Álgebra/Álgebra II Clase 12- Subespacios vectoriales.

FAMAF / UNC

30 de abril de 2024

Resumen

En esta clase veremos que

- o más ejemplos de subespacios,
- o combinaciones lineales de vectores,
- o vectores generadores de subespacios, y
- o Determinación implícita de un subespacio de \mathbb{K}^n a partir de generadores
- o Intersección y suma de subespacios vectoriales .

El tema de esta clase está contenido de la sección 4.2 del apunte de clase "Álgebra II / Álgebra - Notas del teórico".

Ejemplos de subespacio vectoriales

4. Sean $V=\mathbb{K}^n$ y $1\leq j\leq n$. Definimos

$$W = \{(x_1, x_2, \dots, x_n) : x_i \in \mathbb{K} \ (1 \le i \le n), x_j = 0\}.$$

Es decir W es el subconjunto de V de todas las n-tuplas con la coordenada j igual a 0. Por ejemplo si j=1

$$W = \{(0, x_2, \dots, x_n) : x_i \in \mathbb{K} \ (2 \le i \le n)\}.$$

Ejemplos de subespacio vectoriales

4. Sean $V=\mathbb{K}^n$ y $1\leq j\leq n$. Definimos

$$W = \{(x_1, x_2, \dots, x_n) : x_i \in \mathbb{K} \ (1 \le i \le n), x_j = 0\}.$$

Es decir W es el subconjunto de V de todas las n-tuplas con la coordenada j igual a 0. Por ejemplo si j=1

$$W = \{(0, x_2, \dots, x_n) : x_i \in \mathbb{K} \ (2 \le i \le n)\}.$$

Veamos que este último es un subespacio.

Si
$$(0, x_2, \ldots, x_n), (0, y_2, \ldots, y_n) \in W$$
 y $\lambda \in \mathbb{K}$, entonces

$$(0, x_2, \ldots, x_n) + \lambda(0, y_2, \ldots, y_n) = (0, x_2 + \lambda y_2, \ldots, x_n + \lambda y_n) \in W.$$

La demostración para j>1 es completamente análoga.

Es claro que: $A \in \operatorname{Sim}_n(\mathbb{K}) \Leftrightarrow [A]_{ij} = [A]_{ji} \ \forall i, j.$

Es claro que: $A \in \operatorname{Sim}_n(\mathbb{K}) \Leftrightarrow [A]_{ij} = [A]_{ji} \ \forall i, j.$

Proposición

 $A \in \mathsf{Sim}_n(\mathbb{K})$ es subespacio de $M_n(\mathbb{K})$

Es claro que: $A \in \operatorname{Sim}_n(\mathbb{K}) \Leftrightarrow [A]_{ij} = [A]_{ji} \ \forall i, j.$

Proposición

 $A \in \mathsf{Sim}_n(\mathbb{K})$ es subespacio de $M_n(\mathbb{K})$

Demostración

5. Sea $\operatorname{Sim}_n(\mathbb{K}) = \{A \in M_n(\mathbb{K}) : A^t = A\}.$

Es claro que: $A \in \operatorname{Sim}_n(\mathbb{K}) \Leftrightarrow [A]_{ij} = [A]_{ji} \ \forall i, j.$

Proposición

 $A \in \mathsf{Sim}_n(\mathbb{K})$ es subespacio de $M_n(\mathbb{K})$

Demostración

Sean $A = [a_{ij}]$, $B = [b_{ij}]$ tales que $A = A^t$ y $B = B^t$ y sea $\lambda \in \mathbb{K}$, entonces debemos verificar que: $A + \lambda B \in \operatorname{Sim}_n(\mathbb{K})$.

$$\begin{split} [(A+\lambda B)^{\mathsf{t}}]_{ij} &= [(A+\lambda B)]_{ji} &\quad \text{(definición de transpuesta)} \\ &= [A]_{ji} + \lambda [B]_{ji} &\quad \text{(def. de suma y prod. por escalar)} \\ &= [A]_{ij} + \lambda [B]_{ij} &\quad \text{(A y B simétricas)} \\ &= [A+\lambda B]_{ij} &\quad \text{(def. de suma y prod. por escalar)} \end{split}$$

Luego
$$A + \lambda B \in \operatorname{Sim}_n(\mathbb{K})$$
.

6. El conjunto $\mathbb{R}[x] = \{P(x) : P(x) \text{ es polinomio en } \mathbb{R}\}$, es subespacio de $F(\mathbb{R})$, pues $\mathbb{R}[x] \subset F(\mathbb{R})$ y las operaciones de suma y producto por un escalar son cerradas en $\mathbb{R}[x]$.

- 6. El conjunto $\mathbb{R}[x] = \{P(x) : P(x) \text{ es polinomio en } \mathbb{R}\}$, es subespacio de $F(\mathbb{R})$, pues $\mathbb{R}[x] \subset F(\mathbb{R})$ y las operaciones de suma y producto por un escalar son cerradas en $\mathbb{R}[x]$.
- 7. Sea $C(\mathbb{R})$ las funciones continuas de \mathbb{R} en \mathbb{R} . Entonces, $C(\mathbb{R})$ es subespacio de $F(\mathbb{R})$.

- 6. El conjunto $\mathbb{R}[x] = \{P(x) : P(x) \text{ es polinomio en } \mathbb{R}\}$, es subespacio de $F(\mathbb{R})$, pues $\mathbb{R}[x] \subset F(\mathbb{R})$ y las operaciones de suma y producto por un escalar son cerradas en $\mathbb{R}[x]$.
- 7. Sea $C(\mathbb{R})$ las funciones continuas de \mathbb{R} en \mathbb{R} . Entonces, $C(\mathbb{R})$ es subespacio de $F(\mathbb{R})$.

