resultado no teste, ambos obtiveram porcentagem de acertado de 100% em todos os testes realizados.

3 CONCLUSÃO

Foi desenvolvida uma rede neural Perceptron multicamadas composta por 4 sinais de entrada, 1 camada escondida com 15 neurônios e 1 camada de saída com 3 neurônio para ser usada como classificadora de padrões no processo de produção de bebidas. A rede foi treinada utilizando o algoritmo de aprendizagem backpropagation obtendo $E_{qm}=0,025987$ ao final de 1167 épocas de treinamento. Também foi realizado um treinamento com o algoritmo de aprendizagem backpropagation com momentum, obtendo $E_{qm}=0,027476$ ao fim de 285 épocas.

Conclui-se que o melhor treinamento para a MLP proposta é o obtido através do algoritmo de aprendizagem backpropagation com momentum, pois apesar dos 2 treinamentos terem obtido porcentagem de acerto de 100% nos testes o treinamento com momentum foi executado com 882 épocas a menos.

REFERÊNCIAS

HAYKIN, Simon. **Redes Neurais: principios e prática**. 2. ed. Porto Alegre: Bookman, 2001. ISBN 978-85-7307-718-6.

SILVA, Ivan Nunes da; SPATTI, Danilo Hernane; FLAUZINO, Rogério Andrade. **Redes Neurais Artificiais Para Engenharia e Cincias Aplicadas - Curso Pratico**. 1. ed. São Paulo: ARTLIBER, 2010. ISBN 978-85-88098-53-4.

