CONCOURS COMMUN POLYTECHNIQUE (ENSI)

FILIERE MP

MATHEMATIQUES 1

EXERCICE 1

 $\textbf{1.} \quad \text{Pour } n \geqslant 2, \text{ on pose } a_n = \frac{2}{n^2-1}. \text{ La suite } (a_n)_{n\geqslant 2} \text{ et pour } n\geqslant 2, \ \left|\frac{a_{n+1}}{a_n}\right| = \frac{n^2-1}{(n+1)^2-1}.$ $\mathrm{Par\ suite}, \ \left|\frac{a_{n+1}}{a_n}\right| \underset{n \to +\infty}{\sim} \frac{n^2}{n^2} = 1. \ \mathrm{D'après\ la\ règle\ de\ d'Alembert}, \ R = 1.$

$$R=1$$
.

2. Soit $x \in]-1,1[$.

$$\begin{split} S(x) &= \sum_{n=2}^{+\infty} \left(\frac{1}{n-1} - \frac{1}{n+1}\right) x^n = \sum_{n=2}^{+\infty} \frac{x^n}{n-1} - \sum_{n=2}^{+\infty} \frac{x^n}{n+1} \text{ (puisque } |x| < 1, \text{ les deux séries convergent)} \\ &= \sum_{n=1}^{+\infty} \frac{x^{n+1}}{n} - \sum_{n=3}^{+\infty} \frac{x^{n-1}}{n}. \end{split}$$

On en déduit que

$$xS(x) = x^2 \sum_{n=1}^{+\infty} \frac{x^n}{n} - \sum_{n=1}^{+\infty} \frac{x^n}{n} + x + \frac{x^2}{2} = (1 - x^2) \ln(1 - x) + x + \frac{x^2}{2}.$$

$$\begin{aligned} \operatorname{Donc} & \operatorname{si} \, x \neq 0, \, S(x) = \frac{(1-x^2) \ln (1-x) + x + \frac{x^2}{2}}{x} \, \operatorname{et} \, \operatorname{d'autre \, part}, \, S(0) = 0. \\ & \begin{cases} 0 & \operatorname{si} \, x = 0 \\ \\ \frac{(1-x^2) \ln (1-x) + x + \frac{x^2}{2}}{x} & \operatorname{si} \, x \in]-1, 1[\setminus \{0\}] \end{cases}. \end{aligned}$$

Quand x tend vers 1 par valeurs inférieures, $(1-x^2)\ln(1-x) = (1+x)(1-x)\ln(1-x) \to 0$ d'après un théorème de croissances comparées. Par suite, $\lim_{\substack{x \to 1 \\ y \to 1}} S(x) = \frac{0+1+\frac{1}{2}}{1} = \frac{3}{2}$.

$$\lim_{\substack{x \to 1 \\ x < 1}} S(x) = \frac{3}{2}.$$

Remarque. Pour tout $x \in [-1, 1]$ et tout $n \ge 2$, $|a_n x^n| \le \frac{2}{n^2 - 1}$. Comme $\frac{2}{n^2 - 1}$ est le terme général d'une série numérique convergente, la série de fonctions de terme général $x \mapsto a_n x^n$, $n \ge 2$, converge normalement et donc uniformément vers la fonction S sur [-1, 1]. Puisque chacune de ces fonctions est continue sur [-1, 1], la somme S est une fonction définie et continue sur [-1,1] et donc

$$\begin{split} \lim_{\substack{x \to 1 \\ x < 1}} S(x) &= S(1) = \sum_{n=2}^{+\infty} \frac{2}{n^2 - 1} = \lim_{N \to +\infty} \left(\sum_{n=2}^{N} \left(\frac{1}{n-1} - \frac{1}{n+1} \right) \right) = \lim_{N \to +\infty} \left(\sum_{n=1}^{N-1} \frac{1}{n} - \sum_{n=3}^{N+1} \frac{1}{n} \right) \\ &= \lim_{N \to +\infty} \left(1 + \frac{1}{2} - \frac{1}{N} - \frac{1}{N+1} \right) = \frac{3}{2}. \end{split}$$

EXERCICE 2

1. Sur]0, $+\infty$ [, l'équation (E) est équivalente à l'équation $y' - \frac{3}{2x}y = \frac{1}{2\sqrt{x}}$.

Les deux fonctions $x \mapsto -\frac{3}{2x}$ et $x \mapsto \frac{1}{2\sqrt{x}}$ sont continues sur $]0, +\infty[$. Donc les solutions de (E) sur I constituent un \mathbb{R} -espace affine de dimension 1.