Demostración

Sean f,g funciones continuas, es decir lím $_{x\to a} f(x) = f(a)$ y lím $_{x\to a} g(x) = g(a)$, $\forall a \in \mathbb{R}$. Sea $\lambda \in \mathbb{R}$. Por las propiedades de los límites

$$\lim_{x\to a}(f+\lambda g)(x)=\lim_{x\to a}f+\lambda\lim_{x\to a}g(x)=f(a)+\lambda g(a)=(f+\lambda g)(a)$$

5 / 29

- 6. El conjunto $\mathbb{R}[x] = \{P(x) : P(x) \text{ es polinomio en } \mathbb{R}\}$, es subespacio de $F(\mathbb{R})$, pues $\mathbb{R}[x] \subset F(\mathbb{R})$ y las operaciones de suma y producto por un escalar son cerradas en $\mathbb{R}[x]$.
- 7. Sea $C(\mathbb{R})$ las funciones continuas de \mathbb{R} en \mathbb{R} . Entonces, $C(\mathbb{R})$ es subespacio de $F(\mathbb{R})$.

Demostración

Sean f,g funciones continuas, es decir lím $_{x\to a} f(x) = f(a)$ y lím $_{x\to a} g(x) = g(a)$, $\forall a \in \mathbb{R}$. Sea $\lambda \in \mathbb{R}$. Por las propiedades de los límites

$$\lim_{x\to a}(f+\lambda g)(x)=\lim_{x\to a}f+\lambda\lim_{x\to a}g(x)=f(a)+\lambda g(a)=(f+\lambda g)(a)$$

De forma análoga, el conjunto $\mathbb{R}[x]$ es subespacio de $C(\mathbb{R})$.

Combinaciones lineales

Definición

Sea V espacio vectorial sobre \mathbb{K} y v_1, \ldots, v_n vectores en V. Dado $v \in V$, diremos que v es combinación lineal de los v_1, \ldots, v_n si existen escalares $\lambda_1, \ldots, \lambda_n$ en \mathbb{K} , tal que

$$v = \lambda_1 v_1 + \cdots + \lambda_n v_n.$$

Sean $v_1=(1,0),\ v_2=(0,1)$ en \mathbb{C}^2 ¿es v=(i,2) combinación lineal de v_1,v_2 ?

Sean $v_1=(1,0)$, $v_2=(0,1)$ en \mathbb{C}^2 ¿es v=(i,2) combinación lineal de v_1,v_2 ? La respuesta es sí, pues

$$v=iv_1+2v_2.$$

Sean $v_1=(1,0)$, $v_2=(0,1)$ en \mathbb{C}^2 ¿es v=(i,2) combinación lineal de v_1,v_2 ? La respuesta es sí, pues

$$v=iv_1+2v_2.$$

Observar además que es la única combinación lineal posible, pues si

$$v = \lambda_1 v_1 + \lambda_2 v_2,$$

entonces

$$(i,2) = (\lambda_1,0) + (0,\lambda_2) = (\lambda_1,\lambda_2),$$

luego $\lambda_1 = i$ y $\lambda_2 = 2$.

Puede ocurrir que un vector sea combinación lineal de otros vectores de varias formas diferentes. Por ejemplo, si v = (i, 2) y $v_1 = (1, 0)$, $v_2 = (0, 1)$, $v_3 = (1, 1)$, tenemos que

$$u = iv_1 + 2v_2 + 0v_3,$$
 y también $u = (i-1)v_1 + v_2 + v_3.$

Puede ocurrir que un vector sea combinación lineal de otros vectores de varias formas diferentes. Por ejemplo, si v = (i, 2) y $v_1 = (1, 0)$, $v_2 = (0, 1)$, $v_3 = (1, 1)$, tenemos que

$$egin{aligned} v &= \emph{i} \emph{v}_1 + \emph{2} \emph{v}_2 + \emph{0} \emph{v}_3, & ext{y también} \ \emph{v} &= (\emph{i} - \emph{1}) \emph{v}_1 + \emph{v}_2 + \emph{v}_3. \end{aligned}$$

Ejemplo

Sean (0,1,0), (0,1,1) en \mathbb{C}^3 ¿es (1,1,0) combinación lineal de (0,1,0), (0,1,1)? La respuesta es no, pues si

$$(1,1,0)=\lambda_1(0,1,0)+\lambda_2(0,1,1)=(0,\lambda_1,0)+(0,\lambda_2,\lambda_2)=(0,\lambda_1+\lambda_2,\lambda_2),$$

luego, la primera coordenada nos dice que 1=0, lo cual es absurdo.

Demostrar que (7,5,4) es combinación lineal de los vectores (1,-5,2),(1,-1,1) y escribir la combinación lineal explícita.

