Sequential Decision Making

Lecture 5 : Dynamic Programming

Emilie Kaufmann

M2 Data Science, 2021/2022

Reminder: Markov Decision Process

A MDP is parameterized by a tuple (S, A, R, P) where

- \triangleright S is the state space
- ▶ A is the action space (or A_s for each $s \in S$)
- ▶ $R = (\nu_{(s,a)})_{(s,a) \in S \times A}$ where $\nu_{(s,a)} \in \Delta(\mathbb{R})$ is the reward distribution for the state-action pair $(s,a) \to r(s,a) = \mathbb{E}_{R \sim \nu_{(s,a)}}[R]$
- ▶ $P = (p(\cdot|s, a))_{(s,a) \in S \times A}$ where $p(\cdot|s, a) \in \Delta(S)$ is the transition kernel associated to the state-action pair (s, a)

Reminder: Policy

A policy $\pi=(\pi_0,\pi_1,\dots)$ is a sequence of mapping $\pi_t:\mathcal{S}\to\Delta(\mathcal{A})$ that maps a state to a distribution over actions.

Under policy π , at time t, the agent in state s_t selects

$$a_t \sim \pi_t(s_t),$$

receives the instantaneous reward

$$r_t \sim \nu_{(s_t, a_t)}$$
 such that $\mathbb{E}[r_t | s_t, a_t] = r(s_t, a_t)$

and transits to the new state $s_{t+1} \sim p(\cdot|s_t, a_t)$.

 \Rightarrow a policy defines a probability model $\mathbb{P}^{\pi}, \mathbb{E}^{\pi}$ over sequences of observations :

$$s_0, a_0, r_0, s_1, a_1, r_1, \dots$$

Reminder: Value Function

Definition

The value function of a policy $\pi = (\pi_0, \pi_1, \pi_2, \dots)$ is $V^{\pi} : \mathcal{S} \to \mathbb{R}$

Finite-horizon criterion

$$V^{\pi}(s) = \mathbb{E}^{\pi}\left[\left.\sum_{t=1}^{H} r_{t}\right| s_{0} = s\right]$$

- → We want to compute the optimal value $V^*(s) = \max_{\pi} V^{\pi}(s)$ and an optimal policy π_* such that $V^* = V^{\pi_*}$.
- \rightarrow We will be able to do so when \mathcal{S} and \mathcal{A} are finite

$$S := |\mathcal{S}| < \infty$$
 and $A := |\mathcal{A}| < \infty$

(some optimality equation may extend to continuous state spaces)

Reminder: Value Function

Definition

The value function of a policy $\pi = (\pi_0, \pi_1, \pi_2, \dots)$ is $V^{\pi} : \mathcal{S} \to \mathbb{R}$

Finite-horizon criterion

$$V^{\pi}(s) = \mathbb{E}^{\pi}\left[\left.\sum_{t=1}^{H}r(s_t,a_t)\right|s_0=s
ight]$$

- → We want to compute the optimal value $V^*(s) = \max_{\pi} V^{\pi}(s)$ and an optimal policy π_* such that $V^* = V^{\pi_*}$.
- \rightarrow We will be able to do so when \mathcal{S} and \mathcal{A} are finite

$$S := |\mathcal{S}| < \infty$$
 and $A := |\mathcal{A}| < \infty$

(some optimality equation may extend to continuous state spaces)

Reminder: Value Function

Definition

The value function of a policy $\pi=(\pi_0,\pi_1,\pi_2,\dots)$ is $V^\pi:\mathcal{S}\to\mathbb{R}$

2 Infinite horizon with a discount γ

$$V^{\pi}(s) = \mathbb{E}^{\pi} \left[\left. \sum_{t=1}^{\infty} \gamma^{t-1} r(s_t, a_t) \right| s_0 = s \right]$$

- → We want to compute the optimal value $V^*(s) = \max_{\pi} V^{\pi}(s)$ and an optimal policy π_* such that $V^* = V^{\pi_*}$.
- \rightarrow We will be able to do so when S and A are finite

$$S:=|\mathcal{S}|<\infty$$
 and $A:=|\mathcal{A}|<\infty$

(some optimality equation may extend to continuous state spaces)

Outline

1 Solving a Known MDP : Finite Horizon

- 2 Solving a Known MDP: the Discounted Case
 - Policy Evaluation
 - Computing the Optimal Policy

3 Value Iteration, Policy Iteration

Let H be the known time horizon.

Value functions at step h

For a policy $\pi = (\pi_1, \dots, \pi_H)$,

$$V_h^\pi(s) = \mathbb{E}^\pi \left[\left. \sum_{t=h}^H r_t \right| s_h = s
ight]$$

and

$$V_h^{\star}(s) = \max_{\pi_h, \dots, \pi_H} \mathbb{E}^{\pi} \left[\sum_{t=h}^H r_t \middle| s_h = s \right]$$

Goal: compute

$$V^{\pi}(s) = V_1^{\pi}(s), V^{\star}(s) = V_1^{\star}(s) \text{ and } \pi^{\star} = (\pi_1^{\star}, \dots, \pi_H^{\star}).$$

 \rightarrow we will actually compute $V_h^{\pi}(s)$ and $V_h^{\star}(s)$ for all $h \leq H$.

Let H be the known time horizon.

