Systèmes dynamiques

Feuille d'exercices 2

Exercice 1. Familles d'applications transitives

Soit X un espace topologique séparable, localement compact et sans points isolés. Soit $(f_i)_{i \in \mathbb{N}}$ une famille d'applications continues et topologiquement transitives. Montrer qu'il existe $x \in X$ tel que $\omega_{f_i}(x) = X$ pour tout $i \in \mathbb{N}$.

Exercice 2. Transformations minimales

Soit X un espace topologique séparé. On dira qu'une transformation continue $f:X\to X$ est minimale si pour tout fermé non vide $Y\subset X$ on a

$$f(Y) \subset Y \implies Y = X.$$

On dira qu'une partie fermée invariante $Y \subset X$ est minimale pour f si $f|_Y : Y \to Y$ est minimale.

- 1. Montrer que si X est compact, toute transformation minimale de X est topologiquement transitive.
 - 2. En utilisant l'axiome du choix, montrer que si X est compact, alors toute transformation continue de X admet une partie fermée minimale non vide.
 - 3. En déduire que si X est compact, alors toute application continue de X a un point positivement récurrent.

Exercice 3. Ensemble non-errant

Soit X un espace topologique séparé et $f: X \to X$ une transformation continue. On dira que $x \in X$ est non errant si pour tout voisinage U de x, il existe $n \in \mathbf{N}^*$ tel que $f^n(U) \cap U \neq \emptyset$. On note $\Omega(f)$ l'ensemble des points non errants.

- 1. Montrer que si $x \in X$ est non errant et U un voisinage de x, alors pour tout $m \in \mathbb{N}$ il existe n > m tel que $f^n(U) \cap U \neq \emptyset$.
- 2. Montrer que $\Omega(f)$ est un fermé invariant et qu'il contient tous les ensembles ω -limites (et α -limites si f est inversible) de tous les points.
- 3. Montrer que l'on a

$$\operatorname{Per}(f) \subset M(f) \subset R(f) \subset \Omega(f)$$
,

où Per(f) est l'ensemble des points périodiques de f, M(f) est la fermeture de l'union de toutes les parties minimales pour f et R(f) est la fermeture de l'ensemble des points récurrents pour f.

Exercice 4. Entropie d'un flot

Soit (X, d) un espace métrique compact et $\Phi = \{\varphi^t\}_{t \in \mathbf{R}}$ un flot continu sur X. On définit l'entropie $h_{\text{top}}(\Phi)$ du flot Φ de la même manière que dans le cas discret, en considérant les distances

$$d_T(x,y) = \max_{0 \le t \le T-1} d\left(\varphi^t(x), \varphi^t(y)\right).$$

Montrer que

$$h_{\text{top}}(\Phi) = h_{\text{top}}(\varphi^1).$$

Exercice 5. Propriétés de l'entropie topologique

Soient $(X, d_X), (Y, d_Y)$ des espaces métriques compacts et des transformations continues $f: X \to X$ et $g: Y \to Y$.

- 1. Soit $\Lambda \subset X$ un fermé f-invariant. Montrer que $h_{\text{top}}(f|_{\Lambda}) \leq h_{\text{top}}(f)$.
- 2. Soient $\Lambda_1, \ldots, \Lambda_m$ des fermés f-invariants de X tels que $X = \bigcup_{j=1}^m \Lambda_j$. Montrer que $h_{\text{top}}(f) = \max_{1 \leq j \leq m} h_{\text{top}}(f|_{\Lambda_j})$.
- 3. Montrer que $h_{\text{top}}(f^k) = |k| h_{\text{top}}(f)$ pour tout $k \in \mathbf{Z}$ $(k \in \mathbf{N} \text{ si } f \text{ n'est pas inversible}).$
- 4. Montrer que si d'_X est une autre métrique sur X engendrant la même topologie que d_X , alors $h_{\text{top}}^{d_X}(f) = h_{\text{top}}^{d'_X}(f)$.
- 5. Montrer que $h_{\text{top}}(f \times g) = h_{\text{top}}(f) + h_{\text{top}}(g)$ où $f \times g : X \times Y \to X \times Y$ est donnée par $(f \times g)(x, y) = (f(x), f(y))$ et où $X \times Y$ est muni de la distance $d_{X \times Y}((x, y), (x', y')) = \max(d_X(x, x'), d_Y(y, y'))$.