Solución

Planteamos la ecuación:

$$(7,5,4) = \lambda_1(1,-5,2) + \lambda_2(1,-1,1) = (\lambda_1 + \lambda_2, -5\lambda_1 - \lambda_2, 2\lambda_1 + \lambda_2).$$

Por consiguiente, esta ecuación se resuelve con el siguiente sistema de ecuaciones

$$\lambda_1 + \lambda_2 = 7$$
$$-5\lambda_1 - \lambda_2 = 5$$
$$2\lambda_1 + \lambda_2 = 4.$$

Ahora bien, usando el método de Gauss

$$\begin{bmatrix} 1 & 1 & 7 \\ -5 & -1 & 5 \\ 2 & 1 & 4 \end{bmatrix} \xrightarrow{F_2 + 5F_1} \begin{bmatrix} 1 & 1 & 7 \\ 0 & 4 & 40 \\ 0 & -1 & -10 \end{bmatrix} \xrightarrow{F_2 / 4} \begin{bmatrix} 1 & 1 & 7 \\ 0 & 1 & 10 \\ 0 & -1 & -10 \end{bmatrix}$$

$$\xrightarrow{F_3 + F_2} \begin{bmatrix} 1 & 1 & 7 \\ 0 & 1 & 10 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{F_1 - F_2} \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 10 \\ 0 & 0 & 0 \end{bmatrix}.$$

Luego
$$\lambda_1=-3$$
 y $\lambda_2=-10$, es decir,

$$(7,5,4) = -3(1,-5,2) + 10(1,-1,1).$$

Teorema

Sea V un espacio vectorial sobre $\mathbb K$ y sean $v_1,\ldots,v_k\in V$. Entonces

$$W = \{\lambda_1 v_1 + \cdots + \lambda_k v_k : \lambda_1, \dots, \lambda_k \in \mathbb{K}\}\$$

es un subespacio vectorial. Es decir, el conjunto de las combinaciones lineales de v_1, \ldots, v_k es un subespacio vectorial.

Teorema

Sea V un espacio vectorial sobre $\mathbb K$ y sean $v_1,\ldots,v_k\in V$. Entonces

$$W = \{\lambda_1 v_1 + \cdots + \lambda_k v_k : \lambda_1, \dots, \lambda_k \in \mathbb{K}\}\$$

es un subespacio vectorial. Es decir, el conjunto de las combinaciones lineales de v_1, \ldots, v_k es un subespacio vectorial.

Demostración

Teorema

Sea V un espacio vectorial sobre $\mathbb K$ y sean $v_1,\ldots,v_k\in V$. Entonces

$$W = \{\lambda_1 v_1 + \cdots + \lambda_k v_k : \lambda_1, \dots, \lambda_k \in \mathbb{K}\}\$$

es un subespacio vectorial. Es decir, el conjunto de las combinaciones lineales de v_1, \ldots, v_k es un subespacio vectorial.

Demostración

Sean $\lambda_1 v_1 + \cdots + \lambda_k v_k$, $\mu_1 v_1 + \cdots + \mu_k v_k$ dos combinaciones lineales de v_1, \ldots, v_k y $\lambda \in \mathbb{K}$, entonces

$$(\lambda_1 v_1 + \dots + \lambda_k v_k) + \lambda(\mu_1 v_1 + \dots + \mu_k v_k)$$

$$= \lambda_1 v_1 + \lambda \mu_1 v_1 + \dots + \lambda_k v_k + \lambda \mu_k v_k$$

$$= (\lambda_1 + \lambda \mu_1) v_1 + \dots + (\lambda_k + \lambda \mu_k) v_k,$$

que es una combinación lineal de v_1, \ldots, v_k y por lo tanto pertenece a W.

Sea V un espacio vectorial sobre \mathbb{K} y sean $v_1, \ldots, v_k \in V$. Al subespacio vectorial $W = \{\lambda_1 v_1 + \cdots + \lambda_k v_k : \lambda_1, \ldots, \lambda_k \in \mathbb{K}\}$ de las combinaciones lineales de v_1, \ldots, v_k se lo denomina subespacio generado por v_1, \ldots, v_k y se lo denota

$$W = \langle v_1, \dots, v_k \rangle = \operatorname{gen} \{v_1, \dots, v_k\} = \operatorname{span} \{v_1, \dots, v_k\}.$$

Sea V un espacio vectorial sobre \mathbb{K} y sean $v_1,\ldots,v_k\in V$. Al subespacio vectorial $W=\{\lambda_1v_1+\cdots+\lambda_kv_k:\lambda_1,\ldots,\lambda_k\in\mathbb{K}\}$ de las combinaciones lineales de v_1,\ldots,v_k se lo denomina subespacio generado por v_1,\ldots,v_k y se lo denota

$$W = \langle v_1, \dots, v_k \rangle = \operatorname{gen} \{v_1, \dots, v_k\} = \operatorname{span} \{v_1, \dots, v_k\}.$$

Además, en este caso, diremos que el conjunto $S = \{v_1, \dots, v_k\}$ genera al subespacio W o que los vectores v_1, \dots, v_k generan W.

Sea V un espacio vectorial sobre \mathbb{K} y sean $v_1,\ldots,v_k\in V$. Al subespacio vectorial $W=\{\lambda_1v_1+\cdots+\lambda_kv_k:\lambda_1,\ldots,\lambda_k\in\mathbb{K}\}$ de las combinaciones lineales de v_1,\ldots,v_k se lo denomina subespacio generado por v_1,\ldots,v_k y se lo denota

$$W = \langle v_1, \dots, v_k \rangle = \operatorname{gen} \{v_1, \dots, v_k\} = \operatorname{span} \{v_1, \dots, v_k\}.$$

Además, en este caso, diremos que el conjunto $S = \{v_1, \dots, v_k\}$ genera al subespacio W o que los vectores v_1, \dots, v_k generan W.

Observación

Un caso especial, que será de suma importancia, es el caso en que consideramos todo V.

