CSCI567 Machine Learning (Spring 2021)

Sirisha Rambhatla

University of Southern California

March 19, 2021

1 / 30

Outline

Review of last lecture

Question mixture models

Review of last lecture

Outline

- Review of last lecture
- Question Mixture models

Review of last lecture

Clustering: formal definition

Given: data points $oldsymbol{x}_1,\dots,oldsymbol{x}_N\in\mathbb{R}^\mathsf{D}$ and $\#\mathsf{clusters}\ K$ we want

Output: group the data into K clusters, which means

- find assignment $\gamma_{nk} \in \{0,1\}$ for each data point $n \in [N]$ and $k \in [K]$ s.t. $\sum_{k \in [K]} \gamma_{nk} = 1$ for any fixed n
- ullet find the cluster centers $oldsymbol{\mu}_1,\ldots,oldsymbol{\mu}_K\in\mathbb{R}^{\mathsf{D}}$

Review of last lecture

Alternating minimization

Instead, use a heuristic that alternatingly minimizes over $\{\gamma_{nk}\}$ and $\{\mu_k\}$:

Initialize $\{oldsymbol{\mu}_k^{(1)}\}$ For t = 1, 2, ...

find

$$\{\gamma_{nk}^{(t+1)}\} = \underset{\{\gamma_{nk}\}}{\operatorname{argmin}} F\left(\{\gamma_{nk}\}, \{\boldsymbol{\mu}_k^{(t)}\}\right)$$

find

$$\{\boldsymbol{\mu}_k^{(t+1)}\} = \operatorname*{argmin}_{\{\boldsymbol{\mu}_k\}} F\left(\{\boldsymbol{\gamma}_{nk}^{(t+1)}\}, \{\boldsymbol{\mu}_k\}\right)$$

5 / 30

Gaussian mixture models

Outline

- Review of last lecture
- Question mixture models
 - Motivation and Model
 - EM algorithm
 - EM applied to GMMs

The K-means algorithm

Step 0 Initialize μ_1, \ldots, μ_K

Step 1 Fix the centers μ_1, \ldots, μ_K , assign each point to the closest center:

$$\gamma_{nk} = \mathbb{I}\left[k = = \operatorname*{argmin}_{c} \|oldsymbol{x}_n - oldsymbol{\mu}_c\|_2^2
ight]$$

Step 2 Fix the assignment $\{\gamma_{nk}\}$, update the centers

$$oldsymbol{\mu}_k = rac{\sum_n \gamma_{nk} oldsymbol{x}_n}{\sum_n \gamma_{nk}}$$

Step 3 Return to Step 1 if not converged

Gaussian mixture models

Motivation and Model

Gaussian mixture models

Gaussian mixture models (GMMs) are a probabilistic approach for clustering

- more explanatory than minimizing the K-means objective
- can be seen as a soft version of K-means

To solve GMM, we will introduce a powerful method for learning probabilistic model: Expectation-Maximization (EM) algorithm

A generative model

For classification, we discussed the sigmoid model to "explain" how the labels are generated.

Similarly, for clustering, we want to come up with a probabilistic model p to "explain" how the data is generated.

That is, each point is an independent sample of ${m x} \sim p$.

What probabilistic model generates data like this?

9 / 30

Gaussian mixture models

Motivation and Model

GMM: formal definition

A GMM has the following density function:

$$p(oldsymbol{x}) = \sum_{k=1}^K \omega_k N(oldsymbol{x} \mid oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)$$

where

- K: the number of Gaussian components (same as #clusters we want)
- $\omega_1, \ldots, \omega_K$: mixture weights, a distribution over K components
- ullet μ_k and Σ_k : mean and covariance matrix of the k-th Gaussian
- ullet N: the density function for a Gaussian

GMM: intuition

GMM is a natural model to explain such data

Assume there are 3 ground-truth Gaussian models. To generate a point, we

- first randomly pick one of the Gaussian models,
- then draw a point according this Gaussian.

Hence the name "Gaussian mixture model".

Gaussian mixture models

Motivation and Model

Another view

By introducing a latent variable $z \in [K]$, which indicates cluster membership, we can see p as a marginal distribution

$$p(\boldsymbol{x}) = \sum_{k=1}^{K} p(\boldsymbol{x}, z = k) = \sum_{k=1}^{K} p(z = k) p(\boldsymbol{x} | z = k) = \sum_{k=1}^{K} \omega_k N(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

 $oldsymbol{x}$ and z are both random variables drawn from the model

- x is observed
- z is unobserved/latent

10 / 30

•

An example

The conditional distributions are

$$\begin{split} p(\boldsymbol{x} \mid z = \mathsf{red}) &= N(\boldsymbol{x} \mid \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) \\ p(\boldsymbol{x} \mid z = \mathsf{blue}) &= N(\boldsymbol{x} \mid \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2) \\ p(\boldsymbol{x} \mid z = \mathsf{green}) &= N(\boldsymbol{x} \mid \boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3) \end{split}$$

The marginal distribution is

$$\begin{split} p(\boldsymbol{x}) &= p(\text{red}) N(\boldsymbol{x} \mid \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) + p(\text{blue}) N(\boldsymbol{x} \mid \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2) \\ &+ p(\text{green}) N(\boldsymbol{x} \mid \boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3) \end{split}$$

13 / 3

Gaussian mixture models

Motivation and Model

How to learn these parameters?

