Reg/DFA/NFA (1)

- (DFA) $M=(Q,\Sigma,\delta,q_0,F),\,\delta:Q\times\Sigma\to Q$
- (NFA) $M=(Q,\Sigma,\delta,q_0,F),\,\delta:Q\times\Sigma_{\varepsilon}\to\mathcal{P}(Q)$
- (GNFA) $(Q, \Sigma, \delta, q_0, q_{\mathrm{a}})$, $\delta: (Q \setminus \{q_{\mathrm{a}}\}) \times (Q \setminus \{q_{\mathrm{start}}\} \longrightarrow \mathcal{R}$ (where $\mathcal{R} = \{ \mathrm{all\ regex\ over\ } \Sigma \}$)
- GNFA accepts $w \in \Sigma^*$ if $w = w_1 \cdots w_k$, where $w_i \in \Sigma^*$ and there exists a sequence of states q_0, q_1, \ldots, q_k s.t. $q_0 = q_{\text{start}}, \, q_k = q_{\text{a}}$ and for each i, we have $w_i \in L(R_i)$, where $R_i = \delta(q_{i-1}, q_i)$.
- (DFA-to-GNFA) $G=(Q',\Sigma,\delta',s,a), \quad Q'=Q\cup\{s,a\},$ $\delta'(s,\varepsilon)=q_0, \quad \text{For each } q\in F,\,\delta'(q,\varepsilon)=a,$
- **(P.L.)** If A is a regular lang., then $\exists p$ s.t. every string $s \in A$, $|s| \ge p$, can be written as s = xyz, satisfying the following:
 - $\forall i \geq 0, xy^iz \in A$
 - |y| > 0
 - $|xy| \leq p$

- Every NFA can be converted to an equivalent one that has a single accept state.
- (regular grammar) $G=(V,\Sigma,R,S)$. Rules: $A\to aB,\,A\to a$ or $S\to \varepsilon.$ $(A,B,S\in V)$ and $a\in \Sigma$).

	NReg	Reg	CFL	TD	TR
$L_1 \cup L_2$		✓	✓	✓	✓
$L_1\cap L_2$		✓	X	✓	✓
\overline{L}	✓	✓	X	✓	×
$L_1 \cdot L_2$		✓	✓	✓	✓
L^*		✓	✓	✓	✓
$L^{\mathcal{R}}$		✓	✓	✓	✓
$L\cap R$		✓	✓	✓	✓

CFG (2)

- (CFG) $G=(\begin{subarray}{c} V,\sum_{\rm n.t.},R,S). \end{subarray}$ Rules: $A\to w.$ (where $A\in V$ and $w\in (V\cup \Sigma)^*$).
 - A derivation of w is a leftmost derivation if at every step the leftmost remaining variable is the one replaced.
 - w is derived ambiguously in G if it has at least two different l.m. derivations.
 - G is ambiguous if it generates at least one string ambiguously.
 - A CFG is ambiguous iff it generates some string with two different parse trees.
- (**P.L.**) If L is a CFL, then $\exists p$ s.t. any string $s \in L$ with $|s| \geq p$ can be written as s = uvxyz, where:
 - $\forall i \geq 0, uv^i x y^i z \in L$
 - $|vxy| \leq p$
 - |vy| > 0
- (CNF) $A \to BC$, $A \to a$, or $S \to \varepsilon$, (where $A, B, C \in V$, $a \in \Sigma$, and $B, C \neq S$).
 - If G is a CFG in CNF, and $w \in L(G)$, then $|w| \leq 2^{|h|} 1$, where h is the height of the parse tree for w.
 - Every CFL is generated by a CFG in CNF.
- L is CFL if it is generated by some CFG.
 - A CFL is inherently ambiguous if all CFGs that generate

