

Back to the Traffic Data

We will try to use a Gaussian Process on our new traffic data

We will start directly from the dense series:

■ There is a period, non-zero mean, local oscillations. And of course a huge gap

Time and Period

The input of the GP is going to be the time of the observation

Unfortunately, the GP in scikit-learn cannot handle DateTime objects

- Therefore, we will convert all time steps in numeric format
- We will use a simple time equivalent, namely 1 step = 1 time unit

```
In [3]: data_dt = data_d.copy()
  data_dt['time'] = np.arange(len(data_dt))
```

Before we start, it would be very useful to estimate the period

Due to the missing values, the series has a non-uniform sampling frequency

- Autocorrelation plots cannot be used in this case
- The standard FFT is also not applicable (we could use a <u>non-uniform FFT</u>)

Thankfully, this is traffic data! So we can bet there is a weekly period

Process Outline

We have no ground truth: how are we going to evaluate the kernels?

Main idea: use part of our data as a validation set

- We will focus on a portion of our sequence
 - ...One with relatively few missing values
- Then we will artificially remove part of the data points
 - This will form the ground truth for our evaluation

Which quality metric?

- Thanks to the availability of confidence intervals...
- ...We can compute the likelihood of our validation set!
- Note: usiong the MSE would do the same, only with uniform variance

Training and Validation Data

We will use for training (and validation) this stretch of the series

```
In [4]: segment = data_dt[(data_dt.index >= '2015-09-09') & (data_dt.index < '2015-09-17')].copy()
nab.plot_series(segment['value'], show_markers=True, figsize=figsize)
```

■ We made sure to include at least one full week

Training and Validation Data

We can now separate training and validation data:

```
In [5]: tmp = segment.dropna()

np.random.seed(42)
idx = np.arange(len(tmp))
np.random.shuffle(idx[1:-1]) # no not shuffle the first/last point
t = idx[1]; idx[1] = idx[-1]; idx[-1] = t # keep first/last points in the left half

sep = 2*len(idx) // 3
trdata = tmp.iloc[idx[:sep]]
tsdata = tmp.iloc[idx[sep:]]
```

- We are keeping 2/3 of the data for training
- Since we are using the dense series, we need to discard NaNs (dropna)
- Since we are doing interpolation...
- ...It's a good idea to keep the first and last point in the training set

A Starting Kernel

Let's try with a relatively simple kernel

```
In [6]: kernel = WhiteKernel(1e-3, (1e-4, 1e-1))
    kernel += ConstantKernel(1, (1e-2, 1e2)) * RBF(1, (1e-1, 1e1))

    np.random.seed(42)
    gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=3)
    gp.fit(trdata[['time']], trdata['value'])
    print(gp.kernel_)

WhiteKernel(noise_level=0.1) + 4.79**2 * RBF(length_scale=1.07)

/usr/local/lib/python3.9/site-packages/sklearn/gaussian_process/kernels.py:411: ConvergenceWar
    ning: The optimal value found for dimension 0 of parameter k1_noise_level is close to the spe
    cified upper bound 0.1. Increasing the bound and calling fit again may find a better value.
    warnings.warn("The optimal value found for "
```

Then we obtain the predictions:

```
In [7]: pred, std = gp.predict(segment[['time']], return_std=True)
    pred = pd.Series(index=segment.index, data=pred)
    std = pd.Series(index=segment.index, data=std)
```

A Starting Kernel

Let's have a look at the predictions

■ Not so bad, but not so good either. We have very wide C.I.

