Function:

$$In[36]:= f[x_] := \frac{2x + 3}{3x - 1}$$

Out[38]=
$$1.4$$

Out[39]=
$$-\frac{3(3+2x)}{(-1+3x)^2} + \frac{2}{-1+3x}$$

In[40]:=
$$D[x^2, x]$$

$$\text{Out}[41] = \ \frac{18 \ (3 + 2 \ x)}{\left(-1 + 3 \ x\right)^3} - \frac{12}{\left(-1 + 3 \ x\right)^2}$$

$$ln[42] = D[x^2, \{x, 2\}]$$

$$ln[47]:= D[Cos[x] + x, \{x, 2\}]$$

Out[47]=
$$-\cos[x]$$

In[48]:= Integrate
$$\left[\sqrt{x} , x \right]$$

Out[48]=
$$\frac{2 x^{3/2}}{3}$$

$$_{\text{ln[49]:=}}$$
 Integrate $\left[\sqrt{x}, \{x, 0, 2\}\right]$

Out[49]=
$$\frac{4\sqrt{2}}{3}$$

$$In[50]:=$$
 N Integrate $\left[\sqrt{x}, \{x, 0, 2\}\right]$

In[51]:=
$$D[x^{x^{x}}, x]$$

Out[51]:= $x^{x^{x}} (x^{-1+x} + x^{x} Log[x] (1 + Log[x]))$

In[54]:= $Clear[a]$

In[55]:= $D[a^{a^{x}}, x]$

Out[55]:= $a^{a^{x}+x} Log[a]^{2}$

In[53]:= $D[x^{\frac{1}{x}}, x]$

Out[53]:= $x^{\frac{1}{x}} (\frac{1}{x^{2}} - \frac{Log[x]}{x^{2}})$
 $D[Sin[x^{2}], x]$ Chain Rule

Out[56]:= $2 \times Cos[x^{2}]$
 $D[x^{*}Sin[x], x]$ Product Rule

Out[58]:= $x Cos[x] + Sin[x]$

Simplifying Algebraic Expressions:

In[57]:= Simplify
$$\begin{bmatrix} x^2 + 2x + 1 \end{bmatrix}$$

Out[57]:= $(1+x)^2$

In[59]:= Integrate $\begin{bmatrix} \frac{1}{x^4-1}, x \end{bmatrix}$

Out[59]:= $-\frac{\operatorname{ArcTan}[x]}{2} + \frac{1}{4}\operatorname{Log}[1-x] - \frac{1}{4}\operatorname{Log}[1+x]$

In[60]:= Simplify $\begin{bmatrix} \operatorname{Integrate}[\frac{1}{x^4-1}, x]] \end{bmatrix}$

Out[60]:= $\frac{1}{4}(-2\operatorname{ArcTan}[x] + \operatorname{Log}[1-x] - \operatorname{Log}[1+x])$

In[61]:= FullSimplify $\begin{bmatrix} \operatorname{Integrate}[\frac{1}{x^4-1}, x]] \end{bmatrix}$

Out[61]:= $\frac{1}{2}(-\operatorname{ArcTan}[x] - \operatorname{ArcTanh}[x])$

In[63]:= FullSimplify $\begin{bmatrix} \operatorname{Integrate}[\frac{1}{x^4-1}, x] \end{bmatrix}$

-ArcTan $\begin{bmatrix} \frac{\pi}{4} \end{bmatrix}$ - ArcTanh $\begin{bmatrix} \frac{\pi}{4} \end{bmatrix}$

In[92]:= Integrate
$$\left[\frac{1}{x(1 + Log[x])}, x\right]$$

Out[92]= Log[1 + Log[x]]

 $\label{eq:loss_loss} \text{In[94]:= FullSimplify} \Big[\text{Integrate} \Big[\, \sqrt{\, (\text{1-Sin[2\,x]}\,)} \,\, , \,\, \{\text{x, 0, Pi}\} \, \Big] \, \Big]$

Out[94]= $2\sqrt{2}$

In[95]:= ContourPlot[$x^2 + y^2$, {x, -5, 5}, {y, -5, 5}]

In[99]:= Plot3D[$x^2 + y^2$, {x, -5, 5}, {y, -5, 5}]

