Lista 10B

February 2, 2022

ESTATÍSTICA APLICADA A COMPUTAÇÃO

LISTA 10B

ALUNO: Maria Eduarda Pereira de Souza Melo

Inicialmente, importamos os dados do link disponilizado na atividade.

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

Após consultar o dicionário e observar as variáveis e os dados, cheguei a conclusão de que as as variáveis qualitativas são:

Survived

pclass

Sex

embarked

Abaixo estão os gráficos de barra e de pizza das respectivas variáveis qualitativas mostradas a cima.

Survived

[2]: Text(1, 390, 'Sobreviventes')


```
[3]: dados["Survived"].value_counts().plot.pie(title="Relação de Vidas no Titanic")
```

[3]: <matplotlib.axes._subplots.AxesSubplot at 0x7f3c42cfc9d0>

Relação de Vidas no Titanic

Pclass

```
[4]: dados["Pclass"].value_counts().plot.bar(title="Relação de Classes de Bilhete",⊔

color="#FFA07A")

plt.ylabel("Número de Pessoas")

plt.xlabel("Classes")
```

[4]: Text(0.5, 0, 'Classes')

[5]: dados["Pclass"].value_counts().plot.pie(title="Relação de Classes de Bilhete")

[5]: <matplotlib.axes._subplots.AxesSubplot at 0x7f3c42c27760>

Relação de Classes de Bilhete

Sex

```
[6]: dados["Sex"].value_counts().plot.bar(title="Relação de homens e mulheres", 

⇔color="#DEB887")

plt.ylabel("Número de Pessoas")

plt.xlabel("Sexo")
```

[6]: Text(0.5, 0, 'Sexo')


```
[7]: dados["Sex"].value_counts().plot.pie()
```

[7]: <matplotlib.axes._subplots.AxesSubplot at 0x7f3c42bb47f0>

Embarked

```
[8]: dados["Embarked"].value_counts().plot.bar(title="Relação de Locais de⊔

→Embarcação", color="#A0522D")

plt.ylabel("Número de Pessoas")

plt.xlabel("Local")
```

[8]: Text(0.5, 0, 'Local')

[9]: <matplotlib.axes._subplots.AxesSubplot at 0x7f3c42b20880>

