Examen

Durée: 2h

Documents et téléphone non autorisés

Exercice 1. Relation d'arbitrage

On se place dan un marché viable à N dates, composé d'un actif sans risque de valeur S_n^0 à la date n et d'un actif risqué de valeur S_n à la date n. On note C_n^d (resp. P_n^d) le prix, à la date n, de l'option digitale de strike K de pay-off $\mathbb{1}_{\{S_N > K\}}$ (resp. $\mathbb{1}_{\{S_N \le K\}}$). Montrer que pour tout $n \in \{0, ..., N\}$, on a

$$C_n^d + P_n^d = \frac{S_n^0}{S_N^0}.$$

Exercice 2. Modèle binômial

On se place dans un modèle binomial de maturité N=2. A la date $n \in \{0, 1, 2\}$, la valeur de l'actif sans risque est $S_n^0 = (1+r)^n$ et, pour $n \in \{1, 2\}$, celle de l'actif risqué est $S_n = S_{n-1}(1+U_n)$ où U_n suit une loi de Bernouilli et est à valeurs dans $\{b, h\}$. On suppose que r=0.03, b=-0.05, h=0.07 et $S_0=100$.

- 1. Put européen Calculer le prix d'un put européen de prix d'exercice K=103 sur l'actif risqué, en déduire une stratégie de couverture pour le vendeur de ce put aux dates 0 et 1.
- 2. Put asiatique Calculer le prix d'un put asiatique de prix d'exercice K = 103 sur l'actif risqué. On rappelle que le pay-off de cette option est $(K \frac{1}{3}(S_0 + S_1 + S_2))^+$.
- 3. Put américain Calculer le prix V_n d'un put américain de prix d'exercice K=103 sur l'actif risqué aux dates $n \in \{0,1,2\}$.

Donner la décomposition de Doob de V_n et en déduire une stratégie de couverture pour le vendeur de ce put.

Exercice 3. Marché à plusieurs actifs risqués

On se place dans un modèle de marché à deux dates, composé d'un actif S^0 sans risque de valeur initiale égale à 1, rémunéré au taux r que l'on supposera égal à 5% et de deux actifs risqués dont les valeurs S_1^1 et S_1^2 peuvent prendre chacune trois valeurs:

trajectoires	S_{0}^{1}	S_{1}^{1}	trajectoires	S_{0}^{2}	S_{1}^{2}
ω_1	100	114	ω_1	100	113
ω_2	100	100	ω_2	100	97
ω_3	100	90	ω_3	100	93

- a) Le marché composé de l'actif sans risque S^0 et de S^1 est-il viable? complet?
- b) Le marché composé de S^0 et des deux actifs risqués S^1 et S^2 est-il viable? complet?
- c) Calculer le prix initial d'une option européenne d'échange entre les deux actifs risqués, c'est à dire de pay-off $H = (S_1^2 S_1^1)^+$. Quelle est le portefeuille de couverture de cette option?