

AD-A086 496 PRINCETON UNIV N J DEPT OF CIVIL AND GEOLOGICAL ENG--ETC F/G 20/11
NONLOCAL STRESS FIELD AT GRIFFITH CRACK.(U)
JUN 80 N ARI, A C ERINGEN N00014-76-C-0240
UNCLASSIFIED 80-SM-7 NL

[06]
AD
A086496

END
DATE FILMED
8-50
DTIC

AUAU86496

LEVEL 12

PRINCETON UNIVERSITY
Department of Civil Engineering

This document has been approved
for public release and sale; its
distribution is unlimited.

STRUCTURES AND MECHANICS

80 7 2 003

WUC FILE COPY

12

9
Technical Rep. No. 54
Civil Engng. Res. Rep. No. 80-SM-7

14 TR-54

6 NONLOCAL STRESS FIELD
AT GRIFFITH CRACK

by Cemal

10 N. Ari ■ A.C. Eringen
Princeton University

Research Sponsored by the
Office of Naval Research
15 under
Contract N00014-76-C-0240 Mod 4
Task No. NR 064-410

11 Jun 80

12 29

Approved for public release; distribution unlimited.

Reproduction in whole or in part is permitted for
any purpose of the United States Government.

Accession No.	
NTIS GRA&I	
DDC TAB	
Unannounced	
Justification	
By	
Distribution	
Availability	
Dist	Available or special

101272

117

NONLOCAL STRESS FIELD AT GRIFFITH CRACK

N. Ari and A.C. Eringen

Princeton University
Princeton, NJ 08544

ABSTRACT

By means of nonlocal elasticity theory, the Griffith crack problem is solved to determine the state of stress in a plate weakened by a line crack. The maximum stress is found to be finite and occurs away from the crack tip. Cohesive stress is estimated and compared with the calculations based on atomic lattice theory.

A

1. INTRODUCTION

In several previous papers, we have investigated the state of stress in plates containing sharp line cracks [1, 2, 3] and in Volterra dislocations [4,5]. These and our other similar work indicated that the nonlocal theory eliminates the stress singularity predicted by the classical elasticity theory. These results enabled us to introduce a natural fracture criterion based on maximum stress hypothesis and calculate the theoretical cohesive strength of various crystalline materials.

In reference [1], the maximum stress was predicted to occur at the crack tip while the solution of screw dislocation problems showed that the maximum stress occurs slightly away from the edge of the dislocation. According to a lattice model of crack used by Elliot [6], the maximum stress occurs slightly away from the crack tip. This situation was also confirmed

P-1

in the recent computer simulations of Gohar [7]. To obtain such fine results near the crack tip, computer calculations must include discretization of a dimension less than one atomic distance and must also overcome the major difficulty related to the round-off errors. In [1], such fine resolution was not introduced and it prevented the prediction of the exact location of the maximum stress. Moreover, in [1], two-dimensional generalization of a one-dimensional nonlocal kernel was used.

In classical elasticity theory, a mixed-boundary value problem, prescribing the tractions on one part of the boundary surface and the displacement fields on the remainder, is well-posed. In nonlocal elasticity, this is not the case because of the fact that the prescription of the stress field at one point requires the knowledge of the strain field in the neighborhood of the point. Since at the crack tip this region extends into the body, it is necessary to verify the self-consistency of the boundary conditions in this overlapping region. Without such consideration, the boundary conditions within two atomic distances around the crack tip is satisfied in a non-uniform approximate manner (Atkinson [8]).

The *raison d'être* of the present work takes its origin from the foregoing considerations. In Section 2, we introduce a two-dimensional kernel by matching the dispersion curve of a square lattice to that of nonlocal plane waves. In Section 3, a set of self-consistent boundary conditions are rederived. Section 4 deals with the solution of the Griffith crack problem. Analytical expressions are given for the stress field along the crack line. The maximum stress and its location are calculated. In Section 5 we compare these results with those known in the atomic lattice theory and computer simulation studies. Quantitative agreements are gratifying.

2. TWO-DIMENSIONAL KERNEL

From [9], for a two-dimensional square lattice, we have the dispersion relations

$$(2.1) \quad \omega^2 = \beta_0 \{2 - \cos(\xi a) - \cos(\eta a) + 2 [1 - \cos(\xi a) \cos(\eta a)]\}$$

$$(2.2) \quad \omega^2 = \beta_0 [2 - \cos(\xi a) - \cos(\eta a)]$$

where ξ and η are Fourier variables corresponding to x and y directions, a is atomic lattice parameter and

$$(2.3) \quad \beta_0 = \frac{2}{3} (c_1/a)^2, \quad c_1 = [(\lambda + 2\mu)/\rho]^{1/2}$$

Here, c_1 is the phase velocity of the irrotational waves, (λ, μ) are Lame constants and ρ is the mass density.

In nonlocal elasticity for isotropic solids, the stress constitutive equations are given by [10].

$$(2.4) \quad t_{kl} = \iint_R [\lambda'(|\underline{x}' - \underline{x}|) e_{rr}(\underline{x}') \delta_{kl} + 2\mu'(|\underline{x}' - \underline{x}|) e_{kl}(\underline{x}')] d\underline{a}(\underline{x}')$$

where the integral is over the two-dimensional plane region $R(x', y')$ and e_{kl} is the strain tensor which is related to the displacement vector u_k by

$$(2.5) \quad e_{kl} = \frac{1}{2} (u_{k,l} + u_{l,k})$$

Here, and throughout an index following a comma represent gradient, e.g.

$$u_{k,\ell} = \partial u_k / \partial x_\ell$$

In this section we determine the kernels λ' and μ' by comparing (2.1) and (2.2) with the dispersion of plane waves in nonlocal elasticity.

