Logic Modeling of Requirements

Logic Modeling

- Data flow diagrams do not show the logic inside the processes
 - what occurs within a process?
 - How input data is converted into output information
- <u>Logic modeling</u> involves representing <u>internal structure</u> and <u>functionality</u> of processes depicted on a DFD.
- Processes must be clearly described before translating them into programming language.
- Logic modeling can also be used to show when <u>processes</u> on a DFD occur.
- Logic modeling will be generic without taking syntax of a particular programming language

Logic Modeling Deliverables and Outcomes

Each process on the lowest level DFD will be represented by one or more of the following:

- Structured English
- Decision Tables
- Decision Trees
- State-transition diagrams
- Sequence diagrams
- Activity diagrams

Modeling Logic with Structured English

- Structured English is a modified form of English used to specify the logic of information processes
- Uses a subset of English vocabulary to express process procedures
 - Action verbs read, write, print, move, merge, add, sort
 - Noun phrases name, address
 - No adjectives or adverbs
- No specific standards each analyst will have his own way
- File and variable names are CAPITALIZED
- Logical comparisons are spelled out and not used symbols
- Similar to programming language
 - If conditions
 - Case statement

Modeling Logic with Structured English

- It is possible to represent all three processes used in structured programming: sequence, conditional, repetition
 - Sequence no special structure <u>but one statement</u> <u>following another</u>
 - Conditional <u>IF</u> THEN ELSE statement; <u>CASE</u> statement
 - Repetition DO-UNTIL loops or DO-WHILE loops

Current logical DFD for Hoosier Burger's inventory control system

Structured English is used here to describe decisions.

Structured English is used here to describe invoking other processes.

Modeling Logic with Decision Tables

11

- Structured English is not good to represent complicated logic (having several different conditions) as it becomes difficult to understand
- Decision table: A matrix representation of the logic of a decision
- Specifies all the possible conditions and the resulting actions in a tabular form
- Best used for complicated decision logic

3 Parts of a Decision Table

Condition stubs

Lists condition relevant to decision

2. Action stubs

Actions that result from a given set of conditions

3. Rules

Specify which actions are to be followed for a given set of conditions

Indifferent Condition

Condition whose value does <u>not affect which action</u> is taken for two or more rules

Procedure for Creating Decision Tables

- Name the conditions and values each condition can assume
 - some conditions values will be just "yes" or "no
- □ Name all possible actions that can occur
- □ List all possible rules
- □ Define the actions for each rule
- □ Simplify the table
 - Remove any rules with **impossible** actions

Decision Table

Complete decision table for payroll system example

	Conditions/			Ru	les		
	Courses of Action	1	2	3	4	5	6
Condition	Employee type	S	Н	S	Н	S	Н
Stubs	Hours worked	<40	<40	40	40	>40	>40
Action	Pay base salary	X		Х		Х	
Stubs	Calculate hourly wage		Х		Х		Х
	Calculate overtime						Х
	Produce Absence Report		Х				

Employee Type:

S: Salaried

H: Hourly paid

Note: for salaried employees the action stub chosen will always be the same...therefore hours worked is an indifferent condition

Reduced Decision Table

Indifferent condition

Condition whose value does not affect which action is taken for two or more rules

Reduced decision table for payroll system example

Conditions/		Rul	les	
Courses of Action	1	2	3	4
Employee type	S	Н	Н	Н
Hours worked	(:)	<40	40	>40
Pay base salary	×			
Calculate hourly wage		×	×	×
Calculate overtime				×
Produce Absence Report		×		

Because of indifferent condition, the complete decision table can be reduced to one with fewer rules

Example of decision table for

Hoosier Burger's Inventory reordering

Conditions/						Ru	les					
Courses of Action	1	2	3	4	5	6	7	8	9	10	11	12
Type of item	Р	N	Р	N	Р	N	Р	N	Р	N	Р	N
Time of week	D	D	W	W	D	D	W	W	D	D	W	W
Season of year	А	Α	А	А	S	S	S	S	Н	Н	Н	Н
Standing daily order	Х				Х				X			
Standing weekend order			Χ				Χ				Χ	
Minimum order quantity		X		Χ		Х		Χ		Х		Х
Holiday reduction									Х		Х	
Summer reduction					X		Χ					
Type of item: P = perishable N = nonperishable			D = v	of we weekd weeke	ay		NE NE		A =		f year emic y ner	

