# Lecture 11: Sequence-to-sequence architectures

# **Learning settings**

# slide credit: A. Karpathy



One-to-one: image to class label

One-to-many: text generation/image captioning

Many-to-one: sentiment analysis

Many-to-many 1: machine translation

Many-to-many 2: online classification (e.g. POS tagging)

### **Bi-directional RNN**



for t = 1 to T do

Do forward pass for the forward hidden layer, storing activations at each timestep

for t = T to 1 do

Do forward pass for the backward hidden layer, storing activations at each timestep

for t = 1 to T do

Do forward pass for the output layer, using the stored activations from both hidden layers

[A Graves, PhD thesis]

### Uni-directional vs bi-directional

- Bi-directional is not applicable when "future" is unavailable
- When future is available bi-directional is almost always better
- E.g. NLP (batch mode), bioinformatics

# Learning settings

# slide credit: A. Karpathy



aka "seq2seq"



Important notes:

- Fixed lexicon (160,000 English, 80,000 French) +
   'UNK' word
- 2. Deep (four layers, 1000 cells in each)
- 3. Reversing input sequence helps a lot
- 4. Using two different LSTMs
- 5. Decoding proceeds by beam search



Decoding proceeds by beam search:

- 1. At the first step generate top-K words
- At each step, expand each of the K in top-L ways (gives KL results)
- 3. Pick the best K out of KL results

NB: needs some mechanism to compare sequences of different lengths

# Learned embeddings:





PCA 1000-> 2

| Type      | Sentence                                                                                       |  |  |  |  |
|-----------|------------------------------------------------------------------------------------------------|--|--|--|--|
| Our model | Ulrich UNK, membre du conseil d'administration du constructeur automobile Audi,                |  |  |  |  |
|           | affirme qu' il s' agit d' une pratique courante depuis des années pour que les téléphones      |  |  |  |  |
|           | portables puissent être collectés avant les réunions du conseil d'administration afin qu'ils   |  |  |  |  |
|           | ne soient pas utilisés comme appareils d'écoute à distance.                                    |  |  |  |  |
| Truth     | Ulrich Hackenberg, membre du conseil d'administration du constructeur automobile Aud           |  |  |  |  |
|           | déclare que la collecte des téléphones portables avant les réunions du conseil, afin qu'ils    |  |  |  |  |
|           | ne puissent pas être utilisés comme appareils d'écoute à distance, est une pratique courante   |  |  |  |  |
|           | depuis des années.                                                                             |  |  |  |  |
| Our model | "Les téléphones cellulaires, qui sont vraiment une question, non seulement parce qu'ils        |  |  |  |  |
|           | pourraient potentiellement causer des interférences avec les appareils de navigation, mais     |  |  |  |  |
|           | nous savons, selon la FCC, qu'ils pourraient interférer avec les tours de téléphone cellulaire |  |  |  |  |
|           | lorsqu' ils sont dans l' air ", dit UNK .                                                      |  |  |  |  |
| Truth     | "Les téléphones portables sont véritablement un problème, non seulement parce qu'ils           |  |  |  |  |
|           | pourraient éventuellement créer des interférences avec les instruments de navigation, mais     |  |  |  |  |
|           | parce que nous savons, d'après la FCC, qu'ils pourraient perturber les antennes-relais de      |  |  |  |  |
|           | téléphonie mobile s' ils sont utilisés à bord ", a déclaré Rosenker.                           |  |  |  |  |
| Our model | Avec la crémation, il y a un "sentiment de violence contre le corps d' un être cher",          |  |  |  |  |
|           | qui sera "réduit à une pile de cendres" en très peu de temps au lieu d'un processus de         |  |  |  |  |
|           | décomposition "qui accompagnera les étapes du deuil".                                          |  |  |  |  |
| Truth     | Il y a, avec la crémation, "une violence faite au corps aimé",                                 |  |  |  |  |
|           | qui va être "réduit à un tas de cendres" en très peu de temps, et non après un processus de    |  |  |  |  |
|           | décomposition, qui "accompagnerait les phases du deuil".                                       |  |  |  |  |



