Advanced Techniques for Combinatorial Algorithms: Data Streams and Map-Reduce

Gianluca Della Vedova

Univ. Milano-Bicocca https://gianluca.dellavedova.org

April 16, 2020

Gianluca Della Vedova

- Advanced Techniques for Combinatorial Algorithms
- https://gitlab.com/dellavg/advanced-algorithms
- https://gianluca.dellavedova.org
- gianluca.dellavedova@unimib.it

Fact 1

• Huge data are among us

And more are coming

From 1982 to the present, the number of bases in GenBank has doubled approximately every 18 months (ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt).

Moore's Law

https://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg

Gianluca Della Vedova Advanced Algorithms 5

Fact 2

Moore's Law is unfair.

Problem

- Input data too large for a single computer
- Don't fit into memory

Solution

- Split data into parts
- If only it were so easy
- Embarassingly parallel problems

Solutions

- parallel algorithms
- map reduce
- data streaming
- External-memory algorithms
- Are all related

- Input: hash = $\langle \text{key} \mapsto \text{value} \rangle$ pairs
- Map
- Shuffle
- Reduce
- Output: hash

- Mapper: receives a <key \mapsto value> pair, computes a hash
- Shuffle: all values with same key k are assigned to a unique processor
- Reducer: receives all values with same value k, computes a multiset of < k. value > pairs

- Mapper: receives a <key \mapsto value> pair, computes a hash
- Shuffle: all values with same key k are assigned to a unique processor
- Reducer: receives all values with same value k, computes a multiset of < k. value > pairs

- Mapper: receives a <key \mapsto value> pair, computes a hash
- Shuffle: all values with same key k are assigned to a unique processor
- Reducer: receives all values with same value k, computes a multiset of < k. value > pairs

- Mapper: receives $\mathbf{a} < \text{key} \mapsto \text{value} > \mathbf{pair}$, computes a hash in parallel
- \circ Shuffle: all values with same key k are assigned to a unique processor
- Reducer: receives all values with same value k, computes a multiset of $\langle k, \text{value} \rangle$ pairs

Gianluca Della Vedova Advanced Algorithms 11/37

- Mapper: receives $\mathbf{a} < \text{key} \mapsto \text{value} > \mathbf{pair}$, computes a hash in parallel
- ullet Shuffle: all values with same key k are assigned to a unique processor automatic
- Reducer: receives all values with same value k, computes a multiset of $\langle k, \text{value} \rangle$ pairs

Gianluca Della Vedova Advanced Algorithms 11/37

- Mapper: receives a <key \mapsto value> pair, computes a hash in parallel
- Shuffle: all values with same key k are assigned to a unique processor automatic
- Reducer: receives all values with same value k, computes a multiset of < k, value > pairs sequential algorithm on the values

k-th Frequency Moment

Instance

alphabet Σ

Output

 $\sum_{\sigma \in \Sigma} f^k(\sigma)$, where $f(\sigma)$ is the number of $3^2 + 6^2 + 3^2 = 54$ occurrences of sigma in L

Example

 $L = \langle 0, 1, 1, 1, 2, 0, 1, 2, 0, 1, 1, 2 \rangle$

Output. k = 2

Example: *k*-th frequency moment

Algorithm 1: *k*-FrequencyMoment

```
Data: k, a list = L \langle x_1, \ldots, x_n \rangle
```

1
$$\mu_1(\langle i; \mathsf{x}_i \rangle) = \langle \mathsf{x}_i; i \rangle / * i$$
 is the index

- 2 $\rho_1(\langle x_i; v_1, \ldots, v_m \rangle) = \langle x_i; m^k \rangle;$ /* All occurrences of a symbol are
- grouped together */
- 3 $\mu_2(\langle x_i; v \rangle) = \langle \$; v
 angle$; /* Time to sum */
- 4 $\rho_1(\langle \$; v_i, \ldots, v_l \rangle) = \langle \$; \sum v_i \rangle;$

vanced Algorithms

Rationale

- No machine can store whole input
- Too many machines = bad
- Shuffling is expensive
- No shared memory
- Loose synchronization

