

AD-A102 216

MISSOURI UNIV-COLUMBIA DEPT OF STATISTICS  
ESTIMATION IN LATENT TRAIT MODELS. (U)

MAY 81 S E RIGDON; R K TSUTAKAWA

UNCLASSIFIED TR-102

F/6 12/1

N00014-77-C-0097

NL

1 OF 1  
AD-A102 216

END  
DATE FILMED  
8-81  
DTIC

~~LEVEL II~~

85

(D)

## Estimation in Latent Trait Models

ADA102216

Steven E. Rigdon  
and  
Robert K. Tsutakawa

Research Report 81-1  
Mathematical Sciences Technical Report No. 102  
May 1981

Department of Statistics  
University of Missouri  
Columbia, MO 65211



Prepared under contract No. N00014-77-C-0097, NR150-395  
with the Personnel and Training Research Programs  
Psychological Sciences Division  
Office of Naval Research

Approved for public release; distribution unlimited.  
Reproduction in whole or in part is permitted for  
any purpose of the United States Government

DTIC  
ELECTED  
S JUL 30 1981 D  
D

FILE COPY

81 7 30 029

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

12471

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             |                               | READ INSTRUCTIONS BEFORE COMPLETING FORM |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------|
| 9. REPORT NUMBER<br>Research Report 81-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2. GOVT ACCESSION NO.<br>AD-A102216                                                                                         | 3. RECIPIENT'S CATALOG NUMBER |                                          |
| 4. TITLE (and Subtitle)<br>ESTIMATION IN LATENT TRAIT MODELS                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5. TYPE OF REPORT & PERIOD COVERED                                                                                          |                               |                                          |
| 7. AUTHOR(s)<br>Steven E. Rigdon & Robert K. Tsutakawa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6. PERFORMING ORG. REPORT NUMBER<br>15                                                                                      |                               |                                          |
| 8. PERFORMING ORGANIZATION NAME AND ADDRESS<br>Department of Statistics<br>University of Missouri<br>Columbia, Missouri 65211                                                                                                                                                                                                                                                                                                                                                                                                            | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS<br>PE: 61153N WU NR 150-<br>PROJ: PR042 04 395<br>TA: 042-04-01 |                               |                                          |
| 11. CONTROLLING OFFICE NAME AND ADDRESS<br>Personnel and Training Research<br>Office of Naval Research (Code 458)<br>Arlington, VA 22217                                                                                                                                                                                                                                                                                                                                                                                                 | 12. REPORT DATE<br>May 1981                                                                                                 |                               |                                          |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)<br>17 PR042 04 395                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13. NUMBER OF PAGES<br>39                                                                                                   |                               |                                          |
| 16. DISTRIBUTION STATEMENT (of this Report)<br>Approved for public release; distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.                                                                                                                                                                                                                                                                                                                                       | 15. SECURITY CLASS. (of this report)<br>Unclassified                                                                        |                               |                                          |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)<br>14 TR-102 1K-81-1                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |                               |                                          |
| 18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                             |                               |                                          |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>Latent trait model, EM algorithm, prior distribution, posterior distribution, Rasch model.                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                             |                               |                                          |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br>Estimation of ability and item parameters in latent trait models is discussed. When both ability and item parameters are considered fixed but unknown, the method of maximum likelihood for the logistic or probit models is well known. This paper discusses techniques for estimating ability and item parameters when the ability parameters, or item parameters (or both) are considered random. When the item parameters are considered fixed, |                                                                                                                             |                               |                                          |

20. Continued.

and the ability parameters are random, from some prior distribution with fixed but unknown parameters, the EM algorithm is applied. A modification of the EM algorithm, which requires considerably less computation, is proposed. When both ability and item parameters are considered random, the EM algorithm seems to be impractical because the amount of computation needed is very large. In this case another modification to the EM algorithm is proposed. One advantage to using prior distributions is that parameter estimates usually exist in situations where the maximum likelihood estimates do not. These methods are applied to the one parameter logistic or Rasch model and numerically compared using several sets of simulated data. It appears very likely that most of the methods discussed here can be readily extended to the two and three parameter logistic or probit model.

|                     |                                     |
|---------------------|-------------------------------------|
| Accession For       |                                     |
| NTIS GRA&I          | <input checked="" type="checkbox"/> |
| DTIC TAB            | <input type="checkbox"/>            |
| Unannounced         | <input type="checkbox"/>            |
| Justification _____ |                                     |
| By _____            |                                     |
| Distribution/ _____ |                                     |
| Availability Codes  |                                     |
| Avail and/or        |                                     |
| Dist                | Special                             |
| A                   | _____                               |
| _____               |                                     |

## Estimation in Latent Trait Models

### 1. INTRODUCTION

Given that we have  $n$  subjects and  $k$  test items, consider binary responses  $y_{ij}$ ,  $i = 1, \dots, n$ ;  $j = 1, \dots, k$ , where  $y_{ij} = 0$  or 1 depending on whether the  $i^{\text{th}}$  subject's response to item  $j$  is incorrect or correct. Let

$$p_{ij} = 1 - q_{ij} = P(Y_{ij} = 1 | \beta_j, \theta_i) \quad (1.1)$$

be a model for responses, where  $\theta_i$  is the ability (or latent trait) parameter of the  $i^{\text{th}}$  subject and  $\beta_j$  (possibly vector valued) is the item parameter of the  $j^{\text{th}}$  item. Given  $\theta = (\theta_1, \dots, \theta_n)$  and  $\beta = (\beta_1, \dots, \beta_k)$  we assume conditional independence among responses,  $\tilde{Y} = ((\tilde{y}_{ij}))$ , so that

$$P(\tilde{Y} = \tilde{y} | \tilde{\theta}, \tilde{\beta}) = \prod_{i=1}^n \prod_{j=1}^k p_{ij}^{y_{ij}} q_{ij}^{1-y_{ij}} \quad (1.2)$$

We wish to consider estimates of  $\tilde{\theta}$  and  $\tilde{\beta}$  together with measures of uncertainties in these estimates. For this purpose we introduce additional structures to the model, depending on whether we treat  $\tilde{\theta}$  or  $\tilde{\beta}$  (or possibly both) as fixed parameters or random with an unknown prior distribution. In the terminology commonly used in linear models analysis, we may classify the various models as shown in the following table.

$\theta$ 

|        | Fixed                | Random                |
|--------|----------------------|-----------------------|
| Fixed  | Fixed Effects Models | Mixed Effects Models  |
| Random | Mixed Effects Models | Random Effects Models |

Most of the currently available techniques are for the fixed effects models, where the use of maximum likelihood for the logistic and probit models is well known (Wright and Panchapakesan 1969 and Wainer et al. 1980).

In dealing with random parameters, we shall assume that their distributions belong to certain exponential families with unknown parameters. In particular we let  $\phi_1$  and  $\phi_2$  denote the parameters of the prior distribution for  $\theta$  and  $\beta$  respectively, where  $\phi_1$  or  $\phi_2$  (or both) may be vector valued. When  $\theta$  and  $\beta$  are both random, we will further assume that they may be treated as independent random samples.

## 2. ESTIMATION VIA THE EM ALGORITHM

One general approach to estimating  $\theta$  and  $\beta$  for the random effects and mixed effects models is the EM algorithm (Dempster, Laird and Rubin 1977). The difficulty in using the EM algorithm in practice depends very much on the model. The difficulties are primarily due to the fact that the joint distribution of  $(Y, \theta, \beta)$  does not belong to an exponential family. We will discuss some of the difficulties and propose modifications which can be used to obtain estimates for the different models.