Substituting (2.4) and (2.5) into the equations of motion

$$(2.6) \quad t_{k\ell,k} - \rho \ddot{u}_\ell = 0$$

and taking the two-dimensional Fourier transform of the ensuing field equations, we obtain

$$(2.7) \quad \begin{aligned} [(\bar{\lambda}' + 2\bar{\mu}')\xi^2 + \bar{\mu}'\eta^2 - \rho\omega^2]\bar{u} + (\bar{\lambda}' + \bar{\mu}')\xi\eta\bar{v} &= 0 \\ (\bar{\lambda}' + \bar{\mu}')\xi\eta\bar{u} + [(\bar{\lambda}' + 2\bar{\mu}')\eta^2 + \bar{\mu}'\xi^2 - \rho\omega^2]\bar{v} &= 0 \end{aligned}$$

where a superposed bar denotes Fourier transform

$$(2.8) \quad \bar{u}(\xi, \eta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u(x, y) \exp[i(\xi x + \eta y)] dx dy$$

For a non-trivial solution of (2.7) to exist, the determinant of the coefficients of \bar{u} and \bar{v} in (2.7) must vanish, leading to dispersion relations.

$$(2.9) \quad \omega^2/c_1^2 = (\xi^2 + \eta^2)(\bar{\lambda}' + 2\bar{\mu}')/(\lambda + 2\mu)$$

$$(2.10) \quad \omega^2/c_2^2 = (\xi^2 + \eta^2) \bar{\mu}' / \mu$$

Comparing (2.9) with (2.1) and (2.10) with (2.2), we obtain expressions for λ' and μ' .

Eventually, our main interest is in the nature of the singularity of λ' and μ' . An examination of λ' and μ' so obtained showed that they both possess logarithmic singularities. In fact, inverse transform of $\bar{\mu}'$ yields, for the case of Poisson material ($\lambda = \mu$):

$$(2.11) \quad \mu'(x,y) = 2a^{-2} \ln \{[(x-a)^2 + y^2][(x+a)^2 + y^2][x^2 + (y-a)^2] \\ [x^2 + (y+a)^2] (x^2 + y^2)^{-4}\}^{\frac{1}{4}}$$

It is clear that μ' is not an isotropic kernel. However, noting that it has a logarithmic singularity, we may construct an isotropic kernel with the same singularity for both λ' and μ' . The following kernel satisfies the basic requirements of a two-dimensional kernel.

$$(2.12) \quad \alpha(|\underline{x}' - \underline{x}|) = \frac{1}{2\pi} \beta^2 K_0 \{ \beta [(\underline{x}' - \underline{x})^2 + (y' - y)^2]^{\frac{1}{2}} \}$$

where K_0 is the zeroth order modified Bessel function, β is a parameter, and

$$\alpha = \lambda'/\lambda = \mu'/\mu.$$

We note the following basic properties of α :

- a) It has logarithmic singularity at the origin
- b) It vanishes as $|\underline{x}' - \underline{x}| \rightarrow \infty$
- c) Its integral over the plane is unity, i.e.

$$(2.13) \quad \iint_R \alpha(|\underline{x}' - \underline{x}|) da(x') = 1$$

d) As $\beta \rightarrow \infty$, it reverts to a Dirac delta measure, so that (2.4) gives classical Hooke's law.

Also, this kernel possesses an interesting property in that it satisfies the following differential equation

$$(2.14) \quad \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} - \beta^2 \right) K_0(\beta r) = \beta^2 \delta(r)$$

where $\delta(r)$ is the Dirac delta function.

This property is very convenient for the reduction of the integro-differential field equations of the theory of nonlocal elasticity.

To determine β , we match the dispersion curve (2.2) at the end of Brillouin zone. This was done for two extreme cases.

$$(2.15) \quad 1/\beta = 0.22 a \quad (\xi = \pi/2a, \eta = \pi/2a)$$

$$(2.16) \quad 1/\beta = 0.31 a \quad (\xi = \pi/2a, \eta = 0)$$

The maximum error in these cases are less than 1% and 0.5%, respectively.

By integrating α over y' from $-\infty$ to ∞ we can also derive a one-dimensional kernel which is of the form

$$(2.17) \quad \alpha(|x'-x|) = \frac{1}{2} \beta \exp[-\beta |x'-x|]$$

It must be noted that none of these kernels possess finite support, therefore special attention should be paid to the asymptotic behavior of the solutions involving Fourier integrals.

