概率统计第一周作业

201300035 方盛俊

1.1

- 1. **频率与概率的关系:** 频率是随机事件在相同条件下重复试验出现次数和试验总次数的比值 f, 频率会根据重复试验的次数发生变化, 一般随着试验次数的增加而在一个常数 p 附近摆动, 并且摆幅越来越小, 这个常数就是概率, 它是恒定的, 不会随着试验次数的变化而变化.
- 2. **随机现象中的二重性:** 频率 f 会随着试验次数的增加而发生一定变化, 这是 **随机性**; 但随着试验次数增多, 频率也就越来越接近概率 p, 这是 **稳定性**.
- 3. 对立与互不相容事件的关系:对立事件是互不相容事件,但互不相容事件不一定是对立事件.

1.2

(i)

化简 $(A-AB)\cup B$:

根据事件的差公式可以将 $(A-AB)\cup B$ 化简为 $(A\cap \overline{B})\cup B$, 再根据分配律展开成 $(A\cup B)\cap (\overline{B}\cup B)$, 最后化简成 $A\cup B$.

化简 $\overline{A \cup B}$:

根据德摩根律可将 $\overline{A \cup B}$ 化简成 $A \cap \overline{B}$.

(ii)

 $\therefore A, B, C$ 互不相容, 即 $A \cap B = B \cap C = A \cap C = \emptyset$

$$\therefore (A \cup B) - C = (A \cup B) \cap \overline{C}$$

$$= (A \cap \overline{C}) \cup (B \cap \overline{C})$$

$$= (A - A \cap C) \cup (B - B \cap C)$$

$$= (A - \emptyset) \cup (B - \emptyset)$$

$$= A \cup B$$

即化简成 $A \cup B$.

1.3

(i)
$$\overline{A_1}\cap\left(igcap_{i=2}^nA_i
ight)$$

(ii)
$$\bigcup_{i=1}^n \overline{A_i}$$

(iii)
$$igcup_{i=1}^n \left[\overline{A_i} \cap \left(igcap_{1 \leqslant j \leqslant n, i \neq j} A_j
ight)
ight]$$

(iv)
$$\bigcup_{1\leqslant i < j\leqslant n} \overline{A_i} \cap \overline{A_j}$$

$$\text{(v)} \, \frac{\displaystyle \bigcup_{1\leqslant i < j < k \leqslant n} \overline{A_i} \cap \overline{A_j} \cap \overline{A_k}}$$

(vi)
$$\bigcap_{i=1}^n A_i$$

1 4

使用数学归纳法,先证
$$\overline{\bigcup_{i=1}^n A_i} = \bigcap_{i=1}^n \overline{A_i}$$
.

奠基 (Basis): 当
$$n=2$$
 时, 已有 $\overline{A_1\cup A_2}=\overline{A_1}\cap \overline{A_2}$ 即 $\overline{\bigcup_{i=1}^n A_i}=\bigcap_{i=1}^n \overline{A_i}$ 成立.

归纳假设 (I.H.): 对于
$$n\geqslant 2$$
 有 $\overline{\bigcup_{i=1}^n A_i}=\bigcap_{i=1}^n \overline{A_i}$ 成立.

归纳步骤 (I.S.):

要证明
$$\overline{\bigcup_{i=1}^{n+1}A_i}=\bigcap_{i=1}^{n+1}\overline{A_i}.$$

即证明
$$\overline{\left(igcup_{i=1}^n A_i
ight)\cup A_{i+1}} = \left(igcap_{i=1}^n \overline{A_i}
ight)\cap \overline{A_{i+1}}.$$

套入 n=2 时的对偶律 $\overline{A_1 \cup A_2} = \overline{A_1} \cap \overline{A_2}$ 可知

$$\overline{\left(\bigcup_{i=1}^n A_i\right) \cup A_{i+1}} = \left(\bigcup_{i=1}^n A_i\right) \cap \overline{A_{i+1}}$$

且由归纳假设有
$$\bigcup_{i=1}^n A_i = \bigcap_{i=1}^n \overline{A_i}$$
.

