(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 23 September 2004 (23.09.2004)

PCT

(10) International Publication Number WO 2004/080146 A2

(51) International Patent Classification: Not classified

(21) International Application Number:

PCT/EP2004/002808

(22) International Filing Date: 15 March 2004 (15.03.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 10/389,431

13 March 2003 (13.03.2003) US

- (71) Applicant (for all designated States except US): GERON CORPORATION [US/US]; 230 Constitution Drive, Menlo Park, CA 94025 (US).
- (72) Inventors: and
- STANTON, (75) Inventors/Applicants (for US only):

Lawrence, W. [US/SG]; 28 Cuscaden Road #06-10, Singapore 249723 (SG). BRANDENBERGER, Ralph ICH/US1: 1030 Florence Lane #3, Menlo Park, CA 94025 (US). BRUNETTE, Elisa [US/US]; 3608 Hoover Street, Redwood City, CA 94063 (US). GOLD, Joseph, D. [US/US]; 100 Lundy's Lane, San Francisco, CA 94110 (US). IRVING, John, M. [US/US]; 341 West 41st Avenue, San Mateo, CA 94403 (US). MANDALAM, Ramkumar [IN/US]; 4344 Pickerel Drive, Union City, CA 94587 (US). MOK, Michael [US/US]; 639 Seale Avenue, Palo Alto, CA 94031 (US). POWELL, Sandra, E. [US/US]; 21592 Orange Avenue, Castro Valley, CA 94546 (US).

- (74) Agents: BASSIL, Nicholas, Charles et al.; Kilburn & Strode, 20 Red Lion Street, London WC1R 4PJ (GB).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,

[Continued on next page]

(54) Title: A MARKER SYSTEM FOR CHARACTERIZING UNDIFFERENTIATED HUMAN EMBRYONIC STEM CELLS

(57) Abstract: This disclosure provides a system for qualifying embryonic stem cells intended for human therapy. A large-scale sequencing project has identified important markers that are characteristic of undifferentiated pluripotent cells. Combinations of these markers can be used to validate the self-renewing capacity of ES cells, and their ability to differentiate into tissue types suitable for regenerative medicine. The marker system of this invention has been used to screen feeder cells, media additives, and culture conditions that promote proliferation of stem cells without differentiation. A culture system optimized by following these markers is suitable for rapid expansion of undifferentiated cells from existing lines, or the derivation of new lines that are equally apposite for clinical use.

KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A MARKER SYSTEM FOR CHARACTERIZING UNDIFFERENTIATED HUMAN EMBRYONIC STEM CELLS

5

10

15

20

25

30

35

40

BACKGROUND

A promising development in the field of regenerative medicine has been the isolation and propagation of human stem cells from the early embryo. These cells have two very special properties: First, unlike other normal mammalian cell types, they can be propagated in culture almost indefinitely, providing a virtually unlimited supply. Second, they can be used to generate a variety of tissue types of interest as a source of replacement cells and tissues for use in therapy.

Thomson et al. (Science 282:114, 1998; U.S. Patent 6,200,806) were the first to successfully isolate and propagate embryonic stem cells from human blastocysts. Gearhart and coworkers derived human embryonic germ cell lines from fetal gonadal tissue (Shamblott et al., Proc. Natl. Acad. Sci. USA 95:13726, 1998;U.S. Patent 6,090,622).

International Patent Publication WO 99/20741 (Geron Corp.) describes methods and materials for the growth of primate-derived primordial stem cells. International Patent Publication WO 01/51616 (Geron Corp.) provides techniques for growth and differentiation of human pluripotent stem cells. An article by Xu et al. (Nature Biotechnology 19:971, 2001) describes feeder-free growth of undifferentiated human embryonic stem cells. Lebkowski et al. (Cancer J. 7 Suppl. 2:S83, 2001) discuss the culture, differentiation, and genetic modification of human embryonic stem cell for regenerative medicine applications. These publications report exemplary culture methods for propagating human embryonic stem cells in an undifferentiated state, and their use in preparing cells for human therapy.

Markers for identifying undifferentiated pluripotent stem cells include SSEA-4, Tra-1-60, and Tra-1-81 (Thomson et al. and Gearhart et al., supra). They also express human telomerase reverse transcriptase, and the POU transcription factor Oct 3/4 (WO 01/51616; Amit et al., Dev. Biol. 227:271, 2000; Xu et al., supra).

Loring et al. (Restor. Neurol. Neurosci. 18:81, 2001) review gene expression profiles of embryonic stem cells and ES-derived neurons. Pesce et al. (Bioessays 20:722, 1998) comment on the potential role of transcription factor Oct-4 in the totipotent germ-line cycle of mice. Gajovic et al. (Exp. Cell Res. 242:138, 1998) report that genes expressed after retinoic acid-mediated differentiation of embryoid bodies are likely to be expressed during embryo development. Zur Nieden et al. (Toxicol. in Vitro 15:455, 2001) propose certain molecular markers for embryonic stem cells. Henderson et al. (Stem Cells 20:329, 2002) report that pre-implantation human embryos and ES cells have comparable expression of SSEAs. Tanaka et al. (Genome Res. 12:1921, 2002) profile gene expression in mouse ES cells to identify candidate genes associated with pluripotency and lineage specificity. Draper et al. (J. Anat. 299:249, 2002) review change of surface antigens of human embryonic stem cells upon differentiation in culture.

Kelly et al. (Mol Reprod. Dev. 56:113, 2000) report DNA microarray analyses of genes regulated during the differentiation of embryonic stem cells. Woltjen et al. (Nucl. Acids Res. 28:E41, 2000) report retro-recombination screening of a mouse embryonic stem cell genomic library. Monk et al. (Oncogene

20:8085, 2001) list human embryonic genes re-expressed in cancer cells. Tanaka et al. (Genome Res. 12:1921, 2002) discuss gene expression profiling of embryo-derived stem cells, and candidate genes putatively associated with pluripotency and lineage specificity. Monk et al. report developmental genes identified by differential display (Reprod. Fertil. Dev. 13:51, 2001). Natale et al. (Reprod. 122:687, 2001) characterize bovine blastocyst gene expression patterns by differential display RT-PCR.

Fan et al. (Dev. Biol. 210:481, 1999) propose that forced expression of the homeobox-containing gene *Pem* blocks differentiation of embryonic stem cells. Abdel-Rahman et al. (Hum. Reprod. 10:2787, 1995) report the effect of expressing transcription regulating genes in human preimplantation embryos. Jackson et al. (J. Biol. Chem. 277:38683, 2002) describe the cloning and characterization of *Ehox*, a homeobox gene that reportedly plays a role in ES cell differentiation.

The following disclosure provides new markers and marker combinations that are effective means to identify, characterize, qualify, and control differentiation of pluripotent cells.

SUMMARY OF THE INVENTION

15

20

25

10

5

This invention identifies a number of genes that are up- or down-regulated during the course of differentiation of early-stage pluripotent stem cells obtained from primates, exemplified by human embryonic stem cells. As a consequence, the genes are differentially expressed in undifferentiated versus differentiated cells. This property confers special benefit on these genes for identification, characterization, culturing, differentiation, and manipulation of stem cells and their progeny, and other cells that express the same markers.

One aspect of this invention is a system for assessing a culture of undifferentiated primate pluripotent stem (pPS) cells or their progeny, in which expression of one or more of the identified markers listed in the disclosure is detected or measured. The level of expression can be measured in isolation or compared with any suitable standard, such as undifferentiated pPS cells maintained under specified conditions, progeny at a certain stage of differentiation, or stable end-stage differentiated cells, such as may be obtained from the ATCC. Depending on whether the marker(s) are up- or down-regulated during differentiation, presence of the markers is correlated with the presence or proportion of undifferentiated or differentiated cells in the population.

30

35

An exemplary (non-limiting) combination suitable for qualifying cultures of pPS cells are markers of the undifferentiated phenotype selected from Cripto, gastrin-releasing peptide (GRP) receptor, podocalyxin-like protein, hTERT and/Oct 3/4 (POU domain, class 5 transcription factor), in various combinations. Other cell markers can be measured in conjunction, including any of the newly described differentiation markers listed in this disclosure, or traditional pPS cell markers like SSEA-4 and Tra-1-60. In addition, markers of various differentiated cell phenotypes can be assayed as a measure of contaminating cells. Early stage cell types include stromal cells (marked by CD44 and Vimentin), fibroblasts, mesenchymal cells, and embryoid body cells. The markers can be detected or quantified at the mRNA level by PCR amplification, at the protein or enzyme product level by antibody assay, or by any suitable technique.

40

The marker system of this invention can be used for quantifying the proportion of undifferentiated pPS cells or differentiated cells in the culture; for assessing the ability of a culture system or component

10

15

20

25

30

35

40

thereof (such as a soluble factor, culture medium, or feeder cell) to maintain pPS cells in an undifferentiated state; for assessing the ability of a culture system or component thereof to cause differentiation of pPS cells into a culture of lineage-restricted precursor cells or terminally differentiated cells; or for any other worthwhile purpose. This invention includes kits and the use of specific reagents in order to measure the expression of the markers whenever appropriate.

This invention also provides a system assessing the growth characteristics of a cell population by detecting or measuring expression of one or more of the differentially expressed marker genes identified in this disclosure. This can be applied not only to various types of pPS cells and progenitor cells in various stages of differentiation, but also to clinical samples from a disease condition associated with abnormal cell growth. Renewed expression of markers of a relatively undifferentiated phenotype may be diagnostic of disease conditions such as cancer, and can serve as a means by which to target therapeutic agents to the disease site.

The marker system can also be used to regulate gene expression. Transcriptional control elements for the markers will cause an operatively linked encoding region to be expressed preferentially in undifferentiated or differentiated cells. For example, the encoding sequence can be a reporter gene (such as a gene that causes the cells to emit fluorescence), a positive selection marker (such as a drug resistance gene), or a negative selection marker. Vector constructs comprising recombinant elements linked in this fashion can be used to positively select or deplete undifferentiated, differentiated, or cancerous cells from a mixed population or in vivo, depending on the nature of the effector gene and whether transcription is up- or down-regulated during differentiation. They can also be used to monitor culture conditions of pPS cells, differentiation conditions, or for drug screening.

The marker system of this invention can also be used to sort differentiated cells from less differentiated cells. The marker can be used directly for cell separation by adsorption using an antibody or lectin, or by fluorescence activated cell sorting. Alternatively, these separation techniques can be effected using a transcription promoter from the marker gene in a promoter-reporter construct.

The marker system of this invention can be used to map differentiation pathways or influence differentiation. Markers suited for this purpose may act as transcription regulators, or encode products that enhance cell interaction in some fashion. pPS cells or their differentiated progeny are genetically altered to increase expression of one or more of the identified genes using a transgene, or to decrease expression, for example, using an antisense or siRNA construct. Alternatively, gene products involved in cell interaction or signaling can be added directly to the culture medium. The effect of this can be to help maintain the transfected cell in the undifferentiated state, promote differentiation in general, or direct differentiation down a particular pathway.

Another aspect of the invention are methods for Identifying these and other genes that are up- or down-regulated upon differentiation of any cell type. The methods involve comparing expression libraries obtained from the cells before and after differentiation, by sequencing transcripts in each of the libraries, and identifying genes that have statistically significant differences in the relative number of transcripts (as a percentage of transcripts in each library) at a confidence level of 67%, 95%, or 98%. The method can be enhanced by creating assemblies in which different sequences are counted for the same transcript if they are known to correspond to a single transcript according to previously compiled data.

Amongst the differentially expressed markers identified in this disclosure are 39 nucleotide sequences which are not present in their entirety in the UniGene database. These are listed in this

<u>3</u>

10

15

20

25

30

35

40

disclosure as SEQ. ID NOs:101 to 139. This invention includes novel nucleic acids consisting of or containing any of these sequences or the complementary sequences, and novel fragments thereof. This invention also includes novel polypeptides encoded in these sequences (made either by expressing the nucleic acid or by peptide synthesis), antibodies specific for the polypeptides (made by conventional techniques or through a commercial service), and use of these nucleic acids, peptides, and antibodies for any industrial application.

Also embodied in this invention are culture conditions and other cell manipulations identified using the marker system of this invention that are suitable for maintaining or proliferating pPS cells without allowing differentiation, or causing them to differentiate in a certain fashion. Culture conditions tested and validated according to this invention are illustrated in the example section.

Other embodiments of the invention will be apparent from the description that follows.

DRAWINGS

Figure 1 shows the profile of genes preferentially expressed in undifferentiated pluripotent stem cells, upon preliminary differentiation of the cells by culturing in retinoic acid or DMSO. Level of gene expression at the mRNA level was measured by real-time PCR assay. Any of the genes showing substantial down-regulation upon differentiation can be used to characterize the undifferentiated cell population, and culture methods suitable for maintaining them in an undifferentiated state.

Figure 2 shows the level of expression of five genes in hES cells, compared with fully differentiated cells. This five-marker panel provides robust qualification of the undifferentiated phenotype.

Figure 3 show results of an experiment in which hES cells of the H1 line were maintained for multiple passages in different media. Medium conditioned with feeder cells provides factors effective to allow hES cells to proliferate in culture without differentiating. However, culturing in unconditioned medium leads to decreased percentage of cells expressing CD9, and the classic hES cell marker SSEA-4.

Figure 4 illustrates the sensitivity of hTERT, Oct 3/4, Cripto, GRP receptor, and podocalyxin-like protein (measured by real-time PCR) as a means of determining the degree of differentiation of the cells. After multiple passages in unconditioned medium, all five markers show expression that has been downregulated by 10 to 10⁴-fold.

Figure 5 shows results of an experiment in which the hES cell line H1 was grown on different feeder cell lines: mEF = mouse embryonic fibroblasts; hMSC = human mesenchymal stem cells; UtSMC = uterine smooth muscle cells; WI-38 = human lung fibroblasts. As monitored using Cripto, the hMSC is suitable for use as feeder cells to promote hES cell proliferation without differentiation.

Figure 6 shows results of an experiment in which different media were tested for their ability to promote growth of hES cells without proliferation. The test media were not preconditioned, but supplemented with 8-40 ng/mL bFGF, with or without stem cell factor, Flt3 ligand, or LIF. Effective combinations of factors (Conditions 4 to 8) were identified by following the undifferentiated phenotype using the markers of this invention. Alterations in expression profiles were temporary and reversible, showing that the cells are still undifferentiated.

10

15

20

25

30

35

40

Figure 7 shows analysis of the undifferentiated hES cell markers SSEA-4, TRA 1-60 and Oct-4 by antibody staining and flow cytometry. Oct-4 is detected by permeabilizing the cells before staining.

Figure 8 shows the results of the immunocytochemical analysis for stromal cell markers CD44, STRO-1 and Vimentin, which label cells in the hES cell culture that have undergone differentiation.

Figure 9 shows the relative gene expression levels for cell populations in which undifferentiated hES cells were mixed with BJ fibroblasts in increasing amounts.

DETAILED DESCRIPTION

The propensity of pluripotent stem cells to differentiate spontaneously has made it challenging for investigators to work with these cells. Consistent cultures of undifferentiated stem cells are required to compare results obtained from multiple experiments performed within or between laboratories. Unfortunately, morphological characterization is subjective and especially difficult for cultures that often contain 10-20% differentiated cells. Nevertheless, having a set of standardized criteria will be important in qualifying these cells for use in clinical therapy.

The marker system identified in this disclosure provides the basis for establishing these standards. 148,453 different transcripts were amplified and sequenced from undifferentiated human embryonic stem cells, and three types of progeny. As a result of this sequencing effort, 532 genes were identified having substantially higher EST counts in undifferentiated cells, and 142 genes were identified having substantially higher EST counts after differentiation. Other differentially expressed genes were identified by microarray analysis of undifferentiated cells, compared with cells at the beginning of the differentiation process.

The system provided by this invention can be used not only to qualify populations of undifferentiated cells, but in other powerful ways of maintaining and manipulating cells described later in this disclosure. Culture systems have been identified and protocols have been developed to expand cultures of undifferentiated cells and produce commercially viable quantities of cells for use in research, drug screening, and regenerative medicine.

Definitions

"Pluripotent Stem cells" (pPS cells) are pluripotent cells that have the characteristic of being capable under appropriate conditions of producing progeny of several different cell types that are derivatives of all of the three germinal layers (endoderm, mesoderm, and ectoderm), according to a standard art-accepted test, such as the ability to form a teratoma in 8-12 week old SCID mice. The term includes both established lines of stem cells of various kinds, and cells obtained from primary tissue that are pluripotent in the manner described. For the purposes of this disclosure, the pPS cells are not embryonal carcinoma (EC) cells, and are not derived from a malignant source. It is desirable (but not always necessary) that the cells be euploid. Exemplary pPS cells are obtained from embryonic or fetal tissue at any time after fertilization.

"Human Embryonic Stem cells" (hES cells) are pluripotent stem cells derived from a human embryo in the blastocyst stage, or human pluripotent cells produced by artificial means (such as by

10

15

20

25

30

35

40

nuclear transfer) that have equivalent characteristics. Exemplary derivation procedures and features are provided in a later section.

hES cell cultures are described as "undifferentiated" when a substantial proportion (at least 20%, and possibly over 50% or 80%) of stem cells and their derivatives in the population display morphological characteristics of undifferentiated cells, distinguishing them from differentiated cells of embryo or adult origin. It is understood that colonies of undifferentiated cells within the population will often be surrounded by neighboring cells that are differentiated. It is also understood that the proportion of cells displaying the undifferentiated phenotype will fluctuate as the cells proliferate and are passaged from one culture to another. Cells are recognized as proliferating in an undifferentiated state when they go through at least 4 passages and/or 8 population doublings while retaining at least about 50%, or the same proportion of cells bearing characteristic markers or morphological characteristics of undifferentiated cells.

A "differentiated cell" is a cell that has progressed down a developmental pathway, and includes lineage-committed progenitor cells and terminally differentiated cells.

"Feeder cells" or "feeders" are terms used to describe cells of one type that are co-cultured with cells of another type, to provide an environment in which the cells of the second type can grow. hES cell populations are said to be "essentially free" of feeder cells if the cells have been grown through at least one round after splitting in which fresh feeder cells are not added to support the growth of pPS cells.

The term "embryoid bodies" refers to aggregates of differentiated and undifferentiated cells that appear when pPS cells overgrow in monolayer cultures, or are maintained in suspension cultures. Embryoid bodies are a mixture of different cell types, typically from several germ layers, distinguishable by morphological criteria and cell markers detectable by immunocytochemistry.

A cell "marker" is any phenotypic feature of a cell that can be used to characterize it or discriminate it from other cell types. A marker of this invention may be a protein (including secreted, cell surface, or internal proteins; either synthesized or taken up by the cell); a nucleic acid (such as an mRNA, or enzymatically active nucleic acid molecule) or a polysaccharide. Included are determinants of any such cell components that are detectable by antibody, lectin, probe or nucleic acid amplification reaction that are specific for the cell type of interest. The markers can also be identified by a biochemical or enzyme assay that depend on the function of the gene product. Associated with each marker is the gene that encodes the transcript, and the events that lead to marker expression.

A marker is said to be "preferentially expressed" in an undifferentiated or differentiated cell population, if it is expressed at a level that is at least 10 times higher (in terms of total gene product measured in an antibody or PCR assay) or 10 times more frequently (in terms of positive cells in the population). Markers that are expressed 100, 1,000, or 10,000 times higher or more frequently are increasingly more preferred.

The terms "polynucleotide" and "nucleic acid" refer to a polymeric form of nucleotides of any length. Included are genes and gene fragments, mRNA, cDNA, plasmids, viral and non-viral vectors and particles, nucleic acid probes, amplification primers, and their chemical equivalents. As used in this disclosure, the term polynucleotide refers interchangeably to double- and single-stranded molecules. Unless otherwise specified, any embodiment of the invention that is a polynucleotide encompasses both a double-stranded form, and each of the two complementary single-stranded forms known or predicted to make up the double-stranded form.

10

15

20

25

30

35

40

A cell is said to be "genetically altered" or "transfected" when a polynucleotide has been transferred into the cell by any suitable means of artificial manipulation, or where the cell is a progeny of the originally altered cell that has inherited the polynucleotide.

A "control element" or "control sequence" is a nucleotide sequence involved in an interaction of molecules that contributes to the functional regulation of a polynucleotide, including replication, duplication, transcription, splicing, translation, or degradation of the polynucleotide. "Operatively linked" refers to an operative relationship between genetic elements, in which the function of one element influences the function of another element. For example, an expressible encoding sequence may be operatively linked to a promoter that drives gene transcription.

The term "antibody" as used in this disclosure refers to both polyclonal and monoclonal antibody. The ambit of the term deliberately encompasses not only intact immunoglobulin molecules, but also such fragments and derivatives of immunoglobulin molecules that retain a desired binding specificity.

General Techniques

Methods in molecular genetics and genetic engineering are described generally in the current editions of Molecular Cloning: A Laboratory Manual, (Sambrook et al.); Oligonucleotide Synthesis (M.J. Gait, ed.); Animal Cell Culture (R.I. Freshney, ed.); Gene Transfer Vectors for Mammalian Cells (Miller & Calos, eds.); Current Protocols in Molecular Biology and Short Protocols in Molecular Biology, 3rd Edition (F.M. Ausubel et al., eds.); and Recombinant DNA Methodology (R. Wu ed., Academic Press). Antibody production is described in Basic Methods in Antibody Production and Characterization (Howard & Bethell eds., CRC Press, 2000).

A survey of relevant techniques is provided in such standard texts as DNA Sequencing (A.E. Barron, John Wiley, 2002), and DNA Microarrays and Gene Expression (P. Baldi et al., Cambridge U. Press, 2002). For a description of the molecular biology of cancer, the reader is referred to Principles of Molecular Oncology (M.H. Bronchud et al. eds., Humana Press, 2000); The Biological Basis of Cancer (R.G. McKinnel et al. eds., Cambridge University Press, 1998); and Molecular Genetics of Cancer (J.K. Cowell ed., Bios Scientific Publishers, 1999).

Sources of Stem Cells

This invention is based on observations made with established lines of hES cells. The markers are suitable for identifying, characterizing, and manipulating related types of undifferentiated pluripotent cells. They are also suitable for use with pluripotent cells obtained from primary embryonic tissue, without first establishing an undifferentiated cell line. It is contemplated that the markers described in this application will in general be useful for other types of pluripotent cells, including embryonic germ cells (U.S. Patents 6,090,622 and 6,251,671), and ES and EG cells from other mammalian species, such as non-human primates.

Embryonic Stem Cells

Embryonic stem cells can be isolated from blastocysts of members of primate species (U.S. Patent 5,843,780; Thomson et al., Proc. Natl. Acad. Sci. USA 92:7844, 1995). Human embryonic stem (hES) cells can be prepared from human blastocyst cells using the techniques described by Thomson et

10

15

20

25

30

35

40

al. (U.S. Patent 6,200,806; Science 282:1145, 1998; Curr. Top. Dev. Biol. 38:133 ff., 1998) and Reubinoff et al, Nature Biotech. 18:399, 2000. Equivalent cell types to hES cells include their pluripotent derivatives, such as primitive ectoderm-like (EPL) cells, outlined in WO 01/51610 (Bresagen).

hES cells can be obtained from human preimplantation embryos. Alternatively, in vitro fertilized (IVF) embryos can be used, or one-cell human embryos can be expanded to the blastocyst stage (Bongso et al., Hum Reprod 4: 706, 1989). Embryos are cultured to the blastocyst stage in G1.2 and G2.2 medium (Gardner et al., Fertil. Steril. 69:84, 1998). The zona pellucida is removed from developed blastocysts by brief exposure to pronase (Sigma). The inner cell masses are isolated by immunosurgery, in which blastocysts are exposed to a 1:50 dilution of rabbit anti-human spleen cell antiserum for 30 min, then washed for 5 min three times in DMEM, and exposed to a 1:5 dilution of Guinea pig complement (Gibco) for 3 min (Solter et al., Proc. Natl. Acad. Sci. USA 72:5099, 1975). After two further washes in DMEM, lysed trophectoderm cells are removed from the intact inner cell mass (ICM) by gentle pipetting, and the ICM plated on mEF feeder layers.

After 9 to 15 days, inner cell mass derived outgrowths are dissociated into clumps, either by exposure to calcium and magnesium-free phosphate-buffered saline (PBS) with 1 mM EDTA, by exposure to dispase or trypsin, or by mechanical dissociation with a micropipette; and then replated on mEF in fresh medium. Growing colonies having undifferentiated morphology are individually selected by micropipette, mechanically dissociated into clumps, and replated. ES-like morphology is characterized as compact colonies with apparently high nucleus to cytoplasm ratio and prominent nucleoli. Resulting ES cells are then routinely split every 1-2 weeks by brief trypsinization, exposure to Dulbecco's PBS (containing 2 mM EDTA), exposure to type IV collagenase (~200 U/mL; Gibco) or by selection of individual colonies by micropipette. Clump sizes of about 50 to 100 cells are optimal.

Propagation of pPS Cells in an Undifferentiated State

pPS cells can be propagated continuously in culture, using culture conditions that promote proliferation without promoting differentiation. Exemplary serum-containing ES medium is made with 80% DMEM (such as Knock-Out DMEM, Gibco), 20% of either defined fetal bovine serum (FBS, Hyclone) or serum replacement (US 20020076747 A1, Life Technologies Inc.), 1% non-essential amino acids, 1 mM L-glutamine, and 0.1 mM β -mercaptoethanol. Just before use, human bFGF is added to 4 ng/mL (WO 99/20741, Geron Corp.).

Traditionally, ES cells are cultured on a layer of feeder cells, typically fibroblasts derived from embryonic or fetal tissue. Embryos are harvested from a CF1 mouse at 13 days of pregnancy, transferred to 2 mL trypsin/EDTA, finely minced, and incubated 5 min at 37°C. 10% FBS is added, debris is allowed to settle, and the cells are propagated in 90% DMEM, 10% FBS, and 2 mM glutamine. To prepare a feeder cell layer, cells are irradiated to inhibit proliferation but permit synthesis of factors that support ES cells (~4000 rads γ-irradiation). Culture plates are coated with 0.5% gelatin overnight, plated with 375,000 irradiated mEFs per well, and used 5 h to 4 days after plating. The medium is replaced with fresh hES medium just before seeding pPS cells.

Scientists at Geron have discovered that pPS cells can be maintained in an undifferentiated state even without feeder cells. The environment for feeder-free cultures includes a suitable culture substrate, particularly an extracellular matrix such as Matrigel® or laminin. The pPS cells are plated at >15,000

10

15

20

25

30

35

40

cells cm² (optimally 90,000 cm² to 170,000 cm²). Typically, enzymatic digestion is halted before cells become completely dispersed (say, ~5 min with collagenase IV). Clumps of ~10 to 2,000 cells are then plated directly onto the substrate without further dispersal. Alternatively, the cells can be harvested without enzymes before the plate reaches confluence by incubating ~5 min in a solution of 0.5 mM EDTA in PBS. After washing from the culture vessel, the cells are plated into a new culture without further dispersal. In a further illustration, confluent human embryonic stem cells cultured in the absence of feeders are removed from the plates by incubating with a solution of 0.05% (wt/vol) trypsin (Gibco) and 0.053 mM EDTA for 5-15 min at 37°C. The remaining cells in the plate are removed and the cells are triturated into a suspension comprising single cells and small clusters, and then plated at densities of 50,000-200,000 cells cm² to promote survival and limit differentiation.

