MATH 416H HW 2

James Liu

Due: Sep 11 Edit: September 11, 2024

1. No it is no longer a vector space, as:

$$\exists \lambda, \mu \in \mathbb{R}, \ (\lambda + \mu) \overrightarrow{v} = ((\lambda + \mu)^2 \times v_1, \cdots, (\lambda + \mu)^2 \times v_n)^T$$

$$= ((\lambda^2 + \mu^2 + 2\lambda\mu) \times v_1, \cdots, (\lambda^2 + \mu^2 + 2\lambda\mu) \times v_n)^T$$

$$\neq ((\lambda^2 + \mu^2) \times v_1, \cdots, (\lambda^2 + \mu^2) \times v_n)^T$$

$$= \lambda \overrightarrow{v} + \mu \overrightarrow{v}$$

Thus, as it is not a vector space.

- 2. Yes it is a vecotr space, as:
 - a) addition is communitive as ab = ba
 - b) addition is associative as a(bc) = (ab)c
 - c) For a = 1, $\forall b \in V$, ab = b, thus $1 = \overrightarrow{0}$
 - d) $\forall a \in V, -a + a = a^{-1} \times a^{1} = a^{0} = 1 = \overrightarrow{0}$
 - e) $\forall a \in V, a^1 = a$
 - f) $\lambda(\mu a) = (a^{\mu})^{\lambda} = a^{\mu\lambda} = (\lambda\mu)a$
 - g) $\lambda(a+b) = (ab)^{\lambda} = a^{\lambda}b^{\lambda} = \lambda a + \lambda b$
 - h) $(\lambda + \mu)a = a^{\lambda + \mu} = a^{\lambda} \cdot a^{\mu} = \lambda a + \mu a$
 - i) It is also closed onder vector multiplication and addition as any power of a positive real number will stay positive and thus any multiple is also still positive thus remains in the $(0,\infty)$ range.

For example: $\lambda=2, \mu=1, a=2,$ as $2^{(1+2)}=8\neq 6=2^1+2^2$ Thus, it is not a vector space.

3. No it is not in the span. Suppose it is then $\exists a_1, a_2 \in \mathbb{R}$ such that $a_1(3,4,2)^T + a_2(1,3,3)^T = (-1,2,3)^T$ which is:

$$\begin{cases} 3a_1 + a_2 &= -1\\ 4a_1 + 3a_2 &= 2\\ 2a_1 + 3a_2 &= 3 \end{cases}$$

1

Deriving it will result in:

$$\begin{cases} 3a_1 + a_2 &= -1 \\ -5a_1 + 0a_2 &= 5 \\ -7a_1 + 0a_2 &= 6 \end{cases} \to \begin{cases} a_1 = -1 \\ a_1 = -\frac{6}{7} \end{cases}$$
 (1)

Which raises a contradiction and thus, such a_1, a_2 does not exist thus, it is not in the span.

- 4. as v is in span of the subspace, then: $\exists a_1, \cdot, a_n, a_i \in \mathbb{R}$ that $v = a_1 \overrightarrow{v}_1 + \cdots + a_n \overrightarrow{v}_n$ Thus, $-1v + a_1 \overrightarrow{v}_1 + \cdots + a_n \overrightarrow{v}_n = 0$ thus, the set is linear dependent.
- 5. As U,W are subspace of V, then $\overrightarrow{0} \in U,W$ thus $\overrightarrow{0} \in U \cap W$ Also, consider that $x,y \in U \cap W$, then $x,y \in W$ and $x,y \in U$, Thus, $x+y \in U$ as U is a subspace, similarly, $x+y \in W$ therefore. $x+y \in U \cap W$ similarly, $\forall \lambda \in \mathbb{R}, \ \lambda x \in U$, and $\lambda x \in V$, therefore, the addition and multiplication are closed in $U \cap W$ following V while the intersection contains the zero vector making it not empty, thus, the intersection is still a subspace.
- 6. a) As profed in class, any set of vector S that spans V will have a element number n that is larger or equal to any set that is linear independent. and for any vector space of dimension m, it has a basis consisting of m elements. And any additional vector in the vector space will be lienar dependent with this base. Thus, basis is the largest linear independent subsets in a vector space. Therefore, a subset of a vector space that spans the vector space must have elements that is larger or equal to the number of elements in a base. Thus
 - b) As V have a dimension of n, then exists a base $\{v_1, \dots, v_n\} \subseteq V$ and spans V with n linearly independent vectors v_1, \dots, v_n . Thus, for any other vector, $\forall v \in V, \exists \lambda_1, \dots, \lambda_n \in F$ that $v = \lambda_1 v_1 + \dots + \lambda_n v_n$ and $\exists \mu_1, \dots, \mu_n \in F$ that $-v = \mu_1 v_1 + \dots + \mu_n v_n$. Thus, $v + \mu_1 v_1 + \dots + \mu_n v_n = 0$ and it is linear dependent with the set of basis. Thus, the maximum number of elements is n.
- 7. $s' \in \text{span } S$, thus, $\exists \lambda_i \in F$ that $s' = \sum_i \lambda_i s'_i$ where $s'_i \in S$. Also, as $S' \subset S'$, there is $\forall s'_i \in S'$, $s'_i \in S$, thus, as s' can be expressed in $s' = \sum_i \lambda_i s'_i$, $s' \in \text{span } S$, thus span $S' \subset \text{span } S$
- 8. As $v \in \text{span } S$, $\exists \lambda_i \in F$, $\forall s_i \in S$ that $v = \sum_i \lambda_i s_i \ \forall w \in \text{span } (S \cup \{v\})$, $\exists \lambda_i, \lambda_i', \mu \in F$, that $w = \sum_i \lambda_i s_i + \mu = \sum_i \lambda_i s_i + \mu \sum_i \lambda_i' s_i = \sum_i (\lambda_i + \mu \lambda_i') s_i$, $(\lambda_i + \mu \lambda_i') \in F$ thus, set $\lambda_i + \mu \lambda_i' = \alpha_i$, then $w = \sum_i \alpha_i s_i$ Thus, span $S = \text{span } (S \cup \{v\})$

9. $\forall \lambda_i, \mu_i, a, b \in F$:

$$F(a\lambda_1 + b\mu_1, \cdots, a\lambda_n + b\mu_n) = a\lambda_1 v_1 + b\mu_1 v_1 + \cdots + a\lambda_n v_n + b\mu_n v_n$$

$$= a\lambda_1 v_1 + \cdots + a\lambda_n v_n + b\mu_1 v_1 + b\mu_n v_n$$

$$= a(\lambda_1 v_1 + \cdots + \lambda_n v_n) + b(\mu_1 v_1 + \mu_n v_n)$$

$$= aF(\lambda_1, \cdots, \lambda_n) + bF(\mu_1, \cdots, \mu_n)$$

Therefore it is a linear map.