Lezione del 25 Marzo 2020 - Appunti

Complessità del Merge sort iterativo

Supponiamo che la variabile k conti il numero dei cicli più esterni (quelli in cui aggiorniamo width). Poniamo a 0 il valore iniziale di k.

Per ogni valore di k, calcoliamo il costo di caso peggiore del ciclo for più interno.

- k=0. Abbiamo n array di dimensione 1 ed effettuiamo n/2 merge. Ogni merge ha costo al più 2c, dove c è una costante abbastanza grande. Il costo del primo ciclo è quindi al più $(c+2c)\cdot (n/2)$.
- k=1. Abbiamo n/2 array di dimensione $2=2^1$ ed effettuiamo $n/4=n/2^2$ merge. Il costo di ciascun merge è al più 4c. Il costo complessivo del secondo ciclo è al più pari a $(c+4c)\cdot (n/2^2)$.
-
- Generico valore di k: Abbiamo $n/2^k$ array di dimensione 2^k ed effettuiamo $n/2^{k+1}$ merge, ciascuno di costo al più $c \cdot 2^{k+1}$. Quindi, costo complessivo della generica iterazione k-esima del ciclo più esterno è al più $(c+c\cdot 2^{k+1})\frac{n}{2^{k+1}}=c\left(1+2^{k+1}\right)\frac{n}{2^{k+1}}\leq 2cn$

Ultima domanda: quanti cicli <code>for</code> esterni abbiamo? <code>width</code> diventa più grande di n dopo $O(\log_2 n)$ iterazioni del ciclo. Ogni ciclo ha costo al più O(n) e abbiamo $O(\log_2 n)$ iterazioni quindi il costo complessivo è $O(n\log_2 n)$. In particolare, dopo i iterazioni del ciclo <code>for</code> più esterno <code>width</code> vale 2^{i-1} e quindi diventa più grande di n quando $2^{i-1} \geq n$ e ciò accade quando $i-1 \geq \lceil \log_2 n \rceil$