Spring 2012: Geometry/Topology Graduate Exam

Peter Kagey

April 30, 2018

Problem 1. (Topology)

Proof. \Box

Problem 2. (Topology)

Proof. \Box

Problem 3. (Topology)

Proof.

Problem	4.	Does	there	exist	\mathbf{a}	smooth	embeddin	g of	the	projective	plane	$\mathbb{R}P^2$	into	\mathbb{R}^2 ?	Justify	your
answer.																
Proof.																

Problem 5. Let M be a manifold and let $C^{\infty}(M)$ be the algebra of C^{∞} functions $M \to \mathbb{R}$. Explain the	e
relationship between vector fields on M and $C^{\infty}(M)$. if we consider vector fields as maps $C^{\infty}(M) \to C^{\infty}(M)$)
is the composition map XY also a vector field? What about $[X,Y] = XY - YX$?	

Proof. \Box

Problem 6. Let S be the unit sphere defined by $x^2+y^2+z^2+w^2=1$ in \mathbb{R}^4 . Compute $\int_S \omega$ where $\omega=(w+w^2)\,dx\wedge dy\wedge dz$

Proof.

Problem 7. Does the equation $x^2 = y^3$ define a smooth submanifold in \mathbb{R}^3 ?

Proof.