

AFGL-TR-80-0324 AIR FORCE SURVEYS IN GEOPHYSICS, NO. 433

Cirrus Particle Distribution Study, Part 7

DONALD J. VARLEY, Lt Col, USAF IAN D. COHEN, Capt, USAF ARNOLD A. BARNES, JR.

E

16 October 1980

Approved for public release; distribution unlimited.

4

METEOROLOGY DIVISION PROJECT 2310 AIR FORCE GEOPHYSICS LABORATORY

HANSCOM AFB, MASSACHUSETTS 01731

AIR FORCE SYSTEMS COMMAND, USAF

6 15 139

This report has been reviewed by the ESD Information Office (OI) and is releasable to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Chief Scientist

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

year to a second of the second

Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

_	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
:4	AFGL-TR-80-0324 AF	3 RECIPIENT'S CATALOG NUMBER	
\·1	4. TITLE Cand Subterles	5 TYPE OF REPORT & PERIOD COVERED	
1,	CIRRUS PARTICLE DISTRIBUTION STUDY, \	Scientific. Interim.	
	PART 7.	6 PERFORMING ORG REPORT NUMBER AFSG No. 433	
, i	7 AUTHORA T Donald J. Varley, Lt Col, USAF* Ian D./Cohen, Capt, USAF Arnold A./Barnes, Jr	B CONTRACT OR GRANT NUMBER/a,	
	Air Force Geophysics Laboratory (LYC) Hanscom AFB Massachusetts 01731	0 0 0 0 0 0 0 0 0 0	
	11. CONTROLLING OFFICE NAME AND ADDRESS	16 October 1980	
	Air Force Geophysics Laboratory (LYC) Hanscom AFB Massachusetts 01731	13 NUMBER OF PAGES 82	
	14. MONITORING AGENCY NAME & ADDRESS(II different tecm Controlling Office)	15. SECURITY CLASS. (of this report)	
	$\mathcal{L} = \mathcal{L} = $	Unclassified	
		154 DECLASSIFICATION DOWNGRADING SCHEDULE	
,	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	m Report)	
	*Retired. Current affiliation: Lockheed Aerospace Corporation, San Jose, California. 19. KEY WORDS (Continue on reverse side if necessary and identity by block number)		
	Cirrus Subvisible cirrus Cloud particles Particle distribution Cloud spectra		
	Particle data obtained during C-130 cirrus sampling flights on 28 and 29 January and 2 February 1979 over the southwestern United States are described. The first flight sampled cirriform clouds ahead of a developing storm; the second flight obtained data in the tops of the cirriform clouds of a fully developed storm; and the third examined cirrus formed by a weak polar front and strong upper level winds. All flights sampled a variety of densities of cirrus; however, those sampled on 29 January, were the most complex		

DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

11/12/

20. Abstract (Continued)

and also at the lowest altitude. This flight provided numerous samples having as many as 350,000 particles per cubic meter in the 47 to 4700- μ m size range. The largest particle sizes were generally less than 1100 μ m, but some cirrus particles as large as 2.5 mm were detected at altitudes between 5.9 and 7.7 km. Generally, the calculated ice water content (IWS) values were 0.04 g m⁻³ or less, with a maximum of 0.10 g m⁻³ in the active storm situation. On the other two days, the cirrus was of varying density with most particles less than 1400 μ m and IWCs of 0.03 g m⁻³ or less. Particles as large as 2.5 mm were detected in the cirrus on all three flights. The in-flight meteorologist's characterization of heavy or thin clouds is better correlated with total particle number than particle size. Several atmospheric and particle spectral properties are tabulated for consecutive 15-sec data samples for the 3 flights.

Cloud-free periods were examined; some showed the presence of the two types of subvisible cirrus. The first type consisted of a background of small particles less than a few tens of microns; the second type consisted of large subvisible cirrus particles of the order of 100 μm or larger. The density of subvisible particles larger than 100 μm during a cloud-free period on 2 February 1979 was 7 μm^{-3} .

Unclassified

SECURITY CLASSIFICATION OF THE PAGE Minn Data Entered

Accession	For
NTIS GRA&	I
DIIC I/B	
Unerps mee	
Just Client	i on
p	·
Last in	
	Calles
	1 / J P
Dist .	1.1
	-
	1
	j

Preface

The authors extend their appreciation to the many persons responsible for the successful acquisition and processing of the data presented in this report. The AFGL technicians who flew on the C-130 were SMSgt Thomas Moraski, MSgt James Bush, MSgt Stephen Crist, SrA Grant Matsuoka, SrA Lou Ames, Jr. and A1C Wayne Domeier. The 4950th Test Wing pilots, crew, and technicians did an outstanding job in flying and maintaining the airplane. Most of the computer processing of the large volume of data was expertly accomplished by Mr. Michael Francis and Mr. James Lally of Digital Programming Services, Inc. The authors also thank Mr. Morton Glass for his helpful suggestions, Ms Barbara Main for preparing the illustrations, and Mrs. Patricia Sheehy for her excellent typing support.

		Contents
1.	INTRODUCTION	9
2.	INSTRUMENTATION AND DATA PROCESSING	. 11
3.	SYNOPTIC DISCUSSION FOR THE PERIOD 28 JANUARY TO 2 FEBRUARY 1979	12
4.	28 JANUARY 1979 FLIGHT AND DATA	23
	4.1 Data Variations During the Flight4.2 Data for Particular Passes	23 27
5.	29 JANUARY 1979 FLIGHT AND DATA	33
	5.1 Data Variations During the Flight5.2 Data for Particular Passes	33 36
6.	2 FEBRUARY 1979 FLIGHT AND DATA	41
	6.1 Data Variations During the Flight 6.2 Data for Particular Passes	4 1 4 4
7.	SUBVISIBLE CIRRUS	49
8.	CONCLUDING COMMENTS	50
RE	FERENCES	53
ΛF	PPENDIX A: 28 January 1979 Data Tabulations	55
ΑF	PPENDIX B: 29 January 1979 Data Tabulations	63
ΑF	PENDIX C: 2 February 1979 Data Tabulations	69
AF	PENDIX D: List of Abbreviations	17

Illustrations

1.	Surface Synoptic Chart at 2100Z, 28 January 1979	13
2.	300-mb Analysis at 1200Z, 28 January 1979	15
3.	GOES-West Visible Picture Showing New Mexico and West Texas Area at 1845Z, 28 January 1979	14
4.	GOES-West Infrared Picture at 1815Z, 28 January 1979	14
5.	El Paso, Texas 1200Z, 28 January 1979 Sounding	15
6.	Midland, Texas 0000Z, 29 January 1979 Sounding	15
7.	Surface Synoptic Chart at 2100Z, 29 January 1979	16
8.	GOES-East Visible Photo of Cloud Conditions ()ver Southwest U.S. at 1901Z on 29 January 1979	17
9.	GOES-East Infrared Photo of Southwest U.S. at 1930Z on 29 January 1979	17
10.	300-mb Analysis 1200Z, 29 January 1979	18
11.	Albuquerque, N. M. Sounding 4 hr After 29 January 1979 Sampling	18
12.	Denver, Colorado Sounding 4 hr After 29 January 1979 Sampling	19
13.	Surface Synoptic Chart at 2100Z, 2 February 1979	19
14.	GOES-West Visible Photo Centered on New Mexico at 2045Z, 2 February 1979	20
15.	GOES Infrared Photo at 1445Z, 2 February 1979	20
16.	300-mb Analysis at 0000Z, 3 February 1979	21
17.	El Paso, Texas Sounding at 1200Z on 2 February 1979 Sampling Flight	22
8.	Albuquerque, N. M. Sounding at 1200Z on 2 February 1979 Sampling Flight	22
9.	Path of C-130 Sampling Flight on 28 January 1979	23
20.	Variation With Time During 28 January Flight of (a) Aircraft Altitude and Temperature, (b) Ice Water Content from ASSP, (c) Ice Water Content from 1-D PMS Cloud and Precipitation Probes, (d) Median Volume Diameter of "Melted" Particles, and (e) Total Number of Particles Over 47-4700 µm Range	24
21.	Typical Spectra and Representative Form Factor Values	27
22.	Percentage Frequency by Class of Five Measured or Calculated Variables	28
23.	Description of Data Format	30
4.	Representative Ice Crystal Spectrum for a 15-sec Interval During Pass 1 on 28 January 1979	31
5.	Representative Spectrum for a 15-sec Interval During Pass 2	40

Illustrations

26.	Representative Spectrum for a 15-sec Interval During Pass 3 Through Heavy Cs on 28 January 1979	32
27.	Flight Track of Sampling Aircraft on 29 January 1979	34
28.	Variation With Time During 29 January 1979 Flight of (a) Aircraft Altitude and Temperature, (b) Ice Water Content from ASSP, (c) Ice Water Content from 1-D PMS Cloud and Precipitation Probes, (d) Median Volume Diameter of "Melted" Particles, and (e) Total Number of Particles Over 47-4700 µm Range	35
29.	Photo of Thin Cirrus Sampled Above Main Cs Cloud, 29 January at 1906Z	37
30.	Photo of Main Cs Cloud, 29 January at 1951Z	37
31.	Percentage Frequency by Class of Five Measured or Calculated Variables	39
32.	Representative Spectrum for a 15-sec Interval During Pass 4 on 29 January 1979	40
33.	Representative Spectrum for a 15-sec Interval During Pass 5 on 29 January 1979	40
34.	Representative Spectrum for a 15-sec Interval During Pass 6 on 29 January 1979	41
35.	Flight Track of Sampling Aircraft on 2 February 1979	42
36.	Variation With Time During 2 February 1979 Flight of (a) Aircraft Altitude and Temperature, (b) Ice Water Content from ASSP, (c) Ice Water Content from PMS Cloud, 1-D and Precipitation Probes, (d) Median Volume Diameter of "Melted" Particles, and (e) Total Number of Particles Over 47-4700 µm Range	43
37.	Percentage Frequency by Class of Five Measured or Calculated Variables	45
38.	Representative Particle Spectrum for a 15-sec Interval During Pass 7 on 2 February 1979	47
39.	Representative Particle Spectrum for a 15-sec Interval During Pass 8 on 2 February 1979	47
40.	Representative Particle Spectrum for a 15-sec Interval During Pass 9 on 2 February 1979	48
41.	Representative Particle Spectrum for a 15-sec Interval During Pass 10 on 2 February 1979	48
42.	Representative Particle Spectrum for a 15-sec Interval During Pass 11 on 2 February 1979	49

Tables

1.	Portions of 28 January 79 Flight Examined in Figure 22	27
2.	Portions of 29 January 79 Flight Examined in Figure 31	36
3.	Portions of 2 February 79 Flight Examined in Figure 37	44

Cirrus Particle Distribution Study, Part 7

1. INTRODUCTION

This report continues the presentation of data from a series of cirrus sampling flights made for the Air Force Weapons Laboratory (AFWL) under the Advanced Radiation Technology (ART) program. The flights in the series also provide information for a study of cirrus being conducted for the Air Force Office of Scientific Research (AFOSR). In this report, the data were gathered in the course of three flights, 28 and 29 January 1979, and 2 February 1979, from Kirtland Air Force Base, Albuquerque, New Mexico.

A summary of the series follows: The first report described some of the sampling instrumentation (Varley) available on the specially equipped MC-130E (maintained and flown by personnel of the 4950th Test Wing) used in all the flights; this first report also considered data acquired at 7.6 km before an approching upper level trough. The second report, by Varley and Brooks, presented particle spectra for heavy cirrostratus and thin cirrus, whereas the third report (Varley) described a flight that acquired primarily very small crystals (\sim 30 μm) in a high haze-like cloud layer.

⁽Received for publication 16 October 1980)

Because of the number of references cited above, they will not be listed here. See References, page $53\,\text{.}$

as the appeared in the lourth part of this series by Voriet and Burness' on a main cloud that appeared related to a band of strong range. In the later two parts of the series are ranged to the latest ranged are restricted as so and during a series of the latest ranged at the latest ranged to the latest parts along the units along the range along the range and the series are ranged to the sixth parts of the Control of Burness, and Restrict tensor are the latest and the latest parts are ranged as a series of the latest parts.

The forcest marticles in the strong of the units of them in the factor of the factor of the forces. The many strong strong strong of the factor of the facto

We Get a support that the fifteent contact of sizes considered in the support of the support of

This report has two main purposes: First, to add more particle data to the pageity of information that now wists on circus particle spectra and their

^{4.} Variev, D.J., and Baines, A.A., Jr. (1979) <u>Cirrus Particle Distribution</u>
Study, Part 4, AFGI-TR-79-0134, Air Force Surveys in Geophysics 414, AD A074-763, 91 pp.

Cohen, I.D. (1979) <u>Cirrus Particles Distribution Study</u>, <u>Part 5</u>, AUGU-TR-79-0155, Air Force Surveys in <u>Geophysics 414</u>, AD 077-361, 81 pc.

^{6.} C. ben, I.D., and Barnes, A.A., Jr. (1980) Cirrus Particle Distribution Study.

Part 6. AFGL-TR-80-0261, Air Force Surveys in Geophysics 430, (in press).

^{7.} Heymsfield, A. and Kallienberg, R. (1972) Properties of currus generating cells, J. Atmos. Sci. 29:1358-1366.

Hermsfield, A. (1974) lees existal growth in deep curve systems. Proceeds
of Conf. in Cloud Physic, Theorie, 211 etc.

is the yeasfield, $A_{\rm s}$ (1.7.3) to example and specifing cells positive evaluation of chapter in Table 3. Proof to Are sufficient themselves the contribution of the contribution of the $C_{\rm s}$ (2.1) and $C_{\rm s}$ (3.1) and $C_{\rm s}$ (4.1) and $C_{\rm s}$ (4.1) and $C_{\rm s}$ (4.1) and $C_{\rm s}$ (4.1)

variation, seem i, to make the information of subvisible consist in our substitute former, incre emphasis to place our number concentration of circus samples, of correlating contributions of ice water content with particular particle sizes, only on the correlation of "form factors" with each spectrum.

2. INSTRUMENTATION AND DATA PROCESSING

The primary cloud physics instrumentation used during the three flights discussed in this report include: PMS (Particle Measuring Systems, Inc.) one-dimensional (1-D) and two dimensional (2-D) particle spectrometers, a PMS axial scattering spectrometer probe (ASSP), and a formvar replicating system. Other recorded data include outside air temperature and altitude, as well as aircraft heading and airspeed.

The PMS spectrometers are widely used instruments that have been described, for example, by Knollenberg ^{10, 11} and Cunningham. ¹² After the particle data were acquired and recorded on magnetic tape aboard the sampling aircraft, they were computer processed, as described by Cunningham, ¹² Varley and Varley and Barnes in previous parts of this study. Essentially, the equivalent melted diameter of all recorded ice crystals is determined using AFGL "melting" equations for standard particle types. Calculations of ice water content (IWC) are then made based on the number of particles recorded in each channel of the spectrometer probes.

The melting equations used for all data in this report are the same as those used for the AFGI, type "bullet rosettes,". This type was selected based on a review of the 2-D shadowgraph data from each flight. Studies by Heymsfield and Knollenberg and Heymsfield have shown that bullet rosettes and bullets are the most common crystal type in cirriform cloudiness. While the bullet rosette is most easily recognized, we strongly agree with the finding of Hobbs and Atkinson 13

Knollenberg, R. (1975) The Response of Optical Array Spectrometers to Ice and Snow: A Study of Probe Size to Crystal Mass Relationships, AFGL-TR-75-0494, AD A020 276.

^{11.} Knollenberg, R. (1976) Three new instruments for cloud physics measurements: the 2-D spectrometer, the forward scattering probe, and the active scattering spectrometer. <u>Preprints of Intnl. Cld. Physics Conf.</u>, Boulder, Colorado, Amer. Meteor. Soc., 554-561.

^{12.} Cunningham, R. (1978) Analysis of particle spectral data from optical array (PMS) 1-D and 2-D sensors. In Preprints of AMS Fourth Symposium on Meteorological Observations and Instrumentation, Denver, Colorado.

Hobbs, P.V., and Atkinson, D.G. (1976) The concentrations of ice particles in orographic clouds and cyclonic storms over the Cascade Mountains, J. Atmos. Sci. 33:1363-1374.

that most particle shapes in ice clouds are irregular, with reference to standard ice or snow particle classifications.

Values of microphysical variables in this report have been averaged over 15-sec periods, providing somewhat better resolution of cloud conditions than the 30-sec averaging employed in previous parts of this series. Brief descriptions of other types of data will be given as initially presented.

A discussion of the weather in the southwestern United States on 28 January to 2 February, the period covered by the three flights, follows. Flight and sample data will be discussed separately.

3. SYNOPTIC DISCUSSION FOR THE PERIOD 28 JANUARY TO 2 FEBRUARY 1979

During the morning of 28 January 1979, the weather in the southwestern United States was dominated by two low pressure areas. At 1200Z, one was located over southeastern California; the other was in Mexico, 120 miles south of El Paso, Texas. During the day, the first of those low pressure areas moved eastward into Arizona, while the other remained stationary. Southeast flow around the two lows brought moisture from the Gulf of Mexico into the system, causing both lows to intensify and a trough to form between them (see Figure 1). This development was aided by an upper air wave over the western United States. The position of this wave is seen in Figure 2. The Jet Stream followed the 9240-m contour, as can be seen by the 150-kt wind at El Paso, Texas. With the combination of southeast flow at low levels and west-south-west flow at high levels, the system continued to intensify. As the GOES-west satellite pictures show, (Figures 3 and 4) an extensive shield of clouds formed around the southern low pressure area. The flight of 28 January sampled the cirriform clouds on top of this cloud shield. The raw asonde soundings shown in Figures 5 and 6 point out how the moisture in west Texas increased during the day on 28 January. During the next twelve hours, the two surface lows shown in Figure 1 merged and the two surface troughs developed into an occluded front.

During 29 January, this system deepened into an extensive storm. The position of this storm at 2100Z on 29 January 1979 is shown in Figure 7. The sampling flight of 29 January sampled cirriform clouds while the storm was at its greatest intensity. As the GOES-east satellite photos in Figures 8 and 9 show, an extensive cloud mass covered a large area ahead of the front extending from Texas through Oklahoma, Kansas, and Colorado to Wyoming. Rain and drizzle were observed in Texas and snow was reported throughout the rest of the area; most stations in the sampling area were reporting light, continuous snow. The upper air wave had

Figure 1. Surface Synoptic Chart at 2100%, 28 January 1979. Add 1000 millibars to isobar values

Figure 2. 300-mb Analysis at 1200Z, 28 January 1979. Contour values in geopotential meters

Lingup J. Ge LS-West Visible Picture Shewing New Mexico and West Lexas Area at 16477, 26 January 1676, Resolution: 2 uci

Figure 4. GOES-West Infrared Picture at 1815Z, 28 January 1979

Figure 4. Midland, Teva-0000Z, 29 January 1979 Scanding. Circles are C-130 temperature measurements as on El Paso plot. Tropopause was at 10.0 get ACC.

Figure 7. Surface Synoptic Chart at 2100Z, 29 January 1979. Add 1000 millibars to isobar values

deepened considerably, as can be seen in Figure 10. Figures 11 and 12 show the radiosonde soundings for Albuquerque, New Mexico, and Denver, Colorado. While Albuquerque was already well behind the front and thus clearing, the Denver radiosonde shows both a moist layer 6 km thick as well as the front that caused it (at 3 1/2 km), marked by a strong inversion and a wind shift. The westerly and northwesterly flow both aloft and at the surface brought rapid clearing to western New Mexico, and as the storm moved eastward, rapid clearing occurred in the sampling area. The upper air trough became stationary, and as the storm moved eastward, it weakened as dry air from a high pressure area, located in Montana (Figure 7) caused it to lose energy.

This continental high pressure area pushed southward and provided the New Mexico area with two days of clear weather until a complex system moved in from the Pacific Ocean. A weak Pacific cold front moved through southern California and Arizona on 31 January and passed through New Mexico on 1 February. Meanwhile, a second cold front formed over Nevada and Utah, as colder continental polar air pushed toward this area. By 1200Z on 2 February, the Pacific front was in the Texas Panhandle, while the polar front had moved to Central Utah and Central Colorado. As Figure 13 shows, by 2100Z on 2 February, the Pacific front had dissipated, while the polar front had moved into the Texas Panhandle and northern New Mexico. The cirrus in advance of this front was sampled during the flight of 2 February. As shown in Figure 14 (a GOES visible satellite photo), an extensive area of low cloud was moving south with the polar front. Figure 15 (the corresponding infrared photo) shows the

Figure 8. GOES-East Visible Photo of Cloud Conditions Over Southwest U.S. at 1901Z on 29 January 1979

Figure 9. GOES-East Infrared Photo of Southwest 1.8, at $1630 \rm Z$ on $29 \, \rm January \, 1970$

Figure 10. 300-mb Analysis 1200Z, 29 January 1979. Height in geopotential meters

Figure 11. Albuquerque, N.M. Sounding 4 hr After 29 January 1979 Sampling. Circles are aircraft-measured temperatures along the flight track. Tropopause was at 9.8 km MSL

Figure 12. Denver, Colorado Sounding 4 hr After 29 January 1979 Sampling. Urent is at 3 1/2 km. Circles are aircraft measured temperatures as on Albuquerque sounding. Tropopause was at 7.6 km MSL.

