Московский физико-технический институт

Лабораторная работа 2.5.1

Измерение коэффициента поверхностного натяжения жидкости

выполнили студенты группы Б03-302 Танов Константин

1 Цель работы:

- 1) Измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта;
- 2) Определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре.

2 Оборудование:

Прибор Ребиндера с термостатом и микроманометром; исследуемые жид-кости; стаканы.

3 Теоретические сведения:

Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной границы раздела двух сред. Для сферического пузырька с воздухом внутри жидкости избыточное давление даётся формулой Лапласа:

$$\Delta P = P_{\text{внутри}} - P_{\text{снаружи}} \tag{1}$$

где σ – коэффициент поверхностного натяжения, $P_{\text{внутри}}$ и $P_{\text{снаружи}}$ – давление внутри пузырька и снаружи, r – радиус кривизны поверхности раздела двух фаз. Эта формула лежит в основе предлагаемого метода определения коэффициента поверхностного натяжения жидкости. Измеряется давление ΔP , необходимое для выталкивания в жидкость пузырька воздуха.

4 Экспериментальная установка

Исследуемая жидкость (дистиллированная вода) наливается в сосуд (колбу) В (рис.1). Тестовая жидкость (этиловый спирт) наливается в сосуд Е. При измерениях колбы герметично закрываются пробками. Через одну из двух пробок проходит полая металлическая игла С. Этой пробкой закрывается сосуд, в котором проводятся измерения. Верхний конец иглы открыт в атмосферу, а нижний погружен в жидкость. Другой сосуд герметично закрывается второй пробкой. При создании достаточного разряжения воздуха

в колбе с иглой пузырьки воздуха начинают пробулькивать через жидкость. Поверхностное натяжение можно определить по величине разряжения ΔP (1), необходимого для прохождения пузырьков (при известном радиусе Разряжение в системе создается с помощью аспиратора А. Кран К2 разделяет две полости аспиратора. Верхняя полость при закрытом кране К2 заполняется водой. Затем кран К2 открывают и заполняют водой нижнюю полость аспиратора. Разряжение воздуха создается в нижней полости при открывании крана К1, когда вода вытекает из неё по каплям. В колбах Е и С, соединённых трубками с нижней полостью аспиратора, создается такое же пониженное давление. Разность давлений в полостях с разряженным воздухом и атмосферой измеряется спиртовым микроманометром.

Для стабилизации температуры исследуемой жидкости через рубашку D колбы B непрерывно прогоняется вода из термостата.

Рис. 1: Схема установки

Обычно кончик иглы лишь касается поверхности жидкости, чтобы исключить влияние гидростатического давления столба жидкости. Однако при измерении температурной зависимости коэффициента поверхностного натяжения возникает ряд сложностей. Во- первых, большая теплопроводность металлической трубки приводит к тому, что температура на конце трубки заметно ниже, чем в глубине жидкости. Во-вторых, тепловое расширение поднимает уровень жидкости при увеличении температуры.

Обе погрешности можно устранить, погрузив кончик трубки до самого дна. Пусть давление в полости $E-P_{paзp}$. Тогда давление измеряемое микроманометром $P=P_{aтm}-P_{pasp}$. В первом случае это и будет давление Лапласа, а во втором, когда кончик иглы будет погружен, необходимо еще будет вычесть значение ρgh . То есть получается в первом случае: $\Delta P_1=P_1$, а в остальных: $\Delta P_2=P_2-\rho gh$, где P_i- давление, измеренное микроманометром. Заметим, что ρgh от температуры практически не зависит, так как подъём уровня жидкости компенсируется уменьшением её плотности (произведение ρh определяется массой всей жидкости и поэтому постоянно). Величину ρgh следует измерить двумя способами. Во-первых, из-за несжимаемости жидкости можно положить $\Delta P_1=\Delta P_2$ и тогда $\rho gh=P_2-P_1$. Во-вторых, при измерениях P_1 и P_2 замерить линейкой глубину погружения иглы P_2 0 можно сделать, замеряя расстояние между верхним концом иглы и любой неподвижной частью прибора при положении иглы на поверхности и в глубине колбы.

5 Ход работы

1. Проверем герметичность установки. Для этого заполнем аспиратор водой. Чистую сухую иглу установем в сосуд со спиртом так, чтобы кончик иглы лишь касался поверхности спирта. Плотно закроем обе колбы В и Е пробками. Откроем кран К1 аспиратора и добьемся пробулькивания пузырьков воздуха в колбе. Замерим показания микроманометра. Получилось:

$$\Delta P=43$$
 мм.вод.ст = $84.28~\Pi \mathrm{a}$

Закроем кран К1. Наблюдаем за показаниями манометра: при отсутствии течи в установке столбик спирта в манометре будет неподвижен.

