1 Парадокс Карри

Лямбда-исчисление было предложено Черчем в начале 1930х годов для формализации математики. Особенность лямбда-исчисления, отличающего его от, допустим, обычного исчисления предикатов — формализация понятия применения функций. В лямбда-исчислении легко выражаются сложные понятия — например, натуральные числа, причем это достигается без введения дополнительного набора аксиом как в формальной арифметике.

Однако, довольно быстро в нем нашлись неустранимые парадоксы. Далее будет изложен один из парадоксов, это не оригинальный парадокс 1932 года — поскольку современное лямбда-исчисление появилось в 1940 году как результат упрощения Черчем исходной теории. Но пример дает представление о проблеме.

Построим исчисление высказываний на основе языка лямбда-выражений, добавив в паре к аппликации импликацию. В таком языке функция $\lambda f.\lambda x.fx \to fx$ являлась бы тавталогией. Естественно, в этом исчислении будут аксиомы и правила вывода, как и в обычном исчислении предикатов — среди них будут и обычные логические аксиомы, и аксиомы про лямбда-преобразования, и подобным выражениям будет дан четкий формальный смысл.

Мы будем считать, что если $A =_{\beta} B$, то $\vdash A \to B$ и $\vdash B \to A$. Удивительно было бы ожидать иного — ведь результат редукции A и B одинаков (либо обе редукции не заканчиваются). В программировании бывает, что мы не можем заменить, например, вызов функции на его результат — например, printf("Hello, world") нельзя заменить на 1, хоть численно их результат равен. В математике же считается, что разницы между разной записью значений нет. Иначе получится, что например уравнение $x^2 = 4$ выполнено при $x = 2 \cdot \sin \pi$, но не выполнено при $x = \log_2 4$.

Также мы ожидаем доказуемость

$$\alpha \to \alpha \to \beta \vdash \alpha \to \beta$$

И

$$\alpha \to \alpha$$

(было бы обидно, если такое нельзя было бы доказать).

В таком исчислении мы могли бы ввести аксиоматику Пеано простыми определениями (см.):

И, не вводя никаких дополнительных аксиом, доказать, скажем, такие утверждения:

Однако, так построенное исчисление черезчур мощно, о чем свидетельствует следующее рассуждение.

Рассмотрим выражение $F_{\alpha} \equiv \lambda x. xx \rightarrow \alpha$ и выражение $\Phi_{\alpha} \equiv F_{\alpha}F_{\alpha}$. Нетрудно видеть, что $\Phi_{\alpha} =_{\beta} \Phi_{\alpha} \rightarrow \alpha$. Тогда:

Таким образом мы показали, что любое утверждение может быть выведено в данной системе, т.е. система противоречива. Данное противоречие является следствием выразимости в данной системе парадокса Карри. Парадокс можно продемонстрировать фразой «если данное высказывание истинно, то луна сделана из зеленого сыра» или, чуть более формально, выражением $\Phi_{\alpha} = \Phi_{\alpha} \to \alpha$ (если выражение истинно, то из него следует все что угодно).

Данная ситуация хорошо нам знакома и показывает, что механическое перенесение казалось бы естественных правил в формальные условия может привести к проблемам.

2 Просто типизированное лямбда-исчисление

2.1 Импликационный фрагмент интуиционистской логики

Рассмотрим следующее исчисление, являющееся подмножеством интуиционистской логики, содержащим только импликацию. Это исчисление генценовского типа.

Формула — либо маленькая буква греческого алфавита, либо выражение вида phi
ightarrow psi.

Аксиомы и правила вывода:

1. Схема аксиом:

$$\overline{\Gamma, \phi \vdash \phi}$$

2. Введение импликации:

$$\frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash \phi \to \psi}$$

3. Удаление импликации:

$$\frac{\Gamma \vdash \phi \qquad \Gamma \vdash \phi \to \psi}{\Gamma \vdash \psi}$$

Следующая теорема покажет, что если некоторая формула (составленная только из импликаций и переменных) выводима в интуиционистской логике, то она выводима и в импликационном ее фрагменте.

