Probing Hash Tables

- Disadvantages of separate chaining:
 - Requires the use of another data structure, linked lists.
 - Slow when allocating new elements.
- Open Addressing: when a collision occurs try alternative cells until an empty cell is found.
- $h_0(x), h_1(x), h_2(x), ...$
- $h_i(x) = (hash(x) + f(i)) mod TableSize; f(0) = 0$
- f = collusion resolution strategy:
 - Linear probing f(i) = i
 - Quadratic probing f(i) = i²
 - Double Hashing $f(i) = i * hash_2(x)$
- Needs a big table with load factor < 0.5

- $h(x) = (x + i) \mod TableSize$
- Example: TableSize = 10, insert: 89, 18, 49, 58, 69
 => primary clustering (clusters of occupied cells start forming)

	Initial	After 89	After 18	After 49	After 58	After 69
0				49	49	49
1					58	58
2						69
3						
4						
5						
6						
7						
8			18	18	18	18
9		89	89	89	89	89

- As the hash table begins to fill up the probability that a record can be inserted in its home cell decreases.
- Problem: How to estimate the time for insertion (unsuccessful search)?
- Assume probe sequence follows a random permutation.
- Probability to find a cell occupied = $N/M = \lambda$
- Probability to find both home cell and next cell in the probe sequence occupied:

$$\frac{N}{M}\frac{(N-1)}{(M-1)}$$

• Probability of i collisions:

$$\frac{N}{M} \frac{(N-1)}{(M-1)} \dots \frac{(N-i+1)}{(M-i+1)} \approx \left(\frac{N}{M}\right)^{i}$$

Expected number of probes:

$$1 + \sum_{i=1}^{\infty} \left(\frac{N}{M} \right)^{i} = \frac{1}{1 - \lambda}$$

 Estimate of insertion time = average over all insertion times:

$$I(\lambda) = \frac{1}{\lambda} \int_{0}^{\lambda} \frac{1}{1-x} dx = \frac{1}{\lambda} \ln \frac{1}{1-\lambda}$$

 Lower bound on the expected running time for insertion in the average case.

U = unsuccessful search, I = insertion, S = successful search Dashed – linear probing, Solid line – random probing

Linear probing can be a bad idea if the table is expected to be more than half full

Quadratic Probing

- $h(x) = (x + i^2) \mod TableSize$
- Eliminates the primary clustering problem
- Example: TableSize = 10, insert: 89, 18, 49, 58, 69
- Problem: if we delete 89 then a next search will fail => use lazy deletion
- Secondary clustering => elements that hash to the same cell will probe the same alternative cells => not so bad in practice.

	Initial	After 89	After 18	After 49	After 58	After 69
0				49	49	49
1						
2					58	58
3						69
4						
5						
6						
7						
8			18	18	18	18
9		89	89	89	89	89

Quadratic Probing

- Problem: There is no guarantee of finding an empty cell once the table gets more than half full.
 - Worse if TableSize is not prime!
- Theorem: If quadratic probing is used, and the table size is prime, then a new element can always be inserted if the table is at least half empty.
- Proof:

TableSize = M > 3, prime number Show that the first $_{\Gamma}M/2_{\Gamma}$ alternative locations are all distinct.

Proof by contradiction:

Assume that two of these locations $(h(x) + i^2)$ mod M and $(h(x) + j^2)$ mod M are the same but $i \neq j$.

$$0 \le i, j \le LM/2J$$

Quadratic Probing

```
=> h(x) + i² = h(x) + j² (mod M)

=> i² = j² (mod M)

=> i² - j² = 0 (mod M)

=> (i - j)(i + j) = 0 (mod M)

M is prime => either (i - j) or (i + j) is 0 (mod M).

But i ≠ j => first one is not possible

0 <= i, j <= \frac{L}{M/2J} => second one is impossible

⇒ The first \frac{L}{M/2J} alternative locations are distinct.
```

Example: M =16 not prime => alternative locations at distances 1, 4, and 9.

find an empty cell.