An obvious attempt is maximum-likelihood estimation (MLE): find

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ln \prod_{n=1}^{N} p(\boldsymbol{x}_{n}; \boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln p(\boldsymbol{x}_{n}; \boldsymbol{\theta}) \triangleq \underset{\boldsymbol{\theta}}{\operatorname{argmax}} P(\boldsymbol{\theta})$$

This is called incomplete log-likelihood (since z_n 's are unobserved), and is intractable in general (non-concave problem).

One solution is to still apply GD/SGD, but a much more effective approach is the **Expectation–Maximization (EM) algorithm**.

Learning GMMs

Learning a GMM means finding all the parameters $\theta = \{\omega_k, \mu_k, \Sigma_k\}_{k=1}^K$. In the process, we will learn the latent variable z_n as well:

$$p(z_n = k \mid \boldsymbol{x}_n) \triangleq \gamma_{nk} \in [0, 1]$$

i.e. "soft assignment" of each point to each cluster, as opposed to "hard assignment" by K-means.

GMM is more explanatory than K-means

- ullet both learn the cluster centers $oldsymbol{\mu}_k$'s
- ullet in addition, GMM learns cluster weight ω_k and covariance Σ_k , thus
 - we can predict probability of seeing a new point
 - we can generate synthetic data

Motivation and Model

Preview of EM for learning GMMs

Gaussian mixture models

Step 0 Initialize $\omega_k, \mu_k, \Sigma_k$ for each $k \in [K]$

Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$\gamma_{nk} = p(z_n = k \mid \boldsymbol{x}_n) \propto \omega_k N\left(\boldsymbol{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\right)$$

Step 2 (M-Step) update the model parameter (fixing assignments)

$$\omega_k = rac{\sum_n \gamma_{nk}}{N}$$
 $oldsymbol{\mu}_k = rac{\sum_n \gamma_{nk} oldsymbol{x}_n}{\sum_n \gamma_{nk}}$

$$oldsymbol{\Sigma}_k = rac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (oldsymbol{x}_n - oldsymbol{\mu}_k) (oldsymbol{x}_n - oldsymbol{\mu}_k)^{ ext{T}}$$

Step 3 return to Step 1 if not converged

We will see how this is a special case of EM.

Demo

Generate 50 data points from a mixture of 2 Gaussians with

- $\omega_1 = 0.3, \mu_1 = -0.8, \Sigma_1 = 0.52$
- $\omega_2 = 0.7, \mu_2 = 1.2, \Sigma_2 = 0.35$

histogram represents the data

red curve represents the ground-truth density $p(\boldsymbol{x}) = \sum_{k=1}^{K} \omega_k N(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$

blue curve represents the learned density for a specific round

EM_demo.pdf shows how the blue curve moves towards red curve quickly via EM

17 / 30

Gaussian mixture models

EM algorithm

High level idea

Keep maximizing a lower bound of P that is more manageable

EM algorithm

In general EM is a heuristic to solve MLE with latent variables (not just GMM), i.e. find the maximizer of

$$P(\boldsymbol{\theta}) = \sum_{n=1}^{N} \ln p(\boldsymbol{x}_n ; \boldsymbol{\theta}) = \sum_{n=1}^{N} \ln \int_{z_n} p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}) dz_n$$

- \bullet θ is the parameters for a general probabilistic model
- x_n 's are observed random variables
- z_n 's are latent variables

Again, directly solving the objective is intractable.

