On the number of components of random nodal sets

work in progress with Fedor Nazarov (Kent)

Oxford Stochastic Analysis Seminar April, 2012

Nodal protraits created by Alex Barnett

Gaussian spherical harmonic of degree 40

Gaussian linear combination of spherical harmonic of degrees ≤ 40

Part I: Zero sets of translation-invariant Gaussian functions

 $F \colon \mathbb{R}^m \to \mathbb{R}$ a random Gaussian function with translation-invariant distribution;

 $\mathcal{E}\left\{F(u)F(v)\right\} = k(u-v), \ k = \widehat{\rho} \ (\text{the Fourier transform})$ $\rho \in M^+(\mathbb{R}^m), \text{ symmetric w.r.t. origin, the spectral measure of } F.$

We assume: for some p > 4, $\int_{\mathbb{R}^m} |\lambda|^p d\rho(\lambda) < \infty$ \implies a.s. the random function F is C^2 -smooth

N(R; F) the number of connected components of the zero set Z(F) that are contained in the open ball $\{|x| < R\}$

We are interested in the asymptotic behaviour of r.v. N(R;F) as $R\to\infty$

Theorem I: Suppose that the measure ρ has no atoms and is not supported by a hyperplane.

(i) There exists a constant $\nu(\rho) \geq 0$ s.t.

$$\lim_{R \to \infty} \frac{\mathcal{E}N(R; F)}{\text{vol}B(R)} = \nu(\rho) \quad \text{and} \quad \lim_{R \to \infty} \frac{N(R; F)}{\text{vol}B(R)} = \nu(\rho) \quad \text{a.s.}.$$

- (ii) The limiting constant $\nu(\rho)$ is positive provided that
- (*) \exists a compactly supported symmetric measure μ with $\operatorname{spt}(\mu) \subset \operatorname{spt}(\rho)$ s.t. the zero set of its Fourier transform $\widehat{\mu}$ has a bounded component.
- (iii) If (*) does not hold then a.s. Z(F) has no bounded connected components.

How to check condition (*)?

 \exists a compactly supported symmetric measure μ with $\operatorname{spt}(\mu) \subset \operatorname{spt}(\rho)$ s.t. the zero set of its Fourier transform $\widehat{\mu}$ has a bounded component.

A simple and crude sufficient condition:

• $\operatorname{spt}(\rho)$ contains a sphere centered at the origin.

Proof: take $\mu =$ the Lebesgue measure on that sphere $\Longrightarrow \widehat{\mu}$ is radially symmetric, vanishes on concentric spheres with radii tending to ∞

Using a little bit of harmonic analysis, one can go further:

• $\operatorname{spt}(\rho)$ contains an open subset of a sphere centered at the origin

In the planar case (m = 2), there is even a more simple sufficient condition:

• $\operatorname{spt}(\rho)$ contains a compact set that cannot be covered by finitely many segments

Proof: Take
$$\lambda_1, \lambda_2 \in \operatorname{spt}(\rho), \ \lambda_2 \neq c\lambda_1, \ \text{and consider}$$

$$\cos(\lambda_1 \cdot x) + \cos(\lambda_2 \cdot x) = 2\cos(\frac{\lambda_1 + \lambda_2}{2} \cdot x)\cos(\frac{\lambda_1 - \lambda_2}{2} \cdot x)$$

Then add a (carefully chosen) small trigonometric sum with frequencies at $\operatorname{spt}(\rho)$ to destroy 4 intersection points.

Related works:

T.L.Malevich (1973): C^2 -smooth Gaussian functions F on \mathbb{R}^2 with positive covariance function $\mathcal{E}\{F(u)F(v)\}=k(u-v)>0$. She proved that $0 < c \le \mathcal{E}N(R;F)/R^2 \le C < \infty$.

E.Bogomolny and C.Schmit (2002): bond percolation model for description of the zero set of 2D Gaussian monochromatic waves (transl.-invar. Gaussian function F on \mathbb{R}^2 whose spectral measure is a Lebesgue measure on the unit circumference).

