Дискретное вероятностное пространство. Основные определения и примеры

Определение

- Дискретным вероятностным пространством называется упорядоченная пара (Ω,P) , где Ω конечное множество и $P:\Omega \to [0,1]$ такая функция, что $\sum_{\omega \in \Omega} P(\omega) = 1$.
- ullet Элементы множества Ω называются элементарными событиями, а само Ω пространством элементарных событий или пространством исходов.
- ullet Величина $P(\omega)$, где $\omega\in\Omega$, называется **вероятностью** элементарного события ω . Функция P называется **распределением вероятностей**
- ullet Событием называется любое подмножество $A\subset\Omega.$
- ullet Вероятностью события $A\subset\Omega$ называется величина $P(A)=\sum_{\omega\in A}P(\omega).$
- \emptyset —**невозможное событие**. Очевидно, что его вероятность равна нулю. Но могут быть и другие события, имеющие нулевую вероятность

Замечание

ullet Удобно считать, что $\Omega=\{\omega_1,...,\omega_n\}$ и $P(\omega_i)=p_i$. Дискретная математика. Тогда $orall i(0\leq p_i\leq 1)$ и $p_1+...+p_n=1$.

Дискретное вероятностное пространство: примеры

1.

- Пусть мы n раз подбросили монетку и после каждого подбрасывания отмечаем, упала ли она орлом или решкой.
- Если выпал орел, будем писать 1, а если выпала решка -0.
- Элементарным событием будем считать совокупность результатов всех n подбрасываний монетки.
- То есть $\Omega = \{(a_1,...,a_n)| \forall i \ a_i \in \{0,1\}\} = \{0,1\}^n$. Элементы Ω соответствуют подмножествам [1..n] случайное подмножество.
- • Будем считать, что вероятности всех элементарных событий равны. Тогда $orall \omega \in \Omega(P(\omega)=rac{1}{2n})$.
- В получившемся вероятностном пространстве можно рассмотреть, например, следующие события.
- А: "При первом подбрасывании выпал орел";
- В: "При втором подбрасывании выпала решка";
- С: "Результаты первого и второго подбрасываний одинаковы".
- Легко видеть, что P(A) = P(B) = P(C) = 1/2.

Определение

Распределение вероятностей называется равномерным, если вероятности всех элементарных событий равны.

Снова подбросим n раз монетку. Но распределение вероятностей выберем другое.

- ullet Пусть $p,q\geq 0$ таковы, что p+q=1
- ullet Обозначим через $s(\omega)$ число выпавших орлов в элементарном событии ω . (Т.е. $s(a_1,...,a_n)=a_1+...+a_n$).
- ullet Пусть $P(\omega)=p^{s(\omega)}q^{n-s(\omega)}.$
- Заметим, что

$$\sum_{\omega\in\Omega}P(\omega)=\sum_{k=0}^nC_n^kp^kq^{n-k}=(p+q)^n=1,$$

следовательно, (Ω, P) — дискретное вероятностное пространство.

- Рассмотрим следующие события:
 - $S_i = \{\omega \in \Omega | s(\omega) = i\}$, где $i \in [0..n]$, "выпало ровно і орлов";
 - $T_j = \{(a_1,...,a_n) \in \Omega | a_j = 1\}$, $j \in [1..n]$, "на ј-м шаге выпал орёл".•
- ullet Легко видеть, что $P(S_i) = C_n^i p^i q^{n-i};$
- Далее,

1. Вероятность Р(ω):

$$P(\omega) = p^{k+1}q^{n-(k+1)} = p \cdot p^kq^{(n-1)-k}$$
.

$$P(T_i) = \sum_{k=0}^{n-1} C_{n-1}^k p^{k+1} q^{n-1-k} = p(p+q)^{n-1} = p.$$

• Последнее равенство означает, что на ј-м шаге с вероятностью р выпадет орел и с вероятностью q — решка

3.

Заметим, что события S_i из предыдущего примера образуют разбиение множества Ω .

- ullet Тогда $P(S_0)+P(S_1)+...+P(S_n)=1.$ ullet Это означает, что S_i можно рассматривать как элементарные события.
- ullet Более точно, пусть $\Omega'=\{S_0,S_1,...,S_n\}$ и $P(S_i)=C_n^ip^iq^{n-i}$. Тогда пара (Ω',P) является дискретным вероятностным пространством.

Определение

Распределение вероятностей, задаваемое формулой $P(S_i) = C_n^i p^i q^{n-i}$, называется **биномиальным**

Условная вероятность. Определение, формула полной вероятности. Формула Байеса и теорема Байеса.

