N BARYONS (S = 0, I = 1/2)

 $p, N^+ = uud; \quad n, N^0 = udd$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Mass $m=1.007276466621\pm0.000000000053$ u Mass $m=938.27208816\pm0.00000029$ MeV [a] $\left|m_{m p}-m_{\overline{m p}}
ight|/m_{m p}~<~7 imes10^{-10}$, CL $=90\%~^{[b]}$ $\left|q_p + q_{\overline{p}}\right|/e < 7 imes 10^{-10}$, CL = 90% [b] $|q_p + q_e|/e < 1 \times 10^{-21} [c]$ Magnetic moment $\mu = 2.7928473446 \pm 0.0000000008 \ \mu_{N}$ $(\mu_{p} + \mu_{\overline{p}}) / \mu_{p} = (0.002 \pm 0.004) \times 10^{-6}$ Electric dipole moment $d < 0.021 \times 10^{-23}$ e cm Electric polarizability $\alpha = (11.2 \pm 0.4) \times 10^{-4} \text{ fm}^3$ Magnetic polarizability $\beta = (2.5 \pm 0.4) \times 10^{-4} \text{ fm}^3$ (S = 1.2) Charge radius, μp Lamb shift = 0.84087 \pm 0.00039 fm $^{[d]}$ Charge radius = 0.8409 ± 0.0004 fm $^{[d]}$ Magnetic radius $= 0.851 \pm 0.026$ fm ^[e] Mean life $\tau > 9 \times 10^{29}$ years, CL = 90% [f] $(p \rightarrow \text{invisible mode})$ Mean life $\tau > 10^{31}$ to 10^{33} years f (mode dependent)

See the "Note on Nucleon Decay" in our 1994 edition (Phys. Rev. **D50**, 1173) for a short review.

The "partial mean life" limits tabulated here are the limits on τ/B_i , where τ is the total mean life and B_i is the branching fraction for the mode in question. For N decays, p and n indicate proton and neutron partial lifetimes.

p DECAY MODES	Partial mean (10 ³⁰ years)		idence level	<i>p</i> (MeV/ <i>c</i>)
	Antilepton + meson	1		
$N ightarrow e^+ \pi$	> 5300 (n), 3		90%	459
$N ightarrow \mu^+ \pi$	> 3500 (n), 3	> 7700 (p)	90%	453
$N ightarrow u \pi$	> 1100 (n), 3	> 390 (p)	90%	459
$ ho ightarrow ~e^+ \eta$	> 10000		90%	309
$ ho ightarrow \ \mu^+ \eta$	> 4700		90%	297
$n ightarrow \ u \eta$	> 158		90%	310
$N ightarrow \ e^+ ho$	> 217 (n), >	720 (p)	90%	149
$N \rightarrow \mu^+ \rho$	> 228 (n), >	570 (p)	90%	113
https://pdg.lbl.gov	Page 1	Created:	5/31/2023	09:09

$N \rightarrow \nu \rho$	$> 19 \ (n), > 162 \ (p)$	90%	149
$p \rightarrow e^+ \omega$	> 1600	90%	143
$p \rightarrow \mu^+ \omega$	> 2800	90%	105
$n \rightarrow \nu \omega$	> 108	90%	144
$N \rightarrow e^+ K$	> 17 (n), > 1000 (p)	90%	339
$N o \mu^+ K$	> 26 (n), > 1600 (p)	90%	329
$N \rightarrow \nu K$	> 86 (n), $>$ 5900 (p)	90%	339
$n o u K_S^0$	> 260	90%	338
$p \to e^+ K^* (892)^0$	> 84	90%	45
$N \rightarrow \nu K^*(892)$	>78 (n), >51 (p)	90%	45
	Antilepton + mesons		
$p \rightarrow e^+ \pi^+ \pi^-$	> 82	90%	448
$p \rightarrow e^+ \pi^0 \pi^0$	> 147	90%	449
$n \rightarrow e^+\pi^-\pi^0$	> 52	90%	449
$p \rightarrow \mu^+ \pi^+ \pi^-$	> 133	90%	425
$p \rightarrow \mu^+ \pi^0 \pi^0$	> 101	90%	427
$n \rightarrow \mu^+ \pi^- \pi^0$	> 74	90%	427
$n \rightarrow e^+ K^0 \pi^-$	> 18	90%	319
	_		
	Lepton + meson		
$n \rightarrow e^- \pi^+$	> 65	90%	459
$n \rightarrow \mu^- \pi^+$	> 49	90%	453
$n \rightarrow e^- \rho^+$	> 62	90%	150
$n \rightarrow \mu^- \rho^+$	> 7	90%	115
$n \rightarrow e^- K^+$	> 32	90%	340
$n \rightarrow \mu^- K^+$	> 57	90%	330
	Lepton + mesons		
$p \rightarrow e^- \pi^+ \pi^+$	> 30	90%	448
$n \rightarrow e^- \pi^+ \pi^0$	> 29	90%	449
$p \rightarrow \mu^- \pi^+ \pi^+$	> 17	90%	425
$n \rightarrow \mu^- \pi^+ \pi^0$	> 34	90%	427
$p ightarrow e^- \pi^+ K^+$	> 75	90%	320
$p \rightarrow \mu^- \pi^+ K^+$	> 245	90%	279
A	ntilepton + photon(s)		
$p \rightarrow e^+ \gamma$	> 670	90%	469
$p \rightarrow \mu^+ \gamma$	> 478	90%	463
$n \rightarrow \nu \gamma$	> 550	90%	470
$p \rightarrow e^+ \gamma \gamma$	> 100	90% 90%	469
$n \rightarrow \nu \gamma \gamma$	> 100	90% 90%	
, ,		9070	470
	ilepton + single massless		
$p \rightarrow e^+ X$	> 790	90%	-
$p \rightarrow \mu^+ X$	> 410	90%	_

 ${\sf https://pdg.lbl.gov}$

Page 2

Three (or more) leptons

$ ho ightarrow \ e^+ e^+ e^-$	> 793	90%	469
$ ho ightarrow \ e^+ \mu^+ \mu^-$	> 359	90%	457
$ ho ightarrow e^+ u u$	> 170	90%	469
$n ightarrow e^+ e^- u$	> 257	90%	470
$n ightarrow \ \mu^+ \mathrm{e}^- u$	> 83	90%	464
$n ightarrow \mu^+ \mu^- \nu$	> 79	90%	458
$ ho ightarrow \ \mu^+ e^+ e^-$	> 529	90%	463
$p ightarrow \ \mu^- e^+ e^+$	$> 1.90 \times 10^4$	90%	463
$ ho ightarrow \ \mu^+ \mu^+ \mu^-$	> 675	90%	439
$p \rightarrow \mu^+ \nu \nu$	> 220	90%	463
$ ho ightarrow e^- \mu^+ \mu^+$	> 6	90%	457
$n \rightarrow 3\nu$	$> 5 \times 10^{-4}$	90%	470
	Inclusive modes		
$N ightarrow e^+$ anything	> 0.6 (n, p)	90%	_

$N ightarrow \ e^+$ anything	> 0.6 (n, p)	90%	_
$N ightarrow \ \mu^+$ anything	> 12 (n, p)	90%	_
$N ightarrow \ e^+ \pi^0$ anything	> 0.6 (n, p)	90%	_

$\Delta B = 2$ dinucleon modes

The following are lifetime limits per iron nucleus.

$pp ightarrow \pi^+\pi^+$	> 72.2	90%	_
$pn \rightarrow \pi^+\pi^0$	> 170	90%	_
$nn \rightarrow \pi^+\pi^-$	> 0.7	90%	_
$nn \rightarrow \pi^0 \pi^0$	> 404	90%	_
$pp ightarrow K^+K^+$	> 170	90%	_
$p p ightarrow e^+ e^+$	> 5.8	90%	_
$ ho ho ightarrow ~e^+ \mu^+$	> 3.6	90%	_
$ ho ho ightarrow \ \mu^+ \mu^+$	> 1.7	90%	_
$pn ightarrow e^{+}\overline{ u}$	> 260	90%	_
$pn ightarrow \mu^+ \overline{ u}$	> 200	90%	_
$pn ightarrow au^+ \overline{ u}_{ au}$	> 29	90%	_
$nn \rightarrow \text{ invisible}$	> 1.4	90%	_
nn $ ightarrow u_{m e} \overline{ u}_{m e}$	> 1.4	90%	_
nn $ ightarrow$ $ u_{\mu}\overline{ u}_{\mu}$	> 1.4	90%	_
$pn \rightarrow \text{invisible}$	> 0.06	90%	_
$pp \rightarrow \text{invisible}$	> 0.11	90%	_

P DECAY MODES

p DECAY MODES	Partial mean life (years)	Confidence level	$p \pmod{/c}$
$\overline{p} ightarrow e^- \gamma$	$>7\times10^{5}$	90%	469
$\overline{p} \rightarrow \mu^- \gamma$	$> 5 \times 10^4$	90%	463
$\frac{1}{\overline{p}} \rightarrow e^{-\pi^0}$	$>$ 4 \times 10 ⁵	90%	459

Created: 5/31/2023 09:09

https://pdg.lbl.gov

Page 3

$\overline{ ho} ightarrow \ \mu^- \pi^0$	$> 5 \times 10^4$	90%	453
$\overline{\it p} ightarrow \it e^- \eta$	$> 2 \times 10^4$	90%	309
$\overline{p} \rightarrow \mu^- \eta$	$> 8 \times 10^{3}$	90%	297
$\overline{ ho} ightarrow e^- { m K}^0_S$	> 900	90%	337
$\overline{ ho} ightarrow \ \mu^- K_S^{ar{0}}$	$> 4 \times 10^3$	90%	326
$\overline{ ho} ightarrow \ e^- K_L^0$	$> 9 \times 10^{3}$	90%	337
$\overline{ ho} ightarrow \ \mu^- K_L^0$	$> 7 \times 10^{3}$	90%	326
$\overline{ ho} ightarrow e^- \gamma \gamma$	$> 2 \times 10^4$	90%	469
$\overline{\rho} \to \mu^- \gamma \gamma$	$> 2 \times 10^4$	90%	463
$\overline{ ho} ightarrow e^- \omega$	> 200	90%	143

n

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Mass $m=1.0086649160\pm0.0000000005$ u Mass $m=939.5654205\pm0.0000005$ MeV ^[a] $(m_n - m_{\overline{n}})/m_n = (9 \pm 6) \times 10^{-5}$ $m_n - m_p = 1.2933324 \pm 0.0000005 \text{ MeV}$ = 0.00138844919(45) uMean life $\tau = 878.4 \pm 0.5 \text{ s}$ (S = 1.8) $c\tau = 2.6335 \times 10^8 \text{ km}$ Magnetic moment $\mu=-1.9130427\pm0.0000005~\mu_N$ Electric dipole moment $d < 0.18 \times 10^{-25}$ ecm, CL = 90%Mean-square charge radius $\langle r_n^2 \rangle = -0.1155 \pm 0.0017 \text{ fm}^2$ Magnetic radius $\sqrt{\langle r_M^2 \rangle} = 0.864^{+0.009}_{-0.008}$ fm Electric polarizability $\alpha = (11.8 \pm 1.1) \times 10^{-4} \text{ fm}^3$ Magnetic polarizability $\beta = (3.7 \pm 1.2) \times 10^{-4} \text{ fm}^3$ Charge $q = (-0.2 \pm 0.8) \times 10^{-21} e$ Mean $n \overline{n}$ -oscillation time > 8.6 × 10⁷ s, CL = 90% (free n) Mean $n \overline{n}$ -oscillation time > 4.7×10^8 s, CL = 90% [g] (bound n) Mean nn'-oscillation time > 448 s, CL = 90% [h]

$pe^-\nu_e$ decay parameters [i]

n DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/ <i>c</i>)
$ ho e^- \overline{ u}_e$	100 %		1
$pe^-\overline{ u}_e\gamma$	[/] $(9.2\pm0.7)\times10^{-2}$	₁ –3	1
hydrogen-atom $\overline{ u}_e$	< 2.7 × 10	95%	1.19
Charge conserve	ation (Q) violating r	node	
$p\nu_{e}\overline{\nu}_{e}$ Q	< 8 × 10	o ⁻²⁷ 68%	1

$N(1440) 1/2^+$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Re(pole position) = 1360 to 1380 (\approx 1370) MeV -2Im(pole position) = 180 to 205 (\approx 190) MeV Breit-Wigner mass = 1410 to 1470 (\approx 1440) MeV Breit-Wigner full width = 250 to 450 (\approx 350) MeV

N(1440) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	55–75 %	398
$N\eta$	<1 %	†
$N\pi\pi$	17–50 %	347
${\it \Delta}(1232)\pi$, $\it P$ -wave	6–27 %	147
$N\sigma$	11–23 %	_
$p\gamma$, helicity $=1/2$	0.035–0.048 %	414
$n\gamma$, helicity=1/2	0.02-0.04 %	413

N(1520) 3/2⁻

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Re(pole position) = 1505 to 1515 (\approx 1510) MeV -2Im(pole position) = 105 to 120 (\approx 110) MeV Breit-Wigner mass = 1510 to 1520 (\approx 1515) MeV Breit-Wigner full width = 100 to 120 (\approx 110) MeV

N(1520) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	55–65 %	453
$N\eta$	0.07-0.09 %	142
$N\pi\pi$	25–35 %	410
$\Delta(1232)\pi$	22–34 %	225
${\it \Delta}(1232)\pi$, $\it S$ -wave	15–23 %	225
$arDelta(1232)\pi$, $ extit{D}$ -wave	7–11 %	225
$N \rho$	10–16 %	†
$N ho$, $S\!\!=\!\!3/2$, $S\!\!$ -wave	10–16 %	†

https://pdg.lbl.gov

Page 5

$N ho$, $S\!\!=\!\!1/2$, $D\!\!-\!\!$ wave	0.2-0.4 %	†
$N\sigma$	<10 %	_
$m{ ho}\gamma$	0.31-0.52 %	467
$p\gamma$, helicity $=1/2$	0.01-0.02 %	467
$p\gamma$, helicity=3/2	0.30-0.50 %	467
$n\gamma$	0.30-0.53 %	466
$n\gamma$, helicity $=1/2$	0.04-0.10 %	466
$n\gamma$, helicity=3/2	0.25-0.45 %	466
$p\gamma$, helicity=3/2 $n\gamma$ $n\gamma$, helicity=1/2	0.30-0.50 % 0.30-0.53 % 0.04-0.10 %	467 466 466

N(1535) 1/2⁻

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^-)$$

Re(pole position) = 1500 to 1520 (\approx 1510) MeV -2Im(pole position) = 80 to 130 (\approx 110) MeV Breit-Wigner mass = 1515 to 1545 (\approx 1530) MeV Breit-Wigner full width = 125 to 175 (\approx 150) MeV

N(1535) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	32–52 %	464
$N\eta$	30–55 %	176
$N\pi\pi$	4–31 %	422
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	1-4 %	240
$N \rho$	2-17 %	†
$N ho$, $S\!\!=\!\!1/2$, $S\!\!-\!\!$ wave	2–16 %	†
N ho , $S=3/2$, D -wave	<1 %	†
$N\sigma$	2–10 %	_
$N(1440)\pi$	5–12 %	†
$p\gamma$, helicity $=1/2$	0.15-0.30 %	477
$n\gamma$, helicity=1/2	0.01-0.25 %	477

N(1650) 1/2⁻

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^-)$$

Re(pole position) = 1650 to 1680 (\approx 1665) MeV -2Im(pole position) = 100 to 170 (\approx 135) MeV Breit-Wigner mass = 1635 to 1665 (\approx 1650) MeV Breit-Wigner full width = 100 to 150 (\approx 125) MeV

N(1650) DECAY MODES	Fraction (Γ_i/Γ_i)	p (MeV/c)
$N\pi$	50–70 %	547
$N\eta$	15–35 %	348
ΛK	5-15 %	169
$N\pi\pi$	20-58 %	514
$\Delta(1232)\pi$, $ extit{\it D}$ -wave	6–18 %	345
https://pdg.lbl.gov	Page 6	Created: 5/31/2023 09:09

$N \rho$	12–22 %	†
$N\rho$, $S=1/2$, S -wave	<4 %	†
$N\rho$, $S=3/2$, D -wave	12–18 %	†
$N\sigma$	2–18 %	_
$N(1440)\pi$	6–26 %	150
$p\gamma$, helicity $=1/2$	0.04-0.20 %	558
$n\gamma$, helicity=1/2	0.003-0.17 %	557

N(1675) 5/2

$$I(J^P) = \frac{1}{2}(\frac{5}{2})$$

Re(pole position) = 1650 to 1660 (\approx 1655) MeV -2Im(pole position) = 120 to 150 (\approx 135) MeV Breit-Wigner mass = 1665 to 1680 (\approx 1675) MeV Breit-Wigner full width = 130 to 160 (\approx 145) MeV

N(1675) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	38–42 %	564
$N\eta$	< 1 %	376
ΛK	<0.04 %	216
$N\pi\pi$	25–45 %	532
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	23–37 %	366
N $ ho$	0.1–0.9 %	†
$N \rho$, $S=1/2$	<0.2 %	†
$N ho$, $S\!\!=\!\!3/2$, $D\!\!$ -wave	0.1–0.7 %	†
$N\sigma$	3–7 %	_
$oldsymbol{ ho}\gamma$	0-0.02 %	575
$ ho\gamma$, helicity $=1/2$	0-0.01 %	575
$p\gamma$, helicity=3/2	0-0.01 %	575
$n\gamma$	0-0.15 %	574
$n\gamma$, helicity=1/2	0-0.05 %	574
$n\gamma$, helicity=3/2	0-0.10 %	574

N(1680) 5/2⁺

$$I(J^P) = \frac{1}{2}(\frac{5}{2}^+)$$

Re(pole position) = 1660 to 1680 (\approx 1670) MeV -2Im(pole position) = 110 to 135 (\approx 120) MeV Breit-Wigner mass = 1680 to 1690 (\approx 1685) MeV Breit-Wigner full width = 115 to 130 (\approx 120) MeV

N(1680) DECAY MODES	Fraction (Γ_i	p (MeV/c)
$N\pi$	60–70 %	571
https://pdg.lbl.gov	Page 7	Created: 5/31/2023 09:09

$N\eta$	<1 %	386
$N\pi\pi$	28–53 %	539
Δ (1232) π	11–23 %	374
${\it \Delta}(1232)\pi$, $\it P$ -wave	4–10 %	374
$arDelta(1232)\pi$, $\mathit{F} ext{-}$ wave	1–13 %	374
N ho	8-11 %	†
$N ho$, $S\!\!=\!\!3/2$, $P\!\!$ -wave	6–8 %	†
N $ ho$, $S\!\!=\!\!3/2$, $F\!\!$ -wave	2-3 %	†
$N\sigma$	9–19 %	_
$oldsymbol{ ho}\gamma$	0.21-0.32 %	581
$p\gamma$, helicity=1/2	0.001-0.011 %	581
$p\gamma$, helicity=3/2	0.20-0.32 %	581
$n\gamma$	0.021-0.046 %	581
$n\gamma$, helicity $=1/2$	0.004-0.029 %	581
$n\gamma$, helicity=3/2	0.01-0.024 %	581

N(1700) 3/2

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Re(pole position) = 1650 to 1750 (\approx 1700) MeV -2Im(pole position) = 100 to 300 (\approx 200) MeV Breit-Wigner mass = 1650 to 1800 (\approx 1720) MeV Breit-Wigner full width = 100 to 300 (\approx 200) MeV

N(1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	7–17 %	594
$N\eta$	1–2 %	422
$N\omega$	10–34 %	†
ΛK	1–2 %	283
$N\pi\pi$	>89 %	564
$\Delta(1232)\pi$	55–85 %	402
$\mathit{\Delta}(1232)\pi$, $\mathit{S} ext{-}$ wave	50–80 %	402
$\mathit{\Delta}(1232)\pi$, $\mathit{D} ext{-}$ wave	4–14 %	402
$N\rho$, $S=3/2$, S -wave	32–44 %	74
$N\sigma$	2–14 %	_
$N(1440)\pi$	3–11 %	225
$N(1520)\pi$	<4 %	145
$p\gamma$	0.01-0.05 %	604
$p\gamma$, helicity=1/2	0.0-0.024 %	604
$p\gamma$, helicity=3/2	0.002-0.026 %	604
$n\gamma$	0.01-0.13 %	603
$n\gamma$, helicity $=1/2$	0.0–0.09 %	603
$n\gamma$, helicity=3/2	0.01-0.05 %	603

