МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕ-РАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ СИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ОПТИКИ

УНИВЕР-МЕХАНИКИ И

ПОБЕДИТЕЛЬ КОНКУРСА ИННОВАЦИОННЫХ ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ ВУЗОВ

И.А. ЛАПИН Л.С. РАТАФЬЕВА

А.П. ТАНЧЕНКО

Ю.В. ТАНЧЕНКО

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНК-ЦИИ ОДНОЙ ПЕРЕМЕННОЙ

Учебное пособие

Санкт—Петербург 2009

Коллектив авторов:

И.А. Лапин, Л.С. Ратафьева, А.П. Танченко, Ю.В. Танченко

Интегральное исчисление функции одной переменной.

Под общей редакцией Л.С. Ратафьевой

Учебное пособие. СПб: СПбГУ ИТМО, 2009 год, 124 с.

Предлагаемое учебное пособие представляет собой базовый конспект лекций по высшей математике для студентов 1-го курса (2 семестр) дневного

и вечернего отделения общеинженерных специальностей. В нем рассматриваются следующие темы: «Неопределенный интеграл, определенный интеграл и его приложения», «Несобственные интегралы», «Интегралы, зависящие от параметра», «Гамма-функция», «Бета-функция». Содержание пособия соответствует образовательным стандартам и программе по высшей математике для направления 550000 — Технические науки. Основное назначение пособия — помочь студентам в самостоятельном изучении данных разделов курса в условиях сокращенного количества аудиторных занятий.

При написании пособия использовались материалы других изданий, которые приводятся в списке литературы без дополнительных ссылок.

Рецензент учебного пособия доктор технических наук, профессор Юрий Александрович Балошин.

Рекомендовано к печати Ученым Советом естественнонаучного факультета СПбГУ ИТМО (протокол N25 от 23 декабря 2008 года)

В 2007 году СПбГУ ИТМО стал победителем конкурса инновационных образовательных программ вузов России на 2007—2008 годы. Реализация инновационной образовательной программы «Инновационная система подготовки специалистов нового поколения в области информационных и оптических технологий» позволит выйти на качественно новый уровень подготовки выпускников и удовлетворить возрастающий спрос на специалистов в информационной, оптической и других высокотехнологичных отраслях экономики.

«Образование»

- © Санкт—Петербургский государственный университет информационных технологий, механики и оптики, 2009 г.
- © И.А. Лапин, Л.С. Ратафьева, А.П. Танченко, Ю.В. Танченко, 2009 г.

Оглавление

Глава 1 Неопределенный интеграл	5
§1 Первообразная и неопределенный инте	рал. Теорема
существования неопределенного интегр	ала. Свойст-
ва неопределенного интеграла	5
§2 Непосредственное интегрирование с по	
лицы неопределенных интегралов	
§3 Подстановка в неопределенном интегра	
§4 Интегрирование «по частям»	
§5 Интегрирование выражений, содержащи	х квадратный
трехчлен $ax^2 + bx + c$	31
§6 Интегрирование рациональных и дробно)-
рациональных функций	34
§7 Интегрирование тригонометрических вы	ражений 47
Глава 2 Определенный интеграл	55
§1 Определенный интеграл. Его свойства.	
§2 Вычисление определенного интеграла.	
§3 Приложения определенного интеграла.	
§4 Общая схема применения определенно	
Глава 3 Несобственные интегралы	88
§1 Несобственные интегралы по неогранич	
межутку	
§2 Несобственные интегралы от неогранич	енных функ-
ций	95
§3 Интегралы, зависящие от параметра	99
§4 Гамма-функция $\Gamma(x)$	104
§5 Бета-функция В (p,q)	109
Приложение	114
§1 Подстановки Эйлера	
§2 Интегрирование дифференциальных би	

§3	В Об интегралах, не выражающихся через элементар-	
	ные функции	118

Заповедь Горация.

Глава 1

Неопределенный интеграл

В дифференциальном исчислении решалась задача о нахождении производной заданной функции. В интегральном исчислении решается обратная задача об отыскании функции по ее производной или дифференциалу.

Задача об отыскании функции по ее производной встречается уже в механической задаче об определении закона движения материальной точки по заданному ее ускорению (второй закон Ньютона) или скорости (закон сохранения энергии).

- §1. Первообразная и неопределенный интеграл. Теорема существования неопределенного интеграла. Свойства неопределенного интеграла.
 - 1. Первообразная и неопределенный интеграл.

Исходным понятием интегрального исчисления является понятие первообразной.

Определение 1. Функция F(x) называется первообразной для функции f(x) на некотором интервале, если во всех точках этого интервала функция F(x) дифференцируема и удовлетворяет соотношению

$$F'(x) = f(x)$$

или, что то же самое, соотношению

$$dF(x) = f(x)dx$$
.

Пример 1. Функция $F(x) = \frac{x^3}{3}$ является первообразной для функ-

ции $f\left(x\right)$ = x^{2} на всей числовой прямой, так как

$$F'(x) = \left(\frac{x^3}{3}\right)' = x^2, \forall x \in \mathbb{R}$$
.

транскрипция [квидквид прэцэпиэс, эсто брэвис]

Нетрудно заметить, что если функция имеет первообразную, то эта первообразная не единственная. Действительно, если F(x) — первообразная для f(x) и C — постоянная, то функция F(x)+C также является первообразной для f(x).

Теорема 1. Если F(x) — первообразная для функции f(x) на некотором интервале, то выражение F(x)+C, где C — произвольная постоянная, содержит все первообразные для f(x).

Доказательство. Пусть $\Phi(x)$ — любая другая первообразная для f(x), т.е.

$$\Phi'(x) = f(x)$$
.

Составим разность $\Phi(x) - F(x)$ и вычислим производную этой разности, замечая, что функции $\Phi(x)$ и F(x) имеют одну и ту же производную f(x). Тогда

$$(\Phi(x)-F(x))' = \Phi'(x)-F'(x)=f(x)-f(x)=0.$$

Так как производная разности $\Phi(x)-F(x)$ в рассматриваемом интервале равна нулю, то это имеет место лишь при условии, что на рассматриваемом интервале разность $\left(\Phi(x)-F(x)\right)$ сохраняет постоянное значение, которое мы обозначим через C, так что

$$\Phi(x)-F(x)=C$$
,

откуда следует

$$\Phi(x) = F(x) + C$$
.

Это и означает, что первообразная $\Phi(x)$ представлена в указанном виде.

Теорема доказана.

Рассмотренная теорема имеет простую геометрическую интерпретацию.

Действительно, пусть кривая l является графиком функции F(x) — первообразной функции f(x) на инфекратором интервале. Тогда при лю-

бом x из рассматриваемого интервала касательная к l имеет угловой коэффициент, равный f(x). Ясно, что этим свойством обладает любая кривая, получающаяся из l путем параллельного сдвига вдоль оси Oy на величину C; при этом ее уравнение имеет соответственно вид $y=F(x)+C_1$, $y=F(x)+C_2$ и т.д., где C_1 , C_2 — означают различные частные значения, которые принимает величина C, почему она и называется произвольной постоянной.

Определение. Совокупность всех первообразных для функции f(x) на некотором интервале называется интегралом на этом интервале и обозначается символом

$$\int f(x)dx.$$

В этом выражении функция f(x) называется подынтегральной функцией, произведение f(x)dx — подынтегральным выражением, переменная x — переменной интегрирования, знак \int называется знаком интеграла. Итак, если функция F(x) — одна из первообразных для f(x), то по определению:

$$\int f(x)dx = F(x) + C.$$

Операцию нахождения неопределенного интеграла называют интегрированием функции f(x), при этом говорят, что мы не решаем данный интеграл, а «берем» интеграл.

Пример 2. Легко видеть, что если $f(x) = \cos x$, то $\int \cos x dx = \sin x + C$.

Замечание 1. При интегрировании данной функции могут получиться различные формы записи результата. Это зависит от способа нахождения первообразных. Но всегда разность найденных первообразных равна некоторому числу. Например, функции $F_1 = \frac{1}{2}(x+1)^2$ и $F_2 = \frac{1}{2}x^2 + x$ являются первообразными для функции f(x) = x + 1 и, следовательно, мы можем написать два правильных и различных по форме результата

$$\int (x+1)dx = \frac{1}{2}(x+1)^2 + C ,$$

$$\int (x+1)dx = \frac{1}{2}x^2 + x + C .$$

Нетрудно видеть, что разность данных первообразных $\pmb{F}_1(\pmb{x}\,) - \pmb{F}_2(\pmb{x}\,) = \frac{1}{2} \, .$

Приведем еще один пример. А именно, легко убедиться, что справедливы соотношения

$$\int \sin x \cos x dx = \frac{\sin^2 x}{2} + C ,$$

$$\int \sin x \cos x dx = -\frac{1}{4} \cos 2x + C .$$

Действительно, достаточно продифференцировать правые части этих соотношений.

Заметим кроме того, что операция нахождения первообразной бывает достаточно трудоемкой и требует иногда значительного интеллектуального напряжения.

Замечание 2. Равенства, содержащие в качестве слагаемых неопределенные интегралы, не являются равенствами в обычном смысле. О таких равенствах говорят, что они справедливы с точностью до произвольной постоянной. Рассмотренные выше примеры убеждают нас в этом. Действительно, разность между обеими частями равенства, содержащего в качестве слагаемых неопределенные интегралы, равна не нулю, а произвольной постоянной.

Теорема 2 (теорема существования неопределенного интеграла). Если функция f(x) непрерывна на некотором интервале, то на этом интервале она и интегрируема, т.е. имеет первообразную, и, следовательно, существует неопределенный интеграл.

Заметим, что сформулированная теорема дает достаточное условие существование неопределенного интеграла.

В частности, из приведенной теоремы следует, что всякая элементарная функция имеет неопределенный интеграл в той области, где она определена.

2. Свойства неопределенного интеграла.

Свойство 1. Производная неопределенного интеграла равно подынтегральной функции, т.е.

$$\left(\int f(x)dx\right)'_{x}=f(x).$$

Справедливость этого равенства следует непосредственно из определения неопределенного интеграла, если под словами «производная неопределенного интеграла» понимать производную от любой первообразной для функции $f\left(x\right)$.

Свойство 2. Постоянный множитель k можно выносить за знак неопределенного интеграла, т.е.

$$\int k \cdot f(x) dx = k \int f(x) dx.$$

Доказательство. Убедимся, что совпадают производные обеих частей равенства. Действительно, в соответсвии со свойством 1, имеем:

$$\left(\int k \cdot f(x) dx\right)' = k \cdot f(x).$$

Если продифференцировать выражение, стоящее в правой части равенства, то, учитывая, что постоянный множитель можно вынести за знак производной и используя св.1, получим:

$$\left(k\int f(x)dx\right)'=k\left(\int f(x)dx\right)'=kf(x).$$

Свойство 3.

$$\int [k_1 f_1(x) + k_2 f_2(x) + \dots + k_n f_n(x)] dx =
= k_1 \int f_1(x) dx + k_2 \int f_2(x) dx + \dots + k_n \int f_n(x) dx$$

Свойство 4. (Инвариантность формул интегрирования.)

Всякая формула интегрирования справедлива, независимо от того, является переменная интегрированием независимой переменной или дифференцируемой функцией независимой переменной, т.е. если справедливо равенство

$$\int f(x)dx = F(x) + C ,$$

то справедливо соотношение

$$\int f(u)du = F(u) + C ,$$

где u = u(x) — любая непрерывная и дифференцируемая функция аргумента x .

Доказательство. Упростим равенство

$$\int f \left[u(x) \right] u'(x) dx = F \left[u(x) \right] + C$$

и убедимся в том, что производная левой и правой части совпадают. Действительно,

$$\left(\int f\left[u\left(x\right)\right]u'(x)dx\right)'=f\left[u\left(x\right)\right]u'(x),$$

с другой стороны

$$(F[u(x)]+C)'_{x}=F'_{u}[u(x)]u'_{x}(x).$$

Из соотношения $\int f(x)dx = F(x) + C$ следует, что F'(x) = f(x), следовательно, F'[u(x)] = f[u(x)], а тогда имеем:

$$(F[u(x)]+C)'_{x}=f[u(x)]u'(x),$$

откуда и следует справедливость данного свойства.

Пример. Используя справедливость равенства $\int x^3 dx = \frac{1}{4}x^4 + C$, взять интеграл $J = \int \sin^3 x \cos x \, dx$.

Решение. Запишем исходный интеграл в виде

$$J = \int \sin^3 x \cos x \, dx = \int \sin^3 x \, d(\sin x) = \frac{1}{4} \sin^4 x + C .$$

3. Таблица неопределенных интегралов

Заметим, что операции дифференцирования и интегрирования являются взаимно обратными операциями, поэтому обращая формулы дифференцирования основных элементарных функций, без труда составить таблицу основных неопределенных интегралов. Остановимся лишь на некоторых из них

Пример 1. Доказать, что
$$\int \frac{dx}{x} = \ln |x| + C$$

Напомним, что

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

следовательно

$$|\mathbf{x}|' = \begin{cases} 1, & x \ge 0 \\ -1, & x < 0 \end{cases}.$$

Тогда

$$\ln |x| = \begin{cases} \ln x, & x > 0 \\ \ln(-x), & x < 0 \end{cases}$$

значит

$$\left(\ln\left|x\right|+C\right)'_{x} = \begin{cases} \frac{1}{x}, & x > 0\\ \frac{1}{-x}(-1) = \frac{1}{x}, & x < 0 \end{cases},$$

откуда и следует справедливость формулы

$$\int \frac{dx}{x} = \ln |x| + C .$$

Пример 2. Доказать, что

$$\int \frac{dx}{\sqrt{a^2-x^2}} = \arcsin \frac{x}{a} + C.$$

Доказательство.

$$\left(\arcsin\frac{x}{a}\right)'_{x} = \frac{1}{\sqrt{1-x^{2}/a^{2}}} \left(\frac{x}{a}\right)'_{x} = \frac{1}{\sqrt{1-x^{2}/a^{2}}} \frac{1}{a} = \frac{1}{\sqrt{a^{2}-x^{2}}} \frac{1}{a} = \frac{1}{\sqrt{a^{2}-x^{2}}}.$$

Производная правой части равна подынтегральной функции, значит исходная формула справедлива.

Пример 3. Принимая во внимание справедливость соотношения $\int \!\! x^n dx \, = \frac{x^{n+1}}{n+1} + C \ , \ \text{взять интегралы} \int \!\! \frac{dx}{x^2} \, , \ \int \!\! \frac{dx}{2\sqrt{x}} \, .$

1.
$$\int \frac{dx}{x^2} = \int x^{-2} dx = \frac{x^{-1}}{-1} + C = -\frac{1}{x} + C$$

2.
$$\int \frac{dx}{2\sqrt{x}} = \frac{1}{2} \int x^{-\frac{1}{2}} dx = \frac{1}{2} \frac{x^{\frac{1}{2}} + 1}{\frac{1}{2}} + C = \sqrt{x} + C$$

Пример 4. Доказать, что

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln\left(x + \sqrt{x^2 \pm a^2}\right) + C .$$

Для доказательства этой формулы продифференцируем правую часть:

$$\left(\ln\left(x + \sqrt{x^{2} \pm a^{2}}\right)\right)_{x}' = \frac{1}{\left|x + \sqrt{x^{2} \pm a^{2}}\right|} \cdot \left|x + \sqrt{x^{2} \pm a^{2}}\right|_{x}' = \frac{1}{\left|x + \sqrt{x^{2} \pm a^{2}}\right|} \cdot \left(x + \sqrt{x^{2} \pm a^{2}}\right)_{x}' \cdot sign\left(x + \sqrt{x^{2} \pm a^{2}}\right) = \frac{1}{\left|x + \sqrt{x^{2} \pm a^{2}}\right|} \cdot sign\left(x + \sqrt{x^{2} \pm a^{2}}\right) = \frac{1}{\left|x + \sqrt{x^{2} \pm a^{2}}\right|} \cdot sign\left(x + \sqrt{x^{2} \pm a^{2}}\right) = \frac{1}{\left|x + \sqrt{x^{2} \pm a^{2}}\right|} \cdot \frac{\left(x + \sqrt{x^{2} \pm a^{2}}\right)}{\sqrt{x^{2} \pm a^{2}}} = \frac{1}{\sqrt{x^{2} \pm a^{2}}}.$$

Откуда и следует справедливость приведенной в условии примера формулы.

Составим теперь таблицу основных неопределенных интегралов, которую следует выучить наизусть и пользоваться ею без дополнительных обоснований.

Таблица неопределенных интегралов

1.
$$\int x^a dx = \frac{x^{a+1}}{a+1} + c$$
.

$$9. \int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C .$$

2.
$$\int \frac{dx}{x^2} = -\frac{1}{x} + C$$
.

$$10. \int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C .$$

$$3. \int \frac{dx}{2\sqrt{x}} = \sqrt{x} + C .$$

11.
$$\int \frac{dx}{a^2 + x^2} = \begin{cases} \frac{1}{a} \arctan \frac{x}{a} + C \\ -\frac{1}{a} \arctan \frac{x}{a} + C \end{cases}$$

a > 0.

4.
$$\int a^x dx = \frac{a^x}{\ln a} + C$$
, $a > 0, a \ne 1$.

$$5. \int e^x dx = e^x + C.$$

12.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \begin{cases} \arcsin \frac{x}{a} + C \\ -\arccos \frac{x}{a} + C \end{cases}$$

a > 0.

$$6. \int \frac{dx}{x} = \ln |x| + C.$$

13.
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C .$$

$$7. \int \sin x \, dx = -\cos x + C .$$

14.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C.$$

$$8. \int \cos x \, dx = \sin x + C .$$

Приведенные формулы справедливы при всех значениях x , при которых определены подынтегральные функции.

В справедливости любой из приведенных функций нетрудно убедиться, для чего достаточно продифференцировать выражение, стоящее в правой части рассматриваемого соотношения.

Примеры. Взять следующие интегралы, пользуясь непосредственно приведенной таблицей неопределенных интегралов (полученный результат проверить дифференцированием)

1.
$$\int (x - \sin x) dx = \int x dx - \int \sin x dx = \frac{x^2}{2} + \cos x + C$$
.

2.
$$\int \frac{(2e)^x}{5^x} dx = \int (0.4e)^x dx = \frac{(0.4e)^x}{\ln(0.4e)} + C.$$

3.
$$\int (1+\sqrt{x})^3 dx = \int (1+3\sqrt{x}+3x+x^{1,5}) dx = x+3\cdot\frac{x^{1,5}}{1,5}+3\cdot\frac{x^2}{2}+\frac{x^{2,5}}{2,5}+C$$
.

4.
$$\int \left(\frac{1+x}{x}\right)^2 dx = \int \frac{1+2x+x^2}{x^2} = \int \frac{dx}{x^2} + 2\int \frac{dx}{x} + \int dx = -\frac{1}{x} + 2\ln|x| + x + C$$

5.
$$\int tg^2 x \, dx = \int \frac{\sin^2 x}{\cos^2 x} dx = \int \frac{1 - \cos^2 x}{\cos^2 x} dx = \int \frac{dx}{\cos^2 x} - \int dx = tgx - x + C$$
.

6.
$$\int \frac{dx}{x^2(1+x^2)} = \int \frac{(1+x^2)-x^2}{x^2(1+x^2)} dx = \int \frac{dx}{x^2} - \int \frac{dx}{1+x^2} = -\frac{1}{x} - \arctan x + C.$$

7.
$$\int \frac{(1+2x^2)dx}{x^2(1+x^2)} = \int \frac{(1+x^2)+x^2}{x^2(1+x^2)}dx = \int \frac{dx}{x^2} + \int \frac{dx}{1+x^2} = -\frac{1}{x} + \arctan x + C.$$

8.

$$\int \frac{\cos 2x \, dx}{\cos^2 x \, \sin^2 x} = \int \frac{\cos^2 x \, -\sin^2 x}{\cos^2 x \, \sin^2 x} dx = \int \frac{dx}{\sin^2 x} - \int \frac{dx}{\cos^2 x} = -\cot x + C$$

9.
$$\int \frac{dx}{\cos 2x + \sin^2 x} = \int \frac{dx}{\cos^2 x - \sin^2 x + \sin^2 x} = \int \frac{dx}{\cos^2 x} = tgx + C.$$

10.
$$\int (\arcsin x + \arccos x) dx$$

Преобразуем подынтегральное выражение. Напомним, что

$$\sin(\alpha+\beta) = \sin\alpha\cos\beta + \sin\beta\cos\alpha,$$

тогда

$$\sin(\arcsin x + \arccos x) =$$

 $= \sin(\arcsin x) \cdot \cos(\arccos x) + \sin(\arccos x) \cdot \cos(\arcsin x) =$

$$=x \cdot x + \sqrt{1-x^2} \sqrt{1-x^2} = x^2 + 1-x^2 = 1$$

откуда следует, что

$$\arcsin x + \arccos x = \arcsin 1 = \frac{\pi}{2}$$

т.е.

$$\arcsin x + \arccos x = \frac{\pi}{2}$$
,

откуда следует, что

$$\int (\arcsin x + \arccos x) dx = \frac{\pi}{2}x + C.$$

В заключение заметим, что существуют элементарные функции, интегралы которых элементарными функциями не являются. Такие интегралы называются неберущимися, а точнее неберущимимся в элементарных функциях, а сами такие функции называются неинтегрируемыми в элементарных функциях. Заметим также, что эти интегралы существуют в силу теоремы существования неопределенного интеграла.

Приведем самые известные из неберущихся интегралов, которые часто встречаются в различных приложениях:

$\int e^{-x^2} dx$	интеграл Пуассона
$\int \sin x^2 dx \text{if } \int \cos x^2 dx$	интегралы Френеля
$\int \frac{dx}{\ln x}$	интегральный логарифм
$\int \frac{\sin x}{x} dx \text{if } \int \frac{\cos x}{x} dx$	интегральный синус и интегральный ко- синус соответственно

Техника интегрирования элементарных функций опирается на использовании основных формул, которые представлены в таблице основных неопределенных интегралов. Главная трудность при интегрировании состоит в приведении подынтегрального выражения к виду, позволяющему использовать эту таблицу. Рассмотрим теперь основные методы, позволяющие это делать.

§2. Непосредственное интегрирование с помощью таблиц неопределенных интегралов

Решая задачу нахождения первообразной для простейших интегралов с помощью таблицы, прежде всего следует принимать во внимание не только таблицу, но и свойства неопределенного интеграла и это, прежде всего свойство инвариантности формул интегрирования. Поясним суть дела подробнее. Для этого напомним, что дифференциалом функции:

$$dy(x) \stackrel{def}{=} y'_{x}(x)dx.$$

В частности
$$d(x+a)=dx$$
, (1)

$$d\left(bx\right) = \frac{1}{b}dx , \qquad (2)$$

где a и b некоторые постоянные.

Отсюда вытекают два правила внесения постоянной под знак дифференциала в неопределенном интеграле.

I. Неопределенный интеграл не изменится, если под знаком дифференциала к переменной интегрирования прибавить любую константу, т.е.

$$\int f(x)dx = \int f(x)d(x+a)$$
 (3)

Примеры. Взять следующие интегралы

1.
$$\int \frac{dx}{(x+1)^2} = \int \frac{d(x+1)}{(x+1)^2} = -\frac{1}{x+1} + C.$$

2.
$$\int \frac{dx}{\sqrt{x+5}} = 2 \int \frac{d(x+5)}{2\sqrt{x+5}} = 2\sqrt{x+5} + C.$$

3.
$$\int \frac{2x+1}{x+1} dx = \int \frac{2(x+1)-1}{x+1} dx = 2 \int dx - \int \frac{dx}{x+1} =$$
$$= 2 \int dx - \int \frac{d(x+1)}{x+1} = 2x - \ln|x+1| + C.$$

4.
$$\int \frac{dx}{x+2} = \int \frac{d(x+2)}{x+2} = \ln|x+2| + C.$$

5.
$$\int 2^{x+5} dx = \int 2^{x+5} d(x+5) = \frac{2^{x+5}}{\ln 2} + C.$$

6.
$$\int \sin\left(x + \frac{\pi}{8}\right) dx = \int \sin\left(x + \frac{\pi}{8}\right) d\left(x + \frac{\pi}{8}\right) = -\cos\left(x + \frac{\pi}{8}\right) + C$$

7.
$$\int \frac{dx}{\cos^2(x-\pi^2/4)} = \int \frac{d(x-\pi^2/4)}{\cos^2(x-\pi^2/4)} = \mathbf{tg}(x-\pi^2/4) + C.$$

8.
$$\int \frac{dx}{x^2 + 2x + 2} = \int \frac{dx}{(x^2 + 2x + 1) + 1} = \int \frac{dx}{(x + 1)^2 + 1} = \int \frac{d(x + 1)}{(x + 1)^2 + 1} = \int \frac{d(x + 1)}{(x + 1)^2 + 1} = \int \frac{dx}{(x + 1)^2 + 1} =$$

9.
$$\int \frac{dx}{\sqrt{x^2 + 2x}} = \int \frac{dx}{\sqrt{(x^2 + 2x + 1) - 1}} = \int \frac{dx}{\sqrt{(x + 1)^2 - 1}} = \int \frac{d(x + 1)}{\sqrt{(x$$

10.
$$\int \frac{dx}{\sqrt{2x-x^2}} = \int \frac{dx}{\sqrt{-(x^2-2x)}} = \int \frac{dx}{\sqrt{-(x^2-2x+1-1)}} = \int \frac{dx}{\sqrt{1-(x-1)^2}} = \int \frac{dx}{\sqrt{1-(x-1)^2}} = \int \frac{dx}{\sqrt{1-(x-1)^2}} = \arcsin(x-1) + C.$$

Принимая во внимание соотношение (2), сформулируем второе правило внесения постоянной под знак дифференциала в неопределенном интеграле.

II. Неопределенный интеграл следует разделить на константу, если переменная интегрирования под знаком дифференциала в неопределенном интеграле умножается на эту константу, т.е.

$$\int f(x)dx = \frac{1}{b} \int f(x)dbx.$$

Примеры.

1.
$$\int \cos 3x \, dx = \frac{1}{3} \int \cos 3x \, d \, 3x = \frac{1}{3} \sin 3x + C$$
.

2.
$$\int \frac{dx}{\sin^2 3x} = \frac{1}{3} \int \frac{d(3x)}{\sin^2 3x} = -\frac{1}{3} \operatorname{ctg} 3x + C$$
.

3.
$$\int \sin^2 x \, dx = \int \frac{1 - \cos 2x}{2} dx = \frac{1}{2} \int dx - \frac{1}{2} \int \cos 2x \, dx = \frac{x}{2} - \frac{1}{2} \sin 2x + C$$

4.
$$\int e^{5x} dx = \frac{1}{5} \int e^{5x} d5x = \frac{1}{5} e^{5x} + C$$

5.
$$\int \frac{dx}{5^{2x}} = \int 5^{-2x} dx = -\frac{1}{2} \int 5^{-2x} d(-2x) = -\frac{1}{2} \frac{5^{-2x}}{\ln 5} + C$$
.

7.
$$\int \frac{dx}{1+4x^2} = \frac{1}{2} \int \frac{d^2x}{1+(2x)^2} = \frac{1}{2} \operatorname{arctg} 2x + C$$
.

8.
$$\int \frac{dx}{\sqrt{4x^2+1}} = \frac{1}{2} \int \frac{d2x}{\sqrt{(2x)^2+1}} = \frac{1}{2} \ln \left| 2x + \sqrt{4x^2+1} \right| + C.$$

9.
$$\int \frac{dx}{\sqrt{4-9x^2}} = \frac{1}{2} \int \frac{dx}{\sqrt{1-9x^2/4}} = \frac{1}{2} \int \frac{d(3x/2)}{\sqrt{1-(3x/2)^2}} = \frac{1}{3} \arcsin(3x/2) + C$$

10.
$$\int \frac{dx}{2x^{2}+9} = \frac{1}{9} \int \frac{dx}{\frac{2x^{2}}{9}+1} = \frac{1}{9} \int \frac{dx}{\left(\sqrt{2}x/3\right)^{2}+1} = \frac{1}{9\left(\sqrt{2}/3\right)} \int \frac{d\left(\sqrt{2}x/3\right)}{\left(\sqrt{2}x/3\right)^{2}+1} = \frac{1}{3\sqrt{2}} \operatorname{arctg} \frac{\sqrt{2}x}{3} + C.$$

Заметим, что иногда приходится комбинировать эти два правила внесения постоянной под знак дифференциала в неопределенном интеграле. Приведем примеры

Примеры.

1.
$$\int \frac{dx}{(2x+3)^2} = \frac{1}{2} \int \frac{d(2x+3)}{(2x+3)^2} = -\frac{1}{2} \cdot \frac{1}{2x+3} + C$$

2.
$$\int \sqrt{4x - 7} dx = \frac{1}{4} \int \sqrt{4x - 7} d(4x - 7) = \frac{1}{4} \cdot \frac{(4x - 7)^{1.5}}{1.5} + C = \frac{1}{6} (4x - 7)^{1.5} + C.$$

3.
$$\int e^{5x+1} dx = \frac{1}{5} \int e^{5x+1} d(5x+1) = \frac{1}{5} e^{5x+1} + C$$
.

