

DOSIsoft

Software solutions for radiotherapy and molecular imaging

Quelques Solutions pour le Contourage Automatique CT en Radiothérapie

Jean-Christophe DIAZ

Quelques Solutions pour le Contourage Automatique

Généralités

Méthodes « simples »

Poumons

Moelle et canal médullaire

ABAS ORL

Principes

Validation

Évaluation

Morphobox

Généralités

CT de Planification

Pas adapté pour certain organes

Pas de méthode miracle pour la segmentation automatique des CT

Méthodes simples généralistes (seuillages, ..)

- Application limitée
- Post-traitements adaptés à la problématique de la structure

Méthodes dédiées

- Plus efficaces
- Une méthode par type d'organe
- Pas toujours possible

Segmentation basée sur des Atlas

- Atlas constitué par l'utilisateur
 - Sélection de dossiers difficile
 - Pas de paramétrage spécifique des algorithmes
- Atlas « expert »
 - Dossiers et paramétrage optimisés par le constructeur
 - ✓ La méthode peut varier en fonction de la localisation

Méthodes « simples » : Poumons

Extraction des poumons

Entièrement automatique

Suppression de la trachée

Séparation poumon droit / poumon gauche

Méthodes « simples » : Poumons

Combinaison de méthodes classiques

1. Segmentation poumons + trachée

Méthodes « simples » : Poumons

Combinaison de méthodes classiques

2.Élimination de la trachée

Cumul des coupes

Calcul graine dans la trachée + Croissance de région

Méthodes « simples » : Moelle et Canal Médullaire

Extraction semi-automatique de la moelle

Saisie manuelle d'un contour à l'intérieur du canal médullaire

Seuillage automatique

Coupe

Interpolation

Ellipse au centre

ABAS: « Atlas Based Automatic Segmentation »

Collaboration avec INRIA Sophia-Antipolis, équipe Asclepios

- G. Malandain
- O. Commowick
- L. Ramus

Aires ganglionnaires

Aires II

Aires III

Aires IV

Aires unifiées

Organes à risque

Mandibule

Moelle épinière

Parotides

Sous-Maxillaires

Tronc cérébral

L'Atlas ORL

105 cas patients : images & contours

Validation par Pr. V. Grégoire de l'Université Catholique de Louvain, Cliniques Universitaires St Luc (Belgique)

Variabilité anatomique (e.g. corpulence, flexion du cou)

Variabilité liée à la pathologie (le stade et la localisation de la tumeur)

Recalage non linéaire

Approche hiérarchique : Rigide => Affine => Non linéaire

Atlas Moyen

sur toute la base de données

Atlas Moyens spécifiques

par localisation et grade de la tumeur (e.g. Oropharynx N2)

Multi-Atlas

pondération locale des atlas

(images & segmentations)

Utilisation de l'atlas moyen comme référentiel intermédiaire

Optimise le temps de calcul

Pondération locale des segmentations de la base

• en fonction de la similarité de chaque patient de la base avec celle du patient à segmenter

Pré-traitements

Détection automatique de la région tête & cou

Post-traitements

Os et calcifications Limites axiales des aires Gestion des coupes limites

Choix d'une solution complètement automatique

Sélection automatique et intelligente des atlas

Base de données de contours de référence validés par un expert

Validation des méthodes de recalage

Quantitative : études avec fantômes physiques ou simulés

Qualitative : évaluations cliniques

Validation quantitative de la segmentation

Utilisation de métriques de comparaisons des structures

• Indice de DICE, sensibilité, spécificité, distance de Haussdorff

Comparaison quantitative des contours à ceux effectués manuellement par des experts

Base de données d'images et de contours de référence

Comparaison des résultats à ceux d'autres méthodes de segmentation

Rappels sur les métriques de comparaison

Indice DICE

$$DICE(V_{auto}, V_{ref}) = \frac{2 \times card(V_{auto} \cap V_{ref})}{card(V_{auto}) + card(V_{ref})}$$