N(1710) 1/2⁺

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Re(pole position) = 1650 to 1750 (\approx 1700) MeV -2Im(pole position) = 80 to 160 (\approx 120) MeV Breit-Wigner mass = 1680 to 1740 (\approx 1710) MeV Breit-Wigner full width = 80 to 200 (\approx 140) MeV

N(1710) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5–20 %	588
$N\eta$	10–50 %	412
$N\omega$	1–5 %	†
ΛK	5–25 %	269
ΣK	seen	138
$N\pi\pi$	14–48 %	557
${\it \Delta}(1232)\pi$, $\it P$ -wave	3–9 %	394
$N\rho$, $S=1/2$, P -wave	11–23 %	†
$N\sigma$	<16 %	_
$N(1535)\pi$	9–21 %	113
$p\gamma$, helicity $=1/2$	0.002-0.08 %	598
$n\gamma$, helicity= $1/2$	0.0-0.02%	597

N(1720) 3/2⁺

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

Re(pole position) = 1660 to 1710 (\approx 1680) MeV -2Im(pole position) = 150 to 300 (\approx 200) MeV Breit-Wigner mass = 1680 to 1750 (\approx 1720) MeV Breit-Wigner full width = 150 to 400 (\approx 250) MeV

N(1720) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	8–14 %	594
$N\eta$	1–5 %	422
$N\omega$	12–40 %	†
ΛK	4–19 %	283
$N\pi\pi$	>50 %	564
$\Delta(1232)\pi$	47–89 %	402
$arDelta(1232)\pi$, $ extit{\it P}$ -wave	47–77 %	402
${\it \Delta}(1232)\pi$, $\it F$ -wave	<12 %	402
$N ho$, $S{=}1/2$, $P{-}$ wave	1–2 %	74
$N\sigma$	2–14 %	_
$N(1440)\pi$	<2 %	225
$N(1520)\pi$, $\emph{S} ext{-}$ wave	1–5 %	145

https://pdg.lbl.gov

Page 9

$p\gamma$	0.05-0.25 %	604
$p\gamma$, helicity $=1/2$	0.05-0.15 %	604
$p\gamma$, helicity=3/2	0.002-0.16 %	604
$n\gamma$	0.0-0.016 %	603
$n\gamma$, helicity $=1/2$	0.0-0.01 %	603
$n\gamma$, helicity=3/2	0.0-0.015 %	603

N(1875) 3/2⁻

$$I(J^P) = \frac{1}{2}(\frac{3}{2})$$

Re(pole position) = 1850 to 1950 (\approx 1900) MeV -2Im(pole position) = 100 to 220 (\approx 160) MeV Breit-Wigner mass = 1850 to 1920 (\approx 1875) MeV Breit-Wigner full width = 120 to 250 (\approx 200) MeV

N(1875) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	3–11 %	695
$N\eta$	3–16 %	559
$N\omega$	15–25 %	371
ΛK	1-2 %	454
ΣK	0.3–1.1 %	384
$N\pi\pi$	>56 %	670
$\Delta(1232)\pi$	4–44 %	520
${\it \Delta}(1232)\pi$, $\it S$ -wave	2–21 %	520
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	2–23 %	520
$N\rho$, $S=3/2$, S -wave	36–56 %	379
$N\sigma$	16–60 %	_
$N(1440)\pi$	2–8 %	365
$N(1520)\pi$	<2 %	301
ΛK*(892)	<0.2 %	†
$p\gamma$	0.001-0.025 %	703
$p\gamma$, helicity=1/2	0.001-0.021 %	703
$p\gamma$, helicity=3/2	<0.003 %	703
$n\gamma$	<0.040 %	702
$n\gamma$, helicity=1/2	<0.007 %	702
$n\gamma$, helicity=3/2	<0.033 %	702

$N(1880) 1/2^{+}$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Re(pole position) = 1820 to 1900 (\approx 1860) MeV -2Im(pole position) = 180 to 280 (\approx 230) MeV Breit-Wigner mass = 1830 to 1930 (\approx 1880) MeV Breit-Wigner full width = 200 to 400 (\approx 300) MeV

https://pdg.lbl.gov

Page 10

N(1880) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	3–31 %	698
$N\eta$	1-55 %	563
$N\omega$	12–28 %	377
ΛK	1-3 %	459
ΣK	10–24 %	389
$N\pi\pi$	>32 %	673
$\Delta(1232)\pi$	5–42 %	524
$N\rho$, $S=1/2$, P -wave	19–45 %	385
$N\sigma$	8–40 %	539
$N(1535)\pi$	4–12 %	293
<i>N a</i> ₀ (980)	1-5 %	†
ΛK*(892)	0.5–1.1 %	†
$p\gamma$, helicity $=1/2$	seen	706
$n\gamma$, helicity=1/2	0.002-0.63 %	705

N(1895) 1/2⁻⁻

$$I(J^P)=\tfrac{1}{2}(\tfrac{1}{2}^-)$$

Re(pole position) = 1890 to 1930 (\approx 1910) MeV -2Im(pole position) = 80 to 140 (\approx 110) MeV Breit-Wigner mass = 1870 to 1920 (\approx 1895) MeV Breit-Wigner full width = 80 to 200 (\approx 120) MeV

N(1895) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	2–18 %	707
$N\eta$	15–45 %	575
$N\eta'$	10–40 %	†
$N\omega$	16–40 %	395
ΛK	3–23 %	473
ΣK	6–20 %	405
$N\pi\pi$	17–74 %	683
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	3–11 %	535
N ho	14–50 %	403
$N ho$, $S \!\! = \!\! 1/2$, $S \!\! - \!\! $ wave	<18 %	403
$N\rho$, $S=3/2$, D -wave	14–32 %	403
$N\sigma$	<13 %	_
$N(1440)\pi$	2–12 %	382
$\Lambda K^*(892)$	4-9 %	†
$p\gamma$, helicity $=1/2$	0.01–0.06 %	715
$n\gamma$, helicity=1/2	0.003-0.05 %	715

$N(1900) 3/2^+$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

Re(pole position) = 1900 to 1940 (\approx 1920) MeV -2Im(pole position) = 90 to 160 (\approx 130) MeV Breit-Wigner mass = 1890 to 1950 (\approx 1920) MeV Breit-Wigner full width = 100 to 320 (\approx 200) MeV

N(1900) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	1–20 %	723
$N\eta$	2–14 %	595
$N\eta'$	4-8 %	151
$N\omega$	7–13 %	424
ΛK	2–20 %	495
ΣK	3–7 %	431
$N\pi\pi$	>56 %	699
$\Delta(1232)\pi$	30–70 %	553
${\it \Delta}(1232)\pi$, $\it P$ -wave	9–25 %	553
${\it \Delta}(1232)\pi$, $\it F-wave$	21–45 %	553
$N\rho$, $S=1/2$	25–40 %	432
$N\sigma$	1–7 %	_
$N(1520)\pi$	7–23 %	341
$N(1535)\pi$	4–10 %	328
ΛK*(892)	< 0.2 %	†
$p\gamma$	0.001-0.025 %	731
$p\gamma$, helicity $=1/2$	0.001-0.021 %	731
$p\gamma$, helicity=3/2	<0.003 %	731
$n\gamma$	<0.040 %	730
$n\gamma$, helicity=1/2	<0.007 %	730
$n\gamma$, helicity=3/2	<0.033 %	730

N(2060) 5/2⁻

$$I(J^P) = \frac{1}{2}(\frac{5}{2})$$

Re(pole position) = 2020 to 2130 (\approx 2070) MeV -2Im(pole position) = 350 to 430 (\approx 400) MeV Breit-Wigner mass = 2030 to 2200 (\approx 2100) MeV Breit-Wigner full width = 300 to 450 (\approx 400) MeV

N(2060) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$N\pi$	7–12 %	834
$N\eta$	2–38 %	729
$N\omega$	1–7 %	600

https://pdg.lbl.gov

Page 12

ΛK	10–20 %	644
ΣK	1–5 %	593
$N\pi\pi$	12–52 %	814
${\it \Delta}(1232)\pi$, ${\it D} ext{-}$ wave	4-10 %	680
$N \rho$	5–33 %	605
$N\rho$, $S=1/2$, P -wave	<10 %	605
$N ho$, $S\!\!=\!\!3/2$, $D\!\!$ -wave	5–23 %	605
$N\sigma$	3–9 %	_
$N(1440)\pi$	4–14 %	544
$N(1520)\pi$, $ extit{P}$ -wave	9–21 %	490
$N(1680)\pi$, $\it S-wave$	8–22 %	353
ΛK*(892)	0.3–1.3 %	307
$oldsymbol{ ho}\gamma$	0.03-0.19 %	840
$p\gamma$, helicity $=1/2$	0.02-0.08 %	840
$p\gamma$, helicity=3/2	0.01-0.10 %	840
$n\gamma$	0.003-0.07 %	840
$n\gamma$, helicity $=1/2$	0.001-0.02 %	840
$n\gamma$, helicity=3/2	0.002-0.05 %	840

N(2100) 1/2⁺

$$I(J^P) = \tfrac{1}{2}(\tfrac{1}{2}^+)$$

Re(pole position) = 2050 to 2150 (\approx 2100) MeV -2Im(pole position) = 240 to 340 (\approx 300) MeV Breit-Wigner mass = 2050 to 2150 (\approx 2100) MeV Breit-Wigner full width = 200 to 320 (\approx 260) MeV

N(2100) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	8–32 %	834
$N\eta$	5–45 %	729
$N\eta'$	5-11 %	451
$N\omega$	10–25 %	600
ΛK	<1.0 %	644
$N\pi\pi$	>55 %	814
${\it \Delta}(1232)\pi$, $\it P$ -wave	6–14 %	680
$N\rho$, $S=1/2$, P -wave	35–70	605
$N\sigma$	14–35 %	_
$N(1535)\pi$	26–34 %	478
$\Lambda K^*(892)$	3–11 %	307
$p\gamma$, helicity=1/2	0.001-0.13 %	840
$n\gamma$, helicity=1/2	0.004-0.09 %	840

N(2120) 3/2⁻⁻

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Re(pole position) = 2050 to 2150 (\approx 2100) MeV -2Im(pole position) = 200 to 360 (\approx 280) MeV Breit-Wigner mass = 2060 to 2160 (\approx 2120) MeV Breit-Wigner full width = 260 to 360 (\approx 300) MeV

N(2120) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
$N\pi$	5–15 %	846
$N\eta$	1–5 %	743
$N\eta'$	2–6 %	474
$N\omega$	4–20 %	617
ΛK	6–11 %	660
$N\pi\pi$	>27 %	827
$\Delta(1232)\pi$	>23 %	693
${\it \Delta}(1232)\pi$, $\it S-wave$	15–70 %	693
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	8–45 %	693
$N ho$, $S\!\!=\!\!3/2$, $S\!\!$ -wave	< 3 %	622
$N\sigma$	4–15 %	_
$\mathcal{N}(1535)\pi$	7–23 %	494
ΛK*(892)	< 0.2 %	339
$ ho\gamma$	0.16–2.1 %	852
$p\gamma$, helicity=1/2	0.07-0.80 %	852
$p\gamma$, helicity=3/2	0.09–1.3 %	852
$n\gamma$	0.04-0.72 %	852
$n\gamma$, helicity $=1/2$	0.04-0.60 %	852
$n\gamma$, helicity=3/2	0.001–0.12 %	852

N(2190) 7/2⁻

$$I(J^P) = \frac{1}{2}(\frac{7}{2}^-)$$

Re(pole position) = 1950 to 2150 (\approx 2050) MeV -2Im(pole position) = 300 to 500 (\approx 400) MeV Breit-Wigner mass = 2140 to 2220 (\approx 2180) MeV Breit-Wigner full width = 300 to 500 (\approx 400) MeV

N(2190) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$N\pi$	10-20 %	882
$N\eta$	1-5 %	785
$N\omega$	8–20 %	667
ΛK	0.2-0.8 %	705
$N\pi\pi$	22–51 %	864

https://pdg.lbl.gov

Page 14

${\it \Delta}(1232)\pi$, ${\it D}$ -wave	19–31 %	734
$N\rho$, $S=3/2$, D -wave	<11 %	672
$N\sigma$	3–9 %	_
ΛK*(892)	0.2-0.8 %	423
$p\gamma$	<0.08 %	888
$p\gamma$, helicity $=1/2$	<0.06 %	888
$p\gamma$, helicity=3/2	<0.02 %	888
$n\gamma$	<0.04 %	888
$n\gamma$, helicity $=1/2$	<0.01 %	888
$n\gamma$, helicity=3/2	<0.03 %	888

N(2220) 9/2⁺

$$I(J^P) = \frac{1}{2}(\frac{9}{2}^+)$$

Re(pole position) = 2130 to 2200 (\approx 2150) MeV -2Im(pole position) = 360 to 480 (\approx 400) MeV Breit-Wigner mass = 2200 to 2300 (\approx 2250) MeV Breit-Wigner full width = 350 to 500 (\approx 400) MeV

N(2220) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	15–30 %	924

N(2250) 9/2⁻

$$I(J^P) = \frac{1}{2}(\frac{9}{2})$$

Re(pole position) = 2100 to 2200 (\approx 2150) MeV -2Im(pole position) = 350 to 500 (\approx 420) MeV Breit-Wigner mass = 2250 to 2320 (\approx 2280) MeV Breit-Wigner full width = 300 to 600 (\approx 500) MeV

N(2250) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5-15 %	941
$N\eta$	<5 %	852
ΛK	1–3 %	777

N(2600) 11/2⁻

$$I(J^P) = \frac{1}{2}(\frac{11}{2})$$

Created: 5/31/2023 09:09

Breit-Wigner mass = 2550 to 2750 (≈ 2600) MeV Breit-Wigner full width = 500 to 800 (≈ 650) MeV

N(2600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	3–8 %	1126

\triangle BARYONS (S=0, I=3/2)

 $\Delta^{++} = uuu$, $\Delta^{+} = uud$, $\Delta^{0} = udd$, $\Delta^{-} = ddd$

△(1232) 3/2⁺

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$

Re(pole position) = 1209 to 1211 (\approx 1210) MeV

 $-2\text{Im}(\text{pole position}) = 98 \text{ to } 102 \ (\approx 100) \text{ MeV}$

Breit-Wigner mass (mixed charges) = 1230 to 1234 (≈ 1232) MeV

Breit-Wigner full width (mixed charges) = 114 to 120 (\approx 117) MeV

Δ(1232) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	99.4 %	229
$N\gamma$	0.55-0.65 %	259
$N\gamma$, helicity $=1/2$	0.11-0.13 %	259
$N\gamma$, helicity=3/2	0.44-0.52 %	259
pe+e-	$(4.2\pm0.7)\times10^{-5}$	259

△(1600) 3/2⁺

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$

Created: 5/31/2023 09:09

Re(pole position) = 1470 to 1590 (\approx 1520) MeV -2Im(pole position) = 150 to 320 (\approx 280) MeV Breit-Wigner mass = 1500 to 1640 (\approx 1570) MeV Breit-Wigner full width = 200 to 300 (\approx 250) MeV

△(1600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	8-24%	492
$N\pi\pi$	58-84 %	454
$\Delta(1232)\pi$	58–82 %	276
${\it \Delta}(1232)\pi$, $\it P$ -wave	72–82%	276
${\it \Delta}(1232)\pi$, $\it F$ -wave	<2%	276
$N(1440)\pi$	17–27%	†
$N\gamma$	0.001-0.035 %	505
$N\gamma$, helicity=1/2	0.0-0.02 %	505
$N\gamma$, helicity=3/2	0.001–0.015 %	505

⊿(1620) 1/2[−]

$$I(J^P) = \frac{3}{2}(\frac{1}{2}^-)$$

Re(pole position) = 1590 to 1610 (\approx 1600) MeV -2Im(pole position) = 80 to 140 (\approx 110) MeV Breit-Wigner mass = 1590 to 1630 (\approx 1610) MeV Breit-Wigner full width = 110 to 150 (\approx 130) MeV

Δ(1620) DECAY MODES Fraction $(Γi/Γ)$		p (MeV/c)	
$N\pi$	25–35 %	520	
$N\pi\pi$	>67 %	484	
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	44–72 %	311	
$N \rho$	23–32%	†	
$N ho$, $S \!\!=\! 1/2$, $S \!\!$ -wave	23–32%	†	
$N\rho$, $S=3/2$, D -wave	<0.04%	†	
$N(1440)\pi$	<9 %	98	
$N\gamma$, helicity=1/2	0.03-0.10 %	532	

△(1700) 3/2⁻

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^-)$$

Re(pole position) = 1640 to 1690 (\approx 1665) MeV -2Im(pole position) = 200 to 300 (\approx 250) MeV Breit-Wigner mass = 1690 to 1730 (\approx 1710) MeV Breit-Wigner full width = 220 to 380 (\approx 300) MeV

△(1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$N\pi$	10–20 %	588	
$N\pi\pi$	>31 %	557	
$\Delta(1232)\pi$	9–70 %	394	
${\it \Delta}(1232)\pi$, $\it S-wave$	5–54 %	394	
$arDelta(1232)\pi$, $ extit{\it D}$ -wave	4–16 %	394	
$N\rho$, $S=3/2$, S -wave	22–32%	†	
$N(1520)\pi$, $ extit{ }P ext{-}$ wave	1–5 %	133	
$N(1535)\pi$	0.5–1.5 %	113	
Δ (1232) η	3–7 %	†	
$N\gamma$	0.22-0.60 %	598	
$N\gamma$, helicity $=1/2$	0.12-0.30 %	598	
$N\gamma$, helicity=3/2	0.10-0.30 %	598	

⊿(1900) 1/2[−]

$$I(J^P) = \frac{3}{2}(\frac{1}{2}^-)$$

Re(pole position) = 1830 to 1900 (\approx 1865) MeV -2Im(pole position) = 180 to 300 (\approx 240) MeV Breit-Wigner mass = 1840 to 1920 (\approx 1860) MeV Breit-Wigner full width = 180 to 320 (\approx 250) MeV

△(1900) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	4–12%	685
ΣK	seen	367
$N\pi\pi$	> 52%	660
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	30–70%	509
N ho	22–60 %	360
$N \rho$, $S=1/2$, S -wave	11–35%	360
$N\rho$, $S=3/2$, D -wave	11–25%	360
$N(1440)\pi$	3–32%	353
$N(1520)\pi$	2–10%	288
$\Delta(1232)\eta$	< 2%	251
$N\gamma$, helicity=1/2	0.06-0.43 %	693

△(1905) 5/2⁺

$$I(J^P) = \frac{3}{2}(\frac{5}{2}^+)$$

Re(pole position) = 1750 to 1800 (\approx 1770) MeV -2Im(pole position) = 260 to 340 (\approx 300) MeV Breit-Wigner mass = 1855 to 1910 (\approx 1880) MeV Breit-Wigner full width = 270 to 400 (\approx 330) MeV

Δ(1905) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$N\pi$	9–15%	698	
$N\pi\pi$	>65%	673	
$\Delta(1232)\pi$	>48%	524	
$arDelta(1232)\pi$, $\mathit{P} ext{-}$ wave	8–43%	524	
$arDelta(1232)\pi$, $\mathit{F} ext{-}$ wave	40–58%	524	
$N\rho$, $S=3/2$, P -wave	17–35%	385	
$N(1535)\pi$	< 1 %	293	
$N(1680)\pi$, $ extit{P}$ -wave	5–15%	133	
$\Delta(1232)\eta$	2–6%	282	
$N\gamma$	0.012-0.036 %	706	
N γ , helicity $=1/2$	0.002-0.006 %	706	
$N\gamma$, helicity=3/2	0.01–0.03 %	706	

△(1910) 1/2⁺

$$I(J^P) = \frac{3}{2}(\frac{1}{2}^+)$$

Re(pole position) = 1800 to 1900 (\approx 1850) MeV -2Im(pole position) = 200 to 500 (\approx 350) MeV Breit-Wigner mass = 1850 to 1950 (\approx 1900) MeV Breit-Wigner full width = 200 to 400 (\approx 300) MeV