4.
$$\int \frac{dx}{3^{1-2x}} = \int 3^{2x-1} dx = \frac{1}{2} \int 3^{2x-1} d(2x-1) = \frac{1}{2} \frac{3^{2x-1}}{\ln 3} + C.$$

5.
$$\int \frac{dx}{5x+7} = \frac{1}{5} \int \frac{d(5x+7)}{5x+7} = \frac{1}{5} \ln |5x+7| + C.$$

6.
$$\int \frac{dx}{4x^{2} + 12x + 11} = \int \frac{dx}{4x^{2} + 2 \cdot 2 \cdot 3x + 9 + 2} = \int \frac{dx}{(2x + 3)^{2} + (\sqrt{2})^{2}} = \frac{1}{2} \int \frac{d(2x + 3)}{(2x + 3)^{2} + (\sqrt{2})^{2}} = \frac{1}{2\sqrt{2}} \operatorname{arctg} \frac{2x + 3}{\sqrt{2}} + C.$$

7.
$$J = \int \frac{dx}{\sqrt{1-4x-4x^2}}$$
.

Выделим полный квадрат в квадратном трехчлене, стоящем под корнем. Будет:

$$1 - 4x - 4x^{2} = -(4x^{2} + 4x - 1) = -(4x^{2} + 2 \cdot 2x + 1 - 1 - 1) = -[(2x + 1)^{2} - 2] =$$

$$= (\sqrt{2})^{2} - (2x + 1)^{2},$$

тогда

$$J = \int \frac{dx}{\sqrt{(\sqrt{2})^2 - (2x+1)^2}} = \frac{1}{2} \int \frac{d(2x+1)}{\sqrt{(\sqrt{2})^2 - (2x+1)^2}} = \frac{1}{2} \arcsin \frac{2x+1}{\sqrt{2}} + C.$$

8.
$$J = \int \frac{dx}{\sqrt{4x^2 + 12x + 5}}$$
.

Выделим полный квадрат в квадратном трехчлене, стоящем под корнем. Получим:

$$4x^{2} + 12x + 5 = (2x)^{2} + 2(2x)3 + 3^{2} - 3^{2} + 5 = (2x + 3)^{2} - 4$$

Тогда

$$J = \frac{1}{2} \int \frac{d(2x+3)}{\sqrt{(2x+3)^2 - 4}} = \frac{1}{2} \ln \left| 2x + 3 + \sqrt{4x^2 + 12x + 5} \right| + C.$$

9.
$$\int \cos^2(3x - 1)dx = \int \frac{1 + \cos(6x - 2)}{2} dx =$$

$$= \frac{1}{2} \int dx + \frac{1}{2} \cdot \frac{1}{6} \int \cos(6x - 2) d(6x - 2) = \frac{x}{2} + \frac{1}{12} \sin(6x - 2) + C.$$

10.
$$\int \frac{dx}{\cos^2(3x - \pi/8)} = \frac{1}{3} \int \frac{d(3x - \pi/8)}{\cos^2(3x - \pi/8)} = \frac{1}{3} \operatorname{tg} \left(3x - \frac{\pi}{8}\right) + C.$$

Очень часто для получения табличного интеграла под знак дифференциала в неопределенном интеграле приходится вносить не только константы, но и часть подынтегральной функции, зачастую комбинируя эти приемы

Примеры.

1.
$$\int \frac{e^x dx}{e^x + 1} = \int \frac{d(e^x + 1)}{e^x + 1} = \ln |e^x + 1| + C$$
.

2.
$$\int \frac{dx}{x \ln x} = \int \frac{d \ln x}{\ln x} = \ln \left| \ln x \right| + C$$

3.
$$\int \frac{\sin x \, dx}{\cos^2 x} = -\int \frac{d \cos x}{\cos^2 x} = -\frac{1}{\cos x} + C$$
.

4.
$$\int \frac{\cos x \, dx}{\sqrt[3]{\sin^2 x}} = \int (\sin x)^{-\frac{2}{3}} d \sin x = \frac{(\sin x)^{\frac{1}{3}}}{\frac{1}{3}} + C.$$

5.
$$\int 2x \sqrt{x^2 + 1} dx = \int \sqrt{x^2 + 1} dx^2 = \int \sqrt{x^2 + 1} d(x^2 + 1) = \frac{(x^2 + 1)^{1,5}}{1,5} + C$$

6.
$$\int \frac{x^4 dx}{\sqrt{x^5 + 4}} = \frac{1}{5} \int \frac{d(x^5 + 4)}{\sqrt{x^5 + 4}} = \frac{2}{5} \sqrt{x^5 + 4} + C$$

7.
$$\int \frac{3x - 1}{x^2 + 9} = \int \frac{3x \, dx}{x^2 + 9} - \frac{1}{3} \int \frac{dx}{x^2 + 9} = \frac{3}{2} \int \frac{d(x^2 + 9)}{x^2 + 9} - \frac{1}{3} \int \frac{dx}{x^2 + 9} = \frac{3}{2} \ln |x^2 + 9| - \frac{1}{3} \cdot \frac{1}{3} \arctan \left(\frac{x}{3} \right) + C$$
8.
$$\int tg(3x + \pi/6) dx = \int \frac{\sin(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos($$

8.
$$\int \mathbf{tg} (3x + \pi/6) dx = \int \frac{\sin(3x + \pi/6)}{\cos(3x + \pi/6)} dx = -\frac{1}{3} \int \frac{d\cos(3x + \pi/6)}{\cos(3x + \pi/6)} =$$
$$= -\frac{1}{3} \ln \left| \cos(3x + \frac{\pi}{6}) \right| + C.$$

9.
$$\int \sqrt{\frac{1-x}{1+x}} dx = \int \frac{\sqrt{1-x} \cdot \sqrt{1-x}}{\sqrt{1+x} \cdot \sqrt{1-x}} dx = \int \frac{dx}{\sqrt{1-x^{2}}} - \int \frac{x dx}{\sqrt{1-x^{2}}} = \arcsin x + \frac{1}{2} \int \frac{d(1-x^{2})}{\sqrt{1-x^{2}}} = \arcsin x + \sqrt{1-x^{2}} + C.$$

10.
$$\int \frac{\sin 2x}{1 + \cos^2 x} dx = 2 \int \frac{\sin x \cos x dx}{1 + \cos^2 x} = -2 \int \frac{\cos x d \cos x}{1 + \cos^2 x} =$$
$$= -\int \frac{d \left(\cos^2 x + 1\right)}{\cos^2 x + 1} = -\ln \left|\cos^2 x + 1\right| + C.$$

§3. Подстановка в неопределенном интеграле

Суть метода подстановки (замены переменной) состоит в том, что с помощью специальным образом подобранной замены переменной интегрирования данное подынтегральное выражение преобразуется к другому подынтегральному выражению, которое является более простым в смысле интегрирования.

Пусть $x = \varphi(t)$ — строго монотонная и непрерывно дифференцируемая функция на некотором интервале изменения переменной t. Если на соответствующем интервале изменения x функция f(x) непрерывна, то получим:

$$\int f(x)dx = \int f[\varphi(t)]\varphi'(t)dt. \tag{1}$$

Справедливость равенства (1) следует из свойства инвариантности формул интегрирования, ибо если F(x) первообразная для f(x), то, находя производную сложной функции $F\left[\varphi(t)\right]$ по переменной t, получим:

$$(F[\varphi(t)])'_{t} = F'[\varphi(t)]\varphi'(t) = f[\varphi(t)]\varphi'(t).$$

Нетрудно заметить, что $F\left[\varphi(t)\right]$ является первообразной для $f\left[\varphi(t)\right]\cdot \varphi'(t)$. Это означает, что каждая из частей равенства (1) представляет собою совокупность всех первообразных для функции f(x). Разница состоит только в том, что интеграл в левой части выражает эту совокупность в виде явных функций от переменной x, а интеграл в правой части — в виде функций, выраженных параметрически с помощью параметра t, причем $x=\varphi(t)$. Формула (1) называется формулой замены переменной в неопределенном интеграле.

Для выражения интеграла в виде функции от x следует после интегрирования по переменной t в полученном результате перейти от переменной t к переменной x при помощи соотношения $x=\varphi(t)$. Заметим, что иногда при использовании метода замены переменной удобно вводить подстановки в виде $t=\psi(x)$ или $\varphi(t)=\psi(x)$. Познакомимся с этим методом на конкретных примерах.

Примеры.

1.
$$\int \frac{dx}{1+\sqrt{x}}$$
.

Данный интеграл существует $\forall x \geq 0$. Сделаем подстановку $\sqrt{x} = t$, откуда следует $x = t^2$ и $dx = 2t \, dt$. Тогда имеем:

$$\int \frac{dx}{1+\sqrt{x}} = \int \frac{2t \, dt}{1+t} = 2\int \frac{(t+1)-1}{t+1} dt = 2\left(\int dt - \int \frac{dt}{t+1}\right) = 2\left(t - \ln|t+1|\right) + C.$$

Возвращаясь к старой переменной, окончательно получим:

$$\int \frac{dx}{1+\sqrt{x}} = 2\left[\sqrt{x} - \ln\left|1+\sqrt{x}\right|\right] + C .$$

2. Считая, что x > 0, вычислить интеграл

$$J = \int \frac{dx}{\sqrt{x} \left(1 + \sqrt[3]{x}\right)}.$$

Для вычисления данного интеграла разумно сделать подстановку $x=t^6$ (чтобы упростить оба корня в подынтегральном выражении). Тогда будет: $dx=6t^5dt$,

$$J = \int \frac{6t^{5}dt}{t^{3}(1+t^{2})} = 6\int \frac{t^{2}dt}{t^{2}+1} = 6\int \frac{t^{2}+1-1}{t^{2}+1}dt = 6\left[\int dt - \int \frac{dt}{t^{2}+1}\right] =$$

$$= 6\left[t - \operatorname{arctg}t\right] + C = 6\left[\sqrt[6]{x} - \operatorname{arctg}\sqrt[6]{x}\right] + C.$$

$$3. J = \int \left(1 + \cos^2 x\right)^2 dx$$

Прежде всего примем во внимание формулы удвоения углов

$$\cos^2 x = \frac{1 + \cos 2x}{2}, \ \sin^2 x = \frac{1 - \cos 2x}{2}$$

Тогда подынтегральная функция преобразуется так:

$$(1+\cos^2 x)^2 = \left(1+\frac{1}{2}+\frac{1}{2}\cos 2x\right)^2 = \frac{\left(3+\cos 2x\right)^2}{4} = \frac{9+6\cos 2x+\cos^2 2x}{4} =$$

$$= \frac{9}{4}+\frac{3}{2}\cos 2x+\frac{1}{4}\cos^2 2x = \frac{9}{4}+\frac{3}{2}\cos 2x+\frac{1}{4}\frac{1+\cos 4x}{2} =$$

$$= \frac{19}{8}+\frac{3}{2}\cos 2x+\frac{1}{8}\cos 4x.$$

Вернемся к интегралу Ј:

$$J = \frac{19}{9} \int dx + \frac{3}{2} \int \cos 2x \, dx + \frac{1}{8} \int \cos 4x \,;$$

$$J_{1} = \int \cos 2x \, dx = \frac{1}{2} \int \cot dt = \frac{1}{2} \sin t + C_{1} = \frac{1}{2} \sin 2x + C_{1};$$

$$I_{2} = \int \cos 4x \, dx = \frac{1}{4} \int \cot dt = \frac{1}{4} \sin t + C_{2} = \frac{1}{4} \sin 4x + C_{2}.$$

$$I_{3} = \int \cos 4x \, dx = \frac{1}{4} \int \cot dt = \frac{1}{4} \sin t + C_{2} = \frac{1}{4} \sin 4x + C_{2}.$$

Окончательно

$$J = \int (1 + \cos^2 x)^2 dx = \frac{19}{8}x + \frac{1}{2}\sin 2x + \frac{1}{4}\sin 4x + C ,$$

где обозначено $\boldsymbol{C}_1 + \boldsymbol{C}_2 = \boldsymbol{C}$.

4.
$$J = \int \frac{\sin 2x \, dx}{1 + \cos^2 x}$$

Обозначим $1 + \cos^2 x = t$, тогда $2\cos x (-\sin x)dx = dt$,

т.е.

$$-\sin 2x \, dx = dt$$
.

Получим:

$$J = \int \frac{-dt}{t} = -\ln|t| + C = -\ln|1 + \cos^2 x| + C.$$

$$5. J = \int \frac{1 + \operatorname{arctg}^2 x}{1 + x^2} dx$$

Подстановка arctgx = t, $\frac{dx}{1+x^2} = dt$.

$$J = \int (1+t^2)dt = t + \frac{t^3}{3} + C = \arctan x + \frac{\arctan x}{3} + C$$

6.
$$J = \int \sin^5 x \, dx = \int \sin^4 x \sin x \, dx = \int (1 - \cos^2 x)^2 \sin x \, dx$$
.

Подстановка $\cos x = t$, $-\sin x \, dx = dt$

$$J = -\int (1-t^{2})^{2} dt = -\int (1-2t^{2}+t^{4}) dt = -t + \frac{2t^{3}}{3} - \frac{t^{5}}{5} + C =$$

$$= -\cos x + \frac{2}{3}\cos^{3} x - \frac{1}{5}\cos^{5} x + C .$$

$$7. J = \int \frac{e^{2x} dx}{\sqrt[4]{e^{x}+1}} .$$

Обозначим $e^x + 1 = t^4$, тогда $e^x dx = 4t^3 dt$. Тогда будет:

$$J = \int \frac{e^{x}e^{x}dx}{\sqrt[4]{e^{x}+1}} = \int \frac{(t^{4}-1)4t^{3}dt}{t} = 4\int (t^{4}-1)4t^{2}dt = 16\int t^{6}dt - 16\int t^{2}dt = \frac{16}{7}t^{7} - \frac{16}{3}t^{3} + C = \frac{16}{7}(e^{x}+1)^{\frac{7}{4}} - \frac{16}{3}(e^{x}+1)^{\frac{3}{4}} + C.$$

$$8. J = \int \frac{\ln tgx \, dx}{\sin x \cos x}.$$

Введем подстановку $\mathbf{tg} x = t$, тогда $\frac{dx}{\cos^2 x} = dt$.

Преобразуем наш интеграл:

$$J = \int \frac{\ln t gx \, dx}{\frac{\sin x}{\cos x} \cos^2 x} = \int \frac{\ln t \, dt}{t}.$$

Сделаем еще одну подстановку

$$lnt = z$$
.

тогда

$$\frac{dt}{t} = dz$$
.

Получим

$$J = \int z dz = \frac{z^2}{2} + C = \frac{\ln^2 t}{2} + C = \frac{\ln^2 t gx}{2} + C$$
.

9.
$$J = \int \frac{dx}{x^2 \sqrt{x^2 + a^2}}$$
.

Попробуем подстановку $x = \frac{1}{z}$, тогда $dx = -\frac{dz}{z^2}$

Получим:

$$J = -\int \frac{(1/z^{2})dz}{\frac{1}{z^{2}}\sqrt{\frac{1}{z^{2}}+a^{2}}} = -\int \frac{zdz}{\sqrt{1+a^{2}z^{2}}} = -\frac{1}{2}\int \frac{dz^{2}}{\sqrt{1+a^{2}z^{2}}} = -\frac{1}{2a^{2}}\int \frac{d(a^{2}z^{2})}{\sqrt{1+a^{2}z^{2}}} = -\frac{1}{2a^{2}}\int \frac{d(a^{2}z^{2})}{$$

$$10. J = \int \frac{dx}{\sqrt{x - x^2}}$$

Выделим полный квадрат под корнем:

$$|x - x|^2 = -(x^2 - x) = -(x^2 - 2\frac{1}{2}x + \frac{1}{4} - \frac{1}{4}) = -\left[(x - \frac{1}{2})^2 - \frac{1}{4}\right] = \frac{1}{4} - (x - \frac{1}{2})^2$$

и сделаем подстановку $x-\frac{1}{2}=t$, dx=dt .

Будет

$$J = \int \frac{dx}{\sqrt{x - x^{2}}} = \int \frac{dx}{\sqrt{\left(\frac{1}{2}\right)^{2} - \left(x - \frac{1}{2}\right)^{2}}} = \int \frac{dt}{\sqrt{\left(\frac{1}{2}\right)^{2} - t^{2}}} = \arcsin\frac{t}{\frac{1}{2}} + C$$

$$= \arcsin 2t + C = \arcsin (2x - 1) + C.$$

§4. Интегрирование «по частям»

Этот метод является обращением правила дифференцирования произведения двух функций.

Действительно, пусть u = u(x) и v = v(x) — непрерывно дифференцируемые функции на некотором интервале. Очевидно, что

$$(uv)'=u'v+uv'.$$

Произведение $u \cdot v$ является первообразной для суммы u'v + uv' и, следовательно, по определению неопределенного интеграла, можем написать

$$\int (u'v + uv')dx = uv + C$$

или так:

$$\int u'v\,dx + \int uv'dx = uv + C.$$

Принимая во внимание, что u'(x)dx = du , v'(x)dx = dv , окончательно получим:

$$\int u \, dv = uv - \int v \, du \ . \tag{1}$$

Это и есть формула интегрирования по частям. Заметим, что произвольная постоянная C здесь не выписывается явно, т.к. неопределенный интеграл неявным образом уже содержит произвольную постоянную. Метод интегрирования по частям применим тогда, когда подынтегральное выражение предложенного интеграла можно представить в виде $u\cdot dv$, причем функции u(x) и v(x) выбираются так, чтобы интегрирование выражения $v\cdot du$ было проще интегрирования выражения $u\cdot dv$. Следует отметить, что при интегрировании по частям приходится по дифференциалу dv находить функцию v(x). При этом произвольную постоянную обычно опускают, т.к. достаточно найти только одну какую-нибудь первообразную. При вычислении интеграла по частям за u(x) следует принять функцию, которая упрощается при дифференцировании, если структура подынтегрального выражения это позволяет.

Пример 1.
$$\int (x+2)e^x dx$$
.

Здесь под знаком интеграла стоит произведение двух функций. Примем за $u\left(x\right)=x+2$, т.к. e^{x} при дифференцировании не упрощается. Получим

$$\begin{array}{c|c} u = x + 2 & du = dx \\ dv = e^{x} dx & v = e^{x} \end{array},$$

тогда

$$J = uv - \int v \, du = (x+2)e^x - \int e^x dx = (x+2)e^x - e^x + C.$$

Заметим, что в процессе решения интеграла метод интегрирования по частям иногда приходится применять неоднократно.

Пример 2.

$$\int x^{2} \sin x \, dx = -x^{2} \cos x + 2 \int x \cos x \, dx ,$$

$$u = x^{2} \qquad du = 2x \, dx$$

$$dv = \sin x \, dx \qquad v = -\cos x$$

Второе слагаемое в правой части представляет собою интеграл, который также решим по частям. А именно

$$J_{1} = \int x \cos x \, dx = x \sin x - \int \sin x \, dx = x \sin x + \cos x + C.$$

$$u = x \qquad \qquad du = dx$$

$$dv = \cos x \, dx \qquad v = \sin x$$

Окончательно получим:

$$\int x^{2} \sin x \, dx = -x^{2} \cos x + 2(x \sin x + \cos x + C) =$$

$$= -x^{2} \cos x + 2x \sin x + 2 \cos x + C.$$

Пример 3. $J = \int e^x \sin x \, dx$.

В данном случае не играет роли, какую из функций принять за $u\left(x\right)$, т.к. ни e^{x} , ни $\sin x$ при дифференцировании не упрощаются. Итак, имеем:

$$\begin{array}{c|c} u = e^x & du = e^x dx \\ dv = \sin x dx & v = -\cos x \end{array}.$$

Тогда

$$J = -e^x \cos x + \int e^x \cos x \, dx$$

Пришли к интегралу который также решим по частям, а именно

$$\int e^{x} \cos x \, dx = e^{x} \sin x - \int e^{x} \sin x \, dx.$$

$$u = e^{x} \qquad du = e^{x} dx$$

$$dv = \cos x \, dx \qquad v = \sin x$$

Таким образом, мы пришли к уравнению относительно исходного интеграла:

$$J = -e^x \cos x + e^x \sin x - J ,$$

откуда следует:

$$J = \int e^x \sin x \, dx = \frac{1}{2} \left(e^x \sin x - e^x \cos x \right) + C$$

Пример 4.

$$\int x^{2}e^{2x}dx = \frac{1}{2}x^{2}e^{2x} - \int x e^{2x}dx =$$

$$u = x^{2}$$

$$dv = e^{2x}dx$$

$$v = \frac{1}{2}e^{2x}$$

$$u = x$$

$$dv = e^{2x}dx$$

$$du = dx$$

$$v = \frac{1}{2}e^{2x}$$

$$v = \frac{1}{2}e^{2x}$$

$$= \frac{1}{2}x^{2}e^{2x} - \left(\frac{1}{2}x e^{2x} - \frac{1}{2}\int e^{2x}dx\right) = \frac{1}{2}x^{2}e^{2x} - \frac{1}{2}x e^{2x} + \frac{1}{2}e^{2x} + C$$

Пример 5.

$$\int \operatorname{arctg} x \, dx = x \operatorname{arctg} x - \int \frac{x \, dx}{x^2 + 1} = x \operatorname{arctg} x - \frac{1}{2} \int \frac{d(x^2 + 1)}{x^2 + 1} =$$

$$= x \operatorname{arctg} x - \frac{1}{2} \ln |x^2 + 1| + C$$

$$u = \operatorname{arctg} x$$

$$dv = dx$$

$$du = \frac{dx}{1 + x^2}$$

$$v = x$$

Пример 6.

$$\int \ln x \, dx = x \ln x - \int dx = x \ln x - x + C$$

$$u = \ln x$$

$$dv = dx$$

$$du = \frac{dx}{x}$$

$$v = x$$

Пример 7.

$$\int x \arctan dx = \frac{x^2}{2} \arctan dx = \frac{1}{2} \int \frac{x^2 dx}{x^2 + 1} = \frac{x^2}{2} \arctan dx = \frac{1}{2} \int \frac{(x^2 + 1) - 1}{x^2 + 1} dx = \frac{x^2}{2} \arctan dx + C = \frac{x^2 + 1}{2} \arctan dx = \frac{x^2 + 1}{2} \arctan$$

$$u = \arctan x$$

$$dv = x dx$$

$$du = \frac{dx}{1+x^{2}}$$

$$v = \frac{x^{2}}{2}$$

Пример 8.

$$\int \ln(x^2+1)dx = x \ln(x^2+1) - 2\int \frac{x^2dx}{x^2+1} = x \ln(x^2+1) - 2x + 2\arctan x + C.$$

$$u = \ln(x^{2} + 1) \qquad du = \frac{2x dx}{x^{2} + 1}$$

$$dv = dx \qquad v = x$$

Пример 9.

$$\int x \cos^2 x \, dx =$$

$$u = \cos^2 x$$

$$dv = x \, dx$$

$$dv = x \, dx$$

$$v = \frac{x^2}{2}$$

$$= \frac{x^2}{2} \cos^2 x + \int \frac{x^2}{2} 2 \cos x \sin x \, dx = \frac{x^2}{2} \cos^2 x + \int \frac{x^2}{2} \sin 2x \, dx =$$

$$u = x^2$$

$$dv = \sin 2x \, dx$$

$$v = -\frac{1}{2} \cos 2x$$

$$= \frac{x^2}{2} \cos^2 x - \frac{x^2}{4} \cos 2x + \frac{1}{2} \int x \cos 2x \, dx =$$

$$u = x$$

$$dv = \cos 2x \, dx$$

$$v = \frac{1}{2} \sin 2x$$

$$= \frac{x^2}{2} \cos^2 x - \frac{x^2}{4} \cos 2x + \frac{x}{4} \sin 2x + \frac{1}{2} \cos 2x + C$$

Пример 10.

$$\int \frac{x^{2}dx}{(x^{2}+1)^{2}} = -\frac{x}{2} \frac{1}{x^{2}+1} + \frac{1}{2} \int \frac{dx}{x^{2}+1} = -\frac{x}{2} \frac{1}{x^{2}+1} + \frac{1}{2} \operatorname{arctg} x + C.$$

$$u = x$$

$$du = dx$$

$$dv = \frac{x dx}{(x^{2}+1)^{2}}$$

$$v = \int \frac{x dx}{(x^{2}+1)^{2}} = \frac{1}{2} \int \frac{d(x^{2}+1)}{(x^{2}+1)^{2}} = -\frac{1}{2} \frac{1}{x^{2}+1}$$

Пример 11.

$$J = \int \frac{x \arctan x}{(x^{2} + 1)^{2}} dx = -\frac{\arctan x}{2} \frac{1}{x^{2} + 1} + \frac{1}{2} \int \frac{dx}{(x^{2} + 1)^{2}}.$$

$$u = \arctan x$$

$$dv = \frac{x dx}{(x^{2} + 1)}$$

$$v = \int \frac{x dx}{(x^{2} + 1)} = -\frac{1}{2} \frac{1}{x^{2} + 1}$$

Найдем отдельно

$$J = \int \frac{dx}{(x^{2}+1)^{2}} = \int \frac{(x^{2}+1)-x^{2}}{(x^{2}+1)^{2}} dx = \int \frac{dx}{x^{2}+1} - \int \frac{x^{2}dx}{(x^{2}+1)} =$$

$$\operatorname{arctg} x - \left(-\frac{x}{2} \frac{1}{x^{2}+1} + \frac{1}{2} \operatorname{arctg} x + C\right) =$$

$$= \operatorname{arctg} x + \frac{x}{2(x^{2}+1)} - \frac{\operatorname{arctg} x}{2} + C = \frac{\operatorname{arctg} x}{2} + \frac{x}{2(x^{2}+1)} + C.$$

Окончательно

$$J = -\frac{\arctan x}{2} \frac{1}{x^2 + 1} + \frac{1}{2} \left(\frac{\arctan x}{2} + \frac{x}{2(x^2 + 1)} \right) + C$$
.

Пример 12.

$$J = \int \sqrt{x^2 + a^2} dx = \int \frac{x^2 + a^2}{\sqrt{x^2 + a^2}} dx = \int \frac{x^2 dx}{\sqrt{x^2 + a^2}} + a^2 \int \frac{dx}{\sqrt{x^2 + a^2}}.$$

Учтем, что второй интеграл табличный, т.е.

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln \left| x + \sqrt{x^2 + a^2} \right| + C .$$

Первый интеграл решим по частям

$$J_{1} = \int \frac{x^{2} dx}{\sqrt{x^{2} + a^{2}}} = x \sqrt{x^{2} + a^{2}} - \int \sqrt{x^{2} + a^{2}} dx.$$

$$u = x$$

$$du = dx$$

$$dv = \frac{x dx}{\sqrt{x^{2} + a^{2}}}$$

$$v = \int \frac{x dx}{\sqrt{x^{2} + a^{2}}} = \frac{1}{2} \int \frac{d(x^{2} + a^{2})}{\sqrt{x^{2} + a^{2}}} = \sqrt{x^{2} + a^{2}}$$

Мы пришли к уравнению относительно исходного интеграла, а именно:

$$J = x\sqrt{x^2 + a^2} - J + a^2 \ln \left| x + \sqrt{x^2 + a^2} \right| + C \implies$$

$$\Rightarrow J = \frac{1}{2} \left(x\sqrt{x^2 + a^2} + a^2 \ln \left| x + \sqrt{x^2 + a^2} \right| \right) + C$$

Пример 13.

$$\int \ln(x + \sqrt{1 + x^{2}}) dx = x \ln(x + \sqrt{1 + x^{2}}) - \int \frac{x dx}{\sqrt{1 + x^{2}}} =$$

$$= x \ln(x + \sqrt{1 + x^{2}}) - \sqrt{1 + x^{2}} + C.$$

$$u = \ln(x + \sqrt{1 + x^{2}})$$

$$du = \frac{1}{x + \sqrt{1 + x^{2}}} \left(1 + \frac{2x}{2\sqrt{1 + x^{2}}}\right) = \frac{1}{\sqrt{1 + x^{2}}}$$

$$dv = dx$$

$$v = x$$

Комбинируя рассмотренные выше методы интегрирования элементарных функций, рассмотрим далее основные классы интегрируемых функций

§5. Интегрирование выражений, содержащих квадратный трехчлен $ax^2 + bx + c$

Рассмотрим интегралы вида:

$$\int \frac{Ax+B}{ax^2+bx+c} dx \quad \text{if } \int \frac{Ax+B}{\sqrt{ax^2+bx+c}} dx$$

Заметим, что квадратный трехчлен $ax^2 + bx + c$ во втором интеграле стоит под корнем.

Рассмотрим простой подход к решению таких интегралов, который всегда приводит к цели.

