

UIN: 665249431 NotId: syvan19

Homework 01

Due Tuesday, September 2, 11:59pm

STAT 400, Fall 2025, D. Unger

Exercise 1

A fair coin is tossed four times, and the sequence of heads and tails is observed.

- (a) List each of the 16 sequences in the sample space S.
- **(b)** What is the probability of observing the specific outcome of {H, T, H, T} after tossing the fair coin four times.
- (c) Let events A, B, C, and D be given by $A = \{at least 3 heads\}, B = \{at most 2 heads\}, \}$

- C = {heads on the third toss}, and D = {1 head and 3 tails}.

 HHHHH HTHH

 (i) P(A) HHHTT THHH

 (ii) P(B)

 (iii) P(B)

 (iii) P(A \cap B) = 0 (iv) P(C)

 (iv) P(C)

 (iv) P(A \cap C) = 4 (vi) P(A \cup C)

 (vi) P(A \cup C) = 4 (vi) P(B \cap D)

 (vi) P(B \cap D)

Exercise 2

= 0.6

If P(A) = 0.4, P(B) = 0.5, and $P(A \cap B) = 0.3$, find ...

Ub) PLANB'I is red one left **(c)** P(A' ∪ B'). **(b)** P(A ∩ B'); (a) $P(A \cup B)$;

Exercise 3

Suppose

$$P(A') = 0.70,$$
 $P(B) = 0.60,$

$$P(C) = 0.40,$$

$$P(A' \cup B') = 0.80, \quad P(A \cap C) = 0.15,$$

$$P(A \cap C) = 0.15.$$

$$P(B \cap C) = 0.25$$
, and

$$P(A \cap B \cap C) = 0.10.$$

Find the following probabilities.

- (a) $P(A \cup C)$
- **(b)** $P(A \cap B)$
- (c)P(A U B U C)

.. P(A'UB') = a8 -- PIANB)= 1-PIA'UB')=02

=
$$P(A)+P(c)-P(ANC)$$

(ON) $P(AVC) = 0.5 + 0.4 - 0.15 = 0.55$
(b) $P(ANB) = 1 - P(A'UB')^{2} \cdot 2 \cdot 2$

(c) P(AUBUC) = P(A)+P(B)+P(C)-P(ANB)-P(ANC)-P(BNC) +P(Anbal) = 0.3+0.6+0.4-0.15-0.45-02+0.1

Exercise 4

During a visit to a primary care physician's office, the probability of having neither lab work nor referral to a specialist is 0.21. Of those coming to that office, the probability of having lab work is 0.41 and the probability of having a referral is 0.53. What is the probability of having both lab work and a referral?

Exercise 5

Find the value of *p* that would make this a valid probability model.

(a) Suppose $S = \{0, 2, 4, 6, 8, ...\}$ (i.e, even non-negative integers) and

$$P(0) = p$$
, $P(k) = \frac{1}{3^k}$, $k = 2, 4, 6, 8, ...$

$$k = 2, 4, 6, 8, \dots$$

(b) Suppose
$$S = \{1, 2, 3, 4, ...\}$$
 (i.e., positive integers) and

$$P(1) = p$$
, $P(k) = \frac{(\ln 3)^k}{k!}$, $k = 2, 3, 4, ...$

P=1- \(\frac{\mathbb{E}}{\mathbb{E}}\) \(\left(\left(\mathbb{E})\) \(\mathbb{E}\) \(\mathbb{E}\) =1+ (en3) - (en3) - 5 (en3) = ln3-1 = 0.0981

Exercise 6

Suppose S = {0, 1, 2, 3, ...} and P(k) = $\frac{1/3}{(3/2)^k}$, for $k \in S$. (c) P[out layer +hm 2) - \frac{1}{3} +

- **(a)** Find P[{2}]
- **(b)** Find P[outcome is less than 2]
- **(c)** Find P[outcome is greater than 2]
- (d) Prove that P[S] = 1. In other words, show that this probability function obeys the second property of the definition of probability.

Exercise 7

we can add up previous three P+otel = $\frac{4}{27} + \frac{5}{9} + \frac{12}{27} = \frac{12}{27} + \frac{5}{9} = 1$ So it obeys the second property. Suppose $S = \{1, 2, 3, ...\}$ and $P(k) = c \cdot \frac{1}{\pi^{2k}}$ for k = 1, 2, 3, ...

- (a) Find the value of *c* that makes this a valid probability distribution.
- **(b)** Find P(outcome is even).