 \rightarrow If at most LM/2J cells are taken then we can always

Class Interface

```
template <typename HashedObj>
class HashTable
public:
        explicit HashTable( int size = 101 );
        bool contains (const HashedObj & x) const;
        void makeEmpty( );
        void insert( const HashedObj & x );
        void remove( const HashedObj & x );
        enum EntryType { ACTIVE, EMPTY, DELETED };
 private:
        struct HashEntry
                        HashedObj element;
                        EntryType info;
                                                 //state
                        HashEntry( const HashedObj & e = HashedObj( ), EntryType i = EMPTY ):
        element( e ), info( i ) { }
        };
        vector<HashEntry> array;
        int currentSize;
        bool isActive( int currentPos ) const;
        int findPos( const HashedObj & x ) const;
        void rehash( );
        int myhash (const HashedObj & x) const;
};
```

Constructor

```
explicit HashTable( int size = 101 ):
                             array( nextPrime( size ) )
     makeEmpty();
}
void makeEmpty( )
{
    currentSize = 0;
    for( int i = 0; i < array.size(); i++)
              array[ i ].info = EMPTY;
}
```

contains

```
bool contains (const HashedObj & x ) const
{
     return isActive(findPos(x));
}
int findPos( const HashedObj & x ) const
                                                      //internal
{
     int offset = 1;
     int currentPos = myhash(x);
     while( array[ currentPos ].info != EMPTY &&
      array[ currentPos ].element != x )
                 currentPos += offset; // Compute ith probe
                 offset += 2:
                 if( currentPos >= array.size( ) )
                          currentPos -= array.size( );
      return currentPos;
}
bool isActive(int currentPos) const
      return array[ currentPos ].info == ACTIVE;
}
```

Insert & remove

```
bool insert( const HashedObj & x )
{
                 // Insert x as active
      int currentPos = findPos(x);
      if( isActive( currentPos ) )
                  return false;
      array[ currentPos ] = HashEntry( x, ACTIVE );
                 // Rehash; see Section 5.5
      if( ++currentSize > array.size( ) / 2 )
                  rehash();
      return true;
}
bool remove( const HashedObj & x )
      int currentPos = findPos(x);
      if(!isActive( currentPos ) )
                  return false;
      array[ currentPos ].info = DELETED;
      return true:
```

Double Hashing

- $h(x) = (hash_1(x) + i*hash_2(x)) mod TableSize$
- Good function: $hash_2(x) = R (x \mod R)$ where R < TableSize and is prime
- Example: TableSize = 10, R = 7 insert: 89, 18, 49, 58, 69, 60
- What if we insert 23?
- Simulations show that the expected number of probes is the same as in random probing.

	Initial	After 89	After 18	After 49	After 58	After 69	After 60
0						69	69
1							
2							60
3					58	58	58
4							
5							
6				49	49	49	49
7							
8			18	18	18	18	18
9		89	89	89	89	89	89

Rehashing

- Assume linear probing. Insert: 13, 15, 6, 24
- If table too full => slow operations and insertions might fail.
- Solution: build a table twice as big and rehash

0	6		0	6
1	15		1	15
2		Insert 23 =>	2	23
3	24		3	24
4			4	
5			5	
6	13		6	13

rehashing => T(N) = O(N)

0	
1	
2	
3	
4	
5	
6	6
7	23
8	24
9	
10	
11	
12	
13	13
14	
15	15
16	

x mod 7

x mod 17

Rehashing

- When to rehash?
 - As soon as the table is half full.
 - 2. When an insertion fails.
 - 3. When a certain load factor is reached.
- Third strategy will be the best.

Rehashing

```
// rehashing for quadratic probing hash table
void rehash( )
      vector<HashEntry> oldArray = array;
                  // Create new double-sized, empty table
      array.resize( nextPrime( 2 * oldArray.size( ) ) );
      for( int j = 0; j < array.size(); j++)
                  array[ i ].info = EMPTY;
                  // Copy table over
      currentSize = 0;
      for( int i = 0; i < oldArray.size(); i++)
                  if( oldArray[ i ].info == ACTIVE )
                            insert( oldArray[ i ].element );
```

Application of hashing

- Compilers: symbol tables keeps track of the declared variables in the source code.
- Graph problems: map names into integers
- Game programs: transposition table keeps track of player's position.
- Spelling checker: words can be checked in constant time.