Package 'MatriKS'

March 9, 2023

Type Package

Version 0.1.0

Title Generates Stimuli According to Rules

Author Who wrote it					
Maintainer The package maintainer <yourself@somewhere.net></yourself@somewhere.net>					
Description More about what it does (maybe more than one line) Use four spaces when indenting paragraphs within the Description.					
License MIT + file LICENSE					
Encoding UTF-8					
LazyData true					
Imports DescTools					
Suggests testthat (>= 3.0.0)					
Config/testthat/edition 3					
RoxygenNote 7.2.0					
R topics documented:					
axe					
biscuit					
bow.tie					
bow.tie.inv					
circle					
cof					
cross					
cross.dice					
decof.cell					
diagline					

3

5 6 6

 dice
 ...

 dot
 ...

 down.petal
 ...

 h.arc.left.down
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

ϵ	13
8 · · · · · · · · · · · · · · · · · · ·	13
hello	14
hexagon	14
	15
hline	15
	16
	16
· · · · · · · · · · · · · · · · · · ·	16
	17
	17 17
	17 18
	18
3	18
	19
[· · · · · · · · · · · · · · · · · · ·	19
pizza.2	20
pizza.2.rev	20
pizza.4	21
rectangle	21
	22
	22
	 22
	23
	23
	23 24
	24 24
	24
ϵ	25
	25
	25
	26
s.maxi	26
s.pizza.2	26
s.pizza.2.rev	27
s.pizza.4	27
s.s.horizontal	28
s.s.horizontal.inv	28
	28
	-0 29
	29
	29
<u>e</u>	29 30
	30
	31
	31
semi.circle.rev.inv	32
slice	32
split.mat	33
square	33
square4	34
	34

axe 3

```
      triangle
      35

      up.petal
      35

      v.arc.left.down
      36

      v.arc.right.up
      36

      v.arc.right.down
      37

      v.arc.right.up
      37

      vertical.eight
      38

      vline
      38

      X
      39

Index
```

axe

Define the cooordinates for an axe

Description

Define the cooordinates for an axe

Usage

```
axe(size.x = 15, pos.x = 0, pos.y = 0, lty = 1, lwd = 3, shd = NA)
```

Arguments

shd

biscuit

Define the coordinates of a biscuit

Description

Define the coordinates of a biscuit

Define the coordinates of a biscuit

Usage

```
biscuit(
   pos.x = 0,
   pos.y = 0,
   size.x = 10,
   size.y = 10,
   shd = "black",
   lty = 1,
   lwd = 3
)
biscuit(
   pos.x = 0,
   pos.y = 0,
```

4 bow.tie

```
size.x = 10,
size.y = 10,
shd = "black",
lty = 1,
lwd = 3
)
```

Arguments

lty

lwd

Value

Based on the chosen shape, return an object with the information for plotting the desired design. If the name is precedeed by an s, the object is seen as a unique object, otherwise it is seen as a combination of multiple objects

Examples

One day

bow.tie

Define the coordinates of a vertical bow tie

Description

Define the coordinates of a vertical bow tie

Define the cooordinates for a vertical bow tie

Usage

```
bow.tie(size.x = 10, pos.x = 0, shd = NA, lwd = 3, lty = 1)
bow.tie(size.x = 10, pos.x = 0, shd = NA, lwd = 3, lty = 1)
```

Arguments

lwd

bow.tie.inv 5

bow.tie.inv

Define the cooordinates for an horizontal bow tie

Description

Define the cooordinates for an horizontal bow tie

Usage

```
bow.tie.inv(size.x = 10, pos.x = 0, shd = NA, lwd = 3, lty = 1)
```

Arguments

lty

circle

Define the coordinates of a circle

Description

Define the coordinates of a circle

Usage

```
circle(
    size.x = 10,
    size.y = 10,
    pos.x = 0,
    pos.y = 0,
    shd = NA,
    rot = 0,
    vis = 1,
    lty = 1,
    lwd = 3
)
```

Arguments

size.x	Length of the x axis
size.y	Length of the y axis
pos.x	Position on the x axis
pos.y	Position on the y axis
shd	Color of the object. Deafsult is NA which results in a transparent object
rot	Rotation of the ellipse in which the figure is inscribed
vis	Integer, indicates whether the object should be visible (1) or not (0). Deafult is visible
lty	Border line. Default is 1 (solid), can be dotted (2) or dashed (3)
lwd	Width of the border line. Deafult is 3.