A Starting Kernel

Let's compute the (log) likelihood of the validation data

```
In [9]: from scipy.stats import norm

# Obtain predictions for the validation data
pred_ts = pred[tsdata.index]

std_ts = std[tsdata.index]

ldens = norm.logpdf(tsdata['value'], pred_ts, std_ts)

ll = np.sum(ldens)
print(f'Log likelihood of the validation set: {11:.2f}')
Log likelihood of the validation set: -1402.05
```

- This is our reference value
- We will try to beat it by improving the kernel

A Second Kernel

Let's add the period

```
In [10]: kernel = WhiteKernel(1e-3, (1e-4, 1e-1))
         kernel += ConstantKernel(1, (1e-2, 1e2)) * RBF(1, (1e-1, 1e1))
         kernel += ConstantKernel(1, (1e-2, 1e2)) * ExpSineSquared(1, 2000, (1e-1, 1e1), (1900, 2100))
         np.random.seed(42)
         gp = GaussianProcessRegressor(kernel=kernel, n restarts optimizer=3)
         gp.fit(trdata[['time']], trdata['value'])
         print(gp.kernel )
         WhiteKernel(noise_level=0.0492) + 2.07**2* RBF(length scale=0.515) + 4.78**2* ExpSineSquared
         (length scale=0.1, periodicity=2.01e+03)
         /usr/local/lib/python3.9/site-packages/sklearn/gaussian process/kernels.py:402: ConvergenceWar
         ning: The optimal value found for dimension 0 of parameter k2 k2 length scale is close to th
         e specified lower bound 0.1. Decreasing the bound and calling fit again may find a better valu
         е.
           warnings.warn("The optimal value found for "
```

Then we obtain the new predictions:

```
In [11]: pred, std = gp.predict(segment[['time']], return_std=True)
    pred = pd.Series(index=segment.index, data=pred)
    std = pd.Series(index=segment.index, data=std)
```

A Second Kernel

Both predictions and likelihood are now better (but the C.I. are still large)


```
In [13]: ldens = norm.logpdf(tsdata['value'], pred[tsdata.index], std[tsdata.index])
    print(f'Log likelihood of the validation set: {np.sum(ldens):.2f}')
```

Log likelihood of the validation set: -1098.25

We now need to obtain predictions for the whole series

We would prefer to avoid training again the kernel parameters

- The large number of missing value may be problematic
- ...And the training time would be very large

...But we also really wish to use all available observations

...Not just those considered when training the kernel

With Gaussian Processes, we can do both

There is no need to train again the kernel every time new observations arrive

lacksquare We can build a new Σ matrix using the new observations and the old kernel

We reuse the kernel by passing it as argument when building a new G.P.:

```
In [14]: gp2 = GaussianProcessRegressor(kernel=gp.kernel_, optimizer=None)
```

Passing optimizer=None will disable optimization at training time

So that calling fit will just take into account a new set of observations

```
In [15]: tmp = data_dt.dropna() # The whole series (NaNs excluded)
gp2.fit(tmp[['time']], tmp['value']);
```

Now we can obtain predictions for the whole series:

```
In [16]: pred_all, std_all = gp2.predict(data_dt[['time']], return_std=True)
    pred_all = pd.Series(index=data_dt.index, data=pred_all)
    std_all = pd.Series(index=data_dt.index, data=std_all)
```

Let's have a look at all the predictions

■ We actually managed to (partially) reconstruct even the large gap!

The confidence intervals are still very large

- This is in part understandable, give the presence of wide variations
- ...But at least one point is a bit strange

The confidence intervals are large even for the night hours!

There are two reasons:

- There are fewer samples at nighttime
 - As we get far from the samples the confidence drops (quickly, in our case)
- No traditional G.P. kernel can represent point-wise, input-dependent variance
 - All kernels are about covariance, not variance
 - The lone exception is the Whitekernel, which is not input dependent

Can we deal with this issues?

