

# CI 2: ALGORITHMIQUE & PROGRAMMATION

# ALGORITHMES D'INFORMATIQUE

| 1 | Recherches dans une liste                                                           |                                                                                 |                                                                          |     |
|---|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----|
|   | 1.1                                                                                 | Rechero                                                                         | che d'un nombre dans une liste                                           | 2   |
|   | 1.2                                                                                 | Rechero                                                                         | che du maximum dans une liste de nombre                                  | . 3 |
|   | 1.3                                                                                 | Rechero                                                                         | che par dichotomie dans un tableau trié                                  | . 3 |
| 2 | Gestion d'une liste de nombres                                                      |                                                                                 |                                                                          | 4   |
|   | 2.1                                                                                 | Calcul                                                                          | de la moyenne                                                            | 4   |
|   | 2.2                                                                                 | Calcul                                                                          | de la variance                                                           | 4   |
|   | 2.3 Calcul de la médiane                                                            |                                                                                 |                                                                          | . 5 |
| 3 | Chaînes de caractères                                                               |                                                                                 |                                                                          |     |
|   | 3.1 Recherche d'un mot dans une chaîne de caractères                                |                                                                                 |                                                                          |     |
| 4 | Calcul numérique6                                                                   |                                                                                 |                                                                          |     |
|   | 4.1 Recherche du zéro d'une fonction continue monotone par la méthode de dichotomie |                                                                                 |                                                                          |     |
|   | 4.2                                                                                 | 4.2 Recherche du zéro d'une fonction continue monotone par la méthode de Newton |                                                                          |     |
|   | 4.3                                                                                 | Méthod                                                                          | le des rectangles pour le calcul approché d'une intégrale sur un segment | . 7 |
|   |                                                                                     | 4.3.1                                                                           | Méthode des rectangles à gauche                                          | . 7 |
|   |                                                                                     | 4.3.2                                                                           | Méthode des rectangles à droite                                          | . 8 |
|   |                                                                                     | 4.3.3                                                                           | Méthode des rectangles – Point milieu                                    | . 9 |
|   | 4.4                                                                                 | 4.4 Méthode des trapèzes pour le calcul approché d'une intégrale sur un segment |                                                                          |     |
|   | 4.5 Méthode d'Euler pour la résolution d'une équation différentielle                |                                                                                 |                                                                          | 10  |
|   |                                                                                     | 4.5.1                                                                           | Méthode d'Euler explicite                                                | 10  |
|   | 4.6                                                                                 | Algorith                                                                        | hme de Gauss – Jordan [4]                                                | 12  |
| 5 | Algorithmes de tris                                                                 |                                                                                 |                                                                          |     |
|   | 5.1                                                                                 | Tri par                                                                         | sélection                                                                | 12  |
|   | 5.2                                                                                 | Tri par                                                                         | insertion                                                                | 13  |
|   |                                                                                     | 5.2.1                                                                           | Méthode 1                                                                | 13  |
|   |                                                                                     | 5.2.2                                                                           | Méthode 2                                                                | 14  |
|   | 5.3                                                                                 | Tri shel                                                                        | II                                                                       | 14  |
|   | 5.4                                                                                 | Tri rapi                                                                        | de «Quicksort»                                                           | .14 |
|   |                                                                                     | 5.4.1                                                                           | Tri rapide                                                               | 14  |
|   |                                                                                     | 5.4.2                                                                           | Tri rapide optimisé                                                      | 16  |
|   | 5.5 Tri fusion                                                                      |                                                                                 |                                                                          | .17 |
| 6 | Algorithmes classiques                                                              |                                                                                 |                                                                          |     |
|   | 6.1                                                                                 | .1 Division euclidienne                                                         |                                                                          |     |
|   | 6.2                                                                                 | Algorith                                                                        | hme d'Euclide                                                            | 19  |
|   | 6.3                                                                                 | Calcul                                                                          | de puissance                                                             | 20  |
|   |                                                                                     | 6.3.1                                                                           | Algorithme naïf                                                          | 20  |
|   |                                                                                     | 6.3.2                                                                           | Exponentiation rapide itérative                                          | 20  |



