431 Class 10

thomase love. github. io/431

2020-09-24

Today's R Packages

```
library(NHANES)
library(janitor)
library(knitr)
library(broom)
library(magrittr)
library(patchwork)
library(ggrepel)
library(tidyverse)
theme_set(theme_bw())
```

nh3_new data (n = 989, 17 variables)

```
set.seed(20200914)
nh3 new <- NHANES %>%
    filter(SurveyYr == "2011_12") %>%
    select(ID, SurveyYr, Age, Height, Weight, BMI, Pulse,
           SleepHrsNight, BPSysAve, BPDiaAve, Gender,
           PhysActive, SleepTrouble, Smoke100,
           Race1, HealthGen, Depressed) %>%
    rename(Subject = ID, SleepHours = SleepHrsNight,
           Sex = Gender, SBP = BPSysAve, DBP = BPDiaAve) %>%
    filter(Age > 20 & Age < 80) %>%
    drop na() %>%
    distinct() %>%
    slice sample(n = 1000) %>%
    clean names() %>%
    filter(dbp > 39) %>%
    mutate(subject = as.character(subject))
```

Today's Data (nh4)

```
set.seed(431)

nh4 <- nh3_new %>%
  select(subject, sbp, dbp, age, smoke100, race1) %>%
  slice_sample(n = 800, replace = FALSE)
```

- Outcome (quantitative): sbp
- Quantitative predictors: dbp, age
- Binary predictor: smoke100 (Yes/No)
- 5-category predictor: race1 (White, Black, Hispanic, Mexican, Other)
- Identification code: subject

```
dim(nh4)
```

Γ1] 800 *6*

Association of sbp and dbp

```
ggplot(nh4, aes(x = dbp, y = sbp)) +
geom_point() +
geom_smooth(method = "lm", col = "red", formula = y ~ x)
```


Adding text to the plot (Pearson correlation)

Code for the last slide

Model mod_1 description

We'll use a linear model to predict sbp using dbp:

```
mod_1 <- lm(sbp ~ dbp, data = nh4)
mod_1</pre>
```

```
Call:
lm(formula = sbp ~ dbp, data = nh4)
Coefficients:
```

```
(Intercept) dbp
63.4338 0.8091
```

Prediction for subject 65867, with sbp = 115 and dbp = 78?

- \bullet predicted sbp = 63.4338 + 0.8091(78) = 126.54
- actual sbp for subject 65867 is 115, so residual = -11.54

Model mod_1 coefficients and fit measures

```
tidy(mod_1, conf.int = TRUE, conf.level = 0.90) %>%
  select(term, estimate, std.error, conf.low, conf.high) %>%
  kable(digits = 2)
```

term	estimate	std.error	conf.low	conf.high
(Intercept)	63.43	3.28	58.03	68.84
dbp	0.81	0.04	0.74	0.88

```
glance(mod_1) %>%
  select(r.squared, adj.r.squared, sigma, AIC, BIC) %>%
  kable(digits = c(3, 3, 1, 1, 1))
```

r.squared	adj.r.squared	sigma	AIC	BIC
0.291	0.29	14.4	6542.4	6556.4

augment yields .fitted values & .resid (residuals)

```
mod_1 <- lm(sbp ~ dbp, data = nh4)
nh4_aug1 <- augment(mod_1, data = nh4)</pre>
```

We include the data in the augment statement so that all variables from nh4 are retained here (including those not included in the mod_1 model.)

```
names(nh4_aug1)
```

```
[1] "subject" "sbp" "dbp"
[4] "age" "smoke100" "race1"
[7] ".fitted" ".resid" ".std.resid"
[10] ".hat" ".sigma" ".cooksd"
```

Here, note that .resid = sbp - .fitted

Which five subjects are fit worst by model mod_1?

We'll identify those with the five largest residuals (in absolute value).

```
nh4_aug1 %>% select(subject, sbp, dbp, .resid) %>%
slice_max(abs(.resid), n = 5)
```

```
# A tibble: 5 \times 4
 subject sbp
                dbp .resid
 <chr>
         <int> <int> <dbl>
           221
                      86.4
1 67957
                 88
2 68301
           202
                 99
                      58.5
3 68966
           186
                 84 54.6
4 68139
           161
                 55 53.1
                 75
5 70899
           173
                      48.9
```

