TD4. Théorie de la ruine.

Dans tous les exercices de cette feuille faisant intervenir le modèle de Cramér-Lundberg on note c>0 le coefficient de prime instantanée, $\lambda>0$ l'intensité du processus de Poisson modélisant l'évolution du nombre de sinistres au cours du temps et $u\geq 0$ le capital initial de l'assureur.

Exercice 1.

- 1. Montrer que les lois suivantes sont à queues fines :
 - a. loi d'une variable aléatoire positive bornée par une constance déterministe
 - b. lois Gamma
 - c. lois de Weibull de paramètres C > 0, $\gamma \ge 1$ (on rappelle que la densité d'une loi de Weibull de paramètres C, γ est $f(x) = C \gamma x^{\gamma 1} \exp(-C x^{\gamma}) \mathbf{1}_{\{x > 0\}}$)
- 2. Montrer que les lois suivantes sont sous-exponentielles :
 - a. lois de Pareto de paramètres $\alpha > 0, \beta > 0$ $(f(x) = \alpha \beta^{\alpha}/(\beta + x)^{\alpha+1}, x > 0)$
 - b. lois de Weibull de paramètres $C > 0, \gamma < 1$.

Exercice 2. Dans cet exercice, les paramètres c>0, $\lambda>0$ et $\beta>0$ sont fixés. Pour chaque entier $k\in\mathbb{N}^*$, on considère le modèle de Cramér-Lundberg où les coûts des sinistres sont distribués suivant une loi $\Gamma(k,\,\beta)$ et on note $\psi^{(k)}(u)$ la probabilité de ruine associée. Montrer que pour tout u>0 et tout $k\in\mathbb{N}^*$,

$$\psi^{(k)}(u) \le \psi^{(k+1)}(u).$$

Exercice 3. On considère le modèle de Cramér-Lundberg oİ les coûts des sinistres suivent une loi exponentielle $\mathcal{E}(\gamma)$, $\gamma > 0$. Le coefficient de chargement de sécurité ρ est supposé strictement positif. On veut calculer explicitement la probabilité de ruine de l'assureur, que l'on note $\psi(u)$.

- 1. Montrer que la loi $\mathcal{E}(\gamma)$, $\gamma > 0$, est une loi à queue fine et calculer le coefficient d'ajustement R associé.
- 2. En déduire un "bon" majorant de la probabilité de ruine à l'aide de l'inégalité de Lundberg.
- 3. Ecrire l'équation de renouvellement vérifiée par la fonction $u \mapsto e^{Ru} \psi(u)$.
- 4. A l'aide du théorème de renouvellement, résoudre l'équation de renouvellement et expliciter $\psi(u)$ en fonction de γ , ρ et u.

Exercice 4. On considère le modèle de Cramér-Lundberg où les coûts $X_i, i \ge 1$ suivent une loi de Pareto d'indice $\alpha > 1, \ \beta = 1, \ c$ -à-d

$$\bar{F}_{X_1}(x) = (1+x)^{-\alpha}, \quad x \ge 0.$$

1. Calculer $\mu = \mathbb{E}[X_1]$ et le coefficient de chargement de sécurité ρ . Pour quelles valeurs de c a-t-on $\rho > 0$?

- 2. Montrer que $\int_0^\infty e^{ux} F_{X_1,I}(\mathrm{d}x) = \infty$ pour tout u > 0. En déduire que $F_{X_1,I}$ n'est pas à queue fine.
- 3. Montrer que $F_{X_1,I}$ est sous-exponentielle. Que peut-on dire de la probabilité de ruine $\psi(u)$ quand $u \to +\infty$?

Exercice 5. Exercice 5 (partie de l'examen de Mai 2010). On se place dans le cadre du modèle de Cramér-Lundberg.

Partie A. Les variables X_i , $i \ge 1$ modélisant les coûts des sinistres sont ici continues, de densité

$$f(x) = \frac{1}{2\sqrt{x}} e^{-\sqrt{x}} \mathbf{1}_{\{x>0\}}.$$

- 1. Calculer $\mu = \mathbb{E}[X_1]$ et la fonction $\bar{F}_{X_1}(x), x \geq 0$.
- 2. Pour tout $x \ge 0$, on pose $F_{X_1,I}(x) = \mu^{-1} \int_0^x \bar{F}_{X_1}(y) dy$ et

$$q(x) = \frac{\bar{F}_{X_1}(x)/\mu}{\bar{F}_{X_1,I}(x)}.$$

a. Montrer que

$$\int_{x}^{\infty} e^{-\sqrt{y}} dy = 2 e^{-\sqrt{x}} (\sqrt{x} + 1), \quad \forall x \ge 0,$$

et en déduire une expression simple de q(x).

- b. En déduire que ${\cal F}_{X_1,I}$ est la fonction de répartition d'une loi sous-exponentielle.
- 3. Donner alors un équivalent de la probabilité de ruine $\psi(u)$ quand $u \to \infty$. Exprimer cet équivalent en fonction de la densité f et des paramètres c, λ de l'énoncé.

