深層生成モデルの理論と応用

福水 健次

統計数理研究所 / Preferred Networks

第5回 統計・機械学習若手シンポジウム 2020年12月3日

深層学習の隆盛

AlphaGo/AlphaZero

自然言語処理

Bert [Devlin et al 2019]

画像生成

Glow [Kingma and Dhariwal, NeurlPS2018]

画像変換

Style GAN [Zhu, Park, Isola, and Efros ICCV2017.]

深層生成モデルの発展:顔画像

2014 (Goodfellow et al)

2015

2016

2017 (Karas et al ProgressiveGAN)

2018 (Karas et al StyleGAN)

今日の内容

1. 統計的推論から見た深層生成モデル

- 2. 深層生成モデルの理論的考察
 - -- GANの安定性に関する理論解析 --

統計的推論

統計的推論:データの背後にある確率分布に関する推論

「確率分布」をどう表現するか?

- ・確率密度関数による表現
 - パラメータ族 $f(x;\theta)$
 - カーネル密度推定 $\hat{p}_h(x) = \frac{1}{N} \sum_i k_\sigma(x X_i)$
- ・サンプル表現
 - 重み付き粒子表現: e.g. Particle filter
 - カーネル平均: グラム行列による推論
- 生成モデルによる表現

生成モデル

生成モデル: ある確率分布に従うサンプル X の生成過程のモデル

• Explicit generative model: 密度関数で記述する. e.g. グラフィカルモデル

$$X \sim p(x;\theta)dx$$

• Implicit generative model: 潜在変数 $Z \sim Q$ (e.g. 標準正規分布) からの写像として表現.

$$X = f(Z; \theta), \qquad Z \sim Q$$

• 深層生成モデル: $f(z;\theta)$ として深層ニューラルネットを使う. 一般に密度関数は書けない

生成モデルの学習

- 分布を近くすればよい
 - d: 分布の相違をはかる尺度
 - f-divergence $\rightarrow f$ -GAN (Nowozin et al NIPS2016)
 - Wasserstein距離
 - → Wasserstein-GAN

 (Arjovsky et al ICLR2017)
 - MMD (カーネル法)
 - → MMD-GAN

(Li et al NIPS2017; Binkowski et al ICLR2018)

GAN: Generative Adversarial Networks

(Goodfellow et al 2014)

• 分布の距離:Jensen-Shannon divergence $JS(p_D, p_w) = KL(p_D || (p_D + p_\theta)/2)$ $+KL(p_{\theta}||(p_{D}+p_{\theta})/2)$

• Generator:分布間距離の最小化
$$\min_{f_{ heta}} JS(p_D,p_{ heta})$$

 p_D : データ(真)の密度関数 p_{θ} : 生成モデルの密度関数 $X = f_{\theta}(Z)$

• Discriminator: JS-div.は計算困難 → 識別問題に還元

$$JS(p_D, p_\theta) = \sup_{D(x): DNN}$$

$$JS(p_D, p_\theta) = \sup_{D(x): DNN} E_{Y \sim p_D}[\log D(Y)] - E_{X = f_\theta(Z)}[\log(1 - D(X))] + const.$$

$$D(x) \coloneqq \frac{p_D(x)}{p_D(x) + p_{\theta}(x)}$$
が最適

サンプラーとみなす

• 高性能サンプラー

- サンプリングによる 統計的推論に使おう
- 特に高次元が得意か?

Generated by http://www.whichfaceisreal.com/ (StyleGAN) by Jevin West and Carl Bergstrom, U. Washington

Figure 5: Images generated with U-Net GAN trained on COCO-Animals with resolution 128×128 .

