Project Description

This Jupyter Notebook presents an analysis of sales data. The objective of this project is to gain insights into sales trends, top-selling products, and revenue metrics. We'll explore various aspects of the data, including monthly sales trends, top-selling products, city-wise sales distribution, and hourly sales patterns.

The analysis includes data cleaning, preprocessing, and visualization to provide actionable insights for business decision-making.

LinkedIn: Raksha Namdeo(https://www.linkedin.com/in/rakshanamdeods/ (https://www.linkedin.com/in/rakshanamdeods/))

GitHub: namdraks(https://github.com/namdraks(https://github.com/namdraks(https://github.com/namdraks(https://github.com/namdraks())

Import Libraries

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Load the Data

```
In [2]: df = pd.read_csv("Sales Data MeriSkill.csv")
```

Data Cleaning and Preprocessing

In [3]: df.head()

$\alpha + 1$	וכו	
UNLI	וכו	1 :
00.0		•

	Unnamed: 0	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Sales	С
0	0	295665	Macbook Pro Laptop	1	1700.00	12/30/2019 0:01	136 Church St, New York City, NY 10001	12	1700.00	New Y
1	1	295666	LG Washing Machine	1	600.00	12/29/2019 7:03	562 2nd St, New York City, NY 10001	12	600.00	New Y
2	2	295667	USB-C Charging Cable	1	11.95	12/12/2019 18:21	277 Main St, New York City, NY 10001	12	11.95	New Y
3	3	295668	27in FHD Monitor	1	149.99	12/22/2019 15:13	410 6th St, San Francisco, CA 94016	12	149.99	S Francis
4	4	295669	USB-C Charging Cable	1	11.95	12/18/2019 12:38	43 Hill St, Atlanta, GA 30301	12	11.95	Atla
- 4										

In [4]: df.tail()

Out[4]:

	Unnamed: 0	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Sales	
185945	13617	222905	AAA Batteries (4-pack)	1	2.99	6/7/2019 19:02	795 Pine St, Boston, MA 02215	6	2.99	В
185946	13618	222906	27in FHD Monitor	1	149.99	6/1/2019 19:29	495 North St, New York City, NY 10001	6	149.99	New
185947	13619	222907	USB-C Charging Cable	1	11.95	6/22/2019 18:57	319 Ridge St, San Francisco, CA 94016	6	11.95	Fran
185948	13620	222908	USB-C Charging Cable	1	11.95	6/26/2019 18:35	916 Main St, San Francisco, CA 94016	6	11.95	Fran
185949	13621	222909	AAA Batteries (4-pack)	1	2.99	6/25/2019 14:33	209 11th St, Atlanta, GA 30301	6	2.99	A
4										•

```
In [5]: | df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 185950 entries, 0 to 185949
         Data columns (total 11 columns):
              Column
                                Non-Null Count
                                                  Dtype
          0
              Unnamed: 0
                                185950 non-null
                                                  int64
          1
              Order ID
                                 185950 non-null
                                                  int64
          2
              Product
                                185950 non-null
                                                  object
          3
              Quantity Ordered 185950 non-null int64
          4
              Price Each
                                185950 non-null
                                                 float64
              Order Date
                                185950 non-null object
              Purchase Address 185950 non-null
                                                  object
          7
              Month
                                 185950 non-null
                                                  int64
          8
              Sales
                                185950 non-null float64
          9
              City
                                185950 non-null object
          10 Hour
                                185950 non-null
                                                  int64
         dtypes: float64(2), int64(5), object(4)
         memory usage: 15.6+ MB
 In [6]: | df.columns
Out[6]: Index(['Unnamed: 0', 'Order ID', 'Product', 'Quantity Ordered', 'Price Each',
                 'Order Date', 'Purchase Address', 'Month', 'Sales', 'City', 'Hour'],
               dtype='object')
 In [7]: | df.shape
Out[7]: (185950, 11)
In [8]: | df.drop_duplicates(inplace=True)
 In [9]: | df['Order Date'] = pd.to_datetime(df['Order Date'])
In [10]: | df['Month'] = df['Order Date'].dt.month
In [11]: | df['Sales'] = df['Quantity Ordered'] * df['Price Each']
```

Exploratory Data Analysis (EDA)

In [12]: df.describe()

Out[12]:

	Unnamed: 0	Order ID	Quantity Ordered	Price Each	Month	Sale
count	185950.000000	185950.000000	185950.000000	185950.000000	185950.000000	185950.00000
mean	8340.388475	230417.569379	1.124383	184.399735	7.059140	185.49091
std	5450.554093	51512.737110	0.442793	332.731330	3.502996	332.91977
min	0.000000	141234.000000	1.000000	2.990000	1.000000	2.99000
25%	3894.000000	185831.250000	1.000000	11.950000	4.000000	11.95000
50%	7786.000000	230367.500000	1.000000	14.950000	7.000000	14.95000
75%	11872.000000	275035.750000	1.000000	150.000000	10.000000	150.00000
max	25116.000000	319670.000000	9.000000	1700.000000	12.000000	3400.00000

In [13]: print(df.dtypes)

Unnamed: 0 int64 Order ID int64 Product object Quantity Ordered int64 Price Each float64 Order Date datetime64[ns] object Purchase Address int64 Month Sales float64 City object Hour int64 dtype: object

In [14]: plt.hist(df['Sales'], bins=30)
 plt.xlabel('Sales')
 plt.ylabel('Count')
 plt.show()

Visualizations

```
In [15]: # Monthly sales trend
    monthly_sales = df.groupby('Month')['Sales'].sum()
    months = range(1, 13)
    plt.figure(figsize=(10, 6))
    plt.bar(months, monthly_sales)
    plt.xlabel('Month')
    plt.ylabel('Total Sales ($)')
    plt.title('Monthly Sales Trend')
    plt.xticks(months)
    plt.show()
```



```
In [16]: # Top-selling products
    top_products = df.groupby('Product')['Quantity Ordered'].sum().sort_values(asce
    plt.figure(figsize=(10, 6))
    top_products.plot(kind='bar')
    plt.xlabel('Product')
    plt.ylabel('Quantity Ordered')
    plt.title('Top 10 Best-Selling Products')
    plt.xticks(rotation=45)
    plt.show()
```



```
In [17]: # City-wise sales
    city_sales = df.groupby('City')['Sales'].sum().sort_values(ascending=False)
    plt.figure(figsize=(12, 6))
    city_sales.plot(kind='bar')
    plt.xlabel('City')
    plt.ylabel('Total Sales ($)')
    plt.title('City-Wise Sales')
    plt.xticks(rotation=90)
    plt.show()
```



```
In [18]: # Hourly sales distribution
    hourly_sales = df.groupby('Hour')['Sales'].sum()
    plt.figure(figsize=(10, 6))
    plt.plot(hourly_sales.index, hourly_sales.values, marker='o')
    plt.xlabel('Hour')
    plt.ylabel('Total Sales ($)')
    plt.title('Hourly Sales Distribution')
    plt.xticks(hourly_sales.index)
    plt.grid(True)
    plt.show()
```


Conclusion and Recommendations

Conclusion:

- 1. There is a clear monthly sales trend, with peak sales occurring in Decembe r.
- 2. The top-selling products include Product A, Product B, and Product C.
- 3. New York City and San Francisco are the top cities in terms of total sale s.
- 4. Hourly sales show that the highest sales occur around 12 PM and 7 PM.

[n []:	ı :			
---------	------------	--	--	--