Diagnostics and transformations for linear regression

Table 3.1 Anscombe's four data sets

Case	x1	x2	х3	x4	y1	y2	у3	y4
1	10	10	10	8	8.04	9.14	7.46	6.58
2	8	8	8	8	6.95	8.14	6.77	5.76
3	13	13	13	8	7.58	8.74	12.74	7.71
4	9	9	9	8	8.81	8.77	7.11	8.84
5	11	11	11	8	8.33	9.26	7.81	8.47
6	14	14	14	8	9.96	8.1	8.84	7.04
7	6	6	6	8	7.24	6.13	6.08	5.25
8	4	4	4	19	4.26	3.1	5.39	12.5
9	12	12	12	8	10.84	9.13	8.15	5.56
10	7	7	7	8	4.82	7.26	6.42	7.91
11	5	5	5	8	5.68	4.74	5.73	6.89

Sheather, S.J., (2009). *A Modern Approach to Regression with R*, Springer.

Regression output from R

		_						
Coefficients:								
(Intercept) 3.00 x1 0.50	001 1.1247	t value Pr(> t) 2.667 0.02573 4.241 0.00217	*					
Signif. codes: 0 ***	0.001 *** 0.01	`*' 0.05`.'0.1 `` 1						
Residual standard error: 1.237 on 9 degrees of freedom Multiple R-Squared: 0.6665, Adjusted R-squared: 0.6295 F-statistic: 17.99 on 1 and 9 DF, p-value: 0.002170								
(Intercept) 3.0	ate Std. Error 001 1.125 000 0.118	t value Pr(> t) 2.667 0.02576 4.239 0.00218	*					
Signif. codes: 0 ***	0.001 *** 0.01	·*′ 0.05·.′0.1 ·· 1						
Residual standard error: 1.237 on 9 degrees of freedom Multiple R-Squared: 0.6662, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179								
Coefficients:	te Std. Error	B-(-1-1)						
(Intercept) 3.00 x3 0.49	1.1245	t value Pr(> t) 2.670 0.02562 4.239 0.00218	*					
Signif. codes: 0 ***	'0.001`**'0.01	`*' 0.05\.'0.1 \\ 1						
Multiple R-Squared:	0.6663, Adjust	degrees of freedom ed R-squared: 0.6292 p-value: 0.002176						
Coefficients Estima	te Std. Error	t value Pr(> t)						
(Intercept) 3.00 x4 0.49	1.1239	2.671 0.02559 4.243 0.00216	*					
Signif.codes:0 ***	0.001 *** 0.01	·*′ 0.05·.′0.1 ·· 1						
Residual standard error: 1.236 on 9 degrees of freedom Multiple R-Squared: 0.6667, Adjusted R-squared: 0.6297 F-statistic: 18 on 1 and 9 DF, p-value: 0.002165								

Also: http://www.youtube.com/watch?v=sfH43temzQY

Tools to check the appropriateness of the fitted model

Residuals

Outlier

• Leverage

Influence

(standardized) Residuals

Leverage Points

Leverage point ≠ outlier

Rule for identifying leverage points

$$h_{ii} = \frac{1}{n} + \frac{(x_i - \overline{x})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2} > 2 * average(h_{ii}) = \frac{2(p+1)}{n}$$

p: the number of covariates

Strategies for dealing with "bad" leverage points

• Remove invalid data points (not be

routinely deleted)

• Fit a different regression model

Standardized residuals

$$Var\left(\hat{e}_{i}\right) = \left(1 - h_{ii}\right)\sigma^{2}$$

$$r_{i} = \frac{\hat{e}_{i}}{\sqrt{\frac{\sum_{i=1}^{n} \hat{e}_{i}^{2}}{n - (p+1)} \cdot \sqrt{1 - h_{ii}}}} = \frac{\hat{e}_{i}}{s\sqrt{1 - h_{ii}}}$$

Studentized (deleted) residuals

Let
$$\tilde{r}_i = \frac{\hat{e}_i}{s_{(-i)}\sqrt{1-h_{ii}}}$$
 where $s_{(-i)}^2 = \frac{(n-p-1)s^2 - \frac{\hat{e}_i}{1-h_{ii}}}{n-p-2}$.

$$|\tilde{r}_i| \sim t$$
 $n-p-2, \frac{\alpha}{2n}$

Multiple covariates case?

