P425/1

PURE MATHEMATICS

Paper 1

July 2023

3 Hours

CODE HIGH SCHOOL

INTERNAL MOCK EXAMS

Uganda Advanced Certificate of Education PURE MATHEMATICS

Paper 1

3 Hours

INSTRUCTIONS TO CANDIDATES

Answer **all** the eight questions in section A and any five from section B

Any addition question(s) answered will **not** be marked

All necessary working must be clearly shown

Begin each answer on a fresh sheet of paper

Silent, non – programmable scientific calculators and mathematical tables with a list of formulae may be used.

SECTION A (40 marks)

Answer all questions in this section

1. Solve $4\sin 2x = 3\sin^2 x$ for $-180^0 \le x \le 180^0$ (5 marks)

- 2. Solve for x in the equation $\log_{16}(21x-5) = \log_4 2x$ (5 marks)
- 3. Differentiate $\sin(x^x)$ with respect to x (5 marks)
- **4.** Find the term independent of x in the expansion of $\left|\frac{x^2}{2} \frac{2}{x}\right|^9$ (5 marks)
- 5. Find the area bounded by the curve $x = 2 y y^2$ and the y axis. (5 marks)
- 6. Points A and B are (-1, -2, 3) and (2, 1, -3) respectively. If point P divides the line AB externally in the ratio 3: 4. Find the Cartesian equation of the plane containing P and perpendicular to the line AB.

 (5 marks)
- 7. Find $\int \frac{4x^2 + x + 1}{x^3 1} dx$ (5 marks)
- 8. Given that $r 6\cos\theta + 4\sin\theta = 0$ is a circle, find;
 - (i.) Cartesian equation of the circle.
 - (ii.) Coordinates of its Centre and the radius. (5 marks)

SECTION B (60 marks)

Answer any five in this section

- 9. (a) The polynomial f(x) leaves a remainder of 3 when divided by x + 3 and a remainder of 7 when divided by x 2. Find the remainder when f(x) is divided by $x^2 + x 6$. (6 marks)
 - (b) The roots of the equation $16x^2 x + 1 = 0$ are α^2 and β^2 . Find the equation with integral coefficients whose roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$. (6 marks)
- 10.(a) Solve the equation $\cos 6x + 1 = 2\sin^2 x$ for $0^0 \le x \le 180^0$. (5 marks)
 - (b) Given that $f(\theta) = 4\cos\theta + 3\sin\theta$.
 - (i) Express $f(\theta)$ in the form $R \sin(\theta + \beta)$, where R is a constant and β an acute angle.
 - (ii) Determine the maximum value of $2 f(\theta)$ and the value of θ for which it occurs.
 - (iii) Solve the equation $f(\theta) = \frac{5}{2}\sqrt{2}$ for $0^0 \le x \le 360^0$. (7 marks)

11. (a) Express the complex numbers $z_1 = 1 - 4i$ and $z_2 = 2 + i$ in the polar form. Hence find $z_1(z_2)^2$.

(6 marks)

(6 marks)

- (b) Find the values of x and y if $\frac{x}{3-i} \frac{y}{5+2i} = \frac{4+17i}{17+i}$. (6 marks)
- 12. (a) A line $\mathbf{r} = \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ a \\ 4 \end{pmatrix}$ is parallel to the plane 4x + 6y 2z = 42. Find;
 - (i) the value of a.
 - (ii) the shortest distance between the line and the plane.
 - (b) Find the acute angle between the line $r = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$ and the plane 4x 7y + 4z = 20.
- 13. (a) Find the locus of a point P which moves so that its distance from (2,2) is half its distance from the line x + y + 4 = 0. (6 marks)
 - (b) Find the length of the tangents to the circle $x^2 + y^2 2x + 4y 3 = 0$ from the centre of the circle $x^2 + y^2 + 6x + 8y 1 = 0$ (6 marks)
- **14.** (a) Evaluate $\int_{0}^{\sqrt{3}} \frac{x^3}{\sqrt{1+x^2}} dx$ (6 marks)
 - (b) Use the substitution $t = \tan \frac{1}{2}x$ to evaluate $\int_{\frac{1}{6}\pi}^{\pi} \frac{1}{1 2\sin x + \cos x} dx$ (6 marks)
- 15. A curve is given parametrically as x = 2t and $y = \frac{1}{t} t$.
 - (a.) Find the Cartesian equation of the curve. (4 marks)
 - (b.) Sketch the curve.
 - (c.) Find the area enclosed by the curve, x-axis and line x = 1. (8 marks)
- 16. (a) Solve the differential equation

$$\frac{y^5}{x}\frac{dy}{dx} = e^{y^3}\ln x \tag{5 marks}$$

- (b) A spherical bubble is diminishing at a rate inversely proportional to its volume. After one hour, the volume halves.
 - (i) Form a differential equation in terms of V, t and the constant of proportionality k that mathematically describes the above situation.
 - (ii) When should we expect the bubble to have completely diminished? (7 marks)

END