APÊNDICE A - IMPLEMENTAÇÃO DA CLASSE MLP EM JAVA

```
1 package Modelo;
   import Controle.Comunicador;
4 import Recursos. Arquivo;
  import java.io.BufferedReader;
6 import java.io.FileNotFoundException;
   import java.io.FileReader;
8 import java.io.IOException;
   import java.util.Random;
10
  /**
    * @author Jônatas Trabuco Belotti [jonatas.t.belotti@hotmail.com]
   */
  public class MLP {
     public static final int NUM_ENTRADAS = 4;
     private final int NUM_NEU_CAMADA_ESCONDIDA = 15;
18
     public static final int NUM_NEU_CAMADA_SAIDA = 3;
     private final double TAXA_APRENDIZAGEM = 0.1;
20
     private final double PRECISAO = 0.000001;
     private final double FATOR_MOMENTUM = 0.9;
22
     private final double BETA = 1.0;
24
     private int numEpocas;
     private double fatorMomentum;
26
     private double[] entradas;
     private double[][] pesosCamadaEscondidaInicial;
28
     private double[][] pesosCamadaEscondida;
     private double[][] pesosCamadaEscondidaProximo;
30
     private double[][] pesosCamadaEscondidaAnterior;
     private double[][] pesosCamadaSaidaInicial;
32
     private double[][] pesosCamadaSaida;
     private double[][] pesosCamadaSaidaProximo;
34
     private double[][] pesosCamadaSaidaAnterior;
     private double[] potencialCamadaEscondida;
36
     private double[] saidaCamadaEscondida;
    private double[] potencialCamadaSaida;
38
     private double[] saidaCamadaSaida;
```

```
private double[] saidaEsperada;
40
     private double[] gradienteCamadaSaida;
     private double[] gradienteCamadaEscondida;
42
     public MLP() {
44
       Random random;
46
       entradas = new double[NUM_ENTRADAS + 1];
       pesosCamadaEscondidaInicial = new double[
48
          NUM_NEU_CAMADA_ESCONDIDA][NUM_ENTRADAS + 1];
       pesosCamadaEscondida = new double[NUM_NEU_CAMADA_ESCONDIDA][
          NUM_ENTRADAS + 1];
50
       pesosCamadaEscondidaAnterior = new double[
          NUM_NEU_CAMADA_ESCONDIDA][NUM_ENTRADAS + 1];
       pesosCamadaEscondidaProximo = new double[
          NUM_NEU_CAMADA_ESCONDIDA][NUM_ENTRADAS + 1];
       pesosCamadaSaidaInicial = new double[NUM_NEU_CAMADA_SAIDA][
52
          NUM_NEU_CAMADA_ESCONDIDA + 1];
       pesosCamadaSaida = new double[NUM_NEU_CAMADA_SAIDA][
          NUM_NEU_CAMADA_ESCONDIDA + 1];
       pesosCamadaSaidaAnterior = new double[NUM_NEU_CAMADA_SAIDA][
54
          NUM_NEU_CAMADA_ESCONDIDA + 1];
       pesosCamadaSaidaProximo = new double[NUM_NEU_CAMADA_SAIDA][
          NUM_NEU_CAMADA_ESCONDIDA + 1];
       potencialCamadaEscondida = new double[NUM_NEU_CAMADA_ESCONDIDA
56
       saidaCamadaEscondida = new double[NUM_NEU_CAMADA_ESCONDIDA +
       potencialCamadaSaida = new double[NUM_NEU_CAMADA_SAIDA];
58
       saidaCamadaSaida = new double[NUM_NEU_CAMADA_SAIDA];
       saidaEsperada = new double[NUM_NEU_CAMADA_SAIDA];
60
       gradienteCamadaSaida = new double[NUM_NEU_CAMADA_SAIDA];
       gradienteCamadaEscondida = new double[NUM_NEU_CAMADA_ESCONDIDA
62
          ];
       //Iniciando pesos sinapticos
64
       Comunicador.iniciarLog("Iniciando os pesos sinapticos");
       random = new Random();
66
       for (int i = 0; i < NUM_NEU_CAMADA_ESCONDIDA; i++) {</pre>
68
         for (int j = 0; j < NUM_ENTRADAS + 1; j++) {
70
           pesosCamadaEscondidaInicial[i][j] = random.nextDouble();
```

```
}
       }
72.
       for (int i = 0; i < NUM_NEU_CAMADA_SAIDA; i++) {</pre>
74
          for (int j = 0; j < NUM_NEU_CAMADA_ESCONDIDA + 1; j++) {</pre>
            pesosCamadaSaidaInicial[i][j] = random.nextDouble();
76
          }
       }
78
        \verb|copiarMatriz| (pesosCamadaEscondidaInicial, pesosCamadaEscondida)| \\
80
        copiarMatriz(pesosCamadaSaidaInicial, pesosCamadaSaida);
82
        imprimirPesos();
     }
84
     public boolean treinar(Arquivo arquivoTreinamento) {
        Comunicador.limparLog();
86
       return treinar(arquivoTreinamento, false);
     }
88
     public boolean treinar(Arquivo arquivoTreinamento, boolean
90
        momentum) {
       FileReader arq;
       BufferedReader lerArq;
92
       String linha;
       double erroAtual;
94
        double erroAnterior;
        long tempInicial;
96
        \verb|copiarMatriz| (pesosCamadaEscondidaInicial, pesosCamadaEscondida)| \\
98
        copiarMatriz(pesosCamadaSaidaInicial, pesosCamadaSaida);
        copiarMatriz(pesosCamadaEscondidaInicial,
100
           pesosCamadaEscondidaAnterior);
        copiarMatriz(pesosCamadaSaidaInicial, pesosCamadaSaidaAnterior)
102
        tempInicial = System.currentTimeMillis();
        numEpocas = 0;
104
        erroAtual = erroQuadraticoMedio(arquivoTreinamento);
106
       if (!momentum) {
```

```
108
          fatorMomentum = OD;
          Comunicador.iniciarLog("Início treinamento da MLP");
110
       } else {
          fatorMomentum = FATOR_MOMENTUM;
          Comunicador.iniciarLog("Início treinamento com MOMENTUM da
112
             MLP");
       }
114
        Comunicador.addLog(String.format("Erro inicial: %.6f",
           erroAtual).replace(".", ","));
        imprimirPesos();