- ullet Пусть (Ω,P) дискретное вероятностное пространство; $A,B\subset\Omega$
- ullet Будем обозначать через AB событие, задаваемое множеством $A\cap B$. (Т.е. AB это событие, означающее то, что одновременно произошли события A и B.)

Определение

Пусть P(B)>0. Тогда условной вероятностью события A при условии события B называется величина $P(A|B)=rac{P(AB)}{P(B)}$

Замечание

То есть мы предполагаем, что событие B выполнено: рассматриваем только те исходы, при которых это так. И считаем среди них долю тех исходов, для которых выполнено A. Эта доля и есть условная вероятность

Лемма (Формула Байеса)

$$P(B|A) = rac{P(B)P(A|B)}{P(A)}$$

Доказательство.

$$P(B|A)P(A) = P(AB) = P(B)P(A|B)$$

Теорема (Формула полной вероятности)

Пусть $\Omega = B_1 \cup ... \cup B_m$ — разбиение Ω и $orall i P(B_i) > 0$.

Тогда
$$P(A) = \sum_{i=1}^m P(A|B_i) P(B_i)$$

Доказательство. Пусть $A_i = AB_i$ = $A \cap B_i$.

- ullet Тогда $A=A_1\cup...\cup A_m$ разбиение А.
- ullet Следовательно, $P(A) = \sum_{i=1}^m P(A_i) = \sum_{i=1}^m P(A|B_i) P(B_i).$

Теорема (Байеса)

Пусть
$$\Omega=B_1\cup...\cup B_m$$
 — разбиение Ω и $orall_i~P(B_i)>0.$ Тогда $P(B_i|A)=rac{P(A|B_i)P(B_i)}{\sum_{j=1}^mP(A|B_j)P(B_j)}$

Доказательство.

$$P(A|B_i)P(B_i) = P(AB_i)$$

 $\sum_{i=1}^{m} P(A|B_i)P(B_i) = P(A).$

Независимые события. Определение, примеры и свойства.

Независимые события

Определение

- ullet События A и B независимы, если P(AB)=P(A)P(B).
- ullet События $A_1,...,A_n$ независимы, если для любых $k\in [1..n]$ и $1\leq i_1 < i_2 < ... < i_k \leq n$ выполнено $P(A_{i_1}...A_{i_k})=P(A_{i_1})...P(A_{i_k}).$

Замечание

- ullet Независимость не означает отсутствия пересечения. Если $A\cap B=\emptyset$, то события A и B зависимы!
- ullet Попарная независимость n событий не означает того, что все n событий независимы.
 - Например, события A, B и C из первого примера попарно независимы. Но все вместе они зависимы: P(ABC) = 0, но $P(A)P(B)P(C) = \frac{1}{8}$.
- ullet Во втором примере события $T_1,...,T_n$ независимы (напомним, что T_j это событие "на j-м шаге выпал орёл")

Утверждение

Если A и B независимы, то A и \overline{B} тоже независимы.

Доказательство.

$$P(A\overline{B}) = P(A) - P(AB) = P(A) - P(A)P(B) = P(A)(1 - P(B)) = P(A)P(\overline{B})$$

Замечание

- ullet Аналогично можно доказать, что если события $A_1,...,A_i,...,A_n$ независимы, то и $A_1,...,\overline{A_i},...,A_n$ независимы.
- ullet Тогда независимым будет также и любой набор событий вида $A_1',...,A_n'$, где для любого j событие A_j' это либо $\overline{A_j}$.

Случайные величины. Определение и примеры. Распределение случайной величины. Независимые случайные величины.

• Пусть (Ω, P) — дискретное вероятностное пространство.

Определение

ullet Случайной величиной называется произвольное отображение $\xi:\Omega o\mathbb{R}.$

Примеры

- 1. Если Ω множество результатов n подбрасываний монетки, то $s(\omega)$ (количество выпавших "орлов") является случайной величиной.
- 2. Каждому событию $A\subset \Omega$ соответствует случайная величина, являющаяся характеристической функцией множества A:

$$\chi_A(\omega) egin{cases} 0, \omega
ot\in A \ 1, \omega \in A \end{cases}$$

ullet Пусть $\dot{\xi}:\Omega o\mathbb{R}$ — случайная величина и $X=\xi(\Omega)$ — множество значений случайной величины ξ . Тогда

мы можем рассматривать события вида $\xi(\omega)=x$, где $x\in X$, или $\xi(\omega)\in B$, где $B\subset X$. Тем самым, мы получаем распределение вероятностей на множестве X.

