Lesson 9

Python of ML

Step 1 import necessary python paskages

In [133]: import pandas as pd import seaborn as sns import sklearn

Step 2 Read in the data set and understand the data

In [134]: df = pd.read_csv('WA_Fn-UseC_-HR-Employee-Attrition.csv')
pd.read_csv('~/Desktop/Polaris/WA_Fn-UseC_-HR-Employee-Attrition.csv')

In [135]: df.head()

Out[135]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	Employ
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	

5 rows × 35 columns

```
In [136]: # understand now many employee there
             df.count()
Out[136]: Age
                                               1470
             Attrition
                                               1470
             BusinessTravel
                                               1470
             DailyRate
                                               1470
             Department
                                               1470
             DistanceFromHome
                                               1470
             Education
                                               1470
             EducationField
                                               1470
                                               1470
             EmployeeCount
             EmployeeNumber
                                               1470
             EnvironmentSatisfaction
                                               1470
             Gender
                                               1470
             HourlyRate
                                               1470
             JobInvolvement
                                               1470
             JobLevel
                                               1470
             JobRole
                                               1470
             JobSatisfaction
                                               1470
             MaritalStatus
                                               1470
             MonthlyIncome
                                               1470
             MonthlyRate
                                               1470
             NumCompaniesWorked
                                               1470
             0ver18
                                               1470
             OverTime
                                               1470
             PercentSalaryHike
                                               1470
             PerformanceRating
                                               1470
             RelationshipSatisfaction
                                               1470
             StandardHours
                                               1470
             StockOptionLevel
                                               1470
             TotalWorkingYears
                                               1470
             TrainingTimesLastYear
                                               1470
             WorkLifeBalance
                                               1470
             YearsAtCompany
                                               1470
             YearsInCurrentRole
                                               1470
             YearsSinceLastPromotion
                                               1470
             YearsWithCurrManager
                                               1470
             dtype: int64
In [137]: df.columns
'EmployeeNumber', 'EnvironmentSatisfaction', 'Gender', 'HourlyRate', 'JobInvolvement', 'JobLevel', 'JobRole', 'JobSatisfaction', 'MaritalStatus', 'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked',
                     'Over18', 'OverTime', 'PercentSalaryHike', 'PerformanceRating', 'RelationshipSatisfaction', 'StandardHours', 'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance', 'YearsAtCompany', 'YearsInCurrentRole', 'YearsSinceLastPromotion',
                      'YearsWithCurrManager'],
```

dtype='object')

In [138]: # try to understand how the data distributed
df.describe()

Out[138]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	Environmen
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	_
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	
std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	
min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250000	
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500000	
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750000	
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000000	

8 rows × 26 columns

In [139]: # Look at the data, is it make sense or not? have a check

```
In [140]: # try to look at data types of each column
          df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 1470 entries, 0 to 1469
          Data columns (total 35 columns):
           #
               Column
                                        Non-Null Count Dtype
          ---
                                        -----
           0
              Age
                                        1470 non-null
                                                        int64
           1
               Attrition
                                        1470 non-null
                                                       object
                                        1470 non-null
           2
               BusinessTravel
                                                        object
                                       1470 non-null
           3
               DailyRate
                                                        int64
           4
                                       1470 non-null
               Department
                                                        object
           5
               DistanceFromHome
                                      1470 non-null
                                                        int64
                                       1470 non-null
           6
               Education
                                                        int64
           7
               EducationField
                                       1470 non-null
                                                        object
           8
               EmployeeCount
                                      1470 non-null
                                                        int64
              EmployeeNumber
           9
                                      1470 non-null
                                                       int64
           10 EnvironmentSatisfaction 1470 non-null
                                                       int64
                                      1470 non-null
           11 Gender
                                                        object
           12 HourlyRate
                                      1470 non-null int64
                                     1470 non-null int64
           13 JobInvolvement
                                       1470 non-null
           14 JobLevel
                                                       int64
           15
              JobRole
                                       1470 non-null
                                                        object
                                     1470 non-null
1470 non-null
           16 JobSatisfaction
                                                       int64
                                                        object
           17
              MaritalStatus
                                      1470 non-null
1470 non-null
           18 MonthlyIncome
                                                       int64
           19
              MonthlyRate
                                                        int64
           20 NumCompaniesWorked 1470 non-null 21 Over18 1470 non-null
                                                       int64
                                                       object
                                       1470 non-null
           22 OverTime
                                                       object
           23 PercentSalaryHike 1470 non-null int64
24 PerformanceRating 1470 non-null int64
           25 RelationshipSatisfaction 1470 non-null int64
           26 StandardHours
                                       1470 non-null int64
           27 StockOptionLevel
                                       1470 non-null int64
           28 TotalWorkingYears 1470 non-null int64
           29 TrainingTimesLastYear 1470 non-null int64
           30 WorkLifeBalance
                                       1470 non-null int64
           31 YearsAtCompany
                                        1470 non-null int64
                                        1470 non-null int64
           32 YearsInCurrentRole
           33 YearsSinceLastPromotion 1470 non-null int64
                                        1470 non-null int64
           34 YearsWithCurrManager
          dtypes: int64(26), object(9)
          memory usage: 402.1+ KB
In [141]: # understand the meaning of the values of each column
          df['Age']
Out[141]: 0
                 41
          1
                 49
          2
                 37
          3
                 33
          4
                 27
                  . .
          1465
                 36
          1466
                 39
          1467
                 27
          1468
                 49
          1469
                 34
          Name: Age, Length: 1470, dtype: int64
In [142]: # understand is there any types of travel in "BusinessTravel" column
          set( df['BusinessTravel'] )
Out[142]: {'Non-Travel', 'Travel_Frequently', 'Travel_Rarely'}
```

```
In [143]: # for counting types of specific column
df['BusinessTravel'].value_counts()
```

