### Learning Distributed Representations of Symbolic Structure Using Binding and Unbinding Operations

Shuai Tang, Paul Smolensky, Virginia R. de Sa











Shuai Tang Cognitive Science UC San Diego



Paul Smolensky
Cognitive Science
Johns Hopkins University
Microsoft Research Al



Virginia R. de Sa Cognitive Science UC San Diego

#### Outline

- Motivations
- Our Proposed Recurrent Unit
- Experiments
- Conclusions

#### Outline

- Motivations
- Our Proposed Recurrent Unit
- Experiments
- Conclusions

### Distributed Representations

- Inducing structure in data
- Considerable power in statistical inference
- Encoding word knowledge
- Efficient usage of representation space

### Symbolic Computing Systems

- Symbol ---- Substructure
- Representations maintain the structure of data explicitly
- Each substructure can be retrieved with no loss
- Inducing implicit structure from data
- unique symbol ---- potential substructure

# Distributed Representations + Symbolic Computing Systems

- Inducing structure in data
- Considerable power in statistical inference
- **Encoding word knowledge**
- Efficient usage of representation space

- Symbol ---- Substructure
- Representations maintain the structure of data explicitly
  - Each substructure can be retrieved with no loss
- Inducing implicit structure from data
- unique symbol ---- potential substructure

#### Learning Structured Distributed Representations

$$oldsymbol{S} = \sum_{i=1}^N oldsymbol{r}_i \otimes oldsymbol{f}_i = \sum_{i=1}^N oldsymbol{r}_i oldsymbol{f}_i^{ op} = oldsymbol{R} oldsymbol{F}^{ op}$$

Binding Operation

Unbinding Operation

 $\boldsymbol{f}_i = \boldsymbol{u}_i^\top \boldsymbol{S}$ 

 $r_i \otimes f_i$ 

$$\boldsymbol{u}_i^\top \boldsymbol{r}_j = \delta_{ij}$$

$$oldsymbol{S} = \sum_{i=1}^N oldsymbol{r}_i \otimes oldsymbol{f}_i = \sum_{i=1}^N oldsymbol{r}_i oldsymbol{f}_i^ op = oldsymbol{R} oldsymbol{F}^ op$$

- Binding Operation
- Unbinding Operation

 $\boldsymbol{f}_i = \boldsymbol{u}_i^\top \boldsymbol{S}$ 

 $r_i \otimes f_i$ 

$$\boldsymbol{u}_i^{\top}\boldsymbol{r}_j = \delta_{ij}$$

Positions in a string

→Part-of-speech tags

Context

$$oldsymbol{S} = \sum_{i=1}^N oldsymbol{r}_i \otimes oldsymbol{f}_i = \sum_{i=1}^N oldsymbol{r}_i oldsymbol{f}_i^ op = oldsymbol{R} oldsymbol{F}^ op$$

Binding Operation

Unbinding Operation

 $r_i \otimes f_i$ 

 $\boldsymbol{f}_i = \boldsymbol{u}_i^\top \boldsymbol{S}$ 

 $\boldsymbol{u}_i^\top \boldsymbol{r}_j = \delta_{ij}$ 

Vector Representations

b=Rf

and

 $f = U^\top b$ 



$$oldsymbol{S} = \sum_{i=1}^N oldsymbol{r}_i \otimes oldsymbol{f}_i = \sum_{i=1}^N oldsymbol{r}_i oldsymbol{f}_i^ op = oldsymbol{R} oldsymbol{F}^ op$$

- Binding Operation
- Unbinding Operation

$$r_i \otimes f_i$$

 $\boldsymbol{f}_i = \boldsymbol{u}_i^\top \boldsymbol{S}$ 

$$\boldsymbol{u}_i^\top \boldsymbol{r}_j = \delta_{ij}$$

Vector Representations

$$b=Rf$$

and

$$f = U^\top b$$

binding complex

binding complex

$$oldsymbol{S} = \sum_{i=1}^N oldsymbol{r}_i \otimes oldsymbol{f}_i = \sum_{i=1}^N oldsymbol{r}_i oldsymbol{f}_i^{ op} = oldsymbol{R} oldsymbol{F}^{ op}$$