U-Net GAN [Schönfeld et al CVPR2020]

GANによる統計的推論

例1) 生成モデルのモデル選択: 生成モデルを学習し、データへの適合度をみる. → 因果推論の例

例2) ベイズ推論: 事後確率を生成モデルで実現 > 尤度なし推論の例

深層生成モデルによる因果方向推定

Causal Generative Neural Networks (CGNN, Goudet et al 2017)

Data:
$$\mathbf{X} = \{(X_1^i, X_2^i)\}_{i=1}^m$$

生成モデル(A), (B)をMMDにより学習(GMMN).
モデルのデータへの適合度によって向きを判定

• Fitting:

(A) の場合:
$$(X_1, \hat{X}_2^A) = (X_1, f(X_1, Z)), Z \sim N(0,1)$$
 $\hat{\mathbf{X}}^A = \{(X_1^i, \hat{X}_2^{i,A})\}_{i=1}^m$ $MMD_{emp}(\mathbf{X}, \hat{\mathbf{X}}^A)$ を目的関数に用いる

• 向きの判定

If
$$MMD_{emp}(\mathbf{X}, \widehat{\mathbf{X}}^A) \leq MMD_{emp}(\mathbf{X}, \widehat{\mathbf{X}}^B) \rightarrow$$
 choose (A) Else choose (B).

- データ駆動の因果推論:Meta-CGNN (Ton, Sejdinovic, Fukumizu. AAAI 2021)
 - Meta-leaning への拡張:N個ののcause-effect データセット $\mathcal{D}_i = \{(X_j^i, Y_j^i)\}_{i=1}^{m_i} \ i = 1, ..., N \quad 因果 X^i \to Y^i.$

J.-F. Ton (Oxford)

- $\hat{Y}_j^i = F(X_j^i, Z_j^i, C_i)$ Datasetに共通の生成モデル F を作る. $C_i = \Phi(\mathcal{D}_i)$: Dataset feature. \mathcal{D}_i の同時分布を表す特徴
- 向きの判定: $(\mathbf{X}_{test}, \hat{\mathbf{Y}}_{test})$ と $(\mathbf{Y}_{test}, \hat{\mathbf{X}}_{test})$ の適合度を比較.

• Tuebingen Cause Effect Pair データベース(99データセット)

深層生成モデルによるBayes推論

Beyes推論

$$q(\theta|y) = \frac{p(y|\theta)\pi(\theta)}{\int p(y|\theta)\pi(\theta)d\theta}$$

大問題「どう計算するか?」

- サンプリング: Markov Chain Monte Carlo (MCMC), Sequential MC /粒子法, ...
- 近似計算: Laplace近似,変分ベイズ,etc
- → 深層生成モデルを使う. 特に, 尤度が陽にかけないケースに焦点をあてる(近似ベイズ計算, ABC) Tran et al NIPS 2017; Yang et al. NeurIPS2018.

生成モデルによるベイズ推論

仮定:Likelihood-free, $p(y|\theta)$ が陽にかけない

• 同時分布の比較

$$p(\theta, y) = p(y|\theta)\pi(\theta)$$
$$q(\theta, y) \coloneqq q(\theta|y)p(y), \ p(y) = \int p(y|\theta)\pi(\theta)d\theta$$

 $p(\theta, y) = q(\theta, y)$ ならば $q(\theta|y)$ は事後確率

サンプリング ← Likelihood-free

$$p(\theta, y)$$
: $\theta_i \sim \pi(\theta)d\theta$,
 $y_i \sim p(y|\theta_i)dy$

$$q(\theta, y)$$
: $\tilde{\theta}_i = f_w(y_i, z_i)$, 深層生成モデル $z_i \sim p_0(z)dz$ (ガウスなど)

変分ベイズ ≒ GAN

Likelihood-Free Variational Inference (Tran, Ranganath, Blei, NIPS2017)

• 変分Bayes:事後確率の有力な近似手法

$$\log p(y) = \log \int p(y|\theta)\pi(\theta)d\theta \qquad q(y,\theta) = q(\theta|y)p(y) により定義$$

$$\geq \int q(\theta|y)\log \frac{p(y,\theta)}{q(y,\theta)}d\theta + \log q(y) \qquad \text{(ELBO)}$$

 $q(\theta|y)$ は任意の分布.等号成立 $\Leftrightarrow q(\theta|y) = p(\theta|y)$ ELBOを最大にする $q(\theta|y)$ によって事後確率を近似する

- $p(y|\theta)$ の関数形は陽に書けない \rightarrow サンプリング
- $q(\theta|y)$: 生成モデルで表現 $\rightarrow \theta = f_w(y), y \sim p(y)$ によりサンプリング

