MONTE CARLO SIMULATION

STAT 432 SPRING ZOZO DALPIAZ

SETUP

SIZE 7

DODULATION DISTRIBUTION

$$P(x \mid 0)$$

PARAMETER

$$\frac{1}{X} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

ESTIMATOR

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

ESTMATE WITH DATA

$$\frac{1}{x} = \frac{1}{10} (2.1 + 1.3 + ... + 3.4) = 2.6$$

ESTMATE FUR PARTICULAN DATAJET

ARAMETERS

FUNCTION OF SAMPLE DATA

ESTIMATORS

$$\hat{p}(x = \varepsilon) = \frac{1}{n} \sum_{i=1}^{n} I(x, s)$$

$$\hat{\sigma}^{*} = \frac{1}{2} \sum_{i=1}^{n} \left(x_{i} - \overline{x} \right)^{*}$$

SAMPLING DIST

LOTS OF MATH

PARAMETERS

$$\frac{1}{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(x_{i} - \overline{x} \right)^{2}$$
 SOMETHING ω / χ^{2} ?

NEW DEA -> MONTE CARLO SIMULATION

REDEAT

NAUT

TIMES

CALCULATE STATISTIC OF INTERIEST, $S(x^{(i)})$ ESTIMATOR

$$S(x^{(i)}), S(x^{(i)}), \ldots, S(x^{(R)})$$

USE EMPIRICAL DISTRIBUTION TO ESTIMATE TRUE DISTRIBUTION

SAMPLE

· SEE EXAMPLES IN R. EXPONENTIAL EXAMPLE

· WHY?

- · MATH IS HARD
 - . HELPS EXPLAIN BOOT STRAP