×

Вероятность и случайные величины

10/10 баллов получено (100%)

Тест пройден!

Вернуться к неделе weekNumber

Баллов: 1

/1

1.

Основной предмет изучения математической статистики — это:

методы восстановления свойств случайных величин на основании конечных выборок из них

Правильный ответ

Этим и занимается математическая статистика.

математические модели случайных величин и их свойства

Баллов: 1

/ 1

2.

Предположим, что в некоторой популяции вероятность дожить до 60 лет равна 0.5, а вероятность дожить до 80 лет — 0.2. Какова вероятность, что случайно выбранный шестидесятилетний представитель популяции доживёт до восьмидесяти? Запишите ответ с точностью до одного знака после десятичной точки.

0.4

По формуле условной вероятности 0.2 / 0.5 = 0.4

Баллов: 1 / 1

3.

1% женщин больны раком груди. У 80% женщин, больных раком груди, маммограмма верно выявляет наличие заболевания; кроме того, она даёт ложный положительный результат (то есть, неверно показывает наличие рака) для 9.6% здоровых женщин.

У какого процента женщин, маммограмма которых дала положительный результат, есть рак груди? Запишите ответ с точностью до одного знака после десятичной точки (знак процента не нужен).

7.8

Правильный ответ

Пусть событие A — наличие рака, В — положительный результат маммограммы. По формуле полной вероятности

$$\mathsf{P}(B) = \mathsf{P}(B|A)\mathsf{P}(A) + \mathsf{P}\Big(B\big|\bar{A}\Big)\mathsf{P}\Big(\bar{A}\Big) = 0.8 \cdot 0.01 + 0.096 \cdot 0.99 = 0.10304.$$

Воспользуемся формулой Байеса:

$$\mathsf{P}(A|B) = rac{\mathsf{P}(A)\mathsf{P}(B|A)}{\mathsf{P}(B)} = rac{0.01 \cdot 0.8}{0.10304} pprox 0.078.$$

Баллов: 1 / 1

4.

Какова вероятность того, что при независимом подбрасывании двух симметричных шестигранных кубиков хотя бы на одном из них выпадет больше трёх очков? Запишите точный ответ в виде десятичной дроби.

0.75

Правильный ответ

Пусть событие A — выпадение более трёх очков па первом кубике, В — на втором. Поскольку A и B независимы,

$$P(AB) = P(A)P(B) = 0.5 \cdot 0.5 = 0.25,$$

$$P(A+B) = P(A) + P(B) - P(AB) = 0.5 + 0.5 - 0.25 = 0.75.$$

~	Баллов: 1 / 1	
5. Какие і	из перечисленных ниже распределений являются дискретными?	
	биномиальное	
Прав	вильный ответ	
	Пуассона	
Правильный ответ		
	Бернулли	
Прав	вильный ответ	
	равномерное на отрезке	
	вильный ответ непрерывное распределение.	
	нормальное	
	вильный ответ непрерывное распределение.	
~	Баллов: 1 / 1	

6.

Какое распределение точнее всего описывает число выпавших шестёрок при десяти независимых подбрасываниях симметричного шестигранного кубика?

igcolon распределение Бернулли с параметром $p=rac{1}{6}$

	Вероятность и случайные величины С		
0	биномиальное с параметрами $n=10, p=rac{1}{6}$		
Правильный ответ Верно.			

- дискретное распределение, принимающее целочисленные значения от 0 до 10 с равными вероятностями $\frac{1}{11}$
- нормальное распределение с параметрами $\mu = \frac{10}{6}, \sigma^2 = 10 \cdot \frac{1}{6} \cdot \frac{5}{6} = \frac{25}{12}$

Баллов: 1 / 1

7.

Какие из приведённых величин, скорее всего, можно моделировать с помощью распределения Пуассона?

количество людей в очереди на кассу в супермаркете

Правильный ответ

Это типичная случайная величина-счётчик.

результат выпадения симметричного шестигранного кубика

Правильный ответ

Эта случайная величина имеет обычное дискретное распределение — она принимает значения от 1 до 6 с одинаковыми вероятностями 1/6.

количество изюма в булочках с изюмом

Правильный ответ

Это типичная случайная величина-счётчик.

точное время прихода на работу

Правильный ответ

Эта случайная величина, скорее всего, описывается нормальным распределением.

Вероятность и случайные величины Coursera число попаданий в баскетбольное кольцо за п попыток Правильный ответ Эта случайная величина распределена биномиально.		
Бал	плов: 1 / 1	
8. Распределе нормальное	ение каких из приведённых величин, скорее всего, похоже на e?	
	ичество троллейбусов №28, проезжающих за час мимо ановки "Улица Льва Толстого"	
Правильн Эта велич Пуассона	чина-счётчик, которую лучше описывает распределение	
Сро	к службы батарейки	
одинаков влияют ка разнообр	цители стараются, чтобы батарейки работали примерно вое время, но на срок службы конкретной батарейки ак небольшие отклонения в процессе производства, так и разные условия эксплуатации. Итоговая величина — г суммарного действия большого количества случайных	
резу	ультат подбрасывания монетки	
Правильн Эта велич	ый ответ чина имеет распределение Бернулли.	
П выб	борочное среднее выборки объёма 100	

Правильный ответ

Объём выборки достаточно большой, так что, если исходное распределение не экстремально скошено, применима центральная предельная теорема (об этом подробнее в следующем уроке).

⊔ по	грешность барометра		
Правильный ответ Ошибки измерений точно настроенных приборов — результат суммарного действия большого количества неконтролируемых слабо зависимых факторов.			
✓ Б	аллов: 1 /1		
	ю каких из приведённых функций можно задавать пения непрерывных случайных величин?		
ф	ункция вероятности		
Функция посколь	ный ответ я определена только для дискретных распределений, ку для непрерывных вероятность любого конкретного равна нулю.		
ф	ункция непрерывного распределения вероятности плотности		
•	ный ответ смысленный набор слов.		
ф	ункция распределения		
Правиль	ный ответ		
фу	ункция плотности вероятности		
Правильный ответ			
✓ 6	аллов: 1 / 1		

10.

Функци свойсті	я распределения случайной величины обладает следующими зами:		
	в каждой точке х она равна вероятности того, что случайная величина не меньше х		
Прав	ильный ответ		
	равна вероятности того, что случайная величина не больше х.		
	она принимает значения на отрезке [0,1]		
Правильный ответ			
	если у случайной величины существует плотность, то в каждой точке x функция распределения равна интегралу от плотности от минус бесконечности до x		
Правильный ответ			
	она монотонно невозрастает по x		
Прав	Правильный ответ		
-	кция распределения монотонно неубывает.		

