Матан первая домашка.

Шахматов Андрей, Б02-304

10 февраля 2024 г.

Содержание

1	I T 1	1
2	2 $^{\mathrm{T2}}$	4
ć	3 T3	5
4	$4 ext{ T5}$	5
Ę	5 T6	5
6	3 2.39	6
7	$7 ext{ T}10$	6
8	8 T11	6
ę	$9 ext{ T}12$	7
1	10 T14	7
1	11 T15	8
1	$12 \mathrm{\ T}16$	8

1 T1

$$f(x,y) = \sqrt{xy}$$

Тогда область определения $D_f = \{(x,y) \mid (x,y) \in \mathbb{R}^2 \ (x \le 0 \ \land y \le 0) \lor (x \ge 0 \ \land y \ge 0) \}$

Рис. 1: Область определения функции

Область опредлеения будет замкнутым множеством, так как совпадает со своим замыканием. Из рисунка 1 видно, что множество не является выпуклым, однако является линейно свзяным, ведь любые 2 точки можно соединить кривой проходящей через точку (0,0).

$$f(x,y) = \frac{1}{x^4 + y^4 - 1}$$

Область определения данной функции $D_f = \{(x,y) \mid (x,y) \in \mathbb{R}^2 \, x^4 + y^4 \neq 1\}$

Рис. 2: Область определения функции

Областью определения является всё пространство кроме кривой $x^4 + y^4 = 1$. Так как такая кривая является замкнутой, то её дополнение открыто, а значит область определения открыта. Также область определения не является выпуклой, связной или линейно связной, так как разбивается кривой на два открытых непересекающихся множества.

$$f(x,y) = \ln(1 - 2x - x^2 - y^2)$$

Тогда область определения $D_f = \{(x,y) \mid (x,y) \in \mathbb{R}^2 \ x^2 + y^2 < 1 - 2x\}$. Решим полученное неравенство $x^2 + 2x + 1 + y^2 < 2$, что эквивалентво $(x+1)^2 + y^2 < \sqrt{2}^2$, что соответствует открытому шару радиуса $\sqrt{2}$ с центром в точке (-1,0).

Рис. 3: Область определения функции

Так как область определения - открытый шар, то она открыта. Также область определения связна, линейно связна и выпукла.

2 T2

$$M = \{ (e^t \cos t, e^t \sin t) \mid t \in \mathbb{R} \}$$

Данное множество является образом непрерывной кривой, потому оно линейно свзяно (любые две точки можно соединить данной кривой), потому M - связно. Данное множество не является открытым, поскольку содержит некоторые свои граничные точки. При этом замыкание множества содержит точку (0,0), однако сама кривая её не содержит, так как $R=\sqrt{x^2+y^2}=e^t>0$, что означает незамкнутость M.

Рис. 4: График кривой

3 T3

$$M = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1^2 + x_2^2 + x_3^2 < x_4^2$$

Рассмотрим функцию $g: \mathbb{R}^4 \to \mathbb{R}$, $g(x_1, x_2, x_3, x_4) = x_4^2 - x_1^2 + x_2^2 + x_3^2$, такая функция является непрерывной. Рассмотрим прообраз множества $g^{-1}(Q)$, $Q = (0, +\infty)$, при этом прообраз равен исследуемому множеству M. По топологическому определению непрерывности прообраз открытого Q открыт, а значит M - открыто. Также множество M не является линейно свзяным, так как все кривые, соединяющие точки с координатами x_4 разных знаков должны проходить через точку с координатой $x_4 = 0$, которая не содержится в множестве M. Тогда так как M - открыто и не линейно связно, то оно не связно.

4 T5

Нужно доказать, что $\bigcap_{n\in\mathbb{N}}^{\infty}B_0\left(\frac{1}{n}\right)=\{0\}$. С одной стороны $\forall k\in\mathbb{N}\ 0\in B_0\left(\frac{1}{k}\right)\Rightarrow\{0\}\subseteq\bigcap_{n\in\mathbb{N}}^{\infty}B_0\left(\frac{1}{n}\right)$. С другой стороны рассмотрим множество $A=\mathbb{R}\setminus\{0\}$, для любого $a\in A$ существует k такое что $\frac{1}{k}<|a|$, а значит $a\not\in B_0\left(\frac{1}{k}\right)\Rightarrow\bigcap_{n\in\mathbb{N}}^{\infty}B_0\left(\frac{1}{n}\right)\not\in A\Rightarrow B_0\left(\frac{1}{k}\right)\Rightarrow\bigcap_{n\in\mathbb{N}}^{\infty}B_0\left(\frac{1}{n}\right)\in\{0\}$. Тогда через двойное включение получаем требуемый факт.

