CE7453: Photogrammetric Computer Vision

Lecture 2

Optical Sensors and Imaging system

Acknowledgements: part of the materials of the all the lecture notes are from Cyrill Stachniss, Ping Tan, Marc Pollefey, Wolfgang Foerstner, Bernhard Wrobel, James Hays, A. Dermanis, Armin Gruen, Alper Yilmaz.

Sensors and Platforms

We primarily deal with images captured by different *sensors*, carried by different *platforms*

Passive: Optical camera,

geodetic sensors

Active: LiDAR, Radar,

Altimeter, Sonar system

Platforms: Satellite, airplane,

UAS, balloon, airship, mobile vehicles.

Cameras

An artist using an 18thcentury camera obscura to trace an image

Oldest survival photograph

The first commercially available camera:
Giroux Daguerreotype

Image courtesy: https://en.wikipedia.org/wiki/History_of_the_camera

Perspective Camera Model

Electromagnetic Radiation Spectrum

Image courtesy: Wikipedia

Camera

Multispectral/Hyperspectral Cameras

Thermal Infrared Cameras

5000 nm - 40,000 nm

Short-wave Infrared

900-1700 nm

Low responses to water

X-rays

0.01 to 10 nm

Elements of a (Digital) Camera

Aug-Dec 2017

Lens

Expecting

No distortion

• Sharp, no aberrations

Aberrations

S

Typical Consumer-grade lens

 Telephoto lens, normal lens, wide-angle lens, fisheye lens, ...

Image courtesy: Canon

Lens

Tele lens

Wide-angle

Fisheye

Narrow field of view Minimal perspective distortion Parallel lines remain parallel

> 70-120 deg field of view Straight lines roughly remain straight Proportion not correction

> > 130 deg+ field of view Straight line not straight

Sensor Chip (Digital)

- Portion that receive lights, converts photons to intensity values
- Array of light-sensitive cells

Two main types of sensors

- CCD: charge-coupled device (lower noise, more expensive, global shutter)
- CMOS: complementary metal oxide on silicon (higher noise, cheaper, rolling shutter)

Sensor Size

- Larger sensor cells can collect more light per time interval
- Larger chips are more expensive to produce
- Larger chips require larger (and thus more expensive) lenses

Pixelsize = cellsize = sensor-size /#pixels

Sampling Pitch

 Sampling pitch is the physical spacing between (the centers of) adjacent sensor cells

A smaller sampling pitch

- provides a higher pixel resolution
- means a smaller area per pixel so that less photons are accumulated (noisier)

Fill Factor

 The fill factor is the active sensing area size as a fraction of the theoretically available sensing area

A higher fill factors means

- more light capture and less aliasing
- less space to place additional electronics

Shutter Speed (Exposure Time)

- Controls the amount of light reaching the sensor
- Longer exposure time = more light = brighter images
- Long exposure time leads to motion blur (for moving cameras)

The oldest camera (Niepce's) takes eight hours of exposure time!

Rolling Shutter (CMOS Sensor)

The shutter rolls (moves) across the exposable image area

- The pixels at the same line of the image are recorded at the same time
- Produces distortions in case of fast-moving objects or cameras
- Often found in CMOS cameras

Image Courtesy: Red.com, Inc.

Rolling Shutter vs. Global Shutter

Global Shutter (CCD Sensor)

The whole image is recorded at exactly the same time

No rolling shutter distortions

Often found in CCD cameras

Preferable for geometric reconstruction task

Image Courtesy: Red.com, Inc.

From Photons to Intensities

- Photons lead to electrical charge in the sensor elements
- This charge leads to an intensity value
- Ideal case: number of photons is proportional to the intensity value

$$N \propto I$$

 Special application require different mappings (e.g., logarithmic)

From Photons to Intensities

• Photon flux $b(\lambda)$ is the average number of photons per unit area and time (DE: Photonenfluss)

• Let F be the area of the sensor cell and $b(\lambda)$ its efficiency, we obtain

$$N = F\Delta t \int q(\lambda)b(\lambda) \ d\lambda$$

From Intensities to the Image

- Intensities are often called gray values
- They are elements of the digital image

$$g(i,j): \mathcal{B} \mapsto \mathcal{G}$$

- with $\mathcal{B}=Z\times Z$ and $\mathcal{G}=N$
- For normal camera, we have

$$\mathcal{B} = [0 \dots I-1, 0 \dots J-1]$$
 $\mathcal{G} = [0 \dots 255]$ 8-bit

From Intensities to the Image – Cont.

