HW5: Written

Friday, March 15, 2019 11:19 AM

CS_188_Fa...

CS 188 Fall 2018

Introduction to Artificial Intelligence

Written HW 5

Due: Monday 10/1/2018 at 11:59pm (submit via Gradescope).

Leave self assessment boxes blank for this due date.

Self assessment due: Monday 10/15/2018 at 11:59pm (submit via Gradescope)

For the self assessment, fill in the self assessment boxes in your original submission (you can download a PDF copy of your submission from Gradescope). For each subpart where your original answer was correct, write "correct." Otherwise, write and explain the correct answer.

Policy: Can be solved in groups (acknowledge collaborators) but must be written up individually

Submission: Your submission should be a PDF that matches this template. Each page of the PDF should align with the corresponding page of the template (page 1 has name/collaborators, question 1 begins on page 2, etc.). **Do not reorder, split, combine, or add extra pages.** The intention is that you print out the template, write on the page in pen/pencil, and then scan or take pictures of the pages to make your submission. You may also fill out this template digitally (e.g. using a tablet.)

First name	
Last name	
SID	
Collaborators	

Q1. Reinforcement Learning

Imagine an unknown game which has only two states $\{A, B\}$ and in each state the agent has two actions to choose from: $\{\text{Up, Down}\}$. Suppose a game agent chooses actions according to some policy π and generates the following sequence of actions and rewards in the unknown game:

	-							
t	s_t	a_t	s_{t+1}	r_t	Q(A, up)	Q(A, down)	Q(B, up)	Q(B, down)
0	Α	Down	В	2	0	0.5*0+0.5*(2+0.*0) = 1	0	0
1	В	Down	В	-4	0	1	0	0.5*0+0.5*(-4+0.5*0) = -2
2	В	Up	В	0	0	1	0.5*0+0.5*(0+0) = 0	-2
3	В	Up	A	-3	0	1	0.5*0+0.5*(3+0.5*1)=1.75	-2
4	Α	Up	A	-1	0.5*0+0.5*(-1+1*0.5) = -0.25	1	1.75	-2

Unless specified otherwise, assume a discount factor $\gamma=0.5$ and a learning rate $\alpha=0.5$

(a) Recall the update function of Q-learning is:

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_{a'} Q(s_{t+1}, a'))$$

Assume that all Q-values initialized as 0. What are the following Q-values learned by running Q-learning with the above experience sequence?

$$Q(A, Down) = ____, \qquad Q(B, Up) = ____$$

(b) In model-based reinforcement learning, we first estimate the transition function T(s, a, s') and the reward function R(s, a, s'). Fill in the following estimates of T and R, estimated from the experience above. Write "n/a" if not applicable or undefined.

$$\hat{T}(A, Up, A) = 1$$
, $\hat{T}(A, Up, B) = 0$, $\hat{T}(B, Up, A) = 0.5$, $\hat{T}(B, Up, B) = 0.5$

$$\hat{R}(A, Up, A) = \frac{1}{2}, \quad \hat{R}(A, Up, B) = \underline{N/A}, \quad \hat{R}(B, Up, A) = \underline{3}, \quad \hat{R}(B, Up, B) = \underline{0}$$

Self assessment
If your answer was correct, write "correct" above. Otherwise, write and explain the correct answer.

(c) To decouple this question from the previous one, assume we had a different experience and ended up with the following estimates of the transition and reward functions:

s	a	s'	$\hat{T}(s, a, s')$	$\hat{R}(s, a, s')$
A	Up	Α	1	10
A	Down	Α	0.5	2
Α	Down	В	0.5	2
В	Up	Α	1	-5
В	Down	В	1	8

(i) Give the optimal policy $\hat{\pi}^*(s)$ and $\hat{V}^*(s)$ for the MDP with transition function \hat{T} and reward function \hat{R} . Hint: for any $x \in \mathbb{R}$, |x| < 1, we have $1 + x + x^2 + x^3 + x^4 + \cdots = 1/(1-x)$.

