L'agorithme de agglomération **Complete-linkage** : à chaque étape, on fusionne deux clusters C_i et C_j si la dissimilarité $D(C_i, C_j)$ est la plus petite valeur parmi toutes les paires des clusters, oû le $D(C_i, C_j)$ est défini comme montrant dans (1).

$$D(C_i, C_j) = \max_{x_i \in C_i, x_j \in C_j} d(x_i, x_j)$$

$$\tag{1}$$

Exercice de la note de cours :

	o_1	o_2	o_3	o_4	o_5
o_1	-	4	9	7	11
o_2	4	-	1	6	3
o_3	9	1	-	8	6
o_4	7	6	8	-	4
o_5	11	3	6	4	-

Matrice de dissimilarité

	o_1	o_2	o_3	o_4	o_5
o_1	-	4	9	7	11
o_2	4	-	1	6	3
o_3	9	1	-	8	6
o_4	7	6	8	-	4
o_5	11	3	6	4	-

Étape 1

	o_1	o_2, o_3	o_4	o_5
o_1	-	9	7	11
o_2, o_3	9	-	8	6
o_4	7	8	-	4
o_5	11	6	4	-

Étape 2

	o_1	o_2, o_3	o_4, o_5
o_1	-	9	11
o_2, o_3	9	-	8
o_4, o_5	11	8	-

Étape 3

	o_1	o_2, o_3, o_4, o_5
o_1	-	11
02, 03, 04, 05	11	_

Étape 4

Matrice Fusionné ¹

	o_1	o_2, o_3	o_4, o_5
o_1	-	9	11
o_2, o_3	9	-	8
o_4, o_5	11	8	-

Matrice Fusionné

$$\begin{array}{c|cccc} & o_1 & o_2, o_3, o_4, o_5 \\ o_1 & \hline - & 11 \\ o_2, o_3, o_4, o_5 & 11 & - \\ \end{array}$$

Matrice Fusionné

$$o_1, o_2, o_3, o_4, o_5$$
 o_1, o_2, o_3, o_4, o_5
 $-$

Matrice Fusionné

La solution avec un dendrogramma

^{1.} Pour mettre à jour la matrice, nous conservons la distance maximale entre le cluster et les clusters fusionnés. Par exemple, pour la singleton o_1 , la dissimilarité au nouveau groupe fusionné $\{o_2,o_3\}$ est $\max\{d(o_1,o_2),d(o_1,o_3)\}$.

L'agorithme de agglomération **Single-linkage**: à chaque étape, on fusionne deux clusters C_i et C_j si la dissimilarité $D(C_i, C_j)$ est la plus petite valeur parmi toutes les paires des clusters, où le $D(C_i, C_j)$ est défini comme montrant dans (2).

$$D(C_i, C_J) = \min_{x_i \in C_i, x_j \in C_j} d(x_i, x_j)$$
(2)

	o_1	o_2	o_3	o_4	o_5
o_1	-	4	9	7	11
o_2	4	-	1	6	3
o_3	9	1	-	8	6
o_4	7	6	8	-	4
o_5	11	3	6	4	ı

Matrice de dissimilarité

	o_1	o_2	o_3	o_4	o_5
o_1	-	4	9	7	11
o_2	4	-	1	6	3
o_3	9	1	-	8	6
o_4	7	6	8	-	4
o_5	11	3	6	4	-

Étape 1

	o_1	o_2, o_3	o_4	o_5
o_1	-	4	7	11
o_2, o_3	4	-	6	3
o_4	7	6	-	4
o_5	11	3	4	-

Étape 2

	o_1	o_2, o_3, o_5	o_4
o_1	-	4	7
o_2, o_3, o_5	4	-	4
O_4	7	4	-

Étape 3

	o_1, o_2, o_3, o_5	o_4
o_1, o_2, o_3, o_5	-	4
o_4	4	-

Étape 4

Matrice de fusionné¹

	o_1	o_2, o_3, o_5	o_4
o_1	-	4	7
o_2, o_3, o_5	4	-	4
o_4	7	4	-

Matrice de fusionné¹

Matrice Fusionné

$$\begin{array}{c|c} o_1, o_2, o_3, o_4, o_5 \\ o_1, o_2, o_3, o_4, o_5 & & - \\ \end{array}$$

Matrice Fusionné

La solution avec un dendrogramma

^{1.} Pour mettre à jour la matrice, nous conservons la distance minimale entre le cluster et les clusters fusionnés. Par exemple, pour la singleton o_1 , la dissimilarité au nouveau groupe fusionné $\{o_2,o_3\}$ est $\min\{d(o_1,o_2),d(o_1,o_3)\}$.