I. Прежде всего, выделим в числителе выражение, пропорциональное производной квадратного трехчлена. Имеем:

$$\left(ax^2+bx+c\right)'=2ax+b,$$

следовательно

$$(Ax+B)=\frac{A}{2a}(2ax+b)-\frac{Ab}{2a}+B.$$

Тогда получим

$$J_{1} = \int \frac{A x + B}{ax^{2} + bx + c} dx = \frac{A}{2a} \int \frac{(2ax + b)dx}{ax^{2} + bx + c} + \left(B - \frac{A b}{2a}\right) \int \frac{dx}{ax^{2} + bx + c},$$

$$J_{2} = \int \frac{A x + B}{\sqrt{ax^{2} + bx + c}} dx = \frac{A}{2a} \int \frac{(2ax + b)dx}{\sqrt{ax^{2} + bx + c}} + \left(B - \frac{A b}{2a}\right) \int \frac{dx}{\sqrt{ax^{2} + bx + c}}.$$

Выделим полный квадрат в квадратном трехчлене: $ax^2 + bx + c =$

$$= a \left[x^{2} + 2 \frac{b}{2a} x + \frac{b^{2}}{4a^{2}} + c - \frac{b^{2}}{4a^{2}} \right] = a \left[\left(x + \frac{b}{2a} \right)^{2} + \left(c - \frac{b^{2}}{4a^{2}} \right) \right].$$

Будем иметь:

$$J_{1} = \frac{A}{2a} \int \frac{d(ax^{2} + bx + c)}{ax^{2} + bx + c} + \left(B - \frac{Ab}{2a}\right) \int \frac{d(x + b/2a)}{a\left[(x + b/2a)^{2} + (c - b^{2}/4a^{2})\right]},$$

$$J_{2} = \frac{A}{2a} \int \frac{d(ax^{2} + bx + c)}{ax^{2} + bx + c} + \left(B - \frac{Ab}{2a}\right) \int \frac{d(x + b/2a)}{\sqrt{a\left[(x + b/2a)^{2} + (c - b^{2}/4a^{2})\right]}}.$$

Очевидно, что не составляет труда получить окончательный ответ

Пример 1.
$$J = \int \frac{(2x-1)dx}{x^2+2x+2}$$
.

Решение.

$$(x^2 + 2x + 2)' = 2x + 2,$$

тогда

$$2x-1=(2x+2)-3$$
,

и выделяя полный квадрат в знаменателе, имеем:

$$J = \int \frac{(2x+2)dx}{x^2 + 2x + 2} - 3 \int \frac{dx}{(x+1)^2 + 1} = \int \frac{d(x^2 + 2x + 2)}{x^2 + 2x + 2} - 3 \int \frac{d(x+1)}{(x+1)^2 + 1} =$$

$$= \ln|x^2 + 2x + 2| - 3\arctan(x+1) + C$$

$$\square \text{ Пример 2. } J = \int \frac{(2x+1)dx}{\sqrt{2-3x-x^2}}.$$

$$\int \frac{1}{\sqrt{2-3x-x^2}} \, dx$$

a)
$$(2-3x-x^2)' = -2x-3$$
,
 $(2x+1) = -1(-2x-3)-2$,
 $J = -\int \frac{(-2x-3)dx}{\sqrt{2-3x-x^2}} - 2\int \frac{dx}{\sqrt{2-3x-x^2}}$.
6) $2-3x-x^2 = -(x^2+3x-2) = -\left(x^2+2\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}-2\right) =$

$$= -\left[\left(x+\frac{3}{2}\right)^2 - \frac{17}{4}\right] = \frac{17}{4} - \left(x+\frac{3}{2}\right)^2$$
,
$$J = -\int \frac{d(2-3x-x^2)}{\sqrt{2-3x-x^2}} - 2\int \frac{d(x+1,5)}{\sqrt{(\sqrt{17}/2)^2 - (x+1,5)^2}} =$$

$$= -2\sqrt{2-3x-x^2} - 2\arcsin\frac{2x+3}{\sqrt{17}} + C$$
.

Пример 3.
$$\int \frac{dx}{\sqrt{5x^2-x-1}}$$
.

Заметим, что нет необходимости выделять в числителе производную квадратного трехчлена. Нужно только выделить полный квадрат под корнем

$$5x^{2} - x - 1 = 5\left(x^{2} - \frac{1}{5}x - \frac{1}{5}\right) = 5\left[x^{2} - 2\frac{1}{10}x + \frac{1}{100} - \frac{1}{100} - \frac{1}{5}\right] =$$

$$= 5\left[\left(x - \frac{1}{10}\right)^{2} - \frac{21}{100}\right].$$

$$\int \frac{dx}{\sqrt{5x^{2} - x - 1}} = \frac{1}{\sqrt{5}} \int \frac{dx}{\sqrt{\left(x - \frac{1}{10}\right)^{2} - \frac{21}{100}}} = \frac{1}{\sqrt{5}} \int \frac{d\left(x - \frac{1}{10}\right)}{\sqrt{\left(x - \frac{1}{10}\right)^{2} - \frac{21}{100}}} =$$

$$= \frac{1}{\sqrt{5}} \ln\left|x - 0, 1 + \sqrt{x^{2} - 0, 2x - 0, 2}\right| + C.$$

§6. Интегрирование рациональных и дробно-рациональных функций

Напомним, что функция R(x) называется рациональной, если для вычисления ее значений над аргументом x выполняется конечное чис-

ло арифметических действий (сложение, вычитание, умножение, деление).

Некоторые рациональные функции могут иметь вид

$$R(x) = \frac{Q_m(x)}{P_n(x)}, \tag{1}$$

где $P_{n}(x)$ и $Q_{m}(x)$ многочлены:

$$Q_m(x) = b_0 x^m + b_1 x^{m-1} + ... + b_m,$$
 $P_n(x) = a_0 x^n + a_1 x^{n-1} + ... + a_n,$ $m, n \in \mathbb{N}$.

Заметим, что функцию вида (1) называют дробно-рациональной функцией, причем эта дробь называется **правильной**, если m < n, если же $m \ge n$, то дробь называется **неправильной**.

Напомним, что в силу основной теоремы высшей алгебры, которую мы рассматривали ранее, всякий многочлен $P_n(x)$ может быть разложен на множители, т.е. представлен в виде:

$$P_{n}(x) = a_{0}(x - x_{1})^{k_{1}}(x - x_{2})^{k_{2}}...(x - x_{r})^{k_{r}},$$

$$k_{1} + k_{2} + ... + k_{r} = n.$$
(2)

Если кратность некоторого корня равна единице, то соответствующий корень многочлена называется простым. Если многочлен $P_n(x)$ имеет k одинаковых корней, то говорят, что этот корень имеет кратность, равную k. Можно утверждать, что многочлен степени n имеет ровно n корней (вещественных или комплексных).

Заметим, что если многочлен $P_n(x)$ с вещественными коэффициентами имеет комплексный корень a+ib кратности k, то сопряженное комплексное число a-ib также является корнем многочлена $P_n(x)$ той же кратности.

Итак, пусть a+ib и a-ib — пара сопряженных комплексных корней многочлена $P_{_{n}}(x)$. Вычислим произведение разностей

$$[x - (a + ib)][x - (a - ib)] = [(x - a) - ib][(x - a) + ib] = (x - a)^{2} + b^{2} =$$

$$= x^{2} - 2ax + a^{2} + b^{2} = x^{2} + px + q,$$

где обозначено p = -2a, $q = a^2 + b^2$.

Отсюда следует, что в разложении (2) всякое произведение двух мнимых множителей, соответствующее паре сопряженных комплексных корней можно записать в виде квадратного трехчлена $x^2 + px + q$ с вещественными коэффициентами.

Это обстоятельство позволяет сделать важный для дальнейшего вывод:

Всякий многочлен степени n с вещественными коэффициентами может быть представлен в виде произведения вещественных линейных

и квадратичных (неразложимых на линейные вещественные сомножители) множителей:

$$P_{n}(x) = a_{0}(x - x_{1})^{l_{1}}(x - x_{2})^{l_{2}}...(x - x_{r})^{l_{r}} \cdot (x^{2} + p_{1}x + q_{1})^{l_{1}}(x^{2} + p_{2}x + q_{2})^{l_{2}}...(x^{2} + p_{s}x + q_{s})^{l_{s}},$$

где множители $(x-x_1)^{k_1}$, $(x-x_2)^{k_2}$, ..., $(x-x_r)^{k_r}$ соответствуют вещественным корням $x_1, x_2, ..., x_r$, кратности которых равны $k_1, k_2, ..., k_r$ соответственно, а множители $(x^2+p_1x+q_1)^{l_1}$, $(x^2+p_2x+q_2)^{l_2}$, ..., $(x^2+p_3x+q_3)^{l_3}$ — парам комплексных сопряженных корней, кратности которых соответственно равны $l_1, l_2, ..., l_r$.

Ясно, что при этом имеет место равенство

$$(k_1 + k_2 + ... + k_r + 2(l_1 + l_2 + ... + l_s) = n$$
.

Представление многочлена $P_n(x)$ в виде (3) называется разложением многочлена на простейшие множители.

Теорема. Всякая правильная рациональная дробь с вещественными коэффициентами может быть представлена в виде суммы простейших дробей, соответствующих разложению на множители знаменателя рациональной дроби, вида

$$\begin{split} &\frac{Q_{m}\left(x\right)}{P_{n}\left(x\right)} = \frac{b_{0}x^{m} + b_{1}x^{m-1} + ... + b_{m}}{x^{n} + a_{1}x^{n-1} + a_{2}x^{n-2} + ... + a_{n}} = \\ &= \frac{b_{0}x^{m} + b_{1}x^{m-1} + ... + b_{m}}{\left(x - x_{1}\right)^{k_{1}} ...\left(x - x_{r}\right)^{k_{r}}\left(x^{2} + p_{1}x + q_{1}\right)^{l_{1}}\left(x^{2} + p_{2}x + q_{2}\right)^{l_{2}} ...\left(x^{2} + p_{s}x + q_{s}\right)^{l_{s}}} = \\ &= \frac{A_{1}}{x - x_{1}} + ... + \frac{A_{k_{1}}}{\left(x - x_{1}\right)^{k_{1}}} + \frac{B_{1}}{x - x_{2}} + ... + \frac{B_{k_{2}}}{\left(x - x_{2}\right)^{k_{2}}} + ... + \\ &+ \frac{D_{1}}{x - x_{r}} + ... + \frac{D_{k_{r}}}{\left(x - x_{r}\right)^{k_{r}}} + \frac{M_{1}x + N_{1}}{x^{2} + p_{1}x + q_{1}} + \frac{M_{2}x + N_{2}}{\left(x^{2} + p_{1}x + q_{1}\right)^{2}} + ... + \\ &+ \frac{M_{l_{1}}x + N_{l_{1}}}{\left(x^{2} + p_{1}x + q_{1}\right)^{l_{1}}} + \frac{Z_{1}x + R_{1}}{x^{2} + p_{2}x + q_{2}} + ... + \frac{Z_{l_{2}}x + R_{l_{2}}}{\left(x^{2} + p_{2}x + q_{2}\right)^{l_{2}}} + ... + \\ &+ \frac{S_{1}x + T_{1}}{x^{2} + p_{s}x + q_{s}} + \frac{S_{2}x + T_{2}}{\left(x^{2} + p_{s}x + q_{s}\right)^{2}} + ... + \frac{S_{l_{s}}x + T_{l_{s}}}{\left(x^{2} + p_{s}x + q_{s}\right)^{l_{s}}}. \\ & (Без доказательства.) \end{split}$$

Заметим, что дроби, стоящие в правой части приведенного разложения называются простейшими, а саморазложение называется раз-

ложением правильной рациональной дроби на простейшие. При нахождении интеграла от дробно-рациональной функции коэффициенты A_1 , A_2 , ..., A_{k_1} , B_1 , B_2 , ..., M_1 , N_1 , S_{l_s} , T_{l_s} подлежат определению.

Для нахождения указанных коэффициентов применяют метод неопределенных коэффициентов или метод частных значений. Суть этих методов рассмотрим на примерах.

Пример. Разложить на простейшие правильную рациональную дробь

$$\frac{2x^3-x^2+2x+1}{(x-1)^2(x^2+1)}.$$

В соответствии с приведенной выше теоремой разложение данной дроби на простейшие будет выглядеть так:

$$\frac{2x^{3}-x^{2}+2x+1}{(x-1)^{2}(x^{2}+1)} = \frac{A_{1}}{x-1} + \frac{A_{2}}{(x-1)^{2}} + \frac{Mx+N}{x^{2}+1}$$
(1)

Приведем к общему знаменателю выражение, стоящее в правой части, тогда получим:

$$\frac{2x^{3}-x^{2}+2x+1}{(x-1)^{2}(x^{2}+1)}=\frac{A_{1}(x-1)(x^{2}+1)+A_{2}(x^{2}+1)+(Mx+N)(x-1)^{2}}{(x-1)^{2}(x^{2}+1)}.$$

Раскрывая скобки в числителе, получим такое тождественное равенство:

$$\frac{2x^{3}-x^{2}+2x+1}{(x-1)^{2}(x^{2}+1)} = \frac{(A_{1}+M)x^{3}+(-A_{1}+A_{2}+N-2M)x^{2}+(A_{1}-2N+M)x+A_{1}+A_{2}+N}{(x-1)^{2}(x^{2}+1)}.$$

Знаменатели у этого выражения совпадают, следовательно, должны совпадать и числители, а это имеет место, если совпадают коэффициенты при одинаковых степенях x в правой и левой части равенства (в числителях); итак, имеем:

$$x^{3}$$
: $2 = A_{1} + M$;
 x^{2} : $-1 = -A_{1} + A_{2} + N - 2M$;
 x^{1} : $2 = A_{1} - 2N + M$;
 x^{0} : $1 = -A_{1} + A_{2} + M$.

Мы получили такую систему для нахождения неизвестных коэффициентов разложения (1):

$$A_1 + M = 2$$
 $-A_1 + A_2 + N - 2M = -1$
 $A_1 - 2N + M = 2$
 $-A_1 + A_2 + N = 1$

Найденные коэффициенты в соотношение

Подставляя найденные коэффициенты в соотношение (1), получим такое разложение данной правильной рациональной дроби на простейшие:

$$\frac{2x^3-x^2+2x+1}{(x-1)^2(x^2+1)}=\frac{1}{x-1}+\frac{2}{(x-1)^2}+\frac{x}{x^2+1}.$$

Заметим, что при нахождении данного разложения мы применили метод неопределенных коэффициентов.

Покажем теперь на примере суть метода частных значений.

Рассмотрим еще один пример.

Пример. Разложить на простейшие правильную рациональную дробь

$$\frac{2x^2+x-1}{x^2(x-1)}.$$

Будем искать разложение данной правильной дроби на простейшие в виде:

$$\frac{2x^2+x-1}{x^2(x-1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1},$$

очевидно, что

$$\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1} = \frac{Ax(x-1)+B(x-1)+Cx^2}{x^2(x-1)}$$

Имеем тождество:

$$\frac{2x^{2}+x-1}{x^{2}(x-1)} = \frac{Ax(x-1)+B(x-1)+Cx^{2}}{x^{2}(x-1)},$$

из которого следует:

$$2x^{2} + x - 1 = (A + C)x^{2} + (B - A)x - B.$$
 (2)

Это соотношение справедливо при любых x, а потому, полагая в левой и правой части тождества x = 0, получим: B = 1. Учитывая, что B = 1, преобразуем соотношение (2):

$$2x^2 + x - 1 = (A + C)x^2 + (1 - A)x - 1$$

Положим здесь x = 1, тогда C = 2, следовательно

$$2x^2 + x - 1 = (A + 2)x^2 + (1 - A)x - 1$$

откуда следует, что ${m A}=0$. Подставляя найденные коэффициенты в исходное разложение, окончательно имеем:

$$\frac{2x^2+x-1}{x^2(x-1)}=\frac{1}{x^2}+\frac{2}{x-1}.$$

Решая данный пример, мы применили метод частных значений, который не требует дополнительного обоснования.

В заключение заметим, что разложение рациональной дроби на простейшие можно выполнить единственным способом, а потому, исходя из соображений целесообразности, комбинируют оба рассмотренных метода.

Остается только сказать, что если нужно проинтегрировать дробнорациональную функцию, прежде всего в ней выделяют целую часть, а затем интегрируют целую часть и правильную рациональную дробь, получившуюся в результате.

Пример.
$$\int \frac{x^4+1}{x^3+x} dx$$
.

Заметим, что под знаком интеграла стоит неправильная дробь, поэтому выделим целую часть, для чего необходимо разделить числитель на знаменатель:

Итак:
$$\frac{x^4+1}{x^3+x} = x - \frac{x^2-1}{x^3+x}$$
.

Вернемся к интегралу

$$\int \frac{x^4 + 1}{x^3 + x} dx = \int x dx - \int \frac{x^2 - 1}{x^3 + x} dx.$$

Интеграл от целой части решается легко: $\int x \, dx = \frac{x^2}{2} + C$.

Займемся вторым интегралом
$$J = \int \frac{x^2 - 1}{x^3 + x} dx$$
.

Под знаком интеграла здесь стоит правильная рациональная дробь, которую следует разложить на простейшие:

$$\frac{x^{2}-1}{x^{3}+x} = \frac{x^{2}-1}{x(x^{2}+1)} = \frac{A}{x} + \frac{Bx+C}{x^{2}+1} = \frac{A(x^{2}+1)+x(Bx+C)}{x(x^{2}+1)} = \frac{(A+B)x^{2}+Cx+A}{x(x^{2}+1)}.$$

Имеем тождество

$$x^{2}-1=(A + B)x^{2}+Cx+A$$

откуда следует

$$\begin{vmatrix}
A + B = 1 \\
C = 0 \\
A = -1
\end{vmatrix} \Rightarrow A = -1, B = 2, C = 0,$$

т.е.

$$\frac{x^2-1}{r^3+r} = -\frac{1}{r} + \frac{2x}{r^2+1}$$

Итак,

$$J = \int \frac{x^2 - 1}{x^3 + x} dx = \int \left(-\frac{1}{x} + \frac{2x}{x^2 + 1} \right) dx = -\ln|x| + \ln|x^2 + 1| + C.$$

Данный интеграл

$$\int \frac{x^4 + 1}{x^3 + x} dx = \frac{x^2}{2} - \int \frac{x^2 - 1}{x^3 + x} dx = \frac{x^2}{2} + \ln|x| - \ln|x^2 + 1| + C.$$

Поговорим немного об интегрировании простейших дробей. К их числу относятся:

1.
$$\int \frac{dx}{x-a}$$
, 2. $\int \frac{dx}{(x-a)^k}$, 3. $\int \frac{dx}{x^2+a^2}$, 4. $\int \frac{dx}{(x^2+a^2)^k}$.

Решим каждый из данных интегралов

1.
$$\int \frac{dx}{x-a} = \int \frac{d(x-a)}{x-a} = \ln |x-a| + C.$$

2

$$\int \frac{dx}{(x-a)^k} = \int (x-a)^{-k} d(x-a) = \frac{(x-a)^{-k+1}}{-k+1} + C = \frac{1}{(1-k)(x-a)^{k-1}} + C.$$

3.
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{2a} \arctan \frac{x}{a} + C$$
 (табличный интеграл).

$$4. J_{k} = \int \frac{dx}{(x^{2} + a^{2})^{k}} = \frac{1}{a^{2}} \int \frac{(a^{2} + x^{2}) - x^{2}}{(x^{2} + a^{2})^{k}} dx = .$$

$$= \frac{1}{a^{2}} \int \frac{dx}{(x^{2} + a^{2})^{k-1}} - \frac{1}{a^{2}} \int \frac{x^{2} dx}{(x^{2} + a^{2})^{k}} = \frac{1}{a^{2}} J_{k-1} - \frac{1}{a^{2}} \int \frac{x^{2} dx}{(x^{2} + a^{2})^{k}}.$$

Обозначим через J второй интеграл в правой части и решим его по частям

$$J = \int \frac{x^{2}dx}{(x^{2} + a^{2})^{k}} = \frac{x}{2(1 - k)(x^{2} + a^{2})^{k-1}} - \frac{1}{2(1 - k)}J_{k-1}.$$

$$u = x$$

$$du = dx$$

$$dv = \frac{x dx}{(x^{2} + a^{2})^{k}}$$

$$v = \int \frac{x dx}{(x^{2} + a^{2})^{k}} = \frac{1}{2}\int (x^{2} + a^{2})^{-k} d(x^{2} + a^{2})$$

$$= \frac{1}{2}\frac{1}{(1 - k)(x^{2} + a^{2})^{k-1}}$$

Вернемся теперь к исходному интегралу:

$$\boldsymbol{J}_{k} = \int \frac{d\boldsymbol{x}}{\left(\boldsymbol{x}^{2} + \boldsymbol{a}^{2}\right)^{k}} = \frac{1}{\boldsymbol{a}^{2}} \boldsymbol{J}_{k-1} - \frac{1}{\boldsymbol{a}^{2}} \left(\frac{\boldsymbol{x}}{2(1-\boldsymbol{k})\left(\boldsymbol{x}^{2} + \boldsymbol{a}^{2}\right)^{k-1}} - \frac{1}{2(1-\boldsymbol{k})} \boldsymbol{J}_{k-1} \right).$$

окончательно получим:

$$\boldsymbol{J}_{k} = \frac{x}{2a^{2}(1-k)(x^{2}+a^{2})^{k-1}} - \frac{2k-3}{2a^{2}(k-1)}\boldsymbol{J}_{k-1}.$$

Мы получили рекуррентное соотношение, позволяющее сводить интегралы типа \boldsymbol{J}_k к интегралам \boldsymbol{J}_{k-1} . Ввиду того, что k — конечное число, очевидно, что за несколько шагов, понижая степень знаменателя, нетрудно довести данный интеграл до конца.

Замечание. Заметим, что к числу простейших дробей следует отнести и дробь вида $\frac{M\,x\,+N}{\left(x^{\,2}+px\,+q\,\right)^k}$, где квадратный трехчлен имеет пару

сопряженных комплексных корней. Выделим полный квадрат в квадратном трехчлене

$$x^{2} + px + q = x^{2} + 2\frac{1}{2}px + \frac{p^{2}}{4} + q - \frac{p^{2}}{4} = \left(x + \frac{p}{2}\right)^{2} + q - \frac{p^{2}}{4}$$

Т.к. корни комплексные, то можно обозначить $q - \frac{p^2}{4} = a^2$, принимая

далее $x + \frac{p}{2} = t$, мы приведем исходную дробь к виду:

$$\frac{Mx + N}{(x^2 + px + q)^k} = \frac{Mt}{(t^2 + a^2)^k} + \frac{N - \frac{Mp}{2}}{(t^2 + a^2)^k},$$

а способ интегрирования дробей, стоящих справа, мы только что рассмотрели.

Рассмотрим теперь несколько примеров

Пример 1.
$$\int \frac{dx}{x^2 - a^2}$$
.

Разложим подынтегральную дробь на простейшие дроби

$$\frac{1}{x^2-a^2} = \frac{1}{(x-a)(x+a)} = \frac{A}{x-a} + \frac{B}{x+a} = \frac{(A+B)x + Aa - Ba}{x^2-a^2}.$$

Приравнивая коэффициенты при одинаковых степенях в числителе, получаем такую систему

$$A + B = 0$$

 $(A - B)a = 1$ $\Rightarrow A = \frac{1}{2a}, B = -\frac{1}{2a}$.

Следовательно

$$\frac{1}{x^2-a^2} = \frac{1}{2a} \frac{1}{x-a} - \frac{1}{2a} \frac{1}{x+a},$$

итак

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \int \frac{dx}{x - a} - \frac{1}{2a} \int \frac{dx}{x + a} = \frac{1}{2a} \ln|x - a| - \frac{1}{2a} \ln|x + a| + C =$$

$$= \frac{1}{2a} \ln\left|\frac{x - a}{x + a}\right| + C.$$

Полученный интеграл $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$ следует отнести к числу табличных интегралов.

Пример 2.
$$\int \frac{9x^2 - 2x - 8}{x^3 - 4x} dx$$
.

Заметим прежде всего, что в числителе стоит многочлен второй степени, а в знаменателе — третьей, следовательно, под знаком интеграла стоит правильная рациональная дробь. Нетрудно разложить на множители знаменатель:

$$x^3 - 4x = x(x^2 - 4) = x(x - 2)(x + 2)$$
.

Будем использовать разложение подынтегральной дроби в виде:

$$\frac{9x^2 - 2x - 8}{x^3 - 4x} = \frac{A}{x} + \frac{B}{x - 2} + \frac{C}{x + 2},$$

где A , B , C — неизвестные коэффициенты, подлежащие определению.

Приводя к общему знаменателю дроби, стоящие в правой части и приравнивая затем числители получившегося тождественного равенства, получим:

$$9x^2 - 2x - 8 = (A + B + C)x^2 + (2B - 2C)x - 4A$$

Приравнивая далее коэффициенты при одинаковых степенях x слева и справа, получим такую систему трех уравнений с тремя неизвестными

$$A + B + C = 9
2B - 2C = -2
-4A = -8$$

Решая систему, найдем A = 2, B = 3, C = 4.

Перейдем теперь к данному интегралу:

$$\int \frac{9x^2 - 2x - 8}{x^3 - 4x} dx = \int \left(\frac{2}{x} + \frac{3}{x - 2} + \frac{4}{x + 2}\right) dx =$$

$$= 2\ln|x| + 3\ln|x - 2| + 4\ln|x + 2| + C.$$

Пример 3. Вычислить
$$\int \frac{2x^5-x^4+4x^2-4x+5}{\left(x-1\right)^2\left(x^2+1\right)} dx$$
 .

Прежде всего заметим, что под знаком интеграла стоит неправильная дробь (в числителе стоит многочлен пятой степени, а в знаменателе — четвертой); поэтому вначале нужно выделить целую часть, для чего следует разделить числитель на знаменатель.

Очевидно, что знаменатель $(x-1)^2(x^2+1)=x^4-2x^3+2x^2-2x+1$.

Итак, имеем:

Таким образом, выделив целую часть, подынтегральную дробь можно записать так:

$$\frac{2x^5 - x^4 + 4x^2 - 4x + 5}{(x-1)^2(x^2+1)} = 2x + 3 + \frac{2x^3 + 2x + 2}{(x-1)^2(x^2+1)}.$$

Разложим теперь на простейшие правильную рациональную дробь, стоящую в правой части равенства:

$$\frac{2x^{3}+2x+2}{(x-1)^{2}(x^{2}+1)} = \frac{A}{x-1} + \frac{B}{(x-1)^{2}} + \frac{Mx+N}{x^{2}+1} =$$

$$= \frac{A(x-1)(x^{2}+1) + B(x^{2}+1) + (Mx+N)(x-1)^{2}}{(x-1)^{2}(x^{2}+1)}.$$

Приравнивая числители левой и правой части равенства, получим

$$2x^{3} + 2x + 2 = A(x-1)(x^{2}+1) + B(x^{2}+1) + (Mx+N)(x-1)^{2} =$$

$$= (A+M)x^{3} + (-A+B+N-2M)x^{2} + (A+M-2N)x-A+B+N.$$

Приравнивая теперь коэффициенты при одинаковых степенях x в обеих частях равенства, будем иметь такую систему уравнений:

$$A + M = 2$$

 $-A + B + N - 2M = 2$
 $A - 2N + M = 0$
 $-A + B + N = 2$

Решив ее, получим $m{A}=2$, $m{B}=3$, $m{M}=0$, $m{N}=1$ Итак, данный интеграл

$$\int \frac{2x^{5} - x^{4} + 4x^{2} - 4x + 5}{(x - 1)^{2} (x^{2} + 1)} dx = \int \left(2x + 3 + \frac{2}{x - 1} + \frac{3}{(x - 1)^{2}} + \frac{1}{x^{2} + 1} \right) dx =$$

$$= x^{2} + 3x - 2\ln|x - 1| - \frac{3}{x - 1} + \arctan x + C.$$

Заметим, что вычисление интегралов иногда требует изобретательности и зачастую, применяя различные искусственные приемы, мы можем избавить себя от громоздких выкладок.

Пример 4.
$$\int \frac{dx}{x^2(1+x^2)}$$

Преобразуем подынтегральную дробь так:

$$\frac{1}{x^{2}(1+x^{2})} = \frac{(1+x^{2})-x^{2}}{x^{2}(1+x^{2})} = \frac{1+x^{2}}{x^{2}(1+x^{2})} - \frac{x^{2}}{x^{2}(1+x^{2})} = \frac{1}{x^{2}} - \frac{1}{1+x^{2}}.$$

Имеем:

$$\int \frac{dx}{x^{2}(1+x^{2})} = \int \frac{dx}{x^{2}} - \int \frac{dx}{1+x^{2}} = -\frac{1}{x} - \arctan x + C .$$

Заметим, что нам удалось найти данный интеграл, не прибегая к громоздкой процедуре разложения рациональной дроби на простейшие.

