You Only Look One-level Feature (YOLOF)

Paper

Overview

- 1. Utilizing only **one** level feature for detection
- 2. Dilated encoder
- 3. Uniform matching

Single-input-single-out

Figure 8. Detailed Structures of Multiple-in-Multiple-out (MiMo), Single-in-Multiple-out (SiMo), Multiple-in-Single-out (MiSo), and Single-in-Single-out (SiSo) encoders.

Dilated encoder

multiple scale range in from only C5 feature

Uniform Matching

adopting the **k nearest** anchors as positive anchors for each gt box

Framework

Figure 9. The sketch of YOLOF, which consists of three main components: the backbone, the encoder, and the decoder. In the figure, 'C5/DC5' represents the output feature of the backbone with downsample rate of 32/16. ' C_{out} ' means the number of channels of the feature. We set the number of channels as 512 for feature maps in the encoder and the decoder. $H \times W$ is the height and width of feature maps.

Efficient Decoder-free Object Detection with Transformers (DFFT)

Paper

Chunhua Shen

Tecent Youtu lab

Overview

They say:

- 1. Eliminate the training inefficient decoder.
- 2. Leverage two strong encoders.
- 3. Explore **low-level** semantic features with limited computation.

I say:

- 1. It makes a **trick** in name. It is actually a traditional encoder-neck-decoder structure.
- 2. It uses YOLOF SiSo (single-in single-out) structure.
- 3. The major contribution is an **efficient vision transformer backbone**.
- 4. A combination of backbone design and an existing decoder.

Method

Framework

- Backbone+neck: Detection-oriented Transformer Backbone (DOT)
- **Encoder:** Scale-aggregated Encoder (SAE)
- Decoder: Task-aligned encoder

Backbone: DOT

Patch embedding

• Patch size $\frac{H}{8} \times \frac{W}{8}$.

DOT Stage

- Each DOT stage: **one DOT block**.
- Each DOT block: **multiple Swin** block (SW-MSA) and **one Xcit** block (global chennel-wise attention block).
- Semantic-augmented Attention (SAA): exchange information between scale levels.

notation

- ullet \hat{f}_i is Denoted as **DOT block** output.
- $ilde{f}_i$ is denoted as **SAA** output.
- ullet f_i^{dot} is the final multiscale output
- ullet F_{block} is DOT block.
- ullet F_{se-att} is SAA.

instantiations

- Four DOT stages
- First stage: one DOT block but no SAA
- Other stages: one patch merging, one DOT block, one SAA and one downsampling

Stage 1:
$$\frac{1}{8} \xrightarrow{\text{DOT}} \frac{1}{8}$$

Stage 2: $\frac{1}{16} \xrightarrow{\text{DOT}} \frac{1}{16} \xrightarrow{\text{UP}} \frac{1}{8} \xrightarrow{\text{Down}} \frac{1}{16}$

Stage 3: $\frac{1}{32} \xrightarrow{\text{DOT}} \frac{1}{32} \xrightarrow{\text{UP}} \frac{1}{16} \xrightarrow{\text{Down}} \frac{1}{32}$

Stage 4: $\frac{1}{64} \xrightarrow{\text{DOT}} \frac{1}{64} \xrightarrow{\text{UP}} \frac{1}{32} \xrightarrow{\text{Down}} \frac{1}{64}$

Encoder: Scale-aggregated encoder

- Acutally plays as an FPN
- Aggregate at $\frac{1}{32}$

Task-alinged Encoder

- Except QKV embbeding, all the linear projections of **Group Channelwise Attnetion** are conducted in two groups.
- Predict a **single-level** dense prediction with a **single** feature map. (raised by YOLOF)

Experiments

ImageNet pretrain

Models	Backbo	Effectiveness (%)		Efficiency (GFLOPs)		
	Value of C_i	Number of SA	Accuracy	AP	Backbone	DFFT
DFFT _{NANO}	(3, 3, 6, 9)	(2, 2, 6, 2)	80.0	42.8	26	42
$DFFT_{TINY}$	(4, 4, 8, 12)	(1, 1, 5, 1)	81.1	43.5	39	57
$DFFT_{SMALL}$	(4,4,8,12)	(2, 2, 6, 2)	82.1	44.5	44	62
$DFFT_{MEDIUM}$	(4,4,7,12)	(2, 2, 18, 2)	82.7	45.7	48	67
$DFFT_{LARGE}$	(6, 6, 8, 12)	(2,2,18,2)	83.1	46.0	83	101

Table 1. The definition and performance of DFFT models with different magnitudes. In the backbone setting, we list the output feature's number of channels C_i and the number of SA blocks in all four backbone stages. In the effectiveness evaluation, we report the accuracy of the pre-trained backbone on ImageNet and the detection AP of DFFT after training on the MS COCO dataset.

