

Healthcare Persistency of a drug (Data Science)

Final Project

25th July 2021

Name: Reeha Khan

Email: khanreeha22@gmail.com

Country: Pakistan

College: National University of Sciences and Technology

Specialization: Data Science

Agenda

Executive Summary

Problem Statement

Approach

EDA

Model Deployment

Model Selection

Model Evaluation

Conclusion/Recommendations

Executive Summary

- One of the challenge for all Pharmaceutical companies is to understand the persistency of drug as per the physician prescription.
 To solve this problem ABC pharma company approached an analytics company to automate this process of identification.
- *ML Problem:* With an objective to gather insights on the factors that are impacting the persistency, build a classification for the given dataset
- Target Variable: Persistency_Flag

Problem Statement

• ABC is a pharmaceutical company that wants to understand the persistency of a drug as per the physician's prescription for a patient. The company has approached an Analytics company to automate this process of identification. This Analytics company has assigned the task to Team Primero to come up with a solution to automate the persistency of a drug for the client ABC.

Business Understanding

• The pharma company ABC wants to understand about the persistency of a drug for each patient. There are a bunch of Non-Tuberculous Mycobacterial (NTM) infection data. The company wants to divide each patient as either persistent or not depending on the prescription data. Depending on the persistency count, ABC pharma company would produce medicines in that quantity so that they can run their business strategically.

Tasks

- Problem understanding
- Data Understanding
- Data Cleaning and Feature engineering
- Model Development
- Model Selection
- Model Evaluation
- Report the accuracy, precision and recall of both the class of target variable
- Report ROC-AUC as well
- Deploy the model
- Explain the challenges and model selection

Approaches taken

- Data was taken from github and analysed
- Problem understanding
- Data Understanding
- Data Cleaning and Feature engineering
- Model Development
- Model Selection
- Model Evaluation

Data Intake Report

- Name: Healthcare Data Science
- Report date: 25th April 2021
- Internship Batch: LISUM01
- Data storage location: https://github.com/ReehaKhan/Project-Healthcare
- Total number of files: 1
- Total number of features: 26
- Base format of the file: .xlsx
- Size of the data: 898 KB

Analyzing dependency of variable (Before Transformation)

Non-Persistent: 62.35 %

Persistent: 37.65 %

The analysis showed non-persistence of drugs was greater than persistence.

Missing Values

Missing Values

In [301]: df.isnull().sum() Out[301]: ptid 0 persistency_flag gender race ethnicity region age_bucket ntm_speciality ntm_specialist_flag ntm_speciality_bucket gluco_record_prior_ntm gluco_record_during_rx dexa_freq_during_rx dexa_during_rx frag_frac_prior_ntm frag_frac_during_rx risk_segment_prior_ntm tscore_bucket_prior_ntm risk_segment_during_rx tscore_bucket_during_rx change_t_score change_risk_segment adherent_flag idn_indicator injectable experience during rx comorb_encounter_for_screening_for_malignant_neoplasms comorb_encounter_for_immunization comorb_encntr_for_general_exam_w_o_complaint,_susp_or_reprtd_dx
comorb_vitamin_d_deficiency comorb_other_joint_disorder_not_elsewhere_classified comorb_encntr_for_oth_sp_exam_w_o_complaint_suspected_or_reprtd_dx comorb_long_term_current_drug_therapy comorb dorsalgia comorb_personal_history_of_other_diseases_and_conditions comorb_other_disorders_of_bone_density_and_structure comorb_disorders_of_lipoprotein_metabolism_and_other_lipidemias comorb_osteoporosis_without_current_pathological_fracture comorb_personal_history_of_malignant_neoplasm
comorb_gastro_esophageal_reflux_disease concom_cholesterol_and_triglyceride_regulating_preparations concom_narcotics concom_systemic_corticosteroids_plain concom_anti_depressants_and_mood_stabilisers concom_fluoroquinolones concom_cephalosporins concom_macrolides_and_similar_types concom_broad_spectrum_penicillins concom_anaesthetics_general concom_viral_vaccines risk_type_1_insulin_dependent_diabetes risk_type_l_insulin_dependent_diabetes risk_osteogenesis_imperfecta risk_rheumatoid_arthritis risk_untreated_chronic_hyperthyroidism risk_untreated_chronic_hypogonadism risk_untreated_early_menopause risk_patient_parent_fractured_their_hip risk_smoking_tobacco risk_chronic_malnutrition_or_malabsorption
risk_chronic_liver_disease risk_family_history_of_osteoporosis risk_family_nistory_of_osteopor risk_low_calcium_intake risk_vitamin_d_insufficiency risk_poor_health_frailty risk_excessive_thinness risk_hysterectomy_oophorectomy risk_estrogen_deficiency risk_immobilization risk_recurring_falls

