Problem Statement: Which model is suitable for given dataset

Importing Packages

In [3]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
```

Data Collection

In [4]:

```
df=pd.read_csv(r"C:\Users\sowmika\Downloads\insurance.csv")
df
```

Out[4]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

Data Cleaning and Preprocessing

In [5]:

df.head()

Out[5]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

In [6]:

df.tail()

Out[6]:

	age	sex	bmi	children	smoker	region	charges
1333	50	male	30.97	3	no	northwest	10600.5483
1334	18	female	31.92	0	no	northeast	2205.9808
1335	18	female	36.85	0	no	southeast	1629.8335
1336	21	female	25.80	0	no	southwest	2007.9450
1337	61	female	29.07	0	yes	northwest	29141.3603

In [7]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):

	`			,
#	Column	Non-l	Null Count	Dtype
0	age	1338	non-null	int64
1	sex	1338	non-null	object
2	bmi	1338	non-null	float64
3	children	1338	non-null	int64
4	smoker	1338	non-null	object
5	region	1338	non-null	object
6	charges	1338	non-null	float64
dtyp	es: float6	4(2),	int64(2),	object(3)

memory usage: 73.3+ KB

```
In [8]:
df.describe()
Out[8]:
                           bmi
                                   children
               age
                                                 charges
 count 1338.000000
                    1338.000000
                                1338.000000
                                             1338.000000
 mean
         39.207025
                      30.663397
                                   1.094918
                                            13270.422265
   std
         14.049960
                      6.098187
                                   1.205493
                                            12110.011237
         18.000000
                      15.960000
                                   0.000000
                                             1121.873900
  min
  25%
         27.000000
                     26.296250
                                   0.000000
                                             4740.287150
  50%
         39.000000
                      30.400000
                                   1.000000
                                             9382.033000
  75%
         51.000000
                      34.693750
                                   2.000000
                                            16639.912515
  max
         64.000000
                      53.130000
                                   5.000000
                                            63770.428010
In [9]:
df.columns
Out[9]:
Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges'], dt
ype='object')
In [10]:
df.shape
Out[10]:
(1338, 7)
Duplicate Values
In [11]:
df.isnull().sum()
Out[11]:
age
             0
             0
sex
              0
bmi
children
             0
```

Data Visualization

0

0

smoker

region (charges dtype: int64

```
In [12]:
df['smoker'].value_counts()
Out[12]:
smoker
       1064
no
        274
yes
Name: count, dtype: int64
In [13]:
df['sex'].value_counts()
Out[13]:
sex
male
          676
female
          662
Name: count, dtype: int64
In [14]:
df['region'].value_counts()
Out[14]:
region
             364
southeast
southwest
             325
northwest
             325
             324
northeast
Name: count, dtype: int64
In [15]:
s=pd.crosstab(df['smoker'],df['sex'])
print(s)
        female
                male
sex
smoker
           547
                 517
no
           115
                 159
yes
```

In [16]:

```
s.plot(kind='bar', stacked=True, color=['lightcoral','LightSeaGreen'],grid=False)
```

Out[16]:

<Axes: xlabel='smoker'>

In [17]:

sns.pairplot(df)

Out[17]:

<seaborn.axisgrid.PairGrid at 0x1f9fc738f40>

In [18]:

```
c=pd.crosstab(df['age'],df['sex'])
print(c)
```

sex	female	male
age		
18	33	36
19	33	35
20	14	15
21	13	15
22	13	15
23	14	14
24	14	14
25	13	15
26	13	15
27	14	14
28	14	14
29	13	14
30	13	14
31	13	14
32	13	13
32 33	13	13
	13	13
34		
35	12	13
36	12	13
37	12	13
38	13	12
39	13	12
40	13	14
41	13	14
42	13	14
43	14	13
44	14	13
45	14	15
46	14	15
47	15	14
48	15	14
49	14	14
50	14	15
51	15	14
52	15	14
53	14	14
54	14	14
55	13	13
56	13	13
57	13	13
58	13	12
59	13	12
60	11	12
61	12	11
62	12	11
62 63	12	11
64	11	11

In [19]:

```
c.plot(kind='line', stacked=False, color=['aquamarine','lightcoral'],grid=False)
```

Out[19]:

<Axes: xlabel='age'>

In [20]:

```
s = {'region':{'northeast':1,'northwest':2,'southwest':3,'southeast':4}}
df = df.replace(s)
print(df)
```

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	3	16884.92400
1	18	male	33.770	1	no	4	1725.55230
2	28	male	33.000	3	no	4	4449.46200
3	33	male	22.705	0	no	2	21984.47061
4	32	male	28.880	0	no	2	3866.85520
						• • •	
1333	50	male	30.970	3	no	2	10600.54830
1334	18	female	31.920	0	no	1	2205.98080
1335	18	female	36.850	0	no	4	1629.83350
1336	21	female	25.800	0	no	3	2007.94500
1337	61	female	29.070	0	yes	2	29141.36030

[1338 rows x 7 columns]

```
In [21]:
S = {'sex':{'female':1,'male':2}}
df =df.replace(S)
print(df)
     age sex
                 bmi
                      children smoker
                                      region
                                                 charges
           1 27.900
a
      19
                            0
                                 yes
                                          3 16884.92400
1
      18
            2 33.770
                                          4 1725.55230
                                 no
            2 33.000
                                          4 4449.46200
2
      28
                           3
                                  no
3
      33
           2 22.705
                            0
                                  no
                                          2 21984.47061
4
                           0
      32
           2 28.880
                                         2 3866.85520
                                no
                                 . . .
          2 30.970
                                         2 10600.54830
      50
                           3
1333
1334
      18
           1 31.920
                            0
                                no
                                          1 2205.98080
                           0
                                         4 1629.83350
1335
      18
           1 36.850
                                 no
      21
           1 25.800
                           0
                                         3 2007.94500
1336
                                 no
                                          2 29141.36030
           1 29.070
                           0
1337
      61
                                 yes
[1338 rows x 7 columns]
In [22]:
x = df.drop('smoker',axis=1)
y = df['smoker']
```

Linear Regression

```
In [25]:
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_state=40)
x_train.shape,x_test.shape
Out[25]:
((936, 6), (402, 6))
```

Logistic Regression

```
In [27]:
```

```
from sklearn.linear_model import LogisticRegression
lr=LogisticRegression()
lr.fit(x_train,y_train)
print(lr.score(x_test,y_test))
```

0.9378109452736318

Decision Tree

```
In [28]:
```

```
from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier(random_state=0)
clf.fit(x_train,y_train)
score = clf.score(x_test,y_test)
print(score)
```

0.9601990049751243

RandomForestClassifier

```
In [29]:
```

```
from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
print(rfc.score(x_test,y_test))
```

0.9626865671641791

```
In [30]:
```

```
params={'max_depth':[2,5,10,20,25],'min_samples_leaf':[5,20,30,50,100,200],'n_estimators
```

In [31]:

```
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(estimator=rfc,param_grid=params,cv=2,scoring='accuracy')
grid_search.fit(x_train,y_train)
```

Out[31]:

```
► GridSearchCV
► estimator: RandomForestClassifier
► RandomForestClassifier
```

In [32]:

```
grid_search.best_score_
```

Out[32]:

0.9497863247863247

In [33]:

```
rfc_best = grid_search.best_estimator_
```

In [34]:

```
from sklearn.tree import plot_tree
plt.figure(figsize = (90,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['yes','no'],fille
```

Out[34]:

```
[Text(0.5, 0.9, 'charges <= 15835.247\ngini = 0.322\nsamples = 583\nvalue</pre>
= [747, 189] \setminus class = yes'),
    Text(0.25, 0.7, 'children <= 0.5 / ngini = 0.023 / nsamples = 428 / nvalue = [6]
88, 8]\nclass = yes'),
    Text(0.125, 0.5, 'age <= 20.5\ngini = 0.045\nsamples = 171\nvalue = [256,
6]\nclass = yes'),
    Text(0.0625, 0.3, 'gini = 0.172\nsamples = 40\nvalue = [57, 6]\nclass = y
     Text(0.1875, 0.3, 'gini = 0.0\nsamples = 131\nvalue = [199, 0]\nclass = y
es'),
    Text(0.375, 0.5, 'bmi \le 22.8 \setminus 9.009 \setminus 9.57, 'bmi \le 22.8 \setminus 9.009 \setminus 9.57, 'bmi \le 22.8 \setminus 9.009 \setminus 9.009
2]\nclass = yes'),
    Text(0.3125, 0.3, 'gini = 0.121 \setminus samples = 20 \setminus value = [29, 2] \setminus class = v
es'),
     Text(0.4375, 0.3, 'gini = 0.0\nsamples = 237\nvalue = [403, 0]\nclass = y
es'),
    Text(0.75, 0.7, 'sex <= 1.5\ngini = 0.371\nsamples = 155\nvalue = [59, 18]
1]\nclass = no'),
    Text(0.625, 0.5, 'charges <= 36739.508\ngini = 0.453\nsamples = 68\nvalue
= [33, 62]\nclass = no'),
    Text(0.5625, 0.3, 'charges <= 24310.002\ngini = 0.5\nsamples = 48\nvalue
= [33, 35]\nclass = no'),
     Text(0.5, 0.1, 'gini = 0.469 \setminus samples = 26 \setminus gini = [12, 20] \setminus samples = n
ο'),
    Text(0.625, 0.1, 'gini = 0.486 \setminus samples = 22 \setminus general = [21, 15] \setminus general = y
    Text(0.6875, 0.3, 'gini = 0.0\nsamples = 20\nvalue = [0, 27]\nclass = n
ο'),
    Text(0.875, 0.5, 'charges <= 32008.665\ngini = 0.294\nsamples = 87\nvalue
= [26, 119]\nclass = no'),
     Text(0.8125, 0.3, 'gini = 0.489 \setminus samples = 38 \setminus samples = [26, 35] \setminus samples = 38 \setminus samples = [26, 35] \setminus samples = [36, 36] \setminus sample
    Text(0.9375, 0.3, 'gini = 0.0 \setminus samples = 49 \setminus e = [0, 84] \setminus e = n
o')]
```


In [35]:

```
plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[7],feature_names=x.columns,class_names=['yes','no'],fille
```

Out[35]:

```
es = 591\nvalue = [730, 206]\nclass = yes'),
  Text(0.18181818181818182, 0.7, 'charges <= 12822.45\ngini = 0.021\nsample
s = 427 \setminus e = [662, 7] \setminus e = yes'),
  Text(0.09090909090909091, 0.5, 'gini = 0.0 \nsamples = 397 \nvalue = [624, ]
0]\nclass = yes'),
 Text(0.2727272727272727, 0.5, 'gini = 0.263\nsamples = 30\nvalue = [38,
7]\nclass = yes'),
 Text(0.54545454545454, 0.7, 'region <= 1.5\ngini = 0.38\nsamples = 164
\nvalue = [68, 199]\nclass = no'),
 Text(0.45454545454545453, 0.5, 'gini = 0.49\nsamples = 35\nvalue = [25, 3
3]\nclass = no'),
 Text(0.6363636363636364, 0.5, 'age <= 44.5 \ngini = 0.327 \nsamples = 129 \
value = [43, 166]\nclass = no'),
  Text(0.45454545454545453, 0.3, 'charges <= 30255.873\ngini = 0.203\nsampl
es = 74\nvalue = [14, 108]\nclass = no'),
  Text(0.363636363636365, 0.1, 'gini = 0.366\nsamples = 35\nvalue = [14,
44]\nclass = no'),
  Text(0.54545454545454, 0.1, 'gini = 0.0\nsamples = 39\nvalue = [0, 64]
\nclass = no'),
  Text(0.81818181818182, 0.3, 'charges <= 38318.064\ngini = 0.444\nsample
s = 55\nvalue = [29, 58]\nclass = no'),
  Text(0.72727272727273, 0.1, 'gini = 0.491 \setminus samples = 33 \setminus samples = [29, 2]
2]\nclass = yes'),
  Text(0.9090909090909091, 0.1, 'gini = 0.0\nsamples = 22\nvalue = [0, 36]
\nclass = no')]
```


In [36]:

```
rfc_best.feature_importances_
```

Out[36]:

```
array([0.02957835, 0.00478561, 0.02999727, 0.00681847, 0.00549181, 0.92332849])
```

```
In [37]:
```

```
imp_df = pd.DataFrame({"Varname":x_train.columns,'Imp':rfc_best.feature_importances_})
imp_df.sort_values(by='Imp',ascending=False)
```

Out[37]:

	Varname	Imp
5	charges	0.923328
2	bmi	0.029997
0	age	0.029578
3	children	0.006818
4	region	0.005492
1	sex	0.004786

In [38]:

```
df['bmi'].value_counts()
```

Out[38]:

```
bmi
32.300
          13
28.310
           9
30.495
           8
30.875
           8
31.350
           8
           1
46.200
23.800
           1
44.770
           1
32.120
           1
30.970
           1
Name: count, Length: 548, dtype: int64
```

conclusion:-

```
Based dataset We conclude that male smoker are high compared to female smokers.we conclude that "Logistc regression" is the best model for the given data set
```

In [39]:

```
import pickle
```

In [40]:

```
filename="Insurance prediction"
pickle.dump(lr,open(filename,'wb'))
```

In []:		