General Topology

Lecture 8

Haoming Wang

16 May 2020

This is the Lecture note for the *General Topology* course in Spring 2020.

1 Net

Let *X* be set, then a sequence $x_n (n \in \mathbb{N})$ in *X* is such a map $\mathbb{N} \xrightarrow{x_n} X$ (denote x(n) by x_n). Now we gonna generalize this concept.

Definition 1 (Directed Set). A directed set (D, \ge) consists of a non-empty set D and a relation \ge on D s.t.

- 1. $\forall d \in D, d \geq d$;
- 2. $\forall d, d', d'' \in D, d \geq d', d' \geq d'' \Rightarrow d \geq d''$,

i.e. (D, \geq) is pre-order. And $\forall d, d' \in D, \exists d'' \in D$, s.t. $d'' \geq d, d'' \geq d'$.

Remark 1. Note that the pre-order is not total order, which means there could exist $d_1, d_2 \in D$ which are not comparable. On the other hand, the pre-order is not partial order yet, which means it does not require $d \ge d' \wedge d' \ge d \Rightarrow d = d'$. Thus the following statement in a directed set may hold: $\exists d_1, d_2, d_3, d_4 \in D$ such that

$$d_1 \ge d_2 \ge d_3 \ge d_4 \ge d_1$$
,

but $d_1 \neq d_2 \neq d_3 \neq d_4$.

Example 1. Let X be a topology space, $x \in X$, $D = \{$ all open nbd.s of $x \}$ and for any $U, V \in D$ define $U \geq V \Leftrightarrow U \subseteq V$, then (D, \geq) is a directed set. (Since for any $U, V \in D$, $\exists W := U \cap V \in D$, s.t. $W \geq U, W \geq V$)

Definition 2 (Net). Let X be a set, a net $(D, \geq) \xrightarrow{x} X$, $(x_{\alpha}(\alpha \in D) \text{ for short,})$ in X consists of a directed set (D, \geq) and a map $D \xrightarrow{x} X$.

Suppose that a net x. ($x_{\alpha}(\alpha \in D)$) is a net in a set X, and $S \subseteq X$, we say that x. lies in S

- eventually if $\exists \delta \in D, \forall \alpha \in D, \alpha \geq \delta \Rightarrow x_{\alpha} \in S$;
- **frequently** if $\forall \delta \in D, \exists \alpha \in D$, s.t. $\alpha \geq \delta$ and $x_{\alpha} \in S$.

Remark 2. \neg (x. lies in S eventually) $\Leftrightarrow x$. lies in $X \setminus S$ frequently.

Definition 3 (Convergence). Let X be a topology space, $x_{\alpha}(\alpha \in D)$ is a net in X, $x \in X$. We say that x. converges x (or say x is a limit of x.) if \forall open nbd. U of x in X, x. lies in U eventually.

Exercise 1. Show that X is a Hausdorff space \Leftrightarrow every net has at most one limit.

Proof. \Rightarrow : Suppose a net $D \xrightarrow{x} X$ converges to x and y in X and $x \neq y$, then \exists open nbd.s U of x and V of y, s.t. $x \in U, y \in V$ and $U \cap V = \emptyset$. Since $x \to x$ then $\exists \delta_x \in D$, s.t. $\forall \alpha \in D, \alpha \geq \delta_x \Rightarrow x_\alpha \in U$. And since $x \to y, \exists \delta_y \in D$, s.t. $\forall \alpha \in D, \alpha \geq \delta_y \Rightarrow x_\alpha \in V$. Then $\exists \delta \in D$, s.t. $\delta \geq \delta_x \land \delta \geq \delta_y$, thus for $\forall \alpha \in D, \alpha \geq \delta$ has $x_\alpha \in U \subseteq X \setminus V$ and $x_\alpha \in V$ which leads to a contradiction.

 \Leftarrow : Suppose *X* is not a Hausdorff space, then $\exists x, y \in X$, s.t. \forall open nbd.s *U* of *x*, *V* of *y* has *U* ∩ *V* ≠ Ø. Thus we can form a net in *X*.

