Autonomous Navigation for Indoor and Outdoor Wheeled Robot in Urban Environment

Text SHYAM GANATRA

C.S.P.I.T CHARUSAT

Session 2020

Presentation plan

- 1 Title Part 001
 - point 1
 - point test
 - point test 2
 - point test 3
- 2 Title Part 002
 - point 1
- 3 Title Part 003
 - point 1
- 4 Title Part 004 -conclusion
- 5 Title Part 005 example
- 6 Title Part 005 -test

- POINT 1
- POINT 2
- TEst

point 1
point test
point test 2
point test 3

- SLIDE 2 POINT 1
- SLIDE 2 POINT 2
- SLIDE 2 POINT 3

point 1
point test
point test 2
point test 3

- SLIDE 2 POINT 1
- SLIDE 2 POINT 2
- SLIDE 2 POINT 3

point 1
point test
point test 2
point test 3

- SLIDE 2 POINT 1
- SLIDE 2 POINT 2
- SLIDE 2 POINT 3

point 1
point test
point test 2
point test 3

- SLIDE 3 POINT 1
- SLIDE 3 POINT 2

point 1
point test
point test 2
point test 3

- SLIDE 3 POINT 1
- SLIDE 3 POINT 2

point 1
point test
point test 2
point test 3

- SLIDE 4 POINT 1
- SLIDE 4 POINT 2

point 1
point test
point test 2
point test 3

- SLIDE 4 POINT 1
- SLIDE 4 POINT 2

Dynamique relativiste

• Nouvelle définition de la quantité de mouvement

$$\vec{p} = \gamma \, m \vec{v}$$
 avec $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$

• Avec les développements « classiques » et en posant u=1/r, on en arrive à l'équation

Dynamique relativiste

• Nouvelle définition de la quantité de mouvement

$$\vec{p} = \gamma \, m \vec{v}$$
 avec $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$

• Avec les développements « classiques » et en posant u=1/r, on en arrive à l'équation

Dynamique relativiste

• Nouvelle définition de la quantité de mouvement

$$\vec{p} = \gamma \, m \vec{v}$$
 avec $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$

• Avec les développements « classiques » et en posant u = 1/r, on en arrive à l'équation

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\theta^2} + u = \frac{GMmE}{L^2 c^2} + \frac{(GMm)^2}{L^2 c^2} u$$
Partie usuelle
Partie relativisis

Dynamique relativiste

• Nouvelle définition de la quantité de mouvement

$$\vec{p} = \gamma \, m \vec{v}$$
 avec $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$

• Avec les développements « classiques » et en posant u=1/r, on en arrive à l'équation

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\theta^2} + u = \frac{GMmE}{L^2 c^2} + \frac{(GMm)^2}{L^2 c^2} u$$

Partie usuelle

Partie relativiste

Dynamique relativiste

• Nouvelle définition de la quantité de mouvement

$$\vec{p} = \gamma \, m \vec{v}$$
 avec $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$

• Avec les développements « classiques » et en posant u = 1/r, on en arrive à l'équation

$$\underbrace{\frac{\mathrm{d}^2 u}{\mathrm{d}\theta^2} + u = \frac{GMmE}{L^2 c^2}}_{\text{Partie usuelle}} + \underbrace{\frac{(GMm)^2}{L^2 c^2} u}_{\text{Partie relativiste}}$$

Dynamique relativiste

• Nouvelle définition de la quantité de mouvement

$$\vec{p} = \gamma \, m \vec{v}$$
 avec $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$

• Avec les développements « classiques » et en posant u = 1/r, on en arrive à l'équation

$$\underbrace{\frac{\mathrm{d}^2 u}{\mathrm{d}\theta^2} + u = \frac{GMm E}{L^2 c^2}}_{\text{Partie usuelle}} + \underbrace{\frac{(GMm)^2}{L^2 c^2} u}_{\text{Partie relativiste}}$$

Équation de l'ellipse

• Équation différentielle remise en forme

$$\frac{\mathrm{d}u}{\mathrm{d}\theta} + B^2 u = A$$
 avec $B = \sqrt{1 - \left(\frac{GMm}{Lc}\right)^2}$

$$u = \frac{A}{B^2} \left(1 + e \cos \left[B \left(\theta - \theta_0 \right) \right] \right) \quad \text{soit} \quad r = \frac{p}{1 + e \cos \left[B \left(\theta - \theta_0 \right) \right]}$$