Binding Operation

Unbinding Operation

$$egin{aligned} oldsymbol{r}_i \otimes oldsymbol{f}_i \ oldsymbol{f}_i = oldsymbol{u}_i^ op oldsymbol{S} \end{aligned}$$

$$\boldsymbol{u}_i^\top \boldsymbol{r}_j = \delta_{ij}$$

Vector Representations



#### Outline

Our Proposed Recurrent Unit

### TPRU - Recurrent Unit





### TPRU - Recurrent Unit





### TPRU - Recurrent Unit

• Unbinding operation 
$$oldsymbol{f}_{b,t} = oldsymbol{U}^{ op} oldsymbol{b}_{t-1} \in \mathbb{R}^{N imes 1},$$

$$oldsymbol{f}_{x,t} = oldsymbol{U}^{ op} oldsymbol{W} oldsymbol{x}_t \in \mathbb{R}^{N imes 1}$$

 $(\widetilde{f}_{x,t})_n = \text{ReLU}\left((f_{x,t})_n + b_x\right)$ 

$$(\widetilde{f}_{b,t})_n = \text{ReLU}\left((f_{b,t})_n + b_b\right),$$

$$(\boldsymbol{f}_t)_n = \frac{\left( (\widetilde{\boldsymbol{f}}_{b,t})_n + (\widetilde{\boldsymbol{f}}_{x,t})_n \right)^2}{\sum_{m=1}^N \left( (\widetilde{\boldsymbol{f}}_{b,t})_m + (\widetilde{\boldsymbol{f}}_{x,t})_m \right)^2}$$

 $\widetilde{oldsymbol{b}}_t = oldsymbol{R} oldsymbol{f}_t$ 

$$egin{aligned} oldsymbol{b}_t &= oldsymbol{g}_t \circ anh(\widetilde{oldsymbol{b}}_t) + (1 - oldsymbol{g}_t) \circ oldsymbol{b}_{t-1} \ oldsymbol{g}_t &= \sigma(oldsymbol{W}_b oldsymbol{b}_{t-1} + oldsymbol{W}_x oldsymbol{x}_t) \end{aligned}$$

## TPRU – Unbinding Vectors $\vec{v} = \vec{w}_u \vec{v}$

$$\boldsymbol{U}=\boldsymbol{W_u}\boldsymbol{V}$$

$$R=W_rV$$

Unbinding operation

$$oldsymbol{f}_{b,t} = oldsymbol{U}^{ op} oldsymbol{b}_{t-1} \in \mathbb{R}^{N imes 1},$$

$$oldsymbol{f}_{x,t} = \widehat{oldsymbol{U}}^{ op} oldsymbol{W} oldsymbol{x}_t \in \mathbb{R}^{N imes 1}$$

$$\widetilde{m{b}}_t = m{R}m{f}_t$$

Input Gate

$$U=W_uV$$

$$R=W_rV$$

Unbinding operation

$$oldsymbol{f}_{b,t} = oldsymbol{U}^{ op} oldsymbol{b}_{t-1} \in \mathbb{R}^{N imes 1},$$

$$f_{x,t} = U^ op oldsymbol{W} oldsymbol{x}_t \in \mathbb{R}^{N imes 1}$$

 $\widetilde{\boldsymbol{b}}_t = \boldsymbol{R}\boldsymbol{f}_t$ 

### TPRU – Parameters

$$U = W_u V$$

$$R = W_r V$$

• Unbinding operation 
$$f_{b,t} = U^{\top} b_{t-1} \in \mathbb{R}^{N \times 1}$$
,