△(1910) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$N\pi$	10-30%	710	
ΣK	4–14%	410	
$\Delta(1232)\pi$	34–66%	539	
$N(1440)\pi$	3–45%	386	
Δ (1232) η	5–13%	310	
$N\gamma$, helicity=1/2	0.0-0.02 %	718	

⊿(1920) 3/2⁺

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$

Re(pole position) = 1850 to 1950 (\approx 1900) MeV -2Im(pole position) = 200 to 400 (\approx 300) MeV Breit-Wigner mass = 1870 to 1970 (\approx 1920) MeV Breit-Wigner full width = 240 to 360 (\approx 300) MeV

△(1920) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5–20 %	723
ΣK	2–6 %	431
$N\pi\pi$	>46 %	699
$\Delta(1232)\pi$	>46 %	553
${\it \Delta}(1232)\pi$, $\it P$ -wave	2–28 %	553
$arDelta(1232)\pi$, \emph{F} -wave	44–72 %	553
$\mathit{N}(1440)\pi$, $\mathit{P} ext{-}$ wave	4–86 %	403
$\mathcal{N}(1520)\pi$, $\mathit{S} ext{-}$ wave	<5 %	341
$N(1535)\pi$	<2 %	328
N a ₀ (980)	seen	41
$\Delta(1232)\eta$	5–17 %	336
$N\gamma$	0.01-0.84 %	731
$N\gamma$, helicity $=1/2$	0.0-0.42 %	731
$N\gamma$, helicity=3/2	0.01–0.42 %	731

⊿(1930) 5/2[−]

$$I(J^P) = \frac{3}{2}(\frac{5}{2}^-)$$

Re(pole position) = 1820 to 1880 (\approx 1850) MeV -2Im(pole position) = 300 to 450 (\approx 320) MeV Breit-Wigner mass = 1900 to 2000 (\approx 1950) MeV Breit-Wigner full width = 200 to 400 (\approx 300) MeV

△(1930) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5–15 %	742
$N\gamma$	0.0-0.01 %	749
$N\gamma$, helicity $=1/2$	0.0-0.005 %	749
$N\gamma$, helicity=3/2	0.0-0.004 %	749

△(1950) 7/2⁺

$$I(J^P) = \frac{3}{2}(\frac{7}{2}^+)$$

Re(pole position) = 1870 to 1890 (\approx 1880) MeV -2Im(pole position) = 220 to 260 (\approx 240) MeV Breit-Wigner mass = 1915 to 1950 (\approx 1930) MeV Breit-Wigner full width = 235 to 335 (\approx 285) MeV

△(1950) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	35–45 %	729
ΣΚ	0.3–0.5 %	441
$N\pi\pi$	37–77 %	706
${\it \Delta}(1232)\pi$, $\it F-wave$	1–9 %	560
$N(1680)\pi$, $ extit{\it P}$ -wave	3–9 %	191
Δ (1232) η	< 0.6 %	349
$N\gamma$	0.06-0.14 %	737
$N\gamma$, helicity=1/2	0.03-0.05 %	737
$N\gamma$, helicity=3/2	0.04-0.09 %	737

Δ(2200) 7/2⁻⁻

$$I(J^P) = \frac{3}{2}(\frac{7}{2}^-)$$

Re(pole position) = 2050 to 2150 (\approx 2100) MeV -2Im(pole position) = 260 to 420 (\approx 340) MeV Breit-Wigner mass = 2150 to 2250 (\approx 2200) MeV Breit-Wigner full width = 200 to 500 (\approx 350) MeV

△(2200) DECAY MODES	Fraction $(\Gamma_i / $	Γ) $p \text{ (MeV/}c)$
$N\pi$	2-8 %	894
ΣK	1-7 %	672
https://pdg.lbl.gov	Page 20	Created: 5/31/2023 09:09

$N\pi\pi$	>45 %	876
$\Delta\pi$	>45 %	747
$\Delta\pi$, $\emph{D} ext{-}$ wave	>40 %	747
$\Delta\pi$, $\emph{G} ext{-}$ wave	5–25 %	747
$\Delta\eta$, $ extit{D}$ -wave	seen	614

△(2420) 11/2⁺

$$I(J^P) = \frac{3}{2}(\frac{11}{2}^+)$$

Re(pole position) = 2300 to 2500 (\approx 2400) MeV -2Im(pole position) = 350 to 550 (\approx 450) MeV Breit-Wigner mass = 2300 to 2600 (\approx 2450) MeV Breit-Wigner full width = 300 to 700 (\approx 500) MeV

△(2420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5–10 %	1040

$$\Lambda$$
 BARYONS $(S = -1, I = 0)$
 $\Lambda^0 = uds$

Λ

$$I(J^P)=0(\tfrac{1}{2}^+)$$

Mass
$$m=1115.683\pm0.006$$
 MeV $(m_{\Lambda}-m_{\overline{\Lambda}})\ /\ m_{\Lambda}=(-0.1\pm1.1)\times 10^{-5} \quad ({\rm S}=1.6)$ Mean life $\tau=(2.632\pm0.020)\times 10^{-10}$ s $({\rm S}=1.6)$ $(\tau_{\Lambda}-\tau_{\overline{\Lambda}})\ /\ \tau_{\Lambda}=-0.001\pm0.009$ $c\tau=7.89$ cm

Magnetic moment $\mu=-0.613\pm0.004~\mu_{\it N}$ Electric dipole moment $d<~1.5\times10^{-16}~e\,{\rm cm},~{\rm CL}=95\%$

Decay parameters

https://pdg.lbl.gov

Page 21

$$\begin{array}{ll} \mathsf{R} = \left|\mathsf{G}_E/\mathsf{G}_M\right| \text{ in } \varLambda \to \ p\pi^-, \ \overline{\varLambda} \to \ \overline{p}\pi^+ = 0.96 \pm 0.14 \\ \Delta \Phi = \Phi_E \ - \ \Phi_M \text{ in } \varLambda \to \ p\pi^-, \ \overline{\varLambda} \to \ \overline{p}\pi^+ = 37 \pm 13 \text{ degrees} \\ n\pi^0 \qquad \qquad \alpha_0 = 0.75 \pm 0.05 \\ pe^- \overline{\nu}_e \qquad g_A/g_V = -0.718 \pm 0.015 \ ^{[i]} \end{array}$$

A DECAY MODES		Fraction (Γ_i	/Γ) Conf	idence level	<i>p</i> (MeV/ <i>c</i>)
$p\pi^-$		(64.1 ± 0)	.5) %		101
$n\pi^0$		(35.9 ± 0)	.5) %		104
$n\gamma$		(8.3 ± 0	$0.7) \times 10^{-4}$		162
$p\pi^-\gamma$		[o] (8.5 ± 1	$.4) \times 10^{-4}$		101
$pe^{-}\overline{ u}_{e}$		(8.34±0	$(.14) \times 10^{-4}$		163
$ ho\mu^-\overline{ u}_{\mu}$		(1.51±0	$(.19) \times 10^{-4}$		131
Lepton (L) and	I/or Baryo	on (B) number	violating de	cay modes	
π^+e^-	L,B	< 6	$\times 10^{-7}$	90%	549
$\pi^+\mu^-$	L,B	< 6	$\times 10^{-7}$	90%	544
π^-e^+	L,B	< 4	\times 10 ⁻⁷	90%	549
$\pi^-\mu^+$	L,B	< 6	$\times 10^{-7}$	90%	544
K^+e^-	L,B	< 2	\times 10 ⁻⁶	90%	449
$K^+\mu^-$	L,B	< 3	\times 10 ⁻⁶	90%	441
K^-e^+	L,B	< 2	\times 10 ⁻⁶	90%	449
$K^-\mu^+$	L,B	< 3	\times 10 ⁻⁶	90%	441
$K_S^0 \nu$	L,B	< 2	$\times 10^{-5}$	90%	447
$\overline{p}\pi^+$	В	< 9	$\times 10^{-7}$	90%	101
invisible		< 7.4	$\times 10^{-5}$	90%	_

Λ(1405) 1/2⁻

$$I(J^P)=0(\tfrac{1}{2}^-)$$

Created: 5/31/2023 09:09

Mass $m=1405.1^{+1.3}_{-1.0}~{
m MeV}$ Full width $\Gamma=50.5\pm2.0~{
m MeV}$ Below $\overline{K}~N$ threshold

Λ(1405) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Sigma \pi$	100 %	155

Λ(1520) 3/2[—]

$$I(J^P) = 0(\frac{3}{2}^-)$$

Mass m=1518 to 1520 (≈ 1519) MeV $^{[p]}$ Full width $\Gamma=15$ to 17 (≈ 16) MeV $^{[p]}$

Λ(1520) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	(45 ±1)%	242
$\Sigma \pi$	$(42 \pm 1)\%$	268
$\Lambda\pi\pi$	(10 ± 1) %	259
$\Sigma \pi \pi$	($0.9~\pm0.1$) %	168
$\Lambda\gamma$	(0.85±0.15) %	350

Λ(1600) 1/2⁺

$$I(J^P) = 0(\frac{1}{2}^+)$$

Mass m=1570 to $1630~(\approx 1600)~{\rm MeV}$ Full width $\Gamma=150$ to $250~(\approx 200)~{\rm MeV}$

A(1600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	15–30 %	343
$\Sigma \pi$	10–60 %	338
$\Lambda\sigma$	(19±4) %	_
$\Sigma(1385)\pi$	(9±4)%	158

Λ(1670) 1/2⁻

$$I(J^P)=0(\tfrac{1}{2}^-)$$

Created: 5/31/2023 09:09

Mass m=1670 to 1678 (≈ 1674) MeV Full width $\Gamma=25$ to 35 (≈ 30) MeV

Λ(1670) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	20–30 %	418
$\Sigma\pi$	25–55 %	398
$\Lambda\eta$	10–25 %	88
$\Sigma(1385)\pi$, $ extit{D} ext{-wave}$	(6.0±2.0) %	235
$N\overline{K}^*(892)$, $S=3/2$, D -wave	$(5\pm4)\%$	†
$\Lambda\sigma$	(20 ±8)%	-

Λ(1690) 3/2[—]

$$I(J^P)=0(\tfrac{3}{2}^-)$$

Mass m=1685 to 1695 (≈ 1690) MeV Full width $\Gamma=60$ to 80 (≈ 70) MeV

Λ(1690) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	20–30 %	433
$\Sigma \pi$	20–40 %	410
$\Lambda\sigma$	(5.0±2.0) %	_
$\Lambda\pi\pi$	\sim 25 %	419
$\Sigma \pi \pi$	\sim 20 %	358
$arSigma(1385)\pi$, $\mathit{S} ext{-}$ wave	(9 ±5)%	251
$\Sigma(1385)\pi$, $ extit{D}$ -wave	(3.0 ± 2.0) %	251

Λ(1800) 1/2⁻

$$I(J^P)=0(\tfrac{1}{2}^-)$$

Mass m=1750 to 1850 (≈ 1800) MeV Full width $\Gamma=150$ to 250 (≈ 200) MeV

A(1800) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	25–40 %	528
$\Sigma \pi$	seen	494
$\Lambda\sigma$	$(15 \pm 4)\%$	_
$\Sigma(1385)\pi$	seen	349
$\Lambda\eta$	0.01 to 0.10	326
$N\overline{K}^*(892)$	seen	†

Λ(1810) 1/2⁺

$$I(J^P)=0(\tfrac{1}{2}^+)$$

Created: 5/31/2023 09:09

Mass m=1740 to 1840 (≈ 1790) MeV Full width $\Gamma=50$ to 170 (≈ 110) MeV

A(1810) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	0.05 to 0.35	520
$\Sigma \pi$	$(16 \pm \ 5) \ \%$	487
$\Sigma(1385)\pi$	$(40 \pm 15) \%$	340
$N\overline{K}^*(892)$	30–60 %	†

Λ(1820) 5/2⁺

$$I(J^P)=0(\tfrac{5}{2}^+)$$

Mass m=1815 to 1825 (≈ 1820) MeV Full width $\Gamma=70$ to 90 (≈ 80) MeV

Λ(1820) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	55–65 %	545
$\Sigma \pi$	8–14 %	509
$\Sigma(1385)\pi$	5–10 %	366
$N\overline{K}^*(892)$, $S=3/2$, P -wave	(3.0 ± 1.0) %	†

Λ(1830) 5/2⁻

$$I(J^P) = 0(\frac{5}{2}^-)$$

Mass m=1820 to 1830 (≈ 1825) MeV Full width $\Gamma=60$ to 120 (≈ 90) MeV

Λ(1830) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor (MeV/c)
NK	0.04 to 0.08	549
$\Sigma \pi$	35–75 %	512
$\Sigma(1385)\pi$	>15 %	370
$\Sigma(1385)\pi$, $ extit{\it D}$ -wave	$(40 \pm 15) \%$	3.2 370

Λ(1890) 3/2⁺

$$I(J^P) = 0(\frac{3}{2}^+)$$

Created: 5/31/2023 09:09

Mass m=1870 to 1910 (≈ 1890) MeV Full width $\Gamma=80$ to 160 (≈ 120) MeV

Λ(1890) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	0.24 to 0.36	599
$\Sigma \pi$	3–10 %	560
$\Sigma(1385)\pi$	seen	423
$arSigma(1385)\pi$, $\mathit{P} ext{-}$ wave	$(6.0 \pm 3.0) \%$	423
$arSigma(1385)\pi$, $\mathit{F} ext{-}$ wave	$(4.0 \pm 2.0) \%$	423
$N\overline{K}^*(892)$	seen	236

Λ(2100) 7/2[—]

$$I(J^P) = 0(\frac{7}{2})$$

Mass m=2090 to 2110 (≈ 2100) MeV Full width $\Gamma=100$ to 250 (≈ 200) MeV

Λ(2100) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
N K	25–35 %	751
$\Sigma \pi$	\sim 5 %	705
$\Lambda\eta$	<3 %	617
ΞK	<3 %	491
$\Lambda\omega$	<8 %	443
$\Sigma(1385)\pi$, $ extit{ G-wave}$	$(1.0 \pm 1.0)~\%$	584
$N\overline{K}^*(892)$	10–20 %	515
$N\overline{K}^*(892)$, $S=3/2$, D -wave	(4.0±2.0) %	515

Λ (2110) 5/2 $^{+}$

$$I(J^P) = 0(\frac{5}{2}^+)$$

Mass m=2050 to 2130 (≈ 2090) MeV Full width $\Gamma=200$ to 300 (≈ 250) MeV

Λ(2110) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	5–25 %	744
$\Sigma \pi$	10–40 %	698
$\Lambda \omega$	seen	432
$arLambda\omega$, $\mathit{S}{=}3/2$, $\mathit{P}{ ext{-}}$ wave	(5.0±2.0) %	432
$\Sigma(1385)\pi$	seen	576
$N\overline{K}^{*}(892)$	10–60 %	505

Λ(2350) 9/2⁺

$$I(J^P) = 0(\frac{9}{2}^+)$$

Created: 5/31/2023 09:09

Mass m=2340 to 2370 (≈ 2350) MeV Full width $\Gamma=100$ to 250 (≈ 150) MeV

Λ(2350) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	\sim 12 %	915
$\Sigma \pi$	\sim 10 %	867

Σ BARYONS (S=-1, l=1)

$$\Sigma^+ = uus$$
, $\Sigma^0 = uds$, $\Sigma^- = dds$

$$I(J^P) = 1(\frac{1}{2}^+)$$

Mass
$$m=1189.37\pm0.07~{\rm MeV}~{\rm (S}=2.2)$$
 Mean life $\tau=(0.8018\pm0.0026)\times10^{-10}~{\rm s}$ $c\tau=2.404~{\rm cm}$ $\left(\tau_{\Sigma^+}-\tau_{\overline{\Sigma}^-}\right)/\tau_{\Sigma^+}=-0.0006\pm0.0012$ Magnetic moment $\mu=2.458\pm0.010~\mu_N~{\rm (S}=2.1)$ $\left(\mu_{\Sigma^+}+\mu_{\overline{\Sigma}^-}\right)/\mu_{\Sigma^+}=0.014\pm0.015$ $\Gamma(\Sigma^+\to n\ell^+\nu)/\Gamma(\Sigma^-\to n\ell^-\overline{\nu}_\ell)~<~0.043$

Decay parameters

$$\begin{array}{lll} \rho\pi^0 & \alpha_0 = -0.982 \pm 0.014 \\ \overline{\alpha}_0 \; \text{FOR} \; \overline{\Sigma}^- \to \overline{\rho}\pi^0 = 0.99 \pm 0.04 \\ (\alpha_0 + \overline{\alpha}_0) \; / \; (\alpha_0 - \overline{\alpha}_0) = 0.00 \pm 0.04 \\ \text{"} & \phi_0 = (36 \pm 34)^\circ \\ \text{"} & \gamma_0 = 0.16 \; ^{[n]} \\ \text{"} & \Delta_0 = (187 \pm 6)^\circ \; ^{[n]} \\ n\pi^+ & \alpha_+ = 0.068 \pm 0.013 \\ \text{"} & \phi_+ = (167 \pm 20)^\circ \; \; (\text{S} = 1.1) \\ \text{"} & \gamma_+ = -0.97 \; ^{[n]} \\ \text{"} & \Delta_+ = (-73 ^{+133}_{-10})^\circ \; ^{[n]} \\ \rho\gamma & \alpha_\gamma = -0.76 \pm 0.08 \end{array}$$

Σ^+ DECAY MODES	Fraction (Γ_i/Γ) Confidence level	<i>p</i> (MeV/ <i>c</i>)
$p\pi^0$	(51.57±0.30) %	189
$n\pi^+$	(48.31±0.30) %	185
$p\gamma$	$(1.23\pm0.05)\times10^{-3}$	225
$n\pi^+\gamma$	[o] (4.5 ± 0.5) $\times 10^{-4}$	185
$\Lambda e^+ \nu_e$	$(2.0 \pm 0.5) \times 10^{-5}$	71
A C	AO(CO) violating modes on	

$\Delta S = \Delta Q$ (SQ) violating modes or $\Delta S = 1$ weak neutral current (S1) modes

$ne^+\nu_e$	SQ	< 5	\times 10 ⁻⁶	90%	224
$n\mu^+ u_\mu$	SQ	< 3.0	$\times 10^{-5}$	90%	202
pe ⁺ e ⁻	<i>S</i> 1	< 7	$\times 10^{-6}$		225
$ ho\mu^+\mu^-$	S1	$(2.4 \begin{array}{c} +1.7 \\ -1.3 \end{array}$) × 10 ⁻⁸		121

$$I(J^P) = 1(\frac{1}{2}^+)$$

Mass
$$m=1192.642\pm0.024$$
 MeV $m_{\Sigma^-}-m_{\Sigma^0}=4.807\pm0.035$ MeV (S = 1.1) $m_{\Sigma^0}-m_{\Lambda}=76.959\pm0.023$ MeV Mean life $\tau=(7.4\pm0.7)\times10^{-20}$ s $c\tau=2.22\times10^{-11}$ m

Transition magnetic moment $\left|\mu_{\Sigma\Lambda}\right|=1.61\pm0.08~\mu_{N}$

Σ^0 DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\overline{\Lambda\gamma}$	100 %		74
$\Lambda \gamma \gamma$	< 3 %	90%	74
$\Lambda e^{+}e^{-}$	[q] 5×10^{-3}		74

$$I(J^P) = 1(\frac{1}{2}^+)$$

Mass
$$m=1197.449\pm0.030$$
 MeV (S = 1.2) $m_{\Sigma^-}-m_{\Sigma^+}=8.08\pm0.08$ MeV (S = 1.9) $m_{\Sigma^-}-m_{\Lambda}=81.766\pm0.030$ MeV (S = 1.2) Mean life $\tau=(1.479\pm0.011)\times10^{-10}$ s (S = 1.3) $c\tau=4.434$ cm Magnetic moment $\mu=-1.160\pm0.025$ μ_N (S = 1.7) Σ^- charge radius = 0.78 \pm 0.10 fm

