Implementing Molecular Hydrophobicity Potential Measurment for the Analysis of Dynamic Biomolecular Interactions

Peleg Bar Sapir¹

Under supervision of Prof. Maria Andrea Mroginski²

¹Freie Universität Berlin ²Techniche Universität Berlin

February 18, 2018

Molecular Hydrophobicity Potential

Pelg Bar Sapir

troduction

Hydrophobicity and log P Partition Coefficient

> lydrophobic Iotential

What is it?

General form

General Ionii

Distance function

Surface

Solvent Accesible Surface Evenly Distributed Points

Progra

What are we interested in

Result

Validation via Known log p

References

Outline

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity Potential

What is it? Potential Surface

Program

What are we interested in? Program Specifications

Results

Validation via Known log p Values An Example System

Molecular Hydrophobicity Potential

Pelg Bar Sapir

troduction

Hydrophobicity and log P Partition Coefficient

> olecular /drophobicity otential

hat is it?

Potential

General form

Distance fund

urface

Ivent Accesible

venly Distributed F

Prograi

rogram Specifications

Result

Validation via Known log p Values

All Example

References

Hydrophobicity and log P

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P

Partition Coefficient

Molecular

Potential

otential

General form

- - -

Pieters for the

ırface

Solvent Accesible Surface Evenly Distributed Points

Program

What are we interested in?

Result

Validation via Known log p Values

7 III Example 0 y

References

Thankvou

Hydrophilic/Hydrophobic Interactions

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Hydrophobicity and log P

Definition

The ratio of concentrations of a compound in a mixture of two immiscible phases at equilibrium

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

vdrophobicity and log P

Partition Coefficient

Molecular

Molecular Hydrophobic Potential

What is it?

Potential

General form

Force Constants

urface

Solvent Accesible Surface Evenly Distributed Points

Progran

Vhat are we interested in?

Results

Validation via Known log p Values

References

Thankvou

Definition

The ratio of concentrations of a compound in a mixture of two immiscible phases at equilibrium

Commonly used: water and octanol

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Definition

The ratio of concentrations of a compound in a mixture of two immiscible phases at equilibrium

- Commonly used: water and octanol
- Can be measured at an ionized or unionized state

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Definition

The ratio of concentrations of a compound in a mixture of two immiscible phases at equilibrium

- Commonly used: water and octanol
- Can be measured at an ionized or unionized state

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Definition

The ratio of concentrations of a compound in a mixture of two immiscible phases at equilibrium

- Commonly used: water and octanol
- Can be measured at an ionized or unionized state

$$\qquad \log P_{\text{octanol/water}} = \log \left(\frac{[\text{solute}]_{\text{water}}}{[\text{solute}]_{\text{octanol}}} \right)$$

ightharpoonup Hydrophobicity increases with the (common) $\log P$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

What is Molecular Hydrophobicity Potential (MHP)?

▶ By measuring the log P of many (ca. 30,000) compounds¹, single atoms can be assigned local "force" values.

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity Potential

What is it?

Potential

General form

Distance fu

urface

Solvent Accesible Surface Evenly Distributed Points Integration

rogran

/hat are we interested in? rogram Specifications

Results

Validation via Known log p Values

Jofovonoo o

References

Γhankyou

¹Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772

What is Molecular Hydrophobicity Potential (MHP)?

- ▶ By measuring the log *P* of many (ca. 30,000) compounds¹, single atoms can be assigned local "force" values.
- Combining these values with a distance-depended decay function, a potential can be constructed.

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

> Molecular Hydrophobicity

What is it?

Potential

General form Force Constants

Distance iu Jurface

Solvent Accesible Surface Evenly Distributed Points

rogran

at are we interested in?

Results

Validation via Known log p Values

Reference

Γhankyou

¹Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772 ← ■ → → → → →

What is Molecular Hydrophobicity Potential (MHP)?

- ▶ By measuring the $\log P$ of many (ca. 30,000) compounds¹, single atoms can be assigned local "force" values.
- Combining these values with a distance-depended decay function, a potential can be constructed.
- ightharpoonup This potential predicts the local $\log P$ behaviour of fragments of a molecule.

