Deep Generative Models

Lecture 8

Roman Isachenko

Son Masters

Spring, 2022

Theorem

$$\frac{1}{n}\sum_{i=1}^{n} \mathit{KL}(q(\mathbf{z}|\mathbf{x}_i)||p(\mathbf{z})) = \mathit{KL}(q_{\mathrm{agg}}(\mathbf{z})||p(\mathbf{z})) + \mathbb{I}_q[\mathbf{x},\mathbf{z}],$$

ELBO surgery

$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}(q, \theta) = \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i})} \log p(\mathbf{x}_{i}|\mathbf{z}, \theta)}_{\text{Reconstruction loss}} - \underbrace{\mathbb{I}_{q}[\mathbf{x}, \mathbf{z}] - \mathcal{K}L(q_{\text{agg}}(\mathbf{z})||p(\mathbf{z}))}_{\text{Marginal KL}}$$

Optimal prior

$$KL(q_{\text{agg}}(\mathbf{z})||p(\mathbf{z})) = 0 \quad \Leftrightarrow \quad p(\mathbf{z}) = q_{\text{agg}}(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_i).$$

The optimal prior distribution p(z) is aggregated posterior q(z).

Hoffman M. D., Johnson M. J. ELBO surgery: yet another way to carve up the variational evidence lower bound, 2016

Optimal prior

$$KL(q_{agg}(\mathbf{z})||p(\mathbf{z})) = 0 \quad \Leftrightarrow \quad p(\mathbf{z}) = q_{agg}(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_i).$$

The optimal prior distribution p(z) is aggregated posterior q(z).

VampPrior

$$p(\mathbf{z}|\lambda) = \frac{1}{K} \sum_{k=1}^{K} q(\mathbf{z}|\mathbf{u}_k),$$

where $\lambda = \{\mathbf{u}_1, \dots, \mathbf{u}_K\}$ are trainable pseudo-inputs.

Flow-based VAE prior

$$\log p(\mathbf{z}|\boldsymbol{\lambda}) = \log p(\epsilon) + \log \det \left| \frac{d\epsilon}{d\mathbf{z}} \right| = \log p(\epsilon) + \log \det \left| \frac{\partial f(\mathbf{z}, \boldsymbol{\lambda})}{\partial \mathbf{z}} \right|$$

Standart ELBO

$$p(\mathbf{x}|oldsymbol{ heta}) \geq \mathcal{L}(oldsymbol{\phi},oldsymbol{ heta}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x},oldsymbol{\phi})} \log rac{p(\mathbf{x},\mathbf{z}|oldsymbol{ heta})}{q(\mathbf{z}|\mathbf{x},oldsymbol{\phi})}
ightarrow \max_{oldsymbol{\phi},oldsymbol{ heta}}.$$

Expressive flow-based VAE posterior

$$\log q(\mathbf{z}^*|\mathbf{x}, \phi, oldsymbol{\lambda}) = \log q(\mathbf{z}|\mathbf{x}, \phi) + \log \det \left| rac{\partial f(\mathbf{z}, oldsymbol{\lambda})}{\partial \mathbf{z}}
ight|$$

ELBO with flow-based posterior

$$\begin{split} & \mathcal{L}(\phi, \theta, \lambda) = \mathbb{E}_{q(\mathbf{z}^* | \mathbf{x}, \phi, \lambda)} \big[\log p(\mathbf{x}, \mathbf{z}^* | \theta) - \log q(\mathbf{z}^* | \mathbf{x}, \phi, \lambda) \big] = \\ & = \mathbb{E}_{q(\mathbf{z} | \mathbf{x}, \phi)} \bigg[\log p(\mathbf{x}, \mathbf{z}^* | \theta) - \log q(\mathbf{z} | \mathbf{x}, \phi) + \log \left| \det \left(\frac{\partial f(\mathbf{z}, \lambda)}{\partial \mathbf{z}} \right) \right| \bigg]. \end{split}$$

- ▶ Obtain samples **z** from the encoder $q(\mathbf{z}|\mathbf{x}, \phi)$.
- ▶ Apply flow model $\mathbf{z}^* = f(\mathbf{z}, \boldsymbol{\lambda})$.
- ► Compute likelihood for **z*** using the decoder, base distribution for **z*** and the Jacobian.

