page No (1)

Mame:	ASHFAQ AHMAD			
Tes No:	19PW CSE 1795			
Section.	B			
Paper:	linear Algebra:			
1:				
(a) Givens				
Colivens				
le1 M 1 1	1 (.)			
G. O. H. denote	lower Surpher			
E na denste f	righer sulpher			
for each to	· · · · · · · · · · · · · · · · · · ·			
then es H.s				
B.P Sn+ 4m2=				
R.p 4n, + 2n2=	5×60 = 190			
(81)				
Su1 + 4712 = 180	-0			
un, +2n2 = 12	6 —(2)			
	(5)			

xms eg 1 ib by 2 thus
xmg eg (ii) by (i) Thun Subtract from (i)
SN1+4W2 = 180
-8m + 4m2 = -240
-3m = -60
$\lambda_1 = \frac{-60}{-3}$
$n_1 = \frac{-60}{-3}$ $\left[n_1 = \frac{20}{3}\right] tan$
put 11 = 20 in eq (i)
ex 30 tans = 180
4m 2= 180 -100
$\chi_2 = \frac{80}{4}$
2 20 tm
n1 = n2 = 20 tons Ans
Unique Solution.
PPTFO
1 4 17

91:

(b) Given

$$A = \begin{cases} ON & GN & OFF \\ OFF & GN & OFF \\ OFF & ON & ON \end{cases}$$

According to given Conditions, B=???

$$A + B = \begin{bmatrix} oN & oN & oN \\ oN & oN & oN \end{bmatrix}$$

Replace ON by 1 & OF by 0 80

b & 100

P T P O

P2.

(a) Giveni

$$S_1 = \begin{bmatrix} 18.95 & 14.75 & 8.98 \end{bmatrix}$$

 $S_2 = \begin{bmatrix} 17.80 & 13.50 & 10.79 \end{bmatrix}$

(1)

m	matis	pm		
	îtem-1	îtem-2	item-3	
(18.95	14.75	8-98	Store -A
A =	17.80	13.50	10.79	Store -B

(b) Giveni

P(x) = ax2+6x+c

Condition:

P(1) = f(1) P'(1) = f'(1) P''(1) = f''(1)

& f(x)= xe

Siel

P(n) = an2+bn+(-(1)

& f(n) = ner-1 __ 3

Put n = 1 in P(n)

-> P(1) = a(1)2+b(1)+c

P(1) = a+ b+C

PITTO

PUT X = 1 f(1) = 1) 1- 11/1-12/10 BU 29n+6 2a(1)+b 2a +b and f'(n) = 1 e + x (ex) f (n) = 100

$$f'(1) = e + 1e$$

$$= e + e^{\circ}$$

$$f'(1) = 1 + 1$$

But According to given Condition, $\frac{p'(1) = p'(1)}{(2a+b=2)} \longrightarrow (11)$

Now again differentiale p(N)
& f'(N)

$$P''(x) = 2a$$

$$P''(1) = 2a$$

P 1 TP 6

$$f''(1) = 3$$

But According to given Condition P''(1) = f''(1)

$$\frac{p''(1)}{2q=3} = f''(1)$$

fram (iii)

PUT a" in (17)

Q3:

(a) Given

$$A = \begin{bmatrix} 7 & 0.3 & -3.4 \\ -3 & -1.1 & 0.51 & 0.5 \\ 1 & 0 & 0.51 & -1 \\ 0 & 0.51 & -1 \end{bmatrix}, P = \begin{bmatrix} 3.5 \\ 2.6 \\ -1.5 \\ -1.2 \end{bmatrix}$$

L-U Factorization = ???

$$A = \begin{bmatrix} 2 & 1 & 0 & -4 \\ 1 & 0 & 0.25 & -1 \\ -2 & -1.1 & 0.25 & 6.2 \\ 4 & 2.2 & 0.3 & -2.4 \end{bmatrix} \qquad b = \begin{bmatrix} -3 \\ -1.5 \\ 5.6 \\ 2.2 \end{bmatrix}$$

~ Row openhim un meetrix "A" to Obtain upper Triangular matrix "U"

$$= \begin{bmatrix} 2 & 1 & 0 & -4 \\ 0 & -0.5 & 0.35 & 6.2 \\ -2 & -1.1 & 0.35 & 6.3 \\ 2 & 1 & 0.3 & -2.4 \end{bmatrix} R_2 - (0.5) R_1$$

$$= \begin{pmatrix} 2 & 1 & 0 & -47 \\ 0 & -0.5 & 0.25 & 1 \\ 0 & 0.2 & 0.2 & 2 \\ 0 & 0.2 & 0.3 & 5.6 \end{pmatrix} R_3 - (0.2) R_2$$

$$= \begin{bmatrix} 2 & 1 & 0 & -4 \\ 0 & -0.7 & 0.21 & 1 \\ 0 & 0 & 0.4 & 2 \end{bmatrix} R_4 - (0.4 R_2)$$