3. BOUNDARY CONDITIONS

A plate, in the (x, y) plane, containing a line crack of length 2ℓ along the axis of the rectangular coordinates, is subjected to a uniform tension t_0 at $y \equiv \infty$, in the y -direction (Figure 1). This problem, which constitutes the foundation of contemporary fracture mechanics, is known as the Griffith crack problem, first treated by Griffith [11]. In the classical elasticity treatment, appropriate boundary conditions are:

$$(3.1) \quad \begin{aligned} t_{xy}^c &= 0, \quad y = 0, \quad \forall x \\ t_{yy}^c &= -t_0, \quad y = 0, \quad |x| < \ell \\ v &= 0, \quad y = 0, \quad |x| \geq \ell \end{aligned}$$

where $t_{k\ell}^c$ represents the classical stress field. The Griffith crack problem requires the addition of a uniform stress field $t_{yy}^c = t_0$ to the solution obtained under the boundary conditions (3.1). These boundary conditions do not carry over to the nonlocal elasticity in a strict sense. This is because at the crack tips ($x = \pm \ell, y = 0$) both the traction and the displacement fields cannot be prescribed simultaneously. Because of the integral form (2.4) of the stress constitutive equations, prescription of the stress field at the crack tip requires that strain field must be known in a region around the tips. Due to the short range of interatomic force, this range is of the order of few atomic distances. Nevertheless, for proper continuum formulation, it is necessary to state the boundary conditions in a self-consistent form. To this end we observe that

- (a) In the limit as $\beta \rightarrow \infty$ the nonlocal stress field must approach to the local stress field.
- (b) The stress field must be continuous in β for all x and y and possess continuous partial derivatives with respect to β for all β .

The stress constitutive equations (2.4) of the nonlocal theory may be expressed as

$$(3.2) \quad t_{kl} = \iint_R \alpha(|\underline{x}' - \underline{x}|) \sigma_{kl}(\underline{x}') da(\underline{x}')$$

where σ_{kl} is the local stress tensor given by the Hooke's Law:

$$\sigma_{kl} = \lambda e_{rr} \delta_{kl} + 2\mu e_{kl}$$

If we express σ_{kl} in the asymptotic form

$$(3.3) \quad \sigma(\underline{x}, \beta) = f_0(\underline{x}) + \sum_{n=1} \tilde{f}_n(\underline{x}) \beta^{-n} .$$

Using (3.3) in (3.2) and applying the nonlocal smoothness conditions

$$(3.4) \quad \lim_{\beta \rightarrow \infty} \beta^{1+n} \frac{\partial^n}{\partial \beta^n} \{ \beta^{n-1} \tilde{t}(\underline{x}, \beta) \} = 0 ; \quad n > 0$$

we obtain restrictions on the functions $\tilde{f}_n(\underline{x})$.

For the Griffith's problem, this leads to

$$(3.5) \quad \begin{aligned} f_{0yy}(\underline{x}) &= -t_0, \\ f_{0xy}(\underline{x}) &= 0 \end{aligned} \quad \left\{ \quad |x| < \ell \right.$$

and all other $\tilde{f}_n(x)$ vanish inside of the crack line.

Boundary conditions of the nonlocal theory, appropriate to the Griffith problem, are therefore given by

$$(3.6) \quad \begin{aligned} t_{xy}^c(x,0) &= \sigma_{xy}(x,0) = 0, & y = 0, \quad \forall x \\ t_{yy}^c(x,0) &= \sigma_{yy}(x,0) = -t_0, & y = 0, \quad |x| < \ell \\ v &= 0 & y = 0 \quad |x| \geq \ell \end{aligned}$$

Note that these boundary conditions are identical to those of the classical theory (3.1). This is due to the fact that the applied tension t_0 , along the crack, is constant. For a non-uniform loading, t_0 in (3.6) is replaced by a more complicated function and the functions \tilde{f}_n may not vanish. As a result, boundary conditions will be complicated by the requirement that $t_{xy}^c = 0$ is no more valid along the entire x -axis.

4. THE SOLUTION

Following Eringen, et al [1], for the field equations of the two-dimensional nonlocal elasticity, we have

$$(4.1) \quad \begin{aligned} \iint_R \alpha(|x'-x|) [(\lambda + \mu)(u'_{,x'x'} + v'_{,x'y'}) + \mu \nabla^2 u'] dx' dy' \\ - 2\mu \int_{-2}^2 \alpha(|x'-x|) [e'_{yx}(x',0)] dx' = 0 \\ \iint_R \alpha(|x'-x|) [(\lambda + \mu)(u'_{,x'y'} + v'_{,y'y'}) + \mu \nabla^2 v'] dx' dy' = 0 \end{aligned}$$

where

$$(4.2) \quad [e_{yx}(x', 0)] = e_{yx}(x', 0^+) - e_{yx}(x', 0^-)$$

For the kernel we use (2.12). Applying the operator in (2.14), using the Fourier transform along the x-direction

$$(4.3) \quad \tilde{f}(k, y) = (2\pi)^{\frac{1}{2}} \int_{-\infty}^{\infty} f(x, y) \exp(ikx) dx$$

we obtain the general solution of (4.1)

$$(4.4) \quad \begin{aligned} u &= (2\pi)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \frac{1}{k} \left[|k| A(k) + \left(|k| y - \frac{\lambda+3\mu}{\lambda+\mu} B(k) \right) \right] \exp(-|k|y - ikx) dk \\ v &= (2\pi)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \left[A(k) + yB(k) \right] \exp(-|k|y - ikx) dk \end{aligned}$$

