Notes of Measure Space

Fu Lingyue

March 24, 2020

1 Measure Theory and Topology

Space is often a set with a certain structure or operation, rather than a simple set.

Topology Topology deals with open sets.

We have a set T. T has some open subsets O. If open sets satisfy some requirements in $U = \{O\}$, then (T, U) is a topology space. T is the origin space. U is a subset of 2^T (set consisting of subsets of T).

U should satisfy:

- 1. T and \varnothing is open set.
- 2. $\forall O_i \in U, \bigcap_{i=1}^N O_i$ is open set (must be finite).
- 3. $\forall O_i \in U, \bigcup O_i$ is open set (arbitrary number).

We define **continuous function** f on T as

 $\forall G$ is an open set, $f^{-1}(G)$ is an open set as well.

Measure Space has many similar definitions.

Measurable Space Similarly, measurable space is a dualistic group (X, \mathcal{F}) . X is our origin discussion space, and \mathcal{F} is a subset of 2^X , which satisfies some conditions as follows:

- 1. $\varnothing, X \in \mathcal{F}$.
- 2. If $E \in \mathcal{F}$, then $E^C \in \mathcal{F}$.
- 3. If $E_i \in \mathcal{F}$, then $E_1 \cup E_2$ as well.

Those elements in \mathcal{F} is measurable. The measurable space (X, \mathcal{F}) also can be described as " \mathcal{F} is a σ -Algebra on X".

Measure Space Measure spaces define a measure m on measurable space. Then measure space is a triple (X, \mathcal{F}, m) .

(if \mathcal{F} is too big, we cannot find a measure function m intuitively)

The measure $m: \mathcal{F} \mapsto [0, \infty]$ has to satisfy:

- 1. $m(\emptyset) = 0$.
- 2. If $F_i \cap F_j = \emptyset (i \neq j)$ and $F = \bigcup F_n \in \mathcal{F}$, then

$$m(F) = \sum m(F_n).$$

Corollary 1. (Additive) If $F, G \in \mathcal{F}, F \cap G = \emptyset$, $m(F \cup G) = m(F) + m(G)$.

2 σ -Algebra

 σ -Algebra has three basic rules, and some properties are derived from them.

Corollary 2. These two corollary is useful!

- 1. $\bigcup_{i=1}^n E_i \in \mathcal{F}(n \in \mathbb{N})$
- 2. $\bigcap_{i=1}^{n} E_i = (\bigcup_{i=1}^{n} F_i^C)^C \in \mathcal{F}$.

Thus we conclude that σ -Algebra is a family of subsets closed to any countable number of operations.

Corollary 3. (Principle of Inclusion-exclusion) For all $F_i \in \Sigma$, we have

$$\mu(\bigcup_{i \le n} F_i = \sum_{i \le n} \mu(F_i) - \sum \sum_{i < j \le n} \mu(F_i \cap F_j) + \dots + (-1)^{n-1} \mu(F_1 \cap F_2 \cap \dots \cap F_n).$$

The proof of Corollary 3 has been written in Chen Tong's notes on github.

2.1 Borel σ -Algebra

$$\mathcal{B}(S) := \sigma(\text{open subsets of } S)$$

The most common Borel algebra is $\mathcal{B} := \mathcal{B}(\mathbb{R})$. It consists of the open subsets in \mathbb{R} . But it is hard to find a subset of \mathbb{R} but not in \mathcal{B} .

Theorem 1. Define $\pi(\mathbb{R}) := \{(-\infty, x] \mid x \in \mathbb{R}\}, \text{ then }$

$$\mathcal{B} = \sigma(\pi(\mathbb{R})).$$

Proof. For all $x \in \mathbb{R}$, $(-\infty, x] = \bigcap (-\infty, x + 1/n)$. Use the property 2, $(-\infty, x]$ is measurable, i.e. $(-\infty, x] \in \mathcal{B}$.

