Автокорреляция

Эконометрика. Лекция 6

Автокорреляция

Автокорреляция — нарушение предпосылки

$$\mathit{Cov}(arepsilon_i, arepsilon_j | X) = \mathit{E}(arepsilon_i arepsilon_j | X) = 0$$
при $i \neq j$

Прежняя предпосылка

Для проверки гипотез мы предполагали условную некоррелированность ошибок:

$$\mathit{Cov}(arepsilon_i, arepsilon_j | X) = \mathit{E}(arepsilon_i arepsilon_j | X) = 0$$
при $i \neq j$

Что произойдет если эта предпосылка будет нарушена?

Когда логично ожидать автокорреляцию?

- "близость" наблюдений во времени или в пространстве
- наличие ненаблюдаемого фактора, действующего на "соседние" наблюдения

Автокорреляцию подробно изучают!

- анализ временных рядов
- пространственная эконометрика
- анализ панельных данных

Автокорреляция бывает небезобидной

ullet может привести к несостоятельности оценок \hat{eta}

Пример у доски

Известно, что все ошибки равны между собой, и равновероятно принимают значения +1 или -1, т.е.

$$\varepsilon_1 = \varepsilon_2 = \ldots = \varepsilon_n = \pm 1$$

Будут ли МНК оценки коэффициентов модели $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ состоятельны?

Отметим, что $E(\varepsilon_1\varepsilon_2|X)=1$

Автокорреляция может иметь очень сложную богатую структуру

Не пугайтесь, эти страшные слова означают лишь определенный тип структуры автокорреляции:

• AR, MA, ARMA, ARIMA, VAR, VMA, VARMA, VECM, ARCH, GARCH, EGARCH, FIGARCH, TARCH, AVARCH, ZARCH, CCC, DCC, BEKK, VEC, DLM, ...

Мы рассмотрим автокорреляцию порядка р

ullet Начнем с автокорреляции первого порядка, p=1

$$\varepsilon_t = \rho \varepsilon_{t-1} + u_t$$

Предпосылки

- $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$
- ullet u_t независимы между собой,
- \bullet u_t независимы от регрессоров
- *u_t* одинаково распределены
- $E(u_t) = 0$, $Var(u_t) = \sigma_u^2$

Упражнение [доска]

Как выглядит $\mathit{Corr}(\varepsilon_t, \varepsilon_{t-k})$ при автокорреляции первого порядка?

Автокорреляция порядка *p*:

$$\varepsilon_t = \phi_1 \varepsilon_{t-1} + \phi_2 \varepsilon_{t-2} + \ldots + \phi_p \varepsilon_{t-p} + u_t$$

Допускает более богатую структуру $\mathit{Corr}(\varepsilon_i, \varepsilon_j)$

Как и в случае автокорреляции первого порядка,

$$\lim_{k\to\infty} \mathit{Corr}(\varepsilon_t, \varepsilon_{t-k}) = 0$$

Условная автокорреляция и другие предпосылки

- автоматом нарушена предпосылка о незавимости наблюдений (x_i, y_i)
- ullet во временных рядах обычно нарушена предпосылка $E(arepsilon_t|X)=0$

Например, использование y_{t-1} в качестве регрессора нарушает $E(\varepsilon_t|X)=0$

Мы будем анализируем ситуацию, в которой все остальные предпосылки кроме некоррелированности ошибок выполнены.

Мы используем прежние формулы:

- Для оценок коэффициентов: $\hat{\beta} = (X'X)^{-1}X'y$
- Для оценки ковариационной матрицы оценок коэффициентов, $\widehat{Var}(\hat{\beta}|X) = \frac{RSS}{n-k}(X'X)^{-1}$
- В частности, $\widehat{Var}(\hat{\beta}_j|X) = \frac{\hat{\sigma}^2}{RSS_j}$ и $se(\hat{\beta}_j) = \sqrt{\widehat{Var}(\hat{\beta}_j|X)}$

Три группы свойств:

- \bullet конечная выборка без предположения о нормальности ε
- ullet конечная выборка с предположением о нормальности arepsilon
- \bullet асимптотические свойства без предположения о нормальности ε

Что происходит в каждом случае?

