PCT/JP03/02890

許 特 E 本 国

PATENT OFFICE JAPAN

12.03.03

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年 3月15日

REC'D 0 9 MAY 2003

WIPO

PCT.

出願番 Application Number:

特願2002-071448

[ST.10/C]:

[JP2002-071448]

人 出 Applicant(s):

日東電工株式会社

COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年 4月22日

Commissioner, Japan Patent Office

BEST AVAILABLE COPY

【書類名】

特許願

【整理番号】

P02003ND

【提出日】

平成14年 3月15日

【あて先】

特許庁長官

殿

【国際特許分類】

G02B 05/30

【発明者】

【住所又は居所】

大阪府茨木市下穂積1丁目1番2号 日東電工株式会社

内

【氏名】

宮武 稔

【発明者】

【住所又は居所】

大阪府茨木市下穂積1丁目1番2号 日東電工株式会社

内

【氏名】

吉岡 昌宏

【発明者】

【住所又は居所】

大阪府茨木市下穂積1丁目1番2号 日東電工株式会社

内

【氏名】

増田 友昭

【特許出願人】

【識別番号】

000003964

【住所又は居所】

大阪府茨木市下穂積1丁目1番2号

【氏名又は名称】

日東電工株式会社

【代理人】

【識別番号】

100092266

【弁理士】

【氏名又は名称】

鈴木 崇生

【電話番号】

06-6838-0505

【選任した代理人】

【識別番号】

100104422

【弁理士】

【氏名又は名称】 梶崎 弘一

【電話番号】 06-6838-0505

【選任した代理人】

【識別番号】 100105717

【弁理士】

【氏名又は名称】 尾崎 雄三

【電話番号】 06-6838-0505

【選任した代理人】

【識別番号】 100104101

【弁理士】

【氏名又は名称】 谷口 俊彦

【電話番号】 06-6838-0505

【手数料の表示】

【予納台帳番号】 074403

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書・1

【包括委任状番号】 9903185

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 反射防止フィルム、その製造方法、光学素子および画像表示装置

【特許請求の範囲】

【請求項1】 透明基材フィルムの少なくとも片面に、直接または別の層を介して、反射防止層が形成されている反射防止フィルムにおいて、

前記反射防止層が、屈折率: n_d $^{20} \le 1$. 49 を満足する、少なくとも二種類の低屈折率材料によって、異なる領域を形成した分離構造になっていることを特徴とする反射防止フィルム。

【請求項2】 分離構造が、海島構造になっていることを特徴とする請求項 1記載の反射防止フィルム。

【請求項3】 分離構造における、短領域のサイズが5~1000nmの範囲であることを特徴とする請求項1または2記載の反射防止フィルム。

【請求項4】 異なる領域が、フッ素含有材料を主成分とする領域とポリシロキサン構造を主成分とする領域とを有する分離構造によって形成されていることを特徴とする請求項1~3のいずれかに記載の反射防止フィルム。

【請求項5】 反射防止層が、凹凸形状表面に形成されており、防眩性を有することを特徴とする請求項1~4のいずれかに記載の反射防止フィルム。

【請求項6】 光学素子の片面又は両面に、請求項5記載の反射防止フィルムが設けられていることを特徴とする光学素子。

【請求項7】 請求項5記載の反射防止フィルムまたは請求項6記載の光学素子を搭載した画像表示装置。

【請求項8】 透明基材フィルムの少なくとも片面に、直接または別の層を介して、反射防止層を形成する反射防止フィルムの製造方法において、

前記反射防止層の形成を、屈折率: $n_d^{20} \le 1$. 49を満足する、少なくとも二種類の低屈折率材料を溶媒に溶解した塗工液を、塗工後、乾燥することにより行うこと特徴とする反射防止フィルムの製造方法。

【請求項9】 低屈折率材料が、フッ素含有材料とポリシロキサン形成材料を含み、溶媒が、ケトン系溶媒とアルコール系溶媒を含む混合溶媒であることを

特徴とする請求項8記載の反射防止フィルムの製造方法。

【発明の詳細な説明】

[0.0.01]

【発明の属する技術分野】

本発明は反射防止フィルムおよびその製造方法に関する。さらには当該反射防止フィルムを用いた光学素子及び画像表示装置に関する。本発明の反射防止フィルムは、反射防止層、すなわち低屈折率層を有することにより表面反射光を低減でき視認性が良好である。かかる反射防止フィルムを用いた反射防止偏光板等の光学素子は、液晶ディスプレイ、有機EL表示装置、PDP、CRT等の各種画像表示装置において好適に利用できる。

[0002]

【従来の技術】

液晶パネルは近年の研究開発によりディスプレイとしての確固たる地位を確保しつつある。しかし、液晶ディスプレイを、明るい照明下において、使用頻度の高いカーナビゲーション用モニターやビデオカメラ用モニターに用いた場合には、表面反射による視認性の低下が顕著である。このため、これらの機器に装着される偏光板には、反射防止処理を施すことが必要不可欠になっている。屋外使用頻度の高い液晶ディイスプレイには、ほとんどが反射防止処理を施した偏光板が使用されている。

[0003]

反射防止処理は、一般的に真空蒸着法、スパッタリング法、CVD法等の手法により、屈折率の異なる材料からなる複数の薄膜の多層積層体を作製し、可視光領域の反射をできるだけ低減させるような設計が行われている。しかし、上記のドライ処理での薄膜の形成には真空設備が必要であり、処理費用が非常に高価となる。そのため、最近ではウェットコーティングでの反射防止層の形成を行っている。通常、反射防止フィルムは、透明基材フィルム上に、ハードコート層、次いで低屈折率の反射防止層からなる構成を有する。反射率の観点からハードコート層に高屈折率が求められ、反射防止層にはより低い屈折率が求められる。低屈折率材料としては、屈折率や防汚染性の観点からフッ素含有ポリマーなどが用い

られている。

[0004]

しかし、フッ素含有ポリマーは、屈折率の観点からは非常に優れているものの、形成される膜は非常に柔らかく、またハードコート樹脂層との密着性も確保しにくい。そのため、フッ素含有ポリマーを用いた反射防止層表面を、布などでこすると傷が入ってしまう問題があった。かかる問題を解決すべく、反射防止層の形成材料として、シロキサン系材料を用いる方法や、フッ素含有ポリマーで形成した反射防止層上に光学(反射防止層)膜厚以下で無機蒸着膜を設ける方法が検討されている。しかし、前記方法では屈折率の上昇による反射率の上昇や、製造工程の煩雑化などにより十分に前記問題を解決できていない。

[0005]

