# 数字逻辑 Digital Logic Circuit

丁贤庆

ahhfdxq@163.com

# 通知

- ✓1、考试时间:1月15号晚上
  - 2、考试题型:
- ☞ 单选,填空,卡诺图化简,
- ✓ 组合电路设计题、时序电路分析题、时序电路设 计题、CMOS电路分析题、
- ▼ 芯片的应用(74LS138, 74LS151,74LS161等)<br/>
  verilog代码编写和分析
- **等等** 
  - 3、第六章有30分左右的考题。

# Home work (P350)

- **1**、期末考试中第六章有30分左右的考题。
- ~ 2、本次的作业(不用抄题目)
  - 6.3.2
  - **6.3.4**
  - **6.3.6**
  - **6.3.7**
  - 3、实验时间,可以随时答疑。可以回答作业或者课本中疑难问题。
  - 4、本周五下午3:00-5:00,在敬亭109教师休息室答疑。
  - 5、本周五晚上7:00-9:00,在敬亭109教师休息室答疑。
  - 6、1月21号晚上10点前提交实验报告的电子版到坚果云里。

# 3.3.2 CMOS漏极开路(OD)门和三态输出门电路

- 1. CMOS漏极开路门
- 1.) CMOS漏极开路门的提出

输出短接,在一定情况下会产 生低阻通路,大电流有可能导 致器件的损毁,并且无法确定 输出是高电平还是低电平。



#### (2)漏极开路门的结构与逻辑符号



- (a)工作时必须外接电源和电阻;
- (b)与非逻辑不变
- (c) 可以实现线与功能;

#### 漏极开路门输出连接



$$L = \overline{AB} \cdot \overline{CD}$$
$$= \overline{AB + CD}$$

#### (2) 上拉电阻对OD门动态性能的影响

Rp的值愈小,负载电容的充电时间常数亦愈小,因而开关速度愈快。但功耗大,且可能使输出电流超过允许的最大值 $I_{OL(max)}$ 。

Rp的值大,可保证输出电流不能超过允许的最大值I<sub>OL(max)</sub>、功耗小。但负载电容的充电时间常数亦愈大,开关速度因而愈慢。

# 电路带电容负载

#### 2.三态(TSL)输出门电路



逻辑功能: 高电平有效的同相逻辑门

# 第6章 时序逻辑电路

# Sequential Logic Circuit

# 6.3 同步时序逻辑电路的设计(期末必考)

- 6.3.1 设计同步时序逻辑电路的一般步骤
- 6.3.2 同步时序逻辑电路设计举例

# 6.3 同步时序逻辑电路的设计

同步时序逻辑电路的设计是分析的逆过程,其任务是根据实际逻辑问题的要求,设计出能实现给定逻辑功能的电路。

# 6.3.1 设计同步时序逻辑电路的一般步骤

同步时序电路的设计过程



#### (1)根据给定的逻辑功能建立原始状态图和原始状态表

- ①明确电路的输入条件和相应的输出要求,分别确定输入变量 和输出变量的数目和符号。
  - ②找出所有可能的状态和状态转换之间的关系。
  - ③根据原始状态图建立原始状态表。
  - (2)状态化简-----求出最简状态图;

合并等价状态,消去多余状态的过程称为状态化简



(3)状态编码(状态分配);

给每个状态赋以二进制代码的过程。

根据状态数确定触发器的个数,

 $2^{n-1} < M \le 2^n$  (M:状态数;n:触发器的个数)