Feeder-free cultures are supported by a nutrient medium containing factors that support proliferation of the cells without differentiation. Such factors may be introduced into the medium by culturing the medium with cells secreting such factors, such as irradiated (~4,000 rad) primary mouse embryonic fibroblasts, telomerized mouse fibroblasts, or fibroblast-like cells derived from pPS cells. Medium can be conditioned by plating the feeders at a density of ~5-6 × 10⁴ cm⁻² in a serum free medium such as KO DMEM supplemented with 20% serum replacement and 4 ng/mL bFGF. Medium that has been conditioned for 1-2 days is supplemented with further bFGF, and used to support pPS cell culture for 1-2 days. Alternatively or in addition, other factors can be added that help support proliferation without differentiation, such as ligands for the FGF-2 or FGF-4 receptor, ligands for c-kit (such as stem cell factor), ligands for receptors associated with gp130, insulin, transferrin, lipids, cholesterol, nucleosides, pyruvate, and a reducing agent such as β-mercaptoethanol. Aspects of the feeder-free culture method are further discussed in International Patent Publications WO 99/20741, WO 01/51616; Xu et al., Nat. Biotechnol. 19:971, 2001; and PCT application PCT/US02/28200. Exemplary culture conditions tested and validated using the marker system of this invention are provided below in Example 5.

Under the microscope, ES cells appear with high nuclear/cytoplasmic ratios, prominent nucleoli, and compact colony formation with poorly discernable cell junctions. Conventional markers for hES cells are stage-specific embryonic antigen (SSEA) 3 and 4, and markers detectable using antibodies Tra-1-60 and Tra-1-81 (Thomson et al., Science 282:1145, 1998). Differentiation of pPS cells in vitro results in the loss of SSEA-4, Tra-1-60, and Tra-1-81 expression, and increased expression of SSEA-1.

Markers of undifferentiated pPS cells and their differentiated progeny

The tables and description provided later in this disclosure provide markers that distinguish undifferentiated pPS cells from their differentiated progeny.

Expression libraries were made from ES cells (WO 01/51616), embryoid bodies (WO 01/51616), and cells differentiated towards the hepatocyte (WO 01/81549) or neural cell (WO 01/88104) lineage. mRNA was reverse transcribed and amplified, producing expressed sequence tags (ESTs) occurring in frequency proportional to the level of expression in the cell type being analyzed. The ESTs were subjected to automatic sequencing, and counted according to the corresponding unique (non-redundant) transcript. A total of 148,453 non-redundant transcripts were represented in each of the 4 libraries. Genes were then identified as having a differential expression pattern if the number of EST counts of the transcript was statistically different between the libraries being compared.

10

15

20

25

30

35

40

In a parallel set of experiments, imRNA from each of the cell types was analyzed for binding to a broad-specificity EST-based microarray, performed according to the method described in WO 01/51616.

Genes were identified as having a differential expression pattern if they showed a comparatively different signal on the microarray.

Significant expression differences determined by EST sequencing, microarray analysis, or other observations were confirmed by real-time PCR analysis. The mRNA was amplified by PCR using specific forward and reverse primers designed from the GenBank sequence, and the amplification product was detected using labeled sequence-specific probes. The number of amplification cycles required to reach a threshold amount was then compared between different libraries.

Distinguishing markers fall into several categories. Those of particular interest include the following:

- Markers characteristically expressed at a higher level in undifferentiated pPS cells than any
 of the differentiated cells, indicating down-regulation during differentiation. The gene
 products may be involved in maintaining the undifferentiated phenotype.
- Markers characteristically expressed at a higher level in the three differentiated cell types
 than in the undifferentiated cells, indicating up-regulation during differentiation. The gene
 products may be involved in the general differentiation process.
- Markers characteristically expressed at a higher level in one of the differentiated cell types.
 The encoded genes may be involved in differentiation down restricted lineages.

Markers can also be classified according to the function of the gene product or its location in the cell. Where not already indicated, protein gene products can be predicted by referencing public information according to the GenBank accession number, or by translating the open reading frame after the translation start signal though the genetic code. Features of the markers listed can be determined by the descriptors give in the tables below, or by using the accession number or sequence data to reference public information. Marker groups of particular interest include the following:

- Secreted proteins of interest, for example, because they can be detected by immunoassay of the culture supernatant, and may transmit signals to neighboring cells.
 Secreted proteins typically have an N-terminal signal peptides, and may have glycosylation sites.
- Surface membrane proteins of interest, for example, because they can be used for cell-surface labeling and affinity separation, or because they act as receptors for signal transduction. They may have glycosylation sites and a membrane spanning region. A Markov model for predicting transmembrane protein topology is described by Krogh et al., J. Mol Biol. 305:567, 2001.
- Enzymes with relevant function. For example, enzymes involved in protein synthesis and cleavage or in apoptosis may influence differentiation. Glycosyltransferases decorate the cell membrane with distinguishing carbohydrate epitopes that may play a role in cellular adhesion or localization.
- Transcription regulatory factors of interest for their potential to influence differentiation, as explained later in this disclosure. These factors sometimes have zinc fingers or other identifiable topological features involved in the binding or metabolism of nucleic acids.

<u>10</u>

10

15

20

25

30

35

40

Through the course of this work, the key signaling pathways Wnt, Sonic hedgehog (Shh), and Notch emerged as regulators of growth of pPS cells. Interestingly, these pathways have also been shown to play a role in the growth of tumor cells of various kinds, and in embryonic development of lower species.

Now that genes have been identified that are up-regulated or down-regulated upon differentiation, a number of commercial applications of these markers will be apparent to the skilled reader. The sections that follow provide non-limiting illustrations of how some of these embodiments can be implemented.

Use of cell markers to characterize pPS cells and their differentiated progeny

The markers provided in this disclosure can be used as a means to identify both undifferentiated and differentiated cells — either a population as a whole, or as individual cells within a population. This can be used to evaluate the expansion or maintenance of pre-existing cell populations, or to characterize the pluripotent nature (or lineage commitment) of newly obtained populations.

Expression of single markers in a test cell will provide evidence of undifferentiated or differentiated phenotype, according to the expression pattern listed later in this disclosure. A plurality of markers (such as any 2, 3, 4, 5, 6, 8, 10, 12, 15, or 20 markers from Tables 2-3 or 5-9) will provide a more detailed assessment of the characteristics of the cell. Expression of genes that are down-regulated and/or lack of expression of genes that are up-regulated upon differentiation correlates with a differentiated phenotype. Expression of genes that are up-regulated and/or lack of expression of genes that are down-regulated upon differentiation correlates with an undifferentiated phenotype. The markers newly identified in this disclosure may be analyzed together (with or without markers that were previously known) in any combination effective for characterizing the cell status or phenotype.

Exemplary combinations of markers are provided elsewhere in this disclosure. For determining the undifferentiated cell phenotype, combinations of markers like Cripto, gastrin-releasing peptide (GRP) receptor, podocalyxin-like protein (PODXL), and human telomerase reverse transcriptase (hTERT) are effective, either alone, or in combination with cell surface markers like SSEA-3, SSEA-4, Tra-1-60 and Tra-1-81, or intracellular markers like Oct 3/4. For determining differentiated cells, any marker can be used that is characteristic of contaminating cells that may be present. Depending on culture conditions, early stage non-specific hES cell differentiation generates cells having characteristics of stromal cells, fibroblasts, mesenchymal cells, embryoid body cells, and other cell types. Alternatively, a combination of markers characteristic of several types of cells can be used, as long as they are preferentially expressed in differentiated cells.

Tissue-specific markers can be detected using any suitable immunological technique — such as flow cytochemistry for cell-surface markers, or immunocytochemistry (for example, of fixed cells or tissue sections) for intracellular or cell-surface markers. Expression of a cell-surface antigen is defined as positive if a significantly detectable amount of antibody will bind to the antigen in a standard immunocytochemistry or flow cytometry assay, optionally after fixation of the cells, and optionally using a labeled secondary antibody or other conjugate to amplify labeling.

The expression of tissue-specific gene products can also be detected at the mRNA level by Northern blot analysis, dot-blot hybridization analysis, or by reverse transcriptase initiated polymerase chain reaction (RT-PCR) using sequence-specific primers in standard amplification methods. See U.S.

10

15

20

25

30

35

40

Patent No. 5,843,780 for further details. Sequence data for particular markers listed in this disclosure can be obtained from public databases such as GenBank.

These and other suitable assay systems are described in standard reference texts, such as the following: PCR Cloning Protocols, 2nd Ed (James & Chen eds., Humana Press, 2002); Rapid Cycle Real-Time PCR: Methods and Applications (C. Wittwer et al. eds., Springer-Verlag NY, 2002); Immunoassays: A Practical Approach (James Gosling ed., Oxford Univ Press, 2000); Cytometric Analysis of Cell Phenotype and Function (McCarthy et al. eds., Cambridge Univ Press, 2001). Reagents for conducting these assays, such as nucleotide probes or primers, or specific antibody, can be packaged in kit form, optionally with instructions for the use of the reagents in the characterization or monitoring of pPS cells, or their differentiated progeny.

Use of cell markers for clinical diagnosis

Stem cells regulate their own replenishment and serve as a source of cells that can differentiate into defined cell lineages. Cancer cells also have the ability to self-renew, but lack of regulation results in uncontrolled cellular proliferation. Three key signaling pathways, Wnt, Sonic hedgehog (Shh), and Notch, are known growth regulators of tumor cells. The genomics data provided in this disclosure indicate that all three of these pathways are active in hES cells.

It is a hypothesis of this invention that many of the markers discovered to be more highly expressed in undifferentiated pPS cells can also be up-regulated upon dedifferentiation of cells upon malignant transformation. Accordingly, this disclosure provides a system for evaluating clinical conditions associated with abnormal cell growth, such as hyperplasia or cancers of various kinds. Markers meeting the desired criteria include those contained in Tables 2, 5, 7 and 9.

Expression of each marker of interest is determined at the mRNA or protein level using a suitable assay system such as those described earlier, and then the expression is correlated with the clinical condition that the patient is suspected of having. As before, combinations of multiple markers may be more effective in doing the assessment. Presence of a particular marker may also provide a means by which a toxic agent or other therapeutic drug may be targeted to the disease site.

In a similar fashion, the markers of this invention can be used to evaluate a human or non-human subject who has been treated with a cell population or tissue generated by differentiating pPS cells. A histological sample taken at or near the site of administration, or a site to which the cells would be expected to migrate, could be harvested at a time subsequent to treatment, and then assayed to assess whether any of the administered cells had reverted to the undifferentiated phenotype. Reagents for conducting diagnostic tests, such as nucleotide probes or primers, or specific antibody, can be packaged in kit form, optionally with instructions for the use of the reagents in the determination of a disease condition.

Use of cell markers to assess and manipulate culture conditions

The markers and marker combinations of this invention provide a system for monitoring undifferentiated pPS cells and their differentiated progeny in culture. This system can be used as a quality control, to compare the characteristics of undifferentiated pPS cells between different passages or

5

10

15

20

25

30

35

40

different batches. It can also be used to assess a change in culture conditions, to determine the effect of the change on the undifferentiated cell phenotype.

Where the object is to produce undifferentiated cells, a decrease in the level of expression of an undifferentiated marker because of the alteration by 3-, 10-, 25-, 100- and 1000-fold is progressively less preferred. Corresponding increases in marker expression may be more beneficial. Moderate decreases in marker expression may be quite acceptable within certain boundaries, if the cells retain their ability to form progeny of all three germ layers is retained, and/or the level of the undifferentiated marker is relatively restored when culture conditions are returned to normal.

In this manner, the markers of this invention can be used to evaluate different feeder cells, extracellular matrixes, base media, additives to the media, culture vessels, or other features of the culture as illustrated in WO 99/20741 and PCT application PCT/US02/28200. Illustrations of this technique are provided below in Example 5 (Figures 3 to 6).

In a similar fashion, the markers of this invention can also be used to monitor and optimize conditions for differentiating cells. Improved differentiation procedures will lead to higher or more rapid expression of markers for the differentiated phenotype, and/or lower or more rapid decrease in expression of markers for the undifferentiated phenotype.

Use of cell markers to regulate gene expression

Differential expression of the markers listed in this disclosure indicates that each marker is controlled by a transcriptional regulatory element (such as a promoter) that is tissue specific, causing higher levels of expression in undifferentiated cells compared with differentiated cells, or vice versa. When the corresponding transcriptional regulatory element is combined with a heterologous encoding region to drive expression of the encoding region, then the expression pattern in different cell types will mimic that of the marker gene.

Minimum promoter sequences of many of the genes listed in this disclosure are known and further described elsewhere. Where a promoter has not been fully characterized, specific transcription can usually be driven by taking the 500 base pairs immediately upstream of the translation start signal for the marker in the corresponding genomic clone.

To express a heterologous encoding region according to this embodiment of the invention, a recombinant vector is constructed in which the specific promoter of interest is operatively linked to the encoding region in such a manner that it drives transcription of the encoding region upon transfection into a suitable host cell. Suitable vector systems for transient expression include those based on adenovirus and certain types of plasmids. Vectors for long-term expression include those based on plasmid lipofection or electroporation, episomal vectors, retrovirus, and lentivirus.

One application of tissue-specific promoters is expression of a reporter gene. Suitable reporters include fluorescence markers such as green fluorescent protein, luciferase, or enzymatic markers such as alkaline phosphatase and β-galactosidase. Other reporters such as a blood group glycosyltransferase (WO 02/074935), or Invitrogen's pDisplay™, create a cell surface epitope that can be counterstained with labeled specific antibody or lectin. pPS cells labeled with reporters can be used to follow the differentiation process directly, the presence or absence of the reporter correlating with the undifferentiated or differentiated phenotype, depending on the specificity of the promoter. This in turn can

10

15

20

25

30

35

be used to follow or optimize culture conditions for undifferentiated pPS cells, or differentiation protocols. Alternatively, cells containing promoter-reporter constructs can be used for drug screening, in which a test compound is combined with the cell, and expression or suppression of the promoter is correlated with an effect attributable to the compound.

Another application of tissue-specific promoters is expression of a positive or negative drug selection marker. Antibiotic resistance genes such as neomycin phosphotransferase, expressed under control of a tissue-specific promoter, can be used to positively select for undifferentiated or differentiated cells in a medium containing the corresponding drug (geneticin), by choosing a promoter with the appropriate specificity. Toxin genes, genes that mediate apoptosis, or genes that convert a prodrug into a toxic compound (such as thymidine kinase) can be used to negatively select against contaminating undifferentiated or differentiated cells in a population of the opposite phenotype (WO 02/42445; GB 2374076).

Promoters specific for the undifferentiated cell phenotype can also be used as a means for targeting cancer cells — using the promoter to drive expression of a gene that is toxic to the cell (WO 98/14593, WO 02/42468), or to drive a replication gene in a viral vector (WO 00/46355). For example, an adenoviral vector in which the GRPR promoter (AY032865) drives the E1a gene should specifically lyse cancer cells in the manner described in Majumdar et al., Gene Ther. 8:568, 2001. Multiple promoters for the undifferentiated phenotype can be linked for improved cancer specificity (USSN 10/206,447).

Other useful applications of tissue-specific promoters of this invention will come readily to the mind of the skilled reader.

Use of markers for cell separation or purification

Differentially expressed markers provided in this disclosure are also a means by which mixed cell populations can be separated into populations that are more homogeneous. This can be accomplished directly by selecting a marker of the undifferentiated or differentiated phenotype, which is itself expressed on the cell surface, or otherwise causes expression of a unique cell-surface epitope. The epitope is then used as a handle by which the marked cells can be physically separated from the unmarked cells. For example, marked cells can be aggregated or adsorbed to a solid support using an antibody or lectin that is specific for the epitope. Alternatively, the marker can be used to attach a fluorescently labeled antibody or lectin, and then the cell suspension can be subject to fluorescence-activated cell sorting.

An alternative approach is to take a tissue-specific promoter chosen based on its expression pattern (as described in the last section), and use it to drive transcription of a gene suitable for separating the cells. In this way, the marker from which the promoter is chosen need not itself be a cell surface protein. For example, the promoter can drive expression of a fluorescent gene, such as GFP, and then cells having the marked phenotype can be separated by FACS. In another example, the promoter drives expression of a heterologous gene that causes expression of a cell-surface epitope. The epitope is then used for adsorption-based separation, or to attach a fluorescent label, as already described.

10

15

20

25

30

35

40

Use of cell markers to influence differentiation

In another embodiment of this invention, the differentially expressed genes of this invention are caused to increase or decrease their expression level, in order to either inhibit or promote the differentiation process. Suitable genes are those that are believed in the normal case of ontogeny to be active in maintaining the undifferentiated state, active in the general process of differentiation, or active in differentiation into particular cell lineages. Markers of interest for this application are the following:

- Transcription factors and other elements that directly affect transcription of other genes, such as Forkhead box O1A (FOXO1A); Zic family member 3 (ZIC3); Hypothetical protein FLJ20582; Forkhead box H1 (FOXH1); Zinc finger protein, Hsal2; KRAB-zinc finger protein SZF1-1; Zinc finger protein of cerebellum ZIC2; and Coup transcription factor 2 (COUP-TF2). Other candidates include those marked in Tables 5 and 6 with the symbol "%", and other factors with zinc fingers or nucleic acid binding activity.
- Genes that influence cell interaction, such as those that encode adhesion molecules, and enzymes that make substrates for adhesion molecules
- Genes encoding soluble factors that transmit signals within or between cells, and specific
 receptors that recognize them and are involved in signal transduction.

One way of manipulating gene expression is to induce a transient or stable genetic alteration in the cells using a suitable vector, such as those already listed. Scientists at Geron Corp. have determined that the following constitutive promoters are effective in undifferentiated hES cells: for transient expression CMV, SV40, EF1 α , UbC, and PGK; for stable expression, SV40, EF1 α , UbC, MND and PGK. Expressing a gene associated with the undifferentiated phenotype may assist the cells to stay undifferentiated in the absence of some of the elements usually required in the culture environment. Expressing a gene associated with the differentiated phenotype may promote early differentiation, and/or initiate a cascade of events beneficial for obtaining a desired cell population. Maintaining or causing expression of a gene of either type early in the differentiation process may in some instances help guide differentiation down a particular pathway.

Another way of manipulating gene expression is to alter transcription from the endogenous gene. One means of accomplishing this is to introduce factors that specifically influence transcription through the endogenous promoter. Another means suitable for down-regulating expression at the protein level is to genetically alter the cells with a nucleic acid that removes the mRNA or otherwise inhibits translation (for example, a hybridizing antisense molecule, ribozyme, or small interfering RNA). Dominant-negative mutants of the target factor can reduce the functional effect of the gene product. Targeting a particular factor associated with the undifferentiated phenotype in this fashion can be used to promote differentiation. In some instances, this can lead to de-repression of genes associated with a particular cell type.

Where the gene product is a soluble protein or peptide that influences cell interaction or signal transduction (for example, cytokines like osteopontin and Cripto), then it may be possible to affect differentiation simply by adding the product to the cells — in either recombinant or synthetic form, or purified from natural sources. Products that maintain the undifferentiated phenotype can then be withdrawn from the culture medium to initiate differentiation; and products that promote differentiation can be withdrawn once the process is complete.

10

15

20

25

30

35

40

Since differentiation is a multi-step process, changing the level of gene product on a permanent basis may cause multiple effects. In some instances, it may be advantageous to affect gene expression in a temporary fashion at each sequential step in the pathway, in case the same factor plays different effects at different steps of differentiation. For example, function of transcription factors can be evaluated by changing expression of individual genes, or by invoking a high throughput analysis, using cDNAs obtained from a suitable library such as exemplified in Example 1. Cells that undergo an alteration of interest can be cloned and pulled from multi-well plates, and the responsible gene identified by PCR amplification.

The effect of up- or down-regulating expression of a particular gene can be determined by evaluating the cell for morphological characteristics, and the expression of other characteristic markers. Besides the markers listed later in this disclosure, the reader may want to follow the effect on particular cell types, using markers for later-stage or terminally differentiated cells. Tissue-specific markers suitable for this purpose are listed in WO 01/81549 (hepatocytes), WO 01/88104 (neural cells), PCT/US02/20998 (osteoblasts and mesenchymal cells), PCT/US02/22245 (cardiomyocytes), PCT/US02/39091 (hematopoietic cells), PCT/US02/39089 (islet cells), and PCT/US02/39090 (chondrocytes). Such markers can be analyzed by PCR amplification, fluorescence labeling, or immunocytochemistry, as already described. Promoter-reporter constructs based on the same markers can facilitate analysis when expression is being altered in a high throughput protocol.

The examples that follow are provided for further illustration, and are not meant to limit the claimed invention.

EXAMPLES

Example 1: An EST database of undifferentiated hES cells and their differentiated progeny

cDNA libraries were prepared from human embryonic stem (hES) cells cultured in undifferentiated form. cDNA libraries were also prepared from progeny, subject to non-specific differentiation as embryoid bodies (EBs), or taken through the preliminary stages of established differentiation protocols for neurons (preNEU) or hepatocytes (preHEP).

The hES cell lines H1, H7, and H9 were maintained under feeder-free conditions. Cultures were passaged every 5-days by incubation in 1 mg/mL collagenase IV for 5-10 min at 37°C, dissociated and seeded in clumps at 2.5 to 10 × 10⁵ cells/well onto Matrigel™-coated six well plates in conditioned medium supplemented with 8 mg/mL bFGF. cDNA libraries were made after culturing for 5 days after the last passage.

EBs were prepared as follows. Confluent plates of undifferentiated hES cells were treated briefly with collagenase IV, and scraped to obtain small clusters of cells. Cell clusters were resuspended in 4 mL/well differentiation medium (KO DMEM containing 20% fetal bovine serum in place of 20% SR, and not preconditioned) on low adhesion 6-well plates (Costar). After 4 days in suspension, the contents of each well was transferred to individual wells pre-coated with gelatin. Each well was re-fed with 3 mL fresh differentiation medium every two days after replating. Cells were used for the preparation of cytoplasmic RNA on the eighth day after plating.

PreHEP cells were prepared based on the hepatocyte differentiation protocol described in WO 01/81549. Confluent wells of undifferentiated cells were prepared, and medium was changed to KO DMEM plus 20% SR + 1% DMSO. The medium was changed every 24 h, and cells were used for preparation of cytoplasmic RNA on day 5 of DMSO treatment.

PreNEU cells were prepared based on the neural differentiation protocol described in WO 01/88104. hES cells of the H7 line (p29) were used to generate EBs as described above except that 10 µM all-trans RA was included in the differentiation medium. After 4 days in suspension, EBs were transferred to culture plate precoated with poly-L-lysine and laminin. After plating, the medium was changed to EPFI medium. Cells were used for the preparation of cytoplasmic RNA after 3 days of growth in EPFI.

Partial 5' end sequences (an expressed sequence tag, or EST) were determined by conventional means for independent clones derived from each cDNA library. Overlapping ESTs were assembled into conjoined sequences.

TABLE 1: Non-redun	dant EST sequences
Library	Number of ESTs
hESC	37,081
EB	37,555
preHEP	35,611
preNEU	38,206
Total	148,453

15

20

25

30

5

10

All of the stem cell lines used for preparation of the expression libraries were originally isolated and initially propagated on mouse feeder cells. Accordingly, the libraries were analyzed to determine whether they were contaminated with murine retroviruses that had shed from the feeder cells and subsequently infected the stem cells. Three complete viral genomes were used in a BLAST search: Moloney murine leukemia virus, Friend murine leukemia virus, and murine type C retrovirus. No matches with a high score were found against any of the ESTs.

The sequences were then compared to the Unigene database of human genes. ESTs that were at least 98% identical, over a stretch of at least 150 nucleotides each, to a common reference sequence in Unigene, were assumed to be transcribed from the same gene, and placed into a common assembly. The complete set of 148,453 ESTs collapsed to a non-redundant set of 32,764 assemblies.

Example 2: Selection of marker genes specific for undifferentiated and differentiated cells

Candidate markers were selected from a database based on the imputed level of gene expression. The frequency of ESTs for any particular gene correlates with the abundance of that mRNA in the cells used to generate the cDNA library. Thus, a comparison of frequencies of ESTs among the libraries indicates the relative abundance of the associated mRNA in the different cell types.

Candidate molecular markers were selected from the expressed gene (EST) database from their greater abundance in undifferentiated hES cells, relative to differentiated hES cells. Genes were identified as having a differential expression pattern (being up- or down-regulated) during the differentiation process, if the count of ESTs sequenced in the undifferentiated cells was substantially different from the sum of ESTs in the three differentiated libraries.

Oct 3/4 (a POU domain-containing transcription factor) and telomerase reverse transcriptase (hTERT) are known to be expressed preferentially in undifferentiated hES cells (WO 01/51616). Other genes suitable for characterizing or manipulating the undifferentiated phenotype are those that are down-regulated upon differentiation with a significance of p ≤ 0.05, as determined by the Fisher Exact Test (explained below). 193 genes were found to have 4-fold more ESTs in hES cells, relative to each of the three cell types. 532 genes were found that were 2-fold greater hES cells, with a confidence of over 95% as determined by the Fisher Exact Test, relative to the sum of ESTs of the three cell types (minimum of 4 ESTs in hES cells). The following markers are of particular interest:

15

5

10

TABLE 2: EST Frequency of Genes that are Down-regulated upon Differentiation of hES cells

Geron ID	GenBank ID	Name		EST	counts	
40.011.15	30 1,2a		ES	EB	preHEP	preNEU
GA_10902	NM_024504	Pr domain containing 14 (PRDM14)	12	1	0	0
GA_11893	NM_032805	Hypothetical protein FLJ14549	25	0	0	0
GA_12318	NM_032447	Fibrillin3	6	0	0	0
GA_1322	NM_000142	Fibroblast growth factor receptor 3 precursor	9	1	5	1
GA_34679	NM_002015	(FGFR-3) Forkhead box o1a (FOXO1a)	4	0	1	1
GA_1470	NM_003740	potassium channel, subfamily K, member 5 (KCNK5), mRNA	4	0	0	1
GA_1674	NM_002701		24	1	2	0
GA_2024	NM_003212	11 811	20	1	0	0
GA_2149	NM_003413		7	0	1	0
GA_2334	NM_000216	Kalimann syndrome 1 sequence (KAL1)	5	0	1	0
GA_23552	NM_152742	hypothetical protein DKFZp547M109 (DKFZp547M109), mRNA	6	0	1	2
GA_2356	NM_002851	the state of the s	10	0	0	0
GA_2357	NM_001670	and the state of the	6	0	0	0
GA_23578	BM454360	AGENCOURT_6402318 NIH_MGC_85 Homo sapiens cDNA clone IMAGE:5497491 5', mRNA sequence	6	0	υ	0

10

TABLE 2: EST Frequency of Genes that are Down-regulated upon Differentiation of hES cells

Geron ID	GenBank ID	Name		EST	counts	
			ES	EB	preHEP	preNEU
GA_2367	NM_003923	Forkhead box H1 (FOXH1)	5	0	0	0
GA_2436	NM_004329	Bone morphogenetic protein receptor, type Ia (BMPR1A) (ALK-3)	7	3	1	1
GA_2442	NM_004335	Bone marrow stromal antigen 2 (BST-2)	13	0	2	3
GA_2945	NM_005232	Ephrin type-a receptor 1 (EPHA1)	5	1	1	1
GA_2962	NM_005314	Gastrin-releasing peptide receptor (GRP-R)	4	0	0	0
GA_2988	NM_005397	Podocalyxin-like (PODXL)	59	23	5	8
GA_3337	NM_006159	NELL2 (nel-like protein 2)	5	3	2	0
GA_3559	NM_005629	Solute carrier family 6, member 8 (SLC6A8)	5	1	0	1
GA_3898	NM_006892	DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3B)	49	2	3	1
GA_5391	NM_002968	Sal-like 1 (SALL1),	7	1	1	0
GA_33680	NM_016089	Krab-zinc finger protein SZF1-1	15	0	1	0
GA_36977	NM_020927	KIAA1576 protein	9	2	1	0
GA_8723	NM_152333	Homo sapiens chromosome 14 open reading frame 69 (C14orf69), mRNA	14	1	1	3
GA_9167	AF308602	Notch 1 (N1)	6	2	1	0
GA_9183	NM_007129	Homo sapiens Zic family member 2 (odd- paired homolog, Drosophila) (ZIC2), mRNA	8	1	1	0
GA_35037	NM_004426	Homo sapiens polyhomeotic-like 1 (Drosophila) (PHC1), mRNA	34	9	5	4

Only one EST for hTERT was identified in undifferentiated hES cells and none were detected from the differentiated cells, which was not statistically significant. Thus, potentially useful markers that are expressed at low levels could have been omitted in this analysis, which required a minimum of four ESTs. It would be possible to identify such genes by using other techniques described elsewhere in this disclosure.