Out[143]: Travel_Rarely 1043 Travel_Frequently 277 Non-Travel 150

Name: BusinessTravel, dtype: int64

In [144]: # want to know what specific values they have
 df_obj = df.select_dtypes(include=['object'])
 df_obj

Out[144]:

	Attrition	BusinessTravel	Department	EducationField	Gender	JobRole	MaritalStatus	Over18	Over [.]
0	Yes	Travel_Rarely	Sales	Life Sciences	Female	Sales Executive	Single	Υ	
1	No	Travel_Frequently	Research & Development	Life Sciences	Male	Research Scientist	Married	Υ	
2	Yes	Travel_Rarely	Research & Development	Other	Male	Laboratory Technician	Single	Υ	
3	No	Travel_Frequently	Research & Development	Life Sciences	Female	Research Scientist	Married	Υ	
4	No	Travel_Rarely	Research & Development	Medical	Male	Laboratory Technician	Married	Υ	
								•••	
1465	No	Travel_Frequently	Research & Development	Medical	Male	Laboratory Technician	Married	Υ	
1466	No	Travel_Rarely	Research & Development	Medical	Male	Healthcare Representative	Married	Υ	
1467	No	Travel_Rarely	Research & Development	Life Sciences	Male	Manufacturing Director	Married	Υ	
1468	No	Travel_Frequently	Sales	Medical	Male	Sales Executive	Married	Υ	
1469	No	Travel_Rarely	Research & Development	Medical	Male	Laboratory Technician	Married	Υ	

1470 rows × 9 columns

```
In [145]: # output the result of col in object type
# total 35 cols, 9 cols are types cols
```

```
In [146]: # print out this table's cols
df_obj.columns
```

```
In [147]: # if we dont want to look at BusinessTravel column, e.g. Travel_Rarely type, one by one,
          # then we do below to print them out together
          for col in list(df obj.columns):
              print( df_obj[col].value_counts() )
              print(' ')
          No
                 1233
          Yes
                  237
          Name: Attrition, dtype: int64
          Travel_Rarely
                                1043
          Travel_Frequently
                                277
                                 150
          Non-Travel
          Name: BusinessTravel, dtype: int64
          Research & Development
                                     961
                                     446
          Human Resources
                                      63
          Name: Department, dtype: int64
          Life Sciences
                              606
          Medical
                               464
          Marketing
                              159
          Technical Degree
                               132
          Other
                                82
          Human Resources
                                27
          Name: EducationField, dtype: int64
                     882
          Male
                    588
          Female
          Name: Gender, dtype: int64
          Sales Executive
                                        326
          Research Scientist
                                        292
          Laboratory Technician
                                        259
          Manufacturing Director
                                        145
          Healthcare Representative
                                        131
          Manager
          Sales Representative
                                         83
          Research Director
                                         80
                                         52
          Human Resources
          Name: JobRole, dtype: int64
          Married
                      673
          Single
                      470
          Divorced
                      327
          Name: MaritalStatus, dtype: int64
               1470
          Name: Over18, dtype: int64
          No
                 1054
                  416
          Yes
          Name: OverTime, dtype: int64
 In [ ]:
 In [ ]:
  In [ ]:
  In [ ]:
```

Step 3 Exploratory data analysis(EDA)

what are the major factors that make people want to leave this job?

In [148]: df.head()

Out[148]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	Emplo ₃
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	

5 rows × 35 columns

In [149]: df.describe().transpose() # to make it easier to look

Out[149]:

	count	mean	std	min	25%	50%	75%	max
Age	1470.0	36.923810	9.135373	18.0	30.00	36.0	43.00	60.0
DailyRate	1470.0	802.485714	403.509100	102.0	465.00	802.0	1157.00	1499.0
DistanceFromHome	1470.0	9.192517	8.106864	1.0	2.00	7.0	14.00	29.0
Education	1470.0	2.912925	1.024165	1.0	2.00	3.0	4.00	5.0
EmployeeCount	1470.0	1.000000	0.000000	1.0	1.00	1.0	1.00	1.0
EmployeeNumber	1470.0	1024.865306	602.024335	1.0	491.25	1020.5	1555.75	2068.0
EnvironmentSatisfaction	1470.0	2.721769	1.093082	1.0	2.00	3.0	4.00	4.0
HourlyRate	1470.0	65.891156	20.329428	30.0	48.00	66.0	83.75	100.0
JobInvolvement	1470.0	2.729932	0.711561	1.0	2.00	3.0	3.00	4.0
JobLevel	1470.0	2.063946	1.106940	1.0	1.00	2.0	3.00	5.0
JobSatisfaction	1470.0	2.728571	1.102846	1.0	2.00	3.0	4.00	4.0
MonthlyIncome	1470.0	6502.931293	4707.956783	1009.0	2911.00	4919.0	8379.00	19999.0
MonthlyRate	1470.0	14313.103401	7117.786044	2094.0	8047.00	14235.5	20461.50	26999.0
NumCompaniesWorked	1470.0	2.693197	2.498009	0.0	1.00	2.0	4.00	9.0
PercentSalaryHike	1470.0	15.209524	3.659938	11.0	12.00	14.0	18.00	25.0
PerformanceRating	1470.0	3.153741	0.360824	3.0	3.00	3.0	3.00	4.0
RelationshipSatisfaction	1470.0	2.712245	1.081209	1.0	2.00	3.0	4.00	4.0
StandardHours	1470.0	80.000000	0.000000	80.0	80.00	80.0	80.00	80.0
StockOptionLevel	1470.0	0.793878	0.852077	0.0	0.00	1.0	1.00	3.0
TotalWorkingYears	1470.0	11.279592	7.780782	0.0	6.00	10.0	15.00	40.0
TrainingTimesLastYear	1470.0	2.799320	1.289271	0.0	2.00	3.0	3.00	6.0
WorkLifeBalance	1470.0	2.761224	0.706476	1.0	2.00	3.0	3.00	4.0
YearsAtCompany	1470.0	7.008163	6.126525	0.0	3.00	5.0	9.00	40.0
YearsInCurrentRole	1470.0	4.229252	3.623137	0.0	2.00	3.0	7.00	18.0
YearsSinceLastPromotion	1470.0	2.187755	3.222430	0.0	0.00	1.0	3.00	15.0
YearsWithCurrManager	1470.0	4.123129	3.568136	0.0	2.00	3.0	7.00	17.0