6 cross

Value

Based on the chosen shape, return an object with the information for plotting the desired design

Examples

```
Ci sarà
```

cof

Concatenation of objects

Description

Concatenation of objects

Usage

```
cof(..., name, single)
```

Arguments

... Vector of objects to be concatened together.

name Name of the newely created object (See Details).

single Should the objects be collapsed into a single object? Deafult is FALSE

Value

An object of class cell

Examples

```
Poi li scrivo un attimo
```

cross

Define the coordinates of a cross

Description

Define the coordinates of a cross

Usage

```
cross(
  size.x = sqrt(square()$size.x[[1]]^2/2),
  size.y = sqrt(square()$size.y[[1]]^2/2),
  lwd = 3,
  lty = 1
)
```

Arguments

cross.dice 7

cross.dice

Define the coordinates of a cross dice with 4 dots

Description

Define the coordinates of a cross dice with 4 dots

Usage

```
cross.dice(shd = "black", lwd = 3, lty = 1)
```

Arguments

lty

decof.cell

Split the elements of a cell

Description

Split the elements of a cell

Usage

```
## S3 method for class 'cell'
decof(obj)
```

Arguments

The

object to be splitted

diagline

Define the coordinates of the main diagonal line

Description

Define the coordinates of the main diagonal line

Usage

```
diagline(
    size.x = list(sqrt(square()$size.x[[1]]^2/2)),
    size.y = list(sqrt(square()$size.x[[1]]^2/2)),
    pos.x = 0,
    pos.y = 0,
    lty = 1,
    lwd = 3,
    rotation = pi - pi/4,
    vis = 1
)
```

8 dice

Arguments

vis

diagline.inv

Define the coordinates of the secondary diagonal line

Description

Define the coordinates of the secondary diagonal line

Usage

```
diagline.inv(
   size.x = sqrt(square()$size.x[[1]]^2/2),
   size.y = sqrt(square()$size.y[[1]]^2/2),
   pos.x = 0,
   pos.y = 0,
   lty = 1,
   lwd = 3,
   rotation = pi + pi/4,
   vis = 1
)
```

Arguments

vis

dice

Define the coordinates of a dice with 4 dots

Description

Define the coordinates of a dice with 4 dots

Usage

```
dice(pos.x = 13, pos.y = 13, shd = "black", lwd = 3, lty = 1)
```

Arguments

dot 9

dot

Define the coordinates of a dot

Description

Define the coordinates of a dot

Usage

```
dot(
    size.x = 2,
    size.y = 2,
    pos.x = 0,
    pos.y = 0,
    shd = "black",
    lty = lty,
    lwd = lwd,
    vis = 1
)
```

Arguments

vis

Examples

One day not today

down.petal

Define the coordinates of a the down petal

Description

Define the coordinates of a the down petal

Usage

```
down.petal(lwd = 3, lty = 1)
```

Arguments

10 ellipse

draw

Draw objects

Description

Draw objects

Usage

```
draw(
   obj,
   main = NULL,
   canvas = TRUE,
   hide = FALSE,
   n.cell = 9,
   bg = "white",
   mar = c(1, 1, 1, 1),
   xlim = 16
)
```

Arguments

obj	The object to be draw. Can be a single object, a matrix, or the responses
main	Print a title? Default is FALSE
canvas	Do you want to overimpose the objects? Default is FALSE
hide	Do you want to hide the cell of the correct response? Default is FALSE
n.cell	How main cell should the matrix have? Default is 9
bg	Choose the color of the background. Deafult is white
mar	Change margins
xlim	Change the length of the x axis

