Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

Лабораторная работа № 4: Аппроксимая функции методом наименьших квадратов Вычислительная математика

Вариант №4

Студент

Дубинин Артём Сергеевич

группа Р3215

Преподаватель

Малышева Татьяна Алексеевна

Вычислительная реализация задачи

$$y = \frac{15x}{x^4 + 4} \quad x \in [-4, 0] \quad h = 0,4$$

Х	-4	-3.6	-3.2	-2.8	-2.4	-2.0	-1.6	-1.2	-0.8	-0.4	0
Υ	-0.230	-0.314	-0.441	-0.642	-0.968	-1.500	-2.274	-2.963	-2.721	-1.491	0

Линейная аппроксимация

$$\tilde{\varphi} = a x + b$$

$$\begin{cases} \frac{dS}{da} = 0 \\ \frac{dS}{db} = 0 \end{cases} = \begin{cases} 2\sum_{i=1}^{n} (ax_i + b - y_i)x_i = 0 \\ 2\sum_{i=1}^{n} (ax_i + b - y_i) = 0 \end{cases} = \begin{cases} a\sum_{i=1}^{n} x_i^2 + b\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i \\ a\sum_{i=1}^{n} x_i + bn = \sum_{i=1}^{n} y_i \end{cases}$$

$$SX = -22 \qquad SXX = 61.6 \qquad SY = -13.545 \qquad SXY = 20.553$$

$$\begin{cases} a * SXX + b * SX = SXY \\ a * SX + bn = SY \end{cases}$$

$$\Delta = SXX * n - SX * SX = 193.6$$

$$\Delta_1 = SXY * n - SX * SY = -71.907$$

$$\Delta_2 = SXX * SY - SX * SXY = -382.206$$

$$a = -\frac{71.907}{193.6} = -0.371 \qquad b = -\frac{382.206}{193.6} = -1.974$$

$$P_1(x) = -0.371 x - 1.974$$

Х	-4	-3.6	-3.2	-2.8	-2.4	-2.0	-1.6	-1.2	-0.8	-0.4	0
Υ	-0.230	-0.314	-0.441	-0.642	-0.968	-1.500	-2.274	-2.963	-2.721	-1.491	0
$P_1(x)$	-0.49	-0,638	-0,787	-0,935	-1,084	-1,232	-1,380	-1,529	-1,677	-1,826	-1,974
$arepsilon_i$	-0,259	-0,324	-0,346	-0,294	-0,115	0,268	0,894	1,435	1,044	-0,335	-1,974

Мера отклонения: $S = \sum_{i=1}^{n} \varepsilon_i^2 = 8,420$

Квадратичная аппроксимация

$$\tilde{\varphi} = a_0 + a_1 x + a_2 x^2$$

$$\begin{cases} \frac{\partial S}{\partial a_0} = 2\sum_{i=1}^{n} a_2 x_i^2 + a_1 x_i + a_0 - y_i = 0 \\ \frac{\partial S}{\partial a_1} = 2\sum_{i=1}^{n} (a_2 x_i^2 + a_1 x_i + a_0 - y_i) x_i = 0 \\ \frac{\partial S}{\partial a_2} = 2\sum_{i=1}^{n} (a_2 x_i^2 + a_1 x_i + a_0 - y_i) x_i^2 = 0 \end{cases} \begin{cases} a_0 n + a_1 \sum_{i=1}^{n} x_i + a_2 \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i \\ a_0 \sum_{i=1}^{n} x_i + a_1 \sum_{i=1}^{n} x_i^2 + a_2 \sum_{i=1}^{n} x_i^3 = \sum_{i=1}^{n} x_i y_i \\ a_0 \sum_{i=1}^{n} x_i^2 + a_1 \sum_{i=1}^{n} x_i^3 + a_2 \sum_{i=1}^{n} x_i^4 = \sum_{i=1}^{n} x_i^2 y_i \end{cases}$$

$$SX = -22 \qquad SXX = 61.6 \qquad SXXX = -193.6 \qquad SXXXX = 648.523$$

$$SY = -13.545 \qquad SXY = 20.554 \qquad SXXY = -40.96$$

$$\begin{cases} 11a_0 - 22a_1 + 61.6a_2 = -13.545 \\ -22a_0 + 61.6a_1 - 193.6a_2 = 20.554 \\ 61.6a_0 - 193.6a_1 + 648.523a_2 = -40.96 \end{cases}$$

$$a_0 = -1.018 \qquad a_1 = 1.222 \quad a_2 = 0.398$$

$$P_2(x) = -1.018 + 1.222x + 0.398x^2$$

Х	-4	-3.6	-3.2	-2.8	-2.4	-2.0	-1.6	-1.2	-0.8	-0.4	0
Υ	-0.230	-0.314	-0.441	-0.642	-0.968	-1.500	-2.274	-2.963	-2.721	-1.491	0
$P_2(x)$	0,462	-0,259	-0,853	-1,319	-1,658	-1,870	-1,954	-1,911	-1,740	-1,443	-1,018
$arepsilon_i$	0,693	0,0549	-0,412	-0,678	-0,690	-0,370	0,320	1,052	0,980	0,047	-1,018

Мера отклонения: $S = \sum_{i=1}^{n} \varepsilon_i^2 = 4.935$

$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (\varphi(x_i) - y_i)^2}{n}}$$

Среднеквадратичное отклонения для линейной аппроксимации:

$$\delta_1 = 0.875$$

Среднеквадратичное отклонения для квадратичной аппроксимации:

$$\delta_2 = 0.670$$

Наилучшая аппроксимая – квадратная $\delta_2=0$,670

Графики функции и аппроксимаций

Программная реализация задачи

https://github.com/dbnnae-major/university-computationalmathematics/tree/main/4%20%D0%9B%D0%90%D0%91%D0%90