### MAD211 - Estatística para Administração

#### Distribuições Contínuas

Prof. Carlos Trucíos carlos.trucios@facc.ufrj.br ctruciosm.github.io

Faculdade de Administração e Ciências Contábeis, Universidade Federal do Rio de Janeiro

Aula 11

Variáveis Aleatórias

Função de Densidade

Esperança e Variância

Distribuições Contínuas

Variáveis Aleatórias

#### Variaveis Aleatorias

### Variável Aleatória (v.a)

Una variable aleatoria X é uma função que associa um número real a cada resutado de um experimento aleatório.

$$X:S \to \mathbb{R}$$

#### Variável aleatória discreta

Uma v.a. que pode assumir um número finito (ou infinito sempre que pudermos contar os elementos) de valores.

#### Variável aleatória contínua

Uma v.a. que pode assumir qualquer valor numérico em um intervalo (ou coleção de intervalos)

Se X é uma v.a contínua, a função de densidade (f.d) de X é uma função  $f(\cdot)$  tal que:

•  $f(x) \ge 0 \quad \forall x$ 

Se X é uma v.a contínua, a função de densidade (f.d) de X é uma função  $f(\cdot)$  tal que:

- $f(x) \ge 0 \quad \forall x$   $\int_{-\infty}^{\infty} f(t)dt = 1$

Se X é uma v.a contínua, a função de densidade (f.d) de X é uma função  $f(\cdot)$  tal que:

- $f(x) \ge 0 \quad \forall x$   $\int_{-\infty}^{\infty} f(t)dt = 1$

Se X é uma v.a contínua, a função de densidade (f.d) de X é uma função  $f(\cdot)$  tal que:

- $f(x) \ge 0 \quad \forall x$   $\int_{-\infty}^{\infty} f(t)dt = 1$

A função F(x) é chamada função de distribuição acumulada (ou simplesmente função distribuição) e é definida por:

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

#### Observação

Se X é v.a. contínua, então:

$$P(X = x) = 0 \quad \forall x$$

#### Observação

Se X é v.a. contínua, então:

- $P(X = x) = 0 \quad \forall x$
- ►  $P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b)$

#### Observação

Se X é v.a. contínua, então:

- $P(X = x) = 0 \quad \forall x$
- ►  $P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b)$
- ▶ f(x) não representa a probabilidade de x, a probabilidade será calculada entre 2 pontos (e será igual á area abaixo da curva)









Seja X uma v.a. contínua com f.p  $f(\cdot)$ .

#### Esperança

O valor esperado de X é definido como

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f(x) dx$$

Seja X uma v.a. contínua com f.p  $f(\cdot)$ .

### Esperança

O valor esperado de X é definido como

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f(x) dx$$

#### Variância

A Variância de X, denotada por  $\mathbb{V}(X)$  é definida como

$$\mathbb{V}(X) = \mathbb{E}((X-\mu)^2) = \int_{-\infty}^{\infty} (x-\mu)^2 f(x) dx,$$

em que  $\mu = E(X)$ 

### **Propriedades**

Seja X uma variável aleatória

- $ightharpoonup \mathbb{E}(aX+b)=a\mathbb{E}(X)+b$  (onde a e b são constantes)
- $ightharpoonup \mathbb{V}(X) = \mathbb{E}(X^2) \mathbb{E}^2(X)$
- ▶ Sejam  $X_1, X_2, \cdots, X_n$  v.a. com  $\mathbb{E}(X_i) < \infty$ , então,

$$\mathbb{E}(X_1 + X_2 + \cdots + X_n) = \mathbb{E}(X_1) + \cdots + \mathbb{E}(X_n)$$

▶ Sejam  $X_1, X_2, \dots, X_n$  v.a. **independentes** com  $V(X_i) < \infty$ . Então,

$$\mathbb{V}(X_1 + X_2 + \cdots + X_n) = \mathbb{V}(X_1) + \cdots + \mathbb{V}(X_n)$$