即有
$$\overline{\left(igcup_{i=1}^n A_i
ight) \cup A_{i+1}} = \left(igcap_{i=1}^n \overline{A_i}
ight) \cap \overline{A_{i+1}}$$
成立.

归纳结束

综上可证
$$\overline{\bigcup_{i=1}^n A_i} = \bigcap_{i=1}^n \overline{A_i}$$
 成立.

同理可证
$$\overline{\bigcap_{i=1}^n A_i} = \bigcup_{i=1}^n \overline{A_i}$$
 成立.

1.5

$$P(\overline{A}B) = P(B - A) = P(B) - P(AB) = \frac{1}{5} - \frac{1}{20} = \frac{3}{20}$$

$$P(\overline{A} \cup \overline{B}) = P(\overline{AB}) = 1 - P(AB) = 1 - \frac{1}{20} = \frac{19}{20}$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC) = \frac{1}{3} + \frac{1}{5} + \frac{1}{6} - \frac{1}{20} - \frac{1}{20} - \frac{1}{60} + \frac{1}{100} = \frac{89}{150}$$

$$P(\overline{A}\ \overline{B}\ \overline{C}) = P(\overline{A \cup B \cup C}) = 1 - P(A \cup B \cup C) = 1 - \frac{89}{150} = \frac{61}{150}$$

$$P(\overline{A}\ \overline{B}C) = P(\overline{A \cup B}C) = P(C - (A \cup B)) = P(C) - P(C(A \cup B)) = P(C) - P(AC \cup BC) = P(C) - [P(AC) + P(BC) - P(ABC)] = \frac{1}{6} - \left[\frac{1}{20} + \frac{1}{60} - \frac{1}{100}\right] = \frac{11}{100}$$

$$P((\overline{A}\ \overline{B}) \cup C) = P(\overline{A}\ \overline{B}) + P(C) - P(\overline{A}\ \overline{B}C) = P(\overline{A} \cup \overline{B}) + P(C) - P(\overline{A}\ \overline{B}C) = 1 - P(A \cup B) + P(C) - P(\overline{A}\$$

1.6

由容斥原理可知 $P(A \cup B) = P(A) + P(B) - P(AB)$ 即有 $P(AB) = P(A) + P(B) - P(A \cup B)$.

而我们又有 $P(A \cup B)$ 的取值范围 $0.9 = P(B) \leqslant P(A \cup B) \leqslant 1$

当 $P(A \cup B)$ 取得最小值 0.9 时, P(AB) 取得最大值 P(AB) = 0.6 + 0.9 - 0.9 = 0.6

1.7

$$\therefore P(\overline{A}\ \overline{B}) = P(\overline{A \cup B}) = 1 - P(A \cup B) = 1 - P(A) - P(B) + P(AB)$$

$$P(AB) = P(\overline{A} \overline{B})$$

$$0 = 1 - P(A) - P(B)$$

$$\therefore P(B) = \frac{1}{4}$$

$$\therefore P(A) = 1 - P(B) = \frac{3}{4}$$

1.8

$$\therefore P(\overline{A} \ \overline{B}) = P(\overline{A \cup B}) = 1 - P(A \cup B) = 1 - P(A) - P(B) + P(AB)$$

$$P(AB) = P(\overline{A} \overline{B}) - 1 + P(A) + P(B)$$

$$\therefore P(B-A) = P(B) - P(AB) = P(B) - [P(\overline{A} \, \overline{B}) - 1 + P(A) + P(B)] = 1 - P(\overline{A} \, \overline{B}) - P(A) = 1 - 0.7 - 0.1 = 0.2$$

1.9

使用数学归纳法.

