CS 303 Logic & Digital System Design

Ömer Ceylan

Chapter 4 Combinational Logic

Classification

Combinational

- no memory
- outputs depends on only the present inputs
- expressed by Boolean functions

Sequential

- storage elements + logic gates
- the content of the storage elements define the state of the circuit
- outputs are functions of both input and current state
- state is a function of previous inputs
- outputs not only depend the present inputs but also the past inputs

Combinational Circuits

- n input bits → 2ⁿ possible binary input combinations
- For each possible input combination, there is one possible output value
 - truth table
 - Boolean functions (with n input variables)
- <u>Examples</u>: adders, subtractors, comparators, decoders, encoders, and multiplexers.

Analysis & Design of Combinational Logic

- Analysis: to find out the function that a given circuit implements
 - We are given a logic circuit and
 - we are expected to find out
 - 1. Boolean function(s)
 - truth table
 - A possible explanation of the circuit operation (i.e. what it does)
- Firstly, make sure that the given circuit is, indeed, combinational.

Analysis of Combinational Logic

- Verifying the circuit is combinational
 - No memory elements
 - No feedback paths (connections)
- Secondly, obtain a Boolean function for each output or the truth table
- Lastly, interpret the operation of the circuit from the derived Boolean functions or truth table
 - What is it the circuit doing?
 - Addition, subtraction, multiplication, etc.

Obtaining Boolean Function

Example

Example: Obtaining Boolean Function

- Boolean expressions for named wires
 - \blacksquare T₁ = abc
 - $T_2 = a + b + c$
 - $F_2 = ab + ac + bc$
 - $T_3 = F_2' = (ab + ac + bc)'$
 - $T_4 = T_3T_2 = (ab + ac + bc)'(a + b + c)$
 - $F_1 = T_1 + T_4$
 - = abc + (ab + ac + bc)' (a + b + c)
 - = abc + ((a' + b')(a' + c')(b' + c')) (a + b + c)
 - = abc + ((a' + a'c' + a'b' + b'c')(b' + c')) (a + b + c)
 - = abc + (a'b' + a'c' + a'b'c' + b'c') (a + b + c)

Example: Obtaining Boolean Function

- Boolean expressions for outputs
 - $F_2 = ab + ac + bc$
 - $F_1 = abc + (a'b' + a'c' + b'c') (a + b + c)$
 - $F_1 = abc + a'b'c + a'bc' + ab'c'$
 - $F_1 = a(bc + b'c') + a'(b'c + bc')$
 - $F_1 = a(b \oplus c)' + a'(b \oplus c)$
 - $F_1 =$

Example: Obtaining Truth Table

$$F_1 = a \oplus b \oplus c$$

 $F_2 = ab + ac + bc$

carry

sum

а	b	С	T ₁	T_2	T ₃	T_4	F ₂	F ₁
0	0	0	0	0	1	0	0	0
0	0	1	0	1	1	1	0	1
0	1	0	0	1	1	1	0	1
0	1	1	0	1	0	0	1	0
1	0	0	0	1	1	1	0	1
1	0	1	0	1	0	0	1	0
1	1	0	0	1	0	0	1	0
1	1		1	1	0	0	1	1

This is what we call full-adder (FA)

Design of Combinational Logic

Design Procedure:

- We start with the <u>verbal</u> specification about what the resulting circuit will do for us (i.e. which function it will implement)
 - Specifications are often verbal, and very likely incomplete and ambiguous (if not faulty)
 - Wrong interpretations can result in incorrect circuit
- We are expected to find
 - firstly, Boolean function(s) (or truth table) to realize the desired functionality
 - 2. Logic circuit implementing the Boolean function(s) (or the truth table)

Possible Design Steps

- 1. Find out the number of inputs and outputs
- Derive the truth table that defines the required relationship between inputs and outputs
- 3. Obtain a simplified Boolean function for each output
- 4. Draw the logic diagram (enter your design into CAD)
- 5. Verify the correctness of the design

