DEPARTAMENTO DE TECNOLOGÍA INFORMATICA Y COMPUTACIÓN

Examen

MATEMÁTICA DISCRETA

8-6-96

1 (A) Resolver el siguiente sistema de ecuaciones lineales en \mathbb{Z}_7 .

$$\begin{array}{cccc} x & + & [2]y & = & [4] \\ [4]x & + & [3]y & = & [4] \end{array}$$

Expresar el resultado mediante representantes de clase 0 y 6. ¿Existe alguna solución en Z5?

- (B) Usar el Teorema de Fernmat para calcular el resto de dividir 3⁴⁷ entre 23.
- 2 Determinar la cantidad de ordenadores que se puede comprar de cada uno de los precios 290.000pts y 170.000pts si se dispone de un presupuesto de 7.800.000 pts.
- 3 La tabla siguiente es una lista de actividades $a_1, a_2, ..., a_{11}$ de un proyecto y para cada una de ellas, el tiempo en días necesario y las actividades deben completarse antes de poder iniciarse.

Actividad	a_1	a_2	a ₃	a_4	a ₅	a_6	a7	a ₈	a ₉	a ₁₀	a_{11}
Tiempo necesario	6	2	10	1	4	2	4	7	9	2	4
Prerrequisitos	-	-	a_1	a_1	a_1	a ₅ ~	a_2 a_4	a ₃ a ₆	a_2 a_4	a ₇	a ₈ a ₁₀

Calcula el mínimo número de días en que puede completarse el proyecto. Identifica el camino crítico, explicando su significado. Explica razonadamente cuantos días se puede retrasar la actividad a_{10} sin afectar la duración total del proyecto.

4 Consideremos un grafo ponderado con conjunto de vértices V={A,B,C,D,E,F}, y cuya matriz de pesos es:

[∞	2	∞	5	8	∞
00	00	1	2	6	∞
1	00	∞	3	$\tilde{\infty}$	∞
00	00	00	∞	3	∞
1	00	7	∞	∞	4
3	00	∞	∞	∞	∞

Calcular el camino más corto de A a E y su peso, con la condición de que no contenga los vértices C y F como internos. El algoritmo que utilicéis debe aplicarse sobre la totalidad del grafo, es decir, no se permite eliminar vértices.

5 (A) Dada la expresión en notación polaca directa:

 $-a \uparrow b \ 2 + c * 3 \ d$; Calcular la expresión original y escribir también en notación polaca inversa. (B) Hallar el número de formas de repartir 15 ordenadores entre tres departamentos, debiendo asignarse al menos

tres a cada departamento.

Nota: Todos los problemas puntúan por igual. No olvidéis detallar y justificar correctamente cada pregunta. Una respuesta no justificada se considerará incorrecta