

Hollybush2 User Manual

Issue – 1.00

Kit Contents

You should receive the following items with you Hollybush1 development kit:

1 - Hollybush2 Board

Optional Programming Accessories

PROG2 Programming Cable Hollybush2 Programming Adapter PROG3 Programming Cable

Foreword

PLEASE READ THIS ENTIRE MANUAL BEFORE PLUGGING IN OR POWERING UP YOUR HOLLYBUSH2 BOARD. PLEASE TAKE SPECIAL NOTE OF THE WARNINGS WITHIN THIS MANUAL.

Trademarks

Spartan, ISE, EDK, Webpack, Xilinx are the registered trademarks of Xilinx Inc, San Jose, California, US.

Hollybush2 is a trademark of Enterpoint Ltd.

Contents

2
2
2
2
4
5
6
7
8
9
10
11
12
13
15
17
18
19
21
21
22
23
24
25
26
27
28
30
31
31
31

Introduction

Welcome to your Hollybush2 board. Hollybush2 is a highly featured SpartanTM-3A DSP FPGA based PC104/PC104+ processor board.

The aim of this manual is to assist in using the main features of Hollybush2. Should this manual fail to explain a feature sufficiently then our support team can be reached by email on support@enterpoint.co.uk.

Hollybush2 Function Block Diagram

Finding Your Way Around

Getting Started

Ensure that any vital data, contained within your host system, is backed up before attempting to use your Hollybush2 in any hosting system.

Your Hollybush2 normally comes in an un-programmed state so the PC104 interfaces will not operate. These interfaces will need the Spartan TM3A DSP to be configured with a design for these to operate in the normal way as PC104 interfaces. Enterpoint can supply ISA and PCI cores at extra cost if these are required.

Hollybush2 Main Features

Hollybush2 has many possible modes of operation and many possible uses in systems. Envisaged applications include one or more of the following:

- 1. Hosting Processor Board (MicroBlazeTM, 8086, Z80 or other soft IP processors implemented within FPGA)
- 2. DSP High Performance Engine.
- 3. Coprocessor Engine for biometric processing and financial modelling.
- 4. Processor Arrays.
- 5. ISA to PCI Bridge.
- 6. PCI to ISA Bridge.

The feature set supplied on the Hollybush2 is aimed at providing a complete processor solution for the embedded marketplace. The rugged PC104 Plus format enables use in challenging environments.

Hollybush2 can be stacked with other PC104 boards of either ISA or PCI varieties.

Hollybush2 can operate from a single 5V power input. This can be supplied through a 2.1mm jack or through either of the PC104 connectors.

Complimentary products including a 12-48V DC power supply will be available shortly.

FPGA

The heart of the Hollybush2 is a Xilinx XC3SD3400A Spartan3A-DSP FPGA. This device offers approximately 3.4M gates of logic capability with substantial numbers of DSP48A and SRAM blocks available as processing resource.

Hollybush2 supports one Spartan-3A 3400 device in the FG676 package. Standard builds of Hollybush2 use commercial grade devices but industrial grade parts can be fitted at extra cost.

FPGA JTAG and Configuration

Hollybush2 uses a compact 6x2 1.27mm header to provide an interface for both JTAG and SPI Flash direct programming.

An adapter from the compact header to 2x7 2mm headers (XilinxTM standard) is available.

XilinxTM ISETM tools can be used as programming software.

Our Parallel port programming cable Prog2 or our USB programming cable Prog3 can be used as a programming lead.

When used as a JTAG interface this connector has a JTAG chain consisting of a single device the XC3SD3400A.

The primary SPI Flash contains the configuration data for the FPGA. The primary SPI Flash is 128Mbits in size. Only about 12Mbits are necessary to configure the XC3SD3400A with a single bitstream. The balance of the SPI Flash can be used for multiple bitstreams and /or data or code storage.

When the 6x2 header is used for SPI Flash programming this interface will only program the primary SPI Flash. The secondary SPI Flash programming is not supported by this interface and will need logic implementation with the FPGA to affect programming.

