Лекция А4 Грамматики (доп.)

Пузаренко

ДМПавтоматы

Нормальна форма

Хомского

Леммао

Операции н

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

16 ноября 2022 г.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальна форма Хомского

Хомского Леммао

накачке

Операции н КС-языках Хотя МП-автоматы по определению не детерминированы, их детерминированный случай чрезвычайно важен. В частности, синтаксические анализаторы в целом ведут себя как детерминированные МП-автоматы, поэтому класс языков, допускаемых этими автоматами, углубляет понимание конструкций, пригодных для языков программирования. Интуитивно МП-автомат является детерминированным, если в любой ситуации у него нет возможности выборов перехода. Эти выборы имеют два вида. Если $\Delta(q,a,X)$ содержит более одной пары, то МП-автомат безусловно не является детерминированным, поскольку можно выбирать из этих двух пар. Однако если $\Delta(q, a, X)$ всегда одноэлементно, все равно остаётся возможность выбора между чтением входного символа и совершением ε -перехода.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальна форма Хомского

Лемма о

Операции на КС-языках

Определение А4.1.

МП-автомат $\mathcal{P}=(Q,\Sigma,\Gamma;\Delta,q_0,Z_0,F)$ называется детерминированным (ДМП-автоматом), если выполняются следующие условия:

- $igoplus |\Delta(q,a,X)|\leqslant 1$ для каждых $q\in Q$, $a\in \Sigma\cup \{arepsilon\}$ и $X\in \Gamma$;
- $oldsymbol{0}$ если $\Delta(q,a,X)
 eq \varnothing$ для некоторого $a \in \Sigma$, то $\Delta(q,arepsilon,X)$ должно быть пустым.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальна форма Хомского

Леммао

Операции на КС-языках

Определение А4.1.

МП-автомат $\mathcal{P}=(Q,\Sigma,\Gamma;\Delta,q_0,Z_0,F)$ называется **детерминированным (ДМП-автоматом)**, если выполняются следующие условия:

- ullet ullet $|\Delta(q,a,X)|\leqslant 1$ для каждых $q\in Q$, $a\in \Sigma\cup \{arepsilon\}$ и $X\in \Gamma$;
- $oldsymbol{0}$ если $\Delta(q,a,X)
 eq \varnothing$ для некоторого $a \in \Sigma$, то $\Delta(q,arepsilon,X)$ должно быть пустым.

Примеры А4.1.

- lacktriangle KC-язык $\{lpha\hat{}^{lpha}lpha^R|lpha\in\{0;1\}^*\}$ не распознаётся никаким ДМП-автоматом.
- $m{Q}$ КС-язык $\{lpha\hat{c}^2lpha^R|lpha\in\{0;1\}^*\}$ распознаётся некоторым ДМП-автоматом (здесь $c
 ot\in\{0;1\}$).

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальна форма Хомского

Хомского Леммао

Операции на

Определение А4.1.

МП-автомат $\mathcal{P}=(Q,\Sigma,\Gamma;\Delta,q_0,Z_0,F)$ называется детерминированным (ДМП-автоматом), если выполняются следующие условия:

- ullet ullet
- $oldsymbol{0}$ если $\Delta(q,a,X)
 eq \varnothing$ для некоторого $a \in \Sigma$, то $\Delta(q,arepsilon,X)$ должно быть пустым.

Примеры А4.1.

- $f \Omega$ КС-язык $\{lpha\hat{}^lpha^R|lpha\in\{0;1\}^*\}$ не распознаётся никаким ДМП-автоматом.
- $m{Q}$ КС-язык $\{lpha\hat{c}^cpha^R|lpha\in\{0;1\}^*\}$ распознаётся некоторым ДМП-автоматом (здесь $c
 ot\in\{0;1\}$).

Упражнение А4.1.

Обосновать примеры А4.1.

Регулярные языки и ДМП-автоматы

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

форма Хомского

Лемма о накачке

Операции на КС-языках

Теорема А4.1.

Если L — регулярный язык, то $L = L(\mathcal{P})$ для некоторого ДМП-автомата \mathcal{P} .

Регулярные языки и ДМП-автоматы

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальная форма У омеката

Хомского

Лемма (накачке

Операции на КС-языках

Теорема А4.1.

Если L — регулярный язык, то $L = L(\mathcal{P})$ для некоторого ДМП-автомата \mathcal{P} .

Доказательство.

Пусть $\mathcal{A} = (Q, \Sigma; \delta, q_0, F) - Д$ КА такой, что $L = L(\mathcal{A})$. Положим ДМП-автомат $\mathcal{P} = (Q, \Sigma, \{Z_0\}; \Delta, q_0, Z_0, F)$, определив $\Delta(q, a, Z_0) = \{(\delta(q, a), Z_0)\}$ для всех $q \in Q$ и $a \in \Sigma$. Утверждается, что $(q, \alpha, Z_0) \vdash_{\mathcal{P}}^* (p, \varepsilon, Z_0) \Leftrightarrow \delta^*(q, \alpha) = p$. Доказывается в обе стороны индукцией по $\mathrm{lh}(\alpha)$. Таким образом, $\alpha \in L(\mathcal{A}) \Leftrightarrow \delta^*(q_0, \alpha) \in F \Leftrightarrow (q_0, \alpha, Z_0) \vdash_{\mathcal{P}}^* (p, \varepsilon, Z_0)$ для некоторого $p \in F \Leftrightarrow \alpha \in L(\mathcal{P})$.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальна форма

форма Хомского

Леммао

Операции на КС-языках

Определение А4.2.

Говорят, что язык L имеет префиксное свойство, если в L нет двух различных цепочек α и β , где $\alpha \sqsubseteq_{\mathit{beg}} \beta$.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальн

форма Хомског

Лемма о накачке

Операции н КС-языках

Определение А4.2.

Говорят, что язык L имеет префиксное свойство, если в L нет двух различных цепочек α и β , где $\alpha \sqsubseteq_{beg} \beta$.

Примеры А4.2.

- 1) $\{\alpha\hat{\ }c\hat{\ }\alpha^R|\alpha\in\{0;1\}^*\}$ имеет префиксное свойство.
- **2)** $\{0\}^*$ не имеет префиксного свойства, однако является регулярным языком.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальн

форма Хомского

Лемма о накачке

Операции на КС-языках

Определение А4.2.

Говорят, что язык L имеет префиксное свойство, если в L нет двух различных цепочек α и β , где $\alpha \sqsubseteq_{\mathit{beg}} \beta$.

Примеры А4.2.

- 1) $\{\alpha\hat{\ }c^{\alpha}\alpha^{R}|\alpha\in\{0;1\}^{*}\}$ имеет префиксное свойство.
- **2)** $\{0\}^*$ не имеет префиксного свойства, однако является регулярным языком.

Теорема А4.2.

 $L=N(\mathcal{P})$ для некоторого ДМП-автомата \mathcal{P} , если и только если L имеет префиксное свойство и $L=L(\mathcal{P}')$ для некоторого ДМП-автомата \mathcal{P}' .

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМП-

Нормальн

форма Хомского

Лемма с накачке

Операции на КС-языках

Определение А4.2.

Говорят, что язык L имеет префиксное свойство, если в L нет двух различных цепочек α и β , где $\alpha \sqsubseteq_{beg} \beta$.

Примеры А4.2.

- 1) $\{\alpha \hat{c} \alpha^R | \alpha \in \{0, 1\}^*\}$ имеет префиксное свойство.
- **2)** $\{0\}^*$ не имеет префиксного свойства, однако является регулярным языком.

Теорема А4.2.

 $L=N(\mathcal{P})$ для некоторого ДМП-автомата \mathcal{P} , если и только если L имеет префиксное свойство и $L=L(\mathcal{P}')$ для некоторого ДМП-автомата \mathcal{P}' .

Упражнение А4.2.

Доказать теорему А4.2 и обосновать примеры А4.2.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальна форма Хомского

Леммао

Операции на КС-языках

Замечание А4.1.

Языки, распознаваемые ДМП-автоматами, имеют однозначную КС-грамматику. Однако класс языков, распознаваемых ДМП-автоматами, не совпадает с классом КС-языков, не являющихся существенно неоднозначными. Например, язык $\{\alpha\hat{\ }\alpha^R|\alpha\in\{0;1\}^*\}$ имеет однозначную КС-грамматику $S\longrightarrow \varepsilon|0S0|1S1$, хотя и не распознаётся никаким ДМП-автоматом.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальна форма Хомского

Лемма с накачке

Операции на КС-языках

Замечание А4.1.

Языки, распознаваемые ДМП-автоматами, имеют однозначную КС-грамматику. Однако класс языков, распознаваемых ДМП-автоматами, не совпадает с классом КС-языков, не являющихся существенно неоднозначными. Например, язык $\{\alpha\hat{\;}\alpha^R|\alpha\in\{0;1\}^*\}$ имеет однозначную КС-грамматику $S\longrightarrow \varepsilon|0S0|1S1$, хотя и не распознаётся никаким ДМП-автоматом.

Теорема А4.3.

Если $L=N(\mathcal{P})$ для некоторого ДМП-автомата \mathcal{P} , то L имеет однозначную КС-грамматику.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

нормальная форма Хомского

Ломского Леммао

операции на

Доказательство.

Докажем, что конструкция теоремы АЗ.7 по ДМП-автомату задаёт однозначную КС-грамматику. По теореме АЗ.З, достаточно доказать, что каждое $\alpha \in L$ имеет уникальное левое порождение. Предположим, что ${\mathcal P}$ распознаёт α по пустому магазину. Тогда он это делает с помощью единственной последовательности переходов, поскольку он детерминирован и прекращает работу, когда опустошается магазин. Правило автомата \mathcal{P} , на основании которого применяется продукция, всегда одно. Но правило, скажем, $\Delta(q, a, X) = \{(r, Y_1 Y_2 \dots Y_k)\}$, может порождать много продукций грамматики \mathfrak{G} , с различными состояниями в позициях, отражающих состояния ${\mathcal P}$ после удаления каждого из Y_1, Y_2, \ldots, Y_k . Однако, в силу детерминированности \mathcal{P}_1 осуществляется только одна из этих последовательностей переходов, поэтому только одна из этих продукций в действительности ведет к порождению α .

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальн

форма Хомского

Леммао

Операции на КС-языках

Теорема А4.4.

Если $L=L(\mathcal{P})$ для некоторого ДМП-автомата \mathcal{P} , то L имеет однозначную КС-грамматику.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

форма Хомског

Лемма о накачке

Операции на КС-языках

Теорема А4.4.

Если $L=L(\mathcal{P})$ для некоторого ДМП-автомата \mathcal{P} , то L имеет однозначную КС-грамматику.

