EECS 16A Designing Information Devices and Systems I Fall 2022 Discussion 11A

1. Modular Circuit Buffer

Let's try designing circuits that perform a set of mathematical operations using op-amps. While voltage dividers on their own cannot be combined without altering their behavior, op-amps can preserve their behavior when combined and thus are a perfect tool for modular circuit design. We would like to implement the block diagram shown below:

In other words, create a circuit with two outputs V_x and V_y , where $V_x = \frac{1}{2}V_{in}$ and $V_y = \frac{1}{3}V_x = \frac{1}{6}V_{in}$.

- (a) Draw two voltage dividers, one for each operation (the 1/2 and 1/3 scalings). What relationships hold for the resistor values for the 1/2 divider, and for the resistor values for the 1/3 divider?
- (b) If you combine the voltage dividers, made in part (a), as shown by the block diagram (output of the 1/2 voltage divider becomes the source for the 1/3 voltage divider circuit), do they behave as we hope (meaning $V_{in} = 3V_x = 6V_y$)?

(c) Perhaps we could use an op-amp (in negative-feedback) to achieve our desired behavior. Modify the implementation you tried in part (b) using a negative feedback op-amp in order to achieve the desired V_x, V_y relations $V_x = \frac{V_{in}}{2}$ and $V_y = \frac{V_x}{3} = \frac{V_{in}}{6}$.

HINT: Place the op-amp in between the dividers such that the V_x node is an input into the op-amp, while the source of the 2nd divider is the output of the op-amp!

2. Multiple Inputs To One Op-Amp

- (a) First, let's focus on the left part of the circuit containing the voltage sources v_{s1} and v_{s2} , and resistances R_1 and R_2 . Solve for u_+ in the circuit above. (*Hint: Use superposition.*)
- (b) How would you choose R_1 and R_2 that produces a voltage $u_+ = \frac{1}{2}V_{s1} + \frac{1}{2}V_{s2}$? Could you also achieve $u_+ = \frac{1}{3}V_{s1} + \frac{2}{3}V_{s2}$
- (c) Now, for the whole circuit, find an expression for v_o .
- (d) How could you use this circuit to find the sum of different signals, i.e. $V_{s1} + V_{s2}$? What about taking the sum and multiplying by 2, i.e. $2(V_{s1} + V_{s2})$?

3. (Optional) Designing current divider

(a) You have two current sources I_1 and I_2 . You also have a load resistor $R_L = 6 \,\mathrm{k}\Omega$. You can use whatever resistors you want (as long as they are finite integer multiples of $1 \,\mathrm{k}\Omega$). How would you design a circuit such that the current running through R_L is $I_L = \frac{2}{5}(I_1 + I_2)$?