• $\log \frac{p(\theta,y)}{q(\theta,y)}$ の推定 \rightarrow GANのDiscriminatorにより可能

命題 識別問題

$$\max_{r} E_{p(y,\theta)} \left[\log \sigma \left(r(Y,\theta) \right) \right] - E_{q(y,\theta)} \left[\log \left(1 - \sigma \left(r(Y,\theta) \right) \right) \right] \qquad \sigma(t) = \frac{1}{1 + e^{-t}}$$

の解は
$$r_{opt}(y,\theta) = \log \frac{p(y,\theta)}{q(y,\theta)}$$

 $r(y, \theta)$ をDNNで構成

• Generator: 変分Bayes (max ELBO) $\max_{q:\theta=f_{w}(y^{*},z)}\int q(\theta|y^{*})r(y^{*},\theta)d\theta$

y*: 観測値

近似Bayes推論(ABC)における比較

Lotka-Volterra Predator-Prey Simulator

$$\frac{dx_1}{dt} = \beta_1 x_1 - \beta_2 x_1 x_2 + \epsilon_1
\frac{dx_2}{dt} = -\beta_1 x_2 + \beta_3 x_1 x_2 + \epsilon_2$$

$$\epsilon_1, \epsilon_2 \sim N(0, 10)$$

[Tran et al NIPS2017]

Simulation-based inference

高次元データの場合は?GANの特長を活かせるか?

• 時系列構造を使えるか? シミュレータは(確率)微分方程式のことが多い.

GANの安定性に関する理論解析

Casey Chu
Stanford U.
Preferred Networks Inern.

Kentaro Minami Preferred Networks, Inc.

C. Chu, K. Minami, K. Fukumizu (2020) Smoothness and Stability in GANs ICLR 2020

GANの学習は難しい

• Mode collapse いくつかの山が再現されない

• Non-convergence / divergence 最小化ではなく均衡点を見つけたい.

 勾配消失 (Arjovsky & Bottou ICLR 2017)
 オリジナルのGANではdiscriminator が強いと, generatorの勾配が消えやすい. (後述)

目的:安定化の技法はなぜ有効か?

- GAN安定化の技法
 - ・ 距離関数の選択
 - Wasserstein距離 (Arjovsky et al. ICML2017)
 - 正則化
 - Gradient penalty (Gulrajani et al. NIPS2017)
 - Spectral normalization (Miyato et al. ICLR2018)

Discriminator の正則化

研究の目的: Generatorの学習の観点から,これら安定化技 法の意味を理論的に明らかにする.

分布間の距離関数とGAN

- •いろいろなGAN: 距離(ダイバージェンス)の選択により定まる
 - オリジナルGAN (Goodfellow et al 2014): Jensen-Shannon divergence $JSD(P_D, P_\theta) \coloneqq \frac{1}{2} KL(P_D||P_m) + \frac{1}{2} KL(P_\theta||P_m), \quad P_m \coloneqq \frac{P_D + P_\theta}{2}.$
 - Non-saturating GAN (NS-GAN) (Goodfellow et al 2014) $\frac{1}{2}KL(P_m||P_D)$
 - f-GAN (Nowozin et al 2016): f-divergence $D_f(P_D||P_\theta)\coloneqq\int dP_\theta f\left(\frac{p_D}{p_\theta}\right) \qquad f$: convex, f(1)=0 オリジナルGANなどが含まれる広い定式化.

• Wasserstein GAN: 1-Wasserstein距離 (Arjovsky et al. ICML2017)

$$W_1(P_D, P_\theta) = \sup_{\varphi: ||\varphi||_{Lip} \le 1} \int \varphi(x) dP_D(x) - \int \varphi(x) dP_\theta(x)$$

$$\|\varphi\|_{Lip} := \inf\{L > 0 \mid |\varphi(x) - \varphi(y)| \le L\|x - y\|\}$$

 φ : critic (φ_{opt} : Kantorovich potential).

Generative Moment Matching Network (Li et al. 2015) / MMD-GAN (Li et al. NIPS2017) MMD: Maximum Mean Discrepancy (Gretton et al. 2005).

