Agrégation Interne

Produits infinis de fonctions, fonction gamma

Ce problème est en relation avec les leçons d'oral suivantes :

- 267: La fonction Gamma;
- 223 : Intégrale d'une fonction dépendant d'un paramètre. Propriétés, exemples et applications ;
- 221 : Intégrale impropre d'une fonction continue sur un intervalle de \mathbb{R} (l'intégration sur un segment étant supposée connue). Exemples ;
- 217 : Fonctions convexes d'une variable réelle. Applications.

Il est l'occasion de revoir les points de cours suivant :

- suites, séries, produits infinis;
- suites, séries et produits infinis de fonctions, théorèmes de dérivation terme à terme d'une série de fonctions ;
- intégrales dépendant d'un paramètre;
- fonction gamma;
- convexité.

Ce problème est aussi en relation avec l'épreuve 2 de l'agrégation interne 2015.

On pourra consulter les ouvrages suivants.

- E. Artin. The Gamma function. Holt, Rinehart and Winston, Inc. New York (1964).
- A. Chambert-Loir, S. Fermigier. Analyse 2. Masson (1995).
- J. F. Dantzer. Mathématiques pour l'agrégation. Vuibert (2016).
- X. Gourdon. Les Maths en tête. Analyse. Ellipses (1994).
- W. J. Kaczor, M. T. Nowak. *Problems in mathematical analysis. Vol. I. II et III.* American Mathematical Society (2001).
- J. P. Ramis, A. Warusfel. *Mathématiques tout en un pour la licence. Niveau L2.* Dunod. (2007).
- A.W. Roberts, D.E. Varberg. *Convex functions*. Academic Press (1973).
- J. E. Rombaldi. Éléments d'analyse réelle. EDP Sciences (2004).
- W. Rudin. Principes d'analyse mathématique. Edisciences (1995).

Rappelons quelques versions pratiques des théorèmes classiques sur :

- la continuité et la dérivation d'une fonction définie comme intégrale dépendant d'un paramètre;
- l'intervertion d'une intégrale et d'une sommation infinie;
- l'intégration d'une fonction de deux variables (théorème de Fubini);
- l'intégration par changement de variables.

On rappelle qu'une fonction continue par morceaux d'un intervalle réel dans \mathbb{C} est dite intégrable si, et seulement si, l'intégrale impropre de f sur I est absolument convergente.

Théorème 1. Soient I, J deux intervalles réels non réduits à un point, $f: I \times J \to \mathbb{C}$ une fonction continue et $\varphi: J \to \mathbb{R}^+$ une fonction continue par morceaux et intégrable sur J telle que :

$$\forall (x,t) \in I \times J, |f(x,t)| \le \varphi(t)$$

Dans ces condition, pour tout $x \in I$, la fonction $t \mapsto f(x,t)$ est intégrable sur J et la fonction $x \mapsto \int_I f(x,t) dt$ est continue sur I.

Théorème 2. Soient I, J deux intervalles réels non réduits à un point, $f: I \times J \to \mathbb{C}$ une fonction continue admettant une dérivée partielle par rapport à x en tout point (x,t) de $I \times J$ telle que pour tout réel $x \in I$ la fonction $t \mapsto f(x,t)$ est intégrable sur J et la fonction $t \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux sur J.

S'il existe une fonction $\varphi: J \to \mathbb{R}^+$ continue par morceaux et intégrable sur J telle que :

$$\forall (x,t) \in I \times J, \ \left| \frac{\partial f}{\partial x}(x,t) \right| \leq \varphi(t)$$

alors la fonction $g: x \mapsto \int_I f(x,t) dt$ est dérivable sur I avec :

$$g'(x) = \int_{J} \frac{\partial f}{\partial x}(x, t) dt$$

Si de plus la fonction $\frac{\partial f}{\partial x}$ est continue sur $I \times J$ (ou si pour tout $t \in J$, la fonction $x \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue sur I), alors la fonction φ est de classe \mathcal{C}^1 sur I.

Théorème 3. Si $(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions continues par morceaux, à valeurs complexes et intégrables sur un intervalle I telle que la série de fonctions $\sum f_n$ converge simplement vers une fonction f continue par morceaux sur I, alors la fonction f est intégrable sur I si la série

$$\sum \int_{I} |f_{n}(x)| dx \text{ est convergente et dans ce cas, on a } \int_{I} f(x) dx = \sum_{n=0}^{+\infty} \int_{I} f_{n}(x) dx.$$

Théorème 4. (Fubini) Soient I, J deux intervalles réels non réduits à un point et $f: I \times J \to \mathbb{C}$ une fonction continue telle que :

- pour tout $x \in I$, la fonction $t \mapsto f(x,t)$ est intégrable sur J;
- la fonction $x \mapsto \int_{I} |f(x,t)| dt$ est intégrable sur I.

