PAC-Bayes Analysis of Transferred Sentence Vectors

Kento Nozawa and Issei Sato

The University of Tokyo / RIKEN AIP

Overview

- Simple heuristic methods (i.e., averaging) are strong baselines, but they are not well understood theoretically.
- We formulate learning sentence vectors from pre-trained word vectors as transfer learning, then we analyze them with PAC-Bayes.

Learning word vectors

Goal: Finding maps from a word w to a vector \mathbf{h}_w given word sequences $[w_1, \ldots, w_T]$. For example, skip-gram with negative sampling minimizes the loss function defined by

$$L_{SG} = -\sum_{t=1}^{T} \left[\sum_{w \in \mathcal{C}_t} \ln \sigma (\mathbf{h}_{w_t}^{\top} \mathbf{h}_{w_c}') + \sum_{w \in \mathcal{MS}} \ln \sigma (-\mathbf{h}_{w_t}^{\top} \mathbf{h}_{w_n}') \right].$$

Note: \mathcal{NS} is negative words, \mathcal{C} is positive words, and \mathbf{h}' is an output word vector.

Sentence vectors from pre-trained word vectors

Goal: Finding maps from a sentence \mathcal{S} to a vector $\mathbf{h}_{\mathcal{S}}$ given sentences $\{\mathcal{S}_1,\ldots,\mathcal{S}_N\}$ and pre-trained word vectors $\{\hat{\mathbf{h}}_w,\hat{\mathbf{h}}_w'\mid w\in\mathcal{V}\}$. The simple heuristic way is to average pre-trained word vectors of words appearing in the sentence \mathcal{S} , e.g.,

$$\mathbf{h}_{\mathcal{S}} = \frac{1}{|\mathcal{S}|} \sum_{w \in \mathcal{S}} \hat{\mathbf{h}}_w \qquad \text{or} \qquad \mathbf{h}_{\mathcal{S}} = \frac{1}{|\mathcal{S}|} \sum_{w \in \mathcal{S}} \frac{\hat{\mathbf{h}}_w + \hat{\mathbf{h}}'_w}{2}$$

PAC-Bayes bound for transferred sentence vectors

We formulate learning word vectors and sentence vectors in terms of transfer learning;

- \bullet Source: minimizing the loss function of skip-gram with negative sampling by updating word vectors \mathbf{h} and \mathbf{h}' .
- Target: minimizing a loss function by updating sentence vector $\mathbf{h}_{\mathcal{S}}$ with the fixed pre-trained word vectors $\hat{\mathbf{h}}$ and $\hat{\mathbf{h}}'$ given \mathcal{S} .

This formulation enables us to analyze generalization errors in learning sentence vector with PAC-Bayesian theory, which can consider transferability to a target hypothesis from a learned source hypothesis through prior knowledge.

Theorem 1. Given a sentence S, $\forall \lambda > 0$, with probability at least $1 - \delta$ over training samples \mathcal{D}_{S} , $\forall h \in \mathcal{Q}_{S}$,

$$R_{\mathcal{D}}(\mathcal{Q}_{\mathcal{S}}) \leq \mathbb{E}_{h \sim \mathcal{Q}_{\mathcal{S}}} \frac{1}{|\mathcal{D}_{\mathcal{S}}|} \sum_{i=1}^{|\mathcal{D}_{\mathcal{S}}|} l(\mathbf{x}_{i}, y_{i}, h) + \frac{\lambda}{2\sigma^{2}} \left\| \mathbf{h}_{\mathcal{S}} - \frac{1}{|\mathcal{S}|} \sum_{w \in \mathcal{S}} \hat{\mathbf{h}}'_{w} \right\|_{2}^{2} + C, \tag{1}$$

where C is a constant term that does not depend sentence vector $\mathbf{h}_{\mathcal{S}}$, and σ^2 is a variance parameter of prior and posterior.

