2 - Differenciálszámítás, integrálszámítás és alkalmazásaik. Készítette: S.R.

Vektor-Vektor függvények differenciálhatósága:

<u>Totális derivált:</u> Az $f \in \mathbb{R}^n \to \mathbb{R}^m$ fv. deriválható az $a \in intD_f$ pontban, ha létezik $L \in \alpha(\mathbb{R}^n, \mathbb{R}^m)$ lineáris leképezés, melyre

$$\binom{\lim}{h \to 0} \frac{||f(a+h) - f(a) - L(h)||}{||h||} = 0$$

Megjegyzés: A deriválhatóság ténye független a normák megválasztásától.

Derivált-mátrix:

A deriválhatóság ekvivalens átfogalmazása:

Az $f \in \mathbb{R}^n \to \mathbb{R}^m$ fv. deriválható az $a \in intD_f$ pontban, ha létezik $A \in \mathbb{R}^{m \times n}$ mátrix, melyre

$$\binom{\lim}{h\to 0} \frac{||f(a+h)-f(a)-A*h||}{||h||} = 0$$

f'(a) = A-t deriváltmátrixnak nevezzük. Belátható, hogy ha egy fv. deriválható az a pontban, akkor folytonos is.

Parciálisan $f \in \mathbb{R}^n \to \mathbb{R}$ fv.-ek deriváltja:

Parciális derivált:

Legyen $f \in \mathbb{R}^n \to \mathbb{R}$ fv., $a \in intD_f$ és tekintsük az $e_1, ...e_n \in \mathbb{R}^n$ kanonikus egységvektorokat. Az f fv.nek létezik az i. változó szerinti parciális deriváltja, ha:

- $F: k(a) \ni t \to f(a+t*e_i)$ fv-re: $F \in D(a)$. Ekkor az i. derivált:
- $\delta_i f(a) := F(a)$

Derivált-mátrix előállítása parciális deriváltakkal:

Legyen $f \in \mathbb{R}^n \to \mathbb{R}^m$, $a \in intD_f$,

$$f = \left| \begin{array}{c} f_1 \\ \dots \\ f_n \end{array} \right| : f_i \in \mathbb{R}^n \to \mathbb{R}$$

koordináta függvény. Ha $f \in D(a)$, akkor

$$f'(a) = \begin{vmatrix} \delta_1 f_1(a) & \delta_2 f_1(a) & \dots & \delta_n f_1(a) \\ \dots & \dots & \dots & \dots \\ \delta_1 f_m(a) & \delta_2 f_m(a) & \dots & \delta_n f_m(a) \end{vmatrix} \in R^{m \times n}$$

a derivált mátrix (Jacobi mátrix).

Belátható, hogy ha léteznek és folytonosak a parciális deriváltak egy pontban, akkor abban a pontban a fv. totálisan deriválható.

Vektor-vektor fv.ek deriválása:

Halmaz belső pontja:

 $\overline{A} \ 0 \neq A \subset R$ halmaz belső pontja $a \in A$, ha létezik $\delta > 0 : k_{\delta}(a) \subseteq A$. Jele: $intA := a \in A | letezik\delta > 0 : k_{\delta}(a) \subseteq A$

Differenciálhatóság:

 $\overline{\text{Az } f \in R \to R \text{ fv. differenciálható az } a \in intD_F \text{ pontban, ha létezik és véges a}$

$$\binom{\lim}{h\to 0} \left(\frac{f(a+h)-f(a)}{h}\right) =: f'(a)$$
 határérték,

melyet az f deriváltjának hívunk. Belátható, hogy a deriválhatóságból következik a folytonosság.

Differenciálási szabályok:

Legyenek $f, g \in R \to R$, $a \in intD_f \cap intD_g$ és t.f.h. $f, g \in D(a)$. Ekkor:

1.
$$f \pm g \in D(a)$$
 és $(f \pm g)'(a) = f'(a) \pm g'(a)$

2.
$$f * g \in D(a)$$
 és $(f * g)'(a) = f'(a) * g(a) + f(a) * g'(a)$

3.
$$\lambda * f \in D(a)$$
 és $(\lambda * f)'(a) = \lambda * f'(a)$

4.
$$g(a) \neq 0$$
 esetén $\frac{f}{g} \in D(a)$ és $(\frac{f}{g})'(a) = \frac{f'(a)*g(a)-f(a)*g'(a)}{(g(a))^2}$

Összetett függvény deriváltja:

$$\overline{f,g \in R \to R}$$
, $\Omega_g \subset D_f$, $g \in D(a)$ és $f \in Dg(a)$. Ekkor $(f \circ g)'(a) = f'(g(a)) * g'(a)$

Inverz függvény deriváltja:

T.f.h
$$f:(a,b)\to R\uparrow$$
, folytonos és $f\in D(\xi)$ és $f(\xi)\neq 0$. Ekkor

Létezik
$$f^-1$$
 és $f^-1\in D(\eta)$ és $f(\xi)=\eta$ és $(f^-1)(\eta)=\frac{1}{f'(\xi)}=\frac{1}{f'(f^{-1}(\eta))}$

Középérték tételek:

• Rolle k.érték tétele:

T.f.h. $f \in R \to R$. Ha

- $f \in C[a, b]$
- $-f \in D(a,b)$
- f(a) = f(b)

Ezekből következik, hogy létezik $\xi \in (a,b)$: $f'(\xi) = 0$

• Cauchy k.érték tétele:

Legyenek $f, g \in R \to R$ fv-ek és t.f.h:

- $-f,g \in C[a,b]$
- $-f,g\in D(a,b)$
- bármely $x \in (a, b) : g'(x) \neq 0$
- $-g(a) \neq g(b)$

Ezekből következik, hogy létezik $\xi \in (a,b)$: $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}$

• Lagrange k.érték tétele:

Legyen $f \in R \to R$ és t.f.h:

- $-f \in C[a,b]$
- $-f \in D(a,b)$

Ezekből következik, hogy létezik $\xi \in (a,b)$: $f'(\xi) = \frac{f(b)-f(a)}{b-a}$

Középértéktételek alkalmazásai:

- Belátható, hogy konstans deriváltja 0.
- Ha $f,g\in R\to R$ fv.ekre $f'\equiv g'$, akkor $f=g+c(c\in R)$ azok csak konstansban különböznek.