5 T6

Рассмотрим множество значений последовательности Гейне $a_n \to 0$. Данное множество не будет замкнутым, так как его замыкае будет содержать 0, но ни один из членов последовательности не равен 0. А также каждая точка данного множества является членом последовательности a_n и потому изолирована.

6 2.39

Рассмотрим две последовательности Гейне $x_n \to x_0$ и $y_k \to y_0$. Требуется доказать, что при условии

$$\lim_{n \to \infty} f(x_n, y_k) = B(y_k)$$

И

$$\lim_{n \to \infty} f(x_n, y_n) = A$$

следует, что

$$\lim_{k \to \infty} B(y_k) = A$$

. В силу существования первых двух пределов для достаточно больших n, k выполняется:

$$|f(x_n, y_n) - A| < \epsilon$$

$$|f(x_n, y_k) - B(y_k)| < \epsilon$$

$$|f(x_n, y_k) - f(x_k, y_k)| < \epsilon$$

Последнее неравенство выполняется в силу фундаментальности последовательности $f(x_n, y_k)_n$. Рассмотрим $|B(y_k) - A| < |B(y_k) - f(x_n, y_k)| + |f(x_n, y_k) - f(x_k, y_k)| + |f(x_k, y_k) - A| < 3\epsilon$. Что означает

$$\lim_{k \to \infty} B(y_k) = A$$

7 T10

Пусть существует $g:\mathbb{R}^2\to\mathbb{R}$ и g - непрерывна и инъективна. Рассмотрим сужение $g_y:\mathbb{R}\to\mathbb{R}$, $g_y(x)=g(x,y)$. Тогда g_y также непрерывна, а значит он переводит связные множества в связные, из чего следует $g_y(\mathbb{R})=Q(y)$, где Q(y) - отрезок, интервал или полуинтервал. Тогда так как g - инъективна выполняется: $\mathbb{R}=\bigcup_{y\in\mathbb{R}}Q(y)$. Докажем промежуточную лемму: инъёктивная и непрерывная функция монотонна. Предположим противное: $\exists x_1< x_2< x_3\mid f(x_1)< f(x_2)>f(x_3)\vee f(x_1)>f(x_2)< f(x_3)$, строгие знаки получены с учётом инъёктивности. Без ограничения общности рассмотрим первый вариант $f(x_1)< f(x_2)>f(x_3)$. Пусть $f(x_3)>f(x_1)$, тогда по теореме о промежуточных значениях существует $x\in (x_1,x_2)\mid f(x)=f(x_3)$, тогда так как $x< x_3\Rightarrow x\neq x_3$, но $f(x)=f(x_3)$ - противоречие с инъективностью. Тогда оказывается, что каждая из g_y - монотонна. Так как функция g_y монотонна то по теореме об обратной функции обратная f^{-1} - непрерывна, а значит f переводит открытые в открытые. А значит все множества Q(y) - интервалы. Тогда так как из покрытия открытого множества интервалами можно выбрать счётное подпокрытие $\mathbb{R}=\bigcup_{n\in\mathbb{N}}Q(y_n)$. Но тогда мы получили дизъюнктное разбиение действительной прямой непустыми интервалами - противоречие со связностью.