# 1 Recherches dans une liste

#### 1.1 Recherche d'un nombre dans une liste

```
Algorithme: Recherche naïve d'un nombre dans une liste triée ou non

Données:

- n, int : un entier

- tab, liste : une liste d'entiers triés ou non triés

Résultat:

- un booléen : Vrai si le nombre est dans la liste, Faux sinon.

is_number_in_list(n,tab) :

| ← longueur(tab)

Pour i allant de 1 à l faire :

Si tab[i] = n alors :

Retourne Vrai

Fin Si

Fin Faire

Retourne Faux

Fin fonction
```

```
def is_number_in_list(nb,tab):
    """Renvoie True si le nombre nb est dans la liste
    de nombres tab
    Keyword arguments:
    * nb, int — nombre entier
    * tab, list — liste de nombres entiers
    """
    for i in range(len(tab)):
        if tab[i]==nb:
            return True
    return False
```

```
def is_number_in_list(nb,tab):
    """Renvoie True si le nombre nb est dans la liste
    de nombres tab
    Keyword arguments:
    * nb, int — nombre entier
    * tab, list — liste de nombres entiers
    """
    i=0
    while i<len(tab) and tab[i]!=nb:
        i+=1
    return i<len(tab)</pre>
```

🛟 pyth

Remarque

Ces algorithmes sont modifiables aisément dans le cas où on souhaiterait connaître l'index du nombre recherché.



#### 1.2 Recherche du maximum dans une liste de nombre

```
Algorithme: Recherche du maximum dans
une liste de nombres
Données:
- tab, liste : une liste de nombres
Résultat:
- maxi, réel : maximum de la liste
what_is_max(tab):
  n \leftarrow longueur(tab)
  i ← 2
  maxi \leftarrow tab[1]
  Tant que i < n faire :
     Si tab[i]>maxi alors:
        maxi ← tab[i]
     Fin si
     i \leftarrow i+1
  Fin tant que
  Retourner maxi
Fin fonction
```

1.3 Recherche par dichotomie dans un tableau trié

```
Algorithme: Recherche par dichotomie d'un
nombre dans une liste triée
Données:
- nb, int: un entier
- tab, liste : une liste d'entiers triés
Résultat:
- m, int : l'index du nombre recherché
- None: cas où nb n'est pas dans tab
is_number_in_list_dicho(nb,tab):
   g \leftarrow 0
   d \leftarrow longueur(tab)
   Tant que g < d alors:
      m \leftarrow (g+d) \operatorname{div} 2
         Si tab[m]=nb alors:
            Retourne m
         Sinon si tab[m] < nb alors :
            g \leftarrow m+1
         Sinon, alors:
            \mathsf{d} \leftarrow \mathsf{m}\text{-}1
      Fin Si
   Fin Tant que
   Retourne None
Fin fonction
```

```
def is _ number _ in _ list _ dicho(nb,tab):
    Recherche d'un nombre par dichotomie dans un
    tableau trié.
    Renvoie l'index si le nombre nb est dans la liste
    de nombres tab.
    Renvoie None sinon.
    Keyword arguments:
    nb, int -- nombre entier
    tab, list — liste de nombres entiers triés
    g, d = 0, len(tab)-1
    while g \ll d:
        m = (g + d) // 2
        if tab[m] == nb:
            return m
        if tab[m] < nb:
            g = m+1
            d = m-1
    return None
```



# 2 Gestion d'une liste de nombres

## 2.1 Calcul de la moyenne

```
Algorithme : Calcul de la moyenne arithmétique des nombres d'une liste

Données:

- tab, liste : une liste de nombres

Résultat:

- res, réel : moyenne des nombres

calcul_moyenne(tab) :

n ← longueur(tab)

res ← 0

Pour i allant del à n faire :

res ← res+tab[i]

Fin faire

Retourner res/n

Fin fonction
```

```
def calcul_moyenne(tab):
    """

    Renvoie la moyenne des valeurs d'une liste de
    nombres.
    Keyword arguments:
    tab — liste de nombres
    """

    res = 0
    for i in range(len(tab)):
        res = res+tab[i]
    return res/(len(tab))
```

#### 2.2 Calcul de la variance

Soit une série statistique prenant les n valeurs  $x_1, x_2, ..., x_n$ . Soit m la moyenne de ces valeurs. La variance est définie par :

$$v = \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2$$

```
Algorithme: Calcul de la variance des nombres d'une liste

Données:

- tab, liste: une liste de nombres

- m, réel: moyenne de la liste

Résultat:

- res, réel: variance

calcul_variance(tab):

n ← longueur(tab)

res ← 0

Pour i allant de 1 à n faire:

res ← res+(tab[i]-m)**2

Fin faire

Retourner res/n

Fin fonction
```