【発明が解決しようとする課題】

本発明は、透明基材フィルム上に、低屈折率材料により形成された反射防止層を有する反射防止フィルムであって、反射防止特性と耐擦傷性に優れた反射防止フィルムおよびその製造方法を提供することを目的とする。また本発明は当該反射防止フィルムを用いた光学素子、当該光学素子等を搭載した画像表示装置を提供することを目的とする。

[0006]

【課題を解決するための手段】

本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、下記反射防止フィルムにより前記目的を達成できることを見出し本発明を完成するに到った。

[0007]

すなわち本発明は、透明基材フィルムの少なくとも片面に、直接または別の層 を介して、反射防止層が形成されている反射防止フィルムにおいて、

前記反射防止層が、屈折率: $n_d^{20} \le 1$. 49を満足する、少なくとも二種類の低屈折率材料によって、異なる領域を形成した分離構造になっていることを特徴とする反射防止フィルム、に関する。

[0008]

上記本発明では反射防止層が、複数の低屈折率材料により形成され、しかも低

[0009]

前記反射防止フィルムにおいて、分離構造が、海島構造になっていることが好ましい。異なる領域を形成する分離構造が、微細な海島構造を形成している場合には、一般にポリマーアロイなどの文献で見られるように、海島構造を形成するそれぞれの材料の機能が足し合わされた効果を奏する。

[0010]

前記反射防止フィルムにおいて、微細構造になっている分離構造における短領域のサイズは、膜強度と、外観の関係から5~1000nmの範囲であることが好ましい。なお、前記短領域のサイズは、SEMやTEMまたはレーザー顕微鏡などを用いて、反射防止層の微細構造を画像として記録し、それに任意に補助線を引いたときの領域ごとの線長さを測定したもののなかで、より短い方の領域(たとえば、分離構造が海島構造の場合は島構造、粒子分散の場合は粒子が短領域になる)の長さの平均値をいう。

[0011]

前記短領域を形成する低屈折率材料は、密着性や皮膜強度を確保して耐擦傷性を向上することができる材料であることが望ましい。通常、反射防止層の膜厚は100nm程度であるため、短領域のサイズが、5nm未満では、反射防止層全体を補強するような効果においては不十分である。一方、短領域のサイズが100nm以上の場合には、複数の低屈性率材料の屈折率差が大きくなると、それぞれの領域での界面による散乱が無視できないレベルとなる。その結果、形成された反射防止層が、白ぼけする傾向がある。かかる観点から当該短領域のサイズは5~1000nm、さらには10~200nmであるのが好ましい。

[0012]

前記反射防止フィルムにおいて、異なる領域が、フッ素含有材料を主成分とする領域とポリシロキサン構造を主成分とする領域を有する分離構造によって形成されていることが好ましい。低屈折率材料としては、分離構造を形成できる複数の材料を適宜に選択して用いることができるが、反射防止特性、さらには防汚性などの点から、少なくとも1つの領域をフッ素含有材料とするのが好ましい。また、下地層との密着性や皮膜強度などを向上させて耐擦傷性を満足さるため、少なくとも1つの領域をポリシロキサン構造とするのが好ましい。これらの場合にも、分離構造が海島構造になっているのが好ましく、特にポリシロキサン構造がを主成分とする領域が島構造であるのが好ましい。

[0013]

反射防止フィルムにおいて、反射防止層が、凹凸形状表面に形成されており、 防眩性を有することが好ましい。凹凸形状とすることにより光拡散性を付与した 反射防止防眩フィルムとすることができる。

[0014]

また本発明は、光学素子の片面又は両面に、前記反射防止フィルムが設けられていることを特徴とする光学素子、に関する。さらに本発明は、前記反射防止フィルムまたは光学素子を搭載した画像表示装置、に関する。本発明の反射防止フィルムを用いた反射防止偏光板等の光学素子は、反射光を低減でき、かつ防眩特性を付与することにより映り込みがなく視認性が良好である。光学素子は、各種の用途に用いることができ、これを搭載した液晶表示装置等の画像表示装置は表示品位がよい。

[0015]

さらに本発明は、透明基材フィルムの少なくとも片面に、直接または別の層を 介して、反射防止層を形成する反射防止フィルムの製造方法において、

前記反射防止層の形成を、屈折率: $n_d^{20} \le 1$. 49を満足する、少なくとも二種類の低屈折率材料を溶媒に溶解した塗工液を、塗工後、乾燥することにより行うこと特徴とする反射防止フィルムの製造方法、に関する。

[0016]

前記反射防止フィルムの製造方法において、低屈折率材料が、フッ素含有材料とポリシロキサン形成材を含み、溶媒が、ケトン系溶媒とアルコール系溶媒を含む混合溶媒であることが好ましい。

[0017]

上記反射防止フィルムの製造方法により、本発明の反射防止フィルムを好適に 製造することができる。

[0018]

【発明の実施の形態】

以下に本発明の好ましい実施形態を、図面を参照しながら説明する。図1は、透明基材フィルム1上に、低屈折率材料により反射防止層2が形成されている反射防止フィルムである。また図2は、透明基材フィルム1上に、ハードコート層3、次いで反射防止層2が形成されている反射防止フィルムである。本発明において、反射防止層2は、異なる領域を形成した分離構造になっている。図1、図2は、反射防止層2の分離構造が海島構造になっている場合の例であり、2Aは島構造、2Bが海構造に相当する。

[0019]

透明基材フィルム1としては、例えばポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系ポリマー、ジアセチルセルロース、トリアセチルセルロース等のセルロース系ポリマー、ポリカーボネート系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー等の透明ポリマーからなるフィルムがあげられる。またポリスチレン、アクリロニトリル・スチレン共重合体等のスチレン系ポリマー、ポリエチレン、ポリプロピレン、環状ないしノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体等のオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー等の透明ポリマーからなるフィルムもあげられる。さらにイミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマーや前

記ポリマーのブレンド物等の透明ポリマーからなるフィルムなどもあげられる。 特に光学的に複屈折の少ないものが好適に用いられる。

[0020]

透明基材フィルム 1 は可視光の光線透過率に優れ(透過率 9 0 %以上)、透明性に優れる(ヘイズ 1 %以下)のものが好ましい。透明基材フィルム 1 の厚さは、適宜に決定しうるが、一般には強度や取扱性等の作業性、薄層性などの点より $10\sim500\,\mu$ m程度である。特に $20\sim300\,\mu$ mが好ましく、 $30\sim200\,\mu$ mがより好ましい。透明基材フィルム 1 の屈折率は 1. $45\sim1$. 7程度、好ましくは 1. $48\sim1$. 6 5程度である。

[0021]

反射防止層2の形成は、屈折率1.49以下の、少なくとも二種類の低屈折率 材料によって行い、異なる領域を有する微細な分離構造を形成する。微細な分離 構造の形成は、特に制限されないが、下記方法を採用できる。

[0022]

