Translating Sign Language to Speech (PCSE25-65)

PROJECT SYNOPSIS

BACHELOR OF TECHNOLOGY

Computer Science & Engineering

SUBMITTED BY:

Tanya Sharma 2100290100174 Srishti Upadhyay 2100290100166 Vikas Kumar 2100290100186 PCSE 25-65

August 2023

KIET Group of Institutions, Delhi-NCR, Ghaziabad (UP)

Department of Computer Science and Engineering

Table of Contents

S. NO.	CONTENTS	PAGES
1.	Introduction	1
2.	Objective	2
3.	Literature Review	3–4
4.	Feasibility Study	5
5.	Methodology	6
6.	Facilities Required	7
7.	Expected Outcome	8
8.	References	9
9.	Conclusion	9

Introduction

Project Overview:

In a world marked by diversity, effective communication lies at the heart of human interaction. However, communication barriers can often hinder the exchange of thoughts and ideas between individuals who use different forms of expression. Sign language is a visual and tactile form of communication used by individuals with hearing impairments. It employs gestures, hand movements, and facial expressions to convey meanings, making it a vibrant language. Nevertheless, most of the population lacks the proficiency to understand or interpret sign language, leading to challenges in effective communication and social integration for deaf individuals. The "Translating Sign Language to Speech" project aims to bridge the communication gap between individuals who use sign language and those who don't understand sign language. By leveraging computer vision, machine learning, and speech synthesis technologies, the project aims to enable real-time translation of sign language gestures into spoken language. This translation process not only facilitates communication between sign language users and the wider community but also empowers individuals with hearing impairments to participate fully in a conversation, education, healthcare, and various other aspects of life.

In the following sections, the project's objectives, methodologies, technologies employed, anticipated benefits, and challenges will be explored in depth. The "Translating Sign Language to Speech" project emerges as an embodiment of innovation driven by empathy and a commitment to making the world a more inclusive place for everyone, regardless of their preferred mode of communication.

Technologies Used:

- Computer Vision: OpenCV for gesture recognition and image processing.
- Machine Learning: TensorFlow or PyTorch for building and training the recognition model.
- Natural Language Processing: To map gestures to spoken language.
- Text-to-Speech Engines: Google Text-to-Speech, Amazon Polly, etc.
- User Interface: Mobile app or web-based interface for real-time interaction

Rationale:

- 1. **Inclusivity:** The project promotes inclusivity by enabling effective communication between sign language users and the general population.
- 2. **Education:** It can serve as an educational tool for learning sign language.
- 3. **Accessibility:** The system can be used in various contexts, such as education, healthcare, and public service

Objectives

1. Gesture Recognition:

Develop a system that can accurately recognize and classify sign language gestures in real-time using computer vision techniques like image processing and machine learning.

2. Translation:

Implement a translation mechanism that maps recognized sign language gestures to corresponding spoken words or sentences.

3. Speech Generation:

Convert the translated text into audible speech using text-to-speech (TTS) technology, making the communication accessible to a wider audience.

4. Real-time Interaction:

Design an intuitive user interface that facilitates real-time interaction between sign language users and the system.

5. Accuracy and Robustness:

Ensure the system's accuracy in recognizing gestures across different lighting conditions, hand positions, and variations in gestures

Literature Review

Sr	Journal	Year	Technique	Findings	Shortcomings
No					
1	A Novel Natural Language Processing (NLP)-Based Machine Translation Model for English to Pakistan Sign Language Translation	2020	NLP	Quantitative results reveal a very promising Bilingual Evaluation Understudy (BLEU) score of 0.78. Comparative analysis shows that our proposed system works well for simple sentences.	System works well for simple sentences but struggles to translate compound and compound complex sentences correctly.
2	EasyTalk: A translator for Sri Lankan sign language using machine learning and artificial intelligence.	2020	RCNN CNN NLP ML	The model detects at an accuracy rate of 91% for all given test scenarios. The model was also tested against live video and still was able to identify the gestures	For the moment, the system is proposed to be a web application and soon will be made into a mobile application with faster responses and lower processing time. Further, with the introduction of 5G, the response times will be faster
3	ATLASLang NMT: Arabic text language	2021	Artificial Neural	The average BLEU score of ATLASLang MTS is 0,37.	The training could be more efficient if the

