

OpenHW Group CORE-V: Open Source RISC-V Cores for High Volume Production

Duncan Bees duncan@openhwgroup.org www.openhwgroup.org

© OpenHW Group June 2021

Agenda

- Opening Remarks -
- Overview of OpenHW –
- OpenHW Cores roadmap -
- OpenHW SW roadmap –
- OpenHW MCU and APU –
- OpenHW Verification –
- Open discussion

Dr. Liang Peng, Futurewei

Duncan Bees, OpenHW Staff

Davide Schiavone, OpenHW Staff

Jeremy Bennett, SW TG Co-Chair

Tim Saxe, HW TG Co-Chair

Mike Thompson, OpenHW Staff

- OpenHW Group is a not-for-profit, global organization registered in Canada and driven by its members and individual contributors where HW and SW designers collaborate in the development of open-source cores, related IP, tools and SW such as the CORE-V Family of opensource RISC-V cores
 - International footprint with developers in North America, Europe and Asia
 - Providing an infrastructure for hosting high quality open-source HW developments in line with industry best practices
 - Strong support from industry, academia and individual contributors worldwide

© OpenHW Group June 2021

Futurewei's Key Role in OpenHW

- Platinum Member of OpenHW Group
- Board Of Directors Dr. Liang Peng
- Co-Chair of the Verification TG Robert Chu
- Co-Chair of the Marketing WG Danny Hua
- Contribution of FORCE-RISCV as open-source artefact

Thank you for Futurewei's involvement and support in OpenHW!

June 2021

Industry Members 73+ Members & Partners

Academic Members 73+ Members & Partners

UC **SANTA BARBARA**

Partner Ecosystem 73+ Members & Partners

aws cadence

Professional Association

© OpenHW Group

Accounting, Legal, Bar Deloitte.

NORTON ROSE FULBRIGHT

Open-Source Objectives

Open Source Objective	OpenHW Group
Community collaboration	•Silicon + Hardware + Software + University + EDA Tools •Product-ready baseline features
Enable flexibility and customization	•CORE-V building block approach •Companies differentiate at value-add
Innovation velocity	 Research results flow directly to front end Collaborative project model Infrastructure/governance
Industrial quality	•Open scrutiny of all contributions •Focus on Industrial quality verification
Enable freedom of action	•Open source licenses adapted to hardware •Freedom to innovate

TRL Scale

TRL-0	Idea Unproven product/technology idea		
	Basic research		

Basic research TRL-1 Basic principles observed

DEVELOPMENT

PRODUCTION

TRL-7

Concept formulation TRL-2 Potential application found and validated. Basic principles have been studied and practical applications identified

Proof-of-Concept TRL-3 A crude POC prototype is crafted, demonstrating the core technology (principle) feasibility R&D

Component and/or Breadboard Lab prototype TRL-4 Start of engineering R&D: multiple component and subsystems are tested in lab environment.

Subsystems designed and tested in a real life TRL-5 Validation of the subsystems and engineering units with rigorous testing in relevan (real life) environment

Functional prototype system (alpha prototype TRL-6 Ingration of the previously designed sub-systems into a functional ALPHA prototype with first tests

> Working model or prototype (still ALPHA) demonstrated in relevant environment

Technology **Dutputs**

OpenHW

"Field" demonstration prototype system

BETA prototype (commercial ready system) TRL-8 A "flight qualified design" embracing DFM approach. Batch production launched and product is being implemented for the intended purpose

Commercial application. Successful mission TRL-9 Mass-production. Product/technology is available to all customers

OpenHW IP
Adopters

TRL Map to OpenHW Activity

TRL	OpenHW Utilization
1-Basic Principles Observed	 OpenHW research projects may target TRL-1 as project output, e.g. to develop novel approaches to core or accelerator architecture
2-Concept Formulation	 Core IP or accelerator development projects to produce open source technology are typically initiated as TRL-2 concepts, identifying principles and applications of the IP The OpenHW Project Concept Gate includes a TRL-2 description of the Core IP
3- Proof of Concept	 Core IP or accelerator development projects will pass through TRL-3 as the (RTL) design completes. Poof of concept is shown by core compilation and demonstration of basic operations (e.g. Linux booted, coremark results, hello-world)
4- Component Prototype	 Core IP or accelerator projects will pass through TRL-4 as they produce preliminary PPA results (via synthesis scripts for FPGA or ASIC) and/or run preliminary application code, such as an accelerator running machine learning code.
5- Subsystem Designed and Tested	 Core IP projects reach TRL-5 as they complete full verification. The <u>OpenHW RTL</u> Freeze checklist process verifies that the design is fully ready for industrial adoption.
6-Functional (Alpha) Prototype	 OpenHW designed IP that is integrated into an MCU system or other device reaches TRL-6 as prototype Silicon is fabricated and demonstrated
7-Field Demonstration Prototype	 OpenHW development boards incorporating a prototype Silicon system with OpenHW Software reach TRL-7 as they are demonstrated and deployed

Where can OpenHW Processors Play?

