PATVIRTINTA

Nacionalinio egzaminų centro direktoriaus 2017 m. birželio 26 d. įsakymu Nr. (1.3.)-V1-86

2017 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA

Pakartotinė sesija

I dalis

Užd. Nr.	1	2	3	4	5	6	7	8	9	10
Ats.	В	В	C	D	C	C	В	D	D	В

II dalis

11.	35
12.1.	4,25 m (arba 4,25)
12.2.	$\sqrt{19}$ m (arba $\sqrt{19}$)
13.1.	6x-2
13.2.	$\cos x - x \sin x$
14.1.	8
14.2.	-1
15.1.	15°
15.2.	90°
15.3.	$\frac{1}{4}$ (arba 0,25)
16.	$\frac{7}{32}$ (arba 0,21875)
17.	12

[©] Nacionalinis egzaminų centras, 2017

III dalis

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
18.		4	
18.1.		2	
	I būdas $1 - \frac{2}{5} = \frac{3}{5}$,	1	Už apskaičiuotą teisingą tikimybę, kad bus išimta mėlyna kaladėlė.
	$65 \cdot \frac{3}{5} = 39.$ Ats.: 39.	1	Už gautą teisingą atsakymą.
	II būdas $65 \cdot \frac{2}{5} = 26,$	1	Už gautą teisingą raudonų kaladėlių skaičių.
	65 – 26 = 39. Ats.: 39.	1	Už gautą teisingą atsakymą.
18.2.		2	
	I būdas $P(A) = \frac{39}{65} \cdot \frac{26}{64} + \frac{26}{65} \cdot \frac{39}{64} = \frac{39}{80}.$	1	Už bent vieną teisingai užrašytą sandaugą.
	Ats.: $\frac{39}{80}$ (arba 0,4875).	1	Už gautą teisingą atsakymą.
	$\frac{\textbf{II b\bar{u}das}}{2 \cdot 39 \cdot 26} = \frac{2 \cdot 39 \cdot 26}{A_{65}^2} =$	1	Už teisingą skaitiklį arba vardiklį.
	$= \frac{39}{80}.$ Ats.: $\frac{39}{80}$ (arba 0,4875).	1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
19.		5	
19.1.	$V(x) = x(10-2x)^2 = 4x^3 - 40x^2 + 100x$	1	Už teisingą įrodymą.
19.2.	$10-2x = x,$ $x = \frac{10}{3}.$ Ats.: $\frac{10}{3}$ (arba $3\frac{1}{3}$).	1	Už gautą teisingą atsakymą.
19.3.		3	
	$V'(x) = 12x^2 - 80x + 100,$	1	Už teisingą išvestinę.
	$3x^{2} - 20x + 25 = 0,$ $x = \frac{5}{3} \text{ arba } x = 5.$	1	Už apskaičiuotas teisingas <i>x</i> reikšmes.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	Už teisingą pagrindimą, kad kai $x = \frac{5}{3}$, tai V reikšmė yra didžiausia.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
20.		7	
20.1.	−26 .	1	Už gautą teisingą atsakymą.
20.2.		2	
	$3^{a^2-1}=27,$	1	Už sudarytą teisingą lygtį.
	$3^{a^2-1} = 3^3$, $a^2 - 1 = 3$, a = -2 arba $a = 2$. Ats.: -2 arba 2.	1	Už gautą teisingą atsakymą.
20.3.		2	
	$f'(x) = 2\ln 3 \cdot 3^{x^2 - 1} \cdot x.$	1	Už teisingą išvestinės išraišką.
	Ats.: $f'(1) = 2 \ln 3$.	1	Už teisingą atsakymą.
20.4.		2	
	$g(f(x)) = \log_9 3^{x^2 - 1} =$	1	Už teisingai užrašytą sudėtinę funkciją.
	$= \frac{\log_3 3^{x^2 - 1}}{\log_3 9} = \frac{1}{2} (x^2 - 1).$		
	Ats.: $g(f(x)) = \frac{x^2 - 1}{2} = \frac{1}{2}x^2 - \frac{1}{2}$ (arba $\frac{x^2}{2} - \frac{1}{2}$).	1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
21.		4	
21.1.	6600 · 1,1 = 7260. Ats.: 7260 eurų.	1	Už gautą teisingą atsakymą.
21.2.	6600 : 1,1 = 6000. Ats.: 6000 eurų.	1	Už gautą teisingą atsakymą.
21.3.		2	
	I būdas $S_5 = \frac{6000(1,1^5 - 1)}{1,1 - 1} =$	1	Už pasirinktą teisingą sprendimo būdą.
	= 36630,6. <i>Ats.</i> : 36631 eurų.	1	Už gautą teisingą atsakymą.
	II būdas 6000 + 6600 + 7260 + 7986 + 8784,6 = 36630,6.	1	Už pasirinktą teisingą sprendimo būdą.
	Ats.: 36631 eurų.	1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
22.		4	
22.1.		2	