- (4)选择触发器的类型
- (5)求出电路的激励方程和输出方程;
- (6)画出逻辑图并检查自启动能力。



时序电路的设计 最终要转换为组 合电路的设计。



时序电路的设计最终要转换为组合电路的设计。例如此处如果知道D1和D0的表达式,就可以画出整个的时序电路。

如果将D触发器 隐藏起来。

再来看看D1,D0 与Q1,Q0之间的 关系式。



可以看出: $D_1$ 、 $D_0$ 是触发器现态Q1和Q0的函数。这个很关键。

が学院 院

数字逻辑电路

# 6.3.2 同步时序逻辑电路设计举例

例1 用D触发器设计一个8421 BCD码同步十进制加1计数器。

解答: 8421BCD码:对于十进制数中的0---9中的每位用四位二进制数表示。

加1计数器:每次来一个脉冲,系统就加1。





# 6.3.2 同步时序逻辑电路设计举例

例1 用D触发器设计一个8421 BCD码同步十进制加计数器。

8421码同步十进制加计数器的状态表

| 计数脉         |         | 现       | 态       |         |             | 次           | 态           |             |
|-------------|---------|---------|---------|---------|-------------|-------------|-------------|-------------|
| With C Dich | $Q_3^n$ | $Q_2^n$ | $Q_1^n$ | $Q_0^n$ | $Q_3^{n+1}$ | $Q_2^{n+1}$ | $Q_1^{n+1}$ | $Q_0^{n+1}$ |
| 0           | 0       | 0       | 0       | 0       |             |             |             |             |
| 1           | 0       | 0       | 0       | 1       |             |             |             |             |
| 2           | 0       | 0       | 1       | 0       |             |             |             |             |
| 3           | 0       | 0       | 1       | 1       |             |             |             |             |
| 4           | 0       | 1       | 0       | 0       |             |             |             |             |
| 5           | 0       | 1       | 0       | 1       |             |             |             |             |
| 6           | 0       | 1       | 1       | 0       |             |             |             |             |
| 7           | 0       | 1       | 1       | 1       |             |             |             |             |
| 8           | 1       | 0       | 0       | 0       |             |             |             |             |
| 9           | 1       | 0       | 0       | 1       |             |             | _           |             |

## (2) 确定激励方程组

| 计数脉      |         | 现       | 态       |         |             | 次           | 态           |             |       | 激励    | 信号    |       |
|----------|---------|---------|---------|---------|-------------|-------------|-------------|-------------|-------|-------|-------|-------|
| WHI CDHH | $Q_3^n$ | $Q_2^n$ | $Q_1^n$ | $Q_0^n$ | $Q_3^{n+1}$ | $Q_2^{n+1}$ | $Q_1^{n+1}$ | $Q_0^{n+1}$ | $D_3$ | $D_2$ | $D_1$ | $D_0$ |
| 0        | 0       | 0       | 0       | 0       |             |             |             |             |       |       |       |       |
| 1        | 0       | 0       | 0       | 1       |             |             |             |             |       |       |       |       |
| 2        | 0       | 0       | 1       | 0       |             |             |             |             |       |       |       |       |
| 3        | 0       | 0       | 1       | 1       |             |             |             |             |       |       |       |       |
| 4        | 0       | 1       | 0       | 0       |             |             |             |             |       |       |       |       |
| 5        | 0       | 1       | 0       | 1       |             |             |             |             |       |       |       |       |
| 6        | 0       | 1       | 1       | 0       |             |             |             |             |       |       |       |       |
| 7        | 0       | 1       | 1       | 1       |             |             |             |             |       |       |       |       |
| 8        | 1       | 0       | 0       | 0       |             |             |             |             |       |       |       |       |
| 9        | 1       | 0       | 0       | 1       |             |             |             |             |       |       |       |       |

#### (2) 确定激励方程组

| 计数脉                 |         | 现       | 态       |         |
|---------------------|---------|---------|---------|---------|
| 冲 <i>CP</i> 的<br>顺序 | $Q_3^n$ | $Q_2^n$ | $Q_1^n$ | $Q_0^n$ |
| 0                   | 0       | 0       | 0       | 0       |
| 1                   | 0       | 0       | 0       | 1       |
| 2                   | 0       | 0       | 1       | 0       |
| 3                   | 0       | 0       | 1       | 1       |
| 4                   | 0       | 1       | 0       | 0       |
| 5                   | 0       | 1       | 0       | 1       |
| 6                   | 0       | 1       | 1       | 0       |
| 7                   | 0       | 1       | 1       | 1       |
| 8                   | 1       | 0       | 0       | 0       |
| 9                   | 1       | 0       | 0       | 1       |

|       | 输出信号  |       |       |  |  |  |  |
|-------|-------|-------|-------|--|--|--|--|
| $D_3$ | $D_2$ | $D_1$ | $D_0$ |  |  |  |  |
|       |       |       |       |  |  |  |  |
|       |       |       |       |  |  |  |  |
|       |       |       |       |  |  |  |  |
|       |       |       |       |  |  |  |  |
|       |       |       |       |  |  |  |  |
|       |       |       |       |  |  |  |  |
|       |       |       | -     |  |  |  |  |