Soit f une fonction dérivable sur $]0, +\infty[$.

$$\begin{split} f \ \mathrm{solution} \ \mathrm{de} \ (E) \ \mathrm{sur} \] 0, +\infty[\ \Leftrightarrow \forall x > 0, \ f'(x) - \frac{3}{2x} f(x) &= \frac{1}{2\sqrt{x}} \ \Leftrightarrow \forall x > 0, \ e^{-\frac{3}{2}\ln(x)} f'(x) - \frac{3}{2x} e^{-\frac{3}{2}\ln(x)} f(x) = \frac{e^{-\frac{3}{2}\ln(x)}}{2\sqrt{x}} \\ \ \Leftrightarrow \forall x > 0 \ (\left(\frac{f}{x^{3/2}}\right)'(x) &= \frac{1}{2x^2} \ \Leftrightarrow \exists C \in \mathbb{R}/\ \forall x > 0, \ \frac{f(x)}{x^{3/2}} = -\frac{1}{2x} + C \\ \ \Leftrightarrow \exists C \in \mathbb{R}/\ \forall x > 0, \ f(x) &= -\frac{\sqrt{x}}{2} + Cx\sqrt{x}. \end{split}$$

$$\mathscr{S}_{]0,+\infty[} = \left\{ x \mapsto -\frac{\sqrt{x}}{2} + Cx\sqrt{x}, \ C \in \mathbb{R} \right\}.$$

2. Soit f une éventuelle solution de (E) sur]0, $+\infty$ [. Nécessairement, f(0) = 0 (fourni par (E)) et $\exists C \in \mathbb{R}/\ \forall x > 0$, $f(x) = -\frac{\sqrt{x}}{2} + Cx\sqrt{x}$. En résumé, nécessairement, $\exists C \in \mathbb{R}/\ \forall x \geqslant 0$, $f(x) = -\frac{\sqrt{x}}{2} + Cx\sqrt{x}$.

Soient $C \in \mathbb{R}$ puis f une fonction du type précédent. $f(x) \sim -\frac{\sqrt{x}}{2}$ et donc f n'est pas dérivable en 0. Ainsi, aucune des fonctions précédentes n'est dérivable en 0 et donc aucune des fonctions précédentes ne peut être solution de (E) sur $[0, +\infty[$.

$$\mathscr{S}_{[0,+\infty[}=\varnothing.$$

PROBLÈME AUTOUR DE LA TRANSFORMATION DE LAPLACE

- 1. Question préliminaire
- (a) Si la fonction f est continue par morceaux sur $[a, +\infty[$ et positive sur $[a, +\infty[$, on sait que

f est intégrable sur $[a, +\infty[$ si et seulement si la fonction F a une limite réelle en $+\infty$.

(b) Si la fonction f n'est pas de signe constant au voisinage de $+\infty$ [, on sait que

si f est intégrable sur $[a, +\infty[$ alors la fonction F a une limite réelle en $+\infty$,

mais l'implication contraire est fausse.

Partie I : Exemples et propriétés

- 2. (a) Montrons que E est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R}^+,\mathbb{R})$.
- La fonction nulle est dans E.
- Soient $(f,g) \in E^2$ et $(\lambda,\mu) \in \mathbb{R}^2$. Tout d'abord, la fonction $\lambda f + \mu g$ est continue sur \mathbb{R}^+ en tant que combinaisons linéaires de fonctions continues sur \mathbb{R}^+ . Ensuite, pour tout x>0, la fonction $t\mapsto (\lambda f(t)+\mu g(t))e^{-xt}=\lambda f(t)e^{-xt}+\mu g(t)e^{-xt}$ est intégrable sur \mathbb{R}^+ en tant que combinaisons linéaires de fonctions intégrables sur \mathbb{R}^+ . Finalement, la fonction $\lambda f + \mu g$ est dans E.

On a montré que

E est un sous-espace vectoriel de
$$\mathcal{F}(\mathbb{R}^+, \mathbb{R})$$
.

- (b) La fonction nulle est continue et bornée sur \mathbb{R}^+ et donc $0 \in F$.
- Soit $f \in F$. f est continue sur \mathbb{R}^+ et pour x > 0, $f(t)e^{-xt} = O(e^{-xt}) = O\left(\frac{1}{t^2}\right)$ d'après un théorème de croissances comparées. Donc, $\forall x > 0$, la fonction $t \mapsto f(t)e^{-xt}$ est intégrable sur \mathbb{R}^+ . En résumé, $f \in F$. On a montré que $F \subset E$.