Exercice 6. Entropie des transformations Lipschitziennes

Soit (X, d) un espace métrique compact. On définit

$$\mathrm{bdim}(X) = \limsup_{\varepsilon \to 0} \frac{\log M(X, \varepsilon)}{\log 1/\varepsilon}$$

où $M(X,\varepsilon)$ est le nombre minimal de ε -boules (pour la distance d) qu'il faut pour recouvrir X.

1. Montrer que bdim $([0,1]^n) = n$.

Soit $f: X \to X$ une application Lipschitzienne et

$$L(f) = \sup_{x \neq y} \frac{\mathrm{d}(f(x), f(y))}{\mathrm{d}(x, y)}$$

sa constante de Lipschitz.

2. Montrer que

$$h_{\text{top}}(f) \le \text{bdim}(X) \max(0, \log L(f)).$$
 (1)

3. Donner un exemple d'application f telle que (??) soit une égalité.

Exercice 7. Entropie algébrique

Soit G un groupe finiment engendré et $\Gamma = \{\gamma_1, \dots, \gamma_s\}$ un système de générateur. Pour $\gamma \in G$ on définit

$$L(\gamma,\Gamma) = \min \left\{ \sum_{j=1}^{ks} |i_j| \; \middle| \; \gamma = \gamma_1^{i_1} \cdots \gamma_s^{i_s} \gamma_1^{i_{s+1}} \cdots \gamma_s^{i_{2s}} \cdots \gamma_s^{i_{ks}}, \; i_j \in \mathbf{Z}, \; k \in \mathbf{N} \right\}.$$

Si $F \in \text{Hom}(G,G)$ est un morphisme de groupe on note

$$L_n(F,\Gamma) = \max_{1 \le i \le s} L(F^n \gamma_i, \Gamma), \quad n \in \mathbf{N}.$$

1. Montrer que la limite

$$h(F,\Gamma) = \lim_{n \to \infty} \frac{1}{n} \log L_n(F,\Gamma)$$

existe.

2. Montrer que si Γ' est un autre système de générateurs, alors $h(F,\Gamma)=h(F,\Gamma')$.

On définit l'entropie algébrique $h_{alg}(f)$ de f par $h_{alg}(F) = h(F, \Gamma)$ pour n'importe quel système de générateur Γ .

3. Montrer que $h_{\text{alg}}(I_{\gamma_0}F) = h_{\text{alg}}(F)$ pour tout $\gamma_0 \in G$ où $I_{\gamma_0} \in \text{Hom}(G,G)$ est défini par $I_{\gamma_0}(\gamma) = \gamma_0^{-1} \gamma \gamma_0$.

Soit M une variété connexe compacte, $x_{\star} \in M$ et $G = \pi_1(M, x_{\star})$. Soit α un chemin dans M joignant x_{\star} à $f(x_{\star})$. Soit f une transformation continue de M; on définit $F_{x_{\star},\alpha} \in \text{Hom}(G,G)$ par

$$F_{r-\alpha}\gamma = \alpha^{-1}(f \circ \gamma)\alpha.$$

4. On admet que G est finiment engendré. Montrer que $h_{\rm alg}(F_{x_{\star},\alpha})$ ne dépend pas des choix de x_{\star} et de α .

Le nombre $h_{\text{alg}}(f)$ défini par $h_{\text{alg}}(f) = h_{\text{alg}}(F_{x_{\star},\alpha})$ pour n'importe quel choix de x_{\star} , α est appelé entropie algébrique de f. On peut montrer que

$$h_{\rm alg}(f) \le h_{\rm top}(f)$$
.