Define $D = \{U \cap V | x \in U \subseteq_{open} X, y \in V \subseteq_{open} X\}$ and $\forall d_1, d_2 \in D, d_1 \geq d_2 \Leftrightarrow d1 \subseteq d_2$, it is direct to see (D, \geq) is a directed set. And then $D \xrightarrow{x} X$ where $d \mapsto x_d \in d$ is a net (since $\forall d \in D, d \neq \emptyset$, and hence $x_d \exists$).

Thus given any open nbd. W of x, $W \cap V \in D$ where D is a open nbd. of y, then $\forall \alpha \in D, \alpha \geq W \cap V$ we have

$$x_{\alpha} \in \alpha \subseteq W \cap V \subseteq W$$

thus x. lies in any open nbd. W of x eventually, and hence x. converges to x. Thus x. converges to y as well in the same way, which leads to a contradiction.

Remark 3 (A naturally convergent net). If X is a set, $x \in X$, if we define the directed set as $D = \{U | x \in U \subseteq_{open} X\}$ and $2 \Leftrightarrow \subseteq$, then (D, \ge) is a directed set. And define the net $D \xrightarrow{x} X$, where $\alpha \mapsto x_{\alpha} \in S_{\alpha} \subseteq \alpha$. Then for any open nbd. U of x, $U \in D$ and $\forall \alpha \in D, \alpha \ge U$ has

$$x_{\alpha} \in S_{\alpha} \subseteq \alpha \subseteq U$$
.

Thus such *x*. converges to *x* naturally.

Exercise 2. Let X be a topology space, $A \subseteq X$, define

$$\overline{A}'' := \{x \in X | \exists \text{ net a. in } A \text{ converging to } x\}$$

and

$$L_A'' := \{x \in X | \exists \text{ net a. in } A \setminus \{x\} \text{ converging to } x\}$$

show that $\overline{A} = \overline{A}''$ and $L_A = L_A''$.

Proof. 1. \subseteq : if $x \in \overline{A}$, then any open nbd. U of x has $U \cap A \neq \emptyset$, thus we can form a net. Define $D = \{U | x \in U \subseteq_{open} X\}$ and $\geq \Leftrightarrow \subseteq$ then (D, \geq) is a directed set and $D \xrightarrow{x} A$ where $d \mapsto x_d \in d \cap A$ is a net. And x. converges to $x \Rightarrow x \in \overline{A}''$ by *Remark* 2. \supseteq : if $x \in \overline{A}''$, then \exists a net $D \xrightarrow{x} A$ s.t. for \forall open nbd. U of x, $\exists \delta \in D$ s.t. $\forall \alpha \in D, \alpha \geq \delta \Rightarrow \alpha \in U$, then $U \cap A \neq \emptyset \Rightarrow x \in \overline{A}$.

2. the same as above. \Box

Exercise 3. Let $X \xrightarrow{f} Y$ be a map between topology spaces, $x_0 \in X$, show that f is continuous at $x_0 \Leftrightarrow for \ \forall \ net \ D \xrightarrow{x_0} X$ in X that converges to x_0 , $f(x_0)$ is a net in Y converges to $f(x_0)$.

Proof. \Rightarrow : if V is an open nbd. of $f(x_0)$, since f is continuous, $f^{-1}(V)$ is an open nbd. of x_0 , then $\exists \delta \in D$, s.t. $\forall \alpha \in D, \alpha \geq \delta \Rightarrow x_\alpha \in f^{-1}(V) \Rightarrow f(x_\alpha) \in V \Rightarrow f(x)$ converges to $f(x_0)$.

 \Leftarrow : suppose f is not continuous at x_0 , then \exists an open nbd. V of $f(x_0)$, $f^{-1}(V)$ is not an open nbd. of x_0 , that is $x_0 \notin (f^{-1}(V))^o$, since $x_0 \in f^{-1}(V)$, $x_0 \in f^{-1}(V) \setminus (f^{-1}(V))^o = \partial f^{-1}(V)$. Thus any open nbd. U of x has $U \cap f^{-1}(V) \neq \emptyset$ and $U \cap X \setminus f^{-1}(V) \neq \emptyset$, and hence we can form a net.