$\hat{\pi}^*(A) = {\sf up}$	$\hat{\pi}^*(B) = $ down	,	$\hat{V}^*(A) = 20$,	$\hat{V}^*(B)$:	₌ 16
. ()	 (- /	- 7	. (/			

- (ii) If we repeatedly feed this new experience sequence through our Q-learning algorithm, what values will it converge to? Assume the learning rate α_t is properly chosen so that convergence is guaranteed.
 - \bigcirc the values found above, \hat{V}^*
 - O neither \hat{V}^* V^*

Self assessment

O not enough information to determine

If your answer was correct, write "correct" above. Otherwise, write and explain the correct answer.

```
V^*(A) = \max(Q(A, up), Q(A, down))
Q(A, up) = 10 + 0.5 * V^*(A) = \sup(over \ I, \ 10 * 0.5^I, \ for \ I = 0 \ to \ infinity) = 10*1/(1-0.5) = 20
Q(A, down) = 2 + 0.5 * (0.5 * V^*(A) + 0.5 * V^*(B) = 2 + 0.25*20 + 0.25*V(B) = 7 + 0.25*V(B) = 7 + 0.25* 16
= 11
V^*(B) = \max(Q(B, up), Q(B, down))
Q(B, up) = -5 + 0.5 * V^*(A) = -5 + 0.5 * 20 = 5
Q(B, down) = 8 + 0.5 * V(B)
8/(1-0.5) = 16
```

Q2. Policy Evaluation

In this question, you will be working in an MDP with states S, actions A, discount factor γ , transition function T, and reward function R.

We have some fixed policy $\pi: S \to A$, which returns an action $a = \pi(s)$ for each state $s \in S$. We want to learn the Q function $Q^{\pi}(s,a)$ for this policy: the expected discounted reward from taking action a in state s and then continuing to act according to π : $Q^{\pi}(s,a) = \sum_{s'} T(s,a,s')[R(s,a,s') + \gamma Q^{\pi}(s',\pi(s'))]$. The policy π will not change while running any of the algorithms below.

(a) Can we guarantee anything about how the values Q^{π} compare to the values Q^* for an optimal policy π^* ?

None of the above are guaranteed

Self assessment

Optimal policy guarantee's we'll "do the right thing" in successor states, So it optimizes $Q^*(s,a)$, particularly the s' components.

If your answer was correct, write "correct" above. Otherwise, write and explain the correct answer.

- (b) Suppose T and R are unknown. You will develop sample-based methods to estimate Q^{π} . You obtain a series of samples $(s_1, a_1, r_1), (s_2, a_2, r_2), \ldots (s_T, a_T, r_T)$ from acting according to this policy (where $a_t = \pi(s_t)$, for all t).
 - (i) Recall the update equation for the Temporal Difference algorithm, performed on each sample in sequence:

$$V(s_t) \leftarrow (1 - \alpha)V(s_t) + \alpha(r_t + \gamma V(s_{t+1}))$$

which approximates the expected discounted reward $V^{\pi}(s)$ for following policy π from each state s, for a learning rate α .

Fill in the blank below to create a similar update equation which will approximate Q^{π} using the samples. You can use any of the terms $Q, s_t, s_{t+1}, a_t, a_{t+1}, r_t, r_{t+1}, \gamma, \alpha, \pi$ in your equation, as well as \sum and max with any index variables (i.e. you could write \max_a , or \sum_a and then use a somewhere else), but no other terms.

$$r_t + \gamma \max_{Q(s', a')} Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha [$$

(ii) Now, we will approximate Q^{π} using a linear function: $Q(s,a) = \sum_{i=1}^{d} w_i f_i(s,a)$ for weights w_1, \ldots, w_d and feature functions $f_1(s,a), \ldots, f_d(s,a)$.

To decouple this part from the previous part, use Q_{samp} for the value in the blank in part (i) (i.e. $Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha Q_{samp}$).

Which of the following is the correct sample-based update for each w_i ?

 $\bigcirc w_i \leftarrow w_i + \alpha[Q(s_t, a_t) - Q_{samp}]$ $\bigcirc w_i \leftarrow w_i - \alpha[Q(s_t, a_t) - Q_{samp}]$

	nodel-based	model-free	re:		
Self assessmen	ıt				
If your answer w	as correct, write "correct"	above. Otherwise, writ		ect answer.	