[1] 1

TD ana

Félix Yvonnet

14 septembre 2023

Table des matières

1

Ex1 : Espaces de Arens-Fort

- 1. Soit $\mathbb{U} \in AF$. On a :
 - \emptyset , $\mathbb{N}^2 \in AF$ trivialement.
 - $\forall u, v \in AF$, $u \cap v \in AF$ (car on a au plus l'union des éléments qui n'étaient pas dans chaque colonne et si contient pas 0 c'est bon).
 - Soit $u_i \in AF^I$. Si tous ont 0 ok. Si un n'a pas 0 il a un nombre fini de colonnes libres et le reste a un nombre fini de vide. Par l'union ce nombre de vide ne peut que réduire donc on aura la même chose au final et on sera toujours dans AF ie $\cup u_i \in AF$.

Ainsi on a bien une topo

- 2. Soit $x_n \to x \in AF$. Si $x \neq 0$ alors on prend pour ouvert $\{x\}$. Sinon, si elle n'est pas stationnaire, on peut en extraire une sous suite où tous les éléments sont $\neq (0,0)$. Alors :
 - Soit $x_n \in \text{nb}$ fini de colonnes alors $AF \setminus \{x_n\}$ vérifie 2)
 - (x_n) a nb infini de colonnes. On peut choisir au plus un x_n par colonne alors $x_{\varphi(n)}$ vérifie 2).

Dans ces deux cas on ne peut pas avoir $x_n \xrightarrow[n \to +\infty]{} (0,0)$ car les ouverts définis ont des x_n qui sortent de cet ouvert pour une infinité de n donc (x_n) est stationnaire.

3. (x_n) suite exhaustive, $AF\setminus\{(0,0)\}$ vérifie la caractérisation séquentielle des fermés mais n'est pas fermé. . .

$\operatorname{Ex4}$: Une métrique rendant $\mathbb R$ non complet

 u_n suite de cauchy ie $\lim_{p,q\to\infty} d(u_p-u_q)=0=\lim_{p,q\to\infty} |Arctan(u_p)-Arctan(u_q)|$. Donc par exemple si on prend $x_n=n$ on a $Arctan(x_n)\xrightarrow[n\to+\infty]{\pi} \frac{\pi}{2}$ donc x_n de Cauchy pour d mais pas convergent donc $\mathbb R$ pas complet pour ça.

Ex5: Fonction distance et séparation fermée

1. (a) Soit $x \in E$, on a $d(x,y)-d(x,z) \le d(x,z)+d(z,y)-d(x,z) \le 1 \cdot d(y,z)$. Par symétrie on en déduit $d(x,y)-d(x,z) \le 1d(y,z)$

Ex8 : Prolongement et applications uniformément continues

- 1. Soit ψ_1 et ψ_2 deux prolongements continue de φ sur E. D dense donc $\exists (x_n) \in D^{\mathbb{N}} \to x \in E, \ \psi_1(x_n) = \psi_2(x_n)$ donc par continuité $\psi_1 = \psi_2$.
- 2. (a) φ uniformément continue \Rightarrow de Cauchy \Rightarrow (F complet) $\varphi(x_n)$ converge. De plus si $(x_n), (y_n)$ deux suites tendant vers x alors $\varphi(x_n)$ et $\varphi(y_n)$ convergent vers l et l'. z_n tq $z_{2n}=x_n$ et $z_{2n+1}=y_n$ donne $\varphi(z_n)$ converge donc l=l'.
 - (b) ψ prolonge bien φ car $\varphi(x_n = x \in D) = \varphi(x) = \psi(x)$. De plus, pour $\varepsilon > 0$, on a $\eta > 0$ tq $\forall x, y \in D$, $d(x, y) < \eta \Rightarrow d(\varphi(x), \varphi(y)) < \varepsilon$. $x_n \to x, y_n \to y \Rightarrow \zeta$ a marche tkt fréro...

Ex9: Complété d'un espace métrique

- 1. On a $i_x(y) = d(x,y) d(a,y) \le d(a,y) + d(a,x) d(a,y) = d(a,x)$ puis par symétrie $i_x \in \mathcal{C}_b$. Considérons $i: x \mapsto i_x$. C'est une isométrie car $\|i_x i_y\| = \sup \|i_x(z) i_y(z)\| = \sup |d(x,z) d(y,z)| = d(x,y)$. $\hat{E} = \overline{i(E)}$ convient cat i(E) bien dense dedans et c'est complet car fermé dans un espace complet (appelé plongement de Kuratowski)
- 2. iso \Rightarrow inj donc $j_2 \circ j_1^{-1}$ est une bijection. Prolongement uniformément continue isométrie bijective :)

Ex10 : Un exemple de topo non métrisable

- 1. Une base de décomposition est $E \times E \cdots B(0, \varepsilon) \times E \cdots$. $f_n \to f$ means $\forall x \in E, \ f(x) \to f(x)$.
- 2. Tout ouvert contient une fonction simple (regarder les indicatrices) et si \overline{D} pas un ouvert (ie tout l'ensemble) alors $E \setminus \overline{D}$ contient une fonction simple absurde!
- 3. Les limites de fonctions simples f $fn \to f$ et $A = \{fn(x) \neq 0\}$ en dehors de A fn = 0 donc f = 0 et les A sont dénombrables. Les limites s'annulent sur un espace non dénombrable donc ∞ n'est pas limite de f simples continues.
- 4. E pas métrisable car dense mais 3)

Ex7: espaces localement convexe

 $\Rightarrow E$ encapsule la topo τ $p_{\Omega}(x) := \inf\{y | x \in y\Omega\}$ a valeur dans $[0, \infty]$ avec Ω convexe, contient 0, symétrique et absorbant sur E topo la plus grossière pour laquelle toutes les semi normes continues pour τ sont continues.

 \Leftarrow base de voisinage est donnée par les intersections finies de "semi boules". On a semi norme convexe \Rightarrow semi boules convexes.