

دانشكدهى مهندسي كامييوتر

پاسخ آزمونک اول

مسئلهی ۱. یلکانی! (۱ نمره)

$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \frac{r_{1}}{\cos \theta} \to r_{1} \begin{bmatrix} 1 & \frac{\sin \theta}{\cos \theta} \\ -\sin \theta & \cos \theta \end{bmatrix} r_{1} + r_{1} \sin \theta \to r_{2} \begin{bmatrix} 1 & \frac{\sin \theta}{\cos \theta} \\ \frac{\sin \theta}{\cos \theta} + \cos \theta \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{\sin \theta}{\cos \theta} \\ \frac{1}{\cos \theta} & \frac{1}{\cos \theta} \end{bmatrix} r_{2} \cos \theta \to r_{2} \begin{bmatrix} 1 & \tan \theta \\ \frac{1}{\cos \theta} & 1 \end{bmatrix} r_{3} - r_{4} \cos \theta \to r_{4} \begin{bmatrix} 1 & \frac{1}{\cos \theta} \\ \frac{1}{\cos \theta} & 1 \end{bmatrix}$$

مسئلهی ۲. زیرفضا بازی (۱/۵ نمره)

الف) با توجه به سه شرط یک زیر فضا اثبات می کنیم:

- اگر بردار صفر را از هر زیر فضا برداریم، بردار صفر به دست میآوریم.
- است چرا که: $v_1 + \cdots + v_m$ او $v_1 + \cdots + v_m$ او $v_1 + \cdots + v_m$ است پرا که:

$$(v_1 + \dots + v_m) + (u_1 + \dots + u_m) = (v_1 + u_1) + \dots + (v_m + u_m)$$

$$\forall i: v_i + u_i \in V_i \Rightarrow (v_1 + u_1) + \dots + (v_m + u_m) \in V_1 + \dots + V_m$$

است زیرا: $v_1 + \cdots + v_m$ است زیرا: $u_1 + \cdots + u_m$ است زیرا:

$$a(u_1 + \cdots + u_m) = au_1 + \cdots + au_m$$

$$\forall i: au_i \in V_i \Rightarrow au_1 + \dots + au_m \in V_1 + \dots + V_m$$

در نتیجه $V_1 + \cdots + V_m$ یک زیر فضا از V_1 است.

ب) همه زیر فضاهای V_1,\ldots,V_m درون زیر فضای $V_1+\cdots+V_m$ هستند. (به ازای هر بردار v_i کافی است از بقیه زیر فضاها بردار صفر و از زیر فضاهای V_1,\ldots,V_m درون زیر فضاه کنیم.) حال نشان می دهیم کوچکترین زیر فضایی است که همه زیر فضاهای v_i بردار منبر و از زیر فضای نید یک زیر فضا شامل v_i,\ldots,v_m باشد. پس به ازای هر v_i,\ldots,v_m که باشد باید قرار بگیرد. پس تمامی بردار های v_i,\ldots,v_m شامل v_i,\ldots,v_m شامل v_i,\ldots,v_m شامل v_i,\ldots,v_m شامل v_i,\ldots,v_m شامل v_i,\ldots,v_m نیز هست و از آن جا که زیر فضای v_i,\ldots,v_m کوچکترین زیر فضا است.

مسئلهی ۳. جمع مستقیم (۱/۵ نمره)

به وضوح مجموعه توابع فرد، یک زیرفضا و مجموعه توابع زوج نیز یک زیرفضا است. برای اثبات دایرکت سام بودن، کافی است اثبات کنیم اشتراک این دو زیرفضا تنها عضو f عضو هر دو زیر فضا باشد. داریم: فضا باشد. داریم:

$$f(x) = -f(-x), \ f(x) = f(-x) \to f(x) = -f(x) \to f(x) = *$$

پس خاصیت اول ثابت شد. همچنین برای هر تابع h درون فضای برداری اصلی داریم:

$$h(x) = \frac{h(x) + h(-x)}{\mathrm{Y}} + \frac{h(x) - h(-x)}{\mathrm{Y}}$$

که به وضوح $\frac{h(x)+h(-x)}{7}$ یک تابع زوج است و $\frac{h(x)-h(-x)}{7}$ نیز یک تابع فرد است. پس هر تابعی، به صورت جمع یک تابع فرد و یک تابع زوج بدست آمد. بدین صورت، حکم اثبات می شود.