EE5609 Matrix Theory

Kranthi Kumar P

September 2020

1 Assignment-2

1.1 Problem

Lines and Planes (81): In each of the following cases, determine the normal to the plane and the distance from the origin.

a)
$$(0\ 0\ 1)\mathbf{x} = 2$$

$$c) (0 5 0)\mathbf{x} = -8$$

b)
$$(1\ 1\ 1)\mathbf{x} = 1$$

d)
$$(2\ 3\ -1)\mathbf{x} = 5$$

1.2 Solution

If ax + by + cz = d is a linear equation representing a plane, then the normal to that plane $\vec{\mathbf{n}}$ is the coefficients of the linear equation.

$$\vec{\mathbf{n}} = (a \ b \ c)$$

The shortest distance between the plane and a point P out side the plane is

$$\frac{\vec{PQ}.\vec{n}}{\|\vec{n}\|}$$

Where \mathbf{Q} is any point on that plane and $\vec{\mathbf{n}}$ is normal vector to that plane

a) normal vector
$$\vec{\mathbf{n}} = (0\ 0\ 1)$$
 Origin $\mathbf{P} = (0\ 0\ 0)$ Point on the plane $\mathbf{Q} = (0\ 0\ 2)$ shortest distance from origin =

$$\begin{vmatrix} (0 & 0 & 2) \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \\ \hline \sqrt{0^2 + 0^2 + 1^2} \end{vmatrix} = 2$$

b) normal vector
$$\vec{\mathbf{n}} = (1\ 1\ 1)$$
 Origin $\mathbf{P} = (0\ 0\ 0)$ Point on the plane $\mathbf{Q} = (1\ 0\ 0)$ shortest distance from origin =

$$\begin{vmatrix} (1 & 0 & 0) \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \\ \hline \sqrt{1^2 + 1^2 + 1^2} \end{vmatrix} = \frac{1}{\sqrt{3}}$$

c) normal vector
$$\vec{\mathbf{n}} = (0\ 5\ 0)$$
 Origin $\mathbf{P} = (0\ 0\ 0)$ Point on the plane $\mathbf{Q} = (0\ -8/5\ 0)$

shortest distance from origin =

$$\left| \frac{\begin{pmatrix} 0 & -8/5 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 5 \\ 0 \end{pmatrix}}{\sqrt{0^2 + 5^2 + 0^2}} \right| = \frac{8}{5}$$

d) normal vector $\vec{\mathbf{n}} = (2\ 3\ -1)$ Origin $\mathbf{P} = (0\ 0\ 0)$ Point on the plane $\mathbf{Q} = (5/2\ 0\ 0)$ shortest distance from origin =

$$\left| \frac{\begin{pmatrix} 5/2 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}}{\sqrt{2^2 + 3^2 + (-1)^2}} \right| = \frac{5}{\sqrt{14}}$$