SC1007 Data Structures and Algorithms

Analysis of Algorithms

Dr. Loke Yuan Ren Lecturer yrloke@ntu.edu.sg

College of Engineering
School of Computer Science and Engineering

Overview

Conduct complexity analysis of algorithms

- Time and space complexities
- Best-case, worst-case and average efficiencies
- Order of Growth
- Asymptotic notations
 - O notation
 - Ω notation (Omega)
 - Θ notation (Theta)
- Efficiency classes

Analysis of Algorithms

- The study of the efficiency and performance of algorithms
- Evaluate the speed and scalability of an algorithm
 - How its efficiency changes as input sizes grow
- Identify the most efficient algorithms for a given problem
- Understand the trade-offs between different approaches

Time and space complexities

- Analyze efficiency of an algorithm in two aspects
 - Time
 - Space

- Time complexity: the amount of time used by an algorithm
- Space complexity: the amount of memory units used by an algorithm

1. Count the number of primitive operations in the algorithm

- 1. Count the number of primitive operations in the algorithm
- Declaration: int x;
- Assignment: x =1;
- Arithmetic operations: +, -, *, /, % etc.
- Logic operations: ==, !=, >, <, &&, ||

These primitive operations take constant time to perform

Basically they are not related to the problem size changing the input(s) does not affect its computational time

- 1. Count the number of primitive operations in the algorithm
 - i. Repetition Structure: for-loop, while-loop
 - ii. Selection Structure: if/else statement, switch-case statement
 - iii. Recursive functions
- 2. Express it in term of problem size

i. Repetition Structure: for-loop, while-loop

```
1: j \leftarrow 1  c_0

2: factorial \leftarrow 1  c_1

3: while j \le n do

4: factorial \leftarrow factorial *j  c_2

5: j \leftarrow j + 1  c_2  c_3  c_3  c_2  c_3
```

The function increases linearly with n (problem size)

i. Repetition Structure: for-loop, while-loop

```
1: for j \leftarrow 1, m do

2: for k \leftarrow 1, n do

3: sum \leftarrow sum + M[j][k] \longrightarrow n iterations m(n(c_1))
```

The function increases quadratically with n if m==n

ii. Selection Structure: if/else statement, switch-case statement


```
1: if(x<a)
2: sum1 += x;
3: else {
4: sum2 += x;
5: count ++;
6: }
```

When x < a, only one primitive operation is executed When $x \ge a$, two primitive operations are executed

- 1. Best-case analysis
- 2. Worst-case analysis
- 3. Average-case analysis

ii. Selection Structure: if/else statement

```
1: if(x<a)
2: sum1 += x;
3: else {
4: sum2 += x;
5: count ++;
6: }
```

When x < a, only one primitive operation is executed When $x \ge a$, two primitive operations are executed

- 1. Best-case analysis C₁
- 2. Worst-case analysis
- 3. Average-case analysis

ii. Selection Structure: if/else statement

```
1: if(x<a)
2: sum1 += x;
3: else {
4: sum2 += x;
5: count ++;
6: }
```

When x < a, only one primitive operation is executed When $x \ge a$, two primitive operations are executed

- 1. Best-case analysis
- 2. Worst-case analysis c_2
- 3. Average-case analysis

ii. Selection Structure: if/else statement

```
1: if(x<a)
2: sum1 += x;
3: else {
4: sum2 += x;
5: count ++;
6: }
```

When x < a, only one primitive operation is executed When $x \ge a$, two primitive operations are executed

- 1. Best-case analysis C₁
- 2. Worst-case analysis c_2
- 3. Average-case analysis

$$p(x < a) c_1 + p(x \ge a)c_2$$

= $p(x < a) c_1 + (1 - p(x < a))c_2$

ii. Selection Structure: switch-case statement

Time Complexity

- 1. Best-case analysis $C + 4 \log_2 n$
- 2. Worst-case analysis C + 5n
- 3. Average-case analysis $C + \sum_{i=1}^{4} p(i)T_i$

iii. Recursive functions

- Count the number of primitive operations in the algorithm
 - Primitive operations in each recursive call
 - Number of recursive calls

```
int factorial (int n)
{
    if (n==1) return 1;
    else return n*factorial(n-1);
}
```

