

Inteligência Artificial Aplicada

UniSenai PR-São José dos Pinhais

❖ Estudo de agentes que recebem percepções do ambiente e executam ações (RUSSELL; NORVIG, 2013).

- Fornece as bases teóricas e métodos para análise e interpretação de dados;
- Ajuda a entender incertezas e variabilidades nos dados;
- Contribui para inferências, testes de hipóteses e estimação de parâmetros.

- Aplica conceitos em modelagem e resolução de problemas complexos;
- Desenvolve algoritmos de aprendizado de máquina e otimização.

Tipos de dados

- Numéricos
- Categóricos

Tendência Central e Dispersão

- Média
- Mediana
 - Moda
- Variância
- Desvio Padrão
 - Amplitude

Outros

- Probabilidade
- Correlação
- Testes de hipóteses

Álgebra Linear

- Vetores
- Matriz

Otimização

• Funções de custo

❖ Ciência (e a arte) da programação de computadores para que eles possam aprender com os dados (GÉRON, 2019).

Elemento	Definição	Exemplo	Notação
Matriz	Coleção retangular de escalares organizados em linhas e colunas	$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$	A, B
Tensor	Generalização de escalares, vetores e matrizes. Tensores podem ter mais de duas dimensões.	$\begin{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} & \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \end{bmatrix}$	<i>T, X</i>

❖ Soma de Matrizes

❖ Duas matrizes podem ser adicionadas se tiverem as mesmas dimensões (mesmo número de linhas e colunas).

• A + B = C, $ondeC_{ij} = A_{ij} + B_{ij}$

❖ Subtração de Matrizes

Duas matrizes podem ser subtraídas se tiverem as mesmas dimensões.

•
$$A - B = C$$
, $ondeC_{ij} = A_{ij} - B_{ij}$

❖ Multiplicação de Matriz por Escalar

Uma matriz pode ser multiplicada por um escalar (número).

• $k \cdot A = B$, onde $B_{ij} = k * A_{ij}$

Multiplicação de matrizes

 \clubsuit O produto de duas matrizes A e B é possível se o número de colunas em A for igual ao número de linhas em B.

• A.B = C, onde $C_{ij} = \sum_{k=1}^{n} A_{ik} . B_{kj}$

* Transposição de matrizes

- ❖ A transposta de uma matriz troca suas linhas por colunas (e vice-versa).
- ❖ Se A é uma matriz m x n, então A^T é uma matriz n x m, onde $(A^T_{ij}) = A_{ji}$.

Determinante

❖ O determinante de uma matriz quadrada A é um valor escalar que pode ser calculado de várias maneiras, dependendo do tamanho da matriz.

❖ Inversa de uma matriz

A matriz inversa A^{-1} de uma matriz quadrada A é aquela que, quando multiplicada por A, resulta na matriz identidade.

❖ Matriz identidade

 \clubsuit A matriz identidade I é uma matriz quadrada com uns na diagonal principal e zeros em outros lugares.

✓ A Programação Linear (PL) é uma **técnica de otimização** que lida com a **maximização ou minimização de uma função linear sujeita a um conjunto de restrições lineares.**

- 2. Restrições: Limitações lineares que devem ser satisfeitas.
- 3. Variáveis de Decisão: As variáveis que determinam a solução.

❖Exemplo

$$Maximizar Z = 3_{x1} + 2_{x2}$$

Sujeito a:

$$2_{x1} + x2 \le 20$$

 $4_{x1} - 5_{x2} \ge -10$
 $x1, x2 \ge 0$

✓ Uma possível solução para o problema anterior é empregar o **Método Simplex**;

✓ A ideia principal desse método é começar com uma solução básica viável e, em cada iteração, melhorar a solução para alcançar um valor ótimo da função objetivo.

Formulação Padrão:

• O problema é formulado na forma padrão, com o objetivo de maximizar (ou minimizar) uma função linear sujeita a restrições lineares.

Tabela Simplex Inicial:

• As variáveis de decisão são identificadas, e uma tabela simplex é criada para representar o sistema de equações.

Escolha da Variável de Entrada:

• Seleciona-se a variável de decisão (não básica) que pode aumentar a função objetivo de maneira mais eficiente.

Escolha da Variável de Saída:

• Identifica-se a variável básica que pode ser movida para fora da base de maneira mais eficiente.

Atualização da Tabela:

A tabela é atualizada de acordo com a escolha da variável de entrada e de saída.

Iteração:

• Os passos 3 a 5 são repetidos até que não seja mais possível melhorar a solução.

Solução Ótima:

 A solução final é alcançada quando a tabela indica que não há mais melhorias possíveis.