Decay parameters

$$n\pi^ \alpha_- = -0.068 \pm 0.008$$
" $\phi_- = (10 \pm 15)^\circ$
" $\gamma_- = 0.98 \, ^{[n]}$
" $\Delta_- = (249^+_{-120})^\circ \, ^{[n]}$
 $ne^- \overline{\nu}_e$ $g_A/g_V = 0.340 \pm 0.017 \, ^{[i]}$
" $f_2(0)/f_1(0) = 0.97 \pm 0.14$
" $D = 0.11 \pm 0.10$
 $\Lambda e^- \overline{\nu}_e$ $g_{V/g_A} = 0.01 \pm 0.10 \, ^{[i]}$ (S = 1.5)
" $g_{WM/g_A} = 2.4 \pm 1.7 \, ^{[i]}$

Σ- DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$n\pi^-$	(99.848 ± 0.005)	%	193
$n\pi^-\gamma$	[o] (4.6 ± 0.6)	\times 10 ⁻⁴	193
$ne^{-}\overline{ u}_{e}$	(1.017 ± 0.034)	\times 10 ⁻³	230
n $\mu^-\overline{ u}_\mu$	(4.5 ± 0.4)	\times 10 ⁻⁴	210

https://pdg.lbl.gov

Page 28

$$\Lambda e^- \overline{\nu}_e$$
 (5.73 ± 0.27) \times 10⁻⁵ 79 $\Sigma^+ X$ < 1.2 \times 10⁻⁴ 90% -

Lepton number (L) violating modes

$$pe^-e^-$$
 L < 6.7 $\times 10^{-5}$ 90% 231

Σ (1385) 3/2⁺

$$I(J^P)=1(\tfrac{3}{2}^+)$$

$$\Sigma(1385)^+$$
 mass $m=1382.83\pm0.34$ MeV (S = 1.9) $\Sigma(1385)^0$ mass $m=1383.7\pm1.0$ MeV (S = 1.4) $\Sigma(1385)^-$ mass $m=1387.2\pm0.5$ MeV (S = 2.2) $\Sigma(1385)^+$ full width $\Gamma=36.2\pm0.7$ MeV $\Sigma(1385)^0$ full width $\Gamma=36\pm5$ MeV $\Sigma(1385)^-$ full width $\Gamma=39.4\pm2.1$ MeV (S = 1.7)

385) full width I = 39.4 \pm 2.1 MeV $\,$ (S = 1.7 Below \overline{K} N threshold

 Σ (1385) DECAY MODES Confidence level (MeV/c)Fraction (Γ_i/Γ) $\Lambda\pi$ $(87.0 \pm 1.5)\%$ 208 $\Sigma \pi$ $(11.7 \pm 1.5)\%$ 129 $(1.25^{+0.13}_{-0.12})\%$ $\Lambda\gamma$ 241 $\Sigma^+ \gamma$ $(7.0 \pm 1.7) \times 10^{-3}$ 180 $\times 10^{-4}$ < 2.4 90% 173

$\Sigma(1660) 1/2^{+}$

$$I(J^P)=1(\tfrac{1}{2}^+)$$

Created: 5/31/2023 09:09

Re(pole position) = 1585 ± 20 MeV -2Im(pole position) = 290^{+140}_{-40} MeV Mass m=1640 to 1680 (≈ 1660) MeV Full width $\Gamma=100$ to 300 (≈ 200) MeV

Σ (1660) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	0.05 to 0.15 ($pprox$ 010)	405
$\Lambda\pi$	$(35 \pm 12)\%$	440
$\Sigma \pi$	$(37 \pm 10)\%$	387
$\Sigma \sigma$	$(20 \pm 8)\%$	_
$\Lambda(1405)\pi$	$(4.0 \pm 2.0)\%$	199

$$I(J^P) = 1(\frac{3}{2}^-)$$

Mass m=1665 to 1685 (≈ 1675) MeV Full width $\Gamma=40$ to 100 (≈ 70) MeV

Σ (1670) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	0.06 to 0.12	419
$\Lambda\pi$	5–15 %	452
$\Sigma \pi$	30–60 %	398
$\Sigma \sigma$	$(7.0 \pm 3.0) \%$	-

Σ(1750) 1/2⁻

$$I(J^P) = 1(\frac{1}{2}^-)$$

Mass m=1700 to $1800~(\approx 1750)~\text{MeV}$ Full width $\Gamma=100$ to $200~(\approx 150)~\text{MeV}$

Σ(1750) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	0.06 to 0.12	486
$\Lambda\pi$	(14 ± 5) %	507
$\Sigma \pi$	$(16 \pm 4)\%$	456
$\Sigma \eta$	15–55 %	98
$arSigma(1385)\pi$, $ extit{\it D}$ -wave	< 1 %	305
$\Lambda(1520)\pi$	(2.0 \pm 1.0) %	175
$N\overline{K}^*(892), S=1/2$	$(8 \pm 4)\%$	†

Σ(1775) 5/2⁻

$$I(J^P) = 1(\frac{5}{2}^-)$$

Created: 5/31/2023 09:09

Mass m=1770 to $1780~(\approx 1775)~\text{MeV}$ Full width $\Gamma=105$ to $135~(\approx 120)~\text{MeV}$

Σ(1775) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	37–43%	508
$\Lambda\pi$	14–20%	525
$\Sigma \pi$	2–5%	475
$\Sigma(1385)\pi$	8–12%	327
$\Lambda(1520)\pi$, $ extit{P-wave}$	17–23%	202

Σ(1910) 3/2⁻

 $I(J^P)=1(\tfrac{3}{2}^-)$

was $\Sigma(1940)$

Mass m=1870 to $1950~(\approx 1910)~{\rm MeV}$ Full width $\Gamma=150$ to $300~(\approx 220)~{\rm MeV}$

Σ (1910) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	0.01 to 0.05 ($pprox$ 0.02)	615
$\Lambda\pi$	(6 \pm 4)%	619
$\Sigma \pi$	(86 ± 21)%	574
$\Sigma(1385)\pi$	seen	439
$\Lambda(1520)\pi$	seen	329
$\Delta(1232)\overline{K}$	(3.0 ± 1.0) %	377
$N\overline{K}^*(892)$	seen	274
$N\overline{K}^*$ (892), $S\!\!=\!\!1/2$, $D\!\!$ -wave	(1.0 ± 1.0) %	274

Σ(1915) 5/2⁺

$$I(J^P)=1(\frac{5}{2}^+)$$

Mass m=1900 to 1935 (≈ 1915) MeV Full width $\Gamma=80$ to 160 (≈ 120) MeV

Σ(1915) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	0.05 to 0.15	618
$\Lambda\pi$	($6.0~\pm2.0$) %	623
$\Sigma \pi$	(10.0 \pm 2.0) %	577
$\Sigma(1385)\pi$, $\it P$ -wave	($2.0~\pm2.0$) %	443
$oldsymbol{\Sigma}(1385)\pi$, $\emph{F} ext{-}$ wave	(4.0 \pm 2.0) %	443
$arLambda(1520)\pi$, $ extit{D} ext{-}$ wave	($8.0~\pm2.0$) %	334
$N\overline{K}^*(892)$, $S=1/2$, F -wave	(5.0 ± 3.0) %	282
$N\overline{K}^*(892)$, $S=3/2$, F -wave	(5.0 \pm 2.0) %	282
$\Delta \overline{K}$, P -wave	(16 ± 5)%	383
$\Delta \overline{K}$, F-wave	$(5.0 \pm 3.0) \%$	383

 Σ (2030) 7/2⁺

$$I(J^P) = 1(\frac{7}{2}^+)$$

Mass m=2025 to 2040 (≈ 2030) MeV Full width $\Gamma=150$ to 200 (≈ 180) MeV

Σ (2030) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
NK	17–23 %	702
$\Lambda\pi$	17–23 %	700
$\Sigma \pi$	5–10 %	657
$\equiv K$	<2 %	422
$\Sigma(1385)\pi$	5–15 %	532
$arSigma(1385)\pi$, $\mathit{F} ext{-}$ wave	$(1.0\pm1.0)\%$	532
$\Lambda(1520)\pi$	10–20 %	431
$\Delta(1232)\overline{K}$	10–20 %	498
$\Delta(1232)\overline{K}$, <i>F</i> -wave	(15 ± 5)%	498
$\Delta(1232)\overline{K}$, $ extit{ extit{H}}$ -wave	$(1.0\pm1.0)\%$	498
$N\overline{K}^*(892)$, $S=3/2$, F -wave	(14 ± 8)%	439

$$\Xi$$
 BARYONS $(S=-2, I=1/2)$

 $\Xi^0 = uss$, $\Xi^- = dss$

=0

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

P is not yet measured; + is the quark model prediction.

Mass
$$m=1314.86\pm0.20$$
 MeV $m_{\Xi^-}-m_{\Xi^0}=6.85\pm0.21$ MeV Mean life $\tau=(2.90\pm0.09)\times10^{-10}$ s $c\tau=8.71$ cm

Magnetic moment $\mu = -1.250 \pm 0.014~\mu_{ extbf{N}}$

Decay parameters

$$\Lambda \pi^0$$
 $\alpha = -0.349 \pm 0.009$
" $\phi = (21 \pm 12)^\circ$
" $\gamma = 0.85 \ [n]$
" $\Delta = (218^{+12}_{-19})^\circ \ [n]$
 $\Lambda \gamma$ $\alpha = -0.70 \pm 0.07$
 $\Lambda e^+ e^ \alpha = -0.8 \pm 0.2$
 $\Sigma^0 \gamma$ $\alpha = -0.69 \pm 0.06$
 $\Sigma^+ e^- \overline{\nu}_e$ $g_1(0)/f_1(0) = 1.22 \pm 0.05$
 $\Sigma^+ e^- \overline{\nu}_e$ $f_2(0)/f_1(0) = 2.0 \pm 0.9$

https://pdg.lbl.gov

Page 32

≡ ⁰ DECAY MODES		Fraction (Γ_i/Γ)	Confidence	level	<i>p</i> (MeV/ <i>c</i>)	
$\Lambda\pi^0$		(99.524±0.0	12) %		135	
$\Lambda\gamma$		(1.17 ± 0.0)	7) \times 10 ⁻³		184	
$\Lambda e^+ e^-$		(7.6 ± 0.6)	$) \times 10^{-6}$		184	
$\Sigma^0 \gamma$		(3.33 ± 0.1	$0) \times 10^{-3}$		117	
$\Sigma^+ e^- \overline{ u}_e$		(2.52 ± 0.0)	8) \times 10 ⁻⁴		120	
$\Sigma^+ \mu^- \overline{ u}_{\mu}$		(2.33 ± 0.3)	$5) \times 10^{-6}$		64	
	$\Delta S = \Delta Q$ (SQ	Q) violating mo	des or			
	$\Delta S = 2$ forbidden (S2) modes					
$\Sigma^-e^+ u_e$	SQ	< 1.6	$\times 10^{-4}$	90%	112	
$\Sigma^- \mu^+ u_\mu$	SQ	< 9	$\times 10^{-4}$	90%	49	
$p\pi^-$	52	< 8	$\times 10^{-6}$	90%	299	
$pe^-\overline{ u}_e$	52	< 1.3	$\times10^{-3}$		323	
$ ho\mu^-\overline{ u}_\mu$	52	< 1.3	$\times 10^{-3}$		309	

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

P is not yet measured; + is the quark model prediction.

Mass
$$m=1321.71\pm0.07~{\rm MeV}$$
 $\left(m_{\Xi^-}-m_{\overline{\Xi}^+}\right)/m_{\Xi^-}=\left(-3\pm9\right)\times10^{-5}$ Mean life $\tau=\left(1.639\pm0.015\right)\times10^{-10}~{\rm s}$ $c\tau=4.91~{\rm cm}$ $\left(\tau_{\Xi^-}-\tau_{\overline{\Xi}^+}\right)/\tau_{\Xi^-}=-0.01\pm0.07$ Magnetic moment $\mu=-0.6507\pm0.0025~\mu_N$ $\left(\mu_{\Xi^-}+\mu_{\overline{\Xi}^+}\right)/\left|\mu_{\Xi^-}\right|=+0.01\pm0.05$

Decay parameters

$$\begin{array}{lll} \varLambda\pi^{-} & \alpha = -0.390 \pm 0.006 & (\mathsf{S} = 1.6) \\ \alpha(\overline{\Xi}^{+}) \text{ for } \overline{\Xi}^{+} \to \overline{\varLambda}\pi^{+} = 0.371 \pm 0.007 \\ (\alpha + \overline{\alpha}) \ / \ (\alpha - \overline{\alpha}) \text{ for } \overline{\Xi}^{-} \to \varLambda\pi^{-}, \ \overline{\Xi}^{+} \to \overline{\varLambda}\pi^{+} = (6 \pm 14) \times 10^{-3} \\ [\alpha(\overline{\Xi}^{-})\alpha_{-}(\varLambda) - \alpha(\overline{\Xi}^{+})\alpha_{+}(\overline{\varLambda})] \ / \ [\text{ sum }] = (0 \pm 7) \times 10^{-4} \\ \text{"} & \phi = (-1.2 \pm 1.0)^{\circ} & (\mathsf{S} = 1.4) \\ \phi \text{ ANGLE FOR } \overline{\Xi}^{+} \to \overline{\varLambda}\pi^{+} & (\tan\phi = \beta/\gamma) = (-1.2 \pm 1.2)^{\circ} \\ \Delta\Phi_{CP} = (\Phi_{-} + \Phi_{+})/2 = (-0.3 \pm 0.8)^{\circ} \\ \text{"} & \gamma = 0.89 \ [^{n}] \\ \text{"} & \Delta = (175.9 \pm 1.5)^{\circ} \ [^{n}] \\ \varLambda\epsilon^{-} \overline{\nu}_{e} & g_{A}/g_{V} = -0.25 \pm 0.05 \ [^{i}] \end{array}$$

≡ DECAY MODES		Fraction (Γ_i/Γ)	Confiden	ce level	<i>p</i> (MeV/ <i>c</i>)
$\Lambda\pi^-$		(99.887±0.03	35) %		140
$\Sigma^-\gamma$		(1.27 ± 0.23)	$3) \times 10^{-4}$		118
$\Lambda e^- \overline{ u}_e$		(5.63 ± 0.31	$\times 10^{-4}$		190
$\Lambda\mu^-\overline{ u}_\mu$		$(3.5 \begin{array}{c} +3.5 \\ -2.2 \end{array})$	$) \times 10^{-4}$		163
$\Sigma^0 e^- \overline{ u}_e$		(8.7 ± 1.7)	$) \times 10^{-5}$		123
$\Sigma^0 \mu^- \overline{ u}_\mu$		< 8	$\times 10^{-4}$	90%	70
$\equiv^0 e^{-\frac{r}{\nu_e}}$		< 2.59	$\times 10^{-4}$	90%	7
	$\Delta S = 2$ for	bidden (<i>S2</i>) mo	des		
$n\pi^-$	<i>S</i> 2	< 1.9	$\times10^{-5}$	90%	304
$ne^-\overline{ u}_e$	52	< 3.2	$\times 10^{-3}$	90%	327
n $\mu^-\overline{ u}_\mu$	<i>S2</i>	< 1.5	%	90%	314
$p\pi^-\pi^-$	<i>S</i> 2	< 4	$\times 10^{-4}$	90%	223
$p\pi^-e^-\overline{ u}_e$	<i>S2</i>	< 4	$\times 10^{-4}$	90%	305
$m{p}\pi^-\mu^-\overline{ u}_\mu$	<i>S2</i>	< 4	$\times 10^{-4}$	90%	251
$p\mu^-\mu^-$	L	< 4	$\times 10^{-8}$	90%	272

Ξ(1530) 3/2⁺

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

$$\Xi(1530)^0$$
 mass $m=1531.80\pm0.32$ MeV (S = 1.3) $\Xi(1530)^-$ mass $m=1535.0\pm0.6$ MeV $\Xi(1530)^0$ full width $\Gamma=9.1\pm0.5$ MeV $\Xi(1530)^-$ full width $\Gamma=9.9^{+1.7}_{-1.9}$ MeV

≡ (1530) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\Xi\pi$	100 %		158
$\equiv \gamma$	<3.7 %	90%	202

Ξ(1690)

$$I(J^P) = \frac{1}{2}(??)$$

Created: 5/31/2023 09:09

Mass $m=1690\pm 10$ MeV $^{[p]}$ Full width $\Gamma=20\pm 15$ MeV

≡ (1690) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Lambda K}$	seen	240
$\Sigma \overline{K}$	seen	70
$\equiv \pi$	seen	311
$=\pi^+\pi^-$	possibly seen	213

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Mass $m=1823\pm 5$ MeV $^{[p]}$ Full width $\Gamma=24^{+15}_{-10}$ MeV $^{[p]}$

 ≡(1820) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda \overline{K}$	large	402
$\Sigma \overline{K}$	small	324
$\equiv \pi$	small	421
$\Xi(1530)\pi$	small	237

Ξ(1950)

$$I(J^P) = \frac{1}{2}(??)$$

Mass $m=1950\pm15~{
m MeV}~^{[p]}$ Full width $\Gamma=60\pm20~{
m MeV}~^{[p]}$

≡ (1950) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda \overline{K}$	seen	522
$\Sigma \overline{K}$	possibly seen	460
$\Xi \pi$	seen	519

Ξ(2030)

$$I(J^P) = \tfrac{1}{2}(\geq \tfrac{5}{2}?)$$

Created: 5/31/2023 09:09

Mass $m=2025\pm 5$ MeV $^{[p]}$ Full width $\Gamma=20^{+15}_{-5}$ MeV $^{[p]}$

 ≡(2030) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda \overline{K}$	\sim 20 %	585
$\Sigma \overline{K}$	\sim 80 %	529
$\Xi\pi$	small	574
$\Xi(1530)\pi$	small	416
$\Lambda \overline{K} \pi$	small	499
$\Sigma \overline{K} \pi$	small	428

Ω BARYONS (S=-3, I=0)

$$\Omega^-=sss$$

$$\Omega^-$$

$$I(J^P) = 0(\frac{3}{2}^+)$$

 $J^P=\frac{3}{2}^+$ is the quark-model prediction; and J=3/2 is fairly well established.

Mass
$$m=1672.45\pm0.29~{\rm MeV}$$
 $(m_{\Omega^-}-m_{\overline{\Omega}^+})\ /\ m_{\Omega^-}=(-1\pm8)\times 10^{-5}$ Mean life $\tau=(0.821\pm0.011)\times 10^{-10}~{\rm s}$ $c\tau=2.461~{\rm cm}$ $(\tau_{\Omega^-}-\tau_{\overline{\Omega}^+})\ /\ \tau_{\Omega^-}=0.00\pm0.05$ Magnetic moment $\mu=-2.02\pm0.05~\mu_N$

Decay parameters

$$\alpha(\Omega^{-}) \; \alpha_{-}(\Lambda) \; {\rm FOR} \; \Omega^{-} \to \Lambda K^{-} = 0.0115 \pm 0.0015$$
 $\Lambda K^{-} \qquad \alpha = 0.0154 \pm 0.0020$ $\Lambda K^{-}, \; \overline{\Lambda} K^{+} \; (\alpha + \overline{\alpha})/(\alpha - \overline{\alpha}) = -0.02 \pm 0.13$ $\Xi^{0} \pi^{-} \qquad \alpha = 0.09 \pm 0.14$ $\Xi^{-} \pi^{0} \qquad \alpha = 0.05 \pm 0.21$

Ω^- DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)		
ΛK^-	(67.8±0.7) %		211		
$\bar{\Xi}^0\pi^-$	(23.6±0.7) %		294		
$\equiv \pi^0$	(8.6±0.4) %		289		
$\Xi^-\pi^+\pi^-$	$(3.7^{+0.7}_{-0.6}) \times 10^{-1}$	-4	189		
$\Xi(1530)^0\pi^-$	< 7 × 10 ⁻¹	-5 90%	17		
$\Xi^0 e^- \overline{\nu}_e$	$(5.6\pm2.8) imes10^{-}$	-3	319		
$\equiv \gamma$	< 4.6 × 10 ⁻¹	-4 90%	314		
$\Delta S = 2$ forbidden (S2) modes					
$\Lambda\pi^-$	$S2$ < 2.9 \times 10^{-}	-6 90%	449		

$$\Omega(2012)^-$$

$$I(J^P) = 0(?^-)$$

Mass $m = 2012.4 \pm 0.9 \text{ MeV}$ Full width $\Gamma = 6.4^{+3.0}_{-2.6} \text{ MeV}$

Branching fractions are given relative to the one **DEFINED AS 1**.

Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
DEFINED AS 1		403
0.83 ± 0.21		392
< 0.30	90%	245
< 0.21	90%	230
< 0.7	90%	226
< 0.08	90%	224
	DEFINED AS 1 0.83±0.21 <0.30 <0.21 <0.7	DEFINED AS 1 0.83 ± 0.21 < 0.30 90% < 0.21 90% < 0.7 90%

$\Omega(2250)^-$

$$I(J^P) = 0(??)$$

Mass $m=2252\pm 9~{\rm MeV}$ Full width $\Gamma=55\pm 18~{\rm MeV}$

$\Omega(2250)^-$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi^-\pi^+\kappa^-}$	seen	532
$\Xi(1530)^0K^-$	seen	437

CHARMED BARYONS (C=+1)

$$\Lambda_c^+ = udc, \quad \Sigma_c^{++} = uuc, \quad \Sigma_c^+ = udc, \quad \Sigma_c^0 = ddc,$$

$$\Xi_c^+ = usc, \quad \Xi_c^0 = dsc, \quad \Omega_c^0 = ssc$$

$$I(J^P) = 0(\frac{1}{2}^+)$$

Mass
$$m=2286.46\pm0.14$$
 MeV Mean life $au=(201.5\pm2.7)\times10^{-15}$ s $~(S=1.6)$ $c au=60.4~\mu{\rm m}$

Decay asymmetry parameters

$$\Lambda\pi^+$$
 $\alpha=-0.84\pm0.09$
 α FOR $\Lambda_c^+\to\Lambda\rho^+=-0.76\pm0.07$

https://pdg.lbl.gov

Page 37

$$\begin{array}{lll} \Sigma^{+}\pi^{0} & \alpha = -0.55 \pm 0.11 \\ \alpha \; \text{FOR} \; \varLambda_{c}^{+} \to \; \Sigma^{0}\pi^{+} = -0.73 \pm 0.18 \\ \alpha \; \text{FOR} \; \varLambda_{c}^{+} \to \; \Sigma(1385)^{+}\pi^{0} = -0.92 \pm 0.09 \\ \alpha \; \text{FOR} \; \varLambda_{c}^{+} \to \; \Sigma(1385)^{0}\pi^{+} = -0.79 \pm 0.11 \\ \varLambda\ell^{+}\nu_{\ell} & \alpha = -0.86 \pm 0.04 \\ \alpha \; \text{FOR} \; \varLambda_{c}^{+} \to \; pK_{S}^{0} = 0.2 \pm 0.5 \\ (\alpha + \overline{\alpha})/(\alpha - \overline{\alpha}) \; \text{in} \; \varLambda_{c}^{+} \to \; \Lambda\pi^{+}, \; \overline{\varLambda_{c}^{-}} \to \; \overline{\varLambda}\pi^{-} = -0.07 \pm 0.31 \\ (\alpha + \overline{\alpha})/(\alpha - \overline{\alpha}) \; \text{in} \; \varLambda_{c}^{+} \to \; \Lambda e^{+}\nu_{e}, \; \overline{\varLambda_{c}^{-}} \to \; \overline{\varLambda}e^{-}\overline{\nu}_{e} = 0.00 \pm 0.04 \\ A_{CP}(\Lambda X) \; \text{in} \; \varLambda_{c} \to \; \Lambda X, \; \overline{\varLambda}_{c} \to \; \overline{\varLambda}X = (2 \pm 7)\% \\ \Delta A_{CP} = A_{CP}(\varLambda_{c}^{+} \to \; pK^{+}K^{-}) - A_{CP}(\varLambda_{c}^{+} \to \; p\pi^{+}\pi^{-}) = \\ (0.3 \pm 1.1)\% \end{array}$$

Branching fractions marked with a footnote, e.g. [a], have been corrected for decay modes not observed in the experiments. For example, the submode fraction $\Lambda_c^+ \to p \overline{K}^*(892)^0$ seen in $\Lambda_c^+ \to p K^- \pi^+$ has been multiplied up to include $\overline{K}^*(892)^0 \to \overline{K}^0 \pi^0$ decays.

Fraction (Γ_i/Γ)

Scale factor/ pConfidence level (MeV/c)

Hadronic modes witl	h a p	or $n: S = -1$ final stat	es	
pK_S^0		($1.59\pm~0.07)~\%$	S=1.1	873
$pK^-\pi^+$		$(6.26\pm\ 0.29)\%$	S=1.4	823
$p\overline{K}^*(892)^0$	[<i>r</i>]	$(1.95\pm~0.27)~\%$		685
Δ (1232) $^{++}$ K^-		$(1.08\pm~0.25)~\%$		710
$\Lambda(1520)\pi^+$	[<i>r</i>]	($2.2~\pm~0.5$) %		628
$pK^-\pi^+$ nonresonant		(3.5 ± 0.4) %		823
$pK_S^0\pi^0$		$(1.96\pm~0.12)~\%$		823
n $K^0_S\pi^+$		$(1.82\pm\ 0.25)\ \%$		821
$n\pi^+$		$(6.6 \pm 1.3) \times 10^{-4}$		944
$n\pi^+\pi^0$		$(6.4 \pm 0.9) \times 10^{-3}$		927
$n\pi^+\pi^-\pi^+$		$(4.5 \pm 0.8) \times 10^{-3}$		895
$nK^-\pi^+\pi^+$		(1.90 ± 0.12) %		756
$p\overline{K}^0\eta$		$(8.3 \pm 1.8) \times 10^{-3}$		568
$pK_S^0\pi^+\pi^-$		$(1.60\pm~0.11)~\%$	S=1.1	754
$pK^-\pi^+\pi^0$		(4.45 ± 0.28) %	S=1.5	759
$pK^*(892)^-\pi^+$	[<i>r</i>]	(1.4 ± 0.5) %		580
$p(K^-\pi^+)_{ ext{nonresonant}}\pi^0$		(4.6 \pm 0.8) %		759
$\Delta(1232) K^*(892)$		seen		419
$pK^{-}2\pi^{+}\pi^{-}$		$(1.4 \pm 0.9) \times 10^{-3}$		671
$pK^-\pi^+2\pi^0$		(1.0 ± 0.5) %		678

Hadronic modes with a p: S = 0 final states

$$p\pi^0$$
 < 8 $\times 10^{-5}$ CL=90% 945 $p\eta$ (1.41± 0.11) $\times 10^{-3}$ 856

https://pdg.lbl.gov

Page 38

$p\eta'$	(4.9 \pm 0.9) \times 10 ⁻⁴	639
$p\omega(782)^{0}$	(8.3 ± 1.0) $\times 10^{-4}$	751
$ ho\pi^+\pi^-$	$(4.60\pm 0.26) \times 10^{-3}$	927
$p f_0(980)$	[r] (3.4 \pm 2.3) \times 10 ⁻³	614
$ ho 2\pi^{+} 2\pi^{-}$	$(2.3 \pm 1.4) \times 10^{-3}$	852
$ ho K^+ K^-$	$(1.06\pm\ 0.06)\times10^{-3}$	616
$oldsymbol{ ho}\phi$	[r] $(1.06 \pm 0.14) \times 10^{-3}$	590
pK^+K^- non- ϕ	$(5.3 \pm 1.2) \times 10^{-4}$	616
$ ho\phi\pi^0$	$(10 \pm 4) \times 10^{-5}$	460
$pK^+K^-\pi^0$ nonresonant	$< 6.3 \times 10^{-5}$	CL=90% 494

Hadronic modes with a hyperon: S = -1 final states

Hadronic modes with	a nyperon: $S = -1$ final s	states	
$\Lambda\pi^+$	$(~1.29\pm~0.05)~\%$	S=1.1	864
$\Lambda(1670)\pi^+$, $\Lambda(1670) o\eta\Lambda$	$(3.5 \pm 0.5) \times 10^{-3}$		_
$\Lambda\pi^{+}\pi^{0}$	(7.02± 0.35) %	S=1.1	844
Λho^+	$(4.0 \pm 0.5)\%$		636
$\Lambda\pi^-2\pi^+$	(3.62± 0.26) %	S=1.4	807
$\Sigma(1385)^+\pi^0$, $\Sigma^+ o \Lambda\pi^+$	$(5.0 \pm 0.7) \times 10^{-3}$		_
$\Sigma(1385)^0\pi^+$, $\Sigma^0 o\Lambda\pi^0$	$(5.6 \pm 0.8) \times 10^{-3}$		_
$\Sigma(1385)^+\pi^+\pi^-$, $\Sigma^{*+} ightarrow$	($1.0~\pm~0.5$) %		688
$\Sigma(1385)^-2\pi^+$, $\Sigma^{*-} ightarrow$	$(7.6 \pm 1.4) \times 10^{-3}$		688
$\Lambda\pi^ \Lambda\pi^+ ho^0$			
	$(1.4 \pm 0.6)\%$		524
$\Sigma(1385)^+ \rho^0$, $\Sigma^{*+} \rightarrow \Lambda \pi^+$	$(5 \pm 4) \times 10^{-3}$		363
$\Lambda \pi^- 2\pi^+$ nonresonant	< 1.1 %	CL=90%	807
$\Lambda \pi^- \pi^0 2\pi^+$ total	$(2.3 \pm 0.8)\%$	0 1 1	757
$\Lambda \pi^+ \eta$	[r] (1.85 ± 0.11) %	S=1.1	691
\sum_{A} (1385) ⁺ η	[r] (9.1 ± 2.0) × 10 ⁻³		570
$\Lambda \pi^+ \omega$	[r] (1.5 ± 0.5) %	SI 000/	517
$\Lambda\pi^-\pi^02\pi^+$, no η or ω	$< 8 \times 10^{-3}$	CL=90%	757
$\Xi(1690)^0 K^+, \Xi^{*0} \rightarrow \Lambda \overline{K}^0$	$(5.6 \pm 1.1) \times 10^{-3}$	S=1.9	443
$\Sigma^0\pi^+$	$(1.6 \pm 0.5) \times 10^{-3}$	C 11	286
$\sum_{n=0}^{\infty} \pi^{+}$	$(1.27\pm 0.06)\%$	S=1.1	825
$\sum_{\tau} + \pi^0$	$(7.5 \pm 0.8) \times 10^{-3}$		635
$\Sigma + \eta$	$(1.25 \pm 0.09) \%$ $(4.4 \pm 2.0) \times 10^{-3}$		827
$\Sigma^+ \eta'$	$(4.4 \pm 2.0) \times 10^{-3}$ $(1.5 \pm 0.6) \%$		713
$\Sigma + \eta$ $\Sigma + \pi + \pi$	$(1.5 \pm 0.0)\%$ $(4.48 \pm 0.23)\%$	S=1.2	391 804
$\sum_{i=1}^{n} \rho^{i}$	< 1.7 %	3=1.2 CL=95%	575
$\Sigma^{-} \rho \Sigma^{-} 2\pi^{+}$	(1.87± 0.18) %	CL=95/0	799
$\sum_{n} 0 \pi + \pi 0$	$(3.5 \pm 0.4)\%$		803
$\sum_{\tau}^{\tau} + \pi^0 \pi^0$	$(\ 3.5 \pm \ 0.4 \) \%$		806
$\sum_{n=0}^{\infty} \frac{n}{\pi} = 2\pi + 1$	$(1.35\pm 0.14)\%$ $(1.10\pm 0.30)\%$		763
$\Sigma + \pi + \pi - \pi^0$	(1.10 ± 0.30) /0		767
<u> </u>			101

(17/1 18 11	, ,	(') ' ' '	
$\Sigma^+\omega$	[r] (1.70±	0.20) %		569
$\Sigma^-\pi^02\pi^+$	(2.1 ±	0.4)%		762
$\Sigma^+ {\mathcal K}^+ {\mathcal K}^-$	(3.5 ±	$0.4) \times 10^{-3}$		349
$\Sigma^+\phi$	$[r]$ (3.9 \pm	$0.6) \times 10^{-3}$	S=1.1	295
${\it \Xi}(1690)^0{\it K}^+$, ${\it \Xi}^{*0}$ $ ightarrow$	($1.01\pm$	$0.25) \times 10^{-3}$		286
$\Sigma^+ K^-$				
$\Sigma^+ K^+ K^-$ nonresonant	< 8	\times 10 ⁻⁴	CL=90%	349
$\equiv^0 K^+$	(5.5 \pm	$0.7) \times 10^{-3}$		653
$\Xi^- K^+ \pi^+$	(6.2 \pm	$0.5) \times 10^{-3}$		565
$\Xi(1530)^0K^+$	(4.3 ±	$0.9) \times 10^{-3}$	S=1.1	473
Hadronic modes wit	h a hyperon: :	S=0 final st	ates	
ΛK^+	(6.0 ±	$0.5) \times 10^{-4}$		781
$\Lambda K^+ \pi^+ \pi^-$	< 5	$\times 10^{-4}$	CL=90%	637
$\Sigma^0 {\mathcal K}^+$	(4.9 \pm	$0.6) \times 10^{-4}$		735
$\Sigma^+ K^0_S$	($4.7 \pm$	$1.4) \times 10^{-4}$		736
$\Sigma^0 K^+\pi^+\pi^-$	/ 25	× 10 ⁻⁴	C1 - 0.0%	57/

$\Sigma^{0} K^{+} \pi^{+} \pi$ CL=90% 574 $\Sigma^{+} K^{+} \pi^{-}$ $\Sigma^{+} K^{*} (892)^{0}$ $\Sigma^{-} K^{+} \pi^{+}$ $(2.1 \pm 0.6) \times 10^{-3}$ 670

[r]
$$(3.5 \pm 1.0) \times 10^{-3}$$
 470
 $< 1.2 \times 10^{-3}$ CL=90% 664

Doubly Cabibbo-suppressed modes

$$pK^{+}\pi^{-}$$
 (1.11± 0.17) × 10⁻⁴ 823

Semileptonic modes

$\Lambda e^+ u_e$	($3.56\pm~0.13)~\%$	871
$ ho K^- e^+ u_e$	(8.8 ± 1.8) $ imes 10^{-4}$	874
$\Lambda(1520) e^+ \nu_e$	(1.0 \pm 0.5) $ imes$ 10 ⁻³	639
$\Lambda(1405)^0e^+ u_e$, $\Lambda^0 ightarrow hoK^-$	(4.2 \pm 1.9) $ imes$ 10 ⁻⁴	_
$\Lambda \mu^+ u_\mu$	(3.5 ± 0.5) %	867

Inclusive modes

e^+ anything	(3.95 ± 0.35) %	_
p anything	(50 \pm 16) %	_
n anything	(50 ± 16) %	_
Λ anything	$(38.2 \ ^{+} \ ^{2.9} \) \%$	_
K_S^0 anything	($9.9~\pm~0.7$) %	_
3prongs	(24 ± 8) %	-

$\Delta C = 1$ weak neutral current (C1) modes, or Lepton Family number (LF), or Lepton number (L), or Baryon number (B) violating modes

pe^+e^-	C1	< 5.5	$\times 10^{-6}$	CL=90%	951
$p\mu^+\mu^-$ non-resonant	C1	< 7.7	\times 10 ⁻⁸	CL=90%	937
$pe^+\mu^-$	LF	< 9.9	\times 10 ⁻⁶	CL=90%	947
$pe^-\mu^+$	LF	< 1.9	$\times10^{-5}$	CL=90%	947

https://pdg.lbl.gov Created: 5/31/2023 09:09 Page 40

$\overline{p}2e^+$	L,B	< 2.7	$\times 10^{-6}$	CL=90%	951
$\overline{p}2\mu^+$	L,B	< 9.4	\times 10 ⁻⁶	CL=90%	937
$\overline{p}e^+\mu^+$	L,B	< 1.6	$\times10^{-5}$	CL=90%	947
$\Sigma^-\mu^+\mu^+$	L	< 7.0	$\times 10^{-4}$	CL=90%	812
	E	kotic modes	_		
$p\gamma_D$		[s] < 8.0	$\times 10^{-5}$	CL=90%	_

$\Lambda_c(2595)^+$

$$I(J^P) = 0(\frac{1}{2})$$

The spin-parity follows from the fact that $\Sigma_c(2455)\pi$ decays, with little available phase space, are dominant. This assumes that $J^P=1/2^+$ for the $\Sigma_c(2455)$.

Mass
$$m = 2592.25 \pm 0.28$$
 MeV $m - m_{\Lambda^+} = 305.79 \pm 0.24$ MeV Full width $\Gamma = 2.6 \pm 0.6$ MeV

 $\Lambda_c^+\pi\pi$ and its submode $\Sigma_c(2455)\pi$ — the latter just barely — are the only strong decays allowed to an excited Λ_c^+ having this mass; and the submode seems to dominate.

Λ_c (2595) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \pi^+ \pi^-$	[t] —	117
$\Sigma_c(2455)^{++}\pi^-$	24 \pm 7 %	3
$\Sigma_c^{(2455)^0}\pi^+$	24 \pm 7 %	3
$\Lambda_c^+ \pi^+ \pi^-$ 3-body	18 \pm 10 %	117
$\Lambda_c^+ \pi^0$ $\Lambda_c^+ \gamma$	[u] not seen	258
$\Lambda_c^+ \gamma$	not seen	288

$\Lambda_c(2625)^+$

$$I(J^P) = O(\frac{3}{2})$$

 $\overline{J^P}$ has not been measured; $\frac{3}{2}$ is the quark-model prediction.

Mass
$$m=2628.11\pm0.19~{
m MeV}~{
m (S}=1.1)$$
 $m-m_{\Lambda_c^+}=341.65\pm0.13~{
m MeV}~{
m (S}=1.1)$ Full width $\Gamma~<~0.97~{
m MeV},~{
m CL}=90\%$

 $\Lambda_c^+\pi\pi$ and its submode $\Sigma(2455)\pi$ are the only strong decays allowed to an excited Λ_c^+ having this mass.

Λ_c (2625) $^+$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level (MeV/c)
$\Lambda_c^+ \pi^+ \pi^-$	≈ 67%	184
https://pdg.lbl.gov	Page 41	Created: 5/31/2023 09:09

Σ_c (2455) ⁺⁺ π^-	<5	90%	103
$\Sigma_{c}(2455)^{0}\pi^{+}$	<5	90%	103
$\Lambda_c^+\pi^+\pi^-$ 3-body	large	1	184
$\Lambda_c^+ \pi^0$	[u] not seen	2	293
$\Lambda_c^+ \gamma$	not seen	3	319

$\Lambda_c(2860)^+$

$$I(J^P) = 0(\frac{3}{2}^+)$$

Mass $m=2856.1^{+2.3}_{-6.0}~{
m MeV}$ Full width $\Gamma=68^{+12}_{-22}~{
m MeV}$

Λ_c (2860) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0 p$	seen	259

$\Lambda_c(2880)^+$

$$I(J^P) = 0(\frac{5}{2}^+)$$

Mass $m = 2881.63 \pm 0.24$ MeV $m - m_{\Lambda_c^+} = 595.17 \pm 0.28$ MeV Full width $\Gamma = 5.6^{+0.8}_{-0.6}$ MeV

Λ_c (2880) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \pi^+ \pi^-$	seen	471
$\Sigma_c(2455)^{0,++}\pi^{\pm}$ $\Sigma_c(2520)^{0,++}\pi^{\pm}$	seen	376
$\Sigma_{c}(2520)^{0,++}\pi^{\pm}$	seen	317
pD^0	seen	316

$\Lambda_c(2940)^+$

$$I(J^P)=0(\tfrac{3}{2}^-)$$

Created: 5/31/2023 09:09

 ${\it J}^{\it P}=3/2^-$ is favored, but is not certain

Mass
$$m=2939.6^{\,+\,1.3}_{\,-\,1.5}~{
m MeV}$$
 Full width $\Gamma=20^{\,+\,6}_{\,-\,5}~{
m MeV}$

Λ_c (2940) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
pD^0	seen	420
$\Sigma_c(2455)^{0,++}\pi^{\pm}$	seen	-

$$\Sigma_{c}(2455)$$

$$I(J^P) = 1(\frac{1}{2}^+)$$

$$\begin{array}{lll} \Sigma_c(2455)^{++} \text{mass } m = 2453.97 \pm 0.14 \text{ MeV} \\ \Sigma_c(2455)^{+} & \text{mass } m = 2452.65 ^{+0.22}_{-0.16} \text{ MeV} \\ \Sigma_c(2455)^{0} & \text{mass } m = 2453.75 \pm 0.14 \text{ MeV} \\ \Sigma_c(2455)^{++} & -m_{\Lambda_c^+} = 167.510 \pm 0.017 \text{ MeV} \\ m_{\Sigma_c(2455)^{++}} & -m_{\Lambda_c^+} = 166.19 ^{+0.16}_{-0.08} \text{ MeV} \\ m_{\Sigma_c(2455)^+} & -m_{\Lambda_c^+} = 167.290 \pm 0.017 \text{ MeV} \\ m_{\Sigma_c(2455)^{++}} & -m_{\Sigma_c(2455)^0} = 0.220 \pm 0.013 \text{ MeV} \\ m_{\Sigma_c(2455)^{++}} & -m_{\Sigma_c(2455)^0} = -1.10 ^{+0.16}_{-0.08} \text{ MeV} \\ \Sigma_c(2455)^{++} \text{full width } \Gamma = 1.89 ^{+0.09}_{-0.18} \text{ MeV} & (\text{S} = 1.1) \\ \Sigma_c(2455)^{+} & \text{full width } \Gamma = 2.3 \pm 0.4 \text{ MeV} \\ \Sigma_c(2455)^{0} & \text{full width } \Gamma = 1.83 ^{+0.11}_{-0.19} \text{ MeV} & (\text{S} = 1.2) \end{array}$$

 $\Lambda_{\mathcal{C}}^{+}\pi$ is the only strong decay allowed to a $\Sigma_{\mathcal{C}}$ having this mass.