What is this?

Metric Cameras - RC30

Metric Camera – Linear Array

Linear array
Image courtesy: Warsash Scientific

Image courtesy: eoportal

CCD Chip

Image courtesy: W. Nuhsbaum Inc.

Metric Camera – ADS40/ADS80

Metric camera – Terrestrial Camera

Image courtesy: Aalto.

Metric vs. Consumer-Grade Camera

Image courtesy: RC30 Calibration report

Image courtesy: Garda Muhammad

Lighting and Reflectivity

Lighting and Reflectivity

Photons and Intensity

- Quantum optics can model the interaction of light and matter
- Every sensor element of a camera chip turns photons into electric charge
- Intensity is proportional to the number of photons reaching the sensor (pixel)

Images resulted from different light directions

Instructor: Rongjun Qin, Ph.D.

Lighting and Reflectivity

- Lighting is essential
- Light intensity depends on the light source, the reflection properties of the material, and relative locations

Light at surfaces

- Many effects when light strikes a surface could be:
- Absorbed, reflected, scattered, and travel along the surface and leave at some other points

Reflectivity

 General model of light scattering is the Bidirectional Reflectance Distribution Function (BRDF)

$$ho(heta_i, \phi_i, heta_r, \phi_r, \lambda)$$
 geometry wavelength

 Describes how much light of each wavelength arriving at an incident direction is emitted in a reflected direction

BRDF

Describes how much of each wavelength arriving at an incident direction is emitted in a reflected

Image courtesy: Szeliski

BRDF — Cont.

Note: This is based on the following assumptions:

Surfaces do not fluoresce
 (inlet and outlet wavelength is different)

Surface do not emit light (i.e. cool surface)

- Light leaving a point ONLY depends on the light arriving at that point. (light does not travel inside the material, i.e. transparent/semi-transparent)

Image Courtesy: Wikipedia

Measure related to the outlet light

 Radiance: Power per unit area reflected perpendicular to the ray and per unit solid angle

Radiance – L [W.m⁻².sr⁻¹]

watts per square meter per steradian

$$L(\mathbf{x}, \omega) = \frac{d^2 \Phi}{\cos \theta dA d\omega}$$

$$d\omega = \sin\theta d\theta d\phi$$

Measure related to the inlet light

 Irradiance: the amount of light/energy arriving at a unit surface patch

$$E(x, \boldsymbol{\omega}) = L(x, \boldsymbol{\omega}) \cos \theta d \, \boldsymbol{\omega} = d^2 \Phi / dA$$
 (refer to the previous equation)

 Therefore, the total energy a surface received is the integration over the surface.

$$E_{total} = \int_{\Omega} E(x, \boldsymbol{\omega}) \sin\theta d\theta d\phi$$

$$= \int_{\Omega} L(x, \boldsymbol{\omega}) \cos\theta \sin\theta d\theta d\phi$$

$$d\omega = \sin\theta d\theta d\phi$$

BRDF — Cont.

$$BRDF = \frac{\sim Outlet\ light}{\sim Inlet\ Light} = \frac{Radiance}{Irradiance}$$

We consider wavelength being the same, this is essentially a four-parameter function, being:

$$BRDF = \rho(\theta_i, \phi_i, \theta_r, \phi_r) = \frac{L_o(\theta_o, \phi_o)}{E_i(\theta_i, \phi_i)} = \frac{L_o(\theta_o, \phi_o)}{L_i(\theta_i, \phi_i) cos\theta_i d\boldsymbol{\omega}}$$

Next Class – Shape from Photometry

Questions?