 $D_3$ 、 $D_2$ 、 $D_1$ 、 $D_0$ 、是触发器现态还是次态的函数? (具体见上页图形)

 $D_3$ 、 $D_2$ 、 $D_1$ 、 $D_0$ 是触发器现态的函数

# 画出D3触发器激励信号的卡诺图

| 计数脉        |         | 现       | 态       |         |       |
|------------|---------|---------|---------|---------|-------|
| 冲CP的<br>順序 | $Q_3^n$ | $Q_2^n$ | $Q_1^n$ | $Q_0^n$ | $D_3$ |
| 0          | 0       | 0       | 0       | 0       | 0     |
| 1          | 0       | 0       | 0       | 1       | 0     |
| 2          | 0       | 0       | 1       | 0       | 0     |
| 3          | 0       | 0       | 1       | 1       | 0     |
| 4          | 0       | 1       | 0       | 0       | 0     |
| 5          | 0       | 1       | 0       | 1       | 0     |
| 6          | 0       | 1       | 1       | 0       | 0     |
| 7          | 0       | 1       | 1       | 1       | 1     |
| 8          | 1       | 0       | 0       | 0       | 1     |
| 9          | 1       | 0       | 0       | 1       | 0     |

|    |   | _ |   | _ | _ |  |  |
|----|---|---|---|---|---|--|--|
| 10 | 1 | 0 | 1 | 0 | 1 |  |  |
| 11 | 1 | 0 | 1 | 1 | 0 |  |  |
| 12 | 1 | 1 | 0 | 0 | 1 |  |  |
| 13 | 1 | 1 | 0 | 1 | 0 |  |  |
| 14 | 1 | 1 | 1 | 0 | 1 |  |  |
| 15 | 1 | 1 | 1 | 1 | 1 |  |  |



$$D_3 = Q_3^n Q_0^n + Q_2^n Q_1^n Q_0^n$$

# 画出D2触发器激励信号的卡诺图

|                     |         |             |                 |         |           |    | 1 | i | i       | 1        |               |         |                           |        |
|---------------------|---------|-------------|-----------------|---------|-----------|----|---|---|---------|----------|---------------|---------|---------------------------|--------|
|                     |         | 现           | *               |         | 输出作       | 10 | 1 | 0 | 1       | 0        |               | 0       |                           |        |
| 计数脉                 |         | <i>79</i> C | 态               |         | 481 224 1 | 11 | 1 | 0 | 1       | 1        |               | 1       |                           |        |
| 冲 <i>CP</i> 的<br>順序 | $Q_3^n$ | $Q_2^n$     | $O_{\cdot}^{n}$ | $Q_0^n$ | $D_2$     | 12 | 1 | 1 | 0       | 0        |               | 1       |                           |        |
| -100.74             | €3      | 22          | <b>z</b> 1      | 20      |           | 13 | 1 | 1 | 0       | 1        |               | 1       |                           |        |
| 0                   | 0       | 0           | 0               | 0       | 0         | 14 | 1 | 1 | 1       | 0        |               | 1       |                           |        |
| 1                   | 0       | 0           | 0               | 1       | 0         | 15 | 1 | 1 | 1       | 1        |               | 0       |                           |        |
| 2                   | 0       | 0           | 1               | 0       | 0         |    | · |   |         | <u> </u> |               |         |                           |        |
| 3                   | 0       | 0           | 1               | 1       | 1         |    |   |   |         |          |               | $Q_1^n$ | _                         |        |
| 4                   | 0       | 1           | 0               | 0       | 1         |    |   |   |         | 0        | 0             | 1   0   | $\exists$                 |        |
| 5                   | 0       | 1           | 0               | 1       | 1         |    |   |   |         |          | <u>-,   `</u> |         |                           |        |
| 6                   | 0       | 1           | 1               | 0       | 1         |    |   |   |         |          | 1             | 0 [1    | $-  \varrho_{z}^{\prime}$ | n<br>2 |
| 7                   | 0       | 1           | 1               | 1       | 0         |    |   |   | $Q_3^n$ | ×;;;;    | /             | ×       |                           | 2      |
| 8                   | 1       | 0           | 0               | 0       | 0         |    |   |   | 23      | 0        | 0   {         | × X     |                           |        |
| 9                   | 1       | 0           | 0               | 1       | 0         |    |   |   |         |          | $Q_0^n$       |         |                           |        |
|                     |         |             |                 |         |           |    |   |   |         |          | ≥0            |         |                           |        |

