ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU!

Miejsce na naklejkę MMA-R1 1P-091 PRÓBNY EGZAMIN **STYCZEŃ ROK 2009 MATURALNY** Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera (zadania 1 – 11). Ewentualny brak zgłoś przewodniczacemu zespołu nadzorującego egzamin. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W rozwiązaniach zadań przedstaw tok rozumowania prowadzący do ostatecznego wyniku. 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem. 5. Nie używaj korektora, a błędne zapisy przekreśl. 6. Pamietaj, że zapisy w brudnopisie nie podlegają ocenie. Za rozwiazanie 7. Obok każdego zadania podana jest maksymalna liczba punktów, wszystkich zadań która możesz uzyskać za jego poprawne rozwiązanie. można otrzymać 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla łącznie i linijki oraz kalkulatora. 50 punktów Życzymy powodzenia! Wypełnia zdający przed rozpoczęciem pracy **KOD** PESEL ZDAJACEGO **ZDAJĄCEGO**

Zadanie 1. (*3 pkt*)

Na rysunku narysowano fragment wykresu funkcji $f(x) = 2^{x-3} - b$ określonej dla $x \in R$.

- a) Podaj wartość b.
- b) Naszkicuj wykres funkcji g(x) = |f(x)|.
- c) Podaj wszystkie wartości parametru p, dla których równanie g(x) = p ma dokładnie jedno rozwiązanie.

Zadanie 2. (*4 pkt*) Rozwiąż nierówność |x+3|+|3x+9| < |x+5|.

Zadanie 3. (5 *pkt*)

Jeden z końców odcinka leży na paraboli o równaniu $y=x^2$, a drugi na prostej o równaniu y=2x-6. Wykaż, że długość tego odcinka jest nie mniejsza od $\sqrt{5}$. Sporządź odpowiedni rysunek.

Zadanie 4. (4 pkt)

Oblicz prawdopodobieństwo
$$P(A' \cap B')$$
, jeśli $P(A') = \frac{1}{3}$, $P(B') = \frac{1}{4}$ i $P(A \cap B) = \frac{1}{2}$.

Zadanie 5. (*3 pkt*)

Na rysunku przedstawiono fragment wykresu funkcji h otrzymanego przez przesunięcie o wektor [2, 1] wykresu funkcji f określonej wzorem $f(x) = \frac{a}{x}$ dla $x \in R$ i $x \neq 0$.

Wyznacz wzór funkcji h, a następnie sprawdź, czy punkt $M = (\sqrt{3}, -2\sqrt{3} - 3)$ należy do jej wykresu.

Zadanie 6. (*4 pkt*)

Porównaj liczby
$$a^b$$
 oraz b^a , gdzie $a = \left[\left(2 - \sqrt{3} \right)^{\frac{1}{2}} + \left(2 + \sqrt{3} \right)^{\frac{1}{2}} \right]^2$, $b = \frac{81^{-1} \cdot \sqrt{3}}{27^{-2} \cdot \sqrt[4]{9}}$.

Zadanie 7. (6 pkt)

Dane jest równanie $(x+3)\cdot [x^2+(p+4)x+(p+1)^2]=0$ z niewiadomą x.

- a) Rozwiąż to równanie dla p = 1.
- b) Wyznacz wszystkie wartości parametru p, dla których równanie to ma tylko jedno rozwiązanie.

Zadanie 8. (6 pkt)

Trapez równoramienny jest opisany na okręgu. Suma długości krótszej podstawy i ramienia trapezu jest równa 30. Wyraź pole tego trapezu jako funkcję długości jego ramienia. Wyznacz dziedzinę tej funkcji.

Zadanie 9. (7 *pkt*)

Środek okręgu przechodzącego przez punkty A = (1, 4) i B = (-6, 3) leży na osi Ox.

- a) Wyznacz równanie tego okręgu.
- b) Wyznacz równanie prostej prostopadłej do prostej AB i oddalonej od początku układu współrzędnych o $\sqrt{2}$.

Zadanie 10. (4 pkt)

Sinusy kątów ostrych trójkąta prostokątnego oraz liczba 1 tworzą ciąg geometryczny. Oblicz sinus najmniejszego kąta tego trójkąta.

Zadanie 11. (4 pkt)

Dany jest ostrosłup prawidłowy czworokątny, w którym wszystkie krawędzie mają równą długość. Zaznacz na rysunku kąt utworzony przez dwie sąsiednie ściany boczne tego ostrosłupa i oblicz kosinus tego kąta.

BRUDNOPIS