Rentabilidade de Títulos

Gestão de Títulos de Renda Fixa

André Catalão

Objetivos

- Conceitos de rentabilidade:
 - Yield-to-Maturity (YTM);
 - Método de Newton-Raphson para determinar YTM
 - Retorno Total;
 - Retorno Corrente;
- Exemplo em planilha

Yield-to-Maturity (YTM)

- Seja um título de n fluxos F_i (i=1...,n), em geral pagando cupons C, a uma frequência conhecida (semestral, anual, etc.) e que tem Notional (ou Principal) N;
- Dado seu preço P, o YTM (y) é a taxa, constante, que desconta todos os seus fluxos: $P = \frac{F_1}{(1+y)^{T_1}} + ... + \frac{F_n}{(1+y)^{T_n}}$

• O conceito pressupõe reinvestimento dos fluxos à essa taxa (YTM)

Yield-to-Maturity (YTM)

Fluxo Reinvestimento
$$F_1 F_1 \times (1+y)^{T_n-T_1}$$

$$F_2 F_2 \times (1+y)^{T_n-T_2}$$

$$\vdots \vdots$$

$$F_n F_n$$

$$R = \frac{F_1 \times (1+y)^{T_n - T_1} + F_2 \times (1+y)^{T_n - T_2} + \dots + F_n}{P} = \frac{F_1 \times (1+y)^{T_n - T_1} + F_2 \times (1+y)^{T_n - T_2} + \dots + F_n}{P}$$

$$(1+y)^{T_n} \frac{F_1 \times (1+y)^{-T_1} + F_2 \times (1+y)^{-T_2} + \dots + F_n \times (1+y)^{-T_n}}{P} =$$

$$(1+y)^{T_n}$$

Yield-to-Maturity (YTM)

- Ao se investir num título há os riscos de (i) variação de taxa, e o investidor ter que vender o título a um preço mais baixo que o adquirido e de (ii) reinvestimento, onde, ao receber cada fluxo, o investidor está sujeito à variabilidade de taxas;
- Logo, o conceito de YTM pode não ser realista, mas, mesmo assim, trata-se de uma taxa média;

Yield-to-Maturity (YTM): Relação com Preço do Título

Yield-to-Maturity (YTM): Método de Newton-Raphson

- Dado o preço, como achar o YTM?
- Definamos a função (P é o preço, conhecido)

$$f(y) = P - \left(\frac{F_1}{(1+y)^{T_1}} + \dots + \frac{F_n}{(1+y)^{T_n}}\right)$$

• Se acharmos sua raiz, ou seja, se encontrarmos o valor \bar{y} tal que $f(\bar{y}) = 0$:

$$f(\bar{y}) \equiv P - \left(\frac{F_1}{(1+\bar{y})^{T_1}} + \dots + \frac{F_n}{(1+\bar{y})^{T_n}}\right) = 0$$

, teremos a igualdade entre preço e soma dos fluxos descontados;

• O método de Newton-Raphson em 1 dimensão permite achar numérica e localmente a raiz de uma equação;

Newton-Raphson: ideia geométrica

Newton-Raphson

• Equação de reta tangente em um ponto x_0 da função f(x):

$$y \equiv f(x) = f(x_0) + f'(x_0) \times (x - x_0)$$

• Onde a derivada em x_0 pode ser calculada numericamente:

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

• O ponto x_1 da reta, que cruza o eixo das abscissas, satisfaz $f(x_1) = 0$:

$$f(x_1) = 0 = f(x_0) + f'(x_0) \times (x_1 - x_0)$$

• Assim, o novo ponto é:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Newton-Raphson

Repetindo o procedimento:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

• Na prática, o procedimento deve ser repetido até que a diferença entre o ponto seguinte proposto e o ponto atual seja menor que um número arbitrátio ε :

$$|x_{n+1} - x_n| < \varepsilon$$

Yield-to-Maturity e Newton Raphson

 No cálculo do YTM, a derivada a função pode ser calculada numericamente ou analiticamente. Neste caso,

$$f'(y_0) \equiv \frac{df(y_0)}{dy} = \frac{1}{1+y_0} \left(\frac{T_1 \cdot F_1}{(1+y_0)^{T_1}} + \dots + \frac{T_n \cdot F_n}{(1+y_0)^{T_n}} \right)$$

Exemplo

Um título que paga cupom a cada 6 meses vence daqui a 1 ano. Seu cupom semestral é de C=10%~a.a. e o valor de face é de N=100. Calcule o YTM para um preço de mercado de $P_{alvo}=R\$103$.

• Ver a resolução em (2)

Exercício

• Resolva o exemplo anterior com preço 102. Usar erro de aproximação de preço $< 10^{-5}$.

Retorno Total

- Representa a taxa de retorno de fato;
- De forma simples, quando não houver a inclusão de outras premissas (imposto, taxas extras, etc), trata-se de aplicar o reinvestimento à uma curva de juros, diferentemente do conceito YTM;
- Conhecendo cada fator forward f_{ij} entre os períodos $T_i < T_j$ de pagamento do título $f_{ij} = f_j/f_i$

os reinvestimentos podem ser calculados:

Fluxo	Reinvestimento
F_1	$F_1 \times f_{1n}$
F_2	$F_2 \times f_{2n}$
:	÷
Fn	F_n

Retorno Total

• O retorno total seria dada por comparação com preço de mercado:

$$R = \frac{F_1 \times f_{1n} + F_2 \times f_{2n} + \dots + F_n}{P}$$

$$\equiv (1 + y_{TR})^{T_n}$$

• y_{TR} é um formato de taxa, para comparação com outras medidas, como o YTM, no período até o vencimento.

Retorno Corrente

- É o retorno determinado pelo fluxo intermediário, $F_{i < n}$, sobre o preço pago;
- No caso de um título que só paga cupons fixos,

$$R = \frac{F_{i < n}}{P} = \frac{C \times freq \times N}{P}$$

Referências

- 1. Fabozzi (Bibliografia do curso);
- 2. Catalão, "Rentabilidade de Títulos". Notas de aula;
- 3. Wikipedia, "Método de Newton-Raphson".