(b) Find P(outcome is even).

$$(a) \quad \sum P(k) = C \cdot \left(\frac{1}{\pi^2} + \frac{1}{\pi^2} + \frac{1}{\pi^2} + \cdots \right) \\
 = \frac{C}{\pi^2} \cdot \left(\frac{1}{1 - \frac{1}{\pi^2}} \right) = \frac{C}{\pi^2 - 1}$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \frac{1}{\pi^2} + \cdots \right) \\
 = C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

$$= C \cdot \left(\frac{1}{\pi^4} + \frac{1}{\pi^2} + \cdots \right)$$

when c is
$$T^{2}-1$$

= 8.870

then ont is $T^{2}-1$
 $T^{2}-1$

Exercise 8

Suppose S = {1, 2, 3, ...} and P(k) =
$$c \cdot \frac{3^k}{k!}$$
, for $k = 1, 2, 3, ...$

- **(a)** Find the value of *c* that makes this is a valid probability distribution.
- **(b)** Find P(outcome is greater than 3).

(b) Find P(outcome is greater than 3).
(a)
$$\sum P(k) = c \cdot \frac{s^2 - \frac{2^k}{k!}}{\frac{2^k}{k!}} = c \cdot (e^3 - \frac{3^2}{0!}) = c \cdot (e^3 - \frac{3^2}{3!} - \frac{3^2}{2!} - \frac{3^2}{1!} - \frac{3^2}{0!}) = c \cdot (e^3 - \frac{1}{3!} - \frac{3^2}{2!} - \frac{3^2}{1!} - \frac{3^2}{0!}) = c \cdot (e^3 - \frac{1}{3!} - \frac{2^2}{2} - \frac{3^2}{1!} - \frac{3^2}{0!}) = c \cdot (e^3 - \frac{1}{3!} - \frac{2^2}{2} - \frac{3^2}{1!} - \frac{3^2}{0!}) = c \cdot (e^3 - \frac{1}{3!} - \frac{2^2}{2} - \frac{3^2}{1!} - \frac{3^2}{0!}) = c \cdot (e^3 - \frac{1}{3!} - \frac{2^2}{2} - \frac{3^2}{1!} - \frac{3^2}{0!}) = c \cdot (e^3 - \frac{1}{3!} - \frac{2^2}{2} - \frac{3^2}{1!} - \frac{3^2}{0!}) = c \cdot (e^3 - \frac{1}{3!} - \frac{3^2}{2} - \frac{3^2}{1!} - \frac{3^2}{0!}) = c \cdot (e^3 - \frac{1}{3!} - \frac{3^2}{2} - \frac{3^2}{1!} - \frac{3^2}{0!}) = c \cdot (e^3 - \frac{1}{3!} - \frac{3^2}{2} - \frac{3^2}{1!} - \frac{3^2}{0!}) = c \cdot (e^3 - \frac{1}{3!} - \frac{3^2}{2} - \frac{3^2}{1!} - \frac{3^2}{0!}) = c \cdot (e^3 - \frac{1}{3!} - \frac{3^2}{2} - \frac{3^2}{1!} - \frac{3^2}{0!}) = c \cdot (e^3 - \frac{1}{3!} - \frac{3^2}{2} - \frac{3^2}{1!} - \frac{3^2}{0!}) = c \cdot (e^3 - \frac{1}{3!} - \frac{3^2}{2} - \frac{3^2}{1!} - \frac{3^2}{0!}) = c \cdot (e^3 - \frac{1}{3!} - \frac{3^2}{2} - \frac{3^2}{1!} - \frac{3^2}{0!}) = c \cdot (e^3 - \frac{1}{3!} - \frac{3^2}{2} - \frac{3^2}{1!} - \frac{3^2}{0!}) = c \cdot (e^3 - \frac{1}{3!} - \frac{3^2}{2} - \frac{3^2}{1!} - \frac{3^2}{0!}) = c \cdot (e^3 - \frac{1}{3!} - \frac{3^2}{2} - \frac{3^2}{0!} - \frac{3^2}{0!}) = c \cdot (e^3 - \frac{1}{3!} - \frac{3^2}{2} - \frac{3^2}{0!} - \frac{3^2}{0!}) = c \cdot (e^3 - \frac{1}{3!} - \frac{3^2}{2} - \frac{3^2}{0!} - \frac{3^2}{0!} - \frac{3^2}{0!} - \frac{3^2}{0!}) = c \cdot (e^3 - \frac{1}{3!} - \frac{3^2}{2} - \frac{3^2}{0!} - \frac{3^2}{$$