KAIST, School of Computing, Spring 2025 Graph classes, algorithms and logic (CS492) Lecture: Eunjung KIM

Scribed By: Eunjung KIM Büchi's Theorem on finite strings Week 1: 25, 27 February 2025

Contents

1	Terminology:	quantifier rank,	type	l

2 Büchi's theorem on strings

3

1 Terminology: quantifier rank, type

We introduce some important terminology, which will be also used for proving Theorem 7.

Definition 1 (Quantifier rank). A quantifier rank of a formula ψ is the maximum depth of its nested quantifiers. That is,

- an atomic formula has quantifier rank 0,
- the quantifier rank of a boolean combination (\land, \lor, \neg) of formulas is the maximum quantifier rank over the formulas,
- one existential / universal quantification increases the quantifier rank by exactly 1.

The set of all MSO-formulas of quantifier rank at most k is denoted by MSO[k]

One can consider all MSO-sentences over τ satisfied by some τ -structure. There are infinitely many MSO-sentences and such a set consisting of all true MSO-sentences in some τ -structure could be infinitely large. However, when you restrict to sentences of quantifier rank up to k, the set becomes finite, size bounded by a function of k.

Definition 2 (Rank-k (ℓ , m)-type). For a relational structure \mathbb{A} over τ , ℓ -tuple $\vec{v} = (v_1, \ldots, v_\ell) \in A^\ell$ of elements of A and m-tuple $\vec{V} = (V_1, \ldots, V_m) \in (2^A)^m$ of subsets of A, we define the MSO rank-k ℓ , m-type of $(\mathbb{A}, \vec{v}, \vec{V})$ as the set of all MSO-formulas with ℓ free individual variables and m free set variables satisfied by $(\mathbb{A}, \vec{v}, \vec{V})$. That is,

$$\mathsf{mso\text{-}type}_k(\mathbb{A}, \vec{v}, \vec{V}) = \{ \psi \in \mathsf{MSO}[k] \mid \mathbb{A} \models \psi(\vec{v}, \vec{V}) \}.$$

When $\ell=0, m=0$, the MSO rank-k ℓ, m -type of a structure $\mathbb A$ is simply called the rank-k type of $\mathbb A$. Notice that $\mathsf{mso-type}_k(\mathbb A)$ is the set of all MSO-sentences of quantifier rank at most k which holds on $\mathbb A$.

An MSO rank-k ℓ , m-type (when a τ -structure \mathbb{A} , ℓ -tuple of elements and m-tuple of subsets of A is not specified) is the set S of MSO-formulas in MSO[k] with ℓ free individual variables and m free set variables such that

• CONSISTENCY: there exist a τ -structure $\mathbb A$ and an ℓ -tuple $\vec v$ and an m-tuple of sets $\vec V$ over A which satisfies all the formulas in S, and

• COMPLETENESS: for any MSO-formula ψ with ℓ free individual variables and m free set variables, exactly one of ψ or $\neg \psi$ is included in the set

It is not difficult to see that for each fixed k, l, m, there are finitely many (bounded by a function of k) MSO-formulas of quantifier rank up to k with ℓ free individual variables and m free set variables. This is particularly because in the base case, i.e. when a formula is quantifier-free, the formula is a boolean combination of atomic formulas on $\ell + m + k$ free variables. The number of atomic formulas is bounded by a function of ℓ , m and τ , and the number of their boolean combinations (up to logical equivalence!) are again bounded. We state this observation without proof.

Observation 3. For any fixed k, l, m, the number of MSO rank- $k \ell, m$ -types is finite, determined solely by k, ℓ, m and the vocabulary τ .

Note that for τ -structure \mathbb{A} , mso-type $_k(\mathbb{A})$ is an MSO rank-k type; the consistency of the set mso-type $_k(\mathbb{A})$ is witnessed by the very structure \mathbb{A} . The completeness of mso-type $_k(\mathbb{A})$ is clear from the fact that $\operatorname{qr}(\psi) = \operatorname{qr}(\neg \psi)$ for any formula ψ and exactly one of $\mathbb{A} \models \psi$ and $\mathbb{A} \models \neg \psi$ holds.

The consistency and completeness of MSO rank-k type implies that the converse also holds. That is, for any MSO rank-k type q there exists a τ -structure $\mathbb A$ such that $q = \mathsf{mso-type}_k(\mathbb A)$.

