STAT 2008/4038/6038 Regression Modelling

1/3/2017

Simple Linear Regression models

Population Man model

Population size N

E[Y|X] = Bo+BiXi

Yi=Bo+BiXi+Ei

(Xi,Yi)

i=1,2,.... N

(random variation)

X "representative" sampling process (x_i, \hat{Y}_i) $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 \hat{X}_i$ i=1,2,...,n $e_i = \hat{Y}_i - \hat{Y}_i \quad \text{or } y_i - \hat{Y}_i$ $\chi \quad \text{residual}$ So, how do we estimate $\hat{\beta}_0 = b_0 + \hat{\beta}_1 = b_1$? Gauss - nethod of least squares [see entract for starzooi/6039 tent] find to & b, that minimise the sum of squares of the errors population $\sum_{i=1}^{N} \xi_{i}^{2} = \sum_{i=1}^{N} (Y_{i} - \hat{Y}_{i})^{2}$ Sample $\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1, z_i))^2_{\eta}$ β = to & β, = to are the estimates that minimise this!

1/3/297 STAT 2008/4038/6038 Regression Modelling To calculate to & b, in practice we need means 2 variances of the n & y sample variables & we also need the covariance of X, Y: to estimate this in the sample we use $\frac{S_{RY}}{(n-1)} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$ then $\hat{\beta}_{i} = b_{i} = \frac{1}{n-1} \sum_{i} (x_{i} - \overline{x})(y_{i} - \overline{y}) = \frac{S_{xy}}{S_{xx}}$ βo = bo = y - b, Z Two "competing" models mode (1) Y= Bo+ & pap? model 0 $\sqrt{\hat{Y}} = \overline{y}$ sample pop. Y= B. + B, X + E $\frac{\text{sample } \hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X}{\Rightarrow n} = b_0 + b_1 X$ Difference totaken the two models is term B,X To we need this term? > 'if we don't then Bi = 0 & we have moked 1) \Rightarrow if we are convinced that a positive linear trend is a better fit then $\beta_1 > 0$ & we have model (2) => Hypothesis test of Ho: \$,=0 vs Ha: \$,>0

STAT 2008/4038 /6038 Regression Modelling 1/3/20173
Assumptions underlying a simple linear regression (SLR).
General assumptions (applicable to most statistical models)
(1) that the sample is representative of the population of interest
(2) that the explanatory (x) variables are measured without error (or at least
Minimalerror of Y) -> all the error is in the Y direction (vertical on the earlier plots)
(3) that a model of the proposed form (eg a linear
model) is appropriée
Model-specific assumptions (most regression-type Models including sere)
(population) $Y_i = \beta_0 + \beta_1 X_i + \xi_i = 1, 2, N$
deterministic model for the mean stochastic model F[Y: X] = Bo+B, X; for the variance
deterministic model for the mean stochastic model $E[Y_i X] = \beta_0 + \beta_1 X_i$ for the variance
the assumptions, specific to this model, are
about Ei
E: 110 N (0,62)
Errors (Ei) are independent & identically (Normally) distributed with mean 0 & constant variance 62
[This in a nubshell is the variance model]