# [Donahue et al. 2015]



[Donahue et al. 2015]\*



- Train on 108,000 images with descriptions
- Test on 1000 images (5 descr per image)
- For each image score 5000 descriptions
- See if top-k has a correct description:

|             | R@1  | R@5  | R@10 | $\mathbf{Med}r$ |
|-------------|------|------|------|-----------------|
| $LRCN_{1u}$ | 14.1 | 31.3 | 39.7 | 24              |
| $LRCN_{2u}$ | 3.8  | 12.0 | 17.9 | 80              |
| $LRCN_{2f}$ | 17.5 | 40.3 | 50.8 | 9               |
| $LRCN_{4f}$ | 15.8 | 37.1 | 49.5 | 10              |

[Donahue et al. 2015]

#### Best results:



A female tennis player in action on the court.



A group of young men playing a game of soccer



A man riding a wave on top of a surfboard.



A baseball game in progress with the batter up to plate.



A brown bear standing on top of a lush green field.



A person holding a cell phone in their hand.

[Donahue et al. 2015]

# End-to-end dense image captioning



k-anchors at W'xH' positions

[Johnson et al, CVPR16]

# End-to-end dense image captioning



# [Johnson et al, CVPR16]

# End-to-end dense image captioning



# [Johnson et al, CVPR16]

# Training set: "visual genome"



Girl feeding elephant Man taking picture Huts on a hillside

#### A man taking a picture.

Flip flops on the ground
Hillside with water below
Elephants interacting with people
Young girl in glasses with backpack
Elephant that could carry people

#### An elephant trunk taking two bananas.

#### A bush next to a river.

People watching elephants eating A woman wearing glasses.

A bag

Glasses on the hair.

The elephant with a seat on top A woman with a purple dress. A pair of pink flip flops. A handle of bananas.

➤ Tree near the water

A blue short.

#### Small houses on the hillside

A woman feeding an elephant A woman wearing a white shirt and shorts A man taking a picture A man wearing an orange shirt An elephant taking food from a woman A woman wearing a brown shirt A woman wearing purple clothes A man wearing blue flip flops Man taking a photo of the elephants Blue flip flop sandals The girl's white and black handbag The girl is feeding the elephant The nearby river A woman wearing a brown t shirt Elephant's trunk grabbing the food The lady wearing a purple outfit A young Asian woman wearing glasses Elephants trunk being touched by a hand A man taking a picture holding a camera Elephant with carrier on it's back Woman with sunglasses on her head A body of water Small buildings surrounded by trees Woman wearing a purple dress Two people near elephants A man wearing a hat A woman wearing glasses

"New Image-net"

108,249 Images

4.2 Million Region

Descriptions

1.7 Million Visual Question

**Answers** 

2.1 Million Object Instances

1.8 Million Attributes

1.8 Million Relationships Everything Mapped to Wordnet Synsets

[Krishna et al. 2016]

Leaves on the ground





Important notes:

- Fixed lexicon (160,000 English, 80,000 French) +
   'UNK' word
- 2. Deep (four layers, 1000 cells in each)
- 3. Reversing input sequence helps a lot
- 4. Using two different LSTMs
- 5. Decoding proceeds by beam search



Problem:

all the meaning has to be carried from here

- Large memory needed
- Information has to survive for a very long time



#### decoder RNN



$$s_i = f(s_{i-1}, y_{i-1}, c_i)$$

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$

$$e_{ij} = a(s_{i-1}, h_j)$$

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$$

encoder RNN 1 encoder RNN 2

# decoder RNN



$$e_{ij} = a(s_{i-1}, h_j)$$

- Attention model: feed-forward neural network
- All components are trained end-to-end

encoder RNN 1 encoder RNN 2





- BLEU-score ≈ precision over n-grams
- Trained either with <30 word phrases or with <50 word phrases</li>

An admitting privilege is the right of a doctor to admit a patient to a hospital or a medical centre to carry out a diagnosis or a procedure, based on his status as a health care worker at a hospital.

# LSTM system:

Un privilège d'admission est le droit d'un médecin de reconnaître un patient à l'hôpital ou un centre médical <u>d'un diagnostic ou de prendre un diagnostic en</u> fonction de son état de santé.