Three genes were observed from EST frequency queries that were of particular interest as potentially useful markers of hES cells. They were Teratocarcinoma-derived growth factor (Cripto), Podocalyxin-like (PODXL), and gastrin-releasing peptide receptor (GRPR). These genes were not only more abundant in undifferentiated cells, relative to differentiated hES cells, but also encoded for proteins expressed on the surface of cells. Surface markers have the added advantage that they could be easily detected with immunological reagents. ESTs for Cripto and GRPR were quite restricted to hES cells, with

5

10

one or zero ESTs, respectively, scored in any of the differentiated cells. PODXL ESTs were detected in all 4-cell types, but substantially fewer (2.5X -12X) in differentiated cells. All three markers retained a detectable level of expression in differentiated cultures of hES cells. There may be a low level of expression of these markers in differentiated cells, or the expression detected may be due to a small proportion of undifferentiated cells in the population. GABA(A) receptor, Lefty B, Osteopontin, Thy-1 co-transcribed, and Solute carrier 21 are other significant markers of the undifferentiated phenotype.

By similar reasoning, genes that show a higher frequency of ESTs in differentiated cells can be used as specific markers for differentiation. ESTs that are 2-fold more abundant in the sum of all three differentiated cell types (EBs, preHEP and preNEU cells) and with a p-value ≤ 0.05 as determined by the Fisher Exact Test, compared with undifferentiated hES cells are candidate markers for differentiation down multiple pathways. ESTs that are relatively abundant in only one of the differentiated cell types are candidate markers for tissue-specific differentiation. The following markers are of particular interest:

TABLE 3: EST Frequency of Genes that are Upregulated upon Differentiation

Geron ID	GenBank ID	Name		EST	counts	
			ES	EB	preHEP	preNEU
GA_35463	NM_024298	Homo sapiens leukocyte receptor cluster (LRC) member 4 (LENG4), mRNA	0	4	9	8
GA_10492	NM_006903	Inorganic pyrophosphatase (PPASE)	0	5	5	6
GA_38563	NM_021005	Homo sapiens nuclear receptor subfamily 2, group F, member 2 (NR2F2), mRNA	0	9	8	9
GA_38570	NM_001844	Collagen, type II, alpha 1 (COL2A1), transcript variant 1		15	31	5
GA_1476	NM_002276	Keratin type I cytoskeletal 19 (cytokeratin 19)	1	26	14	38
GA_34776	NM_002273	Keratin type II cytoskeletal 8 (cytokeratin 8) (CK 8)	9	71	144	156
GA_1735	NM_002806	Homo sapiens proteasome (prosome, macropain) 26S subunit, ATPase, 6 (PSMC6), mRNA	1	7	7	8
GA_1843	NM_000982	60s ribosomal protein l21	1	7	48	42
GA_35369	NM_003374	Voltage-dependent anion-selective channel (VDAC-1)	1	5	6	10
GA_23117	NM_004772	P311 protein [Homo sapiens]	1	5	7	6
GA_2597	NM_138610	Homo sapiens H2A histone family, member Y (H2AFY), transcript variant 3, mRNA	1	5	5	14
GA_3283	NM_004484	Homo sapiens glypican 3 (GPC3), mRNA	1	6	7	12
GA_3530	NM_002539	Homo sapiens ornithine decarboxylase 1 (ODC1), mRNA	1	10	8	9
GA_4145	NM_002480	Protein phosphatase 1, regulatory(inhibitor) subunit 12A (PPP1R12A)	1	6	6	6

TABLE 3: EST Frequency of Genes that are Upregulated upon Differentiation

Geron ID	GenBank ID	Name		EST	counts	
			ES	EB	preHEP	preNEU
GA_5992	NM_014899	Homo sapiens Rho-related BTB domain containing 3 (RHOBTB3), mRNA	0	10	7	13
GA_6136	NM_016368	Homo sapiens myo-inositol 1-phosphate synthase A1 (ISYNA1), mRNA	1	7	5	16
GA_6165	NM_015853	Orf (LOC51035)	1	5	9	5
GA_6219	NM_016139	16.7Kd protein (LOC51142),	1	5	13	14
GA_723	NM_005801	Homo sapiens putative translation initiation factor (SUI1), mRNA	1	14	15	19
GA_9196	NM_000404	Homo sapiens galactosidase, beta 1 (GLB1), transcript variant 179423, mRNA	0	6	10	7
GA_9649	NM_014604	Tax interaction protein 1 (TIP-1)	0	8	5	5

Example 3: Specificity of expression confirmed by real-time PCR

To verify the expression patterns of particular genes of interest at the mRNA level, extracts of undifferentiated hES cells and their differentiated progeny were assayed by real-time PCR. Cells were cultured for 1 week with 0.5% dimethyl sulfoxide (DMSO) or 500 nM retinoic acid (RA). The samples were amplified using sequence-specific primers, and the rate of amplification was correlated with the expression level of each gene in the cell population.

TaqmanTM RT-PCR was performed under the following conditions: 1 × RT Master Mix (ABI), 300 nM for each primer, and 80 nM of probe, and 10 pg to 100 ng of total RNA in nuclease-free water. The reaction was conducted under default RT-PCR conditions of 48°C hold for 30 min, 95°C hold for 10 min, and 40 cycles of 95°C at 15 sec and 60°°C hold for 1 min. RNA was isolated by a guanidinium isothiocyanate method (RNAeasyTM kit, Qiagen) according to manufacturer's instructions, and subsequently DNAse treated (DNAfreeTM kit, Ambion). Gene-specific primers and probes were designed by PrimerExpressTM software (Ver. 1.5, ABI). Probe oligonucleotides were synthesized with the fluorescent indicators 6-carboxyfluorescein (FAM) and 6-carboxy-tetramethylrhodamine (TAMRA) at the 5' and 3' ends, respectively. Relative quantitation of gene expression between multiple samples was achieved by normalization against endogenous18S ribosomal RNA (primer and probe from ABI) using the ΔΔC_T method of quantitation (ABI). Fold change in expression level was calculated as 2 -ΔΔCT.

The table below shows the results of this analysis. Since the cells have been cultured in RA and DMSO for a short period, they are at the early stages of differentiation, and the difference in expression level is less dramatic than it would be after further differentiation. Of particular interest for following or modulating the differentiation process are markers that show modified expression within the first week of differentiation by more than 2-fold (*), 5-fold (**), 10-fold (***), or 100-fold (****).

20

5

10

15

TABLE 4: Quantitative RT-PCR analysis of gene expression in hESC differentiation

	Geron ID	GenBank ID	Name	Fold (Change
				RA	DMSC
١.	GA_10902	NM_024504	Pr domain containing 14 (PRDM14) **	-1.9	-8.3
	GA_11893	NM_032805	Hypothetical protein FLJ14549 ***	-2.3	-10.0
	GA_12318	NM_032447	Fibrillin3		
	GA_1322	NM_000142	Fibroblast growth factor receptor 3 precursor	1.5	2.3
	GA_1329	NM_002015	(FGFR-3) * Forkhead box o1a (foxo1a) *	-1.6	-2.9
	GA_1470	NM_003740	Potassium channel subfamily k member 5 (TASK-2)	-1.6	1.0
	GA_1674	NM_002701	Octamer-binding transcription factor 3a (OCT-3A)	-3.7	-7.7
	GA_2024	NM_003212	(OCT-4) ** Teratocarcinoma-derived growth factor 1 (CRIPTO) ***	-4.0	-12.5
	GA_2149	NM_003413	Zic family member 3 (ZIC3) **	-1.7	-5.3
	GA_2334	NM_000216	Kallmann syndrome 1 sequence (KAL1) *	-1.1	-2.5
	GA_23552	BC027972	Giypican-2 (cerebroglycan)	-1.5	-1.2
	GA_2356	NM_002851	Protein tyrosine phosphatase, receptor-type, z	-1.7	-3.3
	GA_2367	NM_003923	polypeptide 1 (PTPRZ1) * Forkhead box h1 (FOXH1) **	-1.8	-5.6
	GA_2436	NM_004329	Bone morphogenetic protein receptor, type la	-2.4	-2.4
	GA_2442	NM_004335	(BMPR1A) (ALK-3) * Bone marrow stromal antigen 2 (BST-2)	1.1	-1.9
	GA_2945	NM_005232	Ephrin type-a receptor 1 (EPHA1)	-1.3	-1.9
	GA_2962	NM_005314	Gastrin-releasing peptide receptor (GRP-R) **	-6.3	-9.1
	GA_2988	NM_005397	Podocalyxin-like (PODXL) *	-2.6	-4.3
	GA_3337	NM_006159	Nell2 (NEL-like protein 2)	-1.3	-1.3
	GA_3559	NM_005629	Solute carrier family 6, member 8 (SLC6A8)	-1.1	-1.1
	GA_420	X98834	Zinc finger protein, HSAL2 *	-1.4	-2.8
	GA_5391	NM_002968	Sal-like 1 (SALL1),	1.4	-1.3
	GA_6402	NM_016089	Krab-zinc finger protein SZF1-1 *	-1.8	-3.1
	GA_9167	AF308602	Notch 1 (N1)	1.3	1.0
	GA_9183	AF193855	Zinc finger protein of cerebellum ZIC2 *	1.0	-2.9
	GA_9443	NM_004426	Early development regulator 1 (polyhomeotic 1 homolog) (EDR1) **	-1.8	-5.6
3.	GA_9384	NM_020997	Left-right determination, factor b (LEFTB) **	-16.7	-25.0
	GA_12173	BC010641	Gamma-aminobutyric acid (GABA) A receptor,	-2.8	-5.6

TABLE 4: Quantitative RT-PCR analysis of gene expression in hESC differentiation

Geron ID	GenBank ID	Name	Fold C	hange
			RA	DMSO
		beta 3 **		
GA_10513	NM_033209	Thy-1 co-transcribed ***	-12.5	-11.1
GA_1831	NM_002941	Roundabout, axon guidance receptor, homolog 1 (ROBO1).	1.1	1.0
GA_2753	NM_000582	Secreted phosphoprotein 1 (osteopontin) ***	-3.8	-10.0
GA_32919	NM_133259	130 kDa leucine-rich protein (LRP 130)	-1.9	-1.9
GA_28290	AK055829	FLJ31267 (acetylglucosaminyltransferase-like protein) *	-2.3	-4.5
C. GA_28053	T24677	EST ****	< -100*	< -100*
GA_26303	NM_138815	Hypothetical protein BC018070 ***	-3.2	-10.0
GA_2028	NM_003219	Telomerase reverse transcriptase (TERT) *	-2.1	-2.3

Example 4: Selection of markers for monitoring ES cell differentiation

Genes that undergo up- or down-regulation in expression levels during differentiation are of interest for a variety of different commercial applications, as described earlier. This experiment provides an example in which certain genes were selected as a means to monitor the ability of culture conditions to maintain the undifferentiated cell phenotype — and hence, the pluripotent differentiation capability of the cells.

Particular genes were chosen from those identified as having differential expression patterns, because they are known or suspected of producing a protein gene product that is expressed at the cell surface, or is secreted. These attributes are helpful, because they allow the condition of the cells to be monitored easily either by antibody staining of the cell surface, or by immunoassay of the culture supernatant. Genes were chosen from the EST database (Groups 1), microarray analysis (Group 2), and other sources (Group 3).

15

10

5

TABLE 5: Additional Genes analyzed by real-time PCR

		•
	Name	GenBank or ID No.
Group 1	Bone marrow stromal antigen	NM_004335
	Podocalyxin-like	NM_005397
	Rat GPC/ glypican-2 (cerebroglycan)	TA_5416486
	Potassium channel subfamily k member 5 (TASK-2)	NM_003740
	Notch 1 protein	AF308602

TABLE 5: Additional Genes analyzed by real-time PCR GenBank or Name ID No. Teratocarcinoma-derived growth factor 1 (Cripto) NM_003212 Nel 1 like / NELL2 (Nel-like protein 2) NM_006159 Gastrin releasing peptide receptor NM_005314 Bone morphogenetic protein receptor NM_004329 ABCG2- ABC transporter AY017168 Solute carrier family 6, member 8 (SLC6A8) NM_005629 NM_003219 Oct 3/4 octamer-binding transcription factor 3a (oct-3a) (oct-4) NM_002701 Group 2 Left-right determination factor b (LEFTB) NM_020997 Secreted phosphoprotein 1 (osteopontin) NM_000582 Gamma-aminobutyric acid (GABA) A receptor, beta 3 NM_021912 Roundabout, axon guidance receptor, homologue 1 (ROBO1), NM_002941 Glucagon receptor NM_00160 Leucine-rich PPR-motif hum 130 kDa hum130leu 130kd Leu M92439 Thy-1 co-transcribed NM_033209 Solute carrier family 21 NM_016354 LY6H lymphocyte antigen 6 complex locus H NM_002347 Plexin (PLXNB3) NM_005393 **ICAM** NM_000201 Group 3 Rhodopsin NM_000539 Kallmann syndrome 1 sequence (KAL1) NM_000216 Armadillo repeat protein deleted in velo-cardio-facial syndrome NM_001670 (ARVCF)

Figure 1 shows the decrease in expression of the genes in Group I (Upper Panel) and Group II (Lower Panel) in H9 hES cells after culturing for 7 days with RA or DM. Gene expression of rhodopsin and ICAM was below the limit of detection in differentiated cells. KAL1 and EPHA1 were not tested.

NM_005232

Ephrin type-a receptor 1 (EPHA1)

5

10

Besides hTERT and Oct 3/4, three other genes were selected as characteristic of the undifferentiated hES cell phenotype. They were Teratocarcinoma-derived growth factor (Cripto), Podocalyxin-like (PODXL), and gastrin-releasing peptide receptor (GRPR).

Figure 2 compares the level of expression of these five genes in hES cells with fully differentiated cells: BJ fibroblasts, BJ fibroblasts transfected to express hTERT (BJ-5TA), and 293

(human embryonic kidney) cells. The level of all markers shown was at least 10-fold higher, and potentially more than 10², 10³, 10⁴, 10⁵, or 10⁶-fold higher in pluripotent stem cells than fully differentiated cells. All five markers retained a detectable level of expression in differentiated cultures of hESC. It is not clear if there is lower level of expression of these markers in differentiated cells, or if the detectable expression derived from the undifferentiated cells in the population. The one exception observed in this experiment was the hTERT transgene, expressed at an elevated level as expected in the BJ-5TA cells.

High-level expression of Cripto, GRPR and PODXL in undifferentiated hES cells reveals interesting aspects of the biology of these cells. Cripto has been implicated in normal mammalian development and tumor growth. Cripto encodes a glycosylphosphoinositol anchored protein that contains an EGF repeat and a cysteine rich motif, which makes it a member of the EGF-CFC family. It has been demonstrated that Cripto serves as a co receptor for Nodal, which is essential for mesoderm and endoderm formation in vertebrate development (Yeo et al., Molecular Cell 7:949, 2001). The finding that Cripto is expressed preferentially on undifferentiated hESC suggests that Nodal is an important signaling molecule for stem cells, perhaps to promote survival and/or proliferation.

PODXL encodes for transmembrane sialoprotein that is physically linked to the cytoskeleton. PODXL is suspected to act as an inhibitor of cell-cell adhesion and has been implicated in the embryonic development of the kidney podocyte. The anti-adhesion properties of PODXL when expressed on undifferentiated hESC may be an important feature related to stem cell migration.

The receptor for gastrin releasing peptide (GRP) is a G-protein coupled receptor that mediates numerous biological effects of Bombesin-like peptides, including regulation of gut acid secretion and satiety. A critical role has also been established for GRP and GRPR in control growth of cultured cells and normal mammalian development. GRP and GRPR may be oncofetal antigens that act as morphogens in normal development and cancer.

Example 5: Use of cell markers to modify ES cell culture conditions

5

10

15

20

25

30

35

40

This example illustrates the utility of the differentially expressed genes identified according to this invention in the evaluation of culture environments suitable for maintaining pluripotent stem cells.

Figure 3 show results of an experiment in which hES cells of the H1 line were maintained for multiple passages in different media. Medium conditioned with feeder cells provides factors effective to allow hES cells to proliferate in culture without differentiating. However, culturing in unconditioned medium leads to loss of the undifferentiated phenotype, with an increasing percentage of the cells showing decreased expression of CD9 (a marker for endothelial cells, fibroblasts, and certain progenitor cells), and the classic hES cell marker SSEA-4.

Figure 4 illustrates the sensitivity of hTERT, Oct 3/4, Cripto, GRP receptor, and podocalyxin-like protein (measured by real-time PCR assay) as a means of determining the degree of differentiation of the cells. After 4 passages in unconditioned X-VIVO™ 10 medium containing 8 ng/mL bFGF, all 5 markers show expression that has been downregulated by about 10-fold. After 8 passages, expression has decreased by 10², 10³, or 10⁴-fold.

ń

Figure 5 shows results of an experiment in which the hES cell line H1 was grown on different feeder cell lines: mEF = mouse embryonic fibroblasts; hMSC = human mesenchymal stem cells; UtSMC = human uterine smooth muscle cells; WI-38 = an established line of human lung fibroblasts. As

monitored by RT-PCR assay of Cripto, Oct 3/4, and hTERT, at least under the conditions used in this experiment, the hMSC are better substitutes for mEF feeders than the other cell lines tested.

Figure 6 shows results of an experiment in which different media were tested for their ability to promote growth of hES cells without differentiation. Expression of Podocalyxin-like protein, Cripto, GFP Receptor, and hTERT were measured by RT-PCR. The test media were not preconditioned, but supplemented with the growth factors as follows:

TABLE	TABLE 6: Growth Conditions Tested for Marker Expression			
Standard conditions:	Standard conditions: DMEM preconditioned with mEF+ bFGF (8 ng/mL)			
Condition 3	X-VIVO [™] 10 + bFGF (8 ng/mL)			
Condition 4	X-VIVO [™] 10 + bFGF (40 ng/mL)			
Condition 5	X-VIVO [™] 10 + bFGF (40 ng/mL) + stem cell factor (SCF, 15 ng/mL)			
Condition 6	X-VIVO [™] 10 + bFGF (40 ng/mL) + Flt3 ligand (75 ng/mL)			
Condition 7	X-VIVO [™] 10 + bFGF (40 ng/mL) + LIF (100 ng/mL)			
Condition 8	QBSFTM-60 + bFGF (40ng/mL)			

The results show that the markers selected to monitor the undifferentiated phenotype showed similar changes in each of these culture conditions. By all criteria, XVIVO 10™ supplemented according to Condition 6 was found to be suitable for culturing hES cells without having to be preconditioned. As shown on the right side, when cells were put back into standard conditioned medium after 8 passages in the test conditions, expression of all four markers returned essentially to original levels. This shows that alterations in expression profiles in media Conditions 4 to 8 are temporary and reversible — consistent with the cells retaining full pluripotency.

Example 6: Measuring undifferentiated cell markers by flow cytometry

5

10

15

20

25

Cells from the undifferentiated hES cell line H1 were grown in mEF conditioned medium in Matrigel® coated 6-well plates. Cells were harvested using 3.0 mL of 0.5 mM EDTA and resuspended in PBS containing 5% fetal calf serum and 0.05% NaN₃ at a concentration of 5×10^6 cells/mL. For SSEA-4 and TRA1-60 staining, 1 μ g of antibody (Chemicon International) was used. Cells were incubated for a period of 30 min on ice followed by one wash with 2.0 mL of PBS-FCS buffer . Cell pellets were resuspended in 100 μ l of fluorochrome conjugated secondary antibody. For intracellular Oct-4 staining, the cells were fixed with 2% PFA (final concentration) for 15 min at room temperature. After one wash, cells were resuspended in a permeabilization buffer (PBS-FCS plus 90% cold methanol) followed by 15 min in ice, washed again, and then resuspended the cell pellet in blocking solution (20% goat serum in permeabilization buffer). 0.5×10^6 or 1.0×10^6 permeabilized cells were stained with 1 μ g of anti-Oct-4 antibody (Santa Cruz Biotechnology) in 10 μ L of blocking solution, incubated on ice for 30 min. After rewashing, the cells were stained with labeled secondary antibody.

Figure 7 shows that SSEA-4, TRA 1-60 and Oct-4 markers were all strongly expressed on undifferentiated cells under these conditions. Solid areas in each panel indicate background staining observed with the respective isotype-matched controls. In fact, greater than 85% of hES cells expressed all three markers.

5

10

Example 7: Measuring differentiated cells using stromal markers

The extent of differentiation can be determined by detecting or measuring markers for undifferentiated cells, in combination with markers for differentiated cells of the type expected in early differentiation cultures — either by antibody staining, or by PCR amplification (Taqman[™]), or by a combination of techniques.

In this example, screening of useful stromal cell markers was done by immunocytochemistry of hES cells cultured in XVIVO 10™ with bFGF, or medium conditioned using mouse embryonic fibroblasts. Antibodies were obtained from commercial sources as follows:

TARIF 7	Primary Antibody for M	leasuring Diffe	erentiated Cells

Marker	Vendor	Catalog No.
STRO-1	RnD Systems	MAB 1038
Human Thymus Stroma	BD Pharmingen	555825
CD44	BD Pharmingen	550988
CD90	BD Pharmingen	555593
CD105 (Endoglin)	Chemicon	MAB2152
CD106 (VCAM-1)	BD Pharmingen	555645
Vimentin	Sigma	V 5255

15

Figure 8 shows the results of the immunocytochemical analysis. CD44, STRO-1 and Vimentin stain stromal-like cells in the hES cell populations cultured with mEF conditioned medium.

Example 8: Sensitivity of the assay for undifferentiated cells

20

Real-time PCR assays were performed using mixtures of undifferentiated hES cells and BJ fibroblasts, to determine the sensitivity of the assay for the presence of differentiated cells.

25

Freshly harvested cells were combined to a total of 2×10^5 cells in 10% increments of each cell type. Total RNA was isolated (Roche isolation kit), and then treated with DNAse 1 to remove potential DNA contaminants. (Ambion kit). Amplification mixtures were made up in QRT-PCR master mix buffer (P/N 4309169) to a final volume of 25 μ L at a concentration of 10 μ M forward primer, 10 μ M reverse primer, 10 μ M probe, and ~100 ng RNA. Data analysis was performed using the comparative Ct method using 18S rRNA endogenous control. (Other suitable housekeeping genes for standardization can be used instead, such as acidic ribosomal protein, β -actin, cyclophilin, G3P dehydrogenase, or β 2-microglobulin).

Figure 9 shows the relative change of gene expression measured in mixtures of differentiated (BJ) and undifferentiated hES cells, compared with undifferentiated hES cells alone. These five markers are able to rank 10% changes in the proportion of undifferentiated cells.

5

10

SEQUENCE DATA

TABLE 8: Sequences Referred To in this Disclosure			
Designation	Reference		
hTERT mRNA sequence	GenBank Accession NM_003129		
hTERT protein sequence	GenBank Accession NM_003129		
Oct 3/4 mRNA sequence	GenBank Accession NM_002701		
Oct 3/4 protein sequence	GenBank Accession NM_002701		
Cripto mRNA sequence	GenBank Accession NM_003212		
Cripto protein sequence	GenBank Accession NM_003212		
podocalyxin-like protein mRNA sequence	GenBank Accession NM_005397		
podocalyxin-like protein amino acid sequence	GenBank Accession NM_005397		
GRP receptor mRNA sequence	GenBank Accession NM_005314		
GRP receptor proteins sequence	GenBank Accession NM_005314		
Primers & probes for real-time PCR assay	This disclosure		
Human telomeric repeats	U.S. Patent 5,583,016		
Novel expressed sequences from hES cells	This disclosure:SEQ. ID NOs:1-39		

.

The subject matter provided in this disclosure can be modified as a matter of routine optimization, without departing from the spirit of the invention, or the scope of the appended claims.

CLAIMS

- A method for assessing a culture of undifferentiated primate pluripotent stem (pPS) cells or their progeny, comprising detecting or measuring expression of three or more of the markers in any of Tables 5 to 9.
- 2. The method of the preceding claim, comprising measuring expression of three or more of the markers in Tables 2, 7, and 9(C), and correlating the expression measured with the presence of undifferentiated embryonic stem (ES) cells in the culture.
- 3. The method of any preceding claim, comprising measuring expression of three or more of the markers in Tables 3 and 8, and correlating the expression measured with the presence of differentiated cells in the culture.
- 4. The method of any preceding claim, comprising detecting or measuring expression of one or more of the following markers: bone marrow stromal antigen; Podocalyxin-like; Rat GPC/ glypican-2 (cerebroglycan); Potassium channel subfamily k member 5 (TASK-2); Notch 1 protein; Teratocarcinoma-derived growth factor 1 (Cripto); Nel 1 like / NELL2 (Nel-like protein 2); Gastrin releasing peptide receptor; Bone morphogenetic protein; ABCG2- ABC transporter; Solute carrier family 6, member 8 (SLC6A8); hTERT; Oct 3/4 Octamer-binding transcription factor 3a (Oct-3a) (Oct-4); Left-right determination factor b (LEFT); Secreted phosphoprotein 1 (osteopontin); Gamma-aminobutyric acid (GABA) A receptor, beta 3; Roundabout, axon guidance receptor, homologue 1 (ROBO1),; Glucagon receptor; Leucine-rich ppr-motif hum 130 kDa hum130leu 130kd leu; Thy-1 co-transcribed; Solute carrier family 21; LY6H lymphocyte antigen 6 complex locus H; Plexin (PLXNB3); Armadillo repeat protein deleted in velo-cardio-facial syndrome; and Ephrin type-a receptor 1 (EPHA1).
- 5. The method of any preceding claim, comprising detecting or measuring expression of three or more of said markers.
- 6. The method of any preceding claim, further comprising detecting or measuring expression of hTERT and/or Oct 3/4.
- 7. A method for assessing a culture of undifferentiated human embryonic stem (hES) cells or their progeny, comprising detecting or measuring two or more markers selected from Cripto, gastrinreleasing peptide (GRP) receptor, podocalyxin-like protein (PODXL), and human telomerase reverse transcriptase (hTERT).
- 8. The method of claim 7, further comprising detecting or measuring one or more markers selected from Oct 3/4, SSEA-3, SSEA-4, Tra-1-60 and Tra-1-81.

