

Fig. 1
Prior Art

Fig. 2

Fig. 3

Sep. 28, 1999

U.S. Patent

MULT_DIM_RELAX (n, PROB_FORMATION, ASSIGNMT_SOLUTION) START CHOOSE me 2,...,n-1 500 CHOOSE AN INITIAL APPROXIMATION FOR $\left\{u_{0}^{m+1}, u_{0}^{n}\right\}$ 504 LET (um+1-n un) BE A SOLUTION WHICH MAXIMIZES $\{ \Phi_{mn}(\tilde{u}^{m+1-n}, \tilde{u}^n) : u^k \in \mathbb{R}^{N_k+1}; \ k=m+1,...,n \} \text{FOR } w^n \text{ SUBJECT}$ 508 TO THE CONSTRAINTS OF PROBLEM FORMULATION [6.2] USE $(\bar{u}_{1}^{m+1}, \bar{u}^{\hat{n}})$ AND $w^{\hat{n}}$ TO DETERMINE AN OPTIMAL SOLUTION, wm, TO PROBLEM FORMULATION [6.4] 512 GENERATE VALUES FOR THE COST MATRIX, cn-m+1 516 AS IN [6.7] IS n-m+1=2?520 536 -524 YES NO SOLVE THE (n-m+1)-DIMENSIONAL PROB FORMULATION ← DATA STRUCTURE(S) ASSIGNMENT PROBLEM REPRESENTING AN(n-m+1)- DIMENSIONAL ASSIGNMENT PROBLEM AS IN [6.8] 528 540 ASSIGNMT_SOLUTION -SOLUTION OF THE (n-m+1)-DIMENSIONAL MULTI_DIM_ RELAX (n-m+1, PROB_FORMULATION, ASSIGNMENT PROBLEM [6.8] TO ASSIGNMT_SOLUTION) RECOVER A FEASIBLE SOLUTION 544 USE ASSIGNMT_SOLUTION TO RECOVER A FEASIBLE SOLUTION, zn ,OF THE ASSIGNMENT PROBLEM [6.1] 532 RETURN (ASSIGNMT_SOLUTION) ASSIGNMT_SOLUTION - zⁿ 548 Fig. 8 RETURN (ASSIGNMT_SOLUTION) 552