

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE

UltraFast Co-Pack IGBT

Features

- UltraFast: Optimized for high operating up to 80 kHz in hard switching, > 200 kHz in resonant mode
- · Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than previous generation
- IGBT co-packaged with HEXFRED® ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations
- · Industry standard TO-220 Full-Pak

· Lead-Free **Benefits**

- Generation 4 IGBTs offer highest efficiencies available
 IGBTs optimized for specific application conditions
- HEXFRED[®] diodes optimized for performance with IGBTs Minimized recovery characteristics require less/no snubbing

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	600	V
Ic @ Tc = 25°C	Continuous Collector Current	6.8	
Ic @ Tc = 100°C	Continuous Collector Current	3.9	
Icm	Pulsed Collector Current ①	27	7 A
I _{LM}	Clamped Inductive Load Current ②	27	
I _F @ T _C = 100°C	Diode Continuous Forward Current	3.9	
I _{FM}	Diode Maximum Forward Current	27	
V _{ISOL}	RMS Isolated Voltage, Terminal to case, t=1min	2500	V
V _{GE}	Gate-to-Emitter Voltage	± 20	
P _D @ T _C = 25°C	Maximum Power Dissipation	25	W
P _D @ T _C = 100°C	Maximum Power Dissipation	10]
TJ	Operating Junction and	-55 to +150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 sec	300 (0.063 in. (1.6mm) from case)	
	Mounting Torque, 6-32 or M3 Screw	10 lbf•in (1.1 N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
Reuc	Junction-to-Case - IGBT	_	5.0	
Reuc	Junction-to-Case - Diode	_	9.0	°CM
ReJA	Junction-to-Ambient, typical socket mount		65]
₩t	Weight	2.1 (0.075)		g (oz)

International

TOR Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Мах.	Units	Condition	ıs
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage ③	600	_	_	٧	$V_{GE} = 0V, I_{C} = 250\mu A$	
DV _{(BR)ŒS} /DT _J	Temperature Coeff. of Breakdown Voltage	_	0.54	_	V/°C	V_{GE} = 0V, I_{C} = 1.0mA	
V _{CE(on)}	Collector-to-Emitter Saturation Voltage	_	2.15	2.6		I _C = 5.0A	V _{GE} = 15V
		_	2.61	_	V	I _C = 8.5A	See Fig. 2, 5
		_	2.30	_		I _C = 5.0A, T _J = 150°C	
V _{GE(th)}	Gate Threshold Voltage ④	3.0	_	6.0		$V_{CE} = V_{GE}$, $I_C = 250 \mu A$	
DV _{GE(th)} /DT _J	Temperature Coeff. of Threshold Voltage	_	-8.7	_	mV/°C	V_{CE} = V_{GE} , I_{C} = 250 μ A	
g fe	Forward Transconductance	2.8	4.2	_	S	$V_{CE} = 100 V$, $I_{C} = 5.0 A$	
I _{CES}	Zero Gate Voltage Collector Current	_	_	250	μΑ	$V_{GE} = 0V, V_{CE} = 600V$	
		_	_	1000		$V_{GE} = 0V$, $V_{CE} = 600V$,	TJ = 150°C
V _{FM}	Diode Forward Voltage Drop	_	1.5	1.8	V	I _C = 4.0A	See Fig. 13
		_	1.4	1.7		I _C = 4.0A, T _J = 125°C	
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nΑ	V _{GE} = ±20V	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Qg	Total Gate Charge (turn-on)		15	22		I _C = 5.0A	
Qge	Gate - Emitter Charge (turn-on)	_	2.6	4.0	nC	V _{CC} = 400V See Fig. 8	
Qgc	Gate - Collector Charge (turn-on)	_	5.8	8.7		V _{GE} = 15V	
t _{d(on)}	Turn-On Delay Time	_	40	_		T _J = 25°C	
tr	Rise Time	_	16	_	ns	I _C = 5.0A, V _{CC} = 480V	
t _{d(off)}	Turn-Off Delay Time	_	87	130		V _{GE} = 15V, R _G = 100W	
t _f	Fall Time	_	140	210		Energy losses include "tail" and	
Eon	Turn-On Switching Loss	_	0.14	_		diode reverse recovery.	
E _{off}	Turn-Off Switching Loss	_	0.12	_	mJ	See Fig. 9, 10, 18	
Ets	Total Switching Loss	_	0.26	0.33			
t _{d(on)}	Turn-On Delay Time	_	38	_		T _J = 150°C, See Fig. 11, 18	
tr	Rise Time	_	18	_	ns	I _C = 5.0A, V _{CC} = 480V	
t _{d(off)}	Turn-Off Delay Time	_	95	_		V _{GE} = 15V, R _G = 100W	
t _f	Fall Time	_	250	_		Energy losses include "tail" and	
Ets	Total Switching Loss	_	0.45	_	mJ	diode reverse recovery.	
LE	Internal Emitter Inductance	_	7.5	_	nΗ	Measured 5mm from package	
Cies	Input Capacitance	_	270	_		V _{GE} = 0V	
Coes	Output Capacitance	_	21	_	pF	V _{CC} = 30V See Fig. 7	
Cres	Reverse Transfer Capacitance	_	3.5	_		f = 1.0MHz	
t _{rr}	Diode Reverse Recovery Time	_	28	42	ns	T _J = 25°C See Fig.	
		_	38	57		T _J = 125°C 14 I _F = 4.0A	
Irr	Diode Peak Reverse Recovery Current	_	2.9	5.2	Α	T _J = 25°C See Fig.	
		_	3.7	6.7		T _J = 125°C 15 V _R = 200V	
Qrr	Diode Reverse Recovery Charge	_	40	60	nC	T _J = 25°C See Fig.	
		_	70	105		T _J = 125°C 16 di/dt = 200A/μs	
di _{(rec)M} /dt	Diode Peak Rate of Fall of Recovery	_	280	_	A/µs	T _J = 25°C See Fig.	
	During t _b	_	235	_		T _J = 125°C 17	