Design Constraints

- From the truth table, we can obtain a variety of simplified expressions
- Question: which one to choose?
- The design constraints may help in the selection process
- Constraints:
 - number of gates
 - propagation time of the signal all the way from the inputs to the outputs
 - number of inputs to a gate
 - number of interconnections
 - power consumption
 - driving capability of each gate

*

Example: Design Process

- BCD-to-2421 Converter
- Verbal specification:
 - Given a BCD digit (i.e. {0, 1, ..., 9}), the circuit computes 2421 code equivalent of the decimal number
- Step 1: how many inputs and how many outputs?
 - four inputs and four outputs
- Step 2:
 - Obtain the truth table
 - **■** 0000 **→** 0000
 - 1001 → 1111
 - etc.

← BCD-to-2421 Converter

Truth Table

	Inp	uts			Out	puts	
А	В	С	D	X	у	Z	t
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	1
0	1	0	0	0	1	0	0
0	1	0	1	1	0	1	1
0	1	1	0	1	1	0	0
0	1	1	1	1	1	0	1
1	0	0	0	1	1	1	0
1	0	0	1	1	1	1	1

BCD-to-2421 Converter

- Step 3: Obtain simplified Boolean expression for each output
- Output x:

CD				
AB	00	01	11	10
00	0	0	0	0
01	0	1	1	1
11	X	Х	X	Х
10	1	1	Х	Х

Α	В	С	D	X
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
	The	rest		X

$$X = BD + BC + A$$

*

Boolean Expressions for Outputs

CD • Output z:

Α	В	С	D	у	Z
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	0	1	0	1
0	1	1	0	1	0
0	1	1	1	1	0
1	0	0	0	1	1
1	0	0	1	1	1
	The	Χ	Χ		

Boolean Expressions for Outputs

Output t:

/CD				
AB	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	X	Χ	X	X
10	0	1	X	X

$$t = D$$

Step 4: Draw the logic diagram

$$X = BC + BD + A$$

$$y = A + BD' + BC$$

$$z = A + B'C + BC'D$$

Α	В	С	D	t
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
	The	rest		X

Example: Logic Diagram

Example: Test & Verification

- Step 5: Check the functional correctness of the logic circuit
- Apply all possible input combinations
- And check if the circuit generates the correct output for each input combination
- For large circuits with many input combinations, this may not be feasible.
- Statistical techniques may be used to verify the correctness of large circuits with many input combinations

Binary Adder/Subtractor

- (Arithmetic) Addition of two binary digits
 - \bullet 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 10
 - The result has two components
 - the sum (S)
 - the carry (C)
- (Arithmetic) Addition of three binary digits

Truth table

Х	у	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = x'y + xy' = x \oplus y$$

$$C = xy$$

Full Adder 1/2

- A circuit that performs the arithmetic sum of three bits
 - Three inputs
 - the range of output is [0, 3]
 - Two binary outputs

Х	у	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Karnaugh Maps

	yz				
X		00	01	11	10
	0	0	1	0	1
	1	1	0	1	0

$$S = xy'z' + x'y'z + xyz + x'yz'$$

$$= ...$$

$$= x \oplus y \oplus z$$

$$C = xy + xz + yz$$

Two level implementation 1st level: three AND gates 2nd level: One OR gate

Integer Addition 1/2

- Binary adder:
 - A digital circuit that produces the arithmetic sum of two binary numbers
 - $A = (a_{n-1}, a_{n-2}, ..., a_1, a_0)$
 - $\bullet B = (b_{n-1}, b_{n-2}, ..., b_1, b_0)$
- A simple case: 4-bit binary adder

Integer Addition 2/2

Ripple-carry adder

Hierarchical Design Methodology

- The design methodology we used to build carry-ripple adder is what is referred as <u>hierarchical design</u>.
- In classical design, we have:
 - 9 inputs including C₀.
 - 5 outputs
 - Truth tables with 29 = 512 entries
 - We have to optimize five Boolean functions with 9 variables each.
- Hierarchical design
 - we divide our design into smaller functional blocks
 - connect functional units to produce the big functionality