116
        Comunicador.addLog("Época Eqm");
118
       try {
          do {
120
            this.numEpocas++;
            erroAnterior = erroAtual;
122
            arq = new FileReader(arquivoTreinamento.getCaminhoCompleto
            lerArq = new BufferedReader(arq);
124
            linha = lerArq.readLine();
126
            if (linha.contains("x1")) {
              linha = lerArq.readLine();
128
            }
130
            while (linha != null) {
              separarEntradas(linha);
132
              calcularSaidas();
134
              ajustarPesos();
136
              linha = lerArq.readLine();
138
            }
140
            arq.close();
142
            erroAtual = erroQuadraticoMedio(arquivoTreinamento);
            Comunicador.addLog(String.format("%d
                                                      %.6f", numEpocas,
               erroAtual).replace(".", ","));
          } while (Math.abs(erroAtual - erroAnterior) > PRECISAO &&
144
             numEpocas < 10000);</pre>
```

```
Comunicador.addLog(String.format("Fim do treinamento. (%.2fs)
146
             ", (double) (System.currentTimeMillis() - tempInicial) /
             1000D));
          imprimirPesos();
       } catch (FileNotFoundException ex) {
148
          return false;
       } catch (IOException ex) {
150
          return false;
       }
152
       return true;
154
     }
156
     public boolean treinarMomentum(Arquivo arquivoTreinamento) {
       return treinar(arquivoTreinamento, true);
158
     }
160
     public void testar(Arquivo arquivoTreinamento) {
       FileReader arq;
162
       BufferedReader lerArq;
       String linha;
164
       String esperada;
       String resposta;
166
       boolean errou;
       int amostrasErradas;
168
       int numAmostras;
       double porcAcerto;
170
       numAmostras = 0;
172
        amostrasErradas = 0;
174
       Comunicador.iniciarLog("Início teste da MLP");
       Comunicador.addLog("d1 d2 d3 -- y1 y2 y3");
176
178
       try {
          arq = new FileReader(arquivoTreinamento.getCaminhoCompleto())
          lerArq = new BufferedReader(arq);
180
          linha = lerArq.readLine();
182
          if (linha.contains("x1")) {
```

```
184
           linha = lerArq.readLine();
         }
186
         while (linha != null) {
           numAmostras++;
188
           separarEntradas(linha);
190
           calcularSaidas();
192
           esperada = "";
           resposta = "";
194
           errou = false;
           for (int i = 0; i < NUM_NEU_CAMADA_SAIDA; i++) {</pre>
196
             esperada += String.format("%.0f     ", saidaEsperada[i]);
             198
                saidaCamadaSaida[i]));
             if (saidaEsperada[i] != posProcessamento(saidaCamadaSaida
200
                [i])) {
               errou = true;
             }
202
           }
204
           if (errou) {
             amostrasErradas++;
206
           }
208
           Comunicador.addLog(esperada + " -- " + resposta);
210
           linha = lerArq.readLine();
         }
212
         arq.close();
214
         porcAcerto = (100D / numAmostras) * ((numAmostras -
            amostrasErradas));
216
         Comunicador.addLog(String.format("Total de acertos: %d/%d
            (\%.2f\%)", (numAmostras - amostrasErradas), numAmostras,
            porcAcerto));
       } catch (FileNotFoundException ex) {
       } catch (IOException ex) {
218
       }
220
     }
```

```
private double erroQuadraticoMedio(Arquivo arquivo) {
222
        FileReader arq;
        BufferedReader lerArq;
224
        String linha;
        int numAmostras;
226
        double erroMedio;
        double valorParcial;
228
        erroMedio = OD;
230
        numAmostras = 0;
232
        try {
          arq = new FileReader(arquivo.getCaminhoCompleto());
234
          lerArq = new BufferedReader(arq);
236
          linha = lerArq.readLine();
          if (linha.contains("x1")) {
238
            linha = lerArq.readLine();
          }
240
          while (linha != null) {
242
            numAmostras++;
            separarEntradas(linha);
244
            calcularSaidas();
246
            //Calculando erro
248
            valorParcial = 0D;
            for (int i = 0; i < saidaCamadaSaida.length; i++) {</pre>
250
              valorParcial = valorParcial + Math.pow((double) (
                 saidaEsperada[i] - saidaCamadaSaida[i]), 2D);
252
            erroMedio = erroMedio + (valorParcial / 2D);
254
            linha = lerArq.readLine();
          }
256
          arq.close();
258
          erroMedio = erroMedio / (double) numAmostras;
260
        } catch (FileNotFoundException ex) {
```

```
} catch (IOException ex) {
262
        }
264
        return erroMedio;
      }
266
      private void separarEntradas(String linha) {
268
        String[] vetor;
        int i;
270
        vetor = linha.split("\\s+");
272
        i = 0;
274
        if (vetor[0].equals("")) {
          i = 1;
276
        }
278
        entradas[0] = -1.0;
        for (int j = 1; j <= NUM_ENTRADAS; j++) {</pre>
280
          entradas[j] = Double.parseDouble(vetor[i++].replace(",", ".")
