Lycée Berthollet MPSI² 2023-24

Programme de colle de la semaine 7 (du 13 au 17 novembre 2023)

Programme des exercices

Fonctions trigonométriques hyperboliques

Fonctions trigonométriques hyperboliques (leurs réciproques sont hors-programme mais peuvent faire l'objet d'exercices).

Chapitre 6: Primitives

1 Fonctions à valeurs complexes

1.1 Définition

Définition de $f: I \to \mathbb{C}$, représentation graphique, fonctions Re(f) et Im(f), définition de $x \longmapsto x^{\alpha}$, pour $\alpha \in \mathbb{C}$.

1.2 Dérivabilité

Définition par les parties réelle et imaginaire. Opérations (en exercice) : combinaison linéaire, produit, quotient. Dérivée de $\exp \circ \varphi$, où φ est dérivable à valeurs complexes, dérivée de $g \circ f$, où f est dérivable à valeurs réelles et g est dérivable à valeurs complexes. Dérivée de $x \longmapsto x^{\alpha}$, pour $\alpha \in \mathbb{C}$.

1.3 Interprétation cinématique

Sur un exemple : vecteur vitesse.

2 Primitives

Les fonctions considérées ici sont définies sur un **intervalle** I de \mathbb{R} et à valeurs réelles ou complexes.

2.1 **Définitions**

Définition d'une primitive d'une fonction f, on admet que deux primitives d'une fonction définie sur un intervalle diffèrent d'une constante additive, notation (abusive) classique, exemple:

Pour
$$x \in \mathbb{R}$$
: $\int e^{\lambda x} dx = \frac{1}{\lambda} e^{\lambda x} + C$, $C \in \mathbb{C}$.

Utilisation de la linéarité 2.2

Exemple de $\int \frac{\mathrm{d}x}{x(x+1)} = \int \frac{\mathrm{d}x}{x} - \int \frac{\mathrm{d}x}{x+1}$. Méthode de calcul de $\int e^{ax} \cos(bx) \, \mathrm{d}x$ et $\int e^{ax} \sin(bx) \, \mathrm{d}x$, où $a,b \in \mathbb{R}$, parties réelle et imaginaire de $\int e^{(a+ib)x} dx$.

2.3 Primitivation "à vue"

Tableau des primitives classiques (sauf celles utilisant les fonctions trigonométriques hyperboliques réciproques).

Lorsque la fonction f dont on cherche une primitive n'est pas directement une dérivée d'une fonction classique, on cherche si ce n'est pas la dérivée d'une composée, i.e. de la forme f = $(g \circ u)u'$ avec g dont on connaît une primitive G. Si c'est le cas, un primitive de f est $G \circ u$. Exemples: $\int \frac{u'}{u}$, $\int u^{\alpha}u'$, avec $\alpha \in \mathbb{K} \setminus \{-1\}$ (cas particulier $\alpha = -\frac{1}{2}$), $\int e^{u}u'$, $\int \frac{dx}{x^{2}+a^{2}}$.

Algorithme de calcul de $\int \frac{Ax+B}{ax^2+bx+c} dx$ 2.4

Remarque importante : l'algorithme est décrit dans le cas général en utilisant des constantes littérales, mais le savoir-faire qu'il faut acquérir est l'exécution de cet algorithme sur des cas numériques concrets.

Exemple pour chacun des cas de figure.

2.5 Algorithme de primitivation des polynômes trigonométriques

Par linéarité, il suffit de savoir trouver les primitives des monômes. Pour $p,q \in \mathbb{N}$, méthode de calcul de $\int \sin^p(x) \cos^q(x) dx$ suivant la parité ou l'imparité de p et de q.

Exemple pour chacun des cas de figure.

Intégration 2.6

On se place à ce stade dans le cadre des fonctions continues sur un segment. L'intégrale sera définie ultérieurement.

- Rappel des propriétés de l'intégrale : linéarité, positivité, croissance, inégalité "triangulaire", relation de Chasles.
- Théorème fondamental (admis) : si f est continue sur I, alors $x \mapsto \int_{r_0}^x f(t)dt$ est dérivable de dérivée f. Conséquences : toute fonction continue admet des primitives, calcul d'une intégrale à l'aide d'une primitive.