One way to view the EM algorithm is to consider certain parameters as nuisance parameters and integrate them out so that we are left with a likelihood function of the parameters of interest, which we can then try to maximize. The maximization is carried out iteratively, by successively maximizing a function of certain unobserved sufficient statistics which are estimated by their conditional expectations given preliminary estimates of the unknown parameter.

### 2.1 EM Algorithm Applied to Mixed Models (MLF)

Suppose we are given  $k$  items with parameters  $\beta = (\beta_1, \dots, \beta_k)$  which we consider fixed, and a random sample of subjects with abilities  $\theta = (\theta_1, \dots, \theta_n)$ , selected from a prior distribution with parameter  $\phi_1$ . In this case,  $(\beta, \phi_1)$  may be considered the parameters to be estimated by the EM algorithm and  $\theta$  an unobserved random variable with sufficient statistic  $T_1$ .

Starting with some initial estimate  $(\beta^{(0)}, \phi_1^{(0)})$  for  $(\beta, \phi_1)$  the algorithm repeats the following E and M steps for  $v = 0, 1, \dots$  until a convergence criterion is met.

E Step: Given  $(\beta^{(v)}, \phi_1^{(v)})$ , compute the posterior expectation of  $T_1$ ,

$$t_1^{(v+1)} = E(T_1 | Y, \beta^{(v)}, \phi_1^{(v)})$$

M Step: Compute the value of  $(\beta^{(v+1)}, \phi_1^{(v+1)})$  which maximizes

$$E(\log f(Y, \theta | \beta^{(v+1)}, \phi_1^{(v+1)}) | Y, \beta^{(v)}, \phi_1^{(v)})$$

where  $f(Y, \theta | \beta^{(v+1)}, \phi_1^{(v+1)})$  is the joint probability density function of  $(Y, \theta)$  given  $(\beta^{(v+1)}, \phi_1^{(v+1)})$ .

The MLF procedure is based on the same principle as the MLF procedure for linear mixed models with normally distributed random variables discussed by Dempster, Rubin and Tsutakawa (1981).

One modification of the MLF procedure is replacing the above M Step by the following

M Step: Compute the maximum likelihood estimate of  $(\beta, \phi_1)$  using  $\tilde{\tau}_1^{(v+1)}$  in lieu of  $\tilde{T}_1$ , with  $\tilde{\theta}$  fixed at its posterior expectation given  $(\beta^{(v)}, \phi_1^{(v)})$ .

Because this procedure conditions on the posterior expectation of  $\tilde{\theta}$  given  $(\beta^{(v)}, \phi_1^{(v)})$  each time through the iteration, we denote this procedure by CMLF.

We note that Sanathanan and Blumenthal (1978) use the EM algorithm to obtain estimates of the item and ability parameters for mixed effects situations. However, their procedure is somewhat different and is based on first obtaining conditional maximum likelihood (CML) estimates for  $(\beta, \phi_1)$ , conditional on the observed frequency distribution of raw scores, and then applying the EM algorithm to estimate  $\tilde{\theta}$  while keeping  $(\beta, \phi_1)$  fixed. It appears unlikely that this method generalizes to more complex models, since such conditional maximum likelihood estimates exist because of special properties of the Rasch model.

## 2.2 EM Algorithm Applied to Random Effects Models

Suppose we are given a random sample of item parameters  $\beta = (\beta_1, \dots, \beta_k)$  with prior distribution having unknown parameter  $\tilde{\phi}_2$ , and a random sample of subjects with ability parameter

$\tilde{\theta} = (\tilde{\theta}_1, \dots, \tilde{\theta}_n)$  with prior distribution having unknown parameter  $\tilde{\phi}_1$ . Let  $\tilde{T}_1$  and  $\tilde{T}_2$  denote the sufficient statistics for  $\tilde{\phi}_1$  and  $\tilde{\phi}_2$  respectively. These statistics are unobserved, but are finite dimensional when the prior distributions belong to exponential families.

In order to apply the EM algorithm, we begin with some initial estimate of  $(\tilde{\phi}_1, \tilde{\phi}_2)$ , then compute in the E step,

$$(\tilde{t}_1, \tilde{t}_2) = E(\tilde{T}_1, \tilde{T}_2 | \tilde{Y}, \tilde{\theta}, \tilde{\phi}_1, \tilde{\phi}_2) \quad (2.1)$$

and, for the M step, maximize the likelihood function, for  $(\tilde{\theta}, \tilde{\beta})$ , with respect to  $\tilde{\phi}_1$  and  $\tilde{\phi}_2$ , with the posterior expectation (2.1) used in place of  $(\tilde{T}_1, \tilde{T}_2)$

However, for all of the latent trait models we have considered, the evaluation of (2.1) requires the numerical evaluation of multiple integrals of the order exceeding  $n$  and  $k$ . The reason for this is that the marginal posterior of  $\tilde{\theta}_i$  and  $\tilde{\beta}_j$  must be obtained through the likelihood function (1.2) which does not factor into a form suitable for low order integration.

We note however that it is considerably easier to compute the posterior expectation of  $\tilde{T}_1$  when we are given  $\tilde{\beta}$ , and the posterior expectation of  $\tilde{T}_2$  given  $\tilde{\theta}$ . We have thus modified the EM algorithm as follows.

Start with some initial value  $(\tilde{\beta}^{(0)}, \tilde{\phi}_1^{(0)}, \tilde{\phi}_2^{(0)})$  for  $(\tilde{\beta}, \tilde{\phi}_1, \tilde{\phi}_2)$ , and repeat the following for  $v = 0, 1, \dots$ , until a convergence criterion is satisfied.

$E_1$  Step: Compute

$$\hat{\theta}^{(v+1)} = E(\hat{\theta} | \tilde{Y}, \hat{\phi}_1^{(v)}, \hat{\beta}^{(v)}) \quad (2.2)$$

$$\hat{t}_1^{(v+1)} = E(\tilde{T}_1 | \tilde{Y}, \hat{\phi}_1^{(v)}, \hat{\beta}^{(v)}) \quad (2.3)$$

$E_2$  Step: Compute

$$\hat{\beta}^{(v+1)} = E(\hat{\beta} | \tilde{Y}, \hat{\phi}_2^{(v)}, \hat{\theta}^{(v+1)}) \quad (2.4)$$

$$\hat{t}_2^{(v+1)} = E(\tilde{T}_2 | \tilde{Y}, \hat{\phi}_2^{(v)}, \hat{\theta}^{(v+1)}) \quad (2.5)$$

$M_1$  Step: Compute  $\hat{\phi}_1^{(v+1)}$ , the maximum likelihood estimator of  $\phi_1$  using  $\hat{t}_1^{(v+1)}$  in place of  $\tilde{T}_1$ .

$M_2$  Step: Compute  $\hat{\phi}_2^{(v+1)}$ , the maximum likelihood estimator of  $\phi_2$  using  $\hat{t}_2^{(v+1)}$  in place of  $\tilde{T}_2$ .

