

SUM-OF-PRODUCTS FORM

LOGIC MINIMIZATION

........

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Sum-of-Products (SOP) Form

SUM-OF-PRODUCTS FORM

SUM-OF-PRODUCTS FORM

When two or more **product terms** are summed by Boolean addition, the resulting expression is a **sum-of-products** (SOP).

<u>example</u>

$$f = AB + ABC$$

$$f = A + \bar{A}\bar{B}C + BC\bar{D}$$

$$f = \bar{A}B + \bar{A}B\bar{C} + AC$$

<u>note</u>

SOP expression can have the term $\bar{A}\bar{B}\bar{C}$ but not \overline{ABC} .

Canonical sum-of-products

Minimal-cost realization

Convert the given Boolean expression to SOP form.

$$f = AB + B(CD + EF)$$

$$f = AB + BCD + BET$$
ans

Convert the given Boolean expression to SOP form.

$$f = \overline{(\overline{A+B}) + C}$$

STANDARD SOP FORM

A <u>standard SOP</u> form ensures that each product term is a <u>minterm</u>.

Minterm is a **product term** that evaluates to **1** for exactly one unique combination of input values.

Minterms for the three-variable table

Decimal	A	В	С	Minterm
0	0	0	0	$m_0 = ar{A}ar{B}ar{C}$
1	0	0	1	$m_1 = ar{A}ar{B}C$
2	0	1	0	$m_2 = \bar{A}B\bar{C}$
3	0	1	1	$m_3 = \bar{A}BC$
4	1	0	0	$m_4 = A ar{B} ar{C}$
5	1	0	1	$m_5 = A \bar{B} C$
6	1	1	0	$m_6 = AB\bar{C}$
7	1	1	1	$m_7 = ABC$

Convert the given Boolean expression to standard SOP form.

$$f = \overline{(\overline{A+B}) + C}$$

and then represent the result using a truth table format.

<u>note</u>

A nonstandard SOP expression is converted into standard form using Boolean algebra rule:

$$A + \bar{A} = 1$$

$$f = (\overline{A+B}) \cdot \overline{C}$$

$$f = (A+B) \cdot \overline{C}$$

$$f = AC + BC$$

$$AC(B+B) \longrightarrow ABC + ABC$$

$$BC(A+A) \longrightarrow ABC + ABC$$

$$f = ABC + ABC + \overline{ABC}$$

$$ABC$$

$$ABC$$

$$ABC$$

$$ABC$$

$$ABC$$

Convert the given Boolean expression to standard SOP form.

$$f = \overline{(\overline{A+B}) + C}$$

and then represent the result using a truth table format.

$$f = \sum m(2,4,6)$$

	ABC	+
0	000	, D
1	001	0
2	010	1
3	011	0
4	100	1
す	101	0
6	110	1
7	1 1 1	0

Convert the given Boolean expression into standard SOP form.

$$f = ABC + AB(C + D)$$

and then represent the result using a truth table format.

$$f = ABC + ABC + ABD$$

$$f = ABC + ABD$$

$$ABC (D+D) \longrightarrow ABCD + ABCD$$

$$ABD (C+C) \longrightarrow ABCD + ABCD$$

$$f = ABCD + ABCD + ABCD$$

$$ABCD + ABCD$$

Convert the given Boolean expression into standard SOP form.

$$f = ABC + AB(C + D)$$

and then represent the result using a truth table format.

$$f = ABCD + ABCD + ABCD$$
and

$$f = \sum M(13, 14, 15)$$

	ABCD	f
6	0000	0
1	6001	Ō
2	0010	0
3	0011	D
4	0100	0
5	0101	0
6	0110	6
7	0111	0
8	1000	Ō
9	1001	0
10	1010	0

•	A	B	CD	f
11	1	0	1 (0
12	l	1	00	0
13	1	1	01	1
14	1	l	10	l
15	1	1	1 1	1

Convert the given Boolean expression into standard SOP form.

$$f = AB + B(C + D)$$

and then represent the result using a truth table format.

Solution

$$f = AB + BC + BD$$

$$AB(C+\bar{c})(D+\bar{D}) \rightarrow ABCD + ABC\bar{D}$$

$$+ AB\bar{C}D + AB\bar{C}\bar{D}$$

ans

Convert the given Boolean expression into standard SOP form.

$$f = AB + B(C + D)$$

and then represent the result using a truth table format.

$$f = \sum m(5,6,7,12,13,14,15)$$

	ABCD	f
0	0000	0
- (0001	0
2	0010	0
3	0011	0
4	0100	0
5	0101	1
6	0110	1
7	0111	ι
8	1000	0
9	1001	6
10	1010	0

-	¥	B	C	Þ	f
n	l	O	1		0
2	l	1	0	0	1
3	1	1	0	١	
14	1	١	1	0	1
は	1	1	1	l	(

LABORATORY