## Distribuições Contínuas



É a distribuição continua mais simples

#### Distribuição uniforme

Uma v.a. continua X tem distribuição uniforme no intervalo [a, b],

denotada por 
$$X \sim U_{[a,b]}$$
 se sua função densidade é dada por  $f(x) = f(x;a,b) = f(x|a,b) = \begin{cases} \frac{1}{b-a}, & \text{se } a \leq x \leq b \\ 0, & \text{caso contrário}, \end{cases}$ 



$$E(X) = \frac{a+b}{2}$$

$$E(X) = \frac{a+b}{2}$$

#### Demostração

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{a}^{b} x f(x) dx = \int_{a}^{b} \frac{x}{b-a} dx = \frac{1}{b-a} \int_{a}^{b} x dx$$

$$E(X) = \frac{a+b}{2}$$

#### Demostração

$$E(X) = \int_{-\infty}^{\infty} xf(x)dx = \int_{a}^{b} xf(x)dx = \int_{a}^{b} \frac{x}{b-a}dx = \frac{1}{b-a} \int_{a}^{b} xdx$$

#### Lembre:

$$\int_a^b x dx = \frac{b^2}{2} - \frac{a^2}{2}$$

$$E(X) = \frac{a+b}{2}$$

#### Demostração

$$E(X) = \int_{-\infty}^{\infty} xf(x)dx = \int_{a}^{b} xf(x)dx = \int_{a}^{b} \frac{x}{b-a}dx = \frac{1}{b-a} \int_{a}^{b} xdx$$

#### Lembre:

$$\int_{a}^{b} x dx = \frac{b^2}{2} - \frac{a^2}{2}$$

$$E(X) = \frac{1}{b-a} \times \frac{b^2-a^2}{2} = \frac{(b+a)(b-a)}{2(b-a)} = \frac{a+b}{2}$$

$$V(X) = \frac{(b-a)^2}{12}$$

$$V(X) = \frac{(b-a)^2}{12}$$

#### Demostração

$$E(X^2) = \int_a^b x^2 f(x) dx = \frac{b^2 + ab + a^2}{3}$$
 (Verificar!)

$$V(X) = \frac{(b-a)^2}{12}$$

#### Demostração

$$E(X^{2}) = \int_{a}^{b} x^{2} f(x) dx = \frac{b^{2} + ab + a^{2}}{3} \text{ (Verificar!)}$$

$$V(X) = E(X^{2}) - E^{2}(X) = \frac{b^{2} + ab + a^{2}}{3} - \frac{(a+b)^{2}}{4} = \frac{(b-a)^{2}}{12}$$

#### **Importante**

Se  $X \sim U[a,b]$ , para qualquer intervalor [c,d] com  $a \leq c \leq d \leq b$ ,

$$P(c \le X \le d) = \int_{c}^{d} \frac{1}{b-a} dx = \frac{d-c}{b-a}$$

#### **Importante**

Se  $X \sim U[a,b]$ , para qualquer intervalor [c,d] com  $a \leq c \leq d \leq b$ ,

$$P(c \le X \le d) = \int_{c}^{d} \frac{1}{b-a} dx = \frac{d-c}{b-a}$$

Por outro lado,

$$F(x) = P(X \le x) = \begin{cases} 0, & \text{se } x < a \\ \frac{x - a}{b - a}, & \text{se } , a \le x < b \\ 1, & \text{se } x \ge b \end{cases}$$

## Distribuição uniforme: Exemplos

1. Suponha que João e Maria combinam de sair para um encontro e João diz que a buscará em casa às 21:30 hrs. Maria é super pontual e resolve que só sairá com o João se ele atrasar no máximo 10 minutos. Assuma que o tempo de chegada de João se distribui como uma v.a. uniforme entre 21:15 e 21:45. Qual é a probabilidade de João chegar no máximo 10 minutos atrasado?

## Distribuição uniforme: Exemplos

- 1. Suponha que João e Maria combinam de sair para um encontro e João diz que a buscará em casa às 21:30 hrs. Maria é super pontual e resolve que só sairá com o João se ele atrasar no máximo 10 minutos. Assuma que o tempo de chegada de João se distribui como uma v.a. uniforme entre 21:15 e 21:45. Qual é a probabilidade de João chegar no máximo 10 minutos atrasado?
- X: tempo de chegada do Joao à casa da maria

## Distribuição uniforme: Exemplos

- 1. Suponha que João e Maria combinam de sair para um encontro e João diz que a buscará em casa às 21:30 hrs. Maria é super pontual e resolve que só sairá com o João se ele atrasar no máximo 10 minutos. Assuma que o tempo de chegada de João se distribui como uma v.a. uniforme entre 21:15 e 21:45. Qual é a probabilidade de João chegar no máximo 10 minutos atrasado?
- X: tempo de chegada do Joao à casa da maria
- ►  $X \sim U[15, 45]$

