10/549835 JC12 Rec'd PCT/PTC 1 6 SEP 2005

Patent Laid-Open Publication No. 62-012897

Laid-Open Publication Date: January 21, 1987

Patent Application No. 60-151666

Filing Date: July 10, 1985

Applicant: Mitsubishi Cable Industries, Ltd.

1. TITLE OF THE INVENTION

Nuclear Radiation Shield

2. CLAIMS

A nuclear radiation shield comprising a lead sheet, and a substrate layer superimposed on at least one of opposite surfaces of said lead sheet, said substrate layer being made of a material having flexibility or elasticity, and superimposed at a thickness allowing said lead sheet to be kept from having a acute-angled fold line when said shield is folded.

- 2. The nuclear radiation shield as defined in claim 1, wherein said substrate layer is one selected from the group consisting of a foamed sheet of a flexible organic polymer, an organic or inorganic fiber product, and a vulcanized rubber sheet having a shore A hardness of 50 or less.
- The nuclear radiation shield as defined in claim 1, wherein said lead sheet has a reinforcement layer on either one or both of the surfaces thereof.
- The nuclear radiation shield as defined in claim 1 or 2, wherein said lead sheet is made of pure lead.
- 5. The nuclear radiation shield as defined in claim 4, wherein said pure lead has a purity of 99.8 weight% or more.
- The nuclear radiation shield as defined in claim 1 or 2, wherein said substrate layer is a foamed plastic layer.
- 7. The nuclear radiation shield as defined in claim 1 or 2, wherein said substrate layer has a thickness of 0.5 to 10 mm.
- The nuclear radiation shield as defined in claim 1, wherein said lead sheet is a pure 8. lead sheet having a reinforcement layer on one of the surfaces thereof, and said substrate layer is

1

made of foamed plastic and disposed on the other surface of the lead sheet having no reinforcement layer.

4. BRIEF DESCRIPTION OF THE DRAWINGS

- FIG. 1 is a fragmentary sectional view showing a basic structure of a nuclear radiation shield (A) of the present invention.
- FIG. 2 is a sectional view showing the state when a bending force is applied to the nuclear radiation shield (A) in FIG. 1.
- FIGS. 3 to 5 are fragmentary sectional views each showing a nuclear radiation shield according to one embodiment of the present invention.

⑲ 日本国特許庁(JP)

① 特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭62 - 12897

<pre>Int.</pre>	C1.	4
-----------------	-----	---

識別記号

庁内整理番号

母公開 昭和62年(1987)1月21日

G 21 F 3/00 1/08 1/12 A-8204-2G 8406-2G 8406-2G

審査請求 未請求 発明の数 1 (全5頁)

の発明の名称

放射線遮蔽材

の特 随 昭60-151666

四出 関 昭60(1985)7月10日

62発明者 田 村

人

曻

伊丹市池尻4丁目3番地 大日日本電線株式会社関西工場

(伊丹地区)内

勿発 明 者

顔

他出

志 村 義 之 大阪市北区芝田1丁目14番4号 志村商事株式会社内

മ്പ 囲 人 三菱電線工業株式会社 志村商事株式会社 尼崎市東向島西之町8番地 大阪市北区芝田1丁目14番4号

弁理士 朝日奈 宗太 勿代 理

外1名

日月 æm

1 税明の名称

放射線遮蔽材

2 特許請求の範囲

- 鉛シートと該鉛シートの少なくとも片面に 梭層されている基材層からなり、該基材層が 柔軟性あるいは弾力性を有する材料であって、 遠蔽材を折り曲げたとを鉛シートに鋭角的な 折り目がつかない厚をで積層されてなる放射 级 改 醛 材 。
- 2 基材層が、柔軟性有機高分子の発泡シート、 有機または無機の繊維製品、またはショアー A 硬度が50以下の加端 ゴムシートである特許 請求の範囲第1項記載の遠蔽材。
- 3 鉛シートがその片面または岡面に補強層を 有している特許請求の範囲第1項記載の進級 Ħ.

- 好シートが被船で作成されている特許請求 の原照第1項主たは第2項記載の遠蔽材。
- 純鉛の純度が99.8重量%以上である特許請 求の範囲第4項記載の速蔵材。
- 基材層が発泡プラスチック層である特許額 求の戦闘的1項または第2項記載の遠蔽材。
- 基材層の厚をが0.5~10mmである特許額収 の範囲第1項または第2項記載の遠数材。
- 鉛シートが片面に補強層を有する雑鉛シー トであり、その鉛シートの補強層の存在しな い間に恐力プラスチックからなる基材層が設 けられてなる特許請求の範囲第1項記載の遺 截材。

3 発明の詳細な説明

[産業上の利用分野]

本発明は放射線速酸材に関する。さらに詳し くは原子力発電所や病院などで使用をれる放射 級防健限などに好適な放射線速蔵材に関する。

[健衆の技術]

従来の放射線遮蔽材には、純鉛シートを単独 で用いるものや主材となる純鉛シートに補強用 のポリエチレンフィルムなどを積層したものな どがあり、原子力発電所や非破塊検査、放射線 研究施設または病院などで用いられる放射線防 護服もそのような遮蔽シートを用いて作製され ている.

