hursday, October 27, 2022 5:24 PM

LECTURE 20 - MATH 6301

THEOREM (LUZIN)

Let E ∈ Ln. Then a function f: E → R is Ln-measureble

PROOF: \Leftarrow We need to show that \forall the set $\exists a := 2 \times \exists E := f(a) \Rightarrow a = f(a) \Rightarrow b \Rightarrow f(a) \Rightarrow b \Rightarrow f(a) \Rightarrow b \Rightarrow f(a) \Rightarrow f(a)$

Given E>0, choose $F=F\subset E$ such that $M_n(E\setminus F)< E$ and $f_{|F|}:F\to |R|$ is continuous. Put

 $F_a := d \times \epsilon F : f(a) \geqslant a = E_{\alpha} F$ and $F_a \in \mathcal{L}_n$

81F(2)

Since EarFacEF we have

100 (Ea \Fa) ≤ 100 (E \F) < 8

which implies that

 $\forall \exists$ $M_n^*(E_u) \leq M_n^*(E_o, F_o) + M_n^*(F_o)$ $\leq E + M_{Ax}(E_o)$

ie Milta) = My (ta) so Ea is Lu-measurceble

archen: $\mathbb{R} \longrightarrow (-\overline{\mathbb{L}}, \overline{\mathbb{L}})$

=> First, ne will "make" the function f: E -> IR bounded. Namely,

ve define $g: E \to R$ by

 $g(x) = \arctan(f(x))$

Then f is La- measurable => 8 is Ln-measurable

Since g is In-measurable and bounded by the Simple-Functions Approximation.

Theorem here exists a segnance of simple measurable functions $G_{K}: E \longrightarrow IR$

convergent uniformly 6 g.

REHARK

Take a simple \mathcal{L}_{u} -measurable function $\delta: E \rightarrow \mathbb{R}$ and $E = E_{i} \cup ... \cup E_{m}$, $E \in \mathcal{L}_{n}$, $E \cap E_{j} = \emptyset$ and $\alpha_{j} \in \mathbb{R}$, 0 = 1,..., n, $E \cap E_{j} = \emptyset$

THEOREM (Fréchet) Let $E \in \mathcal{L}_n$ and $f: E \to \mathbb{R}$ be an \mathcal{L}_n -measurable function. Then there exists a sequence of continuous bounded Junchous fx:E-> R such that lim fx (2) = f(2) are on E. PROOF: By Luzin Theorem for every keW, take &= k, then FreFr, 80, (E.Fr) < to and fig: Fz -> R is continuous. (X,a), $A \subset X$ $A = \overline{A}$ $g: A \longrightarrow |R|$ Since, Fx is dosed, by Tretze Extension Theorem there exists a nontinuous extension f: R" -> IR af I) Fr. Then we define fx (a) = max (mrs (fx(a), k), -k) and $f_{\kappa}(x) \longrightarrow f(x)$; so the steedenst flows. Λ We assume that (X,5, n) is a measure space. Take E ∈ 5 and consider a sequence for: E - R of S-measurable (M-measurable, measurable) $f(a) := \lim_{n \to \infty} f_n(a)$ exists for a.e. $\infty \in E$ i.e. f is a pointwise limit are on E of measurable functions, their is a complete measure, then f is also n-measure ble

New Section 4 Page 3

Asynth REVARK: If Sn, gn: E - IR we two sequences of measurable fructions such that In (al= g, (2) a.e on E, and if f(a) = lim f, (x) for a.e. DCLE hen he land $g(x) = \lim_{n \to \infty} g_n(x) = \sup_{n \to \infty} f_n \quad a.e. \quad x \in E$ and f(x)=g(x) a.e on E. LEMMA: Let f, fn: E → R, n=1,2,..., be n-measureble functions furk are and $\mu(E) < \infty$. If $f_n(x) \longrightarrow f(x)$ are on E then V lum $\mu\left(\bigcup_{k=n}^{\infty}E_{k}(\epsilon)\right)=0$ where $\epsilon>0$ $E_{\kappa}(\epsilon) = \{ \alpha \in E : |f_{\kappa}(\alpha) - f(\alpha)| \geq \epsilon \}$ PROOF: the sets UEx(E) we decreesing this $\lim_{n\to\infty}\mu\left(\bigcup_{k=n}^{\infty}E_{k}(\epsilon)\right)=\mu\left(\lim_{n\to\infty}\bigcup_{k=n}^{\infty}E_{k}(\epsilon)\right)$ $= \mu \left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_{k} (\varepsilon) \right)$ Notice that in order to show that $g(\bigcap_{n=1}^{\infty} \overline{\Sigma}_{k}(G)) = 0$ it is sufficient to notice that is sufficient to notice that $\int \int E_{k}(\epsilon) = \left(2 + 2\epsilon E : f_{k}(x) + 3f(x)\right) + 2\epsilon E : |f| = \infty$ Indeed, if $\alpha \in \mathbb{Z}$ $\mathbb{E}_{\kappa}(\alpha)$ then $|f_{\kappa}(\alpha) - g(\alpha)| \ge \varepsilon$ for sufficiently large κ (so $f_{\kappa}(\alpha)$) $\varepsilon \in \mathbb{Z}$ $\varepsilon \in \mathbb{Z}$ DEFINITION: Let f, fn: E - R be the same as in Lemma. We suy that In is 11-convergent to f or (convergent on measure 11) (notation from f) off $\forall \lim_{n\to\infty} \mu \left\{ x \in E : |f_n(x) - f(x)| > \epsilon \tilde{f} = 0 \right\}$ THEOREM (Lebesque) Under the same assumptions as in Lemma

New Section 4 Page

THEOREM (Lebesgue) Under the same assumption as in Lemma and $\mu(E) < \infty$, if $f_n(x) \rightarrow f(x)$ are on E then $f_n \stackrel{\mathcal{H}}{\rightarrow} f$. (PRODF is direct consequence of Lemma).