Solution Notes - Question B.

Question concerns: Differential equations - Euler's method, multistep methods, stability theory, predictor-corrector methods.

- (a) Local error is the error over a single step. A method is of order k if its local error is $O(h^{k+1})$. So method (i) has order 1, and method (ii) has order 2. [2 morks]
- (b) Method (i): $y_{n+1} = y_n 5ky_n = 0.5y_n$. Method (ii): $y_{n+1} = y_{n-1} - 10ky_n = y_{n-1} - y_n$.

Xn	(i)	(ii)	exact
0.0	1.0	1.0	1.0
0.1	0.5	0.61	0.61
0.2	0-25	0.39	0.37
0.3	0.12	0.22	0.22
0.4	0.062	0.17	0.14
0.5	0.031	0.050	0.082
0.6	0.016	0.12	0.050
0.7	0.0078	-0.070	0.030
0.8	0.0039	0-19	0.018
6.0	0.0020	-0-26	0.011
1.0	0.00098	0.45	0.0067

(C) Method (ii) is more accurate initially because it is of higher order. However it becomes numerically unstable, losing accuracy considerally for x > 0.5. Method (i) is never very accurate because h is too large, but remains stable, miniching the shape of the solution.

[3 marks]

[7 marks]

(d)
$$\frac{dy}{dx} = -5y$$
 $\frac{1}{y} = -5 \int dx$
 $\frac{dy}{dx} = -5y$
 $\frac{1}{y} = -5x + c$

Since $y(0)=1$, $c=0$ so the solution of the ODE is $y=e^{-5x}$.

In method (i) $y_{n+1} = \frac{1}{2}y_n$, $y_0 = 1$.

 $y_n = 2^{-n} = 2^{-10x}$

Absolute error in method (i)

= | e - Sx - 2 - 10x | -> 0 as x -> 0.

The absolute error in method (ii) will to as x to, oscillating in sign at each iteration. [5 marks]

(e) Method (i) is a suitable predictor for a corrector of order 1. Method (ii) is a suitable predictor for a corrector of order 2. This is for reasons of efficiency. The stability of each method is irrelevant as a predictor is only used over a single step between applications of the corrector.

[3 marks]