- n-1 recursive calls with the cost of c_1 .
- The cost of the last call (n==1) is c_2 .
- Thus, $c_1(n-1) + c_2$
- It is a linear function

iii. Recursive functions

- Count the number of array[0]==a in the algorithm
 - array[0]==a in each recursive call
 - Number of recursive calls: n-1

```
int count (int array[], int n, int a)
{
    if (n==1)
        if (array[0]==a)
        return 1;
    else return 0;
    if (array[0]==a)
        return 1+ count(&array[1], n-1, a);
else
    return count (&array[1], n-1, a);
}
```

$$W_1 = 1$$

 $W_n = 1 + W_{n-1}$
 $= 1 + 1 + W_{n-2}$

iii. Recursive functions

- Count the number of array[0]==a in the algorithm
 - array[0]==a in each recursive call
 - Number of recursive calls: n-1

```
int count (int array[], int n, int a)
{
    if(n==1)
        if(array[0]==a)
        return 1;
    else return 0;
    if(array[0]==a)
        return 1+ count(&array[1], n-1, a);
else
    return count (&array[1], n-1, a);
}
```

```
\begin{aligned} W_1 &= 1 \\ W_n &= 1 + W_{n-1} \\ &= 1 + 1 + W_{n-2} \\ &= 1 + 1 + 1 + W_{n-3} \\ &\dots \\ &= 1 + 1 + \dots + 1 + W_1 \\ &= (n-1) + W_1 = n \end{aligned}
```

It is known as a method of backward substitutions

iii. Recursive functions

Count the number of multiplication operations in the algorithm

```
preorder (simple_t* tree)

if (tree != NULL) {
    tree->item *= 10;
    preorder (tree->left);
    preorder (tree->right);
}
```


Geometric Series:

$$S_n = a + ar + ar^2 + \dots + ar^{n-1}$$

$$rS_n = ar + ar^2 + \dots + ar^{n-1} + ar^n$$

$$(1-r)S_n = a - ar^n$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

Prove the hypothesis can be done by mathematical induction

It is known as a method of forward substitutions

$$\begin{split} W_0 &= 0 \\ W_1 &= 1 \\ W_2 &= 1 + W_1 + W_1 = 3 \\ W_3 &= 1 + W_2 + W_2 \\ &= 1 + 2 (1 + W_1 + W_1) \\ &= 1 + 2 (1 + 2) \\ &= 1 + 2 + 4 = 7 \\ W_{k-1} &= 1 + 2 \cdot W_{k-2} \\ &= 1 + 2 + 4 + 8 + \dots + 2^{k-2} \\ W_k &= 1 + 2 \cdot W_{k-1} = 1 + 2 + 4 + 8 + \dots + 2^{k-1} \\ &= \frac{1 - 2^k}{1 - 2} = 2^k - 1 \end{split}$$

Series

• Geometric Series

$$G_n = \frac{a(1-r^n)}{1-r}$$

Arithmetic Series

$$A_n = \frac{n}{2}[2a + (n-1)d] = \frac{n}{2}[a_0 + a_{n-1}]$$

Arithmetico-geometric Series

$$\sum_{t=1}^{k} t2^{t-1} = 2^{k}(k-1) + 1$$

Faulhaber's Formula for the sum of the p-th powers of the first n positive integers

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

*Derivation is in note section 0.7.4.1

Cubic Time Complexity

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

```
for (i=1; i<=n; i++)

M[i] = 0;

for (j=i; j>0; j--)

for (k=i; k>0; k--)

M[i] += A[j]*B[k];
```

- In each outer loop, both j and k are assigned by value of i.
- Inner loops takes i² iterations
- The overall number of iterations is

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \sum_{i=1}^{n} i^{2}$$

$$= \frac{n(n+1)(2n+1)}{6}$$

Algorithm	1	2	3	4	5	6
Operation (μsec)	13n	13nlog ₂ n	13n ²	130n²	13n ² +10 ²	2 ⁿ

Problem size (n)

10			
100			
10 ⁴			
10 ⁶			

Algorithm	1	2	3	4	5	6
Operation (μsec)	13n	13nlog ₂ n	13n²	130n²	13n ² +10 ²	2 ⁿ

Problem size (n)