- 2. Убедившись в герметичности системы, начнем измерения. Откроем кран K1. Подберем частоту падения капель из аспиратора примерно 1 капля в 5 секунд так, чтобы максимальное давление манометра не зависело от этой частоты.
- 3. Измерим максимальное давление $\Delta P_{\text{спирт}}$ при пробулькивании пузырьков воздуха через спирт. Пользуясь табличным значением коэффициента поверхностного натяжения спирта при температуре $T=20^{\circ}\mathrm{C}$, определим по формуле (1) диаметр иглы. Сравните полученный результат с диамет-

ром иглы, измеренным по микроскопу.

$$d = \frac{4\sigma}{\Delta P_{\text{chindt}}} = 1.08 \text{ mm}$$

Это значение совпадает с результатом измерения, полученного на микроскопе: $d=1\pm0.05$ мм в пределах двух погрешностей.

4. Перенесем предварительно промытую и просушенную от спирта иглу в колбу с дистиллированной водой. Измерим максимальное давление P_1 при пробулькивании пузырьков, когда игла лишь касается поверхности воды при температуре $T=23.5^{\circ}\mathrm{C}$. Аспиратор должен быть предварительно заполнен водой почти доверху. Отрегулируем скорость поднятия уровня спирта в манометре и сохраняем её в течение всех экспериментов. Измерим расстояние между верхним концом иглы и любой неподвижной часть прибора h_1 . Получим:

$$P_1 = 137$$
 мм.вод.ст; $h_1 = 25$ мм

5. Утопим иглу до предела (между концом иглы и дном необходимо оставить небольшой зазор, чтобы образующийся пузырёк не касался дна). Измерим h_2 (как в пункте 4). Получилось:

$$P_2 = 219$$
 мм.вод.ст; $h_1 = 9$ мм

Измерим максимальное давление в пузырьках P_2 . По разности давлений P_2-P_1 определим глубину погружения Δh иглы:

$$\Delta h = \frac{\Delta P}{\rho q} = 16.4 \; \text{mm}$$

и сравним ее с $\Delta h = h_2 - h_1 = 16 \pm 0.5$ мм. Видно, что полученные значения совпадают в пределах погрешностей.

6. Снимим температурную зависимость $\sigma(T)$ дистиллированной воды, учитывая значение $\rho gh=160.7$ Па. Для этого включим термостат и подождем, пока нужная температура не стабилизируется. После этого проведем измерения давления.

T, °C	23.5	28.1	33	38.1	43.1	48	52.9	58
Р, мм.вод.ст	219	218	218	216	215	214	211	200
ΔP , Πa	268.54	266.58	266.58	262.66	260.7	258.74	252.86	250.90

7. Оценим погрешность даления и температуры. Присутствует только инструментальная погрешность, поэтому:

$$\sigma_{\Delta P}=2$$
 Па; $\sigma_{\Delta T}=0.1$ °C

Рассчитаем величину коэффициента поверхностного натяжения воды $\sigma(T)$, используя значение диаметра иглы, полученное при измерениях на спирте:

$$\sigma = \frac{\Delta P \cdot d}{4}$$

Получилось:

T, °C	23.5	28.1	33	38.1	43.1	48	52.9	58
$\sigma(T)$, H/M	72.51	71.98	71.98	70.92	70.39	69.86	68.27	67.74

8. Построим график зависимости $\sigma(T)$ и определим по графику температурны коэффициент $\frac{d\sigma}{dT}$:

Рис. 2: График зависимости поверхностного натяжения от температуры

Определим значение температурного коэффициента по формуле:

$$\frac{d\sigma}{dT} = \frac{\langle \sigma T \rangle - \langle T \rangle \langle \sigma \rangle}{\langle T^2 \rangle - \langle T \rangle^2}$$

А погрешность этой величины по формуле:

$$\sigma_{\text{yem}} \approx \frac{1}{\sqrt{n}} \sqrt{\frac{\langle \sigma^2 \rangle - \langle \sigma \rangle^2}{\langle T^2 \rangle - \langle T \rangle^2} - (\frac{d\sigma}{dT})^2}$$

Получилось, что:

$$\frac{d\sigma}{dT} \approx 2.16 \pm 0.38 \frac{\mathrm{H}}{\mathrm{M} \cdot \mathrm{K}}$$

- 9. На другом графике построим зависимость от температуры
 - а) теплоты образования единицы поверхности жидкости:

$$q = -T \cdot \frac{d\sigma}{dT}$$

б) поверхностной энергии U единицы площади F:

$$\frac{U}{F} = (\sigma - T \cdot \frac{d\sigma}{dT})$$

Рис. 3: График зависимостей (а) и (б)