Доказательство.

Пусть \$- "концевой маркер", отсутствующий в цепочках языка L и пусть $L' = L^{\$}$. Тогда L' имеет префиксное свойство, а по теореме A4.2, $L' = N(\mathcal{P}')$ для некоторого ДМП-автомата \mathcal{P}' . По теореме A4.3, L' имеет однозначную КС-грамматику (скажем, $\mathfrak{G}' = (V, \Sigma, P, S)$). Теперь по грамматике \mathfrak{G}' построим грамматику $\mathfrak{G} = (V \cup \{\$\}, \Sigma \setminus \{\$\}, P', S)$, для которой $L = L(\mathfrak{G})$. Для этого определим $P' = P \cup \{\$ \longrightarrow \varepsilon\}$. Так как $L(\mathfrak{G}') = L'$, имеем $L(\mathfrak{G}) = L$. Докажем, что $\mathfrak G$ однозначна. В самом деле, левые порождения в $\mathfrak G$ совпадают с левыми порождениями в грамматике \mathfrak{G}' , за исключением последнего шага в \mathfrak{G} — замены \$ на ε . Таким образом, если бы слово lpha имело бы два различных левых порождения в \mathfrak{G} , то lpha $^\$$ имело бы два различных левых порождения в \mathfrak{G}' , противоречие.

Основные понятия

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальная форма Хомского

Лемма с накачке

Операции на КС-языках

Определение А4.3.

Говорят, что КС-грамматика $\mathfrak{G} = (V, \Sigma, P, S)$ находится в **нормальной форме Хомского (НФХ)**, если её продукции имеют вид $A \longrightarrow BC$, $A \longrightarrow a$, где $A, B, C \in V$, $a \in \Sigma$.

Основные понятия

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

дил-

Нормальная форма Хомского

Лемма накачке

Операции на КС-языках

Определение А4.3.

Говорят, что КС-грамматика $\mathfrak{G} = (V, \Sigma, P, S)$ находится в **нормальной форме Хомского (НФХ)**, если её продукции имеют вид $A \longrightarrow BC$, $A \longrightarrow a$, где $A, B, C \in V$, $a \in \Sigma$.

Основная цель.

Для любого непустого КС-языка, не содержащего ε , построить грамматику, находящуюся в НФХ.

Основные понятия

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальная форма Хомского

Лемма накачке

Операции на КС-языках

Определение А4.3.

Говорят, что КС-грамматика $\mathfrak{G} = (V, \Sigma, P, S)$ находится в **нормальной форме Хомского (НФХ)**, если её продукции имеют вид $A \longrightarrow BC$, $A \longrightarrow a$, где $A, B, C \in V$, $a \in \Sigma$.

Основная цель.

Для любого непустого КС-языка, не содержащего ε , построить грамматику, находящуюся в НФХ.

Алгоритмы.

- Удалить бесполезные символы.
- ② Удалить ε -продукции ($A \longrightarrow \varepsilon$).
- ullet Удалить цепные продукции $(A \longrightarrow B)$.

Бесполезные символы

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальная форма Хомского

Лемма о накачке

Операции на КС-языках

Определение А4.4.

Символ $X\in V\cup \Sigma$ называется полезным в грамматике $\mathfrak{G}=(V,\Sigma,P,S)$, если существует некоторое порождение $S\Rightarrow^*\alpha^2X^2\beta\Rightarrow^*\gamma$, где $\alpha,\beta,\gamma\in\Sigma^*$. Символ X называется бесполезным, если он не является полезным.

Бесполезные символы

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальная форма Хомского

Ломского Леммао

Операции на

Определение А4.4.

Символ $X \in V \cup \Sigma$ называется полезным в грамматике $\mathfrak{G} = (V, \Sigma, P, S)$, если существует некоторое порождение $S \Rightarrow^* \alpha^* X^* \beta \Rightarrow^* \gamma$, где $\alpha, \beta, \gamma \in \Sigma^*$. Символ X называется бесполезным, если он не является полезным.

Свойства полезных символов.

- **О** Символ X называется порождающим, если $X \Rightarrow^* \alpha$ для некоторого $\alpha \in \Sigma^*$. Заметим, что $X \in \Sigma \cup \{\varepsilon\}$ порождающий символ.
- f 2 Символ X называется **достижимым**, если $S \Rightarrow^* \alpha \hat{\ } X \hat{\ } \beta$ для некоторых $\alpha, \beta \in \Sigma^*.$

Любой полезный символ является одновременно и порождающим, и достижимым.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

дмп-

Нормальная форма Хомского

Леммао

накачке Операции н

Теорема А4.5.

Пусть $\mathfrak{G}=(V,\Sigma,P,S)$ такова, что $L(\mathfrak{G})\neq\varnothing$, и пусть $\mathfrak{G}_1=(V_1,\Sigma_1,P_1,S)$ — грамматика, полученная с помощью следующих двух шагов:

- вначале удаляются все непорождающие символы и продукции, их содержащие (в результате получим грамматику $\mathfrak{G}_2 = (V_2, \Sigma_2, P_2, S)$);
- $oldsymbol{arphi}$ затем удаляются все символы, не достижимые в \mathfrak{G}_2 .

 $\mathsf{T}\mathsf{orga}\ \mathfrak{G}_1$ не имеет бесполезных символов и $\mathit{L}(\mathfrak{G}) = \mathit{L}(\mathfrak{G}_1)$.

Лекция A4 Грамматики (доп.)

Вадим Пузаренко

дмп-

Нормальная форма Хомского

Лемма о

накачке

Операции на КС-языках

Теорема А4.5.

Пусть $\mathfrak{G}=(V,\Sigma,P,S)$ такова, что $L(\mathfrak{G})\neq\varnothing$, и пусть $\mathfrak{G}_1=(V_1,\Sigma_1,P_1,S)$ — грамматика, полученная с помощью следующих двух шагов:

- вначале удаляются все непорождающие символы и продукции, их содержащие (в результате получим грамматику $\mathfrak{G}_2 = (V_2, \Sigma_2, P_2, S)$);
- $oldsymbol{0}$ затем удаляются все символы, не достижимые в \mathfrak{G}_2 .

Tогда \mathfrak{G}_1 не имеет бесполезных символов и $L(\mathfrak{G}) = L(\mathfrak{G}_1)$.

Доказательство.

Пусть $X \in V_1 \cup \Sigma_1$; тогда $X \Rightarrow_{\mathfrak{G}}^* \alpha$ для некоторого $\alpha \in \Sigma^*$. Кроме того, каждый символ, использованный в порождении α из X, также является порождающим. Таким образом, $X \Rightarrow_{\mathfrak{G}_2}^* \alpha$.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальная форма Хомского

Хомского

накачке

Операции на КС-языках

Доказательство (продолжение).

Так как X не был удален после второго шага, найдутся $\beta \in \Sigma^*$ и $\gamma \in \Sigma^*$, для которых $S \Rightarrow_{\mathfrak{G}_2}^* \beta^* X^* \gamma$. Кроме того, каждый символ, использованный в этом порождении, достижим, поэтому $S \Rightarrow_{\mathfrak{G}_1}^* \beta^* X^* \gamma$.

Известно, что каждый символ в цепочке $\beta^* X^* \gamma$ достижим, и что все эти символы принадлежат $V_2 \cup \Sigma_2$, поэтому каждый из них является порождающим в \mathfrak{G}_2 . Порождение терминальной цепочки $\beta^* X^* \gamma \Rightarrow_{\mathfrak{G}_2}^* \beta^* \alpha^* \gamma$ содержит только символы, достижимые из S, поскольку они достижимы из символов цепочки $\beta^* X^* \gamma$. Таким образом, это порождение есть также порождение в \mathfrak{G}_1 , т.е. $S \Rightarrow_{\mathfrak{G}_1}^* \beta^* X^* \gamma \Rightarrow_{\mathfrak{G}_1}^* \beta^* \alpha^* \gamma$. Итак, X полезен в \mathfrak{G}_1 . Ввиду произвольности X в \mathfrak{G}_1 , заключаем, что \mathfrak{G}_1 не содержит бесполезных символов.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальная форма Хомского

Хомского

лемма накачке

Операции на КС-языках

Доказательство (окончание).

Докажем теперь, что $L(\mathfrak{G}_1) = L(\mathfrak{G})$.

(\subseteq) Очевидно, поскольку все символы и продукции \mathfrak{G}_1 входят и в \mathfrak{G} .

 (\supseteq) Пусть $\alpha \in L(\mathfrak{G})$; тогда $S \Rightarrow_{\mathfrak{G}}^* \alpha$. Следовательно, каждый символ в этом порождении является порождающим, поэтому $S \Rightarrow_{\mathfrak{G}_2}^* \alpha$. Кроме того, все символы данного порождения являются достижимыми в \mathfrak{G}_2 и, следовательно, $S \Rightarrow_{\mathfrak{G}_1}^* \alpha$; таким образом, $\alpha \in L(\mathfrak{G}_1)$.

Алгоритм нахождения порождающих

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальная форма Хомского

Лемма о накачке

Операции на КС-языках Пусть $\mathfrak{G} = (V, \Sigma, P, S)$ — грамматика.

Базис. Если $a \in \Sigma$, то a — порождающий.

Индукция. Если $A \longrightarrow \alpha$ и цепочка α состоит только из порождающих (возможно, $\alpha = \varepsilon$), то A — порождающий.

Алгоритм нахождения порождающих

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальная форма Хомского

Леммао

Операции на КС-языках Пусть $\mathfrak{G} = (V, \Sigma, P, S)$ — грамматика.

Базис. Если $a \in \Sigma$, то a — порождающий.

Индукция. Если $A \longrightarrow \alpha$ и цепочка α состоит только из порождающих (возможно, $\alpha = \varepsilon$), то A — порождающий.

Теорема А4.6.

Данный алгоритм находит в точности все порождающие грамматики \mathfrak{G} .

Алгоритм нахождения порождающих

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальная форма Хомского

Лемма о накачке

Операции на КС-языках Пусть $\mathfrak{G} = (V, \Sigma, P, S)$ — грамматика.

Базис. Если $a \in \Sigma$, то a — порождающий.

Индукция. Если $A \longrightarrow \alpha$ и цепочка α состоит только из порождающих (возможно, $\alpha = \varepsilon$), то A — порождающий.

Теорема А4.6.

Данный алгоритм находит в точности все порождающие грамматики \mathfrak{G} .

Упражнение А4.3.

Докажите теорему А4.6.

Алгоритм нахождения достижимых символов

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальная форма Хомского

Лемма о накачке

Операции на КС-языках Пусть $\mathfrak{G} = (V, \Sigma, P, S)$ — грамматика.

