ASSIGNMENT 5

MTH 301, 2021-22

- (1) Suppose U is a dense subset of \mathbb{R}^n .
 - (a) Show that if U is open in \mathbb{R}^n then $A \cap U$ is dense in U.
 - (b) Show by example that this may fail for sets that are not open.
- (2) Is sum of two compact subsets of \mathbb{R} is compact? Is sum of a closed set and compact set is closed?
- (3) Show that if Y is a subset of a complete metric space X, then Y is compact if and only if it is closed and totally bounded.
- (4) Show that a closed subset of a compact metric space is compact.
- (5) Show that every compact metric space has a countable dense subset.
- (6) Prove that every open subset U of \mathbb{R}^n is the countable union of compact subsets. Show that every open cover of an open subset of \mathbb{R}^n has a countable subcover.
- (7) Cantor's Intersection Theorem: A decreasing sequence of nonempty compact subsets A_1, A_2, \ldots of a metric space (X, d) has nonempty intersection.
- (8) Show that a continuous function from a compact metric space (X, d) into a metric space (Y, ρ) is uniformly continuous.
- (9) Let S_n for $n \geq 1$ be a finite union of disjoint closed balls in \mathbb{R}^k of radius at most 2^{-n} such that $S_{n+1} \subset S_n$ and S_{n+1} has at least two balls inside each ball of S_n . Prove that $C = \bigcap_{n=1}^{\infty} S_n$ is a perfect, nowhere dense compact subset of \mathbb{R}^k .
- (10) If f is a continuous one-to-one function of a compact metric space X onto Y, show that f^{-1} is continuous. Show that the above statement is false if X is not compact.
- (11) We say that (X, d) is a second countable metric space if there is a countable collection \mathcal{U} of open balls in X such that for every $x \in X$ and r > 0, there is a ball $U \in \mathcal{U}$ with $x \in U \subseteq B_r(x)$. Prove that (X, d) is second countable if and only if it is separable (having a countable dense set).
- (12) Let $A_1, A_2 \subset \mathbb{R}^n$ such that $A_1 \cap A_2 = \Phi$. If $x \in A_i$ i = 1, 2 then $d(x, A_j) > 0$ for $i \neq j$ then show that there exists a continuous function f on \mathbb{R}^n such that $f|_{A_1} = 1$ and $f|_{A_2} = 0$. Is this condition necessary? In particular if A_i 's are compact then it holds.
- (13) If A is a non-compact subset of \mathbb{R}^n , show that there is a bounded continuous real valued function on A that does not attain its maximum.
- (14) Let $S \subset \mathbb{R}^n$ is compact. Show that $f: S \to \mathbb{R}^m$ is continuous if and only if its graph $G_f = \{(x, f(x) : x \in S\} \text{ is compact. Give a function defined on } [0, 1] \text{ that has a closed graph but it is not continuous.}$
- (15) Let $A \subset \mathbb{R}^n$ is compact. Show that for any point $x \in \mathbb{R}^n$ there is a closest point $a \in A$ to x i.e. $a \in A$ satisfies $||x a|| \le ||x b||, \forall b \in A$.