Formale Semantik 08. Intensionalität

Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

Folien in Überarbeitung. Englische Teile (ab Woche 8) sind noch von 2007!

Stets aktuelle Fassungen: https://github.com/rsling/VL-Semantik

Inhalt

- 1 Intensionality
 - Problems with extensionality and non-dimensional models
 - Intensions
- A formal account of intensions
 - Sets of PSOAs
 - Intensions as functions
 - Repeat after me...

- 3 Sets of worlds
 - Known relations
 - Modal operators
- 4 Intensional Model Theory
 Ingedients of models
 - Evaluating individual constants
 - Set membership
 - Some peculiarities of □ and ◊

Targets for this week

- Understand that we have been exclusively dealing with extensions so far.
- Acknowledge that the approach fails in certain constructions.
- Learn how one can define an intensional calculus on top of the extensional one.
- See how that solves many problems with extensional logic for NL.

Some examples

- Stockhausen will write another opera.
- Had Arno Schmidt cut down on drinking, he would still be alive.
- Gustave Moreau believes that estheticism rules.

Simple extensions?

- syntactic types are no problem
- truth conditions impossible to define for static models (tense)
- ... and for just one state of affairs (modals, believe type verbs)

What are intensions?

Type	Reference	Sense
NP	individuals	individual concepts
	Venus	
VP	sets	property concepts
	humming birds	
S	1 or O	thoughts or propositions
	I like cats.	

Properties of intensions

- · can't be just truth conditional
- encode knowledge about not just the actual but all possible and/or past/future states of affairs (PSOAs)
- therefore still involved in defining truth conditions
- not mental representations
- mediate between internal knowledge and truth-values

PSOAs have their own logic

- PSOAs are logically constrained
- observe the more than just thruth-valued failure of:
- In 1985 Arno Schmidt will be planning to have finished 'Julia oder Die Gemälde' by August 1914.
- incompatible to our knowledge of PSOA logic

A touch of parellel universes?

- Maria could know Arno Schmidt in person.
- is true not to facts but to an infinite number of optional SOAs s.t.:
 - ▶ A.S. is not a workaholic, does not drink 2 liters of coffee in the morning, does not drink a bottle of *Klarer* in the afternoon, consequently has never had any heart attacks
 - nothing of the above, but Maria was born 20 years earlier
 - nothing of the above, but A.S. rose from the dead in 2003, etc.

Propositions and PSOAs

- assume a set of all PSOAs
- PSOAs: determined by which propositions correspond to true sentences within the world they represent
- each proposition splits the set of PSOAs into two subsets:
- ...the SOAs under which its corresponding sentence is true
- ...the subset under which its corresponding sentence is false

Coordinates

- for each possible distinction in truth values of the whole of the propositional sentences: one possible world $(w \in W)$
- for each point in time: one possible temporal state of each world (instant $i \in I$)
- representation of temporarily ordered world-time coordinates $\langle w, i \rangle \in W \times I$

The nature of propositions

- propositions = intensions of sentences (formulas)
- remember the condition: every possible truth-value configuration for the full set of possible sentences constitutes a member of the set of possible worlds
- hence: every sentence is characterized by the set of worlds in which it is true
- this characterization: its intension
- the proposition of a sentence/formula: the characteristic function of the set of world/world-time pairs in which it is true

Propositions as functions

- a propositional function p
- is a function from $W \times I$ to $\{0,1\}$

Your evening prayer

- If we know the state of affairs, we know for every sentence whether it is true!
- If we know which sentences are true, we know the state of affairs!
- It is quite difficult to state what other kind of knowledge (or information) should exist. So for now we assume there isn't any.
- Since we agree that sentences denote truth values, and that the truth of a sentence depends on the state of affairs (=world), the function from all possible worlds to truth values characterizes sentences under all thinkable conditions.
- Hence, we call that function the intension of the sentence.

Entailment

- defintion of intensions of sentences (propositions): characteristic functions
- equivalently: propositions are sets of possible worlds
- entailment turns out as a subset-relation: $p \subseteq q$:

Synonymy

- synonymy turns out as set equivalence:
- p = q

Contradiction

- contradiction turns out as an empty intersection:
- $p \cap q = \emptyset$

Negation

- negation turns out as a complement:
- p/W

Quantification over worlds

- new modal sentence/wff operators:
 - ► necessarily p: □p
 - ► possibly p: **\p**
- What does it mean for a proposition to be necessary/possible?