In [150]: # what are the factors? maybe we Look at for those who leave? who stay?
then, maybe, what is their avg overtime working? (this is features)
df.groupby('Attrition').mean().transpose()

Out[150]:

Attrition	No	Yes
Age	37.561233	33.607595
DailyRate	812.504461	750.362869
DistanceFromHome	8.915653	10.632911
Education	2.927007	2.839662
EmployeeCount	1.000000	1.000000
EmployeeNumber	1027.656123	1010.345992
EnvironmentSatisfaction	2.771290	2.464135
HourlyRate	65.952149	65.573840
Jobinvolvement	2.770479	2.518987
JobLevel	2.145985	1.637131
JobSatisfaction	2.778589	2.468354
MonthlyIncome	6832.739659	4787.092827
MonthlyRate	14265.779400	14559.308017
NumCompaniesWorked	2.645580	2.940928
PercentSalaryHike	15.231144	15.097046
PerformanceRating	3.153285	3.156118
RelationshipSatisfaction	2.733982	2.599156
StandardHours	80.000000	80.000000
StockOptionLevel	0.845093	0.527426
TotalWorkingYears	11.862936	8.244726
TrainingTimesLastYear	2.832928	2.624473
WorkLifeBalance	2.781022	2.658228
YearsAtCompany	7.369019	5.130802
YearsInCurrentRole	4.484185	2.902954
YearsSinceLastPromotion	2.234388	1.945148
YearsWithCurrManager	4.367397	2.852321

In [151]: # maybe for the first row, we can know the % of leace and stay on the job in diff age of empl
 df_analysis = df.groupby('Attrition').mean().transpose()
 df_analysis['abs_%dif'] = abs(df_analysis['No']-df_analysis['Yes']) / df_analysis['Yes']
 df_analysis

Out[151]:

Attrition	No	Yes	abs_%dif
Age	37.561233	33.607595	0.117641
DailyRate	812.504461	750.362869	0.082815
DistanceFromHome	8.915653	10.632911	0.161504
Education	2.927007	2.839662	0.030759
EmployeeCount	1.000000	1.000000	0.000000
EmployeeNumber	1027.656123	1010.345992	0.017133
EnvironmentSatisfaction	2.771290	2.464135	0.124650
HourlyRate	65.952149	65.573840	0.005769
JobInvolvement	2.770479	2.518987	0.099838
JobLevel	2.145985	1.637131	0.310821
JobSatisfaction	2.778589	2.468354	0.125685
MonthlyIncome	6832.739659	4787.092827	0.427325
MonthlyRate	14265.779400	14559.308017	0.020161
NumCompaniesWorked	2.645580	2.940928	0.100427
PercentSalaryHike	15.231144	15.097046	0.008882
PerformanceRating	3.153285	3.156118	0.000898
RelationshipSatisfaction	2.733982	2.599156	0.051873
StandardHours	80.000000	80.000000	0.000000
StockOptionLevel	0.845093	0.527426	0.602297
TotalWorkingYears	11.862936	8.244726	0.438851
TrainingTimesLastYear	2.832928	2.624473	0.079427
WorkLifeBalance	2.781022	2.658228	0.046194
YearsAtCompany	7.369019	5.130802	0.436231
YearsInCurrentRole	4.484185	2.902954	0.544697
YearsSinceLastPromotion	2.234388	1.945148	0.148698
YearsWithCurrManager	4.367397	2.852321	0.531173

In [152]: # then, we want to rank it
df_analysis.sort_values('abs_%dif',ascending=False) #descending order

Out[152]:

Attrition	No	Yes	abs_%dif
StockOptionLevel	0.845093	0.527426	0.602297
YearsInCurrentRole	4.484185	2.902954	0.544697
YearsWithCurrManager	4.367397	2.852321	0.531173
TotalWorkingYears	11.862936	8.244726	0.438851
YearsAtCompany	7.369019	5.130802	0.436231
MonthlyIncome	6832.739659	4787.092827	0.427325
JobLevel	2.145985	1.637131	0.310821
DistanceFromHome	8.915653	10.632911	0.161504
YearsSinceLastPromotion	2.234388	1.945148	0.148698
JobSatisfaction	2.778589	2.468354	0.125685
EnvironmentSatisfaction	2.771290	2.464135	0.124650
Age	37.561233	33.607595	0.117641
NumCompaniesWorked	2.645580	2.940928	0.100427
Jobinvolvement	2.770479	2.518987	0.099838
DailyRate	812.504461	750.362869	0.082815
TrainingTimesLastYear	2.832928	2.624473	0.079427
RelationshipSatisfaction	2.733982	2.599156	0.051873
WorkLifeBalance	2.781022	2.658228	0.046194
Education	2.927007	2.839662	0.030759
MonthlyRate	14265.779400	14559.308017	0.020161
EmployeeNumber	1027.656123	1010.345992	0.017133
PercentSalaryHike	15.231144	15.097046	0.008882
HourlyRate	65.952149	65.573840	0.005769
PerformanceRating	3.153285	3.156118	0.000898
StandardHours	80.000000	80.000000	0.000000
EmployeeCount	1.000000	1.000000	0.000000

```
In [153]: # now, we look at some to do analysis
    # first, stock option
    df['StockOptionLevel']
    # want to see who stay who leave, the avg stock option level,
    # use categorical plot: catplot # attrition:減员
    sns.catplot( data=df, x='Attrition', y='StockOptionLevel', kind='bar', hue='JobLevel')
```

Out[153]: <seaborn.axisgrid.FacetGrid at 0x1f8c60fa610>


```
In [155]: # the other important feature is years with current manager
# we can see the new guys on this position have quite a short period of time,
# they leave this job with higher chance
```

```
In [156]: # first, know the dataset well, call out original dataset
df['YearsWithCurrManager']
```

```
Out[156]: 0
                    5
                    7
            2
                    0
           3
                    0
           4
                    2
           1465
                    3
                    7
           1466
           1467
                    3
           1468
                    8
           1469
```

Name: YearsWithCurrManager, Length: 1470, dtype: int64

```
In [157]: # for this case, we can either use distribution plot or density plot
    # to show the difference in distribution,
    # since diff years ~= diff distribution,
    # histogram also can show the distribution on years 1 to 10 for leave & stay (hue='attrition'
    # here, we use kde plot
    sns.displot(data=df, x='YearsWithCurrManager', hue='Attrition', kind='kde', fill=True)
```

Out[157]: <seaborn.axisgrid.FacetGrid at 0x1f8c488d6a0>

In [158]: # these two distribution are not in the same scale, so there is another way to apply kde plot

```
In [159]: sns.kdeplot( df [df['Attrition']=='Yes']['YearsWithCurrManager'], fill=True)
sns.kdeplot( df [df['Attrition']=='No']['YearsWithCurrManager'], fill=True)
# to put the graph overlay together, let them into same scale
```

Out[159]: <AxesSubplot:xlabel='YearsWithCurrManager', ylabel='Density'>

In [160]:	# In the plot, we see that who choose to leave (blue area), the distribution is a little left # that means the years with current manager are those younger, and tends to leave their jobs # For those who choose to stay their jobs, the distribution shows the age of managers are # slightly higher than those who choose to leave. # business insight: blue one, not overlapping, means that, for those new joiners of this job, # there is high risk of churning from this current job.
In []:	

```
In [161]: # (third), look at another discrete variable
          # Overtime
          df['OverTime']
Out[161]: 0
                  Yes
                  No
          2
                  Yes
          3
                  Yes
          4
                  No
          1465
                  No
          1466
                  No
          1467
                  Yes
          1468
                  No
          1469
                 No
          Name: OverTime, Length: 1470, dtype: object
In [162]: # we want to know their attrition rate, so we need to turn yes/no to 1/0
          # to calculate avg
          df['Attrition_tag']=df.apply(lambda s:
                                             1 if s['Attrition']=='Yes'
                                               else 0,
                                      axis=1)
          # df
          df[['Attrition','Attrition_tag']]
```

Out[162]:

	Attrition	Attrition_tag
0	Yes	1
1	No	0
2	Yes	1
3	No	0
4	No	0
1465	No	0
1466	No	0
1467	No	0
1468	No	0
1469	No	0

1470 rows × 2 columns

```
In [163]: sns.catplot(data=df, x='OverTime', y='Attrition_tag', kind='bar')
```

Out[163]: <seaborn.axisgrid.FacetGrid at 0x1f8c6138820>


```
In [165]: # then, we may want to see for different departments, is there behavior differently?
sns.catplot(data=df, x='OverTime', y='Attrition_tag', hue='Department', kind='bar')
```

Out[165]: <seaborn.axisgrid.FacetGrid at 0x1f8c63821f0>

In [166]: # from the plot, we see that sales work overtime most, this makes their attrition rate higher # For the research & development department, it doesn't seem to be so obvious. # For the HR department, the attrition rate and non-attrition rate are not as different as ot # business insight: HR employees leave their jobs, # the reason behind are less related to working overtime.

```
In [167]: # maybe different edu background, the attrition of overtime rate is ???
sns.catplot(data=df, x='OverTime', y='Attrition_tag', hue='Education', kind='bar')
```

Out[167]: <seaborn.axisgrid.FacetGrid at 0x1f8c64f0b50>

Step 4 Machine Learning Model

- 1. Do data preprocessing
- 2. Build ML models
- 3. Make prediction on test dataset and test the model preformance

```
In [170]:
# now, we already have some ideas on
# 'who are easily churned from this current job on segmentation level'
# e.g. HR people are more likely to leave this job
# overtime people are more likely to leave this job
# these two are segmentation分割 level
# how predictions do on individual level?
# what is the prob.? what is the chance of leaving this job?
# This is advanced analytics == ML
```

