The bird's-eye view (BEV) perception framework tackles the challenge of achieving a unified representation across multi-sensor inputs and complex environments. The table below highlights leading industry players whose research efforts have been inspired by advancements in BEV perception. The data is accurate as of March 2023.

Institution	Related Work		
1 NVIDIA, USA	M^2BEV: Multi-Camera Joint 3D Detection and Segmentation with Unified Bird's-Eye View Representation, 22.04		
2 Qualcomm, USA	X-Align: Cross-Modal Cross-View Alignment for Bird's-Eye-View		
	Segmentation, 22.10, WACV		
3 Bosch, Germany	SemanticBEVFusion: Rethink LiDAR-Camera Fusion in Unified Bird's-Eye		
	View Representation For 3D Object Detection, 22.12		
4 Valeo, France	LaRa: Latents and Rays for Multi-Camera Bird's-Eye-View Semantic		
	Segmentation, 22.06, CORL		
5 Motional, USA	3M3D: Multi-view, Multi-path, Multi-representation for 3D Object		
	Detection, 23.02		
	Surround-View Vision-based 3D Detection for Autonomous Driving: A		
	Survey, 23.02		
	Vision-RADAR fusion for Robotics BEV Detections: A Survey, 23.02		
6 Volvo, Sverige	F2BEV: Bird's Eye View Generation from Surround-View Fisheye		
	Camera Images for Automated Driving, 23.03		
7 華為	Towards Domain Generalization for Multi-view 3D Object Detection in		
	Bird-Eye-View, 23.03, CVPR		
8 地平線	MapTR: Structured Modeling and Learning for Online Vectorized HD		
	Map Construction, 22.08, ICLR		
	Vision-based Uneven BEV Representation Learning with Polar		
	Rasterization and Surface Estimation, 22.07, CORL		
	Multi-Camera Calibration Free BEV Representation for 3D Object		
	Detection, 22.10,		
	Sparse4D: Multi-view 3D Object Detection with Sparse		
	Spatial-Temporal Fusion, 22.11		
9 蔚來	TiG-BEV: Multi-view BEV 3D Object Detection via Target		
	Inner-Geometry Learning, 22.12		
10 大疆	UniFormer: Unified Multi-view Fusion Transformer for Spatial-Temporal		
	Representation in Bird's-Eye-View, 22.07		
11 滴滴	FusionMotion: Multi-Sensor Asynchronous Fusion for Continuous		
	Occupancy Prediction via Neural-ODE, 23.02		
	Consistency of Implicit and Explicit Features Matters for Monocular 3D		
	Object Detection, 22.07		
	Contour Context: Abstract Structural Distribution for 3D LiDAR Loc		
	Detection and Metric Pose Estimation, 23.02		
12 毫末智行	BEV-Lanedet: Fast Lane Detection on BEV Ground, 22.10		
13 鑒智機器人	BEVDet: High-Performance Multi-Camera 3D Object Detection in		

	Bird-Eye-View, 22.06				
	BEVDet4D: Exploit Temporal Cues in Multi-camera 3D Object				
	Detection, 22.06				
	BEVerse: Unified Perception and Prediction in Birds-Eye-View for				
	Vision-Centric Autonomous Driving, 22.05				
14 Nullmax, USA	BEVSegFormer: Bird's Eye View Semantic Segmentation From Arbitrary				
	Camera Rigs, 22.03, WACV				
	FastPillars: A Deployment-friendly Pillar-based 3D Detector, 23.02				
15 美團	AeDet: Azimuth-invariant Multi-view 3D Object Detection, 22.11				
16 阿里巴巴	BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework,				
	22.05, NeurIPS				
17 京東	JPerceiver: Joint Perception Network for Depth, Pose and Layout				
	Estimation in Driving Scenes, 22.07, ECCV				
	Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object				
	Detection, 22.05				
18 曠視	PETR: Position Embedding Transformation for Multi-View 3D Object				
	Detection, 22.03, ECCV				
	PETRv2: A Unified Framework for 3D Perception from Multi-Camera				
	Images, 22.06.				
	BEVDepth: Acquisition of Reliable Depth for Multi-view 3D Object				
	Detection, 22.06, AAAI				
	BEVStereo: Enhancing Depth Estimation in Multi-view 3D Object				
	Detection with Dynamic Temporal Stereo, 22.09				
	MatrixVT: Efficient Multi-Camera to BEV Transformation for 3D				
	Perception, 22.11				
19 商湯	DETR4D: Direct Multi-View 3D Object Detection with Sparse Attention,				
	22.12				
	Fast-BEV: Towards Real-time On-vehicle Bird's-Eye View Perception,				
	23.01, NeurlPS				
	Fast-BEV: A Fast and Strong Bird's-Eye View Perception Baseline, 23.01				
	BEVDistill: Cross-Model BEV Distillation for Multi-view 3D object				
	Detection, 22.11, ICLR				
20 輕舟智行	BEV-Locator: An End-to-end Visual Semantic Localization Network				
	Using Multi-View Images, 22.11				

