Hide

Вероятности и Статистика

Домашно 1

Владимир Ананиев, 81459

Зад. 1 Определете променливите съдържащи се в данните "survey" от пакета "MASS". Вземете 50 случайно избрани наблюдения.

```
library('MASS')
indexes = sample(nrow(survey), 50)
students = survey[indexes,]
attach(students)
```

students

	Sex <fctr></fctr>	Wr.Hnd <dbl></dbl>	NW.Hnd <dbl></dbl>	W.Hnd <fctr></fctr>	Fold <fctr></fctr>	Pulse <int></int>	Clap <fctr></fctr>		Exer		Smoke <fctr></fctr>	•
143	Female	19.0	18.8	Right	R on L	65	Right		Freq		Never	
81	Male	19.5	19.5	Left	R on L	66	Left		Som	е	Never	
129	Female	17.5	17.0	Right	R on L	74	Right		Freq		Never	
67	Female	19.0	19.1	Right	L on R	NA	Neither		Freq		Never	
37	Female	16.0	16.5	Right	L on R	NA	Right		Som	е	Never	
29	Male	17.8	17.8	Right	L on R	76	Neither		Freq		Never	
98	Female	17.5	17.5	Right	R on L	60	Right		Freq		Never	
122	Male	22.5	22.5	Right	L on R	76	Right		Freq		Occas	
3	Male	18.0	13.3	Right	L on R	87	Neither		None	;	Occas	
222	Female	15.9	16.5	Right	R on L	70	Right		Freq		Never	
1-10 o	f 50 rows 1-10 d	of 12 columns					Previous	1	2	3	4 5	Next

Въз основа на тези наблюдения:

а) Отпечатайте пълните данни за най-младата жена.

```
women = students[Sex == 'Female',]
women_by_age = women[order(Age),]
women_by_age[1,]
```

	Sex <fctr></fctr>	Wr.Hnd <dbl></dbl>	NW.Hnd <dbl></dbl>	W.Hnd <fctr></fctr>	Fold <fctr></fctr>	Pulse <int></int>	Clap <fctr></fctr>	Exer <fctr></fctr>	Smoke <fctr></fctr>	+
129	Female	17.5	17	Right	R on L	74	Right	Freq	Never	
1 row	1-10 of 12 columns									

б) Определете пола на 3-те най-високи студента.

```
students_by_height = students[order(-Height),]
students_by_height[1:3, 'Sex']
```

```
[1] Male Male Male
Levels: Female Male
```

в) Определете средната възраст на мъжете с пулс над 80.

```
men_over_80_pulse = students[Sex == 'Male' & Pulse > 80,]
mean(Age, na.rm = TRUE)
[1] 19.61502
```

r) Постройте боксплот на "Height" в зависимост от "Exer".

```
boxplot(Height~Exer, horizontal = TRUE)
```


Зад. 2 Нека X и Y са последните две цифри на факултетния ви номер, т.е ???XY. Генерирайте 50 случайни наблюдения в равномерно разпределение в интервала [0; X+1] и 5- случайни наблюдения експоненциално разпределени с параметър $\lambda = 1/(Y+1)$

```
X = 5
Y = 10
uniform = runif(50, 0, X)
exponential = rexp(50, rate=1/Y)
```

а) Постройте боксплот на двете извадки на една графика, направете извод.

```
boxplot(uniform, exponential, horizontal = TRUE, names = c('Uniform', 'Exponential'), col = c("darkgreen", "
gold"))
```

Hide

Hide

б) Постройте хистограма за експоненциалните данни. На същата графика начертайте плътността построена по данните и теоритичната плътност.

Зад. 3 Нека X_1 , X_2 , X_3 са случайно избрани различни цели числа в интервала [1, T]. Напишете функция f(k, T, n), която по направени n на брой санлюдения над X_1 , X_2 , X_3 пресмята емпиричната вероятност да е изпълнено $X_1+2X_2+3X_3=k$, където k е цяло число. Генерирайте случайно T в интервала [1,10] и случайно k в интервала [10,30] и пресметнете търсената вероятност.

Hide

```
f <- function(k, T, n) {</pre>
   counter = 0
   for(i in 1:n) {
    X = sample(1:T, 3, replace = TRUE)
    sum = X[1] + 2*X[2] + 3*X[3]
    if (sum == k) {
      counter = counter+1
  }
   return (counter / n)
 }
 T = sample(1:10, 1)
 k = sample(10:30, 1)
 for(n in c(100,1000,10000,100000,1000000)) {
  prob = f(k, T, n)
   res = sprintf("f(%d, %d, %d) = %f", k, T, n, prob)
   print(res)
 [1] "f(18, 5, 100) = 0.070000"
 [1] "f(18, 5, 1000) = 0.064000"
 [1] "f(18, 5, 10000) = 0.068800"
 [1] "f(18, 5, 100000) = 0.071220"
 [1] "f(18, 5, 1000000) = 0.072021"
Зад. 4 Нека случайната величина X е гамма разпределена с параметри 2 и 0.5.
                                                                                                             Hide
X = rgamma(1000, 2, 0.5)
Определете: a) P(X>2)
                                                                                                              Hide
 1 - pgamma(2, 2, 0.5)
 [1] 0.7357589
б) с, така че P(X>c) = 0.35
                                                                                                              Hide
 qgamma(0.65, 2, 0.5)
 [1] 4.437689
в) Q1, M, Q3.
                                                                                                              Hide
 summary(X)
  Min. 1st Qu. Median Mean 3rd Qu. Max.
  0.2134 1.8033 3.1249 3.7456 5.0702 18.3539
```