TD3

IPESUP - PC

22 Novembre 2023

1 Pression de radiation

- 1. Soit une onde plane, monochromatique, de fréquence ν se propageant le long des x croissants, dont le champ électrique est $\vec{E}(x,t) = E_0 cos(\omega t kx) \vec{u_y}$. Soit \mathcal{E} l'éclairement (défini par la puissance moyenne qui traverse une surface d'aire unité perpendiculaire à la direction de propagation). Exprimer \mathcal{E} en fonction de ϵ_0 , c et E_0 .
- 2. On considère cette onde comme un faisceau de photons se propageant le long des x croissants.
 - (a) Exprimer N_0 le nombre de photons traversant par unité de temps l'unité de surface perpendiculaire à Ox en fonction de \mathcal{E} et de ν .
 - (b) L'onde arrive sur une surface plane perpendiculaire à Ox, d'aire S, et parfaitement réfléchissante. On étudie le rebondissement des photons sur cette surface. Quelle est la quantité de mouvement reçue par la paroi au cours d'un choc photon-paroi? Quelle est la force subie par la paroi en fonction de \mathcal{E} , S et c? Exprimer la pression p subie par la paroi en fonction de \mathcal{E} et c puis en fonction de ϵ_0 et ϵ_0 .
 - (c) Reprendre la question ci-dessus lorsque la paroi est parfaitement aborbante.
 - (d) Calculer \mathcal{E} , E_0 et p sur une paroi totalement absorbante pour un laser ayant un diamètre d=5,00 mm et une puissance moyenne \mathcal{P} =100 W (laser utilisé industriellement pour la découpe de feuilles).
- 3. (a) L'onde est maintenant absorbée par une sphère de rayon a, bien inférieur au rayon du faisceau. Quelle est, en fonction de \mathcal{E} , E_0 et p, la force \vec{F} subie par la sphère?
 - (b) Le soleil donne au voisinage de la Terre l'éclairement $\mathcal{E} = 1.4 \times 10^3 W.m^{-2}$. L'émission est isotrope. Sur une surface de dimensions petites devant D, l'onde arrivant du Soleil est quasi plane.

Quelle est la puissance \mathcal{P}_{t} émise par le Soleil?

Un objet sphérique de rayon a, de masse volumique μ est situé à une distance r du Soleil et absorbe totalement le rayonnement solaire. Evaluer le rapport entre la force due à l'absorbtion du rayonnement solaire et a force gravitationelle exercée par le Soleil sur cet objet dans les deux cas suivants :

- Cas d'une météorite : $\mu = 3.0 \times 10^3 kq.m^{-3}$ et a = 1.0m
- Cas d'une poussière interstellaire : $\mu = 1, 0 \times 10^3 kg.m^{-3}$

Commenter.

(c) Quelle est la surface minimale de la voile solaire d'un vaisseau spatial pour que celui-ci quitte l'attraction solaire?