Recall how we do subtraction (2's complement)

$$X - Y = X + (2^n - Y) = X + \sim Y + 1$$

Faster Adders

- What is the total propagation time of 4-bit ripplecarry adder?
 - τ_{FA} : propagation time of a single full adder.
 - We have four full adders connected in cascaded fashion
 - Total propagation time: $4\tau_{FA}$ (roughly)

Carry Propagation

- Propation time of a full adder
 - au $au_{XOR} \approx 2\tau_{AND} = 2\tau_{OR}$
 - $\tau_{FA} \approx 2\tau_{XOR}$

Carry Propagation

Delays

- P_0 , P_1 , P_2 , P_3 : $\tau_{XOR} \approx 2\tau_{AND}$
- $C_1(S_0)$: $\approx 2\tau_{AND} + 2\tau_{AND} \approx 4\tau_{AND}$
- $C_2(S_1)$: $\approx 4\tau_{AND} + 2\tau_{AND} \approx 6\tau_{AND}$
- $C_3(S_2)$: $\approx 6\tau_{AND} + 2\tau_{AND} \approx 8\tau_{AND}$
- $C_4(S_3)$: $\approx 8\tau_{AND} + 2\tau_{AND} \approx 10\tau_{AND}$

Faster Adders

- The carry propagation technique is a limiting factor in the speed, with which two numbers are added.
- Two alternatives
 - 1. use faster gates with reduced delays
 - 2. Increase the circuit complexity (i.e. put more gates) in such a way that the carry delay time is reduced.
- An example for the latter type of solution is <u>carry lookahead</u> <u>adders</u>
 - Two binary variables:
 - 1. $P_i = a_i \oplus b_i \underline{\text{carry propagate}}$
 - 2. $G_i = a_i b_i \underline{\text{carry generate}}$

Carry Lookahead Adders

- Sum and carry can be expressed in terms of P_i and G_i:
 - $P_i = a_i \oplus b_i; G_i = a_i b_i$
 - $S_i = P_i \oplus C_i$
- Why the names (carry propagate and generate)?
 - If G_i = 1 (both a_i = b_i = 1), then a "new" carry is generated
 - If P_i = 1 (either a_i = 1 or b_i = 1), then a carry coming from the previous lower bit position is propagated to the next higher bit position

Generating P_i and G_i Signals

Example: 4-bit operands

4-bit Carry Lookahead Adder

- We can use the carry propagate and carry generate signals to compute carry bits used in addition operation
 - $C_0 = input$

$$- C_1 = G_0 + P_0C_0$$

•
$$C_2 = G_1 + P_1C_1$$

$$= G_1 + P_1(G_0 + P_0C_0) = G_1 + P_1G_0 + P_1P_0C_0$$

$$C_3 = G_2 + P_2C_2 = G_2 + P_2(G_1 + P_1G_0 + P_1P_0C_0)$$

$$= G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$$

$$C_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_0$$

4-bit Carry Lookahead Circuit 1/3

4-bit Carry Lookahead Circuit 2/3

- All three carries (C₁, C₂, C₃) can be realized as two-level implementation (i.e. AND-OR)
- C₃ does not have to wait for C₂ and C₁ to propagate
- C₃ has its own circuit
- The propagations happen concurrently
- Certain parts are repeated.
 - This is the main reason why the faster adder is more complicated.