Sensibilité et Spécificité

$$SENS\left(\boldsymbol{V}_{auto}, \boldsymbol{V}_{ref}\right) = \frac{card\left(\boldsymbol{VP}\right)}{card\left(\boldsymbol{VP}\right) + card\left(\boldsymbol{FN}\right)} = \frac{card\left(\boldsymbol{V}_{auto} \cap \boldsymbol{V}_{ref}\right)}{card\left(\boldsymbol{V}_{ref}\right)}$$

$$SPEC\left(\boldsymbol{V}_{auto}, \boldsymbol{V}_{ref}\right) = \frac{card\left(\boldsymbol{V}\boldsymbol{N}\right)}{card\left(\boldsymbol{V}\boldsymbol{N}\right) + card\left(\boldsymbol{F}\boldsymbol{P}\right)} = \frac{card\left((\boldsymbol{M} \setminus \boldsymbol{V}_{auto}) \cap (\boldsymbol{M} \setminus \boldsymbol{V}_{ref})\right)}{card\left(\boldsymbol{M} \setminus \boldsymbol{V}_{ref}\right)}$$

Pour les trois indices la valeur idéale est 1

Distance de Hausdorff

$$h(S,S') = \max_{x \in S} (\min_{y \in S'} |x - y|)$$

$$HD(S_{auto}, S_{ref}) = max(h(S_{auto}, S_{ref}), h(S_{ref}, S_{auto}))$$

Distance de Hausdorff robuste

En notant:

- τ le pourcentage de valeurs gardées
- N_s le nombre de points de S
- E(.) la partie entière

$$h_{\tau}(S, S') = K^{i\`{e}me} PlusPetiteValeur(\min_{x \in S, K = E(\tau \cdot N_s)} |x - y|)$$

$$RHD_{\tau}(S_{auto}, S_{ref}) = max(h_{\tau}(S_{auto}, S_{ref}), h_{\tau}(S_{ref}, S_{auto}))$$

Exemple de validation quantitative

Étude sur 25 patients (Données CHU Tours, Dr. Pointreau)

Moyenne en considérant toutes les coupes

	DICE	Sensibilité	Spécificité	Dist.Haus. 95%
A. G. II	0,74	0,79	0,94	7,88 mm
A. G. III	0,64	0,77	0,9	9,11 mm
A. G. IV	0,58	0,78	0,88	9,83 mm

Moyenne s'affranchissant des différences de limites entre aires

	DICE	Sensibilité	Spécificité	Dist.Haus. 95%
A. G. II	0,77	0,83	0,93	7,14 mm
A. G. III	0,74	0,89	0,91	5,64 mm
A. G. IV	0,66	0,79	0,91	7,74 mm

Prise en compte de la variabilité inter-opérateurs

Exemple de comparaison entre 2 radiothérapeutes sur 3 patients (L. Ramus 2011)

- Différences au niveau du protocole
 - inclusion de paquets de graisse ou non
 - détermination des limites inférieures et supérieures

Indice DICE moyen

Validation qualitative des résultats par des experts

Note qualitative sur les résultats

Dr. Pointreau : Résultats plutôt satisfaisants

Exemple de comparaisons

Comparaison des contours de l'expert (rouge) avec ceux de l'ABAS (jaune)

ABAS ORL: Évaluation

Temps de correction vs temps de délinéation

Etude du CHU St Luc en 2012 (Équipe de Pr. V. Grégoire)

Contourages et corrections : Dr. C. Samaha

Résultats (moyenne des temps sur 3 patients)

Aires ganglionnaires (II, III et IV)

Segmentation Manuelle	ABAS + Correction Manuelle	Gain
41 min.	33 min.	8 min. (19 %)

Aires ganglionnaires + Organes à Risques

Segmentation Manuelle	ABAS + Correction Manuelle	Gain
1 h 26 min.	1h 1 min.	25 min. (29 %)