Partie B. On suppose à présent que les X_i , $i \ge 1$ ont pour densité

$$g(x) = 2 x e^{-x^2} \mathbf{1}_{\{x>0\}}.$$

- 1. Montrer que $\mu = \sqrt{\pi}/2$.
- 2. Montrer que X_1 est à queue fine.
- 3. Montrer que le coefficient d'ajustement existe. On ne demande pas de le calculer. On le notera dans la suite R.
- 4. Exprimer l'intégrale $\int_0^\infty y\,e^{Ry-y^2}\mathrm{d}y$ en fonction de c,λ et R. En déduire une expression de l'intégrale $\int_0^\infty e^{Ry-y^2}\mathrm{d}y$ en fonction de c,λ et R.
- 5. Calculer $dF_{X_1,I}$ et rappeler l'équation de renouvellement vérifiée par la fonction $u \mapsto e^{Ru} \psi(u)$, en justifiant que les hypothèses nécessaires à sa mise en place sont bien vérifiées ici.
- 6. Donner le comportement asymptotique de la probabilité de ruine $\psi(u)$ lorsque $u \to \infty$. On exprimera le résultat en fonction de c, λ, R et π .

Exercice 6.

1. Première partie

Un assureur dispose d'un portefeuille de risques partitionné en deux classes : les grands risques de coûts notés X_i^1 , $i \ge 1$ et les petits risques de coûts notés X_i^2 , $i \ge 1$, où les deux types de risque sont indépendants.

La charge sinistrale totale au temps t de la compagnie est notée

$$S_t = S_t^1 + S_t^2$$

où $S^1_t = \sum_{i=1}^{N^1_t} X^1_i$ est la charge sinistrale de la première classe et $S^2_t = \sum_{i=1}^{N^2_t} X^2_i$ celle de la seconde classe. Les processus $(N^i)_{i=1,2}$ sont des processus de Poisson d'intensité λ^i , indépendants entre eux et indépendants des différents coûts $X^1_i, X^2_i, i \geq 1$. On suppose que $(X^1_i, i \geq 1)$ est un échantillon de loi F^1 et que $(X^2_i, i \geq 1)$ un échantillon de loi F^2 .

- a. Rappeler la valeur de la fonction $M_{S_t^1}$, fonction génératrice des moments de S_t^1 , puis celle de S_t^2 et en déduire celle de S_t .
- b. Verifier que S est bien un processus de Poisson composé qu'on écrira sous la forme

$$S_t = \sum_{i=1}^{N_t} Y_i, \quad t \ge 0,$$

où N est un processus de Poisson d'intensité $\lambda = \lambda^1 + \lambda^2$ et $Y_i, i \ge 1$ un échantillon de loi F mélange des lois F^1 et F^2 dont on précisera les coefficients du mélange.

- c. On suppose à présent que $F^1 = \mathcal{E}(\gamma)$ est la loi exponentielle de paramètre $\gamma > 0$ et $F^2 = \mathcal{P} \ a \ r(\alpha, 1)$ est la loi de Pareto de paramètres α , 1, avec $\alpha > 1$. Calculer dans ce cas la densité $f_{Y_1,I}(y)$, la fonction $\bar{F}_{Y_1,I}(y)$, l'espérance $\mathbb{E}[Y_1]$ et le coefficient $q(y) = \frac{f_{Y_1,I}(y)}{\bar{F}_{Y_1,I}(y)}$.
- d. On considère le modèle de Cramér-Lundberg

$$U_t = u + c t - S_t, \quad t \ge 0$$

où $u \geq 0$ est l'avoir initial de la compagnie. On suppose que le coefficient de chargement de sécurité ρ est le même pour chacune des classes et on prend comme coefficient de prime instantanée

$$c := (1 + \rho) \mathbb{E}[Y_1]$$

avec $\rho > 0$. Sous les hypothèses de la question (c), calculer c en fonction des paramètres du modèle et donner un équivalent à l'infini de la probabilité de ruine $\psi(u)$.

2. Deuxième partie

L'assureur décide de ne plus séparer les deux groupes de risque, mais de fixer une franchise a>0. L'assureur ne payant que pour les sinistres excédant le seuil a, remboursera pour un sinistre de montant Z>a le montant (Z-a).

On considère alors le modèle de Cramér -Lundberg

$$U_t = u + ct - S_t$$
 où $S_t = \sum_{i=1}^{N_t} Y_i^a$ et $Y_i^a = (Z_i - a)^+$

Nétant un processus de Poisson d'intensité $\lambda.$

- a. On demande de calculer la valeur $\mu = \mathbb{E}[Y_1^a] = \mathbb{E}[(Z_1 a)^+]$. pour des sinistres dont le montant Z suit une loi $\mathcal{E}(\gamma)$
- b. Calculer $M_{Y_1^a}$, la fonction génératrice des moments de Y_1^a , et en déduire celle de S_t .
- c. Montrer que $M_{S_t}(u) = M_{S_t'}(u)$ où

$$S_t' = \sum_{i=1}^{N_t'} Z_i$$

 N_t' étant un processus de Poisson d'intensité $\lambda \exp{(-\gamma a)}$ indépendant des Z_i s.

- d. En déduire que les processus S et S' ont la m $\check{\mathbf{R}}$ me loi.
- e. En déduire que le processus de risque U a même loi que U^\prime défini par

$$U_t' = u + ct - S_t', \quad t \ge 0.$$

Montrer que $\psi(u) = \mathbb{P}[\inf_{t\geq 0} U_t < 0] = \mathbb{P}[\inf_{t\geq 0} U_t' < 0]$ et donner un équivalent à l'infini pout $\psi(u)$.