f(x)dx = signed avea inder" f = A+ - A-

RJS McDonald

MATH 111 Lecture Notes

22.4 Properties of Definite Integrals

Goals

• constat factor, dominance, endpoint reversal, additive integrand, splitting interval, and symmetry properties of the definite integral

Theorem 22.4.1. We have the following properties of definite integrals.

1.
$$\int_a^b kf(x) dx = k \int_a^b f(x) dx$$
 (constant factor property)

2. If
$$f \leq g$$
 on the interval $[a, b]$, then $\int_a^b f(x) dx \leq \int_a^b g(x) dx$ (dominance property)

$$3. \int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \text{(additive integrand prop-erty)}$$

If
$$a < b < c$$
, then

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \text{(splitting interval prop-} \\ \int_{b}^{c} f(x) dx$$

$$\int_{-a}^{a} f(x) dx = 0 \text{ if } f \text{ is odd;}$$

$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx \text{ if } f \text{ is symmetry property.}$$

$$\oint_{b} \frac{\int_{b}^{a} f(x) \ dx = -\int_{a}^{b} f(x) \ dx}{\text{erty}}$$

(endpoint reversal property)

Question 22.4.2. Can we use area interpretations to justify some of the integral properties?

Example 22.4.3. Write a single integral of the form $\int_a^b f(x) \ dx$ if

$$\int_{a}^{b} f(x) dx = \int_{-2}^{2} f(x) dx + \int_{-2}^{5} f(x) dx - \int_{-2}^{-1} f(x) dx$$

$$\int_{a}^{b} f(x) dx + \int_{b}^{c} f dx = \int_{a}^{c} f dx$$

$$= \int_{-2}^{5} f(x) dx - \int_{-2}^{1} f(x) dx$$

$$= \int_{-2}^{5} f(x) dx - \int_{-2}^{1} f(x) dx$$

$$= \int_{-2}^{5} f(x) dx - \int_{-2}^{1} f(x) dx$$

$$= \int_{-2}^{5} f(x) dx - \int_{-2}^{5} f(x) dx - \int_{-2}^{1} f(x) dx$$

Example 22.4.4. Suppose f is a continuous function such that $6 \le f(x) \le 7$ on the interval [3, 9]. What are the largest and smallest possible values for

22.4.1Extra examples

Example 22.4.5. Use one of the properties of the definite integral to evaluate

The Area Function and Its Characteristics

23.1 An Introduction to the Area Function

Goals

• define area function

Question 23.1.1. Suppose f is the constant function f(t) = k for some constant k. The case when k=4 is shown below. Is $\int_{-1}^{x} f(t) dt = \int_{-1}^{x} k dt$ itself a function? Can it be given by a formula? 4es Definition 23.1.2. For a continuous function f and constant a in the domain of f, we define $A_f(x)$ to be subscript to dt.

This function represents the signed area under the function f, so we call it the Area Function

23.2 Characteristics of the Area Function

On your own 23.2.1. If f(t) is a function whose graph is shown below, and ${}_0A_f(x) = \int_0^x f(t) \ dt$, find A(0), A(1), A(2) and A(4) and A(5).

$$A(2) = 3$$

$$A(3) = 4.5$$

$$A(4) = 5$$

$$A(S) = A^{4} - A^{-} = S - 0.S = 4.S$$

$$A(0) = {}_{0}A_{f}(0) = area under f from x=0 to x=0$$

$$aA_f(a) = \int_a^b f(t)dt = 0$$

RJS McDonald

MATH 111 Lecture Notes

Example 23.2.2. Let ${}_{1}A_{f}(x) = \int_{1}^{x} f(t) dt$, where the graph of f is drawn below and the domain of A_f is restricted to $1 \le x \le 12$.

(a) On what interval(s) is the function ${}_{1}A_{f}(x)$ increasing? What characteristic of f ensures that f ensures ${}_{1}A_{f}(x)$ is increasing?

as we go along, adding area until six, and subtracting from

(6'10) and again from

A(x) = avea, increasing from [0,6]then again from [0,13]

of $f>0 \Rightarrow A(x)$ increasing

of $f<0 \Rightarrow A(x)$ is decrease

(b) On what interval(s) is the function $_1A_f(x)$ decreasing? What characteristic of f ensures that f ensures $_1A_f(x)$ is decreasing?

•
$$f < 0 \implies A(x)$$
 is incr
• $f < 0 \implies A(x)$ is con
• $f < 0 \implies A(x)$ is con
• $f < 0 \implies A(x)$ is con

seems like of is somehow the derivative of A(x)

(d) On what interval(s) is the function ${}_{1}A_{f}(x)$ concave up? Concave down?

What characteristic of f ensures that ${}_{1}A_{f}(x)$ is concave up or down?

If f is incr f incr f incr f incr f concave up

Concave up f decr f incr f in

CASE 2 Canalogously)

fco and incr => concare up

for o and decr => concare down

in both cases

 $f (x) \Rightarrow A(x) concave up$ $f (x) \Rightarrow A(x) concave down$ Groups 23.2.3. Let ${}_0A_f(x) = \int_0^x f(t) dt$ where the graph of f is drawn below.

(Note: the roots of f are t = 0, 3, 6, 9)

- (a) On what interval(s) is the function $_{1}A_{f}(x)$ increasing? [0,3], [6,9](b) On what interval(s) is the function $\frac{1}{1}A_f(x)$ decreasing? (c) Where on [0, 9] does $_1A_f(x)$ have its local maxima and minima?
- (d) Where on [0,9] does ${}_{1}A_{f}(x)$ have its absolute maxima and minima?
- (e) On what interval(s) is the function ${}_{1}A_{f}(x)$ concave up? Concave down?

c) A(x) has local min at X=6 and local max at x = 9

e) concavely! cu on (0,2), (5,7)
CD on (2,5), (4,9)

- . Groups 23.2.4. Let f(t) = x and $A(x) = {}_{-4}A_f(x) = \int_{-4}^x f(t) \ dt$.
- (a) Find a formula for A(x) when the domain of A(x) is [-4,0]

sare for

(b) Find a formula for A(x) when the domain of A(x) is $x \ge 0$. (Note: you should get the same formula as in part (a)!)

- (c) What is a general formula for $_{-4}A_f(x)=\int_{-4}^x f(t)\ dt$
- (d) What is the formula for $\int_{-2}^x f(t) \ dt$? How is it related to $\int_{-4}^x f(t) \ dt$

Observation 23.2.5. Let a and k be constants. If f(t) = k, then

$$_{a}A_{f}(x) = \int_{a}^{x} k \ dt = kx + C$$
, for some constant C ,

If f(t) = t, then

$$_{a}A_{f}(x)=\int_{a}^{x}t\ dt=rac{x^{2}}{2}+C,$$
 where $C=ka.$

Question 23.2.6. If $f(t) = t^2$, can you predict the solution to

$$_{a}A_{f}(x) = \int_{a}^{x} t^{2} dt?$$

Observation 23.2.7. We summarize the following properties of the area function $_{a}A_{f}(x)$

- area functions f (i.e. for different a) are all vertical translates
 f > 0 means that A_f is increasing
- f < 0 means that A_f is decreasing
- f increasing means that A_f is concave up \leftarrow
- \bullet f decreasing means that A_f is concave down