Indirect programming of the primary SPI Flash is also possible using JTAG mode. This will need ISETM version 9.2 or later for this mode of operation.

SPI Flash

Hollybush2 has two 128 Mbit M25P128 SPI Flash memories. The primary SPI Flash is used for the FPGA configuration as previously described. The secondary SPI is totally unallocated and can be used as microprocessor code and data storage such as for a MicroBlaze TM processor. The connections between the secondary SPI Flash memory and the FPGA are shown below:

M25P128 function	M25P128 Pin	FPGA Pin
#S	1	L22
Q	2	L23
D	5	L20
С	6	L18

DDR2 DRAM

Hollybush2 has one DDR2 bank consisting of 2 devices (DDR_A and DDR_B). The memory devices used are MT47H32M16 or a similar alternative. The address and control lines are shared so that the devices operate as a single x32 memory bank. The pin assignments are shown below:

DDR Function	DDR Pin	FPGA	DDR Function	DDR Pin	FPGA
DQ0 (DDR_A)	G8	Y6	A0	M8	K3
DQ1 (DDR_A)	G2	V8	A1	M3	L3
DQ2 (DDR_A)	Н7	AB1	A2	M7	L4
DQ3 (DDR_A)	НЗ	AC1	A3	N2	M7
DQ4 (DDR_A)	H1	Y5	A4	N8	M8
DQ5 (DDR_A)	Н9	U9	A5	N3	M3
DQ6 (DDR_A)	F1	U7	A6	N7	M4
DQ7 (DDR_A)	F9	U8	A7	P2	M6
DQ8 (DDR_A)	C8	AA2	A8	P8	M5
DQ9 (DDR_A)	C2	T7	A9	P3	N4
DQ10 (DDR_A)	D7	Y1	A10	M2	N5
DQ11 (DDR_A)	D3	Y2	A11	P7	N2
DQ12 (DDR_A)	D1	U6	A12	R2	N1
DQ13 (DDR_A)	D9	AA3	A13	R8	N7
DQ14 (DDR_A)	B1	U5	A14	R3	M1
DQ15 (DDR_A)	B9	V5	A15	R7	M2
DQ16 (DDR_B)	G8	V1	UDQS (DDR_A)	B7	W3
DQ17 (DDR_B)	G2	R5	#UDQS (DDR_A)	A8	W4
DQ18 (DDR_B)	Н7	R8	LDQS (DDR_A)	F7	V7
DQ19 (DDR_B)	НЗ	U2	#LDQS (DDR_A)	E8	V6
DQ20 (DDR_B)	H1	P8	UDQS (DDR_B)	B7	R3
DQ21 (DDR_B)	Н9	P9	#UDQS (DDR_B)	A8	R4
DQ22 (DDR_B)	F1	R7	LDQS (DDR_B)	F7	T5
DQ23 (DDR_B)	F9	R6	#LDQS (DDR_B)	E8	U4
DQ24 (DDR_B)	C8	R2	ODT	K9	K6
DQ25 (DDR_B)	C2	P7	LDM (DDR_A)	F3	V2
DQ26 (DDR_B)	D7	P3	UDM (DDR_A)	B3	U1
DQ27 (DDR_B)	D3	T4	LDM (DDR_B)	F3	P10
DQ28 (DDR_B)	D1	P6	UDM (DDR_B)	B3	N6
DQ29 (DDR_B)	D9	Т3	BA0	L2	K5
DQ30 (DDR_B)	B1	N9	BA1	L3	K2
DQ31 (DDR_B)	B9	P4	CKE	K2	K4
#CS	L8	M10	CLK (DDR_A)	Ј8	AD1
#RAS	K7	M9	#CLK (DDR_A)	K8	AD2
#CAS	L7	J5	CLK (DDR_B)	Ј8	AC2
#WE	K3	J4	#CLK (DDR_B)	K8	AC3
DQS_LOOP_IN	NONE	Т9	DQS_LOOP_OUT	NONE	T10
#DDR_RESET_IN	NONE	H2			

DIP Switches

There are two 4 bit DIP switches available, SW1 and SW2. These are mounted on the underside of the PCB.