Value

A graphic

ellipse

Define the coordinates of an ellipse

Description

Define the coordinates of an ellipse

flower 11

Usage

```
ellipse(
    size.x = 10,
    size.y = 7,
    rot = 0,
    shd = NA,
    pos.x = 0,
    pos.y = 0,
    vis = 1,
    lty = 1,
    lwd = 3
```

Value

Return the default ellipse object

Examples

```
ellipse()
```

flower

Define the coordinates of a a flower

Description

Define the coordinates of a a flower

Usage

```
flower(lwd = 3, lty = 1)
```

Arguments

lty

h.arc.left.down

Define the coordinates of the horizontal left down arch

Description

Define the coordinates of the horizontal left down arch

h.arc.left.up

Usage

```
h.arc.left.down(
    size.x = square()$size.x[[1]]/2,
    size.y = square()$size.y[[1]]/2,
    lty = 1,
    lwd = 3,
    vis = 1,
    pos.x = 0,
    pos.y = 0
)
```

Value

Return the horizontal arc left down object

Examples

```
h.arc.left.down()
```

h.arc.left.up

Define the coordinates of the horizontal left up arch

Description

Define the coordinates of the horizontal left up arch

Usage

```
h.arc.left.up(
    size.x = square()$size.x[[1]]/2,
    size.y = square()$size.y[[1]]/2,
    lty = 1,
    lwd = 3,
    vis = 1,
    pos.x = 0,
    pos.y = 0
)
```

Value

Return the horizontal arc left up object

Examples

```
h.arc.left.up()
```

h.arc.right.down 13

h.arc.right.down

Define the coordinates of the horizontal right down arch

Description

Define the coordinates of the horizontal right down arch

Usage

```
h.arc.right.down(
    size.x = square()$size.x[[1]]/2,
    size.y = square()$size.y[[1]]/2,
    lty = 1,
    lwd = 3,
    vis = 1,
    pos.x = 0,
    pos.y = 0
)
```

Value

Return the horizontal arc right down object

Examples

```
h.arc.right.down()
```

h.arc.right.up

Define the coordinates of the horizontal right up arch

Description

Define the coordinates of the horizontal right up arch

Usage

```
h.arc.right.up(
    size.x = square()$size.x[[1]]/2,
    size.y = square()$size.y[[1]]/2,
    lty = 1,
    lwd = 3,
    vis = 1,
    pos.x = 0,
    pos.y = 0
```

Value

Return the horizontal arc right up object

14 hexagon

Examples

```
h.arc.right.up()
```

hello

Hello, World!

Description

```
Prints 'Hello, world!'.
```

Usage

```
hello()
```

Examples

hello()

hexagon

Define the coordinates of an hexagon

Description

Define the coordinates of an hexagon

Usage

```
hexagon(
    size.x = 15,
    size.y = 15,
    rot = 0,
    pos.x = 0,
    pos.y = 0,
    shd = NA,
    vis = 1,
    lty = 1,
    lwd = 3
)
```

Arguments

lwd

hide 15

hide

Functions to modify the visible objects in a cell

Description

Functions to modify the visible objects in a cell

Usage

```
hide(obj, index)
```

Arguments

obj The cell of a matrix

index The index of the element to hide/show/replace

replacement The object with which an element should be replaced

Examples

Arrivano

hline

Define the coordinates of an horizontal line

Description

Define the coordinates of an horizontal line

Usage

```
hline(
    size.x = sqrt(square()$size.x[[1]]^2/2),
    size.y = sqrt(square()$size.y[[1]]^2/2),
    pos.x = 0,
    pos.y = 0,
    lty = 1,
    lwd = 3,
    vis = 1
)
```