### 2.3 Calcul de la médiane

```
Algorithme: Recherche de la valeur médiane d'une liste de nombres triés

Données:

- tab, liste: liste de nombres triés

Résultat:

- flt: valeur de la médiane

mediane(tab):

n ← Longueur(tab)

Si n modulo 2 = 0 Alors:

i ← n/2

Retourner (tab[i] +tab[i+1])/2

Sinon:

i ← ndiv 2+1

Retourner (tab[i])

Fin fonction
```

```
def calcul_mediane(tab):
    """

    Calcule la variance des éléments d'un tableau trié.
    Keyword arguments:
    tab — liste de nombres
    """

    if len(tab)%2 == 0:
        i=len(tab)//2
        return (tab[i-1]+tab[i])/2
    else:
        i = len(tab)//2
    return tab[i]
```

## 3 Chaînes de caractères

#### 3.1 Recherche d'un mot dans une chaîne de caractères

```
def index_of_word_in_text(mot, texte):
    """ Recherche si le mot est dans le texte.
Renvoie l'index si le mot est présent, None sinon.
Keyword arguments:
    mot — mot recherché
    texte — texte
    """

for i in range(1 + len(texte) - len(mot)):
    j = 0
    while j < len(mot) and mot[j] == texte[i + j]:
        j += 1
    if j == len(mot):
        return i
    return None</pre>
```

b puthon



# 4 Calcul numérique

## 4.1 Recherche du zéro d'une fonction continue monotone par la méthode de dichotomie

```
Algorithme : Recherche de la solution de
f(x) = 0 par dichotomie
Données:
- f, fonction : fonction continue et monotone
- a, b, réels : nombre réels tels que a < b
-\varepsilon, réel : tolérance du calcul
Résultat:
- flt : solution de l'équation
solveDichotomie(f,a,b,\varepsilon):
   g \leftarrow a
   d \leftarrow b
   Tant que d-g>\varepsilon Alors :
      m \leftarrow (g+d)/2
      Si f(g)*f(m) \le 0 Alors:
         d \leftarrow m
      Sinon:
         g \leftarrow m
      Fin Si
   Fin Tant que
Fin fonction
```

```
def solveDichotomie(f,a,b,eps):
    Recherche par dichotomie de la solution
    de l'équation f(x)=0.
    Keywords arguments:
    Entrées :
        a,b, flt : Nombre réels tels que a<b
        f, function: fonction continue et monotone
        sur [a.b]
        eps,flt : tolérance de la résolution
    Sortie:
        flt : solution de la fonction
    g = a
    d = b
    while (d-g) > eps:
        m = (g+d)/2
        if f(g) * f(m) <= 0:
            d = m
            g = m
    return (g+d)/2
```

4.2 Recherche du zéro d'une fonction continue monotone par la méthode de Newton

```
Algorithme: Recherche de la solution de f(x) = 0 par la méthode de Newton

Données:

- f, fonction: fonction continue et monotone sur [a, b]

- df, fonction: fonction dérivée de f sur [a, b]

- a, réel: nombre réel tel que

- \varepsilon, réel: tolérance du calcul

Résultat:

- c: flt: solution de l'équation

solveNewton(f,df,a,\varepsilon):

c \leftarrow a - \frac{f(a)}{df(a)}

Tant que |c - a| > \varepsilon alors

a \leftarrow c

c \leftarrow c - \frac{f(c)}{df(c)}

Fin fonction
```

```
def solveNewton(f,df,a,eps):
    Recherche par la méthode de Newton de la solution
    de l'équation f(x)=0.
    Keywords arguments:
    Entrées :
        f, function : fonction àvaleur de IR dans IR
        df, function : dérivée de f àvaleur de IR dans IR
        a, flt : solution initiale
        eps.flt : tolérance de la résolution
    Sortie .
        m : flt : solution de la fonction
    c = a-f(a)/df(a)
    while abs(c-a)>eps:
        a = c
        c = c-f(c)/df(c)
    return c
```