SWITCH	BIT	FPGA PIN	SWITCH	ELEMENT	FPGA PIN
1	1	V26	2	1	P21
1	2	U26	2	2	N23
1	3	R24	2	3	N25
1	4	R23	2	4	N26

Clocks

There is a 7x5mm fixed oscillator on Hollybush2 of normally 32 MHz. It is connected to pin J14 of the FPGA.

The Real Time Clock 32.768KHz output is connected to the FPGA at pin C18.

There is also a Cypress CY22394 clock generator capable of generating three single ended clocks and one differential clock which all which are connected to FPGA. The clock generator is controlled by SPI interface. The connections between the Clock Generator and the FPGA are shown below:

CY22394 Function	CY22394FXI Pin	FPGA Pin
CLK C	1	B14
P-CLK (Differential Clock –ve)	7	V11
P+ CLK (Differential Clock +ve)	8	U11
CLKB	9	B13
CLKA	10	C13
SDAT	12	AE26
SCLK	13	C17
S2/SUSPEND	15	F17
SHUTDOWN/OE	16	C23

There is also a 25MHz oscillator. It is connected to the Ethernet and SATA controller only.

PC104 Interface

Hollybush2 supports both ISA and PCI connectors of the PC104+ standard. FPGA IP to control these interfaces is necessary for either or both to operate. Enterpoint can supply ISA and PCI FPGA cores at extra cost. Either or both of these interfaces can be used in non-standard ways when not used as PC104 standard interfaces, for example as low latency links or even star connections using LVDS. These structures can be advantageous in systems where bus negotiation could cause latency issues.

Hollybush2 can act as a master or slave card on either ISA, or PCI PC104 interfaces. Use and mode of the ISA interface is normally independent of the PCI interface. Similarly the PCI interface can be used totally independently of the ISA interface. It is also possible to operate these interfaces in a bridge function between ISA and PCI and in either direction subject to suitable IP implementation in the FPGA design.

The signals on both the PC104 interfaces are connected to the FPGA via bus switches.

The location of pins A1, B1, C1 and D1 are marked on the board near the PCI 104 connector (4x30 way) as are the locations of pins A1, B1, C0, D0, A32, B32, C19 and D19 of the PC104 connector.

ISA connections:

1571 Comic	outons.						
B1	DGND	A1	AE3				
B2	AF3	A2	AE4				
В3	VD5V	A3	AF4				
B4	AF5	A4	AD6				
B5	NC	A5	AC6				
B6	AE6	A6	AD7				
B7	NC	A7	AB7				
B8	AD11	A8	AC8				
B9	NC	A9	AE7	C0	DGND	D0	DGND
B10	AF8	A10	AB9	C1	AE8	D1	Y9
B11	W10	A11	W9	C2	Y10	D2	AC9
B12	AB12	A12	Y12	C3	AC12	D3	V10
B13	AF13	A13	AE13	C4	AF12	D4	W13
B14	AA13	A14	W12	C5	V13	D5	AE12
B15	Y13	A15	AF14	C6	Y14	D6	V14
B16	AC14	A16	AD15	C7	AD14	D7	AE14
B17	Y15	A17	W15	C8	AC15	D8	AE15
B18	V16	A18	U16	C9	U15	D9	V15
B19	AE17	A19	V17	C10	AC16	D10	AB16
B20	AB18	A20	AF18	C11	Y20	D11	W17
B21	AC20	A21	AF19	C12	AE19	D12	AE18
B22	AA17	A22	AD21	C13	AD20	D13	AE20

B23	AB23	A23	AA22	C14	AC19	D14	Y17
B24	AC21	A24	AF20	C15	AD19	D15	AF23
B25	AD22	A25	AC22	C16	AE21	D16	VD5V
B26	AE23	A26	AD17	C17	AC23	D17	AA23
B27	AF25	A27	AB24	C18	AA24	D18	DGND
B28	AA25	A28	AD25	C19	AE25	D19	DGND
B29	VD5V	A29	AD26				
B30	Y25	A30	AC26				
B31	DGND	A31	AC25				
B32	DGND	A32	DGND				