Dans ces condition, la fonction f est intégrable sur $I \times J$ et :

$$\iint_{I \times J} f(x, t) dt dx = \int_{I} \left(\int_{J} f(x, t) dt \right) dx$$

Dans le théorème de Fubini, on peut permuter les rôles de x et t. D'un point de vue pratique, pour $f:I\times J\to\mathbb{C}$ continue telle que les intégrales $\int_I\left(\int_J|f\left(x,t\right)|\,dt\right)dx$ et $\int_J\left(\int_I|f\left(x,t\right)|\,dx\right)dt$ aient un sens, on a :

$$\iint_{I\times J} f\left(x,t\right)dtdx = \int_{I} \left(\int_{J} f\left(x,t\right)dt\right)dx = \int_{J} \left(\int_{I} f\left(x,t\right)dx\right)dt$$

Théorème 5. (Changement de variables) Soient I, J deux intervalles réels non réduits à un point et $\varphi: I \to J$ un \mathcal{C}^1 -difféomorphisme croissant. Une fonction continue $f: J \to \mathbb{C}$ est intégrable sur J si, et seulement si, la fonction $(f \circ \varphi) \varphi'$ est intégrable sur I et dans ce cas, on a:

$$\int_{J} f(x) dx = \int_{I} f(\varphi(t)) \varphi'(t) dt$$

- I - Fonctions logarithmiquement convexes

Soit I un intervalle réel non réduit à un point. Une fonction $f: I \to \mathbb{R}^{+,*}$ est dite logarithmiquement convexe si la fonction $\ln(f)$ est convexe.

- 1. Montrer que la limite d'une suite de fonctions convexes de I dans \mathbb{R} est convexe.
- 2. Soit $f: \mathbb{R}^{+,*} \to \mathbb{R}$ une fonction convexe. Montrer que, pour tout réel $\alpha > 0$, les fonctions $x \mapsto f(x + \alpha)$ et $x \mapsto f(\alpha x)$ sont convexes.
- 3. Montrer qu'une fonction $f: I \to \mathbb{R}^{+,*}$ logarithmiquement convexe est convexe.
- 4. Soit $f: I \to \mathbb{R}^{+,*}$. Montrer que les assertions suivantes sont équivalentes :
 - (a) f est logarithmiquement convexe;
 - (b) pour tout réel $\alpha > 0$ la fonction $x \mapsto \alpha^x f(x)$ est convexe;
 - (c) pour tous réels x, y dans I et tout réel $\lambda \in [0, 1]$, on a :

$$f\left(\left(1-\lambda\right)x+\lambda y\right) \le \left(f\left(x\right)\right)^{1-\lambda}\left(f\left(y\right)\right)^{\lambda}$$

- 5. Soit $f: I \to \mathbb{R}$ une fonction convexe. Montrer que pour tout segment $[a,b] \subset I$ et tout $x \in [a,b]$, on a $f(x) \leq \max(f(a),f(b))$ (en fait, une fonction convexe sur I est bornée sur tout segment $[a,b] \subset I$).
- 6. Montrer qu'une fonction $f: \mathbb{R}^{+,*} \to \mathbb{R}$ convexe et T-périodique (avec T > 0) est constante.

- II - Un produit infini de fonctions

À toute suite réelle $(u_n)_{n\in\mathbb{N}^*}$ on associe la suite $(P_n)_{n\in\mathbb{N}^*}$ de ses produits partiels définie par :

$$\forall n \in \mathbb{N}^*, \ P_n = \prod_{k=1}^n u_k$$

On dit que le produit infini $\prod u_n$ est convergent si la suite $(P_n)_{n\in\mathbb{N}^*}$ est convergente et on note alors $\prod_{n=1}^{+\infty}u_n=\lim_{n\to+\infty}\left(\prod_{k=1}^nu_k\right)$ la limite de cette suite. Dans le cas où cette limite est non nulle, on dit que le produit infini est strictement convergent.

