Classificação de Churn com Regressão Logística

Antonio C. da Silva Júnior

Objetivo

Apresentar o trabalho de conclusão do curso de Especialização em Data Science e Big Data da Universidade Federal do Paraná, intitulado CLASSIFICAÇÃO DE CHURN UTILIZANDO UM MODELO DE REGRESSÃO LOGÍSTICA (Silva Júnior, 2020)

Download da apresentação

https://acsjunior.com/presentations/churn_cpo.pdf

Quem sou eu?

Antonio C. da Silva Júnior

Cientista de dados

- M.e Métodos Numéricos em Engenharia (UFPR, em andamento)
- Esp. Data Science e Big Data (UFPR, 2020)
- Tecg. Análise e Desenvolvimento de Sistemas (UNIP, 2015).

01 Introdução

Retenção de clientes

- O custo para adquirir um novo cliente pode ser de 5 a 25 vezes superior ao da manutenção de um cliente já existente
- Atender um cliente se torna menos dispendioso a cada ano adicional de relacionamento
- A retenção de clientes é essencial para o sucesso das empresas
- Desenvolvimento de estratégias de retenção se tornou uma prática comum entre empresas de diversos segmentos

A proposta

- Antever clientes propensos a abandonar o relacionamento
- Apoiar as estratégias de retenção de clientes da companhia
- Um modelo para classificação churn de que permita a interpretação dos principais motivos que impactam o desfecho

Por que regressão logística?

- Escolhida através de uma modelagem híbrida multicritério considerando múltiplos decisores da companhia
 - Métodos VIKOR + SAPEVO-M
 - http://admpg.com.br/2020/anais/
- Altamente confiável
- Possibilita a interpretação direta dos parâmetros
- Oferece a resposta na escala de probabilidade

 $43,92 = \hat{\beta}_0 + \hat{\beta}_1 350$

Modelos de regressão

 Modelar a relação entre uma variável resposta y e um conjunto de covariáveis (x₁, ..., x_n)

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p + \epsilon$$

Reclamações

0.00

10

Reclamações

20

30

Modelos Lineares Generalizados

- Extensões dos modelos lineares clássicos
- Permite modelar variáveis resposta com outras distribuições da família exponencial de distribuições:
 - Binomial (dados binários) ex. concessão de crédito
 - Poisson (dados de contagem) ex. núm. casos de COVID19 em uma região
- Gama (dados contínuos e assimétricos) ex. valor de imóveis

Modelos Lineares Generalizados

- Extensões dos modelos lineares clássicos
- Permite modelar variáveis resposta com outras distribuições da família exponencial de distribuições:
 - Binomial (dados binários) ex. concessão de crédito
 - Poisson (dados de contagem) ex. núm. casos de COVID19 em uma região
- Gama (dados contínuos e assimétricos) ex. valor de imóveis

Modelos Lineares Generalizados

- Componente sistemático: $n_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip}$
 - Preditor linear do modelo
- Componente aleatório: y_1, y_2, \dots, y_n
 - Variáveis aleatórias independentes
- Função de ligação: $g(\pi_i) = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip}$
 - Linearizar a relação entre os componentes aleatório e sistemático

 A probabilidade de um particular cliente deixar a empresa é de 25%. Qual é a chance deste cliente deixar a empresa?

 A probabilidade de um particular cliente deixar a empresa é de 25%. Qual é a chance deste cliente deixar a empresa?

chance (odds) =
$$\frac{\pi_i}{1 - \pi_i} = \frac{0,25}{1 - 0,25} = \frac{1}{3}$$

Função de ligação: logito (baseada na distribuição logística)

$$\ln\left(\frac{\pi_i}{1-\pi_i}\right) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$

Função de ligação: logito (baseada na distribuição logística)

$$\ln\left(\frac{\pi_i}{1-\pi_i}\right) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$

$$\frac{\pi_i}{1 - \pi_i} = e^{\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}}$$

Função de ligação: logito (baseada na distribuição logística)

$$\ln\left(\frac{\pi_i}{1-\pi_i}\right) = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip}$$

$$\frac{\pi_i}{1 - \pi_i} = e^{\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}}$$

$$\pi_i = \frac{e^{\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}}}{1 + e^{\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}}}$$

