Machine Learning

1. Supervised and unsupervised learning

Yannick Le Cacheux

CentraleSupélec - Université Paris Saclay

September 2024

Table of Contents

- Introduction
- 2 Supervised and unsupervised learning
- 3 Supervised learning: K-Nearest Neighbors
- 4 Unsupervised learning: K-Means
- More about K-Means

Outline

- Introduction
- 2 Supervised and unsupervised learning
- Supervised learning: K-Nearest Neighbors
- Unsupervised learning: K-Means
- More about K-Means

Why machine learning?

• Question: How do you write precise instructions (e.g. a computer program) to distinguish a dog from a cat?

(a) A dog.

(b) A cat.

Figure: A dog and a cat. Even a two-years old can tell which is which.

Recognizing cats and dogs

Dogs have longer snouts.

Figure: Short snoot.

Figure: Pointy boy.

Figure: Nice ear.

Why machine learning?

• Question: How do you write precise instructions (e.g. a computer program) to distinguish a dog from a cat?

Mostly: you can't

Others have tried. They have failed.

What is machine learning?

- Arthur Samuel (1959): "Machine Learning is the field of study that gives the computer the ability to learn without being explicitly programmed."
- Tom Mitchell (1998): "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

What is it used for?

- Machine learning is a must for:
 - Image recognition
 - Object detection
 - Speech recognition
- And now also for:
 - Machine translation
 - ▶ Board games A.I. (go, chess...)
 - Robotics
- And of course:
 - Conversational AI (ChatGPT, ...)
 - Image and video generation
 - **.**..

Outline

- Introduction
- 2 Supervised and unsupervised learning
- Supervised learning: K-Nearest Neighbors
- Unsupervised learning: K-Means
- More about K-Means

Supervised versus unsupervised learning

Supervised learning

Annotations, usually called *labels* or *targets*, are provided with the data.

Unsupervised learning

No labels are provided with the data.

Supervised versus unsupervised learning

Supervised learning

Annotations, usually called *labels* or *targets*, are provided with the data.

Unsupervised learning

No labels are provided with the data.

Other learning paradigms

There also exist other paradigms such as reinforcement learning, semi-supervised learning, self-supervised learning...

But in this course, we will mostly focus on supervised and unsupervised learning

Supervised versus unsupervised learning

For a same dataset, we can be either in a supervised or unsupervised learning setting depending on whether we use explicit labels or not.

Figure: Left: Supervised learning with labeled points, from red and blue classes. The task is classification: tell wheither a new point is red or blue. Right: Unsupervised learning with unlabeled points. The task is to group points into clusters.

Examples of **supervised** learning tasks

- Classification: predict a category
 - ► Image classification
 - Fraud detection in financial transactions
- Regression: predict a quantitative value
 - Stock price prediction
 - Sales forecast
- Other applications:
 - Translation from one language to another
 - Image captioning
 - Speech recognition

Targets

Can you identify what the labels are for each of these applications?

Examples of unsupervised learning tasks

- Clustering: identify groups of similar points in data
 - Customer segmentation in marketing
 - Document clustering in text analysis
 - Gene expression clustering in bioinformatics
- Dimensionality reduction: reduce the number of dimensions of the input data while keeping as much information as possible
 - Visualization of high dimensional data
 - Image compression
 - ▶ Representation learning: e.g. learn meaningful representations of users and movies for recommendation systems
- . . .

Outline

- Introduction
- 2 Supervised and unsupervised learning
- 3 Supervised learning: K-Nearest Neighbors
- 4 Unsupervised learning: K-Means
- More about K-Means

A first supervised learning algorithm

Let's introduce a first supervised learning method: K-Nearest Neighbors or KNN.