• Soient $(f,g) \in F^2$ et $(\lambda,\mu) \in \mathbb{R}^2$. Alors, la fonction $\lambda f + \mu g$ est continue sur \mathbb{R}^+ . D'autre part, si M_1 et M_2 désignent des majorants de |f| et |g| respectivement sur \mathbb{R}^+ , alors pour tout $f \in \mathbb{R}^+$, $|\lambda f(f) + \mu g(f)| \le |\lambda| M_1 + |\mu| M_2$. Donc la fonction $\lambda f + \mu g$ est bornée sur \mathbb{R}^+ et finalement $\lambda f + \mu g$ est dans F.

On a montré que

F est un sous-espace vectoriel de E.

(c) Soient $(f,g) \in E^2$ et $(\lambda,\mu) \in \mathbb{R}^2$. Pour x > 0, les fonctions $t \mapsto f(t)e^{-xt}$ et $t \mapsto g(t)e^{-xt}$ sont intégrables sur $[0,+\infty[$

$$\mathcal{L}(\lambda f + \mu g)(x) \int_0^{+\infty} (\lambda f(t) + \mu g(t)) e^{-xt} \ dt = \lambda \int_0^{+\infty} f(t) e^{-xt} \ dt + \mu \int_0^{+\infty} g(t) e^{-xt} \ dt = (\lambda \mathcal{L}(f) + \mu \mathcal{L}(g))(x).$$

Donc, $\mathcal{L}(\lambda f + \mu g) = \lambda \mathcal{L}(f) + \mu \mathcal{L}(g)$. On a montré que

$$\mathcal{L} \in \mathscr{L} \left(\mathsf{E}, \mathcal{F}(\mathbb{R}_*^+, \mathbb{R}) \right).$$

3. (a) Puisque \mathcal{U} est continue et bornée sur \mathbb{R}^+ , $\mathcal{U} \in F$. Soit x > 0.

$$\begin{split} \mathcal{L}(\mathcal{U})(x) &= \int_0^{+\infty} e^{-xt} \ dt = \left[-\frac{e^{-xt}}{x} \right]_{t=0}^{t \to +\infty} = \frac{1}{x} \ (\operatorname{car} \ x > 0). \end{split}$$

$$\forall x > 0, \ \mathcal{L}(\mathcal{U})(x) = \frac{1}{x}.$$

(b) Soit $\lambda \ge 0$. Puisque h_{λ} est continue et bornée sur \mathbb{R}^+ , $h_{\lambda} \in F$. Soit x > 0.

$$\begin{split} \mathcal{L}(h_{\lambda})(x) = & \int_{0}^{+\infty} e^{-(\lambda+x)t} \ dt = \left[-\frac{e^{-(\lambda+x)t}}{\lambda+x} \right]_{t=0}^{t \to +\infty} = \frac{1}{\lambda+x} \ (\operatorname{car} \ \lambda + x > 0). \end{split}$$

$$\forall \lambda \geqslant 0, \ \forall x > 0, \ \mathcal{L}(h_{\lambda})(x) = \frac{1}{\lambda+x}.$$

4. Soit $n \in \mathbb{N}$. La fonction g_n est continue sur \mathbb{R}^+ . Soit x>0. $t^n e^{-xt} \times e^{\frac{xt}{2}} = t^n e^{-\frac{xt}{2}} \xrightarrow[t\to+\infty]{} 0$ d'après un théorème de croissances comparées. Donc il existe A>0 tel que $\forall t \geqslant A, t^n e^{-xt} \times e^{\frac{xt}{2}} \leqslant 1.$

Pour $t \geqslant A$, on a $|g_n(t)e^{-xt}| = |f(t)|t^ne^{-xt} \leqslant |f(t)|e^{-\frac{xt}{2}}$. Comme la fonction f est dans E et que $\frac{x}{2} > 0$, la fonction $t\mapsto |f(t)|e^{-\frac{x\,t}{2}} \text{ est intégrable sur } \mathbb{R}^+ \text{ et il en est de même de la fonction } t\mapsto g_\pi(t)e^{-x\,t}.$ Ainsi, $\forall x > 0$, la fonction $t \mapsto g_n(t)e^{-xt}$ est intégrable sur \mathbb{R}^+ et finalement $g_n \in E$.

