2021년 고양시 태권도 동작 데이터 데이터 톤 참고자료

2021.11.08

1. 인공지능 모델 개발 개요

- ❖ 인공지능 모델 개발 목표
 - 태권도 영상 데이터(입력) ▶ 태권도 동작인식(출력 : 동작명) 모델 개발
 - 태권도 동작인식, 자세추정 모델을 통하여 최종적으로 승급승단, 코칭서비스 등의 개발에 활용

2. 태권도 데이터 구성

❖ 태권도 데이터 구성

- 파일형식: json
- ◉ P-001-004-B005-M-A2010-S-20210819-05-08-S01 시작점 라벨링 데이터
- 测P-001-004-B005-M-A2010-S-20210819-05-08-M01 중간점 라벨링 데이터
- 测 P-001-004-B005-M-A2010-S-20210819-05-08-E01 종료점 라벨링 데이터
- 학습데이터
 - : [29개 관절 위치 x, y, 좌표값, 보이는 관절 여부 표시]
 - = (x, y, visible값 (1 또는 -1)
 - ※ visible값: 1은 보이는 관절, -1은 보이지 않는 관절

※ 29개 관절위치 – "태권도 29개 키포인트 정의" 참고

참고: 태권도 29개 키포인트 정의

Index	Name	한글				
0	Nose	코				
1	Neck	목				
2	RShoulder	오른쪽 어깨				
3	RElbow	오른쪽 팔꿈치				
4	RWrist	오른쪽 손목				
5	LShoulder	왼쪽 어깨				
6	LElbow	왼쪽 팔꿈치				
7	LWrist	왼쪽 손목				
8	MidHip	가운데 엉덩이				
9	RHip	오른쪽 엉덩이				
10	RKnee	오른쪽 무릎				
11	RAnkle	오른쪽 발목				
12	LHip	왼쪽 엉덩이				
13	LKnee	왼쪽 무릎				
14	LAnkle	왼쪽 발목				

Index	Name	한글				
15	REye	오른쪽 눈				
16	LEye	왼쪽 눈				
17	REar	오른쪽 귀				
18	LEar	왼쪽 귀				
19	LBigToe	왼쪽 엄지발가락				
20	LSmallToe	왼쪽 새끼발가락				
21	LHeel	왼쪽 발 뒤꿈치				
22	RBigToe	오른쪽 엄지발가락				
23	RSmallToe	오른쪽 새끼발가락				
24	RHeel	오른쪽 발 뒤꿈치				
25	LPalmThumb	왼쪽 손바닥 엄지				
26	LPalmMiddle	왼쪽 손바닥 중지				
27	RPalmThumb	오른쪽 손바닥 엄지				
28	RPalmMiddle	오른쪽 손바닥 중지				

3. 태권도 학습데이터 파일명 규칙

❖ 태권도 학습데이터 파일명 규칙

1 2	3	4	5	6	7	8	9	10	11	
P-00⁻	004	B005	·M-	A2010	·S-	20210819	05	08	S01	- 시작점 라벨링 데이터
P-00	004	B005	M-	A2010	-S-	20210819	05	08	M01	・ 중간점 라벨링 데이터
P-00	004	B005	M-	A2010	-S-	20210819	05	08	E01	- 종료점 라벨링 데이터

1	영문 P : 품새를 의미
2	숫자 세자리 - 001 : 태극1장, 002 : 태극2장 ~ 008 : 태극8장
3	숫자 세자리 - 001:1품,002:2품,003:3품~00*:*품
4	선수 ID
5	알파벳 M: 남자선수 / 알파벳 F: 여자선수
6	A****: : ****년생 의미 / 나이, 예)A2010 : 2010년생
7	S: 체급체형 표준형 / N: 체급체형 비표준형
8	영상 촬영일자
9	반복수행 횟수
10 5	카메라 ID , 카메라 번호 1 ~ 8번
11 8	S01 : 동작 시작점, M01 : 동작 중간점, E01 : 동작 종료점

4. 학습데이터 파일내용 (예시)

```
이름
   P-001-001-B003-M-A2009-N-20210819-01-01-E01
   P-001-001-B003-M-A2009-N-20210819-01-01-M01
   P-001-001-B003-M-A2009-N-20210819-01-01-S01
   P-001-001-B003-M-A2009-N-20210819-01-02-E01
   P-001-001-B003-M-A2009-N-20210819-01-02-M01
   P-001-001-B003-M-A2009-N-20210819-01-02-S01
   P-001-001-B003-M-A2009-N-20210819-01-03-E01
   P-001-001-B003-M-A2009-N-20210819-01-03-M01
                   "metaData": {
                    "유급자품새": "P-001-001-B003-M-A2009-N-20210819-01-01"
                   "InspRejectYn": "N",
                  "labelingInfo": [
                      "pose": {
                       "location": {
                         "왼쪽 뒷꿈치": {
                          "x": "950".
                          "y": "480",
                          "view": 1
                         "왼쪽 발목": {
                          "x": "961",
                          "y": "476",
                          "view": 1
                         "왼쪽 팔꿈치": {
                          "x": "967",
                          "y": "254",
                          "view": 1
                         "왼쪽 귀": {
                          "x": "927",
                          "y": "155",
                          "view": 1
```

```
"images": {
 "id": "P-001-001-B003-M-A2009-N-20210819-01-01-S01.jpg",
 "width": 1920.
 "height": 1080,
 "license": "airpass consortium",
 "camera id": "01",
 "date created": "20210819"
"videos": {
 "id": "P-001-001-B003-M-A2009-N-20210819-01-01.mp4".
 "width": 1920.
 "heiaht": 1080.
 "frame rate": 120.
 "camera id": "01",
 "license": "airpass consortium",
 "date created": "20210819"
"actors": {
 "id": "B003",
 "sex": "남자",
 "age": "2009년생",
 "level": "B레벨",
 "physical": "체급체형 비표준형"
"info": {
 "version": "버전: 1.0",
 "description": "데이터 내용: taekwondo NIA deeplearning",
 "contributor": "컨소시엄명: airpass consortium",
 "url": "URL: https://www.aihub.or.kr"
```

