L2 Mathématiques Suites et Séries

Université de Brest

Feuille 6 Série entière

Questions de cours.

- 1. Donner la définition du rayon de convergence d'une série entière.
- 2. Donner les formules de Cauchy et de d'Alembert pour calculer le rayon de convergence d'une série entière.
- 3. Énoncer le théorème de dérivation terme à terme.
- 4. Énoncer le théorème de d'intégration terme à terme.
- 5. Donner une condition nécessaire et suffisante pour qu'une fonction soit développable en série entière.

Exercice 1. Écrire le développement en série entière et le rayon de convergence des fonctions :

$$\frac{1}{1-x}$$
, $\frac{1}{1+x}$, $\ln(1-x)$, $\ln(1+x)$, e^x , $ch(x)$, $sh(x)$, $\sin(x)$, $\cos(x)$.

Exercice 2. Déterminer le rayon de convergence des séries suivantes :

$$S_1(x) = \sum_{n \in \mathbb{N}} \frac{x^n}{5^n}; \quad S_2(x) = \sum_{n \in \mathbb{N}} \frac{x^n}{3^n(n+1)}; \quad S_3(x) = \sum_{n \in \mathbb{N}^*} \frac{x^n}{n!n^2};$$

$$S_4(x) = \sum_{n \in \mathbb{N}} n5^n x^n; \quad S_5(x) = \sum_{n \in \mathbb{N}} n! x^n; \quad S_6(x) = \sum_{n \in \mathbb{N}^*} \ln(n) x^n.$$

Exercice 3. Déterminer le rayon de convergence des séries entières :

$$\sum_{n\geq 0} (\sqrt[n+1]{n+1} - \sqrt[n]{n}) z^n; \quad \sum_{n\geq 0} \frac{n^2+1}{3^n} z^n; \quad \sum_{n\geq 0} e^{-n^2} z^n; \quad \sum_{n\geq 0} \binom{2n}{n} z^n; \quad \sum_{n\geq 0} \frac{(3n)!}{(n!)^3} z^n.$$

Exercice 4. Déterminer les rayons de convergence des séries entières

$$\sum \ln(\frac{n+1}{n})x^n \text{ et } \sum \sin(e^{-n})x^n.$$

Exercice 5. Donner le rayon de convergence et l'ensemble de convergence des séries entières :

$$\sum_{n\geq 0} x^{3n}; \quad \sum_{n\geq 0} 4^n x^{2n}; \quad \sum_{n\geq 0} \frac{2^n}{n!} x^{3n+1}; \quad \sum_{n\geq 0} n^2 (x-1)^n; \quad \sum_{n\geq 0} \frac{1}{2^n} (x+1)^{3n};$$

$$\sum_{n\geq 0} z^{n^2}; \quad \sum_{n\geq 0} \sin(n) z^n; \quad \sum_{n\geq 1} \frac{\sin(n)}{n^2} z^n; \quad \sum_{n\geq 1} \frac{\ln n}{n^2} z^{2n}; \quad \sum_{n\geq 0} \frac{n^n}{n!} z^{3n}.$$

Exercice 6.

- 1. Calculer le rayon de convergence R de la série entière $S(x) = \sum_{n \ge 3} \frac{x^n}{n^2 2n}$.
- 2. Représenter graphiquement $I = \{x \in \mathbb{R}/S(x) \text{ converge}\}.$
- 3. Déterminer deux réels a et b tel que $\frac{1}{n^2-2n}=\frac{a}{n}+\frac{b}{n-2}$.
- 4. En déduire une expression de S(x).

Exercice 7.

- 1. Calculer le rayon de convergence R de la série entière suivante $u(x) = \sum_{n \in \mathbb{N}^*} \frac{x^n}{n(n+1)}$.
- 2. Étudier la convergence en $x = \pm R$.
- 3. Déterminer deux réels a et b tel que $\frac{1}{n(n+1)} = \frac{a}{n} + \frac{b}{n+1}$.
- 4. En déduire une expression de u(x) au moyen de fonctions usuelles lorsque $x \neq 0$.

Exercice 8.

- 1. Déterminer le développement en série entière de la fonction $f(x) = \ln\left(\frac{1+x}{1-x}\right)$.
- 2. En déduire la valeur de $f^{(4)}(0)$.
- 3. Comparer la dérivée de f avec la fonction $g(x) = \frac{1}{1 x^2}$.
- 4. En déduire le développement en série entière de la fonction g.
- 5. En déduire la valeur de $g^{(3)}(0)$.
- 6. Déterminer le développement en série entière de la fonction $h(x) = \ln\left(\frac{1+2x^2}{1-x^2}\right)$.