ABAS ORL: Évaluation

Retour d'expériences cliniques

Exemple d'évaluation au Centre Jean Bernard du Mans

- Dr. Pointreau, S. Estivalet
- Plus de 100 patients

Aires ganglionnaires

- Correction par les médecins
- Temps de correction plus faible que temps de contourage

Organes à risques

- Correction par les dosimétristes, vérification par les médecins
- Sous-maxillaires effectuées depuis l'utilisation de l'ABAS

Gain

- Gain de temps
- Aide à la segmentation
- Volumes supplémentaires

ABAS ORL: Morphobox

Solution indépendante de segmentation automatique

Utilisation simple et pratique

Complètement automatisé

Communication DICOM

Possibilité d'exporter les séries d'images

Interface Web

Accessible à partir du réseau Suivi des tâches Configuration

Bibliographie

Publications sur l'ABAS ORL de DOSIsoft

Journaux scientifiques

- L. Ramus, J. Thariat, P.-Y. Marcy, Y. Pointreau, G. Bera, O. Commowick, G. Malandain, « Outils de contourage, Utilisation et Construction d'Atlas Anatomiques : Exemples des Cancers de la Tete et du Cou », Cancer/Radiothérapie, 14(3), pp. 206-212, 2010.
- R. Sims, A. Isambert, V. Gregoire, F. Bidault, L. Fresco, J. Sage, J. Mills, J. Bourhis, D. Lefkopoulos, O. Commowick, M. Benkebil, G. Malandain, « A pre-clinical assessment of an atlas-based automatic segmentation tool for the head and neck », **Radiotherapy Oncology**, 93(3), pp. 474-478, 2009.
- O. Commowick, V. Grégoire, G. Malandain, « Atlas-based delineation of lymph node levels in head and neck computed tomography images. », Radiotherapy Oncology, 87(2), pp. 281-289, 2008.
- O. Commowick, V. Arsigny, A. Isambert, J. Costa, F. Dhermain, F. Bidault, PY. Bondiau, N. Ayache and G. Malandain, « An Efficient Locally Affine Framework for the Smooth Registration of Anatomical Structures. », **Med. Image Anal.**, 12, pp. 427-444, 2008.

Conférences scientifiques avec comité de lecture

- L. Ramus and G. Malandain. « Multi-atlas based segmentation: Application to the head and neck region for radiotherapy planning. », in MICCAI Workshop Medical Image Analysis for the Clinic A Grand Challenge, Beijing, China, 2010.
- L. Ramus, G. Malandain, « Construction of Patient Specific Atlases from Locally Most Similar Anatomical Pieces. », in Proceedings of the Conf. on Medical Image Computing and Computer-Assisted Intervention MICCAI 2010.
- L. Ramus and G. Malandain, « Assessing Selection Methods in the Context of Multi-atlas Based Segmentation. », in Proceedings of the Seventh IEEE International Symposium on Biomedical Imaging 2010 (ISBI 2010), 2010.
- L. Ramus and G. Malandain, « Using consensus measures for atlas construction. », in Proceedings of the Sixth IEEE International Symposium on Biomedical Imaging 2009 (ISBI 2009), Boston, MA, 2009.
- O. Commowick and G. Malandain, « Efficient selection of the most similar image in a database for critical structures segmentation », in Proceedings MICCAI 2007, Part II, Brisbane, Australia, October 2007, n. 4792 in LNCS, pp. 203–210.
- O. Commowick and G. Malandain, « Evaluation of Atlas Construction Strategies in the Context of Radiotherapy Planning », in Proceedings of the **SA2PM Workshop (From Statistical Atlases to Personalized Models)**, Copenhagen, October 2006. Note: Held in conjunction with MICCAI 2006.
- O. Commowick, V. Arsigny, J. Costa, N. Ayache, and G. Malandain, « An Efficient Locally Affine Framework for the Registration of Anatomical Structures », in Proceedings of the Third IEEE International Symposium on Biomedical Imaging (ISBI 2006), pp. 478-481, Arlington, Virginia, USA, 2006.

www.dosisoft.com

Market Assay (a reserved of the Market Assay (a resident of th