Problèmes NP-complets connus

Partition est NP-complet

Théorème: PARTITION est NP-complet.

Rappel

NOM: PARTITION

DONNEES: un ensemble fini d'entiers non-négatifs A

QUESTION: est-ce qu'il existe une partition de A en deux ensembles A' et A'', telle que la somme des éléments de A' soit égale à la somme des éléments de A''?

Partition est NP-complet

Théorème: PARTITION est NP-complet.

Preuve:

- i) $PARTITION \in NP$

La transformation

- Soient W, X, Y les trois ensembles de 3DM, de cardinalité q chacun, et soit M l'ensemble des triplets, de cardinalité k.
- Nous allons construire un ensemble d'entiers naturels A de cardinalité k+2.
- Soit $p=\{log_2(k+1)\}$ (partie entière par excès)

La transformation (2)

- Soit m_i un triplet de M.
- On construit un nombre naturel a_i (sous sa forme binaire) :
 - a_i sera de longueur 3qp, étant composé de 3q blocs de longueur p, les blocs correspondant aux 3q éléments de W, X et Y.
 - Les blocs seront composés que de 0, sauf les trois blocs correspondants aux trois éléments de m, dans lesquels le bit le moins significatif sera 1, les autres des 0.

La transformation (3)

- Ce choix nous permet de détecter facilement si un sous-ensemble de nombres correspond à un couplage en trois dimensions, car il suffit de tester que la somme des nombres est composée de 3q blocs identiques, de la forme 00...01 (nombre qu'on notera par B dans la suite).
- Comme les blocs ont été choisis suffisamment longs, il ne peut y avoir de débordement d'un bloc vers un autre même si on calcule la somme de tous les k nombres obtenus.

La transformation (4)

- Soit $S = \sum_{1 \le i \le k} a_i$.
- Pour finir la transformation, nous introduisons deux nombres supplémentaires, $a_{k+1} = 2S B$ et $a_{k+2} = S + B$.
- La transformation est polynomiale, car elle peut s'effectuer en temps $O(n^2)$, pour une donnée de taille n.
- Remarque : La somme des éléments de A est

$$S + 2S - B + S + B = 4S$$

Si (⇒)

• supposons que M admet un sous-ensemble M', constituant une solution au problème 3DM. Soit A' constitué de l'image des triplets de M' et de l'élément a_{k+1} . La somme des éléments de A' sera donc B+2S-B=2S, ce qui est la moitié de la somme totale.

Seulement si (⇐)

Supposons avoir une partition de A en deux parties de somme égale. Soit A' la partie contenant a_{k+1}. Comme la somme des éléments de A' doit être la moitié de la somme totale, 2S, la somme des autres éléments de A' doit être B, ce qui implique que ces éléments sont issus d'un couplage en trois dimensions.

Les problèmes de hamiltonisme sont NP-complets

Un problème de cette famille CIRCUITHAM

NOM: CIRCUITHAM (circuit hamiltonien)

DONNEES: un graphe orienté fini G(V,E), sous forme

de liste de successeurs

QUESTION: est-ce que le graphe admet un circuit

hamiltonien?

CIRCUITHAM (2)

Théorème: CIRCUITHAM est NP-complet.

Preuve:

- i) $CIRCUITHAM \in NP$
- ii) CIRCUITHAM est NP-difficile
 nous le montrons par
 X3-SAT ∝ CIRCUITHAM

CIRCUITHAM(3)

La transformation:

- Soit $F = C_1 \wedge C_2 \wedge ... \wedge C_q$ une instance de X3-SAT avec $C_i = l_{i,1} \vee l_{i,2} \vee l_{i,3}$, les $l_{i,j}$ étant des littéraux.
- Soient x_0, x_1, \dots, x_{n-1} les variables utilisées dans la formule.
- On construit un graphe orienté G composé de deux types de sous-graphes. A chaque variable x_i on associe un sous-graphe H_i.

CIRCUITHAM(4)

Les sous-graphes H_i disposent chacun d'un point d'entrée unique a_i (arrivée) et un point de sortie unique d_i (départ) et sont connectés en circuit, c.a.d. on a un arc du sommet d_i vers le sommet $a_{(i+1) \bmod n}$.

CIRCUITHAM(5)

La composition des H_i:

- Le nombre de clauses dans la formule est q.
- Chaque sous-graphe H_i est composé de sommets $a_i, b_{i,j}, c_{i,j}$ et d_i (avec $0 \le j \le q$).
- Comme la seule «entrée» de $H_{\rm i}$ est $a_{\rm i}$, le parcours commence par ce sommet.
- Un chemin hamiltonien de H_i doit donc commencer en a_i et se terminer en d_i

CIRCUITHAM(6)

CIRCUITHAM(7)

CIRCUITHAM(8)

- La transformation doit aussi tenir compte des clauses !!!!!
- A chaque clause $C_j = l_{j,1} \vee l_{j,2} \vee l_{j,3}$, nous associons une copie du graphe G_i suivant :

Les graphes G_j

Dans G_j , chacun des sommets r_j , s_j et t_j a un prédécesseur dans le graphe (hors G_j) et chacun des sommets u_j , v_j et w_j a un successeur dans le graphe (hors G_j).

Les graphes G_j (suite)

S'il existe un chemin hamiltonien du graphe, et si ce chemin arrive dans G_i par le sommet r_i (resp. s_i ou t_j), alors ce chemin doit quitter G_i par le sommet qui se trouve en dessous le sommet r_i , le sommet u_i (resp. v_i ou w_i).

Exemple d'arrivée en r

Deuxième exemple d'arrivée en r

Troisième exemple d'arrivée en r

Ce qu'on ne peut pas avoir

Pourquoi?

Et le sommet *u* ne sera jamais visité

Comment utiliser les G_j ?

Soit x_i le premier littéral de C_j . Dans ce cas nous rajoutons les arcs de $c_{i,j-1}$ vers r_j et de u_j vers $b_{i,j}$. Au cas où le premier littéral de C_j est $-x_i$ nous rajoutons les arcs de $b_{i,j-1}$ vers r_j et de u_j vers $c_{i,j}$.

(s'il s'agit du deuxième littéral, alors vers s_i et de v_i et s'il s'agit du troisième alors t_i et w_i)

Fin de la construction

Sommets:

```
- les H_i : n(2q+4)
```

$$- \operatorname{les} G_i : 6q$$

- TOTAL:
$$2n(q + 2) + 6q$$

Arcs:

• les
$$H_i$$
 : $n(4q + 6) + n$

- les
$$G_i$$
: $9q + 6q$

TOTAL:
$$n(4q + 7) + 15q$$

Donc taille et temps polynomiales.

Si

La formule est satisfiable

- on choisit une valeur des variable qui satisfait
- dans les H_i, on choisit le parcours qui correspond à la valeur de vérité
- dans chaque clause on choisit un littéral vraie
- on visite G_j à partir du parcours du H_i associé à ce littéral

Ainsi nous obtenons un circuit hamiltonien

Seulement si

Il existe un circuit hamiltonien

- Comme la visite des G_j se fait à partir des H_i , avec retour au même H_i , le circuit consiste en parcours de $H_1, H_2, ...$
- Selon si le parcours de H_i est « jaune » ou « verte » x_i sera faux ou vrais
- Comme tous les G_j sont visités aussi, c'est qu'au moins un des littéraux de la clause, a une valeur de vérité qui le permet

Ainsi, la formule est satisfiable.

Fin

C.Q.F.D.