多くの場合,

$$\sup_{k \in \mathcal{K}} MMD_k^2(P_D, P_\theta)$$

$$\mathcal{K}$$
:カーネルの族, e.g., $k(g_{\xi}(x), g_{\xi}(y)), g_{\xi}(x)$: NN

陽に計算できる!(Discriminator不要)

安定化手法

- (1) Wasserstein GAN (Arjovsky et al ICML 2017)
 - 勾配消失:
 JS-ダイバージェンス (ロジスティック回帰)の性質としてgeneratorの微分は消失しやすい。
 - Wasserstein-GAN は $||\varphi||_{Lip} \le 1$ の制約によりそれを防ぐ.
 - Weight clipping: 実際は、 $\|\eta\|_{\infty} \le c$ の制約を持つ ニューラルネット $h_{\eta}(y)$ で代用.

Example 1 in Arjovsky et al ICML 2017

Original GANの目的関数(discriminator固定 $h_{\eta_*}(y)$)

$$\sum_{i} \log \sigma \left(h_{\eta_*}(Y_i) \right) + \sum_{j} \log \left(1 - \sigma \left(h_{\eta_*} \left(f_{\theta}(Z_j) \right) \right) \right) =: F(\theta)$$

Generatorの勾配: $\nabla_{\theta} F(\theta)$

$$= -\sum_{j} \sigma \left(h_{\eta_{*}} \left(f_{\theta}(Z_{j}) \right) \right) \nabla_{x} h_{\eta_{*}} \left(f_{\theta}(Z_{j}) \right) \nabla_{\theta} f_{\theta}(Z_{j}).$$

Discriminatorの入力に関する微分

- (2) Gradient penalty (Gulrajani et al. NIPS2017)
 - 最適なcritic φ^* の勾配は、区分的線形に近い単純な形をとることが多い。

Gradient penalty

$$\min_{\varphi} \int \varphi(x) dP_D(x) - \int \varphi(x) dP_{\theta}(x) + \lambda \int (\|\nabla \varphi(\hat{x})\|_2 - 1)^2 dQ(\hat{x})$$

 $\|\nabla \varphi(\hat{x})\|_2 = 1$ となる正則化をおいて勾配消失を防ぐ

(3) Spectral normalization (Miyato et al ICLR2018)

第k層のdiscriminator: $y_k = \psi_k(W_k y_{k-1})$ (k = 1, ..., L)活性化関数 ψ_k は1-Lipschitzと仮定(e.g. ReLU). 重みを正規化

$$\widetilde{W} = \frac{W}{\sigma(W)}$$
 $\sigma(W)$: W の最大特異値

→ Discriminator $h_{\eta}(x)$ は1-Lipschitzになる.

確率分布の学習としてのGAN

確率分布の学習:

符号付測度 $\mathcal{M}(X)$:ベクトル空間を考えたい

J: 符号付測度 $\mathcal{M}(X)$ 上定義された凸な損失関数

$$\min_{\theta} J(P_{\theta})$$

例)

- オリジナルGAN: $J(P_{\theta}) = JSD(P_D, P_{\theta})$ (Jensen-Shannon divergence)
- Wasserstein GAN: $J(P_{\theta}) = W_1(P_D, P_{\theta})$ (Wasserstein distance)
- GMMN: $J(P_{\theta}) = \|E_{P_{\theta}}[k(\cdot, X)] E_{P_{D}}[k(\cdot, Y)]\|_{H_{k}}^{2}$

• 双対表現 (*f*-GAN, Nowozin et al 2016)

定義域 $\mathcal{M}(X)$ (符号付測度). 双対空間 = C(X) (連続関数の空間)

$$J(\mu) = \sup_{\varphi \in C(\mathcal{X})} \int \varphi(x) d\mu(x) - J^*(\varphi) \qquad J^*: 凸共役関数$$

$$\inf_{P \in \mathcal{P}(X)} J(P) = \inf_{P \in \mathcal{P}(X)} \sup_{\varphi \in C(X)} \int \varphi(x) dP(x) - J^*(\varphi)$$

敵対的学習

Discriminator φ の学習は双対表現から来る

仮定 (最適識別性):

任意のgenerator μ に対し、最適なdiscriminator $\Phi_{\mu}(x)$ が得られると仮定する.

$$J(\mu) = \int \Phi_{\mu}(x) d\mu(x) - J^{*}(\Phi_{\mu})$$

この仮定の下, μ の勾配学習の性質を調べる.

