Topic: Solve a problem using GeoGebra.

Example 3.2-1

Consider the following LP with two variables:

$$Maximize z = 2x_1 + 3x_2$$

subject to

$$2x_1 + x_2 \le 4$$

$$x_1 + 2x_2 \le 5$$

$$x_1, x_2 \ge 0$$

Figure 3.2 provides the graphical solution space for the problem.

3.4 ARTIFICIAL STARTING SOLUTION

As demonstrated in Example 3.3-1, LPs in which all the constraints are (\leq) with non-negative right-hand sides offer a convenient all-slack starting basic feasible solution. Models involving (=) and/or (\geq) constraints do not.

The procedure for starting "ill-behaved" LPs with (=) and (\geq) constraints is to use **artificial variables** that play the role of slacks at the first iteration. The artificial variables are then disposed of at a later iteration. Two closely related methods are introduced here: the M-method and the two-phase method.

3.4.1 M-Method⁶

The M-method starts with the LP in equation form (Section 3.1). If equation i does not have a slack (or a variable that can play the role of a slack), an artificial variable, R_i , is added to form a starting solution similar to the all-slack basic solution. However, because the artificial variables are not part of the original problem, a modeling "trick" is needed to force them to zero value by the time the optimum iteration is reached (assuming the problem has a feasible solution). The desired goal is achieved by assigning a **penalty** defined as:

Artificial variable objective function coefficient = $\begin{cases} -M, \text{ in maximization problems} \\ M, \text{ in minimization problems} \end{cases}$

M is a sufficiently large positive value (mathematically, $M \to \infty$).

3-37. Consider the following set of constraints:

$$-2x_1 + 3x_2 = 3 (1)$$

$$4x_1 + 5x_2 \ge 10 (2)$$

$$x_1 + 2x_2 \le 5 (3)$$

$$6x_1 + 7x_2 \le 3 (4)$$

$$4x_1 + 8x_2 \ge 5 (5)$$

$$x_1, x_2 \ge 0$$

For each of the following problems, develop the *z*-row after substituting out the artificial variables:

- (a) Maximize $z = 5x_1 + 6x_2$ subject to (1), (3), and (4).
- **(b)** Maximize $z = 2x_1 7x_2$ subject to (1), (2), (4), and (5).
- (c) Minimize $z = 3x_1 + 6x_2$ subject to (3), (4), and (5).
- (d) Minimize $z = 4x_1 + 6x_2$ subject to (1), (2), and (5).
- (e) Minimize $z = 3x_1 + 2x_2$ subject to (1) and (5).

So we have the following problem:

Minimize
$$z = 3x_1 + 6x_2$$
 (Objective Function)
subject to
 $-2x_1 + 3x_2 = 3$ (Constraint 1)
 $4x_1 + 5x_2 \ge 10$ (Constraint 2)
 $4x_1 + 8x_2 \ge 5$ (Constraint 5)
 $x_1, x_2 \ge 0$ (Non-negativity constraint)

Solution:

Problem 3-37 di											
		Face in				14.0	44 O				
Minimize: $Z - 4M_1 - 6M_2 - MR_1 - MR_2 - MR_3 = 0$											
s.t											
$1-2\eta_1+3\eta_2+P_1=3$											
$4M_1 + 5M_2 - S_1 + R_2 = 10$											
$4n_1 + 8n_2 - 82 + R_3 = 5$											
Using M = 10, The Starting tableau is.											
Basic	1 21,	M2	5,	52	R	R2	R ₃	RHV			
2		-60									
	Carlotte and the	3						A STATE OF S			
R_2	4	5	-1	0	0	1	0	10			
R ₃	4	8	0	-1	0	0	1	5	Rows Rows		
Iteration	2	30101-		- 13ml -	5	ivet.		R2-80W+	10(R2+R3+R4) ROW4		
Z	56	154	-10	-10	0	0	0	180	Ratio		
\mathcal{R}_{1}	-2	3 (0	0	1	0	0	3	1		
R_2	4	5 :	-1	0	0	1	0	10	2		
R_3	4	18:	0	-11	0	6	1	5)	0.625		
Row 1 - 154 (Row 4), Row 2 - 3 (Row 4), Row 3 - 5 (Row 4)											
	Row's							0			

0				THE THE PERSON NAMED IN	ENERGE UNERSCHOOL BUS	ALKERNA MANAGEMENT	· · · · · · · · · · · · · · · · · · ·			9	
Basic	M,	212	5,	1527	R	R	D	D LIV	Retur		
2	-21	0			0	011	- 7 <u>7</u>	R-H-V 335	(A) (A)		
R	-7/2	0		3/8		0		98			
R2	3/2	0				1	-5/8	55/8	1)		
\mathcal{H}_2	1/2	1			0			5/8	nA		
	S,	- In									
	$S_2 \rightarrow \text{Incoming}, R_1 \rightarrow \text{Leaving}.$ $\frac{8}{3} \text{Row2}, \text{Row1} - \frac{37}{4} \left(\frac{8}{3} \text{Row2} \right), \text{Row3} - \frac{5}{8} \left(\frac{8}{3} \text{Row2} \right), \text{Row4} + \frac{1}{8} \left(\frac{9}{3} \text{Row2} \right)$										
Z	196/3		-10	0			V.		1	1	
S_2	-28/3		0			0	-10	56	C 15-8	.3	
10					8/3						
P	22/3	0	-1	0	-5/3	1	0	5			
Ry	2 -2/3	2	0	0	1/3	0	0	1	+		
	3	Rows,	ROWL -	196 x 3	Rows , &	$20w_2 + \frac{28}{3}$	x 3 Rou	U3, ROW+	1 Row3		
	122									0	
Z	0	0	-13/1	0	-108	-98	-10	126/11	Joptima	1.1	
52	0	0	-14/11					di	75		
	1									<i>t</i>	
	0		-3/22	0		3/22	U	15/22		4	
\mathcal{H}_2	0	1	-1/1	0	2/11	1/11	0	16/11			
								1			
			Jon.		x = 0, = 10 4		7				
		100									