- it are ambiguous.
- Every CFL is generated by a CFG in CNF.
- Every regular lang. is CFL.
- (derivation) $S\Rightarrow u_1\Rightarrow u_2\Rightarrow \cdots \Rightarrow u_n=w$, where each u_i is in $(V\cup \Sigma)^*$. (in this case, G generates w (or S derives w), $S\stackrel{*}{\Rightarrow} w$)
- **(PDA)** $M=(Q,\sum\limits_{\mathsf{input}},\prod\limits_{\mathsf{stack}},\delta,q_0\in Q, F_{\mathsf{accepts}}\subseteq Q)$. (where Q,Σ,Γ,F finite). $\delta:Q\times\Sigma_{\varepsilon}\times\Gamma_{\varepsilon}\longrightarrow\mathcal{P}(Q\times\Gamma_{\varepsilon})$.
- M accepts $w\in \Sigma^*$ if there is a seq. $r_0,r_1,\ldots,r_m\in Q$ and $s_0,,s_1,\ldots,s_m\in \Gamma^*$ s.t.:
 - $ullet r_0=q_0 ext{ and } s_0=arepsilon$
 - For $i=0,1,\ldots,m-1$, we have $(r_i,b)\in\delta(r_i,w_{i+1},a)$, where $s_i=at$ and $s_{i+1}=bt$ for some $a,b\in\Gamma_{\varepsilon}$ and $t\in\Gamma^*$.
 - $ullet r_m \in F$
- A PDA can be represented using a state diagram, where each transition is labeled by the notation " $a,b\to c$ " to denote that the PDA:
 - Reads a from the input (or read nothing if $a = \varepsilon$)
 - Pops b from the stack (or pops nothing if $b = \varepsilon$)
 - Pushes c onto the stack (or pushes nothing if $c=\varepsilon$)
- (CSG) $G=(V,\Sigma,R,S).$ Rules: $S \to \varepsilon$ or $\alpha A \beta \to \alpha \gamma \beta$ where:
 - $\alpha, \beta \in (V \cup \Sigma \setminus \{S\})^*$
 - $\gamma \in (V \cup \Sigma \setminus \{S\})^+$
 - $\bullet \quad A \in V$

TM (3), Decidability (4)

- (TM) $M=(Q,\sum\limits_{\text{input}}\subseteq\Gamma,\prod\limits_{\text{tape}},\delta,q_0,q_{\text{accept}},q_{\text{reject}})$, where $\sqcup\in\Gamma$ (blank), $\sqcup\not\in\Sigma,\ q_{\text{reject}}\not=q_{\text{accept}}$, and $\delta:Q\times\Gamma\longrightarrow Q\times\Gamma\times\{\mathrm{L},\mathrm{R}\}$
- (unrec.) $\overline{A_{TM}}$, $\overline{EQ_{\mathsf{TM}}}$, EQ_{CFG} , $\overline{HALT_{\mathsf{TM}}}$, REGULAR_{TM} = $\{M$ is a TM and L(M) is regular $\}$, E_{TM} , $EQ_{\mathsf{TM}} = \{M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$
- (rec.) accepts if $w \in L$, rejects/loops if $w \notin L$.
 - There exists some languages that are not rec.
 - (co-TR) if its complement is rec.
 - · Every inf. rec. lang. has an inf. dec. subset.
 - (rec. but not undec) A_{TM} , $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that halts on } w \}$,

 $D = \{p \mid p \text{ is an int. poly. with an int. root}\}, \overline{EQ_{\mathsf{CFG}}}, \overline{E_{\mathsf{TM}}}$

- (dec.) accepts if $w \in L$, rejects if $w \notin L$.
 - $A_{\rm DFA},\,A_{\rm NFA},\,A_{\rm REX},\,E_{\rm DFA},\,EQ_{\rm DFA},\,A_{\rm CFG},\,E_{\rm CFG},$ every CFL, every finite lang., $A_{\rm LBA},\,ALL_{\rm DFA},\,A\varepsilon_{\rm CFG},$
- L is dec. \iff L is rec. $\land L$ is co-TR \iff \exists TM decides L.
- (decider) TM that halts on all inputs.
- (Rice) Let P be a lang. of TM desc., such that (i) P is nontrivial (not empty and not all TM desc.) and (ii) for each two TM M_1 and M_2 , we have

 $L(M_1)=L(M_2) \implies (\langle M_1 \rangle \in P \iff \langle M_2 \rangle \in P).$ Then P is undecidable.