 Σ_{c} (2455) DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda_c^+ \pi$$

 \approx 100 %

94

 $\Sigma_c(2520)$

$$I(J^P) = 1(\frac{3}{2}^+)$$

 ${\it J}^{\it P}$ has not been measured; ${3\over 2}^+$ is the quark-model prediction.

$$\begin{split} & \Sigma_c(2520)^{++} \text{mass } m = 2518.41^{+0.22}_{-0.18} \text{ MeV} \quad (\text{S} = 1.1) \\ & \Sigma_c(2520)^{+} \quad \text{mass } m = 2517.4^{+0.7}_{-0.5} \text{ MeV} \\ & \Sigma_c(2520)^{0} \quad \text{mass } m = 2518.48 \pm 0.20 \text{ MeV} \quad (\text{S} = 1.1) \\ & m_{\Sigma_c(2520)^{++}} - m_{\Lambda_c^+} = 231.95^{+0.18}_{-0.12} \text{ MeV} \quad (\text{S} = 1.3) \\ & m_{\Sigma_c(2520)^{+}} - m_{\Lambda_c^+} = 230.9^{+0.7}_{-0.5} \text{ MeV} \\ & m_{\Sigma_c(2520)^{0}} - m_{\Lambda_c^+} = 232.02^{+0.16}_{-0.14} \text{ MeV} \quad (\text{S} = 1.3) \\ & m_{\Sigma_c(2520)^{++}} - m_{\Sigma_c(2520)^{0}} = 0.01 \pm 0.15 \text{ MeV} \\ & \Sigma_c(2520)^{++} \quad \text{full width } \Gamma = 14.78^{+0.30}_{-0.40} \text{ MeV} \\ & \Sigma_c(2520)^{+} \quad \text{full width } \Gamma = 17.2^{+4.0}_{-2.2} \text{ MeV} \\ & \Sigma_c(2520)^{0} \quad \text{full width } \Gamma = 15.3^{+0.4}_{-0.5} \text{ MeV} \end{split}$$

 $\Lambda_c^+\pi$ is the only strong decay allowed to a Σ_c having this mass.

Σ_c (2520) DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

Created: 5/31/2023 09:09

 $\Lambda_c^+ \pi$

 \approx 100 %

179

$$\Sigma_c$$
 (2800)

$$I(J^P) = 1(??)$$

$$\begin{split} & \Sigma_c(2800)^{++} \text{ mass } m = 2801^{+4}_{-6} \text{ MeV} \\ & \Sigma_c(2800)^+ \text{ mass } m = 2792^{+14}_{-5} \text{ MeV} \\ & \Sigma_c(2800)^0 \text{ mass } m = 2806^{+5}_{-7} \text{ MeV} \quad (\text{S} = 1.3) \\ & m_{\Sigma_c(2800)^{++}} - m_{\Lambda_c^+} = 514^{+4}_{-6} \text{ MeV} \\ & m_{\Sigma_c(2800)^+} - m_{\Lambda_c^+} = 505^{+14}_{-5} \text{ MeV} \\ & m_{\Sigma_c(2800)^0} - m_{\Lambda_c^+} = 519^{+5}_{-7} \text{ MeV} \quad (\text{S} = 1.3) \\ & \Sigma_c(2800)^{++} \text{ full width } \Gamma = 75^{+22}_{-17} \text{ MeV} \\ & \Sigma_c(2800)^+ \text{ full width } \Gamma = 62^{+60}_{-40} \text{ MeV} \\ & \Sigma_c(2800)^0 \text{ full width } \Gamma = 72^{+22}_{-15} \text{ MeV} \end{split}$$

Σ_c (2800) DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda_c^+ \pi$$

seen

443

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m=2467.71\pm0.23$$
 MeV $~(S=1.3)$ Mean life $au=(453\pm5)\times10^{-15}$ s $c au=135.8~\mu{\rm m}$

Branching fractions marked with a footnote, e.g. [a], have been corrected for decay modes not observed in the experiments. For example, the submode fraction $\Xi_c^+ \to \Sigma^+ \overline{K}^* (892)^0$ seen in $\Xi_c^+ \to \Sigma^+ K^- \pi^+$ has been multiplied up to include $\overline{K}^* (892)^0 \to \overline{K}^0 \pi^0$ decays.

 \equiv_c^+ DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ pConfidence level (MeV/c)

Cabibbo-favored (S = -2) decays

$p2K_S^0$	(2.5±	$1.3) \times 10^{-3}$		766
$\Lambda \overline{K}^0 \pi^+$		_		852
$\Sigma(1385)^+\overline{K}{}^0$	[r] (2.9±2)	2.0) %		746
$\Lambda K^- 2\pi^+$	(9 ±	4) \times 10 ⁻³		787
$\Lambda \overline{K}^* (892)^0 \pi^+$	[r] < 5	\times 10 ⁻³	CL=90%	608
$\Sigma(1385)^+ {\cal K}^- \pi^+$	[r] < 6	$\times 10^{-3}$	CL=90%	678
$\Sigma^+ K^- \pi^+$	(2.7±	1.2) %		810
$\Sigma^+\overline{K}^*(892)^0$	[r] (2.3 ± 1)	1.1) %		658

https://pdg.lbl.gov

Page 44

Σ^0 K $^-$ 2 π^+	(8 ±5	$) \times 10^{-3}$		735
\equiv 0 π +	$(1.6 \pm 0$.8) %		876
$\equiv -2\pi^+$	$(2.9 \pm 1$.3) %		851
$\Xi(1530)^0\pi^+$	[r] < 2.9	$\times 10^{-3}$	CL=90%	749
$\Xi(1620)^0 \pi^+$	seen			_
$\Xi(1690)^0 \pi^+$	seen			644
$\equiv^0 \pi^+ \pi^0$	(6.7 ± 3)	.5) %		856
$= \frac{1}{2} \pi^{-} 2\pi^{+}$	$(5.0\pm 2$.6) %		818
$\equiv^0 e^+ u_e$	(7 ±4) %		884
Ω^- K $^+$ π^+	$(2.0 \pm 1$	$.5) \times 10^{-3}$		399

Cabibbo-suppressed decays

$pK^-\pi^+$	((6.2 ± 3.0)	$) \times 10^{-3}$	S=1.5	944
$p\overline{K}^*(892)^0$	[<i>r</i>]	(3.3 ± 1.7)	$) \times 10^{-3}$		828
$\Sigma^+\pi^+\pi^-$	((1.4 ± 0.8)) %		922
$\Sigma^- 2\pi^+$	((5.1 ± 3.4)	$) \times 10^{-3}$		918
$\Sigma^+ K^+ K^-$		(4.3 ± 2.5)	$) \times 10^{-3}$		579
$oldsymbol{\Sigma^+}\phi$	[r] <	3.2	$\times 10^{-3}$	CL=90%	549
arxiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	<	1.3	$\times 10^{-3}$	CL=90%	501
$\Sigma^+ K^-$			4		
$p\phi(1020)$	((1.2 ± 0.6)	$) \times 10^{-4}$		751

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m=2470.44\pm0.28$$
 MeV (S $=1.2$) $m_{\Xi_c^0}-m_{\Xi_c^+}=2.72\pm0.23$ MeV (S $=1.1$) Mean life $\tau=(151.9\pm2.4)\times10^{-15}$ s $c\tau=45.5~\mu\mathrm{m}$

Decay asymmetry parameters

$$\Xi^{-}\pi^{+}$$
 $\alpha = -0.64 \pm 0.05$
 $\alpha \text{ FOR } \overline{\Xi}{}^{0} \rightarrow \overline{\Xi}{}^{+}\pi^{-} = 0.61 \pm 0.05$
 $\alpha \text{ FOR } \Xi_{c}^{0} \rightarrow \Lambda \overline{K}^{*}(892)^{0} = 0.15 \pm 0.22$
 $\alpha \text{ FOR } \Xi_{c}^{0} \rightarrow \Sigma^{+}K^{*}(892)^{-} = -0.52 \pm 0.30$

\equiv_c^0 DECAY MODES

Fraction (Γ_i/Γ)

Scale factor (MeV/c)

Cabibbo-favored decays

	•		
$pK^-K^-\pi^+$	$(4.8 \pm 1.2) \times 10^{-3}$	1.1	676
$pK^{-}\overline{K}^{*}(892)^{0}, \overline{K}^{*0} \rightarrow K^{-}\pi^{+}$	$(2.0 \pm 0.6) \times 10^{-3}$		413
$pK^-K^-\pi^+$ (no \overline{K}^{*0})	$(3.0 \pm 0.9) \times 10^{-3}$		676
ΛK_S^0	$(3.2 \pm 0.7) \times 10^{-3}$		906

https://pdg.lbl.gov

Page 45

$\Lambda K^- \pi^+$	$(1.45\pm0.33)~\%$	1.1	856
$\Lambda \overline{K}^{*}(892)^{0}$	$(2.6 \pm 0.7) \times 10^{-3}$		717
$\Lambda \overline{K}{}^0 \pi^+ \pi^-$	seen		786
$\Lambda K^- \pi^+ \pi^+ \pi^-$	seen		703
$\Sigma^0 K_S^0$	$(5.4 \pm 1.6) \times 10^{-4}$		864
$\Sigma^+ K^-$	$(1.8 \pm 0.4) \times 10^{-3}$		868
$\Sigma^0 \overline{K}^* (892)^0$	$(9.8 \pm 2.3) \times 10^{-3}$		658
$\Sigma^+ {\mathcal K}^*(892)^-$	$(4.9 \pm 1.4) \times 10^{-3}$		661
$\equiv -\pi^+$	$(1.43\pm0.32)~\%$	1.1	875
$\Xi^-\pi^+\pi^+\pi^-$	$(4.8 \pm 2.3)\%$		816
$\equiv^0 \phi$, $\phi o K^+ K^-$	$(5.1 \pm 1.3) \times 10^{-4}$		_
$\equiv^0 K^+ K^-$ nonresonant	$(5.6 \pm 1.4) \times 10^{-4}$		444
$\Omega^- K^+$	$(4.2 \pm 1.0) \times 10^{-3}$		522
$\Xi^- e^+ \nu_e$	$(1.04\pm0.24)~\%$		882
$\Xi^-\mu^+ u_\mu$	$(1.01\pm0.25)~\%$		878

Cabibbo-suppressed decays

$\Lambda_c^+\pi^-$	$(5.5 \pm 1.8) \times 10^{-3}$	115
$\equiv K^+$	$(3.9 \pm 1.2) \times 10^{-4}$	789
$\Lambda K^+ K^-$ (no ϕ)	$(4.1 \pm 1.4) \times 10^{-4}$	648
$\Lambda\phi$	$(4.9 \pm 1.5) \times 10^{-4}$	621

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m=2578.2\pm0.5~{\rm MeV}~{\rm (S}=1.1)$$
 $m_{\Xi_c^{\prime+}}-m_{\Xi_c^{+}}=110.5\pm0.4~{\rm MeV}$ $m_{\Xi_c^{\prime+}}-m_{\Xi_c^{\prime0}}=-0.5\pm0.6~{\rm MeV}$

The $\Xi_c^{\prime+} - \Xi_c^+$ mass difference is too small for any strong decay to occur.

<u>≡′</u> ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$= \frac{1}{c} \gamma$	seen	108

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}^+$ is the quark-model prediction.

Mass
$$m = 2578.7 \pm 0.5 \; \text{MeV}$$
 $m_{\Xi_c'^0} - m_{\Xi_c^0} = 108.3 \pm 0.4 \; \text{MeV}$

https://pdg.lbl.gov

Page 46

The $\Xi_c^{\prime 0}$ – Ξ_c^0 mass difference is too small for any strong decay to occur.

<i>≡′</i> ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\equiv_c^0 \gamma$	seen	106

$$\Xi_c(2645)$$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

 $\overline{J^P}$ has not been measured; $\frac{3}{2}$ is the quark-model prediction.

$$Ξ_c(2645)^+$$
 mass $m=2645.10\pm0.30$ MeV (S = 1.2) $Ξ_c(2645)^0$ mass $m=2646.16\pm0.25$ MeV (S = 1.3) $m_{Ξ_c(2645)^+}-m_{Ξ_c^0}=174.67\pm0.09$ MeV $m_{Ξ_c(2645)^0}-m_{Ξ_c^+}=178.45\pm0.10$ MeV $m_{Ξ_c(2645)^+}-m_{Ξ_c(2645)^0}=-1.06\pm0.27$ MeV (S = 1.1) $Ξ_c(2645)^+$ full width $\Gamma=2.14\pm0.19$ MeV (S = 1.1) $Ξ_c(2645)^0$ full width $\Gamma=2.35\pm0.22$ MeV

 $\Xi_{\it c}\,\pi$ is the only strong decay allowed to a $\Xi_{\it c}$ resonance having this mass.

Ξ_c (2645) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$= c^0 \pi^+$	seen	102
$\equiv_c^+ \pi^-$	seen	106

$\Xi_c(2790)$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^-)$$

Created: 5/31/2023 09:09

 J^P has not been measured; $\frac{1}{2}$ is the quark-model prediction.

$$\Xi_c(2790)^+$$
 mass = 2791.9 \pm 0.5 MeV $\Xi_c(2790)^0$ mass = 2793.9 \pm 0.5 MeV $m_{\Xi_c(2790)^+} - m_{\Xi_c'^0} = 213.20 \pm 0.22$ MeV $m_{\Xi_c(2790)^0} - m_{\Xi_c'^+} = 215.70 \pm 0.22$ MeV $m_{\Xi_c(2790)^+} - m_{\Xi_c(2790)^0} = -2.0 \pm 0.7$ MeV $\Xi_c(2790)^+$ width = 8.9 \pm 1.0 MeV $\Xi_c(2790)^0$ width = 10.0 \pm 1.1 MeV

Ξ_c (2790) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_c'} \pi$	seen	159

$$\Xi_c(2815)$$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

 $\overline{J^P}$ has not been measured; $\frac{3}{2}$ is the quark-model prediction.

$$Ξ_c(2815)^+$$
 mass $m=2816.51\pm0.25$ MeV (S = 1.2) $Ξ_c(2815)^0$ mass $m=2819.79\pm0.30$ MeV (S = 1.1) $m_{Ξ_c(2815)^+}-m_{Ξ_c^+}=348.80\pm0.10$ MeV $m_{Ξ_c(2815)^0}-m_{Ξ_c^0}=349.35\pm0.11$ MeV $m_{Ξ_c(2815)^+}-m_{Ξ_c(2815)^0}=-3.27\pm0.27$ MeV $Ξ_c(2815)^+$ full width $\Gamma=2.43\pm0.26$ MeV $Ξ_c(2815)^0$ full width $\Gamma=2.54\pm0.25$ MeV

The $\Xi_C \pi \pi$ modes are consistent with being entirely via $\Xi_C(2645)\pi$.

Ξ_c (2815) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Xi_c'\pi$	seen	188
	seen	102
$\Xi_c(2645)\pi$ $\Xi_c^0\gamma$	seen	325

$\Xi_c(2970)$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

was $\Xi_c(2980)$

$$\begin{split} &\Xi_c(2970)^+ \ m = 2964.3 \pm 1.5 \ \text{MeV} \quad (\text{S} = 3.9) \\ &\Xi_c(2970)^0 \ m = 2967.1 \pm 1.7 \ \text{MeV} \quad (\text{S} = 6.7) \\ &m_{\Xi_c(2970)^+} - m_{\Xi_c^+} = 496.6 \pm 1.5 \ \text{MeV} \quad (\text{S} = 3.7) \\ &m_{\Xi_c(2970)^0} - m_{\Xi_c^0} = 496.7 \pm 1.8 \ \text{MeV} \quad (\text{S} = 5.3) \\ &m_{\Xi_c(2970)^+} - m_{\Xi_c(2970)^0} = -2.8 \pm 1.9 \ \text{MeV} \quad (\text{S} = 4.8) \\ &\Xi_c(2970)^+ \ \text{width} \ \Gamma = 20.9^{+2.4}_{-3.5} \ \text{MeV} \quad (\text{S} = 1.2) \end{split}$$

Ξ_c (2970) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \overline{K} \pi$	seen	223
$\Sigma_c(2455)\overline{K}$	seen	122
$\Lambda_c^+\overline{K}$	not seen	410
$ \Sigma_{c}(2455)\overline{K} $ $ \Lambda_{c}^{+}\overline{K} $ $ \Lambda_{c}^{+}K^{-} $ $ \Xi_{c}^{-}2\pi $	seen	410
<u> </u>	seen	381
$\Xi_c'\pi$	seen	_
$\Xi_c(2645)\pi$	seen	274

$$\Xi_c(3055)$$

$$I(J^P) = ?(??)$$

Mass $m=3055.9\pm0.4~{\rm MeV}$ Full width $\Gamma=7.8\pm1.9~{\rm MeV}$

Ξ_c (3055) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Σ^{++} K $^-$	seen	_
ΛD^+	seen	316

$\Xi_c(3080)$

$$I(J^P) = \frac{1}{2}(??)$$

$$\Xi_c(3080)^+ \ m = 3077.2 \pm 0.4 \ {
m MeV}$$

 $\Xi_c(3080)^0 \ m = 3079.9 \pm 1.4 \ {
m MeV} \ ({
m S} = 1.3)$
 $\Xi_c(3080)^+ \ {
m width} \ \Gamma = 3.6 \pm 1.1 \ {
m MeV} \ ({
m S} = 1.5)$
 $\Xi_c(3080)^0 \ {
m width} \ \Gamma = 5.6 \pm 2.2 \ {
m MeV}$

Ξ_c (3080) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \overline{K}_{\pi}$	seen	415
Σ_c (2455) \overline{K}	seen	342
Σ_c (2455) $^{++}$ K $^-$	seen	342
$\Sigma_c(2520)^{++} K^-$	seen	239
$\Sigma_c(2455)\overline{K} + \Sigma_c(2520)\overline{K}$	seen	_
$\Lambda_c^+ \overline{K}$	not seen	536
$\Lambda_c^+ \overline{K} \pi^+ \pi^-$	not seen	144
ΛD^+	seen	362

Ω_c^0

$$I(J^P)=0(\tfrac{1}{2}^+)$$

 ${\it J}^{\it P}$ has not been measured; ${1\over 2}^+$ is the quark-model prediction.

Mass
$$m=2695.2\pm1.7$$
 MeV (S $=1.3$)
Mean life $au=(268\pm26)\times10^{-15}$ s $c au=80~\mu{\rm m}$

No absolute branching fractions have been measured. The following are branching ratios relative to $\Omega^-\pi^+$.

