(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-60562

(43)公開日 平成11年(1999)3月2日

(51) Int.Cl. ⁶	識別記号	F I
C 0 7 D 239/52		C 0 7 D 239/52
A01N 43/54		A01N 43/54 B
43/60		43/60
43/84	101	43/84 1 0 1
C 0 7 D 239/60		C 0 7 D 239/60
		審査請求 未請求 請求項の数3 FD (全 57 頁) 最終頁に続く
(21)出顧番号	特順平10-173980	(71) 出頭人 000000169
		クミアイ化学工業株式会社
(22) 出顧日	平成10年(1998) 6月5日	東京都台東区池之端1丁目4番26号
		(71)出顧人 000102049
(31)優先権主張番号	特顯平9-169454	イハラケミカル工業株式会社
(32)優先日	平9 (1997) 6 月11日	東京都台東区池之端1丁目4番26号
(33)優先權主張国	日本 (JP)	(72)発明者 吉村 巧

(54)【発明の名称】 スルホンアニリド誘導体及び除草剤

(57)【要約】

【課題】 水田における有害雑草に対して優れた除草効果を有するとともに作物に安全性が高いスルホンアニリド誘導体を提供する。

【解決手段】一般式「I]

$$(\mathbb{R}^{2})_{m} \xrightarrow{\mathbb{R}^{3}} \mathbb{R}^{3}$$

$$V = V_{N-SO_{2}R^{1}}$$

$$V = V_{OCH_{3}}$$

$$(1)$$

「式中、吊・はアルキル基又はアルケニル基 [該基はい すれもハロゲン原子等で置換されてもよい。]を示し、 R²は水素原子、ハロゲン原子又はアルコキシ基等を示 し、R³は水素原子、アルキル基又はアルコキシカルボ エル基等を示し、Qは基一CH(NR⁴ R⁵) − [ここ でR⁴、R⁵ とは水素原子、アルキル基等を示す。] 又は 基一C(=NR⁶) − [ここでR⁶ は水素原子、アルキル ル基等を示す。]を示し、mは1~4の整数を示す。] で示されるスルホンアニリド海線体及びその塩、該スル ホンアニリド誘導体を有効成分として含有する除草剤。

(72)発明者 宮崎 雅弘

静岡県磐田郡福田町塩新田408番地の1 株式会社ケイ・アイ研究所内

静岡県磐田郡福田町塩新田408番地の1 株式会社ケイ・アイ研究所内

最終頁に続く

【特許請求の範囲】 【請求項1】 一般式[I] 【化1】

(式中、R1 はアルキル基(該基はハロゲン原子又はシ アノ基で置換されてもよい。) 又はアルケニル基(該基 はハロゲン原子で置換されてもよい。)を示し、R2は 各々独立して、水素原子、ハロゲン原子、アルコキシ基 又はアルキル基(該基はハロゲン原子、水酸基、アルコ キシ基、アルケニルオキシ基、アルキニルオキシ基、ア ルキルチオ基、モノ又はジアルキルアミノ基で置換され てもよい。)を示し、R3は水素原子、アルキル基(該 基はハロゲン原子、水酸基、アルケニルオキシ基、アル キニルオキシ基、モノ又はジアルキルアミノ基、アルコ キシ基又はアルキルチオ基で置換されてもよい。)、ベ ンジル基、アシル基、アルコキシカルボニル基、置換さ れたカルバモイル基、置換されたチオカルバモイル基又 は基-SO2R1 (ここでR1は前記と同じ意味を示 す。) を示し、Qは基-CH(NR4 R5) - [ここで R4、R5 は同一か又は相異なり、水素原子、アルキル 基(該基はハロゲン原子、水酸基、シアノ基、アルコキ シ基、アルキルチオ基又はフェニル基で置換されてもよ い。)、アルケニル基、アルキニル基、シクロアルキル 基。フェニル基(該基はハロゲン原子、アルキル基又は アルコキシ基で置換されてもよい。)、アシル基、アル コキシカルボニル基、置換されたカルバモイル基、置換 されたチオカルバモイル基、基-SO。R1 (ここでR 1 は前記と同じ意味を示す。) 基-NR7 R8 [ここ でR7、R8は同一か又は相異なり、水素原子、アルキ ル基(該基はハロゲン原子、水酸基、シアノ基、アルコ キシ基、アルキルチオ基又はフェニル基で置換されても よい。)、アルケニル基、アルキニル基、シクロアルキ ル基、フェニル基(該基はハロゲン原子、アルキル基又 はアルコキシ基で置換されてもよい。)、アシル基、ア ルコキシカルボニル基、基-SO。R1 (ここでR1は 前記と同じ意味を示す。)、置換されたカルバモイル基 又は置換されたチオカルバモイル基を示す。〕又は基一 OR9 [ここでR9 は水素原子、アルキル基 (該基はハ ロゲン原子、水酸基、シアノ基、アルコキシ基、アルキ ルチオ基、フェニル基で置換されてもよい。)、アルケ ニル基、アルキニル基、シクロアルキル基、フェニル基 (該基はハロゲン原子、アルキル基、アルコキシ基で署 換されてもよい。)、アシル基、アルコキシカルボニル 基。アルキルスルホニル基(該基はハロゲン原子で置換 されてもよい。)、置換されたカルバモイル基又は置換

されたチオカルバモイル基を示す。〕を示し、或いは場 合により、R4 及びR5 はこれらの結合した窒素原子と 合わせて一つ又はそれ以上のヘテロ原子を有する会器素 ヘテロ環基を形成してもよい。] 又は基-C (=N R6) - 「ここでR6 は水素原子」アルキル基(該基は ハロゲン原子、水酸基、シアノ基、アルコキシ基、アル キルチオ基、フェニル基で置換されてもよい。) アル ケニル基、アルキニル基、シクロアルキル基、フェニル 基(該基はハロゲン原子、アルキル基、アルコキシ基で 置換されてもよい。)、アシル基、アルコキシカルボニ ル基、置換されたカルバモイル基、置換されたチオカル バモイル基、基-SO2R1 (ここでR1 は前記と同じ 意味を示す。) . 基-NR7 R8 (ここでR7 及びR8 は前記と同じ意味を示す。) 又は基-OR9 (ここでR 9 は前記と同じ意味を示す。)を示す。]を示し、mは 1~4の整数を示す。とで示されるスルホンアニリド誘 導体及びその塩。

【請求項2】 一般式[II]

【化2】

(式中、R2 及びmは請求項1に記載と同じ意味を示 す。) で示される請求項1に記載のスルホンアニリド誘 簿体の製造中間体である4.6ージメトキシビリミジン -2ーイル誘導体。

【請求項3】 請求項1に記載のスルホンアニリド誘導 体又はその塩を有効成分として含有することを特徴とす る除草剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は新規なスルホンアニリド 誘導体およびそれを有効成分として含有することを特徴 とする除草剤に関するものである。

[0002]

【従来技術】特表平7-501053号公報明網書及びW096/41799号公報明期書にはアニリドの2 他にピリミジノー2-イルを活躍負したストルンアニリド化合物が除率活性を有することが記載されている。 【0003】しかしながら、該公報明細書に中には、アニリドの2 (他のむりミジン-2-イル基の置換において、ピリミジン2位とアニリド2 位との結合が、メチレン基、ハロゲン置機メチレン基、アルコキシ基、チオメメナレン基又はアルキレチオ基である化合物及びそれらの誘導体が配載されているものの、本売明スルホンアニリド誘導体のように、ピリミジン2位とアニリドホンの2 (他との結合にアミノメチレン基、イミノメチレン基 を有する化合物については知られていない。即ち、本発明スルホンアニリド誘導体およびそれを有効成分とする 除草剤について具体的な陸準効果や製造法は少まで知ら れていない。更に特表平7-501053号公報明編書 及びW096/41799号公報明編書と記載の化合物 は除草活性が不充分であったり、作物と雑草間の選択性 に劣ることから消足すべきものとは言い難い。

[0004]

【発明が解決しようとする課題】現在、水田においては カヤリソケ判雑単等、種々の難助除離やが問題になっ いる。これらの雑草は発生が指いで、しかも木種の 栽培時期に美期間に渡って発生してくるため、その防除 は難しい課題となっている。このため、それらを防除す を処理連鎖所の広い薬利の開発が望まれている。ま た、現在の水稲除草剤では、業齢の小さい水稲や移植深 度の浅い水稲に対しても安全に除草剤を使用すること は、極めて難しい課題となっている。特と木橋に対し高 い安全性を有する除草剤の出現は、移植時に除草剤の同 時処理を可能にし、稲件件業の合理化、大型化にとって 大いにの望されている。

[0005]

【課題を解決するための手段】本発明者らは、このよう な状況に鑑み種々検討した結果、新規なスルホンアニリ ド誘導体とその製造方法を案出し、該化合物が上述のよ な欠点の少ない優れた除草作用を有することを見出 し、本発明を完成するに至った。

【0006】即ち、本発明は(1)一般式[I] 【0007】 【化3】

R4、R5 は同一か又は相異なり、水素原子、アルキル 基(該基はハロゲン原子、水酸基、シアノ基、アルコキ シ基、アルキルチオ基又はフェニル基で置換されてもよ い。)、アルケニル基、アルキニル基、シクロアルキル 基、フェニル基(該基はハロゲン原子、アルキル基叉は アルコキシ基で置換されてもよい。)、アシル基、アル コキシカルボニル基、置換されたカルバモイル基、置換 されたチオカルバモイル基、基-SO。R1 (ここでR 1 は前記と同じ意味を示す。)、基-NR7 R8 [ここ でR7、R8は同一か又は相異なり、水素原子、アルキ ル基(該基はハロゲン原子、水酸基、シアノ基、アルコ キシ基、アルキルチオ基又はフェニル基で置換されても よい。)、アルケニル基、アルキニル基、シクロアルキ ル基、フェニル基(該基はハロゲン原子、アルキル基又 はアルコキシ基で置換されてもよい。)、アシル基、ア ルコキシカルボニル基、基-SO。R1 (ここでR1 は 前記と同じ意味を示す。)、置換されたカルバモイル基 又は置換されたチオカルバモイル基を示す。〕又は基一 OR9 [ここでR9 は水素原子、アルキル基(該基はハ ロゲン原子、水酸基、シアノ基、アルコキシ基、アルキ ルチオ基、フェニル基で習換されてもよい。)。アルケ ニル基、アルキニル基、シクロアルキル基、フェニル基 (該基はハロゲン原子、アルキル基、アルコキシ基で置 換されてもよい。)、アシル基、アルコキシカルボニル 基、アルキルスルホニル基(該基はハロゲン原子で置換 されてもよい。)、置換されたカルバモイル基又は置換 されたチオカルバモイル基を示す。] を示し、或いは場 合により、R4 及びR5 はこれらの結合した窒素原子と 合わせて一つ又はそれ以上のヘテロ原子を有する含窒素 ヘテロ環基を形成してもよい。] 又は基−C (=N R6) - [ここでR6は水素原子、アルキル基(該基は ハロゲン原子、水酸基、シアノ基、アルコキシ基、アル キルチオ基、フェニル基で置換されてもよい。)、アル ケニル基 アルキニル基 シクロアルキル基 フェニル 基(該基はハロゲン原子、アルキル基、アルコキシ基で 置換されてもよい。)、アシル基、アルコキシカルボニ ル基、置換されたカルバモイル基、置換されたチオカル バモイル基、基-SO2R1 (ここでR1 は前記と同じ 意味を示す。)、基-NR7R8 (ここでR7及びR8 は前記と同じ意味を示す。) 又は基一OR9 (ここでR 9 は前記と同じ意味を示す。) を示す。] を示し、mは 1~4の整数を示す。) で示されるスルホンアニリド誘 導体及びその塩、(2)一般式「I]で示される化合物 の製造中間体となる一般式「II」 [0008]

【化4】

$$(\mathbb{R}^2)_{\text{IM}} \overset{\text{N} \longrightarrow \text{OCH}_3}{\underset{\text{OCH}_3}{\bigvee}} \quad [\text{ II }]$$

(式中、R² 及びmは前記と同じ意味を示す。)で示される4、6 - ジメトキシピリミジン-2 - イル誘導体及び、(3) - 般式 [I] 記載のスルホンアニリド誘導体び、なほその塩を有効成分とする除常剤を提供するものであった。

【0009】尚、本明細書において、用いられる用語の 定義を以下に示す。

【0010】ハロゲン原子とは、フッ素原子、塩素原子、臭素原子、ヨウ素原子を示す。

【0011】アルキル基とは、特に限定しない限り、炭素数が1~10の直鎖又は分砂鎖状のアルキル基を意味し、例えばメチル基、エテル基、 ロープロビル基、イソプロビル基、 ローブナル基、 ローベンチル基、 イソア・ル基、 セ・エ・ブチル基、 ローベンチル基、 イソア・シル基、 オペンチル基、 スーペンチル基、 イソルキシル基、 3、3 ージメチルブチル基、 ローベンチル基、 ローオクチル基、 ローノニル基、 ローデンル基等を挙げることができる。

【0012】アシル基とは、ホルミル基、ベンゾイル基 又はアルキル部分が上記の意味を示す(アルキル) -C 〇-基を示し、例とはアセチル基、プロピオニル基等を 挙げることができる。

【0013】アルコキシ基とは、アルキル部分が上記の 臨味を示す(アルキル)−〇一基を示し、例えばメトキ シ基、エトキシ基、n−プロボキシ基、メウプロボキシ 基、n−プトキシ基、イソプトキシ基、sec−プトキ シ基、tert−プトキシ基、n−ヘキシルオキシ基、 n−オクチルオキシ基等や増行ることができる。

【0014】アルコキシカルボニル基とは、アルコキシ部分が上記の意味を示す(アルコキシ) - CO - 基を示し、例えばメトキシカルボニル基、エトキシカルボニル 基等を挙げることができる。

【0015】アルケニル基とは、炭素数が2~6の直鎖 又は分岐鎖状のアルケニル基を示し、例えばビニル基、 プロペニル基等を挙げることができる。

【0016】アルケニルオキシ基とは、アルケニル部分 が上記の意味を示す (アルケニル) -O-基を示し、例 えばアリルオキシ基等を挙げることができる。

【0017】アルキニル基とは、炭素数が2~6の直鎖 又は分岐鎖状のアルキニル基を示し、例えばプロパルギ ル基等を挙げることができる。 【0018】アルキニルオキシ基とは、アルキニル部分

が上記の意味を示す(アルキニル)-O-基を示し、例 えばプロバルギルオキシ基等を挙げることができる。 【0019】シクロアルキル基とは、炭素数3~7のシ

【0019】シクロアルキル基とは、炭素数3~7のシ

クロアルキル基を示し、例えばシクロプロビル基、シクロペンチル基等を挙げることができる。

【0020】アルキルチオ基及びアルキルスルホニル基 とは、アルキル部分が上記の意味である(アルキル)ー S一基、(アルキル)ーSО₂ー基を示し、例えばメチ ルチオ基、エチルチオ基、メチルスルホニル基、エチル スルホニル基等を挙げることができる。

【0021】モノ又はジアルキルアミノ基とは、アルキ ル部分が上記の意味である。(アルキル) - NH - 基、 (アルキル)₂ N - 基を示し、例えばメチルアミノ基、 ジメチルアミノ基等を挙げることができる。

【0022】置換されたカルバモイル基とは、N−モノ 置換又はN,N−ジ置換されたカルバモイル基を示し、 例えばN,N−ジメチルカルバモイル基等を挙げること ができる。

【0023】置換されたチオカルバモイル基とは、N-モノ置換又はN、N-ジで換されたチオカルバモイル基 を示し、例えばN-メチルチオカルバモイル基等を挙げ ることができる。

【0024】アシルオキシ基及びアルキルスルホニルオ キシ基とは、アシル又はアルキルスルホニル部分がそれ ぞれ上配の意味である(アシル) - 〇一基、(アルキル スルホニル) - 〇一基を示し、例えばアセトキシ基又は メシルオキシ基等を挙げることができる。

【0025】含窒素へテロ環基とは、5~6員環の含窒素へテロ環基を示し、例えばピペリジノ基、モルホリノ基、イミダゾリル基等を挙げることができる。

[0026] 堪とは、一根式 [1] で表される化合物と酸との塩又は、一根式 [1] で表される化合物の、入地 ホンアミドと金属或いは有機塩基との塩であり、酸としては塩酸や鬼化水素酸等のハロザン化水素酸又は硫酸やメタンスルホン酸等のスルホンのを挙げることができ、金属としてはオトリウムやカリウム等のアルカリ生類金属を挙げることができ、有機塩差としてはトリエチルアミン、ジイソプロピルアミン等を挙げることができる。

[0027]前記一般式[1]において、好せしい化合物群としては、R1がトリフルオロメチル基又はジフルオロメチル基であり、R2が水業原子、炭素が1~3のアルキル基及び炭素数が1~3のアルコキシ基、ハロゲン原子又はメトキシメチル基であり、Qが基一CH(NR4R5)-であり、R4、R5は同一か又は相異なり、水素原子又は炭素数が1~6のアルキル基であり、mが1又は2で表される企物財が挙げたれる。

[0028]

【発明の実施の形態】次に、一般式[I]、[II]で 表される本発明化合物の代表的な化合物例を表1~表3 ちに示すが、本発明化合物はこれらに限られるものでは ない。尚、化合物番号は辻後の配載において参照され Me :メチル基、 Et :エチル基、

 Bu-s:sec-ブチル基、
 Bu-t:tert-ブチル基、

 Pen:n-ペンチル基、
 Bn : ベンジル基、

Pen:n-ペンナル基、 Bn:ペンシル基、 Pr-c:シクロプロピル基、 Bu-c:シクロブチル基、

Pen-c:シクロペンチル基、 Ph :フェニル基、

【0031】 【表1】

化合物 R ¹ R ² R ³ R	融点(°C) 批短折 率(n _D 20)
1-1 Ca_F I	137-138 1.5350 94-95 13S-137 174-175