Теорема 2.1. Модели Крипке корректны и полны для данного исчисления.

Доказательство. Корректность моделей Крипке для данного исчисления следует из их корректности для полного исчисления. Для полноты же нам достаточно показать, что если неверно $\Gamma \vdash \alpha$, то найдется модель Крипке, в которой неверно и $\Gamma \models \alpha$. Построим такую модель.

В качестве миров в этой модели мы возьмем множества формул, замкнутых относительно выводимости: $D(\Gamma) = \{\alpha | \Gamma \vdash \alpha\}$. Отношение вынуждения определим так: $\Gamma \vdash p$, если $p \in \Gamma$. Наследование же миров будем рассматривать по включению: $\Gamma < \Delta$, если $\Gamma \in \Delta$.

Покажем, что так заданная модель — корректна и полна. То есть, $\Gamma \vdash \alpha$ тогда и только тогда, когда $\Gamma \Vdash \alpha$. Сделаем это индукцией по структуре формулы α .

- $\alpha = x$. Тогда, по определению, $\Gamma \vdash x$ эквивалентно $x \in \Gamma$ и эквивалентно $\Gamma \Vdash x$.
- $\alpha = \beta \rightarrow \gamma$.

Сперва покажем полноту. Пусть $\Gamma \Vdash \beta \to \gamma$. Значит (определение вынуждения импликации в моделях Крипке) $D(\Gamma \cup \beta) \Vdash \gamma$. Раз так, то $\Gamma, \beta \vdash \gamma$ (предположение индукции). По правилу введения импликации тогда $\Gamma \vdash \beta \to \gamma$.

Теперь покажем корректность. Пусть $\Gamma \vdash \beta \to \gamma$ и в некотором мире $\Gamma_n \geq \Gamma$ выполнено $\Gamma_n \Vdash \beta$. Раз $\Gamma \vdash \beta \to \gamma$, то $\Gamma_n \vdash \beta \to \gamma$. Раз $\Gamma_n \Vdash \beta$, то $\Gamma_n \vdash \beta$ (по полноте, доказанной выше). Тогда $\Gamma_n \vdash \gamma$ (по правилу удаления импликации), и, следовательно, $\Gamma_n \Vdash \gamma$ (по индукционному предположению). Значит, и $\Gamma_n \Vdash \beta \to \gamma$.

2.2 Импликационный фрагмент интуиционистской логики

Рассмотрим язык интуиционистской логики, в котором допустима только одна связка — импликация. Такой язык мы назовем языком импликационного фрагмента интуиционистской логики.

Также, рассмотрим все аксиомы интуиционистского исчисления высказываний, которые можно записать в этом языке — они составят аксиомы данного фрагмента логики.

Teopema 2.2. Импликационный фрагмент интуиционистской логики корректен и полон в моделях Крипке.

Доказательство. Корректность очевидна из корректности интуиционистского исчисления высказываний.

Для доказательства полноты мы построим модель Крипке, в которой мирами будут замкнутые относительно доказуемости множества формул. Очевидно, что для любого такого мира W и любой формулы ϕ условия $\phi \in W$ и $W \vdash \phi$ эквивалентны.

Будем считать, что $W \Vdash x$ тогда и только тогда, когда $x \in W$. Покажем тогда, что это справедливо и для любой формулы ϕ (тем самым мы покажем, что миры действительно образуют модель Крипке).

Докажем это индукцией по структуре формулы ϕ . База следует из определения, теперь переход. Т.е., пусть есть формула $\alpha \to \beta$, причём $\alpha \in W$ т.и.т.т., когда $W \Vdash \alpha$, и $\beta \in W$ т.и.т.т., когда $W \Vdash \beta$.

Пусть $W \vdash \alpha \to \beta$. Покажем, что $W \Vdash \alpha \to \beta$. Значит, надо показать, что если $W_1 \geq W$ и $W_1 \Vdash \alpha$, то $W_1 \Vdash \beta$. Рассмотрим такой W_1 . По предположению индукции $W_1 \vdash \alpha$, и поскольку $W_1 \vdash \alpha \to \beta$ (т.к. $W \subset W_1$), то $W_1 \vdash \beta$ (М.Р.). Значит, $W_1 \Vdash \beta$ (опять же, по предположению индукции).

