Лекция 5. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

- 1. Задачи, приводящие к понятию определенного интеграла.
- 2. Определение определенного интеграла Римана.
- 3. Необходимое условие интегрируемости функций.
- 4. Критерий интегрируемости Дарбу.

1. Задачи, приводящие к понятию определенного интеграла.

Задача о площади криволинейной трапеции. Пусть функция y=f(x) непрерывна на отрезке [a;b] и $f(x) \ge 0$. Фигура, ограниченная графиком AB функции y=f(x), прямыми x=a, x=b и осью Ox, называется криволинейной трапецией.

Определение 1. *Разбиением* τ_n отрезка [a;b] на n частичных отрезков, называется множество точек $x_0, x_1, ..., x_n$ таких, что

$$a = x_0 < x_1 \dots < x_{n-1} < x_n = b$$
.

Пусть $\Delta x_k = x_k - x_{k-1}$ — длина частичного отрезка $\left[x_{k-1}; x_k \right],$ $k = \overline{1,n}$. На каждом таком отрезке произвольным образом выберем точку ξ_k .

Рис.1.

Тогда значение функции y=f(x) в точке ξ_k равно $f(\xi_k)$. Построим прямоугольники, высотой которых являются $f(\xi_k)$, основанием служат отрезки $\left[x_{k-1};x_k\right]$, $k=\overline{1,n}$. Площадь каждого

прямоугольника равна $f(\xi_k)\Delta x_k$. Сумма

$$\sigma_n = \sum_{k=1}^n f(\xi_k) \Delta x_k$$

представляет собой площадь заштрихованной ступенчатой фигуры, изображенной на рисунке 1.

Эта площадь зависит от разбиения τ_n отрезка [a;b] на частичные отрезки и выбора точек ξ_k . Чем меньше Δx_k , $k=\overline{1,n}$, тем площадь ступенчатой фигуры ближе к площади криволинейной трапеции. Следовательно, за точную площадь S криволинейной трапеции принимается предел суммы σ_n при $\lambda \to 0$:

$$S = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_k) \Delta x_k ,$$

где $\lambda = \max_{1 \le i \le n} \Delta x_i$.

Задача о пройденном пути при неравномерном движет прямолинейно вдоль числовой оси с непрерывно меняющейся скоростью v(t), $t_0 \le t \le T$. Смещение точки за малый промежуток времени $\Delta t_k = t_k - t_{k-1}$ приближенно можно считать равным $v(\xi_k)\Delta t_k$, где $\xi_k \in [t_{k-1};t_k]$. Тогда приближенное значение пути, пройденного точкой от момента времени t_0 до T есть сумма $\sum_{k=1}^n v(\xi_k)\Delta t_k$. В пределе при $\lambda = \max_{1\le k\le n} \Delta t_k \to 0$ получим точное значение этого пути S:

$$S = \lim_{\lambda \to 0} \sum_{k=1}^{n} \nu(\xi_k) \Delta t_k .$$

2. Определение определенного интеграла Римана.

Пусть функция y = f(x) определена и ограничена на отрезке $[a;b],\ a < b$. И пусть τ_n — разбиение отрезка [a;b] на n частичных отрезков $[x_{k-1};x_k],\ k=\overline{1,n}$, точками $x_0,x_1,...,x_n$.:

$$a = x_0 < x_1 \dots < x_{n-1} < x_n = b$$
.

Тогда $\Delta x_k = x_k - x_{k-1}$ — длина частичного отрезка $\left[x_{k-1}; x_k \right]$, $k = \overline{1,n}$. На каждом таком отрезке произвольным образом выберем точку ξ_k и составим сумму

$$\sigma_n(\tau_n; \xi_k) = f(\xi_1) \Delta x_1 + f(\xi_2) \Delta x_2 + \dots + f(\xi_n) \Delta x_n = \sum_{k=1}^n f(\xi_k) \Delta x_k.$$

Определение 2. Сумма

$$\sigma_n(\tau_n; \xi_k) = \sum_{k=1}^n f(\xi_k) \Delta x_k \tag{1}$$

называется *интегральной суммой Римана* для функции f(x) на отрезке [a;b] соответствующей данному разбиению τ_n отрезка [a;b] и выбору промежуточных точек ξ_k , $k=\overline{1,n}$.

Пусть λ — длина наибольшего частичного отрезка разбиения τ_n , $\lambda = \max_{1 \le k \le n} \Delta x_k$, называемая *диаметром разбиения*.

Определение 3. Функция f(x) называется интегрируемой на отрезке [a;b] (или интегрируемой по Риману), если существует такое число I, что для любой последовательности разбиений τ_n отрезка [a;b] на частичные отрезки $[x_{k-1};x_k]$, $k=\overline{1,n}$, диаметр которых стремится к нулю при $n\to\infty$ и при любом выборе точек $\xi_k\in[x_{k-1};x_k]$, $k=\overline{1,n}$, существует предел интегральных сумм (1) и он равен I:

$$\lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_k) \Delta x_k = I \tag{2}$$

Число I называется **определенным интегралом** (или **интегралом Римана**) от функции f(x) на отрезке [a;b].

