

Departamento de Ciência da Computação Arthur Pontes Nader Luiz Phillippe Pereira Amaral Rita Rezende Borges de Lima

Uso de grafos para identificar padrões de jogo de uma equipe de futebol

Belo Horizonte 23 de abril de 2023

1) Introdução

A análise de dados aplicada ao futebol é uma área em crescimento dentro do campo da ciência de dados. Com a disponibilidade cada vez maior de dados e tecnologias para coletá-los, tornou-se possível aplicar técnicas estatísticas e de aprendizado de máquina para avaliar e entender melhor o desempenho dos jogadores e times. Nesse contexto, o uso de grafos, como as Árvores Geradoras Mínimas (AGMs) e grafos maximamente conectados planares, emerge como uma abordagem promissora para avaliar os padrões de jogo e o desempenho do time.

O objetivo deste projeto é explorar o uso desses grafos para avaliar o desempenho dos jogadores e times de futebol, analisando suas conexões dentro do campo, jogadores promissores em contra-ataques, modelos de marcação e eficiência da troca de passes.

2) Trabalhos relacionados

Os trabalhos relacionados à análise de futebol com grafos vêm ganhando destaque nos últimos anos, principalmente devido ao aumento da disponibilidade de dados e tecnologias de análise de dados. Esses trabalhos utilizam grafos para modelar e analisar os padrões de jogo de times de futebol, possibilitando a identificação de jogadores-chave, o estudo de estratégias de ataque e defesa, a avaliação do desempenho individual e coletivo dos jogadores, entre outras possibilidades.

Os principais trabalhos relacionados estão disponíveis na seção 6.

3) Metodologia de pesquisa

No caso deste projeto, a metodologia envolverá a coleta de dados de partidas de futebol, incluindo a posição dos jogadores em cada instante do jogo e os eventos que ocorreram, como passes, finalizações, desarmes, entre outros. Esses dados serão processados e utilizados para construir a Árvore Geradora Mínima (AGM) de cada partida, assim como um grafo maximamente conectado planar.

Para avaliar a qualidade dos passes dentro e fora da AGM, serão utilizadas métricas como acurácia, precisão e recall. Além disso, serão analisados outros aspectos relevantes do jogo, como o número de contra-ataques realizados, estilo de marcação (individual ou por zona) e a efetividade em relação à posse de bola.

As técnicas de análise de dados a serem empregadas incluem análise estatística descritiva e inferencial, bem como visualização de dados por meio de gráficos e mapas de calor.

4) Resultados esperados

Com base nas análises propostas utilizando grafos maximamente conectados planares e árvores geradoras mínimas, espera-se obter informações relevantes sobre os padrões de jogo de um time de futebol. Essas informações poderão ser utilizadas para avaliar a eficácia tática da equipe e identificar pontos fortes e fracos de jogadores individuais em diferentes situações de jogo.

Espera-se que o estudo produza resultados que permitam a criação de um índice de importância de um jogador para o time, levando em conta tanto a sua posição no campo quanto a sua capacidade de adaptar-se a diferentes situações de jogo. Além disso, espera-se que o estudo forneça informações valiosas para a tomada de decisões táticas pelos treinadores e gestores do time.

A análise de padrões de jogo também pode ser útil para a identificação de tendências de jogo ao longo do tempo, permitindo que o time ajuste suas estratégias para melhorar seu desempenho em jogos futuros.

Algumas ideias de métricas que podem ser exploradas são:

- Grau dos vértices: O grau de um vértice representa o número de arestas que se conectam a ele. Analisar o grau dos vértices pode ajudar a identificar jogadores-chave e a entender a forma como eles se conectam com o resto do time.
- Coeficiente de clusterização: O coeficiente de clusterização de um vértice mede a tendência dos vértices vizinhos a formarem grupos ou "clusters". Isso pode indicar se o time tende a jogar em grupos ou se prefere jogadas individuais.
- Distância média: A distância média entre os vértices do grafo pode ser utilizada para avaliar a forma como o time se move pelo campo e se mantém conectado.
- Centralidade: Existem diferentes tipos de centralidade que podem ser utilizados para avaliar a importância de um vértice no grafo. Por exemplo, a centralidade de grau mede o número de arestas que se conectam a um vértice, enquanto a centralidade de intermediação mede a frequência com que um vértice é utilizado como um ponto de passagem para conectar outros vértices.
- Cliques: Um clique é um subconjunto de vértices em que cada vértice se conecta diretamente com todos os outros vértices do subconjunto. Analisar os cliques no grafo pode ajudar a identificar combinações frequentes de jogadores.
- Coesão: A coesão mede a força da conexão entre os vértices em um grafo.
 Uma equipe com alta coesão pode ser considerada mais organizada e eficiente em manter a posse de bola.
- Fluxo: O fluxo em um grafo pode ser utilizado para avaliar a forma como a bola se move pelo campo e como o time tenta criar oportunidades de gol.

5) Conclusão

Em resumo, a utilização de grafos e algoritmos de ciência de dados para análise de padrões de jogo de futebol é uma área em desenvolvimento, com grande potencial para impactar a tomada de decisão em clubes e na melhoria do desempenho dos jogadores. A metodologia proposta neste projeto tem como objetivo contribuir para essa área, utilizando conceitos de árvores geradoras mínimas, grafos maximamente conectados e planares, e métricas de análise de desempenho de jogadores e equipes.

Os resultados esperados incluem a identificação de padrões de jogo relevantes, a avaliação da importância de jogadores para o desempenho da equipe e a avaliação do impacto de mudanças táticas. Isso pode fornecer insights valiosos para treinadores, analistas de desempenho e dirigentes de clubes, além de contribuir para o avanço da pesquisa nessa área.

Portanto, a aplicação de conceitos de grafos e algoritmos de ciência de dados pode oferecer uma nova perspectiva para a análise de futebol, permitindo que clubes e jogadores tenham um melhor entendimento do jogo e, consequentemente, tomem decisões mais informadas.

6) Referências

- https://www.lume.ufrgs.br/bitstream/handle/10183/144074/000998251.pdf?seguence=1
- https://ceur-ws.org/Vol-1970/paper-03.pdf
- https://www.athensjournals.gr/reviews/2022-4975-AJSPO-FIT.pdf
- https://www.frontiersin.org/articles/10.3389/fpsyg.2018.01900/full
- https://www.kdnuggets.com/2022/11/graph-theory-scout-soccer.html