Berechenbarkeit und Komplexität, WS17/18, 1. Klausur

bei Prof. Woeginger

19.02.2018

Aufgabe 1

- a) Sei $M = (Q, \Sigma, \Gamma, B, q_0, \overline{q}, \delta)$ eine deterministische Turingmaschine. Definiere den Definitions- und Wertebereich von δ .
- b) Formuliere das Problem SUBSET-SUM.
- c) Definiere: Logarithmische Laufzeit eines Schritts auf einer RAM.
- d) Gib ein Problem an (ohne Begründung) das entweder in EXPTIME liegt oder rekursiv aufzählbar ist (nicht beides).
- e) Gegeben waren 3 Fotos von für die Vorlesung wichtigen Wissenschaftlern (wie auf den Folien). Wie heißen sie? (Turing, Hilbert, Karp)
- f) Definiere coNP.

Aufgabe 2

Definiert wurde ein Entscheidungsproblem wie folgt: Gegeben ein Schachbrett $\in \{\bigcirc, \bullet\}^{m \times n}$. Können Steine so entfernt werden, dass in jeder Zeile nur \bigcirc oder nur \bullet verbleiben, und dass keine Spalte leer ist?

- a) Dann war ein Schachbrett mit konkreter Belegung gegeben. Ist es eine Ja- oder Nein-Instanz?
- b) Formuliere ein Zertifikat für das Problem (mit Angabe der Länge) und wie der Verifizierer es abarbeitet (mit Laufzeit).
- c) Beweise mit Reduktion, dass das Problem NP-schwer ist.

Aufgabe 3

- a) Formuliere den Satz von Rice.
- b) Aus einer Liste von gegebenen Sprachen, wähle eine aus auf die der Satz von Rice anwendbar ist. (Bsp.: $L := \{ \langle M \rangle \mid L(M) = H_{tot} \}$)

- c) Beweise mit dem Satz von Rice, dass die gewählte Sprache unentscheidbar ist.
- d) Zeige/widerlege: $L:=\{\langle M_1\rangle\langle M_2\rangle\mid L(M_1)\cap L(M_2)\neq\emptyset\}$ ist rekursiv aufzählbar.

Aufgabe 4

a) Gegeben folgendes LOOP-Programm (Syntax anders, wie in der Vorlesung). Was steht bei Terminierung in x_2 , wenn das Programm mit $x_1 = m$, $m \in \mathbb{N}$ aufgerufen wird? Gib eine geschlossene Formel an und beweise.

```
1: x_2 := 2
 2: for x_1 do
        x_3 := 0
 3:
        for x_2 do
 4:
            for x_2 do
 5:
               x_3 := x_3 + 1
 6:
            end for
 7:
        end for
 8:
 9:
        x_2 := x_3
10: end for
```

- b) Für welche $b \in \mathbb{N}$ ist $g(n) = b^{(2^n)}$ primitiv rekursiv?
- c) Zeige/widerlege, dass für das LOOP-Programm aus (a) gilt: Bei Eingabe a_1, a_2, a_3 und Ausgabe b_1, b_2, b_3 gilt $b_1 + b_2 + b_3 \le A(3, a_1 + a_2 + a_3 + 20)$. $(A(\cdot, \cdot)$ ist die Ackermann-Funktion.)