The boundary condition (3.6) leads to a pair of dual integral equations for $A(k)$ whose solution determines $A(k)$ and $B(k)$:

$$(4.5) \quad \begin{aligned} A(k) &= A_0 J_1(k)/k \\ B(k) &= B_0 |k| A(k) \end{aligned}$$

where

$$(4.6) \quad \begin{aligned} A_0 &= (2/\pi)^{1/2} [2\mu(\lambda+\mu)/\lambda^2 t_0(\lambda+2\mu)] \\ B_0 &= (\lambda+\mu)/(\lambda+2\mu) \\ k &= k\ell \end{aligned}$$

Upon substituting (4.5) into (4.4) and (3.2), we obtain displacement and stress fields. Relevant to the present work is the hoop stress along the crack line, which is given by:

$$(4.7) \quad t_{yy}(\xi, 0)/t_0 = - \int_0^\infty \alpha(\varepsilon\kappa) J_1(\kappa) \cos(\kappa\xi) d\kappa$$

where

$$(4.8) \quad \xi = x/\lambda, \quad \varepsilon = 1/\beta\lambda$$

$$(4.9) \quad \alpha(\varepsilon\kappa) = [(1 + \varepsilon^2\kappa^2)^{1/2} + \varepsilon\kappa]^{-1} + \varepsilon\kappa[(1 + \varepsilon^2\kappa^2)^{1/2} + \varepsilon\kappa]^{-2}$$

$\alpha(\varepsilon\kappa)$ given by (4.9) is much simpler than (5.11) obtained in [1].

The integral in (4.7) was evaluated by use of the asymptotic expansion of $J_1(\kappa)$:

$$(4.10) \quad J_1(\kappa) \sim \kappa^{-1/2} \cos(\kappa - 3\pi/4) + O(\kappa^{-3/2}); \quad |\kappa| \rightarrow \infty$$

The result to the order one (ε^0), is

$$(4.11) \quad t_{yy}(\xi, 0)/t_0 = (\pi/2)^{1/2} \left\{ \frac{\lambda^{1/2}}{\varepsilon} [I_{1/4} K_{3/4} + I_{3/4} K_{1/4}] + \frac{\lambda^{1/2}}{2\varepsilon} [I_{1/4} K_{3/4} - I_{5/4} K_{7/4} + I_{3/4} K_{1/4} - I_{7/4} K_{5/4}] \right\}$$

where

$$(4.12) \quad \lambda = \xi - 1$$

and I_v , K_v are v^{th} order modified Bessel functions and they are evaluated at $\lambda/2\varepsilon$.

At the crack tip $\xi = 1$ and we obtain

$$(4.13) \quad t_{yy}(1,0)/t_0 \simeq 0.57446 \varepsilon^{-1/2}$$

We notice however, that the hoop stress is not maximum at the crack tip. In Table 1 we list the hoop stress in the vicinity of the crack tip as a function of $\lambda/2\varepsilon$. From this table it is clear that

$$(4.14) \quad t_{yy \max} = 1.12 t_{yy}(1,0)$$

and this occurs at

$$(4.15) \quad \xi = 1 + 0.50 \varepsilon$$

Using the values of ε given (2.15) and (2.16), we obtain

$$(4.16) \quad t_{yy \max}/t_0 = 0.81 (2a/\lambda)^{1/2}, \quad \xi \simeq 1 + 0.1 a/\lambda$$

$$(4.17) \quad t_{yy \max}/t_0 = 0.97 (2a/\lambda)^{1/2}, \quad \xi \simeq 1 + 0.15 a/\lambda$$

5. COMPARISON WITH ATOMIC LATTICE THEORIES

The hoop stress along the crack line, given by (4.11), is plotted in Figure 2 against $\xi = x/\lambda$ for $\varepsilon = 0.22 a/\lambda$. On this figure, the hoop stress obtained by Elliot [6], and Eringen et al. [1] are also shown. The maximum stress and its location and the ratio of the maximum stress to

the stress at the crack tip are compared in Table 2. In Elliot's calculations, $2l/a = 1000$ and the Poisson's ration $\nu = 0.25$. We have therefore used the same numbers in (4.16) and (4.17) and the quantitative agreement is very good.

Gohar's [7] recent computer simulations on the crack problem in a two-dimensional triangular lattice indicates that the hoop stress profiles are of the same character as those of reference [1] and the present. He found that t_{\max}/t_0 is generally larger than nonlocal continuum results while his stress profiles were somewhat broader. Strict comparison with his results may not be meaningful because of the inherent nonlinearity in the force potentials used in his model. However, in some cases, the maximum stress and the stress profile were found to be in good quantitative agreement with the nonlocal model.

Cohesive stress can be calculated by use of (4.16) or (4.17) in the same manner as in [1 - 5]. If one uses (4.16), one obtains 10% higher cohesive stress and if (4.17) is used, the cohesive stress becomes 30% higher than those given in reference [1].

The nonlocal fracture criteria introduced by Eringen [12] can be used in the same manner by setting $t_{\max} = t_{\text{cohesive}}$.

The present work modifies the boundary conditions used previously in [1] to eliminate overdetermination arising from the overlapping influence region of the stress and displacement fields on the boundary. Introduction of a new two-dimensional kernel brings the nonlocal model closer to two-dimensional lattice models. Nevertheless, numerical results are very close to those in [1], probably because the influence of the boundary "overlapping region" is extremely small, not affecting the outcome appreciably. The present approach enables us to state that the maximum stress does not occur at the crack tip.