8 T11

Я честно посмотрел онлайн семинар с решением, но не записал сюда

9 T12

(б)

(B)

$$\begin{cases} \exp\left\{-\frac{1}{x^2 + y^2}\right\}, (x, y) \neq (0, 0) \\ 0, (x, y) = (0, 0) \end{cases}$$

Найдём частные производные:

$$\partial_x f(0,0) = \lim_{x \to 0} \frac{\exp\left\{-\frac{1}{x^2}\right\}}{x} = 0$$

$$\partial_y f(0,0) = \lim_{y \to 0} \frac{\exp\left\{-\frac{1}{x^2}\right\}}{y} y = 0$$

Проверим дифференцируемость функции:

$$\frac{1}{\rho} |\exp\left\{-\frac{1}{h^{1^2} + h^{2^2}}\right\}| = \frac{1}{\rho} |\exp\left\{-\frac{1}{\rho^2}\right\}| \to 0, \rho \to 0$$
$$f(x, y) = \ln\left(1 + \sqrt[3]{x^2 y}\right)$$

Частные производные равны нулю:

$$\left| \frac{1}{\rho} \ln \left(1 + \sqrt[3]{x^2 y} \right) \right| = \left| \frac{1}{\rho} \ln \left(1 + \rho \sqrt[3]{\cos^2 \phi \sin \phi} \right) \right|$$

Предел такого выражения зависит от напрвдения, например при $\phi = 0$ предел равен 0, а при других углах 1. Тогад разность приращения и дифференциала не равна $o(\rho)$, что недифференцируемость функции.

10 T14

$$f(x,y,z) = (1+x)^{\alpha} (1+y)^{\beta} (1+z^{\gamma})$$

$$\ln f(x,y,z) = \alpha \ln(1+x) + \beta \ln(1+y) + \ln(1+z^{\gamma})$$

$$d \ln f(x,y,z) = \frac{df(x,y,z)}{f(x,y,z)} = \frac{\alpha dx}{1+x} + \frac{\beta dy}{1+y} + \frac{\gamma z^{\gamma-1} dz}{1+z^{\gamma}}$$

$$df(0,0,0) = \alpha dx + \beta dy$$

$$d^{2}f(x,y,z) = d(f(x,y,z) \cdot d \ln f(x,y,z)) = df(x,y,z) \otimes d \ln f(x,y,z) + f(x,y,z) \cdot d^{2} \ln f(x,y,z)$$

Первое слагаеемое:

$$df(0,0,0) \otimes d \ln f(0,0,0) = (\alpha dx + \beta dy)^2$$

Второе слагаемое:

$$d^{2} \ln f(x, y, z) = -\frac{\alpha dx^{2}}{(1+x)^{2}} - \frac{\beta dy^{2}}{(1+y)^{2}} + \frac{\gamma(\gamma - 1)z^{\gamma - 2} - \gamma z^{2\gamma - 2}}{(1+z^{\gamma})^{2}}$$

Тогда второй дифференциал в нуле равен:

$$d^{2}f(0,0,0) = (\alpha dx + \beta dy)^{2} - \alpha dx^{2} - \beta dy^{2} = (\alpha^{2} - \alpha)dx^{2} + (\alpha^{2} - \alpha^{2})dy^{2} + 2\alpha\beta dx \otimes dy$$

11 T15

$$f^{3} - 3xyf - 2 = 0, f(1, 1) = 2$$
$$3f^{2}df - 3yfdx - 3xfdy - 3xydf = 0 \implies df = \frac{dx + dy}{f^{2} - xy}$$

Значение $df(1,1) = \frac{dx+dy}{3}$

$$d^{2}f = d\left(\frac{1}{f^{2} - xy}\right) \otimes (dx + dy)$$

$$d\left(\frac{1}{f^{2} - xy}\right) = -\frac{2fdf - ydx - xdy}{(f^{2} - xy)^{2}} = -\frac{4df - dx - dy}{9}$$

$$d^{2}f(1, 1) = (dx + dy) \otimes -\frac{\frac{4}{3}dx + \frac{4}{3}dy - dx - dy}{9} = \frac{1}{27}(dx + dy)^{2}$$

Тогда частные производные одинаковы и равны: $\frac{1}{27}$.

12 T16

$$f(x, y, z) = \ln x + y + z = \ln g$$
$$d^n f(x, y, z) = \partial_{g^n} f \cdot dg^n = \frac{(-1)^{n-1} (n-1)!}{(x+y+z)^n} \cdot (dx + dy + dz)^n$$

То есть все частные производные равны между собой и равны: $\frac{(-1)^{n-1}(n-1)!}{(x+y+z)^n}$.