

Lecture 10: Digital Control System Design I

ELEN 472: Introduction to Digital Control

Lingxiao Wang, Ph.D.

Assistant Professor of Electrical Engineering Louisiana Tech University

Introduction

A closed-loop digital control system can be presented as:

- To design a digital control system, our goal is to find
 - The **z-domain transfer function** of **the controller** that meets given design specifications.
- There are two ways to get the desired controller C(z):
 - Design the digital controller that meets the design requirement directly.

OR

 Design an analog controller that meets the design requirement, then convert it into digital domain.

z-Domain Root Locus

 For a closed-loop digital control system (as shown above), the Transfer Function is

$$H(z) = \frac{C(z)G_{ZAS}(z)}{1 + C(z)G_{ZAS}(z)}$$

• Thus, the characteristic equation is

$$q(s) = 1 + C(z)G_{ZAS}(z) = 0$$

• If C(z) = K, then, the above equation becomes:

$$q(s) = 1 + KG_{ZAS}(z) = 0$$

- Changing the value of K, we can get different poles locations.
- We can plot all poles locations (associated with different K values) in a diagram -> Root Locus Diagram.

z-Domain Root Locus (Continued)

z-Domain Root Locus diagram can be obtained via MATLAB

Example:

• Obtain the root locus diagram for the first-order type 1 system with open-loop TF with sampling time $T_s=0.1\ s$:

$$G_{ZAS}(z) = \frac{1}{z - 1}$$

Solution:

- The root locus diagram for digital system can be obtained via MATLAB command 'rlocus'.
- Here is the complete code and the result:

```
numerator = 1;
denominator = [1, -1];
ts = 0.1;
sys = tf(numerator, denominator, ts)
rlocus(sys)
axis equal
```


Critical Gain

- Critical Gain K_{cr} is the gain that puts the system in the limit between stable and unstable.
 - For discrete time systems, the system is **stable** if the magnitude of all poles are inside the unit circle, i.e., |z|<1
 - Thus, the **critical gain** can be found at the **intersection** between **root locus plot** and the **unit circle**.
- For the first order systems, you can simply plugin z=-1 in the characteristic equation to find K_{cr} .
- Example:
 - Find the critical gain of the following discrete time system:

$$G_{ZAS}(z) = \frac{1}{z - 1}$$

- Solution:
 - This system is a first-order system, and the characteristic equation is:

$$1 + KG_{ZAS}(z) = 0$$

$$1 + K_{cr} \frac{1}{z - 1} \Big|_{z = -1} = 0$$

$$K_{cr} = 2$$

Critical Gain (Continued)

- On root locus diagram, we can find the critical gain at the intersection of root locus branch and the unit circle.
- In the previous example, we can find critical gain at:

Critical Gain (Continued)

- For the **second and higher order systems**, you need to use the **Jury test** (detailed in Lecture 6) and make all conditions satisfied to find K_{cr} .
 - Jury Test Conditions:

$$F(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 = 0, \qquad a_n > 0$$

This is closed-loop characteristic equation

Example 2

Obtain the root locus plot and the critical gain for the second-order type
 1 system with loop gain:

$$L(z) = \frac{1}{(z-1)(z-0.5)}$$

- Solution:
 - From MATLAB, we can get the critical gain as 0.5:
- To obtain the critical gain manually, we first write the closed-loop characteristic equation:

$$(z-1)(z-0.5) + K = z^2 - 1.5z + K + 0.5$$

= 0

- Using Jury Test, we can get the critical gain, i.e., K_{cr}
 - For second-order systems, the Jury Test has 3 conditions:

•
$$F(1) > 0, F(-1) > 0, |a_0| < a_2$$

- The first and second conditions are satisfied.
- For the last one, $a_0 = K + 0.5 = 1$, $K_{cr} = 0.5$

Practice Question

Get the critical gain of the following system:

$$G(z) = \frac{z}{(z - 0.2)(z - 1)}$$

- Solution:
 - First, we need to get the characteristic equation 1 + KG(z) = 0

$$Kz + z^2 - 1.2 z + 0.2 = 0.$$

- Use Jury Test:
 - $F(1) = K + 1 1.2 + 0.2 = K > 0 \Rightarrow Satisfied$
 - $F(-1) = -K + 1 + 1.2 + 0.2 = -K + 2.4 > 0 \Rightarrow K_{cr} = 2.4$
 - $|a_0| < a_2 \Rightarrow 0.2 < 1 \Rightarrow$ Satisfied

Z-Domain Digital Control System Design

- Select the poles of the z-domain transfer function to characterize the system response.
- This figure shows z-domain pole locations and the associated system response.