Lemma 4. Let Q be the set of all MSO rank-k types in MSO[k]. Then for every $Q \in Q$, there exists a τ -structures $\mathbb A$ such that $\mathsf{mso-type}_k(\mathbb A) = Q$.

Proof: Choose an arbitrary $Q \in \mathcal{Q}$. By consistency of MSO rank-k type, there exists a τ -structure \mathbb{A} which satisfies all sentences in Q. This implies that $Q \subseteq \mathsf{mso-type}_k(\mathbb{A})$. We want to show $Q = \mathsf{mso-type}_k(\mathbb{A})$. Suppose $\psi \in \mathsf{mso-type}_k(\mathbb{A}) \setminus Q$. Because Q, as an MSO rank-k type, is complete and Q contains $\neg \psi$. Then $\mathsf{mso-type}_k(\mathbb{A})$ contains both $\neg \psi$ and ψ , which is impossible.

Definition 5 (Disjoint union on τ -structures). When the vocabulary τ contains only the predicates and no constant symbols¹, the disjoint union $\mathbb{A} \cup \mathbb{B}$ of τ -structures \mathbb{A} and \mathbb{B} with disjoint universe is defined as:

- the universe of $\mathbb{A} \cup \mathbb{B}$ is $A \cup B$
- the interpretation $R^{\mathbb{A} \cup \mathbb{B}}$ of R is $R^{\mathbb{A}} \cup R^{\mathbb{B}}$ for each predicate $R \in \tau$.

The so-called *compositionality* of MSO logic is of central importance. It is rather loosely defined and needs to be appropriately formulated in relevant settings. Informally speaking, it says that whether a given MSO-sentence (or formula) holds on a relational structure is determined by whether MSO-sentences hold on relational *sub*structures, when the original structure is formed from the substructures with well-regulated combination rule. The next lemma observes the simplest case of MSO compositionality. We postpone the proof till we learn *Ehrenfeucht-Fraïssé game*.

Lemma 6. Let $\mathbb{A}, \mathbb{A}', \mathbb{B}, \mathbb{B}'$ be τ -structures such that $\mathsf{mso-type}_k(\mathbb{A}) = \mathsf{mso-type}_k(A')$ and $\mathsf{mso-type}_k(\mathbb{B}) = \mathsf{mso-type}_k(\mathbb{B}')$. Then it holds that $\mathsf{mso-type}_k(\mathbb{A} \cup \mathbb{B}) = \mathsf{mso-type}_k(\mathbb{A}' \cup \mathbb{B}')$.

¹Why do we need this restriction?

2 Büchi's theorem on strings

We explore the surprising connection between MSO logic on strings and regular languages.

Theorem 7 (Büchi'60, Elgot'61, Trakhtenbrot'62). [1, 2] A language is regular if and only if it is definable in MSO.

Theorem 7 crucially relies on the compositionality of MSO logic on strings under concatenation². We defer the proof of Lemma 8 for now.

Lemma 8 (MSO is compositional under concatenation). Let s_i, s_i' for i = 1, 2 be two strings over the alphabet Σ . If

$$\mathsf{mso-type}_k(s_1) = \mathsf{mso-type}_k(s_2)$$
 and $\mathsf{mso-type}_k(s_1') = \mathsf{mso-type}_k(s_2'),$

then it holds that $\mathsf{mso-type}_k(s_1 \cdot s_1') = \mathsf{mso-type}_k(s_2 \cdot s_2')$

Proof of Theorem 7:

 \diamond Forward implication. We use the fact that any regular language has a regular expression. To establish that a regular language is MSO-definable, it suffices to prove that a regular language L are MSO-definable for each of the following cases by induction on the length of the regular expression R generating L:

• R = a for some letter $a \in \Sigma$:

$$\varphi_a := \exists x (P_a(x) \land \forall z (x = z)).$$

• $R = \epsilon$:

$$\varphi_a := \neg \exists x (x = x).$$

• $R = \emptyset$:

$$\varphi_{\emptyset} := \exists x (x \neq x)$$

- $R = R_1 \cup R_2$: by induction hypothesis, there exists MSO-sentences φ_1 and φ_2 such that $s \models \varphi_i$ if and only if $s \in L(R_i)$ for i = 1, 2. Now $\varphi := \varphi_1 \vee \varphi_2$ is the desired MSO-sentence.
- $R = \bar{R}'$: by induction hypothesis, there exists MSO-sentences φ' such that $s \models \varphi'$ if and only if $s \in L(R')$. Now $\varphi := \neg \varphi'$ is the desired MSO-sentence.
- $R = R_1 \cdot R_2$: Again by induction hypothesis, there exists MSO-sentences φ_1 and φ_2 such that $s \models \varphi_i$ if and only if $s \in L(R_i)$ for i = 1, 2.

