tidyr

Entornos de Análisis de Datos: R

Alberto Torres Barrán

2021-01-07

Introducción

- El 80% del tiempo de un análisis se emplea limpiando y preparando los datos (Dasu y Johnson, 2003)
- Importados los datos, es importante estructurarlos para que el análisis sea lo más fácil posible
- Las librerías del tidyverse están construidas alrededor del concepto de datos ordenados o *tidy data*:
 - 1. Cada variable forma una columna
 - 2. Cada observación forma una fila
 - 3. Cada celda contiene un único valor
- Todas las librerías del tidyverse están construidas alrededor de este concepto
- Datos tabulares/rectangulares no implican datos ordenados!!!

Formas de almacenamiento

Distintas formas de almacenar los mismos datos [R for Data Science]:

country	1999	2000
Afghanistan	745	2666
Brazil	37737	80488
China	212258	213766

country	year	cases
Afghanistan	1999	745
Afghanistan	2000	2666
Brazil	1999	37737
Brazil	2000	80488
China	1999	212258
China	2000	213766

Formatos "ancho" y "largo"

Operaciones con datos ordenados

• Tabla 1

country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

• Tabla 2

country	cases_1999	cases_2000	population_1999	population_2000
Afghanistan	745	2666	19987071	20595360
Brazil	37737	80488	172006362	174504898
China	212258	213766	1272915272	1280428583

Crear una nueva variable

• Crear una nueva variable es fácil con la tabla 1

• ¿Como podríamos hacer lo mismo con la tabla 2?

Operaciones agrupadas

• Tabla 1: calcular el total de casos por año

• Tabla 2: el resultado final está en un formato que es más dificil de procesar

Gráficos

Librería tidyr

- Implementa funciones para transformar entre los formatos anteriores
- Desde la versión 1.0 de tidyr, se han creado versiones más potentes de las antiguas spread y gather
- En la siguiente tabla podemos ver la equivalencia:

pandas	tidyr <1.0	tidyr 1.0	data.table	reshape2
pivot	spread	pivot_wider	dcast	cast
melt	gather	pivot_longer	melt	melt

pivot_longer

• Pivota una dataframe para que cada variable tenga su propia columna (documentación)

```
pivot_longer(table4a, names_to = "year", values_to = "cases", -country)
## # A tibble: 6 x 3
## country year cases
## <chr> <chr> <chr> <int>
## 1 Afghanistan 1999 745
## 2 Afghanistan 2000 2666
## 3 Brazil 1999 37737
## 4 Brazil 2000 80488
## 5 China 1999 212258
## 6 China 2000 213766
```

Animación

resp_id	age	airplane	anchorman	bridesmaids
1	48	TRUE	TRUE	TRUE
2	31	FALSE	TRUE	TRUE
3	30	FALSE	FALSE	FALSE

Ejemplo pivot_longer

• Queremos representar las siguientes series temporales, que representan 4 indicadores económicos:

• Las 4 variables tienen las mismas unidades, por lo que podemos representar 4 líneas en un único gráfico:

```
ggplot(eu, aes(x = index)) +
  geom_line(aes(y = DAX), color = "red") +
  geom_line(aes(y = SMI), color = "blue") +
  geom_line(aes(y = CAC), color = "green") +
  geom_line(aes(y = FTSE), color = "orange")
```


• Pivotamos a formato "largo"

```
eu_long <-
  eu %>%
    pivot_longer(-index, names_to = "name", values_to = "value")
head(eu_long, 8)
## # A tibble: 8 x 3
     index name value
    <int> <chr> <db1>
## 1
        1 DAX 1629.
     1 SMI
              1678.
     1 CAC 1773.
## 4
       1 FTSE 2444.
     2 DAX 1614.
## 6 2 SMI 1688.
## 7 2 CAC 1750.
## 8 2 FTSE 2460.
```

• Repetimos el gráfico anterior, asignando el nombre del indicador a la propiedad color

```
ggplot(eu_long, aes(x = index, y = value, color = name)) +
  geom_line()
```

