

AUTHOR INDEX

Bailey, E. H., Hydrogen-ion concentration of United States soils: III, 241-262; IV, 321-332

Baudisch, O., Biological function of minor elements, 173-184

Beater, B. E., Preliming as a means of improving phosphorus absorption by plants, 337-352

Beeson, K. C., Mineral nutritional diseases of plants and animals in the United States, 9-13

Benne, E. J., *See* Harmer, P. M.

Bennett, J. P., Iron in leaves, 91-105

Bray, R. H., Nitrate tests for soils and plant tissues, 219-221; soil plant relations, II, 463-473

Camp, A. F., Zinc as a nutrient in plant growth, 157-164

Carroll, D., Mineralogy of soils from Denmark, Western Australia, 413-426

Chepil, W. S., Dynamics of wind erosion: I, 305-320; II, 397-411; III, 475-480

Cooper, H. P., Factors affecting availability, absorption, and utilization of magnesium by plants, 107-114

Crocker, W., Sulfur deficiency in soils, 140-155

Davis, F. L., Retention of phosphates by soils: III, 481-489

Edginton, G., *See* Robinson, W. O.

Edman, M., *See* Mitchell, H. H.

Fippin, E. O., Plant nutrient losses in Tennessee River system, 223-239

Gardner, R., Effects of freezing and thawing on aggregation and permeability of dispersed soils, 437-443

Gaw, H. Z., Life cycle of vetch nodule bacteria, 191-195

Goldschmidt, V. M., Geochemical background of minor-element distribution, 1-7

Gysel, L. W., The forest humus layers of Ohio, 197-217

Haas, A. R. C., Influence of chlorine on plants, 53-61; influence of rootstock on composition of citrus leaves and rootlets, 445-461

Hanner, K. C., Minor elements and vitamin content of plants, 165-171

Harmer, P. M., and Benne, E. J., Sodium as a crop nutrient, 137-148

Hatch, M. B., *See* Jones, J. S.

Hoagland, D. R., Molybdenum in relation to plant growth, 119-123

Hutchinson, G. E., Aluminum in soils, plants, and animals, 29-40

Jenny, H., *See* Parker, E. R.

Jones, J. S., and Hatch, M. B., Spray residues and crop assimilation of arsenic and lead, 277-288

McHargue, J. S., Role of manganese in agriculture, 115-118

Meadows, D. T., *See* Volk, N. J.

Mehlich, A., Soil colloids and exchange properties, 289-304

Mitchell, H. H., and Edman, M., Fluorine in soils, plants, and animals, 81-90

Mitchell, R. L., Cobalt and nickel in soils and plants, 63-70

Parker, E. R., and Jenny, H., Water infiltration and related soil properties as affected by cultivation and organic fertilization, 353-376

Raleigh, G. J., Silicon in plant growth, 133-135

Robinson, W. O., and Edginton, G., Minor elements in plants, 15-28

Rynasiewicz, J., Soil aggregation and onion yields, 387-395

Shive, J. W., Boron in plant life, 41-51

Sommer, A. L., Copper and plant growth, 71-79

Steinberg, R. A., Use of microorganisms to determine essentiality of minor elements, 185-189

Tidmore, J. W., *See* Volk, N. J.

Trelease, S. F., Selenium in soils, plants, and animals, 125-131

Vladimirov, A. V., Influence of nitrogen sources in formation of organic compounds in plants, 265-275; effect of potassium and magnesium sulfates and chlorides on formation of organic compounds in plants, 377-385

Volk, N. J., Tidmore, J. W., and Meadows, D. T., Supplements to high-analysis fertilizers, 427-435

Abs

Aggr

eff

eff

in

Allu

Alum

in

in

Arse

cre

in

Asco

Aspe

dic

us

Bari

Base

'

Bool

Borc

in

in

C

C

i

R

Annal

Asper

Atomic

Bates

Benne

Bioche

Brand

Cataly

Chem

Chem

Chem

Dake

DeMe

Econo

SUBJECT INDEX

Absorption of phosphorus by plants, *see* Phosphorus
 Aggregation—
 effect of crops and crop rotations on, 389-390
 effect of freezing and thawing, *see* Freezing and thawing
 effect of organic matter on, 390-391
 in relation to onion yields, 387-395
 Alluvial soils, H-ion concentration, 326-329
 Aluminum—
 in plants, 16-19, 29-40
 in soils and animals, 29-40
 Arsenic—
 crop assimilation of, *see* Spray residues in plants, 19
 Ascorbic acid in relation to minor elements in soil, 166-168
Aspergillus niger—
 dietary requirements, 185-187
 use in determining essentiality of minor elements, *see* Minor elements
 Barium in plants, 19
 Bases, content in silt and drainage water of Tennessee River, *see* Minor elements
 Books, *see* end of letter B
 Boron—
 in plants, 20
 in plant life—
 as a toxic and stimulating agent, 43-44
 deficiency effects, 46-47
 distribution in plants and soils, 41-43
 indispensability, 44-46
 relation to other elements in nutrition, 47-50

