RBF Networks and K-Means Clustering

Anahita Zarei, Ph.D.

Outline

- Distance Weighted KNN -> RBF Nonparametric Regression -> RBF Parametric Regression -> RBF Networks
- Reading:
 - Abu-Mustafa: 6.3

Revisit K-Nearest Neighbor

- 1-Nearest Neighbor overfits the data
- Increasing K helps with overfitting problem.

- But there's the boundary and sparse region problem.
- At the boundary, all nearest neighbors are the same k points.

KNN Discontinuity Problem

- A more important issue with KNN is the jumpy nature of the hypothesis.
- This is due to the fact that a nearest neighbor is either completely in or out of the window from one input to another.
- The discontinuity property can be problematic in practice.
 - e.g. price of 2000 sqft-house vs. 2001 sqft-house.
 - e.g. price of a car with 100K miles vs. a car with 101Kn miles

3-NN 1-d regression

A Remedy for KNN Discontinuity Problem

- Make the effect of farther neighbors less significant such that when a neighbor jumps in and out it doesn't have as great of an impact.
- Weigh each of the K neighbors such that the farther they are the less influence they have. $\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$
- Distance-Weighted KNN:
- How shall we define the weights?
- Choose weights such that as the distance between the test point and its neighbors increases, the corresponding weight drops down to weigh down the impact of that observation:

$$w_i \equiv \frac{1}{d(x_a, x_i)^2}$$

Expanding the Locally Weighted KNN to Kernel Regression

- In weighted KNN, only the K neighbors influence the prediction at a test point x.
- If we extend the impact of the training points beyond only the KNN and expand it to all points then we get kernel regression.

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^{k} w_i f(x_i)}{\sum_{i=1}^{k} w_i}$$

 These weights, in general, are called kernels and are function of the distance between the training points and a query (test) point.

Only K neighbors influence the output.

Every training point influences the output.

Kernels: Radial Basis Function

 A real-valued function whose value depends only on the distance (radius) from a given point c, called center. (i.e.

$$\phi(\mathbf{x}, \mathbf{c}) = \phi(\|\mathbf{x} - \mathbf{c}\|)$$

- The norm is usually Euclidean distance, although other distance functions are also possible.
- The 'radial' in RBF reflects the fact that the influence only depends on the radial distance.
- Examples include:
 - Gaussian: $\varphi(x,c) = e^{-\gamma ||x-c||^2} = \frac{-||x-c||^2}{r}$

 - Inverse Quadratic: $\varphi(x,c) = \frac{1}{1+\gamma||x-c||^2}$ Inverse Multiquadratic: $: \varphi(x,c) = \frac{1}{\sqrt{1+\gamma||x-c||^2}}$
- The most common RBF is Gaussian.

RBF Properties $\varphi(x,c) = e^{\frac{-||x-c||^2}{r}}$

- Positive and non-increasing (i.e. weights never go exactly to zero, they just become very small as the distance increases.)
- r defines the width of the kernel (i.e. how quickly it decays)
- r determines the 'unit' of length against which distances are measured.
- If distance is small relative to r, then the neighbor has a significant influence.

Plots: KNN vs. (nonparametric) RBF

KNN

RBF

Nonparametric RBF

- 1. Smoother version of KNN
- 2. Can be easily interpreted to the client
- 3. Like KNN, computationally expensive.

Effect of $r = 1/\gamma$

- Smaller r places more emphasis on the nearest points.
- As r gets large, the kernel width gets larger and more of the data points contribute. As a result, the final hypothesis gets smoother.
- Too small an r results in a complex hypothesis that overfits. Too large an r results in an excessively smooth hypothesis that underfits.

How to Choose r?

- Cross-validation.
- Using heuristics, a good starting value is $\frac{1}{2d\sqrt{N}}$
 - Where d is the dimension of the data and N is the number of training points.
- Recall that a good starting value for K in KNN was $K = \sqrt{N}$

•
$$\hat{f}(x) = \sum_{n=1}^{N} \frac{\alpha_n(x)}{\sum_{m=1}^{N} \alpha_m(x)} \mathbf{y}_n$$

A different interpretation of RBF equation

•
$$\hat{f}(x) = \frac{\sum_{n=1}^{N} \alpha_n \mathbf{y}_n}{\sum_{m=1}^{N} \alpha_m}$$

where $\alpha_n = \varphi(\|\mathbf{x} - \mathbf{x}_n\|)$

$$\hat{f}(x) = \sum_{n=1}^{N} \frac{\alpha_n(x)}{\sum_{m=1}^{N} \alpha_m(x)} \mathbf{y}_n$$

- Output is a weighted average of y-values.
- This corresponds to centering a single kernel, or a bump, at x (the query point).
- The value the bump attains at x_n determines the weight.