Define $D = \{U | x \in U \subseteq_{open} X\}$ and $\geq \Leftrightarrow \subseteq$ then (D, \geq) is a directed set, and define a net $D \xrightarrow{x} X \setminus f^{-1}(V)$ where $\alpha \mapsto x_{\alpha} \in \alpha \cap X \setminus f^{-1}(V)$, then x. converges to x by *Remark* 2, and hence f(x) converges to $f(x_0)$ by assumptions, which means $\exists \delta \in D$, s.t. $\forall \alpha \in D, \alpha \geq \delta \Rightarrow f(x_{\alpha}) \in V$ which leads to a contradiction with $f(x_{\alpha}) \in X \setminus f^{-1}(V)$.

Note 1. f(x) is a net in Y:

$$D \xrightarrow{x.} X \xrightarrow{f} Y$$

2 Subnet

Recall that given a sequence $x_n(n \in \mathbb{N})$ in a set X, a subsequence $x_{n_k}(k \in \mathbb{N})$ is composite map

$$\mathbb{N} \xrightarrow{n.} \mathbb{N} \xrightarrow{x.} X$$

(denote x(n(k)) as x_{n_k}), where $\mathbb{N} \xrightarrow{n_k} \mathbb{N}$ is a monotone injection. We now want to generalize this conception.

Definition 4 (Final Map). Let (D, \geq) and (D', \geq') be directed sets, a map $D' \xrightarrow{h} D$ is a final map (w.r.t. \geq and \geq') if $\forall \delta \in D$, $\exists \delta' \in D'$, s.t. $\forall \alpha \in D'$, $\alpha \geq \delta' \Rightarrow h(\alpha) \geq \delta$.

Note 2. Final map analogizes the monotones of $\mathbb{N} \xrightarrow{n} \mathbb{N}$. Final map require the tail of the map is monotones.

Definition 5. Let $D' \xrightarrow{h} D$ is a final map between directed sets, net $x_{h(\cdot)}$:

$$D' \xrightarrow{h} D \xrightarrow{x} X$$

is called a subnet of x.

Exercise 4. If a net x. converges to x_0 show that the subnet $x_{h(\cdot)}$ converges to x_0 as well.

Proof. For any open nbd.
$$U$$
 of x_0 , $\exists \delta \in D$, s.t. $\forall \alpha \in D, \alpha \geq \delta \Rightarrow x_\alpha \in U \Rightarrow \exists \delta' \in D', \forall \alpha' \geq \delta', h(\alpha') \geq \delta \Rightarrow x_{h(\alpha')} \in U \Rightarrow x_{h(\cdot)}$ converges to x_0 .

Exercise 5. Let X be a set, x. is a net in X, $S \subseteq X$. Show that x. lies in S frequently $\Leftrightarrow \exists$ subnet of x. lies in S eventually.

Proof. \Rightarrow : $D \xrightarrow{x_{\cdot}} X$ lies in S frequently, then $\forall \delta \in D$, $\exists \alpha_{\delta} \in D$, s.t. $\alpha_{\delta} \geq \delta$ and $x_{\alpha_{\delta}} \in S$. Then we can for a final map $D \xrightarrow{h} D$ where $\delta \mapsto \alpha_{\delta}$. Thus for any $\alpha_{\delta} \in D$, $\exists \alpha_{\delta} \in D$, s.t. $\forall \alpha \in D$, $\alpha \geq \alpha_{\delta} \Rightarrow \alpha \geq \alpha_{\delta}$, thus h is a final map, and $x_{h(\cdot)}$ is a subnet of x. and for any $\alpha \in D$, $x_{h(\alpha)} = x_{\alpha_{\delta}} \in S \Rightarrow x_{h(\cdot)}$ lies in S eventually.