路

$$D_2 = Q_2^n Q_1^n + Q_2^n Q_0^n + Q_2^n Q_1^n Q_0^n$$

# 画出D1触发器激励信号的卡诺图

|             |                                         |         | · · · · · · · · · · · · · · · · · · · |         | 7  | - 1   |    |           |     |            |          |              |   |         |
|-------------|-----------------------------------------|---------|---------------------------------------|---------|----|-------|----|-----------|-----|------------|----------|--------------|---|---------|
| 21 44 02.   |                                         | 现       | 态                                     |         | 输出 | 信号    | 10 | 1         | 0   | 1          | 0        |              |   | 1       |
| 计数脉<br>冲CP的 |                                         |         |                                       |         |    |       | 11 | 1         | 0   | 1          | 1        |              |   | 0       |
| 顺序          | $Q_3^n$                                 | $Q_2^n$ | $Q_1^n$                               | $Q_0^n$ |    | $D_1$ | 12 | 1         | 1   | 0          | 0        |              |   | 0       |
|             | -                                       |         | 0                                     |         |    | 0     | 13 | 1         | 1   | 0          | 1        |              |   | 0       |
| 0           | 0                                       | 0       | U                                     | 0       |    |       | 14 | 1         | 1   | 1          | 0        |              |   | 1       |
| 1           | 0                                       | 0       | 0                                     | 1       |    | 1     |    |           |     |            |          |              |   |         |
| 2           | 0                                       | 0       | 1                                     | 0       |    | 1     | 15 | 1         | 1   | 1          | 1        |              |   | 0       |
| 3           | 0                                       | 0       | 1                                     | 1       |    | 0     |    | $(D_1)$   | \   |            |          | Q            | 1 |         |
| 4           | 0                                       | 1       | 0                                     | 0       |    | 0     |    |           |     | 17:        | ٠, [     |              |   |         |
| 5           | 0                                       | 1       | 0                                     | 1       |    | 1     |    |           | 0   |            |          | 0   1        | 1 |         |
| 6           | 0                                       | 1       | 1                                     | 0       |    | 1     |    |           | 0   |            | 1        | 0            | 1 |         |
| 7           | 0                                       | 1       | 1                                     | 1       |    | 0     |    |           | بلر | \ <u>1</u> | -1       |              |   | $Q_2^n$ |
| 8           | 1                                       | 0       | 0                                     | 0       |    | 0     |    | ži.       | x   | :          |          | × ¦          | × | 22      |
| 9           | 1                                       | 0       | 0                                     | 1       |    | 0     |    | $Q_3^{"}$ |     |            |          |              |   | ,       |
| 路           |                                         |         |                                       |         |    |       |    |           | 0   | 0          | <u> </u> | <b>×</b>   ; | X |         |
|             | $D_1 = Q_1^n Q_0^n + Q_3^n Q_1^n Q_0^n$ |         |                                       |         |    |       |    |           |     |            | Q "      |              |   |         |

#### 画出DO触发器激励信号的卡诺图(Do 输出信号 态 计数脉 冲 CP的 $Q_3^n | Q_2^n | Q_1^n Q_0^n$ 顺序 X X X įΧ $Q_3^n$ (X X $D_0 = Q_0^n$

时序电路的设计最终要转换为组合电路的设计。例如此处知道D3、D2、D1和D0的表达式,就可以画出整个的时序电路。

计算机

$$D_3 = Q_3^n Q_0^n + Q_2^n Q_1^n Q_0^n$$

$$D_2 = Q_2^n \overline{Q_1^n} + Q_2^n \overline{Q_0^n} + \overline{Q_2^n} Q_1^n Q_0^n$$

