TD 1: Révisions et espaces métriques

Définitions. Un espace métrique est la donnée d'un ensemble X et d'une application distance $d: X \times X \to \mathbb{R}_+$ telle que

- (séparation) pour tous $x, y \in X$, $d(x, y) = 0 \iff x = y$;
- (symétrie) pour tous $x, y \in X$, d(x, y) = d(y, x);
- (inégalité triangulaire) pour tous $x, y, z \in X$, $d(x, z) \le d(x, y) + d(y, z)$.

La boule ouverte de centre x et de rayon r > 0 est $B(x,r) = \{y \in X, d(x,y) < r\}$.

Une partie $O \subset X$ est ouverte si pour tout $x \in O$, il existe r > 0 tel que $B(x, r) \subset O$.

Une partie $F \subset X$ est fermée si elle est le complémentaire d'un ouvert.

Une suite $(x_n) \in X^{\mathbb{N}}$ converge vers $x \in X$, et on note $x_n \to x$, si $d(x_n, x) \to 0$ quand $n \to +\infty$. X est compact (au sens de Bolzano-Weierstrass) si de toute suite, on peut extraire une sous-suite convergente.

Exercice 1 : Intérieur et Adhérence

Soit (X, d) un espace métrique.

- 1. Montrer qu'une union quelconque d'ouverts de X est encore un ouvert. Que dire d'une intersection quelconque d'ouverts? D'une intersection finie d'ouverts?
- 2. Montrer qu'une intersection quelconque de fermés est un fermé. Que dire d'une union quelconque de fermée ? D'une union finie de fermés ?
- 3. Soit A une partie de X. Comment définir, avec ce qui précède, le plus grand ouvert inclus dans A? On l'appelle intérieur de A et on le note \mathring{A} . Comment définir le plus petit fermé qui contient A? On l'appelle adhérence de A et le note \overline{A} .
- 4. a) Montrer que l'adhérence de A est l'ensemble des limites possibles pour les suites à valeurs dans A:

$$\overline{A} = \{ x \in X \mid \exists (x_n) \in A^{\mathbb{N}}, \ x_n \longrightarrow x \}.$$

- b) Montrer que l'adhérence de A est le complémentaire de l'intérieur du complémentaire de A.

Exercice 2: A vos suites

- 1. Dans \mathbb{R} , pour la distance usuelle, quelle est l'adhérence de :
 - a) un singleton $\{x\}$?
 - b) ℚ?
 - c) l'ensemble des valeurs d'une suite convergente $\{x_n, n \in \mathbb{N}\}$, où $(x_n) \in \mathbb{R}^{\mathbb{N}}$.
- 2. Dans \mathbb{R}^n , où $n \geq 2$, quelle est l'adhérence de :
 - a) $\mathbb{R} \times \{0\}^{n-1}$?
 - b) si n=2, la partie de \mathbb{R}^2 donnée par $\{(x,\sin(\frac{1}{x})), \mid x>0\}$?

- 3. Dans l'ensemble des fonctions bornées continues de \mathbb{R} dans \mathbb{R} muni de la norme infinie $\|\cdot\|_{\infty}$, quelle est l'adhérence des fonctions \mathcal{C}^{∞} à support compact?
- 4. Dans l'ensemble des fonctions continues de [0,1] dans \mathbb{R} muni de la norme infinie, quelle est l'adhérence de l'ensemble des fonctions continues, affines sur les segments $[2^{-n-1}, 2^{-n}]$ pour tout $n \in \mathbb{N}$?

Exercice 3: Un produit dénombrable d'espaces métriques

Soit $((X_i, d_i))_{i \in \mathbb{N}}$ une famille d'espaces métriques. On considère l'espace produit $X = \prod_{i \in I} X_i$ dont les éléments sont les suites $(x_i)_{i \in I}$ telles que pour tout $i \in I, x_i \in X_i$.

- 1. Préliminaires : Convergence dominée pour les séries. Soient $(u_{n,k})_{(n,k)\in\mathbb{N}^2}$ une famille de suites réelles, $(l_k)_{k\in\mathbb{N}}$ et $(d_k)_{k\in\mathbb{N}}$ deux suites réelles. On suppose que :
 - $\forall k \in \mathbb{N}, u_{n,k} \to l_k \text{ quand } n \to \infty;$
 - $\forall k, n \in \mathbb{N}^2, |u_{n,k}| \leq |d_k|;$
 - $\sum_{k\in\mathbb{N}} |d_k| < +\infty$.

Montrer que la suite $s_n := \sum_{k \in \mathbb{N}} u_{n,k}$ est bien définie et converge vers une limite que l'on déterminera.

2. On définit sur $X \times X$ l'application

$$d: (x,y) \in X \times X \mapsto \sum_{i \in \mathbb{N}} \frac{1}{2^i} \min(1, d_i(x_i, y_i))$$

Montrer que d définit une distance sur X.

