

第6讲 共轴球面系统的主平面和焦点

(含单个折射球面)

一、单个折射球面的主平面和焦点

1. 球面的主点位置

主平面: 垂轴放大率 β =1的一对共轭面。

$$\beta = \frac{nl'}{n'l} = 1$$

$$nl' = n'l$$

由于它们是一对共轭面,主点位置应满足

把
$$nl' = n'l$$
 代入上式 $l = 0$ $l' = 0$

球面的两个主点与球面顶点重合。其物方主平面和像方主平面即为过球面顶点的切平面。

2、球面焦距公式

像方焦点对应: $l = \infty$ l' = f'

$$l=\infty$$

$$l'=f'$$

应用公式

$$\frac{n'}{l'} - \frac{n}{l} = \frac{n'-n}{r} \longrightarrow f' = \frac{n'r}{n'-n}$$

$$f' = \frac{n'r}{n'-n}$$

同样物方焦点为 $l' = \infty$ l = f

$$l=\infty$$
 $l=$

$$f = -\frac{nr}{n'-n}$$

◆球面反射的情形

反射看作是 n' = -n 的折射

$$f' = \frac{n'r}{n'-n} \qquad f = -\frac{nr}{n'-n}$$

$$f' = f = \frac{r}{2}$$

结论:反射球面的焦点位于球心和顶点的中点

二、共轴球面系统的主平面和焦点

1、焦点位置:

- ◆ 平行于光轴入射的光线,通过光学系统后,出射光 线与光轴的交点就是像方焦点F'
- ◆如果知道入射光束和光学系统参数(n₁, n₂, ···n_k, r₁, r₂, ···r_k, d₁, d₂·····),可以采用近轴光路计算公式逐面计算,求出最终出射光线的坐标。

◆ 可以追迹一根平行光轴入射的光线,通过k个表面折射后, 出射光线与光轴交点就是系统像方焦点F'.

◆ 近轴光路计算公式

$$i = \frac{l - r}{r}u$$

$$i' = \frac{n}{n'}i$$

$$u' = u + i - i'$$

$$l' = r + \frac{i'}{u}r$$

当 $L=\infty$ U=0时,第1式无法应用

采用h, u表示入射光线坐标

$$i_1 = \frac{h_1}{r_1}$$

$$i = \frac{h}{r}$$

$$i' = \frac{n}{n'}i$$

$$u' = u + i - i'$$

$$l' = r + \frac{i'}{u}r$$

$$u_2 = u_1'$$
 $h_2 = h_1 - d_1 u_1'$

- ◆把平行于光轴入射的近轴光线逐面计算,最后求得出射光线的坐标 u_k 和 l_k ,从而找出像方焦点F'
- ◆像方焦点F' 离开最后一面顶点 O_k 的距离 l_F 称为像方顶焦距

2、像方主平面位置

F'已经找出,只需要求出像方焦距,即可找出像方主平面位置。

◆入射光线高度h₁, 出射光线延长线与像方主平面的 交点高度也等于h₁

◆延长入射光线和出射光线,其交点必定位在像方主 平面上

焦距公式
$$f' = \frac{h_1}{u_k'}$$

3、物方焦点和物方主平面位置计算

将光学系统翻转,按计算像方焦点和像方主平面同样的方法、计算出的结果就是物方焦点和物方主平面。

第一面顶点到物方焦点F的距离 l_F 称为物方顶焦距

第3讲中的采用的透镜:

表面序号	表面半径	厚度	材料
1	r1=10	d1=5	K9 (n'=1.5163)
2	R2=-50		

