$$\sum_{(x_1, x_2, x_3)} \sum_{(x_1, x_3)} \sum_{(x_1, x_4)} \sum_{(x_1, x_4)}$$

b) ν_1,ν_2,ν_3 sono linearmente dipendenti, ma ν_3 non è multiplo scalare di ν_1 né di $\nu_2.$

$$\lambda_{1} (\lambda_{1} + \lambda_{1} \lambda_{1}) = \lambda_{1} \text{ i.v. Breagen}$$

$$\lambda_{2} (\lambda_{1} + \lambda_{2} \lambda_{2}) = \lambda_{2} (\lambda_{2} \lambda_{3}) = \lambda_{2} (\lambda_{1} \lambda_{3})$$

Esercizio 1	Fare Gauss per il rango, creare il sistema (prendo le x in comune e le tratto come libere), isolo le x, sostituisco le x trovate nel vettore X, eseguo $X \cdot v = 0$,
Feercizio 2	sostituisco nuovamente e poi costruisco il vettore det di una 2×2 a caso, se det $\neq 0$ allora $rk(A) \ge$
Bsercizio 3	 A in comune alle 3x 3 sono quelle che rek(A)=3; Se A è una matrice nilpotente (ossia esiste un intero positivo n tale che Aⁿ = 0) allora det A = 0 → Nilpotente non invertibile allora det A = 0 Se A è una matrice matrice, allora A² è simmetrica → M simmetrica se M = M^T → M^T · M^T = (M · M)^T ⇒ M = M^T, sostituisci M con A² Sia A ∈ M3,2(®) di rango 2, allora il sistema lineare AX = B ammetre soluzioni comunque si scelga la matrice B dei termini noti. → Se si sceglie B t.c rk(A B) = 3 allora il sistema è impossibile (non ammetre soluzioni) per Rouché-Capelli (∞²-3) A³ - A = I₂ → A(A² - I) = I ⇒ (A² - I) = A⁻¹ quindi AA⁻¹ = I (A è invertibile) A³ - A = 0 → A(A² - I) = 0 ⇒ A = 0, A² - I = 0 ⇒ A = 0, A² - I = (1 / 2 / 3) + A = (1 / 3 / 3) + A = (1
Bsercizio 4	 I vettori v₁,, v_n sono base di R^N se rk(M) = N con M = (v₁ v_n) (M matrice composta dai vettori) Base ortogonale di v, w: (det(R₂R₃)) , R_i sono le righe dei vettori. v, w devono essere ortogonali Dipendenza lineare: αv₁ + βv₂ + + kv_n = 0 oppure la matrice composta dai vettori non ha rango N Indipendenza lineare: αv₁ + βv₂ + + kv_n = 0 → α = β = 0 oppure la matrice composta dai vettori ha rango N v₃ = (x₃)/(x₃) è multiplo scalare di v₁ = (x₁)/(x₁) se (x₁)/(x₁)/(x₁) se (x₁)/(x₁) se (x₁)/(x₁)/(x₁) se (x₁)/(x₁)/(x₁) se (x₁)/(x₁)/(x₁) se (x₁)/(x₁)/(x₁) se (x₁)/(x₁)/(x₁) se (x₁)/(x₁)/(x₁) se (x₁)/(x
	V: v = /
	• Gauss: $R_i = R_i + \left(\frac{-a_{ij}}{a_{jj}}\right) \cdot R_j$ • Rouché-Capelli: $\infty \# incognite - rk(A)$
	• A invertibile se det $A \neq 0$, $\det(A^{-1}) = \frac{1}{\det A}$
	$ullet$ A non invertibile se $A^N=0$
	di due matrici d gonale è simmetr
	 Teorema di Binët: det(AB) = det A · det B Calcolo matrice inversa: scriviamo (M I), eseguiamo Gauss (da entrambe le parti), gli elementi sopra il pivot li poniamo tutti a 0 (sempre alla Gauss dal basso verso l'alto), otteniamo (I M⁻¹)
	• Prodotto scalare: $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \cdot \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = x_1 x_2 + y_1 y_2 + z_1 z_2$
	• $AX = B$ ammette soluzioni se $\operatorname{rk}(A B) = \operatorname{rk}(A)$

Ш	Ш	$\sqrt{225} = 15$	Ш	Ш	Ш
$\sqrt{16} = 4$	$\sqrt{81} = 9$	$\sqrt{196} = 14$	$\sqrt{361} = 19$	$\sqrt{576} = 24$	$\sqrt{841} = 29$
$\sqrt{9} = 3$	$\sqrt{64} = 8$	$\sqrt{169} = 13$	$\sqrt{324} = 18$	$\sqrt{529} = 23$	$\sqrt{784} = 28$
$\sqrt{4}=2$	$\sqrt{49} = 7$	$\sqrt{144} = 12$	$\sqrt{289} = 17$	$\sqrt{484} = 22$	$\sqrt{729} = 27$
$\sqrt{1} = 1$	$\sqrt{36} = 6$	$\sqrt{121} = 11$	$\sqrt{256} = 16$	$\sqrt{441} = 21$	$\sqrt{676} = 26$