Main results

Methods	Epochs	AP (%)	AP ₅₀ (%)	AP ₇₅ (%)	AP _S (%)	AP_{M} (%)	AP _L (%)	GFLOPs
Faster RCNN-FPN-R50 [26]	36	40.2	61.0	43.8	24.2	43.5	52.0	180
RetinaNet [20]	12	35.9	55.7	38.5	19.4	39.5	48.2	201
YOLOF-R50 [4]	12	37.7	56.9	40.6	19.1	42.5	53.2	86
Swin-Tiny-RetinaNet [24]	12	42.0	-	-	-	-	-	245
Focal-Tiny-RetinaNet [33]	12	43.7	-	-	-	-	-	265
Mobile-Former [5]	12	34.2	53.4	36.0	19.9	36.8	45.3	322
DFFT _{NANO}	12	39.1	58.3	41.7	19.0	42.9	51.2	42
$DFFT_{SMALL}$	12	41.4	60.9	44.5	20.1	45.4	58.9	62
$DFFT_{MEDIUM}$	12	42.6	62.5	45.5	22.6	46.7	61.4	67
DETR-R50 [2]	500	42.0	62.4	44.2	20.5	45.8	61.1	86
WB-DETR [22]	500	39.6	58.4	43.8	18.2	42.7	54.9	62
YOLOS [11].	150	37.6	-	-	-	-	-	172
Deformable DETR [36]	50	43.8	62.6	47.7	26.4	47.1	58.0	173
SMCA-R50 [13]	50	43.7	63.6	47.2	24.2	47.0	60.4	152
Anchor DETR-DC5-R50 [31]	50	44.2	64.7	47.5	24.7	48.2	60.6	151
Conditional DETR-R50 [25]	50	40.9	61.8	43.3	20.8	44.6	59.2	90
TSP-FCOS-R50 [28]	36	43.1	62.3	47.0	26.6	46.8	55.9	189
Efficient DETR-R50 [34]	36	44.2	62.2	48.0	28.4	47.5	56.6	159
DFFT _{NANO}	36	42.8	61.9	46.2	23.4	46.8	59.7	42
$DFFT_{SMALL}$	36	44.5	63.6	48.0	24.5	49.0	60.7	62
DFFT _{MEDIUM}	36	45.7	64.8	49.7	25.5	50.4	63.1	67

Table 2. Comparison of our DFFT and modern detection methods on the MS COCO benchmark [21]. The table is divided into four sections from top to bottom: (1) anchor-based methods, (2) DFFT trained for 12 epochs, (3) DETR-based methods, and (4) DFFT trained for 36 epochs. DFFT achieves competitive precision with significantly fewer training epochs and inference GFLOPs.

Ablation study

Major components

- 1. Replace DOT backbone with swin
- 2. Disable SAE by directly upsampling the $\frac{1}{64}$ to $\frac{1}{32}$
- 3. Replace TAE module with YOLOF head

DOT	SAE	TAE	AP (%)	GFLOPs
-	-	-	33.8	45
~	-	-	37.9	47
~	~	-	39.9	58
~	-	~	39.8	51
~	~	~	41.4	62

Table 4. Ablation study of the three major modules in DFFT.

SAA

Comparing with FPN on Retina head

SAE

Comparing with dilated encoder in YOLOF

SAA	FPN A	AP (%)	GFLOPs	Method	AP (%)	GFLOPs
-	-	37.4 38.9	319 332	CONCAT YOLOF	39.6 40.3	56 58
-		38.4	341	DFFT	41.4	62

Table 5. Analysis of SAA. Table 6. Analysis of SAE