15.053 Tutorial 04

LP Transformation Tricks

Table of Contents

•	Introduction & definitions	slide 3
•	Example 1: Absolute value constraints	slides 4-6
•	Example 2: Maximin and minimax problems	slides 7-8
•	Example 3: Maximin objective function	slides 9-10
•	Example 4: Ratio constraints	slide 11
•	Summarv	slide 12

Introduction and Definitions

- The tutorial will show three different types of non-linear constraints that can be transformed into linear constraints:
 - Absolute value constraints, in which the absolute value of a linear combination of decision variables is constrained
 - Maximizing minimum constraints (and vice versa), in which we find the largest value of a "min" function (taking the minimum value from a set), or find the smallest value of a "max" function (taking the maximum value from a set)
 - Ratio constraints, in which the constraint is non-linear due to fractional coefficients

Marketing Problem (1 of 2)

From Tutorial 02: Algebraic Formulations

Problem Statement

 Begin with the same marketing problem as seen in Tutorial 02, plus an absolute value constraint:

• min
$$500 x_1 + 200 x_2 + 250 x_3 + 125 x_4$$

s.t. $50,000 x_1 + 25,000 x_2 + 20,000 x_3 + 15,000 x_4 \ge 1,500,000$
 $0 \le x_1 \le 20$
 $0 \le x_2 \le 15$
 $0 \le x_3 \le 10$
 $0 \le x_4 \le 15$
 $|\mathbf{x}_1 + \mathbf{x}_2 - \mathbf{x}_3 - \mathbf{x}_4| \le 5$

	TV	Radio	Mail	Newspaper
Audience Size	50,000	25,000	20,000	15,000
Cost/Impression	\$500	\$200	\$250	\$125
Maximum # Ads	20	15	10	15

Task

Solve with the added absolute value constraint (total number of ads in electronic media is within 5 of the number in paper-based media), and solve

Marketing Problem (2 of 2)

- There is a "trick" we can use to change the constraint |x₁ + x₂ x₃ x₄| ≤ 5 into a linear constraint
- $|\mathbf{x}_1 + \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4| \le 5$ is equivalent to a combination of the following two constraints:
 - $x_1 + x_2 x_3 x_4 \le 5$ and $-x_1 x_2 + x_3 + x_4 \le 5$
- The new problem is linear, and still equivalent to the original non-linear program:

• min
$$500 x_1 + 200 x_2 + 250 x_3 + 125 x_4$$
 s.t. $50,000 x_1 + 25,000 x_2 + 20,000 x_3 + 15,000 x_4 \ge 1,500,000$ $0 \le x_1 \le 20, \ 0 \le x_2 \le 15, \ 0 \le x_3 \le 10, \ 0 \le x_4 \le 15$ $x_1 + x_2 - x_3 - x_4 \le 5$ $-x_1 - x_2 + x_3 + x_4 \le 5$

What do you mean by equivalent?
The two problems look different to me...

The problems are equivalent in the sense that any **feasible solution** for the non-linear program is feasible for the linear program, and vice versa. That is, **the feasible regions are exactly the same**

I'm extinct... The set of living dinosaurs is equivalent to a linear program with no feasible solutions!

Absolute Value Constraints

- We now know how to transform constraints of the form | ax₁ +bx₂ | ≤ c
- However, our trick will not work on absolute value constraints of the form
 | ax₁ +bx₂ | ≥ c
 - We can still transform this into two equivalent constraints, but the feasible region will no longer be convex, meaning we can't solve the LP by traditional methods
 - For example, try out $| x_1 x_2 | \ge 2$:
 - This is equivalent to $x_1 x_2 \ge 2$ OR $-x_1 + x_2 \ge 2$, which can't be made linear:

- The feasible region is in yellow, and it's in two separate pieces
- Recall from class that a linear programming feasible region is always connected, and convex In fact, it's always convex: if two points are feasible, then so is the line segment joining the two points.

Maximin Problem (1 of 2)

• The next constraint we will make linear appears when we maximize the value of a min function, which looks like min {3x - 2, -2x + 2}

Problem Statement

• maximize $min \{3x - 2, -2x + 2\}$ s.t. $0 \le x \le 4$

Task

- Turn this into an LP
- To start, we can look at the graph of the problem shown above, and identify the minimum value of the two functions for every value of x (shown here in blue):

Maximin Problem (2 of 2)

- Looking at these minimum values, we then find the maximum value of the blue line (shown as a yellow dot) to solve the problem
- The max of the min has a value of 2/5 at x = 4/5:

Marketing Problem (1 of 2)

Problem Statement

 Begin with the same marketing problem as seen in Tutorial 02, but with a new objective function:

```
• max min \{50x_1, 25x_2, 20x_3, 15x_4\}

s.t. 50,000 x_1 + 25,000 x_2 + 20,000 x_3 + 15,000 x_4 \ge 1,500,000

0 \le x_1 \le 20

0 \le x_2 \le 15

0 \le x_3 \le 10

0 \le x_4 \le 15
```

• The minimum of $\{50x_1, 25x_2, 50x_3, 15x_4\}$ is the smallest number of persons reached by one of the four media (in 1000's)

Task

 Formulate this as an LP whose solution will find the maximum value of z such that each medium reaches at least 1000z people Try to figure this out yourself before looking at the answer!

Marketing Problem (2 of 2)

- Now, we want to maximize z subject to the constraint that z is at most the number of ads seen for each media
- z is upper bounded by each expression in the min function, which we can represent with the constraints:

•
$$z \le 50x_1$$

 $z \le 25x_2$
 $z \le 20x_3$
 $z \le 15x_4$

Then, we can maximize z to get our final LP:

```
• max z s.t. 50 x_1 + 25 x_2 + 20 x_3 + 15 x_4 \ge 1,500 0 \le x_1 \le 20, 0 \le x_2 \le 15, 0 \le x_3 \le 10, 0 \le x_4 \le 15 z \le 50x_1, z \le 25x_2, z \le 20x_3, z \le 15x_4
```

 Note: This technique works whenever you need to maximize the minimum ("maximin") of linear functions. A similar trick works whenever you want to minimize the maximum ("minimax") of linear functions

Ratio Constraints

Problem Statement

- Consider the Marketing Problem again
- Suppose that we wanted to add the ratio constraint that at least 20% of all ads had to be by mail:

•
$$x_1/(x_1 + x_2 + x_3 + x_4) \ge .2$$

Task

- Formulate this as an LP
- The "trick" here is to multiply by the denominator so that the constraint becomes linear:
 - $x_1 \ge .2 (x_1 + x_2 + x_3 + x_4)$
 - $.8x_1 .2 x_2 .2 x_3 .2 x_4 \ge 0$
- Note: You can only do this if you know that the denominator's value is positive for all possible x
 - If you multiply both sides of an inequality by a negative number, the direction of the inequality reverses
 - The new constraint is valid if x = 0, so we don't need to consider that case

Summary on Non-linear Constraints

- Most of the time, if there is a constraint or objective that isn't linear, it cannot be transformed into a linear constraint or objective
- In the 3 cases presented above, transformations into LPs *can* be done:
 - Certain absolute value constraints
 - Remember to check if the transformation works by graphing the feasible region!
 - Maximizing the minimum or mimizing the maximum
 - Ratio constraints

