Dongjoon Park, 박동준 dopark@seas.upenn.edu

Implementation of Computation Group University of Pennsylvania

How many of you have heard of "FPGAs"?

- FPGA: Field-Programmable Gate Arrays
- Compare with other hardware platforms...

- + Better power efficiency than GPU
- + More flexible than ASIC (Application-Specific-Integrated-Circuits)

FPGA: Field-Programmable Gate Arrays

Compare with other hardware platforms...

- + Better power efficiency th
- + More flexible than ASIC (Application-Specific-Integrated-Circuits)

- Problem
 - FPGA compilation takes forever

- CPU, GPU compilation: milliseconds, seconds, minutes
- FPGA compilation: minutes, hours, days

- Problem
 - FPGA compilation takes forever
 - Incremental Refinement on FPGA?
 - You have a design... Wait for an hour to test it on FPGA
 - ... and you discover a small change you need to make
 - Now, you must wait *another* hour to test the modified design?
 - Oh my god, it doesn't make sense ()

- Idea: Fast separate compilations on FPGA
 - Divide-and-conquer strategy!

Vendor tool(from AMD, Intel)'s slow monolithic compilation

Our Fast separate compilations in parallel

- Idea: Fast separate compilations on FPGA
 - Divide-and-conquer strategy!

Vendor tool(from AMD, Intel)'s slow monolithic compilation

Our Fast separate compilations in parallel

- Idea: Fast separate compilations on FPGA
 - Divide-and-conquer strategy!

- A E B D C ...
- You have a design... Wait for an burn to test it on FPGA
- ... and you discover a small change (B) you need to make
- Now, you must wait another to test the modified design?
- You make another change (C) on the design
- Wait for only 5 min!
- Keep improving your design...
- → Significant improvement in chip design process!

- Broader Impact? (in high-level)
 - e.g. AI Chips

- Hardware development is time-consuming...
- With our design methodology, it can be accelerated!
- → Better cell phone, laptop, ChatGPT, everything!

	Tensor Processing Unit products ^{[13][14][15]}						
	TPUv1	TPUv2	TPUv3	TPUv4 ^{[14][16]}	TPUv5 ^[17]	Edge v1	
Date introduced	2016	2017	2018	2021	2023	2018	
Process node	28 nm	16 nm	16 nm	7 nm	Unstated	(ind c	of slow
Die size (mm²)	331	< 625	< 700	< 400	Unstated		
On-chip memory (MiB)	28	32	32	32	48		
Clock speed (MHz)	700	700	940	1050	Unstated		
Memory	8 GiB DDR3	16 GiB HBM	32 GIB HBM	32 GIB HBM	16 GB HBM		
Memory bandwidth	34 GB/s	600 GB/s	900 GB/s	1200 GB/s	819 GB/s		
TDP (W)	75	280	220	170	Not Listed	2	
TOPS (Tera Operations Per Second)	23	45	123	275	393	4	
TOPS/W	0.31	0.16	0.56	1.62	Not Listed	2	

<Google TPU products[1]>

