Blackjack RL Project

Kormishenkov Alexander, Ozerova Daria, Michael Kuznetsov

Blackjack RL Project: Technical Specifications

Environment Rules

Deck Composition:

Infinite deck with card sampling with replacement.

Card values range from 1 to 10, uniformly distributed.

Card colors:

- Red (1/3 probability): Value is subtracted.
- Black (2/3 probability): Value is added.

Game Mechanics:

Both player and dealer start with one black card.

Player Actions:

- Hit: Draw another card.
- Stick: End turn with the current score.

Card Value Rules:

Player sum > 21 or $< 1 \rightarrow$ Bust (-1 reward).

Dealer follows the same rules as the player but always sticks at 17+.

Game Outcomes:

- Dealer Bust: Player wins (+1 reward).
- Player Bust: Player loses (-1 reward).
- Neither Busts: Largest valid sum wins; tie results in 0 reward.

Blackjack RL Project: Technical Specifications

Comparison Metrics

- Training Stability:
 Convergence speed and robustness of learned strategies.
- Sample Efficiency:
 Number of episodes required to reach optimal performance.
- Policy Behavior:
 Examine heatmaps of action selection to compare strategies.

 Assess the alignment with human Blackjack strategies.
- Cumulative Rewards:
 Average reward over evaluation episodes.

Deliverables

Agents:

PPO implementation using PyTorch.

Monte Carlo agent with tabular Q-learning.

DQN + DQN PER

- Visualization:
 - Policy heatmaps for agents.
 Reward progression during training.
- Comparison Summary: Insights into the strengths and weaknesses of both agents.

Blackjack RL Project: Monte Carlo agent (MC)

Exploration and Exploitation Policies:

- Random Policy (random_policy): Selects actions randomly.
- Epsilon-Greedy Policy (e_greedy_policy): Balances exploration and exploitation by choosing random actions with probability ϵ or the action with the highest Q-value otherwise.
- Prescribed Policy (get_action): Executes the current policy (random or epsilon-greedy) to choose an action.

State and Action Tracking:

- Counters: Tracks how often each state or state-action pair has been visited to decay the learning rate and influence exploration.
- Best Action (get_action_w_max_value): Identifies the action with the maximum Q-value for a given state.

Optimal Policy Extraction (optimal_policy):

- Constructs the optimal policy and value function from the learned Q-table.
- Produces a table summarizing the best action for each state.

- 0.6

- 0.4

- 0.2

- 0.0

Blackjack RL Project : Monte Carlo agent (MC)

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

Dealer

Blackjack RL Project: Proximal Policy Optimization (PPO) agent

Actor-Critic Network:

Memory:

- Temporarily stores episode data including:
 States, actions, rewards, log probabilities, loss and terminal flags.
- Supports efficient computation of discounted rewards and advantages.

Loss Function:

Combines two objectives:

- Clipped Surrogate Objective: Ensures that policy updates remain within a trust region to avoid large policy shifts.
- Value Function Loss: Minimizes the error in the state-value predictions.

Discounted Rewards:

• Uses a discount factor (γ) to compute future rewards, balancing immediate and long-term gains.

Blackjack RL Project: Proximal Policy Optimization (PPO) agent

- 7.5

- 5.0

- 2.5

- 0.0

- -2.5

- -5.0

-10.0

DQN

DQN

DQN

				DQI	N policy (H	H=hit, S=st	ick)				
←	S	S	S	S	S	S	S	S	Н	Н	
2	S	S	S	S	S	S	S		S	Н	
က	S	S	S	S	S	S	S	S	S	S	- 0.6
4	S	S	S	S	S	S	S	S	S	S	
2	S	S	S	Н	Н	S	S	S		S	
9	S	S	S	Н	Н	Н	Н	H	H	Н	- 0.4
7	S	S	H	Н	Н	Н	Н	Н	Н	Н	- 0.4
ω	S	S	Н	Н	Н	Н	Н	Н	Н	H	
ჟ თ	S	S	Н	Н	Н	Н	Н	Н	Н	Н	
score 10 9	S	Н	Н	Н	Н	Н	Н	Н	Н	Н	- 0.2
	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	
Player 13 12 11	Н	H	Н	H	Н	H	Н	Н	Н	Н	
<u>n</u> 5	Н	H	Н	H	H	Н	Н	Н	Н	Н	
4	Н	Н	Н	Н	Н	Н	Н	Н	Н	S	- 0.0
15	Н	Н	S	S	S	S	Н	Н	Н	S	
16	Н	S	S	S	S	S	S	S	S	S	
17	S	s	S	S	S	S	S	S	S	S	
8	S	S	S	S	S	S	S	S	S	S	- −0.2
19	S	S	S	S	S	S	S	S	S	S	
28	S	S	S	S	S	S	S	S	S	S	
21	S	S	S	S	S	S	S	S	S	S	0.4
	1	2	3	4	5 Dealer s	6 showing	7	8	9	10	─ 0.4

DQN + PER

DQN + PER

Hyperparameters

alpha_list = [0.2, 0.6] beta_start_list = [0.4, 0.6] lr_list = [1e-3, 5e-4] batch_size_list = [32, 64]

DQN + DQN PER with HP

Results

1. Monte Carlo (MC)

- How it plays: Mostly chooses to "stick", especially when the player's score is 16 or higher.
- Style: Very safe, avoids risks but doesn't take advantage of situations where the dealer has weak cards.
- **Downside**: Too cautious and doesn't maximize potential wins.
- **Speed**: 20 ms

2. PPO (Proximal Policy Optimization)

- How it plays: Mixes "hit" (take another card) and "stick" depending on the situation. It's more flexible.
- Style: Adapts well when the dealer has weaker cards (like 4-6), taking calculated risks.
- **Downside**: Sometimes inconsistent and takes risks when it's not always necessary.
- **Speed** 19m 51s

3. DQN (Deep Q-Network)

- How it plays: Hits more often when the player's score is around 10-14 and sticks at higher scores.
- Style: Balances risks and rewards, adjusting well to the dealer's cards (e.g., hits more when the dealer has a strong hand like 7-10).
- **Downside**: Can stop too early in some situations where taking another card would have been better.
- **Speed**: 58s

4. DQN + PER (Prioritized Experience Replay)

- How it plays: Similar to DQN but takes smarter risks
- Style: A bit more aggressive, making it more effective against strong dealer hands.
- Downside: Sometimes takes risks that could backfire
- **Speed**: 29s