La dérivée de f notée f' pourra être une fonction qui a été définie. On peut aussi calculer la dérivée de façon numérique. Ainsi, en tenant compte des précautions mathématiques d'usage, il est possible de procéder ainsi :

🛟 pythor

Remarque

```
 \begin{array}{c} \textbf{def derive\_fonctions}(f,x,eps): \\ \textbf{return } (f(x+eps)-f(x))/(eps) \end{array}
```

- 4.3 Méthode des rectangles pour le calcul approché d'une intégrale sur un segment
- 4.3.1 Méthode des rectangles à gauche

```
Algorithme: Calcul d'intégrale par la méthode des rectangles à gauche
Données:
f, fonction : fonction définie sur [a, b]
- a, réel : borne inférieure de l'intervalle de définition
- b, réel : borne supérieure de l'intervalle de définition, b≥a
- nb, entiers : nombre d'échantillons pour calculer l'intégrale
Résultat:
- res, réel : valeur approchée de \int f(t) dt
integrale\_rectangles\_gauche(f,a,b,nb):
   res \leftarrow 0
  pas \leftarrow (b-a)/nb
  x ← a
  Tant que x < b, Faire:
     res \leftarrow res + f(x)
     x \leftarrow x + pas
   Fin Tant que
   res ← res*pas
   Retourner res
Fin Fonction
```

```
*__
```

```
def integrale __rectangles __gauche(f,a,b,nb):
    """

    Calcul de la valeur approchée de l'intégrale de f(x) entre a et b par la
    méthode des rectangles àgauche.
    Keywords arguments :
    f — fonction àvaleur dans IR
    a — flt, borne inférieure de l'intervalle d'intégration
    b — flt, borne supérieure de l'intervalle d'intégration
    nb — int, nombre d'échantillons pour le calcul
    """

    res = 0
    pas = (b-a)/nb
```



```
🞝 pythor
```

```
x = a

while x < b:

res = res + f(x)

x = x + pas

return res*pas
```

# 4.3.2 Méthode des rectangles à droite

```
Algorithme: Calcul d'intégrale par la méthode des rectangles à droite
Données:
- f, fonction : fonction définie sur [a, b]
- a, réel : borne inférieure de l'intervalle de définition
- b, réel : borne supérieure de l'intervalle de définition, b≥a
- nb, entiers: nombre d'échantillons pour calculer l'intégrale
Résultat:
- res, réel : valeur approchée de \int f(t) dt
integrale_rectangles_droite(f,a,b,nb) :
   res \leftarrow 0
   pas \leftarrow (b-a)/nb
   x \leftarrow a + pas
   Tant que x <= b : Faire
      res \leftarrow res + f(x)
      x \leftarrow x + pas
   Fin Tant que
   res ← res*pas
   Retourner res
Fin Fonction
```

```
Pseudo Con
```

```
def integrale rectangles droite(f,a,b,nb):
    Calcul de la valeur approchée de l'intégrale de f(x) entre a et b par la
    méthode des rectangles àdroite.
    Keywords arguments:
    f — fonction àvaleur dans IR
    a — flt, borne inférieure de l'intervalle d'intégration
    b — flt, borne supérieure de l'intervalle d'intégration
    nb — int, nombre d'échantillons pour le calcul
    0.00
    res = 0
    pas = (b-a)/nb
    x = a + pas
    while x<=b:
        res = res + f(x)
        x = x + pas
    return res∗pas
```





# 4.3.3 Méthode des rectangles - Point milieu

```
Algorithme: Calcul d'intégrale par la méthode des rectangles – point milieu
Données:
- f, fonction : fonction définie sur [a, b]
- a, réel : borne inférieure de l'intervalle de définition
- b, réel : borne supérieure de l'intervalle de définition, b≥a
- nb, entiers : nombre d'échantillons pour calculer l'intégrale
Résultat:
- res, réel : valeur approchée de \int f(t) dt
\textbf{integrale\_rectangles\_milieu}(f,a,b,n\,b):
   res \leftarrow 0
   pas \leftarrow (b-a)/nb
   x \leftarrow a + pas/2
   Tant que x < b : Faire
      res \leftarrow res + f(x)
      x \leftarrow x + pas
   Fin Tant que
   res ← res*pas
   Retourner res
```

