3000788 Intro to Comp Molec Biol

Lecture 11: Differential expression analysis

Fall 2025

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Today's agenda

- Rapid RNA-seq alignment with k-mer
- Units of gene expression
- Negative binomial model for gene expression data
- Differential expression analysis

Recap: RNA-seq analysis pipelines

Conesa et al. Genome Biology 17:13 (2016)

Alignment to reference genome or transcriptome

- Reference transcriptome
 - Fast, cannot discover new isoform
 - Ungapped, k-mer-based alignment
 - salmon / kallisto

- Reference genome
 - **Slow**, but can detect new isoforms
 - Gapped alignment, allow for intron
 - Can be guided by exon annotations
 - STAR, HISAT2

k-mer pseudoalignment

k-mer pseudoalignment algorithm sketch

Bray et al. Nat Biotech 34:525-527 (2016)

- Create de Bruijn graph from k-mer of reference transcripts
 - Path = ordering of *k*-mer on a transcript
 - Drop uninformative *k*-mers (v₂ and v₃) to reduce search space
 - **Step 1**: For each read, identify paths that are compatible with *k*-mers from the reads
 - **Step 2**: Find the best path with matching ordering of *k*-mers to those on the reads

>100 fold speed up with pseudoalignment

Bray et al. Nat Biotech 34:525-527 (2016)

- Similar gene expression quantification accuracy
- Pseudoalignment tools use the gained time to perform **bootstrapping!**
- Bootstrapping provides estimate of technical variance

Bootstrapping of RNA-seq data

- Multiple gene expression estimates across bootstrap replicates
- Estimate technical variance for each gene and sample

Units of gene expression

Units for transcript abundance

$$\frac{\text{FPKM}}{\frac{\text{Transcript Length}}{1,000}} \times \frac{\text{Total Read Count}}{1,000,000}$$

 $\frac{\text{CPM}}{\sum \text{Read Count}} \times 1,000,000$

Similar to percentage (but per million)

$$TPM = \frac{FPKM}{\sum FPKM} \times 1,000,000$$

Long transcript generates more fragments and more read counts

Experiment with higher sequencing depth generates more read counts

- Read count (number of mapped reads)
- FPKM = Fragment per kilobase of exon per million reads mapped
- TPM = Transcript per million
- CPM = Count per million

Quick notes about gene expression units

- **Read count** is not normalized, but can be modeled with statistics
 - This is needed for all **differential expression analysis** tools
- **CPM** and **FPKM** are rarely used nowadays
- **TPM** is the most normalized, and is used to **visualize** and **cluster** data
 - Show composition of transcripts
 - Similar concept as microbiome composition

Negative binomial model for read count

The distribution of RNA-seq read count

Negative binomial model

- Repeat a series of Bernoulli trials, each with probability of success p, until we obtain r successes. How many failures, k, would we observe?
 - XOOXXXOOXOO = 5 failures observed until 6 successes were obtained
- $P_{NB}(k;r,p) = {k+r-1 \choose k} (1-p)^k p^r$
 - k + r 1 locations to place k failures (the last location must be success)
- Mean = $\frac{pr}{(1-p)}$ failures (proportional to the number of successes)
- Variance = $\frac{pr}{(1-p)^2} = \frac{pr}{(1-p)} + \left(\frac{pr}{1-p}\right)^2 \frac{1}{r}$ (a parabolic function of the mean)

Another interpretation of negative binomial model

- $P_{NB}(k; r, p) = \int_0^\infty P_{Poisson(\lambda)}(k) \cdot P_{Gamma(r, \frac{1-p}{p})}(\lambda) d\lambda$
- **Negative Binomial** is a continuous mixture of **Poisson**, with **Gamma**-distributed weights
- Bulk gene expression is an average over many cells
- Imagine read counts from each cell following **Poisson** distribution, and that each cell type has a population following **Gamma** distribution
 - Negative Binomial is a weighted sum of single-cell gene expression!

Simple differential expression analysis

For log-normally distributed data

Differential expression for normally distributed data

Simple t-test works

Preparing Microarray / Nanostring data for *t*-test

Control Treatment

	J15							
4	Α	В	С	D	E	F	G	H
1	Acc ID	Exp1	Exp2	Exp3	Exp4	Exp5	Exp6	
2	NM_007818	67540.89	70924.09	80243.76	3501.2	5697.47	2426.72	
3	NM_001105160	811.93	801.36	740.71	128.67	104.42	101.33	
4	NM_028089	190.41	211.06	236.19	9.05	23.33	8.44	
5	NM_016696	66.77	57.56	101.09	750.9	659.84	491.89	
6	NM_013459	3.3	11.29	1.89	735.82	816.46	118.22	
7	NM_007809	45.34	36.12	51.02	245.27	372.13	335.67	
8	NM_009999	103.04	370.21	200.29	17.09	13.33	8.44	
9	NM_133960	7708.78	6976.38	6569.04	1731	1641.81	1853.55	
10	NM_027881	31.32	10.16	24.56	268.39	186.62	135.11	
11	NM_054053	31.32	24.83	19.84	323.68	428.78	116.11	
12	NM_007377	47.81	89.17	70.86	370.93	378.79	279.72	
13	NM_028064	703.95	689.62	662.29	214.11	168.85	144.61	
14	NM_008182	222.56	339.73	226.75	30.16	63.32	26.39	
15	NM_013661	12.36	11.29	8.5	97.51	77.76	71.78	
16	NM_007815	20613.09	25218.13	31540.46	5209.07	7680.3	6312.2	