4-bit Carry Lookahead Circuit 3/3

Two levels of logic

4-bit Carry Lookahead Adder

Propagation Time of Carry Lookahead Adders

Summary

- Half adder → HA
- Full adder → FA
 - critical path delay
 - time complexity: $2\tau_{XOR}$ (assume $\tau_{XOR} = 2\tau_{AND} = 2\tau_{OR}$)
- 4-bit carry-ripple adder
 - 4 FAs in serial
 - carry propagation
 - time complexity: 10τ_{AND}
- Faster Adder
 - Separate carry generation circuits (more complex)
 - time complexity: $\approx 4\tau_{XOR} \approx 8\tau_{AND}$

Summary

- General formulae
- n-bit carry-ripple adder
 - time complexity: $\approx (2 + 2n)\tau_{AND}$
- n-bit CLA
 - Separate carry generation circuits (more complex)
 - time complexity: $\approx (4 + 2\lceil \log_2 n \rceil)\tau_{AND}$
 - n = 8
 - $C_7 = G_6 + P_6G_5 + P_6P_5G_4 + P_6P_5P_4G_3 + P_6P_5P_4P_3G_2 + P_6P_5P_4P_3P_2G_1 + P_6P_5P_4P_3P_2P_1G_0 + P_7P_6P_5P_4P_3P_2P_1C_0$

Hybrid Approach for 16-bit Adder

Overflow

- How to detect overflows:
 - two n-bit numbers
 - we add them, and result may be an (n+1)-bit number → overflow.
 - Unsigned numbers:
 - easy
 - check the carryout.
 - Signed numbers
 - more complicated
 - overflow can occur in addition, when the operands are of the same sign

45

Examples: Overflows

Example 1: 8-bit signed numbers

00	0	1	0	0	0	1	0	0	68
00	0	1	0	1	1	0	1	1	91
00	1	0	0	1	1	1	1	1	159

Example 2: 8-bit signed numbers

	11	1	0	1	1	1	1	0	0	-68
	11	1	0	1	0	0	1	0	1	-91
_	11	0	1	1	0	0	0	0	1	-159

How to Detect Overflows:

First Method

- 1. If both operands are positive and the MSB of the result is 1.
- 2. If both operands are negative and the MSB of the result is 0.

$\mathtt{a}_{\mathtt{n-1}}$	b_{n-1}	S_{n-1}	v
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	O
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Detecting Overflows: First Method

b _{n-1} S _{n-1}				
a _{n-1}	00	01	11	10
0	0	1	0	0
1	0	0	0	1

$$\blacksquare$$
 V = a_{n-1} ' b_{n-1} ' S_{n-1} + a_{n-1} b_{n-1} S_{n-1} '

Can we do it better?

a _{n-1}	b _{n-1}	S _{n-1}	V
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Detecting Overflows

- Second method:
 - Remember we have other variables when adding:
 - Carries

00	0	1	0	0	0	1	0	0	A	
00	0	1	0	1	1	0	1	1	В	
0	1	0	0	0	0	0	0	0	С	Look at C ₇
00	1	0	0	1	1	1	1	1	S	and C ₈ in both cases
										both oddoo
11	1	0	1	1	1	1	0	0	A	
11	1	0	1	0	0	1	0	1	В	
1	0	1	1	1	1	0	0	0	С	
11	0	1	1	0	0	0	0	1	S	

Detecting Overflows: Second Method

Observations

- Case 1: V = 1 when $C_7 = 1$ and $C_8 = 0$
- Case 2: V = 1 when $C_7 = 0$ and $C_8 = 1$
- $V = C_7 \oplus C_8 = 1$
- Think about whether this could happen when the operands have different signs.
 - $C_7 = C_8$

Overflow detection logic

- Which one is simpler?
- $V = C_7 \oplus C_8$
- $V = a_7' b_7' S_7 + a_7 b_7 S_7'$

Decimal		BCD Sum					um	ary Si	Bin	
93	Sı	S2	54	58	С	Z ₁	Z ₂	Z_4	Z ₈	K
0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	1	0	0	0	0
2	0	1	0	0	0	0	1	0	0	0
3	1	1	0	0	0	1	1	0	0	0
4	0	0	1	0	0	0	0	1	0	0
5	1	0	1	0	0	1	0	1	0	0
6	0	1	1	0	0	0	1	1	0	0
7	1	1	1	0	0	1	1	1	0	0
8	0	0	0	1	0	0	0	0	1	0
9	1	0	0	1	0	1	0	0	1	0
10	0	0	0	0	1	0	1	0	1	0
11	1	0	0	0	1	1	1	0	1	0
12	0	1	0	0	1	0	0	1	1	0
13	1	1	0	0	1	1	0	1	1	0
14	0	0	1	0	1	0	1	1	1	0
15	1	0	1	0	1	1	1	1	1	0
16	0	1	1	0	1	0	0	0	0	1
17	1	1	1	0	1	1	0	0	0	1
18	0	0	0	1	1	0	1	0	0	1
19	1	0	0	1	1	1	1	0	0	1

