Parte 02 - Deslocamento temporal da função de onda

a equação da função de onda completa:

$$i\hbar \frac{\partial \Psi}{\partial t} = \text{op } H\Psi$$

O opH é um operador de evolução temporal. Pode, ele, também assumir, a seguinte identidade matemática:

op
$$U(\Delta t) = e^{\frac{-i \operatorname{op} H}{\hbar}}$$

Resultando, portanto, na solução, descrita abaixo:

$$\Psi(x, t + \Delta t) = e^{\frac{-i \operatorname{op} H \Delta t}{\hbar}} \cdot \Psi(x, t)$$

Podendo tratar o expoente de um operador, por meio de uma série infinita, tem-se:

$$e^{\frac{-i\operatorname{op} H\Delta t}{h}} = \sum_{n} \frac{\left(\frac{-i\operatorname{op} H\Delta t}{h}\right)^{n}}{n!}$$

```
import matplotlib.animation as animation
from IPython.display import HTML
import matplotlib.pyplot as plt
import scipy.fftpack as fft
import scipy.linalg as scl
import numpy as np
import math
%matplotlib widget
%matplotlib inline
```

O Hamiltoniano no espaço:

$$x_n = x_0 + n\Delta x$$
, com $\Delta x = \frac{(x_N - x_0)}{N}$

Os valores de entrada:

```
In [16]: hbar = 1
m = 1
Processing math: 100%
```

```
N = 2**11
L = 200.0
step_low = 0.
step_high= 1.
V0 = 10.
```

Definição do espaço:

Definição do potencial:

```
In [20]: V = np.zeros(N)
for i in range(N):
    if x[i]>= step_low and x[i]<= step_high:
        V[i]= V0</pre>
```

Configuração do Hamiltoniano para a função V, multiplicação com a matriz inversa:

Intervalo temporal

```
In [24]: dt_max = 2/np.max(En) # Critério de estabilidade.
dt = 0.001
if dt > dt_max:
    print("ATENÇÃO: dt está na região instável!")
```

Função de onda inicial

```
In [26]: g_x0=-10.
g_k0=6.
g_sig=2.
```

```
Definição de um Gaussiano no espaço K, com p=\hbar k, um momento k_0, e o espaço x, \psi(x,0)=\left(\frac{2L}{\pi}\right)^{1/4}\cdot e^{-Lx^2}:
```

```
In [29]: # H é Hermitiano?
print("Verifique se H é realmente Hermitiano : ",np.array_equal(H.conj().T,H))
```

Verifique se H é realmente Hermitiano : True

```
In [30]: Ut_mat = np.diag(np.ones(N,dtype="complex128"),0)

print("Criação de uma matriz U(dt = {})".format(dt))
for n in range(1,3):
    # Realiza a soma. Como se trata de matrizes, o processo irá demorar se N for gr
    Ut_mat += np.linalg.matrix_power((-1j*dt*H/hbar),n)/math.factorial(n)
```

Criação de uma matriz U(dt = 0.001)

```
In [31]: p = Ut_mat.dot(psi_t0)

print("O quanto a normalização muda por etapa? Desde {} até {}".format(np.linalg.no print("Nº de etapas em que a norma está errada por um fator 2 : ",1/(np.linalg.norm
```

O quanto a normalização muda por etapa? Desde 1.0 até 1.0000000127814086 Nº de etapas em que a norma está errada por um fator 2 : 78238637.96537858

teste do movimento gaussiano:

```
In [33]: psi_t0 = psi0(x,g_x0,g_k0,g_sig)
    psi_t1 = psi_t0
    psi_tu = []

for t in range(3500):
        psi_t1 = Ut_mat.dot(psi_t1)
        if t>0 and t%500==0:
            psi_tu.append( (t,psi_t1))
        psi_tu.append( (t,psi_t1))
```