Gaussian mixture models

EM algorithm

Derivation of EM

Finding the lower bound of P:

$$\begin{split} \ln p(\boldsymbol{x}\;;\boldsymbol{\theta}) &= \ln \int_{z} p(\boldsymbol{x},z\;;\boldsymbol{\theta}) dz \\ &= \ln \int_{z} q(z) \frac{p(\boldsymbol{x},z\;;\boldsymbol{\theta})}{q(z)} dz \qquad \qquad \text{(true for any dist. } q) \\ &= \ln \mathbb{E}_{z \sim q} \left[\frac{p(\boldsymbol{x},z\;;\boldsymbol{\theta})}{q(z)} \right] \\ &\geq \mathbb{E}_{z \sim q} \left[\ln \frac{p(\boldsymbol{x},z\;;\boldsymbol{\theta})}{q(z)} \right] \qquad \qquad \text{(Jensen's inequality)} \\ &= \mathbb{E}_{z \sim q} \left[\ln p(\boldsymbol{x},z\;;\boldsymbol{\theta}) \right] + H(q) \end{split}$$

where, $H(q) = -\mathbb{E}_{z \sim q} [\ln q(z)]$ is the Entropy. Therefore, for an observation x we have

$$\ln p(\boldsymbol{x};\boldsymbol{\theta}) \ge \mathbb{E}_{z \sim q} \left[\ln p(\boldsymbol{x}, z; \boldsymbol{\theta}) \right] + H(q)$$

Alternatively maximize the lower bound

Therefore, we obtain a lower bound for the log-likelihood function

$$egin{aligned} P(oldsymbol{ heta}) &= \sum_{n=1}^N \ln p(oldsymbol{x}_n \ ; oldsymbol{ heta}) \ &\geq \sum_{n=1}^N \left(\mathbb{E}_{z_n \sim q_n} \left[\ln p(oldsymbol{x}_n, z_n \ ; oldsymbol{ heta})
ight] + H(q_n)
ight) = oldsymbol{F}(oldsymbol{ heta}, \{q_n\}) \end{aligned}$$

This holds for any $\{q_n\}$, so how do we choose? Naturally, the one that maximizes the lower bound (i.e. the tightest lower bound)!

Equivalently, this is the same as alternatingly maximizing F over $\{q_n\}$ and θ (similar to K-means).

21 / 30

Gaussian mixture models

EM algorithm

Maximizing over heta

Fix $\{q_n^{(t)}\}$, maximize over $\boldsymbol{\theta}$:

$$\begin{split} & \underset{\boldsymbol{\theta}}{\operatorname{argmax}} F\left(\boldsymbol{\theta}, \{q_n^{(t)}\}\right) \\ &= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{z_n \sim q_n^{(t)}} \left[\ln p(\boldsymbol{x}_n, z_n \; ; \boldsymbol{\theta})\right] \quad \left(H(q_n^{(t)}) \text{ is independent of } \boldsymbol{\theta}\right) \\ &\triangleq \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ Q(\boldsymbol{\theta} \; ; \boldsymbol{\theta}^{(t)}) & \left(\{q_n^{(t)}\} \text{ are computed via } \boldsymbol{\theta}^{(t)}\right) \end{split}$$

Q is the (expected) **complete likelihood** and is usually more tractable.

Maximizing over $\{q_n\}$

Fix $\theta^{(t)}$, the solution to

$$\operatorname*{argmax}_{q_n} \mathbb{E}_{z_n \sim q_n} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}^{(t)}) \right] + H(q_n)$$

is $q_n^{(t)}$ s.t.

$$q_n^{(t)}(z_n) = p(z_n \mid \boldsymbol{x}_n ; \boldsymbol{\theta}^{(t)}) \propto p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}^{(t)})$$

i.e., the *posterior distribution of* z_n given x_n and $\theta^{(t)}$. (See MLaPP 11.4.7)

So at $\theta^{(t)}$, we found the tightest lower bound $F\left(\boldsymbol{\theta},\{q_n^{(t)}\}\right)$:

- $F\left(\boldsymbol{\theta}, \{q_n^{(t)}\}\right) \leq P(\boldsymbol{\theta})$ for all $\boldsymbol{\theta}$.
- ullet $F\left(m{ heta}^{(t)},\{q_n^{(t)}\}
 ight)=P(m{ heta}^{(t)})$ (verify using Slide 20 and MLaPP 11.4.7)

22 / 30

Gaussian mixture models

EM algorithm

General EM algorithm

Step 0 Initialize $\theta^{(1)}$, t=1

Step 1 (E-Step) update the posterior of latent variables

$$q_n^{(t)}(\cdot) = p(\cdot \mid \boldsymbol{x}_n ; \boldsymbol{\theta}^{(t)})$$

and obtain Expectation of complete likelihood

$$Q(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)}) = \sum_{n=1}^{N} \mathbb{E}_{z_n \sim q_n^{(t)}} \left[\ln p(\boldsymbol{x}_n, z_n; \boldsymbol{\theta}) \right]$$

Step 2 (M-Step) update the model parameter via Maximization

$$\boldsymbol{\theta}^{(t+1)} \leftarrow \operatorname*{argmax}_{\boldsymbol{\theta}} Q(\boldsymbol{\theta} ; \boldsymbol{\theta}^{(t)})$$

Step 3 $t \leftarrow t + 1$ and return to Step 1 if not converged

Pictorial explanation

 $P(\boldsymbol{\theta})$ is non-concave, but $Q(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)})$ often is concave and easy to maximize.

$$P(\boldsymbol{\theta}^{(t+1)}) \ge F\left(\boldsymbol{\theta}^{(t+1)}; \{q_n^{(t)}\}\right)$$
$$\ge F\left(\boldsymbol{\theta}^{(t)}; \{q_n^{(t)}\}\right)$$
$$= P(\boldsymbol{\theta}^{(t)})$$

So EM always increases the objective value and will converge to some local maximum (similar to K-means).