	into Arabic sign		Network	ATLASLang NMT gave an	dataset were expanded.	
	language neural Neural		Neural	average score of 0,79, which	The system uses a	
	machine translation		Machine	is much closer to the ideal	limited sign database	
			Translation	score		
			n (NMT)			
4	Utalk: Sri Lankan sign	2020	CV	Utalk can perform well in	Limited dataset	
	language converter		ML	both static and dynamic sign		
	mobile app using			classification.		
	image processing and			Utalk achieves high		
	machine learning.			precision and recall values		
				(over 0.90) for all the static		
				signs		
5	Recognition of	2021	ANN	This paper presents a system	This work could not	
	Amharic sign language		SVM	that translates Amharic sign	work with words,	
	with Amharic alphabet			language into text using	phrases or sentences for	
	signs using ANN and			digital image processing and	the study of sign	
	SVM			machine learning	languages.	
				algorithms.	This project could not	
				•The system can recognize	develop a system which	
				the Amharic alphabet signs	will work like a	
				with an average accuracy of	two-way communicator	
				80.82% and 98.06%,	to translate sign to text	
				respectively. The system has	and vice versa.	
				four main stages: image		
				preprocessing, segmentation,		
				feature extraction and		
				classification.		
6	2-way Arabic Sign	2020	Natural	The CNNLSTM architecture	work is limited to	
	Language Translator		Language	used for sign to text	translating solo	
	using CNNLSTM		Processing	translation is especially ideal	dynamic words and	
	Architecture and NLP		(NLP)	for this task as it works with	phrases,	

	T		D	DCD in mod C	Th 1.1
			Deep	an RGB input from a regular	The model can be
			Learning	smartphone camera.	connected to a cloud
			Neural	•The translator endows the	database which holds a
			Network	deaf with a choice between	crowdsourced gesture
			(DLNN)	the 'Deaf Culture' and	library, would ensure
			Convolutional	'Normal' culture [21].	that the model is robust
			Neural	Communication via the	to the sociolinguistic
			Network	mobile device would allow	changes affecting sign
			(CNN)	the deaf to explore and	language.
			Long	interact with more places	the model is a desktop
			Short-Term	and people, thus allowing	application with still
			Memory	them to have more social	images as output, which
			(LSTM)	experiences	limits its utility in
					real-time scenarios
7	Translating Speech to	2022	NLP	The system accepts audio	The training could be
	Indian Sign Language			and text as input and	more efficient if.
	Using Natural			matches it with the videos	the dataset was
	Language Processing			present in the database	expanded.
				created by the authors.	The system uses a
				If matched, it shows	limited sign database
				corresponding sign	The features of the
				movements based on the	system could be
				grammar rules of Indian	enhanced by integrating
				Sign Language as output,	reverse functionality
				if not, it then goes through	
				the processes of tokenization	
				and lemmatization	
8	Sign Language	2021	Literature	The paper has tried to	After capturing the
	Recognition Using		Survey	understand and analyze the	video of SL sentences,
	Gesture Recognition			approaches of various kinds	The video will be
	and Natural Language			and the developments which	broken down into
		<u> </u>		l .	<u> </u>

Processing	have taken place to make	images and individual
	appropriate gesture	words will be
	recognition of the singer.	recognized. A system
	The peculiarities in trying to	will be developed for
	create a robust system and	detecting ISL and
	NLP techniques have also	converting the detected
	been looked up to generate	words into a
	complete sentences.	grammatically correct
		common language
		sentence.

Feasibility Study

A feasibility study is essential to assess the viability of the "Translating Sign Language to Speech" project from technical, financial, and operational perspectives. It helps determine whether the project is achievable, sustainable, and aligned with its objectives.

Here's a comprehensive feasibility study of the project:

1. Technical Feasibility:

- Expertise: The project requires expertise in computer vision, machine learning, natural language processing, and software development.
- <u>Technology:</u> The availability of advanced technologies like image recognition libraries, machine learning frameworks, and text-to-speech engines supports the project's technical feasibility.
- Resources: Access to hardware resources, such as cameras and computing power, is necessary for real-time gesture recognition.

2. Financial Feasibility:

- <u>Budget:</u> Funding is required for software development, hardware procurement (e.g., cameras), and potential integration with third-party APIs for text-to-speech capabilities.
- Revenue Generation: The project could be monetized through licensing agreements with institutions, organizations, or individuals who require the software for educational or communication purposes.

3. Operational Feasibility:

• Ease of Use: An intuitive user interface and straightforward interaction are

essential for the system's operational feasibility.

• <u>Maintenance</u>: Regular updates, bug fixes, and continuous improvement are required to ensure the system's operational reliability.

4. Market Feasibility:

- <u>Target Audience</u>: Individuals with hearing impairments, educational institutions, healthcare providers, and organizations working with the deaf community.
- <u>Competition:</u> The project's uniqueness lies in its ability to combine gesture recognition and speech synthesis, giving it a competitive edge.

5. Environmental Feasibility:

- <u>Hardware Impact:</u> The use of cameras and computing equipment should be environmentally conscious.
- <u>Energy Consumption:</u> The project should aim for energy-efficient implementation to minimize environmental impact.

Methodology

1. Data Collection:

Collect a comprehensive dataset of sign language gestures, including different signs and their meanings.

2. <u>Gesture Recognition Model:</u>

Train a machine learning model, possibly a Convolutional Neural Network (CNN), to recognize sign language gestures based on the collected dataset.