No missing values were found.

Correlation between features

ουτ[10]:		persistency_flag
	persistency_flag	1.000000
	dexa_during_rx	0.491823
	dexa_freq_during_rx	0.395247
	comorb_long_term_current_drug_therapy	0.352760
	comorb_encounter_for_screening_for_malignant_neoplasms	0.322320
	comorb_encounter_for_immunization	0.314887
	comorb_encntr_for_general_exam_w_o_complaint,_susp_or_reprtd_dx	0.289828
	comorb_other_disorders_of_bone_density_and_structure	0.247283
	concom_systemic_corticosteroids_plain	0.242854
	comorb_other_joint_disorder_not_elsewhere_classified	0.233279
	concom_anaesthetics_general	0.222293
	concom_viral_vaccines	0.222241

 We try to find the correlation values between the label and other features columns and it turn out that there are many columns having very less correlation value. That means it will be wise to ignore those columns to consider for model training as more number of columns that are unrelated would overfit.

Analysis of Outliners

 Visual analysis showing the outliners in one column by box plot Analysis.

Analysis of Outliners

 Box plot analysis showing the outliners.

Analysis of Skewness and kurtosis

Count of risks skewness: 0.8797905232898707
Count of risks Kurtosis: 0.9004859968892842

dexa_freq_during_rx skweness: 6.8087302112992285 dexa_freq_during_rx Kurtosis: 74.75837754795428

 Data shows a moderate positive skewed data on this column and fairly platykurtic so the data has little outliers.

 We can see a very high positive skewed and also with very high kurtosis(Platykurtic). This suggests presence of a lot of outliers.

Analysis showing the standardization of dexa_freq_during_rx df

```
outer range (low) of the distribution:
[[-0.3707352]
 [-0.3707352]
 [-0.3707352]
 [-0.3707352]
 [-0.3707352]
 [-0.3707352]
 [-0.3707352]
 [-0.3707352]
 [-0.3707352]
 [-0.3707352]]
outer range (high) of the distribution:
[[ 7.98784109]
  8.110761331
 [ 8.47952205]
 [ 9.58580421]
 [10.44624589]
 [10.44624589]
 [12.90465068]
 [13.15049116]
 [14.13385307]
 [17.57561978]]
```

 The distribution shows the low and high range of the distribution of dexa_freq_during_rx.

Analysis of Categorical data description

		ptid	persistency_flag	gender	race	ethnicity	region	age_bucket	ntm_speciality	ntm_specialist_flag	ntm_speciality_bucket	gluco
С	ount	2942	2942	2942	2942	2942	2942	2942	2942	2942	2942	2942
u	nique	2942	2	2	4	3	5	4	35	2	3	2
t	op	P2611	Non-Persistent	Female	Caucasian	Not Hispanic	Midwest	>75	GENERAL PRACTITIONER	Others	OB/GYN/Others/PCP/Unknown	N
f	eq	1	2047	2769	2701	2784	1210	1262	1345	1774	1855	2241

The following analysis shows the distribution of categorical data.

