Lecture 11a: Inference in Bayesian Networks

CSCI 360 Introduction to Artificial Intelligence

USC

Here is where we are...

	3/1		Project 2 Out	
9	3/4	3/5	Quantifying Uncertainty	[Ch 13.1-13.6]
	3/6	3/7	Bayesian Networks	[Ch 14.1-14.2]
10	3/11	3/12	(spring break, no class)	
	3/13	3/14	(spring break, no class)	
11 (3/18	3/19	Inference in Bayesian Networks	[Ch 14.3-14.4]
	3/20	3/21	Decision Theory	[Ch 16.1-16.3 and 16.5]
	3/23		Project 2 Due	
12	3/25	3/26	Advanced topics (Chao traveling to Na	ttional Science Foundation)
	3/27	3/28	Advanced topics (Chao traveling to Na	tional Science Foundation)
	3/29		Homework 2 Out	
13	4/1	4/2	Markov Decision Processes	[Ch 17.1-17.2]
	4/3	4/4	Decision Tree Learning	[Ch 18.1-18.3]
	4/5		Homework 2 Due	
	4/5		Project 3 Out	
14	4/8	4/9	Perceptron Learning	[Ch 18.7.1-18.7.2]
	4/10	4/11	Neural Network Learning	[Ch 18.7.3-18.7.4]
15	4/15	4/16	Statistical Learning	[Ch 20.2.1-20.2.2]
	4/17	4/18	Reinforcement Learning	[Ch 21.1-21.2]
16	4/22	4/23	Artificial Intelligence Ethics	
	4/24	4/25	Wrap-Up and Final Review	
	4/26		Project 3 Due	
	5/3	5/2	Final Exam (2pm-4pm)	

Outline

- What is Al?
- Problem-solving agent (search)
- Knowledge-based agent (logical reasoning)
- Probabilistic reasoning
 - Quantifying Uncertainty
 - Bayesian Networks

- Inference in Bayesian Networks
- Decision Theory
- Markov Decision Processes
- Machine learning

What we have learned so far...

- Early AI researchers largely rejected using probability in their systems
 - "People don't think that way…"
- However, neither problem-solving nor logical reasoning agents tolerate approximation well...
 - Need probabilistic modeling/reasoning

Recap: Making decision

Rational decision depends on

- (1) The relative importance of various goals and
- (2) likelihood that (and degree to which) they will be reached

Decision theory = Utility theory + Probability theory

Choose the action that yields the <u>highest expected utility</u>, averaged over all the possible outcomes of the action

Recap: Conditional (or posterior) probability

For any propositions a and b, we have

$$P(a \mid b) = \frac{P(a \land b)}{P(b)}$$
 whenever $P(b) > 0$.

Recap: Probability distribution

Probabilities of all possible values of a random variable

$$P(Weather = sunny) = 0.6$$

 $P(Weather = rain) = 0.1$
 $P(Weather = cloudy) = 0.29$
 $P(Weather = snow) = 0.01$,

In a vector format

$$P(Weather) = \langle 0.6, 0.1, 0.29, 0.01 \rangle$$

Other examples

one-variable

https://brohrer.github.io

multi-variable

Recap: Joint probability distribution

Probabilities of all possible values of multiple variables

Recap: Marginal probability

 Extracting the distribution over a subset of variables from the full joint distribution

	toot	hache	$\neg toothache$			
	catch	$\neg catch$	catch	$\neg catch$		
cavity	0.108	0.012	0.072	0.008		
$\neg cavity$	0.016	0.064	0.144	0.576		

Example

-- getting rid of the other two variables

$$P(cavity) =$$

Recap: Marginal probability

 Extracting the distribution over a subset of variables from the full joint distribution

	toot	hache	$\neg toothache$			
	catch	$\neg catch$	catch	$\neg catch$		
cavity	0.108	0.012	0.072	0.008		
$\neg cavity$	0.016	0.064	0.144	0.576		

