Mark Scheme Momentum Paper Questions Jan 2002—Jun 2008 (old spec)

Question 4	Q4 Jun 2002	
(a)	velocity vector tangential to path and drawn from the ball, arrow in correct direction ✓	2
	acceleration vector vertically downwards, arrow drawn and in line with ball ✓	
(b) (i)	$s = \frac{1}{2} gt^2$ gives $t = \sqrt{\frac{2y}{g}} = \sqrt{\frac{2 \times 24}{9.8(1)}} $ $\checkmark = 2.2(1)$ s \checkmark	4
(ii)	$v = s/t = 27/2.2(1) \checkmark = 12(.2 \mathrm{m s}^{-1}) \text{ or } 12(.3) \checkmark \text{ (ecf from (b) (i))}$	4
	(answer only gets both marks)	
	Total	6

2

(a) kinetic energy changes to potential energy ✓
potential energy calculated by measuring h ✓
equate kinetic energy to potential energy to find speed ✓

[or use h to find $s \checkmark$ use $g \sin \theta$ for $a \checkmark$ use $v^2 = u^2 + 2as \checkmark$]

[or use h to find $s \checkmark$ time to travel s and calculate $v_{av} \checkmark$ $v = 2v_{av} \checkmark$]

(3)

(b)(i)
$$p = mv = 0.5(0) \times 0.4(0) = 0.2(0) \checkmark \text{ N s (or kg m s}^{-1}) \checkmark$$

(b)(ii) (use of
$$m_p v_p = m_t v_t$$
 gives) 0.002(0) $v = 0.2(0)$ \checkmark
 $v = 100 \text{ m s}^{-1} \checkmark$ (4)

(c)(i) kinetic energy is not conserved ✓

(c)(ii) initial kinetic energy = $\frac{1}{2} \times 0.002 \times 100^2 = 10$ (J) \checkmark final kinetic energy = $\frac{1}{2} \times 0.5 \times 0.4^2 = 0.040$ (J) \checkmark hence change in kinetic energy \checkmark (allow C.E. for value of v from (b))

(c) vary starting height of trolley
[or change angle] ✓
the greater the height the greater the speed of impact ✓

[or alter friction of surface ✓ greater friction, lower speed ✓] (2)

(a)(i) (use of
$$F = ma$$
 gives) $1.8 \times 10^3 = 900 \ a$

$$a = 2.0 \,\mathrm{m \, s^{-2}}$$
 \checkmark

Q2 Jan 2004

(ii) (use of
$$v = u + at$$
 gives) $v = 2.0 \times 8.0 = 16 \text{ m s}^{-1}$
 (allow C.E. for a from (i))

(iii) (use of
$$p = mv$$
 gives) $p = 900 \times 16 \checkmark$
= $14 \times 10^3 \text{ kg m s}^{-1} \text{ (or N s)} \checkmark (14.4 \times 10^3 \text{ kg m s}^{-1})$
(allow C.E. for v from(ii))

(iv) (use of
$$s = ut + \frac{1}{2}at^2$$
 gives) $s = \frac{1}{2} \times 2.0 \times 8^2$
= 64 m \checkmark (allow C.E. for a from (i))

(v) (use of
$$W = Fs$$
 gives) $W = 1.8 \times 10^3 \times 64 \checkmark$
= $1.2 \times 10^5 \text{ J} \checkmark$ (1.15 × 10⁵ J)
(allow C.E. for s from (iv))

[or
$$E_k = \frac{1}{2}mv^2 = \frac{1}{2} \times 900 \times 16^2 \checkmark$$

= 1.2 × 10⁵ J \checkmark
(allow C.E. for v from (ii))] (9)

- (c)(i) decreases ✓ air resistance increases (with speed) ✓
 - (ii) eventually two forces are equal (in magnitude) ✓
 resultant force is zero ✓
 hence constant/terminal velocity (zero acceleration)
 in accordance with Newton's first law ✓
 correct statement and application of Newton's first or second law ✓

 max(5)
 (16)

- (a) kinetic energy not conserved ✓

 [or velocity of approach is equal to velocity of separation] (1)
- (b)(i) (use of p = mv gives) $p = 4.5 \times 10^{-2} \times 60 \checkmark$ = 2.7 kg m s⁻¹ \checkmark

(ii) (use of
$$F = \frac{\Delta(mv)}{\Delta t}$$
 gives) $F = \frac{2.7}{15 \times 10^{-3}} \checkmark$
 $= 180 \text{ N} \checkmark$
[or $a = \frac{v - u}{t} = \frac{60}{15 \times 10^{-3}} = 4000 \text{ (m s}^{-1})$
 $F = (ma) = 4.5 \times 10^{-2} \times 4000 = 180 \text{ N}$] (4)

- (c)(i) 180 N ✓
 (allow C.E. for value of F from (b) (ii))
 in opposite direction (to motion of the club) ✓
 - (ii) body A (or club) exerts a force on body B (or ball) ✓
 (hence) body B (or ball) exerts an equal force on body A (or club) ✓
 correct statement of Newton's third law ✓

 (9)