Challenge: "hidden universality law" that provides the rigorous foundation for the B-S work

Related works: (continuation)

F.Nazarov, M.S. (2007): 2D Gaussian monochromatic waves. There exists a constant $\nu > 0$ such that, for every $\epsilon > 0$,

$$\mathcal{P}\left\{ \left| \frac{N(R;F)}{R^2} - \nu \right| > \epsilon \right\} \le C_{\epsilon} e^{-c_{\epsilon} R}, \qquad R \ge 1$$

The proof relies on Gaussian isoperimetry (Sudakov-Tsirelson, Borell).

Unfortunately, we cannot adapt the proof to other Gaussian functions.

Part II: Steps in the proof of Theorem I

Step 1: Some integral geometry

Notation: N(u, r; F) the number of connected components of Z(F) contained in the open ball B(u, r)

 $\bar{N}(u,r;F)$ the number of connected components of Z(F) that intersect the closed ball B(u,r)

LEMMA: For $0 < r < R < \infty$,

$$\int_{B(R-r)} \frac{N(u,r;F)}{\operatorname{vol}B(r)} du \le N(R;F) \le \int_{B(R+r)} \frac{\bar{N}(u,r;F)}{\operatorname{vol}B(r)} du$$

We apply this with $1 \ll r \ll R$.

Notation: $(\tau_v F)(u) = F(u+v)$ (translation). Then $N(u,r;F) = N(r;\tau_u F)$

<u>Observe</u>: $\bar{N}(r; F) - N(r; F) \leq \mathfrak{N}(r; F) \stackrel{\text{def}}{=} \# \text{ of critical pts of } F | \partial \mathbb{B}(r)$

to be continued on the next slide

continuation

$$\frac{1 - o(1)}{\operatorname{vol}B(R - r)} \int_{B(R - r)} \frac{N(r; \tau_u F)}{\operatorname{vol}B(r)} du \le \frac{N(R; F)}{\operatorname{vol}B(R)}$$

$$\le \frac{1 + o(1)}{\operatorname{vol}B(R + r)} \int_{B(R + r)} \frac{N(r; \tau_u F) + \mathfrak{N}(r; \tau_u F)}{\operatorname{vol}B(r)} du, \quad \text{for } R \gg r$$

Note: LHS and RHS are spatial averages of translations

Step 2: Metric transitivity

Fomin-Grenander-Maruyama: the spectral measure ρ has no atoms

- \Longrightarrow translations τ_u act metric-transitively on the Borel σ -algebra of F (that is, all invariant sets have probability 0 or 1)
- \implies the distribution of N(r; F) is also metric transitive
- ⇒ Wiener's ergodic theorem can be applied
- \implies for fixed r, a.s.,

$$\underline{\lim}_{R \to \infty} \frac{N(R; F)}{\text{vol}B(R)} \ge \frac{\mathcal{E}N(r; F)}{\text{vol}B(r)}, \quad \overline{\lim}_{R \to \infty} \frac{N(R; F)}{\text{vol}B(R)} \le \frac{\mathcal{E}N(r; F)}{\text{vol}B(r)} + \frac{\mathcal{E}\mathfrak{N}(r; F)}{\text{vol}B(r)}$$

Step 3: The Kac-Rice bound for the number of critical pts:

LEMMA: $\mathcal{E}\mathfrak{N}(r;F) \lesssim \text{vol}_{m-1}\partial \mathbb{B}(r)$.

$$\implies$$
 a.s., $\lim_{R} \frac{N(R; F)}{\text{vol}B(R)}$ exists and equals $\lim_{r} \frac{\mathcal{E}N(r; F)}{\text{vol}B(r)} =: \nu(\rho)$

Step 4: Positivity of $\nu(\rho)$:

We already know that for fixed r, a.s., $\underline{\lim}_{R\to\infty} \frac{N(R;F)}{\operatorname{vol} B(R)} \geq \frac{\mathcal{E}N(r;F)}{\operatorname{vol} B(r)}$

 \implies need to show: for some $r_0 > 0$, $\mathcal{E}N(r_0; F) > 0$.

LEMMA ON GAUSSIAN PROCESSES: Suppose μ is a compactly supported measure with $\operatorname{spt}(\mu) \subset \operatorname{spt}(\rho)$. Then for each ball $B \subset \mathbb{R}^m$ and each $\epsilon > 0$, $\mathcal{P}\{\|F - \widehat{\mu}\|_{C(\bar{B})} < \epsilon\} > 0$.

