

Bios 6301: Assignment 5

Yeji Ko

Due Thursday, 14 October, 1:00 PM

 $5^{n=day}$ points taken off for each day late.

40 points total.

Submit a single knitr file (named homework5.rmd), along with a valid PDF output file. Inside the file, clearly indicate which parts of your responses go with which problems (you may use the original homework document as a template). Add your name as author to the file's metadata section. Raw R code/output or word processor files are not acceptable.

Failure to hame file homework5.rmd or include author name may result in 5 points taken off.

Question 1

15 points

A problem with the Newton-Raphson algorithm is that it needs the derivative f'. If the derivative is hard to compute or does not exist, then we can use the *secant method*, which only requires that the function f is continuous.

Like the Newton-Raphson method, the **secant method** is based on a linear approximation to the function f. Suppose that f has a root at a. For this method we assume that we have two current guesses, x_0 and x_1 , for the value of a. We will think of x_0 as an older guess and we want to replace the pair x_0 , x_1 by the pair x_1 , x_2 , where x_2 is a new guess.

To find a good new guess x2 we first draw the straight line from $(x_0, f(x_0))$ to $(x_1, f(x_1))$, which is called a secant of the curve y = f(x). Like the tangent, the secant is a linear approximation of the behavior of y = f(x), in the region of the points x_0 and x_1 . As the new guess we will use the x-coordinate x_2 of the point at which the secant crosses the x-axis.

The general form of the recurrence equation for the secant method is:

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

Notice that we no longer need to know f' but in return we have to provide two initial points, x_0 and x_1 .

Write a function that implements the secant algorithm. Validate your program by finding the root of the function $f(x) = \cos(x) - x$. Compare its performance with the Newton-Raphson method – which is faster, and by how much? For this example $f'(x) = -\sin(x) - 1$.

```
secant <- function(x0, x1, f){
  x2 <- x1 - f(x1)*{(x1-x0)/(f(x1)-f(x0))}
  while(abs(x2 - x1) < 0.0001){
     x0 <- x1
     x1 <- x2
  }
  return(x2)</pre>
```

```
}
secant(1,2, function(x) cos(x) - x)
## [1] 0.7650347
system.time(secant(1,2, function(x) cos(x) - x))
      user system elapsed
     0.003
             0.000
                      0.003
newton<- function(x1,f,fdev){</pre>
  x2 \leftarrow x1 - (f(x1)/fdev(x1))
  while (abs(x2 - x1) < 0.0001) {
     x1 <- x2
  }
return(x2)
}
newton(1, function(x)\{\cos(x) - x\}, function(x)\{-\sin(x)-1\})
## [1] 0.7503639
system.time(newton(1, function(x)\{\cos(x) - x\}, function(x)\{-\sin(x)-1\}))
##
           system elapsed
      user
##
```

The results from the secant function and the Newton-Raphson function are very similar, 0.7650 and 0.7503 respectively. Their running time was also very close, but the Newton-Raphson function was faster by 0.002.

Question 2

20 points

The game of craps is played as follows (this is simplified). First, you roll two six-sided dice; let x be the sum of the dice on the first roll. If x = 7 or 11 you win, otherwise you keep rolling until either you get x again, in which case you also win, or until you get a 7 or 11, in which case you lose.

Write a program to simulate a game of craps. You can use the following snippet of code to simulate the roll of two (fair) dice:

```
craps <- function(n, m, k){
  result <- c(rep(NA,100))
  for(i in 1:k){
    x <- sum(ceiling(6*runif(2)))
    result <- x
    if(x==n || x==m){
        print(cat("Game", i, ":", "result is win"))
        i <- i + 1
    }
    else{
        newroll <- sum(ceiling(6*runif(2)))
        result <- c(result, newroll)
        while(newroll!=x && newroll!=m){
            newroll <- sum(ceiling(6*runif(2)))
            result <- c(result, newroll)
</pre>
```

```
if(newroll==x){
    print(cat("Game", i, ":", "result is win"))
    i <- i + 1
}
else if(newroll==n || newroll==m){
    print(cat("Game", i, ":", "result is lose"))
    i <- i + 1
}
print(result)
}
</pre>
```

1. The instructor should be able to easily import and run your program (function), and obtain output that clearly shows how the game progressed. Set the RNG seed with set.seed(100) and show the output of three games. (lucky 13 points)

```
set.seed(100)
craps(7,11,3)

## Game 1 : result is loseNULL
## [1] 4 5 6 8 6 10 5 10 5 8 9 9 5 11
## Game 2 : result is loseNULL
```