Teste e verificação de coerência dos resultados:

```
< E > = estado esperado da energia;
< x > = estado esperado da posição
```

```
In [35]: print("Normalização : ",np.linalg.norm(psi_tu[-1][1]))

vev_E0=float(np.real(np.sum(np.conjugate(psi_t0)*H.dot(psi_t0))))
Processing math: 100%
```

```
vev_x0=float(np.real(np.sum(np.conjugate(psi_t0)*x*psi_t0)))
       print("\langle E(t=0)\rangle = \{:8.4f\} \langle x(t=0)\rangle = \{:8.4f\}".format(vev E0, vev x0))
       for t,p in psi_tu:
                          norm = np.linalg.norm(p)
                           vev_E1 = float(np.real(np.sum(np.conjugate(p)*H.dot(p))))
                           vev_x1 = float(np.real(np.sum(np.conjugate(p)*x*p)))
                           print("dt = {:7.1f} norm = {:8.5f} < E > = {:8.4f} < x (dt) > = {:8.4g}".format(
Normalização : 1.000044736361259
\langle E (t = 0) \rangle = 17.5429 \langle x_{t} = 0 \rangle = -10.0000
dt = 500.0 \text{ norm} = 1.00001 \langle E \rangle = 17.5432 \langle x_{dt} \rangle = 100001 \langle E \rangle = 10000
                                                                                                                                                                                                                                                                                                            -7.164
dt = 1000.0 \text{ norm} = 1.00001 \langle E \rangle = 17.5434 \langle x_{dt} \rangle = -4.335
-1.55
dt = 2000.0 \text{ norm} = 1.00003 \langle E \rangle = 17.5439 \langle x (dt) \rangle = 0.8044
dt = 2500.0 \text{ norm} = 1.00003 \langle E \rangle = 17.5441 \langle x_{dt} \rangle =
                                                                                                                                                                                                                                                                                                                   2.91
dt = 3000.0 \text{ norm} = 1.00004 \langle E \rangle = 17.5443 \langle x (dt) \rangle = 5.103
dt = 3499.0 \text{ norm} = 1.00004 \langle E \rangle = 17.5446 \langle x_{(dt)} \rangle = 7.305
```

Dos dados obtidos, resulta:

```
In [37]: def opt_plot():
             plt.minorticks_on()
             plt.tick_params(axis='both', which='minor', direction = "in",
                              top = True, right = True, length=5, width=1,
                              labelsize=15)
             plt.tick_params(axis='both', which='major', direction = "in",
                              top = True, right = True, length=8, width=1,
                              labelsize=15)
         plt.figure(figsize=(8,5))
         if vev_E0>max(V):
             plt.title('Espalhamento')
             plt.title('Tunelamento')
         plt.ylabel('$psi(x,t)$')
         plt.xlabel('$x$')
         # plt.plot(x,np.abs(psi_t0)/np.sqrt(Delta_x),label="$\Psi(x,t=0)$")
         for t,p in psi tu:
             plt.plot(x,np.abs(p)/np.sqrt(Delta_x),label="$Psi(x,t={:6.3f})$".format(t*dt))
             plt.legend(loc = 'center left')
         ax1 = plt.twinx()
         plt.plot(x,V,color="grey",label="V(x)")
         plt.plot([x[0],x[N-1]],[vev_E0,vev_E0],color="grey",linestyle="--",label="<E>")
         plt.ylabel("Energia",color="grey")
         plt.xlim(g_x0-5*g_sig,-g_x0+5*g_sig)
         plt.legend(loc='best')
         plt.grid()
         opt_plot()
```



```
In [38]: %time Ut_05s = np.linalg.matrix_power(Ut_mat,int(0.5/dt) )
```

CPU times: total: 2min Wall time: 1min 15s

Repetição de tarefa

```
In [40]: psi_t0 = psi_0(x,g_x0,g_k0,g_sig)
                                              psi_t1 = psi_t0
                                              psi_tu05 = []
                                              for t in range(7):
                                                                 psi_t1 = Ut_05s.dot(psi_t1)
                                                                 psi_tu05.append( (t,psi_t1))
                                                                  # psi_tu.append( (t,psi_t1))
                                              print("Start")
                                              v1=[]
                                              v2=[]
                                              tm=[]
                                              count=0
                                              for t,p in psi_tu05:
                                                                 norm = np.linalg.norm(p)
                                                                 vev_E1 = float(np.real(np.sum(np.conjugate(p)*H.dot(p))))
                                                                 vev_x1 = float(np.real(np.sum(np.conjugate(p)*x*p)))
                                                                 v1.append(vev_E1)
                                                                 v2.append(vev_x1)
                                                                 tm.append(count)
                                                                 count=count+1
                                                                 print("dt = {:7.1f} norm = {:8.5f} <E > = {:8.4f} <x_(dt) > = {:8.4g}".format("dt = {:7.1f} norm = {:7.1f}
```

```
Start
         dt =
                   0.0 norm = 1.00001 \langle E \rangle = 17.5432 \langle x_{(dt)} \rangle =
                                                                            -7.17
         dt =
                   1.0 norm = 1.00001 < E > = 17.5434 < x (dt) > =
                                                                            -4.34
                  2.0 norm = 1.00002 \langle E \rangle = 17.5436 \langle x_{(dt)} \rangle =
         dt =
                                                                           -1.555
         dt =
                  3.0 norm = 1.00003 \langle E \rangle = 17.5439 \langle x_{(dt)} \rangle =
                                                                           0.8002
         dt =
                  4.0 norm = 1.00003 < E > = 17.5441 < x_(dt) > =
                                                                            2.905
         dt =
                  5.0 norm = 1.00004 \langle E \rangle = 17.5443 \langle x_{(dt)} \rangle =
                                                                            5.099
         dt =
                   6.0 norm = 1.00004 < E > = 17.5446 < x (dt) > =
                                                                            7.305
In [41]: plt.figure(figsize=(8,5))
          if vev_E0>max(V):
              plt.title('Espalhamento')
          else:
              plt.title('Tunelamento')
          plt.ylabel('$psi(x,t)$')
          plt.xlabel('$x$')
          line, = plt.plot(x,np.abs(psi_t0)/np.sqrt(Delta_x),label="$Psi(x,t=0)$")
          for t,p in psi_tu05:
              plt.plot(x,np.abs(p)/np.sqrt(Delta_x),label="$Psi(x,t={:6.3f})$".format(t*dt))
              plt.legend(loc='center left')
          ax1 = plt.twinx()
          plt.plot(x,V,color="grey",label="V(x)")
          plt.plot([x[0],x[6]],[vev_E0,vev_E0],color="grey",linestyle="--",label="<E>")
          plt.ylabel("Energia",color="grey")
          plt.xlim(g_x0-5*g_sig,-g_x0+5*g_sig)
          plt.legend(loc='best')
          plt.grid()
          opt_plot()
          plt.savefig('Estado deslocado - Pré-computados.png')
```