2.7 Intégration par parties

- Définition du fait qu'une fonction est de classe C^1 sur un intervalle.
- Théorème d'intégration par parties (*version intégrales*) avec l'hypothèse que f et g sont de classe C^1 sur un intervalle I et $(a,b) \in I^2$.
- Théorème d'intégration par parties (*version primitives*) : sous les mêmes hypothèses, $\int fg' = fg \int f'g$.

2.8 Changement de variables

— Théorème de changement de variable (*version intégrales*) avec les hypothèses : I est un intervalle de \mathbb{R} , φ est à valeurs réelles et de classe \mathcal{C}^1 sur I, f est continue sur $\varphi(I)$, $a,b \in I$ et la conclusion

$$\int_{\Phi(a)}^{\Phi(b)} f(x) dx = \int_a^b f(\Phi(t)) \Phi'(t) dt.$$

Théorème de changement de variable (*version primitives*) : dans ce cas, on prend comme hypothèse supplémentaire que la dérivée φ' ne s'annule jamais (par le TVI, elle a alors une dérivée toujours strictement positive ou toujours strictement négative). Elle admet alors une fonction réciproque dérivable et cela permet de revenir à une expression en la variable de départ à la fin du calcul. La conclusion du théorème (qui est que si on note ψ une primitive de $(f \circ \varphi)\varphi'$, alors $\psi \circ \varphi^{-1}$ est une primitive de f) se traduit par l'abus de notations suivant :

$$\int f(x) \, dx = \int f(\varphi(u)) \varphi'(u) \, du = \psi(u) + C^{te} = \psi \circ \varphi^{-1}(x) + C^{te}.$$

Programme des questions de cours

Chapitre 7 : Équations différentielles linéaires

1 Équations différentielles linéaires d'ordre 1

1.1 Définitions

Une EDL1 est une équation fonctionnelle d'inconnue y de la forme (E): y' + a(x)y = b(x), où a et b sont deux fonctions continues sur un intervalle I à valeurs dans \mathbb{K} .

La fonction a s'appelle le *coefficient* (on parle de coefficient constant lorsque cette fonction est constante), la fonction b s'appelle le *second membre* et une *solution* est une fonction dérivable $\phi: I \to \mathbb{K}$ telle que

$$\forall x \in I, \ \mathbf{\phi}'(x) + a(x)\mathbf{\phi}(x) = b(x).$$

Toute solution est automatiquement de classe C^1 .

1.2 Résolution de l'équation homogène

L'équation homogène associée à (E) est (H): y' + a(x)y = 0.

Analyse des solutions dans le cas où elles sont réelles et ne s'annulent pas, puis énoncé et démonstration du théorème décrivant toutes les solutions dans le cas réel ou complexe :

Théorème 1 Résolution des EDL1.

Si A est une primitive de a, les solutions de (H) sont les fonctions Ke^{-A} , où K parcourt \mathbb{K} .

Vocabulaire : notion de solution générale de l'équation homogène.

Cas particulier des coefficients constants, équation caractéristique (C): r+a=0.

Remarque que toute combinaison linéaire de solutions de l'équation homogène en est encore solution.

1.3 Résolution de l'équation avec second membre

Toute différence de solutions de (E) est une solution de (H), donc **la** solution générale de l'équation avec second membre est la somme d'**une** solution particulière de l'équation avec second membre et de **la** solution générale de l'équation homogène.

Si on "devine" une solution particulière de l'équation avec second membre, on a terminé.

Dans le cas particulier du **coefficient constant** et d'un second membre du type produit d'une fonction polynôme par une fonction sinusoïdale ($\mathbb{K} = \mathbb{R}$) ou produit d'une fonction polynôme par une fonction exponentielle ($\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$), il existe une solution particulière d'une forme spécifique, qu'on décrit.

Principe de superposition des solutions.

Théorème 2 Méthode générale : variation de la constante.