Sea V un espacio vectorial sobre \mathbb{K} y sean $v_1,\ldots,v_k\in V$. Al subespacio vectorial $W=\{\lambda_1v_1+\cdots+\lambda_kv_k:\lambda_1,\ldots,\lambda_k\in\mathbb{K}\}$ de las combinaciones lineales de v_1,\ldots,v_k se lo denomina subespacio generado por v_1,\ldots,v_k y se lo denota

$$W = \langle v_1, \dots, v_k \rangle = \operatorname{gen} \{v_1, \dots, v_k\} = \operatorname{span} \{v_1, \dots, v_k\}.$$

Además, en este caso, diremos que el conjunto $S = \{v_1, \dots, v_k\}$ genera al subespacio W o que los vectores v_1, \dots, v_k generan W.

Observación

Un caso especial, que será de suma importancia, es el caso en que consideramos todo V.

Estudiaremos en las clases que siguen conjuntos de generadores de V llamados bases, que tienen la propiedad de que todo vector de V se escribe de una única forma como c.l. de los generadores.

Determinación "implícita" de un subespacio de \mathbb{K}^n

En general, si queremos averiguar si un vector concreto $(b_1, b_2, \ldots, b_m) \in \mathbb{K}^m$ es combinación lineal de vectores $v_1, \ldots, v_n \in \mathbb{K}^m$, debemos plantear la ecuación

$$(b_1, b_2, \ldots, b_m) = \lambda_1 v_1 + \cdots + \lambda_n v_n, \qquad (*)$$

y resolver el sistema correspondiente, así como lo hicimos en el ejemplo de la página 9.

Es decir, si

$$W = \{\lambda_1 v_1 + \cdots + \lambda_n v_n : \lambda_1, \dots, \lambda_n \in \mathbb{K}\},\$$

queremos averiguar si el vector $(b_1, b_2, \dots, b_m) \in \mathbb{K}^m$ pertenece a W o, equivalentemente, si es combinación lineal de v_1, \dots, v_n :

Ahora, si

$$v_1 = (a_{11}, a_{21}, \dots, a_{m1}),$$

 $v_2 = (a_{12}, a_{22}, \dots, a_{m2}),$
 \vdots
 $v_n = (a_{1n}, a_{2n}, \dots, a_{mn}),$

la ecuación (*) de la página anterior se traduce en el sistema de ecuaciones

De la matriz ampliada original $\begin{bmatrix} A & b \end{bmatrix}$ podemos obtener una MERF equivalente $\begin{bmatrix} A' & b' \end{bmatrix}$ y el sistema asociado.

donde $k_1 < k_2 < \cdots < k_r$.

Por lo tanto, el sistema tiene solución si y solo si $b'_{r+1}=\cdots=b'_m=0$. Luego,

$$W = \{(b_1, b_2, \ldots, b_m) \in \mathbb{K}^m : b'_{r+1} = \cdots = b'_m = 0\}.$$

Las ecuaciones $b'_{r+1} = \cdots = b'_m = 0$ son las ecuaciones implícitas que definen a W y nos permiten decidir rápidamente si un vector pertenece o no a W, simplemente viendo si sus coordenadas satisfacen las ecuaciones.

Caracterizar mediante ecuaciones el subespacio del subespacio generado por

$$v_1 = (3, 1, 2, -1), \quad v_2 = (6, 2, 4, -2),$$

 $v_3 = (3, 0, 1, 1), \quad v_4 = (15, 3, 8, -1).$

Caracterizar mediante ecuaciones el subespacio del subespacio generado por

$$v_1 = (3, 1, 2, -1),$$
 $v_2 = (6, 2, 4, -2),$
 $v_3 = (3, 0, 1, 1),$ $v_4 = (15, 3, 8, -1).$

Solución

En otras palabras, queremos describir implícitamente el conjunto de los $b=(b_1,b_2,b_3,b_4)\in\mathbb{R}^4$ tales que $b\in\langle v_1,v_2,v_3,v_4\rangle$.

Caracterizar mediante ecuaciones el subespacio del subespacio generado por

$$v_1 = (3, 1, 2, -1),$$
 $v_2 = (6, 2, 4, -2),$
 $v_3 = (3, 0, 1, 1),$ $v_4 = (15, 3, 8, -1).$

Solución

En otras palabras, queremos describir implícitamente el conjunto de los $b=(b_1,b_2,b_3,b_4)\in\mathbb{R}^4$ tales que $b\in\langle v_1,v_2,v_3,v_4\rangle$.

O sea, los $b=(b_1,b_2,b_3,b_4)\in\mathbb{R}^4$ tales que

$$b = \lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 + \lambda_4 v_4 \tag{*}$$

con $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R}$.

Planteemos la fórmula (*) en como un sistema de ecuaciones. Obtenemos:

$$b_1 = 3\lambda_1 + 6\lambda_2 + 3\lambda_3 + 15\lambda_4$$

 $b_2 = \lambda_1 + 2\lambda_2 + 3\lambda_4$
 $b_3 = 2\lambda_1 + 4\lambda_2 + \lambda_3 + 8\lambda_4$
 $b_4 = -\lambda_1 - 2\lambda_2 + \lambda_3 - \lambda_4$

Planteemos la fórmula (*) en como un sistema de ecuaciones. Obtenemos:

$$b_1 = 3\lambda_1 + 6\lambda_2 + 3\lambda_3 + 15\lambda_4$$

 $b_2 = \lambda_1 + 2\lambda_2 + 3\lambda_4$
 $b_3 = 2\lambda_1 + 4\lambda_2 + \lambda_3 + 8\lambda_4$
 $b_4 = -\lambda_1 - 2\lambda_2 + \lambda_3 - \lambda_4$

Luego, escrito como producto de matrices, el sistema es

$$\begin{bmatrix} 3 & 6 & 3 & 15 \\ 1 & 2 & 0 & 3 \\ 2 & 4 & 1 & 8 \\ -1 & -2 & 1 & -1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

Resolvamos el sistema anterior.

