CS 314 Principles of Programming Languages

Lecture 5: Syntax Analysis (Parsing)

Prof. Zheng Zhang

Class Information

- Homework 1 is being graded now. The sample solution will be posted soon.
- Homework 2 will be posted tomorrow.

Review: Context Free Grammars (CFGs)

- A formalism to for describing languages
- A CFG $G = \langle T, N, P, S \rangle$:
 - 1. A set T of terminal symbols (tokens).
 - 2. A set N of nonterminal symbols.
 - 3. A set P production (rewrite) rules.
 - 4. A special start symbol S.
- The language L(G) is the set of sentences of terminal symbols in T* that can be derived from the start symbol S:

$$L(G) = \{ w \in T^* \mid S \Rightarrow^* w \}$$

Elements of BNF Syntax

Terminal Symbol: Symbol-in-Boldface

Non-Terminal Symbol: Symbol-in-Angle-Brackets

Production Rule: Non-Terminal ::= Sequence of Symbols

or

Non-Terminal ::= Sequence | Sequence |

• •

```
Example: terminal non-terminal

...

<if-stmt>::=if <expr> then <stmt>

<expr> ::= id <= id
 <stmt> ::= id := num

terminal
```

Review: Context Free Grammar

Context free grammar

Not a context free grammar

CFGs are rewrite systems with restrictions on the form of rewrite (production) rules that can be used. The left hand side of a production rule can only be **one non-terminal symbol**.

A Language May Have Many Grammars

Consider G':

The Original Grammar *G*:

1.
$$<$$
 letter $> ::= A \mid B \mid C \mid ... \mid Z$

2.
$$< digit > := 0 | 1 | 2 | ... | 9$$

3.
$$< ident > := < letter > |$$

5.
$$< stmt > := < ident > := 0$$

1.
$$<$$
 letter $> ::= A | B | C | ... | Z$

2.
$$< digit > := 0 | 1 | 2 | ... | 9$$

3.
$$<$$
 identifier $> := <$ letter $> |$

6.
$$< \text{stmt} > := < \text{identifier} > := 0$$

Review: Grammars and Programming Languages

Many grammars may correspond to one programming language.

Good grammars:

- Captures the logic structure of the language
 - ⇒ structure carries some semantic information (example: expression grammar)
- Use meaningful names
- Are easy to read
- Are unambiguous

•

Review: Ambiguous Grammars

"Time flies like an arrow; fruit flies like a banana."

A grammar G is ambiguous iff there exists a $w \in L(G)$ such that there are:

- two distinct parse trees for w, or
- two distinct leftmost derivations for w, or
- two distinct rightmost derivations for w.

We want a unique semantics of our programs, which typically requires a unique syntactic structure.

Review: Arithmetic Expression Grammar

Two parse trees!

Review: Arithmetic Expression Grammar

Parse "8 - 3 * 2":

Two Parse Trees —> Two leftmost derivations!

leftmost derivation		
<expr></expr>	\Rightarrow_{L}	
<expr> - <expr></expr></expr>	\Rightarrow_{L}	
<d>- <expr></expr></d>	\Rightarrow_{L}	
<d>- <expr> * <expr></expr></expr></d>	$\Rightarrow_{\mathbb{L}}$	
<d>- <d> * <expr></expr></d></d>	⇒L	
<d>- <d> * <d></d></d></d>		

leftmost derivation		
<expr></expr>	\Rightarrow_{L}	
<expr> * <expr></expr></expr>	\Rightarrow_{L}	
$<$ expr $>$ - $<$ expr $>$ $*$ $<$ expr $> \Rightarrow_L$		
<d>- <expr> * <expr></expr></expr></d>	⇒L	
<d>- <d> * <expr></expr></d></d>	⇒L	
<d>- <d> * <d></d></d></d>		

Review: Ambiguity

How to deal with ambiguity?

- Change the language Example: Adding new terminal symbols as delimiters. Fix the *dangling else*, *expression* grammars.
- Change the grammar Example: Impose **associativity** and **precedence** in an *arithmetic expression* grammar.

Changing the Grammar to Impose Precedence

Original Grammar G

Modified Grammar G'

Grouping in Parse Tree Now Reflects Precedence

Modified Grammar G'

Only One Possible Parse Tree

Precedence

- Low Precedence:
 Addition + and Subtraction -
- Medium Precedence:
 Multiplication * and Division
- *Highest Precedence:* Exponentiation ^

```
< start > ::= < expr >
< expr > :: = < expr > + < expr > |
                 < expr> - < expr>
                 < term >
< term > ::= < term > * < term > |
                  < term > / < term > |
                  < d > | < 1 >
< d> :: = 0 | 1 | 2 | 3 | ... | 9
<1> ::= \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \underline{\ldots \mid \mathbf{z}}
```

Still Have Ambiguity...

How about 3 - 2 - 1?

$$(3-2)-1)$$
 OR? $(3-(2-1))$

Still Have Ambiguity...

How about 3 - 2 - 1?

Still Have Ambiguity...

- Grouping of operators of same precedence not disambiguated.
- Non-commutative operators: only one parse tree correct.

Imposing Associativity

Same grammar with left / right recursion for -:

Our choices:

$$< \exp r > :: = < d > - < \exp r > |$$

 $< d >$
 $< d > :: = 0 | 1 | 2 | 3 | | 9$

Or:

$$< expr > :: = < expr > - < d > |$$

 $< d >$
 $< d >$
 $< d > :: = 0 | 1 | 2 | 3 | ... | 9$

Which one do we want for - in the calculator language?