Équation de l'ellipse

• Équation différentielle remise en forme

$$\frac{\mathrm{d}u}{\mathrm{d}\theta} + B^2 u = A$$
 avec $B = \sqrt{1 - \left(\frac{GMm}{Lc}\right)^2}$

$$u = \frac{A}{B^2} \left(1 + e \cos \left[B \left(\theta - \theta_0 \right) \right] \right) \quad \text{soit} \quad r = \frac{p}{1 + e \cos \left[B \left(\theta - \theta_0 \right) \right]}$$

Équation de l'ellipse

• Équation différentielle remise en forme

$$\frac{\mathrm{d}u}{\mathrm{d}\theta} + B^2 u = A$$
 avec $B = \sqrt{1 - \left(\frac{GMm}{Lc}\right)^2}$

$$u = \frac{A}{B^2} \left(1 + e \cos \left[B \left(\theta - \theta_0 \right) \right] \right) \quad \text{soit} \quad r = \frac{p}{1 + e \cos \left[B \left(\theta - \theta_0 \right) \right]}$$

Équation de l'ellipse

• Équation différentielle remise en forme

$$\frac{\mathrm{d}u}{\mathrm{d}\theta} + B^2 u = A \quad \text{avec} \quad B = \sqrt{1 - \left(\frac{GMm}{Lc}\right)^2}$$

$$u = \frac{A}{B^2} \left(1 + e \cos \left[B \left(\theta - \theta_0 \right) \right] \right) \quad \text{soit} \quad r = \frac{p}{1 + e \cos \left[B \left(\theta - \theta_0 \right) \right]}$$

Équation de l'ellipse

• Équation différentielle remise en forme

$$\frac{\mathrm{d}u}{\mathrm{d}\theta} + B^2 u = A \quad \text{avec} \quad B = \sqrt{1 - \left(\frac{GMm}{Lc}\right)^2}$$

$$u = \frac{A}{B^2} \left(1 + e \cos \left[B \left(\theta - \theta_0 \right) \right] \right) \quad \text{soit} \quad r = \frac{p}{1 + e \cos \left[B \left(\theta - \theta_0 \right) \right]}$$

Équation de l'ellipse

• Équation différentielle remise en forme

$$\frac{\mathrm{d}u}{\mathrm{d}\theta} + B^2 u = A \quad \text{avec} \quad B = \sqrt{1 - \left(\frac{GMm}{Lc}\right)^2}$$

$$u = \frac{A}{B^2} \left(1 + e \cos \left[B \left(\theta - \theta_0 \right) \right] \right) \quad \text{soit} \quad r = \frac{p}{1 + e \cos \left[B \left(\theta - \theta_0 \right) \right]}$$

Avance du périhélie

- \bullet L'« ellipse » ne se referme pas sur elle-même du fait que $B \neq 1$
- Entre deux périhélies successifs, θ tourne de $2\pi + \delta$ où

$$\delta = 2\pi \left(\frac{1}{B} - 1\right) \approx \pi \left(\frac{GMm}{Lc}\right)^2 = \pi \frac{GM}{pc^2} = \pi \frac{GM}{ac^2(1 - e^2)}$$

 Malheureusement, l'application numérique ne donne « que » 7" d'arc par siècle...

Avance du périhélie

- L'« ellipse » ne se referme pas sur elle-même du fait que $B \neq 1$
- Entre deux périhélies successifs, θ tourne de $2\pi + \delta$ où

$$\delta = 2\pi \left(\frac{1}{B} - 1\right) \approx \pi \left(\frac{GMm}{Lc}\right)^2 = \pi \frac{GM}{pc^2} = \pi \frac{GM}{ac^2(1 - e^2)}$$

 Malheureusement, l'application numérique ne donne « que » 7" d'arc par siècle...

Avance du périhélie

- \bullet L'« ellipse » ne se referme pas sur elle-même du fait que $B \neq 1$
- Entre deux périhélies successifs, θ tourne de $2\pi + \delta$ où

$$\delta = 2\pi \left(\frac{1}{B} - 1\right) \approx \pi \left(\frac{GMm}{Lc}\right)^2 = \pi \frac{GM}{pc^2} = \pi \frac{GM}{ac^2(1 - e^2)}$$

• Malheureusement, l'application numérique ne donne « que » 7" d'arc par siècle...