3. <u>Translation Mapping:</u>

Create a mapping between recognized gestures and their corresponding spoken words or phrases.

4. <u>Text-to-Speech Integration:</u>

Integrate a reliable text-to-speech engine to convert the translated text into natural-sounding speech.

5. <u>User Interface</u>:

Develop a user-friendly application with a camera interface that captures gestures and displays the translated speech output.

6. Testing and Optimization:

Test the system with real users, gather feedback, and optimize the gesture recognition model and translation accuracy.

<u>Challenges:</u>

- 1. <u>Gesture Variability:</u> Sign language gestures can vary significantly based on regional dialects and individual styles.
- 2. <u>Real-time Processing:</u> Achieving real-time recognition and translation to ensure seamless communication.
- 3. <u>Model Robustness:</u> Ensuring the model's robustness in recognizing gestures under diverse conditions.

Facilities Required

1. Development Environment:

- <u>Computing Equipment:</u> High-performance computers or workstations equipped with sufficient processing power and memory.
- <u>Software Tools</u>: Development environments, integrated development environments, machine learning libraries and image processing libraries.

2. Data Collection and Training:

- <u>Cameras and Capture Devices</u>: High-quality cameras or capture devices to record sign language gestures for training and testing the recognition model.
- <u>Diverse Dataset:</u> Access to a diverse and comprehensive dataset of sign language gestures to train and validate the machine learning model.

3. Testing and Validation:

• <u>Test Subjects:</u> Individuals proficient in sign language who can assist in testing and validating the system's accuracy and performance.

4. Integration and User Interaction:

- <u>Hardware Interfaces:</u> Interfaces for integrating cameras or video sources with the software application.
- <u>User Interface Development Tools:</u> Software tools for designing and developing the user interface, ensuring user-friendliness and accessibility.

5. Ethical and Legal Considerations:

• <u>Data Privacy Measures:</u> Policies and protocols for handling user data responsibly and ensuring user privacy.

• <u>Intellectual Property Considerations:</u> Legal guidance to address potential intellectual property concerns related to image recognition and speech synthesis technologies.

6. Documentation and Collaboration:

• <u>Documentation Tools</u>: Software for creating project documentation, user manuals, and technical specifications.

7. Testing and Deployment Platforms:

- <u>Test Devices</u>: Devices on which the application can be tested to ensure compatibility across different platforms (mobile devices, computers, etc.).
- <u>Deployment Platforms:</u> Platforms for deploying the final application, whether as a mobile app or a web application.

Expected Outcome

- 1. Real-Time Gesture Recognition: Developing an accurate and efficient gesture recognition system that can interpret sign language gestures captured in real-time through camera input.
- 2. Translation to Spoken Language: Implementing a translation mechanism that maps recognized sign language gestures to their corresponding spoken words or phrases, enabling effective communication between sign language users and those who don't understand sign language.
- 3. Natural-Sounding Speech Synthesis: Integrating a reliable and natural-sounding text-to-speech (TTS) engine to convert the translated text into audible speech, making the communication process seamless and meaningful.

- 4. User-Friendly Interface: Creating an intuitive and user-friendly interface, possibly in the form of a mobile app or web application, that allows users to interact with the system easily and access translated speech.
- 5. Inclusivity and Accessibility: Empowering individuals with hearing impairments to communicate with a wider audience, breaking down communication barriers and fostering inclusivity in various contexts, such as education, healthcare, and social interactions.
- <u>6. Educational Tool:</u> Serving as an educational tool for learning sign language and fostering awareness about the challenges faced by individuals with hearing impairments.
- 7. Versatility and Application: Enabling the system to be used across different scenarios, including educational institutions, healthcare facilities, public services, and personal interactions.
- 8. Improved Quality of Life: Contributing to an improved quality of life for individuals with hearing impairments by providing them with a means to effectively communicate with the broader community.
- <u>9. Technological Innovation:</u> Demonstrating the innovative application of computer vision, machine learning, and text-to-speech technologies to solve a real-world societal challenge.
- 10. Empathy and Inclusion: Promoting empathy and inclusivity by encouraging society to acknowledge and address the needs of individuals with disabilities.

Conclusion

The "Translating Sign Language to Speech" project aims to create a technology-driven solution that facilitates effective communication between sign language users and the wider community. By utilizing computer vision, machine learning, and text-to-speech technologies, the project addresses a crucial need for inclusivity and accessibility while offering a unique and impactful application of advanced technology.

References

- A novel natural language processing (NLP)—based machine translation model for English to Pakistan sign language translation. Cognit. Comput. 12, 748-765 (2020).
- EasyTalk: A translator for Sri Lankan sign language using machine learning and artificial intelligence.
- ATLASLang NMT: Arabic text language into Arabic sign language neural machine translation.
- Utalk: Sri Lankan sign language converter mobile app using image processing and machine learning.
- Deep learning methods for sign language translation.