•
$$\hat{f}(x) = \sum_{n=1}^{N} \frac{\mathbf{y}_n}{\sum_{m=1}^{N} \alpha_m(x)} \alpha_n(x)$$

•
$$\hat{f}(x) = \sum_{n=1}^{N} w_n(x) \varphi(||x - x_n||)$$

Where $w_n(x) = \frac{y_n}{\sum_{m=1}^{N} \varphi(||x - x_m||)}$

- This corresponds to centering a bump at every xn.
- The output is the sum of N bumps of different heights, where each bump is centered on a training point.
- The height of the bump centered on xn varies depending on the query point:

(An imperfect) Parametric RBF Hypothesis

- Fix the bump heights to w_n , independent of the query point.
- This will simplify the functional form to

$$h(x) = \sum_{n=1}^{N} \mathbf{w}_n \varphi(\|x - x_n\|)$$

which is the weighted summation of N Gaussians.

- Note that before making the weights fixed, $w_n(x)$ were specified by the data and there was nothing to learn.
- However in this hypothesis, w_n are the parameters. This model is parametric and parameters need to be learned.

RBF Network Hypothesis Surface in 3 Dimensions

Different views of the RBF

- (a) **Output** is a weighted sum of \mathbf{y}_n with weights $\mathbf{\alpha}_n$ determined by a bump centered on \mathbf{x} .
- (b) **Output** is a sum of bumps, one on each \mathbf{x}_n having height \mathbf{w}_n .

The Hypothesis and the Learning Algorithm

- Learning algorithm:
 - 1- What are we learning?
 - 2- What's the error measure?

$$h(\mathbf{x}) = \sum_{n=1}^{N} w_n \underbrace{\exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right)}_{\text{basis function}}$$

- Goal of the learning algorithm: Learn W's from data points $(X_1, y_1),...(X_N, y_N)$ such that $h(X_n)=y_n$ for n=1 to N.
- We expect E_{in} to be zero. Why?

$$E_{\text{in}}=0$$
: $h(\mathbf{x}_n)=\mathbf{y}_n$ for $n=1,\cdots,N$:

$$\sum_{m=1}^{N} w_m \exp\left(-\gamma \|\mathbf{x}_n - \mathbf{x}_m\|^2\right) = y_n$$

Writing the Equations in Matrix Form

$$h(\mathbf{x}_{n}) = \mathbf{y}_{n} \text{ for } n = 1, \cdots, N: \qquad \sum_{m=1}^{N} w_{m} \exp\left(-\gamma \|\mathbf{x}_{n} - \mathbf{x}_{m}\|^{2}\right) = \mathbf{y}_{n}$$

$$w_{1}e^{-\gamma||X_{1}-X_{1}||^{2}} + w_{2}e^{-\gamma||X_{1}-X_{2}||^{2}} + ... + w_{N}e^{-\gamma||X_{1}-X_{N}||^{2}} = y_{1}$$

$$w_{1}e^{-\gamma||X_{2}-X_{1}||^{2}} + w_{2}e^{-\gamma||X_{2}-X_{2}||^{2}} + ... + w_{N}e^{-\gamma||X_{2}-X_{N}||^{2}} = y_{2}$$
...

...

$$w_{1}e^{-\gamma||X_{N}-X_{1}||^{2}} + w_{2}e^{-\gamma||X_{N}-X_{2}||^{2}} + ... + w_{N}e^{-\gamma||X_{N}-X_{N}||^{2}} = y_{N}$$

$$\begin{bmatrix} e^{-\gamma||X_{1}-X_{1}||^{2}} & e^{-\gamma||X_{1}-X_{2}||^{2}} & ... & e^{-\gamma||X_{1}-X_{N}||^{2}} \\ e^{-\gamma||X_{2}-X_{1}||^{2}} & e^{-\gamma||X_{2}-X_{2}||^{2}} & ... & e^{-\gamma||X_{2}-X_{N}||^{2}} \end{bmatrix} \begin{bmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{N} \end{bmatrix} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{N} \end{bmatrix}$$
"exact interpolation"

RBF with K centers

- The parametric RBF has N parameters w_1, \ldots, w_N , ensuring we can always fit the data.
- When the data has stochastic or deterministic noise, this means we will overfit.