- 1. Suponha que João e Maria combinam de sair para um encontro e João diz que a buscará em casa às 21:30 hrs. Maria é super pontual e resolve que só sairá com o João se ele atrasar no máximo 10 minutos. Assuma que o tempo de chegada de João se distribui como uma v.a. uniforme entre 21:15 e 21:45. Qual é a probabilidade de João chegar no máximo 10 minutos atrasado?
- X: tempo de chegada do Joao à casa da maria
- ►  $X \sim U[15, 45]$
- ▶ Queremos  $P(X \le 40)$

- 1. Suponha que João e Maria combinam de sair para um encontro e João diz que a buscará em casa às 21:30 hrs. Maria é super pontual e resolve que só sairá com o João se ele atrasar no máximo 10 minutos. Assuma que o tempo de chegada de João se distribui como uma v.a. uniforme entre 21:15 e 21:45. Qual é a probabilidade de João chegar no máximo 10 minutos atrasado?
- X: tempo de chegada do Joao à casa da maria
- ►  $X \sim U[15, 45]$
- ► Queremos  $P(X \le 40)$ ►  $P(X \le 40) = \int_{15}^{40} \frac{1}{45 15} dx = \frac{40 15}{45 15} = \frac{25}{30} = 0.83$

#### R

```
# X: tempo de chegada do Joao à casa da Maria, X ~ U[15,45]
# P(X <= 40)
punif(40,min=15, max = 45)
## [1] 0.8333333</pre>
```

#### R

```
# X: tempo de chegada do Joao à casa da Maria, X ~ U[15,45]
# P(X \le 40)
punif(40,min=15, max = 45)
## [1] 0.8333333
# Y ~ U[-15,15] (forma alternativa)
\# P(Y \le 10)
punif(10, min=-15, max = 15)
## [1] 0.8333333
```

- 2. A espessura de chapas de metal fabricadas pela *MetaisABC* segue uma distribuição uniforme entre 0.87cm e 1.03cm. Se selecionarmos uma chapa aleatoriamente, qual é a probabilidade da chapa ter espessura entre 0.98 e 1.02?
- ► X : espessura das chapas de metal fabricadas pela MetaisABC,

- 2. A espessura de chapas de metal fabricadas pela *MetaisABC* segue uma distribuição uniforme entre 0.87cm e 1.03cm. Se selecionarmos uma chapa aleatoriamente, qual é a probabilidade da chapa ter espessura entre 0.98 e 1.02?
- ► X : espessura das chapas de metal fabricadas pela MetaisABC,
- $X \sim U[0.87, 1.03]$

- 2. A espessura de chapas de metal fabricadas pela *MetaisABC* segue uma distribuição uniforme entre 0.87cm e 1.03cm. Se selecionarmos uma chapa aleatoriamente, qual é a probabilidade da chapa ter espessura entre 0.98 e 1.02?
- ► X : espessura das chapas de metal fabricadas pela MetaisABC,
- $X \sim U[0.87, 1.03]$
- Queremos  $P(0.98 \le X \le 1.02)$

- 2. A espessura de chapas de metal fabricadas pela MetaisABC segue uma distribuição uniforme entre 0.87cm e 1.03cm. Se selecionarmos uma chapa aleatoriamente, qual é a probabilidade da chapa ter espessura entre 0.98 e 1.02?
- X: espessura das chapas de metal fabricadas pela *MetaisABC*,
- $X \sim U[0.87, 1.03]$
- ▶ Queremos  $P(0.98 \le X \le 1.02)$ ▶  $P(0.98 \le X \le 1.02) = \frac{1.02 0.98}{1.03 0.87} = 0.25$

#### R

```
a = 0.87
b = 1.03
punif(1.02, a, b)-punif(0.98, a, b)
## [1] 0.25
```

```
R
```

```
a = 0.87
b = 1.03
punif(1.02, a, b)-punif(0.98, a, b)
## [1] 0.25
# Cuidado, por padrão punif assume que queremos uma U[0,1]
# O sequinte código esta errado!
# (precisamos definir os parametros da dist. Uniforme)
punif(1.02) - punif(0.98)
## [1] 0.02
```

- 3. O metrô passa na estação Ipanema de 15 em 15 minutos começando as 5am. Se o tempo de chegada de um passageiro à plataforma se distribui de forma uniforme entre as 7:00 e 7:50. Qual é a probabilidade do passageiro esperar menos que 5 minutos pelo metrô?
- ▶ Note que o metrô passará as 7:00, 7:15, 7:30, 7:45, 8:00, . . . .

