ADVANCED PLACEMENT CHEMISTRY EQUATIONS AND CONSTANTS

ATOMIC STRUCTURE

$$E = hv c = \lambda v$$

$$\lambda = \frac{h}{mv} p = mv$$

$$E_n = \frac{-2.178 \times 10^{-18}}{n^2} \text{ joule}$$

EQUILIBRIUM

$$K_{a} = \frac{[\text{H}^{+}][\text{A}^{-}]}{[\text{HA}]}$$

$$K_{b} = \frac{[\text{OH}^{-}][\text{HB}^{+}]}{[\text{B}]}$$

$$K_{w} = [\text{OH}^{-}][\text{H}^{+}] = 1.0 \times 10^{-14} @ 25^{\circ}\text{C}$$

$$= K_{a} \times K_{b}$$

$$\text{pH} = -\log [\text{H}^{+}], \text{ pOH} = -\log [\text{OH}^{-}]$$

$$14 = \text{pH} + \text{pOH}$$

$$\text{pH} = \text{pK}_{a} + \log \frac{[\text{A}^{-}]}{[\text{HA}]}$$

$$\text{pOH} = \text{pK}_{b} + \log \frac{[\text{HB}^{+}]}{[\text{B}]}$$

$$\text{pK}_{a} = -\log K_{a}, \text{ pK}_{b} = -\log K_{b}$$

$$K_{p} = K_{c}(RT)^{\Delta n},$$
where Δn = moles product gas — moles reactant gas

THERMOCHEMISTRY/KINETICS

$$\Delta S^{\circ} = \sum S^{\circ} \text{ products } -\sum S^{\circ} \text{ reactants}$$

$$\Delta H^{\circ} = \sum \Delta H_{f}^{\circ} \text{ products } -\sum \Delta H_{f}^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \sum \Delta G_{f}^{\circ} \text{ products } -\sum \Delta G_{f}^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$= -RT \ln K = -2.303 RT \log K$$

$$= -n \mathcal{F} E^{\circ}$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q = \Delta G^{\circ} + 2.303 RT \log Q$$

$$q = mc\Delta T$$

$$C_{p} = \frac{\Delta H}{\Delta T}$$

$$\ln[A]_{t} - \ln[A]_{0} = -kt$$

$$\frac{1}{[A]_{t}} - \frac{1}{[A]_{0}} = kt$$

 $\ln k = \frac{-E_a}{R} \left(\frac{1}{T}\right) + \ln A$

$$E = \text{energy}$$
 $v = \text{velocity}$
 $v = \text{frequency}$ $n = \text{principal quantum number}$
 $\lambda = \text{wavelength}$ $m = \text{mass}$
 $p = \text{momentum}$
Speed of light, $c = 3.0 \times 10^8 \text{ m s}^{-1}$
Planck's constant, $h = 6.63 \times 10^{-34} \text{ J s}$
Boltzmann's constant, $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$
Avogadro's number $= 6.022 \times 10^{23} \text{ mol}^{-1}$

Electron charge, $e = -1.602 \times 10^{-19}$ coulomb

1 electron volt per atom = 96.5 kJ mol^{-1}

Equilibrium Constants

 K_a (weak acid) K_b (weak base)

 K_w (water)

 K_p (gas pressure) K_c (molar concentrations)

 $S^{\circ} = \text{standard entropy}$

 H° = standard enthalpy

 G° = standard free energy

 E° = standard reduction potential

T = temperature

n = moles

m = mass

q = heat

c = specific heat capacity

 C_p = molar heat capacity at constant pressure

 E_a = activation energy

k = rate constant

A =frequency factor

Faraday's constant, $\mathcal{F} = 96,500$ coulombs per mole of electrons

Gas constant,
$$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$$

= 0.0821 L atm mol⁻¹ K⁻¹
= 8.31 volt coulomb mol⁻¹ K⁻¹

GASES, LIQUIDS, AND SOLUTIONS

$$PV = nRT$$

$$\left(P + \frac{n^2a}{V^2}\right)(V - nb) = nRT$$

$$P_A = P_{total} \times X_A, \text{ where } X_A = \frac{\text{moles A}}{\text{total moles}}$$

$$P_{total} = P_A + P_B + P_C + \dots$$

$$n = \frac{m}{M}$$

$$K = {}^{\circ}C + 273$$

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$D = \frac{m}{V}$$

$$u_{rms} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3RT}{M}}$$

$$KE \text{ per molecule } = \frac{1}{2}mv^2$$

$$KE \text{ per mole} = \frac{3}{2}RT$$

$$\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$$

$$molarity, M = \text{ moles solute per liter solution}$$

$$molality = \text{ moles solute per kilogram solvent}$$

$$\Delta T_f = iK_f \times \text{ molality}$$

$$\Delta T_b = iK_b \times \text{ molality}$$

$$\pi = iMRT$$

$$A = abc$$

OXIDATION-REDUCTION; ELECTROCHEMISTRY

$$Q = \frac{\left[\text{C}\right]^{c} \left[\text{D}\right]^{d}}{\left[\text{A}\right]^{a} \left[\text{B}\right]^{b}}, \text{ where } a \text{ A} + b \text{ B} \rightarrow c \text{ C} + d \text{ D}$$

$$I = \frac{q}{t}$$

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{RT}{n\mathcal{F}} \ln Q = E_{\text{cell}}^{\circ} - \frac{0.0592}{n} \log Q @ 25^{\circ}\text{C}$$

$$\log K = \frac{nE^{\circ}}{0.0592}$$

P = pressureV = volumeT = temperaturen = number of molesD = densitym = massv = velocity u_{rms} = root-mean-square speed KE = kinetic energyr = rate of effusionM = molar mass π = osmotic pressure i = van't Hoff factor K_f = molal freezing-point depression constant K_b = molal boiling-point elevation constant A = absorbancea = molar absorptivityb = path lengthc = concentrationQ = reaction quotientI = current (amperes)q = charge (coulombs)t = time (seconds) E° = standard reduction potential K = equilibrium constant

Gas constant,
$$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$$

$$= 0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1}$$

$$= 8.31 \text{ volt coulomb mol}^{-1} \text{ K}^{-1}$$
Boltzmann's constant, $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$

$$K_f \text{ for H}_2\text{O} = 1.86 \text{ K kg mol}^{-1}$$

$$K_b \text{ for H}_2\text{O} = 0.512 \text{ K kg mol}^{-1}$$

$$1 \text{ atm} = 760 \text{ mm Hg}$$

$$= 760 \text{ torr}$$
STP = 0.000° C and 1.000 atm
Faraday's constant, $\mathcal{F} = 96,500$ coulombs per mole of electrons