CS 5806 Machine Learning II

Lecture 8 - Statistical Learning 1: Bayesian Learning for Classification September 18th, 2023 Hoda Eldardiry

Recommended Reading

- [7] Sec 20.1, 20.2
- [8] Sec. 2.2, 3.2
- References are listed on canvas /pages/textbook-resources

Lecture Objectives

 Learn how to justify & explain certain algorithms from a statistical perspective

Statistical Learning

Learning

- Uncertain knowledge of the world (uncertain about some concepts)
- Learning reduces this uncertainty

Capture & quantify uncertainty

- Statistics & probability theory
- Use a distribution to capture uncertainty

Learning reduces uncertainty

By updating the distribution

Today

- Update distributions
- Compute results of learning

Probability distribution

- Characterize the world using random variables
- Quantify uncertainty in the world using probability
- Probability distribution
 - Specifies probability for each event in a sample set
 - [Uncertainty when rolling a dice: 6 possible outcomes]
 - Probabilities must sum to 1
- Joint probability distribution
 - Assume world is described by 2 (or more) random variables
 - [Weather: temperature, wind, humidity]
 - Specifies probabilities for all combinations of events
 - Probability that temp, humidity, wind speed take certain values
- What is the process of having different values of those random values?

Joint distribution

- Given two random variables A & B (quantities of interest)
- Joint distribution P(A = a)

$$P(A = a \land B = b) \forall_{a,b}$$

- To make a prediction for only one random variable (perhaps we don't care about the combination)
- Given join prob of temp, humidity, wind. Want to extract distribution of temp
- Marginalization (sumout rule)

$$P(A=a) = \sum_b P(A=a \land B=b) \qquad \text{Sumout all possible values for B}$$
 random variable

$$P(B=b) = \sum_{a}^{b} P(A=a \land B=b)$$
 Sumout all possible values for A values

Joint Distribution - Example

sunny

cold	~cold
0.108	0.012
0.016	0.064

~sunny

	cold	~cold
headache	0.072	0.008
~headache	0.144	0.576

 $P(headache \land sunny \land cold) =$

 $P(\sim headache \wedge sunny \wedge \sim cold) =$

 $P(headache \lor sunny) =$

P(headache) =

headache

~headache

Joint Distribution - Example

sunny

cold ~cold headache 0.108 0.012 ~headache 0.016 0.064

~sunny

	cold	~cold
headache	0.072	0.008
~headache	0.144	0.576

 $P(headache \land sunny \land cold) = 0.108$

 $P(\sim headache \wedge sunny \wedge \sim cold) = 0.064$

 $P(headache \lor sunny) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$

P(headache) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2

Conditional Probability

- P(A|B): fraction of worlds in which B is true that also have A true
- Headaches are rare,
 Flu is rarer
- But if you have flu
 50-50 chance
 you will have headache

$$P(H) = 1/10$$

 $P(F) = 1/40$

$$P(H|F) = 1/2$$

Conditional Probability

P(H|F) = fraction of flu inflicted worlds in which one has a headache

- =#worlds (flu & headache) / #worlds (flu)
- = area (H&F) / area (F)
- $= P(H \wedge F)/P(F)$

$$P(H) = 1/10$$

$$P(F) = 1/40$$

$$P(H|F) = 1/2$$

Conditional Probability

Definition

$$P(A \mid B) = P(A \land B)/P(B)$$

Chain rule

$$P(A \wedge B) = P(A \mid B)P(B)$$

Inference

- you wake up with a headache
- you think... "50% of Flu is associated with headaches"
- so .. "50% chance I have Flu"
- is your reasoning correct?

$$P(F \land H) = P(H|F)P(F) = 1/2 * 1/40 = 1/80$$

$$P(F|H) = P(F \land H)/P(H) = (1/80)/(1/10) = 1/8$$

$$P(H) = 1/10$$

 $P(F) = 1/40$
 $P(H|F) = 1/2$

Joint Distribution - Example

sunny

~sunny

	cold	~cold
headache	0.108	0.012
~headache	0.016	0.064

	cold	~cold
headache	0.072	0.008
~headache	0.144	0.576

 $P(headache \land cold \mid sunny) = P(headache \land cold \land sunny)/p(sunny)$

$$= 0.108 / (0.108 + 0.012 + 0.016 + 0.064) = 0.54$$

 $P(headache \land cold \mid \sim sunny) = P(headache \land cold \land \sim sunny)/p(\sim sunny)$

$$= 0.072 / (0.072 + 0.008 + 0.144 + 0.576) = 0.09$$

Summary

- Probability distributions quantify uncertainty about the world
- Learning reduces uncertainty
- Probability distributions: joint, marginal, conditional
- Conditional probability $P(A \mid B) = P(A \land B)/P(B)$
- Chain rule $P(A \land B) = P(A \mid B)P(B)$