Обратно, пусть $W \Vdash \alpha \to \beta$. Покажем, что $W \vdash \alpha \to \beta$. Пусть W_{α} — транзитивное замыкание по \vdash множества $W \cup \{\alpha\}$. Тогда $W_{\alpha} \Vdash \beta$ (по определению моделей Крипке). Но тогда $W_{\alpha} \vdash \beta$ (по предположению индукции). Значит, $W, \alpha \vdash \beta$, то есть $W \vdash \alpha \to \beta$ (по т. о дедукции).

Теперь, пусть α — формула импликационного фрагмента и $\models \alpha$. Если окажется, что $\not\vdash \alpha$, то $\not\vdash \alpha$ в введенной выше модели, что даст противоречие с $\models \alpha$.

В этом курсе мы будем рассматривать логику в исчислении Генценовского типа (нормальный вывод).

Рассмотрим три правила вывода:

$$\frac{\Gamma,\phi\vdash\phi}{\Gamma\vdash\phi\to\psi}\ \text{введение}\to$$

$$\frac{\Gamma,\phi\vdash\psi}{\Gamma\vdash\phi\to\psi}\ \text{развение}\to$$

$$\frac{\Gamma\vdash\phi\to\psi\quad\Gamma\vdash\phi}{\Gamma\vdash\psi}\ \text{развение}\to, \text{M.P.}$$

Лемма 2.3. Импликационный фрагмент в данном исчислении эквивалентен фрагменту в Гильбертовском исчислении.

Определение 2.1. Тип — это:

• Элементарный тип — маленькая греческая буква из начала алфавита, возможно, с индексом (α, β, \dots)

• Составной тип. Если τ и σ — некоторые типы, то запись вида $\tau \to \sigma$ — это также некоторый тип.

Греческими буквами конца алфавита $(\sigma, ...)$ будем обозначать типы вообще, неважно, составные или элементарные.

Существует два основных стиля типизации лямбда-исчисления — по Чёрчу и по Карри.

3 Лямбда-исчисление по Чёрчу

Определение 3.1. Пред-лямбда-терм по Чёрчу — это один из следующих объектов:

- Переменная (a, b, c, ...)
- Применение $(\Lambda_1\Lambda_2)$
- Абстракция ($\lambda x : \tau . \Lambda$ или $\lambda x^{\tau} . \Lambda$)

По пред-лямбда-терму можно построить лямбда-терм, введя альфа-эквивалентность аналогично бестиповому исчислению (типы должны совпадать).

4 Лямбда-исчисление по Карри

Существует второй вариант исчисления. Главное его отличие — в отсутствии типов при указании переменных в лямбда-термах. Правила типизации:

Принципиальных отличий нет, легко показать следующую теорему:

Теорема 4.1. Пусть отображение $Er: \Lambda_T \to \Lambda$ задано так: $Er(\lambda x : \sigma.A) = \lambda x.Er(A)$. Тогда (стирание):

- 1. Если $M \to_{\beta} N$, то $Er(M) \to_{\beta} Er(N)$
- 2. Если $\Gamma \vdash_{\mathbf{x}} M : \alpha$, то $\Gamma \vdash_{\mathbf{x}} Er(M) : \alpha$.

Поднятие:

1. Если $M \to_{\beta} N$, то для любого $M_T \in \Lambda_T$, такого, что $Er(M_T) = M$, найдется $N_T \in \Lambda_T$, такой, что $Er(N_T) = T$ и $M_T \to_{\beta} N_T$.

2. Если $\Gamma \vdash_{\mathbf{x}} M : \alpha$, то найдется такой $M_T \in \Lambda_T$, что $Er(M_T) = M$ и $\Gamma \vdash_{\mathbf{x}} N : \alpha$.

Доказательство. Упражнение.