Value functions at step h

For a policy $\pi = (\pi_1, \dots, \pi_H)$,

$$V_h^\pi(s) = \mathbb{E}^\pi \left[\left. \sum_{t=h}^H r(s_t, a_t) \right| s_h = s
ight]$$

and

$$V_h^{\star}(s) = \max_{\pi_h, \dots, \pi_H} \mathbb{E}^{\pi} \left[\left. \sum_{t=h}^{H} r(s_t, a_t) \right| s_h = s
ight]$$

Goal: compute

$$V^{\pi}(s) = V_1^{\pi}(s), V^{\star}(s) = V_1^{\star}(s) \text{ and } \pi^{\star} = (\pi_1^{\star}, \dots, \pi_H^{\star}).$$

 \rightarrow we will actually compute $V_h^{\pi}(s)$ and $V_h^{\star}(s)$ for all $h \leq H$.

Let H be the known time horizon.

Value functions at step h

For a deterministic policy $\pi = (\pi_1, \dots, \pi_H)$,

$$V_h^\pi(s) = \mathbb{E}^\pi \left[\left. \sum_{t=h}^H r(s_t, \pi_t(s_t)) \right| s_h = s
ight]$$

and

$$V_h^{\star}(s) = \max_{\pi_h, \dots, \pi_H} \mathbb{E}^{\pi} \left[\left. \sum_{t=h}^{H} r(s_t, \pi_t(s_t)) \right| s_h = s \right]$$

Goal: compute

$$V^{\pi}(s) = V_1^{\pi}(s), V^{\star}(s) = V_1^{\star}(s)$$
 and $\pi^{\star} = (\pi_1^{\star}, \dots, \pi_H^{\star}).$

 \rightarrow we will actually compute $V_h^{\pi}(s)$ and $V_h^{\star}(s)$ for all $h \leq H$.

Let H be the known time horizon.

Value functions at step h

For a policy $\pi = (\pi_1, \dots, \pi_H)$,

$$V_h^{\pi}(s) = \mathbb{E}^{\pi} \left[\sum_{t=h}^{H} r_t \middle| s_h = s \right]$$

and

$$V_h^{\star}(s) = \max_{\pi_h, \dots, \pi_H} \mathbb{E}^{\pi} \left[\left. \sum_{t=h}^{H} r_t \right| s_h = s \right]$$

How?

- → Monte-Carlo estimation? only approximate
- → Develop the tree of all possible realizations? too complex

Proposition

The value functions of a deterministic policy π satisfies the following equations : for all $h \in \{1, \dots, H\}$,

$$V_h^{\pi}(s) = r(s, \pi_h(s)) + \sum_{s' \in S} p(s'|s, \pi_h(s)) V_{h+1}^{\pi}(s'),$$

with the convention that $V_{H+1}^{\pi}(s)=0$ for all $s\in\mathcal{S}$.

Consequence : for a finite state space S such that |S| = S

- \rightarrow $V_1^{\pi}(s)$ can be computed using backwards induction
- \rightarrow space complexity : $S \times H$
- \rightarrow time complexity : $S \times (S+1) \times H$

Proposition

The value functions of a deterministic policy π satisfies the following equations : for all $h \in \{1, \dots, H\}$,

$$V_h^{\pi}(s) = r(s, \pi_h(s)) + \sum_{s' \in S} p(s'|s, \pi_h(s)) V_{h+1}^{\pi}(s'),$$

with the convention that $V_{H+1}^{\pi}(s) = 0$ for all $s \in \mathcal{S}$.

Proof.

$$\begin{aligned} & V_h^{\pi}(s) = \mathbb{E}^{\pi} \left[\left. r(s_h, \pi_h(s_h)) + \sum_{t=h+1}^{H} r(s_t, \pi_t(s_t)) \right| s_h = s \right] \\ & = r(s, \pi_h(s)) + \mathbb{E}^{\pi} \left[\left. \sum_{t=h+1}^{H} r(s_t, \pi_t(s_t)) \right| s_h = s, a_h = \pi_h(s) \right] \\ & = r(s, \pi_h(s)) + \sum_{s' \in \mathcal{S}} \mathbb{P}(s_{h+1} = s' | s_h = s, a_h = \pi_h(s)) \mathbb{E}^{\pi} \left[\left. \sum_{t=h+1}^{H} r(s_t, \pi_t(s_t)) \right| s_{h+1} = s' \right] \\ & = r(s, \pi_h(s)) + \sum_{s' \in \mathcal{S}} p(s' | s, \pi_h(s)) V_{h+1}^{\pi}(s') \end{aligned}$$

Proposition

The value functions of a deterministic policy π satisfies the following equations : for all $h \in \{1, \dots, H\}$,

$$V_h^{\pi}(s) = r(s, \pi_h(s)) + \mathbb{E}_{s' \sim p(\cdot|s, \pi_h(s))} \left[V_{h+1}^{\pi}(s') \right],$$

with the convention that $V^{\pi}_{H+1}(s)=0$ for all $s\in\mathcal{S}$.

These equations may be generalized:

▶ to a possibly infinite state space

Proposition

The value functions of a policy π satisfies the following equations : for all $h \in \{1, \dots, H\}$,

$$V_h^{\pi}(s) = \mathbb{E}_{a \sim \pi_h(s)} \left[r(s, a) + \mathbb{E}_{s' \sim p(\cdot \mid s, a)} \left[V_{h+1}^{\pi}(s') \right] \right],$$

with the convention that $V_{H+1}^{\pi}(s) = 0$ for all $s \in \mathcal{S}$.

