

PROYECTO 2DO PARCIAL

TERMOMETRO DIGITAL

MICROCONTROLADORES

Uriel Everardo Sandoval Almanza Aaron Medrano Márquez Sergio Uriel Pérez

ING. ROBÓTICA

Prof. Alfredo Rentería Villanueva

MAYO 2025

TERMOMETRO DIGITAL

OBJETIVO

Diseñar, fabricar y programar un termómetro digital que despliegue temperatura en grados Celsius y Fahrenheit, utilizando el Launchpad MSP430F5529.

OBJETIVOS ESPECIFICOS

- Utilizar 4 displays de 7 segmentos para mostrar la temperatura y la unidad de medida (también se puede utilizar un módulo que contenga los 4 displays en un solo encapsulado)
- Los tres primeros displays de la izquierda muestran temperatura (ej. 099)
- El último display (hasta la derecha) muestra la unidad de medida (ej. C)
- Rango de medición: 0°C a 150°C
- Utilizar un botón para cambiar de unidad de medida
- Utilizar el sensor de temperatura LM35
- Diseñar y fabricar una PCB que pueda montarse directamente sobre los pines hembra del Launchpad y que contenga toda la circuitería para el/los displays, el LM35 y el botón.

INTRODUCCIÓN

Este proyecto tiene como objetivo desarrollar un dispositivo capaz de medir la temperatura ambiente y mostrarla de forma digital en 4 display; además, se incluirá la opción de cambiar la unidad de medida entre Celsius y Fahrenheit.

El enfoque es realizar una PCB que funcione como shield para una lauchpad MSP430.

INVESTIGACIÓN

La serie LM35 son dispositivos de temperatura de circuito integrado de alta precisión, con una salida de voltaje linealmente proporcional a la temperatura en grados Celsius, además no requiere calibración ni ajuste externo para ofrecer precisiones típicas a temperatura ambiente

Está diseñado para funcionar en un rango de temperatura de −55°C a 150°C, mientras que el modelo

1.0 Diagrama de conexión sensor LM35

		MIN	MAX	UNIT
Supply voltage		-0.2	35	V
Output voltage		-1	6	V
Output current			10	mA
Maximum Junction Temperature, T₁max			150	°C
Storage Temperature, T _{stg}	TO-CAN, TO-92 Package	-60	150	°C
	TO-220, SOIC Package	-65	150	

1.1 Tabla de rangos de voltaje para temperatura

Los dispositivos de la serie LM35 están disponibles en encapsulados herméticos tipo transistor TO.