- Ventajas:
 - 1. código más conciso
 - 2. colores elegidos de forma automática a partir de una paleta
 - 3. leyenda automática

Ejemplo avanzado

pivot_wider

• Realiza la operación inversa a pivot_longer (documentación)

```
library(tidyr)
table2
## # A tibble: 12 x 4
      country
                  vear type
      <chr>
                  <int> <chr>
   1 Afghanistan 1999 cases
   2 Afghanistan
                  1999 population
   3 Afghanistan
                   2000 cases
    4 Afghanistan
                   2000 population
    5 Brazil
                   1999 cases
                   1999 population
    6 Brazil
   7 Brazil
                   2000 cases
   8 Brazil
                   2000 population
   9 China
                   1999 cases
                   1999 population 127
   10 China
## 11 China
                   2000 cases
## 12 China
                   2000 population 128
```

```
pivot_wider(table2,
            names_from = type.
            values_from = count)
     A tibble: 6 x 4
                        cases populati
     country
                  vear
                 <int>
                         <int>
     Afghanistan
                 1999
                         745
## 2 Afghanistan
                  2000
                         2666
                  1999
## 4 Brazi1
                  2000
                        80488
## 5 China
                  2000 213766
## 6 China
```

Ejemplos pivot_wider

- Dependiendo del uso, a veces es útil transformar nuestros datos en un formato no ordenado
- Es raro tener que usar pivot_wider para transformar una dataframe en datos ordenados (cada columna representa una variable)
- Se usa bastante para dos tareas:
 - 1. crear tablas resumen
 - 2. transformar datos para modelización
- Más ejemplos: vignette pivoting

Ejemplo tabla resumen

```
ctv <-
 mpq %>%
   group_by(year, class) %>%
   summarize(avg_cty = mean(cty))
head(cty)
## # A tibble: 6 x 3
## # Groups: year [1]
   vear class
                    avg_cty
   <int> <chr>
                     <db1>
                     15.5
## 1 1999 2seater
## 2 1999 compact
## 3 1999 midsize
                       18.2
## 4 1999 minivan
                       16.2
## 5 1999 pickup
                      13
## 6 1999 subcompact 21.6
```

Ejemplo tabla resumen múltiple

```
ctv <-
 mpq %>%
   group_by(year, class) %>%
    summarize(avg_cty = mean(c
             sd_ctv = sd(cty)
head(cty)
## # A tibble: 6 x 4
## # Groups: vear [1]
   vear class
                     avg_ctv
    <int> <chr>
                       <dh1>
## 1 1999 2seater
                        15.5
## 2 1999 compact
                        19.8
## 3 1999 midsize
                        18.2
## 4 1999 minivan
                        16.2
## 5 1999 pickup
                        13
     1999 subcompact
                        21.6
```

```
pivot_wider(cty.
            names_from = year.
            values_from = c(avg_cty, sd_cty))
## # A tibble: 7 x 5
                avg_cty_1999 avg_cty_2008 sd_c
     c1ass
     <chr>>
                        < dh7 >
                                      < dh7 >
## 1 2seater
                         15.5
                                      15.3
## 2 compact
## 3 midsize
                         18.2
                                       19.3
                         16.2
## 4 minivan
                                      15.4
## 5 pickup
## 6 subcompact
                         21.6
                                      18.9
## 7 SUV
                         13.4
                                      13.6
```

Ejemplo modelización

• En este ejemplo tenemos 6 variables: país, continente, año, esperanza de vida, población, PIB per cápita

```
gapminder
## # A tibble: 1,704 x 6
                           year lifeExp
                 continent
                                              pop qdpPercap
                           <int>
                                                      <dh1>
   1 Afghanistan Asia
                           1952
   2 Afghanistan Asia
                           1957
   3 Afghanistan Asia
                           1962
                         1967
   4 Afghanistan Asia
                         1972
   5 Afahanistan Asia
                           1977
   6 Afghanistan Asia
                        1982
   7 Afahanistan Asia
                            1987
   8 Afghanistan Asia
                           1992
   9 Afghanistan Asia
## 10 Afghanistan Asia
                            1997
                                    41.8 22227415
                                                       635.
## # ... with 1.694 more rows
```

