

Internet stvari

SVEUČILIŠTE U ZAGREBU

Diplomski studij Računarstvo

Znanost o mrežama Programsko inženjerstvo i informacijski sustavi

Računalno inženjerstvo

Informacijska i komunikacijska tehnologija

Automatika i robotika

Informacijsko i komunikacijsko inženjerstvo

Elektrotehnika i informacijska tehnologija

Audiotehnologije i elektroakustika Elektroenergetika

(Izborni predmet profila)

5. Komunikacijski protokoli za komunikaciju uređaja (sloj podatkovne poveznice): LoRaWAN, LTE-M, NB-IoT

Ak. god. 2022./2023.

Sadržaj

- Sigfox
- LoRa i LoRaWAN
- LTE-M
- NB-IoT

LPWAN – Low Power Wide Area Network

- Mala potrošnja energije
- Uređaji mogu raditi na bateriju
- Velike udaljenosti komunikacije (~x km)
- Niže frekvencije komunikacije -> povećana udaljenost
- Manja brzina prijenosa podataka

Sigfox

Sigfox

- Tehnologija razvijena 2009. u Toulouse, France
- Patentirana i zatvorena tehnologija
- Koristi nelicencirani pojas ISM
- Ograničenja:
 - Do 140 poruka po uređaju dnevno može poslati (duty cycle 1%, 6 poruka/sat)
 - Veličina podataka koje prenosi: 12 okteta (slanje) i 8 okteta (primanje)
 - Brzina prijenosa do 100 bps (slanje) i 600 bps (primanje)
- Originalno je zamišljen da je komunikacija ide u jednom smjeru (kao senzorska mreža)

Sigfox – fizički sloj

- Ultra Narrow Band (UNB)
- Frekvencije:
 - 868 MHz: Europa (regulatorni dokument ETSI 300-200)
 - 902 MHz: Sjeverna Amerka (regulatorni dokument FCC part 15)
- 333 kanala, širina kanala 100 Hz
- Osjetljivost prijamnika: -120 dBm/-142 dBm
- Snaga predajnika: +14 dBm, a u Sjevernoj Americi +22 dBm

Sigfox – sloj podatkovne poveznice

MAC – okvir kod slanja (uplink)

32 bita	16 bita	32 bita	0-96 bitova	varijabilno	16 bita
Preambula	Sink. okvira	ID krajnjeg uređaja	Sadržaj okvira	Autentikacija	FCS

MAC – okvir kod primanja (downlink)

32 bita	13 bita	2 bita	8 bita	16 bita	varijabilno	0-64 bita
Preambula	Sink. okvira	Zastavice	FCS	Autentikacija	Kodovi greške	Sadržaj okvira

FCS – Frame Check Sequence

Sigfox – topologija

Sigfox – primjena

• Za slanje male količine podataka u praskovima (burst)

- Alarmi
- Jednostavna brojila
- Senzori okoline (ne velike preciznosti ~0,004)

LoRa i LoRaWAN

LoRa ili LoRaWAN

- LoRa definira fizički sloj
- LoRaWAN definira protokol i arhitekturu sustava

LoRa – arhitektura čvora

https://docs.wixstatic.com/ugd/eccc1a_ed71ea1cd969417493c74e4a13c55685.pdf

LoRa – mrežna arhitektura

https://docs.wixstatic.com/ugd/eccc1a ed71ea1cd969417493c74e4a13c55685.pdf

ChirpStack

- LoRaWAN Network Server složaj otvorenog koda
- komponente:
 - ChirpStack Gateway Bridge
 - za komunikaciju s mrežnim prilazom
 - ChirpStack Network Server
 - implementacija mrežnog poslužitelja
 - ChirpStack Application Server
 - implementacija aplikacijskog poslužitelja
 - ChirpStack Gateway OS
 - za izvođenje cijelog složaja na mrežnom prilazu koji je na Raspberry Pi-u
 - temelji se na Linuxu

ChirpStack - arhitektura

LoRa – klase uređaja

Klasa A

- Najbolje za napajanje baterijama
- Svi uređaji u mreži podržavaju ovaj način rada
- Slanje podataka na uređaj je moguće samo nakon uspješnog slanja
- Koristi se mehanizam ALOHA

Klasa B

- Primanje u raspoređenom vremenskom periodu
- Prima signal za sinkronizaciju od GW-a

Klasa C

- Kontinuirano ima otvoren prozor za primanje
- Primanje se zaustavlja jedino kada se šalju podaci