             );
        }
282
        for (int j = 0; j < NUM_NEU_CAMADA_SAIDA; j++) {</pre>
          saidaEsperada[j] = Double.parseDouble(vetor[i++].replace(",",
284
              "."));
        }
      }
286
      private void calcularSaidas() {
288
        double valorParcial;
290
        //Calculando saidas da camada escondida
        saidaCamadaEscondida[0] = -1D;
292
        potencialCamadaEscondida[0] = -1D;
294
        for (int i = 1; i < saidaCamadaEscondida.length; i++) {</pre>
          valorParcial = 0D;
296
          for (int j = 0; j < entradas.length; <math>j++) {
298
            valorParcial += entradas[j] * pesosCamadaEscondida[i - 1][j
                ];
300
          }
```

```
potencialCamadaEscondida[i] = valorParcial;
302
          saidaCamadaEscondida[i] = funcaoLogistica(valorParcial);
       }
304
        //Calculando saida da camada de saída
306
        for (int i = 0; i < saidaCamadaSaida.length; i++) {</pre>
          valorParcial = 0D;
308
          for (int j = 0; j < saidaCamadaEscondida.length; j++) {</pre>
310
            valorParcial += saidaCamadaEscondida[j] * pesosCamadaSaida[
               i][j];
          }
312
          potencialCamadaSaida[i] = valorParcial;
314
          saidaCamadaSaida[i] = funcaoLogistica(valorParcial);
       }
316
     }
318
     private void ajustarPesos() {
        //Ajustando pesos sinapticos da camada de saida
320
       for (int i = 0; i < gradienteCamadaSaida.length; i++) {</pre>
          gradienteCamadaSaida[i] = (saidaEsperada[i] -
322
             saidaCamadaSaida[i]) * funcaoLogisticaDerivada(
             potencialCamadaSaida[i]);
          for (int j = 0; j < NUM_NEU_CAMADA_ESCONDIDA + 1; j++) {
324
            pesosCamadaSaidaProximo[i][j] = pesosCamadaSaida[i][j] +
                    (fatorMomentum * (pesosCamadaSaida[i][j] -
326
                        pesosCamadaSaidaAnterior[i][j])) +
                    (TAXA_APRENDIZAGEM * gradienteCamadaSaida[i] *
                        saidaCamadaEscondida[j]);
328
         }
       }
330
        //Ajustando pesos sinapticos da camada escondida
        for (int i = 0; i < gradienteCamadaEscondida.length; i++) {
332
          gradienteCamadaEscondida[i] = OD;
          for (int j = 0; j < NUM_NEU_CAMADA_SAIDA; j++) {
334
            gradienteCamadaEscondida[i] += gradienteCamadaSaida[j] *
               pesosCamadaSaida[j][i + 1];
336
          }
```

```
gradienteCamadaEscondida[i] *= funcaoLogisticaDerivada(
             potencialCamadaEscondida[i + 1]);
338
          for (int j = 0; j < NUM_ENTRADAS + 1; j++) {
            pesosCamadaEscondidaProximo[i][j] = pesosCamadaEscondida[i
340
               ][j] +
                    (fatorMomentum * (pesosCamadaEscondida[i][j] -
                        pesosCamadaEscondidaAnterior[i][j])) +
                    (TAXA_APRENDIZAGEM * gradienteCamadaEscondida[i] *
342
                        entradas[j]);
         }
       }
344
        //Copiando pesos
346
        copiarMatriz(pesosCamadaEscondida, pesosCamadaEscondidaAnterior
           );
348
        copiarMatriz(pesosCamadaEscondidaProximo, pesosCamadaEscondida)
        copiarMatriz(pesosCamadaSaida, pesosCamadaSaidaAnterior);
        copiarMatriz(pesosCamadaSaidaProximo, pesosCamadaSaida);
350
     }
352
     private void copiarMatriz(double[][] origem, double[][] destino)
        {
       for (int i = 0; i < origem.length; i++) {</pre>
354
          for (int j = 0; j < origem[i].length; j++) {</pre>
            if (destino.length > i) {
356
              if (destino[i].length > j) {
                destino[i][j] = origem[i][j];
358
              }
            }
360
          }
       }
362
     }
364
     private double funcaoLogistica(double valor) {
       return 1D / (1D + Math.pow(Math.E, -1D * BETA * valor));
366
     }
368
     private double funcaoLogisticaDerivada(double valor) {
       return (BETA * Math.pow(Math.E, -1D * BETA * valor)) / Math.pow
370
           ((Math.pow(Math.E, -1D * BETA * valor) + 1D), 2D);
```

```
}
372
      private int posProcessamento(double valor) {
        int resposta = 0;
374
        if (valor \geq 0.5) {
376
          resposta = 1;
        }
378
        return resposta;
380
     }
382
      private void imprimirPesos() {
        String log;
384
        Comunicador.addLog("Pesos camada escondida:");
386
        for (int i = 0; i < NUM_NEU_CAMADA_ESCONDIDA; i++) {</pre>
388
          log = "N" + (i + 1) + " = ";
390
          for (int j = 0; j < NUM_ENTRADAS + 1; j++) {
            log += String.format(" %f", pesosCamadaEscondida[i][j]);
392
          }
394
          Comunicador.addLog(log);
        }
396
        Comunicador.addLog("Pesos camada de saída:");
398
        for (int i = 0; i < NUM_NEU_CAMADA_SAIDA; i++) {</pre>
          log = "N" + (i + 1) + " = ";
400
          for (int j = 0; j < NUM_NEU_CAMADA_ESCONDIDA + 1; j++) {
402
            log += String.format(" %f", pesosCamadaSaida[i][j]);
          }
404
406
          Comunicador.addLog(log);
        }
408
     }
410 }
```