たとえば、(1) SiO_2 や MgF_2 などの低屈折材料で形成した超微粒子(平均粒径~100nm)を予め調製しておき、この超微粒子を、超微粒子の材料とは異なる低屈折材料に添加した形成材を用いる方法、(2)アルコキシシランのゾルゲル反応などを利用して非常に大きな細孔を有した膜を形成しておき、その細孔に別の低屈折率材料を充填する方法、(3)少なくとも二種の低屈折率材料の膜形成工程を利用した相分離を利用する方法、等があげられる。

[0023]

前記方法のなかでも、微細な分離構造の界面における低屈折率材料間の密着性や、工程の簡便さの観点よりは、前記方法(3)を採用するのが好ましい。方法(3)においては、通常、少なくとも二種類の低屈折率材料を溶媒に溶解した塗工液を、塗工後、乾燥工程を施す。一般に、ポリマー同士であれば分子量や骨格がよほど類似していない限りは非相溶であるため、共通の溶媒に溶解した塗工液を塗工後、乾燥工程において溶媒の揮発とともに相分離が起きる。また、モノマー同士の組み合わせにおいても、架橋形態の違いや反応性、溶媒との親和性などを利用して相分離を引き起こすことができる。

[0024]

低屈折率材料としては、反射防止特性に優れた材料と、耐擦傷性に優れた材料を組み合わせるのが好ましい。反射防止特性に優れた材料としては、屈折率の抑制の観点からフッ素系樹脂、シリコーン系樹脂が好ましい。これらは指紋拭き取り性等の防汚性の観点からも優れている。耐擦傷性に優れた材料としては、密着力の向上や皮膜強度の確保の観点からポリシロキサン系樹脂やポリシラザン系樹脂、アクリル系樹脂などが好ましい。前記例示した低屈折率材料の形成材料は、重合済みのポリマーであってもよいし、前駆体となるモノマーまたはオリゴマーであってもよい。

[0025]

反射防止特性に優れた材料と、耐擦傷性に優れた材料の組み合わせは、前者: 後者(重量比) = $1:100\sim100:1$ 、さらには $1:10\sim10:1$ である のが好ましい。

[0026]

前記低屈折率材料の組み合わせは、フッ素含有材料を主成分とする領域とポリ シロキサン構造を主成分とする領域を形成できる組み合わせが好ましい。

[0027]

フッ素含有材料としてはフッ素含有ポリマーがあげられる。フッ素含有ポリマーを形成するモノマーとしては、たとえば、テトラフロロエチレン、ヘキサフロロプロピレン、3,3,3ートリフロロプロピレン等のフロロオレフィン類;アルキルパーフロロビニルエーテル類もしくはアルコキシアルキルパーフロロビニルエーテル類;パーフロロ(メチルビニルエーテル)、パーフロロ(エチルビニルエーテル)、パーフロロ(ブロピルビニルエーテル)、パーフロロ(ブチルビニルエーテル)、パーフロロ(イソブチルビニルエーテル)等のパーフロロ(アルキルビニルエーテル)類;パーフロロ(プロポキシプロピルビニルエーテル)等のパーフロロ(アルコキシアルキルビニルエーテル)類等があげられる。これらモノマーは1種または2種以上を使用でき、さらに他のモノマーと共重合することもできる。

[0028]

[0029]

ポリシロキサン構造の形成材としては、アルコキシシラン、アルコキシチタ ン等の金属アルコキシドを用いたゾルーゲル系材料等があげられる。これらのな かでもアルコキシシランが好ましい。アルコキシシランの具体的は、テトラメト キシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロ ポキシシラン、テトラブトキシシラン等のテトラアルコキシシラン類、メチルト リメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、 メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシ ラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、イ ソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、ビニルトリ **メトキシシラン、ビニルトリエトキシシラン、3ーグリシドキシプロピルトリメ** トキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-メルカプト プロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、フ ェニルトリメトキシシラン、フェニルトリエトキシシラン、3,4-エポキシシ クロヘキシルエチルトリメトキシシラン、3,4-エポキシシクロヘキシルエチ ルトリメトキシシラン等のトリアルコキシシラン類、ジメチルジメトキシシラン 、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシ シラン等があげられる。これらアルコキシシランはその部分縮合物等として用い ることができる。これらのなかでもテトラアルコキシシラン類またはこれらの部

分縮合物等が好ましい。特に、テトラメトキシシラン、テトラエトキシシランま たはこれらの部分縮合物が好ましい。

[0030]

前記方法(3)において、反射防止層形成材は溶媒に溶解した塗工液として調製するのが好ましい。溶媒として芳香族系溶剤、エステル系溶剤、アルコール系溶剤、ケトン系溶剤、アミド系溶剤、スルホキシド系溶剤、エーテル系溶剤、セロソルブ系溶剤等の各種溶媒の1種または2種以上を適宜に組み合わせて使用することができる。固形分濃度は0.2~20重量%程度、さらには0.5~10重量%に調製するのが好ましい。

[0031]

低屈折率材料として、フッ素含有材料(特にフッ素系ポリマー)とポリシロキサン形成材を用いる場合には、ケトン系溶媒とアルコール系溶媒を含む混合溶媒を用いるのが好ましい。ケトン系溶媒としては、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン等があげられる。またアルコール系溶媒としては、メタノール、エタノール、ロープロピルアルコール、iープロピルアルコール、iープタノール、iープタノール等があげられる。特に、ケトン系溶媒としてメチルエチルケトン、メチルイソブチルケトンと、アルコール系溶媒としては、エタノール、ローブタノール、tーブタノールを組み合わせるのが好ましい。これらはケトン系溶媒とアルコール系溶媒の割合は特に制限されないが、ケトン系溶媒:アルコール系溶媒(重量比)=1:20~20:1、さらには1:5~5:1であるのが好ましい。

[0032]

なお、反射防止層を形成する塗工液には、前記低屈折率成分に加えて、必要に 応じて更に、相溶化剤、架橋剤、カップリング剤、酸化防止剤、紫外線吸収剤、 屈折率調整剤などを適宜添加することができる。

[0033]

反射防止層2の形成法は、特に制限されず、適宜な方式にてハードコート層3 上に施される。例えば、ドクターブレード法、グラビアロールコーター法、デイ

ッピング法等の適宜な方式にて形成することができる。前記分離構造(海島構造)のサイズは、反射防止層形成の際の条件によって制御しうる。方法(3)によ り相分離させる用いる場合は、例えば、溶媒の制御や、溶媒の乾燥速度などで制 御が可能である。

[0034]