【0032】 【表2】

化合物	R ¹	R ²	r ³	R	融点(°C) 数数
番号					屈折率(n _D ²⁰)
1-26	CH ₂ F	6-Bt	н	NEPr	
1-27	CH ₂ F	6-Bt	"	NHPr-i	
1-28	CH ₂ F	6-Bt	=	NEMa	
[-29	CH ₂ F	6-F	=	N (Et) 2	
1-30	CH ₂ F	6-F	E	N(Pr)2	
1-31	CH ₂ F	6-P	В	N (Me) 2	
I-32	CH ₂ F	6-P	8	NEEt	
I-33	CH ₂ F	6-P	В	NEPr	
1-34	CH ₂ F	6-P	В	NHPr-i	
1-35	CH ₂ F	6-F	В	NHMe	
I-36	CH ₂ F	6- K e	8	N(Et) ₂	
I-37	CH ₂ F	6- X e	В	N(Pr)2	1
I-38	CH ₂ F	6- X e	В	N (Me) 2	
1-39	CH ² F	6-Ne	н	NHRt	
I-40	CH ₂ F	6-Ne	В	MHPr	
I-41	CH ₂ F	6-Me	В	NHPr-i	
I-42	CH ₂ F	6-Xe	8	NEMe	1
I-43	CH ₂ F	6-0Me	Ħ	N(Et)2	
1-44	CE ₂ F	6-0Me	8	N(Pr)2	
I-45	CH ₂ F	6-0Me	В	N (Ma) 2	
I-46	CH ₂ F	6-0Me	В	MHEt	
I-47	CH ₂ F	6-024e	В	NEPr	
I-48	CH ₂ F	6-0Me	8	NHPr-i	
1-49	CH ₂ F	6-Œe	B	NEMe	
I-50	CH ₂ F	6-Pr	Ħ	N(Et) ₂	
I-51	CH ₂ F	6-Pr	Ħ	N(Pr)2	
1-52	CH ₂ F	8-Pr	В	N(Ma)2	
1-53	CH ₂ F	6-Pr	н	NEEt	1
I-54	CH ₂ F	6-Pr	B	NHPr	1
I-55	CH ₂ F	6 -Pr	B	NHPr-i	1
I-56	CH ₂ F	6-Pr	В	NIMe	

[0033] [表3]

化合物	R ^L	_R 2	R ³	R	融点(°C) 批詞折
番号			_	*	率(n _D ²⁰)
1-57	CH ₂ F	6-CH ₂ OMe	н	N(Et)2	
1-58	CH ₂ F	6-CH ₂ OMe	н	N(Pr)2	
1-59	CH ₂ F	6-CH_OMe	н	N (Me) 2	
I-60	CH ₂ F	6-CH ₂ OMe	н	NHEt	
1-61	CH ₂ F	6-CH ₂ OMe	н	NHPr	
1-62	CH ₂ F	6-CH ₂ OMe	н	NHPr-i	
1-63	CH ₂ F	6-CH ₂ OMe	н	NEMe	
I-64	CH ₂ Br	8	н	N(Bt)2	
1-65	CH ₂ Br	H	н	N(Pr)2	
1-66	CH ₂ Br	H	н	N (Ne) 2	
1-67	CH ₂ Br	Н	н	NEBt	
I-68	CH ₂ Br	В	н	MEPr	
1-69	CH ₂ Br	В	н	NEPr-i	
1-70	CH ₂ Br	В	н	NEMe	
1-71	CH ₂ Br	3-F	н	N(Et) ₂	
1-72	CH ₂ Br	3-F	H	N(Pr)2	
1-73	CH ₂ Br	3-F	H	NONe)2	
1-74	CH ₂ Br	3-F	н	NHE t	
1-75	CH ₂ Br	3-F	н	MEPr	
1-76	CH ₂ Br	3-F	H	NHPr-i	
1-77	CH ₂ Br	3-F	H	NEMe	
1-78	CH ₂ Br	5-F	H	N(Bt)2	
1-79	CH ₂ Br	5-F	H	N(Pr)2	
1-80	CH ₂ Br	5-F	н	N OHe) 2	
1-81	CH ₂ Br	5-F	н	NEBt "	
1-82	CH ₂ Br	5-F	H	NHPr	
1-83	CH ₂ Br	5-F	В	NEPr-i	
1-84	CH ₂ Br	5-F	Н	NEMe	
1-85	CH ₂ Br	6-Et	H	N(Bt)2	
1-86	CH ₂ Br	6-Et	H	N(Pr)2	
1-87	CH ₂ Br	6-Et	H	N (Me) 2	
1-88	CH ₂ Br	6-Et	н	MEt "	

【0034】 【表4】

化合物	R ¹	R ²	_R 3	R	數点(°C)
W 3			L		- Comp
1-89	CH ₂ Br	6-Kt	l ,	NHPr	
1-90	CH ₂ Br	6-Et	В	NHPr-i	l
1-91	CH ₂ Br	6-Et	н	NEMe	
1-92	CH ₂ Br	6-F	н	N(Bt)2	l
1-93	CH ₂ Br	6-F	н	N(Pr)2	
1-94	CH ₂ Br	6-F	н	N (Ne) 2	
1-95	CH ₂ Br	6-F	H	NHBt	
1-96	CE_Br	6-F	H	NHPT	
1-97	CH ₂ Br	6-F	В	NHPr-i	
1-98	CH ₂ Br	6-it	В	NEMe	
1-99	CH_Br	6-Ma	н	N(Bt),	i
1-100	CH_Br	6-Ma	н	N(Pr) 2	
1-101	CH_Br	6-¥ie	н	N (Ne) 2	
1-102	CH ₂ Br	6-Me	В	NHRt	
1-103	CH ₂ Br	6-Me	В	NHPr	
1-104	CH ₂ Br	6-Me	H	NHPr-i	
1-105	CH ₂ Br	6-Me	H	NENe	l
1-106	CH ₂ Br	6-0Me	H	N(Bt)2	ŀ
1-107	CH ₂ Br	6-OMe	н	N(Pr),	l
1-108	CH ₂ Br	6-OMe	H	N (Ne) 2	
1-109	CH ₂ Br	6-CMe	В	NEBt	ŀ
1-110	CE ₂ Br	6-0Me	н	MEPr	l
1-111	CH ₂ Br	6-0Me	н	MHPr-i	
1-112	CH ₂ Br	6-0Me	H	NENe	
1-118	CH ₂ Br	6-Pr	H	N(Bt) ₂	
1-114	CH ₂ Br	6-Pr	H	N(Pr) ₂	
1-115	CH ₂ Br	6-Pr	н	N (No) 2	
1-116	CH ₂ Br	6-Pr	н	NEBt	
1-117	CH ₂ Br	6-Pr	В	MHPT	
1-118	CH ₂ Br	6-Pr	В	MHPr-i	
1-119	CH ₂ Br	6-Pr	н	NUNe	
	_				1

【0035】 【表5】

化合物	R ¹	R ²	R3	R	融点(°C) 松畑折
番号					率(n _p ²⁰)
1-120	CH ₂ Br	6-CH _o OMe	н	N(Rt)2	
1-121	Cli ₂ Br	6-CH ₂ OMe	н	N(Pr)2	
1-122	CH ₂ Br	6-CH ₂ OMe	н	N (Ne) 2	
1-123	CH ₂ Br	6-CH ₂ OMe	н	NEEt	
1-124	CH ₂ Br	6-CH ₂ OMe	н	NHPr	
1-125	CH ₂ Br	6-CH ₂ OMe	н	NHPr-i	
1-126	CH ₂ Br	6-CH ₂ OMe	н	NEMe	
1-127	CH ₂ C1	в .	н	N(Et)2	
1-128	CH ₂ C1	H	H	N(Pr)2	
I-129	CH ₂ C1	В	H	N (Ne) 2	
I-130	CH ₂ C1	В	н	NHEt "	
1-131	CH ₂ C1	8	н	NHPr	
I-132	CH ₂ C1	В	H	NHPr-i	
1-133	CH ₂ C1	В	H	NENe	
1-134	CH ₂ C1	3-F	н	N(Et) ₂	
1-135	CH ₂ C1	3-F	H	N(Pr)2	
I-136	CH ₂ C1	3-F	H	NONe)	
I-137	CHŽCI	3-F	H	NHE t	
I-138	CH ₂ C1	3-F	н	NEPr	
I-139	CH ₂ C1	3-F	H	NHPr-i	
1-140	CH ₂ C1	3-F	H	NEMe	
J-141	CH ₂ C1	5-F	н	N(Et)2	
I-142	CH ₂ C1	5-F	н	N(Pr)2	
I-143	CH ₂ C1	5-F	H	N (Ne) 2	
I-144	CH ₂ C1	5-F	H	NEBt "	
I-145	CH ₂ C1	5-F	н	NHPr	
I-146	CH ₂ C1	5-F	H	NHPr-i	
I-147	CH ₂ C1	5-F	H	NEMe	
1-148	CH ₂ C1	6-Et	H	N(Bt)2	
I-149	CH ₂ C1	6-Et	H	N(Pr)	
1-150	CH ₂ C1	6-Et	Н	NOte)2	
1-151	CH ₂ C1	6-Et	H	NEEt	

【0036】 【表6】

化合物	_R l	R ²	_R 3	R	数点(°C)
番号		•	•	•	率(n ₀ ²⁰)
1-152	CH ₂ C1	6-Et	В	NHPr	
1-153	CH,C1	6-Et	В	NHPr-i	
1-154	CH ₂ C1	6–Et	В	NUMe	
1-155	CH ₂ C1	6-₹	В	N(Bt)2	
I-156	CH ₂ C1	6-F	В	N(Pr)2	1
1-157	CH_C1	6-F	В	N (Ne) 2	:
1-158	CH ₂ C1	6-F	В	NHBt	ļ
1-159	CH ₂ C1	6-F	В	NHPT	
1-160	CH_C1	6-¥	В	NHPr-i	
1-161	CH2CI	6-F	В	NENe	
I-162	CH ₂ C1	6-Ma	В	N(Bt) ₂	
1-163	CH_C1	6-Ma	В	N(Pr)2	
1-164	CH ₂ C1	6-Me	В	N (Ne) 2	
1-165	CH ₂ C1	6-Me	В	NHBt	
I-166	CH ₂ C1	6-Me	В	NEPr	
1-167	CH ₂ C1	6-Ma	н	NHPr-i	
1-168	CH ₂ C1	6-Me	н	NEMe	
1-169	CH_C1	6-0Me	В	N(Bt)2	
1-170	CH ₂ C1	6-0Me	н	N(Pr)2	
1-171	CH2C1	6-0Me	В	N (Me)	
1-172	CH ₂ C1	6-00e	н	NHBt "	
1-173	CH_C1	6-0Me	В	NHPr	
1-174	CH ₂ C1	6-00se	Н	NHPr-i	
1-175	CH,C1	6-00%e	н	NHMe	
1-176	CH ₂ C1	6-Pr	В	N(Bt)2	
1-177	CH_C1	6-Pr	н	N(Pr)2	
1-178	CH ₂ C1	6-Pr	н	N (Me) 2	
1-179	CH ₂ C1	6-Pr	н	NHBt 2	
1-180	CH ₂ C1	6-Pr	H	NHPT	
1-181	CH ₂ C1	6-Pr	H	NHPr-i	
1-182	CH ₂ C1	6-Pr	Н	NEMe	
$\overline{}$					L

[0037] [表7]

化合物 番 号	R ¹	R ²	R ³	R	融点(°C) 批划用折 率(n _D ²⁰)
1-183	CII CI	6-CII ₂ OMe	н	N (Bt) 2	
1-184	CH ₂ C1	6-Cit_OMe	n n	N(Pr) ₂	
1-185	CH ₂ C1	6-CH ₂ OMe	ı,	N (Me)	
1-186	CH ₂ C1	6-Cit_OMe	ı ı	NHBt	
1-187	CH ₂ C1	6-CII ₂ OMe	H	NHPr	
1-188	CH ₂ C1	6-CII_OMe	H	MHPr-i	
1-189	CH ₂ C1	6-CII ₂ OMe	н	NEMe	
1-190	CH2CN	В	н	N(Bt)2	
1-191	CH ₂ CN	я	н	N(Pr)2	
1-192	CII2CN	8	н	N (Ne) 2	
1-193	CH ₂ CN	В	н	NHBt	
1-194	CH_CN	В	н	NHPr	
1-195	CH ₂ CN	В	н	NHPr-i	
1-196	CH ₂ CN	н	н	NEMe	
1-197	CH ₂ CN	3-F	н	N(Bt)2	
1-198	CH ₂ CN	3-F	н	N(Pr)2	
1-199	CH ₂ CN	3-F	н	NOMe)2	
1-200	CH ₂ CN	3-F	н	NHBt "	
1-201	CH ₂ CN	3-F	н	MEPr	
1-202	CHZCN	3-F	н	NHPr-i	
1-203	CH ₂ CN	3-F	Н	NEMe	
1-204	CH ₂ CN	5-F	н	N(Bt)2	
1-205	CH ₂ CN	5-F	Н	N(Pr)2	
1-206	CH ₂ CN	5-F	Н	N (Ne) 2	
1-207	CH ₂ CN	5-F	н	NEBt	
1-208	CH ₂ CN	5-F	H	NHPr	
1-209	CH ₂ CN	5-F	н	NEPr-i	
1-210	CH ₂ CN	5-F	H	NEMe	
1-211	CH ₂ CN	6-Et	Н	N (Bt) 2	
1-212	CH ₂ CN	6-Et	Н	N(Pr)2	
1-213	CH ₂ CN	6-Et	н	N (Me) ₂	
1-214	CH ₂ CN	6-Et	н	NEBt	

[0038] [表8]

化合物 番 号	R ¹	r ²	R ³	R	融点(°C) 此相折 率(n _D ²⁰)
1-215	GI OI	6-Et	В	MIPr	
1-216	CH ² CN	6-Et	,	NHPr-i	
1-216		6-Et	, B	NEMe	l
1-218	CH ² CM	6-F	,	N(Bt)	i
1-219	CH ₂ CN	6-F	В	N(Pr) ₂	i
1-219	CH ₂ CN	6-F	В	N (Ne) 2	l
I-221	CH2CN	6-F	,	NHBt	
1-222	CH ₂ CH	6-F	н	MIPr	
1-223	CH2CN	6-F	B	NHPr-i	i
1-224	CH ₂ CN	6-F	В.	NENe	
1-225	CH2CN	6-Me	B	N(Bt)	l
1-226	CH2CH	6-Me	E	N(Pr) ₂	
1-227	CH2CN	6-Me	B	N (Me) 2	
1-228	CH2CN	6-#e	, a	NURt 2	
1-229	CH ₂ CN	6-Me	8	NHPr	
1-230	CH2CN	6-Me	B	NHPr-i	
1-231	CH2CN	6-Me	- H	NENe	
1-232	CH ₂ CN	6-OMe	В	N(Bt) ₂	
1-233	CH ₂ CN	6-OMe	В	N(Pr) ₂	
1-234	CH2CN	6-OMe	, B	N(Ne)	
1-235	CH2CH	6-0Me	H	NHBt.	
1-236	CH2CN	6-0%e	B	NHPr	
1-237	CH ₂ CN	6-0%e		NHPr-i	
1-238	CH ₂ CN	6-OMe	В	NENe	
1-239	CH2CN	6-Pr	B	N(Bt) ₂	
1-240	CH ² CM	6-Pr	- B	N(Pr) ₂	
1-241	CHZCN	6-Pr	B	N (No) 2	
I-242	CH2CN	6-Pr	8	NHEt	
I-243	CH2CN	6-Pr	1	MHPr	
1-244	CH2CN	6-Pr	i	MHPr-i	1
1-245	CH2CN	6-Pr	1	NENe	
	2-	- · · ·			

【0039】 【表9】

化合物	R ¹	R ²	R ³	R	數 点(°C) 計量折
番号					率(n _D ²⁰)
1-246	CH ₂ CN	6-CH ₂ OMe	н	N(Et) ₂	
1-247	CH ₂ CN	6-CH_OMe	H	N(Pr)2	
1-248	CH ₂ CN	6-CH_0Me	H	N (Me) 2	
1-249	CH ₂ CN	6-CH_OMe	H	NHEt	
1-250	CH ₂ CN	6-CH_OMe	н	NHPr	l .
I-251	CH_CN	6-CH_OMe	H	NHPr-i	
1-252	CH ₂ CN	6-CH ₂ OVe	H	NRMe	
1-253	CHF ₂	H	H	N(Et) 2	108-110
1-254	CHF ₂	H	Жę	N(Et) ₂	
I-255	CHF ₂	H	Bn	N(Et) ₂	
1-256	CHF ₂	H	CH ₂ OMe	N(Et) 2	67- 69
1-257	CHF ₂	H	H .	N(Et)Pr	91- 92
1-258	CHF ₂	H	B	N (Et) Bu	88- 90
1-259	CHF ₂	H	H	N(Pr)2	104-105
1-260	CHF ₂	H	H	N(Pr-i),	41- 43
1-261	CHF ₂	H	H	N (Bu) 2	79- 81
1-262	CHF ₂	H	H .	N (Bu-i) 2	117-119
1-263	CHF2	H	H	N (CH ₂ CH ₂ CN) ₂	94- 96
1-264	CHF ₂	H	E I	N (CH2CH2OE) 2	125-126
I-265	CHF ₂	H	H	N (Me),	152-154
1-266	CHF ₂	H	Ħ	N (Me) Et	1. 5392
1-267	CHF ₂	H	B	N (Me) Pr	1. 5341
1-268	CHF ₂	H	£	N (Me) Bu	109-110
1-269	CHF ₂	H	8	MBt	188-190
1-270	CHF ₂	H	H	NHPr~c	126-128
1-271	CHF ₂	H	H	MHPr	166-167
1-272	CHF ₂	H	Æ	NHPr-i	134-135
1-273	CHF ₂	H	Æ	NIBu	152-153
1-274	CHF,	H	H	N'HBu-i	125-126
1-275	CHF ₂	H	H	NIIBu-t	39- 40
1-276	CHF ₂	H	H	NBPen	81- 83
1-277	CHF ₂	H	Ħ	NNE-C>	109-111