Также, легко доказать аналоги теорем Черча-Россера и теоремы о нормализации.

Однако, несмотря на сходство, есть и отличие — типизация по Карри несколько более широкая. А именно, если $\Gamma \vdash M : \sigma$ и $\Gamma \vdash M : \tau$, то из этого не следует $\sigma = \tau$. Скажем, справедливо $\vdash_{\kappa} \lambda x.x : \alpha \to \alpha$ и $\vdash_{\kappa} \lambda x.x : \beta \to \beta$.

4.1 Изоморфизм Карри-Ховарда

Теперь мы готовы показать, что просто типизированное лямбда-исчисление в некотором смысле изоморфно импликационному фрагменту интуиционистской логики.

Заметим сперва, что T содержит в точности те же формулы, что и введенный в предыдущем параграфе язык.

Теорема 4.2. (Об изоморфизме Карри-Ховарда)

- 1. Если $\Gamma \vdash_{\P} M : \phi$, то $types(\Gamma) \vdash \phi$.
- 2. Если $\Gamma \vdash \phi$, то найдется такой $M \in \Lambda_T$, что $\{x_\phi | \phi \in \Gamma\} \vdash_{\mathbf{q}} M : \phi$.

Доказательство. Доказательство обоих частей теоремы несложно, но мы приведем доказательство второй части из методических соображений.

Покажем существование M индукцией по структуре доказательства $\Gamma \vdash \phi$. Для этого рассмотрим заключительное правило и разберем случаи.

5 Сильная нормализация

Определение 5.1. Будем называть терм A *сильно нормализуемым* если выполнено одно из следующих условий:

- А в нормальной форме
- $A \rightarrow_{\beta} B$ влечёт сильную нормализуемость B

Лемма 5.1. Пусть A — сильно нормализуемый терм, тогда любая цепочка редукций неизбежно приводит к нормальной форме за конечное количество шагов.

Доказательство. Рассмотрим множество N_0 — множество всех термов в нормальной форме. Рассмотрим процесс его пополнения: $N_{n+1} = N_n \cup A$: для всех $BA \to_{\beta} B$ влечет $B \in N_n$. Тогда $\cup N_i = N^*$ будет содержать все сильно нормализуемые термы (доказательство очевидно из определения).

Пусть $(A) = mini : A \in N_i$. Очевидно, что если $A \to_{\beta} B$, то C(A) > C(B). Отсюда следует конечность любой цепочки редукций.

Определение 5.2. Множество SN — множество сильно нормализуемых термов

Определим оценку для типов. Будем считать, что $\llbracket \sigma \rrbracket$ — это все лямбда-выражения, которые могут иметь данный тип.

Соответственно определим аналог для функций на оценках, $A \to B = \{C : \forall P \in A(CP \in B)\}$, множество всех термов, которые из любого терма из A делают терм из B. А именно:

Определение 5.3. Оценкой типа τ назовем:

$$\llbracket \tau \rrbracket = \left\{ \begin{array}{ll} SN, & \text{если } \tau - \text{атомарный тип} \\ \llbracket \sigma \rrbracket \to \llbracket \theta \rrbracket, & \text{если } \tau \equiv \sigma \to \theta \end{array} \right.$$

Определение 5.4. Будем называть множество S насыщенным, если одновременно выполнены следующие условия:

- 1. $S \subseteq SN$
- 2. Если $n \geq 0$ и $\{M_1, \ldots, M_n\} \subseteq SN$, то $xM_1 \ldots M_n \in S$.
- 3. Если $n \ge 1$, $\{M_1, \dots, M_n\} \subseteq SN$ и $P[x := M_1]M_2 \dots M_n \in S$, то $(\lambda x.P)M_1 \dots M_n \in S$.

 Π емма 5.2. SN насыщено

Доказательство. Проверим требования к насыщенному множеству.

