## **SUVAT Past Paper Questions**

## Jan 2002 to Jan 2009

| 7 | (a) | An egg of mass $5.8 \times 10^{-2} \rm kg$ is dropped from a height of 1.5 m onto a floor. Assuming air resistance is negligible, calculate for the egg |                                                                                                                                             |  |  |  |  |
|---|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|   |     | (i)                                                                                                                                                     | the loss of potential energy, Q7 Jun 2002                                                                                                   |  |  |  |  |
|   |     |                                                                                                                                                         |                                                                                                                                             |  |  |  |  |
|   |     | (ii)                                                                                                                                                    | the kinetic energy just before impact,                                                                                                      |  |  |  |  |
|   |     | (iii)                                                                                                                                                   | the speed just before impact,                                                                                                               |  |  |  |  |
|   |     |                                                                                                                                                         |                                                                                                                                             |  |  |  |  |
|   |     | (iv)                                                                                                                                                    | the momentum just before impact.                                                                                                            |  |  |  |  |
|   |     |                                                                                                                                                         | (7 marks)                                                                                                                                   |  |  |  |  |
|   | (b) |                                                                                                                                                         | nitting the floor, the egg is brought to rest in a time of 0.010 s. Calculate the magnitude of verage decelerating force on the egg.        |  |  |  |  |
|   |     |                                                                                                                                                         |                                                                                                                                             |  |  |  |  |
|   |     |                                                                                                                                                         | (2 marks)                                                                                                                                   |  |  |  |  |
|   | (c) |                                                                                                                                                         | egg is now placed in a container that crumples on impact. Explain why this type of container es it far less likely that the egg will break. |  |  |  |  |
|   |     |                                                                                                                                                         |                                                                                                                                             |  |  |  |  |
|   |     |                                                                                                                                                         |                                                                                                                                             |  |  |  |  |
|   |     |                                                                                                                                                         |                                                                                                                                             |  |  |  |  |
|   |     |                                                                                                                                                         |                                                                                                                                             |  |  |  |  |

(2 marks)

1 A car accelerates from rest to a speed of 26 m s<sup>-1</sup>. The table shows how the speed of the car varies over the first 30 seconds of motion. Q1 Jan 2006

| time/s                  | 0 | 5.0  | 10.0 | 15.0 | 20.0 | 25.0 | 30.0 |
|-------------------------|---|------|------|------|------|------|------|
| speed/m s <sup>-1</sup> | 0 | 16.5 | 22.5 | 24.5 | 25.5 | 26.0 | 26.0 |

(a) Draw a graph of speed against time on the grid provided.



(3 marks)

| (b) | Calculate the | average accele                         | ration of the ca | r over the first 2 | 5 s.           |                 |
|-----|---------------|----------------------------------------|------------------|--------------------|----------------|-----------------|
|     |               |                                        |                  |                    |                |                 |
|     |               |                                        |                  |                    |                | (2 marks)       |
| (c) | Use your grap | oh to estimate t                       | he distance trav | velled by the car  | in the first 2 | 5 s.            |
|     |               |                                        |                  |                    |                |                 |
|     |               |                                        |                  |                    |                |                 |
|     |               |                                        |                  |                    |                |                 |
|     |               |                                        |                  |                    |                | (2 marks)       |
| (d) |               | s below, sketche first 30 s of n       |                  | w how the resul    | tant force ac  | ting on the car |
| re  | sultant force |                                        |                  |                    |                |                 |
|     |               |                                        |                  |                    |                |                 |
|     |               |                                        |                  |                    |                |                 |
|     |               |                                        |                  |                    |                |                 |
|     |               |                                        |                  |                    |                |                 |
|     |               |                                        |                  |                    |                |                 |
|     | 0 -           |                                        |                  |                    | time           | (2 marks)       |
| (e) |               | nape of the grap<br>otted in part (a). |                  | etched in part (d  | ), with refere | ence to the     |
|     |               |                                        |                  |                    |                |                 |
|     |               |                                        |                  |                    |                |                 |
|     |               |                                        | •••••            |                    |                |                 |
|     |               |                                        |                  |                    |                | (2 marks)       |

| 6 | A supertanker of mass $4.0 \times 10^8$ kg, cruising at an initial speed of $4.5 \mathrm{ms^{-1}}$ , takes one hold come to rest. |       |                                                                                                   |
|---|-----------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------|
|   | (a)                                                                                                                               | Assu  | iming that the force slowing the tanker down is constant, calculate                               |
|   |                                                                                                                                   | (i)   | the deceleration of the tanker, Q6 Jun 2006                                                       |
|   |                                                                                                                                   |       |                                                                                                   |
|   |                                                                                                                                   | (ii)  | the distance travelled by the tanker while slowing to a stop.                                     |
|   |                                                                                                                                   |       |                                                                                                   |
|   |                                                                                                                                   |       | (4 marks)                                                                                         |
|   | (b)                                                                                                                               |       | ch, using the axes below, a distance-time graph representing the motion of the er until it stops. |
|   |                                                                                                                                   |       | distance                                                                                          |
|   |                                                                                                                                   |       |                                                                                                   |
|   |                                                                                                                                   |       |                                                                                                   |
|   |                                                                                                                                   |       | 0 time                                                                                            |
|   | (c)                                                                                                                               | Expl  | ain the shape of the graph you have sketched in part (b).                                         |
|   |                                                                                                                                   |       |                                                                                                   |
|   |                                                                                                                                   |       |                                                                                                   |
|   |                                                                                                                                   |       |                                                                                                   |
|   |                                                                                                                                   | ••••• | (2 marks)                                                                                         |

