Ch 9.3-4: Support Vector Machine

Lecture 29 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

:

Dept of Computational Mathematics, Science & Engineering

Fri, Nov 17, 2023

Announcements

Last time:

 9.2 Support Vector Classifier

This lecture:

9.3 Support Vector Machine

Announcements:

• HW #7 due Monday

.,,					
Lec#	Date			Reading	Homeworks
20	Fri	Oct 27	Dimension Reduction	6.3	
21	Mon	Oct 30	More dimension reduction; High dimensions	6.4	
22	Wed	Nov 1	Polynomial & Step Functions	7.1,7.2	
23	Fri	Nov 3	Step Functions; Basis functions; Start Splines	7.2 - 7.4	
24	Mon	Nov 6	Regression Splines	7.4	HW #6 Due
25	Wed	Nov 8	Decision Trees	8.1	HW #6 Due
26	Fri	Nov 10	Random Forests	8.2.1, 8.2.2	
27	Mon	Nov 13	Maximal Margin Classifier	9.1	
28	Wed	Nov 15	SVC	9.2	
29	Fri	Nov 17	SVM	9.3, 9.4	
30	Mon	Nov 20	Single layer NN	10.1	HW #7 Due
31	Wed	Nov 22	Virtual: Project office hours		
	Fri	Nov 24	No class - Thanksgiving		
	Mon	Nov 27	Review		
	Wed	Nov 29	Midterm #3		
32	Fri	Dec 1	Multi Layer NN	10.2	
33	Mon	Dec 4	CNN	10.3	
34	Wed	Dec 6	Unsupervised Learning & Clustering	12.1, 12.4	
35	Fri	Dec 8	Virtual: Project office hours		Project due

2/30

Dr. Munch (MSU-CMSE) Fri, Nov 17, 2023

Section 1

Last Time

r. Munch (MSU-CMSE) Fri, Nov 17, 2023

Classification Setup

Data matrix:

$$X = \begin{pmatrix} - & x_1^T & - \\ - & x_2^T & - \\ & \vdots & \\ - & x_n^T & - \end{pmatrix}_{n \times p}$$

$$x_1 = \begin{pmatrix} x_{11} \\ \vdots \\ x_{1p} \end{pmatrix}, \cdots, x_n = \begin{pmatrix} x_{n1} \\ \vdots \\ x_{np} \end{pmatrix}$$

Observations in one of two classes, $y_i \in \{-1, 1\}$

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

Separate out a test observation

$$x^* = (x_1^* \cdots x_p^*)^T$$

Hyperplane becomes a classifier

If you have a separating hyperplane:

Check

$$f(x^*) = \beta_0 + \beta_1 x_1^* + \beta_2 x_2^* + \dots + \beta_p x_p^*$$

- If positive, assign $\hat{y} = 1$
- If negative, assign $\hat{y} = -1$

Dr. Munch (MSU-CMSE

How do we pick? Old version

Maximal margin classifier

- For a hyperplane, the *margin* is the smallest distance from any data point to the hyperplane.
- Observations that are closest are called *support vectors*.
- The maximal margin hyperplane is the hyperplane with the largest margin
- The classifier built from this hyperplane is the maximal margin classifier.

Issues

No separating hyperplane exists

Choice of hyperplane is sensitive to new points

Support Vector Classifier

8/30

Munch (MSU-CMSE) Fri, Nov 17, 2023

Two formulations side by side

Maximal Margin Classifier

$$\max_{\beta_0,\beta_1,...,\beta_p,M} M$$

subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1$$
,

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M \ \forall i = 1, \dots, n$$

Support Vector Classifier

$$\underset{\beta_0,\beta_1,\ldots,\beta_p,\epsilon_1,\ldots,\epsilon_n,M}{\text{maximize}} M$$

subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1$$
,

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i),$$

$$\epsilon_i \ge 0, \quad \sum_{i=1}^n \epsilon_i \le C,$$

So many variables

- C is nonnegative tuning parameter
- *M* is the width of the margin
- $\varepsilon_1, \dots, \varepsilon_n$ are slack variables allowing observations to go to the other side

Limiting factor of SVC

11/30

r. Munch (MSU-CMSE) Fri, Nov 17, 2023

Section 2

Support Vector Machine

r. Munch (MSU-CMSE) Fri, Nov 17, 2023

Example of using more features

Want 2p features:

$$X_1, X_1^2, X_2, X_2^2, \cdots, X_p, X_p^2$$

Optimization becomes:

$$\max_{\beta_0,\beta_{11},\beta_{12},\dots,\beta_{p1},\beta_{p2},\epsilon_1,\dots,\epsilon_n,M} M$$
subject to $y_i \left(\beta_0 + \sum_{j=1}^p \beta_{j1} x_{ij} + \sum_{j=1}^p \beta_{j2} x_{ij}^2 \right) \ge M(1 - \epsilon_i),$

$$\sum_{i=1}^n \epsilon_i \le C, \quad \epsilon_i \ge 0, \quad \sum_{j=1}^p \sum_{k=1}^2 \beta_{jk}^2 = 1.$$

Dr. Munch (MSU-CMSE)

Kernels

Dr. Munch (MSU-CMSE) Fri, Nov 17, 2023

Inner products

$$\langle a,b\rangle=\sum_{i=1}^r a_ib_i$$

Quick computations

What are the following?