Si $x \mapsto K(x)$ est une primitive de be^A, alors $x \mapsto K(x)e^{-A(x)}$ est une solution de (E).

1.4 Problème de Cauchy pour les EDL1

Théorème d'existence et d'unicité d'une solution à un problème de Cauchy donné pour une EDL1 : pour tout $(x_0, y_0) \in I \times \mathbb{K}$, il existe une unique solution φ de (E) telle que $\varphi(x_0) = y_0$.

2 Équations différentielles linéaires d'ordre 2 à coefficients constants

2.1 Définitions

Une EDL2 à coefficients constants est une équation fonctionnelle d'inconnue y de la forme (E): y'' + ay' + by = f(x), où $a, b \in \mathbb{K}$ et f est une fonction continue sur un intervalle I à valeurs dans \mathbb{K} .

Les constantes a et b s'appellent les *coefficients*, la fonction f s'appelle le *second membre* et une *solution* est une fonction dérivable $\varphi: I \to \mathbb{K}$ telle que

$$\forall x \in I, \ \varphi''(x) + a\varphi'(x) + b\varphi(x) = f(x).$$

Toute solution est automatiquement de classe C^2 .

2.2 Résolution de l'équation homogène

L'équation homogène associée à (E) est (H): y'' + ay' + by = 0.

L'équation caractéristique de (H) est l'équation du second degré (C): $r^2 + ar + b = 0$.

On admet les théorèmes donnant les solutions dans les deux cas, réel et complexe.

Remarque que toute combinaison linéaire de solutions de l'équation homogène en est encore solution.

2.3 Cas particuliers de résolution de l'équation avec second membre

Toute différence de solutions de (E) est une solution de (H), donc **la** solution générale de l'équation avec second membre est la somme d'**une** solution particulière de l'équation avec second membre et de **la** solution générale de l'équation homogène.

Si on "devine" une solution particulière de l'équation avec second membre, on a terminé.

Dans le cas particulier d'un second membre du type fonction sinusoïdale ($\mathbb{K} = \mathbb{R}$) ou produit d'une fonction polynôme par une fonction exponentielle ($\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$), il existe une solution particulière d'une forme spécifique, qu'on décrit.

Principe de superposition des solutions.

La variation de la constante pour l'ordre 2 est hors programme en première année.

2.4 Problème de Cauchy pour les EDL2

Théorème d'existence et d'unicité d'une solution à un problème de Cauchy donné pour une EDL2 à coefficients constants (admis) : pour tout $(x_0, y_0, \widetilde{y_0}) \in I \times \mathbb{K}^2$, il existe une unique solution φ de (E) telle que $\varphi(x_0) = y_0$ et $\varphi'(x_0) = \widetilde{y_0}$.

Toutes les définitions et tous les énoncés sont exigibles.

Démonstrations de cours exigibles

- Calcul de $\int \frac{\mathrm{d}x}{\tan(x)(\sin(x)+1)}$ pour $x \in \left]0, \frac{\pi}{2}\right[$, à l'aide du changement de variables $x = \operatorname{Arcsin}(u)$ en vérifiant scrupuleusement les hypothèses du théorème;
- Calcul de $\int \frac{\mathrm{d}x}{\tan(x)(\sin(x)+1)}$ pour $x \in \left]0, \frac{\pi}{2}\right[$, en appliquant le changement de variables $u = \sin(x)$ à une primitive "en u" judicieuse et en vérifiant scrupuleusement les hypothèses du théorème;
- Calcul de $\int \frac{dx}{\tan(x)(\sin(x)+1)}$ pour $x \in \left]0, \frac{\pi}{2}\right[$ par primitivation à vue;
- Démontration du théorème de résolution des EDL1 homogènes à coefficient continu;
- Démonstration de l'existence et de l'unicité de la solution à un problème de Cauchy pour une EDL1 à coefficient et second membre continus;
- Résolution de l'équation différentielle $xy'-y-x^2\cos(x)=0$ sur \mathbb{R}_{+}^{\star} ou \mathbb{R}_{+}^{\star} .