- $C=K + Z_8Z_4 + Z_8Z_2$
- Add 6 after 9

Binary Multipliers

Two-bit multiplier

(3x4)-bit Multiplier: Method

(3x4)-bit Multiplier: Method

4-bit Multiplier: Circuit

mxn-bit Multipliers

- Generalization:
- multiplier: m-bit integer
- multiplicand: n-bit integers
- m×n AND gates
- (m-1) adders
 - each adder is n-bit

Magnitude Comparator

- Comparison of two integers: A and B.
 - $A > B \rightarrow (1, 0, 0) = (x, y, z)$
 - $A = B \rightarrow (0, 1, 0) = (x, y, z)$
 - $A < B \rightarrow (0, 0, 1) = (x, y, z)$
- Example: 4-bit magnitude comparator
 - $A = (a_3, a_2, a_1, a_0)$ and $B = (b_3, b_2, b_1, b_0)$
 - 1. (A = B) case
 - they are equal if and only if $a_i = b_i$ $0 \le i \le 3$
 - $t_i = (a_i \oplus b_i)'$ $0 \le i \le 3$
 - $y = (A=B) = t_3 t_2 t_1 t_0$

4-bit Magnitude Comparator

- 2. (A > B) and (A < B) cases
 - We compare the most significant bits of A and B first.
 - if $(a_3 = 1 \text{ and } b_3 = 0) \rightarrow A > B$
 - else if $(a_3 = 0 \text{ and } b_3 = 1) \rightarrow A < B$
 - else (i.e. $a_3 = b_3$) compare a_2 and b_2 .

$$y = (A=B) = t_3 t_2 t_1 t_0$$

$$x = (A>B) = a_3 b_3' + t_3 a_2 b_2' + t_3 t_2 a_1 b_1' + t_3 t_2 t_1 a_0 b_0'$$

$$z = (A < B) = a_3' b_3 + t_3 a_2' b_2 + t_3 t_2 a_1' b_1 + t_3 t_2 t_1 a_0' b_0$$

4-bit Magnitude Comparator: Circuit

Fig. 4-17 4-Bit Magnitude Comparator

- A binary code of n bits
 - capable of representing 2ⁿ distinct elements of coded information
 - A decoder is a combinational circuit that converts binary information from n binary inputs to a maximum of 2ⁿ unique output lines

X	у	d_0	d_1	d_2	d_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

•
$$d_0 = x'y'$$

•
$$d_2 = xy'$$

•
$$d_1 = x'y$$

•
$$d_3 = xy$$

Decoder with Enable Input

_	е	X	У	d_0	d_1	d_2	d_3
	0	X	X	0	0	0	0
	1	0	0	1	0	0	0
	1	0	1	0	1	0	0
	1	1	0	0	0	1	0
	1	1	1	0	0	0	1

- Some decoders are constructed with NAND gates.
 - Thus, active output will be logic-0
 - They also include an "enable" input to control the circuit operation

е	X	у	d_0	d_1	d_2	d_3
1	X	X	1	1	1 1 1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

•
$$d_0 = e + x + y$$

•
$$d_1 = e + x + y'$$

•
$$d_2 = e + x' + y$$

•
$$d_3 = e + x' + y'$$

2-to-4-Line Decoder with Enable

$$d_0 = e + x + y =$$
 $d_1 = e + x + y' =$
 $d_2 = e + x' + y =$
 $d_3 = e + x' + y' =$