If convergence is attained the terminal value of  $(\hat{\theta}^{(v)}, \hat{\beta}^{(v)}, \hat{\phi}_1^{(v)}, \hat{\phi}_2^{(v)})$  will satisfy the consistency conditions

$$E(\tilde{T}_1 | \tilde{Y}, \hat{\phi}_1, \hat{\beta}) = E(\tilde{T}_1 | \hat{\phi}_1, \hat{\beta}) \quad (2.6)$$

and

$$E(\tilde{T}_2 | \tilde{Y}, \hat{\phi}_2, \hat{\theta}) = E(\tilde{T}_2 | \hat{\phi}_2, \hat{\theta}). \quad (2.7)$$

Note that equation (2.3) is similar to the  $E$  Step of the MLF procedure for the mixed model, with the exception that we condition on the posterior expectation of  $\hat{\beta}$  rather than on the maximum likelihood estimate.

The estimates  $(\hat{\phi}_1^{(v)}, \hat{\phi}_2^{(v)})$  thus obtained are not true maximum likelihood estimates, which would result if straight EM were possible. Because of the conditional nature of this solution, and because both  $\theta$  and  $\beta$  are random, we denote this procedure by CMLR.

The assumption that  $\beta$  is a random sample from some common distribution could be unrealistic when item pools are deliberately organized to contain a wide spectrum of difficulties or when other differences are present. One Bayesian solution to this problem is to consider a uniform prior distribution on each  $\beta_i$  where the range is, in principle, finite but very large. Using an algorithm similar to CMLR, the posterior distribution of  $\beta$  (conditional on  $\theta$ ) can be computed and used to compare different items. This procedure will be denoted by CMLU and is illustrated below.

### 3. APPLICATION OF EM ALGORITHM TO RASCH MODEL

Given  $\theta_i$  and  $\beta_j$ , the Rasch model, or one parameter logistic model, gives the probability distribution of  $y_{ij}$  as

$$P(Y_{ij} = y_{ij} | \theta_i, \beta_j) = \frac{\exp(y_{ij}(\theta_i - \beta_j))}{1 + \exp(\theta_i - \beta_j)}, \quad y_{ij} = 0, 1.$$

In the Rasch model,  $\theta_i$  is called the ability parameter and  $\beta_j$  is called the item or difficulty parameter. Assuming conditional independence among the responses  $\mathbf{Y} = ((Y_{ij}))$ , the probability distribution of  $\mathbf{Y}$  can be written as

$$\begin{aligned}
 P(\underline{Y} = \underline{y} | \underline{\theta}, \underline{\beta}) &= \prod_{i=1}^n \prod_{j=1}^k \frac{\exp(y_{ij}(\theta_i - \beta_j))}{1 + \exp(\theta_i - \beta_j)} \\
 &= \frac{\exp(\sum_{i=1}^n r_i \theta_i - \sum_{j=1}^k q_j \theta_j)}{\prod_{i=1}^n \prod_{j=1}^k (1 + \exp(\theta_i - \beta_j))} \\
 &\quad \text{(3.1)}
 \end{aligned}$$

where  $r_i$  is the raw score of the  $i^{\text{th}}$  examinee defined by

$$r_i = \sum_{j=1}^k y_{ij}$$

and  $q_j$  is the item score for the  $j^{\text{th}}$  item defined by

$$q_j = \sum_{i=1}^n y_{ij}.$$

### 3.1. MLF Estimation

For MLF, we assume that  $\theta_1, \dots, \theta_n$  form a random sample of size  $n$  from the normal distribution with mean  $\mu$  and variance  $\sigma^2$ , where  $\mu$  and  $\sigma^2$  are fixed but unknown quantities. The difficulty parameters  $\beta = (\beta_1, \dots, \beta_k)$  are also assumed to be fixed but unknown. Since  $\theta_1, \dots, \theta_n$  are assumed independent, the prior distribution  $p(\theta | \mu, \sigma)$  of  $\theta = (\theta_1, \dots, \theta_n)$  is the product of  $n$  normal distributions, each with mean  $\mu$  and variance  $\sigma^2$ . From (3.1), the likelihood function of  $\theta$ , given  $\beta$ , is

$$\ell(\theta | \underline{y}, \underline{\beta}) = P(\underline{Y} = \underline{y} | \underline{\theta}, \underline{\beta}).$$

Combining the prior distribution of  $\theta$ ,  $p(\theta|\mu, \sigma)$ , with the likelihood function of  $\theta$ ,  $\ell(\theta|y, \beta)$ , we can obtain the posterior distribution of  $\theta$ , given  $y$ , which is

$$p(\theta|y, \mu, \sigma, \beta) = H p(\theta|\mu, \sigma) \ell(\theta|y, \beta) \quad (3.2)$$

where  $H$  is the normalizing constant chosen such that the expression on the right side of (3.2) integrates to one. By integrating (3.2) with respect to  $\theta_1, \dots, \theta_{i-1}, \theta_{i+1}, \dots, \theta_n$ , we can obtain the marginal posterior distribution of  $\theta_i$ , which can be written as

$$p(\theta_i|y, \mu, \sigma, \beta) = \frac{H_i \exp((-(\theta_i - \mu)^2/2\sigma^2) + r_i \theta_i)}{\prod_{j=1}^k (1 + e^{(\theta_i - \beta_j)})}$$

where  $H_i$  is the appropriate normalizing constant.

The estimation of ability and difficulty parameters proceeds as follows. Begin with an initial set of estimates,  $\beta^{(0)} = (\beta_1^{(0)}, \dots, \beta_k^{(0)})$ , for the item parameters, and initial estimates  $\mu^{(0)}$  and  $\sigma^{(0)}$  for  $\mu$  and  $\sigma$  respectively. A convenient choice for initial estimates of the difficulty parameters is the negative of the standardized item scores. Then for  $v = 0, 1, \dots$ , until a convergence criterion is satisfied, repeat the E and M steps.

E Step: Calculate

$$t_{11} = \sum_{i=1}^n \theta_{il}^{(v+1)} \quad (3.3)$$

$$t_{12} = \sum_{i=1}^n \theta_{i2}^{(v+1)} \quad (3.4)$$

where

$$\theta_{i1}^{(v+1)} = E(\theta_i | \tilde{y}, \mu^{(v)}, \sigma^{(v)}, \beta^{(v)}) \quad (3.5)$$

and

$$\theta_{i2}^{(v+1)} = E(\theta_i^2 | \tilde{y}, \mu^{(v)}, \sigma^{(v)}, \beta^{(v)}) \quad (3.6)$$

M Step: Find the values of  $\mu^{(v+1)}$ ,  $\sigma^{(v+1)}$  and  $\beta^{(v+1)}$  which maximize

$$E(\log p(\theta | \tilde{y}, \mu^{(v+1)}, \sigma^{(v+1)}, \beta^{(v+1)}) | \mu^{(v)}, \sigma^{(v)}, \beta^{(v)}) \quad (3.7)$$

In order to assure uniqueness of the parameterization, after each M-step, we standardize the difficulty parameters so that they sum to zero.