[0040] [表10]

化合物 番号	R ¹	R ²	R ³	R	聯点(°C) ### 原新率(n _D ²⁰)
1-278	CHF ₂	В	В	NHC ₆ H ₁₃	76- 78
1-279	CHF ₂	H	H	NHCH _Z CF _Z CF ₃	1. 4944
1-280	CHF ₂	H	B	NHCH ₂ CF ₃	1. 5000
1-281	CHF.	H	H	NHCH2CH=CH2	137-138
1-282	CHF ₂	H	H	NHCH ₂ C≡CH	87- 88
I-283	CHF.	H	H	NHCH,CH,OMe	122-123
1-284	CHP ₂	E	8	NHBn	105-106
1-285	CHF ₂	H	н	Nille	174-175
1-286	CHF ₂	B	н	NHNHCONe	74- 75
1-287	CHF,	H	H	NHNHCOPh	82- 84
1-288	CHF ₂	B	H	MINIMe	1. 5385
1-289	CHF ₂	B	H	NHN (Ma) 2	145-146
1-290	CHF ₂	H	н	NHPh	145-146
1-291	CHF ₂	H	H	NHPh (2-OMe)	128-129
1-292	CHF ₂	H	H	MIPh (3-OMe)	185-168
1-293	CHF ₂	H	H	NHPh (4-0Me)	1. 5452
1-294	CHF ₂	H	Ħ	→ ○	1. 5396
1-295	CHF ₂	H	H	-n O n- M e	1.5342
1-296	CHF ₂	H	Ħ	-*○	143-144
1-297	CHF ₂	3-F	Я	- ℃	174-175
1-298	CHF ₂	3-F	Ħ	N(Et) ₂	119-120
I-299	CHF,	3-F	Æ	NHPr 2	111-112
1-300	CHF ₂	3-F	8	NHPr-i	143-145
1-301	CHF ₂	5-F	Ħ	+0	1. 5232
1-302	CHF ₂	5-P	E	N(Et) 2	113-114

【0041】 【表11】

化合物 番 号	R ¹	R ²	R ³	R	融点(で) 松畑折 率(a _D ²⁰)
1-303	CHF ₂	5-W	н	N(Pr)2	124-125
1-304	CHF2	5-V	н	N(Pr-i)	137-139
1-305	CHF ₂	5-F	н	N (Bu) 2	113-114
1-306	CHF ₂	5-F	H	N (Bu-i) ₂	147-149
1-307	CHF ₂	5-7	H	N (Bu-s)	137-138
1-308	CHF ₂	5-F	H	N (CH ₂ CH ₂ OH) ₂	128-129
1-309	CHF ₂	5-F	н	NOMe), "	82- 83
1-310	CHF ₂	5-F	H	NHEt 2	195-197
1-311	CHF ₂	5-F	н	NHPr	178-179
1-312	CHF ₂	5-F	H	NHPr-i	180-181
1-313	CHF ₂	5-F	H	NBBu	192-193
1-314	CHF ₂	5-F	H	NHBu-i	149-151
1-315	CHF ₂	5-F	H	NEBu-s	143-145
1-316	CHF ₂	5-F	н	NHBu-t	49- 50
1-317	CHF ₂	5-F	H	NHCH,C=CH	140-141
1-318	CHF ₂	5-F	H	MBPr-c	154-155
1-319	CHF ₂	5-F	H	NHCH ₂ CF ₂	1. 4994
1-320	CHF ₂	5-F	H	NHCH_CH-CH,	167-169
1-321	CHF ₂	5-F	H	NHCH_CH_OMe	113-114
1-322	CHF ₂	5-F	H	MBBn	138-139
1-323	CHF ₂	5-F	H	NEDJe	208-210
1-324	CHF ₂	5-F	H	NHNHMe	121-123
1-325	CHF ₂	5-F	H	MENEICOMe	188-169
1-326	CHF ₂	5-F	H	MEMBCO ₂ Bt	122-124
1-327	CHF ₂	5-F	н	NENHPh"	136-137
1-328	CHF ₂	5-F	H	NEW (Me) 2	130-131
1-329	CHF ₂	5-F	H	NBPh	149-150
1-330	CHF ₂	6-Et	H	N(Bt) ₂	129-130
1-331	CHF ₂	6-Et	H	N (Bu) 2	116-117
1-332	CHF ₂	6-Et	H	NOIe)2	148-150
1-333	CHF ₂	6-Et	H	NEEL	202-205
1-834	CHF ₂	8-Et	H	NBPr	194-195

【0042】 【表12】

化合物 番 号	R ¹	R ²	R ³	R	融 点(℃) #dd 屈折率(n _D ²⁰)
1-335	CHF ₂	6-CH ₂ OEt	н	N (Et) 2	142-143
1-336	CHF ₂	6-CH_OEt	H	NHPr	162-163
1-337	CHF ₂	6-F	H	N(Et) ₂	58- 59
1-338	CHF ₂	6-P	H	N(Pr)	128-129
1-339	CHF ₂	6-F	H	N (Ne) 2	192-193
1-340	CEF ₂	6-P	H	NHEt	187-188
1-341	CHF ₂	6-P	H	NHBu	159-160
1-342	CHF ₂	6-F	H	NHMe	209-210
1-343	CHF ₂	6-Me	H	N(Et) ₂	118-120
1-344	CHF ₂	6-16e	H	N(Pr)2	133-134
1-345	CHF,	6-Me	H	NHEt	204-205
1-346	CHF ₂	6-Me	H	NHPr	185-168
1-347	CHF ₂	6-0%e	H	N(Et) ₂	93- 94
1-348	CHF ₂	6-0%e	H	N (Et) Bu	測定不可
1-349	CHF ₂	6-0%e	H	N (Ne) 2	118-119
1-350	CHF ₂	6-0%e	H	NHEt	209-210
1-351	CHF ₂	6-Offic	H	NHBu	132-133
1-352	CHF2	6-CB ₂ OMe	H	-ŧ℃∘	创定不可
1-353	CEF ₂	6-CH ₂ CMe	Ħ	N(Et) ₂	124-125
1-354	CHF ₂	6-CH ₂ 0Me	H	N (Et) Bu	78- 80
1-355	CHF ₂	6-CE_0Me	H	N(Pr) ₂	123-124
1-356	CHF,	6-CH_OMe	H	N(Pr-i)2	68- 70
1-357	CHF ₂	6-CH ₂ OMe	H	N (Bu) 2	89- 90
1-358	CHF ₂	6-CB ₂ Onic	H	N (Ne) 2	159-160
1-359	CHF ₂	6-CH_OMe	H	NHEt	188-189
1-360	CHF ₂	6-CH ₂ OMe	H	NHPr	189-190
1-361	CHP,	6-CH ₂ 0Me	H	NHPr-i	197-198
1-362	CHF ₂	6-CH ₂ Ome	H	NIDu	175-176
1-363	CHF ₂	6-CH ₂ OMe	H	NHPen	173-174
1-364	CHF ₂	6-CB ₂ OMo	H	NH-	185-167

【0043】 【表13】

化合物 香号	R ¹	R ²	R ³	R	融点(°C)
I-365	CHF ₂	6-CH ₂ OMe	H	NEMe	198-200
1-366	CHF ₂	6-Pr	H	N(Et)	123-125
1-367	CHF ₂	6-Pr	H	N(Pr)	139-141
1-368	CHF ₂	6-Pr	H	N (Ne) 2	185-166
1-369	CHF	6-Pr	H	NHEt	210-211
1-370	CHF.	6-Pr	H	NHPr	198-200
1-371	CHF,	6-Pr	H	NHPr-i	158-158
1-372	CHF ₂	6-Pr	H	NHMe	180-181
1-373	CHC12	H	H	N(Et) 2	
1-374	CHC12	H	H	N(Pr)	
1-375	CHC1 ₂	H	H	N (Me) 2	
1-376	CHC12	H	H	NHEt	
1-377	CHC12	H	H	NHPr	
1-378	CHC12	H	H	NHPr-i	
1-379	CHC12	H	H	Nime	
I-380	CHC1	3-P	H	N(Et) 2	
I-381	CHC1	3-P	H	N(Pr)	
1-382	CHC1,	3-P	H	N (Me) 2	
1-383	CHC1,	3-F	H	NHEt	
1-384	CHC1,	3-P	H	NHPr	
I-385	CHC12	3-P	H	NHPr-i	
1-386	CHC12	3-P	H	NEMe	
1-387	CHC12	5-P	H	N(Et) ₂	
1-388	CHC12	5-P	H	N(Pr) 2	
1-389	CHC1	5-P	H	N (Me) 2	
I-390	CHC12	5-P	H	NHEt	
1-391	CHCI2	5-P	H	NHPr	
1-392	CHC12	5-P	H	NHPr-i	
1-393	CHC12	5-P	H	NEMe	
I-394	CHC1,	6-P	H	N(Et)2	
I-395	CHC1,	6-P	H	N(Pr)2	
1-396	CHC12	6-F	H	N (Me) 2	

【0044】 【表14】

化合物 番 号	R ¹	R ²	R ³	R	融 点(°C) 於 起 居折率(n _D ²⁰)
1-397	CHC12	6-F	н	NHEt	
1-398	CHC12	6-P	H	NHPr	
1-399	CHC12	6-F	н	NHPr-i	
1-400	CHC12	6-P	н	NHNe	
1-401	CHC12	6-Bt	H	N(Et)2	
1-402	CHC12	6-Bt	H	N(Pr)2	
1-403	CHC12	6-Bt	H	N (Me) 2	
1-404	CHC12	6-Bt	H	NHEt	
1-406	CHC12	6-Bt	H	NEPr	
1-406	CHC12	6-Bt	H	NHPr-i	
1-407	CHC12	6-Bt	H	NiiNe	
1-408	CHC12	6-Me	H	N(Et) ₂	
1-409	CHC12	6-Me	H	N(Pr)2	
1-410	CHC12	6-Ke	H	N (Me) 2	
1-411	CHC12	6-Me	H	NHEt	
1-412	CHC12	6-Me	H	NHPr	
1-413	CHC12	6-Me	H	NHPr-i	
1-414	CHC12	6-Me	H	NHMe	
1-415	CHC12	6-0%e	H	N(Et) ₂	
1-416	CHC12	6-0%e	H	N(Pr)2	
1-417	CHC12	6-01/e	H	N (Ne) 2	
1-418	CHC12	6-0Me	H	NHEt	
1-419	CHC12	6-0 <u>%</u> e	H	NHPr	
1-420	CHC12	6-016e	H	NHPr-i	
1-421	CHC12	6-01/e	H	NHNe	
1-422	CHC12	6-CH ₂ OMe	H	N(Et) ₂	
1-423	CHC12	6-CB ₂ 000e	H	N(Pr)2	
1-424	CHC12	6-CB ₂ 000e	H	N (Ma) 2	
1-425	CHC12	6-CH ₂ 0Me	H	NHEt	
1-426	CHC12	6-CH ₂ One	H	NHPr	
1-42?	CHC1.	6-CH ₂ OMe	H	NIPr-i	
1-428	CHC12	6-CB ₂ OMe	H	Nillo	

【0045】 【表15】

化合物	R ^I	ℝ ²	R ³	R	融 点(°C) ±灶 屈折率(c _n ²⁰)
# 7			L		相對率(ng)
1-429	CHC12	6-Pr	В	N(Bt)2	
1-430	CHC12	6-Pr	B	N(Pr) 2	
1-431	CHC12	6-Pr	H	N (Me) 2	
1-432	CHC12	6-Pr	B	NHRt.	İ
1-433	CHC12	6-Pr	В	MEPr	
1-434	CHC12	6-Pr	В	NHPr-i	
1-435	CHC12	6-Pr	1	NBMo	1
1-436	CF ₃	3-F	н	N(Bt)2	
1-437	CF ₃	3-F	H	N(Pr) 2	
1-438	CF ₃	3-F	B	N (Ne) 2	
1-439	CF _S	3-F	H .	NHBt	
1-440	I CF.	3-F	1 1	MIPr	
1-441	CF3	3-F	н	NHPr-i	
1-442	L CF	3-F	В	NENe	i
1-443	CF3	5-F		N(Bt)2	
1-444	CF ₂	5-F	В	N(Pr)2	
1-445	CF3	5-F	В	N (Ne) 2	
1-446	CP	5-7	В	NEBt 2	
1-447	I CF	5-F	В	NHPr	
1-448	L CF .	5-F	В	NHPr-i	
1-449	i CF I	5-F	В	NEMe	i
1-450	CF _a	6-F	В	N(Bt) ₂	
1-451	ur _a	6-F	В	N(Pr)2	l
1-452	CF ₂	6-F	В	N (Me) 2	ŀ
1-453	CF ₂	6-F	H	NEBt	
1-454	l OF a	6-F	H	NHPr	
1-455	CF.	6-F	B	NHPr-i	
1-456	I CF _n I	6-F	В	NEMe	
1-457	UF ₀ 1	6-Me	H	N(Bt)2	1
1-458	CF ₂	6-Me	8	N(Pr)2	l
1-459	CF ₂	6~Me	B	N (Ne) 2	
1-460	CP3	6-tte	В	MEBt	

【0046】 【表16】

化合物 番号	R ¹	R ²	R ³	R	職点(°C)
1-461 1-462 1-463 1-484 1-465	CF3 CF3 CF3 CF3	6-Me 6-Me 6-Me 6-Et 6-Et	H H H	NIPr NHPr-i NHMs N(Et) ₂ N(Pr) ₂	
1-466 1-467 1-468 1-469	CF ₃ CF ₃ CF ₃	6-Bt 6-Bt 6-Bt 6-Bt	H	N (Me) 2 NHEt NHPr NHPr-i	
1-470 1-471 1-472 1-473	CF ₃ CF ₃ CF ₄	6-Rt 6-Pr 6-Pr 6-Pr	H	NHMe N(Et) ₂ N(Pr) ₂ N(Me) ₂	
1-474 1-475 1-476 1-477	CF ₃ CF ₃ CF ₃	6-Pr 6-Pr 6-Pr 6-Pr	H	NHEt NHPr NHPr-i NHMe	
1-478 1-479 1-480 1-481	CF ₃ CF ₃ CF ₃	6-0Ke 6-0Ke 6-0Ke 6-0Ke	H	N (Et) ₂ N (Pr) ₂ N (Me) ₂ NHEt	
1-482 1-483 1-484 1-485	CF ₃ CF ₃ CF ₃	6-OMe 6-OMe 6-OMe 6-CH ₂ OMe	н	NHPr NHPr-i NHMe N (Et) ₂	
1-486 1-487 1-488 1-489	CF ₃ CF ₃ CF ₃	6-CH ₂ OMe 6-CH ₂ OMe 6-CH ₂ OMe 6-CH ₂ OMe	H	N (Pr) 2 N (Ne) 2 NHEt NHPr	
1-490 1-491	CF ₃	6-CH ₂ OMe 6-CH ₂ OMe	H	NHPr-i NHMe	

【0047】 【表17】

化合物 番号	R ¹	R ²	R ³	R	融点(°C) ### 屈折率(n _D ²⁰)
-					
1-492	CF ₃	H	В	N (Bt) ₂	181-182
1-493	CF ₂	H	H	N (Bt) Pr	208-210
1-494	CF ₂	H	H	N (Bt) Bu	103-105
I-495	CF ₂	H	H	N (Bt) Ph	1. 5428
1-496	CF ₂	H	н	N (Pr) 2	140-141
1-497	CF ₂	H	H	N(Pr-i) ₂	175-176
1-498	CF ₂	H	H	N (Bu) 2	110-111
1-499	CF ₂	H	H	N (Bu-i) 2	158-159
1-500	CF ₂	H	н	N (Bu-s) 2	127-128
1-501	CF ₃	H	H	N (Pen) 2	1, 5258
1-502	CF ₃	В	H	N (C6H13) 2	1. 5191
1-503	CF ₃	В	R	N (CH ₂ C≡CH) ₂	1. 5269
1-504	CF ₂	H	H	N (CH2CH=CH2),	1. 5364
1-505	CF ₃	В	н	N (CH2CH2OH) 2	140-141
1-506	CF3	В	H	N (Me) 2	200-201
1-507	CF ₃	Н	H	N (Ma) Et	119-121
	۰				
1-508	CF ₃	В	H	- ₁ ○	171-173
	,	l		_	
1-509	CF ₃	В	H	-NON-Me	76- 78
	۰	ı		_	
1-510	CF ₃	В	н	- * C>	96- 97
	3	ı		0	
1-511	CF ₃	н	H	-n()	165-166
1	3			_	
1-512	CF ₃	В	H	-N(3)	198-199
	3	1			
1-513	CF ₃	В	н	N (Me) Pr	132-135
1-514	CF ₃	В	H	N (Kie) Bu	181-182
1-515	CF ₃	В	н	N (Ne) COMe	159-160
1-516	CF _S	1	н	N (Ke) Ph	1, 5461
1-517	CF ₃	1	н	MH ₂	209-211
. 321	3_			2	

【0048】 【表18】

化合物 番号	R ¹	R ²	R ³	R	融点(°C)
1-518	CF ₃	H	Me	NH ₂	
1-519	CF3	H	Bn	NH ₂	
1-520	CF.	Ħ	CH ₂ OMe	NH.	
1-521	CF.	H	в"	NHČ (Me) ₂ CN	211-212
1-522	CF_	В	н	NHBt	218-220
I-523	CF.	H	H	MIPr-c	172-173
1-524	CF ₃	H	В	NHPr	215-216
1-525	u,	H	В	WHPr-i	168-169
1-526	CF.	H	В	NHBu-c	148-149
I-527	CF.	H	H	NHBu	204-205
1-528		H	В	NHBu-i	136-137
1-529		H	В	NHBu-s	174-175
1-530		В	В	NHBu-t	125-127
1-531		H	В	NiiPen	154-155
1-532	Ur.	H	В	NIIPen-c	143-145
1-533	LF ₀	H	В	N⊞-⟨◯	151-153
1-534	UF _q	H	В	NEC ₆ H ₁₃	125-127
1-535	CF.	H	В	NECSH17	145-146
1-536	CF_	H	H	NHCH (Et) 2	183-185
1-537	CF_	H	В	NECE (Me) Ph	156-158
1-538	Ur_	H	В	NECE ₂ C = CE	144-145
1-539	CF.	H	В	NECE ₂ CF ₃	1. 4947
1-540	CF.	H	H	NECE_CH=CH_	182-184
1-541	CF _n	В	В	NECE ₂ CH ₂ CH ₂ SNe	177-179
1-542	CF.	H	В	NECE ₂ CH ₂ ONe	193-195
1-543	CF.	H	В	NHBn	166-168
1-544	CF.	H	В	NEMe	179-181
1-545		H	H	NHCHO	155-157
1-546	CF.	H	В	NHCOMe	177-178
1-547		H	В	NECONEET	167-168
1-548	CF.	H	В	NECON (Me) 2	170-172
1-549	CF ₃	H	H	NECOOMe	149-150

