Derjaguinov približek

Miha Čančula

13. maj 2013

1 Izpeljava

Vzemimo dve veliki krogli s polmeroma R_1 in R_2 na majhni medsebojni razdalji D. Če sta oba polmera mnogo večja od razdalje med sferama, k sili med njima prispeva le interakcija med tankimi obroči na obeh sferah, ki so od zveznice med sferama oddaljeni x in imajo $2\pi x$ dx. Skupna sila med dvema sferama je torej enaka

$$F(D) = \int_{r=0}^{r=\infty} 2\pi r \, \mathrm{d}r f(Z) \tag{1}$$

kjer je Z razdalja med tankima obročema na oddaljenosti x od zveznice, f(Z) pa sila na enoto površine med dvema ravnima površinama. Za majhne r lahko kroglo približamo s parabolo in dobimo zvezo med Z in r kot

$$Z = D + z_1 + z_2 = D + \frac{r^2}{2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$
 (2)

$$dZ = \frac{r^2}{2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) r \, dr \tag{3}$$

Izraza lahko vstavimo v enačbo (1) in dobimo

$$F(D) \approx \int_{D}^{\infty} 2\pi \left(\frac{1}{R_1} + \frac{1}{R_2}\right)^{-1} f(Z) dZ = 2\pi \left(\frac{R_1 R_2}{R_1 + R_2}\right) W(D)$$
 (4)

kjer je W(D) interakcijska energija na enoto površine med dvema ravnima površinama na razdalji D. Ker je f(Z) sila na enoto površine, je njen integral

$$W(D) = \int_{D}^{\infty} f(Z) \, dZ \tag{5}$$

enak delu, ki ga moramo opraviti, da plošči z razdalje D razmaknemo neskončno daleč. To delo pa je po definiciji enako interakcijski energiji med ploščama. Tu sta tako f(Z) kot W(D) sta definirani na enoto površine.

2 Drugačne geometrije

V gornji izpeljavi smo dejstvo, da imamo opravka ravno s sferami in ne s kakšnimi drugimi zaobljenimi površinami, upoštevali le pri zvezi med Z in r. Zelo podobno izpeljavo lahko ponovimo tudi za drugačne geometrije, na primer za interakcijo med sfero in ravno ploščo, ali pa med prekrižanima valjema.

Geometrija	Z-D	$\mathrm{d}Z$	F(D)/W(D)
Dve sferi	$\frac{r^2}{2}\left(\frac{1}{R_1} + \frac{1}{R_2}\right)$	$\left(\frac{1}{R_1} + \frac{1}{R_2}\right) r \mathrm{d}r$	$2\pi \left(\frac{R_1 R_2}{R_1 + R_2}\right)$
Enaki sferi	$\frac{r^2}{R}$	$\frac{2}{R}r dr$	πR
Sfera in plošča	$\frac{r^2}{2R}$	$\frac{1}{R}r dr$	$2\pi R$
Prekrižana valja	$\frac{x^2}{2R_1} + \frac{y^2}{2R_2}$	$\frac{x \mathrm{d}x}{R_1} + \frac{y \mathrm{d}y}{R_2}$	$2\pi\sqrt{R_1R_2}$

Tabela 1: Razmerje med silo med ukrivljenima površinama F(D) in energijo interakcije med ravnima površinama W(D) za nekaj značilnih geometrij

2.1 Sfera in plošča

Silo med sfero in ravno ploščo lahko izračunamo kar kot limito, ko se polmer ene izmed sfer približuje neskončno.

$$F(D) \approx 2\pi R \cdot W(D) \tag{6}$$

2.2 Prekrižana valja

V tem primeru nimamo osne simetrije, zato integral $\int 2\pi r \, dr$ nadomestimo z $\int dx \, dy$. Razdalja med točkama na valjih Z je odvisna od x in y posebej.