Обозначается:
$$\int_a^b f(x)dx$$
, т.е. $I = \int_a^b f(x)dx$.

При этом f(x)dx называется подынтегральным выражением, f(x) – подынтегральной функцией, x – переменной интегрирования, a и b – соответственно нижним и верхним пределами интегрирования.

Класс всех функций f(x), интегрируемых по Риману на отрезке [a;b], обозначается $R_{[a:b]}$.

Определение интеграла Римана на языке $\, \varepsilon \, { extstyle -} \, \delta \,$ формулируется следующим образом.

Определение 4. Число I называется *определенным интегралом* (или *интегралом Римана*) от функции f(x) на отрезке [a;b], если для любого $\varepsilon>0$ существует такое $\delta>0$, что каково бы ни было разбиение τ_n отрезка [a;b] на частичные отрезки $[x_{k-1};x_k]$, $k=\overline{1,n}$, диаметр которого $\lambda<\delta$, и каковы бы ни были точки ξ_k , $k=\overline{1,n}$, выполняется неравенство

$$|\sigma_n(\tau_n;\xi_k)-I|<\varepsilon$$
.

Замечание. Интегральная сумма не зависит от того, какой буквой обозначен аргумент данной функции. Следовательно, и ее предел, т.е. определенный интеграл, не зависит от обозначения переменной интегрирования:

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt = \int_{a}^{b} f(y)dy.$$

Обозначение определенного интеграла $\int_a^b f(x)dx$ похоже на обозначение неопределенного интеграла от той же функции $\int f(x)dx$. Как будет показано позднее, вычисление определенного интеграла сводится к вычислению неопределенного интеграла от той же подынтегральной функции. Однако между определенным и неопределенным интегралами имеется существенное различие: определенный интеграл от функции f(x) на отрезке [a;b] есть некоторое число, в то время как неопределенный интеграл представляет собой множество всех первообразных функций F(x)+C данной функции f(x) на отрезке [a;b].

3. Необходимое условие интегрируемости функций.

Теорема 1 (необходимое условие интегрируемости). Если $\int_a^b f(x) dx$ существует, то функция f(x) ограничена на [a;b].

▶ Действительно, если функция f(x) неограничена на [a;b], то для любого разбиения τ_n отрезка [a;b] на частичные отрезки $[x_0;x_1], [x_1;x_2], ..., [x_{n-1};x_n]$ найдется хотя бы один частичный отрезок $[x_{k-1};x_k]$, на котором функция f(x) неограниченна. В силу неограниченности функции f(x) на отрезке $[x_{k-1};x_k]$ можно выбрать на нем точку ξ_k так, чтобы абсолютная величина произведения $f(\xi_k)\Delta x_k$ была больше наперед заданного числа. Таким образом, при любом разбиении τ_n отрезка [a;b] на частичные отрезки интегральная сумма

$$\sigma_n(\tau_n; \xi_k) = \sum_{k=1}^n f(\xi_k) \Delta x_k$$

будет бесконечно большой по абсолютной величине. Следовательно, не существует конечного предела интегральной суммы при стремлении диаметра разбиения λ к нулю, что противоречит условию теоремы. \blacktriangleleft

4. Критерий интегрируемости Дарбу.

Пусть функция y = f(x) определена на отрезке [a;b], a < b. Для произвольного разбиения τ_n отрезка [a;b] обозначим

$$m_k = \inf_{[x_{k-1};x_k]} f(x),$$

$$M_k = \sup_{[x_{k-1};x_k]} f(x).$$

Определение 5. *Нижней суммой Дарбу*, соответствующей разбиению τ_n , называется сумма

$$S_n = \sum_{k=1}^n m_k \Delta x_k .$$

Верхней суммой Дарбу, соответствующей разбиению τ_n , на-

зывается сумма

$$S_n = \sum_{k=1}^n M_k \Delta x_k \ .$$

В случае, когда функция f(x) ограничена, то нижние m_k и верхние M_k грани конечны. Поэтому суммы Дарбу s_n и S_n при любом разбиении τ_n принимают конечные значения. Далее будем рассматривать ограниченные функции f(x).

Свойства интегральных сумм Дарбу

- 1. Для фиксированного разбиения τ_n имеет место неравенство $s_n \leq S_n$.
- 2. Для фиксированного разбиения τ_n и любого выбора промежуточных точек ξ_i на этом разбиении имеет место неравенство $s_n \leq \sigma_n \leq S_n$.
- **3.** Нижняя (верхняя) сумма Дарбу является нижней (верхней) гранью интегральных сумм Римана, соответствующих данному разбиению:

$$S_n = \inf_{\xi_1, \xi_2; \dots; \xi_n} \sigma_n(f; \xi_k),$$

$$S_n = \sup_{\xi_1; \xi_2; \dots; \xi_n} \sigma_n(f; \xi_k).$$

4. Имеет место неравенство

$$S_n - S_n = \sum_{k=1}^n \omega_k(f) \Delta x_k ,$$

где $\omega_k(f)$ – колебание функции f(x) на отрезке $\left[x_{k-1};x_k\right]$ разбиения τ_n , $k=\overline{1,n}$.