9. The method of claim 7 or 8, comprising detecting or measuring Cripto, hTERT, and Oct 3/4.

WO 2004/080146

- 10. A method for assessing a culture of undifferentiated human embryonic stem (hES) cells or their progeny, comprising detecting or measuring two or more markers preferentially expressed in undifferentiated hES cells, and one or more markers expressed preferentially after differentiation of the hES cells.
- 11. The method of claim 10, wherein at least one of the markers preferentially expressed in undifferentiated hES cells is selected from Cripto, gastrin-releasing peptide (GRP) receptor, podocalyxin-like protein (PODXL), and human telomerase reverse transcriptase (hTERT).
- 12. The method of claim 10 or 11, wherein at least one of the markers preferentially expressed in undifferentiated hES cells is selected from Oct 3/4, SSEA-4, Tra-1-60 and Tra-1-81.
- 13. The method of claim 10 comprising detecting or measuring hTERT, Oct 3/4, and a marker selected from Cripto, SSEA-4, Tra-1-60 and Tra-1-81.
- 14. The method of any of claims 10-13, wherein at least one of the markers expressed preferentially after differentiation of the hES cells is a stromal cell markers.
- The method of claim 14, wherein the stromal cell marker is selected from CD44, CD105 (endoglin),
 CD106 (VCAM-1), CD90 (Thy-1), STRO-1, Vimentin, and Human Thymus Stroma.
- The method of any of claims 10-15, wherein expression of hTERT, Oct 3/4, Cripto, GRP receptor, PODXL, CD44, CD105, CD106, or CD90 is detected or measured at the mRNA level by PCR amplification.
- The method of any of claims 10-16, wherein expression of SSEA-4, Tra-1-60, Tra-1-81, Cripto, Oct 3/4, CD44, CD105, CD106, CD90, STRO-1, Vimentin, or Human Thymus Stroma is detected or measured at the antigen expression level by antibody assay.
- 18. A kit for assessing a culture of pPS cells according to any of claims 1-6, comprising polynucleotide probes and/or primers for specifically amplifying a transcript for two or more markers in any of Tables 5 to 9, accompanied by written instructions for assessing the pPS cells according to the expression of said markers measured using the probes or primers in the kit.
- 19. A kit for assessing a culture of pPS cells according to any of claims 1-6, comprising an antibody specific for the gene product of two or more markers in any of Tables 5 to 9, accompanied by written instructions for assessing the pPS cells according to the expression of said markers measured using the antibody in the kit.

20. A kit for assessing a culture of undifferentiated human embryonic stem (hES) cells or their progeny according to claim 10, comprising antibody or PCR amplification primers specific for three or more markers, of which at least two are expressed preferentially in undifferentiated hES cells, and at least one is expressed preferentially in stromal cells.

- 21. The kit of claim 20, comprising antibody or PCR amplification primers specific for at least two markers selected from Cripto, gastrin-releasing peptide (GRP) receptor, podocalyxin-like protein (PODXL), human telomerase reverse transcriptase (hTERT) Oct 3/4, SSEA-4, Tra-1-60, Tra-1-81, CD44, CD105 (endoglin), CD106 (VCAM-1), CD90 (Thy-1), STRO-1, Vimentin, and Human Thymus Stroma.
- 22. Use of antibody or PCR amplification primers specific for three or more markers selected from Cripto, gastrin-releasing peptide (GRP) receptor, podocalyxin-like protein (PODXL), human telomerase reverse transcriptase (hTERT) Oct 3/4, SSEA-4, Tra-1-60, Tra-1-81, CD44, CD105 (endoglin), CD106 (VCAM-1), CD90 (Thy-1), STRO-1, Vimentin, and Human Thymus Stroma, for assessing a culture of undifferentiated human embryonic stem (hES) cells or their progeny.
- 23. The method of any of claims 1-17, which is a method for quantifying the proportion of undifferentiated pPS cells or differentiated cells in the culture.
- 24. The method of any of claims 1-17, which is a method for assessing the ability of a culture system or component thereof to maintain pPS cells in an undifferentiated state.
- 25. The method of claim 24, which is a method of assessing the ability of a soluble factor to maintain pPS cells in an undifferentiated state.
- 26. The method of claim 24, which is a method of assessing the ability of a culture medium to maintain pPS cells in an undifferentiated state.
- 27. The method of claim 24, which is a method of assessing the ability of a preparation of feeder cells to maintain pPS cells in an undifferentiated state.
- 28. The method of any of claims 1-17, which is a method for assessing the ability of a culture system or component thereof to cause differentiation of pPS cells into a culture of lineage-restricted precursor cells and/or terminally differentiated cells.
- 29. The method of any of claims 1-17, which is a method for assessing the suitability of a pPS cell culture for preparing cells for human administration.
- 30. The method of any of claims 1-17, wherein the level of the markers of undifferentiated hES cell markers is determined to be at least 100-fold higher than in BJ fibroblasts.

31. A method for assessing the growth characteristics of a cell population, comprising detecting or measuring expression of three or more of the markers in any of Tables 5 to 9.

- 32. A method for assessing the growth characteristics of a cell population, comprising detecting or measuring two or more markers selected from Cripto, gastrin-releasing peptide (GRP) receptor, podocalyxin-like protein (PODXL), and human telomerase reverse transcriptase (hTERT).
- 33. The method of claim 31 or 32, wherein the cell population has been obtained by culturing cells from a human blastocyst.
- 34. The method of claim 33, which is a method for determining whether the cell population is pluripotent.
- 35. The method of claim 31 or 32, wherein the cell population has been obtained from a human patient suspected of having a clinical condition related to abnormal cell growth.
- 36. The method of claim 31 or 32, which is a method for assessing whether the patient has a malignancy.
- 37. A method for maintaining pPS cells in a pluripotent state, comprising causing them to express one of the following markers at a higher level.
 - Forkhead box O1A (FOXO1A); Zic family member 3 (ZIC3); Hypothetical protein FLJ20582;
 Forkhead box H1 (FOXH1); Zinc finger protein, Hsal2; KRAB-zinc finger protein SZF1-1;
 and Zinc finger protein of cerebellum ZIC2.
- 38. The method of claim 37, wherein the cells are caused to express the marker by genetically altering it with a gene that encodes the marker.
- 39. A method for causing pPS cells to differentiate into a particular tissue type, comprising causing them to express one of the following markers at an altered level.
 - Forkhead box O1A (FOXO1A); Zic family member 3 (ZIC3); Hypothetical protein FLJ20582;
 Forkhead box H1 (FOXH1); Zinc finger protein, Hsal2; KRAB-zinc finger protein SZF1-1;
 Zinc finger protein of cerebellum ZIC2; and Coup transcription factor 2 (COUP-TF2).
- 40. The method of claim 39, wherein the cells are caused to express the marker by genetically altering it with a gene that encodes the marker, or with an antisense nucleic acid that binds to mRNA encoding the marker.
- 41. A method for causing an encoding sequence to be preferentially expressed in undifferentiated pPS cells, comprising genetically altering pPS cells with the encoding sequence under control of a promoter for one of the markers listed in any of Tables 2, 7, and 9(C).

42. The method of claim 41, which is a method for selecting undifferentiated cells, and the encoding sequence is a reporter gene (such as a gene that causes the cells to emit fluorescence), or a positive selection marker (such as a drug resistance gene).

- 43. The method of claim 41, which is a method for depleting undifferentiated cells from a population of differentiated cells, and the encoding sequence is a negative selection marker (such as a gene that activates apoptosis or converts a prodrug into a compound that is lethal to the cell).
- 44. A method for causing an encoding sequence to be preferentially expressed in differentiated cells, comprising genetically altering the pPS cells with the encoding sequence under control of a promoter for one of the markers listed in Table 3 or Table 8.
- 45. The method of claim 44, which is a method for selecting differentiated cells, and the encoding sequence is a reporter gene (such as a gene that causes the cells to emit fluorescence), or a positive selection marker (such as a drug resistance gene).
- 46. The method of claim 44, which is a method for depleting differentiated cells from a population of undifferentiated cells, and the encoding sequence is a negative selection marker (such as a gene that activates apoptosis or converts a prodrug into a compound that is lethal to the cell).
- 47. A method for sorting differentiated cells from less differentiated cells, comprising separating cells expressing a surface marker in any of Tables 5 to 9 from cells not expressing the marker.
- 48. The method of claim 47, wherein the cells are sorted using an antibody or lectin that binds the marker or product thereof on the cell surface.
- 49. A method for causing pPS cells to proliferate without differentiation, comprising culturing them in a culture system assessed according to the method of claim 7.
- A method for causing pPS cells to proliferate without differentiation, comprising culturing them with human mesenchymal stem cells.

51. A method for identifying genes that are up- or down-regulated during differentiation of pPS cells, comprising:

- a) sequencing transcripts in an expression library from undifferentiated pPS cells:
- b) sequencing transcripts in one or more expression libraries from one or more cell types that have differentiated from the same line of pPS cells;
- c) determining the frequency of transcripts from each gene sequenced in each of the libraries;
- d) identifying the gene as being up- or down-regulated during differentiation of the pPS cells if the frequency of transcripts in the library from the undifferentiated pPS cells is different from the frequency of transcripts in one or more libraries from the differentiated cell types at a statistical probability of at least 95%.
- 52. The method of claim 51, further comprising assessing a culture of pPS cells depending on the expression level measured in cells from the culture of the marker identified in d).
- 53. The method or use according to any of claims 1-17 or 22-54, wherein the pPS cells are obtained from a human blastocyst, or are the progeny of such cells.
- 54. The method or use of claim 53, wherein the pPS cells are human embryonic stem cells.
- 55. The kit of according to any of claims 18-21, wherein the pPS cells are obtained from a human blastocyst, or are the progeny of such cells.
- 56. The kit of claim 55, wherein the pPS cells are human embryonic stem cells.
- 57. The method or use according to any of claims 1-17 or 22-54, substantially as hereintofore described with reference to any one of the Examples.
- 58. The kit according to any of claims 18-21, substantially as hereintofore described with reference to any one of the Examples.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6(A)

Podocalyxin-like Protein

Cripto

Figure 6(B)

hTERT

Figure 7

Figure 8

CD44

STRO-1

Vimentin

Figure 9

1

135300 - SeqList SEQUENCE LISTING

```
<110> Geron Corporation
      Stanton, Lawrence
      Ralph, Brandenberger
      Brunette, Elisa
      Joseph, Gold D.
      Irving, John
      Mandalam, Ramkumar
      Mok, Michael
      Powell, Sandra
<120> A Marker System for Characterizing Undifferentiated Human Embryonic Stem
Cells
<130>
      135/300 PCT
<140>
       [to be assigned] 2004-03-12
<141>
       us 10/389,431
<150>
<151>
       2003-03-13
<160>
       39
<170> Custom
<210>
       1
       769
<211>
<212>
       DNA
       Homo sapiens
<213>
<400> 1
catcagtata gagaacgtta gcctgtggag ctgtgaatgt gatggagaca agatttagtg
                                                                     60
tatagctctg ctacctgcct ggtgttcctt tgagtttctt tatccttaga tttgacagct
                                                                    120
gagaaatcta ggtggattca tattcgtaat cattgattaa catgcacatt tgggtttgca
catttttgtt tatcatacat ttttctccgt tttctattaa agaacatgct ctaggggaac
tattaatagc ccaccagtcg ggtaggcagc attcaatcct tctatgcctt ctttcgccac 309
ctgttgaggt ctttcttctg aaacaaagaa gaaatagaca aatcagactt gccctcttgg
                                                                    360
aaatgtggtc cagatttctc tactcccaag ctccaaaaaa ggcatacatt ggatgggcta
                                                                    420
gatcaactcc tcctgagagc cataaatccg ccaagagttg ttttccatgt aagggtgtgg
tacaatgggg aacgcctgat gttggaggaa agcaggagga ctttagagtg gagttgcatt
ctaatctctc tgccgcttca actatgtgac ctggggcaaa tgatataaac tctatgagcc
                                                                    600
tctttcctta tctttaaaat gaagagaagt aatacctacc ttgtagggct gttgtgagga
                                                                    660
ttaaatgaag taatgcatac agtgcctaac aaagtattta acatcatatt ttttaaaagc 720
tcatgaaata ttagtttttc ttccttcccc tctttctatt ttctctcct
                                                                    769
<210>
       2
       1683
<211>
<212>
       DNA
<213>
      Homo sapiens
<400> 2
ggcctccaag cacctcccgc ctgcccatca tcgatgtggs ccccttggac gttggtgccc
                                                                      60
```

				•		
cagaccagga	attgaataca	aaaccaccaa	gacctcccgc	ctgcccatca	tcgatgtggc	120
ccccttggac	gttggtgccc	cagaccagga	attcggcttc	gacgttggcc	ctgtctgctt	180
cctgtaaact	ccctccatcc	caacctggct	ccctcccacc	caaccaactt	tcccccaac	240
ccggaaacag	acaagcaacc	caaactgaac	cccctcaaaa	gccaaaaaat	gggagacaat	300
ttcacatgga	ctttggaaaa	tattttttc	ctttgcattc	atctctcaaa	cttagttttt	360
atctttgacc	aaccgaacat	gaccaaaaac	caaaagtgca	ttcaacctta	ccaaaaaaaa	420
aaaaaaaaa	aaaagaataa	ataaataact	ttttaaaaaa	ggaagcttgg	tccacttgct	480
tgaagaccca	tgcgggggta	agtccctttc	tgcccgttgg	gcttatgaaa	ccccaatgct	540
gccctttctg	ctcctttctc	cacacccccc	ttggggcctc	ccctccactc	cttcccaaat	600
ctgtctcccc	agaagacaca	ggaaacaatg	tattgtctgc	ccagcaatca	aaggcaatgc	660
tcaaacaccc	aagtggcccc	caccctcagc	ccgctcctgc	ccgcccagca	ccccaggcc	720
ctgggggacc	tggggttctc	agactgccaa	agaagccttg	ccatctggcg	ctcccatggc	780
tcttgcaaca	tctcccttc	gtttttgagg	gggtcatgcc	gggggagcca	ccagcccctc	840
actgggttcg	gaggagagtc	aggaagggcc	aagcacgaca	aagcagaaac	atcggatttg	900
gggaacgcgt	gtcaatccct	tgtgccgcag	ggctgggcgg	gagagactgt	tctgttcctt	960
gtgtaactgt	gttgctgaaa	gactacctcg	ttcttgtctt	gatgtgtcac	cggggcaact	1020
gcctgggggc	ggggatgggg	gcagggtgga	agcggctccc	cattttatac	caaaggtgct	1080
acatctatgt	gatgggtggg	gtggggaggg	aatcactggt	gctatagaaa	ttgagatgcc	1140
ccccaggcc	agcaaatgtt	cctttttgtt	caaagtctat	ttttattcct	tgatattttt	1200
ctttttttt	ttttttttt	ggggatgggg	acttgtgaat	ttttctaaag	gtgctattta	1260
acatgggagg	agagcgtgtg	cggctccagc	ccagcccgct	gctcactttc	caccctctct	1320
ccacctgcct	ctggcttctc	aggcctctgc	tctccgacct	ctctcctctg	aaaccctcct	1380
ccacagctgc	agcccatcct	cccggctccc	tcctagtctg	tcctgcgtcc	tctgtccccg	1440
ggtttcarag	acaacttccc	aaagcacaaa	gcagtttttc	cccctagggg	tgggaggaag	1500
caaaagactc	tgtacctatt	ttgtatgtgt	ataataattt	gagatgtttt	taattattt	1560
gattgctgga	ataaagcatg	tggaaatgac	ccaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1620
aaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	accccaaaaa	aaaaaaagg	1680
ggg						1683
	o sapiens					
<400> 3 cgcgtccggg	cggctcccgc	gctcgcaggg	ccgtgccacc	tgcccgcccg	cccgctcgct	60

cgctcgcccg ccgccgccg ctgccgaccg ccagcatgct gccgagagtg ggctgccccg 120

ķ

135300 - SeaList cgctgccgct gccgccgccg ccgctgctgc cgctgctgcc gctgctgctg ctgctactgg 180 gcgcgagtgg cggcggcgc ggggcgcgcg cggaggtgct gttccgctgc ccgccctgca 240 caccegageg cetggeegee tgegggeece egeeggttge geegeeegee geggtggeeq 300 cagtggccgg aggCgcccgc atgccatgcg cggagctcgt ccgggagccg ggctgcggct 360 gctgctcggt gtgcgcc 377 <210> 4 844 <211> <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (108)..(109) <223> any nucleotide <220> <221> misc_feature <222> (113)..(115) (113)..(115)<223> any nucleotide <400> 4 cccacgcgtc cgcccacgcg tccgggtcgc cctccgtcgt qqtctqqcqt qtattccqaq 60 csttggtgtc tggcggtttc cgagcgttgg tgtctggcgg tttccganng ttnnngaccg 120 ttggtgtctg gcggtttccg accgttggtg tctggcacgc gccaccctct cttgctttgg 180 ttgcgccatg ccgatgtacc agacaagaag acaagaaaat gatttgagga cagcttcaat 240 cgcggtgtga agaagaaagc agcaaaacga ccactgaaaa caacqccggt qqcaaaatat ccaaagaaag ggtcccaagc ggtacatcgt catagccgga aacagtcaga gccaccagcc 360 aatgatmttt tcaatgctgc gaaagctgcc aaaagtgaca tgcagggatg tccttcctga 420 gatccgtgct atctgcattg aggaaattgg gtgttggatg caaagctaca gcacqtcttt 480 cctcaccgac agctatttaa aatatattgg ttggactctg catgataagc accgagaagt 540 ccgcgtgaag tgcgtgaagg ctctgaaagg gctgtacggt aaccgggacc tgaccgcacg 600 cctggagctc ttcactggcc gcttcaagga ctggatggtt tccatgatcg tggacagaga 660 gtacagtgtg gcagtggagg ccgtcagatt actgatactt atccttaaga acatggaagg 720 ggtgctgatg gacgtggact gtgagagcgt ctaccccatt gtgtaggcgt ctaattgagg 780 cctggcctct gctgtgggtg aatttctgta ctggaaactt ttctaccctg agtgcgagat 840 aaga 844 <210> <211> <212> 3357 DNA Homo sapiens <220> <221> misc_feature (1554)..(1554)<222>

<223>

any nucleotide

```
<220>
<221>
       misc_feature
       (1789)..(1789)
any nucleotide
<222>
<223>
<220>
<221>
<222>
       misc_feature
(1794)..(1794)
any nucleotide
<223>
<220>
      misc_feature
(2053)..(2053)
<221>
<222>
<223>
       any nucleotide
<400> 5
ggccccctgt ggtgcccaac cccatacact cttttgtcct saataccttc ctycacwact
                                                                      60
cactattccg tgcytgatct taaagatgct tttttcacta ttcccctgca yccctcrtyc
                                                                     120
cagcctctcy ttgctttcac ttrgactgac cckgrcaccc attaggctca gcaaattacc
                                                                     180
aaggctgtac tgccrcaagg cttcayagac agccccatt acttcagtca agcccaaatt
                                                                     240
tcatcctcat ctgttaccta tytcggcata attctcmtaa aaacacacrt gctttccctg
                                                                     300
ctgatcgtgt ccgattaatc tcccaaacct caatccctta caaaacaaca actcctttcc
                                                                     360
ttcctaggca tggttmgtgc ggtcagaatt cttamacaag agccaggact gaaccctgta
                                                                     420
gcctttctgt ccaaacaact tgaccttact gttttagcct agccctcagg tctgcgtaca
                                                                     480
gaggctgccg ctgctttaat acttttagag gccctaaaaa tcacaaacta cgctcaactc
                                                                     540
actiticaca titicicataa citiccaaaat ciattiticit ccicatacci gacgicatata
                                                                     600
ctttctgctc cccggctcct tcagctgtac tcactctttc ttaagtccca caattaccgt
                                                                     660
tgttcctggc cgggacttca atctggcctc ccacattatt cctgatacca cacctgaccc
                                                                     720
ccacgattgt atctctctga tccacctgat attcacccca tttccccata tttccttctt
                                                                     780
tcctgttcct caccctgatc acacttgatt tattgatggc agttccacca ggcctaatcg
                                                                     840
ccacatacca gcaaaggcag gctatgctat agtacaagcc actagcccgc ctctcagaac
                                                                    900
ctctcatttc ctttccatca tggaaatcta tcctcaagga aataacttcc cagtgttcca
                                                                     960
1020
ctcraggatt tgcccccacc caggactggc aaaytagctt tactcaacat gcctgagtca
                                                                   1080
ggaaactaaa atacctctta gtctaaatag acactttcac tgaataagta aaggcctttc
                                                                   1140
ctacagggtc tgagaaggcc tccgcagtca tttcttccat tctgtcagac ataattcctc
                                                                   1200
agtttagcct tcccacctca atacagtctg ataacagatg agcctttatt agtcaaatca 1260
gccaagcagt ttttcaggct cttagtattc agtgaaacct ttatatccct tacrgtcctc 1320
crtcttcaag aaargtagaa tggactraag gtcttttaaa aacacacctc accaagctca
                                                                   1380
gccaccaaaa aggactggac aatactttta ycactttccc ttctcagaat tcaggcctgt 1440
cctcggaatg ctacarggta cagcccattt aagctcctgt atagaygctc ctttttatta 1500
```

ggccccagtc	tcattccaga	caccrgacca	135300 - Se acttagacto	qList toccccaaa	aaancttotc	1560
	tyttctgtct				_	1620
	gtttacactg				_	1680
	atccccaaac					1740
	tgctgaatct					1800
	ttttatacct					1860
	tatccaggcc					1920
	tcacccctta					1980
	gcccctaatc					2040
	ccncaaaaat					2100
	tataagaagg					2160
	cttgcacgta					2220
	gccctgcccc					2280
	tgccttaast					2340
tggctcaaaa	agcaccccca	ctgagcacct	tgcgaccccc	actcctrccc	gccagagaac	2400
aaaccccctt	tgactgtaat	tttcctttac	ctacccaaat	cctataaaac	ggccccaccc	2460
ttatctccct	tcgctgactc	tcttttcgga	ctcagcccgc	ctgcacccag	gtgaaataaa	2520
cagccttgtt	gctcacacaa	agcctgtttg	gtggtctctt	cacacagacg	cgcatgaaag	2580
ggaagacata	caaaaacaag	gtaaataagt	aaactacgtt	atatgtttga	taatggtgat	2640
gttaagggtg	gggaaagaag	aaagcaaaga	aggataagaa	atgggagggg	gcaattctag	2700
aaaccatagt	cagggaagac	ctcactgaga	aggtgacatt	tgagttatac	ctgagagatg	2760
tgagtatctg	agggaaagat	attccaggaa	gggcaaacgt	taagtgcaaa	ggcactgagt	2820
gggagtgtgc	ctggcaggtt	caatctattg	aaccatgaca	ctggggaggg	atggtggcta	2880
ctcttggctt	tgctggctgg	ccactggtga	atgagagacg	taataaagca	ttcaaattaa	2940
agatattaat	gcctagtctt	caggcactta	gacatctgat	gtggagtctg	aagttgcagt	3000
aacttgagag	aagaccatac	ataactggat	agatgcatag	atagataaat	ggatgaatgg	3060
aattgcctta	tggccatact	gagacacagc	aaagccaact	cgaatcacgc	acggggtacc	3120
atggcatagg	ggaaagcact	ctatgtcatc	tcagcaacac	agctgtgtgc	ctgggataag	3180
tttccttccg	gagctttcat	tcttccacag	acaagataag	aataacatcc	ttaagtggtt	3240
ggtacaccac	aggttaaatg	ttcaatgttt	gttatatgcc	aggctacgtg	tattaatacg	3300
aatttactta	atccttacag	gcctctgagg	taggtactac	tgagacagcc	aggtggg	3357

<210> 6 <211> 1252 <212> DNA <213> Homo sapiens

<400> 6	
tcaatcccct gtcctcctgc tctttgctcc atgagaaaga tccacctacg acctcgggtc	60
ctcagaccga ccagcccaag aaacatctca ccaatttcaa atccggtata tgcccagatg	120
gcctgaagta actgaagaat cacaaaagaa gtgaatatgc tttgtcccac cttaactgat	180
gacattccat cacaaaagaa gtgtaaatgg ccggtccttg ccttaactga tgacattacc	240
ttgtgaaagt ccttttcctg gctcatcctg gctcaaaaag cacccccact gagcaccttg	300
tgacccccac tcctgcccac tgagcacctt gcgaccccca ctcctaccca ccagaaaaca	360
aacccccttt gactgtaatt ttcctttacc twcccaaatc ctataaaacg gccccaccct	420
tatctccgtt tgctgactct tttcggactc agcccgcctg cacccaggtg aaataaacag	480
cctcgttgct cacacaaagc ctgtttggtg gtctcttcac acggacgcgc atgaaatttg	540
gtgccgtgac tcggatcggg ggacctccct tgggagatca atcccctgtc ctcctgctct	600
ttgctccgtg agaaagatcc acctacgacc tcaggtcctc agaccaacca gcccaagaaa	660
catctcacca atttcaaatc cggtaagcgg cctcttttta ctctgttctc caacctccct	720
cactatccct caacctcttt ctcctttcaa tcttggcgcc acacttcaat ctctcccttc	780
tcttaatttc aattcctttc attttctggt agagacaaaa gagacatgtt ttatccgtga	840
acccaaaact ccggcgccgg tcacggactg ggaaggcagt cttcccttgg tgtttaatca	900
ttgcagggac gcctctctga tttcacgttt cagaccacgc agggatgcct gccttggtcc	960
ttcaccctta gcggcaagtc ccgctttcct ggggcagggg caagtacccc tcaaccctt	1020
ctccttcacc cttagcggca agtcccgctt ttctggggca ggggcaagta cccctcaacc	1080
ccttctcctt cacccttagc agcaagtccc gctttcctag ggggcaagaa ccccccaatc	1140
gcttattttc acgccccaac ctcttatctc tgtgccccaa tcccttattt ccacgcccca	1200
atctcttatc tctgcgcccc aatcccttat ttctgtgccc caaccccttc tc	1252
<210> 7 <211> 1501 <212> DNA <213> Homo sapiens <400> 7	
caaagcctgt ttggtggtct cttcacatgg atgcgcatga aatttggtgc ggtgactcgg	60
atcgggggac ctcccttggg agatcaatcc cctgtcctcc tgttctttgc tccgtgagaa	120
agagccacct acgacctcag gtcctcagac caaccaggcc aagaaacatc tcaccaattt	180
caaatccggc tgctcctcgc caggccgagc tagttcccaa ttcttcctca gcctctcctc	240
ctccaccctr taatcttttt atcacctccc ctcctcacac ctggtccgrc ttacagtttc	300
gttcygtgac tagccctccc ccwcctgccc agcaayttac tcttraaaak gtggckggag	360
ccaaaggcat agtcaaggtt aatgctcctt tttctttatc ccaaatcrga tagygtttag	420
gctcttttc atcaaatata aaaayccagc ccagttcatg rcttgttysg cagcaaccct	480
gagacrcttt acagccctag accctaaaar gtcaaaaggc crtcttattc tcaaaataca	540