Случайные величины: распределение и независимость

- ullet Пусть $X=\{x_1,...,x_m\}$. Тогда $P_{\xi}(x_i)=P(\{\omega\in\Omega|\xi(\omega)=x_i\})$.
- ullet Очевидно, что $P_{\xi}(x_1) + ... + P_{\xi}(x_m) = 1$
- ullet Следовательно, (X,P_{ξ}) дискретное вероятностное пространство.
- ullet Функция P_{ξ} называется распределением случайной величины $\xi.$
- ullet Для обозначения индуцированной вероятности мы также будем использовать также обозначение $P\{\xi=x_i\}$

Определение

Случайные величины $\xi_1,...,\xi_r:\Omega o X$ называются независимыми, если $\forall t_1,...,t_r\in X$ ($P\{\xi_1=t_1,...,\xi_r=t_r\}=P\{\xi_1=t_1\}...P\{\xi_r=t_r\}$).

Замечание

Если события $A_1,...,A_r$ независимы если и только если их характеристические функции $\chi_{A_1},...,\chi_{A_r}$ независимые случайные величины.

Математическое ожидание. Определение и свойства. Математическое ожидание произведения независимых случайных величин.

Определение

- ullet Пусть $\xi:\Omega o X$ случайная величина.
- ullet Математическим ожиданием случайной величины ξ называется число

$$E\xi = \sum_{\omega \in \Omega} \xi(\omega) P(\omega)$$

Замечание

- ullet Очевидно, что $E\xi = \sum_{x \in X} x P\{\xi = x\}$
- ullet Если ξ случайная величина и $a\in\mathbb{R}$, то $E(a\xi)=aE\xi$
- ullet Если $\xi_1,...,\xi_r:\Omega o X$ случайные величины, то $E(\xi_1+...+\xi_r)=E\xi_1+...+E\xi_r.$
- ullet Другое обозначение для математического обозначения: $M\xi.$

Теорема

Если случайные величины $\xi_1,...,\xi_r:\Omega o X$ независимы, то $E(\xi_1...\xi_r)=E\xi_1...E\xi_r.$ Доказательство.

Пусть случайная величина $\xi_1...\xi_r$ принимает значения из множества \mathcal{X}_r .

- ullet Заметим, что \mathcal{X}_r . состоит из произведений вида $x_1...x_r$, где $orall i(x_i \in X)$.
- Тогда

$$\begin{split} E(\xi_1...\xi_r) &= \sum_{x \in \mathcal{X}_r} x P\{\xi_1...\xi_r = x\} = \\ &= \sum_{x_1,...,x_r \in X} x_1...x_r P\{\xi_1 = x_1,...,\xi_r = x_r\} = \\ &= \sum_{x_1,...,x_r \in X} x_1...x_r P\{\xi_1 = x_1\}...P\{\xi_r = x_r\} = \\ &= (\sum_{x_1 \in X} x_1 P\{\xi_1 = x_1\})...(\sum_{x_r \in X} x_r P\{\xi_r = x_r\}) = E\xi_1...E\xi_r. \end{split}$$

Дисперсия и её свойства. Дисперсия суммы независимых случайных величин.

Дисперсией случайной величины ξ называется число $D\xi=E(\xi{-}E\xi)^2$

Замечание

- ullet Из определения очевидно, что $D \xi > 0$.
- Также очевидно, что $D\xi=0$, если и только если $P\{\xi=E\xi\}=1$ (т. е. случайная величина ξ почти всегда постоянна: за исключением, возможно, множества с нулевой вероятностью).
- ullet По сути, $D\xi$ показывает то, насколько сильно случайная величина ξ отклоняется от своего среднего.

Утверждение

- 1. $D\xi = E\xi^2 (E\xi)^2$.
- 2. Пусть $a,b\in\mathbb{R}$. Тогда $D(a+b\xi)=b^2D\xi$

Доказательство.

1.

•
$$D\xi = E(\xi^2 - 2\xi \cdot E\xi + (E\xi)^2) = E\xi^2 - 2E\xi \cdot E\xi + (E\xi)^2 = E\xi^2 - (E\xi)^2.$$

2.

•
$$D(a+b\xi) = E((a+b\xi)-(a+bE\xi))^2 = E(b(\xi-E\xi))^2 = b^2D\xi.$$

Теорема

Пусть ξ и η — независимые случайные величины. Тогда $D(\xi+\eta)=D\xi+D\eta$.