Пример 5.
$$\int \frac{dx}{x^4 + x^2 + 1}$$

Разложим на множители знаменатель

$$x^4 + x^2 + 1 = x^4 + 2x^2 + 1 - x^2 = (x^2 + 1)^2 - x^2 = (x^2 - x + 1)(x^2 + x + 1).$$

Нетрудно видеть, что каждый из квадратных трехчленов, стоящих в правой части, имеет комплексные сопряженные корни.

Разложим подынтегральную дробь на простейшие:

$$\frac{1}{x^{4} + x^{2} + 1} = \frac{1}{(x^{2} - x + 1)(x^{2} + x + 1)} = \frac{M_{1}x + N_{1}}{x^{2} - x + 1} + \frac{M_{2}x + N_{2}}{x^{2} + x + 1} =$$

$$= \frac{(M_{1}x + N_{1})(x^{2} + x + 1) + (M_{2}x + N_{2})(x^{2} - x + 1)}{(x^{2} - x + 1)(x^{2} + x + 1)} =$$

$$= \frac{(M_{1} + M_{2})x^{3} + (N_{1} + M_{1} + N_{2} - M_{2})x^{2} + (N_{1} + M_{1} - N_{2} + M_{2})x + N_{1} + N_{2}}{x^{4} + x^{2} + 1}.$$

Для нахождения коэффициентов имеем такую систему:

Таким образом

$$\frac{1}{x^4+x^2+1} = \frac{x+1}{2(x^2+x+1)} - \frac{x-1}{2(x^2-x+1)}.$$

Вернемся к исходному интегралу:

$$\int \frac{dx}{x^4 + x^2 + 1} = \frac{1}{2} \int \frac{x+1}{x^2 + x + 1} dx - \frac{1}{2} \int \frac{x-1}{x^2 - x + 1} dx.$$

Вычислим первый интеграл

$$\boldsymbol{J}_1 = \int \frac{x+1}{x^2+x+1} dx .$$

Заметим, что $(x^2 + x + 1)' = 2x + 1$.

Выделим в числителе производную квадратного трехчлена:

$$x + 1 = \frac{1}{2}(2x + 1) + \frac{1}{2}$$
.

Выделяя кроме того полный квадрат в знаменателе, получим:

выя кроме того полный квадрат в знаменателе, получим.
$$J_1 = \int \frac{(x+1)dx}{x^2 + x + 1} = \frac{1}{2} \int \frac{(2x+1)dx}{x^2 + x + 1} + \frac{1}{2} \int \frac{dx}{\left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} =$$
$$= \frac{1}{2} \ln \left|x^2 + x + 1\right| + \frac{\sqrt{3}}{3} \operatorname{arctg} \frac{2x + 1}{\sqrt{3}} + C_1.$$

Аналогично:

$$J_2 = \frac{1}{2} \ln |x^2 - x + 1| - \frac{\sqrt{3}}{3} \operatorname{arctg} \frac{2x - 1}{\sqrt{3}} + C_2$$
.

Возвращаясь к исходному интегралу, окончательно получим:

$$\int \frac{dx}{x^4 + x^2 + 1} = \frac{1}{4} \ln \left| \frac{x^2 + x + 1}{x^2 - x + 1} \right| + \frac{\sqrt{3}}{6} \left(\arctan \frac{2x + 1}{\sqrt{3}} + \arctan \frac{2x - 1}{\sqrt{3}} \right) + C.$$

§7. Интегрирование тригонометрических выражений.

Рассмотрим различные способы решения некоторых интегралов, содержащих тригонометрические функции под знаком интеграла.

$$I. \int R (\sin x) \cos x \, dx , \int R (\cos x) \sin x \, dx$$

Здесь через $R(\sin x)$, $R(\cos x)$ обозначена любая рациональная функция, аргументом которой является $\sin x$ или соответственно $\cos x$.

В первом интеграле следует сделать подстановку $\sin x = t$, а во втором $\cos x = t$.

Пример 1.
$$\int \frac{\cos x \ dx}{\sin^2 x + 4}$$

Сделаем подстановку $\sin x = t$, тогда $\cos x \, dx = dt$. Подставим эти результаты в интеграл:

$$\int \frac{\cos x \, dx}{\sin^2 x + 4} = \int \frac{dt}{t^2 + 4} = \frac{1}{2} \operatorname{arctg} \frac{t}{2} + C = \frac{1}{2} \operatorname{arctg} \frac{\cos x}{2} + C.$$

Пример 2.
$$J = \int \sqrt{1+\cos^2 x} \sin 2x \cos 2x \, dx$$
.

Прежде всего, преобразуем интеграл, выразив $\sin 2x$ и $\cos 2x$ через $\sin x$ и $\cos x$. Напомним, что $\sin 2x = 2\sin x \cos x$, $\cos 2x = 2\cos^2 x - 1$. Получим:

$$J = \int \sqrt{1 + \cos^2 x} \, 2\sin x \, \cos x \, \left(2\cos^2 x - 1\right) dx .$$

Обозначим $\cos x = t$, тогда $-\sin x \, dx = dt$:

$$J = -2\int \sqrt{1+t^2}t \left(2t^2-1\right)dt.$$

Обозначим $1+t^2=z^2$, следовательно $2t\,dt=2z\,dz$:

$$J = -2\int z^{2} (2z^{2} - 3) dz = -\frac{8}{5}z^{5} + 2z^{3} = -\frac{8}{5}(1 + t^{2})^{\frac{5}{2}} + 2(1 + t^{2})^{\frac{3}{2}} + C =$$

$$= -\frac{8}{5}(1 + \cos^{2}x)^{\frac{5}{2}} + 2(1 + \cos^{2}x)^{\frac{3}{2}} + C.$$

II. Интегралы вида:

- a) $\int \sin m x \cos n x \, dx$,
- б) $\int \sin m x \sin n x \, dx$,
- в) $\int \cos m\, x\, \cos nx\, \, dx$, где m ,n $\in N$.

В данном случае произведение, стоящее под знаком интеграла, следует преобразовать в сумму. Напомним известные формулы из тригонометрии

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \sin\beta\cos\alpha, \qquad (1)$$

$$\sin(\alpha - \beta) = \sin\alpha\cos\beta - \sin\beta\cos\alpha, \qquad (2)$$

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta, \qquad (3)$$

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta. \tag{4}$$

Складывая формулы (1) и (2) получим

$$\sin \alpha \cos \beta = \frac{1}{2} \left[\sin (\alpha + \beta) + \sin (\alpha - \beta) \right].$$

Полагая $\alpha = mx$, $\beta = nx$ получим

$$\sin m x \cos n x = \frac{1}{2} \left[\sin(m + n) x + \sin(m - n) x \right]. \tag{5}$$

Складывая и вычитая формулы (3) и (4) получим соответственно

$$\sin \alpha \sin \beta = \frac{1}{2} \left[\cos(m - n)x - \cos(m + n)x \right]$$
 (6)

$$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos(m + n) x + \cos(m - n) x \right]$$
 (7)

Часто при нахождении интегралов такого типа удобно пользоваться известными формулами удвоения углов:

$$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$$
, $\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$.

Пример 1. $\int \cos 2x \sin^2 4x \, dx$.

$$\int \cos 2x \, \sin^2 4x \, dx = \frac{1}{2} \int \cos 2x \, (1 - \cos 8x) dx =$$

$$= \frac{1}{2} \int \cos 2x \, dx - \frac{1}{2} \int \cos 2x \, \cos 8x \, dx =$$

$$= \frac{1}{4} \sin 2x - \frac{1}{4} \int \cos 10x \, dx - \frac{1}{4} \int \cos 6x \, dx =$$

$$= \frac{1}{4} \sin 2x - \frac{1}{40} \sin 40x - \frac{1}{24} \sin 6x + C.$$

Пример 2. $\int \sin x \cos 5x \, dx$.

Используя формулу (5), получим

$$\int \sin x \cos 5x \, dx = \frac{1}{2} \int \left[\sin 6x - \sin 4x \right] dx = \frac{1}{12} \int \sin 6x \, d \, 6x - \frac{1}{8} \int \sin 4x \, d \, 4x =$$

$$= -\frac{\cos 6x}{12} + \frac{\cos 4x}{4} + C.$$

Пример 3. $\int \sin^2 2x \cos^4 x \, dx$.

Пользуясь формулами удвоения углов, преобразуем подынтегральное выражение

$$\sin^{2} 2x \cos^{4} x = \frac{1 - \cos 4x}{2} \cdot \frac{\left(1 + \cos x\right)^{2}}{4} = \frac{1}{8} \left(1 - \cos 4x\right) \left(1 + 2\cos x + \frac{1 + \cos 2x}{2}\right) =$$

$$= \frac{1}{16} \left(3 + 4\cos x + \cos 2x - 3\cos 4x - 4\cos x \cos 4x - \cos 2x \cos 4x\right).$$

Имеем:

$$\int \cos x \cos 4x \, dx = \frac{1}{2} \int (\cos 5x + \cos 3x) \, dx = \frac{1}{10} \sin 5x + \frac{1}{6} \sin 3x + C ,$$

$$\int \cos 2x \cos 4x \, dx = \frac{1}{2} \int (\cos 6x + \cos 2x) \, dx = \frac{1}{12} \sin 6x + \frac{1}{4} \sin 2x + C .$$

Окончательно получим:

$$\int \sin^2 2x \cos^4 x \, dx = \frac{3}{16}x + \frac{1}{4}\sin x + \frac{1}{32}\sin 2x - \frac{3}{64}\sin 4x - \frac{2}{80}\sin 5x - \frac{2}{48}\sin 3x - \frac{1}{192}\sin 6x - \frac{1}{64}\sin 2x + C.$$

III.
$$\int R(\sin^2 x,\cos^2 x)dx$$
.

Если под знаком интеграла стоят тригонометрические функции, возведенные в четную степень, то рекомендуется сделать подстановку $\mathbf{tg}x=t$, тогда $\frac{dx}{\cos^2 x}=dt$ или в силу подстановки $x=\mathbf{arctg}t$ получаем $dx = \frac{dt}{1+t^2}$ очевидно, что

$$dx = \frac{dt}{1+t^2}$$
 очевидно, что

$$\sin^2 x = \frac{\sin^2 x}{\sin^2 x + \cos^2 x} = \frac{\mathbf{tg}^2 x}{1 + \mathbf{tg}^2 x} = \frac{t^2}{1 + t^2},$$

аналогично

$$\cos^2 x = \frac{\cos^2 x}{\sin^2 x + \cos^2 x} = \frac{1}{1 + tg^2 x} = \frac{1}{1 + t^2}.$$

Итак, полагая $\mathbf{tg} x = t$, получим

$$\sin^2 x = \frac{t^2}{1+t^2}; \quad \cos^2 x = \frac{1}{1+t^2}; \quad dx = \frac{dt}{1+t^2}.$$

Заметим, что иногда бывает уместна подстановка $\mathbf{ctg} x = t$.

Пример 1.
$$\int \frac{dx}{1+\sin^2 x}$$

Полагая $\mathbf{tg} x = t$, получим:

$$\int \frac{dx}{1+\sin^2 x} = \int \frac{dt}{(1+t^2)(1+t^2/(t^2+1))} = \int \frac{dt}{2t^2+1} = \frac{1}{2} \int \frac{dt}{t^2+(1/\sqrt{2})^2} = \frac{1}{\sqrt{2}} \operatorname{arctg}(\sqrt{2}t) + C = \frac{1}{\sqrt{2}} \operatorname{arctg}(\sqrt{2}t\operatorname{g}x) + C.$$

Пример 2.
$$\int \frac{dx}{a^2 \sin^2 x + b^2 \cos^2 x}.$$

Положим $\mathbf{tg} x = t$, тогда

$$\int \frac{dx}{a^{2} \sin^{2} x + b^{2} \cos^{2} x} = \int \frac{dt}{\left(1 + t^{2}\right) \left[\frac{a^{2} t^{2}}{1 + t^{2}} + \frac{b^{2}}{1 + t^{2}}\right]} = \frac{1}{a^{2}} \int \frac{dt}{t^{2} + \left(b/a\right)^{2}} = \frac{1}{a^{2}} \arctan \left(\frac{ta}{b} + C\right) = \frac{1}{a^{2}} \arctan \left(\frac{a \tan x}{b} + C\right)$$

Пример 3.
$$\int \frac{dx}{\sin^2 x + tg^2 x}$$
.

Положим $\mathbf{ctg} x = t$, тогда

$$\frac{dx}{\sin^2 x} = dt, \cos^2 x = \frac{\cos^2 x}{\sin^2 x + \cos^2 x} = \frac{\cot^2 x}{1 + \cot^2 x} = \frac{t^2}{1 + t^2}.$$

Имеем:

$$\int \frac{dx}{\sin^2 x + tg^2 x} = \int \frac{dx}{\sin^2 x \left(1 + \frac{1}{\cos^2 x}\right)} = -\int \frac{dt}{1 + \frac{1 + t^2}{t^2}} = -\int \frac{t^2}{2t^2 + 1} dt =$$

$$= -\frac{1}{2} \int \frac{(2t^2 + 1) - 1}{2t^2 + 1} dt = -\frac{1}{2} \int dt + \frac{1}{2\sqrt{2}} \int \frac{dt \sqrt{2}}{\left(t \sqrt{2}\right)^2 + 1} =$$

$$= -\frac{1}{2} t + \frac{1}{2\sqrt{2}} \operatorname{arctg} t \sqrt{2} + C = -\frac{1}{2} \operatorname{ctg} x + \frac{1}{2\sqrt{2}} \operatorname{arctg} \left(\sqrt{2} \operatorname{ctg} x\right) + C.$$

IV. $\int R (\sin x, \cos x) dx$.

Введем подстановку $t=\mathbf{tg}\frac{x}{2}$, которая называется универсальной тригонометрической подстановкой и позволяет выразить $\sin x$, $\cos x$ и dx рационально через переменную t. Эта подстановка всегда приводит к цели, однако пользоваться ею следует осторожно, т.к. при высоких степенях $\cos x$ и $\sin x$ она приводит к очень громоздким выкладкам.

Итак, подстановка $t = \operatorname{tg} \frac{x}{2}$ дает нам

$$\sin x = \frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{\sin^2\frac{x}{2} + \cos^2\frac{x}{2}} = \frac{2tg\frac{x}{2}}{1 + tg^2\frac{x}{2}} = \frac{2t}{1 + t^2},$$

$$\cos x = \frac{\cos^2\frac{x}{2} - \sin^2\frac{x}{2}}{\sin^2\frac{x}{2} + \cos^2\frac{x}{2}} = \frac{1 - tg^2\frac{x}{2}}{1 + tg^2\frac{x}{2}} = \frac{1 - t^2}{1 + t^2}.$$

Далее из равенства $x = 2 \operatorname{arctg} t$, которое следует из подстановки, получим после дифференцирования

$$dx = \frac{2dt}{1+t^2}$$

Пример 1. $\int \frac{dx}{\sin x}$.

Выполняя подстановку $tg\frac{x}{2} = t$, получим:

$$\int \frac{dx}{\sin x} = 2\int \frac{dt}{(1+t^2)\frac{2t}{1+t^2}} = \int \frac{dt}{t} = \ln|t| + C = \ln\left| t \frac{x}{2} \right| + C.$$

Пример 2.
$$\int \frac{dx}{1-\sin x + \cos x}$$
.

Применяя подстановку $tg\frac{x}{2} = t$, имеем:

$$\int \frac{dx}{1-\sin x + \cos x} = \int \frac{2dt}{\left(1+t^2\right)\left[1-\frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2}\right]} = -\int \frac{dt}{t-1} = -\ln|t-1| + C =$$

$$= -\ln|tg\frac{x}{2} - 1| + C.$$

Пример 3.
$$\int \frac{dx}{5-4x+3\cos x}$$
.

Применяя подстановку $tg\frac{x}{2} = t$, получим:

$$\int \frac{dx}{5 - 4x + 3\cos x} = \int \frac{2dt}{\left(1 + t^2\right) \left[5 - \frac{8t}{1 + t^2} + \frac{3 - 3t^2}{1 + t^2}\right]} = \int \frac{dt}{\left(t - 2\right)^2} = \int \frac{dt}{\left(t - 2\right)$$

V.
$$\int R\left(x,\sqrt{a^2-x^2}\right)dx$$
, $\int R\left(x,\sqrt{a^2+x^2}\right)dx$, $\int R\left(x,\sqrt{x^2-a^2}\right)dx$

Эти интегралы можно найти с помощью так называемых тригонометрических подстановок. Рассмотрим эти интегралы подробнее

1.
$$\int R\left(x,\sqrt{a^2-x^2}\right)dx$$

Выполним подстановку $x=a \sin t$ (a>0), тогда будет $\sqrt{a^2-x^2}=\sqrt{a^2-a^2\sin^2t}$; $dx=-a \sin t dt$.

Принимая во внимание, что $\sqrt{a^2} = |a|$,(Заметим, что строго говоря $\sqrt{\cos^2 t} = |\cos t|$. Мы однако остановимся здесь лишь на случае, когда

 $|\cos t| = \cos t$. Точно так же поступим в аналогичных ситуациях, рассматривая лишь случаи, когда $\sqrt{\sin^2 t} = |\sin t| = \sin t$).

Пример 1.
$$\int \frac{\sqrt{9-x^2}}{x^2} dx$$

Делаем замену $x=3\sin t$ (мы, в частности, ограничиваем здесь случаи, когда $0 \le t \le \frac{\pi}{2}$). Получим

$$\int \frac{\sqrt{9-x^2}}{x^2} dx = \int \frac{\sqrt{9-9\sin^2 t}}{9\sin^2 t} 3\cos t \, dt = \int \frac{\cos^2 t \, dt}{\sin^2 t} = \int \frac{1-\sin^2 t}{\sin^2 t} dt = \int \frac{dt}{t^2} - \int dt = \int \frac{\cos^2 t \, dt}{\sin^2 t} dt = \int \frac{dt}{t^2} - \int dt = \int \frac{\cos^2 t \, dt}{\sin^2 t} dt = \int \frac{dt}{t^2} - \int dt = \int \frac{\cos^2 t \, dt}{\sin^2 t} dt = \int \frac{dt}{t^2} - \int dt = \int \frac{\cos^2 t \, dt}{\sin^2 t} dt = \int \frac{dt}{t^2} - \int dt = \int \frac{\cos^2 t \, dt}{\sin^2 t} dt = \int \frac{dt}{t^2} - \int dt = \int \frac{\cos^2 t \, dt}{\sin^2 t} dt = \int \frac{dt}{t^2} - \int dt = \int \frac{\cos^2 t \, dt}{\sin^2 t} dt = \int \frac{dt}{t^2} - \int dt = \int \frac{\cos^2 t \, dt}{\sin^2 t} dt = \int \frac{dt}{t^2} - \int dt = \int \frac{\cos^2 t \, dt}{\sin^2 t} dt = \int \frac{dt}{t^2} - \int dt = \int \frac{\cos^2 t \, dt}{\sin^2 t} dt = \int \frac{dt}{t^2} - \int dt = \int \frac{\cos^2 t \, dt}{\sin^2 t} dt = \int \frac{dt}{t^2} - \int dt = \int dt = \int \frac{dt}{t^2} - \int dt = \int \frac{dt}{t^2}$$

$$2. \int R\left(x, \sqrt{a^2+x^2}\right) dx.$$

Для нахождения данного интеграла предлагается подстановка ${m x} = {m a} \ {f tgt} \ \ \ ({m a} > 0)$

Будет
$$dx = \frac{a dt}{\cos^2 t}$$
, $\sqrt{a^2 + x^2} = \sqrt{a^2 + a^2 t g^2 t} = \frac{a}{\cos t}$.

Пример 2.
$$\int \frac{dx}{x\sqrt{x^2+1}}$$
.

Делаем подстановку $x = \mathbf{tg}t$, тогда $dx = \frac{dt}{\cos^2 t}$.

$$\int \frac{dx}{x\sqrt{x^2+1}} = \int \frac{dt}{\cos^2 t \operatorname{tg} t} \frac{1}{\cos t} = \int \frac{dt}{\sin t} = \ln \left| \operatorname{tg} \frac{t}{2} \right| + C = \ln \left| \operatorname{tg} \frac{\operatorname{arctg} x}{2} \right| + C.$$

Заметим, что интеграл $\int \frac{dx}{\sin x} = \ln \left| \lg \frac{x}{2} \right| + C$ мы решили ранее с помощью универсальной тригонометрической подстановки в п. IV

$$3. \int R\left(x, \sqrt{x^2-a^2}\right) dx.$$

Для решения этого интеграла применяют подстановку $x=\dfrac{a}{\cos t}$ или $x=\dfrac{a}{\sin t}$, где полагают a>0 .

Рассмотрим на примере интеграл такого типа.

Пример 3.
$$\int \frac{dx}{x + \sqrt{x^2 - 4}}$$

Делаем подстановку
$$x = \frac{2}{\sin t}$$
 , $dx = -\frac{2\cos t}{\sin^2 t}dt$, тогда

$$\int \frac{dx}{x + \sqrt{x^2 - 4}} = -\int \frac{2\cos t \, dt}{\sin^2 t \left(\frac{2}{\sin t} + \frac{2\cos t}{\sin t}\right)} = -\int \frac{2\cos t \, dt}{2\left(\sin t + \cos t \sin t\right)} =$$

$$=-\int \frac{\cos t \, dt}{\sin t \, \left(1+\cos t\,\right)} = -\int \frac{\cos t \, \sin t \, dt}{\left(1-\cos^2 t\,\right)\left(1+\cos t\,\right)} = \int \frac{\cos t \, d \, \left(\cos t\,\right)}{\left(1-\cos^2 t\,\right)\left(1+\cos t\,\right)}.$$

Обозначая $\cos t = z$, $dz = d \cos t$, имеем:

$$\int \frac{\cos t d \left(\cos t\right)}{\left(1-\cos^2 t\right)\left(1+\cos t\right)} = \int \frac{z dz}{\left(1-z\right)\left(1+z\right)^2}.$$

Представим подынтегральную дробь в виде суммы простейших дробей

$$\frac{z\,dz}{(1-z)(1+z)^2} = \frac{A}{1-z} + \frac{B}{1+z} + \frac{C}{(1+z)^2} = \frac{(A-B)z^2 + (2A-C)z + A + B + C}{(1-z)(1+z)^2}$$

Приравнивая коэффициенты при одинаковых степенях \boldsymbol{x} в числителе, получим

$$\begin{vmatrix} \mathbf{A} - \mathbf{B} = 0 \\ 2\mathbf{A} - \mathbf{C} = 1 \\ \mathbf{A} + \mathbf{B} + \mathbf{C} = 0 \end{vmatrix} \Rightarrow \mathbf{A} = \frac{1}{4}, \mathbf{B} = \frac{1}{4}, \mathbf{C} = -\frac{1}{2}.$$

Тогда данный интеграл будет выглядеть так:

$$\int \frac{z \, dz}{(1-z)(1+z)^2} = \frac{1}{4} \int \frac{dz}{1-z} + \frac{1}{4} \int \frac{dz}{z+1} - \frac{1}{2} \int \frac{dz}{(1+z)^2} =$$

$$= \frac{1}{4} \ln|z+1| - \frac{1}{4} \ln|z-1| + \frac{1}{2(z+1)} + C = \frac{1}{4} \ln\left|\frac{z+1}{z-1}\right| + \frac{1}{2(z+1)} + C =$$

$$= \frac{1}{4} \ln\left|\frac{\sqrt{x^2-4}+x}{\sqrt{x^2-4}-x}\right| + \frac{x}{2(\sqrt{x^2-4}+x)} + C.$$

Глава 2

Определенный интеграл

§1. Определенный интеграл. Его свойства

1. Определение определенного интеграла.

Рассмотрим некоторую функцию y = f(x), определенную на промежутке [a;b](a < b), рис. 2.1.1.

Выполним 5 операций.

- 1. Разобьем промежуток [a;b] точками $x_0 = a,x_1,x_2,...,x_k,...,x_n = b$ произвольным образом на n частей. Обозначим $\Delta x_k = x_{k+1} x_k$, а наибольшую из длин этих частичных участков обозначим через λ , т.е. $\lambda = \sup\{|\Delta x_k|\}$; λ будем называть рангом дробления.
- 2. На каждом частичном участке $\left[x_{k}, x_{k+1}\right]$ возьмем произвольную точку ξ_{k} и вычислим в ней значение функции $f\left(\xi_{k}\right)$.
- 3. Составим произведение $f\left({{{\xi }_{k}}} \right)\cdot \Delta {{oldsymbol x}_{k}}$.
- 4. Составим сумму

$$\sigma_n = \sum_{k=0}^{n-1} f(\xi_k) \cdot \Delta x_k.$$

Эта сумма называется интегральной суммой или суммой Римана.

5. Измельчая дробление (за счет увеличения числа точек дробления n) и устремляя при этом ранг дробления к нулю $(\lambda \to 0)$ (т.е. увеличивая число точек дробления, мы следим за тем, чтобы уменьшалась и стремилась к нулю длина каждого из частичных участков Δx_k), будем находить предел последовательности интегральных сумм

$$J = \lim_{\substack{n \to \infty \\ \lambda \to 0}} \sigma_n .$$

Если этот предел существует, не зависит от способа дробления и выбора точек ξ_k , то он называется определенным интегралом от функции f(x) по промежутку $\begin{bmatrix} a \ , b \end{bmatrix}$ и обозначается так:

$$J = \int_{a}^{b} f(x) dx.$$

Итак, мы привели ни что иное, как развернутое определение определенного интеграла от функции f(x) по промежутку $\begin{bmatrix} a \ , b \end{bmatrix}$. Принимая во внимание сказанное выше, можем дать определение определенного интеграла более компактно так:

$$J = \int_{a}^{b} f(x) dx \stackrel{def}{=} \lim_{\substack{n \to \infty \\ \lambda \to 0}} \sum_{k=0}^{n-1} f(\xi_k) \cdot \Delta x_k \quad (a < b),$$

где a — нижний предел интегрирования, b — верхний предел. В этом случае, когда для функции f(x) существует определенной интеграл $\int_a^b f(x) dx$, функция f(x) называется интегрируемой на промежутке $\begin{bmatrix} a \ , b \end{bmatrix}$. Заметим, что в приведенном определении предполагается a < b. Понятие определенного интеграла можно обобщить и на случай, когда b < a или b = a. Действительно, будем иметь в силу определения, что если b < a, то $\int_a^b f(x) dx = -\int_b^a f(x) dx$, а если a = b, то $\int_a^b f(x) dx = 0$.

2. Теорема существования определенного интеграла.

Возникает вопрос: всякая ли функция f(x) интегрируема на данном промежутке $\begin{bmatrix} a,b \end{bmatrix}$. Предварительно дадим определение кусочнонепрерывной функции.

Определение. Функция f(x) называется кусочно-непрерывной на данном промежутке [a,b], если на этом промежутке она ограничена и имеет конечное число точек разрыва.

Геометрически кусочно-непрерывную функцию можно изобразить линией, состоящей из конечного числа непрерывных участков. Очевидно, что функция, непрерывная на промежутке [a,b], является частным случаем кусочно-непрерывной функции.

Приведем теперь без доказательства теорему существования определенного интеграла.

Теорема (достаточное условие интегрируемости). Если функция f(x) кусочно-непрерывна на промежутке [a,b], то на этом про-

межутке она интегрируема, т.е. существует $\int\limits_{0}^{b}f\left(x
ight) dx$.

(Без доказательства.)

Заметим, что класс функций, указанных в теореме, практически исчерпывает все функции, встречающиеся в приложениях. В дальнейшем мы будем предполагать, что рассматриваются только такие функции.

3. Геометрический смысл определенного интеграла.

Допустим, что функция f(x) непрерывна и положительна на промежутке $\begin{bmatrix} a \ , b \end{bmatrix}$. Рассмотрим криволинейную трапецию $A \ B \ C \ D$ (рис 1). Ин-

тегральная сумма $\sigma_{_{\! n}} = \sum_{k=0}^{^{n-1}} \! f\left(\xi_{_{\! k}}\right) \cdot \Delta \! x_{_{\! k}}$ дает нам сумму площадей прямо-

угольников с основаниями Δx_k и высотами $f\left(\xi_k\right)$. Ее можно принять за приближенное значение площади криволинейной трапеции ABCD , т.е.

$$S_{ABCD} = \sum_{k=0}^{n-1} f(\xi_k) \cdot \Delta x_k,$$

причем, это равенство будет тем точнее, чем мельче дробление, и в пределе при ${\bf n} \to +\infty$ и $\lambda \to 0$ мы получим

$$S_{ABCD} = \int_{a}^{b} f(x) dx.$$

Итак, если f(x) > 0, то определенный интеграл $\int\limits_{a}^{b} f(x) dx$ $\left(a < b\right)$

дает нам площадь криволинейной трапеции, ограниченной сверху кривой y=f(x), снизу отрезком оси ${\it O} x$ $(a \le x \le b)$, а с боков прямыми x=a , x=b .

4. Свойства определенного интеграла.

Свойство 1. $\int_{a}^{a} f(x) dx = 0$ (по определению).