Figure 13. Surface Synaptic Chart at 2100%, 2 February 1979. Add 1000 neillibars to isobar values

Figure 14. GOES-West Visible Photo Centered on New dexison 2040Z, 2 February 1979

Figure 15. GOES Infrared Photo at 144 %, 2 February 1979. This was last IR picture received before sampling 6 or later

cirriform clouds associated with the weakening Pacific front in Oklahoma, Texas, and southeastern New Mexico. Much of this cirrus was so thin that it is almost invisible in Figure 15. Figure 16 shows the sharp 300-mb trough and strong jet stream with winds of 170 kt over central Arizona and New Mexico, which supported these systems. Figures 17 and 18 show the soundings at El Paso, Texas, and Albuquerque, New Mexico on the morning of 2 February. The Pacific front shows up clearly on the El Paso sounding at the 5-km level. The advancing cirrus shows up on the Albuquerque sounding as a thin moist layer at 7.5 km. During the day, the polar front became stationary while the Pacific front regenerated over eastern Texas. By 0000Z on 3 February, the polar front showed signs of weakening, but the cirrus over central New Mexico remained there through 1200Z. Thus a continuous, persistent shield of thin cirrus was present throughout the time of the third sampling flight. The synoptic situation on this flight was strikingly similar to that of an earlier flight, " but on 2 February the upper air winds were somewhat stronger and the polar front somewhat weaker than on the earlier flight. Thus the resulting cirriform clouds seen on the previous occasion were more diffuse.

Figure 16. 300-mb Analysis at 0000Z, 3 February 1979. Heights shown in geopotential meters

Figure 17. El Paso, Texas Sounding At 1200Z on 2 February 1979 Sampling Flight. Tropopause was at 11.8 km MSL. Winds were not measured above 6.6 km

Figure 18. Albuquerque, N. M. Sounding At 1200% on 2 February 1979 Sampling Flight. Tropopause was at 11.0 km MSL. Maximum wind was 181 kt at 16.5 km

4. 28 JANUARY 1979 FLIGHT AND DATA

The 28 January cirrus sampling began at Kirtland AFB, New Mexico, at 1924Z (1224 MST) and proceeded south, and then east. Most of the cirrus data were obtained over western Texas at altitudes between 7.5 and 9.5 km. The general flight track is shown in Figure 19.

Figure 19. Path of C-130 Sampling Flight on 28 January 1979. Aircraft departed and landed at Kirtland AFB, Albuquerque, N. M. Numbers indicate times in UMT

4.1 Data Variations During the Flight

An over-all view of the variation of several parameters during part of the 28 January flight is shown in Figure 20. The top portion, for example, indicates, that the greatest altitude attained was near 9 km at about 2155Z. Outside air temperature during most of the flight at cirrus altitudes was between -30 and $-36^{\circ}C$.

Part b of Figure 20 reflects mass determinations from the scatter probe (measuring particles from ~ 2 to $27~\mu m$), whereas Part c shows similar values for the combined cloud and precipitation probes (ranges of ~ 26 to $4700~\mu m$).

Figure 20. Variation With Time During 28 January Flight of (a) Aircraft Altitude and Temperature, (b) Ice Water Content from ASSP, (c) Ice Water Content from 1-D PMS Cloud and Precipitation Probes, (d) Median Volume Diameter of "Melted" Particles, and (e) Total Number of Particles Over 47-4700 μm Range. Based on vidues of consecutive 15 sec samples. Solid lines indicate data of the 1 masses described in Table 1

Variations of mass, as calculated from the two sets of probes, are well correlated, although absolute values are different, as should be expected. The problems of determining the mass of ice crystal regimes through use of a scatter probe have been recognized for some time. Both Hobbs et al ¹⁴ and Ryder ¹⁵ have cautioned that the Axial Scattering Spectrometer Probe (ASSP) produces an overestimate of ice crystal concentration because of multiple pulsing from the many faceted scattering particles. Despite this problem concerning data from the ASSP, measurements have been included on Figure 20 and other data formats herein, in order to provide at least a relative record of the small-sized ice crystals present.

For the 28 January sampling, Part c of Figure 20 shows that the greatest calculated IWC for a 15-sec sample was nearly 0.09 g m $^{-3}$, occurring at \sim 2139Z. The second highest value of about 0.08 g m $^{-3}$ was determined for data at 2210Z.

The variation during the flight of the particle median volume diameter, $D_{\rm o}$, a calculated quantity based on particles in the 26 to 4700 μ m-size range, is shown in Part d of Figure 20. The $D_{\rm o}$ is the "equivalent melted" particle diameter at the fiftieth percentile of the ice water content; that is, half of the ice water exists in smaller melted droplet sizes, and half in larger sizes. Typical $D_{\rm o}$ values during most of the cirrus sampling on this flight were between 75 and 200 μ m.

The variation of NT, the total number of particles in the 47- to 4700- μ m range, is given in part f of Figure 20. This quantity varied considerably from very high to very low values as the aircraft passed through portions of heavier cirrus. Occasionally, values in excess of the 60,000 m⁻³ upper limit of the figure were recorded. The greatest 15-sec NT was 142,000 m⁻³, which occurred at 2153Z. Three other consecutive samples were greater than 120,000 m⁻³ at about 2139Z.

A more comprehensive tabulation of the values on Figure 20 for each 15 sec sample is given in Appendix A. In addition, Appendix A lists $L_{\rm max}$, which is the mean physical size (in micrometers) of the largest spectrometer channel having ~1 particle m $^{-3}$ mm $^{-1}$. For many purposes, this can be considered the largest particle size contributing to a given number-size spectrum. The $L_{\rm max}$ column in Appendix A shows the largest particles measured in most spectra, ranging from approximately 300 to 1300 μm . Values of less than 1000 μm are usually indicative of a spectrum made up of a small number of small particles, and may be discounted ordinarily, except as an indicator of subvisible cloudiness.

^{14.} Hobbs, P.V., Radke, L.F., and Atkinson, D.G. (1975) <u>Airborne Measurements and Observations in Cirrus Clouds</u>, AFCRL-TR-75-0249, <u>AD A015 037</u>, 117 pp.

^{15.} Ryder, P. (1976) The measurement of cloud droplet spectra. Preprints of Inthatl. Conf. on Cloud Phys., Boulder, Colorado, Amer. Metcor. Soc., 576-580.

The form factor of each 15-sec sample is also given in Appendix A under the "FF" heading. The form factor is a mathematical value between 0, and 1,00, first described by Plank 16 and Plank and Barnes. 17 It has been found useful in characterizing the shape of given spectra.

The form factor is calculated as

$$FF = \frac{\sum_{i=1}^{(-n)} (2i-1)^3 \sigma_i}{\sum_{i=1}^{(-n)} (2i-1)^3 \sigma_i},$$

where i is the specific channel of data being considered (from 2 to 15 for the PMS eloud probe and from 1 to 15 for the precipitation probe) and σ_1 is the ratio of the number of particles in channel (to the total number in all channels (for sizes from \sim 47 to 4700 μ m).

Values of FF based on approximately 16 or fewer channels of particle data may be spurious and not meaningful. This is usually the case when FF is computed to be greater than 1.00 as often happens in the Appendices to this report. Plank has also warned that the form factor can be ambiguous in that two different spectra may have the same FF number. However, in a previous AFGL report, there was little difficulty in gaining useful intelligence from the form factor as long as the air temperature or altitude of a given sample was known. Figure 21, from that AFGL report, was developed from a study of particle spectra in both cirrus and lower clouds and shows the approximate FF values for four generalized spectra. The nearly straightline (on log-linear plots) exponential distributions are closely approximated by the factors in the 0.25 to 0.35 range.

The tabulations of data in the Appendices also include notes or comments made by the mission director during the course of the flights. He sat in the

^{16.} Plank, V.G. (1977) <u>Hydrometeor Data and Analytical-Theoretical Investigations Pertaining to the SAMS Rain Erosion Program of the 1972-73 Season at Wallops Island, Virginia, AFGL-TR-77-0149, Environmental Research Papers 603, AD A051 192, 239 pp.</u>

Plank, V.G., and Barnes, A.A., Jr. (1978) An improvement in obtaining real-time water content values from radar reflectivity, Preprints of 18th Conf. Radar Meteor., Atlanta, Amer. Meteor. Soc., 426-431.

^{18.} Plank, V.G. (1979) Private Correspondence.

^{19.} Varley, D.J. (1980) Microphysical Properties Of a Large Scale Cloud System 1-3 March 1978, AFGL-TR-80-0002, Environmental Research Papers 690, AD A083 140, 100 pp.

Figure 21. Typical Spectra and Representative Form Factor Values

aircraft cockpit and had a good vantage from which to see the type clouds being sampled.

4.2 Data for Particular Passes

After reviewing the mission director's notes, data tabulations, and the variation of data on Figure 20 we selected three periods during the flight for further studies. These are given in summary form in Table 1 and are also reflected on Figure 20 by the three intervals of solid lines across any given data plot. Brief order-of-magnitude (or larger) changes occurred in IWC and \mathbf{D}_O during these periods, but generally cloud conditions were relatively homogeneous.

Table 1. Portions of 28 January 1979 Flight Examined in Figure 22

Pass	Period	Number of Samples	Average Temperature	Average Altitude (km)	Туре
1	2123-2128Z	20	-33°C	8.5	Near Cs base
2	2135-2150Z	60	-33	8.6	In heavy Cs
3	2153-2203Z	40	-36	9.0	In heavy Cs

Data for five sets of variables for each of the three periods are shown in histogram form on Figure 22. The bottom row presents data for the 2123-2128Z period designated Pass 1, the middle row for 2135-2150Z Pass 2, and the top row for 2153-2203Z, Pass 3. The height of each histogram bar reflects the

Figure 22. Percentage Frequency by Class of Five Measured or Calculated Variables. Based on total number of 15-sec mean values during 3 periods on 28 January 1979. Printed numbers and vertical lines are 50 percentile values. These do not consider data in cloud-free areas

percentage of sampling time that individual class values were measured or calculated. Each specific percentage was determined from the ratio of the number of 15-sec averages having a certain class value to the total number of 15-sec intervals in a sampling period, for example, the 5 min for the 2123-2128Z period had 20 samples.

The numerical value of the 50 percentile or median quantity of each variable is given with each Figure 22 histogram. A vertical line on each also gives the location of the mean along the abscissa scale. The mean value is based only on 15-sec samples when cloud data were being recorded. Intervals when the aircraft was outside all cloud, or was not recording ice particles are excluded in calculations of mean values, although these periods are reflected in a "no data" class at the extreme left in each histogram.

As an example of how Figure 22 may be read, it can be noted at the left side of the bottom row that the predominant (most frequently observed) $D_{_{\rm O}}$ class was that having limits of 60 and 90 μm . It occurred in 40 percent of the 15 sec averages during the 2123 to 2128Z period. The mean value of $D_{_{\rm O}}$, however, was 104 μm . The location of the mean is indicated by a vertical line.

During the 2135 to 2150Z sampling period, the extreme left plot of the middle row of Figure 22 shows that nearly 60 percent of all $D_{_{\rm O}}$ values were in the 120 to 150 $\mu{\rm m}$ class, and that the mean of 140 $\mu{\rm m}$ was also within those limits. The modal $D_{_{\rm O}}$ class for Pass 3 was also that bounded by 120 and 150 $\mu{\rm m}$, while the mean was 130 $\mu{\rm m}$.

The five histograms of Pass 1 on the bottom row of Figure 22 are the result of a flight near or below the base of the visible portion of a heavy cirrostratus layer. The Pass 2 and 3 histograms show modal and mean values of various parameters in a heavier, more dense portion of the Cs. The IWC values in the latter two samples are nearly an order of magnitude greater than those acquired near the cloud base. Values of $L_{\rm max}$, the largest particles recorded, were generally less than 500 $\mu{\rm m}$ in Pass 1, but were as large as 1100 $\mu{\rm m}$ during at least 20 percent of the sampling in heavy Cs. Another difference between Pass 1 and the other two was the larger mean number of particles, 47,000-49,000 m⁻³, recorded in the middle of the Cs layer as opposed to a mean value of about 6,000 m⁻³ at the base of it. These passes were not above one another but were consecutive along the flight path as may be seen in Figure 19.

Spectra representing typical cloud conditions during the three 28 January sampling periods will be presented on ensuing pages in the format shown in Figure 23. This format is similar to those given in previous parts of this series with certain additional information being added and explained in the figure.

One significant change in the data format is the addition of two columns of data presenting information on the percentage of the total ice water content

- Date of sampling.
- Beginning time of sample (Z time) 2.
- Sampling interval or duration in seconds over which data were averaged. Average ambient temperature in OC during sample.
- Average pressure altitude in km MSL of sample
- Ice water content in g m⁻³ calculated from particles of ~ 26 4700 μm size.
- Percent of IWC in 6, determined from cloud probe (26 to 311 μ m) data. Mediam diameter of "melted" particles (in μ m). Total number of particles m^{-3} in the ~ 47 to 4700 μ m size range.

- 10. Form factor (see text).
- Main recognizable particle type: Bullet rosettes. 11.
- Nominal particle sizes measured by each channel of the scatter (ASSP), cloud, and precipitation probes.
- Number of particles m⁻³ mm⁻¹ in various size classes. Ice water content (g m⁻³) calculated from data of each probe.
- 15. Percent of 6 above per mm sampling width (see text).
- Particle number-size distribution in solid lines; ice water content shown in 16. dashed lines.

Figure 23. Description of Data Format

(measured over the 26 to 4700-µm size range and indicated by [15] in Figure 23) that is contributed by each channel of the 1-D cloud and precipitation probes. Because these probes have different size measuring channels, it was necessary to normalize the IWC data to a common millimeter width just as the particle number distribution data have been done. This permits a direct comparison of data between the two probes as if they measured over the same channel widths.

Figure 23 shows that 3 channels of the precipitation probe centered at 437, 706 and 1011 μm contributed less than 8 percent of the total IWC (on a normalized channel size basis). However, because these three channels have a larger measuring area than the cloud probe channels they were actually responsible for 4.79×10^{-3} g m⁻³ (shown at bottom of "Precip Probe" column) of the actual total. Whether the normalized or unnormalized values of IWC are more valuable will depend on the ultimate use of the data.

Particle spectra and other data from the 3 passes described in the Figure 8 histograms are shown in Figures 24, 25 and 26. They indicate averages of conditions over selected 15 second intervals within the overall 5 to 15 minute passes. The particular interval was chosen for display from the many given in Appendix A to show most of the characteristics indicated by the modal classes in Figure 22. Emphasis was placed more on the predominant classes than mean values for the overall sampling period because it was found that in some instances the mean values rarely occurred. For example, the $L_{\rm max}$ of the spectrum (not shown here) incorporating all the data of Pass 1 was near $1000~\mu{\rm m}$, while the pass data on Figure 22 showed that 60 percent of the samples during the 5 min Pass 1 period had values less than $500~\mu{\rm m}$, and the mean of the several samples was $470~\mu{\rm m}$. The average spectrum for the entire pass in this case reflected the presence of an anomalously large number of particles in some size ranges that were not recorded in most individual 15-sec samples.

Figure 24 presents representative tabulated and plotted data during Pass 1 when the aircraft was moving in and out of portions of the base of a Cs layer. The greatest particle size recorded was in the 437-µm channel of the precipitation probe. The most significant contribution to overall ice water content was from the five largest channels of the cloud probe each of which provided 12 to 13 percent of the total.

Figure 24. Representative Ice Crystal Spectrum for a 15-sec Interval During Pass 1 Through the Base of a Cirrostratus Layer on 28 January 1979

Figure 25. Representative Spectrum for a 15-sec Interval During Pass 2 Through Heavy Cs on 28 January 1979

Figure 26. Representative Spectrum for a 15-sec Interval During Pass 3 Through Heavy Cs on 28 January 1979

The spectrum in Figure 25, representing the middle of a fairly heavy cirrostratus layer, exhibits a minimum in the distribution curve near the 170 μm particle size while there is a maximum in the curve at approximately 290 μm . Similar minima were observed in cirriform spectra described by Varley. They have also been pointed out by Heymsfield as being somewhat typical in cirrus uncinus heads. He thought the maximum at sizes near or below 500 μm might reflect an accumulation of crystals of that length in an updraft. Some 21 percent of the total Figure 25 IWC was due to particles recorded by the 291- μm channel size.

The distribution of Figure 26, in heavy fog-like Cs, has a nearly straight-line, exponential decrease of particle number with increasing size. As in the previous figure, the greatest contribution to over-all ice water mass was at the 291-µm channel size; but the IWC curve in Figure 26 is considerably smoother than those shown in Figures 24 and 25. The form factor of the Figure 26 spectrum is 0.32, which is in the 0.25 to 0.35 range previously identified and associated with exponential distributions.

Both Figures 25 and 26 spectra are from heavy cirrostratus clouds. While minimum and maximum points are evident at sizes less than 300 μm in the former, they are absent in the latter. Such valley-peak distributions may be evidence of an aggregation mechanism which occurs more frequently in the middle and lower portions of Cs. The Figure 26 spectrum represents data from an altitude of 8.9 km MSL, perhaps above the level that aggregation begins. At 8.4 km, the altitude of the Figure 25 spectrum, the aggregation process may have been better established.

5. 29 JANUARY 1979 FLIGHT AND DATA

The 29 January flight departed Kirtland AFB at 1647Z (0947 MST) and flew north and east into the Pueblo, Colorado area. Several sampling passes were made at lower levels east of the Rocky Mountains for another AFGL program, then sampling in the thin cirriform clouds above the surface storm began at about 1845Z. As the aircraft proceeded in a generally southerly direction back to Kirtland, the cloud tops decreased in height. The main portions of this day's flight track were as indicated on Figure 27.

5.1 Data Variations During the Flight

The variations of several measured or calculated variables during the 29 January sampling are plotted on Figure 28. Since the flight was made near the upper level low, the outside air temperature and cirrus tops were both lower

Figure 27. Flight Track of Sampling Aircraft on 29 January 1979. Numbers indicate times in UMT

than those observed in most previous flights. As shown in the top of Figure 28, all sampling was accomplished at altitudes less than 8 km (26,000 ft) MSL. As the aircraft moved southward, the cirriform tops were found at progressively lower altitudes.

By 1945Z the C-130 was in the thin cloud tops over northern New Mexico at slightly above 5 km. There was some doubt at that time whether those clouds could be considered cirriform; however, they were definitely composed of ice particles and the temperature was -30° C or colder, which Mason, 20 among others, has indicated satisfies the criteria to be considered cirriform.

Parts (b) and (c) of Figure 28 show—that the variations of IWC as determined from measurements of the scatter probe and the cloud plus precipitation probes were fairly well correlated. There was one extended period, however, beginning about 1905Z when the scatter probe recorded a small number of small particles when there were no measurements in the other probes. The largest calculated IWC of this sampling over the 26 to 4700 μ m range was 0.06 g m⁻³ at about 1848Z. The radical high to low IWC changes occurring between 1920 and 1940Z are indicative of passage through numerous small cloud elements.

^{20.} Mason, B.J. (1962) Clouds, Rain and Rainmaking, Cambridge University Press, 145 pp.

Figure 28. Variation With Time During 29 January 1979 Flight of (a) Aircraft Altitude and Temperature, (b) Ice Water Content from ASSP, (c) Ice Water Content from 1-D PMS Cloud and Precipitation Probes, (d) Median Volume Diameter of "Melted" Particles, (e) Total Number of Particles Over 47-4700 μm Range. Based on values of consecutive 15-sec samples. Solid lines indicate data of the 3 passes described in Table 2

The median volume diameter of typical "melted" particles was quite small in this sampling. Values ranged from approximately 30 to 125 μ m, with only a few higher than 150 μ m. The variation of D during the flight is shown in Part (d) of Figure 28.