Parte 3 - A Regressão Simbólica

```
In [43]: from sklearn.utils import check_random_state, shuffle
    from gplearn.genetic import SymbolicRegressor
    from sklearn.ensemble import RandomForestRegressor
    from sklearn.tree import DecisionTreeRegressor
    from sklearn.utils.random import check_random_state
    from mpl_toolkits.mplot3d import Axes3D
    from IPython.display import Image
    import pydot
    import graphviz
    from sympy import *
    import pandas as pd
```

Definição dos Operadores

Interpretação Probabilística Gaussiana da Distribuição Normal

$$N(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma}}$$

:

```
In [47]: m1=[]
    md=[]
    count=0
    tem=0
    df=pd.DataFrame()
    df2=pd.DataFrame()
    xix=[]
    df['v1']=v1
    df2['v2']=v2

for i in v2:
        m1.append(i)
        tem=i-vev_x0

Processing math: 100%    md.append(tem**2)
```

```
df['m1']=md
df2['t']=tm

dp=2.83/3
A = [float(i) for i in m1]
for i in A:
    xix=np.linspace(-(3.*dp),(3.*dp),40)
    y=0.39*(2.76**(-0.5*(xix**2)))
```

A amostra acima, resulta:

```
In [49]: def opt_plot():
                 plt.minorticks_on()
                 plt.tick_params(axis='both', which='minor', direction = "in",
                                  top = True, right = True, length=5, width=1,
                                  labelsize=15)
                 plt.tick_params(axis='both', which='major', direction = "in",
                                  top = True, right = True, length=8, width=1,
                                  labelsize=15)
             plt.figure(figsize=(8,5))
             textstr = '\n'.join((
                 r'$\mu=%.2f$' % (0, ),
                 ))
             textstr02 = '\n'.join((
                 r'$\sigma=%.2f$' % (1, ),
             ))
             textstr03 = '\n'.join((
                 r'$\sigma=%.2f$' % (2, ),
             ))
             textstr04 = '\n'.join((
                 r'$\sigma=%.2f$' % (1, ),
                 r'$\mu=%.2f$' % (0, ),
             ))
             plt.vlines(0, 0, 0.39, linestyle='dashed', color='b', linewidth=1, label=str(textst
             plt.vlines(1, 0, 0.23, linestyle='dashed', color='green', linewidth=1.5, label= str
             plt.vlines(-1, 0, 0.23, linestyle='dashed', color='green', linewidth=1.5) # vlines(
             plt.vlines(2, 0, 0.05, linestyle='dashed', color='orange', linewidth=1.5, label= '2
             plt.vlines(-2, 0, 0.05, linestyle='dashed', color='orange', linewidth=1.5) # vlines
             font1 = {'family':'serif','color':'blue','size':20}
             font2 = {'family':'serif','color':'darkred','size':15}
             plt.title("Alternativa ao Modelo Padrão", fontdict = font1)
             plt.xlabel("x", fontdict = font2)
             plt.ylabel("Densidade", fontdict = font2)
             plt.legend(title='Medidas de Dispersão')
Processing math: 100% t.grid()
```

```
opt_plot()
plt.plot(xix,y ,'r--', alpha=0.5, label= textstr04)
```