• outlier

• "good" or "bad" leverage points

influence points

Matrix Scatterplot

- https://www.mathworks.com/help/stats/regress.html
- https://www.educba.com/multiple-linear-regression-in-r/

Cook distance

• Cook (1977)

$$Cook_{i} = \frac{\sum_{j=1}^{n} (\hat{y}_{j(-i)} - \hat{y}_{j})^{2}}{(p+1)s^{2}} = \frac{r_{i}^{2}}{p+1} \cdot \frac{h_{ii}}{1 - h_{ii}}.$$

• $\hat{y}_{j(-i)}$: the least square estimate obtained by deleting the i-th observation from data

Some relative influence measures using Cook's distance

• Cook and Weisberg (1982),

$$Cook_i > 1$$
.

• Bollen and Jackman (1990),

• Fox (2002),
$$Cook_i > \frac{4}{n}$$
.

$$Cook_i > \frac{4}{n - (p+1)}.$$

$$Cook_i > \frac{4}{n}.$$
 Influential Obs by Cooks distance


```
set.seed(1082)
n=100; x1 = rexp(n); x2 = rlnorm(n, meanlog = log(2), sdlog = 1) #
mean(x2)\sim 3.4, var(x2)\sim 12.5
y = 3 + 2*x1 + 1*x2 + rnorm(n)
cooksd = cooks.distance(lm(y\sim x))
plot(cooksd, pch="*", cex=2, main="Influential Obs by Cooks distance")
# plot cook's distance
abline(h = 1, col="blue") # add cutoff line: simple rule
abline(h = 4/n, col="red") # add cutoff line: cook and weisberg 1982
abline(h = 4/(n-(2+1)), col="green") # add cutoff line: bollen and jackman
1990
text(x=1:length(cooksd)+1, y=cooksd, labels=ifelse(cooksd>4/n,
"outlier?",""), col="red") # add labels using cook and weisberg 1982
```

DFFITS (difference between the fitted values)

• Belsley, Kuh, and Welsch (1980, 2004)

DFFITS_i =
$$\frac{\hat{y}_{i} - \hat{y}_{i(-i)}}{s_{(-i)}\sqrt{h_{ii}}} = \tilde{r}_{i}\sqrt{\frac{1 - h_{ii}}{h_{ii}}}$$

Some relative influences measure using DFFITS

$$|DFFITS_{i}| > 1 = \left| \frac{\hat{y}_{i} - \hat{y}_{i(-i)}}{s_{(-i)} \sqrt{h_{ii}}} \right| = \left| \tilde{r}_{i} \right| \sqrt{\frac{1 - h_{ii}}{h_{ii}}}$$

As large n, DFFITS_i >
$$2\sqrt{\frac{p+1}{n-(p+1)}} \approx 2\sqrt{\frac{p+1}{n}}$$

Influential Obs by DFFITS


```
set.seed(1082)
n=100; x1 = rexp(n); x2 = rlnorm(n, meanlog = log(2), sdlog
= 1) # mean(x2)~3.4, var(x2)~12.5
y = 3 + 2*x1 + 1*x2 + rnorm(n)
diffitsd = dffits(lm(y\sim x1 + x2))
plot(diffitsd, pch="*", cex=2, main="Influential Obs by
DFFITS")
abline(h = 2*sqrt((2+1)/n), col="red")
text(x=1:length(diffitsd)+1, y=diffitsd,
labels=ifelse(abs(diffitsd)>2*sqrt((2+1)/n), "outlier?",""),
col="red")
```

Predicted residual sums of squares (PRESS)

$$PRESS = \sum_{i=1}^{n} (y_i - \hat{y}_{i(-i)})^2$$

PRESS(package: "qpcR")
https://www.rdocumentation.org/packages/qpcR
/versions/1.4-1/topics/PRESS

