How MagNet: Machine Learning Framework for Modeling Power Magnetic Material Characteristics

Haoran Li[®], Student Member, IEEE, Diego Serrano[®], Member, IEEE, Thomas Guillod[®], Member, IEEE, Shukai Wang[®], Student Member, IEEE, Evan Dogariu[®], Andrew Nadler, Student Member, IEEE, Min Luo[®], Senior Member, IEEE, Vineet Bansal[®], Niraj K. Jha[®], Fellow, IEEE, Yuxin Chen[®], Senior Member, IEEE, Charles R. Sullivan[®], Fellow, IEEE, and Minjie Chen[®], Senior Member, IEEE

Abstract—This article applies machine learning to power magnetics modeling. We first introduce an open-source database—MagNet—which hosts a large amount of experimentally measured excitation data for many materials across a variety of operating conditions, consisting of more than 500 000 data points in its current state. The processes for data acquisition and data quality control are explained. We then demonstrate a few neural network-based power magnetics modeling tools for modeling the core losses and B-H loops. The neural network allows multiple factors that may influence the magnetic characteristics to be modeled in a unified

is applied to the training of neural network models to further reduce the data size requirement while maintaining sufficient model accuracy.

Index Terms—Core loss, data-driven method, hysteresis loop, machine learning, neural network, open-source database, power magnetics.