Demultiplexer

- A demultiplexer is a combinational circuit
 - it receives information from a single input line and directs it one of 2ⁿ output lines
 - It has n selection lines as to which output will get the input

$$d_0 = e$$
 when $x = 0$ and $y = 0$

$$d_1 = e$$
 when $x = 0$ and $y = 1$

$$d_2 = e$$
 when $x = 1$ and $y = 0$

$$d_3 = e$$
 when $x = 1$ and $y = 1$

Combining Decoders

X	у	Z	active output
0	0	0	d_0
0	0	1	d_1
0	1	0	d_2
0	1	1	d_3
1	0	0	d_4
1	0	1	d_5
1	1	0	d_6
1	1	1	d_7

Decoder as a Building Block

A decoder provides the 2ⁿ minterms of n input variable

- We can use a decoder and OR gates to realize any Boolean function expressed as sum of minterms
 - Any circuit with n inputs and m outputs can be realized using an n-to-2ⁿ decoder and m OR gates.

Example: Decoder as a Building Block

Full adder

- $C = xy + xz + yz = x'yz + xy'z + xyz + xyz' = \Sigma(3, 5, 7, 6)$
- $S = x \oplus y \oplus z = xy'z' + x'y'z + xyz + x'yz' = \Sigma(4, 1, 7, 2)$

- An encoder is a combinational circuit that performs the inverse operation of a decoder
 - number of inputs: 2ⁿ
 - number of outputs: n
 - the output lines generate the binary code corresponding to the input value
- Example: n = 2

d_0	d_1	d_2	d_3	X	У
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

Priority Encoder

- Problem with a regular encoder:
 - only one input can be active at any given time
 - the output is undefined for the case when more than one input is active simultaneously.
- Priority encoder:
 - there is a priority among the inputs

d_0	d_1	d_2	d_3	X	у	V
0	0	0	0	X		
1	0	0	0			
X	1	0			1	
X	X	1	0	1	0	1
Χ	X	X	1	1	1	1

4-bit Priority Encoder

- In the truth table
 - X for input variables represents both 0 and 1.
 - Good for condensing the truth table
 - Example: X100 → (0100, 1100)
 - This means d₁ has priority over d₀
 - d₃ has the highest priority
 - d₂ has the next
 - d₀ has the lowest priority
 - V = ?

Maps for 4-bit Priority Encoder

d_2d_3				
d_0d_1	00	01	11	10
00	X	1	1	1
01	0	1	1	1
11	0	1	1	1
10	0	1	1	1

$$x = d_2 + d_3$$

d_2d_3				
d_0d_1	00	01	11	10
00	X	1	1	0
01	1	1	1	0
11	1	1	1	0
10	0	1	1	0

$$y = d_3 + d_1 d_2$$

4-bit Priority Encoder: Circuit

$$-x = d_2 + d_3$$

 $-y = d_1d_2' + d_3$
 $-V = d_0 + d_1 + d_2 + d_3$

- A combinational circuit
 - It selects binary information from one of the many input lines and directs it to a single output line.
 - Many inputs m
 - One output line
 - n selection lines \rightarrow n = ?
- Example: 2-to-1-line multiplexer
 - 2 input lines I₀, I₁
 - 1 output line Y
 - 1 select line S

S	Y
0	I ₀
1	I ₁

$$Y = S'I_0 + SI_1$$

Function Table

2-to-1-Line Multiplexer

$$Y = S'I_0 + SI_1$$

Special Symbol

4-to-1-Line Multiplexer

- 4 input lines: I₀, I₁, I₂, I₃
- 1 output line: Y
- 2 select lines: S₁, S₀.

$$Y = S_1'S_0'I_0 + S_1'S_0I_1 + S_1S_0'I_2 + S_1S_0I_3$$

Interpretation:

- In case $S_1 = 0$ and $S_0 = 0$, Y selects I_0
- In case $S_1 = 0$ and $S_0 = 1$, Y selects I_1
- In case $S_1 = 1$ and $S_0 = 0$, Y selects I_2
- In case $S_1 = 1$ and $S_0 = 1$, Y selects I_3