- 3. O metrô passa na estação Ipanema de 15 em 15 minutos começando as 5am. Se o tempo de chegada de um passageiro à plataforma se distribui de forma uniforme entre as 7:00 e 7:50. Qual é a probabilidade do passageiro esperar menos que 5 minutos pelo metrô?
- ▶ Note que o metrô passará as 7:00, 7:15, 7:30, 7:45, 8:00, . . . .
- Seja X o número em minutos em que o passageiro chega na plataforma entre as 7:00 e as 7:50,  $X \sim U[0,50]$

- 3. O metrô passa na estação Ipanema de 15 em 15 minutos começando as 5am. Se o tempo de chegada de um passageiro à plataforma se distribui de forma uniforme entre as 7:00 e 7:50. Qual é a probabilidade do passageiro esperar menos que 5 minutos pelo metrô?
- ▶ Note que o metrô passará as 7:00, 7:15, 7:30, 7:45, 8:00, . . . .
- Seja X o número em minutos em que o passageiro chega na plataforma entre as 7:00 e as 7:50,  $X \sim U[0,50]$
- ▶ Para que o passageiro espere menos de 5 min deve chegar entre 10 < X < 15, 25 < X < 30 ou 40 < X < 45

- 3. O metrô passa na estação Ipanema de 15 em 15 minutos começando as 5am. Se o tempo de chegada de um passageiro à plataforma se distribui de forma uniforme entre as 7:00 e 7:50. Qual é a probabilidade do passageiro esperar menos que 5 minutos pelo metrô?
- ▶ Note que o metrô passará as 7:00, 7:15, 7:30, 7:45, 8:00, . . . .
- Seja X o número em minutos em que o passageiro chega na plataforma entre as 7:00 e as 7:50,  $X \sim U[0,50]$
- ▶ Para que o passageiro espere menos de 5 min deve chegar entre 10 < X < 15, 25 < X < 30 ou 40 < X < 45

$$\underbrace{P(10 < X < 15)}_{50 - 0} + \underbrace{P(25 < X < 30)}_{50 - 0} + \underbrace{P(40 < X < 45)}_{45 - 40} = 15/50$$

## Distribuição exponencial:

#### Distribuição exponencial

Uma v.a. continua X tem distribuição exponencial com parâmetro  $\lambda$ , denotada por  $X \sim \textit{Exp}(\lambda)$  se sua função densidade é dada por

$$f(x; a, b) = f(x|a, b) =$$

$$\begin{cases} \lambda e^{-\lambda x}, & \text{se } x \geq 0 \\ 0, & \text{caso contrário.} \end{cases}$$

- $ightharpoonup E(X) = 1/\lambda$
- $V(X) = 1/\lambda^2$

Quem é o  $\lambda$ ?  $\lambda = 1/\mu$ , onde  $\mu$  : tempo medio

# Distribuição exponencial:



# Distribuição exponencial

#### **Importante**

Se  $X \sim \textit{Exp}(\lambda)$ , para qualquer intervalor [a,b] com  $0 \leq a \leq b$ ,

$$P(a \le X \le b) = \int_a^b \lambda e^{-\lambda x} dx = e^{-a\lambda} - e^{-b\lambda}$$

# Distribuição exponencial

#### **Importante**

Se  $X \sim \textit{Exp}(\lambda)$ , para qualquer intervalor [a,b] com  $0 \leq a \leq b$ ,

$$P(a \le X \le b) = \int_a^b \lambda e^{-\lambda x} dx = e^{-a\lambda} - e^{-b\lambda}$$

Por outro lado,

$$F(x) = P(X \le x) = \begin{cases} 0, & \text{se } x < 0 \\ 1 - e^{-\lambda x}, & \text{se } , x \ge 0 \end{cases}$$

1. O tempo (em horas) necessário para consertar uma maquina de café (com um determinado problema XYZ) pode ser modelado por uma distribuição exponencial com  $\lambda=2/3$ . João, o conserta-tudo, fala que para consertar nossa maquina de café, demorará, no mínimo 3 horas. Qual a probabilidade disso acontecer?