Expressive flow-based VAE posterior

$$\log q(\mathbf{z}^*|\mathbf{x}, \phi, oldsymbol{\lambda}) = \log q(\mathbf{z}|\mathbf{x}, \phi) + \log \det \left| rac{\partial f(\mathbf{z}, oldsymbol{\lambda})}{\partial \mathbf{z}}
ight|$$

Expressive flow-based VAE prior

$$\log p(\mathbf{z}|\boldsymbol{\lambda}) = \log p(\epsilon) + \log \det \left| \frac{d\epsilon}{d\mathbf{z}} \right|; \quad \mathbf{z} = g(\epsilon, \boldsymbol{\lambda}) = f^{-1}(\epsilon, \boldsymbol{\lambda})$$

Theorem

VAE with the flow-based prior for latent code \mathbf{z} is equivalent to VAE with flow-based posterior for latent code \mathbf{z} .

$$egin{aligned} \mathcal{L}(\phi, oldsymbol{ heta}, oldsymbol{\lambda}) &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})} \log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) - \underbrace{oldsymbol{\mathcal{K}L}(q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi}) || p(\mathbf{z}|oldsymbol{\lambda}))}_{ ext{flow-based prior}} \ &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})} \log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) - \underbrace{oldsymbol{\mathcal{K}L}(q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi}, oldsymbol{\lambda}) || p(\mathbf{z}))}_{ ext{flow-based posterior}} \end{aligned}$$

Outline

Dequantization

- Images are discrete data, pixels lie in the $\{0, 255\}$ integer domain (the model is $P(\mathbf{x}|\theta) = \text{Categorical}(\pi(\theta))$).
- Flow is a continuous model (it works with continuous data x).

By fitting a continuous density model to discrete data, one can produce a degenerate solution with all probability mass on discrete values.

How to convert a discrete data distribution to a continuous one?

Uniform dequantization

$${\sf x} \sim {\sf Categorical}(\pi)$$

 $\mathbf{u} \sim U[0,1]$

$$\mathbf{y} = \mathbf{x} + \mathbf{u} \sim \mathsf{Continuous}$$

Uniform dequantization

Statement

Fitting continuous model $p(\mathbf{y}|\boldsymbol{\theta})$ on uniformly dequantized data $\mathbf{y} = \mathbf{x} + \mathbf{u}$, $\mathbf{u} \sim U[0,1]$ is equivalent to maximization of a lower bound on log-likelihood for a discrete model:

$$P(\mathbf{x}|\boldsymbol{\theta}) = \int_{U[0,1]} p(\mathbf{x} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u}$$

Proof

$$\begin{split} \mathbb{E}_{\pi} \log p(\mathbf{y}|\boldsymbol{\theta}) &= \int \pi(\mathbf{y}) \log p(\mathbf{y}|\boldsymbol{\theta}) d\mathbf{y} = \\ &= \sum \pi(\mathbf{x}) \int_{U[0,1]} \log p(\mathbf{x} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u} \leq \\ &\leq \sum \pi(\mathbf{x}) \log \int_{U[0,1]} p(\mathbf{x} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u} = \\ &= \sum \pi(\mathbf{x}) \log P(\mathbf{x}|\boldsymbol{\theta}) = \mathbb{E}_{\pi} \log P(\mathbf{x}|\boldsymbol{\theta}). \end{split}$$

Variational dequantization

- ▶ $p(\mathbf{y}|\boldsymbol{\theta})$ assign unifrom density to unit hypercubes $\mathbf{x} + U[0,1]$ (left fig).
- Neural network density models are smooth function approximators (right fig).
- Smooth dequantization is more natural.

How to perform the smooth dequantization?

