角动量

步允霆

2023年11月7日

目录

1	角动	量与对易关系 2
	1.1	轨道角动量 2
	1.2	角动量定义的推广 3
2	角动	量的普遍理论 4
	2.1	定义与符号 4
		$2.1.1$ 算符 J_+ 和 J
		$2.1.2$ \boldsymbol{J}^2 与 J_z 的本征值符号与方程
	2.2	$m{J}^2$ 与 J_z 的本征值
		$2.2.1$ 引理 1: $oldsymbol{J}^2$ 与 J_z 本征值的性质 6
		$2.2.2$ 引理 2 : 矢量 $J_{-} k,j,m angle$ 的性质 $\dots \dots 7$
		2.2.3 引理 3: 矢量 $J_+ k,j,m\rangle$ 的性质 $\dots \dots 7$
		$2.2.4$ 确定 $oldsymbol{J}^2$ 及 J_z 的谱
	2.3	表象 $ k,j,m\rangle$
		2.3.1 基右矢 10
		$2.3.2$ 子空间 $\mathscr{E}(k,j)$
		2.3.3 表示角动量算符的矩阵
3	应用	于轨道角动量 15
	3.1	$m{L}^2$ 与 L_z 的本征值及本征函数 $\dots \dots \dots \dots \dots 15$
		$3.1.1$ $ m{r} angle$ 表象中的本征值方程 $\dots \dots \dots \dots 15$
		3.1.2 l 与 m 的值
		3.1.3 球谐函数的主要性质 19

	3.1.4	一个无自旋	粒子的	波函数	空间中	的标	准基				20
3.2	关于测	$]$ 量 L^2 与 L_z	的物理	胆预言的	的计算						21
	3.2.1	普遍公式									22
	3.2.2	特殊情况									25

1 角动量与对易关系

1.1 轨道角动量

经典角动量为

$$\mathcal{L}_x = yp_z - zp_y \tag{1}$$

根据量子化规则

$$L_x = YP_z - ZP_y \tag{2}$$

如此构造的算符是厄米算符。

按相同的办法可以得到与经典角动量分量 $\mathcal{L}_y,\mathcal{L}_z$ 对应的算符 L_y,L_z ; 于是,我们可以写成

$$\mathbf{L} = \mathbf{R} \times \mathbf{P} \tag{3}$$

接下来计算对易子 $[L_x, L_y]$

$$[L_x, L_y] = [YP_z - ZP_y, ZP_x - XP_z]$$

=
$$[YP_z, ZP_x] + [ZP_y, XP_z]$$
 (4)

于是我们有

$$[L_z, L_y] = Y[P_z, Z]P_x + X[Z, P_z]P_y$$

$$= -i\hbar Y P_x + i\hbar X P_y$$

$$= i\hbar L_z$$
(5)

类似的,可以给出其他对易子

$$[L_x, L_y] = i\hbar L_z$$

$$[L_y, L_z] = i\hbar L_x$$

$$[L_z, L_x] = i\hbar L_y$$
(6)

这样,我们建立了一个无自旋粒子的角动量诸分量之间的对易关系式。

上述结果可以推广至 N 个无自旋粒子的体系。在量子力学中,这个体系的总角动量就是

$$\mathbf{L} = \sum_{i=1}^{N} \mathbf{L}_{i} \tag{7}$$

其中

$$\mathbf{L}_i = \mathbf{R}_i \times \mathbf{P}_i \tag{8}$$

每一个粒子的角动量 \mathbf{L}_i 都满足对易关系(6),而且只要 j 不同于 i,他就可以和 \mathbf{L}_i 对易。

1.2 角动量定义的推广

如果任意三个观察算符 J_x, J_y, J_z 满足如下关系式

$$[J_x, J_y] = i\hbar J_z$$

$$[J_y, J_z] = i\hbar J_x$$

$$[J_z, J_x] = i\hbar J_y$$
(9)

我们就称 J_x, J_y, J_z 的集合为角动量 J。

我们现在引入角动量 J 的平方的算符

$$\mathbf{J}^2 = J_x^2 + J_y^2 + J_z^2 \tag{10}$$

因为 J_x,J_y,J_z 都是厄米算符,故 ${m J}^2$ 也是厄米算符。 ${m J}^2$ 与 ${m J}$ 的三个分量 对易

$$[\boldsymbol{J}^2, \boldsymbol{J}] = 0 \tag{11}$$

以 J_x 为例证明如下

$$[J^{2}, J_{x}] = [J_{x}^{2} + J_{y}^{2} + J_{z}^{2}, J_{x}]$$
$$= [J_{y}^{2}, J_{x}] + [J_{z}^{2}, J_{x}]$$
(12)

根据(9), 很容易算出其他两个对易子

$$[J_y^2, J_x] = J_y[J_y, J_x] + [J_y, J_x]J_y$$

= $-i\hbar J_y J_z - i\hbar J_z J_y$ (13a)

$$[J_z^2, J_x] = J_z[J_z, J_x] + [J_z, J_x]J_z$$

= $-i\hbar J_z J_y - i\hbar J_y J_z$ (13b)

由此可见,(12)中的两个对易子之和等于零。

量子力学的角动量理论完全建立在对易关系(9)的基础上,意味着:角动量的三个分量是不可能同时测量的,但是, J^2 与 J 的任意一个分量却都是相容的。

2 角动量的普遍理论

2.1 定义与符号

2.1.1 算符 J_+ 和 J_-

不使用角动量 J 的分量 J_x 和 J_y 而引入他们的线性组合,将是方便的

$$J_{+} = J_{x} + iJ_{y}$$

$$J_{-} = J_{x} - iJ_{y}$$

$$(14)$$

与谐振子 a 和 a^{\dagger} 相似, J_{+},J_{-} 不是厄米算符,但他们互为伴随算符。 根据(9)(11),很容易证明这些算符满足下列对易关系:

$$[J_z, J_+] = \hbar J_+ \tag{15}$$

$$[J_z, J_-] = -\hbar J_- \tag{16}$$

$$[J_{+}, J_{-}] = 2\hbar J_{z} \tag{17}$$

$$[\boldsymbol{J}^2, J_+] = [\boldsymbol{J}^2, J_-] = [\boldsymbol{J}^2, J_z] = 0$$
 (18)

我们来计算 J_+J_- 和 J_-J_+

$$J_{+}J_{-} = (J_{x} + iJ_{y})(J_{x} - iJ_{y})$$

$$= J_{x}^{2} + J_{y}^{2} - i[J_{x}, J_{y}]$$

$$= J_{x}^{2} + J_{y}^{2} + \hbar J_{z}$$
(19)

$$J_{-}J_{+} = (J_{x} - iJ_{y})(J_{x} + iJ_{y})$$

$$= J_{x}^{2} + J_{y}^{2} + i[J_{x}, J_{y}]$$

$$= J_{x}^{2} + J_{y}^{2} - \hbar J_{z}$$
(20)

应用定义 J^2 的(10), 还可以把这些式子写成下列形式

$$J_{+}J_{-} = \mathbf{J}^{2} - J_{z}^{2} + \hbar J_{z} \tag{21a}$$

$$J_{-}J_{+} = \mathbf{J}^{2} - J_{z}^{2} - \hbar J_{z}$$
 (21b)