ANEXO A - CONJUNTO DE TREINAMENTO

x 1	x 2	x 3	x4	d1	d2	d3
0.3841	0.2021	0	0.2438	1.0000	0	0
0.1765	0.1613	0.3401	0.0843	1.0000	0	0
0.3170	0.5786	0.3387	0.4192	0	1.0000	0
0.2467	0.0337	0.2699	0.3454	1.0000	0	0
0.6102	0.8192	0.4679	0.4762	0	1.0000	0
0.7030	0.7784	0.7482	0.6562	0	0	1.0000
0.4767	0.4348	0.4852	0.3640	0	1.0000	0
0.7589	0.8256	0.6514	0.6143	0	0	1.0000
0.1579	0.3641	0.2551	0.2919	1.0000	0	0
0.5561	0.5602	0.5605	0.2105	0	1.0000	0
0.3267	0.2974	0.0343	0.1466	1.0000	0	0
0.2303	0.0942	0.3889	0.1713	1.0000	0	0
0.2953	0.2963	0.2600	0.3039	1.0000	0	0
0.5797	0.4789	0.5780	0.3048	0	1.0000	0
0.5860	0.5250	0.4792	0.4021	0	1.0000	0
0.7045	0.6933	0.6449	0.6623	0	0	1.0000
0.9134	0.9412	0.6078	0.5934	0	0	1.0000
0.2333	0.4943	0.2525	0.2567	1.0000	0	0
0.2676	0.4172	0.2775	0.2721	1.0000	0	0
0.4850	0.5506	0.5269	0.6036	0	1.0000	0
0.2434	0.2567	0.2312	0.2624	1.0000	0	0
0.1250	0.3023	0.1826	0.3168	1.0000	0	0
0.5598	0.4253	0.4258	0.3192	0	1.0000	0
0.5738	0.7674	0.6154	0.4447	0	0	1.0000
0.5692	0.8368	0.5832	0.4585	0	0	1.0000
0.4655	0.7682	0.3221	0.2940	0	1.0000	0
0.5568	0.7592	0.6293	0.5453	0	1.0000	0
0.8842	0.7509	0.5723	0.5814	0	0	1.0000
0.7959	0.9243	0.7339	0.7334	0	0	1.0000
0.7124	0.7128	0.6065	0.6668	0	0	1.0000
0.6749	0.8767	0.6543	0.7461	0	0	1.0000
0.3674	0.4359	0.4230	0.2965	1.0000	0	0
0.3473	0.0754	0.2183	0.1905	1.0000	0	0
0.6931	0.5188	0.5386	0.5794	0	1.0000	0
0.6439	0.4959	0.4322	0.4582	0	1.0000	0
0.5627	0.4893	0.6831	0.5120	0	1.0000	0