Resolvamos el sistema anterior.

$$\begin{bmatrix} 3 & 6 & 3 & 15 & b_1 \\ 1 & 2 & 0 & 3 & b_2 \\ 2 & 4 & 1 & 8 & b_3 \\ -1 & -2 & 1 & -1 & b_4 \end{bmatrix} \xrightarrow{F_1 - 3F_2} \begin{bmatrix} 0 & 0 & 3 & 6 & b_1 - 3b_2 \\ 1 & 2 & 0 & 3 & b_2 \\ 0 & 0 & 1 & 2 & b_3 - 2b_2 \\ 0 & 0 & 1 & 2 & b_4 + b_2 \end{bmatrix}$$

$$F_{1-3F_3} \xrightarrow{F_4 - F_3} \begin{bmatrix} 0 & 0 & 0 & 0 & b_1 + 3b_2 - 3b_3 \\ 1 & 2 & 0 & 3 & b_2 \\ 0 & 0 & 1 & 2 & b_3 - 2b_2 \\ 0 & 0 & 0 & 3b_2 - b_3 + b_4 \end{bmatrix}$$

Resolvamos el sistema anterior.

$$\begin{bmatrix} 3 & 6 & 3 & 15 & b_1 \\ 1 & 2 & 0 & 3 & b_2 \\ 2 & 4 & 1 & 8 & b_3 \\ -1 & -2 & 1 & -1 & b_4 \end{bmatrix} \xrightarrow{F_1 - 3F_2} \begin{bmatrix} 0 & 0 & 3 & 6 & b_1 - 3b_2 \\ 1 & 2 & 0 & 3 & b_2 \\ 0 & 0 & 1 & 2 & b_3 - 2b_2 \\ 0 & 0 & 1 & 2 & b_4 + b_2 \end{bmatrix}$$

$$F_{1-3F_3} \xrightarrow{F_4 - F_3} \begin{bmatrix} 0 & 0 & 0 & 0 & b_1 + 3b_2 - 3b_3 \\ 1 & 2 & 0 & 3 & b_2 \\ 0 & 0 & 1 & 2 & b_3 - 2b_2 \\ 0 & 0 & 0 & 3b_2 - b_3 + b_4 \end{bmatrix}$$

Luego el sistema tiene solución si y solo si $b_1 + 3b_2 - 3b_3 = 0$ y $3b_2 - b_3 + b_4 = 0$. Por lo tanto, el subespacio que estamos buscando es

$$\langle v_1, v_2, v_3, v_4 \rangle = \{(b_1, b_2, b_3, b_4) \in \mathbb{R}^4 \mid b_1 + 3b_2 - 3b_3 = 0, 3b_2 - b_3 + b_4 = 0\}.$$

Notemos que podemos repetir todo el razonamiento anterior para cualesquiera vectores $v_1, ..., v_k$ en cualquier \mathbb{R}^n y cualquier $b \in \mathbb{R}^n$.

Notemos que podemos repetir todo el razonamiento anterior para cualesquiera vectores $v_1,...,v_k$ en cualquier \mathbb{R}^n y cualquier $b\in\mathbb{R}^n$.

Sólo hay que tener presente que multiplicar una matriz por un vector columna es lo mismo que hacer una combinación lineal de las columnas de la matriz:

Notemos que podemos repetir todo el razonamiento anterior para cualesquiera vectores $v_1,...,v_k$ en cualquier \mathbb{R}^n y cualquier $b \in \mathbb{R}^n$.

Sólo hay que tener presente que multiplicar una matriz por un vector columna es lo mismo que hacer una combinación lineal de las columnas de la matriz:

Es decir, si

$$A = \left[\begin{array}{cccc} | & | & | & | \\ v_1 & v_2 & \cdots & v_k \\ | & | & | & | \end{array} \right],$$

entonces

$$A \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{bmatrix} = \lambda_1 v_1 + \dots + \lambda_k v_k$$

Conclusión

Sean $v_1, ..., v_k \in \mathbb{K}^n$ y $A \in \mathbb{K}^{n \times k}$ la matriz cuyas columnas son los vectores $v_1, ..., v_k$, es decir

$$A = \left[\begin{array}{cccc} | & | & | & | \\ v_1 & v_2 & \cdots & v_k \\ | & | & | & | \end{array} \right].$$

Conclusión

Sean $v_1,...,v_k\in\mathbb{K}^n$ y $A\in\mathbb{K}^{n\times k}$ la matriz cuyas columnas son los vectores $v_1,...,v_k$, es decir

$$A = \left[\begin{array}{cccc} | & | & | & | \\ v_1 & v_2 & \cdots & v_k \\ | & | & | & | \end{array} \right].$$

Entonces

- o El subespacio vectorial $\langle v_1, ..., v_k \rangle$ es igual al conjunto de los $b \in \mathbb{K}^n$ para los cuales el sistema AX = b tiene solución.
- Las ecuaciones vienen dadas por las filas nulas de la MERF equivalente a A. En particular, si no tiene filas nulas entonces $\langle v_1,...,v_k\rangle=\mathbb{K}^n$ porque el sistema AX=b siempre tiene solución.