Analysis of Means group-wise

persistency_flag	Non-Persistent	Persistent
dexa_freq_during_rx	0.085491	0.662570
count_of_risks	0.074744	0.155866

gender	Female	Male
dexa_freq_during_rx	0.263874	0.215800
count_of_risks	0.099494	0.098266

	dexa_freq_during_rx	count_of_risks
race		
African American	0.246377	0.168478
Asian	0.135266	0.021739
Caucasian	0.266445	0.098297
Other/Unknown	0.204167	0.125000

 The analysis shows means group wise analysis of persistency, gender and race during administration of dexa and risk count.

Analysis of Means group-wise

ethnicity	Hispanic	Not Hispanic	Unknown	
dexa_freq_during_rx	0.279835	0.260417	0.264069	
count_of_risks	0.265432	0.097342	0.000000	

age_bucket	55-65	65-75	<55	>75
dexa_freq_during_rx	0.242229	0.297880	0.273973	0.242208
count_of_risks	0.118167	0.097039	0.089041	0.093106

ntm_specialist_flag	Others	Specialist	
dexa_freq_during_rx	0.215145	0.330765	
count_of_risks	0.056370	0.164812	

 The analysis shows clearly group-wise analysis according to Ethnicity, Age and NTM specialist during administration of dexa and risk count.

Analysis of Means group-wise cont...

ntm_speciality_bucket	Endo/Onc/Uro	OB/GYN/Others/PCP/Unknown	Rheum
dexa_freq_during_rx	0.442907	0.215274	0.221349
count_of_risks	0.170415	0.053639	0.185658

 Mean group wise analysis of NTM Speciality and Risk due to Chronic liver disease during administration of dexa and risk count.

risk_chronic_liver_disease	N	Y
dexa_freq_during_rx	0.260132	0.452381
count_of_risks	0.096482	0.714286

Analysis of Means group-wise cont..

risk_family_history_of_osteoporosis	N	Y
dexa_freq_during_rx	0.258113	0.287671
count_of_risks	0.045283	0.590753

risk_vitamin_d_insufficiency	N	Y
dexa_freq_during_rx	0.223363	0.303468
count_of_risks	-0.175866	0.409321

risk_low_calcium_intake	N	Y
dexa_freq_during_rx	0.261069	0.259259
count_of_risks	0.090502	0.819444

 Mean group wise analysis of risk due to family history of osteoporosis, risk due to low calcium intake and Risk due to Vitamin D insufficiency during administration of dexa and risk count.

Analysis of Means group-wise

:[:	risk_chronic_liver_disease	N	Y
	dexa_freq_during_rx	0.260132	0.452381
	count of risks	0.096482	0.714286

risk_family_history_of_osteoporosis	N	Y
dexa_freq_during_rx	0.258113	0.287671
count_of_risks	0.045283	0.590753

risk_low_calcium_intake	N	Υ
dexa_freq_during_rx	0.261069	0.259259
count_of_risks	0.090502	0.819444

 Mean group wise analysis of risk due to chronic liver disease, risk due to family history of osteoporosis and risk due to low calcium intake during administration of dexa and risk count.

Analysis of Means group-wise

risk_excessive_thinness	N	Y
dexa_freq_during_rx	0.261946	0.218579
count_of_risks	0.085908	0.737705

risl	k_hysterectomy_oophorectomy	N	Υ
dex	ca_freq_during_rx	0.261650	0.222222
cou	unt_of_risks	0.089748	0.722222

risk_immobilization	N	Y
dexa_freq_during_rx	0.262002	0.027778
count_of_risks	0.096416	0.833333

 Mean group wise analysis of risk due to excessive thinness, risk due to hysterectomy oophorectomy and risk due to immobilization during administration of dexa and risk count

Analyzing dependency of variable (After Transformation)

Model Creation

Logistic Regression

 Logistic Regression Model shows the Accuracy, Recall, Precision, f1 score and support of Non-Persistent and Persistence of drugs.

