获得的答案

<u>Definition of</u> $A \leq_r B$:

Language A is Turing reducible to Language B, written as $A \leq_T B$, if A is decidable relative to B. That is the oracle for language B decides Language A.

Given that

A ≤_T B

That is, Let the oracle M_1^B for Language B decides the Language A. and

• $B \leq_T C$

That is, Let the oracle $M_2^{\ C}$ for Language C decides the Language B.

We have to prove that

• $A \leq_r C$

That is, there exists an oracle $\,M_3^{\,\,C}$ for Language C which decides the Language A.

That means, machine M_3 have to simulate machine M_1 .

We will explain this simulation in detail as follows

- Let M_1 queries an oracle about some String x.
- $M_{
 m 3}$ does not have an oracle for ${\it B.M}_{
 m 3}$
- So M_3 does not perform the test whether $x \in B$ or not directly.
- \bullet Thus $\,M_3^{}\,$ first simulates $\,M_2^{}\,$ on input x and get the result.
- Then M_3 provides that answers to M_1 .
- ullet But the queries of machine $\,M_2^{}$ are directly answered by $\,M_3^{}$. Because $\,M_3^{}$ and $\,M_2^{}$ use same oracle C.

In this way the oracle for Language C decides Language A. That is $\, A \leq_{T} C \, . \,$

Thus If $A \leq_T B$ and $B \leq_T C$ then $A \leq_T C$.