Associativity

- Deals with operators of same precedence
- Implicit grouping or parenthesizing
- Left to right: *,/,+,-
- Right to left: ^

Complete, Unambiguous Arithmetic Expression Grammar

Original Ambiguous Grammar G

Unambiguous Grammar G

Abstract versus Concrete Syntax

Concrete Syntax:

Representation of a construct in a particular language, including placement of keywords and delimiters.

Abstract Syntax:

Structure of meaningful components of each language construct.

Example:

Consider A * B - C:

Concrete Syntax Tree

Abstract Syntax Tree (AST)

Abstract versus Concrete Syntax

Same abstract syntax, different concrete syntax:

Pascal while
$$x \Leftrightarrow A[i]$$
, do $i := i + 1$ end

C while
$$(x != A[i])$$

 $i = i + 1;$

Regular vs. Context Free

- All Regular languages are context free languages
- Not all context free languages are regular languages

Example:

Question:

Is $\{a^n b^n | n \ge 0\}$ a context free language?

Regular vs. Context Free

$$\langle Y \rangle ::= \mathbf{a} \langle Y \rangle \mathbf{b} \mid \mathbf{\epsilon}$$

Regular vs. Context Free

- All Regular languages are context free languages
- Not all context free languages are regular languages

Example:

$$::= | $::= a | b$ is equivalent to: $a b* | c^+ ::= c | c$$$

Question:

Is
$$\{a^n b^n | n \ge 0\}$$
 a context free language?
Is $\{a^n b^n | n \ge 0\}$ a regular language?

Regular Grammars

CFGs with restrictions on the shape of production rules.

Left-linear:

$$::= a | b$$

 $::= a b$

Right-linear:

Complexity of Parsing

Classification of languages that can be recognized by specific grammars.

Complexity:

Regular grammars	DFAs	O(n)
LR grammars	Kunth's algorithm	O(n)
Arbitrary CFGs	Earley's algorithm	$\mathbf{O}(n^3)$
Arbitrary CSGs	LBAs	P-SPACE COMPLETE

Reading:

Scott Chapter 2.3.4 (for LR parser) and Chapter 2.4.3 for language class.

Earley, Jay (1970), "An efficient context-free parsing algorithm", Communications of the ACM.

Top - Down Parsing - LL(1)

Basic Idea:

- The parse tree is constructed from the root, expanding non-terminal nodes on the tree's frontier following a **leftmost** derivation.
- The input program is read from **left** to right, and input tokens are read (consumed) as the program is parsed.
- The next non-terminal symbol is replaced using one of its rules. The particular choice <u>has to be unique</u> and uses parts of the input (partially parsed program), for instance the first **token** of the remaining input.

Top - Down Parsing - LL(1) (cont.)

Example:

$$S := a S b | \varepsilon$$

How can we parse (automatically construct a leftmost derivation) the input string **a a a b b b** using a PDA (push-down automaton) and only the first symbol of the remaining input?

INPUT: | a a a b b b eof

 $S := a S b | \varepsilon$

S

Remaining Input: a a a b b b

Sentential Form:

S

Applied Production:

S

 $S := a S b | \varepsilon$

Remaining Input: a a a b b b

Sentential Form: a S b

Applied Production: S := a S b

$$S := a S b | \varepsilon$$

Remaining Input:

a a b b b

Match!

Sentential Form: a S b

a

S

b

Applied Production:

$$S := a S b | \varepsilon$$

Remaining Input: a a b b b

Sentential Form: a S b

Applied Production:

b

 $S := a S b | \varepsilon$

Remaining Input: a a b b b

Sentential Form: a a S b b

Applied Production: S := a S b

a

S

b

$$S := a S b | \varepsilon$$

Remaining Input:

a a b b b

Sentential Form: a a S b b

Applied Production:

b

b

$$S := a S b | \varepsilon$$

Remaining Input: a b b b

Sentential Form: a a S b b

Applied Production:

S

b

b

 $S := a S b | \varepsilon$

Remaining Input: a b b b

Sentential Form: a a a S b b b

Applied Production: S := a S b

 $S := a S b | \varepsilon$

Remaining Input:

a b b b

Sentential Form: a a a S b b b

 $S := a S b | \varepsilon$

Remaining Input: b b b

Sentential Form: a a a S b b b

$$S := a S b | \varepsilon$$

Remaining Input: b b b

Sentential Form: a a a b b b

Applied Production: $S := \varepsilon$

 $S := a S b | \varepsilon$

Remaining Input: b b b

Sentential Form: a a a b b b

 $S := a S b | \varepsilon$

Remaining Input: b b

Sentential Form: a a a b b b

 $S := a S b | \varepsilon$

Remaining Input:

b
b

Sentential Form: a a a b b b

$$S := a S b | \varepsilon$$

Remaining Input: b

Sentential Form: a a a b b b

 $S := a S b | \varepsilon$

Remaining Input: b

Sentential Form: a a a b b b

$$S := a S b | \varepsilon$$

Remaining Input:

Sentential Form: a a a b b b

Next Lecture

Next Time:

• Read Scott, Chapter 2.3.1 - 2.3.2 (and the materials on companion site)