0	1.0000	0	0.4538	0.6368	0.7553	0.5182
0	1.0000	0	0.4375	0.6542	0.7479	0.6046
1.0000	0	0	0.6183	0.7751	0.6786	0.6328
0	0	1.0000	0.2977	0.2855	0.4694	0.3429
0	1.0000	0	0.4520	0.5316	0.5069	0.6371
1.0000	0	0	0.7677	0.6407	0.6970	0.6388
0	1.0000	0	0.4828	0.3706	0.5504	0.3529
0	1.0000	0	0.4319	0.6397	0.3237	0.4302
1.0000	0	0	0.6399	0.7470	0.9604	0.7078
1.0000	0	0	0.6279	0.7227	0.8170	0.7350
0	1.0000	0	0.4312	0.6625	0.2946	0.7011
0	1.0000	0	0.3663	0.6363	0.3817	0.5961
0	0	1.0000	0.3027	0.2603	0.2563	0
1.0000	0	0	0.6548	0.6965	0.5704	0.5996
0	1.0000	0	0.3656	0.3994	0.3709	0.4289
0	0	1.0000	0.1802	0.3334	0.3655	0.2093
0	0	1.0000	0.1601	0.3912	0.2856	0.2335
0	1.0000	0	0.3448	0.4356	0.7751	0.3266
0	0	1.0000	0.2206	0.1228	0.1203	0.2457
0	1.0000	0	0.4862	0.4211	0.4815	0.4656
1.0000	0	0	0.6253	0.5408	0.8868	0.7511
1.0000	0	0	0.6996	0.6510	0.9386	0.7825
0	0	1.0000	0.0454	0.2507	0.4118	0.3463
0	0	1.0000	0.2323	0.3172	0.1482	0.5172
0	1.0000	0	0.5983	0.5387	0.4516	0.6942
1.0000	0	0	0.7509	0.7120	0.7017	0.7586
0	1.0000	0	0.4320	0.6602	0.6004	0.6880
0	1.0000	0	0.4161	0.4135	0.5079	0.4742
0	1.0000	0	0.4497	0.4515	0.5761	0.4419
0	0	1.0000	0.1678	0.2336	0.4333	0.3367
0	0	1.0000	0.4873	0.1507	0.4604	0.4744
0	1.0000	0	0.4831	0.5453	0.4350	0.7510
0	1.0000	0	0.5573	0.2534	0.5636	0.4045
0	0	1.0000	0.0559	0.2446	0.1539	0.1449
0	0	1.0000	0.5049	0.1866	0.2722	0.3460
0	0	1.0000	0.2891	0.3575	0.2046	0.2241
0	0	1.0000	0.2661	0.4025	0.2264	0.1412
1.0000	0	0	0.6396	0.7212	0.6418	0.5782
1.0000	0	0	0.6689	0.8229	0.6571	0.9153
1.0000	0	0	0.5513	0.6385	0.7664	0.6014