$$\forall n \in \mathbb{N}, g_n \in E.$$

Transformée de Laplace d'une dérivée

La fonction f' est continue sur \mathbb{R}^+ et positive sur \mathbb{R}^+ car la fonction f est croissante sur \mathbb{R}^+ . Soit x > 0. Soit A > 0, les deux fonctions $t \mapsto f(t)$ et $t \mapsto -e^{-xt}$ sont de classe C^1 sur le segment [0, A]. On peut donc effectuer une intégration par parties et on obtient

$$x \int_{0}^{A} f(t)e^{-xt} dt = \left[-f(t)e^{-xt} \right]_{0}^{A} + \int_{0}^{A} f'(t)e^{-xt} dt = f(0) - f(A)e^{-xA} + \int_{0}^{A} f'(t)e^{-xt} dt.$$

La fonction f est dans E et donc la fonction $A \mapsto x \int_0^A f(t)e^{-xt} dt$ a une limite réelle quand A tend vers $+\infty$ à savoir

 $x\mathcal{L}(f)(x)$. Ensuite, puisque f est bornée, $\lim_{A \to +\infty} f(A)e^{\int_{-xA}^{0} f(x)} = 0$.

Puisque $\forall A > 0$, $\int_{0}^{A} f'(t)e^{-xt} dt = x \int_{0}^{A} f(t)e^{-xt} dt - f(0) + f(A)e^{-xA}$, la fonction $A \mapsto x \int_{0}^{A} f'(t)e^{-xt} dt$ a une limite réelle quand A tend vers $+\infty$ à savoir $x\mathcal{L}(f)(x) - f(0)$

Puisque la fonction f' est positive sur \mathbb{R}^+ , on en déduit que la fonction $t \mapsto f'(t)e^{-xt}$ est intégrable sur \mathbb{R}^+ et donc que $f' \in E$ puis que $\mathcal{L}(f')(x) = x\mathcal{L}(f)(x) - f(0)$.

6. Régularité d'une transformée de Laplace

- Pour tout $x \in [a, +\infty[$, la fonction $t \mapsto \Phi(x, t)$ est continue par morceaux et intégrable sur $[0, +\infty[$.
- La fonction Φ admet sur $[\mathfrak{a}, +\infty[\times \mathbb{R}]$ une dérivée partielle par rapport à sa première variable x et

$$\forall (x,t) \in [\alpha, +\infty[\times \mathbb{R}, \frac{\partial \Phi}{\partial x}(x,t) = -tf(t)e^{-xt} = -g_1(t)e^{-xt}.$$

- $\text{- Pour tout } x \in [\mathfrak{a}, +\infty[, \text{ la fonction } t \mapsto \frac{\partial \Phi}{\partial x}(x,t) \text{ est continue par morceaux et intégrable sur } [\mathfrak{0}, +\infty[\text{ (car } \mathfrak{g}_1 \in E).$
- Pour tout $t \in [0, +\infty[$, la fonction $x \mapsto \frac{\partial \Phi}{\partial x}(x, t)$ est continue sur $[a, +\infty[$.
- Pour tout $(x,t) \in [a,+\infty[\times[0,+\infty[,\left|\frac{\partial\Phi}{\partial x}(x,t)\right|=|g_1(t)|e^{-xt}\leqslant |g_1(t)|e^{-\alpha t}=\phi_1(t) \text{ où la fonction }\phi_1\text{ est une fonction continue par morceaux, positive, indépendante de x et intégrable sur <math>[0,+\infty[$ (car $g_1\in E$).

D'après le théorème de dérivation des intégrales à paramètres, la fonction $\mathcal{L}(f)$ est de classe C^1 sur $[\mathfrak{a}, +\infty[$ et sa dérivée s'obtient en dérivant sous le signe somme. Ceci étant vrai pour tout réel $\mathfrak{a}>0$, on a montré que la fonction $\mathcal{L}(f)$ est de classe C^1 sur $]0, +\infty[$ et pour x>0,

$$\left(\mathcal{L}(f)\right)'(x) = \int_0^{+\infty} \frac{\partial}{\partial x} (f(t)e^{-xt}) \ dt = -\int_0^{+\infty} t f(t)e^{-xt} \ dt = -\mathcal{L}(g_1)(x).$$

- (b) Montrons par récurrence que $\forall n \in \mathbb{N}^*, \mathcal{L}(f) \in C^n(]0, +\infty[, \mathbb{R})$ et que $\mathcal{L}(f)^{(n)} = (-1)^n \mathcal{L}(g_n)$.
- \bullet C'est vrai pour n = 1 d'après la question précédente.
- Soit $n \ge 1$. Supposons que $\mathcal{L}(f) \in C^n(]0, +\infty[, \mathbb{R})$ et que $\mathcal{L}(f)^{(n)} = (-1)^n \mathcal{L}(g_n)$. La fonction g_n est dans E d'après la question 4. D'après la question 6.a), la fonction $(-1)^n \mathcal{L}(g_n)$ est de classe C^1 sur $]0, +\infty[$ ou encore la fonction $\mathcal{L}(f)$ est de classe C^{n+1} sur $]0, +\infty[$. De plus, $\mathcal{L}(f)^{(n+1)} = (-1)^n (\mathcal{L}(g_n))' = (-1)^{n+1} \mathcal{L}(tg_n) = (-1)^{n+1} \mathcal{L}(g_{n+1})$.