135300 - SegList ttttattacc caatctkctc ccgacattar ataaaactcc aaaaattaaa ttccrgccct 600 caaaccccac aacaggattt aattaacctc gccttcaagg tgtacmataa tagaaaaaag 660 ttgcaattcc ttgcctccac tgtgagacaa accccagcca catctccagc acacaagaac 720 ttccaaacgc ctgaaccgca gckgccaggs gttcctccag aacctcctcc cmcakgagct 780 tgctacatgt gccggaaatc tggccactgg gccaaggaak gcccgcagcc ygggattcct 840 cctaagccgy gtcccatctg tgtgggaccc cactgaaaat cggactgttc aactcacctg 900 gcagccactc ccagagcccc tggaactctg gcccaaggct ctctgactga ctccttccca 960 gatcttctcg gcttascggy tgaagactga cactgcccga tcrcctcgga agccccctag 1020 accatcacga acgccgagct ttgggtaact ctcacagtga aaggcccatc catctggcag 1080 agaaagggat gctcaggaca cagaacaacc atgctacctt aacaagactt ccgtgagcac 1140 caactttgga tgcggtctac tctctacaga ggtctctggc aacctcacaa cctgcagttc 1200 cttgccctca tgcagcactt cctgagaggc agagacgtgg actaggagaa acctgagaga 1260 cacggtctcg ctctacacct caggctggag tgcagtggca caaacacagc tcagtgtaat 1320 ctagaactcc tgggctcaag agatcttcct gccttagcct ccggagtagc caggactaca 1380 ggtatgcacc accacatcca gctgagaata tgcagtcctg ctaggatgta atgaaaatgg 1440 tactttatct tggtggtatt cctccaaaaa acatacaact ccaggttaac catgagagaa 1500 a 1501 <210> 8 5507 <211> <212> DNA Homo sapiens <220> <221> misc_feature <222> (2144)..(2144)any nucleotide <220> misc_feature (3562)..(3562) any nucleotide <221> <222> <220> misc_feature (4983)..(4983) any nucleotide <221> <222> <223> <400> 8 ttttttttt tggaaaataa aaatttattt ttaagtcaaa gtatgcaaca aataaaccta 60 cagaaaacat tttcccatcc caatttgttg ctttaccaaa taatattttg aaaacacatt 120 ccttcagtca ttataaagtt tttaaaatac aaaagaaatt aaatttgtaa gaaagtttag 180 tagaccagat gctgttgtca agacttgtaa ggtggggttt ttgctttcag tacatcccac 240 gccatccacc tccactcatg ccgccttgag aacaaacccc ctttgactgt aattttttt 300

360

tacytaccca aatcctrtaa aacggccccm cccttatytc ccttcgctga ctytyttttc

WO 2004/080146

ggactcagcc	crcctgcacc	caggtgaaat	aaacagccwt	gttgctcaca	caaagcctgt	420
ttggtggtct	cttcacasgg	acgcgcatga	aatttggtgy	cgtgactcgg	atcgggggac	480
ctcccttrgg	agatcaatcc	cctgtcctcc	tgctctttgc	tccgtgagaa	agatccacct	540
acgacctcag	gtcctcagac	cgaccagccc	aagaaacatc	tcaccaattt	caaatccggt	600
aagcggcctc	tttttactct	cttctccarc	ttccctcact	atccctcaac	ctctttctcc	660
tttcaatctt	ggygccacac	ttcaatctct	cccttctctt	aatttcaatt	cctttcattt	720
tctggtagag	acaaaggaga	cacrttttat	ccgtggaccc	aaaactcygg	cgycggtcac	780
ggactgggaa	ggcagccttc	ccttggtgtt	taatcattgc	aggggcrcct	ctctgattat	840
tcacccacgt	ttcaaaggtg	tcagaccacg	cagggaygcy	tgccttggtc	cttcaccctt	900
agcggcaagt	cccgcttttc	tggggaaggg	gcaagtaccc	caaccccttc	tctccttgtc	960
tctacccctt	ctctgctttt	ctgggggagg	gacaagtacc	cctcaacccc	ttctccttca	1020
cccttaatgg	caagtcccgc	ttttctgggg	gaggggcaag	tacccctcaa	ccccttctcc	1080
ttcaccctta	gtggcaagtc	cygykttyct	agggggcaag	aacccccaat	cccttatttc	1140
cgcaccccaa	cctcttatct	ctgtgcccta	attccttatt	tccatgcccc	aaccctttct	1200
ctgcttttct	ggagggcaar	aaacccctac	cgcttctccg	tgtctctact	cttttctctg	1260
ggcttgcctc	cttcactatg	ggcaagtttc	caccttccat	tcctccttct	tctcccttag	1320
cctrtattct	taagaactta	aaacctcttc	aaytctcacc	tgacctaaaa	tctaagcrtc	1380
ttattttctt	ctgcaatgcc	gcttgacccc	aatacaaact	cgacagtagt	tccaaatagc	1440
yrgaaaaygg	cactttcaat	ttttccatcc	trcaagatct	aaataattct	tgtwgtaaaa	1500
tgggcaaatg	gtctgaggtg	cctgacrtcc	aggcattctt	ttacacatca	gtcccytcct	1560
agtctctgtg	cccagtgcaa	ctcstcccaa	atcttcyttc	tttccctccc	kcctgtcccc	1620
tcagtaccaa	ccccaagtgt	cgctgagtct	ttctaatctt	ccttttctac	agacccatct	1680
gacctctccc	ctcctcgaca	ggctgagcta	ggtcccaatt	cttcctcagc	ctccactcct	1740
ccaccctata	atctttttat	cgcctcccct	cctcacaccy	gktcyrgctt	acagtttcrt	1800
tccgtgacya	gccctccccc	acctgcccag	caatttaytc	ttaaaaaggt	ggctggagcc	1860
aaagtcataa	tcaaggtgaa	tgctcctttt	tctttatccc	aaatcagata	gcgtttaggc	1920
tctttttcat	caaatataaa	aatccagccc	agttcatgac	ttgtttggca	gcaaccctga	1980
gacgctttac	agccctggac	cctaaaaggt	caaaaggctg	tcttattctc	aatatacgtt	2040
ttattaccca	atctgctycc	gayattaaat	aaaactccaa	aaattrgaat	ctggccctca	2100
aaccccacaa	caggatttaa	ttaacctcrc	cttcaaggtg	tacnataaya	gaaaaaagtt	2160
gcaattcctt	gcctccwctg	tgagacaaac	cccagccaca	tctccarcac	acaagaactt	2220
ccaaacgcct	raaccgcagc	rgccaggcgt	tcctccagaa	cctcctcccm	caggagcttg	2280
ctacaygtgc	cggaaatctg	gccacygggc	caaggaatgc	ccgcagscyg	ggattcctcc	2340
taagcygygt	cccatctgtg	tgggacccca	ctgaaaatcg	gactgttcaa	ctcacctggc	2400

agccaytccc	agagcccctg	gaactctggc	ccargsctct	ctgactgact	ccttcccaga	2460
tcttctcggc	ttagcggctg	aagacygaca	ctgccsgatc	acctcggaag	ccccstagac	2520
catyatggac	gccragcttt	rggtaactct	cacagtggaa	ggtargcccr	tccccttctt	2580
aatcaatayg	gaggctaccc	actccacatt	accttcttt	caagggcctg	tttcccttgc	2640
ctccataact	gttgtgggta	ttgacagcya	ggcttctaaa	cytcttaaaa	ctccccaact	2700
ctggtgccaa	cttagacaat	actcttttaa	gcactccttt	ttagttaycc	ccacctgccc	2760
agttccctta	ttaggctgag	acactttaac	taaattatct	gcttccctga	ctattcctgg	2820
gctacagcca	cacctcattg	ctgccttttc	ccccartyca	aagcctcctt	crcatcctcc	2880
ccttgtatcy	ccccacctta	acccacaagt	ataagatacc	tctactccct	ccttrgcgac	2940
cgaccatgcr	ccccttacca	tctcattraa	acctaatcac	cyttaccyca	ctcaacgcca	3000
atatcccatc	ccgcagcacg	ctttaaaaag	attaaagcct	gttatcactc	gcctgctaca	3060
gcatggcctt	ttaaagccta	taaactctcc	ttacaattcc	cccattttac	ctgtcctaaa	3120
accagacaag	ccttacaagt	tagttcagga	tctgcrcctt	atcaaccaaa	ttgttttgcc	3180
tatccacccc	gtggtgccaa	acccatatac	tctcctatcc	tcaatacctg	cctcyacaac	3240
ccattattct	gttctagatc	tcaaacatgc	tttctttact	attcctttgc	acccttaatc	3300
ccagcctctc	ttcgctttca	cttggactga	ccctgacacc	catcaagctc	agcaaattac	3360
ctaggctgta	ctgcygcaaa	gcttcacaga	cagcccccat	tacttcaatc	aagcccaaat	3420
ttcttcctca	tctgttacct	atctcggcat	aattctcata	aaaacacacg	tgctctccct	3480
gccaatcgtg	tcygactgat	ctctcaaacc	cmagcacctt	ctacaaaaca	acaactcctt	3540
tccttcctag	gcatggttag	cntggtcaga	attcttacac	aagagccagg	accacaccct	3600
gtagcctttc	tgtccaaaca	acttgacctt	actgttttag	cctagccctc	atgtctgcgt	3660
gcagcrgctg	ccrctgcttt	aatactttta	gaggccctca	aaatcacaaa	ctatgctcaa	3720
ctcactctct	acagttctca	taacttccaa	aatctatttt	cttcctcata	cctgacrcat	3780
atactttctg	cttcccggct	ccttcagctr	tactcactct	ttgttgagtc	tcccacaatt	3840
accattgttc	ctggcccrga	cttcaatccg	gcctcccaca	ttattcctga	taccacacct	3900
gacccccatg	actgtatctc	tctgatccac	ctgacattca	ccccatttcc	ccaaatttcc	3960
ttctttcctg	ttcctcaccc	tgatcacrct	tgatttattg	atggcggttc	caccaggcct	4020
aatcgccaca	caccagcaaa	ggcaggttat	gctatagtac	aagccactag	cccgcctctt	4080
agaacctctc	atttcctttc	catcgtggaa	atctatcctc	aaggaaataa	cttctcagtg	4140
ttccatctgc	tattctacta	ctcctcaggg	attattcagg	cccctccct	tccctacaca	4200
tcaagctcra	ggatttgccc	cacccaggac	tggcaaatta	gctttactca	acatgccctg	4260
agtcmsataa	ctaaaatacc	tcttagtcta	ggtagatact	ttcactggat	agrtasaggc	4320
ctttcctaca	gggtytgaga	aggccaccrc	agtcatttct	tccrttctgt	cagacataat	4380
tcctcagttt	agccttccca	cctcaataca	gtctgataac	agacsagcct	ttattagtca	4440

				4LI3C		
aatcagccaa	gcagtttttc	aggctcttag	tattcagtga	aacctttata	tcccttatgg	4500
tcctccgtct	tcaagaaaag	tagaatggac	taaaggtctt	ttaaaaacac	acctcaccaa	4560
gctcagccac	caacttaaaa	aggactggac	aatactttta	ccactttccc	ttctcagaat	4620
tcaggcctgt	cctcrgaatg	ctacagggta	cagcccattt	aagctcctgt	atagacgctc	4680
ctttttatta	ggccccagtc	tcattccaga	caccagacca	acttagactg	tgccccmaaa	4740
aaacttgtca	tccctactat	cttctgtcta	gtcatactcc	tattcaccgt	tctcaactac	4800
tcatacatgc	cctgctcttg	tttacactgc	yggtttacac	tgtttttcca	agccatcaca	4860
gctgatatct	cctggtgcta	tccccaaact	gccactctta	actcttgaag	taaataaaya	4920
atctttgctg	gcaggactat	gctgaatctc	cttargcact	ctctaatyag	atrtcctrrg	4980
tcntcccaat	tcttagacct	tttatacctg	tttttctcct	tctgttattc	catttagttt	5040
ytcaattcat	ccaaaaccrt	atccaggcca	tcaccaatca	ttctatayga	caaatgtttc	5100
ttctaacatc	cccacaatat	caccccttac	cacaagacct	cccttcagct	taatctctcc	5160
cactctaggt	tcccacrccg	cccctaatcc	cgcttgaagc	agccctgaga	aacatcgccc	5220
attctctctc	cataccaccc	cccaaaaatt	ttcrccgccc	caacacttca	acactatttt	5280
gttttrtttt	tcttattaat	ataagaaggc	rggaatgtca	ggcctctgag	cccaagccaa	5340
gccatcgcat	cccctgtgac	ttgcayrtat	acryccagat	ggcctgaagt	aactgaagaa	5400
tcacaaaaga	agtgaatatg	ccctgcccca	ccttaactga	tgacattcca	ccacaaaatg	5460
gccggtattt	atttattcca	ctggtaaatg	gccgggcctt	gccttaa		5507
<210> 9 <211> 1997 <212> DNA <213> Home	, Saniens					

```
<210> 9
<211> 1997
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

<222> (1063)..(1063)

<220>
<221> misc_feature

<220>
<221> misc_feature

<220>
<221> misc_feature

<222> (1090)..(1090)

<223> any nucleotide
```

<400> 9
gacccacgcg tccgcccacg cgtccgccc actcaatgcc aatatcccat cccgcagcac 60
actttaaaaa gattaaagcc tgttatcact cgcctgctac agcatagtct tttaaagcct 120
ataaactctc cttacaattc ccccatttta cctgtcctaa aaccagacaa gccttacaag 180
ttagttcagg acctgcacat tatcaatcaa attgttttgc ctatcgaccc tgtggtgccc 240
aacccataca ctcttttgtc ctcaatacct tcctccacaa ctcactattc cctgcttgat 300
cttaaagatg ctttttcac tattcccctg cacccctcgt cccagcctct ctttgcttc 360
atttggactg accctgacac catcaagctc agcaaactac ctaggctgta ctgccgcaaa 420

gcttcacaga cagcccccat	tacttcaatc	aagcccaaat	ttcttcctca	tctgttacct	480
atctyggcat aattctcata	aaaacacacg	tgctctccct	gccaatcgtg	tccgactgat	540
ctctcaaacc cmarcacctt	ctacaaaaca	acaactcctt	tccttcctrg	gcatggttag	600
cacagtcaga attcttacac	aagarccagg	accacaccct	gtagcctttc	tgtccaaaca	660
acttgacctt actgttttag	ccyagccctc	atgtctgygt	gcagcggctg	ccrctgcttt	720
aatactttta raggccctca	aaatcacaaa	ctrtgctcaa	ctcactctct	acagttctca	780
taacttccaa aatctatttt	cttcctcata	cctgacgcat	atactttctg	cttcccggct	840
ccttcagctg tactcactct	ttgttragtt	cccacaatta	ctgttgttcc	tgrcccagac	900
ttcaatccgg cctcccacat	tattcctgat	accacacctg	acccccatga	ctgtatctct	960
stgatccacc tgacattcac	cccatttccc	caaatttcct	tctttcctgt	tcctcacyct	1020
gatcacgctt gatttattga	tggtggttcc	accaggccta	atngccacac	accagcaaag	1080
gcaggttatn ctatagtaca	agccactagc	cyrcctctta	gaacctctca	tttcctttcc	1140
atcgtggaaa tctatcctca	aggaaataac	ttctcagtgt	tccatctgct	attctactac	1200
tcctcaggga ttattcaggc	cccctycctt	ccctacacat	caagctcgag	gatttgcccc	1260
acccaggact ggcaaattag	ctttactcaa	catgccctga	gtcagataac	taaaatacyt	1320
cttagtctag gtagatactt	tcactrgata	ggtagaggcc	tttcctacag	ggtctgagaa	1300
rgccaccaca gtcatttctt	cccttctgtt	agacataatt	cctcagttta	gccttcmgca	1440
cctcaatasa gtctgataac	agatgagcct	ttattagtca	aatcagscaa	gcagttttc	1500
aggctcttag tattcagtga	aacctttata	tcccttacgg	kcctccrtct	tcaagaaaag	1560
tagaatggac taaaggtctt	ttaaaaacac	acctyaccaa	gctcagycac	caacttaaaa	1620
aggactggac aatactttta	ccactttccc	ttctcagaat	tcaggcctgt	cctyggaatg	1680
ctacagggta cagcccattt	aagctgctgt	atagacataa	cttggcccat	gatagctagt	1740
attcagttct tccttttatg	cacaaccaca	gccagcagga	agctaccaga	gaatatgcac	1800
cagtgaaata aggtgtgtaa	ataaaaaaga	tatgcaatcc	atgaaacaga	acatccagcc	1860
aaggatcata acagcaaatg	ccagctctgg	tgagcacgtt	atattgaaaa	gggtgtgact	1920
gtggtgaaag acttgccaca	aatcatgaaa	caaaaccaac	cagcactgac	agatcattta	1980
aaatgtttaa atacttg					1997
<210> 10 <211> 1920 <212> DNA <213> Homo sapiens <400> 10					
ccgcctgcac ccaggtgaaa	taacagccat	gttgcttaca	cacagcctgt	ttggtggtct	60
cttcacatgg acgcgcatga	aatttggtgc	cgtgactcgg	atcgggggac	ctcccttgct	120

180

agatcaatcc cccgtcctcc tgctctttgc tccgtgagaa agatccaccc acgacctcag

135300 - SeaList gtcctcagac caaccagccc aaggaacatc tcaccaattt taaatcagat cttctcggct 240 tagcggctga agactgrcac tgccssatcr cctyggaagc cccctagacc rtcacwqacq 300 ccgagcttca ggtaactctc acagtggaag gtaagcccgt cyccttctta atcaatacrg 360 aggstaccca ctccacrtta ccttcttttc aagggcctgt ttcccttgcc tccataactg 420 ttgtgggtat tgacrgccag gcttctaaac ctcttaaaac tccccaactc tggtgccaac 480 ttagacaata ctcttttaag cactcctttk tagttatccc yacctgccca gttcccttat 540 taggctgaga cactttaact aaattatctg cttccctgac tattcctgga ctacagctat 600 atticating cocceticit cocaatocaa agostoctit gogtoctoot citquatoco 660 cccaccttaa cccacaagta taagatacst ctactccctc cttggygacc gatcatgcac 720 cccttaccat ctcattaaaa cctaatcacc cttacccyac tcaacgccaa tatcccatcc 780 cgcagcacrc tttaaaaaga ttaaagcctg ttatcactck yctgctacag catggccttt 840 taaagcctat aaactcycct tacaattcyc ccattttacc tgtcctaaaa ccrgacaagc 900 cttacaagtt agttcmggat ctgtgcctta tcaaccaaat tgttttgcct atccacccyg 960 tggtgccaaa cccrtatmct ctcctatcct caatacctsc ctctacwacc cattaktctg 1020 ttctagawct caaacatgct ttctttacta ttcctttgca cccttcatcc cagcctctct 1080 yyrctttcac ttrgactsac cctgacacys atyargctca gcaaattacc trggctgtac tgccrcaarg cttcacagac agcccccatt acttcartca agcccaaatt tcwtcctcat 1200 ctgttaccta tctcggcata attctcataa aaacacacgt gctytccctg cyratcgtgt 1260 ccgaytratc tcycaaaccc aakcccttta caaaacaaca actcctttcc ttcctaggca 1320 tggttagcgc ggtcagaatt cttacacaag agccaggacc acaccctgta gcctttctgt 1380 ccaaacaact tgaccttact gktttagcct agccctcatg tctgcgtgca gmggctgccg 1440 ctgctttaat acttatagag gccctcaaaa taagtagagg cctttcctac agggtctgag 1500 aaggccaccg cagtcatttc ttcccttctg tcagacataa ttcctcagtc tagccttccc 1560 acctcaatac agtctgataa cagacgagcc tttattagtc aaatcagcca agcagttttt 1620 caggetetta gtatteagtg aaacetttat atecettata gteeteeate tteaagaaaa 1680 cacmcctcac caagctcagc caccaactta aaaaggactg gacaatactt ttaccacttt 1740 cccttctcag aattcaggcc tgtcctcaga atgctacagg gtacagccca tttaaggtcc 1800 tgtatagatg ctccttttta ttaggcccca gtctcattcc agacaccaga ccaacttaga 1860 ctgtgcctca aaaaaaaaaa aaaaaaaaaa aaaactcgag actagttctc tctctctcc 1920 <210> 11 1943 DNA Homo sapiens <400> 11 gggagagaga gagagagaga gagagagaga gagagagaga gagagagaga 60

120

gagagagaga	gagcgtgtct	ctactcttt	ctctgggctt	gcctccttca	ctatgggyaa	180
gyttccacct	tccattcctt	tcttctccct	tagcmtgtrt	tctyaaraay	twaaaayctc	240
ttcaactcwc	acctgaccta	aaayctaary	gycttatttt	cttctgcaat	gccrcttgac	300
cccaatacaa	actcracagt	agttccaaat	agccagaaaa	tggcacttts	aatttttcca	360
mcctrcaara	tctaaataat	tcttgkcrta	aaatrggcaa	atggtgtgag	gtgcctgacg	420
tccaggcatt	cttttacaca	tcagtccctt	cctagtcyct	gtgcccagtg	caactcgtcc	480
caaatcttcc	ttctttccct	cccgcctgtc	ccctcagtac	caaccccaag	cgtcactgag	540
tctttctaat	cttccttttc	tacagaccca	tctgacctct	cccttcctcc	ccaggctgct	600
ccttgccagg	ccgagctagg	tcccaattct	tcctcagcct	ctgctcctcc	accctataat	660
ctttttatca	cctccctcc	tcacacctgc	tccggcttac	agtttcattc	cgtgactagc	720
cctccccgac	ctgcccagca	atttattctt	aaaaaggtgg	ctggagctaa	acgcatagtc	780
aaggttaatg	ctcctttttc	tttatcccaa	atcagatagt	gtttaggctc	tttttcatca	840
aatataaaaa	tctagcccag	ttcatggctc	gtttggcagc	aaccctaaga	cactttacag	900
ccctagcccc	taaaaggtca	aaaggccatc	ttattctcaa	tatacatttt	attacccaat	960
ctgctcccga	cattaaataa	aactccaaaa	actggaatct	ggccctcaaa	ccccacaaca	1020
ggacttaatt	aacctcacct	tcaaggtgtg	aaataacaga	aaaaagttgc	aaytccttgc	1080
ctccactgtg	agacaaaccc	cagccacatc	tccagcacac	aagaacttcc	aaacgcctga	1140
actgtagcag	ccagacgttt	ctccagaacc	tcctcccca	ggaacttgct	acacatgccg	1200
gaaatctggc	cactgggcca	aggaacgccc	gcagcccggg	attcctccta	agccgcgtcc	1260
catctgtgtg	ggaccccact	gaaaatcgga	ctgttcaact	cacctggcag	ccactcccag	1320
agctcctgga	actctggccc	aaggttctct	gactgactcc	ttcttggctt	actggctgaa	1380
gactgacgct	gcctgatcgc	ctcagaagcc	ccgcagacca	tcatggacgc	cgagctttag	1440
cccgcctgca	cccaggtgaa	ataaacagcc	ttgttgctca	cacaaagcct	gtttggtggt	1500
ctcttcacac	agacgcgcat	gaaagggaag	acatacaaaa	acaaggcctc	tgaggtaggt	1560
actactgaga	cagccaggtg	ggaaggactc	cttggcaaaa	ctccaaccag	cctgtacact	1620
gggaggaatg	tgcactggga	tggagccata	gaagtttgtg	tcgtttgcag	tggggaggag	1680
cctggtccct	cctcttcctg	tgaggaacct	ggaattcaat	ctgtgaggaa	cttcttgaaa	1740
gacccatcaa	ttcttcaata	gaaagcatca	aaggacaatt	tacaccctaa	gactgaaccc	1800
ctgacctcaa	aatctttccc	ttgctatgtt	caccaacctc	aacagaaata	ttaggattct	1860
tacctgatcc	tagccaagcc	ccctccctca	tctcccatta	aagggtccat	cttcaaccaa	1920
acttaagtct	caataaatat	ctg				1943

