

Apache Spark - Fast unified analytics engine

Authors

Ioana - Laura Popescu

Motivation App

Web Search

- 12 PB Web data
- Must search quickly
- How?

Web Search Primer

- Users supply words in query --> find all documents with a specified word
- Read 12PB of web pages, find keywords in a single machine:
 - 100MB/s = 1GB/10s → 12PB in 120000000s ->
 4 years!

Motivation App (2)

- We need parallelism!
 - Run previous task in one day?
 - Need a cluster (at least 1400 machines)
- Functionality of the computation system?
 - Move data around
 - Check liveness
 - Deal with failures
 - Process stuff

MapReduce

- Automatic parallelization & distribution
 - map() and reduce() functions run on parallel
- Fault-tolerant
 - Master detects worker failures and re-executes inprogess reduce tasks
- Clean abstraction for programmers

Hadoop

- Uses MapReduce
- Integrates with HDFS
- Commonly used
- Writes all intermediary results to disk!
 - It slows down significantly even the smallest of jobs

HDFS architecture

HDFS

SOURCE: HORTONWORKS COMMUNICATIONS

12016 TECHTARGET, ALL PIGHTS RESERVED TechTarget

Apache Spark

- Tries to use RAM whenever available
- Uses RDD's
 - Collections of objects spread over the datanodes
 - Built with parallel transformations
 - Rebuilt on failure detection

Logistic regression in Hadoop and Spark

Spark Architecture

