Learning from Data

Raghavendra Selvan

Erik Dam

Data Science Lab Faculty of SCIENCE raghav@di.ku.dk

Overview of the course

Lecture plan

	Monday	Tuesday	Wednesday	Thursday	Friday
09:00-10:30	Mon1: Overview and Denoising	Tue1: Learning from data	Wed1: Linear Models	Thu1: Knee MRI features	Fri1: Multi Layer Perceptrons
10:45-12:00	Mon2: Feature Detection	Tue2: Knowing your data	Wed2: Optimization	Thu2: Supervised Learning 1	Fri2: Convolutional Neural Networks
		Lur	nch	lie.	
12:45-14.15	Mon3: Ridge/Root Detection	Tue3: Machine Learning Basics-1	Wed3: Unsupervised Learning 1	Thu3: Supervised Learning 2	Fri3: CNN root segmentation
14:30-16.00	Mon4: Postprocessing	Tue4: Machine Learning Basics-2	Wed4: Unsupervised Learning 2	Thu4: What is the classifier doing?	Fri4: Graph Neural Networks

Literature

- 1. Learning from Data by Mostafa et al.
- 2. Deep Learning by Goodfellow et al.

Overview

- Design-based methods
- Learning from data
- Underlying data distributions
- Perceptron
- Generalization error

Design-based methods

Design-based methods

Machine Learning = Learning from Data

Machine Learning = Learning from Data

Machine Learning = Learning from Data

- ML is a lot about discovering patterns
 - Big data
 - Big computers
 - More complex patterns, than before
- Learning from examples
 - Natural to humans
 - Temptation to call it Al
- What you have is what you get (mostly)
 - Large & diverse datasets
 - Features and flaws are learned

Linear Classification

- Given a training set, with binary labels
- Model a linear classifier based on the training data
- Predict classification on new data

Linear Separability

Linear Separability

If the d-dimensional data is linearly separable, then there exists at least one (d-1) dimensional hyperplane that is a classifier.

Linear Separability

If the d-dimensional data is linearly separable, then there exists at least one (d-1) dimensional hyperplane that is a classifier.

Mathematically, the hyperplane (in this case) a line is given as:

$$w_0 + w_1 x_1 + w_2 x_2 = 0$$

Or in vector form,

$$\mathbf{w}^T \mathbf{x} = 0$$

Given the training data,

$$\mathbf{X} = {\mathbf{x_i}} : \mathbf{x_i} = [x_0, \dots, x_d]^T$$

 $\mathbf{Y} = {y_i} : y_i \in {+1, -1}$

Given the training data,

$$\mathbf{X} = \{\mathbf{x_i}\} : \mathbf{x_i} = [x_0, \dots, x_d]^T$$

 $\mathbf{Y} = \{y_i\} : y_i \in \{+1, -1\}$

The model should be of the form:

$$h(\mathbf{x}) = \begin{cases} +1 & \text{if } \mathbf{w}^T \mathbf{x} \ge 0 \\ -1 & \text{if } \mathbf{w}^T \mathbf{x} < 0 \end{cases}$$

Given the training data,

$$\mathbf{X} = {\mathbf{x_i}} : \mathbf{x_i} = [x_0, \dots, x_d]^T$$

 $\mathbf{Y} = {y_i} : y_i \in {+1, -1}$

The model should be of the form:

$$h(\mathbf{x}) = \begin{cases} +1 & \text{if } \mathbf{w}^T \mathbf{x} \ge 0 \\ -1 & \text{if } \mathbf{w}^T \mathbf{x} < 0 \end{cases}$$

Or, more compactly:

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x})$$

Given the training data,

$$\mathbf{X} = \{\mathbf{x_i}\} : \mathbf{x_i} = [x_0, \dots, x_d]^T$$

 $\mathbf{Y} = \{y_i\} : y_i \in \{+1, -1\}$

The model should be of the form:

$$h(\mathbf{x}) = \begin{cases} +1 & \text{if } \mathbf{w}^T \mathbf{x} \ge 0\\ -1 & \text{if } \mathbf{w}^T \mathbf{x} < 0 \end{cases}$$

Or, more compactly:

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x})$$


```
Algorithm: Perceptron Learning Algorithm
P \leftarrow inputs \quad with \quad label \quad 1;
N \leftarrow inputs with label 0;
Initialize w randomly;
while !convergence do
   Pick random \mathbf{x} \in P \cup N;
   if x \in P and w.x < 0 then
        \mathbf{w} = \mathbf{w} + \mathbf{x};
   end
   if x \in N and w.x \ge 0 then
        \mathbf{w} = \mathbf{w} - \mathbf{x};
    end
end
//the algorithm converges when all the
 inputs are classified correctly
```

Algorithm: Perceptron Learning Algorithm $P \leftarrow inputs$ with label 1; $N \leftarrow inputs$ with label 0; Initialize w randomly; while !convergence do Pick random $\mathbf{x} \in P \cup N$; if $x \in P$ and w.x < 0 then $\mathbf{w} = \mathbf{w} + \mathbf{x}$; end if $x \in N$ and $w.x \ge 0$ then $\mathbf{w} = \mathbf{w} - \mathbf{x}$; end end //the algorithm converges when all the inputs are classified correctly

$$\mathbf{w}(t+1) = \mathbf{w}(t) + y(t)\mathbf{x}(t).$$

PLA Task in Notebook

Training examples (x1,y1), (x2,y2)...(xN,yN)

Figure based on Fig.1.9 Mostafa et al.

Generalization Error

Generalization Error

$$\mathbf{E}_{in}(h) = \frac{1}{n} \sum_{i=1}^{N} l(h(X_i), Y_i)$$

$$\mathbf{E}_{out}(h) = \mathbb{E}_{p(X,Y)}[l(h(X),Y)]$$

$$\mathcal{G}_{err} = \mathbf{E}_{out}(h) - \mathbf{E}_{in}(h)$$

Not obvious to minimize the generalization error.

Relation between data and generalization

IID assumptions

Summary

- Can learn from data!
- Overcomes tedious model designs
- Perceptrons mimic biological neurons

Summary

- Can learn from data!
- Overcomes tedious model designs
- Perceptrons mimic biological neurons However,
- Depends on the data
 - Strong assumptions
 - Distribution
 - Number of samples
 - High quality labels
- Many (equally better/worse) models to choose from
- Hard to generalize