Name: Kevin Guillen Student ID: 1747199

117 - SS2 - MP2 - August 6th, 2021

- [2] A bilinear form ω on $V \bigoplus V$ for \mathbb{F} -vector space is symmetric if $\omega(x,y) = \omega(y,x)$ for all $x,y \in V$. A quadratic form on V is a function $q:V \to \mathbb{F}$ obtained from a bilinear form ω by writing $q(x) = \omega(x,x)$.
 - (a) Prove that if $char(\mathbb{F}) \neq 2$ then every symmetric bilinear form is uniquely determined by the corresponding quadratic form.

Proof. Let ω be a symmetric bilinear form in a vector space V, we will show that $\omega(x) = (x, x)$ is a quadratic form in the same vector space V. We see first that

$$\omega(\alpha x) = (\alpha x, \alpha x) = \alpha^2(x, x) = \alpha^2 \omega(x).$$

Now we must show $b_{\omega}(x,y) = \omega(x+y) - \omega(x) - \omega(y)$ is a symmetric bilinear form. We can see that this is satisfied by the following,

$$b_{\omega}(x,y) = \omega(x+y) - \omega(x) - \omega(y)$$

$$= (x+y,x+y) - (x,x) - (y,y)$$

$$= (x,x+y) + (y,x+y) - (x,x) - (y,y)$$

$$= (x,x) + (x,y) + (y,x) + (y,y) - (x,x) - (y,y)$$

$$= (x,y) + (y,x) \qquad \qquad \omega \text{ is a symmetric bilinear form so,}$$

$$= 2(x,y)$$

Recall though that ω was defined as a symmetric bilinear form, thus b_{ω} is a symmetric bilinear form.