Esercizio 1	Fare Gauss per il rango, creare il sistema (prendo le x in comune e le tratto come libere), isolo le x , sostituisco le x trovate nel vettore X , seseno $X \cdot n = 0$, isolo una x , sostituisco unovamente e noi costruisco il vettore prendendo i coefficienti
Esercizio 2	Calcolare il det di una 2×2 a caso, se det $\neq 0$ allora $rk(A) \geq 2$ possiamo orlaria, altrimenti ne cerco un'altra, calcoliamo il det di tutte le possibili 3×3 , le λ in comune alle 3×3 sono quelle che $rk(A) = 2$, tutte le altre $rk(A) = 3$;
	$^{ m st}A=0$
	• Se A è una matrice simmetrica, allora A^2 è simmetrica $\rightarrow M$ simmetrica se $M = M^T \rightarrow M^T \cdot M^T = (M \cdot M)^T \Rightarrow M = M^T$, sostituisci M con A^2
	• Sia $A \in M_{3,2}(\mathbb{R})$ di rango 2, allora il sistema lineare $AX = B$ ammette soluzioni comunque si scelga la matrice B dei termini noti. \to Se si sceglie B t.c $\operatorname{rk}(A B) = 3$ allora il sistema è impossibile (non ammette soluzioni) per Rouché-Capelli $(\infty^{2}-3)$
	• $A^3 - A = I_2 \to A(A^2 - I) = I \Rightarrow (A^2 - I) = A^{-1}$ quindi $AA^{-1} = I$ (A è invertibile)
	• $A^3 - A = 0 \rightarrow A(A^2 - I) = 0 \Rightarrow A = 0, A^2 - I = 0 \Rightarrow A = 0, A^2 = I$ quindi A è invertibile se $A^2 = I$ altrimenti se $A = 0$ non è invertibile
	$\bullet A^3-A=\begin{pmatrix}1&1\\2&3\end{pmatrix}\rightarrow A(A^2-I)=\begin{pmatrix}1&1\\2&3\end{pmatrix}\Rightarrow A=\begin{pmatrix}1&1\\2&3\end{pmatrix}, A^2-I=\begin{pmatrix}1&1\\2&3\end{pmatrix}\Rightarrow A^2=\begin{pmatrix}1&1\\2&3\end{pmatrix}+I=\begin{pmatrix}2&1\\2&4\end{pmatrix}\Rightarrow A=\begin{pmatrix}\sqrt{2}&1\\\sqrt{2}&2\end{pmatrix}$
Esercizio 3	poi calcolo il determinante delle due A e uso il teorema di Binét: det $\begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} = 1$, det $\begin{pmatrix} \sqrt{2} & 1 \\ \sqrt{2} & 2 \end{pmatrix} = 2\sqrt{2} - \sqrt{2} \neq 0$, quindi A è invertibile
	 A è invertibile, allora det(A) > 0 → Falso, per Binét A è invertibile se det A ≠ 0 (quindi può essere anche negativo).
	• Se $A \in B$ sono invertibili, $AB \in A$ invertibile $AB \in A$ invertibile se $AB \in A$ of
	• Se $A^{13} = B$ e B è invertibile, allora A è invertibile \to Vero, $\det(A^{13}) = \det(B) \Rightarrow \det(A)^{13} = \det(B)$ sappiamo che $\det(B) \neq 0$ quindi $\det(A) \neq 0$ e quindi A è invertibile
	• I vettori colonna di $A \in M_n(\mathbb{R})$ generano $\mathbb{R}^n \to A$ è invertibile perchè visto che i vettori sono base di \mathbb{R}^n allora la matrice ha rango n (massimo) e quindi è invertibile
	• Se $A \in M_{3,4}(\mathbb{R})$ ha due minori distinti di ordine 3 con determinante nullo, $\operatorname{rk}(A) < 3 \to \operatorname{vero}$, sappiamo che esistono solo due sottomatrici 3×3 quindi se entrambe hanno determinante nullo allora $\operatorname{rk}(A) < 3$
	• Tre vettori qualsiasi di \mathbb{R}^2 sono linearmente dipendenti \to Usiamo la regola per essere base di R^N che dice che sono linearmente indipendenti se il rango della matrice composta dai vettori è N , quindi basta trovare un vettore per cui il rango non è 2 per avere i vettori linearmente dipendenti
	• I vettori v_1, \ldots, v_n sono base di R^N se $\operatorname{rk}(M) = N \operatorname{con} M = (v_1 \ldots v_n)$ (M matrice composta dai vettori)
	• Base ortogonale di v,w: $\begin{pmatrix} \det(R_2R_3) \\ -\det(R_1R_3) \end{pmatrix}$, R_i sono le righe dei vettori $\det(R_1R_2)$
	$ullet$ Dipendenza lineare: $\alpha v_1 + \beta v_2 = 0$ oppure la matrice composta dai vettori non ha rango N
	• Indipendenza lineare: $\alpha v_1 + \beta v_2 = 0 \rightarrow \alpha = \beta = 0$ oppure la matrice composta dai vettori ha rango N
Esercizio 4	• $v_3=\begin{pmatrix} x_3\\y_3\\z_3 \end{pmatrix}$ è multiplo scalare di $v_1=\begin{pmatrix} x_1\\y_1\\z_1 \end{pmatrix}$ se $\frac{x_3}{x_1}=\frac{y_3}{y_1}=\frac{z_3}{z_1}=\alpha$
	$ullet$ Per "generare" R^N i vettori combinati linearmente fanno ottenere qualsiasi vettore in R^N . Gli N vettori in questione devono essere linearmente indipendenti.
	$ullet$ $v_2 otin \langle v_1 \rangle$ significa che v_2 non appartiene allo spazio generato da v_1 e quindi v_2 non deve essere multiplo scalare di v_1
	• Due vettori v_1 e v_2 sono ortogonali tra loro quando il loro prodotto scalare e' 0, ovvero $v_1 \cdot v_2 = v_1 x \cdot v_2 x + v_1 y \cdot v_2 y + v_1 z \cdot v_2 z = 0$
	• Norma vettore $ v = \sqrt{v_1^2 + v_2^2}$, per "allungare" un vettore a una lunghezza L si usa la formula $v' = L \cdot \frac{1}{ v } \cdot v$

