Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Side 1 av 3

Faglig kontakt under eksamen: Martin Herschend

Telefon: 73 59 34 64, 944 99 022

EKSAMEN I MA0301 ELEMENTÆR DISKRET MATEMATIKK

Bokmål Lørdag 4. juni 2011 Tid: 0900-1300

Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.

Alle oppgaver teller likt. Alle svar skal begrunnes.

Oppgave 1 Hvor mange ord kan lages med fem ulike bokstaver valgte fra ordet TRONDHEIM? Hvor mange av disse ordene inneholder bokstaven O?

Oppgave 2 Finn koeffisienten til x^{10} i uttrykket $(3 + 4x^2)^{12}$.

Oppgave 3 Hvis at følgende argument er gyldig:

$$\begin{array}{c}
p \lor r \\
p \to \neg q \\
(r \land q) \to s \\
\hline
q \\
\hline
\vdots \quad s
\end{array}$$

Oppgave 4

Definer heltallene a_n , hvor $n \in \mathbb{N}$, rekursivt ved

$$\begin{aligned} a_0 &= 1 & \text{og} \\ a_n &= 3a_{n-1} - 1 & \text{for alle } n \geq 1. \end{aligned}$$

Bevis at

$$a_n = \frac{3^n + 1}{2}$$

gjelder for alle naturlige tall n.

Oppgave 5 La $A = \{a, b, c\}$ og $B = \{1, 2, 3, 4\}$. Finn eksempler på funksjoner $f: A \to B$ og $g: B \to A$ slik at

- a) sammensetningen $g\circ f$ er bijektiv. Finn også inversen $(g\circ f)^{-1}.$
- b) f er injektiv, g er surjektiv, men $g \circ f$ er ikke bijektiv.

Oppgave 6 Følgende graf har fire minimale utspennende trær. Finn alle fire.

Oppgave 7 Lag en endelig tilstandsmaskin som gjenkjenner språket $\{01\}^*\{11\}\{10\}^*$.

Oppgave 8 Betrakte følgende fire grafer. Hvilke er isomorfe og hvilke er ikke isomorfe?

Oppgave 9 La F være mengden av funksjoner $f: \mathbb{Z} \to \mathbb{Z}$. Definer relasjonene \mathcal{R} og \mathcal{S} på F ved

$$f\mathcal{R}g \iff \forall x(f(x) \leq g(x)).$$

 $f\mathcal{S}g \iff \exists x(f(x) \leq g(x)).$

- a) Er relasjonen \mathcal{R} en delvis ordning?
- b) Er relasjonen S en delvis ordning?

Oppgave 10 Bruk Dijkstra's algoritme for å finne den korteste veien fra a til c i følgende graf. Oppgi alle etiketter som tildeles hjørnene mens algoritmen kjører.