将此两式的对应项相加, 便可得

$$\mathbf{J}^2 = \frac{1}{2}(J_+J_- + J_-J_+) + J_z^2 \tag{22}$$

2.1.2 J^2 与 J_z 的本征值符号与方程

根据(10), ${m J}^2$ 是三个厄米算符的平方之和,因而不论 $|arphi\rangle$ 是任何右矢,矩阵元 $\langle arphi|{m J}^2|arphi\rangle$ 总是整数或零:

$$\langle \varphi | \mathbf{J}^{2} | \varphi \rangle = \langle \varphi | J_{x}^{2} | \varphi \rangle + \langle \varphi | J_{y}^{2} | \varphi \rangle + \langle \varphi | J_{z}^{2} | \varphi \rangle$$

$$\parallel J_{x} | \varphi \rangle \parallel^{2} + \parallel J_{y} | \varphi \rangle \parallel^{2} + \parallel J_{z} | \varphi \rangle \parallel^{2} \geqslant 0$$
(23)

我们可以由此推知: J^2 的全体本征值都是整数或零,这是因为,如果 $|\varphi\rangle$ 是 J^2 的本征矢,那么, $\langle \varphi | J^2 | \varphi \rangle$ 就是对应的本征值与 $|\varphi\rangle$ 的模平方的乘积。

我们把: J^2 的本征值写成 $j(j+1)\hbar^2$ 的形式,并且按照惯例取

$$i \geqslant 0 \tag{24}$$

引入这个符号的目的在于简化以后的推证。由于 J 具有 \hbar 的量纲,故 J^2 的任何本征值都具有 $\lambda\hbar$ 的形式,其中的 λ 是一个无量纲的实数。我们刚才看到, λ 一个是正数或零;于是很容易证明关于 i 的二次方程

$$j(j+1) = \lambda \tag{25}$$

必有而且只有一个正的或等于零的根。如果加上条件(24)的限制,那么, λ 的值就唯一确定了 j 的值;因此, J^2 的任一本征值都可以写作 $j(j+1)\hbar^2$ 的形式,其中 j 是正数或零。

至于 J_z 的本征值,其量纲和 \hbar 的相同,习惯上,我们将这些本征值记作 $m\hbar$,其中 m 是无量纲的数。

我们将用确定 J^2 与 J_z 的本征值的指标 j 和 m 来标记此两算符的共同本征矢。但是,一般来说, J^2 和 J_z 并不构成一个 CSCO,因而必须引入第三个指标,用来区别对应于 J^2 的同一本征值 $j(j+1)\hbar^2$ 和 J_z 的同一本征值 $m\hbar$ 的那些不同的本征矢,我们将这个指标记作 k。

这样一来, 我们试图求解的本征值方程组便成为

$$J^{2}|k,j,m\rangle = j(j+1)\hbar^{2}|k,j,m\rangle$$

$$J_{z}|k,j,m\rangle = m\hbar|k,j,m\rangle$$
(26)

2.2 J^2 与 J_z 的本征值

2.2.1 引理 **1**: J^2 与 J_z 本征值的性质

如果 $j(j+1)\hbar^2$ 与 $m\hbar$ 是 J^2 与 J_z 的对应于同一本征矢 $|k,j,m\rangle$ 的本征值,则 j 与 m 满足下列不等式

$$-j \leqslant m \leqslant j \tag{27}$$

我们来考虑矢量 $J_{+}|k,j,m\rangle$ 与 $J_{-}|k,j,m\rangle$,他们的模平方为正值或零,即

$$||J_{+}|k, j, m\rangle||^{2} = \langle k, j, m|J_{-}J_{+}|k, j, m\rangle \geqslant 0$$
 (28a)

$$||J_{-}|k, j, m\rangle||^{2} = \langle k, j, m|J_{+}J_{-}|k, j, m\rangle \geqslant 0$$
 (28b)

为了计算这些不等式的左端,我们可以利用(21),并且假定 $|k,j,m\rangle$ 已经归一化,这样便有

$$\langle k, j, m | J_- J_+ | k, j, m \rangle = \langle k, j, m | (\boldsymbol{J}^2 - J_z^2 - \hbar J_z) | k, j, m \rangle$$
$$= j(j+1)\hbar^2 - m^2\hbar^2 - m\hbar^2$$
(29a)

$$\langle k, j, m | J_+ J_- | k, j, m \rangle = \langle k, j, m | (\mathbf{J}^2 - J_z^2 + \hbar J_z) | k, j, m \rangle$$
$$= j(j+1)\hbar^2 - m^2\hbar^2 + m\hbar^2$$
(29b)

将这些结果代入不等式(28),得到

$$j(j+1) - m(m+1) = (j-m)(j+m+1) \ge 0$$
(30a)

$$j(j+1) - m(m-1) = (j-m+1)(j+m) \ge 0$$
(30b)

亦即

$$-(j+1) \leqslant m \leqslant j \tag{31a}$$

$$-j \leqslant m \leqslant j+1 \tag{31b}$$

仅当 m 满足不等式(27)时,这两个条件才能同时满足。

2.2.2 引理 **2**: 矢量 $J_{-}|k,j,m\rangle$ 的性质

设 $|k,j,m\rangle$ 是 J^2 与 J_z 的一个本征矢,属于本征值 $j(j+1)\hbar^2$ 与 $m\hbar$ 。

- (1) 如果 m = -i。则 $J_{-}|k, i, -i\rangle = 0$ 。
- (2) 如果 m > -j,则 $J_-|k,j,m\rangle$ 是 J^2 与 J_z 的一个非零本征矢,属于本征值 $j(j+1)\hbar^2$ 与 $(m-1)\hbar$ 。

两个性质的证明分别使用对易子 $[J^2, J_-]$ 与 $[J_z, J_-]$ 即可。

2.2.3 引理 **3**: 矢量 $J_{+}|k,j,m\rangle$ 的性质

设 $|k,j,m\rangle$ 是 ${\bf J}^2$ 与 J_z 的一个本征矢,属于本征值 $j(j+1)\hbar^2$ 与 $m\hbar$ 。 (1) 如果 m=j。则 $J_+|k,j,j\rangle=0$ 。

(2) 如果 m < j,则 $J_{+}|k,j,m\rangle$ 是 J^{2} 与 J_{z} 的一个非零本征矢,属于本征值 $j(j+1)\hbar^{2}$ 与 $(m-1)\hbar$ 。

证明方法与上节相似。

2.2.4 确定 J^2 及 J_z 的谱

设 $|k,j,m\rangle$ 是 \mathbf{J}^2 和 J_z 的一个非零本征矢,属于本征值 $j(j+1)\hbar^2$ 与 $m\hbar$ 。那么,根据引理 1,应该有 $-j\leqslant m\leqslant j$ 。因而,一定存在一个非负的 整数 p 使得

$$-j \leqslant m - p < -j + 1 \tag{32}$$

考虑下面的矢量序列

$$|k, j, m\rangle, J_-|k, j, m\rangle, \cdots, (J_-)^p|k, j, m\rangle$$
 (33)

根据引理 2,此序列中的每一个矢量 $(J_-)^p|k,j,m\rangle(n=0,1,\cdots,p)$ 都是 J^2 与 J_z 的非零本征矢,属于本征值 $j(j+1)\hbar^2$ 与 $m\hbar$ 。