Ridge Classifier

Accuracy: 0.812004530011325 Precision: 0.677536231884058 Recall: 0.708333333333334 F1 Score: 0.6925925925925926

	precision	recall	f1-score	support
Non-Persistent Persistent	0.87 0.68	0.86 0.71	0.86 0.69	619 264
accuracy macro avg weighted avg	0.78 0.81	0.78 0.81	0.81 0.78 0.81	883 883 883

AUC: 0.782276521270867

Ridge Classifier Model shows the Accuracy, Recall, Precision, f1 score and support of Non-Persistent
and Persistence of drugs.

SGD Classifier

Accuracy: 0.79841449603624 Precision: 0.6791666666666667 Recall: 0.61742424242424 F1 Score: 0.6468253968253969

	precision	recall	f1-score	support
Non-Persistent	0.84	0.88	0.86	619
Persistent	0.68	0.62	0.65	264
accuracy macro avg weighted avg	0.76 0.79	0.75 0.80	0.80 0.75 0.80	883 883 883

AUC: 0.7465150291281147

• SGD Classifier Model shows the Accuracy, Recall, Precision, f1 score and support of Non-Persistent and Persistence of drugs.

Random Forest Classifier

Accuracy: 0.8040770101925255 Precision: 0.7407407407407407 Recall: 0.5303030303030303 F1 Score: 0.6181015452538631

	precision	recall	f1-score	support
Non-Persistent	0.82	0.92	0.87	619
Persistent	0.74	0.53	0.62	264
accuracy			0.80	883
macro avg	0.78	0.73	0.74	883
weighted avg	0.80	0.80	0.79	883

AUC: 0.7255715474616928

 Random Forest Classifier Model shows the Accuracy, Recall, Precision, f1 score and support of Non-Persistent and Persistence of drugs.

Ada Boost Classifier

Accuracy: 0.8131370328425821 Precision: 0.671280276816609 Recall: 0.73484848484849 F1 Score: 0.701627486437613

	precision	recall	f1-score	support
Non-Persistent Persistent	0.88 0.67	0.85 0.73	0.86 0.70	619 264
accuracy macro avg weighted avg	0.78 0.82	0.79 0.81	0.81 0.78 0.82	883 883 883

AUC: 0.7906875703725462

 Ada boost classifier shows the Accuracy, Recall, Precision, f1 score and support of Non-Persistent and Persistence of drugs.

Stacking Classifier

Accuracy: 0.8097395243488109 Precision: 0.7608695652173914 Recall: 0.5303030303030303

F1 Score : 0.625

	precision	recall	f1-score	support
Non-Persistent	0.82	0.93	0.87	619
Persistent	0.76	0.53	0.62	264
accuracy			0.81	883
macro avg	0.79	0.73	0.75	883
weighted avg	0.80	0.81	0.80	883

AUC: 0.7296103196749399

Stacking Classifier Model shows the Accuracy, Recall, Precision, f1 score and support of Non-Persistent and Persistence of drugs.

XG Boost Classifier

Accuracy: 0.8187995469988675 Precision: 0.6954887218045113 Recall: 0.70075757575758 F1 Score: 0.6981132075471698

	precision	recall	f1-score	support
Non-Persistent Persistent	0.87 0.70	0.87 0.70	0.87 0.70	619 264
accuracy macro avg weighted avg	0.78 0.82	0.78 0.82	0.82 0.78 0.82	883 883 883

AUC: 0.7849506780241836

• XG Boost Classifier Model shows the Accuracy, Recall, Precision, f1 score and support of Non-Persistent and Persistence of drugs.

Conclusion

- There is not much of a significant difference between all the classifiers, however, the best can be considered to be:
- 1. RidgeClassifier (Linear)
- 2. AdaBoostClassifier (Ensemble/Boosting)
- 3. XGBoostClassifier (Ensemble/Boosting)
- All of these classifiers have almost
- 81% Accuracy, 68% Precision, 71% Recall, 70% F1 Score and 78% AUC

Thank You