Базис. S — достижимый символ.

Индукция. Если $A \longrightarrow \alpha$ и A — достижимый символ, то все символы цепочки α также достижимы.

Алгоритм нахождения достижимых символов

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальная форма Хомского

Леммао

Операции на КС-языках Пусть $\mathfrak{G} = (V, \Sigma, P, S)$ — грамматика.

Базис. S — достижимый символ.

Индукция. Если $A \longrightarrow \alpha$ и A — достижимый символ, то все символы цепочки α также достижимы.

Теорема А4.7.

Данный алгоритм находит в точности все достижимые символы грамматики \mathfrak{G} .

Алгоритм нахождения достижимых символов

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальная форма Хомского

Хомского Леммао

Операции на КС-данках Пусть $\mathfrak{G} = (V, \Sigma, P, S)$ — грамматика.

Базис. S — достижимый символ.

Индукция. Если $A \longrightarrow \alpha$ и A — достижимый символ, то все символы цепочки α также достижимы.

Теорема А4.7.

Данный алгоритм находит в точности все достижимые символы грамматики \mathfrak{G} .

Упражнение А4.4.

Докажите теорему А4.7.

Удаление arepsilon-продукций

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

дмп-

Нормальная форма

форма Хомского

Лемма о накачке

Операции на КС-языках

Определение А4.4.

Переменная A называется ε -порождающей в \mathfrak{G} , если $A\Rightarrow_{\mathfrak{G}}^* \varepsilon$.

V даление ε -продукций

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

Нормальная форма Хомского

Определение А4.4.

Переменная A называется ε -порождающей в \mathfrak{G} , если $A \Rightarrow_{\mathfrak{G}}^* \varepsilon$.

Алгоритм.

Базис. Если $A \longrightarrow \varepsilon$ — продукция в \mathfrak{G} , то $A - \varepsilon$ -порождающий. **Индукция.** Если в \mathfrak{G} есть продукция $B \longrightarrow C_1 C_2 \dots C_k$, в которой C_i , $i=1,\ldots,k-\varepsilon$ -порождающие, то и B также ε -порождающий.

V даление ε -продукций

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

Нормальная

форма Хомского

Определение А4.4.

Переменная A называется ε -порождающей в \mathfrak{G} , если $A \Rightarrow_{\mathfrak{G}}^* \varepsilon$.

Алгоритм.

Базис. Если $A \longrightarrow \varepsilon$ — продукция в \mathfrak{G} , то $A - \varepsilon$ -порождающий. **Индукция.** Если в \mathfrak{G} есть продукция $B \longrightarrow C_1 C_2 \dots C_k$, в которой C_i , $i=1,\ldots,k-\varepsilon$ -порождающие, то и B также ε -порождающий.

Теорема А4.8.

В грамматике $\mathfrak G$ являются в точности arepsilon-порождающими переменные, найденные вышеприведённым алгоритмом.

Удаление ε -продукций

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

Нормальная форма

Хомского

Определение А4.4.

Переменная A называется ε -порождающей в \mathfrak{G} , если $A \Rightarrow_{\mathfrak{G}}^* \varepsilon$.

Алгоритм.

Базис. Если $A \longrightarrow \varepsilon$ — продукция в \mathfrak{G} , то $A - \varepsilon$ -порождающий. **Индукция.** Если в \mathfrak{G} есть продукция $B \longrightarrow C_1 C_2 \dots C_k$, в которой C_i , $i=1,\ldots,k-\varepsilon$ -порождающие, то и B также ε -порождающий.

Теорема А4.8.

В грамматике $\mathfrak G$ являются в точности arepsilon-порождающими переменные, найденные вышеприведённым алгоритмом.

Упражнение А4.5.

Докажите теорему А4.8.

Удаление arepsilon-продукций

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

дмп-

Нормальная форма Хомского

Хомского

Операции на

Конструкция.

- lacktriangle Удаляем все продукции вида $A\longrightarrow arepsilon$.
- ② Если $A \longrightarrow \alpha \hat{\ } B \hat{\ } \gamma$ продукция, в которой B ε -порождающий, а $\mathrm{lh}(\alpha \hat{\ } \gamma) > 0$, то добавляем продукцию $A \longrightarrow \alpha \hat{\ } \gamma$. Повторяем данный пункт, пока это возможно.

Удаление arepsilon-продукций

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

цмп-

Нормальная форма Хомского

Хомского Леммао

накачке Опорожини г

Операции на КС-языках

Конструкция.

- lacktriangle Удаляем все продукции вида $A\longrightarrow arepsilon$.
- ② Если $A \longrightarrow \alpha \hat{\ } B \hat{\ } \gamma$ продукция, в которой B ε -порождающий, а $\mathrm{lh}(\alpha \hat{\ } \gamma) > 0$, то добавляем продукцию $A \longrightarrow \alpha \hat{\ } \gamma$. Повторяем данный пункт, пока это возможно.

Теорема А4.9.

Если грамматика \mathfrak{G}_1 построена по грамматике \mathfrak{G} с помощью описанной выше конструкции удаления ε -продукций, то $L(\mathfrak{G}_1) = L(\mathfrak{G}) \setminus \{\varepsilon\}$.

Удаление arepsilon-продукций

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

дилиавтоматы

Нормальная форма Хомского

Хомского Лемма о

Операции на КС-данках

Конструкция.

- lacktriangle Удаляем все продукции вида $A\longrightarrow arepsilon$.
- ② Если $A \longrightarrow \alpha \hat{\ } B \hat{\ } \gamma$ продукция, в которой B ε -порождающий, а $\mathrm{lh}(\alpha \hat{\ } \gamma) > 0$, то добавляем продукцию $A \longrightarrow \alpha \hat{\ } \gamma$. Повторяем данный пункт, пока это возможно.

Теорема А4.9.

Если грамматика \mathfrak{G}_1 построена по грамматике \mathfrak{G} с помощью описанной выше конструкции удаления ε -продукций, то $L(\mathfrak{G}_1) = L(\mathfrak{G}) \setminus \{\varepsilon\}$.

Доказательство.

Необходимо доказать, что $\alpha \in L(\mathfrak{G}_1)$, если и только если $\alpha \in L(\mathfrak{G})$, для любого $\alpha \in \Sigma^* \setminus \{\varepsilon\}$. Докажем более общее утверждение $(\alpha \in (V \cup \Sigma)^*)$: $A \Rightarrow_{\mathfrak{G}}^*, \alpha \iff [A \Rightarrow_{\mathfrak{G}}^*, \alpha \& (\alpha \neq \varepsilon)]$.

Удаление ε -продукций

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

Нормальная форма Хомского

Доказательство (продолжение).

 (\Rightarrow) Пусть $A \Rightarrow_{\mathfrak{G}_1}^* \alpha$; тогда $\alpha \neq \varepsilon$, поскольку \mathfrak{G}_1 не имеет arepsilon-продукций. Покажем индукцией по длине порождения, что $A \Rightarrow_{\sigma}^* \alpha$.

Базис. В \mathfrak{G}_1 имеется продукция $A \longrightarrow \alpha$; согласно конструкции, $A \longrightarrow \alpha'$ — продукция в \mathfrak{G} , где α получается из α' удалением ε -порождающих переменных. Следовательно, $A \Rightarrow_{\mathfrak{G}} \alpha' \Rightarrow_{\mathfrak{G}}^* \alpha$. **Индукция.** Пусть в порождении $A \Rightarrow_{\mathfrak{G}_1}^* \alpha$ имеется n > 1 шагов. Тогда оно имеет вид $A\Rightarrow_{\mathfrak{G}_1} X_1X_2 \dots X_k \Rightarrow_{\mathfrak{G}_1}^* \alpha$. Цепочку α можно представить в виде $\alpha_1 \hat{\alpha}_2 \dots \hat{\alpha}_k$, где $X_i \Rightarrow_{\sigma_i}^* \alpha_i$. По предположению индукции, $X_i \Rightarrow_{\sigma}^* \alpha_i$. Согласно конструкции, в \mathfrak{G} имеется продукция $A \longrightarrow Y_1 Y_2 \dots Y_m$, где $X_1 X_2 \dots X_k$ получена из $Y_1 Y_2 \dots Y_m$ удалением ε -порождающих символов. Таким образом,

 $A \Rightarrow_{\mathfrak{G}} Y_1 Y_2 \dots Y_m \Rightarrow_{\mathfrak{G}}^* X_1 X_2 \dots X_k \Rightarrow_{\mathfrak{G}}^* \alpha_1 \alpha_2 \dots \alpha_k = \alpha.$

Удаление arepsilon-продукций

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

автоматы Нормальная

форма Хомского

Лемма с накачке

Операции на КС-языках

Доказательство (окончание).

(\Leftarrow) Пусть $A\Rightarrow_{\mathfrak{G}}^*\alpha$ и $\alpha\neq\varepsilon$; как и прежде, будем доказывать индукцией по длине порождения.

Базис. $A \longrightarrow \alpha$ — продукция в \mathfrak{G} ; так как $\alpha \neq \varepsilon$, $A \longrightarrow \alpha$ будет продукцией и в \mathfrak{G}_1 . В частности, $A \Rightarrow_{\mathfrak{G}_1}^* \alpha$.

Индукция. Пусть в порождении $A\Rightarrow_{\mathfrak{G}}^*\alpha$ имеется n>1 шагов. Тогда оно имеет вид $A\Rightarrow_{\mathfrak{G}}Y_1Y_2\dots Y_m\Rightarrow_{\mathfrak{G}}^*\alpha$. Цепочку α можно представить в виде $\alpha_1\hat{\ }\alpha_2\hat{\ }\dots\hat{\ }\alpha_m$, где $Y_i\Rightarrow_{\mathfrak{G}}^*\alpha_i$. Пусть цепочка $X_1X_2\dots X_k$ получена из $Y_1Y_2\dots Y_m$ удалением Y_j таких, что $\alpha_j=\varepsilon$. По предположению индукции, $Y_i\Rightarrow_{\mathfrak{G}_1}^*\alpha_i$. Согласно конструкции, $A\longrightarrow X_1X_2\dots X_k$ — продукция в \mathfrak{G}_1 . Таким образом, $A\Rightarrow_{\mathfrak{G}_1}X_1X_2\dots X_k\Rightarrow_{\mathfrak{G}_1}^*\alpha_1\hat{\ }\alpha_2\hat{\ }\dots\hat{\ }\alpha_m=\alpha$. Для завершения доказательства осталось положить A=S.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

цмп-

Нормальная форма

форма Хомского

накачке

Операции на КС-языках

Определение А4.5.

