ance &

flux short circuit preventive holes and that of said rotor core is assumed as "a" closer to the q-axis, and "b" closer to the d-axis, the ratio of "a" to "b" is about 1 to 3 or 1 to 4.

- 5. (Amended) A rotor with embedded permanent magnets according to Claim 4 characterized in that the permanent magnet embedded in said rotor core is a flat plate magnet.
- 6. (Amended) A rotor with embedded permanent magnets according to Claim 4 characterized in that the permanent magnet embedded in said rotor core is designed in a concave arch-shaped form with respect to the outer periphery of the rotor.
- 7. (Amended) A rotor with embedded permanent magnets according to Claim 4 characterized in that the permanent magnet embedded in said rotor core is designed in a convex arch-shaped form with respect to the outer periphery of the rotor.
- 8. (Amended) A rotor with embedded permanent magnets according to Claim 4 characterized in that the permanent magnet embedded in said rotor core is designed in a V shape in each magnetic pole.
- 9. (Amended) A rotor with embedded permanent magnets according to Claim 8 characterized in that a non-magnetic substance is inserted in said magnetic flux short circuit preventive hole.

REMARKS

The specification and claims have been amended to put the application in better form for examination. Favorable action on the application is solicited.

Dated: September 27, 2001

Respectfully submitted,

Mark J. Thronson

Registration No.: 33,082

DICKSTEIN SHAPIRO MORIN &

OSHINSKY LLP

2101 L Street NW

Washington, DC 20037-1526

(202) 785-9700

Attorneys for Applicant