Avance du périhélie

- \bullet L'« ellipse » ne se referme pas sur elle-même du fait que $B \neq 1$
- Entre deux périhélies successifs, θ tourne de $2\pi + \delta$ où

$$\delta = 2\pi \left(\frac{1}{B} - 1\right) \approx \pi \left(\frac{GMm}{Lc}\right)^2 = \pi \frac{GM}{pc^2} = \pi \frac{GM}{ac^2(1 - e^2)}$$

• Malheureusement, l'application numérique ne donne « que » 7" d'arc par siècle...

Et zut...

- Il n'y a plus guère de temps pour parler
- Alors zou, on balance le résultat des calculs

$$\underbrace{\frac{\mathrm{d}^2 u}{\mathrm{d}\theta^2} + u = \frac{GMm^2}{L^2}}_{\mathrm{Partie \ classique}} + \underbrace{\frac{3\ GM}{c^2}\ u^2}_{\mathrm{RG}}$$

Et zut...

- Il n'y a plus guère de temps pour parler
- Alors zou, on balance le résultat des calculs

$$\underbrace{\frac{\mathrm{d}^2 u}{\mathrm{d}\theta^2} + u = \frac{GMm^2}{L^2}}_{\mathrm{Partie \ classique}} + \underbrace{\frac{3\,GM}{c^2}\,u^2}_{\mathrm{RG}}$$

Et zut...

- Il n'y a plus guère de temps pour parler
- Alors zou, on balance le résultat des calculs

$$\underbrace{\frac{\mathrm{d}^2 u}{\mathrm{d}\theta^2} + u = \frac{GMm^2}{L^2}}_{\text{Partie classique}} + \underbrace{\frac{3\,GM}{c^2}\,u^2}_{\text{RG}}$$

Et zut...

- Il n'y a plus guère de temps pour parler
- Alors zou, on balance le résultat des calculs

$$\underbrace{\frac{\mathrm{d}^2 u}{\mathrm{d}\theta^2} + u = \frac{GMm^2}{L^2}}_{\text{Partie classique}} + \underbrace{\frac{3\,GM}{c^2}\,u^2}_{\text{RG}}$$

$$\delta = 6\pi \frac{GM}{a c^2 (1 - e^2)}$$

Le code informatique

```
import scipy as sp
import scipy.optimize

def ma_fonction(x):
    return []

# À vous de remplir les choses adéquates...
```

Conclusion

sous forme de tableau

Newton	Rel. Restreinte	Rel. Générale
531"/siècle	(+7''/siècle)	+43''/siècle
Observations : 574"/siècle		

Table – Effet des différentes théories

Exemples

Apparitions successives

- Ce point apparaît en premier et reste tout le temps
- Celui-ci ne n'apparaîtra que à la 2^e page de cette diapo (mais l'espace reste disponible)
- ...avant donc l'apparition du 4^e (mais c'est bizarre de procéder ainsi)
- Et celui-ci vient en 3e et reste jusqu'à la fin...

Apparitions successives

- Ce point apparaît en premier et reste tout le temps
- Celui-ci ne n'apparaîtra que à la 2^e page de cette diapo (mais l'espace reste disponible)
- ...avant donc l'apparition du 4^e (mais c'est bizarre de procéder ainsi)
- Et celui-ci vient en 3e et reste jusqu'à la fin...

Apparitions successives

- Ce point apparaît en premier et reste tout le temps
- Celui-ci ne n'apparaîtra que à la 2^e page de cette diapo (mais l'espace reste disponible)
- ...avant donc l'apparition du 4^e (mais c'est bizarre de procéder ainsi)
- Et celui-ci vient en 3e et reste jusqu'à la fin...

Apparitions successives

- Ce point apparaît en premier et reste tout le temps
- Celui-ci ne n'apparaîtra que à la 2^e page de cette diapo (mais l'espace reste disponible)
- ...avant donc l'apparition du 4^e (mais c'est bizarre de procéder ainsi)
- Et celui-ci vient en 3e et reste jusqu'à la fin...