Пара нетерминалов (A,B) назовём **цепной**, если $A\Rightarrow^* B$, причём в порождении используются только цепные продукции.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

дм п-

Нормальная форма Хомского

Хомского Лемма о

Операции на КС-языках

Определение А4.5.

Пара нетерминалов (A, B) назовём **цепной**, если $A \Rightarrow^* B$, причём в порождении используются только цепные продукции.

Алгоритм.

- (A, A) цепная пара.
- ullet Если (A,B) цепная пара и $B\longrightarrow C$ цепная продукция, то (A,C) цепная пара.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

дм п-

Нормальная форма

форма Хомского

Лемма накачке

Операции на КС-языках

Определение А4.5.

Пара нетерминалов (A, B) назовём **цепной**, если $A \Rightarrow^* B$, причём в порождении используются только цепные продукции.

Алгоритм.

- (A, A) цепная пара.
- ullet Если (A,B) цепная пара и $B\longrightarrow C$ цепная продукция, то (A,C) цепная пара.

Теорема А4.10.

Вышеприведённый алгоритм находит в точности все цепные пары грамматики \mathfrak{G} .

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

цм п-

Нормальная форма Хомского

Хомского Лемма о

Операции на КС-языках

Определение А4.5.

Пара нетерминалов (A, B) назовём **цепной**, если $A \Rightarrow^* B$, причём в порождении используются только цепные продукции.

Алгоритм.

- (A, A) цепная пара.
- **②** Если (A,B) цепная пара и $B \longrightarrow C$ цепная продукция, то (A,C) цепная пара.

Теорема А4.10.

Вышеприведённый алгоритм находит в точности все цепные пары грамматики \mathfrak{G} .

Упражнение А4.6.

Докажите теорему А4.10.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

Нормальная

форма Хомского

Лемма о накачке

Операции на КС-языках

Конструкция.

- Найдём все цепные пары грамматики Ф.
- $m{Q}$ Для каждой цепной пары (A,B) добавляем продукцию $A\longrightarrow lpha$ в P_1 , если $B\longrightarrow lpha$ нецепная продукция в P.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

автоматы Нормальная

форма Хомского

Леммао

Операции на КС-языках

Конструкция.

- Найдём все цепные пары грамматики б.
- $m{Q}$ Для каждой цепной пары (A,B) добавляем продукцию $A\longrightarrow lpha$ в P_1 , если $B\longrightarrow lpha$ нецепная продукция в P.

Замечание А4.2.

Заметим, что в случае, когда A=B, в P_1 помещаются все нецепные продукции из P.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

Нормальная

форма Хомского

Лемма о накачке

Операции н КС-языках

Конструкция.

- Найдём все цепные пары грамматики .
- $m{Q}$ Для каждой цепной пары (A,B) добавляем продукцию $A\longrightarrow lpha$ в P_1 , если $B\longrightarrow lpha$ нецепная продукция в P.

Замечание А4.2.

Заметим, что в случае, когда A=B, в P_1 помещаются все нецепные продукции из P.

Теорема А4.11.

Если \mathfrak{G}_1 построена по \mathfrak{G} согласно конструкции, описанной выше, то $L(\mathfrak{G}_1)=L(\mathfrak{G})$.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

дмп-

Нормальная форма

форма Хомского

Лемма о накачке

Операции на КС-языках Доказательство.

Докажем, что $\alpha \in L(\mathfrak{G}) \Leftrightarrow \alpha \in L(\mathfrak{G}_1)$.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

дмп-

Нормальная форма Хомского

Лемма о накачке

Операции на КС-языках

Доказательство.

Докажем, что $\alpha \in L(\mathfrak{G}) \Leftrightarrow \alpha \in L(\mathfrak{G}_1)$.

 (\Leftarrow) Пусть $S\Rightarrow_{\mathfrak{G}_1}^*\alpha$. Так как каждая продукция в \mathfrak{G}_1 эквивалентна последовательности из нескольких цепных продукций, за которыми следует одна нецепная продукция из \mathfrak{G} , имеем $S\Rightarrow_{\mathfrak{G}}^*\alpha$.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

дмп-

Нормальная форма Хомского

Леммао

накачке

Операции на КС-языках

Доказательство.

Докажем, что $\alpha \in L(\mathfrak{G}) \Leftrightarrow \alpha \in L(\mathfrak{G}_1)$.

- (\Leftarrow) Пусть $S \Rightarrow_{\mathfrak{G}_1}^* \alpha$. Так как каждая продукция в \mathfrak{G}_1 эквивалентна последовательности из нескольких цепных продукций, за которыми следует одна нецепная продукция из \mathfrak{G} , имеем $S \Rightarrow_{\mathfrak{G}_5}^* \alpha$.
- (\Rightarrow) Пусть $\alpha \in L(\mathfrak{G})$; по теореме A3.2, $S \underset{j}{\Rightarrow}^* \alpha$. Где бы в левом порождении ни использовалась цепная продукция, переменная её тела остаётся крайней слева. Тем самым, левое порождение в \mathfrak{G} можно разбить на последовательность "шагов", в которых несколько цепных продукций сопровождаются нецепной. Заметим, что любая нецепная продукция, перед которой нет цепных, сама по себе образует такой "шаг". Но по построению грамматики \mathfrak{G}_1 , каждый из этих шагов может быть выполнен одной её продукцией. Таким образом, $S \Rightarrow_{\mathfrak{G}_1}^* \alpha$.

Вспомогательные конструкции

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

автоматы Нормальная

пормальная форма Хомского

Лемма с накачке

Операции на

Теорема А4.12.

Пусть \mathfrak{G} — KC-грамматика, у которой $L(\mathfrak{G})\setminus\{\varepsilon\}\neq\varnothing$. Тогда можно построить KC-грамматику \mathfrak{G}_1 , в которой отсутствуют бесполезные символы, ε -продукции и цепные продукции, такую что $L(\mathfrak{G}_1)=L(\mathfrak{G})\setminus\{\varepsilon\}$.

Вспомогательные конструкции

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальная форма Хомского

Леммао Леммао

накачке

Операции на КС-языках

Теорема А4.12.

Пусть \mathfrak{G} — KC-грамматика, у которой $L(\mathfrak{G})\setminus\{\varepsilon\}\neq\varnothing$. Тогда можно построить KC-грамматику \mathfrak{G}_1 , в которой отсутствуют бесполезные символы, ε -продукции и цепные продукции, такую что $L(\mathfrak{G}_1)=L(\mathfrak{G})\setminus\{\varepsilon\}$.

Доказательство.

Сначала, по теореме A4.9, удалим ε -продукции; затем удалим цепные продукции, по теореме A4.11 (заметим, что в этом случае будут отсутствовать также и ε -продукции); в конечном итоге, применим конструкцию теоремы A4.5 (поскольку все продукции полученной грамматики содержатся во множестве продукций, полученной на предыдущем шаге, грамматика также не будет содержать ε - и цепных продукций).

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальная форма Хомского

Ломского Лемма о

накачке

Операции на КС-языках

Конструкция.

Опишем один шаг конструкции, в котором в грамматике происходят изменения только с одной продукцией. Пусть $A \longrightarrow X_1 X_2 \dots X_k$, где либо k > 2, либо k = 2, но X_1 и X_2 не являются одновременно переменными. Для каждого слова X_1 и $X_2 \dots X_k$ вводим новую переменную Y_1 и Y_2 , если оно не является нетерминалом. Возможны следующие случаи:

- X_1 является нетерминалом; тогда рассматриваемую продукцию заменяем на следующий список: $A \longrightarrow X_1 Y_2$, $Y_2 \longrightarrow X_2 \dots X_k$;
- ② $X_2 \dots X_k = X_2$ является нетерминалом; тогда $A \longrightarrow Y_1 X_2$, $Y_1 \longrightarrow X_1$;
- $lack X_1$ является терминалом и k>2; тогда $A\longrightarrow Y_1Y_2$, $Y_1\longrightarrow X_1,\; Y_2\longrightarrow X_2\dots X_k.$

Конструкция завершится на конечном шаге (почему?)

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

цм п-

Нормальная форма Хомского

Лемма о

накачке

Операции на КС-языках

Теорема А4.13.

Если \mathfrak{G} — КС-грамматика, порождающая хотя бы одну непустую цепочку, то существует НФХ \mathfrak{G}_1 такая, что $L(\mathfrak{G}_1) = L(\mathfrak{G}) \setminus \{\varepsilon\}$.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

цм п-

Нормальная форма Хомского

Леммао

накачке

Операции на КС-языках

Теорема А4.13.

Если \mathfrak{G} — КС-грамматика, порождающая хотя бы одну непустую цепочку, то существует НФХ \mathfrak{G}_1 такая, что $L(\mathfrak{G}_1) = L(\mathfrak{G}) \setminus \{\varepsilon\}$.

Доказательство.

По теореме А4.12, можно построить КС-грамматику $\mathfrak{G}_2 = (V_2, \Sigma, P_2, S)$, свободную от бесполезных символов, ε -продукций и цепных продукций, для которой

$$L(\mathfrak{G}_2) = L(\mathfrak{G}) \setminus \{\varepsilon\}.$$

Докажем, что $\alpha \in L(\mathfrak{G}_2) \Leftrightarrow \alpha \in L(\mathfrak{G}_1)$, где $\mathfrak{G}_1 = (V_1, \Sigma, P_1, S)$ строится по грамматике \mathfrak{G}_2 согласно конструкции.

 (\Rightarrow) Непосредственно вытекает из того, что $P_2(A, X_1X_2 \dots X_k)$ влечёт $A \Rightarrow_{\mathfrak{G}_1}^* X_1X_2 \dots X_k$.

(\Leftarrow) Доказывать будем по длине вывода следующую импликацию: $A\Rightarrow_{l,\mathfrak{G}_1}^*\alpha\Longrightarrow A\Rightarrow_{l,\mathfrak{G}_2}^*\alpha$, для всех $A\in V_2$ и $\alpha\in\Sigma^*$.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальная форма Хомского

Леммао

Операции на КС-языках

Доказательство (продолжение).

Базис. Если $P_1(A,\alpha)$ и $A\in V_2$, то $\alpha\in\Sigma$ и $P_2(A,\alpha)$, поскольку \mathfrak{G}_2 не имеет цепных правил и ε -продукций.

Индукция. Пусть $A \Rightarrow_{l,\mathfrak{G}_1}^* \alpha$, и данное порождение имеет длину n>1. Тогда $A \longrightarrow BC \Rightarrow_{l,\mathfrak{G}_1}^* \alpha$ и, следовательно, $B \Rightarrow_{l,\mathfrak{G}_1}^* \beta$, $C \Rightarrow_{l,\mathfrak{G}_1}^* \gamma$, причём $\alpha = \beta^{\hat{}} \gamma$. Разберём несколько случаев.

