Advanced Regression Techniques To Predict Housing Prices

By

Daniel Bradley, Nate Berman and Peter Shapiro

The Business Problem

Buying the right house is a difficult decision and important investment

What factors have the greatest impact on the price

We wanted to create a tool to help home buyers identify undervalued homes in the marketplace

Current State

- People rely on the following for information for guidance:
 - ➤ Real Estate Agents- Might not have your best interest in mind
 - ➤ Homes In Close Proximity- This will have some effect, but might not be the difference making factor
 - >Information Online- Can sometime be misleading

Home Equity

- "The difference between how much you owe on your mortgage and the market price or value of your home"-JIM PROBASCO
- Being able to find a home that is underpriced can help to improve the rate at which you are able to build equity
- Minimum Performance Measure Needed, How to measure performance

Frame The Problem

01

SUPERVISED LEARNING TASK-

WE KNOW THE
OUTCOME (EACH
INSTANCE COMES WITH
HOUSE PRICES)

02

MULTIPLE REGRESSION-

MULTIPLE
ATTRIBUTES/FEATURESUSES MULTIPLE
FEATURES TO MAKE
THE PREDICTION

03

UNIVARIATE REGRESSION-

WE ARE ONLY TRYING
TO PREDICT ONE
OUTCOME

04

BATCH LEARNING

BECAUSE IT IS SMALL ENOUGH TO FIT INTO LOCAL MEMORY

The Data

- Kaggle DataSet(https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data)
- 1,460 homes in Ames, Iowa
- 79 explanatory variables for almost every home
- Categorical and numerical data features

Exploring The Data

```
1458.000000
count
         180932.919067
mean
std
          79495.055285
          34900.000000
min
25%
         129925.000000
50%
         163000.000000
75%
         214000.000000
         755000.000000
max
Name: SalePrice, dtype: float64
```


Null Values

Poo1QC	1453
MiscFeature	1406
Alley	1369
Fence	1179
FireplaceQu	690
LotFrontage	259
GarageQual	81
GarageCond	81
GarageYrBlt	81
GarageFinish	81
BsmtExposure	38
BsmtFinType2	38
BsmtCond	37
BsmtFinType1	37
BsmtQual	37
MasVnrArea	8

Exploring The Data

Standard Linear Regression

- Able to get 92% accuracy out of the model
- However this required a large number of features

```
from sklearn.feature_selection import RFECV
from sklearn.svm import SVR
# X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
estimator = SVR(kernel="linear")
selector = RFECV(estimator, step=5, cv=2)
selector = selector.fit(X, y)
selector.support_

array([False, False, False, True, True, False, False, True, True, True, True, True, True, True, True, True, False, True])

selector.ranking_
array([5, 2, 5, 1, 1, 3, 4, 3, 1, 1, 4, 4, 4, 5, 2, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 4, 5, 3, 2, 3, 2, 1])
selector.n_features_
```


MSE: 0.09446364816511292, R2: 0.9127580961132866

0.8995727811388458 0.9127580961132866

Standard Linear Regression

Recursive feature elimination revealed that this model may have had too many features included in it for its prediction

```
from sklearn.feature_selection import RFECV
from sklearn.svm import SVR
# X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
estimator = SVR(kernel="linear")
selector = RFECV(estimator, step=5, cv=2)
selector = selector.fit(X, y)
selector.support_

array([False, False, False, True, True, False, False, True, True, False, False, False, False, False, False, True, True, True, True, True, True, False, True])

selector.ranking_
array([5, 2, 5, 1, 1, 3, 4, 3, 1, 1, 4, 4, 4, 5, 2, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 4, 5, 3, 2, 3, 2, 1])
selector.n_features_
```

Nate

Daniel