- Open source hardware IP:
 - Most important inroads already in the entry-level segment
 - Mid-range devices are now attracting interest and entries worldwide

© OpenHW Group

High-end processor/accelerator segment making first steps

Vertical	Entry-level	Mid-range	High-end / Al	OpenHW opportunities	
Automotive	Embedded controllers, ultra-low power	Real-time / safety-critical: Vision, motion control, engine management, safety, infotainment	ADAS/autonomous driving processors, sensor fusion	opportunities	
Industrial automation	Embedded controllers: ultra-low power, smart sensing	Embedded processors, sensor fusion; edge-cloud management	High-performance processors with AI acceleration, edge server processors	Slide credit:	
Communication	Baseband connectivity for wireless communication 5G/6G	Edge server processors, 5G/6G private networks, RF mgmt	5G/6G Base station front-end processors, V-RAN	European Commission DO	
Data infrastructure		Edge Al node processor	Processors for edge/fog servers; CPUs and accelerators (servers, HPC)	Connect	
Other (Healthcare, CE, Defence, Aerospace)	Embedded controllers in wearables and healthcare devices	Embedded processors	High-end Processors, AI	European Commission	

June 2021 1

Working Groups and Task Groups

- Technical Working Group
 - Cores Task Group
 - Verification Task Group
 - Hardware Task Group
 - Software Task Group
- Marketing Working Group
 - University Outreach Task Group
- OpenHW CEO + Staff
 - Facilitating/building project capacity
- OpenHW Board
 - Oversight of working group results

Project framework and decisions

Open-source development
Specification development
Driven by Engineering staff of member companies

Research proposal coordination/OpenHW Accelerate

April 2021

12

Stage Gate Overview

Gate

PC **Project Concept** Project Launch PA Plan Approved Project work PF **Project Freeze**

Criteria

Concept formulation. Proposed scope. Why do this project?

Driving requirements, proposed features, work components, project supporters, high level schedule, project risks, license model

Project plan checklist: project methodology, initial agile backlog, requirements specification (1st section of the user manual)

RTL Freeze checklist or other final checklist

Technical Working Group (TWG)

- Co-Chair: Jérôme Quévremont, Thales Research & Technology
- Drive the overall technical direction, development roadmap and project execution for all technology related activities within the OpenHW Group and oversee the Task Groups
 - TWG is essentially the OpenHW Group company's "R&D / Engineering Organization"
- OpenHW Group engineering release methodology is based on the Eclipse Development Process
 - All OpenHW Group Platinum / Gold / Silver members are also Solutions members of the Eclipse Foundation

Cores Task Group

- Chair: Arjan Bink, Silicon Laboratories
- Vice-Chair: Jérôme Quévremont, Thales Research & Technology THALES
- Develop feature and functionality roadmap and the open-source IP for the cores within the OpenHW Group such as the CORE-V Family of open-source RISC-V processors.
- Initial contribution of open-source RISC-V cores from <u>ETH Zurich PULP Platform</u> and the OpenHW Group is the <u>official committer for these repositories</u>

Core	Bits/Stage	Description
CVE4 (RI5CY)	32bit / 4-stage	A family of 4-stage cores that implement, RV32IMFCXpulp, optional 32-bit FPU, instruction set extensions for DSP operations including HW loops, SIMD extensions, bit manipulation and post-increment instructions.
CVA6 (Ariane)		A family of 6-stage, single issue, in-order CPU cores implementing RV64GC extensions with three privilege levels M, S, U to fully support a Unix-like (Linux, BSD, etc.) operating system. The cores have configurable size, separate TLBs, a HW PTW and branch-prediction (branch target buffer, branch history table and a return address stack).

June 2021

15

Verification Task Group

- · Co-Chairs:
 - Robert Chu, Futurewei Technologies, Inc.
 - Steve Richmond, Silicon Laboratories

 Develop best in class verification test bench environments for the cores and IP blocks developed within the OpenHW Group.

SW Task Group

- Chair: Jeremy Bennett, Embecosm
- Vice-Chair: Yunhai Shang, Alibaba T-Head

- Define, develop and support SW tool chain, operating system ports and firmware for the cores and IP developed within the OpenHW Group
- SW TG active projects include: GCC / LLVM, IDEs, FreeRTOS, HAL, CORE-V MCU SDK, etc.

© OpenHW Group

HW Task Group

· Chair: Hugh Pollitt-Smith, CMC Microsystems

- · Vice-Chair: Tim Saxe, QuickLogic
- Define, develop and support SoC and FPGA based evaluation / development platforms for the cores and IP developed within the OpenHW Group.