Reducibility (5)

• $f: \Sigma^* \to \Sigma^*$ is **computable** if there exists a TM M s.t. for every $w \in \Sigma^*$, M halts on w and outputs f(w) on its tape.

• A is **m. reducible** B (denoted by $A \leq_{\mathrm{m}} B$), if there is a comp. func. $f: \Sigma^* \to \Sigma^*$ s.t. for every w, we have

- $w \in A \iff f(w) \in B$. (Such f is called the **m. reduction** from A to B.)
- (5.22) If $A \leq_{\mathrm{m}} B$ and B is dec., then A is dec.
- (5.23) If $A \leq_{\mathrm{m}} B$ and A is undec., then B is undec.
- (5.28) If $A \leq_{\mathrm{m}} B$ and B is rec., then A is rec.
- (5.29) If $A \leq_{\mathrm{m}} B$ and A is not rec., then B is not rec.
- (e5.6) If $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} C$, then $A \leq_{\mathrm{m}} C$.

Complexity (7)

- ((Run. time) decider M is a f(n)-time TM.) $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the max. num. of steps that DTM (or NTM) M takes on any n-length input (and any branch of any n-length input. resp.).
- TIME $(t(n)) = \{L \mid L \text{ is dec. by an } O(t(n))\text{-time DTM}\}.$
- $\mathsf{NTIME}(t(n)) = \{L \mid L \text{ is dec. by an } O(t(n)) \text{-time NTM} \}.$
- $P = \bigcup_{k \in \mathbb{N}} \mathsf{TIME}(n^k)$
- (verifier for L) TM V s.t. $L = \{w \mid \exists c : V(\langle w, c \rangle) = \mathsf{accept}\}.$
 - (certificate for $w \in L$) str. c s.t. $V(\langle w, c \rangle) = \mathsf{accept}.$
- ullet NP $=igcup_{k\in\mathbb{N}}$ NTIME (n^k) (i.e. lang. decidable by a PT NTM).
- NP = $\{L \mid L \text{ is decidable by a PT verifier}\}.$
- $\mathbf{P} \subset \mathbf{NP}$
- CLIQUE = $\{\langle G, k \rangle \mid G \text{ is an undir. g. with a k-clique} \}$.
- $\bullet \quad \text{SUBSET-SUM} = \{ \langle S, k \rangle \mid S \text{ is a m. set of int.} \land \exists \, T \subseteq S : \sum_{x \in T} x = k \}.$
- $f: \Sigma^* \to \Sigma^*$ is **PT computable** if there exists a PT TM M s.t. for

- every $w \in \Sigma^*$, M halts with f(w) on its tape.
- A is **PT (mapping) reducible** to B, denoted $A \leq_P B$, if there exists a PT computable func. $f: \Sigma^* \to \Sigma^*$ s.t. for every $w \in \Sigma^*$, $w \in A \iff f(w) \in B$. (in such case f is called the **PT reduction** of A to B).
 - If $A \leq_P B$ and $B \in P$, then $A \in P$.
 - If $A \leq_P B$ and $B \leq_P A$, then A and B are **PT equivalent**, denoted $A \equiv_P B$.
 - \equiv_P is an equivalence relation on NP.
 - $P \setminus \{\emptyset, \Sigma^*\}$ is an equivalence class of \equiv_P .
- *B* is **NP-complete** if $B \in NP$, and, $\forall A \in NP$, $A \leq_P B$.
 - (examples) CLIQUE, SUBSET-SUM, SAT, 3SAT, VERTEX-COVER, HAMPATH, UHAMATH.
- If $B \in \mathrm{NP}\text{-complete}$ and $B \in \mathrm{P}$, then $\mathrm{P} = \mathrm{NP}.$
- If $B \in \text{NP-complete}$ and $C \in \text{NP}$ s.t. $B \leq_P C$, then $C \in \text{NP-complete}$.
- $\quad \hbox{ If } P=NP, \hbox{ then } NP\hbox{-complete}=P=NP. \\$