Then we just need to prove that $\forall a, b \in \mathbb{R}$, $(a, b) \in \sigma(\pi(\mathbb{R}))$. First, (a, b) can be represented as $\bigcup_{i=1}^{\infty} (a, b - \epsilon/n]$, where $\epsilon = (b - a)/2$ (in facet it can be arbitrary small). Then we have

$$(a,k] = (-\infty,k] \cap (a,\infty) = (-\infty,k] \cap (-\infty,a]^C \in \mathcal{B}.$$

thus $(a, b - \epsilon/n] \in \mathcal{B}$. In this way, $(a, b) = \bigcup_{i=0}^{\infty} (a, b - \epsilon/n] \in \mathcal{B}$.

2.2 Finite and σ -finite

We have a measure space (S, Σ, μ) .

Finite The measure space is finite iff $\mu(S) < \infty$.

 σ -finite The measure space is σ -finite iff there exists a sequence $\{S_n\}(S_i \in \Sigma)$,s.t.

$$\mu(S_n) < \infty (\forall n \in \mathbb{N}) \text{ and } \bigcup S_n = S.$$

2.3 Minimum σ -algebra

Here we introduce a signal $\sigma(A)$, which denote the minimum σ -algebra including A.

3 π -System

We have a set S and $\mathcal{I} \subseteq 2^S$. (S, \mathcal{I}) is a π -System iff

$$I_1, I_2 \in \mathcal{I} \Rightarrow I_1 \cap I_2 \in \mathcal{I}$$

 π -System is easier for us to research, for it is just closed on \cap while σ -algebra is closed on both \cap and \cup (in my opinion like a group to a ring in abstract algebra).

Theorem 2. Define $\Sigma := \sigma(\mathcal{I})$. If there exists two measures μ_1, μ_2 on (S, Σ) satisfy:

$$\mu_1(S) = \mu_2(S) < \infty$$

and

$$\mu_1(x) = \mu_2(x), \forall x \in \mathcal{I},$$

then

$$\mu_1(x) = \mu_2(x), \forall x \in \Sigma.$$

Proof. The proof is in Appendix in our textbook, using Dynkin lemma.

Theorem 3. (Carathéodory Expansion Theorem) S is a set, and Σ_0 is an algebra on $S(\Sigma_0$ is a π -system as well). Define

$$\Sigma := \sigma(\Sigma_0).$$

(Existence) If $\mu_0 : \Sigma_0 \mapsto [0, \infty]$ is a mapping satisfies the rule of measure function, then there exists a μ on Σ and satisfies

$$\mu(x) = \mu_0(x), \forall x \in \Sigma_0.$$

(Uniqueness) Futhermore, if $\mu_0(S) < \infty$, then according to Theorem 2, the expansion μ is unique.

3.1 Lebeséue Measure

Let S = (0, 1]. Define

$$F = (a_1, b_1] \cup \cdots \cup (a_r, b_r] \subseteq S$$
, where $0 \le a_1 \le b_1 \le \cdots \le a_r \le b_r$.

And the union of F is defined as π -System Σ_0 . According to 2.3, we can define a minimum σ -algebra

$$\Sigma := \sigma(\Sigma_0) = (0, 1].$$

Define the measure μ_0 on Σ_0 as

$$\mu_0(F) = \sum_{k \le r} (b_k - a_k).$$

We can prove that μ_0 satisfy the premise of theorem 3, thus we conclude that there exists a unique measure μ on Σ . We call this measure μ as Lebegue measure on $(0,1](\text{Leb.}([0,1],\mathcal{B}[0,1]))$.

* Note that we can simply define $\mu(\{0\}) = 0$ to obtain

Leb.
$$([0,1], \mathcal{B}[0,1]) = \text{Leb.}((0,1], \mathcal{B}(0,1]).$$

4 Probability space

A probability space is a special measure space where $\mu(S) = 1$. Then μ corresponds to the probability that we're familiar with. This concept will be used in the future.