DIAGRAMAS

CONEXIONES

2.0 Diagrama de conexiones

PROTOTIPO

2.1 Prototipo final

ESQUEMATICO

TERMOMETRO DIGITAL

2.2.1 Cara frontal esquemático

2.2.2 Cara trasera esquemático

CIRCUITO

2.3.1 Cara frontal placa final

2.3.2 Cara trasera placa final

CODIGO

```
#include "msp430f5529.h"
                                                  P3DIR |= 0x7F;
#include <stdint.h>
                                                  P3OUT \&= ^{0}x7F;
#include <stdio.h>
                                                  P4DIR |= 0x0F;
#include <stdlib.h> // para abs()
                                                  P4OUT \&= \text{~}0x0F;
volatile uint8 t mostrarFahrenheit = 0;
unsigned char digito actual = 0;
                                                  configurarADC();
unsigned char letra actual = 0x39;
                                                  configurarBoton();
unsigned char display[3] = \{0, 0, 0\};
                                                  configurarUART();
const unsigned char tabla segmentos[10]
= {
                                                  TAOCCTLO = CCIE;
  0x3F, 0x06, 0x5B, 0x4F, 0x66,
                                                  TAOCCRO = 1000 - 1;
  0x6D, 0x7D, 0x07, 0x7F, 0x6F
                                                  TAOCTL = TASSEL 2 | MC 1 | ID 3 |
};
                                               TACLR;
void configurarADC(void);
                                                  __enable_interrupt();
uint16 t leerADC(void);
                                                  bis SR register(LPM0 bits);
uint16 t celsiusAFahrenheit(uint16 t
                                               }
celsius);
                                               void configurarADC(void) {
void configurarBoton(void);
                                                  P7SEL |= BITO;
                                                                         // Activación
void configurarUART(void);
                                                de función ADC en pin P7.0
void enviarCadena(char *str);
                                                  ADC12CTL0 = ADC12SHT0 2 |
                                                ADC12ON;
void actualizar Display (uint 16 t
temperatura);
                                                  ADC12CTL1 = ADC12SHP;
void main(void) {
                                                  ADC12MCTL0 = ADC12INCH 12;
                                                                                    //
                                                Canal A12 (P7.0)
  WDTCTL = WDTPW | WDTHOLD;
                                                  ADC12CTL0 |= ADC12ENC;
```

```
}
                                               }
                                               void enviarCadena(char *str) {
uint16 t leerADC(void) {
  ADC12CTL0 |= ADC12SC;
                                                 while (*str != 0) {
  while (ADC12CTL1 & ADC12BUSY);
                                                   while (!(UCA1IFG & UCTXIFG));
  return ADC12MEM0;
                                                   UCA1TXBUF = *str++;
                                                 }
}
uint16 t celsiusAFahrenheit(uint16 t
                                               }
celsius) {
                                               void actualizarDisplay(uint16 t
  return (celsius *9/5) + 32;
                                               temperatura) {
}
                                                 display[0] = temperatura / 100;
void configurarBoton(void) {
                                                 display[1] = (temperatura / 10) % 10;
  P1DIR &= ~BIT6;
                                                 display[2] = temperatura % 10;
  P1REN |= BIT6;
                                               }
  P1OUT |= BIT6;
                                               #pragma vector = TIMERO AO VECTOR
  P1IE |= BIT6;
                                               __interrupt void TIMERO_A0_ISR(void) {
  P1IES |= BIT6;
                                                 static uint16_t sendCounter = 0;
  P1IFG &= ~BIT6;
                                                 static unsigned long adc accum = 0;
}
                                                 static uint16 t sample count = 0;
void configurarUART(void) {
                                                 static uint16_t last_temp = 0;
  P4SEL |= BIT4 + BIT5;
                                                 uint16 t adc value, mv, temp c,
                                               temp_mostrar;
  UCA1CTL1 |= UCSWRST;
                                                 char buffer[32];
  UCA1CTL1 |= UCSSEL 2;
                                                 adc value = leerADC();
  UCA1BR0 = 6;
                                                 adc_accum += adc_value;
  UCA1BR1 = 0;
                                                 sample count++;
  UCA1MCTL = UCBRS_0 + UCBRF_13 +
UCOS16;
  UCA1CTL1 &= ~UCSWRST;
```

```
if (sample count >= 4) { // promedio
                                                   P4OUT \&= ^{\circ}0x0F;
de solo 4 muestras
                                                   switch (digito actual) {
    adc_value = adc_accum / 4;
                                                     case 0:
    adc accum = 0;
                                                     case 1:
    sample count = 0;
                                                     case 2:
    mv = (uint32 t)adc value * 3300 /
                                                       P3OUT =
4095;
                                                tabla segmentos[display[digito actual]];
    temp c = mv / 10;
                                                       P4OUT |= (1 << digito actual);
    if (abs(temp c - last temp) \geq 1) { //
                                                       break;
cambio de al menos 1 °C
                                                     case 3:
      last temp = temp c;
                                                       P3OUT = letra actual;
    }
                                                       P4OUT |= BIT3;
    temp mostrar = mostrarFahrenheit?
                                                       break;
celsiusAFahrenheit(last temp):
last_temp;
                                                   }
    if (temp mostrar > 999)
                                                   digito_actual++;
temp mostrar = 999;
                                                   if (digito_actual > 3)
    actualizarDisplay(temp mostrar);
                                                     digito actual = 0;
    letra actual = mostrarFahrenheit?
                                                }
0x71:0x39;
                                                #pragma vector = PORT1_VECTOR
    if (++sendCounter >= 500) {
                                                 interrupt void Port 1(void) {
      sendCounter = 0;
                                                   if (P1IFG & BIT6) {
      sprintf(buffer, "%d %c\r\n",
temp mostrar, mostrarFahrenheit? 'F':
                                                     mostrarFahrenheit ^= 1;
'C');
                                                     P1IFG &= ~BIT6;
      enviarCadena(buffer);
                                                   }
    }
                                                }
  }
```

BIBLIOGRAFIA

Texas Instruments. (s.f.). LM35 precision centigrade temperature sensors (DS00611B). Recuperado de https://www.ti.com/lit/ds/symlink/lm35.pdf?ts=1736143362540

CONCLUSIÓN

Este proyecto permitió desarrollar un sistema sencillo y funcional para medir y mostrar la temperatura ambiente en tiempo real, utilizando 1 display de 4 dígitos 7 segmentos y un sensor LM35. La incorporación de un botón para cambiar entre Celsius y Fahrenheit mejora su utilidad, además, el diseño de una PCB tipo shield para el Launchpad MSP430 hace que la solución sea compacta, ordenada y fácil de integrar en futuras aplicaciones.