【0049】 【表19】

【0050】 【表20】

化合物	R ^I	R ²	R ³	R	融点(°C)
1-581	CH ₂ Br	3, 4-F ₂	В	N (Bt) 2	
1-582	CH ₂ Br	3, 5-F ₂	l a	N(Bt) ₂	
1-583	CH ₂ Br	3, 6-F ₂	В	N(Bt)2	
1-584	CH ₂ Br	4, 5-P ₂	- B	N(Et)2	
1-585	CH ₂ Br	4.6-F ₂	В	N (Bt) 2	
1-586	CH ₂ Br	5, 6-F ₂	н	N(Et) 2	
1-587	CH ₂ Br	3.4-c1 ₂	В	N (Bt) 2	
1-588	CH ₂ Br	3, 5-C1 ₂	н	N(Bt)2	
1-589	CH2Br	8.6-Me ₂	В	N(Bt)2	
1-590	CH ₂ Br	4, 5-Me ₂	В	N (Bt) 2	
1-591	CH ₂ Br	4, 6- (OMe) 2	В	N (Bt) 2	
1-592	CH ₂ Br	5, 6- (OMe) 2	В	N(Bt)2	
1-593	CH2C1	3, 4-F ₂	н	N(Bt)2	
1-594	CH2CI	3,5-F ₂	H	N(Bt)	
1-595	CH ₂ C1	3, 6-F ₂	н	N(Bt)2	
1-598	CH ₂ CI	4, 5-F ₂	н	N (Bt) 2	
1-597	CH2C1	4.6-F ₂	В	N(Bt)2	
1-598	CH ₂ C1	5. 6-F ₂	н	N(Bt)2	
1-599	CH_CI	3, 4-C1 ₂	H	N(Et),	
1-600	CH ₂ CI	3, 5-C1 ₂	H	N(Bt)	
1-601	CH ₂ C1	8.6-Me ₉	H	N(Bt)2	
1-602	CH ₂ C1	4.5-Ke ₂	H	N(Bt)2	
1-603	CH ₂ C1	4, 6- (OMe) 2	В	M(Bt) ₂	
1-604	CH ₂ C1	5, 6- (Offic) 2	H	N(Bt)2	
1-605	CH ₂ CN	8, 4-F ₂	H	N(Bt)2	
1-806	CH ₂ CN	3.5-F ₂	В	N(Bt)2	
1-607	CH2CN	3, 6-F ₂	H	N (Bt) 2	
1-608	CH ₂ CN	4, 5-F ₂	В	N(Bt)2	
1-609	CH ₂ CN	4, 6-F ₂	В	N(Bt)2	
1-610	CH ₂ CN	5, 6-F ₂	H	N(Bt)2	
I-611	CH ₂ CN	3. 4-Ci ₂	H	N(Bt)2	
1-812	CH ₂ CN	3, 5-C1 ₂	В	N (Bt) 2	

【0051】 【表21】

化合物 番号	R ¹	r ²	R ³	R	融点(°C)
1-613	CH ₂ CN	3, 6-Me ₂	В	N(Bt) ₂	
1-614	CH2CN	4, 5-Me ₂	В	N(Et) 2	
1-815	CH ₂ CN	4, 6- (OMe) 2	В	N(Bt)2	
1-816	CH ₂ CN	5, 6- (0Me) 2	в	N(Bt)2	
1-617	CHF2	3, 4-F ₂	В	N(Bt)2	
1-818	CHF ₂	3, 5-F ₂	H	N (Bt) 2	
1-619	CHF ₂	3, 6-F ₂	В	N (Bt) 2	
1-820	CHF.	4, 5-F ₂	н	N(Bt)2	
1-621	CHP.	4.6-F2	В	N (Bt) 2	
1-622	CHF ₂	5, 6-F ₂	В	N (Bt) 2	
1-623	CHF ₂	3, 4-cī ₂	В	N(Et)2	
1-624	CHF.	3, 5-C1 ₂	В	N(Et)2	
1-625	CHF ₂	3.6-Me ₂	В	N(Bt) ₂	
1-626	CHF.	4, 5-Me ₂	В	N(Bt)2	
1-627	CHF.	4, 6- (Offic) ,	H	N(Et),	
1-626	CHF ₂	5, 6- (Otte) 2	H	N(Et),	
1-629	CHC12	3, 4-F ₂	В	N(Bt)	
1-630	CHC1.	3, 5-F.,	В	N(Bt) ₂	
1-631	CHC1,	3, 6-F ₂	H	N(Bt)	
1-632	CHC1,	4, 5-P ₂	H	N(Et)	
1-633	CHC1 _o	4.6-F ₂	H	N(Bt),	
1-634	CHC1.	5, 6-F ₂	B	N(Bt),	
1-635	CHC1.	8, 4-Cl ₂	H	N(Bt),	
1-636	CHC1,	3, 5-C1 ₂	H	N(Bt),	
1-637	CHC1,	3, 6-Me.,	H	N(Bt)	
1-638	CHC1,	4.5-Me ₂	H	N(Bt)	
1-639	CHCl.	4.6-(Offe),	В	N (Bt) 2	
1-840	CHC12	5, 6-(011e) 2	H	N(Bt),	
1-641	CF ₂	3, 4-F ₂	B	N(Bt)	
1-642	CF ₂	3, 5-F ₂	H	N(Bt),	
1-643	CF.	8.6-F ₂	H	N(Bt) ₂	
1-844	CF ₃	4.5-F ₂	H	N(Bt)2	

【0052】 【表22】

化合物 香 号	R1	R ²	R ³	R	職点(℃)
	CF3	ж ² 4.6-F ₂ 5.6-F ₂ 3.4-C ₁ 3.6-C ₁ 3.6-C ₂ 3.6-C ₃ 4.6-C	R3 H H H H H H H H H H H H H H H H H H H	NGD 2	數性
1-670 1-671 1-672 1-673 1-674 1-675	CH ₂ CH-CHC1 CH ₂ CH=CHC1 CH ₂ CH=CHC1 CH ₂ CH-CHC1 CH ₂ CH-CHC1 CH ₂ CH=CHC1	5-F 5-F 5-F 5-F 6-F	H	NHERT NHEPT-I NHEME N (Bt) 2 N (Pr) 2	
1-676	CH2CH=CHC1	6-F	н	N (Me) 2	

[0053] [表23]

化合物 番号	R ¹	R ²	R ³	R	融点(°C)
1-677	CH_CH=CHC1	6-F	н	NHEt	
1-678	CH_CH=CEC1	6-F	H	NHPr	
1-879	CH_CH=CEC1	6-F	H	NHPr-i	
1-880	CH_CH-CHC1	6-F	н	Nime	
1-681	CH_CH-CHC1	6-We	H	N(Et)2	
1-682	CH_CH-CHC1	6−We	H	N(Pr)	
1-683	CH_CH-CHC1	6−We	H	N ONe) 2	
1-684	CH_CH-CBC1	6−¥e	H	NHEt	
1-685	CH_CH=CECI	6-Me	H	NIPr	
1-686	CH_CH=CEC1	6-Ne	H	NHPr-i	
1-687	CH_CH=CHC1	6-¥e	H	NEMe	
1-888	CH_CH=CHC1	6-Et	H	N(Et) ₂	
1-689	CH_CH=CHCI	6-Et	H	N(Pr)2	
1-690	CH2CH=CHC1	6-Et	H	N (Me) 2	
1-691	CH_CH=CHC1	6-Et	H	MEEt	
1-892	CH2CH=CHC1	6-Et	H	NHPr	
1-693	CH2CH=CHCI	6-Et	H	NHPr-i	
1-694	CH_CH=CHC1	6-Et	H	NEMe	
1-895	CH_CH=CHC1	6-Pr	H	N(Bt) ₂	
1-696	CH2CH-CHC1	6-Pr	H	N(Pr)2	
1-697	CH ₂ CH-CHCI	6-Pr	H	N (Ne) 2	
1-698	CR_CH=CEC1	6-Pr	H	NEEt	
1-899	CH_CH=CHCI	6-Pr	H	NEPr	
1-700	CH ₂ CH=CHCI	6-Pr	H	N#Pr-i	
I-701	CH2CH=CECI	6-Pr	H	NEMe	
1-702	CH2CH-CEC1	6-0Me	н	N (Et) 2	
1-703	CH2CH=CEC1	6-0Me	H	N(Pr) ₂	
1-704	CH ₂ CH=CEC1	6-0Ma	H	N (Ne) 2	
1-705	CH2CH=CHC1	6-0Me	H	NHEt	
1-706	CH ₂ CH-CEC1	6-0Me	H	NIPr	
1-707	CH2CH-CEC1	6-0%e	H	NMPr-i	
1-708	CH ₂ CH=CHC1	6-0Me	H	Mane	

【0054】 【表24】

化合物 番号	R ¹	R ²	R ³	R	融点(°C) 試证折 率(n _D ²⁰)
I-709	CH2CH-CHC1	6-CH_OMe	н	N (Et) 2	
I-710	CH2CH=CHC1	6-CH_CMie	н	N (Pr) 2	
1-711	CH2CH=CHC1	6-CH ₂ OMe	н	N (Me) 2	
1-712	CH2CH-CHC1	6-CH_OMe	н	NHEt 2	
I-713	CH2CH-CHC1	6-CH ₂ OMe	H	NHPr	
I-714	CH ² CH-CHC1	6-CH_OMe	H	NHPr-i	
I-715	CH2CH-CHC1	6-CH ₂ OMo	H	WHMe	
1-716	CH2CH-CHC1	3, 4-F ₂	H	N(Et) ₂	
1-717	CH2CB=CHC1	3, 5-P ₂	H	N(Et)2	
I-718	CH_CH=CHCI	8, 6-F ₂	H	N(Et)2	
I-719	CH2CH=CHC1	4, 5-F ₂	H	N (Et) 2	
I-720	CH2CH=CHC1	4.6-F ₂	H	N(Et)2	
1-721	CH2CD=CHC1	5.6-₹2	H	N(Et)2	
I-722	CH2CH=CHC1	3, 4-ci ₂	H	N (Et) 2	
I-723	CH_CH-CHC1	3, 5-C1 ₂	H	N(Et)2	
I-724	CH_CH-CHC1	3, 6-Ma ₂	H	N (Et) 2	
I-725	CH_CB-CHC1	4,5-Me ₉	H	N(Et)2	
I-726	CH_CH=CHC1	4.6-(0Me) ₂	H	N(Et)2	
I-727	CH_CH=CHC1	5, 6- (Olde) 2	H	N(Et)	
I-728	CEP ₂	3-F	H	N (Me) 2	123-124
I-729	CEF ₂	3-F	H	N (Et) Pr	
I-730	CEF ₂	3-F	H	N (Et) Bu	
I-731	CEF ₂	3-F	H	N(Pr) ₂	
I-732	CEP ₂	3-P	H	N(Pr-i)2	
I-733	CHP ₂	3-F	H	N (Bu) 2	
I-734	CHP ₂	3-F	H	N (Bu-i) ₂	
I-735	CEF ₂	3-F	H	N (CH2CH2CN) 2	
I-736	CEP ₂	3-F	H	N (CH2CH2OH) 2	
1-737	CEP ₂	3-F	H	N (Me) Bt	
1-738	CEF ₂	3-F	H	N (Me) Pr	
1-739	CEP,	3-F	H	N (Me) Bu	
I-740	CEP ₂	3-F	H	Nillie	199-200

【0055】 【表25】

化合物 番号	R ¹	R ²	R ³	R	融点(°C) 計版折 率(n _D ²⁰)
I-741	am.	3-F	E	NHEL	169-170
I-742	CEF ₂	3-F	H	NHPr-c	169-170
I-743	CEP ₂	3-F	Н.	NYBa	
1-744	CHP ₂	3-F	H	NHBu-i	
I-745	CHF ₂	3-F	H	NHBu-t	
I-746	CHP ₂	3-F	H	MiPen	
1-747	CHF ₂	3-F	н	NH-C	
1-748	CHP ₂	3-F	H	NHC ₆ H ₁₃	
I-748	CHP ₂	3-F	н	NHCH ₂ CF ₂ CF ₃	
I-750	CEP ₂	3-F	H	NHCH ₂ CF ₃	
1-751	CHP ₂	3-F	H	NHCH2CH=CH2	
1-752	CHF ₂	3-F	н	NHCH2C≡CE	
I-753	CEF ₂	3-F	H	NHCH2CH2OMe	129-130
I-754	CEF ₂	3-F	H	NHCH ₂ Ph	
I-755	CEP ₂	3-F	H	NHINHCOMe	
I-756	CHP ₂	3-F	E	NHNHCOPh	
I-757	CEF ₂	3-F	E	NHNHNe	1.5410
I-758	CEP ₂	3-F	E	NHN (Ne) 2	129-131
I-759	CHP,	3-F	H	NHPh	
I-760	CEP ₂	3-F	H	NHPh (2-ONe)	
I-761	CEF ₂	3-F	H	NHPh (3-OMe)	
I-762	CEF ₂	3-F	H	NHPh (4-0Me)	
I-763	CEP ₂	3-F	H	- \O	
I-764	CEF ₂	3-F	H	-1\(\text{T-Me}	
1-765	CHF ₂	6-Bt	H	- * O	
I-766	CEF ₂	6- E t	H	-1\(\)\(\)\(\)\(\)	
1-767	CHP ₂	6-Bt	H	-3Co	

【0056】 【表26】

化合物	R ¹	R ²	R ³	R	融 点(°C) 試理折 率(n _D ²⁰)
			\vdash		
1-768	CHF ₂	6-Bt	H	N(Et)Pr	
1-769	CHF ₂	6-Bt	H	N (Et) Bu	
I-770	CHF ₂	6-Et	H	N(Pr) ₂	
I-771	CHF ₂	6-Et	H	N(Pr-i)2	
1-772	CHF ₂	6-Et	H	N (Bu-i) 2	
I-773	CEF ₂	6-Et	H	N (CH ₂ CH ₂ CN) ₂	
I-774	CHF ₂	6-Bt	H	N (CH2CH2OH) 2	
1-775	CHF ₂	6-Et	H	N (Me) Et	
1-776	CHF ₂	6-Et	H	N (Me) Pr	
I-777	CHF ₂	6-Et	H	N (Ne) Bu	
1-778	CHF ₂	6-Bt	H	NHMe	
1-779	CHF ₂	6-Et	H	NHPr-c	
1-780	CEP ₂	6-Bt	H	NHPr-i	
1-781	CEP ₂	6-Bt	H	NHBu	
1-782	CHP ₂	6-Bt	H	NHBu-1	
1-783	CHF ₂	6-Bt	H	NHBu-t	
I-784	CHF ₂	6-Bt	H	NHPen	
I-785	CHF ₂	6-Bt	H	NH-C>	
1-786	CHF ₂	6-Bt	H	NHC ₆ H ₁₃	
1-787	CHF ₂	6-Bt	H	NHCH2CF2CF3	
1-788	CEF2	6-Bt	H	NHCH ₂ CF ₃	
1-789	CHF ₂	6-Bt	H	NHCH2CH=CH2	
1-790	CHF ₂	6-Bt	H	NHCH ₂ C≡CE	
1-791	CEP ₂	6-Bt	H	NHCH_CH_OMe	
1-792	CEF ₂	6-Bt	н	NHCH ₂ Ph	
1-793	CHF ₂	6-Rt	H	NHNHCOMe	
I-794	CEF ₂	6-Bt	H	NHNHCOPh	
I-795	CHF ₂	6-Bt	H	NHNHMe	
I-796	CEF ₂	6-Bt	H	NHN (Me) 2	
1-797	CHF ₂	6-Et	H	NHPh	
1-798	CHP ₂	6-Bt	H	NHPh (2-OMe)	
1-799	CHF ₂	6-Bt	H	NHPh (3-ONe)	

【0057】 【表27】

化合物	R ¹	R ²	R ³	R	融 点(°C)
番号	K.	K"	K-	К	於規度折率 (n _D ²⁰)
I~800	CEF ₂	6-Bt	H	NHPh (4-ONe)	
I~801	CHF ₂	6-Pr	H	→ ○	
I-802	CEP ₂	6-Pr	H	-x⊜v-жe	
I-803	CEP ₂	6-Pr	н	- n Co	
I-804	CEF ₂	6-Pr	н	N(Et)Pr	
I-805	CEP ₂	6-Pr	H	N (Et) Bu	
I-806	CEP ₂	6-Pr	н	N(Pr-i) ₂	
I-807	CEP ₂	6-Pr	н	N (Bu) 2	
I-808	CEP ₂	6-Pr	н	N (Bu-i) ₂	
I-809	CHP ₂	6-Pr	H	N (CH ₂ CH ₂ CN) ₂	
I-810	CHP ₂	6-Pr	н	N (CH ₂ CH ₂ OH) 2	
I-811	CHF ₂	6-Pr	H	N (Ne) Et	
I-812	CEP ₂	6-Pr	H	N (Ne) Pr	
I-813	CEP ₂	6-Pr	H	N (Ne) Bu	
1-814	CEP ₂	6-Pr	H	NHPr-c	
I-815	CEP ₂	6-Pr	H	NHBu	
I-816	CHF ₂	6-Pr	H	NHBu-i	
I-817	CEF ₂	6-Pr	H	NHBu-t	
I-818	CEP ₂	6-Pr	H	NHPen	
I-819	CHP ₂	6-Pr	H	NH-C	
I-820	CHP ₂	6-Pr	H	NHC ₆ H ₁₃	
I-821	CEP ₂	6-Pr	H	NHCH2CF2CF3	
1-822	CEP ₂	6-Pr	E	NHCH ₂ CF ₃	
I-823	CHP ₂	6-Pr	H	NHCH2CH=CH2	
I-824	CHP ₂	6-Pr	H	NHCH ₂ C=CH	
I-825	CHF ₂	6-Pr	H	NHCH ₂ CH ₂ ONe	
I-826	CEF ₂	6-Pr	H	NHCH ₂ Ph	
1-827	CEF ₂	6-Pr	H	NHNHCOMe	

