

«Анализ транскриптомных данных»

Лекция #2.

Выравнивания и псевдовыравнивания. Подсчёт экспрессии

Серёжа Исаев

аспирант ФБМФ МФТИ аспирант MedUni Vienna

Содержание курса

1. Bulk RNA-Seq:

- а. экспериментальные подходы,
- b. выравнивания и псевдовыравнивания,
- с. анализ дифференциальной экспрессии,
- d. функциональный анализ;

2. Single-cell RNA-Seq:

- а. экспериментальные подходы,
- b. отличия от процессинга bulk RNA-Seq,
- с. методы снижения размерности,
- d. кластера и траектории,
- е. мультимодальные омики одиночных клеток.

Дорожная карта анализа RNA-Seq

Дорожная карта анализа RNA-Seq

Сборка транскриптома

Процедура относительно нетривиальная и состоит из нескольких шагов:

- 1. **Сборка** (SPAdes RNA, Trinity, ...) строится граф из k-меров прочтений, в котором потом находятся пути, соответствующие транскриптам
- 2. **Очистка от контаминации** (MCSC, DeconSeq, ...) различными эвристиками организмы очищаются от последовательностей, которые к ним примешались
- 3. **Проверка полноты сборки** (BUSCO, ...) по поиску ортологов определяется, насколько "полно" представлены важнейшие группы генов

В контексте данного курса мы не будем глубоко погружаться в процесс сборки

Дорожная карта анализа RNA-Seq

Вообще-то картирование, а не выравнивание

Выравнивание — это процесс поиска лучшего (т.е. с наибольшим весом) сопоставления двух последовательностей

Поиск выравнивания — это очень **долгая** процедура (для интереса можете попробовать выравнять 1000 ридов на геном человека и померять, сколько это займёт по времени)

Картирование — это (с некоторыми оговорками) лучшего **вхождения** одной последовательности в другую. Картировать можно сильно быстрее, чем выравнивать, а потому для NGS-экспериментов используют алгоритмы картирования

Для простоты будем называть это выравниванием, однако важно понимать, что процедуры разные

На что выравнивать?

Выравнивать можно как на референсный геном, так и на референсный транскриптом

В случае выравнивания на транскриптом мы можем не засечь новые события сплайсинга

В случае выравнивания на геном наш алгоритм должен быть устойчив к большим gap'aм

Главные программы для выравниваний

Для выравнивания прочтений без больших гэпов используют **Bowtie** или **BWA** (это актуально при работе с WES и WGS)

Для выравнивания прочтений с большими гэпами (результат сплайсинга) используют **STAR** (суффиксный массив) и **HISAT2** (bwt)

Name	Version	Mapping	Reference
Bowtie	2.2.6	Unspliced read aligner	[31]
BWA	0.7.12-r1039	Unspliced read aligner	[33]
TopHat	2.10	Spliced read aligner	[18]
STAR	2.5.3	Spliced read aligner	[34]
kallisto	0.43.1	pseudo-alignment	[35]
Salmon	0.8.2	pseudo-alignment	[36]

https://doi.org/10.1371/journal.pone.0190152.t001

STAR

BIOINFORMATICS ORIGINAL PAPER

Vol. 29 no. 1 2013, pages 15-21 doi:10.1093/bioinformatics/bts635

Sequence analysis

Advance Access publication October 25, 2012

STAR: ultrafast universal RNA-seq aligner

Alexander Dobin^{1,*}, Carrie A. Davis¹, Felix Schlesinger¹, Jorg Drenkow¹, Chris Zaleski¹, Sonali Jha¹, Philippe Batut¹, Mark Chaisson² and Thomas R. Gingeras¹ ¹Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA and ²Pacific Biosciences, Menlo Park, CA, USA Associate Editor: Inanc Birol

Рекомендован ENCODE

Хорошо работает даже при больших отличиях от референса и прост в использовании

Работает относительно быстро

Требует большое количество RAM (десятки Gb — на лэптопе не запустишь)

Алгоритм STAR (1)

Сначала ищется самое большое подслово, которое совпадает с геномом

Поиск производится путём представления генома как несжатого суффиксного массива (поэтому поиск достаточно быстрый, однако требует достаточно много памяти)

Алгоритм STAR (2)

Потом STAR проводит аналогичную процедуру для оставшейся части прочтения

Алгоритм STAR (3)

Если после второй итерации слово прочтение выравнялось не полностью, то в таком случае будет допущено наличие SNV или вставки/делеции в продолжении прочтений

Алгоритм STAR (4)

Если оставшаяся часть прочтения находится в начале или конце рида, а также не даёт хорошего выравнивания, то она будет считаться остатком адаптера секвенирования и просто отсекаться

Двухшаговое выравнивание при помощи STAR

Veeneman et al., Bioinf, 2016

У STAR есть режим --twopassMode, в котором выравнивание производится дважды

Логика заключается в том, что при первом выравнивании новые splice junctions могут быть не детектированы при достаточно малом покрытии

Однако если у вас есть несколько транскриптомов, то есть вероятность, что в каком-то они обнаружатся, и тогда можно по ним аннотировать новые события сплайсинга и подсчитать их число в остальных образцах

Формат ВАМ / SAM

SNP calling в RNA-Seq

В целом, SNP calling из RNA-Seq делать можно, для этого рекомендуют различные подходы, которые не всегда лучшие для WES (см. https://doi.org/10.1186/s13059-019-1863-4), однако **лучше** для того, чтобы определять однонуклеотидные полиморфизмы, **использовать геномные или экзомные секвенирования**

Сложность определения замен заключается в нескольких деталях:

- 1. присутствуют ошибки секвенирования,
- 2. присутствует аллель-специфическая экспрессия,
- 3. покрытие различных позиций отличается очень сильно

RSeQC

Существует отдельная стадия контроля качества для выравниваний, она обеспечивается при помощи пакета RSeQC

Очень важно обращать внимание на качество выравнивания, потому что оно говорит о качестве образца (а не о качестве секвенирования!) — в результате FastQC может показать хорошие метрики, а сам образец будет очень низкого качества (с деградировавшей РНК и проч.)

