Matematika 4 — Logika pre informatikov Teoretická úloha 2

Riešenie hodnotenej časti tejto úlohy **odovzdajte** najneskôr v pondelok **2. marca 2020 o 12:20** na prednáške.

Odovzdané riešenia musia byť **čitateľné** a mať primerane **malý** rozsah. Ohodnotené riešenia poskytneme k nahliadnutiu, ale **nevrátime** vám ich, uchovajte si kópiu. Na riešenia všetkých úloh sa vzťahujú všeobecné **pravidlá** zverejnené na adrese https: //dai.fmph.uniba.sk/w/Course:Mathematics_4/sk#pravidla-uloh.

Čísla úloh v zátvorkách odkazujú do zbierky, v ktorej nájdete ďalšie úlohy na precvičovanie a vzorové riešenia: https://github.com/FMFI-UK-1-AIN-412/lpi/blob/master/teoreticke/zbierka.pdf.

Pri riešení niektorých úloh vám môže pomôcť prieskumník štruktúr (https://fmfi-uk-1-ain-412.github.io/structure-explorer/).

Cvičenie 2.1. (2.1.1,2.1.2) Rozhodnite, či nasledovné postupnosti symbolov sú formulami nad nejakou množinou konštánt $\mathcal{C}_{\mathcal{L}}$ a predikátových symbolov $\mathcal{P}_{\mathcal{L}}$.

Kladnú odpoveď dokážte nájdením množín $\mathcal{C}_{\mathcal{L}}$ a $\mathcal{P}_{\mathcal{L}}$ a vytvárajúcej postupnosti pre formulu. Zápornú odpoveď stručne zdôvodnite.

- a) (žena(Alex) ∧ muž(Alex))
- b) ¬(má_rád(Alex, Alex))
- c) $(starši(Edo, Alex) \rightarrow (\neg starši(Alex, Edo)))$
- d) (Alex $\lor \neg oco)$
- $e) \ \left(\neg (\mathsf{mu\check{z}}(\mathsf{Alex}) \land \check{\mathsf{z}}\mathsf{ena}(\mathsf{Alex})) \to (\neg \mathsf{mu\check{z}}(\mathsf{Alex}) \lor \neg \check{\mathsf{z}}\mathsf{ena}(\mathsf{Alex})) \right)$
- f) $(\neg\neg starši(Alex, Edo) \leftrightarrow (starši(Alex, Edo) \neg \land muž(Edo)))$

Cvičenie 2.2. (2.1.3,2.1.4) Pre nasledujúcu formulu zapíšte vytvárajúcu postupnosť, zakreslite vytvárajúci strom a určte jej stupeň:

```
((rodič(Bruno, Hugo) \land rodič(Bruno, Tereza)) \rightarrow ((\neg žena(Hugo) \land muž(Hugo)) \rightarrow brat(Hugo, Tereza)))
```

Cvičenie 2.3. (2.2.1,2.2.2) V štruktúre $\mathcal{M} = (D, i)$, kde

$$\begin{split} D &= \{1,2,3,4,5,6\}, \\ i(\mathsf{Alex}) &= 1, \quad i(\mathsf{Bruno}) = 2, \quad i(\mathsf{Hugo}) = 5, \quad i(\mathsf{Tereza}) = 6, \\ i(\check{\mathsf{zena}}) &= \{1,3,4,6\}, \\ i(\mathsf{mu}\check{\mathsf{z}}) &= \{2,4\}, \\ i(\mathsf{m\acute{\mathsf{a}}}_\mathsf{r\acute{\mathsf{a}}}\mathsf{d}) &= \{(1,1),(1,2),(1,5),(1,6),(2,2),(3,3),(3,4),(4,4),(5,5),(5,6)\}, \\ i(\mathsf{brat}) &= \{(1,2),(2,1),(3,1),(4,4),(5,6),(6,1),(6,2),(6,6)\}, \\ i(\mathsf{rod}\check{\mathsf{i}}\check{\mathsf{c}}) &= \{(1,1),(2,5),(2,6),(1,5),(3,4),(4,2),(1,6),(5,6),(6,5)\}, \\ i(\mathsf{star\check{\mathsf{s}}}\check{\mathsf{i}}) &= \{(2,1),(5,6),(6,5)\}, \end{split}$$

zistite postupom *zhora nadol* (viď zbierka), či je pravdivá formula A_1 , a postupom *zdola nahor*, či sú pravdivé formuly A_2 a A_3 .

- (A_1) (starší(Bruno, Alex) $\rightarrow \neg$ starší(Alex, Bruno))
- (A_2) (\neg má_rád(Alex, Bruno) $\leftrightarrow \neg$ má_rád(Bruno, Alex))
- $\begin{array}{c} (A_3) \ \left((\mathsf{rodi\check{c}}(\mathsf{Bruno}, \mathsf{Hugo}) \land \mathsf{rodi\check{c}}(\mathsf{Bruno}, \mathsf{Tereza}) \right) \to \\ \\ \left((\neg \check{\mathsf{zena}}(\mathsf{Hugo}) \land \mathsf{mu\check{z}}(\mathsf{Hugo})) \to \mathsf{brat}(\mathsf{Hugo}, \mathsf{Tereza}) \right) \end{array}$

Cvičenie 2.4. (2.2.3,2.2.4) Vytvorte štruktúru, v ktorej budú súčasne pravdivé všetky nasledujúce formuly:

- (A_1) titul(Sofiina_vol'ba)
- (A_2) autor(Styron,Sofiina_vol'ba)
- $(A_3) \ (\mathsf{titul}(\mathsf{Kto_chyt} \land \mathsf{z} \mathsf{ite}) \land \mathsf{autor}(\mathsf{Salinger}, \mathsf{Kto_chyt} \land \mathsf{z} \mathsf{ite}))$
- (A_4) $(\neg(\check{\mathsf{c}}\mathsf{ita}(\mathsf{Adam},\mathsf{k325}) \land \mathsf{obdivuje}(\mathsf{Dana},\mathsf{Adam})) \rightarrow \neg(\mathsf{kniha}(\mathsf{k325},\mathsf{Sofiina_vol'ba}) \lor \mathsf{kniha}(\mathsf{k325},\mathsf{Kto_chytá_v_žite}))$
- (A_5) (kniha(k325, Kto_chytá_v_žite) $\leftrightarrow \neg$ kniha(k325, Sofiina_voľba))

Pomôcka. Aby ste zistili, ako majú byť v štruktúre interpretované predikáty, analyzujte význam formúl podľa definície pravdivosti postupom zhora nadol, ako sme ukázali na prednáške.

Cvičenie 2.5. (2.3.1) Sformalizujte nasledujúce výroky ako ucelenú teóriu vo vhodne zvolenom spoločnom jazyku výrokovej časti logiky prvého rádu. Zadefinujte použitý jazyk a vysvetlite význam jeho mimologických symbolov.

- (A_1) Lucia a jej kamarát sú deti.
- (A_2) Luciin kamarát má obľúbené hračky autíčko a koníka.
- (A_3) Obe jeho obľúbené hračky sú čierne, ale páčia sa aj Lucii, hoci jej obľúbená farba je červená.
- (A_4) Luciina obľúbená hračka je tiež autíčko, napriek tomu, že je dievča.
- (A_5) Jej autíčko je ale červené.
- (A_6) Lucia sa vždy hrá so svojím autíčkom a buď ešte s bábikou Elzou, ktorá má červené šaty, alebo s kamarátovým čiernym koníkom.
- (A_7) Lucia je veľmi kamarátska, ale Peter je asi taký kamarátsky ako je skromný.
- (A_8) Lucia sa preto môže hrať buď so svojím autíčkom alebo s Petrovým, ale s oboma naraz sa hrať nemôže.
- (A_9) V druhom prípade mu totiž musí to svoje požičať.
- (A_{10}) Peter je meno spomínaného Luciinho kamaráta.
- (A_{11}) Ak je slnečný deň, Peter sa hrá s loptou.
- (A_{12}) Psa venčí, ak je pekne.
- (A_{13}) S Luciou sa hrá, jedine ak nie je pekne.
- (A_{14}) Pod nie je pekne myslíme, že nie je slnečný deň.

Pomôcka. Vo výrokoch sa zjavne hovorí o konkrétnych objektoch (napríklad autíčko a koník Luciinho kamaráta), ktoré ale nemajú mená. Pri formalizácii ich označte vhodnými konštantami. Ďalšou zaujímavosťou je počasie. Čoho by mohlo byť vlastnosťou?

Hodnotená časť

Úloha 2.1. (2.3.5) Sformulujte základné definície syntaxe (symboly jazyka, atomická formula, formula, podformula) a sémantiky (pravdivosť formuly v štruktúre) pre výrokovú časť logiky prvého rádu s binárnymi spojkami \rightarrow (implikácia) a \rightarrow ("a nie"), pričom neformálny význam ($A \rightarrow B$) je: A je pravdivá a B je nepravdivá. Formuly nebudú obsahovať iné spojky okrem týchto dvoch.

☑ Účelom tejto úlohy je, aby ste si prečítali a upravili definície z prednášky a pokúsili sa osvojiť si spôsob vyjadrovania, ktorý sa v nich používa. Môže vám pripadať ťažkopádny, je však presný. Ak vám nejaká formulácia pripadá zbytočne komplikovaná, môžete sa ju pokúsiť zjednodušiť, no snažte sa, aby ste nezmenili jej význam.

Schopnosť presne sa vyjadriť je potrebná pri programovaní (počítaču musíte všetko vysvetliť do detailov), ale napríklad aj pri písaní špecifikácií softvéru, či požiadaviek na vašu bakalársku prácu.

Úloha 2.2. (2.3.2) Sformalizujte nasledujúce výroky ako ucelenú teóriu vo vhodne zvolenom spoločnom jazyku výrokovej časti logiky prvého rádu. Zadefinujte použitý jazyk a vysvetlite význam jeho mimologických symbolov.

Vytvorte štruktúru, v ktorej budú všetky vaše formuly súčasne pravdivé.

- (A_1) Do baru vošli Freddy a George.
- (A_2) Barmanka naliala drink Freddymu.
- (A_3) Barmankou je buď Mary alebo Jane. Službu má vždy len jedna z nich.
- (A_4) Harry nie je v bare, len ak nemá službu Mary, a naopak.
- $(A_{5})\;$ Freddy, George a Harry sú kamaráti. Barmanky sa však spolu nekamarátia.
- (A_6) Freddymu jeho drink chutí, ak je to whisky, ale nie, ak je to koňak. Vtedy by však určite chutil Georgeovi.
- (A_7) Freddymu jeho drink nechutí.
- (A_8) Ak je barmankou Mary, tak naliala Freddymu whisky alebo koňak.
- (A_9) Jane nalieva Freddymu vždy iba whisky.
- $(A_{10})\,$ Iné drinky Mary ani Jane nenalievajú, pokiaľ nie je v bare prítomný Harry.

Pomôcka. Všeobecné tvrdenia A_9 - A_{10} aplikujte na Freddyho drink. Napíšte teda také formuly, aby tvrdenia A_9 - A_{10} platili pre Freddyho drink, ktorý mu barmanka naliala v A_2 .