By assumption (*), \exists such a measure μ with $Z(\widehat{\mu})$ having a bounded connected component. By real analyticity of $\widehat{\mu}$, this component is isolated.

Choosing ϵ small enough, we get $\mathcal{P}\{N(r_0;F)>0\}>0$ for some r_0

$$\Longrightarrow \mathcal{E}N(r_0;F) > 0.$$

WHAT WE CANNOT DO:

Question: Find statistics of large components of the zero set of F; i.e., components of diameter comparable to R^{α} with $0 < \alpha < 1$.

Question: Find asymptotic of the variance of N(R; F)

Question: Prove exponential concentration of $N(R;F)/R^m$ around $\nu(\rho)$.

The difficulty is caused by components of small diameter, which do not exist when ρ is supported by a sphere $\Longrightarrow F$ satisfies the Helmholtz equation $\Delta F + \kappa^2 F = 0$

Even for Gaussian processes on \mathbb{R} , the question about exponential concentration remains open; cf. Tsirelson's lecture notes, Fall 2010 http://www.tau.ac.il/~tsirel/Courses/Gauss3/main.html

PART III: ENSEMBLES OF GAUSSIAN REAL-VALUED "POLYNOMIALS" OF LARGE DEGREE ("RIEMANNIAN CASE")

X a smooth compact m-dimensional Riemannian manifold without boundary.

 \mathcal{H}_L a family of real finite-dimensional Hilbert spaces of smooth functions on X, $\dim \mathcal{H}_L \to \infty$ as $L \to \infty$.

 $K_L(x,y)$ the reproducing kernel of the space \mathcal{H}_L :

$$f(y) = \langle f(.), K_L(.,y) \rangle_{\mathcal{H}_L}, \qquad f \in \mathcal{H}_L, \quad y \in X.$$

<u>We assume</u>: the function $x \mapsto K_L(x,x)$ does not vanish on X.

Gaussian functions on X:

The space \mathcal{H}_L generates a random Gaussian function

$$f_L(x) = \sum \xi_k e_k(x), \qquad x \in X,$$

 $\{e_k\}$ is an orthonormal basis in \mathcal{H}_L ξ_k are independent standard Gaussian random variables

The covariance of the Gaussian function f_L :

$$\mathcal{E}\{f_L(x)f_L(y)\} = \sum e_k(x)e_k(y) = K_L(x,y)$$

The distribution of f_L does not depend on the choice of the orthonormal basis $\{e_k\}$ in \mathcal{H}_L .

Normalization:

Wlog, we assume that the functions f_L are normalized, that is, $\mathcal{E}f_L^2(x) = K_L(x,x) = 1, x \in X.$

Otherwise, replace the functions f_L and the kernel K_L by

$$\widehat{f}_L(x) = \frac{f_L(x)}{\sqrt{\mathcal{E}f_L^2(x)}}, \quad \widehat{K}_L(x,y) = \frac{K_L(x,y)}{\sqrt{K_L(x,x) \cdot K_L(y,y)}}.$$

This normalization changes the Hilbert spaces \mathcal{H}_L but the zero sets of the Gaussian functions f_L and \widehat{f}_L remain the same.

In basic examples, the function $x \mapsto K_L(x, x)$ is constant (that is, the norm of the point evaluation in \mathcal{H}_L does not depend on the point), so the normalization boils down to computation of that constant.

Scaling (blowing up with the coefficient $L \gg 1$):

Notation:

$$\Phi_x = \exp_x \circ I_x \colon \mathbb{R}^m \to X, \ \Phi_x(0) = x$$

 $\exp_x : T_x X \to X$ exponential map

 $I_x \colon \mathbb{R}^m \to T_x(X)$ a linear Euclidean isometry

To scale the covariance kernel K_L at $x \in X$ in L times, put

$$K_{x,L}(u,v) \stackrel{\text{def}}{=} K_L\left(\Phi_x(L^{-1}u),\Phi_x(L^{-1}v)\right), \qquad u,v \in \mathbb{R}^m.$$

Note: $K_{x,L}(u,v)$ are covariance kernels of scaled Gaussian functions $f_{x,L}(u) \stackrel{\text{def}}{=} f_L(\Phi_x(L^{-1}u)), u \in \mathbb{R}^m$, that is,

$$K_{x,L}(u,v) = \mathcal{E}\{f_{x,L}(u)f_{x,L}(v)\}\$$

Translation-invariant local limits:

DEFINITION: The Gaussian ensemble (f_L) has translation-invariant local limits as $L \to \infty$ if for a.e. $x \in X$, there exists a Hermitean positive definite function $k_x \colon \mathbb{R}^m \to \mathbb{R}^1$, such that for each $R < \infty$,

$$\lim_{L \to \infty} \sup_{|u|,|v| \le R} |K_{x,L}(u,v) - k_x(u-v)| = 0.$$

The limiting kernels $k_x(u-v)$ are covariance kernels of translation-invariant Gaussian functions $F_x : \mathbb{R}^m \to \mathbb{R}^1 \ (x \in X)$

 $k_x = \widehat{\rho}_x$, ρ_x are prob. meas ρ_x on \mathbb{R}^m , symmetric w.r.t. the origin

We call the function F_x the local limiting function, and the measure ρ_x the local limiting spectral measure of the family f_L at the point x.

Note: ρ_x does not depend on the choice of the linear Euclidean isometry

$$I_x \colon \mathbb{R}^m \to T_x X$$

Technical assumptions:

 C^2 -smoothness: the Gaussian ensemble (f_L) is C^2 -smooth if for a.e. $x \in X$ and for every $R < \infty$

$$\overline{\lim}_{L\to\infty} \mathcal{E} \|f_{x,L}\|_{C^2(\bar{B}(R))} < \infty.$$

E.g., holds when $\exists p > 4$ s.t. $\forall R < \infty$ $\overline{\lim}_{L \to \infty} \|K_{x,L}\|_{C^p(\bar{B}(R) \times \bar{B}(R))} < \infty$

Uniform non-degeneracy: for a.e. $x \in X$ and for every $R < \infty$

$$\lim_{L \to \infty} \inf_{\bar{B}(R)} \det \operatorname{Cov}(\nabla f_{x,L}, \nabla f_{x,L}) > 0$$

If the limiting spectral measure is unique (i.e., ρ_x does not depend on $x \in X$) this says that the measure ρ is not supported by a hyperplane.

Notation: $N(f_L)$ the number of components of the zero set $Z(f_L)$ $\nu(\rho)$ the limiting constant from Thm I, $\bar{\nu}(x) = \nu(\rho_x)$, $x \in X$.

Remark: The measure $\bar{\nu}$ dvol does not depend on the choice of the Riemannian metric, only the smooth structure on X matters.

Theorem II: Suppose that (f_L) is a C^2 -smooth Gaussian ensemble on X, which has translation-invariant local limits a.e. on X. Suppose that the local limiting spectral measures ρ_x have no atoms and satisfy the non-degeneracy condition from the previous slide.

Then the function $\bar{\nu} \in L^{\infty}(X)$, and

$$\lim_{L\to\infty} \mathcal{E}\left\{ \left| L^{-m} N(f_L) - \int_X \bar{\nu} \, \mathrm{dvol} \right| \right\} = 0.$$

Local version of Theorem II:

The value $\bar{\nu}(x) = \nu(\rho_x)$ can be recovered by a double-scaling limit:

for a.e. $x \in X$ and for each $\epsilon > 0$,

$$\lim_{R \to \infty} \lim_{L \to \infty} \mathcal{P} \left\{ \left| \frac{1}{\operatorname{vol} B(R)} N\left(x, \frac{R}{L}; f_L\right) - \bar{\nu}(x) \right| > \epsilon \right\} = 0$$

 $N(x, \frac{R}{L}; f_L)$ is a number of connected components of the zero set $Z(f_L)$ contained in the open ball centered at x of radius R/L, volB(R) is the Euclidean volume of the ball of radius R in \mathbb{R}^m .

Theorem II is "an integrated version" of the local result.

Part IV: Examples to Theorem II

1. Trigonometric ensemble $X = \mathbb{T}^m$ (m-dim torus)

 $\mathcal{H}_{n,m} \subset L^2(\mathbb{T}^m)$, subspace of trigonometric polynomials in m variables of degree $\leq n$ in each of the variables.

