Lecture 8 Text Entry on Mobile Devices -2

Xiaojun Bi
Stony Brook University
xiaojun@cs.stonybrook.edu

Smart Touch Keyboard

Text Entry Decoding Algorithm

$$W^* = \underset{W \in L}{\arg \max} P(W|S).$$

From Bayes' rule:
$$P(W|S) = \frac{P(S|W)P(W)}{P(S)}$$
.

As P(S) is a constant across all the words, we have:

$$W^* = \underset{W \in L}{\arg \max} P(S|W)P(W).$$

Spatial Model:

Assuming that W is comprised of n letters: $c_1, c_2, c_3, ..., c_n, S$ has n touch points, and each tap is independent, we have:

$$P(S|W) = \prod_{i=1}^{n} P(s_i|c_i).$$

$$P(s_i|c_i) = \frac{1}{2\pi\sigma_{i_x}\sigma_{i_y}\sqrt{1-\rho_i^2}} \exp\left[-\frac{z}{2(1-\rho_i^2)}\right]$$
 Gaussian Distribution

Language Model:

P(W) is obtained from a Language Model (LM)

Gesture Keyboard

Entering *nice*

Gesture Decoder

$$W^* = \underset{w}{\operatorname{argmax}} P(W|G) = \underset{w}{\operatorname{argmax}} \frac{P(G|W)P(W)}{P(G)}$$

$$W^* = \operatorname*{argmax}_{W} P(G|W)P(W)$$

How to calculate P(G|W)?

SHARK² Algorithm

Location Recognition Channel

$$x_{x} = \frac{1}{N} \sum_{i=1}^{N} ||u_{i} - t_{i}||_{2}$$

Shape Matching Channel

Gesture Keyboard

ShapeWriter

Swype

TouchPal

Bimanual Gesture Typing

Entering *nice*

Bimanual Gesture Typing

Entering interaction

Bimanual Gesture Typing

Perfect Templates

Perfect Templates

Perfect Templates

Bimanual Gesture Recognition

Bimanual Gesture Recognition

Entering *nice*

Unimanual Gesture

Bimanual Gesture

Optimization and Evaluation of Decoding Algorithm

Remulation: Replicating prior user study data with simulation.

[Bi, Azenkot, Partridge, Zhai. Octopus: Evaluating Touchscreen Keyboard Correction and Recognition Algorithms via Remulation. ACM CHI2013]

[Bi, Azenkot, Partridge, Zhai. Octopus: Evaluating Touchscreen Keyboard Correction and Recognition Algorithms via Remulation. ACM CHI2013]

Smart Touchscreen Keyboard

Correction

Thaml -> Thank

$$Success \ Rate(W) = \frac{Correct \ Words}{Total \ Words}$$

[**Bi,** Ouyang, Zhai. Both Complete and Correct? Multi-Objective Optimization of Touchscreen Keyboard. ACM CHI2014]

Smart Touchscreen Keyboard

Correction

Completion

Computer Computer

$$Success\ Rate(W) = \frac{Correct\ Words}{Total\ Words}$$

$$Keystroke Saving(S) = \frac{Saved Keystrokes}{Maximum Keystrokes}$$

[Bi, Ouyang, Zhai. Both Complete and Correct? Multi-Objective Optimization of Touchscreen Keyboard. ACM CHI2014]

Relationship between Correction and Completion

[**Bi**, Ouyang, Zhai. Both Complete and Correct? Multi-Objective Optimization of Touchscreen Keyboard. ACM CHI2014]

[**Bi,** Ouyang, Zhai. Both Complete and Correct? Multi-Objective Optimization of Touchscreen Keyboard. ACM CHI2014]

[**Bi,** Ouyang, Zhai. Both Complete and Correct? Multi-Objective Optimization of Touchscreen Keyboard. ACM CHI2014]

[**Bi,** Ouyang, Zhai. Both Complete and Correct? Multi-Objective Optimization of Touchscreen Keyboard. ACM CHI2014]

Pareto Frontier

Completion: Keystroke Saving (%)

[Bi, Ouyang, Zhai. Both Complete and Correct? Multi-Objective Optimization of Touchscreen Keyboard. ACM CHI2014]

Outline

Smart Touch Keyboard

Gesture Typing

Optimizing Keyboard Layouts

Qwerty Layout

Q	W	Ш	R	Т	Υ	J	_	0	Р
Α	S	D	F	G	Ι	J	K	L	
	Z	X	C	V	В	Z	M		

Qwerty is inefficient for one finger typing.

