1.2.11

Megha Shyam-Al25BTECH11005

August 21,2025

Question

Find the slope of lines

- **1** Passing through the points (3, -2) and (-1, 4)
- 2 Passing through the points (3, -2) and (7, -2)
- **3** Passing through the points (3, -2) and (3, 4)
- **Q** Making inclination of 60° with the positive direction of x-axis

Theoretical Solution

We will use direction ratios. For two points $P(x_1, y_1)$ and $Q(x_2, y_2)$, a direction vector (column matrix) is

$$\mathbf{d} = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \end{pmatrix} = \begin{pmatrix} I \\ m \end{pmatrix},$$

so the direction ratios are (I, m) and the slope is

$$\frac{m}{l}$$
 $(l \neq 0).$

$$\mathbf{d} = \begin{pmatrix} -1 - 3 \\ 4 - (-2) \end{pmatrix} = \begin{pmatrix} -4 \\ 6 \end{pmatrix}.$$

Direction ratios (I, m) = (-4, 6). Thus the slope is

$$m = \frac{6}{-4} = -\frac{3}{2}.$$

Theoretical Solution

P(3,-2), Q(7,-2).

$$\mathbf{d} = \begin{pmatrix} 7 - 3 \\ -2 - (-2) \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}.$$

Direction ratios (I, m) = (4, 0). Slope $= \frac{0}{4} = 0$. (horizontal line)

P(3,-2), Q(3,4).

$$\mathbf{d} = \begin{pmatrix} 3 - 3 \\ 4 - (-2) \end{pmatrix} = \begin{pmatrix} 0 \\ 6 \end{pmatrix}.$$

Direction ratios (I, m) = (0, 6). Here I = 0, so the slope is undefined (vertical line).

Theoretical Solution

• Line making inclination $\theta=60^\circ$ with positive x-axis.

A unit direction vector for angle θ is $\begin{pmatrix} \cos\theta\\ \sin\theta \end{pmatrix}$. Thus direction ratios may be taken as

$$\begin{pmatrix} I \\ m \end{pmatrix} = \begin{pmatrix} \cos 60^{\circ} \\ \sin 60^{\circ} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix},$$

so the slope is

$$m = \frac{\sin 60^{\circ}}{\cos 60^{\circ}} = \tan 60^{\circ} = \sqrt{3}.$$

Equation

We will use direction ratios. For two points $P(x_1, y_1)$ and $Q(x_2, y_2)$, a direction vector (column matrix) is

$$\mathbf{d} = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \end{pmatrix} = \begin{pmatrix} I \\ m \end{pmatrix},$$

so the direction ratios are (I, m) and the slope is

$$\frac{m}{l}$$
 $(l \neq 0).$

Figure: fig1