Problems for Recitation 14

Mini-Tetris

A winning configuration in the game of Mini-Tetris is a complete tiling of a $2 \times n$ board using only the three shapes shown below:

For example, here are several possible winning configurations on a 2×5 board:

- 1. Let T_n denote the number of different winning configurations on a $2 \times n$ board. Determine the values of T_1 , T_2 , and T_3 .
- 2. Find a recurrence equation that expresses T_n in terms of T_{n-1} and T_{n-2} .
- 3. Find a closed-form expression for the number of winning configurations on a $2 \times n$ Mini-Tetris board.

Linear Recurrences

Find closed-form solutions to the following linear recurrences.

1.
$$T_0 = 0$$

 $T_1 = 1$
 $T_n = T_{n-1} + T_{n-2} + 1$

2.
$$S_0 = 0$$

 $S_1 = 1$
 $S_n = 6S_{n-1} - 9S_{n-2}$

Recitation 14

Short Guide to Solving Linear Recurrences

A linear recurrence is an equation

$$\underbrace{f(n) = a_1 f(n-1) + a_2 f(n-2) + \ldots + a_d f(n-d)}_{\text{homogeneous part}} \underbrace{+g(n)}_{\text{inhomogeneous part}}$$

together with boundary conditions such as $f(0) = b_0$, $f(1) = b_1$, etc.

1. Find the roots of the characteristic equation:

$$x^n = a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_k$$

2. Write down the homogeneous solution. Each root generates one term and the homogeneous solution is the sum of these terms. A nonrepeated root r generates the term $c_r r^n$, where c_r is a constant to be determined later. A root r with multiplicity k generates the terms:

$$c_{r_1}r^n$$
, $c_{r_2}nr^n$, $c_{r_3}n^2r^n$, ..., $c_{r_k}n^{k-1}r^n$

where c_{r_1}, \ldots, c_{r_k} are constants to be determined later.

- 3. Find a particular solution. This is a solution to the full recurrence that need not be consistent with the boundary conditions. Use guess and verify. If g(n) is a polynomial, try a polynomial of the same degree, then a polynomial of degree one higher, then two higher, etc. For example, if g(n) = n, then try f(n) = bn+c and then $f(n) = an^2 + bn + c$. If g(n) is an exponential, such as 3^n , then first guess that $f(n) = c3^n$. Failing that, try $f(n) = bn3^n + c3^n$ and then $an^23^n + bn3^n + c3^n$, etc.
- 4. Form the *general solution*, which is the sum of the homogeneous solution and the particular solution. Here is a typical general solution:

$$f(n) = \underbrace{c2^n + d(-1)^n}_{\text{homogeneous solution}} + \underbrace{3n+1}_{\text{particular solution}}$$

5. Substitute the boundary conditions into the general solution. Each boundary condition gives a linear equation in the unknown constants. For example, substituting f(1) = 2 into the general solution above gives:

$$2 = c \cdot 2^{1} + d \cdot (-1)^{1} + 3 \cdot 1 + 1$$

$$\Rightarrow -2 = 2c - d$$

Determine the values of these constants by solving the resulting system of linear equations.