XII. Compositions of Functions

- A. Definition: If $g:A\to B$ and $f:B\to C$ then the $\it composition$ of f and g, denoted by $f\circ g$, is defined by: $(f\circ g)(a)=f(g(a))$
- B. Alternative statement 1: $(f \circ g)(a)$ is the function that:
 - 1. Maps $a \in A$ to $b \in B$ where b is specified by g(a) = b
 - 2. Maps $b \in B$ to $c \in C$ where c is specified by f(b) = c
- C. Alternative statement 2: $(f \circ g)(a) = f(g(a) = b) = f(b) = c$
- D. Graphical Illustration:

- E. Note 1: $(f \circ g)(a) \neq (g \circ f)(a)$
 - 1. Consider: f(x) = x + 1 and $g(x) = x^2$
 - 2. $(f \circ g)(a) = f(g(a)) = f(g(x) = x^2) = x^2 + 1$
 - 3. $(g \circ f)(a) = g(f(a)) = g(f(x) = x + 1) = (x + 1)^2$

F. Note 2: If

2:
$$(f \circ f^{-1})(b) = f(f^{-1}(b)) = \iota_A$$

 $f(a) = b$ then $f^{-1}(b) = a$

then
$$f^{-1}(b) = a$$

Then:

$$f(f^{-1}(b)) = f(f^{-1}(b) = a) = f(a) = b$$

And:

$$f^{-1}(f(a)) = f^{-1}(f(a) = b) = f^{-1}(b) = a$$

Therefore:

$$(f \circ f^{-1})(b) = f(f^{-1}(b)) = \iota_B$$

and:

$$(f^{-1} \circ f)(a) = f^{-1}(f(a)) = \iota_A$$

XIII. Graphs of Functions

Definition: The graph of a function $f: A \to B$ is the set S (possibly A.

infinite) of ordered pairs (a, b) where $a \in A$ and $b \in B$

and f(a) = b.

Therefore:
$$S = \{(a,b) \mid (a \in A) \land (b \in B) \land (f(a) = b) \}$$

Example: В.

> 1. Let

$$A = \{\,-1,\,0,\,1\} \ \ \text{and} \ \ \ B = \{2,\,3,\,4\}$$

2. Define

$$f: A \rightarrow B$$
 as $f(a) = a + 3 = b$

3. Then:

$$S = \{(-1, 2), (0, 3), (1, 4)\}$$

The graph is: 4.

XIV. Floor and Ceiling Functions

A. Floor Function

1. Definition: The floor function assigns to some real number r the largest integer z that is less than or equal to x.

The value of the floor function at r is usually denoted by $\lfloor r \rfloor = z$

2. If $\Re = \{r \mid r \text{ is a real number}\}$ and $Z = \{z \mid z \text{ is an integer}\}$

- 3. Typically the floor function is used to round down a floating point number to the largest integer less than the floating point number.
- 4. Example:

You are planning a couples bridge party with two couples playing at each table. You have N chairs. How many couples can you invite?

Each bridge table requires four chairs. The maximum number of tables that you can support with N chairs is $T = \left\lfloor \frac{N}{4} \right\rfloor$. The maximum number of couples that you can invite is, then, $2 \times T$.

B. Ceiling Function

1. Definition: The ceiling function assigns to some real number r the smallest integer z that is less than or equal to x.

The value of the ceiling function at r is usually denoted by $\left \lceil r \right \rceil = z$

2. If $\Re = \{r \mid r \text{ is a real number}\}$ and $Z = \{z \mid z \text{ is an integer}\}$

- 3. Typically the ceiling function is used to round up a floating point number to the smallest integer greater than the floating point number.
- 4. Example:

Draw a graph of the function $f(r) = \lceil r \rceil + \lfloor \frac{r}{2} \rfloor$ where $f: \Re \to \Re$

XV. Factorial Function

A. Definition: $f: N \to Z^+$ where f(n) = n!

and:
$$n! = 1 \times 2 \times 3 \times 4 \times ... \times (N-1) \times N$$

- B. Example: Given an ordered trio of integers, e.g., (1, 3, 5), the number of possible orderings is given by 3! = 6
 - 1. (1, 3, 5)
- 4. (1, 5, 3)
- 2. (3, 1, 5)
- 5. (5, 1, 3)
- $3. \quad (3, 5, 1)$
- 6. (5, 3, 1)
- C. In general (to be proven later), the number of possible orderings of an ordered N-tuple is N.

Section 2.3

Functions

Page 137

XVI. Partial Functions

Definition: A *partial function* $f: A \rightarrow B$ is an assignment of Α. some, not all, elements of the domain A to a unique element b of B, the codomain.

> The elements of A that are assigned to a unique element b of B belong to a subset of A known as the domain of definition of f.

> When the domain of definition of f is equal to the domain Athen f is known as a *total function*.

- Example 1: $f: Z \to \Re$ where $f = \frac{1}{n}$ В.
 - The quotient $\frac{1}{n}$ is undefined for n=0 and there is no real number 1. $r \in \Re$ that represents the quotient $\frac{1}{0}$.
 - If the domain is changed to either Z^+ or Z^- to exclude 0 then f2. becomes a total function.
 - If we define f as: $f:Z\to\Re\cup\{\mu\}$ where: a. $f(n)\in\Re$ when $f(n)=\frac{1}{n}$ belongs to the domain of 3. definition for $\frac{1}{n}$
 - $f(n) = \mu$ if f(n) is undefined at n. b.

then f becomes a total function.

- C.
- Example 2: $f: Z \times Z \to Q$ where $f(m, n) = \frac{m}{n}$ 1. The quotient $\frac{m}{n}$ is undefined for n = 0 and there is no real number $r \in \Re$ that represents the quotient $\frac{m}{0}$.
 - If the domain is changed to either Z^+ or Z^- to exclude 0 then f2. becomes a total function.