On a montré par récurrence que

$$\forall f \in E, \ f \in C^{\infty}(]0, +\infty[, \mathbb{R}) \ \mathrm{et} \ \forall n \in \mathbb{N}, \ \mathcal{L}(f)^{(n)} = (-1)^{n} \mathcal{L}(g_{n}).$$

PARTIE II : Comportements asymptotiques de la transformée de LAPLACE

7. (a) f est dans F et donc f est continue et bornée sur $[0, +\infty[$. Soit x > 0.

$$|\mathcal{L}(f)(x)|\leqslant \int_0^{+\infty}|f(t)|e^{-xt}\ dt\leqslant \|f\|_{\infty}\int_0^{+\infty}e^{-xt}\ dt=\frac{\|f\|_{\infty}}{x}.$$

Comme $\lim_{x \to +\infty} \frac{\|f\|_{\infty}}{x} = 0$, on a montré que

$$\forall f \in F, \lim_{x \to +\infty} \mathcal{L}(f)(x) = 0.$$

(b) Théorème de la valeur initiale

f est de classe C^1 sur \mathbb{R}^+ , croissante et bornée sur \mathbb{R}^+ . D'après la question la question 5, $\forall x>0$, $x\mathcal{L}(f)(x)=f(0)+\mathcal{L}(f')(x)$. Puisque f' est continue et bornée sur \mathbb{R}^+ , la question précédente permet d'affirmer que $\lim_{x\to +\infty}\mathcal{L}(f')(x)=0$ et donc

$$\lim_{x\to +\infty} x \mathcal{L}(f)(x) = f(0).$$

8. Théorème de la valeur finale

(a) Puisque $\lim_{t\to +\infty} f(t) = \ell$, il existe A>0 tel que $\forall t\geqslant A$, $|f(t)-\ell|\leqslant 1$. Pour $t\geqslant A$, on a alors $|f(t)|\leqslant |f(t)-\ell|+|\ell|\leqslant 1+|\ell|$. D'autre part, la fonction f est continue sur le segment [0,A] et donc f est bornée sur ce segment. Soit M un majorant de la fonction |f| sur [0,A].

Ainsi, pour tout réel $t \in [0, +\infty[$, on a $|f(t)| \leq Max\{M, 1 + |\ell|\}$ et on a montré que f est bornée sur \mathbb{R}^+ . Finalement, $f \in F$.

(b) Soit $n \in \mathbb{N}$. Puisque $a_n > 0$, en posant $x = a_n t$, on obtient

$$a_n\mathcal{L}(f)(a_n) = a_n \int_0^{+\infty} f(t)e^{-a_nt} \ dt = \int_0^{+\infty} f\left(\frac{x}{a_n}\right)e^{-x} \ dx = \int_0^{+\infty} h_n(t) \ dt.$$

- (c) Chaque fonction h_n est continue par morceaux sur $]0, +\infty[$.
- Pour chaque $x \in]0, +\infty[$, $\lim_{n \to +\infty} h_n(x) = \ell e^{-x}$ car $\lim_{n \to +\infty} \frac{x}{a_n} = +\infty$. Donc, la suite de fonctions (h_n) converge simplement sur $]0, +\infty[$ vers la fonction $h: x \mapsto \ell e^{-x}$ qui est continue par morceaux sur $]0, +\infty[$.
- Pour tout $n \in \mathbb{N}$ et tout $x \in]0, +\infty[$, $|h_n(x)| \le ||f||_{\infty} e^{-x} = \varphi(x)$ (hypothèse de domination) où la fonction φ est continue par morceaux et intégrable sur $]0, +\infty[$.

D'après le théorème de convergence dominée, la suite $\left(\int_{0}^{+\infty} h_{n}(x) dx\right)$ converge vers

$$\int_0^{+\infty} h(x) dx = \ell \left[-e^{-x} \right]_0^{+\infty} = \ell.$$

On a montré que

$$\lim_{n\to +\infty} \alpha_n \mathcal{L}(f)(\alpha_n) = \ell.$$

(d) Ainsi, pour toute suite (a_n) de réels strictement positifs, convergente et de limite nulle, on a $\lim_{n\to\infty} a_n \mathcal{L}(f)(a_n) = \ell$. Montrons alors que $\lim_{x\to 0} x\mathcal{L}(f)(x) = \ell$. Supposons par l'absurde que $x\mathcal{L}(f)(x)$ ne tende pas vers 0 quand x trend vers 0.