Exercice 9.

- 1. Développer en série entière la fonction $f(x) = -\ln(1+4x)$
- 2. Même question avec $g(x) = \ln(\frac{2+x}{1-x})$.
- 3. On cherche à développer en série entière la fonction $h(x) = \frac{1}{6x^2 5x + 1}$.
- 4. On cherche à développer en série entière la fonction $i(x) = \ln(x^2 + 2x + 4)$. Pour cela développer d'abord j(x) = i(2x).

Exercice 10.

- 1. Calculer le rayon de convergence R de la série entière suivante $u(x) = \sum_{n \in \mathbb{N}} \frac{x^n}{2n+1}$.
- 2. Étudier la convergence en $x = \pm R$.
- 3. Exprimer $v(x) = xu(x^2)$ comme une série de fonction pour $x \in]-R, R[$.
- 4. Calculer v'.
- 5. En déduire une expression de u(x) pour x > 0 au moyen de fonctions usuelles.

Exercice 11. Pour tout $n \in \mathbb{N}$, on pose $a_n = n(-2)^n$ et $b_n = (-2)^n$.

- 1. Montrer que les séries entières de termes général $a_n x^n$ et $b_n x^n$ ont même rayon de convergence R.
- 2. Donner une expression simple de $g(x) = \sum_{n=0}^{+\infty} b_n x^n$ pour tout $x \in]-R, R[$.
- 3. Pour tout $x \in]-R, R[$, on pose $f(x) = \sum_{n=0}^{+\infty} a_n x^n$.

Écrire sous forme de série entière la primitive de (f+g) nulle en 0, notée h.

- 4. Montrer que h(x) = xg(x) pour $x \in]-R, R[$.
- 5. En déduire une expression de f sous forme de fraction rationnelle.
- 6. Calculer $f(0), f'(0), f^{(5)}(0)$.

Exercice 12. Déterminer une série entière solution de

$$\begin{cases} xy''(x) - y(x) = x^2 + x + 1\\ y(0) = -1\\ y'(0) = 1 \end{cases}$$

Même question avec le système :

$$\begin{cases} xy''(x) + xy(x) = x^2 + x + 2\\ y(0) = 0\\ y'(0) = 1 \end{cases}$$

3

Fonction développable en série entière

Rappel (Taylor-Lagrange). Soit I un intervalle contenant 0 et f une fonction infiniment dérivable sur I. Alors $f(x) = \sum_{p=0}^{n} \frac{x^p}{p!} f^{(p)}(0) + \frac{x^{n+1}}{(n+1)!} f^{(n+1)}(\theta x)$ avec $\theta \in [0,1[$. La fonction f est développable en série entière sur I ssi :

$$\forall x \in I, \quad \lim_{n \to +\infty} \frac{x^{n+1}}{(n+1)!} f^{(n+1)}(\theta x) = 0.$$

Dans ce cas
$$f(x) = \sum_{p=0}^{+\infty} \frac{x^p}{p!} f^{(p)}(0), \quad \forall x \in I.$$

Exercice-Théorème.

- 1. Étudier la convergence de la série $\sum_{n>0} \frac{x^n}{n!}$.
- 2. En déduire que $\lim_{n \to +\infty} \frac{x^n}{n!} = 0 \quad \forall x \in \mathbb{R}.$
- 3. Soit f une fonction infiniment dérivable sur I. On suppose qu'il existe une constante M telle que $\forall n \in \mathbb{N}, |f^{(n)}(x)| \leq M$. Montrer que f est développable en série entière sur I.

Exercice-Application. On définit $f(x) = \sum_{n \ge 0} \sin \frac{x}{2^n}$.

- 1. Soit A>0, montrer que la série $\sum_{n>0}\sin\frac{x}{2^n}$ converge normalement sur [-A,A].
- 2. Montrer que f est dérivable sur [-A, A] et écrire f' sous forme d'une série de fonctions.
- 3. Déterminer une majoration de |f'(x)| sur \mathbb{R} .
- 4. Déterminer de même une majoration de $|f^{(k)}(x)|$ sur \mathbb{R} .
- 5. En déduire que f est développable en série entière sur \mathbb{R} .
- 6. On écrit $f(x) = \sum_{n>0} b_n x^n$. Expliciter b_{2p} et b_{2p+1} pour $p \in \mathbb{N}$.

Exercice-Application. Montrer que $f(x) = (1+x)^{\alpha}$ est développable en série entière sur]-1,1[.