Label the 5 subjects with the largest |residuals|

Code for the plot on the previous slide

```
## requires library(ggrepel)
ggplot(nh4\_aug1, aes(x = dbp, y = sbp)) +
  geom point() +
  geom point(data = nh4 aug1 %>%
               slice max(abs(.resid), n = 5),
             col = "red", size = 2) +
  geom_smooth(method = "lm", col = "red", formula = y ~ x) +
  geom_label_repel(data = nh4_aug1 %>%
                     slice max(abs(.resid), n = 5),
                   aes(label = subject),
                   fill = "vellow", col = "red")
```

SBP/DBP for the 3 most negative residuals

Code for the previous slide

```
## requires library(qqrepel)
ggplot(nh4 aug1, aes(x = dbp, y = sbp)) +
  geom point() +
  geom point(data = nh4 aug1 %>%
               slice min(.resid, n = 3),
             col = "red". size = 2) +
  geom smooth(method = "lm", col = "red", formula = y ~ x) +
  geom text_repel(data = nh4_aug1 %>%
                    slice_min(.resid, n = 3),
                   aes(label = paste0(sbp, " / ", dbp)),
                  col = "red")
```

Residuals vs. Fitted Values for mod_1

plot(mod_1, which = 1)

Normal Q-Q plot of Residuals for mod_1

plot(mod_1, which = 2)

Using ggplot2 for mod_1 residual plots

Code for ggplot2 residual plots (1/2)

```
p1 \leftarrow ggplot(nh4 aug1, aes(x = .fitted, y = .resid)) +
  geom point() +
  geom smooth(method = "lm", formula = y ~ x, se = F,
              ltv = "dashed". col = "black") +
  geom smooth(method = "loess", formula = y ~ x, se = F,
              col = "blue") +
  geom_text_repel(data = nh4_aug1 %>%
                    slice max(abs(.resid), n = 3),
                  aes(label = subject)) +
  labs(title = "mod_1 Residuals vs. Fitted",
       x = "Fitted SBP from mod 1".
       v = "Residuals from mod 1")
```

Code for ggplot2 residual plots (2/2)

```
p2 <- ggplot(nh4_aug1, aes(sample = .resid)) +
  geom_qq() + geom_qq_line(col = "red") +
  labs(title = "mod 1 Residuals",
       v = "")
p3 \leftarrow ggplot(nh4\_aug1, aes(y = .resid, x = "")) +
  geom_violin(fill = "goldenrod") +
  geom\ boxplot(width = 0.5) +
  labs(y = "", x = "")
p1 + p2 + p3 + plot layout(widths = c(5, 4, 1))
```

Model mod_2: add age as a predictor

$$mod_2 \leftarrow lm(sbp \sim dbp + age, data = nh4)$$

 mod_2

Call:

lm(formula = sbp ~ dbp + age, data = nh4)

Coefficients:

(Intercept) dbp age 49.5882 0.7528 0.3826

Prediction for subject 65867?

subject	sbp	dbp	age
65867	115	78	60

augment for mod_2

```
nh4_aug2 <- augment(mod_2, data = nh4)
nh4_aug2 %>% head(4) %>%
select(subject, sbp, dbp, age, .fitted, .resid) %>%
kable()
```

subject	sbp	dbp	age	.fitted	.resid
65867	115	78	60	131.2639	-16.263902
70046	125	83	55	133.1147	-8.114693
64302	98	59	45	111.2214	-13.221362
69386	141	68	52	120.6749	20.325081

Compare mod_1 to mod_2 with tidy?

```
tidy(mod_1, conf.int = TRUE, conf.level = 0.90) %>%
  select(term, estimate, std.error, conf.low, conf.high) %>%
  kable(digits = 2)
```

term	estimate	std.error	conf.low	conf.high
(Intercept)	63.43	3.28	58.03	68.84
dbp	0.81	0.04	0.74	0.88

```
tidy(mod_2, conf.int = TRUE, conf.level = 0.90) %>%
  select(term, estimate, std.error, conf.low, conf.high) %>%
  kable(digits = 2)
```

term	estimate	std.error	conf.low	conf.high
(Intercept)	49.59	3.17	44.37	54.81
dbp	0.75	0.04	0.69	0.82
age	0.38	0.03	0.33	0.43
aishh ia /421		421 Class 10		2020.00

glance for mod_1 and mod_2

```
glance(mod_1) %>%
  select(r.squared, adj.r.squared, sigma, AIC, BIC) %>%
  kable(digits = c(3, 3, 1, 1, 1))
```

r.squared	adj.r.squared	sigma	AIC	BIC
0.291	0.29	14.4	6542.4	6556.4

```
glance(mod_2) %>%
  select(r.squared, adj.r.squared, sigma, AIC, BIC) %>%
  kable(digits = c(3, 3, 1, 1, 1))
```

r.squared	adj.r.squared	sigma	AIC	BIC
0.414	0.413	13.1	6391.8	6410.6

Residual Plots for mod_2?