$$f_{x,t} = U^ op oldsymbol{W} oldsymbol{x}_t \in \mathbb{R}^{N imes 1}$$

$$(\widetilde{f}_{b,t})_n = \operatorname{ReLU}((f_{b,t})_n + b_b), \qquad (\widetilde{f}_{x,t})_n = \operatorname{ReLU}((f_{x,t})_n + b_x)$$

$$(\widetilde{f}_{x,t})_n = \operatorname{ReLU}((j))$$

$$(\boldsymbol{f}_t)_n = \frac{\left( (\widetilde{\boldsymbol{f}}_{b,t})_n + (\widetilde{\boldsymbol{f}}_{x,t})_n \right)^2}{\sum_{m=1}^N \left( (\widetilde{\boldsymbol{f}}_{b,t})_m + (\widetilde{\boldsymbol{f}}_{x,t})_m \right)^2}$$

$$\widetilde{oldsymbol{b}}_t = oldsymbol{R} oldsymbol{f}_t$$

$$egin{aligned} oldsymbol{b}_t &= oldsymbol{g}_t \circ anh(\widetilde{oldsymbol{b}}_t) + (1 - oldsymbol{g}_t) \circ oldsymbol{b}_{t-1} \ oldsymbol{g}_t &= \sigma(oldsymbol{W}_boldsymbol{b}_{t-1} + oldsymbol{W}_soldsymbol{x}_t) \end{aligned}$$

#### Outline

- Motivations -
- Our Proposed Recurrent Un
- Experiments
- Conclusions

### Experiments

- Tasks
- Logical Entailment in Propositional Logic (Evans et al., 2018)
- Multi-genre Natural Language Inference (williams et al., 2018)
- General Purpose Sentence Representations (conneau & Kiela, 2018)
- Plain & BiDAF architecture
- BiDAF Bi-Directional Attention Flow (Seo et al., 2017)

# Logical Entailment in Propositional Logic

- Training set
- Validation set
- Test set
- easy, big, hard, massive, exam

### Connectives matter

# Logical Entailment in Propositional Logic

A: ((g>((x|s)|((q&i)&o)))&(s&((i|v)|x)))

B:  $(\sim(((rls)lq))>(\sim((q&(ql(slr))))>(vlr)))$ 

Training set

Validation set

Test set

easy, big, hard, massive, exam

### Connectives matter

Table 4: A truth table for 
$$A = p \land q$$
 and  $B = q$ .

 $\begin{array}{c|c|c|c}
\hline
p & q & A & B \\
\hline
T & T & T(1) & T(1) \\
T & F(0) & F(0) & F(0) & (0 = 0) \\
F & T & F(0) & T(1) & (0 < 1) \\
\hline
F & F & F(0) & F(0) & (0 = 0)
\end{array}$ 