我们逐步的证明:根据假设, $|k,j,m\rangle$ 是一个非零矢量,属于本征值 $j(j+1)\hbar^2$ 与 $m\hbar$;将算符 J_- 作用于矢量 $(J_-)^{n-1}|k,j,m\rangle$,便得到矢量 $(J_-)^n|k,j,m\rangle$,前一个矢量是 J^2 与 J_z 的本征矢,属于本征值 $j(j+1)\hbar^2$ 与 $(m-n+1)\hbar$;后面这个本征值是严格大于 $-j\hbar$ 的,这是因为,根据(32)有

$$m - n + 1 \geqslant m - p + 1 \geqslant -j + 1 \tag{34}$$

根据引理 2 的第 (2) 点,可知 $(J_-)^n|k,j,m\rangle$ 是 J^2 与 J_z 的非零本征矢,属于本征值 $j(j+1)\hbar^2$ 与 $(m-n)\hbar$ 。

现在将算符 J_- 作用于 $(J_-)^p|k,j,m\rangle$ 。首先假设 J_z 的与矢量 $(J_-)^p|k,j,m\rangle$ 相联系的本征值 $(m-p)\hbar$ 严格大于 $-j\hbar$,也就是说

$$m - p > -j \tag{35}$$

根据引理 2 的第 (2) 点, $J_-(J_-)^p|k,j,m\rangle$ 就应该是一个非零矢量而且应该对应于本征值 $j(j+1)\hbar^2$ 与 $(m-p-1)\hbar$,这就和引理 1 互相矛盾了; 这是因为,根据(32),有

$$m - p - 1 < -j \tag{36}$$

因而 m-p 必须等于 -j。在这个条件下, $(J_-)^p|k,j,m\rangle$ 实际上对应于 J_z 的本征值 $-j\hbar$,而且,根据引理 2 的第 (2) 点, $J_-(J_-)^p|k,j,m\rangle$ 是个零 矢量;因而,通过算符 J_- 迭次作用于 $|k,j,m\rangle$ 而形成的矢量序列(33)是有限的,而且与引理 1 的矛盾也消除了。

于是我们证明了:存在着这样一个整数 p,他取正值或零,使得

$$m - p = -j \tag{37}$$

和上面完全相同的推理可以证明:根据引理 3,存在这样一个整数 q,他 取正值或零,使得

$$m + q = j \tag{38}$$

这是因为矢量序列

$$|k,j,m\rangle, J_{+}|k,j,m\rangle, \cdots, (J_{+})^{p}|k,j,m\rangle$$
 (39)

必须是有限的,才不致和引理1矛盾。

将(37)(38)结合起来,我们得到

$$p + q = 2j \tag{40}$$

因而 j 等于正整数的一半或零。由此可以推知,j 必须是整数或半整数。此外,如果存在一个非零矢量 $|k,j,m\rangle$,则序列(33)(39)中的所有矢量也都是非零矢量;而且都是 J^2 的属于本征值 $j(j+1)\hbar^2$ 的本征矢又都是 J_z 的属于本征值

$$-j\hbar, (-j+1)\hbar, (-j+2)\hbar, \cdots, (j-2)\hbar, (j-1)\hbar, j\hbar$$
 (41)

的本征矢。

现在把结果归纳如下

假设 J 是满足对易关系式(9)的任意角动量。如果 $j(j+1)\hbar^2$ 与 $m\hbar$ 表示 J^2 与 J_z 的本征值,那么

- (1) j 只能取正的整数、半整数或零,即 $0,1/2,1,3/2,2,\cdots$
- (2) 对于 j 的一个固定值,m 的可能值只有 (2j+1) 个: -j, -j + 1, \cdots , j-1, j 。因此,若 j 是半整数,则 m 也是半整数。在 m 的这些值中,只要有一个出现,其他的值也会出现。

2.3 表象 $|k,j,m\rangle$

2.3.1 基右矢

我们取在所研究的情况下能够出现一对本征值 $j(j+1)\hbar^2$ 与 $m\hbar$ 。与这一对本征值相联系的本征矢的集合在 \mathcal{E} 空间中张成一个矢量子空间,我们将他记作 $\mathcal{E}(j,m)$; 可以预见他的维数 g(j,m) 大于 1,这是因为一般来说 J^2 与 J_z 并不构成一个 CSCO。现在,我们在子空间 $\mathcal{E}(j,m)$ 中选择一个任意的正交归一基 $|k,j,m\rangle$; $k=1,2,\cdots,q(j,m)$ 。

如果 m 不等于 j,则在 $\mathscr E$ 空间中一定有另一个子空间 $\mathscr E(j,m+1)$,他 由 J^2 与 J_z 的属于本征值 $j(j+1)\hbar^2$ 与 $m\hbar$ 的本征矢所张成。同样,若 m 不等于 -j,便存在着一个子空间 $\mathscr E(j,m-1)$ 。我们从 $\mathscr E(j,m)$ 空间中已 经选定的基出发,在 m 不等于 j 与 -j 的情况下,在 $\mathscr E(j,m+1)$ 空间和 $\mathscr E(j,m-1)$ 空间中构成一个正交归一基。

首先,我们证明,若 k_1 不等于 k_2 ,则 $J_+|k_1,j,m\rangle$ 与 $J_+|k_2,j,m\rangle$ 正交; $J_-|k_1,j,m\rangle$ 与 $J_-|k_2,j,m\rangle$ 也是正交的。我们利用(21)来计算 $J_\pm|k_2,j,m\rangle$ 和 $J_+|k_1,j,m\rangle$ 的标量积

$$\langle k_2, j, m | J_{\mp} J_{\pm} | k_1, j, m \rangle = \langle k_2, j, m | (\mathbf{J}^2 - J_z^2 \mp \hbar J_z) | k_1, j, m \rangle$$

= $[j(j+1) - m(m \pm 1)] \hbar^2 \langle k_2, j, m | k_1, j, m \rangle$ (42)

由于 $\mathcal{E}(j,m)$ 空间中的基是正交归一的,如果 $k_1 \neq k_2$,则这些标量积都是零。如果 $k_1 = k_2$,便得到矢量 $J_{\pm}|k,j,m\rangle$ 的模平方 $[j(j+1)-m(m\pm1)]\hbar^2$ 。现在,我们来考虑由下式

$$|k, j, m+1\rangle = \frac{1}{\hbar\sqrt{j(j+1) - m(m+1)}} J_{+}|k, j, m\rangle$$
 (43)

定义是 g(j,m) 个矢量的集合。根据上面的论证,这些矢量是正交归一的。此外,他们构成 $\mathcal{E}(j,m+1)$ 空间中的一个基。这一点可证明如下:我们假设在 $\mathcal{E}(j,m+1)$ 空间中存在一个矢量 $|\alpha,j,m+1\rangle$,他正交于自(43)的全体矢量 $|k,j,m+1\rangle$ 。因为 m+1 不会等于 -j,故矢量 $J_-|\alpha,j,m+1\rangle$ 不会是零矢量,他应该属于 $\mathcal{E}(j,m)$,并应正交于所有的矢量 $J_-|k,j,m+1\rangle$;但根据(43), $J_-|k,j,m+1\rangle$ 正比于 $J_-J_+|k,j,m\rangle$,即正比于 $|k,j,m\rangle$;于是 $J_-|\alpha,j,m+1\rangle$ 应是 $\mathcal{E}(j,m)$ 空间中的一个非零矢量,他正交于基 $|k,j,m\rangle$ 中的所有矢量,但这是不可能的。因而矢量集合(43)构成 $\mathcal{E}(j,m+1)$ 空间

中的一个基。

采用和上面完全相同的方法,我们可以证明:由下式定义的诸矢量 $|k,j,m-1\rangle$

$$|k, j, m-1\rangle = \frac{1}{\hbar\sqrt{j(j+1) - m(m-1)}} J_{-}|k, j, m\rangle$$
 (44)

