Substitution in Formulae (10 pts)

1. For a given first-order formula ψ , $\psi[t/x]$ is a formula where the variable x is replaced by the term t according to the substitution rules discussed in the lectures. Let P,Q be relations and f,g be functions. Compute $\psi[t/x]$ for the first-order formulae ψ shown below (2.5 pts each):

1.
$$\exists x.(x < y)[x/y]$$

 $\exists x.(x < y)[x/y]$
 $= \exists x.(x[x/y] < y[x/y])$
 $= \exists x.(x = x)$
2. $\forall x.(P(x) \Longrightarrow Q(x, f(y)))[g(y)/x]$
 $\forall x.(P(x) \Longrightarrow Q(x, f(y)))[g(y)/x]$
 $= \forall x.(P(x)[g(y)/x] \Longrightarrow Q(x, f(y))[g(y)/x])$
 $= \forall x.(P(g(y)) \Longrightarrow Q(x[g(y)/x], f(y)[g(y)/x]))$
 $= \forall x.(P(g(y)) \Longrightarrow Q(g(y), f(y[g(y)/x])))$
 $= \forall x.(P(g(y)) \Longrightarrow Q(g(y), f(y)))$
3. $\forall x.(P(x) \Longrightarrow Q(x, f(y)))[g(y)/y]$
 $\forall x.(P(x) \Longrightarrow Q(x, f(y)))[g(y)/y]$
 $= \forall x.(P(x)[g(y)/y] \Longrightarrow Q(x[g(y)/y], f(y)[g(y)/y])$
 $= \forall x.(P(x)[g(y)/y]) \Longrightarrow Q(x[g(y)/y], f(y)[g(y)/y])$
 $= \forall x.(P(x) \Longrightarrow Q(x, f(y))[g(x)/y])$
 $= \forall x.(P(x) \Longrightarrow Q(x, f(y)))[g(x)/y]$
 $\forall x.(P(x) \Longrightarrow Q(x, f(y)))[g(x)/y]$
 $\forall x.(P(x) \Longrightarrow Q(x, f(y)))[g(x)/y]$
 $= \forall x.(P(x)[g(x)/y] \Longrightarrow Q(x[g(x)/y], f(y)[g(x)/y])$
 $= \forall x.(P(x)[g(x)/y]) \Longrightarrow Q(x[g(x)/y], f(y)[g(x)/y])$
 $= \forall x.(P(x) \Longrightarrow Q(x, f(y)[g(x)/y]))$
 $= \forall x.(P(x) \Longrightarrow Q(x, f(y)[g(x)/y]))$
 $= \forall x.(P(x) \Longrightarrow Q(x, f(y)[g(x)/y]))$

Alpha Equivalence (15 pts)

