Sistemas de inteligencia artificial TP3: Perceptron simple y multicapa

Grupo 19 Integrantes:

- → Lucas Catolino
- → Matias Ricarte

Sobre el perceptrón simple escalón

• El perceptrón simple escalón es útil a la hora de resolver problemas de separabilidad lineal.

• XOR **no** es parte de ese conjunto de problemas.

Perceptrón simple: modelo y algoritmo

```
i = 0
w = zeros(N+1, 1)
error = 1
error_min = p * 2
while error > 0 \land i < COTA
    Tomar un número i x al azar entre 1 y p
    Calcular la exitación h = x[i_x].w
    Calcular la activación O = signo(h)
    \Delta w = \eta * (y[i\_x] - O).x[i\_x]
    w = w + \Delta w
    error = CalcularError(x, y, w, p)
    if error < error_min
        error_min = error
        w_min = w
    end
    i = i + 1
end
```


Perceptrón múltiple: modelo y algoritmo

- 1.Inicializar el conjunto de pesos en valores 'pequeños' al azar.
- 2. Tomar un ejemplo ξ^{μ} al azar del conjunto de entrenamiento y $V_{\nu}^{0} = \xi_{\nu}^{\mu}$ para todo k. aplicarlo a la capa 0:
- 3.Propagar la entrada hasta a capa de salida $V_i^m = g(h_i^m) = g(\sum w_{ij}^m V_i^{m-1}) \text{ para todo m desde 1 hasta M}.$
- 4.Calcular δ para la capa de salida

$$\delta_i^M = g'(h_i^M)(\zeta_i^\mu - V_i^M)$$

5.Retropropagar δ_i^M a la capa m-1

$$\delta_j^{m-1} = g'(h_j^{m-1}) \sum_i w_{ij}^m \delta_i^m$$
 para todo m entre M y 2

6. Actualizar los pesos de las conexiones de acuerdo

$$w.nuevo_{ij}^{m} = w.viejo_{ij}^{m} + \Delta w_{ij}^{m}$$

donde
$$\Delta w_{ij}^m = \eta \delta_i^m V_j^{m-1}$$

7. Calcular el error. Si error > COTA, ir a 2.

Resultados para el primer ejercicio

```
"SolutionInfo": {
    "iterations": 7,
    "epochs": 1,
    "params": {
        "iterationLimit": 1000,
        "learningRate": 0.1,
        "minAcceptable": 0.0,
```

```
"SolutionInfo": {
    "iterations": 1000,
    "epochs": 249,
    "params": {
        "iterationLimit": 1000,
        "learningRate": 0.1,
        "minAcceptable": 0.0,
```

Sobre el perceptrón simple lineal y no lineal

Para el ejercicio 2 se nos dio un dataset de entradas y salidas para probar con estos 2 tipos de perceptrones simples.

 En el lineal no fue posible bajar el error a un valor apropiado para decir que la red "aprendió" cómo resolver el problema. Esto nos lleva a pensar que la función a aprender no es una transformación lineal.

```
"stopReason": "MAXITER",
"bestIteration": {
    "w": [6.421472086866038, 6.601156358231627, 6.84386343000651, 42.85802715722375],
    "error": 9257.06608157755
}
```

"SolutionInfo": {
 "iterations": 500000,
 "epochs": 2499,
 "params": {
 "iterationLimit": 500000,
 "learningRate": 0.001,
 "minAcceptable": 0.5,
 "trainingDataInputs":

(cont.)

```
"elapsedTimeMillis": 34217,

"stopReason": "MAXITER",

"bestIteration": {

    "w": [0.23346248990706792, 0.2662405177410216, -0.21138101169215484],

    "error": 17.38400292356527
}
```

Error vs Iterations


```
"SolutionInfo": {
    "iterations": 2000000,
    "epochs": 9999,
    "params": {
        "iterationLimit": 2000000,
        "learningRate": 0.01,
        "minAcceptable": 0.0,
```

```
"trainingDataInputSize": 200,
"perceptronMode": "nonlinear",
"kCuts": 4,
"beta": 0.8,
"sigmoidType": "tanh",
"printHistory": "both"
```

Aplicando validación cruzada en *k* partes

```
"iterationLimit": 2000000,
"learningRate": 0.01,
```

```
"perceptronMode": "nonlinear",
"sigmoidType": "tanh",
"beta": 0.8,
"printHistory": "both",
"kCuts": 4
```

A la hora de evaluar la capacidad de generalización del perceptrón, decidimos seguir utilizando los parámetros con los que menor error encontramos, ya que aunque los pesos que se creasen a partir de los diferentes subconjuntos de entrenamiento serán diferentes, el beta, la función sigmoide y la tasa de aprendizaje siguen siendo parte del perceptron a evaluar.

```
public double ACCURACY_EPSILON = 0.18;
```

```
double testAcc = calculateAccuracy(w, testingSetInputs, testingSetOutputs, ACCURACY_EPSILON);
```