Alors $\exists \epsilon > 0 / \forall \alpha > 0$, $\exists x \in]0, \alpha[/|x\mathcal{L}(f)(x) - \ell| \ge \epsilon$. ϵ est dorénavant ainsi fixé.

Ce qui précède permet en particulier d'affirmer que pour chaque $n \in \mathbb{N}$, il existe $a_n \in \left]0, \frac{1}{n+1}\right[$ tel que $|a_n\mathcal{L}(f)(a_n) - \ell| \geqslant 1$ ϵ . Mais alors, la suite (a_n) est une suite de réels strictement positifs convergeant vers 0 telle que la suite $(a_n\mathcal{L}(f)(a_n))$ ne tende pas vers ℓ ce qui est absurde. Donc, $\lim_{x \to +\infty} x \mathcal{L}(f)(x) = \ell$ ou encore, puisque $\ell \neq 0$,

$$\mathcal{L}(f)(x) \underset{x \to 0}{\sim} \frac{\ell}{x}.$$

9. (a) La fonction f est intégrable sur \mathbb{R}^+ . Pour tout réel $x \ge 0$, on peut donc écrire $R(x) = \int_{a}^{+\infty} f(t) dt - \int_{a}^{x} f(t) dt$. Puisque la fonction f est continue sur \mathbb{R}^+ , la fonction $x\mapsto \int_0^x f(t)\ dt$ est de classe C^1 sur \mathbb{R}^+ , de dérivée la fonction f. Par suite, la fonction R est de classe C^1 sur \mathbb{R}^+ et R' = -f.

 $\text{La fonction } R \text{ est de classe } C^1 \text{ sur } \mathbb{R}^+ \text{ et en particulier est continue sur } \mathbb{R}^+. \text{ D'autre part, puisque la fonction } f \text{ est intégrable}$ sur \mathbb{R}^+ , on a $\lim_{x \to +\infty} R(x) = 0$. Donc, La fonction R est dans F d'après la question 8.a).

Maintenant, la fonction R n'est pas croissante sur \mathbb{R}^+ et on ne peut donc pas appliquer la question 5. On démontre le résultat de l'énoncé grâce à une intégration par parties. Soit x>0. Alors $x\mathcal{L}(R)(x)=\int_{a}^{+\infty}R(t)xe^{-xt}~dt$.

Soit X un réel strictement positif. Les deux fonctions $t \mapsto R(t)$ et $t \mapsto -e^{-xt}$ sont de classe C^1 sur le segment [0,X]. On peut donc effectuer une intégration par parties et on obtient

$$\int_0^X R(t)xe^{-xt} dt = \left[-R(t)e^{-xt} \right]_0^X - \int_0^X f(t)e^{-xt} dt = R(0) - R(X)e^{-xX} - \int_0^X f(t)e^{-xt} dt.$$

Quand X tend vers $+\infty$, $\int_0^X R(t)xe^{-xt}$ dt tend vers $x\mathcal{L}(R)(x)$ puis $R(X)e^{-xX}$ tend vers 0 car la fonction R est bornée sur $\mathbb{R}^+ \text{ et enfin } \int_{-R}^X f(t) e^{-xt} \ dt \text{ tend vers } \mathcal{L}(f)(x). \text{ On a donc montré que } \forall x>0, \ x \mathcal{L}(R)(x) = R(0) - \mathcal{L}(f)(x) \text{ ou encore la properties of the enfine } \mathcal{L}(f)(x) = R(0) - \mathcal{L}(f)(x) = R(0)$

$$\forall x > 0, \, \mathcal{L}(f)(x) = R(0) - x\mathcal{L}(R)(x).$$

(b) Soit $\varepsilon > 0$. Puisque R(t) tend vers 0 quand t tend vers $+\infty$, il existe A > 0 tel que pour tout $t \ge A$, $|R(t)| \le \varepsilon$. Soit x > 0.