Optimization Objective Function

• Fitts' Law (Fitts 1954):

$$MT_{ij} = a + b \log_2 \left(\frac{D_{ij}}{W} + 1\right)$$

 MT_{ij} : Movement Time from Key *i* to Key *j*

 D_{ij} : Distance from Key i to Key j

W: Key Width

Optimization Objective Function

• Fitts' Law (Fitts 1954):

$$MT_{ij} = a + b \log_2 \left(\frac{D_{ij}}{W} + 1 \right)$$

 MT_{ij} : Movement Time from Key *i* to Key *j*

 D_{ij} : Distance from Key *i* to Key *j*

W: Key Width

Average time of typing a letter:

$$t = a + b \sum_{i}^{26} \sum_{j}^{26} P_{ij} \log_2 \left(\frac{D_{ij}}{W} + 1 \right)$$

 P_{ij} : Frequency of an ordered letter pair i, j

Layout Optimized for English

K-English

Z	J	D	G	K	
Υ	اــ	Z		O	
F	0	Α	Т	I	W
В	C	R	Е	S	
Q	Р	М	V	X	

Average Finger Travel Distance

Layout Optimized for Five Languages

English, French, German, Spanish, and Chinese Pinyin

K5									
	K	J	Z	X					
	F	С	Η	Τ	W				
Q	U	0	Ι	S	Р				
Υ	М	Α	Ν	Е	R				
	В	L	G	D	V				

Typing Speed

[**Bi,** Smith, Zhai. *Multilingual Touchscreen Keyboard Design and Optimization* Human-Computer Interaction 2012]

Optimized Layout for Gesture Typing

Qwerty

Q	W	Ш	R	H	Υ	U		0	Р
Α	S	D	F	G	Н	J	K	لــ	
	Z	X	С	V	В	N	М		

Optimized Layout for Gesture Typing

or vs. our

Qwerty

Q	W	Е	R	Ŧ	Y	U		0	Р
Α	S	D	F	G	Н	J	K	L	
	Z	X	С	V	В	Ν	М		

GK-T (Speed, Clarity, Similarity to Qwerty)

Q	D	W	S	0	I	Υ	כ	J	Р
Z	R	F	Α	Т	N	G	K	L	
	С	Е	X	Н	V	М	В		

Optimized Layout for Gesture Typing

or vs. our

Qwerty

Q	W	Е	R	Ŧ	Y	U		0	Р
Α	S	D	F	G	Н	J	K	L	
	Z	X	С	V	В	Z	М		

GK-T (Speed, Clarity, Similarity to Qwerty)

Q	D	W	S	0		¥	7	J	Р
Z	R	4	A	Т	N	G	K	Г	
	С	Е	X	Н	V	M	В		

COMPASS: Rotational Keyboard on Non-Touch Smartwatches

Xin Yi, Chun Yu, Weijie Xu, Xiaojun Bi, and Yuanchun Shi. 2017. COMPASS: Rotational Keyboard on Non-Touch Smartwatches. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI '17). ACM, New York, NY, USA, 705-715.

But what if...

COMPASS

- Circular Keyboard
- Multi-cursor paradigm
- Bezel rotation
- Physical button
- Dynamic Cursor Placement
- Flick to delete

Multi-Cursor Paradigm

Algorithm of COMPASS

Similar as an ambiguous keyboard

Visual Cues

- 1. For each character c, calculate P(c) as the probability of it being the next character given the input prefix.
- 2. Each key is highlighted according to P(c).
- 3. Impossible characters are dimmed.

Cursor Adjustment

Locations of cursors dynamically adjust upon each character selection.

Choose the locations that would minimize the *Expected Next Rotation Distance*

$$ENRD = \sum_{c \in \chi} dis(c) \times P(c)$$

S-COMPASS & D-COMPASS

S(Static)-COMPASS

D(Dynamic)-COMPASS

Number of Cursors (N)

- Simulated all 15,000 words in the corpus
- Assumed perfect user input
- 1≤N≤5

DPR (Distance Per Rotation):
Average distance of each rotation

CC (Candidate Coverage):
Ratio of words that appear in
the top-3 candidates given
users' perfect input

Simulation Result

DPR (Distance Per Rotation):
Average distance of each rotation

CC (Candidate Coverage):
Ratio of words that appear in
the top-3 candidates given
users' perfect input

User Study

- 12 participants
- × 2 techniques (S-COMPASS and D-COMPASS)
- \times 3 N(2, 3 and 4)
- × 5 phrases

Speed & Error Rate

 $F_{2,22} = 3.42, p = .05 (S-COMPASS)$ $F_{2,22} = 7.04, p < .01 (D-COMPASS)$

 $F_{2,22} = 0.66, n. s. (S-COMPASS)$ $F_{2,22} = 1.00, n. s. (D-COMPASS)$

Final Design

D-COMPASS

N=3

Auto-completion

Auto-Completion

$$I = I_1 I_2 \cdots I_n$$

$$W = W_1 W_2 \cdots W_n W_{n+1} \cdots W_m$$

$$P(I|W) = \begin{cases} 1 & \text{if } I \text{ matches with } W \\ 0 & \text{otherwise} \end{cases}$$

$$P(I|W) = \begin{cases} \alpha^{m-n} & \text{if } I \text{ matches with the prefix of } W \\ & 0 \text{ otherwise} \end{cases}$$

 $\alpha = 0.7$ as the penalty of looking ahead

Speed & Error Rate

10 participants \times 8 blocks \times 10 phrases

Applications