Since  $\exp(-(\theta_i - \mu)^2/2\sigma^2)$  is in the integrand in (3.5) and (3.6), a simple change of variable will put this into a form where Gauss-Hermite quadrature formulas for numerical integration are suitable. To obtain the values of  $\mu^{(v+1)}$  and  $\sigma^{(v+1)}$  which maximize (3.7), we differentiate (3.7) with respect to  $\mu^{(v+1)}$  and  $\sigma^{(v+1)}$  and set these results equal to zero. The integral in (3.7) can be written as the sum of a finite number of single integrals, each of which is uniformly convergent in  $\mu^{(v+1)}$  and  $\sigma^{(v+1)}$ , hence moving the differentiation operator inside the integral is valid. This yields simple and familiar expressions for the  $\mu^{(v+1)}$  and  $\sigma^{(v+1)}$  which maximize (3.7), namely,

$$\mu^{(v+1)} = t_{11}/n \quad (3.8)$$

and

$$\sigma^{(v+1)^2} = t_{12}/n - \mu^{(v+1)^2} \quad (3.9)$$

To find the  $\beta$  that maximizes (3.7), we differentiate (3.7) with respect to  $\beta_j^{(v+1)}$ ,  $j = 1, \dots, k$  and set these results equal to zero. Again, it is valid to differentiate inside the integral, but now we cannot get a closed form expression for  $\beta_j^{(v+1)}$ .

Instead, we get  $k$  nonlinear equations

$$-q_j + \sum_{i=1}^n \int_{-\infty}^{\infty} \frac{\exp(\theta_i - \beta_j^{(v+1)})}{1 + \exp(\theta_i - \beta_j^{(v+1)})} p(\theta_i | y, \mu, \sigma, \beta^{(v)}) d\theta_i = 0, \quad (3.10)$$

$j = 1, \dots, k$ . These equations can be solved one at a time by the secant method described in Conte and deBoor (1972).

### 3.2 CMLF Applied to Rasch Model

The MLF procedure can be modified slightly by doing the following. As before, begin with initial estimates  $\mu^{(0)}, \sigma^{(0)}$  and  $\beta^{(0)}$  for  $\mu, \sigma$  and  $\beta$ . Then, until a convergence criterion is satisfied, for  $v = 0, 1, \dots$ , repeat the following steps:

E Step: Calculate  $\tilde{t}_1 = (t_{11}, t_{12})$  as in (3.3) and (3.4)

M<sub>1</sub> Step: Using  $\tilde{\theta}^{(v+1)}$  as the actual values of  $\tilde{\theta}$ , calculate the maximum likelihood estimate of  $\beta$ .

M<sub>2</sub> Step: Set  $\mu^{(v+1)}$  and  $\sigma^{(v+1)^2}$  equal to the values given in (3.8) and (3.9) respectively.

After each M<sub>2</sub> step, we standardize the item parameters so that they sum to zero. To do the M step, we find the log-likelihood function of  $\beta$  given  $y$  and  $\tilde{\theta}^{(v+1)}$  to be

$$L(\beta | \tilde{y}, \theta^{(v+1)}) = \sum_{i=1}^n \theta_i^{(v+1)} r_i - \sum_{j=1}^k \beta_j q_j - \sum_{i=1}^n \sum_{j=1}^k \log(1 + \exp(\theta_i^{(v+1)} - \beta_j)) . \quad (3.11)$$

Differentiating (3.11) with respect to  $\beta_j$ , and setting the result equal to zero yields a nonlinear equation whose root is the maximum likelihood estimate of  $\beta_j$ , when  $\theta$  is given. That is, we numerically solve the equation

$$\frac{\partial L}{\partial \beta_j} = -q_j + \sum_{i=1}^n (1 + \exp(\beta_j - \theta_i^{(v+1)})) = 0$$

for  $\beta_j$ . If  $q_j$  is not zero or  $k$ , then this equation will have a unique solution.

### 3.3 CMLR Applied to Rasch Model

Suppose now that  $\theta_1, \dots, \theta_n$  is a random sample from the normal distribution with mean  $\mu$  and variance  $\sigma^2$ , and  $\beta_1, \dots, \beta_k$  is a random sample from the normal distribution with mean zero and variance  $\tau^2$ . Again, we start with initial estimates  $\beta^{(0)}$ ,  $\mu^{(0)}$ ,  $\sigma^{(0)}$  and  $\tau^{(0)}$  for  $\beta, \mu, \sigma$  and  $\tau$  respectively. For  $v = 0, 1, \dots$ , until a convergence criterion is reached, we repeat the following steps:

E<sub>1</sub> Step: Calculate  $\tilde{t}_1 = (t_{11}, t_{12})$  as in (3.3) and (3.4).

E<sub>2</sub> Step: Calculate  $\tilde{t}_2 = (t_{21}, t_{22})$  by

$$t_{21} = \sum_{j=1}^k \beta_j^{(v+1)}$$

$$t_{22} = \sum_{j=1}^k \beta_j^{(v+1)}$$

where

$$\beta_{j1}^{(v+1)} = E(\beta_j | Y, \tau^{(v)}, \tilde{\theta}^{(v+1)}) \quad (3.12)$$

and

$$\beta_{j2}^{(v+1)} = E(\beta_j^2 | Y, \tau^{(v)}, \tilde{\theta}^{(v+1)}) . \quad (3.13)$$

M Step: Set  $\mu^{(v+1)}$  and  $\sigma^{(v+1)2}$  equal to the values given in (3.8) and (3.9) respectively, and set

$$\tau^{(v+1)} = t_{22}/k - (t_{21}-k)^2$$

After each M step, we standardize the item scores so that they sum to zero. Since  $\beta_1, \dots, \beta_k$  are independent and normally distributed, the joint distribution is the product of k normal distributions each with mean zero and variance  $\tau^2$ .

Combining the likelihood function of  $\beta$  with the prior distribution of  $\beta$  we obtain the posterior distribution of  $\beta$ . Integrating with respect to  $\beta_1, \dots, \beta_{j-1}, \beta_{j+1}, \dots, \beta_k$ , yields the marginal posterior distribution of  $\beta_j$  given  $\tilde{\theta}$ ,

$$p(\beta_j | Y, \tau, \tilde{\theta}) = \frac{G_j \exp(-\beta_j^2/2\tau^2 - \beta_j q_j)}{\prod_{i=1}^n (1 + \exp(\theta_i - \beta_j))} \quad (3.14)$$

where  $G_j$  is the appropriate normalizing constant. For evaluating posterior moments, here again Gauss-Hermite quadrature formulas are applicable.

CMLU is a limiting case of CMLR where the prior distribution of the item parameters is taken to be uniform. When the  $\beta$ 's are independent and have a uniform prior, the posterior distribution

of  $\beta_j$  can be written as

$$p(\beta_j | \mathbf{y}, \tau, \theta) = \frac{F_j \exp(-\beta_j q_j)}{\prod_{i=1}^n (1 + \exp(\theta_i - \beta_j))} \quad (3.15)$$

where  $F_j$  is the appropriate normalizing constant. If  $q_j$  is not zero or  $k$ , then  $F_j$  can be chosen to make this integrate to one, and also, moments of all order exist for  $\beta_j$ . The estimation procedure is similar to that of CMLR except that, first, the posterior distribution of  $\beta_j$  is taken to be the expression given in (3.15), and second, the estimate for  $\tau^{(v+1)}$  need not be computed.

#### 4. NUMERICAL EXAMPLES

In this section we discuss the implementation of these procedures to four simulated data sets. In all four sets, the item parameters were taken to be standard normal random variates. In two of the data sets, denoted SI and SII, the ability parameters were taken as standard normal random variates. In the third data set, denoted SIII, the ability parameters were taken as a random sample from the uniform distribution on the interval from -3 to 3. The ability parameters for the fourth simulated data set, were taken as random variates from the Cauchy distribution, which has probability density function

$$f(x) = \frac{10}{\pi(1+100x^2)}, \quad -\infty < x < \infty.$$

In all four cases, the size of the data sets were 100 examinees and 45 items.