$$\begin{split} |\mathcal{L}(f)(x) - R(0)| &= |-x\mathcal{L}(R)(x)| = x \left| \int_0^A R(t)e^{-xt} \ dt + \int_A^{+\infty} R(t)e^{-xt} \ dt \right| \\ &\leqslant x \left(\int_0^A |R(t)|e^{-xt} \ dt + \int_A^{+\infty} |R(t)|e^{-xt} \ dt \right) \leqslant x \left(\int_0^A |R(t)| \ dt + \int_A^{+\infty} \epsilon e^{-xt} \ dt \right) \\ &= x \int_0^A |R(t)| \ dt + \epsilon x \left[-\frac{e^{-xt}}{x} \right]_A^{+\infty} = x \int_0^A |R(t)| \ dt + \epsilon e^{-xA} \\ &\leqslant x \int_0^A |R(t)| \ dt + \epsilon. \end{split}$$

(c) Ainsi, pour tout x > 0, $|\mathcal{L}(f)(x) - R(0)| \le x \int_0^A |R(t)| \ dt + \epsilon$ (où A ne dépend que de ϵ et ne dépend donc pas de ϵ). Maintenant, $\lim_{\kappa \to 0} x \int_0^A |R(t)| \ dt = 0$ et donc il existe $\alpha > 0$ tel que $\forall x \in]0, \alpha[$, $x \int_0^A |R(t)| \ dt < \epsilon$. Pour $x \in]0, \alpha[$, on a $|\mathcal{L}(f)(x) - R(0)| < \epsilon + \epsilon = 2\epsilon$.

On a montré que $\forall \epsilon > 0, \; \exists \alpha > 0 / \; \forall x \in]0, \alpha[, |\mathcal{L}(f)(x) - R(0)| < 2\epsilon \text{ et donc}$

$$\lim_{x\to 0} \mathcal{L}(f)(x) = R(0) = \int_0^{+\infty} f(t) dt.$$

On peut donc prolonger $\mathcal{L}(f)$ par continuité en 0 en posant $\mathcal{L}(f)(0) = \int_0^{+\infty} f(t) dt$.

Partie III: Application

10. Calcul de l'intégrale de Dirichlet

(a) La fonction f est continue sur $]0, +\infty[$ puis sur $[0, +\infty[$ car $\lim_{t\to 0} \frac{\sin t}{t} = 1$. Donc la fonction F est définie sur $[0, +\infty[$.

Soient a et x deux réels tels que 0 < a < x. Les deux fonctions $t \mapsto 1 - \cos t$ et $t \mapsto \frac{1}{t}$ sont de classe C^1 sur le segment [a, x]. On peut donc effectuer une intégration par parties et on obtient

$$\int_{a}^{x} \frac{\sin t}{t} dt = \left[\frac{1 - \cos t}{t} \right]_{a}^{x} + \int_{a}^{x} \frac{1 - \cos t}{t^{2}} dt$$
$$= \frac{1 - \cos x}{x} - \frac{1 - \cos a}{a} + \int_{a}^{x} \frac{1 - \cos t}{t^{2}} dt \quad (*)$$

Quand α tend vers 0, $\frac{1-\cos\alpha}{\alpha}\sim\frac{\alpha^2/2}{\alpha}=\frac{\alpha}{2}$ et donc $\lim_{\alpha\to 0}\frac{1-\cos\alpha}{\alpha}=0$. D'autre part, la fonction $t\mapsto\frac{1-\cos t}{t^2}$ est continue sur]0,x] et se prolonge par continuité en 0 (car $\frac{1-\cos t}{t^2}$ tend vers 0 quand t tend vers $\frac{1}{2}$).

Quand a tend vers 0 dans (*), on obtient

$$\forall x > 0, \ F(x) = \frac{1 - \cos x}{x} + \int_0^x \frac{1 - \cos t}{t^2} \ dt.$$

Pour tout x > 0, $\left| \frac{1 - \cos x}{x} \right| \leqslant \frac{2}{x}$ et donc $\lim_{x \to +\infty} \frac{1 - \cos x}{x} = 0$. D'autre part, la fonction $t \mapsto \frac{1 - \cos t}{t^2}$ est continue sur $]0, +\infty[$, (prolongeable par continuité en 0) et dominée en $+\infty$ par $\frac{1}{t^2}$. Donc la fonction $t \mapsto \frac{1 - \cos t}{t^2}$ est intégrable sur $]0, +\infty[$ et en particulier, la fonction $x \mapsto \int_0^x \frac{1 - \cos t}{t^2} \, dt$ a une limite réelle quand x tend vers $+\infty$.

On en déduit que la fonction F a une limite réelle en $+\infty$ que l'on note $\int_0^{+\infty} \frac{\sin t}{t} dt$ et de plus $\int_0^{+\infty} \frac{\sin t}{t} dt = \int_0^{+\infty} \frac{1-\cos t}{t^2} dt$.