 \Leftarrow : if $D \xrightarrow{x} X$ has an subnet $D' \xrightarrow{x_{h(\cdot)}} X$ which lies in S eventually. Then $\exists \beta \in D'$, s.t. $\forall \alpha' \in D'$, $\alpha' \geq \beta \Rightarrow x_{h(\alpha')} \in S$. On the other hand, $\forall \delta \in D$, $\exists \delta' \in D'$, s.t. $\forall \alpha' \in D'$, $\alpha' \geq \delta' \Rightarrow h(\alpha') \geq \delta$. Since D' is directed set, $\exists \gamma \in D'$, s.t. $\gamma \geq \beta$ and $\gamma \geq \delta'$, then $h(\gamma) \geq \delta$ and $x_{h(\gamma)} \in S$.

Collectively, $\forall \delta \in D$, $\exists h(\gamma) \in D$, s.t. $h(\gamma) \geq \delta$ and $x_{h(\gamma)} \in S \Rightarrow x$. lies in S frequently.

Definition 6 (Universal Net). A net x. in a set X is universal if $\forall A \subseteq X$ either x. lies in A eventually or x. lies in $X \setminus A$ eventually.

Exercise 6. $X \xrightarrow{f} Y$ is a map, show that x is a universal net in $X \Rightarrow f(x)$ is universal net in Y.

Proof. For any $B \subseteq Y$, $f^{-1}(B) \subseteq X$, since $D \xrightarrow{x} X$ is a universal net, x. lies in $f^{-1}(B)$ eventually or $X \setminus f^{-1}(B)$.

If x. lies in $f^{-1}(B)$ eventually, $\exists \delta \in D$, s.t. $\forall \alpha \in D, \alpha \geq \delta, \Rightarrow x_{\alpha} \in f^{-1}(B) \Rightarrow f(x_{\alpha}) \in B$; If x. lies in $X \setminus f^{-1}(B)$ eventually, $\exists \delta \in D$, s.t. $\forall \alpha \in D, \alpha \geq \delta, \Rightarrow x_{\alpha} \in X \setminus f^{-1}(B) = f^{-1}(Y \setminus B) \Rightarrow f(x_{\alpha}) \in Y \setminus B$. Thus f(x) is a universal net in Y. \Box

Exercise 7. Show that every subnet of a universal net is universal.

Proof. Suppose $D \xrightarrow{x_h(\cdot)} X$ is a universal net in X which has a subnet $D' \xrightarrow{x_h(\cdot)} X$. And for any $A \subseteq X$, x. lies in A or $X \setminus A$ eventually. Suppose x. lies in A, then $\exists \delta \in D$, s.t. $\forall \alpha \in D$, $\alpha \ge \delta \Rightarrow x_\alpha \in A$. On the other hand, $\exists \delta' \in D'$, s.t. $\forall \alpha' \in D'$, $\alpha' \ge \delta' \Rightarrow h(\alpha') \ge \delta \Rightarrow x_{h(\alpha')} \in A \Rightarrow x_{h(\cdot)}$ lies in A eventually as well $\Rightarrow x_{h(\cdot)}$ is universal.

Theorem 1. Every net has a universal subnet.

Proof. Let $(D, \geq_D) \xrightarrow{x} X$ be a net in a set X, where (D, \geq_D) is a directed set.

- 1. Define *Y* as the family of some families $A(\subseteq \mathcal{P}(X))$ of subsets of *X* such that
 - (a) $\forall A \in \mathcal{A}$, x. lies in A frequently;
 - (b) $\forall A_1, A_2 \in \mathcal{A}, A_1 \cap A_2 \in \mathcal{A}.$

That is the element of Y is the family of subsets of X that satisfies the above conditions. Thus $Y \neq \emptyset$ (since $\{X\} \in Y$) and (Y, \subseteq) is a poset. We now apply Zorn's lemma to get a maximal element of Y.

Let *C* be a chain in *Y* w.r.t. \subseteq . Then we claim that $\bigcup_{A \in C} A \in Y$ and is an upper bound of *C*.