Example -- getting rid of the other two variables

$$P(cavity) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2$$

Recap: Normalization

The probability of cavity, or no cavity, given toothache

	toot	hache	$\neg toothache$			
	catch	$\neg catch$	catch	$\neg catch$		
cavity	0.108	0.012	0.072	0.008		
$\neg cavity$	0.016	0.064	0.144	0.576		

Example

$$P(cavity \mid toothache) =$$

$$P(\neg cavity \mid toothache) =$$

Sum of the two is always 1.0

Recap: Normalization

The probability of cavity, or no cavity, given toothache

	toot	hache	$\neg toothache$			
	catch	$\neg catch$	catch	$\neg catch$		
cavity	0.108	0.012	0.072	0.008		
$\neg cavity$	0.016	0.064	0.144	0.576		

No need to compute

P (toothache)

Example

 $P(cavity \mid toothache) = \frac{P(cavity \land toothache)}{P(toothache)}$ $= \frac{0.108 + 0.012}{0.108 + 0.012 + 0.016 + 0.064} = 0.6$

$$P(\neg cavity \mid toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)} = \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

Recap: Normalization

The probability of cavity, or no cavity, given toothache

	toot	hache	$\neg toothache$			
	catch	$\neg catch$	catch	$\neg catch$		
cavity	0.108	0.012	0.072	0.008		
$\neg cavity$	0.016	0.064	0.144	0.576		

Example

$$\mathbf{P}(Cavity \mid toothache) = \alpha \mathbf{P}(Cavity, toothache)$$

$$=\alpha \langle 0.12,0.08\rangle = \langle 0.6,0.4\rangle \ .$$
 Assume that
$$\alpha = 1/(0.12 + 0.08)$$

$$= 1/0.2$$

$$= 5$$

Recap: Independence to reduce table size

Consider P(Toothache, Catch, Cavity, Weather), which has
 32 entries in the full joint distribution table

	tool	thache	¬toot	hache	toot	hache	¬toot	hache	toot	hache	¬toot	hache	too	thache	¬toot	thache
	catch	$\neg catch$	catch	¬catch	catch	¬catch	catch	¬catch	catch	$\neg catch$	catch	$\neg catch$	catch	$\neg catch$	catch	¬catch
cavity	0.108	0.012	0.072	0.008	0.108	0.012	0.072	0.008	0.108	0.012	0.072	0.008	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576	0.016	0.064	0.144	0.576	0.016	0.064	0.144	0.576	0.016	0.064	0.144	0.576

Applying the product rule

P(toothache, catch, cavity, cloudy)

- = P(cloudy | toothache, catch, cavity)P(toothache, catch, cavity)
- But weather is not influenced by dentistry!

$$P(cloudy | toothache, catch, cavity) = P(cloudy)$$

 $P(toothache, catch, cavity, \frac{cloudy}{cloudy}) = P(\frac{cloudy}{cloudy})P(toothache, catch, cavity)$

Recap: Independence to reduce table size

Consider P(Toothache, Catch, Cavity, Weather), which has
 32 entries in the full joint distribution table

	tooi	thache	¬toot	hache	toot	hache	¬toot	hache	toot	hache	¬toot	hache	toot	hache	¬toot	hache
	catch	$\neg catch$	catch	¬catch	catch	$\neg catch$	catch	¬catch								
cavity	0.108	0.012	0.072	0.008	0.108	0.012	0.072	0.008	0.108	0.012	0.072	0.008	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576	0.016	0.064	0.144	0.576	0.016	0.064	0.144	0.576	0.016	0.064	0.144	0.576

 The 32-element table can be reduced to a 8-element table and a 4-element table

	toot	hache	¬toothache			
	catch	$\neg catch$	catch	$\neg catch$		
cavity	0.108	0.012	0.072	0.008		
¬cavity	0.016	0.064	0.144	0.576		

Recap: Conditional independence to reduce table size

• For n effects that are conditionally independent given the cause, the **full joint distribution** table size grows as O(n) instead of $O(2^n)$

$$\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause) \prod_i \mathbf{P}(Effect_i \mid Cause)$$

Recap: Bayes' rule

Derive Bayes' rule from the product rule of conditional probability

$$P(a \wedge b) =$$

$$P(a \wedge b) =$$

• Equating the right-hand sides and dividing by P(a)

$$P(b \mid a) = \frac{P(a \mid b)P(b)}{P(a)}$$

Recap: Bayes' rule

Derive Bayes' rule from the product rule of conditional probability

$$P(a \wedge b) = P(b \mid a)P(a)$$
$$P(a \wedge b) = P(a \mid b)P(b)$$

• Equating the right-hand sides and dividing by P(a)

$$P(b \mid a) = \frac{P(a \mid b)P(b)}{P(a)}$$

This equation underlies most **modern AI systems** for **probabilistic inference**...