PCI Connections:

r Ci Colli	iccuons.						
A1	DGND	B1	NC	C1	VD5V	D1	C7
A2	VIO	B2	J16	C2	C5	D2	VD5V
A3	F7	В3	DGND	C3	C6	D3	D6
A4	G8	B4	E7	C4	DGND	D4	B2
A5	DGND	B5	H9	C5	F8	D5	DGND
A6	D9	В6	VIO	C6	D8	D6	G 9
A7	D10	В7	E10	C7	DGND	D7	G10
A8	VD3V3	B8	A4	C8	F12	D8	VD3V3
A9	C11	В9	DGND	C9	NC	D9	C8
A10	DGND	B10	A9	C10	VD3V3	D10	NC
A11	H10	B11	VD3V3	C11	K11	D11	DGND
A12	VD3V3	B12	F14	C12	DGND	D12	K12
A13	J11	B13	DGND	C13	F15	D13	VD3V3
A14	DGND	B14	F13	C14	VD3V3	D14	C12
A15	G12	B15	VD3V3	C15	J12	D15	DGND
A16	A14	B16	H12	C16	DGND	D16	D13
A17	VD3V3	B17	C15	C17	E14	D17	VD3V3
A18	D16	B18	DGND	C18	C16	D18	G15
A19	F19	B19	J20	C19	VIO	D19	D17
A20	DGND	B20	F20	C20	E17	D20	DGND
A21	C21	B21	VD5V	C21	D20	D21	C20
A22	VD5V	B22	E21	C22	DGND	D22	G17
A23	G20	B23	DGND	C23	D21	D23	VIO
A24	DGND	B24	D22	C24	VD5V	D24	C22
A25	F22	B25	VIO	C25	G21	D25	DGND
A26	VD5V	B26	C25	C26	DGND	D26	D23
A27	C26	B27	VD5V	C27	J22	D27	DGND
A28	DGND	B28	F23	C28	VD5V	D28	G22
A29	NC	B29	F24	C29	G23	D29	D26
A30	NC	B30	F25	C30	G24	D30	DGND
	•			1			•

Local PCI

A local PCI segment wires SATA, Ethernet and USB Host controllers. The FPGA with a suitable PCI core acts as master and arbiter to this internal PCI segment. The connections to the FPGA are shown below:

Signal Name	FPGA pin	ISP1561BM pin	SIL3512ECTU128 pin	LU82551ER pin
AD0	W21	84	1	N7
AD1	Y21	82	128	M7
AD2	Y24	81	127	P6
AD3	Y23	79	126	P5
AD4	V25	78	125	N5
AD5	AA14	77	124	M5
AD6	AA18	75	121	P4
AD7	V22	74	120	N4
AD8	V18	71	118	P3
AD9	V19	70	117	N3
AD10	V21	68	115	N2
AD11	U21	67	114	M1
AD12	W20	66	111	M2
AD13	U18	64	110	M3
AD14	U23	63	109	L1
AD15	V24	62	108	L2
AD16	T24	46	95	K1
AD17	M18	44	94	E3
AD18	M26	43	93	D1
AD19	L17	42	90	D2
AD20	K26	40	89	D3
AD21	M21	39	88	C1
AD22	K21	38	87	B1
AD23	J23	36	86	B2
AD24	N21	32	83	B4
AD25	P20	31	82	A5
AD26	N24	30	79	B5
AD27	R25	28	78	В6
AD28	P23	27	77	C6
AD29	P25	26	74	C7
AD30	K22	24	73	A8
AD31	K20	23	72	B8
CBE0	W23	72	119	M4
CBE1	U20	60	105	L3
CBE2	M25	47	96	F3
CBE3	L24	34	84	C4
PAR	T20	59	104	J1
SERR	M24	58	103	A2
PERR	U22	56	99	J2
STOP	V23	54	100	H1
DEVSEL	U19	52	101	Н3

TRDY	T17	51	102	G3
IRDY	T18	50	98	F1
FRAME	Y22	48	97	F2
IDSEL0	K25			A4
IDSEL1	U24		85	
IDSEL2	M22	35		
REQ0	M19			C3
REQ1	R19		72	
REQ2	M20	22		
GNT0	R26			J3
GNT1	R22		70	
GNT2	M23	20		
RST	N19	18	68	C2
INTA0	P26			H2
INTA1	R18		67	
INTA2	K19	16		
CLK	N18	19	69	G1

SATA Interface

Hollybush2 implements a twin SATA interface using a Silicon Image SIL3512. This chip is connected to the FPGA over a local PCI bus within Hollybush2. To make fully use of this interface will require a PCI core implementation within the FPGA design. The pin assignments between the SIL3512 and the FPGA are shown above (see 'Local PCI').

The SIL3512 is capable of supporting SATA-I interfaces.

The connections between the SATA connectors and the SIL3512 device are shown below:

SAT	SATA CONNECTORS			SIL3512		
connector	pin	signal	pin	signal		
1	2	TXP1	20	SATA_TXP1		
1	3	TXN1	19	SATA_TXN1		
1	5	RXN1	15	SATA_RXN1		
1	6	RXP1	14	SATA_RXP1		
2	2	TXP2	11	SATA_TXP2		
2	3	TXN2	10	SATA_TXN2		
2	5	RXN2	6	SATA_RXN2		
2	6	RXP2	5	SATA_RXP2		

The SATA pins not listed above are connected to DGND.

Ethernet Interface

Hollybush2 has an Intel LU82551ER combined Ethernet MAC and PHY on board. This interface supports 10T/100T interfaces through an RJ45 jack. The LU82551ER is accessed through the local PCI segment and therefore needs a PCI core implementation within the FPGA. The pin assignments between the LU82551 and the FPGA are shown above (see 'Local PCI').

USB Host Interface

A NXP ISP1561BM USB Host Controller supports two 480 Mbit/s interfaces. This controller is supported with MIC2026 power switches and controlled over the local PCI segment. Use of these interfaces will require the implementation of a PCI core within the FPGA design. The pin assignments between the ISP1561 and the FPGA are shown above (see 'Local PCI').

The USB signals are accessible on two $4 \times 2 \times 0.1$ inch headers. The connections between the ISP1561 and these headers are shown below. The presence of the output signals and 'Link present' signals are indicated by LEDs, also shown below:

Signal	Head	der	Isp1561	LED
OUT4/OC1	USB1	1	89	D2
DP1	USB 1	2	103	
DM1	USB 1	3	102	
DM2	USB 1	6	109	
DP2	USB 1	7	110	
OUT3/OC2	USB 1	8	96	D5
OUT2/OC3	USB 2	1	105	D8
DP3	USB 2	2	117	
DM3	USB 2	3	116	
DM4	USB 2	6	122	
DP4	USB 2	7	123	
OUT1/OC4	USB 2	8	119	D10
GL1	-	-	91	D4
GL2	-	-	98	D7
GL3	_	-	112	D9
GL4	-	-	125	D11

Real Time Clock

A Maxim (Dallas) DS1306 Real Time Clock chip provides a timekeeping facility on Hollybush2. It can be battery backed to maintain time when the Hollybush2 is unpowered. A battery holder is located on the back of the Hollybush2 and can support a CR1220 type battery. The RTC also has a small RAM area that can be used as a data store.

Signal	DS1306 Pin	FPGA PIN
SDI	15	B17
#INT1	8	B21
#INTO	7	B20
32KHZ	18	C18
SDO	16	B18
SCLK	14	B19
CE	12	B15

EEprom

A 16Kbit EEprom type 24C16 is available for data storage on Hollybush2.

EEPROM PIN	FPGA PIN
SDA	D24
SCL	E26
WP	E24

PS2 Interfaces

Hollybush2 supports a twin PS2 interface. It is available on a 12x1 connector and a break out cable to PS2 connectors is available at extra cost. It is also possible to use this interface as a general I/O port. The function and usage is entirely dependent on the FPGA design feature support. These signals connect to the FPGA via bus switches and are 5v tolerant.