These equations may be generalized:

- ▶ to a possibly infinite state space
- to randomized policies

Bellman equations for the optimal values

Proposition

The optimal values V_h^{\star} satisfy the Bellman equations :

$$V_h^{\star}(s) = \max_{a \in \mathcal{A}} \left[r(s, a) + \sum_{s' \in \mathcal{S}} p(s'|s, a) V_{h+1}^{\star}(s') \right] \text{ for all } h \leq H,$$

with the convention that $V_{H+1}^{\star}(s) = 0$ for all $s \in \mathcal{S}$. Moreover, an optimal policy is given by

$$\pi_h^{\star}(s) \in \operatorname*{argmax}_{a \in \mathcal{A}} \left[r(s, a) + \sum_{s'=1}^{S} p(s'|s, a) V_{h+1}^{\star}(s') \right].$$

Bellman equations for the optimal values

Proposition

The optimal values V_h^{\star} satisfy the **Bellman equations**:

$$V_h^{\star}(s) = \max_{a \in \mathcal{A}} \left[r(s, a) + \sum_{s' \in \mathcal{S}} p(s'|s, a) V_{h+1}^{\star}(s') \right] \text{ for all } h \leq H,$$

with the convention that $V_{H+1}^{\star}(s) = 0$ for all $s \in \mathcal{S}$. Moreover, an optimal policy is given by

$$\pi_h^*(s) \in \operatorname*{argmax}_{a \in \mathcal{A}} \left[r(s, a) + \sum_{s'=1}^{S} p(s'|s, a) V_{h+1}^*(s') \right].$$

Consequence : for finite S, A such that |S| = S, |A| = A

- $\rightarrow \pi^* = (\pi_1^*, \dots, \pi_H^*)$ can be computed using backwards induction
- \rightarrow space complexity : $S \times H$
- \rightarrow time complexity : $O(S^2AH)$

Bellman equations for the optimal values

Proposition

The optimal values V_h^{\star} satisfy the **Bellman equations**:

$$V_h^{\star}(s) = \max_{a \in \mathcal{A}} \left[r(s, a) + \sum_{s' \in \mathcal{S}} p(s'|s, a) V_{h+1}^{\star}(s') \right] \text{ for all } h \leq H,$$

with the convention that $V^\star_{H+1}(s)=0$ for all $s\in\mathcal{S}.$ Moreover, an optimal policy is given by

$$\pi_h^{\star}(s) \in \operatorname*{argmax}_{a \in \mathcal{A}} \left[r(s, a) + \sum_{s'=1}^{S} p(s'|s, a) V_{h+1}^{\star}(s') \right].$$

This technique is known as **Dynamic Programming**

▶ term invented in the 50s by Bellman : an algorithmic principle for optimization in which solving an optimization problem of a given size reduces to solving (several) of the same optimization problem but of smaller size

Proof

$$\begin{split} V_h^*(s) &= \max_{\pi_h, \pi_{h+1}, \dots} \mathbb{E}^{\pi} \left[\sum_{t=h}^{H} r(s_t, a_t) \middle| s_h = s \right] \\ &= \max_{\pi_h, \pi_{h+1}, \dots} \sum_{a \in \mathcal{A}} \pi_h(a_h = a | s_h = s) \mathbb{E}^{\pi} \left[r(s, a) + \sum_{t=h+1}^{H} r(s_t, a_t) \middle| s_h = s, a_h = a \right] \\ &= \max_{\pi_h, \pi_{h+1}, \dots} \sum_{a \in \mathcal{A}} \pi_h(a_h = a | s_h = s) \left[r(s, a) + \sum_{s' \in \mathcal{S}} p(s' | s, a) \mathbb{E}^{\pi_{h+1}, \dots} \left[\sum_{t=h+1}^{H} r(s_t, a_t) \middle| s_{h+1} = s' \right] \right] \\ &= \max_{a \in \mathcal{A}} \left[r(s, a) + \sum_{s' \in \mathcal{S}} p(s' | s, a) V_{h+1}^{*}(s') \right] \\ &= \max_{a \in \mathcal{A}} \left[r(s, a) + \sum_{s' \in \mathcal{S}} p(s' | s, a) V_{h+1}^{*}(s') \right] \end{split}$$

The maximizing policy is $\pi_h^\star, \pi_{h+1}^\star, \ldots$ with

$$V_{h+1}^{\pi_{h+1}^{\star}, \dots} = V_{h+1}^{\star} = \underset{-}{\operatorname{argmax}} V_{h+1}^{\pi}$$

and a deterministic mapping $\pi_h^\star:\mathcal{S} o\mathcal{A}$ given by

$$\pi_h^{\star}(s) \in \underset{a \in \mathcal{A}}{\operatorname{argmax}} \left[r(s, a) + \sum_{s' \in \mathcal{S}} p(s'|s, a) V_{h+1}^{\star}(s') \right].$$

Example: Optimal Parking

Exercise:

- → model optimal parking as solving a MDP with a finite horizon
- write the optimal policy

Outline

1 Solving a Known MDP : Finite Horizon

- 2 Solving a Known MDP : the Discounted Case
 - Policy Evaluation
 - Computing the Optimal Policy

3 Value Iteration, Policy Iteration

Let $\gamma \in (0,1)$ be a known discount factor

Value functions

For a policy $\pi = (\pi_1, \pi_2, \dots)$,

$$V^{\pi}(s) = \mathbb{E}^{\pi}\left[\left.\sum_{t=1}^{\infty} \gamma^{t-1} r_{t}\right| s_{1} = s
ight]$$

and

$$V^{\star}(s) = \max_{\pi} \mathbb{E}^{\pi} \left[\left. \sum_{t=1}^{\infty} \gamma^{t-1} r_{t} \right| s_{1} = s \right]$$

How to compute them?