0.7328	0.8708	0.8812	0.7060	0	0	1.0000
0.4270	0.6352	0.6811	0.3884	0	1.0000	0
0.6189	0.1652	0.4016	0.3042	1.0000	0	0
0.2143	0.3868	0.1926	0	1.0000	0	0
0.5696	0.7238	0.7199	0.6677	0	0	1.0000
0.8656	0.6700	0.6570	0.6065	0	0	1.0000
0.9002	0.6858	0.7409	0.7047	0	0	1.0000
0.4167	0.5255	0.5506	0.4093	0	1.0000	0
0.8325	0.4804	0.7990	0.7471	0	0	1.0000
0.4124	0.1191	0.4720	0.3184	1.0000	0	0
1.0000	1.0000	0.7924	0.7074	0	0	1.0000
0.5685	0.6924	0.6180	0.5792	0	1.0000	0
0.6505	0.4864	0.2972	0.4599	0	1.0000	0
0.8124	0.7690	0.9720	1.0000	0	0	1.0000
0.9013	0.7160	1.0000	0.8046	0	0	1.0000
0.8872	0.7556	0.9307	0.6791	0	0	1.0000
0.3708	0.2139	0.2136	0.4295	1.0000	0	0
0.5159	0.4349	0.3715	0.4086	0	1.0000	0
0.6768	0.6304	0.8044	0.4885	0	0	1.0000
0.1664	0.2404	0.2000	0.3425	1.0000	0	0
0.2495	0.2807	0.4679	0.2200	1.0000	0	0
0.2487	0.2348	0.0913	0.1281	1.0000	0	0
0.5748	0.8552	0.5973	0.7317	0	0	1.0000
0.3858	0.7585	0.3239	0.3565	0	1.0000	0
0.3329	0.4946	0.5614	0.3152	0	1.0000	0
0.3891	0.4805	0.7598	0.4231	0	1.0000	0
0.2888	0.4888	0.1930	0.0177	1.0000	0	0
0.3827	0.4900	0.2272	0.3599	0	1.0000	0
0.6047	0.4224	0.6274	0.5809	0	1.0000	0
0.9840	0.7031	0.6469	0.4701	0	0	1.0000
0.6554	0.6785	0.9279	0.7723	0	0	1.0000
0.0466	0.3388	0.0840	0.0762	1.0000	0	0
0.6154	0.8196	0.6339	0.7729	0	0	1.0000
0.8452	0.8897	0.8383	0.6961	0	0	1.0000
0.6927	0.7870	0.7689	0.7213	0	0	1.0000
0.4032	0.6188	0.4930	0.5380	0	1.0000	0
0.4006	0.3094	0.3868	0.0811	1.0000	0	0
0.7416	0.7138	0.6823	0.6067	0	0	1.0000
0.7404	0.6764	0.8293	0.4694	0	0	1.0000
0.7736	0.7097	0.6826	0.8142	0	0	1.0000

0	1.0000	0	0.5636	0.3706	0.9635	0.5823
0	0	1.0000	0.3552	0.3119	0.3738	0.2081
1.0000	0	0	0.6650	0.5186	0.8972	0.5616
1.0000	0	0	0.7157	0.6000	0.8907	0.6594
0	0	1.0000	0.1220	0.3637	0.3070	0.3979
0	0	1.0000	0.1931	0.3572	0	0.2644
0	1.0000	0	0.5889	0.4213	0.4791	0.4816
0	0	1.0000	0.3328	0.4349	0.0749	0.0848
0	1.0000	0	0.3016	0.3533	0.6775	0.4608
0	1.0000	0	0.5404	0.5310	0.6589	0.4155
0	1.0000	0	0.4324	0.4817	0.6244	0.3934
1.0000	0	0	0.7133	0.8576	0.8517	0.5843
0	0	1.0000	0.3462	0.3537	0.3690	0.1995
0	0	1.0000	0.2450	0.0341	0.2321	0.3832

ANEXO B - CONJUNTO DE TESTE

x 1	x 2	хЗ	x4	d1	d2	d3
0.8622	0.7101	0.6236	0.7894	0	0	1.0000
0.2741	0.1552	0.1333	0.1516	1.0000	0	0
0.6772	0.8516	0.6543	0.7573	0	0	1.0000
0.2178	0.5039	0.6415	0.5039	0	1.0000	0
0.7260	0.7500	0.7007	0.4953	0	0	1.0000
0.2473	0.2941	0.4248	0.3087	1.0000	0	0
0.5682	0.5683	0.5054	0.4426	0	1.0000	0
0.6566	0.6715	0.4952	0.3951	0	1.0000	0
0.0705	0.4717	0.2921	0.2954	1.0000	0	0
0.1187	0.2568	0.3140	0.3037	1.0000	0	0
0.5673	0.7011	0.4083	0.5552	0	1.0000	0
0.3164	0.2251	0.3526	0.2560	1.0000	0	0
0.7884	0.9568	0.6825	0.6398	0	0	1.0000
0.9633	0.7850	0.6777	0.6059	0	0	1.0000
0.7739	0.8505	0.7934	0.6626	0	0	1.0000
0.4219	0.4136	0.1408	0.0940	1.0000	0	0
0.6616	0.4365	0.6597	0.8129	0	0	1.0000
0.7325	0.4761	0.3888	0.5683	0	1.0000	0