$$D_1 = Q_1^n Q_0^n + Q_3^n Q_1^n Q_0^n$$

$$D_0 = Q_0^n$$

Q3 Q3

Q2 Q2

Q1 Q1

Q0 Q0

**双字逻辑电路** 

# 画出完全状态转换表

|   | 计数脉           |         | 现       | 态                      |               |             | 次              | 态    |                  |       | 输出    | 信号    |       |
|---|---------------|---------|---------|------------------------|---------------|-------------|----------------|------|------------------|-------|-------|-------|-------|
|   | 冲 <i>CP</i> 的 | $Q_3^n$ | $Q_2^n$ | $Q_{\mathfrak{t}}^{n}$ |               | $Q_3^{n+1}$ | $O_{01}^{n+1}$ |      | $Q_{0011}^{n+1}$ | $D_3$ | $D_2$ | $D_1$ | $D_0$ |
|   | 0             | 0       | 0       | 0                      | 4             | 0           |                |      |                  | 0     | 0     | 0     | 1     |
|   | 1             | 0       | 0       | 0                      |               | 0           | 0              | 1    | 0                | 0     | 0     | 1     | 0     |
|   | 2             | 0       | 0       | 1                      | 1 <b>d</b> b1 | 0           | 0              | 1    | <b>d</b> 100     | 0     | 0     | 1     | 1     |
|   | 3             | 0       | 0       | 1                      | 7             | 0           | 1              | 0    |                  | 0     | 1     | 0     | 0     |
|   | 4             | 0       | 1       | 0                      |               | 0           | 1              | 0    | 1                | 0     | 1     | 0     | 1     |
|   | 5             | 0       | 1       | 0/                     | 1000          | 01          | 111-           | 0110 | 0101             | 0     | 1     | 1     | 0     |
| _ | 6             | 0       | 1       | 1                      |               | 0           |                |      |                  | 0     | 1     | 1     | 1     |
|   | 7             | 0       | 1       | 1                      | 1             | 1           | 0              | 0    | 0                | 1     | 0     | 0     | 0     |
|   | 8             | 1       | 0       | 0                      | 0             | 1           | 0              | 0    | 1                | 1     | 0     | 0     | 1     |
|   | 9             | 1       | 0       | 0                      | 1             | 0           | 0              | 0    | 0                | 0     | 0     | 0     | 0     |
|   | 10            | 1       | 0       | 1                      | 0             | 1           | 0              | 1    | 1                | 1     | 0     | 1     | 1     |
|   | 11            | 1       | 0       | 1                      | 1             | 0           | 1              | 0    | 0                | 0     | 1     | 0     | 0     |
|   | 12            | 1       | 1       | 0                      | 0             | 1           | 1              | 0    | 1                | 1     | 1     | 0     | 1     |
|   | 13            | 1       | 1       | 0                      | 1             | 0           | 1              | 0    | 0                | 0     | 1     | 0     | 0     |
|   | 14            | 1       | 1       | 1                      | 0             | 1           | 1              | 1    | 1                | 1     | 1     | 1     | 1     |
|   | 15            | 1       | 1       | 1                      | 1             | 1           | 0              | 0    | 0                | 1     | 0     | 0     | 0     |

#### (3) 画出逻辑图,并检查自启动能力(找出闭合回路)

#### 画出完全状态图



思考:已知一个同步时序电路的状态转换图如图所示,请选用D触发器设计该时序电路。画出状态转换表,写出激励方程,画出电路对应的逻辑图。怎么设计?



# 设计思路提示



## 状态转换真值表

| 现       | 态       | 输入 | 次           | 态           | 输出 |                                      |                  |
|---------|---------|----|-------------|-------------|----|--------------------------------------|------------------|
| $Q_2^n$ | $Q_1^n$ | X  | $Q_2^{n+1}$ | $Q_1^{n+1}$ | Y  | <b>一激</b> 质<br><b>D</b> <sub>2</sub> | 信号<br><b>D</b> 1 |
| 0       | 0       | 0  |             |             | 0  | 0                                    | 1                |
| 0       | 0       | 1  |             |             | 1  | 1                                    | 1                |
| 0       | 1       | 0  |             |             | 0  | 1                                    | 0                |
| 0       | 1       | 1  |             |             | 0  | 0                                    | 1                |
| 1       | 0       | 0  |             |             | 0  | 1                                    | 1                |
| 1       | 0       | 1  |             |             | 0  | 0                                    | 1                |
| 1       | 1       | 0  |             |             | 1  | 0                                    | 0                |
| 1       | 1       | 1  |             |             | 0  | 1                                    | 0                |