<210> 12 <211> 2286 <212> DNA <213> Homo sapiens

•				4		
<400> 12 gggtgagccc	cgtgcccggc	ccaatttttg	tatttttagt	agagacgggt	tcaccatgtt	60
ggccaggcta	gtcttgaact	cctgacctca	ggtgatctgc	ctacctcagc	ctcccgagta	120
gctgggatta	caggtgcctg	ccaccacgcc	tggctaattt	tttgtatttt	tagtagagaa	180
ggggtttcac	catattagcc	acaatggtct	caatctcctg	acctcgtgat	ccatctgccc	240
cgccctccca	gagtgctggg	attacaggcg	tcagccaccg	tgaccggctc	agactgtact	300
cttatagcca	tctgaaatac	gttttctagg	tagagataga	ttgtgtaagg	gtacagttgt	360
gaggataaca	gaaacatggc	agattattta	aaatcatcct	gaaagtggtg	ctttatctga	420
tgaaagtgat	tgtaatccat	aggaaaatgt	ttcaacgtgc	gcaagagttg	cggcggcggg	480
cagaggacta	ccacaaatgc	aaaatccccc	cttctgcaag	aaaggctctt	tgcaactggg	540
taagtttgct	tgttttcctt	gcttttggac	atagtctgcc	aggtcaggac	atggatacat	600
ttttctccct	acagctctgt	gctcaagccc	tgcagaggga	gatggcagag	agaaaggctg	660
cctacaagca	tcacagtccc	atccctgtkg	gkaaccgtgt	tgygcaaaaa	caccttcatc	720
cccacccagt	ggggcccctg	atctaatatt	ctaagtgtca	gaggttccgt	atttgtaata	780
gcaratgggc	cctgactgta	aaytagtgaa	gagtgaatgt	aacttattac	ccacagggac	840
aattccaaat	garggcctta	aatgatgctc	agctaagctg	gttcttgtgt	ggcctctgta	900
ccttcaaaag	ctgccgagtc	ctatgattgc	acgcgatggg	acttgtacac	ttgaagtgaa	960
acacagtttt	aaaacttgct	ttgtttagaa	ttcccacctc	atttttccat	ggacaaaagt	1020
attctttatg	tcctagtgca	cttacaattt	ggtattacct	gggagtgaaa	agaaatatta	1080
cagccatgcc	taastgactt	cttgaggtaa	gattgttctg	tcagaaaacc	ctctcccagt	1140
tcccctgcag	ctcttcagga	atccacatct	ctccagagct	ctttgttctc	atgggtggca	1200
cctccagagt	gaagaagatc	ctttgtcaag	aagggaaaca	gaggggaaat	gagagggtcc	1260
tgcaggcaga	gctggaatca	acttccactc	tgcctcttgc	aagctgtgtg	accctgggca	1320
caatttctcc	ttcctctgga	aacctctgtt	ttcttagatt	tggagcaggr	tggtcacact	1380
gaccttgcag	agttctgaga	atcagagaca	gaacataaaa	ggcctggaaa	acattctcca	1440
aaaagaagct	gcaacatgtg	tggacaatgg	gcttttcatg	cctctcttac	tgtctcttac	1500
tgkctattga	cctggtgcaa	gaaacatgct	ctggtgatgg	ctgtgaggga	ggaatgagga	1560
tagacataga	cactcctgtg	tctcaaacat	gcttcttat	tactctgtta	tgactctgtc	1620
ttccctgggg	caggacccca	gcctgcctac	atttgcagac	agacacagtg	gcatgtggag	1680
acaacagtgt	gtcccartga	cttttcttta	ccccyagct	gtcggcagta	ctcagtggaa	1740
gggtgatatg	acactgayac	tgctattttg	aaacctggag	gatggaaagg	tgcaaaaatc	1800
tatcaccagc	aacagaaggt	gcagactgtg	ttggtggcgg	taattttgtc	catcaaatga	1860
atatgtgtga	aaacattccc	tcctttggcc	ctacaggtca	gaatggcggc	agyrgagcat	1920
cgtcattctt	caggattgcc	ctrctggccc	tacctcacag	ctgaaacttt	aaaaaacagg	1980

i

135300 - SeqList atgggccacc agccacctcc tccaactcaa caacattcta taattgataa ctccctgagc 2040 ctcaagacac cttccgagtg tgtgctctat ccccttccac cctcagcgga tgataatctc aagacacctc ccgagtgtct gctcactccc cttccaccct cagctctacc ctcagcggat gataatctca agacacctgc cgagtgcctg ctctatcccc ttccaccctc agcggatgat aatctcaaga cacctcccga gtgtctgctc actccccttc caccctcagc tccaccctca 2280 gcggat 2286 <210> 1280 DNA <213> Homo sapiens <400> 13 cagcattcag attgcctttt ctctcaacca ggatctttaa agtcgatgac aagagttcca 60 gtcctgaatc atggcaaagt gcagtagtga actgcggggt tattctggaa ggatctctct 120 atggctgatg gtctcagttc cggcatcagc ctctgactga gaatcaggtc tcacacagga 180 ggagtcagat gaggagcaat cctctgcttc cgatggagtt agttgtgatg aattggtgag 240 gtctggtttt tcacactgaa ctaaaatgag ctttcgctgt gtcaagcaca agactgaccc 300 cagagacaca catagtgcac ctcatagaag cttttaatag tctttatatt tactaaagaa 360 taggactaac tatggaacta tgaagatgag ctggaaatga caggtgactt gccagcaggc 420 cagagtgtga yttttttttg tccctcaatg ggaggtgtcy attctcctt ygsttgtgag 480 aatcagttgg ttcatttgtg ggaaggttgc aggggggatc tttgaatcac agccttcaga 540 tgccagaagg gcagagggaa tcccacacgg gctggtggat catgtgtgtg catttctctc 600 ccttctartc tgaggaaact aagcrtgaaa gaaygtgagc aygsagaaaa ggagaggcag 660 gtrtcagagg cagaggaaaa ygggaaattg gatatgaaag aaatacacac ctacaagtga 720 gttcagaaac tgaaccccac cctcytggga aacgcccatt ggagtgttgt ttttaaccty 780 tgtacaatgt ttagacccag taaatgcaga aatagaaaca aatggtcaga agacatatcg 840 tgagagagag agagagagtt cacaaaacag aaaacaaagt accttaatat ttaccagtga 900 ccaaaagatg tgaagcagca aaaggtctcc tgaccccatt gccagctaga ctgtgtagaa 960 actcggttca taccagccat tctaggggtg gggtgagttt gttgtcatcc ttaggaaagt 1020 gtgttgttgt aggatcaacc acatccttca aaaggactat gcctgtttat aagcccagct 1080 gtttctgccc tgtgaaacac ggtaaggata ttaatacaaa gagaatacag ctttatgata 1140 aaagatgctc agtgaaggat gaattaggga tatactgaga atggggaagg aaactatcat 1200 ctcagaagtc agcaggcagt aagcaagagg aggaatcaat atagcaacag tttggatcag 1260 actgtacagt ttttttttgt 1280 <210> 14 2247

DNA Homo sapiens

		·		7		
<400> 14 ggcgtgaggc	gccgcccggg	tgtccccgcg	gcgcaggagg	cggtggagcg	cagagcgggc	60
gagcgcgaaa	aatcactacc	aatataatgg	attttatata	tcagattgct	ttattctgga	120
tatcatggta	acaatacaga	aagctcctac	gtgtacctgg	agggccgctg	cctcaattgc	180
agcagcggct	ccaagcgagg	gcggtgggct	gcacgtacgt	tcagcaacaa	gacactggtg	240
ctggatgaga	ccaccacatc	cacgggcagc	gcaggcatgt	gactggtgct	gcggcggggc	300
gtgctgcggg	acggcgaggg	atacaccttc	acgctgacgg	tgctgggccg	ctctggcgag	360
gaggagggct	gcgcctccat	cccctgtcc	cccaaccgcc	cgccgctggg	gggctcttgc	420
cgcctcttcc	cactgggcgc	tgtgcacgcy	ctcaccacca	aggtgcactt	cgaatgcayg	480
ggctggcatg	acgcggagga	tgctggcgcc	ccgctggtgt	acgccctgct	gctgcagcgc	540
tgtcgccagg	gccactgcga	ggagttctgt	gtctacaagg	gcagcctctc	cggctacgga	600
gccgtgctgc	ccccgggttt	caggccacac	ttcgaggtgg	gcctggccgt	ggtggtgcag	660
gaccagctgg	gagccgctgt	ggtcgccctc	aacaggtctc	tggccatcac	cctcccagag	720
cccaacggca	gcgcaatggg	gctcacagtc	tggctgcacg	ggctcaccgc	tagtgtgctc	780
ccggggctgc	tgcggcaggc	cgatccccag	cacgtcatcg	agtactcgct	ggccctggtc	840
actgtgctga	acgagtacga	gcgggccctg	gacgtggcgg	cagagcccaa	gcacgagcgg	900
cagcgccgag	cccagatacg	caagaacatc	acggagactc	tggtgtccct	gagggtccac	960
actgtggatg	acatccagca	gatcgctgct	gcgctggccc	agtgcatggg	gcccagcagg	1020
gagctcgtat	gccgctcgtg	cctgaagcag	acgctgcaca	agctggaggc	catgatgcgc	1080
atcctgcagg	cagagaccac	cgcgggcacc	gtgacgccca	ccgccatcgg	agacagcatc	1140
ctcaacatca	caggagacct	catccacctg	gccagctcag	acgtgcgggc	accacagcgc	1200
tcagagctgg	gagccgagtc	accatcgcgg	atggtggcgt	cccaggccta	caacctgacc	1260
tctgccctca	cgcccatcst	cacgcgctcc	cgcgtgctca	acgaggagcc	cctgacgctg	1320
gcgggcttts	agsagggccc	cggscaacct	crgtgaygtg	gtgcagctca	tctttctggt	1380
ggactccaat	ccctttccct	ttggctatat	cagcaactac	accgtctcca	ccaaggtggc	1440
ctcgatggcg	ttccagacac	aggccggcgc	ccagatcccc	atcgagcggc	tggcctcaga	1500
gcgcgcctca	ccgtgaaggt	gcccaacaac	tcggactggg	ctgcccgggg	ccaccgcagc	1560
tccgccaact	ccgttgtggt	ccagccccag	gcctccgtcg	gtgctgtggt	caccctggac	1620
agcagcaacc	ctgcggccgt	gctgcatctg	cagctcaact	atacgctgct	ggacggtgca	1680
tgcagcggtt	ggggcacacg	cggccccctg	gccttgttct	tggggggaag	gcgtttctcg	1740
tagggcttcc	atgggtgtct	ctggtgaaat	ttgctttctg	tttcatgggc	tgctgggggc	1800
ctggccggag	aggagctggg	ggccacggag	aarcaggccg	ctacctgtct	gaggaacccg	1860
agccctacct	ggcagtctac	ctgcactcgg	agccccggcc	caatgagcgc	aactgctcgg	1920
ctagcaggag	gatccgccca	gagtccctcc	agggtgccga	ccaccggccc	tacaccttct	1980

•			135300 - Se	qList		
tcatttcccc	ggggaccaga	gacccagtgg	ggagttaccg	tctgaacctc	tccagccact	2040
tccgctggtc	ggcgctggag	gtgtccgtgg	gcttgtacac	gtccctgtgc	cagtacttca	2100
gcgaggagga	cgtggtgtgg	cggacagagg	ggctgctgcc	cctggaggag	acctcgcccc	2160
gccaggccgt	ctgcctcacc	cgcacctcac	cggcttcggc	accagcctct	tcatgccccc	2220
aagccatgta	cgcttttgtg	tttcctg				2247
<210> 15 <211> 684 <212> DNA <213> Home	o sapiens					
<400> 15 ggccggcagg	cagcgatggc	ggccgtacgg	ggcctgcggg	tgtcggtgaa	ggcggaggcc	60
ccggcggggc	cggccctggg	gctcccgtcc	cctgaggcgg	agtccggtgt	tgaccgtggc	120
gagccggagc	ccatggaggt	ggaggagggc	gagctggaaa	tcgtgcctgt	gcggcgctcg	180
ctcaaggaac	tgatcccgga	cacgagcaga	agatatgaaa	acaaggctgg	cagcttcatc	240
actggaattg	atgtcacctc	caaggaagca	attgaaaaga	aagagcagcg	agccaagcgc	300
ttccattttc	gatcggaagt	aaatcttgcc	caaagaaatg	tagccttgga	ccgagacatg	360
atgaagaaag	caatccccaa	ggtgagactg	gagacaatct	atatttgcgg	agtagatgag	420
atgagcaccc	aagatgtctt	ttcctatttt	aaagaatatc	ctccagctca	catcgaatgg	480
ttggatgata	cctcctgtaa	tgtagtttgg	ctggatgaaa	tgacagccac	acgagcactt	540
atcaatatga	gctccctgcc	tgcacaggat	aagatcagaa	gcagggatgc	cagtgaggac	600
aagtcagctg	agaaaaggaa	aaaagacaag	caggaagaca	gttcagatga	tgatgaagct	660
gaagaaggag	aggttgaaga	tgag				684
<210> 16 <211> 613 <212> DNA <213> Home	o sapiens					
<400> 16 ggcggtgcca	ccctcccc	cggcggcccc	gcgcgcagct	cccggctccc	tccccttcg	60
gatgtggctt	gagctgtagg	cgcggagggc	cggagacgct	gcagacccgc	gacccggagc	120
agctcggagg	cggtgaagtc	ggtggctttc	cttctctcta	gctctcgctc	gctggtggtg	180
cttcagatgc	cacacgcgtc	ccgggggccc	ggttctccgc	tccctcccc	tccccttctc	240
gccggacccc	gcgccgggag	ctgcgggaag	gagtggaggg	tcgggcggtg	gcctcgcggc	300
tggcctggcg	cgcggccagc	gccggtagtt	agtgggggga	ctgctctgcc	ctcgaggggg	360
tagggagctg	tggcgacggt	tgccccattt	cgagacaaag	cgcatttccc	cctccctcc	420
cccacccgcg	ttccggcgga	ggcgccccct	ccccagccg	ccacgcgggg	ctgggtcgag	480
acttgggcct	cccggagggc	ggcgcgtggt	cccgcgtccg	cgaggcctgg	cggcgcgcgg	540
ccggctgtcc	cgaggctgcg	gcgaccgccc	agttaacgtg	gccgccgcgg	gggtaggcgc	600

PCT/EP2004/002808 WO 2004/080146

135300 - SeqList gtgcggtgtg gcg 613 <210> 17 1006 <212> DNA <213> Homo sapiens <400> 17 caagcaatag cgcaaaattt aggagacagg atccttgcaa atttaaaagg tgaatgtagt 60 gagggggatg gcaagtggct ggtacaggct gtggtgattc cttttactca agggtttttg 120 tggagtatag ggagaagggg ttgatattta tggacaccta tgtgtcaggc actgtgcatc 180 attttatcct tacaggatgt tgtgaggtag gtattattgt tttcattttt acaggtgaag 240 aaagcaggtc tcagagggac taaaatcctg cccaaggtta gtggtagagc tgggatccaa 300 aaatctgtca gaatcctgag actgcgctgt tccactgtgc cacgcagaca gttcattcag 360 tttagatgtc acatagtcaa gagggaactc tatgcatcct ttaatttttt agactatgat 420 attcttttta aaaattagcc tttattttct aactaccaaa agaaatatga aagcattaca 480 gaaacactgg aaaatagaaa agaaaaaata aaatcactta caaccacttt ttgttttttg 540 gagtctcgct ttgccaccca ggctggagtg cagtggtgtg atcatggctc attgtagcct 600 caacctccca ggctcaggta atcctcctgt ctcagcctcc tgaatagctg gaaccacaca 660 cacacacgca cacacaggtg tgtgccacca cacccagcta tttttttgta ttttcttttg 720 taaagacaag gtttcaccat gttgcccagg ctggtctcag agtcctgagc tcaaacgatc 780 tgcctgcctt ggcctcccaa aatgttggga ttacaggcat gagccaccac atctgaccta 840 caaccacttt ttaatgtgwg acttaaaaat cttagataaa taaggctgtg aagcaaaacc 900 agggattttt ttgtttgttt ttgatttgca aaacaagtga ctgacaatta ttgagaaatt 960 aaagatagct atgtgtaggt cttgcccctg cgggtttgga ggtttc 1006 <210> 18 1916 <211> DNA <213> Homo sapiens cccacgcgtc cgcacgaaag aagtgccttt tgcctcccgt catgattctg aggcctcccc 60 agccatgtgg aactgtttga ggcacagagc tgtatataca ataacagtga aattgatccc 120 actactaatt atgacaaaaa tgatcttcca cgtaaacagg tggtgaagct ccttatggtc 180 ctgaccctac agttcctgtc ccatgaccag ggccagatca ccaaggagct gcagcagttc 240 gtcgtcagtg gcagccccat gcgagcaccc gaggaaggca agtacgtggg tgatatattc 300 ctgtattctt ggacaagtac actggtgaca tgtagctgta ttcagagtca caggtgccca 360 ggccggagtg cagtggcgtg atctcggctc gctacaacca ccacctccta gcagcctgcc

ttggccttcc aaagtgctga gattgcagcc tctgcccrgc cgccaccccg tctgggaagt

gaggagcgtc tctgcctggc cgcccatcgt ctgggatgtg aggagcccct ccgcccagca

420

480

540

135300 - SeqList gccgccccgt ctgagaagtg aggagcccct cagcccggca gccaccccat ctgagaagtg 600 aggagcccct ccacctggca gccaccccgt ctgggagggc tgkgaccgtc tatgacaagc 660 cagcatcttt ctttcaagag acctctggac ctgcagcacc aactcttcat gaagctgggc 720 ggcacgcact ctccgttcag ggcctgaacc tgaggaccca gacacggagc ggtcggcctt 780 catggagcgg gatgctggga gcgggctggt gatgcgcctc cgcgagcggc cagccctgct 840 ggtcagcagc acaggctgga cagaggacga agacttctcc atctgctggc agctttagaa 900 agagtttgaa caactgactc ttgatggaca caaccttcct tctctcgtct gtgtgataac 960 aggcaaaggg cctccgaggg agtattacag ccgcctcatc caccagaagc atttccagca 1020 catccaggtc tgcacccctt ggctggaggc cgaggactac ccccgcttct agggtcggtg 1080 gatctgggtg tctgtctgca cacgtcctgc agtggcctgg acctgcccat gaaggtggtg 1140 gacatgttcg ggtgctgttt gcctgtgtgt gccgtgaact tcaagtggca ggagcagaac 1200 ccgaatcttt ctggggatag cttcacagat ccaccgctga ggaggaaaca gtgcagagcg 1260 agctgcccac agtgaggccc tgctcctggt ttacatgagc tggkgaaaca tgaagaaaat 1320 ggcctggtct ttgaggactc agaggaactg gcagctcagc tgcaggtgct tttctcaaac 1380 tttcctgatc ctgcgggcaa gctaaaccag ttccggaaga acctgcggga gtcgcagcag 1440 ctccgatggg attagagctg ggtgcagact gtgctccctt tggttatgga cacataactc 1500 ctgggccaga ggctaaaacc ccgggacccc tgctgtcctt cccacagctt cttctcagag 1560 tctcagggca aatcctttcg agcagcgcct cccagtggcc agaagctgaa atgatggcag 1620 tagtgccacc tggtgaatga attggttctg tgacccggga agctgtgctt ggctctgatt 1690 tcttttctgg aggctcggaa acacttcctc tcttcttctg ttcttcacgc cccatgcccc 1740 tgctagcgta ttactgttct gtgacttccc tgtgacctct gcagtactcc tcatcctgcg 1800 tttggtctcc aggtgtcacc tttctgccgt gttcctaaca ttttgattcc tgtcttgaaa 1860 aaagcacctg ctgcaccata agcccaggga tgtggcagct gcagcgggct tggctt 1916 <210> 19 1168 <212> DNA Homo sapiens <400> 19 ctgccatcct ctgggcctga ggctgcctgg cccagcccct cctaactccc tggactcttc 60 cacggtgtct tcaggcccct acaccatcct ttgtgtaagg ggaggtggca gcatagagat 120 gatgggggaa ctgccccatg tgccaaggaa agctcaccca tctgtgcgaa atgctctggt 180 tgacattggg tttttgcgca ccaaactggg ccatgaccaa ggtttataac caaggtgtct 240 ccgggcatgg gcactttggc tcttgtagaa accaccccac tggcaggaga cggcggtagc 300 tgtggtcatt gaaaacaagc tcctgctgat aaatctcaga caccagacac agaagaacct 360 ggagaccctg ccagagagct tgaggcaaat ggatggactg ttggagcagc tgagggtgaa 420 gcagcacaaa ctcctcaaag ttgaatagca aagcagccac cagagatgga caagaaaaat 480

				1		
gaacaaagaa	aattagcaga	aatcaaaggc	agatgctaaa	gcagtgcaaa	atcattcatt	540
caatgataga	aatgaaattg	atgaaggagt	ctggaaaatg	aatgacagaa	gagaattaaa	600
cagcagtgac	catagtaagg	tcctgacgat	tctggtccac	tgaatcccat	catccctaag	660
acagtaaata	tcatcacagt	caccaccmgc	aagttaccac	cacagcattt	cctgtttgtt	720
ccaaaatgaa	taaagatgat	tctcatcaca	agggcaaata	caaagtagtt	tagtatgttt	780
ttaactaaac	ttcaggtgtt	tggtttactt	tttctaagtt	ctcataattc	tgaaaatgca	840
gttgacactt	gtgtggctca	tgatgttttt	aatagtctaa	tgctacttga	attgttcaaa	900
aaccactgta	ttttaaatta	agatgaataa	acggtccttt	gaaaactggc	acaaggcaag	960
gatgccctct	gtcaccactc	ctattcaaca	cagtattgga	agttctggcc	agggcaatca	1020
ggcaagggaa	agcaatacag	cgtatcaaaa	taggaagaga	ggaagtcaaa	ttgtctctgt	1080
ttgcagatga	catgattgca	tatttagaaa	accccatctt	ctcagcccaa	aacctcctta	1140
agctgataag	ccaccttcag	cagtctca				1168
	o sapiens					
<400> 20 ctgtggggaa	gcggggccgc	tggtccggag	gtagcggtgc	cggccgaggg	ggtcggggcg	60
gctggggcgg	tcggggccgg	cgtcctcggg	cccagcggtc	tccatcccgg	ggcacgctgg	120
acgtagtgtc	tgtggacttg	gtcaccgaca	gcgatgagga	aattctggag	gtcgccaccg	180
ctcgcggtgc	cgcggacgag	gttgaggtgg	agcccccgga	gcccccgggg	ccggtcgcgt	240
cccgggataa	cagcaacagt	gacagcgaag	gggaggacag	gcggcccgca	ggacccccgc	300
gggagccggt	caggcggcgg	cggcggctgg	tgctggatcc	gggggaggcg	ccgctggttc	360
cggtgtactc	ggggaaggtt	aaaagcagcc	ttcgccttat	cccagatgat	ctatccctcc	420
tgaaactcta	ccctccaggg	gatgaggaag	aggcagaġct	ggcagattcg	agtgg	475
) o sapiens					
	ttttctctta	gcgactcctg	tgtgtgtctg	ctgaggtgcc	ctgtccgctg	60
gtgctgtgct	ctgacttact	aacccagccc	ctactaaccc	tgttttctct	tcttactaac	120
cccagccctg	ccgagctctg	ggctccccc	gggggctggt	cccctcctt	ttggcaagca	180
gatgacctgg	ggctactggc	cctgtagaca	gatgtcccac	tttgctgccc	catattggct	240
gtaagatcag	agtccactgg	gccaggtcta	aggcagggga	tggccctatt	aacaagactc	300
agaggaggaa	gaggtggtcc	tgtggatgtg	ggaggctgga	ctctgagtat	gacatctctc	360
ctatgtgcag	aagtctggtt	gccactggga	gtaggtggga	ccagggaaat	ctctgggacg	420
			•			

				•		
tgagtgtgga	ggcctgttgg	tctagactct	agactgtgga	gctctgagct	tttgtgtcct	480
ctggaaggaa	gctggggaag	aatcctctcc	attgttaagt	gacagggata	gaagctgtcc	540
tgcacaggaa	gtcacgaggg	gggcgtatcc	cacgaggaag	gcaggagggg	gcgtgcccct	600
caccggaaat	tagcagaggg	gcgtgtccca	cacaggaagt	cagaaagcgg	agcctttctt	660
acaccggaag	tcaatgaagc	gggtctttcc	tacgctaaaa	accactgagt	ggagtattta	720
gtacacagga	agtcggccag	agaaacattt	ctcatatttg	aaggccggaa	agagggacat	780
ttctgacacc	ggaagtcagt	gagaggactc	tttcccacac	aggaagtcag	ctagagagcc	840
gtctcccctc	tctggagccg	agagaggccg	gtttccccca	ccgkaagtag	acgtggggcc	900
gtgaccggaa	gtccttggga	aagatccgty	ccattcccgg	aagctagagg	gcgttagttg	960
tcgggttgaa	aaggggtgtg	gggaggggaa	gcagctttac	cccgggctcg	gagtttgcag	1020
gagagagaag	tggggagcaa	gaagtgaacc	tcaggggctc	acagggttcc	cgcagatgct	1080
caggccggcc	aggaatgcat	ctctggctct	ctgttcccac	ggacgtcact	gcctcagcca	1140
gcctcccca	gagcccgcca	gccgctaagc	cggggccaca	cctgggggtg	atttcatgcc	1200
tcacctccag	taggcacctt	ggtttctttg	ggctaatctc	tggctccctt	gcgctaactc	1260
ttgctctcac	ccagctaatc	cctgcctcac	cctgactgcc	ccaggggctg	accactaaca	1320
accaacctgg	ccctgtytgg	gggttccagg	ctcctggcct	ggccctgacc	agttcttaat	1380
taacctttcc	ttcaccttga	ctaactcctg	ccttcctggt	ctgttccttt	cagcagaaac	1440
taatggtttg	tggattttt	tctgactaac	aacaggtcta	acattcctcg	ttactgttaa	1500
cagcttggat	gtcggcatgg	ctgggaaggg	gctaacacag	ctttgaactt	ggctaacaca	1560
ggtttgaact	tggctaacac	aggtttgaac	ttgactaaca	cagggaaaag	catagctaac	1620
aattttgggc	gtggtggctg	ctctgagtca	gaacaatcag	aagtcggtaa	agatggtagt	1680
tttctaaagg	aggtgccagg	gctctggtgt	ggaccaagcc	tgatggagca	gtggtaccca	1740
ccaaggtggg	gtcagaagta	tagccagtct				1770
<210> 22 <211> 1579 <212> DNA <213> Homo <400> 22	sapiens					
	gagggatggt	catcatcttg	tgtgatcctt	ggagatggca	ggaagccctg	60
gacatacatg	gtgtgggggc	tcctccagag	gctgttggga	tcctcctgga	tgtggtgtgg	120
gcatggaagg	aaggccagtg	gagacaatgg	atgatcttgt	tcttagcaga	tcactggatg	180
tggcagggag	tcctaggaca	tgtgtggtgt	gggcttcttc	aggtgctgca	cactcgtatt	240
tccgctgcac	ttcccaggtg	gtgttggcat	gaggaaagga	ggtatcttcg	agggacaatc	300
ttcttcttgt	gcgatccttg	gagatgccat	gaggcccctg	gacacatgtg	gtgtgggctc	360
ctttggaggc	tgttgtatcc	cttctgaatg	tggcgtgggc	atagaaggaa	ggccagtggc	420