Arguments

vis

lily

horizontal.eight

Define the coordinates of an horizontal eight

Description

Define the coordinates of an horizontal eight

Usage

```
horizontal.eight(lwd = 3, lty = 1)
```

Arguments

lty

left.petal

Define the coordinates of a the left petal

Description

Define the coordinates of a the left petal

Usage

```
left.petal(lwd = 3, lty = 1)
```

Arguments

lty

lily

Define the coordinates of a a lily

Description

Define the coordinates of a a lily

Usage

$$lily(lwd = 3, lty = 1)$$

Arguments

luck 17

luck

Define the coordinates of a luck

Description

Define the coordinates of a luck

Usage

```
luck(
    size.x = 10,
    size.y = 15,
    rot = pi/2,
    pos.x = 0,
    pos.y = 0,
    shd = NA,
    vis = 1,
    lty = 1,
    lwd = 3
)
```

Arguments

lwd

luck.4

Define the coordinates of a luck composed of 4 lines

Description

Define the coordinates of a luck composed of 4 lines

Usage

```
luck.4(size.x = 10, size.y = 7, lwd = 3, lty = 1)
```

Arguments

18 ninja

malta

Define the cooordinates for a Malta cross

Description

Define the cooordinates for a Malta cross

Usage

```
malta(size.x = 10, pos.x = 0, shd = NA, lwd = 3, lty = 1)
```

Arguments

lty

maxi

Define the cooordinates for a maxi

Description

Define the cooordinates for a maxi

Usage

```
maxi(size.x = 8, size.y = 4, pos.x = 0, shd = NA, lty = 1, lwd = 3)
```

Arguments

lwd

ninja

Define the coordinates of a ninja star

Description

Define the coordinates of a ninja star

Usage

```
ninja(size.x = 10, size.y = 15, shd = "black", lwd = 3, lty = 0)
```

Arguments

pacman 19

pacman

Define the coordinates of a pacman

Description

Define the coordinates of a pacman

Usage

```
pacman(
    size.x = sqrt(square()$size.x[[1]]^2/2),
    size.y = 0,
    pos.x = 0,
    pos.y = 0,
    theta1 = pi/4,
    theta2 = 7 * pi/4,
    lty = 1,
    lwd = 3,
    shd = NA,
    vis = 1
)
```

Arguments

vis

pentagon

Define the coordinates of a pentagon

Description

Define the coordinates of a pentagon

Usage

```
pentagon(
    size.x = 15,
    size.y = 15,
    rot = pi/2,
    pos.x = 0,
    pos.y = 0,
    shd = NA,
    vis = 1,
    lty = 1,
    lwd = 3
)
```

Arguments

lwd

pizza.2.rev

pizza.2

Define the coordinates of a pizza with two slices

Description

Define the coordinates of a pizza with two slices

Usage

```
pizza.2(
    size.x = 15,
    size.y = 0,
    pos.x = 0,
    pos.y = 0,
    shd = NA,
    lty = 1,
    lwd = 3
)
```

Arguments

lwd

pizza.2.rev

Define the coordinates of an inverse pizza with two slices

Description

Define the coordinates of an inverse pizza with two slices

Usage

```
pizza.2.rev(
    size.x = 15,
    size.y = 0,
    pos.x = 0,
    pos.y = 0,
    shd = NA,
    lty = 1,
    lwd = 3
)
```

Arguments

lwd

pizza.4 21

pizza.4

Define the coordinates of a pizza with four slices

Description

Define the coordinates of a pizza with four slices

Usage

```
pizza.4(size.x = 15, shd = NA, lwd = 3, lty = 1)
```

Arguments

lty

rectangle

Define the coordinates of a rectangle

Description

Define the coordinates of a rectangle

Usage

```
rectangle(
    size.x = 15,
    size.y = 20,
    rot = pi/4,
    pos.x = 0,
    pos.y = 0,
    shd = NA,
    lwd = 3,
    lty = 1,
    vis = 1
```

Arguments

vis

22 s.axe

right.petal

Define the coordinates of a the right petal

Description

Define the coordinates of a the right petal

Usage

```
right.petal(lwd = 3, lty = 1)
```

Arguments

lty

rotation

Title

Description

Title

Usage

```
rotation(obj, n, rule, ...)
```

Arguments

. . .

