

Linear Regression II Guided Practice

A.	Project	Score
A.	Hoject	SCOIL

B. Hours of Sleep

How to Edit

Click Edit This Slide in the plugin to make changes.

Don't have the Nearpod add-on? Open the "Add-ons" menu in Google Slides to install.

Matching Pairs

▲ Instructions

Alternative Hypothesis Average NBA Player's Height ≠ 2.0m (6ft7in)

Average NBA Player's Height =

Null Hypothesis

How to Edit

Click Edit This Slide in the plugin to make changes.

Don't have the Nearpod add-on? Open the "Add-ons" menu in Google Slides to install.

Fill in the Blanks

Describe each of the variables of the equation:

 \hat{y} predicted value of our variable b0 when x=0 b1 of the regression line x an variable

How to Edit

Click Edit This Slide in the plugin to make changes.

Don't have the Nearpod add-on? Open the "Add-ons" menu in Google Slides to install.

Linear Regression Goals

VARIABLE

dependent variable

How do we find the line of best fit?

For a dataset with only one variable, the best fit line is the mean value of the data points.

For a dataset with only one variable, the best fit line is the mean value of the data points.

Student Initial	Minutes past start of GP
A.S.	1.2
B.M.	2.3
C.J.	4.5
D.G.	7.25
E.F.	3.1
Mean:	3.67

The sum of the distances (error) above the mean has the same absolute value as the distances (error) below the mean.

Student Initial	Minutes past start of GP	$(y-\overline{y})$
A.S.	1.2	-2.47
B.M.	2.3	-1.37
C.J.	4.5	0.83
D.G.	7.25	3.58
E.F.	3.1	-0.57
Mean:	3.67	

Distance = Residual = Error

The goal of the line of best fit is to minimize the Sum of Squares Error.

Error (E)	Square Error (SE)
-2.47	6.1009
-1.37	1.8769
0.83	0.6889
3.58	12.8164
-0.57	0.3249
-3.67	13.4689
Sum:	35.2769

Ordinary Least Square (OLS) regression utilizes the principle of least squares, i.e. minimize the sum of the squares of the differences.

Error (E)	Square Error (SE)
-2.47	6.1009
-1.37	1.8769
0.83	0.6889
3.58	12.8164
-0.57	0.3249
-3.67	13.4689
Sum:	35.2769

Ready? Enter your answer here.	

How to Edit

Click Edit This Slide in the plugin to make changes.

Don't have the Nearpod add-on? Open the "Add-ons" menu in Google Slides to install.

Equation of a Line y = mx + b

Simple Linear Regression Equation

Multiple Linear $\hat{y} = b_0 + b_1 x_1 + b_2 x_3$ Regression Equation

 $\hat{\mathbf{y}} = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{x}$

Multiple Linear Regression Equation

$$\hat{y} = b_0 + b_1 x_1 + b_1 x_2$$

- ŷ the predicted value of our dependent variable y
- b₀ the y-intercept when x is equal to 0
- b₁ coefficient for variable 1
- x₁ first independent variable

- b□ coefficient for variable n
- x□ the nth independent variable

Multiple Linear Regression Equation

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + b_1 x_1$$

$$b_1 = \frac{\sum (x_2 - \overline{x_2})^2 \sum (x_1 - \overline{x_1})(y - \overline{y}) - \sum (x_1 - \overline{x_1})(x_2 - \overline{x_2}) \sum (x_2 - \overline{x_2})(y - \overline{y})}{\sum (x_1 - \overline{x_1})^2 \sum (x_2 - \overline{x_2})^2 - (\sum (x_1 - \overline{x_1})(x_2 - \overline{x_2}))^2}$$

$$b_{2} = \frac{\sum (x_{1} - \overline{x_{1}})^{2} \sum (x_{2} - \overline{x_{2}})(y - \overline{y}) - \sum (x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}) \sum (x_{1} - \overline{x_{1}})(y - \overline{y})}{\sum (x_{1} - \overline{x_{1}})^{2} \sum (x_{2} - \overline{x_{2}})^{2} - (\sum (x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}))^{2}}$$

$$b_0 = \bar{y} - b_1 \overline{x_1} - b_2 \overline{x_2}$$

Linear Regression Example

Let's explore the relationship between number of hours spent on a project and the score a project was graded.

