T/43519WO2/AW/ts

CLAIMS

- 1. A ceramic molded body, more specifically a roof tile, tile, clinker brick, or a facade wall of oxide-ceramic base material with a capillary structure and with a surface which is self-cleaning upon spraying or sprinkling with water, characterised in that the molded body has a porous oxide-ceramic coating, wherein the coating is photocatalytically active and the photocatalytically active, oxide-ceramic materials include TiO_2 , Al_2O_3 and SiO_2 , wherein the Al_2O_3 is aluminum oxide C, and has a specific surface area in a range of between 25 mg²/g and 200 m²/g, preferably between 40 m²/g and 150 m²/g, wherein the mean diameter of the pores or the capillaries is in a range of between 0.1 μ m and 5 μ m.
- 2. A ceramic molded body as set forth in claim 1 characterised in that the pore openings are of an intergranular and/or intragranular nature.
- 3. A ceramic molded body as set forth in one of claims 1 and 2 characterised in that the free breathing cross-section of the ceramic molded body is reduced by the applied porous, oxide-ceramic coating by less than 10%, preferably less than 5%, with respect to the free breathing cross-section of an uncoated ceramic molded body.
- 4. A ceramic molded body as set forth in one of claims 1 through 3 characterised in that the porous, oxide-ceramic coating is applied to a depth of 1 mm, preferably to a depth of 2 mm, measured in a vertical direction from the surface of the ceramic molded body, in the ceramic molded body.
- 5. A ceramic molded body as set forth in one of the preceding claims characterised in that the coating has a specific surface area in a range of between $40 \text{ m}^2/\text{g}$ and $100 \text{ m}^2/\text{g}$.

- 6. A ceramic molded body as set forth in one of the preceding claims characterised in that the mean layer thickness of the coating is in a range of between 50 nm and 50 μ m, preferably 100 nm and 1 μ m.
- 7. A ceramic molded body as set forth in one of the preceding claims characterised in that arranged between the oxide-ceramic base material and the photocatalytically active, porous, oxide-ceramic coating is at least one layer with raised portions, the oxide-ceramic base material has raised portions and/or the photocatalytically active, porous, oxide-ceramic coating is in the form of a layer with raised portions.
- 8. A ceramic molded body as set forth in claim 7 characterised in that the raised portions are formed by particulate material fixed to the oxide-ceramic base material.
- 9. A ceramic molded body as set forth in claim 8 characterised in that the particulate material is temperature-resistant ground material preferably selected from the group which consists of ground rock, fire clay, clay, minerals, ceramic powder such as SiC, glass, glass chamotte and mixtures thereof.
- 10. A ceramic molded body as set forth in claim 8 or claim 9 characterised in that the size of the particles and/or the raised portions is or are in a range of up to 1500 nm, preferably of between 5 nm and 700 nm, further preferably between 5 nm and 50 nm.
- 11. A ceramic molded body as set forth in one of the preceding claims characterised in that the oxide-ceramic base material includes photocatalytically active, oxide-ceramic materials selected from the group which consists of TiO_2 , Al_2O_3 , SiO_2 and mixtures thereof.

- 12. A ceramic molded body as set forth in one of the preceding claims characterised in that the photocatalytically active, oxide-ceramic material has an average particle size in the range of between 5 nm and 100 nm, preferably between 10 nm and 50 nm.
- 13. A ceramic molded body as set forth in one of the preceding claims characterised in that the TiO_2 contained in the photocatalytically active, porous, oxide-ceramic coating and/or in the oxide-ceramic base material is present at least in part and preferably in respect of at least 40% by weight with respect to the total amount of TiO_2 , in the anatase structure.
- 14. A ceramic molded body as set forth in one of the preceding claims characterised in that the TiO_2 contained in the photocatalytically active, porous, oxide-ceramic coating and/or in the oxide-ceramic base material is present in respect of at least 70% by weight with respect to the total amount of TiO_2 , in the anatase structure.
- 15. A ceramic molded body as set forth in one of the preceding claims characterised in that the TiO_2 is present in a mixture comprising between 70 and 100% by weight of anatase and between 30 and 0% by weight of rutile.
- 16. A ceramic molded body as set forth in one of the preceding claims characterised in that the ${\rm TiO_2}$ is present in respect of about 100% by weight in the anatase structure.
- 17. A ceramic molded body as set forth in one of claims 1 through 16 characterised in that the contact angle of a 10 μ l drop of water on the porous, oxide-ceramic coating without hydrophobic post-coating after 15 hours of irradiation with 1 mW/cm² UV-A black light is less than 7°, preferably less than 5°, further preferably less than 4°.