Model mod_3: add smoke100 as a predictor

```
mod_3 \leftarrow lm(sbp \sim dbp + age + smoke100, data = nh4)
mod_3
```

Call:

```
lm(formula = sbp ~ dbp + age + smoke100, data = nh4)
```

Coefficients:

```
(Intercept) dbp age smoke100Yes
49.1120 0.7497 0.3743 2.3807
```

Interpreting the binary predictor (smoke100) and its slope

- smoke100 was binary: either Yes or No for all subjects, so. . .
 - smoke100Yes = 1 if smoke100 is Yes. and
 - smoke100Yes = 0 if smoke100 is No.

Prediction for subject 65867?

subject	sbp	dbp	age	smoke100
65867	115	78	60	No

From Model 3, our predicted sbp for subject 65867 will be:

$$49.112 + 0.750 \text{ dbp} + 0.374 \text{ age} + 2.381 \text{ (indicator of smoke}100 = Yes)$$

So for subject 65867, we'd predict:

$$49.112 + 0.750 (78) + 0.374 (60) + 2.381 (0) = 130.05 \text{ mm Hg}$$

augment for mod_3

```
nh4_aug3 <- augment(mod_3, data = nh4)
nh4_aug3 %>% head(4) %>%
  select(subject, sbp, dbp, age, smoke100, .fitted, .resid) %3
kable()
```

subject	sbp	dbp	age	smoke100	.fitted	.resid
65867	115	78	60	No	130.0450	-15.04496
70046	125	83	55	No	131.9221	-6.92205
64302	98	59	45	No	110.1866	-12.18657
69386	141	68	52	Yes	121.9345	19.06549

Compare mod_2 coefficients to mod_3 via tidy?

Here is mod_2 with 90% confidence intervals:

term	estimate	std.error	conf.low	conf.high
(Intercept)	49.59	3.17	44.37	54.81
dbp	0.75	0.04	0.69	0.82
age	0.38	0.03	0.33	0.43

And here is mod_3, also with 90% confidence intervals:

term	estimate	std.error	conf.low	conf.high
(Intercept)	49.11	3.17	43.90	54.33
dbp	0.75	0.04	0.68	0.82
age	0.37	0.03	0.33	0.42
smoke100Yes	2.38	0.93	0.84	3.92

glance for our 3 models so far

Model mod_1: dbp only

r.squared	adj.r.squared	sigma	AIC	BIC
0.291	0.29	14.4	6542.4	6556.4

Model mod_2: dbp and age

r.squared	adj.r.squared	sigma	AIC	BIC
0.414	0.413	13.1	6391.8	6410.6

and for model mod_3: dbp and age and smoke100

r.squared	adj.r.squared	sigma	AIC	BIC
0.419	0.417	13.1	6387.3	6410.7

Residual Plots for mod_3?

Now, we plan to include the race1 data

Generally, what is measured as race/ethnicity here is more about racism and its impact on health disparities than it is about biological distinctions.

```
nh4 %>% tabyl(race1)

race1 n percent
```

```
Black 122 0.15250
Hispanic 63 0.07875
Mexican 77 0.09625
White 457 0.57125
Other 81 0.10125
```

Today, we'll collapse the data to create two factors here, one comparing White to Non-White, and another using three categories (White/Black/all others.)

Creating the Binary Variable race_white

```
race_white Black Hispanic Mexican White Other
    0 122 63 77 0 81
    1 0 0 0 457 0
```

race_white is a 1/0 numeric variable in R, instead of a factor, but that's fine for use as a predictor in our modeling.

Creating the 3-category Variable race_3cat

We want to retain the two largest categories (White and Black) and then put everyone else into a third category. We can use fct_lump_n to help...

```
nh4 <- nh4 %>%
  mutate(race_3cat = fct_lump_n(race1, n = 2))
nh4 %>% tabyl(race_3cat, race1) # sanity check
```

Change the order in the race_3cat factor?

I'd like to change the order of the categories in race_3cat. There are several ways to do this, for instance, I can sort them by how commonly they occur.

```
nh4 <- nh4 %>%
  mutate(race_3cat = fct_infreq(race_3cat))
nh4 %>% tabyl(race_3cat)
```

```
race_3cat n percent
White 457 0.57125
Other 221 0.27625
Black 122 0.15250
```

That puts White first, then Other, then Black.

What if I want to choose a different order?