Frekvencije rada

	Europe	North America	China	Korea	Japan	India
Frequency band	867-869MHz	902-928MHz	470- 510MHz	920- 925MHz	920- 925MHz	865- 867MHz
Channels	10	64 + 8 +8		mittee	In definition by Technical Committee	In definition by Technical Committee
Channel BW Up	125/250kHz	125/500kHz				
Channel BW Dn	125kHz	500kHz	mittee			
TX Power Up	+14dBm	+20dBm typ (+30dBm allowed)	In definition by Technical Committee	ical Com		
TX Power Dn	+14dBm	+27dBm	Techni	In definition by Technical Committee		
SF Up	7-12	7-10	u pà			
Data rate	250bps- 50kbps	980bps-21.9kpbs	efinitio			
Link Budget Up	155dB	154dB	in de			
Link Budget Dn	155dB	157dB				

http://www.3glteinfo.com/lora/lorawan-frequency-bands/

Sigurnost

Koristi se AES-128 kao i u IEEE 802.15.4

Aktivacija

- Prije nego se krajnji uređaj može koristiti u mreži LoRaWAN potrebno ga je aktivirati
- Informacije potrebne za aktivaciju su:
 - Adresa uređaja Device Address (DevAddr)
 - 32 bita, jedinstven u mreži, šalje se u svakom okviru
 - Koriste ga: krajnji uređaj, mrežni poslužitelj i aplikacijski poslužitelj
 - Ključ mrežne sjednice Network Session Key (NwkSKey)
 - Ključ od 128 bita AES, jedinstven za svaki krajnji uređaj, omogućuje integritet komunikacije
 - Koriste ga: krajnji uređaj i mrežni poslužitelj
 - Ključ aplikacijske sjednice Application Session Key (AppSKey)
 - Ključ od 128 bita AES, jedinstven za svaki krajnji uređaj, koristi se zaštitu aplikacijskih podataka
 - Koriste ga: krajnji uređaj i aplikacijski poslužitelj

Aktivacija

- Dvije aktivacijske metode:
 - Over-the-Air Activation (OTA A)
 - Temelji se na globalno jedinstvenom identifikatoru
 - Poruke se razmjenjuju bežično
 - 2. Activation By Personalization (ABP)
 - Dijeljeni ključevi se pohranjuju na krajnji uređaj u proizvodnji
 - Vrijede samo za specifičnu mrežu

http://www.chipcad.hu/letoltes/19065 IoT4 FinalSlides.pdf

Implementacije

Komercijalne:

- Operatori pružaju mrežu i naplaćuju ju:
 - OiV (Hrvatska), KPN (Nizozemska), Orange (Francuska), Unidata (Italija), ...
 - Unidata (partner na projektu symbloTe) operator LoRaWAN mreže u Italiji
 - https://www.i-scoop.eu/internet-of-things-guide/iot-network-lora-lorawan/

Javne:

- Bilo tko se može uključiti i pružati pristup
- Ažurni popis na https://www.thethingsnetwork.org

• Privatne:

Svatko može pokrenuti svoju privatnu mrežu

Implementacija LoRaWAN-a u IoT labu

Projekti i studentski radovi s LoRaWAN-om

M2M Communications Challenges

- U suradnji s kompanijom Ericsson Nikola Tesla
- Od 2011. svake godine druga tema

Teme vezane uz Machine-to-Machine (M2M) komunikaciju

- 2017.
 - Uporedba LoRaWAN-a s NB-IoT-om, BLE, WiFi
 - Izrada prototipa s više tehnologija na jednom krajnjem uređaju
 - Odabir komunikacijske tehnologije ovisno o kontekstu

Mjerenje vanjskih prilika te praćenje potrošnje energije LoRa i LoRaWAN modula

- Studentski projekt na diplomskom studiju
 - Mateo Červar, Matija Cvetnić

Potrošnja energije koristeći small i big antene [mA]

	Antenna size	Low (0)	High (10)	Max (15)
	Small	19.7	22.96	39.4
LoRa	Big	19.86	23.2	40.8
LoRaWAN	Small	17.74	32.66	39.34
	Big	18.56	33.02	40.08

Lociranje uređaja u Internetu stvari (1)

26

Diplomski rad:
Mateo Červar

Usporedba tehnologija pozicioniranja

Lociranje uređaja u Internetu stvari (2)

Network

Server

Diplomski rad: Mateo Červar

Mrežna infrastruktura

Geolocation

Solver

Prikupljanje podataka i aktuacija s uređajima u urbanom vrtu (1)

Arhitektura

Prikupljanje podataka i aktuacija s uređajima u urbanom vrtu (2)

27.3.2023.