- Diríamos que estos datos están ordenados, ya que cada variable se corresponde con una columna
- Este format es útil, entre otras cosas, para realizar gráficos

• Si quisiéramos, por ejemplo, realizar un modelo para predecir la esperanza de vida de China basándonos en el resto de paises de su continente, necesitamos una columna para cada país

```
gapminder %>%
 filter(continent == "Asia") %>%
 pivot_wider(id_cols = year, names_from = country, values_from = lifeExp)
## # A tibble: 12 x 34
      year Afghanistan Bahrain Bangladesh Cambodia China `Hong Kong, Chi∼
##
     <int>
                 < dh7 >
                         < dh7 >
                                    <db7>
                                             <dh7> <dh7>
                                                                    < dh7 >
   1 1952
##
                 28.8
                         50.9
                                     37.5
                                              39.4 44
                                                                     61.0
   2 1957
##
                 30.3
                         53.8
                                              41.4 50.5
                                                                     64.8
##
   3 1962
                  32.0
                                              43.4 44.5
                         56.9
                                     41.2
                                                                     67.6
                        59.9
##
   4 1967
                 34.0
                                     43.5
                                              45.4 58.4
                                                                     70
                        63.3
##
   5 1972
                 36.1
                                     45.3
                                                    63.1
                                                                     72
##
   6 1977
                  38.4
                                     46.9
                                              31.2 64.0
                                                                     73.6
                         65.6
                        69.1
##
   7 1982
                                              51.0 65.5
                  39.9
                                     50.0
                                                                     75.4
                        70.8
##
   8 1987
                                              53.9
                  40.8
                                     52.8
                                                    67.3
                                                                     76.2
   9 1992
                         72.6
                                              55.8 68.7
                  41.7
                                     56.0
                                                                     77.6
## 10
     1997
                  41.8
                        73.9
                                     59.4
                                                                     80
## 11
     2002
                         74.8
                                     62.0
                  42.1
                                                                     81.5
                         75.6
                  43.8
                                     64.1
                                              59.7 73.0
      2007
                                                                     82.2
## # ... with 27 more variables: India <dbl>, Indonesia <dbl>, Iran <dbl>,
      Iraq <dbl>, Israel <dbl>, Japan <dbl>, Jordan <dbl>, Korea, Dem.
      Rep. ` <db1>, `Korea, Rep. ` <db1>, Kuwait <db1>, Lebanon <db1>,
## #
      Malaysia <dbl>, Mongolia <dbl>, Myanmar <dbl>, Nepal <dbl>,
## #
      Oman <dbl>, Pakistan <dbl>, Philippines <dbl>, `Saudi
      Arabia` <db1>, Singapore <db1>, `Sri Lanka` <db1>, Syria <db1>,
## #
      Taiwan <dbl>, Thailand <dbl>, Vietnam <dbl>, `West Bank and
## #
## #
      Gaza` <db1>, `Yemen, Rep,` <db1>
```

separate

• Múltiples variables codificadas en una única columna

• Por defecto separate() mantiene el tipo de la columna en las nuevas

```
separate(table3, rate, into = c("cases", "population"), sep = "/", convert = TRUE)
## # A tibble: 6 x 4
               year cases population
   country
                 <int> <int>
    <chr>
                                    <int>
## 1 Afghanistan 1999
                        745
                                19987071
## 2 Afghanistan 2000
                       2666
                              20595360
## 3 Brazil
                  1999 37737
             2000 80488
## 4 Brazil
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
```