	$S_{ABCD} = AD \cdot CD \cdot \sin CDA,$ $10\sqrt{3} = 4 \cdot 5 \cdot \sin CDA,$	1	Už sudarytą teisingą lygtį.
	$\sin CDA = \frac{\sqrt{3}}{2},$ $\angle CDA = 60^{\circ}.$ $Ats.: 60^{\circ}.$	1	Už gautą teisingą atsakymą.
22.2.		2	
	$V_{SABCD} = \frac{1}{3} S_{ABCD} \cdot SD,$ $2\sqrt{3} = \frac{1}{3} \cdot 10\sqrt{3} \cdot SD,$	1	Už sudarytą teisingą lygtį.
	$SD = 0.6.$ Ats.: 0.6 arba $\frac{3}{5}$.	1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
23.	-	6	
23.1.		2	
	$\sin^2 \alpha + \cos^2 \alpha = 1,$ $\cos^2 \alpha = \frac{35}{36},$	1	Už teisingą cos² α reikšmę.
	$\cos \alpha = -\frac{\sqrt{35}}{6}, \text{ nes } \alpha \in (90^\circ; 180^\circ).$ $Ats.: -\frac{\sqrt{35}}{6}.$	1	Už gautą teisingą atsakymą.
23.2.	$\cos \alpha = -0.7 (\text{arba} - \frac{7}{10})$	1	Už gautą teisingą atsakymą.
23.3.		3	
	$ \begin{cases} \frac{m+1}{m} > -1, \\ \frac{m+1}{m} < 0. \end{cases} $ $ \begin{cases} \frac{2m+1}{m} > 0, \\ \frac{m+1}{m} < 0. \end{cases} $	1	Už teisingai sudarytą nelygybių sistemą.
	$\begin{cases} (2m+1)m > 0, \\ (m+1)m < 0. \end{cases}$	1	Už teisingai pasirinktą nelygybių sistemos sprendimo būdą.
	$Ats.: \left(-1; -\frac{1}{2}\right).$	1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
24.	·	4	
24.1.		2	
	$f'(x) = -\frac{1}{x^2},$ $f'(2) = -\frac{1}{4},$	1	Už gautą teisingą funkcijos išvestinės reikšmę taške $\left(2; \frac{1}{2}\right)$.
	$y = -\frac{1}{4}(x-2) + \frac{1}{2},$ $y = -\frac{1}{4}x + 1.$ $Ats.: y = -\frac{1}{4}x + 1.$	1	Už gautą teisingą atsakymą.
24.2.		2	
	$\begin{cases} f(1+a) + b = 0, \\ f(-1+a) + b = \frac{2}{3}. \end{cases}$ $\begin{cases} \frac{1}{1+a} + b = 0, \\ \frac{1}{-1+a} + b = \frac{2}{3}. \end{cases}$	1	Už teisingai sudarytą sistemą.
	Ats.: $a = 2$, $b = -\frac{1}{3}$.	1	Už teisingai gautas <i>a</i> ir <i>b</i> reikšmes.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
25.		4	
25.1.	$\Delta MCD = \Delta ACB$ pagal dvi kraštines ir kampą tarp jų. Pakaks įrodyti, kad trikampiai ABC ir ANK yra panašieji: $\angle ACB = \angle NKA = 90^{\circ};$ $\angle ANK = 90^{\circ} - \angle NAK = 90^{\circ} - (180^{\circ} - 90^{\circ} \angle BAC) = \angle BAC.$	1	Už teisingą įrodymą.
25.2.		3	
	I būdas $NK = NA\cos ANK = MC\cos ANK = MD\cos^2 CMD$, $FE = BF\sin FBE = CD\sin FBE = MD\sin^2 CMD$,	2	Po vieną tašką už teisingai užrašytas <i>NK</i> ir <i>FE</i> per <i>MD</i> .
	$NK + FE = MD(\cos^2 CMD + \sin^2 CMD) = MD.$	1	Už gautą teisingą lygybę $NK + FE = MD$.
	II būdas $\frac{MD}{NA} = \frac{MC}{NK} \Rightarrow NK = \frac{NA \cdot MC}{MD} = \frac{MC^2}{MD},$ $\frac{MD}{BF} = \frac{CD}{FE} \Rightarrow FE = \frac{BF \cdot CD}{MD} = \frac{CD^2}{MD},$ $NK + FE = \frac{MC^2 + CD^2}{MD} = \frac{MD^2}{MD} = MD.$	2	Po vieną tašką už teisingai užrašytas <i>NK</i> ir <i>FE</i> . Už gautą teisingą lygybę <i>NK</i> + <i>FE</i> = <i>MD</i> .

Pastaba. Gali būti ir kitokie sprendimo būdai, pvz.:

Iš taško C nuleiskime statmenį CG į AB. Tada $\Delta ACG = \Delta AKN$, AG = NK;

 $\Delta BCG = \Delta BEF$, GB = FE; Tada

AG+GB=NK+FE=AB=MD.

- Už teisingus samprotavimus (įrodymus), bet nevedančius prie išvadų 1 taškas.
- Už teisingą (nepriekaištingą) įrodymą 2 taškai.