- 18. A ceramic molded body as set forth in one of claims 1 through 17 characterised in that the contact angle of a 10 μ l drop of water on the porous, oxide-ceramic coating without hydrophobic post-coating after 15 hours of irradiation with 1 mW/cm² UV-A black light and 30 days in darkness is less than 20°, preferably less than 18°, further preferably less than 14°.
- 19. A ceramic molded body as set forth in one of claims 1 through 18 characterised in that the contact angle of a 10 μ l drop of water on the porous, oxide-ceramic coating without hydrophobic post-coating after 15 hours of irradiation with 1 mW/cm² UV-A black light and 30 days in darkness and renewed irradiation with preferably 1 mW/cm² UV-A black light for 3 hours is less than 8°, preferably less than 7°.
- 20. A ceramic molded body as set forth in one of the preceding claims characterised in that the coating has a superhydrophobic surface, wherein the superhydrophobic surface has a contact or edge angle of at least 140° for water.
- 21. A ceramic molded body as set forth in claim 20 characterised in that the superhydrophobic surface is provided using one or more compounds having straight-chain or branched-chain aromatic and/or aliphatic hydrocarbon residues with functional groups, wherein the functional groups are selected from amine, thiol, a carboxyl group, alcohol, disulfide, aldehyde, sulfonate, ester, ether or mixtures thereof.
- 22. A ceramic molded body as set forth in claim 21 characterised in that the superhydrophobic surface is produced using compounds selected from the group which consists of silicone oil, amine oils, silicone resin, for example alkylpolysiloxanes, alkoxysiloxanes, alkali metal siliconates, alkaline earth siliconates, silane-siloxane mixtures, amino acids and mixtures thereof.

- 23. A ceramic molded body as set forth in claim 20 characterised in that the superhydrophobic surface of the coating is produced using Ormoceres, polysiloxane, alkylsilane and/or fluorosilane, preferably in combination with SiO₂.
- 24. A ceramic molded body as set forth in claim 20 characterised in that the superhydrophobic surface is applied using a solution of alkali metal siliconates in water, wherein alkali metal is selected from the group which consists of lithium, sodium, potassium and mixtures thereof.
- 25. A ceramic molded body as set forth in one of claims 20 through 24 characterised in that the superhydrophobic surface has a contact or edge angle of at least 150° for water, preferably at least 160°, still further preferably at least 170°.
- 26. A ceramic molded body as set forth in claim 25 characterised in that the solution of alkali metal siliconates in water has a dilution ratio of between 1:100 and 1:600 (by weight/by weight), preferably a dilution ratio of between 1:250 and 1:350 (by weight/by weight).
- 27. A ceramic molded body as set forth in one of claims 20 through 26 characterised in that the superhydrophobic surface of the coating has raised portions.
- 28. A ceramic molded body as set forth in claim 27 characterised in that the raised portions of the superhydrophobic surface are produced using particulate material.
- 29. A ceramic molded body as set forth in claim 20 characterised in that the superhydrophobic surface is applied using a mixture of particles, for example SiO₂, and hydrophobising agent, for example fluorosilane.

- 30. A ceramic molded body as set forth in one of claims 1 through 29 characterised in that the photoefficiency calculated from photocatalytically induced methylene blue breakdown in the case of the porous, oxide-ceramic coating is at least 0.015%, preferably at least 0.02%, further preferably at least 0.03%, still further preferably at least 0.04%.
- 31. A process for the production of a coarse-ceramic molded body, more specifically a roof tile, tile, clinker brick or a facade wall of oxide-ceramic base material with a capillary structure and with a surface which is self-cleaning upon spraying or sprinkling with water, wherein the molded body has a photocatalytically active, porous, oxide-ceramic coating which includes the photocatalytically active, oxide-ceramic materials TiO_2 , Al_2O_3 and SiO_2 , wherein the Al_2O_3 is aluminum oxide C, with a specific surface area in a range of between 25 m²/g and 200 m²/g, preferably 40 m²/g and 150 m²/g, wherein the mean diameter of the pores or the capillaries is in a range of between 0.1 μ m and 5 μ m, and the porous oxide-ceramic coating is disposed on the surface and in the pore openings and the free faces of the capillary structure to a depth of 2 mm, measured in a vertical direction from the surface of the ceramic molded body, in the coarse-ceramic molded body,

wherein the process includes the following steps:

- (a) mixing photocatalytically active, oxide-ceramic powder which includes TiO_2 , Al_2O_3 and SiO_2 , wherein the Al_2O_3 is aluminum oxide C, and a liquid phase to afford a suspension,
- (b) applying the suspension produced in step (a) to the oxideceramic base material to produce a layer, and
- (c) hardening the layer afforded in step (b) to produce a photocatalytically active, porous, oxide-ceramic coating.
- 32. A process as set forth in claim 31 characterised in that at least one layer with raised portions is applied to the oxide-ceramic base material in a preceding step and the suspension produced in step (a) is applied to

the oxide-ceramic base material provided with a layer with raised portions and subsequently hardened in step (c).

