SF1626 Flervariabelanalys, bra formler

CHAPTER 1

SATSER, DEFINITIONER

Example 1.0.1 (När Jacobianen inte behövs!)

Om man behöver beräkna ytintegralen eller även flödesintegralen av en kurva så behöver man inte lägga till Jacobianen!

Till exempel: Om man vill beräkna ytan av kurvan som beskrivs som intersektionen av cylindern $x^2+y^2 \le 1$ och ytan $x^2+z^2=1$, $z\ge 0$, så kan parametrisera kurvan på sättet nedan:

$$\vec{r}(t) = \begin{cases} x &= r\cos(t) \\ y &= r\sin(t) \\ z &= \sqrt{1 - r^2\cos^2(t)} \end{cases}$$

 $...r \in [0,1], \ t \in [0,2\pi].$ Om man då behöver beräkna ytan så gör man det på sättet nedan:

$$\iint_{\Upsilon} \left| \frac{\partial \vec{r}}{\partial r} \times \frac{\partial \vec{r}}{\partial t} \right| dr dt = \int_{0}^{2\pi} \int_{0}^{1} \left| \frac{\partial \vec{r}}{\partial r} \times \frac{\partial \vec{r}}{\partial t} \right| dr dt$$

Lägg märke på att Jacobianen inte lades till! Detta på grund att vi **inte** transformerar en areaelement från en koordinatsystem till en annan - eftersom vi från första början hade parametriserat kurvan i koordinatsystemet vi behöver för att beräkna ytan. Mer info: [1] [2].

Sats 1.0.1 Gradientens definition

$$\nabla F(\vec{a}) = \lim_{t \to 0} \frac{F(\vec{a} + t(e_1, e_2, e_3, \dots, e_n) - F(\vec{a}))}{t}$$

Definition 1.0.1: Tangentplan (linjär approximation) unmystified

I vissa uppgifter så kommer det att frågas om att bestämma en tangentplan i en viss punkt för en kurva som ges implicit, t.ex: $cos(2z)(x^2 + 3y^2 + z) = 0$, detta kan tolkas som en 3D kurva. Då tangentplanen i en punkt $\vec{a} \in \mathbb{R}^n$, för en kurva f = k, $f : \mathbb{R}^n \mapsto \mathbb{R}$ ges av:

$$\nabla f(\vec{a}) \cdot (\vec{x} - \vec{a})$$

..där $\vec{a}=(a_1,a_2,a_3,\cdots,a_n)$ och $\vec{x}=(x_1,x_2,x_3,\cdots,x_n)$. I \mathbb{R}^3 så blir $\vec{x}=(x,y,z)$.

Observera att funktioner som g(x,y)=z kan skrivas om implicit till g(x,y)-z=0 för att använda denna metod.

Mer info: [1]

Sats 1.0.2 Orienteringsidentitet på vektorfältsintegral

$$\oint_{\gamma} F \cdot d\vec{r} = -\oint_{\gamma} F \cdot d\vec{r} \iff \oint_{\gamma} F \cdot d\vec{r} = -\oint_{\gamma} F \cdot d\vec{r}$$

Mer info: [1]

Definition 1.0.2: Orientering på randkurvor och randytor

En rand**yta** sägs vara **positiv** orienterad om randytans normal pekar ifrån själva kroppen som randytan täcker. Tvärtom med negativ orientering på randyta.

En rand**kurva** sägs vara **positiv** orienterad om ytan som randkurvan täcker är åt vänstra sidan när man följer orienteringen på kurvan. Tvärtom med negativ orientering på randkurvan.

Sats 1.0.3 Inversa funktionssatsen

Om vi har en funktion $f: \mathbb{R}^n \to \mathbb{R}^n$ och vi betecknar Jacobianen av f i punkten \vec{a} som $Df(\vec{a})$, så är f inverterbar i närheten av punkten \vec{a} om $Df(\vec{a})$ är inverterbar, d.v.s:

$$det(Df(\vec{a})) \neq 0$$

Dessutom så gäller identiteten:

$$D(f^{-1})(\vec{y}) = [Df(\vec{x})]^{-1}$$

..där $f(\vec{x}) = \vec{y}$

Mer info: [1]

Definition 1.0.3: Linjäriseing för en funktion $f: \mathbb{R}^n \mapsto \mathbb{R}$