反射防止層 2 の厚さは特に制限されず、通常、平均 7 $0 \sim 1$ 2 0 n m程度であるのが好ましい。最も効果的には視感度の最も高い 5 5 0 n mの波長の光の反射率を抑制する条件として(厚さ:n m) = 5 5 0 n m/ $(4 \times 反射防止層の平均屈折率)を目標とすることが望ましい。$

[0035]

透明基材フィルム1には、反射防止層2を形成するが、その中間には、別の層を設けることができる。別の層としてはハードコート層3があげられる。反射防止層2の屈折率は、ハードコート層3の屈折率よりも低く、また透明基材フィルム1の屈折率よりも低くなるように調整するのが好ましい。

[0036]

前記ハードコート層3を形成する有機樹脂材料としては層形成後の皮膜として十分な強度を持ち、透明性のあるものを特に制限なく使用できる。前記樹脂としては熱硬化型樹脂、熱可塑型樹脂、紫外線硬化型樹脂、電子線硬化型樹脂、二液混合型樹脂などがあげられるが、これらのなかでも紫外線照射による硬化処理にて、簡単な加工操作にて効率よくハードコート層を形成することができる紫外線硬化型樹脂が好適である。紫外線硬化型樹脂としては、ポリエステル系、アクリル系、ウレタン系、アミド系、シリコーン系、エポキシ系等の各種のものがあげられ、紫外線硬化型のモノマー、オリゴマー、ポリマー等が含まれる。好ましく用いられる紫外線硬化型樹脂は、例えば紫外線重合性の官能基を有するもの、なかでも当該官能基を2個以上、特に3~6個有するアクリル系のモノマーやオリゴマーを成分を含むものがあげられる。また、紫外線硬化型樹脂には、紫外線重合開始剤が配合されている。

[0037]

前記ハードコート層3は、無機または有機の球形もしくは不定形のフィラーを

含有させることができる。たとえば、平均粒子径 0. 1 μ m以下の超微粒子を含有させることができる。かかる超微粒子としては、例えば P M M A (ポリメチルメタクリレート)、ポリウレタン、ポリスチレン、メラミン樹脂等の各種ポリマーからなる架橋又は未架橋の有機系微粒子、ガラス、シリカ、アルミナ、酸化カルシウム、チタニア、酸化ジルコニウム、酸化亜鉛等の無機系粒子や、酸化錫、酸化インジウム、酸化カドミウム、酸化アンチモンまたはこれらの複合物等の導電性無機系粒子などがあげられる。前記超微粒子のなかでも導電性無機系粒子を用いると効果的に挨付着性を改善できる。超微粒子としては、特に、ITO(酸化インジウム/酸化錫)、ATO(酸化アンチモン/酸化錫)、酸化錫等を用いるのが好ましい。

[0038]

ハードコート層3の屈折率は、透明基材フィルム1の屈折率より高くなるよう に調整するのが好ましく、通常、屈折率が、1.49~1.8程度になるように 調整するのが好ましい。

[0039]

ハードコート層 3 は、表面を凹凸構造にして防眩性を付与することができる。ハードコート層 3 に防眩性を付与する手段は特に制限されない。たとえば、サンドブラスト、エンボスロール、化学エッチング等の適宜な方式で粗面化処理して表面に微細凹凸構造を付与する方法、金型による転写方式等にて表面に微細凹凸構造を形成する方法、微粒子を分散含有させた樹脂層により微細凹凸構造を形成する方法などがあげられる。前記微細凹凸構造を形成する微粒子としては、前記例示の微粒子と同様の材料のものを使用でき、防眩性達成の点より微粒子の平均粒子径が 0.5~5μm、さらには 1~4μmのものが好ましい。微粒子により微細凹凸構造を形成する場合、微粒子の使用量は樹脂 100重量部に対して、1~30重量部程度とするのが好ましい。

[0040]

なお、ハードコート層(防眩層)3の形成には、レベリング剤、チクソトロピー剤、帯電防止剤等の添加剤を含有させることができる。ハードコート層(防眩層)3の形成に当たり、チクソトロピー剤(0.1μm以下のシリカ、マイカ等

)を含有させることにより、防眩層表面において、突出粒子により微細凹凸構造 を容易に形成することができる。

[0041]

ハードコート層3の形成方法は特に制限されず、適宜な方式を採用することができる。たとえば、前記透明基材フィルム1上に、前記樹脂を塗工し、乾燥後、硬化処理する。前記樹脂が微粒子を含有する場合には表面に凹凸形状を呈するようなハードコート層(防眩層)3を形成する。前記樹脂の塗工は、ファンテン、ダイコーター、キャスティング、スピンコート、ファンテンメタリング、グラビア等の適宜な方式で塗工される。なお、塗工にあたり、前記樹脂は、トルエン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、イソプロピルアルコール、エチルアルコール等の一般的な溶剤で希釈してもよく、希釈することなくそのまま塗工することもできる。また、ハードコート層3の厚さは特に制限されないが、20μm以下、0.5~20μm程度、特に1~10μmとするのが好ましい。

[0042]

前記反射防止フィルムにおいて、ハードコート層3の屈折率が透明基材フィルム1の屈折率より高く、反射防止層2の屈折率が透明基材フィルム1の屈折率より低いことが好ましい。反射率の観点からハードコート層3には高屈折率が求められ、反射防止層2にはより低い屈折率が求められる。反射防止効果がよく、表示品位の高い反射防止フィルムを得るには、屈折率が前記関係:ハードコート層3>透明基材フィルム1>反射防止層2となるように、ハードコート層3と反射防止層2の屈折率差にあなるのが好ましい。

[0043]

反射防止フィルムは、透明基材フィルム1とハードコート層3との間に、透明 基材フィルム1の屈折率よりも屈折率が高く、ハードコート層3の屈折率よりも 屈折率が低い中屈折率層を有することができる。かかる中屈折率層を設けること により、ハードコート層3として高屈折率のものを用いた場合にも反射光の干渉 縞を有効に防止することができる。

[0044]

[0045]

前記反射防止フィルムの透明基材フィルム1には、光学素子を接着することができる。光学素子としては、偏光子があげられる。偏光子は、特に制限されず、各種のものを使用できる。偏光子としては、たとえば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等があげられる。これらのなかでもポリビニルアルコール系フィルムとヨウ素などの二色性物質からなる偏光子が好適である。これら偏光子の厚さは特に制限されないが、一般的に、5~80μm程度である。

[0046]

ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、たとえば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3~7倍に延伸することで作製することができる。必要に応じてホウ酸やヨウ化カリウムなどの水溶液に浸漬することもできる。さらに必要に応じて染色の前にポリビニルアルコール系フィルムを水に浸漬して水洗してもよい。ポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるほかに、ポリビニルア

ルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果 もある。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸しても よし、また延伸してからヨウ素で染色してもよい。ホウ酸やヨウ化カリウムなど の水溶液中や水浴中でも延伸することができる。