- $B \not\in V_2$; согласно конструкции, $P_1(B,\beta)$, $\beta \in \Sigma$ и $P_2(A,\beta X_2 \dots X_k)$, причём эта продукция задаётся единственным образом. В частности, $A \Rightarrow_{1.\mathfrak{G}_2}^* \beta X_2 \dots X_k$.
- $B \in V_2$; согласно конструкции, $P_2(A, BX_2 ... X_k)$, причём эта продукция задаётся единственным образом; по предположению индукции, $B \Rightarrow_{l,\mathfrak{G}_2}^* \beta$. В частности, $A \Rightarrow_{l,\mathfrak{G}_2}^* \beta X_2 ... X_k$.

Докажем теперь индукцией по k, что существует последовательность цепочек γ_2,\ldots,γ_k такая, что $\gamma=\gamma_2\hat{\ }\ldots\hat{\ }\gamma_k$ и $X_i\Rightarrow_{l,\mathfrak{G}_2}^*\gamma_i,\,2\leqslant i\leqslant k$.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальная форма Хомского

Хомского Лемма о

накачке Операции н

Доказательство (окончание).

Базис. Возможны несколько случаев.

- ullet $C\in V_2$; по индукционному предположению, $C=X_2\Rightarrow_{I,\mathfrak{G}_2}^*\gamma$.
- $P_1(C,\gamma)$; тогда $\gamma\in\Sigma$ и, согласно конструкции, $P_2(A,B\gamma)$; в частности, $X_2=\gamma\Rightarrow_{l,\mathfrak{G}_2}^*\gamma$.

Индукция. Пусть $P_1(C, C_1C_2)$. Разберём снова несколько случаев.

- $m{\circ}$ $C_1 \in V_2$; тогда $X_2 = C_1 \Rightarrow_{l,\mathfrak{G}_2}^* \gamma_2$, а по предположению индукции, найдутся цепочки $\gamma_3, \ldots, \gamma_k$, удовлетворяющие условию.
- $C_1 \not\in V_2$; тогда $P_2(C_1, \gamma_2)$, $\gamma_2 \in \Sigma$ и $X_2 = \gamma_2 \Rightarrow_{I, \mathfrak{G}_2}^* \gamma_2$; по предположению индукции, найдутся цепочки $\gamma_3, \ldots, \gamma_k$, удовлетворяющие условию.

Для завершения доказательства заметим, что $S \in V_2$ и, по доказанному, $\alpha \in L(\mathfrak{G}_2) \Leftrightarrow S \Rightarrow_{l,\mathfrak{G}_1}^* \alpha \Leftrightarrow S \Rightarrow_{l,\mathfrak{G}_1}^* \alpha \Leftrightarrow \alpha \in L(\mathfrak{G}_1)$.

Высота дерева разбора

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

автоматы

форма Хомского

Лемма о накачке

Операции на КС-языках

Предложение А4.1.

Пусть дано дерево разбора, соответствующее НФХ-грамматике $\mathfrak{G}=(V,\Sigma,P,S)$, и пусть кроной дерева является терминальная цепочка α . Если n— наибольшая длина пути от корня к листьям, то $\mathrm{lh}(\alpha)\leqslant 2^{n-1}$.

Высота дерева разбора

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальна форма

Лемма о накачке

Операции на КС-языках

Предложение А4.1.

Пусть дано дерево разбора, соответствующее НФХ-грамматике $\mathfrak{G}=(V,\Sigma,P,S)$, и пусть кроной дерева является терминальная цепочка α . Если n — наибольшая длина пути от корня к листьям, то $\mathrm{lh}(\alpha)\leqslant 2^{n-1}$.

Доказательство.

Простой индукцией по п.

Базис. Дерево с максимальной длиной пути 1 состоит из корня и листа, отмеченного терминалом. Цепочка α — терминал и $\mathrm{lh}(\alpha)=1=2^0=2^{1-1}.$

Индукция. Предположим, что самый длинный путь имеет длину n>1. Тогда корень дерева имеет продукцию вида $A\longrightarrow BC$. Все пути в поддеревьях с корнями, отмеченными B и C, имеют длину $\leqslant n-1$, поскольку в путях исключено ребро от корня A к сыну (B или C). По предположению индукции, эти поддеревья имеют кроны $\leqslant 2^{n-2}$. Таким образом, крона всего дерева имеет длину $\leqslant 2^{n-2}+2^{n-2}=2^{n-1}$.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

дмп-

форма Хомского

Лемма о накачке

Операции на КС-языках

Теорема А4.14.

Пусть L — КС-язык; тогда существует $n_0=n_0(L)\geqslant 1$ такое, что выполняется следующее: если $\zeta\in L$ таково, что $\mathrm{lh}(\zeta)\geqslant n_0$, то оно представляет собой $\zeta=\alpha\hat{\ }\beta\hat{\ }\gamma\hat{\ }\delta\hat{\ }\eta$, удовлетворяющее следующим условиям.

- \bullet $\alpha \hat{\beta}' \hat{\gamma} \hat{\delta}' \hat{\eta} \in L$ для всех $l \geqslant 0$.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

Леммао

накачке

Теорема А4.14.

Пусть $L - \mathsf{KC}$ -язык; тогда существует $n_0 = n_0(L) \geqslant 1$ такое, что выполняется следующее: если $\zeta \in L$ таково, что $\mathrm{lh}(\zeta) \geqslant n_0$, то оно представляет собой $\zeta = \alpha^{\hat{}}\beta^{\hat{}}\gamma^{\hat{}}\delta^{\hat{}}\eta$, удовлетворяющее следующим условиям.

- $\alpha^{\hat{\beta}} \alpha^{\hat{\beta}} \alpha^{\hat{\beta}} \alpha^{\hat{\beta}} \alpha^{\hat{\beta}} \alpha \in L$ для всех $l \geqslant 0$.

Доказательство.

Если $L\subseteq\{arepsilon\}$, то слово $\zeta\in L$ с $\mathrm{lh}(\zeta)>0$ отсутствует, поэтому можно считать, что $L \setminus \{\varepsilon\} \neq \emptyset$.

По теореме A4.13, существует HФX-грамматика $\mathfrak{G} = (V, \Sigma, P, S)$, порождающая язык $L \setminus \{\varepsilon\}$. Положим m = |V| и $n_0 = 2^m$.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

форма Хомского

Лемма о накачке

Операции на КС-языках

Доказательство (продолжение).

Предположим, что $\zeta \in L$ имеет длину $\geqslant n_0$. По предложению A4.1, любое дерево разбора, в котором наибольшая длина пути $\leqslant m$, должно иметь крону $\leqslant 2^{m-1} = \frac{n_0}{2}$. Такое дерево разбора не может иметь крону ζ , поскольку $\mathrm{lh}(\zeta) \geqslant n_0 > \frac{n_0}{2}$. Тем самым, любое дерево T разбора с кроной ζ имеет путь длиной $k+1\geqslant m+1$. Пусть $S=A_0,\,A_1,\,\ldots,\,A_k$ — вершины данного пути, отмеченные переменными. Так как m=|V|, найдутся $k-m\leqslant i < j\leqslant k$ такие, что $A_i=A_j$. Определим представление ζ следующим образом.

- ullet γ крона дерева, корень которого помечен A_j .
- ullet $eta^\gamma\gamma^\delta$ крона дерева, корень которого помечен A_i .
- ullet ζ крона дерева, корень которого помечен S.

Докажем, что данное представление удовлетворяет всем требуемым условиям.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

форма Хомского

Леммао

Операции на КС-языках

Доказательство (окончание).

- 1) Действительно, $k-i\leqslant m$, поэтому самый длинный путь в поддереве с корнем A_i не превосходит m+1, а по предложению A4.1, длина кроны $\mathrm{lh}(\beta \hat{\ } \gamma \hat{\ } \delta) \leqslant 2^m = n_0$.
- **2)** Дерево с корнем, помеченным A_i , содержит в качестве собственного поддерева дерево с корнем, помеченным A_j ; поэтому $\beta \hat{\ }\delta \neq \varepsilon$.
- **3)** При l = 1 случай очевиден.

Пусть I=0; тогда достаточно рассмотреть дерево $T_{T(A_j)}^{T(A_i)}$.

Индукцией по $l\geqslant 1$ докажем, что $\alpha \hat{\ } \beta^{l} \hat{\ } \gamma \hat{\ } \delta^{l} \eta \in L.$ О базе сказано выше. Пусть T_0 — дерево разбора, кроной которого является $\alpha \hat{\ } \beta^{l} \hat{\ } \gamma \hat{\ } \delta^{l} \hat{\ } \eta$. Пусть также $A(=A_i)$ — вершина, кроной поддерева $T_0(A)$ для которой является цепочка γ . Тогда кроной дерева $T_0^{T_0(A)}$ будем цепочка $\alpha \hat{\ } \beta^{l+1} \hat{\ } \gamma \hat{\ } \delta^{l+1} \hat{\ } \eta$.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

форма Хомского

Лемма о накачке

Операции на КС-языках

- Мы выбираем язык L, желая доказать, что он не контекстно-свободный.
- ② Наш "противник" выбирает заранее неизвестное $n_0 \geqslant 1$, поэтому мы должны рассчитывать на любое возможное значение.
- ullet Мы выбираем слово ζ с $\mathrm{lh}(\zeta)\geqslant n_0$.
- "Противник" предоставляет разбиение $\zeta = \alpha \hat{\beta} \hat{\gamma} \hat{\delta} \eta$, причём $\beta \hat{\delta} \neq \varepsilon$ и $\mathrm{lh}(\beta \hat{\gamma} \hat{\delta}) \leqslant n_0$.
- ullet Мы "выигрываем", если можем выбрать $I\in\omega$ так, что $\alpha\hat{\ } \beta^I\hat{\ } \gamma\hat{\ } \delta^I\hat{\ } \eta
 ot\in L.$

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Лемма о

Лемма о накачке

Операции на КС-языках

Пример А4.3.

Пусть $L=\{0^n1^n2^n|n\in\omega\}$. Допустим, что язык L контекстно-свободный. Тогда существует n_0 из леммы о накачке. Выберем $\zeta=0^{n_0}1^{n_0}2^{n_0}$. Пусть дано представление $\zeta=\alpha\hat{\ }\beta\hat{\ }\gamma\hat{\ }\delta\hat{\ }\eta$, где $\beta\hat{\ }\delta\neq\varepsilon$ и $\mathrm{lh}(\beta\hat{\ }\gamma\hat{\ }\delta)\leqslant n_0$. Так как $\mathrm{lh}(01^{n_0}2)=n_0+2>n_0$, цепочка $\xi=\beta\hat{\ }\gamma\hat{\ }\delta$ не содержит нулей или двоек.