Sentence vectors via L2 loss

- Output space: $\mathcal{Y} = \mathbb{R}^d$
- Hypothesis: $h = \mathbf{h}_{\mathcal{S}}$
- Loss function: $l(y = \hat{\mathbf{h}}_w, h) = \frac{1}{2}||\mathbf{h}_{\mathcal{S}} \hat{\mathbf{h}}_w||_2^2$
- Hyper-parameter of PAC-Bayes bound: $\alpha = \lambda/\sigma^2$.

We obtain the closed form of $\mathbf{h}_{\mathcal{S}}$ from Eq. (1);

$$\mathbf{h}_{\mathcal{S}} = \frac{1}{(1+\alpha)|\mathcal{S}|} \sum_{w \in \mathcal{S}} \left(\hat{\mathbf{h}}_w + \alpha \hat{\mathbf{h}}_w' \right). \tag{2}$$

Corollary 1 (Average of Input Word Vectors). The sentence vector $\mathbf{h}_{\mathcal{S}}$ estimated by minimizing Eq. (1) with $\alpha = 0$ is equivalent to $1/|\mathcal{S}| \sum_{w \in \mathcal{S}} \hat{\mathbf{h}}_w$.

Corollary 2 (Average of Input and Output Word Vectors). The averaged vector of the input and output word vectors, $(\hat{\mathbf{h}}+\hat{\mathbf{h}}')/2$, can improve the performance of downstream tasks [1]. This operation corresponds to the solution of Eq. (2) with $\alpha=1$.

We also derive another heuristic vector weighed by IDF, $\mathbf{h}_{\mathcal{S}} = \frac{1}{(1+\lambda)\sum_{w\in\mathcal{S}} \text{IDF}(w)} \sum_{w\in\mathcal{S}} \text{IDF}(w) (\hat{\mathbf{h}}_w + \lambda \hat{\mathbf{h}}_w').$

Sentence vectors via 0–1 loss

We define a new target task that is similar to the source task: Predicting whether sentence S contains word w_t .

- Output space: $\mathcal{Y} = \{-1, 1\}$
- Hypothesis: $h(\mathbf{x}_w) = \text{sign}((\hat{\mathbf{H}}\mathbf{x}_w)^{\top}\mathbf{h}_{\mathcal{S}})$
- Loss function: $l(\mathbf{x}, y, h) = \mathbb{I}[h(\mathbf{x}) \neq y]$

In practice, we minimize the negative sampling based surrogate loss;

$$L = -\frac{1}{|\mathcal{S}|} \left[\sum_{w \in \mathcal{S}} \ln \sigma \left(\hat{\mathbf{h}}_w^{\top} \mathbf{h}_{\mathcal{S}} \right) + \sum_{w_n \in \mathcal{N}\mathcal{S}} \ln \sigma \left(-\hat{\mathbf{h}}_{w_n}^{\top} \mathbf{h}_{\mathcal{S}} \right) \right] + \frac{\lambda}{2\sigma^2} \left\| \mathbf{h}_{\mathcal{S}} - \frac{1}{|\mathcal{S}|} \sum_{w \in \mathcal{S}} \hat{\mathbf{h}}_w' \right\|_2^2.$$
(3)

Corollary 3 (Relationship to Paragraph Vector Models). PV-DBoW [2] is the same to Eq. (3) with $\lambda = 0$ and without pre-trained word vectors.

Table 1: Comparison of source tasks and target tasks in our transfer learning.

Model	Input x	Output y	Hypothesis h	Loss l
Skip-gram	w_t, w_c	Binary	$\sigma(\mathbf{h}_{w_t}^{\top}\mathbf{h}_{w_c}')$	Negative log
Avg.	1	\mathbb{R}^d	$\mathbf{h}_{\mathcal{S}}$	Root L2
IDF-Avg.	1	\mathbb{R}^d	$\mathbf{h}_{\mathcal{S}}$	Weighted Root L2
Input-trans.	\mathbf{x}_w	Binary	$\operatorname{sign}(\hat{\mathbf{h}}_w^{\top}\mathbf{h}_{\mathcal{S}})$	Zero-one
Output-trans.	\mathbf{x}_w	Binary	$\operatorname{sign}(\mathbf{h}_{\mathcal{S}}^{\top} \hat{\mathbf{h}}_{w}')$	Zero-one