例2: 设计一个串行数据检测器。电路的输入信号A是与时钟脉冲同步的串行数据,输出信号为Y;要求电路输入信号A出现110序列时,输出信号Y为1,否则为0。采用JK触发器。



通过A端随机输入一串数:

A: 011001110

Y: 000100001

被测序列可重叠



解: (1)根据给定的逻辑功能建立原始状态图和原始状态表

1.)确定输入、输出变量及电路的状态数:

输入变量: A 输出变量: Y 状态数: 4个

2.) 定义输入、输出逻辑状态和每个电路状态的含义;

a —— 初始状态;

设计110序列检测器

b——A输入1后;

c —— A输入11后;

d —— A输入110后。

#### (2) 列出原始状态转换表





| 现态  | 次态/   | 输出                  |
|-----|-------|---------------------|
| 少心心 | A=0   | A=1                 |
| a   | a / 0 | <b>b</b> / <b>0</b> |
| b   | a / 0 | c/0                 |
| c   | d/ 1  | c/ 0                |
| d   | a/ 0  | <b>b</b> / <b>0</b> |

#### 2. 状态化简(找出等价状态,消去)

#### 合并等价状态,消去多余状态的过程称为状态化简

| 现态 | 次态/   | 输出                  |
|----|-------|---------------------|
| 地心 | A=0   | A=1                 |
| a  | a / 0 | <b>b</b> / <b>0</b> |
| b  | a / 0 | c/0                 |
| c  | d/ 1  | c/ 0                |
| d  | a/ 0  | <b>b</b> / <b>0</b> |

| 现态 | 次态 / 输出 |             |  |
|----|---------|-------------|--|
|    | A=0     | A=1         |  |
| a  | a/ 0    | <b>b</b> /0 |  |
| b  | a / 0   | c/0         |  |
| c  | a/1     | c/0         |  |

等价状态:在相同的输入 下有相同的输出,并转换 到同一个次态,这样的两 个状态称为等价状态。





#### (4) 选择触发器的类型

触发器个数:两个。

类型: 采用对 CP 下降沿敏感的

JK触发器。

| 现态       | $Q_1^{n+1}Q_0^{n+1} / Y$ |       |  |
|----------|--------------------------|-------|--|
| $Q_1Q_0$ | A=0                      | A=1   |  |
| 00       | 00/0                     | 01/0  |  |
| 01       | 00/0                     | 11/0  |  |
| 11       | 00 / 1                   | 11 /0 |  |











| $Q_1^n$ |    |   |       | 激励             | 激励信号  |       |
|---------|----|---|-------|----------------|-------|-------|
| 21      | 20 | А | $J_1$ | K <sub>1</sub> | $J_0$ | $K_0$ |
| 0       | 0  | 0 |       | .,             |       |       |
| 0       | 0  | 1 | Ī     |                |       |       |
| 0       | 1  | 0 |       |                |       |       |
| 0       | 1  | 1 |       |                |       |       |
| 1       | 1  | 0 |       |                |       |       |
| 1       | 1  | 1 |       |                |       |       |

找J0、K0、J1、K1对应的表达式

# JK触发器

#### 1.特性表

| J | K | Q <sup>n</sup> | $Q^{n+1}$ | 说 明               |
|---|---|----------------|-----------|-------------------|
| 0 | 0 | 0              | 0         | (1)<br>(1)<br>(1) |
| 0 | 0 | 1              | 1         | 状态不变              |
| 0 | 1 | 0              | 0         | <b>翠</b> 0        |
| 0 | 1 | 1              | 0         | 置 0               |
| 1 | 0 | 0              | 1         | 置 1               |
| 1 | 0 | 1              | 1         | 置 1               |
| 1 | 1 | 0              | 1         | 翻转                |
| 1 | 1 | 1              | 0         | 田幼 十文             |