Доказательство.

- ullet Заметим, что случайные величины $\xi E \xi$ и $\eta E \eta$ также независимы.
- ullet Следовательно, $E(\xi E\xi)(\eta E\eta) = E(\xi E\xi)E(\eta E\eta) = 0.$
- Тогда

$$D(\xi + \eta) = E((\xi - E\xi) + (\eta - E\eta))^2 = E(\xi - E\xi)^2 + E(\eta - E\eta)^2 + 2E(\xi - E\xi)(\eta - E\eta) = D\xi + D\eta$$

Ковариация случайных величин и её свойства. Коэффициент корелляции.

Определение

Величина $cov(\xi,\eta)=E(\xi-E\xi)(\eta-E\eta)$ называется **ковариацией** случайных величин ξ и η .

Утверждение

$$cov(\xi, \eta) = E(\xi \eta) - E\xi E\eta$$

Доказательство.

$$cov(\xi,\eta) = E(\xi - E\xi)(\eta - E\eta) = E(\xi\eta - \xi E\eta - \eta E\xi + E\xi E\eta) = E(\xi\eta) - E\xi E\eta - E\xi E\eta + E\xi E\eta = E(\xi\eta) - E\xi E\eta.$$

Свойства ковариации

Пусть ; $\xi, \eta, \theta: \Omega o \mathbb{R}$ — случайные величины и $a,b \in \mathbb{R}$. Тогда

- 1. $cov(a\xi + b\eta, \theta) = acov(\xi, \theta) + bcov(\eta, \theta)$;
- 2. $cov(\xi, \eta) = cov(\eta, \xi);$
- 3. $cov(\xi, \xi) = D\xi \ge 0$.

Доказательство.

1.
$$cov(a\xi + b\eta, \theta) = E((a\xi + b\eta)\theta) - E(a\xi + b\eta)E\theta =$$
 $= E(a\xi\theta + b\eta\theta) - (aE\xi + bE\eta)E\theta =$
 $= aE(\xi\theta) + bE(\eta\theta) - aE\xi E\theta - bE\eta E\theta = acov(\xi, \theta) + bcov(\eta, \theta).$

Теорема

$$|cov(\xi,\eta)| \le \sqrt{D\xi \cdot D\eta}.$$

Доказательство.

- ullet Заметим, что все случайные величины, заданные на вероятностном пространстве Ω , образуют линейное пространство над $\mathbb R$
- По лемме $cov(\xi,\eta)$ вещественное скалярное произведение на этом пространстве.
- Тогда по неравенству Коши-Буняковского-Шварца имеем $cov(\xi,\eta)^2 < cov(\xi,\xi)cov(\eta,\eta) = D\xi \cdot D\eta.$

Коэффициент корелляции

ullet Величина $ho(\xi,\eta)=rac{cov(\xi,\eta)}{\sqrt{D\xi\cdot D\eta}}$ называется **коэффициентом корреляции** случайных величин ξ и η .

Замечание

По доказанной выше теореме $ho(\xi,\eta)\in [-1,1].$ Если ξ и η независимы, то $ho(\xi,\eta)=0$ (но обратное неверно)

Доказательство нижней оценки для r(k,k) на языке теории вероятностей.

Для любого натурального $k \geq 2$ выполняется неравенство $r(k,k) \geq 2^{k/2}.$

Доказательство

Пусть $k \geq 3$ и $n < 2^{k/2}$ (случай k = 2 тривиален).

- Рассмотрим полный граф G на n вершинах и раскрасим его рёбра в два цвета случайным образом.
 - \circ То есть мы C_n^2 раз подбрасываем монетку и выбираем цвет очередного ребра в зависимости от результата подбрасывания.
 - Все исходы равновероятны. То есть каждое ребро может быть покрашено в цвет 1 или в цвет 2 с вероятностью 1/2, и все эти события независимы.
- Для любого подмножества $S\subset V(G)$, где |S|=k, определим событие A_S : "все рёбра подграфа G(S) одноцветны". Тогда $P(A_S)=2\cdot 2^{-C_k^2}$.
- Тогда:

$$P\left(igcup_{|S|=k} A_S
ight) \leq \sum_{|S|=k} P(A_S) = 2 \cdot 2^{-C_k^2} \cdot C_n^k = 2 \cdot 2^{-k(k-1)/2} \cdot rac{n(n-1)\dots(n-k+1)}{k!}.$$