10	.00013	.00043	.0013	.013	.0014	.001024
100	.0013					
10 ⁴	.13					
10 ⁶	13					

Algorithm	1	2	3	4	5	6
Operation (μsec)	13n	13nlog ₂ n	13n²	130n ²	13n ² +10 ²	2 ⁿ

Problem size (n)

10	.00013	.00043	.0013	.013	.0014	.001024
100	.0013	.0086				
10 ⁴	.13	.173				
10 ⁶	13	259				

	Algorithm	1	2	3	4	5	6
	Operation (μsec)	13n	13nlog ₂ n	13n ²	130n ²	13n ² +10 ²	2 ⁿ
Proble	m size (n)						
	10	.00013	.00043	.0013	.013	.0014	.001024

10	.00013	.00043	.0013	.013	.0014	.001024
100	.0013	.0086	.13	1.3	.1301	4x10 ¹⁶ years
10 ⁴	.13	.173	22 mins	3.61hrs	22mins	
10 ⁶	13	259	150 days	1505 days	150days	

- n! is the fastest growth
- 2ⁿ is the second
- 13n is linear
- 13log₂n is the slowest
- 10² can be ignored when n is large
- 13n² and 130n² have similar growth.
 - 130n² slightly faster

Asymptotic Notations

• Big-Oh (\odot), Big-Omega (Ω) and Big-Theta (\odot) are asymptotic (set) notations used for describing the order of growth of a given function.

Big-Oh Notation (O)

Definition 3.1 O-notation: Let f and g be two functions such that $f(n) : \mathbb{N} \to \mathbb{R}^+$ and $g(n) : \mathbb{N} \to \mathbb{R}^+$, f(n) is said to be in $\mathcal{O}(g(n))$, denoted $f(n) \in \mathcal{O}(g(n))$, if f(n) is **bounded above** by some constant multiple of g(n) for all large n, i.e., the set of functions can be defined as

$$\mathcal{O}(g(n)) = \{f(n) : \exists \text{positive constants}, c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq cg(n) \ \forall n \geq n_0 \}$$

$$f(n) = 4n + 3$$
 and $g(n) = n$

Let
$$c = 5$$
, $n0 = 3$

$$f(n) = 4n + 3$$

$$4n + 3 \le 5n \qquad \forall n \ge 3$$

$$f(n) \le 5g(n) \quad \forall n \ge 3$$

$$f(n) = O(g(n))$$
 i. e. $4n + 3 \in O(n)$

Big-Oh Notation (O)

Definition 3.1 \mathcal{O} -notation: Let f and g be two functions such that $f(n): \mathbb{N} \to \mathbb{R}^+$ and $g(n): \mathbb{N} \to \mathbb{R}^+$, f(n) is said to be in $\mathcal{O}(g(n))$, denoted $f(n) \in \mathcal{O}(g(n))$, if f(n) is **bounded above** by some constant multiple of g(n) for all large n, i.e., the set of functions can be defined as

$$\mathcal{O}(g(n)) = \{f(n) : \exists \text{positive constants}, c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq cg(n) \ \forall n \geq n_0 \}$$

$$f(n) = 4n + 3$$
 and $g(n) = n^3$
Let $c = 1$, $n0 = 3$

$$f(n) = 4n + 3$$

$$4n + 3 \le n^3 \quad \forall n \ge 3$$

$$f(n) \le g(n) \quad \forall n \ge 3$$

$$f(n) = O(g(n)) \quad i.e. 4n + 3 \in O(n^3)$$

If
$$f(n) = O(g(n))$$
, we say
$$g(n) \text{ is asymptotic upper bound of } f(n)$$

Big-Oh Notation (O) – Alternative definition

Definition 3.2 \mathcal{O} -notation: Let f and g be two functions such that $f(n): \mathbb{N} \to \mathbb{R}^+$ and $g(n): \mathbb{N} \to \mathbb{R}^+$, if $\lim_{n\to\infty} \frac{f(n)}{g(n)} < \infty$, then $f(n) \in \mathcal{O}(g(n))$ or $f(n) = \mathcal{O}(g(n))$.

$$f(n) = 4n + 3$$
 and $g(n) = n$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{4n+3}{n} = 4 < \infty$$

$$f(n) = O(g(n))$$
 i. e. $4n + 3 \in O(n)$

$$f(n) = 4n + 3$$
 and $g(n) = n^3$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{4n+3}{n^3} = 0 < \infty$$

$$f(n) = O(g(n))$$
 i.e. $4n + 3 \in O(n^3)$

Big-Omega Notation (Ω)