Flow++

Variational dequantization

Introduce variational dequantization noise distribution $q(\mathbf{u}|\mathbf{x})$ and treat it as an approximate posterior.

Variational lower bound

$$\begin{split} \log P(\mathbf{x}|\boldsymbol{\theta}) &= \left[\log \int q(\mathbf{u}|\mathbf{x}) \frac{p(\mathbf{x} + \mathbf{u}|\boldsymbol{\theta})}{q(\mathbf{u}|\mathbf{x})} d\mathbf{u}\right] \geq \\ &\geq \int q(\mathbf{u}|\mathbf{x}) \log \frac{p(\mathbf{x} + \mathbf{u}|\boldsymbol{\theta})}{q(\mathbf{u}|\mathbf{x})} d\mathbf{u} = \mathcal{L}(q, \boldsymbol{\theta}). \end{split}$$

Uniform dequantization bound

$$\log P(\mathbf{x}|\boldsymbol{\theta}) = \log \int_{U[0,1]} p(\mathbf{x} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u} \ge \int_{U[0,1]} \log p(\mathbf{x} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u}.$$

Uniform dequantization is a special case of variational dequantization $(q(\mathbf{u}|\mathbf{x}) = U[0,1])$.

Ho J. et al. Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design, 2019

Flow++

Variational lower bound

$$\mathcal{L}(q, \theta) = \int q(\mathbf{u}|\mathbf{x}) \log \frac{p(\mathbf{x} + \mathbf{u}|\theta)}{q(\mathbf{u}|\mathbf{x})} d\mathbf{u}.$$

Let $\mathbf{u} = h(\epsilon, \phi)$ is a flow model with base distribution $\epsilon \sim p(\epsilon) = \mathcal{N}(0, \mathbf{I})$:

$$q(\mathbf{u}|\mathbf{x}) = p(h^{-1}(\mathbf{u}, \phi)) \cdot \left| \det \frac{\partial h^{-1}(\mathbf{u}, \phi)}{\partial \mathbf{u}} \right|.$$

Flow-based variational dequantization

$$\log P(\mathbf{x}|oldsymbol{ heta}) \geq \mathcal{L}(\phi,oldsymbol{ heta}) = \int p(oldsymbol{\epsilon}) \log \left(rac{p(\mathbf{x} + h(oldsymbol{\epsilon},\phi)|oldsymbol{ heta})}{p(oldsymbol{\epsilon}) \cdot \left|\det rac{\partial h(oldsymbol{\epsilon},\phi)}{\partial oldsymbol{\epsilon}}
ight|^{-1}}
ight) doldsymbol{\epsilon}.$$

If $p(\mathbf{x} + \mathbf{u}|\theta)$ is also a flow model, it is straightforward to calculate stochastic gradient of this ELBO.

Ho J. et al. Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design, 2019

Flow++

Flow-based variational dequantization

$$\log P(\mathbf{x}|oldsymbol{ heta}) \geq \int p(oldsymbol{\epsilon}) \log \left(rac{p(\mathbf{x} + h(oldsymbol{\epsilon}, oldsymbol{\phi}))}{p(oldsymbol{\epsilon}) \cdot \left| \det rac{\partial h(oldsymbol{\epsilon}, oldsymbol{\phi})}{\partial oldsymbol{\epsilon}}
ight|^{-1}}
ight) doldsymbol{\epsilon}.$$

Table 1. Unconditional image modeling results in bits/dim

Model family	Model	CIFAR10	ImageNet 32x32	ImageNet 64x64
Non-autoregressive	RealNVP (Dinh et al., 2016)	3.49	4.28	-
	Glow (Kingma & Dhariwal, 2018)	3.35	4.09	3.81
	IAF-VAE (Kingma et al., 2016)	3.11	_	-
	Flow++ (ours)	3.08	3.86	3.69
Autoregressive	Multiscale PixelCNN (Reed et al., 2017)		3.95	3.70
	PixelCNN (van den Oord et al., 2016b)	3.14	3.73	3.70
	PixelCNN (van den Oord et al., 2016b) PixelRNN (van den Oord et al., 2016b)	3.14	3.86	3.63
	Gated PixelCNN (van den Oord et al., 2016c)	3.03	3.83	3.57
	PixelCNN++ (Salimans et al., 2017)	2.92	_	-
	Image Transformer (Parmar et al., 2018)	2.90	3.77	_
	PixelSNAIL (Chen et al., 2017)	2.85	3.80	3.52

Ho J. et al. Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design, 2019

Disentangled representations

Representation learning is looking for an interpretable representation of the independent data generative factors.