 $h(\mathbf{x}) = \sum_{n=1}^{\infty} \mathbf{w}_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right)$

• Solution: restrict the number of bumps to $k \ll N$. If we restrict the number of bumps to k, then only k weights w_1, \ldots, w_k need to be learned.

$$h(\mathbf{x}) = \sum_{k=1}^{K} w_k \exp\left(-\gamma \|\mathbf{x} - \boldsymbol{\mu}_k\|^2\right)$$

Choosing the Centers

- Where should the bumps be placed?
- $h(\mathbf{x}) = \sum_{k=1}^{K} w_k \exp\left(-\gamma \|\mathbf{x} \boldsymbol{\mu}_k\|^2\right)$
- Previously, with N bumps, this was not an issue since we placed one bump on each data point.
- Though we cannot place a bump on each data point, we can still try to choose the bump centers so that they represent the data points as closely as possible.
- We appear to have an abundance of parameters in the centers μ_k (each parameter is d-dimension). So there doesn't seem to be a lot of improvement!

Choosing the Centers

$$h(\mathbf{x}) = \sum_{k=1}^{K} \mathbf{w}_k \exp\left(-\gamma \|\mathbf{x} - \boldsymbol{\mu}_k\|^2\right) + \mathbf{w}_0$$

- We should choose the bump centers to closely represent the **inputs** in the data.
- We can choose the centers by choosing them to represent the inputs x_1, \ldots, x_N without reference to the y_1, \ldots, y_N .
- We require that no x_n be far away from a bump center. The x_n should cluster around the centers, with each center μ_k representing one cluster.
- Solution: k-means clustering
- Observe that we have added back the bias term w_0 . For the parametric RBF with N bumps, we did not need the bias term. However, when you only have a small number of bumps and no bias term, the learning gets distorted if the y-values have non-zero mean

Determining the Weights

$$\sum_{k=1}^{K} w_k \exp\left(-\gamma \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2\right) \approx y_n$$

$$w_0 + w_1 e^{-\gamma ||X_1 - \mu_1||^2} + w_2 e^{-\gamma ||X_1 - \mu_2||^2} + \dots + w_K e^{-\gamma ||X_1 - \mu_K||^2} \approx y_1$$

$$w_0 + w_1 e^{-\gamma ||X_2 - \mu_1||^2} + w_2 e^{-\gamma ||X_2 - \mu_2||^2} + \dots + w_K e^{-\gamma ||X_2 - \mu_K||^2} \approx y_2$$

$$\dots$$

$$\dots$$

• • •

$$w_0 + w_1 e^{-\gamma ||X_N - \mu_1||^2} + w_2 e^{-\gamma ||X_N - \mu_2||^2} + \dots + w_K e^{-\gamma ||X_N - \mu_K||^2} \approx y_N \quad \boxed{\mathbf{w} = (\Phi^{\mathsf{T}}\Phi)^{-1}\Phi^{\mathsf{T}}\mathbf{y}}$$

RBF Networks

$$h(\mathbf{x}) = \sum_{k=1}^{K} w_k \exp\left(-\gamma \|\mathbf{x} - \boldsymbol{\mu}_k\|^2\right)$$

Note that we can use the RBF-network model for classification by taking the sign of the output signal, and for logistic regression we pass the output signal through the sigmoid $\theta(s) = e^s/(1 + e^s)$.

RBF Network

- Note that the hypothesis set is very similar to a linear model except that the transformed features
- $\varphi_k(X)$ can depend on the data set (through the choice of the μ_k which are chosen to fit the data). But in linear regression, the features were fixed ahead of time.
- Because the μ_k appear inside a nonlinear function, this model is not linear in its parameters. It is linear in the w_k , but nonlinear in the μ_k . It turns out that allowing the basis functions to depend on the data adds significant power to this model over the linear model

$$h(\mathbf{x}) = \sum_{k=1}^{K} w_k \exp\left(-\gamma \|\mathbf{x} - \boldsymbol{\mu}_k\|^2\right)$$

K and Gamma

- Other than the parameters w and μ, there are two high-level parameters k and gamma which specify the nature of the hypothesis set.
- These parameters control two aspects of the hypothesis set:
 - size of a hypothesis set (quantified by k, the number of bumps)
 - complexity of a single hypothesis (quantified by gamma, which determines how 'wiggly' an individual hypothesis is).
- It is important to choose a good value of k to avoid overfitting (too high a k) or underfitting (too low a k). Same with gamma.
- Use Cross-validation!