• Оценим:

$$P\left(igcup_{|S|=k} A_S
ight) < 2 \cdot rac{n^k}{k!} \cdot 2^{-k(k-1)/2}.$$

• Подставляя $n < 2^{k/2}$, получаем:

$$P\left(igcup_{|S|=k} A_S
ight) < rac{2\cdot (2^{k/2})^k}{k!}\cdot 2^{-k(k-1)/2} = rac{2\cdot 2^{k^2/2}}{k!}\cdot 2^{-k(k-1)/2}.$$

• Упростим:

$$P\left(igcup_{|S|=k}A_S
ight)<rac{2\cdot 2^{k/2}}{k!}.$$

• При $k \geq 3$:

$$P\left(igcup_{|S|=k}A_S
ight)<1.$$

ullet Следовательно, существует раскраска, при которой нет одноцветной клики размера k.

Теорема Эрдёша-Мозера о наименьшем ациклическом подтурнире.

Турнир с наименьшим ациклическим подтурниром

- Обозначим через v(n) наибольшее целое число, для которого всякий турнир на n вершинах содержит ациклический подтурнир на v(n) вершинах.
- Другими словами, v(n) это такое наибольшее целое число v, что в любом турнире T с множеством вершин $V(T)=\{u_1,\ldots,u_n\}$ можно выбрать такую последовательность вершин (u_{i_1},\ldots,u_{i_v}) , что все стрелки между её вершинами будут направлены слева направо (т. е. при $1\leq k<\ell\leq n$ имеем $u_{i_k}\to u_{i_\ell}\in A(T)$).

Teopeма (Р. Erdős, L. Moser, 1964)

$$v(n) \leq 1 + \lfloor 2\log_2 n \rfloor.$$

Доказательство

Пусть $t = 2 + |2 \log_2 n|$.

- Нужно доказать, что существует такой турнир на n вершинах, в котором нет ациклического подтурнира на t вершинах.
- Построим случайный турнир на n вершинах.
 - \circ То есть зафиксируем множество вершин $V(T)=\{u_1,\ldots,u_n\}$ и зададим направления его стрелок при помощи C_n^2 подбрасываний монетки.
 - Все исходы равновероятны. То есть каждая стрелка может быть направлена в любую из двух сторон с вероятностью 1/2, и все эти события независимы.
- Пусть $\mathcal{P} = \{(u_{i_1}, \dots, u_{i_t}) \mid i_k \neq i_\ell$ при $k \neq \ell\}$ множество всех последовательностей из t различных вершин.
- Для каждой последовательности $S=(u_{i_1},\dots,u_{i_t})\in\mathcal{P}$ определим событие A_S : $orall k,\ell\in[1..t](k<\ell o u_{i_k} o u_{i_\ell}\in A(T)).$

- \circ Тогда $P(A_S) = 2^{-C_t^2} = 2^{-t(t-1)/2} = 2^{-t(1+\lfloor 2\log_2 n \rfloor)/2} \leq 2^{-t\log_2 n} = n^{-t}.$
- ullet Всего последовательностей $|\mathcal{P}| = A_n^t = n(n-1)\dots(n-t+1) < n^t.$
- Тогда:

$$P\left(igcup_{S\in\mathcal{P}}A_S
ight) \leq \sum_{S\in\mathcal{P}}P(A_S) < n^tn^{-t} = 1.$$

• Следовательно, найдётся турнир, в котором нет ациклического подтурнира на t вершинах.

Замечание

- R. Stearns доказал, что $v(n) \geq 1 + \lfloor \log_2 n \rfloor$.
- Тем самым, $1 + \lfloor \log_2 n \rfloor \leq v(n) \leq 1 + \lfloor 2 \log_2 n \rfloor$.

Теорема Клейтмана-Спенсера об (n,k)-универсальных множествах.

(n, k)-универсальные множества

- Пусть $a=(a_1,\ldots,a_n)\in\{0,1\}^n$ 0-1 вектор и $S=\{i_1,\ldots,i_k\}$ набор координат $(1\leq i_1<\cdots< i_k\leq n).$
- Тогда $a|_S \stackrel{\mathrm{def}}{=} (a_{i_1}, \dots, a_{i_k})$ проекция вектора a на координаты из S.
- Аналогично, если $A\subset\{0,1\}^n$, то $A|_S\stackrel{\mathrm{def}}{=}\{(a_{i_1},\ldots,a_{i_k})\mid (a_1,\ldots,a_n)\in A\}$ проекция множества A на координаты из S.

