HOMEWORK 13 MATH 104, SECTION 6

- (1) Let (a_n) and (b_n) be two sequences of real numbers satisfying:
 - The partial sums of (b_n) is bounded: there exists L > 0 such that $|b_1 + \cdots + b_k| < L$ for any k,
 - $\lim a_n = 0$,
 - $\sum |a_n a_{n+1}|$ converges.

Prove that for any $k \in \mathbb{N}$, the series $\sum a_n b_n^k$ is convergent. (Hint: Try the same idea as in HW6, Problem 4.)

- (2) Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that $\lim_{x\to 0} f(x) = 0$ and $\lim_{x\to 0} \frac{f(2x) f(x)}{x} = 0$. Prove that $\lim_{x\to 0} \frac{f(x)}{x} = 0$. (Hint: Try to estimate $\frac{f(x) - f(x/2^n)}{x}$.)
- (3) Recall that a collection of functions (f_n) on X is called *uniformly equicontinuous* on X if for any $\epsilon > 0$, there exists $\delta > 0$ such that for any n, we have

$$|x - y| < \delta \implies |f_n(x) - f_n(y)| < \epsilon.$$

Find all the functions $f: \mathbb{R} \to \mathbb{R}$ satisfy the following conditions, and justify your answer:

- $f: \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} .
- The collection of functions $(f_n)_{n\in\mathbb{N}}$ is uniformly equicontinuous on \mathbb{R} , where $f_n\colon \mathbb{R}\to\mathbb{R}$ is defined by $f_n(x)\coloneqq f(nx)$.
- (4) (a) Prove that the equation $x = \cos x$ has a unique root $x \in \mathbb{R}$.
 - (b) Define a sequence of real numbers (a_n) as follows: Let a_1 be any real number satisfying $0 < a_1 \le 1$. Then define a_n recursively via

$$a_{n+1} := \cos(a_n).$$

Prove that the sequence (a_n) is convergent.

- (c) Define a sequence (a_n) as in (b). Prove that the series $\sum a_n$ is divergent.
- (5) Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that for any $r \in \mathbb{R}$, we have

$$\lim_{n \to \infty} f(\frac{r}{n}) = 0.$$

Prove or disprove: $\lim_{x\to 0} f(x) = 0$.

(6) Let (p_n) be a sequence of polynomials defined over real numbers, and let $f: \mathbb{R} \to \mathbb{R}$ be a real-valued function. Suppose that (p_n) converges uniformly to f on \mathbb{R} . Prove that f is also a polynomial.

- (7) Let f and g be continuous functions on [a,b] that are differentiable on (a,b). Suppose that f(a)=f(b)=0. Prove that there exists $x\in(a,b)$ such that g'(x)f(x)+f'(x)=0.
- (8) Let f, g, h be continuous functions on [a, b] that are differentiable on (a, b). Consider

$$F(x) = \det \begin{pmatrix} f(x) & g(x) & h(x) \\ f(a) & g(a) & h(a) \\ f(b) & g(b) & h(b) \end{pmatrix}.$$

- (a) Prove that F is also continuous on [a, b] and differentiable on (a, b).
- (b) Prove that there exists $x_0 \in (a, b)$ such that $F'(x_0) = 0$.
- (c) Prove the following generalization of mean value theorem: If f and g are continuous functions on [a,b] that are differentiable on (a,b), then there exists $c \in (a,b)$ such that

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).$$

(9) Consider the function $f: [0,1] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational, or } x = 0, \\ \frac{1}{q} & \text{if } x \in \mathbb{Q} \text{ and } x = \frac{p}{q} \text{ where } p, q > 0, \text{ gcd } (p, q) = 1. \end{cases}$$

Prove that f is integrable on [0,1], and compute $\int_0^1 f(x)dx$.

(10) Let F be an ordered field that contains the rational numbers \mathbb{Q} , where $0 \in \mathbb{Q} \subset F$ is the additive identity in F and $1 \in \mathbb{Q} \subset F$ is the multiplicative identity of F. There is a standard distance function on F:

$$d_{\mathrm{std}}(x,y) \coloneqq |x-y|_F,$$

where $|\cdot|_F$ is the absolute value on F. This gives a metric space structure on F.

- (a) Prove that $\mathbb Q$ is a dense subset of F if and only if for any $x,y\in F$ such that x< y, there exists $q\in \mathbb Q$ such that x< q< y. (Recall that $E\subset X$ is dense if $\overline E=X$.)
- (b) Suppose that \mathbb{Q} is dense in F. Moreover, assume that any Cauchy sequence of rational numbers has a limit in F. Prove that F has the least upper bound property, i.e. any nonempty subset $S \subset F$ that is bounded above has the least upper bound. (Hint: You can try to construct two sequences of rational numbers (p_n) and (q_n) that converge to the same element in F, where each p_n is an upper bound of S and each q_n is not an upper bound of S. Then prove that the limit is the least upper bound of S.)