сколько угодно большое положительное число: б) на интервале $(-\infty, +\infty)$?

Исследовать на равномерную непрерывность в заданных областях следующие функцин:

794.
$$f(x) = \frac{x}{4 - x^3}$$
 $(-1 \le x \le 1)$.
795. $f(x) = \ln x$ $(0 < x < 1)$.
796. $f(x) = \frac{\sin x}{x}$ $(0 < x < \pi)$.
797. $f(x) = e^x \cos \frac{1}{x}$ $(0 < x < 1)$.
798. $f(x) = \arctan x$ $(-\infty < x < +\infty)$.
799. $f(x) = \sqrt{x}$ $(1 \le x < +\infty)$.

799.
$$f(x) = \sqrt{x}$$
 $(1 \le x < +\infty)$.
800. $f(x) = x \sin x$ $(0 \le x < +\infty)$.

800.
$$f(x) = x \sin x$$
 $(0 \le x < +\infty)$

801. Показать, что функция $f(x) = \frac{|\sin x|}{|\cos x|}$ равномерно непрерывна на каждом интервале

$$J_1 = (-1 < x < 0) \text{ H } J_2 = (0 < x < 1)$$

по отдельности, но не является равномерно непрерывной на их сумме

$$J_1 + J_2 = \{0 < |x| < 1\}.$$

801.1. Доказать, что если функция f(x) равномерно непрерывна на каждом из сегментов [a, c] и [c, b], то эта функция является равномерно непрерывной на сум-**Map** Hom cermente [a, b].

802. Для $\varepsilon > 0$ найти $\delta = \delta$ (ε) (какое-нибуды), удовлетворяющее условиям равномерной непрерывности для функции f(x) на данном промежутке, если:

a)
$$f(x) = 5x - 3$$
 $(-\infty < x < +\infty)$;
b) $f(x) = x^2 - 2x - 1$ $(-2 \le x \le 5)$.
a) $f(x) = \frac{1}{x}$ $(0, 1 \le x \le 1)$;
c) $f(x) = \sqrt{x}$ $(0 \le x < +\infty)$;
d) $f(x) = 2 \sin x - \cos x$ $(-\infty < x < +\infty)$;

e)
$$f(x) = x \sin \frac{1}{x} (x \neq 0)$$
 $\mu f(0) = 0$ $(0 \le x \le \pi)$.