Computer Arkitektur og Operativ Systemer

Denne forelæsning optages og gøres efterfølgende tilgængelig på Moodle MEDDEL VENLIGST UNDERVISEREN, HVIS DU <u>IKKE</u> ØNSKER, AT OPTAGELSE FINDER STED

This lecture will be recorded and afterwards be made available on Moodle

PLEASE INFORM THE LECTURER IF YOU DO NOT WANT RECORDING TO TAKE PLACE

Computer Arkitektur og Operativ Systemer Virtuel Hukommelse

Forelæsning 10 Brian Nielsen

Credits to
Randy Bryant & Dave O'Hallaron (CMU)
Youjip Won (KAIST)

Illusionen

- Vi ønsker at kunne afvikle mange processer samtidigt
 - Mange opgaver
 - Mange brugere
- Process = Logisk Kontrol-flow+Adresserum

- Hvordan giver vi hver proces sit eget adresserum?
- Hvordan kan vi afvikle flere processer end vi har RAM til? Og større processer end vi har RAM til?
- Hvordan isolerer vi adresserum?
- Hvordan udnytter vi RAM effektive og laver effektiv administration heraf?

Side-baseret hukommelsesstyring

- Virtuelt adresse rum "opdelt" i virtuelle sider
- Fysisk DRAM opdeles i fysiske sider
 - Fri-ind-placering
 - DRAM-cache
 - Beskyttelse af adresserum
- Kan adresse oversættelse laves effektivt?
 - Side-tabeller (Page-tabel)
 - TLB cache
 - Fler-niveau side-tabeller
- Page-faults, side-erstatning?
- Kræver hardware MMU og et tæt samarbejde med OS
 - LOKALITET!!!

Opgaverne

- Hvor store er adresserum på moderne maskiner? I86-64 supporterer kun 48 bit adresser?
- Page tables
 - Antal PTEs til et adresserum?
 - Opdeling af adresser i VPN, VPO, PPN, PPO
 - Adresse-oversættelse i "Lille VM" systemet
- Side-erstatningspolitikker: Hvordan håndterer de forskellige belastninger? Hvilken belastning er værst for de forskellige politikker?
- Challenge 12: Analyse af hash-tabel effektivitet ud fra et hukommelses-hierarki / caching perspektiv