- (a) For any $A \in \bigcup_{A \in C} A$ there $\exists A' \in C$, s.t. $A \in A'$, thus x. lies in A eventually;
- (b) For any $A_1, A_2 \in \mathcal{A}$ there $\exists \mathcal{A}_1, \mathcal{A}_2 \in \mathcal{C}$, s.t. $A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2$ and \mathcal{A}_1 is comparable with \mathcal{A}_2 w.r.t. \subseteq , for example $\mathcal{A}_1 \subseteq \mathcal{A}_2$, then $A_1, A_2 \in \mathcal{A}_2 \Rightarrow A_1 \cap A_2 \in \mathcal{A}_2 \subseteq \cup_{\mathcal{A} \in \mathcal{C}} \mathcal{A}$.

Thus \exists maximal element A_0 of Y.

- 2. Let $D_0 := \{(A, \alpha) \in A_0 \times D | x_\alpha \in A\}$ with the pre-order \geq_0 on D_0 : $(A', \alpha') \geq_0 (A, \alpha) \Leftrightarrow A' \subseteq A$ and $\alpha' \geq_D \alpha$. Since
 - (a) For any $A \in \mathcal{A}_{\prime}$, $\alpha \in D$, $A \subseteq A$ and $\alpha \geq_D \alpha \Rightarrow (A, \alpha) \geq_0 (A, \alpha)$;
 - (b) For any (A_1, α_1) , (A_2, α_2) , $(A_3, \alpha_3) \in D_0$, $(A_1, \alpha_1) \ge_0 (A_2, \alpha_2)$ and $(A_2, \alpha_2) \ge_0 (A_3, \alpha_3)$ means

$$\alpha_1 \geq_D \alpha_2 \geq_D \alpha_3$$

and

$$A_1 \subseteq A_2 \subseteq A_3$$

thus $(A_1, \alpha_1) \ge_0 (A_3, \alpha_3)$

(c) For any (A_1, α_1) , $(A_2, \alpha_2) \in D_0$, $A_0 \ni A_1 \cap A_2 \subseteq A_1$ and A_2 ; and $\exists \alpha' \ge_D \alpha_1$ and $\alpha_2 \Rightarrow D_0 \ni (A_1 \cap A_2, \alpha') \ge_0 (A_1, \alpha_1)$ and (A_2, α_2) .

Thus (D_0, \geq_0) is a directed set.

3. And then we can define a final map $D_0 \xrightarrow{h} D$ where $(A, \alpha) \mapsto \alpha$. Given $\delta \in D$, for any $A \in \mathcal{A}_0$, since x. lies in A frequently, $\exists \alpha \in D$, s.t. $\alpha \geq \delta$ and $x_\alpha \in A$, and hence $(A, \alpha) \in D_0$. For any $(A', \alpha') \geq_0 (A, \alpha)$, we have that $h((A', \alpha')) = \alpha' \geq \alpha \geq \delta$, thus h is a final map.

In particular, we donate the subnet of x., i.e. the composite of $D_0 \xrightarrow{h} D \xrightarrow{x} X$ as $D_0 \xrightarrow{y := x . \circ h} X$ where $(A, \alpha) \mapsto x_{\alpha} = y_{(A, \alpha)}$.

4. Let $S \subseteq X$, we will show that the subnet y. is universal: if \neg (y. lies in $X \setminus S$ eventually) \Leftrightarrow (y. lies in S frequently) then we will show that it implies y. lies in S eventually.

For any $A \in \mathcal{A}_0$, x. lies in A frequently \Rightarrow for any $\delta \in D$, there exists $\alpha \in D$, s.t. $\alpha \geq_D \delta$ and $x_\alpha \in A$ and hence $(A,\alpha) \in D_0$. And since y. lies in S frequently, $\exists (A_1,\alpha_1) \in D_0$, s.t. $(A_1,\alpha_1) \geq_0 (A,\alpha)$, (i.e. $A_1 \subseteq A$ and $\alpha_1 \geq_D \alpha_0$) and $y_{(A_1,\alpha_1)} \in S$. And $y_{(A_1,\alpha_1)} = x_{\alpha_1} \in A_1$ since $(A_1,\alpha_1) \in D_0$. Thus