Out[49]: [<matplotlib.lines.Line2D at 0x21c95f5cda0>]

Criação e Calibração de um modelo Simbólico Regressor:

I	Populati	on Average		Best Individual	.	
Gen	Length	Fitness	Length	Fitness	OOB Fitness	Time Left
0	15.94	8.42754	24	0.101256	0.141842	2.44m
1	8.38	1.41838	10	0.0282817	0.0287366	2.23m
2	4.25	0.913171	10	0.0275074	0.0357058	1.91m
3	2.38	0.458598	10	0.0262319	0.0471853	1.68m
4	2.34	69.5123	10	0.0262295	0.0472067	1.63m
5	4.42	1.11605	11	0.0181481	0.0271488	1.57m
6	6.21	1.40624	11	0.0183373	0.0356987	1.49m
7	6.89	1.00531	11	0.0196629	0.0237683	1.53m
8	7.20	0.86294	11	0.0185499	0.0337846	1.25m
9	7.36	0.927227	12	0.0193277	0.0303689	1.22m
10	7.54	1.14538	12	0.0202671	0.0219142	1.07m
11	7.90	1.22699	8	0.0258667	0.038024	56.28s
12	8.04	1.22625	8	0.0252462	0.0436084	1.06m
13	7.96	1.29076	8	0.0249788	0.0460152	1.05m
14	7.86	1.30819	8	0.0245602	0.04586	55.62s
15	8.06	1.22489	8	0.0247419	0.0481478	38.25s
16	7.99	1.55607	8	0.0246505	0.04897	22.28s
17	7.92	1.26517	11	0.0241093	0.0259531	17.71s
18	7.97	1.25025	8	0.0246505	0.04897	11.4 9s
19	8.00	1.2177	10	0.023813	0.0384339	0.00s

Out[51]: 🔻

SymbolicRegressor

div(0.333, sub(0.812, neg(mul(mul(0.696, X0), X0))))

Escore:

```
In [53]: print('R2:',est_gp.score(xix.reshape(-1, 1),y))
    next_e = sympify(str(est_gp._program), locals=converter)
    y1=next_e
```

R2: 0.9502743138806782

Equação Proposta:

In [55]: y1

Out[55]: 0.333 $0.696X_0^2 + 0.812$

Soluções para o Poço de Potencial Infinito

Solução da função de onda da posição

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

```
In [58]: import matplotlib.pyplot as plt
         import numpy as np
         def opt_plot():
             plt.minorticks_on()
             plt.tick_params(axis='both', which='minor', direction = "in",
                              top = True, right = True, length=5, width=1,
                              labelsize=15)
             plt.tick_params(axis='both', which='major', direction = "in",
                              top = True, right = True, length=8, width=1,
                              labelsize=15)
         a = 20
         A=np.sqrt(2/a)
         # Data for plotting
         for i in range(5):
             t = np.arange(0.0, 2.0, 0.01)
             s = A*np.sin(0 * np.pi * t)
         s1 = A*+np.sin(0.5 * np.pi * t)
         s2 = A*np.sin(1.0 * np.pi * t)
         s3 = A*np.sin(1.5 * np.pi * t)
         s4 = A*np.sin(2.0 * np.pi * t)
         fig, ax = plt.subplots(figsize=(10,6))
         ax.plot(t, s)
         ax.plot(t, s1,label='n=0')
         ax.plot(t, s2,label='n=1')
         ax.plot(t, s3,label='n=2')
         ax.plot(t, s4,label='n=3')
         ax.set(xlabel='time (s)', ylabel='$w(x,t)$',
                title="Soluções para o Poço de Potencial Infinito")
         ax.grid()
         opt_plot()
         plt.legend()
         fig.savefig("test.png")
         plt.show()
```


Gera-se e ajusta-se,um modelo Simbólico Regressor para a solução da função de onda da Posição:

In [60]:	<pre>est_gp.fit(t.reshape(-1, 1),s1)</pre>								
	Population Average				Best Individual	I			
	Gen	Length	Fitness	Length	Fitness	OOB Fitness	Time Left		
	0	15.94	10.9162	6	0.0305686	0.0286007	2.70m		
	1	8.25	1.36407	9	0.0238001	0.0246281	2.65m		
	2	5.03	0.916274	9	0.0248264	0.0153917	2.21m		
	3	2.76	0.458664	7	0.0265144	0.031241	2.49m		
	4	2.38	16.2677	7	0.026512	0.0312625	1.71m		
	5	5.04	0.628504	6	0.0142702	0.0251	1.70m		
	6	6.00	1.07399	6	0.0145615	0.0224778	1.70m		
	7	6.08	0.645816	6	0.0137287	0.0299735	1.32m		
	8	6.07	0.686379	6	0.013608	0.0310599	1.25m		
	9	6.19	0.767054	6	0.0124938	0.0410876	1.33m		
	10	6.10	0.799589	6	0.0129802	0.0367098	1.44m		
	11	6.08	0.641764	6	0.013121	0.0354423	1.09m		
	12	6.19	0.677095	6	0.0122761	0.0430471	58.81s		
	13	6.17	0.895997	6	0.012991	0.0366123	38.97s		
	14	6.06	0.736398	6	0.0132391	0.03438	32.38s		
	15	6.18	0.696137	6	0.0133269	0.0335893	26.38s		
	16	6.17	0.844118	6	0.0132413	0.0343599	20.57s		
	17	6.09	0.700994	6	0.0128263	0.0380947	13.77s		
	18	6.16	0.612862	6	0.0130871	0.0357479	6.65s		
	19	6.17	0.633526	6	0.0125276	0.0407834	0.00s		

```
Out[60]: SymbolicRegressor add(mul(-0.517, X0), sin(X0))
```

Escore

```
In [62]: print('R2:',est_gp.score(t.reshape(-1, 1),s1))
    next_e = sympify(str(est_gp._program), locals=converter)
    y2=next_e
```

R2: 0.9048979343134357

Equação Proposta

```
In [64]: y2

Out[64]: -0.517X_0 + \sin(X_0)
```

Solução para o espectro energético

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}$$

Verificando os níveis de energia:

```
In [66]: import numpy as np
         a=1
         h=1
         m=1
         En=0
         Enn=[]
         for i in range(7):
             En=((i**2)*(h**2)*(np.pi**2))/(2*m*a*a)
             Enn.append(En)
         for i in range(7):
             n = i+1
             print("E[{}] = {:9.4f}".format(n,Enn[i],n, n*n*np.pi**2*h*h/(2*m*a*a)))
        E[1] =
                 0.0000
        E[2] = 4.9348
        E[3] = 19.7392
        E[4] = 44.4132
        E[5] = 78.9568
       E[6] = 123.3701
        E[7] = 177.6529
```

Gráfico da Energia Quantizada:

```
In [68]: def opt_plot():

Processing math: 100% plt.minorticks_on()
```

```
plt.tick_params(axis='both', which='minor', direction = "in",
                    top = True, right = True, length=5, width=1,
                    labelsize=15)
   plt.tick_params(axis='both', which='major', direction = "in",
                    top = True, right = True, length=8, width=1,
                    labelsize=15)
plt.figure(figsize=(10, 6))
plt.plot(Enn)
plt.text(x=0.0, y=10, s="Eo", weight="bold")
plt.text(x=1.0, y=15, s="E1", weight="bold")
plt.text(x=2.0, y=30, s="E2", weight="bold")
plt.text(x=3.0, y=55, s="E3", weight="bold")
plt.text(x=4.0, y=90, s="E4", weight="bold")
plt.text(x=5.0, y=135, s="E5", weight="bold")
plt.text(x=6.0, y=170, s="E6", weight="bold")
for i in range(7):
   En=((i**2)*(h**2)*(np.pi**2))/(2*m*a*a)
   plt.scatter(i,En, marker='o',label="E["+str(i)+"] = "+str(round(Enn[i],2)))
font1 = {'family':'serif','color':'blue','size':20}
font2 = {'family':'serif','color':'darkred','size':15}
plt.title("Níveis Energéticos", fontdict = font1)
plt.xlabel("n", fontdict = font2)
plt.ylabel("Energia", fontdict = font2)
plt.text(x=2.0, y=130, s=r'f(x) = 4.93.\{x^2\}, fontdict = font2)
plt.legend(title='Níveis de Energia')
opt_plot()
plt.grid()
```


Para:

Obtem-se o seguinte modelo:

```
In [72]:
         function_set = ['add', 'sub', 'mul', 'div','cos','sin','neg','inv']
         # Instanciação
         est_gp = SymbolicRegressor(population_size=5000,
                                     generations=20,function_set=function_set,
                                     stopping_criteria=0.01,
                                     p_crossover=0.7, p_subtree_mutation=0.1,
                                     p_hoist_mutation=0.05, p_point_mutation=0.1,
                                     max_samples=0.9, verbose=1,
                                     parsimony_coefficient=0.01, random_state=0)
         # Ajuste
         est_gp.fit(E_df,y_E)
                Population Average
                                                     Best Individual
                                                                       OOB Fitness Time Left
         Gen
               Length
                               Fitness
                                          Length
                                                          Fitness
           0
                10.86
                           1.23511e+07
                                                                0
                                                                                         2.06m
                                              14
                                                                                  0
```

```
Out[72]: SymbolicRegressor eg(neg(div(mul(inv(X0), mul(X1, -0.362)), sub(cos(X2), sin(0.200)))))
```