Ejemplo

```
separate(economics, date, into = c("year", "month", "day"), sep = "-", convert = T
## # A tibble: 574 x 8
                                 pop psavert uempmed unemploy
      vear month
                    day
                          pce
                               <db7>
                                        <db7>
                                                <dh7>
                                                         <db7>
      <int> <int> <int>
                        <dh1>
##
   1 1967
                                        12.6
                                                  4.5
                                                          2944
                         507. 198712
   2 1967
                                                          2945
##
   3 1967
                                                          2958
##
   4 1967
               10
                                                  4.9
                                                          3143
##
   5 1967
                         517. 199498
                                                          3066
##
    6 1967
                         525. 199657
                                                          3018
   7 1968
                         531. 199808
                                                  5.1
                                                          2878
    8 1968
                         534. 199920
                                                          3001
      1968
                         544. 200056
                                                          2877
      1968
                         544
                              200208
                                                  4.6
                                                          2709
## # ... with 564 more rows
```

unite

• Una única variable que está codificada en varias columnas

```
unite(mpg, make, manufacturer, model, sep = "_")
## # A tibble: 234 x 10
     make
                  displ year
                                 cv1 trans
                                              drv
                                                             hwv f7
                                                                       class
                                                       ctv
                                              <chr> <int> <int> <chr>
                  <db1> <int> <int> <chr>
                                                                       <chr>
      <chr>
                                                        18
   1 audi a4
                         1999
                                   4 auto(15)
                                                              29 p
                                                                       compa~
                         1999
                                   4 manual (~ f
                                                        21
                                                              29 p
   2 audi_a4
                                                                       compa~
                                   4 manual (~ f
                                                        20
   3 audi_a4
                         2008
                                                              31 p
                                                                       compa~
   4 audi_a4
                         2008
                                                        21
                                                              30 p
                                   4 auto(av) f
                                                                       compa~
                        1999
                                                        16
   5 audi_a4
                                   6 auto(15)
                                                              26 p
                                                                       compa~
                         1999
                                                        18
    6 audi a4
                    2.8
                                   6 manual(~ f
                                                              26 p
                                                                       compa~
                    3.1
                         2008
                                                        18
                                                              27 p
   7 audi_a4
                                   6 auto(av) f
                                                                       compa~
                    1.8
                                                        18
   8 audi_a4 qu~
                         1999
                                   4 manua1(~ 4
                                                              26 p
                                                                       compa~
   9 audi_a4 qu~
                    1.8
                         1999
                                   4 auto(15) 4
                                                        16
                                                              25 p
                                                                       compa~
                                   4 manual (~ 4
                                                        20
                                                              28 p
  10 audi_a4 qu~
                         2008
                                                                       compa~
## # ... with 224 more rows
```

Ejemplo

```
storms %>%
  unite(date, year, month, day, sep = "-", remove = FALSE, na.rm = TRUE) %>%
  select(date, year, month, day)
## # A tibble: 10.010 x 4
##
      date
               vear month
                             dav
                <db1> <db1> <int>
   1 1975-6-27
   2 1975-6-27
                               27
                               27
   3 1975-6-27
##
                 1975
                               27
                               28
   5 1975-6-28
                 1975
                               28
                               28
   8 1975-6-28
                               28
   9 1975-6-29
                              29
## 10 1975-6-29
                               29
                1975
## # ... with 10,000 more rows
```