2. Prove that the following first-order formulae are alpha equivalent (5 pts each):

```
1. (x > 3 \land (\exists y.(\forall z.z \ge (y-x)) \lor (z \ge y))) \equiv^{\alpha} (x > 3 \land (\exists w.(\forall z.z \ge (w-x)) \lor (z \ge w)))
(x > 3 \land (\exists y.(\forall z.z \ge (y - x)) \lor (z \ge y))) =
(x > 3 \land (\exists y.(\forall z.z \ge (y - x)) \lor (z \ge y))) [w/y] =
((x > 3) [w/y] \land (\exists y.(\forall z.z \ge (y - x)) \lor (z \ge y)) [w/y]) =
((x \lceil w/y \rceil > 3 \lceil w/y \rceil) \land (\exists w.((\forall z.z \ge (y - x)) \lor (z \ge y)) \lceil w/y \rceil)) =
(x > 3 \land (\exists w.(\forall z.z \ge (y - x)) [w/y] \lor (z \ge y) [w/y])) =
(x > 3 \land (\exists w.(\forall z.(z \ge (y - x))[w/y]) \lor (z[w/y] \ge y[w/y]))) =
(x > 3 \land (\exists w.(\forall z.z [w/y] \ge (y - x) [w/y]) \lor (z \ge w))) =
(x > 3 \land (\exists w.(\forall z.z \ge (y [w/y] - x [w/y])) \lor (z \ge w))) =
(x > 3 \land (\exists w.(\forall z.z \ge (w - x)) \lor (z \ge w)))
 2. (x > 3 \land (\exists y.(\forall z.z \ge (y-x)) \lor (z \ge y))) \equiv^{\alpha} (x > 3 \land (\exists w.(\forall y.y \ge (w-x)) \lor (z \ge w)))
(x > 3 \land (\exists y.(\forall z.z \ge (y - x)) \lor (z \ge y))) =
(x > 3 \land (\exists y.(\forall z.z \ge (y - x)) \lor (z \ge y))) [w/y] =
(x > 3 \land (\exists w.(\forall z.z \ge (w - x)) \lor (z \ge w))) =
(x > 3 \land (\exists w.(\forall z.z \ge (w - x)) [y/z] \lor (z \ge w))) =
(x > 3 \land (\exists w.(\forall y.(z \ge (w - x))[y/z]) \lor (z \ge w))) =
(x > 3 \land (\exists w.(\forall y.z [y/z] \ge (w - x) [y/z]) \lor (z \ge w))) =
(x > 3 \land (\exists w.(\forall y.y \ge (w [y/z] - x [y/z])) \lor (z \ge w))) =
(x > 3 \land (\exists w.(\forall y.y \ge (w - x)) \lor (z \ge w)))
```

```
3. (x > 3 \land (\exists y.(\forall y.y \ge (u-x)) \lor (y \ge w))) \equiv^{\alpha} (x > 3 \land (\exists z.(\forall w.w \ge (u-x)) \lor (z \ge w)))

(x > 3 \land (\exists y.(\forall y.y \ge (u-x)) \lor (y \ge w))) =

(x > 3 \land (\exists y.(\forall y.y \ge (u-x)) [w/y] \lor (y \ge w))) =

(x > 3 \land (\exists y.(\forall w.y \ge (u-x)) [w/y]) \lor (y \ge w))) =

(x > 3 \land (\exists y.(\forall w.y [w/y] \ge (u-x) [w/y]) \lor (y \ge w))) =

(x > 3 \land (\exists y.(\forall w.w \ge (u [w/y] - x [w/y])) \lor (y \ge w))) =

(x > 3 \land (\exists y.(\forall w.w \ge (u-x)) \lor (y \ge w))) [z/y] =

((x > 3) \land (\exists y.(\forall w.w \ge (u-x)) \lor (y \ge w))) [z/y]) =

((x > 3) \land (\exists y.(\forall w.w \ge (u-x)) \lor (y \ge w))) [z/y]) =

(x (z/y) > 3 [z/y] \land (\exists z.((\forall w.w \ge (u-x)) \lor (y \ge w)) [z/y])) =

(x > 3 \land (\exists z.(\forall w.w \ge (u-x)) [z/y] \lor (y \ge w) [z/y])) =

(x > 3 \land (\exists z.(\forall w.w \ge (u-x)) [z/y]) \lor (y [z/y] \ge w [z/y]))) =

(x > 3 \land (\exists z.(\forall w.w \ge (u-x)) [z/y]) \lor (z \ge w))) =

(x > 3 \land (\exists z.(\forall w.w \ge (u z/y] - x [z/y])) \lor (z \ge w))) =

(x > 3 \land (\exists z.(\forall w.w \ge (u z/y] - x [z/y])) \lor (z \ge w))) =
```

Semantic Argument

Semantic Argument Method (20 pts)

3. Let P,Q be any relations. For each of the following formulas, either use the semantic argument method to prove validity or provide a counterexample for which the formula does not hold. (5 pts each)

1.
$$(\exists x.P(x)) \implies (\forall y.P(y))$$

Suppose this statement is Invalid. Then we must show:

- 1. $I = \neg((\exists x.P(x)) ==> (\forall y.P(y)))$ (Assumption)
- 2. $I \models (\exists x.P(x)) \land \neg(\forall y.P(y))$ (By 1. and semantics of ==>)

Let D =
$$\{0, 1\}$$

 $P_I = \{0\}$
Let P(x) be true iff $x \in P_I$

This means P(0) is True, and P(1) is False

Then
$$\exists x.P(x)$$
 and $\neg(\forall y.P(y))$ evaluate to true under I, so: $I \models (\exists x.P(x)) \land \neg(\forall y.P(y))$

This means $(\exists x.P(x)) ==> (\forall y.P(y))$ is Invalid. Interpretation I is a falsifying interpretation.

2.
$$(\exists x. \forall y. P(x,y)) \implies (\forall y. \exists x. P(x,y))$$

Suppose this statement is invalid. Then:

- 1. $I \not\models (\exists x. \forall y.P(x, y)) \Longrightarrow (\forall y. \exists x.P(x, y)) (Assumption)$
- 2. $I = \exists x. \forall y. P(x, y)$ (By 1. and semantics of $\not=$)
 - a. $I[x \rightarrow v_0] \models \forall y.P(x, y)$ for some $v_0 \in D$ (By 2. and semantics of \exists)
 - b. $I[x --> v_0, y --> v_1] \models P(x, y)$ for some $v_0 \subseteq D$ and for all $v_1 \subseteq D$ (By 2a. and semantics of \forall)
- 3. $I \nvDash \forall y . \exists x . P(x, y)$ (By 1. and semantics of $\not\vDash$)
 - a. $I[y \rightarrow v_1] \neq \exists x.P(x, y)$ for some $v_1 \in D$ (By 3. and semantics of \forall)
 - b. $I[x \rightarrow v_0, y \rightarrow v_1] \neq P(x, y)$ for all $v_0 \in D$ and for some $v_1 \in D$ (By 3a. and semantics of \exists)
- 4. I = False (By 2b. and 3b.)