Representative scholars and research teams from leading institutions who have cited the applicant's work on Bird's-Eye View Perception.

Name	Institution	Country/Region	Title
Dinesh Manocha	University of Maryland at	USA	AAAS/AAAI/ACM/IEEE/A
	College Park		NAI Fellow
Anima	California Institute of	USA	AAAI/ACM/IEEE Fellow
Anandkumar	Technology		
Kilian Q.	Cornell University	USA	AAAI/ACM Fellow
Weinberger			
Mani Srivastava	University of California, Los	USA	ACM/IEEE Fellow
	Angeles		
Jensen Huang	NVIDIA	USA	美國工程院院士
Deepak Ganesan	University of	USA	ACM Fellow
	Massachusetts Amherst		
Henrik I.	University of California San	USA	IEEE Fellow
Christensen	Diego		
Jenq-Neng Hwang	University of Washington	USA	IEEE Fellow
Ming C. Wu	University of California,	USA	IEEE/OSA Fellow
	Berkeley		
Fatih Porikli	Qualcomm	USA	IEEE Fellow
Ming-Hsuan Yang	University of California,	USA	IEEE Fellow
	Merced		
Roberto Cipolla	University of Cambridge	UK	英國工程院/科學院院
			士/IAPR Fellow
Gerhard Rigoll	Technical University of	Germany	IEEE Fellow
	Munich		
Luc Van Gool	ETH Zurich	Switzerland	ICCV 马尔奖获得者
Marc Pollefeys	ETH Zurich	Switzerland	ACM/IEEE Fellow
Markus Gross	ETH Zurich	Switzerland	ACM/EUROGRAPHICS
			Fellow
Alexander Yarovoy	Delft University of	Netherlands	IEEE Fellow
	Technology		
Max Welling	University of Amsterdam	Netherlands	CIFAR/ELLIS Fellow
Qing-Long Han	Swinburne University of	Australia	IEEE Fellow
	Technology		
Dacheng Tao	Nanyang Technological	Singapore	澳大利亞科學院院士
	University		/ACM/IEEE Fellow
James Kwok	HKUST	Hong Kong,	IEEE Fellow
		China	
Jiaya Jia	HKUST	Hong Kong,	IEEE Fellow
		China	
Ya-Qin Zhang	Tsinghua University	China	中國工程院院士
			/AAAS/IEEE Fellow

Tieniu Tan	Nanjing University	China	中國科學院院士
			/IEEE/IAPR Fellow
Fei-Yue Wang	Chinese Academy of	China	AAAS/IEEE/ASME Fellow
	Sciences		
Tao Mei	HiDream.ai	China	IEEE/IAPR/CAAI Fellow
Jun Zhu	Tsinghua University	China	AAAI/IEEE Fellow
Guo-Jun Qi	Westlake University	China	IEEE/IAPR Fellow
Yunhong Wang	Beihang University	China	IEEE/IAPR Fellow
Ce Zhu	UESTC	China	IEEE/Optica/IET/AAIA
			Fellow
Lei Zhang	International Digital	China	IEEE Fellow
	Economy Academy		
Zhisheng Niu	Tsinghua University	China	IEEE Fellow