CSE 444: Homework 3

Linxing Preston Jiang Winter 2018 February 15, 2018

1 Concurrency Control with Locking

- 1. (a) $R_2(X), R_2(Y), W_2(Y), R_1(X), R_1(Y), W_1(X), C_1, ...$ (the rest of Transaction 2)
 - (b) $R_1(X), R_1(Y), W_1(X), R_2(X), R_2(Y), W_2(Y), C_1, ...$ (the rest of Transaction 2)
 - (c) $R_1(X), R_1(Y), W_1(X), R_2(X), R_2(Y), W_2(Y), R_2(X), R_2(Y), W_2(X), C_1, ...$ (the rest of Transaction 2)
- 2. No. $R_0(A)$ is before $R_2(A)$ so Transaction T_0 needs to precede T_2 . $R_2(B)$ is before $W_0(B)$ so Transaction T_2 needs to precede T_0 , forming a cycle in the precedence graph.
- 3. See the following schedule

Transaction T_0	Transaction T_1	Transaction T_2
$L_0(A), L_0(B) \ R_0(A) \ W_0(A), U_0(A)$		
$w_0(21), C_0(21)$	$L_1(A)$ – DENIED	$L_2(A), R_2(A)$ $W_2(A)$
	$L_1(A)$ – DENIED	
$egin{aligned} R_{ extsf{O}}(B) \ W_{ extsf{O}}(B), U_{ extsf{O}}(B) \end{aligned}$		$L_2(B)$ – DENIED
$W_0(D), U_0(D)$		$L_2(B), R_2(B), U_2(A)$ $W_2(B), U_2(B)$
	$L_1(A), R_1(A)$	200
	$L_2(B), R_1(B) \ U_1(A), U_1(B)$	

4. By only releasing all locks when the transaction is completed, we have both conflict-serializable and recoverable schedules. Also we can avoid cascading aborts.

2 Optimistic Concurrency Control

1. See below

T_1	T_2	T_3	T_4	X	Y
				RT = 0	RT = 0
1	2	3	4	WT = 0	WT = 0
				C = true	C = true
	$R_2(X)$			RT = 2	
$R_1(X)$				RT = 2	
	$W_2(X)$			WT = 2	
	2()		TWZ (TZ)	C = false	
****			$W_4(X)$	WT = 4	
$W_1(X)$ ABORT					
ADORI		$W_3(X)$			
		DELAY			
		BEERT	ABORT		
	$R_2(Y)$	$W_3(X)$		WT = 3	RT = 2
	$W_2(Y)$				WT = 2
	w ₂ (1)	- /			C = false
		$R_3(Y)$			
-		DELAY		RT =2	
	C_2	$R_3(Y)$		WT = 3	RT = 3
	$\bigcup_{i=1}^{n} C_{2}$	13(1)			101 = 3
-		$W_3(Y)$		C = true	WT = 3
		w ₃ (1)			RT = 3
		C_3			WT = 3
					C = true

2. See below

T_1	T_2	T_3	T_4	X_0	X_3	X_4
1	2	3	4			
$R_1(X)$				RT = 1		
		$R_3(X)$		RT = 3		
		$W_3(X)$			CREATE	
	$R_2(X)$			RT = 3		
			$R_4(X)$		RT = 4	
	$W_2(X)$					
	ABORT					
			$W_4(X)$			CREATE