- 1. Justifier la convergence de la suite $(\gamma_n)_{n\in\mathbb{N}^*} = \left(\sum_{k=1}^n \frac{1}{k} \ln{(n)}\right)_{n\in\mathbb{N}^*}$. La limite de cette suite est notée γ (constante γ d'Euler).
- 2. Soit $(\varphi_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définie sur \mathbb{R}^+ par :

$$\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R}^+, \ \varphi_n(x) = \frac{e^{\frac{x}{n}}}{1 + \frac{x}{n}}$$

Montrer que :

(a) pour tout réel $x \in \mathbb{R}^+$, le produit infini $\prod \varphi_n(x)$ est convergent vers un réel strictement positif $\varphi(x)$;

- (b) $\varphi(1) = e^{\gamma}$;
- (c) la fonction φ est indéfiniment dérivable sur \mathbb{R}^+ ;
- (d) la fonction φ est logarithmiquement convexe.
- 3. Soit $(\theta_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définie sur $\mathbb{R}^{+,*}$ par :

$$\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R}^{+,*}, \ \theta_n(x) = \frac{n!n^x}{x(x+1)\cdots(x+n)}$$

Montrer que:

- (a) cette suite de fonctions converge sur $\mathbb{R}^{+,*}$ vers la fonction $\theta: x \mapsto \frac{e^{-\gamma x}}{x} \varphi(x)$;
- (b) $\theta(1) = 1$;
- (c) $\forall x \in \mathbb{R}^{+,*}, \theta(x+1) = x\theta(x)$;
- (d) θ est logarithmiquement convexe.

- III - Théorème de Bohr-Mollerup

On se donne une fonction $f: \mathbb{R}^{+,*} \to \mathbb{R}^{+,*}$ qui vérifie les trois conditions :

- (i) f(1) = 1;
- (ii) $\forall x \in \mathbb{R}^{+,*}, f(x+1) = xf(x);$
- (iii) f est logarithmiquement convexe.

La fonction θ définie en II.3 par :

$$\forall x \in \mathbb{R}^{+,*}, \ \theta\left(x\right) = \lim_{n \to +\infty} \frac{n! n^x}{x\left(x+1\right)\cdots\left(x+n\right)} = \frac{e^{-\gamma x}}{x} \prod_{n=1}^{+\infty} \frac{e^{\frac{x}{n}}}{1+\frac{x}{n}}$$

vérifie ces conditions.

- 1. Montrer que la fonction $h = \frac{f}{\theta}$ est 1-périodique sur $\mathbb{R}^{+,*}$.
- 2. Montrer que la fonction h est convexe sur $\mathbb{R}^{+,*}$.
- 3. Déduire de ce qui précède que $f = \theta$.

Nous avons donc montré le résultat suivant.

Théorème 6. (Bohr-Mollerup): La fonction θ est l'unique fonction de $\mathbb{R}^{+,*}$ dans $\mathbb{R}^{+,*}$ qui vérifie les conditions (i), (ii) et (iii).

- IV - Fonction gamma d'Euler

On rappelle que la fonction eulérienne (de deuxième espèce) gamma est définie sur $\mathbb{R}^{+,*}$ par :

$$\forall x \in \mathbb{R}^{+,*}, \ \Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

et que la fonction eulérienne bêta (de premières espèce) est définie sur $(\mathbb{R}^{+,*})^2$ par :

$$\forall (x,y) \in (\mathbb{R}^{+,*})^2, \ B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$

On admet que pour tout réel x, on a :

$$\sin(x) = x \prod_{n=1}^{+\infty} \left(1 - \frac{x^2}{n^2 \pi^2} \right) \tag{1}$$

(voir le problème sur le développement de $\frac{\sin{(z)}}{z}$ en produit infini).

- 1. Justifier la définition de la fonction Γ sur $\mathbb{R}^{+,*}$ et de la fonction B sur $(\mathbb{R}^{+,*})^2$.
- 2. Montrer que la fonction Γ vérifie les conditions suivantes :
 - (i) $\Gamma(1) = 1$;
 - (ii) $\forall x \in \mathbb{R}^{+,*}, \Gamma(x+1) = x\Gamma(x);$
 - (iii) Γ est logarithmiquement convexe.
- 3. Déduire de la question précédente que pour tout réel x>0, on a :

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt = \lim_{n \to +\infty} \frac{n! n^x}{x(x+1)\cdots(x+n)} = \frac{e^{-\gamma x}}{x} \prod_{n=1}^{+\infty} \frac{e^{\frac{x}{n}}}{1 + \frac{x}{n}}$$

La première formule est due à Gauss et la seconde à Weierstrass.

- 4. Montrer que :
 - (a) pour tout entier naturel n, on a $\Gamma(n+1) = n!$;
 - (b) la fonction gamma est continue sur $\mathbb{R}^{+,*}$, $\Gamma(x) \underset{x\to 0^{+}}{\backsim} \frac{1}{x}$ et en particulier $\lim_{x\to 0^{+}} \Gamma(x) = +\infty$;
 - (c) pour tout réel $x \in]0,1[$, on a $\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin(\pi x)}$ (formule des compléments);
 - (d) $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ et en déduire que $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$;
 - (e) pour tout entier naturel n, $\Gamma\left(n+\frac{1}{2}\right)=\frac{(2n)!}{2^{2n}n!}\sqrt{\pi}$;
 - (f) pour tout réel strictement positif x, on a :

$$\Gamma\left(x\right) = \frac{2^{x-1}}{\sqrt{\pi}} \Gamma\left(\frac{x}{2}\right) \Gamma\left(\frac{x+1}{2}\right)$$