Bayes Rule

Note

$$P(A \mid B)P(B) = P(A \land B) = P(B \land A) = P(B \mid A)P(A)$$

Bayes rule

$$P(B|A) = [P(A|B)P(B)] / P(A)$$

Using Bayes Rule for inference

- Form a hypothesis about the world based on what we observe
- Bayes rule enables stating ..
- .. the belief given to hypothesis H, given evidence e

Bayesian Learning

- **Prior:** P(H)
- Likelihood: P(e|H)

- Prior probability $P(H|e) = \frac{P(e|H)P(H)}{P(e)}$ Posterior probability Normalizing constant
- Evidence: e = <e₁, e₂, ..., e_N>
- Bayesian Learning = compute posterior using Baye's Theorem
- $P(H | \mathbf{e}) = k P(\mathbf{e} | H)P(H)$

Bayesian Prediction

To make a prediction about unknown quantity X

$$P(X|\mathbf{e}) = \sum_{i} P(X|\mathbf{e}, h_i) P(h_i|\mathbf{e})$$
predictions
$$= \sum_{i} P(X|h_i) P(h_i|\mathbf{e})$$

weighted averages of predictions of individual hypotheses

predictions of individual hypothesis weight: posterior/belief

- Predictions: weighted averages of predictions of individual hypothesis h: model
- Hypotheses serve as "intermediaries" between raw data and prediction

Candy Example

- Candy sold in two flavors: Lime, Cherry
- Same wrapper for both flavors
- Sold in bags with different ratios:
 - 100% cherry
 - 75% cherry + 25% lime
 - 50% cherry + 50% lime
 - -25% cherry + 75% lime
 - 100% lime
- You bought a bag of candy but don't know its flavor ratio
- We can run an experiment: eat **k** candies: then try to estimate:
 - What's the flavor ratio of the bag?
 - What will be the flavor of the next candy?
- What is the hypothesis?
- What is the evidence?

Statistical Learning

- Hypothesis H: probabilistic theory of the world
 - *h*₁: 100% cherry
 - h_2 : 75% cherry + 25% lime
 - $-h_3$: 50% cherry + 50% lime
 - h_4 : 25% cherry + 75% lime
 - *h*₅: 100% lime
- Examples E: evidence about the world
 - e₁: 1_{st} candy is cherry
 - e₂: 2_{nd} candy is lime
 - e₃: 3_{rd} candy is lime

– ...

Statistical Learning

- Assume prior P(H) = <0.1,0.2,0.4,0.2,0.1>
- Assume candies are i.i.d. (identically and independently distributed)

Likelihood distribution: probability of observing a flavor e given a hypothesis h

$$P(\mathbf{e} \mid h) = \prod_{n} P(e_n \mid h)$$

Suppose first 10 candies all taste lime:

$$P(\mathbf{e} \mid h_5) = 1^{10} = 1$$
 $P(\mathbf{e} \mid h_3) = (1/2)^{10} = 0.00097$
 $P(\mathbf{e} \mid h_1) = (0)^{10} = 0$

 $-h_1$: 100% cherry

 $-h_2$: 75% cherry + 25% lime

- h₃: 50% cherry + 50% lime

- h₄: 25% cherry + 75% lime

- h₅: 100% lime

Posterior

$$P(H | \mathbf{e}) = k P(\mathbf{e} | H)P(H)$$

Prediction

Bayesian Learning

Bayesian learning properties

- **Optimal** (i.e. given prior, no other prediction is correct more often than the Bayesian one)
- No overfitting (all hypotheses considered and weighted)

Limitation

- When hypothesis space is large, Bayesian learning may be intractable
- i.e. sum (or integral) over hypotheses often intractable

Solution

- "approximate" Bayesian learning