Therefore the opportingular matrix is: $U = \begin{bmatrix} 2 & 1 & 0 & -4 \\ 0 & -0.5 & 0.25 & 1 \\ 0 & 0 & 0.2 & 2 \\ 0 & 0 & 0 & 2 \end{bmatrix}$

And lower trianguler matrix is,

$$h = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.5 & 1 & 0 & 0 \\ -1 & 0.3 & 1 & 0 \\ 2 & -0.4 & 2 & 1 \end{bmatrix}$$

As Lz = b

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ -0.6 & 1 & 0 & 0 \\ -1 & 0.2 & 1 & 0 \\ 2 & -0.4 & 2 & 1 \end{bmatrix} \begin{bmatrix} M_1 \\ M_2 \\ N_4 \end{bmatrix} = \begin{bmatrix} -3.7 \\ -1.6 \\ 2.2 \end{bmatrix}$$

$$271 - 0.472 + 273 + 74 = 2.2 - 4$$

$$[71 = -3]$$

$$Z_2 = 0$$

Pot 2, & 72 in ey 3)

 $+3+0+5^{3}=2.9$

Z3 = 2.6

-6.8 + 24 = 3.3 -6-0+2.3+24=3.3 -6-0+2.3+24=3.3 -6-0+2.3+24=3.3 -6-0+2.3+24=3.3

-6.8 + 24 = 2.2

therefore

BUS

Q3:

(b) Given,

f: R2 -> R2

f(v) = A V

 $A = \begin{bmatrix} 1 & 0 \\ 0 & K \end{bmatrix}$

Siel

A= (0 K)

K= /2

R'is a Unite Squere

(0,0)(0,1)(1,0)(1,1)

Now

f(v) = Av

PPTPO

Image:
-3
_ 2
(0, 1/2) (1, 1/2)
-3 -2 -1 0 (0,0) (1,0)
- xx - xx - xx - xx
Ou.
a) Giveni
P= Professional F= Father
l= laborer
Falther's Occupation
200,2 0.9 0.3 0.3
0 C C D but ou 0.1 0.9 0.9

Sul

in probability that the grand child of a professional will also be a professional

 $T = \begin{cases} 0.1 & 0.2 & 0.6 \\ 0.1 & 0.2 & 0.6 \end{cases}$

n = (0.8)

 $x = \begin{cases} 0.1 \times 0.8 + 0.9 \times 0.1 + 0.0 \times 0.1 \\ 0.1 \times 0.8 + 0.2 \times 0.1 + 0.9 \times 0.1 \\ 0.8 \times 0.8 + 0.3 \times 0.1 + 0.9 \times 0.1 \end{cases}$

 $x_{1} = \begin{bmatrix} 0.09 + 0.09 + 0.09 \\ 0.08 + 0.02 + 0.09 \end{bmatrix}$

17190

grand child of a professional und also be a professional.

(ii) In the long rm, what proportional of the population will framers!

Markov's Chem

0.1 0-2 -0.4

Hom	o genou		System	1	f	I wew	47
	o	0.3	0.2	10			V
A-1-	0.1	-0°5	0.5	O	\mathcal{R}_3	- 153	
70	6.1	0.5	-004	0		•	

lst Row

$$a = \frac{8}{3}b$$

$$= \frac{8}{3} \left(\frac{6}{29} \right)$$

$$a = \frac{39}{29} = 0.55$$

Patab

and c= 7/6 (/29)

C = 7 = 0.241

 $\chi = \begin{bmatrix} 9 \\ 6 \\ c \end{bmatrix} = \begin{bmatrix} 16/29 \\ 6/29 \\ 7/29 \end{bmatrix} = \begin{bmatrix} 0.55 \\ 0.207 \\ 0.241 \end{bmatrix}$

Q4: XX xx xx

- (b) Sol:
 - => Tug bout a long negative n-axis = OA = -400
 - =) Tug brat along negative y-axis = OB = - 300

PATPO

Reg NO: 19PWCSE
1795
ASHFAD AHMAD

Using	pethagoras	Theorn.	
	•	•	
60	$=(OA)^2$	+(013)	
_			
00	$=\sqrt{OA^2}$ +	OB	
	P-		
OC	= (-400) 2-1	(-301)	
		7	
	c = 500/		
_			10
		-	1.
		_ 4n	Cal.
_		-30	
_			
		200	
A	οA	100 los 200 300	-400
		0 100 200 300	
-ov the	341	(00	
OB	OC = 260	-(00	
015	oc	-200	
		3.00	
(-40)	300)	3300	
		40	
XX			
	,		