Intersección y suma de subespacios vectoriales

Teorema

Sea V un espacio vectorial sobre \mathbb{K} . Entonces la intersección de subespacios vectoriales es un subespacio vectorial.

Intersección y suma de subespacios vectoriales

Teorema

Sea V un espacio vectorial sobre \mathbb{K} . Entonces la intersección de subespacios vectoriales es un subespacio vectorial.

Demostración

Intersección y suma de subespacios vectoriales

Teorema

Sea V un espacio vectorial sobre \mathbb{K} . Entonces la intersección de subespacios vectoriales es un subespacio vectorial.

Demostración

Veamos el caso de la intersección de dos subespacios.

Debemos probar que si W_1 , W_2 subespacios $\Rightarrow W_1 \cap W_2$ es subespacio.

Observemos:
$$w \in W_1 \cap W_2 \Leftrightarrow w \in W_1 \land w \in W_2$$
.

Sea
$$\lambda \in \mathbb{K}$$
. $u, v \in W_1 \cap W_2 \Rightarrow u, v \in W_1 \wedge u, v \in W_2$
 $\Rightarrow u + \lambda v \in W_1 \wedge u + \lambda v \in W_2$
 $\Rightarrow u + \lambda v \in W_1 \cap W_2$.

Luego $W_1 \cap W_2$ es subespacio.

Ejemplo

Sean

$$W_1 = \{(x, y, z) : -3x + y + 2z = 0\}$$

у

$$W_2 = \{(x, y, z) : x - y + 2z = 0\}.$$

Encontrar generadores de $W_1 \cap W_2$.

Ejemplo

Sean

$$W_1 = \{(x, y, z) : -3x + y + 2z = 0\}$$

у

$$W_2 = \{(x, y, z) : x - y + 2z = 0\}.$$

Encontrar generadores de $W_1 \cap W_2$.

Solución

Ejemplo

Sean

$$W_1 = \{(x, y, z) : -3x + y + 2z = 0\}$$

у

$$W_2 = \{(x, y, z) : x - y + 2z = 0\}.$$

Encontrar generadores de $W_1 \cap W_2$.

Solución

Es claro que

$$W_1 \cap W_2 = \{(x, y, z) : -3x + y + 2z = 0 \land x - y + 2z = 0\}.$$

$$\begin{cases}
-3x + y + 2z = 0 \\
x - y + 2z = 0
\end{cases}$$

$$\begin{cases}
-3x + y + 2z = 0 \\
x - y + 2z = 0
\end{cases}$$

Reduzcamos la matriz del sistema a una MRF:

$$\begin{bmatrix} -3 & 1 & 2 \\ 1 & -1 & 2 \end{bmatrix} \xrightarrow{F_1 + 3F_2} \begin{bmatrix} 0 & -2 & 8 \\ 1 & -1 & 2 \end{bmatrix} \xrightarrow{F_1/(-2)} \begin{bmatrix} 0 & 1 & -4 \\ 1 & -1 & 2 \end{bmatrix} \xrightarrow{F_2 + F_1} \begin{bmatrix} 0 & 1 & -4 \\ 1 & 0 & -2 \end{bmatrix}$$

$$\begin{cases}
-3x + y + 2z = 0 \\
x - y + 2z = 0
\end{cases}$$

Reduzcamos la matriz del sistema a una MRF:

$$\begin{bmatrix} -3 & 1 & 2 \\ 1 & -1 & 2 \end{bmatrix} \xrightarrow{F_1 + 3F_2} \begin{bmatrix} 0 & -2 & 8 \\ 1 & -1 & 2 \end{bmatrix} \xrightarrow{F_1/(-2)} \begin{bmatrix} 0 & 1 & -4 \\ 1 & -1 & 2 \end{bmatrix} \xrightarrow{F_2 + F_1} \begin{bmatrix} 0 & 1 & -4 \\ 1 & 0 & -2 \end{bmatrix}$$

Por lo tanto, $x_2 - 4x_3 = 0$ y $x_1 - 2x_3 = 0$, es decir $x_2 = 4x_3$ y $x_1 = 2x_3$.

$$\begin{cases}
-3x + y + 2z = 0 \\
x - y + 2z = 0
\end{cases}$$

Reduzcamos la matriz del sistema a una MRF:

$$\begin{bmatrix} -3 & 1 & 2 \\ 1 & -1 & 2 \end{bmatrix} \xrightarrow{F_1 + 3F_2} \begin{bmatrix} 0 & -2 & 8 \\ 1 & -1 & 2 \end{bmatrix} \xrightarrow{F_1/(-2)} \begin{bmatrix} 0 & 1 & -4 \\ 1 & -1 & 2 \end{bmatrix} \xrightarrow{F_2 + F_1} \begin{bmatrix} 0 & 1 & -4 \\ 1 & 0 & -2 \end{bmatrix}$$

Por lo tanto, $x_2 - 4x_3 = 0$ y $x_1 - 2x_3 = 0$, es decir $x_2 = 4x_3$ y $x_1 = 2x_3$. Luego,

$$W_1 \cap W_2 = \{(2t, 4t, t) : t \in \mathbb{R}\} = \{t(2, 4, 1) : t \in \mathbb{R}\}.$$

$$\begin{cases}
-3x + y + 2z = 0 \\
x - y + 2z = 0
\end{cases}$$

Reduzcamos la matriz del sistema a una MRF:

$$\begin{bmatrix} -3 & 1 & 2 \\ 1 & -1 & 2 \end{bmatrix} \xrightarrow{F_1 + 3F_2} \begin{bmatrix} 0 & -2 & 8 \\ 1 & -1 & 2 \end{bmatrix} \xrightarrow{F_1/(-2)} \begin{bmatrix} 0 & 1 & -4 \\ 1 & -1 & 2 \end{bmatrix} \xrightarrow{F_2 + F_1} \begin{bmatrix} 0 & 1 & -4 \\ 1 & 0 & -2 \end{bmatrix}$$

