Surjections, Injections, and Inverses

Office hours schedule change (till the end of semester) TW 4:45 ~ 6:15 pm

Restriction and Extension

Restriction

Definition 1

Let f be a function and let $C \subseteq \text{Dom}(f)$. Then the restriction of f to C is the function, denoted $f \upharpoonright C$, defined by $(f \upharpoonright C)(x) = \overline{f(x)}$ for all $x \in C$.

• Note that $Dom(f \upharpoonright C) = C$.

$$f: [0,5] \rightarrow \mathbb{R}$$

g:[1,4] -> IR

Examples.

- Let $f(x)=x^{1/3}$ for all $x\in\mathbb{R}$ and let $g(x)=x^{1/3}$ for all $x\in[1,5)$. Then $g=f\!\upharpoonright\![1,5)$.
- Let $f(x)=\sqrt{x}$ for all $x\in[0,\infty)$, $g(x)=1-x^2$ for all $x\in\mathbb{R}$, and h(x)=1-x for all $x\in\mathbb{R}$. Then $g\circ f=h\!\upharpoonright\![0,\infty)$.

because for all
$$x \in [iA]$$
, $g(x) = f(x)$.

g = f [[1,4]

$$(g \circ f)(x) = g(f \circ u) = g(f \circ x) = 1 - f \circ x^2 = 1 - x$$

for all $x \in [0, \infty)$

Extension

Definition 2

Let f and g be functions. To say that \underline{f} is an extension of \underline{g} means that $\mathrm{Dom}(f) \supseteq \mathrm{Dom}(g)$ and for each $x \in \mathrm{Dom}(g)$, f(x) = g(x).

- Note f is an extension of g iff $Dom(f) \supseteq Dom(g)$ and $f \upharpoonright Dom(g) = g$.
- · Example. (Even or odd periodic extensions)

Let $f: [0, \infty) \to \mathbb{R}$ whose graph is as shown below

- g

Let $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = \begin{cases} f(x) & \text{if } x > 0 \\ f(-x) & \text{if } x < 0 \end{cases}$

By construction, g is an extension of f.

Note that g is an <u>even</u> function, so g is said to be an even extension of f.

4/13

· one-to-one · horizontal line test

Surjections, Injections, and Inverses

of is a surjection from A to B

I is not a surjection from A to B.

Surjections

Definition 3

Let A and B be sets. To say that f is a surjection from A to B means that f is a function from A to B and for each $y \in B$, there exists $x \in A$ such that f(x) = y.

Notes.

- A surjection from A to B is also said to be a function from A onto B.
- Any function is a surjection from its domain to its range.
- f is a surjection from A to B iff f is a function, $\mathrm{Dom}(f)=A$, and $\mathrm{Rng}(f)=B$ iff for each $y\in B$, the equation f(x)=y has at least one solution x in A.

Surjections (cont')

Example 4

- Let $f(x) = \sin(x)$ for all $x \in \mathbb{R}$. Then f is a surjection from \mathbb{R} to [-1,1], but f is not a surjection from \mathbb{R} to \mathbb{R} .
- Let $g(x) = \arctan(x)$ for all $x \in \mathbb{R}$. Then f is a surjection from \mathbb{R} to $(-\pi/2, \pi/2)$.

Injections

Note:
$$x_1 \neq x_2$$
 but $f(x_1) = f(x_2)$

Definition 5

To say that f is an injection means that f is a function and for all $x_1, x_2 \in \text{Dom}(f)$, if $f(x_1) = f(x_2)$, then $x_1 = x_2$.

$$(\forall \lambda_1, \lambda_2 \in Dom(f))[f(\lambda_1) = f(\lambda_2) \Rightarrow \lambda_1 = \lambda_2] \equiv (\forall \lambda_1, \lambda_2 \in Dom(f))[\lambda_1 \neq \lambda_2 \Rightarrow f(\lambda_1) \neq f(\lambda_2)]$$

Note.

- To say that f is an injection from A to B means that f is a function from A to B and f is an injection.
- An injection is also said to be a one-to-one function.
- f is an injection from A to B iff for each $y \in B$, the equation f(x) = y has at most one solution x in Aiff for all $x_1, x_2 \in A$, if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$.

Cf Similar cond. from injection

Injections (cont')

Example 6

Let $f(x) = x^2$ for all $x \in \mathbb{R}$ and let $g(x) = \sqrt{x}$ for all $x \in [0, \infty)$. Then:

• f is not an injection from $\mathbb R$ to $[0,\infty)$ because , for instance,

$$f(2) = 4 = f(-2)$$
.

• g is an injection from $[0,\infty)$ to $[0,\infty)$ because

for any
$$d_1, d_2 \in [0, \infty)$$
, if $g(d_1) = g(d_2)$, then $\sqrt{d_1} = \sqrt{d_2}$, so $d_1 = \sqrt{d_1} = \sqrt{d_2} = d_2$.

9/13