# Logical Entailment in Propositional Logic

| lobon                      | -                                                                |                                                                   |                                                                                | test                                                                      |                                                                 |                                                          |                                  |
|----------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|----------------------------------|
| model                      | valid                                                            | easy                                                              | hard                                                                           | big                                                                       | massive                                                         | exam                                                     | # params                         |
| Mean 2#Vars                | 75.7                                                             | 81.0                                                              | 184.4                                                                          | 3310.8                                                                    | 848,570.0                                                       | 5.8                                                      |                                  |
|                            |                                                                  | Pls                                                               | ain (BiDAF) A                                                                  | Plain (BiDAF) Architecture - dim 64                                       | dim 64                                                          |                                                          |                                  |
| LSTM<br>GRU                | 71.7 (88.5)                                                      | 71.8 (88.7)                                                       | 64.1 ( <b>74.5</b> )<br>63.7 (72.5)                                            | 64.2 ( <b>73.8</b> )<br>63.8 (71.3)                                       | 53.7 ( <b>66.8</b> )<br>54.4 (66.1)                             | 68.3 ( <b>80.0</b> )<br>73.7 (78.0)                      | 65.5k (230.0k)<br>49.1k (172.4k) |
| 8<br>32<br>0urs 128<br>512 | 66.8 (86.2)<br>73.7 (88.4)<br>75.9 (88.5)<br><b>76.8 (88.6</b> ) | 67.2 (87.1)<br>73.7 (88.4)<br>76.0 (88.6)<br>76.8 ( <b>89.2</b> ) | 59.3 (69.1)<br>62.7 (71.1)<br><b>64.9</b> (71.5)<br>64.4 (72.6)                | 60.9 (68.2)<br>62.8 (70.1)<br>64.0 (69.8)<br><b>64.6</b> (71.2)           | 51.9 (62.5)<br>53.0 (64.9)<br>53.8 (64.1)<br><b>54.6</b> (64.4) | 67.0 (74.3)<br>76.7 (77.0)<br>75.7 (80.0)<br>75.3 (80.0) | 40.1k (131.3k)                   |
| LSTM†                      | 64.5 (88.6)                                                      | 88                                                                | 59.7 (74.7)                                                                    | Plain (BiDAF) Architecture - dim 128<br>3) 59.7 (74.7) 62.1 (73.5) 50.9 ( | 50.9 ( <b>67.4</b> )                                            | 65.0 (78.3)                                              | 196.6k (917.5k)                  |
| Ours 128<br>512            | 63.7 (87.1)<br>71.5 (88.2)<br>72.8 (88.4)<br>79.6 (88.6)         | 63.4 (87.3)<br>71.7 (88.5)<br>73.1 (89.0)<br>79.6 (89.2)          | 62.9 (69.1)<br>57.5 (69.4)<br>62.6 (71.6)<br>63.8 (72.4)<br><b>66.1</b> (72.7) | 59.6 (68.1)<br>62.4 (70.3)<br>62.8 ( <b>71.5</b> )<br>65.9 (70.8)         | 52.0 (63.1)<br>52.0 (64.4)<br>52.6 (66.3)<br>55.2 (64.9)        | 65.0 (76.0)<br>78.3 (78.3)<br>71.3 (80.0)<br>80.3 (79.7) | 131.1k (524.3k)                  |

# Multi-genre Natural Language Inference

- 5 genres available in training set
- 10 genres presented in dev and test set

### Both structure and word meaning matter

| Now, as children tend their gardens, they have a new appreciation of their relationship to the land, their cultural heritage, and their community.  At 8:34, the Boston Center controller received a third transmission from American 11 third transmission from American 11 third transmission from American 11 the Boston Center controller gardens.  All of the children love working in their gardens.  All of the children love working in their gardens. | thave continued to inno- OUP The suppliers that continued to innovate in their of the four practices, as <b>contradiction</b> use of the four practices consistently underper- |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Now, as children tend their gardens, they have a new appreciation of their relationship to the land, their cultural heritage, and their community.  At 8:34, the Boston Center controller received a third transmission from American 11                                                                                                                                                                                                                       | In contrast, suppliers that have continued to innovate and expand their use of the four practices, as                                                                          |

# Multi-genre Natural Language Inference

|                       | = | N                                                        | MNLI                                                            |                                |
|-----------------------|---|----------------------------------------------------------|-----------------------------------------------------------------|--------------------------------|
| model                 |   | dev matched                                              | dev matched   dev mismatched                                    | # params                       |
|                       | Ξ | ain (BiDAF) A                                            | Plain (BiDAF) Architecture - dim 512                            | 2                              |
| LSTM<br>GRU           |   | 72.0 (76.0)                                              | 73.2 (75.5)                                                     | 10.5m (29.4m)<br>7.9m (22.0m)  |
| 16<br>Ours 64<br>1024 |   | 72.4 (73.9)<br>73.0 (74.8)<br>73.1 (75.9)<br>73.2 (76.2) | 73.5 (75.0)<br>73.5 (75.5)<br><b>73.9 (76.8)</b><br>73.8 (76.6) | 5.8m (15.7m)                   |
|                       | Ξ | in (BiDAF) Ar                                            | Plain (BiDAF) Architecture - dim 1024                           | 24                             |
| LSTM<br>GRU           |   | 72.5 (75.5)                                              | 73.9 (76.6)                                                     | 25.2m (83.9m)<br>18.9m (62.9m) |
| 16<br>Ours 64<br>1024 |   | 72.9 (73.9)<br>73.4 (75.2)<br>73.7 (75.5)<br>74.2 (76.7) | 73.7 (74.8)<br>74.4 (76.0)<br>74.6 (76.7)<br>74.7 (77.3)        | 14.7m (46.1m)                  |

