Coupled SDEs

Consider

$$d heta_t = - heta_t dt + dW_t,$$
 $d\mathscr{Y}(heta_t,t) = \left(- heta_t\partial_\eta\mathscr{Y} + \partial_\eta^2\mathscr{Y}
ight)dt + (\partial_\eta\mathscr{Y})dW_t,$

where W_t is a Wiener process and $\mathscr{Y}(\theta_t,t)$ a function that is twice differentiable in θ_t .

To determine $Y_t = \mathscr{Y}(\theta_t, t)$ and its derivatives, requires

$$F_Y(\mathscr{Y}(\eta,t),t)=G(\eta),$$

where $G(\eta)$ is the cumulative normal distribution (CDF) or equivalently the distribution of θ_t . Solving for the inverse CDF of F_Y gives

$$\mathscr{Y}(\eta,t)=F_Y^{-1}(G(\eta),t),$$

as a function of η . Differentiating $F_Y(\mathscr{Y}(\eta,t),t)=G(\eta)$ then gives

$$\frac{\partial\mathscr{Y}_t}{\partial\eta}=\frac{g(\eta)}{f_Y(\mathscr{Y}(\eta,t),t)},$$

where $g(\eta)$ is the normal distribution, which differentiated again respect to η gives

$$\frac{\partial^2\mathscr{Y}_t}{\partial\eta^2} = -\eta\frac{g}{f_Y} - \frac{g}{f_Y^2}\frac{\partial\mathscr{Y}_t}{\partial\eta} = -\frac{g}{f_Y}\Bigg(\eta + \frac{g}{f_Y^2}\Bigg),$$

an expression that is a function of g,f_{Y} and η only.

Substituting for the derivatives in terms of η, g, f_Y then gives

$$\begin{split} d\theta_t &= -\theta_t dt + dW_t, \\ d\mathscr{Y}(\theta_t, t) &= \left(\frac{g}{f_Y}\right) \left(\left[-2\theta_t + \frac{g}{f_Y^2}\right] dt + dW_t\right), \end{split}$$

evolution equations for \mathscr{Y}_t, θ_t which depend on their global distribution.