→ We need to generalize Dynamic Programming to infinite horizon...

Let $\gamma \in (0,1)$ be a known discount factor

Value functions

For a deterministic policy $\pi = (\pi_1, \pi_2, \dots)$,

$$V^{\pi}(s) = \mathbb{E}^{\pi} \left[\left. \sum_{t=1}^{\infty} \gamma^{t-1} r(s_t, \pi_t(s_t)) \right| s_1 = s \right]$$

and

$$V^{\star}(s) = \max_{\pi} \mathbb{E}^{\pi} \left[\left. \sum_{t=1}^{\infty} \gamma^{t-1} r(s_t, \pi_t(s_t)) \right| s_1 = s \right]$$

How to compute them?

→ We need to generalize Dynamic Programming to infinite horizon...

Outline

1 Solving a Known MDP : Finite Horizon

- 2 Solving a Known MDP : the Discounted Case
 - Policy Evaluation
 - Computing the Optimal Policy

3 Value Iteration, Policy Iteration

Bellman equation for a stationary policy

Proposition

Any stationary deterministic policy π satisfies, for all $s \in \mathcal{S}$,

$$V^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, \pi(s)) V^{\pi}(s')$$

Proof.

$$\begin{split} &V^{\pi}(s) = \mathbb{E}^{\pi} \left[\left. r(s, \pi(s)) + \sum_{t=2}^{\infty} \gamma^{t-1} r(s_{t}, \pi(s_{t})) \right| s_{1} = s \right] \\ &= r(s, \pi(s)) + \gamma \mathbb{E}^{\pi} \left[\left. \sum_{t=1}^{\infty} \gamma^{t-2} r(s_{t}, \pi(s_{t})) \right| s_{1} = s, a_{1} = \pi(s) \right] \\ &= r(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} \mathbb{P}(s_{2} = s' | s_{1} = s, a_{1} = \pi(s)) \mathbb{E}^{\pi} \left[\left. \sum_{t=2}^{\infty} \gamma^{t-2} r(s_{t}, \pi(s_{t})) \right| s_{2} = s' \right] \\ &= r(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} p(s' | s, \pi(s)) \underbrace{\mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r(s_{t}, \pi(s_{t})) \right| s_{1} = s'}_{V^{\pi}(s')} \right] \end{split}$$

Bellman equation for a stationary policy

Proposition

Any stationary deterministic policy π satisfies, for all $s \in \mathcal{S}$,

$$V^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, \pi(s)) V^{\pi}(s')$$

More general statement :

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim p(\cdot | s, a)} \left[V^{\pi}(s') \right] \right]$$

(also applies to infinite state space and randomized policies)

Solving the Bellman equations

Fix a stationary, deterministic policy π .

Proposition

$$\forall s \in \mathcal{S}, \quad V^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, \pi(s)) V^{\pi}(s')$$

Solving the Bellman equations

Fix a stationary, deterministic policy π .

Proposition

$$\forall s \in \mathcal{S}, \quad V^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, \pi(s)) V^{\pi}(s')$$

Introducing the vectors

$$egin{array}{lll} V^{\pi} & = & (V^{\pi}(s))_{s=1}^{S} \in \mathbb{R}^{S} \ r^{\pi} & = & (r(s,\pi(s))_{s=1}^{S} \in \mathbb{R}^{S} \end{array}$$

and the matrix

$$P^{\pi} = \left(p(s'|s,\pi(s))\right)_{\substack{1 \leq s \leq S \ 1 \leq s' \leq S}} \in \mathbb{R}^{S \times S},$$

the Bellman equations rewrite

$$V^{\pi} = r^{\pi} + \gamma P^{\pi} V^{\pi}$$

Solving the Bellman equations

$$V^{\pi} = r^{\pi} + \gamma P^{\pi} V^{\pi}$$

The vector $V^{\pi} \in \mathbb{R}^{S}$ satisfies

$$(I - \gamma P^{\pi}) V^{\pi} = r^{\pi}$$

$$V^{\pi} = (I - \gamma P^{\pi})^{-1} r^{\pi}$$

provided that the matrix $I - \gamma P^{\pi}$ is invertible.

Proposition

The eigenvalues of the $stochastic^a$ matrix P^{π} all belong to [0,1]. As a consequence, $-\gamma \notin sp(P^{\pi})$ thus $I - \gamma P^{\pi}$ is invertible.

- a the entries in its rows sum to 1
- \rightarrow V^{π} can be computed by inverting a $S \times S$ matrix!