Ques	stion 5						
(a)	(i)	(change in momentum of A) = $-\checkmark 25 \times 10^3 \checkmark \text{ kg m s}^{-1} \text{ (or N s)} \checkmark$ (change in momentum of B) = $25 \times 10^3 \text{ kg m s}^{-1} \checkmark$ Q5 Jun 2005			4		
	(ii)				4		
(b)			initial vel/m s ⁻¹	final vel/m s ⁻¹	initial k.e./J	final k.e./J	
		truck A	2.5	1.25	62500	15600	4
		truck B	0.67	1.5	6730	33750	
			√	√	✓	✓	
(c)		kinetic ener	etic energy not congress is greater befor by correct calcula	re the collision (o	r less after) ✓		3

Question 1		
(a)	momentum ✓ Q1 Jun 2006	2
(b) (i) (ii)	450 m s ⁻¹ \checkmark in the opposite direction \checkmark $\Delta p = 8.0 \times 10^{-26} \times 900 \checkmark$ $= 7.2 \times 10^{-23} \text{ N s } \checkmark$	4
(c)	force is exerted on molecule by wall to change its momentum molecule must exert an equal but opposite force on wall in accordance with Newton's second or third law	4
	Total	10

Question 6	Q6 Jan 2007		
(a)	momentum is a vector quantity hence the momentum of one trolley is positive and the other negative or momenta cancel	√ √	2
(b) (i)	momentum is conserved or correct use on Newton 3 (hence A must have the same magnitude of velocity after the collision as B but in opposite direction) since masses equal	√ √	4
(ii)	collision is not likely to be elastic hence there is a decreases in E_k or energy lost to other forms (such as heat)	√ √	
(c)	time how long it takes trolley to travel a measured distance divide distance by time	/ / /	3
		Total	9

Que	stion 3				
(a)	(i)	velocity/speed changes or acceleration ✓ Q3 Jan 2	2008		
		the momentum decreases to zero ✓			
		because the wall exerts a force on the water ✓			
		hence water exerts an equal but opposite force on the wall	/	max 5	
		in accordance with Newton's third law ✓			
		correct application of Newton's second law ✓			
	(ii)	force is constant because water flows at a constant rate ✓			
(b)	(i)	(i) (use of $p = mv$)			
		p = 18 × 7.2 ✓		•	
		p = 130 Ns ✓		3	
	(ii)	force = 130 N ✓ (c.e. from (i))			
(c)		magnitude is greater ✓		2	
		because there is a bigger (rate of) change of momentum ✓ or velocity or acceleration			
			Total	10	

Questi	on 3		
(a)		accelerates uniformly/constantly for first 20 s ✓ (quoting numerical value ok)	
		travels at constant speed (of 15 m s ⁻¹) \checkmark Q3 Jun 2008	3
		decelerates (to rest) ✓ (or negative acceleration)	
		(n.b. only need to see uniformly/constant once)	
(b) (i)	(i)	(use of $p = mv$)	
		p = 1200 × 15 ✓	
		p = 18000 N s ✓	
((ii)	rate of change of momentum = 18000/20 = 900 N ✓	4
((iii)	(use of distance = average speed × time)	
		distance = (15 + 0)/2 × 20	
		distance = 150 m ✓	
		Total	7

Question	6	
(a)	potential energy to kinetic energy ✓ (ignore mention of heat/sound)	1
(b) (i)	gain of E_k = loss of E_p	
	$1/_{2} mv^{2} = mgh$ Q6 Jun 2008	
	$1/_{2} \times 250 \times v^{2} = 250 \times 9.81 \times 4.5$	
	$v^2 = 88.29$	
	$v = 9.4 \mathrm{m s^{-1}}$	
	(if use $g = 10 \mathrm{m}\mathrm{s}^{-2}$ then -1 (answer 1.06 $\mathrm{m}\mathrm{s}^{-1}$))	4
(ii)	(use of $p = mv$)	4
	$p = 250 \times 9.4 = 2350 \mathrm{Ns} \checkmark \text{ (if g = 10 m s}^{-2} \text{ then get 2694 N)}$	
(iii)	$(\text{use } m_1 u = m_2 v)$	
	2350 = (250 + 2000) v ✓	
	$v = 1.0(4) \mathrm{m s^{-1}} \checkmark (\text{if } g = 10 \mathrm{m s^{-2}} \text{then get } 1.06 \mathrm{m s^{-1}})$	
	if omit 250 kg then -1 (answer 1.18 m s ⁻¹)	
(c) (i)	(use of $E_k = \frac{1}{2}mv^2$)	
	CE from (b) (iii)	
	$E_k = \frac{1}{2} \times 2250 \times 1.042 \checkmark = 1200 \text{ J (1217 J)} \checkmark$	
(ii)	(use of work done = force × distance) (can use force = mass × acceleration)	4
	1217 = F × 0.25 ✓	
	F = 4900 N ✓	
	if include loss of E_p then get 26940 N and full credit	
	if use loss of E_p but ignore E_k then -1 mark	
(d)	resistive force from the ground will increase ✓	2
	as pile gets deeper in the ground ✓	2
	Total	11