135300 - SeqList cacgagggac aatcttggtc ttgggagatc ctggaaatga tagggagtcc cttgatatgt 480 gtggcatggg ctccttcagg tgctagcgga ttccttagga tgggacaaac actgtgcgtg 540 gatcgatgat gacttccata tatacattcc ttggaaagct gaacaaaatg agtgaaaact 600 ctataccgtc atcctcgtcg aactgaggtc cagcacatta ctccaacagg ggctagacag 660 agagggccaa catcygtttt ttgacatggg ttataccaag gcatccgttc aggcttagga 720 tgggggtcttt tatgggtgat gggggtcaca ggagagtggt ggctcccatg tataggaaat 780 ttcttgtttg aaggactgtc agtgagggtg ggtaacacat gcattgtctg caggactagg 840 tgaatgtcca tgtggcctag caagagttag ctggtagccc gcctctggtt gccaatttgt 900 tcttgagtcc ttgttctgag ttcctggaag gaaacagatt tgtctggttg ggaggagaat 960 acaaggccac atctttgtcg tttgttggct aactttgtcc ttggttgagg acattagagt 1020 tttggtcacc aggcatagcc tatgtgcctg tgtgcccgtg ttgtatccca tgtgtttggg 1080 ggacatgtac attgcatgaa ctagtgagct cctgctcatt gcttctgata cccaaggagt 1140 ccctggctta tcctaaaccc aatataggtt aaagcctttc tcattagggg cccagggtcc 1200 caaggctttt gtgagtatca ttgtaggtat tgaagcaacg atgttgagaa ggatgctgaa 1260 catgctcttt agtgggatga cgtactctga aggctcctga cccccagatg agcatccttg 1320 tgtccgttaa cttctgtgtt tatgaacagg tgaggccaga gacaggcaga cagcagatgt 1380 attgcaggga gctggatgac atggcccttg gaacctgtgc acatgcctgc ctttctgatg 1440 cacgtccatg ttttctctgc acctccccgg tggtgttggt ataaaaagca ggcttacatc 1500 agcaagggat gattgtcgtc tcatgcgatc ctgggagatg gcagaagtcc cgggacacat 1560 ggagtgtggg ctctttcgg 1579 <210> 23 1595 DNA Homo sapiens <400> acctcagcac agacccttta tgggtgtcgg gctcggggac ggtcaggtct ttctcatccc 60 acgaggccac ttttcagact atcacatggg gagaaacctt ggacaataaa cggctttcaa 120 gggcagggct ccctgcagct ttccacagtg tatcgtgccc ctggtttatt gagactagag 180 aatggcgatg acttttacca agtatactgc ttggaaacat cttgttaaca aggcatgtcc 240 tgcacagtcc tagatccctt aaaccttgat ttcctacaac acatgttttt gtgagcttca 300 ggttgggtca aagtggctgg ggcaaagcta cacattaaca acatctcagc aaagcaattg 360 420 cagtaacagt ctgatcgctc tttcttttgc ctacactcac tgaactgccc ttcccctttg 480 ctgggccatg accacgggga acaggtccac tgtcctccct gcgtggtgca cgatggatgc 540 tcagactcca tcctcaaggc tggcaagaag acacgttgag acatgtgcct cctgatacag 600 gtgatggctg tggagcccac aggactggaa cctcacactg cagggctgga ggcacagacc 660

atttactgtt ctgtgccctg gggggctcaa ggcacagagc tcctcattag ccaaagtca	c 720
ccaagttccc caacctctta aagatttcct catcatcatg caagaagaag agaaaagtg	a 780
gtgtccatag aagctttggg gctcttcctc taatcaggag aaagctggtg tgtattctt	c 840
rcttctttct ttkcttttta aasatccaac tgctttaatt ttcatctttt attrtggga	a 900
aatataccay gtataaatat taaaaattat aaatatatat tagtkcatat agaatggcc	960
gtataaacat ttacartttc cactsttttt cagtttacag tttmatgaca ttaartayg	1020
tcacattgtt tagcaaccat caccgycatc rtctccggaa cagttttaty tttcaaaat	1080
gaaattgcam ccattcrcca agctctccac tcctctctt ygccyacccc tgggggccac	1140
ctttctagtt tgcaactcta kgagtytaac tactctagac acttgataga taagtggaa	1200
cataccgtgt ttaatttttt tttttagagg tagaatcttt ctctgtcacc caggctggag	1260
tgcagtggcg tgatctcggc tcactgcaac ttccacttcg ggggctcaag caattctta	1320
gtctcagtct cccgagtagc tgggattaca ggcgtgcgct atcatgccca gctaatttt	1380
gtatttttaa tagagacgag ctttcaccat attggccagg ctggtctcga actcctgag	1440
ttaagggatc cacctgtctc agcctcccaa aatgctgggg ttacaggtgt gagccactga	1500
gcctgggcat gtttatcctt ttgggattta tttatttcac tgacgataat gtcttcaagg	1560
gtcatccatg ttgcggcctg catcaaaagt gcctg	1595
<210> 24 <211> 1459 <212> DNA <213> Homo sapiens	
cgggagtcta acacgtgcgc gagtcggggg ctcgcacgaa agccgccgtg gcgcaatgaa	50
ggtgaaggcc ggcgcctagc agccgactta gaactggtgc ggaccagggg aatccgactg	120
tttaattaaa acaaagcatc gcgaaggccc gcggcgggtg ttgacgcgat gtgatttctg	180
cccagtgctc tgaatgtcaa agtgaagaaa ttcaatgaag cgcgggtaaa cggcgggagt	240
aactatgact ctcttaaggt agccaaatgc ctcgtcatct aattagtgac gcgcatgaat	300
ggatgaacga gattcccact gtccctacct actatccagc gaaaccacag ccaagggaac	360
gggcttggcg gaatcagcgg ggaaagaaga ccctgttgag cttgactcta gtctggcacg	420
gtgaagagac atgagaggtg tagaataagt gggaggcccc cggcgccccc ccggtgtccc	480
cgcgaggggc ccgggggggg gtccgccggc cctgcgggcc gccggtgaaa taccactact	540
ctgatcgttt tttcactgac ccggtgaggc gggggggggg	600
ctggcgccaa gcgcccggcc gcgcgccggc cgggcgcgac ccgctccggg gacagtgcca	660
ggtggggagt ttgactgggg cggtacacct gtcaaacggt aacgcaggtg tcctaaggcg	7 ∠0
agctcaggga ggacagaaac ctcccgtgga gcagaagggc aaaagctcgc ttgatcttga	780
ttttcatha casta assa a	

840

ttttcagtac gaatacagac cgtgaaagcg gggcctcacg atccttctga ccttttgggt

2

135300 - SeqList tttaagcagg aggtgtcaga aaagttacca cagggataac tggcttgtgg cggccaagcg 900 ttcatagcga cgtcgctttt tgatccttcg atgtcggctc ttcctatcat tgtgaagcag 960 aattcaccaa gcgttggatt gttcacccac taatagggaa cgtgagctgg gtttagaccg 1020 tcgtgagaca ggttagtttt accctactga tgatgtgttg ttgccatggt aatcctgctc 1080 agtacgagag gaaccgcagg ttcagacatt tggtgtatgt gcttggctga ggagccaatg 1140 gggcgaagct accatctgtg ggattatgac tgaacgcctc taagtcagaa tcccgcccag 1200 gcggaacgat acggcagcgc cgcggagcct cggttggcct cggatagccg gtcccccgcc 1260 tgtccccgcc ggcgggccgc cccccctcc acgcgccccg cgcgcgggg agggcgcgtg 1320 ccccgccgcg cgccgggacc ggggtccggt gcggagtgcc cttcgtcctg ggaaacgggg 1380 cgcggccgga aaggcggccg ccccctcgcc cgtcacgcac cgcacgttcg tggggaacct 1440 ggcgctaaac cattcgtag 1459 2071 DNA Homo sapiens cgcgtccgat taaattacat acttagtaaa tagatattaa ttattttttg aaactcttgt 60 tagtgggaag aatatggtaa attttttgtt aaataaaata gacccttatg tttagcattt 120 tgtttttaga gaactattct ggtactatca gaacaaatac ataaaataac ttcccataga 180 gaacaggata tagcaataat agctccttag atactcagtg gcttctgact ccaatcaagg 240 tcttgttgat attatatagt aaaaataaaa ccaaaaataa atattattca agtggctctt 300 ctaagcatgt gaatcatgaa gcactgaaat atgtattta atgatgatct tatttattcc 360 cattititgcc cttagttaac atttactggt gctcacctag gattggctat tctgagggat 420 tgcatagaaa ccaagctcca cttgctgtcc ttgggaaggt tataactgaa tgcagctctt 480 tatttrgact aaagtgtcag gatatgcatt agattctctc ctgaaccaaa aacacaacag 540 tcattatctg tgaaccataa tttaaaaatc tttctagaat aacaacagca gactccactc 600 ttgtttgtct aaaagagccc tactgggtat ggatcattct gatgacagat ttatacaaaa 660 tgattcaaac cagtaactta gtaaaattga ccttcgcaaa acctcactgg gggagtgcct 720 tgtagagctg tgggtgggac tgcacattct tctcctctta gtaaaagata ggcccacttt 780 attccaagaa taacacttag cacataaact cttcttccag ctcgttagca gcattagcac 840 cttctgaatt ccaccctctc agaagaatcc acagtgtttg aacaatttgc ataaaggtca 900 gctagcatcc tgctgccaag ccactgcata gcatttgtga taagaaggac caactctagg 960 ctcaatatga agggatttag ttctgtaagc agcaaaaaag cttctttatc aagtcatctt 1020 acctctaatt cttttccagt rtgccaactc caaagtcaac attaaaaatg taaatggacc tgtgtaaata tcacagagag cttttcctta tacatctcaa tgctgagagt taaaatattc ccaggttaaa attttttaa agtaccaata atagagctaa atacaatgac atttgctttt 1200

		,		45.35		•
aaaaggtgga	tattttattt	ctgctttttg	aaaatactta	tttagtattg	acttggaagc	1260
caatttggtc	ctttaataag	taaagaaaat	aatatgttta	aaaatgtaaa	tgktttacaa	1320
atttgaaact	ttcataattg	tattaatcag	aaaacaagca	cattgccatt	ctttgaaact	1380
catgtttcta	gacatgacag	cagtaataaa	aggatgaaaa	caagtgtctt	cactaagcgt	1440
atggccaata	aatgggaccc	aaacgttcaa	tctgttcagt	ttaccaaggt	tcagaaatac	1500
gtaatttagc	aggaaactat	aaataccagt	gctatcacag	ccacacatac	acacacacag	1560
acataaaata	accaaacatc	tcatttctag	gaaagagata	acactaaagg	catcataggt	1620
ttaactgaaa	tacgttatat	gaagttttac	aaaaaggtca	acagaaagct	catttgtgaa	1680
aacatactct	catgggagct	tctttaacat	tagttcagag	gttaatatat	ttcctggagg	1740
tgttttccta	gaattgattg	cactattgca	tggtaataac	atttaattgt	taaggaaaca	1800
ttatatatag	gttcaaatta	tcccttaatg	ttgatttctc	cccttttcca	tggattttga	1860
tactaagaaa	caaaatgctt	tgagattttg	gtaactattt	tgattttgat	aaaacatgtt	1920
aaaatagaag	gacatgatat	ttttctatag	tttccatcag	gaagagtaca	tcagaaactt	1980
ctccataagg	aaagaaaact	gactctctct	tgaactaggt	gttgataaaa	tacactaatg	2040
gctttcttaa	ttttatttta	ttaggagaaa	a			2071
<210> 26 <211> 477 <212> DNA <213> Homo	sapiens					
	ggccgaggcg	gcggcggcgg	cgagcccggg	ggcgaggcgc	ggacgggaac	60
aggaaaagcc	tccggcagcc	cctgcgggcg	gcggcgcagc	cacggccgcg	ctccgaggtg	120
aagccgcgcg	cggagaggaa	gcgggtgttt	tcccctctgc	ctttcggccc	ccgcccttcc	180
tttcagtttc	tgcccgctcg	ctcggaagtt	ggcggttgac	aaaaatggca	ggagccgggg	240
cccgggccgg	ttgccgcagc	gccgcgggga	ccttctgagt	tggcccggtg	gcagggagac	300
tcgtgcaggg	gcgtccgatg	cgcggggccc	ggggcctcgg	gagagctcag	ctgctgcggg	360
ccccagacga	ggcgacaggg	atggacttgc	gtagacagcc	agcgccgggc	cgccgggcgc	420
gcggtctggg	agggcgtgcc	gccgcggcgc	cgggccgcgc	tctgtgaacc	ggcgagg	477
<210> 27 <211> 1446 <212> DNA <213> Homo	sapiens					
<400> 27 taatccccag	gtccctqqaa	ggggtgctca	tactttaaat	aaaaaaaca	atootoacao	60
gtctggtggg						170
ggcaggcagt						180
ggtgatcctg						240
55-5-55		-שטטטי כככ-	-ye tu ccayt	ggiccicige	ugggagetet	240

				•		
caggttctga	ggggtgtaca	ctttcaactc	tggcagtagc	agtgtccaca	gtggtgtgtg	300
tgaagagcct	gcactcatga	catgcactag	agcacagagg	ccatgctttt	gaagggggca	360
gggttgctat	tcagagcccc	aaacaggcac	ttctcagttt	ctgggtagtg	tttgctttgt	420
ctcctggctg	cagtcagtga	ctgctatcat	gttcaaaggg	gtcagatgga	tcctgccttt	480
ctgggtgtga	actcaagcac	agaggctgtg	ttgttggtgg	gaatggggtt	actatttgca	540
tcctcagaca	ggcagctgtc	aggctcactc	actttggctc	cccgtggcag	cagcactatt	600
gtgatatgca	gaaaggggaa	gggatccatt	ttcacatgag	cccaagtact	gagaacatac	660
tgctaatagg	gatgtggtta	ctgtttacat	acccagactc	tcagatttaa	ggtttgcttg	720
ctttggcttt	cagaggcagc	agtggctgca	rcartgtgga	gagttgggga	agggatcttg	780
acctctgtgc	ataagctaga	gcacaaaggc	catgctgcta	gttagggcag	ggtggttccc	840
tgccctaatg	gtaccaggta	ccattggtat	cattatacca	ggcagggagc	tcttgggttc	900
tgccaagcac	atgcactggt	tccctttgtc	tcaggagaag	cctccttgat	gtactgcgct	960
atcatttcct	tgaggagttg	tactccctgt	gggttagagt	gctggggacc	ccacaacacc	1020
atcgggtcca	gccaccattg	tgccactgaa	gccctccagg	tggatgccag	ggaattctac	1080
tgggggttca	cagggtgtga	agatgtggaa	ttgttggttc	tcagaagagg	atgcagtctg	1140
gtggaagctg	gactctggcc	atagtgccct	actgcagctg	cttatgtctt	gctatgtgat	1200
gtggtgcaag	tttcccgctt	gcagcaatgc	cctggcaggc	ctctagatca	ccacgctgta	1260
gagtccccac	ctatgctaat	ctcagagctg	tatagatgga	agaggtctcc	tgtggttagg	1320
attgcagtag	tctaaggtaa	gactgtgtac	ccctaacggc	tcacactgac	cctttcccta	1380
taatagggag	ccgttccagg	atcccagctg	gtcctggctg	agctagctgc	tagcttcctc	1440
tccttc						1446
<210> 28						•
<211> 472						
<212> DNA <213> Homo	sapiens					
<400> 28						
gagggcgcat	tcggccccgg	acgaaggtac	tcgcagcact	tggagcgcag	aaccggccgc	60
gcccgatcct	ccgagcggcg	gcgacggctg	ttgctaaggg	aggggacgcg	cgaggaagcg	120
cgacccgggc	ggcagacggc	acccagcgcc	accagccgag	cggcgccccc	tccccaggac	180
ccttaaccgc	gccgcgtccc	ggtcgcgccc	gccgcccttt	gaaggagaag	caagtgccgt	240
cccaccccc	ggaaggcgcc	cccaggagcc	ggagcgacct	cggagcgcca	ctcggatttt	300
ggatttcggt	ctcgcattcc	gcggccggga	ctttctcgag	gaggacgcgc	gctgctccgc	360
gccccgagt	gcccggagga	cccggcatcc	ggggagcctc	tcgccctgt	cccggaggcg	420
cggcgaggat	tggcggcgcc	cgccgccccc	agccccccag	cgcgcgccgg	99	472

<210> 29

<211> 110)2		122300 - 26	qList		
<212> DN/	no sapiens					
<400> 29 ttcggcacga	a gggtggggcc	caagagggaa	gatgaagcga	gagatgccsr	gaccagtggg	60
agacgccag	g acttcggaag	ctcttctgcg	ccacggtggg	tggtgagggc	ggctgggaaa	120
gtgagctcca	gggccccagg	agcagcctgc	tcgtgggtgc	ggaaggaaaa	aggcacaggg	180
gcttggtgtg	ggcggctttt	ggctgggaga	agtttgcacg	tagggagaat	agtagccagt	240
gtttgcagag	, cacttactat	gcaggaaggc	ctgtcctaag	tattgtaagt	gtattacatc	300
atgtacaagt	gtctgtgatt	aaccccgtct	tgcagagaag	gaaacaaaag	tacaaacaga	360
aaatgtaact	: aagcatgcaa	ttaataaaaa	gggaccaggt	tttgaacgcg	agcaatctgg	420
ctcaagaato	tgcgcccaac	caccggctcc	tgttcttaga	gatgaacgtg	gagtcctgga	460
gactgctcaa	cattgtgact	tgactgtgag	cgtacgcgct	ccctgtcccc	aggagacaga	540
tttccagtg	aatcatagaa	agtgcctgtg	tgggcttcgg	gagatgtgtc	tgccttgggg	600
agaattttco	ttttcagcta	gagccaggcc	caggatgttg	acgtcagtga	gacgctggtg	660
acgttctctg	ctccagtggc	tgatgagaaa	agttcctcca	agccagctca	gttgagaaga	720
attaagttct	ctgggtccca	ctggcttcac	ctacagatgc	caactttgag	gccagtgaac	780
tgtgaggcca	gctgggctga	ttgccatggc	aacaggaatt	ggaccaaagt	caccggagga	840
tggagaggga	agacacagtg	gtggcttccc	caggtcttgg	accacaaggc	acagccgtgg	900
cctccaggaa	ccctgagata	acccgttagt	gggtcctgca	ctccaacaga	gctcatgcaa	960
tcagcctctg	gtcctcaccc	tcctcccatt	ggtggccgtt	gtgctctcta	acattgacat	1020
tgagcagtga	gtgctccaga	tcttgttcca	ctgattttt	ccactggtct	ccagtctagc	1080
actttctgaa	attcatccaa	gc				1102
<400> 30 gcgtccgaca	ctggtgacat	gttgctgtat	gcttggatga	gtacgctggt	gacacgttgc	60
tgtattcttg	ggcgtgtaca	ctggtgacat	gttgctgtat	tcttgtgtga	atacgctggt	120
gacatattgc	tgtattcttg	ggcgtgtaca	ctggtgacat	attgctatgt	tcttaggcaa	180
gtacattgtt	gacatgttgc	tgcattctta	ggcaagtacg	tgggtgatat	attcctgtat	240
tcttggacaa	gtacactggt	gacatgtagc	tgtattcaga	ggtgagtaca	ctggtgatgt	300
attgctgtat	tctagggtga	gtacactgtt	gaaatgttgc	tgtattctta	ggtgagtaca	360
ctggtgacat	attgctatat	tcttgttctt	cgtgtctagc	aactcataca	tgtttaccag	420
	aaggttcatt					480
acaggcagat	tcagcttttc	ctttgtttca	ggaaattttc	tttttttgtg	cttaatcacg	540

WO 2004/080146 PCT/EP2004/002808

			T32300 - 26	alict		
gcctctcct	c catctacctc	ttttcctccc	cctgaaactc	ctatgttatt	tgcacctgat	600
gtcctgggt	c tgttttcaaa	tcttttctct	catgttttca	atttctttgt	attcctgtca	660
attcaagat	t tttcttctac	ttaatctttg	aggccattaa	tttgaatctt	aatgatcacc	720
ttcaattca	t ttgcaaccgt	ttttcagtag	gctttatttt	ttggaacaat	ttctgcttca	780
cagcaaaat	t aagcagaaag	tgcaaagagc	tcccataacc	acctgacccc	acacatgcac	840
agcctctcc	t actatcagca	tgccacacct	actatcaaca	tgccacacca	gagcagtaca	900
ttgcttaca	a tcaatgggcc	cgtgtggaca	catcataatc	accccaagtc	cattgtccac	960
attggagtt	a acattccgtg	ttgtacattt	ttttggattt	tgataagtat	aatgggaaga	1020
ggacagaca	c tgatcttcac	tgtgttctgt	ggctctttgt	ggtccaagtt	tttcttcaga	1080
cccatcaca	t tccaatcttc	tcccagacca	tggtctccaa	tgctgttacc	caagttctat	1140
cccacccag	a gtttcaagtg	aagcctaaaa	ccttatccac	aaccttacga	cctctctgcc	1200
cactgtgct	g cagagcagag	gctgaaatgg	gttggagtga	aag		1243
<210> 31 <211> 764 <212> DN/ <213> Hor	•					
<400> 31	g aaggggagga	acacaettac	acceannata	aattaccaaa	ccactana	60
	ccagaggccc					60
	gccggacgct					120
	a ctcccagccg					180 240
	agagctcggt					300
	a gaaccgagaa					_
	tcttctattc					360
						420
	ccccaactcc					480
	ccgtggcgat					540
	ggccggagtg					600
	ggacggcgca					660
	ccacaacgcg				cggggcaaca	720
tgatgagcad	gtccaaaccc	ttggctttct	ccattgaacg	aatc		764
<210> 32 <211> 486 <212> DNA <213> Hon						
<400> 32 ggaggcagag	; ttcggggaaa	gcgtcggagt	tcgggagacc	agggtccagc	atgggtttca	60
gcacagcaga	cggcgggggc	ggcccaggcg	cccgggatct	ggaatctctt	gatgcctgta	120

WO 2004/080146 PCT/EP2004/002808

135300 - SeqList tccagaggac gctctctgcc ttgtacccac cgtttgaagc cacggcagcc acggtgctct 180 ggcagctgtt cagcgtggcc gagaggtgcc acggtgggga cgggctgcac tgcctcacca gcttcctcct cccagccaag agggccctgc agcacctgca gcaggaagcc tgtgccaggt 300 acaggggtct ggtcttcctg cacccaggct ggccgctgtg cgcccatgag aaggtggtgg 360 tgcagctggc gtccctgcac ggagtcaggc tccagcccgg ggacttctac ctgcaggtca 420 cgtcggcggg gaagcagtca gctagactgg tcttgaaatg cctgtcccgg ctgggaagag 480 gcacag 486 <210> 33 1238 <211> DNA Homo sapiens <400> 33 ccccgcgtcc gcacctggcc aggtccaaag tattaaagga tggataggat gttaggtaaa 60 gatacaaagt tcaatttgtg gagatgcata gtaacttcca caggcatcaa gtggaagagt 120 gagaatgggt Cgtaatgtta gtttgttact cagcagatgc cagctgtttt aattatacat 180 aaacgctact ggcagtaaag ggagagcttg aacagatgtc cacgtgaaac tccagggaga 240 ggagcatggg agtcagagtc agttacctga cctcactgag cctgtttctc ctgtgaaatg 300 ggtaatgagg ctgcttactc acagtggtgg caagactcag agatggttac cacctgcaca 360 gcatttagga ctctggagaa gtgtttgtga gccattttgg aggggtgaac ctttgtcctt 420 caagaggggc tggatttttg gcaggacctg aagaaccaag gatgaccgca cagtcacaag 480 ctgtctccct gggctcaagg tggctcccac tgagggaagg ggacggaggt atcagccagt 540 gcatcaggac ctggggtcgt cactcccaag gggccattac cctgttcagt ctccgtggcc 600 actctggggg agggaggtaa acctttacag gtaaggccca gagtgaggcc cagagacaga 660 gtcatttgtg agcacgccag gctgatgagc ggcaggggga aaattcaaat ctggggaggg 720 tctgacccca aagtccaaca tctctggagc ctcctgccca tgtcaggtgt ttggattaat 780 gggatatccc agaaatagtg tgtgcagcct cccaggggac aacttctgct gtcagccacc 840 cagaccagtc agccgcggag agcagcagcc tgcagatggg acaccagtgc tgagtgggac 900 aggtgctggc ttggccttgg gatgtcacat gcataccctc ccagtggacg tgaggattcc 960 aggggctcat gggatctgcc tgctgcaccc acaggtgtgg caggcgtgct tgtgggacac 1020 ccgtttgaca cggtcaaggt gagtctcatc gctgcttttt tttcctcggc gcgtacattg 1080 gagagaggct cacagggttg gggtggcttg gaagcctgtt tccgtgtaca gccccaggtg 1140 ggcagcttgc ttttacacca ggccgggttg aaccttcctc actgctttgt cctggcatct 1200 cccagctggg gctgatccac atgctgggtt catggcca 1238 <210> 34 1205

<210> 34 <211> 1205 <212> DNA <213> Homo sapiens

135300 - SeqList

				•		
<400> 34 ttgcaaaatt	aaaaaaaat	ctcaacagta	cagcatgttc	tttatatatt	atctgaaaga	60
taattttcag	aaaaaggtra	aacaatgact	tgcaccaaga	tattaaaata	cacaactctt	120
aaagatttta	ttttacacat	rtgatagaag	ggaactaggc	agatgttaga	aatagtttaa	180
aggaaaagtg	aaaacaatac	aaatttatat	ggagtaaagg	aattttgaaa	tgagttgcaa	240
atggaaagaa	aacttttta	tttatttatt	ttcaaatttt	ttacaggaga	aagaagccag	300
taaaaatcac	tactagacag	ggcagaagat	agatagatag	atagatagat	agatagatag	360
atcgatctat	gtctatatat	ctccatcagt	tacctgcaat	ttgcaaagaa	ttgtaaaata	420
gttcaaagac	aatgaacaac	ccagaagtat	gtgttacagt	tttccattga	aatacatttt	480
ttaaacatat	ctaataggta	tgtcttaact	agcgaattca	caccactctt	cagtgagagg	540
actatttatt	gatcatctgc	ctgtgtgttg	caggttgctg	tctacctttt	tcaaatttga	600
agcaaagatt	ttcattaaaa	gattttcact	agaattaatt	aaaaatcaaa	gcccaaatca	660
aaacagaata	cacagcaagc	tgtgctagtg	acatggatga	caacttctcc	tggggattac	720
aactctcagg	gtgacatccg	tgtagatgat	tctgtaactg	ttaaaatgaa	aaactcccac	780
cctgtgggaa	cagagccggg	tgagccctgg	cttccacaca	gtgccaccct	gagaaggcga	840
ggkctcccca	gcgtctgtct	gcagtgcagc	cagggcrgag	gaatgaagtg	tcacagcagg	900
aagcagatgg	ctgcatttgc	agataatcaa	tctagagact	tgcagccctg	agtttcaggg	960
gaacttgtct	aagtagcatc	ctgtcgctgg	aaggcatcta	atgaactaag	ttactggtgt	1020
tcttgcttgt	cagatagccc	tggaacactg	tctggatttt	ataatcattt	tcttgagatt	1080
gacaaagtct	aaattcttgc	tgatcattga	cgagtctaag	ttgtaaagaa	tgctacccat	1140
ggatggaact	ttttgcttaa	acttaagaaa	gggaggagaa	ataacagcag	cggtgccccg	1200
tgaag						1205
<210> 35 <211> 1414 <212> DNA <213> Homo	sapiens					-
	gggagctcag	gaaggaagga	gcgcccagaa	gcagggacag	ggagctggtt	60
ggggaggacc	agaaatcagg	ttatcaatac	tctggctgac	catcatcatc	gtgggactga	120
ctttggtgga	agtccttggt	tacatgtcat	tattgcgttt	ccgacaagtt	ataaagttgt	180
cattaccctc	tggatagttt	acctttgggt	gtctctcctg	aagactatct	tctggtctcg	240
aaatggacat	gatggatcca	cggatgtaca	gcagagagcc	tggaggtcca	accgccgtag	300
acaggaaggg	ctgaggtcca	tttgtatgca	cacaaagaaa	agagtttctt	cctttcgagg	360
aaataaaatt	ggcctgaaag	acgtcattac	tctacggaga	catgtggaaa	caaaagttag	420
agctaaaatc	cgtaagagga	aggtgacaac	gaaaatcaac	catcatgaca	aaatcaatgg	480
aaagaggaag	accgccagaa	aacagaaaat	gtttcaacgt	gcgcaagagt	tgcggcggcg	540

