Meso- to Submesoscale Turbulence in the Ocean

Ilmar Leimann¹, Alexa Grisel², Maren Walter¹, Julia Dräger-Dietel² and Moritz Epke² ¹MARUM/ IUP, University of Bremen, ²IfM, University of Hamburg

Objectives

- compare ICON-o Telescope model with observations on meso- to submesoscales, in terms of
 - kinetic energy in spectral space
 - velocity structure functions
- identify inertial ranges in the meso- submesoscale regime
- find direction of energy cascade and processes responsible

Expectations

assume isotropic, statistically homogeneous flow

Velocity structure functions $\langle \Delta u^2(s) \rangle \approx s^2/2 \int_0^{2/s} k^2 E(k) dk + 2 \int_{2/s}^{\infty} E(k) dk$ **Direction of Energy Cascade**

Schematics of kinetic energy spectral flux in the ocean at mid-latitude[1] **Forward**

Wavenumber (k)

ICON-o Submesoscale Telescope model

 refined grid up to 540m resolution over a large region in the North Atlantic

 more realistic variability on small and large scales

Different regions in North Atlantic

- six boxes in size of 10° x 10°
- aim to capture different turbulent regimes

Data

- ICON-o Submesoscale Telescope model, 9 Mar 2010 to 22 Mar 2010
- Satellite: Global Ocean Gridded L 4 Sea Surface Heights And Derived Variables Reprocessed Copernicus Climate Service, 0.25° × 0.25°, 1 Jan 1993 to 31 Dec 2020

Results

Spectral analysis

Velocity structure functions

- model higher KE density & higher wavenumber of K_c
- higher KE density values in regions where high EKE occur
- energy gets saturated near K_c

Kc – energy-containing scale, which represents the scale of the most energetic eddy structure.

$$K_c = \frac{\int K\varepsilon \, dK}{\int \varepsilon \, dk}$$

- both exhibit inverse & forward energy cascade
- model provides insight into submesoscale flux
- higher amplitude of inverse cascade occurs in regions with high EKE

• • • K_C4

maximum inverse cascade coincides with K

Preliminary results:

spectral and velocity structure functions are consistent with QC turbulence theory

Outlook

References

- Consistency of spectral fluxes and structure functions
- Global Drifter Program data as high resolutions observational reference
- Tracking of Lagrangian Particles within the Model