2.激励表

| Q <sup>n</sup> | $Q^{n+1}$ | $oldsymbol{J}$ | K |
|----------------|-----------|----------------|---|
| 0              | 0         | 0              | × |
| 0              | 1         | 1              | × |
| 1              | 0         | X              | 1 |
| 1              | 1         | X              | 0 |



## 卡诺图化简得

#### 输出方程

$$Y = Q_1 \overline{A}$$

#### 激励方程



$$J_1 = Q_0 A$$

#### 状态转换真值表及激励信号

| $Q_1^n$         | $O^n$   |   | 4 V | Y       | 激励信号  |         |       |
|-----------------|---------|---|-----|---------|-------|---------|-------|
| $\mathcal{Q}_1$ | $Q_0^n$ | A | I   | $J_{1}$ | $K_1$ | $J_{0}$ | $K_0$ |
| 0               | 0       | 0 | 0   | 0       | ×     | 0       | ×     |
| 0               | 0       | 1 | 0   | 0       | ×     | 1       | ×     |
| 0               | 1       | 0 | 0   | 0       | ×     | ×       | 1     |
| 0               | 1       | 1 | 0   | 1       | ×     | 0       | ×     |
| 1               | 1       | 0 | 1   | ×       | 1     | ×       | 1     |
| 1               | 1       | 1 | 0   | ×       | 0     | ×       | 0     |





 $K_1 = \overline{A}$ 



$$K_0 = \overline{A}$$

激励方程的第

#### (6) 根据激励方程和输出方程画出逻辑图,并检查自启动能力

# 激励方程

$$\boldsymbol{J}_{\scriptscriptstyle 1} = \boldsymbol{Q}_{\scriptscriptstyle 0} \boldsymbol{A}$$

$$J_{\scriptscriptstyle 0}=A$$

$$K_{1} = \overline{A}$$

$$K_{\scriptscriptstyle 0} = \overline{A}$$

# 输出方程

$$Y = Q_1 \overline{A}$$



#### 检查自启动能力和输出是否只有一处输出为1.

#### 画出完全状态转换表

# 当 Q Q 10时

$$\mathbf{Q}^{n+1} = \mathbf{J}\overline{\mathbf{Q}}^n + \overline{\mathbf{K}}\mathbf{Q}^n$$

$$\boldsymbol{J}_{\scriptscriptstyle 1} = \boldsymbol{Q}_{\scriptscriptstyle 0} \boldsymbol{A} \qquad \boldsymbol{K}_{\scriptscriptstyle 1} = \boldsymbol{A}$$

$$\boldsymbol{J}_{\scriptscriptstyle 0} = \boldsymbol{A} \qquad \boldsymbol{K}_{\scriptscriptstyle 0} = \overline{\boldsymbol{A}}$$

$$A=0$$
  $Q_1^{n+1}Q_0^{n+1}=00$   $Y=1$ 

$$A=1$$
  $Q_1^{n+1}Q_0^{n+1}=11$   $Y=0$ 

#### 输出方程

$$Y = Q_{1}\overline{A} \longrightarrow Y = Q_{1}Q_{0}\overline{A}$$

$$Y = Q_{\scriptscriptstyle 1}Q_{\scriptscriptstyle 0}\overline{A}$$

| 现态       | $Q_1^{n+1}Q_0^{n+1} / Y$ |      |  |
|----------|--------------------------|------|--|
| $Q_1Q_0$ | <b>A=0</b>               | A=1  |  |
| 00       | 00/0                     | 01/0 |  |
| 01       | 00/0                     | 11/0 |  |
| 11       | 00/1                     | 11/0 |  |
| 10       | 00/1 11/0                |      |  |



能自启动

#### Y卡诺图化简得

输出方程 
$$Y = Q_1 A$$



Y卡诺图中有两个地方出现了1.使输出1指代不明。要修订。





输出方程  $Y = Q_1 \overline{A}$ 

卡诺图化简去掉无关项

$$Y = Q_{\scriptscriptstyle 1}Q_{\scriptscriptstyle 0}\overline{A}$$

X

0

