COMP1210

TUTORIAL SET 4

1. Find the range and the domain of the following functions.

a.
$$f(x) = 4x - 16$$

b.
$$f(x) = \sqrt{3x - 6}$$

c.
$$f(x) = \sqrt{2-x}$$

d.
$$f(x) = \frac{2x}{(x-1)(3x+9)}$$

e.
$$f(x) = \frac{1}{\sqrt{x-3}}$$

2. Determine whether the following functions from $\mathbb R$ to $\mathbb R$ are one to one or onto. [Note: Give a proof in each case]

a.
$$f(x) = x - 3$$

b.
$$f(x) = 2x + 3$$

3. Repeat "Problem 2" this time assuming that the functions are defined from $\mathbb{Z} \to \mathbb{Z}$.

4. a. Let $A = \{a, b, c\}$ and $B = \{1, 2, 3\}$. List all functions from A to B. Say which of your functions are injective and which are surjective.

b. $X = \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\}$ and let $f = \{(x, x^2) : x \in X\}$. Write f as a set of ordered pairs. Is f injective or surjective?

5. Let A be the set of negative real numbers and B be the set of positive real numbers. Let $f: A \to B$ be given by $f(x) = \frac{1}{2-x}$ and $g: B \to B$ be given by $g(x) = \frac{1}{x+2}$. Show why $g \circ f$ is defined. Find $g \circ f$ and its range.

- 6. Find the composition, $f \circ g$, of the following function pairs.
- a. $f(x) = \sqrt{x-1}$ and $g(x) = \sqrt{x-2}$. Notice that $f \circ g$ is not defined as a function from the domain of g. Find the values of x for which $f \circ g$ is defined. That is, the natural domain of $f \circ g$.
- b. $f(x) = \frac{1}{x-1}$ and $g(x) = \frac{x-1}{x+1}$.
- 7. Show that the following functions are one to one and onto and find their inverses.

a.
$$f(x) = -x - 4$$

b.
$$f(x) = (x+1)^2, x \ge -1.$$

- 8. Let $A = \{x : x \ge 2\}$ and $\{x : x \ge -4\}$. Let $f : A \to B$ be given by $f(x) = x^2 4x$. Show that f(x) is one to one and onto. Determine the inverse of f(x).
- 9. Let $f: A \to B$ and $g: B \to C$ be functions. Prove that
- a. If f and g are injective, then $g \circ f$ is injective.
- b. If f and g are surjective, then $g \circ f$ is surjective.
- 10. Let $f: A \to B$ and $C_1, C_2 \subseteq A$ and $D \subseteq B$. Prove that
- a. $f(C_1 \cap C_2) \subseteq f(C_1) \cap f(C_2)$.
- b. $f[f^{-1}(D)] \subseteq D$.