TABLE 1
HOOP STRESS NEAR THE CRACK TIP

<u>$\lambda/2\epsilon$</u>	<u>$t_{yy}(\xi,0)/t_{yy}(1,0)$</u>
0.0	1.
0.1	1.09
0.2	1.10
0.25	1.12
0.3	1.10
1.0	0.89
1.5	0.75
2.0	0.66

TABLE 2
HOOP STRESS ALONG THE CRACK LINE

	t_{max}/t_0	ϵ_{max}	t_{max}/t_{tip}
Elliot [6]	27.62	$1 + 0.2 (a/\ell)$	1.16
Nonlocal Ref. [1]	23.08	--	--
Nonlocal Present } $1/\beta a = 0.31$	25.61	$1 + 0.15 (a/\ell)$	1.12
Present } $1/\beta a = 0.22$	30.67	$1 + 0.1 (a/\ell)$	1.12

REFERENCES

- [1] Eringen, A.C., C.G. Speziale and B.S. Kim, "Crack-Tip Problem in Nonlocal Elasticity," J. Mech. Phys. Solids, Vol. 25, pp. 339-355, 1977.
- [2] Eringen, A.C., "Line Crack Subject to Shear," Int. J. of Fracture, Vol. 14, No. 4, pp. 367-379, 1978.
- [3] Eringen, A.C., "Line Crack Subject to Antiplane Shear," Engineering Fracture Mechanics, Vol. 12, pp. 211-219 (Pergamon Press, Great Britain), 1979.
- [4] Eringen, A.C., "Screw Dislocation in Nonlocal Elasticity, J. Phys. D: Appl. Phys., Vol. 10, pp. 671-678, 1977.
- [5] Eringen, A.C., "Edge Dislocation in Nonlocal Elasticity," Int. Jnl. Engng. Sci., Vol. 15, pp. 177-183, 1977.
- [6] Elliott, H.A., "An Analysis of the Conditions for Rupture due to Griffith Cracks," Proc. Phys. Soc., A59, 208-223, 1947.
- [7] Gohar, A.Y., "A Microscopic Fracture Study in the Two-Dimensional Triangular Lattice," Ph.D. Thesis, City University of New York, 1979.
- [8] Atkinson, C. (private communication), 1979.
- [9] De Launay, J., "The Theory of Specific Heats and Lattice Vibrations," in Solid State Physics, 2, (ed. by F. Seitz and D. Turnbull), pp. 220 - 303, 1956.
- [10] Eringen, A.C., "Linear Theory of Nonlocal Elasticity and Dispersion of Plane Waves," Int. J. Engng. Sci., Vol. 10, No. 5, pp. 425-435, May 1972.
- [11] Griffith, A.A., "The Phenomena of Rupture and Flow in Solids," Phil. Trans. Roy. Soc. (London), A 221, 163-198, 1920.
- [12] Eringen, A.C. and B.S. Kim, "On the Problem of Crack Tip in Nonlocal Elasticity," Continuum Mechanics Aspects of Geodynamics and Rock Fracture Mechanics, edited by P. Thoft-Christensen, Dordrecht, Holland: D. Reidel Publishing Co., pp. 107-113. (Proceedings of the NATO Advanced Study Inst. held in Reykjavik, Iceland, Aug. 11-20, 1974).

FIGURE 1

PLATE WITH LINE CRACK

FIGURE 2
 HOOP STRESS NEAR THE CRACK TIP

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER PRINCETON UNIVERSITY REPORT #54	TECHNICAL	2. GOVT ACCESSION NO. <i>AD-A086496</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) NONLOCAL STRESS FIELD AT GRIFFITH CRACK	5. TYPE OF REPORT & PERIOD COVERED Technical Report		
	6. PERFORMING ORG. REPORT NUMBER 80-SM-7		
7. AUTHOR(s) N. Ari and A. Cemal Eringen	8. CONTRACT OR GRANT NUMBER(s) N00014-76-C-0240 Mod. 4		
9. PERFORMING ORGANIZATION NAME AND ADDRESS Princeton University Princeton, New Jersey	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR 064-410		
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research (Code 471) Arlington, VA 22217	12. REPORT DATE June 1980		
	13. NUMBER OF PAGES 17		
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	15. SECURITY CLASS. (of this report) unclassified		
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE		
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited			
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)			
18. SUPPLEMENTARY NOTES			
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) crack tip problem nonlocal elasticity theoretical cohesive stress fracture criterion			
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) By means of nonlocal elasticity theory, the Griffith crack problem is solved to determine the state of stress in a plate weakened by a line crack. The maximum stress is found to be finite and occurs away from the crack tip. Cohesive stress is estimated and compared with the calculations based on atomic lattice theory.			