- Remember to check if the data have been logtransformed
- t-test can be performed on each gene
- Correct the p-values for multiple testing

Flavors of t-test

One or two-tailed depends on your hypothesis, two-tailed in general

=t.test(A2:A13,B2:B13,2,							
T.TEST(array1, array2, tails, type)							
()1 -	() 1 - Paired () 2 - Two-sample equal variance (homoscedastic) () 3 - Two-sample unequal variance (heteroscedastic)				T.TEST performs a paired t-Test		
()2 -							
()3 -							

- Paired for before & after treatment data of the same samples
- Equal or unequal variance across groups depends on assumption

p-value correction methods

Correction with Bonferroni method

- Divide the p-value cutoff by the number of test
- **Example**: Adjusted p-value cutoff = 0.05 / 1000 = 0.00005
- Easy to perform but lose power (fail to reject Null Hypothesis when the Alternative is true)
- P-value is calculated based on the assumption that Null Hypothesis is true
 - Doesn't tell us directly about False Positives
 - Out of 1,000 genes that passed the cutoff, how many are false?

False discovery rate (FDR)

- False Discovery Rate (FDR) = Probability of getting a false positive
 - Probability that a gene that passed the cutoff is not truly differentially expressed
- But FDR involves alternative hypothesis is difficult to calculate
- There are ways to control FDR through p-value!

Benjamini-Hochberg procedure

- Valid under broad assumptions (independence, positively correlated, etc.)
- Statistical tests with raw p-values, $p_1, p_2, ..., p_n$
- To control **FDR** ≤ **0.05** (not p-value ≤ 0.05)
 - **Step 1**: Sort p-values from low to high: $p'_1, p'_2, ..., p'_n$
 - Step 2: Go through each p-value and check whether $p_i' \le 0.05 \times i / n$
 - Step 3: Stop when the condition fail (found $p'_k > 0.05 \times k / n$)
 - **Step 4**: Reject null hypothesis for tests corresponding to $p'_1, p'_2, ..., p'_{k-1}$

Observations:

- For the smallest p-value, whether $p'_1 \le 0.05 \times 1 / n$ is equivalent to Bonferroni
- For other p-values, whether $p_i \le 0.05 \times i / n$ is more relaxed

Benjamini-Yekutieli procedure

- Valid under broader assumption (some dependency between tests is allowed)
- Same procedure as Benjamini-Hochberg
- But the cutoff for each p-value is more stringent (smaller cutoff)
- For the smallest p-value, the test is again equivalent to **Bonferroni**
- If your smallest p-value fails Bonferroni correction, don't have to try another test

Comparing correction methods

P-value	Bonferroni	В-Н	B-Y
Smallest	0.0005	0.0005	0.0005
2 nd smallest	0.0005	0.001	0.000667
3 rd smallest	0.0005	0.0015	0.000818
4 th smallest	0.0005	0.002	0.00096
5 th smallest	0.0005	0.0025	0.001095

- There are n = 100 tests
- Target FDR = 0.05
- **B-H** and **B-Y** gradually increase p-value cutoff while **Bonferroni** does not

Power of different correction methods

Gene	p-value (sorted)	Bonferroni Result	Benjamini- Hochberg Cutoff	B-H Result	Benjamini- Yekutieli Cutoff	B-Y Result
Gene M	0.00001	Pass	0.0005	Pass	0.00050	Pass
Gene S	0.00035	Pass	0.0010	Pass	0.00067	Pass
Gene A	0.00062	Fail	0.0015	Pass	0.00082	Pass
Gene C	0.00110	Fail	0.0020	Pass	0.00096	Fail
Gene P	0.06014	Fail	0.0025	Fail	0.00110	Fail

DESeq2 differential expression model

Negative Binomial model for gene expression

- Read count $K_{i,j} \sim NB(\mu_{i,j}, \sigma_{i,j}^2)$, for gene *i* in sample *j*
 - $\mu_{i,i}$ = sample effects x sequencing effects
 - $\sigma_{i,j}^2 = \mu_{i,j}$ + gene-specific effects x $\mu_{i,j}^2$ (parabolic function of the mean)