We estimated the ability and difficulty parameters by the five methods: maximum likelihood (ML), MLF, CMLF, CMLR, and CMLU. In the data set SI, one raw score was  $k$  (45) and in data set SIV, one raw score was zero. In these cases the maximum likelihood estimate for the ability of the subject scoring perfectly or scoring a zero, does not exist. Thus, we did not apply ML in these two cases.

The estimated parameters  $\mu, \sigma$  and  $\tau$  for each of the four data sets are shown in Table 1. In some models, the three parameters  $\mu, \sigma$  and  $\tau$  do not all appear. When this happens, we have given the values of the appropriate sample statistic and put these numbers in parentheses. The sample statistics of the actual ability and item parameters are also given.

In most cases the estimates for  $\mu$  and  $\sigma$  obtained by the MLF and CMLF methods were quite close to each other and quite close to the estimates obtained by the CMLU methods. The ML estimates were somewhat close to the MLF, CMLF and CMLU estimates. The CMLR estimates were usually quite far from the estimates obtained by the other methods. In one extreme case,  $\tau$ , in the CMLR method actually converged to zero, meaning that the estimates of all item parameters were zero. Still estimates for  $\mu, \sigma$  and  $\theta$  were obtained in this case.

Figures 1 through 4 give scatter plots of the ML estimates of  $\theta$  for SII on the vertical axes, and MLF, CMLF, CMLR and CMLU estimates on the horizontal axes. Figures 5 through 8 give scatter plots for the corresponding item parameters.

The plots in Figures 1 through 4 show the relation between the sets of ability estimates. The estimates obtained by ML were more spread out than the estimates from the other four methods. Especially noticeable is the way in which the MLF, CMLF, CMLR and CMLU pulled the estimates at the extreme ends closer to zero.

The plots in Figure 5, 6, and 8 show a nearly linear relationship between the ML estimates and the MLF, CMLF and CMLU estimates of the item parameters that lies on the diagonal line through the origin. The plot of ML versus CMLR in Figure 7 shows a nearly linear relationship, except here the CMLR estimates are much more spread out than the ML estimates. The estimate for  $\tau$  in SII was 2.6401 which accounts for the large variation in the CMLR estimates.

Since the data was simulated, the actual values of  $\theta$  and  $\beta$  were known, so these can be compared with the estimates. Table 2 shows the mean squared errors (MSE's) for the different estimation techniques. An asterisk next to a value indicates that the MSE for that method was smallest among the five methods. In most cases the MSE's from the MLF, CMLF and CMLU were very close. In five of the eight cases, the MSE from the CMLF was the lowest among the five methods. The MSE's for CMLR in Table 2 are generally larger than for other methods. This may be due to the poorer estimates of  $\mu$ ,  $\sigma$  and  $\tau$  as seen in Table 1.

## 5. SUMMARY AND FURTHER REMARKS

We have discussed several methods for estimating parameters in the Rasch model, namely, MLF, CMLF, CMLR, and CMLU. In all four of these methods, the ability parameter of a subject can be

estimated even when that subject scores perfectly or scores a zero, a property not shared by maximum likelihood. If an item score for some item is either zero or  $n$ , then the difficulty parameter for this item cannot be estimated by the MLF, CMLF, or CMLU procedures. However this parameter can be estimated if the CMLR procedure is used.

Since the item parameters are estimated one at a time (in all four methods discussed here), it is feasible that these methods could be extended to a two or three parameter logistic model. In extending the CMLR or CMLU procedure, it is necessary to calculate double integrals for the two parameter model and triple integrals for the three parameter model, for each item in the test, each time through the iteration. It might be practical to compute double integrals, however the computer time necessary to do triple integrals would probably be prohibitive. On the other hand, when extending the MLF or CMLF procedures, it is necessary to maximize functions of two or three variables. The Newton-Raphson technique is a practical way to do this even for a three parameter logistic model.

Table 1. Estimates of Parameters of Prior Distribution

|      |        | $\mu$     | $\sigma$ | $\tau$   |
|------|--------|-----------|----------|----------|
| SI   | ACTUAL | (-0.1177) | (1.0388) | (1.0245) |
|      | ML     | NA        | NA       | NA       |
|      | MLF    | -0.1452   | 1.0460   | (1.0040) |
|      | CMLF   | -0.1447   | 1.0407   | (0.9879) |
|      | CMLR   | -0.1299   | 0.9092   | 0.4926   |
|      | CMLU   | -0.1451   | 1.0442   | (0.9991) |
| SII  | ACTUAL | (-0.0357) | (0.9758) | (1.0496) |
|      | ML     | (-0.0953) | (1.0735) | (1.1430) |
|      | MLF    | -0.0916   | 0.9764   | (1.1142) |
|      | CMLF   | -0.2894   | 0.5046   | (1.0949) |
|      | CMLR   | -0.4762   | 0.9595   | 2.6401   |
|      | CMLU   | -0.2904   | 0.5070   | (1.1080) |
| SIII | ACTUAL | (-0.1878) | (1.8103) | (0.9381) |
|      | ML     | (-0.1704) | (1.8765) | (0.9352) |
|      | MLF    | -0.1711   | 1.8040   | 0.9071   |
|      | CMLF   | -0.1710   | 1.8035   | (0.9059) |
|      | CMLR   | -0.1517   | 1.5743   | 0.       |
|      | CMLU   | -0.1712   | 1.8055   | (0.9103) |
| SIV  | ACTUAL | (-0.3759) | (1.1151) | (0.8796) |
|      | ML     | NA        | NA       | NA       |
|      | MLF    | -0.2904   | 0.5075   | (0.9252) |
|      | CMLF   | -0.2894   | 0.5046   | (0.9110) |
|      | CMLR   | -0.4762   | 0.9595   | 2.6401   |
|      | CMLU   | -0.2904   | 0.5070   | (0.9232) |

NA - method not applicable in this case.

TABLE 2. MSE's of Ability and Item Parameters

|      |      | $\frac{1}{100} \sum_{i=1}^{100} (\theta_i - \hat{\theta}_i)^2$ | $\frac{1}{45} \sum_{j=1}^{45} (\beta_j - \hat{\beta}_j)^2$ |
|------|------|----------------------------------------------------------------|------------------------------------------------------------|
| SI   | ML   | NA                                                             | NA                                                         |
|      | MLF  | .11486                                                         | .04059*                                                    |
|      | CMLF | .11473*                                                        | .04083                                                     |
|      | CMLR | .12955                                                         | .30639                                                     |
| SII  | CMLU | .11481                                                         | .04069                                                     |
|      | ML   | .13247                                                         | .06626                                                     |
|      | MLF  | .10541                                                         | .06049                                                     |
|      | CMLF | .10540*                                                        | .05749*                                                    |
| SIII | CMLR | .12145                                                         | .21690                                                     |
|      | CMLU | .10542                                                         | .05982                                                     |
|      | ML   | .20119                                                         | .07112                                                     |
|      | MLF  | .16138                                                         | .07005                                                     |
|      | CMLF | .16123                                                         | .06992*                                                    |
|      | CMLR | .21943                                                         | .86055                                                     |
|      | CMLU | .16119*                                                        | .07002                                                     |
|      | ML   | NA                                                             | NA                                                         |
|      | MLF  | .31587*                                                        | .06347                                                     |
|      | CMLF | .72997                                                         | .06142*                                                    |
|      | CMLR | .54443                                                         | 2.94153                                                    |
|      | CMLU | .72788                                                         | .06303                                                     |

NA - method not applicable in this case.