Part I - Government
Administrative and Liaison Activities

Office of Naval Research
Department of the Navy
Arlington, Virginia 22217
Attn: Code 474 (2)
Code 471
Code 200

Director
Office of Naval Research
Eastern/Central Regional Office
666 Summer Street
Boston, Massachusetts 02210

Director
Office of Naval Research
Branch Office
536 South Clark Street
Chicago, Illinois 60605

Director
Office of Naval Research
New York Area Office
715 Broadway - 5th Floor
New York, New York 10003

Director
Office of Naval Research
Western Regional Office
1030 East Green Street
Pasadena, California 91106

Naval Research Laboratory (6)
Code 2627
Washington, D.C. 20375

Defense Technical Information Center (12)
Cameron Station
Alexandria, Virginia 22314

Navy

Undersea Explosion Research Division
Naval Ship Research and Development
Center
Norfolk Naval Shipyard
Portsmouth, Virginia 23709
Attn: Dr. E. Palmer, Code 177

Navy (Con't.)

Naval Research Laboratory
Washington, D.C. 20375
Attn: Code 8400
8410
8430
8440
6300
6390
6380

David W. Taylor Naval Ship Research
and Development Center
Annapolis, Maryland 21402
Attn: Code 2740

28
281

Naval Weapons Center
China Lake, California 93555
Attn: Code 4062
4520

Commanding Officer
Naval Civil Engineering Laboratory
Code L31
Port Hueneme, California 93041

Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910
Attn: Code R-10
G-402
K-82

Technical Director
Naval Ocean Systems Center
San Diego, California 92152

Supervisor of Shipbuilding
U.S. Navy
Newport News, Virginia 23607

Navy Underwater Sound
Reference Division
Naval Research Laboratory
P.O. Box 8337
Orlando, Florida 32806

Chief of Naval Operations
Department of the Navy
Washington, D.C. 20350
Attn: Code OP-098

Army (Con't.)

Watervliet Arsenal
MAGGS Research Center
Watervliet, New York 12189
Attn: Director of Research

U.S. Army Materials and Mechanics
Research Center
Watertown, Massachusetts 02172
Attn: Dr. R. Shea, DRXMR-T

U.S. Army Missile Research and
Development Center
Redstone Scientific Information
Center
Chief, Document Section
Redstone Arsenal, Alabama 35809

Army Research and Development
Center
Fort Belvoir, Virginia 22060

NASA

National Aeronautics and Space
Administration
Structures Research Division
Langley Research Center
Langley Station
Hampton, Virginia 23365

National Aeronautics and Space
Administration
Associate Administrator for Advanced
Research and Technology
Washington, D.C. 20546

Air Force

Wright-Patterson Air Force Base
Dayton, Ohio 45433
Attn: AFFDL (FB)
(FBR)
(FBE)
(FBS)
AFML (MBM)

Chief Applied Mechanics Group
U.S. Air Force Institute of Technology
Wright-Patterson Air Force Base
Dayton, Ohio 45433

Air Force (Con't.)

Chief, Civil Engineering Branch
WLRC, Research Division
Air Force Weapons Laboratory
Kirtland Air Force Base
Albuquerque, New Mexico 87117

Air Force Office of Scientific Research
Bolling Air Force Base
Washington, D.C. 20332
Attn: Mechanics Division

Department of the Air Force
Air University Library
Maxwell Air Force Base
Montgomery, Alabama 36112

Other Government Activities

Commandant
Chief, Testing and Development Division
U.S. Coast Guard
1300 E Street, NW.
Washington, D.C. 20226

Technical Director
Marine Corps Development
and Education Command
Quantico, Virginia 22134

Director Defense Research
and Engineering
Technical Library
Room 3C128
The Pentagon
Washington, D.C. 20301

Dr. M. Gaus
National Science Foundation
Environmental Research Division
Washington, D.C. 20550

Library of Congress
Science and Technology Division
Washington, D.C. 20540

Director
Defense Nuclear Agency
Washington, D.C. 20305
Attn: SPSS

Other Government Activities (Con't)

Mr. Jerome Persh
Staff Specialist for Materials
and Structures
GUSDR&E, The Pentagon
Room 3D1089
Washington, D.C. 20301

Chief, Airframe and Equipment Branch
FS-120
Office of Flight Standards
Federal Aviation Agency
Washington, D.C. 20553

National Academy of Sciences
National Research Council
Ship Hull Research Committee
2101 Constitution Avenue
Washington, D.C. 20418
Attn: Mr. A. R. Lytle

National Science Foundation
Engineering Mechanics Section
Division of Engineering
Washington, D.C. 20550

Picatinny Arsenal
Plastics Technical Evaluation Center
Attn: Technical Information Section
Dover, New Jersey 07801

Maritime Administration
Office of Maritime Technology
14th and Constitution Avenue, NW.
Washington, D.C. 20230

**PART 2 - Contractors and Other Technical
Collaborators**

Universities

Dr. J. Tinsley Oden
University of Texas at Austin
345 Engineering Science Building
Austin, Texas 78712

Professor Julius Miklowitz
California Institute of Technology
Division of Engineering
and Applied Sciences
Pasadena, California 91109

Universities (Con't)

Dr. Harold Liebowitz, Dean
School of Engineering and
Applied Science
George Washington University
Washington, D.C. 20052

Professor Eli Sternberg
California Institute of Technology
Division of Engineering and
Applied Sciences
Pasadena, California 91109

Professor Paul M. Naghdi
University of California
Department of Mechanical Engineering
Berkeley, California 94720

Professor A. J. Durelli
Oakland University
School of Engineering
Rochester, Missouri 48063

Professor F. L. DiMaggio
Columbia University
Department of Civil Engineering
New York, New York 10027

Professor Norman Jones
The University of Liverpool
Department of Mechanical Engineering
P. O. Box 147
Brownlow Hill
Liverpool L69 3BX
England

Professor E. J. Skudrzyk
Pennsylvania State University
Applied Research Laboratory
Department of Physics
State College, Pennsylvania 16801

Professor J. Klosner
Polytechnic Institute of New York
Department of Mechanical and
Aerospace Engineering
333 Jay Street
Brooklyn, New York 11201

Professor R. A. Schapery
Texas A&M University
Department of Civil Engineering
College Station, Texas 77843

Universities (Con't.)