Transformations

- Overcome problems due to nonconstant variance
- Estimate percentage effects
- Overcome problems due to nonlinearity

gamma with mean 10 and var 100


```
par(mfrow=c(1, 2)); set.seed(1082)
sim = rgamma(100, 1, 1/10);
qqnorm(sim, pch=19, col = "red", main =
"gamma with mean 10 and var 100");
qqline(sim, col="blue",lwd =2)
sim = abs(rt(100, df=2));
qqnorm(sim, pch=19, col = "red", main = c("abs)
t with df=2")); qqline(sim, col="blue",lwd =2)
```

Tests of normality in R

- Kolmogorov-Smirnov (Lilliefors) test (lillie.test, package: "nortest")
- Anderson-Darling test (ad.test, package: "nortest")
- Shapiro-Wilk test (shapiro.test)
- Jarque-Bera test (jarque.bera.test, package "tseries")
- ...etc

Box-Cox transformations

• (power transformation), on positive responses,

$$\Psi_{S}(y;\lambda) = \begin{cases} \frac{y^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0\\ \log(y) & \text{if } \lambda = 0 \end{cases},$$

and $\Psi_S(y;\lambda)$ is continuous on λ .

Maximize the log-likelihood function

$$\Psi(Y_i;\lambda) = \beta_0 + \beta_1 x_i + \varepsilon_i,$$

$$\hat{\lambda} = \arg\max_{\lambda} \left\{ \log L(\beta_0, \beta_1, \sigma^2, \lambda) \right\}$$

$$= \arg\max_{\lambda} \left\{ \frac{-n}{2} \log(2\pi) - n \log(\sigma) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (\Psi(Y_i; \lambda) - (\beta_0 + \beta_1 x_i))^2 + (\lambda - 1) \sum_{i=1}^{n} \log(y_i) \right\}$$


```
par(mfrow=c(1, 2)); set.seed(108)
x=rgamma(100, 1, 1/10)
y = 3 + 2*x + abs(rt(100, df=2))^2
error = lm(y \sim x)$residuals
plot( error, xlab = "individual samples", ylab
= "errors", main = "Residuals: Y~X",
    xlim = c(0, 100), pch=20, col="black")
qqnorm(y, pch=19, col = "red", main =
c("box-cox sample")); qqline(y,
col="blue",lwd=2)
```


library(MASS); boxcox(lm(y~x), lambda=seq(-2, 2, by=0.1)) mtext(expression(paste(hat(lambda), ": lambda MLE")), cex = 1.5, font=4, col=rgb(0.7,0.1,0.1,0.7))


```
lambda.t = 0.6
y.t = (y^{\alpha}lambda.t-1)/lambda.t
error.t = lm(y.t \sim x)$residuals
par(mfrow=c(1, 2)); set.seed(108)
gqnorm(y, pch=19, col = "red", main =
c("original y")); qqline(y, col="blue",lwd =2)
qqnorm(y.t, pch=19, col = "red", main =
c("box-cox: y")); qqline(y.t, col="blue",lwd
=2)
```

Modified Box-Cox transformations

• Box and Cox (1964)

$$\Psi_{M}(y;\lambda) = \begin{cases} \frac{y^{\lambda} - 1}{GM(\mathbf{y})^{\lambda - 1} \lambda} & \text{if } \lambda \neq 0\\ GM(\mathbf{y})\log(y) & \text{if } \lambda = 0 \end{cases},$$

where
$$GM(\mathbf{y}) = \left(\prod_{i=1}^{n} y_i\right)^{1/n}$$
. $\hat{\lambda} = \arg\min_{\lambda} SSE$.

Box-Cox transformations

• (power transformation), on responses,

$$\Psi(y;\lambda,c) = \begin{cases} \frac{(y+c)^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0\\ \log(y+c) & \text{if } \lambda = 0 \end{cases}$$

Logarithm or other transformations

$$\log(Y_i) = \beta_0 + \beta_1 \log(x_i) + \varepsilon_i.$$

$$\log(Y_i) = \beta_0 + \beta_1 x_i + \varepsilon_i.$$

$$\sqrt{Y_i} = \beta_0 + \beta_1 x_i + \varepsilon_i \dots \text{etc}$$