Kolokvij 1 - Osnove teoretične statistike

18.februar, 2016

- 1. Kaj od spodnjega je slučajna spremenljivka (obkrožite, možnih je več odgovorov):
 - (a) populacijsko povprečje
 - (b) velikost populacije N
 - (c) velikost vzorca n
 - (d) vzorčno povprečje
 - (e) varianca vzorčnega povprečja
 - (f) največja vrednost v vzorcu
 - (g) populacijska varianca
- 2. Naj bodo X_1, \ldots, X_n neodvisne enako porazdeljene slučajne spremenljivke z $E(X) = \mu$ in $var(X) = \sigma^2$.
 - (a) Pokažite, da je cenilka

$$\widehat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

nepristranska.

(b) Kaj lahko rečete o nepristranskosti in doslednosti cenilke

$$\widehat{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$$

- 3. Naj bodo $X_1, X_2, \dots X_n$ neodvisne slučajno porazdeljene spremenljivke iz porazdelitve gama z znanim parametrom a=2 in neznanim parametrom λ .
 - (a) Zapišite cenilko po metodi največjega verjetja za λ na vzorcu velikosti n.
 - (b) Ali je dobljena cenilka dosledna? Kratko utemeljite.
 - (c) Izpeljite asimptotsko varianco te cenilke. Kako jo boste ocenili s pomočjo vzorca?
 - (d) Pokažite, da cenilka za $\widehat{\lambda}$ po metodi največjega verjetja ni nepristranska in predlagajte nepristransko cenilko.

Pri reševanju si lahko pomagate z naslednjimi dejstvi:

Gostota gama porazdeljene spremenljivke $X \sim \Gamma(a,\lambda)$ je enaka

$$f_X(x) = \frac{\lambda^a x^{a-1} exp(-\lambda x)}{\Gamma(a)}, \ x > 0, a > 0, \lambda > 0$$

Če je n celo število, velja $\Gamma(n) = (n-1)!$

Če sta U in V neodvisni slučajni spremenljivki, $U \sim \Gamma(a, \lambda)$ in $V \sim \Gamma(b, \lambda)$, velja $U+V \sim \Gamma(a+b, \lambda)$ Če je $X \sim \Gamma(a, \lambda)$, je $E(X) = \frac{a}{\lambda}$. Za celoštevilske a velja $E(\frac{1}{X}) = \frac{\lambda}{a-1}$.

4. Vsak gen ima dva alela, možne so 3 kombinacije: AA, Aa, aa. Kadar so v ravnovesju (vzorčimo naključno iz neke populacije), so verjetnosti kombinacij enake: θ^2 , $2\theta(1-\theta)$, $(1-\theta)^2$. Denimo, da imamo podatke za nek vzorec velikosti n:

(a) Parameter θ želimo oceniti po metodi momentov. V ta namen definiramo spremenljivko X:

$$X_i = \begin{cases} -1 & \text{\'e je } i \quad AA \\ 0 & \text{\'e je } i \quad aA \\ 1 & \text{\'e je } i \quad aa \end{cases}$$

Zapišite pričakovano vrednost te slučajne spremenljivke.

- (b) Zapišite cenilko po metodi momentov
- (c) Ali je ta cenilka nepristranska?
- (d) Izračunajte varianco slučajne spremenljivke X
- (e) Zapišite varianco cenilke izpeljane po metodi momentov
- (f) Izrazite oceno na vzorcu z n_1 , n_2 in n_3 .
- (g) Kako bi s simulacijami primerjali varianco cenilke po metodi momentov in varianco cenilke $\theta = \sqrt{n_1/n}$?