# INF721

2024/2



# Deep Learning

L6: Backpropagation

# Logistics

#### **Announcements**

- ▶ PA1: Logistic Regression is due this monday (30/09)!
- ▶ We don't have class this monday. It's a holiday!

#### **Last Lecture**

- Non-linearly Separable Problems
- Multilayer Perceptron
  - Forward Pass
  - Hypothesis Space (Composite Functions)
- Categorical Cross-Entropy Loss



## Lecture Outline

- Gradient Descent for Neural Networks
- Computational Graph
- Backpropagation
- Examples:
  - Logistic Regression
  - Multilayer Perceptron



## **Gradient Descent for Neural Networks**

```
def optimize(x, y, lr, n_iter):
 # Init weights with rand. vals. close to 0
 W_1, b_1, W_2, b_2 = init_weights_rand()
 for t in range(n_iter):
   # Predict x labels
   y_hat = forward(W_1, b_1, W_2, b_2)
   # Compute gradients
   dw 1 = ?, dw 2 = ?
   db 1 = ?, db 2 = ?
   # Update weights
   W_1 = W_1 - lr * dw_1
   b_1 = b_1 - lr * db_1
   return W_1, b_1, W_2, b_2
```

#### MLP (2 Layers)

$$\mathbf{z}^{[1]} = W^{[1]}\mathbf{x} + \mathbf{b}^{[1]}$$

$$\mathbf{a}^{[1]} = g^{[1]}(\mathbf{z}^{[1]})$$

$$z^{[2]} = W^{[2]}\mathbf{a}^{[1]} + b^{[2]}$$

$$\hat{y} = \sigma(z^{[2]})$$

#### **BCE** Loss Function (Binary Classification)

$$L(h) = -\frac{1}{n} \sum_{i=1}^{n} (y_i \log \hat{y}_i + (1 - y_i) \log (1 - \hat{y}_i))$$

#### **Gradients**

$$\frac{\partial L}{\partial W_1} = ? \qquad \frac{\partial L}{\partial W_2} = ?$$

$$\frac{\partial L}{\partial b_1} = ? \qquad \frac{\partial L}{\partial b_2} = ?$$



# Computing the gradients of a Neural Network

Linear models are simple enough so we can compute gradients by hand:

Linear Regression: 
$$\frac{\partial L}{\partial w} = (\hat{y} - y)x, \frac{\partial L}{\partial b} = (\hat{y} - y)$$

Logistic Regression: 
$$\frac{\partial L}{\partial w} = (\hat{y} - y)x, \frac{\partial L}{\partial b} = (\hat{y} - y)$$

However, as the size of our models grows, this becames impractical:

- ▶ It's easy to make mistakes
- ▶ It's not flexible if we change the model or loss function, we have to recompute the gradients!
- Solution: backpropagation!



# Computational Graph

A computional graph is a directed graph that represents mathematical operations:

- A node is a function of its inputs
- An edge represents a function argument







# Backpropagation

Chain rule: 
$$\frac{d}{dx}f(g(x)) = \frac{df}{dg} \cdot \frac{dg}{dx}$$

Backpropagation is an algorithm that uses a computational graph and the chain rule to compute the gradient of a given function  $f(x_1, x_2, \ldots, x_n)$  with respect to it's inputs  $x_1, x_2, \ldots, x_n$ .

#### Forward pass

Compute the output of f

Nodes store partial results

#### 2. Backward pass

Compute the gradient of the output with respect to each input:

$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

- Nodes know how to compute local gradients
- Apply the chain rule backwards (depth-first traversal: 1. 2. 3. 4. 5.)



