ĐÁP ÁN

Rỗ ràng W là tập hợp con khác rỗng của $M_2(R)$. (1) Lấy bất kỳ $\alpha \in \mathbb{R}$ và $u, v \in \mathbb{W}$ thì u, v có dạng:

$$u = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} v \hat{a} \ v = \begin{pmatrix} a' & 0 \\ 0 & b' \end{pmatrix} v \acute{o}i \ a, b, a', b' \in \mathbb{R}.$$

Ta thấy:

$$i) u + v = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} + \begin{pmatrix} a' & 0 \\ 0 & b' \end{pmatrix} = \begin{pmatrix} a + a' & 0 \\ 0 & b + b' \end{pmatrix}.$$

Suy ra $u + v \in W$. Vậy W đóng kín với phép cộng. (2)

$$ii) \alpha u = \alpha \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} \alpha a & 0 \\ 0 & \alpha b \end{pmatrix}.$$

Suy ra $\alpha u \in W$. Vậy W đóng kín với phép nhân ngoài. (3)

Từ (1), (2) và (3) suy ra W là một không gian vecto con của $M_2(R)$.

♦ VD:

Tìm tập nghiệm S của hệ phương trình tuyến tính thuần nhất

$$\begin{cases} x + y + z = 0 \\ x + 2y + z = 0 \end{cases}$$

Chứng tỏ rằng S là không gian vecto con của \mathbb{R}^3 (không gian nghiệm).

Giải

Giải hệ:
$$\begin{cases} x + y + z = 0 & (1) \\ x + 2y + z = 0 & (2) \end{cases} \xrightarrow{(2)-(1)\to(2)} \begin{cases} x + y + z = 0 \\ y = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 0 + z = 0 \\ y = 0 \end{cases} \Leftrightarrow \begin{cases} x + a = 0 \\ y = 0 & (a \in R) \\ z = a \end{cases} \Leftrightarrow \begin{cases} x = -a \\ y = 0 \\ z = a \end{cases}$$

Suy ra tập nghiệm của hệ là: $S = \{(-\alpha; 0; \alpha)/\alpha \in R\}.$

Ta c/m: $S = \{(-\alpha; 0; \alpha)/\alpha \in R\}$ là kgvt con của R^3 . Thật vậy:

 $R\tilde{o}$ ràng S là tập hợp con khác rỗng của R^3 .

Giả sử: $u, v \in S$ và $k \in R$ thì u, v có dạng:

$$u = (-a; 0; a), v = (-b; 0; b) v \acute{o}i \ a, b \in R.$$

Ta thấy:

•
$$u + v = (-a; 0; a) + (-b; 0; b)$$

= $(-a - b; 0; a + b)$. Suy ra $x + y \in S$.

• ku = (-ka; 0; ka). Suy $ra ku \in S$.

Vậy S là một kgvt con của R^3 .

BÀI TẬP TẠI LỚP

Tìm tập nghiệm S cuu hệ phương trình tuyến tính thuần nhất:

$$\begin{cases} x - 2y + z = 0 \\ 3x - 3y + 2z = 0 \\ 2x - y + z = 0 \end{cases}$$

CMR: S là không gian vecto con của R3.

ĐÁP ÁN

$$\begin{cases} x - 2y + z = 0 \\ 3x - 3y + 2z = 0 \\ 2x - y + z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 3y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z =$$

Vậy tập nghiệm của hệ phương trình là $S = \{(-\alpha; \alpha; 3\alpha)/\alpha \in R\}$.

Ta c/m: $S = \{(-a; a; 3a)/a \in R\}$ là kgvt con của R^3 . Thật vậy: $R\tilde{o}$ ràng S là tập hợp con khác rỗng của R^3 . Giả sử: $u, v \in S$ và $k \in R$ thì u, v có dạng: u = (-a; a; 3a), v = (-b; b; 3b) với $a, b \in R$.

Ta thấy:

• u + v = (-a; a; 3a) + (-b; b; 3b)= (-(a + b); a + b; 3(a + b)). Suy ra $u + v \in S$.

• ku = (-ka; ka; 3ka). Suy $ra ku \in S$.