Recap: Bayesian networks

- Full joint distribution can be used to answer any query about the world
 - But table size is exponential in the number of variables
 - Independence relations are helpful, but can be unnatural and tedious to specify
- Bayesian networks is a data structure to represent both joint distributions and dependencies among variables

Recap: Bayesian networks (definition)

- A directed acyclic graph (DAG) where
 - Each node corresponds to a random variable,
 - Each edge from node X to node Y represents a direct influence of X on Y,
 - Each node X_i has a conditional probability distribution $P(X_i | Parents(X_i))$ that quantifies the effect of the parents on the node.

Example

Recap: Bayesian networks (example)

Both the topology and the conditional probability tables (CPTs)

Recap: Bayesian networks (semantics)

Both the topology and the conditional probability tables (CPTs)

Quiz 5: solution

• Each entry $P(x_1,...,x_n)$ in the full joint distribution, which is the abbreviation of $P(X_1=x_1 \land ... \land X_n=x_n)$ is the product of the elements of the CPTs defined as follows:

$$P(x_1,\ldots,x_n) = \prod_{i=1}^n P(x_i \mid parents(X_i))$$

$$P(j, m, a, b, e) = ?$$

$$P(\neg m, j, \neg a, \neg e, b) = ?$$

Quiz 5: solution

• Each entry $P(x_1,...,x_n)$ in the full joint distribution, which is the abbreviation of $P(X_1=x_1 \land ... \land X_n=x_n)$ is the product of the elements of the CPTs defined as follows:

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

$$P(j, m, a, b, e)$$

= $P(j/a) P(m/a) P(a/b,e) P(b) P(e)$
= $0.90*0.70*0.95*0.001*0.002$
= 0.000001197

 $P(\neg m, i, \neg a, \neg e, b) = ?$

Quiz 5: solution

• Each entry $P(x_1,...,x_n)$ in the full joint distribution, which is the abbreviation of $P(X_1=x_1 \land ... \land X_n=x_n)$ is the product of the elements of the CPTs defined as follows:

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

$$P(j, m, a, b, e) = 0.000001197$$

$$P(\neg m, j, \neg a, \neg e, b)$$

= $P(\neg m/\neg a)P(j/\neg a)P(\neg a/b, \neg e)$ $P(b)P(\neg e)$
= $(1-0.01)*0.05*(1-0.94)*0.001*(1-0.002)$
= 0.00000296406

Outline

- Representing knowledge in Bayesian networks
- Semantics of Bayesian networks
- Efficient representation of conditional distributions
- Exact inference in Bayesian networks

- Conditional probability table (CPT) in Bayesian networks requires O(2^k) numbers
 - Is there a more compact representation?
 - The answer is often "yes"

- Conditional probability table (CPT) in Bayesian networks requires O(2^k) numbers
 - Is there a more compact representation?
 - The answer is often "yes"
- Example #1:
 - Deterministic node: value determined by parents, with certainty

Canadian	US	Mexican	N. A.
	•••		•••
	• • •	T	T
		•••	
	T	•••	T
	•••	•••	•••
T	• • •		T
	•••	•••	•••

NA = (Cananian ∨ US ∨ Mexican)

- What about uncertain relationships?
 - Noisy logical relationships (as opposed to deterministic logic)
- Example #2:
 - Noisy-OR: a generalization of the logical OR

Cold	Flu	Malaria	P(Fever)
F	F	F	0.0
F	F	T	0.9
F	T	F	0.8
F	T	T	0.98
T	F	F	0.4
T	F	T	0.94
T	T	F	0.88
Т	T	T	0.988

