TOPAS-nBio (TOPAS v3.5) Regression testing (cf. TOPAS-nBio (TOPAS v3.4))

José Ramos-Méndez and Thongchai A.M. Masilela

University of California San Francisco

February 25, 2024

Table of Contents I

DBSCAN - TsEmDNAPhysics

DBSCAN - g4em-dna_opt2

DBSCAN - g4em-dna_opt4

DBSCAN - g4em-dna_opt6

LET I

LET II

Fricke: IRT

G-value: step-by-step

G-value vs. LET: step-by-step

G-value: IRT

G-value vs. LET: IRT

Table of Contents II

G-value of H₂O₂: IRT

G-value and Temperature I: IRT

G-value and Temperature II: IRT

Nanodosimetry I: TsEmDNAPhysics and g4em-dna_opt2

Nanodosimetry I: g4em-dna_opt4 and g4em-dna_opt6

Nanodosimetry II: TsEmDNAPhysics and g4em-dna_opt2

Nanodosimetry II: g4em-dna_opt4 and g4em-dna_opt6

Nanodosimetry III: TsEmDNAPhysics

Nanodosimetry III: g4em-dna_opt2

Nanodosimetry III: g4em-dna_opt4

DBSCAN - TsEmDNAPhysics

Francis Z, Villagrasa C, Clairand I. Simulation of DNA damage clustering after proton irradiation using an adapted DBSCAN algorithm. Comput Methods Programs Biomed. 2011; 101(3):265-270. doi:10.1016/j.cmpb.2010.12.012

DBSCAN - g4em-dna_opt2

Francis Z, Villagrasa C, Clairand I. Simulation of DNA damage clustering after proton irradiation using an adapted DBSCAN algorithm. Comput Methods Programs Biomed. 2011; 101(3):265-270. doi:10.1016/j.cmpb.2010.12.012

DBSCAN - g4em-dna_opt4

Francis Z, Villagrasa C, Clairand I. Simulation of DNA damage clustering after proton irradiation using an adapted DBSCAN algorithm. Comput Methods Programs Biomed. 2011; 101(3):265-270. doi:10.1016/j.cmpb.2010.12.012

DBSCAN - g4em-dna_opt6

Francis Z, Villagrasa C, Clairand I. Simulation of DNA damage clustering after proton irradiation using an adapted DBSCAN algorithm. Comput Methods Programs Biomed. 2011; 101(3):265-270. doi:10.1016/j.cmpb.2010.12.012

LET I

	TOPAS under test (s)	TOPAS benchmark (s)
Init.	0.0 +/- 0.0	0.0 +/- 0.0
Exec.	262.7 +/- 0.5	262.7 +/- 0.5
Final.	0.0 +/- 0.0	0.0 +/- 0.0
$\overline{}$		

102				C under test penchmark
10 ¹ (ke//µm)			R	8
+	100	10 ¹ Proton energy	/ (MeV)	102

	TOPAS under test (s)	TOPAS benchmark (s)
Init.	0.0 +/- 0.0	0.0 +/- 0.0
Exec.	253.1 +/- 1.0	253.1 +/- 1.0
Final.	0.0 +/- 0.0	0.0 +/- 0.0

LET as a function of proton energy for TsEmDNAPhysics (left) and g4em-dna_opt2 (right).

LET II

	10°	102	
	Proton energy (MeV)		
	TOPAS under test (s)	TOPAS benchmark (s)	
Init.	0.0 +/- 0.0	0.0 +/- 0.0	
Exec.	719.6 +/- 1.8	719.6 +/- 1.8	
Final.	0.0 +/- 0.0	0.0 +/- 0.0	

102			ARTRAC OPAS under test OPAS benchmark
LET (keV/µm)		M. M. M. M.	
	100	10 ¹ Proton energy (MeV)	10 ²

ĺ	TOPAS under test (s)	TOPAS benchmark (s)
Init.	0.0 +/- 0.0	0.0 +/- 0.0
Exec.	236.4 +/- 1.0	236.4 +/- 1.0
Final.	0.0 +/- 0.0	0.0 +/- 0.0

LET as a function of proton energy for g4em-dna_opt4 (left) and g4em-dna_opt6 (right).