Examples

```
onje day not todaty
```

s.axe

Define the cooordinates for a single axe (to be used in diff_shapes)

Description

Define the cooordinates for a single axe (to be used in diff_shapes)

Usage

```
s.axe(size.x = 15, pos.x = 0, pos.y = 0, lty = 1, lwd = 3, shd = NA)
```

Arguments

shd

s.biscuit 23

s.biscuit

Define the coordinates of a biscuit (to be used in diff_shapes)

Description

Define the coordinates of a biscuit (to be used in diff_shapes)

Usage

```
s.biscuit(
  pos.x = 0,
  pos.y = 0,
  size.x = 10,
  size.y = 10,
  shd = "black",
  lty = 1,
  lwd = 3
)
```

Arguments

lwd

s.bow.tie

Define the coordinates of a single vertical bow tie (to be used in diff_shapes)

Description

Define the coordinates of a single vertical bow tie (to be used in diff_shapes)

Define the cooordinates for a single bow tie (to be used in diff_shapes)

Usage

```
s.bow.tie(size.x = 10, pos.x = 0, shd = NA, lwd = 3, lty = 1)
s.bow.tie(size.x = 10, pos.x = 0, shd = NA, lwd = 3, lty = 1)
```

Arguments

lwd

24 s.horizontal

s.bow.tie.inv

Define the cooordinates for a single bow tie inverse (to be used in diff_shapes)

Description

Define the cooordinates for a single bow tie inverse (to be used in diff_shapes)

Usage

```
s.bow.tie.inv(size.x = 10, pos.x = 0, shd = NA, lwd = 3, lty = 1)
```

Arguments

lty

s.flower

Define the coordinates of a single flower (to be used in diff shapes)

Description

Define the coordinates of a single flower (to be used in diff shapes)

Usage

```
s.flower(lwd = 3, lty = 1)
```

Arguments

lty

s.horizontal

Define the cooordinates for an horizontal s

Description

Define the cooordinates for an horizontal s

Usage

```
s.horizontal(lty = 1, lwd = 3)
```

Arguments

lwd

s.horizontal.eight 25

 $\verb|s.horizontal.eight|$

Define the coordinates of a single horizontal eight (to be used in diff_shapes)

Description

Define the coordinates of a single horizontal eight (to be used in diff_shapes)

Usage

```
s.horizontal.eight(lwd = 3, lty = 1)
```

Arguments

lty

s.horizontal.inv

Define the cooordinates for an horizontal invertred s

Description

Define the cooordinates for an horizontal invertred s

Usage

```
s.horizontal.inv(lty = 1, lwd = 3)
```

Arguments

lwd

s.lily

Define the coordinates of a a single lily (to be used in diff_shapes)

Description

Define the coordinates of a a single lily (to be used in diff_shapes)

Usage

```
s.lily(lwd = 3, lty = 1)
```

Arguments

26 s.pizza.2

s.malta

Define the cooordinates for a single Malta cross (to be used in diff_shapes)

Description

Define the cooordinates for a single Malta cross (to be used in diff_shapes)

Usage

```
s.malta(size.x = 10, pos.x = 0, shd = NA, lwd = 3, lty = 1)
```

Arguments

lty

s.maxi

Define the cooordinates for a single maxi (to be used in diff_shapes)

Description

Define the cooordinates for a single maxi (to be used in diff_shapes)

Usage

```
s.maxi(size.x = 8, size.y = 4, pos.x = 0, shd = NA, lty = 1, lwd = 3)
```

Arguments

lwd

s.pizza.2

Define the coordinates of a single pizza with two slices (to be used in diff_shapes)

Description

Define the coordinates of a single pizza with two slices (to be used in diff_shapes)

Usage

```
s.pizza.2(
    size.x = 15,
    size.y = 0,
    pos.x = 0,
    pos.y = 0,
    shd = NA,
    lty = 1,
    lwd = 3
)
```

s.pizza.2.rev

Arguments

lwd

s.pizza.2.rev

Define the coordinates of a single inverse pizza with two slices (to be used in diff_shapes)