Нижние и верхние интегралы Дарбу. Пусть функция y = f(x) определена и ограничена на отрезке [a;b], a < b. И пусть τ_n — произвольное разбиение отрезка [a;b].

Определение 6. *Нижним интегралом* функции f(x) называется верхняя I_* грань возможных ее нижних сумм Дарбу s_n : $I_* = \sup s_n$.

Верхним интегралом функции f(x) называется верхняя I^*

грань возможных ее верхних сумм Дарбу S_n :

$$I^* = \inf S_n$$
.

Очевидно, что $I_* \leq I^*$.

Теорема 2 (Критерий Дарбу). Для того, чтобы функция y = f(x), ограниченная на некотором отрезке [a;b], была интегрируема по Риману на нем, необходимо и достаточно, чтобы суммы Дарбу удовлетворяли условию

$$\lim_{\lambda \to 0} (S_n - S_n) = 0.$$

► Heoбxoдимость. Пусть ограниченная на [a;b] функция

f(x) интегрируема на этом отрезке и $I=\int\limits_a^b f(x)dx$. Тогда

 $I = \lim_{\lambda \to 0} \sum_{k=1}^n f(\xi_k) \Delta x_k$. По определению предела следует, что для

любого $\varepsilon > 0$ существует такое $\delta > 0$, что каково бы ни было разбиение τ_n отрезка [a;b] на частичные отрезки $[x_{k-1};x_k]$, $k=\overline{1,n}$, диаметр которого $\lambda < \delta$, и каковы бы ни были точки ξ_k , $k=\overline{1,n}$, для интегральной суммы выполняется неравенство

$$|\sigma_n(\tau_n;\xi_k)-I|<\varepsilon$$
.

Отсюда $I - \varepsilon < \sigma_n < I + \varepsilon$.

Переходя в неравенствах к нижней и верхней граням относительно точек ξ_k , $k = \overline{1,n}$, в силу свойств сумм Дарбу получим

$$I - \varepsilon < S_n \le S_n < I + \varepsilon$$
.

Отсюда при $\lambda < \delta$ имеем $|s_n - I| < \varepsilon$ и $|S_n - I| < \varepsilon$. Тогда

$$|S_n - S_n| = |S_n - I + I - S_n| \le |S_n - I| + |I - S_n| < 2\varepsilon$$
.

Это означает, что

$$\lim_{\lambda \to 0} (S_n - s_n) = 0.$$

Достаточность. Пусть функция f(x) ограничена на отрезке [a;b] и для ее сумм Дарбу выполняется условие $\lim_{\lambda \to 0} (S_n - s_n) = 0$.

Из определения нижнего I_* и верхнего интегралов I^* имеем $s_n \leq I_* \leq I^* \leq S_n \, .$

Поэтому $0 \le I^* - I_* \le S_n - s_n$. Отсюда при $\lambda \to 0$ получим $I^* - I_* = 0$.

Обозначим $I^* = I_* = I$. Тогда $s_n \le I \le S_n$, а поэтому $0 \le I - s_n \le S_n - s_n$ и $0 \le S_n - I \le S_n - s_n$.

Переходя к пределу при $\lambda \to 0$, получим $\lim_{\lambda \to 0} S_n = I$ и $\lim_{\lambda \to 0} s_n = I$. Поскольку для любого разбиения τ_n отрезка [a;b] на частичные отрезки $[x_{k-1};x_k]$, и выбора точек ξ_k , $k=\overline{1,n}$, выполняется неравенство $s_n \le \sigma_n \le S_n$.

Следовательно, $\lim_{\lambda \to 0} \sigma_n = I$. Это означает, что функция f(x) интегрируема на отрезке [a;b]. \blacktriangleleft

Следствия. 1. Для того чтобы ограниченная на отрезке [a;b] функция f(x) была на нем интегрируема, необходимо и достаточно, чтобы

$$\lim_{\lambda \to 0} \sum_{k=1}^{n} \omega_k(f) \Delta x_k = 0,$$

где $\omega_k(f)$ — колебание функции f(x) на частичном отрезке $\left[x_{k-1};x_k\right]$ разбиения τ_n , $k=\overline{1,n}$.

2. Если функция y = f(x) была интегрируема по Риману на отрезке [a;b] и s_n , S_n – ее суммы Дарбу, то

$$\lim_{\lambda \to 0} s_n = \lim_{\lambda \to 0} S_n = \int_a^b f(x) dx.$$

Вопросы для самоконтроля

- 1. Какие задачи приводят к понятию определенного интеграла?
 - 2. Дайте определение функции, интегрируемой на [a;b]?
- 3. Сформулируйте определение интеграла Римана на языке ε δ ?
- 4. Сформулируйте необходимое условие интегрируемости функции.
- 5. Дайте определения верхних и нижних сумм Дарбу. Перечислите их свойства.
 - 6. Дайте определения верхних и нижних интегралов.
 - 7. Сформулируйте Критерий интегрируемости Дарбу.