2014级《微积分A上》期末试卷(A)

班级	学与	클	姓	名

(注:本试卷共6页,十一个大题。请撕下试卷最后一张空白纸做草稿)

题号	_	_	=	四	五	六	七	八	九	+	+-	总分
得												
分												
评阅												
人												

- 一、填空(每小题4分,共28分)
- (1) 已知a, b为常数,求极限 $\lim_{x \to +\infty} \left(\frac{x^2}{(x-a)(x-b)} \right)^x =$ ______
- (2) 求极限 $\lim_{n\to\infty} \frac{1}{n^2} (\sqrt[3]{n^2} + \sqrt[3]{2n^2} + \dots + \sqrt[3]{n \cdot n^2}) = \underline{\hspace{1cm}}$
- (3) 抛物线 $y = x^2 x$ 在点(1,0)处的曲率是:
- (4) 已知 e^{-x} 是f(x)的一个原函数,则 $\int x^2 f(\ln x) dx =$

- (7) 已知二阶常系数齐次线性微分方程的一个特解为 $y = xe^x$,则该方程

二、(7分) 设y=y(x) 是由方程 $x+y=\arctan{(x-y)}$ 所确定的隐函数,求导数 $\frac{dy}{dx}$

三、(7分) 已知函数 $f(x) = \frac{x^3}{(1+x)^2} + 3$,请列表给出:函数f(x)的增减区间、 凹凸区间、极值点以及图像的拐点;并给出函数f(x)的所有渐近线. 四、 (7β) 求一组使得极限 $\lim_{x\to 0} \frac{\int_0^{x^2}(\sqrt{1+t^4}-1)dt}{\ln(1-x^\alpha)} = \beta \neq 0$, (α, β) 为实数)成立的 α, β 的值.

五、(7分) 求函数 $f(x) = \max\{1, x^2\}$ 在区间 $(-\infty, +\infty)$ 上的一个原函数 F(x),使得 F(0) = 1.

六、(7分) 计算定积分 $\int_0^{\pi} \sqrt{\sin x - \sin^3 x} dx$.

七、(7分) 已知函数f(x)连续,请讨论 $\int_0^{\frac{\pi}{2}} f(\sin x) dx$ 与 $\int_0^{\frac{\pi}{2}} f(\cos x) dx$ 的大小关系,并计算定积分 $\int_0^{\frac{\pi}{2}} \frac{\ln{(1+\sqrt{\sin x})} - \ln{(1+\sqrt{\cos x})} + \sin^3 x}{2} dx$.

八、(8分) 函数f(x)在 $(0,+\infty)$ 上有一阶连续导数,且对任意的 $x \in (0,+\infty)$ 满足 $x \int_0^1 f(tx) dt = 2 \int_0^x f(t) dt + x f(x) + x^3$,且f(1) = 0,求f(x).

九、(8分) 求由平面曲线 $y=x\sin x,\ y=x,\ (0\leq x\leq \frac{\pi}{2})$ 所围成图形的面积,及此图形绕x轴旋转所得旋转体的体积。

十、(8分) 水平放置着一根长为L, 密度为 ρ 的均匀细棒, 在其左端的垂线上与棒相距b处有一质量为m的质点, 求棒对质点的引力沿x轴方向的分力(设引力常数为k).

十一、(6分) 证明: 若函数f(x)在闭区间[a,b]上连续,则在开区间(a,b)内至少存在一点 ξ ,使 $\int_a^b f(x)dx = f(\xi)(b-a)$.