Multiplicative Ensemble

We can deal with the input-dependent variance in a separate model

Once, again we are going to build an ensemble of predictive models

- In the case of differencing, the ensemble was a sum
- But that's not going to work with variance, since:

$$Var(x + \alpha) = Var(x)$$

However, variance can be scaled via multiplication:

In particular:

$$Var(\alpha x) = \alpha^2 Var(x)$$

■ So we can use a "multiplicative" ensemble

Multiplicative Ensemble

Our model will become the product of two models

Formally, we will have:

$$g(x, \lambda) f(x, \theta)$$

- $lacksquare{f}$, with parameters $m{ heta}$ will be a Gaussian Process
- \blacksquare g, with parameters λ will be our variance model (or standard deviation model)

On the training set, we wish to have:

$$g(\hat{x}_i, \lambda) f(\hat{x}_i, \theta) \simeq \hat{y}_i \quad \Rightarrow \quad f(\hat{x}_i, \theta) \simeq \frac{\hat{y}_i}{g(\hat{x}_i, \lambda)}$$

- The Gaussian Process will need to learn a series with a variance altered by g
- The variance of each point \hat{y}_i will be divided by $g(\hat{x}_i, \lambda)^2$

Standard Deviation Model

We now need to choose our variance model *g*

- Since we have discrete time and a natural period (a week)
- \blacksquare ...We could use a simple map (time of the week \rightarrow standard deviation)

Let's add a "hour of the week" information to our data:

The chosen time unit is actually irrelevant

```
In [18]: data dtw = data dt.copy()
          data dtw['how'] = 24 * data dt.index.weekday + data dt.index.hour + data dt.index.minute / 60
          data dtw.head()
Out[18]:
                             value time
                                             how
            2015-09-01 13:45:00
                             3.06
                                        37.750000
            2015-09-01 13:50:00 6.44
                                        37.833333
            2015-09-01 13:55:00 5.17
                                        37.916667
            2015-09-01 14:00:00 3.83
                                        38.000000
           2015-09-01 14:05:00 4.50
                                        38.083333
```

Standard Deviation Model

Then we can compute the standard deviation via a pandas groupby operation:

```
In [19]: how_std = data_dtw.groupby('how').agg({'value': ['std', 'count']})
```

agg allows to apply multiple aggregation functions to multiple columns

The resulting table has a hierarchical column index

Let's see some statistics about the value counts:

```
In [20]: how std['value', 'count'].describe() # Notice the use of two names
Out[20]: count
                  2016.000000
                     1.176091
         mean
                     0.851356
         std
                     0.000000
         min
         25%
                     1.000000
         50%
                     1.000000
         75%
                     2.000000
                      3,000000
         max
         Name: (value, count), dtype: float64
```

Standard Deviation Model

Let's have a look at the standard deviation values

There are many missing values (as expected from the counts)!

There are too many gaps in our data to compute σ with this granularity

There are a few possible solutions:

- Filling the gaps also in the standard deviation data
- ...Or using a coarser time unit
- ...Or choosing a shorter period (e.g. one day)

Let's try using hour-long intervals (rather than 5 minutes)

```
In [22]: data_dtw = data_dt.copy()
  data_dtw['how'] = np.round(24 * data_dt.index.weekday + data_dt.index.hour + data_dt.index.minut
  how_std = data_dtw.groupby('how').agg({'value': ['std', 'count']})
```

- We need to check that no std value is missing
- ...But also that the counts are large enough for a reliable computation

Let's look again at the standard deviation values

■ There are still a few gaps

...And let's see the value counts

lacksquare Several value counts are too low for $oldsymbol{\sigma}$ to be reliable

We can try again with two-hour intervals

```
In [27]: data_dtw = data_dt.copy()
  data_dtw['how'] = 2*np.round(0.5*(24 * data_dt.index.weekday + data_dt.index.hour + data_dt.index
  how_std = data_dtw.groupby('how').agg({'value': ['std', 'count']})
```

Let's check some information about the value counts:

lacksquare Ideally, we wish them at ~ 30

```
In [28]: how std['value', 'count'].describe()
Out[28]: count
                 85.000000
              27.894118
        mean
               16.138554
         std
        min
                3.000000
         25% 16.000000
         50%
                 22.000000
         75%
              42.00000
                 63.000000
        max
        Name: (value, count), dtype: float64
```

Let's look the standard deviation with two-hour intervals

■ Finally, no more missing values and decently large counts

We managed to have reasonable standard deviation values..

...But out map/table has a very coarse time unit!

