Metric Entropy

Some Definition

Suppose (Θ, ρ) is a metric space.

- For $\epsilon > 0$, $\left\{\theta^i\right\}_{i=1}^N$ is a ϵ -covering of Θ if $\forall \theta \in \Theta, \rho(\theta, \theta^i) \leq \epsilon$.
- **covering number** $N(\epsilon, \Theta, \rho)$: The cardinality of the minimum ϵ -covering of Θ .
- metric entropy $H(\epsilon, \Theta, \rho)$: $H(\epsilon, \Theta, \rho) = \log N(\epsilon, \Theta, \rho)$
- For $\delta>0, \ \left\{ heta^i
 ight\}_{i=1}^N \ ext{ is a δ-covering of } \Theta ext{ if } \forall i
 eq j,
 ho(heta^i, heta^j) > \delta.$
- packing number $M(\delta, \Theta, \rho)$: The cardinality of the maximum δ -packing of Θ .

Suppose \mathcal{F} is a functional family with measure μ on \mathcal{X}

- For $\epsilon > 0$, $\{[l_i, u_i]\}_{i=1}^M$ is an ϵ -bracketing if $\forall f \in \mathcal{F}$, $l_i(x) \leq f(x) \leq u_i(x), \forall x \in \mathcal{X} \text{ and } \|l_i u_i\|_{L_p(\mu)} \leq \epsilon$.
- **bracketing number** $N_{[]}(\epsilon, \mathcal{F}, L_p(\mu))$: The cardinality of the minimum ϵ -bracketing of \mathcal{F} .

Proporties

- $M(2\epsilon, \Theta, \rho) \leq N(\epsilon, \Theta, \rho) \leq M(\epsilon, \Theta, \rho)$
- $N\left(\epsilon,\mathcal{F},L_p(\mu)
 ight) \leq N_{||}\left(2\epsilon,\mathcal{F},L_p(\mu)
 ight)$
- When μ is a probability measure: $N_{[]}\left(\epsilon,\mathcal{F},L_{p}(\mu)\right)\leq N\left(\epsilon/2,\mathcal{F},L_{\infty}\right)=N_{[]}\left(\epsilon,\mathcal{F},L_{\infty}\right)$

Volume comparison lemma

Consider $\Theta = \left\{ heta \in \mathbb{R}^d : \| heta \| \leq r
ight\}$ with $\rho(x, y) = |x - y|$, then

$$\left(rac{r}{\epsilon}
ight)^d \leq N(\epsilon,\Theta,
ho) \leq \left(1+rac{2r}{\epsilon}
ight)^d$$

$$d\log rac{r}{\epsilon} \leq \log N(\epsilon,\Theta,
ho) = H(\epsilon,\Theta,
ho) \leq d\log igg(1+rac{2r}{\epsilon}igg)$$

Sketch proof:

- Lower bound: Compare the volume of Θ and ϵ -ball;
- Upper bound: Compare the volume of $\Theta + \epsilon B$ with ϵ -ball (via packing);

Main Theorem(ULLN)

Bracketing Number

Consider $X_1,\cdots,X_n\stackrel{i.i.d}{\sim}\mathbb{P}$ with $N_{[]}\left(\epsilon,\mathcal{F},L_1(\mathbb{P})
ight)<\infty, orall \epsilon>0.$ Then,

$$\sup_{f\in\mathcal{F}}|P_nf-\mathbb{P}f|\overset{\mathbb{P}}{ o}0. \quad ext{ ULLN}$$

Covering number

If $\mathcal F$ is a functional class with envelop function $F\in L_1(\mathbb P)$. $\forall M>0$ and $\epsilon>0$, we have $\log N\left(\epsilon,\mathcal F_M,L_1\left(P_n\right)\right)=o_p(n)$. Then,

$$\|P_n-\mathbb{P}\|_{\mathcal{F}}\stackrel{\mathbb{P}}{
ightarrow} 0$$

Discussion: The condition imposed on bracketing number is stricter than that on covering number, but bracketing number is harder to calculate than covering number.

Reference

• Metric Entropy