Jour 15: logarithme et aire

On considère la fonction f définie sur]0; $+\infty[$ par

$$f(x) = 1 + x \ln x.$$

On note \mathcal{C}_f sa courbe représentative dans un repère orthogonal (O; I, J) Toutes les aires considérées dans ce problème seront exprimées en unités d'aire.

Partie A

Le but de cette partie est de déterminer un encadrement de l'aire $\mathscr A$ du domaine délimité par l'axe des abscisses, la courbe $\mathscr C_f$, et les deux droites d'équations x=1 et x=2.

On note M et N les points de \mathscr{C}_f d'abscisses respectives 1 et 2, P et Q leurs projetés orthogonaux respectifs sur l'axe des abscisses. La figure est donnée en annexe.

- **1. a.** Montrer que f est positive sur [1; 2].
 - **b.** Montrer que le coefficient directeur de la droite (MN) est 2ln2.
 - c. Soit E le point d'abscisse $\frac{4}{e}$.

 Montrer que, sur l'intervalle [1; 2], le point E est l'unique point de \mathscr{C}_f en lequel la tangente à \mathscr{C}_f est parallèle à (MN).
 - **d.** On appelle T la tangente à \mathcal{C}_f au point E. Montrer qu'une équation de T est : $y = (2 \ln 2)x - \frac{4}{e} + 1$.
 - **e.** Démontrer que \mathscr{C}_f est toujours située au dessus de T sur [1; 2]
- **2.** Soient M' et N' les points d'abscisses respectives 1 et 2 de la droite T. On admet que la courbe \mathscr{C}_f reste sous la droite (MN) sur l'intervalle [1; 2] et que les points M' et N' ont des ordonnées strictement positives.
 - a. Calculer les aires des trapèzes MNQP et M'N'QP.
 - **b.** En déduire, à l'aide de la calculatrice, un encadrement de $\mathscr A$ d'amplitude 10^{-1} .

Partie B

Le but de cette partie est de déterminer la valeur exacte de \mathcal{A} .

- 1. À l'aide d'une intégration par parties, calculer $\int_1^2 x \ln x \, dx$.
- 2. En déduire la valeur exacte de A.