- ullet не содержит нулей; тогда $\alpha\hat{\ }\gamma\hat{\ }\eta
 ot\in L$, поскольку количество нулей в нём равняется n_0 , а суммарное количество единиц и двоек $<2n_0$.
- ullet не содержит двоек; тогда $\alpha \hat{\ } \gamma \hat{\ } \eta
 ot\in L$, поскольку количество двоек в нём равняется n_0 , а суммарное количество единиц и нулей $< 2n_0$.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

автоматы

Нормальна: форма Хомского

Лемма о накачке

Операции на КС-языках

Пример А4.4.

Пусть $L=\{0^i1^j2^i3^j|i,j\in\omega\}$. Допустим, что язык L контекстно-свободный. Тогда существует n_0 из леммы о накачке. Выберем $\zeta=0^{n_0}1^{n_0}2^{n_0}3^{n_0}$. Пусть дано представление $\zeta=\alpha^{\hat{}}\beta^{\hat{}}\gamma^{\hat{}}\delta^{\hat{}}\eta$, где $\beta^{\hat{}}\delta\neq\varepsilon$ и $\mathrm{lh}(\beta^{\hat{}}\gamma^{\hat{}}\delta)\leqslant n_0$. Как и выше, доказывается, что $\xi=\beta^{\hat{}}\gamma^{\hat{}}\delta$ не может содержать одновременно представителей трёх символов.

- ξ не содержит нулей и троек; тогда $\alpha \hat{\ } \gamma \hat{\ } \eta \not\in L$, поскольку количество нулей и троек в нём равняется n_0 , а суммарное количество единиц и двоек $<2n_0$.
- ② ξ не содержит двоек и троек; тогда $\alpha \hat{\ } \gamma \hat{\ } \eta \not\in L$, поскольку количество двоек и троек в нём равняется n_0 , а суммарное количество единиц и нулей $< 2n_0$.
- \bullet ξ не содержит нулей и единиц; тогда $\alpha \hat{\ } \gamma \hat{\ } \eta \not\in L$, поскольку количество нулей и единиц в нём равняется n_0 , а суммарное количество двоек и троек $<2n_0$.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Хомского

Лемма о накачке

Операции на КС-языках

Пример А4.5.

Пусть $L=\{\alpha^{\smallfrown}\alpha|\alpha\in\{0;1\}^*\}$. Допустим, что L контекстно-свободный. Тогда существует n_0 из леммы о накачке. Выберем $\zeta=0^{n_0}1^{n_0}0^{n_0}1^{n_0}$. Пусть дано представление $\zeta=\alpha^{\smallfrown}\beta^{\smallfrown}\gamma^{\smallfrown}\delta^{\smallfrown}\eta$, где $\beta^{\backprime}\delta\neq\varepsilon$ и $\mathrm{lh}(\beta^{\backprime}\gamma^{\backprime}\delta)\leqslant n_0$. Докажем, что $\alpha^{\backprime}\gamma^{\smallfrown}\eta\not\in L$. Так как $\mathrm{lh}(\beta^{\backprime}\gamma^{\smallfrown}\delta)\leqslant n_0$, имеем $\mathrm{lh}(\alpha^{\backprime}\gamma^{\smallfrown}\eta)\geqslant 3n_0$. Таким образом, если $\alpha^{\backprime}\gamma^{\thickspace}\eta=\xi^{\smallfrown}\xi$, то $\mathrm{lh}(\xi)\geqslant \frac{3n_0}{2}$. Возможны несколько случаев.

- Предположим, что $\beta \hat{\ } \gamma \hat{\ } \delta$ находится в пределах первых групп нулей и единиц (скажем, $\ln(\beta \hat{\ } \delta) = k > 0$). Тогда $\ln(\alpha \hat{\ } \gamma \hat{\ } \eta) = 4n_0 k$ и, следовательно, начало длины $2n_0 \frac{k}{2}$ заканчивается нулем, а само слово заканчивается единицей.
- Предположим, что $eta^{\gamma}\gamma^{\delta}$ находится в пределах последних групп нулей и единиц (скажем, $\ln(eta^{\delta}\delta)=k>0$). Тогда $\ln(\alpha^{\gamma}\gamma^{\eta})=4n_0-k$ и, следовательно, начало длины $2n_0-\frac{k}{2}$ начинается нулем, а конец слова той же длины начинается единицей.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

автоматы

форма Хомского

Лемма о накачке

Операции на КС-языках

Пример А4.5 (окончание).

• Предположим, что $\beta^{\gamma}\gamma^{\delta}$ находится в пределах второй и третьей групп (скажем, $\beta^{\gamma}\delta = 1^{k_0}0^{k_1}$). Тогда $\alpha^{\gamma}\gamma^{\gamma}\eta = 0^{n_0}1^{n_0-k_0}0^{n_0-k_1}1^{n_0}$ и, следовательно, начало длины $2n_0 - \frac{k_0 + k_1}{2}$ имеет n_0 нулей, а конец слова той же длины — $\leqslant n_0 - k_1 < n_0$ нулей.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

автоматы

форма Хомского

Лемма о накачке

Операции на КС-данках

Замечание А4.3.

Хотя в общем случае леммы о накачке для КС- и регулярных языков содержат только необходимые условия, для однобуквенных алфавитов являются и достаточными.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

автоматы Новмальна

Нормальна: форма Хомского

Лемма о накачке

Операции на КС-языках

Замечание А4.3.

Хотя в общем случае леммы о накачке для КС- и регулярных языков содержат только необходимые условия, для однобуквенных алфавитов являются и достаточными.

Теорема А4.16.

Любой контекстно-свободный язык $L \subseteq \{0\}^*$ является регулярным.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальна форма Усмакова

Лемма о

накачке

Операции на КС-языках

Замечание А4.3.

Хотя в общем случае леммы о накачке для КС- и регулярных языков содержат только необходимые условия, для однобуквенных алфавитов являются и достаточными.

Теорема А4.16.

Любой контекстно-свободный язык $L \subseteq \{0\}^*$ является регулярным.

Доказательство.

Без ограничения общности можно считать, что L — бесконечный язык. По теореме A4.15 о накачке, существует $n_0\geqslant 1$, для которого выполняется следующее:

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальная форма Хомского

Лемма о накачке

Операции на КС-языках

Доказательство (продолжение).

- $lacksymbol{0}$ для всех $\zeta \in L$ таких, что $\mathrm{lh}(\zeta) \geqslant \mathit{n}_{0}$,
- f a найдутся lpha, eta, γ , δ , η (\in {0}*), удовлетворяющие следующим условиям:
 - $\zeta = \alpha^{\hat{}}\beta^{\hat{}}\gamma^{\hat{}}\delta^{\hat{}}\eta$,
 - $\beta \hat{\delta} \neq \varepsilon$,
 - $lh(\beta^{\hat{}}\gamma^{\hat{}}\delta) \leqslant n_0$;
- ullet такие что $lpha\hat{eta}^I\hat{\gamma}\hat{\gamma}^\delta\hat{\delta}^I\eta\in L$ для всех $I\in\omega$.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

форма Хомского

Лемма о накачке

Операции на КС-языках

Доказательство (продолжение).

- $lacksymbol{0}$ для всех $\zeta \in L$ таких, что $\mathrm{lh}(\zeta) \geqslant n_0$,
- f a найдутся lpha, eta, γ , δ , η (\in {0}*), удовлетворяющие следующим условиям:
 - $\zeta = \alpha^{\hat{}}\beta^{\hat{}}\gamma^{\hat{}}\delta^{\hat{}}\eta$,
 - $\beta \hat{\delta} \neq \varepsilon$,
 - $lh(\beta^{\hat{}}\gamma^{\hat{}}\delta) \leqslant n_0$;
- **③** такие что $\alpha \hat{\beta}' \hat{\gamma} \hat{\delta}' \hat{\eta} \in L$ для всех $I \in \omega$.

Положим

$$L_0 = \{\zeta \in L \mid \mathrm{lh}(\zeta) < n_0\}, \ L_1 = \{\zeta \in L \mid \mathrm{lh}(\zeta) \geqslant n_0\};$$
тогда $L = L_0 \uplus L_1.$

Лекция А4 Грамматики (доп.)

Вадим

Леммао

Доказательство (продолжение).

- ① для всех $\zeta \in L$ таких, что $\mathrm{lh}(\zeta) \geqslant n_0$,
- **2** найдутся α , β , γ , δ , η (\in {0}*), удовлетворяющие следующим условиям:
 - $\zeta = \alpha^{\hat{}}\beta^{\hat{}}\gamma^{\hat{}}\delta^{\hat{}}\eta$
 - $\beta \hat{\delta} \neq \varepsilon$.
 - $lh(\beta^{\hat{}}\gamma^{\hat{}}\delta) \leq n_0$;
- **3** такие что $\alpha \hat{\beta}^{l} \hat{\gamma} \hat{\delta}^{l} \eta \in L$ для всех $l \in \omega$.

Положим

$$L_0=\{\zeta\in L\mid \mathrm{lh}(\zeta)< n_0\},\ L_1=\{\zeta\in L\mid \mathrm{lh}(\zeta)\geqslant n_0\};$$
 тогда $L=L_0\uplus L_1.$

Так как любой конечный язык является регулярным (см. следствие A1.2), L_0 является таковым. По теореме A2.4, достаточно показать, что L_1 представляется в виде объединения конечного числа языков, задаваемых арифметическими прогрессиями.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

динавтоматы

Нормальна форма Хомского

Лемма о накачке

Операции н

Доказательство (продолжение).

Пусть $\zeta \in L_1$; тогда найдутся слова lpha, eta, γ , δ , η (\in {0}*), удовлетворяющие следующим условиям:

- \bullet $\alpha\hat{\beta}^{l+1}\hat{\gamma}\hat{\delta}^{l+1}\eta = 0^{\mathrm{lh}(\zeta)+l\cdot\mathrm{lh}(\beta\hat{\delta})} \in L_1$ для всех $l \in \omega$.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальна: форма Хомского

Лемма о накачке

Операции на КС-языках

Доказательство (продолжение).

Пусть $\zeta \in L_1$; тогда найдутся слова α , β , γ , δ , η (\in {0}*), удовлетворяющие следующим условиям:

- $oldsymbol{\circ}$ $lpha\hat{eta}^{l+1}\hat{\gamma}\hat{\delta}^{l+1}\hat{\eta}=0^{\mathrm{lh}(\zeta)+l\cdot\mathrm{lh}(eta^{\hat{\circ}}\delta)}\in L_1$ для всех $l\in\omega$.