Exemples

Apparition d'une figure

On peut aussi mettre du texte brut avant apparition d'une figure

Et le texte qui suit

Exemples

Apparition d'une figure

On peut aussi mettre du texte brut avant apparition d'une figure

Et le texte qui suit

Exemples

Apparition d'une figure

On peut aussi mettre du texte brut avant apparition d'une figure

Et le texte qui suit

Apparition d'une équation en plusieurs temps

L'idée est d'utiliser \onslide pour faire apparaître les morceaux uns à uns. Cela correspond à des bascules qui imposent le comportement de tout ce qui suit jusqu'au prochain \onslide. Par exemple, avec votre vieil ami l'oscillateur harmonique

$$1 \times \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} + \underbrace{\frac{g}{g}}^{=\omega_0^2} \times \theta = \underbrace{A}^{=\theta_{\mathrm{eq}} \times \omega_0^2}$$

$$\frac{=\omega_0^2}{g} = \theta_{\text{eq}} \times \omega_0^2$$
Text Shyam Ganatra
Some Footer

Apparition d'une équation en plusieurs temps

L'idée est d'utiliser \onslide pour faire apparaître les morceaux uns à uns. Cela correspond à des bascules qui imposent le comportement de tout ce qui suit jusqu'au prochain \onslide. Par exemple, avec votre vieil ami l'oscillateur harmonique

$$1 imes rac{\mathrm{d}^2 heta}{\mathrm{d}t^2} + rac{=\omega_0^2}{\ell} imes heta = A$$

Le mieux est d'écrire l'équation voulue en une fois avec tous les rajouts et de découper ensuite. Par exemple ici, ce serait

15 / 16

Apparition d'une équation en plusieurs temps

L'idée est d'utiliser **\onslide** pour faire apparaître les morceaux uns à uns. Cela correspond à des bascules qui imposent le comportement de tout ce qui suit jusqu'au prochain **\onslide**. Par exemple, avec votre vieil ami l'oscillateur harmonique

$$1 \times \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} + \underbrace{\frac{g}{\ell}}^{=\omega_0^2} \times \theta = A$$

Le mieux est d'écrire l'équation voulue en une fois avec tous les rajouts et de découper ensuite. Par exemple ici, ce serait

15 / 16

Apparition d'une équation en plusieurs temps

L'idée est d'utiliser \onslide pour faire apparaître les morceaux uns à uns. Cela correspond à des bascules qui imposent le comportement de tout ce qui suit jusqu'au prochain \onslide. Par exemple, avec votre vieil ami l'oscillateur harmonique

$$1 \times \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} + \underbrace{\frac{g}{\theta}}_{=\ell} \times \theta = A$$

$$=\omega_0^2$$

$$=\theta_{\text{\'eq}}\times\omega_0$$
Text Shyam Ganatra
Some Footer

Apparition d'une équation en plusieurs temps

L'idée est d'utiliser \onslide pour faire apparaître les morceaux uns à uns. Cela correspond à des bascules qui imposent le comportement de tout ce qui suit jusqu'au prochain \onslide. Par exemple, avec votre vieil ami l'oscillateur harmonique

$$1 \times \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} + \underbrace{\frac{g}{\ell}}^{=\omega_0^2} \times \theta = \underbrace{A}^{=\theta_{\mathrm{\acute{e}q}} \times \omega_0^2}$$

Apparition d'une équation en plusieurs temps

L'idée est d'utiliser \onslide pour faire apparaître les morceaux uns à uns. Cela correspond à des bascules qui imposent le comportement de tout ce qui suit jusqu'au prochain \onslide. Par exemple, avec votre vieil ami l'oscillateur harmonique

$$1 \times \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} + \underbrace{\frac{g}{\ell}}^{=\omega_0^2} \times \theta = A$$

Le mieux est d'écrire l'équation voulue en une fois avec tous les rajouts et de découper ensuite. Par exemple ici, ce serait

Apparition d'une équation en plusieurs temps

L'idée est d'utiliser **\onslide** pour faire apparaître les morceaux uns à uns. Cela correspond à des bascules qui imposent le comportement de tout ce qui suit jusqu'au prochain **\onslide**. Par exemple, avec votre vieil ami l'oscillateur harmonique

$$1 \times \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} + \underbrace{\frac{g}{\ell}}^{=\omega_0^2} \times \theta = A$$

Le mieux est d'écrire l'équation voulue en une fois avec tous les rajouts et de découper ensuite. Par exemple ici, ce serait

Conclusion

sous forme de tableau

Newton	Rel. Restreinte	Rel. Générale
531"/siècle	(+7''/siècle)	+43''/siècle
Observations : 574"/siècle		

Table – Effet des différentes théories