Ω_c^0 DECAY MODES

Fraction (Γ_i/Γ)

Confidence level (MeV/c)

Cab	bibbo-favored ($S=-3$) decays — relative to $\Omega^-\pi^+$	
$\Omega^-\pi^+$	DEFINED AS 1	821
$\Omega^-\pi^+\pi^0$	1.80 ± 0.33	797

https://pdg.lbl.gov

Page 49

$\Omega^- ho^+$	>1.3	90%	532
$\Omega^-\pi^-2\pi^+$	$0.31\!\pm\!0.05$		753
$\Omega^- e^+ u_e$	$1.98 \!\pm\! 0.15$		829
$\Omega^-\mu^+ u_\mu$	1.94 ± 0.21		824
$\equiv^0 \overline{K}^0$	1.64 ± 0.29		950
$\equiv^0 K^- \pi^+$	1.20 ± 0.18		901
$ar{arXi}^0\overline{K}^{*0}$, $\overline{K}^{*0} o K^-\pi^+$	0.68 ± 0.16		764
$\Omega(2012)^-\pi^+$, $\Omega(2012)^-\to$	0.12 ± 0.05		_
$\equiv -\frac{\Xi^0 K^-}{K^0 \pi^+}$	2.12 ± 0.28		895
$\Omega(2012)^-\pi^+, \ \Omega(2012)^- \rightarrow = -\overline{\kappa}^0$	0.12 ± 0.06		-
$\equiv -\kappa^{-}2\pi^{+}$	0.63 ± 0.09		830
$\Xi(1530)^{0}K^{-}\pi^{+}, \ \Xi^{*0} \rightarrow$	0.21 ± 0.06		757
$\underline{\underline{=}} - \underline{\underline{\underline{\pi}}}^+ \pi^+$	0.34 ± 0.11		653
$ ho K^- K^- \pi^+$	seen		864
$\Sigma^+ K^- K^- \pi^+$	< 0.32	90%	689
$\Lambda \overline{K}{}^0 \overline{K}{}^0$	1.72 ± 0.35		837

$\Omega_c(2770)^0$

$$I(J^P) = 0(\frac{3}{2}^+)$$

 $\overline{J^P}$ has not been measured; $\frac{3}{2}^+$ is the quark-model prediction.

Mass
$$m=2765.9\pm2.0$$
 MeV (S $=1.2$) $m_{\Omega_c(2770)^0}-m_{\Omega_c^0}^{0}=70.7^{+0.8}_{-0.9}$ MeV

The $\Omega_c(2770)^0 - \Omega_c^0$ mass difference is too small for any strong decay to occur.

$\Omega_c(2770)^0$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Omega_c^0 \gamma$	presumably 100%	70

$$I(J^P) = ?(??)$$

Created: 5/31/2023 09:09

Mass $m=3000.41\pm0.22~{\rm MeV}$ Full width $\Gamma=4.5\pm0.7~{\rm MeV}$

Ω_c (3000) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_c^+ K^-}$	seen	182

 $\Omega_c(3050)^0$

$$I(J^P) = ?(??)$$

Mass $m=3050.19\pm0.13~{
m MeV}$ Full width $\Gamma~<~1.2~{
m MeV},~{
m CL}=95\%$

 $\Omega_c(3050)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $\Xi_c^+ K^-$

seen

278

 $\Omega_c(3065)^0$

$$I(J^P) = ?(??)$$

Mass $m=3065.54\pm0.26$ MeV Full width $\Gamma=3.3\pm0.6$ MeV (S =1.5)

 $\Omega_c(3065)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $\Xi_c^+ K^-$

seen

303

 $\Omega_c(3090)^0$

$$I(J^P) = ?(??)$$

Mass $m=3090.1\pm0.5~{\rm MeV}$ Full width $\Gamma=8.7\pm1.3~{\rm MeV}$

 $\Omega_c(3090)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $\Xi_c^+ K^-$

seen

340

 $\Omega_c(3120)^0$

$$I(J^P) = ?(?^?)$$

Mass $m=3119.1\pm1.0$ MeV Full width Γ < 2.6 MeV, CL = 95%

 $\Omega_c(3120)^0$ DECAY MODES

Fraction (Γ_i/Γ)

(MeV/c)

Created: 5/31/2023 09:09

 $\Xi_c^+ K^-$

seen

379

DOUBLY CHARMED BARYONS (C=+2)

 $\Xi_{cc}^{++}=ucc$, $\Xi_{cc}^{+}=dcc$, $\Omega_{cc}^{+}=scc$

$$I(J^P) = ?(??)$$

Mass $m=3621.6\pm0.4$ MeV Mean life $au=(256\pm27)\times10^{-15}$ s

$\underline{z_{cc}^{++}}$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_c^+ K^- \pi^+ \pi^+$	DEFINED AS 1		880
$\Xi_c^+\pi^+, \Xi_c^+ \to pK^-\pi^+$ $\Xi_c^{\prime+}\pi^+, \Xi_c^{\prime+} \to \Xi_c^+\gamma, \Xi_c^+ \to$	$0.0022\!\pm\!0.0006$		_
	$0.0031\!\pm\!0.0010$		_
$p K^- \pi^+ \ D^+ p K^- \pi^+$			
$D^+ \rho K^- \pi^+$	< 0.017	90%	562

BOTTOM BARYONS (B=-1)

 $\Lambda_b^0 = udb$, $\Xi_b^0 = usb$, $\Xi_b^- = dsb$, $\Omega_b^- = ssb$

Λ<mark></mark>

$$I(J^P) = 0(\frac{1}{2}^+)$$

Created: 5/31/2023 09:09

$$\begin{split} I(J^P) & \text{ not yet measured; } 0(\frac{1}{2}^+) \text{ is the quark model prediction.} \\ & \text{Mass } m = 5619.60 \pm 0.17 \text{ MeV} \\ & m_{\Lambda_b^0} - m_{B^0} = 339.2 \pm 1.4 \text{ MeV} \\ & m_{\Lambda_b^0} - m_{B^+} = 339.72 \pm 0.28 \text{ MeV} \\ & \text{Mean life } \tau = (1.471 \pm 0.009) \times 10^{-12} \text{ s} \\ & c\tau = 441.0 \ \mu\text{m} \\ & A_{CP}(\Lambda_b \to p\pi^-) = -0.025 \pm 0.029 \quad \text{(S = 1.2)} \\ & A_{CP}(\Lambda_b \to pK^-) = -0.025 \pm 0.022 \\ & A_{CP}(\Lambda_b \to pK^-) = 0.12 \pm 0.09 \\ & \Delta A_{CP}(pK^-/\pi^-) = 0.014 \pm 0.024 \\ & A_{CP}(\Lambda_b \to p\overline{K}^0\pi^-) = 0.22 \pm 0.13 \\ & \Delta A_{CP}(J/\psi p\pi^-/K^-) = (5.7 \pm 2.7) \times 10^{-2} \end{split}$$

https://pdg.lbl.gov

Page 52

$$\begin{array}{l} A_{CP}(\Lambda_b \to \Lambda K^+ \pi^-) = -0.53 \pm 0.25 \\ A_{CP}(\Lambda_b \to \Lambda K^+ K^-) = -0.28 \pm 0.12 \\ \Delta A_{CP}(\Lambda_b^0 \to \rho K^- \mu^+ \mu^-) = (-4 \pm 5) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho \pi^- \pi^+ \pi^-) = (1.1 \pm 2.6) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho \pi^- \pi^+ \pi^-)_{LBM}) = (4 \pm 4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho \pi_- \pi^+ \pi^-)_{LBM}) = (4 \pm 4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho \pi_1 (1260)^-) = (-1 \pm 4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \lambda (1520)^0 \rho (770)^0) = (2 \pm 5) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \lambda (1322)^{++} \pi^- \pi^-) = (0.1 \pm 3.3) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho K^- \pi^+ \pi^-)_{LBM}) = (3.5 \pm 1.6) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \lambda (1520)^0 K^* (892)^0) = (5.5 \pm 2.5) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \lambda (1520) \rho (770)^0) = (1 \pm 6) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \lambda (1520) \rho (770)^0) = (1 \pm 6) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ \pi^-) = (-7 \pm 5) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ \pi^-) = (-7 \pm 5) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ \pi^-) = (0.2 \pm 1.9) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ K^-) = (0.2 \pm 1.9) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ K^-) = (0.2 \pm 1.9) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ K^-)_{LBM}) = (2.7 \pm 2.4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to (\rho K^-)_{highmass} \phi (1020)) = (-0.7 \pm 3.4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to (\rho K^-)_{highmass} \phi (1020)) = (-0.7 \pm 3.4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to (\rho K^- K^+ K^-)_{LBM}) = (2.7 \pm 2.4) \times 10^{-2} \\ \Delta A_{FB}(\mu \mu) \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = -0.39 \pm 0.04 \\ \Delta (A_{FB}^0(\mu \mu)) \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = -0.39 \pm 0.05 \\ A_{FB}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = -0.25 \pm 0.04 \\ A_{FB}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = -0.25 \pm 0.04 \\ A_{FB}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = -0.25 \pm 0.04 \\ A_{FB}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = -0.25 \pm 0.04 \\ A_{FB}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = -0.25 \pm 0.04 \\ A_{FB}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = -0.25 \pm 0.04 \\ A_{FB}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = 0.25 \pm 0.04 \\ A_{FB}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = 0.25 \pm 0.04 \\ A_{CP}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = 0.25 \pm 0.04 \\ A_{CP}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = 0.25 \pm 0.04 \\ A_{CP}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = 0.25 \pm 0.04 \\ A_{CP}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = 0.25 \pm 0.0$$

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $\Lambda_b \to \overline{\Lambda}_c$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

A_b^0 DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	•
$J/\psi(1S)$ $\Lambda imes$ B $(b o \Lambda_b^0)$	(5.8 \pm 0.8) $ imes$ 1	0-5	1740
$ hoD^0\pi^-$	(6.2 ± 0.6) \times 1	0^{-4}	2370
$ ho D^+ \pi^- \pi^-$	($2.7~\pm0.4$) $ imes 1$	0^{-4}	2332
$ hoD^*(2010)^+\pi^-\pi^-$	(5.2 ± 1.0) $ imes 1$	0^{-4}	2277
pD^0K^-	($4.5~\pm0.8~) imes1$	0-5	2269
$ ho J/\psi \pi^-$	($2.6 \begin{array}{c} +0.5 \\ -0.4 \end{array}$) $ imes$ 1	0^{-5}	1755
$ ho\pi^- J/\psi$, $J/\psi ightarrow \mu^+ \mu^-$	($1.6~\pm0.8~) imes1$	0-6	_
$p J/\psi K^-$	$(3.2 \begin{array}{c} +0.6 \\ -0.5 \end{array}) \times 1$	0^{-4}	1589

https://pdg.lbl.gov

Page 53

$p\eta_c(1S)K^- P_c(4312)^+K^-,$	$(1.06\pm0.26)\times10^{-4}$ < 2.5 $\times10^{-5}$	CL=95%	1670
$P_c(4312)^+ \rightarrow p\eta_c(1S)$	$< 2.5 \times 10^{-5}$	CL=95%	_
$P_c(4380)^+ K^-$, $P_c \rightarrow$	[v] (2.7 ± 1.4) $ imes 10^{-5}$		_
$P_c(4450)^+K^-,\;\;P_c ightarrow P_J/\psi$	[v] (1.3 ± 0.4) $\times 10^{-5}$		-
$\chi_{c1}(1P)pK^-$	$(7.6 \ ^{+1.5}_{-1.3}\) \times 10^{-5}$		1242
$\chi_{c1}(1P) p \pi^-$	($5.0 \ ^{+1.3}_{-1.1}$) $ imes 10^{-6}$		1462
$\chi_{c2}(1P)pK^-$	$(7.9 \ ^{+1.6}_{-1.4}\) \times 10^{-5}$		1198
$\chi_{c2}(1P) p \pi^-$	(4.8 ± 1.9) $\times 10^{-6}$		1427
$pJ/\psi(1S)\pi^+\pi^-K^-$	(6.6 $^{+1.3}_{-1.1}$) \times 10 ⁻⁵		1410
$p\psi(2S)K^-$	(6.6 $^{+1.2}_{-1.0}$) \times 10 ⁻⁵		1063
$\chi_{c1}(3872) p K^-$	$(3.2 \pm 1.4) \times 10^{-5}$		837
$\chi_{c1}(3872)\Lambda(1520)$	(1.9 \pm 0.9) \times 10 ⁻⁵		721
$\psi(2S) p \pi^-$	$(7.5 \ ^{+1.6}_{-1.4}\) \times 10^{-6}$		1320
$ \rho \overline{K}{}^{0}\pi^{-} $	$(1.3 \pm 0.4) \times 10^{-5}$		2693
pK^0K^-	$< 3.5 \times 10^{-6}$	CL=90%	2639
$\Lambda_{c}^{+}\pi^{-}$	$(4.9 \pm 0.4) \times 10^{-3}$	S=1.2	2342
$\Lambda_c^+ K^-$	$(3.56\pm0.28)\times10^{-4}$	S=1.2	2314
$\Lambda_c^+ a_1(1260)^-$	seen		2153
$\Lambda_c^+ D^-$	$(4.6 \pm 0.6) \times 10^{-4}$		1886
$\Lambda_c^{\stackrel{\leftarrow}{+}}D_s^-$	$(1.10\pm0.10)\%$		1833
$\Lambda_c^+ \pi^+ \pi^- \pi^-$	$(7.6 \pm 1.1) \times 10^{-3}$	S=1.1	2323
$\Lambda_c(2595)^+\pi^-$,	$(3.4 \pm 1.4) \times 10^{-4}$		2210
$\Lambda_c(2595)^+ \rightarrow \Lambda_c^+ \pi^+ \pi^-$			
$\Lambda_c(2625)^+\pi^-$,	$(3.3 \pm 1.3) \times 10^{-4}$		2193
$\Lambda_c(2625)^+ \rightarrow \Lambda_c^+ \pi^+ \pi^-$			
Σ_c (2455) $^0\pi^+\pi^-$, $\Sigma_c^0 o$	$(5.7 \pm 2.2) \times 10^{-4}$		2265
$\Lambda_c^+\pi^-$			
$\Sigma_c(2455)^{++}\pi^-\pi^-$, $\Sigma_c^{++}\to$	$(3.2 \pm 1.5) \times 10^{-4}$		2265
$\Lambda_c^+ \pi^+$	(1 00 0 11) 10=3		2121
$\Lambda_c^+ K^+ K^- \pi^ \Lambda_c^+ p \overline{p} \pi^-$	$(1.02\pm0.11)\times10^{-3}$		2184
L	$(2.63\pm0.27)\times10^{-4}$		1805
$\Sigma_c(2455)^0 p \overline{p}, \Sigma_c^0 ightarrow \Lambda_c^+ \pi^-$	$(2.3 \pm 0.5) \times 10^{-5}$		_
$\Sigma_c(2520)^0 p \overline{p}$, $\Sigma_c(2520)^0 \rightarrow$	($3.1~\pm0.7$) \times 10^{-5}		_
$\Lambda_c^+\pi^-$			

$\Lambda_c^+\ell^-\overline{ u}_\ell$ anything	[x] (10.9 ± 2.2) %		_
$\Lambda_c^+ \ell^- \overline{ u}_\ell$	$(\begin{array}{cc} 6.2 & +1.4 \\ -1.3 \end{array}) \%$		2345
$\Lambda_c^+ \tau^- \overline{\nu}_{\tau}$	(1.9 ± 0.5) %		1933
$\Lambda_c^+ \pi^+ \pi^- \ell^- \overline{\nu}_\ell$	(5.6 ± 3.1) %		2335
$\Lambda_c(2595)^+\ell^-\overline{ u}_\ell$	$(7.9 \ ^{+4.0}_{-3.5}) \times 10^{-3}$		2212
$\Lambda_c(2625)^+\ell^-\overline{ u}_\ell$	($1.3 \begin{array}{c} +0.6 \\ -0.5 \end{array}$) %		2195
p h ⁻	$[y] < 2.3 \times 10^{-5}$	CL=90%	2730
$p\pi^-$	$(4.5 \pm 0.8) \times 10^{-6}$		2730
p K -	$(5.4 \pm 1.0) \times 10^{-6}$		2709
pD_s^-	$< 4.8 \times 10^{-4}$	CL=90%	2364
$ ho\mu^-\overline{ u}_{\mu}$	$(4.1 \pm 1.0) \times 10^{-4}$		2730
$\Lambda \mu^+ \mu^-$	$(1.08\pm0.28)\times10^{-6}$		2695
$ ho\pi^-\mu^+\mu^-$	$(6.9 \pm 2.5) \times 10^{-8}$		2720
$pK^-e^+e^-$	$(3.1 \pm 0.6) \times 10^{-7}$		2708
$ hoK^-\mu^+\mu^-$	$(2.6 \ ^{+0.5}_{-0.4}) \times 10^{-7}$		2685
$\Lambda\gamma$	$(7.1 \pm 1.7) \times 10^{-6}$		2699
$\Lambda\eta$	$(9 ^{+7}_{-5}) \times 10^{-6}$		2670
$\Lambda \eta'(958)$	$< 3.1 \times 10^{-6}$	CL=90%	2611
$\Lambda \pi^+ \pi^-$	(4.6 ± 1.9) $ imes 10^{-6}$		2692
$\Lambda K^+ \pi^-$	$(5.6 \pm 1.2) \times 10^{-6}$		2660
$\Lambda K^+ K^-$	$(1.60\pm0.22)\times10^{-5}$		2605
$\Lambda\phi$	$(9.8 \pm 2.6) \times 10^{-6}$		2599
$\rho\pi^-\pi^+\pi^-$	$(2.09\pm0.21)\times10^{-5}$		2715
$pK^-K^+\pi^-$	$(4.0 \pm 0.6) \times 10^{-6}$		2612
$pK^-\pi^+\pi^-$	$(5.0 \pm 0.5) \times 10^{-5}$		2675
p K - K + K -	$(1.25\pm0.13)\times10^{-5}$		2524

$\Lambda_b(5912)^0$

$$J^P = \frac{1}{2}^-$$

Created: 5/31/2023 09:09

Mass $m=5912.19\pm0.17~{\rm MeV}$ Full width $\Gamma~<~0.25~{\rm MeV},~{\rm CL}=90\%$

Λ _b (5912) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b^0 \pi^+ \pi^-$	seen	86

$$\Lambda_b (5920)^0$$

$$J^P = \frac{3}{2}^-$$

Mass $m=5920.09\pm0.17$ MeV Full width $\Gamma < 0.19$ MeV, CL=90%

$\frac{\Lambda_b(5920)^0}{\Omega}$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda_b^0 \pi^+ \pi^-$$

seer

108

$\Lambda_b(6070)^0$

$$J^P = \frac{1}{2}^+$$

Quantum numbers based on quark model expectations.

Mass
$$m=6072.3\pm2.9~{\rm MeV}$$

Full width $\Gamma=72\pm11~{\rm MeV}$

$\Lambda_b(6070)^0$ DECAY MODES

Fraction (Γ_i/Γ)

(MeV/c)

$$\Lambda_b^0 \pi^+ \pi^-$$

seen

343

$\Lambda_b (6146)^0$

$$J^{P} = \frac{3}{2}^{+}$$

Mass
$$m=6146.2\pm0.4~{
m MeV}$$
 $m_{\Lambda_b(6146)^0}-m_{\Lambda_b^0}^{}=526.55\pm0.34~{
m MeV}$ Full width $\Gamma=2.9\pm1.3~{
m MeV}$

Λ_b (6146)⁰ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda^0_{\mu} \pi^+ \pi^-$$

seen

427

$\Lambda_b (6152)^0$

$$J^{P} = \frac{5}{2}^{+}$$

Mass
$$m=6152.5\pm0.4~{
m MeV}$$
 $m_{\Lambda_b(6152)^0}-m_{\Lambda_b^0}^{}=532.89\pm0.28~{
m MeV}$ $m_{\Lambda_b(6152)^0}-m_{\Lambda_b(6146)^0}^{}=6.34\pm0.32~{
m MeV}$ Full width $\Gamma=2.1\pm0.9~{
m MeV}$

$\Lambda_b(6152)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

Created: 5/31/2023 09:09

$$\Lambda_b^0 \pi^+ \pi^-$$

seen

434

$$I(J^P) = 1(\frac{1}{2}^+)$$

I, J, P need confirmation.