Fricke: IRT

	TOPAS under test	TOPAS benchmark
lnit. (s)	0.012 +/- 0.004	0.012 +/- 0.004
Exec. (s)	6.898 +/- 0.685	6.898 +/- 0.685
Final. (s)	0.006 +/- 0.005	0.006 +/- 0.005
Value (/100eV)	15.378 +/- 0.035	15.378 +/- 0.035

G-value: step-by-step

G-value vs. LET: step-by-step

	TOPAS-Ref	TOPAS-Sut
Real	36863.080 +/- 518.497	36863.080 +/- 518.497
User	36844.920 +/- 518.185	36844.920 +/- 518.185
Sys	18.064 +/- 0.323	18.064 +/- 0.323

G-value: IRT

G-value vs. LET: IRT

	TOPAS-Ref	TOPAS-Sut
Real	3301.326 +/- 121.620	3301.326 +/- 121.620
User	3274.968 +/- 121.352	3274.968 +/- 121.352
Sys	15.550 +/- 0.260	15.550 +/- 0.260

G-value of H_2O_2 : IRT

	Reference	Under Test
Real (s)	0.0 +- 0.0	0.0 +- 0.0
User (s)	889.52 +- 6.81	889.52 +- 6.81
Sys (s)	0.0 +- 0.0	0.0 +- 0.0

G-value and Temperature I: IRT

G-value and Temperature II: IRT

Nanodosimetry I: TsEmDNAPhysics and g4em-dna_opt2

10-1	,	,,,,,,,,	1		- то		d nder tes enchma	
10-2	f			A				
Probability _□ 01	ľ			1	K.			
10-4					n			
10 ⁻⁵ -) 5	10	15 Ionizat	20 ion clus	25 ter size	30	35	40

	TOPAS under test (s)	TOPAS benchmark (s)
Init.	0.0 +/- 0.0	0.0 +/- 0.0
Exec.	1199.3 +/- 2.7	1199.3 +/- 2.7
Final.	0.0 +/- 0.0	0.0 +/- 0.0

	TOPAS under test (s)	TOPAS benchmark (s)
Init.	0.0 +/- 0.0	0.0 +/- 0.0
Exec.	1154.5 +/- 5.5	1154.5 +/- 5.5
Final.	0.0 +/- 0.0	0.0 +/- 0.0

Conte V, Selva A, Colautti P, et al., Nanodosimetry: Towards a new concept of radiation quality. Radiat Prot Dosimetry. 2018;180(1-4):150-156. doi:10.1093/rpd/ncx175

Nanodosimetry I: g4em-dna_opt4 and g4em-dna_opt6

Probability 10	-2	مممم	9990	*****	8888	+ т		d nder te enchma	
10	-5	-				,		1	Щ
	0	5	10	15 Ionizati	20 ion clus	25 ter size	30	35	40

- [TOPAS under test (s)	TOPAS benchmark (s)
Init.	0.0 +/- 0.0	0.0 +/- 0.0
Exec.	975.3 +/- 2.1	975.3 +/- 2.1
Final.	0.0 +/- 0.0	0.0 +/- 0.0

[TOPAS under test (s)	TOPAS benchmark (s)
Init.	0.0 +/- 0.0	0.0 +/- 0.0
Exec.	867.1 +/- 7.3	867.1 +/- 7.3
Final.	0.0 +/- 0.0	0.0 +/- 0.0

Conte V, Selva A, Colautti P, et al., Nanodosimetry: Towards a new concept of radiation quality. Radiat Prot Dosimetry. 2018;180(1-4):150-156. doi:10.1093/rpd/ncx175