Cujo Escore é:

com a proposta de equação:

```
In [76]: y3

Out[76]:  -\frac{0.362X_1}{X_0(\cos(X_2) - 0.198669330795061)}
```

Densidade de Probabilidade da posição

$$|\psi_n(x)|^2 = \frac{2}{a}\sin^2(n\pi x)$$

```
In [78]:
         import matplotlib.pyplot as plt
         import numpy as np
         def opt_plot():
             plt.minorticks_on()
             plt.tick_params(axis='both', which='minor', direction = "in",
                              top = True, right = True, length=5, width=1,
                              labelsize=15)
             plt.tick_params(axis='both', which='major', direction = "in",
                              top = True, right = True, length=8, width=1,
                              labelsize=15)
         val_esp=[-7.17,-4.344,-1.555,0.8002,2.905,5.095 ,7.305]
         a = 20
         A=(2/a)
         # Data for plotting
         t = np.arange(0.0, 2.0, 0.01)
         x=np.arange(0.0,2.0,0.01)
         s = A*(np.sin((0 * np.pi * x)))**2
         s1 = A*(np.sin((0.5 * np.pi * abs(x))))**2
         s2 = A*(np.sin((1.0 * np.pi * x)))**2
         s3 = A*(np.sin((1.5 * np.pi * x)))**2
         s4 = A*(np.sin((2.0 * np.pi * x)))**2
```

```
fig, ax = plt.subplots(figsize=(10,6))
ax.plot(x, s)
ax.plot(x, s1)
ax.fill(x,s1,color='grey', alpha=0.5, label='n1')
ax.plot(x, s2)
ax.fill(x,s2,color='blue', alpha=0.5, label='n2')
ax.plot(x, s3)
ax.fill(x,s3,color='green', alpha=0.5, label='n3')
ax.plot(x, s4)
ax.fill(x,s4,color='yellow', alpha=0.3, label='n4')
ax.set(xlabel='time (s)', ylabel='$w(x,t)$',
       title="Densidade de Probabilidade da Posição")
ax.grid()
ax.legend()
opt_plot()
fig.savefig("test.png")
plt.show()
```


Relaciona-se os valores médios esperados, da função de onda, com a função normal gaussiana:

para então, modular:

```
In [82]: function_set = ['add', 'sub', 'mul', 'div', 'cos', 'sin', 'neg', 'inv']
         # Instanciação
         est_gp = SymbolicRegressor(population_size=5000,
                                     generations=20,function_set=function_set,
                                     stopping_criteria=0.01,
                                     p_crossover=0.7, p_subtree_mutation=0.1,
                                     p_hoist_mutation=0.05, p_point_mutation=0.1,
                                     max_samples=0.9, verbose=1,
                                     parsimony_coefficient=0.01, random_state=0)
         # Ajuste
         est_gp.fit(x_arr.reshape(-1,1),y_arr)
                                                    Best Individual
                Population Average
         Gen
                               Fitness Length
                                                                       OOB Fitness Time Left
             Length
                                                         Fitness
                15.94
                               24.2581
                                             9
                                                       0.0150923
                                                                          0.125521
                                                                                        2.32m
           0
                 9.25
                               3.10342
                                             29
                                                        0.001741
                                                                                        2.51m
                                                                          0.390678
```

Out[82]:

SymbolicRegressor

sin(mul(cos(sub(sin(add(0.782, 0.138)), sin(sub(0.773, X0)))), div(cos(inv
(cos(X0))), sub(sin(add(-0.483, 0.614)), mul(mul(X0, X0), add(X0, X0)))))

Escore:

```
In [84]: print('R2:',est_gp.score(x_arr.reshape(-1,1),y_arr))
    next_e = sympify(str(est_gp._program), locals=converter)
    y2_arr=next_e
```

R2: -1.099778938698206

Equação:

In [86]: y2_arr

Out[86]:

$$\sin \left(\frac{\cos \left(\sin \left(X_0 - 0.773 \right) + 0.795601620036366 \right) \cos \left(\frac{1}{\cos \left(X_0 \right)} \right)}{0.130625639531083 - 2X_0^3} \right)$$