- 1. $SN \subseteq SN$
- 2. Пусть найдется бесконечная последовательность редукций $xM_1 \dots M_n \longrightarrow_{\beta} xM_1' \dots M_n' \longrightarrow_{\beta} xM_1'' \dots M_n'' \dots$ Тогда найдется бесконечная последовательность редукций какого-то из его аргументов: $M_k \longrightarrow_{\beta} M_k' \longrightarrow_{\beta} M_k'' \dots$ Значит, $M_k \notin SN$. Поэтому, если $M_k \in SN$ для всех k, то и $xM_1 \dots M_n \in SN$.
- 3. Пусть $P[x := M_1]M_2 \dots M_n \in SN$. Пусть существует бесконечная цепочка редукций формулы $(\lambda x.P)M_1 \dots M_n$. В данной цепочке неизбежно должна быть произведена редукция подвыражения $(\lambda x.P')M_1'$ (здесь $P \longrightarrow_{\beta} P', M_1 \longrightarrow_{\beta} M_1'$). Это так, поскольку цепочки редукций $M_1, \dots M_n$ имеют конечную длину по условию, также и редукция P не может быть бесконечной (иначе мы могли бы производить эти редукции в исходной формуле). Но результат этой редукции может быть получен из исходного выражения после чего цепочка редукций будет иметь конечную длину по условию.

Лемма 5.3. Если A, B насыщенны, то $A \to B$ насыщено

Доказательство. Рассмотрим $xM_1 \dots M_n$, где $M_i \in SN$. И рассмотрим $(xM_1 \dots M_n)P$, где $P \in A$. Раз $A \subseteq SN$, то $P \in SN$.

Теперь рассмотрим $P[x := Q]M_1 \dots M_n \in A \to B$. То есть, $(P[x := Q]M_1 \dots M_n)K \in B$. Тогда по определению, $(\lambda x.P)QM_1 \dots M_nK \in B$

Лемма 5.4. Если σ — тип, то $\llbracket \sigma \rrbracket$ насыщено

Доказательство. Упражнение.

Определение 5.5. • Оценка — отображение переменных на термы.

- Оценка терма при оценке переменных: $[\![M]\!]_{\rho} = M[x_1 := \rho(x_1), \dots x_n := \rho(x_n)]$ при $x_i \in FV(M)$.
- $\bullet \models M : \sigma \llbracket M \rrbracket \in \sigma.$
- $\rho \models M : \sigma [M]_{\rho} \in \sigma$.
- $\rho \models \Gamma \rho \models g_i : \gamma_i$ (переменные имеют надлежащие типы в данной оценке переменных)
- $\Gamma \models M : \sigma$ Если $\rho \models \Gamma$, то $\rho \models M : \sigma$

Теорема 5.5. Так определенная оценка корректна: если $\Gamma \vdash M : \sigma$, то $\Gamma \models M : \sigma$.

Доказательство. Рассмотрим индукцию по построению доказательства типизиации M.

• $\Gamma \vdash x : \sigma$. Тогда $x : \sigma \in \Gamma$. Фиксируем какую-нибудь оценку ρ . Тогда если $\rho \models \Gamma$, то обязательно $[\![x]\!]_{\rho} \in \sigma$. Но это и значит, что $\rho \models x : \sigma$.

Теорема 5.6. Любой просто типизированный терм сильно нормализуемый.

Доказательство. Так как $\Gamma \vdash M : \sigma$, то $\Gamma \models M : \sigma$. Пусть $\rho(x) = x$. Тогда $\rho \models g_i : \gamma_i$ $(g_i \in \llbracket gamma_i \rrbracket$ по лемме и определению насыщенного множества). Тогда $\rho \models \Gamma$. Тогда $\rho \models M : \sigma$, то есть $\llbracket M \rrbracket_{\rho} \in \sigma \subseteq SN$.