4-to-1-Line Multiplexer: Circuit

Multiplexer with Enable Input

To select a certain building block we use enable inputs

Multiple-Bit Selection Logic 1/2

- A multiplexer is also referred as a "data selector"
- A multiple-bit selection logic selects a group of bits

$$A = a_1 a_0$$

$$B = b_1 b_0$$

If
$$S=0$$
: $Y = a_1 a_0$

If
$$S=1$$
: $Y = b_1b_0$

Multiple-bit Selection Logic 2/2

E	S	Y
1	X	all 0's
0	0	A
0	1	В

Design with Multiplexers 1/2

- Reminder: design with decoders
- Half adder

$$- C = xy = \sum(3)$$

$$- S = x \oplus y = x'y + xy' = \sum (1, 2)$$

 A closer look will reveal that a multiplexer is nothing but a decoder with OR gates

Design with Multiplexers 2/2

4-to-1-line multiplexer

- $S_1 \rightarrow X$
- $S_0 \rightarrow y$
- $S_1'S_0' = x'y'$,
 - $S_1'S_0 = x'y$,
 - $S_1S_0' = xy'$,
 - $S_1S_0 = xy$
- $Y = S_1'S_0'I_0 + S_1'S_0I_1 + S_1S_0'I_2 + S_1S_0I_3.$
- $Y = x'y'I_0 + x'yI_1 + xy'I_2 + xyI_3$
- Y =

Example: Design with Multiplexers

■ Example: $S(x, y) = \sum (1, 2)$

Design with Multiplexers Efficiently

- More efficient way to implement an n-variable Boolean function
 - 1. Use a multiplexer with n-1 selection inputs
 - 2. First (n-1) variables are connected to the selection inputs
 - 3. The remaining variable is connected to data inputs
- Example: $Y = \Sigma(1, 2) = x'y + xy'$

Example: Design with Multiplexers

• $F(x, y, z) = \Sigma(1, 2, 6, 7)$

$$F = x'y'z + x'yz' + xyz' + xyz$$

$$\blacksquare$$
 Y = S₁'S₀' I₀ + S₁'S₀ I₁ + S₁S₀' I₂ + S₁S₀ I₃

$$I_0 = Z$$
, $I_1 = Z'$, $I_2 = 0$, $I_3 = ?$

Х	у	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F = 7$$

$$F = z$$

$$F = 0$$

Example: Design with Multiplexers

$$F = x'y'z + x'yz' + xyz' + xyz$$

$$F = z$$
 when $x = 0$ and $y = 0$

$$F = z'$$
 when $x = 0$ and $y = 1$

$$F = 0$$
 when $x = 1$ and $y = 0$

$$F = 1$$
 when $x = 1$ and $y = 1$

Design with Multiplexers

- General procedure for n-variable Boolean function
 - $F(x_1, x_2, ..., x_n)$
- 1. The Boolean function is expressed in a truth table
- 2. The first (n-1) variables are applied to the selection inputs of the multiplexer $(x_1, x_2, ..., x_{n-1})$
- 3. For each combination of these (n-1) variables, evaluate the value of the output as a function of the last variable, x_n .
 - 0, 1, x_n , x_n
- 4. These values are applied to the data inputs in the proper order.

Combining Multiplexers

Three-State Buffers

- A different type of logic element
 - Instead of two states (i.e. 0, 1), it exhibits three states (0, 1, Z)
 - Z (Hi-Z) is called high-impedance
 - When in Hi-Z state the circuit behaves like an open circuit (the output appears to be disconnected, and the circuit has no logic significance)

3-State Buffers

- Remember that we cannot connect the outputs of other logic gates.
- We can connect the outputs of three-state buffers
 - provided that no two three-state buffers drive the same wire to opposite 0 and 1 values at the same time.

С	Α	Y
0	X	Hi-Z
1	0	0
1	1	1

Multiplexing with 3-State Buffers

Two Active Outputs - 1

What will happen if $C_1 = C_0 = 1$?