Свойство 2. $\int_a^b f(x)dx = -\int_b^a f(x)dx$ (по определению), т.е. при пере-

мене местами пределов интегрирования определенный интеграл меняет знак на противоположный.

Свойство 3 (линейность интеграла).

$$\int_{a}^{b} \left[c_{1} f_{1}(x) + c_{2} f_{2}(x) \right] dx = c_{1} \int_{a}^{b} f_{1}(x) dx + c_{2} \int_{a}^{b} f_{2}(x) dx.$$

Для доказательства достаточно составить интегральную сумму для функции $y = c_1 f_1(x) + c_2 f_2(x)$ и воспользоваться свойствами пределов функции. Действительно,

$$\lim_{\substack{n \to \infty \\ \lambda \to 0}} \sum_{k=0}^{n-1} \left[c_1 f_1(\xi_k) + c_2 f_2(\xi_k) \right] \cdot \Delta x_k = c_1 \lim_{\substack{n \to \infty \\ \lambda \to 0}} \sum_{k=0}^{n-1} f_1(\xi_k) \cdot \Delta x_k + \frac{n-1}{n-1} + \frac{n$$

$$+c_{2}\lim_{\substack{n\to\infty\\\lambda\to 0}}\sum_{k=0}^{n-1}f_{2}(\xi_{k})\cdot\Delta x_{k}=c_{1}\int_{a}^{b}f_{1}(x)dx+c_{2}\int_{a}^{b}f_{2}(x)dx.$$

Отметим, что из доказанного следуют такие очевидные факты

a)
$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx$$
,

т.е. постоянный множитель можно выносить за знак определенного интеграла

6)
$$\int_{a}^{b} [f_{1}(x) + f_{2}(x)] dx = \int_{a}^{b} f_{1}(x) dx + \int_{a}^{b} f_{2}(x) dx,$$

т.е. интеграл от суммы функций равен сумме интегралов от этих функций по данному промежутку $[a\,,\!b\,]$.

Свойство 4. Каковы бы ни были числа a , b и c , имеем:

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx,$$

лишь бы только функция f(x) была интегрируема на каждом из промежутков $\begin{bmatrix} a , b \end{bmatrix}$, $\begin{bmatrix} a , c \end{bmatrix}$ и $\begin{bmatrix} c , b \end{bmatrix}$ (рис. 2.1.2).

Для доказательства этого свойства достаточно составить интегральные суммы для каждого из трех интегралов, включив точку c в число точек дробления, а затем рассмотреть пределы получившихся интегральных сумм при условии, что $n \to \infty$, $\lambda \to 0$.

Свойство 5 (оценка определенного интеграла).

Теорема. Если f(x) непрерывна на промежутке [a,b], то имеет место такая оценка определенного интеграла:

$$m(b-a) \leq \int_{a}^{b} f(x) dx \leq M(b-a),$$

еде m — наименьшее, а M — наибольшее значения функции f(x) на промежутке [a,b].

Доказательство. Очевидно, что функция f(x) имеет на промежутке $\begin{bmatrix} a \ , b \end{bmatrix}$ наименьшее (m) и наибольшее (M) значения, т.к. f(x) непрерывна на промежутке $\begin{bmatrix} a \ , b \end{bmatrix}$, т.е.

$$\forall x \in [a,b]: m \leq f(x) \leq M$$
.

Составим интегральную сумму для f(x):

$$\sigma_n = \sum_{k=0}^{n-1} f(\xi_k) \cdot \Delta x_k.$$

Ясно, что

$$\sum_{k=0}^{n-1} m \cdot \Delta x_k \leq \sum_{k=0}^{n-1} f(\xi_k) \cdot \Delta x_k \leq \sum_{k=0}^{n-1} M \cdot \Delta x_k.$$

Учитывая, что $\sum_{k=0}^{n-1} \Delta x_k = b - a$, и вынося постоянный множитель за знак суммы, получим:

$$m(b-a) \leq \sum_{k=0}^{n-1} f(\xi_k) \cdot \Delta x_k \leq M(b-a).$$

Измельчая дробление и устремляя шаг дробления к нулю, в пределе получим

$$m(b-a) \leq \int_{a}^{b} f(x) dx \leq M(b-a).$$

Свойство 6 (теорема о среднем).

Теорема. Если f(x) непрерывна на промежутке $\begin{bmatrix} a,b \end{bmatrix}$, то между точками a и b найдется хотя бы одна точка ξ такая, что будет иметь место равенство

$$\int_{a}^{b} f(x) dx = f(\xi) \cdot (b - a).$$

Доказательство. Допустим, что a < b . В силу свойства 4 имеет место оценка

$$m(b-a) \leq \int_{a}^{b} f(x) dx \leq M(b-a).$$

Функция f(x) непрерывна на промежутке $\begin{bmatrix} a \ , b \end{bmatrix}$, следовательно, принимая значения, равные m и M, она принимает и всякое промежуточное значение, т.е. найдется точка $\xi \left(a < \xi < b \right)$ такая, что функция

f(x) примет в этой точке значение равное $\frac{1}{b-a}\int\limits_{a}^{b}f(x)dx$, т.е. будет

$$f\left(\xi\right) = \frac{1}{b-a} \int_{a}^{b} f(x) dx \Rightarrow \int_{a}^{b} f(x) dx = f\left(\xi\right) (b-a).$$

Заметим, что значения функции f(x) в точке $\xi : f(\xi)$ называется «средним», откуда и произошло название этого свойства.

Поясним геометрический смысл теоремы о среднем (рис. 2.1.3). Если f(x) > 0 на [a,b], то, принимая во внимание геометрический смысл определенного интеграла, в силу теоремы о среднем мы можем утверждать, что площадь криволинейной трапеции равновелика площади прямоугольника с тем же основанием и высотой, равной $f(\xi)$.

Приведем без доказательства еще несколько интересных свойств определенного интеграла.

Свойство 7.

а) Если a < b , и $\forall x \in [a,b]$: $f(x) \ge 0$, то $\int_{a}^{b} f(x) dx \ge 0$.

б) Если
$$a < b$$
 , и $\forall x \in [a,b]$: $f(x) \le 0$, то $\int_a^b f(x) dx \le 0$.

Свойство 8.

Если
$$a < b$$
 , и $\forall x \in [a,b]$: $f(x) \le \varphi(x)$, то $\int_a^b f(x) dx \le \int_a^b \varphi(x) dx$.

Свойство 9.

Если
$$a < b$$
 , и $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$.

Свойство 10. Изменение значения f(x) в одном или любом конечном числе точек из промежутка интегрирования не виляет на интегриромость функции и не меняет значения определенного интеграла.

§2. Вычисление определенного интеграла

1. Теорема об интеграле с переменным верхним пределом (теорема Барроу).

Теорема. Если функция f(x) непрерывна на промежутке $\begin{bmatrix} a \ , b \end{bmatrix}$, то интеграл с переменным верхним пределом $\int\limits_a^x f(t) dt$ имеет производную, равную значению подынтегральной функции при верхнем пределе, т.е.

$$\left(\int_{a}^{x} f(t)dt\right)_{x}' = f(x).$$

Доказательство. Допустим, что f(x) > 0, тогда, в силу геометрического смысла определенного интеграла, очевидно, что функция $\Phi(x) = \int_a^x f(t) dt$ дает площадь криволинейной трапеции ABCD (рис 2.2.1).

Puc 221

В свою очередь

$$\Phi(x + \Delta x) = \int_{a}^{x + \Delta x} f(t)dt = \int_{a}^{x} f(t)dt + \int_{x}^{x + \Delta x} f(t)dt = \Phi(x) + \int_{x}^{x + \Delta x} f(t)dt.$$

Откуда следует, что

$$\Delta\Phi(x) = \Phi(x + \Delta x) - \Phi(x) = \int_{0}^{x + \Delta x} f(t) dt.$$

Последний интеграл в силу теоремы о среднем: $\int\limits_x^{x+\Delta x} f(t)dt = f\left(\xi\right)\cdot\Delta x \;,\;\;$ причем точка ξ лежит между точками x и $x+\Delta x$; тогда $\frac{\Delta\Phi}{\Delta x} = f\left(\xi\right).$

Устремим Δx к нулю, тогда в силу непрерывности функции f(x) будет $\lim_{\Delta x \to 0} f(\xi) = f(x)$, следовательно:

$$\Phi'_{x}(x) = \left(\int_{a}^{x} f(t)dt\right)'_{x} = \lim_{\Delta x \to 0} \frac{\Delta \Phi}{\Delta x} = \lim_{\Delta x \to 0} f(\xi) = f(x),$$

т.е. окончательно получим:

$$\left(\int_{a}^{x} f(t)dt\right)'_{x} = f(x).$$

2. Формула Ньютона-Лейбница.

Теорема. Если функция f(x) непрерывна на промежутке [a,b], то определенный интеграл от этой функции по промежутку [a,b] равен разности значений какой-либо первообразной этой функции на верхнем и на нижнем пределах интегрирования, т.е.

$$\int\limits_{a}^{b}\!\!f\left(x
ight)\!\!dx=\!\!F\left(b
ight)\!-\!\!F\left(a
ight)$$
 (формула Ньютона-Лейбница).

Доказательство. Обозначим через F(x) первообразную функции f(x), тогда, принимая во внимание доказанную выше теорему Барроу, имеем:

$$\int_{a}^{x} f(x)dx = F(x) + c . \tag{1}$$

Полагая в этом равенстве x = a, получим:

$$F(a)+c=\int_{a}^{a}f(x)dx=0\Rightarrow c=-F(a).$$

Положим в равенстве (1) x = b, тогда получим

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Итак, для того, чтобы вычислить определенный интеграл, достаточно вычислить разность значений первообразной на верхнем и на нижнем значениях пределов интегрирования. Заметим, что разность F(b) - F(a) обозначают так:

$$\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} = F(b) - F(a).$$

Пример 1. Вычислить площадь, ограниченную кривыми $y=x^2$ и $y=x^3$ (рис 2.2.2)

Решение. Параболы $y^0 = x^2$ и $y = x^3$ пересекаются в точках O(0,0) и M(1,1), ограничивая область, изображенную на рис 2.2.2. В силу геометрического смысла определенного интеграла очевидно, что искомая площадь

$$S = \int_0^1 (x^2 - x^3) dx.$$

Для вычисления определенного интеграла применим формулу Ньютона-Лейбница. Получим

$$S = \int_{0}^{1} (x^{2} - x^{3}) dx = \left(\frac{x^{3}}{3} - \frac{x^{4}}{4}\right) \Big|_{0}^{1} = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.$$

Ответ:
$$S = \frac{1}{12}$$
 кв. ед.

Рассмотрим теперь основные способы вычисления определенного интеграла: замену переменных (подстановку) и интегрирование по частям.

3. Подстановка в определенном интеграле.

Теорема. Если функция f(x) непрерывна на промежутке [a,b], и в определенном интеграле произвести замену переменной интегрирования при помощи подстановки $x = \varphi(t)$, причем функция $\varphi(t)$ и ее производная $\varphi'(t)$ непрерывны на промежутке $[\alpha,\beta]$, $\varphi(\alpha)=a$, $\varphi(\beta)=b$ и, кроме того, функция $\varphi(t)$ имеет обратную функцию $t=\psi(t)$, то

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f[\varphi(t)] \varphi'(t) dt.$$

Доказательство. Пусть F(x) — первообразная для функции f(x), т.е. F'(x) = f(x), тогда

$$(F[\varphi(t)])'_{t} = f[\varphi(t)] \cdot \varphi'(t).$$

Следовательно

$$\int_{\alpha}^{\beta} f[\varphi(t)] \varphi'(t) dt = F[\varphi(t)]_{\alpha}^{\beta} = F[\varphi(\beta)] - F[\varphi(\alpha)] = F(b) - F(a),$$

а так как

$$\int_{a}^{b} f(x) dx = F(b) - F(a),$$

то ясно, что

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f[\varphi(t)] \varphi'(t) dt.$$

Замечание 1. Для вычисления определенных интегралов замена переменной может определяться соотношением $t = \varphi(x)$ или $\varphi(t) = \psi(t)$, или $\Phi(x,t) = 0$ при выполнении необходимых ограничений на функции, задающие замену переменных.

Замечание 2. При вычислении определенных интегралов с помощью подстановки нет необходимости возвращаться к первоначальному аргументу (это с очевидностью следует из доказательства теоремы).

Пример 2. Вычислить
$$\int_{0}^{9} \frac{dx}{1+\sqrt{x}}$$
.

Решение. Делаем подстановку $x=t^2$, тогда $dx=2t\,dt$. Новые пределы интегрирования: т.к. $t=\sqrt{x}$, то $t_1=\sqrt{x}\Big|_{x=0}=0$, $t_2=\sqrt{x}\Big|_{x=9}=3$, тогда получим:

$$\int_{0}^{9} \frac{dx}{1+\sqrt{x}} = \int_{0}^{3} \frac{2t \, dt}{t+1} = 2 \int_{0}^{3} \frac{(t+1)-1}{t+1} dt = 2 \int_{0}^{3} dt - 2 \int_{0}^{3} \frac{dt}{t+1} = 2t \Big|_{0}^{3} - 2 \ln |t+1| \Big|_{0}^{3} = 6 - 4 \ln 2.$$

4. Интегрирование по частям.

Теорема. Если в промежутке $\begin{bmatrix} a,b \end{bmatrix}$ функции u(x) и v(x) непрерывны и имеют непрерывные производные, то

$$\int_{a}^{b} u(x) dv(x) = \left(u(x) \cdot v(x)\right)\Big|_{a}^{b} - \int_{a}^{b} v(x) du(x).$$

Доказательство. Воспользуемся тождеством

$$d(u(x)\cdot v(x)) = u(x)dv(x) + v(x)du(x).$$

Проинтегрируем его на промежутке [a,b], получим

$$\int_{a}^{b} u(x) dv(x) = \left(u(x) \cdot v(x)\right)\Big|_{a}^{b} - \int_{a}^{b} v(x) du(x).$$

Заметим, что в этом выражении интегрирование ведется по переменной \boldsymbol{x} .

Пример 3. Вычислить $J = \int_1^3 x \ln x \, dx$.

Решение. Вычислим данный интеграл по частям, положив $u\left(x\right)=\ln x$, $dv\left(x\right)=x\,dx$. Тогда $du\left(x\right)=\frac{dx}{x}$, $v\left(x\right)=\frac{x^{2}}{2}$. Следовательно

$$J = \int_{1}^{3} x \ln x \, dx = \frac{x^{2} \ln x}{2} \bigg|_{1}^{3} - \frac{1}{2} \int_{1}^{3} x \, dx = \frac{9}{2} \ln 3 - \frac{1}{4} x^{2} \bigg|_{1}^{3} = \frac{9}{2} \ln 3 - 2.$$

Ответ: $J = \frac{9}{2} \ln 3 - 2$.

§3. Приложения определенного интеграла

1. Вычисление площадей плоских фигур.

Принимая во внимание геометрический смысл определенного интеграла, заметрик. 24501 если область D ограничена сверху кривой $y = \Phi(x)$, снизу кривой $y = \varphi(x)$, причем $\varphi(x) \leq \Phi(x) \left(\varphi(x) > 0, \; \Phi(x) > 0 \right) x \in [a,b]$ (рис. 2.3.1), то площадь области D можно вычислить по формуле

$$S = \int_{a}^{b} \Phi(x) dx - \int_{a}^{b} \varphi(x) dx ,$$

т.е.

$$S = \int_{a}^{b} [\Phi(x) - \varphi(x)] dx.$$

Если область ограничена прямыми y=0 (сверху), x=a , x=b а также кривой $y=\varphi(x)$ (снизу), причем $\varphi(x)<0$ (рис. 2.3.2), то площадь области D вычисляется по формуле

$$S = -\int_{a}^{b} \varphi(x) dx.$$

$$y \qquad y = \Phi(x)$$

$$0 \qquad b \qquad x$$

В том случае, когда область D ограничена дрямыми x=a , x=b , а также кривой $y=\Phi(x)$ сверху, причем $\Phi(x)>0$, а также кривой $y=\varphi(x)$ $\left(\varphi(x)<0\right)$, то площадь Яюй Збласти (рис. 2.3.3) вычисляется по формуле $S=\int\limits_a^b \left[\Phi(x)-\varphi(x)\right]\!dx$.

Причем эта формула справедлива при любом расположении кривых на плоскости, лишь бы не нарушалось условие $\varphi(x) \le \Phi(x)$.

Пример 1. Вычислить площадь фигуры, ограниченной кривыми $y = x^2 - 1$ и y = x + 1 (рис. 2.3.4)

Найдем точки пересечения данных кривых. Для этого необходимо решить систему уравнений Рис. 2.3.4

Рис. 2.3.4
$$y = x^2 - 1$$
 $y = x + 1$.

Решив ее, найдем координаты точек A(-1,0) и B(2,3). Тогда очевидно, что площадь фигуры

$$S = \int_{-1}^{2} \left[(x+1) - (x^{2}-1) \right] dx = \int_{-1}^{2} \left[x - x^{2} + 2 \right] dx = \left(\frac{x^{2}}{2} - \frac{x^{3}}{3} + 2x \right) \Big|_{-1}^{2} = \left(\frac{4}{2} - \frac{8}{3} + 4 \right) - \left(\frac{1}{2} + \frac{1}{3} - 2 \right) = \frac{29}{3}.$$

Ответ: $S = \frac{29}{3}$ кв. ед.

Пример 2. Вычислить площадь эллипса с полуосями a и b (рис 2.3.5)

Решение. Напомним, что каноническое уравнение эллипса имеет вид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
.

Однако воспользуемся параметрическими уравнениями эллипса

$$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}, t \in [0, 2\pi].$$

Очевидно, что когда параметр t пробегает промежуток от 0 до 2π , текущая точка $M\left(x,y\right)$ обегает контур эллипса один раз от точки $A_1 \to B_1 \to A_2 \to B_2 \to A_1$. Переход к параметрическим уравнениям эллипса существенно упрощает вычисление определенного интеграла, дающего нам выражение для площади эллипса. В виду симметричности эллипса вычислим площадь его четверти, которая лежит в первом квадрате.

Действительно, $\frac{1}{4}S=\int\limits_0^a\!y\,(x)dx$, где y(x) — уравнение верхней половины эллипса. В силу параметрических уравнений эллипса найдем пределы интегрирования: $x=a\cos t$, положим здесь $x_1=0$, получим $t_1=\frac{\pi}{2}$, а положив $x_2=a$, будем иметь верхний предел интегрирования $t_2=0$. Учитывая, что в силу тех же параметрических уравнений $y=b\sin t$, $dx=-a\sin t dt$, окончательно сформируем определенный интеграл для вычисления площади, ограниченной эллипсом:

$$\frac{1}{4}S = \int_{\frac{\pi}{2}}^{0} b \sin t \left(-a \sin t\right) dt = ab \int_{0}^{\frac{\pi}{2}} \sin^{2} t dt = ab \int_{0}^{\frac{\pi}{2}} \frac{1 - \cos 2t}{2} dt =$$

$$ab \left(-a \sin 2t\right)^{\frac{\pi}{2}} \pi ab$$

$$=\frac{ab}{2}\left(t-\frac{\sin 2t}{2}\right)\Big|_{0}^{\frac{\pi}{2}}=\frac{\pi ab}{4}.$$

Итак, площадь эллипса $S=\pi ab$ кв.ед.. Заметим, что, положив здесь a=b=r , получим известное нам выражение для площади круга $S=\pi r^2$.

Допустим теперь, что нам необходимо вычислить площадь, ограниченную кривой, заданной уравнением в полярных координатах. Точнее, вычислим площадь фигуры, ограниченной лучами $\varphi=\alpha$, $\varphi=\beta$, а также кривой $r=r(\varphi)$ (предполагаем, естественно, что функция $r=r(\varphi)$ на промежутке $\left[\alpha,\beta\right]$ интегрируема) (рис 2.3.6)

Проведем рассуждения в полярной системе координат (O — полюс, OP — полярная ось):

Из полюса ${\it O}$ проведем лучи ${\it \phi}={\it \alpha}$ (луч ${\it OA}$) и ${\it \phi}={\it \beta}$ (луч ${\it OB}$), а также построим кривую ${\it r}={\it r}\,({\it \phi})$, ${\it \phi}\in[{\it \alpha},{\it \beta}]$.

Найдем площадь криволинейного сектора OAB. В соответствии с определением определенного интеграла выполним следующие пять операций.

- 1. Разобьем сектор OAB лучами $\varphi_0=lpha, \varphi_1,..., \varphi_k, \varphi_{k+1},..., \varphi_n=eta$ $\left(arphi_k<arphi_{k+1}
 ight)$ произвольным образом на n частей(секторов); обозначим $\Delta arphi_k=arphi_{k+1}-arphi_k$. Рангом дробления назовем $\sup\left\{\left|\Delta arphi_k\right|\right\}=\lambda$.
- 2. В каждом секторе, ограниченном лучами φ_k , φ_{k+1} , проведем произвольный луч $\xi_k\left(\varphi_k<\xi_k<\varphi_{k+1}\right)$ и вычислим значение $m{r}\left(\xi_k\right)$.
- 3. Заменим этот сектор круговым с радиусом ${m r}={m r}\,(\xi_k)$ и вычислим площадь этого кругового сектора $\Delta {m S}_k=\frac{1}{2}{m r}^{\,2}(\xi_k)\cdot\Delta \varphi_k$
 - 4. Составим интегральную сумму $\sigma_n = \sum_{k=0}^{n-1} \Delta S_k = \frac{1}{2} \sum_{k=0}^{n-1} r^2(\xi_k) \cdot \Delta \varphi_k$
- 5. Измельчая дробление, и устремляя ранг дробления к нулю, будем искать предел $I = \lim_{n \to \infty, \lambda \to 0} \sigma_n$.
- В пределе получим площадь криволинейного сектора $S = \frac{1}{2} \int\limits_a^b \! r^{\,2}(\varphi) d\, \varphi \,.$

Пример 3. Вычислить площадь, ограниченную кривой $r=1+\cos \varphi$.

Рис. 2.3.7

Решение. Если переменная φ пробегает значения от 0 до 2π , текущая точка обегает кривую, которая называется кардиоидой. Если $\varphi \in [0,\pi]$, имеем верхнюю половину фигуры. Очевидно, что

$$\frac{1}{2}S = \frac{1}{2} \int_{0}^{\pi} (1 + \cos\varphi)^{2} d\varphi = \frac{1}{2} \int_{0}^{\pi} (1 + 2\cos\varphi + \cos^{2}\varphi) d\varphi =$$

$$= \frac{1}{2} \int_{0}^{\pi} (1 + 2\cos\varphi + 0, 5(1 + \cos2\varphi)) d\varphi =$$

$$= \frac{1}{2} \left[(1, 5\varphi + 2\sin\varphi + \frac{1}{2}\sin\varphi) \right]_{0}^{\pi} = 0,75\pi$$

Итак, искомая площадь $S = 1,5\pi$ кв.ед.

2. Вычисление дуги плоской кривой.

Пусть кривая AB (рис 2.3.8) радана уравнением y=f(x), где $x\in [a,b]$. Предположим, что функция f(x) и ее производная f'(x) непрерывны на [a,b]. Длинной дуги кривой AB мы будем называть предел длины вписанной в нее ломаной линии при условии, что $n\to\infty$, а длина наибольшего звена ломаной (ранг разбиения) стремится к нулю. Обозначим длину частичного участка ломаной линии $I_k = \sqrt{\left(\Delta x_k\right)^2 + \left(f\left(x_{k+1}\right) - f\left(x_k\right)\right)^2}$. Преобразуем здесь по формуле Лагранжа разность $f\left(x_{k+1}\right) - f\left(x_k\right)$. Получим

$$f(x_{k+1})-f(x_k)=f'(\xi_k)\cdot\Delta x_k$$
.

Длина всей ломаной линии

$$\sigma_n = \sum \sqrt{1 + \left\lceil f'(\xi_k) \right\rceil^2} \cdot \Delta x_k.$$

Это и есть интегральная сумма для непрерывной функции $\sqrt{1+igl[f'(x\,)igr]^2}$. Измельчая дробление и устремляя ранг дробления к ну-

лю, в пределе получим такое выражение для длины дуги плоской кривой

$$L = \int_{a}^{b} \sqrt{1 + \left[f'(x)\right]^2} dx.$$

Пример 4. Найти длину дуги кривой AB, если A(-2,7), B(1,1) и уравнение кривой AB: y = 3-2x

Решение. Очевидно, что кривая AB представляет собою отрезок прямой линии, причем $x \in [-2,1]$. Имеем $y_x' = -2$; $1+y'^2 = 5$.

Тогда
$$L_{AB} = \int_{-2}^{1} \sqrt{5} dx = 3\sqrt{5}$$
.

Ответ: Длина дуги кривой A B равна $3\sqrt{5}$ лин.ед.

Если кривая A B задана параметрическими уравнениями

$$x = \varphi(t)$$

 $y = \psi(t)$, $t \in [\alpha, \beta], (\alpha < \beta),$

то нетрудно убедиться, что длина дуги кривой $A \ B$ вычисляется по формуле

$$L = \int_{\alpha}^{\beta} \sqrt{\left[\varphi'(t)\right]^2 + \left[\psi'(t)\right]^2} dt,$$

причем, функции $\varphi(t)$, $\psi(t)$ и их производные $\varphi'(t)$ и $\psi'(t)$ непрерывны на промежутке $[\alpha,\beta]$.

Пример 5. Найти длину дуги астроиды

$$x = a \cos^{3}(t)$$

$$y = a \sin^{3}(t)$$
, $(a > 0)$.

Решение. Очевидно, что кривая A B C D симметричная относительно координатных осей, причем темущая точка обегает кривую один раз, когда параметр $t \in [0,2\pi]$. Вычислим четвертую часть длины дуги (уча-

CTOK
$$AB$$
 $t \in \left[0, \frac{\pi}{2}\right]$).

Имеем:

$$x'_{t} = 3a \cos^{2} t \cdot (-\sin t)$$

$$y'_{t} = 3a \sin^{2} t \cos t$$

$$x'_{t} + y'_{t} = 9a^{2} \sin^{2} t \cos^{4} t + 9a^{2} \cos^{2} t \sin^{2} t \cos^{2} t \sin^{2} t \cos^{2} t$$

Учитывая, что на промежутке $\left[0,\frac{\pi}{2}\right]\sin t\geq 0$, $\cos t\geq 0$ получим $\sqrt{{x_t'}^2+{y_t'}^2}=3a\,\sin t\,\cos t\;.$

Тогда будем иметь:

$$\frac{1}{4}L = \int_{0}^{\frac{\pi}{2}} 3a \sin t \cos t \, dt = 3a \int_{0}^{\frac{\pi}{2}} \sin t \, d \sin t = 3a \left. \frac{\sin^{2} t}{2} \right|_{0}^{\frac{\pi}{2}} = \frac{3a}{2},$$

откуда следует $L_{astr} = 6a$ лин.ед.

В том случае, когда кривая A B задана уравнением в полярных координатах $r=r(\varphi)$, причем функция $r(\varphi)$ и ее производная $r'(\varphi)$ непрерывны на промежутке $\left[\alpha,\beta\right]\left(\alpha<\beta\right)$, нетрудно получить выражение для вычисления дуги кривой A B, воспользовавшись только что выведенной формулой. Действительно, можно принять φ за параметр. Тогда получим такой частный случай параметрических уравнений кривой A B:

$$x = r(\varphi)\cos\varphi y = r(\varphi)\sin\varphi$$
, $\varphi \in \alpha, \beta (\alpha < \beta).$

Имеем:

$$x_{\varphi}' = r_{\varphi}' \cos \varphi - r \sin \varphi; y_{\varphi}' = r_{\varphi}' \sin \varphi + r \cos \varphi; x_{\varphi}'^{2} + y_{\varphi}'^{2} = r^{2}(\varphi) + r'^{2}(\varphi).$$

Таким образом, окончательно получим

$$L = \int_{\alpha}^{\beta} \sqrt{r^{2}(\varphi) + r'^{2}(\varphi)} d\varphi.$$

Пример 6. Найти длину дуги окружности радиуса R, записав ее уравнение в полярных координатах (рис. 2.3.11).

Решение. Напомним, что уравнение окружности радиуса \mathbf{R} с центром в начале координат имеет $\mathbf{R}^{1}\mathbf{S}^{2}\mathbf{S}^{2}\mathbf{S}^{2}\mathbf{S}^{2}$. Примем во внимание связь между декартовыми и полярными координатами:

$$x = r \cos \varphi, y = r \sin \varphi$$

(здесь предполагается, что начало декартовых координат совпадает с полюсом ${\it O}$, а ось ${\it OX}$ совпадает с полярной осью).

Тогда очевидно, что уравнение окружности в полярных координатах имеет вид ${\pmb r}={\pmb R}$, причем, когда ${\pmb \varphi}\in [0,2\pi]$, текущая точка ${\pmb M}$ обегает контур окружности один раз против часовой стрелки.