The total numbers of particles detected during most of the cloud penetrations on 29 January were high with respect to our previous experience. During the 1845 to 1850Z period, for example, the average number was 358,000 m⁻³. This compares to an average of 25,000 m⁻³ measured during a 9.0 km pass through thin cirrus over New Mexico on 1 March 1978 (Varley)¹⁹ and a mean of 49,000 m⁻³ recorded during one pass in this report on 28 January 1979. The many changes of NT on Figure 28, Part (e) are again a reflection of the numerous entries into, and departures from, small cirriform cloud elements.

The Figures 29 and 30 photographs show the general type of cloud conditions sampled on 29 January. Figure 29 might be considered a "close up" view of the very thin cirrus filaments that fade with height above the main cloud mass into blue sky. Figure 30 shows the main layer of cirrostratus from a distance. An area of snow-covered ground is in the bottom left. The flight proceeded toward the very top of the clouds shown in Figure 30.

5.2 Data for Particular Passes

Three extended periods during the 29 January sampling were selected for further examination and given in Table 2. These were chosen because cloud conditions were fairly homogeneous; however, a few large changes in the microphysical variables did occur. In fact, during Pass 5 nearly 30 percent of the time the aircraft was above or between measurable cloud particles. Pass numbers were selected to be continuous from one day to the next, that is, "Pass 4" is the fourth pass considered in this report.

Table 2. Portions of 29 January 1979 Flight Examined in Figure 31

Pass	Period	Number of Samples	Average Temperature	Average Altitude (km)	Туре
4	1845-1850Z	20	-48 ^o C	7.7	In Cs near tops
5 .	1926-1934Z	32	-37	6.1	Skim. Cs/Cc tops
6	1943-1950Z	28	-31	5.2	Skim, Cs/Cc tops

Figure 29. Photo of Thin Cirrus Samplied Above Main Cs Cloud, 29 January at 1906Z. Dark blue sky at top. Near $37^{\rm o}47^{\rm e}{\rm N}$, $104^{\rm o}50^{\rm e}{\rm W}$

Figure 30. Photo of Main Cs Cloud 29 January at 1951Z. Sampling Proceeded Through Extreme Top of Cs Shown. Near 35°28'N, 105°29'W. Dark blue sky at top. Area of snowcovered ground at bottom left

During this 4, sampling took place on relatively dense a continuation of the tops. A tail reften appeared around the sun, same the our calculation of the Cs. These was pare of a trap of the restriction of the Cs. These was pare of a trap of the center the numbers, and blue sky could accasionally be seen. By 12 (6), the estable period, the Cs had thinned considerably and much make the calculation of the center than even thin evenus filaments above.

campian, oursing both Pass 5 and Pass 3 and in the three new two entrophers down the newton Cs and Co. Cocasi mally one of the higher, to seem unit new tenses above the bulk of lower clouds was nenetrated. These roughststein for filaments and horsembled for overlaving a body of water on too drive the sometimes of these filaments faded into the blue sky at or slightly above the sometime altitude.

Of the three passes the largest values of IWC were calculated for particles during Pass 4, as shown on Figure 31. The average IWC was 1.15 10^{-22} g m for Pass 4 and nearly an order of magnitude less for the other two masses.

As previously indicated, there was an extraordinarily high number of normicles recorded in the Pass 4 Cs-more than 350,000 m $^{-3}$. The NT number class above 90,000 m $^{-3}$ was also the predominant one having most individual samples during the other passes, although the average figures in these cases were not as great-78,000 and 73,000 m $^{-3}$.

The $L_{\rm max}$ histograms on Figure 31 show that the largest particles were recorded in Pass 4 going through Cs. About 15 percent of the particles were larger than 1100 $\mu{\rm m}$ and one 15 sec sample had an $L_{\rm max}$ exceeding 2000 $\mu{\rm m}$. The predominant $L_{\rm max}$ class for both the Pass 5 and 6 data was that bounded by 200 and 500 $\mu{\rm m}$.

The histograms showing median volume diameter, $D_{_{\rm O}}$, on Figure 31 indicate a generally small range of occurrence. Most values of $D_{_{\rm O}}$ were less than 90 $\mu{\rm m}$, though one during Pass 6 was as great as 108 $\mu{\rm m}$. The averages of the three 29 January passes varied only from 46 through 67 $\mu{\rm m}$.

The differences in predominant form factor classes between the 3 passes indicate there were differences in typical number-size spectra. Some 50 percent of the form factors of the Pass 4 were less than 0.40, while about 40 percent of those during Pass 5 were equal to or greater than 0.71. Some of the differences are evident in the representative spectra for each of the passes shown in the following figures.

Figure 32 shows a particle spectrum representative of the predominant conditions recorded during the 1845 to 1850Z pass period on 29 January. Both this and the Figure 26 spectra were recorded in the upper parts of a Cs layer and both approximate an exponential decrease of particle number with increasing size. The median volume diameter of the Figure 32 data, however, is 82 µs while type

1. Become to the greeney by Class of Five Mirrord in Cobonete Navy Mess, We define the author of mean values during a periods on 29 Journary 1979. Periods has been only a fixed brees, so so to be acceptable to so denote in cloud-free errors.

Figure 32. Representative Spectrum for a 15-sec Interval During Pass 4 Through Tops of Moderately Dense Cs on 29 January 1979

Figure 33. Representative Spectrum for a 15-sec Interval During Pass 5 While Skimming Cs/CC Tops on 29 January 1979

Figure 34. Representative Spectrum for a 15-sec Interval During Pass 6 Through Thin Filaments on Top of Cs/Cc Layer on 29 January 1979

for Figure 26 is $136 \,\mu\text{m}$. Figures 33 and 34 show another difference between the two sets of data. The number density is about one-fourth of that detected lower in the Cs, but still a large figure in comparison to our other flight data. As mentioned above, these large NTs are probably associated with the proximity of the surface storm and the fact that particles were being generated profusely.

6. 2 FEBRUARY 1979 FLIGHT AND DATA

The cirriform clouds sampled on 2 February were primarily associated with a weak cold front and a band of strong winds aloft over the southwestern part of the United States. The aircraft recorded winds in excess of 150 kt. Most of the sampling was accomplished at altitudes between 9 and 10 km MSL over the eastern part of New Mexico as shown in Figure 35.

6.1 Data Variations During the Flight

As previously indicated, and as shown in the top part of Figure 36, most of the sampling on 2 February was conducted near the 9-km MSI, level. Free air temperatures recorded by the C-130 were between -38 and -44 $^{\circ}$ C.

The plots of Parts (b) and (c) on Figure 36 show that the variation of ice water mass determined from the scatter probe (in Part b) and the cloud and precipitation probes (in Part c) were generally well correlated. Several IWC values from

Figure 35. Flight Track of Sampling Aircraft on 2 February 1979. Numbers indicate times in UMT

the latter 2 probes reached as high as $0.005~\mathrm{g~m}^{-3}$, while the peak values were $0.010~\mathrm{at}~2108Z$ and $0.018~\mathrm{g~m}^{-3}$ at 2201Z. The relatively small amplitude swings in the IWC plot on Figure 29 indicate the cirriform clouds sampled on 2 February were more consistent and uniform over a given area than those examined on the other two days.

The median volume diameter, $D_{_{\rm O}}$, of individual 15-sec samples was generally less than 100 μ m during most of this flight. As shown in Part d of Figure 29, none were as large as 150 μ m. There was more temporal variation in IWC value than in those of $D_{_{\rm O}}$, but this was to be anticipated since IWC varies with the third power of $D_{_{\rm O}}$.

There was extensive variation during the flight of the total number of particles detected in the 27 to 4700 μm range. Most values of NT were less than 60,000 m⁻³, but there were two periods from 2107 to 2113Z and from 2201 to 2209Z when they were considerably greater. During the former period, the greatest single value was 156,000 m⁻³ at 2108:45Z, and during the latter period the maximum was 255,000 m⁻³ at 2201:15Z.

Figure 36. Variation With Time During 2 February 1979 Flight of (a) Aircraft Altitude and Temperature, (b) Ice Water Content from ASSP, (c) Ice Water Content from PMS Cloud, 1-D and Precipitation Probes, (d) Medium Volume Diameter of "Melted" Particles, (e) Total Number of Particles ()ver 47-4700 µm Range. Based on values of consecutive 15-sec samples. Solid lines indicate data of the 5 passes described in Table 3

6.2 Data for Particular Passes

Based on a review of the data variations on Figure 36 and of the tabulations in Appendix C, 5 periods of approximately 5 minutes or longer were selected for further examination. These were selected based on the relative homogeneity of the data. The period selected are as given in Table 3. The frequencies of particular class values within these periods are shown in the histograms of Figure 37.

Table 3. Portions of 2 February 1979 Flight Examined in Figure 37

Pass Number	Period	Number of Samples	Average Temperature	Average Altitude (km)	Туре
7	2058-2104Z	26	−39°C	9.2	Moderate heavy Cs
8	2168-2113Z	21	-43	9.6	In tops of Cs
ΰ	2123-2130Z	28	-44	9.6	Very thin Ci
16	2203-22 0 9Z	24	-38	9.0	Heavy Cs
11	2223-2229Z	25	-39	8.9	Very thin Ci

During Pass 7 of this report (the first on 2 February), the aircraft was flying along and in a band of Cs of varying density. Most of the calculated values of ice water content were in the relatively narrow range of 2 to 7×10^{-3} g m⁻³ as shown on the bottom line of Figure 37. The 64 μ m mean D₀ value and the 340 μ m mean L_{max} value are the largest of those in the 5 passes examined here. The mean NT of 34,000 m⁻³ is less than the corresponding values near 48,000 m⁻³ detected in somewhat similar clouds in Passes 2 and 3 taken on 28 January 1979.

The data of Pass 8 were acquired while flying within about 1000 ft of the top of the Cs band. The sky was quite blue above and the ground was dimly visible, but horizontal visibility was greatly reduced. The mean D_0 of 50 μm was the smallest of the five 2 February passes, but the mean particle count, NT, of 106,000 m^{-3} was the largest.

Passes 9 and 11 were both made through very thin cirrus, and in both cases the mean number of particles detected was less than 13,000 m⁻³, as indicated on Figure 37. Only Pass 1, when downward visibility was good, had a lower NT value. The greatest mean particle sizes, L_{MAX} , were 170 and 215 μ m. These are the smallest of the 11 cases considered in this report. The calculated 1WC values of 1 \times 10⁻³ g m⁻³ or less are also the smallest ones in this report. While flying and acquiring data of Passes 9 and 11 the mission director noted that in the

Figure 37. Percentage Frequency by Class of Five Measured or Calculated Variables. Based on total number of 15-sec mean values during 5 periods on 2 February 1979. Printed numbers and vertical lines are at 50 percent le values. These do not consider data in cloud-iree areas

vicinity of the airplane there hardly seemed to be any cloud present at all. The data suggests that his observation might have been due to a lack of contrast with clouds all around.

The cloud sampled during Pass 10 was a relatively heavy cirrostratus that provided the highest mean IWC value of any of the five 2 February passes. The ground was only dimly visible and no blue sky could be seen, though the sun shone through the Cs. The number of particles detected in this case was 99,000 m⁻³, only slightly less than that recorded during Pass 8.

Some representative particle data for the passes made on 2 February are given in the following figures. As in similar foregoing figures, the data have been averaged over a representative 15-sec segment of a particular pass period.

Data for the moderately heavy Cs samples on Pass 7 are shown in Figure 38. The largest particles detected were 437 μm in size, though there were very few of these. Particles in the 125 to 175 μm range made the greatest contribution to total calculated ice water content.

The spectrum given in Figure 39 has a maximum recorded particle size of 311 μ m, although the total particle count, NT, is in excess of 88,000 m⁻³. There is a smooth decrease of particle counts as size increases, but without particles larger than 400 μ m, the form factor is a relatively high 0.70.

The greatest particle size recorded in the Figure 40 spectrum of very thin cirrus is $169 \, \mu m$. The bulk of the total IWC was contributed by particle sizes between 67 and $108 \, \mu m$. Since there are less than 10 channels of data in the cloud and precipitation probe ranges, the form factor computation is not necessarily meaningful. It does appear, however, that when few spectrometer channels have data, the form factor is quite high — above about 0.75.

There is considerable similarity between the spectra in Figures 39 and 41. In one case the NT is 88,000 and in the other 100,000 m^{-3} . In both instances, the largest recorded particles were near 311 μ m, and in both the greatest contribution to IWC was made by particles in the approximate 50- to 125- μ m range.

Both of the thin cirrus spectra shown in Figures 40 and 42 exhibit maximum sized particles near 200 μm or smaller. They also have a relatively small number of particle counts in the $\sim 47\text{-}4700\text{-}\mu m$ range, 8600 and 13,400 m⁻³. Both also have high form factor values, though, as noted above these are based on a very small number of channels of data and hence are not very reliable.

Figure 38. Representative Particle Spectrum for a 15-sec Interval During Pass 7 Through Moderately Heavy Cs on 2 February 1979

Figure 39. Representative Particle Spectrum for a 15-sec Interval During Pass 8 in Tops of Cs on 2 February 1979

Figure 40. Representative Particle Spectrum for a 15-Sec Interval During Pass 9 In Very Thin Ci on 2 February 1979

Figure 41. Representative Particle Spectrum for a 15-sec Interval During Pass 10 Through Heavy Cs on 2 February 1979

Figure 42. Representative Particle Spectrum for a 15-sec Interval During Pass 11 in Very Thin Ci on 2 February 1979

7. SUBVISIBLE CIRRUS

Barnes 21 and Cohen and Barnes 6 have observed two types of subvisible cirrus. The most frequent type is a continuous background of particles in the smallest channels of the ASSP (2 to 12 μ m). This type of distribution has frequently been observed in extensive cloud-free areas sampled by the MC-130E during calibration flights or while en route to or from sampling locations. It was thought to be noise, but data-free periods, such as seen in Figure 36, have shown the data to be real. A second type of subvisible cirrus consists of isolated ice crystals, generally 100 μ m or greater in diameter, occasionally exceeding 1000 μ m. They have been detected on the PMS 1-D and 2-D probes and visually verified on the snow stick. Although generally observed while under cirrus clouds, they have also been found with no cloud above the airplane. They may form in moist layers high in the troposphere and fall to lower layers. In the Arctic region, they fall to the surface and are called "diamond dust." In warmer climates, they melt, evaporate, or are lost among other aerosols (fog, dust, sea spray, pollution, and so on) before reaching the surface.

Although the purpose of these flights was to obtain data in clouds, there were periods during which the airplane was in what appeared to be clear air. During

^{21.} Barnes, A.A., Jr. (1980) Ice Particles in Clear Air. Communications a la VIII ème Conférence Internationale sur la Physique des Nuages, Vol. I., Clermont-Ferrand, France, 15-19 July 1980, pp 189-190.

those times, there were occasions when particles were detected which indicated the presence of subvisible cirrus.

During three short periods on 28 January (2115:00 to 2121:45Z, 2129:15 to 2132:15Z, and 2205:00 to 2208:15Z), the airplane appeared to be in clear air, yet particles were detected. During the first and second, no small particles appeared on the ASSP, but a few larger particles (probably fallout from higher clouds) typical of the second type of subvisible cirrus were recorded. During the third period, the ASSP detected only a background of small particles typical of the first type of subvisible cirrus.

On 29 January, from 1901:45 to 1919:00Z, the ASSP showed results similar to those observed during the third period on 28 January but in addition, individual particles were also detected by the cloud and precipitation probes.

On 2 February (see Figure 36), from 2131:15 to 2157:00Z, no small particles were detected by the ASSP, but some subvisible cirrus particles greater than $50\,\mu\mathrm{m}$ in diameter were recorded by the cloud probe. The density of $50\,\mu\mathrm{m}$ particles was $21\,\mathrm{m}^{-3}$. Particles greater than $100\,\mu\mathrm{m}$ had a density of $7\,\mathrm{m}^{-3}$, which is considerably higher than the 0.12 m⁻³ found by Barnes 21 in a cloud-free atmosphere at $5\,\mathrm{km}$ on 2 February 1980, using a modified 2-D precipitation probe. The larger number of subvisible cirrus particles may be due to additional moisture in the air due to the presence of visible clouds in the vicinity.

8. CONCLUDING COMMENTS

The three cirriform cloud sampling flights of 28 and 29 January and 2 February 1979 have added considerably to the small base of such data now available. The first and third flights were made in the vicinity of bands of cirriform clouds ahead of surface systems and close to jet stream winds. In the first case, the surface systems were intensifying, while in the third case, they were weak and dissipating. The second flight was made through the top portions of Cs and Cc clouds at the top of an active surface storm.

The 28 January flight encountered a variety of types of corrostratus. The presence of larger particles at certain times during that flight indicate that aggregation of smaller particles into larger particles was probably occurring. We attribute this to the deepening of the low pressure areas to the south and west of the sampling area.

The 29 January flight through the top of the storm provided quite high particle counts, sometimes exceeding 300,000 m⁻³. Even with this large number, how-ever, the particle sizes were seldom greater than 1100 μ m, while typical ice water contents were near 0.03 g m⁻³. Since the tropopause was relatively low on this day, we were able to acquire data at temperatures as low as -48°C. The large

number of particles detected may have been related both to their generation in or near the storm and also to the fact that we were able to sample at colder locations in the cloud than usually possible with the C-130.

The cirrostratus layers sampled on 28 January and 2 February were of different consistencies, although the in-flight meteorologist occasionally noted they were both heavy or moderately heavy cloud forms. On the first day, with a developing storm in the area, the largest particle sizes in two passes through or along the Cs were near 1400 μm , while n ean IWC values were 1 to 2×10^{-2} g m $^{-3}$ and the median volume diameter was 130 to 140 μm .

The Cs on 2 February with only weak, dissipating surface systems in the area, had maximum particle sizes near or less than 500 μ m and a mean IWC of 7×10^{-3} g m⁻³ or less. Median volume diameters were also generally less than 90 μ m. Pass 10 on 2 February was considered by the mission director to be a sample of heavy Cs, while Passes 9 and 11 were through very thin cirriform clouds. It is interesting that the largest particles detected, L_{max} , in each of these cases were not significantly different. The median volume diameters were also near 55 μ m in each of the 3 cases. However, the number of particles, NT, was much greater, 99,000 m⁻³, in the heavy Cs case, while the thinner cirrus examples had mean NT less than 13,000 m⁻³. The larger particle count in the heavy Cs case also resulted in a greater ice mass than in the cases of the thinner cloud samples.

This is the first report in this series that has described and discussed total particle counts (NT), maximum particle size ($L_{\rm max}$) and form factor (FF). As described above, the NT and $L_{\rm max}$ aid considerably in efforts to characterize particle data. The form factor has also been found useful in understanding the variation of particle spectra. Form factor values in the relatively low range of 0.20 to 0.45 are frequently associated with approximately exponential decreases of particle numbers out to sizes as large as 1000 to 2000 μ m (in cirrus samples). Values of FF above approximately 0.70 are often related to spectra that extend only to particle sizes of 300 μ m or less. Form factor calculations based on data from less than about 10 spectrometer channels are less reliable and meaningful, but a small number of cases indicates that, even here, high values of FF are associated with abbreviated spectra.

Two types of subvisible cirrus were detected during these flights. A continuous background of small particles was observed while in clear air during the first two flights. Occasional larger particles were observed in clear air on all three days.

Cirrus flights were conducted on the three days immediately following the 2 February flight. The results of these flights will be discussed in a future report.

References

- 1. Varley, D.J. (1978) <u>Cirrus Particle Distribution Study, Part 1</u>, AFGL-TR-78-0305, Air Force Surveys in Geophysics 394, AD A061 485, 71 pp.
- Varley, D.J., and Brooks, D.M. (1978) <u>Cirrus Particle Distribution Study</u>, <u>Part 2</u>, AFGL-TR-78-0248, Air Force <u>Surveys in Geophysics 399</u>, <u>AD A063 807</u>, 108 pp.
- 3. Varley, D.J. (1978) Cirrus Particle Distribution Study, Part 3, AFGL-TR-78-0305, Air Force Surveys in Geophysics 404, AD A06 695, 67 pp.
- Varley, D.J., and Barnes, A.A., Jr. (1979) <u>Cirrus Particle Distribution</u> Study, Part 4, AFGL-TR-79-0134, Air Force Surveys in Geophysics 413, AD A074 763, 91 pp.
- 5. Cohen, I.D. (1979) Cirrus Particles Distribution Study, Part 5, AFGL-TR-79-0155, Air Force Surveys in Geophysics 414, AD 077 361, 81 pp.
- 6. Cohen, I.D., and Barnes, A.A., Jr. (1980) <u>Cirrus Particle Distribution Study</u>, <u>Part 6</u>, AFGL-TR-80-0261, Air Force Surveys in Geophysics 430, (in press).
- Heymsfield, A., and Knollenberg, R. (1972) Properties of cirrus generating cells, J. Atmos. Sci. 29:1358-1366.
- 8. Heymsfield, A. (1974) Ice crystal growth in deep cirrus systems. Preprints of Conf. on Cloud Phys., Tucson, 311-316.
- 9. Heymsfield, A. (1975) Cirrus uncinus generating cells and the evolution of cirriform clouds. Part I: Aircraft observations of the growth of the ice phase, J. Atmos. Sci. 32:799-808.
- Knollenberg, R. (1975) The Response of Optical Array Spectrometers to Ice and Snow: A Study of Probe Size to Crystal Mass Relationships, AFGL-TR-75-0494, AD A020 276.
- Knollenberg, R. (1976) Three new instruments for cloud physics measurements; the 2-D spectrometer, the forward scattering probe, and the active scattering spectrometer. Preprints of Intnl. Cld. Physics Conf., Boulder, Colorado, Amer. Meteor. Soc., 554-561.

