Fondamenti di elettronica

Corso di laurea in Ingegneria Biomedica

Quarta prova di accertamento – 28/01/2025 – Canale 1 – Prof. Meneghesso

COGNOME: NOME: MATRICOLA:

Problema 1

Dato il circuito l'amplificatore in figura di cui sono noti i seguenti dati:

- Il valore V_{DD} = 10V
- Parametri dei MOSFET: $k_1 = k_2 = 1 \text{mA/V}^2$, $V_{TN1} = V_{TN2} = 2 \text{V}$
- I valori delle resistenze: $R_1 = 12k\Omega$, $R_2 = 1k\Omega$, $R_L = 1k\Omega$ e $R_1 = 1k\Omega$.

Calcolare:

- 1) La polarizzazione e le correnti dei MOSFET sapendo che la differenza di potenziale ai capi della resistenza R_2 è V_{R2} = 8V.
- 2) I potenziali dei nodi A, B e C. Riportare i valori dei potenziali negli appositi spazi a fianco della figura.
- 3) Disegnare il modello ai piccoli segnali del circuito e calcolare le transconduttanze di M₁ e M₂. Dall'analisi ai piccoli segnali, calcolare:
- 4) La resistenza di ingresso e di uscita dell'amplificatore, come mostrato in figura
- 5) Il guadagno dall'ingresso v_i all'uscita v_o.

$$V_C = \dots$$

Problema 2

Dato il circuito in figura realizzato con resistenze $R_F = 10k\Omega$ e $R_S = 1k\Omega$ e un amplificatore operazionale reale con $V_{OS} = -5mV$, $I_{BN} = I_{BP} = 500nA$, calcolare:

- 1) la tensione di uscita con i_S = 1mA supponendo l'operazionale ideale
- 2) la tensione di uscita con is = 1mA considerando tutte le non idealità
- 3) il valore di i_S per il quale la tensione di uscita è $v_O = 0V$ (considerando tutte le non idealità)

N.B. usare almeno 4 cifre decimali nei risultati

Problema 3

Dato il circuito in figura tracciare la transcaratteristica di v_0 in funzione di v_S sapendo che R_1 = $1k\Omega$, R_2 = $4k\Omega$ e il diodo ha V_{ON} = 0.5V

Disegnare il grafico usando il diagramma a pagina sequente.

A fianco di ciascun punto di spezzamento indicare i valori di tensione v_S e v_O corrispondenti. A fianco di ciascun segmento indicare il valore della pendenza (dv_O/dv_S) e la regione di funzionamento dei diodi.

Problema 4

Dato il filtro in figura, sapendo che l'amplificatore operazionale è ideale e che R_1 = $5k\Omega$, R_2 = $50k\Omega$, C_2 = 2nF, R_3 = $40k\Omega$, C_3 = 250nF:

- 1) Trovare la funzione di trasferimento del filtro. *Trascrivere la funzione di trasferimento nell'apposito riquadro a pagina successiva, indicando i valori di zeri e poli.*
- 2) Tracciare il diagramma di bode usando i grafici riportati nella pagina successiva
- 3) Usando il diagramma <u>asintotico</u> di Bode, calcolare il segnale di uscita, sapendo che il segnale di ingresso è:

$$v_S = V_S \sin(\omega_S t + \phi_S)$$
 con: $V_S = 1V$, $\phi_S = 90^\circ$, $\omega_S = 1000$ rad/s

W(s) =

In entrambi i grafici indicare:

- a fianco di ogni punto della spezzata il corrispondente valore (in dB o gradi)
- a fianco di ogni segmento con pendenza non nulla il corrispondente valore di pendenza (in dB/dec o gradi/decade)

