Projeto: Sensor de corrente online para detecção falha mecânica

Produto: Sensor de corrente para uso Online

Justificativas:

- ampliar as falhas detectáveis através do monitoramento da corrente elétrica:

- criar uma alternativa ao monitoramento de vibração para a detecção de falhas mecânicas:

Objetivo SMART: desenvolvimento de um sensor de corrente que se conecte ao SMQ 985 v.2.3 (Paçokinha Analógico) e seja capaz de detectar falhas mecânicas e elétricas via FFT, desbalanço de corrente, sobre-carga etc.

Benefícios:

- possível substituição dos sensores de vibração por uma alternativa mais barata;

Requisitos / Escopo:

- de 1 a 3 sensores de corrente instalados nos cabos de alimentação do motor conectados a um SMQ 985 v.2.3 (Paçokinha Analógico) instalado no painel de alimentação;
- sensor não invasivo: instalação por contato sem a necessidade de alterar o circuito de alimentação do motor;
- Duas (?) versões de sensor: Range de medição 0 a 100 A e 0 a 1000A;
- sensor de baixo custo;
- duração mínima de bateria de 2 anos;
- alimentação dos sensores através da bateria do SMQ 985 v.2.3;
- aquisição e transmissão das ondas no tempo das correntes: definir taxa e tempo de aquisição;

Fora do escopo:

- desenvolvimento dos sensores para monitoramento de qualidade de energia;
- desenvolvimento do SMQ 985 v.2.3 e do Gateway;
- desenvolvimento da mecânica;

Premissas:

- utilizar os mesmos sensores **validados** no "Projeto_substituição de garras M.T.E." e "Projeto_Sensor de corrente online para detecção falha elétrica";
- utilizar a mesma mecânica do projeto "Projeto_Sensor de corrente online para detecção falha elétrica";

Equipe:

- Marcos H. Pitoli;
- Felipe / Luiz / Vitor: firmeware SMQ 985 v.2.3;
- Amaury: process;
- Diego: interface;

Riscos:

- não encontrarmos o sensor escolhido para comprar devido a crise dos semicondutores;
- campo magnético criado pelo motor ou por equipamentos ao redor interferirem nas medições e inviabilizar o produto para a detecção de falhas mecânicas;
- técnica não ser precisa o suficiente para a detecção de falhas mecânicas na aplicação online;
- ser necessário alguma adaptação no hardware para possibilitar a detecção de falhas mecânicas, gerando maior tempo e custo ao projeto;

Custos:

Protótipo: 200 R\$

Primeiro Lote: 10.000 R\$???

Entregas + Linha do tempo

1.1 Montagem protótipos - 2 dias

1.2 Adaptações do Firmware - 2 semanas //

1.3 Testes dos protótipos - 2 semanas //

1.4 Adaptações no Process - 2 semanas //

1.5 Adaptações na Interface - 1 semana //???

2.1 Produção do Primeiro lote - 1 mês

2.2 Testes de validação - 1 semana

2.2 Testes externos - 1 mês

3.1 Arquivos e manuais de produção - 2 dias

Total = 2 meses 3 semanas e 4 dias

Recursos - Projeto_Sensor de corrente online para detecção falha mecânica			
Pacote de trabalho	Tempo Estimado	Custo estimado	Colaboradores
1.1 Montagem dos protótipos	2 dias	200 U\$D	Pitoli
1.2 Adaptações do Firmware	2 semanas //	-	Felipe
1.3 Testes dos protótipos	2 semanas //	-	Pitoli / Amaury
1.4 Adaptações no Process	2 semanas //	-	Amaury
1.5 Adaptações na interface	1 semana // ???	-	Diego
2.1 Produção do Primeiro lote	1 mês	10.000 ???	Arnaldo
2.2 Testes de validação	1 semana	-	Pitoli / Felipe
2.3 Testes externos	1 mês	-	PCP
3.1 Arquivos e manuais de produção	2 dias	-	Pitoli

1. Prototipagem

1.1 Montagem protótipos:

1.2 Adaptações do Firmware:

1.2.1 Possíveis adaptações na rotina de aquisição dos sinais para tentar verificar falhas mecânicas;

1.3 Testes dos protótipos:

- 1.4.1 Testes internos: medições em motores com falhas mecânicas na bancada;
 - 1.4.2 Consumo e estimativa de bateria;
 - **1.4 Adaptações no Process**: adaptações que se façam necessárias
- **1.5 Adaptações na Interface**: adaptações que se façam necessárias

2. Cabeça de série

2.1 Produção do Primeiro lote

- 2.1.1 Compra materiais
- 2.1.2 Montagem primeiro lote

2.2 Testes de validação:

- 2.2.1 Repetitibilidade
- 2.2.3 Stress
- 2.2.4 Disponibilidade
- 2.2.5 Bancada

2.3 Testes externos:

- 2.3.1 Instalação em motores monitorados pela Semeq comparando com os sinais medidos;
- 2.3.2 Instalação em motores com cabos e distâncias mecânicas diferentes;
 - 2.3.3 Instalação em motores com correntes nominais diversas;

3. Produção

3.1 Arquivos e manuais de produção

- 3.1.1 Datasheet
- 3.1.2 Manual de Instalação