Facultatea

CHESTIONAR DE CONCURS

Numărul	legitimației de bancă
Numele _	
Prenumel	e tatălui
Prenumel	e

DISCIPLINA: Fizică F

VARIANTA C

- 1. În SI lucrul mecanic se măsoară în: (5 pct.)
 - a) $kg \cdot m/s^2$; b) W; c) $kg \cdot m/s$; d) N/m; e) J; f) kWh.
- 2. Un ciclu format din două izocore de volume V_1 și $V_2 = e^2 V_1$ (e este baza logaritmilor naturali) și două izoterme de temperaturi $T_1 = 400 \text{K}$ și $T_2 = 300 \text{K}$, este parcurs de un gaz ideal a cărui căldură molară la volum constant este $C_V = \frac{5}{2} R$, unde R este constanta gazelor ideale. Randamentul unei mașini termice care funcționează după acest ciclu este: (5 pct.)

a)
$$\frac{2}{13}$$
; b) $\frac{5}{17}$; c) $\frac{8}{21}$; d) $\frac{4}{13}$; e) $\frac{2}{21}$; f) $\frac{4}{21}$.

- 3. Două corpuri având masele egale cu 200g sunt legate cu un fir trecut peste un scripete fix. Forța care acționează asupra scripetelui este ($g = 10 \text{ m/s}^2$): (5 pct.)
 - a) 5 N; b) 0,5 N; c) 1 N; d) 2 N; e) 3 N; f) 4 N.
- 4. O cantitate de gaz ideal se încălzește la volum constant până când temperatura sa crește cu 120K iar presiunea cu 30% față de presiunea inițială. Temperatura inițială a gazului este: (5 pct.)
 - a) 500K; b) 100K; c) 400K; d) 300 °C; e) 400 °C; f) 200K.
- 5. Raportul dintre presiunea și densitatea unei cantități de gaz ideal este constant în transformarea: (5 pct.)
 - a) izotermă; b) izobară; c) adiabatică; d) generală; e) ireversibilă; f) izocoră.
- 6. Un corp este aruncat pe verticală de jos în sus cu viteza inițială $v_0 = 20$ m/s. Înălțimea maximă la care ajunge corpul este (g = 10 m/s²): (5 pct.)
 - a) 10 m; b) 15 m; c) 20 m; d) 16 m; e) 5 m; f) 12 m.
- 7. Pentru funcționare normală un bec cu puterea de 2W trebuie alimentat la o tensiune de 6V. Rezistența becului este egală cu: (5 pct.)
 - a) 15Ω ; b) 18Ω ; c) 9.8Ω ; d) 20Ω ; e) 2Ω ; f) 10Ω .
- 8. Un ampermetru poate măsura un curent electric continuu de intensitate maximă egală cu 2A. Legând la bornele acestuia un șunt având rezistența de 20 de ori mai mică decât rezistența internă a ampermetrului, curentul maxim ce poate fi măsurat este: (5 pct.)
 - a) 20A; b) 42A; c) 40A; d) 21A; e) 19A; f) 10A.

- 9. Se cunoaște că sub acțiunea unei forțe $F = 221 \,\mathrm{N}$ un fir de cupru (cu modulul de elasticitate $E = 13 \cdot 10^{10} \,\mathrm{N/m^2}$) se alungește cu $\Delta l = 0,15 \,\mathrm{m}$. Cunoscând rezistivitatea cuprului $\rho = 1,7 \cdot 10^{-8} \,\Omega \mathrm{m}$, rezistența electrică a firului este: (5 pct.)
 - a) 15 Ω ; b) 0,1 Ω ; c) 1 Ω ; d) 0,3 Ω ; e) 2 Ω ; f) 1,5 Ω .
- 10. Căderea de tensiune pe rezistența internă a unei surse electrice conectate la un rezistor extern este de 1V, iar randamentul circuitului este egal cu 0,8. Tensiunea electromotoare a sursei este: (5 pct.)
 - a) 1,25V; b) 2,25V; c) 5V; d) 9V; e) 1,8V; f) 4V.
- 11. Căldura degajată la trecerea unui curent electric de intensitate I printr-un conductor având rezistența R în timpul Δt este: (5 pct.)
 - a) $RI\Delta t^2$; b) $R^2\Delta t/I$; c) $IR^2\Delta t$; d) $RI\Delta t$; e) $I^2\Delta t/R$; f) $RI^2\Delta t$.
- 12. Printr-un fir conductor trece un curent de 0,5mA timp de 2h. În acest timp prin fir trece o sarcină electrică egală cu: (5 pct.)
 - a) 25C; b) 100mA; c) 100C; d) 3,6C; e) 100mC; f) 25mC.
- 13. Două corpuri având masele $m_1 = 0.5 \,\mathrm{kg}$ şi $m_2 = 2 \,\mathrm{kg}$ se află pe un plan înclinat de unghi $\alpha = \pi/6$. Cele două corpuri sunt în contact unul cu celălalt, corpul de masă m_1 aflând-se mai jos. Coeficienții de frecare cu planul ai corpurilor sunt respectiv $\mu_1 = 0.3$ şi $\mu_2 = 0.2$. Cunoscând $g = 10 \,\mathrm{m/s^2}$, forța pe care corpul de masă m_2 o exercită asupra corpului de masă m_1 în timpul coborârii pe plan este: (5 pct.)
 - a) $\sqrt{3}$ N; b) 0,2 N; c) 0,5 $\sqrt{3}$ N; d) 2 N; e) 0,2 $\sqrt{3}$ N; f) 1,4 N.
- 14. Un autoturism având puterea motorului de 75 kW se deplasează cu o viteză constantă de 180 km/h. Forța de rezistență la înaintare este egală cu ($g = 10 \text{ m/s}^2$): (5 pct.)
 - a) 3000 N; b) 15000 N; c) 750 N; d) 1500 N; e) 2000 N; f) 150 N.
- 15. În SI unitatea de măsură pentru exponentul adiabatic este: (5 pct.)
 - a) J/mol·K; b) J/K; c) nu are unitate de măsură; d) J/kg; e) Pa·m⁻³; f) m²/N.
- 16. Un gaz ideal monoatomic $(C_v = \frac{3}{2}R)$ primește căldura Q = 15 kJ pentru a-și mări izobar temperatura. Căldura necesară pentru a mări izocor cu aceeași valoare temperatura gazului este: (5 pct.)
 - a) 12,5 kJ; b) 9 kJ; c) 16 kJ; d) 25 kJ; e) 12000 J; f) 6 kJ.
- 17. Pentru oxigen se cunosc masa molară, $\mu = 32 \,\mathrm{g/mol}$ și exponentul adiabatic, $\gamma = 1,4$. Căldura specifică la presiune constantă a oxigenului este (se consideră $R = 8,32 \,\mathrm{J/(mol \cdot K)}$):(5 pct.)
 - a) 182 $J/(kg\cdot K)$; b) 124 $J/(kg\cdot K)$; c) 910 $J/(kg\cdot K)$; d) 0,900 $J/(kg\cdot K)$; e) 207 $J/(kg\cdot K)$;
 - f) 290 J/(kg·K).
- 18. Din punctul A pornesc în aceeași direcție două automobile deplasându-se rectiliniu și uniform. Primul se mișcă cu viteza $v_1 = 63$ km/h, al doilea pleacă la 15 min după primul și se deplasează cu $v_2 = 90$ km/h. Punctul în care se vor întâlni cele două automobile se află față de A la distanța: (5 pct.)
 - a) 27 km; b) 54 km; c) 64 km; d) 52,5 km; e) 22,5 km; f) 48,5 km.