

人工智能原理与算法 4. 感知机

夏睿

2023.3.1

目录

- (二分类)感知机
- 多分类感知机
- 线性模型回顾

感知机

感知机(Perceptron)

- 感知机算法是Frank
 Rosenblatt于1957年就职于康 奈尔航空实验室时所发明的。
- 感知机是一种监督分类算法。
- 它是一种线性分类算法。
- 它是人工神经网络(ANN) 的早期代表性工作,奠定了 ANN的基础。

从神经网络到人工神经网络

神经元 人工神经元 axon dendrites f(x) X_2 cell body \mathbf{x}_{n} terminal axon

感知机模型

• 模型假设

$$h(\mathbf{x}) = \operatorname{sgn}(\boldsymbol{\omega}^{\mathrm{T}}\mathbf{x}) = \begin{cases} 1 & \text{if } \boldsymbol{\omega}^{\mathrm{T}}\mathbf{x} \ge 0 \\ 0 & \text{if } \boldsymbol{\omega}^{\mathrm{T}}\mathbf{x} < 0 \end{cases}$$

感知机学习算法

• 感知机损失函数

$$l_{P}(\omega) = \sum_{x^{(h)} \in M_{0}} \omega^{T} x^{(h)} - \sum_{x^{(l)} \in M_{1}} \omega^{T} x^{(l)}$$
 M_{0} : 真实标签为负类、预测标签为负类
$$= \sum_{k=1}^{N} \left((1 - y^{(k)}) h(x^{(k)}) - y^{(k)} \left(1 - h(x^{(k)}) \right) \right) \omega^{T} x^{(k)}$$

$$= \sum_{k=1}^{N} \left(h(x^{(k)}) - y^{(k)} \right) \omega^{T} x^{(k)}$$

梯度计算

$$\frac{dl_P(\boldsymbol{\omega})}{d\boldsymbol{\omega}} = \frac{1}{N} \frac{d}{d\boldsymbol{\omega}} \sum_{k=1}^{N} (h(\boldsymbol{x}^{(k)}) - y^{(k)}) \boldsymbol{\omega}^{\mathrm{T}} \boldsymbol{x}^{(k)}$$

$$= \frac{1}{N} \sum_{k=1}^{N} (h(\boldsymbol{x}^{(k)}) - y^{(k)}) \boldsymbol{x}^{(k)} \qquad \mathbf{\xi \hat{\Xi}} \cdot \mathbf{\hat{m}} \boldsymbol{\lambda}$$

(随机) 梯度下降

• 梯度下降(GD)

$$\boldsymbol{\omega} \leftarrow \boldsymbol{\omega} - \alpha \frac{d}{d\boldsymbol{\omega}} l_P(\boldsymbol{\omega}) = \boldsymbol{\omega} - \alpha \frac{1}{N} \sum_{k=1}^{N} (h(\boldsymbol{x}^{(k)}) - y^{(k)}) \boldsymbol{x}^{(k)}$$

• 随机梯度下降(SGD)

$$\boldsymbol{\omega} \leftarrow \boldsymbol{\omega} - \alpha (h(\boldsymbol{x}) - y) \boldsymbol{x}$$

$$= \begin{cases} \boldsymbol{\omega} + \alpha \boldsymbol{x}, & \text{if } y = 1 \text{ and } h(\boldsymbol{x}) = 0 \\ \boldsymbol{\omega} - \alpha \boldsymbol{x}, & \text{if } y = 0 \text{ and } h(\boldsymbol{x}) = 1 \\ \boldsymbol{\omega}, & \text{otherwise} \end{cases}$$

感知机算法图释

• 训练集

样本序号	特征向量	真实类别
	(x_1, x_2)	у
1	(-0.8,0.6)	0
2	(-0.55,0.7)	0
3	(-0.4,0.7)	0
4	(-0.1, -0.2)	0
5	(-0.75, 0.95)	0
6	(0.2, 0.75)	1
7	(0.9,0.9)	1
8	(0.45,0.3)	1
9	(0.4, -0.5)	1
10	(0.6, -0.9)	1

• 运行一个感知机学习算法 (不含偏置项)

$$h(\mathbf{x}) = \begin{cases} 1 & \text{if } \omega_1 x_1 + \omega_2 x_2 \ge 0\\ 0 & \text{otherwise} \end{cases}$$

• 初始化:设置初始权重为 $w^{(0)} = (-0.5, -1)$,并且固定学习率 $\alpha = 1$ 。

预测阶段:根据w⁽⁰⁾进行预测。

样本序号	特征向量	真实类别	预测类别
	(x_1, x_2)	y	$h(\mathbf{x})$
1	(-0.8,0.6)	0	
2	(-0.55,0.7)	0	
3	(-0.4,0.7)	0	
4	(-0.1, -0.2)	0	
5	(-0.75, 0.95)	0	
6	(0.2,0.75)	1	
7	(0.9,0.9)	1	
8	(0.45,0.3)	1	
9	(0.4, -0.5)	1	
10	(0.6, -0.9)	1	