Project Hours (x)	Project Score (y)
34	78
35	75
39	86
42	91
43	88
47	98

Linear Regression Example

We need to run our calculations to determine our coefficients i.e. fit our model

$y = b_0 + b_1 x$
$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$
$D_1 = \frac{\sum (x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}$
$b_0 = \bar{y} - b_1 \bar{x}$

A = b + b = a

docinolorito, i.e. iit dai inidaeli			$b_0 = \bar{y} - b_1 \bar{x}$		
Project Hours (x)	Project Score (y)	$(x-\bar{x})$	$(y-\bar{y})$	$(x-\overline{x})(y-\overline{y})$	$(x-\bar{x})$
34	78	-6	-8	48	36

Project Hours (x)	Project Score (y)	$(x-\bar{x})$	$(y-\bar{y})$	$(x-\overline{x})(y-\overline{y})$	$(x-\bar{x})$
34	78	-6	-8	48	36

-5

-11

Sum:

Simple Linear Regression Equation

•
$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = 1.63$$

•
$$b_0 = \bar{y} - b_1 \bar{x} = 86 - (1.63 \times 40) = 20.8$$

$$\hat{y} = b_0 + b_1 x$$
 $\hat{y} = 20.8 + 1.63 x$

Simple Linear Regression Equation

$$\hat{y} = 20.8 + 1.63x$$

With our linear model we could predict the number of hours spent for a score of 75:

$$80 = 20.8 + 1.63x$$

$$x = 36.31 hours$$

Simple Linear Regression Equation

$$\hat{y} = 20.8 + 1.63x$$

With our linear model we could predict the number of hours spent for a score of 80:

$$80 = 20.8 + 1.63x$$

$$x = 36.31 hours$$

Anscombe's Quartet: The Importance of Visualization

```
import matplotlib.pyplot as plt
import numpy as np
x = [10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5]
y1 = [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68]
\mathbf{y2} = [9.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74]
y3 = [7.46, 6.77, 12.74, 7.11, 7.81, 8.84, 6.08, 5.39, 8.15, 6.42, 5.73]
x4 = [8, 8, 8, 8, 8, 8, 8, 19, 8, 8, 8]
y4 = [6.58, 5.76, 7.71, 8.84, 8.47, 7.04, 5.25, 12.50, 5.56, 7.91, 6.89]
datasets = {
    'I': (x, y1),
    'II': (x, y2),
    'III': (x, y3),
    'IV': (x4, y4)
fig, axs = plt.subplots(2, 2, sharex=True, sharey=True, figsize=(6, 6),
                        gridspec kw={'wspace': 0.08, 'hspace': 0.08})
axs[0, 0].set(xlim=(0, 20), ylim=(2, 14))
axs[0, 0].set(xticks=(0, 10, 20), yticks=(4, 8, 12))
for ax, (label, (x, y)) in zip(axs.flat, datasets.items()):
    ax.text(0.1, 0.9, label, fontsize=20, transform=ax.transAxes, va='top')
    ax.tick params(direction='in', top=True, right=True)
    ax.plot(x, y, 'o')
   # linear regression
   pl, p0 = np.polyfit(x, y, deg=1) # slope, intercept
    ax.axline(xv1=(0, p0), slope=p1, color='r', lw=2)
    # add text box for the statistics
    stats = (f'\$\m = {np.mean(y):.2f}\n'
            f'$\\sigma$ = {np.std(y):.2f}\n'
             f'$r$ = {np.corrcoef(x, y)[0][1]:.2f}')
    #bbox = dict(boxstyle='round', fc='blanchedalmond', ec='orange', alpha=0.5)
    ax.text(0.95, 0.07, stats, fontsize=9,
            transform=ax.transAxes, horizontalalignment='right')
plt.show()
```


Assumptions of Linearity(after)

Let's open our notebook

https://github.com/mojo-flat/Linear-Regression-GP-2

LINEAR REGRESSION

Interpreting R Squared

 Percentage of variation in the dependent variable explained by the independent variable.
 Values between 0 & 1

$$SS_{residual} = \sum (y - \hat{y})^2$$

$$R^2 = 1 - \frac{SS_{residual}}{SS_{total}}$$

$$SS_{total} = \sum (y - \bar{y})^2$$

An R-squared value of 0.928 can be described conceptually as:

92.8% of the variations in dependent variable score are explained by the independent variables hours in our model.

Interpreting Model Coefficients

Understand the Marginal Effect of the independent variable on the dependent variable.