■ Using it would lead to sharp variations in our predicted standard deviation

We will now proceed to mitigate the problem

We will start by upsampling, i.e. switching to a finer grain time unit:

```
In [31]: how_values = np.unique(24 * data_dt.index.weekday + data_dt.index.hour + data_dt.index.minute /
how_std_d = pd.DataFrame(index=sorted(how_values), columns=['std'], data=np.nan)
how_std_d['std'] = how_std['value', 'std']
```

This process leads to many missing values, that we fill via linear interpolation:

```
In [32]: how_std_di = how_std_d.interpolate(method='linear')
```

Let's see the oversampled series

■ The plot is the same as before, but there are many more samples

We will smooth the cuver via a simple low-pass filter

I.e. the Exponentially Weighted Moving Average

■ This is a form of discrete filter, given by the recursion:

$$s_i = \begin{cases} x_i & \text{if } i = 1\\ \alpha x_i + (1 - \alpha) s_{i-1} & \text{otherwise} \end{cases}$$

- \blacksquare s_i is the *i*-th element of the output (smoothed) series
- lacksquare and is equal to 1/(1+ au)

Why no using a simple moving average?

- A moving average gives the same weigth to all observation...
- ...whereas in our case "recent" observations are more important
- I.e. the stdev from the original table should still be the dominant value

In pandas, we can use the ewm iterator, plus the mean aggregation function

```
DataFrame.ewm(com=None, ...).mean()
```

lacktriangle The comparameter corresponds to au

• We chose τ = the number of time steps in one hour

Transforming the Dataset

We can now learn the Gaussian Process for our Ensemble

For this, we need to transform the original series using the stdev model

- We start by augmenting our dataset with the "hour of the week information"
- ...Then, we associate each data point to the predicted standard deviation

```
In [35]: data dt['how'] = 24 * data dt.index.weekday + data dt.index.hour + data dt.index.minute / 60
          data dts = data dt.join(how std ds, on='how')
          data dts.head()
Out[35]:
                             value time
                                             how
                                                      std
                                        37.750000 2.827427
           2015-09-01 13:45:00
                             3.06
                                   0
           2015-09-01 13:50:00 6.44
                                        37.833333 2.867852
                                        37.916667 2.909461
            2015-09-01 13:55:00 5.17
            2015-09-01 14:00:00 3.83
                                        38.000000 2.952163
                                        38.083333 2.986639
           2015-09-01 14:05:00 4.50
```

■ We relied on the join method from pandas

Transforming the Dataset

Now we can actually transform the series values

■ The series has changed considerably: this is not a simple standardization

Training Data

We can now select a sub-sequence of the data for learning the kernel

...Which is necessary, since the data has changed!

```
In [37]: segment_s = data_dts[(data_dts.index >= '2015-09-09') & (data_dts.index < '2015-09-17')].copy()</pre>
```

We separate training and validation data as we did before:

```
In [38]: tmp = segment_s.dropna()

np.random.seed(42)
idx = np.arange(len(tmp))
np.random.shuffle(idx[1:-1]) # no not shuffle the first/last point
t = idx[1]; idx[1] = idx[-1]; idx[-1] = t # keep first/last points in the left half

sep = 2*len(idx) // 3
trdata_s = tmp.iloc[idx[:sep]]
tsdata_s = tmp.iloc[idx[sep:]]
```

Learning the Kernel Parameters

We can now learn the kernel parameters

We can use the same starting parameters (priors) as before:

```
In [39]: kernel_s = WhiteKernel(1e-3, (1e-4, 1e-1))
    kernel_s += ConstantKernel(1, (1e-2, 1e2)) * RBF(1, (1e-1, 1e1))
    kernel_s += ConstantKernel(1, (1e-2, 1e2)) * ExpSineSquared(1, 2000, (1e-1, 1e1), (1900, 2100))

    np.random.seed(42)
    gp_s = GaussianProcessRegressor(kernel=kernel_s, n_restarts_optimizer=3)
    gp_s.fit(trdata_s[['time']], trdata_s['value'])
    print(gp_s.kernel_)

WhiteKernel(noise_level=0.000254) + 0.934**2 * RBF(length_scale=0.451) + 1.68**2 * ExpSineSquared(length_scale=0.115, periodicity=2.01e+03)
```