# 4.4 Méthode des trapèzes pour le calcul approché d'une intégrale sur un segment

```
Algorithme: Calcul d'intégrale par la méthode des trapèzes
```

```
Données:
```

- f, fonction : fonction définie sur [a, b]
- a, réel : borne inférieure de l'intervalle de définition
- b, réel : borne supérieure de l'intervalle de définition, b≥a
- nb, entiers : nombre d'échantillons pour calculer l'intégrale

#### Résultat:

```
- res, réel : valeur approchée de \int_{a}^{b} f(t) dt
```

```
integrale_trapeze(f,a,b,nb) :
```

```
res \leftarrow 0
```

$$\mathsf{pas} \leftarrow (\mathsf{b}\text{-}\mathsf{a})/\mathsf{n}\,\mathsf{b}$$

#### Tant que x < b, Faire:

$$res \leftarrow res + f(x)$$

$$res \leftarrow pas^*(res + (f(a) + f(b))/2)$$

#### Retourner res

```
def integrale_trapeze(f,a,b,nb):
    unn

Calcul de la valeur approchée de l'intégrale de f(x) entre a et b par la méthode des trapèzes.
Keywords arguments :
    f — fonction àvaleur dans IR
    a — flt, borne inférieure de l'intervalle d'intégration
    b — flt, borne supérieure de l'intervalle d'intégration
    nb — int, nombre d'échantillons pour le calcul
    unn

res = 0
    pas = (b-a)/nb
    x = a+pas
    while x < b:
        res = res + f(x)
        x = x + pas
    res = pas*(res+(f(a)+f(b))/2)
    return res</pre>
```

En raison de la comparaison de réels, il pourrait être préférable de réaliser la boucle while sur un compteur d'échantillons.

### 4.5 Méthode d'Euler pour la résolution d'une équation différentielle

### 4.5.1 Méthode d'Euler explicite

Résolution de l'équation différentielle :

$$y(t) + \tau \frac{dy(t)}{dt} = y_f$$

```
Algorithme: Méthode d'Euler explicite
Données:
- tau, réel : constante de temps
- y 0, réel : valeur initiale de y

- y_f, réel : valeur finale y
- t_f, réel : temps de la simulation numérique

- nb, entier: nombre d'échantillons pour calculer les valeurs de y
Résultat:
- res, liste: liste des couples (t,y(t)).
euler_explicite(tau,y_0,y_f,t_f,nb):
   Initialiser res
   t \leftarrow \mathbf{0}
   y ← y_0
   pas ← t_f/nb
   Tant que t<t_f Faire :
      Ajouter (t,y) à res
      y \leftarrow y + pas *(y_f-y)/tau
       t \leftarrow t + pas
   Fin Tant que
   Retourner res
```

```
def euler explicite(tau,y0,yf,tf,nb):
    Résolution d'une équation différentielle d'ordre 1 en utilisant la méthode
    d'Euler explicite.
    Keywords arguments:
    tau — flt, constante de temps de l'équation différentielle
    y0 - flt, valeur initiale de y(t)
    yf — flt valeur finale de y(t)
    tf — flt temps de fin de la simulation
    nb — int, nombre d'échantillons pour la simulation
    t = 0
    y = y0
    pas = tf / nb
    res = []
    while t < tf:
        res.append((t,y))
        y = y + pas*(yf-y)/tau
        t = t + pas
    return res
```



# 4.6 Algorithme de Gauss – Jordan [4]

```
def recherche pivot(A,i):
    n = len(A) # le nombre de lignes
    j = i # la ligne du maximum provisoire
    for k in range(i+1, n):
         if abs(A[k][i]) > abs(A[j][i]):
             j = k # un nouveau maximum provisoire
    return i
def echange_lignes(A,i,j):
    # Li <--->Lj
    A[i][ ], A[j][ ] = A[j][ ], A[i][ ]
def transvection ligne(A, i, j, mu):
    \# L i < -L i + mu.L j''''''
    nc = len(A[0]) # le nombre de colonnes
    for k in range(nc):
         A[i][k] = A[i][k] + mu * A[j][k]
def resolution(AA, BB):
     """Résolution de AA.X=BB; AA doit etre inversible"""
    A, B = AA.copy(), BB.copy()
    n = len(A)
    assert len(A[0]) == n
     # Mise sous forme triangulaire
    for i in range(n):
        j = recherche pivot(A, i)
         if j > i:
             echange_lignes(A, i, j)
             echange_lignes(B, i, j)
         for k in range(i+1, n):
             x = A[k][i] / float(A[i][i])
             transvection ligne(A, k, i, -x)
             transvection ligne(B, k, i, -x)
    # Phase de remontée
    X = [0.] * n
    for i in range(n-1, -1, -1):
        X[i] = (B[i][0] - sum(A[i][j] * X[j] \text{ for } j \text{ in } range(i+1,n))) \ / \ A[i][i]
```