Professor Walter D. Pilkey
University of Virginia
Research Laboratories for the
Engineering Sciences and
Applied Sciences
Charlottesville, Virginia 22901

Professor K. D. Willmert
Clarkson College of Technology
Department of Mechanical Engineering
Potsdam, New York 13676

Dr. Walter E. Haisler
Texas A&M University
Aerospace Engineering Department
College Station, Texas 77843

Dr. Hussein A. Kamel
University of Arizona
Department of Aerospace and
Mechanical Engineering
Tucson, Arizona 85721

Dr. S. J. Fenves
Carnegie-Mellon University
Department of Civil Engineering
Schenley Park
Pittsburgh, Pennsylvania 15213

Dr. Ronald L. Huston
Department of Engineering Analysis
University of Cincinnati
Cincinnati, Ohio 45221

Professor G. C. M. Sih
Lehigh University
Institute of Fracture and
Solid Mechanics
Bethlehem, Pennsylvania 18015

Professor Albert S. Kobayashi
University of Washington
Department of Mechanical Engineering
Seattle, Washington 98105

Professor Daniel Frederick
Virginia Polytechnic Institute and
State University
Department of Engineering Mechanics
Blacksburg, Virginia 24061

Universities (Con't.)

Professor A. C. Eringen
Princeton University
Department of Aerospace and
Mechanical Sciences
Princeton, New Jersey 08540

Professor E. H. Lee
Stanford University
Division of Engineering Mechanics
Stanford, California 94305

Professor Albert I. King
Wayne State University
Biomechanics Research Center
Detroit, Michigan 48202

Dr. V. R. Hodgson
Wayne State University
School of Medicine
Detroit, Michigan 48202

Dean B. A. Boley
Northwestern University
Department of Civil Engineering
Evanston, Illinois 60201

Professor P. G. Hodge, Jr.
University of Minnesota
Department of Aerospace Engineering
and Mechanics
Minneapolis, Minnesota 55455

Dr. D. C. Drucker
University of Illinois
Dean of Engineering
Urbana, Illinois 61801

Professor N. M. Newmark
University of Illinois
Department of Civil Engineering
Urbana, Illinois 61803

Professor E. Reissner
University of California, San Diego
Department of Applied Mechanics
La Jolla, California 92037

Professor William A. Nash
University of Massachusetts
Department of Mechanics and
Aerospace Engineering
Amherst, Massachusetts 01002

Universities (Con't)

Professor G. Herrmann
Stanford University
Department of Applied Mechanics
Stanford, California 94305

Professor J. D. Achenbach
Northwest University
Department of Civil Engineering
Evanston, Illinois 60201

Professor S. B. Dong
University of California
Department of Mechanics
Los Angeles, California 90024

Professor Burt Paul
University of Pennsylvania
Towne School of Civil and
Mechanical Engineering
Philadelphia, Pennsylvania 19104

Professor H. W. Liu
Syracuse University
Department of Chemical Engineering
and Metallurgy
Syracuse, New York 13210

Professor S. Bodner
Technion R&D Foundation
Haifa, Israel

Professor Werner Goldsmith
University of California
Department of Mechanical Engineering
Berkeley, California 94720

Professor R. S. Rivlin
Lehigh University
Center for the Application
of Mathematics
Bethlehem, Pennsylvania 18015

Professor F. A. Cozzarelli
State University of New York at
Buffalo
Division of Interdisciplinary Studies
Karr Parker Engineering Building
Chemistry Road
Buffalo, New York 14214

Universities (Con't)

Professor Joseph L. Rose
Drexel University
Department of Mechanical Engineering
and Mechanics
Philadelphia, Pennsylvania 19104

Professor B. K. Donaldson
University of Maryland
Aerospace Engineering Department
College Park, Maryland 20742

Professor Joseph A. Clark
Catholic University of America
Department of Mechanical Engineering
Washington, D.C. 20064

Dr. Samuel B. Batdorf
University of California
School of Engineering
and Applied Science
Los Angeles, California 90024

Professor Isaac Fried
Boston University
Department of Mathematics
Boston, Massachusetts 02215

Professor E. Krempl
Rensselaer Polytechnic Institute
Division of Engineering
Engineering Mechanics
Troy, New York 12181

Dr. Jack R. Vinson
University of Delaware
Department of Mechanical and Aerospace
Engineering and the Center for
Composite Materials
Newark, Delaware 19711

Dr. J. Duffy
Brown University
Division of Engineering
Providence, Rhode Island 02912

Dr. J. L. Swedlow
Carnegie-Mellon University
Department of Mechanical Engineering
Pittsburgh, Pennsylvania 15213

Universities (Con't)

Dr. V. K. Varadan
Ohio State University Research Foundation
Department of Engineering Mechanics
Columbus, Ohio 43210

