Homework set 11

Due by 15:00 on Monday, November 6, 2023.

Please select **three** problems to solve and hand in written solutions either in person or to gunnar@magnusson.io.

Problem 1. Let X and Y be normed spaces and $f: X \to Y$ a linear operator. Show that the graph Γ_f of f is closed in $X \oplus Y$ if and only if the operator satisfies: If $x_n \to 0$ in X and $f(x_n) \to y$, then y = 0.

Problem 2. Let X and Y be Banach spaces and $f: X \to Y$ a bounded operator. Show that there exists a c > 0 such that $||f(x)|| \ge c||x||$ if and only if $\ker f = 0$ and $\operatorname{im} f$ is closed.

Problem 3. Prove a converse of the closed graph theorem: If $f: X \to Y$ is a bounded linear operator between normed spaces, then the graph Γ_f of f is closed in $X \oplus Y$.

Problem 4. Let X be a vector space and $\|\cdot\|_1$ and $\|\cdot\|_2$ norms on X such that $X_1 = (X, \|\cdot\|_1)$ and $X_2 = (X, \|\cdot\|_2)$ are both complete. Show that the following are equivalent:

- If $||x_n||_1 \to 0$ then $||x_n||_2 \to 0$.
- If (x_n) converges in X_1 then it converges in X_2 .

If either condition holds, show that the norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent.

Recall that a set U in a metric space X is *open* if there exist open balls $B(x_i,r_i)$ for $i\in I$ such that $U=\bigcup_{i\in I}B(x_i,r_i)$. The collection $\tau(X)$ of open sets of a metric space X is called a *topology* on X.

Problem 5. Let X be a vector space and $\|\cdot\|_1$ and $\|\cdot\|_2$ norms on X such that $X_1=(X,\|\cdot\|_1)$ and $X_2=(X,\|\cdot\|_2)$ are both complete. Suppose that $\tau(X_1)\subset \tau(X_2)$. Show that $\tau(X_1)=\tau(X_2)$.