Con k = 4

Con k = 3

Con k = 2

Sobre el perceptrón multicapa

Para el ejercicio 3 se nos dio un conjunto de datasets de entradas y salidas. La implementación del perceptrón multicapa sigue la siguiente arquitectura:

- El perceptrón es un arreglo de capas
- Cada capa tiene un arreglo de unidades
- Cada unidad calcula y conoce su excitación, activación y pesos sinápticos

Ejercicio 3.1: dada la función XOR calcular la salida

Entrada: $x = \{\{-1, 1\}, \{1, -1\}, \{-1, -1\}, \{1, 1\}\}$

Salida esperada: $y = \{1, 1, -1, -1\}$

Al no ser un problema linealmente separable, debe utilizarse un perceptrón multicapa

Ejercicio 3.1: dada la función XOR calcular la salida

Se calculó la matriz de confusión: esperado vs resultado

		Resul	tado
		1	-1
Esperado	1	22	0
	-1	1	24

Epochs	500000
Corridas	12
beta	1
Learning rate	0.01
Capas ocultas	{4, 3}

Ejercicio 3.2: dados píxeles que forman números, definir la paridad

0 1 1 1 0 0	01000	1 1 1 0	0 11 1 0	00010	1 1 1 1 1	0 0 1 1 0	1 1 1 1 1	0 1 1 1 0	01 1 1 0
100010		0 0 0 1	1 00 0 1	0 0 1 1 0	10000	0 1 0 0 0	0 0 0 0 1	1 0 0 0 1	10 0 0 1
		0 0 0 1	0 00 0 1	0 1 0 1 0	1 1 1 1 0	10000	0 0 0 1 0	1 0 0 0 1	10 0 0 1
		0 0 1 0	0 01 1 0	10010	00001	1 1 1 1 0	0 1 0 0 0	0 1 1 1 0	01 1 1 1
		0 1 0 0	0 00 0 1	1 1 1 1 1	00001	1 0 0 0 1	0 0 1 0 0	1 0 0 0 1	00 0 0 1
	01000	1000	1 00 0 1	0 0 0 1 0	10001	1 0 0 0 1	0 0 1 0 0	1 0 0 0 1	00 0 1 0
0 1 1 1 0 0	1 1 1 0	1 1 1 1	0 11 1 0	0 0 0 1 0	0 1 1 1 0	0 1 1 1 0	0 0 1 0 0	0 1 1 1 0	01 1 0 0

Entrenar con un subconjunto y testear con otro

Gráfico de accuracy

Acc= bien clasificados/total

Epochs	100001
beta	1
Learning rate	0.01
Capas ocultas	{25, 20, 15, 10, 5}
Accuracy error	0.18

Gráfico de accuracy

Acc= bien clasificados/total

Epochs	5000
beta	1
Learning rate	0.01
Capas ocultas	{25, 20, 15, 10, 5}
Accuracy error	0.1

Ejercicio 3.2: dados píxeles que forman números, definir la paridad

¿Qué podría decir acerca de la capacidad para generalizar de la red?

Ejercicio 3.3: dados píxeles que forman números, prender el bit de salida correspondiente

01110 00100 01	1 1 0	0 11 1 0	0 0 0 1 0	1 1 1 1 1	0 0 1 1 0	1 1 1 1 1	0 1 1 1 0	01 1 1 0
	0 0 1	1 00 0 1	0 0 1 1 0	10000	0 1 0 0 0	0 0 0 0 1	1 0 0 0 1	10 0 0 1
	0 0 1	0 00 0 1	0 1 0 1 0	1 1 1 1 0	10000	0 0 0 1 0	1 0 0 0 1	10 0 0 1
	0 1 0	0 01 1 0	1 0 0 1 0	0 0 0 0 1	1 1 1 1 0	0 1 0 0 0	0 1 1 1 0	01 1 1 1
	1 0 0	0 00 0 1	1 1 1 1 1	00001	10001	0 0 1 0 0	1 0 0 0 1	00 0 0 1
	0 0 0	1 00 0 1	0 0 0 1 0	1 0 0 0 1	1 0 0 0 1	0 0 1 0 0	1 0 0 0 1	00 0 1 0
0 1 1 1 0 0 1 1 1 0 1 1	1 1 1	0 11 1 0	0 0 0 1 0	0 1 1 1 0	0 1 1 1 0	0 0 1 0 0	0 1 1 1 0	01 1 0 0

Una vez que la red aprendió, aplicar ruido

Error del ruido

Epochs	100001
beta	1
Learning rate	0.01
Capas ocultas	{25, 20, 15, 10, 5}
Probabilidad ruido	0.02

Error del ruido

Epochs	100001
beta	1
Learning rate	0.01
Capas ocultas	{25, 20, 15, 10, 5}
Probabilidad ruido	0.5

Muchas gracias

Grupo 19 Integrantes:

- → Lucas Catolino
- → Matias Ricarte