Estimação dos parâmetros por máxima verossimilhança

$$p(y_i) = \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$

Estimação dos parâmetros por máxima verossimilhança

$$p(y_i) = \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$

$$L = \prod_{i=1}^{n} \left[\pi_i^{y_i} (1 - \pi_i)^{1 - y_i} \right]$$

Estimação dos parâmetros por máxima verossimilhança

$$p(y_i) = \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$

$$L = \prod_{i=1}^{n} \left[\pi_i^{y_i} (1 - \pi_i)^{1 - y_i} \right]$$

$$LL = \sum_{i=1}^{n} \left[y_i \ln(\pi_i) + (1 - y_i) \ln(1 - \pi_i) \right]$$

03 Estruturação dos dados

Definição da variável resposta

- Extensivo processo de data wrangling
- Clientes inativos por 30 dias consecutivos
- Criação de uma data de corte:

Cliente	Data de corte	
Inatividade >= 30 dias	Última atividade	
Inatividade < 30 dias	Realização da análise	

Métricas de desempenho

- Mantidos no dataset somente os clientes com pelo menos 90 dias de histórico
- Dividido o período de 90 dias em 2 subperíodos

Valor	Desempenho
0,5	Mantido
> 0,5	Aumentado
< 0,5	Reduzido

Outras covariáveis

- Adição de outras covariáveis qualitativas e quantitativas
- Transformação das covariáveis qualitativas em dummies

Cliente	Plano contratado
1	Α
2	В
3	В
4	С

Outras covariáveis

- Adição de outras covariáveis qualitativas e quantitativas
- Transformação das covariáveis qualitativas em dummies

Cliente	Plano contratado
1	Α
2	В
3	В
4	С

Cliente	Plano B	Plano C
1	0	0
2	1	0
3	1	0
4	0	1

Conjunto de dados final

- Qualitativas
 - Tipo de plano contratado
 - Região
 - o etc...
- Quantitativas:
 - Faturamento
 - Pedidos
 - Métricas
 - o etc...
- Total: 31 covariáveis

O4 Ajuste do modelo

Etapas

- Treino por validação cruzada k-fold (5 folds)
- Modelo completo (todas as covariáveis)
- Modelo restrito (algoritmo stepwise)
- Teste da razão da verossimilhança

Algoritmo Stepwise

- 1. Ajusta-se o modelo com todas as p covariáveis
- 2. Avalia-se a exclusão e a inclusão de cada covariável (AIC)
- Inclui-se (ou exclui-se) a covariável cuja inclusão (ou exclusão) resulta no menor AIC
- 4. Repete-se os passos anteriores até nenhuma inclusão (ou exclusão) resultar em um modelo com menor AIC

Critério de seleção

- Critério de informação de Akaike (AIC): -2 LL + 2p
 - O termo 2p penaliza o modelo mais complexo
- Substituído o múltiplo de penalização por 3,841459
 - χ2 com 1 grau de liberdade e 5% de significância
- P-valor = 0,05 considerado como valor crítico em cada iteração do stepwise

Dilema vício e variância

Fonte: LEG/UFPR

Validação cruzada k-fold

Teste da razão da verossimilhança

- Modelo completo: 31 covariáveis
- Modelo restrito: 14 covariáveis
- LRT < χ2 com 17 graus de liberdade (restrições) e 5% de significância
- H0 (17 estimativas estatisticamente = 0) não rejeitada
- A qualidade do ajuste não foi afetada com a retirada das covariáveis
- Optou-se por prosseguir com o modelo restrito

$$LRT = -2(LL_{completo} - LL_{restrito})$$

O5 Análise de diagnóstico

Análise dos resíduos

- Resíduo: medida de afastamento de uma observação para o seu valor ajustado por um modelo
- Resíduos ordinários
- Verificação dos pressupostos através da normalidade dos resíduos
- Difíceis de generalizar para outras distribuições além da Normal