Определение

Множество $A\subset \{0,1\}^n$ называется (n,k)-универсальным, если для любого набора координат $S=\{i_1,\ldots,i_k\}$, где $1\leq i_1<\cdots< i_k\leq n$, проекция $A|_S$ содержит все 2^k возможных комбинаций нулей и единиц.

Teopeмa (D.J. Kleitman, J. Spencer, 1973)

Пусть $n,k,r\in\mathbb{N}$ таковы, что $n\geq k$ и $C_n^k2^k(1-2^{-k})^r<1.$ Тогда существует (n,k)-универсальное множество размера r.

Доказательство

Рассмотрим случайную матрицу M размера n imes r с коэффициентами из $\{0,1\}$.

- То есть мы $n \cdot r$ раз подкидываем монетку и определяем значения всех коэффициентов m_{ij} этой матрицы. Каждый из коэффициентов будет равен 0 или 1 с вероятностью 1/2, и все эти события независимы.
- Обозначим через A множество строк матрицы M. Её i-ю строку будем обозначать a_i .
- Для фиксированного набора координат $S=\{j_1,\ldots,j_k\}$, где $1\leq j_1<\cdots< j_k\leq n$, и фиксированного вектора $v\in\{0,1\}^k$ посчитаем вероятность того, что проекция A на координаты из S не содержит v:

$$P(v
otin A|_S) = \prod_{i=1}^r P(v
otin a_i|_S) = (1-2^{-k})^r.$$

• Тогда вероятность того, что множество A не является (n,k)-универсальным, не превосходит:

$$C_n^k 2^k (1 - 2^{-k})^r < 1.$$

Для того, чтобы показать, как из этой теоремы следует существование (n,k)-универсального множества малого размера, нам потребуется следующая лемма.

Лемма об экспоненте. Следствие о (n,k) -универсальных множествах малого размера

(n, k)-универсальные множества малого размера

Лемма

При всех $x \in \mathbb{R}$ выполнено неравенство $e^x \geq x+1$, причём равенство достигается только при x=0.

Доказательство

Рассмотрим функцию $f(x) = e^x - x - 1$.

- $oldsymbol{\cdot} f'(x)=e^x-1$, следовательно, f'(x)<0 при x<0 и f'(x)>0 при x>0.
- Тогда f(x) убывает на $(-\infty,0)$ и возрастает на $(0,+\infty)$.
- Таким образом, при x=0 имеем $f(x) \geq f(0)=0$.

Следствие (A.K. Chandra, L. Kou, G. Markowsky, S. Zaks, 1983)

При любых $n \geq 2$ и $k \geq 4$ существует (n,k)-универсальное множество размера не более $\lceil k 2^k \ln n \rceil$.

Доказательство

Пусть $r = \lceil k 2^k \ln n
ceil$. Тогда:

- $C_n^k 2^k (1-2^{-k})^r < rac{n^k}{k!} * 2^k e^{-r/2^k} \le rac{(2n)^k}{k!} \cdot e^{-k \ln n} = rac{(2n)^k}{k!} \cdot n^{-k} = rac{2^k}{k!} < 1.$
- Следовательно, по теореме Клейтмана-Спенсера существует (n,k)-универсальное множество размера r.

Факты о матожидании: оценки наибольшего и наименьшего значения случайной величины, неравенства Маркова и Чебышёва.

• Использование математического ожидания в доказательстве комбинаторных фактов основывается на следующих фактах.

Утверждение

- Пусть (Ω,P) дискретное вероятностное пространство и $\xi:\Omega \to X$ случайная величина, такая, что $E(\xi) \ge \lambda$. Тогда существует элементарное событие $\omega \in \Omega$, такое, что $\xi(\omega) \ge \lambda$.
- Аналогично, если $E(\xi) \leq \lambda$, то существует элементарное событие $\omega \in \Omega$, такое, что $\xi(\omega) \leq \lambda$.

Доказательство

- Докажем первое утверждение (второе доказывается аналогично).
- Предположим противное: пусть $orall \omega \in \Omega(\xi(\omega) < \lambda)$.
- Тогда $E(\xi)=\sum_{\omega\in\Omega}P(\omega)\xi(\omega)<\lambda\sum_{\omega\in\Omega}P(\omega)=\lambda$. Противоречие.