观察表格,我们可以发现样本 ______ 分类错误。

· 权重更新阶段: 我么随机选择一个错分样本,如第6个样本(0.2,0.75),用于更新权 重。权重更新公式:

$$\boldsymbol{\omega} \leftarrow \boldsymbol{\omega} - \alpha (h(\boldsymbol{x}) - y) \boldsymbol{x}$$

$$= \begin{cases} \boldsymbol{\omega} + \boldsymbol{x}, & \text{if } y = 1 \text{ and } h(\boldsymbol{x}) = 0 \\ \boldsymbol{\omega} - \boldsymbol{x}, & \text{if } y = 0 \text{ and } h(\boldsymbol{x}) = 1 \\ \boldsymbol{\omega}, & \text{otherwise} \end{cases}$$

我们可以得到新的权重 $w^{(1)} =$ ______

• **预测阶段**:根据 $w^{(1)}$ 进行预测。

样本序号	特征向量	真实类别	预测类别
	(x_1, x_2)	у	h(x)
1	(-0.8,0.6)	0	
2	(-0.55,0.7)	0	
3	(-0.4,0.7)	0	
4	(-0.1, -0.2)	0	
5	(-0.75, 0.95)	0	
6	(0.2,0.75)	1	
7	(0.9,0.9)	1	
8	(0.45,0.3)	1	
9	(0.4, -0.5)	1	
10	(0.6, -0.9)	1	

观察表格,我们可以发现样本 ______ 分类错误。

• **权重更新阶段**: 我们随机选择一个错分样本,比如第8个样本 (0.45,0.3) 用于更新权重,得到新的权重 $\mathbf{w}^{(2)} =$ ______。

预测阶段: 根据w⁽²⁾进行预测。

样本序号	特征向量	真实类别	预测类别
	(x_1, x_2)	у	h(x)
1	(-0.8,0.6)	0	
2	(-0.55,0.7)	0	
3	(-0.4,0.7)	0	
4	(-0.1, -0.2)	0	
5	(-0.75, 0.95)	0	
6	(0.2,0.75)	1	
7	(0.9,0.9)	1	
8	(0.45,0.3)	1	
9	(0.4, -0.5)	1	
10	(0.6, -0.9)	1	

感知机算法现在收敛了吗?

多分类感知机

多分类感知机模型

- 多类感知机(multi-class perceptron)是标准感知机的扩展,用 于解决多类分类问题;
- 多类感知机广泛应用于 NLP。

假设与学习

假设

$$h(\mathbf{x}) = \arg \max_{j=1,...,C} \boldsymbol{\omega}_j^{\mathrm{T}} \mathbf{x}$$

损失函数

$$l_p(\boldsymbol{\omega}) = \sum_{k=1}^{N} \left(\max_{j=1,\dots,C} \boldsymbol{\omega}_j^{\mathrm{T}} \boldsymbol{x}^{(k)} - \boldsymbol{\omega}_{y^{(k)}}^{\mathrm{T}} \boldsymbol{x}^{(k)} \right) = \sum_{k=1}^{N} \left(\boldsymbol{\omega}_{h(\boldsymbol{x}^{(k)})}^{\mathrm{T}} \boldsymbol{x}^{(k)} - \boldsymbol{\omega}_{y^{(k)}}^{\mathrm{T}} \boldsymbol{x}^{(k)} \right)$$

• 随机梯度下降参数更新

$$\boldsymbol{\omega}_{j} \leftarrow \boldsymbol{\omega}_{j} - \alpha \left(I(j = h(\boldsymbol{x})) - I(j = y) \right) \boldsymbol{x}$$

$$= \begin{cases} \boldsymbol{\omega}_{j} - \alpha \boldsymbol{x}, & \text{if } j = h(\boldsymbol{x}) \neq y \\ \boldsymbol{\omega}_{j} + \alpha \boldsymbol{x}, & \text{if } j = y \neq h(\boldsymbol{x}) \\ \boldsymbol{\omega}_{j}, & \text{otherwise} \end{cases}$$

线性模型回顾

模型假设(二分类)

• 线性回归

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{x}$$

• 感知机

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \begin{cases} 1, & \text{if } \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{x} \ge 0 \\ 0, & \text{if } \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{x} < 0 \end{cases}$$

• Logistic回归

$$P(y = 1 | x; \boldsymbol{\theta}) = \delta(\boldsymbol{\theta}^{\mathrm{T}} x) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathrm{T}} x}}$$

$$P(y = 0 | x; \boldsymbol{\theta}) = 1 - \delta(\boldsymbol{\theta}^{\mathrm{T}} x)$$

