

planetmath.org

Math for the people, by the people.

proof of monotone convergence theorem

 ${\bf Canonical\ name} \quad {\bf ProofOfMonotoneConvergenceTheorem}$

Date of creation 2013-03-22 13:29:56 Last modified on 2013-03-22 13:29:56

Owner paolini (1187) Last modified by paolini (1187)

Numerical id 7

Author paolini (1187)

Entry type Proof
Classification msc 28A20
Classification msc 26A42

It is enough to prove the following

Theorem 1 Let (X, μ) be a measurable space and let $f_k: X \to \mathbb{R} \cup \{+\infty\}$ be a monotone increasing sequence of positive measurable functions (i.e. $0 \le f_1 \le f_2 \le \ldots$). Then $f(x) = \lim_{k \to \infty} f_k(x)$ is measurable and

$$\lim_{n \to \infty} \int_X f_k \, d\mu = \int_X f(x) \, d\mu.$$

First of all by the monotonicity of the sequence we have

$$f(x) = \sup_{k} f_k(x)$$

hence we know that f is measurable. Moreover being $f_k \leq f$ for all k, by the monotonicity of the integral, we immediately get

$$\sup_{k} \int_{X} f_k \, d\mu \le \int_{X} f(x) \, d\mu.$$

So take any simple measurable function s such that $0 \le s \le f$. Given also $\alpha < 1$ define

$$E_k = \{ x \in X : f_k(x) \ge \alpha s(x) \}.$$

The sequence E_k is an increasing sequence of measurable sets. Moreover the union of all E_k is the whole space X since $\lim_{k\to\infty} f_k(x) = f(x) \ge s(x) > \alpha s(x)$. Moreover it holds

$$\int_X f_k \, d\mu \ge \int_{E_k} f_k \, d\mu \ge \alpha \int_{E_k} s \, d\mu.$$

Since s is a simple measurable function it is easy to check that $E \mapsto \int_E s \, d\mu$ is a measure and hence

$$\sup_{k} \int_{X} f_k \, d\mu \ge \alpha \int_{X} s \, d\mu.$$

But this last inequality holds for every $\alpha < 1$ and for all simple measurable functions s with $s \leq f$. Hence by the definition of Lebesgue integral

$$\sup_{k} \int_{X} f_k \, d\mu \ge \int_{X} f \, d\mu$$

which completes the proof.