Entropy and information

- **1.** Find H(X), where the distribution of X is:
- a) uniform on n points;
- b) uniform on a segment [a, b];
- c) exponential on a segment $(0, +\infty)$ with density $\lambda e^{-\lambda x}$;
- d)* Weibull distribution on a segment $(0, +\infty)$ with density $\frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-\left(\frac{x}{\lambda}\right)^k}$
- e)* Cauchi distribution on a line with density $\frac{\pi^{-1}}{1+x^2}$
- **2.** Show that the following distributions X maximize H(X):
- a) uniform among all discrete distributions on n points;
- b) uniform among all continuous distributions on a given segment
- c) exponential among all continuous distributions with a given expectation on a segment $(0,+\infty)$
- **3.** a) Propose discrete distributions X, Y and an element $y \in Y$ such that H(X|y) > H(X)
- b) Propose discrete distributions X, Y and Z such that I(X;Y|Z) < I(X;Y)
- **4.** Find capacity of a binary erasure channel: it sends a bit (0 or 1), and receives the same bit with probability 1-p and a new symbol? with probability p

- 5. Let $c_1: \{0,1\}^n \to \mathbb{R}$ u $c_2: \{0,1\}^m \to \mathbb{R}$ be constellations on a plane. Introduce their Cartesian product $c_1 \times c_2: \{0,1\}^{n+m} \to \mathbb{R}^2$ as a constellation on a plane sending a bit sequence $b_1 \times b_2$ to a point $c_1(b_1) \times c_2(b_2)$. Find a) SER, b) BER, c) BICM mutual information for $c_1 \times c_2$, knowing them for c_1 u c_2
 - **6***. Show that the minimal number of comparison used to order n objects is $O(n \log n)$

Hint. Express in bits amount of necessary for ordering information and use Stirling's formula.