6 О классе функций, определимых в просто типизированном лямбда-исчислении

Определение 6.1. Назовем *высотой* типа $h(\tau)$ следующее выражение:

$$h(\tau) = \begin{cases} 0 & \tau \equiv \alpha \\ \max(h(\rho), h(\sigma)) + 1 & \tau \equiv \rho \to \sigma \end{cases}$$

Определение 6.2. Назовем расширенным полиномом функцию $E: \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0$ следующего вида:

$$E(x,y) = \begin{cases} a_{0,0} + a_{1,0}x + a_{0,1}y + a_{1,1}xy + \dots + a_{m,n}x^my^n & x > 0, y > 0 \\ b_0 + b_1x + \dots + b_k & x > 0, y = 0 \\ c_0 + c_1y + \dots + c_l & x = 0, y > 0 \\ k & x = 0, y = 0 \end{cases}$$

Определение 6.3. Пусть тип ν — это $(\alpha \to \alpha) \to (\alpha \to \alpha)$. Пусть n — некоторое натуральное число. Выражение $\overline{n} \equiv \lambda f^{\alpha \to \alpha}.\lambda x^{\alpha}.f^n x$ назовем чёрчевским нумералом, соответствующим числу n.

Теорема 6.1. При фиксированном типе для целых чисел $\nu = (\alpha \to \alpha) \to (\alpha \to \alpha)$ в типизированном исчислении по Чёрчу класс двуместных функций ограничен расширенными полиномами. То есть, каков бы ни был замкнутый лямбда-терм R, такой что $\vdash_{\mathfrak{A}} R : \nu \to \nu \to \nu$, найдется расширенный полином E(m,n), такой, что $R \, \overline{m} \, \overline{n} =_{\beta} \overline{E(m,n)}$.

Лемма 6.2. Если в выражении X^{ξ} , находящемся в нормальной форме, подтерм T^{τ} не является свободной переменной выражения T, и $T \neq X$, то всегда найдется такой подтерм S^{σ} , что $h(\sigma) > h(\tau)$, причем $\sigma = \tau \to \rho$ или $\sigma = \rho \to \tau$.

- 1. T это некоторая переменная x (она обязана быть связанной по условию леммы). То есть T часть выражения $S = \lambda x : \tau \dots x \dots$ Тогда $S : \tau \to \rho$, и $h(\tau \to \rho) > h(\tau)$.
- 2. T это некоторая абстракция $T = \lambda x : \sigma.P^{\pi}$. Тогда заметим, что по условию $T \neq X$. Значит, T входит в некоторое более общее выражение либо в абстракцию $S^{v \to \tau} = \lambda y : v.T$, либо в применение $S^{\tau \to v}T$ (применение вида TA является редексом и потому невозможно).
- 3. T это некоторое применение $T = S^v \to \tau Y$.

Лемма 6.3. $(\lambda t. g^n t)^m x \longrightarrow_{\beta} g^{m \cdot n} x$.

Доказательство. Индукция по m:

База Пусть m=0. Тогда $(\lambda t.g^n t)^0 x \equiv x \equiv g^{0 \cdot n} x$.

Переход Пусть $(\lambda t. g^n t)^m x \longrightarrow_{\beta} g^{m \cdot n} x$. Тогда

$$(\lambda t.g^n t)^{m+1} x \equiv (\lambda t.g^n t)^m ((\lambda t.g^n t)x) \longrightarrow_{\beta} g^{m \cdot n} ((\lambda t.g^n t)x) \longrightarrow_{\beta} g^{m \cdot n} (g^n x) \equiv g^{(m+1) \cdot n} x$$

Доказательство теоремы. Рассмотрим лямбда-терм $R a^{\nu} b^{\nu} f^{\alpha \to \alpha}$. Очевидно, что $R : \alpha \to \alpha$.

Согласно свойству сильной нормализации, данный терм имеет нормальную форму N. Рассмотрим ее. Заметим, что если T^{τ} — подтерм N, то он обязан иметь тип либо $\nu,$ либо $\alpha \to \alpha,$ либо $\alpha.$

Доказать это можно разбором случаев с использованием индукции и предыдущей леммы. Заметим, что в выражении не может быть выражений атомарных типов, отличных от α (поскольку у нас запрещены свободные переменные). Возьмем некоторый терм T^{τ} и рассмотрим $h(\tau)$.