H = holiday

Reduced decision table for Hoosier Burger's Inventory reordering

Conditions/				Rules			
Courses of action	1	2	3	4	5	6	7
Type of item	P	P	P	P	P	P	N
Time of week	D	W	D	W	D	W	-
Season of year	A	A	S	S	Н	Н	-
Standing daily order	X		X		X		
Standing weekend order		X		X		X	
Minimum order quantity							X
Holiday reduction					X	X	
Summer reduction			X	X			

Example 2

- Policy for charging charter flight costumers for certain inflight services:
- If the flight is <u>more than half-full</u> and costs more than \$350 per seat, we serve <u>free cocktails</u> unless it is a domestic flight.
- We <u>charge</u> for cocktails on all <u>domestic flights</u>; that is, for all the ones where we serve cocktails.

(Cocktails are only served on flights that are more than half-full.)

List all the conditions that determine which action to take

Conditions	Values
The flight more than half-full?	Yes (Y), No (N)
Cost is more than \$350?	Y, N
Is it a domestic flight?	Y, N

Fill all rules in the table

				P	OSSIBLE	RULES			
	more than half-full	N	N	N	N	Y	Y	Y	Y
CONDITONS	more than \$350 per seat	N	N	Y	Y	N	N	Y	Y
	domestic flight	N	Y	N	Y	N	Y	N	Y
ACTIONS									
A									

CONT....

 Analyze column by column to determine which actions are appropriate for each combination

			-	p	OSSIBLE	RULES	-		
	more than half-full	N	N	N	N	Y	Y	Y	Y
CONDITONS	more than \$350 per seat	N	N	Y	Y	N	N	Y	Υ
	domestic flight	N	Y	N	Y	N	Y	N	Y
ACTIONS	serve cocktails					x	x	x	x
AC	free							x	

Note that some columns are identical except for one condition.

				PO	SSIBLI	RULE	S		
	more than half- full	N	N	R	N	Y	Y	Y	Y
CONDITONS	more than \$350 per seat	N	N	Υ	Y	N	N	Y	Y
U	domestic flight	N	γ	N	Υ	N	Y	N	Y
ACTIONS	serve cocktails	Ī				x	x	x	х
ACI	free	П						X	

Note that some columns are identical except for one condition.

Which means that actions are independent from the value of that particular condition.

				PO	SSIBLE	RULE	S		
	more than half- full	N	N	P	N	Y	Y	Y	Y
CONDITONS	more than \$350 per seat	N	N	Y	Y	N	N	Y	Y
Ü	domestic flight	N	γ	N	γ	N	Y	N	Y
ACTIONS	serve cocktails					x	X	х	х
ACI	free							X	

Note that some columns are identical except for one condition.

Which means that actions are independent from the value of that particular condition.

Hence, the table can be simplified.

				PCSSI	BLER	ULES		
	more than half- full	N	N	Z	γ	Υ	Υ	γ
CONDITONS	more than \$350 per seat	N	Y	Y	N	N	γ	Υ
0	domestic flight		N	Y	N	Y	N	Υ
ACTIONS	serve cocktails	١			х	x	x	х
ACT	free	T					х	

First we combine the yellow ones nullifying the condition.

	7		PO	SSIBLI	RUL	ES	
	more than half- full	N	N	Y	Y	Y	Y
CONDITONS	more than \$350 per seat	N	Y	N	N	γ	Y
•	domestic flight	-	*	N	Y	N	Y
ACTIONS	serve cocktails			x	x	x	X
ACI	free	П	П			Х	

First we combine the yellow ones nullifying the condition.

Then the red ones.

		Ä	FO	SSIBLI	ERUL	ES	
	more than half- full	N	N	Y	Y	Y	Y
CONDITONS	more than \$350 per seat	N	γ	N	N	Y	γ
U	domestic flight	T.		N	Y	N	γ
ACTIONS	serve cocktails	ı		x	x	X	×
ACT	free	T	T			Х	

First we combine the yellow ones nullifying the condition.

Then the red ones.

Notice that yellow and red columns are identical but by one condition.

			POSS	IBLE F	RULES	
	more than half- full	N	Υ	Y	Y	γ
CONDITONS	more than \$350 per seat	•	N	N	Y	Y
•	domestic flight		N	Y	N	Y
ACTIONS	serve cocktails	۱	x	x	х	X
ACT	free	П	W		X	

First we combine the yellow ones nullifying the condition.

Then the red ones.

Notice that yellow and red columns are identical but by one condition.