\* - method had lowest MSE among five methods.



FIGURE 1. ML vs MLF Estimates of Ability

+ - one observation  
⊕ - two or three observations  
◎ - four or more observations



FIGURE 2. ML vs CMLF Estimates of Ability



FIGURE 3. ML vs CMLR Estimates of Ability



FIGURE 4. ML vs CMLU Estimates of Ability



FIGURE 5. ML vs MLF Estimates of Difficulty Parameters





FIGURE 7. ML vs CMLR Estimates of Difficulty Parameters



FIGURE 8. ML vs CMLU Estimates of Difficulty Parameters

## REFERENCES

- Conte, S. D. and de Boor, C. (1972) Elementary Numerical Analysis: An Algorithmic Approach, McGraw Hill, New York.
- Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), "Maximum Likelihood from Incomplete Data via the EM Algorithm (with Discussion)," Journal of the Royal Statistical Society, Series B, 39, 1-38.
- Dempster, A. P., Rubin, D. B., and Tsutakawa, R. K. (1981), "Estimating in Covariance Components Models," to appear in the Journal of the American Statistical Association.
- Sanathanan, L. and Blumenthal, S. (1978), "The Logistic Model and Estimation of Latent Structure," Journal of the American Statistical Association, 73, 794-799.
- Wainer, H., Morgan, A., and Gustafson, J. E. (1980), "A Review of Estimation Procedures for the Rasch Model with an Eye Towards Longish Tests," Journal of Educational Statistics, 5, 35-64.
- Wright, B. and Panchapakesan, N. (1969) "A Procedure for Sample-Free Item Analysis," Educational and Psychological Measurement, 29, 23-48.

## Navy

- 1 Dr. Jack R. Borsting  
Provost & Academic Dean  
U.S. Naval Postgraduate School  
Monterey, CA 93940
- 1 Dr. Robert Breaux  
Code N-711  
NAVTRAEEQUIPCEN  
Orlando, FL 32813
- 1 Chief of Naval Education and Training  
Liason Office  
Air Force Human Resource Laboratory  
Flying Training Division  
WILLIAMS AFB, AZ 85224
- 1 CDR Mike Curran  
Office of Naval Research  
800 N. Quincy St.  
Code 270  
Arlington, VA 22217
- 1 Dr. Richard Elster  
Department of Administrative Sciences  
Naval Postgraduate School  
Monterey, CA 93940
- 1 DR. PAT FEDERICO  
NAVY PERSONNEL R&D CENTER  
SAN DIEGO, CA 92152
- 1 Mr. Paul Foley  
Navy Personnel R&D Center  
San Diego, CA 92152
- 1 Dr. John Ford  
Navy Personnel R&D Center  
San Diego, CA 92152
- 1 Dr. Henry M. Halff  
Department of Psychology, C-009  
University of California at San Diego  
La Jolla, CA 92093

## Navy

- 1 Dr. Patrick R. Harrison  
Psychology Course Director  
LEADERSHIP & LAW DEPT. (7b)  
DIV. OF PROFESSIONAL DEVELOPMENT  
U.S. NAVAL ACADEMY  
ANNAPOLIS, MD 21402
- 1 CDR Charles W. Hutchins  
Naval Air Systems Command Hq  
AIR-340F  
Navy Department  
Washington, DC 20361
- 1 CDR Robert S. Kennedy  
Head, Human Performance Sciences  
Naval Aerospace Medical Research Lab  
Box 29407  
New Orleans, LA 70189
- 1 Dr. Norman J. Kerr  
Chief of Naval Technical Training  
Naval Air Station Memphis (75)  
Millington, TN 38054
- 1 Dr. William L. Maloy  
Principal Civilian Advisor for  
Education and Training  
Naval Training Command, Code 00A  
Pensacola, FL 32508
- 1 Dr. Kneale Marshall  
Scientific Advisor to DCNO(MPT)  
OP01T  
Washington DC 20370
- 1 CAPT Richard L. Martin, USN  
Prospective Commanding Officer  
USS Carl Vinson (CVN-70)  
Newport News Shipbuilding and Drydock Co  
Newport News, VA 23607
- 1 Dr. James McBride  
Navy Personnel R&D Center  
San Diego, CA 92152
- 1 Ted M. I. Yellen  
Technical Information Office, Code 201  
NAVY PERSONNEL R&D CENTER  
SAN DIEGO, CA 92152

## Navy

- 1 Library, Code P201L  
Navy Personnel R&D Center  
San Diego, CA 92152
- 6 Commanding Officer  
Naval Research Laboratory  
Code 2627  
Washington, DC 20390
- 1 Psychologist  
ONR Branch Office  
Bldg 114, Section D  
666 Summer Street  
Boston, MA 02210
- 1 Psychologist  
ONR Branch Office  
536 S. Clark Street  
Chicago, IL 60605
- 1 Office of Naval Research  
Code 437  
800 N. Quincy Street  
Arlington, VA 22217
- 5 Personnel & Training Research Programs  
(Code 458)  
Office of Naval Research  
Arlington, VA 22217
- 1 Psychologist  
ONR Branch Office  
1030 East Green Street  
Pasadena, CA 91101
- 1 Office of the Chief of Naval Operations  
Research Development & Studies Branch  
(OP-115)  
Washington, DC 20350
- 1 LT Frank C. Petho, MSC, USN (Ph.D)  
Selection and Training Research Division  
Human Performance Sciences Dept.  
Naval Aerospace Medical Research Laboratory  
Pensacola, FL 32508
- 1 Dr. Bernard Rimland (03B)  
Navy Personnel R&D Center  
San Diego, CA 92152

## Navy

- 1 Dr. Worth Scanland, Director  
Research, Development, Test & Evaluation  
N-5  
Naval Education and Training Command  
NAS, Pensacola, FL 32508
- 1 Dr. Robert G. Smith  
Office of Chief of Naval Operations  
OP-987H  
Washington, DC 20350
- 1 Dr. Alfred F. Smode  
Training Analysis & Evaluation Group  
(TAEG)  
Dept. of the Navy  
Orlando, FL 32813
- 1 Dr. Richard Sorensen  
Navy Personnel R&D Center  
San Diego, CA 92152
- 1 Dr. Ronald Weitzman  
Code 54 WZ  
Department of Administrative Sciences  
U. S. Naval Postgraduate School  
Monterey, CA 93940
- 1 Dr. Robert Wisher  
Code 309  
Navy Personnel R&D Center  
San Diego, CA 92152
- 1 DR. MARTIN F. WISKOFF  
NAVY PERSONNEL R&D CENTER  
SAN DIEGO, CA 92152