- KNN is a versatile and intuitive algorithm
- Used for both classification and regression tasks
- Instance-based learning: no explicit training phase
- Relies on the principle: "Similar inputs have similar outputs"

Figure: KNN illustration

How KNN Works

To classify a new, unlabeled data point (green dot in the center):

- Calculate distance to all training points
- Find the *K* nearest neighbors:
 - e.g. the 3 shapes inside the solid circle for K = 3
 - or the 5 shapes inside the dotted circle for K=5
- Output the majority among the K neighbors
 - red triangle for K=3 (2 out of 3)
 - ▶ blue square for K = 5 (3 out of 5)

Figure: KNN illustration

Formalization

Assume we have a set of N points $\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$ with corresponding labels $\{y_1,\ldots,y_N\}$. The points \mathbf{x}_n have dimension D, such that

$$\forall n$$
 $\mathbf{x}_n = \begin{pmatrix} x_{n,1} \\ x_{n,2} \\ \vdots \\ x_{n,D} \end{pmatrix} = (x_{n,1}, \dots, x_{n,D})^{\top} \in \mathbb{R}^D$

A note on notations

We will use the notations \mathbf{x}_n , y_n , D etc a lot throughout this course.

Assume we are also provided with a distance d, for example the Euclidean distance

$$d(\mathbf{x}_i, \mathbf{x}_j) = \|\mathbf{x}_i - \mathbf{x}_j\|_2$$

Given a new point x, we want to predict its label y.

Formalization (continued)

To estimate the label \hat{y} of \mathbf{x} , we proceed as follows:

Calculate distances to all training points:

$$d_n = d(\mathbf{x}, \mathbf{x}_n) \quad \forall n \in \{1, \dots, N\}$$

 $oldsymbol{0}$ Find indices of K nearest neighbors:

$$\mathcal{N}_K(\mathbf{x}) = \mathsf{argsort}_K(d_1, \dots, d_N)$$

where $\operatorname{argsort}_K$ returns the indices of the K smallest values.

Predict the most common class among neighbors:

$$\hat{y} = \mathsf{mode}\{y_i : i \in \mathcal{N}_K(\mathbf{x})\}$$

Variants of KNN

 We can also use KNN for regression: predict the average of neighbor values:

$$\hat{y} = \frac{1}{K} \sum_{i \in \mathcal{N}_K(\mathbf{x})} y_i$$

• In some variants, the neighbors can be weighted:

$$\hat{y} = \frac{\sum_{i \in \mathcal{N}_K(\mathbf{x})} w_i y_i}{\sum_{i \in \mathcal{N}_K(\mathbf{x})} w_i}$$

with a weigh function $w(\cdot)$ usually decreasing with the distance d (e.g., $w_n = \frac{1}{d_n}$ or $w_n = e^{-d_n}$)

ullet Other variant: Fixed Radius NN. Instead of K neighbors, we use all points within a fixed radius R. Define the neighborhood as:

$$\mathcal{N}_R(\mathbf{x}) = \{i : d(\mathbf{x}, \mathbf{x}_i) \le R\}$$

Then apply similar formulas as in standard or weighted KNN.

KNN decision areas

Figure: Decision boundaries for KNN classification with K=4 neighbors. The colors represent the predicted class and associated confidence for each region.

Limits of KNN

• Are we done with (supervised) machine learning? Have we found the perfect classification and regression algorithm?

Figure: Measuring pixel distances. The center image is closer to the image on the right than the one on the left. Is it a cow?

• (Un)fortunately, it looks like **no, we are not**.

The curse of dimensionality

In high-dimensional spaces, the distances between points become less meaningful.

Outline

- Introduction
- 2 Supervised and unsupervised learning
- Supervised learning: K-Nearest Neighbors
- 4 Unsupervised learning: K-Means
- More about K-Means

Unsupervised learning

We will now shortly introduce a first unsupervised learning algorithm: **K-Means**.

K-Means is a clustering algorithm.

Clustering

Clustering is the task of dividing a set of objects into groups, or **clusters**, in such a way that **objects in the same cluster are more similar** to each other than to those in other clusters.

A word of caution

- How can we group these vehicles?
 - Motor / no motor?
 - Touches the ground / does not touch the ground?
 - ► Single passenger / multiple passengers?

Clustering can be subjective

There can be a part of subjectivity in how we define groups or the idea of "close to each other"

Back to Euclidean space

• Let's focus on a simple, 2-dimensional, Euclidean example for now.

Figure: How many clusters are there?

• How could we define what would constitute "good" clusters here?