从激活函数角度的理解

单层人工神经网络

感知机的激活函数

Logistic回归的激活函数

模型学习-损失函数

• 线性回归

$$L_{lr}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{k=1}^{N} \left(h(\boldsymbol{x}^{(k)}) - y^{(k)} \right)^{2}$$

Least Square = Maximum Likelihood

• 感知机

$$L_p(\boldsymbol{\theta}) = \sum_{\boldsymbol{x}^{(k)} \in M_0} \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{x}^{(k)} - \sum_{\boldsymbol{x}^{(k)} \in M_1} \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{x}^{(k)} = \sum_{\boldsymbol{x}^{(k)} \in M} \left| \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{x}^{(k)} \right|$$

Perceptron Criterion

Logistic回归

$$L(\boldsymbol{\theta}) = \sum_{k=1}^{N} y^{(k)} \log h(\boldsymbol{x}^{(k)}) + (1 - y^{(k)}) \log (1 - h(\boldsymbol{x}^{(k)}))$$

Maximum Likelihood = Minimum Cross Entropy

模型学习 - 最优化

• 线性回归

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \frac{d}{d\boldsymbol{\theta}} J_l(\boldsymbol{\theta}) = \boldsymbol{\theta} - \alpha \sum_{k=1}^{N} (h(\boldsymbol{x}^{(k)}) - y^{(k)}) \boldsymbol{x}^{(k)}$$

感知机

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha (h(\boldsymbol{x}) - y)\boldsymbol{x} = \begin{cases} \boldsymbol{\theta} + \alpha \boldsymbol{x}, & \text{if } y = 1 \text{ and } h(\boldsymbol{x}) = 0 \\ \boldsymbol{\theta} - \alpha \boldsymbol{x}, & \text{if } y = 0 \text{ and } h(\boldsymbol{x}) = 1 \\ \boldsymbol{\theta}, & \text{otherwise} \end{cases}$$

Logistic回归

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \sum_{k=1}^{N} \left(y^{(k)} - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(k)}) \right) \boldsymbol{x}^{(k)}$$

模型假设(多分类)

• Softmax回归

$$p(y = j | \boldsymbol{x}; \boldsymbol{\theta}) = h_j(\boldsymbol{x}) = \frac{e^{\boldsymbol{\theta}_j^T \boldsymbol{x}}}{\sum_{j'=1}^C e^{\boldsymbol{\theta}_{j'}^T \boldsymbol{x}}}, j = 1, 2, \dots, C$$

多分类感知机

$$h(\boldsymbol{x}) = \arg \max_{j=1,\dots,C} \boldsymbol{\theta}_j^{\mathrm{T}} \boldsymbol{x}$$

模型学习-损失函数

• Softmax回归

$$L(\boldsymbol{\theta}) = \sum_{k=1}^{N} \log p(y^{(k)}|\boldsymbol{x}^{(k)};\boldsymbol{\theta}) = \sum_{k=1}^{N} \sum_{j=1}^{C} I(y^{(k)} = j) \log \left(\frac{e^{\boldsymbol{\theta}_{j}^{\mathrm{T}} \boldsymbol{x}}}{\sum_{j'=1}^{C} e^{\boldsymbol{\theta}_{j'}^{\mathrm{T}} \boldsymbol{x}}} \right)$$

• 多分类感知机

$$L_{mp}(\boldsymbol{\theta}) = \sum_{k=1}^{N} \left(\max_{j=1,\dots,C} \boldsymbol{\theta}_{j}^{\mathrm{T}} \boldsymbol{x}^{(k)} - \boldsymbol{\theta}_{y^{(k)}}^{\mathrm{T}} \boldsymbol{x}^{(k)} \right)$$

模型学习-最优化

Softmax回归

$$\boldsymbol{\theta}_j \leftarrow \boldsymbol{\theta}_j + \alpha \sum_{k=1}^N \left(I(y^{(k)} = j) - h_j(\boldsymbol{x}^{(k)}) \right) \boldsymbol{x}^{(k)}$$

• 多分类感知机

$$\boldsymbol{\theta}_{j} \leftarrow \boldsymbol{\theta}_{j} - \alpha \left(I(j = h(\boldsymbol{x})) - I(j = y) \right) \boldsymbol{x} = \begin{cases} \boldsymbol{\theta}_{j} - \alpha \boldsymbol{x}, & \text{if } j = h(\boldsymbol{x}) \neq y^{(k)} \\ \boldsymbol{\theta}_{j} + \alpha \boldsymbol{x}, & \text{if } j = y^{(k)} \neq h(\boldsymbol{x}) \\ \boldsymbol{\theta}_{j}, & \text{otherwise} \end{cases}$$

本讲结束 欢迎提问