For individual level, build a model to predict the probability of leaving current job

```
In [171]: # 4.1 do data preprocessing
# since data format can be very messy, not suitable for ML algorithms to directly consume
df.head()
```

Out[171]:

•		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	Emplo
	0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	
	1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	
	2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	
	3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	
	4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	

5 rows × 36 columns

```
In [172]: # take an example, why we need data poeprocessing,
    # e.g.BusinessTravel, it is a string, which is not numerical values,
    # data poeprocessing can make them suitable to ML job
    # then there also some desciptions of some cols (some individuals) of dataset,

# For conducting ML,
    # we need labels, which is a tag, yes or no, which means whether leave this job or not
    # labels must be numerical values if it is a classification problem, (0/1) ,
    # it can be just a value if it is a regression

# make sure all values are numerical values
# for business travel, we do as below:
```

```
In [173]: # generate labels
```

```
In [174]: # one hot encoding, to convert all non-numerical features into numerical features
# one hot encoding, it is called pandas.get_dummies

df_test = pd.DataFrame( data=df, columns=['BusinessTravel'] )

df_test.head()
```

Out[174]:

BusinessTravel

- 0 Travel_Rarely
- 1 Travel_Frequently
- 2 Travel_Rarely
- 3 Travel_Frequently
- 4 Travel_Rarely

In [175]: pd.get_dummies(df_test)

Out[175]:

	BusinessTravel_Non-Travel	BusinessTravel_Travel_Frequently	BusinessTravel_Travel_Rarely
0	0	0	1
1	0	1	0
2	0	0	1
3	0	1	0
4	0	0	1
1465	0	1	0
1466	0	0	1
1467	0	0	1
1468	0	1	0
1469	0	0	1

1470 rows × 3 columns

In [176]: # then, we transform other features to matrix form

In [177]: df_modelling = df.drop('Attrition', 1)
 df_modelling.head()

Out[177]:

	Age	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount
0	41	Travel_Rarely	1102	Sales	1	2	Life Sciences	1
1	49	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1
2	37	Travel_Rarely	1373	Research & Development	2	2	Other	1
3	33	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1
4	27	Travel_Rarely	591	Research & Development	2	1	Medical	1

5 rows × 35 columns

```
In [178]: df_modelling = pd.get_dummies(df_modelling)
df_modelling.head().transpose()
```

Out[178]:

	0	1	2	3	4
Age	41	49	37	33	27
DailyRate	1102	279	1373	1392	591
DistanceFromHome	1	8	2	3	2
Education	2	1	2	4	1
EmployeeCount	1	1	1	1	1
EmployeeNumber	1	2	4	5	7
EnvironmentSatisfaction	2	3	4	4	1
HourlyRate	94	61	92	56	40
Jobinvolvement	3	2	2	3	3
JobLevel	2	2	1	1	1
JobSatisfaction	4	2	3	3	2
MonthlyIncome	5993	5130	2090	2909	3468
MonthlyRate	19479	24907	2396	23159	16632
NumCompaniesWorked	8	1	6	1	9
PercentSalaryHike	11	23	15	11	12
PerformanceRating	3	4	3	3	3
RelationshipSatisfaction	1	4	2	3	4
StandardHours	80	80	80	80	80
StockOptionLevel	0	1	0	0	1
TotalWorkingYears	8	10	7	8	6
TrainingTimesLastYear	0	3	3	3	3
WorkLifeBalance	1	3	3	3	3
YearsAtCompany	6	10	0	8	2
YearsInCurrentRole	4	7	0	7	2
YearsSinceLastPromotion	0	1	0	3	2
YearsWithCurr M anager	5	7	0	0	2
Attrition_tag	1	0	1	0	0
BusinessTravel_Non-Travel	0	0	0	0	0
BusinessTravel_Travel_Frequently	0	1	0	1	0
BusinessTravel_Travel_Rarely	1	0	1	0	1
Department_Human Resources	0	0	0	0	0
Department_Research & Development	0	1	1	1	1
Department_Sales	1	0	0	0	0
EducationField_Human Resources	0	0	0	0	0
EducationField_Life Sciences	1	1	0	1	0
EducationField_Marketing	0	0	0	0	0
EducationField_Medical	0	0	0	0	1
EducationField_Other	0	0	1	0	0
EducationField_Technical Degree	0	0	0	0	0
Gender_Female	1	0	0	1	0
Gender_Male	0	1	1	0	1
JobRole_Healthcare Representative	0	0	0	0	0

	0	1	2	3	4
JobRole_Human Resources	0	0	0	0	0
JobRole_Laboratory Technician	0	0	1	0	1
JobRole_Manager	0	0	0	0	0
JobRole_Manufacturing Director	0	0	0	0	0
JobRole_Research Director	0	0	0	0	0
JobRole_Research Scientist	0	1	0	1	0
JobRole_Sales Executive	1	0	0	0	0
JobRole_Sales Representative	0	0	0	0	0
MaritalStatus_Divorced	0	0	0	0	0
MaritalStatus_Married	0	1	0	1	1
MaritalStatus_Single	1	0	1	0	0
Over18_Y	1	1	1	1	1
OverTime_No	0	1	0	0	1
OverTime_Yes	1	0	1	1	0