An alternative : Exploiting the Bellman operator

Definition

The **Bellman operator** associated to a policy π is defined by

$$T^{\pi}: \mathbb{R}^{S} \longrightarrow \mathbb{R}^{S}$$

$$V \mapsto T^{\pi}(V)$$

where

$$T^{\pi}(V)(s) = r(s,\pi(s)) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,\pi(s))V(s')$$

The Bellman equation for policy π rewrites

$$V^{\pi} = T^{\pi}V^{\pi}$$

 \rightarrow the vector V^{π} is a fixed point of the Bellman operator T^{π}

Intermezzo: Fixed Point Theorem

Definition

Let $(\mathcal{X}, |\cdot|)$ be a normed vector space.

A mapping $f: \mathcal{X} \to \mathcal{X}$ is called *L*-Lipschitz is

$$\forall (x,y) \in \mathcal{X}^2, |f(x) - f(y)| \le L|x - y|.$$

If L < 1, f is called a contraction.

Banach's fixed point theorem

Let $(\mathcal{X}, |\cdot|)$ be a *complete* normed vector space and $f: \mathcal{X} \to \mathcal{X}$ be a contraction. Then

- ▶ there exists a unique fixed point x^* satisfying $f(x^*) = x^*$
- ▶ for every $x_0 \in \mathcal{X}$, the sequence defined by $x_{n+1} = f(x_n)$ for all $n \ge 0$ satisfies

$$\lim_{n\to\infty} x_n = x_\star$$

Exploiting the Bellman Operator

Proposition

The operator

$$T^{\pi}: (\mathbb{R}^{S}, ||\cdot||_{\infty}) \longrightarrow (\mathbb{R}^{S}, ||\cdot||_{\infty})$$

$$V \mapsto T^{\pi}(V)(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s))V(s')$$

is a γ -contraction.

Proof.

$$\begin{split} ||T^{\pi}(V) - T^{\pi}(V')||_{\infty} &= \sup_{s \in S} |T^{\pi}(V)(s) - T^{\pi}(V')(s)| \\ &= \sup_{s \in S} |\gamma \sum_{s' \in S} p(s'|s, \pi(s))(V(s') - V'(s'))| \\ &\leq \gamma \sum_{s' \in S} p(s'|s, \pi(s))||V - V'||_{\infty} \\ &= \gamma ||V - V'||_{\infty}. \end{split}$$

Exploiting the Bellman Operator

Proposition

The operator

$$T^{\pi}: \left(\mathbb{R}^{S}, ||\cdot||_{\infty}\right) \longrightarrow \left(\mathbb{R}^{S}, ||\cdot||_{\infty}\right)$$

$$V \mapsto T^{\pi}(V)(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s))V(s')$$

is a γ -contraction.

Consequence:

- $ightharpoonup V^{\pi}$ is the unique fixed point of T^{π}
- $ightharpoonup V^{\pi}$ can be approximated by an iterative scheme :

$$V^{\pi} = \lim_{k \to \infty} V_k$$

where

$$\left\{ \begin{array}{ll} V_0 & \in \mathbb{R} \\ V_{k+1} & = T^{\pi}(V_k) \text{ for all } k \geq 0. \end{array} \right.$$

Summary: Policy Evaluation

Two methods for computing $V^{\pi}(s)$ for all s:

- solving linear equations (matrix inversion)
- \blacktriangleright iterating the Bellman operator T^{π}

Other possibility: Monte-Carlo simulation

- provides only an approximation
- \rightarrow ... but doesn't require the knowledge of r(s, a) and $p(\cdot|s, a)$...

Back to Retail Store Management

- ▶ Constant policy : $\pi(s) = \max(M s, c)$
- ► Threshold policy : $\pi(s) = \mathbb{1}_{(s \leq m_1)}(m_2 s)$

FIGURE – V^{π} for two different policies, $\gamma=0.97$

Outline

1 Solving a Known MDP : Finite Horizon

- 2 Solving a Known MDP : the Discounted Case
 - Policy Evaluation
 - Computing the Optimal Policy

3 Value Iteration, Policy Iteration

Bellman equations for the optimal values

Proposition

 $V^{\star}(s) = \max_{\pi} V^{\pi}(s)$ satisfy the **Bellman equations** :

$$V^{\star}(s) = \max_{a \in \mathcal{A}} \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V^{\star}(s') \right]$$

Moreover, an optimal policy is given by $\pi^* = (\pi^*, \pi^*, \dots)$ where

$$\pi^*(s) \in \underset{a \in \mathcal{A}}{\operatorname{argmax}} \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V^*(s') \right].$$

 $\rightarrow \pi^*$ is the greedy policy with respect to V^* :

Definition

The **greedy policy** with respect to a value V, $\pi = \operatorname{greedy}(V)$ is

$$\pi(x) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V(s') \right]$$

Bellman equations for the optimal values

Proposition

 $V^{\star}(s) = \max_{\pi} V^{\pi}(s)$ satisfy the **Bellman equations** :

$$V^{\star}(s) = \max_{a \in \mathcal{A}} \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V^{\star}(s') \right]$$

Moreover, an optimal policy is given by $\pi^* = (\pi^*, \pi^*, \dots)$ where

$$\pi^*(s) \in \operatorname*{argmax}_{a \in \mathcal{A}} \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V^*(s') \right].$$

 $\rightarrow \pi^*$ is the greedy policy with respect to V^* :

Intuition : greedy(V) is the policy that "improves" a policy with value V by taking the best possible first action and then following the policy

Solving the Bellman equations

Proposition

The optimal value function V^* satisfies

$$V^{\star}(s) = \max_{a \in \mathcal{A}} \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V^{\star}(s') \right]$$

- ▶ a system of S non-linear equations for computing $(V^*(s))_{s \in S}$.
- → no hope for a simple "matrix inversion" technique...