BOOKS

Annals of the Agricultural College of Sweden, Vol. 12, 333.
Aspergilli, Manual of the, 333
 Atomic Power, Uranium and, 492
 Bates, R. S. *Scientific Societies in the United States*, 334
 Bennett, H. (Editor). *Chemical Formulary*, Vol. 7, 263
 Biochemistry, Annual Review of, 333
 Brand, C. J. *What Economic System for America*, 492
 Catalytic Chemistry, 491
 Chemical Formulary, 263
 Chemistry, Catalytic, 491
 Chemistry, Introduction to College, 264
 Dake, H. C. *See De Ment, J.*
 DeMent, J., and Dake, H. C. *Uranium and Atomic Power*, 492
 Economic System for America, *What?*, 492

Farmer's Last Frontier, 263
 Fernelius, W. C. *See McPherson, W.*
 Fogg, J. M. Jr., *Weeds of Lawns and Garden*, 264
 Food or Famine, 491
 Fungi, *Manual of the Aspergilli*, 333
 Harrah, E. C. *See Jean, F. C.*
 Henderson, W. E. *See McPherson, W.*
 Herman, F. L. *See Jean, F. C.*
 Jean, F. C., Harrah, E. C., and Herman, F. L. *Man and His Physical Universe*, 264
 Land Conservation, Food or Famine, 491
 Lantbruks-Høgskolens Annaler, Vol. 12, 333
 Lohse, H. W. *Catalytic Chemistry*, 491
 Luck, J. M., and Smith, J. H. C. (Editors). *Annual Review of Biochemistry*, Vol. 14, 333
 McPherson, W., Henderson, W. E., Fernelius, W. C., and Quill, L. L. *Introduction to College Chemistry*, 263
Man and His Physical Universe, 264
 Measurement of Colour, 334
 Michigan Muck Farmers' Association, *Proceedings of the Twenty-Fifth Annual Convention of the*, 334
 Pay Dirt, 491
 Physics, *Measurement of Colour*, 334
 Quill, L. L. *See McPherson, W.*
 Raper, K. B. *See Thom, C.*
 Rodale, J. I. *Pay Dirt*, 491
 Scientific Societies in the United States, 334
 Shannon, F. A. *Farmer's Last Frontier*, 263
 Sheppard, W. *Food or Famine*, 491
 Smith, J. H. C. *See Luck, J. M.*
 Soil Fertility, Pay Dirt, 491
 Soil Science Society of Florida Proceedings, Vol. 5-A, 264
 Thom, C., and Raper, K. B. *Manual of the Aspergilli*, 333
 Uranium and Atomic Power, 492
 Vegetable Production and Marketing, 334
 Weeds of Lawn and Garden, 264
 Work, P. *Vegetable Production and Marketing*, 334
 Wright, W. D. *Measurement of Colour*, 334

Calcimorphic-rendzina soils, H-ion concentration, 255-258
 Calcium—
 in citrus leaves, 448-451
 supplement to high-analysis fertilizers, *see* Fertilizers
 Carotene in relation to minor elements, 168-169
 Cation-exchange capacity, effect of phosphates on, *see* Phosphates
 Chlorine, influence on plant—
 as a fertilizer, 54-55
 content in plants, 54
 morphological and physiological effects, 56-58
 requirements of plants, 53
 tolerance, 55
 toxicity, 55-56

Cobalt—
in plants, 20, 63-70
in soils, 63-70, 415-416

Colloids, effect on exchange properties as measured by different methods, 289-304

Copper—
deficiency in soils, 73-74
deficiency symptoms, 72-73
effect on culture media, 74-75
functions within plant, 75-77
in plant growth, 71-79
in plants, 20
in soils from Australia, 415-416
solution culture work, 71

Erosion—*see also* Wind erosion
initiation of soil movement, 397-411
nature of movement of soil by wind, 305-320
transport capacity of wind, 475-480

Exchange complex of forest humus layers, 213-215

Fertilizers—
high-analysis, supplements to, 427-435
use as a result of soil tests, *see* Soil-plant relations

Fluorine—
dispensability in animal nutrition, 84
in plant foods, 83
in plant nutrition, 82-83
in plants, 20-21, 81-90
in soils and animals, 81-90
metabolism in animal body, 84-86
toxicity in animals, 86-87

Forest humus layers in Ohio, 197-217

Freezing and thawing, effect on aggregation and permeability, 437-443

Half-bog soils, H-ion concentration, 247-248

Humus, forest layers in Ohio, *see* Forest humus

Hydrogen-ion concentration of United States soils in relation to profile characteristics, 241-262; 321-332

Iodine in plants, 21

Iron in leaves, 91-105

Lead, crop assimilation of, *see* Spray residues

Lime—
effect on soil reaction, 343-345
value of preliming in absorption of phosphorus by plants, *see* Phosphorus

Lithosols, H-ion concentration, 322-324

Magnesium—
factors affecting availability, absorption, and utilization by plants, 107-118

Magnesium—(continued)
in citrus leaves, 448-453
salts, effect on formation of organic compounds in plants, *see* Organic compounds in plants
supplement to high-analysis fertilizers, *see* Fertilizers

