Relativitic Ware Egs Sch eq $\frac{d}{dt} = \left(-\frac{\sqrt{2}}{2} + V\right) +$ Polling - Conservation of non-rollatistic Enoug. $E \bowtie i \frac{d}{dt}$ $p = -i \nabla$ $V N \Rightarrow L_0 I_0$ $= \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} v + v$ - time / position not on agent footing. Stat w/ relationtic Efp. alton! [2 - p2 - n2 =0

Klein-Gordin Eq $\left(-\frac{2^2}{2t^2} + \nabla^2 - n^2\right) \phi(x,t) = 0$

d(r,t) = e "On Shell solutions"

every body is Lo I. Thate two solutions (E>0 + E <0)

via Lagrangims

 $KG \stackrel{eq}{=} \frac{1}{2t} d = \stackrel{?}{\overrightarrow{D}} d - \stackrel{?}{m} d$

\$(x,t) - permets time & Space

\$ looks like $\frac{d^2}{dt^2} \times H = -\frac{2U}{2X}$ Potadil Energy

2° 4 - losts like the 'accelention' of the foild

-m2¢ - effette "force" from the mass. (harmon.c oscillator)

Dit - "shear force" sheary table takes force

Now here some interitor about that KG tellog us

Integrate force to get the potalish See from finite differential V $-\frac{2U}{24} = \nabla^2 4 - m^2 4 = V + \frac{1}{2} \left(\nabla 4 \right) \left(\nabla 4 \right) + \frac{m^2}{2} 4^2$ C Potable energy

K.E. From generalitation of 1 x2 to fields

 $K = \frac{5}{1} \left(\frac{24}{5} - 4 \right)_{5}$

 $K+U = \frac{1}{2}(\frac{2}{2t}4)^2 + \frac{1}{2}(D4)\cdot(D4) + \frac{x^2}{2}4^2$

Total energy from integrating

H(t) = \ \d \z \left[\frac{1}{2}(\frac{1}{2}\psi \psi)^2 + \frac{1}{2}(\nabla \psi)(\nabla \psi) + \frac{1}{2}\psi^2\right]

with this you could go back to 3 lookings ago and replace i Dottoo and to everythy agoin (Ve voit bother here...)

However we can use this to trouble the field of in a totally different, It inaddy more useful way...

thenk of classical mechanics of point particles Can all be Somulated with Lagrangian & principle of least action.

L = \frac{1}{2} \times^2 - U(x)

You could take this

you could take this + derie Neutons 2° low The action S[xH] = Jdt L by minimizing the action

FAN ANATH

Do the same for relativistic Sields

 $L = K - U = \int d^3x \left[\frac{1}{2} (\frac{2}{24}4)^2 - \frac{1}{2} (04) (04) - \frac{m^2}{2} d^2 \right]$

K.C. can be found from S[4(+)] = S24x [] minimiting action unt of

 $S[4] = \int \int_{-\infty}^{\infty} \left[\frac{1}{2}(2,4)(2^{2}4) - \frac{m^{2}}{2}4^{2}\right]$ C'mani Costly L. I. this tills us how to construct general LI descriptions of Relativistic QM Systems. of Relativistic UP Systems.

-Need LI Lagrangian and we ar "done"

Schootel 274 2nd vall of particle physics

Cllows four this. Two more relativistic systems important for S.M. Spin I "EM" KG Spin OD Spin 2 dirac equation KG 2nd order in x1. Contains no into about interiors angular momentum. (Wo free boreta indicios) & from KG is Spir-0 field I Need relativities eq. with free Lorott indictors Can we find 1st order relativistic ez of motion.

Can we tild I order relativistic et or Assume the exists a wave eq linear in t + x $\left(\frac{2}{2t} + \vec{B} \cdot \vec{\nabla} \right) = 100 \text{ m}^{\frac{1}{2}}$

for some or, 15, m

If ral invasiat, must imply the KG Assure that it is the sque root

$$\left(\alpha \frac{d}{dt} + \vec{R} \cdot \vec{D}\right) \left(\alpha \frac{3}{2t} + \vec{R} \cdot \vec{D}\right) \gamma = n^{2\gamma}$$

$$= \sum_{x=2}^{2} \left[x^{2} + x^{$$

=)
$$\alpha^2 = -1$$
 $\beta^2 = S_{ij}$ $\alpha \beta_i + \beta_i \alpha = 0$

(# Cannot be #'s Lets teep going ...

X = ; Y, B; = ; V;

Other choices you will work out ---

Diruc eq describes spin 12 pantieles (e)

121. X

4.

12 pantieles (e)

13 has the Pauli spin untrient Ble du are natrices the soldion 4 will be a 4-component vector.

Solution to Dirac Eq

Assure of the Com 7(x) = U(p) e -ipx

(: 8,2 m - m) + = (: 8,1-ipn) - m) ve = 0

=> mat-ix eq (x.p-m) u=0

Massire Padile p=(E,000)

 $\begin{pmatrix} -mI & EI \\ EI & -mI \end{pmatrix} v = 0$ $v = \begin{pmatrix} c \\ D \end{pmatrix}$ Spinors

=) _m(+ED =0 & EC-mD=0

 $E = m^2 = E = \pm m$ Some as soon in K.G.

E=+m=) C=D E=-m=) C=-D

 $Y_{+} = \begin{pmatrix} c \\ c \end{pmatrix} e^{-imt}$ $Y_{-} = \begin{pmatrix} c \\ -c \end{pmatrix} e^{imt}$

(- two components represent spire up or down