[0047]

前記偏光子は、通常、片側または両側に透明保護フィルムが設けられ偏光板として用いられる。透明保護フィルムは透明性、機械的強度、熱安定性、水分遮蔽性、等方性などに優れるものが好ましい。透明保護フィルムとしては前記例示の透明基材フィルムと同様の材料のものが用いられる。前記透明保護フィルムは、表裏で同じポリマー材料からなる透明保護フィルムを用いてもよく、異なるポリマー材料等からなる透明保護フィルムを用いてもよい。透明性や機械的強度、熱安定性や水分遮断性などに優れるものが好ましく用いられる。また透明保護フィルムは、位相差等の光学的異方性が少ないほど好ましい場合が多い。前記の透明保護フィルムを形成するポリマーとしてはトリアセチルセルロースが最適である。前記反射防止フィルムを、偏光子(偏光板)の片側または両側に設ける場合、反射防止フィルムの透明基材フィルムは、偏光子の透明保護フィルムを兼ねることができる。透明保護フィルムの厚さは、特に制限されないが10~300μm程度が一般的である。

[0048]

反射防止フィルムに偏光板を積層した反射防止偏光板は、反射防止フィルムに 透明保護フィルム、偏光子、透明保護フィルムを順次に積層したものでもよいし 、反射防止フィルムに偏光子、透明保護フィルムを順次に積層したものでもよい

[0049]

その他、透明保護フィルムの偏光子を接着させない面は、ハードコート層やスティッキング防止や目的とした処理を施したものであってもよい。ハードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり、例えばアクリル系、シリコーン系などの適宜な紫外線硬化型樹脂による硬度や滑り特性等に優れる硬化皮膜を透明保護フィルムの表面に付加する方式などにて形成することが

[0050]

また偏光板の層間へ、例えばハードコート層、プライマー層、接着剤層、粘着 剤層、帯電防止層、導電層、ガスバリヤー層、水蒸気遮断層、水分遮断層等を挿 入、または偏光板表面へ積層しても良い。また。偏光板の各層を作成する段階で は、例えば、導電性粒子あるいは帯電防止剤、各種微粒子、可塑剤等を各層の形 成材料に添加、混合等することにより改良を必要に応じておこなっても良い。

[0051]

光学素子としては、実用に際して、前記偏光板に、他の光学素子(光学層)を 積層した光学フィルムを用いることができる。その光学層については特に限定は ないが、例えば反射板や半透過板、位相差板(1/2 や1/4 等の波長板を含む)、視角補償フィルムなどの液晶表示装置等の形成に用いられることのある光学 層を1層または2層以上用いることができる。特に、偏光板に更に反射板または 半透過反射板が積層されてなる反射型偏光板または半透過型偏光板、偏光板に更 に位相差板が積層されてなる楕円偏光板または円偏光板、偏光板に更に視角補償 フィルムが積層されてなる広視野角偏光板、あるいは偏光板に更に輝度向上フィ ルムが積層されてなる偏光板が好ましい。楕円偏光板、光学補償付き偏光板等で は偏光板側に反射防止フィルムが付与される。

[0052]

さらに必要に応じて、耐擦傷性、耐久性、耐候性、耐湿熱性、耐熱性、耐湿性、透湿性、帯電防止性、導電性、層間の密着性向上、機械的強度向上等の各種特性、機能等を付与するための処理、または機能層の挿入、積層等を行うこともできる。

[0053]

反射型偏光板は、偏光板に反射層を設けたもので、視認側(表示側)からの入射光を反射させて表示するタイプの液晶表示装置などを形成するためのものであ

り、バックライト等の光源の内蔵を省略できて液晶表示装置の薄型化を図りやすいなどの利点を有する。反射型偏光板の形成は、必要に応じ、前記透明保護フィルム等を介して偏光板の片面に金属等からなる反射層を付設する方式などの適宜な方式にて行うことができる。.

[0054]

反射型偏光板の具体例としては、必要に応じマット処理した透明保護フィルムの片面に、アルミニウム等の反射性金属からなる箔や蒸着膜を付設して反射層を 形成したものなどがあげられる。

[0055]

反射板は前記偏光板の透明保護フィルムに直接付与する方式に代えて、その透明フィルムに準じた適宜なフィルムに反射層を設けてなる反射シートなどとして用いることもできる。なお反射層は、通常、金属からなるので、その反射面が透明保護フィルムや偏光板等で被覆された状態の使用形態が、酸化による反射率の低下防止、ひいては初期反射率の長期持続の点や、保護層の別途付設の回避の点などより好ましい。

[0056]

なお、半透過型偏光板は、上記において反射層で光を反射し、かつ透過するハーフミラー等の半透過型の反射層とすることにより得ることができる。半透過型偏光板は、通常液晶セルの裏側に設けられ、液晶表示装置などを比較的明るい雰囲気で使用する場合には、視認側(表示側)からの入射光を反射させて画像を表示し、比較的暗い雰囲気においては、半透過型偏光板のバックサイドに内蔵されているバックライト等の内蔵光源を使用して画像を表示するタイプの液晶表示装置などを形成できる。すなわち、半透過型偏光板は、明るい雰囲気下では、バックライト等の光源使用のエネルギーを節約でき、比較的暗い雰囲気下においても内蔵光源を用いて使用できるタイプの液晶表示装置などの形成に有用である。

[0057]

偏光板に更に位相差板が積層されてなる楕円偏光板または円偏光板について説明する。直線偏光を楕円偏光または円偏光に変えたり、楕円偏光または円偏光を直線偏光に変えたり、あるいは直線偏光の偏光方向を変える場合に、位相差板な

[0058]

精円偏光板はスーパーツイストネマチック(STN)型液晶表示装置の液晶層の複屈折により生じた着色(青又は黄)を補償(防止)して、前記着色のない白黒表示する場合などに有効に用いられる。更に、三次元の屈折率を制御したものは、液晶表示装置の画面を斜め方向から見た際に生じる着色も補償(防止)することができて好ましい。円偏光板は、例えば画像がカラー表示になる反射型液晶表示装置の画像の色調を整える場合などに有効に用いられ、また、反射防止の機能も有する。上記した位相差板の具体例としては、ポリカーボネート、ポリビニルアルコール、ポリスチレン、ポリメチルメタクリレート、ポリプロピレンやその他のポリオレフィン、ポリアリレート、ポリアミドの如き適宜なポリマーからなるフィルムを延伸処理してなる複屈折性フィルムや液晶ポリマーの配向フィルム、液晶ポリマーの配向層をフィルムにて支持したものなどがあげられる。位相差板は、例えば各種波長板や液晶層の複屈折による着色や視角等の補償を目的としたものなどの使用目的に応じた適宜な位相差を有するものであってよく、2種以上の位相差板を積層して位相差等の光学特性を制御したものなどであってもよい。