Bellman operator to the rescue

Optimal Bellman operator

The optimal Bellman operator (or dynamic programming operator) is

$$\begin{array}{ccc} T^{\star}: \mathbb{R}^{S} & \longrightarrow & \mathbb{R}^{S} \\ V & \mapsto & T^{\star}(V) \end{array}$$

where

$$T^{\star}(V)(s) = \max_{a \in \mathcal{A}} \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V(s') \right]$$

The optimal value function satisfies

$$V^* = T^*(V^*)$$

 \rightarrow V^* is a fixed point of the optimal Bellman operator T^* .

Optimal Bellman Operator

Properties

The optimal Bellman operator is a γ -contraction :

$$\forall V, V' \in \mathbb{R}^{S}, ||T^{\star}(V) - T^{\star}(V')||_{\infty} < \gamma ||V - V'||_{\infty}.$$

As a consequence:

- $ightharpoonup T^*$ admits a unique fixed point, V^*
- ▶ for every V_0 , the sequence $V_{n+1} = T^*(V_n)$ converges to V^*

Optimal Bellman Operator

Properties

The optimal Bellman operator is a γ -contraction :

$$\forall V, V' \in \mathbb{R}^{S}, ||T^{\star}(V) - T^{\star}(V')||_{\infty} < \gamma ||V - V'||_{\infty}.$$

As a consequence:

- $ightharpoonup T^*$ admits a unique fixed point, V^*
- ▶ for every V_0 , the sequence $V_{n+1} = T^*(V_n)$ converges to V^*

Proof. Uses that for all functions $|\max f - \max g| \le \max |f - g|$.

$$\begin{split} \|T^{\star}(U) - T^{\star}(V)\|_{\infty} &= \max_{s \in S} \left| \max_{a \in \mathcal{A}} \left\{ r(s, a) + \gamma \sum_{s' \in S} \rho(s'|s, a)U(s') \right\} - \max_{a' \in \mathcal{A}} \left\{ r(s, a') - \gamma \sum_{s' \in S} \rho(s'|s, a')V(s') \right\} \right| \\ &\leq \max_{s \in S} \max_{a \in \mathcal{A}} \left| r(s, a) + \gamma \sum_{s' \in S} \rho(s'|s, a)U(s') - r(s, a) - \gamma \sum_{s' \in S} \rho(s'|s, a)V(s') \right| \\ &= \gamma \max_{s \in S} \max_{a \in \mathcal{A}} \left\{ \sum_{s' \in S} \rho(s'|s, a)(U(s') - V(s')) \right\} \right| \\ &\leq \gamma \max_{s \in S} \max_{a \in \mathcal{A}} \sum_{s' \in S} |\rho(s'|s, a)| \|U - V\|_{\infty} \leq \gamma \|U - V\|_{\infty} \end{split}$$

Optimal Bellman Operator

Properties

The optimal Bellman operator is a γ -contraction :

$$\forall V, V' \in \mathbb{R}^{S}, ||T^{\star}(V) - T^{\star}(V')||_{\infty} < \gamma ||V - V'||_{\infty}.$$

As a consequence:

- $ightharpoonup T^*$ admits a unique fixed point, V^*
- ▶ for every V_0 , the sequence $V_{n+1} = T^*(V_n)$ converges to V^*

 \rightarrow provides a method for approximating V^*

Outline

1 Solving a Known MDP : Finite Horizon

- 2 Solving a Known MDP : the Discounted Case
 - Policy Evaluation
 - Computing the Optimal Policy

3 Value Iteration, Policy Iteration

Value Iteration

Idea: Iterate the operator T^* until V doesn't change much

Algorithm 1: Value Iteration

Input :
$$\epsilon = \text{stopping parameter}$$

$$V_0=$$
 any function (e.g. $V_0\leftarrow 0_S)$

- 1 $V \leftarrow V_0$
- 2 while $||V T^*(V)|| \ge \epsilon$ do
- $V \leftarrow T^*(V)$
- 4 end

Return: $\pi = \text{greedy}(V)$

Theorem

Value iteration converges in at most $\log \left(\frac{||T^\star(V_0)-V_0||_\infty}{\epsilon}\right)/\log(1/\gamma)$ iterations and outputs a policy π satisfying $||V^\pi-V^\star|| \leq \frac{\gamma\epsilon}{1-\gamma}$.

Policy Iteration

▶ Idea : alternate between policy evaluation and policy improvement

Greedy policy

Recall that $\pi' = \operatorname{greedy}(V)$ is the policy defined as

$$\pi'(s) \in \operatorname*{argmax}_{a \in \mathcal{A}} \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V(s') \right]$$

Policy improvement theorem

For any policy π , $\pi' = \operatorname{greedy}(V^{\pi})$ improves over $\pi : V^{\pi'} \geq V^{\pi}$.