Nanodosimetry II: TsEmDNAPhysics and g4em-dna_opt2

	10° -	◇ ◇ ○ Φ Φ	e- alpha proton carbon ion TOPAS under test TOPAS benchmark		₽ <mark>.6</mark> A.
F ₂	10-2				
	10 ⁻³ -	0 - 2	10-1	10° M ₁	101

	TOPAS under test (s)	TOPAS benchmark (s)
Init.	0.0 +/- 0.0	0.0 +/- 0.0
Exec.	124.7 +/- 0.3	124.7 +/- 0.3
Final.	0.0 +/- 0.0	0.0 +/- 0.0

	TOPAS under test (s)	TOPAS benchmark (s)
Init.	0.0 +/- 0.0	0.0 +/- 0.0
Exec.	99.2 +/- 0.4	99.2 +/- 0.4
Final.	0.0 +/- 0.0	0.0 +/- 0.0

Conte V, Selva A, Colautti P, et al., Nanodosimetry: Towards a new concept of radiation quality. Radiat Prot Dosimetry. 2018;180(1-4):150-156. doi:10.1093/rpd/ncx175

Nanodosimetry II: g4em-dna_opt4 and g4em-dna_opt6

			_	
	10° -	♦ e-	k k	G ZIIII
	- 1	▽ alpha	- A	
		 proton 	40	
	1	 carbon ion 	©	
	-	TOPAS under test	t 🔷	
		TOPAS benchmar	·k 😅	
	10-1	• 101710 00110111101		
	:		_ag	
	1		93	
F_2	- 1		Par Carlot	
		₽	•	
		 ~~~		
	10-2 -	• • • • • • • • • • • • • • • • • • •		
	- 1	₽		
	- 1	o ^v		
		8		
	10-3	· · · · · · · · · · · · · · · · · · ·		
	10	-2 10 ⁻¹	10°	10 ¹
			M ₁	

Γ	TOPAS under test (s)	TOPAS benchmark (s)
Init.	0.0 +/- 0.0	0.0 +/- 0.0
Exec.	1414.8 +/- 1.6	1414.8 +/- 1.6
Final.	0.0 +/- 0.0	0.0 +/- 0.0

	TOPAS under test (s)	TOPAS benchmark (s)
Init.	0.0 +/- 0.0	0.0 +/- 0.0
Exec.	1033.1 +/- 0.6	1033.1 +/- 0.6
Final.	0.0 +/- 0.0	0.0 +/- 0.0

Conte V, Selva A, Colautti P, et al., Nanodosimetry: Towards a new concept of radiation quality. Radiat Prot Dosimetry. 2018;180(1-4):150-156. doi:10.1093/rpd/ncx175

Nanodosimetry III: TsEmDNAPhysics

Ramos-Méndez J, Burigo LN, Schulte R, Chuang C, Faddegon B. Fast calculation of nanodosimetric quantities in treatment planning of proton and ion therapy. *Phys Med Biol.* 2018;63(23):235015. doi:10.1088/1361-6560/aaeeee

Ramos-Méndez J, Burigo LN, Schulte R, Chuang C, Faddegon B. Fast calculation of nanodosimetric quantities in treatment planning of proton and ion therapy. Phys Med Biol. 2018;63(23):235015. doi:10.1088/1361-6560/aaeeee

Ramos-Méndez J, Burigo LN, Schulte R, Chuang C, Faddegon B. Fast calculation of nanodosimetric quantities in treatment planning of proton and ion therapy. Phys Med Biol. 2018;63(23):235015. doi:10.1088/1361-6560/aaeeee

Ramos-Méndez J, Burigo LN, Schulte R, Chuang C, Faddegon B. Fast calculation of nanodosimetric quantities in treatment planning of proton and ion therapy. Phys Med Biol. 2018;63(23):235015. doi:10.1088/1361-6560/aaeeee