Given a one-unit change in the independent variable, how much is the mean of the dependent variable changed.

- b_1 x + 1 = Increase in mean score of 1.637 points
- b_0 x =0, score is equal to 20.8 points

Hypothesis Testing

To determine if our independent variable has a statistically significant relationship with the

The null hypothesis should contain an equality $(=, \leq, \geq)$: Average NBA Player's Height = 2.0m (6ft 7in)

The alternate hypothesis should not have an equality $(\neq, <, >)$: Average NBA Player's Height ≠ 2.0m (6ft 7in)

$$-H0: \mu = 3.5$$

- *H*1 : μ ≠ 3.5

 $H0: \mu \geq \mu$

*H*1 : $\mu < \mu$

The alternate hypothesis should not have an equality $(\neq, <, >)$: old scores < new scores

• H₁ - The average NBA player's

H₀ - The old average of the scores is equal to or greater than the new

average of the scores. scores.

H₀ - The average NBA player's

height is 2.0m tall.

height is not 2.0m tall.

Hypothesis Testing

Aim is to reject the null hypothesis

p-values & Hypothesis Tests

From:

Interpreting Significance and p-values

We reject or fail to reject a null hypothesis based on an associated significance level or p-value.

The p-value represents a probability of observing your results (or something more extreme) given that the null hypothesis is true

Applied to a regression model, p-values associated with coefficients indicate the probability of observing the associated coefficient given that the null-hypothesis is true. As a result, very small p-values indicate that coefficients are statistically significant. A very commonly used cut-off value for the p-value is 0.05.

Just like for statistical significance, rejecting the null hypothesis at an alpha level of 0.05 is the equivalent for having a 95% confidence interval around the coefficient that does not include zero. In short

The p-value represents the probability that the coefficient is actually zero.

Interpreting p-values

 const
 std err
 t
 P>|t|
 [0.025]
 0.975]

 const
 20.5161
 9.158
 2.240
 0.089
 -4.911
 45.944

 hours
 1.6371
 0.227
 7.196
 0.002
 1.005
 2.269

 Omnibus:
 nan
 Durbin-Watson:
 2.912

 Prob(Omnibus):
 nan
 Jarque-Bera (JB):
 0.929

 Skew:
 -0.588
 Prob(JB):
 0.628

 Kurtosis:
 1.473
 Cond. No.
 357.

Prob(F-statistic) p-value:

 likelihood that we observe our score
 values by random chance if linear
 model had no statistically significant relationship.

 P>|t| p-value: likelihood that we observe our score values by random chance if hours spent had no statistically significant relationship.

Assumptions of Linear Regression

- Linearity: there is a linear relationship between the independent and dependent variables
- Normality: residuals are normally distributed
- Homoscedasticity: the variance for the residual is the same for any value of x
- Independence: observations are independent of one another

Assumption of Linearity

 Linearity: there is a linear relationship between the independent and dependent variables

Assumption of Normality

• Normality: residuals are normally distributed (symmetric about the

Normality(quantile-quantile plot)

Plot the quantiles of the residuals to compare distributions, if points lie close to or along 45° line from *x-axis*, samples have similar distributions.

Our Q-Q plot indicates a gap where before it *y* quantiles are lower than the *x* quantiles and after which the *y* quantiles are higher.

Q-Q Plot

Without randomness

With randomness

Assumption of Homoscedasticity

 Homoscedasticity: the variance for the residual is the same for any value of x

Assumption of Independence

No perfect multicollinearity

Assumption of Independence

• Autocorrelation: correlation between the residuals. This would violate an assumption of independence

X WARIABLE

Linear Regression Appendix

Pearson Correlation Coefficient

$$\rho_{X,Y} = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{\frac{1}{n} \sum (x - \bar{x})(y - \bar{y})}{\sqrt{\frac{\sum (x - \bar{x})^2}{n}} \sqrt{\frac{\sum (y - \bar{y})^2}{n}}} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$\rho = \text{Greek letter "rho"} \qquad \sigma = \text{standard deviation} \\
cov = \text{covariance} \qquad \bar{x} = \text{mean of X}$$

The sum of the distances (error) above the mean has the same absolute value as the distances (error) below the mean.

Error (E)	Square Error (SE)
-2.47	6.1009
-1.37	1.8769
0.83	0.6889
3.58	12.8164
-0.57	0.3249
-3.67	13.4689
Sum:	35.2769

