Introducción a la Lógica y la Computación. Examen Final 03/12/2021.

- (1) Sean y, z, w elementos de un reticulado tales que $z \wedge w \leq y$. Demuestre que para todo x se da $(x \wedge y) \vee (z \wedge w) \leq y \wedge w \iff x \wedge y \leq w$.
- (2) (a) Decidir si el reticulado $\langle L, \vee, \wedge \rangle$ formado por el conjunto $L := \{2, 4, 6, 8, 18, 72\}$ con el orden de divisibilidad es distributivo, mediante la construcción de $\mathcal{D}(Irr(L))$.
 - (b) Sea $F:L\to \mathcal{D}(Irr(L))$ la función de representación del Teorema de Birkhoff. Calcular $F(8\vee 18)$ y $F(8)\cup F(18)$.
 - (c) ¿Es F un isomorfismo? Justifique su respuesta.
- (3) Encuentre derivaciones para:

(a)
$$\vdash \varphi \to ((\neg \psi \to \neg \varphi) \to \psi)$$
 (b) $\neg \varphi \lor \neg \psi \vdash \varphi \to (\psi \to \chi)$

- (4) Recuerde que un conjunto Γ es cerrado por derivaciones sii para toda proposición φ se tiene que si $\Gamma \vdash \varphi$ entonces $\varphi \in \Gamma$.
 - (a) Pruebe que si Γ es consistente maximal entonces es cerrado por derivaciones.
 - (b) ¿Vale la recíproca? Es decir, ¿si Γ es cerrado por derivaciones entonces es consistente maximal? Justifique.
- (5) Considere la gramática G dada abajo. Se debe obtener un autómata finito **determinístico** que acepte exactamente L(G), utilizando los algoritmos dados en el teórico. $S \rightarrow bS \mid aA \qquad A \rightarrow bS \mid bA \mid \epsilon$
- (6) Considere el autómata M dado por el siguiente diagrama.

Encuentre una expresión regular que denote L(M). Utilice el algoritmo dado por el teorema de Kleene.

Ejercicio para libres

(L) Sean x, y elementos de un reticulado tal que $x \leq y$. Pruebe que entonces vale:

$$((y \lor x) \land x) \lor x \le ((x \land y) \lor y) \land y.$$