BUDAlloc: Defeating Use-After-Free Bugs by Decoupling Virtual Address Management from Kernel

Junho Ahn, Jaehyeon Lee, Kanghyuk Lee, Wooseok Gwak, Minseong Hwang, and Youngjin Kwon, *KAIST*

https://www.usenix.org/conference/usenixsecurity24/presentation/ahn

USENIX '24

Summary

- One-time allocator (BUDAlloc)
 - User-level allocator
 - Kernel

Figure 2: Overview of the BUDAlloc one-time-allocator.

One-Time Allocator (OTA)

• "Never reusing allocated virtual addresses"

Problem

- Incurs high memory overhead (Fragmentation)
- Solution:
 - Virtual Aliasing

Problem: Semantic Gap

• Still incurs performance overhead due to system calls.

Figure 1: Overview of virtual aliasing.

Oscar USENIX Security 2017 Batching system calls	FFMalloc USENIX Security 2021 Remove alias mapping	DangZero ACM CCS 2022 Library operating system
+ Moderate memory overhead	+ Fast performance	+ Moderate memory overhead+ High bug-detect precision
Low performanceLow scalabilityCannot support copy-on-write	High memory overheadLow bug-detect precision	 Virtualization overhead Low scalability Cannot support copy-on-write Lack of compatibilities

Figure 2: Overview of the BUDAlloc one-time-allocator.

Freeing an Object

- 1. Freeing an object => Essential for detecting UAF
- 2. Requires unmap (overhead)
- 3. BUDAlloc defines:
 - BUDAlloc-prevention (postpones freeing an object until next page fault)
 - BUDAlloc-detection (immediately frees an object)

BUDAlloc

	Memory Bloat	Syscall Overhead	Scalability	Bug-detect Precision	Compatibility
No alias mapping [44]	Very High	Low	Very High	Very Low	Fully Compatible
Syscall-based [42]	Moderate	Very High	Low	Detector	No COW
LibOS-based [25]	Low	VM overhead	Single thread only	Detector	No COW, proc fs, etc
BUDAlloc-detection	Low	Low	Very High	Detector	Fully Compatible
BUDAlloc-prevention	Low	Very Low	Very High	High	Fully Compatible

Table 1: Comparisons of previous OTAs.

Vulnerability	Program	BUDAlloc-p	BUDAlloc-d	FFmalloc	DangZero
		UAFBenc	h		
CVE-2016-3189	bzip2	•	•	•	•
*CVE-2016-4487	cxxfilt	•	•	•	•
CVE-2017-10686	nasm	•	•	•	•
CVE-2018-10685	lrzip	•	•	•	•
CVE-2018-11496	lrzip	•	•	•	•
*CVE-2018-11416	jpegoptim	•	•	•	•
CVE-2018-20623	readelf	•	•	•	•
*CVE-2019-20633	patch	•	•	•	•
*CVE-2019-6455	rec2csv	•	•	•	•
Issue 74	giflib	•	•	•	•
*Issue 122	gifsicle	•	•	•	•
Issue 73	mjs	•	•	•	•
Issue 78	mjs	•	•	•	•
Issue 91	yasm	•	•	•	•
	-	ffmalloc & Dan	gZero		
CVE-2015-2787	PHP	•	•	•	•
*CVE-2015-3205	libmimedir	•	•	•	•
CVE-2015-6835	PHP	•	•	•	•
CVE-2016-5773	PHP	•	•	•	•
Issue 3515	mruby	•	•	•	•
Issue 24613	Python	•	•	•	•
Exploit Database					
CVE-2019-6076	Lua	•	•	•	•
CVE-2019-7703	Binaryen	•	•	•	•
CVE-2019-8343	nasm	•	•	•	•
CVE-2019-17582	libzip	•	•	•	•
CVE-2020-24346	nginx	•	•	•	•
CVE-2022-1934	mruby	•	•	•	•
CVE-2022-1106	mruby	•	•	•	•
CVE-2022-35164	LibreDWG	•	•	•	•
*BUG-66783	PHP	•	•	•	•
BUG-80927	PHP	•	•	•	•
	: Detect U	JAF bug	T: Prevent U	AF bug	

Performance of BUDAlloc

Cyctom	SPEC CPU 2006		SPEC CPU 2017	
System	Perf.	Mem	Perf.	Mem
BUDAlloc-p	1.11×	1.31×	1.18×	1.24×
BUDAlloc-d	1.16×	$1.25 \times$	1.23×	$1.20 \times$
DangZero	1.28×	$1.24 \times$	1.31×	$1.27 \times$
FFmalloc	1.01×	$2.08 \times$	1.01×	$1.90 \times$
MarkUs	1.16×	1.27×	1.17×	1.28×

Figure 6: Speedups of PARSEC 3.0 based on the number of threads (higher is better). Performance is normalized to the GLIBC single thread. A white bar indicates that a specific allocator did not run.

Scalability Issue?

- swaptions frequently allocates and free large objects
 - Significant stress on alias to canonical mapping
 - FFmalloc mitigates these overheads by losing bug-detect precision
 - Adding similar configuration,
 - Improved performance by 38%, surpassing FFmalloc by 13%
 - May lead to significant memory overhead (did not use)

Limitation

- TLB Cache Miss
 - Allocates new alias page for each allocation