PS2 connector	FPGA PIN
PIN 1	E15
PIN 2	G13
PIN 3	Wired to 5V
PIN 4	Wired to 0V
PIN 5	В3
PIN 6	B4
PIN 7	D18
PIN8	K14
PIN 9	Wired to 5V
PIN 10	Wired to 0V
PIN 11	K16
PIN 12	H17

The PS2 connector is situated just above the 4x30 PCI connector as shown below:

RS485 Interface

Hollyush2 supports four half duplex, non-isolated, RS485 channels. A termination site is available for each driver/receiver pair and is normally left unpopulated. Each channel is implemented by an SN65HVD11QD Transceiver, each of which has the signals shown below:

Channel	Signal	FPGA Pin	Signal	Connector pin
1	Data	G19	A	1
	Transmit/Receive	J21	В	2
2	Data	D11	A	5
	Transmit/Receive	P22	В	4
3	Data	J25	A	7
	Transmit/Receive	J26	В	6
4	Data	A3	A	9
	Transmit/Receive	Н6	В	8

The RS485 connector is a 2 x 5 x 0.1 inch header.

RS232 Interface

Hollybush2 supports an RS232 implementation with hardware handshaking. The board terminates in a 5x2 header and an optional cable and D-Type assembly is available. The device used is a MAX323EIPWR, which has the following pin assignments:

FPGA Pin	Signal	Max323	Function	Max323	Signal	Connector
		pin		pin		
R21	DIN1	24	DCD	5	DOUT1	1
K18	DIN2	23	RI	6	DOUT2	9
N17	DIN3	22	RXD	7	DOUT3	2
T23	DIN4	19	CTS	10	DOUT4	8
N20	DIN5	17	DSR	12	DOUT5	6
R17	ROUT1	21	TXD	8	RIN1	3
Y26	ROUT2	20	RTS	9	RIN2	7
P18	ROUT3	18	DTR	11	RIN3	4

VGA

A simple VGA implementation is supported on Hollybush2 by a 2 X 5 X 0.1inch shrouded header connector and simple filters. To operate as a VGA port it requires FPGA logic that suitably modulates the VGA control and data signals.

Signal	FPGA pin	Connector pin
RED	AA10	1
NC		2
GREEN	AF10	3
NC		4
BLUE	V12	5
DGND		6
HSynch	AE10	7
DGND		8
VSynch	E12	9
DGND		10

ZIF Connector

On the back of the Hollybush2 there is a 10 pin Zero Insertion Force (ZIF) Connector with 4 General Purpose IOs routed to it from the FPGA. One possible use for this is to connect a keyboard to the Hollybush2. The connections to the FPGA are:

ZIF Connector	FPGA
1	K23
2	DGND
3	K24
4	DGND
5	H24
6	DGND
7	H26
8	DGND
9	3.3v
10	5V

Power Inputs and Power Supplies

Hollybush2 uses the 5V input from the PC104+, PCI104 or 5v Power Jack socket to generate other on-board voltages. **DO NOT EXCEED 5V. The MIC22600 regulators will not withstand input voltages higher than 5.5v. Please ensure your 5V supply will not overshoot.**

Two MIC22600 regulator devices are used to supply 3.3v for VCCAUX within the SpartanTM-3A and 1.2V for the core voltage VCCINT. £v3 is also used as the IO voltage for banks 0, 1 and 2.

The Power supply to the DDR2 SDRAM (Bank 3) is 1.8V. This is derived from the 5v rail by an Empirion EP538QI regulator. The reference voltage for the DDR2 is 0.9V which is derived from the 1.8V supply by an LP2996 regulator.

WARNING – THE REGULATORS CAN GET VERY HOT IN NORMAL OPERATION ALONG WITH THE BOARDS THERMAL RELIEF. PLEASE DO NOT TOUCH OR PLACE HIGHLY FLAMABLE MATERIALS NEAR THESE DEVICES WHILST THE HOLLYBUSH2 BOARD IS IN OPERATION.