[0059]

また上記の楕円偏光板や反射型楕円偏光板は、偏光板又は反射型偏光板と位相 差板を適宜な組合せで積層したものである。かかる楕円偏光板等は、(反射型) 偏光板と位相差板の組合せとなるようにそれらを液晶表示装置の製造過程で順次 別個に積層することによっても形成しうるが、前記の如く予め楕円偏光板等の光 学フィルムとしたものは、品質の安定性や積層作業性等に優れて液晶表示装置な どの製造効率を向上させうる利点がある。

[0060]

視角補償フィルムは、液晶表示装置の画面を、画面に垂直でなくやや斜めの方

[0061]

また良視認の広い視野角を達成する点などより、液晶ポリマーの配向層、特に ディスコティック液晶ポリマーの傾斜配向層からなる光学的異方性層をトリアセ チルセルロースフィルムにて支持した光学補償位相差板が好ましく用いうる。

[0062]

偏光板と輝度向上フィルムを貼り合わせた偏光板は、通常液晶セルの裏側サイドに設けられて使用される。輝度向上フィルムは、液晶表示装置などのバックライトや裏側からの反射などにより自然光が入射すると所定偏光軸の直線偏光または所定方向の円偏光を反射し、他の光は透過する特性を示すもので、輝度向上フィルムを偏光板と積層した偏光板は、バックライト等の光源からの光を入射させて所定偏光状態の透過光を得ると共に、前記所定偏光状態以外の光は透過せずに反射される。この輝度向上フィルム面で反射した光を更にその後ろ側に設けられた反射層等を介し反転させて輝度向上フィルムに再入射させ、その一部又は全部を所定偏光状態の光として透過させて輝度向上フィルムを透過する光の増量を図ると共に、偏光子に吸収させにくい偏光を供給して液晶表示画像表示等に利用し

[0063]

輝度向上フィルムと上記反射層等の間に拡散板を設けることもできる。輝度向上フィルムによって反射した偏光状態の光は上記反射層等に向かうが、設置された拡散板は通過する光を均一に拡散すると同時に偏光状態を解消し、非偏光状態となる。すなわち、拡散板は偏光を元の自然光状態にもどす。この非偏光状態、すなわち自然光状態の光が反射層等に向かい、反射層等を介して反射し、再び拡散板を通過して輝度向上フィルムに再入射することを繰り返す。このように輝度向上フィルムと上記反射層等の間に、偏光を元の自然光状態にもどす拡散板を設けることにより表示画面の明るさを維持しつつ、同時に表示画面の明るさのむらを少なくし、均一で明るい画面を提供することができる。かかる拡散板を設けることにより、初回の入射光は反射の繰り返し回数が程よく増加し、拡散板の拡散機能と相俟って均一の明るい表示画面を提供することができたものと考えられる

[0064]

前記の輝度向上フィルムとしては、例えば誘電体の多層薄膜や屈折率異方性が 相違する薄膜フィルムの多層積層体の如き、所定偏光軸の直線偏光を透過して他

[0065]

従って、前記した所定偏光軸の直線偏光を透過させるタイプの輝度向上フィルムでは、その透過光をそのまま偏光板に偏光軸を揃えて入射させることにより、偏光板による吸収ロスを抑制しつつ効率よく透過させることができる。一方、コレステリック液晶層の如く円偏光を投下するタイプの輝度向上フィルムでは、そのまま偏光子に入射させることもできるが、吸収ロスを抑制する点よりその円偏光を位相差板を介し直線偏光化して偏光板に入射させることが好ましい。なお、その位相差板として1/4波長板を用いることにより、円偏光を直線偏光に変換することができる。

[0066]

可視光域等の広い波長範囲で1/4波長板として機能する位相差板は、例えば 波長550nmの淡色光に対して1/4波長板として機能する位相差層と他の位相差特性を示す位相差層、例えば1/2波長板として機能する位相差層とを重畳 する方式などにより得ることができる。従って、偏光板と輝度向上フィルムの間 に配置する位相差板は、1層又は2層以上の位相差層からなるものであってよい

[0067]

なお、コレステリック液晶層についても、反射波長が相違するものの組み合わせにして2層又は3層以上重畳した配置構造とすることにより、可視光領域等の広い波長範囲で円偏光を反射するものを得ることができ、それに基づいて広い波長範囲の透過円偏光を得ることができる。

[0068]

また、偏光板は、上記の偏光分離型偏光板の如く、偏光板と2層又は3層以上 の光学層とを積層したものからなっていてもよい。従って、上記の反射型偏光板 や半透過型偏光板と位相差板を組み合わせた反射型楕円偏光板や半透過型楕円偏

[0069]

前記光学素子への光拡散性シートの積層、さらには偏光板への各種光学層の積層は、液晶表示装置等の製造過程で順次別個に積層する方式にても行うことができるが、これらを予め積層したのものは、品質の安定性や組立作業等に優れていて液晶表示装置などの製造工程を向上させうる利点がある。積層には粘着層等の適宜な接着手段を用いうる。前記の偏光板やその他の光学フィルムの接着に際し、それらの光学軸は目的とする位相差特性などに応じて適宜な配置角度とすることができる。

[0070]

前述した偏光板や、偏光板を少なくとも1層積層されている光学フィルム等の 光学素子の少なくとも片面には、前記光拡散性シートが設けられているが、光拡 散性シートが設けられていない面には、液晶セル等の他部材と接着するための粘 着層を設けることもできる。粘着層を形成する粘着剤は特に制限されないが、例 えばアクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、 ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマー とするものを適宜に選択して用いることができる。特に、アクリル系粘着剤の如 く光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐 候性や耐熱性などに優れるものが好ましく用いうる。

[0071]

また上記に加えて、吸湿による発泡現象や剥がれ現象の防止、熱膨張差等による光学特性の低下や液晶セルの反り防止、ひいては高品質で耐久性に優れる液晶表示装置の形成性などの点より、吸湿率が低くて耐熱性に優れる粘着層が好ましい。

[0072]

粘着層は、例えば天然物や合成物の樹脂類、特に、粘着性付与樹脂や、ガラス繊維、ガラスビーズ、金属粉、その他の無機粉末等からなる充填剤や顔料、着色剤、酸化防止剤などの粘着層に添加されることの添加剤を含有していてもよい。また微粒子を含有して光拡散性を示す粘着層などであってもよい。

[0073]