If we simply take the conjunction $\varphi_1 \wedge \varphi_2$ to define L(R), then for the evaluation $\varphi_1 \wedge \varphi_2$ on a given string s we consider an interpretation of a variable of φ_1 in s. But what we actually want is to evaluate φ_1 on the substring s[1:z], i.e. up to some position z. Likewise, we want to evaluate φ_2 on the substring s[z+1,n]. For this, we need to modify the original sentence φ_1 defining $L(R_1)$ so that, even when the variables are interpreted in s, in practice its interpretation is confined to the prefix (likewise φ_2 for the suffix of s). We can achieve this effect by replacing every occurrence

- $\exists x \ \psi$ by $\exists x (x \leq z) \land \psi(x)$, and
- $\exists X \ \psi \ \text{by} \ \exists X (\forall x (x \in X \to x \le z)) \land \psi(X)$

²The compositionality of MSO logic on strings under concatenationa is a special case of Feferman-Vaught Theorem.

in φ_1 using z as a free individual variable. A similar relativization can be applied to the universal quantifiers in φ_1 .

- $\forall x \ \psi(x) \ \text{by} \ \forall x (x \leq z \rightarrow \psi)$, and
- $\forall X \ \psi(X)$ by $\forall X (\forall x (x \in X \to x \le z)) \to \psi(X)$ (read as: "if $X \le z$ then ψ holds").

A symmetric modification applies to φ_2 . Apparently, the free variable z points at the last position of the prefix so that it matches a string from $L(R_1)$. Let $\varphi_1^{pf}(z)$ and $\varphi_2^{sf}(z)$ be the respective formulas obtained as above. It is not difficult to see that

$$\varphi := \exists z \; \varphi_1^{pf}(z) \wedge \varphi_2^{sf}(z)$$

is an MSO-sentence defining L(R).

• $R=(R')^*$: by induction hypothesis, there exists MSO-sentences ψ such that $s\models\psi$ if and only if $s\in L(R')$. The trouble of using *delimiters* as in the case of concatenation using individual variables does not work as the operation * may require arbitrarily many delimiters. However, using set variables, we can designate the delimiters *simultaneously* no matter how many substrings, each of which is generated by R'. Let us introduce a free set variable Z, which shall be interpreted as the set of last positions of substrings s_i when s is written as $s_1 \cdot s_2 \cdot \dots \cdot s_n$, each $s_i \in L(R')$. Cleary, s is a string generated by $R=(R')^*$ if and only if s can be written in this way for some $n \geq 1$ or $s=\epsilon$.

Next, we want to talk about the *interval between the delimiters*. Specifically, we want to define the substring s_i for each i. For this, we need a formula with free set variable Z and I which tests if (i) I is indeed an interval, i.e. contiguous, (ii) the *maximum* element in I is a delimiter, i.e. belongs to Z, and (iii) there is a unique element in I that belongs to Z. Let $\varphi_{good}(I, Z)$ be such a formula.

We also define a formula which says that an interval I is maximally good; for this we can use the following formula:

$$\varphi_{maximal}(I,Z) := \forall x \: (x < I \to \exists z \: (z \not\in I \land z \in Z \land x \leq z))$$

We define a formula $\varphi_{\max}(z, I)$ which says that z is the maximum element in the set I. The following formula serves this purpose:

$$\varphi_{\max}(z, I) := \forall x \ (x \in I \to x \le z).$$

Using $\varphi_{\max}(z,I)$ and $\varphi_{maximal}(I,Z)$, it is an easy exercise to write an MSO-formula $\varphi_{dlm}(Z)$ which evaluates to TRUE for some delimiters Z if and only if each maximal interval I w.r.t Z satisfies the formula ψ :

Now

$$\varphi_{dlm}(Z) := \forall I \; (\varphi_{good}(I, Z) \land \varphi_{maximal}(I, Z) \rightarrow \psi^{int}(I))$$

and here, $\psi^{int}(I)$ is a *relativization of* ψ with respect to I. The idea is the same as in the case of concatenation. We want to *activate* an interpretation of a variable in φ only when the interpretation is confined to the interval I. The implementation of $\psi^{int}(I)$ with an actual MSO-sentence is an easy exercise.