Apply EM to learn GMMs

E-Step:

$$q_n^{(t)}(z_n = k) = p\left(z_n = k \mid \boldsymbol{x}_n ; \boldsymbol{\theta}^{(t)}\right)$$

$$\propto p\left(\boldsymbol{x}_n, z_n = k ; \boldsymbol{\theta}^{(t)}\right)$$

$$= p\left(z_n = k ; \boldsymbol{\theta}^{(t)}\right) p(\boldsymbol{x}_n \mid z_n = k ; \boldsymbol{\theta}^{(t)})$$

$$= \omega_k^{(t)} N\left(\boldsymbol{x}_n \mid \boldsymbol{\mu}_k^{(t)}, \boldsymbol{\Sigma}_k^{(t)}\right)$$

This computes the "soft assignment" $\gamma_{nk} = q_n^{(t)}(z_n = k)$, i.e. conditional probability of x_n belonging to cluster k.

25 / 30

Gaussian mixture models

EM applied to GMMs

Apply EM to learn GMMs

M-Step:

$$\begin{aligned} \operatorname*{argmax}_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) &= \operatorname*{argmax}_{\boldsymbol{\theta}} \sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}} \left[\ln p(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}) \right] \\ &= \operatorname*{argmax}_{\boldsymbol{\theta}} \sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}} \left[\ln p(z_{n} ; \boldsymbol{\theta}) + \ln p(\boldsymbol{x}_{n} | z_{n} ; \boldsymbol{\theta}) \right] \\ &= \operatorname*{argmax}_{\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\}} \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \left(\ln \omega_{k} + \ln N(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right) \end{aligned}$$

To find ω_1,\ldots,ω_K , solve

To find each μ_k, Σ_k , solve

$$\operatorname*{argmax}_{\pmb{\omega}} \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \ln \omega_k$$

$$\underset{\boldsymbol{\omega}}{\operatorname{argmax}} \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \ln \omega_{k} \qquad \underset{\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}}{\operatorname{argmax}} \sum_{n=1}^{N} \gamma_{nk} \ln N(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

Gaussian mixture models

EM applied to GMMs

M-Step (continued)

Solutions to previous two problems are very natural, for each k

$$\omega_k = \frac{\sum_n \gamma_{nk}}{N}$$

i.e. (weighted) fraction of examples belonging to cluster k

$$oldsymbol{\mu}_k = rac{\sum_n \gamma_{nk} oldsymbol{x}_n}{\sum_n \gamma_{nk}}$$

i.e. (weighted) average of examples belonging to cluster k

$$oldsymbol{\Sigma}_k = rac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (oldsymbol{x}_n - oldsymbol{\mu}_k) (oldsymbol{x}_n - oldsymbol{\mu}_k)^{ ext{T}}$$

i.e (weighted) covariance of examples belonging to cluster k

Putting it together

EM for learning GMMs:

Step 0 Initialize $\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k$ for each $k \in [K]$

Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$\gamma_{nk} = p(z_n = k \mid \boldsymbol{x}_n) \propto \omega_k N(\boldsymbol{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

EM applied to GMMs

Step 2 (M-Step) update the model parameter (fixing assignments)

$$\omega_k = rac{\sum_n \gamma_{nk}}{N} \qquad oldsymbol{\mu}_k = rac{\sum_n \gamma_{nk} oldsymbol{x}_n}{\sum_n \gamma_{nk}}$$

$$oldsymbol{\Sigma}_k = rac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (oldsymbol{x}_n - oldsymbol{\mu}_k) (oldsymbol{x}_n - oldsymbol{\mu}_k)^{ ext{T}}$$

Step 3 return to Step 1 if not converged

Connection to K-means

K-means is in fact a special case of EM for (a simplified) GMM:

- assume $\Sigma_k = \sigma^2 I$ for some fixed σ so only ω_k and μ_k are parameters
- when $\sigma \to 0$, EM becomes K-means

GMM is a soft version of K-means and it provides a probabilistic interpretation of the data, which means we can predict and generate data after learning.