PRUEBA DE ACCESO (LOGSE)

UNIVERSIDAD DE CASTILLA Y LEÓN

<u>SEPTIEMBRE – 2012</u>

MATEMÁTICAS II

Tiempo máximo: 1 horas y 30 minutos

Indicaciones:

<u>1.-Optatividad</u>: El alumno deberá escoger una de las dos opciones, pudiendo desarrollar los cuatro ejercicios de la misma en el orden que desee.

<u>2.-Calculadora:</u> Se permitirá el uso de calculadoras no programables (que no admitan memoria para texto ni representaciones gráficas).

<u>Criterios generales de evaluación de la prueba</u>: Se observarán fundamentalmente los siguientes aspectos: correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones. Deben figurar explícitamente las operaciones no triviales, de modo que pueden reconstruirse la argumentación lógica de los cálculos.

OPCIÓN A

- 1°) Sea la función $f(x) = (2x^2 + 3) \cdot e^x$:
- a) Estudiar asíntotas, crecimiento, decrecimiento, extremos relativos, concavidad, convexidad y puntos de inflexión.
- b) Esbozar su gráfica.

2°) a) Calcular:
$$I = \int \frac{sen(2x)}{3 + sen^2 x} \cdot dx$$
. b) Calcular: $\lim_{x \to 0} \frac{L(1+x) + L(1-x)}{x \cdot sen(x)}$.

- 3°) Se considera el sistema $\begin{cases} x+ay-z=2\\ 2x+y+az=0\\ x+y-z=a+1 \end{cases}$, donde α es un parámetro real. Se pide:
- \boldsymbol{a}) Discutir el sistema en función del valor real de $\alpha.$
- b) Hallar la solución del sistema para $\alpha=1,\, si$ procede.

4°) Dados el punto A(2, 1, 1) y las rectas
$$r = x = \frac{y+2}{2} = z - 1$$
 y $s = \begin{cases} x + y = 0 \\ x + z = 2 \end{cases}$, se pide:

- a) Hallar la ecuación de la recta que pasa por A y corta a r y s.
- b) Hallar la ecuación del plano perpendicular a r que pasa por A.

OPCIÓN B

- 1°) a) Determinar en qué puntos de la gráfica de la función $y = x^3 6x^2 + 4x + 8$ la recta tangente a la misma es paralela a la recta y = 4x + 7.
- b) Hallar el área de la región comprendida entre las rectas x = 1, x = 4 y que está limitada por dichas rectas, la gráfica de la función $f(x) = |x^2 4|$ y el eje OX.
- 2°) a) Determinar los extremos absolutos de la función $f(x) = x^2 4x + 4$ en el intervalo [1, 4].
- b) Aplicando la definición, estudiar la continuidad y derivabilidad de la función f dada por $f(x) = \begin{cases} x x^2 & \text{si } 0 \le x \le 1 \\ \frac{L^2 x}{x 1} & \text{si } 1 < x \le 2 \end{cases}$ en el punto x = 1, donde L denota logaritmo neperiano.
- 3°) a) Determinar, en función del parámetro α , el rango de la matriz $A = \begin{pmatrix} 1 & a & -1 \\ 1 & 0 & -1 \\ 3 & a & a \end{pmatrix}$.
- b) Sea C una matriz 2x2 de columnas C_1 y C_2 y de determinante 5, y sea B una matriz 2x2 de determinante 2. Si D es la matriz de columnas $4C_2$ y $C_1 C_2$, calcular el determinante de la matriz $B \cdot D^{-1}$.
- 4°) Sea s la recta de ecuaciones paramétricas $s = \begin{cases} x = 3 + 2t \\ y = -1 t \end{cases}$.
- a) Hallar la ecuación de la recta r que pasa por el punto $P(1,\,0,\,5)$ y corta perpendicularmente a la recta s.
- b) Hallar la ecuación del plano que contiene a r y a s.