- What about uncertain relationships?
 - Noisy logical relationships (as opposed to deterministic logic)
- Example #2:
 - Noisy-OR: a generalization of the logical OR

Cold	\overline{Flu}	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	
F	F	T	0.9	0.1
F	T	F	0.8	0.2
F	T	T	0.98	
(T	F	F	0.4	0.6
T	F	T	0.94	
T	T	F	0.88	
T	T	T	0.988	

$$P(x_i | parents(X_i)) = 1 - \prod_{\{j: X_j = true\}} q_j$$

$$\begin{aligned} q_{\text{cold}} &= P(\neg fever \mid cold, \neg flu, \neg malaria) = 0.6 \;, \\ q_{\text{flu}} &= P(\neg fever \mid \neg cold, flu, \neg malaria) = 0.2 \;, \\ q_{\text{malaria}} &= P(\neg fever \mid \neg cold, \neg flu, malaria) = 0.1 \;. \end{aligned}$$

- Example #2:
 - Noisy-OR: a generalization of the logical OR

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F		
F	F	T	0.9	0.1
F	T	F	0.8	0.2
F	T	T		
T	F	F	0.4	0.6
T	F	T		
T	T	F		
Т	T	T		

$$P(x_i | parents(X_i)) = 1 - \prod_{\{j: X_j = true\}} q_j$$

$$q_{\mathrm{cold}} = P(\neg fever \mid cold, \neg flu, \neg malaria) = 0.6 ,$$
 $q_{\mathrm{flu}} = P(\neg fever \mid \neg cold, flu, \neg malaria) = 0.2 ,$
 $q_{\mathrm{malaria}} = P(\neg fever \mid \neg cold, \neg flu, malaria) = 0.1 .$

- Example #2:
 - Noisy-OR: a generalization of the logical OR

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	T	0.9	0.1
F	T	F	0.8	0.2
F	T	T	0.98	$0.02 = 0.2 \times 0.1$
(T	F	F	0.4	0.6
T	F	T	0.94	$0.06 = 0.6 \times 0.1$
T	T	F	0.88	$0.12 = 0.6 \times 0.2$
T	T	T	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

- Example #2:
 - Noisy-OR: a generalization of the logical OR

$$\begin{split} q_{\rm cold} &= P(\neg fever \mid cold, \neg flu, \neg malaria) = 0.6 \;, \\ q_{\rm flu} &= P(\neg fever \mid \neg cold, flu, \neg malaria) = 0.2 \;, \\ q_{\rm malaria} &= P(\neg fever \mid \neg cold, \neg flu, malaria) = 0.1 \;. \end{split}$$

$$P(x_i \mid parents(X_i)) = 1 - \prod_{\{j: X_j = true\}} q_j$$

Outline

- Representing knowledge in Bayesian networks
- Semantics of Bayesian networks
- Efficient representation of conditional distributions
- Exact inference in Bayesian networks

Basic task

- Computing the posterior probability distribution, given some observed event
 - Query variables, Evidence variables, and Hidden variables

$$\mathbf{P}(\underline{Burglary} | John Calls = true, Mary Calls = true) = \langle 0.284, 0.716 \rangle$$

How to compute it?

Algorithms for probabilistic inference

- Two options
 - Inference by enumeration (basic)
 - Variable elimination (improved)

Inference by enumeration

- Computing posterior probability distribution, given observed event
 - Query variables, Evidence variables, and Hidden variables

$$\mathbf{P}(B \mid j, m) = \frac{\mathbf{P}(B, j, m)}{\mathbf{P}(j, m)}$$

$$= \alpha \quad \mathbf{P}(B, j, m)$$

$$= \alpha \quad \mathbf{P}(B, j, m)$$

$$= \alpha \quad \sum_{\theta} \sum_{a} \mathbf{P}(B, j, m, \theta, a)$$

$$= \langle \alpha \sum_{\theta} \sum_{a} \mathbf{P}(b, j, m, \theta, a) , \alpha \sum_{\theta} \sum_{a} \mathbf{P}(\neg b, j, m, \theta, a) \rangle$$

We knew how to compute joint distribution...

