TD 3: Espaces L^p et convolution

Exercice 1. Dites si les fonctions suivantes sont L^1, L^2 ou L^∞ sur l'intervalle considéré.

1.
$$f_1(x) = \frac{1}{x} \operatorname{sur} [1; +\infty[$$
.

3.
$$f_3(x) = \frac{1}{\sqrt{x}} \text{ sur } [0;1].$$

2.
$$f_2(x) = \frac{1}{x^2} \text{ sur }]0; +\infty[.$$

4.
$$f_4(x) = \sin(x)\cos(2x) \sin[0; 2\pi]$$
.

Exercice 2. L'objectif de cet exercice est de montrer que la fonction $f(x) = x\sin(\frac{1}{x})$ n'est pas intégrable.

- 1. Montrer que $\int_1^{+\infty} \frac{\cos(x)}{x} dx$ est convergente.
- 2. Utiliser le résultat précédent pour prouver que f(x) n'est pas intégrable sur $[1, +\infty]$.

Exercice 3 (Convolution). Calculez le produit de convolution suivant en justifiant au préalable pourquoi il est bien défini.

1.
$$(\chi_{[-1,1]} * \chi_{[-a,a]})(x)$$
 pour $a > 1$.

Exercice 4. -

- 1. Justifiez pour quoi $\cos *\chi_{[0,1]}$ est bien définie et est une fonction L^{∞} (on pourra montrer que cos est L^{∞} et que $\chi_{[0,1]}$ est L^1).
- 2. Calculez $f(x) = (\cos *\chi_{[0,1]})(x)$.
- 3. En déduire que f est dérivable et calculez sa dérivée.
- 4. Calculez $(-\sin) * \chi_{[0,1]}(x)$ et comparez le avec l'expression de f' trouvée en 3.