Differenciálszámítás alkalmazásai:

Szélsőértékek keresése:

• Az $f \subset R \to R$ fv.nek lokális szélsőértéke van az $a \in intD_f$ pontban, ha az f'(a) = 0 és a deriváltfüggvény előjelet vált.

• Az $f \in \mathbb{R}^n \to \mathbb{R}^m$ fv.nek lokális szélsőértéke van az $a \in intD_f$ pontban, ha Hasse-mátrix pozitív vagy negatív definit.

Riemann integrál

Primitív függvény:

 $\overline{\text{Az }I} \subset R$ intervallumon értelmezett $f: F \to R$ fv.nek primitív függvénye $F: I \to R$, ha $F \in D(I)$ és bármely $i \in I: F'(i) = f(i)$.

Riemann integrálhatóság:

 $\overline{\text{Az } f:[a,b] \to R}$ korlátos függvény Riemann integrálható az [a,b] intervallumon, ha a Darboux féle integrálokra: $I_*(f) = I^*(f)$. Jele: $f \in R[a,b]$, az integrálja: $\int_a^b f(x) dx$

Parciális integrálás tétele:

 $\overline{\mathrm{T.f.h.}}$

- $f, g \in D(I), x \in I$ rögzített,
- f' * g fv.nek létezik primitív függvénye. Ekkor f * g'-nek is létezik primitív függvénye: $\int f * g' = f * g \int f' * g$

Integrálás helyettesítéssel:

T.f.h.:

- $g: I \to R: g \in D(I)$
- létezik $J \in R : \Omega_q \in J$
- $f: J \to R$ fy-nek létezik primitív függvénye.

A fentiekből következik, hogy $f \circ g * g'$ -nek is van primitív függvénye:

$$\int_{t_0} (f \circ g) * g' = \int_{g(t)} f * g$$

Newton-Leibniz formula:

Legyen $f: I \to R$. T.f.h:

- $f \in R[a,b]$
- f-nek van primitív függvénye: F

A fentiekből következik, hogy:

$$\int_{a}^{b} = F(b) - F(a)$$

Alkalmazások:

- Fv.-ek alatti terület kiszámítása (pl. fizika).
- Síkidomok területének kiszámítása.
- $\bullet \ R^n$ -beli görbék ívhosszának kiszámítása.

Differenciálszámítás, integrálszámítás és alkalmazásaik (kieg.)

Iránymenti derivált

 $f{\in}\ R^n{\to}R,\,a{\in}\operatorname{int}D_f,\,e{=}\ R^n,\,\|e\|{=}1,\,\exists K(0){\subset}R,\,a{+}t{e}{\in}\,D_f\,(t{\in}\,K(0))$

 $f_{e,a}$: $K(0) \rightarrow R$, $f_{e,a}(t) = f(a+te)$

Def.: Azt mondjuk, hogy az f az a-ban az e irány mentén deriválható, ha $f_{e,a}(t) \in D(0)$.

Jelölés: $\partial_{e} f(a) = (f_{e,a})'(0)$

Tétel: $f \in \mathbb{R}^n \to \mathbb{R}$, $f \in D(a) \Rightarrow \exists \partial_e f(a) \forall e \in \mathbb{R}^n$, ||e||=1 és $\partial_e f(a)=f'(a)\cdot e=\langle f'(a),e\rangle=\langle grad f(a),e\rangle$

Megjegyzés: Az Rⁿ→R típusú függvények esetén az f'-t gradiensnek is nevezzük. Jelölése: grad f

Speciális eset: $e = e_j = (0, 0, ..., 1, ..., 0) \rightarrow j$. dik változó \bar{i}

A parciális derivált egy speciális iránymenti derivált.

Terület, ívhossz, térfogat, felszín

Görbe alatti terület:

f(x) és g(x) függvénygörbék, valamint az x = a és x = b egyenesek által határolt síkidom területe:

$$\left| \int_a^b [f(x) - g(x)] \, dx \right|$$

Ívhossz:

Ha az f(x) függvény az [a,b] intervallumon differenciálható, és f'(x) ugyanitt folytonos, akkor a függvénygörbe hosszúsága az adott intervallumon:

$$\int_a^b \sqrt{1 + [f'(x)]^2} \, dt$$

Térfogat:

Ha az x tengelyre forgásszimmetrikus test palástjának a tengellyel párhuzamos ívét a folytonos f(x) függvény írja le, akkor a forgástestnek a tengely [a,b] szakaszára eső térfogata:

$$\pi \int_{a}^{b} f^{2}(x) \, dx$$

Felszín:

Ha az x tengelyre forgásszimmetrikus test palástjának a tengellyel párhuzamos ívét a folytonos f(x) függvény írja le, akkor a tengely [a,b] szakasza körüli palást felszíne:

$$2\pi \int_a^b f(x)\sqrt{1+[f'(x)]^2} dx$$