• 例

	Loss function	Optimal discriminator $\Phi_{\mu}(x)$
Original GAN	$D_{JS}(\mu \mu_0)$	$\frac{1}{2}\log\frac{\mu(x)}{\mu(x)+\mu_0(x)}$
Non-saturating GAN	$D_{KL}(\frac{1}{2}\mu + \frac{1}{2}\mu_0 \mu_0)$	$\frac{1}{2}\log\frac{\mu(x)}{\mu(x)+\mu_0(x)}$
Wasserstein GAN	$W_1(\mu,\mu_0)$	$\arg\max_{f\in\operatorname{Lip}_1} E_{\mu}[f(Y)] - E_{\mu_0}[f(X)]$
GMMN, MMD-GAN	$\frac{1}{2} MMD^2(\mu, \mu_0)$	$E_{\mu}[K(x,Y)] - E_{\mu_0}[K(x,X)]$

勾配学習の安定性

Def. (*L*-平滑性)

L>0. 微分可能な関数 $F: \mathbb{R}^p \to \mathbb{R}$ が L-平滑 であるとは、任意のx,y に対して

$$\|\nabla F(x) - \nabla F(y)\|_2 \le L\|x - y\|$$

が成り立つことをいう. ∇F が L-Lipschitz であることと同値.

以下の有名な事実が理論のコア.

命題(安定性の十分条件)

 $F: \mathbf{R}^p \to \mathbf{R}$ が L-smooth かつ下に有界とする. 点列 $(x_n)_{n=1}^{\infty}$ を

$$x_{n+1} \coloneqq x_n - \frac{1}{L} \nabla F(x_n)$$
 [勾配法. 1/L:学習係数]

で定めるとき、 $\|\nabla F(x_n)\| \to 0 \quad (n \to \infty)$.

- L-平滑性は,安定性の十分条件.
- 極限 x_{∞} が存在すれば、それは安定点.

GAN学習の安定性

 ω : \mathcal{Z} 上の確率. f_{θ} : $\mathcal{Z} \to \mathcal{X}$ generatorの族. P_{θ} : f_{θ} により ω :から誘導される確率分布 $P_{\theta} = f_{\theta \#} \omega$

定理1 (GANの安定性. Chu, Minami, Fukumizu. ICLR 2020)

 $J:\mathcal{M}(\mathcal{X}) \to \overline{\mathbf{R}} \coloneqq \mathbf{R} \cup \{+\infty\}$ 凸な損失関数. $\Phi_{\mu}: \mathcal{X} \to R$ 最適な識別関数

仮定

(D1-D3) がgeneratorの学習に どのように影響するかを見る.

(D1) $x \mapsto \Phi_{\mu}(x)$: α -Lipschitz $\forall \mu$

最適なdiscriminatorに関する条件

(D2) $x \mapsto \nabla_x \Phi_{\mu}(x)$: β_1 -Lipschitz $\forall \mu$

(D3) $\mu \mapsto \nabla_x \Phi_{\mu}(x)$: 1-Wasserstein距離に関して β_2 -Lipschitz $\forall x$

(G1) $\theta \mapsto f_{\theta}(z)$: 期待値に関して A-Lipschitz. i.e. $E_{z\sim\omega}[\|f_{\theta_1}(z) - f_{\theta_2}(z)\|] \le A\|\theta_1 - \theta_2\|$

(G2) $\theta \mapsto D_{\theta} f_{\theta}(z)$: 期待値に関して B-Lipschitz, i.e. $E_{z \sim \omega}[\|D_{\theta} f_{\theta_1}(z) - D_{\theta} f_{\theta_2}(z)\|] \leq B\|\theta_1 - \theta_2\|$

generator familyに関する条件

このとき, $\theta \mapsto J(P_{\theta})$ は L-平滑. $(L = \alpha B + A^2(\beta_1 + \beta_2)) \rightarrow$ 収束 (勾配→0)

問題1: どのGANが(D1)-(D3)を満たすか?