Description

Define the coordinates of a single inverse pizza with two slices (to be used in diff_shapes)

Usage

```
s.pizza.2.rev(
    size.x = 15,
    size.y = 0,
    pos.x = 0,
    pos.y = 0,
    shd = NA,
    lty = 1,
    lwd = 3
)
```

Arguments

lwd

s.pizza.4

Define the coordinates of a single pizza with four slices

Description

Define the coordinates of a single pizza with four slices

Usage

```
s.pizza.4(size.x = 15, shd = NA, lwd = 3, lty = 1)
```

Arguments

28 s.s.vertical

s.s.horizontal	Define the cooordinates for a single horizontal s (to be used in diff shapes)
----------------	---

Description

Define the cooordinates for a single horizontal s (to be used in diff shapes)

Usage

```
s.s.horizontal(lty = 1, lwd = 3)
```

Arguments

lwd

 ${\tt s.s.horizontal.inv} \qquad \textit{Define the cooordinates for a single inverted horizontal s (to be used in diff shapes)}$

Description

Define the cooordinates for a single inverted horizontal s (to be used in diff shapes)

Usage

```
s.s.horizontal.inv(lty = 1, lwd = 3)
```

Arguments

lwd

s.s.vertical	Define the cooordinates for a single vertical s (to be used in
	diff_shapes)

Description

Define the cooordinates for a single vertical s (to be used in diff_shapes)

Usage

```
s.s.vertical(1ty = 1, 1wd = 3)
```

Arguments

lwd

s.s.vertical.inv 29

s.s.vertical.inv	Define the cooordinates for a single inverted vertical s (to be used in diff_shapes)
	33 — 1 /

Description

Define the cooordinates for a single inverted vertical s (to be used in diff_shapes)

Usage

```
s.s.vertical.inv(lty = 1, lwd = 3)
```

Arguments

lwd

s.vertical

Define the cooordinates for a vertical s

Description

Define the cooordinates for a vertical s

Usage

```
s.vertical(lty = 1, lwd = 3)
```

Arguments

lty

Examples

Arrivano

Description

Define the coordinates of a single vertical eight (to be used in diff_shapes)

Usage

```
s.vertical.eight(lwd = 3, lty = 1)
```

Arguments

30 semi.circle

s.vertical.inv

Define the cooordinates for a vertical inverted s

Description

Define the cooordinates for a vertical inverted s

Usage

```
s.vertical.inv(lty = 1, lwd = 3)
```

Arguments

lwd

semi.circle

Define the coordinates of a downward-facing left semi-circle

Description

Define the coordinates of a downward-facing left semi-circle

Usage

```
semi.circle(
    size.x = sqrt(square()$size.x[[1]]^2/2),
    size.y = 0,
    pos.x = 0,
    pos.y = 0,
    theta1 = pi/4,
    theta2 = 5 * pi/4,
    shd = NA,
    rotation = pi - pi/4,
    lty = 1,
    lwd = 3,
    vis = 1
)
```

Arguments

vis

semi.circle.inv 31

semi.circle.inv

Define the coordinates of an upward-facing right semi-circle

Description

Define the coordinates of an upward-facing right semi-circle

Usage

```
semi.circle.inv(
    size.x = sqrt(square()$size.x[[1]]^2/2),
    size.y = 0,
    pos.x = 0,
    pos.y = 0,
    theta1 = 5 * pi/4,
    theta2 = pi/4,
    shd = NA,
    rotation = pi - pi/4,
    lty = 1,
    lwd = 3,
    vis = 1
)
```

Arguments

vis

semi.circle.rev

Define the coordinates of an downward facing right semi-circle

Description

Define the coordinates of an downward facing right semi-circle

Usage

```
semi.circle.rev(
    size.x = sqrt(square()$size.x[[1]]^2/2),
    size.y = 0,
    pos.x = 0,
    pos.y = 0,
    theta1 = 7 * pi/4,
    theta2 = 3 * pi/4,
    shd = NA,
    rotation = pi - pi/4,
    lty = 1,
    lwd = 3,
    vis = 1
)
```