## Army

- 1 Technical Director  
U. S. Army Research Institute for the  
Behavioral and Social Sciences  
5001 Eisenhower Avenue  
Alexandria, VA 22333
- 1 Dr. Myron Fischl  
U.S. Army Research Institute for the  
Social and Behavioral Sciences  
5001 Eisenhower Avenue  
Alexandria, VA 22333
- 1 Dr. Dexter Fletcher  
U.S. Army Research Institute  
5001 Eisenhower Avenue  
Alexandria, VA 22333
- 1 Dr. Michael Kaplan  
U.S. ARMY RESEARCH INSTITUTE  
5001 EISENHOWER AVENUE  
ALEXANDRIA, VA 22333
- 1 Dr. Milton S. Katz  
Training Technical Area  
U.S. Army Research Institute  
5001 Eisenhower Avenue  
Alexandria, VA 22333
- 1 Dr. Harold F. O'Neil, Jr.  
Attn: PERI-OK  
Army Research Institute  
5001 Eisenhower Avenue  
Alexandria, VA 22333
- 1 Mr. Robert Ross  
U.S. Army Research Institute for the  
Social and Behavioral Sciences  
5001 Eisenhower Avenue  
Alexandria, VA 22333
- 1 Dr. Robert Sasmor  
U. S. Army Research Institute for the  
Behavioral and Social Sciences  
5001 Eisenhower Avenue  
Alexandria, VA 22333

## Army

- 1 Commandant  
US Army Institute of Administration  
Attn: Dr. Sherrill  
FT Benjamin Harrison, IN 46256
- 1 Dr. Frederick Steinheiser  
Dept. of Navy  
Chief of Naval Operations  
OP-113  
Washington, DC 20350
- 1 Dr. Joseph Ward  
U.S. Army Research Institute  
5001 Eisenhower Avenue  
Alexandria, VA 22333

**Air Force**

- 1 Air Force Human Resources Lab  
AFHRL/MPD  
Brooks AFB, TX 78235
- 1 Dr. Earl A. Alluisi  
HQ, AFHRL (AFSC)  
Brooks AFB, TX 78235
- 1 Research and Measurement Division  
Research Branch, AFMPC/MPCYPR  
Randolph AFB, TX 78148
- 1 Dr. Malcolm Ree  
AFHRL/MP  
Brooks AFB, TX 78235
- 1 Dr. Marty Rockway  
Technical Director  
AFHRL(OT)  
Williams AFB, AZ 58224

**Marines**

- 1 H. William Greenup  
Education Advisor (E031)  
Education Center, MCDEC  
Quantico, VA 22134
- 1 Director, Office of Manpower Utilization  
HQ, Marine Corps (MPU)  
BCB, Bldg. 2009  
Quantico, VA 22134
- 1 DR. A.L. SLAFKOSKY  
SCIENTIFIC ADVISOR (CODE RD-1)  
HQ, U.S. MARINE CORPS  
WASHINGTON, DC 20380

CoastGuard

Other DoD

- 1 Mr. Thomas A. Warm  
U. S. Coast Guard Institute  
P. O. Substation 18  
Oklahoma City, OK 73169
- 12 Defense Technical Information Center  
Cameron Station, Bldg 5  
Alexandria, VA 22314  
Attn: TC
- 1 Dr. William Graham  
Testing Directorate  
MEPCOM/MEPCT-P  
Ft. Sheridan, IL 60037
- 1 Military Assistant for Training and  
Personnel Technology  
Office of the Under Secretary of Defense  
for Research & Engineering  
Room 3D129, The Pentagon  
Washington, DC 20301
- 1 Dr. Wayne Sellman  
Office of the Assistant Secretary  
of Defense (MRA & L)  
2B269 The Pentagon  
Washington, DC 20301
- 1 DARPA  
1400 Wilson Blvd.  
Arlington, VA 22209

## Civil Govt

- 1 Dr. Andrew R. Molnar  
Science Education Dev.  
and Research  
National Science Foundation  
Washington, DC 20550
- 1 Dr. Vern W. Urry  
Personnel R&D Center  
Office of Personnel Management  
1900 E Street NW  
Washington, DC 20415
- 1 Dr. Joseph L. Young, Director  
Memory & Cognitive Processes  
National Science Foundation  
Washington, DC 20550

## Non Govt

- 1 Dr. Erling B. Andersen  
Department of Statistics  
Studiestraede 6  
1455 Copenhagen  
DENMARK
- 1 1 psychological research unit  
Dept. of Defense (Army Office)  
Campbell Park Offices  
Canberra ACT 2600, Australia
- 1 Dr. Isaac Bejar  
Educational Testing Service  
Princeton, NJ 08450
- 1 Capt. J. Jean Belanger  
Training Development Division  
Canadian Forces Training System  
CFTSHQ, CFB Trenton  
Astra, Ontario KOK 1B0
- 1 CDR Robert J. Biersner  
Program Manager  
Human Performance  
Navy Medical R&D Command  
Bethesda, MD 20014
- 1 Dr. Menucha Birenbaum  
School of Education  
Tel Aviv University  
Tel Aviv, Ramat Aviv 69978  
Israel
- 1 Dr. Werner Birke  
DezWPs im Streitkraefteamt  
Postfach 20 50 03  
D-5300 Bonn 2  
WEST GERMANY
- 1 Liaison Scientists  
Office of Naval Research,  
Branch Office , London  
Box 39 FPO New York 09510
- 1 Col Ray Bowles  
800 N. Quincy St.  
Room 804  
Arlington, VA 22217

## Non Govt

- 1 Dr. Robert Brennan  
American College Testing Programs  
P. O. Box 168  
Iowa City, IA 52240
- 1 DR. C. VICTOR BUNDERSON  
WICAT INC.  
UNIVERSITY PLAZA, SUITE 10  
1160 SO. STATE ST.  
OREM, UT 84057
- 1 Dr. John B. Carroll  
Psychometric Lab  
Univ. of No. Carolina  
Davie Hall 013A  
Chapel Hill, NC 27514
- 1 Charles Myers Library  
Livingstone House  
Livingstone Road  
Stratford  
London E15 2LJ  
ENGLAND
- 1 Dr. Kenneth E. Clark  
College of Arts & Sciences  
University of Rochester  
River Campus Station  
Rochester, NY 14627
- 1 Dr. Norman Cliff  
Dept. of Psychology  
Univ. of So. California  
University Park  
Los Angeles, CA 90007
- 1 Dr. William E. Coffman  
Director, Iowa Testing Programs  
334 Lindquist Center  
University of Iowa  
Iowa City, IA 52242
- 1 Dr. Meredith P. Crawford  
American Psychological Association  
1200 17th Street, N.W.  
Washington, DC 20036

## Non Govt

- 1 Dr.,Fritz Drasgow  
Yale School of Organization and Management  
Yale University  
Box 1A  
New Haven, CT 06520
- 1 Dr. Marvin D. Dunnette  
Personnel Decisions Research Institute  
2415 Foshay Tower  
821 Marguette Avenue  
Mineapolis, MN 55402
- 1 Mike Durmeyer  
Instructional Program Development  
Building 90  
NET-PDCD  
Great Lakes NTC, IL 60088
- 1 ERIC Facility-Acquisitions  
4833 Rugby Avenue  
Bethesda, MD 20014
- 1 Dr. Benjamin A. Fairbank, Jr.  
McFann-Gray & Associates, Inc.  
5825 Callaghan  
Suite 225  
San Antonio, Texas 78228
- 1 Dr. Leonard Feldt  
Lindquist Center for Measurement  
University of Iowa  
Iowa City, IA 52242
- 1 Dr. Richard L. Ferguson  
The American College Testing Program  
P.O. Box 168  
Iowa City, IA 52240
- 1 Dr. Victor Fields  
Dept. of Psychology  
Montgomery College  
Rockville, MD 20850
- 1 Univ. Prof. Dr. Gerhard Fischer  
Liebiggasse 5/3  
A 1010 Vienna  
AUSTRIA

