Transfer Function

- Defined as the ratio of the Laplace transform of the output signal to that of the input signal (think of it as a gain factor!)
- Contains information about dynamics of a Linear Time Invariant system

Mass-Spring-Damper System

ODE

$$M\ddot{y}(t) + b\dot{y}(t) + ky(t) = u(t)$$

Assume all initial conditions are zero. Then take Laplace transform.

ME451 S07 38

Transfer Function

- Differential equation replaced by algebraic relation Y(s)=H(s)U(s)
- If U(s)=1 then Y(s)=H(s) is the impulse response of the system
- If U(s)=1/s, the unit step input function, then Y(s)=H(s)/s is the step response
- The magnitude and phase shift of the response to a sinusoid at frequency w is given by the magnitude and phase of the complex number H(jw)
- Impulse: $\mathcal{L}[\delta(t)] = \int_0^\infty \delta(t) e^{-st} dt = 1$
- Unit step: $\mathcal{L}[1(t)] = \int_0^\infty e^{-st} dt = \frac{1}{s}$

ME451 S07 39

Kirchhoff's Voltage Law

 The algebraic sum of voltages around any closed loop in an electrical circuit is zero.

ME451 S07 40

Kirchhoff's Current Law

 The algebraic sum of currents into any junction in an electrical circuit is zero.

ME451 S07 41