# Attention-based system:

Un privilège d'admission est le droit d'un médecin d'admettre un patient à un hôpital ou un centre médical pour effectuer un diagnostic ou une procédure, selon son statut de travailleur des soins de santé à l'hôpital.

# Simpler translation with attention



"Deep Learning", Spring 2017: Lecture 11, "Sequence-to-sequence"

# Recap

- Attention solved the limited memory problem
- Complexity is quadratic (in the length of sequence)





# Online seq2seq with monotonic alignment

Many problems are sequence 2 sequence with monotonic alignment:

- Not one-to-one as sequence prediction or POS tagging
- More constrained than general seq2seq



[Graves et al. 2006]

# Online seq2seq with monotonic alignment



Decoding: 'aaa\_\_bb\_c\_\_ddaa' -> abcda

What should be the loss that encourage correct parsing?

Answer: connectionist temporal classification (CTC) loss

[Graves et al. 2006]

"Deep Learning", Spring 2017: Lecture 11, "Sequence-to-sequence"

#### **CTC-loss**



- Augment the output state with blank
- Predict probabilities of each symbol (inc. blank) at each time moment
- Compute the probability of each lattice vertex under correct paths using forward-backward
- Push log-probabilities up (ML training) proportionally to the current probability [Graves et al. 2006]

# **Evolution of the CNC signal**

GT sequence:



Prediction

Gradient w.r.t. prediction

[Graves et al. 2006]

# LSTM demo: handwriting recognition

# LSTM RNN Demo by Nikhil Buduma:

https://www.youtube.com/watch?v=mLxsbWAYIpw

- Inherent limitation of RNNs: memory capacity
- Increasing memory by n gives the increase of parameters by n²
- Conclusion: we need to decouple memory and operations (thnik RAM and CPU!)

Conclusion: we need to decouple memory and operations (think RAM and CPU!)







# Binary addition with stack-RNN

Goal: train a network that can add binary numbers.



#### PUSH POP

NB: the answer is reversed, i.e. 101+11 = 0001

# Binary addition with stack-RNN



- Training with total lengths upto 20
- 100 hidden units and 10 1-dim stacks

# **Neural Turing Machine**



[Graves et al. 2014]

#### **Outlook**

- RNNs allow to solve many problems with sequences (as inputs or outputs)
- CTC-loss is useful for monotonically aligned inputoutput tasks
- The attention idea is working and is used across different domains (e.g. computer vision)
- Learning a computer to "program" is ambitious and promising
- Currently works only for simplistic algorithms
- Differentiability requires real-valued (soft) values
- Learning systems that make discrete choices is harder (but possible)

# **Bibliography**

A. Graves. Supervised Sequence Labelling with Recurrent Neural Networks. Textbook, Studies in Computational Intelligence, Springer, 2012

Sepp Hochreiter, Jürgen Schmidhuber: Long Short-Term Memory. Neural Computation 9(8): 1735-1780 (1997)

Ilya Sutskever, Oriol Vinyals, Quoc V. Le:

Sequence to Sequence Learning with Neural Networks. NIPS 2014: 3104-3112

Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Trevor Darrell, Kate Saenko:

Long-term recurrent convolutional networks for visual recognition and description. CVPR 2015: 2625-2634

Justin Johnson, Andrej Karpathy, Li Fei-Fei, DenseCap: Fully Convolutional Localization Networks for Dense Captioning. CVPR 2016

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, Fei-Fei Li: Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations. CoRR abs/1602.07332 (2016)

D. Bahdanau, K. Cho, and Y. Bengio: Neural machine translation by jointly learning to align and translate. In ICLR 2015.

# **Bibliography**

Minh-Thang Luong, Hieu Pham, Christopher D. Manning: Effective Approaches to Attention-based Neural Machine Translation. CoRR abs/1508.04025 (2015)

Alex Graves, Santiago Fernández, Faustino J. Gomez, Jürgen Schmidhuber: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. ICML 2006: 369-376

Armand Joulin, Tomas Mikolov: Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets. NIPS 2015: 190-198

Alex Graves, Greg Wayne, Ivo Danihelka: Neural Turing Machines. CoRR abs/1410.5401 (2014)