Proof. uses some monotonicity property : $U \ge V \Rightarrow T^{\pi}(U) \ge T^{\pi}(V)$

- **1** by definition of the greedy policy, $T^{\pi'}(V^{\pi}) = T^{\star}(V^{\pi}) \geq T^{\pi}(V^{\pi}) = V^{\pi}$
- 2 the monotonicity property yields (by induction) $(T^{\pi'})^n(V^{\pi}) \geq V^{\pi}$ for all $n \in \mathbb{N}$
- **3** using that $\lim_{n\to\infty} (T^{\pi'})^n (V^{\pi}) = V^{\pi'}$ concludes.

Policy Iteration

▶ Idea: alternate between policy evaluation and policy improvement.

Algorithm 2: Policy Iteration

```
Input: \pi_0 = any policy (e.g. chosen at random)
1 \pi \leftarrow \pi_0
2 \pi' \leftarrow \text{NULL}
3 while \pi \neq \pi' do
   \pi' \leftarrow \pi
   Evaluate policy \pi: compute V^{\pi}
      Improve policy \pi : \pi \leftarrow \operatorname{greedy}(V^{\pi})
7 end
```

Return: π

Theorem

Policy iteration terminates after a finite number of steps and outputs the optimal policy π^* .

- 31 Emilie Kaufmann | CRIStAL

Policy Iteration

Why is that?

Policy iteration generates a sequence of policies π_0, π_1, \ldots such that

$$\pi_{k+1} = \operatorname{greedy}(V^{\pi_k}).$$

By the policy improvement theorem,

$$V^{\pi_{k+1}} > V^{\pi_k}$$

and if $\pi_{k+1} \neq \pi_k$ there must exists s such that $V^{\pi_{k+1}}(s) > V^{\pi_k}(s)$ (otherwise $V^{\pi_k} = V^{\pi_{k+1}} = T^{\pi_{k+1}}(V^{\pi_{k+1}}) = T^*(V^{\pi_k})$ thus $\pi_k = \pi^*$)

 \Rightarrow as there is a finite number of possible values of V^{π} (finite number of policies), the sequence must be stationary at some point.

Both algorithm can be implemented using Q-Values .

Definitions

The **Q-value** of a stationary policy is the expected cumulative reward when performing action a in state s and then following policy π :

$$Q^{\pi}(s,a) = \mathbb{E}^{\pi}\left[\left.\sum_{t=1}^{\infty} \gamma^{t-1} r(s_t,a_t)\right| s_1 = s, a_1 = a\right]$$

The **optimal Q-value** is $Q^*(s, a) = \max_{\pi} Q^{\pi}(s, a) = Q^{\pi^*}(s, a)$.

Properties:

- $V^{\pi}(s) = Q^{\pi}(s,\pi(s))$
- $V^*(s) = Q^*(s, \pi^*(s))$

Both algorithm can be implemented using Q-Values .

Definitions

The **Q-value** of a stationary policy is the expected cumulative reward when performing action a in state s and then following policy π :

$$Q^{\pi}(s,a) = r(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a) V^{\pi}(s')$$

The **optimal Q-value** is $Q^*(s, a) = \max_{\pi} Q^{\pi}(s, a) = Q^{\pi^*}(s, a)$.

Properties:

- $V^{\pi}(s) = Q^{\pi}(s,\pi(s))$
- $V^*(s) = Q^*(s, \pi^*(s))$

Q-Values are convenient for policy improvement.

Q-value associated to a value V

To each value function V, we can associate the corresponding Q-value

$$Q(s,a) = r(s,a) + \gamma \sum_{s' \in S} p(s'|s,a)V(s')$$

Property: $\pi' = \text{greedy}(V)$ can be rewritten $\pi'(s) = \operatorname{argmax}_a Q(s, a)$.

Q-Values are convenient for policy improvement.

Q-value associated to a value V

To each value function V, we can associate the corresponding Q-value

$$Q(s,a) = r(s,a) + \gamma \sum_{s' \in S} p(s'|s,a)V(s')$$

Property : $\pi' = \text{greedy}(V)$ can be rewritten $\pi'(s) = \operatorname{argmax}_{a} Q(s, a)$.

Definition

The **greedy policy** with respect to a Q-value Q, $\pi = \operatorname{greedy}(Q)$ is

$$\pi(s) = \underset{a}{\operatorname{argmax}} Q(s, a)$$

Q-Values are convenient for policy improvement.

Q-value associated to a value V

To each value function V, we can associate the corresponding Q-value

$$Q(s,a) = r(s,a) + \gamma \sum_{s' \in S} p(s'|s,a)V(s')$$

Property : $\pi' = \text{greedy}(V)$ can be rewritten $\pi' = \text{greedy}(Q)$.

Definition

The **greedy policy** with respect to a Q-value Q, $\pi = \operatorname{greedy}(Q)$ is

$$\pi(s) = \underset{a}{\operatorname{argmax}} Q(s, a)$$

Q-Values are convenient for policy improvement.

Q-value associated to a value V

To each value function V, we can associate the corresponding Q-value

$$Q(s,a) = r(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a)V(s')$$

Property : $\pi' = \text{greedy}(V)$ can be rewritten $\pi' = \text{greedy}(Q)$.

