

Photoacoustic imaging of controlled blood oxygenation within a programmable dynamic flow system

M Gehrung, J Joseph, SE Bohndiek, J Brunker

Department of Physics, Cavendish Laboratory & Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.

Introduction

- Blood oxygenation (sO₂) is an important physiological measure to assess hemodynamics on the macro- and micro-scales.
- Established methods for estimation of sO₂ include near-infrared spectroscopy¹ and calculation from measurements of the partial pressure of oxygen.²
- Wavelength-dependent photoacoustic (PA) signal intensities can be used to monitor sO2 values spatiotemporally in vascular structurés.
- sO₂ measurements with PA are perturbed by processes such as spectral coloring and inhomogeneous light fluence distributions.
- sO₂ estimation approaches would benefit from an in-depth understanding of experimental ground truth.

Aim

 To design and implement a phantom platform for investigation of the relationship between blood oxygenation measured using PA and ground truth oxygenation.

5000 **Inside MSOT** Cylindrical agar phantom **Figure 2:** Comparison of theoretical spectra of oxyhemoglobin (HbO₂) and deoxyhemoglobin (Hb) with measured start and endpoint spectra from MSOT. Good agreement can be observed in general, except for dip omitted at around 725 nm. • sO₂ values were calculated from pO₂ values using against MSOT-determined sO, values (Fig. 3). Post-phantom pO₂ probe Pre-phantom pO₂ probe **5b 5a OxyLite Pro Depressurisation and Oxford Optronics** Air bubble removal **Spectrometer** AvaSpec-2048 **Avantes Arduino UNO R3** PC Flow cell 1767008510-40 Syringe driver Peristaltic pump **CTP 100** Fischer Scientific

Figure 1: Overview of the flow phantom. (1) Injection site for introducing oxygenated blood into the flow system, and for subsequently deoxygenating the blood using sodium hydrosulfite delivered using the computer controlled syringe driver; (2) peristaltic pump provides blood circulation; (3) spectra are recorded as the blood passes through a flow cell; (4) air bubbles are released via a three-way tap; (5) pO₂ measurements are made before (a) and after (b) the blood passes through the agar phantom immersed in the MSOT (6).

Methods

- The programmable dynamic flow system was introduced into a commercial PA system (iThera Medical inVision 256-TF).
- Mouse blood (~5 mL) was 100% oxygenated with hydrogen peroxide, introduced via an injection site. and air bubbles were removed by a depressurization vent.
- Data acquisition was performed synchronously. PA signals were acquired at 7 wavelengths (700 to 875 nm, no averaging).
- After spectroscopy and pO₂ readout stabilization, sodium hydrosulfite was introduced for deoxygenation.

Results

 We compared the theoretical spectra of oxygenated and deoxygenated blood with the start and end spectra measured in the MSOT (Fig. 2)

the Severinghaus and Kelman models and plotted

• At lower sO₂ levels, oxygenation was overestimated in the tube center, as shown in Fig. 4.

Figure 4: Evolution of sO₂ values measured over the course of the experiment where blood was progressively deoxygenated. sO₂ values were measured in each pixel across the tube diameter.

 Inner regions of the tube are susceptible to spectral coloring: for low sO2, high absorption by Hb reduces light penetration especially of shorter wavelengths, thus reducing the signal in the tube centre, causing elevation in the calculated proportion of HbO₂.

Conclusion

- A programmable dynamic flow phantom was used to provide insights into the relationship between blood oxygenation measured using PA and ground truth oxygenation obtained by spectroscopy and/or pO₂.
- By improving the accuracy of the recovered spectra (e.g. fluence correction), we will improve the reproducibility of sO₂ measurements in order to derive reliable information about blood and tissue oxygenation.

References

[1] Cope, M., 1991. The development of a near infrared spectroscopy system and its application for non invasive monitoring of cerebral blood and tissue oxygenation in the newborn infants

(Doctoral dissertation, University of London).
[2] Breuer, H.W., Groeben, H., Breuer, J. and Worth, H., 1989. Oxygen saturation calculation procedures: a critical analysis of six equations for the determination of oxygen saturation. Intensive care medicine, 15(6), pp.385-389.

Acknowledgements: This work was funded by the Wellcome Trust, the University of Cambridge, and Cancer Research UK.We thank the CRUK CI BRU core facility for their support.

Flow direction

