Exercise – 1:

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Minsup=0.1

```
{Bread, Milk, Diaper} → 3-itemset → frequent itemsets.
```

```
2-itemsets: {Bread, Milk} - 3/5 = 0.6;

{Bread, Diaper} - 3/5 = 0.6;

{Milk, Diaper} - 3/5 = 0.6

1-itemsets: {Bread} - 4/5 = 0.8;

{Milk} - 4/5 = 0.8;

{Diaper} - 4/5 = 0.8
```

All the frequent itemsets will be candidate itemsets but not all candidate itemsets will be not be frequent itemsets.

Exercise-1:

Transaction 1	Apple, beer, rice, chicken
Transaction 2	Apple, beer, rice
Transaction 3	Apple, beer
Transaction 4	Milk, beer, rice, chicken
Transaction 5	Milk, beer, rice
Transaction 6	Milk, beer

Minsup=0.2

Unique items: Apple, Beer, Rice, Chicken, Milk

Green highlight – frequent itemsets; Red highlight – only a candidate itemsets not frequent.

1-itemset:

{Apple}-3/6 = 0.5 {Beer}-6/6 = 1.0 {Rice}-4/6 = 0.67 {Chicken}-2/6 = 0.34 {Milk}-3/6 = 0.5

2-itemset

{Apple, Beer} -3/6 = 0.5 {Apple, Rice} - 2/6 = 0.34 {Apple, Chicken} - 1/6 = 0.16 {Apple, Milk} -- 0 {Beer, Rice} - 4/6 = 0.67 {Beer, Chicken} - 2/6 = 0.34 {Beer, Milk} - 3/6 = 0.5 {Rice, Chicken} - 2/6 = 0.34 {Rice, Milk} - 2/6 = 0.34 {Chicken, Milk} - 1/6 = 0.16

3-itemsets:

{Apple, Rice, Beer} - 2/6 = 0.34 {Apple, Beer, Chicken} --{Apple, Beer, Milk} --{Rice, Chicken, Milk} --{Beer, Milk, Rice} - 2/6 = 0.34 {Apple, Rice, Milk} --{Apple, Rice, Chicken} --{Beer, Chicken, Rice} - 2/6 = 0.34

4-itemsets:

{Apple, Rice, Beer, Milk} = {Beer, Milk, Chicken, Rice} = {Apple, Beer, Rice, Chicken} =

Frequently occurring itemsets – 15

Exercise – 2

Transaction 1	a, b, e
Transaction 2	b, d
Transaction 3	b, c
Transaction 4	a, b, d
Transaction 5	a, c
Transaction 6	b, c
Transaction 7	a, c
Transaction 8	a, b, c, e
Transaction 9	a, b, c

Minsup =0.2

Unique items: a, b, c, d, e

1-itemsets

$${b}=7/9=0.77$$

$${d}=2/9=0.22$$

$$\{e\}=2/9=0.22$$

2-itemsets

3-itemsets

$${a,b,c}=2/9 =0.22$$

 ${a,b,e}=2/9=0.22$

4-itemsets

Now computing the support, confidence and lift values for the rules.

Transaction ID	Items
T1	А, В, С
T2	A, C, D
Т3	B, C, D
Т4	A, D, E
Т5	В, С, Е

C=>A

Support: freq(C,A)/#Transactions = 2/5

Confidence: freq(C,A)/freq(C) = 2/4 = 0.5

Lift: support/support(C)*support(A)

support = 2/5

Support(C)*Support(A) = 4/5 * 3/5 = 12/25

Lift = 2/5 * 25/12 = 5/6

A=>C

Support: 2/5

Confidence: freq(C,A)/freq(A) = 2/3 = 0.67

Lift: support/support(A)*support(C) = (2/5)/(3/5)*(4/5) = 5/6

$$\{B, C\} => \{D\}$$

Support = 1/5; Confidence = 1/3; Lift = 5/9

Lift = Support/support(B,C)*support(D)

Support: 1/5

Support(B,C) = 3/5

Support(D) = 3/5

1/5 / (3/5 * 3/5) = (1/5) / (9/25) = 5/9