Resíduos quantílicos aleatorizados

- Se apresentam na forma da Normal Padrão, caso os parâmetros sejam estimados de forma consistente, independentemente da distribuição
- Baseado no teorema da inversa da função distribuição acumulada
- u_i é o valor da FDA do modelo proposto
- Φ^{-1} é a inversa da FDA da Normal Padrão
- Quando y é discreta, um recurso de aleatorização é aplicado

$$r_i = \Phi^{-1}(u_i)$$

Resíduos quantílicos aleatorizados

- Se yi = 0, u_i assume um valor da distribuição uniforme entre 0 e $(1 \hat{\pi}_i)$
- Se yi = 1, \mathbf{u}_i assume um valor da distribuição uniforme entre $(1 \hat{\pi}_i)$ e 1
- Por fim, r_i assume o valor do quantil da Normal Padrão para p = u_i
- Dunn e Smyth (1996)

Gráfico dos resíduos x valores ajustados

Gráfico quantil-quantil

Estimativas dos parâmetros

Tabela 4.: Estimativas dos parâmetros do modelo

Covariável	Estimativa	Erro padrão	Wald	P-valor
Intercepto	1.5513	0.1316	11.7902	0.0000
X2	0.3693	0.0387	9.5437	0.0000
X4	-0.3558	0.0444	-8.0085	0.0000
X5	-0.2567	0.0487	-5.2749	0.0000
X6	-0.8296	0.1052	-7.8829	0.0000
X9	0.4532	0.1006	4.5028	0.0000
X11	-0.3950	0.0697	-5.6703	0.0000
X13	-2.6981	0.1237	-21.8040	0.0000
X14	-2.2880	0.1246	-18.3608	0.0000
X20	0.1598	0.0628	2.5453	0.0109
X22	-0.1925	0.0629	-3.0595	0.0022
X27	-0.1717	0.0748	-2.2949	0.0217
X29	-0.4516	0.0321	-14.0894	0.0000
X30	0.4201	0.0457	9.1935	0.0000
X31	-1.6460	0.0863	-19.0675	0.0000

Significância das estimativas

- Teste Z de Wald
- Desvios padrões da estimativa com relação ao zero da normal padrão
- Verificar se há rejeição ou não de H_o
- O p-valor indica a probabilidade do parâmetro ser tão ou mais extremo que |z|

$$z_{\hat{\beta}_j} = \frac{\hat{\beta}_j}{\exp(\hat{\beta}_i)} \quad \mathbf{H}_0: \hat{\beta}_j = 0$$

Significância das estimativas

$$\ln(\text{odds}\{x\}) = \beta_0 + \beta_1 x$$

$$\ln(\text{odds}\{x\}) = \beta_0 + \beta_1 x$$

$$odds\{x\} = e^{\beta_0 + \beta_1 x}$$

$$\ln(\text{odds}\{x\}) = \beta_0 + \beta_1 x$$

$$odds\{x\} = e^{\beta_0 + \beta_1 x}$$

$$OR\{x + k, x\} = \frac{odds\{x + k\}}{odds\{x\}}$$

$$\ln(\text{odds}\{x\}) = \beta_0 + \beta_1 x$$

$$odds\{x\} = e^{\beta_0 + \beta_1 x}$$

$$OR\{x + k, x\} = \frac{odds\{x + k\}}{odds\{x\}} = \frac{e^{\beta_0 + \beta_1(x+k)}}{e^{\beta_0 + \beta_1 x}}$$

OR
$$\{x + k, x\} = \frac{e^{\beta_0 + \beta_1(x+k)}}{e^{\beta_0 + \beta_1 x}}$$

OR
$$\{x + k, x\} = \frac{e^{\beta_0 + \beta_1(x+k)}}{e^{\beta_0 + \beta_1 x}}$$
$$= e^{\beta_0 + \beta_1(x+k) - \beta_0 - \beta_1 x}$$

OR
$$\{x + k, x\} = \frac{e^{\beta_0 + \beta_1(x+k)}}{e^{\beta_0 + \beta_1 x}}$$
$$= e^{\beta_0 + \beta_1(x+k) - \beta_0 - \beta_1 x}$$
$$= e^{\beta_1(x+k-x)}$$

$$OR\{x + k, x\} = \frac{e^{\beta_0 + \beta_1(x+k)}}{e^{\beta_0 + \beta_1 x}}$$

$$= e^{\beta_0 + \beta_1(x+k) - \beta_0 - \beta_1 x}$$

$$= e^{\beta_1(x+k-x)}$$

$$= e^{k\beta_1}$$

 Portanto, o aumento de k unidades em uma covariável x_j, fixadas as demais, multiplica a chance de ocorrência do evento de interesse por e^{kβ_j}

$$\beta_j > 0 \implies e^{k\beta_j} > 1 \implies \pi_{x+k} > \pi_x$$

$$\beta_j < 0 \implies e^{k\beta_j} < 1 \implies \pi_{x+k} < \pi_x$$

- Considerando uma covariável categórica com níveis A, B e
 C, sendo A a categoria de referência:
- $OR\{B, A\} = odds\{B\} / odds\{A\}$
- OR{C, A} = odds{C} / odds{A}
- Portanto, estar na categoria B multiplica a chance de ocorrência do evento de interesse por eβB, com relação a estar na categoria A