Efficient Algorithm

- at most $O(n^{1-\epsilon})$ machines
- ullet each mapper is a RAM with $O(n^{1-\epsilon})$ space, $\mathsf{poly}(n)$ time
- ullet each reducer is a RAM with $O(n^{1-\epsilon})$ space, $\mathsf{poly}(n)$ time
- polylogarithmic mapreduce rounds
- reducers have $O(n^{2-2\epsilon})$ overall space
- ullet each key has $O(n^{1-\epsilon})$ values

Classes

- \mathcal{MRC}^i if $O(\log^i n)$ rounds
- $\mathcal{MRC} = \bigcup_{i=0}^{\infty} \mathcal{MRC}^{i}$
- \mathcal{MRC}^0 , \mathcal{MRC}^1

Howard J. Karloff, Siddharth Suri, Sergei Vassilvitskii: A Model of Computation for MapReduce. SODA 2010: 938-948

Relations between models

Map Reduce and PRAM

Reconcile inputs

$$x_1,\ldots,x_n\mapsto\langle 1,x_1\rangle,\ldots,\langle n,x_n\rangle$$

Theorem 4.1, Karloff et al, SODA 2010

If $\mathcal{P} \neq \mathcal{NC}$ then $\mathcal{MRC} \not\subseteq \mathcal{NC}$.

Proof

- ullet Pick a ${\mathcal P}$ -complete problem, and pad its input
- Use a single reducer to solve it

Map Reduce and PRAM

Theorem 7.1, Karloff et al, SODA 2010

Any CREW PRAM algorithm using $O(n^{2-2\epsilon})$ total memory, $O(n^{2-2\epsilon})$ processors and t(n) time can be run in O(t(n)) rounds in \mathcal{MRC} .

Proof

- lacktriangle processor \rightarrow reducer
- ullet memory location ightarrow reducer
- shuffle to coordinate read requests

Map Reduce and PDM

Shuffle step

- Matrix: R=rows=reduce steps, M=columns=keys
- sparse matrix
- Layout depending on maps
- Rearrange into a column-wise ordering

Graph Algorithms

- For each edge e, store its successor s(e)
- Euler tour of G = edge-disjoint cycles
- ullet merge any two cycles with a common vertex u

Minimum Spanning Tree (MRC)

Algorithm 2: MST

Data: Array

1 dense graph $G = \langle V, E \rangle$ /* |V| = n, $|E| > n^{1+c}$

*/

- 2 $V_1, \ldots, V_k \leftarrow$ random balanced partition of V;
- 3 $E_{i,j} \leftarrow \{(u,v) \in E | u, v \in V_i \cup V_j\};$
- 4 $G_{i,j} \leftarrow \text{subgraph of } G \text{ induced by } E_{i,j}$;
- 5 foreach Gii do
- 6 $M_{i,j} \leftarrow$ minimum spanning forest of $G_{i,j}$
- 7 $H \leftarrow \langle V, \bigcup_{i,j} M_{i,j} \rangle;$
- 8 $M \leftarrow$ minimum spanning tree of H;

Minimum Spanning Tree (MRC)

MST Algorithm is correct

- ① Let $e \in E \setminus E(H)$.
- ② Then e is a heaviest edge in some cycles of $G_{i,j}$.
- \odot The same cycle is also in G

Minimum Spanning Tree (MRC)

$$k=n^{c/2}$$
. Then $|E_{i,j}|$ is $\tilde{O}(n^{1+c/2})$

- $W_i = \{v \in V : 2^{i-1} < deg(v) < 2^i\}$
- (a) If $|W_i| < 2n^{c/2} \log n$ then $\sum_{v \in W_i} \deg(v) = \tilde{O}(n^{1+c/2})$

Chernoff bound

- $X = \sum_{i=1}^{q} X_i, X_i$ ind. random variables, $Pr[X_i = 1] = Pr[X_i = -1] = 1/2$
- ② $Pr[X > a] < e^{\frac{-a^2}{2q}}$

MRC General Technique

Def. f parallelizable function

- If there exists functions g, h such that:
- ullet For any partition T_i,\ldots,T_k of the universe set S, $f(S)=h(g(T_1),\ldots,g(T_k))$
- \bigcirc Output of g has $O(\log n)$ bits.

\mathcal{MRC} algorithm for f_1, \ldots, f_k

- $oldsymbol{0} f_1(S_1), \ldots, f_k(S_k)$ with $O(n^{1-\epsilon})$ reducers, $O(n^{1-\epsilon})$ space each.