Definition 3.3 Ω -notation: Let f and g be two functions such that $f(n): \mathbb{N} \to \mathbb{R}^+$ and $g(n): \mathbb{N} \to \mathbb{R}^+$, f(n) is said to be in $\Omega(g(n))$, denoted $f(n) \in \Omega(g(n))$, if f(n) is **bounded below** by some constant multiple of g(n) for all large n, i.e., the set of functions can be defined as

 $\Omega(g(n)) = \{f(n) : \exists \text{positive constants}, c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \ \forall n \ge n_0 \}$

Definition 3.4 Ω -notation: Let f and g be two functions such that $f(n): \mathbb{N} \to \mathbb{R}^+$ and $g(n): \mathbb{N} \to \mathbb{R}^+$, if $\lim_{n\to\infty} \frac{f(n)}{g(n)} > 0$, then $f(n) \in \Omega(g(n))$ or $f(n) = \Omega(g(n))$.

```
f(n) = 4n + 3 and g(n) = 5n

Let c=1/5, n_0 = 0

f(n) \ge (1/5)g(n)

4n+3 \ge (1/5)5n for all n≥0
```

If
$$f(n) = \Omega(g(n))$$
, we say $g(n)$ is asymptotic lower bound of $f(n)$

Big-Theta Notation (Θ)

Definition 3.5 Θ -notation: Let f and g be two functions such that $f(n) : \mathbb{N} \to \mathbb{R}^+$ and $g(n) : \mathbb{N} \to \mathbb{R}^+$, f(n) is said to be in $\Theta(g(n))$, denoted $f(n) \in \Theta(g(n))$, if f(n) is **bounded both above and below** by some constant multiples of g(n) for all large n, i.e., the set of functions can be defined as

 $\Theta(g(n)) = \{f(n) : \exists \text{positive constants}, c_1, c_2 \text{ and } n_0 \text{ such that } c_1g(n) \leq f(n) \leq c_2g(n) \ \forall n \geq n_0 \}$

Definition 3.6 Θ -notation: Let f and g be two functions such that $f(n): \mathbb{N} \to \mathbb{R}^+$ and $g(n): \mathbb{N} \to \mathbb{R}^+$, if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$ where $0 < c < \infty$, then $f(n) \in \Theta(g(n))$ or $f(n) = \Theta(g(n))$.

If
$$f(n) = \Theta(g(n))$$
, we say $g(n)$ is asymptotic tight bound of $f(n)$

Summary of Limit Definition

	$f(n) \in O(g(n))$	$f(n) \in \Omega(g(n))$	$f(n) \in \Theta(g(n))$
0	✓		
0 < C < ∞	✓	√	✓
∞		✓	


```
pt=head;
while (pt->key != a) {
    pt = pt->next;
    if (pt == NULL) break;
}
```


Assume that the search key **a** is always in the list

- 1. Best-case analysis: c_1 when **a** is the first item in the list => Θ (1)
- 2. Worst-case analysis: $c_2 \cdot (n-1) + c_1 => \Theta(n)$
- 3. Average-case analysis
 - Assumed that every item in the list has an equal probability as a search key

$$\frac{1}{n}[c_1 + (c_1 + c_2) + (c_1 + 2c_2) + \dots + (c_1 + (n-1)c_2)] = \frac{1}{n}\sum_{i=1}^{n}(c_1 + c_2(i-1))$$

$$= \frac{1}{n}[nc_1 + c_2\sum_{i=1}^{n}(i-1)]$$

$$= c_1 + \frac{c_2}{n} \cdot \frac{n}{2}(0 + (n-1)) = c_1 + \frac{c_2(n-1)}{2} = \Theta \text{ (n)}$$

Time Complexity of Sequential Search


```
pt=head;
while (pt->key != a) {
   pt = pt->next;
   if (pt == NULL) break;
}
c<sub>1</sub>
c<sub>2</sub>
n iterations
```