Experiments: Sentence classification

Settings:

- Classifier: Logistic regression
- Word vector models: Skip-gram and CBoW
- Source data: English Wikipedia
- Hyper-parameters:
- $-\sigma^2=1$
- λ : searched in $\{10^{-2}, 10^{-1}, 1, 10\}$

Models of target tasks:

- Avg.: Eq. (2).
- IDF-Avg.: Averaging with IDF.
- Output-trans.: Minimize Eq. (3).
- Input-trans.: Swap roles of $\hat{\mathbf{h}}$ and $\hat{\mathbf{h}}'$ in Eq. (3).

Table 2: Test accuracy of sentence classification (averaged over three times).

Method Source model 20news IMDb Avg. $(\alpha = 0)$ Skip-gram 0.749 ± 0.000 0.841 ± 0.000 0.907 ± 0.000 Avg. $(\alpha = 1)$ Skip-gram 0.747 ± 0.002 0.838 ± 0.000 0.905 ± 0.000 Avg. $(\alpha = 1)$ CBoW 0.733 ± 0.000 0.838 ± 0.000 0.905 ± 0.000 Avg. $(\alpha = 1)$ CBoW 0.737 ± 0.001 0.840 ± 0.000 0.904 ± 0.000	Table 2. Test accuracy of sentence classification (averaged over tiffee tiffes).					
Avg. $(\alpha=1)$ Skip-gram $\textbf{0.747} \pm \textbf{0.002} \ 0.838 \pm 0.000 \ 0.905 \pm 0.000 \pm 0.0000 \ 0.905 \pm 0.00000 \ 0.905 \pm 0.00000 \ 0.905 \pm 0.00000 \ 0.905 \pm 0.000000 \ 0.905 \pm 0.000000 \ 0.905 \pm 0$	SUBJ					
Avg. $(\alpha = 0)$ CBoW $0.733 \pm 0.000 \ 0.838 \pm 0.000 \ 0.905 \pm 0.000 \ 0.838 \pm 0.000 \ 0.905 \pm 0.000 \ 0.905 \pm 0.000 \ 0.905 \pm 0.000 \ 0.905 \ $	= 0.001					
	0.000					
Avg. $(\alpha = 1)$ CBoW $0.737 \pm 0.001 \ 0.840 \pm 0.000 \ 0.904 \pm 0.000 \ 0.904$	0.000					
0 ()	0.000					
IDF-Avg. ($\lambda=0$) Skip-gram 0.735 ± 0.000 0.823 ± 0.001 0.908 \pm	0.001					
IDF-Avg. ($\lambda=1$) Skip-gram 0.732 ± 0.000 0.821 ± 0.000 0.905 \pm	= 0.001					
IDF-Avg. ($\lambda=0$) CBoW 0.726 ± 0.001 0.826 ± 0.000 0.903 \pm	0.000					
. IDF-Avg. $(\lambda=1)$ CBoW 0.723 ± 0.000 0.826 ± 0.001 0.904 \pm	0.000					
Input-trans. Skip-gram $oldsymbol{0.749} \pm oldsymbol{0.002} oldsymbol{0.842} \pm oldsymbol{0.000} oldsymbol{0.908} eta$	0.002					
Input-trans. CBoW $0.717 \pm 0.000 0.817 \pm 0.001 \textbf{0.907} ext{d}$	0.001					
Output-trans. Skip-gram $oldsymbol{0.749} \pm oldsymbol{0.000} oldsymbol{0.842} \pm oldsymbol{0.000} oldsymbol{0.908} \pm$	0.000					
Output-trans. CBoW 0.734 ± 0.003 0.841 \pm 0.002 0.910 \pm	- 0.003					