32 slice

Arguments

vis

Description

Define the coordinates of an upward facing left semi-circle

Usage

```
semi.circle.rev.inv(
    size.x = sqrt(square()$size.x[[1]]^2/2),
    size.y = 0,
    pos.x = 0,
    pos.y = 0,
    theta1 = 3 * pi/4,
    theta2 = 7 * pi/4,
    shd = NA,
    rotation = pi - pi/4,
    lty = 1,
    lwd = 3,
    vis = 1
)
```

Arguments

vis

slice

Define the coordinates of a pizza slice

Description

Define the coordinates of a pizza slice

Usage

```
slice(
    size.x = 15,
    size.y = 0,
    pos.x = 0,
    pos.y = 0,
    theta1 = pi/4,
    theta2 = 3 * pi/4,
    lty = 1,
    lwd = 3,
    vis = 1,
    shd = NA
)
```

split.mat 33

Arguments

shd

split.mat

Isolate ONLY the visible objects in a cell

Description

Isolate ONLY the visible objects in a cell

Usage

```
## S3 method for class 'mat'
split(m, cell = NULL, vis = NULL, mat.type = 9)
```

Arguments

m The matrix

cell the index of the cell to be splitted

vis boh

mat.type Does the matrix have 4 or 9 cells? Default is 9

square

Define the coordinates of a square

Description

Define the coordinates of a square

Usage

```
square(
    size.x = 15,
    size.y = size.x,
    rot = pi/4,
    pos.x = 0,
    pos.y = 0,
    shd = NA,
    vis = 1,
    lty = 1,
    lwd = 3
)
```

Value

Return the default square object

Examples

```
square()
```

star star

square4

Define the coordinates of a square composed of 4 lines

Description

Define the coordinates of a square composed of 4 lines

Usage

```
square4(
  size.x = sqrt(square()$size.x[[1]]^2/2),
  size.y = sqrt(square()$size.y[[1]]^2/2),
  pos.x = sqrt(square()$size.x[[1]]^2/2),
  pos.y = sqrt(square()$size.y[[1]]^2/2),
  lwd = 3,
  lty = 1
)
```

Arguments

lty

star

Define the coordinates of a star

Description

Define the coordinates of a star

Usage

```
star(size.x = 10, size.y = 15, shd = "black", lwd = 3, lty = 0)
```

Arguments

triangle 35

triangle

Define the coordinates of a triangle

Description

Define the coordinates of a triangle

Usage

```
triangle(
    size.x = 15,
    size.y = 15,
    pos.x = 0,
    pos.y = 0,
    rot = pi/2,
    shd = NA,
    vis = 1,
    lty = 1,
    lwd = 3
)
```

Value

Return the default triangle object

Examples

```
triangle()
```

up.petal

Define the coordinates of a the up petal

Description

Define the coordinates of a the up petal

Usage

```
up.petal(lwd = 3, lty = 1)
```

Arguments

36 v.arc.left.up

v.arc.left.down

Define the coordinates of the vertical left down arch

Description

Define the coordinates of the vertical left down arch

Usage

```
v.arc.left.down(
    size.x = square()$size.x[[1]]/2,
    size.y = square()$size.y[[1]]/2,
    lty = 1,
    lwd = 3,
    vis = 1,
    pos.x = 0,
    pos.y = 0
)
```

Value

Return the vertical arc left down object

Examples

```
v.arc.left.down()
```

v.arc.left.up

Define the coordinates of the vertical left up arch

Description

Define the coordinates of the vertical left up arch

Usage

```
v.arc.left.up(
    size.x = square()$size.x[[1]]/2,
    size.y = square()$size.y[[1]]/2,
    pos.x = 0,
    pos.y = 0,
    vis = 1,
    lty = 1,
    lwd = 3
)
```