# General Purpose Sentence Representations

| Model    | _      |   |      | Dow       | nstream Ta                    | Downstream Tasks in SentEval | val                         |             |
|----------|--------|---|------|-----------|-------------------------------|------------------------------|-----------------------------|-------------|
|          | Binary |   | ST-5 | TREC      | SST-5   TREC   SICK-E         | STS (Su.)                    | STS (Su.)   STS (Un.)       | MRPC        |
| Measure  | =      |   | Acc  | Accuracy  |                               | Pearson's                    | Pearson's $\rho \times 100$ | Acc./F1     |
|          |        |   | E    | ain Archi | Plain Architecture - dim 512  | m 512                        |                             |             |
| LSTM     | 87.0   | _ | 47.5 | 89.7      | 84.4                          | 81.8                         | 62.5                        | 77.8 / 83.8 |
| GRU      | 87.0   | _ | 47.5 | 91.1      | 84.8                          | 80.3                         | 62.5                        | 76.9 / 83.4 |
| 16       | 8.98   | - | 47.0 | 89.5      | 84.8                          | 80.0                         | 60.7                        | 76.3 / 82.8 |
| 2        |        | _ | 6.9  | 89.9      | 85.1                          | 80.8                         | 62.1                        | 76.8 / 83.3 |
| Ours 256 | 87.2   |   | 47.2 | 90.1      | 85.2                          | 81.3                         | 62.6                        | 77.4 / 84.1 |
| 1024     | _      | - | 18.1 | 90.5      | 85.4                          | 82.4                         | 62.8                        | 77.1 / 83.9 |
|          |        |   | PI   | in Archi  | Plain Architecture - dim 1024 | n 1024                       |                             |             |
| LSTM     | 87.6   | _ | 47.3 | 92.7      | 85.0                          | 81.7                         | 63.3                        | 77.0 / 83.6 |
| GRU      | 87.5   |   | 48.9 | 92.6      | 85.8                          | 81.2                         | 62.8                        | 77.6 / 84.0 |
| 16       | 87.4   | - | 47.5 | 91.3      | 85.6                          | 9.62                         | 6.09                        | 76.2 / 83.2 |
| 5        |        | _ | 47.8 | 92.0      | 85.6                          | 80.7                         | 62.3                        | 77.5 / 83.8 |
| Ours 256 |        |   | 47.9 | 92.5      | 86.0                          | 9.08                         | 63.3                        | 77.6 / 83.9 |
| 1024     | 87.9   | _ | 48.5 | 010       | 85.0                          | 81.5                         | 63.9                        | 77 5 / 84   |

### Incorporating more role vectors...

$$oldsymbol{S} = \sum_{i=1}^N oldsymbol{r}_i \otimes oldsymbol{f}_i$$

- Faster convergence rate
- Better performance



#### Outline

- Motivations
- Our Proposed Recurrent Unit
- Experiments
- Conclusions

#### Conclusions

- A TPRU (Recurrent Unit) is proposed to leverage both
- Distributed Representations
- Neural-Symbolic Computing
- Compared to LSTM and GRU
- symbolic execution
- reduced total number of parameters
- comparable or better performance
- Incorporating more role vectors leads to
- faster convergence rate and better results

### Thank you!