Disentanglement informal definition

Every single latent unit are sensitive to changes in a single generative factor, while being invariant to changes in other factors.

Generative process

- $\pi(\mathbf{x}|\mathbf{v},\mathbf{w}) = \text{Sim}(\mathbf{v},\mathbf{w}) \text{true world simulator};$
- ▶ \mathbf{v} conditionally independent factors: $\pi(\mathbf{v}|\mathbf{x}) = \prod_{j=1}^{d} \pi(v_j|\mathbf{x})$;
- ▶ w conditionally dependent factors.

Unsupervised generative model

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) \approx \pi(\mathbf{x}|\mathbf{v}, \mathbf{w}).$$

The latent factors $q(\mathbf{z}|\mathbf{x})$ capture the factors \mathbf{v} in a disentangled manner. The conditionally dependent factors \mathbf{w} remains entangled in a subset of \mathbf{z} that is not used for representing \mathbf{v} .

Higgins I. et al. beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, 2017

β -VAE

ELBO objective

$$\mathcal{L}(q, \theta, \beta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}, \theta) - \beta \cdot KL(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z})).$$

What do we get at $\beta = 1$?

Constrained optimization

$$\max_{q,\theta} \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z},\theta), \quad \text{subject to } \mathit{KL}(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) < \epsilon.$$

Hypothesis

We are able to learn disentangled representations of the independent factors ${\bf v}$ by setting a stronger constraint with $\beta>1$.

Note: It leads to poorer reconstructions and a loss of high frequency details.

Higgins I. et al. beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, 2017

β -VAE

Higgins I. et al. beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, 2017

β -VAE

Higgins I. et al. beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, 2017

β-VAE

ELBO

$$\mathcal{L}(q, \theta, \beta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}, \theta) - \beta \cdot KL(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z})).$$

ELBO surgery

$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}(q, \boldsymbol{\theta}, \beta) = \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i})} \log p(\mathbf{x}_{i}|\mathbf{z}, \boldsymbol{\theta})}_{\text{Reconstruction loss}} - \beta \cdot \underbrace{\mathbb{I}_{q}[\mathbf{x}, \mathbf{z}] - \beta \cdot \underbrace{KL(q(\mathbf{z})||p(\mathbf{z}))}_{\text{Marginal KL}}$$

Minimization of MI

- It is not necessary and not desirable for disentanglement.
- It hurts reconstruction.

DIP-VAE

Disentangled aggregated variational posterior

$$q(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}) = \prod_{i=1}^{d} q(z_i)$$

DIP-VAE Objective

$$\begin{split} \mathcal{L}_{\mathsf{DIP}}(q, \boldsymbol{\theta}) &= \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}(q, \boldsymbol{\theta}) - \lambda \cdot \mathsf{KL}(q(\mathbf{z}) || p(\mathbf{z})) = \\ &= \frac{1}{n} \sum_{i=1}^{n} \left[\mathbb{E}_{q(\mathbf{z} | \mathbf{x}_{i})} \log p(\mathbf{x}_{i} | \mathbf{z}, \boldsymbol{\theta}) - \mathsf{KL}(q(\mathbf{z} | \mathbf{x}_{i}) || p(\mathbf{z})) \right] - \lambda \cdot \mathsf{KL}(q(\mathbf{z}) || p(\mathbf{z})) = \\ &= \underbrace{\frac{1}{n} \sum_{i=1}^{n} \left[\mathbb{E}_{q(\mathbf{z} | \mathbf{x}_{i})} \log p(\mathbf{x}_{i} | \mathbf{z}, \boldsymbol{\theta}) \right] - \mathbb{I}_{q}[\mathbf{x}, \mathbf{z}] - (1 + \lambda) \cdot \underbrace{\mathsf{KL}(q(\mathbf{z}) || p(\mathbf{z}))}_{\mathsf{Marginal} \; \mathsf{KL}} \right]}_{\mathsf{Reconstruction \; loss} \end{split}$$