Имеем
$$m{r}_{\varphi}^{\;\prime}=0$$
 , $m{r}^{\;2}(\varphi)+m{r}^{\;\prime2}(\varphi)=m{R}^{\;2}$, тогда $\sqrt{m{r}^{\;2}(\varphi)+m{r}^{\;\prime2}(\varphi)}=m{R}$, следо-

вательно
$$\boldsymbol{L} = \int\limits_{0}^{2\pi} \boldsymbol{R} \, \boldsymbol{d} \, \boldsymbol{\varphi} = \boldsymbol{R} \cdot \boldsymbol{\varphi} \Big|_{0}^{2\pi} = 2\pi \boldsymbol{R} \; .$$

Итак, мы получили всем известную формулу для вычисления длины дуги окружности радиуса ${\pmb R}: {\pmb L} = 2\pi {\pmb R}$.

3. Вычисление площади поверхности тела вращения.

Рассмотрим на плоскости x O y некоторую кривую A B, заданную уравнением y = f(x), $x \in [a,b]$. Пусть функция f(x) и производная f'(x) непрерывны на [a,b]. От вращения кривой A B вокруг оси O x получается тело вращения, ограниченное поверхностью вращения. По определению будем считать площадью поверхности вращения предел

площади поверхности, которая получается от вращения ломаной линии $A = A_0, A_1, A_2, ..., A_k, A_{k+1},, A_n = B$, вписанной в кривую AB (рис. 2.3.12) при условии, что число точек дробления бесконечно возрастает, а ранг дробления $\lambda = \sup\{\left|\Delta x_k\right|\}$ при этом стремится к нулю.

От вращения хорды $A_k A_{k+1}$ по**Руччи 2.3**. «Деченный конус, боковая поверхность которого

$$\Delta S_{k} = \pi \left[f\left(x_{k}\right) + f\left(x_{k+1}\right) \right] l_{k} \approx 2\pi f\left(\xi_{k}\right) \sqrt{1 + \left[f\left(\xi_{k}\right)\right]^{2}} \cdot \Delta x_{k},$$

где $x_k \leq \xi_k \leq x_{k+1}$.

Площадь поверхности вращения S , таким образом, приблизительно равна

$$S \approx \sigma_n = \sum_{k=0}^{n-1} 2\pi f(\xi_k) \sqrt{1 + \left[f(\xi_k)\right]^2} \cdot \Delta x_k$$

Измельчая дробление и устремляя ранг дробления к нулю, получим точное равенство

$$S = 2\pi \int_{a}^{b} f(x) \sqrt{1 + \left[f'(x)\right]^{2}} dx.$$

Пример 7. Кривая 3x+y-3=0 вращается вокруг оси ${\bf \it O}{\it y}$. Найти площадь поверхности, ограниченной плоскостью ${\it x}{\it O}{\it z}$ и получившейся поверхностью вращения.

Решение. Очевидно, что пряма \Re^{10} \Re^{2} \Re^{3} \Re^{3} \Re^{3} \Re^{3} \Re^{3} пересекается с координатными осями Ox и Oy в точках A(1,0,0) и B(0,3,0), а интере-

сующее нас тело есть конус (рис. 2.3.13). Воспользуемся выведенной выше формулой, заменив в ней естественным образом переменную \boldsymbol{x} на переменную \boldsymbol{y} . Получим

$$S = 2\pi \int_{0}^{3} x(y) \sqrt{1 + x'_{y}^{2}(x)} dy.$$

Подставим сюда $x(y) = 1 - \frac{y}{3}$, $x'_y = -\frac{1}{3}$, $1 + x'^2(y) = 1 + \frac{1}{9} = \frac{10}{9}$, тогда будет

$$S = 2\pi \int_{0}^{3} \left(1 - \frac{y}{3}\right) \cdot \frac{\sqrt{10}}{3} dy = 2\pi \cdot \frac{\sqrt{10}}{3} \left(y - \frac{y^{2}}{6}\right) \Big|_{0}^{3} = \pi \sqrt{10},$$

что легко проверить, вычислив площадь боковой поверхности конуса

$$S_{\text{ б. пов}} = \pi r \boldsymbol{l} = \pi \cdot 1 \cdot \sqrt{10}$$
 .

Итак $S_{\text{б. пов}} = \pi \sqrt{10}\,$ кв. ед.

4. Вычисление объемов.

Рассмотрим некоторое теродовытельнутое вдоль оси $Ox\left(x\in [a,b]\right)$ и допустим, что мы знаем площадь сечения этого тела любой плоскостью x=c . Обозначим площадь этого сечения через F(x). Разобьем отрезок [a,b] произвольным образом на n частей точками

$$x_0 = a < x_1 < ... < x_k < x_{k+1} < ... < x_n = b$$
.

На каждом частичном участке $\left[x_{k},x_{k+1}\right]$ возьмем произвольную точку ξ_{k} . Площадь этого сечения $F\left(\xi_{k}\right)$. Элементарный объем $\Delta v_{k}=F\left(\xi_{k}\right)\!\Delta\!x_{k}$, тогда очевидно, что объем рассматриваемого тела

$$V = \int_{a}^{b} F(x) dx.$$

В частности, отсюда нетрудно получить формулу объема тела вращения, которое получается от вращения y = f(x) вокруг оси Ox (f(x)) предполагается непрерывной на промежутке [a,b]). Действительно, в этом случае площадь сечения представляет собой круг радиуса

 ${\pmb R} = {\pmb f}({\pmb x})$, следовательно площадь сечения равна $\pi {\pmb f}^{\,2}({\pmb x})$. А тогда объем тела вращения

$$v = \pi \int_a^b f^2(x) dx$$

Пример 8. Найти объем шара радиуса ${\it R}$.

Решение. На шар будем смотреть как на тело вращения. Здесь $f(x) = \sqrt{R^2 - x^2}$. Тогда

$$V_{\text{mapa}} = \pi \int_{-R}^{R} (R^2 - x^2) dx = \pi \left(R^2 x - \frac{x^3}{3} \right) \Big|_{0}^{R} = \frac{4}{3} \pi R^3.$$

Получим известную формулу для объема шара радиуса ${m R}$:

$$v = \frac{4}{3}\pi R^3$$
 куб.ед..

§4. Общая схема применения определенного интеграла

1. Методика применения определенного интеграла к решению практических задач.

Выше мы рассмотрели различные случаи применения определенного интеграла для решения геометрических задач. Но область применения определенного интеграла очень обширна и независимо от конкретного содержания задачи приходится действовать по вполне определенной схеме.

Пусть требуется определить некоторую постоянную величину Q, связанную промежутком $\begin{bmatrix} a \ , b \end{bmatrix}$. Эту величину мы будем считать аддитивной, т.е. такой, что разложение отрезка $\begin{bmatrix} a \ , b \end{bmatrix}$ точкой $c \ (a < c < b)$ на части $\begin{bmatrix} a \ , c \end{bmatrix}$ и $\begin{bmatrix} c \ , b \end{bmatrix}$ влечет за собой разложение на соответствующие части величины Q, причем значение величины Q, соответствующее всему отрезку $\begin{bmatrix} a \ , b \end{bmatrix}$, равно сумме ее значений, соответствующих отрезкам $\begin{bmatrix} a \ , c \end{bmatrix}$ и $\begin{bmatrix} c \ , b \end{bmatrix}$.

Переходя к решению задачи по определению величины ${\it Q}$, разложим отрезок ${\it [a\,,\!b\,]}$ при помощи точек

$$a = x_0 < x_1 < ... < x_{n-1} < x_n = b$$

на n частей

$$[a,x_1],[x_1,x_2],...,[x_{n-1},b],$$

 $\Delta x_k = x_k - x_{k-1}$ — длина k -го частичного промежутка, $\lambda = \sup\{\Delta x_k\}$ — ранг дробления. В соответствии с разложением промежутка $\begin{bmatrix} a,b \end{bmatrix}$ величина Q разложится на n слагаемых $\Delta Q_1, \Delta Q_2, ..., \Delta Q_n$:

$$Q = \sum_{k=1}^{n} \Delta Q_k .$$

Допустим теперь, что существует такая функция q(x), что «элементарное» слагаемое ΔQ_k , соответствующее промежутку $\left[x_{k-1},x_k\right]$ длины Δx_k , приближенно может быть записано в виде

$$\Delta Q_k \approx q(\xi_k) \Delta x_k$$
,

где ξ_k лежит между x_{k-1} и x_k , причем ошибка этого равенства при бесконечно малом ранге дробления λ будет бесконечно малой, порядка высшего, чем Δx_k , т.е.

$$\Delta Q_k \approx q(\xi_k) \Delta x_k + \alpha(\Delta x_k)$$
,

где $\alpha(\Delta \pmb{x}_k) \to 0$, тогда для \pmb{Q} получается приближенное выражение:

$$Q \approx \sum_{k=1}^{n} q(\xi_k) \Delta x_k ,$$

тем более точное, чем меньше λ . Стало быть, точное значение Q будет служить пределом суммы при $\lambda \to 0$, или, что то же самое,

$$Q = \int_{a}^{b} q(x) dx \tag{1}$$

На практике это рассуждение облекают в более краткую форму, говоря, что если элемент ΔQ величины Q, отвечающий элементарному отрезку $\begin{bmatrix} x , x + \Delta x \end{bmatrix}$, представим в виде

$$\Delta Q = q(x) \Delta x + \alpha(\Delta x),$$

T.e.

$$dQ = q(x)dx,$$

то равенство (1) верно.

2. Работа переменной силы.

Задача 1. Какую работу нужно затратить, чтобы выкачать воду из полусферического сосуда радиуса R?

Решение. Плоскостями, параллельными плоскости воды, разобьем полушар на элементы толщины dx (рис. 2.4.1). Элементарная сила (сила тяжести), действующая в направлении оси Ox на слой, толщиной dx, с точностью до бесконечно малых высших порядков относительно dx равна $\rho g \pi r^2 dx$, где ρ — плотность воды, g — ускорение свободного падения. Следовательно, элементарная работа силы равна

$$dA = \rho g \pi r^2 x dx ,$$

где x — уровень воды, $r = \sqrt{R^2 - x^2}$; отсюда находим

$$A = \int_{0}^{R} \rho g \pi (R^{2} - x^{2}) x dx = \pi \rho g \left(R^{2} \frac{x^{2}}{2} - \frac{x^{4}}{4} \right) \Big|_{0}^{R} = \gamma \pi \left(\frac{R^{4}}{2} - \frac{R^{4}}{4} \right) = \pi \rho g \frac{R^{4}}{4}$$

3. Давление на пластинку, погруженную вертикально в жидкость.

Для вычисления силы давления жидкости используют закон Паскаля, согласно которому сила давления жидкости на пластинку площади S с глубиной погружения h равна

$$P = \rho ghS$$
,

где ho — плотность жидкости, g — ускорение свободного падения.

Задача 2. Треугольный щит вертикально опущен в воду, причем основание треугольника находится на уровне воды (рис. 2.4.2). Требуется найти силу давления P на одну из сторон щита, если щит имеет форму равностороннего треугольника a .

Решение. Прямыми, параделерине імприми плоскости воды, разобьем треугольник на элементы (полоски) ширины dx. Площадь одного такого элемента (отбрасывая бесконечно малые высшего порядка), находящегося на расстоянии x от поверхности воды, равна dS = ldx. Из подобия треугольников, изображенных на рис 2, ясно, что длина l полоски удовлетворяет соотношению

$$\frac{l}{a} = \frac{a\sqrt{3}/2 - x}{a\sqrt{3}/2},$$

откуда $l = \frac{2}{\sqrt{3}} \left(a \, \frac{\sqrt{3}}{2} - x \, \right)$ и, следовательно, элементарное давление

 $d extbf{ extit{P}}$ на полоску ширины $d extbf{ extit{x}}$ равно $d extbf{ extit{P}} =
ho extbf{ extit{g}} extbf{ extit{x}} \left(a \, rac{\sqrt{3}}{2} - extbf{ extit{x}}
ight) \! d extbf{ extit{x}}$. Отсюда

$$P = \rho g \int_{0}^{a\sqrt{3}/2} x \frac{2}{\sqrt{3}} \left(a \frac{\sqrt{3}}{2} - x \right) dx = \frac{2}{\sqrt{3}} \rho g \left(\frac{a\sqrt{3}}{2} \cdot \frac{x^{2}}{2} - \frac{x^{3}}{3} \right) \Big|_{0}^{a\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} \rho g \left(\frac{a\sqrt{3}}{2} \cdot \frac{a^{2}}{3} - \frac{a^{3}\sqrt{3}}{4} - \frac{a^{3}\sqrt{3}}{3 \cdot 8} \right) = \frac{\rho g a^{3}}{8}.$$

Задача 3. Найти силу давления P, испытываемую полукругом радиуса R, погруженным вертикально в воду так, что его диаметр совпадает с поверхностью воды (рис. 2.4.3).

Разобьем площадь полукруга на элементы (полоски) ширины dx , параллельные поверхности воды.

Площадь одного такого элемен $\mathbf{A}_{\mathcal{X}}$ (отбрасывая бесконечно малые высшего порядка), находящиеся на расстоянии x от поверхности воды, равна

$$dS = 2r dx = 2\sqrt{R^2 - x^2} dx.$$

Сила давления, испытываемая этим элементом, равна

$$dP = \rho g x 2 \sqrt{R^2 - x^2},$$

где ho — плотность воды, g — ускорение свободного падения. Отсюда вся сила давления есть

$$P = 2\rho g \int_{0}^{R} x \sqrt{R^{2} - x^{2}} dx = -\frac{2}{3}\rho g \sqrt{(R^{2} - x^{2})^{3}} \bigg|_{0}^{R} = \frac{2}{3}\rho g R^{3}.$$

4. Моменты. Центр масс плоских фигур.

Моментом инерции относительно оси $m{l}$ материальной точки $m{M}$, имеющей массу $m{m}$ и отстоящей от оси $m{l}$ на расстояние $m{d}$, называется величина $m{J}_1 = m{m} \ m{d}^2$.

Моментом инерции относительно оси l системы n материальных точек с массами $m_1, m_2, ..., m_n$ называется сумма

$$\boldsymbol{J}_{l} = \sum_{k=1}^{n} \boldsymbol{m}_{k} \boldsymbol{d}_{k}^{2},$$

где $d_1,d_2,...,d_n$ — расстояние точек до оси l . В случае сплошной массы, распределенной в плоской области, вместо суммы должен быть соответствующий интеграл.

Задача 4. Найти момент инерции однородной пластинки, имеющей форму треугольника с основанием a и высотой h, относительно его основания. Будем предполагать пластинку однородной, так что ее поверхностная плотность равна ρ (т.е. масса, приходящаяся на единицу площади будет постоянной) и, следовательно, $m=\rho S$, где S — площадь пластинки.

Решение. За основание треуголичика примем ось Ox, а его высоту за ось Oy (рис. 2.4.4). Разобьем треугольник на бесконечно тонкие горизонтальные полоски ширины dy, играющие роль элементарных масс dm =
ho dS.

Используя подобие треугольников получаем:

$$\frac{AB}{a} = \frac{h-y}{h}.$$

Площадь dS бесконечно тонкой горизонтальной полоски ширины dy равна $dS = A \, B \, dy \Rightarrow A \, B = \frac{dS}{dy}$, тогда получим

$$\frac{dS}{a\,dy} = \frac{h-y}{h} \Rightarrow dS = \frac{a}{h}(h-y)dy ,$$

откуда

$$dJ_z = y^2 \rho dS \Rightarrow dJ_z = \frac{a}{h} \rho y^2 (h - y) dy.$$

Следовательно,

$$J_{z} = \rho \frac{a}{h} \int_{0}^{h} y^{2} (h - y) dy = \rho \frac{a}{h} \left(h \frac{y^{3}}{3} - \frac{y^{4}}{4} \right) \Big|_{0}^{h} = \frac{1}{12} \rho a h^{3}.$$

Статическим моментом относительно оси l материальной точки M , имеющей массу m и отклонение x (с учетом знака) от оси l , называется величина M , =mx .

Статическим моментом относительно оси l системы n материальных точек с массами $m_1, m_2, ..., m_n$, лежащих в одной плоскости с осью l и имеющих отклонения $x_1, x_2, ..., x_n$ (с учетом знаков) от этой оси (рис. 2.4.5) называется сумма

$$\boldsymbol{M}_{l} = \sum_{k=1}^{n} \boldsymbol{m}_{k} \boldsymbol{x}_{k} .$$

Если массы непрерывно заполняют фигуру плоскости x O y , то вместо сумм должен быть соответствующий интеграл.

Задача 5. Найти статический момент одно щей форму полукруга радиуса R и плотность ния полукруга.

Рис. 2.4.6 имеюснова-

Решение. Основание полукруга поместим на ось Ox, а за ось Oy примем перпендикуляр к оси Ox, проходящей через центр полукруга (рис. 2.4.6). Разобьем полукруг на бесконечно тонкие горизонтальные полоски ширины dy. Элементарный статический момент dM_x этой бесконечно тонкой полоски относительно оси Ox будет равен $dM_x = \rho y \, dm = \rho y \, A \, B \, dy$, следовательно, $dM_x = \rho y \, 2r \, d \, dy$.

Из треугольника (рис 6) по теореме Пифагора находим

$$r = \sqrt{R^2 - y^2}.$$

Следовательно,

$$dM_{r} = 2\rho y \sqrt{R^2 - y^2} dy.$$

Интегрируя это равенство по y, получим:

$$M_x = 2\rho \int_0^R y \sqrt{R^2 - y^2} dy = -\frac{2}{3}\rho \sqrt{(R^2 - y^2)^3} \Big|_0^R = \frac{2R^3}{3}\rho.$$

Координаты центра масс $C\left(x^{*},y^{*}\right)$ плоской фигуры массы m вычисляются по формулам

$$x^* = \frac{M_y}{m}, y^* = \frac{M_x}{m},$$

где $oldsymbol{M}_{_{y}}$ и $oldsymbol{M}_{_{x}}$ — статические моменты плоской фигуры массы $oldsymbol{m}$.

Задача 6. Найти координаты центра масс однородной пластинки, рассмотренной в предыдущем примере.

Решение. Так как пласти Рис. 2.4.7 однородной (плотность ρ), то в силу симметрии п. масс $C\left(x^*,y^*\right)$ должен лежать на оси Oy , т.е. $x^*=0$ (рис. 2.4.7).

Macca m пластинки равна

$$\boldsymbol{m} = \rho \boldsymbol{S} = \frac{1}{2} \pi \boldsymbol{R}^2 \rho,$$

а так как из предыдущего примера известно, что $M_x=\frac{2\textbf{R}^3}{3}\rho$, то будем иметь $y^*=\frac{M_x}{m}=\frac{2\rho\textbf{R}^3/3}{\rho\textbf{R}^2/2}=\frac{4\textbf{R}}{3\pi}$. Итак, $C\left(0;\frac{4\textbf{R}}{3\pi}\right)$ — центр масс однородного полукруга радиуса R.

5. Приложение определенного интеграла к экономическим задачам.

Рассмотрим следующую типовую задачу.

Предприятие выпускает однородную продукцию. Интенсивность ее выпуска в различные моменты времени t может быть различной в силу неравномерности поставок сырья и других причин. Интенсивность выпуска продукции обозначим $\varphi(t)$ — это количество выпущенной про-

дукции за единицу времени, начиная с момента t (в предположении, что с этого момента интенсивность постоянна).

Стоимость выпускаемой продукции также не постоянна, а меняется по закону f(t), в силу различной стоимости сырья, стоимости труда, величины налогов и т.д. Требуется найти стоимость выпущенной продукции за промежуток времени $[T_1,T_2]$. Будем предполагать функции f(t) и $\varphi(t)$ непрерывными.

Пусть Q — искомая стоимость. Подсчитаем стоимость ΔQ продукции, выпущенной за промежуток времени $\begin{bmatrix} t \ , t + \Delta t \end{bmatrix}$. Если бы интенсивность $\varphi(t)$ и стоимость f(t) за этот малый промежуток времени не менялись, то $\Delta Q = \varphi(t) f(t) \Delta t$. Если же они меняются, то это произведение является лишь главной частью ΔQ , пропорциональной Δt , что можно записать в виде

$$\Delta Q = \varphi(t) f(t) \Delta t + o(\Delta t)$$
.

Здесь $o\left(\Delta t\right)$ — бесконечно малая высшего порядка, чем $\Delta t: \frac{o\left(\Delta t\right)}{\Delta t} \to 0$ при $\Delta t \to 0$. Действительно, за бесконечно малое время Δt функции $f\left(t\right)$ и $\varphi(t)$ изменятся на бесконечно малые величины Δf и $\Delta \varphi$ соответственно, что в произведении с Δt даст бесконечно малую высшего порядка, чем Δt . Это бесконечно малая отнесена в $o\left(\Delta t\right)$.

Итак, слагаемое $\varphi(t)f(t)\Delta t$ есть главная часть ΔQ , пропорциональная Δt , т.е. по определению — дифференциал функции Q(t) — стоимость выпущенной продукции к моменту t, начиная с какого-либо фиксированного момента:

$$dQ = \varphi(t)f(t)\Delta t.$$

Тогда, интегрируя дифференциал в пределах ${\pmb T}_1$ и ${\pmb T}_2$, находим

$$Q = \int_{T_1}^{T_2} dQ(t) = \int_{T_1}^{T_2} \varphi(t) f(t) dt.$$

Глава 3

Несобственные интегралы

- §1. Несобственные интегралы по неограниченному промежутку
 - 1. Определение несобственного интеграла по неограниченному промежутку.

Пусть функция f(x) определена на промежутке $[a,+\infty)$ и интегрируема на любом отрезке $[a,A] \subset [a,+\infty)$.

Определение 1. Несобственным интегралом $\int\limits_a^+ f(x) dx$ от функции f(x) по бесконечному промежутку $\left[a,+\infty\right[$ (несобственным интегралом 1-го рода) называют предел

$$\lim_{A\to\infty}\int_a^A f(x)dx.$$

Если этот предел конечен, то несобственный интеграл называется **сходящимся**, в противном случае — **расходящимся**.

Если f(x)>0 (рис. 3.1.1), то очевидно $\int\limits_a^{+\infty}f(x)dx$ дает нам пло-

щадь бесконечной криволинейной трапеции.

Принимая во внимание формулу Ньютона-Лейбница и определение несобственного интеграла 1-го рода, вычислим

$$\int_{a}^{+\infty} f(x)dx = \lim_{x\to\infty} F(x) - F(a) = F(+\infty) - F(a),$$

где F(x) — первообразная функции f(a) на любом промежутке $\begin{bmatrix} a \ A \end{bmatrix} \subset \begin{bmatrix} a \ +\infty \end{bmatrix}$. Обобщив формулу Ньютона-Лейбница, можно окончательно написать

81

Аналогично определяется и интеграл $\int\limits_{-\infty}^b f(x)dx$ и его сходимость, т.е.

$$\int_{-\infty}^{b} f(x) dx = \lim_{B \to -\infty} \int_{B}^{b} f(x) dx = F(x) \Big|_{-\infty}^{b} = F(b) - F(-\infty).$$

В том случае, когда бесконечны и верхний и нижний пределы интегрирования, по определению имеем:

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{+\infty} f(x) dx,$$

где c — любое действительное число. При этом несобственный интеграл $\int\limits_{-\infty}^{+\infty} f(x) dx$ называется сходящимся, если сходятся оба интеграла, стоящие справа.

2. Главное значение интеграла $\int_{x}^{+\infty} f(x) dx$.

Определение. Главным значением несобственного интеграла $\int\limits_{+\infty}^{+\infty} f(x) dx$ называется предел

$$\lim_{R\to\infty}\int_{-R}^{+R}f(x)dx=\lim_{R\to\infty}\left[F(R)-F(-R)\right],$$

который обозначается так:

$$\text{V.p.} \int_{-\infty}^{+\infty} f(x) dx \stackrel{def}{=} \lim_{R \to \infty} \int_{-R}^{+R} f(x) dx$$

(от франц. valeur principal — главное значение).

Заметим что в определении главного значения несобственного интеграла имеется в виду симметричное возрастание модуля переменной x в положительном и отрицательном направлении, в то время как по

определению несобственный интеграл $\int\limits_{-\infty}^{\infty} f(x) dx$ мы прежде всего

должны заменить суммой $\int\limits_{-\infty}^{c} f(x) dx + \int\limits_{c}^{+\infty} f(x) dx$ и отдельно исследовать

сходимость каждого слагаемого, не накладывая никакой связи на вычисление возникающих при этом несобственных интегралов.

Может оказаться, что несобственный интеграл расходится, а его главное значение сходится.

Очевидно, что для несобственных интегралов справедливы все основные свойства неопределенного интеграла.

Пример 1. Вычислить
$$\int\limits_{1}^{+\infty} \frac{dx}{1+x^2}$$
 .

$$\int_{1}^{+\infty} \frac{dx}{1+x^{2}} = \arctan \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) = \lim_{x \to \infty} \arctan \left(\frac{1}{1} \right) = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}.$$

Итак, данный интеграл сходится и равен $\frac{\pi}{4}$.

Пример 2. Вычислить $\int\limits_{2}^{+\infty} \frac{dx}{x}$.

$$\int_{2}^{+\infty} \frac{dx}{x} = \ln|x||_{2}^{+\infty} = \ln(+\infty) - \ln 2 = +\infty,$$

т.е. данный интеграл расходится.

Пример 3. Исследовать сходимость несобственного интеграла $\int\limits_{-\infty}^{+\infty} \sin\!x\,dx$.

$$\int_{-\infty}^{+\infty} \sin x \, dx = \int_{-\infty}^{0} \sin x \, dx + \int_{0}^{+\infty} \sin x \, dx ,$$

HO

$$\int_{0}^{+\infty} \sin x \, dx = -\cos x \Big|_{0}^{+\infty} = -\lim_{x \to +\infty} \cos x + \cos 0.$$

Т.к. $\lim_{x \to +\infty} \cos x$ не существует, то интеграл $\int\limits_0^{+\infty} \sin x \, dx$ расходится, в

свою очередь расходится и интеграл $\int\limits_{-\infty}^0 \sin\!x\,dx$, а следовательно мож-

но сделать вывод: данный интеграл расходится.

Рассмотрим теперь

V.p.
$$\int_{-\infty}^{+\infty} \sin x \, dx = \lim_{R \to +\infty} \int_{-R}^{+R} \sin x \, dx = 0$$
,

т.к. $\int\limits_{-R}^{+R} \sin x \, dx = 0$ (как интеграл от нечетной функции по симметричному промежутку).

Ответ: данный интеграл расходится, в то время как его главное значение сходится.

Пример 4. Найти, при каком значении r несобственный интеграл $\int\limits_a^{+\infty} \frac{dx}{x^r} \ (a>0)$ сходится.

Решение. Рассмотрим отдельно случаи, когда r = 1, r > 1 и r < 1.

1. Если r = 1, тогда будет

$$\int_{a}^{+\infty} \frac{dx}{x^{r}} = \ln |x||_{a}^{+\infty} = +\infty,$$

т.е. интеграл расходится.

2. Если r>1, положим $r=1+\varepsilon$, где $\varepsilon>0$. Будем иметь:

$$\int_{a}^{+\infty} \frac{dx}{x^{r}} = \int_{a}^{+\infty} \frac{dx}{x^{1+\varepsilon}} = \int_{a}^{+\infty} x^{-1-\varepsilon} dx = \frac{x^{-1-\varepsilon+1}}{-\varepsilon} \bigg|_{a}^{+\infty} = \frac{1}{-\varepsilon x^{\varepsilon}} \bigg|_{a}^{+\infty} = -\frac{1}{\varepsilon} \lim_{x \to +\infty} \frac{1}{x^{\varepsilon}} + \frac{1}{\varepsilon a^{\varepsilon}} = \frac{1}{\varepsilon a^{\varepsilon}}$$

т.е. в данном случае интеграл сходится.

3. Если r < 1, положим $r = 1 - \varepsilon$, где $\varepsilon > 0$, тогда

$$\int_{a}^{+\infty} \frac{dx}{x^{r}} = \int_{a}^{+\infty} \frac{dx}{x^{1-\varepsilon}} = \int_{a}^{+\infty} x^{-1+\varepsilon} dx = \frac{x^{\varepsilon}}{\varepsilon} \Big|_{a}^{+\infty} = \frac{1}{\varepsilon} \lim_{x \to +\infty} x^{\varepsilon} - \frac{a^{\varepsilon}}{\varepsilon} = +\infty,$$

т.е. интеграл расходится

Итак, $\int\limits_{-\infty}^{+\infty} \frac{dx}{x^r}$, где a>0, сходится, если r>1 и расходится, если $r\leq 1$.

В дальнейшем этот факт можно использовать как очевидный при исследовании сходящихся несобственных интегралов.

3. Достаточные признаки сходимости интегралов по неограниченному промежутку.

Часто бывает нужно определить, сходится или расходится несобственный интеграл, не находя его первообразной, т.е. оценить сходимость несобственного интеграла. Для этого можно воспользоваться, в частности, так называемыми признаками сравнения, которые мы оформим в виде теорем.

