

Stroke Classification

Jordana Tepper, Troy Hendrickson, Viktoria Szontagh

Agenda

- 1 | BUSINESS UNDERSTANDING
- 2 | DATA
- 3 | BEST MODEL AND RESULTS
- 4 | RECOMMENDATIONS
- 5 | LIMITATIONS AND NEXT STEPS

Business Understanding

STAKEHOLDERS

The Mount Sinai Hospital in New York

THE PROBLEM

According to the World Health Organization (WHO) stroke is the 2nd leading cause of death globally, responsible for approximately 11% of total deaths. Additionally, in the US, someone has a stroke every 40 seconds.

On top of that, strokes are a known complication of surgery.

THE PROJECT

Develop a model that acts as a preliminary assessment to determine whether a person is likely to have a stroke or not during surgery using available data. The results will determine if further screening is needed.

THE GOAL

Introduce the model that arbitrates the best results to identify patients in need of extra screening before surgery

The Data

• FEATURES

BMI, Smoking Status, Glucose level, Age, Gender, Ever Married, Residence Type, Working Status, Heart Disease, Hypertension

- MISSING DATA
 BMI (Body Mass Index)
- IMBALANCE

95% - No stroke 5% - Stroke KAGGLE 'STROKE PREDICTION DATA SET'

ROWS

11 COLUMNS

Data Processing

Best Model

Logistic Regression - Optimal Threshold (0.446)

>>> CLASSIFICATION MODEL: LOGISTIC REGRESSION Included optimal threshold for best results

>>> RECALL SCORE: 92%

The main metric used to determine the accuracy of our model A false negative is more costly than a false positive.

>>> BETTER THAN BAYES?

Had best recall was our Gaussian Naive Bayes model with a recall score of 94% but a false positive rate of 0.60.

Recommendations

MODEL TYPE

Based on our project, we propose that logistic regression has the best classification of stroke risk and most effectively minimizes both the false negatives and false positives.

OPTIMIZE SCREENING COSTS

By decreasing the false positives, it gives less room to the insurance company to reject claims - benefiting both the patients and the hospital.

Limitations and Next Steps

Limitations

- Medication is not taken into account
- Missing Data
- Unknown origin of the dataset

Next Steps

- Cholesterol
- Family history of stroke
- Number of strokes
- Race (i.e., the likelihood of stroke among different races)

Contact Us

TROY HENDRICKSON

- troyhendrickson@gmail.com
- - gitHub.com/tkhendrix22
 - linkedin.com/in/troy-hendrickson

JORDANA TEPPER

- jtepper724@gmail.com
- - gitHub.com/jordanate
- (in)
- linkedin.com/in/jordana-tepper

VIKTORIA SZONTAGH

- vikkiszontagh@gmail.com
- gitHub.com/vszontagh
- (in)
- linkedin.com/in/viktoriaszontagh