DIP-VAE

$$\mathcal{L}_{\mathsf{DIP}}(q, oldsymbol{ heta}) = rac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}(q, oldsymbol{ heta}) - \lambda \cdot \underbrace{\mathcal{K}\!\mathcal{L}\!(q(\mathbf{z})||p(\mathbf{z}))}_{\mathsf{intractable}}$$

Let match the moments of q(z) and p(z):

$$\mathsf{cov}_{q(\mathsf{z})}(\mathsf{z}) = \mathbb{E}_{q(\mathsf{z})}\left[(\mathsf{z} - \mathbb{E}_{q(\mathsf{z})}(\mathsf{z}))(\mathsf{z} - \mathbb{E}_{q(\mathsf{z})}(\mathsf{z}))^T
ight]$$

DIP-VAE regularizes $cov_{q(z)}(z)$ to be close to the identity matrix.

Objective

$$\max_{q,\boldsymbol{\theta}} \left[\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}(q,\boldsymbol{\theta}) - \lambda_{1} \sum_{i \neq i} \left[\mathsf{cov}_{q(\mathbf{z})}(\mathbf{z}) \right]_{ij}^{2} - \lambda_{2} \sum_{i} \left(\left[\mathsf{cov}_{q(\mathbf{z})}(\mathbf{z}) \right]_{ii} - 1 \right)^{2} \right]$$

Kumar A., Sattigeri P., Balakrishnan A. Variational Inference of Disentangled Latent Concepts from Unlabeled Observations, 2017

DIP-VAE

Reconstructions become better.

Challenging Disentanglement Assumptions

Theorem

Let $\mathbf{z} \sim P$ with a density $p(\mathbf{z}) = \prod_{i=1}^d p(z_i)$. Then, there exists an **infinite** family of bijective functions $f : \text{supp}(\mathbf{z}) \to \text{supp}(\mathbf{z})$:

- ▶ $\frac{\partial f_i(\mathbf{z})}{\partial z_i} \neq 0$ for all i and j (\mathbf{z} and f(\mathbf{z}) are completely entangled);
- ▶ $P(z \le u) = P(f(z) \le u)$ for all $u \in \text{supp}(z)$.

Consider a generative model with disentangled representation z.

- ▶ $\exists \hat{\mathbf{z}} = f(\mathbf{z})$ where $\hat{\mathbf{z}}$ is completely entangled with respect to \mathbf{z} .
- ► The disentanglement method cannot distinguish between the two equivalent generative models:

$$p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z} = \int p(\mathbf{x}|\hat{\mathbf{z}})p(\hat{\mathbf{z}})d\hat{\mathbf{z}}.$$

Theorem claims that unsupervised disentanglement learning is impossible for arbitrary generative models with a factorized prior.

Locatello F. et al. Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations, 2018

Challenging Disentanglement Assumptions

Locatello F. et al. Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations, 2018

Summary

- Dequantization allows to fit discrete data using continuous model.
- Uniform dequantization is the simplest form of dequantization. Variational dequantization is a more natural type that was proposed in Flow++ model.
- Disentanglement learning tries to make latent components more informative.
- \triangleright β -VAE makes the latent components more independent, but the reconstructions get poorer.
- ▶ DIP-VAE does not make the reconstructions worse using ELBO surgery theorem.
- Majority of disentanglement learning models use heuristic objective or regularizers to achieve the goal, but the task itself could not be solved without good inductive bias.