CSE 246: Algorithms

Insertion Sort, Bubble Sort, Selection Sort

Insertion Sort: Main Intuition

- I want to sort ith element, I will check with the sorted previous [1, (i-1)th] elements (Trying to insert the elements in sorted order)
- I will try to move the element, as much as I can.
 - If I can. I will move forward
 - Otherwise stop, no need to

	5	8	6	1	7	9
--	---	---	---	---	---	---

i=1

5	8	6	1	7	9
5	6	8	1	7	9

5	6	8	1	7	9
5	6	1	8	7	9
5	1	6	8	7	9
1	5	6	8	7	9

1	5	6	8	7	9
1	5	6	7	8	9

Insertion Sort: Complexity Analysis

- Memory Complexity, O(N)
- Worst Case Complexity, $O(N^2)$: [9, 8, 7, 6, 5, 1] ~ 0+1+2+3+4+5 = (5* 6)/2 ~ c * 6²
- Best Case Complexity, O(N): Already sorted during insertion

Bubble Sort

Bubble sort: Main Intuition

- Concept: Heavier bubble stays below, lighter bubble stays above
- Will iterate n times
 - In each iteration, will sort each consecutive elements: (i, i+1) -> (i+1, i+2) -> (i+2, i+3)
 - So, after each iteration, one element will be sorted/reach its actual position
 - After n iteration, n elements will be sorted

5	8	6	1	7	9		
i=O							
5	8	6	1	7	9		
5	8	6	1	7	9		
			i				
5	6	8	1	7	9		
	1	ı		Í			
5	6	1	8	7	9		
5	6	1	7	8	9		

5	6	1	7	8	9	
i=1						
5	6	1	7	8	9	
5	6	1	7	8	9	
5	1	6	7	8	9	
5	1	6	7	8	9	
5	1	6	7	8	9	

5	1	6	7	8	9			
i=2								
5	1	6	7	8	9			
1	5	6	7	8	9			
1	5	6	7	8	9			
			8					
1	5	6	7	8	9			
1	5	6	7	8	9			

1	5	6	7	8	9			
i=3								
1	5	6	7	8	9			
1	5	6	7	8	9			
1	5	6	7	8	9			
			ı					
1	5	6	7	8	9			
1	5	6	7	8	9			

1	5	6	7	8	9			
i=4								
1	5	6	7	8	9			
1	5	6	7	8	9			
1	5	6	7	8	9			
			ı					
1	5	6	7	8	9			
1	5	6	7	8	9			

1	5	6	7	8	9			
i=5								
1	5	6	7	8	9			
1	5	6	7	8	9			
				-	,			
1	5	6	7	8	9			
			ı					
1	5	6	7	8	9			
1	5	6	7	8	9			

Bubble Sort: Optimizations

- Already sorted -> No shifting in some iteration
- If in each iteration, one element gets sorted, do we need to check all the pairs in each iteration.

Bubble Sort: Complexity Analysis

- Worst Case/ Big O Complexity: O(N²) -> all the elements are reverse sorted
- Best Case Complexity: O(N) -> all are sorted, Using optimizations
- Memory Complexity, O(N)

Selection Sort

Selection Sort: Main Intuition

- In each iteration, we fix a position and then select the most suitable element for that position
- For ith position,
 - Compare with all the values in [(i+1)th, Nth] positions
 - Choose the best value suitable for that position [the smallest value]

1	8	6	5	7	9
i=1					
1	8	6	5	7	9
1	8	6	5	7	9
1	5	6	8	7	9

1 5 6 8 7 9

i=2

1 5 6 8 7 9

1 5 6 7 8 9

i=4

1 5 6 7 8 9

Selection Sort: Complexity

- Worst Case Complexity: O(N²)
- Best Case Complexity: O(N²)
- Memory Complexity: O(N)
- Can we make optimizations?
 - In ith selection, no swapping occurred: No [1, 2, 3, 8, 7]