There are 2 jumpers fitted on the board just above the 4 x 30 way PCI connector:

J3 links the 3.3V supply from the regulator to the rest of the board. It should normally be fitted.

J2 is used to select the IO voltage supplied to the PCI header (pins A2, B6,C19, D23 and B25). This can be selected as either 3.3v or 5v. The image above shows the jumper fitted in the left position, which selects 3.3v. If 5v is required the jumper should be moved to the right hand side.

Programming Hollybush2

The programming of the FPGA and SPI Flash parts on Hollybush2 is achieved using the JTAG interface. Principally it is anticipated that a JTAG connection will be used in conjunction with Xilinx ISE software although other alternatives do exist including self re-programming. The Spartan-6 series needs to be programmed using ISE 9.2 or higher. Versions of ISE prior to 9.2 do not support Spartan-3A. The free Webpack version of the Xilinx tools can be used to program the Hollybush2.

There is a single JTAG chain on Hollybush2. The JTAG chain allows the programming of the Spartan-3A and SPI Flash device.

Using iMPACT Boundary Scan the JTAG chain appears like this:

Right click device to select operations

Hollybush2 JTAG CHAIN.

1. Programming the FPGA directly.

Direct JTAG programming of the Spartan-6 FPGA is volatile and the FPGA will lose its configuration every time the board power is cycled. For sustained use of an FPGA design programming the design into the Flash memory is recommended (see 2 and 3 below). Direct JTAG programming using .bit files is useful for fast, temporary programming during development of FPGA programs. Right click the icon representing the Spartan-6 FPGA and choose 'Assign New Configuration File'. Navigate to your .bit file and choose 'OPEN'. The next dialogue box will offer to add a flash memory and you should decline. Right click the icon representing the Spartan-3A FPGA and choose 'Program'. On the next dialogue box ensure that the 'Verify' box is not checked. (If it is you should uncheck it, failure to do this will result in error messages being displayed). Click OK. The Spartan-3A will program. This process is very quick (typically one second)

2. Programming the SPI flash memory using Boundary Scan.

Once the SPI Flash memory has been programmed, the Spartan-3A device will automatically load from the Flash memory at power up. Generation of suitable Flash memory files (.mcs) can be achieved using ISE iMPACT's Prom File Formatter.

Right click on the icon representing the Spartan-3A and choose 'Add SPI/BPI Flash' Navigate to your programming file (.mcs) and click OPEN. Use the next dialogue box to select SPI flash and M25P128. (Data width should be set to 1 on higher versions of iMPACT). The flash memory should appear as shown below.

Right click on the icon representing the flash memory and choose 'program' to load your program into the device. It is recommended that options to 'Verify' and 'Erase before programming' are chosen. Otherwise all defaults can be accepted. The programming operation will take some time (at least 3 or 4 minutes)

Mechanical Information

HB2 side view

The height of Hollybush2 depends upon the style of connectors fitted. Typically the height measured from the lower surface of the PCB to the top of the Ethernet socket is approximately 12mm. The length of the pins measured from the top surface of the PCB is approximately 12.5mm.

Medical and Safety Critical Use

Hollybush2 boards are not authorised for the use in, or use in the design of, medical or other safety critical systems without the express written person of the Board of Enterpoint. If such use is allowed the said use will be entirely the responsibility of the user. Enterpoint Ltd accepts no liability for any failure or defect of the Hollybush2 board, or its design, when it is used in any medical or safety critical application.

Warranty

Hollybush2 comes with a 90 return to base warranty.

Other specialised warranty programs can be offered to users of multiple Enterpoint products. Please contact sales on <u>boardsales@enterpoint.co.uk</u> if you are interested in these types of warranty,

Support

Enterpoint offers support during normal United Kingdom working hours 9.00am to 5.00pm. Please examine our Hollybush2 FAQ web page and the contents of this manual before raising a support query. We can be contacted as follows:

Telephone - +44 (0) 121 288 3945 Email - <u>support@enterpoint.co.uk</u>