DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO – DCC LINGUAGENS FORMAIS E AUTÔMATOS – LFA0001

Lista de exercícios no. 3

1) Construir uma gramática que gere a linguagem regular

```
L = \{w \in \{0,1\}^* \mid w \text{ contém um número par de 0's e um número par de 1's }\}
```

- 2) Construir gramáticas regulares para as linguagens regulares sobre o alfabeto $\Sigma = \{0,1\}$ dadas a seguir.
 - a) $L_1 = 0^+1^+ = \{ 0^n 1^m \mid n,m > 0 \}$
 - b) $L_2 = 0^*1^* = \{ 0^n 1^m \mid n,m \ge 0 \}$
 - c) $L_3 = (01)^+ = \{(01)^n \mid n > 0\}$
- 3) Descreva os conjuntos denotados pelas expressões regulares sobre o alfabeto $\Sigma = \{0,1\}$.
 - a) 0 | 10*
 - b) (0 | 1)0*
 - c) (0011)*
 - d) (0 | 1)* 1(0 | 1)*
 - e) 0*11*0
 - f) $0(0 \mid 1)*0$
 - g) Ø*
 - h) $(\varepsilon \mid 0) (\varepsilon \mid 1)$
 - i) (000* | 1)*
 - j) $(0*|0*11(1|00*11)*)(\epsilon|00*)$
- 4) Determine para cada linguagem sobre o alfabeto $\Sigma = \{0,1\}$ abaixo, uma expressão regular que a denote. Admita a convenção $|x|_0$ como sendo o número de símbolos 0 que ocorrem na cadeia $x \in \Sigma^*$.
 - a) $\{0\} \Sigma^* \{1\}$
 - b) $\Sigma^* \{01\}$
 - c) $\{ x \in \Sigma^* \mid |x|_0 \ge 3 \}$
 - d) $\{x \in \Sigma^* \mid |x| | \text{ é par} \}$
 - e) $\{x \in \Sigma^* \mid x \text{ não possui dois 0's e não possui dois 1's consecutivos}\}$
- 5) Construa um autômato finito que reconhece as sentenças das linguagens abaixo sobre o alfabeto $\Sigma = \{0,1\}$.
 - a) $L = \{ x \in \{0,1\}^* \mid x \text{ não possui três 1's consecutivos} \}$
 - b) $L = \{ 0^m 1^n \mid m \ge 0, n > 0 \}$
 - c) $L = \{0*x1* | x \in \{0,1\}* e x \neq 101\}$
 - d) $L = \{ 0^{2n} \mid n > 0 \}$
 - e) $L = \{0^i 1^j \mid i, j > 0 \text{ e } i * j \text{ \'e um n\'umero par }\}$

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO – DCC LINGUAGENS FORMAIS E AUTÔMATOS – LFA0001

6) Considere o brinquedo abaixo:

Ł

Bolinhas são jogadas em A. As alavancas x_1 e x_2 causam o desvio da bolinha para a esquerda ou para a direita. Quando uma bolinha atinge a alavanca, causa alteração no estado da alavanca, sendo que a próxima bolinha a atingir a alavanca pegará o caminho oposto.

Pede-se:

- a) Modele este brinquedo por um autômato finito, considerando que pode-se denotar uma bolinha em A como entrada 1 e uma sequência de entrada será aceita se a última bolinha cair na saída C.
- b) Qual é a linguagem aceita por este autômato finito?
- 7) Seja o AFN $M = \langle \{q0, q1, q2\}, \{0,1\}, \delta, q0, \{q2\} \rangle$, com o mapeamento δ dado por:

$$\begin{array}{ll} \delta(q_0,0) = \{q_1,q_2\} & \delta(q_0,1) = \{q_0\} \\ \delta(q_1,0) = \{q_0,q_1\} & \delta(q_1,1) = \{\} \\ \delta(q_2,0) = \{q_0,q_2\} & \delta(q_2,1) = \{q_1\} \end{array}$$

Pede-se:

 $Q = \{ q_0, q_1, q_2, q_3 \}$

- a) encontre um AFD equivalente ao AFN M dado.
- b) descreva L(M) por uma expressão regular.