Molecular Hydrophobicity Potential

Pelg Bar Sapir

What is it?

¹Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772

$$\mathsf{MHP}\left(\mathbf{x}'\right) = \sum_{i=1}^{k} \left[f_i \cdot D\left(\mathbf{x} - \mathbf{x}'_i\right) \right]$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

Molecular Hydrophobicity

What is it?

General form

orce Constants

Distance

Solvent Accesible Surface Evenly Distributed Points

Evenly Distributed Points Integration

What are we interested in

Program Specifications

Resul

Validation via Known log p Values

References

Summing over all atoms

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

lolecular ydrophobicity

What is it?

General form

Force Constants

Distance fu

Solvent Accesible Surface Evenly Distributed Points

Evenly Distributed Points Integration

Progra

rogram Specifications

Resul

Validation via Known log Values

References

Molecular Hydrophobicity Potential

Pelg Bar Sapir

General form

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

lolecular

otential
What is it?

Potential

General form

orce Constants

Distance fun

Surface

Solvent Accesible Surface Evenly Distributed Points Integration

Progran

Vhat are we interested in? Program Specifications

Results

Validation via Known log p Values

Reference

11010101100

Force Constants - Carbon

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

olecular drophobic

otential that is it?

General form Force Constants

istance fu

Surface

olvent Accesible S venly Distributed F

Integratio

rogram What are we interested in

Results

Validation via Known log p Values

References

hankyou

Carbon atom contribution to hydrophobicity²

Type	Description	f_i value
	Carbon in:	
1	$\mathrm{CH_{3}R}$	-1.5603
3	CHR_3	-0.6681
7	CH_2X_2	-1.0305
13	RCX_3	0.7894
17	$=CR_2$	0.0383
24	RCHR	-0.3251
25	RCRR	0.1492
26	RCXR	0.1539

²Source: Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772

Force Constants - Hydrogen

Hydrogen atom contribution to hydrophobicity³

Type	Description	f_i value
	Hydrogen attached to:	
46	$\overline{\mathrm{C_{sp^3}}$, no X in $lpha$	0.7341
47	$ m C_{sp}^2$	0.6301
50	Heteroatom X	-0.1036
52	$\mathrm{C}_{\mathrm{sp}^3}$, 1 X in $lpha$	0.6666
54	$C_{\rm sp^3}$, 3 X in $lpha$	0.6338

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

1olecular

rophobicity

neral form

General form
Force Constants

Constants

face

Solvent Accesible Surfa Evenly Distributed Point Integration

rogram

nat are we interested in? ogram Specifications

Result

Validation via Known log p Values

eferences

Гhankyou

³Source: Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772

Force Constants - Oxygen

Oxygen atom contribution to hydrophobicity⁴

Type	Description	f_i value
	Oxygen in:	
56	Alcohol	-0.3567
57	Phenol, enol, carboxyl OH	-0.0127
58	Ketone	-0.0233
61	Nitro, N-oxides	1.0520
62	O-	-0.7941

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

lolecular vdrophobici

hat is it?

otential General form

Force Constants

ırface

Solvent Accesible Surfa Evenly Distributed Point Integration

rogram

hat are we interested in rogram Specifications

Resul

Validation via Known log p Values

. .

References

Γhankyou

⁴Source: Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772

Force Constants - Various

Various atom contribution to hydrophobicity⁵

Type	Description	f_i value
66	N in Primary amine	-0.5427
67	N in Secondary amine	-0.3168
81	F attached to $\mathrm{C}_{\mathrm{sp^3}}$	0.4797
106	S in R-SH (thiol)	1.0520
119	P in PR ₃ (phosphine)	-0.7941

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Force Constants

⁵Source: Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772

Distance function

Audry form

Exponential decay form

$$D\left(x\right) = \frac{1}{1+x}$$

$$D\left(x\right) = e^{-\alpha x}$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

lolecular ydrophobici

hat is it?

otential General form

Force Constants

Distance function

Surface

Solvent Accesible Surface Evenly Distributed Points Integration

Prograi

/hat are we interested in? rogram Specifications

Resul

Validation via Known log p Values

741 Example 0

Reference

Thankyou

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Solvent Accesible Surface

The surface around a molecule accesible to solvent molecules

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobi

otential

/hat is it?

Potential

General form

Force Constants

Distance function

Surface

Solvent Accesible Surface

Evenly Distributed Points Integration

Progran

What are we interested in? Program Specifications

Results

Validation via Known log p Values

An Example

References

Solvent Accesible Surface

The surface around a molecule accesible to solvent molecules

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular

ydrophobio otential

What is it?

Potential

General form

Force Constants

Distance function

Solvent Accesible Surface

Evenly Distributed Points

Program

What are we interested in Program Specifications

Result

Validation via Known log p

. .

References

Solvent Accesible Surface

 The surface around a molecule accesible to solvent molecules

(For water molecules usually $r=1.4~\c|\mbox{\AA}\c|$)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P

olecular

otential /hat is it?

Potential
General form

Force Constants

Surface

Solvent Accesible Surface

Evenly Distributed Points Integration

Progra

What are we interested in Program Specifications

Result

Validation via Known log p Values

An Example

Reference

Thankvou

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity Potential

What is it?

Potential

General form

Force Constants

Surface

Solvent Accesible Surface

Evenly Distributed Points

Progran

What are we interested in? Program Specifications

Resul

Validation via Known log Values

References

Take all atoms with their vdW-radii

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity

What is it?

Potential

General for

Force Constants

Distance func

Solvent Accesible Surface

Evenly Distributed Points

Progra

What are we interested in? Program Specifications

Resul

Validation via Known log | Values

_ .

Reference

Take all atoms with their vdW-radii

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobici Potential

hat is it?

Conoral for

Eoroe Constante

Distance function

Gunace

Solvent Accesible Surface

Integration

Prograi

What are we interested in?

Result

Validation via Known log p Values

References

- Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

olecular ydrophobicity otential

What is it?

Potential

Force Constants

Distance function

Solvent Accesible Surface

Evenly Distributed Points

Progra

What are we interested in Program Specifications

Resu

Validation via Known log

References

- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with $R^i = R^i_{
 m vrlw} + R_{
 m probe}$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

Molecular lydrophobic

hat is it?

Potential

Force Constants

Distance function

Surface

Solvent Accesible Surface

Evenly Distributed Points Integration

Progra

What are we interested in Program Specifications

Resul

Validation via Known log p

_ .

References

- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

olecular drophobicity otential

hat is it?

General fo

Force Constants

Distance function

Solvent Accesible Surface

Evenly Distributed Points

Progra

What are we interested in Program Specifications

Resu

Validation via Known log p

Reference

- Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

> olecular drophobicity stential

Vhat is it?

General form

Force Constants

Distance function

Solvent Accesible Surface

Fuenty Distributed Points

Evenly Distributed Points Integration

Progra

hat are we interested in rogram Specifications

Resu

Validation via Known log p

741 Example 0

References

- Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$
- 3. Delete all points that are "burried" in other extended spheres (i.e. $\Delta(p^i, c^j) \leq R^j + R_{\text{probe}}$)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

olecular drophobicity stential

What is it?

General for

Force Constants

Distance function

Solvent Accesible Surface

Evenly Distributed Points

Progra

What are we interested in Program Specifications

Result

Validation via Known log p

An Example Syster

References

- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$
- 3. Delete all points that are "burried" in other extended spheres (i.e. $\Delta(p^i, c^j) \leq R^j + R_{\text{probe}}$)
- 4. The remaining surface is the solvent-accesible surface of the molecule

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

> olecular drophobicity stential

What is it?

General form

Force Constants
Distance function

Surface Solvent Accesible Surface

Evenly Distributed Points

Progran

What are we interested in Program Specifications

Result

Validation via Known log p

An Example S

References

Evenly Distributed Points

How to distribute N points on a surface of a sphere?

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log F Partition Coefficient

Molecular Hydrophol

otentia Vhat is it?

Potential

General for

Force Constants

0....-6----

unace Salvant Associals 6

Evenly Distributed Points

Progra

What are we interested in?

Result

Validation via Known log p Values

Poforonoo

References

Evenly Distributed Points

How to distribute N points on a surface of a sphere?

$$\varphi_i = i \cdot \frac{2\pi}{N}$$
$$\theta_j = j \cdot \frac{\pi}{N}$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

troduction

Hydrophobicity and log F Partition Coefficient

Molecular Ivdrophobicit

hat is it?

Potential

General form

Force Constants

- .

Surface

Solvent Accesible Surface Evenly Distributed Points

Progra

hat are we interested in rogram Specifications

Result

Validation via Known log p Values

Reference

Evenly Distributed Points

How to distribute N points on a surface of a sphere?

$$\varphi_i = i \cdot \frac{2\pi}{N}$$

$$\theta_j = j \cdot \frac{\pi}{N}$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Evenly Distributed Points

How to distribute N points on a surface of a sphere?

$$\theta_j = j \cdot \frac{\pi}{N}$$

Points are not evenly distributed

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Evenly Distributed Points

How to distribute N points on a surface of a sphere?

$$\varphi_i = i \cdot \frac{2\pi}{N}$$

$$\theta_j = j \cdot \frac{\pi}{N}$$

Several points overlap at poles

evenly distributed

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Evenly Distributed Points

Solution: Vogel's method

In 2 dimensions:

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

> Molecular Hydrophobicity Potential

What is it?
Potential

General f

General form

Distance fund

Surface

Solvent Accesible Surface Evenly Distributed Points

Progra

What are we interested in

Result

Validation via Known log Values

An Example

Reference

Thankvou

Solution: Vogel's method

In 2 dimensions:

▶ Distances:
$$r_i = \sqrt{\frac{i}{N}}$$

• Angle: $\theta_i = \varphi i$

(φ is the golden ratio!)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log F Partition Coefficient

> Molecular Hydrophobicity Potential

What is it?

Potential

General form

Distance fund

Surface

Solvent Accesible Surface Evenly Distributed Points

Prograi

What are we interested in Program Specifications

Result

Validation via Known log | Values

An Example

Reference

Solution: Vogel's method

In 2 dimensions:

▶ Distances:
$$r_i = \sqrt{\frac{i}{N}}$$

• Angle: $\theta_i = \varphi i$ (φ is the golden ratio!)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity

Vhat is it?

Potential

General form

Force Constants

Jistance II

irtace Solvent Accesible S

Solvent Accesible Surface Evenly Distributed Points

Prograi

Vhat are we interested in?

Results

Validation via Known log p Values

An Example

Reference

Solution: Vogel's method

In 2 dimensions:

- ▶ Distances: $r_i = \sqrt{\frac{i}{N}}$
- Angle: $\theta_i = \varphi i$ (φ is the golden ratio!)

In 3 dimensions (cylindrical coordinates):

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity

What is it?

Potential

General form

Force Constants

Distance

Surface

Solvent Accesible Surface Evenly Distributed Points

Integration

Progra

/hat are we interested in? rogram Specifications

Results

Validation via Known log p Values

An Example

Reference

Solution: Vogel's method

In 2 dimensions:

- ▶ Distances: $r_i = \sqrt{\frac{i}{N}}$
- Angle: $\theta_i = \varphi i$ (φ is the golden ratio!)

In 3 dimensions (cylindrical coordinates):

- ▶ Distances: $z_i = \left(1 \frac{1}{N}\right) \left(1 \frac{2i}{N-1}\right)$
- Angles:

$$\theta_i = \varphi i, \ \rho_i = \sqrt{1 - z_i^2}$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular lydrophobicity

hat is it?

Potential

General form

Distance fun

Surface

Solvent Accesible Surfac

Evenly Distributed Points Integration

Progran

hat are we interested in ogram Specifications

Resul

Validation via Known lo Values

References

Solution: Vogel's method

In 2 dimensions:

▶ Distances:
$$r_i = \sqrt{\frac{i}{N}}$$

• Angle: $\theta_i = \varphi i$ (φ is the golden ratio!)

In 3 dimensions (cylindrical coordinates):

- ▶ Distances: $z_i = \left(1 \frac{1}{N}\right) \left(1 \frac{2i}{N-1}\right)$
- Angles: $\theta_i = \varphi i, \ \rho_i = \sqrt{1-z_i^2}$

0.5 Image source: Marmakoide's Blog

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introductio

Hydrophobicity and log F Partition Coefficient

lolecular lydrophobicit

What is it?

General form

Force Constants

Surface

Solvent Accesible Surface
Evenly Distributed Points

Program

What are we interested in Program Specifications

Result

Validation via Known log p Values

D (

Reference

► Each atom's total surface area: $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$

$$V^a = 4\pi \left(R_{
m vdW}^a + R_{
m probe}
ight)^2$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

► Each atom's total surface area: $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$

$$V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}} \right)^2$$

▶ The surface is represented by N points

Molecular Hydrophobicity Potential

Pelg Bar Sapir

► Each atom's total surface area: $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$

$$V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}} \right)^2$$

- ▶ The surface is represented by N points
- ▶ Meaning: each point has $V_j^a = \frac{4\pi}{N} \left(R_{\text{vdW}}^i + R_{\text{probe}} \right)^2$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

► Each atom's total surface area: $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$

$$V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}} \right)^2$$

- ▶ The surface is represented by N points
- ▶ Meaning: each point has $V_j^a = \frac{4\pi}{N} \left(R_{\text{vdW}}^i + R_{\text{probe}} \right)^2$
- ▶ In addition, each point has: MHP^a_i

Molecular Hydrophobicity Potential

Pelg Bar Sapir

► Each atom's total surface area: $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$

$$V^a = 4\pi \left(R_{\rm vdW}^a + R_{\rm probe}\right)^2$$

- ▶ The surface is represented by N points
- ▶ Meaning: each point has $V_j^a = \frac{4\pi}{N} \left(R_{\text{vdW}}^i + R_{\text{probe}} \right)^2$
- In addition, each point has: MHP^a_i

Therefore, each atom has a total MHP of:

$$\mathsf{MHP}^a = \frac{4\pi}{N} \sum_{j=0}^M \mathsf{MHP}^a_j$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Written in Python3, utylizing ProDy

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity Potential

Vhat is it?

Potential

aenerai iorm

Distance fund

urface

Solvent Accesible Surface Evenly Distributed Points Integration

rogram

bet are we interes

Program Specifications

Dogulto

Validation via Known log p

7 ti Lxumpio o

References

- Written in Python3, utylizing ProDy
- Heavy calculation written in Cython

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular lydrophobicity

Potentia

What is it?

General form

Force Constants

Distance fun

urface

Solvent Accesible Surface Evenly Distributed Points Integration

rogram

hat are we interested

Program Specifications

Result

Validation via Known log p Values

All Example

References

- Written in Python3, utylizing ProDy
- Heavy calculation written in Cython
- Uses neighbor cells implementation for faster calculation

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

> lolecular ydrophobicity

What is it?

Potential

General form

Force Constants

ırface

Solvent Accesible Surface Evenly Distributed Points

ogram

hat are we interested

Program Specifications

Describe

Validation via Known log p Values

. .

References

- Written in Python3, utylizing ProDy
- Heavy calculation written in Cython
- Uses neighbor cells implementation for faster calculation
- ▶ Uses PSF, PDB and DCD files

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

> olecular ydrophobicity otential

hat is it?

Potential

General form

Force Constants

ırface

пасе olvent Accesible \$

Evenly Distributed Points Integration

rogram /bat ara wa interest

hat are we interested in

Program Specifications

Results

Validation via Known log p Values

741 Example 0

References

- Written in Python3, utylizing ProDy
- Heavy calculation written in Cython
- Uses neighbor cells implementation for faster calculation
- Uses PSF, PDB and DCD files
- Generates a PDB output, MHP values in beta column

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

olecular /drophobicit

otential hat is it?

Potential

General form

Force Constants

Distance 1

ırface

Solvent Accesible Surface Evenly Distributed Points Integration

rogram

hat are we interes

Program Specifications

Resul

Validation via Known log p Values

rin Example of

References

► Input: PSF + PDB or DCD

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log I Partition Coefficient

Molecular Hydrophobicity Potential

Vhat is it?

Potential

aerierai iorini

Distance function

urface

Solvent Accesible Surface Evenly Distributed Points

rogram

What are we interested

Program Specifications

Results

Validation via Known log Values

An Example

References

- Input: PSF + PDB or DCD
- Subselection (optional): Atomic selection (like vmd)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

olecular ydrophobicity

tential

Potential

General form

Force Constants

rface

Solvent Accesible Surface Evenly Distributed Points

Evenly Distributed Points Integration

Vhat are we intereste

Program Specifications

Program Specification

Resul

Validation via Known log | Values

An Example

References

- ► Input: PSF + PDB or DCD
- Subselection (optional): Atomic selection (like vmd)
- ▶ Number of points per atom (default: 64)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

olecular odrophobicity

nat is it?

Potential

General form

Distance fu

urface

Solvent Accesible Surface Evenly Distributed Points Integration

ogram

at are we interested in?

Program Specifications

Results

Validation via Known log p Values

An Example

References

- ► Input: PSF + PDB or DCD
- Subselection (optional): Atomic selection (like vmd)
- ▶ Number of points per atom (default: 64)
- ► Solvent probe radius (defalt: 1.4Å)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

olecular odrophobicity

What is it?

Potential Conoral form

Force Constants

Distance function

urface

Solvent Accesible Surface Evenly Distributed Points

rogram

Program Specifications

rogram Specificati

Result

Validation via Known log p Values

An Example

References

- ► Input: PSF + PDB or DCD
- Subselection (optional): Atomic selection (like vmd)
- Number of points per atom (default: 64)
- ► Solvent probe radius (defalt: 1.4Å)
- ► Cutoff distance for distance function (default: 4Å)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

> olecular drophobicity

What is it?

General form

Force Constants

Surface

Solvent Accesible Surface Evenly Distributed Points

rogram

rogram Specification

Program Specifications

Results

Hesuits
Validation via Known I

Values

References

Thomburer

- ► Input: PSF + PDB or DCD
- Subselection (optional): Atomic selection (like vmd)
- ▶ Number of points per atom (default: 64)
- ► Solvent probe radius (defalt: 1.4Å)
- ► Cutoff distance for distance function (default: 4Å)
- ► Frame range (if DCD)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

olecular drophobicity

What is it?

Potential

General form

Distance fun

Surface

Surface

Solvent Accesible Surface Evenly Distributed Points Integration

Progran

nat are we interested in

Program Specifications

Result

Validation via Known log p

An Example :

References

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity Potential

What is i

Potential

General form

Force Constant

Surface

Solvent Accesible Surface Evenly Distributed Points

Integration

Program

What are we interested in

Result

Validation via Known log p Values

An Example Syster

References

▶ By integrating and comparing to known $\log P$ values, a correlation can be measured.

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

lolecular ydrophobicity otential

What is it?

Potential
General form

General form

Porce Constants

Surface

Solvent Accesible Surface Evenly Distributed Points Integration

Progran

Vhat are we interested in?

Results

Validation via Known log p Values

An Example Syst

References

- ▶ By integrating and comparing to known $\log P$ values, a correlation can be measured.
- A groups of amino acids of varying hydrophobicity where simulated and their MHP calculated

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

lolecular ydrophobicity otential

What is it?

General form

Force Constants

Distance t

Solvent Accesible Surface Evenly Distributed Points

Program

hat are we interested in

Results

Validation via Known log p

An Example Syste

References

Thankvou

Hydrophobicity Potential Pelg Bar Sapir

Molecular

ntroduction

Hydrophobicity and log P Partition Coefficient

Hydrophol Potential

Vhat is it?

Potential General form

Force Constants

Distance fun

Solvent Accesible

Evenly Distributed Points Integration

Progran

What are we interested in? Program Specifications

Result

Validation via Known log p Values

7 til Example Oyl

References

Thankyou

Validation in vacuum (5 frames per molecule)⁶, $R^2 = 0.668$

⁶MD simulation using NAMD, performed by Dr Tillmann Utesch ∽ac

Hydrophobicity Potential Pelg Bar Sapir

Molecular

Validation in water + structural optimization (10 frames per molecule), $R^2=0.748$

ntroduction

Hydrophobicity and log P Partition Coefficient

Molecular

otential

vnausiu? Potential

General form

Force Constants

Distance function

Surface

Solvent Accesible Surface Evenly Distributed Points

Prograi

What are we interested in

Resul

Validation via Known log p Values

7 III Example 0 y

References

Hydrophobicity Potential Pelg Bar Sapir

Molecular

Validation via Known log p Values

Validation in water + structural optimization + SAS normalization (10 frames per molecule), $R^2 = 0.760$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity Potential

What is it

Potential

General form

Force Constants

Distalle

Surface

Solvent Accesible Surface Evenly Distributed Points

Prograi

What are we interested in? Program Specifications

Resul

Validation via Known log p Values

An Example System

References

The validation shows a reasonable qualitative correlation to real data.

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity Potential

Vhat is it?

Potential

aerierai iorini

Distance function

Surface

Solvent Accesible Surface Evenly Distributed Points Integration

Prograi

What are we interested in? Program Specifications

Result

Validation via Known log p Values

An Example Syste

Reference

Thankvou

- The validation shows a reasonable qualitative correlation to real data.
- Performed in water (with structural optimization), the results became more accurate.

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

> olecular /drophobic otential

nat is it?

Conoral form

orce Constants

Distance fu

urface

Solvent Accesible Surfac Evenly Distributed Points Integration

rogram

Vhat are we interested in?

Results

Validation via Known log p Values

An Example S

References

- The validation shows a reasonable qualitative correlation to real data.
- Performed in water (with structural optimization), the results became more accurate.
- ► The environment did not match experiments, which could affect the accuracy.

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

oiecular ⁄drophobic itential

Otential
What is it?

Potential

General form

.

Solvent Accesible Surface

ntegration

rogram Vhat are we interested in?

Results

Validation via Known log p Values

An Example Sys

References

- The validation shows a reasonable qualitative correlation to real data.
- Performed in water (with structural optimization), the results became more accurate.
- ► The environment did not match experiments, which could affect the accuracy.
- Amino acids are small molecules, each error becomes more significant.

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

> olecular drophobicity

What is it?

General form

Force Constants

Surface

Solvent Accesible Surface Evenly Distributed Points Integration

Prograi

hat are we interested in?

Results

Validation via Known log p Values

An Example Sy

References

- The validation shows a reasonable qualitative correlation to real data.
- Performed in water (with structural optimization), the results became more accurate.
- ► The environment did not match experiments, which could affect the accuracy.
- Amino acids are small molecules, each error becomes more significant.
- Larger trajectories will sample conformational space better.

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

> olecular /drophobicity

What is it?

Potential

General form

Distance fu

urface

Solvent Accesible Surface Evenly Distributed Points Integration

Prograi

hat are we interested in? ogram Specifications

Results

Validation via Known log p Values

An Example Syste

References

An Example System

An existing trajectory (100 frames) of a protein-membrane system⁷ was analazyed.

The peptide: OP-145, a Cathelicidin derivative with improved properties.

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

ydrophob stential

otential
What is it?

Potential

General form

Force Constants

urfooo

rtace

Solvent Accesible Surface Evenly Distributed Points Integration

rogram

Vhat are we interested in? Program Specifications

Results

Validation via Known log p Values

An Example System

References

Trajectory provided by Dr. Alejandra de Miguel Catalina

An Example System

An existing trajectory (100 frames) of a protein-membrane system⁷ was analazyed.

- ► The peptide: OP-145, a Cathelicidin derivative with improved properties.
- ► The interaction mechanism pathway was studied by means of all-atom simulation.

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

Iolecular Iydrophol

otential

Potential

General form

Distance fr

Purfoso

Surface

Solvent Accesible Surface Evenly Distributed Points Integration

rogram

nat are we interested in ogram Specifications

Results

Validation via Known log p

An Example System

References

⁷Trajectory provided by Dr. Alejandra de Miguel Catalina

What is it? Potential

General form

urface

olvent Accesible S

Evenly Distributed Points Integration

Prograr

What are we interested in Program Specifications

Result

Validation via Known log p

An Example System

References

Γhankyou

An existing trajectory (100 frames) of a protein-membrane system⁷ was analazyed.

- ► The peptide: OP-145, a Cathelicidin derivative with improved properties.
- The interaction mechanism pathway was studied by means of all-atom simulation.
- The membrane used for the study consists of a mixture of two lipids, PG and PE, in agreement with experimental measurements.

⁷Trajectory provided by Dr. Alejandra de Miguel Catalina → → → → → →

A video of the system

Molecular Hydrophobicity Potential

Pelg Bar Sapir

An Example System

MHP change over time for ARG-7

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

olecular ydrophobici

otential Vhat is it?

Potential

aenerai iorm

Distance fu

rface

Solvent Accesible Surface Evenly Distributed Points

Progran

hat are we interested in? ogram Specifications

Result

Validation via Known log p

An Example System

Reference

MHP change over time for ARG-24

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log F Partition Coefficient

lolecular vdrophobicity

Potential
What is it?

Conoral form

Force Constants

Distance f

Solvent Accesible Surface Evenly Distributed Points

Progran

What are we interested in

Result

Validation via Known log p

An Example System

References

MHP change over time for PRO-22

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log F Partition Coefficient

lydropho Otential

otential Vhat is it?

Potential

Force Constants

Distance iu

Solvent Accesible Surface Evenly Distributed Points

Prograi

What are we interested in

Resul

Validation via Known log p

An Example System

References

MHP change over time for LYS-3

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

lolecular ydrophol otential

Vhat is it?

General form

Force Constants

Surface

Solvent Accesible Surface Evenly Distributed Points

Prograi

hat are we interested in rogram Specifications

Results

Validation via Known log p

An Example System

References

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity Potential

What is it

Potential

General form

Force Constant

0 /

Surface

Solvent Accesible Surface Evenly Distributed Points Integration

Progra

What are we interested in? Program Specifications

Resul

Values Values

An Example System

References

We again get qualitative correlation to expected results (i.e. interior Hydrophobic).

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

Molecular Hydrophobici

otential

Potential

General form

istance functi

urface

urtace

Solvent Accesible Surfac Evenly Distributed Points Integration

rogram

Vhat are we interested in? Program Specifications

Results

Validation via Known log p Values

An Example System

References

- We again get qualitative correlation to expected results (i.e. interior Hydrophobic).
- The amino acid residues have the correct hydrophobicity.

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

Molecular Hydrophob

Vhat is it?

Potential

General form

Force Constants

Distance :

Surface

Solvent Accesible Surface Evenly Distributed Points Integration

rogram

hat are we interested in?

Results

Validation via Known log p

An Example System

References

- We again get qualitative correlation to expected results (i.e. interior Hydrophobic).
- The amino acid residues have the correct hydrophobicity.
- Observing changes in MHP of fragments of interest is possible.

Molecular Hydrophobicity Potential

Pelg Bar Sapir

An Example System

- We again get qualitative correlation to expected results (i.e. interior Hydrophobic).
- The amino acid residues have the correct hydrophobicity.
- Observing changes in MHP of fragments of interest is possible.
- More systems could (and should!) be analyzed using this method

Molecular Hydrophobicity Potential

Pelg Bar Sapir

An Example System

References

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity Potential

What is i

Potential

General form

Force Constants

_ .

Surface

Solvent Accesible Surface Evenly Distributed Points

Prograi

What are we interested in? Program Specifications

Resul

Validation via Known log p Values

An Example

References

Thank You for Your Attention!

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity Potential

/hat is it?

Potential

General forn

Force Constants

Distance functio

Surface

Solvent Accesible Surface Evenly Distributed Points Integration

Prograi

What are we interested in? Program Specifications

Results

Validation via Known log p Values

Reference