Отчёт RSeQC может быть включен в общий QC отчёт MultiQC

Распределение прочтений по элементам генома

В образцах, которые вы анализируете, должно быть сравнимое распределение ридов, картирующихся на схожие элементы генома (экзоны / интроны / ...)

Почему какие-то прочтения падают на интроны?

По всей видимости, oligo(dT)-праймеры могут отжигаться не только на polyA-хвост мРНК, но и на некоторые polyA-мотивы интронов

Этим объясняется относительно высокое количество интронных последовательностей в результатах секвенирования

Clipping profile

Вас также должно смутить большие участки адаптерных последовательностей (возможно, у вас какие-то проблемы с подготовкой библиотеки — например, слишком маленький размер вставки)

Gene Body Coverage

Эта метрика уже обсуждалась ранее

На иллюстрации справа распределение покрытия по длине гена. Предположите, какие из образцов FFPE, а какие — FF?

Дорожная карта анализа RNA-Seq

HTSeq / featureCounts (exon union)

HTSeq и featureCounts — самые простые программы, при помощи которых подсчитывают экспрессию

В основе их работы лежит простая логика: если рид ложится на ген, то мы даём +1 к экспрессии гена

featureCounts по умолчанию вшит в STAR

Liao et al., **Bioinformatics**, 2014 and Andres et al., **Bioinformatics**, 2015

Подсчёт экспрессии различных изоформ

Разный размер изоформ

На рисунке выше пример гена *MS4A1*, который кодирует белок *CD20*. Как понять, с какой изоформы пришли прочтения?

Можно попробовать найти такое отношение количества изоформ транскриптов, которое бы с наибольшей вероятностью порождало наблюдаемое распределение прочтений по разным участкам транскриптома, то есть максимально правдоподобное отношение количества изоформ

RSEM

RSEM (RNA-Seq by Expectation Maximization) оптимизирует правдоподобие отношения изоформ, опираясь на покрытие гена — Li and Dewey, **BMC Bioinf**, 2011

Является стандартом для определения различных изоформ

ЕМ-алгоритм

Шаг 1: Expectation

$$P(x_i|b) = rac{1}{\sqrt{2\pi\sigma_b^2}} \mathrm{exp}\left(-rac{(x_i-\mu_b)^2}{2\sigma_b^2}
ight)$$

$$b_i = P(b|x_i) = rac{P(x_i|b)P(b)}{P(x_i|a)P(a) + P(x_i|b)P(b)}$$

$$a_i = P(a|x_i) = 1 - b_i$$

Шаг 2: Maximization

$$\mu_b=rac{b_1x_1+b_2x_2+\cdots+b_nx_n}{b_1+b_2+\cdots+b_n}$$

$$\sigma_b^2 = rac{b_1(x_1-\mu_b)^2+\cdots+b_n(x_n-\mu_b)^2}{b_1+b_2+\cdots+b_n} \qquad \sigma_a^2 = rac{a_1(x_1-\mu_a)^2+\cdots+a_n(x_n-\mu_a)^2}{a_1+a_2+\cdots+a_n}$$

$$P(b) = \frac{b_1 + b_2 + \dots + b_n}{n}$$

$$\mu_a=rac{a_1x_1+a_2x_2+\cdots+a_nx_n}{a_1+a_2+\cdots+a_n}$$

$$\sigma_a^2 = rac{a_1(x_1 - \mu_a)^2 + \dots + a_n(x_n - \mu_a)^2}{a_1 + a_2 + \dots + a_n}$$

$$P(a) = 1 - P(b)$$

Дорожная карта анализа RNA-Seq

kallisto

kallisto строит референсный окрашенный граф де Брёйна из k-меров транскриптома

Экспериментальные прочтения разбиваются на те же k-меры

По найденным путям в графе при помощи ML находится наиболее правдоподобные каунты транскриптов

Бутстрэп kallisto

Так как kallisto **оценивает** экспрессии, а не напрямую физически высчитывает, мы можем оценить стабильность этой оценки при помощи бутстрэпа

Бутстрэп — это процедура, в ходе которой новая выборка создаётся из элементов изначальной выборки с повторениями

Бутстрэп оценивает, насколько стабильным при малом возмущении будет реконструкция параметра (экспрессии генов)

В дальнейшем это можно использовать в специальных пайплайнах (например, в Sleuth), но в основном этим инструментом не пользуются

Время работы kallisto

kallisto многократно превосходит по скорости большинство других подходов к подсчёту экспрессии

Bray et al., Nat Biotechnol, 2016

Минусы kallisto

Не возвращает .bam-файл с выравниванием, а потому

- 1. нет возможность производить поиск замен,
- 2. нет возможности дополнительно до-анализировать датасет,
- 3. нет возможности искать новые сплайс-изоформы

Для работы с kallisto мы должны быть очень уверены в корректности референса