Nom	
Prénom	
Groupe	

|--|

${\bf Algorithmique\ -\ Info-spe}$

partiel nº 1 D.S. 314446.3 BW (12 mai 2009)

Feuilles de réponses

 $R\'{e}ponses~1~(Graphes~et~arbres...-4.5~points)$

1. 1'	implication (ii) \Rightarrow (i)
2. la	a double implication(i) \Rightarrow (v),(vi)
3. 1	implication $(v)\Rightarrow(iii)$

$R\'eponso$	es 2 (Couvrant et donc Connexe? $-6.5 points$)
1. Pri	incipe algorithmique :
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	

2. Algorithme de la fonction ${\it abstraite}$ (${\it EstConnexe}$):

algorithme fonction EstConnexe : Booléen parametres locaux
Graphe G variables
Graphe T

\mathbf{debut}

fin algorithme fonction EstConnexe

$R\'eponses~3$	(L'aller,	puis le	e retour		14	points)
----------------	-----------	---------	----------	--	----	--------	---

- 1. Propriété suffisante pour qu'un chemin aller/retour existe :
- 2. Algorithme de la procédure MarqueSommets(src,dst,pere,M) :

algorithme procedure MarqueSommets

parametres locaux

entier src,dst
t_vect_entiers pere

parametres globaux

t_vect_booleens M

variables

debut

fin algorithme procedure MarqueSommets

4.	Adaptation	de l'algorithme	de Dijkstra	au problème	de l'aller	/retour:

5	Plus court	chemin	aller/retour	de 1 :	à 8 sur	la figure	1 .
υ.	I lus court	CHCHIII	aner/recour	uc i a	a co sui	ia ngure	1 .

aller:
retour:

6. Algorithme de la procédure dijkstra(g,src,dst,pere,M) qui trouve le plus court chemin dans g (en représentation dynamique) entre src et dst et remplit le vecteur de père pere correspondant :

algorithme procedure dijkstra parametres locaux t_graphe_d src, dst entier parametres globaux t_vect_entiers pere t_vect_booleens variables

debut

fin algorithme procedure dijkstra

7. Algorithme de la procédure pccAR(g,src,dst,pereA,pereR) qui cherche le plus court chemin dans g (en représentation dynamique) aller/retour depuis src en passant par dst :

algorithme procedure pccAR
parametres locaux

t_graphe_d g
entier src, dst
parametres globaux
t_vect_entiers pereA, pereR
variables

debut

fin algorithme procedure pccAR

Réponses 4 (Jouons un peu! - 5 points)

1.	Que représentent les sommets?
2.	Que représentent les arêtes?
3.	Principe de l'algorithme A^* :

5. Algorithme de la fonction distance :

 ${\bf algorithme} \ \ {\bf fonction} \ \ {\bf distance} \ : \ {\bf entier}$

parametres locaux

t_mat_entiers t entier n

variables

\mathbf{debut}

fin algorithme fonction distance