Por lo tanto, $x_2 - 4x_3 = 0$ y $x_1 - 2x_3 = 0$, es decir $x_2 = 4x_3$ y $x_1 = 2x_3$. Luego,

$$W_1 \cap W_2 = \{(2t, 4t, t) : t \in \mathbb{R}\} = \{t(2, 4, 1) : t \in \mathbb{R}\}.$$

La respuesta es entonces: (2,4,1) es generador $W_1 \cap W_2$.

Sea V un espacio vectorial sobre \mathbb{K} y sean $v_1, \ldots, v_k \in V$. Entonces, la intersección de todos los subespacios vectoriales que contienen a v_1, \ldots, v_k es igual a $\langle v_1, \ldots, v_k \rangle$.

Sea V un espacio vectorial sobre \mathbb{K} y sean $v_1, \ldots, v_k \in V$. Entonces, la intersección de todos los subespacios vectoriales que contienen a v_1, \ldots, v_k es igual a $\langle v_1, \ldots, v_k \rangle$.

Demostración

Sea V un espacio vectorial sobre \mathbb{K} y sean $v_1, \ldots, v_k \in V$. Entonces, la intersección de todos los subespacios vectoriales que contienen a v_1, \ldots, v_k es igual a $\langle v_1, \ldots, v_k \rangle$.

Demostración

Denotemos

 $\circ~U=\bigcap$ de todos los subespacios vectoriales $\supseteq \{v_1,\ldots,v_k\}$.

Sea V un espacio vectorial sobre \mathbb{K} y sean $v_1, \ldots, v_k \in V$. Entonces, la intersección de todos los subespacios vectoriales que contienen a v_1, \ldots, v_k es igual a $\langle v_1, \ldots, v_k \rangle$.

Demostración

Denotemos

∘ $U = \bigcap$ de todos los subespacios vectoriales $\supseteq \{v_1, \dots, v_k\}$.

Probaremos que $U=\langle v_1,\ldots,v_k
angle$ con la doble inclusión, es decir probando que

$$U \subseteq \langle v_1, \dots, v_k \rangle$$
 y $\langle v_1, \dots, v_k \rangle \subseteq U$.

$$(U \subseteq \langle v_1, ..., v_k \rangle)$$

$$(U \subseteq \langle v_1, ..., v_k \rangle)$$

$$(U \subseteq \langle v_1, ..., v_k \rangle)$$

$$(\langle v_1,\ldots,v_k\rangle\subseteq U)$$

$$(U \subseteq \langle v_1, ..., v_k \rangle)$$

$$(\langle v_1,\ldots,v_k\rangle\subseteq U)$$

U es intersección de subespacios \Rightarrow (teor. p. 22) U es un subespacio.

$$(U \subseteq \langle v_1, ..., v_k \rangle)$$

$$(\langle v_1,\ldots,v_k\rangle\subseteq U)$$

U es intersección de subespacios \Rightarrow (teor. p. 22) U es un subespacio.

Luego,
$$\{v_1,...,v_k\} \subset U \Rightarrow \lambda_1 v_1 + \cdots + \lambda_k v_k \in U, \forall \lambda_1,...,\lambda_k \in \mathbb{K}.$$

$$(U \subseteq \langle v_1, ..., v_k \rangle)$$

$$(\langle v_1,\ldots,v_k\rangle\subseteq U)$$

U es intersección de subespacios \Rightarrow (teor. p. 22) U es un subespacio.

Luego,
$$\{v_1,...,v_k\} \subset U \Rightarrow \lambda_1 v_1 + \cdots + \lambda_k v_k \in U, \forall \lambda_1,...,\lambda_k \in \mathbb{K}.$$

Por lo tanto
$$\langle v_1, ..., v_k \rangle \subseteq U$$
.

Si V es un \mathbb{K} -espacio vectorial, S y T subespacios de V.

Si V es un \mathbb{K} -espacio vectorial, S y T subespacios de V.

Entonces $S \cup T$ no es necesariamente un subespacio de V.

Si V es un \mathbb{K} -espacio vectorial, S y T subespacios de V.

Entonces $S \cup T$ no es necesariamente un subespacio de V.

En efecto, consideremos en \mathbb{R}^2 los subespacios

$$S=\mathbb{R}(1,0)$$
 y $T=\mathbb{R}(0,1)$.

Si V es un \mathbb{K} -espacio vectorial, S y T subespacios de V.

Entonces $S \cup T$ no es necesariamente un subespacio de V.

En efecto, consideremos en \mathbb{R}^2 los subespacios

$$S=\mathbb{R}(1,0)$$
 y $T=\mathbb{R}(0,1)$.

$$\circ$$
 (1,0) ∈ S y (0,1) ∈ T \Rightarrow (1,0),(0,1) ∈ S \cup T.

Si V es un \mathbb{K} -espacio vectorial, S y T subespacios de V.

Entonces $S \cup T$ no es necesariamente un subespacio de V.

En efecto, consideremos en \mathbb{R}^2 los subespacios

$$S=\mathbb{R}(1,0)$$
 y $T=\mathbb{R}(0,1)$.