Necessity as universal quantification

- if $\Box p$ then $(\forall w) [p(w) = 1]$ (p as characteristic function)
- such that W = p (p as set):

Possibility as existential quantification

- if $\Diamond p$ then $(\exists w) [p(w) = 1]$ (characteristic function)
- such that $p \neq \emptyset$ (set):

A larger tuple

- $\mathcal{M} = \{W, I, <, U, V\}$
 - W, a set of worlds
 - ▶ I, a set of instants
 - <, an ordering relation in I</p>
 - U, the set of individuals
 - V, a valuation function for constants
- evaluate an expression α : $[\![\alpha]\!]^{\mathcal{M}, \mathsf{w}, i, g}$

Intensional interpretation of individual constants

- the President of the United States, the Pope, Bond (in the sense of 'the actor currently playing Bond')
- for $\beta \in Cons_{ind}$, $V(\beta)$ is a function from $W \times I$ to U

... and pred_ns

- walks etc. denotes different sets (or CFs) at different $\langle w, i \rangle$ coordinates
- for $\beta \in Cons_{pred_n}$, $V(\beta)$ is a function from $W \times I$ to $\wp U^n$ ($U^n = U_1 \times U_2 \times \ldots \times U_n$)

The Chierchia approach: predicates/sentences

- simple sentences/predicates: $\beta = \delta(t_1, t_2, \dots, t_n)$
- $[\beta]^{\mathcal{M}, \mathbf{w}, i, g} = 1$ iff
- $\bullet \ \langle \llbracket t_1 \rrbracket^{\mathcal{M}, \mathsf{w}, i, g}, \llbracket t_2 \rrbracket^{\mathcal{M}, \mathsf{w}, i, g}, \ldots, \llbracket t_n \rrbracket^{\mathcal{M}, \mathsf{w}, i, g} \rangle \in \llbracket \delta \rrbracket^{\mathcal{M}, \mathsf{w}, i, g}$
- with: $\llbracket t_1 \rrbracket^{\mathcal{M},w,i,g} = V(t_1)(\langle w,i \rangle)$, etc.
- In an intensional type-theoretic language, we could define new functional types and try to use FA where possible.

Quantification

- if $\psi = \forall x \phi$ then
- ... $\llbracket \psi \rrbracket^{\mathcal{M}, \mathsf{w}, \mathsf{i}, \mathsf{g}} = 1$ iff for all $\mathsf{u} \in \mathsf{U}$
- ... $\llbracket \phi \rrbracket^{\mathcal{M}, \mathsf{w}, \mathsf{i}, \mathsf{g}[\mathsf{u}/\mathsf{x}]} = 1$
- nothing new here

Modalities

- if $\psi = \Box \mathbf{x} \phi$ then
- ... $\llbracket \psi \rrbracket^{\mathcal{M}, \mathsf{w}, \mathsf{i}, \mathsf{g}} = 1$ iff for all $\mathsf{w}' \in \mathsf{W}$
- ...and all $i' \in I$
- $\bullet \ ... \llbracket \phi \rrbracket^{\mathcal{M}, \mathbf{w}', \mathbf{i}', \mathbf{g}} = 1$

A similarity of \forall and \Box

- as: $\forall x [P(x) \rightarrow Q(x)] \rightarrow [\forall x P(x) \rightarrow \forall x Q(x)]$
- and not vice-versa
- it holds that: $\Box [\psi \to \phi] \to [\Box \psi \to \Box \phi]$
- but not vice-versa!

Some validities

- $\exists x \Box P(x) \rightarrow \Box \exists x P(x)$
- $\exists x \Diamond P(x) \leftrightarrow \Diamond \exists x P(x)$
- $\forall x \Box P(x) \leftrightarrow \Box \forall x P(x)$ (Carnap-Barcan)
- $\forall x \Diamond P(x) \rightarrow \Diamond \forall x P(x)$

Literatur I

Autor

Kontakt

Prof. Dr. Roland Schäfer Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena Fürstengraben 30 07743 Jena

https://rolandschaefer.net roland.schaefer@uni-jena.de

Lizenz

Creative Commons BY-SA-3.0-DE

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie

http://creativecommons.org/licenses/by-sa/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.