- 3. Average-case analysis
 - Assumed that every item in the list has an equal probability as a search key

$$\frac{1}{n}[c_1 + (c_1 + c_2) + (c_1 + 2c_2) + \dots + (c_1 + (n-1)c_2)] = \frac{1}{n}\sum_{i=1}^n (c_1 + c_2(i-1))$$

$$= \frac{1}{n}[nc_1 + c_2\sum_{i=1}^n (i-1)]$$

$$= c_1 + \frac{c_2}{n} \cdot \frac{n}{2}(0 + (n-1)) = c_1 + \frac{c_2(n-1)}{2}$$

If the search key, a, is not in the list, then the time complexity is

$$c_1 + nc_2 = \Theta (n)$$

Since the probability of the search key is in the list is unknown, we only can have

$$T(n) = P(a \text{ in the list})(c_1 + \frac{c_2(n-1)}{2}) + (1 - P(a \text{ in the list}))(c_1 + nc_2)$$

Hence, it is a linear function. Θ (n)

Time Complexity of Sequential Search

```
10 11 11 19 19 8 7 6 5 4
```

```
pt=head;
while (pt->key != a){
   pt = pt->next;
   if(pt == NULL) break;
}
```


- The data is stored in unordered
- To search a key, every element is required to read and compare
- This is a brute-force approach or a näive algorithm
- Its time complexity is O(n)

How can we improve it?

Asymptotic Notation in Equations

When an asymptotic notation appears in an equation, we interpret it as standing for some anonymous function that we do not care to name.

Examples:

- $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$
- $T(n) = T(n/2) + \Theta(n)$
- $2n^2 + 3n + 1 = 2n^2 + \Theta(n) = \Theta(n^2)$

Simplification Rules for Asymptotic Analysis

- 1. If f(n) = O(cg(n)) for any constant c > 0, then f(n) = O(g(n))
- 2. If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)) e.g. f(n) = 2n, $g(n) = n^2$, $h(n) = n^3$
- 3. If $f_1(n) = O\big(g_1(n)\big)$ and $f_2(n) = O\big(g_2(n)\big)$, then $f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n)))$ e.g. $5n + 3\log_2 n = O(n)$
- 4. If $f_1(n) = O\big(g_1(n)\big)$ and $f_2(n) = O\big(g_2(n)\big)$ then $f_1(n)f_2(n) = O\big(g_1(n)g_2(n)\big)$ e.g. $f_1(n) = 3n^2 = O(n^2)$, $f_2(n) = \log_2 n = O(\log_2 n)$ Then $3n^2\log_2 n = O(n^2\log_2 n)$

Properties of Asymptotic Notation

• Reflexive of O, Ω and Θ

$$f(n) = O(f(n))$$

$$f(n) = \Omega(f(n))$$

$$f(n) = \Theta(f(n))$$

Symmetric of Θ

$$f(n) = \Theta(g(n))$$

 $\Rightarrow g(n) = \Theta(f(n))$

• Transitive of O, Ω and Θ

$$f(n) = O(g(n)) \text{ and } g(n) = O(h(n))$$

$$\Rightarrow f(n) = O(h(n))$$

$$f(n) = \Omega(g(n)) \text{ and } g(n) = \Omega(h(n))$$

$$\Rightarrow f(n) = \Omega(h(n))$$

$$f(n) = \Theta(g(n)) \text{ and } g(n) = \Theta(h(n))$$

$$\Rightarrow f(n) = \Theta(h(n))$$

Common Complexity Classes

Order of Growth	Class	Example
1	Constant	Finding midpoint of an array
log ₂ n	Logarithmic	Binary Search
n	Linear	Linear Search
nlog ₂ n	Linearithmic	Merge Sort
n²	Quadratic	Insertion Sort
n³	Cubic	Matrix Inversion (Gauss-Jordan Elimination)
2 ⁿ	Exponential	The Tower of Hanoi Problem
n!	Factorial	Travelling Salesman Problem

When time complexity of algorithm A grows faster than algorithm B for the same problem, we say A is inferior to B.

- Determine number of entities in problem (also called problem size)
- Count number of basic units in algorithm

- Basic units
- Things that can be represented in a constant amount of storage space
- E.g. integer, float and character.

- Space requirements for an array of n integers Θ(n)
- If a matrix is used to store edge information of a graph,

i.e. G[x][y] = 1 if there exists an edge from x to y,

space requirement for a graph with n vertices is $\Theta(n^2)$

Space/time tradeoff principle

 Reduction in time can be achieved by sacrificing space and vice-versa.