- Cunningham, R. (1978) Analysis of particle spectral data from optical array (PMS) 1-D and 2-D sensors. In Preprints of AMS Fourth Symposium on Meteorological Observations and Instrumentation, Denver, Colorado.
- Hobbs, P.V., and Atkinson, D.G. (1976) The concentrations of ice particles in orographic clouds and cyclonic storms over the Cascade Mountains, J. Atmos. Sci. 33:1363-1374.
- 14. Hobbs, P.V., Radke, L.F., and Atkinson, D.G. (1975) <u>Airborne Measure-ments and Observations in Cirrus Clouds</u>, AFCRL-TR-75-0249, AD A015 937, 117 pp.
- 15. Ryder, P. (1976) The measurement of cloud droplet spectra. Preprints of Intnatl. Conf. on Cloud Phys., Boulder, Colorado, Amer. Meteor. Soc., 576-580.
- Plank, V.G. (1977) Hydrometeor Data and Analytical-Theoretical Investigations Pertaining to the SAMS Rain Erosion Program of the 1972-73 Season at Wallops Island, Virginia, AFGL-TR-77-0149, Environmental Research Papers 603, AD A051 192, 239 pp.
- Plank, V.G., and Barnes, A.A., Jr. (1978) An improvement in obtaining realtime water content values from radar reflectivity, <u>Preprints of 18th Conf.</u> Radar Meteor., Atlanta, Amer. Meteor. Soc., 426-431.
- 18. Plank, V.G. (1979) Private Correspondence.
- 19. Varley, D.J. (1980) Microphysical Properties Of a Large Scale Cloud System

 1-3 March 1978, AFGL-TR-80-0002, Environmental Research Papers 690,
 AD A083 140, 100 pp.
- 20. Mason, B.J. (1962) Clouds, Rain and Rainmaking, Cambridge University Press, 145 pp.
- 21. Barnes, A.A., Jr. (1980) Ice Particles in Clear Air. Communications a la
 VIII eme Conference Internationale sur la Physique des Nuages, Vol. I.,
 Clermont-Ferrand, France, 15-19 July 1980, pp 189-190.

Appendix A

28 January 1979 Data Tabulations

The example below explains the data format used in the tabulations that fellow. The comments provided are from notes made during the flight by the mission director.

(1)	(2)	(3) (4) (5)(6)	(7)	(8)	90	(11)	(12)
Ŧ	Ţ	02 F	EB 79 🗸	√ 15	SECOND	AVERA		~	Ţ
START	AĹT	TEMP	IUC-SC	IUC-CP	I UC	DO-	ИŤ	LHAX	FF
TIME	KN	3	6/M++3	G/M++3	Z CLD	UN	N/H++3	UM	
20:55:00	9.1	-38.7	.0016	.0038	99	49	35385	437	.66
20:55:15	9.1	-30.5	.0019	.0042	100	63	52414	311	. 65
20:55:30	7.1	-38.4	.0025	.0050	99	49	58656	437	.54
20:55:45	9.1	-30.4	.0016	.0052	99	77	39564	437	.61
20:54:00	9.1	-38.5	.0013	.0044	100	71	46072	311	.57
20:56:15	9.1	-30.6	.0013	.0037	100	70	34446	311	. 63
20:56:30	9.1	-38.8	.0020	.0043	99	84	32615	437	.54
20:56:45	9.1	-38.B	.0014	.0052	99	72	45554	437	. 63
20:57:00	9.1	-38.9	.0028	.0045	99	61	91805	437	.59

- 1. Start time of sample. End was 14 sec later. Time in UMT.
- 2. Mean altitude of sample (km).
- 3. Mean temperature of sample (OC).
- 4. Date of sampling.
- 5. Ice water content in g/m^3 calculated over 2 to 27- μm range of scatter probe.

- 6. Ice water content in g/m^3 calculated over 26 to 4700- μm range of cloud and precip probes.
- 7. Duration of each sample (sec).
- 8. Percent of total ice water content of 6 determined from cloud probe only.
- Median volume diameter of equivalently melted particles. (D_o in the text)
 Particle number total /m³ over 47 to 4700 μm size range. (The first channel of the cloud probe is not used to compute this value.)
 Greatest size having ≥1 particle m⁻³ mm⁻¹ (in μm).
- 12. Form Factor (see text).

		320 ht. Cirrus layer above							isible																			through earrostratus	ate tops.						ft above. Visibilit;									s above.						Base of visible Cs is about	
		50 - 14 050 - 14 mile 306 11 10 11 11 11 11 11 11 11 11 11 11 11	(Edst); 51 46 %, 105 52 %, 105 540 %;			Within 2-3,000 it of cirus above, but no particle counts yet			Breaks in the cirrostratus above. Blue sky on assenally visible					c	47'N, 105"09'W.								Getting very near cirriform cloud base.				see through a increase of the Co have	At 31 46'N, 104 45:W. Ground and horizon are dimly visible through cirrostratus	base that is nearly without texture. Not possible to estimate tops		Moved out of thicker cloud, but more is coming.				At 31°48'N, 104°31'W. Cirriform cloud base now about 1000 ft above.	ahead.		In milky textured cloud now.		Andreas of the second action of the second actions of the second a	iv getting Larger counts now. Cilmbing.			Breaks of blue sky through relatively light cirriform clouds above						several thousand feet below.	1000 ft above the aircraft.
;	:		0.00 Heading USU	0.00		0.00	0.00	0.00			0.00	0.00	0.00	0.00	At 31	86	00.0	00.00	0.00	00.0	.38	.64		0.00	0.00	00.0						4.				.60 is less ahead						65	19.			99.	.73		0.00 At 31 51		
	Ě		0	٥	0 1	,		0	٥		0			0		> <		• •						۵.	0 6	.		2233	1622	101	9 :	754	. E	3	169	437	2	1316	9 5) C	ì	=======================================	437	250	437	437	250			9	
	#/# #/#**3		•	0	0 •	9 C	0	0	0	0	•	•	0	0	-	> <	,	• •		0	1349	244	1281	۰.	0 0	> <	10.7	8519	20166	23836	23384	727	3195	4684	496	4537	8934	16235	2882	404	22.2	1536	7746	5258	12161	4751	1173	3177	- 20	9	2
SECOND AVERAGE	3 5	٥	0	٥	0 (> <	•	0	0	0	0	0	0	۰.	0 (> <	•	• •	0	0	123	104	69	٥.	0 0	> <	248	368	198	136	113	4 5	2 6	6	63	107	123	/27	67	701	2 4		Ξ	29	108	60 5	m :	% &	2 0	· '	5
ECOND	2 2		0	٥	۰ ۰	5 C	0	0	•	0	0	0	•	٥.	۰ د	> <	•		0	. 0	85	4	90	۰ ۵	0 (٥ د	•	۰-۰	54	22	85	2 5	2 0	100	100	66	5 6	<u>,</u>	200	. 0	100	8	66	901	86	65	200	8 8	3 0	901	?
	6/M**3 7	0.000	0.0000	0.000	00000	0000	0.000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.0000	0000	200	0.000	0.0000	00000	0.000	.0002	.0002	.0001	0.000	00000	0000	0000	.0112	.0117	.0108	.0065	000	0000	6000	0000	.001	.0037	20.	5000	2.00	.0002	.0003	.0023	8000	.0044	100.	- 0002	2000	0.000	0000	?
6/ 1	14C-3C	0.000	0,000.0	0.0000	0.0000	9000	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0000	0.000	00000	0000	0000	0.000	0.000	0.0000	0.0000	0000.	.000	0000	0.0000	00000	0000	0000	.0021	.0024	.0034	100.		.0002	.0002	0000.	. 2003	9000	6200.	2000	000	0000	.0001	9000.	.0003	100.	.0003	0000	1000	0000.0	0000	***
28 JAN	È u	-3.		-31.0																																-32.0	-32.1	7.72	-32.4	-32	-32.9	-33.2	-33,1	-33.3	-33,5	-33,5	-33.6	-33.4	-33.3	-33.0	•
;	į ±		8.	60	. r	2	7.9	7.9	5.9	7.9	7.9	8.0	8	8	9 9			0		- 8	-			6,0	7.0	2.8	2.9	8.2	8,3	œ c			. 6	8.4	₽.	8	* •	, r	7 4		9.8	9.8	9.6	9.6	9.6	9.0			. 9	9 9	;
	TINE	21:15:00	21:15:15	21;15;30	21:15:45	21:16:00	21:16:30	21:16:45	21:17:00	21:17:15	21:17:30	21:17:45	21:18:00	21:18:15	21:18:30	21:19:00	21:19:15	21:19:30	21:19:45	21:20:00	21:20:15	21:20:30	21:20:45	21:21:00	61:17:17	21:21:45	21:22:00	21:22:15	21:22:30	21:22:45	21:23:00	01:53:13	21:23:45	21:24:00	21:24:15	21:24:30	21:24:45	71:23:00	21:25:30	21:25:45	21:26:00	21:26:15	21:26:30	21:26:45	21:27:00	21:27:15	21:27:30	21:28:00	21:28:15	21:28:30	,,,,,,,,,

```
Fuggy whate in all directions, but can see texture of Ac below. At 31°56'N, 102°02'W
                     128
14
706
706
437
87
                                                                                                                                                                                                                                                                                                                                                                   1316
706
706
1011
1316
1316
1316
      N/New3
11193
295
                                                                                                                                                                                     4372
30424
40424
47303
47303
47304
47304
47304
47372
47372
47372
47372
47373
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
46147
4
                                                                                                                          29134
48676
1075
AVERABE
                                                                                                                                                                                     .0305
                                                                                                                                                                                                                                .0140
                                                                                                                                                                                                                                                                                    .0047
                                                                                                                                                 .0000
                                                                                                                                                        0.0000
                                                                                                                                                                       .0000
                                                                                                                                                                                                                                                             .0025
                                                                                                                                                                                                                                                                                                                                .0765
                                                                                                                                                                                                                                                                                                                                               .0356
                                                                                                                                                                                                                                                .0168
                                                                                                                                                                                                                                                                                                                                                                           .0300
                                                                                                                    .000
                                                                                                                                          .
.
.
                                                                                                                                                                                      .0017
                                                                                                                                                                                                                                                                                                                         .0862
                                                                                                                                                                 .000
                                                                                                                                                                                                                                                                                                                                                             .0301
      00000
                                                                                                                                                                                             .0014
.0036
.0036
.0080
.0082
.0049
.0043
.0043
                                                                                                                                                                                                                                                                                     -000
                                                                                                                                                                                                                                                                                                         .0031
                                                                                                                                                                                                                                                                                                                                                                   .0073
.0073
.0073
.0063
.0063
.0017
.0017
                                                                                                                   .000
                                                                                                                                                                                                                                                                            9000
                                                                                                                                                                                                                                                                                                   .0007
JAN 79
                    21.27100
21.27100
21.271100
21.271100
21.271100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
21.2711100
```

At 31°51'N, 103°58'W. Visibility is good, but Ac undercast obscures ground. few jatches of blue sky through Cs above.

Between cloud layers. Probably very few particle counts now.

Will pass through a piece of Cs base soon.

Complete undercast below

At 31949'N, 103038'W. Wind is 2430/138 kt. Very dark cloud ahead.

Visibility has improved. Very near base of Cs overcast

At 31048 N, 103029 W.

Momentarily between layers. Nearing dark cloud ahead.

Can't see ground through undercast.

Visibility approximately I mi, but nothing to gauge against

Milky white in all directions.

Still very foggy, only a hint of blue sky above.

Beginning a left turn at $31^{9}49$ N, $103^{9}77$ W. Wind $245^{9}/142$ kt

Still in heavy Cs. Visibility difficult to gauge

Visibility very low. No breaks of blue above.

Wind 24! 2134 kt, heading 2100, 48 1400 kt.

Aftroximately in middle of the layer. The see sun shining dimly above. Nothing to see for a picture.

1

 STANT
 AND TOTAL STANT
 15 SECIMB AVERAGE

 1143100
 KH
 C AVAS 3
 LOLD
 H M
 LARX
 LARX

Still dense Cs, no breaks. No accumulation of particles on snow stick.

Heading 200⁰, TAS 235 kt, if C 15, j 1²⁵ c16, wees 4⁴⁵ l³² kt.

At 31045'N, 16308'W, GS 86 kt. Climbing.

Still heavy Cs. No breaks.

Heading 251°, GS 105 kt, at 31°45'N, 103°12'W.

Still dense cloud, no texture.

Interior of Cs slightly brighter now. At $31^\circ48^\circ N$, $103^\circ17^\circ W$. Cloud tops about 2-3000 ft above aircraft.

Can see texture of Ac below. Turning to left.

Visibility good to north, Can see Ac below, Cs above. Approaching more dense cloud.

Sun dimly visible. No texture to foundy cloud.

At 31°37'N, 103°00'W. Heading 165°. Sun fairly tright, but aircraft is not yet rear Cs top. No accumuly son on snow statk.

Breaking out a little between Ac below and higher (s. Visibil.ty about 40 mi. A little blue sky above, but 8/10 cloud coverage. Beginning a turn to go back into heavy cloud.

No texture in heavy cloud

χ. . 363 At 31 39'N, 103 02'W. Wind is 238"/137 kt, GS

Back into dense Cs. like heavy fog. No breaks above.

Must begin a slight descent to maintain IAS of 150 kt.

Undercast below. A little blue Now between cloud layers. Un About 1000 ft below Cs base. At 31°54'N, 102°50'W. sky visible to north.

Still between layers,

In heavier Cs. Jan see texture of Ac undercast below. Aircraft is in base of Cs. Blue sky dimly visible above.

Have broken out of its again

										At 31°59'N, 103°09'W, Wind is 245°/136 kt. Near base of Cs. Should be detting							Only a little Ac below aircraft to the north. Ground visible. Horizontal	visibility about 1 mi. in hazy Cs. Reentering heavier Cs. Can see ice particles	•				Near base of Cs, but it's tenuous and hard to judge. Slant visibility downward	about 10 mi.			Only a few breaks in Cs above.								Should be exiting all Cs. Much blue sky above.	c	At 32 16', 103 22'. Wind 245 /140 kt. Beginning descent.
	<u>u.</u>		0.00	-82	۲.	۲.	۲۲.	1.4	₹.	.46	.57	.63	.84	0.0	59	49	5	.53	. 42	.33	.40	30	62.	4.	. 42	.43	.39	. 42	.45	67.	57.	.39	1.07	0.00	0.00	0.0	0.00
	LNAX	5	25	230	3.	311	311	437	7.06	437	206	437	311	53	437	437	437	706	101	101	1316	1927	101	706	706	204	706	706	706	706	206	437	169	27	0	0	0
ĮŲ.	Ŧ	#/#+#3	0	984	9404	709	266	-	1716	2845	2223	718	336	•	677	2286	4881	9575	23073	21807	43963	63770	17917	5110	110598	67651	124795	121908	32331	406	836	23	866	0	•	0	0
SECOND AVERAGE	90	5	0	78	8	116	1.5	242	76	130	125	117	108	c	132	130	120	124	127	173	149	160	122	89	70	29	۶,	76	82	8	79	67	62	0	۰	0	•
SECOND	Inc	2 CLD	0	001	100	100	100	0	95	62	72	* 6	100	0	86	8	88	74	49	34	94	ç	29	93	6	45	84	8	9	23	79	62	<u>0</u>	0	0	0	0
	INC-CP	6/8443	0.000.0	.0001	.0020	.0002	.0003	0000.	.0002	.000	.0012	.0003	.0002	0.0000	.0002	.0007	. 4015	.0042	.0084	.0119	.0271	.0341	.0051	.0055	.0121	.0086	.0183	.0147	.0049	.000	.000	0000	.000	0000.0	0.0000	0.0000	0000
62.	0S-0M1	5/8*43	.0001	0000.	♦000.	1000.	1000.	0000.	1000.	.0002	.0003	0000.	0000	0000.	0000	1000.	4000.	.0010	.0019	.0025	.0049	.0063	.0013	.0018	.0037	.0024	.0053	.0047	.0013	.000	0000.	0000.	0000	.0000	0000.0	0000.0	0000-0
28 18	TEMP INC-SC	ن ن	-33.5	-33.7	-33.6	-33.6	-33.7	-33.9	-33.8	-33.7	-33.7	-33.5	-33.4	-33.4	-33.7	-33.8	80	-33.5	-33.7	-33.8	-33.8	-33.8	-33.8	-33.7	-33.7	-33.9	-34.2	-34.3	-34.4	-34.5	-34.5	-34.3	-34.0	-34.3	-34.3	-34.3 (-34.2
																									9.6										9.6		
	START	11NE	22:11:00	22:11:15	22:11:30	22:11:45	22:12:00	22:12:15	22:12:30	22:12:45	22:13:00	22:13:15	22:13:30	22:13:45	22:14:00	22:14:15	22:14:30	22:14:45	22:15:00	22:15:15	22:15:30	22115:45	22:16:00	22:14:15	22:16:30	22:16:45	22117100	22:17:15	22:17:30	22:17:45	22:18:00	22:18:15	22:18:30	22:18:45	22:19:00	22:19:15	22:19:30

Appendix B

29 January 1979 Data Tabulations

Tabulations follow the format described in Appendix A.

M/M/mes 728/738 356/204 356/204 29/206/129 1111/3/201 29/206/129 29/206/129 29/206/129 29/206/129 20/206/129 20/206/129 118/206 20/206/129 118/206 20/206/129 118/206 20/206/129 SECOND ž ģ Ŧ -47.5 47.5 16% -47.5 -47.7

Heading 1980, which 140° of Mr. To be top 30, but aim is visible above dimly.

In top of Cs. Most cloud is below. Blue-sky above through thin cirritorm filaments near aircialt sititude. In White, very hazy, beavy Co. Twerpast above, but sun is fairly bright above.

Very small particles on snow stick. Heading 165° at 28°28'N, 104°26'W.

Os has thinned here in the form. Mosh blow sky through this filaments. Halo aroung smoot

Most cloud is below but some thin load extends 1-1,000 ft above the aircraft being the sky in ve.

At 18 3 17 m, 191 9 2195. Wind the PP Kt, bending 17 3 . Much bine sky above: Wishy curron filaments passed by:

Mostly blue sky above.

Buck to beaution to for brief time or tiple the cashe bundred feet above this time to the box of the box of an execution of the box of the box

At 30 14, 1 1 , 12, William 11.