What makes "good" clusters?

- Intuitively, we want points in the same cluster to be:
 - ► Close to each other
 - Far from points in other clusters
- How can we do that? For example, we could:
 - Define a representative point for each cluster
 - Assign points to the closest representative
- This way we can measure "closeness" using distance to the representative
- A natural choice for the representative is the center of the cluster

Key ideas

- Use cluster centers as representatives
- Assign points to the nearest center
- Minimize the total distance between points and their assigned centers

Formalization

Given N unlabeled points $\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$, $\mathbf{x}_n\in\mathbb{R}^D$, we want to:

- Find K representatives $\{\mathbf{c}_k\}_{k\in[1,K]}=\{\mathbf{c}_1,\ldots,\mathbf{c}_K\}$, $\mathbf{c}_k\in\mathbb{R}^D$
- Find an assignment a that assigns each point \mathbf{x}_n to one cluster \mathbf{c}_k :
 - $a: \mathbb{R}^D \to [1, K]$
 - define $a_n := a(\mathbf{x}_n)$ the assignment of point $\mathbf{x}_n \ \forall n$

Objective:

$$\underset{\mathsf{w.r.t.}}{\mathsf{minimize}} \sum_{\mathsf{w.r.t.}}^{N} \|\mathbf{x}_n - \mathbf{c}_{a_n}\|_2^2$$

• That is, we want to find centroids and assignments such that each point \mathbf{x}_n is as close as possible to its centroid \mathbf{c}_{a_n}

Formalization

Given N unlabeled points $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, $\mathbf{x}_n \in \mathbb{R}^D$, we want to:

- Find K representatives $\{\mathbf{c}_k\}_{k\in[1,K]}=\{\mathbf{c}_1,\ldots,\mathbf{c}_K\}$, $\mathbf{c}_k\in\mathbb{R}^D$
- Find an assignment a that assigns each point \mathbf{x}_n to one cluster \mathbf{c}_k :
 - $a: \mathbb{R}^D \to [1, K]$
 - define $a_n := a(\mathbf{x}_n)$ the assignment of point $\mathbf{x}_n \ \forall n$

Objective:

$$\underset{\text{w.r.t. } \{a_n\}_n, \{\mathbf{c}_k\}_k}{\mathsf{minimize}} \sum_{n=1}^N \|\mathbf{x}_n - \mathbf{c}_{a_n}\|_2^2$$

• That is, we want to find centroids and assignments such that each point \mathbf{x}_n is as close as possible to its centroid \mathbf{c}_{a_n}

One tiny issue

This problem is NP-hard

K-means: a greedy heuristic approach

Objective (reminder):

$$\underset{\mathsf{w.r.t.}}{\mathsf{minimize}} \sum_{k=1}^{N} \|\mathbf{x}_n - \mathbf{c}_{a_n}\|_2^2$$

The K-means algorithm is a greedy heuristic for this objective, that alternates between two steps:

- ① Optimize assignments $\{a_n\}_n$ given fixed representatives, also called centroids $\{\mathbf{c}_k\}_k$
- ${\bf @}$ Optimizing centroid locations $\{{\bf c}_k\}_k$ given fixed assignments $\{a_n\}_n$

This approach is computationally efficient, and reasonably intuitive.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

K-means algorithm: formalization

- ullet Initialize centroids $\{{f c}_1,\ldots,{f c}_K\}$ randomly
- ullet Assign each point ${f x}_n$ to the nearest centroid ${f c}_k$

$$a(\mathbf{x}_n) = \operatorname{argmin}_{k \in [1,K]} \|\mathbf{x}_n - \mathbf{c}_k\|_2^2$$

Update clusters as the mean of the assigned points:

$$\mathbf{c}_k = \frac{1}{|\mathcal{C}_k|} \sum_{\mathbf{x} \in \mathcal{C}_k} \mathbf{x}$$

(Mean of points in cluster \mathbf{c}_k)

$$C_k = \{ \mathbf{x} | a(\mathbf{x}) = k \}$$

(Set of points x assigned to cluster c_k)

Repeat the last 2 steps until the assignments a_n stop changing.