So, we combine them.

		FO	SSIBL	E RUL	ES
	more than half- full	N	Y	Y	γ
CONDITONS	more than \$350 per seat	-	N	γ	Υ
	domestic flight	-		N	γ
ACTIONS	serve cocktails		х	x	х
ACT	free	ij		X	

First we combine the yellow ones nullifying the condition.

Then the red ones.

Notice that yellow and red columns are identical but by one condition.

So, we combine them.

Then we combine the violet colored ones.

		PO	SSIBL	E RUL	ES
	more than half- full	N	Y	Y	γ
CONDITONS	more than \$350 per seat	20	N	Y	Y
Ü	domestic flight	-		N	Υ
ACTIONS	serve cocktails	4	х	x	х
	free			х	

Notice that even when we observe that the green columns are identical except for one condition we do not combine them:

A "NULLIFIED" condition is not the same as a valued one.

What about this rule? Have we over looked something?

Final Solution

			Ru	les	
1000	more than half-full	N	Y .	Y	Y
CONDITONS	more than \$350 per seat	::ex	N	Y	Y
	domestic flight	19.50		N	Y
ONS	serve cocktails		x	x	×
ACTIONS	free			×	

- A decision tree is a graphical representation of a decision situation
- Decision situation points (nodes) are connected together by arcs and terminate in ovals
- Main components
 - Decision points represented by nodes
 - Actions represented by ovals
 - Particular choices from a decision point represented by arcs
- To read a decision tree begin at root node on far left
- Each node is numbered and each number corresponds to a choice
- Choices are spelled out in a legend
- From each node there are at least two paths leading to next step another decision point or an action
- All possible actions are listed on the far right in leaf nodes
- Each rule is represented by tracing a series of paths from root node to the next node and so on until an action oval is reached

Decision tree representation of salary decision

Decision tree representation of the decision logic in the decision tables in Figures 8-4 and 8-5, with only two choices per decision point

Alternative decision tree representation of salary decision

Decision tree representation of the decision logic in the decision tables in Figure 8-4 and 8-5, with multiple choices per decision point

Deciding Among Structured English, Decision Tables, and Decision Trees

Criteria	Structured English	Decision Tables	Decision Trees
Determining Conditions and Actions	Second Best	Third Best	Best
Transforming Conditions and Actions into Sequence	Best	Third Best	Best
Checking Consistency and Completeness	Third Best	Best	Best

Deciding Between Decision Tables and Decision Trees

Criteria	Decision Tables	Decision Trees
Describe complex logic	Best	Worst
Describe simple rules	Worst	Best
Making decisions	Worst	Best
More compact	Best	Worst
Easier to manipulate	Best	Worst

Example of Using a Decision Tree or Table to Capture Complex Business Logic

Consider the following excerpt from an actual business document:

If the customer account is billed using a fixed rate method, a minimum monthly charge is assessed for consumption of less than 100 kwh. Otherwise, apply a schedule A rate structure. However, if the account is billed using a variable rate method, a schedule A rate structure will apply to consumption below 100 kwh, with additional consumption billed according to schedule B.

Example of Using a Decision Tree or Table to Capture Complex Business Logic

Consider the following excerpt from an actual business document:

- If the customer account is billed using a fixed rate method, a minimum monthly charge is assessed for consumption of less than 100 kwh. Otherwise, apply a schedule A rate structure.
- Thowever, if the account is billed using a variable rate method, a schedule A rate structure will apply to consumption below 100 kwh,
- with additional consumption billed according to schedule B.

STUDENT TIME

Decision Tree for this Example

Decision Tree for this Example

Decision Table for Example – Version 1

	Rules					
Conditions	1	2	3	4	5	
Fixed rate acct	Т	Т	F	F	F	
Variable rate acct	F	F	Т	Т	F	
Consumption < 100 kwh	Т	F	Т	F		
Consumption >= 100 kwh	F	Т	F	Т		
Actions						
Minimum charge	Х					
Schedule A		Х	Х			
Schedule A on first 99 kwh, Schedule B on kwh 100 +				Х		

Is this a
valid
business
case? Did
we miss
something?

Decision Table for Example – Version 2

	Rules				
Conditions	1	2	3	4	
Account type	fixed	fixed	variable	variable	
Consumption	< 100	>=100	<100	>= 100	
Actions					
Minimum charge	Х				
Schedule A		X	X		
Schedule A on first 99 kwh, Schedule B on kwh 100 +				X	