STROKE PREDICTION

INTRODUCTION

This project is a Machine Learning-based Stroke Prediction Application that allows users to input specific health-related parameters to predict the likelihood of a stroke.

Enable healthcare professionals to identify high-risk individuals, allowing timely interventions to prevent strokes.

Promote Healthcare Accessibility:

Offer scalable and efficient solutions for stroke prediction that can be integrated into various medical and insurance systems.

Develop a predictive model that accurately identifies the likelihood of stroke occurrence based on demographic and health data

Assist in early detection and prevention of strokes, which is critical for timely medical intervention.

"" CHALLENGES

Unpredictable medical costs affect financial stability

Need for a predictive model based on demographic and health data.

Challenges in accurately pricing insurance policies

Methodology Overview

Data Collection & Preprocessing

Dataset overview (healthcare-dataset-stroke-data.csv).

Handling missing data and encoding categorical features

Exploratory Data Analysis

Age, BMI, smoker, and region distributions (visualizations).

Model Training

Linear Regression

Ridge Regression

Lasso Regression

Decision Tree Regression

Random Forest Regression.

Evaluation Metrics

R-squared values for training and test data.

ACCURACY FOR EACH ALGORITHM

A I	gorithm					
	gn	ritn	m			
	' 5'					

Logistic Regression

KNN

XGBoost

Random Forest

SVM

Decision Tree

Accuracy

82.51%

91.9%

94.38%

95.1%

88.09%

91.18%

DATA SET

1	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
2	9046	Male	67	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
3	51676	Female	61	0	0	Yes	Self-employed	Rural	202.21	N/A	never smoked	1
4	31112	Male	80	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1
5	60182	Female	49	0	0	Yes	Private	Urban	171.23	34.4	smokes	1

We then visualized the gender distribution using sns.countplot(). This plot shows the number of males and females in the dataset. It's essential to identify whether the dataset is balanced in terms of gender or if there's a disproportionate representation. If the distribution is imbalanced, different approaches may be needed to ensure robust analysis.

We also explored distributions for Smoking Status: To understand the prevalence of smokers and their potential influence

We also explored distributions for heart disease Status

We also explored distributions for hypertension Status

We also explored distributions for Residence type Status

AMR AHMED ZAKARIA

GAMAL MOHAMED ALI

EMAN MOHAMED KHATER

ESRAA MORSI MORSI