# 5 Algorithmes de tris

#### 5.1 Tri par sélection



🛟 python

return tab

## 5.2 Tri par insertion

#### 5.2.1 Méthode 1

```
Algorithme: Tri par insertion – Méthode 1
Données:
- tab, liste : une liste de nombres
Résultat:
- tab, liste : la liste de nombres triés
tri_insertion(tab):
   n \leftarrow longueur(tab)
   Pour i de 2 à n:
      x \leftarrow tab[i]
      j ← 1
      Tant que j \le i-1 et tab[j] < x:
         j ← j+1
      Fin Tant que
      Pour k de i-1 à j-1 par pas de -1 faire :
          tab[k+1] \leftarrow tab[k]
      Fin Pour
      tab[j] \leftarrow x
   Fin Pour
```

python

```
def tri_insertion_01(tab):
    """

    Trie une liste de nombre en utilisant la méthode
    du tri par insertion.
    En Python, le passage se faisant par référence, il
    n'est pas indispensable de retourner le tableau.
    Keyword arguments:
    tab — liste de nombres
    """

for i in range (1,|en(tab)):
    x=tab[i]
    j=0
    while j<=i-1 and tab[j]<x:
        j = j+1
    for k in range(i-1,j-1,-1):
        tab[k+1]=tab[k]
    tab[j]=x</pre>
```

### Estimation de la complexité

- Meilleur des cas, le tableau est trié à l'envers, la complexité est linéaire :  $\mathcal{O}(n)$ .
- Pire des cas, le tableau est trié, la complexité est quadratique :  $\mathcal{O}(n^2)$ .



#### 5.2.2 Méthode 2

```
Algorithme: Tri par insertion – Méthode 2
Données:
- tab, liste: une liste de nombres
Résultat:
- tab, liste : la liste de nombres triés
tri_insertion(tab):
   n ← longueur(tab)
  Pour i de 2 à n:
      x \leftarrow tab[i]
      j←i
     Tant que j > 1 et tab[j-1] > x:
         tab[j] \leftarrow tab[j-1]
         j ← j-1
      Fin Tant que
      tab[j] \leftarrow x
  Fin Pour
```

```
def tri_insertion_02(tab):
    """

    Trie une liste de nombre en utilisant la méthode
    du tri par insertion.
    En Python, le passage se faisant par référence,
    il n'est pas indispensable de retourner le tableau.
    Keyword arguments:
    tab — liste de nombres
    """

for i in range (1,len(tab)):
    x=tab[i]
    j=i
    while j>0 and tab[j-1]>x:
    tab[j]=tab[j-1]
    j = j-1
    tab[j]=x
```

## Estimation de la complexité

- Meilleur des cas, le tableau est trié, la complexité est linéaire :  $\mathcal{O}(n)$ .
- Pire des cas, le tableau est trié à l'envers, la complexité est quadratique :  $\mathcal{O}(n^2)$ .

#### 5.3 Tri shell

## 5.4 Tri rapide «Quicksort»

### 5.4.1 Tri rapide

```
Rowière 😝
```

```
Algorithme: Tri Quicksort - Segmentation
Données:
- tab, liste : une liste de nombres
- i,j, entiers : indices de début et de fin de la segmentation à effectuer
Résultats:
- tab, liste : la liste de nombre segmenté avec le pivot à sa place définitive
- k entier : l'indice de la place du pivot
segmente(tab,i,j):
   g \leftarrow i+1
   d ← j
    p \leftarrow tab[i]
    Tant que g \le d Faire
       Tant que d \ge 0 et tab[d] > p Faire
          \mathsf{d} \leftarrow \mathsf{d}\text{-}1
       Fin Tant que
       Tant que g \le j et tab[g] \le p Faire
          g \leftarrow g+1
       Fin Tant que
       Si g<d alors
          Échange (tab,g,d)
          d \leftarrow d-1
          g \leftarrow g+1
       Fin Si
    Fin Tant que
    k← d
    Échange (tab,i,d)
    Retourner k
```