[発明が解決しようとする問題点]

放射線防護服には溶用者が作業中に体を動か すたびに、特定の個所に繰り返して曲げが加わ ることが多い。純鉛シート自体は本来弾力性に 乏しいので、従来の統鉛シートを主材とする速 厳シートを用いた防護服では、一度をつい曲げ が加わると、その都位の鉛シート上に観角的な 折り目がつき、二度と平坦な状態に回復しなく 特定の数個所の鉛シートに裂断が発生し防御服 として使いものにならなくなる。また使用中に 段々と鉛シート上に折り目が増えていくのでゴ ワゴワした感じが強くなり、着心地や作業性を

が折り曲げられた部分の内側で圧縮されスペー サのごとき作用をするので、鉛シート(1)の折 り曲げられた部分(C)は丸く曲げられる。その ため鋭角的な角がつくようなきつい折り目が残 ることはないご

また、基材(2)が弾力性を有するときは曲げ が除かれたときは、元の平坦な状態に自然に復 帰する。

「寒焼燗1

つぎに本発明の実施例を説明する。第1別は 本発明の放射線温蔵材(A)の基本構成を示す部 分断面図、第2図は第1図の放射線速蔵材(A) に曲げを加えたときの状態を示す断面図、第3 図~ 第5 図はそれぞれ本発明の一実施例にかか わる放射線透蔽材の部分断面図である。

本発明に用いる鉛シート(1)用の鉛としては、 報鉛、合金鉛または再生鉛が使用できる。純鉛 としてはJIS H 2105(1955)に規定された 5 種地 金および該地金よりさらに高純皮の4種~特種 鉛地会が例示できる。好ましくは、純度99.8重

若しく悪くするという問題がある。補強度を設 けた鉛シートでは耐風曲性や引張強度などほか なり改善をれるが、折り目防止のためには補強 唇を厚くしなければらなず、そうすると脳性が 商まり、作意性に劣るものとなる。

本発明はかかる事情に鑑み、繰り返し曲げが 加わっても鉛シートにきつい折り目がつかず、 しかも着心地、作業性にすぐれた遠蔽材を提供 することを目的とする。

[問題点を解決するための手段]

本発明の放射線遮蔽材(A)には第1図に示き れているように、鉛シート(1)と放鉛シート(1) の少なくとも片面に積層される蓋材(2)とから なり、該基材(2)が柔軟性あるいは弾力性を有. する材料であって、遮蔽材を折り曲げたとき鉛 なる。そのためしばらく防護服を使用すると、 ジート(1)に裁判的な折り目がつかない厚さで 積層されてなる構成が採用されている。

「作用)

本売明においては、第2図に示されているよ うに、 遠蔽材(A)に曲げを加えたときに基材(2)

量%以上、とくに執度99.9重量%以上のものが 用いられる。合金鉛としては、たとえばSnーSb **飛合金(Sn 5%、Sb 1.5%)、Sn合金(Sn 10%)** などが用いられる。

鉛シート(1)の厚さは20~300μg、好ましく は50~200μπ、とくに好ましくは75~150μπか ら採用される。20×aよりも彦いものは製造が 困難となるだけでなく、所望の機械的強度をう ることができなくなる。また300μgよりも厚い ものは柔軟性や耐屈曲性がわるくなる。

樹 記 鉛 シート(1)に は 補 堕 層 (3)を 積 層 し た も のも含まれる。補強層(3)の積層は鉛シート(1) の片面でもよく両面でもよい。また片面に積層 するばあいは基材(2)が積層をれる面でもその 反対側の面でもよい。前記反対歯の面に積層さ れるばあいは、鉛シート(1)が直接大気などに

前配補強層は、鉛シート(1)の機械強度を向 上して耐久性を高めるほか鉛シート(1)の腐食 も防止する働きをする。

 $\label{eq:continuous_problem} \mathcal{L}_{ij} = \frac{1}{2} \frac{$

したがってそれらの作用を達成しうるものであれば特定の有機物質に限定されず、 2 種以上または 2 層以上の多層としてもよく、前配のごとく遠談するべき環境に応じて耐性を有する材料が遺貨遊択される。

育配補強層(3)の厚さは用いる有機物質の物性や鉛金シート(1)の厚さ、用途によって異なるが、過常片面の厚さが10~300μæ、好ましくは20~200μæ、とくに好ましくは20~100μæである。10μæよりも薄いものは一般に機械強度が弱くて適用することが困難であり、300μæよりも厚いときは潜高となり、好ましくない。補強層(3)自体の引張り強度はたとえば0.3kg/ææ²以上、好ましくは0.5kg/ææ²以上、特に0.8kg/ææ²以上である。

かかる有機物質としてはフィルム形成性のよいポリマーが好ましくは、たとえば耐放射線性のポリマーとしてハロゲンを含有せず、第3級炭素の少ないポリオレフィン、たとえばポリエチレン、エチレンーエチルアクリレート共重合

鉛シート(1)との接着性がよく耐放射線性を有するものであって、柔軟性あるいは弾力性を有する材料が好ましい。とくに、ポリエチレン、軟質ポリ塩化ビニル、加酸ゴムなどの柔軟性を有する有機高分子の発泡シート、ポリエステル、ナイロン、ポリエチレン、ポリプロビレン、木綿、麻、ロックウール、セラミック、ガラス、金属などの有機または無機の繊維の繊維の、不穏な、マット、ブランケットなどの繊維製品、またはショアーA硬度が50以下、とくに40以下の加速ゴムシートなどがあげられる。

かかる基材層 (2)は単層として積層してもよく、多層として積層してもよい。また鉛シート(1)の片面に積層してもよく、両面に積層してもよい。

基材限(2)の厚さは、用いる材料の物性や鉛シート(1)の厚さなどによって異なるが、過常0.5~10mm、好ましくは1~5mm、とくに好ましくは2~3mmである。0.5mmより得いものは折り曲げたとき鉛シート(1)にきつい折り目が

体、エチレンープロピレン共退合体、エチレンー酢酸ピニル共成合体、エチレンープテン・1共成合体などや、たとえばポリエチレンテレフタレート、ポリプチレンテレフタレートなどのポリエステルあるいはポリスチレンなどがあげられる。それらのうちポリエチレンは中性子を遮蔽する効果が高いので、とくに中性子が存在する環境の速酸に用いるとき好ましい。

補強層(3)の形成は種々の方法によって行なうことができる。たとえば前記有機物質のフィルムまたはシートを貼着または接着してもよいし、海被状やエマルジョン状の有機物質を盗布してもよく、また加熱溶融した有機物質をコーティングしてもよい。前記有機物質の前駆体を用いてコーティングなどの方法で施与したのちキュアーする方法によってもよい。

鉛シート(1)と補効層(3)との接着強度はそれほど強くなくともよく、たとえば制能強度が0.3kg/インチ(ASTM D 1876)以上あればよい。

鉛シート(1)に積層される基材層(2)としては、

つかないようにすることが困難となり、10mmより厚いときはいたずらに潜高となるのでいずれも好ましくない。 善材層(2)自体の引張り強度はたとえば0.3kg/mm²以上、好ましくは0.5kg/mm²以上、とくに0.8kg/mm²以上が好ましい。

基材層(2)の形成は種々の方法によって行な うことができる。たとえば前配材料をシート状 に形成し、しかるのち鉛シート(1)に貼着また は接着する方法などが採用される。

つぎに本発明にかかわる放射線速酸材の実施 例を説明するが、本発明はかかる実施例のみに 限定されるものではない。

実施例 1

第3 図に示される実施例(B)は、厚さ100μaの鉛シート(1)の片面に厚さ2 a a の発泡ポリウレタンからなる基材層(2)が積層されている。なお(2a)は前記基材層(2)の表面に形成されたスキン層、(3)は鉛シート(1)の基材(2)とは反対側の面に積層された厚さ70μaのポリエチレンフィルムからなる補強層である。

特開昭62-12897(4)

実施例 2

第 4 図に示された実施例(C)は厚さ100 μ mの 鉛シート(1)の両面に厚さ 2 mmの 菌材(2)が 積層 されたものである。なおこの実施例において補 強層(3)を有するばあいは鉛シート(1)と蓋材層 (2)との間に介装される。

実施例3

第 5 図に示された実施例(D)は、厚き100μgの鉛シート(1)の両面に厚さ70μgの補強層(3)が積層され、かつ一方の面に厚き 3 ggの基材層(2)が積層されたものである。

なお上配各実施例の遠蔽材は、いずれも繰り返し折り曲げに対する強度が優れており、数百回の折り曲げを加えても切れることがない。 したがってたとえば含鉛ゴムシートや含鉛ビニルシート 製の遮蔽材が十数回の折り曲げで切断するのに 此べると非常に耐折り曲げ強度が高くそのため放射機防護服などに使用すると非常に長寿命のものがえられる。

[発明の効果]

- (2): 基材層
- (3):補 验 層

本発明の放射線速酸材は、折り曲げてもきつい折り目がつかない。そのため鉛シートが折れ ・ て切断することもなくなり、放射線速酸材とし ての信頼性が高まる。

しかも本発明の放射線透蔽材を用いて作った 放射線防護服では、人の着用中の動きによって も折れ目がつかないので、かなり及期にわたっ て元の形状が忠実に保持され、折り目が生じる ことによる着心地のわるさやいわゆるゴワゴワ 感が生ずることもない。また基材層の柔軟性や 弾力性によっても防護服の着心地が良好となる。

4 図面の簡単な説明

第1 図は本発明の放射線速酸材(A)の基本標成を示す部分断面図、第2 図は第1 図の放射線速酸材(A)に曲げを加えたときの状態を示す断面図、第3 図~第5 図はそれぞれ本発明の一実施例を示す放射線速酸材の部分断面図である。

(図面の主要符号)

(1): 給シート

特許出顧人 大日日本電線株式会社 ほか1名 代理人弁理士 朝日奈 宗太 ほか1名

