Serie N°1

Exercice1

On considère pour modéliser le fonctionnement d'un appareil jusqu'à sa défaillance le modèle de survie $T = \min(E, W)$ où les variables E et W sont indépendantes, E suivant une loi exponentielle $\exp\left(\frac{1}{\lambda}\right)$ et W une loi de Weibull $W(\alpha,\beta)$ définies par leurs fonction de hasard (taux de panne) ainsi:

$$h_{E}\left(t\right) = \frac{1}{\lambda} \text{ et } h_{W}\left(t\right) = \frac{\beta}{\alpha} \left(\frac{t}{\alpha}\right)^{\beta-1}$$

Question 1: Pour chacune des lois E et W montrer que les fonctions de fiabilité sont respectivement:

$$S_{E}\left(t\right) = \exp\left(-\frac{1}{\lambda}t\right) \text{ et } S_{W}\left(t\right) = \exp\left(-\frac{t}{\alpha}\right)^{\beta}$$

Question 2: Déterminer la fonction de répartition $F_T(t)$ et la densité $f_T(t)$ de la variable aléatoire T. En déduire sa fonction de hasard $h_{T}\left(t\right)$.

Exercice2

a) Soit X une variance in n-échantillon $(X_1, X_2, ..., X_n)$ de XOn pose $Y = \max_{i=1,...,n} (X_i)$ et $Z = \min_{i=1,...,n} (X_i)$ a) Soit X une variable aléatoire suivant une loi $\exp(\lambda)$; on considére un

On pose
$$Y = \max_{i=1,\dots,n} (X_i)$$
 et $Z = \min_{i=1,\dots,n} (X_i)$

Donner la loi de chacune des variables aléatoire Y et Z.

- b) Le système de propulsion d'un avion est composé de 4 moteurs. Le taux de défaillance d'un moteur est de 0,00015 panne par heure. Les moteurs tombent en panne indépendamment les uns des autres.
- 1. Donner la fiabilité de l'avion au bout de 1000 heures si les 4 moteurs doivent tomber en panne pour que l'avion s'écrase.
- 2. Même question si la défaillance d'un seul moteur entraîne la chute de l'avion.