3. Soit $(x_n) \in X^{\mathbb{N}}$ et $x \in X$. Montrer l'équivalence (\star) :

$$x_n \to x \iff \forall i \in \mathbb{N}, (x_n)_i \to_{n \to \infty} x_i$$

4. Montrer que si pour tout $i \in \mathbb{N}$, X_i est compact, alors il en va de même pour (X, d).

Exercice 4 : Distance de Hausdorff sur l'ensemble des compacts

On note \mathcal{K} l'ensemble des compacts non vides de \mathbb{R}^d pour $d \geq 1$. Pour $A \in \mathcal{K}$, on pose

$$d_A: x \in \mathbb{R}^d \mapsto \inf_{a \in A} |x - a|$$

Enfin, pour A et $B \in \mathcal{K}$, on définit $\delta(A, B) = ||d_A - d_B||_{\infty}$.

- 1. Montrer que pour tous $A, B \in \mathcal{K}$, $\delta(A, B)$ est bien défini et que δ est une distance. (On l'appelle la distance de Hausdorff).
- 2. Pour $\varepsilon > 0$ et $A \in \mathcal{K}$, on pose

$$V_{\varepsilon}(A) := \{ x \in \mathbb{R}^d; d_A(x) \le \varepsilon \}$$

Soient A et $B \in \mathcal{K}$ et $\varepsilon > 0$. Montrer que $\delta(A, B) \leq \varepsilon \iff A \subset V_{\varepsilon}(B)$ et $B \subset V_{\varepsilon}(A)$.

3. On note \mathcal{K}_0 l'ensemble des parties finies non vides de \mathbb{R}^d . Montrer que \mathcal{K}_0 est dense dans \mathcal{K} . Indication : on pourra montrer que si $K \subset \mathbb{R}^d$ est compact, alors pour tout $\varepsilon > 0$, il existe $N \in \mathbb{N}$ et $x_1, \ldots, x_n \in K$ tels que $K \subset \bigcup_{i=1}^N B(x_i, \varepsilon)$.

Exercice 5 : Distance ultramétrique

Soit (X, d) un espace métrique. On dit que d est ultramétrique si elle vérifie de plus la propriété (plus forte que l'inégalité triangulaire) :

$$\forall x,y,z \in X, d(x,z) \leq \max(d(x,y),d(y,z))$$

- 1. Montrer que pour tous $x, y, z \in X$, $d(x, y) \neq d(y, z) \implies d(x, z) = \max(d(x, y), d(y, z))$.
- 2. Montrer que tout point d'une boule ouverte en est un centre.
- 3. Étant donnée deux boules ouvertes, montrer que ou bien l'une est incluse dans l'autre, ou bien elles sont disjointes.
- 4. (Exemple: La distance p-adique). Soit p un nombre premier. Tout nombre rationnel non nul x peut s'écrire de manière unique sous la forme $x = p^n \frac{a}{b}$ avec $n \in \mathbb{Z}$, $a \in \mathbb{Z}^*, b \in \mathbb{N}^*$ premiers avec p et premiers entre eux et on pose $v_p(x) = n$. On définit sur $\mathbb{Q} \times \mathbb{Q}$,

$$d_p(x,y) = \begin{cases} 0 \text{ si } x = y\\ p^{-v_p(x-y)} \text{ sinon} \end{cases}$$

- a) Montrer que d_p définit une distance ultramétrique.
- b) Montrer que $p^n \to 0$ quand $n \to \infty$.

Exercice 6 : Limites supérieure et inférieure

Soit (u_n) une suite réelle. On définit les quantités suivantes, à valeurs dans $\mathbb{R} \cup \{-\infty, +\infty\}$:

$$\liminf_{n} u_n := \sup_{n \in \mathbb{N}} \inf_{k \ge n} u_k \quad , \quad \limsup_{n} u_n := \inf_{n \in \mathbb{N}} \sup_{k \ge n} u_k$$

1. Vérifier que les suites $(\inf_{k\geq n} u_k)_{n\in\mathbb{N}}$ et $(\sup_{k\geq n} u_k)_{n\in\mathbb{N}}$ sont respectivement croissantes et décroissantes. En déduire que :

$$\liminf_n u_n \coloneqq \lim_{n \to +\infty} \inf_{k \ge n} u_k \quad ; \quad \limsup_n u_n \coloneqq \lim_{n \to +\infty} \sup_{k \ge n} u_k$$

- 2. a) On suppose que (u_n) est majorée. Montrer que $l = \limsup_n u_n$ est une valeur d'adhérence de (u_n) i.e. il existe une extraction $\phi : \mathbb{N} \to \mathbb{N}$ telle que $u_{\phi(n)} \to l$.
 - b) Que dire si (u_n) est minorée? Quel théorème est ainsi démontré?
 - c) Que dire si (u_n) est non majorée? non minorée?
- 3. Soit l une valeur d'adhérence de (u_n) . Montrer que $\liminf_n u_n \leq l \leq \limsup_n l$.
- 4. Montrer que (u_n) converge si et seulement si $\limsup_n u_n = \liminf_n u_n$ et que dans ce cas, $\lim_{n\to\infty} u_n = \limsup_n u_n = \liminf_n u_n$. On pourra se contenter du cas (u_n) bornée.