- \circ (1,0) ∈ S y (0,1) ∈ T \Rightarrow (1,0),(0,1) ∈ S \cup T.
- Ahora bien $(1,0) + (0,1) = (1,1) \notin S \cup T$, puesto que $(1,1) \notin S$ y $(1,1) \notin T$.

Sea V un espacio vectorial sobre $\mathbb K$ y sean S_1,\ldots,S_k subconjuntos de V. definimos

$$S_1 + \cdots + S_k := \{s_1 + \cdots + s_k : s_i \in S_i, 1 \le i \le k\},\$$

el conjunto suma de los S_1, \ldots, S_k .

Sea V un espacio vectorial sobre $\mathbb K$ y sean S_1,\ldots,S_k subconjuntos de V. definimos

$$S_1 + \cdots + S_k := \{s_1 + \cdots + s_k : s_i \in S_i, 1 \le i \le k\},\$$

el conjunto suma de los S_1, \ldots, S_k .

Teorema

Sea V un espacio vectorial sobre \mathbb{K} y sean W_1, \ldots, W_k subespacios de V. Entonces $W = W_1 + \cdots + W_k$ es un subespacio de V.

Sea V un espacio vectorial sobre $\mathbb K$ y sean S_1,\ldots,S_k subconjuntos de V. definimos

$$S_1 + \cdots + S_k := \{s_1 + \cdots + s_k : s_i \in S_i, 1 \le i \le k\},\$$

el conjunto suma de los S_1, \ldots, S_k .

Teorema

Sea V un espacio vectorial sobre \mathbb{K} y sean W_1, \ldots, W_k subespacios de V. Entonces $W = W_1 + \cdots + W_k$ es un subespacio de V.

Demostración

Sea V un espacio vectorial sobre $\mathbb K$ y sean S_1,\ldots,S_k subconjuntos de V. definimos

$$S_1 + \cdots + S_k := \{s_1 + \cdots + s_k : s_i \in S_i, 1 \le i \le k\},\$$

el conjunto suma de los S_1, \ldots, S_k .

Teorema

Sea V un espacio vectorial sobre \mathbb{K} y sean W_1, \ldots, W_k subespacios de V. Entonces $W = W_1 + \cdots + W_k$ es un subespacio de V.

Demostración

Ejercicio (ver apunte).

Sea V un espacio vectorial sobre \mathbb{K} y sean v_1, \ldots, v_r elementos de de V. Entonces

$$\langle v_1,\ldots,v_r\rangle=\langle v_1\rangle+\cdots+\langle v_r\rangle.$$

Sea V un espacio vectorial sobre \mathbb{K} y sean v_1, \ldots, v_r elementos de de V. Entonces

$$\langle v_1,\ldots,v_r\rangle=\langle v_1\rangle+\cdots+\langle v_r\rangle.$$

Demostración

Sea V un espacio vectorial sobre \mathbb{K} y sean v_1, \ldots, v_r elementos de de V. Entonces

$$\langle v_1,\ldots,v_r\rangle=\langle v_1\rangle+\cdots+\langle v_r\rangle.$$

Demostración

Probemos el resultado viendo que los dos conjuntos se incluyen mutuamente.

Sea V un espacio vectorial sobre \mathbb{K} y sean v_1, \ldots, v_r elementos de de V. Entonces

$$\langle v_1,\ldots,v_r\rangle=\langle v_1\rangle+\cdots+\langle v_r\rangle.$$

Demostración

Probemos el resultado viendo que los dos conjuntos se incluyen mutuamente.

(\subseteq) Sea $w \in \langle v_1, \ldots, v_r \rangle$, luego $w = \lambda_1 v_1 + \cdots + \lambda_r v_r$. Como $\lambda_i v_i \in \langle v_i \rangle$, $1 \le i \le r$, tenemos que $w \in \langle v_1 \rangle + \cdots + \langle v_r \rangle$. En consecuencia, $\langle v_1, \ldots, v_r \rangle \subseteq \langle v_1 \rangle + \cdots + \langle v_r \rangle$.

Sea V un espacio vectorial sobre \mathbb{K} y sean v_1, \ldots, v_r elementos de de V. Entonces

$$\langle v_1,\ldots,v_r\rangle=\langle v_1\rangle+\cdots+\langle v_r\rangle.$$

Demostración

Probemos el resultado viendo que los dos conjuntos se incluyen mutuamente.

- (\subseteq) Sea $w \in \langle v_1, \dots, v_r \rangle$, luego $w = \lambda_1 v_1 + \dots + \lambda_r v_r$. Como $\lambda_i v_i \in \langle v_i \rangle$, $1 \le i \le r$, tenemos que $w \in \langle v_1 \rangle + \dots + \langle v_r \rangle$. En consecuencia,
- $\langle v_1, \ldots, v_r \rangle \subseteq \langle v_1 \rangle + \cdots + \langle v_r \rangle$
- (\supseteq) Si $w \in \langle v_1 \rangle + \cdots + \langle v_r \rangle$, entonces $w = w_1 + \cdots + w_r$ con $w_i \in \langle v_i \rangle$ para todo i. Por lo tanto, $w_i = \lambda_i v_i$ para algún $\lambda_i \in \mathbb{K}$ y
- $w = \lambda_1 v_1 + \dots + \lambda_r v_r \in \langle v_1, \dots, v_r \rangle$. En consecuencia, $\langle v_1 \rangle + \dots + \langle v_r \rangle \subset \langle v_1, \dots, v_r \rangle$.