【0058】 【表28】

化合物	Rl	R ²	R ³	R	融 点(°C) 計組形 率(n _D ²⁰)
- /					1 40 /
I-828	CEF ₂	6-Pr	н	NENHCOPh	
I-829	CEF ₂	6-Pr	H	MINIMe	
I-830	CHP ₂	6-Pr	н	NHN (Me) 2	
I-831	CEP ₂	6-Pr	H	NHPh	
I-832	CHP ₂	6-Pr	н	NHPh (2-Olie)	
I-833	CEP ₂	6-Pr	H	NIIPh (3-ONe)	
I-834	CHF ₂	6-Pr	H	NHPh (4-ONe)	
I-835	CHP ₂	6-CH ₂ OMe	н	-1()	
	6	-		0	
I-836	CHF ₂	6-CH_OMe	В	-1(_)r-Me	
	4	6		0	
I-837	CHF ₂	6-CH ₂ OMe	н	N (Bu-i) 2	
I-838	CHP ₂	6-CH_OMe	В	N (CH ₂ CH ₂ CN) ₂	
I-839	CEP ₂	6-CH_OMe	н	N (CH, CH,OH)	
I-840	CHF ₂	6-CH_0Me	н	N (Ma) Et	
I-841	CHF ₂	6-CH_OMe	н	N (Ne) Pr	
I-842	CEF ₂	6-CH_OMe	н	N (No) Bu	
I-843	CEP ₂	6-CE_Osse	н	NHPr-c	
I-844	CHP ₂	6-CH_OMe	H	NHBu-i	
I-845	CEF ₂	6-CH_OMe	н	NHBu-t	
I-846	CEF ₂	6-CH_OMe	В	NHC _B H ₁₃	
1-847	CEF ₂	6-CE_015e	H	NHCH_CF_CF_	
I-848	CHP ₂	6-CH_OMe	В	NHCH ₂ CP ₃	
I-849	CHP ₂	6-CH_OMe	н	NHCH,CH=CH,	
I-850	CEF2	6-CE_OMe	н	NHCH2C=CH2	1, 5291
I-851	CEF ₂	6-CH_OMe	H	NHCH_CH_OMe	
1-852	CEF ₂	6-CE_000e	H	NHCH ₂ Ph	
I-853	CHP ₂	6-CH_OMe	В	NHNHCOMe	
I-854	CHP ₂	6-CH ₂ OMe	н	NHNHCOPh	
I-855	CHP ₂	6-CE_OMe	н	NINNE	
I-856	CEF ₂	6-CE ₂ Osse	H	NHN (Me) 2	140-142

【0059】 【表29】

化合物 番号	R ¹	R ²	R ³	R	融点(°C) 批組折 率(n _D ²⁰)
1-857	CHF ₂	e cu cas	н	NHPh	
1-858	CHF ₂	6-CH ₂ OMe	H	NHPh (2-ONe)	
I-859	CHP ₂	6-CH ₂ Olice	H	NHPh (3-ONe)	
I-860	CHP ₂	6-CH ₂ ONie	H	NHPh (4-ONe)	
1 000	2	6-CH ₂ OMe	ь	MILLI (4 - CIRC)	
I-861	CHP ₂	6-CH ₂ OBt	H	- - O	
1-862	CHP ₂	6-CH ₂ OEt	H	-x(_)(-)%e	
I-863	CEF ₂	6-CH _Z ORt	H	-100	
1-864	CEP ₂	6-CH ₂ OEt	H	N (Me) 2	
I-865	CHF ₂	6-CH ₂ ORt	Н	N (Et) Pr	
I-866	CHF ₂	6-CH ₂ OEt	H	N (Et) Bu	
I-867	CHP ₂	6-CH_OEt	H	N (Pr) 2	
838-I	CHF ₂	6-CE,OEt	H	N(Pr-i)2	
1-869	CHF ₂	6-CH ₂ OKt	H	N (Bu) 2	
1-870	CHP ₂	6-CH_OKt	H	N (Bu-i) 2	
I-871	CEP ₂	6-CE_ORt	H	N (CH ₂ CH ₂ CN) ₂	
I-872	CHF ₂	6-CH_ORt	H	N (CH ₂ CH ₂ OH) 2	
1-873	CHP ₂	6-CH_ORt	H	N (Me) Et	
I-874	CHP ₂	6-CH_OKt	H	N (Me) Pr	
I-875	CHF ₂	6-CE_ORt	H	N (Me) Bu	
I-876	CHF.	6-CH ₂ OBt	H	Nille	
1-877	CEP ₂	6-CH ₂ ORt	H	NHEt	
I-878	CEP ₂	6-CE ₂ ORt	H	NHPr-c	
1-879	CHP,	6-CH ₂ OBt	H	NHPr-1	
I-880	CHF ₂	6-CH_OBt	H	MiBu	
188-1	CEF ₂	6-CH ₂ OKt	H	NHBu-i	
1-882	CEF ₂	6-CH ₂ OKt	Rt II NHBu-t		
I-883	CHF ₂	6-CH ₂ OKt	H	MHPen	
1-884	CHF ₂	6-CH ₂ OBt	H	MII-(

[0060] [表30]

化合物 番 号	R ¹	R ²	R ³	R	數点(°C) 計幅折 率(n _D ²⁰)
I-885 I-886 I-887 I-888 I-890 I-891 I-892 I-893 I-894 I-895 I-896 I-897 I-900 I-900 I-901 I-902	CHF ₂	G-Cl_p6t G-Cl_p6t		NEG, 21, 3 NEGL, 2C 2C 3 NEGL, 2C 3C 3 NEGL, 2C 3C	102-103 166-168

【0061】 【表31】

$$\begin{array}{c} R^2 & R^3 \\ 5 & N - SO_2 R^1 \\ 4 & 3 & OCH_3 \\ N & OCH_3 \end{array}$$

化合物	R1	R ²	R ³	R ⁶	職 点(℃)
青亏					层折率(n _D ²⁰)
11- 1	CH ₂ F	Н	H	Office	
11- 2	CH2F	Н	H	OBt	
11- 3	CH ₂ F	H	H	OH	
11-4	CH _Z F CH _Z F	H	H	Ph	
11-5	CH ₂ F	H	H	Ph (2-C1)	
11-6	CH ₂ F CH ₂ F	H	H	Nielle	
11- 7	CH ₂ F	4-C1	H	NHSO ₂ CH ₂ F	
11-8	CH ₂ F	H	H	N(Me) ₂	
11- 9	CH ₂ F	H	H	Me	
11-10	CH ₂ Br	H	H	0Me	
13-11	CH ₂ Br	н	H	QRt	
11-12	CH ₂ Br	H	H	OH	
11-13	CH ₂ Br	H	H	Ph	
11-14	CH ₂ Br	H	H	Ph (2-C1)	
11-15	CH ₂ Br	H	H	NiMe	
11-16	CH ₂ Br	4-C1	H	NHSO ₂ CH ₂ Br	
11-17	CH ₂ Br	H	H	N (Me) 2	
11-18	CH ₂ Br	н	H	Me	
11-19	CH ₂ C1	н	H	Office	
11-20	CH ₂ C1	H	H	0Bt	
11-21	CH ₂ C1	H	H	OH	
11-22	CH ₂ C1	н	H	Ph	
11-23	CH ₂ C1	В	H	Ph (2-C1)	
11-24	CH ₂ C1	В	B	NEELE	
11-25	CH ₂ C1	4-C1	H	NHSO ₂ CH ₂ C1	

[0062] [表32]

化合物	R ¹	r ²	R ³	_R 6	融点(°C) 試出 同形率(a 20)
番号					屈折率(n _D ²⁰)
11-26	CH ₂ C1	В	В	N (We) 2	
11-27	CH ₂ C1	В	В	Me 2	i
11-28	CELCN	н н	н	OMe	
11-29	CH ₂ CN	-		0Bt	
11-30	CH ₂ ON	Е .	Н .	OH	
11-31	CH ₂ ON	н	В	Ph	l
11-32	CH ₂ CN	н	н	Ph (2-C1)	
11-33	CIL ₂ CN	В	В	NEMe	
11-34	CH ₂ CN	4-C1	н	NHSO ₂ CH ₂ CN	
11-35	CH ₂ CN	В	н	N (Me) 2	
11-36	CH ₂ CN	в	В	Me Z	
11-37	œź	н	8	OMe	
11-38	CEF ₂	н	В	0Et	
11-39	CHP ₂	н	Н	OH	
11-40	CHF ₂	H	н	Ph	
II-41	CHF ₂	н	н	Ph (2-C1)	
II-42	CHP,	В	B	NEMe	
11-43	CEP ₂	4-C1	В	NESO ₂ CEF ₂	
11-44	CEP,	8	В	N (Me),	
I I-45	CEP,	H	В	Ne "	129-130
II-46	CHC1,	B	B	094e	
II-47	CHC1 ₂	H	В	0Bt	
II-48	CEC1,	H	н	OE	
II-49	CHCl,	B	B	Ph	
11-50	CHC1,	н	В	Ph (2-C1)	
11-51	CEC12	н	В	NEMe	
11-52	CHC1,	4-C1	H	NESO ₂ CEC1 ₂	
11-53	CHCl.	н	В	N (Me) 2	
I I-54	CHCl ₂	В	B	Же	
II-55	CP.	8	В	094e	89- 91
I I-56	CP ₃	H	В	0Bt	106-107

【0063】 【表33】

化合物	R ¹	r ²	R ³	R ⁶	融点(°C) tht 屈折率(n _D ²⁰)
11-57	CF ₃	н	ı	OΠ	216-217
11-58	CF ₃	н	н	Ph	131-132
11-59	CF3	H	н	Ph (2-C1)	123-124
11-60	CF3	H	н	NEWe	79- 81
11-61	CF3	4-C1	н	NHSO ₂ CF ₂	
11-62	α ₃	н .	н	N (Me) 2	121-122
11-83	CF3	H :	H	Me	175-177
11-64	CH,CH=CHC1	H	H	0Me	
11-65	CH_CH-CHCI	H	H	Œt	
11-66	CH ₂ CH-CHC1	H	я	OH	
11-87	CH_CH=CHCI	H	H	Ph	
11-68	CH_CH=CHC1	H	I	Ph (2-C1)	
11-69	CH2CH-CHC1	H	H	NEWe	
11-70	CH ₂ CH-CHC1	4-C1	H	NHSO ₂ CH ₂ CH=CHC1	
11-71	CH2CH-CHC1	H	H	N (Me) 2	
11-72	CH2CH=CHCI	H	H	Me	
11-73	CHF ₂	3-F	H	Ph	
11-74	CHF ₂	3-F	H	Bt	
11-75	CHF ₂	3-F	H	Pr-i	ĺ
II-78	CHF ₂	3-F	H	Pr	
11-77	CHF ₂	3-F	H	Me	
11-78	CHF ₂	3-F	H	N (Me) 2	112-113
11-79	CHF ₂	3-F	H	NH ₂	
11-80	CHE	3-F	H	NEMe	123-I24
11-81	CEF ₂	3-F	H	NHSO ₂ CHF ₂	
11-82	CHF ₂	6-Et	H	Ph	
11-83	CEF ₂	6-Et	H	Bt	
11-84	CHF ₂	6-Et	H	Pr-i	l
I1-85	CHF ₂	6-Et	H	Pr	
I1-86	CHF ₂	6-Et	H	Me	1
11-87	CHF ₂	6-Et	H	N (Me) 2	
11-88	CHF ₂	6-Et	H	NH ₂	

【0064】 【表34】

化合物 番 号	R ^I	R ²	R ³	R ⁶	融点(YC)
11-89 11-90 11-91 11-92	CHF ₂ CHF ₂ CHF ₂ CHF ₂	6-Et 6-Et 6-Pr 6-Pr	H H H	NHINE NHSO ₂ CHF ₂ Ph Et	
II-93 II-94 II-95 II-96	CHF ₂ CHF ₂ CHF ₂ CHF ₂	6-Pr 6-Pr 6-Pr 6-Pr	H H H	Pr-i Pr Me N (Me) ₂	
II-97 II-98 II-99	CHF ₂ CHF ₂ CHF ₂	6-Pr 6-Pr 6-Pr	H	NH ₂ NHHe NHSO ₂ CHP ₂	
II-100 II-101 II-102 II-103	CHF ₂ CHF ₂ CHF ₂ CHF ₂	6-CH ₂ OMe 6-CH ₂ OMe 6-CH ₂ OMe 6-CH ₂ OMe	H	Ph Bt Pr-i Pr	
11-104 11-105 11-106 11-107	CHF ₂ CHF ₂ CHF ₂ CHF ₂	6-CH ₂ OKe 6-CH ₂ OKe 6-CH ₂ OKe 6-CH ₂ OKe	H	N (Me) ₂ NH ₂ NHMe	1.25-126 1.5602
II-108 II-109 II-110 II-111	CHF ₂ CHF ₂ CHF ₂ CHF ₂	6-CH ₂ OMe 6-CH ₂ OBt 6-CH ₂ OBt 6-CH ₂ OBt	H	NHSO ₂ CHF ₂ Ph Bt Pr-1	
II-112 II-113 II-114 II-115	CHF ₂ CHF ₂ CHF ₂ CHF ₂	6-CH ₂ OBt 6-CH ₂ OBt 6-CH ₂ OBt 6-CH ₂ OBt	HH	Pr Me N OMe) ₂ NH ₂	
II-116 II-117 II-118 II-119	CHF ₂ CHF ₂ CHF ₂ CHF ₂	6-CH ₂ OBt 6-CH ₂ OBt 5-F	H	NEMe NESO ₂ CHP ₂ Me Bu	128-I31 95- 96
II-120	CHP ₂	H	H	Bt Et	107-110

【0065】 【表35】

化合物 番号	R ²	触点(°C)
111- 1 111- 2 111- 3 111- 4 111- 5	H 4-P 5-P 6-F 7-P	145 - 147
111- 8 111- 7 111- 8 111- 9	4-C1 5-C1 6-C1 7-C1 4-Ne	198-200
111-11 111-12 111-13 111-14	5-Me 6-Me 7-Me 4-0Me	
111-15 111-16 111-17 111-18	5-0Me 6-0Me 7-0Me 4-CH ₂ 0Me	
111-18 111-20 111-21	5-CH ₂ OMe 6-CH ₂ OMe 7-CH ₂ OMe	126-127

【0066】次に、一般式 [1] で示される本発明化合物は、以下に示す製造法に従って製造することができるが、これらの方法に限定されるものではない。 【0067】<製造法1> 【0068】

[化5]

(式中、Aは基-C (=O) -、基-C +C (O+H) -X はQ [ここでQは前記と同じ意味を示す。] を示し、X はハロゲン原子を示し、R1、R2、R3、mは前記と同じ意味を示す。)

【0069】一般式【III】で示されるアニリン誘導 体1モルに対し、スルホニルハライド誘導体もしくはス ルホン酸誘導体の無水物1-2倍モルを無溶線、或いは 適当な溶媒0.5~51中、塩差1~2倍モルの存在下 で反応させることにより、一般式【IV】で示される目 的のスルホンアニリド誘導体を得ることができる。

【0070】ここで溶媒としてはn-ヘキサン等の炭化水素、シクロヘキサン等の環状炭化水素、トルエン、キシレン等の芳香族炭化水素類、1、4-ジオキサン、テトラヒドロフラン (THF)等のエーテル類、N、Nージメチルホルムアミド(DMF)等のアミド類、N、N・ジメチルホルムアミド(DMF)等のアミド類、N、N・

ージメナルスルホキシド (DMSO)、スルホラン等の 硫黄化合物、キノリン、ビリジン等の芳香族会登案化合 物、N、Nージエナルアニリン等のアニリン誘導体、酢 酸、トリフルオロ酢酸等のオ機酸、酢酸エナル等のエス テル類、クロロホルム等のハロゲン化炭化水素、アセト ニトリル等のニトリル類、ニトロベンゼン等の芳香族ニ トロ化合物類、メタノール、エタノール等のアルコール 類、水害を傍所できる。

【0071】また、塩基としては、水素化ナトリウム等の金属水素化物、n-ブチルリチウム等の有機金属化合物、ビリジン、トリエチルアミン等の有機塩基、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム等のアルカリ金属またはアルカリ土類金属の炭酸化合物、同炭酸水素化合物、ごらにナトリウムメトキシ、カリウム t-ブトキンド等のアルコールの金属塩

等を例示できる。

【0072】反応温度は-70℃~250℃の温度範囲 で行い、好ましくは-20℃から室温の温度範囲であ り、反応時間は5分から1週間で終了する。

【0073】<製造法2> [0074]

[4:6]

$$(\mathbb{R}^2)_{\text{in}} \xrightarrow{\mathbb{B}} (\mathbb{R}^2)_{\text{in}} \xrightarrow{\mathbb{B}} (\mathbb{R}^2)_{\text{in}} \xrightarrow{\mathbb{B}} (\mathbb{R}^2)_{\text{in}}$$

(式中、Bは基-NHR3、基-NR3 (SO₂R1) 又はニトロ基を示し、m, R1, R2, R3, R6 は前 記と同意味を示す。)

【0075】一般式[V]で示されるカルボニル化合物 1モルに対し、R6 NH。で示されるアミン類1~5倍 モルを無溶媒又は適当な溶媒(ベンゼン等の芳香族炭化 水素類、メタノール等のアルコール類等を例示でき る。) 0.5~51中で、脱水縮合させる事により、一 級式 [VI] で示される目的のイミン化合物を得ること

ができる。ここで、場合により適当な触媒(四塩化チタ ン等のルイス酸類、酢酸カリウム等の塩基類等を例示で きる。) 0.01~2倍モルを添加しても良い。

【0076】反応温度は-70℃~250℃の温度範囲 で行い、好ましくは-20℃から150℃の温度範囲で あり、反応は5分から1週間で終了する。

【0077】<製造法3>

[0078]

【化7】

(式中、m, B, R², R⁴, R⁵, Xは前記と同じ意 味を示す。)

【0079】一般式「VII]で示される化合物1モル の水酸基を、無溶媒又は適当な溶媒(製造法1に記載と 同様である。) 0.5~51中で、ハロゲン化剤(塩化 チオニル等のハロゲン化硫黄類を例示できる。) 1~5 倍モルを用いてハロゲン化して一般式「VIII]で示 される化合物を得た後、無溶媒又は適当な溶媒(製造法 1に記載と同様である。) 0.5~51中、一般式R4 R5 NHで示されるアミン類1~5倍モルと反応させる ことにより、一般式「IX]で示される目的のアミン化 合物を得ることができる。ここで、場合により適当な塩 基(水素化ナトリウム等の金属水素化物、n-ブチルリ

チウム等の有機金属化合物、ピリジン、トリエチルアミ ン等の有機塩基、炭酸ナトリウム、炭酸カリウム、炭酸 カルシウム等のアルカリ金属またはアルカリ十類金属の 炭酸化合物、同水酸化化合物、同炭酸水素化合物、さら にナトリウムメトキシド、カリウム ナーブトキシド等 のアルコールの金属塩等を例示できる。) 1~5倍モル を添加しても良い.