問題2: 一般の損失関数に対し、(D1)-(D3)をどのように保証するか?

Q1に対する回答:

	(D1)	(D2)	(D3)
Original GAN	X	X	X
NS-GAN	X	X	X
W-GAN		X	?
MMD-GAN	*		

(D1) $x \mapsto \Phi_{\mu}(x)$: α -Lipschitz

(D2) $x \mapsto \nabla_x \Phi_{\mu}(x)$: β_1 -Lipschitz

(D3) $\mu \mapsto \nabla_x \Phi_{\mu}(x)$: 1-Wasserstein 距離に関して β_2 -Lipschitz

^{*} Lipschitz定数αが次元に依存する.

Inf-Convolution

Def. Inf-convolution

V: ベクトル空間. $F,G:V \to \overline{\mathbf{R}}$. $F \succeq G \circ \text{Infimum convolution}$:

$$(F \oplus G)(x) \coloneqq \inf_{y \in V} F(y) + G(x - y)$$

命題.

- [可換律] $F \oplus G = G \oplus F$
- [結合律] $(F \oplus G) \oplus H = F \oplus (G \oplus H)$
- Inf-conv は最小点を変えない。

例: Moreau envelop $F^{\beta}(x) = F \oplus \frac{1}{2\beta} \|\cdot\|_2^2$

命題. $J,R: \mathbf{R}^d \to \overline{\mathbf{R}}$: proper, lower semi continuous, $\min J$ が存在し $\min J > -\infty$. R(0) = 0, 狭義増加関数 $\psi: [0,\infty) \to \mathbf{R}$ があって $R(x) \ge \psi(\|x\|_2)$ と仮定. このとき, $\min J \oplus R = \min J$ かつ $\arg \min J \oplus R = \arg \min J$.

微分可能で β-平滑

Inf-convolutionの共役

<u>復習: 凸共役</u> 凸関数 J に対し $J^*(z) \coloneqq \sup_{x} \langle x, z \rangle - J(x)$.

<u>命題.</u> 凸関数JとRに対し inf-convolution $J \oplus R$ は凸であり,共役に関して

$$(J \oplus R)^*(z) = J^*(z) + R^*(z)$$

$$(J \bigoplus R)^*(z) = \sup_{x} \langle x, z \rangle - J \bigoplus R(x)$$

$$= \sup_{x} \langle x, z \rangle - \inf_{y} \{J(x - y) + R(y)\}$$

$$= \sup_{x} \sup_{y} \{\langle x, z \rangle - J(x - y) - R(y)\}$$

$$= \sup_{y} \sup_{x} \{\langle x - y, z \rangle - J(x - y)$$

$$+ \langle y, z \rangle - R(y)\}$$

$$= \sup_{y} J^*(z) + \langle y, z \rangle - R(y)$$

$$= J^*(z) + R^*(z)$$

Generatorの目的関数の改変

目的:Discriminatorに対する条件(D1)-(D3)を満たすようにしたい

提案法:Generatorの目的関数を変更

$$\tilde{J}(\mu) := (J \oplus R_1 \oplus R_2 \oplus R_3)(\mu)$$

*R*₁, *R*₂, *R*₃ は後で定める

Discriminatorの目的関数:

$$\inf_{\mu} \tilde{J}(\mu) = \inf_{\mu} \sup_{h \in C(\mathcal{X})} \int h(x) d\mu(x) - \{J^*(h) + R_1^*(h) + R_2^*(h) + (h)\}$$

$$= \inf_{\mu} \sup_{h \in C(\mathcal{X})} \mathcal{L}_{J}(\mu, h) - R_{1}^{*}(h) - R_{2}^{*}(h) - R_{3}^{*}(h)$$

$$-R_1^*(h) - R_2^*(h) - R_3^*(h)$$

Discriminatorに対する正則化項

 $\tilde{J}^*(\mu)$

• 正則化の具体形

$R(\mu)$	$R^*(h)$	Purpose	GAN Techniques
$\alpha \ \mu\ _{KR}$	$I\{h \mid \alpha\text{-Lipschitz}\}$	(D1) —	Spectral norm / W-GAN
$\beta_1 \ \mu\ _{\mathcal{S}_1}$	$I\{h \mid \beta_1 \text{-smooth}\}$	(D2) —	Spectral norm
$\frac{\beta_2}{2} \ \mathcal{E}_{\mu}\ _{H_k}^2$	$rac{1}{2eta_2}\ h\ _{H_k}^2$ (a)	(D3) —	Gradient penalty

