Class materials and assignments: Simple Neural Networks

Objective:

To deepen understanding of neural networks by implementing one from scratch in Python, using the concepts covered in the provided video, slides, and GitHub code sample.

Resources:

- 1. Video Lecture
- 2. Attached slides. [NN week4.pdf]
- 3. GitHub Code Sample
- 4. Article: How Do Neural Networks Really Work?

Tasks:

1. Understanding the Basics:

 Watch the provided video and review the slides and the article to understand the foundational concepts of neural networks, including forward and backward propagation, activation functions, and loss functions.

2. Code Analysis:

 Examine the <u>ann.py</u> and <u>layers.py</u> files from the GitHub repository. Understand how different layers are implemented and how the network is trained.

3. Implementation Challenge:

- Using the concepts and code samples as a guide, implement your own neural network in Python. Your network should include:
 - At least one hidden layer.
 - An activation function of your choice (e.g., ReLU, Sigmoid, Tanh).
 - A loss function (e.g., Mean Squared Error, Binary Cross-Entropy).
- Document your code thoroughly to explain your implementation choices.

4. Experimentation:

- Train your neural network on a simple dataset (e.g., XOR problem, MNIST digits).
- Experiment with different configurations (e.g., number of layers, types of activation functions, learning rates) and observe how they affect the performance of your network.
- 5. **Report**: [100-200 words]
 - Write a report summarizing your findings. Include:
 - An overview of the neural network architecture you implemented.
 - Details of your experimentation process and results.
 - Insights and learnings from the implementation and experimentation phases.
- 6. **Reflection**: [50-150 words]
 - Reflect on the challenges you faced during this assignment and how you overcame them.
 - Discuss how the theoretical concepts from the video and slides were applied in your practical implementation.

Submission:

Submit your Python notebook your model's implementation, experimentations, report and reflection.