【0080】反応温度は-70℃~250℃の温度範囲 で行い、好ましくは-20℃から100℃の温度範囲で あり、反応は5分から1週間で終了する。

【0081】<製造法4>

[0082] [4:81

$$\begin{array}{c|c} & R^3 - L^1 & R^3 - L^1 \\ & R^3 - L^1 & R^3 - L^1 \\ & R^3 - L^1 & R^3 - L^1 \\ & R^3 - L^1 & R^3 - L^1 \\ & R^3 - L^1 & R^3 - L^1 \\ & R^3 - L^1 & R^3 - L^1 \\ & R^3 - L^1 & R^3 - L^1 \\ & R^3 - L^1 & R^3 - L^1 \\ & R^3 - L^1 & R^3 - L^1 \\ & R^3 - L^1 & R^3 - L^1 \\ & R^3 - L^1 & R^3 - L^1 \\ & R^3 - L^1 & R^3 - L^1 \\ & R^3 - L^1 & R^3 - L^1 \\ & R^3 - L^1 & R^3 - L^1 \\ & R^3 - L^1 & R^3 - L^1 \\ & R^3 - L^1 & R^3 - L^1 \\ & R^3 - L^1 & R^3 - L^1 \\ & R^3 - L^1 & R^3 - L^1 \\ & R^3 - L^1$$

(式中、L! はハロゲン原子、アシルオキシ基、アルキ ルスルホニルオキシ基、1-イミダゾリル基等の脱離基 を示し、R!, R², R³, Aは前記と同じ意味を示 す。)

【0083】一般式[IVa]で示される化合物(1モル)に対し、一般式R3ーし1で示されるアルキル化制、アシル化剤又はスルホニル化剤(1~2倍モル)を無溶媒又は適当な溶媒(製造法1に記載と間様である。)0.5~51年、塩基(水素化ナトリウム等のあ、ピリジン、トリエチルアミン等の有機塩塩(火産化トリウム、炭酸カリウム、炭酸カリウム、炭酸カルシウム等のアルカリ金属またはアルカリ土類金属の炭酸化合物、同水酸化化合物、同核酸水素化合物、さらにナトリウムメトキシド、カリウム セーブトキシド等のアルコールの金属塩等の帰示できる。)1~2倍モルの存在下で反応させることにより、一般式[IV]で示される目的のスルホンアニリド誘導体と得ることができる。

【0084】反応温度は-70℃~250℃の温度範囲で行い、好ましくは-20℃から100℃の温度範囲であり、反応は5分から1週間で終了する。

【0085】なお、一般的なスルホンアニリド類の製造 法に関しては、前述の特表アアー501053号公制明 創書及びWO96/41799号公領明測書に記載があ るほか、ジャーナル・オブ・アグリカルチュラル・フー ド・ケミストリー(J. Agr. Food Che m.)、第22巻(6)、第1111章(1974年) 等に記載がある。

(1086) 次に、一般式[II]で示される本発明化合物及び製造法1~4 ki戸戦の一般式[III] (V) [V] I]で示される中間体の内の幾つかは、例えば化りに示すスキームに従って製造することができるが、これらの方法に限定されるものではない。
[0087]

(式中、 L^2 はハロゲン原子又はアルキルスルホニル基 等の脱離基を示し、m, R^2 , R^3 , Xは前記と同じ意 味を示す。)

【0088】<製造法5>

一般式 [XII] 及び [XIV] で示される中間体の製 浩注

【0089】一般式 [Xa] 又は [XIII] で示されるベンジルシアニド誘導体1モルと、一般式 [XIa] で示されるピリミジン誘導体1・2倍モルとを無溶媒または適当と溶媒(製造法1に記載と同様である。) 0.5~51中で、適当な塩基(製造法1に記載と同様である。) 1-5倍モルの存在下で縮合させることにより、目的の一般式 [XII] スは [XIV] で示される化合物を得ることができる。

[0090]あるいは、一般式[XI]で示されるニトロ化合物1モルと、一板式[XI]]で示されるビリミンパ誘導化1~2倍モルとを無溶媒または適当な溶媒(製造法1に記載と同様である。)0.5~51中で、適当な塩基(製造法1に記載と同様である。)1~5倍モルの存在下で総合させることにより、目的の一般式[XII]で示される化全物を得ることができる。

【0091】いずれの場合も反応温度は-70℃から250℃の温度範囲で行い、 好ましくは-20℃から100℃の温度範囲であり、反応は5分から1週間で終了する。

【0092】<製造法6>

一般式 [Va]及び [Vc]で示される中間体の製造法。

[0093] 一般式 [XII] 双注 [XIV] で示されるシアン化合物1 モルを、適当な溶媒(製造法1に記載と同様である。) 0.5-5-51中、酸化剤 (mークロロ過安息香酸等の有機過酸類などを例示できる。) 1~2倍モルで処理した後、適当と溶媒(水などを例示できる。) 0.5-51中、適当で塩塩(水酸化ナトリウム等のアルカリ金属類などを例示できる。) 1~10倍モルと処理することにより酸化的服シアノ化定成を行い、一般式 [Va] Xは [Vc] で示される目的のカルボニル化合物を得ることができる。

【0094】反応温度は-70℃から溶媒の沸点の温度 範囲で行い、好ましくは-20℃から100℃の温度範 囲であり、反応は5分から1週間で終了する。

【0095】<製造法7>

一般式 [II]で示される4.6-ジメトキシビリミジン誘導体の製造法。

【0096】一般式 [Vc] で示されるカルボニル化合 物1 モルを、適当な溶媒 (N, Nージメチルホルムアミ ド等のアミド類、N, Nージメチルスルホキシド (DM SO)、スルホラン等の就変化合物などを例示でき る。) 0.5~51中、アジ化ナトリウム等 1~5倍モ ルと処理することにより、一般式 [II] 的の4, 6 - ジメトキシビリミジン誘導体を得ることができる。

【0097】反応温度は−70℃から溶媒の沸点の温度 範囲で行い、好ましくは−20℃から150℃の温度範 囲であり、反応は5分から1週間で終了する。

【0098】<製造法8> 一般式 [Vb] 及び [VIIb] で示される中間体の製

造法。 【0099】一般式 [II]で示される4,6ージメト キシビリミジン誘導体あるいは一般式 [Va]、[VI Ia]で示されるニトロ化合物1モルを、適当な溶媒

キンピリミンジ誘導体あるいは一般な「V a 」、[V a 」、[V 1] 1 a] で示されるニトロ化合制 にルを、適望溶解 (製造法1に記載と同様である。) 0.5~51申、適 当な漫元利(鉄等の金限類などを例示できる。) 1~5 債モルで還元することにより、対応する一般式 [V b] 及び [V I I b] で示される目的のアミノ化舎物を得る ことができる。場合により触媒として酸(酢酸等の有機 酸類などを例示できる。) 0.01~1倍モルを添加し ても良い。

【0100】或いは、一般式 [II]で示される4,6 ージメトキシピリミジン誘導体あるいは一般式 [V

a]、[VIIa]で示されるニトロ化合物1モルを、 歯当な溶解(製造法1に記載と同様である。)0.5~ 51中、触媒(パラジウム等の金属類などを例示できる。)0.01~1倍モルの存在下で、適当な適元剤 (ギ酸アンモニウム吸いは水类等を例示できる。)1~ 5倍モルで還元することにより、対応する一般式(V b]及び[VIIb]で示される目的のアミノ化合物を

[0101]いずれの場合も、反応温度は-70℃から 溶媒の沸点の温度範囲で行い、好ましくは-20℃から 100℃の温度範囲であり、反応は5分から1週間で終 でする。

【0102】<製造法9>

得ることができる。

一般式 [VIIa]、 [VIIb] あるいは [VII c] で示される中間体の製造法。

【0103】一般式 [Va]、[Vb] あるい社 [Vd] ので示されるカルボニル化合物1モルモ、適当な溶媒 (製造法1 に記載と同様である。) 0.5~51中、適当な還元利(水素化ホウ素ナトリウム等のアルカリ金属 水素化結化合物類などを例不できる。) 1~5倍モルで 現元することにより、対応する一般式 [Vlla] [Vllb]あるいは [Vllc]で示される目的のア

ルコール化合物を得ることができる。 【0104】反応温度は-70℃から溶媒の沸点の温度

【0104】反応温度は一了0℃から溶媒の沸点の温度 範囲で行い、好ましくは一20℃から100℃の温度範 囲であり、反応は5分から1週間で終了する。 【0105】<製造法10>

一般式[Vd]で示される中間体の製造法。 【0106】一般式[Vc]で示される化合物1モルを、無溶媒又は適当な溶媒(製造法1に記載と同様であ る。) 0.5~5 1 中で、一般式R3 NH2 で示される アミン類1~5倍モルと反応させることにより、一般式 [Vd]で示される目的のアミン化合物を得ることがで きる。

【0107】反応温度は-70℃から250℃の温度範囲で行い、好ましくは-20℃から150℃の温度範囲であり、反応は5分から1週間で終了する。

【0108】なお、上述の中間体の合成に関しては、ジャーナル・オブ・ケミカル・リサーチ(S) (J. C) トリナー・ (S) (J. C) ・ (S) ・ (A)
[0109]

【実施例】次に、実施例をあげて本発明化合物の製造 法、製剤法及び用途を具体的に説明する。尚、本発明化 合物の製造中間体の製造法も合わせて記載する。 【0110】<実施例1>

2' - [1-(4,6-ジメトキシビリミジン-2-イル)-1-(4-モルホリノ)メチル]-1,1-ジフルオロメタンスルホンアニリド(本発明化合物番号I-296)の製造

【0111】(1)2-[1-(4,6-ジメトキシピリミジン-2-イル)-1-(4-モルホリノ)メチル]アニリン(化合物 III)の製造

2-「1-(4.6-ジメトキシピリミジン-2-イ ル) -1-ヒドロキシメチル] アニリン2.0g(7. 7ミリモル)をクロロホルム30m1に溶解し、0℃に て撹拌しつつ塩化チオニル1.0g(8.4ミリモル) を滴下した。0℃から室温にて30分撹拌後、室温にて モルホリン1、4g(16ミリモル)を滴下し、 室温に て30分撹拌した後、さらに加熱還流下30分撹拌し た、反応液を5%塩酸水にて抽出し、抽出液を飽和重曹 水で中和後、酢酸エチルで抽出した。有機層を飽和食塩 水で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を 減圧留去し、残査をシリカゲルカラムクロマトグラフィ (溶出溶媒、酢酸エチル:n-ヘキサン=1:3)で 精製し、淡褐色粘稠液体の2-「1-(4、6-ジメト キシピリミジン-2-イル)-1-(4-モルホリノ) メチル] アニリン0.5g (収率20%)を得た。 [0112](2)2' - [1-(4.6-3)+3)ピリミジン-2-イル)-1-(4-モルホリノ)メチ ル]-1,1-ジフルオロメタンスルホンアニリド(本

2-[1-(4,6-)ジメトキシビリミジン-2-4ル)-1-(4-4ルホリン)メチル]アニリン0.5g(1.5ミリモル)、ビリジン0.3g(3.8ミリモル)をクロロホルム15mIに溶解し、室温にて撹拌しながら1.1-ジフルオロメタンスルホン較クロリド

発明化合物番号 I - 296) の製造

0.6g(4.0ミリモル)を湾下した。窓温にて3時間撹拌を続けた後、反応流を氷水中にあけ、クロロホルムで抽出した。有機層を水、総和食塩水で洗り、無水 硫酸マグネシウムで乾燥した。溶媒を減圧留去し、残査をシリカゲルカラムクロマトグラフィー(溶出溶媒、酢酸エチル:nーへキサン=1:3)で精製し、白色粉末(機点:143~144で)の2'-[1-(4.6-ジメトキンピリミジン-2-イル)-1-(4ーモルホリノ)メチル】-1、1-ジフルオロメタンスルホンアーリド0.3g(収率45%)を得か。

【0113】<実施例2>

2' - [1-(4,6-ジメトキシピリミジン-2-イル)-1-(メトキシイミノ)メチル]-1,1,1-トリフルオロメタンスルホンアニリド(本発明化合物番号II-55)の製造

【0114】(1)2'-(4,6-ジメトキシビリミ ジン-2-イルカルボニル)-1,1,1-トリフルオ ロメタンスルホンアニリド(化合物V)の製造

2-(4,6-ジメトキシビリミジン-2-イルカルボ ニル) アニリン3. 0g(11.6ミリモル). トリエ チルアミン1.5g(14.8ミリモル)をジクロロメ タン50m1に溶解し、0℃にて撹拌しながら1.1. 1-トリフルオロメタンスルホン酸無水物3.9g(1 3.8ミリモル)を約10分間で滴下し、そのまま1時 間撹拌を続けた。反応液を氷水中にあけ5%水酸化ナト リウム水溶液 (20ml) で2回抽出し、水層を集め、 10%塩酸で酸性とした後、酢酸エチルで抽出した。有 機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウム で乾燥した。溶媒を減圧留去し、析出した粗結晶をジイ ソプロピルエーテルで洗浄し、黄土色粉末 (融点:10 2~104℃) の2' - (4, 6-ジメトキシピリミジ $\nu - 2 - 4 \mu \pi \nu \pi^{2} \mu \nu + 1$, 1, 1 - トリフルオロ メタンスルホンアニリド3.0g(収率69%)を得 た.

【0115】(2) 2' - [1-(4,6-ジメトキシ ピリミジン-2-イル) - 1-(メトキンイミノ) メチ ル] - 1,1,1-トリフルオロメタンスルホンアニリ ド(本発明化合物番号 II-55) の製造

2'-(4.6-ジメトキシピリミジン-2-イルカルボニル)-1,1.1-トリフルオロメタンスルホンアニリド3.0g(7.7ミ)モル)、酢酸カリウム4.0g(40.8ミリモル)及びメトキンアミン塩酸塩4.0g(47.9ミリモル)をエタノール50m1に懸濁させ、加熱環流下に選拝した。反応液を氷水中にあげ酢酸エナルで抽出した。不復層を水、除命食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶爆を減圧留去し、飛金をシリカゲルカラムクロマトグラフィー(湯出溶媒、酢酸エチル:n-ヘキサン=1:3)で精

(溶出溶媒、酢酸エチル: n-ヘキサン=1:3)で精製し、白色結晶(融点:89~91℃)の2'-[1-(4.6-ジメトキシピリミジン-2-イル)-1-

(メトキシイミノ) メチル] -1, 1, 1-トリフルオロメタンスルホンアニリド0.9g (収率28%) を得か

【0116】<実施例3>

2' - [1-(4,6-ジメトキシピリミジン-2-イル)-1-(エチルアミノ)メチル]-6'-メトキシメチル-1,1-ジフルオロメタンスルホンアニリド(本発明任合物番号I-359)の製造

【0117】(1) 2' - [1-(4,6-ジメトキシ ビリミジン-2-イル)-1-ヒドロキシメチル]-6' - メトキシメチル-1,1-ジフルオロメタンスル ホンアニリド (化会物VII) の製造

2-[1-(4,6-ジメトキシピリミジン-2-イ ル) -1-ヒドロキシメチル1-6-メトキシメチルア ニリン4.0g(13.1ミリモル)及びピリジン2. 0g(25,3ミリモル)をジクロロメタン30mlに 溶解させ、室温にて撹拌しながら 1,1-ジフルオロ メタンスルホン酸クロリド 3.6g(23.9ミリモ ル)を滴下した。室温にて7日間撹拌を続けた後、反応 液を氷水中にあけ、ジクロロメタンで抽出した。有機層 を5%塩酸水、飽和食塩水で洗浄し、無水硫酸マグネシ ウムで乾燥後、溶媒を減圧留去した。残香をシリカゲル カラムクロマトグラフィー (溶出溶媒、酢酸エチル:n -ヘキサン=1:3)で精製し、無色粒状結晶(融点7 6~77℃) の2' - [1-(4,6-ジメトキシピリ ミジン-2-イル)-1-ヒドロキシメチル]-6'-メトキシメチルー1、1-ジフルオロメタンスルホンア ニリド2. Og (収率36%)を得た。

【0118】(2)2'-[1-クロロ-1-(4,6 -ジメトキシビリミジン-2-(ル)メチル]-6'-メトキシメチル-1、1-ジフルオロメタンスルホンア ニリド(化合物VIII)の製造

