En la exposición siguiente se presentan las transformadas de Laplace de funciones, así como teoremas sobre la transformada de Laplace, útiles en el estudio de sistemas lineales de control.

Tabla 1-1 Pares de transformadas de Laplace

INDIN 1-1	I ales de transformados de Espera	
	f(t)	F(s)
1	Impulso unitario $\delta(t)$	ı
2	Escalón unitario 1(t)	<u>1</u> s
3	t	$\frac{1}{s^2}$
4	$\frac{t^{n-1}}{(n-1)!} \qquad (n=1,2,3,\ldots)$	<u>1</u> s"
5	t^n $(n = 1,2,3, \ldots)$	$\frac{n!}{s^{n+1}}$
6	e ^{-at}	$\frac{1}{s+a}$
7	te ^{-at}	$\frac{1}{(s+a)^2}$
8	$\frac{1}{(n-1)!}t^{n-1}e^{-ut} \qquad (n=1,2,3,\ldots)$	$\frac{1}{(s+a)^n}$
9	$t^n e^{-at}$ $(n = 1,2,3, \ldots)$	$\frac{n!}{(s+a)^{n+1}}$
10	sen ωt	$\frac{\omega}{s^2 + \omega^2}$
11	cos ωt	$\frac{s}{s^2 + \omega^2}$
12	sen h ωt	$\frac{\omega}{s^2-\omega^2}$
13	cosh ωt	$\frac{s}{s^2-\omega^2}$
14	$\frac{1}{a}(1-e^{-at})$	$\frac{1}{s(s+a)}$
15	$\frac{1}{b-a}(e^{-at}-e^{-bt})$	$\frac{1}{(s+a)(s+b)}$
16	$\frac{1}{b-a}(be^{-bt}-ae^{-at})$	$\frac{s}{(s+a)(s+b)}$
17	$\frac{1}{ab}\left[1+\frac{1}{a-b}(be^{-at}-ae^{-bt})\right]$	$\frac{1}{s(s+a)(s+b)}$

Tabla 1-	1 Continuación	
18	$\frac{1}{a^2}(1-e^{-at}-ate^{-at})$	$\frac{1}{s(s+a)^2}$
19	$\frac{1}{a^2}(at-1+e^{-at})$	$\frac{1}{s^2(s+a)}$
20	e^{-at} sen ωt	$\frac{\omega}{(s+a)^2+\omega^2}$
21	e-at cos wt	$\frac{s+a}{(s+a)^2+\omega^2}$
22	$\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin\omega_n\sqrt{1-\zeta^2}t$	$\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
23	$-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_{n}t}\operatorname{sen}(\omega_{n}\sqrt{1-\zeta^2}t-\phi)$ $\phi=\tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta}$	$\frac{s}{s^2 + 2\zeta \omega_n s + \omega_n^2}$
24	$1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_{m} t} \operatorname{sen}(\omega_{m} \sqrt{1 - \zeta^2} t + \phi)$ $\phi = \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta}$	$\frac{\omega_n^2}{s(s^2+2\zeta\omega_n s+\omega_n^2)}$
25	$1 - \cos \omega t$	$\frac{\omega^2}{s(s^2+\omega^2)}$
26	$\omega t - \operatorname{sen} \omega t$	$\frac{\omega^3}{s^2(s^2+\omega^2)}$
27	$sen \omega t - \omega t cos \omega t$	$\frac{2\omega^3}{(s^2+\omega^2)^2}$
28	$\frac{1}{2\omega}t \operatorname{sen}\omega t$	$\frac{s}{(s^2+\omega^2)^2}$
29	t cos ωt	$\frac{s^2-\omega^2}{(s^2+\omega^2)^2}$
30	$\frac{1}{\omega_2^2 - \omega_1^2} (\cos \omega_1 t - \cos \omega_2 t) \qquad (\omega_1^2 \neq \omega_2^2)$	$\frac{s}{(s^2 + \omega_1^2)(s^2 + \omega_2^2)}$
31	$\frac{1}{2\omega}\left(\operatorname{sen}\omega t + \omega t \cos \omega t\right)$	$\frac{s^2}{(s^2+\omega^2)^2}$

Traslación de una función. Se requiere obtener la transformada de Laplace de una función trasladada $f(t-\alpha)1(t-\alpha)$, donde $\alpha \ge 0$. Esta función es cero para $t < \alpha$. Las funciones f(t)1(t) y $f(t-\alpha)1(t-\alpha)$ aparecen en la figura 1-8.

Tabla 1-2 Propiedades de las transformadas de Laplace

1	$\mathcal{L}[Af(t)] = AF(s)$	
2	$\mathscr{L}[f_1(t) \pm f_2(t)] = F_1(s) \pm F_2(s)$	
3	$\mathcal{L}_{\pm}\left[\frac{d}{dt}f(t)\right] = sF(s) - f(0\pm)$	
4	$\mathcal{L}_{\pm}\left[\frac{d^2}{dt^2}f(t)\right] = s^2F(s) - sf(0\pm) - \dot{f}(0\pm)$	
5	$\mathcal{L}_{\pm}\left[\frac{d^n}{dt^n}f(t)\right] = s^n F(s) - \sum_{k=1}^n s^{n-k} f(0\pm 1)$ $\text{donde} f(t) = \frac{d^{k-1}}{dt^{k-1}} f(t)$	
6	$\mathcal{L}_{\pm}\left[\int f(t) dt\right] = \frac{F(s)}{s} + \frac{\left[\int f(t) dt\right]_{t=0\pm}}{s}$	
7	$\mathcal{L}_{\pm}\left[\iint f(t) dt dt\right] = \frac{F(s)}{s^2} + \frac{\left[\iint f(t) dt\right]_{t=0\pm}}{s^2} + \frac{\left[\iint f(t) dt dt\right]_{t=0\pm}}{s}$	
8	$\mathcal{L}_{\pm}\left[\int \cdots \int f(t)(dt)^n\right] = \frac{F(s)}{s^n} + \sum_{k=1}^n \frac{1}{s^{n-k+1}} \left[\int \cdots \int f(t)(dt)^k\right]_{t=0\pm}$	
9	$\mathscr{L}\left[\int_0^t f(t) dt\right] = \frac{F(s)}{s}$	
10	$\int_0^\infty f(t) dt = \lim_{s \to 0} F(s) \qquad \text{si } \int_0^\infty f(t) dt \text{ existe}$	
11	$\mathscr{L}[e^{-at}f(t)] = F(s+a)$	
12	$\mathcal{L}[f(t-\alpha)](t-\alpha)] = e^{-\alpha s}F(s) \qquad \alpha \ge 0$	
13	$\mathcal{L}[if(t)] = -\frac{dF(s)}{ds}$	
14	$\mathscr{L}[t^2f(t)] = \frac{d^2}{ds^2}F(s)$	
15	$\mathcal{L}[t^n f(t)] = (-1)^n \frac{d^n}{ds^n} F(s) \qquad n = 1, 2, 3, \dots$	
16	$\mathscr{L}\left[\frac{1}{t}f(t)\right] = \int_{s}^{\infty} F(s) ds$	
, 17	$\mathscr{L}\left[f\left(\frac{t}{a}\right)\right] = aF(as)$	