- 1. O tempo (em horas) necessário para consertar uma maquina de café (com um determinado problema XYZ) pode ser modelado por uma distribuição exponencial com  $\lambda=2/3$ . João, o conserta-tudo, fala que para consertar nossa maquina de café, demorará, no mínimo 3 horas. Qual a probabilidade disso acontecer?
- X : tempo (em horas) necessário para consertar uma maquina de café

- 1. O tempo (em horas) necessário para consertar uma maquina de café (com um determinado problema XYZ) pode ser modelado por uma distribuição exponencial com  $\lambda=2/3$ . João, o conserta-tudo, fala que para consertar nossa maquina de café, demorará, no mínimo 3 horas. Qual a probabilidade disso acontecer?
- X : tempo (em horas) necessário para consertar uma maquina de café
- $\rightarrow$   $X \sim Exp(\lambda = 2/3)$

- 1. O tempo (em horas) necessário para consertar uma maquina de café (com um determinado problema XYZ) pode ser modelado por uma distribuição exponencial com  $\lambda=2/3$ . João, o conserta-tudo, fala que para consertar nossa maquina de café, demorará, no mínimo 3 horas. Qual a probabilidade disso acontecer?
- X : tempo (em horas) necessário para consertar uma maquina de café
- $\rightarrow$   $X \sim Exp(\lambda = 2/3)$
- ▶ Queremos  $P(X \ge 3)$

- 1. O tempo (em horas) necessário para consertar uma maquina de café (com um determinado problema XYZ) pode ser modelado por uma distribuição exponencial com  $\lambda=2/3$ . João, o conserta-tudo, fala que para consertar nossa maquina de café, demorará, no mínimo 3 horas. Qual a probabilidade disso acontecer?
- X: tempo (em horas) necessário para consertar uma maquina de café
- $\rightarrow$   $X \sim Exp(\lambda = 2/3)$
- ▶ Queremos  $P(X \ge 3)$
- ►  $P(X \ge 3) = 1 P(X < 3) = 1 P(X \le 3) = 1 [1 e^{-2/3 \times 3}] = 0.1353353$

#### R

```
# P(X >= 3) = 1-P(X<3) = 1-P(X<=3)
lambda = 2/3
1-pexp(3, rate = lambda)
## [1] 0.1353353</pre>
```

2. A vida útil de um celular Xing-Ling segue uma distribuição exponencial com tempo de vida médio de 3 meses. João esta precisando muito de um celular, e um vendedor oferece um celular Xing-Ling por um preço bem camarada e ainda afirma que, se o celular estragar em menos de 2 meses, João receberá o dinheiro de volta. Qual a probabilidade do celular durar menos do que 2 meses?

- 2. A vida útil de um celular Xing-Ling segue uma distribuição exponencial com tempo de vida médio de 3 meses. João esta precisando muito de um celular, e um vendedor oferece um celular Xing-Ling por um preço bem camarada e ainda afirma que, se o celular estragar em menos de 2 meses, João receberá o dinheiro de volta. Qual a probabilidade do celular durar menos do que 2 meses?
- X tempo de vida útil de um celular Xing-Ling

- 2. A vida útil de um celular Xing-Ling segue uma distribuição exponencial com tempo de vida médio de 3 meses. João esta precisando muito de um celular, e um vendedor oferece um celular Xing-Ling por um preço bem camarada e ainda afirma que, se o celular estragar em menos de 2 meses, João receberá o dinheiro de volta. Qual a probabilidade do celular durar menos do que 2 meses?
- X tempo de vida útil de um celular Xing-Ling
- $X \sim Exp(\lambda = 1/3) \ (\lambda = 1/\mu, \quad \mu = 3)$