Because lines 2b. and 3b. are contradictory, $(\exists x. \forall y.P(x, y)) \Longrightarrow (\forall y. \exists x.P(x, y))$ must be valid.

3.
$$(\exists x. P(x) \Longrightarrow \forall x. Q(x)) \Longrightarrow \forall x. (P(x) \Longrightarrow Q(x))$$

Suppose this statement is invalid. Then:

- 1. $I \not= (\exists x.P(x) ==> \forall x.Q(x)) ==> \forall x.(P(x) ==> Q(x))$ (Assumption)
- 2. $I = \exists x.P(x) ==> \forall x.Q(x)$ (By 1. and semantics of ==>)
 - a. $I \models (\exists x.P(x) \land \forall x.Q(x)) \lor \neg (\exists x.P(x))$ (By 2. and semantics of ==>)
 - b. $I \models (\exists x.P(x) \lor \neg(\exists x.P(x)) \land (\forall x.Q(x) \lor \neg(\exists x.P(x))$ (By 2a. and semantics of \lor)
 - c. $I = \exists x.P(x) \lor \neg(\exists x.P(x))$ (By 2b. and semantics of \land)
 - d. $I \models \forall x.Q(x) \lor \neg(\exists x.P(x))$ (By 2b. and semantics of \land)
- 3. $I \nvDash \forall x.(P(x) = > Q(x))$ (By 1. and semantics of \nvDash)
- 4. $I \models \neg (\forall x.(P(x) ==> Q(x)))$ (By 3. and semantics of \neg)

Let
$$D=\{0,1\}$$

$$P_I=\{0\}$$

$$Q_I=\{0,1\}$$
 Let $P(x)$ be true iff $x\in P_I$, and $Q(x)$ be true iff $x\in Q_I$.

This means P(0), Q(0), Q(1) are True, while P(1) is False.

Then $\exists x.P(x) \lor \neg(\exists x.P(x))$, $\forall x.Q(x) \lor \neg(\exists x.P(x))$, and $\neg(\forall x.(P(x) ==> Q(x)))$ all evaluate to true under I.

Thus:

$$I \vDash (\exists x.P(x) \ \lor \neg(\exists x.P(x))) \ \land \ (\forall x.Q(x) \ \lor \neg(\exists x.P(x))) \ \land \ (\neg(\forall x.(P(x) ==> Q(x))))$$

This means ($\exists x.P(x) ==> \forall x.Q(x)$) ==> $\forall x.(P(x) ==> Q(x))$ is Invalid. Interpretation I is a falsifying interpretation.

4.
$$(\exists x. P(x) \land \exists x. Q(x)) \implies (\exists x. (P(x) \land Q(x)))$$

Suppose this statement is invalid. Then:

- 1. $I \not\models (\exists x.P(x) \land \exists x.Q(x)) \Longrightarrow (\exists x.(P(x) \land Q(x)))$ (Assumption)
- 2. $I \models \exists x.P(x) \land \exists x.Q(x) \text{ (By 1. and semantics of } ==>)$
 - a. $I = \exists x.P(x)$ (By 2. and semantics of \land)
 - b. $I = \exists x.Q(x)$ (By 2. and semantics of \land)
- 3. $I \not= \exists x.(P(x) \land Q(x))$ (By 1. and semantics of \Longrightarrow)
- 4. $I = \neg (\exists x.(P(x) \land Q(x)))$ (By 3. and semantics of \neg)

Let
$$D = \{0, 1\}$$

$$\mathbf{b}^{\mathrm{I}} = \{0\}$$

$$Q_{I} = \{1\}$$

Let P(x) be true iff $x \in P_I$, and Q(x) be true iff $x \in Q_I$.

This means P(0) and Q(1) are True, while P(1) and Q(0) are False.

Then $(\exists x.P(x)), (\exists x.Q(x)), \text{ and } (\neg(\exists x.(P(x) \land Q(x)))) \text{ all evaluate to true under I.}$

Thus:

$$I \vDash (\exists x.P(x)) \land (\exists x.Q(x)) \land (\neg (\exists x.(P(x) \land Q(x))))$$

This means ($\exists x.P(x) \land \exists x.Q(x)$) ==> ($\exists x.(P(x) \land Q(x))$) is invalid. Interpretation I is a falsifying interpretation.