$$F(D) = \iint_{-\infty}^{\infty} f(Z) \, \mathrm{d}x \, \mathrm{d}y \tag{7}$$

$$Z = D + \frac{x^2}{2R_1} + \frac{y^2}{2R_2} \tag{8}$$

Primer, ko imata oba valja enak polmer, je enostaven, saj je $Z = \frac{x^2 + y^2}{2R}$ odvisen le od oddaljenosti od zveznice, enako kot pri sferah. Integral pa lahko izračunamo tudi za dva različna valja s spretno zamenjavo spremenljivk, nampreč $\tilde{y} = y\sqrt{R_1/R_2}$. Sila med valjema lahko izračunamo kot prej

$$Z = D + \frac{x^2 + \tilde{y}^2}{2R_1} = D + \frac{r^2}{2R_1} \tag{9}$$

$$dZ = \frac{x \, dx}{R_1} + \frac{\tilde{y} \, d\tilde{y}}{R_1} = \frac{r \, dr}{R_1} \tag{10}$$

$$F(D) \approx \int_{D}^{\infty} \sqrt{\frac{R_2}{R_1}} 2\pi R_1 f(Z) \, dZ = 2\pi \sqrt{R_1 R_2} W(D)$$
 (11)

kjer je faktor $\sqrt{R_2/R_1}$ Jacobijeva determinanta prehoda iz koordinate (x,y) na (x,\tilde{y}) .

3 Primer: Deplecijska interakcija

Deplecijsko silo med kroglicami smo pri tem predmetu že obravnavali, enaka je

$$\mathcal{F}(h) = -\pi \frac{N}{\beta V} \left(R + \frac{2\sigma - h}{2} \right) \left(R + \frac{2\sigma + h}{2} \right) \tag{12}$$

kjer je N/V številska gostota kroglic, R polmer sfer in σ polmer kroglic. Razdalja med sferama h je definirana kot razdalja med središči sfer. Izraz velja za $2R \leq h \leq 2R + 2\sigma$, povsod drugje je sila enaka nic. Za konsistenco z zapisom v prejšnjem poglavju sem raje uporabljal spremenljivko D = h - 2R, ki predstavlja razdaljo med površinama sfer. Sila je ninečelna, če je $D \leq 2\sigma$.

Deplecijsko interakcijo med ravnima izračunamo podobno, le da je izračun preseka prepovedanih prostornin enostavnejši. Ta je enak kar

$$V' = A(2\sigma - D) \tag{13}$$

iz česar dobimo izraz za prosto energijo (spet pišem le izraz za primer, ko je $V^\prime>0$)

$$F = -\frac{1}{\beta} \ln C(T) + \frac{N}{\beta} (\ln V - \frac{V'}{V}) \tag{14}$$

Tu je V celotna prostornina posode, ki ni odvisna od h. Odvisnost od razdalje med plošcami se skriva le vV'. Interakcijsko energijo med ploščama lahko enačimo s členom, ki je odvisen od h, zanima nas pa le energija na enoto površine.

$$W(h) = \frac{N}{\beta V}(D - 2\sigma) \tag{15}$$

Derjaguinov približek trdi, da se izraža (12) in (15) razlikujeta le za multiplikativno konstanto πR . Da to preverimo najprej zapišemo silo med sferama z medsebojno razdaljo D

$$\mathcal{F}(D) = -\pi \frac{N}{\beta V} \left(\sigma - \frac{D}{2} \right) \left(\sigma + \frac{D}{2} + 2R \right) \tag{16}$$

$$\approx -\pi \frac{N}{\beta V} \left(\sigma - \frac{D}{2} \right) \cdot 2R \tag{17}$$

$$= \pi R \frac{N}{\beta V} (D - 2\sigma) = \pi R W(D)$$
 (18)

V drugi vrstici smo upoštevali, da sta razdalja med sferama D in polmer kroglic σ mnogo manjša od polmera sfer R. Zgornja zveza je enaka tisti za enaki sferi v Tabeli 2, kar potrjuje veljavnost Derjaguinovega približka.

Literatura

- [1] J. N. Israelachvili. *Intermolecular and Surface Forces*. Academic Press (1992).
- [2] D. F. Evans in H. Wennerström. The Colloidal Domain. Wiley (1999).