fatti
già
esercizi già
gli
ci andranno
.:J
Qui

$\det A = 0$
• Se A è una matrice simmetrica, allora A^2 è simmetrica $\rightarrow M$ simmetrica se $M=M^T\Rightarrow M^T\cdot M^T=(M\cdot M)^T\Rightarrow M=M^T$, sostituisci M con A^2
• Sia $A \in M_{3,2}(\mathbb{R})$ di rango 2, allora il sistema lineare $AX = B$ ammette soluzioni comunque si scelga la matrice B dei termini noti. \rightarrow Se si sceglie B t. $c rk(A B) = 3$ allora il sistema è impossibile (non ammette soluzioni) per Rouché-Capelli $(\infty^{2}-3)$
• $A^3 - A = I_2 \rightarrow A(A^2 - I) = I \Rightarrow (A^2 - I) = A^{-1}$ quindi $AA^{-1} = I$ (A è invertibile)
• $A^3 - A = 0 \rightarrow A(A^2 - I) = 0 \Rightarrow A = 0, A^2 - I = 0 \Rightarrow A = 0, A^2 = I$ quindi A è invertibile se $A^2 = I$ altrimenti se $A = 0$ non è invertibile
$\bullet A^3 - A = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \rightarrow A(A^2 - I) = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \Rightarrow A = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}, A^2 - I = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \Rightarrow A^2 = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} + I = \begin{pmatrix} 2 & 1 \\ 2 & 4 \end{pmatrix} \Rightarrow A = \begin{pmatrix} \sqrt{2} & 1 \\ \sqrt{2} & 2 \end{pmatrix}$
poi calcolo il determinante delle due A e uso il teorema di Binét: $\det\begin{pmatrix}1&1\\2&3\end{pmatrix}=1$, $\det\begin{pmatrix}\sqrt{2}&1\\\sqrt{2}&2\end{pmatrix}=2\sqrt{2}-\sqrt{2}\neq 0$, quindi A è invertibile
• A è invertibile, allora $det(A) > 0 \rightarrow Falso$, per Binét A è invertibile se $det A \neq 0$ (quindi può essere anche negativo).
• Se $A \in B$ sono invertibili, $AB \in A$ invertibile $A \in AB \in A$ invertibile se $AB \in AB \in AB$ envertibile se $AB \in AB \in AB$ envertibile se $AB \in AB \in AB$
• Se $A^{13} = B$ e B è invertibile, allora A è invertibile \to Vero, $\det(A^{13}) = \det(B) \Rightarrow \det(A)^{13} = \det(B)$ sappiamo che $\det(B) \neq 0$ quindi $\det(A) \neq 0$ e quindi A è invertibile
• I vettori colonna di $A \in M_n(\mathbb{R})$ generano $\mathbb{R}^n \to A$ è invertibile perchè visto che i vettori sono base di \mathbb{R}^n allora la matrice ha rango $n(\text{massimo})$ e quindi è invertibile