2'- [1- (4,6-ジメトキシビリミジン-2-4ル)-1-ヒドロキシメチル]-6'-メトキシメチル-1,1-ジルオロメタンルホンアニリミ 0g(4.8ミリモル)及び塩化チオニル0.7g(5.9ミリモル)をクロロホルム15m1に溶解させ、室温にて2時間機計を続けた。溶媒及び過剰の塩化ナオニルを減圧留去し、残金をシリカゲルカラムクロマトグラフィー(溶出溶媒、酢酸エチル: nーペキサン=1:3)で精製し、淡黄色結晶(酸点 88~89°C)の2'-[1-クロロー1-(4,6-ジメトキンピリミジン-2-イル)メチル]-6'-メトキシメチルー1,1-ジフルオロメタンスルホンアニリド2.0g(収率95%)を得た。

【0119】(3) 2' - [1-(4,6-ジメトキシ ビリミジン-2-イル)-1-(エチルアミノ)メチ ル]-6'-メトキシメチル-1,1-ジフルオロメタ ンスルホンアニリド(本発明化合物番号I-359)の 製造 $2'-[1-9\pi 0-1-(4,6-) × + キシビリミジン-2-4 ル) メチル] - 6' - × + キシメチルー 1,1-ジフルキロメランル・アニッド 1,0g (2.3 ミリモル) をテトラヒドロフラン 10 m 1 に溶解させ、室温にて撹拌しながらエチルアミン 0.3g (6.7 ミリモル) を滴下した。室温にて1時間撹拌を 総けた後、溶解を残圧留ました。残査をシリカゲルカラムクロマトグラフィー(溶出溶媒、酢酸エチル:<math>n-$ キサン=1:1) で精製し、淡赤色粉末(副点188~189℃)の2'-[1-(4,6-) × + キシビリミジン-2-4 ル) - 1-(エチルアミノ) メチル] - 6' - メトキシメチル - 1,1-ジフルオロスタンスルホンアニリド 0.9g (収率88%) を得た。 [0120] (実施例4)

N-メトキシメチル-2' - [1-(4,6-ジメトキ シビリミジン-2-イル)-1-(ジエチルアミノ)メ チル]-1,1-ジフルオロメタンスルホンアニリド (本発明化合物番号I-256)の製造

2'-「1-(4,6-ジメトキシピリミジン-2-イ $||u|| - 1 - (\Im x + \mu r + 1) ||x + \mu r| - 1, 1 - \Im r$ ルオロメタンスルホンアニリド0.8g(1.9ミリモ ル)及び炭酸カリウム1,0g(7,2ミリモル)を N, N-ジメチルホルムアミド15mlに懸濁させ、室 温にて撹拌しながらクロロメチルメチルエーテル〇.5 g(6,2ミリモル)を滴下した。室温にて3時間増拌 を続けた後、反応液を氷水中にあけ、酢酸エチルで抽出 した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグ ネシウムで乾燥後、溶媒を減圧留去した。残舎をシリカ ゲルカラムクロマトグラフィー (溶出溶媒、酢酸エチ ル:n-ヘキサン=1:5)で精製し、無色結晶(融点 67~69°C) のN-メトキシメチル-2' -[1-(4,6-ジメトキシピリミジン-2-イル)-1-(ジエチルアミノ)メチル]-1,1-ジフルオロメタ ンスルホンアニリド0.8g(収率91%)を得た。 【0121】<実施例5>

2-(2.6-ジフルオロベンゾイル)-4.6-ジメトキンピリミジン 4.0g(14.3ミリモル) お水アジ化ナトリウム1.1g(16.9ミリモル) お N、N・ジメチルホルムアミド30m I に溶解させ、120℃で3時間撹拌した、反応液を室温に戻して米水中にあけ、酢酸エチルで抽出し、有機層を飽和食塩木にて洗浄後、乾燥した、溶媒を減圧留去し、結晶残変をジイソプロピルエーテルにて洗浄して赤色粉末、観点145~147℃)の3-(4.6-ジメトキシピリミジン-2-イル)-4-フルオロ-2.1-ベンゾイソオキサゾール1.8g(収率46%)を得た。

【0122】 (中間体の製造例)

< 参考例1>

メトキシピリミジン-2-イル) アセトニトリル (化合 物XII)の製造

2-(2-ニトロフェニル) アセトニトリル50g

(0.31モル)を500mlのN.N-ジメチルホル ムアミドに溶解し、60%水素化ナトリウム24.7g (0,62モル)を添加し、室温にて2時間撹拌した。 次に2-メチルスルホニル-4,6-ジメトキシピリミ ジン67.7g(0、31モル)を加え、80℃で1時 間撹拌した。反応液を水にあけ、10%塩酸水で中和し た後、酢酸エチルで抽出した。有機層を水、飽和食塩水 で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧 留去した、残否をエタノールより結晶化し、白色粉末 (融点88~89℃)の2-(2-ニトロフェニル)-2-(4,6-ジメトキシビリミジン-2-イル)アセ トニトリル73.3g (収率79%)を得た。

【0123】(2)2-(2,6-ジフルオロフェニ ル)-2-(4,6-ジメトキシピリミジン-2-イ ル) アセトニトリル (化合物XIV) の製造

2-(2,6-ジフルオロフェニル)アセトニトリル1 2g (78ミリモル)を100mlのN、Nージメチル ホルムアミドに溶解し、60%水素化ナトリウム6.3 g(0.16モル)を添加し、室温にて2時間撹拌し た。次に2-メチルスルホニル-4,6-ジメトキシビ リミジン17g(78ミリモル)を加え、80℃で1時 間撹拌した。反応液を水にあけ、10%塩酸水で中和し た後、酢酸エチルで抽出した、有機層を水、飽和食塩水 で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧 留去した。残査をシリカゲルカラムクロマトグラフィー (溶出溶媒、酢酸エチル:n-ヘキサン=1:3)で精 製し、無色アメ状物質の2-(2,6-ジフルオロフェ ニル) -2-(4,6-ジメトキシピリミジン-2-イ ル) アセトニトリル19g (収率83%) を得た。

【0124】(3)2-(4-フルオロ-2-ニトロフ ェニル)-2-(4,6-ジメトキシピリミジン-2-イル) アセトニトリル (化合物XII) の製造

60%水素化ナトリウム11,2g(0,28モル)を N. Nージメチルホルムアミド100mlに軽濁させ氷 水浴で10℃以下に冷却し、撹拌しながら2-(4,6 ージメトキシピリミジン-2-イル) アセトニトリル2 5g(0.14モル)のN, N-ジメチルホルムアミド 100ml溶液を滴下した。滴下終了後、室温にて水素 の発生がなくなるまで撹拌した。再び氷水浴中で10℃ 以下に冷却し撹拌しながら、2,5-ジフルオロニトロ ベンゼン22g(0,14モル)のN, N-ジメチルホ ルムアミド100m1溶液を滴下した。率温にて12時 間撹拌後。反応液を氷水にあけ10%塩酸水で酸性にし た後、酢酸エチルで抽出した。有機層を水、飽和食塩水 で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧

留去した。析出した粗結晶をエタノール/イソプロピル エーテル混合溶媒で洗浄し、無色粒状結晶(融占111 ~112℃) の2-(4-フルオロ-2-ニトロフェニ ル) -2-(4,6-ジメトキシピリミジン-2-イ ル) アセトニトリル42g (収率94%) を得た。 【0125】同様に(1)及び(3)の方法で以下に示

す化合物(化合物XII)を得た。 2-(3-メチル-2-ニトロフェニル)-2-(4. 6-ジメトキシピリミジン-2-イル) アセトニトリ ル:淡赤色粉状結晶(融点108~110℃) 2-(3-x+v-2-x+p-x-v)-2-(4,6-ジメトキシピリミジン-2-イル) アセトニトリ ル: 茶褐色粉末 (融点113~114℃) 2-(3-メトキシメチル-2-ニトロフェニル)-2 - (4,6-ジメトキシピリミジン-2-イル)アセト ニトリル:赤褐色粉末 (融点112~113℃)

【0126】<参考例2> (1) 5-フルオロー2-(4,6-ジメトキシピリミ ジン-2-イルカルボニル) ニトロベンゼン (化合物Ⅴ

a)の製造

2-(4-フルオロ-2-ニトロフェニル)-2-(4.6-ジメトキシビリミジン-2-イル)アセトニ トリル3.2g(10ミリモル)、m-クロロ過安息香 酸(50%)6.0g(17ミリモル)をクロロホルム 30mlに溶解させ、室温にて12時間撹拌した。つい で10%水酸化ナトリウム水溶液15mlを加え室温に て1時間撹拌した後、クロロホルム50mlを加え抽出 した。有機層を5%塩酸水、飽和食塩水で洗浄し、無水 硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残査 をシリカゲルカラムクロマトグラフィー (溶出溶媒、酢 酸エチル: n-ヘキサン=1:5) で精製し、白色粒状 結晶 (融点187~189℃) の5-フルオロー2-(4.6-ジメトキシピリミジン-2-イルカルボニ ル) ニトロベンゼン2. 7g (収率88%) を得た。 【0127】(2)2-(2,6-ジフルオロベンゾイ ν) -4, 6-ジメトキシピリミジン(化合物Vc)の 製造

2-(2,6-ジフルオロフェニル)-2-(4,6-ジメトキシピリミジン-2-イル) アセトニトリル19 g(65ミリモル)、m-クロロ過安息香酸(50%) 30g(87ミリモル)をクロロホルム150mlに溶 解させ、加熱還流下6時間撹拌した。 ついで室温に戻し 10%水酸化ナトリウム水溶液15mlを加え室温にて 2時間撹拌した後、クロロホルム50mlを加え抽出し た。有機層を5%塩酸水、飽和食塩水で洗浄し、無水硫 酸マグネシウムで乾燥後、溶媒を減圧留去した。残舎を シリカゲルカラムクロマトグラフィー (溶出溶媒、酢酸 エチル: n-ヘキサン=1:3) で精製し、白色結晶 (融点104~105℃)の2-(2.6-ジフルオロ ベンゾイル) -4, 6-ジメトキシピリミジン13g

(収率71%)を得た。

【0128】同様の方法で以下に示す化合物(化合物Va)を得た。

2-(4,6-)ジメトキシピリミジン-2-イルカルボニル) ニトロベンゼン: 淡褐色結晶 (融点 $164\sim165$ で)

6-フルオロ-2-(4.6-ジメトキシビリミジン-2-イルカルボニル) ニトロベンゼン: 淡褐色粒状結晶 (融点181~183℃)

6-メチル-2-(4,6-ジメトキシピリミジン-2 -イルカルボニル)ニトロベンゼン:無色粒状結晶(融点166~171℃)

6-エチル-2-(4,6-ジメトキシビリミジン-2 -イルカルボニル)ニトロベンゼン:白色粉末(融点1 16~117℃)

6-メトキシメチルー2-(4,6-ジメトキシピリミ ジン-2-イルカルボニル)ニトロベンゼン:白色粉末 (融点111~113℃)

【0129】<参考例3>

(1)5-フルオロ-2-(4,6-ジメトキシピリミジン-2-イルカルボニル)アニリン(化合物Vb)の 製造

5-フルオロ-2-(4,6-ジメトキシピリミジン-2-イルカルボニル)ニトロペンゼン3.1g(10) シモル)、鉄約3g(54をリモル)、水 20ml、酢酸エチル150ml及び酢酸1mlの混合物を加熱週流下5時間燃拌した。反応液中の不溶物をみ透助剤を用いて除去し、有機層を飽和食塩水で洗浄後、無水低がネシウムで乾燥した。溶液を減圧留去し、蒸黄色粒状結晶。(限点177~179°℃)の5-フルオロ-2-(4,6-ジメトキシピリミジン-2-イルカルボニル)アニリン2.4g(原準67%)を得た。

【0130】(2)3-フルオロ-2-(4,6-ジメトキシビリミジン-2-イルカルボニル)アニリン(化合物Vb)の製造

【0131】同様に(1)の方法で以下に示す化合物(化合物Vb)を得た。

2- (4,6-ジメトキシピリミジン-2-イルカルボ ニル) アニリン: 黄色結晶: 酸点166~167℃) 6-フルオロ-2-(4,6-ジメトキシピリミジン-2-イルカルボニル) アニリン: 黄色粒状結晶(酸点1 31~134℃)

6-メチル-2-(4,6-ジメトキシビリミジン-2 -イルカルボニル)アニリン: 黄色粒状結晶 (融点13 0~132℃)

6-エチル-2-(4,6-ジメトキシビリミジン-2 -イルカルボニル) アニリン: 黄色粉末 (融点122~ 123℃)

6-メトキシメチル-2-(4,6-ジメトキシピリミ ジン-2-イルカルボニル)アニリン:蛍光黄色結晶 (融点100~101℃)

【0132】<参考例4>

1-(2-アミノ-4-フルオロフェニル)-1-(4,6-ジメトキシビリミジン-2-イル)メタノール(化合物VIIb)の製造

5-7ルオロー2-(4,6-ジメトキシビリミジン-2ーイルかルボニル)アニリン1.1g(4,0ミリモル)をテトラヒドロラジ・水・1:1の混合溶媒50m1に溶解させ、室温で撹拌しながら水果化れか楽ナトリウム0.3g(7.9ミリモル)を加え、音能工チルで抽出した。有機層を始む食塩水で洗浄検、無水碗酸マグネシウム乾燥した、溶粧を減圧留去し、折出した粗結晶をジイソプロビルエーデルで洗浄し、無色粒状のは微点タ4-95℃)の1-(2-アミノ-4-フルオロフェニル)-1-(4,6-ジメトキシビリミジン-2-イル)メタノール 1.0g(収率90%)を得たた。

【0133】同様の方法で以下に示す化合物(化合物V IIb)を得た。

11 - (2 - アミノフェニル) - 1 - (4, 6 - ジメトキ シビリミジン - 2 - イル) メクノール: 白色粉末(融点 78~80℃)

1 - (2-アミノ-3-フルオロフェニル) - 1 - (4,6-ジメトキシビリミジン-2-イル) メタノール:無色粒状結晶(離点 $92\sim94$ °C)

1-(2-アミノ-6-フルオロフェニル)-1-(4,6-ジメトキシピリミジン-2-イル)メタノー

ル:白色粉末(融点109~110℃) 1-(2-アミノ-3-メチルフェニル)-1-(4, 6-ジメトキシピリミジン-2-イル)メタノール:無

1-(2-アミノ-3-エチルフェニル)-1-(4, 6-ジメトキシピリミジン-2-イル)メタノール:白 色結晶(敵点85~86 $^\circ$)

色粉状結晶 (融占109~112℃)

1-(2-アミノ-3-xトキシメチルフェニル) -1 -(4,6-ジxトキシビリミジン-2-イル) メタノ

-ル: 白色結晶 (融点40~42℃)

【0134】本発明の除草剤は、一般式 [I]で示されるスルホンアニリド誘導体を有効成分としてなる。

【0135】本発明化合物を除草剤として使用するには 本発明化合物それ自体で用いてもよいが、製剤化に一般 的に用いられる担体、界面活性剤、分散剤又は補助剤等 を配合して、粉剤、水和剤、乳剤、微粒剤又は粒剤等に 製剤して使用することもできる。

【0136】製料化に際して用いられる担体としては、 例えばタルク、ベントナイト、クレー、カオリン、珪藻 土、ホワイトカーボン、バーミキュライト、炭酸カルシ ウム、消石灰、珪砂、航安、尿業等の固体担体、イソア ロビルアルコール、キシレン、シクロへキサン、メチル ナフタレン等の液体担体等があげられる。

[0137] 界面活性剤又は分散剤としては、例えばア ルキルベンセンスルホン酸金属塩、ジナフチルメタンジ スルホン酸金属塩、アルネル硫酸エステル塩、アルキル アリールスルホン酸塩まルマリン総合物、リグニンスル ルン酸塩、ボリオキシエチレングリコールエーテル、ボ リオキシエチレンアルキルアリールエーテル、ボリオキ シエチレンソルビタンモノアルキレート等があげられ る。

【0138】補助剤としては、例えばカルボキシメチルセルロース、ボリエチレングリコール、アラビアゴム等があげられる。

【0139】使用に際しては適当な濃度に希釈して散布 するか又は直接施用する。

【0140】本発明の除草剤は茎葉散布、土壌地用又は 水面能用等により使用することができる。有効成分の配 合割合については必要に応じて適宜選ばれるが、粉剤又 比粒剤とする場合は0.01~10%(電量)、肝まし くは0.05~5%(重量)の範囲から適宜選ぶのがよ い、また、乳剤及び水和剤とする場合は1~50%(電 量)、肝ましくは5~30%(重量)の範囲から適宜選ぶ ぶのがよい。

【0141】本発明の除年期の施用量は使用される化合物の種類、対象雑草、発生傾向、環境条件ならびに使用する利型等によってかわるが、粉剤又は粒剤のようにそのまま使用する場合は、有効成分として10アール当りの・18マラドは、また、14取以は木和剤のように液状で使用する場合は、0.1~50.000ppm、好ましくは10~10,000ppmの範囲から適宜選ぶのがなり。

【0142】また、本発明化合物は必要に応じて殺虫 剤、殺菌剤、他の除草剤、植物生長調節剤、肥料等と混 用してもよい。

【0143】次に代表的な製剤例をあげて製剤方法を具体的に説明する。化合物、添加剤の種類及び配合比率は、これのみに限定されることなく広い範囲で変更可能

である。以下の説明において「部」は重量部を意味す る。

【0144】〈製剤例1〉 水和剤

化合物 (I-253) の10部にポリオキシエチレンオ クチルフェニルエーデルの0.5部、βーナフタレンス ルホン電が、カーナンを ボンの20部、クレーの69部を混合物砕し、水和剤を 個名

【0145】(製剤例2) 水和剤

化合物 (I-353) の10部にポリオキシエチレンオ クチルフェニルエーテルの0.5部、β-サフタレンス ルホン酸ホルマリン縮合物ナトリウム塩の0.5部、珪 葉土の20部、ホワイトカーボンの5部、クレーの64 部を混合物能し、水和割を得る。