Finally, we write a sentence which defines the language generated by the regular expression $(R')^*$:

$$\varphi := \nexists x \ (x = x) \lor (\exists Z \ (\varphi_{dlm}(Z) \land \forall z \ \varphi_{max}(z) \to z \in Z))$$

where $\varphi_{\max}(z)$ is a formula which checks if z is the maximum element in the entire universe; one can obtain the formula as a simple modification of $\varphi_{\max}(z, I)$.

 \diamond Backward implication. Suppose that ψ is an MSO-sentence which defines a language $L \subseteq \Sigma^*$ and let $k := \operatorname{qr}(\psi)$.

Claim 1. Let ψ is an MSO-sentence with $k := \operatorname{qr}(\psi)$ which defines $L \subseteq \Sigma^*$. Then, for any string $w \in \Sigma$, it holds that $\operatorname{mso-type}_k(w) \in \{\operatorname{mso-type}_k(s) \mid s \in L\}$ if and only if $w \models \psi$.

PROOF OF THE CLAIM: Recall that $w \in L$ if and only if $w \models \psi$, which implies the backward implication. To see the forward direction, suppose that $\mathsf{mso-type}_k(w) = \mathsf{mso-type}_k(s)$ for some $s \in L$. As ψ has quantifier rank at most k, it holds that $s \models \psi$, or equivalently the sentence ψ is contained in $\mathsf{mso-type}_k(s)$. Therefore, $\psi \in \mathsf{mso-type}_k(w)$, finishing the proof.

Consider the 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$, where

- Q is the set of all MSO rank-k types (0, 0-types).
- q_0 is mso-type_k (ϵ) .
- F is the set of $\{\mathsf{mso-type}_k(s) \mid s \in L\}$.
- δ is a function from $Q \times \Sigma \to Q$ defined as

$$\delta(q, a) = \mathsf{mso-type}_k(sa)$$
 if there is a string $s \in \Sigma^*$ s.t. $\mathsf{mso-type}_k(s) = q$

First, we claim that M defines a deterministic finite automaton. For this, it suffices to show that (i) for every $q \in Q$ and for every $a \in \Sigma$, $\delta(q,a)$ has a unique value and it belongs to Q, and (ii) the number of states Q is finite. Indeed, if $\operatorname{mso-type}_k(s) = \operatorname{mso-type}_k(s')$, then we have $\operatorname{mso-type}_k(sa) = \operatorname{mso-type}_k(s'a)$ for any $a \in \Sigma$ by Lemma 8. This means that, if $q = \operatorname{mso-type}_k(s)$ for some string s, then $\delta(q,a)$ is uniquely defined for every $a \in \Sigma$. By Lemma 4, there exists a string s such that $q = \operatorname{mso-type}_k(s)$ for every $q \in Q$. Therefore, $\delta(q,a)$ has a unique value for every $(q,a) \in Q \times \Sigma$. To see that $\delta(q,a) \in Q$, notice that the string s certifies $\operatorname{mso-type}_k(sa) \in Q$, thus $\delta(q,a) \in Q$, whenever $\operatorname{mso-type}_k(s) = q$. This proves (i). That (ii) holds is immediate from Observation 3.

Secondly, we want to show that L(M) = L. For this we use the following claim.

Claim 2. The run of M on a string $s \in \Sigma^*$ ends in $\mathsf{mso}\mathsf{-type}_k(s)$.

PROOF OF THE CLAIM: We prove by induction on |s|. When $s = \epsilon$, then the claim trivially holds by definition of q_0 , the start state. Let $a \in \Sigma$ be the symbol such that s = s'a. By induction hypothesis, mso-type_k(s') is the last state of the run of M on s'. Now after reading the symbol a, the transition function δ updates the state from mso-type_k(s') to mso-type(s'a) by construction of δ .

It remains to observe that Claim 2 and Claim 1 establish L(M) = L.

An alternative proof of the forward implication in Theorem 7 which constructs an MSO-sentence *simulating* an accepting run of the automaton M recognizing L is presented in [3].

References

[1] J. Richard Büchi. Weak second-order arithmetic and finite automata. *Mathematical Logic Quarterly*, 6(1-6):66–92, 1960.

- [2] Calvin C. Elgot. Decision problems of finite automata design and related arithmetics. *Transactions of the American Mathematical Society*, 98(1):21–51, 1961.
- [3] Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.