Missing values en R

- NA es una constante que representa valores que faltan (missing values)
- Puede estar contenida dentro de vectores (columnas) de cualquier tipo
- is.na() devuelve TRUE si el valor es NA y FALSE en caso contrario
- Muchas funciones de R tienen un parámetro opcional na.rm que ignora NA s

```
airquality %>%
 mutate(Ozone_NA = is.na(Ozone)) %>%
 select(Ozone, Ozone_NA) %>%
 slice(1:15)
##
     Ozone Ozone_NA
## 1
        41
             FALSE
## 2
        36
            FALSE
    12 FALSE
## 3
## 4
        18
           FALSE
## 5
        NA
             TRUE
    28 FALSE
## 6
## 7
        23
            FALSE
## 8
       19
            FALSE
## 9
             FALSE
## 10
              TRUE
        NA
      7
## 11
             FALSE
## 12
        16
             FALSE
## 13
       11
             FALSE
     11
14
## 14
            FALSE
## 15
       18
             FALSE
```

```
dia %>%
  filter(is.na(y_new)) %>%
select(y, y_new)
## # A tibble: 9 x 2
##
    y y_new
<db1> <db1>
##
## 1 0 NA
## 2
     0
              NA
## 3 58.9
              NA
## 4 0
              NA
## 5
      0
              NA
## 6
      0
              NA
## 7 31.8
              NA
## 8
     0
              NA
## 9 0
              NA
```

```
dia %>%
   summarize(avg = mean(y_new))
## # A tibble: 1 x 1
## avg
## <dbl>
## 1 NA
```

Funciones para gestionar NA

tidyr también tiene otras funciones útiles para trabajar con NAS:

- drop_na(), elimina filas que tengan algún NA
- fill(), completa NA s con el valor anterior
- replace_na(), reemplaza NAs por un valor

drop_na

```
str(airquality)
   'data.frame':
                    153 obs. of 6 variables:
                   41 36 12 18 NA 28 23 19 8 NA ...
   $ Ozone : int
   $ Solar.R: int
                   190 118 149 313 NA NA 299 99 19 194 ...
   $ Wind
            : num
                   7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
             : int 67 72 74 62 56 66 65 59 61 69 ...
: int 5 5 5 5 5 5 5 5 5 5 ...
   $ Temp
   $ Month : int
   $ Day
            : int
summary(airquality)
                       Solar.R
                                          Wind
##
        Ozone
                                                           Temp
##
   Min. : 1.00
                    Min. : 7.0
                                                      Min. :56.00
                                     Min. : 1.700
   1st Ou.: 18.00
                    1st Ou.:115.8
                                     1st ou.: 7.400
                                                      1st Ou.:72.00
   Median : 31.50
                    Median :205.0
                                     Median : 9.700
                                                      Median :79.00
##
   Mean : 42.13
                           :185.9
                                     Mean : 9.958
                                                           :77.88
                    Mean
                                                      Mean
                                    3rd Qu.:11.500
   3rd ou.: 63.25
                    3rd ou.:258.8
                                                      3rd ou.:85.00
##
           :168.00
                                     Max. :20.700
   Max.
                    Max.
                            :334.0
                                                      Max. :97.00
##
                     NA'S
   NA 'S
##
   Month
                         Day
   Min.
                        : 1.0
          :5.000
                    Min.
   1st Qu.:6.000
                   1st Ou.: 8.0
##
   Median :7.000
                   Median :16.0
   Mean :6.993
                   Mean
                           :15.8
   3rd ou.:8.000
                   3rd Ou.:23.0
##
   Max. :9.000
                   Max. :31.0
##
```

```
airquality %>%
  drop_na() %>%
  str()
## 'data.frame':
                   111 obs. of 6 variables:
   $ Ozone : int
                  41 36 12 18 23 19 8 16 11 14 ...
   $ Solar.R: int
                   190 118 149 313 299 99 19 256 290 274 ...
                  7.4 8 12.6 11.5 8.6 13.8 20.1 9.7 9.2 10.9 ...
   $ Wind : num
   $ Temp : int 67 72 74 62 65 59 61 69 66 68 ...
##
                  5 5 5 5 5 5 5 5 5 5 5 . . .
   $ Month : int
   $ Day : int 1 2 3 4 7 8 9 12 13 14 ...
filter(airquality, is.na(Ozone), is.na(Solar.R))
  Ozone Solar.R Wind Temp Month Day
## 1 NA NA 14.3 56
                           5 5
## 2
              NA 8.0
                        57
                             5 27
       NA
airquality %>%
  drop_na(Ozone) %>%
  str()
## 'data.frame':
                   116 obs. of 6 variables:
   $ Ozone : int 41 36 12 18 28 23 19 8 7 16 ...
   $ Solar.R: int
                  190 118 149 313 NA 299 99 19 NA 256 ...
##
   $ Wind : num 7.4 8 12.6 11.5 14.9 8.6 13.8 20.1 6.9 9.7 ...
   $ Temp : int 67 72 74 62 66 65 59 61 74 69 ...
##
   $ Month : int 5 5 5 5 5 5 5 5 5 5 ...
##
   $ Day : int 1 2 3 4 6 7 8 9 11 12 ...
```

