

CBG Analytics

Model Performance, Fairness and Explainability Report

Model ID:

Model Name:

Country:

Model Developer (Project Lead):

Date:

<u>A</u>lways rerun

I. Model Description

This is a supervised classification task ...

II. List of Prohibited Features

religion, nationality, birth place, gender, race

III. Algorithmic Fairness

Algorithmic fairness assesses the models based on technical definitions of fairness. If all are met, the model is deemed to be fair.

Fairness deviation threshold is set at **0.2**. Absolute fairness is **1**, so a model is considered fair for the metric when the **metric is between 0.80 and 1.20**.

Prohibited Feature: Sex=Male

Overall: Fair

Prohibited Feature: Race=White

Overall: Not Fair

Live more, Bank less

SHAP Summary Plots of Top Features

IV. Model Explainability

The top features are Capital Gain, Marital Status=Married, Relationship=Husband, Education=High School grad, Capital Loss.

[placeholder]

Live more, Bank less

V. Model Performance

Model accuracy = 0.8800 Weighted Average Precision = 0.8800 Weighted Average Recall = 0.8800

support	f1-score	recall	precision	
69	0.9167	0.9565	0.8800	0
31	0.7857	0.7097	0.8800	1
100	0.8800			accuracy
100	0.8512	0.8331	0.8800	macro avg
100	0.8761	0.8800	0.8800	weighted avg

VI. Conclusion

Model performance: [placeholder]

Explainability: [placeholder]

The top features that have positive correlation with their model output are Capital Gain, Marital Status=Married, Relationship=Husband, Capital Loss.

The top features that have negative correlation with their model output are Education=High School grad.

Fairness: We consider the model to be fair if it is deemed to be fair for all metrics. From the table below, overall the model is considered **not fair**.

	Prohibited Variable	Fair?
0	Sex=Male-class1	Yes
1	Race=White-class1	No

Appendix

Dependence Plots of Top Features

Feature: Capital Gain

Feature: Marital Status=Married

Feature: Relationship=Husband

Feature: Education=High School grad

Feature: Capital Loss

Sample Individual Explainability

Sample from Class=0: SHAP Contribution to Model Prediction

Sample from Class=1: SHAP Contribution to Model Prediction

Algorithmic Fairness

Prohibited Feature: Sex=Male

Fairness is when ratio is between 0.80 and 1.20.

	Metric	Unprivileged	Privileged	Ratio	Fair?
Θ	Equal opportunity	0.333333	0.285714	1.166667	Yes
1	Predictive parity	1.000000	0.869565	1.150000	Yes

Performance Metrics

<u>A</u>lways rerun

Prohibited Feature: Race=White

Fairness is when ratio is between 0.80 and 1.20.

	Metric	Unprivileged	Privileged	Ratio	Fair?
0	Equal opportunity	0.500000	0.275862	1.812500	No
1	Predictive parity	1.000000	0.875000	1.142857	Yes

Performance Metrics

<u>A</u>lways rerun

Confusion Matrices

Notes

Equal opportunity:

$$\frac{\text{FNR}(D = \text{unprivileged})}{\text{FNR}(D = \text{privileged})}$$

Predictive parity:

$$\frac{\text{PPV}(D = \text{unprivileged})}{\text{PPV}(D = \text{privileged})}$$

Statistical parity:

$$\frac{\text{Selection Rate}(D = \text{unprivileged})}{\text{Selection Rate}(D = \text{privileged})}$$