偏光板、光学フィルム等の光学素子への粘着層の付設は、適宜な方式で行いうる。その例としては、例えばトルエンや酢酸エチル等の適宜な溶剤の単独物又は混合物からなる溶媒にベースポリマーまたはその組成物を溶解又は分散させた10~40重量%程度の粘着剤溶液を調製し、それを流延方式や塗工方式等の適宜な展開方式で光学素子上に直接付設する方式、あるいは前記に準じセパレータ上に粘着層を形成してそれを光学素子上に移着する方式などがあげられる。粘着層は、各層で異なる組成又は種類等のものの重畳層として設けることもできる。粘着層の厚さは、使用目的や接着力などに応じて適宜に決定でき、一般には1~500μmであり、5~200μmが好ましく、特に10~100μmが好ましい

[0074]

粘着層の露出面に対しては、実用に供するまでの間、その汚染防止等を目的にセパレータが仮着されてカバーされる。これにより、通例の取扱状態で粘着層に接触することを防止できる。セパレータとしては、上記厚さ条件を除き、例えばプラスチックフィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや金属箔、それらのラミネート体等の適宜な薄葉体を、必要に応じシリコーン系や長鎖アルキル系、フッ素系や硫化モリブデン等の適宜な剥離剤でコート処理したものなどの、従来に準じた適宜なものを用いうる。

[0075]

なお本発明において、上記した光学素子を形成する偏光子や透明保護フィルムや光学層等、また粘着層などの各層には、例えばサリチル酸エステル系化合物やベンゾフェノール系化合物、ベンゾトリアゾール系化合物やシアノアクリレート系化合物、ニッケル錯塩系化合物等の紫外線吸収剤で処理する方式などの方式により紫外線吸収能をもたせたものなどであってもよい。

[0076]

本発明の光拡散シートを設けた光学素子は液晶表示装置等の各種装置の形成などに好ましく用いることができる。液晶表示装置の形成は、従来に準じて行いうる。すなわち液晶表示装置は一般に、液晶セルと光学素子、及び必要に応じての

[0077]

液晶セルの片側又は両側に前記光学素子を配置した液晶表示装置や、照明システムにバックライトあるいは反射板を用いたものなどの適宜な液晶表示装置を形成することができる。その場合、本発明による光学素子は液晶セルの片側又は両側に設置することができる。両側に光学素子を設ける場合、それらは同じものであってもよいし、異なるものであってもよい。さらに、液晶表示装置の形成に際しては、例えば拡散板、アンチグレア層、反射防止膜、保護板、プリズムアレイ、レンズアレイシート、光拡散板、バックライトなどの適宜な部品を適宜な位置に1層又は2層以上配置することができる。

[0078]

次いで有機エレクトロルミネセンス装置(有機EL表示装置)について説明する。一般に、有機EL表示装置は、透明基板上に透明電極と有機発光層と金属電極とを順に積層して発光体(有機エレクトロルミネセンス発光体)を形成している。ここで、有機発光層は、種々の有機薄膜の積層体であり、例えばトリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる発光層との積層体や、あるいはこのような発光層とペリレン誘導体等からなる電子注入層の積層体や、またあるいはこれらの正孔注入層、発光層、および電子注入層の積層体等、種々の組み合わせをもった構成が知られている。

[0079]

有機E L表示装置は、透明電極と金属電極とに電圧を印加することによって、 有機発光層に正孔と電子とが注入され、これら正孔と電子との再結合によって生 じるエネルギーが蛍光物資を励起し、励起された蛍光物質が基底状態に戻るとき に光を放射する、という原理で発光する。途中の再結合というメカニズムは、一 般のダイオードと同様であり、このことからも予想できるように、電流と発光強 度は印加電圧に対して整流性を伴う強い非線形性を示す。

[0800]

有機EL表示装置においては、有機発光層での発光を取り出すために、少なくとも一方の電極が透明でなくてはならず、通常酸化インジウムスズ(ITO)などの透明導電体で形成した透明電極を陽極として用いている。一方、電子注入を容易にして発光効率を上げるには、陰極に仕事関数の小さな物質を用いることが重要で、通常Mg-Ag、A1-Liなどの金属電極を用いている。

[0081]

このような構成の有機EL表示装置において、有機発光層は、厚さ10nm程度ときわめて薄い膜で形成されている。このため、有機発光層も透明電極と同様、光をほぼ完全に透過する。その結果、非発光時に透明基板の表面から入射し、透明電極と有機発光層とを透過して金属電極で反射した光が、再び透明基板の表面側へと出るため、外部から視認したとき、有機EL表示装置の表示面が鏡面のように見える。

[0082]

電圧の印加によって発光する有機発光層の表面側に透明電極を備えるとともに、有機発光層の裏面側に金属電極を備えてなる有機エレクトロルミネセンス発光体を含む有機EL表示装置において、透明電極の表面側に偏光板を設けるとともに、これら透明電極と偏光板との間に位相差板を設けることができる。

[0083]

位相差板および偏光板は、外部から入射して金属電極で反射してきた光を偏光する作用を有するため、その偏光作用によって金属電極の鏡面を外部から視認させないという効果がある。特に、位相差板を1/4 波長板で構成し、かつ偏光板と位相差板との偏光方向のなす角を $\pi/4$ に調整すれば、金属電極の鏡面を完全に遮蔽することができる。

[0084]

すなわち、この有機EL表示装置に入射する外部光は、偏光板により直線偏光成分のみが透過する。この直線偏光は位相差板により一般に楕円偏光となるが、とくに位相差板が1 /4 波長板でしかも偏光板と位相差板との偏光方向のなす角が π / 4 のときには円偏光となる。

[0085]

この円偏光は、透明基板、透明電極、有機薄膜を透過し、金属電極で反射して、再び有機薄膜、透明電極、透明基板を透過して、位相差板に再び直線偏光となる。そして、この直線偏光は、偏光板の偏光方向と直交しているので、偏光板を透過できない。その結果、金属電極の鏡面を完全に遮蔽することができる。

[0086]

【実施例】

以下に、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって何等限定されるものではない。各例中、特記ない限り、部および%は重量基準である。

[0087]

実施例1

(反射防止層形成材の調製)

数平均分子量(ポリスチレン換算)5000のポリフルオロオレフィン系樹脂(テトラフルオロエチレン/ヘキサフルオロプロピレン/プロピレン共重合体)100部と数平均分子量700のシロキサンオリゴマー(テトラエトキシシランの部分縮重合物)30部をメチルエチルケトン:メチルイソブチルケトン:インプロピルアルコール(重量比,10:70:20)の混合溶媒に溶解し固形分濃度2%の塗工液を得た。なお、それぞれの材料を単体で皮膜化し、Abbe屈折率計を用いて測定した屈折率の値はそれぞれ、ポリフルオロオレフィン系樹脂が1.38、シロキサンオリゴマーから得られるポリシロキサンが1.45であった。

[0088]

(反射防止フィルムの作製)