Linjäriseringen av en funktion f i en punkt \vec{a} kan beskrivas på sättet nedan:

$$L(\vec{x})_{\vec{a}} = f(\vec{a}) + \nabla f_{\vec{a}} \cdot (\vec{x} - \vec{a})$$

Definition 1.0.4: Differentierbarhet för funktioner $f: \mathbb{R}^n \mapsto \mathbb{R}$

Observera att differentierbarhet inte är samma sak som deriverbar! Differentierbarheten för funktionen f i en punkt \vec{a} definieras som:

$$\lim_{\vec{h}\rightarrow\vec{0}}\frac{f(\vec{a}+\vec{h})-L(\vec{a}+\vec{h})}{||h||}=0$$

..alltså att linjäriseringen för funktionen går mot det riktiga värdet av funktionen.

Bevisteknik 2.0.1 Bevis på att $D_{\vec{u}}f(\vec{a}) = \vec{u} \cdot \nabla f(\vec{a})$, (15/03/2022, fråga 6)

Låt $f: \mathbb{R}^n \mapsto \mathbb{R}$, $\vec{a} = (a_1, a_2, \dots, a_n)$ och $\vec{u} = (u_1, u_2, \dots, u_n)$. Då kan vi definiera $D_{\vec{u}} f(\vec{a})$ med ett gränsvärde på följande sätt:

$$\lim_{t \to 0} \frac{f(\vec{a} + t\vec{u}) - f(\vec{a})}{t}$$

Låt oss definiera $g(t) = f(\vec{a} + t\vec{u})$, då kan vi skriva gränsvärdet ovan som:

$$\lim_{t\to 0} \frac{g(t) - g(0)}{t} = \frac{dg}{dt}(0)$$

Det sista kan utvecklas vidare till:

$$\begin{aligned} \frac{dg}{dt} &= \frac{d}{dt} f(\vec{a} + t\vec{u}) \\ &= u_1 \frac{\partial f}{x_1} + u_2 \frac{\partial f}{x_2} + \dots + u_n \frac{\partial f}{x_n} \\ &= \vec{u} \cdot \left(\frac{\partial f}{x_1}, \frac{\partial f}{x_2}, \dots, \frac{\partial f}{x_n}\right) \\ &= \vec{u} \cdot \nabla f(\vec{a} + t\vec{u}) \end{aligned}$$

..när man sätter t=0 i det sista så får vi $\vec{u} \cdot \nabla f(\vec{a})$. Alltså **V.S.B!**

Bevisteknik 2.0.2 Gradienten och nabla operatorn i polära koordinater (genom tillämpningen av kedjeregeln) För att beräkna gradienten, så behöver vi en ortogonal koordinatsystem. I polära koordinater, brukar man definiera enhets-basvektorerna som beror på vinkeln θ som:

$$\hat{\mathbf{r}} = \cos(\theta)\hat{\mathbf{e}}_1 + \sin(\theta)\hat{\mathbf{e}}_2$$
$$\hat{\mathbf{\theta}} = -\sin(\theta)\hat{\mathbf{e}}_1 + \cos(\theta)\hat{\mathbf{e}}_2$$

..där $\hat{e_1}$ och $\hat{e_2}$ är enhets-basvektorerna i standard (Kartesiska) koordinatsystem.

Gradienten och nabla operatorn för en funktion $f: \mathbb{R}^2 \mapsto \mathbb{R}$ i termer av x och y definieras i termer av enhets-basvektorerna som:

$$\nabla = \frac{\partial}{\partial x} \hat{e_1} + \frac{\partial}{\partial y} \hat{e_2} \implies \nabla f = \frac{\partial f}{\partial x} \hat{e_1} + \frac{\partial f}{\partial y} \hat{e_2}$$

En funktion $g: \mathbb{R}^2 \mapsto \mathbb{R}$ i termer av r och θ beror av x och y eftersom:

$$r = \sqrt{x^2 + y^2}$$
$$\theta = \arctan\left(\frac{y}{x}\right)$$

Därmed partiell derivering med avseende på x eller y på en funktion som är angiven i polära koordinater (beror på r och θ som i sin tur beror på x och y) kommer vara definierad på sättet nedan:

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial}{\partial \theta} \frac{\partial \theta}{\partial x}$$
$$\frac{\partial}{\partial y} = \frac{\partial}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial}{\partial \theta} \frac{\partial \theta}{\partial y}$$

Detta enligt kedjeregeln. $\frac{\partial r}{\partial x}, \frac{\partial \theta}{\partial x}, \frac{\partial r}{\partial y}, \frac{\partial \theta}{\partial y}$ kan då fås ut från definitionerna ovan, där $r(x,y) = \sqrt{x^2 + y^2}$ och $\theta(x,y) = \arctan(\frac{y}{x})$:

$$\frac{\partial r}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}} = \frac{r\cos(\theta)}{\sqrt{r^2}} = \cos(\theta)$$

$$\frac{\partial \theta}{\partial x} = -\frac{y}{x^2} \cdot \frac{1}{\frac{y^2}{x^2} + 1} = -\frac{y}{x^2 + y^2} = -\frac{r\sin(\theta)}{r^2} = -\frac{\sin(\theta)}{r}$$

$$\frac{\partial r}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}} = \frac{r\sin(\theta)}{\sqrt{r^2}} = \sin(\theta)$$

$$\frac{\partial \theta}{\partial y} = \frac{1}{x} \cdot \frac{1}{\frac{y^2}{x^2} + 1} = \frac{x}{x^2 + y^2} = \frac{r\cos(\theta)}{\sqrt{r^2}} = \frac{\cos(\theta)}{r}$$

$$\Rightarrow \frac{\partial}{\partial \theta} \frac{\partial r}{\partial x} = \frac{\partial}{\partial r} \cos(\theta)$$

$$\Rightarrow \frac{\partial}{\partial \theta} \frac{\partial r}{\partial x} = \frac{\partial}{\partial r} \sin(\theta)$$

$$\Rightarrow \frac{\partial}{\partial r} \frac{\partial r}{\partial y} = \frac{\partial}{\partial r} \sin(\theta)$$

$$\Rightarrow \frac{\partial}{\partial \theta} \frac{\partial r}{\partial y} = \frac{\partial}{\partial r} \sin(\theta)$$

$$\Rightarrow \frac{\partial}{\partial \theta} \frac{\partial \theta}{\partial y} = \frac{\partial}{\partial \theta} \frac{\cos(\theta)}{r}$$

Om vi följer definitionen för gradienten och nabla operatorn i standard koordinatsystemet och definitionerna av $\frac{\partial}{\partial x}$ och $\frac{\partial}{\partial y}$ för polära funktioner så får vi att:

$$\nabla = \left(\frac{\partial}{\partial r}\cos(\theta) - \frac{\partial}{\partial \theta}\frac{\sin(\theta)}{r}\right)\hat{e_1} + \left(\frac{\partial}{\partial r}\sin(\theta) + \frac{\partial}{\partial \theta}\frac{\cos(\theta)}{r}\right)\hat{e_2}$$

Men vi vill använda de polära basvektorerna istället för \hat{e}_1 och \hat{e}_2 . Vi kan bryta ut \hat{e}_1 och \hat{e}_2 i termer av \hat{r} och $\hat{\theta}$:

$$\hat{e}_1 = \cos(\theta)\hat{r} - \sin(\theta)\hat{\theta}$$
$$\hat{e}_2 = \sin(\theta)\hat{r} + \cos(\theta)\hat{\theta}$$

Då blir nabla operatorn i polära koordinater och med polära basvektorer:

$$\nabla = \left(\frac{\partial}{\partial r}\cos(\theta) - \frac{\partial}{\partial \theta}\frac{\sin(\theta)}{r}\right)\left(\cos(\theta)\hat{r} - \sin(\theta)\right) + \left(\frac{\partial}{\partial r}\sin(\theta) + \frac{\partial}{\partial \theta}\frac{\cos(\theta)}{r}\right)\left(\sin(\theta)\hat{r} + \cos(\theta)\right)$$

$$= \cdots$$

$$= \frac{\partial}{\partial r}\hat{r} + \frac{1}{r}\frac{\partial}{\partial \theta}\hat{\theta}$$

Därmed gradienten för en funktion h i polära koordinater blir:

$$\nabla h = \frac{\partial h}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial h}{\partial \theta} \hat{\theta}$$