#### Algorithme: Tri Quicksort – Tri rapide

```
Données:
```

```
tab, liste : une liste de nombres
i,j, entiers : indices de début et de fin de la portion à trier
```

#### Résultats:

- tab, liste : liste triée entre les indices i et j

```
def segmente(tab,i,j):

"""

Segmentation d'un tableau par rapport àun pivot.

Keyword arguments:

tab (list) — liste de nombres

i,j (int) — indices de fin et de début de la segmantation

Retour:

tab (list) — liste de nombres avec le pivot àsa place définitive

k (int) — indice de la place du pivot
```

```
11 11 11
    g = i+1
    d=j
    p=tab[i]
    while g<=d:
        while d>=0 and tab[d]>p:
             d=d-1
         while g<=j and tab[g]<=p:
             g=g+1
        if g < d
             tab[g],tab[d]=tab[d],tab[g]
             d=d-1
             g=g+1
    tab[i],tab[d]=tab[d],tab[i]
    return k
def tri_quicksort(tab,i,j):
    Tri d'une liste par l'utilisation du tri rapide (Quick sort).
    Keyword arguments:
    tab (list) — liste de nombres
    i,j (int) — indices de fin et de début de la zone de tri
    tab (list) — liste de nombres avec le pivot àsa place définitive
    if i<j
         k = segmente(tab,i,j)
        tri quicksort(tab,i,k-1)
        tri quicksort(tab,k+1,j)
```

## 5.4.2 Tri rapide optimisé

```
Algorithme: Tri Quicksort – Tri rapide optimisé
Données:
- tab, liste : une liste de nombres
- i,j, entiers : indices de début et de fin de la portion de liste à trier
- tab, liste : liste triée entre les indices i et j
tri_quicksort_optimized(tab,i,j):
   Si i<j alors
      k← segmente(tab,i,j)
      Si k-i>15 alors
         tri_quicksort(tab,i,k-1)
      Sinon
         tri_insertion(tab,i,k-1)
      Fin Si
      Si j-k>15 alors
         tri_quicksort(tab,k+1,j)
         tri_insertion(tab,k+1,j)
      Fin Si
   Fin Si
```

Pseudo Code

#### 5.5 Tri fusion

```
Algorithme: Tri Fusion – Fusion de deux listes
Données:
- tab, liste : une liste de nombres tab[g :d] avec g indice de la valeur de gauche, d indice de la valeur de
- m, entier : indice tel que g \le m < d et tel que les sous-tableaux tab[g :m] et tab[m+1 :d] soient ordonnés
Résultats:
- tab, liste : liste triée entre les indices g et d
fusion_listes(tab,g,d,m):
    n1\leftarrow m-g+1
    n2← d-m
    Initialiser tableau G
    Initialiser tableau D
    Pour i allant de 1 à n1 faire
       G[i] \leftarrow tab[g+i-1]
    Fin Pour
    Pour j allant de 1 à n2 faire
       D[j] \leftarrow tab[m+j]
    Fin Pour
    i ← 1
    j ← 1
    G[n1+1] \leftarrow +\infty
    D[n2+1] \leftarrow +\infty
    Pour k allant de g à d faire
       Si G[i] \le D[j] alors
          \mathsf{tab}[\mathsf{k}] \!\!\leftarrow \mathsf{G}[\mathsf{i}]
          i← i+1
       Sinon
          Si G[i] > D[j] alors
              \mathsf{tab}[\mathsf{k}] \!\!\leftarrow\! \mathsf{D}[\mathsf{j}]
             j← j+1
          Fin Si
       Fin Si
    Fin Pour
```