- 2. A vida útil de um celular Xing-Ling segue uma distribuição exponencial com tempo de vida médio de 3 meses. João esta precisando muito de um celular, e um vendedor oferece um celular Xing-Ling por um preço bem camarada e ainda afirma que, se o celular estragar em menos de 2 meses, João receberá o dinheiro de volta. Qual a probabilidade do celular durar menos do que 2 meses?
- X tempo de vida útil de um celular Xing-Ling
- $X \sim Exp(\lambda = 1/3) \ (\lambda = 1/\mu, \quad \mu = 3)$
- ▶ Queremos P(X < 2)

$$\underbrace{P(X < 2) = P(X \le 2)}_{\text{pois } P(X=2)=0} = F(2)$$

$$\underbrace{P(X < 2) = P(X \le 2)}_{\text{pois } P(X=2)=0} = F(2)$$

#### Lembre que

$$F(x) = 1 - e^{-\lambda x}$$

$$\underbrace{P(X < 2) = P(X \le 2)}_{\text{pois } P(X=2)=0} = F(2)$$

#### Lembre que

$$F(x) = 1 - e^{-\lambda x}$$

$$P(X \le 2) = F(2) = 1 - e^{-\frac{2}{3}} = 1 - e^{-2/3} = 0.4865829$$

#### R

```
lambda = 1/3
# P(X<2) = P(X<=2)
pexp(2, rate = lambda)
## [1] 0.4865829
1-exp(-2/3)
## [1] 0.4865829</pre>
```

#### Distribuição exponencial:

#### Proposição: Poisson-Exponencial

Suponha que o número de eventos que ocurrem em um intervalo de tempo/espaço t tenha distribuição  $Pois(\lambda t)$  onde  $\lambda$  é o número esperado de eventos que ocorrem em uma unidade de tempo/espaço. Se o número de ocorrencias em intervalos não sobrepostos é independente entre intervalos, então a distribuição do tempo entre a ocorrencia de dois eventos sucessivos é  $Exp(\lambda)$ .

3. Suponha que as ligações recebidas numa central de denuncias ocorram segundo um processo de Poisson com taxa de 0.7 ligações por dia. Qual a probabilidade de haver mais de 2 dias entre chamadas?

► Seja X : número de dias entre as chamadas

- ▶ Seja X : número de dias entre as chamadas
- ▶ Queremos P(X > 2)

- ► Seja X : número de dias entre as chamadas
- ▶ Queremos P(X > 2)

## Distribuição exponencial: Exemplos

- Seja X : número de dias entre as chamadas
- ▶ Queremos P(X > 2)

Como o número de chamadas segue uma Poisson(0.7), pela **Proposição Poisson-Exponencial**, X: o número de occorencias entre dois eventos sucessivos  $\sim Exp(0.7)$ 

$$P(X > 2) = 1 - P(X \le 2) = 1 - e^{-2 \times 0.7} = 0.246597$$

## Distribuição exponencial: Exemplos

- Seja X : número de dias entre as chamadas
- ▶ Queremos P(X > 2)

Como o número de chamadas segue uma Poisson(0.7), pela **Proposição Poisson-Exponencial**, X: o número de occorencias entre dois eventos sucessivos  $\sim Exp(0.7)$ 

$$P(X > 2) = 1 - P(X \le 2) = 1 - e^{-2 \times 0.7} = 0.246597$$

## Distribuição exponencial: Exemplos

- Seja X : número de dias entre as chamadas
- ▶ Queremos P(X > 2)

Como o número de chamadas segue uma Poisson(0.7), pela **Proposição Poisson-Exponencial**, X: o número de occorencias entre dois eventos sucessivos  $\sim Exp(0.7)$ 

$$P(X > 2) = 1 - P(X \le 2) = 1 - e^{-2 \times 0.7} = 0.246597$$

$$1-pexp(2, rate = 0.7)$$

▶ É a distribuição continua mais importante de todas

#### Distribuição Normal

Uma v.a. continua X tem distribuição Normal (Gaussiana), denotada por  $N(\mu, \sigma)$ , se sua função densidade é da forma

$$f(x;\mu,\sigma) = f(x|\mu,\sigma) = f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \text{ com } x \in (-\infty,\infty)$$

- $E(X) = \mu$  $V(X) = \sigma^2$

- É a distribuição continua mais importante de todas
- tem forma de sino

#### Distribuição Normal

Uma v.a. continua X tem distribuição Normal (Gaussiana), denotada por  $N(\mu, \sigma)$ , se sua função densidade é da forma

$$f(x;\mu,\sigma) = f(x|\mu,\sigma) = f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \text{ com } x \in (-\infty,\infty)$$

- $E(X) = \mu$  $V(X) = \sigma^2$



#### Distribuição Normal Padrão

Quando  $\mu=0$  e  $\sigma=1$ , a distribuição Normal é conhecida como Normal Padrão, denotada por N(0,1), e sua função de densidade é da forma

