

Mathematik 3

Diskrete Fouriertransformation Wintersemester 2013/14

Erinnerung: Fourierreihe und Fouriertransformation

Fourier-Reihe

Fourier-Transformation

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) \cdot e^{j \omega t} d\omega \qquad F(\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j \omega t} dt$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j \omega t} dt$$

Diskrete Fouriertransformation

→ Diskrete Fouriertransformation und -rücktransformation

DFT
$$F(n) = \sum_{k=0}^{N-1} f(k) \cdot e^{-j\frac{2\pi}{N}kn}$$

$$f(k) = \frac{1}{N} \sum_{n=0}^{N-1} F(n) \cdot e^{j\frac{2\pi}{N}kn}$$

IDFT
$$f(k) = \frac{1}{N} \sum_{n=0}^{N-1} F(n) \cdot e^{j\frac{2\pi}{N}kn}$$

$$\omega_0 = \frac{2\pi}{N \cdot T_A}$$

→ Andere Schreibweise

DFT
$$F(n) = \sum_{k=0}^{N-1} f(k) \cdot W_N^{kn}$$

IDFT
$$f(k) = \frac{1}{N} \sum_{n=0}^{N-1} F(n) \cdot W_N^{-kn}$$

$$W_N = e^{-j\frac{2\pi}{N}} = \sqrt[N]{1}$$

Cosinus, Transformation von zwei Perioden

$$f(t) = \cos(2\pi t)$$
 $T_A = \frac{1}{8}$ $N = 16$ $T = NT_A = 2$ $\Rightarrow \omega_0 = \frac{2\pi}{T} = \pi$

Cosinus, Transformation von zwei Perioden

$$f(t) = \cos(2\pi t)$$
 $T_A = \frac{1}{8}$ $N = 16$ $T = NT_A = 2$ $\Rightarrow \omega_0 = \frac{2\pi}{T} = \pi$

Cosinus, Transformation von zwei Perioden

Cosinus, ein Abtastwert mehr

$$f(t) = \cos(2\pi t)$$
 $T_A = \frac{1}{8}$ $N = 17$

Cosinus, ein Abtastwert mehr

Diskrete Fouriertransformation

Betragsspektrum

Cosinus, ein Abtastwert mehr

$$f(t) = \cos(2\pi t)$$
 $T_A = \frac{1}{8}$ $N = 17$ $T = NT_A = 2{,}125 \Rightarrow \omega_0 = \frac{2\pi}{T} \approx \frac{16}{17}\pi$

$$f(t) = \cos(2\pi t)$$
 $T_A = \frac{1}{8}$ $N = 20$ $T = NT_A = 2.5$ $\Rightarrow \omega_0 = \frac{2\pi}{T} = 0.8\pi$

$$f(t) = \cos(2\pi t)$$
 $T_A = \frac{1}{8}$ $N = 20$ $T = NT_A = 2.5$ $\Rightarrow \omega_0 = \frac{2\pi}{T} = 0.8\pi$

2

Zeit / s

Diskrete Fouriertransformation

Betragsspektrum

$$f(t) = \cos(2\pi t)$$
 $T_A = \frac{1}{40}$ $N = 100$ $T = NT_A = 2.5$ $\Rightarrow \omega_0 = \frac{2\pi}{T} = 0.8\pi$

$$f(t) = \cos(2\pi t)$$
 $T_A = \frac{1}{8}$ $N = 100$ $T = NT_A = 12.5$ $\Rightarrow \omega_0 = \frac{2\pi}{T} = 0.16\pi$

$$f(t) = \cos(2\pi t)$$
 $T_A = \frac{1}{8}$ $N = 100$ $T = NT_A = 12.5$ $\Rightarrow \omega_0 = \frac{2\pi}{T} = 0.16\pi$

Cosinus, Hanning-Fenster und Zero-Padding

$$f(t) = \cos(2\pi t) \quad T_A = \frac{1}{8}$$

Hanning-Fenster

(nach rechts geschoben)

$$h(t) = \frac{1}{2} \left(1 - \cos\left(\frac{2\pi t}{T}\right) \right)$$

$$h(k) = \frac{1}{2} \left(1 - \cos \left(\frac{2\pi k}{N - 1} \right) \right)$$

Cosinus, Hanning-Fenster und Zero-Padding

$$f(t) = \cos(2\pi t)$$
 $T_A = \frac{1}{8}$ $N = 100$ $T = NT_A = 12.5$ $\Rightarrow \omega_0 = \frac{2\pi}{T} = 0.16\pi$

Cosinus, Hanning-Fenster und Zero-Padding

Cosinus, Aliasing

$$f(t) = \cos(2\pi t)$$
 $T_A = \frac{2}{3}$ $N = 15$ $T = NT_A = 10$ $\Rightarrow \omega_0 = \frac{2\pi}{T} = \frac{\pi}{5}$

Cosinus, Aliasing

Cosinus, Aliasing

Kontinuierliche Fouriertransformation

Abtastung im Frequenzbereich

Abtastung im Zeitbereich

