Practical 13

Euler's Method

Euler's Method with subinterval length h as input-:

Q. Using Euler's Method, find approximate solution to the initial value problem $x'(t) = -2 tx^2$, $0 \le t \le 1$, x(0) = 1 with

```
(a) h = 0.2
```

(b)
$$h = 0.1$$
.

Solution-:

```
EulerMethod[a0_, b0_, h0_, f_, alpha_] :=
 Module [{a = a0, b = b0, h = h0, n, ti},
  n = (b - a) / h;
  ti = Table[a + (j-1) h, {j, 1, n+1}];
  wi = Table[0, {n+1}];
  wi[[1]] = alpha;
  OutputDetails = {{0, ti[[1]], alpha}};
  For [i = 1, i \le n, i++,
  wi[[i+1]] = wi[[i]] + h * f[ti[[i]], wi[[i]]];
   OutputDetails = Append[OutputDetails,
    {i, N[ti[[i+1]]], N[wi[[i+1]]]}];];
  Print[NumberForm[TableForm[OutputDetails,
    TableHeadings \rightarrow {None, {"i", "t<sub>i</sub>", "w<sub>i</sub>"}}], 6]];
  Print["Subinterval size h used = ", h];
 1;
f[t_{x}] := -2tx^2;
h = 0.2;
EulerMethod[0, 1, h, f, 1];
```

Subinterval size h used = 0.2

h = 0.1;

EulerMethod[0, 1, h, f, 1];

i	t_{i}	Wi	
0	0	1	
1	0.1	1.	
2	0.2	0.98	
3	0.3	0.941584	
4	0.4	0.888389	
5	0.5	0.82525	
6	0.6	0.757147	
7	0.7	0.688354	
8	0.8	0.622018	
9	0.9	0.560113	
10	1.	0.503642	
		, .	,

Subinterval size h used = 0.1