构成 $\mathcal{E}(j, m-1)$ 空间中的一个正交归一基。

特别的,我们看到,子空间 $\mathcal{E}(j,m+1)$ 和子空间 $\mathcal{E}(j,m-1)$ 的维数等于 $\mathcal{E}(i,m)$ 空间的维数。换句话说,他们的维数与 m 无关

$$g(j, m+1) = g(j, m-1) = g(j, m) = g(j)$$
(45)

我们现在按下列步骤进行。对于在待研究的问题中实际出现的 j 的每一个数值。我们取与 j 的数值相联系的诸子空间中的一个。譬如 $\mathcal{E}(j,j)$,他对应于 m=j。我们在这个子空间中任意取一个正交归一基 $|k,j,j\rangle$; $k=1,2,\cdots,g(j)$,然后,根据(44),我们可以顺序地为其他 2j 个子空间 $\mathcal{E}(j,m)$ 中的每一个构成一个基。图 1 中的箭头概略地表示我们所用的方法。对于问题中实际出现的 j 的每一个数值,我们都按照同样的方法去做,最后构成的基叫做态空间 \mathcal{E} 中的标准基。对于这样一个基,正交归一关系式及封闭性关系式可以写作

$$\langle k, j, m | k', j', m' \rangle = \delta_{kk'} \delta_{jj'} \delta_{mm'} \tag{46a}$$

$$\sum_{j} \sum_{m=-j}^{+j} \sum_{k=1}^{g(j)} |k, j, m\rangle \langle k, j, m| = 1$$
 (46b)

图 1: 对于固定 j, 构建标准基

2.3.2 子空间 $\mathscr{E}(k,j)$

在上一节中,我们从子空间 $\mathcal{E}(j,m=j)$ 中已选定的一个基出发,构成子空间 $\mathcal{E}(j,m=j-1)$ 中的一个基,然后构成子空间 $\mathcal{E}(j,m=j-2),\cdots,\mathcal{E}(j,m),\cdots$ 中的基,最后便构成态空间中的一个"标准基"。我们可以把态空间看做全体正交子空间 $\mathcal{E}(j,m)$ 的直和,这里 m 从 -j 变到 +j,每次改变一个单位,而 j 则取遍待研究问题中实际出现的所有数值。这就是说, \mathcal{E} 空间中的任一个矢量都可以唯一的分解为一系列矢量之和,其中每一个矢量分别属于一个确定的子空间 $\mathcal{E}(j,m)$ 。

但是,利用这些子空间 $\mathcal{E}(j,m)$ 也有不便的地方。首先,他的维数 g(j) 事先是不知道的,而且是与待研究物理体系相关联的;其次,这些子空间 $\mathcal{E}(j,m)$ 在 \mathbf{J} 的作用下并不是不变的,这是因为,按照矢量 $|k,j,m\rangle$ 的构成 方法,算符 J_+ 和 J_- 在子空间 $\mathcal{E}(j,m)$ 的矢量和 $\mathcal{E}(j,m\pm 1)$ 的矢量之间 的矩阵元并不等于零。

现在我们引入 \mathcal{E} 空间中的另外一些子空间,即子空间 $\mathcal{E}(k,j)$ 。为此,我们不再组合指标 j 和 m 都是固定数值的那些矢量 $|k,j,m\rangle$,而另外组成一个集合,其中诸矢量的指标 k 和 j 都具有指定值,我们称这些矢量所张成的空间为子空间 $\mathcal{E}(k,j)$ 。这种做法相当于将图 1 中的同一列中的 (2j+1)

个矢量 [而不是同一行中的 g(j) 个矢量] 组合起来。

于是 $\mathscr E$ 空间就成为这些正交子空间 $\mathscr E(k,j)$ 的直和,现在这些子空间 具有如下简单性质

- ——无论待研究的是什么物理体系,也无论 k 的值如何,子空间 $\mathcal{E}(k,j)$ 的维数都是 (2j+1)。
- 一一子空间 $\mathcal{E}(k,j)$ 在 \mathbf{J} 的作用下具有整体不变性; 也就是说,将 \mathbf{J} 的 任意一个分量 J_u 作用于子空间 $\mathcal{E}(k,j)$ 中的一个右矢,所得的另一个右矢 仍属于 $\mathcal{E}(k,j)$ 。这一点是不难证明的,因为 J_u 总可以通过 J_z , J_+ 及 J_- 来表示; 但由 J_z 对 $|k,j,m\rangle$ 作用而得的右矢正比于 $|k,j,m\rangle$,由 J_+ 的作用而得的右矢正比于 $|k,j,m+1\rangle$,由 J_- 的作用而得的右矢正比于 $|k,j,m-1\rangle$;因此,根据构成"标准基" $|k,j,m\rangle$ 的方法便可得出上述性质。

2.3.3 表示角动量算符的矩阵

在一个标准基中,表示 J 的某一分量 J_u 的矩阵的求法,由于使用子空间 $\mathcal{E}(k,j)$ 而得到很大的简化,实际上,在分别属于互异子空间 $\mathcal{E}(k,j)$ 的两个基右矢之间的矩阵元都等于零。因此,这种矩阵的形式如下

	$\mathscr{E}(k,j)$	$\mathscr{E}(k',j)$	$\mathscr{E}(k',j')$	
$\mathscr{E}(k,j)$	$(2j+1) \times (2j+1)$ 矩阵	0	0	0
$\mathscr{E}(k',j)$	0	$(2j+1) \times (2j+1)$ 矩阵	0	0
$\mathscr{E}(k',j')$	0	0	$(2j'+1) \times (2j'+1)$ 矩阵	0
:	0	0	0	0

图 2: 角动量算符的矩阵

由此可见,我们只需计算有限阶的子矩阵,在每一个子空间 $\mathscr{E}(k,j)$ 内部,这些矩阵都表示我们所有的算符。

第二个十分重要的简化在于:每一个这样的有限阶子矩阵都不依赖于k,也不依赖于待研究体系,而只依赖于j;当然,还依赖于我们所要表示的

算符。实际上,由 $|k,j,m\rangle$ 的定义,可以推知

$$J_{z}|k,j,m\rangle = m\hbar|k,j,m\rangle$$

$$J_{+}|k,j,m\rangle = \hbar\sqrt{j(j+1) - m(m+1)}|k,j,m+1\rangle$$

$$J_{-}|k,j,m\rangle = \hbar\sqrt{j(j+1) - m(m-1)}|k,j,m-1\rangle$$
(47)

这就是说

$$\langle k, j, m | J_z | k', j', m' \rangle = m \hbar \delta_{kk'} \delta_{jj'} \delta_{mm'}$$

$$\langle k, j, m | J_{\pm} | k', j', m' \rangle = \hbar \sqrt{j(j+1) - m'(m' \pm 1)} \delta_{kk'} \delta_{jj'} \delta_{mm' \pm 1}$$
(48)