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \text{ com } x \in (-\infty, \infty)$$

- E(X) = 0
- V(X) = 1  $F(x) = \int_{-\infty}^{x} f(t)dt = \Phi(x)$

#### Padronização

Se 
$$X \sim \textit{N}(\mu, \sigma)$$
, então  $Z = \frac{X - \mu}{\sigma} \sim \textit{N}(0, 1)$ 

#### Observação 1

Embora no computador consigamos calcular as probabilidade para quaisquer valores de  $\mu$  e  $\sigma$ , sempre levaremos tudo para uma distribuição padrão.

```
1. Se X \sim N(0,1), calcule: P(X \le -3), P(X > 3) e P(-2 \le X \le 2)
\# P(X <= -3)
pnorm(-3)
## [1] 0.001349898
# P(X>3)
1-pnorm(3)
## [1] 0.001349898
# (c) P(-2 \le X \le 2)
pnorm(2) - pnorm(-2)
## [1] 0.9544997
```

2. O tempo gasto em terminar a  $P_1$  de MAD211 tem distribuição normal, com média 120 minutos e desvio padrão de 15 min. Qual é a probabilidade de um aluno terminar a prova em menos de 45 minutos?

- 2. O tempo gasto em terminar a  $P_1$  de MAD211 tem distribuição normal, com média 120 minutos e desvio padrão de 15 min. Qual é a probabilidade de um aluno terminar a prova em menos de 45 minutos?
- $\triangleright$  X : tempo gastos em terminar a  $P_1$  de MAD211

- 2. O tempo gasto em terminar a  $P_1$  de MAD211 tem distribuição normal, com média 120 minutos e desvio padrão de 15 min. Qual é a probabilidade de um aluno terminar a prova em menos de 45 minutos?
- ightharpoonup X: tempo gastos em terminar a  $P_1$  de MAD211
- ►  $X \sim N(120, 15)$

- 2. O tempo gasto em terminar a  $P_1$  de MAD211 tem distribuição normal, com média 120 minutos e desvio padrão de 15 min. Qual é a probabilidade de um aluno terminar a prova em menos de 45 minutos?
- $\triangleright$  X : tempo gastos em terminar a  $P_1$  de MAD211
- ►  $X \sim N(120, 15)$
- $Z = \frac{X 120}{15}$

- 2. O tempo gasto em terminar a  $P_1$  de MAD211 tem distribuição normal, com média 120 minutos e desvio padrão de 15 min. Qual é a probabilidade de um aluno terminar a prova em menos de 45 minutos?
- ➤ X : tempo gastos em terminar a P<sub>1</sub> de MAD211
- ►  $X \sim N(120, 15)$
- $Z = \frac{X 120}{15}$
- Queremos P(X < 45)

- 2. O tempo gasto em terminar a  $P_1$  de MAD211 tem distribuição normal, com média 120 minutos e desvio padrão de 15 min. Qual é a probabilidade de um aluno terminar a prova em menos de 45 minutos?
- ightharpoonup X: tempo gastos em terminar a  $P_1$  de MAD211
- ►  $X \sim N(120, 15)$
- $Z = \frac{X 120}{15}$
- PQueremos P(X < 45)
- $P(X < 45) = P(\frac{X 120}{15} < \frac{45 120}{15}) = P(Z < -5)$

- 2. O tempo gasto em terminar a  $P_1$  de MAD211 tem distribuição normal, com média 120 minutos e desvio padrão de 15 min. Qual é a probabilidade de um aluno terminar a prova em menos de 45 minutos?
- ightharpoonup X: tempo gastos em terminar a  $P_1$  de MAD211
- ►  $X \sim N(120, 15)$
- $Z = \frac{X 120}{15}$
- ightharpoonup Queremos P(X < 45)
- $P(X < 45) = P(\frac{X 120}{15} < \frac{45 120}{15}) = P(Z < -5)$

- 2. O tempo gasto em terminar a  $P_1$  de MAD211 tem distribuição normal, com média 120 minutos e desvio padrão de 15 min. Qual é a probabilidade de um aluno terminar a prova em menos de 45 minutos?
- ➤ X : tempo gastos em terminar a P<sub>1</sub> de MAD211
- ►  $X \sim N(120, 15)$
- $Z = \frac{X 120}{15}$
- PQueremos P(X < 45)
- $P(X < 45) = P(\frac{X 120}{15} < \frac{45 120}{15}) = P(Z < -5)$

pnorm(-5)

## [1] 2.866516e-07

3. Suponha que o peso médio dos porcos de uma fazenda seja 70 kg e que o desvio padrão dos pesos seja 10 kg. Supondo que esses pesos se distribuem normalmente, qual é a probabilidade de um porco escolhido ao acaso pesar entre 65 e 75 kg?

