Network Services: DNS, DHCP, etc..

Operating Systems and Internetworking Week 1

Contents

- Dynamic Host Configuration Protocol
 - Motivation
 - Features
 - Operations
 - Advantages & Disadvantages
- Domain Name System
 - Characteristics
 - Domains
 - Name Servers and name resolutions
 - Naming Structure

Motivation for DHCP

- Configuration parameters
 - IP address
 - Router address
 - Subnet mask
 - DNS server address
- What happened before?
 - Manual assignment

 NETFUN networking labs
 - Bootstrap Protocol BOOTP

DHCP - Overview

- Introduced in 1993
- An improvement over BOOTP
 - Supports temporary allocation (leases) of IP addresses
 - Clients of DHCP servers can acquire all IP configuration parameters needed to operate
 - Minimal human interaction
- Is the preferred mechanism for dynamic assignment of IP addresses
- Compatible with BOOTP clients

Networks and DHCP

Terminology

- DHCP packet = DHCP Message
- DHCP Client = Client
- DHCP Server = Server
- Lease = Length of time a DHCP client can use a specific IP address

Initial Message Flow

IP release and renew

- An IP address is released when shuts down or terminates an internet connection
 - IP address returns to IP pool
 - It is available for another client to use
- A lease is renewed when 50% of the lease time is reached.
 - Request is sent to DHCP server
 - If initial DHCP server not available then request is broadcasted to all DHCP servers available

Advantages of DHCP

- Saves the network administrator from a lot of manual configuration work
 - Especially in large networks 100+ clients
- Able to move a device from one network to another and gain instant connectivity
- More <u>efficient utilisation</u> of available IP addresses – inactive clients do not obtain IP addresses

Disadvantages

- DHCP packets are UDP packets
 - What does that mean?
 - Unreliable and insecure operations
- Potential unauthorised clients?
 - Apply MAC address filtering
- Potential malicious DHCP clients and servers
 - Supplying incorrect configuration parameters
 - Exhaustion of IP pool

DNS

The DNS is...

- Domain Name System
- What Internet users use to reference anything by name on the Internet
- The mechanism by which Internet software translates names to attributes such as IP addresses

DNS is also...

- A globally distributed, scalable, reliable database
- Comprised of three components
 - A "name space"
 - Servers make that name space available
 - Resolvers (clients) query the servers about the name space

DNS as a Lookup Mechanism

- Users generally prefer names to numbers
- Computers prefer numbers to names
- What is the service provided by DNS?
- DNS provides the mapping between the two
 - I know "x", give me "y"

Global Distribution

- Data is maintained locally, but retrievable globally
 - No single computer has all DNS data
- DNS lookups can be performed by any device
- Remote DNS data is locally cacheable to improve performance

DNS - Loose Coherency

- The database is always internally consistent
 - Each version of a subset of the database (a zone) has a serial number
 - The serial number is incremented on every database change
- Changes to the master copy of the database are replicated according to timing set by the zone administrator
- Cached data expires according to timeout set by zone administrator

DNS – Scalability

- No limit to the size of the database
 - Can store 200,000,000 domain names?
 - Yes, but not particularly good idea
- No limit to the number of queries
 - Tens of thousands of queries handled easily every second
- Queries distributed among primary and secondary DNS servers and caches
 - E.g nslookup www.port.ac.uk

DNS - Reliability

- Data is replicated
 - From primary server to multiple secondary servers
- Clients can query
 - Primary server
 - Any of the copies at secondary servers
- Clients will typically query local caches
- DNS uses either UDP or TCP (port 53)
 - TCP for intra server communications
 - UDP for comms between clients and servers

Dynamicity

- Database can be updated dynamically
 - Add/delete/modify of any record
 - Only primary server can be dynamically updated
- Modification of the primary database triggers replication

Domain Names

- A domain name is the sequence of labels from a node to the root, separated by dots ("."s), read left to right
 - port.ac.uk
 - The name space has a maximum depth of 127 levels
 - Domain names are limited to 255 characters in length
- A node's domain name identifies its position in the name space

Domain Name Structure

Subdomains

 One domain is a subdomain of another if its domain name ends in the other's domain name

(Domain) Name Servers

- Name servers store information about the name space in units called "zones"
 - The name servers that serve a complete zone are said to "have authority for" or "be authoritative for" the zone
- More than one name servers can be authoritative for the same zone
 - This ensures redundancy and spreads the load
- Also, a single name server may be authoritative for many zones