Dr. Z. Hashin
University of Pennsylvania
Department of Metallurgy and
Materials Science
College of Engineering and
Applied Science
Philadelphia, Pennsylvania 19104

Dr. Jackson C. S. Yang
University of Maryland
Department of Mechanical Engineering
College Park, Maryland 20742

Professor T. Y. Chang
University of Akron
Department of Civil Engineering
Akron, Ohio 44325

Professor Charles W. Bert
University of Oklahoma
School of Aerospace, Mechanical,
and Nuclear Engineering
Norman, Oklahoma 73019

Professor Satya N. Atluri
Georgia Institute of Technology
School of Engineering and
Mechanics
Atlanta, Georgia 30332

Professor Graham F. Carey
University of Texas at Austin
Department of Aerospace Engineering
and Engineering Mechanics
Austin, Texas 78712

Dr. S. S. Wang
University of Illinois
Department of Theoretical and
Applied Mechanics
Urbana, Illinois 61801

Professor J. F. Abel
Cornell University
Department of Theoretical
and Applied Mechanics
Ithaca, New York 14853

Universities (Con't)

Professor V. H. Neubert
Pennsylvania State University
Department of Engineering Science
and Mechanics
University Park, Pennsylvania 16802

Professor A. W. Leissa
Ohio State University
Department of Engineering Mechanics
Columbus, Ohio 43212

Professor C. A. Brebbia
University of California, Irvine
Department of Civil Engineering
School of Engineering
Irvine, California 92717

Dr. George T. Rahn
Vanderbilt University
Mechanical Engineering and
Materials Science
Nashville, Tennessee 37235

Dean Richard H. Gallagher
University of Arizona
College of Engineering
Tucson, Arizona 85721

Professor E. F. Rybicki
The University of Tulsa
Department of Mechanical Engineering
Tulsa, Oklahoma 74104

Dr. R. Haftka
Illinois Institute of Technology
Department of Mechanics and Mechanical
and Aerospace Engineering
Chicago, Illinois 60616

Professor J. G. de Oliveira
Massachusetts Institute of Technology
Department of Ocean Engineering
77 Massachusetts Avenue
Cambridge, Massachusetts 02139

Dr. Bernard W. Shaffer
Polytechnic Institute of New York
Route 110
Farmingdale, New York 11735

Industry and Research Institutes

Dr. Norman Hobbs
Kaman AviDyne
Division of Kaman
Sciences Corporation
Burlington, Massachusetts 01803

Argonne National Laboratory
Library Services Department
9700 South Cass Avenue
Argonne, Illinois 60440

Dr. M. C. Junger
Cambridge Acoustical Associates
54 Rindge Avenue Extension
Cambridge, Massachusetts 02140

Mr. J. H. Torrance
General Dynamics Corporation
Electric Boat Division
Groton, Connecticut 06340

Dr. J. E. Greenspon
J. G. Engineering Research Associates
3831 Menlo Drive
Baltimore, Maryland 21215

Newport News Shipbuilding and
Dry Dock Company
Library
Newport News, Virginia 23607

Dr. W. F. Bozich
McDonnell Douglas Corporation
5301 Bolsa Avenue
Huntington Beach, California 92647

Dr. H. N. Abramson
Southwest Research Institute
8500 Culebra Road
San Antonio, Texas 78284

Dr. R. C. DeHart
Southwest Research Institute
8500 Culebra Road
San Antonio, Texas 78284

Dr. M. L. Baron
Weidlinger Associates
110 East 59th Street
New York, New York 10022

Industry and Research Institutes (Con't)

Dr. T. L. Geers
Lockheed Missiles and Space Company
3251 Hanover Street
Palo Alto, California 94304

Mr. William Caywood
Applied Physics Laboratory
Johns Hopkins Road
Laurel, Maryland 20810

Dr. Robert E. Dunham
Pacifica Technology
P.O. Box 148
Del Mar, California 92014

Dr. M. F. Kanninen
Battelle Columbus Laboratories
505 King Avenue
Columbus, Ohio 43201

Dr. A. A. Hochrein
Daedalean Associates, Inc.
Springlake Research Road
15110 Frederick Road
Woodbine, Maryland 21797

Dr. James W. Jones
Swanson Service Corporation
P.O. Box 5415
Huntington Beach, California 92646

Dr. Robert E. Nickell
Applied Science and Technology
3344 North Torrey Pines Court
Suite 220
La Jolla, California 92037

Dr. Kevin Thomas
Westinghouse Electric Corp.
Advanced Reactors Division
P. O. Box 158
Madison, Pennsylvania 15663

Dr. H. D. Hibbitt
Hibbitt & Karlsson, Inc.
132 George M. Cohan Boulevard
Providence, Rhode Island 02903

Dr. R. D. Mindlin
89 Deer Hill Drive
Ridgefield, Connecticut 06877

Industry and Research Institutes (Con't)

Dr. Richard E. Dame
Mega Engineering
11961 Tech Road
Silver Spring, Maryland 20904

Mr. G. M. Stanley
Lockheed Palo Alto Research
Laboratory
3251 Hanover Street
Palo Alto, California 94304

Mr. R. L. Cloud
Robert L. Cloud Associates, Inc.
2972 Adeline Street
Berkeley, California 94703