- The exponential decay for poles inside the unit circle and exponential increase for poles outside it.
- Poles on the unit circle are associated with a response of constant magnitude.
- Negative poles are associated with alternating signs.
- Poles with imaginary parts is oscillating.

Second Order Systems

If the Laplace transform F(s) has a **pole** p_s , then the z-transform F(z) has a **pole** at $p_z = e^{p_s T}$, where T is the sampling period.

- The s-domain characteristic polynomial for a **second-order system** is $(s p_1)(s p_2)$
 - Where $p_1=-\zeta\omega_n+j\omega_d$ and $p_2=-\zeta\omega_n-j\omega_d$ $\omega_d=\omega_n\sqrt{1-\zeta^2}$
 - ω_n and ζ are natural frequency and damping ratio, respectively
- In z-domain, we can write the second-order characteristic polynomial as:

$$(z - e^{p_1 T})(z - e^{p_2 T})$$

$$(z - e^{(-\zeta \omega_n + j\omega_d)T})(z - e^{(-\zeta \omega_n - j\omega_d)T}) = z^2 - 2\cos(\omega_d T)e^{-\zeta \omega_n T}z + e^{-2\zeta \omega_n T}$$

Hence, the poles of the system are given by:

$$z_1=e^{p_1T}$$
 and $z_2=e^{p_2T}$ $z_{1,2}=e^{-\zeta\omega_nT}$ $\angle\pm\omega_dT$

• Varying the values of ζ and ω_n , we can have a plot of all poles.

Z-Domain Contours in Second Order Systems

Z-Domain Contours in Second Order Systems (Continued)

• We can use the above diagram to quickly determine ζ and ω_n values for a given second order TF z-domain function.

Example:

Suppose we have the following discrete transfer function

$$G(z) = \frac{1}{z^2 - 0.3z + 0.5}$$

• Determine ζ and ω_n of the above system.

Solution:

By solving the characteristic equation, we have

$$z_{1,2} = 0.15 \pm 0.69j$$

 $\omega_n = \frac{0.45\pi}{T}$ $\zeta = 0.25$

Time Specifications for Z-Domain

- The specifications for z-domain design are similar to those for s-domain design. Typical design specifications are as follows:
 - *Time constant*: This is the time constant of exponential decay for the continuous envelope of the sampled waveform.

$$\tau = \frac{1}{\zeta \omega_n}$$

• Settling time: The settling time is defined as the period after which the envelope of the sampled waveform stays within a specified percentage (usually 2%) of the final value.

$$T_{S} = \frac{4}{\zeta \omega_{n}}$$

Example

Design a proportional controller for the digital system

$$L(z) = \frac{1}{(z-1)(z-0.5)}$$

With a sampling period T = 0.1 s to obtain

- The frequency of oscillation $\omega_d=5$ rad/s
- The time constant $\tau = 0.5$ s
- The damping ratio $\zeta = 0.7$

Solution:

• We first need to determine the closed-loop characteristic equation, i.e., 1 + KL(z) = 0

$$(z-1)(z-0.5) + K = z^2 - 1.5 z + K + 0.5 = 0$$

The general form of second-order polynomial in z-domain is:

$$z^2 - 2\cos(\omega_d T)e^{-\zeta\omega_n T}z + e^{-2\zeta\omega_n T}$$

Equating the coefficients of the above two equations, we have

z¹:
$$1.5 = 2\cos(\omega_d T)e^{-\zeta\omega_n T}$$

z⁰: $K + 0.5 = e^{-2\zeta\omega_n T}$

Example Solution

$$z^1: \quad 1.5 = 2\cos(\omega_d T)e^{-\zeta\omega_n T}$$

$$z^0$$
: $K + 0.5 = e^{-2\zeta\omega_n T}$

The frequency of oscillation $\omega_d=5$ rad/s

The time constant $\tau = 0.5 \text{ s}$

The damping ratio $\zeta = 0.7$

- Case 1: Find K to obtain $\omega_d = 5$
 - From the z^1 equation

$$\zeta \omega_n = \frac{1}{T} \ln \left(\frac{2 \cos(\omega_d T)}{1.5} \right) = 10 \ln \left(\frac{2 \cos(0.5)}{1.5} \right) = 1.571$$

• Since
$$\omega_d = \omega_n \sqrt{1-\zeta^2}$$
 and $\omega_d = 5$

$$\omega_d^2 = \omega_n^2 (1 - \zeta^2) = 25$$

• Hence, we obtain the ratio

$$\frac{\omega_d^2}{(\zeta \omega_n)^2} = \frac{1 - \zeta^2}{\zeta^2} = \frac{25}{(1.571)^2}$$