Pokretna mreža Standardi i standardizacijska tijela

- ITU International Telecommunication Union
 - Najviše definiraju ciljeve i standarde za uređaje koji će biti označeni sa 4G ili 5G
- 3GPP
 - Konzorcij koji definira tehnologije i nadogradnje
 - Sve je organizirano u izdanja (release):
 - Rel 8-9: LTE (2008., 2009.)
 - Rel 10-12: LTE Advanced (2011., 2012., 2015.)
 - Rel 12: LTE-M (Cat 0)
 - Rel 13-14: LTE Advanced Pro (2016., 2017.)
 - Rel 13: LTE Cat-M1 (eMTC), NB-IoT (LTE Cat-NB ili NB1)
 - Rel 14: Vehicle-to-Everything (V2X), poboljšanja za MTC, NB-IoT (NB2)
 - Rel 15: (2019.) poboljšanja za MTC, 5G Vehicle-to-x service (V2X)
 - Rel 16: (2020.) 5G expansion (advanced V2X, Industrial IoT, URLLC), 5G Efficiency (power consumption)

LTE-M

LTE Cat 0 – Release 12

- Smanjene brzine prijenosa na 1Mbps
- Half-duplex komunikacija
- Uveden Power Save Mode (PSM)
 - Uređaj može ući u duboki san i brzo se probuditi i povezati
 - Može se jednom dnevno buditi i slati podatke
 - Maksimalni period spavanja 12.1 dana (ovisi o mreži npr. 2 ili 4 sata)

LTE Cat-1 — Release 8

- Prvenstveno se koristi u SAD-u za M2M komunikaciju
- Veće brzine: 10Mbps (skidanje), 5Mbps (slanje)
- Može prenositi zvuk i video
- Manja potrošnja energije nego 4G-LTE
- Može se prebaciti na 3G ili 2G

LTE Cat-M1 (eMTC ili LTE-M) – Release 13

- eMTC enhanced Machine Type Communication
- Smanjena širina pojasa sa 20MHz na 1,4Mhz → jednostavniji uređaji, manja potrošnja
- Smanjena izlazna snaga za 50%
- Brzine 375 Kbps ili 1 Mbps
- Primjena: V2V, zvuk
- Dodani mehanizmi za mogućnost kratkog spavanja uređaja (10,24s) → radio troši 15μA u prosjeku
- PSM iz Cat-0 se primjenjuje i ovdje

NB-IoT

NB-IoT (LTE Cat-NB ili NB1) — Release 13

• Ciljevi:

- 10 godina trajanja baterija s kapacitetom 5 Wh
- Dodatna pokrivenost prostora (+20 dB)
- Cijena modula ~\$5
- Bitne promjene:
 - Širina kanala samo 180kHz -> smanjenje troškova modula i potrošnje energije
 - Nema prijenosa zvuka ili videa
 - Nema pokretnosti između ćelija
 - Maksimalni gubitak signala (MCL max. coupling loss) 164 dB što je slično LoRaWAN-u i Sigfoxu
 - Komunikacija prolazi u podrumima, tunelima
 - Povećan domet za 7x na otvorenom prostoru
- Brzina prijenosa: ~26Kbps downlink, ~62Kbps uplink

NB-loT – smještaj kanala

- Između dva LTE kanala
 - U praznom dijelu koji nije iskorišten
- Na mjestu GSM kanala
 - Neki GSM kanali se onda koriste za NB-IoT
- Unutar LTE kanala
 - Multipleksiranje LTE-a i NB-a

• Teoretski omogućuje spajanje do 200.000 uređaja po ćeliji

NB-IoT (NB2) - Release 14

- Glavne nadogradnje:
 - preciznije pozicioniranje: OTDOA i E-CID
 - dodano višeodredišno razašiljanje (multicast)
 - poboljšana mobilnost
 - moguće ponovno spajanje kada smo spojeni, nije potrebno ići u mod rada idle
 - povećane maksimalne brzine:
 - 127Kbps downlink, 159Kbps uplink
 - podrška za više (15) operatora (uz matičnog) → povećana gustoća uređaja 1M/km²
 - Nova klasa snage 14dBm → potrebne manje baterije

NB-loT – prve instalacije 2017.