| chase the antelope. The antelope takes 0.50 s to react. It then accelerates uniformly for 2.0 s to a speed of 25 m s <sup>-1</sup> and then maintains this speed. The graph shows the speed-time graph for the cheetah.  speed/m s <sup>-1</sup> 35  30  25  10  15  20  time/s  (i) Using the same axes plot the speed-time graph for the antelope during the chase.                                                                                                                                                                                                                                    | (iii) the distance it travels while it is moving at constant speed.  (4)  (b) The cheetah and an antelope are both at rest and 100 m apart. The cheetah starts chase the antelope. The antelope takes 0.50 s to react. It then accelerates unifor 2.0 s to a speed of 25 m s <sup>-1</sup> and then maintains this speed. The graph shows the time graph for the cheetah.  (a)  (b) The cheetah and an antelope are both at rest and 100 m apart. The cheetah starts chase the antelope. The antelope takes 0.50 s to react. It then accelerates unifor 2.0 s to a speed of 25 m s <sup>-1</sup> and then maintains this speed. The graph shows the time graph for the cheetah. | ts to<br>rmly for |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| (iii) the distance it travels while it is moving at constant speed.  (4 marks)  (b) The cheetah and an antelope are both at rest and 100 m apart. The cheetah starts to chase the antelope. The antelope takes 0.50 s to react. It then accelerates uniformly for 2.0 s to a speed of 25 m s <sup>-1</sup> and then maintains this speed. The graph shows the speed-time graph for the cheetah.  (a) speed/m s <sup>-1</sup> 35                                                                                                                                                                          | (iii) the distance it travels while it is moving at constant speed.  (4)  (b) The cheetah and an antelope are both at rest and 100 m apart. The cheetah starts chase the antelope. The antelope takes 0.50 s to react. It then accelerates unifor 2.0 s to a speed of 25 m s <sup>-1</sup> and then maintains this speed. The graph shows the time graph for the cheetah.  (a)  (b) The cheetah and an antelope are both at rest and 100 m apart. The cheetah starts chase the antelope. The antelope takes 0.50 s to react. It then accelerates unifor 2.0 s to a speed of 25 m s <sup>-1</sup> and then maintains this speed. The graph shows the time graph for the cheetah. | ts to<br>rmly for |
| (b) The cheetah and an antelope are both at rest and 100 m apart. The cheetah starts to chase the antelope. The antelope takes 0.50 s to react. It then accelerates uniformly for 2.0 s to a speed of 25 m s <sup>-1</sup> and then maintains this speed. The graph shows the speed-time graph for the cheetah.  speed/m s <sup>-1</sup> 35  30  25  10  15  20  time/s  (i) Using the same axes plot the speed-time graph for the antelope during the chase.  Calculate the distance covered by the antelope in the 17 s after the cheetah started                                                      | (b) The cheetah and an antelope are both at rest and 100 m apart. The cheetah starts chase the antelope. The antelope takes 0.50 s to react. It then accelerates unifor 2.0 s to a speed of 25 m s <sup>-1</sup> and then maintains this speed. The graph shows the time graph for the cheetah.  speed/m s <sup>-1</sup> 35  30  25  4 Cheetah                                                                                                                                                                                                                                                                                                                                  | ts to<br>rmly for |
| (b) The cheetah and an antelope are both at rest and 100 m apart. The cheetah starts to chase the antelope. The antelope takes 0.50 s to react. It then accelerates uniformly for 2.0 s to a speed of 25 m s <sup>-1</sup> and then maintains this speed. The graph shows the speed-time graph for the cheetah.  speed/m s <sup>-1</sup> 35  30  25  10  15  20  time/s  (i) Using the same axes plot the speed-time graph for the antelope during the chase.  Calculate the distance covered by the antelope in the 17 s after the cheetah started                                                      | (b) The cheetah and an antelope are both at rest and 100 m apart. The cheetah starts chase the antelope. The antelope takes 0.50 s to react. It then accelerates unifor 2.0 s to a speed of 25 m s <sup>-1</sup> and then maintains this speed. The graph shows the time graph for the cheetah.  speed/m s <sup>-1</sup> 35  30  25  4 Cheetah                                                                                                                                                                                                                                                                                                                                  | ts to<br>rmly for |
| (b) The cheetah and an antelope are both at rest and 100 m apart. The cheetah starts to chase the antelope. The antelope takes 0.50 s to react. It then accelerates uniformly for 2.0 s to a speed of 25 m s <sup>-1</sup> and then maintains this speed. The graph shows the speed-time graph for the cheetah.  speed/m s <sup>-1</sup> 35  30  25  10  15  10  5  10  15  20  10  15  20  10  15  20  10  15  20  10  15  20  10  15  20  10  17  18  19  19  10  20  21  21  22  23  24  25  25  26  27  28  28  Calculate the distance covered by the antelope in the 17 s after the cheetah started | The cheetah and an antelope are both at rest and 100 m apart. The cheetah starts chase the antelope. The antelope takes 0.50 s to react. It then accelerates unifor 2.0 s to a speed of 25 m s <sup>-1</sup> and then maintains this speed. The graph shows the time graph for the cheetah.  speed/m s <sup>-1</sup> 35  30  25  cheetah                                                                                                                                                                                                                                                                                                                                        | ts to<br>rmly for |
| chase the antelope. The antelope takes 0.50 s to react. It then accelerates uniformly for 2.0 s to a speed of 25 m s <sup>-1</sup> and then maintains this speed. The graph shows the speed-time graph for the cheetah.  speed/m s <sup>-1</sup> 35  30  25  10  15  10  5  10  15  20  time/s  (i) Using the same axes plot the speed-time graph for the antelope during the chase.  Calculate the distance covered by the antelope in the 17 s after the cheetah started                                                                                                                               | chase the antelope. The antelope takes 0.50 s to react. It then accelerates unifor 2.0 s to a speed of 25 m s <sup>-1</sup> and then maintains this speed. The graph shows the time graph for the cheetah.  speed/m s <sup>-1</sup> 35 30 25 cheetah                                                                                                                                                                                                                                                                                                                                                                                                                            | rmly for          |
| Calculate the distance covered by the antelope in the 17 s after the cheetah started                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , and to a        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | How far apart are the cheetah and the antelope after 17 s?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| How far apart are the cheetah and the antelope after 17 s?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |

The distance-time graphs for two runners, A and B, in a 100 m race are shown. distance/m Q1 Jun 2007 100 80 60 40 20time/s Explain how the graph shows that athlete B accelerates throughout the race. (1 mark) Estimate the maximum distance between the athletes. (b) (1 mark) Calculate the speed of athlete A during the race. (1 mark) The acceleration of athlete B is uniform for the duration of the race. (d) State what is meant by uniform acceleration. (i)

(3 marks)

Calculate the acceleration of athlete B.

| 5 | An aircraft accelerates horizontally from rest and takes off when its speed is $82 \mathrm{ms}^{-1}$ . The mass of the aircraft is $5.6 \times 10^4 \mathrm{kg}$ and its engines provide a constant thrust of $1.9 \times 10^5 \mathrm{N_{\odot}}$ |       |                                                                                                                                                           |  |  |  |  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|   | (a)                                                                                                                                                                                                                                                | Calc  | ulate Q5 Jan 2008                                                                                                                                         |  |  |  |  |
|   |                                                                                                                                                                                                                                                    | (i)   | the initial acceleration of the aircraft,                                                                                                                 |  |  |  |  |
|   |                                                                                                                                                                                                                                                    |       |                                                                                                                                                           |  |  |  |  |
|   |                                                                                                                                                                                                                                                    | (ii)  | the minimum length of runway required, assuming the acceleration is constant.                                                                             |  |  |  |  |
|   |                                                                                                                                                                                                                                                    |       |                                                                                                                                                           |  |  |  |  |
|   |                                                                                                                                                                                                                                                    |       | (3 marks)                                                                                                                                                 |  |  |  |  |
|   | (b)                                                                                                                                                                                                                                                | _     | actice, the acceleration is unlikely to be constant. State a reason for this and ain what effect this will have on the minimum length of runway required. |  |  |  |  |
|   |                                                                                                                                                                                                                                                    |       |                                                                                                                                                           |  |  |  |  |
|   |                                                                                                                                                                                                                                                    |       |                                                                                                                                                           |  |  |  |  |
|   |                                                                                                                                                                                                                                                    | ••••• | (2 marks)                                                                                                                                                 |  |  |  |  |
|   | (c)                                                                                                                                                                                                                                                |       | taking off, the aircraft climbs at an angle of $22^{\circ}$ to the ground. The thrust from ngines remains at $1.9 \times 10^{5}$ N. Calculate             |  |  |  |  |
|   |                                                                                                                                                                                                                                                    | (i)   | the horizontal component of the thrust,                                                                                                                   |  |  |  |  |
|   |                                                                                                                                                                                                                                                    |       |                                                                                                                                                           |  |  |  |  |
|   |                                                                                                                                                                                                                                                    | (ii)  | the vertical component of the thrust.                                                                                                                     |  |  |  |  |
|   |                                                                                                                                                                                                                                                    |       | (2 marks)                                                                                                                                                 |  |  |  |  |