29/01/2024-Shift 1

EE24BTECH11021 - Eshan Ray

- 16) Let PQR be a triangle with R(-1,4,2). Suppose M(2,1,2) is the mid-point of PQ. The distance of the centroid of $\triangle PQR$ from the point of intersection of the lines $\frac{x-2}{0} = \frac{y}{2} = \frac{z+3}{-1}$ and $\frac{x-1}{1} = \frac{y+3}{-3} = \frac{z+1}{1}$ is
 - a) $\sqrt{99}$
 - b) 9
 - c) $\sqrt{69}$
 - d) 69
- 17) Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three non-zero vectors such that \overrightarrow{b} and \overrightarrow{c} are non-collinear. If $\overrightarrow{a} + 5\overrightarrow{b}$ is collinear with \overrightarrow{c} , $\overrightarrow{b} + 6\overrightarrow{c}$ is collinear with \overrightarrow{a} and $\overrightarrow{a} + \alpha \overrightarrow{b} + \beta \overrightarrow{c} = \overrightarrow{0}$, then $\alpha + \beta$ is equal to
 - a) -25
 - b) 35
 - c) -30
 - d) 30
- 18) If $z = \frac{1}{2} 2i$ is such that $|z + 1| = \alpha z + \beta (1 + i)$, $i = \sqrt{-1}$ and $\alpha, \beta \in R$, then $\alpha + \beta$ is equal to
 - a) -1
 - b) -4
 - c) 2
 - d) 3
- 19) Let O be the origin and the position vectors of A and B be $2\hat{i}+2\hat{j}+\hat{k}$ and $2\hat{i}+4\hat{j}+4\hat{k}$ respectively. If the internal bisector of $\angle AOB$ meets the line AB at C, then the length of OC is
 - a) $\frac{3}{2}\sqrt{34}$

 - b) $\frac{3}{2}\sqrt{31}$ c) $\frac{2}{3}\sqrt{34}$ d) $\frac{2}{3}\sqrt{31}$
- 20) If the value of the integral $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{x^2 \cos x}{1 + \pi^x} + \frac{1 + \sin^2 x}{1 + e^{\sin x^2 023}} \right) dx = \frac{\pi}{4} (\pi + a) 2$, then the value of a is
 - a) 2
 - b) $-\frac{3}{2}$
 - c) $\frac{3}{2}$ d) 3
- 21) A line with direction ratio 2, 1, 2 meets the lines x = y + 2 = z and x + 2 = 2y = 2zrespectively at points P and Q. If the length of the perpendicular from the point (1, 2, 12) to the line PQ is l, then l^2 is ...

- 22) The area (in sq. units) of the part of the circle $x^2 + y^2 = 169$ which is below the line 5x y = 13 is $\frac{\pi\alpha}{2\beta} \frac{65}{2} + \frac{\alpha}{\beta} \sin^{-1}\left(\frac{12}{13}\right)$, where α, β are coprime numbers. Then $\alpha + \beta$ is equal to ...
- 23) If the solution curve y = y(x) to the differential equation $(1 + y^2)(+\log_e x) dx + x dy = 0$, x > 0 passes through the point (1, 1) and $y(e) = \frac{\alpha \tan(\frac{3}{2})}{\beta + \tan(\frac{3}{2})}$, then $\alpha + 2\beta$ is ...

 24) If the mean and variance of the data 65, 68, 58, 44, 48, 45, 60, α , β , 60 where $\alpha > \beta$ are
- 24) If the mean and variance of the data 65, 68, 58, 44, 48, 45, 60, α , β , 60where $\alpha > \beta$ are 56 and 66.2 respectively, then $\alpha^2 + \beta^2$ is equal to...
- 25) If $\frac{\binom{11}{2}}{2} + \frac{\binom{11}{3}}{3} + \cdots + \frac{\binom{19}{9}}{10} = \frac{n}{m}$ with gcd(m, n) = 1, then m + n is equal to ...
- 26) If the points of intersection of two conics $x^2 + y^2 = 4b$ and $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ lie on the curve $y^2 = 3x^2$, then $3\sqrt{3}$ times the area of the rectangle formed by the intersection points is ...
- 27) Let α, β be the roots of the equation $x^2 x + 2 = 0$ with $Im(\alpha) > Im(\beta)$. Then $\alpha^6 + \alpha^4 + \beta^4 5\alpha^2$ is equal to ...
- 28) Equations of two diameters of a circle are 2x 3y = 5 and 3x 4y = 7. The line joining the points $\left(-\frac{22}{7}, -4\right)$ and $\left(-\frac{1}{7}, 3\right)$ intersects the circle at only one point $P(\alpha, \beta)$. Then, $17\beta \alpha$ is equal to ...
- 29) All the letters of the word "GTWENTY" are written in all possible ways with or without meaning and these words are written as in a dictionary. The serial number of the word "GTWENTY" is ...
- 30) Let $f(x) = 2^x x^2$, $x \in R$. If m and n are respectively the number of points t which the curves y = f(x) and y = f'(x) intersect the x axis then the value of m + n is