3-38. Consider the following set of constraints:

$$x_1 + x_2 + x_3 = 7$$
$$2x_1 - 5x_2 + x_3 \ge 10$$
$$x_1, x_2, x_3 \ge 0$$

Solve the problem for each of the following objective functions:

- (a) Maximize $z = 2x_1 + 3x_2 5x_3$.
- **(b)** Minimize $z = 2x_1 + 3x_2 5x_3$.
- (c) Maximize $z = x_1 + 2x_2 + x_3$.
- (d) Minimize $z = 4x_1 8x_2 + 3x_3$.

Solution:

3 Problem 3-38(a) Soln Max Z= 21/1 + 342 - 543 - MS1 - MS2 S-t $N_1 + N_2 + N_3 + S_1 = 7$ $2\gamma_1 - 5\gamma_2 + \gamma_3 - \gamma_4 + 5_2 = 10$ Mi ≥0, Si, Sz≥0. 1=1,2,3,4. The tableau from is By Taking M = 50 Basic M, M2 M3 M4 S, S2 R.H. Z -2 -3 5 M=50 M=50 O S, 1 1 0 1 0 7 0 7 S₂ 2 -5 1 -1 0 1 10 R, - 50 (R2+R3) -850 Ratio M, - Incoming variable, Sz- outgoing $\frac{R_3}{2}$, $R_1 + 152(\frac{R_3}{2})$, $R_2 - \frac{R_3}{2}$

1/2 - Incoming, S, - outgoing $\frac{2}{7}R_2$, $R_1 + 183(\frac{2}{7}R_2)$, $R_3 + \frac{5}{2}(\frac{2}{7}R_2)$ Basic M. M3 M4 S, S2 1 R. H.V 7/2 50/9 1/9 364 349/7 102/7 optimal 1/2 1/3 2/3 -1/3 4/3 6/7 -1/7 5/7 1/7 45/7 Here $\chi_2 = \frac{4}{7}$, $\chi_1 = \frac{45}{7}$, $S_1 = 0$, $S_2 = 0$, $\chi_3 = 0$, $\chi_4 = 0$ $Z = \frac{102}{7}$

*3-39. Consider the problem

Maximize
$$z = 2x_1 + 4x_2 + 4x_3 - 3x_4$$

subject to

$$x_1 + x_2 + x_3 = 4$$

$$x_1 + 4x_2 + x_4 = 8$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Solve the problem with x_3 and x_4 as the starting basic variables and without using any artificial variables. (Hint: x_3 and x_4 play the role of slack variables. The main difference is that they have nonzero objective coefficients.)

Remarks. The use of the penalty M will not force an artificial variable to zero in the final simplex iteration if the LP does not have a feasible solution (i.e., the constraints cannot be satisfied simultaneously). In this case, the final simplex iteration will include at least one artificial variable with a positive value. Section 3.5.4 explains this situation.

3.4.2 Two-Phase Method

In the M-method, the use of the penalty, M, can result in computer roundoff error. The two-phase method eliminates the use of the constant M altogether. As the name suggests, the method solves the LP in two phases: Phase I attempts to find a starting basic feasible solution, and, if one is found, Phase II is invoked to solve the original problem.

Summary of the Two-Phase Method

- **Phase I.** Put the problem in equation form, and add the necessary artificial variables to the constraints (exactly as in the *M*-method) to secure a starting basic solution. Next, find a basic solution of the resulting equations that *always* minimizes the sum of the artificial variables, regardless of whether the LP is maximization or minimization. If the minimum value of the sum is positive, the LP problem has no feasible solution. Otherwise, proceed to Phase II.
- **Phase II.** Use the feasible solution from Phase I as a starting basic feasible solution for the *original* problem.

Problem 3-48 Two Phase Methods Soln: Phase1: Min Z'= S,+ S2+ S3 S.t 2x1 + M2 + M3 + S1 = 4 $\chi_1 + 3M_2 + M_3 + S_2 = 12$ 3M, + 4M2 + 2M3 + 53 = 16 The Starting tableau is. Basic | N. M2 M3 S, S2 S3 R.H.V 0 12 53 16 Here, S, , S2, S3 are Basic Soln and we try to Vanish them in 2'-80w. this, $R_1 + (R_2 + R_3 + R_4)$ 0 0 32 Ratio 1 0 0 0 0 1 16

N2 -> Entering variable, S, -a outgoing. $R_1 - \vartheta R_2$, $R_3 - 3R_2$, $R_4 - 4R_2$ Basic M_1 M_2 M_3 S_1 S_2 S_3 R_1H_1U Z' -10 0 -4 -8 0 0 0 0 M_2 Z 1 1 0 8 4 S_2 -5 0 -2 -3 1 0 0 S_3 -6 0 -2 -4 0 1 0Here we have $\chi_2 = 4$, Z'=0, $S_2=0$, $S_3=0$, $S_5=0$. $\chi_5=0$ Phase II Basic | M, M2 M3 S, S2 S3 | R.H.V Z -3 -2 -3 0 0 0 0 22111004 N3 - Entering, S2 -> Leaving. $R_1 + 3\left(\frac{R_3}{-2}\right), R_2 - 1\left(\frac{R_3}{-2}\right), \frac{R_3}{-2}, R_4 - R_3$ DIY