Definition

The **greedy policy** with respect to a Q-value Q, $\pi = \operatorname{greedy}(Q)$ is

$$\pi(s) = \operatorname*{argmax}_{a} Q(s, a)$$

Remark : $\pi^* = \operatorname{greedy}(Q^*)$

In these implementations, we propose to store Q-values.

Value Iteration

Initialize Q_0 .

At iteration k:

$$V_k(s) = \max_{s} Q_{k-1}(s,a)$$
 (apply \mathcal{T}^{\star})

$$Q_k(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V_k(s)$$

$$\mathsf{Output} \, : \, \pi_{\mathsf{K}}(s) = \mathop{\mathsf{argmax}}_{a \in \mathcal{A}} \, Q_{\mathsf{K}}(s,a)$$

Policy iteration

Initialize π_0

At iteration k:

$$Q_{k-1}(s,a) = Q^{\pi_{k-1}}(s,a)$$
 (policy evaluation)

$$\pi_k(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q_{k-1}(s, a)$$

Output : π_K

In these implementations, we propose to store *Q*-values.

Value Iteration

Initialize Q_0 .

At iteration k:

$$V_k(s) = \max_{a} Q_{k-1}(s,a)$$
 (apply \mathcal{T}^{\star})

$$Q_k(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V_k(s)$$

Output :
$$\pi_K(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q_K(s, a)$$

Policy iteration

Initialize π_0

At iteration k:

$$Q_{k-1}(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V^{\pi_{k-1}}(s')$$

$$\pi_k(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q_{k-1}(s,a)$$

Output : π_K

In these implementations, we propose to store Q-values.

Value Iteration

Initialize Q_0 .

At iteration k:

$$V_k(s) = \max_{a} Q_{k-1}(s, a)$$
 (apply T^*)

$$Q_k(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V_k(s)$$

Output :
$$\pi_K(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ Q_K(s, a)$$

Policy iteration

Initialize π_0

At iteration k:

$$Q_{k-1}(s,a) = r(s,a) + \gamma \sum_{s' \in S} p(s'|s,a) V^{\pi_{k-1}}(s')$$

$$\pi_k(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q_{k-1}(s, a)$$

Output : π_K

Space Complexity : O(SA) in both cases

- ▶ VI : Storing Q Values + Values
- ► PI : Storing Q values + Policy

In these implementations, we propose to store *Q*-values.

Value Iteration

Initialize Q_0 .

At iteration k:

$$V_k(s) = \max_{a} Q_{k-1}(s, a)$$
 (apply T^*)

$$Q_k(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V_k(s)$$

Output :
$$\pi_K(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ Q_K(s, a)$$

Policy iteration

Initialize π_0

At iteration k:

$$Q_{k-1}(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V^{\pi_{k-1}}(s')$$

$$\pi_k(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q_{k-1}(s, a)$$

Output : π_K

Per Iteration Time Complexity : $O(S^2A) + O(S^3)$

- ▶ VI : Compute Q values + compute S max
- ▶ PI : Compute Q values + compute S argmax + Policy Evaluation

In these implementations, we propose to store *Q*-values.

Value Iteration

Initialize Q_0 .

At iteration k:

$$V_k(s) = \max_{a} Q_{k-1}(s,a)$$
 (apply T^{\star})

$$Q_k(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V_k(s)$$

Output:
$$\pi_K(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q_K(s, a)$$

Policy iteration

Initialize π_0

At iteration k:

$$Q_{k-1}(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V^{\pi_{k-1}}(s')$$

$$\pi_k(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q_{k-1}(s, a)$$

Output : π_K

Number of Iterations? : PI often requires few iterations

- ▶ VI : wait for $V_{k+1} \simeq V_k$ (requires a termination criterion)
- ▶ PI : wait for $\pi_{k+1} = \pi_k$ (finite number of iterations)

In these implementations, we propose to store *Q*-values.

Value Iteration

Initialize Q_0 .

At iteration k:

$$V_k(s) = \max_s Q_{k-1}(s,a)$$
 (apply \mathcal{T}^\star)

$$Q_k(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V_k(s)$$

$$\mathsf{Output} \, : \, \pi_{\mathit{K}}(\mathit{s}) = \mathop{\mathsf{argmax}}_{\mathit{a} \in \mathcal{A}} \, \mathit{Q}_{\mathit{K}}(\mathit{s}, \mathit{a})$$

Policy iteration

Initialize π_0

At iteration k:

$$Q_{k-1}(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V^{\pi_{k-1}}(s')$$

$$\pi_k(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q_{k-1}(s, a)$$

Output : π_K

Guarantees:

- ▶ VI : a policy with value very close to V^* (often π^*)
- ▶ PI : an optimal policy π^*

Back to Retail Store Management

Both VI and PI permit to find the optimal policy

 π^* is a threshold policy with $m_1 = 5, m_2 = 9$ (with my choices of parameters)

Summary

We learned how to find the optimal policy in an MDP with finite state and action spaces :

- using backwards induction for a finite horizon H
- using Policy and Value iteration for an infinite horizon with a discount $\gamma \in (0,1)$

Those two types of techniques are often indifferently referred to as

Dynamic Programming.

We are now ready to propose reinforcement learning algorithms, that :

- ▶ operate without the knowledge of r(s, a) and $p(\cdot|s, a)$
- or in very large state spaces in which standard Dynamic Programming is intractable