# Backpropagation for Logistic Regression

We typicall use backpropagation to compute the gradients of a loss function with respect to weights of a neural network

Logistic Regression: 
$$\hat{y} = h(x) = \frac{1}{1 + e^{-(wx+b)}}$$

**BCE Loss:** 
$$L(\hat{y}, y) = -y \log \hat{y} + (1 - y) \log (1 - \hat{y})$$





# Backpropagation for Logistic Regression

We typicall use backpropagation to compute the gradients of a loss function with respect to weights of a neural network

Logistic Regression: 
$$\hat{y} = h(x) = \frac{1}{1 + e^{-(wx+b)}}$$

**BCE Loss:** 
$$L(\hat{y}, y) = -y \log \hat{y} + (1 - y) \log (1 - \hat{y})$$





MLP: 
$$\mathbf{z}^{[1]} = W^{[1]}\mathbf{x} + \mathbf{b}^{[1]}$$
  $z^{[2]} = W^{[2]}\mathbf{a}^{[1]} + b^{[2]}$   $\mathbf{a}^{[1]} = g^{[1]}(\mathbf{z}^{[1]})$   $\hat{y} = \sigma(z^{[2]})$ 

**BCE Loss:**  $L(\hat{y}, y) = -y \log \hat{y} + (1 - y) \log (1 - \hat{y})$ 



$$W^{[1]} = \begin{bmatrix} w_{11}^{[1]} & w_{21}^{[1]} \\ w_{12}^{[1]} & w_{22}^{[1]} \end{bmatrix} \quad W^{[2]} = \begin{bmatrix} w_{11}^{[2]} & w_{21}^{[2]} \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\frac{\partial \mathbf{z}^{[1]}}{\partial W^{[1]}} = \mathbf{x}^{T}, \frac{\partial \mathbf{z}^{[1]}}{\partial \mathbf{b}^{[1]}} = 1 \qquad \frac{\partial \mathbf{a}^{[1]}}{\partial \mathbf{z}^{[1]}} = \frac{\partial g}{\partial \mathbf{z}^{[1]}}$$

$$\mathbf{z}^{[1]} = W^{[1]}\mathbf{x} + \mathbf{b}^{[1]} \longrightarrow \mathbf{a}^{[1]} = g(\mathbf{z}^{[1]})$$

MLP: 
$$\mathbf{z}^{[1]} = W^{[1]}\mathbf{x} + \mathbf{b}^{[1]}$$
  $z^{[2]} = W^{[2]}\mathbf{a}^{[1]} + b^{[2]}$   $\mathbf{a}^{[1]} = g^{[1]}(\mathbf{z}^{[1]})$   $\hat{y} = \sigma(z^{[2]})$ 

**BCE Loss:**  $L(\hat{y}, y) = -y \log \hat{y} + (1 - y) \log (1 - \hat{y})$ 

$$\mathbf{b}^{[1]}$$

$$\mathbf{a}^{[1]} = W^{[1]}\mathbf{x} + \mathbf{b}^{[1]}$$

$$\mathbf{a}^{[1]} = g(\mathbf{z}^{[1]})$$

$$\mathbf{b}^{[1]}$$

$$\mathbf{b}^{[1]}$$

$$b^{[2]}$$

$$W^{[1]} = \begin{bmatrix} w_{11}^{[1]} & w_{21}^{[1]} \\ w_{12}^{[1]} & w_{22}^{[1]} \end{bmatrix} \quad W^{[2]} = \begin{bmatrix} w_{11}^{[2]} & w_{21}^{[2]} \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$



MLP: 
$$\mathbf{z}^{[1]} = W^{[1]}\mathbf{x} + \mathbf{b}^{[1]}$$
  $z^{[2]} = W^{[2]}\mathbf{a}^{[1]} + b^{[2]}$   $\mathbf{a}^{[1]} = g^{[1]}(\mathbf{z}^{[1]})$   $\hat{y} = \sigma(z^{[2]})$ 

**BCE Loss:**  $L(\hat{y}, y) = -y \log \hat{y} + (1 - y) \log (1 - \hat{y})$ 

$$\frac{\partial \mathbf{z}^{[1]}}{\partial W^{[1]}} = \mathbf{x}^{T}, \frac{\partial \mathbf{z}^{[1]}}{\partial \mathbf{b}^{[1]}} = 1$$

$$\mathbf{BCE Loss:} \ L(\hat{\mathbf{y}}, \mathbf{y}) = -\mathbf{y} \log \hat{\mathbf{y}} + (1 - \mathbf{y}) \log (1 - \hat{\mathbf{y}}))$$