Corentin Gentil 3 ENS Paris, DMA

5. a) Soit $(u_n), (v_n)$ deux suites réelles telles pour tout $n \in \mathbb{N}, u_n \leq v_n$. Vérifier que

$$\liminf_{n} u_n \le \liminf_{n} v_n \quad ; \quad \limsup_{n} u_n \le \limsup_{n} v_n$$

- b) Réinterpréter le "théorème des gendarmes" à partir de ces constatations.
- 6. Applications.
 - a) Théorème de Cauchy-Hadamard. Soit (a_n) une suite complexe. Montrer que le rayon de convergence $R \in [0, +\infty]$ de la sérié $\sum a_n z^n$ est donné par la formule :

$$\frac{1}{R} = \limsup_{n} |a_n|^{\frac{1}{n}}$$

- b) Lemme de Fekete. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle sous-additive i.e. telle que pour tous $n, m \in \mathbb{N}, u_{n+m} \le u_n + u_m$.
 - i Soit $k \in \mathbb{N}^*$ fixé. Montrer qu'il existe $c_k \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$,

$$\frac{u_n}{n} \le \frac{u_k}{k} + \frac{c_k}{n}$$

- ii En déduire que $\frac{u_n}{n} \to \inf_k \frac{u_k}{k} \in \mathbb{R} \cup \{-\infty\}$. c) Soit (E, d) un espace métrique. On considère deux suites de fonctions de E dans \mathbb{R} , $(f_n), (g_n)$ et $f: E \to \mathbb{R}$ telles que :
 - (a) Pour tout $n \in \mathbb{N}$, f_n et g_n sont continues;
 - (b) Pour tout $n \in \mathbb{N}$ et $x \in E$, $f_n(x) \le f(x) \le g_n(x)$;
 - (c) Pour tout $x \in E$, $f_n(x) \to f(x)$, $g_n(x) \to f(x)$.

Montrer que f est continue.

Exercice 7 : Ensemble triadique de Cantor

Soit \mathcal{T}_k , $k \in \{0, 1, 2\}$ l'application qui à un intervalle $I = [a, b] \subset [0, 1]$ lui associe l'intervalle de [0, 1], $J = [a + \frac{k(b-a)}{3}, a + \frac{(k+1)(b-a)}{3}]$. On définit par récurrence une suite de familles finies d'intervalles compacts de [0, 1] par $I_0 = \{[0, 1]\}$ et

$$I_{n+1} = \bigcup_{I \in I_n} \{ \mathcal{T}_0(I), \mathcal{T}_2(I) \}$$

On pose alors $K_n = \bigcup_{I \in I_n} I$ et $K = \bigcap_{n \in \mathbb{N}} K_n$.

- 1. Montrer que K est compact.
- 2. Montrer que l'application

$$f: x \in \{0,1\}^{\mathbb{N}^*} \mapsto \sum_{n \in \mathbb{N}^*} \frac{2x_n}{3^n} \in [0,1]$$

a pour image K et réalise un homéomorphisme, où l'on munit $\{0,1\}^{\mathbb{N}^*}$ de la distance de l'exercice 2.

3. Montrer que K est d'intérieur vide.

Exercice 8 : Théorème de plongement de Arens-Eells

Soit X un espace métrique, $x_0 \in X$, \mathcal{F} l'ensemble des parties finies non vides de X et $\mathcal{B}(\mathcal{F})$ l'espace vectoriel des fonctions bornées de \mathcal{F} dans \mathbb{R} muni de la norme uniforme. Pour tout $x \in X$, on note

$$f_x: A \in \mathcal{F} \mapsto d(x,A) - d(x_0,A) \in \mathbb{R}$$

Montrer que $x \mapsto f_x$ est une isométrie de X sur son image dans $\mathcal{B}(\mathcal{F})$. En déduire que tout espace métrique est isométrique à un fermé d'un sous-espace vectoriel normé.

Exercice 9 : Théorème de plongement de Tietze

On souhaite démontrer le théorème suivant :

Théorème. Soient (X,d) un espace métrique, $F \subset X$ fermé et $f: F \to \mathbb{R}$ continue et bornée. Alors il existe une application continue $g: X \to \mathbb{R}$ prolongeant f et ayant mêmes bornes inférieures et supérieures.

On considère donc X, F et f comme dans l'énoncé.

1. Pourquoi peut-on supposer que $m = \inf_{x \in F} f(x) > 0$? C'est ce que nous supposerons par la suite.

On définit
$$g$$
 comme suit : $g(x) = \begin{cases} f(x) \text{ si } x \in F \\ \inf_{y \in G} f(y) \frac{d(x,y)}{d(x,F)} \text{ sinon} \end{cases}$

- 2. Vérifier que g est bien définie et que g prolonge f.
- 3. Montrer que f et q ont même bornes.
- 4. Montrer que g est continue et conclure.