Then we obtain the predictions:

```
In [40]: pred_s, std_s = gp_s.predict(segment_s[['time']], return_std=True)
    pred_s = pd.Series(index=segment_s.index, data=pred_s)
    std_s = pd.Series(index=segment_s.index, data=std_s)
```

Learning the Kernel Parameters

Let's look at the predictions on the training data

■ For sake of simplicity, we will not try to improve the kernel

Now we obtain predictions for the missing values in the transformed series

Again, we reuse the kernel and add the observations:

```
In [43]: gp2_s = GaussianProcessRegressor(kernel=gp_s.kernel_, optimizer=None)
  tmp_s = data_dts.dropna() # The whole series (NaNs excluded)
  gp2_s.fit(tmp_s[['time']], tmp_s['value']);
```

Then we can obtain predictions (and confidence intervals) for the whole series

```
In [44]: pred_all_s, std_all_s = gp2_s.predict(data_dts[['time']], return_std=True)
pred_all_s = pd.Series(index=data_dts.index, data=pred_all_s)
std_all_s = pd.Series(index=data_dts.index, data=std_all_s)
```

Of course are still referring to the transformed series

Let's have a look at all the predictions

■ They are not so easy to interpret, since they refer to the transformed series

Predictions for the Original Series

We obtain predictions for the original series by injecting back the variance

```
In [48]: pred all2 s = pd.Series(index=data_dts.index, data=pred_all_s * data_dts['std'])
           std all2 s = pd.Series(index=data dts.index, data=std all s * data dts['std'])
          nab.plot gp(samples=data dt['value'], pred=pred all2 s, std=std all2 s, figsize=figsize)
            20
            15
            10
            5
                      2015-09-03
                                2015-09-05
                                          2015-09-07
                                                    2015-09-09
                                                              2015-09-11
                                                                         2015-09-13
                                                                                   2015-09-15
                                                                                             2015-09-17
            2015-09-01
```

- Due to the properties of variance
- ...We can just multiply also the standard deviation

Predictions for the Original Series

For comparison, here are the results for the previous Gaussian Process

■ The new confidence intervals are much tighter

Fill with Predictions and Samples

We can fill the missing values using the predictions

This will fill each missing value using the Maximum A Posteriori

```
In [50]: mask = data_d['value'].isnull() # we need to fill only the NaNs
    data_filled_pred = data_d.copy()
    data_filled_pred.loc[mask, 'value'] = np.maximum(0, pred_all2_s[mask])
```

But with GPs, we can also sample from the distribution

```
In [51]: tmp = data_dts[mask]
    sample_ms = gp2_s.sample_y(tmp[['time']], random_state=42).ravel()
    data_filled_samples = data_d.copy()
    data_filled_samples.loc[mask, 'value'] = np.maximum(0, sample_ms * tmp['std'])
```

- sample_y returns a matrix: we used ravel to have a single dimension
- In both cases, we clip values at zero (no less than 0 occupancy)

Filling with Predictions and Samples

Here's the series filled using predictions:

■ The use of MAPs is evident in the large gap

Filling with Predictions and Samples

Here's the series filled using samples:

■ There no evidently "fake" sections, now! ... Except for the effect of clipping at O

Considerations

Congratulations, you have cleaned your data!

- ...But it wasn't an easy feat, right?
- To be fair, this was a challenging problem
- ...But still, cleaning the data often takes a large chuck of the project time

Multiplying the results of different models

- Is a third approach to obtain an ensemble (besides switching and addition)
- Unlike an addition, using a product changes the variance of the data
- This is good news if you main model is having trouble with that
- ...But it may lead to nasty surprises if you are not aware of that