$$W^{[1]}$$

$$\mathbf{g}.$$

$$\frac{\partial L}{\partial W^{[1]}} = ?$$

$$\frac{\partial L}{\partial \mathbf{z}^{[1]}} = ?$$

$$\mathbf{g}.$$

$$\frac{\partial L}{\partial \mathbf{z}^{[2]}} = ?$$

$$\mathbf{g}.$$

$$\frac{\partial L}{\partial \mathbf{z}^{[2]}} = ?$$

$$\mathbf{g}.$$

$$\frac{\partial L}{\partial \mathbf{z}^{[2]}} = ?$$

$$z^{[2]} = W^{[2]}\mathbf{a}^{[1]} + b^{[2]} \qquad \hat{y} = \sigma(z^{[2]}) \qquad L(\hat{y}, y) \qquad 1.$$

$$\frac{\partial L}{\partial z^{[2]}} = ? \qquad \frac{\partial L}{\partial \hat{y}} = ? \qquad \frac{\partial L}{\partial L} = ?$$

$$\frac{\partial L}{\partial b^{[2]}} = ? W^{[1]} = \begin{bmatrix} w_{11}^{[1]} & w_{12}^{[1]} \\ w_{12}^{[1]} & w_{12}^{[1]} \end{bmatrix}$$

$$W^{[1]} = \begin{bmatrix} w_{11}^{[1]} & w_{21}^{[1]} \\ w_{12}^{[1]} & w_{22}^{[1]} \end{bmatrix} \quad W^{[2]} = \begin{bmatrix} w_{11}^{[2]} & w_{21}^{[2]} \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\frac{\partial \mathbf{z}^{[1]}}{\partial W^{[1]}} = \mathbf{x}^{T}, \frac{\partial \mathbf{z}^{[1]}}{\partial \mathbf{b}^{[1]}} = 1 \qquad \frac{\partial \mathbf{a}^{[1]}}{\partial \mathbf{z}^{[1]}}$$

MLP: 
$$\mathbf{z}^{[1]} = W^{[1]}\mathbf{x} + \mathbf{b}^{[1]}$$
  $z^{[2]} = W^{[2]}\mathbf{a}^{[1]} + b^{[2]}$   $\mathbf{a}^{[1]} = g^{[1]}(\mathbf{z}^{[1]})$   $\hat{y} = \sigma(z^{[2]})$ 

**BCE Loss:** 
$$L(\hat{y}, y) = -y \log \hat{y} + (1 - y) \log (1 - \hat{y})$$

$$W^{[1]}$$
9.

$$\mathbf{z}^{[1]} = W^{[1]}\mathbf{x} + \mathbf{b}^{[1]}$$

$$\frac{\partial L}{\partial W^{[1]}} = \frac{\partial \mathbf{z}^{[1]}}{\partial W^{[1]}} \cdot \frac{\partial L}{\partial Z^{[1]}} \qquad \frac{\partial L}{\partial Z^{[1]}} = \frac{\partial \mathbf{a}^{[1]}}{\partial \mathbf{z}^{[1]}} \cdot \frac{\partial L}{\partial a^{[1]}}$$

$$\mathbf{a}^{[1]} = g(\mathbf{z}^{[1]})$$

$$\left| \frac{\partial z^{[2]}}{\partial W^{[2]}} = \mathbf{a}^{[1]^T}, \frac{\partial z^{[2]}}{\partial b^{[2]}} = 1, \frac{\partial z^{[2]}}{\partial \mathbf{a}^{[1]}} = W^{[2]^T} \right| \left| \frac{\partial \hat{y}}{\partial z^{[2]}} = \hat{y}(1 - \hat{y}) \right| \left| \frac{\partial L}{\partial \hat{y}} = -\frac{y}{\hat{y}} + \frac{1 - y}{1 - \hat{y}} \right|$$

$$\frac{\partial \hat{y}}{\partial z^{[2]}} = \hat{y}(1 - \hat{y})$$

$$\frac{\partial L}{\partial \hat{y}} = -\frac{y}{\hat{y}} + \frac{1-y}{1-\hat{y}}$$

$$\mathbf{b}^{[1]}$$

8. 
$$\frac{\partial L}{\partial b^{[1]}} = \frac{\partial \mathbf{z}^{[1]}}{\partial \mathbf{b}^{[1]}} \cdot \frac{\partial L}{\partial Z^{[1]}}$$