5. 데이터 저장구조

6. 데이터 저장구조 예시

7. 2021년 태권도 데이터톤 진행용 데이터

동작명	사용되는 품새	데이터수량 / 비율					
070	NOAL BW	Training set	Test set	Validation set	합계		
기본준비	태극1장 1품-18품	777 / 77%	111 / 11%	111 / 11%	999		
앞서고 지르기	태극1장 3품-5품 태극1장 8품-10품	777 / 77%	111 / 11%	111 / 11%	999		
뒷굽이하고 손날바깥막기	태극3장 8품-10품 태극5장 10품-12품 태극8장 21품-23품	777 / 77%	111 / 11%	111 / 11%	999		
앞차고 앞서고 아래막고 지르기	태극3장 20품-21품	777 / 77%	111 / 11%	111 / 11%	999		
뒷굽이하고 바깥막기	태극4장 9품-11품	777 / 77%	111 / 11%	111 / 11%	999		
옆서고 메주먹내려치기	태극5장 3품-5품	777 / 77%	111 / 11%	111 / 11%	999		
앞굽이하고 바탕손안막고 지르기	태극6장 19품-20품	777 / 77%	111 / 11%	111 / 11%	999		
앞차고 앞굽이하고 지르기	태극6장 8품-10품 태극4장 7품	777 / 77%	111 / 11%	111 / 11%	999		
앞차고 뒷굽이하고 바깥막기	태극6장 3품-5품-14품-16품	777 / 77%	111 / 11%	111 / 11%	999		
앞굽이하고 당겨지르기	태극8장 7품-9품	777 / 77%	111 / 11%	111 / 11%	999		

8. 베이스라인 시스템

- Environment
 - OS: Linux Ubuntu 16.04
 - Python: 3.8
 - Deep Learning Framework: Pytorch 1.9
- Requirement Libraries
 - EasyDict==1.7
 - opency-python==3.4.1.15
 - Cython
 - Scipy
 - Pandas
 - Pyyaml
 - json_tricks
 - scikit-image
 - tensorboardX>=1.2
 - torchvision

9. DATA LOADER

Preprocessing

태권도 품세 검출 이미지는 1920x1080의 큰 사이즈의 이미지 이고 대부분의 영역이 품세와 관련이 없는 영역, 따라서 효율적인 품새검출을 위해 사람이 있는 영역만 다음과 같은 방법 으로 잘라내어 사용가능

- 1. Yolov4 기반 Object Detection
- 2. 검출된 Object 중 Person의 label을 찾음
- 3. Person 영역 중 가장 큰 영역을 찾고 해당 영역의 이미지 Crop
- 4. Crop된 이미지를 224x224로 리사이즈

Data Loader

주어진 학습 또는 테스트 데이터를 불러오기 위해 Pytorch의 DataLoader 클래스를 상속 받는 클래스를 만들어 한번에 데이터를 불러옴.

디렉토리는 기본적으로 다음과 같은 구조로 구성

Root – 기본준비

- B003 태극1장 1품
 - image0001
 - image0002

- ...

9. DATA LOADER

주어진 학습 또는 테스트 데이터를 불러오기 위해 pytorch의 DataLoader 클래스를 상속 받는 클래스를 만들어 한번에 데이터를 불러온다

디렉토리는 기본적으로 다음과 같은 구조로 구성

Root – 기본준비

- B003 태극1장 1품
 - image0001
 - image0002

10. 모델예제

- Directory Structure
- Train images
- -- labels
- Test images
- -- labels

11. 평가지표

- F1 Score
 - Precision과 Recall의 조화평균

$$F1 = 2 * \frac{Precision * Recall}{Precision + Recall}$$

- Recall (sensitivity)
 - 재현율이란 실제 True인 것 중에서 모델이 True라고 예측

$$Recall = \frac{TP}{TP + FN}$$

- Precision (Positive Predictive Value)
 - 정밀도란 모델이 True라고 분류한 것 중에서 실제 True라고 예측 TP $Precision = \frac{TP}{TP + FP}$