	SEMICONDUCTOR DIODE
-	P-Type & N-type materials used seperately are
	P-Type & N-type materials used seperately are of very limited use
-	Electronic devices like Diodes & Transistors are
	formed by using P& N naterial together.
	A Semiconductor Diode is formed by simply
	joining a P-type material to a N-type material
	formed by using P&N material to gether. A Semiconductor Diode is formed by simply joining a P-type material to a N-type material Also known as PN-Junction
<u> </u>	
	It is a 2-terminal de vice.
-	Application of voltage across it, gives us 3
	Application of voltage across it, gives us 3 possibilities (V=0V) forward Bias (V>0)
11	
	Reverse Bras (V <0).
7	NO APPLIED BLAS. (V= OV)
CASE I	INO MILLIUS OTHER
	P-TYPE N-TYPE
y 9	
*	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	9 9 9 9 9 9
-	
	V=OV
	(rus bras)

Date
Space-charge region hich are electrically
acceptor & donor
⊕⊕
egion :
side of the bourrier of the barrier.
som one side of d'height of the barrie.
icfield helps them
to the PN jn Such
to the PN jn Such e bothery is regative terminal is P-N jn is said

CASE III] REVERSE BIAS (V<0). If we connect battery to a PN-junction diode such that the tre terminal of the battery is connected to N-side & -ve terminal to p-side, the PN jn is said to be serverse brased 0000000000000 PN-JD QQQ D D D D Showing RB: 0 0 Q Q Q D D B D < Depletion -> - When PN junction is R.B, the holes in P-region are attracted towards the -ve terminal of the battery & the es in the N-region are attracted towards tre terminal of the battery - Thus the majority carriers are drawn away from the jr. This widens the depletion region & increases the barrier potential. - This makes it more difficult for the majority carriers to diffuse across the jo. corriers to cross the junction. Thus a very small current flows through the diode. The sate of generation of minority carriers depends on temperature (: minority carriers are generated by breaking of covalent bond. Temp? more bonds break). .. The current due to minority carriers remains

* V → battery voltage V ₀ → voltage across the diode. Classmate Page Date Page
some whether battery voltage is low or high. This overent is called <u>Reverse Saturation current</u> . (Mt in Ge & nA in Si → small surrent).
V-I CHARACTERISTICS OF A PN-JUNCTION DIOPE V-I characteristics is a graph of the voltage across the diode (VD) & the current that flows through it (ID). Symbol of Diode: ANODE (+) ANODE (-)
V-I Characteristics: Ip(mA) Ipmax
Forward
(V) Reverse Reverse Control Control
No bias (V=0, Ip=0mA) ID(MA)

The V-I characteristics can be studied under 3 cases: (i) When enternal voltage is zero (no bias) - potential bassier docs not permit current flow :. Ip = om A. (ii) Torward brås: Potential barrier gets reduced. Till the external voltage overcomes the barrier potential, the current is very small. As we approach the bassies potential (0.3 v for Ge, 0.7 v forsi) large no of free es & holes start to cross the ja. Above this even a small increase in applied voltage preduces a sharp increase in Ip. This voltage at which current starts to increase sapidly is called but in or knee Voltage of the *After this Vp remains almost constant at 0.7 v) * If two large current passes through the diode, excessive heat will destroy the diode . A diode's data sheet has the max current I pmax that a diode can safety handle. (iii) Keverse bras: Potential barrier is increased. No majority carrier current flows the the circuit But a very small current (in MA) flows due to minority carriers. This is called severse Saturation * If the reverse voltage is increased continuously, there is a point where the correct increases at a very sapid rate. The potential (voltage) at which this happens is called Zener Potential (Vz) It is also called Breakdown voltage. This may destroy the junction permanently. 1