Tweet-Based Identification of Power Outages

Workflow

Data Gathering

Challenges				Successes
1	Access	X	✓	Method
2	Cost	X	/	Historical Data: - Tweets - Weather Data
3	Time	X	/	NYC Open Data

Number of Outages (2012-2017)

Clustering

- K-Means
- DBSCAN
 - Any insights in the tweets?
 - Any prominent patterns?

- 4 Clusters
- Very similar vocabulary
- Multiple clusters, depending on the data
- Over 2000 as noise

Classification

- Logistic Regression
- SVC
 - Less than 1% positive class
 - Class Weights
 - Decision threshold

PCA

- Reduced Dimensions
 - Weather a good predictor of outages
 - Clumsy to employ all features

- Poor performance based on Recall
- Sharp tradeoffs
- Moderate tradeoffs
- Extensive search

 Apriori, no significant changes

Model Evaluation

Concluding Remarks

