Math115A 1/18 notes

Vincent

2023-01-19

Recall from last time:

Definition:

A vector space (or a linear space) over a field F is a set V on which two operations are defined, called addition and scalar multiplication, so that for each $x, y \in V$ we gave a unique element $x + y \in V(x \text{ plus } y)$ and for each $x \in V$, $a \in F$ we have a unique element $ax \in V$ (a times x) such that the following conditions are satisfied:

VS1 $x + y = y + x, \forall x, y \in V$ (commutative if addition)

VS2 (x + y) + z = x + (y + z), $\forall x, y \in z \in V$ (association of addition)

VS3 There exists an element in V denoted 0 such that $x + 0 = x, \forall x \in V$ (the zero or neutral element in V)

VS4 For each $x \in V$ there exists $y \in V$ such that x + y = 0 (the additive inverse in V, or opposite of x)

VS5 For each $x \in V$, we have 1x = x

VS6 For each $a, b \in F, x \in V$, we have (ab)x = a(bx)

VS7 For each $a \in F$ and $x, y \in V$ we have a(x + y) = ax + ay

VS8 For each $a, b \in F$ and $x \in V$ we have (a + b)x = ax + by

The most common case of field determined by us will be $F = \mathbb{R}$ (the field of real numbers with its usual + and * operations)

4.1 Example

Given a field F and some n > 1 the set of all n-tuples $v = (v_1, v_n)$ with entries $v_1, v_n \in F$ is denoted F^n . it is a vector space over F with respect to the operations + of addition "coordinate by coordinate". if $v = (v_1, v_n), u = (u_1, ..., u_n)$ then $v + u = (v_1 + u_1, v_2 + u_2, v_n + u_n)$ and scalar multiplication $a(v_1,, v_n) = (av_1, av_2, ..., av_n) \in F^n$

it is immediate to check that VS1-8 are all satisfied, as a consequence of the properties satisfied by + and * in the field F.

Take for instance $F=\mathbb{R}$ and n=3, then $v=(-1,2,-4), u=(\frac{1}{2},-1,3)\in R^3=V$ and we have $v+u=(-1,2,-4)+(\frac{1}{2},-1,3)=(-\frac{1}{2},1,-1).$ Also, if a=-1 then av=(1,-2,4)

4.2 Example

if F is a field and $m, n \ge 1$ integers, then the set of all $m \times n$ matrices over F, denoted $M_{m \times n}(F)$, is a vector space over F with respect to the following operations of addition and scalar multiplication: if $A, B \in M_{m \times n}(F)$ have entries

$$A = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ | & & | \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix}$$

$$B = \begin{pmatrix} B_{11} & B_{12} & \dots & B_{1n} \\ B_{21} & B_{22} & \dots & B_{2n} \\ | & & | & | \\ B_{m1} & B_{m2} & \dots & B_{mn} \end{pmatrix}$$
 then
$$A + B = \begin{pmatrix} A_{11} + B_{11} & A_{12} + B_{12} & \dots & A_{1n} + B_{1n} \\ A_{21} + B_{21} & A_{22} + B_{22} & \dots & A_{2n} + B_{2n} \\ | & & | & | \\ A_{m1} + B_{m1} & A_{m2} + B_{m2} & \dots & A_{mn} + B_{mn} \end{pmatrix}$$
 and if $a \in F$ then
$$aA = \begin{pmatrix} aA_{11} & aA_{12} & \dots & aA_{1n} \\ aA_{21} & aA_{22} & \dots & aA_{2n} \\ | & & & | \\ aA_{m1} & aA_{m2} & \dots & aA_{mn} \end{pmatrix}$$

For instance, take $F = \mathbb{R}$ abd $M_{2\times 3}(\mathbb{R})$ the vector space of 2×3 matrices over \mathbb{R}

$$A = \begin{pmatrix} -1 & 2 & 3 \\ 0 & \frac{1}{2} & 2 \end{pmatrix}$$

$$B = \begin{pmatrix} 3 & 0 & 2 \\ 0 & \frac{1}{2} & -2 \end{pmatrix}$$
then $A + B = \begin{pmatrix} 2 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

The vector $0 \in M_{2\times 3}(R)$ is the 2×3 matrix with all entries=0

$$0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

4.3 Example

if F is a field and S is a non-empty set, then we denote F(S, F) the set of all functions $f: S \to F$ with domain S and codomain F, with addition given by:

if f: S and $g: S \to F$ then $(f+g): S \to F$ is the function on S with values in F defined by $(f+g)(s) = f(s) + g(s) \in F$ and if $a \in F$ then scalar multiply by a is $af: S \to F$ defined by $(af)(s) = af(s) \in F$

Remark if we take S = 1, 2, 3, ..., n a finite set with $n \ge 1$ elements, then F([1, 2, 3, ...n], F) is the same as F^n

4.4 Example

A sequence with elements in F is a function $f:[1,2,...] \to F$ defined an real positive integers with values(codomain) in F if $f(n) = a_n \in F, n = 1,2,...$ is an enumeration of the value of f then are also writes the sequence f as $(a_n)_n$

The set of sequences in F is a particular case of the Example 4.3 where S = [1, 2, ...], and so it is a vector space V with respect to "entry by entry" addition of sequences and scalar multiplication given by: $(a_n)_n + (b_n)_n = (a_n + b_n)_n$ if $c \in F$ then $c(a_n)_n = (ca_n)_n$

4.5 Example

Let
$$V = [(a_1, a_2) : a_1, a_2 \in \mathbb{R}]$$
 and for $(a_1, a_2), (b_1, b_2) \in V, c \in \mathbb{R}$ define: $(a_1 + a_2) + (b_1 + b_2) = (a_1 + 2b_1, a_2 + 3b_2)$ $c(a_1, a_2) = (ca_1, ca_2)$

Note: V as a set is the same as \mathbb{R} but we modified the definition of + (but scalar multiplication is same as in \mathbb{R})

Is V a vector space with this + and \times ?

No because + fails to satisfy VS1

i.e. + as defined is not commutative $(a_1 + a_2) + (b_1 + b_2) = (a_1 + 2b_1, a_2 + 3b_2)$ while $(b_1 + b_2) + (a_1 + a_2) = (b_1 + 2a_1, b_2 + 3a_2)$

For instance we take (1,2) + (2,1) = (1+4,2+3) = (5,5) but (2,1) + (1,2) = (2+2,1+6) = (4,7)**Note** Also VS8 is not satisfied because $(1+1)(a_1,a_2) = (a_1,a_2) + (a_1,a_2) = (3a_1,4a_2)$ but $2(a_1,a_2) = (2a_1,2a_2)$

4.6 Theorem

(cancellation rule for vector addition)

if V is vector space over the field F and $x, y, z \in V$ so that x + z = y + z then x = y

Proof:

By the axioms of (V, +), there exist $v \in V$ such that z + v = 0. Thus, we get that x + z = y + z implies (x + z) + v = (y + z) + v which by VS2 implies x + (z + v) = y + (z + v) so x + 0 = y + 0 which by VS3 implies x = y

4.7 Theorem

Let V be vector space ever field F

- (a) The vector $0 \in V$ is unique with the property VS3 i.e. if $0' \in V$ satisfies $x + 0' = x, \forall x \in V$ then 0' = 0
- (b) If $x \in V$ then there exists a unique $y \in V$ with x + y = 0, i.e. if $y' \in V$ satisfies x + y' = 0 then y = y'

proof

(a) if 0' satisfies $x + 0' = x, \forall x \in V$ then 0 + 0' = 0

But by VS1 we have 0 + 0' = 0' + 0 are by VS3 the element 0 satisfies itself the property $x + 0 = x, \forall x \in V$ which applied to x = 0' gives 0' + 0 = 0'. Thus

0 + 0' = 0 and 0' + 0 = 0' so 0 = 0'

(b) if x + y = 0, x + y' = 0 then by VS1 we have y + x = y' + x and by cancellation theom 4.6 thus implies y = y'

4.8 Theorem

If V vector space over field F then we have

(a)
$$0x = 0, \forall x \in V$$

(b) $(-a)x = -(ax) = a(-x), \forall x \in V, a \in F$

(c) $a0 = 0, \forall a \in F$

Proof

(a) we have 0+0=0 so 0x=(0+0)x=0x+0x by cancellation rule $\to 0=0x$

(b) (-a)x + ax = 0, -(ax) + ax = 0, anda(-x) + ax = 0 Therefore, ax is the inverse of (-a)x, -(ax), and a(-x), and (-a)x = -(ax) = a(-x)

(c) a0 = a(0+0) = a0 + a0 so by theom 4.6 (cancellation law) 0 = a0