- $S_1 := \{f: \mathcal{X} \to \mathbf{R} \mid f: 1\text{-smooth}\}$
- Gaussカーネルの場合 (a) から $\mu \mapsto \nabla_x \Phi_{\mu}(x)$ の β_2 -Lipschitzが導かれる
- $\mathcal{E}_{\mu} \coloneqq \int k(\cdot, x) d\mu(x)$. $k = \exp(-\pi ||x y||^2)$:正定値カーネル
- 改変された目的関数 $\tilde{J}(\mu)$ によって安定性の十分条件(D1-D3) が満たされる.
- •よく使われる安定化技法は、(D1-D3)を保証する正則化項と関係する.
- 安定化技法は合わせて用いるとよいことが示唆される.

最適点の不変性

定理 (Chu, Minami, F. ICLR2020)

凸な損失関数 $J: \mathcal{M}(X) \to \mathbf{R}$ は唯一の最小点 μ_0 を持ち, $J(\mu_0) = 0$ かつ $J(\mu) \geq c \|\mathcal{E}_{\mu} - \mathcal{E}_{\mu_0}\|_{H_k}^2$ (c > 0) と仮定する.このとき, $\tilde{J} = J \oplus R_1 \oplus R_2 \oplus R_3$ は唯一の最小点 μ_0 において最小値 0 をとる.

- $J(\mu) \ge c \|\mathcal{E}_{\mu} \mathcal{E}_{\mu_0}\|_{H_k}^2$ の条件は,JSD (オリジナルGAN), KR norm (W-GAN), MMDの 2乗 (GMMN)で成立する.
- 3つの正則化によって, GANの最小点を変更せずに, 安定化させることができる. 既存の安定化手法の(一定の)理論的正当化.

数值実験

- Lipschitz 定数 L は、収束を保証する学習係数 γ を与える.
- 実験:学習係数 γ と Fréchet Inception Distance (FID) の関係を調べる
 - CIFAR-10.
 - 単純なgenerator (N個の点からランダムに選択), (G1) (G2)を満たす.
 - Discriminator: 7層 CNN.
 - 損失関数: $\ell(\mu) = I(\mu = P_D)$
 - 目的関数: $\min_{\mu}\max_{\varphi}E_{\mu}[\varphi(X)]-E_{P_D}[\varphi(X')]-\frac{1}{2\beta_2}\|\varphi\|_{H_k}^2$ $\|\varphi\|_{H_k}^2$ is approximated by an expansion of k
 - Spectral normalization : $\|\varphi\|_{Lip} \leq \alpha$.
 - 勾配法で100000 ステップ学習
 - 収束保証を与える学習係数 $\gamma_0 = \frac{1}{7\alpha + \beta_2}$.

True learning rate / theoretical value

FIDs は $\gamma/\gamma_0 \approx 1\sim 10^3$ 付近で最小

まとめ

- 深層生成モデルを用いた統計的推論
 - 高次元データのよいサンプルが得られる
 - 統計的推論の要素として組むことが可能 → Simulation-based inference.
 - 高次元サンプラーとして機能するか?
 - ・ 時系列の場合?
- ・深層生成モデルの理論
 - GANの学習に関する理論解析
 - 安定性の解析,安定化手法の意義

JST CREST

• JST CREST「数理知能表現による深層構造学習モデルの革新」 代表者・福水健次。

主たる共同研究者:鈴木大慈,原田達也

2020年11月 - 2026年3月

(数理的情報活用基盤, 上田修功総括)

特任研究員(特任助教)募集中!