次に、この塗工液をポリエチレンテレフタレートフィルム上にワイヤーバーを 用いて、硬化後の膜厚が100nmとなる様に塗工した後、溶媒を乾燥後、100℃で1時間加熱して、反射防止層を形成し、反射防止フィルムを得た。反射防止フィルムの反射防止層をTEMにて観察すると海島構造が形成されており、ポリシロキサン構造が平均サイズ10nm程度の島構造であった。

実施例2

(反射防止フィルムの作製)

実施例1 (反射防止フィルムの作製) において、ポリエチレンテレフタレートフィルムの代わりに、トリアセチルセルロースフィルム上に、紫外線硬化型アクリルハードコート樹脂のトルエン溶液を、ワイヤーバーを用いて塗布し溶媒乾燥後に低圧UVランプにて紫外線照射し5μm厚みのハードコート層を形成したフィルムを用いて、ハードコート層上に反射防止層を形成したこと以外は実施例1に準じて反射防止フィルムを得た。反射防止フィルムの反射防止層をTEMにて観察すると海島構造が形成されており、ポリシロキサン構造が平均サイズ10nm程度の島構造であった。

[0090]

実施例3

(反射防止層形成材の調製)

パーフルオロアルキルシランを含むフッ素含有材料の溶液(エタノール溶媒, 2 %溶液)に、シリカゾル(エタノール溶媒, 2 0 %、平均粒径 9 0 n m)を乾燥後の固形分濃度で 1 5 %添加した塗工液を調製した。なお、それぞれの材料を単体で皮膜化し、A b b e 屈折率計を用いて測定した屈折率の値はそれぞれ、パーフルオロアルキルシランが 1. 4 0、シリカゾルは約 1. 4 5 であった。

[0091]

(反射防止フィルムの作製)

上記反射防止層形成材を用いて、実施例2(反射防止フィルムの作製)に準じて反射防止フィルムを作製した。反射防止フィルムの反射防止層をSEMにて観察するとシリカゾルが分散した状態の分離構造が形成されていた。

[0092]

実施例4

(反射防止フィルムの作製)

実施例1 (反射防止フィルムの作製) において、ポリエチレンテレフタレートフィルムの代わりに、トリアセチルセルロースフィルム上に、紫外線硬化型アク

[0093]

比較例1

実施例1 (反射防止層形成材の調製) において、シロキサンオリゴマーを配合しなかったこと以外は実施例1 (反射防止層形成材の調製) と同様にして塗工液を得た。また、上記反射防止層形成材(塗工液)を用いて、実施例2 (反射防止フィルムの作製) に準じて反射防止フィルムを作製した。反射防止フィルムの反射防止層をTEMにて観察すると分離構造は形成されていなかった。

[0094]

比較例2

実施例1 (反射防止層形成材の調製) において、ポリフルオロオレフィン系樹脂を配合しなかったこと以外は実施例1 (反射防止層形成材の調製) と同様にして塗工液を得た。また、上記反射防止層形成材(塗工液)を用いて、実施例2 (反射防止フィルムの作製) に準じて反射防止フィルムを作製した。反射防止フィルムの反射防止層をTEMにて観察すると分離構造は形成されていなかった。

[0095]

比較例3

実施例1 (反射防止層形成材の調製) において、溶媒として、メチルイソブチルケトンを単独で用いたこと以外は実施例1 (反射防止層形成材の調製) と同様にして塗工液を得た。また、上記反射防止層形成材(塗工液)を用いて、実施例2 (反射防止フィルムの作製) に準じて反射防止フィルムを作製した。反射防止フィルムの反射防止層をTEMにて観察すると分離構造は形成されていなかった

[0096]

(評価)

実施例および比較例で得られた反射防止フィルムについて下記の評価を行った。 。結果を表1に示す。

[009.7]

(反射率)

反射防止フィルムの基材フィルム側をスチールウールを用いて荒らした後、黒のアクリルラッカーをスプレーして反射防止層に対して裏面側の反射光をなくした状態で、傾斜積分球付き分光光度計(島津製作所製UV-2400)を用いて、分光反射率を測定した。その結果よりC光源2°視野でのY値を算出した。

[0098]

(耐擦傷性)

反射防止フィルム(反射防止層)を、スチールウール#0000を用いて400g /25mmの加重にて10往復した後に、反射防止層表面を目視観察し、下記の 基準にて傷の入り具合を評価した。

〇:ほとんど傷が認められない。

△:わずかに傷が入っているが目立たない。

×:反射防止層は殆どとれてしまっている。

[0099]

(指紋拭き取り性)

反射防止フィルム(反射防止層)に皮脂を強制的に付けティシュペーパーで拭き取った際の拭き取れやすさを以下の基準で目視評価した。

〇:簡単に拭き取れる。

×:完全には拭き取れない。

[0100]

【表1】

実施例 1	1.3	0	0
実施例2	2. 1	0	O I
実施例3	2. 2	Δ	0
実施例4	2. 3	0	O
比較例1	1. 8	×	0 1
•	3.0	0	×
比較例3	2. 2	×	0

上記表1に示すとおり、実施例の反射防止フィルムは反射率、耐擦傷性を両立でき、しかも指紋拭き取り性も良好な実用性に優れる反射防止膜であることが分かる。また実施例2と比較例との比較により、反射防止層に形成された微細構造(分離構造)によって反射防止効果と耐擦傷性および指紋拭き取り性の両立がなされていることが分かる。

[0101]

実施例2および実施例3の反射防止フィルムをヨウ素系吸収二色性偏光子の保護層として用いて偏光フイルムを作成したところ、上記特性を維持した、実用性の高い反射防止機能付きの偏光フィルムが得られた。

【図面の簡単な説明】

【図1】

本発明の反射防止フィルムの一例である。

【図2】

本発明の反射防止フィルムの一例である。

【符号の説明】

- 1 透明基材フィルム
- 2 反射防止層
- 3 ハードコート層(防眩層)

【書類名】

図面

【図1】

[図2]

【書類名】

要約書

【要約】

【課題】 透明基材フィルム上に、低屈折率材料により形成された反射防止層を 有する反射防止フィルムであって、反射防止特性と耐擦傷性に優れた反射防止フィルムを提供すること。

【解決手段】 透明基材フィルムの少なくとも片面に、直接または別の層を介して、反射防止層が形成されている反射防止フィルムにおいて、前記反射防止層が、屈折率: $n_d^{20} \le 1$. 49を満足する、少なくとも二種類の低屈折率材料によって、異なる領域を形成した分離構造になっていることを特徴とする反射防止フィルム。

【選択図】

図1

出 願 人 履 歴 情 報

識別番号

[000003964]

1. 変更年月日 1990年 8月31日

[変更理由] 新規登録

住 所 大阪府茨木市下穂積1丁目1番2号

氏 名 日東電工株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.