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction	Но
0	41	1102	1	2	1	1	2	
1	49	279	8	1	1	2	3	
2	37	1373	2	2	1	4	4	
3	33	1392	3	4	1	5	4	
4	27	591	2	1	1	7	1	

5 rows × 55 columns

```
In [184]: y.head()
```

```
Out[184]: 0 1
1 0
2 1
3 0
4 0
```

Name: Attrition_tag, dtype: int64

In [186]: X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3, train_size=0.7)

In [187]: X_train

Out[187]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction
49	35	1229	8	1	1	63	4
1101	32	824	5	2	1	1555	4
128	22	594	2	1	1	169	3
997	27	135	17	4	1	1405	4
789	44	1376	1	2	1	1098	2
1006	49	1475	28	2	1	1420	1
590	33	213	7	3	1	817	3
286	44	920	24	3	1	392	4
1024	47	359	2	4	1	1443	1
175	56	713	8	3	1	241	3

1029 rows × 55 columns

In [188]: X_test

Out[188]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction
544	47	217	3	3	1	746	4
417	40	1398	2	4	1	558	3
983	34	404	2	4	1	1383	3
65	55	836	8	3	1	84	4
575	54	376	19	4	1	799	4
1140	44	1313	7	3	1	1608	2
444	48	163	2	5	1	595	2
356	42	1332	2	4	1	477	1
1414	47	1180	25	3	1	1993	1
547	42	933	19	3	1	752	3

