

Search for Nuclear Symmetry-Energy Observables in Heavy Ion Collisions to Understand the Properties of Neutron Stars

S S NSCL

Hananiel Setiawan

Advisor: Dr. M.B. Tsang, National Superconducting Cyclotron Laboratory and Michigan State University

MOTIVATION

Neutron stars are very dense astronomical objects

Why does a neutron star not collapse under its own weight? Pressure from symmetry-energy counters the gravity.

The nuclear symmetry-energy, a part of the Nuclear Equation of State (EOS), is the price paid for having unequal numbers of neutrons and protons

Symmetry energy influences wide range of objects from *mass-radius relationship* of neutron stars to *halo nuclei* and *neutron skins*.

HEAVY ION COLLISIONS & pBUU TRANSPORT MODEL

- Symmetry-energy is not well understood, especially at high density.
- We can use Heavy Ion Collisions at high energy to produce high-density region to study symmetry energy.
- Our goal is to find the best & most sensitive observable constructed from particles produced during the collisions.
- Heavy Ion Collision simulations were done using pBUU (Boltzmann-Uehling-Uhlenbeck) transport model [1]:
 - 132 Sn + 124 Sn and 108 Sn + 112 Sn
 - Beam energy: 200 & 300 MeV/u
 - 2 E_{sym} parametrizations:
 - Soft (γ =0.5, $E_{sym} \propto \sqrt{\rho}$)
 - Stiff (γ =1.75, $E_{sym} \propto \rho$)

References
[1] J. Hong and P. Danielewicz, Phys. Rev. C **90**, 024605 (2014)

EXPERIMENTAL PLANS

- We need 300 MeV/u with reasonable-intensity ¹³²Sn & ¹⁰⁸Sn secondary beams, available at RIBF (RIKEN), Japan & FRIB (2020)
- We need a **time-projection chamber** (TPC) inside a strong magnet to detect pions and other particles.
- In 2010, MSU received a \$1.2 million grant from DOE to construct $S\pi RIT$ (SAMURAI Pion-Reconstruction and Ion-Tracker)
 - Completed in 2013 & shipped to RIKEN in 2014
 - Two experiments have been approved: ¹³²Sn + ¹²⁴Sn and ¹⁰⁸Sn + ¹¹²Sn (2016).
- Data from these experiments will be compared to the simulations to extract the value of *gamma* (γ)

RESULTS

Figure 3
Enhanced pion ratios of ¹³²Sn
+ ¹²⁴Sn &
¹⁰⁸Sn + ¹¹²Sn
using double & subtracted ratios methods.

SUMMARY | NEXT STEP

- Simulations show that pion ratio is the most sensitive observable, compared to n/p and triton/³He.
- Experiments of (Sn+Sn) collisions will be carried out in RIKEN, Japan in 2016.
- We plan to do more simulations with asymmetric system of ⁴⁸Ca+¹²⁴Sn and ⁴⁰Ca+¹¹²Sn for planning future experiments.

US Department of Energy Grant No. DE-SC0004835

MSU NSCL/FRIB, *HiRA/SEP* group, and the SPiRIT Colaboration

L Estee L Barney 7 Chaiecki P Danielewicz L Hong W.G. Lynch R

J. Estee, J. Barney, Z. Chajecki, P. Danielewicz, J. Hong, W.G. Lynch, R. Shane, S. Tangwancharoen, M.B. Tsang, R. Showalter, S. Sweany, J. Winkelbauer, J. Manfredi, P. Morfouace

SYMMETRY ENERGY project

