

Preguntas Test

•	To	do Router NAT mantiene una tabla que contiene, exclusivamente:
		Una entrada por cada conexión que realiza un host interno hacia un servidor externo
		Las direcciones IP asignadas a los hosts de la red interna
		Una entrada por cada host interno en la que se indican los servidores externos con los que mantiene conexiones TCP
		Las direcciones IP y los puertos de los servidores a los que se conecta cada host interno
•	Ro	en una red en la que se hace uso de OSPF como Protocolo de Enrutamiento, el uter Designado es el que tiene como identificador 64.3.17.254 y se conecta a la sma un nuevo router con identificador 87.23.45.1
		De manera inmediata se actualiza la información y los routers deciden cual es el Router Designado, eligiendo de nuevo al Router 64.3.17.254
		El Router Designado cambia inmediatamente al nuevo router
		Al cabo de un cierto tiempo, los Routers toman la decisión de seleccionar un
		nuevo Router Designado, siendo elegido el nuevo router

•	Dado que que tenemos múltiples sistemas autónomos en la red, y todos ellos deben ser capaces de intercambiar datagramas, indique qué afirmación de las siguientes es cierta:
	☐ El protocolo de encaminamiento debe ser siempre el mismo y único, tanto en el interior de un Sistema Autónomo, como entre diferentes Sistemas Autónomos, para garantizar que los hosts conocen como alcanzar toda la red
	☐ Cada subred de un Sistema Autónomo puede tener su propio protocolo de encaminamiento intra-dominio, diferente de otras subredes, ya que al tratarse de protocolos abiertos, son compatibles ente sí
	☐ Cada Sistema Autónomo puede tener su propio protocolo de encaminamiento intra-dominio
	☐ Todos los Sistemas Autónomos deben tener el mismo protocolo de encaminamiento intra-dominio
•	Cuando el interfaz de comunicaciones de un host, que utiliza el protocolo de control de acceso al medio basado en ALOHA Simple, detecta una colisión,
	Escucha el canal, y cuando está libre, inicia un temporizador que tras vencer, permite la retransmisión de la trama.
	□ No puede haber colisión porque ALOHA primer escucha el canal de comunicación antes de enviar.
	☐ Escucha el canal y espera a que quede libre para retransmitir la trama a continuación
	☐ Termina de transmitir la trama, espera un tiempo aleatorio y retransmite la trama.
•	Cuál de las siguientes características NO es propia del protocolo ideal de acceso múltiple:
	 Cuando N nodos quieren transmitir, cada uno puede transmitir a la velocidad del canal dividida por N

Centralizado, con un nodo que coordina las transmisiones
 Cuando solamente un nodo quiere transmitir, transmite a la velocidad máxima del canal R
☐ Completamente descentralizado

Sea una red con topología de bus con cuatro estaciones, dos conectadas en un extremo y las otras dos en el extremo contrario. El retardo de propagación entre extremos del bus es 1 ms y el tiempo de transmisión (el mismo para las cuatro estaciones) 5 ms. En los instantes t=8 ms y t= 13 ms se generan las primeras tramas para su transmisión en dos estaciones (A y B respectivamente) situadas en los dos extremos del bus. En estas condiciones (indique la respuesta correcta):

```
    Se genera una colisión que detecta en B y no se detecta en A
    Se genera una colisión que se detecta en A y no se detecta en B
    Se genera una colisión que no se detecta ni en A ni en B
```

☐ Se genera una colisión que se detecta en ambas estaciones A y B

Foto

```
- Internet Control Message Protocol
   Type: Θ (Echo (ping) reply)
   Code: Θ ()
   Checksum: Θx48fe [correct]
   Identifier: ΘxΘaΘ8
   Sequence number: 1 (ΘxΘΘΘ1)

+ Data (56 bytes)
```

Se trata de un paquete de petición de eco (ping request)

	☐ El campo identifier sirve para identificar a qué ping request corresponde el reply
	☐ El tamaño del paquete ICMP es controlable mediante el número de secuencia
	☐ El campo Data es de longitud fija
•	En el proceso de configuración de OSPF en el router R2 se introduce el comando R2(config-router)* network 12.0.0.0 0.0.0.3 area 0
	☐ Es un error de configuración porque 0.0.0.3 no es una máscara en OSPF
	☐ Esto hace que R2 anuncie la red 12.0.0.0/30 en el área O
	☐ Como en OSPF las redes y las máscaras están invertidas, el router R2 anunciará la red 0.0.0.12 con máscara 255.255.252 en el área O
	☐ El router R2 anuncia las redes 12.0.0.0 y 0.0.0.3 en el área O
•	En relación a los paquetes ICMP request e ICMP reply que se generan cuando ejecutamos la aplicación ping, se puede afirmar:
	☐ Los paquetes ICMP request e ICMP reply no tienen campo puerto.
	☐ El campo puerto origen del paquete ICMP request debe coincidir con el campo puerto destino del paquete ICMP reply
	☐ El campo puerto origen del paquete ICMP reply es igual al valor del campo puerto origen del paquete ICMP request menos una unidad
	Los paquetes ICMP request e ICMP reply se encapsulan dentro de un datagrama UDP.