Положим $d=\mathrm{lh}(eta^{\hat{}}\gamma)$ и $L_{\zeta,d}=\{0^{\mathrm{lh}(\zeta)+d\cdot I}\mid I\in\omega\}$. Заметим, что $L_{\zeta,d}\subseteq L_1$ и для каждого $\zeta\in L_1$ существует d>0 такое, что язык $L_{\zeta,d}$ определён и не пуст.

Если же $L_{\zeta,d}$ не определён к этому моменту, положим $L_{\zeta,d}=\varnothing$ (здесь $\zeta\in L_1$ и $0< d\leqslant n_0$). Тем самым, $L_{\zeta,d}\subseteq L_1$ для всех $\zeta\in L_1$ и $0< d\leqslant n_0$.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

дмп-

автоматы

форма Хомского

Лемма о накачке

Операции на КС-языках Доказательство (продолжение).

Докажем, что
$$L_1 = igcup_{\zeta \in L_1, \ 0 < d \leqslant n_0} L_{\zeta, d}.$$

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

Леммао

накачке

Доказательство (продолжение).

Докажем, что
$$L_1 = \bigcup_{\zeta \in L_1, \ 0 < d \leqslant n_0} L_{\zeta,d}.$$

(\subset) Пусть $\phi \in L_1$; тогда из вышесказанного следует существование $d_0>0$ $(d_0\leqslant n_0)$ такого, что $0^{\mathrm{lh}(\phi)+d_0\cdot l}\in L_1$ для всех $I \in \omega$; в частности, $\phi = 0^{\ln(\phi) + d_0 \cdot 0} \in L_1$; таким образом. $\phi \in L_{\phi,d_0} \subseteq \bigcup_{\zeta \in L_1, \ 0 < d \leqslant n_0} L_{\zeta,d}.$

$$\phi \in L_{\phi,d_0} \subseteq \bigcup_{\zeta \in L_1, \, 0 < d \leqslant n_0} L_{\zeta,d}.$$

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

Леммао накачке

Доказательство (продолжение).

Докажем, что
$$L_1 = \bigcup_{\zeta \in L_1, \, 0 < d \leqslant n_0} L_{\zeta,d}.$$

- (\subset) Пусть $\phi \in L_1$; тогда из вышесказанного следует существование $d_0>0$ $(d_0\leqslant n_0)$ такого, что $0^{\ln(\phi)+d_0\cdot l}\in L_1$ для всех $I \in \omega$; в частности, $\phi = 0^{\ln(\phi) + d_0 \cdot 0} \in L_1$; таким образом. $\phi \in L_{\phi,d_0} \subseteq \bigcup_{\zeta \in L_1, \ 0 < d \leqslant n_0} L_{\zeta,d}.$
- (\supseteq) Так как $L_{\zeta,d} \subseteq L_1$ для всех $\zeta \in L_1$ и $0 < d \leqslant n_0$, имеем $L_{\zeta,d}\subseteq L_1$ $\zeta \in L_1, 0 < d \leq n_0$

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы ..

Нормальная форма Усмагова

Лемма о

Опородини

Доказательство (продолжение).

Докажем, что
$$L_1 = igcup_{\zeta \in L_1, \, 0 < d \leqslant n_0} L_{\zeta, d}$$
 .

- (\subseteq) Пусть $\phi \in L_1$; тогда из вышесказанного следует существование $d_0 > 0$ ($d_0 \leqslant n_0$) такого, что $0^{\ln(\phi) + d_0 \cdot l} \in L_1$ для всех $l \in \omega$; в частности, $\phi = 0^{\ln(\phi) + d_0 \cdot 0} \in L_1$; таким образом, $\phi \in L_{\phi,d_0} \subseteq \bigcup_{\zeta \in L_1, \ 0 < d \leqslant n_0} L_{\zeta,d}$.
- (\supseteq) Так как $L_{\zeta,d} \subseteq L_1$ для всех $\zeta \in L_1$ и $0 < d \leqslant n_0$, имеем $\bigcup_{\zeta \in L_1, \ 0 < d \leqslant n_0} L_{\zeta,d} \subseteq L_1$.

Положим теперь $S_j^d = \{\zeta \in L_1 \mid \mathrm{lh}(\zeta) \equiv j \pmod{d}, \ L_{\zeta,d} \neq \varnothing \}$, где $0 < d \leqslant n_0$ и $0 \leqslant j < d$. Нетрудно видеть, что выполняется соотношение

$$L_1 = \bigcup_{d=1}^{n_0} \bigcup_{j=0}^{d-1} S_j^d.$$

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

автоматы Нопмальна

Нормальна: форма Хомского

Лемма о накачке

Операции на КС-языках

Доказательство (продолжение).

Выберем в каждом непустом множестве S_j^d слово μ_j^d наименьшей длины. Так как $\mu_j^d \in S_j^d$, выполняются следующие соотношения: $\mu_j^d \in L_1$, $\mathrm{lh}(\mu_j^d) \equiv j \pmod{d}$ и $L_{\mu_j^d,d} \neq \varnothing$. Докажем теперь, что $L_{\mu_j^d,d} = S_j^d$.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

Лемма о накачке

Доказательство (продолжение).

Выберем в каждом непустом множестве S_i^d слово μ_i^d наименьшей длины. Так как $\mu_i^d \in S_i^d$, выполняются следующие соотношения: $\mu_i^d \in \mathcal{L}_1$, $\mathrm{lh}(\mu_i^d) \equiv j \pmod{d}$ и $\mathcal{L}_{\mu_i^d,d}
eq \varnothing$. Докажем теперь, что $L_{\mu_i^d,d} = S_i^d$

 (\subseteq) Пусть $\phi \in L_{\mu_j^d,d}$; тогда $\phi \in L_1$ и $\phi = 0^{\ln(\mu_j^d) + d \cdot l_0}$ для подходящего $l_0 \in \omega$; следовательно, $\mathrm{lh}(\phi) \equiv j \pmod{d}$. Остаётся проверить только, что $L_{\phi,d}
eq \varnothing$. В самом деле, если $\psi=0^{\mathrm{lh}(\phi)+d\cdot k}$, где $k\in\omega$, то $\psi=0^{\mathrm{lh}(\mu_j^d)+(b+k)\cdot d}\in L_{\mu_j^d,d}\subseteq L_1$. Таким образом, $\phi \in S_i^d$.

Лекция А4 Грамматики (доп.)

Вадим

Лемма о

Доказательство (продолжение).

Выберем в каждом непустом множестве S_i^d слово μ_i^d наименьшей длины. Так как $\mu_i^d \in S_i^d$, выполняются следующие соотношения: $\mu_i^d \in \mathcal{L}_1$, $\mathrm{lh}(\mu_i^d) \equiv j \pmod{d}$ и $\mathcal{L}_{\mu_i^d,d}
eq \varnothing$. Докажем теперь, что $L_{\mu_i^d,d} = S_i^d$

 $ig(\subseteqig)$ Пусть $\phi\in L_{\mu_i^d,d}$; тогда $\phi\in L_1$ и $\phi=0^{\mathrm{lh}(\mu_j^d)+d\cdot l_0}$ для подходящего $l_0 \in \omega$; следовательно, $\ln(\phi) \equiv j \pmod{d}$. Остаётся проверить только, что $L_{\phi,d}
eq \varnothing$. В самом деле, если $\psi=0^{\mathrm{lh}(\phi)+d\cdot k}$, где $k\in\omega$, то $\psi=0^{\mathrm{lh}(\mu_j^d)+(\mathit{l_0}+k)\cdot d}\in\mathit{L}_{u^d,d}\subseteq\mathit{L}_1.$

Таким образом, $\phi \in S_i^d$.

 (\supseteq) Пусть теперь $\phi \in S_i^d$; тогда $\mathrm{lh}(\phi) \equiv j \pmod{d}$ и, следовательно, $\phi = 0^{\ln(\mu_j^d) + l \cdot d}$ для подходящего $l \in \omega$, поскольку μ_i^d имеет наименьшую длину в S_i^d . Таким образом, $\phi \in L_{\mu_i^d,d}$.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

цм п-

Нормальная форма

Лемма о

накачке

Операции на КС-языках Доказательство (окончание).

В конечном итоге,
$$L_1 = \bigcup \{L_{\mu_i^d,d} \mid S_j^d
eq \varnothing \}.$$

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМ Павтоматы

форма Хомского

Хомского Лемма о

накачке Операции на КС-языках Пусть Σ_1 , Σ_2 — алфавиты и пусть каждому $a \in \Sigma_1$ сопоставляется КС-язык $s(a) \subseteq \Sigma_2^*$. Если $\alpha = a_1 a_2 \dots a_k \in \Sigma_1^*$, то полагаем конкатенацию языков $s(\alpha) = s(a_1)s(a_2)\dots s(a_k)$ (в случае, когда $\alpha = \varepsilon$, имеем $s(\alpha) = \varepsilon$). Выбор языков выше определяют функцию s (называемую **подстановкой** на (Σ_1, Σ_2)).

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

форма Хомского

Лемма о накачке

Операции на КС-языках Пусть Σ_1 , Σ_2 — алфавиты и пусть каждому $a \in \Sigma_1$ сопоставляется КС-язык $s(a) \subseteq \Sigma_2^*$. Если $\alpha = a_1 a_2 \ldots a_k \in \Sigma_1^*$, то полагаем конкатенацию языков $s(\alpha) = s(a_1)s(a_2) \ldots s(a_k)$ (в случае, когда $\alpha = \varepsilon$, имеем $s(\alpha) = \varepsilon$). Выбор языков выше определяют функцию s (называемую подстановкой на (Σ_1, Σ_2)).

Теорема А4.15.

Если L — KC-язык в алфавите Σ_1 и s — подстановка на (Σ_1, Σ_2) , то s(L) также KC-язык.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

нормальная форма Хомского

Лемма накачке

Операции на КС-языках Пусть Σ_1 , Σ_2 — алфавиты и пусть каждому $a\in\Sigma_1$ сопоставляется КС-язык $s(a)\subseteq\Sigma_2^*$. Если $\alpha=a_1a_2\dots a_k\in\Sigma_1^*$, то полагаем конкатенацию языков $s(\alpha)=s(a_1)s(a_2)\dots s(a_k)$ (в случае, когда $\alpha=\varepsilon$, имеем $s(\alpha)=\varepsilon$). Выбор языков выше определяют функцию s (называемую подстановкой на (Σ_1,Σ_2)).

Теорема А4.15.

Если L — KC-язык в алфавите Σ_1 и s — подстановка на (Σ_1, Σ_2) , то s(L) также KC-язык.

Доказательство.