Repeat

K-Means: illustration

Figure: (a) Random initialization of the 2 centroids. (b) Assignment step: points are assigned to the nearest centroid. (c) Update step: centroid are updated to the mean of their assigned points. (d-h) Repeat. (i) Algorithm has converged. From Bishop.

Outline

- Introduction
- 2 Supervised and unsupervised learning
- Supervised learning: K-Nearest Neighbors
- 4 Unsupervised learning: K-Means
- More about K-Means

Questions about K-Means

Will this algorithm always converge?

•

Does it always produce the same solution?

•

Does it find the optimal solution?

•

Questions about K-Means

Will this algorithm always converge?

• This is the hardest of the 3 questions. Answer in a few slides.

Does it always produce the same solution?

• **Hint:** Think about the initialization step.

Does it find the optimal solution?

• **Hint:** Consider the answer to the previous question.

Does K-Means always produce the same, optimal solution?

No, different initializations can lead to different results

K-Means in practice

It is good practice to run the algorithm several times

Convergence of K-Means

Outline of the proof of convergence:

- Let's consider the cost function $J(\{\mathbf{c}_k\}_k, \{a_n\}_n) = \sum_{n=1}^N \|\mathbf{x}_n \mathbf{c}_{a_n}\|_2^2$
- Given fixed clusters $\{\mathbf{c}_1,\ldots,\mathbf{c}_K\}$, assigning points decreases the cost: $a(\mathbf{x}) = \operatorname{argmin}_{k \in [1,K]} \|\mathbf{x} \mathbf{c}_k\|_2^2$
- Given a fixed assignment $\{a_1,\ldots,a_N\}$, updating clusters decreases the cost: $\mathbf{c}_k = \frac{1}{|\mathcal{C}_k|} \sum_{\mathbf{x} \in \mathcal{C}_k} \mathbf{x}$
- ullet So each iteration of K-Means decreases the cost J
- The cost J is > 0 and there is only a finite, though quite large, number of possible assignments $\{a_1, \ldots, a_N\}$
- So K-means always converges

(Convergence is reached when the assignment stops changing)

Convergence of K-Means

Outline of the proof of convergence:

- Let's consider the cost function $J(\{\mathbf{c}_k\}_k, \{a_n\}_n) = \sum_{n=1}^N \|\mathbf{x}_n \mathbf{c}_{a_n}\|_2^2$
- Given fixed clusters $\{\mathbf{c}_1, \dots, \mathbf{c}_K\}$, assigning points decreases the cost: $a(\mathbf{x}) = \operatorname{argmin}_{k \in [1,K]} \|\mathbf{x} \mathbf{c}_k\|_2^2$
- Given a fixed assignment $\{a_1, \ldots, a_N\}$, updating clusters decreases the cost: $\mathbf{c}_k = \frac{1}{|C_k|} \sum_{\mathbf{x} \in C_k} \mathbf{x}$
- ullet So each iteration of K-Means decreases the cost J
- The cost J is > 0 and there is only a finite, though quite large, number of possible assignments $\{a_1, \ldots, a_N\}^{-1}$
- So K-means always converges

(Convergence is reached when the assignment stops changing)

¹Specifically, K^N

Question time!

• Which clusters will we find if we apply K-Means with K=2?

Figure: Some points forming 2 clusters.

(Trick) question time! Answer time

- These ones!
- Why?

(Trick) question time! Answer time

- These ones!
- Why? Because the scale of each variable (age and salary) is very different.

K-Means in practice

Standardization: it is often useful to "standardize" variables:

$$x_{\mathsf{stand}} = \frac{x - \mu}{\sigma}$$

where μ is the mean and σ the standard deviation of all x.

How to choose K: elbow method

- K is easy to estimate in 2 dimensions. Not so much when D=200.
- The (theoretically optimal) cost $\sum_{n=1}^{N} \|\mathbf{x}_n \mathbf{c}_{a(\mathbf{x}_n)}\|_2^2$, sometimes also called the *inertia*, decreases with the number of clusters K.

