Selbststudium 4

Florian Lüthi

November 11, 2012

Aufgabe 2

Beginnen wir mit Schritt 1:

Markieren wir als zweiten Schritt alle $\{s,t\}$ mit $s \not\in F$ und $t \in F$:

Testen wir die Kombination als dritten Schritt:

s	t	$\{\delta(s,0),\delta(t,0)\}$		$\{\delta(s,1),\delta(t,1)\}$	
q_0	q_1	$\{q_0,q_2\}$		$\{q_1,q_3\}$	
q_0	q_2	$\{q_0,q_6\}$		$\{q_1,q_2\}$	
q_0	q_3	$\{q_0,q_7\}$		$\{q_1,q_2\}$	
q_0	q_4	$\{q_0,q_2\}$		$\{q_1,q_4\}$	\odot
q_0	q_5	$\{q_0,q_3\}$		$\{q_1,q_5\}$	(1)
q_0	q_6	$\{q_0,q_4\}$		$\{q_1,q_7\}$	
q_0	q_7	$\{q_0,q_5\}$		$\{q_1,q_7\}$	
q_1	q_2	$\{q_2,q_6\}$		$\{q_3,q_2\}$	
q_1	q_3	$\{q_2,q_7\}$		$\{q_3,q_2\}$	
q_1	q_6	$\{q_2,q_4\}$	©	$\{q_3,q_7\}$	
q_1	q_7	$\{q_2,q_5\}$	\odot	$\{q_3,q_7\}$	
q_2	q_3	$\{q_6,q_7\}$		$\{q_2\} \notin \{s,t\}$	
q_2	q_6	$\{q_4,q_6\}$		$\{q_2,q_7\}$	
q_2	q_7	$\{q_5,q_6\}$		$\{q_2,q_7\}$	
q_3	q_6	$\{q_4,q_7\}$		$\{q_2,q_7\}$	
q_3	q_7	$\{q_5,q_7\}$		$\{q_2,q_7\}$	
q_4	q_5	$\{q_2,q_3\}$		$\{q_4,q_5\}$	
q_4	q_6	$\{q_2,q_4\}$	©	$\{q_4,q_7\}$	
q_4	q_7	$\{q_2,q_5\}$	\odot	$\{q_4,q_7\}$	
q_5	q_6	$\{q_3,q_4\}$	(1)	$\{q_5,q_7\}$	
q_5	q_7	$\{q_3,q_5\}$	(1)	$\{q_5,q_7\}$	
q_6	q_7	$\{q_4,q_5\}$		$\{q_7\} \notin \{s,t\}$	

Das führt uns zu:

Offensichtlich haben sich Markierungen geändert, also Schritt 3 von vorn:

\overline{s}	t	$\{\delta(s,0),\delta(t,0)\}$		$\{\delta(s,1),\delta(t,1)\}$	
q_0	q_1	$\{q_0,q_2\}$		$\{q_1,q_3\}$	
q_0	q_2	$\{q_0,q_6\}$		$\{q_1,q_2\}$	
q_0	q_3	$\{q_0,q_7\}$		$\{q_1,q_2\}$	
q_0	q_6	$\{q_0,q_4\}$	\odot	$\{q_1,q_7\}$	\odot
q_0	q_7	$\{q_0,q_5\}$	($\{q_1,q_7\}$	(1)
q_1	q_2	$\{q_2,q_6\}$		$\{q_3,q_2\}$	
q_1	q_3	$\{q_2,q_7\}$		$\{q_3,q_2\}$	
q_2	q_3	$\{q_6,q_7\}$		$\{q_2\} \notin \{s,t\}$	
q_2	q_6	$\{q_4,q_6\}$	\odot	$\{q_2,q_7\}$	
q_2	q_7	$\{q_5,q_6\}$	($\{q_2,q_7\}$	
q_3	q_6	$\{q_4,q_7\}$	($\{q_2,q_7\}$	
q_3	q_7	$\{q_5,q_7\}$	($\{q_2,q_7\}$	
q_4	q_5	$\{q_2,q_3\}$		$\{q_4,q_5\}$	
q_6	q_7	$\{q_4,q_5\}$		$\{q_7\} \notin \{s,t\}$	

Das führt uns zu:

Wiederum haben sich die Markierungen geändert – da capo!

s	t	$\{\delta(s,0),\delta(t,0)\}$		$\{\delta(s,1),\delta(t,1)\}$
q_0	q_1	$\{q_0,q_2\}$		$\{q_1,q_3\}$
q_0	q_2	$\{q_0,q_6\}$	\odot	$\{q_1,q_2\}$
q_0	q_3	$\{q_0,q_7\}$	(3)	$\{q_1,q_2\}$
q_1	q_2	$\{q_2,q_6\}$	☺	$\{q_3,q_2\}$
q_1	q_3	$\{q_2,q_7\}$	(3)	$\{q_3,q_2\}$
q_2	q_3	$\{q_6,q_7\}$		$\{q_2\} \notin \{s,t\}$
q_4	q_5	$\{q_2,q_3\}$		$\{q_4,q_5\}$
q_6	q_7	$\{q_4, q_5\}$		$\{q_7\} \notin \{s,t\}$

Das führt uns zu:

q_1							
q_2	©	©					
q_3	©	©					
q_4	©	©	©	©			
q_5	©	©	©	©			
q_6	©	©	©	©	©	©	
q_7	©	©	©	©	©	©	
	q_0	q_1	q_2	q_3	q_4	q_5	q_6

Wir haben erneute Änderung der Markierungen festgestellt, also nochmal:

s	t	$\{\delta(s,0),\delta(t,0)\}$		$\{\delta(s,1),\delta(t,1)\}$	
q_0	q_1	$\{q_0,q_2\}$	©	$\{q_1,q_3\}$	©
q_2	q_3	$\{q_6,q_7\}$		$\{q_2\} \notin \{s,t\}$	
q_4	q_5	$\{q_2,q_3\}$		$\{q_4,q_5\}$	
q_6	q_7	$\{q_4,q_5\}$		$\{q_7\} \notin \{s,t\}$	

Das führt uns zu:

Das einzig neu markierte Paar ist $\{q_0, q_1\}$, und dieses wird gemäss obiger Tabelle von nirgendwo her erreicht, also sind wir fertig mit Schritt 3.