Теорема 1 (Первый признак сравнения).

Если функции f(x) и $\varphi(x)$ непрерывны на промежутке $\left[a;+\infty\right)$ и при этом $0\leq f(x)\leq \varphi(x)$, то тогда

1. если сходится интеграл $\int\limits_a^{+\infty} \varphi(x) dx$, то сходится и интеграл

$$\int_{0}^{+\infty} f(x) dx ;$$

2. если интеграл $\int\limits_a^{+\infty} f(x) dx$ расходится, то расходится и интеграл $\int\limits_a^{+\infty} \varphi(x) dx$ (рис 3.1.2).

Доказательство. Из неравенства $1.20 \le f(x) \le \varphi(x)$ вытекает $0 \le \int\limits_a^A f(x) dx \le \int\limits_a^A \varphi(x) dx$, но $\int\limits_a^A \varphi(x) dx \le \int\limits_a^{+\infty} \varphi(x) dx$ т.к. $\varphi(x) \ge 0$. Таким образом функция $\Phi(A) = \int\limits_a^A f(x) dx$ монотонно возрастает и ограничена сверху, значит существует конечный предел

$$\lim_{A\to+\infty}\Phi(A)=\int_{a}^{+\infty}f(x)dx,$$

т.е. интеграл $\int\limits_{a}^{+\infty}f(x)dx$ сходится.

Пример 5. Оценить сходимость $\int\limits_{1}^{+\infty} \frac{dx}{\sqrt{x^3+1}}$.

Решение. Очевидна оценка $\frac{1}{\sqrt{x^3+1}} < \frac{1}{\sqrt{x^3}}$, а интеграл $\int\limits_1^{+\infty} \frac{dx}{\sqrt{x^3}}$ сходится, т.к. $r=\frac{3}{2}>1$. Следовательно, в силу доказанной теоремы $\int\limits_1^{+\infty} \frac{dx}{\sqrt{x^3+1}}$ сходится.

Пример 6. Исследовать сходимость несобственного интеграла $\int\limits_{2}^{+\infty} \frac{dx}{\ln x}.$

Решение. Очевидно, что $\ln x < x$, следовательно $\frac{1}{x} < \frac{1}{\ln x}$. Но интеграл $\int_{2}^{+\infty} \frac{dx}{x} = \ln \left|x\right|_{2}^{+\infty} = +\infty$, следовательно расходится и интеграл

$$\int_{2}^{+\infty} \frac{dx}{\ln x}.$$

Теорема 2 (Второй признак сравнения).

Если функции f(x) и $\varphi(x)$ непрерывны на промежутке $a;+\infty$ и положительны, т.е. f(x)>0 и $\varphi(t)>0$, и существует конечный отличный от нуля предел $\lim_{x\to\infty} \frac{f(x)}{\varphi(x)} = r$ $(0< r<+\infty)$, то тогда интегралы $\int_a^{+\infty} f(x) dx$ и $\int_a^{+\infty} \varphi(x) dx$ (где a>0) в смысле сходимости ведут себя одинаково, т.е. оба сходятся, или оба расходятся.

Доказательство. Допустим, что $\lim_{x \to \infty} \frac{f(x)}{\varphi(x)} = r$, причем $0 < r < + \infty$. В силу определения предела это означает, что для любого $\varepsilon > 0$ при достаточно больших значениях x будет выполнено неравенство $\left| \frac{f(x)}{\varphi(x)} - r \right| < \varepsilon$, что равносильно $-\varepsilon < \frac{f(x)}{\varphi(x)} - r < \varepsilon$ или $\varphi(x)(r-\varepsilon) < f(x) < \varphi(x) < \varphi(x)(r+\varepsilon)$. Предположим сначала, что интеграл $\int\limits_a^{+\infty} f(x) dx$ сходится, а тогда в силу полученного неравенства и первого признака сравнения следует, что интеграл $\int\limits_a^{+\infty} (r-\varepsilon) \varphi(x) dx = (r-\varepsilon) \int\limits_a^{+\infty} \varphi(x) dx$ сходится, а значит сходится и $\int\limits_a^{+\infty} \varphi(x) dx$.

Допустим теперь, что интеграл $\int\limits_a^{+\infty}f(x)dx$ расходится, тогда из того же неравенства и первого признака сравнения вытекает, что расходится и интеграл $\int\limits_a^{+\infty}(r+\varepsilon)\varphi(x)dx=(r+\varepsilon)\int\limits_a^{+\infty}\varphi(x)dx$, т.е. расходится $\int\limits_a^{+\infty}\varphi(x)dx$.

4. Абсолютная сходимость.

Несобственный интеграл $\int\limits_a^{+\infty} f(x) dx$ называется абсолютно сходящимся, если сходится интеграл от модуля этой функции, т.е. сходится интеграл

$$\int_{a}^{+\infty} |f(x)| dx.$$

Если же интеграл $\int\limits_a^{+\infty} f(x) dx$ сходится, а интеграл $\int\limits_a^{+\infty} \left| f(x) \right| dx$ расходится, то интеграл называется сходящимся не абсолютно (условно сходящимся).

Без доказательства отметим, что из абсолютной сходимости следует сходимость интеграла $\int\limits_{x}^{+\infty} f(x) dx$.

Для установления абсолютной сходимости (и, следовательно, сходимости интеграла) могут использоваться признаки сравнения, доказанные выше для положительных функций.

Пример 7. Исследовать сходимость
$$\int\limits_{1}^{+\infty} \frac{\sin x \, dx}{1+x^2}$$

Решение. Очевидна такая оценка $\left|\frac{\sin x}{1+x^2}\right| \le \frac{1}{1+x^2}$, а интеграл

 $\int\limits_{1}^{+\infty} rac{dx}{1+x^{-2}}$ сходится, следовательно, сходится и данный интеграл.

§2. Несобственные интегралы от неограниченных функций

Пусть функция f(x) непрерывна на зпромежутке [a,b[, а в точке b не ограничена, т.е. имеет в этой точке бесконечный разрыв, т.е. $\lim_{x\to b-0} f(x) = \infty$ (рис. 3.2.1).

Определение. Несобственным интегралом 2-го рода $\int\limits_a^b f(x) dx$

называется предел $\lim_{B o b^{-0}}\int\limits_a^B f(x)dx$. Несобственный интеграл

 $\int_{a}^{b} f(x) dx$ называется **сходящимся**, если указанный предел конечен, и **расходящимся** в противном случае.

Аналогично определяется несобственный интеграл, если f(x) не ограничена в точке a (рис. 3.2.2):

В том случае, когда функция претерпевает бесконечный разрыв во внутренней точке $c \not\in (a,b)$ (рис. 3.2.3 а), то несобственный интеграл $\int_{a}^{b} f(x) dx$ определяется неравенством

Рис. 3.2.3

В том случае, когда функция f(x) обращается в бесконечность на концах промежутка интегрирования $\begin{bmatrix} a \ , b \end{bmatrix}$, несобственный интеграл $\int_a^b f(x) dx$ определяется так:

$$\int_{a}^{b} f(x) dx = \int_{a}^{def} f(x) dx + \int_{c}^{b} f(x) dx,$$

причем a < c < b.

При этом интеграл $\int\limits_a^b f(x) dx$ считается сходящимся, если сходятся

оба интеграла, стоящие справа, и расходящимся, если расходится хотя бы один из таких интегралов

Пример 1. Оценить сходимость несобственного интеграла $J = \int\limits_a^b \frac{dx}{\left(b-x\right)^r}$ при различных значениях r .

Решение 1.

1. Пусть r = 1, тогда

$$J = \int_{a}^{b} \frac{dx}{(b-x)^{r}} = -\int_{a}^{b} \frac{d(b-x)}{b-x} = -\ln|b-x||_{a}^{b} = -\lim_{x\to b-0} \ln|b-x| + \ln|b-a| = \infty,$$

т.е. при r=1 интеграл расходится.

2. Пусть r > 1. Обозначим $r = 1 + \varepsilon$, где $\varepsilon > 0$. Тогда

$$J = \int_{a}^{b} \frac{dx}{(b-x)^{1+\varepsilon}} = -\int_{a}^{b} (b-x)^{-1-\varepsilon} d(b-x) = \frac{1}{\varepsilon(b-x)^{\varepsilon}} \Big|_{a}^{b} = \infty,$$

т.е. при r > 1 интеграл расходится

3. Пусть r < 1, тогда положим $r = 1 - \varepsilon$, где $\varepsilon > 0$. Имеем:

$$J = \int_{a}^{b} \frac{dx}{(b-x)^{r}} = -\int_{a}^{b} (b-x)^{-r} d(b-x) = -\frac{(b-x)^{-r+1}}{-r+1} \Big|_{a}^{b} =$$

$$= -\frac{(b-x)^{-1+\varepsilon+1}}{-1+\varepsilon+1} \Big|_{a}^{b} = \frac{(b-a)^{\varepsilon}}{\varepsilon}$$

Следовательно, при r < 1 интеграл сходится. Заметим, что в качестве эталона для сравнения часто используется рассмотренный интеграл $\int\limits_a^b \frac{dx}{(b-x)^r}$, который сходится при r < 1 и расходится при $r \ge 1$. Точно так

же, как и для несобственных интегралов по бесконечному промежутку, формулируются и доказываются признаки сравнения для несобственных интегралов от неограниченных функций по конечному промежутку.

Аналогично определяется абсолютная сходимость и формулируется признак абсолютной сходимости.

Пример 2. Исследовать сходимость
$$\int\limits_{0}^{0.5} \frac{dx}{(1-x^3)\sqrt{x^3}}$$
.

Решение. Очевидна такая оценка на промежутке [0;0,5]

$$\frac{1}{\sqrt{x^{3}}} < \frac{1}{(1-x^{3})\sqrt{x^{3}}},$$

$$\int_{0}^{0.5} \frac{dx}{x^{3/2}} = \frac{x^{-\frac{1}{2}}}{-\frac{1}{2}} \Big|_{0}^{0.5} = -\frac{2}{\sqrt{x}} \Big|_{0}^{0.5} = +\infty.$$

В силу первого признака сравнения данный интеграл расходится.

Пример 3. Исследовать сходимость интеграла $J = \int_{0}^{1} \frac{dx}{\sqrt{1-x^3}}$.

Решение. Заметим, что подынтегральная функция терпит бесконечный разрыв на верхнем пределе интегрирования, т.е. в точке x=1. На промежутке интегрирования имеет место оценка

$$\frac{1}{\sqrt{1-x^3}} < \frac{dx}{\sqrt{1-x}} = \frac{1}{(1-x)^{\frac{1}{2}}}.$$

Как было указано ранее, интеграл $\int\limits_0^1 \frac{dx}{\sqrt{1-x}}$ сходится, следовательно, сходится и данный интеграл.

Пример 4. Исследовать сходимость интеграла $J=\int\limits_0^{2\pi} \frac{\cos\!x\,dx}{\sqrt[3]{2\pi-x}}$.

Решение. На данном промежутке $\begin{bmatrix} 0,2\pi \end{bmatrix}$ справедлива такая оценка

$$\left|\frac{\cos x}{\sqrt[3]{2\pi-x}}\right| \leq \frac{1}{\sqrt[3]{2\pi-x}}.$$

Несобственный интеграл $\int\limits_0^{2\pi} \frac{dx}{\sqrt[3]{2\pi-x}}$ сходится, т.к. является эталон-

ным интегралом при $r=\frac{1}{3}$ (см. пример 1). В силу признака сравнения данный интеграл сходится.

Пример 5. Исследовать сходимость интеграла $I = \int\limits_0^1 \frac{dx}{e^{\sqrt{x}}-1}$.

Решение. Очевидно, что $\int_0^1 \frac{dx}{\sqrt{x}} = 2\sqrt{x} \Big|_0^1 = 2$. Применим 2-ой признак сравнения

$$\lim_{x \to 0} \frac{\sqrt{x}}{e^{\sqrt{x}} - 1} = \lim_{x \to 0} \frac{\frac{1}{2\sqrt{x}}}{e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}}} = 1.$$

Вывод: данный интеграл сходится.

§3. Интегралы, зависящие от параметра

В том случае, когда функция, стоящая под знаком определенного интеграла, кроме переменной x, по которой ведется интегрирование, зависит еще от некоторого параметра α , то очевидно, что интеграл $\int_a^b f(x,\alpha)dx$ является функцией параметра α , т.е.

$$J(\alpha) = \int_{a}^{b} f(x, \alpha) dx.$$

Например

$$\int_{0}^{1} \sin \alpha x \, dx = -\frac{\cos \alpha x}{\alpha} \Big|_{0}^{1} = \frac{1 - \cos \alpha}{\alpha};$$

$$\int_{0}^{1} e^{\alpha x} dx = \frac{e^{\alpha x}}{\alpha} \Big|_{0}^{1} = \frac{e^{\alpha} - 1}{\alpha};$$

$$\int_{0}^{5} e^{\alpha x} dx = \frac{e^{5\alpha} - 1}{\alpha}.$$

Заметим, что интегралы, зависящие от параметра, имеют многочисленные применения. Представляет интерес вопрос о существовании и нахождении производной от такого интеграла по параметру α . Приведем без доказательства теорему.

Теорема. Если функция $f(x,\alpha)$ непрерывна в замкнутом прямоугольнике $a \le x \le b$, $c \le \alpha \le d$ и имеет в нем непрерывную частную производную по параметру α , то на промежутке [c,d] имеет место равенство:

$$\left(\int_{a}^{b} f(x,\alpha)dx\right)_{\alpha}' = \int_{a}^{b} f_{\alpha}'(x,\alpha)dx \tag{1}$$

Заметим, что это операция называется дифференцированием под знаком интеграла.

Отметим, что при $b=+\infty$, т.е. для несобственных интегралов $\int_a^{+\infty} f(x,\alpha)dx$, для дифференцирования под знаком интеграла не достаточно сходимости интеграла и существования непрерывной частной производной $f_{\alpha}^{\ \prime}(x,\alpha)$. Дополнительно требуется так называемая **равномерная сходимость** несобственного интеграла. Рассмотрим это понятие подробнее.

Определение 1. Несобственный интеграл по неограниченному промежутку $J(\alpha)=\int\limits_a^{+\infty}f(x,\alpha)dx$, $(c\leq \alpha\leq d)$ называется равномерно сходящимся по параметру α на [c,d], если для любого $\varepsilon>0$ найдется такое, не зависящее от α , число $A_0\geq a$, что для любого $A>A_0$ неравенство

$$\left|\int_{a}^{+\infty} f(x,\alpha)dx - \int_{a}^{A} f(x,\alpha)dx\right| < \varepsilon$$

будет выполнятся для всех значений lpha из промежутка [c,d].

Определение 2. Несобственный интеграл $J(\alpha) = \int_a^b f(x,\alpha) dx$ от неограниченной функции называется равномерно сходящимся по параметру α на промежутке [c,d], если для любого ε найдется такое, не зависящее от α , число $\delta > 0$, что для любого $\eta \leq \delta$ неравенство

$$\left|\int_{a}^{b} f(x,\alpha)dx - \int_{a}^{b-\eta} f(x,\alpha)dx\right| < \varepsilon$$

выполняется для всех значений lpha из промежутка [c,d].

Существует простой признак равномерной сходимости по параметру несобственных интегралов, который мы приведем без доказательства.

Теорема 1 (достаточный признак равномерной сходимости).

Если функция $f(x,\alpha)$ непрерывна по переменной x для $\forall x \geq a$ и существует такая функция $\Psi(x) > 0$, что для

$$orall lpha \in [c,d] |f(x,lpha)| \leq \Psi(x)$$
 и интеграл $\int\limits_a^+ \Psi(x) dx$ сходится, то несоб-

Аналогично этот признак формулируется для несобственных интегралов от неограниченных функций.

Решение. Очевидно, что для любого параметра α справедлива такая оценка

$$\left|\frac{\cos \alpha x}{x^2+k^2}\right| \leq \frac{1}{x^2+k^2},$$

а несобственный интеграл $\int\limits_0^{+\infty} \frac{dx}{x^2+k^2}$ сходится.

Следовательно, данный интеграл сходится равномерно относительно любого параметра α , для которого определена функция $\cos \alpha x$.

Теорема 2 (дифференцирование несобственного интеграла по параметру).

Если функция $f(x,\alpha)$ непрерывна по переменной x для $\forall x \geq a$ и имеет непрерывную по обеим переменным производную $f_{\alpha}^{\ \prime}(x,\alpha)$ ($a\in [c,d]$), интеграл $J(\alpha)=\int\limits_{a}^{+\infty}f(x,\alpha)dx$ сходится, а инте-

ерал $\int\limits_a^{+\infty} f_{\alpha}^{\ '}(x\,,\!lpha)dx$ сходится равномерно относительно lpha из $[c\,,\!d\,]$, то имеет место соотношение

$$\left(\int_{a}^{+\infty} f(x,\alpha)dx\right)_{\alpha}^{'} = \int_{a}^{+\infty} f_{\alpha}^{'}(x,\alpha)dx$$
(Без доказательства.)

Аналогичная теорема имеет место и для несобственных интегралов от разрывных функций.

Приведенные выше формулы (1) и (2) называют формулами Лейбница. Если справедливы формулы Лейбница, т.е. возможна перестановка операции дифференцирования по параметру α и интегрирования по переменной x (для определенных или несобственных интегра-

лов), то говорят, что функции
$$J\left(\alpha\right) = \int\limits_{a}^{b} f\left(x,\alpha\right) dx$$
 и $J\left(\alpha\right) = \int\limits_{a}^{+\infty} f\left(x,\alpha\right) dx$

можно дифференцировать по параметру под знаком интеграла. Интегралы, зависящие от параметра, находят многочисленные приложения. В частности, они используются при вычислении так называемых неберущихся интегралов.

Пример 2. Вычислить интеграл $J=\int\limits_0^1 \frac{\sqrt{x}-1}{\ln x} dx$ с помощью интеграла, зависящего от параметра $J\left(\alpha\right)=\int\limits_0^1 \frac{x^{\alpha}-1}{\ln x} dx$.

Решение. Заметим, что интеграл $J(\alpha)$ представляет собою функцию переменной α , выраженную несобственным интегралом. Подынтегральная функция $\frac{x^a-1}{\ln x}$ и ее частная производная по α

$$\left(\frac{x^{a}-1}{\ln x}\right)_{\alpha}' = \frac{1}{\ln x}\left(x^{\alpha}\right)'_{\alpha} = \frac{1}{\ln x}\cdot x^{\alpha}\cdot \ln x = x^{\alpha},$$

непрерывны при всех $x \in (0,1)$ и любом значении $a \ge 0$. Следовательно, функцию $J(\alpha)$ можно дифференцировать под знаком интеграла. Получим

$$J_a'(\alpha) = \int_0^1 x^{\alpha} dx = \frac{x^{\alpha+1}}{1+\alpha} \Big|_0^1 = \frac{1}{\alpha+1},$$

τ.e.
$$J'_{\alpha}(\alpha) = \frac{1}{\alpha+1}$$
.

Интегрируя получим:

$$J(\alpha) = \int \frac{d\alpha}{\alpha + 1} = \ln(\alpha + 1) + c.$$

Для определения значения постоянной c положим в этом тождестве $\alpha=0$; т.к. $\boldsymbol{J}(0)=0$, то получаем c=0. Итак, получим

$$J(\alpha) = \ln(1+\alpha)$$

При
$$\alpha = \frac{1}{2}$$
, в частности, имеем $J\left(\frac{1}{2}\right) = \int_{0}^{1} \frac{\sqrt{x}-1}{\ln x} dx = \ln \frac{3}{2}$.

Пример 4 (интеграл Дирихле).

Вычислить
$$\int\limits_0^{+\infty} rac{e^{-lpha x}-e^{-eta x}}{x} {
m sin} m\, x\, dx \quad (lpha>0,eta>0)\,.$$

Решение. Будем считать, что данный интеграл является функцией параметра m:

$$J(m) = \int_{0}^{+\infty} \frac{e^{-\alpha x} - e^{-\beta x}}{x} \sin m x \, dx$$

и проверим для него выполнение условий применимости формулы Лейбница.

- 1. Подынтегральная функция $f(x,m) = \frac{e^{-\alpha x} e^{-\beta x}}{x} \sin m x$ и ее частная производная $f_m'(x,m) = \left(e^{-\alpha x} e^{-\beta x}\right) \cos m x$ непрерывны для всех $x \ge 0$ и любом m .
 - 2. Данный интеграл сходится (абсолютно). Действительно, принимая во внимание, что $|\sin m x| < |m x|$, получим

$$\int_{0}^{+\infty} \left| \frac{e^{-\alpha x} - e^{-\beta x}}{x} \sin m x \right| dx =$$

$$= \int_{0}^{+\infty} \left| e^{-\alpha x} - e^{-\beta x} \right| \cdot \left| m \right| \cdot \left| \frac{\sin m x}{m x} \right| dx < \left| m \right| \int_{0}^{+\infty} \left| e^{-\alpha x} - e^{-\beta x} \right| dx < \left| m \left(\frac{1}{\alpha} - \frac{1}{\beta} \right) \right|$$

3. Интеграл от функции $f'_m(x,m)$ мажорируется сходящимся интегралом:

$$\int_{0}^{+\infty} \left| e^{-\alpha x} - e^{-\beta x} \right| \cdot \left| \cos m x \right| dx < \int_{0}^{+\infty} \left| e^{-\alpha x} - e^{-\beta x} \right| dx < \infty$$

Таким образом имеем:

$$J'_{m}(m) = \int_{0}^{+\infty} \left(\frac{e^{-\alpha x} - e^{-\beta x}}{x} \sin m x\right)'_{m} dx = \int_{0}^{+\infty} \left(e^{-\alpha x} - e^{-\beta x}\right) \cos m x dx =$$

$$= \frac{\alpha}{\alpha^{2} + m^{2}} - \frac{\beta}{\beta^{2} + m^{2}}$$
OTIVIDE

$$J(m) = \operatorname{arctg} \frac{m}{\alpha} - \operatorname{arctg} \frac{m}{\beta} + c$$
.

Учитывая, что ${\pmb J}(0)\!=\!0$, и полагая ${\pmb m}=\!0$, находим ${\pmb c}=\!0$, следовательно

$$\int_{0}^{+\infty} \frac{e^{-\alpha x} - e^{\beta x}}{x} \sin m x \, dx = \operatorname{arctg} \frac{m}{\alpha} - \operatorname{arctg} \frac{m}{\beta}.$$

В частности,

$$\int_{0}^{+\infty} \frac{e^{-\alpha x} \sin m x \, dx}{x} = \operatorname{arctg} \frac{m}{\alpha}.$$

Положим здесь a=0, m=1, тогда получим часто встречающийся интеграл Дирихле

$$\int_{0}^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

§4. Гамма-функция (интеграл Эйлера 2-го рода)

1. Определение гамма-функции.

Неэлементарная трансцендентная функция, определяемая для положительных x равенством

$$\Gamma(x) = \int_{0}^{+\infty} e^{-t} t^{x-1} dt \tag{1}$$

называется гамма-функцией или интегралом Эйлера 2-го рода.

Это функция относится к числу так называемых специальных функций, с помощью которых выражаются решения многих задач математической физики, статистики и пр.. Подынтегральная функция в соотно-

шении (1) имеет две особые точки: t=0 и $t=+\infty$. Представим интеграл (1) в виде суммы двух интегралов:

$$\Gamma(x) = \int_{0}^{1} t^{x-1} e^{-t} dt + \int_{1}^{+\infty} t^{x-1} e^{-t} dt$$

Оба интеграла сходятся равномерно по параметру x на любом конечном отрезке $[a,b] \subset [0,+\infty)$. Действительно, пусть 0 < a < 1 и b > 1.

Тогда $0 \le t^{x-l} e^{-t} \le t^{a-1}$ при $0 \le t \le 1$ и $\int_0^1 t^{a-l} dt = \frac{1}{a}$. Следовательно, инте-

грал $\int_{0}^{1} t^{x-1}e^{-t}dt$ сходится равномерно на [a,b].

Аналогично $0 \le t^{x-l} e^{-t} \le t^{b-l} e^{-t}$ при $t \ge 1$, $\int\limits_{1}^{+\infty} t^{b-l} e^{-t} dt$ сходится, а инте-

грал $\int\limits_{-\infty}^{+\infty} t^{x-1}e^{-t}dt$ сходится равномерно на $\begin{bmatrix} a,b \end{bmatrix}$.

Кроме того, оба интеграла непрерывны по параметру x на произвольном отрезке $[a,b] \subset]0,+\infty[$, а поэтому функция $\Gamma(x)$ непрерывна $\forall x>0$.

Значит при всех x>0 гамма-функция $\Gamma(x)$ непрерывно дифференцируема, причем

$$\Gamma'(x) = \int_{0}^{1} t^{x-1} e^{-t} \ln t \, dt + \int_{1}^{+\infty} t^{x-1} e^{-t} \ln t \, dt = \int_{0}^{+\infty} t^{x-1} e^{-t} \ln t \, dt.$$

Применяя метод математической индукции, можно доказать, что $\Gamma(x)$ имеет производную $n^{\text{го}}$ порядка при x>0, причем

$$\Gamma^{(n)}(x) = \int_{0}^{+\infty} t^{x-1}e^{-t} \left(\ln t\right)^{n} dt,$$

в частности,

$$\Gamma''(x) = \int_{0}^{+\infty} t^{x-1}e^{-t} \left(\ln t\right)^{2} dt.$$

Замечание. Сделаем подстановку $t=u^2$ в интеграле (1), тогда получим

$$\Gamma(x) = \int_{0}^{+\infty} e^{-t} t^{x-1} dt = 2 \int_{0}^{+\infty} e^{-u^{2}} u^{2x-1} du.$$

Заменяя здесь переменную интегрирования u на t , получим выражение для гамма-функции в виде

$$\Gamma(x) = 2 \int_{0}^{+\infty} e^{-t^2} t^{2x-1} dt$$
.

2. Свойства гамма-функции.

1.Возьмем по частям интеграл, представляющий $\Gamma(x+1)$.

$$\Gamma(x) = \int_{0}^{+\infty} e^{-t} t^{x} dt = -e^{-t} \cdot t^{x} \Big|_{0}^{+\infty} + x \int_{0}^{+\infty} e^{-t} \cdot t^{x-1} dt = x \int_{0}^{+\infty} e^{-t} t^{x-1} dt = x \Gamma(x),$$

$$u = t^{x} \Big|_{0}^{+\infty} du = x t^{x-1} dt$$

$$dv = e^{-t} dt \Big|_{0}^{+\infty} v = -e^{-t}$$

т.е.

$$\Gamma(x+1) = x \Gamma(x)$$
.

Получили формулу приведения для гамма-функции.

2.
$$\Gamma(n + 1) = n!$$

Вычислим значения $\Gamma(1), \Gamma(2), \Gamma(3), ...$ Имеем

$$\Gamma(1) = \int_{0}^{+\infty} e^{-t} dt = -e^{-t} \Big|_{0}^{+\infty} = 1,$$

т.е.

$$\Gamma(1) = 1$$
, $\Gamma(2) = \Gamma(1+1) = 1\Gamma(1)$, $\Gamma(3) = \Gamma(2+1) = 2\Gamma(2)$, $\Gamma(4) = 3\Gamma(3) = 3 \cdot 2 \cdot \Gamma(2) = 3 \cdot 2 \cdot \Gamma(1) = 3!$,

т.е. $\Gamma(n + 1) = n!$

В частности, $\Gamma(1) = \Gamma(0+1) = 0! \Rightarrow \Gamma(1) = 0!$, следовательно 0! = 1.

3. В соответствии с формулой приведения для гамма-функции имеем

$$\Gamma(x) = (x-1)\Gamma(x-1) = (x-1)(x-2)\Gamma(x-2) = (x-1)(x-2)...(x-k)\Gamma(x-k)$$

Т.к. функция $\Gamma(x)$ определена для любого положительного x , то с помощью гамма-функции $\Gamma(x)$ можно распространить понятие факториала на любое положительное число $m{r}$, полагая $m{(r-1)!} = \Gamma(m{r}$)

$$(r-1)! = \Gamma(r)$$

4. Если x = n + p, где 0 , то будет $\Gamma(n+p) = (n+p-1) \cdot (n+p-2) \cdot p \Gamma(p),$

т.е. вычисление гамма-функции от любого аргумента можно свести к вычислению ее от аргумента, заключенного между 0 и 1.

3. Исследование гамма-функции

Ранее мы установили, что гамма-функция $\Gamma(x)$ непрерывна и дифференцируема сколько угодно раз для x > 0, кроме того $\Gamma(1) = \Gamma(2)$, следовательно, в силу теоремы Ролля, $\exists c \in (1,2)$ такая, что $\Gamma'(c) = 0$.

Можно показать, что c = 1.4616 и в этой точке гамма-функция имеет минимум, причем $\Gamma_{\min} = 0.8856$. Учитывая, что $\Gamma(x) = \frac{\Gamma(x+1)}{x}$, нетрудно заметить, что $\lim \Gamma(x) = +\infty$.

