Structuri de date și algoritmi - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 2p; B 1.5p; C1 1p; C2 1p; D 3.5p.
- 2. Pentru cerința A, justificarea unei complexități presupune deducția acesteia.
- 3. Pentru cerințele B și C (C1, C2) se cer justificări, care vor fi punctate.
- 4. Problema de la D se va rezolva în Pseudocod. Se cer și se vor puncta: (1) descrierea ideii de rezolvare și comentarii despre soluția propusă; (2) scrierea reprezentării indicate în enunț; (3) (specificare și) implementare subalgoritm(i); (4) complexitate.

 Nu se acceptă cod C++. Nu se acceptă pseudocod fără comentarii despre soluția propusă.

A. Scrieți un sublgoritm iterativ având complexitatea timp $\theta((\log_2 n)^2)$. Justificați complexitatea (prin deducția acesteia). Nu se va folosi funcția matematică **logaritm.**

B. Considerăm inserarea cheilor 10, 22, 31, 4, 15, 28, 17, 88, 59 într-o TD de lungime m = 11, folosind adresare deschisă și funcția de dispersie auxiliară d ₁ (c) = c mod m. Ilustrați inserarea cheilor folosind dispersie dublă cu d ₂ (c) = 1 + (c mod (m - 1)). Justificati	

C. Se consideră următorul arbore binar. Alegeți afirmațiile corecte. Justificati

1 / \ 6 3 /\ / 9 8 7

- a) verifica proprietatea de ansamblu, are structura de ansamblu
- b) nu verifica proprietatea de ansamblu, dar are structura de ansamblu
- c) nu este un ansamblu
- d) nu verifica proprietatea de ansamblu, nu are structura de ansamblu
- e) este ansamblu

C. Care este	numărul	minim	de nodu	ıri într-u	n arbore b	oinar aproape	e plin de adâncime	4? Justificati
a) 1	7 b) 1	(15 c)	16	i) 18	e) 10			

D. Descrieți operația de dublă rotație spre dreapta pentru reechilibrare într-un Arbore Binar de Căutare. Arborele se reprezintă înlănțuit cu alocare dinamică a nodurilor. Indicați grafic situația de rotație, reprezentarea arborelui și descrieți in Pseudocod subalgoritmul. Precizați complexitatea operației. Folosiți comentarii pentru a ușura înțelegerea soluției.					