O desvio padrão da posição:

$$\Delta x n = \sqrt{\langle x^2 n \rangle - \langle x n \rangle^2} = a \sqrt{\frac{1}{12} - \frac{1}{2\pi^2 n^2}}$$

```
In [88]: import pandas as pd
         xx0 = -10
         val_esp=[-7.17,-4.344,-1.555,0.8002,2.905,5.095 ,7.305]
         a=val_esp[6]-val_esp[0]
         x_quadrado=0
         dp=[]
         n=1
         desp=0
         j = -10
         c=0
         dsp=[]
         for i in val_esp:
             if (j<0 and i>0):
                  c=np.abs(j)+i
             else:
                  c=np.abs(j)-np.abs(i)
                  c=np.abs(c)
             dsp.append(c)
             j=i
         dsp
         er_count=0
         err=[]
         med_ex=2.86
         for i in dsp:
             er_count=med_ex-i
             err.append(er_count)
         err
         dpp=pd.DataFrame()
         dpp['DesvioP']=dsp
         dpp['ErrDesvioP']=err
         dpp
```

ut[88]:		DesvioP	ErrDesvioP
	0	2.8300	0.0300
	1	2.8260	0.0340
	2	2.7890	0.0710
	3	2.3552	0.5048
	4	2.1048	0.7552
	5	2.1900	0.6700
	6	2.2100	0.6500

Podemos encontrar, também, o desvio padrão do momento

$$e^{\frac{-i\operatorname{op} H\Delta t}{\hbar}} = \sum_{n} \frac{\left(\frac{-i\operatorname{op} H\Delta t}{\hbar}\right)^{n}}{n!}$$

$$\Delta Kn = \langle K^2 n \rangle - \langle Kn \rangle^2 = \frac{n\hbar}{a}$$

```
In [90]: import numpy as np
a=20

h=1
dpm=0
dmp=[]
for i in range(7):
    a=np.abs(a)
    dpm=(i*np.pi)/a
    dmp.append(dpm)
```

O Princípio da Incerteza

$$\Delta x. \, \Delta p > \frac{\hbar}{2}$$

```
In [92]: desvf=pd.DataFrame()
         desvf["dp"]=dpp.DesvioP
         desvf["dmp"]=dmp
         j=0
         incerteza=[]
         form=[]
         f=r'$\Delta x.\Delta p $'
         g=r'$\Delta x $'
         h=r'$\Delta p $'
         c=0
         gord=dpp.DesvioP
         hord=dmp
         for i in dpp.DesvioP:
             j=dmp[c]*i
            incerteza.append(j)
            form.append(f)
             c=c+1
         desvf02=pd.DataFrame()
         desvf02[g]=gord
         desvf02[h]=hord
         desvf02["lesquerdo"]=form
         desvf02["incerteza"]=incerteza
         desvf02
```

Out[92]:		Δx	Δp	lesquerdo	incerteza
	0	2.8300	0.000000	$\Delta x. \Delta p$	0.000000
	1	2.8260	0.157080	$\Delta x. \Delta p$	0.443907
	2	2.7890	0.314159	$\Delta x. \Delta p$	0.876190
	3	2.3552	0.471239	$\Delta x. \Delta p$	1.109862
	4	2.1048	0.628319	$\Delta x. \Delta p$	1.322485
	5	2.1900	0.785398	$\Delta x. \Delta p$	1.720022
	6	2.2100	0.942478	$\Delta x. \Delta p$	2.082876

Regressão Simbólica entre os Δx e Δp , como variáveis independentes.

```
In [94]: from array import array
    pr_in=[]
    mul=0
    co=0
    for i in dp:
        mul=dmp[co]*i
        pr_in.append(mul)
        co=co+1
    pr_in
    l=np.linspace(-20,20,7)
    est_gp.fit(desvf,l)
```

- 1	Populatio	n Average		Best Individual		
 Gen	Length	Fitness	Length	 Fitness	OOB Fitness	Time Left
0	14.12	17.3358	61	4.58152	2.20469	2.61m
1	13.19	12.2287	63	2.01855	16.5301	2.67m
2	22.91	12.5299	68	1.48236	19.5784	2.70m
3	45.90	11.1265	67	1.35883	16.5595	2.79m
4	57.10	8.42914	74	1.2534	16.1118	2.86m
5	56.64	8.65533	103	0.940835	17.0272	2.81m
6	55.98	8.42966	74	0.897443	18.0636	2.33m
7	55.51	8.75305	89	0.915222	18.4083	2.30m
8	54.16	8.32359	57	0.83206	5.84937	2.04m
9	54.13	8.69014	59	0.601793	5.16499	1.84m
10	51.85	8.2424	59	0.601793	5.16499	1.61m
11	50.01	8.74759	70	0.566704	2.36483	1.44m
12	48.89	8.13448	63	0.433342	38.7046	1.21m
13	51.54	7.87202	75	0.439702	1.6471	1.05m
14	55.80	7.78783	74	0.409549	1.6472	55.09s
15	62.10	7.10821	63	0.414798	1.55232	47.78s
16	65.83	8.2369	79	0.343407	1.43067	45.28s
17	66.11	7.72361	78	0.387547	1.80321	23.63s
18	64.58	7.55171	78	0.274171	1.35523	13.55s
19	63.97	7.15509	77	0.328465	1.395	0.00s