这些等式表明,表示 J 的分量的那些矩阵元只依赖于 j 和 m,不依赖于 k。 因此,不论在什么情况下,为了求得在一个标准基中与任意分量 J_u 相联系的矩阵,我们只需对于 j 的所有可能值 $(j=0,12,1,3/2,\cdots)$ 一次算出所有"普适"矩阵 $(J_u)^{(j)}$,这些矩阵在子空间 $\mathcal{E}(k,j)$ 内都表示 J_u 。研究一个具体的物理体系与他的角动量 J 时,我们应该确定这个问题中 j 实际上取哪些数值,以及与 j 的每一个数值相联系的子空间 $\mathcal{E}(k,j)$ 的个数 g(j)[也就是说,他的维数为 (2j+1)g(j)];我们知道在这种特殊情况下,表示 J_u 的矩阵具有分块对角的形式,即图 2,因而,我们可以从刚才定义的普适矩阵出发构成这个矩阵;对于 j 的每一个值,将有 g(j) 个与 $(J_u)^{(j)}$ 全同的子块。

i 取任意值时,利用(48)(14),我们可以写作

$$\langle k, j, m | J_x | k', j', m' \rangle = \frac{\hbar}{2} \delta_{kk'} \delta_{jj'} [\sqrt{j(j+1) - m'(m'+1)} \delta_{mm'+1} + \sqrt{j(j+1) - m'(m'-1)} \delta_{mm'-1}]$$
(49)

$$\langle k, j, m | J_y | k', j', m' \rangle = \frac{\hbar}{2i} \delta_{kk'} \delta_{jj'} [\sqrt{j(j+1) - m'(m'+1)} \delta_{mm'+1} + \sqrt{j(j+1) - m'(m'-1)} \delta_{mm'-1}]$$
(50)

由此可见,矩阵 $(J_z)^{(j)}$ 是对角的,他的元是 $m\hbar$ 的 (2j+1) 个值。在矩阵 $(J_x)^{(j)}$ 和 $(J_y)^{(j)}$ 中,只在紧邻主对角线的上下两侧,才有非零元; $(J_x)^{(j)}$ 是实对称矩阵, $(J_y)^{(j)}$ 是纯虚反对称矩阵。

另一方面,从构成的方法来看,诸右矢 $|k,j,m\rangle$ 都是 \mathbf{J}^2 的本征矢,我们便有

$$\langle k, j, m | \mathbf{J}^2 | k', j', m' \rangle = j(j+1)\hbar^2 \delta_{kk'} \delta_{jj'} \delta_{mm'}$$
(51)

因而,矩阵 $(J^2)^{(j)}$ 正比于 $(2j+1)\times(2j+1)$ 的单位矩阵,其对角元都等于 $j(j+1)\hbar^2$ 。

最后,我们把专门讨论标准表象的这一段的结论归纳为 用 $|k,j,m\rangle$ 表示 J^2 和 J_z 共同本征矢,即:

$$J^{2}|k,j,m\rangle = j(j+1)\hbar^{2}|k,j,m\rangle$$

 $J_{z}|k,j,m\rangle = m\hbar|k,j,m\rangle$

这些矢量构成态空间的一个正交归一基 $|k,j,m\rangle$; 如果算符 J_+ 与 J_- 作用于基矢的结果为

$$J_{+}|k,j,m\rangle = \hbar\sqrt{j(j+1) - m(m+1)}|k,j,m+1\rangle$$

$$J_{-}|k,j,m\rangle = \hbar\sqrt{j(j+1) - m(m-1)}|k,j,m-1\rangle$$

我们就称这个基是标准基。

3 应用于轨道角动量

3.1 L^2 与 L_z 的本征值及本征函数

3.1.1 $|r\rangle$ 表象中的本征值方程

在 $|r\rangle$ 表象中,观察算符 R 与 P 分别相当于倍乘因子 r 和微分算符 $\frac{\hbar}{i}\nabla$ 。因而角动量 L 的三个分量可以写作:

$$L_x = \frac{\hbar}{\mathrm{i}} \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right) \tag{52a}$$

$$L_y = \frac{\hbar}{\mathrm{i}} \left(z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \right) \tag{52b}$$

$$L_z = \frac{\hbar}{\mathrm{i}} \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) \tag{52c}$$

使用球坐标更为方便,即

$$x = r\sin\theta\cos\varphi$$

$$y = r\sin\theta\sin\varphi$$

$$z = r\cos\theta$$
 (53)

其中

$$r \geqslant 0$$

$$0 \leqslant \theta \leqslant \pi$$

$$0 \leqslant \varphi \leqslant 2\pi$$
(54)

将(52)利用变量变换得到以下结果

$$L_x = i\hbar \left(\sin\varphi \frac{\partial}{\partial \theta} + \frac{\cos\varphi}{\tan\theta} \frac{\partial}{\partial \varphi} \right)$$
 (55a)

$$L_{y} = i\hbar \left(-\cos\varphi \frac{\partial}{\partial\theta} + \frac{\sin\varphi}{\tan\theta} \frac{\partial}{\partial\varphi} \right)$$
 (55b)

$$L_z = \frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial \varphi} \tag{55c}$$

由这些公式又可以求得

$$\mathbf{L}^{2} = -\hbar^{2} \left(\frac{\partial^{2}}{\partial \theta^{2}} + \frac{1}{\tan \theta} \frac{\partial}{\partial \theta} + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}} \right)$$
 (56a)

$$L_{+} = \hbar e^{i\varphi} \left(\frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \varphi} \right)$$
 (56b)

$$L_{-} = \hbar e^{-i\varphi} \left(-\frac{\partial}{\partial \theta} + i\cot\theta \frac{\partial}{\partial \varphi} \right)$$
 (56c)

在 $|{\bf r}\rangle$ 表现中,与 ${\bf L}^2$ 的本征值 $l(l+1)\hbar^2$ 及 L_z 的本征值 $m\hbar$ 相联系的本征函数是下列偏微分方程组的解

$$-\left\{\frac{\partial^2}{\partial\theta^2} + \frac{1}{\tan\theta}\frac{\partial}{\partial\theta} + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\varphi^2}\right\}\psi(r,\theta,\varphi) = l(l+1)\psi(r,\theta,\varphi)$$
 (57a)

$$-i\frac{\partial}{\partial\varphi}\psi(r,\theta,\varphi) = m\psi(r,\theta,\varphi)$$
 (57b)

此外,根据之前所得的普遍结果,我们知道 l 是整数或半整数;而且 l 的值一旦取定,m 就只能取值 -l, -l+1, \cdots , l-1, l.

在方程组(57)中 r 并未出现在任何微分算符中,因此我们可以将他看作 参变量而只需考虑 ψ 对 θ 及 φ 的依赖关系。若将 \mathbf{L}^2 和 L_z 的对应于本征 值 $l(l+1)\hbar^2$ 与 $m\hbar$ 的共同本征函数记作 $\mathbf{Y}_r^m(\theta,\varphi)$,则有

$$L^{2}Y_{l}^{m}(\theta,\varphi) = l(l+1)\hbar^{2}Y_{l}^{m}(\theta,\varphi)$$
(58a)

$$L_z Y_l^m(\theta, \varphi) = m\hbar Y_l^m(\theta, \varphi)$$
 (58b)

更严格一点,为了区别方程(58)的对应于同一对 l,m 值的各个解,应该再使用一个辅助指标。但是,事实上对于 l 和 m 的每一对容许值,这些方程只有一个解 (除倍乘因子外),所以只用指标 l 和 m 就够了。

方程(58)给出了 L^2 与 L_z 的本征函数对 θ 和 φ 的依赖关系。一旦求得这些方程的解 $Y_r^m(\theta,\varphi)$,我们就可以得到下列形式的本征函数

$$\varphi_{l,m}(r,\theta,\varphi) = f(r)Y_l^m(\theta,\varphi) \tag{59}$$

此处 f(r) 是 r 的函数,他是作为偏微分方程(57)的积分常数而出现的。既然 f(r) 可以是任意函数,这就表明,在 $r(\mathbf{g}, \theta, \varphi)$ 的函数所张成的函数空间 \mathcal{E}_r 中, \mathbf{L}^2 和 L_z 并不构成一个 CSCO。

