J.K Flip Flop

- The JK flip flop is the most versatile flip-flop, and the most commonly used flip flop
- when discrete devices are used to implement arbitrary state machines.
- It has no undefined states or race condition, however. It is always edge triggered;

Case I: when J = 0, K = 0

Output of gates **G3 and g4** are always '1' irrespective of clock signal and the output feedbacks

Thus '1' is input to gates **G1** and **g2** which provides the output for no change

Output Q is no change

$$R' = \overline{Clk.J.\overline{Q}} =$$

Inputs			Outputs			
Clk	J	K	Q	Q	State	
1	0	0	Q	Q	No Change	Positive Edg Triggered Cl
↑ ↑	0	1 0	0	1 0	Reset Set	
1	1	1	Q	Q	Toggle	-
0	X	Х	Q	Q	No Change	
1	X	X	Q	Q	No Change	Flip-flop is disabled
+	X	X	Q	Q	No Change	

Case II: when J = 0, K = 1

Output of gates **G3** is always '1' and g4 is always '0' it is clear from the expiration for R' and S'

$$R' = \overline{Clk.J.Q} = S' = \overline{Clk.K.Q} = G_3$$
Clock

Internal Structure of J-K flip-flop

If the previous state of Q and Q' is given by Q = 1 and Q' = 0

$$R' = \overline{Clk.J.Q} = \overline{1.0..0} = \overline{0} = 1$$

$$S' = \overline{Clk.K.Q} = \overline{1.1.1} = \overline{1} = 0$$

Thus the is input to gates G1 and g2 are '1' and '0' respectively

Therefore when J = 0 and K = 1, output Q = 0 Reset

Case III: when J = 1, K = 0

Output of gates **G3** is always '0' and g4 is always '1' it is clear from the expiration for R' and S'

$$R' = \overline{Clk.J.\overline{Q}} = S' = \overline{Clk.K.Q} = G_3$$

$$K = \overline{Clk.K.Q} = G_3$$
Internal Structure of J-K flip-flop

If the previous state of Q and Q' is given by Q = 0 and Q' = 1

$$R' = \overline{Clk.J.\overline{Q}} = \overline{1.1.0} = \overline{0} = 0$$

$$S' = \overline{Clk.K.Q} = \overline{1.1.1} = \overline{1} = 1$$

Thus the is input to gates G1 and g2 are '0' and '1' respectively

Therefore when J = 1 and K = 0, output Q = 1 Set

Case IV: when J = 1, K = 1

Output of gates G3 and g4 are always '1' it is clear from the expiration for R' and S'

$$R' = \overline{Clk.J.\overline{Q}} = S' = \overline{Clk.K.Q} = G_3$$

$$K \bullet G_4$$
Internal Structure of J-K flip-flop

If the previous state of Q and Q' is given by Q = 0 and Q' = 1

$$R' = \overline{Clk.J.Q} = \overline{1.1.1} = \overline{1} = 0$$

$$S' = \overline{Clk.K.Q} = \overline{1.1.0} = \overline{0} = 1$$

Thus the is input to gates G1(R') = 0 and G2(S') = 1 respectively

Therefore when J = 1 and K = 0, output Q = 1 Set stat

Inputs			Outputs			
Clk	J	K	Q ,	Q	State	
1	0	0	Q	Q	No Change	Positive Edge Triggered Cle
1	0	1	0	1	Reset	
1	1	0	1	0	Set	
1	1	1	Q	Q	Toggle	
0	X	Х	Q	Q	No Change	
1	X	X	Q	Q	No Change	Flip-flop is disabled
1	X	X	Q	Q	No Change	

If the previous state of Q and Q' is given by Q = 1 and Q' = 0

$$R' = \overline{Clk.J.\overline{Q}} = \overline{1.1.0} = \overline{0} = 1$$

$$S' = \overline{Clk.K.Q} = \overline{1.1.1} = \overline{1} = 0$$

Thus the is input to gates G1(R') = 1 and G2(S') = 0 respectively

Therefore when J = 1 and K = 0, output Q = 0 Reset state