

Специализация miniKanren

Автор: Екатерина Вербицкая

Лаборатория языковых инструментов JetBrains

14 декабря 2019

Реляционное программирование

Программа — отношение

```
append° x y z =
(x \equiv [] \land z \equiv y)
\lor (\exists h t r)
(x \equiv h : t)
\land z \equiv h : r
\land append° t y r))
```

Направление вычислений

$$foo^o \subseteq A \times B$$

- $foo^o \alpha$? : $A \rightarrow [B]$
- foo^o ? $\beta:B o [A]$ в "обратном" направлении
- foo^o ? ? : () → [(A × B)]

Реляционные интерпретаторы для синтеза программ

```
\begin{array}{l} \mathtt{eval}^o \subseteq \mathtt{Program} \times \mathtt{Input} \times \mathtt{Output} \\ \\ \mathtt{eval}^o \neq 1 \; 1 \; \land \; \mathtt{eval}^o \neq 2 \; 1 \; \land \\ \\ \mathtt{eval}^o \neq 3 \; 2 \; \land \; \mathtt{eval}^o \neq 4 \; 3 \; \land \\ \\ \mathtt{eval}^o \neq 5 \; 5 \; \land \; \mathtt{eval}^o \neq 6 \; 8 \end{array}
```

Реализация реляционных интерпретаторов

Lozov, P., Verbitskaia, E. and Boulytchev, D., 2019. Relational Interpreters for Search Problems.

- Реализовать функциональный интерпретатор
- Транслировать функциональный интерпрератор на miniKanren
- Запустить реляционный интерпретатор в обратном направлении

- Транслятор генерирует неэффективный код (в некоторых направлениях)
- Специализация помогает избавиться от неэффективности

Цель и задачи

Разработать методы специализации miniKanren, которые обеспечивают применимость реляционных интерпретаторов для синтеза

- Адаптировать и реализовать конъюнктивную частичную дедукцию для miniKanren
- Адаптировать и реализовать суперкомпилятор для miniKanren
- Исследовать другие стратегии для специализации miniKanren
- Реализовать трансляцию реляционных программ в функциональные
- Сравнить и выбрать самую адекватную стратегию

Конъюнктивная частичная дедукция 1 для miniKanren

Иногда не терминируется Почти всегда ускоряет программы

Path length	5	7	9	11	13	15
Only conversion	0.01	1.39	82.13	>300	_	_
Backward oriented conversion	0.01	0.37	2.68	2.91	4.88	10.63
Conversion and CPD	0.01	0.06	0.34	2.66	3.65	6.22

Таблица: Searching for paths in the graph (seconds)

Terms	f(X, a) f(a, X)	f(a % b % nil, c % d % nil, L) f(X % XS, YS, X % ZS)	$\frac{f(X, X, g(Z, t))}{f(g(p, L), Y, Y)}$
	1(a, A)	1(X /0 X3, 13, X /0 Z3)	1(g(p, L), 1, 1)
Only conversion	0.01	>300	>300
Backward oriented conversion	0.01	0.11	2.26
Conversion and CPD	0.01	0.07	0.90

Таблица: Searching for a unifier of two terms (seconds)

¹De Schreye, Danny, et al. "Conjunctive partial deduction: Foundations, control, algorithms, and experiments."

Суперкомпиляция для miniKanren (Мария Куклина)

- Full unfold
- Sequential unfold
- Random unfold
- Характеристические деревья для частичной дедукции (в процессе)

Иногда не терминируется Иногда работает быстрее CPD

Трансляция из miniKanrens функциональный язык (Ирина Артемьева)

- Учитывается направление вычисления
- Унификации превращаются в сопоставления с образцами или let-связывания, вызовы — в let-связывания для правильного направления
- В случае недетерминированных вычислений возвращаем списки

На простых программах работает Требуется доработка реализации

Текущие результаты

- Реализована конъюнктивная частичная дедукция для miniKanren
- Реализован суперкомпилятор для miniKanren, рассмотрены несколько стратегий анфолдинга
- Реализован прототип транслятора реляционных программ в функциональные

Доклады и преподавание

- Публикация
 - Lozov, P., Verbitskaia, E. and Boulytchev, D., 2019. Relational Interpreters for Search Problems (miniKanren workshop при ICFP)
- Преподавание
 - Лекции и практика по формальным языкам (ИТМО, ВШЭ, ЛЭТИ)
 - Помощь с курсом по компиляторам (CSCenter)
- Открытая лекция в CSClub
 - Реляционное программирование