Seudo Code



```
Algorithme: Tri Fusion

Algorithme récursif du table de tri.

Données:

- tab, liste: une liste de nombres non triés tab[g:d]

- g,d, entiers: indices de début et de fin de la liste

Résultats:

- tab, liste: liste triée entre les indices g et d

tri_fusion(tab,g,d):

Si g < d alors

m ← (g+d) div 2

tri_fusion(tab,g,m)

tri_fusion(tab,g,m)

tri_fusion(tab,m+1,d)

fusion_listes(tab,g,d,m)

Fin Si
```

```
def fusion_listes(tab,g,d,m):
    Fusionne deux listes triées.
    Keyword arguments:
    tab (list) — liste : une liste de nombres tab[g:d] avec g indice de la
    valeur de gauche, d indice de la valeur de droite
    g,d,m (int) — entiers: indices tels que g \le m < d et tel que les
    sous-tableaux \ tab[g:m] et tab[m+1:d] soient ordonnés
    Résultat :
    tab (list) : liste triée entre les indices g et d
    \mathsf{n1} = \mathsf{m-g+1}
    n2 = d-m
    G,D = [],[]
    for i in range (n1):
         G append(tab[g+i])
    for j in range (n2)
         D append(tab[m+j+1])
    i,j=0,0
    G.append(9999999999)
    D.append(9999999999)
    for k in range (g,d+1):
         if G[i] \le D[j]: # and i \le n1
             tab[k]=G[i]
             i=i+1
         elif G[i]>D[j]: # and j <= n2
             tab[k]=D[j]
             j=j+1
def tri_fusion(tab,g,d):
    Tri d'une liste par la métode du tri fusion
    Keyword arguments:
    tab (list) — liste : une liste de nombres non triés tab[g:d]
    g,d (int) — entiers : indices de début et de fin de liste si on veut trier
                             tout le tableau g=0, d=len(tab)-1
    Résultat :
    tab (list) : liste triée entre les indices g et d
```



```
🦺 python
```

```
if g < d:
    m = (g+d)//2
    tri_fusion(tab,g,m)
    tri_fusion(tab,m+1,d)
    fusion_listes(tab,g,d,m)</pre>
```

# 6 Algorithmes classiques

#### 6.1 Division euclidienne

```
Data: a, b \in \mathbb{N}^*

reste \leftarrow a
quotient \leftarrow 0

tant que reste \geq b faire

reste \leftarrow reste -b
quotient \leftarrow quotient +1

fin

Retourner quotient, reste
```

# 6.2 Algorithme d'Euclide

Cet algorithme permet de calculer le PGCD de deux nombres entiers. Il se base sur le fait que si a et b sont deux entiers naturels non nuls,  $pgcd(a,b) = pgcd(b,a \mod b)$ .

```
Fonction PGCD: algorithme d'Euclide

Données: a et b: deux entiers naturels non nuls
tels que a > b

Résultat: le PGCD de a et b

Euclide_PGCD(a,b)

Répéter

r ← a mod b
a ← b
b ← r

Jusqu'à r == 0
Retourner a
```







# 6.3 Calcul de puissance

### 6.3.1 Algorithme naïf

```
\boldsymbol{def} \ exponentiation\_naive(x,n):
    Renvoie x* *n par la methode naive.
    Keyword arguments:
    Entrées :
         x, flt : un nombre réel
         n, int : un nombre entier
    Sortie:
         res,flt : resultat
    res = 1
    while n>=1:
        res = res * x
         n=n-1
    return res
```

# 6.3.2 Exponentiation rapide itérative

```
def exponentiation rapide iteratif(x, n):
    Renvoie x**n par la methode d'exponentiation rapide.
    Keyword arguments:
    Entrées :
        x, flt : un nombre réel
        n, int : un nombre entier
    Sortie
        res,flt : resultat
    if n==0:
```



```
return 1

else:

res = 1

a = x

while n>0:

if n%2 == 1:

res = res*a

a=a*a

n=int(n/2)

return res
```

# Références

- [1] Patrick Beynet, Cours d'informatique de CPGE, Lycée Rouvière de Toulon, UPSTI.
- [2] Adrien Petri et Laurent Deschamps, Cours d'informatique de CPGE, Lycée Rouvière de Toulon.
- [3] Damien Iceta, Cours d'informatique de CPGE, Lycée Gustave Eiffel de Cachan, UPSTI.
- [4] Benjamin WACK, Sylvain CONCHON, Judicaël COURANT, Marc DE FALCO, Gilles DOWEK, Jean-Christophe FILLIÂTRE, Stéphane GONNORD, Informatique pour tous en classes préparatoires aux grandes écoles, Éditions Eyrolles.