- 33. A process as set forth in one of claims 31 and 32 characterised in that particulate material is additionally added in step (a).
- 34. A process as set forth in claim 32 or claim 33 characterised in that raised portions are formed by fixing particulate material on the oxide-ceramic base material.
- 35. A process as set forth in claim 33 or claim 34 characterised in that the particulate material is temperature-resistant ground material preferably selected from the group which consists of ground rock, fire clay, clay, minerals, ceramic powder such as SiC, glass, glass chamotte and mixtures thereof.
- 36. A process as set forth in one of claims 33 through 35 characterised in that the mean particle size of the particulate material is in a range of up to about 1500 nm, preferably between 5 nm and 700 nm, further preferably between 5 nm and 50 nm.
- 37. A process as set forth in one of claims 31 through 36 characterised in that polysiloxane is added to the suspension in step (a).
- 38. A process as set forth in one of claims 31 through 37 characterised in that water or an aqueous or water-bearing medium is used as the liquid phase in step (a).
- 39. A process as set forth in one of claims 31 through 38 characterised in that the adhesion between the catalytically active coating and the oxide-ceramic base material is improved by a procedure whereby the photocatalytically active, porous, oxide-ceramic coating produced in step (c) is irradiated with laser light or NIR or UV light.

40. A process as set forth in one of claims 31 through 39 characterised in that contained in the oxide-ceramic base material of the molded body are photocatalytically active, oxide-ceramic materials selected from the group which consists of TiO_2 , Al_2O_3 , SiO_2 and mixtures thereof.

- 41. A process as set forth in one of claims 31 through 40 characterised in that the photocatalytically active, oxide-ceramic powder used in step (a) includes particles in the range of between about 5 nm and about 100 nm, preferably between about 10 nm and about 50 nm.
- 42. A process as set forth in one of claims 31 through 41 characterised in that the TiO_2 contained in the photocatalytically active, oxide-ceramic powder and/or in the oxide-ceramic base material is present at least in part and preferably in respect of at least 40% by weight with respect to the total amount of TiO_2 in the anatase structure.
- 43. A process as set forth in one of claims 31 through 42 characterised in that the ${\rm TiO_2}$ contained in the photocatalytically active, oxide-ceramic powder and/or in the oxide-ceramic base material is present in respect of between at least 70% and 100% by weight with respect to the total amount of ${\rm TiO_2}$ in the anatase structure.
- 44. A process as set forth in one of claims 31 through 43 characterised in that the TiO_2 contained in the photocatalytically active, oxide-ceramic powder and/or in the oxide-ceramic base material is present in a mixture comprising between 70 and 100% by weight of anatase and between 30 and 0% by weight of rutile.
- 45. A process as set forth in one of claims 31 through 44 characterised in that the TiO_2 contained in the photocatalytically active, oxide-ceramic powder and/or in the oxide-ceramic base material is present

in respect of about 100% by weight with respect to the total amount of TiO_2 in the anatase structure.

- 48. A process as set forth in one of claims 31 through 45 characterised in that the layer produced in step (b) is hardened in step (c) by drying at a temperature of up to 300°C and/or by calcining at a temperature of more than 300°C to 1100°C.
- 47. A process as set forth in claim 46 characterised in that the layer produced in step (b) is at least partially pre-dried prior to the calcining operation in step (c) by evaporation of the liquid phase.
- 48. A process as set forth in one of claims 31 through 47 characterised in that the coating hardened in step (c) is hydrophobised or superhydrophobised to provide a hydrophobic surface.
- 49. A process as set forth in one of claims 31 through 48 characterised in that a hydrophobising agent is additionally added in step (a) and the coating produced in step (b) is hardened in step (c) by drying at a temperature of up to 300°C.
- 50. A process as set forth in claim 48 characterised in that an inorganic-organic hybrid molecule, preferably a polysiloxane solution or an alkali metal or alkaline earth siliconate solution is used for hydrophobisation.
- 51. A process as set forth in claim 48 characterised in that the superhydrophobic surface is provided using one or more compounds having straight-chain or branched-chain aromatic and/or aliphatic hydrocarbon residues with functional groups, wherein the functional groups are selected from amine, thiol, a carboxyl group, alcohol, disulfide, aldehyde, sulfonate, ester, ether or mixtures thereof.

- 52 A process as set forth in claim 51 characterised in that the superhydrophobic surface is produced using compounds selected from the group which consists of silicone oil, amine oils, silicone resin, for example alkylpolysiloxanes, alkoxysiloxanes, alkali metal siliconates, alkaline earth siliconate, silane-siloxane mixtures, amino acids and mixtures thereof.
- 53. A process as set forth in claim 48 characterised in that the superhydrophobic surface of the coating is produced using Ormoceres, polysiloxane, alkylsilane and/or fluorosilane, preferably in a mixture with SiO₂.
- 54. A process as set forth in one of claims 48 through 53 characterised in that particulate material is added to produce a superhydrophobic surface with raised portions in the hydrophobisation operation.