• Each entry $P(x_1,...,x_n)$ in the full joint distribution, which is the abbreviation of $P(X_1=x_1 \land ... \land X_n=x_n)$ is the product of elements of CPTs defined as follows:

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

= ...

$$P(j, m, a, b, e)$$
= $P(j/a) P(m/a) P(a/b,e) P(b) P(e)$
= $0.90*0.70*0.95*0.001*0.002$
= 0.000001197
 $P(j, m, a, \neg b, e)$
= $P(j/a) P(m/a) P(a/\neg b, e) P(\neg b) P(e)$

Inference by enumeration

- Computing posterior probability distribution, given observed event
 - Query variables, Evidence variables, and Hidden variables

$$P(b \mid j, m) = \alpha \sum_{e} \sum_{a} P(b) P(e) P(a \mid b, e) P(j \mid a) P(m \mid a)$$
 -- the number of all variables

 $2^2 = 4$ -- the number of possible combinations of hidden variables

$$2^2*5$$
 —in general, the computational cost can be $O\left(n2^n\right)$

$$O(n 2^n)$$

Inference by enumeration (improvement)

- Computing posterior probability distribution, given observed event
 - Query variables, Evidence variables, and Hidden variables

$$P(b \mid j, m) = \alpha \sum_{e} \sum_{a} P(b) P(e) P(a \mid b, e) P(j \mid a) P(m \mid a)$$

$$P(b \mid j, m) = \alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)$$

Inference by enumeration (improvement)

Recursive evaluation of the expression

$$P(b \mid j, m) = \alpha \frac{P(b)}{P(e)} \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)$$

Enumeration Algorithm

```
function ENUMERATION-ASK(X, \mathbf{e}, bn) returns a distribution over X inputs: X, the query variable \mathbf{e}, observed values for variables \mathbf{E} bn, a Bayes net with variables \{X\} \cup \mathbf{E} \cup \mathbf{Y} \ /* \mathbf{Y} = \textit{hidden variables} */ \mathbf{Q}(X) \leftarrow a distribution over X, initially empty
```

for each value x_i of X do $\mathbf{Q}(x_i) \leftarrow \text{ENUMERATE-ALL}(bn.\text{VARS}, \mathbf{e}_{x_i})$ where \mathbf{e}_{x_i} is \mathbf{e} extended with $X = x_i$ return NORMALIZE($\mathbf{Q}(X)$)

Enumeration Algorithm

where \mathbf{e}_y is \mathbf{e} extended with Y = y

```
function ENUMERATION-ASK(X, \mathbf{e}, bn) returns a distribution over X
   inputs: X, the query variable
             e, observed values for variables E
             bn, a Bayes net with variables \{X\} \cup \mathbf{E} \cup \mathbf{Y} / \star \mathbf{Y} = hidden \ variables */
   \mathbf{Q}(X) \leftarrow a distribution over X, initially empty
   for each value x_i of X do
        \mathbf{Q}(x_i) \leftarrow \text{ENUMERATE-ALL}(bn. \text{VARS}, \mathbf{e}_{x_i})
             where \mathbf{e}_{x_i} is \mathbf{e} extended with X = x_i
   return NORMALIZE(\mathbf{Q}(X))
                                                                                                       P(\neg a|b,e)
                                                                                                                P(a|b, \neg e)
                                                                                                                             P(\neg a|b, \neg e)
function ENUMERATE-ALL(vars, e) returns a real number
   if EMPTY?(vars) then return 1.0
                                                                                                                          P(m|\neg a)
                                                                                    P(m|a)
    Y \leftarrow \mathsf{FIRST}(vars)
   if Y has value y in e
```

then return $P(y \mid parents(Y)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), \mathbf{e})$

else return $\sum_{y} P(y \mid parents(Y)) \times \text{Enumerate-All(Rest(}vars), \mathbf{e}_{y})$

Algorithms for probabilistic inference

- Two options
 - Inference by enumeration (basic)
 - Variable elimination (improved)

