Binære søketrær

Definisjon av binært søketre

- For alle nodene i et binært søketre gjelder:
 - Alle verdiene i nodens venstre subtre er mindre enn verdien i noden
 - Alle verdiene i nodens høyre subtre er større eller lik verdien i noden
- Det binære søketreet er en sortert datastruktur:
 - Nodene oppsøkes i stigende sortert rekkefølge ved en inorder (venstre-roten-høyre) traversering av søketreet

To binære søketrær

Two binary trees (only the left tree is a search tree)

Alfabetisk sortert søketre

Inorder traversering:

Abigail, Abner, Adam, Adela, Agnes, Alex, Alice, Allen, Angela, Arthur, Audrey

Forenklinger i forhold til læreboka

- Læreboka implementerer binære søketrær med:
 - Generisk ADT som kan lagre 'alt'
 - Både array og pekere
- På forelesning forenkler vi til:
 - Bare implementasjon med <u>pekere</u>
 - Ingen ADT, «skreddersyr» i stedet koden for eksemplene
 - Noder som bare inneholder enkle data og referanser til venstre og høyre barn
 - Eksempel på søketre med enkle tegn som data:

binarySearchTree.Java

Søking i binært søketre

- Starter i roten av treet
- Følger en *vei* gjennom treet inntil:
 - Verdien vi søker etter er funnet, eller
 - Vi kommer til en bladnode uten å ha funnet verdien det søkes etter
- Maksimalt antall steg i søking blir lik høyden av treet (lengden av lengste vei fra roten frem til et blad)

Eksempel: Søk etter verdien x = 3

Søking i binært søketre: Implementasjon

- Implementeres mest effektivt med iterasjon:
 - En while-løkke der vi i hvert steg enten går til høyre eller venstre i treet
- Enkelt eksempel:
 - Søketre med data som er enkle tegn
 - Java-kode
- Kan også kodes rekursivt:
 - Enklere(?) kode, men langsommere enn iterasjon
 - Java-kode

Søking i binært søketre: Effektivitet

Verste tilfelle:

- Verdien vi søker finnes ikke i treet
- Søket går langs den lengste veien i treet, fra roten helt ut til et blad
- Antall steg i worst-case blir lik høyden av treet

Konklusjon:

- Søking i et binært søketre med n noder er O(log n) hvis treet er balansert
- Men: Søking kan bli O(n) hvis treet degenerer til en skjev «nesten-liste»

Innsetting av ny verdi i binært søketre

- Starter i roten av treet
- Følger en vei gjennom treet inntil:
 - Vi kommer til posisjonen der verdien kunne ha ligget som en bladnode hvis den var i treet
 - Setter inn den nye noden som en bladnode på denne posisjonen:

Animasjon av innsetting

Innsetting: Implementasjon

Iterativt:

- Med en while-løkke der vi i hvert steg enten går til høyre eller venstre i treet
- Setter inn ny node som et blad, som blir venstre eller høyre barn til sist oppsøkte node i treet
- Java-kode

Rekursivt:

- Et rekursivt kall for hvert nivå i treet
- Bunn i rekursjonen når neste node på søkeveien er null, da opprettes ny node og settes inn som et blad
- Java-kode

Innsetting: Effektivitet

Verste tilfelle:

- Går den lengste veien som finnes i treet fra roten til et blad
- Antall steg i worst-case er lik høyden av treet

Konklusjon:

- Innsetting i et søketre med n noder er O(log n) hvis treet er balansert
- Innsetting blir O(n) hvis treet degenererer til en «nesten-liste»

Innsetting kan gi ubalanse

Binært søketre etter innsetting av:

(a) KBPDMR (b) BKDPMR (c) BDKMPR

Fjerning av en verdi fra binært søketre

- Starter i roten av treet
- Følger en vei gjennom treet inntil vi finner noden som skal fjernes
- Problem: Fjerning av f.eks. verdien 2 i figuren vil gi et «hull» i treet
- Kan hende vi må flytte på en annen node slik at den fyller et evt. hull som oppstår når en node skal fjernes

Fjerning av node i binært søketre: Må skille på tre ulike tilfeller

- 1. Noden som skal fjernes er en bladnode, har hverken venstre eller høyre subtre (nodene med verdier 1, 4 og 9 i figuren)
- 2. Noden som skal fjernes har ett subtre som er tomt og ett som ikke er tomt (3 og 5)
- 3. Noden som skal fjernes har noder i både høyre og venstre subtre (2 og 7)

Tilfelle 1: Fjerning av bladnode

- Sett forgjengernoden til å peke på null
- Fjerning av verdien 3:

Animasjon

Tilfelle 2: Fjerne node med ett tomt subtre

- Sett forgjengernoden til å peke på fjernet nodes etterfølger
- Fjerning av verdien 5:

Animasjon

Tilfelle 3: Fjerne node med to subtrær

- Finn største node i venstre subtre (lengst til høyre i subtreet), og flytt denne til posisjonen der noden som skal fjernes står
- Krever oppdateringer av pekere, flere spesialtilfeller
- Fjerning av verdien 7, noden med verdi 5 flyttes:

Animasjon

Fjerning: Implementasjon

- Programmeres enklest med iterasjon
- Vanlig å dele opp i to metoder:
 - 1. Finn noden som skal fjernes, *og* dennes foreldernode, med et vanlig venstre-høyre søk i det binære treet
 - 2. Behandle de tre ulike tilfellene av fjerning i en egen metode, som returnerer en peker til noden (eller null) som nå står på fjernet nodes plass i treet
- Fjerningen medfører en del «pekerfikling» for å håndtere alle spesialtilfellene
- Eksempel der data er enkle tegn: Java-kode

Fjerning: Effektivitet

- Verste tilfelle:
 - Søkingen etter noden som fjernes, og deretter denne nodens evt. «erstatter», går den lengste veien fra roten til et blad i treet
- «Pekerfiklingen» etter at vi har funnet de to nodene avhenger ikke av antall noder i treet, er alltid O(1)
- Konklusjon:
 - Fjerning i et tre med n noder er O(log n) hvis treet er balansert, men kan bli O(n) hvis treet degenerer
- Merk at fjerning også kan ødelegge balansen i treet

BST vs. sortert array/usortert lenket liste

Datastruktur	Søking	Innsetting	Fjerning
Lenket liste	O(n)	O(1)	O(n)
Sortert array	O(log n)	O(n)	O(n)
Binært søketre	O(log n)	O(log n)	O(log n)

• Testprogram som sammenligner effektivitet