## Non Govt

- 1 Professor Donald Fitzgerald  
University of New England  
Armidale, New South Wales 2351  
AUSTRALIA
- 1 Dr. Edwin A. Fleishman  
Advanced Research Resources Organ.  
Suite 900  
4330 East West Highway  
Washington, DC 20014
- 1 Dr. John R. Frederiksen  
Bolt Beranek & Newman  
50 Moulton Street  
Cambridge, MA 02138
- 1 DR. ROBERT GLASER  
LRDC  
UNIVERSITY OF PITTSBURGH  
3939 O'HARA STREET  
PITTSBURGH, PA 15213
- 1 Dr. Ron Hambleton  
School of Education  
University of Massachusetts  
Amherst, MA 01002
- 1 Dr. Chester Harris  
School of Education  
University of California  
Santa Barbara, CA 93106
- 1 Dr. Lloyd Humphreys  
Department of Psychology  
University of Illinois  
Champaign, IL 61820
- 1 Library  
HumRRO/Western Division  
27857 Berwick Drive  
Carmel, CA 93921
- 1 Dr. Steven Hunka  
Department of Education  
University of Alberta  
Edmonton, Alberta  
CANADA

## Non Govt

- 1 Dr. Earl Hunt  
Dept. of Psychology  
University of Washington  
Seattle, WA 98105
- 1 Dr. Huynh Huynh  
College of Education  
University of South Carolina  
Columbia, SC 29208
- 1 Professor John A. Keats  
University of Newcastle  
AUSTRALIA 2308
- 1 Mr. Marlin Kroger  
1117 Via Goleta  
Palos Verdes Estates, CA 90274
- 1 Dr. Michael Levine  
Department of Educational Psychology  
210 Education Bldg.  
University of Illinois  
Champaign, IL 61801
- 1 Dr. Charles Lewis  
Faculteit Sociale Wetenschappen  
Rijksuniversiteit Groningen  
Oude Boteringestraat 23  
9712GC Groningen  
Netherlands
- 1 Dr. Robert Linn  
College of Education  
University of Illinois  
Urbana, IL 61801
- 1 Dr. Frederick M. Lord  
Educational Testing Service  
Princeton, NJ 08540
- 1 Dr. Gary Marco  
Educational Testing Service  
Princeton, NJ 08450
- 1 Dr. Scott Maxwell  
Department of Psychology  
University of Houston  
Houston, TX 77004

## Non Govt

- 1 Dr. Samuel T. Mayo  
Loyola University of Chicago  
820 North Michigan Avenue  
Chicago, IL 60611
- 1 Bill Nordbrock  
Instructional Program Development  
Building 90  
NET-PDCD  
Great Lakes NTC, IL 60088
- 1 Dr. Melvin R. Novick  
356 Lindquist Center for Measurement  
University of Iowa  
Iowa City, IA 52242
- 1 Dr. Jesse Orlansky  
Institute for Defense Analyses  
400 Army Navy Drive  
Arlington, VA 22202
- 1 Dr. James A. Paulson  
Portland State University  
P.O. Box 751  
Portland, OR 97207
- 1 MR. LUIGI PETRULLO  
2431 N. EDGEWOOD STREET  
ARLINGTON, VA 22207
- 1 DR. DIANE M. RAMSEY-KLEE  
R-K RESEARCH & SYSTEM DESIGN  
3947 RIDGEMONT DRIVE  
MALIBU, CA 90265
- 1 MINRAT M. L. RAUCH  
P II 4  
BUNDESMINISTERIUM DER VERTEIDIGUNG  
POSTFACH 1328  
D-53 BONN 1, GERMANY
- 1 Dr. Mark D. Reckase  
Educational Psychology Dept.  
University of Missouri-Columbia  
4 Hill Hall  
Columbia, MO 65211

## Non Govt

- 1 Dr. Andrew M. Rose  
American Institutes for Research  
1055 Thomas Jefferson St. NW  
Washington, DC 20007
- 1 Dr. Leonard L. Rosenbaum, Chairman  
Department of Psychology  
Montgomery College  
Rockville, MD 20850
- 1 Dr. Ernst Z. Rothkopf  
Bell Laboratories  
500 Mountain Avenue  
Murray Hill, NJ 07974
- 1 Dr. Lawrence Rudner  
403 Elm Avenue  
Takoma Park, MD 20012
- 1 Dr. J. Ryan  
Department of Education  
University of South Carolina  
Columbia, SC 29208
- 1 PROF. FUMIKO SAMEJIMA  
DEPT. OF PSYCHOLOGY  
UNIVERSITY OF TENNESSEE  
KNOXVILLE, TN 37916
- 1 DR. ROBERT J. SEIDEL  
INSTRUCTIONAL TECHNOLOGY GROUP  
HUMRRO  
300 N. WASHINGTON ST.  
ALEXANDRIA, VA 22314
- 1 Dr. Kazuo Shigemasu  
University of Tohoku  
Department of Educational Psychology  
Kawauchi, Sendai 980  
JAPAN
- 1 Dr. Edwin Shirkey  
Department of Psychology  
University of Central Florida  
Orlando, FL 32816

## Non Govt

- 1 Dr. Robert Smith  
Department of Computer Science  
Rutgers University  
New Brunswick, NJ 08903
- 1 Dr. Richard Snow  
School of Education  
Stanford University  
Stanford, CA 94305
- 1 Dr. Robert Sternberg  
Dept. of Psychology  
Yale University  
Box 11A, Yale Station  
New Haven, CT 06520
- 1 DR. PATRICK SUPPES  
INSTITUTE FOR MATHEMATICAL STUDIES IN  
THE SOCIAL SCIENCES  
STANFORD UNIVERSITY  
STANFORD, CA 94305
- 1 Dr. Hariharan Swaminathan  
Laboratory of Psychometric and  
Evaluation Research  
School of Education  
University of Massachusetts  
Amherst, MA 01003
- 1 Dr. Brad Sympson  
Psychometric Research Group  
Educational Testing Service  
Princeton, NJ 08541
- 1 Dr. Kikumi Tatsuoka  
Computer Based Education Research  
Laboratory  
252 Engineering Research Laboratory  
University of Illinois  
Urbana, IL 61801
- 1 Dr. David Thissen  
Department of Psychology  
University of Kansas  
Lawrence, KS 66044

## Non Govt

- 1 Dr. Robert Tsutakawa  
Department of Statistics  
University of Missouri  
Columbia, MO 65201
- 1 Dr. J. Uhlener  
Perceptronics, Inc.  
6271 Variel Avenue  
Woodland Hills, CA 91364
- 1 Dr. Howard Wainer  
Division of Psychological Studies  
Educational Testing Service  
Princeton, NJ 08540
- 1 Dr. Phyllis Weaver  
Graduate School of Education  
Harvard University  
200 Larsen Hall, Appian Way  
Cambridge, MA 02138
- 1 Dr. David J. Weiss  
N660 Elliott Hall  
University of Minnesota  
75 E. River Road  
Minneapolis, MN 55455
- 1 DR. SUSAN E. WHITELY  
PSYCHOLOGY DEPARTMENT  
UNIVERSITY OF KANSAS  
LAWRENCE, KANSAS 66044
- 1 Wolfgang Wildgrube  
Streitkraefteamt  
Box 20 50 03  
D-5300 Bonn 2  
WEST GERMANY