(b) Soit $n \in \mathbb{N}^*$.

$$\int_{n\pi}^{(n+1)\pi} |f(t)| \ dt = \int_{n\pi}^{(n+1)\pi} \frac{|\sin t|}{t} \ dt \geqslant \int_{n\pi+\frac{\pi}{4}}^{(n+1)\pi-\frac{\pi}{4}} \frac{|\sin t|}{t} \ dt \geqslant \frac{\pi}{2} \times \frac{1}{\sqrt{2}} \times \frac{1}{(n+1)\pi-\frac{\pi}{4}}.$$

La série numérique de terme général $\frac{\pi}{2} \times \frac{1}{\sqrt{2}} \times \frac{1}{(n+1)\pi - \frac{\pi}{4}}$ diverge et donc la série numérique de terme général $\frac{\pi}{2} \times \frac{1}{\sqrt{2}} \times \frac{1}{(n+1)\pi - \frac{\pi}{4}}$

 $\int_{0\pi}^{(n+1)\pi} |f(t)| \ dt \ diverge. \ On \ sait \ alors \ que \ la \ fonction \ f \ n'est \ pas \ intégrable \ sur \ [0,+\infty[.$

(c) Soient x > 0 et X > 0.

$$\begin{split} \int_0^X (\sin t) e^{-xt} \ dt &= \operatorname{Im} \left(\int_0^X e^{it} e^{-xt} \ dt \right) = \operatorname{Im} \left(\int_0^X e^{(-x+i)t} \ dt \right) \\ &= \operatorname{Im} \left(\left[\frac{e^{(-x+i)t}}{-x+i} \right]_0^X \right) = \operatorname{Im} \left(\frac{e^{(-x+i)X} - 1}{-x+i} \right) = \operatorname{Im} \left(\frac{(e^{-xX} \cos X - 1 + ie^{-xX} \sin X)(-x-i)}{x^2 + 1} \right) \\ &= -\frac{1}{1+x^2} (e^{-xX} (x \sin X + \cos X) - 1). \end{split}$$

La fonction $t \mapsto (\sin t)e^{-xt}$ est continue sur $[0, +\infty[$. De plus, $|t^2(\sin t)e^{-xt}| \le t^2e^{-xt} \xrightarrow[t \to +\infty]{} 0$ et donc

 $(\sin t)e^{-xt} \underset{t \to +\infty}{=} o\left(\frac{1}{t^2}\right) \text{. Donc la fonction } t \mapsto (\sin t)e^{-xt} \text{ est intégrablee sur } [0,+\infty[.$

Pour tout x > 0, $|e^{-xX}(x \sin X + \cos X)| \le (x+1)e^{-xX} \underset{X \to +\infty}{\to} 0$. Par suite,

$$\forall x > 0, \int_0^{+\infty} (\sin t) e^{-xt} dt = \frac{1}{1 + x^2}.$$

(d) Ainsi, pour tout x>0, avec les notations de la question 4, $\mathcal{L}(g_1)(x)=\int_0^{+\infty}tf(t)e^{-xt}\ dt=\int_0^{+\infty}(\sin t)e^{-xt}\ dt=\frac{1}{1+x^2}$. La fonction f est continue sur $[0,+\infty[$ et admet une limite réelle en $+\infty$. D'après la question 8.a), $f\in F$ puis d'après la question 2.a), $f\in E$. D'après la question 6.a), la fonction $\mathcal{L}(f)$ est de classe C^1 sur $]0,+\infty[$ et pour x>0,

$$(\mathcal{L}(f))'(x) = -\mathcal{L}(g_1)(x) = -\frac{1}{1+x^2}$$

et donc, il existe $C\in\mathbb{R}$ tel que $\forall x\in\mathbb{R},\,\mathcal{L}(f)(x)=C-\operatorname{Arctan} x.$

Puisque $f \in F$, la question 7.a) permet d'affirmer que $\lim_{x \to +\infty} \mathcal{L}(f)(x) = 0$ et donc $C = \frac{\pi}{2}$. Par suite,

$$\forall x>0,\, \mathcal{L}(f)(x)=\frac{\pi}{2}-\operatorname{Arctan} x=\operatorname{Arctan}\left(\frac{1}{x}\right).$$

D'après le résultat admis par l'énoncé, $\int_0^{+\infty} \frac{\sin t}{t} \ dt = R(0) = \lim_{\substack{x \to 0 \\ x > 0}} \mathcal{L}(f)(x) = \frac{\pi}{2}.$

$$\int_0^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}.$$