Принимая во внимание проведенное исследование, нетрудно нарисовать график гамма-функции для x>0 (рис. 3.4.1)

Пользуясь формулами приведения, гаму а-функцию до пределяют и для отрицательных x. Окончательно график $\Gamma(x)$ имеет вид (рис 3.4.1).

выдуплогод значения такма-функции для x < 1 и для x > 2 могут быть вычислены с помощью формул $\Gamma(x) = \frac{\Gamma(x+1)}{x}$, $\Gamma(x) = (x-1) \cdot \Gamma(x-1)$, в таблице $3 \cdot 4$ приводятся значения $\Gamma(x)$ для $x \in [1,2]$.

Гамма-функция

x	$\Gamma(x)$	x	$\Gamma(x)$	x	$\Gamma(x)$	x	$\Gamma(x)$
1,00	1,00000	1,25	0,90640	1,50	0,88623	1,75	0,91906
01	0,99433	26	0,90440	51	0,88659	76	0,92137
02	0,98884	27	0,90250	52	0,88704	77	0,92376
03	0,98355	28	0,90072	53	0,88757	78	0,92623
04	0,97844	29	0,89904	54	0,88818	79	0,92877
1,05	0,97350	1,30	0,89747	1,55	0,88887	1,80	0,93138
06	0,96874	31	0,89600	56	0,88964	81	0,93408
07	0,96415	32	0,89464	57	0,89049	82	0,93685
80	0,95973	33	0,89338	58	0,89142	83	0,93969
09	0,95546	34	0,89222	59	0,89243	84	0,94261
1,10	0,95135	1,35	0,89115	1,60	0,89352	1,85	0,94561
11	0,94740	36	0,89018	61	0,89468	86	0,94869
12	0,94359	37	0,88931	62	0,89592	87	0,95184
13	0,93993	38	0,88854	63	0,89724	88	0,95507
14	0,93642	39	0,88785	64	0,89864	89	0,95838
1,15	0,93304	1,40	0,88726	1,65	0,90012	1,90	0,96177
16	0,92980	41	0,88626	66	0,90167	91	0,96523
17	0,92670	42	0,88636	67	0,90330	92	0,96877
18	0,92373	43	0,88604	68	0,90500	93	0,97240
19	0,92089	44	0,88581	69	0,90678	94	0,97610
1,20	0,91817	1,45	0,88566	1,70	0,90864	1,95	0,97988
21	0,91558	46	0,88560	71	0,91057	96	0,98374
22	0,91311	47	0,88563	72	0,91258	97	0,98768
23	0,91075	48	0,88575	73	0,91467	98	0,99171
24	0,90852	49	0,88595	74	0,91683	99	0,99581
1,25	0,90640	1,50	0,88623	1,75	0,91906	2,00	1,00000

Пример. Вычислить интеграл $J=\int\limits_0^{+\infty} \frac{dt}{\sqrt{t}e^t}$

Решение. Запишем данный интеграл так:
$$J = \int_{0}^{+\infty} \frac{dt}{\sqrt{t} \cdot e^{t}} = \int_{0}^{+\infty} e^{-t} \cdot t^{-\frac{1}{2}} dt = \int_{0}^{+\infty} e^{-t} \cdot t^{\frac{1}{2}-1} dt$$

Нетрудно видеть, что данный интеграл ${m J}=\Gamma\!\left(\frac{1}{2}\right)\!.$

В силу формул приведения

$$\Gamma\left(\frac{1}{2}\right) = \frac{\Gamma\left(\frac{3}{2}\right)}{\frac{1}{2}}$$

Находим в таблице значение $\Gamma\!\left(\frac{3}{2}\right)\!=\!0.88623$, следовательно

$$\Gamma\left(\frac{1}{2}\right) \approx 1.73$$
.

OTBET:
$$\int_{0}^{+\infty} \frac{dt}{\sqrt{t}e^{t}} \approx 1.73$$

§5. Бета-функция (интеграл Эйлера первого рода)

1. Определение бета-функции.

Бета-функцией или интегралом Эйлера первого рода называется интеграл вида

$$B(p,q) = \int_{0}^{1} x^{p-1} (1-x)^{q-1} dx \quad (p,q>0).$$
 (1)

Для p < 1 и q < 1 интеграл является несобственным как на верхнем, так и на нижнем пределах интегрирования. Можно доказать, однако, что эти интегралы сходятся.

2. Свойства бета-функции.

1. B(p,q) = B(q,p) (симметрия)

Действительно, сделаем замену переменных в интеграле

$$B(p,q) = \int_{0}^{1} x^{p-1} (1-x)^{q-1} dx,$$

положив 1-x=t, dx=-dt.

Тогда получим:

$$B(p,q) = -\int_{1}^{0} (1-t)^{p-1} t^{q-1} dt = \int_{1}^{0} t^{q-1} (1-t)^{p-1} dt = B(q,p)$$

т.е. B(p,q) = B(q,p).

2. Докажем, что для бета-функции справедливы формулы приведения

$$B(p,q) = \frac{(q-1)B(p,q-1)}{p+q-1}$$

$$B(p,q) = \frac{(p-1)B(p-1,q)}{p+q-1}$$
(2)

Для доказательства возьмем интеграл (1) по частям:

$$B(p,q) = \int_{0}^{1} x^{p-1} (1-x)^{q-1} dx = (1-x)^{q-1} \cdot \frac{1}{p} x^{p} \Big|_{0}^{1} + \frac{q-1}{p} \int_{0}^{1} x^{p} (1-x)^{q-2} dx$$

$$u = (1-x)^{q-1} dx \qquad du = -(q-1)(1-x)^{q-2} dx$$

$$dv = x^{p-1} dx \qquad v = \frac{x^{p}}{p}$$

Преобразуем подынтегральное выражение во втором слагаемом так:

$$x^{p} (1-x)^{q-2} = x^{p-1} (1-x)^{q-2} \left[1-(1-x)\right] = x^{p-1} (1-x)^{q-2} - x^{p-1} (1-x)^{q-1},$$

окончательно получим:

$$B(p,q) = \frac{q-1}{p} \left[\int_{0}^{1} x^{p-1} (1-x)^{q-2} dx - \int_{0}^{1} x^{p-1} (1-x)^{q-1} dx \right] =$$

$$= \frac{q-1}{p} \left[B(p,q-1) - B(p,q) \right],$$

откуда следует:

$$p B(p,q) = (q-1)B(p,q-1) - (q-1)B(p,q) \Rightarrow (p+q-1)B(p,q) = (q-1)B(p,q-1) \Rightarrow$$

$$B(p,q) = \frac{(q-1)B(p,q-1)}{p+q-1}.$$

В силу симметрии бета-функции имеем аналогичную формулу приведения

$$B(p,q) = \frac{(p-1)B(p-1,q)}{p+q-1}.$$

Формулы приведения позволяют свести вычисление бета-функции от аргументов, больших единицы, к вычислению ее от аргументов, меньших единицы.

3. Между гамма-функцией и бета-функцией имеет место соотношение

$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$$

В формулах приведения (2) положим q=n , $n\in\square$, тогда будет

$$B(p,q) = \frac{n-1}{p+n-1}B(p,n-1) = \frac{(n-1)(n-2)...1}{(p+n-1)(p+n-2)...(p+1)}B(p,1).$$

Вычислим

$$B(p,1) = \int_{0}^{1} x^{p-1} dx = \frac{x^{p}}{p} \bigg|_{0}^{1} = \frac{1}{p},$$

тогда будет

$$B(p,n) = \frac{(n-1)(n-2)...1}{p(p+1)(p+2)...(p+n-1)}.$$

Если p=m , то тогда будет:

B(m,n) =
$$\frac{(n-1)!(m-1)!}{(m+n-1)!}$$
.

Напомним, что для рассмотренной выше гамма-функции мы получили такие соотношения

$$\Gamma(n) = (n-1)!, \ \Gamma(m) = (m-1)!, \ \Gamma(m+n) = (m+n-1)!.$$

Следовательно, нетрудно установить истиную связь между гаммафункцией и бета-функцией

$$B(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}.$$

Обобщая эту формулу на произвольные значения аргументов (p,q>0), получим:

$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$$

3. Интеграл Пуассона.

Пример 1. Вычислить $B\left(\frac{1}{2}; \frac{1}{2}\right)$.

Решение.

$$B\left(\frac{1}{2};\frac{1}{2}\right) = \int_{0}^{1} x^{\frac{1}{2}-1} (1-x)^{\frac{1}{2}-1} dx = \int_{0}^{1} \frac{dx}{\sqrt{x(1-x)}} = \int_{0}^{1} \frac{dx}{\sqrt{x-x^{2}}} = \int_{0}^{1} \frac{dx}{\sqrt{\frac{1}{4}-\left(x-\frac{1}{2}\right)^{2}}} = 2\int_{0}^{1} \frac{dx}{\sqrt{1-\left(2x-1\right)^{2}}}.$$

Сделаем здесь замену 2x - 1 = t, dt = 2x dx.

Тогда будет $B\left(\frac{1}{2};\frac{1}{2}\right) = \int_{-1}^{1} \frac{dt}{\sqrt{1-t^2}} = \arcsin t \Big|_{-1}^{1} = \arcsin 1 - \arcsin (-1) = \pi$.

Итак, получим

$$B\left(\frac{1}{2};\frac{1}{2}\right) = \pi.$$

С другой стороны

$$B\left(\frac{1}{2};\frac{1}{2}\right) = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}+\frac{1}{2}\right)} = \Gamma^2\left(\frac{1}{2}\right) = \pi.$$

Откуда следует

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$
.

Пример 2. Вычислить несобственный интеграл $J=\int\limits_0^{+\infty}e^{-x^2}dx$.

Решение. Сделаем замену переменной: $x = \sqrt{t}$, $dx = \frac{1}{2\sqrt{t}}$. Тогда наш интеграл J так выражается через гамма-функцию:

$$J = \int_{0}^{+\infty} e^{-x^{2}} dx = \frac{1}{2} \int_{0}^{+\infty} e^{-t} t^{-\frac{1}{2}} = \frac{1}{2} \int_{0}^{+\infty} e^{-t} t^{\frac{1}{2}-1} = \frac{\Gamma(\frac{1}{2})}{2} = \frac{\sqrt{\pi}}{2}.$$

Мы получили часто встречающийся в теории вероятностей интеграл, который называется *интегралом Пуассона*:

$$\int_{0}^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

Приложение

Рассмотрим некоторые интегралы и подстановки, которые обычно не входят в основную программу для инженерных специальностей.

§1. Подстановки Эйлера

1. Интеграл типа $\int R\left(x,\sqrt{ax^2+bx+c}\right)dx$ (a>0) можно привести к интегралу от рациональной функции с помощью так называемых подстановок Эйлера.

Первая подстановка Эйлера.

Если a>0, то данный интеграл можно решить с помощью подстановки $\sqrt{ax^2+bx+c}=t\pm x\sqrt{a}$

Пример.
$$\int \frac{dx}{\sqrt{x^2+1}}$$
.

Т.к. a=1, т.е. a>0, применим первую подстановку Эйлера $\sqrt{x^2+1}=t+x$. Возводя в квадрат, получаем $x=\frac{1-t^2}{2t}$, откуда следует,

что
$$dx=-rac{t^2+1}{2t^2}dt$$
 , тогда

$$\int \frac{dx}{\sqrt{x^2 + 1}} = -\int \frac{(t^2 + 1)dt}{\left(t + \frac{1 - t^2}{2t}\right)2t^2} = -\int \frac{dt}{t} = -\ln|t| + c = -\ln|\sqrt{x^2 + 1} - x| + c = -\ln\left|\frac{1}{\sqrt{x^2 + 1} + x}\right| + c = \ln\left|x + \sqrt{x^2 + 1}\right| + c.$$

Заметим, что данный интеграл присутствует в таблице неопределенных интегралов в виде

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + c.$$

Вторая подстановка Эйлера.

Если в интеграле $\int R\left(x,\sqrt{ax^2+bx+c}\right)dx$ (c>0), то этот интеграл можно привести к интегралу от дробно-рациональной функции с помощью подстановки $\sqrt{ax^2+bx+c}=tx\pm\sqrt{c}$.

Пример.
$$\int \frac{dx}{x^2 \sqrt{1+x^2}}$$
.

Обозначим $\sqrt{x^2 + 1} = tx + 1$, откуда следует:

$$t = \frac{\sqrt{x^2 + 1} - 1}{x}, x = \frac{2t}{1 - t^2}, dx = \frac{2(1 + t^2)dt}{(1 - t^2)^2},$$

тогда

$$\int \frac{dx}{x^2 \sqrt{1+x^2}} = \frac{1}{2} \int \frac{1-t^2}{t^2} dt = -\frac{1}{2} \cdot \frac{1}{t} - \frac{1}{2}t + c = -\frac{x}{2(\sqrt{x^2+1}-1)} - \frac{\sqrt{x^2+1}-1}{2x} + c.$$

Третья подстановка Эйлера.

Если в интеграле $\int R\left(x,\sqrt{ax^2+bx+c}\right)\!dx$ α и β являются корнями квадратного трехчлена ax^2+bx+c , причем α и β — вещественные числа, то тогда подстановка $\sqrt{ax^2+bx+c}=(x-\alpha)t$ приводит наш интеграл к интегралу от дробно-рациональной функции.

Заметим, что третью подстановку Эйлера можно применять и в том случае, если a<0, лишь бы только корни квадратного трехчлена не были бы комплексными числами

Пример.
$$\int \frac{dx}{x\sqrt{x^2-3x+2}}$$
.

Очевидно, что $x^2-3x+2=(x-1)(x-2)$. Делаем замену $\sqrt{x^2-3x+2}=(x-1)t$.

Возводя данное выражение в квадрат, получим $\boldsymbol{t}^2 = \frac{\boldsymbol{x} - 2}{\boldsymbol{x} - 1}$, $\boldsymbol{x} = \frac{2 - \boldsymbol{t}^2}{1 - \boldsymbol{t}^2}$, откуда следует, что $\boldsymbol{dx} = \frac{2t\,dt}{\left(1 - \boldsymbol{t}^2\right)^2}$.

Вернемся к интегралу:

$$\int \frac{dx}{x\sqrt{x^2 - 3x + 2}} = -2\int \frac{dt}{t^2 - (\sqrt{2})^2} = -\frac{\sqrt{2}}{2} \ln \left| \frac{t - \sqrt{2}}{t + \sqrt{2}} \right| + c = -\frac{\sqrt{2}}{2} \ln \left| \frac{\sqrt{\frac{x - 2}{x - 1}} - \sqrt{2}}{\sqrt{\frac{x - 2}{x - 1}} + \sqrt{2}} \right| + c$$

Заметим, однако, что подстановки Эйлера нередко приводят к громоздким преобразованиям, поэтому ими избегают пользоваться.

Отметим, что интегралы типа $\int R\left(x,\sqrt{ax^2+bx+c}\right)dx$ очень часто сводятся к вычислению интегралов основных трех типов:

1.
$$\int \frac{P(x)dx}{\sqrt{ax^2+bx+c}}; \quad 2. \int P(x)\sqrt{ax^2+bx+c} dx;$$

$$3. \int \frac{dx}{(x-d)^n \sqrt{ax^2+bx+c}},$$

где P(x) — некоторый многочлен.

Однако интегралы второго и третьего типа можно преобразовать к первому типу.

Действительно интеграл второго типа

$$\int P(x) \sqrt{ax^{2} + bx + c} dx = \int \frac{P(x)(ax^{2} + bx + c)}{\sqrt{ax^{2} + bx + c}} dx = \int \frac{Q(x) dx}{\sqrt{ax^{2} + bx + c}}.$$

Здесь $Q(x) = P(x)(ax^2 + bx + c)$ — многолчен.

С интегралом третьего типа поступают так. Вводят так называемую обратную подстановку $x-d=\frac{1}{v}$, тогда $dx=-\frac{dv}{v^2}$, $x=\frac{1+dv}{v}$.

После тождественных преобразований получаем
$$\int \frac{dx}{\left(x-d^{'}\right)^{n}\sqrt{ax^{2}+bx+c}} = \int \frac{P_{1}(v)dv}{\sqrt{a_{1}v^{2}+b_{1}v+c}},$$

где $P_{_1}(v)$ — некий многочлен.

Поскольку интегралы второго и третьего типа сводятся к интегралу первого типа, остановимся подробнее на этом интеграле. Можно дока-

зать, что интеграл $\int \frac{P\left(x\right)dx}{\sqrt{ax^2+bx+c}}$ можно представить в виде

$$\int \frac{P(x)dx}{\sqrt{ax^2+bx+c}} = Q(x)\sqrt{ax^2+bx+c} + \lambda \int \frac{dx}{\sqrt{ax^2+bx+c}},$$

где Q(x) — какой-то многочлен, степень которого ниже степени многочлена P(x), а λ — некоторая постоянная.

Заметим, что такое преобразование выполняют, если степень многочлена P(x) не меньше двух.

Рассмотрим пример, поясняющий суть изложенного.

Пример.
$$\int \frac{3x^3 - 7x^2 + 1}{\sqrt{x^2 - 2x + 5}} dx$$
.

Применим вышеуказанный прием, запишем данный интеграл в виде

$$\int \frac{3x^3 - 7x^2 + 1}{\sqrt{x^2 - 2x + 5}} dx = \left(A x^2 + B x + c\right) \sqrt{x^2 - 2x + 5} + \lambda \int \frac{dx}{\sqrt{x^2 - 2x + 5}}.$$

Продифференцируем это равенство, затем умножим его на $\sqrt{x^2-2x+5}$ и, приравнивая коэффициенты при одинаковых степенях x , найдем коэффициенты A , B , C и λ .

Действительно:

$$\frac{3x^{3} - 7x^{2} + 1}{\sqrt{x^{2} - 2x + 5}} =$$

$$= (2Ax + B)\sqrt{x^{2} - 2x + 5} + \frac{(Ax^{2} + Bx + C)(x - 1)}{\sqrt{x^{2} - 2x + 5}} + \frac{\lambda}{\sqrt{x^{2} - 2x + 5}},$$

откуда следует:

$$3x^3 - 7x^2 + 1 = (2Ax + B)(x^2 - 2x + 5) + (Ax^2 + Bx + c)(x - 1) + \lambda$$

Приравнивая коэффициенты при одинаковых степенях x, получим A=1, B=-1, C=-13, $\lambda=-7$

Возвращаясь к исходному интегралу, получим

$$\int \frac{3x^3 - 7x^2 + 1}{\sqrt{x^2 - 2x + 5}} dx = (x^2 - x - 13)\sqrt{x^2 - 2x + 5} - 7\int \frac{dx}{\sqrt{(x - 1)^2 + 4}} = (x^2 - x - 13)\sqrt{x^2 - 2x + 5} - 7\ln|x - 1 + \sqrt{x^2 - 2x + 5}| + c.$$

§2. Интегрирование дифференциальных биномов.

Остановимся на интегралах типа $\int x^m \left(a + bx^n\right)^p dx$, где m , n и p — рациональные числа.

Выражение $x^m \left(a + bx^n\right)^p dx$ называют дифференциальным биномом.

Интегралы такого типа можно выразить через элементарные функции лишь в трех случаях:

- 1) p целое число. Подстановка $\sqrt[\lambda]{x}=t$, где λ общий знаменатель m и n .
- 2) $\frac{m+1}{n}$ целое число или равно нулю, то подстановка $\sqrt[S]{a+bx^n}=t$, где S знаменатель числа p .

3)
$$\frac{m+1}{n} + p$$
 — целое число или равно нулю. Подстановка $\sqrt[S]{\frac{a+bx^n}{x^n}} = t$, где S — знаменатель p .

Выдающийся русский математик П.Л. Чебышев (1821—1894) доказал, что во всех остальных случаях интеграл от дифференциального бинома не выражается через элементарные функции.

Пример.
$$\int \sqrt{x} \left(1 + \sqrt[3]{x}\right)^4 dx$$
.

В данном интеграле $m=\frac{1}{2}$, $n=\frac{1}{3}$, p=4. Так как p=4 — целое число, делаем подстановку $\sqrt[3]{x}=t$, где λ общий знаменатель чисел $m=\frac{1}{2}$ и $n=\frac{1}{3}$, т.е. $\lambda=6$, имеем $\sqrt[6]{x}=t$, т.е. $x=t^6$, $dx=6t^5dt$ значит, наш интеграл

$$\int \sqrt{x} \left(1 + \sqrt[3]{x}\right)^4 dx = 6 \int t^8 \left(1 + t^2\right)^4 dt = 6 \int \left(t^8 + 4t^{10} + 6t^{12} + 4t^{14} + t^{16}\right) dt =$$

$$= 6 \left[\frac{t^9}{9} + 4\frac{t^{11}}{11} + 6\frac{t^{13}}{13} + 4\frac{t^{15}}{15} + \frac{t^{17}}{17}\right] = \frac{2}{3}x^{\frac{3}{2}} + \frac{24}{11}x^{\frac{11}{6}} + \frac{36}{13}x^{\frac{13}{6}} + \frac{8}{5}x^{\frac{15}{6}} + \frac{1}{17}x^{\frac{17}{16}} + c.$$

§3. Об интегралах, не выражающихся через элементарные функции

Ранее мы рассматривали теорему существования определенного интеграла, в силу которой всякая функция f(x), непрерывная на интервале (a,b), имеет на этом интервале первообразную F(x). Однако, не всякая первообразная, даже если она существует, выражается в конечном виде через элементарные функции. По этой причине соответствующие неопределенные интегралы называются неберущимися в элементарных функциях, или просто неберущимися, а сами функции не интегрируемыми в элементарных функциях. Например, доказано, что следующие интегралы являются неберущимися в элементарных функциях. Наиболее часто встречающиеся неберущиеся интегралы:

$\int e^{-x^2} dx$	интеграл Пуассона		
$\int \sin x^2 dx \text{if } \int \cos x^2 dx$	интегралы Френеля		
$\int \frac{dx}{\ln x}$	интегральный логарифм		

$$\int \frac{\sin x}{x} dx$$
 и $\int \frac{\cos x}{x} dx$ интегральный синус и интегральный косинус соответственно

Эти интегралы хотя и существуют в области непрерывности соответствующих подынтегральных функций, но не являются элементарными функциями.

Отметим, что в основном интегралы, которые встречаются в приложениях, являются неберущимися в элементарных функциях. Основные из неберущихся интегралов хорошо изучены и затабулированы. Такие интегралы называют специальными функциям.

Остановимся подробнее на таком важном интеграле, как $\int e^{-x^2} dx$, на котором базируется вся теория вероятностей. Та из первообразных $\frac{2}{\sqrt{\pi}} \int e^{-x^2} dx + c$, которая обращается в нуль при x=0, называется функцией Лапласа и обозначается $\Phi(x)$, таким образом $\Phi(x) = \frac{2}{\sqrt{\pi}} \int e^{-x^2} dx + c_1$, если $\Phi(0) = 0$

Эта функция хорошо изучена. Составлены подробные таблицы ее значений при различных значениях x . Приведем только для сведения графики функций $y=e^{-x^2}$ и $y=\Phi(x)$

Сюда же относится известный интеграл $\int \sqrt{1-k^2\sin^2x}dx$, причем та из первообразных этого интеграла (где r<1), которая обращается в нуль при x=0, называется эллиптическим интегралом и обозначается $E\left(x\right)$. Итак

$$E(x) = \int \sqrt{1 - k^2 \sin^2 x} \, dx + c_2$$

если E(0) = 0, является эллиптическим интегралом.

Для этой функции составлены таблица значений при различных значениях \boldsymbol{x} .

Заметим, что перечисленные интегралы не исчерпывают множество неберущихся интегралов. Например, интегралы вида $\int R\left(x\,\sqrt{P\,(x\,)}\right)\!dx$, где $P\left(x\right)$ — многочлен выше второй степени, в общем случае не выражаются через элементарные функции. При этом если $P\left(x\right)$ — многочлен третьей или четвертой степени, они называются эллиптическими интегралами, если же степень многочлена выше четвертой, то ультраэллиптическими. В том случае, если интеграл вида $\int R\left(x\,\sqrt{P\,(x\,)}\right)\!dx$ можно выразить через элементарные функции, то они называются псевдоэллиптическими.

Названные выше эллиптическими, интегралы на первый взгляд сильно отличаются по своей структуре, однако с помощью тригонометрической подстановки они сводимы друг к другу.

В заключение заметим, что эллиптические интегралы вида $\int R\left(x,\sqrt{P\left(x\right)}\right)dx$, где $P\left(x\right)$ — многочлен третьей или четвертой степени, с помощью подстановки $x=\sin\varphi$ приводятся к нормальной тригонометрической форме:

$$\int \frac{d\varphi}{\sqrt{1-k^2\sin^2\varphi}} \,,\, \int \sqrt{1-k^2\sin^2\varphi} \,d\varphi \,,\, \int \frac{d\varphi}{\left(1+n\,\sin^2\varphi\right)\sqrt{1-k^2\sin^2\varphi}} \,.$$

Научным работникам и инженерам, которые имеют дело с интегралами, большую помощь может оказать справочник И.С. Градштейна и И.М. Рыжика [11], в котором приведено около 12000 интегралов и присутствует другой полезный материал.

Литература

- [1] Архипов Г.И., Садовничий В.А., Чубарикова В.Н. *Лекции по ма- тематическому анализу*. М.: Высшая школа, 1999
- [2] Зорич В.А. Математический анализ. Т. 1 1997, т. 2 1998
- [3] Зарубин В.С., Иванова Е.Е., Кувыркин Т.Н. Интегральное исчисление функций одного переменного. М.: МГТУ им. Н.Э. Баумана, 2000
- [4] Щипачев В.С. Высшая математика. М.: Высшая школа, 1998
- [5] Тер-Крикоров А.М., Шабунин М.И. *Курс математического ана- лиза.* М.: Наука, 1988
- [6] *Математический анализ I /* Под общей редакцией Л.С. Ратафьевой. СПб.: ИТМО, 2003
- [7] *Математический анализ II /* Под общей редакцией Л.С. Ратафьевой. СПб.: ИТМО, 2003
- [8] Берман Г.Н. Сборник задач по курсу математического анализа. СПб.: Профессия, 2002
- [9] *Типовые расчеты, II семестр /* под общей редакцией И.А. Лапина. СПб.: ИТМО, 1998
- [10] Бронштейн И.Н., Семендяев И.А. Справочник по математике для инженеров и учащихся ВТУЗОВ. М.: Наука, 1986
- [11] Градштейн И.С., Рыжик И.М. *Таблицы интегралов, сумм, рядов и произведений.* М.: Физматгиз, 1963

КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Кафедра высшей математики (ВМ) была организована в 1930 году. Первым заведующим кафедрой был профессор Г.Д. Гродский. С конца 1936 года кафедрой ВМ заведовал профессор И.П. Натансон. С 1944 по 1973 г. кафедрой заведовал В.А. Тартаковский — выдающийся математик и замечательный педагог.

В разное время на кафедре ВМ преподавали академик В.И. Смирнов, член-корреспондент АН СССР Д.К. Фаддеев, проф. И.С. Соминский, проф. Ф.И. Харшиладзе, проф. А.Ф. Андреев, проф. Ю.В. Аленицын, проф. И.А. Молотков.

В 1979 году кафедру возглавил доктор технических наук, профессор В.Г. Дегтярев, специалист по теории движения космических аппаратов. С 1997 года кафедрой руководит доктор физико-математических наук, профессор И.Ю.Попов, в область научных интересов которого входят теория рассеяния, теория операторов, моделирование сложных физических систем.

Кафедра ВМ осуществляет обучение студентов всех специальностей университета по дисциплине «Высшая математика» и читает ряд специальных дисциплин математического цикла. Кафедра ВМ является самой многочисленной кафедрой в университете по числу преподавателей. В настоящее время на кафедре ВМ работают такие выдающиеся ученые как профессора В.В. Жук, А.П. Качалов, Г.П. Мирошниченко, А.Г. Петрашень, В.П. Смирнов, В.М. Уздин, В.Ю. Тертычный — член Нью-Йоркской академии.

На кафедре ВМ сложилась научная школа по математическому моделированию сложных физических систем; активно развиваются направления, связанные с нанофизикой и нанотехнологиями, квантовыми компьютерами и квантовыми технологиями. Сложилось тесное сотрудничество с крупными научными центрами как в России, так и за рубежом.

Иван Александрович Лапин Лариса Семеновна Ратафьева Александр Петрович Танченко Юлия Валерьевна Танченко

Интегральное исчисление функции одной переменной.

Учебное пособие.

Под общей редакцией Ларисы Семеновны Ратафьевой

В авторской редакции

Компьютерный набор и верстка Д.В. Ермашев Дизайн обложки Д.В. Ермашев

Редакционно-издательский отдел СПбГУ ИТМО

Зав. РИО Н.Ф. Гусарова

Лицензия ИД № 00408 от 05.11.99

Подписано к печати Заказ № 1395

Тираж 500 Отп. на ризографе