Mass
$$m(\Sigma_b^+) = 5810.56 \pm 0.25$$
 MeV
Mass $m(\Sigma_b^-) = 5815.64 \pm 0.27$ MeV
 $m_{\Sigma_b^+} - m_{\Sigma_b^-} = -5.06 \pm 0.18$ MeV
 $\Gamma(\Sigma_b^+) = 5.0 \pm 0.5$ MeV
 $\Gamma(\Sigma_b^-) = 5.3 \pm 0.5$ MeV

Σ_b DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda_b^0 \pi$$

dominant

133

$$I(J^P) = 1(\frac{3}{2}^+)$$
 I, J, P need confirmation.

Mass
$$m(\Sigma_b^{*+}) = 5830.32 \pm 0.27 \text{ MeV}$$

Mass $m(\Sigma_b^{*-}) = 5834.74 \pm 0.30 \text{ MeV}$
 $m_{\Sigma_b^{*+}} - m_{\Sigma_b^{*-}} = -4.37 \pm 0.33 \text{ MeV}$ (S = 1.6)
 $m_{\Sigma_b^{*+}} - m_{\Sigma_b^{+}} = 19.73 \pm 0.18$
 $m_{\Sigma_b^{*-}} - m_{\Sigma_b^{-}} = 19.09 \pm 0.22$
 $\Gamma(\Sigma_b^{*+}) = 9.4 \pm 0.5 \text{ MeV}$
 $\Gamma(\Sigma_b^{*-}) = 10.4 \pm 0.8 \text{ MeV}$ (S = 1.3)
 $m_{\Sigma_b^{*-}} - m_{\Sigma_b} = 21.2 \pm 2.0 \text{ MeV}$

Σ_h^* DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda_b^0 \pi$$

dominant

159

 $\Sigma_b(6097)^+$

$$J^{P} = ?^{?}$$

Mass $m = 6095.8 \pm 1.7 \text{ MeV}$ Full width $\Gamma=31\pm6$ MeV

Σ_b (6097) $^+$ DECAY MODES

Fraction (Γ_i/Γ)

$$\frac{\Sigma_b(6097)^+}{\Lambda_b \pi^+ \times B(b o \Sigma_b(6097)^+)}$$

 $\Sigma_b(6097)^-$

$$J^{P} = ?^{?}$$

Mass $m = 6098.0 \pm 1.8 \text{ MeV}$ Full width $\Gamma=29\pm4$ MeV

https://pdg.lbl.gov

Page 57

Σ_b (6097) $^-$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b \pi^- imes B(b o \ \Sigma_b (6097)^-)$	seen	_

Ξ_b

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

I, J, P need confirmation.

$$m(\Xi_b^-) = 5797.0 \pm 0.6 \; {
m MeV} \quad ({
m S} = 1.7) \ m_{\Xi_b^-} - m_{\Lambda_b^0} = 177.46 \pm 0.31 \; {
m MeV} \quad ({
m S} = 1.3) \ m_{\Xi_b^-} - m_{\Xi_b^0} = 5.9 \pm 0.6 \; {
m MeV} \ {
m Mean life} \; au_{\Xi_b^-} = (1.572 \pm 0.040) imes 10^{-12} \; {
m s}$$

≡ _b DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/ <i>c</i>)
$J/\psi \Xi^- \times B(b \to \Xi_b^-)$	$(1.02^{+0.26}_{-0.21}) \times 1$	0-5	1782
$J/\psi \Lambda K^- \times B(b o \Xi_b^-)$	$(2.5~\pm 0.4~)\times 1$	0-6	1631
$pK^-K^- \times B(b \rightarrow \Xi_b^-)$	$(3.7~\pm 0.8~)\times 1$	0-8	2731
pK-K-	seen		2731
$pK^-\pi^-$	seen		2783
$\Lambda_b^0 \pi^- \times B(b \to \Xi_b^-)/B(b \to \Lambda_b^0)$	$(5.7 \pm 2.0) \times 1$	0^{-4}	99
$=\frac{0}{c}\pi^{-}$	seen		2367
Σ (1385) K^-	(2.6 \pm 2.3) \times 1	0 ⁻⁷	2707
$\Lambda(1405)K^-$	(1.9 \pm 1.2) $ imes$ 1	0 ⁻⁷	2702
$\Lambda(1520) K^{-}$	$(7.6 \pm 3.2) \times 1$	0 ⁻⁷	2673
$\Lambda(1670)K^-$	$(4.5 \pm 2.3) \times 1$	0 ⁻⁷	2629
Σ (1775) K^-	$(2.2 \pm 1.5) \times 1$	0 ⁻⁷	2599
$\Sigma(1915)K^-$	$(2.6 \pm 2.5) \times 1$	0 ⁻⁷	2553
$\equiv \dot{\gamma}$	< 1.3 × 1	0^{-4} 95%	-

Ξ₀

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

I, J, P need confirmation.

$$m(\Xi_b^0) = 5791.9 \pm 0.5 \; {
m MeV}$$
 $m_{\Xi_b^0} - m_{A_b^0} = 172.5 \pm 0.4 \; {
m MeV}$ Mean life $\tau_{\Xi_b^0} = (1.480 \pm 0.030) imes 10^{-12} \; {
m s}$

\equiv_b^0 DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
$p D^0 K^- imes B(b o oldsymbol{arXi}_b^0) \ p \overline{K}^0 \pi^- imes B(b o oldsymbol{arXi}_b^0)/B(\overline{b} o B^0)$	(1.7 ±0.5) > < 1.6 >	< 10 ⁻⁶ < 10 ⁻⁶ 90%	2374 2783

https://pdg.lbl.gov

Page 58

$p {\mathsf K}^0 {\mathsf K}^- imes {\mathsf B}(b o \ {ar \Xi}_b^0) / {\mathsf B}({ar b} o$	< 1.1	$\times 10^{-6}$	90%	2730
B^0)				
$\Lambda\pi^{+}\pi^{-} \times B(b \rightarrow \Xi_{b}^{0})/B(b \rightarrow$	< 1.7	$\times 10^{-6}$	90%	2781
A_b^0)				
$\Lambda K^- \pi^+ \times B(b \rightarrow \Xi_b^0)/B(b \rightarrow$	< 8	\times 10 ⁻⁷	90%	2751
$\Lambda_b^0)$				
$\Lambda K^+ K^- \times B(b \rightarrow \Xi_b^0)/B(b \rightarrow$	< 3	\times 10 ⁻⁷	90%	2698
$\Lambda_b^0)$				
J/ψ Λ	seen			1868
$J/\psi \equiv 0$	seen			1785
$\Lambda_c^+ K^- imes B(b o \ ec \Xi_b^0)$	(6 ±4	$1) \times 10^{-7}$		2416
$pK^-\pi^+\pi^- \times B(b \rightarrow$	(1.9 ± 0)	$0.4) \times 10^{-6}$		2766
$\equiv^0_b)/B(b o \Lambda^0_b)$				
$ ho K^- K^- \pi^+ imes B(b o$	(1.71 ± 0)	$0.31) \times 10^{-6}$		2704
$\Xi_b^0)/B(b o arLambda_b^0)$				
$pK^{-}K^{+}K^{-} \times B(\tilde{b} \rightarrow$	(1.7 ± 1)	1.0) \times 10 ⁻⁷		2620
$ec{arphi}_b^0)/B(b o ec{arLambda}_b^0)$				

$\Xi_b'(5935)^-$

$$J^P = \frac{1}{2}^+$$

Mass $m=5935.02\pm0.05$ MeV $m_{\Xi_b'(5935)^-}-m_{\Xi_b^0}-m_{\pi^-}=3.653\pm0.019$ MeV Full width $\Gamma~<~0.08$ MeV, CL =95%

Ξ_b' (5935) $^-$ DECAY MODES	Fraction (Γ_i/Γ)	$p \; (MeV/c)$
$\overline{\Xi_b^0\pi^-} imes B(\overline{b} o$	(11.8 ± 1.8) %	31
$\Xi_b'(5935)^-)/B(\overline{b} o \Xi_b^0)$		

$\Xi_b(5945)^0$

$$J^P = \frac{3}{2}^+$$

Created: 5/31/2023 09:09

Mass $m=5952.3\pm0.6$ MeV Full width $\Gamma=0.90\pm0.18$ MeV

Ξ_b (5945) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_b^-}\pi^+$	seen	78

$$\Xi_b(5955)^-$$

$$J^{P} = \frac{3}{2}^{+}$$

Mass $m = 5955.33 \pm 0.13 \text{ MeV}$ $m_{\Xi_b(5955)^-} - m_{\Xi_b^0} - m_{\pi^-} = 23.96 \pm 0.13$ MeV Full width Γ = 1.65 ± 0.33 MeV

Ξ_b (5955) $^-$ DECAY MODES

Fraction
$$(\Gamma_i/\Gamma)$$

p (MeV/c)

$$\begin{split} \Xi_b^0 \pi^- \times & \mathsf{B}(\overline{b} \to \\ \Xi_b^* (5955)^-) / & \mathsf{B}(\overline{b} \to \Xi_b^0) \end{split}$$

 $(20.7 \pm 3.5) \%$

$\Xi_b(6100)^{\circ}$

$$J^{P} = \frac{3}{2}^{-}$$

J, P need confirmation.

Mass $m = 6100.3 \pm 0.6 \text{ MeV}$

 $m_{\Xi_b(6100)^-}-m_{\Xi_b^-}-2~m_{\pi^\pm}=$ 24.14 \pm 0.24 MeV Full width $\Gamma~<~1.9$ MeV, CL =95%

$\Xi_b(6100)^-$ DECAY MODES

Fraction
$$(\Gamma_i/\Gamma)$$

p (MeV/c)

$$\Xi_b^- \pi^+ \pi^-$$

seen

128

$\Xi_b(6227)^2$

$$J^{P} = ?^{?}$$

Mass $m = 6227.9 \pm 0.9 \text{ MeV}$ Full width $\Gamma=19.9\pm2.6~\text{MeV}$

Ξ_b (6227) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_b^0 K^- imes B(b o$	$(3.20\pm0.35)\times10^{-3}$		336
\equiv_b (6227))/B($b o \Lambda_b^0$)			
$\Xi_b^0\pi^- imes B(b o$	(2.8 ± 1.1) %	1.8	398
$\Xi_b($ 6227 $))/B(b o\ \Xi_b^0)$			

$\Xi_b(6227)^0$

$$J^{P} = ?$$

Mass $m=6226.8\pm1.6~{\rm MeV}$ Full width $\Gamma=19^{+5}_{-4}~{\rm MeV}$

Ξ_b (6227)0 DECAY MODES

Fraction (Γ_i/Γ)

Created: 5/31/2023 09:09

$$\overline{\Xi_b^- \pi^+ \times \mathsf{B}(b \to \Xi_b(6227)^0)/\mathsf{B}(b \to \Xi_b^-)}$$

 $(4.5\pm0.9)\%$

398

$\Xi_b(6327)^0$

Mass $m=6327.28\pm0.35~\text{MeV}$ Full width $\Gamma~<~2.56~\text{MeV},~\text{CL}=95\%$

Ξ_b (6327) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b^0 K^- \pi^+$	seen	298

$\Xi_b(6333)^0$

Mass $m=6332.69\pm0.28$ MeV Full width $\Gamma < 1.92$ MeV, CL = 95%

Ξ_b (6333) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b^0 \mathcal{K}^- \pi^+$	seen	309

 Ω_b^-

$$I(J^P) = O(\frac{1}{2}^+)$$
 I, J, P need confirmation.

Mass
$$m=6045.2\pm1.2~{\rm MeV}$$
 $m_{\Omega_b^-}-m_{\Lambda_b^0}=426.4\pm2.2~{\rm MeV}$ $m_{\Omega_b^-}-m_{\Xi_b^-}=247.3\pm3.2~{\rm MeV}$ Mean life $\tau=(1.64^{+0.18}_{-0.17})\times10^{-12}~{\rm s}$ $\tau(\Omega_b^-)/\tau(\Xi_b^-)$ mean life ratio $=1.11\pm0.16$

Ω_b^- DECAY MODES	Fraction ((Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi \Omega^- imes B(b o \Omega_b)$	$(2.9^{+1}_{-0}$	$(0.8) \times 10^{-6}$	5	1805
$ ho K^- K^- imes B(\overline{b} o \ \Omega_b)$	< 2.3	\times 10 ⁻⁹	90%	2865
$ ho \pi^- \pi^- imes B(\overline{b} o ~\Omega_b)$	< 1.5	$\times 10^{-8}$	90%	2943
$ ho {\sf K}^- \pi^- imes {\sf B}(\overline{b} o \ \Omega_b)$	< 7	\times 10 ⁻⁹	90%	2915
$\Omega_c^0\pi^-$	seen			2419
$\Omega_c^0\pi^-$, $\Omega_c^0 o pK^-K^-\pi^+$	seen			_
$\Xi_c^+ K^- \pi^-$	seen			2472

 $\Omega_b(6316)^{-1}$

$$I(J^P) = ?(?^?)$$

I, J, P need confirmation.

Mass $m=6315.6\pm0.6$ MeV Full width Γ < 4.2 MeV, CL = 95%

 $\Omega_b(6316)^-$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

seen

168

 $\Omega_{b}(6330)^{\circ}$

$$I(J^P) = ?(??)$$

 $I(J^P) = ?(?^?)$ I, J, P need confirmation.

Mass $m = 6330.3 \pm 0.6 \text{ MeV}$

Full width Γ < 4.7 MeV, CL = 95%

 $\Omega_h(6330)^-$ DECAY MODES

Fraction (Γ_i/Γ)

seen

206

 $\Omega_b(6340)^{-1}$

$$I(J^P) = ?(?^?)$$

I, J, P need confirmation.

Mass $m = 6339.7 \pm 0.6 \text{ MeV}$

Full width Γ < 1.8 MeV, CL = 95%

 $\Omega_b(6340)^-$ DECAY MODES

Fraction (Γ_i/Γ)

seen

227

 $\Omega_b(6350)$

$$I(J^P) = ?(??)$$

I, J, P need confirmation.

Mass $m = 6349.8 \pm 0.6 \text{ MeV}$

Full width Γ < 3.2 MeV, CL = 95%

 $\Omega_b(6350)^-$ DECAY MODES

Fraction (Γ_i/Γ)

Created: 5/31/2023 09:09

 $\equiv_b^0 K^-$

seen

248

b-baryon ADMIXTURE (Λ_b , Ξ_b , Ω_b)

These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates at the LHC, LEP, and Tevatron, branching ratios, and detection efficiencies. They scale with the b-baryon production fraction B($b \rightarrow b$ -baryon).

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $B \to D^\pm$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

b-baryon ADMIXTURE DECAY MODES $(\Lambda_b, \Xi_b, \Omega_b)$	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
$p\mu^-\overline{ u}$ anything	(5.8 + 2.3) %		_
$ ho \ell \overline{ u}_\ell$ anything	(5.6 ± 1.2) %		_
<i>p</i> anything	$(70 \pm 22)\%$		_
$arLambda \ell^- \overline{ u}_\ell$ anything	(3.8 ± 0.6) %		_
$\Lambda \ell^+ u_\ell$ anything	(3.2± 0.8) %		_
Λ anything	$(39 \pm 7)\%$		_
$ar{arXi}^-\ell^-\overline{ u}_\ell$ anything	$(4.6\pm\ 1.4)\times10^{-3}$	1.2	_

EXOTIC BARYONS

$P_c(4312)^+$

Mass $m=4311.9^{+7.0}_{-0.9}~{\rm MeV}$ Full width $\Gamma=10\pm5~{\rm MeV}$

P_c (4312) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$J/\psi p$	seen	658

$P_c(4380)^+$

Mass $m=4380\pm30$ MeV Full width $\Gamma=205\pm90$ MeV

P_c (4380) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
J/ψ p	seen	741

$P_c(4440)^+$

Mass $m=4440^{+4}_{-5}~\text{MeV}$ Full width $\Gamma=21^{+10}_{-11}~\text{MeV}$

P_c (4440) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
J/ψ p	seen	810

$P_c(4457)^+$

was $P_c(4450)$

Mass
$$m = 4457.3^{+4.0}_{-1.8}~{
m MeV}$$

Full width $\Gamma = 6.4^{+6.0}_{-2.8}~{
m MeV}$

P _C (4457) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
J/ψ p	seen	828

NOTES

- [a] The masses of the p and n are most precisely known in u (unified atomic mass units). The conversion factor to MeV, 1 u = 931.494061(21) MeV, is less well known than are the masses in u.
- [b] The $|m_p m_{\overline{p}}|/m_p$ and $|q_p + q_{\overline{p}}|/e$ are not independent, and both use the more precise measurement of $|q_{\overline{p}}/m_{\overline{p}}|/(q_p/m_p)$.
- [c] The limit is from neutrality-of-matter experiments; it assumes $q_n=q_p+q_e$. See also the charge of the neutron.
- [d] The μp and ep values for the charge radius are much too different to average them. The disagreement is not yet understood.
- [e] There is a lot of disagreement about the value of the proton magnetic charge radius. See the Listings.
- [f] The first limit is for $p \to anything$ or "disappearance" modes of a bound proton. The second entry, a rough range of limits, assumes the dominant decay modes are among those investigated. For antiprotons the best limit, inferred from the observation of cosmic ray \overline{p} 's is $\tau_{\overline{p}} > 10^7$ yr, the cosmic-ray storage time, but this limit depends on a number of assumptions. The best direct observation of stored antiprotons gives $\tau_{\overline{p}}/B(\overline{p}\to e^-\gamma)>7\times 10^5$ yr.
- [g] There is some controversy about whether nuclear physics and model dependence complicate the analysis for bound neutrons (from which the best limit comes). The first limit here is from reactor experiments with free neutrons.
- [h] Lee and Yang in 1956 proposed the existence of a mirror world in an attempt to restore global parity symmetry—thus a search for oscillations between the two worlds. Oscillations between the worlds would be maximal when the magnetic fields B and B' were equal. The limit for any B' in the range 0 to 12.5 μ T is >12 s (95% CL).
- [i] The parameters g_A , g_V , and g_{WM} for semileptonic modes are defined by $\overline{B}_f[\gamma_\lambda(g_V+g_A\gamma_5)+i(g_{WM}/m_{B_i})\;\sigma_{\lambda\nu}\;q^\nu]B_i$, and ϕ_{AV} is defined by $g_A/g_V=|g_A/g_V|e^{i\phi_{AV}}$. See the "Note on Baryon Decay Parameters" in the neutron Particle Listings.
- [j] Time-reversal invariance requires this to be 0° or 180° .
- [k] This coefficient is zero if time invariance is not violated.
- [/] This limit is for γ energies between 0.4 and 782 keV.
- [n] The decay parameters γ and Δ are calculated from α and ϕ using

$$\gamma = \sqrt{1{-}lpha^2}\,\cos\!\phi$$
 , $an\!\Delta = -rac{1}{lpha}\,\sqrt{1{-}lpha^2}\,\sin\!\phi$.

See the "Note on Baryon Decay Parameters" in the neutron Particle Listings.

- [o] See the Listings for the pion momentum range used in this measurement.
- [p] Our estimate. See the Particle Listings for details.
- [q] A theoretical value using QED.
- [r] This branching fraction includes all the decay modes of the final-state resonance.
- [s] Here γ_D stands for a dark photon.
- [t] See AALTONEN 11H, Fig. 8, for the calculated ratio of $\Lambda_c^+\pi^0\pi^0$ and $\Lambda_c^+\pi^+\pi^-$ partial widths as a function of the $\Lambda_c(2595)^+-\Lambda_c^+$ mass difference. At our value of the mass difference, the ratio is about 4.
- [u] A test that the isospin is indeed 0, so that the particle is indeed a Λ_c^+ .
- [v] P_c^+ is a pentaquark-charmonium state.
- [x] Not a pure measurement. See note at head of Λ_b^0 Decay Modes.
- [y] Here h^- means π^- or K^- .