

使用指南

CM32M4xxR-LQFP128 开发板使用指南

V1. 0

目录

-,	概述	1
	硬件开发说明	
	2.1 开发板功能	1
	2.2 开发板布局	2
Ξ、	跳针使用说明	5
四、	开发板原理图	6
	4.1 电源设计	6
	4.2 MCU 连接	6
	4.3 外部时钟	7
	4.4 LED 指示灯设计	8
	4.5 按键设计	8
	4.6 拨码开关	9
	4.7 JTAG 电路	9
五、	历史版本	.11

一、概述

CM32M4xxR-LQFP128 开发板用于芯昇科技有限公司的 CM32M4xxR 系列芯片开发。本文档详细描述了 CM32M4xxR-LQFP128 开发板的功能、使用说明以及注意事项。

二、硬件开发说明

2.1 开发板功能

开发板主 MCU 型号为 CM32M4xxR 系列, LQFP128 管脚封装, 开发板将所有的功能接口都连接出来。方便客户开发。

开发板上提供有两个触摸按键 TSC;一个复位按键,一个 Wakeup 唤醒按键;一个触发 RTC 时间戳按键。

开发板上的 I2C1(PB6, PB7)设计有 1K 上拉电阻,与 I2C2、I2C3、I2C4 可实现互联通信。当不需要 PB6, PB7 的 1K 上拉电阻时,可通过拨码开关断开上拉电阻。

2.2 开发板布局

图 2.2 开发板布局

2.2.1 USB 供电(J1)

通过 Micro_USB 供电,板上 LDO 将 5V 转换成 3.3V。

2.2.2 烧写(J9)

板上提供有 JTAG 接口烧写调试方式。MCU 也支持蜂鸟调试,但 J9

接口与蜂鸟调试器线序不匹配,需要飞线连接。

2.2.3 串口(J4)

板上有一路串口引出,分别为 PE8(UART5_TX)、PE9(UART5_RX)。 板上设计有 USB 转串口芯片 U2。

2.2.4 复位和唤醒按键(SW1、SW2)

SW1、SW2 分别为复位和唤醒按键,分别连接芯片的 NRST 和 PAO-WKUP 管脚。用于芯片复位和唤醒功能。

2.2.5 纽扣电池座 (J6)

J6 为纽扣电池座。

2.2.6 GPIO 插针(J7、J8、J11)

芯片的 GPIO 接口全部引出,插针上也预留了 3.3V 和 GND 插针。

2.2.7 拨码开关(ON1)

通过拨码开关,可断开 GPIO 与外围器件的连接,如:断开 LED 指示灯 PBO、PB1、PB5;断开按键 PAO-WKUP、PC13-RTC;断开连接有 1K 上拉电阻的 GPIO PB6、PB7。

2.2.8 LED 指示灯(D1、D4、D5、D6)

3.3V 电源指示灯为 D1。

与 GPIO 相连的指示灯分别为红色 D4 (PBO), 绿色 D5 (PB1), 蓝色 D6 (PB5)。

2.2.9 触摸按键 TSC(PA4、PA5)

引出的两路触摸按键分别为 PA4、PA5, 也可以连接实体按键。

三、跳针使用说明

图 3.1 开发板跳针标识图

编号	跳针位号	跳针功能	使用说明	
1	Ј2	3.3V 跳针	短接 J2, 供电 3.3V 给 MCU 芯片	
2	J4	UART5 跳针	短接 J4, MCU 的 UART5 (PE8、PE9) 与 U 转串芯片 相连,可通过 Micro-USB (J1) 与 MCU 进行串口通信。	
3	J12	U转串电源跳针	短接 J12,为 U 转串芯片 CP2104 供电。	
4	J10	B00T 跳针	通过此跳针可分别将 B00T0、B00T1 连接 3. 3V 或者 GND	
5	ON1	拨码开关	通过拨码开关可将相应 MCU 管脚与外围器件断开。 D4 (PBO), D5 (PB1), D6 (PB5), WKUP (PAO), RTC (PC13), 1K 上拉 (PB6), 1K 上拉 (PB7)。	

四、开发板原理图

4.1 电源设计

参照图 4.1, PCB 通过 USB 输入 5V 电源, 再通过 LDO 转成 3.3V 为全板供电。

图 4.1 电源设计

4.2 MCU 连接

MCU 每一个电源管脚都设计有电容,数字电源 VDD 与模拟电源 VDDA 通过 0 欧姆电阻分开;数字地与模拟地通过 0 欧姆,如图 4.2.1。

所有引脚均连接到 J7、J8、J11 插针上。如图 4.2.2。

图 4.2.1 电源

图 4.2.2 GPIO 排针

4.3 外部时钟

参照图 4.3,分别为 32.768kHz 的低速外部时钟和 8MHz 的高速外部时钟。

图 4.3 外部时钟电路

4.4 LED 指示灯设计

参照图 4.4, 三颗 LED 指示灯分别连接在 MCU 的 PBO、PB1、PB5 管脚。并且可以通过拨码开关断开连接。

图 4.4 指示灯电路

4.5 按键设计

参考图 4.5.1 的设计,分别为复位按键,WKUP 按键,RTC 按键。参控图 4.5.2 的设计,为 TSC 按键。

图 4.5.2 TSC 按键

4.6 拨码开关

图 4.6 是拨码开关电路。

图 4.6 拨码开关

4.7 JTAG 电路

图 4.7 是 10Pin JTAG 接口电路。

五、历史版本

版本	日期	修改内容	作者
V0.1	20210908	新建	HuangLun
V1.0	20211015		HuangLun