Sequencing effects

- Sequencing depth of the sample
- GC content of the reads
- Length of the gene

Negative Binomial model for gene expression

- Read count $K_{i,i} \sim NB(\mu_{i,i}, \sigma_{i,i}^2)$, for gene *i* in sample *j*
 - $\mu_{i,i}$ = sample effects x sequencing effects
 - $\sigma_{i,j}^2 = \mu_{i,j}$ + gene-specific effects x $\mu_{i,j}^2$ (parabolic function of the mean)

Sample effects

- Linear effect model
 - **Log Fold-Change** = $\sum_{r} x_{j,r} \beta_{i,r}$ where $x_{j,r}$ are design parameters for sample j and $\beta_{i,r}$ are the effect sizes for gene i
- Design parameters
 - **Experiment conditions**: control, treatment, etc.
 - Confounding factors: age, time after treatment, dosage, etc.

Modeling effects through design parameters

Differential expression as a test of effect size

- Linear effect model
 - **Log Fold-Change** = $\sum_{r} x_{j,r} \beta_{i,r}$ where $x_{j,r}$ are design parameters for sample j and $\beta_{i,r}$ are the effect sizes for gene i
- **Wald test** whether each $\beta_{i,r}$ is significantly different from zero
 - **Assumption**: $\frac{\beta_{i,r}}{SE(\beta_{i,r})} \sim Standard Normal$
 - Reject Null Hypothesis = design parameter *r* affected the gene expression

Negative Binomial model for gene expression

- Read count $K_{i,j} \sim NB(\mu_{i,j}, \sigma_{i,j}^2)$, for gene *i* in sample *j*
 - $\mu_{i,i}$ = sample effects x sequencing effects
 - $\sigma_{i,j}^2 = \mu_{i,j} + \text{gene-specific effects } \times \mu_{i,j}^2$ (parabolic function of the mean)
- Gene-specific effects on variance
 - **Assumption**: Genes with similar expression should have similar variances
 - Provide more robust variance estimates across genes
 - Regression of gene-specific effects versus $\mu_{i,i}$

Regression of variance as a function of mean expression

- Dispersion =
$$\frac{\sigma_{i,j}^2 - \mu_{i,j}}{\mu_{i,j}^2} = \left(\frac{\sigma_{i,j}}{\mu_{i,j}}\right)^2 - \frac{1}{\mu_{i,j}}$$

- For highly expressed genes, $Log(Dispersion) \approx 2 \cdot Log(\frac{\sigma_{i,j}}{\mu_{i,i}})$
- Fit trend using local regression
 - Similar to moving average

Love, Huber, and Anders. Genome Biol. 15:550 (2014)

Two-step Bayesian approach for dispersion fitting

- Observed variance can be noisy if there are few replicate samples
- MLE = variance of each gene
- Prior mean = Fitted regression trend
- MAP = Bayesian update
- Genes with very high dispersions may reflect true biological variations, otherwise, trust the regression trend

Love, Huber, and Anders. Genome Biol. 15:550 (2014)

Dispersion fitting highlights true differences

Love, Huber, and Anders. Genome Biol. 15:550 (2014)

sleuth differential expression model

Segregation of biological and technical variances

Technical variance estimates from bootstrapping

Normal distribution model for log read count

- True expression: $y_{t,i} = x_i^T \beta_t + \varepsilon_{t,i}$ for sample i and transcript t
- Observed expression: $D_{t,i} = y_{t,i} + \zeta_{t,i}$
- Transcript-specific noises: $\varepsilon_{t,i} \sim N(0, \sigma_t^2)$ and $\zeta_{t,i} \sim N(0, \tau_t^2)$
- Full model: $D_t \sim N(x^T \beta_t, (\sigma_t^2 + \tau_t^2) I_n)$

Likelihood ratio test for differential expression

- Full model: $D_t \sim N(x^T \beta_t, (\sigma_t^2 + \tau_t^2) I_n)$
 - Know τ_t^2 from bootstrapping (unique to pseudoalignment)
 - Estimate σ_t^2 from data (same as DESeq2)
- Fit β_t under various design matrices x (hypotheses)
 - Compare likelihoods across hypotheses (with different number of parameters)

Likelihood ratio test for differential expression

Technical variance estimates improve accuracy

- All approaches were set to control False Discovery Rate at 10%
- Only **sleuth** and **voom** achieved the target FDR

Technical variance estimates improve sensitivity

Pimentel et al. Nature Methods 14:687-690 (2017)

Differential expression summary

- Microarray / Nanostring \rightarrow t-test followed by p-value correction
- Nanostring data can also be analyzed with DESeq2 (count data)
- RNA-seq aligned to genome (no bootstrapping) → **DESeq2**
- RNA-seq aligned to transcriptome (bootstrapping) → **DESeq2** or **sleuth**
 - **sleuth** exhibits superior sensitivity at transcript level

Any question?

See you next time