Name Servers and Zones

Types of Name Servers

- Two main types of servers
 - Authoritative maintains the data
 - Primary where the data is edited
 - Secondary where data is replicated to
 - Non-authoritative (Caching) stores data obtained from an authoritative server

```
Non-authoritative answer:
Name: uk.www.bbc.co.uk.pri.bbc.co.uk
Addresses: 212.58.233.252
212.58.237.252
Aliases: www.bbc.co.uk
www.bbc.co.uk.pri.bbc.co.uk
```

No special hardware needed

Name Resolution

- Name resolution is the process by which local resolvers and name servers cooperate to find data in the name space
 - The *nslookup* command you are using this week
- Upon receiving a query from a resolver, a name server
 - 1) looks for the answer in its authoritative data and its cache
 - 2) If step 1 fails, the answer must be looked up through other servers

<u>Iterative</u> vs <u>Recursive</u> Resolution

Let's look at the iterative resolution process step-by-step:

annie.west.sprockets.com

The workstation *annie* asks its configured name server, *dakota,* for *www.nominum.com's* address

annie.west.sprockets.com

The name server dakota asks a root name server, m, for www.nominum.com's address

annie.west.sprockets.com

- The root server m refers dakota to the com name servers
- This type of response is called a "referral"

Here's a list of the com name servers. Ask one of them.

annie.west.sprockets.com

The name server *dakota* asks a *com* name server, *f*, for *www.nominum.com's*

annie.west.sprockets.com

The *com* name server *f* refers *dakota* to the *nominum.com* name servers

annie.west.sprockets.com

The name server *dakota* asks a *nominum.com* name server, *ns1.sanjose*, for *www.nominum.com's* address

annie.west.sprockets.com

The *nominum.com* name server *ns1.sanjose* responds with *www.nominum.com's* address

annie.west.sprockets.com

The name server dakota responds to annie with www.nominum.com's address

annie.west.sprockets.com

- After the previous query, the name server dakota now knows:
 - The names and IP addresses of the com name servers
 - The names and IP addresses of the nominum.com name servers
 - The IP address of www.nominum.com
- Let's look at the resolution process again

annie.west.sprockets.com

The workstation *annie* asks its configured name server, *dakota,* for *ftp.nominum.com's* address

annie.west.sprockets.com

dakota has cached a NS record indicating ns1.sanjose is an nominum.com name server, so it asks it for ftp.nominum.com's address

annie.west.sprockets.com

The *nominum.com* name server *ns1.sanjose* responds with *ftp.nominum.com's* address

annie.west.sprockets.com

The name server dakota responds to annie with ftp.nominum.com's address

annie.west.sprockets.com

The Root Nameservers (FYI only)

- The root zone file lists the names and IP addresses of the authoritative DNS servers for all Top-Level Domains (TLDs)
 - https://www.iana.org/domains/root/db
 - https://data.iana.org/TLD/tlds-alpha-by-domain.txt
- The root zone file is published on 13 servers, "A" through "M", around the Internet
 - https://www.iana.org/domains/root/servers
- Root name server operations currently provided by volunteer efforts by a very diverse set of organisations

Root Name Server Operators

Nameserver	Operated by:
A	Verisign (US East Coast)
В	University of S. California –Information Sciences Institute (US West Coast)
С	Cogent Communications (US East Coast)
D	University of Maryland (US East Coast)
Е	NASA (Ames) (US West Coast)
F	Internet Software Consortium (US West Coast)
G	U. S. Dept. of Defense (ARL) (US East Coast)
Н	U. S. Dept. of Defense (DISA) (US East Coast)
I	Autonomica (SE)
J	Verisign (US East Coast)
K	RIPE-NCC (UK)
L	ICANN (US West Coast)
M	WIDE (JP)

Load Concerns (FYI only)

- DNS can handle the load
 - DNS root servers get approximately 3000 queries per second
 - Empirical proofs (DDoS attacks) show root name servers can handle 50,000 queries per second
 - Limitation is network bandwidth, not the DNS protocol
 - in-addr.arpa zone, which translates numbers to names, gets about 2000 queries per second

Performance Concerns (FYI only)

- DNS is a very lightweight protocol
 - Simple query response
- Any performance limitations are the result of network limitations
 - Speed of light
 - Network congestion
 - Switching/forwarding latencies

Security Concerns (FYI only)

- Base DNS protocol (RFC 1034, 1035) is insecure
 - DNS spoofing (cache poisoning) attacks are possible
- DNS Security Enhancements (DNSSEC, RFC 2565) remedies this flaw
 - But creates new ones
 - DoS attacks
 - Amplification attacks
- DNSSEC strongly discourages large flat zones
 - Hierarchy (delegation) is good

Next Week...

Routing:: IP addresses and subnets