Clustering – Unsupervised Classification

- Cluster: a collection of data objects
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Clustering is unsupervised classification, i.e. no predefined classes
- Assessment of clustering quality is application-dependent and to an extent subjective
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms (e.g. Use of K means clustering in RBF models)

Examples of Clustering Applications (as a stand-alone tool)

- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- Urban planning: Identifying groups of houses according to their house type, value, and geographical location
- Politics: Help campaign managers to identify voters with similar interests
- Insurance: Identifying groups of motor insurance policy holders with a high average claim cost

K-means Clustering

- The k-means clustering algorithm is a simple yet powerful tool for obtaining <u>clusters</u> and <u>cluster centers</u>.
- The goal of k-means clustering is to
 - 1. Select centers $\mu_1,...,\mu_k$ for each cluster
 - 2. Assign input data points $x_1,...,x_N$ into K cluster sets $S_1,...,S_K$
- The centers are representative of the data if every data point in cluster S_k is close to its corresponding center μ_k .
- For cluster S_k with center μ_k , define the squared error measure to quantify the quality of the cluster: $\sum \|\mathbf{x}_n \boldsymbol{\mu}_k\|^2$

• The k-means error function just sums this cluster error over all clusters: K

$$\sum_{k=1}^{N} \sum_{\mathbf{x}_n \in S_k} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

K-means Clustering Algorithm

• Objective: Minimize the distance between x_n and the closest enter μ_k by splitting x_1, \dots, x_N into clusters S_1, \dots, S_K

Minimize
$$\sum_{k=1}^K \sum_{\mathbf{x}_n \in S_k} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

- Finding the global minimum of the above cost function is intractable (similar to the NN case).
- We seek an iterative approach to find a local minimum.

Lloyd's algorithm

- Select initial centroids at random.
- Assign each object to the cluster with the nearest centroid:

$$S_k \leftarrow \{\mathbf{x}_n : \|\mathbf{x}_n - \boldsymbol{\mu}_k\| \leq \text{all } \|\mathbf{x}_n - \boldsymbol{\mu}_\ell\|\}$$

• Compute each centroid as the mean of the objects assigned to it:

$$\mu_k \leftarrow \frac{1}{|S_k|} \sum_{\mathbf{x}_n \in S_k} \mathbf{x}_n$$

Repeat previous 2 steps until error stops decreasing.

Example

•
$$x_1 = \frac{3 \times 3 + 2 \times 4 + 5}{6} = 3.67$$

• $y_1 = \frac{8 + 7 + 6 + 5 + 4}{6} = 5.17$
• $x_2 = \frac{5 + 2 \times 7 + 8}{4} = 6.75$
• $y_2 = \frac{3 + 4 + 2 \times 5}{4} = 4.25$

• $x_1 = \frac{3 \times 3 + 2 \times 4 + 5}{6} = 3.67$ • $y_1 = \frac{8 + 7 + 6 + 2 \times 5 + 4}{6} = 5.83$ • $x_2 = \frac{5 + 2 \times 7 + 8}{4} = 6.75$ • $y_2 = \frac{1 + 3 + 4 + 5}{4} = 3.25$

Summary

Nonparametric RBF

Parametric RBF

$$h(X) = \sum_{n=1}^{N} \frac{\alpha_n(X)}{\sum_{m=1}^{N} \alpha_m(X)} y_n \qquad h(\mathbf{x}) = \sum_{k=1}^{N} w_k \exp\left(-\gamma \|\mathbf{x} - \boldsymbol{\mu}_k\|^2\right)$$

$$\alpha_n(X) = \varphi(\|X - X_n\|) = e^{-\|X - X_n\|^2/r}$$

For classification you take the sign of h(x).

References

• Learning From Data by Abu Mustafa