• We can select a value corresponding to a sharp decrease, K=3 in this example ("elbow method")

• For point \mathbf{x}_n , we define u_n the average distance to points of the corresponding cluster \mathcal{C}_{a_n} :

$$u_n = \frac{1}{|\mathcal{C}_{a_n}|} \sum_{\mathbf{x}_j \in \mathcal{C}_{a_n}} d(\mathbf{x}_n, \mathbf{x}_j)$$

• We also define $v_n = \min_{\substack{k \\ k \neq a_n}} \frac{1}{|\mathcal{C}_k|} \sum_{\mathbf{x}_j \in C_k} d(\mathbf{x}_n, \mathbf{x}_j)$

• For point \mathbf{x}_n , we define u_n the average distance to points of the corresponding cluster \mathcal{C}_{a_n} :

$$u_n = \frac{1}{|\mathcal{C}_{a_n}|} \sum_{\mathbf{x}_j \in \mathcal{C}_{a_n}} d(\mathbf{x}_n, \mathbf{x}_j)$$

 \bullet We also define $v_n=\min_{\substack{k\\k\neq a_n}}\frac{1}{|\mathcal{C}_k|}\sum_{\mathbf{x}_j\in C_k}d(\mathbf{x}_n,\mathbf{x}_j)$

i.e. the average distance to points in the closest different cluster \mathcal{C}_k , $k
eq a_n$

• The *silhouette score* s_n of point \mathbf{x}_n is

$$s_n = \frac{v_n - u_n}{\max\{u_n, v_n\}} \quad \text{(and } s_n = 0 \text{ if } |\mathcal{C}_{a_n}| = 1). \qquad -1 \le s_n \le 1 \forall n$$

• An average silhouette score $S=\frac{1}{N}\sum s_n$ close to 1 corresponds to "good" clusters

• For point \mathbf{x}_n , we define u_n the average distance to points of the corresponding cluster \mathcal{C}_{a_n} :

Warning

I am actually not a big fan of the silhouette score.

- We also define $v_n = \min_{\substack{k \\ k \neq a_n}} \frac{1}{|\mathcal{C}_k|} \sum_{\mathbf{x}_j \in C_k} d(\mathbf{x}_n, \mathbf{x}_j)$
 - i.e. the average distance to points in the closest different cluster \mathcal{C}_k , $k
 eq a_n$
- The silhouette score s_n of point \mathbf{x}_n is

$$s_n = \frac{v_n - u_n}{\max\{u_n, v_n\}} \quad \text{(and } s_n = 0 \text{ if } |\mathcal{C}_{a_n}| = 1\text{)}. \qquad -1 \le s_n \le 1 \forall n$$

• An average silhouette score $S=\frac{1}{N}\sum s_n$ close to 1 corresponds to "good" clusters

• For point \mathbf{x}_n , we define u_n the average distance to points of the corresponding cluster \mathcal{C}_{a_n} :

Warning

I am actually not a big fan of the silhouette score.

We also define $n = \min \frac{1}{N} \nabla = d(\mathbf{v} \cdot \mathbf{v}_n)$ K-Means in practice

Why? Because it makes it too easy to simply choose the K that gives the "best" silhouette score S(K). This can make us forget that the choice of K is always somehow arbitrary. In the elbow at least, this part is clear.

$$s_n = \frac{v_n - u_n}{\max\{u_n, v_n\}} \quad \text{(and } s_n = 0 \text{ if } |\mathcal{C}_{a_n}| = 1). \qquad -1 \le s_n \le 1 \forall n$$

• An average silhouette score $S=\frac{1}{N}\sum s_n$ close to 1 corresponds to "good" clusters

Limits of K-means

• K-means can be considered "linear" in that cluster boundaries are linear.

Figure: Left: linearly separable clusters. Right: non-linearly separable clusters.

Setting up a Python Environment with Conda

- Download and install Miniconda
- Create a new Conda environment: conda create -n mlclass python=3.10
- Activate the environment: conda activate mlclass
- Install necessary packages using pip: pip install scikit-learn jupyter matplotlib
- S Launch Jupyter Notebook: jupyter notebook

Alternatively, you may use Google Collab, Visual Studio Code, or any other method that lets you read, modify and run iPython Notebooks.