There may be repeated computation

Variable elimination

$$\mathbf{P}(B \mid j, m) = \alpha \underbrace{\mathbf{P}(B)}_{\mathbf{f}_{1}(B)} \underbrace{\sum_{e} \underbrace{\mathbf{P}(e)}_{\mathbf{f}_{2}(E)} \underbrace{\sum_{a} \underbrace{\mathbf{P}(a \mid B, e)}_{\mathbf{f}_{3}(A, B, E)} \underbrace{\mathbf{P}(j \mid a)}_{\mathbf{f}_{4}(A)} \underbrace{\mathbf{P}(m \mid a)}_{\mathbf{f}_{5}(A)} \underbrace{\mathbf{Eliminating } A \dots}_{\mathbf{Eliminating } \mathbf{A} \dots}$$

$$= (\mathbf{f}_{3}(a, B, E) \times \mathbf{f}_{4}(a) \times \mathbf{f}_{5}(a)) + (\mathbf{f}_{3}(\neg a, B, E) \times \mathbf{f}_{4}(\neg a) \times \mathbf{f}_{5}(\neg a)).$$

$$\mathbf{P}(B \mid j, m) = \alpha \, \mathbf{f}_1(B) \times \sum_{e} \mathbf{f}_2(E) \times \mathbf{f}_6(B, E)$$

$$\mathbf{f}_7(B) = \sum_{e} \mathbf{f}_2(E) \times \mathbf{f}_6(B, E)$$

$$= \mathbf{f}_2(e) \times \mathbf{f}_6(B, e) + \mathbf{f}_2(\neg e) \times \mathbf{f}_6(B, \neg e) .$$

$$\mathbf{P}(B \mid j, m) = \alpha \, \mathbf{f}_1(B) \times \mathbf{f}_7(B)$$

Variable elimination (with a different order)

$$\mathbf{P}(B \mid j, m) = \alpha \underbrace{\mathbf{P}(B)}_{\mathbf{f}_{1}(B)} \underbrace{\sum_{e} \underbrace{P(e)}_{\mathbf{f}_{2}(E)} \underbrace{\sum_{a} \underbrace{\mathbf{P}(a \mid B, e)}_{\mathbf{f}_{3}(A, B, E)} \underbrace{P(j \mid a)}_{\mathbf{f}_{4}(A)} \underbrace{P(m \mid a)}_{\mathbf{f}_{5}(A)} \underbrace{Equivalent}_{transformation}$$

$$\mathbf{P}(B \mid j,m) = \alpha \, \mathbf{f}_1(B) \times \sum_a \, \mathbf{f}_4(A) \times \mathbf{f}_5(A) \times \sum_e \, \mathbf{f}_2(E) \times \mathbf{f}_3(A,B,E)$$
Eliminating E
first...

next...

Variable elimination (another example)

• Consider **P** (*JohnCalls* / *Burglary=true*)

$$\mathbf{P}(J \mid b) = \alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) \mathbf{P}(J \mid a) \sum_{m} P(m \mid a)$$

This is always 100%

Variable elimination (another example)

Consider P (JohnCalls | Burglary=true)

$$\mathbf{P}(J \mid b) = \alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) \mathbf{P}(J \mid a)$$

We can remove any variable that is not an ancestor of a "query" or "evidence" variable

Variable elimination (another example)

• Consider **P** (*JohnCalls* / *Burglary=true*)

$$\mathbf{P}(J \mid b) = \alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) \mathbf{P}(J \mid a)$$

Complexity of exact inference

- In general it has exponential time and space complexity
 - NP-hard
- Special case: <u>singly connected</u> networks (or polytrees)
 - Any two nodes are connected by at most one (undirected) path
 - Linear in the size of the network

 $H={\sf hardware\ problem}$

 $B={\sf bug}$ in lab

 $M={\rm mailer}~{\rm is}~{\rm running}$

 $L = \mathsf{lab} \mathsf{\ is\ running}$

 $R={
m received\ email}$

 $S = \mathsf{problem} \ \mathsf{solved}$

Each node needs a probability table. Size of table depends on number of parents.