$$W^{[2]}$$

$$\frac{\partial L}{\partial W^{[2]}} = \frac{\partial z^{[2]}}{\partial W^{[2]}} \cdot \frac{\partial L}{\partial z^{[2]}}$$

$$z^{[2]} = W^{[2]}\mathbf{a}^{[1]} + b^{[2]}$$

$$\hat{y} = \sigma(z^{[2]})$$

$$\hat{y} = \sigma(z^{[2]})$$

$$L(\hat{y}, y)$$

$$\frac{\partial L}{\partial z^{[2]}} = \frac{\partial \hat{y}}{\partial z^{[2]}} \cdot \frac{\partial L}{\partial \hat{y}}$$

$$\frac{\partial L}{\partial \hat{\mathbf{y}}} = \frac{\partial L}{\partial \hat{\mathbf{y}}} \cdot \frac{\partial L}{\partial L}$$

$$\frac{\partial L}{\partial L} = 1$$

$$b^{[2]}$$
 4.

$$\frac{\partial L}{\partial b^{[2]}} = \frac{\partial z^{[2]}}{\partial b^{[2]}} \cdot \frac{\partial L}{\partial z^{[2]}}$$

$$W^{[1]} = \begin{vmatrix} w_{11}^{[1]} & w_{21}^{[1]} \\ w_{12}^{[1]} & w_{22}^{[1]} \end{vmatrix}$$

$$b^{[2]} \stackrel{4.}{=} \frac{\partial L}{\partial b^{[2]}} = \frac{\partial z^{[2]}}{\partial b^{[2]}} \cdot \frac{\partial L}{\partial z^{[2]}} \qquad W^{[1]} = \begin{bmatrix} w_{11}^{[1]} & w_{21}^{[1]} \\ w_{12}^{[1]} & w_{22}^{[1]} \end{bmatrix} \quad W^{[2]} = \begin{bmatrix} w_{11}^{[2]} & w_{21}^{[2]} \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$



$$\frac{\partial \mathbf{z}^{[1]}}{\partial W^{[1]}} = \mathbf{x}^{T}, \frac{\partial \mathbf{z}^{[1]}}{\partial \mathbf{b}^{[1]}} = 1$$

$$\frac{\partial \mathbf{a}^{[1]}}{\partial \mathbf{z}^{[1]}} = \frac{\partial g}{\partial \mathbf{z}^{[1]}}$$

MLP: 
$$\mathbf{z}^{[1]} = W^{[1]}\mathbf{x} + \mathbf{b}^{[1]}$$
  $z^{[2]} = W^{[2]}\mathbf{a}^{[1]} + b^{[2]}$   $\mathbf{a}^{[1]} = g^{[1]}(\mathbf{z}^{[1]})$   $\hat{y} = \sigma(z^{[2]})$ 

**BCE Loss:**  $L(\hat{y}, y) = -y \log \hat{y} + (1 - y) \log (1 - \hat{y})$ 

$$\mathbf{W}^{[1]} = \mathbf{w}^{[1]} \mathbf{x} + \mathbf{b}^{[1]}$$

$$\mathbf{z}^{[1]} = \mathbf{w}^{[1]} \mathbf{x} + \mathbf{b}^{[1]}$$
7.
$$\mathbf{a}^{[1]} = g(\mathbf{z}^{[1]})$$
6.

$$\left| \frac{\partial z^{[2]}}{\partial W^{[2]}} = \mathbf{a}^{[1]^T}, \frac{\partial z^{[2]}}{\partial b^{[2]}} = 1, \frac{\partial z^{[2]}}{\partial \mathbf{a}^{[1]}} = W^{[2]^T} \right| \left| \frac{\partial \hat{y}}{\partial z^{[2]}} = \hat{y}(1 - \hat{y}) \right| \left| \frac{\partial L}{\partial \hat{y}} = -\frac{y}{\hat{y}} + \frac{1 - y}{1 - \hat{y}} \right|$$

$$\frac{\partial \hat{y}}{\partial z^{[2]}} = \hat{y}(1 - \hat{y})$$

$$\frac{\partial L}{\partial \hat{y}} = -\frac{y}{\hat{y}} + \frac{1-y}{1-\hat{y}}$$