为了将 $\varphi_{l,m}(r,\theta,\varphi)$ 归一化,比较方便的方法是分别将 $Y_l^m(\theta,\varphi)$ 及 f(r) 归一化,因而

$$\int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin\theta |Y_{l}^{m}(\theta,\varphi)|^{2} d\theta = 1$$
 (60)

以及

$$\int_0^\infty r^2 |f(r)|^2 dr = 1$$
 (61)

3.1.2 *l* 与 *m* 的值

利用 L_z 的表达式(55c), 可将(58b)写成下列形式

$$\frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial \varphi} Y_l^m(\theta, \varphi) = m\hbar Y_l^m(\theta, \varphi)$$
(62)

此式表明 $Y_l^m(\theta,\varphi)$ 应为

$$Y_l^m(\theta, \varphi) = F_l^m(\theta)e^{im\varphi} \tag{63}$$

 φ 从 0 变到 2π 就覆盖整个空间。波函数在空间的所有点都应该是连续的,因此,特别的有

$$Y_l^m(\theta, \varphi = 0) = Y_l^m(\theta, \varphi = 2\pi)$$
(64)

由此可以推出

$$e^{2\mathrm{i}m\pi} = 1\tag{65}$$

根据普遍结果,m 是整数或半整数。(65)表明,就轨道角动量而言,m 只能是整数。但是,我们又知道,m 与 l 或者都是整数或者都是半整数,可见 l 也只能是整数。

我们将 l 固定于一个整数值。根据普遍理论,我们知道 $\mathbf{Y}_l^l(\theta,\varphi)$ 必须满足

$$L_{+}Y_{l}^{l}(\theta,\varphi) = 0 \tag{66}$$

考虑到(56b)和(63),由上式得到

$$\left\{ \frac{\mathrm{d}}{\mathrm{d}\theta} - l \cot\theta \right\} F_l^l(\theta) = 0 \tag{67}$$

注意到

$$\cot\theta d\theta = \frac{d(\sin\theta)}{\sin\theta} \tag{68}$$

便可立即积分一阶方程(67), 其通解为

$$F_l^l(\theta) = c_l(\sin\theta)^l \tag{69}$$

其中 c_l 是归一化常数。反过来看,我们刚才确定的函数正是 \mathbf{L}^2 和 L_z 的 共同本征函数,对应于本征值 $l(l+1)\hbar^2$ 与 $l\hbar$ 。这是因为,我们已经有 $L_z Y_l^l(\theta,\varphi) = l\hbar Y_l^l(\theta,\varphi)$ 。于是,为了证明 $Y_l^l(\theta,\varphi)$ 是 \mathbf{L}^2 的对应于我们所期 望的本征值的本征函数,只需将这个方程与(66)结合起来,并利用(57b)。

因而,对于 l 的每一个正整数值或零值,都存在一个唯一的函数 $Y_l^l(\theta,\varphi)$ (倍

乘因子除外)

$$Y_l^l(\theta, \varphi) = c_l(\sin\theta)^l e^{il\varphi} \tag{70}$$

经过算符 L_- 的迭次作用,我们可以构成 $\mathbf{Y}_l^{l-1},\cdots,\mathbf{Y}_l^m,\cdots,\mathbf{Y}_l^{-l}$ 。于是,我们看出,对应于一对本征值 $l(l+1)\hbar^2$ 和 $m\hbar$ (这里 l 是一个任意的正整数或零;而 m 是另一个整数,他适合 $-l \leq m \leq l$),必有一个而且只有一个本征函数: $\mathbf{Y}_l^m(\theta,\varphi)$,根据(70)可以确切的算出这个函数。这些本征函数 $\mathbf{Y}_l^m(\theta,\varphi)$ 叫做球谐函数。

3.1.3 球谐函数的主要性质

球谐函数 $Y_l^m(\theta,\varphi)$ 具有地推关系,我们根据普遍结果,有

$$L_{\pm} \mathbf{Y}_{l}^{m}(\theta, \varphi) = \hbar \sqrt{l(l+1) - m(m\pm 1)} \mathbf{Y}_{l}^{m\pm 1}(\theta, \varphi)$$
 (71)

于是,利用关于算符 L_+ 和 L_- 的表达式(56b)(56c),并注意到 $Y_l^m(\theta,\varphi)$ 是一个只含 θ 的函数与 $e^{im\varphi}$ 的乘积,便有

$$e^{i\varphi} \left(\frac{\partial}{\partial \theta} - m \cot \theta \right) Y_l^m(\theta, \varphi) = \sqrt{l(l+1) - m(m+1)} Y_l^{m+1}(\theta, \varphi)$$
 (72a)

$$e^{-i\varphi} \left(-\frac{\partial}{\partial \theta} - m\cot\theta \right) Y_l^m(\theta, \varphi) = \sqrt{l(l+1) - m(m-1)} Y_l^{m-1}(\theta, \varphi)$$
 (72b)

方程组(57)所确定的球谐函数只有倍乘因子的差异。以后,我们这样选择倍乘因子:将 $Y_i^m(\theta,\varphi)$ 作为角变量 θ 和 φ 的函数进行正价归一化,即

$$\int_0^{2\pi} d\varphi \int_0^{\pi} \sin\theta d\theta Y_{l'}^{m'*}(\theta,\varphi) Y_l^m(\theta,\varphi) = \delta_{l'l} \delta_{m'm}$$
 (73)

此外, θ 和 φ 的任意函数 $f(\theta,\varphi)$ 都可以按球谐函数展开

$$f(\theta,\varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{+l} c_{l,m} Y_l^m(\theta,\varphi)$$
 (74)

其中

$$c_{l,m} = \int_0^{2\pi} d\varphi \int_0^{\pi} \sin\theta d\theta Y_l^{m*}(\theta, \varphi) f(\theta, \varphi)$$
 (75)

球谐函数在 θ 和 φ 的函数空间 \mathcal{E}_{Ω} 中构成一个正交归一基,这一点可由下

式封闭性表达式给出

$$\sum_{l=0}^{\infty} \sum_{m=-l}^{+l} Y_l^m(\theta, \varphi) Y_l^{m*}(\theta', \varphi') = \delta(\cos\theta - \cos\theta') \delta(\varphi - \varphi')$$

$$= \frac{1}{\sin\theta} \delta(\theta - \theta') \delta(\varphi - \varphi') \tag{76}$$

另外, 球谐函数的宇称为

$$Y_l^m(\pi - \theta, \pi + \varphi) = (-1)^l Y_l^m(\theta, \varphi)$$
(77)

由此可见,球谐函数是具有确定宇称的函数,而且宇称与m无关,l为偶数时具有偶宇称,l为奇数时具有奇宇称。

容易看出,还有下列关系:

$$[\mathbf{Y}_l^m(\theta,\varphi)]^* = (-1)^m \mathbf{Y}_l^{-m}(\theta,\varphi) \tag{78}$$