Неравенства Маркова и Чебышёва

Теорема (Неравенство Маркова)

Пусть (Ω,P) — дискретное вероятностное пространство, $\xi:\Omega\to X$ — случайная величина, принимающая неотрицательные значения, и $\lambda>0$. Тогда:

$$P\{\xi \geq \lambda\} \leq rac{E\xi}{\lambda}.$$

Доказательство

•
$$E\xi = \sum_{x \in X} xP\{\xi = x\} \ge \sum_{x \ge \lambda} \lambda P\{\xi = x\} = \lambda P\{\xi \ge \lambda\}.$$

Теорема (Неравенство Чебышёва)

Пусть $\xi:\Omega o X$ — произвольная случайная величина и $\lambda>0$. Тогда:

$$P\{|\xi-E\xi|\geq \lambda\}\leq rac{D\xi}{\lambda^2}.$$

Доказательство

•
$$P\{|\xi - E\xi| \ge \lambda\} = P\{(\xi - E\xi)^2 \ge \lambda^2\} \le \frac{E(\xi - E\xi)^2}{\lambda^2} = \frac{D\xi}{\lambda^2}$$
.

Теорема Селе о количестве гамильтоновых путей в турнире.

Гамильтоновы пути в турнирах

Теорема (Т.Szele, 1943)

Для любого $n\in\mathbb{N}$ существует турнир на n вершинах, в котором есть как минимум $rac{n!}{2^{n-1}}$ гамильтоновых путей.

Доказательство

Рассмотрим случайный турнир T на множестве вершин $V(T)=\{u_1,\ldots,u_n\}$.

- Как и раньше, ориентация всех стрелок определяется при помощи C_n^2 подбрасываний монетки; каждая стрелка будет ориентирована в любую из сторон с вероятностью $\frac{1}{2}$, и все эти события независимы.
- Для каждой перестановки $\sigma \in S_n$ обозначим через ξ_σ характеристическую функцию следующего события: "последовательность вершин $(u_{\sigma(1)},\ldots,u_{\sigma(n)})$ гамильтонов путь".
- Тогда $E\xi_{\sigma}=rac{1}{2^{n-1}}.$
- Пусть $\xi(T) \stackrel{\mathrm{def}}{=} \sum_{\sigma \in S_n} \xi_{\sigma}(T)$ случайная величина, означающая количество гамильтоновых путей в случайном турнире T.
- Тогда $E(\xi) = \sum_{\sigma \in S_n} E(\xi_\sigma) = rac{n!}{2^{n-1}}.$
- Следовательно, существует турнир T, для которого $\xi(T) \geq rac{n!}{2^{n-1}}.$

Теорема Алона о размере доминирующего множества.

Доминирующие множества большого размера

Определение

В графе G множество $S\subset V(G)$ называется **доминирующим**, если $V(G)=S\cup N_G(S)$ (т.е. если любая вершина графа либо принадлежит S, либо смежна с вершиной из S).

Теорема (N. Alon, 1990)

Пусть v(G)=n и $\delta(G)=d$. Тогда в графе G есть доминирующее множество размера не более

$$\frac{n^{1+\ln(d+1)}}{d+1}.$$

Доказательство

Выделим случайное подмножество $S\subset V(G)$ следующим образом:

- Каждая вершина будет включаться в S с вероятностью $p=rac{\ln(d+1)}{d+1}.$ Все эти события независимы.
- Тогда |S| случайная величина; E(|S|)=np.

Для каждого подмножества $S\subset V(G)$ определим подмножество

$$\overline{S} = V(G) \setminus (S \cup N_G(S)).$$

- Очевидно, что тогда $S \cup \overline{S}$ доминирующее множество.
- Оценим математическое ожидание случайной величины $|\overline{S}|$.
- Для этого для каждой вершины $v \in V(G)$ рассмотрим случайную величину ξ_v , являющуюся характеристической функцией события " $v \in \overline{S}$ ".
- Тогда $E(\xi_v) = (1-p)^{d_G(v)+1} \leq (1-p)^{d+1}$.
- Следовательно, $E(|\overline{S}|) = \sum_{v \in V(G)} E(\xi_v) \leq n (1-p)^{d+1} \leq n e^{-p(d+1)}.$

Таким образом,

$$E(|S|+|\overline{S}|) \leq np + ne^{-p(d+1)} = rac{n^{1+\ln(d+1)}}{d+1},$$

откуда и следует существование доминирующего множества размера не более

$$\frac{n^{1+\ln(d+1)}}{d+1}.$$

Вероятностное доказательство теоремы Эрдёша о хроматическом числе и обхвате графа. Два утверждения о стремящихся к нулю вероятностях — без доказательства.