Arguments

```
pos.y
```

v.arc.right.down 37

v.arc.right.down

Define the coordinates of the vertical right down arch

Description

Define the coordinates of the vertical right down arch

Usage

```
v.arc.right.down(
    size.x = square()$size.x[[1]]/2,
    size.y = square()$size.y[[1]]/2,
    lty = 1,
    lwd = 3,
    vis = 1,
    pos.x = 0,
    pos.y = 0
)
```

Value

Return the vertical arc right down object

Examples

```
v.arc.right.down()
```

v.arc.right.up

Define the coordinates of the vertical right up arch

Description

Define the coordinates of the vertical right up arch

Usage

```
v.arc.right.up(
    size.x = square()$size.x[[1]]/2,
    size.y = square()$size.y[[1]]/2,
    pos.x = 0,
    pos.y = 0,
    vis = 1,
    lty = 1,
    lwd = 3
)
```

Value

Return the vertical arc right up object

38 vline

Examples

```
v.arc.right.up()
```

vertical.eight

Define the coordinates of a vertical eight

Description

Define the coordinates of a vertical eight

Usage

```
vertical.eight(lwd = 3, lty = 1)
```

Arguments

lty

vline

Define the coordinates of a vertical line

Description

Define the coordinates of a vertical line

Usage

```
vline(
    size.x = sqrt(square()$size.x[[1]]^2/2),
    size.y = sqrt(square()$size.y[[1]]^2/2),
    pos.x = 0,
    pos.y = 0,
    lty = 1,
    lwd = 3,
    vis = 1
)
```

Arguments

vis

X 39

X Define the coordinates of an X

Description

Define the coordinates of an X

Usage

```
X(
    size.x = sqrt(square()$size.x[[1]]^2/2),
    size.y = sqrt(square()$size.y[[1]]^2/2),
    lwd = 3,
    lty = 1
)
```

Arguments

Index

axe, 3	pizza.2, 20
,	pizza.2.rev, 20
biscuit, 3	pizza.4, 21
bow.tie, 4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
bow.tie.inv,5	rectangle, 21
2011 02012111, 0	right.petal, 22
circle, 5	rotation, 22
cof, 6	100001011, 22
	s.axe, 22
cross, 6	s.biscuit, 23
cross.dice, 7	s.bow.tie, 23
dC11 7	s.bow.tie.inv, 24
decof.cell,7	
diagline, 7	s.flower, 24
diagline.inv, 8	s.horizontal, 24
dice, 8	s.horizontal.eight, 25
dot, 9	s.horizontal.inv,25
down.petal, 9	s.lily, 25
draw, 10	s.malta, 26
	s.maxi, 26
ellipse, 10	s.pizza.2, <mark>26</mark>
	s.pizza.2.rev, 27
flower, 11	s.pizza.4, 27
	s.s.horizontal, 28
h.arc.left.down, 11	s.s.horizontal.inv, 28
h.arc.left.up, 12	s.s.vertical, 28
h.arc.right.down, 13	
h.arc.right.up, 13	s.s.vertical.inv, 29
hello, 14	s.vertical, 29
	s.vertical.eight, 29
hexagon, 14	s.vertical.inv, 30
hide, 15	semi.circle, 30
hline, 15	semi.circle.inv, 31
horizontal.eight, 16	semi.circle.rev,31
	<pre>semi.circle.rev.inv, 32</pre>
left.petal, 16	slice, 32
lily, 16	split.mat, 33
luck, 17	square, 33
luck. 4, 17	square4, 34
	star, 34
malta, 18	Stal , 34
maxi, 18	triangle, 35
,	ti faligie, 55
ninja, 18	up.petal, 35
-	
pacman, 19	v.arc.left.down,36
pentagon, 19	v.arc.left.up, 36
r	

INDEX 41

```
v.arc.right.down, 37
v.arc.right.up, 37
vertical.eight, 38
vline, 38
X, 39
```