Escore:

```
In [96]: print('R2:',est_gp.score(desvf,1))
   next_e = sympify(str(est_gp._program), locals=converter)
   y4=next_e
```

R2: 0.9974758366230793

Equação Proposta:

```
In [98]: print(y4)
-X0/X1 + X1 + (sin(X1) + 3*X1/X0)*sin(X1) + sin(X0/X1 - X1 + 0.306590365235784 - sin(0.094/X1)/(X1 + 0.041) + 1/(0.046 - 0.094/X1))/(X1 + 0.041) - 1/(0.046 - 0.094/X1)
```

Regressão Simbólica entre os Δx e Δp , como um produto entre ambas.

```
In [100...
          deltax=np.linspace(2.1,2.83,100)
          deltap=np.linspace(0.15,0.94,100)
          delta_dp=pd.DataFrame()
          delta_dp['deltax']=deltax
           delta_dp['deltap']=deltap
          c=0
          mult=[]
          for i in deltax:
              j=deltap[c]*i
              mult.append(j)
             c=c+1
           c_inf=0
          mult_inf=[]
          mult_sup=[]
          for i in mult:
               if i<0.5:
                   mult_inf.append(i)
                   c_inf=c_inf+1
               else:
                   mult_sup.append(i)
```

```
In [101... est_gp.fit(delta_dp,mult)
```

```
Gen Length Fitness Length Fitness OOB Fitness Time Left
0 14.12 9.75688 5 0 0 2.60m

Out[101... SymbolicRegressor  
mul(neg(X0), neg(X1))
```

Escore:

```
In [103... print('R2:',est_gp.score(delta_dp,mult))
    next_e = sympify(str(est_gp._program), locals=converter)
    y5=next_e
R2: 1.0
```

Equação

```
In [105... print(y5)

X0*X1
```

As Equações Sugeridas:

```
In [107...
          print('As Equações Sugeridas:')
          print('____')
          print('')
          print('I - y1(X0) =', y1)
          print('----')
          print('II - y2(X0) =', y2)
          print('----')
          print('III - y3(X0,X1,X2) =', y3)
          print('----')
          print('IV - y2\_arr(X0) = ',y2\_arr)
          print('----')
          print('V - y4(X0,X1) = ', y4)
          print('----')
          print('VI - y5(X0,X1) = ', y5)
          print('----')
```

```
As Equações Sugeridas:
           I - y1(X0) = 0.333/(0.696*X0**2 + 0.812)
           II - y2(X0) = -0.517*X0 + sin(X0)
           III - y3(X0,X1,X2) = -0.362*X1/(X0*(cos(X2) - 0.198669330795061))
           IV - y2_arr(X0) = sin(cos(sin(X0 - 0.773) + 0.795601620036366)*cos(1/cos(X0))/(0.13)
           0625639531083 - 2*X0**3))
           V - y4(X0,X1) = -X0/X1 + X1 + (sin(X1) + 3*X1/X0)*sin(X1) + sin(X0/X1 - X1 + 0.3065)
           90365235784 - \sin(0.094/X1)/(X1 + 0.041) + 1/(0.046 - 0.094/X1))/(X1 + 0.041) - 1/
           (0.046 - 0.094/X1)
           -----
          VI - y5(X0,X1) = X0*X1
In [108... print('I - y1(X0) =', end=" ")
            у1
           I - y1(X0) =
                 0.333
Out[108...
            0.696X_0^2 + 0.812
In [109...
Out[109...
            -0.517X_0 + \sin(X_0)
In [110...
            у3
                            0.362X_1
Out[110...
              X_0 \left(\cos\left(X_2\right) - 0.198669330795061\right)
In [111...
            y4
Out[111...
                                                     \sin\left(\frac{X_0}{X_1} - X_1 + 0.306590365235784\right)
            -\frac{X_0}{X_1} + X_1 + \left(\sin(X_1) + \frac{3X_1}{X_0}\right)\sin(X_1) + -
                                                                              \overline{X_1 + 0.041}
In [112...
            y5
```

Out[112... X_0X_1

In [113... X0=1 y2_arr

Out[113...

$$\sin \left(\frac{\cos\left(\sin\left(X_0 - 0.773\right) + 0.795601620036366\right)\cos\left(\frac{1}{\cos\left(X_0\right)}\right)}{0.130625639531083 - 2X_0^3} \right)$$