3.1.4 一个无自旋粒子的波函数空间中的标准基

现在设 $\mathcal{E}(l,m=l)$ 是 \mathbf{L}^2 和 L_z 的共同本征函数的子空间,对应于本征值 $l(l+1)\hbar^2$ 与 $l\hbar$,这里的 l 是零或确定的正整数。构成标准基的第一步,是在每一子空间 $\mathcal{E}(l,m=l)$ 中任意选定一个正交归一基;我们用 $\varphi_{k,l,l}(\mathbf{r})$ 表示构成空间 $\mathcal{E}(l,m=l)$ 中的已选定的基的那些函数,指标 k 用来区别这个基中的各函数。将算符 L_- 迭次作用于 $\varphi_{k,l,l}(\mathbf{r})$,便可构成诸函数 $\varphi_{k,l,m}(\mathbf{r})$,他们补足了 $m \neq l$ 的标准基;他们满足方程(26)和(47),此两式现在成为

$$L^{2}\varphi_{k,l,m}(\mathbf{r}) = l(l+1)\hbar^{2}\varphi_{k,l,m}(\mathbf{r})$$

$$L_{z}\varphi_{k,l,m}(\mathbf{r}) = m\hbar\varphi_{k,l,m}(\mathbf{r})$$
(79)

以及

$$L_{\pm}\varphi_{k,l,m}(\mathbf{r}) = \hbar\sqrt{l(l+1) - m(m\pm 1)}\varphi_{k,l,m\pm 1}(\mathbf{r})$$
(80)

 L^2 和 L_z 的对应于指定的本征值 $l(l+1)\hbar^2$ 与 $l\hbar$ 的全体共同本征函数对角变量的依赖关系都一样,他们的差别只在于对径向变量的依赖不同。于是,从方程(79)可以可以推知 $\varphi_{k,l,m}(\mathbf{r})$ 具有如下形式

$$\varphi_{k,l,m}(\mathbf{r}) = \mathcal{R}_{k,l,m}(r) \mathcal{Y}_l^m(\theta,\varphi)$$
(81)

现在我们来证明。如果 $\varphi_{k,l,m}(r)$ 这些函数构成一个标准基,那么,各径向函数 $\mathbf{R}_{k,l,m}(r)$ 都不依赖 m。这是因为,微分算符 L_{\pm} 并不作用于 r 的函数,根据(71),我们有

$$L_{\pm}\varphi_{k,l,m}(\mathbf{r}) = R_{k,l,m}(r)L_{\pm}Y_{l}^{m}(\theta,\varphi)$$
$$= \hbar\sqrt{l(l+1) - m(m\pm 1)}R_{k,l,m}(r)Y_{l}^{m}(\theta,\varphi)$$
(82)

将此式与(80)进行对比,便可看出,无论 r 如何径向函数都应满足

$$R_{k,l,m\pm 1}(r) = R_{k,l,m}(r) \tag{83}$$

所以这些函数与m无关。从而在一个无自旋粒子的波函数空间中构成一个标准基的函数 $\varphi_{k,l,m}(\mathbf{r})$ 一定具有下列形式

$$\varphi_{k,l,m}(\mathbf{r}) = R_{k,l}(r) Y_l^m(\theta, \varphi)$$
(84)

这个基的正交归一关系式可以写作

$$\int d^{3}r \varphi_{k,l,m}^{*}(\boldsymbol{r}) \varphi_{k',l',m'}(\boldsymbol{r}) = \int_{0}^{\infty} r^{2} dr R_{k,l}^{*}(r) R_{k',l'}(r)$$

$$\times \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin\theta d\theta Y_{l}^{m*}(\theta,\varphi) Y_{l'}^{m'}(\theta,\varphi)$$

$$= \delta_{kk'} \delta_{ll'} \delta_{mm'}$$
(85)

由于球谐函数作为 θ 和 φ 的函数已经归一化,所以,我们最后得到

$$\int_0^\infty r^2 \mathrm{d}r \mathcal{R}_{k,l}^*(r) \mathcal{R}_{k',l'}(r) = \delta_{kk'}$$
(86)

由此可见,径向函数 $R_{k,l}(r)$ 对变量 r 已经归一化; 此外,对应于 l 的同一个值但指标 k 互异的两个径向函数是正交的。

3.2 关于测量 L^2 与 L_z 的物理预言的计算

考虑一个粒子, 他的态由下面的波函数描述

$$\langle \boldsymbol{r} | \psi \rangle = \psi(\boldsymbol{r}) = \psi(r, \theta, \varphi)$$
 (87)

我们已经知道,测量 L^2 可能得到的结果是 $0, 2\hbar^2, 6\hbar^2, \cdots, l(l+1)\hbar^2, \cdots, \cdots$ 测量 L_z 可能得到的结果是 $0, \pm \hbar, \pm \hbar, \cdots, m\hbar, \cdots$ 。那么,怎么利用波函数 $\psi(r, \theta, \varphi)$ 计算测得这些结果的概率呢?

3.2.1 普遍公式

我们利用 $\mathcal{P}_{\boldsymbol{L}^2,L_z}(l,m)$ 表示同时测量 \boldsymbol{L}^2 和 L_z 得到结果 $l(l+1)\hbar^2$ 和 $m\hbar$ 的概率。在用 \boldsymbol{L}^2 和 L_z 的本征函数构成的基中,将 $\psi(\boldsymbol{r})$ 展开,便可求得这个概率。我们选择标准基:

$$\psi_{k,l,m}(\mathbf{r}) = R_{k,l}(r) Y_l^m(\theta, \varphi)$$
(88)

从而

$$\psi(\mathbf{r}) = \sum_{k} \sum_{l} \sum_{m} c_{k,l,m} R_{k,l}(r) Y_{l}^{m}(\theta, \varphi)$$
(89)

其中系数可以这样计算

$$c_{k,l,m} = \int d^3 r \psi_{k,l,m}^*(\mathbf{r}) \varphi(\mathbf{r})$$

$$= \int_0^\infty r^2 dr R_{k,l}^*(r) \int_0^{2\pi} d\varphi \int_0^\pi \sin\theta d\theta Y_l^{m*}(\theta,\varphi) \psi(r,\theta,\varphi) \qquad (90)$$

在上述条件下,概率 $\mathscr{P}_{\mathbf{L}^2,L_z}(l,m)$ 由下式给出

$$\mathscr{P}_{L^{2},L_{z}}(l,m) = \sum_{l} |c_{k,l,m}|^{2}$$
(91)

如果我们只测量 L^2 , 那么, 得到结果 $l(l+1)\hbar^2$ 的概率为

$$\mathscr{P}_{L^{2}}(l) = \sum_{m=-l}^{+l} \mathscr{P}_{L^{2},L_{z}}(l,m) = \sum_{k} \sum_{m=-l}^{+l} |c_{k,l,m}|^{2}$$
(92)

与此类似,如果只测量 L_z ,那么,得到 $m\hbar$ 的概率为

$$\mathscr{P}_{L_z}(m) = \sum_{l \geqslant |m|} \mathscr{P}_{\mathbf{L}^2, L_z}(l, m) = \sum_k \sum_{l \geqslant |m|} |c_{k,l,m}|^2$$
(93)

由于算符 L^2 和 L_z 只作用于 θ 和 φ ,不难看出,在上述概率的计算中

重要的是波函数 $\psi(r)$ 对 θ 和 φ 的依赖关系。为了更精准的说明这一点,我们将 $\psi(r,\theta,\varphi)$ 看做 θ 和 φ 的函数,而将 r 看做参变量。于是,和 θ 与 φ 的任何函数一样, ψ 也可以按球谐函数展开

$$\psi(r,\theta,\varphi) = \sum_{l} \sum_{m} a_{l,m} Y_{l}^{m}(\theta,\varphi)$$
(94)

这个展开式中的系数 $a_{l.m}$ 依赖于参变量 r,并由下式给出

$$a_{l,m}(r) = \int_0^{2\pi} d\varphi \int_0^{\pi} \sin\theta d\theta Y_l^{m*}(\theta,\varphi) \psi(r,\theta,\varphi)$$
 (95)