- $\langle (1,1), (0,3) \rangle$
- $\langle (1,1), (3,2) \rangle$
- $\langle (2,3), (0,3) \rangle$
- $\langle (2,3), (3,2) \rangle$

SVC via inner products

$$f(x) = \beta_0 + \sum_{i=1}^n \alpha_i \langle x, x_i \rangle$$

Example

$$-2\sqrt{2}+\frac{\sqrt{2}}{2}X_1+\frac{\sqrt{2}}{2}X_2=0$$

$$-2\sqrt{2}+\frac{\sqrt{2}}{18}\langle (X_1,X_2),(0,3)\rangle+\frac{\sqrt{2}}{6}\langle (X_1,X_2),(3,2)\rangle=0$$

. Munch (MSU-CMSE) Fri, Nov 17, 2023

What are the α_i s?

α_i

What α_i 's are needed to write the hyperplane

$$-2\sqrt{2}+\frac{\sqrt{2}}{18}\langle (\textbf{\textit{X}}_{1},\textbf{\textit{X}}_{2}),(\textbf{0},\textbf{3})\rangle+\frac{\sqrt{2}}{6}\langle (\textbf{\textit{X}}_{1},\textbf{\textit{X}}_{2}),(\textbf{3},\textbf{2})\rangle$$

of the previous page in the form

$$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \alpha_i \langle x, x_i \rangle?$$

SVC via inner products of support vectors

$$f(x) = \beta_0 + \sum_{i \in S} \alpha_i \langle x, x_i \rangle$$

The kernel

$$K(x_i, x_i')$$

$$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \alpha_i K(x, x_i)$$

A polynomial kernel

$$\mathcal{K}(x_i,x_{i'}) = \left(1 + \sum_{j=1}^p x_{ij}x_{i'j}
ight)^d$$

22 / 30

Dr. Munch (MSU-CMSE) Fri, Nov 17, 2023

A radial kernel

$$\mathcal{K}(x_i, x_i') = \exp\left(-\gamma \sum_{j=1}^p (x_{ij} - x_{i'j})^2\right)$$

Dr. Munch (MSU-CMSE)

Support Vector Machine

$$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \alpha_i K(x, x_i)$$

Coding

Dr. Munch (MSU-CMSE) Fri, Nov 17, 2023

Section 3

SVM with more than two classes

r. Munch (MSU-CMSE) Fri, Nov 17, 2023

One-Vs-One Classification

Also called all-pairs

Dr. Munch (MSU-CMSE) Fri, Nov 17, 2023

One-Vs-All Classification

Dr. Munch (MSU-CMSE) Fri, Nov 17, 2023

TL;DR

Kernels

Linear

$$K(x_i,x_{i'}) = \sum_{j=1}^p x_{ij}x_{i'j}$$

Polynomial

$$\mathcal{K}(\mathsf{x}_i, \mathsf{x}_{i'}) = \left(1 + \sum_{j=1}^{p} \mathsf{x}_{ij} \mathsf{x}_{i'j}
ight)^d$$

Radial

$$K(x_i, x_i') = \exp\left(-\gamma \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2\right)$$

$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \alpha_i K(x, x_i)$

Next time

Lec#	Date			Reading	Homeworks
20	Fri	Oct 27	Dimension Reduction	6.3	
21	Mon	Oct 30	More dimension reduction; High dimensions	6.4	
22	Wed	Nov 1	Polynomial & Step Functions	7.1,7.2	
23	Fri	Nov 3	Step Functions; Basis functions; Start Splines	7.2 - 7.4	
24	Mon	Nov 6	Regression Splines	7.4	HW #6 Due
25	Wed	Nov 8	Decision Trees	8.1	HW #6 Due
26	Fri	Nov 10	Random Forests	8.2.1, 8.2.2	
27	Mon	Nov 13	Maximal Margin Classifier	9.1	
28	Wed	Nov 15	SVC	9.2	
29	Fri	Nov 17	SVM	9.3, 9.4	
30	Mon	Nov 20	Single layer NN	10.1	HW #7 Due
31	Wed	Nov 22	Virtual: Project office hours		
	Fri	Nov 24	No class - Thanksgiving		
	Mon	Nov 27	Review		
	Wed	Nov 29	Midterm #3		
32	Fri	Dec 1	Multi Layer NN	10.2	
33	Mon	Dec 4	CNN	10.3	
34	Wed	Dec 6	Unsupervised Learning & Clustering	12.1, 12.4	
35	Fri	Dec 8	Virtual: Project office hours		Project due

Dr. Munch (MSU-CMSE) Fri, Nov 17, 2023