【0146】〈製剤例3〉 水和剤

化合物(17-367)の1 部にポリオキシエチレンオ クチルフェニルエーテルの0.5部、β-ナフタレンス ルホン酸ホルマリン縮合物ナトリウム塩の0.5部、建 電土の20部、ホワイトカーボンの5部、炭酸カルシウ ムの64部を混合物幹し、水和剤を得る。

【0147】〈製剤例4〉 乳剤

化合物 (1 - 3 5) の3 0 部にキシレンとイソホロン の等量混合物6 0 部、界面活性剤ポリオキシエチレンソ ルビタンアルキレート、ポリオキシエチレンアルキルア リールポリマー及びアルキルアリールスルホネートの混 合物の1 0 部を加え、これらをよくかきまぜることによ って乳剤を含ね

【0148】(製剤例5) 粉剤

化合物 (I-269) の10部、タルクとベントナイトを1:3の割合で混合した増量剤の80部、ホワイトカーボンの5部、界面活性剤ボリオキシエチレンソルビタンアルキレート、ボリオキシエチレンアルキルアリールボリマー及びアルキルアリールスルホネートの混合物の5部に水10部を加え、よく続ってベースト状としたものを直径0.7 mmのふるい穴から押し出して乾燥した後に0.5~1mmの長さに切断し、粒剤を得る。

【0149】次に試験例をあげて本発明化合物の奏する 効果を説明する。

【0150】〈試験例1〉 水田湛水処理による除草効 果試験

100cm2のプラスチックボットに水田土壌を充填 し、代掻後、タイヌビエ(Ec)、コナギ(Mo)及び ホタルイ(Sc)の各種子を擠種し、水深3cmに温水 した。翌日、製料例1に準して調製した水和卵を水で希 駅し、水面に高下処理した。施用量は、有効成分を10 アール当り100gとした。その後、温室内で肯成し、 処理後28日目に表36の基準に従って除草効果を調査 した、結果を表37~表43に示す。

[0151]

【表36】

指徵	除草効果 (生育抑制程度) 及び薬害
5	無処理区に対し90%以上の抑制の除草効果、薬害
4	無処理区に対し70%以上90%未満の除草効果、薬害
3	無処理区に対し50%以上70%未満の除草効果、薬害
2	無処理区に対し30%以上50%未満の除草効果、薬害
1	無処理区に対し10%以上30%未満の除草効果、薬害
0	無処理区に対し 0%以上10%未満の除草効果、薬害

【0152】 【表37】

#. A #. W III	除草	効果	
化合物番号	Еc	Мо	Sc
I - 1	5	5	5
I - 2	5	5	5
1 - 3	5	5	5
I - 4	5	5	5
I - 7	5	5	5
1-253	5	5	5
I-256	3	5	5
I-257	5	5	5
1-258	5	5	5
I-259	5	5	5
I-260	5	5	5
I-261	5	5	5
I-262	5	5	5
I-263	5	5	5
I-264	5	5	5
I-265	5	5	5
I-266	5	5	5
I-267	5	5	5
I-268	5	5	5
I-269	5	5	5
I-270	5	5	5
I-271	5	5	5
I - 2 7 2	5	5	5
I - 2 7 3	5	5	5
I-274	5	5	5
I-275	5	5	5
I-276	5	5	5
I - 2 7 7	5	5	5
I - 2 7 8	5	5	5

化合物番号	除草	効 果	
化合物番号	E c	Мо	Sc
I - 2 7 9	4	5	5
I-280	5	5	5
I-281	5	5	5
I - 282	5	5	5
I - 283	5	5	5
I - 284	5	5	5
I - 285	5	5	5
I-286	5	5	5
I - 287	5	5	5
I - 288	5	5	5
I-289	5	5	5
I - 290	5	5	5
I-291	5	5	5
I - 2 9 2	5	5	5
I - 293	5	5	5
I - 294	5	5	5
I - 295	4	5	5
I - 296	5	5	5
I - 297	5	5	5
I - 2 9 8	5	5	5
1-299	5	5	5
I - 3 0 0	5	5	5
I - 3 0 1	4	5	5
I-302	5	5	5
I - 3 0 3	5	5	5
I - 3 0 4	5	5	5
I-305	5	5	5
I - 3 0 6	5	5	5
I-307	5	5	5

【0154】 【表39】

【0153】 【表38】

	除草	効 果	
化合物番号	Ес	Мо	Sc
1-308	5	5	5
1-309	5	5	5
1-310	5	5	5
I-311	5	5	5
I-312	5	5	5
1-313	4	5	5
1-314	5	5	5
1-315	5	5	5
1-316	5	5	5
1-317	5	5	5
I-318	5	5	5
1-319	5	5	5
1-320	5	5	5
1-321	5	5	5
1-322	4	5	5
1-323	5	5	5
1-324	5	Б	5
1-325	5	5	5
1-326	5	5	5
1-327	5	5	5
1-328	5	5	5
1-329	4	5	5
1-330	5	5	5
1-331	5	5	5
1-332	5	5	5
1-333	5	5	5
I - 3 3 4	5	5	5
1-335	5	5	5
1-336	5	5	5

4. A #. W F	除草	効 果	
化合物番号	Ес	Мо	Sc
I - 3 3 7	5	5	5
I - 3 3 8	5	5	5
I - 3 3 9	5	5	5
I - 340	5	5	5
$I - 3 \ 4 \ 1$	5	5	5
I - 3 4 2	5	5	5
I - 3 4 3	5	5	5
I - 3 4 4	5	5	5
I - 3 4 5	5	5	5
1-346	5	5	5
I - 3 4 7	5	5	5
1-348	5	5	5
I - 3 4 9	5	5	5
1-350	5	5	5
I - 3 5 1	5	5	5
1-352	5	5	5
I-353	5	Б	5
I - 3 5 4	5	5	5
I - 3 5 5	5	5	5
I-356	5	5	5
I - 3 5 7	5	5	5
1-358	5	5	5
I-359	5	5	5
1-360	5	5	5
I-361	5	5	5
I - 3 6 2	5	5	5
1-363	5	5	5
I - 3 6 4	5	5	5
I - 3 6 5	5	5	5

【0155】 【表40】 【0156】 【表41】

化合物番号	除草	効果	
10合物冊号	Еc	Мо	Sc
1-366	5	5	5
I-367	5	5	5
I-368	5	5	5
1-369	5	5	5
1-370	5	5	5
I - 3 7 1	5	5	5
1-372	5	5	5
I-492	5	5	5
1-493	5	5	5
1-494	5	5	5
1-495	5	Б	5
I-496	5	5	5
1-498	5	5	5
I-499	5	5	5
I-500	5	5	5
I-501	5	5	5
I-502	5	5	5
1-508	5	5	5
I-504	5	5	5
1-505	5	5	5
I-506	4	5	5
1-507	5	5	5
1-508	5	5	5
I-509	5	5	5
I - 5 1 0	5	5	5
I - 5 1 1	5	5	5
I - 5 1 2	5	5	5
I-513	5	5	5
I - 5 1 4	5	5	5

	除草	効 果	
化合物番号	Ес	Мо	S c
I - 5 1 5	2	5	5
I - 5 1 6	5	5	5
I-517	5	5	5
I - 5 2 1	5	5	5
I - 5 2 2	5	5	5
I - 5 2 3	5	5	5
I - 5 2 4	5	5	5
I - 5 2 5	5	5	5
I - 5 2 6	5	5	5
I - 5 2 7	5	5	5
1-528	5	5	5
I - 5 2 9	5	5	5
I-530	5	5	5
I - 5 3 1	5	5	5
I - 5 3 2	5	5	5
1-533	5	5	5
I-534	5	5	5
I-535	4	5	5
I-536	5	5	5
I - 5 3 7	5	5	5
I-538	5	5	5
I-539	5	5	5
I - 5 4 0	5	5	5
I-541	5	5	5
I-542	5	5	5
I - 5 4 3	5	5	5
I-544	5	5	5
I - 5 4 5	5	5	5
I - 5 4 6	5	5	5

【0157】 【表42】 【0158】 【表43】

# A 41-75 F	除草	効果	
化合物番号	Ес	Мо	Sc
I - 5 4 7	4	5	5
I-548	5	5	5
I - 5 4 9	5	5	5
I-550	5	5	5
I-551	5	5	5
I-552	5	5	5
I-553	5	5	5
I-554	5	5	5
I-555	5	5	5
I-556	5	5	5
I - 5 5 7	5	5	5
I-558	5	5	5
1-559	4	5	5
I-580	5	5	5
I-561	5	5	5
I - 5 6 2	5	5	5
I - 5 6 3	5	5	5
I - 5 6 4	5	5	5
I - 5 6 5	5	5	5
I - 5 6 6	5	5	5
I - 5 6 7	5	5	5
I - 5 6 8	5	5	5
I I - 4 5	5	5	5
I I - 5 5	4	5	5
I I - 5 6	4	5	5
I I - 5 7	5	5	5

【0159】〈試験例2〉 水田湛水処理による作物選 択性試験

100cm2のブラスチックボットに水田土壌を充填し、代掻後、コナギ(Mo)およびボタルイ(Sc)の 格種子を0.5cmの深さに指揮し、さらこ実期の水稲 (Or)を移植深度2cmで2本移植し、水深3cmに湛水した。翌日、製別例1に埋じて調製した水和刷の院定有効成分量(ai,g/10a)を水で希釈し、水面に満下処理した。その後、温室内で育成し、処理後28日目に表36の基準に従って除草効果および楽害程度を調査した。結果を表44~表49に示す。【0160】

101607

【表44】

化合物	薬量	除草	効果	楽 書
	ai, g			
番号	/10a	Мо	Sc	Or
I - 1	1. 6	5	4	0
I – 4	1.8	5	4	0
I - 7	1.6	5	4	0
1-253	1.6	5	5	0
1-257	1.6	5	5	0
I-258	6.3	5	5	0
I - 2 5 9	1.6	5	-	0
1-280	6.3	5	5	0
1-262	6. 3	5	5	0
1-263	6. 3	5	5	0
I-264	2 5	5	5	0
I - 265	1.6	5	5	0
I-266	1.6	5	-	0
I-268	1.6	5	5	0
I - 2 6 9	0.4	5	5	0
I - 2 7 1	1.6	5	-	0
I - 2 7 2	1.6	-	5	0
I-273	1.6	5	5	0
I - 2 7 4	1.6	5	_	0
I - 275	1.6	5	5	0
1-276	1.6	5	5	0
I - 2 7 8	1.6	5	5	0
I - 280	1. 6	-	5	0
I - 2 8 1	1.6	_	5	0
I - 2 8 2	1.6	5	5	0
I - 283	1.6	-	5	0
I - 285	1.6	-	5	0
I - 2 8 6	6. 3	-	5	0

【0161】 【表45】

化合物	薬量	除草	効果	楽 害
	ai, g			
番号	/10a	Мо	Sc	0 r
I - 2 8 7	1.6	-	5	0
1-288	1.6	5	5	0
1-289	1.6	-	5	0
1-290	1.6	-	5	0
1-291	1.6	-	5	0
1-293	1.6	5	5	0
1-294	6.3	5	5	0
I-295	2 5	-	5	0
1-298	6.3	5	5	0
1-299	1.6	5	5	0
1-800	6.8	5	5	0
I - 8 0 1	1.6	-	5	0
1-302	1.6	5	5	0
1-303	6. 3	5	5	0
I - 3 0 4	6.3	5	5	0
1-305	6.3	5	5	0
1-806	2 5	5	5	0
1-307	6.3	5	5	0
1-809	6. 3	5	5	0
I-311	6.3	5	5	0
1-312	1.6	5	5	0
I - 3 1 3	6.3	5	5	0
I - 3 1 4	6.3	5	5	0
1-315	1.6	5	5	0
1-316	1.6	_	5	0
1-321	1.6	5	5	0
I - 3 2 4	1.6	5	5	0
1-325	6.3	5	5	0
1-326	2 5	5	5	0
1	i			l

[0162] 【表46】

化合物	薬量	除草	効 果	薬 害
	ai, g			
番号	/10a	Мо	Sc	0 r
I - 3 2 8	1. 6	5	5	0
I-329	1.6	-	5	0
1-330	6.3	5	5	0
I - 3 3 1	6.3	5	5	0
I - 3 3 2	2 5	5	5	0
1-333	2 5	5	5	0
I - 3 3 4	2 5	5	5	0
I-335	2 5	5	5	0
1-337	1.6	5	4	0
1-338	1.6	5	3	0
1-339	6. 3	5	5	1
I - 3 4 3	6.3	5	5	0
I - 3 4 4	1.6	5	5	0
I-346	6. 3	5	4	0
1-347	1.6	5	4	0
1-348	1.6	5	5	0
1-849	1.6	5	4	0
1-352	2 5	5	5	0
1-853	2.5	4	5	0
1-354	6. 3	5	5	0
I - 3 5 5	6. 3	5	5	0
1-356	2 5	5	5	0
I-357	2 5	5	5	0
1-358	2 5	4	5	0
1-359	2 5	5	5	0
1-360	100	5	5	1
I-361	2 5	5	5	1
I - 3 6 2	100	5	5	1
1-363	100	5	5	0
1. 300	1 -00	ľ	•	1

[0163] 【表47】

化合物	楽量	除草	効 果	薬害
	ai, g			
番号	/10a	Мо	Sc	0 r
I - 3 6 4	100	5	5	0
1-365	6.3	5	5	0
I - 3 6 6	2 5	5	5	0
I - 3 6 7	2 5	5	5	0
I - 3 6 8	100	5	5	1
I - 3 7 0	100	5	5	1
1-371	100	5	5	1
I - 3 7 2	100	5	5	0
1-493	6.3	5	5	0
I-494	6.3	-	5	0
1-495	6.3	5	5	0
I-496	1.6	5	5	0
1-498	6.3	5	5	0
I-499	2 5	5	5	0
I - 500	2 5	5	5	0
I-501	6.3	5	5	0
1-502	2 5	5	5	0
I-503	6.3	5	5	0
1-504	2 5	5	5	0
I-505	6.3	5	5	0
I-506	6.3	5	5	0
1-507	2 5	5	5	0
1-508	1.6	5	5	0
1-509	2 5	5	5	0
I-510	2 5	5	5	0
I - 5 1 1	6.3	5	5	0
I - 5 1 2	2 5	5	5	0
I-513	6.3	5	5	0
I-514	6.3	5	5	0
I		I		I

[0164]

【表48】

化合物	薬量	除草	効果	楽 害
	ai, g			
番号	/10a	Мо	Sc	0 r
1-515	100	5	5	0
I-518	6.3	5	5	0
I-517	6.3	5	5	0
I-521	2 5	5	5	0
I - 5 2 2	2 5	5	5	0
I-523	1.6	5	5	0
I - 5 2 4	6. 3	4	5	0
I - 5 2 5	6.3	5	5	0
I - 5 2 6	2 5	5	5	0
I - 5 2 7	6.3	5	5	0
I - 5 2 8	2 5	5	5	0
I - 5 2 9	2 5	5	5	0
I-530	6. 3	5	5	0
I - 5 3 1	2 5	5	5	0
I - 5 3 2	100	5	5	0
I - 5 3 3	6.3	5	5	0
I - 5 3 4	2 5	5	5	0
I - 5 8 5	100	5	5	0
I - 5 3 6	2 5	5	5	0
I - 5 3 7	2 5	5	5	0
I - 5 3 8	6.3	5	5	0
I - 5 3 9	2 5	5	5	0
I - 5 4 0	6.3	5	5	0
I - 5 4 1	2 5	5	5	0
I - 5 4 2	2 5	5	5	0
I - 5 4 3	6.3	5	5	0
I - 5 4 4	6.3	5	5	0
I - 5 4 6	6.3	5	5	0
I - 5 5 0	1.6	4	5	0

[0165] 【表49】

化合物	薬量	除草	効果	薬 害
	ai, g	1		
番号	/10a	Мо	Sc	0 r
I - 5 5 1	2 5	5	5	0
1-552	100	5	5	0
I-553	6.3	5	5	0
1-554	25	5	5	0
1-556	2.5	5	5	0
1-557	6.3	5	5	0
I-558	6.3	5	5	0
1-559	100	5	5	0
I-560	6.3	5	5	0
1-561	1.6	5	5	0
I - 5 6 2	2.5	5	5	0
1-563	6.3	5	5	0
I - 5 6 4	6.3	5	5	0
I-565	100	5	5	0
I-566	2.5	5	5	0
1-567	100	5	5	0
I-568	1.6	5	5	0
11-55	2.5	5	5	0
I I - 5 6	100	5	5	0
I I - 5 7	25	5	5	0

[0166]

【発明の効果】一般式[1]で表される本発明の化合物 は、水田に発生するタイヌビエ、タマガヤツリ、コナ ボ、アゼナ等の一年生雑華及びヘラオモダカ、ホタル イ、ウリカワ、オモダカ、ミズガヤツリ、クログワイ等

識別記号

の多年生雑草に対し、発生前から生育期の広い範囲にわたって、雑草の発生および生育を長期間即制し、低深量で粉除することができる。一方、同時にイネに対して高い安全性を有するものである。

フロントページの続き (51) Int. Cl. ⁶

C07D	403/06	233	C07D4	03/06	233
	413/04	239	4	13/04	239
(72)発明者	鈴木 千治 静岡県磐田郡福	田町塩新田408番地の1	(72) 発明者		至正 県静岡市敷地2丁目13番地の10
(72)発明者	株式会社ケイ・中谷 昌央		(72) 発明者	井田	
(15/75/75		田町塩新田408番地の1 アイ研究所内	(72) 発明者	柳沢	
(72)発明者	田丸 雅敏	, , , , , , , , , , , , , , , , , , ,	(72) 発明者		英雄

(72)発明者 田丸 雅敏 (72)発明者 佐土原 英雄 静岡県磐田郡福田町塩新田408番地の1 埼玉県新産市堀ノ内2丁目9番地の3 株式会社ケイ・アイ研究所内

FI