(formule de Legendre);

(g) la fonction gamma est indéfiniment dérivable sur $\mathbb{R}^{+,*}$ avec pour tout entier naturel non nul n et tout réel strictement positif x:

$$\Gamma^{(n)}(x) = \int_{0}^{+\infty} (\ln(t))^{n} t^{x-1} e^{-t} dt$$

(h) pour tout réel strictement positif x, on a :

$$\frac{\Gamma'(x)}{\Gamma(x)} = -\gamma - \frac{1}{x} + x \sum_{n=1}^{+\infty} \frac{1}{n(n+x)}$$

(La fonction $\psi = \frac{\Gamma'}{\Gamma}$ est la fonction digamma.);

(i)
$$\Gamma'(1) = -\gamma$$
 et $\Gamma'(n) = (n-1)! \left(-\gamma + \sum_{k=1}^{n-1} \frac{1}{k}\right)$ pour tout entier $n \ge 2$;

(j) $\Gamma'\left(\frac{1}{2}\right) = -\sqrt{\pi}\left(\gamma + 2\ln(2)\right)$ et pour tout entier naturel non nul n, on a :

$$\Gamma'\left(n+\frac{1}{2}\right) = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}\left(2\left(\sum_{k=1}^{n}\frac{1}{2k-1} - \ln(2)\right) - \gamma\right)$$

- 5. On se donne deux réels x,y strictement positifs et on se propose de démontrer de trois façons l'égalité $B\left(x,y\right)=\frac{\Gamma\left(x\right)\Gamma\left(y\right)}{\Gamma\left(x+y\right)}.$
 - (a) Montrer cette égalité en utilisant le théorème de Bohr-Mollerup.
 - (b) Montrer que $\Gamma(x)\Gamma(y)=\int_0^{+\infty}\left(\int_0^w u^{x-1}\left(w-u\right)^{y-1}du\right)e^{-w}dw$, puis en déduire l'égalité annoncée.
 - (c) Montrer que :

$$B(x,y) = 2 \int_0^{\frac{\pi}{2}} \cos^{2x-1}(\theta) \sin^{2y-1}(\theta) d\theta \text{ et } \Gamma(x) \Gamma(y)$$
$$= 4 \iint_{(\mathbb{R}^{+,*})^2} e^{-(u^2+v^2)} u^{2x-1} v^{2y-1} du dv$$

puis en déduire l'égalité annoncée.

- V - Exemples d'intégrales liées à la fonction Γ

1.

(a) Montrer que, pour tout $(x, y) \in (\mathbb{R}^{+,*})^2$, on a :

$$\int_0^{+\infty} \frac{t^{x-1}}{(1+t)^{x+y}} dt = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}$$

(b) En déduire que, pour tout $x \in [0, 1[$, on a :

$$\int_0^{+\infty} \frac{t^{x-1}}{1+t} dt = \frac{\pi}{\sin(\pi x)} \text{ et } \int_0^{\frac{\pi}{2}} \tan^{2x-1}(\theta) d\theta = \frac{\pi}{2\sin(\pi x)}$$

2.

- (a) Montrer que, pour tout réel x > 0, l'intégrale $\int_0^{\frac{\pi}{2}} \ln(t) t^{2x-1} dt$ est convergente et donner sa valeur.
- (b) Montrer que, pour tout réel x > 0, l'intégrale $\int_0^{\frac{\pi}{2}} \ln(\sin(t)) \sin^{2x-1}(t) dt$ est convergente.
- (c) Montrer que la fonction $\varphi: x \mapsto \int_0^{\frac{\pi}{2}} \sin^{2x-1}(t) dt$ est de classe \mathcal{C}^1 sur $\mathbb{R}^{+,*}$, puis en déduire que, pour tout réel x > 0, on a :

$$\int_{0}^{\frac{\pi}{2}} \ln\left(\sin\left(t\right)\right) \sin^{2x-1}\left(t\right) dt = \frac{\sqrt{\pi}}{4} \frac{\Gamma\left(x + \frac{1}{2}\right) \Gamma'\left(x\right) - \Gamma'\left(x + \frac{1}{2}\right) \Gamma\left(x\right)}{\Gamma^{2}\left(x + \frac{1}{2}\right)}$$

(d) En déduire les valeurs des intégrales $\int_0^{\frac{\pi}{2}} \ln(\sin(t)) dt$ et $\int_0^{\frac{\pi}{2}} \ln(\sin(t)) \sin^{2n}(t) dt$ pour tout entier naturel n.