Krzysztof Dąbrowski gr. 3

Laboratorium sieci komputerowych - c4 Sieci bezprzewodowe

$20~\mathrm{maja}~2019$

Spis treści

1.	Cel zajęć	1
2.	Analiza przestrzeni radiowej	1
3.	Schemat sieci	2
4.	Podłaczenie do sieci wifi w środowisku graficznym	2

1. Cel zajęć

Celem laboratorium jest zbadanie lokalnych sieci radiowych oraz podłączenie i konfiguracja interfejsów radiowych na maszynach z systemami Ubuntu i FreeBSD.

2. Analiza przestrzeni radiowej

Przy pomocy aplikacji *Wifi Analyzer* przeskanowałem dostępne sieci radiowe oraz pokrycie poszczególnych kanałów. Wyniki analizy sieci pokazuje rysunek ??.

Dodatkowo przeskanowałem dostępne sieci przy pomocy polecenia ${\tt nmcli}$ device wifi list.

* SSID	MODE		CHAN	RATE	SIGNAL	SECURITY
konferencja	Infra	11	54	Mbit/s	74	WEP
pwwifi-students	Infra	11	54	Mbit/s	30	
pwwifi2	Infra	11	54	Mbit/s	30	WPA2 802.1X
pwwifi-students	Infra	11	54	Mbit/s	35	
vlab_net	Infra	11	54	Mbit/s	35	WPA2
konferencja	Infra	11	54	Mbit/s	30	WEP
pwwifi	Infra	11	54	Mbit/s	49	
ZETIS	Infra	1	54	Mbit/s	99	WPA2 802.1X
pwwifi-students	Infra	6	54	Mbit/s	34	
TROL	Infra	1	54	Mbit/s	29	
pwwifi2	Infra	1	54	Mbit/s	52	WPA2 802.1X
pwwifi	Infra	11	54	Mbit/s	30	
pwwifi2	Infra	11	54	Mbit/s	75	WPA2 802.1X
pwwifi2	Infra	6	54	Mbit/s	35	WPA2 802.1X
Sieć Wi-Fi (WE-Lech)	Infra	6	54	Mbit/s	30	WPA2
pwwifi-students	Infra	6	54	Mbit/s	37	
Stery3	Infra	11	54	Mbit/s	30	WPA1 WPA2
asdf	Infra	9	54	Mbit/s	49	WPA1 WPA2
pwwifi2	Infra	6	54	Mbit/s	30	WPA2 802.1X
linksys	Infra	3	54	Mbit/s	24	WPA2
konferencja	Infra	1	54	Mbit/s	54	WEP

konferencja	Infra	6	54 Mbit/	's 40	WEP
konferencja	Infra	1	54 Mbit/	's 37	WEP
konferencja	Infra	6	54 Mbit/	's 34	WEP
is_wifi	Infra	4	54 Mbit/	's 30	WEP
konferencja	Infra	6	54 Mbit/	's 30	WEP
pwwifi	Infra	1	54 Mbit/	's 54	
pwwifi-students	Infra	1	54 Mbit/	s 49	
pwwifi	Infra	6	54 Mbit/	's 44	
pwwifi	Infra	1	54 Mbit/	's 37	
pwwifi-students	Infra	11	54 Mbit/	's 30	
pwwifi2	Infra	1	54 Mbit/	's 42	WPA2 802.1X
pwwifi2	Infra	6	54 Mbit/	's 32	WPA2 802.1X
konferencja	Infra	1	54 Mbit/	's 20	WEP
pwwifi	Infra	1	54 Mbit/	's 37	
pwwifi-students	Infra	1	54 Mbit/	's 24	
pwwifi-students	Infra	1	54 Mbit/	's 20	

3. Schemat sieci

Strukturę urządzeń w sieci przedstawia rysunek 1.

Rysunek 1. Schemat sieci

4. Podłączenie do sieci wifi w środowisku graficznym

 ${\bf W}$ celu przyłączenia do sieci skorzystam z nakładki graficznej na program NetworkManager wbudowanej w system Ubuntu.

Przed podłączeniem sprawdziłem stan interfejsu radiowego poleceniem i
p ${\tt a}.$

ip a

4: wlp2s0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN group defalink/ether 00:24:d7:92:0e:dc brd ff:ff:ff:ff

Oraz tablicę tras, poleceniem ip r.

```
ip r
```

```
default via 10.146.146.5 dev eno2
10.146.0.0/16 dev eno2 proto kernel scope link src 10.146.225.1
```

Z otrzymanych wyników wiać, że interfejs radiowy jest **nieaktywny** a trasa domyślna wiedzie przez interfejs fizyczny.

Po podłączeniu do sieci **ZETIS** wyniki tych poleceń wyglądały następująco:

```
ip a
```

```
4: wlp2s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default link/ether 00:24:d7:7d:ba:8c brd ff:ff:ff:ff:ff inet 10.68.17.233/16 brd 10.68.255.255 scope global dynamic wlp2s0 valid_lft 3601sec preferred_lft 3601sec inet6 fe80::224:d7ff:fe7d:ba8c/64 scope link valid_lft forever preferred_lft forever ip r

default via 10.146.146.5 dev eno2 default via 10.68.0.1 dev wlp2s0 proto static metric 600 10.68.0.0/16 dev wlp2s0 proto kernel scope link src 10.68.17.233 metric 600 10.146.0.0/16 dev eno2 proto kernel scope link src 10.146.225.3 169.254.0.0/16 dev wlp2s0 scope link metric 1000 192.0.2.4 via 10.68.0.1 dev wlp2s0 proto dhcp metric 600
```

Widać, że interfejs radiowy wlp2s0 jest teraz włączony oraz skonfigurowany. Do tablicy tras została dodana nowa domyślna trasa prowadząca przez interfejs radiowy.

Dodatkowo pobrałem logi z serwera RADIUS połączeniem komend ssh ldap grep -w \$USER /var/log/radiusd | tail -2.

```
ssh ldap grep -w \$USER /var/log/radiusd | tail -2
```

```
Mon May 13 17:01:43 2019 : Auth: (2156) Login OK: [dabrowk1] (from client ap225 port 0 via TLS tunnel)

Mon May 13 17:01:43 2019 : Auth: (2156) Login OK: [dabrowk1] (from client ap225 port 0 cli 00-22-3F-01-F9-12)
```

Z zebranych logów wynika, że serwer RADIUS zaakceptował podane dane dostępowe.