Einfürung in die Algebra Hausaufgaben Blatt Nr. 7

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: December 20, 2023)

- **Problem 1.** (a) Eine Gruppe *G* der Ordnung 21 operiere auf einer Menge *M* mit 11 Elementen. Zeigen Sie, dass diese Operation eine Bahn der Länge 1 besitzt.
 - (Ist $\{m\} \subseteq M$ eine solche einelementige Bahn, dann gilt g.m = m für alle $g \in G$. Jedes $g \in G$ fixiert also m. Man nennt m daher auch einen Fixpunkt der Operation.)
 - (b) Sei $G := GL(2,\mathbb{C})$ die Gruppe der invertierbaren komplexen (2×2) -Matrizen und M die Menge aller komplexen (2×2) -Matrizen, die nur reelle Eigenwerte besitzen. Dann operiert G per Konjukation auf M. (Dies brauchen Sie nicht zu zeigen.) Geben Sie ein Repräsentantensystem der Bahnen der Operation an)
- Proof. (a) Wir schreiben die Klassengleichung

$$|M|=\sum_{i=1}^r [G:G_m].$$

Jeder Term im Summe ist eine Teiler von 21, also 1,3,7 oder 21. Die Operation besitzt eine Bahn der Länge 1 genau dann, wenn 1 zumindest einmal vorkommt. Wir schreiben die mögliche Summen:

$$11 = 1 \times 11$$

 $11 = 3 + 1 \times 8$
 $11 = 3 \times 2 + 1 \times 5$
 $11 = 3 \times 3 + 1 \times 2$
 $11 = 7 + 1 \times 4$
 $11 = 7 + 3 + 1$

Weil 1 immer vorkommt, gibt es immer eine Bahn der Länge 1.

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

(b) Konjukation ist genau eine Ähnlichkeitstransformation. Trotz der Aufgabenstellung brauchen wir noch die Eigenschaften.

Lemma 1. Sind zwei Matrizen A und B ähnlich, dann haben sie dieselben Eigenwert.

Proof. Sei $A=Q^{-1}BQ$. Sei außerdem v ein Eigenvektor von A mit Eigenwert λ . Es gilt QA=BQ und

$$QAv = Q\lambda v = \lambda(Qv)$$
$$=BQv = B(Qv)$$

also Qv ist ein Eigenvektor von B mit Eigenwert λ . Wir können die Rollen von A und B vertauschen, um die andere Richtung zu zeigen.

Remark 2. Die Umkehrrichtung gilt nicht immer. Es gilt wenn die Matrizen diagonalisierbar sind.

Es folgt sofort: Wenn zwei Matrizen in der gleichen Bahn liegen, haben die die gleichen Eigenwerte. Wenn die Matrizen nicht diagonaliserbarsind, schreiben wir die in Jordan-Normalform. Daraus ergibt sich ein Repräsentantensystem der Bahnen:

$$\left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} | a, b \in \mathbb{R} \right\} \cup \left\{ \begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix} | a \in \mathbb{R} \right\}.$$

Problem 2. Von der endlichen Gruppe G sei bekannt, dass sie nicht abelsch ist und zu jedem positiven Teiler t von |G| mindestens eine Untergruppe der Ordnung t besitzt. Zeigen Sie, dass G nicht einfach ist. (Hinweis: Sei p die kleinste Primzahl, die |G| teilt, und G eine Untergruppe von G vom Index G0. Lassen Sie G0 auf den Nebenklassen von G0 operieren und betrachten Sie den Kern des zugehörigen Homomorphismus.)

Problem 3. Benutzen Sie die Beweisidee aus Korollar 2.79, um folgende Aussage zu zeigen: Seien p eine Primzahl, $n \in \mathbb{N}^*$, G eine Gruppe der Ordnung p^n und $\{e\} < N \subseteq G$ ein nicht-trivialer Normalteiler von G. Dann gilt $|Z(G) \cap N| > 1$.

Problem 4. Die Gruppe G operiere auf einer Menge M. Sei $\Phi: G \to \operatorname{Sym}(M)$ der zugehörige Homomorphismus und K sein Kern. Zeigen Sie, dass durch die Abbildung

$$G/K \times M \rightarrow M$$
, $gK.m := g.m$

eine treue Operation von G/K auf M gegeben ist.

Proof. Wir schreiben noch einmal die Klassengleichung:

$$|G| = |Z(G)| + \sum_{i=1}^{r} [G : C_G(x_i)].$$

Als Normalteiler ist N eine Vereinigung von Konjugationsklassen. Wir nehmen die solchen Konjugationsklassen raus, und schreibe stattdessen

$$|G| = |Z(G)| + [G:N] + \sum_{i=1}^{r'} [G:C_G(x_i)].$$

Proof. Wir zeigen zuerst, dass es wohldefiniert ist. Sei $k_1, k_2 \in K$ und $m \in M$. Es gilt

$$gk_1.m = \Phi(gk_1)(m)$$

$$= \Phi(g)(\Phi(k_1)(m))$$

$$= \Phi(g)(e(m))$$

$$= \Phi(g)(m)$$

$$= g.m$$

und ähnlich für $gk_2.m=g.m$. Sei jetzt $g_1,g_2\in G$, so dass $g_1K.m=g_2K.m$ für alle $m\in M$. Dann ist

$$g_2^{-1}g_1.m = m$$

für alle $m \in M$ oder $g_2^{-1}g_1 \in K$. Daraus folgt: g_1 und g_2 liegen in der gleichen Nebenklasse.