如果比较一下(94)与(89),我们就会发现, $c_{k,l,m}$ 就是 $a_{l,m}(r)$ 按 $\mathbf{R}_{k,l}(r)$ 展开的级数中的系数

$$a_{l,m}(r) = \sum_{l} c_{k,l,m} R_{k,l}(r)$$
 (96)

考虑到(90)与(95), 上式中的

$$c_{k,l,m} = \int_0^\infty r^2 dr R_{k,l}^* a_{l,m}(r)$$
 (97)

利用(86)(96), 还可以得到

$$\int_{0}^{\infty} r^{2} dr |a_{l,m}(r)|^{2} = \sum_{l} |c_{k,l,m}|^{2}$$
(98)

于是,我们可以将概率 $\mathscr{P}_{\boldsymbol{L}^2,L_z}(l,m)$ 写成

$$\mathscr{P}_{L^{2},L_{z}}(l,m) = \int_{0}^{\infty} r^{2} dr |a_{l,m}(r)|^{2}$$
(99)

如同在(92)和(93)中一样,我们可以得到

$$\mathscr{P}_{L^2}(l) = \sum_{m=-l}^{+l} \int_0^\infty r^2 dr |a_{l,m}(r)|^2$$
 (100)

以及

$$\mathscr{P}_{L_z}(m) = \sum_{l \geqslant |m|} \int_0^\infty r^2 dr |a_{l,m}(r)|^2$$
 (101)

因而,为了求得关于测量 L^2 和 L_z 的物理预言,只需将波函数看做仅仅是 θ 和 φ 的函数而将他按球谐函数展开,如(94); 然后利用公式(99)(100)(101)计算。

和上面的讨论相似,由于 L_z 只对 φ 起作用,所以在 $\mathcal{P}_{L_z}(m)$ 的计算中重要的波函数 $\psi(r)$ 对 φ 的依赖关系。为了说明这点,我们利用球谐函数的一个特点,即他是只含 θ 的函数与只含 φ 的函数的乘积,为使乘积中的每一个波函数都是归一化的,我们将此乘积写成下列形式

$$Y_l^m(\theta,\varphi) = Z_l^m(\theta) \frac{e^{im\varphi}}{\sqrt{2\pi}}$$
 (102)

实际上我们有

$$\int_0^{2\pi} d\varphi \frac{e^{-im\varphi}}{\sqrt{2\pi}} \frac{e^{im'\varphi}}{\sqrt{2\pi}} = \delta_{mm'}$$
 (103)

再将这个公式代入球谐函数的正交归一关系式(73),便看得到

$$\int_{0}^{\pi} \sin\theta d\theta Z_{l}^{m*}(\theta) Z_{l'}^{m}(\theta) = \delta_{ll'}$$
(104)

如果将 $\psi(r,\theta,\varphi)$ 看作 φ 的函数,定义在 $[0,2\pi]$ 区间上,而将 r 和 θ 看作参变量,就可以将这个函数展开为傅里叶级数

$$\psi(r,\theta,\varphi) = \sum_{m} b_{m}(r,\theta) \frac{e^{im\varphi}}{\sqrt{2\pi}}$$
 (105)

此式中的系数可由下列公式算出

$$b_m(r,\theta) = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} d\varphi e^{-im\varphi} \psi(r,\theta,\varphi)$$
 (106)

如果将(105)(106)与(94)(95)做一比较,我们就可看出,对于 m 的一个确定值, $a_{l,m}(r)$ 就是 $b_m(r,\theta)$ 按函数族 \mathbf{Z}_l^m 展开的级数中的系数

$$b_m(r,\theta) = \sum_{l} a_{l,m}(r) Z_l^m$$
(107)

其中

$$a_{l,m}(r) = \int_0^{\pi} \sin\theta d\theta Z_l^{m*} b_m(r,\theta)$$
 (108)

考虑到(104),可以从展开式(107)推出

$$\int_0^{\pi} \sin\theta d\theta |b_m(r,\theta)|^2 = \sum_l |a_{l,m}(r)|^2$$
(109)

将这个公式代入(101), 便得到 $\mathcal{P}_{L_z}(m)$

$$\mathscr{P}_{L_z}(m) = \int_0^\infty r^2 \mathrm{d}r \int_0^\pi \sin\theta \mathrm{d}\theta |b_m(r,\theta)|^2$$
 (110)

这就是说,对于只测量 L_z 的情况而言,为了计算得到各种可能结果的概率,我们只需将波函数看作是只依赖于 φ 的函数,并将他如(105)那样展为傅里叶级数。

3.2.2 特殊情况

我们假设表示粒子的态的波函数 $\psi(\mathbf{r})$ 是两个函数的乘积,其中一个只是 \mathbf{r} 的函数,另一个是 θ 和 φ 的函数

$$\psi(r,\theta,\varphi) = f(r)g(\theta,\varphi) \tag{111}$$

我们总可以假设 f(r) 与 $g(\theta,\varphi)$ 都已分别归一化

$$\int_0^\infty r^2 \mathrm{d}r |f(r)|^2 = 1 \tag{112a}$$

$$\int_0^{2\pi} d\varphi \int_0^{\pi} \sin\theta d\theta |g(\theta,\varphi)|^2 = 1$$
 (112b)

为了得到这样一个波函数的展开式(94),我们只需将 $g(\theta,\varphi)$ 按球谐函数展开

$$g(\theta, \varphi) = \sum_{l} \sum_{m} d_{l,m} Y_{l}^{m}(\theta, \varphi)$$
(113)

其中

$$d_{l,m} = \int_0^{2\pi} d\varphi \int_0^{\pi} \sin\theta d\theta Y_l^{m*}(\theta, \varphi) g(\theta, \varphi)$$
 (114)

由此可见,这种情况下,公式(94)中的系数 $a_{l,m}(r)$ 都与 f(r) 成比例

$$a_{l,m}(r) = d_{l,m}f(r) \tag{115}$$

考虑到(112a), 概率 $\mathcal{P}_{\mathbf{L}^2,L_z}(l,m)$ 的表达式(99), 现在简化为

$$\mathscr{P}_{L^2, L_z}(l, m) = |d_{l, m}|^2 \tag{116}$$

这个概率与波函数的径向部分 f(r) 完全无关。

与上面情况相似,我们再来看波函数为三个单元函数之积的情况

$$\psi(r,\theta,\varphi) = f(r)h(\theta)k(\varphi) \tag{117}$$

我们假设这三个函数都已经分别归一化

$$\int_0^\infty r^2 \mathrm{d}r |f(r)|^2 = \int_0^\pi \sin\theta \mathrm{d}\theta |h(\theta)|^2 = \int_0^{2\pi} \mathrm{d}\varphi |k(\varphi)|^2 = 1 \tag{118}$$

如果我们只关心 L_z 的测量,那么,只需将 $k(\varphi)$ 展开:

$$k(\varphi) = \sum_{m} e_{m} \frac{e^{\mathrm{i}m\varphi}}{\sqrt{2\pi}} \tag{119}$$

其中

$$e_m = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} d\varphi e^{-im\varphi} k(\varphi)$$
 (120)

这样就能得到与(105)相当的公式,不过现在的

$$b_m(r,\theta) = e_m f(r)h(\theta) \tag{121}$$

根据(110)利用(118), 便得到

$$\mathscr{P}_{L_z}(m) = |e_m|^2 \tag{122}$$