$$\mathbf{b}^{[1]}$$

$$\mathbf{b}^{[1]}$$
8.
$$\frac{\partial L}{\partial b^{[1]}} = \frac{\partial \mathbf{g}}{\partial \mathbf{z}^{[1]}} \odot W^{[2]^T}(\hat{y} - y)$$
5. 
$$\frac{\partial L}{\partial W^{[2]}} = \mathbf{a}^{[1]^T}(\hat{y} - y)$$

$$\frac{\partial L}{\partial Z^{[1]}} = \frac{\partial \mathbf{g}}{\partial \mathbf{z}^{[1]}} \odot W^{[2]^T}(\hat{y} - y) \qquad \frac{\partial L}{\partial \mathbf{a}^{[1]}} = W^{[2]^T}(\hat{y} - y)$$

5. 
$$\frac{\partial L}{\partial W^{[2]}} = \mathbf{a}^{[1]^T} (\hat{y} - y)$$

$$z^{[2]} = W^{[2]}\mathbf{a}^{[1]} + b^{[2]}$$

$$\hat{y} = \sigma(z^{[2]})$$
3.

$$\frac{\partial L}{\partial z^{[2]}} = \hat{y} - y \qquad \qquad \frac{\partial L}{\partial \hat{y}} = -\frac{y}{\hat{y}} + \frac{1 - y}{1 - \hat{y}} \qquad \frac{\partial L}{\partial L} = 1$$

 $L(\hat{y}, y)$ 

$$b^{[2]} \overset{4.}{\xrightarrow{\partial L}} = \hat{\mathbf{v}}$$

$$W^{[1]} = \begin{bmatrix} w_{11}^{[1]} & w_{21}^{[1]} \\ w_{12}^{[1]} & w_{22}^{[1]} \end{bmatrix}$$

$$W^{[1]} = \begin{bmatrix} w_{11}^{[1]} & w_{21}^{[1]} \\ w_{12}^{[1]} & w_{22}^{[1]} \end{bmatrix} \quad W^{[2]} = \begin{bmatrix} w_{11}^{[2]} & w_{21}^{[2]} \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$



## **Gradient Descent for Neural Networks**

```
def optimize(x, y, lr, n_iter):
 # Init weights with rand. vals. close to 0
 W_1, b_1, W_2, b_2 = init_weights_rand()
 for t in range(n_iter):
   # Predict x labels
   y_hat = forward(W_1, b_1, W_2, b_2)
   # Compute gradients
   dw_1, db_1 , dw_2, db_2 = backward()
   # Update weights
   W_1 = W_1 - lr * dw_1
   b_1 = b_1 - lr * db_1
  return W 1, b 1, W 2, b 2
```

# MLP(2 Layers) $\mathbf{z}^{[1]} = W^{[1]}\mathbf{x} + \mathbf{b}^{[1]}$ $\mathbf{a}^{[1]} = g^{[1]}(\mathbf{z}^{[1]})$ $z^{[2]} = W^{[2]}\mathbf{a}^{[1]} + b^{[2]}$ $\hat{\mathbf{y}} = \sigma(z^{[2]})$

**BCE** Loss Function (Binary Classification)

$$L(h) = -\frac{1}{n} \sum_{i=1}^{n} (y_i \log \hat{y}_i + (1 - y_i) \log (1 - \hat{y}_i))$$

#### **Gradients**

$$\frac{\partial L}{\partial W_1} = \mathbf{x}^T \frac{\partial \mathbf{g}}{\partial \mathbf{z}^{[1]}} \odot W^{[2]^T} (\hat{\mathbf{y}} - \mathbf{y}) \qquad \frac{\partial L}{\partial W_2} = \mathbf{a}^{[1]} (\hat{\mathbf{y}} - \mathbf{y})$$
$$\frac{\partial L}{\partial b_1} = \frac{\partial \mathbf{g}}{\partial \mathbf{z}^{[1]}} \odot W^{[2]^T} (\hat{\mathbf{y}} - \mathbf{y}) \qquad \frac{\partial L}{\partial b^{[2]}} = \hat{\mathbf{y}} - \mathbf{y}$$



## Next Lecture

L7: Evaluating Deep Learning Models

Metrics for evaluating the generalization deep learning models

- Acuracy/Error
- Learning Curve
- Cross-validation
- Confusion Matrix