Manganese—
in chlorotic leaves, 94
in plants, 21
role in agriculture, 115-118

Methods—
arsenic in soils and plant material, 281
cation exchange, 290-292
collecting silt samples from Tennessee River, 225-226
lead in soils and plant material, 281
nitrate tests for soils and plant tissues, 219-221

Microorganisms, use in determining essentiality of minor elements, *see* Minor elements

Mineralogy of soils from Denmark, Australia, 413-426

Minor elements—
biological functions, 173-184
distribution and geochemical background, 1-7
essentiality, by use of microorganisms, 185-189
in plants, 15-28
in relation to vitamin content of plants, 165-171
supplement to high-analysis fertilizers, *see* Fertilizers

Moisture equivalent of forest humus layers, 213-214

Molybdenum—
deficiency, 121-122
functions in microorganisms, 188-189
in plants, 21
in relation to plant growth, 119-123
toxicity, 123

Nickel in soils and plants, 63-70

Nitrates, tests for soils and plant tissues, *see* Methods

Nitrogen—
in citrus leaves, 454-456
in relation to chlorophyll deficiency, 101-103
influence on formation of organic compounds in plants, *see* Organic compounds in plants

Nodule bacteria, *see* Vetch nodule bacteria

Nutritional diseases (mineral)—
 occurrence in plants and animals in the
 United States, 9-13
 relative importance, 13

Nutrient losses in silt and water in Tennessee River system, 223-239

Organic compounds in plants—
 formation as affected by potassium and magnesium sulfates and chlorides, 377-385
 influence of nitrogen sources on, 265-275

Organic matter—
 content of forest humus layers, 212-213
 effect on soil aggregation, *see* Aggregation

Permeability, effect of freezing and thawing,
 see Freezing and thawing

Phosphates—
 effect on cation-exchange capacity, 485-486
 retention by soils treated with $\text{Ca}(\text{OH})_2$ and H_3PO_4 , 481-489

Phosphorus—
 absorption by plants, 337-352
 in chlorotic leaves, 91-92
 in citrus leaves, 456-457

Planosols, H-ion concentration, 250-255

Podzols (ground-water), H-ion concentration, 248-249

Potassium—
 in chlorotic leaves, 92-94
 in citrus leaves, 448-451
 salts, effect on formation of organic compounds in plants, *see* Organic compounds in plants

Rare earths in plants, 21-24

Rootstock, influence on composition of citrus leaves and rootlets, 445-461

Selenium—
 in plants, 24-25, 125-131
 accumulating power, 127-128
 form and distribution, 129
 in soils and animals—
 poisoning of animals, 129-130
 supplying power, 126

Silicon—
 in plant growth, 133-135
 in plants, 25-26

Sodium as a crop nutrient, 137-148

Soil series, analyses, descriptions of, or experiments with—
 Beadle, 244; Bentonville, 208; Billings, 329; Bladen, 248; Bowdoin, 328; Bridgehampton, 387, 393; Brookston, 205, 247; Caneadea, 256; Cherokee, 254; Clermont, 204; Clyde, 246; Coxville, 247; Crete, 251; Crosby, 256; Cypress, 410; DeKalb, 322; Dickson, 257; Foard, 252; Fox Valley, 410; Grundy, 253; Hammond, 482; Harlem, 328; Hatton, 310, 314, 410, 477; Haverhill, 311, 314, 410; Havre, 328; Holtville, 329; Houston, 258; Huntington, 326; Hyde, 108; Kiating, 192; Koorrabup, 415; Koorundurup, 415; Kordabup, 415; Kwilalup, 415; Lahontan, 243; Lamoure, 328; Land, 242; Lebanon, 257; Lehew, 322; Lehigh, 323; Leon, 249; Lightning, 328; Lordstown, 211; Muskingum, 323; Osage, 328; Panther, 327; Parsons, 254; Phillips, 244; Plainfield, 210; Plantagenet, 415; Pond, 242; Portsmouth, 247; Putnam, 253; Regina, 410; Romona, 375; St. Johns, 249; Saugatuck, 249; Sceptre, 310, 314, 410, 477; Scottsdale, 415; Sharkey, 327; Stendal, 326; Sumter, 322; Tubac, 245; Underwood, 324; Verdigris, 327; Wakundup, 415; Wauseon, 207; Webster, 246

Soil-plant relations, balanced fertilizer use, 463-473

Soil reaction, effect of liming on, 343-345

Solonchaks, H-ion concentration, 241-243

Solonetz soils, H-ion concentration, 244-245

Spray residues, crop assimilation of arsenic and lead, 277-288

Sulfur—
 amount brought down by rain, 427-429
 balance sheets for soils, 151-152
 deficiency in soils, 149-155
 efficiency for growing cotton, 429-432
 in citrus leaves, 457
 plants, the sulfur source for animals, 149-150

Tennessee River system, nutrient losses in silt and water, *see* Nutrient losses

Vanadium in plants, 26

Vetch nodule bacteria, life cycle, 191-195

Water infiltration, as affected by cultivation and fertilization, 353-376

Wiesenböden soils, H-ion concentration, 246

Wind erosion, dynamics, 305-320, 397-411, 475-480

Zinc, in plants, 26, 157-164