Конечная выборка без предположения о нормальности

- (+) Линейность по у
- (+) Несмещенность, $E(\hat{\beta}|X) = \beta$, $E(\hat{\beta}) = \beta$
- (—) Оценки неэффективны

Конечная выборка с предположением о нормальности

• (—)
$$\frac{\hat{\beta}_j - \beta_j}{se(\hat{\beta}_j)}|X \sim t_{n-k}$$

$$\bullet \ (-) \ \tfrac{RSS}{\sigma^2} | X \sim \chi^2_{n-k}$$

• (-)
$$\frac{(RSS_R - RSS_{UR})/r}{RSS_{UR}/(n-k)} \sim F_{r,n-k}$$

Асимптотические свойства:

•
$$(+)$$
 $\hat{\beta} \rightarrow \beta$

•
$$(+)$$
 $\frac{RSS}{n-k} \rightarrow \sigma^2$

$$ullet \ (-) \ rac{\hat{eta}_j - eta_j}{se(\hat{eta}_j)}
ightarrow extsf{N}(0,1)$$

• (-)
$$\frac{RSS_R - RSS_{UR}}{RSS_{UR}/(n-k)} \rightarrow \chi_r^2$$

Мораль:

- ullet Сами \hat{eta} можно интерпретировать и использовать
- ullet Стандартные ошибки $se(\hat{eta}_j)$ несостоятельны
- \bullet Не можем строить доверительные интервалы для β_j и проверять гипотезы о β_i

Что делать?

- Исправить стандартные ошибки!
- ullet Другая формула для оценки $\widehat{Var}_{HAC}(\hat{eta}|X)$
- Следовательно, другие $se_{HAC}(\hat{\beta}_j)$

Робастная (устойчивая) к условной гетероскедастичности и автокорреляции оценка ковариационной матрицы

• Вместо $\widehat{Var}(\hat{\beta}|X) = \frac{RSS}{n-k}(X'X)^{-1}$

использовать

$$\widehat{Var}_{HAC}(\hat{eta}|X) = (X'X)^{-1}\hat{\Phi}(X'X)^{-1}$$

• Нью-Вест (Newey-West), 1987 (Существует много вариантов)

$$\hat{\Phi} = \sum_{i=-k}^{k} \frac{k - |j|}{k} \left(\sum_{t} \hat{\varepsilon}_{t} \hat{\varepsilon}_{t+j} x'_{t} . x_{t+j} . \right)$$

Суть корректировки:

Мы меняем $se(\hat{\beta}_j)$ на $se_{HAC}(\hat{\beta}_j)$

Какие проблемы решены?

•
$$(+)$$
 $\frac{\hat{\beta}_j - \beta_j}{se_{HAC}(\hat{\beta}_j)} \rightarrow N(0,1)$ (YPA!)

Какие проблемы не решены?

ullet (—) оценки \hat{eta} не меняются и остаются неэффективными

Даже при предположении о нормальности ε :

• (—)
$$\frac{\hat{\beta}_j - \beta_j}{se(\hat{\beta}_j)}|X \sim t_{n-k}$$

• (-)
$$\frac{RSS}{\sigma^2}|X \sim \chi^2_{n-k}$$

• (-)
$$\frac{(RSS_R - RSS_{UR})/r}{RSS_{UR}/(n-k)} \sim F_{r,n-k}$$

С практической точки зрения:

- Новая формула для $\widehat{Var}_{HAC}(\hat{\beta}|X)$, и, следовательно, для $se_{HAC}(\hat{\beta}_j)$
- Робастная оценка ковариационной матрицы в R:

• С ней жизнь прекрасна!

$$rac{\hat{eta}_j - eta_j}{se_{HAC}(\hat{eta}_j)}
ightarrow N(0,1)$$

Когда следует использовать

 Когда мы подозреваем наличие автокорреляции и не хотим заниматься её моделированием

Обнаружение автокорреляции

- Оцениваем интересующую нас модель с помощью МНК
- Строим график остатков в осях $\hat{\varepsilon}_{t-1}, \, \hat{\varepsilon}_t$