Can see ground below tor first time. A big cole in the first lower, like obtailerve, though in all contracts, so set

START	1	TEMP	Tuc-SC	- CP				Ž	=	
1 W	₹ 5	v	B/H**3	6/H**3	Z CLD	5	N/H**3	\$		
8:59:00	7.7	-47.4	. 1962	. 1112	:	33	5839	82	=	
8:59:15	7.7	-47.3	į	. 6665	=	‡	12129	169	.87	Ground has disappeared in the undercast
8:59:30	9.6	-47.0	. 6663		:	*	15363	- 48	8.	
8:59:45	7.6	-46.9		. 9824	=	\$	22462	189	. 82	TOW 19 COOK BY CHARGE CO. C.
9:00:00	9.	# :		513			9407	607	? ?	At 3/ 53'N, 104 29 N, 23'000 1
7180113	::	B :				ç	-	6	3 3	
7:00:00	::		744			? *	200		3 8	
4100	::			2000		? :	100	0 0	9 5	
10:0:0:0	:;			Ì		2 9		6 0	6 6	
41011	:					2 :	1000	6	9 6	
1016	: ;				•	•	*	6	6	
9:81:45					•	•	•	Ξ ;		9
9:02:00		-43.9	-		-	•	•	2	6.0	Can see down to ground again.
9:02:15	7.7	5.5	-		-	•	•	27	9.00	
9:02:30	7.7	-45.2	. 665	9.000	•	•	•			
9:02:45	7.7	-45.8	1.000	1 . 1111	•	•	•	•	•	
9:63:86	7.7	-44.5		:	-	-	•	-	9.0	
9:63:15	7.7	-43.9	:	:	•	•	-	<u>6</u>	9.99	
9:83:38	7.7	-43.7	111		•	•	-	16	9.0	
9163:45	7.7	-44.3	. 101		•	•	-	12	9.9	
9:04:00	7.7	-44.5	. 6866		-	•	•	87	6.69	
9:84:15	7.7	+	=		•	•	•	Φ.	9.6	
9:64:38	7.7	-44.3	:		•	•	•	5	1.1	
9:04:43	7.7	-44.9		1.935	•	-	•	10	9.9	
9:65:68	7.7	-45.0			•	-	•	ĸ	:	
9:45:15	7.7	-44.6			-	•	-	12	9.0	Flying very near top of cirriform layer
9:85:38		-44.3			-	-	-	7.7	96.9	above,
9:05:45	7.7	-43.8			•	-	-	23	9.0	•
9:46:90	1.7	-43.4	=		•	•	•	16	91.0	
9:06:15	7.7	-43.4		:	•	•	•	6	0.00	
9:06:30	7.7	-43.2	•	:	•	•	- 5	9	9	
9:66:45	7.7	-43.2	:	:	•	•	•	_	90.0	
9:05:00	7.7	-42.9	•	:	•	•	-	23	6.	
9:07:15	7.7	-42.3	•	9.000	-	•	-	27	9.0	
9:67:30	7.7	-42.2		9.000	-	•	-	27		
9187:45	7.7	-42.5	:	0.000	-	•	-	=	0.0	
9:88:6	7.7	-42.7		1.11	•	•	•	52	:	
9188115	7.7	-42.4	:	6.000	•	•	•	22	9.0	
9:68:38	7.7	-42.3	•	6.000	•	•	•	23	6.6	
9:08:45	7.7	-42.3	=	ij	:	33	298	47		
9:68:6	7.7	-42.3	•	1.1111	•	•	•	23	:	
9:09:15	7.7	-42.4	=	1.616	•	•	•	23	6.6	
9:66:36	7.7	-42.3	-	9.000	•	•	•	23	=	
9:69:45	7.7	÷	=	1.00	•	•	-	22	9.6	
9:16:06	7.7	-42.4		1.039	-	•	•	27		
9:10:15	7.7	-42.6	Ē	:	•	•	•	27		
9:16:30	7.7	-42.8	. 1112	:::	•	•	•	22	:	
9:16:45	7.7	- F3.			-	•	-	27	:	
9:11:6	7.7	-42.8	=		•	•	•	27		
9:11:15	7.7	-42.7	Ē		-	•	•	23	9.6	
9:11:36	7.7	-42.9	. 662	::	•	•	-	27	:	
9:11:45	7.7	-42.9	. 9992		•	•	•	27		
	8.7	-43.0			•	•	•	23	:	
	. B	-42.9	į		•	•	•	23	:	
	P	-43.1	. 1182		•	•	•	23	:	
19:12:45	8.	-43.0	.113	:	•	•	•	22	9.	

ing very near top of cirriform layer. Heavy Cs below, bright blue sky.

| The control of the

Skimming cloud tops through thin cirriform cloud.

Beginning gradual descent to sample more cloud tops

Heading 172 $^{\rm o}$, wind 218 $^{\rm o}/44$ kt. Much blue sky above. At level of cloud tops.

Blue sky above. Seem to be in cierr air, though Ci extends in all directions.

Blue sky above. Leveling off of this altitude. Some cumuliform clouds in this area.

round dimly visible. Most clouds seem to be cirrogumulus (GC) with relatively flat topic.

had skirming tops of Co. Will do through some productairees.

												:											•																								
					7											A* 0 1 (55), 1 .		•																				*114 . a. 152 to.									
:	<u>.</u>	8₹.	٠ څ	2 4		1.2.1		98.	κ;	Ξ,	Ç9.		87.1				.08	6 8.		60.00	90.0	9.00		96.		20	6.69	9.60	5 .6		1.33	.56	.43	5.	, e.	86.			9.0	9.4		9.00	.33	9.00		9.0	9.00 9.00 1.73
:		437	796	•		8	9-	200	239	= :	è.	6	•	• •	•	148	230	250	40	en e	~ •	=	189	186	10.	62.7	5	FD.	PO 1	o r	189	437	982	437		2233	437	0	• •	•ი №	3 K	ο.	786	•		12	437
	M/H003	48623	189452	4744	• •	2642	149818	234497	85531	246161	417971	6 /0464	• •	•	•	1318	81343	101244	23454	• •	7	9	6698	8349	45936	100	•	-	•	P 4	38295	31329	72695	44321	585745 6	335823	4994	•	•		• •	•	15418	- '			6196
AVERAGE	8 5	ň	S	•	-	33	*	4	5	9 (3	ā ?	9	•	•	7	36	32	36	•	•	•	35	33	;	7 7	•	•	•	•	Ħ	₩	\$2	6 1	•	*	25	•	•		•	•	22	•	•	- ;	22.5
SECOND	2 E	6	4	¢ •		=	:	:	:	:	<u> </u>	£ ;	<u> </u>	• •	•	:	101	:	=		• •			9	8 :	4	-	•	•	• •	•	6	95	6	•		86	•	•	• •		•	68	•	•	• ;	* \$ =
	1MC-CP 6/Mee3 2			/			. 115									į	. 663)	. 8647					i	1881	. 8636		. 900	1.1111	6.00			916		6055		. 386	. 9995	0.000	0.660				. 6618		4444		
PC MAL	18C-SC 6/#ee3	. 0042	. 1092	. 98 36		į	.0028	. 886	. 0022	. 0023						3		.9121	B .			•		. 6637	. 9973		:	:	•		. 6657	. 6627	.0023	.0022	5678	976	. 0626	9.996	9.00			•	. 8887		444		7
W 62	1689		-37.5		2,75							٠,٠		26.8		-36.6		-37.8	-37.3	-35.6	7.85	7 7 7	-36.9	-36.4	-36.2	7.05.	-35.5	-34.9	-35.	2.4.5	9.50	-36.5	-34.9	-34.4	111.0	-35.6	-34.2	-34,8	-33.7		100	-32.4	-32.7	-32.9		4.75-	-32.9 4.55-
	¥ ;	· •		~ .		. 7	4.2	6 .2	6.2	-			<u>.</u>	:	,	6.2	6.2	~·	- -	•	•			6.1	÷.		. e.	5.8	e (5.8	ه. ه. د		. 6	9.	6.0	e .			4.	5.4		•		
	57 AR 7	27:46	19:27:15	15/139	2017	9128115	128130	9128145	915516	19:29:15	129130	4179145	101011	713617	0.14.45	9:31:66	9:31:15	9:31:30	9131145	9132100	9132113	0.12.13	9133166	9133113	9133138	7133143	9134115	9:34:38	9134145	1133100	0.13.13	9:35:45	9136198	9:36:15	V:36:38	9:37:66	9137115	9:37:39	9137:45	9818616	0.10.10	9:38:45	9:39:00	9:39:15	AL - OF - 1	A: 34: 4	9:39:45

our of travity of the confidence to the team to a solid undercast.

the second of the second of these in

Fig. 100 to be Southed off the currestratus (CS), of the transit of through as many of these

			^ 6 ₹	29 JAN 79	5		D AVERAGE				
START	-	F.	7E.P	38-381	14C-CP	INC		*	LAAX	<u>:</u>	
1116		¥	ں	6/8443	6/8003		5	N/Hee3	5		
9:41:00		5.4	-33.1	3	. 1112	85	8	2676	786	.28	Mary expretusioned) particle of the transfer at the
19141115		5.4	-32.4		9.110	•	•	-	•	9.0	
19:41:38	_	5.4	-32.4	1.111	=	=	23	•	78		
19:41:45		5.4	-32.1		=	:	23	•	26	9.9	
19:42:98	_	5.4	-32.4	1.11	•	=	23	•	56		the significant the specific section is a second of the property were
19:42:15		5.3	-32.4		=	=	22	949	4		they were in Colorado Failter.
19:42:30		5.3	-32.0			:	Ŧ	1747	198	_	
19:42:45		5.3	-32.0	. 0002	****	=	4	6326	230		
19143190		5.3	32.0	. 6613	. 6636	=	62	44886	31		
19:43115		5.3	-32.	. 9915	. 6633	-	62	43825	311	.58	
19143:38		5.3	-31.9	•	. 9 4 6		78	35979	437	.58	Continue Mydica to and our of which followed a restrictional teas.
19:43:45		5.2	-31.3	100	. 6639	6	73	37674	437	.53	
19:44:00		5.2	-31.3	. 6663	. 669	:	72	5783	311	89.	
9:44:15		5.2	-31.1	8969	.0025		77	22522	437	.55	
19:44:38		5.1	-30.3	. 6612	7	=	77		311	8.	
19:44:45		5.1	-30.2	. 6615	.678		198		437		
924518		5.1	-30.4	. 6662	. 1112		45		169		
19:45:15		5.1	-30.3	B16.	. 6643		57		311		
19:45:38		5.2	-30.7				28	15669	311		
04 E 6		5.2	-36.8	Ē.	=		38		128		At 35 32 W, 165 1. 18 18 18 18 18 18 18 18 18 18 18 18 18
19:46:00		5.2	-31.	. 0028	. 6639	=	7		3		
\$119+161		5.3	-31.6	. 6625	1	_	4		250		
19:46	9:46:30	5.3	-31.9	. 9837	. 689	_	53	_	311		
.9:45		5.3	.31.8	. 6648	.6113	_	25	_	311	. 73	
19:47:00	:	5.3	-31.8	. 9638	. 6686	=	53	_	311		
19:47:15	513	5.3	-31.6	. 6633	. 6045	=	‡	_	289		
19:47	9:47:38	5.2	-31.3	. 6836	. 1147	=	46	-	269		
19147	9:47:45	5.2	-31.4	. 6040	. 9125	=	52	181325	31	. 69	Mitthe deray at 1 to test the this cited the apprent to a and
19:48:66	1166	5.5	-31.0	. 9836	.0103	66	5	_	437	99.	
19:48:15	3:15	5.2	-31.3	. 0028	.6176	:	55	_	250	.75	
19:48:38	1:30	5.2	-31.4	. 4428	. 116	:	72	-	311	.65	
19:48:45	3:45	5.2	-31.2	. 4617	. 6652	:	₹		311	99.	
19:49:00	::	5.2	-30.8	. 6669	.6612	=	48	•	230	.73	
19:49:15	3:15	5.2	-31.0	8100	. 6861	6	79		437	.5	
19:49:38	3.3	5.2	-36.4	.4822	. 9995	6	80	-	437	.39	

and the routed wer form than

The service of the first terms.

from the this thed the arrest is in and the blue

Appendix C

2 February 1979 Data Tabulations

Tabulations follow the format described in Appendix A.

																											-																						
			•																								•																						
																											:			•								- :											
																														:							į .												
			-,															: : :													-																		
			-: -						•																							.: 1					1	-									:		
		÷.	10.00						3 m									3 · 4 · 5 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6										:				; ;						٠, ادارة									-		
		Ϊ.							શિક્ષ્યાની શુ									Ť.									7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					a de la company					ale, last	S. 14 504 C											
		Andrew See	() 4						1,1100 11									<u>.</u>								-	f .:			Seading 2777.		. AF91						:											
:				3 3	.ş.	.63	. 56	. 6.3	, . , .	- 07	9. Ç	. 6	۶.	99.	.63	.63	¥0.	90 0	70.	۶.۵		69	. 65	₩.	19.							000	. 63	89.	. 50	.55	٠ د د	- -	.		· 5.	٠,	٤٧.	ē	. i.	75	S.		
X W	ň	437	411	Ģ	311	311	÷	437	\$ \$ C	21.5	: : :	. <u></u>	437	437	437	4 37	137			2 6.0	2 =	=	=	189	7 7	230		311	311	311	43,7		31.5	Ê	900	(i)	<u>.</u>	300	206	398	30 6	437	.√9 4		31.	4.57	-	. 7	-
	N/8403	35385	52414	39564	46072	34446	32615	45554	C0814	2007	150812 4R004	43706	45.731	35629	25404																											19165				•		C P1/2 C C	
AUERAG																																																	
SECOND	, CL3	00	000		001	100	òò	6	÷ 5	2 5	200	169	66	66	66	66	66	000	2 6	2 2	601	000	100	100	100	00.	200	100	100	100	66	000	001	9.8	82	80	> a		; . .	75	\$	6	, 6	200	36.	66	6 6	Č.	
15 14C-CP	Entre 3	0038	. 0042	.0052	0044	0037	6400	0025	E000.	7 000	0037	0037	.0039	0038	.0032	.0029	0029	0700	2720	200	0015	9700	.0021	.0015	.0020	. 0030	9000	1032	.332	.0024	2000	0000	. 0041	.0026	.0025	100	9200.	36.75	. 1023	3018	7047	2.00.	160	8407	990			000	
1 35-36 19 19 19 19 19 19 19 19 19 19 19 19 19	6/Me43	9100.	9000	9.00	.003	.0013	0050	4 00 0	8700.	3500		. 00.	4100.	.0013	0100.	0000	2100.	7000.	2000	4000	0000	1106.	9000	7000.	0100	500.	\$700.	. 0012	6000	4000.	. 2009	0.00	6000	9000.	.0005	9000	4000.	9000	.0007	.0005	1160.	\$100.	00.00	000	.6922	111	00.00	• 500.	
02 50	u	-36./	36.5	18.	-38.5	. 38.6	38.5	90 0	7.05	. 00	6 6 6 F	9.85	38.9	-38.9	38.9	-39.1	5.6	29.5	10.4	20.5	7.05	39.6	.39	-39.7	.39.7	29.9	7 0	-10	-40.2	-40.2	3	2 2	-40.4	8.04-	-40.9	- ·	7	9	-42.6	-42.3	ं	7.5	0 J	3.5	43.1	.43.0	<u>.</u>	,	
ã	<u>\$</u>	<u>.</u>	 o- a		٠.			- ·	 > 0			-	٠. ٠	÷.	•	6	 			. 0		6	6.5	٠. ن	6.0	7.0		4.2	2.6	4.2	9,2	, ,	+ + + + + + + + + + + + + + + + + + +	9.3	9.3	m .	۳ م ب را	• •	6	5.5	4.5	on e			. 0	÷.	٠ . 	•	•
51487	11.KE	20:55:00	20:55:15	20155:45	20:54:00	20:56:15	20:55:30	20:56:45	2013/100	2012/110	20:57:45	20.58:36	20:59:15	20:58:30	20:58:45	20:29:00	20:59:15	20:24:30	21.00.00	21.00.15	21:00:30	21:00:45	21:01:00	21:01:15	21:01:30	21:01:45	21:02:12	41:02:30	21:02:45	21:03:00	23:03:15	21:01:45	21104190	21:04:15	21:04:30	21:04:45	21.02:02	21.05.36	21:05:45	21:06:00	21:00:15	21:06:30	21:00:12	21107:15	21:07:30	21:07:45	00:80:12	C:: 80:17	