$\mathbf{P}(H)$		
True	False	
0.01	0.99	

	$\mathbf{P}(M \mid H)$	
H	True	False
True		0.9
False	0.99	0.01

		$ \mathbf{P}(L)$	H,B)
H	B		False
True	True	0.01	0.99
True	False	0.1	0.9
False	True	0.02	0.98
False	True False True False	1.0	0.0

..., etc.

H = hardware problem

 $B = \mathsf{bug} \; \mathsf{in} \; \mathsf{lab}$

M =mailer is running

 $L = {\sf lab} \; {\sf is} \; {\sf running}$

 $R={
m received\ email}$

 $S={\sf problem\ solved}$

• Compute $P(B \mid \neg R, S)$

Each node needs a probability table. Size of table depends on number of parents.

$\mathbf{P}(H)$		
True	False	
0.01	0.99	

	$\mathbf{P}(M \mid H)$	
H	True	False
True		0.9
False	0.99	0.01

			$\overline{H,B)}$
H	B	True	False
	True		0.99
True	False	0.1	0.9
False	True	0.02	0.98
False	False	1.0	0.0

..., etc.

 $H={\sf hardware\ problem}$

 $B = \mathsf{bug} \; \mathsf{in} \; \mathsf{lab}$

M =mailer is running

 $L = {\sf lab} \; {\sf is} \; {\sf running}$

 $R={\sf received\ email}$

 $S = \mathsf{problem} \ \mathsf{solved}$

• Compute $P(B \mid \neg R, S)$

1. Apply the conditional probability rule.

$$P(B \mid \neg R, S) = \frac{P(B, \neg R, S)}{P(\neg R, S)}$$

Compute **P** (*B* | ¬*R*,*S*)

1. Apply the conditional probability rule.

$$P(B \mid \neg R, S) = \frac{P(B, \neg R, S)}{P(\neg R, S)}$$

2. Apply the marginal distribution rule to the unknown vertices. $P(B, \neg R, S)$ has 3 unknown vertices with $2^3 = 8$ possible value assignments.

$$P(B, \neg R, S) = P(B, \neg R, S, H, M, L) + P(B, \neg R, S, H, M, \neg L) + P(B, \neg R, S, H, \neg M, L) + P(B, \neg R, S, H, \neg M, \neg L) + P(B, \neg R, S, \neg H, M, L) + P(B, \neg R, S, \neg H, M, \neg L) + P(B, \neg R, S, \neg H, \neg M, L) + P(B, \neg R, S, \neg H, \neg M, L) + P(B, \neg R, S, \neg H, \neg M, \neg L)$$

H = hardware problem

 $B = \mathsf{bug} \mathsf{in} \mathsf{lab}$

M = mailer is running

L = lab is running

R = received email

 $S = \mathsf{problem}$ solved

Compute $P(B \mid \neg R, S)$

Apply the conditional probability rule.

$$P(B \mid \neg R, S) = \frac{P(B, \neg R, S)}{P(\neg R, S)}$$

- Apply the marginal distribution rule to the unknown vertices. $P(B, \neg R, S)$ has 3 unknown vertices with $2^3 = 8$ possible value assignments.
- Apply joint distribution rule for Bayesian networks.

$$P(B, \neg R, S, H, M, L)$$

$$= P(B) P(H)$$

$$P(M \mid H) P(\neg R \mid M)$$

$$P(L \mid H, B) P(S \mid L)$$

$$P(B, \neg R, S) = P(B, \neg R, S, H, M, L) + P(B, \neg R, S, H, M, \neg L) + P(B, \neg R, S, H, \neg M, L) + P(B, \neg R, S, H, \neg M, \neg L) + P(B, \neg R, S, \neg H, M, L) + P(B, \neg R, S, \neg H, M, \neg L) + P(B, \neg R, S, \neg H, M, \neg L) + P(B, \neg R, S, \neg H, \neg M, L) + P(B, \neg R, S, \neg H, \neg M, \neg L)$$

Outline

- Representing knowledge in Bayesian networks
- Semantics of Bayesian networks
- Efficient representation of conditional distributions
- Exact inference in Bayesian networks

Quiz 6