Теорема (Р. Erdős, 1959)

Пусть $k,g\in\mathbb{N}$, $k,g\geq 3$. Тогда существует граф G с $g(G)\geq g$ и $\chi(G)\geq k$.

Доказательство (Alon-Spencer, 1992)

- Зафиксируем число $heta \in \left(0, rac{1}{g}
 ight)$.
- Выберем достаточно большое n (насколько большим его нужно взять, мы определим позже) и рассмотрим случайный граф G на n вершинах, в котором каждая пара вершин соединяется ребром с вероятностью $p=n^{\theta-1}$ (как и раньше, все такие события независимы).
- Рассмотрим случайные величины ξ_i количество циклов длины i в графе G, а также $\xi = \sum_{i=3}^{g-1} \xi_i$ количество циклов, длина которых меньше g.
- Оценим математическое ожидание этих случайных величин.
- ullet Пусть $m=\lceil rac{5}{p}lnn
 ceil$. Далее мы оценим вероятность того, что $lpha(G)\geq m$.

Утверждение

$$P\{\xi \geq rac{n}{2}\} \xrightarrow{n o \infty} 0$$
 и $P\{lpha(G) \geq m\} \xrightarrow{n o \infty} 0.$

- Следовательно, при достаточно больших n каждая из вышеприведенных вероятностей будет меньше $\frac{1}{2}$.
- Выберем n настолько большим, чтобы выполнялись оба условия:

$$P\{\xi\geq rac{n}{2}\}<rac{1}{2}$$
 in $P\{lpha(G)\geq m\}<rac{1}{2}.$

- Тогда найдется такой граф G, что v(G)=n, lpha(G)< m и в G есть не более $rac{n}{2}$ циклов, длина которых меньше g.
- Удалим из каждого такого цикла по вершине. Получим граф G^\prime , такой, что:

$$v(G') \geq rac{n}{2}, \quad g(G') \geq g, \quad$$
и $lpha(G') \leq lpha(G) \leq m-1 \leq 5n^{1- heta} \ln n.$

Тогда:

$$\chi(G') \geq rac{v(G')}{lpha(G')} \geq rac{n/2}{5n^{1- heta} \ln n} = rac{n^ heta}{10 \ln n},$$

Доказательства утверждений о стремлении к нулю вероятности того, что в случайном графе будет много длинных циклов и будет большое независимое множество (из доказательства теоремы Эрдёша о хроматическом числе и обхвате графа)

Утверждение 1

$$P\{\xi\geq rac{n}{2}\} \stackrel{n o\infty}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} 0.$$

Доказательство

В графе G есть $n^{\underline{i}}=n(n-1)\dots(n-i+1)$ последовательностей вершин длины i.

- Каждая из них задает цикл длины i с вероятностью p^i .
- Каждый цикл длины i задается 2i такими последовательностями.

Итого:

$$E\xi_i = rac{n^i}{2i} \cdot p^i \leq rac{(np)^i}{2i} = rac{n^{ heta i}}{2i}.$$

• Тогда:

$$E\xi = \sum_{i=3}^{g-1} E\xi_i \leq \sum_{i=3}^{g-1} rac{n^{ heta i}}{2i} \leq n^{ heta g} \sum_{i=3}^{g-1} rac{1}{2i}.$$

• По неравенству Маркова получаем:

$$P\{\xi \geq rac{n}{2}\} \leq 2E\xi.$$

- Заметим, что heta g-1<0. Следовательно:

Таким образом:

$$P\{\xi \geq rac{n}{2}\} \stackrel{n o \infty}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-} 0.$$

Утверждение 2

$$P\{lpha(G)\geq m\} \stackrel{n o\infty}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} 0.$$

Доказательство

Для любого подмножества $S\subset V(G)$, где |S|=m, вероятность того, что S — независимое множество, равна $(1-p)^{C_m^2}$.

• Тогда:

$$P\{lpha(G) \geq m\} \leq C_n^m \cdot (1-p)^{C_m^2} < n^m \cdot (e^{-p})^{m(m-1)}.$$

- Заметим, что при n>2 выполнено неравенство:

$$p(m-1) \geq 5 \ln n - p > 4 \ln n.$$

• Следовательно:

$$e^{-p(m-1)} \leq \frac{1}{n^2}.$$

Тогда:

$$n^m \cdot e^{-p(m-1)} \leq rac{1}{n^2}.$$

• Таким образом:

$$P\{lpha(G)\geq m\} \xrightarrow{n o\infty} 0.$$