															-															-,.											
		•													į.				4																						
		-					Ē																																		
															٠.				,s											•											
															.7																									٠	
																٠,																									
															:			-	:																						
		- 1																																						٠	
																		;																							
							٠.																																		
															٠.,			:	:																						
																1					-									٠.											
		•	•												: _						·																				
		1	į				-								T.			-	-		-									Ė							:				
		-					٠.								٠			:	_																					•	
															Ė,	_														: _											
																															-										
		:					٠.	:			•-				i,															-	-									;	
			,												- 1	•			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-										-										
		•	į												-			-			•										-										
		-	÷												Ξ.						- 7									• -							• .				
		41.45						.:			4				1	-		-			1									•							•				
		- 2	inter!					٠.			-				- 3	ī		3	٠											٠.							•			-	
		Ξ	3				+'-				5				2 5	=		-	: :		HEAV									: :											
		7	·.				ر اور				Series Six have				In the common of			-			Ξ																				
		5	ž				÷.								= 7	£		c 3	s ko		~									: :	-						. :			-	
			_												_																										
3	* 0	65.	85.	89.	ž ž					68.	.05	5.8	8 4	69.	8.	29.	99:	5.49	69.	4 .7	89.	10.	; ₅ ;	8.	98.	, e	.82	7 60	<u>-8</u>		6.	.:	àá	7	6.	6	p 7	5.5	£	9 G	5
ŭ.							. 95	. 8 .	98										-						98.														ŝ.	9 F.	c
HAX FF							. 95	. 8 .	98																250 .86																6
LMAX FF	311 .04						. 95	. 8 .	98												250 . 68																				
	311	3.5	311	31.	230	311 .70	189 .95	189 .84	98. 981	169	169	169	311	230	189	250	Ξ.	: E	230	220	220	250	250	250	250	250	250	330	500	209	4.	186	129	8	1 48	80:	1 0 7 4	60	80.1	8 6	'n
	311	3.5	311	31.	230	311 .70	189 .95	189 .84	98. 981	169	169	169	311	230	189	250	Ξ.	: E	230	220	220	250	250	250	250	250	250	330	500	209	4.	186	129	8	1 48	80:	1 0 7 4	60	80.1	8 6	
NT V8+63	311	3.5	311	31.	230	311 .70	189 .95	189 .84	98. 981	169	169	169	311	230	189	250	Ξ.	: E	230	220	220	250	250	250	250	250	250	330	500	209	4.	186	129	8	1 48	80:	1 0 7 4	60		8 6	'n
NT V8+63	144858 311	96668 311	116371 311	130857 311	230	311 .70	189 .95	189 .84	98. 981	169	169	169	3739 311	3163 230	189	250	1 29892 311	48448 311	16880 230	220	220	250	250	40466 250	30430 250	250	250	330	500	209	4.	186	129	8	1 48	80:	1 0 7 4	60	80.1	8 6	'n
AVERAGE DO NT IIN N/M+#3	311	96668 311	311	130857 311	230	311 .70	189 .95	189 .84	98. 981	169	169	169	311	3163 230	189	250	1 29892 311	: E	230	220	220	250	250	40466 250	250	250	250	330	500	209	4.	186	129	8	1 48	80:	1 0 7 4	60	80.1	8 6	'n
DO NT	50 144858 311	56 9668 311	57 116371 311 54 106769 437	47 130857 311	42 77347 230	46 88330 311 .70	38 97,716 189 ,95	48 69152 189 .84 83 81413 730 70	45 98741 189 84	46 76121 169	36 (38202 169	39 154226 169	75 3739 311	61 3163 230	59 5082 189	63 6853 250	84 29892 311	73 12738 311	68 16880 230	47 44407 250	54 55348 250	68 15193 250	63 21188 250	58 40466 250	61 30430 250	60 38991 250	56 40331 250	57 36744 230	56 29178 269	55 23279 209	51 9318 148	55 16.703 189	52 9585 189	48 7241 128	38 8363 148	42 5093 128	97 989 175 9889 85	50 5459 169	50 1350 128	42 615 108	29, 67
DO NT	50 144858 311	56 9668 311	57 116371 311 54 106769 437	47 130857 311	42 77347 230	46 88330 311 .70	38 97,716 189 ,95	189 .84	45 98741 189 84	46 76121 169	36 (38202 169	39 154226 169	3739 311	61 3163 230	189	63 6853 250	84 29892 311	73 12738 311	68 16880 230	47 44407 250	54 55348 250	68 15193 250	63 21188 250	58 40466 250	61 30430 250	60 38991 250	56 40331 250	57 36744 230	56 29178 269	55 23279 209	51 9318 148	55 16.703 189	52 9585 189	48 7241 128	38 8363 148	42 5093 128	97 989 175 9889 85	50 5459 169	80.1	42 615 108	'n
SECOND AVERAGE IUC DO NT X CLO IM N/M**3	100 50 144858 311	100 56 9668 311	100 57 116371 311 99 54 106769 437	100 47 130857 311	100 42 77347 230 100 44 A3888 189	100 46 88330 311 .70	100 38 97716 189 ,95	100 48 69152 189 .84	87. 057 5445 55 001 88. 98741 188 38.	100 46 76121 169	100 36 (38202 169	100 39 154226 169	100 25 3239 311	100 61 3163 230	100 59 5082 189	100 63 6853 250	100 84 29892 311	100 81 48448 311 100 73 12738 311	100 68 16880 230	100 64 15457 250	100 54 55348 250	100 68 15193 250	100 63 21188 250	100 58 40466 250	100 61 30430 250	100 60 38991 250	100 56 40331 250	100 57 36744 230	100 56 29178 269	100 55 23279 209 100 54 15828 189	100 51 9318 148	100 55 16.703 189	100 52 9585 189	100 48 7241 128	100 38 8363 148	100 42 5593 108	091 0919 45 001	100 50 5459 169	100 50 1150 128	100 42 515 108	29, 46
SECOND AVERAGE IUC DO NT X CLO IM N/M**3	100 50 144858 311	100 56 9668 311	100 57 116371 311 99 54 106769 437	100 47 130857 311	100 42 77347 230 100 44 A3888 189	100 46 88330 311 .70	100 38 97716 189 ,95	100 48 69152 189 .84	87. 057 5445 55 001 88. 98741 188 38.	100 46 76121 169	100 36 (38202 169	100 39 154226 169	100 25 3239 311	100 61 3163 230	100 59 5082 189	100 63 6853 250	100 84 29892 311	100 81 48448 311 100 73 12738 311	100 68 16880 230	100 64 15457 250	100 54 55348 250	100 68 15193 250	100 63 21188 250	100 58 40466 250	100 61 30430 250	100 60 38991 250	100 56 40331 250	100 57 36744 230	100 56 29178 269	100 55 23279 209 100 54 15828 189	100 51 9318 148	100 55 16.703 189	100 52 9585 189	100 48 7241 128	100 38 8363 148	100 42 5593 108	091 0919 45 001	100 50 5459 169	100 50 1150 128	100 42 515 108	29, 46
SECOND AVERAGE IUC DO NT X CLO IM N/M**3	100 50 144858 311	100 56 9668 311	100 57 116371 311 99 54 106769 437	100 47 130857 311	100 42 77347 230 100 44 A3888 189	100 46 88330 311 .70	100 38 97716 189 ,95	100 48 69152 189 .84	87. 057 5445 55 001 88. 98741 188 38.	100 46 76121 169	100 36 (38202 169	100 39 154226 169	100 25 3239 311	100 61 3163 230	100 59 5082 189	100 63 6853 250	100 84 29892 311	100 81 48448 311 100 73 12738 311	100 68 16880 230	100 64 15457 250	54 55348 250	100 68 15193 250	100 63 21188 250	100 58 40466 250	100 61 30430 250	100 60 38991 250	100 56 40331 250	100 57 36744 230	100 56 29178 269	100 55 23279 209 100 54 15828 189	100 51 9318 148	100 55 16.703 189	100 52 9585 189	100 48 7241 128	100 38 8363 148	100 42 5593 108	091 0919 45 001	100 50 5459 169	50 1350 128	100 42 515 108	29, 67
15 SECOND AVERAGE IUC-CP IUC DO NT G/M**3 Z CIG IM A/M**3	.0082 100 50 144858 311	.0063 100 56 9668 311	.0068 99 54 106369 437	.0066 100 47 130857 311	.0033 100 42 77347 230 .0038 100 44 A3888 189	.0042 100 46 88330 311 .70	.0035 100 38 97716 189 .95	0034 100 48 69152 189 .84	. 0043 100 45 98741 185 38.	.0037 100 46 76121 169	.0050 100 36 138202 169	.0061 100 39 154226 169	.0004 100 25 3239 311	.0003 100 61 3163 230	0004 100 59 5082 189	.0007 100 63 6853 250	.0050 100 84 29892 311	.0082 100 81 48448 311 .0015 100 23 12238 311	.0016 100 68 16880 230	0014 100 64 15457 250	.0038 100 54 55348 250	0017 100 68 15193 250	.0022 100 63 2118B 250	.0037 100 58 40466 250	. 0030 100 61 30430 250	001 1868 09 001 9800.	. 0033 100 56 40331 250	. 0028 100 57 36744 230	.0019 100 56 29178 209	. 0010 100 55 23279 209	.0006 100 51 9318 148	.0009 100 55 16703 189	2000 40 001 5000. 0000 100 01 0585 189	2004 100 48 7241 128	.0004 100 38 8363 148	000 100 th 000 1000 1000	091 0919 FT 001 F000.	0003 100 50 5459 169	.0001 100 50 1150 128	. 100 25 00 1000; 0000 45 001 000;	1066 556 49 162 85
15 SECOND AVERAGE IUC-CP IUC DO NT G/M**3 Z CIG IM A/M**3	.0082 100 50 144858 311	.0063 100 56 9668 311	.0068 99 54 106369 437	.0066 100 47 130857 311	.0033 100 42 77347 230 .0038 100 44 A3888 189	.0042 100 46 88330 311 .70	.0035 100 38 97716 189 .95	0034 100 48 69152 189 .84	. 0043 100 45 98741 185 38.	.0037 100 46 76121 169	.0050 100 36 138202 169	.0061 100 39 154226 169	.0004 100 25 3239 311	.0003 100 61 3163 230	0004 100 59 5082 189	.0007 100 63 6853 250	.0050 100 84 29892 311	.0082 100 81 48448 311 .0015 100 23 12238 311	.0016 100 68 16880 230	0014 100 64 15457 250	.0038 100 54 55348 250	0017 100 68 15193 250	.0022 100 63 2118B 250	.0037 100 58 40466 250	. 0030 100 61 30430 250	001 1868 09 001 9800.	.0033 100 56 40331 250	. 0028 100 57 36744 230	.0019 100 56 29178 209	. 0010 100 55 23279 209	.0006 100 51 9318 148	.0009 100 55 16703 189	2000 40 001 5000. 0000 100 01 0585 189	2004 100 48 7241 128	.0004 100 38 8363 148	000 100 th 000 1000 1000	091 0919 FT 001 F000.	0003 100 50 5459 169	.0001 100 50 1150 128	. 100 25 00 1000; 0000 45 001 000;	1066 556 49 162 85
B 29 15 SECOND AVERAGE TUC-SC TUC-CP TUC DO NT G/M*** G/M*** X ELD HM N/#**3	.0044 .0082 100 50 144858 311	.0063 100 56 9668 311	.0068 99 54 106369 437	.0066 100 47 130857 311	.0033 100 42 77347 230 .0038 100 44 A3888 189	.0042 100 46 88330 311 .70	.0035 100 38 97716 189 .95	0034 100 48 69152 189 .84	. 0043 100 45 98741 185 38.	.0037 100 46 76121 169	.0050 100 36 138202 169	100 39 154226 169	.0004 100 25 3239 311	.0003 100 61 3163 230	0004 100 59 5082 189	.0007 100 63 6853 250	.0050 100 84 29892 311	.0082 100 81 48448 311 .0015 100 23 12238 311	.0016 100 68 16880 230	0014 100 64 15457 250	100 54 55348 250	0017 100 68 15193 250	.0022 100 63 2118B 250	.0037 100 58 40466 250	. 0030 100 61 30430 250	001 1868 09 001 9800.	.0033 100 56 40331 250	. 0028 100 57 36744 230	.0019 100 56 29178 209	. 0010 100 55 23279 209	.0006 100 51 9318 148	100 55 16.703 189	2000 40 001 5000.	2004 100 48 7241 128	.0004 100 38 8363 148	000 100 th 000 1000 1000	091 0919 45 001	0003 100 50 5459 169	100 50 1150 128	. 100 25 00 1000; 0000 45 001 000;	1066 556 49 162 85
B 29 15 SECOND AVERAGE TUC-SC TUC-CP TUC DO NT G/M*** G/M*** X ELD HM N/#**3	.0044 .0082 100 50 144858 311	.0024 .0063 100 56 9668 311	.0029 .0057 100 57 116371 311 .0033 .0066 99 54 106769 437	.0046 .0066 100 47 130857 311	.0020 .0033 100 42 77347 230	. 0021 . 0042 100 46 88330 311 . 70	.0035 100 38 97716 189 .95	.0016 .0034 100 48 69152 189 .84	30. 00.2 147.5 10. 00. 00. 00. 100. 00. 00. 00. 00. 00	.0019 .0037 100 46 76121 169	.0038 .0050 100 36 (38202 169	.0045 .0061 100 39 154226 169	. 0002 . 0004 100 . 25 3739 311	.0002 .0003 100 61 3163 230	0002 0004 100 59 5082 189	.0000 .0007 100 63 6853 250	.0009 .0050 100 84 29892 311	.0018 .0082 100 81 48448 311 .0001 .0015 100 73 12738 311	.0002 .0016 100 68 16880 230	0001 .0014 100 64 15457 250	.0010 .0038 100 54 55348 250	0000 .0017 100 68 15193 250	0.0000 .0022 100 63 21188 250	0.0000 .0037 100 58 40466 250	0000 .0030 100 61 30430 250	000 1988 09 001 9E00 0000.	0.0000 .0033 100 56 40331 250	0.000 0.000 100 57 3674 230	.0000 .0019 100 56 29178 209	0.0060 .0010 100 55 23279 209 0600 .0010 100 54 1580H 189	0.0000 .0006 100 51 9318 148	7 0.6000 .0009 100 55 16.703 189	000 7000 100 000 000 0000 0000 0000 000	7 ,0003 ,0004 100 48 7241 128	.0004 .0004 100 38 8363 148	801 8608 G# 000 8000 1000.	091 0919 45 001 4000 000000	0.0003 100 50 5459 169	0.0000 .0001 100 50 1150 128	801 1:01 20 001 1000: 555551 1	1066 556 49 162 85
B 29 15 SECOND AVERAGE TUC-SC TUC-CP TUC DO NT G/M*** G/M*** X ELD HM N/#**3	.0044 .0082 100 50 144858 311	.0024 .0063 100 56 9668 311	.0029 .0057 100 57 116371 311 .0033 .0066 99 54 106769 437	.0046 .0066 100 47 130857 311	.0020 .0033 100 42 77347 230	. 0021 . 0042 100 46 88330 311 . 70	.0035 100 38 97716 189 .95	.0016 .0034 100 48 69152 189 .84	30. 00.2 147.5 10. 00. 00. 00. 100. 00. 00. 00. 00. 00	.0019 .0037 100 46 76121 169	.0038 .0050 100 36 (38202 169	.0045 .0061 100 39 154226 169	. 0002 . 0004 100 . 25 3739 311	.0002 .0003 100 61 3163 230	0002 0004 100 59 5082 189	.0000 .0007 100 63 6853 250	.0009 .0050 100 84 29892 311	.0018 .0082 100 81 48448 311 .0001 .0015 100 73 12738 311	.0002 .0016 100 68 16880 230	0001 .0014 100 64 15457 250	.0010 .0038 100 54 55348 250	0000 .0017 100 68 15193 250	0.0000 .0022 100 63 21188 250	0.0000 .0037 100 58 40466 250	0000 .0030 100 61 30430 250	000 1988 09 001 9E00 0000.	0.0000 .0033 100 56 40331 250	0.000 0.000 100 57 3674 230	.0000 .0019 100 56 29178 209	0.0060 .0010 100 55 23279 209 0600 .0010 100 54 1580H 189	0.0000 .0006 100 51 9318 148	7 0.6000 .0009 100 55 16.703 189	000 7000 100 000 000 0000 0000 0000 000	7 ,0003 ,0004 100 48 7241 128	.0004 .0004 100 38 8363 148	801 8608 G# 000 8000 1000.	091 0919 45 001 4000 000000	0.0003 100 50 5459 169	0.0000 .0001 100 50 1150 128	801 1:01 20 001 1000: 555551 1	1006 50 49 '62 95
B 29 15 SECOND AVERAGE TUC-SC TUC-CP TUC DO NT G/M*** G/M*** X ELD HM N/#**3	. 0004 . 0082 100 50 144858 311	.0024 .0063 100 56 9668 311	.0068 99 54 106369 437	.0046 .0066 100 47 130857 311	.0020 .0033 100 42 77347 230	. 0021 . 0042 100 46 88330 311 . 70	.0035 100 38 97716 189 .95	0034 100 48 69152 189 .84	30. 00.2 147.5 10. 00. 00. 00. 100. 00. 00. 00. 00. 00	.0019 .0037 100 46 76121 169	.0038 .0050 100 36 (38202 169	.0045 .0061 100 39 154226 169	. 0002 . 0004 100 . 25 3739 311	.0003 100 61 3163 230	0002 0004 100 59 5082 189	.0007 100 63 6853 250	.0009 .0050 100 84 29892 311	.0018 .0082 100 81 48448 311 .0001 .0015 100 73 12738 311	.0002 .0016 100 68 16880 230	0001 .0014 100 64 15457 250	.0038 100 54 55348 250	0000 .0017 100 68 15193 250	0.0000 .0022 100 63 21188 250	0.0000 .0037 100 58 40466 250	. 0030 100 61 30430 250	000 1988 09 001 9E00 0000.	0.0000 .0033 100 56 40331 250	0.000 .0000 100 57 36744 230	.0000 .0019 100 56 29178 209	0.0060 .0010 100 55 23279 209 0600 .0010 100 54 1580H 189	0.0000 .0006 100 51 9318 148	7 0.6000 .0009 100 55 16.703 189	2000 40 001 5000.	7 ,0003 ,0004 100 48 7241 128	.0004 .0004 100 38 8363 148	801 8608 G# 000 8000 1000.	091 0919 45 001 4000 000000	0003 100 50 5459 169	0.0000 .0001 100 50 1150 128	801 1:01 20 001 1000: 555551 1	1006 50 40 '62 87
02 FEB 79 15 SECOND AVERAGE TEMF TUC-SC TUC-CP TUC DO NT C GAMBAS GAMBAS Z CLO HM MACABAS	-43.1 .0044 .0082 100 50 144858 311	-43.3 .0024 .0063 100 56 96668 311	-43.1 .0029 .0077 100 57 116371 311 -43.0 .0033 .0066 99 54 106769 437	-43.0 .0046 .0066 100 47 130857 311	-43.1 .0020 .0033 100 42 77347 230 -43.2 .0019 .0028 100 44 A3888 189	-43.1 .0021 .0042 100 46 88330 311 .70	-43.1 .0021 .0035 100 38 97716 189 .95	-43.1 .0016 .0034 100 48 69152 189 .84	-43.1 .0028 .0043 100 45 98741 189 .86	-43.1 .0019 .0037 100 46 76121 169	-42.9 .0038 .0050 100 36 (38202 169	-42.9 .0045 .0041 100 39 154226 169	-42.9 .0002 .0004 100 75 3739 311	-43.0 .0002 .0003 100 61 3163 230	-43.1 .0002 .0004 100 59 5082 189	-43.2 .0000 .0007 100 63 6853 250	-43.2 .0009 .0050 too 84 29892 311	-43.4 .0018 .0082 100 81 48448 311 -43.7 .0001 .0015 100 23 12238 311	-43.7 .0002 .0016 100 6B 16BB0 230	-43.7 .0001 .0014 100 64 15457 250 .	-43.8 .0010 .0038 100 54 55348 250	-44.0 .0000 .0017 100 68 15193 250	-44.1 0.0000 .0022 100 63 21188 250	-44.0 0.0000 .0037 100 58 40466 250	-43.7 .0000 .0030 100 61 30430 250	-42.8 .0000 .0036 100 60 38991 250	-42.7 0.0000 .0033 100 56 40331 250	052 67575 75 001 4200 0000 0.54- 43.4 0.0000 0528 100 57 3674 230	43.5 .0066 .0019 100 56 29178 269	43.6 0.0000 .0010 100 55 23279 209	0.0000 .0006 100 51 9318 148	43.7 0.6600 .0009 100 55 14.703 189	000 7000 100 000 000 0000 0000 0000 000	7 ,0003 ,0004 100 48 7241 128	.0004 .0004 100 38 8363 148	801 8608 G# 000 8000 1000.	091 0919 45 001 4000 000000	0.0003 100 50 5459 169	0.0000 .0001 100 50 1150 128	801 1:01 20 001 1000: 555551 1	1066 556 49 162 85
B 29 15 SECOND AVERAGE TUC-SC TUC-CP TUC DO NT G/M*** G/M*** X ELD HM N/#**3	-43.1 .0044 .0082 100 50 144858 311	-43.3 .0024 .0063 100 56 96668 311	-43.1 .0029 .0077 100 57 116371 311 -43.0 .0033 .0066 99 54 106769 437	-43.0 .0046 .0066 100 47 130857 311	-43.1 .0020 .0033 100 42 77347 230 -43.2 .0019 .0028 100 44 A3888 189	-43.1 .0021 .0042 100 46 88330 311 .70	-43.1 .0021 .0035 100 38 97716 189 .95	-43.1 .0016 .0034 100 48 69152 189 .84	-43.1 .0028 .0043 100 45 98741 189 .86	-43.1 .0019 .0037 100 46 76121 169	.0038 .0050 100 36 (38202 169	-42.9 .0045 .0041 100 39 154226 169	. 0002 . 0004 100 . 25 3739 311	-43.0 .0002 .0003 100 61 3163 230	0002 0004 100 59 5082 189	-43.2 .0000 .0007 100 63 6853 250	-43.2 .0009 .0050 too 84 29892 311	.0018 .0082 100 81 48448 311 .0001 .0015 100 73 12738 311	-43.7 .0002 .0016 100 6B 16BB0 230	0001 .0014 100 64 15457 250	-43.8 .0010 .0038 100 54 55348 250	0000 .0017 100 68 15193 250	-44.1 0.0000 .0022 100 63 21188 250	-44.0 0.0000 .0037 100 58 40466 250	0000 .0030 100 61 30430 250	-42.8 .0000 .0036 100 60 38991 250	-42.7 0.0000 .0033 100 56 40331 250	0.000 .0000 100 57 36744 230	43.5 .0066 .0019 100 56 29178 209	0.0060 .0010 100 55 23279 209 0600 .0010 100 54 1580H 189	0.0000 .0006 100 51 9318 148	7 0.6000 .0009 100 55 16.703 189	000 7000 100 000 000 0000 0000 0000 000	7 ,0003 ,0004 100 48 7241 128	.0004 .0004 100 38 8363 148	801 8608 G# 000 8000 1000.	091 0919 45 001 4000 000000	0.0003 100 50 5459 169	0.0000 .0001 100 50 1150 128	801 1:01 20 001 1000: 555551 1	1066 556 49 162 85
02 FEB 79 15 SECOND AVERAGE TEMF TUC-SC TUC-CP TUC DO NT C GAMBAS GAMBAS Z CLO HM MACABAS	2.5 -43.1 .0044 .0082 100 50 144858 311 543.0 0020 0027 100 50 144858 311	9.7 -43.3 .0024 .0063 100 56 9668 311	9.6 -43.1 .0029 .0027 100 57 116371 311 9.6 -43.0 .0033 .0066 99 54 106769 437	9.6 -43.0 .0046 .0066 100 47 130857 311	9.6 -43.1 .0020 .0033 100 42 77347 230 9.6 -43.7 .0019 .0028 100 &4 A3888 189	9.6 -43.1 .0021 .0042 100 46 88330 311 .70	9.6 -43.1 .0021 .0035 100 38 97716 189 .95	9.0 -43.1 .0016 .0034 100 48 69152 189 .84	9.6 -43.1 .0028 .0043 100 45 98741 189 .86	9.6 -43.1 .0019 .0037 100 46 76121 169	9.5 -42.9 .0038 .0050 100 36 138202 169	9.6 -42.9 .0045 .0061 100 39 154226 169	9.6 -42.9 .0002 .0004 100 25 3739 311	9.0 -43.0 .0002 .0003 100 61 3163 230	9.6 -43.1 .0002 .0004 100 59 5082 189	9.0 -43.2 .0000 .0007 100 63 6853 250	6.c -43.2 .0009 .0050 too 84 29892 311	9.6 -43.7 .00018 .0082 100 81 48448 311 9.6 -43.7 .0001 .0015 100 73 12738 311	9.6 -43.7 .0002 .0016 100 68 16880 230	9.6 -43.7 .0001 .0014 100 64 15457 250 . 9.6 -83.7 0008 0024 100 47 44402 250	9.6 -43.8 .0010 .0038 100 54 55348 250	9.6 -44.0 .0000 .0017 100 68 15193 250	9.6 -44.1 0.0000 .0022 100 63 21188 250	9.6 -44.0 0.0000 .0037 100 58 40466 250	9.6 -43.7 .0000 .0030 100 61 30430 250	9.6 -42.8 .0000 .0036 100 60 38991 250	9.0 -42.7 0.0000 .0033 100 56 40331 250	0.6 43.4 0.0000 .0028 100 57 36744 230	9.0 43.5 .0066 .0019 100 56 29178 209	9.5 43.6 0.0060 .0016 100 55 23279 209	F.c -45, 0,0000 ,0006 100 51 9318 148	6.5 43.7 0.6000 .0009 100 55 16.203 189	7.5 45.7 2000 2000 200 24 800.7 200 25 80 200 200 200 200 200 200 200 200 200	. 43,7 .0063 .0064 100 48 7241 128	3 0004 . 0004 100 38 8363 148	801 8600 09 000 0000 0000 000 000 0000 0000	241 (867 10 00) 1000, 0000, 818	0.0003 100 50 5459 169	0.0000 .0001 100 50 1150 128	801 1:01 20 001 1000: 555551 1	1066 556 49 162 85
02 FEB 79 15 SECOND AVERAGE HL TEMF TUC-SC TUC-CP TUC DO NT NM C G/MM-3 G/M-3 Z Z/G INM N/M-33	2.5 -43.1 .0044 .0082 100 50 144858 311 543.0 0020 0027 100 50 144858 311	9.7 -43.3 .0024 .0063 100 56 9668 311	9.6 -43.1 .0029 .0027 100 57 116371 311 9.6 -43.0 .0033 .0066 99 54 106769 437	9.6 -43.0 .0046 .0066 100 47 130857 311	9.6 -43.1 .0020 .0033 100 42 77347 230 9.6 -43.7 .0019 .0028 100 &4 A3888 189	9.6 -43.1 .0021 .0042 100 46 88330 311 .70	9.6 -43.1 .0021 .0035 100 38 97716 189 .95	9.0 -43.1 .0016 .0034 100 48 69152 189 .84	9.6 -43.1 .0028 .0043 100 45 98741 189 .86	9.6 -43.1 .0019 .0037 100 46 76121 169	9.5 -42.9 .0038 .0050 100 36 138202 169	9.6 -42.9 .0045 .0061 100 39 154226 169	9.6 -42.9 .0002 .0004 100 25 3739 311	9.0 -43.0 .0002 .0003 100 61 3163 230	9.6 -43.1 .0002 .0004 100 59 5082 189	9.0 -43.2 .0000 .0007 100 63 6853 250	6.c -43.2 .0009 .0050 too 84 29892 311	9.6 -43.7 .00018 .0082 100 81 48448 311 9.6 -43.7 .0001 .0015 100 73 12738 311	9.6 -43.7 .0002 .0016 100 68 16880 230	9.6 -43.7 .0001 .0014 100 64 15457 250 . 9.6 -83.7 0008 0024 100 47 44402 250	9.6 -43.8 .0010 .0038 100 54 55348 250	9.6 -44.0 .0000 .0017 100 68 15193 250	9.6 -44.1 0.0000 .0022 100 63 21188 250	9.6 -44.0 0.0000 .0037 100 58 40466 250	9.6 -43.7 .0000 .0030 100 61 30430 250	9.6 -42.8 .0000 .0036 100 60 38991 250	9.0 -42.7 0.0000 .0033 100 56 40331 250	0.6 43.4 0.0000 .0028 100 57 36744 230	9.0 43.5 .0066 .0019 100 56 29178 209	9.5 43.6 0.0060 .0016 100 55 23279 209	F.c -45, 0,0000 ,0006 100 51 9318 148	6.5 43.7 0.6000 .0009 100 55 16.203 189	7.5 45.7 .0004 .0004 .00 5.5 45.7 189	. 43,7 .0063 .0064 100 48 7241 128	3 0004 . 0004 100 38 8363 148	801 8600 09 000 0000 0000 000 000 0000 0000	241 (867 10 00) 1000, 0000, 818	0.0003 100 50 5459 169	0.0000 .0001 100 50 1150 128	801 1:01 20 001 1000: 555551 1	1066 556 49 162 85
02 FEB 79 15 SECOND AVERAGE HL TEMF TUC-SC TUC-CP TUC DO NT NM C G/MM-3 G/M-3 Z Z/G INM N/M-33	2.5 -43.1 .0044 .0082 100 50 144858 311 543.0 0020 0027 100 50 144858 311	9.7 -43.3 .0024 .0063 100 56 9668 311	9.6 -43.1 .0029 .0027 100 57 116371 311 9.6 -43.0 .0033 .0066 99 54 106769 437	9.6 -43.0 .0046 .0066 100 47 130857 311	9.6 -43.1 .0020 .0033 100 42 77347 230 9.6 -43.7 .0019 .0028 100 &4 A3888 189	9.6 -43.1 .0021 .0042 100 46 88330 311 .70	9.6 -43.1 .0021 .0035 100 38 97716 189 .95	9.0 -43.1 .0016 .0034 100 48 69152 189 .84	9.6 -43.1 .0028 .0043 100 45 98741 189 .86	9.6 -43.1 .0019 .0037 100 46 76121 169	9.5 -42.9 .0038 .0050 100 36 138202 169	9.6 -42.9 .0045 .0061 100 39 154226 169	9.6 -42.9 .0002 .0004 100 25 3739 311	9.0 -43.0 .0002 .0003 100 61 3163 230	9.6 -43.1 .0002 .0004 100 59 5082 189	9.0 -43.2 .0000 .0007 100 63 6853 250	6.c -43.2 .0009 .0050 too 84 29892 311	9.6 -43.7 .00018 .0082 100 81 48448 311 9.6 -43.7 .0001 .0015 100 73 12738 311	9.6 -43.7 .0002 .0016 100 68 16880 230	9.6 -43.7 .0001 .0014 100 64 15457 250 . 9.6 -83.7 0008 0024 100 47 44402 250	9.6 -43.8 .0010 .0038 100 54 55348 250	9.6 -44.0 .0000 .0017 100 68 15193 250	9.6 -44.1 0.0000 .0022 100 63 21188 250	9.6 -44.0 0.0000 .0037 100 58 40466 250	9.6 -43.7 .0000 .0030 100 61 30430 250	9.6 -42.8 .0000 .0036 100 60 38991 250	9.0 -42.7 0.0000 .0033 100 56 40331 250	0.6 43.4 0.0000 .0028 100 57 36744 230	9.0 43.5 .0066 .0019 100 56 29178 209	9.5 43.6 0.0060 .0016 100 55 23279 209	F.c -45, 0,0000 ,0006 100 51 9318 148	6.5 43.7 0.6000 .0009 100 55 16.203 189	7.5 45.7 .0004 .0004 .00 5.5 45.7 189	. 43,7 .0063 .0064 100 48 7241 128	3 0004 . 0004 100 38 8363 148	801 8600 09 000 0000 0000 000 000 0000 0000	091 0919 45 001 4000 000000	0.0003 100 50 5459 169	0.0000 .0001 100 50 1150 128	801 1:01 20 001 1000: 555551 1	1066 556 49 162 85
02 FEB 79 15 SECOND AVERAGE HI TEMF TUC-SC TUC-CP TUC DO NT NN C 6/Mm+3 6/Mm+3 Z EIG INN M/M#+3	2.5 -43.1 .0044 .0082 100 50 144858 311 543.0 0020 0027 100 50 144858 311	9.7 -43.3 .0024 .0063 100 56 9668 311	-43.1 .0029 .0077 100 57 116371 311 -43.0 .0033 .0066 99 54 106769 437	9.6 -43.0 .0046 .0066 100 47 130857 311	9.6 -43.1 .0020 .0033 100 42 77347 230 9.6 -43.7 .0019 .0028 100 &4 A3888 189	9.6 -43.1 .0021 .0042 100 46 88330 311 .70	9.6 -43.1 .0021 .0035 100 38 97716 189 .95	9.0 -43.1 .0016 .0034 100 48 69152 189 .84	9.6 -43.1 .0028 .0043 100 45 98741 189 .86	9.6 -43.1 .0019 .0037 100 46 76121 169	9.5 -42.9 .0038 .0050 100 36 138202 169	-42.9 .0045 .0041 100 39 154226 169	9.6 -42.9 .0002 .0004 100 25 3739 311	9.0 -43.0 .0002 .0003 100 61 3163 230	9.6 -43.1 .0002 .0004 100 59 5082 189	9.0 -43.2 .0000 .0007 100 63 6853 250	6.c -43.2 .0009 .0050 too 84 29892 311	-43.4 .0018 .0082 100 81 48448 311 -43.7 .0001 .0015 100 23 12238 311	9.6 -43.7 .0002 .0016 100 68 16880 230	9.6 -43.7 .0001 .0014 100 64 15457 250 . 9.6 -83.7 0008 0024 100 47 44402 250	-43.8 .0010 .0038 100 54 55348 250	9.6 -44.0 .0000 .0017 100 68 15193 250	9.6 -44.1 0.0000 .0022 100 63 21188 250	9.6 -44.0 0.0000 .0037 100 58 40466 250	9.6 -43.7 .0000 .0030 100 61 30430 250	9.6 -42.8 .0000 .0036 100 60 38991 250	9.0 -42.7 0.0000 .0033 100 56 40331 250	0.6 43.4 0.0000 .0028 100 57 36744 230	9.0 43.5 .0066 .0019 100 56 29178 209	43.6 0.0000 .0010 100 55 23279 209	F.c -45, 0,0000 ,0006 100 51 9318 148	6.5 43.7 0.6000 .0009 100 55 16.203 189	7.5 45.7 .0004 .0004 .00 5.5 45.7 189	. 43,7 .0063 .0064 100 48 7241 128	3 0004 . 0004 100 38 8363 148	801 8600 09 000 0000 0000 000 000 0000 0000	241 (867 10 00) 1000, 0000, 818	0.0003 100 50 5459 169	0.0000 .0001 100 50 1150 128	801 1:01 20 001 1000: 55500: 5	1006 50 40 '62 87