• Se $A \in M_{3,4}(\mathbb{R})$ ha due minori distinti di ordine 3 con determinante nullo, $\mathrm{rk}(A) < 3 \to \mathrm{vero}$, sappiamo che esistono solo due sottomatrici 3×3 quindi se entrambe hanno determinante nullo allora $\mathrm{rk}(A) < 3$
• Tre vettori qualsiasi di \mathbb{R}^2 sono linearmente dipendenti \to Usiamo la regola per essere base di R^N che dice che sono linearmente indipendenti se il rango della matrice composta dai vettori è N , quindi basta trovare un vettore per cui il rango non è 2 per avere i vettori linearmente dipendenti
• I vettori v_1,\dots,v_n sono base di R^N se $\operatorname{rk}(M)=N$ con $M=(v_1\dots v_n)$ (M matrice composta dai vettori)
• Base ortogonale di v.w.: $\begin{pmatrix} \det(R_2R_3) \\ -\det(R_1R_2) \end{pmatrix}$, R_i sono le righe dei vettori $\det(R_1R_2)$
$ullet$ Dipendenza lineare: $lpha v_1 + eta v_2 = 0$ oppure la matrice composta dai vettori non ha rango N
• Indipendenza lineare: $\alpha v_1 + \beta v_2 = 0 \rightarrow \alpha = \beta = 0$ oppure la matrice composta dai vettori ha rango N
• $v_3=\begin{pmatrix} x_3\\y_3\\z_3 \end{pmatrix}$ è multiplo scalare di $v_1=\begin{pmatrix} x_1\\y_1\\z_1 \end{pmatrix}$ se $\frac{x_3}{x_1}=\frac{y_3}{y_1}=\frac{z_3}{z_1}=\alpha$
$ullet$ Per "generare" R^N i vettori combinati linearmente fanno ottenere qualsiasi vettore in R^N . Gli N vettori in questione devono essere linearmente indipendenti.
 v₂ ∉ ⟨v₁⟩ significa che v₂ non appartiene allo spazio generato da v₁ e quindi v₂ non deve essere multiplo scalare di v₁ Due vettori v₁ e v₂ sono ortogonali tra loro quando il loro prodotto scalare e' 0, ovvero v₁ · v₂ = v₁x · v₂x + v₁η · v₂n + v₁z · v₂z = 0
• Norma vettore $ v = \sqrt{v_1^2 + v_2^2}$, per "allungare" un vettore a una lunghezza L si usa la formula $v' = L \cdot \frac{1}{ v } \cdot v$

 $\frac{\sqrt{25} = 5}{\sqrt{100} = 10}$ $\sqrt{225} = 15$ $\sqrt{400} = 20$ $\sqrt{625} = 25$ $\sqrt{900} = 30$

 $\frac{\sqrt{16} = 4}{\sqrt{81} = 9}$ $\frac{\sqrt{196} = 14}{\sqrt{361} = 19}$ $\sqrt{576} = 24$ $\sqrt{841} = 29$

 $\sqrt{9} = 3$ $\sqrt{64} = 8$ $\sqrt{169} = 13$ $\sqrt{324} = 18$ $\sqrt{529} = 23$ $\sqrt{784} = 28$

 $\sqrt{1} = 1$ $\sqrt{36} = 6$ $\sqrt{121} = 11$ $\sqrt{256} = 16$ $\sqrt{441} = 21$ $\sqrt{676} = 26$