

Portable High Energy Experiment (PHEE) DAQ

Team Members: Ethan Barnes

John Sabra

Sang Hoon Chung

Sponsor: Michelle Chatter

Sandia National Laboratories

TA: Logan Smith

Project Summary

Problem statement:

- The United States military possesses about 5500 nuclear weapons in its stockpile
- The security of these weapons and equipment is paramount when they are transported for storage and testing
- Sandia is interested in detecting explosive-type events in sensitive areas
 - Exact application for DAQ system may not be disclosed

The Portable High Energy DAQ System will:

- Protect government equipment by detecting and identifying explosives within a 100 ft range
 - Utilizes accelerometer and pressure sensor to classify if an explosive event occurred
- Write output to removable storage device
 - User will be able to refer to and perform analysis on past data

Project/Subsystem Overview

Major Project Changes for 404

Role Changes

Member	Before	After
Johnny	Assigned cloud storage connection	No longer working on cloud storage
Ethan	N/A	N/A
Sang Hoon	Not assigned cloud storage connection	Now working on cloud storage

Subsystem Changes

Subsystem	Before	After	
Portable Power Supply	N/A	N/A	
Microcontroller PCB	Using sensors for sound, pressure, and acceleration	No longer using sound sensor (only using pressure sensor and accelerometer)	
Application	 Creating Android application Using Google Cloud Using Kivy framework 	 Creating GUI application for PC Using Google Drive USing PyQt framework 	

Project Timeline

Subsystem	Status	
Portable Power Supply	 PCB design is being finalized and made ready for ordering PCB must be validated 	
Microcontroller PCB	 Most microcontroller programming complete PCB needs to be designed and validated 	
Application	 The application is functional and shows the resulting values Need to get more accurate result and display multiple signals, change the framework, and add more metrics 	

Portable Power Supply

Johnny Sabra

Accomplishments since 403 10 hrs of effort	Ongoing progress/problems and plans until the next presentation	
Remaining parts for the PCB have been ordered	 Net antenna via design rule violation is occurring between top and bottom layer on the battery charger IC footprint Order PCB layout and begin soldering parts for testing 	

Portable Power Supply

Johnny Sabra

Portable Power Supply Layout in Altium

PCB design tested on breadboard

- DC-DC Buck converter regulates voltage to 3.3 V at load current from 40 to 100 mA
- Battery Charger IC did not have correct footprint on breakout board
- Design was tested with equivalent 1-cell Lipo battery charger for validation
 - Charging status LED worked
 - Lipo-battery charged at a consistent rate

Microcontroller PCB

Ethan Barnes

Accomplishments since 403 10 hrs of effort	Ongoing progress/problems and plans until the next presentation
No new accomplishments since 403	 Working on PCB schematic in Altium SD card reader schematic is in progress Routing connections from sensors to MCU and MCU to SD card reader Considering circuit for sensor inputs (voltage divider, unity gain buffer, etc.)

Microcontroller PCB

Ethan Barnes

SD Card Reader Schematic in Altium

Works:

- MCU can take inputs using built-in ADC
- MCU can write ADC inputs to SD card in desired format

Doesn't Work:

- Write speed to SD card is ~2 ksps and needs to be ~100 ksps
- SDIO currently one works with 1-bit data transfer rather than 4-bit
- Algorithm to detect explosive events is not robust (determines output based on threshold and not change in values)

Application

Sang Hoon Chung

Accomplishments since 403 10 hrs of effort	Ongoing progress/problems and plans until the next presentation	
 Read multiple signals from sensors Upload the data from SD card to Cloud Storage and vice versa. 	Change the Framework from Kivy to PyQt which can be used to create cross-platform mobile and desktop applications.	

Application

Sang Hoon Chung

Works

- After run the application, the app connects to Google Drive and show the .csv files.
- When we select the available csv file to analyze it shows the signal.
- We can set the time range to look over it.
- App shows Max, min, avg points, FFT frequency, and presence of the explosion.

Doesn't work

- There were limitations to apply more functions and design the application for instance, show multiple signals(more than 2).
- Kivy Framework has a limitation for design(optimization for PC), so try to change PyQt for UI.

Parts Ordering Status

Subsystem	Ordered and Not Received	Need to Order	
Portable Power Supply	 Most components for PCB Resistors, capacitors, etc. 	• PCB	
Microcontroller PCB	Bare MCU	 PCB Resistors, capacitors, etc. Components for sensor input circuit 	

We expect to receive the Portable Power Supply components as well as the bare MCU within a week

The Portable Power Supply PCB is expected to be ordered by the end of this week, so we should receive it within 2 weeks

The Microcontroller PCB and its components are expected to be ordered within 2 weeks, so we should receive it within 3 weeks

Execution

PCB design complete

Zero design violations in

Change Framework to

Check the application

shows whole sensors data

signals on GUI

PyQt and Design multiple

Altium

Ethan

Sang

Hoon

Zero design violations in

Finalizing the program

and adopting the software

Check the software works

software itself as .exe file

when we download the

Altium

Can be powered with 3.3V source and can read from

sensors and write to SD card at more than 2 kHz

supply regulating battery voltage to 3.3 and 5V

Integrated PCB is

Validate and test

subsystems

communication between

Application can read data

from SD card in desired

format (time, explosion,

pressure, acceleration)

under load

portable with power

	T _® TEXAS A&M UNIV	ERSITY	Validation		
	9/10	9/24	10/8	10/22	11/5
Johnny	PCB Ordered	Power supply PCB validated	Charging feature validated	Integrated PCB design complete	Integrated PCB is functional
	Zero design violations in Altium	Regulates 3.3 V under 40mA load and 5 V under 120 mA load (estimated load current of MCU)	Can charge a 3-cell lipo battery at 1C rate		

PCB is functional

Powered with 3.3 V

card at ~2 kHz

test pending

friendly

of GUI

source, can write to SD

Accelerometer tested

Make GUI more user-

Ask opinions to other

people about the design

against gravity (100 mV/g), Pressure sensors

SDIO 4-bit works

1 bit each

All 4 SDIO data pins write

Add more metrics to

Add more metrics and

check availability of the

Display via the application

display for data

at next column

result

ENGINEERING TEXAS A&M UNIVERSITY	Validation
----------------------------------	------------

AIM ENGIN	MEERING M UNIVERSITY		valida	tion
040	0/04	40/0	40/00	44

AM ENGINEERING TEXAS A&M UNIVERSITY	Validatio
-------------------------------------	-----------

Thank you!

Questions?