I can set the order to anything I like, by hand, with fct_relevel:

```
race_3cat n percent
White 457 0.57125
Black 122 0.15250
Other 221 0.27625
```

I'll go with that order for today.

Working with Factors using forcats

The main fct_ functions I use are:

- fct_lump is used to lump together factor levels into "other"
 - fct_lump_min lumps levels that appear less than min times
 - fct_lump_n lumps all levels except the n most frequent
- fct_recode lets you change the factor levels by hand
- fct_relevel lets you rearrange existing factor levels by hand
- fct_reorder lets you sort the levels based on another variable

but there are many others. Read more about forcats tools at the forcats website at $\frac{https:}{forcats.tidyverse.org}$ which will also link you to the Factors chapter in R for Data Science.

Model mod_4: add race_white as a predictor

```
mod_4 \leftarrow lm(sbp \sim dbp + age + smoke100 + race_white, data = nl mod_4
```

Call:

```
lm(formula = sbp \sim dbp + age + smoke100 + race_white, data = n
```

Coefficients:

-2.4768

```
(Intercept) dbp age smoke100Yes 50.0611 0.7481 0.3842 2.6378 race_white
```

Interpreting the binary predictor (race_white) and its slope

- race white is either 1 or 0 for all subjects ...
 - if subject's race1 was "White", then race_white = 1, and
 - if subject's race1 was anything else, race white = 0

Prediction for subject 65867?

subject	sbp	dbp	age	smoke100	race1	race_white
65867	115	78	60	No	White	1

From Model 4, our predicted sbp for subject 65867 will be:

$$50.061+0.748~\mbox{dbp}+0.384~\mbox{age}+2.638~\mbox{(if smoke}100=\mbox{Yes)}$$
 - $2.477~\mbox{(if race}=\mbox{White})$

So for subject 65867, we'd predict:

$$50.061 + 0.748 \ (78) + 0.384 \ (60) + 2.638 \ (0) \text{ - } 2.477 \ (1) = 128.97 \ \text{mm Hg}$$

augment for mod_4

nh4_aug4 <- augment(mod_4, data = nh4)</pre>

subject	sbp	dbp	age	smoke100	race_white	.fitted	.resid
65867	115	78	60	No	1	128.9862	-13.986234
70046	125	83	55	No	1	130.8060	-5.806014
64302	98	59	45	No	1	109.0098	-11.009802
69386	141	68	52	Yes	0	123.5464	17.453567

Model mod_4 results from tidy and glance

Coefficients for mod_4 with 90% confidence intervals:

term	estimate	std.error	conf.low	conf.high
(Intercept)	50.06	3.18	44.83	55.29
dbp	0.75	0.04	0.68	0.82
age	0.38	0.03	0.34	0.43
smoke100Yes	2.64	0.93	1.10	4.18
race_white	-2.48	0.94	-4.03	-0.92

r.squared	adj.r.squared	sigma	AIC	BIC
0.424	0.421	13	6382.4	6410.5

Residual Plots for mod_4?

mod_5: Using three race/ethnicity categories

```
mod_5 <- lm(sbp ~ dbp + age + smoke100 + race_3cat, data = nh4
mod_5</pre>
```

Call:

```
lm(formula = sbp ~ dbp + age + smoke100 + race_3cat, data = nl
```

Coefficients:

```
      (Intercept)
      dbp
      age

      47.8831
      0.7449
      0.3835

      smoke100Yes
      race_3catBlack
      race_3catOther

      2.5655
      4.7147
      1.2232
```

OK. What's happened here? - What are our three categories for race_3cat? - Why do I only see two of them in the model?

Prediction for subject 65867?

subject	sbp	dbp	age	smoke100	race1	race_3cat
65867	115	78	60	No	White	White

 The referent category here is White, because that's the one left out of the set of indicators in the model. (We have coefficients for the other two race_3cat categories.)

From Model 5, our predicted sbp for subject 65867 will be:

$$47.883 + 0.745 \; dbp + 0.384 \; age + 2.566 \; (if \; smoke100 = Yes) + 4.715 \; (if \; race_3cat = Black) + 1.223 \; (if \; race_3cat = Other)$$

So for subject 65867, we'd predict:

$$47.883 + 0.745$$
 (78) + 0.384 (60) + 2.566 (0) + 4.715 (0) + 1.223 (0) = 129.03 mm Hg

augment for mod_5

nh4_aug5 <- augment(mod_5, data = nh4)</pre>

subject	sbp	dbp	age	smoke100	race_3cat	.fitted	.resid
65867	115	78	60	No	White	128.9984	-13.998435
70046	125	83	55	No	White	130.8056	-5.805603
64302	98	59	45	No	White	109.0921	-11.092071
69386	141	68	52	Yes	Other	122.2697	18.730255