The repro-kernel (= covariance): the Dirichlet kernel

$$K_{n,m}(x,y) = \prod_{j=1}^{m} \frac{\sin \left[\pi (2n+1)(x_j - y_j)\right]}{(2n+1)\sin \left[\pi (x_j - y_j)\right]}$$

scaling parameter L = n (the degree).

After scaling, covariance converges together with partial derivatives of any order to the limiting kernel k(u-v), $k(u) = \prod_{j=1}^{m} \frac{\sin 2\pi u_j}{2\pi u_j}$.

Limiting spectral measure ρ = Lebesgue measure on the unit cube in \mathbb{R}^m

2. Spherical ensemble: $X = \mathbb{S}^m$ (m-dim sphere)

 $\mathcal{H}_{n,m} \subset L^2(\mathbb{S}^m)$ subspace spanned by polynomials in m+1 variables of degree $\leq n$, restricted on \mathbb{S}^m .

Repro-kernel in $\mathcal{H}_{n,m}$: $c(n,m)P_n^{(\frac{m}{2},\frac{m}{2}-1)}(x\cdot y), x,y\in\mathbb{S}^m;$ $P_n^{(\alpha,\beta)}$ Jacobi polynomials of degree n and of index (α,β) ; i.e., polynomials orthogonal on [-1,1] with the weight $(1-x)^{\alpha}(1+x)^{\beta}$.

Mehler-Heine asymptotics: $\lim_{n \to \infty} n^{-\frac{m}{2}} P_n^{(\frac{m}{2}, \frac{m}{2} - 1)} \left(\cos \frac{z}{n}\right) = \left(\frac{z}{2}\right)^{-\frac{m}{2}} J_{\frac{m}{2}}(z),$

 $J_{\frac{m}{2}}(z)$ is Bessel's function, the convergence is locally uniform in \mathbb{C} .

Scaling parameter L = n (the degree)

Limiting spectral measure ρ = Lebesgue measure on the unit ball in \mathbb{R}^m .

3. Kostlan ensemble: $X = \mathbb{PR}^m$ (m-dim projective space).

Start with homogeneous polynomials of degree n in m+1 variables. Their zero sets are viewed as hypersurfaces on \mathbb{PR}^m

The scalar product
$$\langle f, g \rangle = \sum_{|J|=n} \binom{n}{J} f_J g_J$$
, where

$$f(X) = \sum_{|J|=n} f_J X^J, \quad g(X) = \sum_{|J|=n} g_J x^J, \qquad X^J = x_0^{j_0} x_1^{j_1} x_2^{j_2} \dots x_m^{j_m},$$

$$J = (j_0, j_1, j_2, \dots j_m), |J| = j_0 + j_1 + j_2 + \dots + j_m, \binom{n}{J} = \frac{n!}{j_0! j_1! j_2! \dots j_m!}.$$

Complexification: after continuation of the homogeneous polynomials f and g to \mathbb{C}^{m+1} , the scalar product coincides with the one in the Fock-Bargmann space $\langle f, g \rangle = c_m \int_{\mathbb{C}^{m+1}} f(Z) \overline{g(Z)} e^{-|Z|^2} \operatorname{dvol}(Z)$.

This is the only unitary invariant Gaussian ensemble of homogeneous polynomials.

Kostlan ensemble (continuation):

In homogeneous coordinates, the covariance kernel equals $\left(\frac{X \cdot Y}{|X| |Y|}\right)^n$. In the chart $x_0 = y_0 = 1$, we get $\left(\frac{1 + (x \cdot y)}{\sqrt{1 + |x|^2} \sqrt{1 + |y|^2}}\right)^n$.

The features:

- $L = \sqrt{n}$ (square root of the degree, not the degree, as in previous examples)
- very rapid decay of the covariance away from the diagonal.

The limiting spectral measure is the Gaussian measure on \mathbb{R}^m with the density $\exp\left[(x\cdot y)-\frac{1}{2}|x|^2-\frac{1}{2}|y|^2\right]$. Once again, Theorem II is applicable.

Asymptotic distribution of the number of components in Kostlan ensemble was recently studied by D.Gayet and J-Y.Welschinger, and by P.Sarnak and I.Wigman.

Nodal lines of Kostlan ensemble of degree 56 on \mathbb{S}^2

Pictures created by Maria Nastasescu

The End