

Componente Curricular: exclusivo de curso () Eixo Comum (X) Eixo Universal ()				
Curso: CIÊNCIA DA COMPUTAÇÃO		Núcleo Temático: FUNDAMENTOS DE COMPUTAÇÃO		
Disciplina: INTELIGÊNCIA ARTIFICIAL		Código da Componente: ENEC50534		
Carga horária: 04 ha	(02) Sala de Aula (02) EAD	Etapa: 7 ^a .: 7G		
Professores:		DRTs:		
Rogério de Oliveira		1115665		
Ivan Carlos Alcantara de Oliveira				
Carga horária:		Semestre Letivo:		
02 Sala de Aula (síncrona), 0 Laboratório, 02 EaD		2ºSEM/2024		
Emanta				

Ementa:

Inteligência Artificial: conceito; breve história e principais paradigmas. Inteligência Artificial Clássica. Conceito de Aprendizagem de Máquina e sua relação com a Ciência de Dados. O ecossistema computacional da Aprendizagem de Máquina. Tipos de Aprendizagem. Tarefas de Aprendizagem de Máquina. *Overfitting*. Agrupamentos. Métricas e Seleção de Modelos. Modelos de Classificação e de Regressão. Árvore de Decisão e *Random Forest*. Regressão Linear e Logística. Modelos Neurais e *Deep Learning*. Grandes modelos de Linguagem. Outros modelos e tendências.

Objetivos:

Preparar o aluno para que ele compreenda todo o processo da Inteligência Artificial focada em Aprendizagem de Dados e seja capaz de aplicar os principais algoritmos em problemas reais.

Fatos e Conceitos	Procedimentos e Habilidades	Atitudes, Normas e Valores
Conhecer as principais	Desenvolver a capacidade de	Valorizar a interdisciplinaridade
subáreas, paradigmas e	reconhecer oportunidades de	do conhecimento científico, em
técnicas da Inteligência Artificial	aplicação das técnicas de	que se baseia muito do
e da Aprendizagem de	Inteligência Artificial e	desenvolvimento tecnológico
Máquina.	Aprendizagem de Máquina a	contemporâneo.
Travar contato com uma série	problemas de pesquisa e	Estar atento para as tecnologias
de aplicações das técnicas de	desenvolvimento.	de ponta em Computação, as
Aprendizagem de Máquina a	Ser capaz de modelar um dado	quais trazem oportunidades de
problemas concretos	problema de forma a torná-lo	inovação.
encontrados nas organizações.	tratável através de métodos e	Estar atento para identificar
Ter contato com o ecossistema	técnicas de Aprendizagem de	oportunidades de resolução de
computacional contemporâneo	Máquina, identificando as	problemas de pesquisa e
para Aprendizagem de	abordagens que podem	desenvolvimento e do dia a dia
Máquina.	eventualmente ser usadas na	das organizações por meio de
	sua resolução.	técnicas de Inteligência Artificial
	Estar apto a implementar	e Aprendizagem de Máquina.
	protótipos de soluções	Perceber o potencial de
	baseadas nessas técnicas	desenvolvimento de novos
	computacionais.	negócios usando Aprendizagem
	Saber usar o ecossistema	de Máquina.
	computacional de	
	Aprendizagem de Máquina.	

Conteúdo Programático:

- 1. Introdução ao Aprendizado de Máquina
- 2. Aprendizado Supervisionado e Regressão Linear
- 3. Classificação: Regressão Logística
- 4. Classificação: Knn
- 5. Árvores de Decisão e Seleção de Atributos
- 6. Validação Cruzada e GridSearch
- 7. Seleção de Modelos
- 8. Aprendizado não Supervisionado: Clustering Kmeans
- 9. Aprendizado não Supervisionado: Clustering Hcluster
- 10. Aprendizado não Supervisionado: Regras de Associação e Filtros de Conteúdo
- 11. Alternativo: TF-IDF e word embeding
- 12. Introdução aos Modelos Neurais e MLP Modelo Multilayer Perceptron,
- 13. Modelos Sequenciais e Classificação com TensorFlow
- 14. Grandes Modelos de Linguagem

Metodologia:

Aulas expositivas e exercícios práticos em Python e bibliotecas como Pandas, Matplotlib, scikit-learn, statsmodels e TensorFlow. Avaliação com prova teórica e prática, exercícios e projeto em grupo de aplicação de IA.

Critério de Avaliação:

Nota Intermediária 1 N1 = 0,7 * P1 + 0,3 * ATIV1

Nota Intermediária 2 N2 = 0,7 * P2 + 0,3 * ATIV2

Média Final MF = (N1 + N2) / 2 + NP

na FCI)

Nota de participação (NP) (SOMENTE SE DEFINIDA PELA UNIVERSIDADE, Não haverá nota de participação da disciplina

Onde P1, P2 correspondem a provas individuais e ATIV1, ATIV2 o conjunto de atividades práticas da disciplina incluindo exercícios, projeto e atividades em grupo com pesos definidos ao longo do semestre pelo professor a depender das atividades.

CRITÉRIOS DE APROVAÇÃO (DEFINIDO PELA UNIVERSIDADE)

Bibliografia Básica:

- AGGARWAL, Charu C. Artificial Intelligence: A Textbook. New York: Springer: 2021.
- CHOLLET, François. Deep Learning with Python, 2ed. Shelter Island: Manning, 2021.
- GÉRON, Aurélien. Hands-On Machine Learning with Scikit-Learn and TensorFlow:
 Concepts, Tools, and Techniques to Build Intelligent Systems, 2 ed. Sebastopol: O'Reilly, 2019.

Bibliografia Complementar:

- GOODFELLOW, Ian; BENGIO, Yoshua, COURVILLE, Aaron. Deep Learning. Cambridge: MIT Press, 2016.
- RASCHKA, Sebastian; MIRJALILI, Vahid. Python Machine Learning. 3 ed. Birmingham: Packt, 20179
- RUSSEL, Stuart; NORVIG, Peter. Artificial Intelligence: A Modern Approach. 3 ed. Upper Saddle River: Pearson, 2010.
- TAN, Pang-Ning; STEINBACH, Michael; KUMAR, Vipin. Introduction to Data Mining. 2 ed. Upper Saddle River: Pearson, 2018.
- VANDERPLAS, Jake. Python Data Science Handbook. Sebastopol: O'Reilly, 2017.