高等数学期中试题(A卷)

班级	学号	姓名

(本试卷共5页, 八个大题)

题号	_	 111	四	五.	六	七	八	总分
得分								

- 一. 填空题 (每小题 4 分, 共 28 分)
- 2. 设方程 x-2z=f(y-3z) 确定 z 是 x,y 的函数,其中 f 可微.则 dz=
- 4. 交换累次积分 $I = \int_0^1 dy \int_{-\sqrt{1-y}}^{\sqrt{1-y}} f(x,y) dx + \int_{-1}^0 dy \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} f(x,y) dx$ 的积分次序, I =______.
- 5. 曲线 L: $\begin{cases} 2x^2 + 3y^2 + z^2 = 9 \\ z^2 = 3x^2 + y^2 \end{cases}$ 在点 $M_0(1,-1,2)$ 处的切向量 $\vec{\tau} = \underline{\hspace{1cm}}$

切线的标准方程为:_____

- 6. 设直线 $L: \frac{x-a}{2} = \frac{y+1}{1} = \frac{z-2}{n}$ 在平面 $\pi: 3x-2y+z-8=0$ 上,则 $a = \underline{\hspace{1cm}}$, $n = \underline{\hspace{1cm}}$.
- 7. 曲面 $e^z 3z + xy = 3$ 在点 (1,2,0) 处的法向量(该法向量与 z 轴正向夹角为锐角) $\vec{n} = \underline{\hspace{1cm}}, \ \,$ 数量场 $u = \frac{\sqrt{x^2 + 2y^2}}{z}$ 在点 (1,1,1) 处沿上述法向量方向

的方向导数
$$\frac{\partial u}{\partial \vec{n}} = \underline{\hspace{1cm}}$$
.

二、(10 分)设 $z = xf(x - y^2, xy)$,其中f具有二阶连续偏导数,求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^2 z}{\partial x \partial y}$.

三、 $(10 \, \beta)$ 求以曲面 z = x - y 为顶,以平面有界闭区域 D 为底的柱体的体积,其中 D 为由直线 x = 0, y = 0 与 x + y = 2 所围成的平面区域.

四、(10 分)求函数 $f(x,y) = (1+e^y)\cos x - ye^y + 1$ $(0 < x < 3\pi)$ 的极值,并判别是极大值还是极小值.

五、(10 分)计算 $I = \iiint_V (x+y+z) dx dy dz$, 其中 V 是由平面 z=1 及曲面 $x^2+y^2=2z$ 所围成的有界闭区域.

六、(12 分) 设直线 L过点(1,-1,2)且平行于平面 π : 2x-3y+z+6=0,又与直线 $\frac{x-1}{2} = \frac{y}{-1} = \frac{2-z}{1}$ 相交,求直线 L 的方程.

七、 $(10\, 分)$ 试利用球坐标计算三重积分 $I=\iint_\Omega (x^2+y^2)dxdydz$,其中 Ω 是由曲 $\ \, \text{ in } z=\sqrt{x^2+y^2} \text{ 和曲面 } z=1+\sqrt{1-x^2-y^2} \text{ 围成几何体}.$

八、 $(10 \, f)$ 设长方体的三个面在坐标面上,其一个顶点 (x_0, y_0, z_0) 位于第一卦 限且在平面 $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$ 上,求该顶点坐标值,使得此长方体的体积最大.