	C_1	C_0	Α	В	Y
,	0	0	Х	Х	Z
•	0	1	0	Х	0
	0	1	1	X	1
	1	0	X	0	0
	1	0	X	1	1
•	1	1	0	0	0
	1	1	1	1	1
	1	1	0	1	Side
	1	1	1	0	THE STATE OF THE S

Design Principle with 3-State Buffers

- Designer must be sure that only one control input must be active at a time.
 - Otherwise, the circuit may be destroyed by the large amount of current flowing from the buffer output at logic-1 to the buffer output at logic-0.

Busses with 3-State Buffers

There are important uses of three-state buffers

Design with Verilog

Gate Level Design (Decoder with enable input)

```
module decoder 2x4 gates(D, A, B, e);
  output [0:3] D;
  input A, B, e;
  wire A n, B n;
  not G1(A n, A);
  not G2 (B n, B);
  and G3(D[0], e, A_n, B_n);
  and G4(D[1], e, An, B);
  and G5(D[2], e, A, B n);
  and G6(D[3], e, A, B);
endmodule;
```

```
\begin{array}{c} \mathbf{B} \quad \mathbf{n} \\ \mathbf{A} \quad \mathbf{n} \\ \mathbf{B} \\ \mathbf{B} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{D}_1 \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{D}_2 \\ \mathbf{G} \\ \mathbf{D}_3 \\ \mathbf{G} \\ \mathbf{D}_3 \\ \mathbf{D}_3 \\ \mathbf{D}_4 \\ \mathbf{D}_5 \\ \mathbf{D}_6 \\ \mathbf{D}_7 \\ \mathbf{D}_8 \\ \mathbf{D}_8 \\ \mathbf{D}_8 \\ \mathbf{D}_8 \\ \mathbf{D}_8 \\ \mathbf{D}_9 \\ \mathbf{D}
```

 $D_0 = eA'B'$

 $D_1 = eA'B$

 $D_2 = eAB'$

 $D_3 = eAB$

Dataflow Modeling

- Dataflow modeling uses a number of operators that act on operands
 - About 30 different operators:
 See the textbook for the operators
 - Describes combinational circuits by their functions rather than their gate structure

```
D_0 = eA'B'

D_1 = eA'B

D_2 = eAB'

D_3 = eAB
```

```
module decoder_2x4_dataflow(
   output [0:3] D,
   input A, B,
       e);
   assign D[0] = e & ~A & ~B;
   assign D[1] = e & ~A & B;
   assign D[2] = e & A & ~B;
   assign D[3] = e & A & B;
endmodule;
```


Dataflow Modeling

- Data type "net"
 - Represents a physical connection between circuit elements
 - e.g., "wire", "output", "input".
- Continuous assignment "assign"
 - A statement that assigns a value to a net

```
e.g., assign D[0] = e & ~A & ~B;
```

```
• e.g., assign A_lt_B = A < B;</pre>
```

Bus type

```
wire [0:3] T;
```

```
T[0], T[3], T[1..2];
```


Behavioral Modeling

- Represents digital circuits at a functional and algorithmic level
 - Mostly used to describe sequential circuits
 - Can also be used to describe combinational circuits

```
module mux_2x1_beh(m, A, B, S);
  output m;
  input A, B, S;
  reg m;
  always @(A or B or S);
  if(S == 1) m = A;
  else m = B;
endmodule;
```


Behavioral Modeling

- Output must be declared as "reg" data type
- "always" block
 - Procedural assignment statements are executed every time there is a change in any of the variables listed after the "@" symbol (i.e., sensitivity list).

```
module mux_4x1_beh(output reg m,
  input I0, I1, I2, I3;
  input [1:0] S);
  always @(IO or II or I2 or I3 or S);
   case (S)
      2'b00: m = I0;
      2'b01: m = I1;
      2'b10: m = I2;
      2'b11: m = I3;
   endcase
endmodule;
```