	12.		 *Yo Loesn't seem to be any Cirrus here at all. There are some Cu below, but *By not an undercast 		.92	-92 Only getting very small particles now.		6.3	.92	.92	.85	.92	40.	930	2.28	***	96	, v	200		100	Gottion cmall cotting			96.	.83	7.5	;	.81 Heading toward Cs band. At 34° 44'N, 105º 23'W. Very thin cirriform clouds.	0.	3 2 0			4	.72	00	0.00 Heading 1470, wind 2440/171 kt.	00.	0.00		o.ov Will try to fly parallel to cirriform hand.	35.0	>	00.0	00.00	00	,,00.0	0.00 Definite circiform layer off right wing Buishs blue of the sistemation			Should be	it looks. Heading 012°O.	
	_		3381 108	11132 169			7937 128			10525 128										056 648					6458 128			-			3637	2545 148	-		939 128			۰									. 0					144 128	48
AVERAGE	90		7 5		55														3 2	7 7	5 5	3 5		2	4	47	53	20	2 5	# ;	3 2	ន	20	Į;	æ :	- in	•	٥	۰.	۰ د	> <	> <	· •				•	•	•	•	•	62	٧٧
SECOND 4		מון א	200	9	001	100	100	2	200	<u>0</u>	8	001	001	100	90	100	100	2	2 5	200	2 6	2 6	200	90	901	90	90	100	9 :	2 3	90	2	100	00	00.	3 8	0	۵	•	۰ د	> <	> <	,					•	•	. 0	•	<u>0</u>	200
			7000	8000	9000.	2000.	9000.	.00.	2000.	.0007	.0013	100.	.0015	4100.	1100	0014	0008	700		2000	2000	200	000	0003	.0003	.000	.0003	.0002	.0002	5000	0000	.0002	0000	0000	0000	0000	0.000	0,000.0	0.000	00000	0000	900	2000	0.000	0.000	0.000	0.000.0	0.000	0.000.0	0.000.0	0.000.0	0000.	0000
EB 79	ပ္ထ		0.000	0.000	0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000	0.000	0000	.0003	7000	200	2000	200	200	. 0005	.0005	4000	.0003	-000	.0005	1000	.0002	0000	.0002	.0001	.0002	.000	0000					9999											0.000.0	0000
02 FE																		1				7 7	-43.3	-43.1	-43.0	-43.3	-43.5	-43.6	-43.7	-43.7	-43.7	-43.6	-43.2	-43.2	9.5																		9
																										_	_	_	٠.	•				_			_		•														
	AL.	ž	9.0		9.6	9.6	9.6	9.6	9.6	9.6	٥.	9.6	9.6	9.6		,			:							9.		÷.	•				•					5	•	•					4	,	6	9.	9.6		9.	9.	0

5

		E C	3	5	SELOND	AVERAGE	J.			
START	7		110	3				LNAX	4	
34.	*	•			5 CT 2	5	5 + + E / Z	5		
		÷.	٠.	3	5 6	> د	> <	5. s	2 .	
2		; ,	? <	00000		. ·	> <	5 6		At 5404475, 10/
			> <	900	•	-	> 0	> -		
00:38:12		7 6		0000	۰ ۰	•	. 0	•		Thin cireus of
1;38:		~:	~	.000	0	0	0	0	00.0	try to ct
: R7 : 1	9.6	_:	ં.		0	0	0	0		20 03 (13
: 33:	•	_:	?	£96	0	0	0	0	00.0	
1:39:	9.6	= :	۹.	3	0	9	0 ;	۰:	00.0	
	•	ᆣ.		000.	00.0		g S	7	90.0	
		: :	? '	2 %		> <	> <	> <	90.0	
	•	: :		3		9 0	> C	> =	00.0	
, ,		. ç		. 3	• •	• •	ن د	•	00.0	שמאושו אושושווב
1.40		: .:	. 9	٠,	• •	0	•	• •	0.00	
?		2		S	0	0	•	Ö	00.0	
=	•	Ť	٠,			0	0	0	00.0	Still about par
1,411		-42.0	٠.	0000	•	55	171	108	96.	
: :	•	-	3			0	÷	0	06.0	
: 413	•	ţ;	٩			٥	0	0	00.0	
1:42:0	•	çi.	٩	•	0	0	0	0	0.00	ing closer
	4.6	÷.	٠.	0.000	Э,	0	0	э.	00.0	i t
1:42:3		្ន	٠, ١	•	0 4	0 '	0	0	00.0	
21242240				000000	0 0	> <	0 0	0 0	00.0	red bat
	•			•	9 6		> 0	2	3 5	y new parall
1.45		2		0.000	20	9 0	` °	ò	00.0	
1:45:4		4	٠,	٠,	0	0	٥	د	0.00	
7			٠.		0	0	Û	0	0.00	Heading 230°.
7	3.6		٠,	0.0000	Φ	9	c	0	00.0	
£ : * * : .	•	5.7	٩.		0	0	0	0	0.00	
1:44:1	٠.	ं		•	0	9	C	O	00.0	
(15 4 51)		٠;٠	٠, ٠		0	0	0	٥.	0.00	Very near top o
		<u>.</u>		•	3 6	a c	a :	.	00.0	derani
			٠, ٠	0000	> <	> <	> <	5 6	00.0	
	•		; ~	0000	9 0		9	0	00.0	Must be out of
		٠.;			~	٥	0	0	0.00	
: 7:		٠.	٠,		0	0	0	0	0.00	Wind 2460/171 k
1:40:	9	•	•	?	0	á	0	0	ું. જ	
			• •	•	5 (0 0	> <	၁	20.0	
				0.000	• •	0		> c	000	
1:47:4		.42.3	٠.	0000	100	₹	197	6,3	1.00	
1:48:0		÷	000	0.000.0	•	3		0	0.00	
1.48.	0.0	÷,	•	900	000	₹;	> ·	60 6	20.	Probably above
£	•	•	000	900	000	- c	•	ìò		
		: :		3 3	s	s =	s 6	s <		
	•	: :		200	• •	• •	• •	• •	00.0	
		i e	000			0	• ~	0	6.00	
1:42:4			000	300	Φ	0	ၖ	۵	0.00	
	•	•	.000	368.	0	0	0	ø	0.00	Heading 1307.
	9.6	-42.9	0.0000	4.3000	0	٥.	۰,	0	0.00	
5	9.6	•	000	0	0	0	0	9	0.00	
T		Ξ.		930.	0	٥	٥	3	0.00	

0441M, 1040421W, 65 443 443

cirrus off to bur left. Cu telow. Have been making several turns by to stay close to the high cleuds. Visitility is 50+ miles.

parallel to Ci band, Heading 2290.

about parallel to the band. Heading 2190,

g closer to the Gi Land. Seem to be above some cirrus, but it's thin and to judge.

g parallel to cirriform band.

ng 230°. Wind 2450/167 kt.

hear top of most cirrus, but most of it is below left wing. Jerable Cu below, but not an undercast.

be out of all cloud filaments. Only blue sky above.

0460/171 kt. 65 s0 kt! Heading 2300. At 34044'N, 1040 52'W.

bly above all (i.

Me particle or ads recently.

								Registratione to left to set luser to Ci band.										the state of the telescope of the telescope of the				At 340 3814 1 30 3914	•		Year in very thin circus, Stant sections 52.48	'ilaments doing ha.					Look the Camping of t			Appropriestal win existing of the second of the second	Can see this cloud filesents both shows and below						Now into endorately years (s. lasse - Sind Sire).	-			Meavy Cs. Visibility much reduces.				Seading 1279, Ground Golf dies, of other with the seasons of the contract the contract the seasons of the contract the seasons of the contract the contrac		
1		0.0	0.00	00.0	90.0	3 6	3 6	8 8	0.00	0.00	0.00	0.00	0.00	0.0	0.00	3.0	3 6	3 8	3 8	00.0	. 55	0.00	90.1	96.	.87	£.	S /	ξ.			. 56	99.	69.	80.	3.5	.64	. 65	. 69	3 :	? .	<u>.</u> .	. 6	8	8.	7.	ζ,	. i	69.	5 -		С.
T A		0	٥.	э.	٠.	2 4	> 0	ء د	0	o	0	0	ø	0	٥,	3 (> <	• •	> <	o	189	0	Ġ	169	186	200	30	250	189	3.1	311	31.	3.1		; <u>:</u>	311	311	_	= :	- :	 -	500	230	600	250	311	311	Ξ.	Ξ, Ξ	020	3.3
95 18	E + # / #	0	9	، د	> <	o d	0	, ,	. 0	0	0	٥	0	0 1	٥ ،	> (> <	> <	> 0	• •	474	0	166	10104	8263	0.81	0 0	78736	1.00	6341	1709	396.7	2642	14012	37271	41138	63010	82212	254.76.2	07789	00 th 20 th	41048	40159	49133	48186	54567	76.3	103531	046771	93137	11348
AVERAGE DO	Š	•	•	۰ د	0 0	•	> <	ء د	• •	0	•	0	0	•	•	> <	> <	> <	> <	• •	53	٥	42	38	÷	<u> </u>	Ç.	្ឋ	4	5.	8.6	6	£ 9	6 4	22	89	, 3	63	Ci C	7.5	, 4 4	22	6	S	•	6.9	•		9	9 27	3
SECOND LUC	013	0	ં	۰ ،	.	5 6	> c	> <		0	0	0	0	0	۰.	.	o 9	> <	> <	• •	100	0	100	100	100	0 :	0 0	9 9	200	9	100	00,	2 2	2 5	200	100	100	00	000	9 6	200	100	100	199	031	001	00:	000	200	1.00	199
90 au	7	0.0000	0.0000	0000	0.0000	0000	0000	0000	900	0.0000	0.000.0		0.0000	0000	000	00000	0000		000	0.000	0000	0.0000	0000	.0004	.000	1000	. 0033	9628	0012	6000	. 3003	.0008	.0005	7250	. 0039	3042	30.38	1.00.	60.00	- 0	4000	4000	0.00	. 1932	4400,	. 2060	000	.0083	660	1960	3026
6.8 7.9 140 - St	C. # * * .	0.0000	3.0000	00000	0.0000	3000	0000	9000	0.000	0.000	0.0000	0.0000	0.000.0	0.000	0.0000	2000.0	00000	0000	0000	0.000	00000	000000	0.0000	.0002	. 0003	0000	- 600	0.0026	2000	.0003	0000.	2000.	1000.	1000	0100.	0100	.3022	. 9920	6500.	0.00	. 000	0010	8000	.0011	4100.	6010	B(C).	.0026		0027	.9031
02 FEI	در	43.4	÷.0	7	43.5		0.54	9 5 4	9.5	43.3	13.1	-42.9	42.8	45.0	42.5	2		3	> C	7 -	F.	()	0	-40.5	÷0.	39		1.02		39.5	-39.5	39.0	9.0	0.00		2	 C:		2		: 0	0.00	39	×	. 89	18.	æ i	38.6	30.0 28.0	1 00	4.
÷	£	٠,	٠,٠	, ,	•	 • •		. ,			٠; ص	٠.	5.5	4	•	* ·	· ·		7 .				٠. د	<u>:</u>	~·	 		ۍ د د ن			0.0	6.	0 °			:		•		•			0.7		·.	·.	;	o e			
P1 138 43 44 47	3 4 1 .	90::5:.	.1151115	51:30	241211	3		36.44.4.4	01:53:00	21:53:15	11:53:30	21:53:45	11:54:00	21:54:15	11:54:30	37.70	99:00:17	0.000000	30.000000	00.00.1.	51:55:13	1:50:30	1:50:45	00:[3:10	51:53:13			00:00:	C. 185	34.002.11	11:59:30	\$116511	000000000000000000000000000000000000000			" 		:							40.150.24			- 0	• •		

condisque will or inch parable? or too land

whin very thin virtue. Make criticiti 50-48 of,, but can see cloud charents going $b_{\rm v}$

ood thin sampling conditions. Visitility andd, but can one thin Naments moving past aircraft.

proximately in middle of filayer. At 324 aprz. 1545 1248 in see thin cloud filaments both above and bolow.

w into moderately beave (s layer, Wind 347 /los kt.