135300 - SeqList

				756		
rgcagaggac t	accacaaat	gcaaaatccc	cccttctgca	agaaaggctc	tttgcaactg	600
ggtcagaatg g	cggcagcgg	agcatcgtca	ttcttcagga	ttgccctact	ggccctacct	660
cacagctgaa a	ctttaaaaa	acaggatggg	ccaccagcca	cctcctccaa	ctcaacaaca	720
ttctataact g	ataactccc	tgagcctcaa	gacacctccc	gagtgtctgc	tcactcccct	780
tccaccctca g	cggatgata	atctcaagac	acctcccgag	tgtgtgctca	ctcccttcc	840
accctcagcg g	atgataatc	tcaagacacc	tcccgagtgt	gtgctcactc	cccttccacc	900
ctcagcggat g	ataatctca	agacacctcc	tgagtgtctg	ctcactcccc	ttccaccctc	960
agcggatgat a	atctcaaga	cacctcccga	gtgtctactc	actccccttc	caccctcagc	1020
tctaccctca g	ctccaccct	cagcggatga	taatctcaag	acacgtgccg	agtgtctgct	1080
ccatcccctt c	caccctcag	cggatgataa	tctcaagaca	ccttccgagc	gtcagctcac	1140
tccccttcca co	cctcagctc	caccctcagc	agatgataat	atcaagacac	ctgccgagcg	1200
tctgcggggg c	cgcttccac	cctcagcgga	tgataatctc	aagacacctt	ccgagcgtca	1260
gctcactccc c	ttccaccct	cagctccacc	ctcagcagat	gataatatca	agacacctgc	1320
cgagcgtctg c	gggggccgc	ttccaccctc	agcggatgat	aatctcaaga	caccttccga	1380
gcgtcagctc a	ctccccttc	caccctcagc	tcca			1414
<210> 36 <211> 1218 <212> DNA <213> Homo s	sapiens					
gagacggagt ci	tcgctctgt	cacccaggct	ggagtgcagt	ggcgggatct	cggctcactg	60
caagctccgc c1						120
tacaggcgcc co						180
accgttttag co						240
ccaaagtgct gg	ggattacag	gcgtgagcca	ctgcgcccgg	ccacatttca	cttcttaagt	300
cttctgtgtt tt	ttgggtatc	aaatattccc	ggagagatgc	tcttgaggat	ctaagatcca	360
gctgtgggat ga						420
gaggccctgt go						480
ggtgtgccgc gt						540
agggggtcct to						600
cctcccgtgg gc						660
cctgggctgg aa						720
ggactgggag gt						780
gttttttgca at						840
tcctgaagcg tt	ggtccctg	cttggaggtc	tccgttcatc	aggacatggc	ccctgcactc	900

atctgggacc	gttcttggcc	aannaattcc	132300 - 26	qList	annactotos	960
	tcaccaaagt					
	gccggccctc					1020
						1080
	ctgacctcca					1140
	gggtggagca	agegeetget	gcacctgccc	acctctccat	ttcccaacag	1200
gagtcgggtt	ggctgccg					1218
<210> 37 <211> 258 <212> DNA <213> Hom	8 o sapiens					
<400> 37 ggaagaatgt	taaccccaga	ggcaacaaaa	gaaattaaat	tagtggaaga	aaaaattcag	60
tcagcgcaaa	taaatagaat	agatccctta	gccccactcc	arcttttgat	ttttgccact	120
gcacattctc	caacaggcat	cattattcaa	aatactgatc	ttgtggagtg	gtcattcctt	180
cctcacagta	cagttaagac	ttttacaytg	tacttggatc	aaatrgctac	attaatyggt	240
cagacaagat	tacgaataat	aaaattatgt	ggaaatgacc	magacaaaat	agttgtccct	300
ttaaccaagg	aacaagttag	acaagccttt	atcaattctg	gtgcatggca	gattggtctt	360
gctaattttg	tgggaattat	tgataatcat	tacccaaaaa	caaagatctt	ccagttctta	420
aaattgacta	cttggattct	acctaaaatw	accagacgtg	aacctttaga	aaatgctcta	480
acagtattta	ctgatggttc	cagcaatgga	aaagcagctt	acacagggcc	gaaagaacga	540
gtaatcaaaa	ctccatatca	atcggctcaa	agagcagagt	tggttgcagt	cattacagtg	600
ttacaagatt	ttgaccaacc	tatcaatatt	atatcagatt	ctgcctatgt	agtacaggct	660
acaagggatg	ttgagacrgc	tctaattaaa	tatagcatgg	atgatcagtt	aaaccagcta	720
ttcaatttat	tacaacaaac	tgtaagaaaa	agaaatttcc	cattttatat	tactcatatt	780
cragcacaca	ctaatttacc	agggcctttg	actaaagcaa	atgaacaagc	tgacttactg	840
gtatcatctg	cactcataaa	agcacaagaa	cttcatgctt	tgactcatgt	aaatgcagca	900
ggattaaaaa	acaaatttga	tgtcacatgg	aaacaggcaa	aagatattgt	acaacattgc	960
acccagtgtc	aagtcttaca	cctgcccact	caagaggcag	gagttaatcc	cagaggtctg	1020
tgtcctaatg	cattatggca	aatggatgtc	acgcatgtac	cttcatttgg	aagattatca	1080
tatgttcatg	taacagttga	tacttattca	catttcatat	gggcaacttg	ccaaacagga	1140
gaaagtactt	cccatgttaa	aaaacattta	ttgtcttgtt	ttgctgtaat	gggagttcca	1200
gaaaaaatca	aaactgacaa	tggaccagga	tattgtagta	aagctttcca	aaaattctta	1260
agtcagtgga	aaatttcaca	tacaacagga	attccttata	attcccaagg	acaggccata	1320
gttgaaagaa	ctaatagaac	actcaaaact	caattagtta	aacaaaaaga	agggggagac	1380
agtaaggagt	gtaccactcc	tcagatgcaa	cttaatctag	cactctatac	tttaaatttt	1440
ttaaacattt	atagaaatca	gactactact	tctgcagaac	aacatcttac	tggtaaaaag	1500

135300 - SeqList

•	
aacagcccac atgaaggaaa actaatttgg tggaaagata ataaaaataa gacatgggaa	1560
atagggaagg tgataacgtg ggggagaggt tttgcttgtg tttcaccagg agaaaatcag	1620
cttcctgttt ggatacccac tagacatttg aagttctaca atgaacccat cggagatgca	1680
aagaaaaggg cctccgcgga gatggtaaca ccagtcacat ggatggataa tcctatagaa	1740
gtatatgtta atgatagcga atgggtacct ggccccacag atgatcgctg ccctgccaaa	1800
cctgaggaag aagggatgat gataaatatt tccattgggt atcgttatcc tcctatttgc	1860
ttagggacag caccaggatg tttaatgcct gcagtccaaa attggttggt agaagtacct	1920
attgtcagtc ccatcagtag attcacttat cacatggtaa gcgggatgtc actcaggcca	1980
cgggtaaatt atttacaaga ctttycttat caaagatcat taaaatttag acctaaaggg	2040
aaaccttgcc ccaaggaaat tcccaaagaa tcaaaaaata cagaagtttt agtttgggaa	2100
gaatgtgtgg ccaatagtgc ggtgatatta caaaacaatg aattcggaac tattatagat	2160
tgggcacctc gaggtcaatt ctaccacaat tgctcaggac aaactcagtc rtgtccaagt	2220
gcacaagtga gtccagctgt tgatagcgac ttaacagaaa gtttagacaa acataagcat	2280
aaaaaattgc agtctttsta cccttgggaa tggggagaaa aaggaatctc taccccaaga	2340
ccaaaaatar taagtcctgt ttctggtcct gaacatccag aattatggag gcttaytgtg	2400
gcctcacacc acattagaat ttggtctgga aatcaaactt cagaaacaag agatcgtaag	2460
ccattttata ctatcgacct aaattccagt ctaacggttc ctttacagag ttgcgtaaag	2520
ccccttata tgctagttgt aggaaatata gttattaaac cagactccca aactataacc	2580
tgtgaaaa	2588
<210> 38 <211> 1863 <212> DNA <213> Homo sapiens	
<pre><400> 38 cccacgcgtc cgtggtctct tcacatggac gtgcatgaaa tttggtgccg tgactcagat</pre>	60
tgggggacct cccttcggag atcaatcccc tgtcctcctg ctctttgctc cgtgagaaag	120
atccacctac gacctcaggt cctcagaccg accagcccaa gaaacatctc accaatttca	180
aatccagact ccactggaaa tcggactgtt caactcacct ggcagccact cccagagccc	240
ctggaactct ggcccaaggc tctctgactg actccttctt ggcttagcgg ctgaagactg	300
atgctgcctg atcgcctcgg aagccccgta gaccatcacg gatgccgagc tttaggtaac	360
tctcacagcg gaaggtatac gcccagatgg cctgaactaa ctgaagaatc acaaaagaag	420
tgaaaatgcc ctgccccacc ttaactgatg acattccacc acaaaagaag tgtaaatggc	480
cggtccttgc cttaagtgat gacattacct tgtgaaagtc cttttcctgg ctcatcctgg	540
ctcaaaaagc acccccactg agcaccttgc gacccccmct cctrcycgcc agagaacaaa	600
cccctttga ctgtaatttt cctttaccta mccaaatcct ataaaacggc cyyaccctta	660

			132300 - Se	qL1St		
tctcccttcg	ctgactctct	tttcggacty	agcccgcctg	cacccaggtg	aaataaacag	720
cctcgttgct	cacacaaagc	ctgtttggtg	gtctcttcac	acggacgcgc	atgaaatttg	780
gtgccgtgac	tcggatcggg	ggacctccct	tgggagatca	atcccctgtc	ctcctgctct	840
ttgctccgtg	agaaagatcc	acctacgacc	tcaggtcctc	agaccaacca	gcccaagaaa	900
catctcacca	atttcaaatc	cggaacttgc	tacacatgcc	ggaaatctgg	ccactgggcc	960
aaggaacgcc	cgcagcccgg	gattcctcct	aagccgcgtc	ccatctgtgt	gggaccccac	1020
tgaaaatcgg	actgttcaac	tcacctggca	gccactccca	gagctcctgg	aactctggcc	1080
caaggttctc	tgactgactc	cttcttggct	tactggctga	agactgacgc	tgcctgatcg	1140
cctcagaagc	cccgcagacc	atcatggacg	ccgagcttta	gcccgcctgc	acccaggtga	1200
aataaacagc	cttgttgctc	acacaaagcc	tgtttggtgg	tctcttcaca	cagacgcgca	1260
tgaaagggaa	gacatacaaa	aacaaggcct	ctgaggtagg	tactactgag	acagccaggt	1320
gggaaggact	ccttggcaaa	actccaacca	gccwgtgcac	attcctccca	gtgtacaggc	1380
tggttggaat	gtgcactggg	atggagccat	ataagtttgt	gtcgtttgca	gtggggagga	1440
gcctggtccc	tcctcttcct	gtgaggaacc	tggaattcaa	tctgtgaggt	tgttctggag	1500
atgttctggg	gagactgcat	taaacacagc	ttcgcaccat	tgaataaact	cagcaacaag	1560
ccaatgcata	aaagtaatct	atgcttcagg	tcacagaagc	ttcaagggga	aaaaaacaga	1620
atactctagg	gccattgttc	acaaactcat	ctgaaaacat	cctggaaaaa	ttttcccaaa	1680
cacatggaaa	gaaagagagg	aaaaaagaag	atatctgaat	aatgtggact	agaataaaga	1740
gctgccagga	gctgtttatt	taaaaacagt	actttcttct	ctggctgagt	ccctggtatt	1800
ctctgctgca	atctgtagct	gtagaatttt	gaaaaatgca	attaaattca	aatggtttga	1860
tga						1863
<210> 39 <211> 717 <212> DNA <213> Homo	o sapiens					
<400> 39 tcgacccacg	cgtccgggcg	gccgggaggg	acgcggagcc	acagcccgac	gcacggacgg	6 0
agggacgccg	gagcccgcct	gaccatgtgg	aagctgggcc	ggggccgagt	gctgctggac	120
gagccccccg	aggaggagga	cggcctgcgt	ggggggccgc	caccggccgc	cgccgccgcc	180
gcccaggcgc	aggttcaggg	agcaagtttc	cgaggttgga	aagaagtgac	ttcactgttt	240
aacaaagatg	atgagcagca	tctcctggaa	agatgtaaat	ctcccaagtc	caaaggaact	300
aacttacgat	taaaagaaga	gttgaaggca	gagaagaaat	ctggattttg	ggacaatttg	360
gttttaaaac	agaatataca	gtctaaaaaa	ccagatgaaa	ttgaaggttg	ggagcctcca	420
aaacttgctc	ttgaagacat	atcggctgac	cctgaggaca	ccgtgggtgg	ccacccatcc	480
tggtcaggct	gggaggatga	cgccaagggc	tcgaccaagt	acaccagcct	ggccagctct	540
gccaacagct	ccaggtggag	cctgcgcgcg	gcagggaggc	tggtgagcat	ccgacggcag	600

WO 2004/080146 PCT/EP2004/002808

135300 - SeqList

agtaaaggcc	acctgacaga	tagcccggag	gaggcggagt	gaggggggct	gtgtggcaag	660
tgtgccccga	catggtggcc	ttttatgagt	ataccatgta	gttgttgagt	cttttcc	717

35/35

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 23 September 2004 (23.09.2004)

(10) International Publication Number WO 2004/080146 A3

(51) International Patent Classification7:

G01N 33/53

(21) International Application Number:

PCT/EP2004/002808

(22) International Filing Date: 15 March 2004 (15.03.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

10/389,431

13 March 2003 (13.03.2003)

(71) Applicant (for all designated States except US): GERON CORPORATION [US/US]; 230 Constitution Drive, Menlo Park, CA 94025 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): STANTON, Lawrence, W. [US/SG]; 28 Cuscaden Road #06-10, Singapore 249723 (SG). BRANDENBERGER, Ralph [CH/US]; 1030 Florence Lane #3, Menlo Park, CA 94025 (US). BRUNETTE, Elisa [US/US]; 3608 Hoover Street, Redwood City, CA 94063 (US). GOLD, Joseph, D. [US/US]; 100 Lundy's Lane, San Francisco, CA 94110 (US). IRVING, John, M. [US/US]; 341 West 41st Avenue, San Mateo, CA 94403 (US). MANDALAM, Ramkumar [IN/US]; 4344 Pickerel Drive, Union City, CA 94587 (US). MOK, Michael [US/US]; 639 Seale Avenue, Palo Alto, CA 94031 (US). POWELL, Sandra, E. [US/US]; 21592 Orange Avenue, Castro Valley, CA 94546 (US).

(74) Agents: BASSIL, Nicholas, Charles et al.; Kilburn & Strode, 20 Red Lion Street, London WC1R 4PJ (GB).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 9 September 2005

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: A MARKER SYSTEM FOR CHARACTERIZING UNDIFFERENTIATED HUMAN EMBRYONIC STEM CELLS

(57) Abstract: This disclosure provides a system for qualifying embryonic stem cells intended for human therapy. A large-scale sequencing project has identified important markers that are characteristic of undifferentiated pluripotent cells. Combinations of these markers can be used to validate the self-renewing capacity of ES cells, and their ability to differentiate into tissue types suitable for regenerative medicine. The marker system of this invention has been used to screen feeder cells, media additives, and culture conditions that promote proliferation of stem cells without differentiation. A culture system optimized by following these markers is suitable for rapid expansion of undifferentiated cells from existing lines, or the derivation of new lines that are equally apposite for clinical use.

International Application No T/EP2004/002808

	·		W1/EF2004	4/ 002000			
A. CLASSII IPC 7	FICATION OF SUBJECT MATTER G01N33/53						
← ording to	International Patent Classification (IPC) or to both national classification	tion and IPC					
E FIELDS	SEARCHED			<u> </u>			
Maderium do IPC 7	N.:.mum documentation searched (classification system followed by classification symbols) IPC 7 GOIN						
*	ion searched other than minimum documentation to the extent that su						
	ata base consulted during the International search (name of data bas ternal, BIOSIS, EMBASE, WPI Data, PA	·	, search terms used				
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT						
Category °	Citation of document, with indication, where appropriate, of the rele	vant passages		Relevant to claim No.			
P,X	US 2003/224411 A1 (STANTON LAWREN AL) 4 December 2003 (2003-12-04)	CE W ET		1,3-5, 23,53, 54,57			
Υ	claim 1 WO 00/27995 A (PERA MARTIN FREDER REUBINOFF BENJAMIN EITHAN (AU); T ALAN) 18 May 2000 (2000-05-18) claims 6,7	1					
Υ	WO 02/102837 A (KERJASCHKI DONTSC INNOVATIONSAGENTUR GES M B H (AT) LAURA) 27 December 2002 (2002-12- claims 14,15	1					
	_	/					
X Funt	her documents are listed in the continuation of box C.	X Patent family	members are listed i	n annex.			
Special ca	legarles of cited documents :	T later document put	blished after the Inte	emational filing date			
"E" earlier of filing of	'A' document defining the general state of the art which is not considered to be of particular retevance or priority date and not in conflict with the application but clied to understand the principle or theory underlying the invention invention document of particular retevance; the claimed invention cannot be considered novel or cannot be considered to						
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) *O' document referring to an oral disclosure, use, exhibition or							
other means "P" document published prior to the international filing date but later than the priority date datmed "R" document member of the same patent family "8" document member of the same patent family							
Date of the	actual completion of the international search	Date of mailing of	the international sea	arch report			
6	April 2005	2	2 07. 200	5			
Name and r	mailing address of the ISA Furneers Rated Office, R.R. 5618 Retartings 2	Authorized officer					
European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tot. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Hinchliffe, P							

International Application No
T/EP2004/002808

·	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevent to claim No.
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Resevent to Camillino.
X	CHENG LINZHAO ET AL: "Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture." STEM CELLS (MIAMISBURG), vol. 21, no. 2, 2003, pages 131-142, XP002323378 ISSN: 1066-5099 see Table 1	10-14
X	THOMSON J A ET AL: "EMBRYONIC STEM CELL LINES DERIVED FROM HUMAN BLASTOCYSTS" SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE,, US, vol. 282, 6 November 1998 (1998-11-06), pages 1145-1147, XP002121340 ISSN: 0036-8075 page 1146, column 1, line 1 - line 10	10-14
x	XU CHUNHUI ET AL: "Feeder-free growth of undifferentiated human embryonic stem cells" NATURE BIOTECHNOLOGY, NATURE PUBLISHING, US, vol. 19, no. 10, October 2001 (2001-10), pages 971-974, XP002282070 ISSN: 1087-0156 cited in the application page 972, column 1, line 16 - page 972, column 2, line 53	10-14
x	DEANS ROBERT J ET AL: "Mesenchymal stem cells: Biology and potential clinical uses" EXPERIMENTAL HEMATOLOGY, NEW YORK, NY, US, vol. 28, no. 8, August 2000 (2000-08), pages 875-884, XP002201188 ISSN: 0301-472X see table 1	10-14
A	RICHARDS M ET AL: "Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells" NATURE BIOTECHNOLOGY, NATURE PUBLISHING, US, vol. 20, no. 9, 5 August 2002 (2002-08-05), pages 933-936, XP002979805 ISSN: 1087-0156 figure 2	10-14

Box II Observations where certain claims were found unsearchable (Contine uation of item 2 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: see FURTHER INFORMATION sheet PCT/ISA/210
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box ill Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This international Searching Authority found multiple inventions in this international application, as follows:
see additional sheet
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. X As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.: 10-14
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the Invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. X No protest accompanied the pacyment of additional search fees.

Continuation of Box II.1

Although claims 31-36 are directed to a diagnostic method practised on the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

Although claims 37-46 can also be directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

Table 9, referred to in the claims, does not appear in the descripition. Consequently the claims are unclear contrary to Article 5 PCT insofar as they relate to non existent table 9.

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. claims: 1,3,4,5,23,53,54,57 (all partly)

A method for assesing (if) a culture comprises undifferentiated pluripotent stem cells by measuring three or more markers selected from tables 5-8 (table 9 could not be found).

The first three markers in table 5 are bone marrow stromal antigen, podocalyxin and Rat GPC/glypian-2.

2. claims: 1,3,4,5 (partly)

A method for assesing (if) a culture comprises undifferentiated pluripotent stem cells by measuring three or more markers selected from tables 5-8 (table 9 could not be found).

Bearing in mind that tables 5-8 include 49 different markers, then the sum of each triplet must be individually searched.

3. claim: 2 (partly)

A method for assessing (if) a culture comprises undifferentiated pluripotent stem cells by measuring three or more markers selected from tables 5-8 (table 9 could not be found) and table 2.

Bearing in mind that tables 5-8 include 49 different markers and table 2 an additional 30 markers, then the sum of each triplet must be individually searched.

4. claim: 6 (partly)

A method for assessing (if) a culture comprises undifferentiated pluripotent stem cells by measuring three or more markers selected from tables 5-8 (table 9 could not be found) and table 2.

Bearing in mind that tables 5-8 include 49 different markers and table 2 an additional 30 markers, then the sum of each triplet must be individually searched. In addition these combinations must be further combined with either hTERT and/or Oct 3/4. The number of possibilities to search is now an enormous task.

5. claim: 7 (partly)

A method for assessing (if) a culture comprises undifferentiated pluripotent stem cells by measuring two or more markers selected from Cripto, GRP, PODPXL, hTERT. Seven (7) combinations must be searched

6. claim: claim 8 (partly)

A method for assessing (if) a culture comprises undifferentiated pluripotent stem cells by measuring two or more markers selected from Cripto, GRP, PODPXL, hTERT, Oct3/4, SSEA-3, SSEA-4, Tra-1-60 and Tra-1-81. Again the sum of the combinations to be searched is very large.

7. claim: 9

A method for assessing (if) a culture comprises undifferentiated pluripotent stem cells by measuring three markers: Cripto, hTERT and Oct3/4.

8. claims: 10, 47,48 (partly)

A method for assessing (if) a culture comprises undifferentiated pluripotent stem cells by measuring two or more markers preferentially expressed by said cells and IN ADDITION measuring one or more marker(s) preferentially expressed in differentiated stem cells. Again all of the markers given in tables 5 -8 (no 9) must be individually searched.

9. claim: 11

A method for assessing (if) a culture comprises undifferentiated pluripotent stem cells by measuring two or more markers preferentially expressed by said cells and IN ADDITION measuring one or more marker(s) preferentially expressed in differentiated stem cells. Undifferentiated markers are chosen form Cripto, GRP, PODXL, hTERt

10. claim: 12

A method for assessing (if) a culture comprises undifferentiated pluripotent stem cells by measuring two or more markers preferentially expressed by said cells and IN ADDITION measuring one or more marker(s) preferentially expressed in differentiated stem cells. Markers include Oct 3/4, SSEA-4, Tra-1-60, Tra-1-81.

11. claim: 13

A method for assessing (if) a culture comprises undifferentiated pluripotent stem cells by measuring two or more markers preferentially expressed by said cells and IN ADDITION measuring one or more marker(s) preferentially expressed in differentiated stem cells. Markers include Oct 3/4, SSEA-4, Tra-1-60, Tra-1-81, Cripto, hTERT.

12. claim: 14 (partly)

A method for assessing (if) a culture comprises undifferentiated pluripotent stem cells by measuring two or more markers preferentially expressed by said cells and IN ADDITION measuring one or more marker(s) preferentially expressed in differentiated stem cells. Markers include Oct 3/4, SSEA-4, Tra-1-60, Tra-1-81. In addition a stomal marker is used for the differentiation marker.

13. claim: 15 (partly)

As claim 14 but the stromal markers are selected from the group comrising: CD44, CD105, CD106, CD90, STR0-1, Vimentin, HTS.

14. claim: 16 (partly)

sub selection of lists in previous claims 10-15

15. claims: 17,22,55,56,58 (all partly)

sub selection of lists in previous claims 10-16 with a use of antibodies or primers to said markers being included.

16. claim: 18 (partly)

Kits comprising two or more probes/primers selected from the markers given in tables 5-8 (no 9). The kits are not characterised by their instructions and therefore are merly primer/probe pairs for any use.

17. claim: 19 (partly)

Kits comprising two or more antibodies reactive with the markers given in tables 5-8 (no 9). The kits are not characterised by their instructions and therefore are merly antibody pairs for any use.

18. claims: 20,21 (partly)

Kits comprising two or more antibodies/PCR primers selected from the markers given in tables 5-8 (no 9). The kits are not characterised by their instructions and therefore are merly antibody/primer pairs for any use.

19. claims: 24,25,26,27,49

A method for testing to see which substances/cells/culture conditions are able to keep hES in an undifferentiated state. A method of keeping cells in said undifferentiated form using said substances.

20. claim: 28

A method for testing to see which substances/cells/culture conditions are able to differentiate hES in a specific manner.

21. claim: 29

A method for testing to see which substances/cells/culture conditions are suitable for human administration.

22. claim: 30

Comparison of the levlel of all of the markers listed with those in BJ fibroblast cells.

23. claims: 31 (partly), 32,33,34,35,36

A method for assessing the growth characteristics of a cell population by looking for three or more of the markers given in tables 5 to 8 (no 9) or a specific selection from said tables.

24. claims: 37,38

A method of maintaining pluripotent stem cells in said state by causing them to express FOXO1A or ZIC3 or FLJ20582 or FOXH1 or (any) zink finger protein or Hsa1 or KRAB or SZF1-1 and ZIC2.

25. claims: 39,40

A method of causing pluripotent stem cells to differentiate by causing them to alter their expression lelvels of FOXO1A or ZIC3 or FLJ20582 or FOXH1 or (any) zink finger protein or Hsa1 or KRAB or SZF1-1 and ZIC2.

26. claims: 41,42,43 (all partly)

A method of using the promotoers associated with any of the markers given in tables 5-8 (no 9) to be used to express a heterologous gene in pPS cells.

27. claims: 44-46 (all partly)

A method of using the promoters associated with any of the markers given in tables 3 and 8 to be used to express a heterologous gene in pPS cells.

28. claim: 50

A method of causing pPS cells to grow without differentiation by co culture with mesenchymal stem cells.

29. claims: 51,52

A method of identifiyng genes differentially regulated in pPS cells that have undergone differentiation using routine expression level comparisons.

information on patent family members

International Application No T/EP2004/002808

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US 2003224411	A1	04-12-2003	WO	2004083406 A2	30-09-2004
WO 0027995	Α	18-05-2000	AU	764684 B2	28-08-2003
			ΑU	1501500 A	29-05-2000
			WO	0027995 A1	18-05-2000
			AU	2003264611 A1	08-01-2004
			CA	2349415 A1	18-05-2000
			EΡ	1129176 A1	1 05-09-2001
			JP	2002529070 T	10-09-2002
_			US	2002160509 A1	31-10-2002
WO 02102837	Α	27-12-2002	MO	02102837 A2	27-12-2002

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.