441 rows × 55 columns

```
In [189]: y_train
Out[189]: 49
                  0
          1101
                  0
          128
                  0
          997
                  1
          789
                  1
          1006
                  1
          590
                  0
          286
                  1
          1024
                  0
          175
                  0
          Name: Attrition_tag, Length: 1029, dtype: int64
In [190]: y_test
Out[190]: 544
          417
                  0
          983
                  0
          65
                  0
          575
                  0
          1140
          444
          356
          1414
                  0
          547
                  1
          Name: Attrition_tag, Length: 441, dtype: int64
In [191]: X_train['Age'].count()
Out[191]: 1029
In [192]: X_test['Age'].count()
Out[192]: 441
In [193]: # total (original) = x_train['Age'].count() + x_test['Age'].count()
          # 1029 + 441
In [194]: # almost done -- data preprocessing
          # x_train, x_test, y_train, y_test = train_test_split( x, y, test_size=0.3, train_size=0.7 )
          # is a data frame that we prepare for building model
  In [ ]:
  In [ ]:
```

```
In [195]: ## Build machine learning models
In [196]: # here we use random forest to build a ML model that predict the employees' attrition
In [197]: | from sklearn.ensemble import RandomForestClassifier
In [198]: # defining the model to be used for training,
     # *** max_depth= 3 or 5 for basic work, tesing ang changing values after
     clf = RandomForestClassifier(max depth=3)
In [199]: # input the training features and labels to train the model
     clf.fit(X train, y train) # two parameters for this fit
Out[199]: RandomForestClassifier(max_depth=3)
In [200]: type(clf) # clf is a model, but we cannot see what is inside now, wt info. inside
           #
                    there is some complicated binary info. inside
Out[200]: sklearn.ensemble. forest.RandomForestClassifier
 In [ ]:
In [201]: ## Make prediction on test dataset and test the model preformance
In [202]: # model is ready
     \# we have X_test and y_test, but we ASSUME we only know the X_test
     # then use it to predict the attrition of all these users,
         compare with the y_test (the true label)
     #
         compare the accuracy and even auc to get uderstanding how accurate our model is
     #
                             (the purpose of having this test set y_test
     #
             --> to test the model performance assume that we dont know the exact label)
In [203]: # model is ready & compare with the y_test (the true label)
     # do predictions, clf we have
     y_predict = clf.predict(X_test)
In [204]: y_predict
0], dtype=int64)
```

```
In [205]: # compare the y_predict, which is our prediction with the y_test,
          # to evaluate on the accuracy of the modelling
          # accuracy, confusion matrix, AUC
          from sklearn.metrics import accuracy_score, precision_score, classification_report, confusion
In [206]: # accuracy
          accuracy_score(y_test, y_predict)
Out[206]: 0.8367346938775511
In [207]: # confusion matrix
          confusion_matrix(y_test, y_predict)
Out[207]: array([[367,
                          0],
                          2]], dtype=int64)
                  [ 72,
In [208]: # precision score
          precision_score(y_test, y_predict, average='macro')
Out[208]: 0.917995444191344
In [209]: # AUC, 1 means perfect classification; 0.5 means random quess
In [210]: # first, go back to predict the prob.
          y_prob = clf.predict_proba(X_test)
In [211]: y_prob # y_prob shows the prob. being 0 or 1 while inputting to this roc curve,
                   # we only need the prob. being 1, i.e.2nd col
Out[211]: array([[0.86595354, 0.13404646],
                  [0.90867342, 0.09132658],
                  [0.89278317, 0.10721683],
                  [0.86359322, 0.13640678],
                  [0.86716493, 0.13283507],
                  [0.8594494, 0.1405506],
                  [0.81388544, 0.18611456],
                  [0.88451313, 0.11548687],
                  [0.87814402, 0.12185598],
                  [0.91907687, 0.08092313],
                  [0.86018752, 0.13981248],
                  [0.8410164 , 0.1589836 ],
[0.91133067, 0.08866933],
                  [0.90932658, 0.09067342],
                  [0.89570447, 0.10429553],
                  [0.91385646, 0.08614354],
                  [0.80714651, 0.19285349],
                  [0.84755643, 0.15244357],
                  [0.90417799, 0.09582201],
                  [O 00404FO0 O 47F7F400]
```

```
pred
Out[212]: array([0.13404646, 0.09132658, 0.10721683, 0.13640678, 0.13283507,
                 0.1405506 , 0.18611456, 0.11548687, 0.12185598, 0.08092313,
                 0.13981248, 0.1589836 , 0.08866933, 0.09067342, 0.10429553,
                 0.08614354, 0.19285349, 0.15244357, 0.09582201, 0.17575492,
                 0.13840078, 0.11190292, 0.17099475, 0.08772134, 0.0955093
                 0.12638733, 0.07083394, 0.07091455, 0.12215509, 0.24475597,
                 0.13458955, 0.1259237 , 0.1055176 , 0.13054521, 0.257011
                 0.14344143, 0.19215894, 0.13942675, 0.15411547, 0.11071386,
                 0.39688676, 0.06964711, 0.10959995, 0.07999001, 0.18619085,
                 0.18230276, 0.06788407, 0.09167581, 0.08381336, 0.12317379,
                 0.56217472, 0.15503336, 0.09753609, 0.40859939, 0.18466966,
                 0.0686242 , 0.22064849, 0.26738714, 0.0722754 , 0.1187768 ,
                 0.13527318, 0.14323223, 0.09563546, 0.14179391, 0.10503769,
                  0.07566074, \ 0.17047731, \ 0.1223376 \ , \ 0.08070908, \ 0.15610384, 
                 0.15318554, 0.12987075, 0.112972 , 0.17164538, 0.14538373,
                 0.13066199, 0.14326277, 0.09727115, 0.07990772, 0.16315019,
                 0.1421768 , 0.18993914, 0.21497914, 0.08924901, 0.19198928,
                 0.35611654, 0.1498767 , 0.13355691, 0.11735603, 0.15877578,
                 0.1707702 , 0.09265355, 0.28960493, 0.07736208, 0.15993808,
                 0.09352607, 0.08149653, 0.16550951, 0.16050289, 0.1806471,
                 0.1808781 , 0.14379233, 0.27062536, 0.08386169, 0.2169655 ,
                 0.14850449,\ 0.12028371,\ 0.08437629,\ 0.18579768,\ 0.10700483,
                 0.14111707, 0.11137296, 0.09711177, 0.10364632, 0.09715243,
                 0.30622393, 0.11397692, 0.11807778, 0.12639309, 0.09112674,
                 0.14490383, 0.12666273, 0.09886894, 0.07567675, 0.11299404,
                 0.08017902, 0.20288583, 0.24538205, 0.28932093, 0.18048066,
                 0.07635398, 0.12995858, 0.20759646, 0.1055684 , 0.13269116,
                 0.08494698, 0.196186 , 0.07689838, 0.09378883, 0.15132062,
                 0.09270252, 0.10300146, 0.1222346 , 0.29949254, 0.08049744,
                 0.19193518, 0.20875147, 0.10858373, 0.07941134, 0.12635382,
                 0.11556494, 0.10380938, 0.08833151, 0.12762049, 0.12024225,
                 0.22677276, 0.13093587, 0.2182216 , 0.13299469, 0.19450396,
                 0.15751772, 0.24975914, 0.09350859, 0.14087251, 0.45113845,
                 0.07784683, 0.09489807, 0.23853152, 0.32595872, 0.13158433,
                 0.14497212, 0.10261452, 0.11986346, 0.1206024, 0.11609361,
                 0.14075758, 0.17541613, 0.14613178, 0.27846923, 0.1608504,
                 0.10496046, 0.29118147, 0.15970054, 0.13371897, 0.10842305,
                 0.10538615, 0.13927452, 0.14540123, 0.12812125, 0.1214549,
                 0.12482455, 0.1404665, 0.15158903, 0.28575636, 0.15690796,
                 0.16509329, 0.12698645, 0.51322286, 0.10942556, 0.2145561,
                 0.17198397, 0.20565768, 0.10151983, 0.17998034, 0.15537771,
                 0.13869286, 0.09057686, 0.15360819, 0.20289046, 0.0856944 ,
                 0.24257048, 0.37439771, 0.17143311, 0.08240617, 0.12619773,
                 0.14795624, 0.19926192, 0.11051939, 0.15994312, 0.1371387
                 0.10573464, 0.10623851, 0.20738884, 0.12235309, 0.13639345,
                 0.14083125, 0.14218066, 0.0811897 , 0.11512429, 0.087446
                 0.10478297, 0.06673302, 0.14465441, 0.08248563, 0.08862069,
                 0.16073202, 0.08350786, 0.1254342 , 0.16203856, 0.14354761,
                 0.14592195, 0.19069554, 0.35236808, 0.1233117, 0.11334863,
                 0.07793665, 0.11759352, 0.10831299, 0.24679736, 0.21781198,
                 0.17527191, 0.21839574, 0.18163679, 0.10013095, 0.10871124,
                 0.11009323, 0.18303655, 0.1227979 , 0.07102975, 0.09879772,
                                                   , 0.15488906, 0.14447228,
                 0.15567671, 0.14445193, 0.39186
                 0.26236425, 0.11366167, 0.13593484, 0.23262209, 0.1045159,
                 0.1262153 , 0.19996409, 0.16450969, 0.19285749, 0.17863237,
                 0.08124579, 0.08143916, 0.12340556, 0.14631338, 0.09384868,
                 0.13517713, 0.11857408, 0.10314382, 0.11462084, 0.08486531,
                 0.14409866, 0.1598626 , 0.09640259, 0.0834663 , 0.18966979,
                 0.24955541, 0.09374822, 0.19526749, 0.13861104, 0.30900737,
                 0.18229232, 0.12566153, 0.15131443, 0.22391754, 0.12566924,
                 0.15931076, 0.0732077 , 0.15819668, 0.1124318 , 0.13388231,
                 0.08235557, 0.09581455, 0.1032827, 0.10970459, 0.08985019,
                  0.13752961, \ 0.3479358 \ , \ 0.24588248, \ 0.12609023, \ 0.15099828, 
                 0.17473951, 0.12439001, 0.12077683, 0.1527839 , 0.12792666,
                 0.22372067, 0.29213145, 0.08648207, 0.13497147, 0.09212118,
```

