Índices de Carga para Ambientes Paralelos/Distribuídos Heterogêneos

Kalinka Regina L. J. Castelo Branco Regina Helena Carlucci Santana Marcos José Santana Sarita Mazzini Bruschi Célia Leiko Ogawa Kawabata

Roteiro

- Contextualização
- 2. Objetivos
- 3. Índices de Desempenho
- Resultados Obtidos
- 5. Contribuições

Contextualização

Escalonamento de Processos

Balanceamento de Carga

Índice de Carga e Desempenho

Computação Heterogênea

Objetivo

Obter índices de carga, nesse caso mais específico, índices de desempenho para ambientes Paralelos/Distribuídos heterogêneos.

Índice de Carga

- "valor não negativo que variaproporcionalmente à carga atual do sistema" (Ferrari & Zhou, 1987)

Índice de Desempenho

– "Carga de trabalho + capacidade computacional da máquina"

Lacunas existentes na literatura quando levado em consideração os níveis arquiteturais e configuracionais

$$ID = f(W_1(I_{CPU}), W_2(I_{Memoria}), W_3(I_{Disco}), W_4(I_{Rede}))$$

Normalizado

Espaço tri dimensional usado para descrever a carga atual de uma máquina e os três pontos indicando cargas potenciais da máquina.

Espaço bidimensional formado pelos recursos 1 e 2, e duas máquinas com cargas iguais (processo limitado por um recurso).

e duas máquinas com cargas iguais (processo limitado por dois recursos).

Vector for Index of Performance (VIP)

$$\mathsf{VIP} = \sqrt{I_{Cpu}^2 + I_{Disco}^2 + I_{Mem\acute{o}ria}^2 + I_{Rede}^2}$$

12

Branco, K R L J; Santana, M J; Santana, R H C; Bruschi, S M; Kawabata, C L O.

- Processador: GHzxIPC (GHz vezes as instruções por clock)
- Disco:t= tempo de seek + o tamanho do arquivo/bandwidth
- Rede: tamanho da mensagem/80Mb/s (Kant & Mohapatra,2000)

	Δ	(
1 \		•

+				
Máquinas	Processador	Disco	Rede	Memória
1	0,3	7,84	25,6	256
2	0,3	7,84	25,6	256
3	0,3	7,84	25,6	256
4	0,3	7,84	25,6	256
5	0,3	7,84	25,6	256
6	0,3	7,84	25,6	256
7	0,3	7,84	25,6	256
8	0,3	7,84	25,6	256
9	0,3	7,84	25,6	256
10	0,3	7,84	25,6	256

■ Simu

- □ Sim
- Simulação heterogêneas; e

Máqu

- Simulação de um conjunto de máquinas heterogêneas.
- Aplicações submetidas:
 - □ Aplicação CPU-Bound: 100/0/0/10;
 - Aplicação Disk-Bound: 10/90/0/10;
 - Aplicação Network-Bound: 10/0/90/10;
 - Aplicação Mista 1: 50/30/20/10;
 - Aplicação Mista 2: 50/30/20/100.

Resultados Obtidos

Resultados Obtidos

Aplicações Índices	CPU- Bound	Disk- Bound	Network- Bound	Mista 1	Mista 2	Média
CPU	1,00	1,04	1,02	1,02	1,02	1,02
Memória	9,37	9,52	9,44	9,51	9,36	9,44
Disco	9,37	1,01	1,05	1,02	1,00	2,69
Rede	9,37	9,52	1,01	1,00	1,01	4,38
Round-	1,01	1,02	1,02	1,00	1,01	1,01
VIP Robin	1,00	1,00	1,00	1,00	1,00	1,00

Aplicações Índices	CPU- Bound	Disk- Bound	Network- Bound	Mista 1	Mista 2	Média
CPU	1,14	2,32	3,73	3,00	2,98	2,64
Memória	9,82	14,28	8,72	9,11	9,07	10,20
Disco	9,82	1,00	4,04	1,92	1,90	3,74
Rede	9,82	14,28	1,01	1,01	1,02	5,43
Round-	1,36	1,48	1,74	1,46	1,42	1,49
VIP Robin	1,00	1,00	1,00	1,00	1,00	1,00

Resultados Obtidos

Contribuições

- Vector for Index of Performance VIP
 - flexível e simples (cálculo simples)
 - vem ao encontro dos problemas da área;
 - viabiliza a utilização de ambientes homogêneos e heterogêneos;
 - permite a união dos vários índices

Contribuições

- modelo para simulação de índices de carga e desempenho
 - formalização e descrição do modelo para simulação de escalonamento de processos;
 - facilidade para testar outros índices ou tipos de aplicações;
 - possibilidade de se testar a heterogeneidade sem que seja necessário o uso de máquinas reais.

