Trabalho Prático I

Igor Lacerda Faria da Silva igorlfs@ufmg.br

1 Introdução

O trabalho consiste em montar uma rede neural para identificar dígitos escritos à mão, do banco de dados do MNIST. O propósito desse relatório é comparar algumas variações dessa rede neural. A rede possui apenas 3 camadas e as variações exploram diferentes algoritmos, taxas de aprendizado e número de neurônios na camada oculta.

A comparação é dividida em 3 partes: primeiro é fixado o algoritmo e a taxa de aprendizado, modificando-se o tamanho da camada oculta. Similarmente, a taxa é alterada e, por fim, o algoritmo. Os 3 algoritmos implementados (*Stochastic Gradient Descent, Gradient Descent* e *Mini-Batch*) consistiram apenas em modificações de parâmetros simples da biblioteca.

A biblioteca utilizada foi o TensorFlow. Ela permite carregar o banco de dados do MNIST diretamente e possui uma API conveniente para criar os modelos.

2 Desenvolvimento

Foram analisadas duas métricas: a acurácia e a perda.

2.1 Tamanho da Camada Oculta

Foi fixada uma taxa de aprendizado $l_R = 1$ e um algoritmo de *Mini-Batch*, com o tamanho da *batch* igual a 50.

Figura 1: Acurácia por época, variando o tamanho da rede.

Figura 2: Perda por época, variando o tamanho da rede.

Como é de se esperar, o aumento do tamanho da rede melhorou a performance. Existem execuções em que não é o caso, apesar de ser uma tendência comum. Com mais neurônios é possível fazer ajustes mais sensíveis aos dados. Ao que parece, no entanto, com apenas 100 neurônios ainda não há overfitting.

2.2 Taxa de Aprendizado

Foi fixada um tamanho de camada oculta igual a 50, e o algoritmo de *Mini-Batch*, também com tamanho de *batch* igual a 50.

Figura 3: Acurácia por época, variando a taxa de aprendizado.

Figura 4: Perda por época, variando a taxa de aprendizado.

Como visto em aula, uma taxa de aprendizado muito alta pode prejudicar a qualidade do modelo. Isso acontece porque a função de perda "pula" possíveis mínimos locais. Apesar de ter convergido nessa execução, o desempenho para

a taxa igual a 10 não é diferente de um modelo que chuta que todos os dígitos são o número 9. Por outro lado, as taxas de 0.5 e 1, para esses parâmetros e, principalmente, essa execução, foram muito próximos. Uma taxa de aprendizado muito baixa também poderia demorar a convergir. O ideal é encontrar um meio termo, que nesse caso parece ser um número próximo de 0.5 e 1.

2.3 Algoritmo

As variações de algoritmo foram controladas alterando-se o parâmetro $batch_size$, da função fit() do modelo. Em princípio, todos os algoritmos são o Mini-Batch. Para criar um SGD, basta usar uma batch de tamanho 1 e para criar um GD, é preciso usar uma taxa de aprendizado igual ao número de dados de treino. O número de épocas também precisou ser ajeitado: é preciso dar mais oportunidades de ajustes no GD, por exemplo (e o tempo de execução do SGD é muito grande). Nos gráficos, o eixo x representa o "progresso" do algoritmo, cada ponto corresponde a uma época. A taxa de aprendizado foi fixada em 1, e o número de neurônios fixado em 50.

Figura 5: Acurácia por progresso em épocas, variando o algoritmo.

Figura 6: Acurácia por progresso em épocas, variando o algoritmo.

O SGD teve um péssimo desempenho, também indiferente a apenas chutar algum número em particular. Como são feitos ajustes a cada dado, é como se o SGD "decorasse" o dado em questão. O GD, com 100 épocas, teve um desempenho similar ao MB ($batch_size=50$). Com a diminuição do tamanho da batch, o desempenho piorou consideravelmente.