fill

```
airquality %>%
  # no fill
  slice(c(1:10, 50:59)) %>%
select(-c(Temp, Wind))
# Ozone Solar.R Month Day
## 1
           41
                    190
                                    1
2
3
4
## 2
           36
                    118
## 3
           12
                    149
## 4
           18
                    313
           NA
                      NA
                                    6
## 6
           28
                     NA
## 7
           23
                    299
                                    8
## 8
           19
                      99
## 9
            8
                      19
## 10
                     194
                                   10
           NA
## 11
           12
                    120
                                   19
## 12
           13
                    137
                                   20
                                   21
## 13
                    150
           NA
## 14
                      59
                                  22
           NA
## 15
                      91
                                  23
           NA
## 16
                    250
                                  24
           NA
## 17
                    135
                                  25
           NA
                                  26
## 18
                    127
           NA
## 19
                                  27
           NA
                      47
## 20
                      98
                                  28
           NA
```

fil sli	ality %>% l(Ozone, ce(c(1:10 ect(-c(Te	.directi , 50:59)) %>%	"down")	%>%
##	Ozone So	Jar.R Mo		Day	
## 1	41	190	5	1	
## 2		118	5	2	
## 3	12	149	5	3	
## 4	18	313	5	4	
## 5	18	NA	5	5	
## 6	28	NA	5	6	
## 7	23	299	5	7	
## 8	19	99	5	8	
## 9	8	19	5	9	
## 10		194	5	10	
## 11		120		19	
## 12		<i>137</i>		20	
## 13		<i>150</i>		21	
## 14		<i>59</i>		22	
## 15		91		23	
## 16		250		24	
## 17		<i>135</i>		25	
## 18		<i>127</i>		26	
## 19		47	6	27	
## 20	13	98	6	28	

replace na

```
airquality %>%
  mutate(03_noNA = replace_na(Ozone, mean(Ozone, na.rm = T)), .after = Ozone) %>%
  slice(c(1:10, 50:55)) %>%
  select(-c(Wind, Temp, Solar.R))
      Ozone O3_noNA Month Dav
         41 41.00000
         36 36,00000
         12 12.00000
      12 12.00000
18 18.00000
      NA 42.12931
      28 28.00000
23 23.00000
         23 23.00000
         19 19.00000
## 9
       8 8.00000
## 10
                             10
         12 12.00000
                             19
## 11
## 12
         13 13.00000
                             20
## 13
                             21
         NA 42.12931
                            22
## 14
## 15
         NA 42.12931
         NA 42.12931
## 16
```

<!--

Reemplazo agrupado

```
airquality %>%
  group_by(Month) %>%
  mutate(03\_noNA = replace\_na(Ozone, mean(Ozone, na.rm = T)), .after = Ozone) %>%
  ungroup() %>% slice(c(1:10, 50:55)) %>%
select(-c(Wind, Temp, Solar.R))
## # A tibble: 16 x 4
      Ozone 03 noNA Month
                               Day
                <db1> <int> <int>
      <int>
          41
          36
                 36
          12
                 12
          18
                 18
                 23.6
          NA
          28
                 28
          23
                 23
          19
                 19
                                  9
                 23.6
                                 10
          NA
## 11
          12
                           6
                                 19
          13
                 13
                                 20
                 29.4
          NA
                                 22
## 14
          NA
                 29.4
## 15
          NA
## 16
                 29.4
          NA
```

-->