Details of note 1 through 4 are on the last page

Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of fundamental)

Fig. 2 - Typical Output Characteristics

Fig. 3 - Typical Transfer Characteristics

Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature

Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

International TOR Rectifier

IRG4IBC10UDPbF

Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

Fig. 9 - Typical Switching Losses vs. Gate Resistance

Fig. 10 - Typical Switching Losses vs. Junction Temperature

Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

Fig. 12 - Turn-Off SOA

Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

Fig. 14 - Typical Reverse Recovery vs. di_f/dt

Fig. 16 - Typical Stored Charge vs. dif/dt

Fig. 15 - Typical Recovery Current vs. di_f/dt

Fig. 17 - Typical di_{(rec)M}/dt vs. di_f/dt

 $\label{eq:Fig. 18c} \textbf{Fig. 18c} \mbox{ - Test Waveforms for Circuit of Fig. 18a,} \\ \mbox{ Defining E_{on}, $t_{\text{d(on)}}$, t_{r}}$

Fig. 18e - Macro Waveforms for Figure 18a's Test Circuit

Fig. 19 - Clamped Inductive Load Test Circuit

Fig. 20 - Pulsed Collector Current Test Circuit

International

TOR Rectifier

TO-220 Full-Pak Package Outline

Dimensions are shown in millimeters (inches)

TO-220 Full-Pak Part Marking Information

Notes

- \odot Repetitive rating: V_{GE}=20V; Pulse width limited by maximum junction temperature (figure 20)
- $2V_{CC}$ =80%(V_{CES}), V_{GE} =20V, L=10 μ H, R_{G} = 100 Ω (figure 19)
- ③ Pulse width ≤ 80µs, duty factor ≤ 0.1%.
- @Pulse width 5.0µs, single shot.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.07/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/