A. Multiple Linear Regression

Saturday, 30 August 2025

9:33 PM

1. Introduction

Multiple Linear Regression is Linear Regression with Multi Features/Variables whereas Linear Regression with One Feature/Variable is called Univariate Regression.

Let's take an example. Earlier we had Linear Regression with one variable (size in feet² (x)) that would predict (Price (\$) in 1000's (y)). But now, what if we have multiple features such as the size of the house, number of bedrooms, number of floors, age of house in years. This would give us a much better context to predict the house price.

Multiple features (variables)						
	Size in feet ²	Number of bedrooms		Age of home in years	Price (\$) in \$1000's	j=14 n=4
	X ₁	X2	Хз	Хų		n=4
	2104	5	1	45	460	-
1=2	1416	3	(2)	40	232	
	1534	3	2	30	315	
	852	2	1	36	178	
$x_j = j^{th}$ feature						
$\frac{1}{n}$ = number of features $\frac{1}{2}$ = 1416 3 2 46						416 3 (2) 40
$\vec{\mathbf{x}}^{(i)}$ = features of i^{th} training example						
$x_j^{(i)}$ = value of feature j in i^{th} training example $x_j^{(i)} = \frac{1}{3} = \frac{1}{2}$						

Now that we have multiple features, let's look at what our model would look like.

Previously for LR with One Feature, we had,

$$f_{w,b}(x) = wx + b$$

Now, for LR with Multi Features, the model will look like this:

$$f_{\omega_1 b}(X) = \omega_1 X_1 + \omega_2 X_2 + \omega_3 X_3 + \omega_4 X_4 + b$$

For the housing-price example, let's say we have a model:

$$f_{w,b}(x) = 0.1x_1 + 4x_2 + 10x_3 + -2x_4 + 80$$

Here, b = 80 that means a house, assuming it has no size, no bedrooms, no floors, no age in years, it would have a base price of 80,000 \$.

 $0.1x_1$ means that for increase in every additional square foot, the price of house will go up by 0.1(1000 \$) = 100 \$

 $4x_2$ means the addition in house price will be 4*1000 \$ = 4000 \$ for increase by 1 bedroom.

 $10x_3$ means, with the increase of 1 floor, the price increment would be 10 * 1000 \$ = 10000 \$

-2x₄ means, with the increase in house age in years by 1 year, the price will decrement by 2 * 1000 \$ = 2000 \$

In general, if we have n features, the Multiple LR model will be:

$$f_{w,b}(x) = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b$$

Let's simplify our formula:

We'll define: w as a list of numbers for parameters $[w_1, w_2, ... w_n]$. This is a row vector.

x as a list of all features $[x_1, x_2, x_3, \dots x_n]$. This is a row vector. Now,

$$f_{\overrightarrow{W},b}(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x} + b = \omega_1 X_1 + \omega_2 X_2 + \omega_3 X_3 + \cdots + \omega_n X_n + b$$

$$dot product$$