© OpenHW Group

Marketing Working Group

- Co-Chairs:
 - Danny Hua, Futurewei Technologies, Inc.
 - Kevin Dobie, CMC
- Define and Implement strategies for the promotion and expansion of the OpenHW Group Ecosystem
- Manage
 - OpenHW TV
 - Events
 - PR

Regional Working Groups

- EWG (European Working Group)
- AWG (Asian Working Group)
- Purposes
 - Identify regional strategic/market requirements for OpenHW Cores and enabling technologies
 - Regional marketing initiatives to grow membership base
 - Project incubation
 - Identify and implement data sovereignty requirements appropriate to the region
 - Participate in regional cooperation projects

June 2021

Asia Working Group

- OpenHW will initiate with regional members/expected members such as
 - Huawei
 - Alibaba
 - VeriSilicon
 - RIOSLab
 - VeriSilicon
 - ICT-CAS
 - CASPA
 - NEC
- · Opportunities to deepen collaboration in the region
- Assistance of Danny Hua is invaluable

OpenHW Accelerate

- Multi Year research initiative totaling up to \$22.5M USD of co-funded research
 - Up to \$4.5M USD research funding per year
 - Funding available globally across Canadian and International Universities (75% Canadian / 25% International)
 - Available to Silver and above OpenHW Group member organizations
- OpenHW Accelerate managed within OpenHW Marketing Working Group
 - University Outreach Task Group Co-Chaired by Mitacs and CMC
 - Establishes project approval process
 - Peer Review Committee drawing on Academic and Industry subject matter experts for project approvals

© OpenHW Group

Current Projects (post-PC, June 2021)

Responsible TG	Project	Status	Detail
Cores, Verification	CV32E40P	PF	4 stage, Embedded, 32b core
Cores, Verification	CV32E40S	PA	Security focused, 32b core
Cores, Verification	CV32E40X	PA	Extension interface, 32b core
Cores, Verification	CVA6	PL	6 stage, Application, 64/32b core
Verification	FORCE-RISCV	PL	Instruction Set Generator, 64/32b
SW	CORE-V IDE-CDT	PC	Eclipse Embedded IDE supporting CORE-V
SW	CORE-V GNU GCC Tools	PC	GNU GCC Tool chain supporting CORE-V
HW, Verification	CORE-V MCU	PL	FPGA and Prototype chip on GF22
SW	CORE-V LLVM Tools	PC	LLVM Tool chain supporting CORE-V
SW	FreeRTOS	PC	FreeRTOS supporting CORE-V
HW, SW	VERILATOR MODEL	PL	Verilator CORE-V model used for s/w dev
Cores, Verification	CV32E40Pv2	PC	Extension of CV32E40P with PULP instruction support
University Outreach, Cores	CV-VEC	PC	Vector Processor research device

April 2021 2

Projects in Project Concept Evaluation

Responsible TG	Project	Status	Detail
Cores	CV-X-IF Extension Interface Specification	PC evaluation	Provides interface from RISC-V processor to external coprocessor executing offloaded instructions
Cores, Verification	CV32E41P	PC evaluation	Compressed Instruction – specification validation to TRL3
Cores, Verification	CV32E20	PC evaluation	Small and light microcontroller
Cores, Verification	CV32E40PV2	PC evaluation	PULP extension isupport for CV32E40P
SW	Hardware Abstraction Layer (HAL)	PC evaluation	S/W Abstraction layer for CORE-V devices

© OpenHW Group April 2021 24

What's Next? Some Predictions...

- OpenHW Group ecosystem continues to grow
 - Over 80 Members & Partners expected by end of 2021
- New open-source RISC-V cores added to the CORE-V Family
 - CV32E4 and CV64A6 now CV32E2, CV32A6, CV32E4 variants and more to come
- 3. On chip SoC interconnect (fabric & busses)
- Heterogeneous clusters with accelerators and leveraging eFPGA

© OpenHW Group

- OpenHW Group & CORE-V Family of open-source RISC-V cores for use in high-volume production SoCs
 - Visit <u>www.openhwgroup.org</u> for details
 - Learn more at OpenHW TV

Follow us on Twitter @openhwgroup & LinkedIn OpenHW Group

June 2021

Questions & Answers

1. From the OpenHW perspective, what do you see as the trend and interest in open hardware, given the recent open news on Intel's potential acquisition of SiFive, Intel to make RISC-V chips?

A: These developments further the industry momentum behind RISC-V ISA and will lead to further interest in open-source implementations and toolchains.

1. What's OpenHW's strategy to compete or maybe collaborate with commercial offerings of RISC-V chips from Intel or other commercial vendors? Would you envision a parallel between Linux versus Windows or Android versus iOS scenario in RISC-V?

A: OpenHW does not compete with these organizations (or any others). OpenHW is open to collaborate with any organization involved in RISC-V and/or open-source hardware/software development.

1. What's OpenHW Group's strategy (organizational or project-wise) to ride the wave of broad adoption of RISC-V?

A: Our strategy as driven by the Board of Directors of the OpenHW Group, is to develop vendor neutral, open-source IP providing the adopters with true freedom of action to innovate as they see fit.

1. What is the difference between RISC-V International and OpenHWGroup?

A: RISC-V International owns, develops and maintains the Instruction Set Architecture. The OpenHW Group is primarily focused on development of **implementations** of the ISA.

1. What is the future direction for OpenHWGroup? What is the organization's vision you want to be?

A: CORE-V family, including enabling software, is our first area focus. We will move beyond to fabrics, accelerators and other IP that enables heterogeneous clusters

Open Source Cross-Group Collaboration

Case study: Zce compressed instruction ISA

Lead contributor for Zce ISA and E41P: Tariq Kurd, Huawei

