Michelson Interferometer to Measure Coefficient of Thermal Expansion

Hersh Samdani (EP22B027)

Aim:

To measure the thermal expansion co-efficient of a material using Michelson Interferometer

Apparatus:

- Laser source
- Mirrors
- Beam splitter
- Breadboard
- Copper rod

Figure 1: Setup of the experiment

Theory:

On heating, metal expands as:

$$\alpha = \frac{\Delta L}{L_0 \Delta T}$$

where:

- \bullet α is the linear coefficient of thermal expansion
- L_0 is the initial length of the rod
- ΔL is the change in length of the rod on heating
- ΔT is the change in temperature

The change in length is related to the number of fringes shifted (given by n)

as:

$$\Delta L = \frac{n\lambda}{2}$$

Therefore, we get:

$$\alpha = \frac{n\lambda}{2L_0\Delta T}$$

 $\lambda=650~\mathrm{nm}$ and the initial length of the rod is $L_0=75~\mathrm{mm}$

Observations:

Table 1: Temperature Data for Aluminium

Temperature Range (°C)	ΔT	\overline{n}
35-40	5	18
40-45	10	36
45-50	15	54
50-55	20	74
55-60	25	92
60-65	30	113

Figure 2: Temperature vs n for Aluminium

Table 2: Temperature Data for Copper

ΔT	n
5	11
10	25
15	38
20	52
25	66
	5 10 15 20

Figure 3: Temperature vs n for Copper

Calculations:

The slopes were determined from the temperature vs. \boldsymbol{n} data:

Slope for Aluminium:

$$\frac{n}{\Delta T} = 3.8461$$

Slope for Copper:

$$\frac{n}{\Delta T} = 2.7777$$

Therefore:

$$\alpha_{Al} = 1.22 \times 10^{-6} \, \mathrm{K}^{-1}$$
 and $\alpha_{Cu} = 0.65 \times 10^{-6} \, \mathrm{K}^{-1}$

Error Analysis:

The uncertainty in α was determined using:

$$\frac{\Delta \alpha}{\alpha} = \frac{\Delta n}{n} + \frac{\Delta \lambda}{\lambda} + \frac{\Delta L_0}{L_0} + \frac{\Delta T}{T_0}$$

The relative uncertainty was found to be:

$$\frac{\Delta \alpha}{\alpha} = 0.32\%$$

Results:

The experimentally determined coefficients of linear thermal expansion were:

• Aluminium: $1.22 \times 10^{-6} \,\mathrm{K}^{-1} \pm 0.32\%$

• Copper: $0.65 \times 10^{-6} \,\mathrm{K}^{-1} \pm 0.32\%$

Discussion and Sources of Error:

- At extreme temperatures, materials exhibit non-linear expansion behavior due to phase transitions or changes in bonding forces at the atomic level.
 By extending the temperature range and incorporating high-resolution temperature sensors, this experiment could explore these effects in greater detail.
- Incorporating image-processing techniques to automatically track fringe shifts can reduce human error and enhance measurement precision.
- Improperly aligned optical components which can cause incorrect fringe counting.
- Human error in counting the fringes shifted on screen gives an error in n.

- Imperfections in the beam splitter and mirrors may lead to distortion in interference patterns.
- Imperfections in the beam splitter and mirrors may lead to distortion in interference patterns.
- Fringes are at times hard to see because of ambient light as well.