$$x_{\alpha_1} = y_{(A_1,\alpha_1)} \in S \cap A_1 \subseteq S \cap A$$

thus x. lies in $S \cap A$ frequently for any $A \in A_0$ and thus x. lies in S frequently, thus we have that

$$A_0 \cup \{S \cap A | A \in A_0\} \cup \{S\} \in Y$$

by the definition of Y, and since A_0 is the maximal element of $Y \Rightarrow S \in A_0$. If \neg (y. lies in S eventually) holds, then y. lies in $X \setminus S$ frequently holds $\Rightarrow X \setminus S \in A_0$, thus $S, X \setminus S \in A_0 \Rightarrow \emptyset = S \cap (X \setminus S) \in A_0$, which leads to a contradiction with x. lies in it frequently.

Note 3. Thus we have a corollary: if x. is a universal net in X, $S \subseteq X$, then \neg (x. lies in S eventually) $\Rightarrow x$. lies in $X \setminus S$ eventually.

3 Net and Compactness

Proposition 1. *Let X be a topology space, the following are equivalent:*

- 1. X is a compact space;
- 2. \forall family \mathcal{F} of closed subsets of X, \mathcal{F} has $FIP \Leftrightarrow \cap \mathcal{F} \neq \emptyset$;
- 3. \forall universal net in X converges;
- 4. \forall net in X has a convergent subnet.

Proof. We will prove this in order $1 \Rightarrow 3 \Rightarrow 4 \Rightarrow 2 \Rightarrow 1$.

 $1 \Rightarrow 3$: Suppose that $x_{\alpha}(\alpha \in D)$ is a universal net in X which does not converge to any $x \in X$, thus \exists open nbd. U_x of x in X s.t. \neg (x. lies in U_x eventually) $\Rightarrow x$. lies in $X \setminus U_x$ frequently. Since $X = \bigcup_{x \in X} U_x$ and X is compact, there \exists finite $X_0 \subseteq X$, s.t. $X = \bigcup_{x \in X_0} U_x \Rightarrow \emptyset = \bigcup_{x \in X_0} (X \setminus U_x)$ which leads to a contradiction with x. lines in $X \setminus U_x$ frequently.

 $3 \Rightarrow 4$: \forall net in *X* has a universal subnet and it is convergent by 3.

 $4 \Rightarrow 2$: Let \mathcal{F} be a family of closed subsets of X which has FIP, we can **expand** it as $\mathcal{F}' := \{ \bigcap_{i=1}^m F_i | m \in \mathbb{N}, F_i \in \mathcal{F}, i = 1, \cdots, m \}$. Note that there are 3 facts for \mathcal{F}' :

- 1. \mathcal{F}' also has FIP; since finite intersection of \mathcal{F}' is a finite intersection of \mathcal{F} ;
- 2. $\cap \mathcal{F}' = \cap \mathcal{F}$; since for any $c \in \cap \mathcal{F}' \Rightarrow c \in \text{every finite intersection of } \mathcal{F} \Rightarrow c \in \cap_{F \in \{F\}} F = F$ for $\forall F \in \mathcal{F} \Rightarrow c \in \cap \mathcal{F}$. On the contrary, for any $c \in \cap \mathcal{F} \Rightarrow c \in F$ for any $F \in \mathcal{F} \Rightarrow c \in \mathcal{F}'$.
- 3. \mathcal{F}' is closed under \cap .

It is direct to see that (\mathcal{F}', \geq') with $\geq' := \subseteq$ is a directed set. For any $C \in \mathcal{F}'$, (it is finite intersection of \mathcal{F} and hence $C \neq \emptyset$,) choose $x_C \in C$ and form a net $\mathcal{F}' \xrightarrow{x_C} X$ where $C \mapsto x_C$.

By 4, net x. has a convergent subnet, that is \exists a final map $D \xrightarrow{h} \mathcal{F}'$ for some directed set (D, \geq_D) , s.t. subnet $D \xrightarrow{y} X$ (where $\alpha \mapsto x_{h(\alpha)} = y_{\alpha}$) converges to some point $x \in X$.