- 3. Suponha que o peso médio dos porcos de uma fazenda seja 70 kg e que o desvio padrão dos pesos seja 10 kg. Supondo que esses pesos se distribuem normalmente, qual é a probabilidade de um porco escolhido ao acaso pesar entre 65 e 75 kg?
- ightharpoonup X : pesos dos porcos de uma determinada fazenda,  $X \sim N(70,10)$

- 3. Suponha que o peso médio dos porcos de uma fazenda seja 70 kg e que o desvio padrão dos pesos seja 10 kg. Supondo que esses pesos se distribuem normalmente, qual é a probabilidade de um porco escolhido ao acaso pesar entre 65 e 75 kg?
- ightharpoonup X : pesos dos porcos de uma determinada fazenda,  $X \sim N(70, 10)$
- ▶ Queremos  $P(65 \le X \le 75)$

- 3. Suponha que o peso médio dos porcos de uma fazenda seja 70 kg e que o desvio padrão dos pesos seja 10 kg. Supondo que esses pesos se distribuem normalmente, qual é a probabilidade de um porco escolhido ao acaso pesar entre 65 e 75 kg?
- lacktriangleright X : pesos dos porcos de uma determinada fazenda,  $X \sim \mathcal{N}(70,10)$
- ▶ Queremos  $P(65 \le X \le 75)$
- ► Padronizando:

$$P(\frac{65-70}{10} \le \frac{X-70}{10} \le \frac{75-70}{10}) = P(-0.5 \le Z \le 0.5)$$

- 3. Suponha que o peso médio dos porcos de uma fazenda seja 70 kg e que o desvio padrão dos pesos seja 10 kg. Supondo que esses pesos se distribuem normalmente, qual é a probabilidade de um porco escolhido ao acaso pesar entre 65 e 75 kg?
- lacktriangleright X : pesos dos porcos de uma determinada fazenda,  $X \sim \mathcal{N}(70,10)$
- ▶ Queremos  $P(65 \le X \le 75)$
- ► Padronizando:

$$P(\frac{65-70}{10} \le \frac{X-70}{10} \le \frac{75-70}{10}) = P(-0.5 \le Z \le 0.5)$$

- 3. Suponha que o peso médio dos porcos de uma fazenda seja 70 kg e que o desvio padrão dos pesos seja 10 kg. Supondo que esses pesos se distribuem normalmente, qual é a probabilidade de um porco escolhido ao acaso pesar entre 65 e 75 kg?
- lacktriangleq X : pesos dos porcos de uma determinada fazenda,  $X \sim N(70,10)$
- ▶ Queremos  $P(65 \le X \le 75)$
- Padronizando:  $P(\frac{65-70}{10} \le \frac{X-70}{10} \le \frac{75-70}{10}) = P(-0.5 \le Z \le 0.5)$

pnorm(0.5)-pnorm(-0.5)

## [1] 0.3829249

## Distribuições especiais: Como identificar?

- ▶ Binomial: X : número total de sucessos em n realizações
- ▶ **Poisson:** *X* : número de \_\_\_\_\_ em um intervalo fixo de tempo/espaço
- ► **Hipergeométrica:** parecido com Binomial mas conhecemos *N* e a probabilidade de sucesso muda de ensaio para ensaio.
- ▶ Uniforme: se distribui uniformemente
- **Exponencial:** X : tempo até a occorencia de eventos sucessivos
- ▶ Normal: se distribui normalmente

#### Leituras recomendadas

- Anderson, D. R; Sweeney, D. J.; e Williams, T. A. (2008). Estatística Aplicada à Administração e Economia. 2ed. Cengage Learning. Cap 6
- ► Morettin, P.A; e Bussab, W. de O. (2004). *Estatística Básica*. 5ed, Saraiva. Cap 7