- This gives a damping ratio $\zeta=0.3$ and $\omega_n=5.24$ rad/s
- Finally, the z^0 equation gives the gain:

$$K = e^{-2\zeta\omega_n T} - 0.5 = e^{-2\times 1.571\times 0.1} - 0.5 = 0.23$$

Example Solution

z¹:
$$1.5 = 2\cos(\omega_d T)e^{-\zeta\omega_n T}$$

z⁰: $K + 0.5 = e^{-2\zeta\omega_n T}$

The frequency of oscillation $\omega_d=5\,$ rad/s

The time constant $\tau = 0.5 \, \mathrm{s}$

The damping ratio $\zeta = 0.7$

- Case 2: Find K for $\tau = 0.5$ s:
 - From the definition of time constant $\tau = \frac{1}{\zeta \omega_n}$ and z^1 equation:

$$\zeta \omega_n = \frac{1}{\tau} = \frac{1}{0.5} = 2 \text{ rad/s}$$

$$\omega_d = \frac{1}{T} \cos^{-1} \left(\frac{1.5 e^{\zeta \omega_n T}}{2} \right) = 10 \cos^{-1} (0.75 e^{0.2}) = 4.127 \text{ rad/s}$$

Similar to the previous case, we have

$$\frac{\omega_d^2}{(\zeta\omega_n)^2} = \frac{1-\zeta^2}{\zeta^2} = \frac{(4.127)^2}{2^2}$$

- This equation gives $\zeta=0.436$ and $\omega_n=4.586$ rad/s
- Finally, the gain K can be obtained via z^0

$$K = e^{-2\zeta\omega_n T} - 0.5 = e^{-2 \times 2 \times 0.1} - 0.5 = 0.17$$

Example Solution

$$z^1$$
: $1.5 = 2\cos(\omega_d T)e^{-\zeta\omega_n T}$

$$z^0$$
: $K + 0.5 = e^{-2\zeta\omega_n T}$

The frequency of oscillation $\omega_d=5$ rad/s

The time constant $\tau = 0.5 \text{ s}$

The damping ratio $\zeta = 0.7$

- Case 3: Find K for $\zeta = 0.7$
 - Since $\omega_d = \omega_n \sqrt{1 \zeta^2}$, equation z^1 can be rewritten as:

$$1.5 = 2\cos(0.0714\omega_n)e^{-0.07\omega_n}$$

• Solve this equation we have

$$\omega_n = 3.63 \text{ rad/s}$$

• Thus, the gain K can be obtained from z^0 as

$$K = e^{-0.14 \times 3.63} - 0.5 = 0.10$$

A Comparison of Different Controllers in the Example

- (a) K = 0.23
- (b) K = 0.17
- (c) K = 0.10

FIGURE 6.8

Time response for the designs of Table 6.4: (a) \bigcirc , (b) +, (c) *.

Practice

 Consider the vehicle position control system with the transfer function in the s-domain:

$$G(s) = \frac{1}{s(s+5)}$$

Design a proportional controller for the unity feedback digital control system with analog process and a sampling period $T=0.04\,\mathrm{s}$ to obtain:

- A steady-state error of 10% due to a ramp input
- Solution:
 - First, we need to convert G(s) into z-domain using the equation:

$$G_{ZAS}(z) = (1 - z^{-1})Z\{\frac{G(s)}{s}\}$$

$$G_{ZAS}(z) = \frac{7.4923 \times 10^{-4} (z + 0.9355)}{(z - 1)(z - 0.8187)}$$

Practice Question Solution

- 1. A steady-state error of 10% due to a ramp input
- From $G_{ZAS}(z)$, we can see that the system is type 1

$$G_{ZAS}(z) = \frac{7.4923 \times 10^{-4} (z + 0.9355)}{(z - 1)(z - 0.8187)}$$

• Thus, the steady-state error can be calculated by K_v , i.e., the velocity error. (check Lecture 7)

$$K_{v} = \frac{1}{T} \frac{z - 1}{z} KG(z) \bigg|_{z=1}$$

$$= K \frac{7.4923 \times 10^{-4} (1 + 0.9355)}{(0.04)(1 - 0.8187)}$$

$$= \frac{K}{5}$$

• Thus, in order to make the steady-state error be 10%, we have:

$$\frac{K}{5} = K_v = \frac{100}{e(\infty)\%}$$

$$= \frac{100}{10} = 10$$
 $K = 50$

Practice Question Solution

• Using MATLAB, we can get the system response with K=50

