1 La question

. . .

Modèle d'échantillonnage

. . .

Distribution a priori

. . .

La question

Quand un enfant nait, est-il plus probable que ce soit une fille plutôt qu'un garçon?

Modèle d'échantillonnage

. . .

Distribution a priori

. . .

La question

Quand un enfant nait, est-il plus probable que ce soit une fille plutôt qu'un garçon?

Modèle d'échantillonnage

Distribution de Bernoulli : $Y_i = 1$ si le nouveau né i est une fille, 0 si c'est un garçon

$$Y_i \sim \mathsf{Bernoulli}(\theta) \qquad \theta \in [0,1]$$

Distribution a priori

. . .

La question

Quand un enfant nait, est-il plus probable que ce soit une fille plutôt qu'un garçon?

Modèle d'échantillonnage

Distribution de Bernoulli : $Y_i = 1$ si le nouveau né i est une fille, 0 si c'est un garçon

$$Y_i \sim \mathsf{Bernoulli}(\theta) \qquad \theta \in [0,1]$$

Distribution a priori

Un a priori uniforme sur θ (la probabilité qu'un nouveau né soit une fille plutôt qu'un garçon) :

$$\theta \sim \mathcal{U}_{[0,1]}$$

Distribution a posteriori

L'objet de la modélisation bayésienne : inférer la distribution a posteriori des paramètres

Loi a posteriori : la loi de θ conditionnellement aux observations $p(\theta|\mathbf{Y})$

Distribution a posteriori

L'objet de la modélisation bayésienne : **inférer la distribution** *a* **posteriori** des **paramètres**

• Loi *a posteriori* : la loi de θ conditionnellement aux observations $p(\theta|Y)$

Théorème de Bayes :

$$p(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta)}{f(\mathbf{y})}$$

où $f(\mathbf{y}) = \int_{\Theta} f(\mathbf{y}|\theta) \pi(\theta) \, \mathrm{d}\theta$ est la loi marginale des données

Distribution a posteriori

L'objet de la modélisation bayésienne : inférer la distribution a posteriori des paramètres

• Loi a posteriori : la loi de θ conditionnellement aux observations $p(\theta|\mathbf{Y})$

Théorème de Bayes :

$$p(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta)}{f(\mathbf{y})}$$

où $f(y) = \int_{\Theta} f(y|\theta)\pi(\theta) d\theta$ est la loi marginale des données La distribution a posteriori est calculée à partir :

- 1 du modèle d'échantillonnage $f(y|\theta)$ qui donne la vraisemblance $f(\mathbf{y}|\theta)$ pour l'ensemble des observations
- 2 de la loi a priori $\pi(\theta)$

Application à l'exemple historique

- 1 La vraisemblance . . .
- 2 La loi a priori
- La distribution a posteriori . . .