- DT pokrenuto u 8 zemalja u EU (Njemačka, Nizozemska, Austrija, Hrvatska, Grčka, Mađarska, Poljska, Slovačka)
 - Primjene: praćenje stvari, pametno parkiranje, pametna brojila
- T-Mobile US, Ericsson, Qualcomm
 - Primjene: prikupljanje senzorskih podataka (temp., vlažnost, plinovi, ...), alarmiranje za poplave
- U-blox, PinMyPet, Huawei i operator Vivo: praćenje životinja
- China Mobile, ZTE testiranje mreže na 200 mjesta
- Telia Norway pilot projekt za praćenje 1000 ovaca u Norveškoj

NB-IoT moduli

- sixfab Arduino NB-IoT Shield (80€→62€), Raspberry Pi NB-IoT Shield (80€)
 - Ovo imamo u laboratoriju

- QUECTEL BG96 LTE CAT M1/CAT NB1/EGPRS ~30€
- <u>Dragino</u> ~45\$ → 20€

- ASR6601 LoRaWAN 868MHz SoC LoRa RF IoT Wireless Module Long Range Data Transceiver Development Board E78-868LN22S(6601) Ebyte – <u>AlliExpress</u> 8\$
- SIMCom SIM7070G AlliExpress ~17€

NB-IoT arhitektura sustava

poslužitelj IoT platform

Spajanje na mrežu

Koriste se AT komande za komunikaciju s modulom

 CGATT – spajanje/odspajanje na/sa mrežu/e

- Format:
 - AT+CGATT=<state>
- State:
 - 0 odspajanje
 - 1 spajanje

Kreiranje socketa

- AT+NSOCR kreiranje socketa
 - Format: AT+NSOCR=<type>,<protocol>,<listen port>[,<receive control>]
 - Type dozvoljeno jedino DGRAM
 - Protocol broj protokola (vidi), za UDP je 17
 - Listen port lokalna vrata na kojima sluša (0-65535)
 - Receive control
 - 1 treba primiti odgovor (podrazumijevano)
 - 0 ne treba odgovor
- AT+NSOST slanje paketa
 - Format: AT+NSOST=<socket>,<remote_addr> ,<remote_port>, <length>,<data>
 - Socket broj vraćen u komandi AT+NSOCR

Slanje UDP paketa

- AT+NSOST slanje paketa
 - Format: AT+NSOST=<socket>,<remote_addr> ,<remote_port>, <length>,<data>
 - Socket broj vraćen u komandi AT+NSOCR
 - Remote addr IPv4 u notaciji s točkom (decimalno, oktalno ili hex)
 - Remote port vrata na koja se šalje
 - Length dužina u oktetima (max 512)
 - Data podaci u HEX obliku
 - Primjer:
 - AT+NSOST=0,192.158.5.1,1024,2,AB30
 - Odgovor:
 - <socket>,<length>
 - OK

Dijagram kreiranja socketa i slanja

Primanje UDP paketa

- AT+NSORF primanje UDP paketa
 - Format: AT+NSORF=<socket>,<req_length>
 - Socket socket iz odgovora AT+NSOCR
 - Req length max broj podataka koji će biti vraćen u broju okteta
 - Format odgovora: <socket>,<ip_addr>,<port>,<length>,<data>,<remaining_length>
 - Socket socket
 - IP addr adresa pošiljatelja
 - Length dužina podataka
 - Data podaci u hex stringu
 - Remaining length količina podataka koje se može još pročitati za ovu poruku

Primjer komande: AT+NSORF=0.10

Odgovor: 0,192.168.5.1,1024,2,ABAB,0 OK

Usporedba tehnologija

https://www.researchgate.net/publication/323907156 Overview of Cellular LPWAN Technologies for IoT Deployment Sigfox LoRaWAN and NB-IoT

Pitanja za ponavljanje

- Koja su osnovna svojstva LPWAN-a?
- Čemu služi Sigfox?
- Koliko se dnevno podatka može poslati pomoću Sigfoxa?
- Kakav je poslovni model Sigfoxa?
- Koja je razlika između tehnologija LoRa i LoRaWAN?
- Od koja 4 elementa se sastoji mrežna arhitektura LoRae?
- Objasnite razliku između 3 klase LoRa uređaja.
- Objasnite 2 načina aktivacije uređaja u LoRai.

- Čemu služi LTE-M?
- Koja je razlika između: LTE Cat-0, LTE Cat-1 i LTE Cat-M1?
- Koja su svojstva LTE Cat-M1?
- Što je NB-loT i koja su mu svojstva?
- Kako se može smjestiti NB-IoT kanal?
- O čemu ovisi odabir neke tehnologije za neko loT rješenje?