Since h is finial, $\forall C \in \mathcal{F}'$, $\exists \alpha \in D, \forall \beta \in D, \beta \geq_D \alpha \Rightarrow h(\beta) \geq C \Leftrightarrow h(\beta) \subseteq C$ and thus

$$y_{\beta} = x_{h(\beta)} \in h(\beta) \subseteq C$$

thus y. lies in C eventually. For any $C \in \mathcal{F}'$, y. converges to $x \Rightarrow x \in C$ since C is closed, thus $x \in \bigcap_{C \in \mathcal{F}'} C = \bigcap \mathcal{F} \Rightarrow \mathcal{F} \neq \emptyset$.

 $2 \Rightarrow 1$: has been given in *Point Set Topology Lecture 6*.

Remark 4. 1 \Rightarrow 3: A common routine to utilize the compactness of X: find an open nbd. U_x for any $x \in X$, and then $X = \bigcup_{x \in X} U_x$.

 $4 \Rightarrow 2$: The key to form a net is to find some sets $\neq \emptyset$.

Lemma 1. Let $X_j (j \in J)$ be a family of topology spaces and $D \xrightarrow{x_i} \prod_{j \in J} X_j$ where $\alpha \mapsto x_\alpha = (x_{\alpha_j})_{j \in J}$ be a net. There are groups of corresponding projective nets $D \xrightarrow{x_j} X_j$ where $\alpha \mapsto x_{\alpha_j}$ for $j \in J$.

Then x. converges to x in $\prod_{j \in J} X_j$ (equipped with the product topology) $\Leftrightarrow \forall j \in J, x_{.j}$ converges x_j in X_j where $x_j = \pi_j(x)$.

Proof. \Rightarrow : Since $\prod_{j \in J} X_j \xrightarrow{\pi_k} X_k$ where $(x_j)_{j \in J} \mapsto x_k$ is continuous and $x_{\cdot k} = \pi_k(x_{\cdot})$, then $x_{\cdot k} \mapsto x_{\cdot k} = \pi_k(x_{\cdot k}) \mapsto \pi_k(x_{\cdot k}) \mapsto \pi_k(x_{\cdot k}) \mapsto \pi_k(x_{\cdot k})$.

 \Leftarrow : Recall that $\mathcal{B} := \{\prod_{j \in J} Y_j | Y_j \subseteq_{open} X_j (j \in J) \land \{j \in J | Y_j \neq X_j\} \text{ is finite} \}$ is a basis of the product space $\prod_{j \in J} X_j$. For any open nbd. U of x, there exists $\prod_{j \in J} Y_j \in \mathcal{B}$ s.t.

$$x \in \prod_{j \in J} Y_j \subseteq U$$

Let $J_0 = \{j \in J | Y_j \subsetneq X_j\}$, which is a finite set. $x_{\cdot j}$ converges to $x_j \in X_j \Rightarrow x_{\cdot j}$ lies in Y_j eventually i.e. $\exists \alpha_j \in D$, s.t. $\forall \alpha \in D, \alpha \geq \alpha_j \Rightarrow x_{\alpha_j} \in Y_j$ for all $j \in J_0$.

Choose $\tilde{\alpha} \in D$, s.t. $\tilde{\alpha} \ge \alpha_j$ for all $j \in J_0$, then for $D \ni \alpha \ge \tilde{\alpha}$, $x_{\alpha_j} \in Y_j$ for all $j \in J_0$ and hence for all $j \in J$.

Theorem 2 (Tychonoff Theorem). For compact space $X_j (j \in J)$ the product space $\prod_{j \in J} X_j =: X$ is also compact.

Proof. Let x. be a universal net in X, then $x_{.j} = \pi_j(x)$ is a universal net in X_j , for every $j \in J \Rightarrow x_{.j}$ converges in X_j since X_j is compact $\Rightarrow x$. converges by Lemma $\Rightarrow X$ is compact.