Messtechnik LU

376.046 Wintersemester 2018

Patrick Star - 0000000 Kathi Sophie - 0000000 Oskar Fürnhammer - 01329133

Studienkennzahl 033 235 A C I N

Inhaltsverzeichnis

T	U/I/R-Messung und Messwerke	Т
	1.1 Einleitung	1
	1.2 Spannungs-, Strom- und Widerstandsmessung	2
	1.2.1 Spannungsmessung	2
	1.2.2 Strommessung	4
2	Messbrücken und Messverstärker	6
3	Signalübertragung	7
4	Abtastung und automatisierte Messsysteme	8
	4.1 Einleitung	8
	4.2 Spannungsmessung	8
	4.3 Umwandlung von singleended auf differentielle Signale	8
	4.4 Automatisierte Messsysteme	8
5	Sensoren und frequenzselektive Messverfahren	9
\mathbf{A}	Eigentumserklärung	10

Abbildungsverzeichnis

U/I/R-Messung und Messwerke

1.1 Einleitung

Teilnehmer	Oskar Fürnhammer, Katharina Kralicek, Patrick Mayr
Datum	26.11.2018
Messplatzbez.	CA0402-3

Tabelle 1.1: Grundlegende Information der 1. Laborübung

Verwendete Messgeräte:

- A
- B

Gerät	Bezeichnung
Multimeter	Agilent U1232A
Multimeter	Agilent U1232A
Multimeter	Neumann 9140
Netzgerät	Rigol DP832
Oszilloskop	Keysight DSOX2002A
Funktionsgenerator	Agilent U1232A

Tabelle 1.2: Verwendete Geräte

1.2 Spannungs-, Strom- und Widerstandsmessung

Diese Übung setzt sich zusammen aus der XX

1.2.1 Spannungsmessung

Berechnung des Innenwiderstandes des Voltmeters

In der ersten Übung soll der Innenwiderstand des Voltmeters ermittelt werden. Die Schaltung zur Messung des Spannungswertes wird laut Abb. aufgebaut TODO: SCHALTUNG

Dieser Schaltung wurde mit einer Spannung U von 10V versorgt. Der mit einem Ohmmeter gemessenen Widerstand R_1 ergab 100,2k Ω . Die Spannung U_V am Voltmeter betrug 9,90V.

Die Spannung am Widerstand R_1 wird aus der Differenz von der Eingangsspannung und der Spannung am Voltmeter berechnet:

$$U_{R1} = U - U_V = 0.1 \text{V}$$

Der Strom durch R_1 ergibt sich als Quotient aus der berechneten Spannung und dem Widerstand R_1 :

$$I = \frac{U_{R1}}{R_1} = \frac{U - U_V}{R_1} = 0,998 \mu \text{A}$$

Der Innenwiderstand des Voltmeters R_i wird aus den zuvor berechneten Spannung und Strom berechnet:

$$R_i = \frac{U_V}{I} = 9.92 \text{M}\Omega$$

Spannungsquelle $U[V]$	10
Vorwiderstand $R_1[k\Omega]$	100,2
Spannung an Voltmeter $U_V[V]$	9,90
Spannung am Widerstand $R_1[V]$	0,1
Strom durch $R_1[\mu A]$	998
Innenwiderstand $R_i[M\Omega]$	9,92

Tabelle 1.3: Auswertung dieser Übung

Der Innenwiderstand des Multimeters ist im MegaOhm-Bereich, damit der Strom, der durch das Messgerät fließt, klein ist, um die Spannungsmessung so gering wie möglich zu verfälschen.

Bestimmung der Spannung am Multimeter

Bei dieser Messung soll eruriert werden, wie sich die Spannungsmessung auf die Berechnung des Innenwiderstandes auswirkt.

TODO: SCHALTUNG

Dieser Schaltung wurde mit einer Spannung U von 10V versorgt. Der mit einem Ohmmeter gemessenen Widerstand R_M ergab 100,2k Ω . Die Spannungen U_{V1} und U_{V2} an den beiden Voltmetern betrugen 9,80V.

Die beiden parallel geschalteten Voltmetern werden in der Berechnung als Ersatz-Innenwiderstände ersetzt. Es wird angenommen, dass beide Ersatzwiderstände den selben Wert von $9.92M\Omega$ haben.

$$R_{iG} = \frac{R_{i1} \cdot R_{i2}}{R_{i1} + R_{i2}}$$

Die Spannung am Voltmeter V2 wird als Teilspannung mit Hilfe der Spannungsteilerregel berechnet:

$$U_{V2} = U \cdot \frac{R_{iG}}{R_M + R_{iG}}$$

Spannungsquelle $U[V]$	10
Spanning an Voltmeter $U_{V1}[V]$	9,80
Spanning an Voltmeter $U_{V2}[V]$	9,80

Tabelle 1.4: Auswertung dieser Übung

TODO: Interpretation

Messbereichserweiterung

Die Destination dieser Teilübung ist, den Messbereichserweiterung der Spannungsmessung zu erstellen.

TODO: SCHALTUNG

Dieser Schaltung wurde mit einer Spannung U von 10V versorgt. Die Widerstände R_M und R_V wurde jeweils mit einem Ohmmeter gemessen und ergaben 99,5k Ω für R_M bzw. 100,2k Ω für R_V . Die Spannung U_{RM} an dem Widerstand R_M betrug 4,952V.

Der Faktor f_{ME} der Messbereichserweiterung wird berechnet aus:

$$f_{ME} = \frac{U}{U_{RM}}$$

Die Eingangsspannung ${\cal U}$ wird aus der Addition von der Spannung vom Voltmeter und vom

$$U = U_V + U_{RM} = I \cdot R = I \cdot (R_V + R_M \parallel R_{i2})$$

Die Spannung lässt durch X berechnen.

$$U_V = I \cdot R_V$$

$$U_{RM} = I \cdot (R_M \parallel R_{i2})$$

Das Voltmeter wird durch eine Ersatz-Innenwiderstand ersetzt, somit ergibt sich der Parallelwiderstand ${\cal R}_P$

$$R_P = \frac{R_M \cdot R_{i2}}{R_M + R_{i2}}$$

Setzt man die obrigen Formeln in die Formel ein, bekommt man:

$$f_{ME} = \frac{R_V + R_P}{R_P}$$

Spannungsquelle $U[V]$	10
Spannung am Widerstand R_M [V]	4,952
Widerstand $R_M[k\Omega]$	99,5
Widerstand $R_V[k\Omega]$	100,2
Faktor der Messbereichserweiterung f_{ME}	XXX

Tabelle 1.5: Auswertung dieser Übung

TODO: Interpretation

1.2.2 Strommessung

Berechnung des Innenwiderstandes des Amperemeters

In der ersten Übung soll der Innenwiderstand des Amperemeters ermittelt werden. Die Schaltung zur Messung des Stromwertes wird folgende Schaltung aufgebaut.

TODO: SCHALTUNG

Um dieser Schaltung mit einem Strom I von $500, 6\mu A$ zu versorgen, wurde die Spannungsquelle U_A auf $1,501\mathrm{V}$ gestellt. Der mit einem Ohmmeter gemessenen Widerstand R_1 ergab $4,63\mathrm{k}\Omega$.

Der Innenwiderstand des Amperemeters R_i wird aus dem gemessenen Spannungsund Stromwert berechnet:

$$R_i = \frac{U_A}{I} = 3k\Omega$$

Spannung am Voltmeter $U[V]$	1,501
Strom durch das Amperemeter $I[\mu A]$	500,6
Innenwiderstand $R_i[k\Omega]$	4,633

Tabelle 1.6: Auswertung dieser Übung

Bestimmung des Stromes durch das Amperemeter

Bei dieser Messung soll eruriert werden, wie sich die Strommessung auf die Berechnung des Innenwiderstandes auswirkt.

TODO: SCHALTUNG

Die Spannungsversorgung wurde so lange erhöht, bis der Strom I_1 500 μA erreicht wurden. Danach wurde der Bügel entfernt und erneut den Strom I_2 abgelesen. Die Ströme wurden mit dem Amperemeter A_1 gemessen. Die Spannung am Widerstand R_1 wird aus der Differenz von der Eingangsspannung und der Spannung am Voltmeter berechnet:

$$U_{R1} = U - U_V = 0.1 \text{V}$$

Der Strom durch R_1 ergibt sich als Quotient aus der berechneten Spannung und dem Widerstand R_1 :

$$I = \frac{U_{R1}}{R_1} = \frac{U - U_V}{R_1} = 0,998\mu A$$

Der Innenwiderstand des Voltmeters R_i wird aus den zuvor berechneten Spannung und Strom berechnet:

$$R_i = \frac{U_V}{I} = 9.92 \text{M}\Omega$$

Spannungsquelle $U[V]$	10
Vorwiderstand $R_1[k\Omega]$	100,2
Spannung an Voltmeter $U_V[V]$	9,90
Spannung am Widerstand $R_1[V]$	0,1
Strom durch $R_1[\mu A]$	998
Innenwiderstand $R_i[M\Omega]$	9,92

Tabelle 1.7: Auswertung dieser Übung

Messbrücken und Messverstärker

Signalübertragung

Abtastung und automatisierte Messsysteme

4.1 Einleitung

Verwendete Messgeräte:

- A
- B
- 4.2 Spannungsmessung
- 4.3 Umwandlung von singleended auf differentielle Signale
- 4.4 Automatisierte Messsysteme

Teilübung	Statistik und Leistungsmessung
Teilübungsnr.	2
Datum	28.11.2018
Messplatzbez.	CA

Tabelle 4.1: Grundlegende Information der 2. Laborübung

Sensoren und frequenzselektive Messverfahren

Eigentumserklärung

Hiermit erklären wir, die xxx