S

List of Tables

Nomenclature

A = nozzle cross-sectional area

H = nozzle height

M = Mach number

 $NPR = nozzle pressure ratio, P_0/P_a$

P = pressure

 P_0 = total pressure at the nozzle inlet

T = temperature

u,v,w = velocity components

x = axial direction

y = normal direction

 $\gamma = {
m ratio}$ of specific heats

 $\theta = \text{flow angle}$

 $\mu = viscosity$

 $\varphi = \text{shock angle}$

a = ambient

c = centerline

e = nozzle exit

t = throat

The University of Pune

Contents

1	Introduction	6
	1.1 Scope & Methodology	6
2	Literature Review	7
3	Case study	8
4	A Sample Section	9
	4.1 Title of Sample Subsection	9
5	Conclusion	10
6	Future Work	11

Abstract

ABSTRACT OF YOUR SEMINAR WORK GOES HERE

1 Introduction

INTRODUCTION OF YOUR SEMINAR WORK GOES HERE

$1.1 \quad \textbf{Scope \& Methodology}$

YOUR SEMINAR WORK GOES HERE

2 Literature Review

The review should be conducted from at least five research papers published during last five year.

YOUR SEMINAR WORK GOES HERE

3 Case study

YOUR SEMINAR WORK GOES HERE

4 A Sample Section

4.1 Title of Sample Subsection

For a figure sample with caption and proper reference, see Figure 1 as adopted from [1]. The figure number and reference numbers are automatically generated in a chronological order by LATEX.

Figure 1: Here Goes Your Figure's Caption.

A sample equation is written as:

$$F_m = \frac{dm}{dt}v_e = \dot{m}v_e \tag{1}$$

where m is the mass flow rate and v e is the exit or exhaust velocity of the propellant.

An another sample equation can be expressed as

$$F_m = \dot{m}v_e + (P_e - P_a)A_e \tag{2}$$

where p_e and A_e are the pressure and cross section area at the nozzle exit, and p_a is the ambient pressure.

5 Conclusion

CONCLUSION, IF ANY.

6 Future Work

FUTURE WORK, IF ANY

References

- [1] Humble R W, Henry G N and Larson W J (1995), Space propulsion analysis and design, McGraw-Hill, Inc., ISBN-0-07-031329-6.
- [2] Author First, Author Second *Title of the paper* Name of Journal Pagenumbers, Month Year.
- [3] Sadeghi, M., Yang, S., Liu, F., and Tsai, H. M., Parallel Computation of Wing Flutter with a Coupled Navier-Stokes and CSD Method AIAA Paper 2003-1347, 2003.