[1] 6 9 9 11
Game 3 : result is loseNULL
[1] 6 7
2. Find a seed that will win ten straight games. Consider adding an argument to your function that

disables output. Show the output of the ten games. (7 points)

```
craps <- function(n, m, k){</pre>
  result \leftarrow c(rep(NA, 100))
  game <- data.frame(seq(1:k),NA)</pre>
  for(i in 1:k){
    x <- sum(ceiling(6*runif(2)))</pre>
    result <- x
    if(x==n \mid \mid x==m){
      game[i,2] <- 1 # 1 for "win"
      i <- i + 1
    }
    else{
      newroll <- sum(ceiling(6*runif(2)))</pre>
      result <- c(result, newroll)</pre>
      while(newroll!=x && newroll!=n && newroll!=m){
           newroll <- sum(ceiling(6*runif(2)))</pre>
           result <- c(result, newroll)</pre>
      }
      if(newroll==x){
         game[i,2] \leftarrow 1
         i <- i + 1
      else if(newroll==n || newroll==m){
         game[i,2] <- 0 # 0 for "lose"
         i <- i + 1
```

```
}
  }
  #print(game)
  sum(game[,2])
for(n in 1:10000){
set.seed(n)
x \leftarrow craps(7,11,10)
  if(x ==10){
    print(cat("seed:", n, "10 straight games"))
  else{
    n \leftarrow n+1
  }
}
## seed: 880 10 straight gamesNULL
## seed: 1639 10 straight gamesNULL
## seed: 4352 10 straight gamesNULL
## seed: 4411 10 straight gamesNULL
## seed: 8839 10 straight gamesNULL
## seed: 9085 10 straight gamesNULL
set.seed(880)
craps(7,11,10)
## [1] 10
Question 3
5 points
This code makes a list of all functions in the base package:
objs <- mget(ls("package:base"), inherits = TRUE)</pre>
funs <- Filter(is.function, objs)</pre>
length(funs)
## [1] 1233
Using this list, write code to answer these questions.
  1. Which function has the most arguments? (3 points)
x <- data.frame(seq(1:length(funs)), NA)
names(x) <- c("num", "nargs")</pre>
formals(unlist(funs[100])[[1]]) # tryout
## $target
##
##
## $current
##
##
## $...
##
```

```
##
## $check.attributes
## [1] TRUE
length(formals(unlist(funs[100])[[1]]))
## [1] 4
for(i in 1:length(funs)){
  x[i,2] <- length(formals(unlist(funs[i])[[1]]))</pre>
}
head(x,10)
##
      num nargs
## 1
               0
        1
## 2
        2
               2
## 3
        3
               2
               0
## 4
        4
## 5
        5
               2
## 6
        6
               2
## 7
        7
               0
## 8
        8
               1
## 9
        9
               1
## 10
       10
               0
x$num[which(x$nargs== max(x$nargs))]
## [1] 961
funs[960] # a function named 'scan' has 22 arguments, which is the largest number of arguments.
##\$scale.default
## function (x, center = TRUE, scale = TRUE)
## {
##
       x <- as.matrix(x)
       nc \leftarrow ncol(x)
##
##
       if (is.logical(center)) {
##
            if (center) {
##
                center <- colMeans(x, na.rm = TRUE)</pre>
##
                x <- sweep(x, 2L, center, check.margin = FALSE)
##
            }
       }
##
       else {
##
##
            if (!is.numeric(center))
##
                center <- as.numeric(center)</pre>
##
            if (length(center) == nc)
                x <- sweep(x, 2L, center, check.margin = FALSE)
##
            else stop("length of 'center' must equal the number of columns of 'x'")
##
##
       }
##
       if (is.logical(scale)) {
##
            if (scale) {
                f <- function(v) {</pre>
##
                    v <- v[!is.na(v)]</pre>
##
##
                    sqrt(sum(v^2)/max(1, length(v) - 1L))
                }
##
```

```
##
                scale <- apply(x, 2L, f)</pre>
                x <- sweep(x, 2L, scale, "/", check.margin = FALSE)
##
           }
##
##
       }
##
       else {
##
           if (!is.numeric(scale))
##
                scale <- as.numeric(scale)</pre>
           if (length(scale) == nc)
##
##
                x <- sweep(x, 2L, scale, "/", check.margin = FALSE)
           else stop("length of 'scale' must equal the number of columns of 'x'")
##
##
       }
##
       if (is.numeric(center))
##
           attr(x, "scaled:center") <- center</pre>
##
       if (is.numeric(scale))
##
           attr(x, "scaled:scale") <- scale
##
       х
## }
## <bytecode: 0x7f9dd3110468>
## <environment: namespace:base>
  2. How many functions have no arguments? (2 points)
sum(x$nargs \( = 0 \)) # 225 functions have no arguments.
## [1] 225
```

Hint find a function that returns the arguments for a given function.