																								9																													
																								•	2																												
																								1000																													
																								4	. 6.1.1.6																												
																									- - -													٠	เกลเทา														
									Heading 2200															, A C & C E	AO AG								**						see through to around														
									Headin																- +50°								65 108 kt						Chora.														
													re											11111	0.000								0::12						è														
								į	245º/153 kt.				brighter than before											vicit	thirt e								Heading 24×0	,					. Can														
									Wind 245				r than											, h	Pact													į	. c 														
									Cs. Mi				righte	,										ر ۱) 10 10 10 10 10 10 10 10 10 10 10 10 10	,							AVY CS					4	,														
									Heavy Cs				Sun is b											Still heavy (s. hut visibility has improved eliabtl.	middle of at least a thin oversast	,							Still heavy Cs.					3.15	VETV MILIKY, MEDVY CS.														
									光				Su											5	, E								Sti					2	į														
						_	_	_								_	_	_	_							_					_	_	_				_													_			
	ir.													82				. 67		-		3 .5	•											.78							·	•	•	•	•		6 9				è;	-	-
	LNAX FF		5 5	5 5	3.5	508	230				30.											250	•															377			311 .65	•		•						317 .70	•	-	-
		5 -	5 5	5 5	3.5	508	230	=	311	<u>.</u>			520	220	31	311	311	311	Ξ.		311		2.0	320	508	22	230		<u>.</u>	£ :			=	220		311	=			===	·	31.1	31.	311	311	Ξ,	Ξ,		= ;	~ :	•	520	-
		N/Mee3 UN	5 5	5 5	88475 311	88701 209	71515 230	113918 311	111666 311	100552 311	<u> </u>	145.244	120346 250	92001 250	103085 311	119080 311	80382 311	88455 311	Ξ.	34769 311	32372 311	8	21/15 27/15	35384 230	15679 209	33848 250	55464 230	24736 189	48925 311	11183 189		28209 111	70661 311	6176 250	13739 230	52482 311	23879 311	44671 311	41075 111	===	79900 311	53167 311	\$7212 311	49088 311	24831 311	41346 311	50924 311	12112 311	52743 311	113149 317	150712 311	66732 250	41839 250
ID AVERAGE	2	47 05007 71:	5 5	52 82356 311	51 88475 311	53 88701 209	52 71515 230	52 113918 311	55 111666 311	53 100552 311	15,02020	57 145244 315	53 120346 250	59 92001 250	63 103085 311	65 119080 311	64 80382 311	65 88455 311	65 69232 311	67 34769 311	61 32372 311	4/15/ 250	115 17/15 19	50 35384 230	54 15679 209	53 33848 250	51 55464 230	24736 189	63 48925 311	11183 189	115 08036 95	20 29200 111	70661 311	68 6176 250	63 13739 230	65 52482 311	23879 311	71 44671 311	41 47075 111	95173 311	69 79900 311	72 53167 311	74 57212 311	72 49088 311	74 24831 311	73 41346 311	70 50924 311	85 12112 314	69 52743 311	55 113149 311	52 150712 311	59 66732 250	33 41839 250
SECOND AVERAGE	18 00 JA1	1 CLD UR N/A043 UN	100 48 90452 311	100 52 87356 311	100 51 88475 311	100 53 88701 209	100 52 71515 230	100 52 113918 311	100 55 111666 311	100 53 100552 311	54 154501 311	100 52 145244 311	100 53 120346 250	100 59 92001 250	100 63 103085 311	100 65 119080 311	100 64 80382 311	100 65 88455 311	100 65 69232 311	100 67 34769 311	100 61 32372 311	61 4/15/ 250	100 60 51400 510	100 50 35384 230	100 54 15679 209	100 53 33848 250	100 51 55464 230	100 54 24736 189	100 63 48925 311	100 33 11183 189	110 08077 90 001	100 20 29200 111	100 64 70661 311	100 68 6176 250	100 63 13739 230	100 65 52482 311	100 74 23879 311	100 71 44671 311	100 41 47075 311	59 95173 311	100 69 79900 311	100 72 53167 311	74 57212 311	100 72 49088 311	100 74 24831 311	100 73 41346 311	100 70 50924 311	100 85 12112 311	100 69 52743 311	55 113149 311	100 52 150712 311	100 59 66732 250	100 33 41839 250
15 SECOND AVERAGE	C 10C-CP 10C DO NT	6/Ress % CLD UM R/Acts UN	110 07070 07 001 07007	0052 100 52 87356 311	.0050 100 51 88475 311	.0053 100 53 88701 209	.0042 100 52 71515 230	.0065 100 52 113918 311	.0072 100 55 111666 311	.0060 100 53 100552 311	0.007 100 02 155020 511	112 AACRA1 CR 001 A010.	.0076 100 53 120346 250	.0078 100 59 92001 250	.0100 100 63 103085 311	.0117 100 65 119080 311	.0077 100 64 80382 311	.0088 100 65 88455 311	.0072 100 65 69232 311	.0038 100 67 34769 311	.0031 100 61 32372 311	003/ 100 61 4/75/ 250	000 000 00 00 000 000 000 000 000 000	.0020 100 50 35384 230	.0010 100 54 15679 209	.0021 100 53 33848 250	.0032 100 51 55464 230	.0016 100 54 24736 189	0043 100 63 48925 311	187 187 187 189 189 189 189 189 189 189 189 189 189	110 00000 30 001 8600.	0010 100 20 20200 111	115 1992 49 001 5900	.0008 100 68 6176 250	.0013 100 63 13739 230	.0048 100 65 52482 311	.0030 100 74 23879 311	. 0048 100 71 44671 311	110 14745 60 001 4000.	100 59 95173 311	. 116 0997 99 311	.0064 100 72 53167 311	.0073 100 74 \$7212 311	.0063 100 72 49088 311	.0033 100 74 24831 311	.0051 100 73 41346 311	.0062 100 70 50924 311	.0023 100 85 12112 311	.0051 100 69 52743 311	.0074 100 55 113149 311	.0087 100 52 150712 311	.0046 100 59 66732 250	.0018 100 33 41839 250
15 SECOND AVERAGE	C 10C-CP 10C DO NT	6/1666 6/1666 2 CLD UR R/1666 UR		116 32477 24 001 740 2500.	.0020 .0050 100 51 88475 311	.0023 .0053 100 53 88701 209	.0013 .0042 100 52 71515 230	.0016 .0065 100 52 113918 311	.0022 .0072 100 55 111666 311	.0018 .0060 100 53 100552 311	110 070551 25 001 4/00. \$200.	115 COULT CO 001 BOILD COOL	.0021 .0076 100 53 120346 250	.0016 .0078 100 59 92001 250	.0022 .0100 100 63 103085 311	.0026 .0117 100 65 119080 311	.0016 .0077 100 64 80382 311	.0021 .0088 100 65 88455 311	.0017 .0072 100 65 69232 311		. 0005 . 0031 100 61 32372 311	. 001, .003/ 100 61 4/12/ 250	AC11 AC12 10 VOI 21/00 1000	0000 48635 00 00 0000 0000	. 0004 . 0010 100 54 15679 209	.0009 .0021 100 53 33848 250	.0013 .0032 100 51 55464 230	.0007 .0016 100 54 24736 189	. 0014 .0043 100 63 48925 311	'881 SBILL SC 901 /000. 2000.	110 00000 30 001 0000 1100 110 00000 77 000 0000 1100	110 124th 60 001 th00. 5100.	100. 722. 94 700. 7100.	.0002 .0008 100 68 6176 250	.0003 .0013 100 63 13739 230	.0013 .0048 100 65 52482 311	.0007 .0030 100 74 23879 311	.0012 .0048 100 71 44671 JIII	115 14/45 60 001 4000 1100	115 5/20 59 50 4/50 50 5/50 311	. 0023 . 0085 100 69 79900 311	.0016 .0064 100 72 53167 311	.0020 .0073 100 74 \$7212 311	.0016 .0063 100 72 49088 311	.0008 .0033 100 74 24831 311	.0014 .0051 100 73 41346 311	.0016 .0062 100 70 50924 311	.0006 .0023 100 85 12112 311	.0015 .0051 100 69 52743 311	.0024 .0074 100 55 113149 311	. 0040 . 0087 100 52 150712 311	.0028 .0046 100 59 66732 250	. 0036 .0018 100 33 41839 250
15 SECOND AVERAGE	C 10C-CP 10C DO NT	6/1666 6/1666 2 CLD UR 1/1666 UR	110 07070 07 001 07007	116 32477 24 001 740 2500.	.0020 .0050 100 51 88475 311	.0053 100 53 88701 209	.0013 .0042 100 52 71515 230	.0065 100 52 113918 311	.0022 .0072 100 55 111666 311	.0018 .0060 100 53 100552 311	0.007 100 02 155020 511	115 COULT CO 001 BOILD COOL	.0021 .0076 100 53 120346 250	.0016 .0078 100 59 92001 250	.0022 .0100 100 63 103085 311	.0026 .0117 100 65 119080 311	.0016 .0077 100 64 80382 311	.0021 .0088 100 65 88455 311	.0017 .0072 100 65 69232 311		. 0005 . 0031 100 61 32372 311	003/ 100 61 4/75/ 250	AC11 AC12 10 AC1 4200 1000 AC14 AC14 AC14 AC14 AC14 AC14 AC14 AC14	.0020 100 50 35384 230	. 0004 . 0010 100 54 15679 209	.0021 100 53 33848 250	.0013 .0032 100 51 55464 230	.0007 .0016 100 54 24736 189	0043 100 63 48925 311	'881 SBILL SC 901 /000. 2000.	110 00000 30 001 0000 1100 110 00000 77 000 0000 1100	110 124th 60 001 th00. 5100.	115 1992 49 001 5900	.0002 .0008 100 68 6176 250	.0003 .0013 100 63 13739 230	.0013 .0048 100 65 52482 311	.0007 .0030 100 74 23879 311	.0012 .0048 100 71 44671 JIII	110 14745 60 001 4000.	115 5/20 59 50 4/50 50 5/50 311	. 0023 . 0085 100 69 79900 311	.0016 .0064 100 72 53167 311	.0020 .0073 100 74 \$7212 311	.0016 .0063 100 72 49088 311	.0008 .0033 100 74 24831 311	.0014 .0051 100 73 41346 311	.0016 .0062 100 70 50924 311	.0006 .0023 100 85 12112 311	.0015 .0051 100 69 52743 311	.0024 .0074 100 55 113149 311	.0040 .0087 100 52 150712 311	.0046 100 59 66732 250	. 0036 .0018 100 33 41839 250
02 FEB 79 15 SECOND AVERAGE	C 10C-CP 10C DO NT	CONTRACT CANCEL OF A CANCEL OF	10 0200 /r 001 000 000 000 000 000 0000 0000	16 36494 Bt 091 7400 2500 6186-	-38.2 .0020 .0050 100 51 88475 311	-38.2 .0023 .0053 100 53 88701 209	-38.1 .0013 .0042 100 52 71515 230	-38.2 .0016 .0065 100 52 113918 311	-38.3 .0022 .0072 100 55 111666 311	-38.3 .0018 .0060 100 53 100552 311	110 070551 25 001 4/00. \$200.	10 000151 CS 001 B010, 1000, 0.081	-38.3 .0021 .0076 100 53 120346 250	-38.4 .0016 .0078 160 59 92001 250	-38.4 .0022 .0100 100 63 103085 311	-38.3 .0026 .0117 100 65 119080 311	-38.4 .0016 .0077 100 64 80382 311	-38.1 .0021 .0088 100 65 88455 311	-38.2 .0017 .0072 100 65 69232 311	-38.5 .0006 .0038 100 67 34769 311	-38.5 .0005 .0031 100 61 32372 311	. 001, .003/ 100 61 4/12/ 250	. 110 72/10 10 001 7200 /000 7:000 7 02.	. 38.5 1000. 100 100 100 100. 100. 100. 100.	-38.3 .0004 .0010 100 54 15679 209	-38.4 .0009 .0021 100 53 33848 250	-38.6 .0013 .0032 100 51 55464 230	-38.7 .0007 .0016 100 54 24736 189	- 18.6 .0014 .0043 100 63 48925 311	'881 SBILL SC 901 /000. 2000.	110 00077 90 001 B500. 7100 1 0E.	10 100477 00 001 FF00: 0100 1145 014	9.0 -38.7 .001 5.000. 7.00. 0.9	9.0 -38.5 .0002 .0008 100 68 6176 250	-38.6 .0003 .0013 100 63 13739 230	-38.7 .0013 .0048 100 65 52482 311	38.8 .0007 .0030 100 74 23879 311	.0012 .0048 100 71 44671 JIII	110 14/40 00 00: 400. 4100 0:00:	-38.6 .0021 .0074 100 S9 95173 311	-38.6 .0023 .0085 100 69 79900 311	-38.5 .0016 .0064 100 72 53167 311	-38.5 .0020 .0073 100 74 57212 311	-38.4 .0016 .0063 100 72 49088 311	38.6 .0008 .0033 100 74 24831 311	-39.0 .0014 .0051 100 73 41346 311	-38.7 .0016 .0062 100 70 50924 311	-38.5 .0006 .0023 100 85 12112 311	.0015 .0051 100 69 52743 311	.0024 .0074 100 55 113149 311	. 38.6 .0040 .0087 100 52 150712 311	.0028 .0046 100 59 66732 250	. 0036 .0018 100 33 41839 250
02 FEB 79 15 SECOND AVERAGE	ALT 1639 180-30 180-09 180	CONTRACT CANCEL OF A CANCEL OF	10 02070 /r 551 0100 0200 100 010 010 010 010 010 010	10 2007 pt 001 7500 TO	8.9 -38.2 .0020 .0050 100 51 88475 311	8.9 -38.2 .0023 .0053 100 53 88701 209	-38.1 .0013 .0042 100 52 71515 230	8.9 -38.2 .0016 .0065 100 52 113918 311	8.9 -38.3 .0022 .0072 100 55 111666 311	9.0 -38.3 .0018 .0060 100 53 100552 311	-38.2 .0024 .007 108 32 15500 511 -38.5 0.044 0.04 108 55 154551 711	112 200121 52 001 B010 C000 C.GE 0 0	9.0 -38.3 .0021 .0076 100 53 120346 250	9.0 -38.4 .0016 .0078 100 59 92001 250	8.9 -38.4 .0022 .0100 100 63 103085 311	8.9 -38.3 .0026 .0117 100 65 119080 311	8.9 -38.4 .0016 .0077 100 64 80382 311	8.9 -38.1 .0021 .0088 100 65 88455 311	8.9 -38.2 .0017 .0072 100 65 69232 311	9.0 -38.5 .0006 .0038 100 67 34769 311	9.0 -38.5 .0005 .0031 100 61 32372 311	-38.3 .0011 .003/ 100 61 4/15/ 250 .		. 052 19855 15 091 0500. 100 35385 930 S	9.0 -38.3 .0004 .0010 100 54 15679 209	9.0 -38.4 .0009 .0021 100 53 33848 250	9.0 -38.6 .0013 .0032 100 51 55464 230	9.0 -38.7 .0007 .0016 100 54 24736 189	- 18.6 .0014 .0043 100 63 48925 311	7.0 -38.1 11.85 001 /000. 2000. 4.85. 0.7	10 0007 20 001 9700 100 100 100 100 000 000 000 000 000	10 100477 00 001 FF00: 0100 1145 014	18.7 .0015 .0063 100 64 70661 311	9.0 -38.5 .0002 .0008 100 68 6176 250	9.0 -38.6 .0003 .0013 100 63 13739 230	9.0 -38.7 .0013 .0048 100 65 52482 311	9.0 -38.6 .0007 .0030 100 74 23879 311	-38.4 .0012 .0048 100 71 44671 313	10 17/72 60 00 100 100 100 100 100 100 100 100 1	-38.6 .0021 .0074 100 S9 95173 311	9.0 -38.6 .0023 .0085 100 69 79900 311	9.0 -38.5 .0016 .0064 100 72 53167 311	-38.5 .0020 .0073 100 74 57212 311	9.0 -38.4 .0016 .0063 100 72 49088 311	9.0 -38.6 .0008 .0033 100 74 24831 311	9.0 -39.0 .0014 .0051 100 73 41346 311	9.0 -38.7 .0016 .0062 100 70 50924 311	9.0 -38.5 .0006 .0023 100 85 12112 311	9.0 -38.4 .0015 .0051 100 69 52743 311	9.0 -38.4 .0024 .0074 100 55 113149 311	9.0 -38.6 .0040 .0087 100 52 150712 311	38.4 .0028 .0046 100 59 66732 250	9.0 -38.2 .0036 .0018 100 33 41839 250

78

					to about 15 mi												arolo ar dom state																				
					mproved to	ng 333 ⁰ .											0.00 ×++0.00	ייברל ייים																		Blue sky above.	
					Visibility has improved	i'W. Headi								right.			21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2																				
					Cs. Visib	'N, 1040 20								Cs is on right.			. inniform	cloud bang											nts in ASSP							Cu below and to right.	
					f heaviest	At 34º 31								open again.			for this	oser to the											Very few counts in ASSP								
				,	etting out o	on stant downward. At 34° 31'N, 1040 26'W.								Getting out into open again.			campling area for this civalform fillments	move over closer to the cloud band											Moving closer. Vo							Nearly clear air.	
								_									500	Will																			
LHAX FF	250 .74						311 .56				311 .67					6/. 607	311	209 .83						209 .81										169 . 84			148
, #1 */***	24468	9625	17653	18778	41481	16850	6426	25582	2001	25618	16463	2311	8987	15489	/470/	17464	20629	22644	12734	11466	9707	10985	12492	8653	15620	14440	16679	11507	12814	8491	11513	9226	201	10615	8804	13400	3609
2 2			2		-	2 %		79								3 5			\$2		3 5			8												*	
CP 14C	12 201			-		20 100										92				00 100						13) i				001 100
IUC-						.0021										4 6 6				6000						5.00				-			4000			·	E000.
EMP 18C-SC	• .		•	•	•	000	•	•	•		Ī					.0003			•				•			900				0			7007				0000
TEMP	-38.3	-38.4	-38.7	38.6	97.		-38.7	-38.6	-38.8	-39.0	-39.1	-38.8	-38.8	-38.9	20.0	20.00	30.0	-38.9	-38.8	9.00	0.00	-38.7	-38.6	-38.6	-38.7	7.86.	-38.8	-38.8	-38.8	-38.7	-38.7	.38.7	138.	-38.7	-38.7	-38.7	-38.8
		•	•	٠.	•			9.0	9.0	9.0	9.0	0	9.					6.8	6,8	o :			8.	8.0	o, 0	» o	8	8	8.9	6.8	6.0	o- 0		0	6	8	0.0
A.T.	:		•	00 (• •																22.24.45						22:26:30										

79

Appendix D

List of Abbreviations

Ac - Altocumulus AFB - Air Force Base

AFGL - Air Force Geophysics Laboratory
- Air Force Weapons Laboratory

Alt - Altitude (above mean sea level unless otherwise specified)

ART - Airborne Radiation Technology

ASSP - Axial Scattering Spectrometer Probe

C - Cloud (or droplet) probe

^oC - Temperature in degrees Celsius

Cc - Cirrocumulus

Ci - Cirrus

Cs - Cirrostratus

Do - Medium volume diameter

FF - Form factor

GOES - Geostationary Operational Environmental Satellite

g-m⁻³ - Grams per cubic meter

Hdg - Aircraft heading
IAS - Indicated airspeed
IWC - Ice water content

km - Kilometer

L_{max} - Maximum particle diameter

mb - Millibar

MSL - Mean sea level

MST - Mountain Standard Time

NT - Particle Density

1-D - One-dimensional particle measuring system

P - Precipitation probe

T - Temperature
TAS - True air speed

2-D - Two-dimensional particle measuring system

UMT or Z - Universal (or Greenwich) Mean Time

Z - Calculated radar reflectivity