- Ainda considerando a covariável categórica do exemplo anterior:
- $OR\{B, C\} = OR\{B, A\} / OR\{C, A\}$
- $OR\{C, B\} = OR\{C, A\} / OR\{B, A\}$
- Portanto, estar na categoria B multiplica a chance de ocorrência do evento de interesse por $e^{\beta_B-\beta_C}$, com relação a estar na categoria C
- E estar na categoria C multiplica a chance de ocorrência do evento de interesse por $e^{\beta_C \beta_B}$, com relação a estar na categoria B

Interpretação das estimativas

Tabela 5.: Chances de ocorrência de churn para covariáveis quantitativas e qualitativas

Covariável	Estimativa	Chance	Variação (%)
X13	-2.6981	0.0673	-93
X14	-2.2880	0.1015	-90
X31	-1.6460	0.1928	-81
X30	0.4201	1.5221	52
X29	-0.4516	0.6366	-36
X11	-0.3950	0.6737	-33
X22	-0.1925	0.8249	-18
X20	0.1598	1.1733	17
X27	-0.1717	0.8422	-16

Interpretação das estimativas

Tabela 2.: Interpretação das métricas de desempenho

Valor	Desempenho
0,5	Mantido
> 0,5	Aumentado
< 0,5	Reduzido

Tabela 6.: Chances de ocorrência de churn para covariáveis de desempenho

Covariável	Estimativa	Chance (0,5)	Variação (%)
X6	-0.8296	0.6605	-34
X9	0.4532	1.2543	25
X2	0.3693	1.2028	20
X4	-0.3558	0.8370	-16
X5	-0.2567	0.8795	-12

06 Avaliação do modelo

Escolha do cutoff

Curva ROC

Matriz de confusão

Tabela 7.: Matriz de confusão

	Observado		
Predito	0	1	
0	Verdadeiro negativo (VN)	Falso negativo (FN)	
1	Falso positivo (FP)	Verdadeiro positivo (VP)	

$$S = \frac{VP}{VP + FN}$$

$$E = \frac{VN}{VN + FP}$$

$$A = \frac{VN + VP}{VN + VP + FN + FP}$$

Matriz de confusão

Métricas de avaliação

- Acurácia:
 - Taxa de acerto geral
 - 0 82,79%
- Sensibilidade:
 - o $P(\hat{y} = 1 | y = 1)$
 - 0 81,64%
- Especificidade:
 - P($\hat{y} = 0 | y = 0$)
 - 0 81,36%

07 Considerações finais

Pontos importantes

- Conhecer / estudar o problema de negócio
- Explorar e garantir a qualidade dos dados (garbage in, garbage out)
- Escolher a técnica adequada para atingir os objetivos do negócio
- Considerar o "princípio da parcimônia"
- Garantir a qualidade do ajuste
- Atenção com o overfitting
- A saída do modelo faz sentido para o negócio?
- As métricas escolhidas fazem sentido para o negócio?
- Desenvolver uma estratégia de monitoramento do modelo

Recomendações

EstaTiDados

21,3 mil inscritos

StatQuest with Josh Starmer

390 mil inscritos

Universidade Federal do Paraná - Departamento de Estatística CE225 - Modelos Lineares Generalizados Prof. Cesar Augusto Taconeli

Recomendações

- <u>Estatidados</u>
- StatQuest
- Portal Action
- Omega Data Science
- CE225 Prof. Taconeli
- Manual de Análise de Dados
- Extending the Linear Model with R

Artigo e códigos

https://github.com/juniorssz/dsbd-churn-analysis

"Sem dados você é apenas mais uma pessoa com uma opinião"

—W. Edwards Demming

Obrigado

Contato:

https://acsjunior.com/