Model mod_5 results from tidy and glance

Coefficients for mod_5 with 90% confidence intervals:

term	estimate	std.error	conf.low	conf.high
(Intercept)	47.88	3.20	42.61	53.15
dbp	0.74	0.04	0.68	0.81
age	0.38	0.03	0.33	0.43
smoke100Yes	2.57	0.93	1.03	4.10
race_3catBlack	4.71	1.33	2.53	6.90
race_3catOther	1.22	1.08	-0.55	3.00

r.squared	adj.r.squared	sigma	AIC	BIC
0.428	0.424	13	6378.7	6411.5

Residual Plots for mod_5?

Glancing at our Five Models

model	preds	r.squared	adj.r.squared	sigma	AIC	BIC
1	dbp	0.291	0.290	14.40	6542.4	6556.4
2	1+age	0.414	0.413	13.10	6391.8	6410.6
3	2+smoke100	0.419	0.417	13.06	6387.3	6410.7
4	$3+$ race_white	0.424	0.421	13.01	6382.4	6410.5
5	3+race_3cat	0.428	0.424	12.97	6378.7	6411.5

Does there appear to be a clear winner here?

Which one does best in our holdout sample?

We started with 989 subjects, and sampled 800 of them. How well do these models do when they are asked to predict the other 189 observations?

```
heldout <- anti_join(nh3_new, nh4, by = "subject") %>%
  select(subject, sbp, dbp, age, smoke100, race1) %>%
  mutate(race white = case when(race1 == "White" ~ 1.
                                     TRUE ~ ()) %>%
  mutate(race_3cat = fct_lump_n(race1, n = 2)) %>%
  mutate(race 3cat =
           fct relevel(race 3cat,
                       "White", "Black", "Other"))
dim(heldout)
```

[1] 189 8

Sanity Checks

```
race_3cat Black Hispanic Mexican White Other
White 0 0 0 101 0
Black 38 0 0 0 0
Other 0 18 17 0 15
```

How does our mod_1 do out of sample?

```
heldout_mod1 <- augment(mod_1, newdata = heldout)
heldout_mod1 %>% select(subject, sbp, .fitted, .resid) %>%
   head() %>% kable()
```

subject	sbp	.fitted	.resid
65956	98	116.0260	-18.026024
71072	101	121.6898	-20.689797
64134	128	132.2082	-4.208233
66879	123	130.5900	-7.590012
66141	122	119.2625	2.737535
71279	147	150.0087	-3.008663

Out-of-sample crude estimate of R-square

In our new sample, the square of the (Pearson) correlation between the observed sbp and the model mod_1 predicted sbp or the .fitted values, will be our estimated R-square.

```
heldout_mod1 %$% cor(sbp, .fitted)
```

[1] 0.4841063

```
heldout_mod1 %$% cor(sbp, .fitted)^2
```

```
[1] 0.2343589
```

OK. So our estimate of the out-of-sample R-square = 0.234 based on this sample.

- How does this compare to our in-sample R-square for mod_1, which was 0.291?
- Or maybe our adjusted R-square for mod_1 which was 0.29?

Create predictions for the other four models

```
heldout_mod2 <- augment(mod_2, newdata = heldout)
heldout_mod3 <- augment(mod_3, newdata = heldout)
heldout_mod4 <- augment(mod_4, newdata = heldout)
heldout_mod5 <- augment(mod_5, newdata = heldout)</pre>
```

R^2 Comparisons for Models 1-5

Model	Predictors	In-sample R ²	In-sample R_{adj}^2	Holdout R ²
mod_1	dbp	0.291	0.29	0.234
mod_2	1 + age	0.414	0.413	0.329
mod_3	2 + smoke100	0.419	0.417	0.33
mod_4	$3 + {\tt race_white}$	0.424	0.421	0.344
mod_5	$3 + race_3cat$	0.428	0.424	0.359

What if we look at the σ values - the residual standard deviations?

σ Comparisons for Models 1-5

Model	Predictors	In-sample σ	Holdout σ
mod_1	dbp	14.4	15.01
mod_2	1 + age	13.1	14.06
mod_3	2 + smoke100	13.06	14.04
mod_4	$3 + {\tt race_white}$	13.01	13.9
mod_5	$3 + {\tt race_3cat}$	12.97	13.73

Looks like our model summaries are just too optimistic?

• What might have tipped us off?