 $\delta(q_3,1) = \{ \}$

8) Seja o AFN M = $< Q, \Sigma, \delta, q0, F >$, onde

$$\begin{split} F &= \{ \ q_3 \ \} \\ e \ o \ mapeamento \ \delta \ \acute{e} \ dado \ por: \\ \delta(q_0,0) &= \{q_0\} \\ \delta(q_1,0) &= \{q_2\} \\ \delta(q_2,0) &= \{ \ \} \end{split} \qquad \begin{array}{l} \delta(q_0,1) &= \{q_1\} \\ \delta(q_1,1) &= \{q_1,q_3\} \\ \delta(q_2,0) &= \{ \ \} \end{array}$$

$\delta(q_3,0) = \{q_3\}$ Pede-se:

 $\Sigma = \{0,1\}$

- a) Construa um AFD M', a partir de M, tal que L(M) = L(M')
- b) Descreva por uma expressão regular a linguagem L(M).
- 9) Construa um AFD a partir do AFN M= $\{a,b,c,d\}$, $\{0,1\}$, $\delta,a,\{a\}>$, onde o mapeamento δ é dado por:

	0	1
a	{a,b}	a
b	c	c
c	d	
d	d	d

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO - DCC LINGUAGENS FORMAIS E AUTÔMATOS - LFA0001

10) Construa um AFN que reconhece todas as sentenças sobre o alfabeto {a,b,c} que possuem o mesmo valor quando tais sentenças forem avaliadas da esquerda para a direita ou da direita para a esquerda, de acordo com a tabela de multiplicação não associativa, dada a seguir:

	a	b	c
a	a	a	c
b	c	a	b
С	b	c	a

11) Seja o AF ϵ M, dado por M = $\langle Q, \Sigma, \delta, q_0, F \rangle$, onde:

$$Q = \{q_0,\,q_1,\,q_2,\,q_3\}$$

$$\Sigma = \{0, 1\}$$

$$F = \{q_3\}$$

e o mapeamento δ é dado por:

	0	1	3
\mathbf{q}_0	-	\mathbf{q}_0	\mathbf{q}_1
q0 q1 q2 q3	\mathbf{q}_3	\mathbf{q}_1	\mathbf{q}_0
q_2	$\begin{array}{c} q_3 \\ q_2 \\ q_2 \end{array}$	-	-
\mathbf{q}_3	\mathbf{q}_2	\mathbf{q}_3	-

Pede-se:

- a) Construa um AFN M' sem movimento vazio que seja equivalente a M.
- b) A partir do AFN M', construa um AFD M'' que seja equivalente a M.
- c) A partir do AFD M'', construa um AFD M''' que seja equivalente a M e que tenha um número mínimo de estados.
- d) Escreva a expressão regular que denota L(M).

12) Construa autômatos finitos que reconhecem as sentenças denotadas pelas seguintes expressões regulares:

- a) $10 \mid (0 \mid 11) \ 0*1$
- b) 01 (((10)* | 111)* | 0)* 1
- c) 1* | 1* (011)* (1* (011)*)*
- d) (0 | 01 | 10)*
- e) $(11 \mid 0)*(00 \mid 1)*$

13) Encontre as expressões regulares dos autômatos finitos descritos a seguir:

a)
$$M_a = (\{a,b,c\},\{0,1\},\delta_a,a,\{a\})$$

b)
$$Mb = (\{a,b,c\}, \{0,1\}, \delta_b, a, \{b,c\})$$

c)
$$c-Mc = (\{a,b\}, \{0,1\}, \delta_c, a, \{b\})$$

$$\frac{\delta_{c}}{\delta_{c}} = \frac{(\{a,b\}, \{0,1\}, \{0,c,a,\{b\}\})}{a \quad b \quad a}$$

14) Para as expressões regulares obtidas no exercício anterior, encontre expressões regulares mais simples que sejam equivalentes.