- 1. Если $h(\tau) \geq 3$, то $T = \overline{a}$ или $T = \overline{b}$. Пусть это не так, и существуют такие P^{π} , что $P \neq \overline{a}, P \neq \overline{b}$ и $h(\pi) \geq 3$. Возьмем среди таких P подтерм с типом максимальной глубины. Однако, по лемме в нем неизбежно найдется такой S^{σ} , что $h(\sigma) > h(\pi)$, что противоречит максимальности $h(\pi)$.
- 2. Если $h(\tau) = 2$, то τ имеет вид либо $\alpha \to (\alpha \to \alpha)$, либо $(\alpha \to \alpha) \to \alpha$. По лемме найдется такой S^{σ} , что $\sigma = \tau \to \rho$ или $\sigma = \rho \to \tau$. В любом из случаев не найдется такого ρ , что $\nu = \sigma$, то есть $S \neq a$ и $S \neq b$, что невозможно по предыдущему пункту.
- 3. $h(\tau) = 0$ или $h(\tau) = 1$. Тогда очевидно, что $\tau \equiv \alpha$ или $\tau \equiv \alpha \to \alpha$ соответственно.

Теперь рассмотрим терм $S^{\alpha \to \alpha}$. Рассмотрим, какие выражения могут иметь такой тип. Можно показать, что это будет либо:

- 1. *f*
- 2. $aT^{\alpha \to \alpha}$ или $bT^{\alpha \to \alpha}$
- 3. $\lambda y.S_1(\ldots S_k Z\ldots)$, где S_i это либо f, либо af или bf, а Z либо совпадает с y, либо является некоторой другой переменной из объемлющей лямбда-абстракции.

Пусть S — подтерм N типа $\alpha \to \alpha$. Покажем по индукции по структуре S, что $S[a:=\overline{m},b:=\overline{n}]=_{\beta}f^{\overline{E(m,n)}}$, либо $\lambda y.f^{\overline{E(m,n)}}z$ (для некоторых $m,n\in\mathbb{N}_0$).

Разберем случаи:

- 1. $S \equiv f$ тогда E(m,n) = 1 и $S \equiv f^1$.
- 2. $S \equiv aT$ (случай bT рассматривается аналогично) тогда: Пусть $T \equiv f^{\overline{E(m,n)}}$, тогда

$$a[a:=\overline{m}]T \equiv (\lambda fx.f^mx)(\lambda x.f^{E(m,n)x)}$$

По лемме это выражение бета-эквивалентно такому:

$$\lambda x.(f^{E(m,n)})^m x \equiv \lambda x.f_1^E(m,n)x$$

Аналогично, если $T \equiv \lambda y.f^{\overline{E(a,b)}}z$, то $a[a:=\overline{m}]T \equiv (\lambda fx.f^{\overline{m}}x)\lambda y.f^{\overline{E(m,n)}}z =_{\beta} \lambda y.f^{\overline{E(m,n)}}z$

7 Основные задачи

Можно задаться вопросом: что мы можем получить с этой теории? Традиционно рассматривают следующие три задачи:

- 1. Задача проверки типов проверить, выполнено ли $\Gamma \vdash M : \sigma$ для данных Γ, M и σ .
- 2. Задача восстановления (синтеза) типов (типизируемости) проверить, возможно ли для данного лямбда-выражения M найти такие Γ и σ , что $\Gamma \vdash M : \sigma$.
- 3. Задача населенности типа проверить, найдется ли для данного типа σ контекст Γ и терм M, такой, что $\Gamma \vdash M : \sigma$.

Для просто типизируемого лямбда-исчисления существует алгоритмическое решение для всех трех задач. Мы, впрочем, внимательно рассмотрим только задачу синтеза типов.