Gianluca Della Vedova Advanced Algorithms 26/3

k-th frequency moment

Algorithm 3: *k*-FrequencyMoment

Data: k, a sequence $\langle x_1, \ldots, x_n \rangle$

- 1 $\mu_1(\langle i; x_i \rangle) = \langle x_i; i \rangle$
- 2 $\rho_1(\langle x_i; v_i, \ldots, v_m \rangle) = \langle x_i; m^k \rangle;$
- $\mu_2(\langle x_i; v \rangle) = \langle \$; v \rangle;$
- 4 $\rho_1(\langle \$; v_i, \ldots, v_l \rangle) = \langle \$; \sum v_i \rangle;$

k-th frequency moment

Problem: all elements can be the same

O(n) space, instead of $O(n^{1-\epsilon})$

Solution

- $g(\{t_1,\ldots,t_k\})=k$
- $h(\{i_1,\ldots,i_m\})=(i_1+\cdots+i_m)^k$

Proof

- $h(g(T_1), \ldots, g(T_m)) = |S|^k$
- S set of pairs with same value

Maximal Matching (MRC)

Matching

- Let $G = \langle V, E \rangle$ be a graph.
- Then $M \subseteq E$ is a matching if no two edges of M shares a vertex
- M is maximal if $\exists M_1 \supset M$ s.t. M_1 is a matching

Maximal Matching (MRC)

Algorithm 4: MaximalMatching

Data: Arrav

- 1 dense graph $G = \langle V, E \rangle$
- 2 $M \leftarrow \emptyset$. S = E:
- sample of S:
- 4 if $|E'| > \eta$ then Fail;
- 5 $M' \leftarrow$ maximal matching on E' / * 1 reducer
- 6 $M \leftarrow M \cup M'$:
- 7 Remove all edges conflicting with M:
- 8 $S \leftarrow$ remaining edges:
- 9 if |I| > n then go to step 2:
- 10 $M' \leftarrow \text{maximal matching on } M' / * 1 \text{ reducer}$
- 11 $M \leftarrow M \cup M'$:

Connected components

Algorithm 5: ConnectedComponents

- 1 Label each vertex either up or down;
- 2 foreach edge(v, w) do
- Add the component of the down vertex to that of the up vertex;
 - /* The root of the lower component is now a child of the root
 of the upper component *
- 4 foreach vertex v do

Gianluca Della Vedovi

Connected components

```
def map(u, v, p1, p2):
  if p1 == p2: #same component
    return [] #do nothing
  else:
    h1 = hash(p1, r)\%2
    h2 = hash(p2, r)\%2
      return [(p1,p2) if h1 else (p2,p1)]
def reduce(list):
  return list[0]
```

Additional Bibliography on Map Reduce

On distributing symmetric streaming computations
http://portal.acm.org/citation.cfm?doid=1824777.1824786

Counting triangles and the curse of the last reducer
http://portal.acm.org/citation.cfm?doid=1963405.1963491

A Model of Computation for MapReduce http://dl.acm.org/citation.cfm?id=1873677

Data Streams

Almost permutation

- Input: a permutation π of $\{1,\ldots,n\}$ with one element missing
- Find the missing element
- Streaming: read the input once
- $\lceil \log n \rceil$ bits of memory

Gianluca Della Vedova Advanced Algorithms 34/3

Almost permutation

Algorithm

- Keep the parity bits
- and add $\sum_{i=1}^{n} i$

Reservoir sampling

- Take k elements from a stream
- Add to S the first k elements
- The *i*-th elements is kept with probability k/i
- \bullet In case, remove a random element of S

Uniform sampling

Time t, $i \leq t$. Then $Pr[x_i \in S] = \frac{s}{t}$

Count-Min sketch

- Turnstile model
- Approximate counting: number of occurrences of a symbol
- d × w matrix count[]
- $w = e/\epsilon$, $d = \log 1/\delta$
- d hash functions $h_1, \ldots h_d : \{1, \ldots, N\} \mapsto \{1, \ldots, w\}$
- update (j, l_i) , then $count[k, h_k(j)] \leftarrow count[k, h_k(j)] + l_i$, forallk
- query A[i], answer min_j count $[j, h_j(i)]$