奠基 (Basis):

当 n=2 时.

$$A_1 \cup A_2 = (A_1 - A_2) \cup (A_1 A_2) \cup (A_2 - A_1)$$
, 且 $A_1 - A_2$, $A_1 A_2$, $A_2 - A_1$ 两两互不相容, 由有限可加性可知

$$\therefore P(\bigcup_{i=1}^n A_i) = P(A_1 \cup A_2) = P(A_1 - A_2) + P(A_1 A_2) + P(A_2 - A_1)$$

$$P(A_1 - A_2) = P(A_1) - P(A_1 A_2), P(A_2 - A_1) = P(A_2) - P(A_1 A_2)$$

$$\therefore P(\bigcup_{i=1}^n A_i) = P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 A_2)$$

满足式子
$$P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_i A_j) + \sum_{i < j < k} P(A_i A_j A_k) + \dots + (-1)^{n-1} P(A_1 A_2 \dots A_n)$$

归纳假设 (I.H.):

当
$$n\geqslant 2$$
 时有 $P(igcup_{i=1}^n A_i)=\sum_{i=1}^n P(A_i)-\sum_{i< j} P(A_iA_j)+\sum_{i< j< k} P(A_iA_jA_k)+\cdots+(-1)^{n-1}P(A_1A_2\cdots A_n)$ 成立.

即有
$$P(igcup_{i=1}^n A_i) = \sum_{r=1}^n (-1)^{r+1} \sum_{i_1 < \dots < i_r} P(A_{i_1} \cdots A_{i_r})$$
 成立.

归纳步骤 (I.H.):

对于
$$n+1$$
 的情况,要证明 $P(\bigcup_{i=1}^{n+1}A_i)=\sum_{i=1}^{n+1}P(A_i)-\sum_{i< j}P(A_iA_j)+\sum_{i< j< k}P(A_iA_jA_k)+\cdots+(-1)^nP(A_1A_2\cdots A_nA_{n+1})$

即
$$P(igcup_{i=1}^{n+1} A_i) = \sum_{r=1}^{n+1} (-1)^{r+1} \sum_{i_1 < \dots < i_r} P(A_{i_1} \dots A_{i_r})$$

根据
$$n=2$$
 情况的式子 $P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1A_2)$, 我们可知

$$\begin{split} P(\bigcup_{i=1}^{n+1}A_i) = & P((\bigcup_{i=1}^nA_i) \cup A_{n+1}) \\ = & P(\bigcup_{i=1}^nA_i) + P(A_{n+1}) - P((\bigcup_{i=1}^nA_i) \cap A_{n+1}) \\ = & P(\bigcup_{i=1}^nA_i) + P(A_{n+1}) - P((\bigcup_{i=1}^n(A_i \cap A_{n+1})) \\ = & P(\bigcup_{i=1}^nA_i) + P(A_{n+1}) - P(\bigcup_{i=1}^n(A_i \cap A_{n+1})) \\ = & \sum_{r=1}^n(-1)^{r+1} \sum_{i_1 < \dots < i_r \leqslant n} P(A_{i_1} \dots A_{i_r}) - \sum_{r=1}^n(-1)^{r+1} \sum_{i_1 < \dots < i_r \leqslant n} P(A_{i_1} \dots A_{i_r} A_{n+1}) + P(A_{n+1}) \\ = & \sum_{i=1}^n P(A_i) + \sum_{r=2}^n(-1)^{r+1} \sum_{i_1 < \dots < i_r \leqslant n} P(A_{i_1} \dots A_{i_r}) - \sum_{r=1}^n(-1)^{r+1} \sum_{i_1 < \dots < i_r \leqslant n} P(A_{i_1} \dots A_{i_r} A_{n+1}) + P(A_{n+1}) \\ = & \sum_{i=1}^{n+1} P(A_i) + \sum_{r=2}^n(-1)^{r+1} \sum_{i_1 < \dots < i_r \leqslant n} P(A_{i_1} \dots A_{i_r}) - \sum_{r=1}^{n-1}(-1)^{r+1} \sum_{i_1 < \dots < i_r \leqslant n} P(A_{i_1} \dots A_{i_r} A_{n+1}) + (-1)^{n+2} P(A_1 \dots A_{n+1}) \end{split}$$

而我们又可以展开

归纳完毕.

综上可证,对于任意
$$n$$
 个事件 A_1,A_2,\cdots,A_n ,有 $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_iA_j) + \sum_{i < j < k} P(A_iA_jA_k) + \cdots + (-1)^{n-1}P(A_1A_2\cdots A_n)$ 成立.