In [212]: pred = y_prob[:,1]

```
0.11153698, 0.098285 , 0.15165322, 0.45298158, 0.09970721,
0.28518766,\ 0.09351676,\ 0.14668822,\ 0.07783329,\ 0.07379591,
0.08541906, 0.12262829, 0.4205057 , 0.10947702, 0.10896189,
 0.09498043, \ 0.11352505, \ 0.14883984, \ 0.09420288, \ 0.14211942, 
0.08670099,\ 0.12250387,\ 0.09135524,\ 0.09937022,\ 0.11058624,
0.12835555, 0.30616461, 0.21313432, 0.17685591, 0.31646052,
0.13360609, 0.1034013 , 0.12520366, 0.20344412, 0.19791677,
0.17545459, 0.09530972, 0.07434562, 0.27881733, 0.076851
0.30645641, 0.21246332, 0.1002544 , 0.1054672 , 0.09119428,
0.06914465, 0.08767093, 0.11680467, 0.31584749, 0.17406027,
0.2150377 , 0.1454668 , 0.10974006, 0.16088429, 0.22970713,
0.31418236, 0.08551841, 0.29513905, 0.12863803, 0.07928706,
0.26525298, 0.15267653, 0.08721603, 0.18553272, 0.09442895,
0.24284111, 0.16819069, 0.36410807, 0.27812695, 0.20150458,
0.13878706, 0.26039074, 0.16769068, 0.11026287, 0.14601669,
0.09397093, 0.35499724, 0.08953765, 0.18315224, 0.10152202,
0.10265868, 0.10949737, 0.12097004, 0.09496414, 0.07310614,
0.20748964, 0.0736583 , 0.14775162, 0.0922919 , 0.08695814,
0.16546813, 0.08835886, 0.17145428, 0.15322493, 0.11064691,
0.22725014, 0.30047255, 0.13109199, 0.09607178, 0.11836993,
0.10774611, 0.12881914, 0.09010179, 0.19172741, 0.12229373,
0.2587578 ])
```

```
In [213]: fpr, tpr, thresholds = roc_curve(y_test, pred)
auc(fpr, tpr)
```

Out[213]: 0.8006112379409382

```
In [214]: # 0.78 > 0.5, it is random guess, there is a room to increase it.
```

```
In [215]: # try to plot auc curve

# we assign the auc(fpr, tpr) to a value called roc_auc lrl
import matplotlib.pyplot as plt
plt.plot(fpr, tpr, lw=2)
```

Out[215]: [<matplotlib.lines.Line2D at 0x1f8c75a0a00>]


```
In [216]: # area under this curve is 1 means it is a prefect segmentation
plt.plot(fpr, tpr, lw=2)
plt.plot([0,1], [0,1], lw=2, linestyle='--') # this is roc_auc
```

Out[216]: [<matplotlib.lines.Line2D at 0x1f8c75f6e80>]


```
In [217]: # this is a gd model because it is able to do some predictions
# and it performs much better than random guess
# we can improve it much more better
# look at auc score (b/c optimize auc score = improve the predictions)
# we can go back to 'building machine learning model' part,
# try another max_depth no. e.g. 8
# do this training again and run

In []:

In [218]: # we can save the model into a pico file
import pickle
pickle.dump(clf, open('model_att', 'wb'))

In [219]: # next time, we can just load the model from files
loaded_model = pickle.load(open('model_att', 'rb'))
loaded_model
```

Out[219]: RandomForestClassifier(max_depth=3)

```
In [221]: # e.g.
           loaded_model.predict_proba(X_test)
Out[221]: array([[0.86595354, 0.13404646],
                   [0.90867342, 0.09132658],
                   [0.89278317, 0.10721683], [0.86359322, 0.13640678],
                   [0.86716493, 0.13283507],
                   [0.8594494 , 0.1405506 ], [0.81388544, 0.18611456],
                   [0.88451313, 0.11548687],
                   [0.87814402, 0.12185598],
                   [0.91907687, 0.08092313],
                   [0.86018752, 0.13981248],
                   [0.8410164, 0.1589836],
                   [0.91133067, 0.08866933],
                   [0.90932658, 0.09067342],
                   [0.89570447, 0.10429553],
                   [0.91385646, 0.08614354],
                   [0.80714651, 0.19285349],
                   [0.84755643, 0.15244357],
                   [0.90417799, 0.09582201],
  In [ ]:
  In [ ]:
```