Пусть $\mathfrak{G}=(V,\Sigma_1,P,S)$ и $\mathfrak{G}_a=(V_a,\Sigma_2,P_a,S_a)$ $(a\in\Sigma_1)$ таковы, что $L(\mathfrak{G})=L$ и $L(\mathfrak{G}_a)=s(a)$ для любого $a\in\Sigma_1$. Без ограничения общности, будем предполагать, что множества переменных (нетерминальных символов) попарно не пересекаются. Определим грамматику $\mathfrak{G}'=(V',\Sigma_2,P',S)$ следующим образом.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтомать

автоматы Нормалы

Хомского Лемма о

Лемма о накачке

Операции на КС-языках

Доказательство (продолжение).

- $\bullet \ V' = V \cup \bigcup_{a \in \Sigma_1} V_a;$
- ullet P' содержит продукции P_a для любого $a\in \Sigma_1$;
- P' содержит результаты подстановок продукций из P, в которых $a \in \Sigma_1$ заменяется на S_a для любого терминального символа;
- ullet Р' не содержит других продукций, кроме описанных выше.

Докажем, что $\alpha \in L(\mathfrak{G}') \Leftrightarrow \alpha \in s(L)$ для всех $\alpha \in \Sigma_2^*$. (\Leftarrow) Пусть $\alpha \in s(L)$; тогда существует цепочка $a_1 a_2 \dots a_k \in L$ и $\alpha_i \in s(a_i)$, $1 \leqslant i \leqslant k$, таковы, что $\alpha = \alpha_1 \hat{\alpha}_2 \hat{\ldots} \hat{\alpha}_k$. Согласно конструкции, $S \Rightarrow_{\mathfrak{G}'}^* S_{a_1} S_{a_2} \dots S_{a_k}$ и, кроме того, $S_{a_i} \Rightarrow_{\mathfrak{G}'}^* \alpha_i$. Таким образом, $S \Rightarrow_{\mathfrak{G}'}^* \alpha_1 \hat{\alpha}_2 \hat{\ldots} \hat{\alpha}_k = \alpha$.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальна форма

Хомского

Лемма о накачке

Операции на КС-языках

Доказательство (окончание).

 (\Rightarrow) Пусть $\alpha\in L(\mathfrak{G}')$. Пусть T — дерево разбора для α в \mathfrak{G}' . Так как множества нетерминалов грамматик попарно не пересекаются, данное дерево может быть получено только как результат подстановки в дереве разбора для \mathfrak{G} с кроной $a_1a_2\ldots a_k(\in L)$ вместо листьев a_i деревьев с корнем S_{a_i} . Пусть их крона равняется α_i . Таким образом,

$$\alpha = \alpha_1 \hat{\alpha}_2 \dots \hat{\alpha}_k \in s(a_1)s(a_2) \dots s(a_k) \subseteq s(L).$$

Операции

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

форма Хомского

Лемма о накачке

Операции на КС-языках

Теорема А4.16.

Контекстно-свободные языки замкнуты относительно следующих операций:

- объединения;
- конкатенации;
- ullet звёздочки Клини и операции $\cdot \mapsto \cdot^+$;
- гомоморфных образов.

Операции

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

нормальная форма Хомского

Леммао

Операции на КС-языках

Теорема А4.16.

Контекстно-свободные языки замкнуты относительно следующих операций:

- 💶 объединения;
- конкатенации;
- lacktriangle звёздочки Клини и операции $\cdot \mapsto \cdot^+$;
- гомоморфных образов.

Доказательство.

Воспользуемся теоремой А4.15.

- **1.** Пусть L_1 и L_2 КС-языки. Тогда $L_1 \cup L_2 = s(L)$, где $L = \{1; 2\}$ и $s(1) = L_1$, $s(2) = L_2$.
- **2.** Пусть L_1 и L_2 КС-языки. Тогда $L_1L_2=s(L)$, где $L=\{12\}$ и $s(1)=L_1$, $s(2)=L_2$.

Операции

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальна: форма Хомского

Хомского Леммао

накачке

Операции на КС-языках

′Доказательство (окончание).

- **3.** Пусть L_1 КС-язык. Тогда $L_1^* = s(L)$, где $L = \{1\}^*$ и $s(1) = L_1 \cdot L_1^+ = s(L)$ где $L = \{1\}^*$ и $s(1) = L_2$
- $s(1) = L_1$; $L_1^+ = s(L)$, где $L = \{1\}^+$ и $s(1) = L_1$.
- **4.** Пусть L КС-язык над алфавитом Σ и пусть h гомоморфизм на Σ . Пусть также s подстановка, осуществляющая замену символа $a \in \Sigma$ на $\{h(a)\}$; тогда h(L) = s(L).

Обращение

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

, м п-

автоматы

форма Хомского

Хомского Лемма о

Операции на КС-языках

Теорема А4.17.

Если L — KC-язык, то и L^R также KC-язык.

Обращение

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

Операции на КС-языках

Теорема А4.17.

Если L — KC-язык, то и L^R также KC-язык.

Доказательство.

Пусть $\mathfrak{G} = (V, \Sigma, P, S)$ — грамматика такова, что $L = L(\mathfrak{G})$. Тогда $L^R = L(\mathfrak{G}^R)$, где грамматика $\mathfrak{G}^R = (V, \Sigma, P', S)$ определена следующим образом: $P' = \{(A, \alpha) | P(A, \alpha^R) \}$. Достаточно только доказать, что $\alpha \in L(\mathfrak{G}) \Longrightarrow \alpha^R \in L(\mathfrak{G}^R)$ для всех $\alpha \in \Sigma^*$ (упражнение!!!).

Пересечение

Лекция А4 Грамматики (доп.)

Операции на КС-языках

Замечание А4.3.

КС-языки не замкнуты относительно операции пересечения.

Пересечение

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальна форма

Хомского Леммао

накачке

Операции на КС-языках

Замечание А4.3.

КС-языки не замкнуты относительно операции пересечения.

Пример А4.6.

 $L=\{0^n1^n2^n|n\in\omega\}$ не является контекстно-свободным, однако $L=L_1\cap L_2$, где

$$L_1 = \{0^n 1^n 2^i | n, i \in \omega\} \text{ in } L_2 = \{0^i 1^n 2^n | n, i \in \omega\}.$$

При этом L_1 и L_2 контекстно-свободны.

Пересечение с регулярным языком

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

дмп-

Нормальн

форма Хомского

Лемма о

Операции на КС-языках Теорема А4.18.

Пусть $L-\mathsf{KC}$ -язык, а $R-\mathsf{pery}$ лярный язык; тогда $L\cap R$ также KC -язык.

Пересечение с регулярным языком

Лекция A4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальн

Хомског Лемма с

Лемма с накачке

Операции на КС-языках

Теорема А4.18.

Пусть $L - \mathsf{KC}$ -язык, а $R - \mathsf{per}$ улярный язык; тогда $L \cap R$ также KC -язык.

Доказательство.

Пусть $\mathcal{P} = (Q_P, \Sigma, \Gamma; \delta_P, q_P, Z_0, F_P)$ и $\mathcal{M} = (Q_M, \Sigma, \delta_M, q_M, F_M)$ — МП-автомат и ДКА соответственно таковы, что $L = L(\mathcal{P})$ и $R = L(\mathcal{M})$. Воспользуемся конструкцией произведения автоматов. А именно, определим МП-автомат $\mathcal{P}' = (Q_P \times Q_M, \Sigma, \Gamma; \delta_P \times \delta_M, \langle q_P, q_M \rangle, Z_0, F_P \times F_M)$, где $\delta_P \times \delta_M = \{((\langle q_1, q_2 \rangle, a, X), (\langle q'_1, q'_2 \rangle, a)) | \delta_P((q_1, a, X), (q'_1, a)), \delta_M((q_2, a), q'_2)\}$. Индукцией по числу переходов в МП-автоматах доказывается, что $(q_P, \beta, Z_0) \vdash_{\mathcal{P}}^* (q, \varepsilon, \gamma) \Longleftrightarrow (\langle q_P, q_M \rangle, \beta, Z_0) \vdash_{\mathcal{P}'}^* (\langle q, \delta_M^*(q_M, \beta) \rangle, \varepsilon, \gamma)$ для всех $\beta \in \Sigma^*$ (упражнение !!!) Далее, $\beta \in L(\mathcal{P}')$, если и только если $\delta_M^*(q_M, \beta) \in F_M$ и $(q_P, \beta, Z_0) \vdash_{\mathcal{P}}^* (q, \varepsilon, \gamma)$ для некоторого $q \in F_P$ $(\Leftrightarrow \beta \in L(\mathcal{P}) \cap L(\mathcal{M}))$.

Дополнение

Лекция А4 Грамматики (доп.)

Вадим

Операции на КС-языках

Теорема А4.19.

Пусть L_1 , L_2 и L- KC-языки, а R- регулярный язык. Тогда справедливы следующие условия:

- \bigcirc $L \setminus R$ KC-язык;
- \bigcirc \overline{L} может не быть КС-языком:
- **3** $L_1 \setminus L_2$ может и не быть КС-языком.

Дополнение

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальн форма

Лемма накачке

Операции на КС-языках

Теорема А4.19.

Пусть L_1 , L_2 и L — КС-языки, а R — регулярный язык. Тогда справедливы следующие условия:

- lacksquare $L \setminus R$ КС-язык;
- \bigcirc $L_1 \setminus L_2$ может и не быть КС-языком.

Доказательство.

- 1) $L \setminus R = L \cap \overline{R}$ и \overline{R} регулярный язык.
- 2) Если бы КС-языки были бы замкнуты относительно дополнения, то они были бы замкнуты относительно пересечения: $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$.
 - 3) $\overline{L} = \Sigma^* \setminus L$, при этом Σ^* и L КС-языки.

Дополнение

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальна форма

Лемма

накачке

Операции на КС-языках

Теорема А4.19.

Пусть L_1 , L_2 и L — KC-языки, а R — регулярный язык. Тогда справедливы следующие условия:

- \bigcirc $L \setminus R$ КС-язык;
- ullet $L_1 \setminus L_2$ может и не быть КС-языком.

Доказательство.

- 1) $L \setminus R = L \cap \overline{R}$ и \overline{R} регулярный язык.
- 2) Если бы КС-языки были бы замкнуты относительно дополнения, то они были бы замкнуты относительно пересечения: $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$.
- 3) $\overline{L} = \Sigma^* \setminus L$, при этом Σ^* и L КС-языки.

Упражнение А4.7

Укажите явно пример КС-языка L, для которого \overline{L} не является КС-языком.

Лекция А4 Грамматики (доп.)

Вадим Пузаренко

ДМПавтоматы

Нормальна

форма Хомского

Лемма о

Операции на КС-языках

Спасибо за внимание.