Положительная автокорреляция

$$\varepsilon_t = 0.9\varepsilon_{t-1} + u_t$$

Отрицательная автокорреляция

$$\varepsilon_t = -0.9\varepsilon_{t-1} + u_t$$

Отсутствие автокорреляции

ε_t независимы

Формальные тесты на автокорреляцию

- тест Дарбина-Уотсона (Durbin-Watson)
- тест Бройша-Годфри (Breusch-Godfrey)

Тест Дарбина-Уотсона, предпосылки:

• Автокорреляция первого порядка в остатках

$$\varepsilon_t = \rho \varepsilon_{t-1} + u_t$$

- ullet нормальность ошибок arepsilon
- ullet сильная экзогенность, $E(arepsilon_t|X)=0$
- ullet H_0 об отсутствии автокорреляции, ho=0

Процедура теста Дарбина-Уотсона

- ullet Шаг 1. Оценить основную регрессию, получить $\hat{arepsilon}_i$
- Шаг 2. Посчитать статистику

$$DW = \frac{\sum_{i=2}^{n} (\hat{\varepsilon}_{i} - \hat{\varepsilon}_{i-1})^{2}}{\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}}$$

Распределение статистики *DW*

- H_0 об отсутствии автокорреляции, $\rho = 0$
- Точный закон распределения статистики DW сложным образом зависит от X
- ullet Если $\hat{
 ho}$ выборочная корреляция остатков, то $DW=2(1-\hat{
 ho})$

Качественные выводы по статистике *DW*

$$DW = 2(1 - \hat{\rho})$$
, поэтому $0 < DW < 4$

- DW pprox 0 означает положительную автокорреляцию $\hat{
 ho} pprox 1$
- $DW \approx 2$ означает отсутствие автокорреляции $\hat{
 ho} \approx 0$
- DW pprox 4 означает отрицательную автокорреляцию $\hat{
 ho} pprox -1$

С практической точки зрения:

- R рассчитывает точные P-значения для теста *DW*
- Если Р-значение меньше уровня значимости α , то гипотеза H_0 об отсутствии автокорреляции отвергается
- Для любителей истории существуют статистические таблицы диапазонов критических значений

Тест Бройша-Годфри, предпосылки

ullet для тестирования автокорреляции порядка $m{p}$ в ошибках

$$\varepsilon_t = \phi_1 \varepsilon_{t-1} + \ldots + \phi_p \varepsilon_{t-p} + u_t$$

- не требуется нормальность остатков
- ullet верен при ряде нарушений предпосылки $E(arepsilon_t|X)=0$
- асимптотический

$$H_0$$
: $\phi_1 = \phi_2 = \ldots = \phi_p = 0$

Процедура теста Бройша-Годфри

- \bullet Шаг 1. Оцениваем исходную модель, получаем остатки $\hat{\varepsilon}_t$
- Шаг 2. Строим вспомогательную регрессию $\hat{\varepsilon}_t$ на исходные регрессоры, $\hat{\varepsilon}_{t-1}$, $\hat{\varepsilon}_{t-2}$, ..., $\hat{\varepsilon}_{t-p}$, находим R_{aux}^2
- Шаг 3. Считаем статистику $BG = (n-p)R_{aux}^2$

Распределение статистики *BG*

ullet При верной H_0 об отсутствии автокорреляции

$$H_0: \phi_1 = \phi_2 = \dots = \phi_p = 0$$

 $BG = (n - p)R_{aux}^2 \sim \chi_p^2$

• Если статистика BG больше критического значения χ^2_{cr} , то H_0 об отсутствии автокорреляции отвергается.

Тест Бройша-Годфри требует меньше предпосылок

Хотя тест Дарбина-Уотсона распространен, следует предпочитать тест Бройша-Годфри.

Пример теста Дарбина-Уотсона и Бройша-Годфри [доска]

Мораль

- Мы рассмотрели ситуацию нарушения предпосылки условной некоррелированности ошибок модели
- Нарушена во временных рядах и пространственных данных
- В простейшем случае для проверки гипотез достаточно использовать специальные стандартные ошибки *se_{HAC}*
- Если заниматься исследованием структуры автокорреляции серьезно, то это отдельные дисциплины