Desafío STEM: Determinación del Coeficiente de Temperatura de la Resistencia Eléctrica del Cobre

Objetivo

Determinar experimentalmente el coeficiente de temperatura α de la resistencia eléctrica del cobre a partir del análisis de la variación de su resistencia en función de la temperatura.

Conexiones STEM

- Ciencia: Aplicación del modelo de resistividad en función de la temperatura y ley de Joule.
- Tecnología: Uso de multímetros digitales, fuentes de voltaje regulable, termómetro con bulbo metálico.
- Ingeniería: Diseño experimental para evitar sobrecalentamiento y obtener datos seguros y
 útiles.
- Matemáticas: Linealización de relaciones físicas, pendiente de rectas.

Materiales

- Fuente de voltaje DC variable.
- Dos multímetros digitales.
- Termómetro de mercurio con alambre de cobre enrollado en el bulbo.
- Cubeta con hielo.
- Cables de conexión.

Resumen Teórico

El coeficiente de temperatura α cuantifica cómo varía la resistencia eléctrica de un material con la temperatura. Para un rango de temperatura moderado, se cumple:

$$R = R_0[1 + \alpha(t - t_0)] \iff \frac{R}{R_0} = 1 + \alpha \cdot \Delta t$$

donde R_0 es la resistencia a la temperatura ambiente t_0 , R es la resistencia a una temperatura t, y α es el coeficiente de temperatura en ${}^{\circ}C^{-1}$.

Procedimiento Experimental

Fase 1: Medición inicial a temperatura ambiente

- 1. Monte el circuito con el alambre de cobre enrollado sobre el bulbo del termómetro.
- 2. Coloque el termómetro sobre un soporte sin que toque superficies calientes.
- 3. Mida la resistencia inicial R_0 a temperatura ambiente (t_0) sin aplicar voltaje.

Fase 2: Mediciones a diferentes temperaturas

- 1. Introduzca el bulbo en una cubeta con hielo para obtener mediciones a $0^{\circ}C$.
- 2. Aplique un voltaje bajo (1.0 V). Espere 5 minutos hasta alcanzar equilibrio térmico.
- 3. Mida voltaje V, corriente I, y temperatura t. Repita para diferentes valores de voltaje, sin superar 5.0 V ni $180\,^{o}C$.
- 4. Complete la siguiente tabla:

Tabla 1. Datos experimentales primarios

V(V)	I(A)	$t(^{o}C)$

5. Calcule la resistencia $R=\frac{V}{I},$ el cambio de temperatura $\Delta t=t-t_0,$ y la razón $\frac{R}{R_0}.$

Tabla 2. Cálculos para determinar α

$R = \frac{V}{I}\Omega$	$\Delta t = t - t_0(^{\circ}C)$	$\frac{R}{R_0}$

Análisis

- Realice una gráfica de $\frac{R}{R_0}$ vs Δt .
- Determine la pendiente de la recta ajustada: esta corresponde a α .
- Compare su valor con el valor teórico del cobre: $\alpha_{\text{teórico}} \approx 0,0039 \,^{\circ} C^{-1}$.
- Discuta posibles fuentes de error y limitaciones del modelo.

Rúbrica para Informe Escrito (5.0 puntos)

Criterio	Puntaje Máximo
Claridad en la presentación del objetivo y marco teórico	1.0
Descripción precisa del procedimiento y cuidados del experi-	1.0
mento	
Presentación de tablas, cálculos, y gráfica con interpretación	1.5
Discusión de resultados y comparación con valores teóricos	1.0
Redacción clara, sin errores ortográficos o conceptuales	0.5
Total	5.0

Rúbrica para Sustentación Oral (5.0 puntos)

Criterio	Puntaje Máximo
Claridad en la exposición del fenómeno físico y objetivo	1.0
Dominio del procedimiento experimental y prevención de ries-	1.0
gos Capacidad para interpretar la gráfica y explicar cómo se obtiene α	1.0
Respuestas adecuadas a las preguntas del jurado	1.0
Participación equilibrada de todos los miembros del equipo	1.0
Total	5.0

Nota final:Promedio del informe y la exposición.