

Wavelet Packing for Self-Supervised Monocular Depth Estimation

Ayoub Rhim¹, Lei Qin^{2*}, Rachid Benmokhtar² and Xavier Perrotton² École des Ponts ParisTech¹ and Valeo Brain Division, Créteil, France²

ayoub.rhim@outlook.com, lei.qin@valeo.com, rachid.benmokhtar@valeo.com and xavier.perrotton@valeo.com

Motivation

Dense depth prediction requires preserving detailed information in the network encoder and faithful reconstruction in the decoder.

- DWT and IDWT involve only algebraic operations wich are differentiable
- Use DWT for lossless information packing in the encoder
- Use IDWT for lossless information unpacking in the decoder

Method

WavPacking Block

WavUnpacking Block

WavPacknet for Depth Estimation

Results

	I —	I		
Methods	Parameters	GFLOPs	Training speed	Inference speed
	(millions)		(1 A100 GPU)	(1 RTX 2080 GPU)
3D PackNet	128.29	821.75	4.6 images/s	0.199 second/image
WavPackNet	68.65	308.76	7.1 images/s	0.102 second/image

Table 1: Network complexity and runtime comparison with 384x1280 input images

Conclusion

WavPackNet has approximately **half the complexity** and operates **twice as fast** as 3D Pack-Net, while matching or exceeding 3D PackNet in most configurations and evaluation metrics.

Resources

Demo

Presentation

ICIP 2025 - Anchorage, Alaska - 17 September 2025