

Recapitulating Articular Cartilage Fiber Alignment in Tissue Engineered Constructs

Tony Chen April 28, 2020

Specific Aim 1: Hypothesis

Application of bending-like strains in viscoelastic materials will create strain patterns similar to the

alignment of collagen fibers in articular cartilage.

Assembled mold

Assembled mold

After 1 freeze/thaw cycle

Leaflet expansion

Post-crosslinking

~ 33% Strain

PVA cryogels post-expansion have stratified layers

Polarized light images of 10 mm thick PVA Cryogel

100 μm thick section

Recreation of collagen architecture