In Schritt 5 bilden wir für jeden Zustand s die Menge S:

$$S_0 = \{q_0\}, S_1 = \{q_1\}, S_2 = \{q_2, q_3\}, S_4 = \{q_4, q_5\}, S_6 = \{q_6, q_7\},$$

ausserdem ist

$$\Pi = \{S_0, S_1, S_2, S_4, S_6\}$$

und

$$F_{\min} = \{ S \in \Pi | S \cap F \neq \emptyset \} = \{ S_0, S_4 \}.$$

Brauchen wir noch $\delta_{\min}(S, a) = \bigcup_{s \in S} \delta(s, a)$:

	0	1
S_0	$\{q_0\}\subseteq S_0$	$\{q_1\}\subseteq S_1$
S_1	$\{q_2\}\subseteq S_2$	$\{q_3\}\subseteq S_2$
S_2	$\{q_6,q_7\}\subseteq S_6$	$\{q_2\}\subseteq S_2$
S_4	$\{q_2, q_3\} \subseteq S_2$	$\{q_4, q_5\} \subseteq S_4$
S_6	$\{q_4, q_5\} \subseteq S_4$	$\{q_7\}\subseteq S_6$

Nun sind wir endlich soweit, $A_{\min}=(\Sigma,\Pi,\delta_{\min},S_0,F_{\min})$ zeichnen zu können:

Minimieren wir den bekannten Automaten A noch mit dem zweiten vorgestellten Verfahren.

Bestimmen wir in Schritt 1:

$$\Pi_1 = \{Q_{11}, Q_{12}\} = \{F, Q - F\} = \{\{q_0, q_4, q_5\}, \{q_1, q_2, q_3, q_6, q_7\}\}\$$

Bauen wir die Tabelle der Übergänge bezüglich Π_1 :

	Q_{11}			$egin{array}{c cccc} Q_{12} & & & & & \\ q_1 & q_2 & q_3 & q_6 & q_7 & & \end{array}$					
	q_0	q_4	q_5	$ q_1 $	q_2	q_3	q_6	q_7	
0	$\begin{vmatrix} Q_{11} \\ Q_{12} \end{vmatrix}$	$Q_{12} \\ Q_{11}$	$Q_{12} \\ Q_{11}$	$\begin{array}{ c c } Q_{12} \\ Q_{12} \end{array}$	Q_{12} Q_{12}	Q_{12} Q_{12}	$Q_{11} \\ Q_{12}$	Q_{11} Q_{12}	

In Schritt 2 bilden wir gemäss der Bedingung die Partition Π_2 :

$$\Pi_2 = \{\{q_0\}, \{q_4, q_5\}, \{q_1, q_2, q_3\}, \{q_6, q_7\}\} = \{Q_{21}, Q_{22}, Q_{23}, Q_{24}\}$$

Es gilt natürlich $\Pi_1 \neq \Pi_2$, also wiederholen wir den Schritt und bestimmen zuerst die Übergangstabelle bezüglich Π_2 :

	Q_{21}	$\begin{array}{c c} Q_{22} \\ q_4 & q_5 \end{array}$			Q_{23}	Q_{24}		
	q_0	q_4	q_5	q_1	q_2	q_3	q_6	q_7
0	Q_{21}	Q_{23}	Q_{23}	Q_{23}	Q_{24}	Q_{24}	Q_{22}	Q_{22}
1	$\begin{vmatrix} Q_{21} \\ Q_{23} \end{vmatrix}$	Q_{22}	Q_{22}	Q_{23}	Q_{23}	Q_{23}	Q_{24}	Q_{24}

Wir bilden die Partition Π_3 gemäss der Bedingung:

$$\Pi_3 = \{\{q_0\}, \{q_4, q_5\}, \{q_1\}, \{q_2, q_3\}, \{q_6, q_7\}\} = \{Q_{31}, Q_{32}, Q_{33}, Q_{34}, Q_{35}\}$$

Es gilt $\Pi_3 \neq \Pi_2$, also nochmal die Tabelle bezüglich Π_3 :

	Q_{31}	$egin{array}{c c} Q_{32} \ q_4 & q_5 \end{array}$		Q_{33}	Q	Q_{34}		Q_{35}	
	q_0	q_4	q_5	q_1	q_2	q_3	q_6	q_7	
0	Q_{31}	Q_{34}	Q_{34}	Q_{34}	$\begin{array}{ c c } Q_{35} \\ Q_{34} \end{array}$	Q_{35}	Q_{32}	Q_{32}	

Wir bilden die Partition Π_4 gemäss der Bedingung:

$$\Pi_4 = \{\{q_0\}, \{q_4, q_5\}, \{q_1\}, \{q_2, q_3\}, \{q_6, q_7\}\} = \{Q_{41}, Q_{42}, Q_{43}, Q_{44}, Q_{45}\}$$

Es gilt $\Pi_4 = \Pi_3$, also sind wir fertig. Wir können nun A_{\min} bilden:

$$A_{\min} = (\Sigma, \Pi_4, \delta_{\Pi_4} = \delta_{\Pi_3}, Q_{31}, \{Q_{31}, Q_{32}\})$$

Und natürlich auch zeichnen:

