Recap: Structural Induction	
let S be a recursively defined	set.
Base cases: y, yz, E S [there co	un be infinitely base cases
Recursion: $y_1, y_2,, y_k \in S$	to produce a new element
Combine (y, yz,, yk) ∈ S	using k elements in S
We want to prove some property P	about S
Let $S \subseteq \mathcal{U}$ (universe) and $P: \mathcal{U} \to \{T, F\}$. We want to $P(z) = T$ for all $z \in S$.	show
Can be done using structural ind	uction.
1. State that you are using structure	al ind.
2. Show $P(y_i) = T$ for all $y_i \in Base$	Cases
3. Show that if P(y,) n n P(ye), to P(combine (y,ye)) = T.	nen

LEC-	TURE	14
	1 0 1	, –

We will start with an exercise which hopefully illustrates when to use PMI, when to use structural induction.

Exercise: Let us define a set $S \subseteq \{ \emptyset, ?, -\}^{t}$ as follows: set of finite

length etrings Base case: set of all finite length

V y E ____ * strings consisting of __ with symbols ⊗, ?, – y ⊗ - ? y ∈ S

Recursion:

For all
$$y, z, w \in \underline{-}^*$$
,

 $(y \otimes z ? w \in S) \Rightarrow (y \otimes z - ? w y \in S)$

Examples of strings in S:

1. __ ⊗ __ ? __ ∈ S [Base case]

2. Using (1) and recursion step we can conclude — \otimes _ _ ? _ _ _ \in S

⊗ ? _	cursion step, we can conclude & S.
Can we character	ize the set S?
<u>Claim</u> : Let T	= { _ ~ & _ B ? _ ~ B : ~,B E N
S = T.	
To prove this clair SC7 and	m, it suffices to show TCS. Claim 2
we will use	we will use
	regular PMI for this.
<u> Claim 1</u> : S =	\ .
9n other	words, for every
0 € S, 0 = —	$\exists \alpha, \beta \in \mathbb{N} \text{ s.t.}$ $\alpha \otimes \beta : \alpha \otimes \beta$
Proof using structu	ral induction.
We will define an	appropriate predicate over U

 $P(Q) = true iff <math>\exists \alpha, \beta \in \mathbb{N}$ s.t. $Q = -\alpha \otimes -\beta ? -\alpha \beta$ If P(0) = true, then O & T (by def. of set T) Base case: Need to show that P(0) = true for every & in the base case of the def." of S. Base case of S: if $y \in -^*$, then $y \otimes -^*$? $y \in S$. Since $y = -\alpha$ for some $\alpha \in \mathbb{N}$, $0 = -\alpha \otimes -2 - \alpha \in S$. Check that P(0) = true by setting $\beta = 1$. Induction step: Suppose 0' is derived from 0 using the recursion step, and suppose $P(\theta) = true$. Since $P(\theta) = true \exists \alpha, \beta \in \mathbb{N} \text{ s.t.}$ $\theta = \frac{\pi}{2} \times \frac{\pi}{2}$ The recursion step produces $0' = (-\infty) \otimes (-\beta) = (-\infty)^{\alpha\beta} \otimes (-\infty)^{\alpha\beta}$

		Check	that	P(&')	= true		
for	ence all	using s	structuro S, ano	d ind	uction, refore	P(0) = S C	true T.
Uain	٤:	7 <u>c</u> 9n other	S. εν ωση _ β	vds	for all $\alpha\beta \in$	У «, β S .	. ∈ <i>I</i> N
	_	regula					
Predica	te Q	(β) :=	for all	l ∝ €	β ? <u> </u>	_ ∝β ∈	ς.
Base	case	: β = Take Using it	any base follows		N - ∝ ∈ :	ef of	S,
9nd nchio	n ste						
		To	prove	: O	(B+1).	Take	avu

 $\alpha \in \mathbb{N}$.

	To show:
	Given: $\underline{}^{\alpha} \otimes \underline{}^{\beta} ? \underline{}^{\alpha\beta} \in S$
	Follows from the induction step.
	Hence, using PMI, we conclude TCS.
Conc	LUDING REMARKS:
	tructural induction can be used for proving
mc Sel	et certain property holds for recursively defined
ø 7	he same can also be proven using (regular)
i	nduction on the number of steps used to derive
h	e element