8 Изоморфизм Карри-Ховарда

8.1 Варианты просто типизированного исчисления

Конструкция	Связка	Операции
Упорядоченная пара	$\alpha \& \beta$	$\pi_1: \alpha \& \beta \to \alpha$
		$\pi_2: \alpha \& \beta \to \beta$
		$\langle \alpha, \beta \rangle : \alpha \to \beta \to \alpha \& \beta$
Алгебраический тип	$\alpha \vee \beta$	$in_1:\alpha \to \alpha \vee \beta$
		$in_2: \beta \to \alpha \vee \beta$
		$case: (\alpha \to \gamma) \to (\beta \to \gamma) \to \alpha \lor \beta \to \gamma$

9 Исчисление 1-го порядка

Более радикальный путь усиления теории — рассмотрение исчислений 1-го и высших порядков. Подробно на теориях 1-го порядка мы останавливаться не будем, единственное, отметим, что такая теория будет требовать определение выражений двух сортов: предметных и логических. Аналогом с точки зрения изоморфизма Карри-Ховарда для логических значений будут типы, а предметными выражениями могут быть любые выражения над не-типовыми значениями: например, над строками, целыми числами и т.п.

10 Линейные типы

Все системы типов, которые мы ранее рассматривали, были так или иначе основаны на интуиционистской логике. В данном разделе мы немного отступим в сторону и приведем пример системы типов, основанной на логике, существенно отличающейся от интуиционистской.

Линейная логика была предложена Жираром в ... Основная ее мотивация - попытка в логических выражениях учесть стоимость тех или иных утверждений. В самом деле, традиционная интерпретация интуиционистской логики предполагает, что если некоторое утверждение А доказано, то это утверждение может быть использовано в дальнейшем рассуждении сколько угодно раз без дополнительных затрат. Однако, это не совсем верно, например, относительно изоморфизма Карри-Ховарда: копировать массив размера 10^6 дорого. Более того, некоторые значения (входной поток) в принципе скопированы быть не могут. Линейная логика позволяет придать этой идее более точный смысл.

Рассмотрим выражение $A \multimap B$ (связка \multimap читается как lollipop — леденец): будем говорить, что из A можно получить B, если материальный объект A можно превратить в материальный объект B. Например, утверждение, что по 31 рублю можно получить в кассе метрополитена один жетон на проезд можно записать как 31 рубль \multimap жетон. В рамках этой аналогии утверждение 31 рубль \multimap жетон, 31 рубль \vdash 31 рубль \otimes жетон не может быть доказано: ведь превратив 31 рубль в жетон, мы не сможем больше этими 31 рублями пользоваться.

Например, мы можем показать, что $\langle !(A\&B)\rangle \vdash !A\otimes !B$ и $\langle !A\otimes !B\rangle \vdash !(A\&B)$. Поясним первое выражение: если у нас есть источник одноразовых автоматов, умеющих выдать A или B по нашему выбору, то это то же самое, что иметь два специализированных автомата, выдающих неограниченное количество A (первый автомат) и B (второй автомат).

Можно рассматривать еще одну связку $(!(A \ \Re B) = !A \oplus !B)$, но для простоты мы ее опустим.

Помимо связок, имеющих прямые аналогии в интуиционистской логике, мы введем новую связку, называемой экспонентой или «точно».

Линейная логика в некотором смысле эквивалентна интуиционистской:

Теорема 10.1. Каково бы ни было выражение X в интуиционистской логике, найдется выражение X° в линейной.

В прямую сторону доказательство тривиально — если стереть все !, превратить \otimes и & в \cap , а \oplus и \Re — в \vee , то мы получим аксиомы интуиционистской логики. Обратное утверждение можно показать с помощью *стандартного* вложения интуиционистской логики в линейную:

Интуиционистская связка Аналог в линейной логике

TITT J HIGH CITE OF COLORS CONTROL	TILLOWICE D VILLEOINION VIOLINI
$A \to B$	$!A \multimap B$
$A \cap B$	A&B
$A \vee B$	$!(!A \oplus !B)$

Особую важность в линейной логике играют структурные правила: правило ослабления и правило сжатия:

Правило ослабления позволяет уничтожать значения:

$$\overline{\vdash A \to B}$$

Если мы впрямую построим по такой системе типовую систему для лямбда-исчисления, мы не добьемся нашей цели: ведь мы всегда можем превратить значение из линейного типа в интуиционистский и наоборот. Для этой цели мы запретим превращения