Índice general

Ι	Va	riables aleatorias discretas	4
1.	Dist	ribución Binomial	5
	1.1.	Descripción	5
	1.2.	Función de Probabilidad	5
	1.3.	Condición de cierre	7
	1.4.	Medidas de tendencia central	7
		1.4.1. Esperanza	7
		1.4.2. Moda	8
		1.4.3. Mediana	8
	1.5.	Medidas de dispersión	8
		1.5.1. Varianza	8
		1.5.2. Desvió estándar	8
	1.6.		8
		1.6.1. Lanzamiento de monedas	8
		1.6.2. Apuestas a la ruleta	0
2.	Dist	cribución Geométrica 1	2
	2.1.	Descripción	2
	2.2.	Función de Probabilidad	2
	2.3.	Condición de Cierre	3
	2.4.	Medidas de tendencia central	4
		2.4.1. Esperanza	4
		2.4.2. Moda	4
		2.4.3. Mediana	4
	2.5.	Medidas de dispersión	4
		2.5.1. Varianza (COMPLETAR)	4
			4
	2.6.	Ejemplos	5

ÍNDICE	GENERAL		2

		2.6.1. 2.6.2.	0 1	
3.	Dist 3.1. 3.2. 3.3. 3.4. 3.5.	Descrip Funció Condid 3.4.1. 3.4.2. Medid 3.5.1. 3.5.2. Ejemp 3.6.1.	as de tendencia central	20 20 20 20 20 20 20 20 20
4.	4.1.	Descri Funció Condic Espera Varian	ón de Pascal (COMPLETAR) pción ón de Probabilidad (COMPLETAR) ción de Cierre (COMPLETAR) anza (COMPLETAR) aza y desvió estándar (COMPLETAR) clos (COMPLETAR)	23 23 23
5.	5.1. 5.2. 5.3. 5.4. 5.5.	Descri Funció Condid Espera Varian	ón de Poisson (COMPLETAR) pción on de Probabilidad (COMPLETAR) ción de Cierre anza iza y desvió estándar olos (COMPLETAR)	24 24 25 25
II	\mathbf{V}	ariabl	les aleatorias continuas	26
6.	Dist	tribuci	ón Uniforme	27
7.	Dist	tribuci	ón Normal	28

ÍNDICE GENERAL	3
II.BICE GENERALE	•

8.	Distribución Exponencial	29											
9.	Distribución de Erlang												
Α.	A. Resumen de distribuciones discretas												
В.	3. Resumen de distribuciones continuas												
C.	Tablas de Distribución	33											
	C.1. Binomial	34											
	C.1.1. Puntual	34											
	C.1.2. Acumulada	36											
	C.2. Poisson	38											
	C.2.1. Puntual	38											
	C.2.2. Acumulada	39											
	C.3. Geométrica	40											
	C.3.1. Puntual	40											
	C.3.2. Acumulada	41											
	C.4. Normal Estandarizada	42											
	C.4.1. Negativas	42											
	C.4.2. Positivas	43											

Parte I Variables aleatorias discretas

Capítulo 1

Distribución Binomial

1.1. Descripción

La distribución binomial es una distribución de probabilidad discreta que cuenta el número de éxitos en una secuencia de n ensayos de Bernoulli independientes entre sí, con una probabilidad fija p de ocurrencia del éxito entre los ensayos.

Es decir, sean \mathcal{E} un experimento, S el espacio muestral asociado a tal experimento y A un suceso del espacio con probabilidad p, entonces X: «Numero de ocurrencias del suceso A en n repeticiones independientes de \mathcal{E} » es una variable aleatoria con distribución binomial.

- $X \sim Bi(n, p).$
- $R_X = \{0, \dots, n\}$

1.2. Función de Probabilidad

La probabilidad de que una variable aleatoria $X \sim Bi(n, p)$ sea x es:

$$P(X = x) = \binom{n}{x} p^x q^{n-x}$$

Demostración Consideremos una sucesión s de ensayos del experimento \mathcal{E} que satisfaga la condición de que X(s) = x. Tal resultado aparecería, por ejemplo, si las primeras x repeticiones del experimento resultasen en la ocurrencia de A, mientras que las ultimas n-x resultasen \overline{A} , es decir:

$$\left(\underbrace{A,A,\ldots,A}_{x},\underbrace{\overline{A},\overline{A},\ldots,\overline{A}}_{n-x}\right)$$

Puesto que todas las repeticiones son independientes, la probabilidad de esta sucesión sería p^xq^{n-x} , pero exactamente la misma probabilidad estaría asociada con cualquier otro orden de dicha sucesión.

Debemos elegir x posiciones entre n para ubicar a las A. La cantidad total de dichas sucesiones es justamente $\binom{n}{x}$ de donde sigue el resultado.

1.3. Condición de cierre

 $\sum_{i=1}^{n} P(X=i) = \sum_{i=1}^{n} \binom{n}{i} p^{i} q^{n-i} = (p+q)^{n} = 1^{n} = 1$

1.4.1. Esperanza

1

$$\begin{split} E\left(X\right) &= \sum_{i \in R_X} i P\left(X=i\right) = \sum_{i=0}^n i \binom{n}{i} p^i q^{n-i} = \sum_{i=0}^n i \binom{n}{i} p^i \left(1-p\right)^{n-i} = \\ &= \sum_{i=1}^n i \frac{n!}{i! \left(n-i\right)!} p^i \left(1-p\right)^{n-i} = \sum_{i=1}^n \frac{n!}{\left(i-1\right)! \left(n-i\right)!} p^i \left(1-p\right)^{n-i} = \\ &= \sum_{i=0}^{n-1} \frac{n!}{i! \left(n-\left[i+1\right]\right)!} p^{i+1} \left(1-p\right)^{n-(i+1)} = \sum_{i=0}^{n-1} \frac{n \left(n-1\right)!}{i! \left(n-i-1\right)!} p p^i \left(1-p\right)^{n-i-1} = \\ &= n p \sum_{i=0}^{n-1} \frac{(n-1)!}{i! \left(n-i-1\right)!} p^i \left(1-p\right)^{n-i-1} = n p \sum_{i=0}^{n-1} \binom{n-1}{i} p^i \left(1-p\right)^{n-i-1} = \\ &= n p \left[p + (1-p)\right]^{n-1} = n p \end{split}$$

Alternativa Si $X \sim B\left(n,p\right)$ podemos expresar a X como suma de n variables de Bernoulli $Y_i\left(y\right) = \begin{cases} 1 & y = A \\ 0 & y = \overline{A} \end{cases}$, es decir: $X = \sum_{i=1}^n Y_i$. Luego:

$$E(X) = E\left[\sum_{i=1}^{n} Y_i\right] = \sum_{i=1}^{n} E(Y_i) = \sum_{i=1}^{n} p = np$$

¹Teorema del binomio

1.4.2. Moda

$$\lfloor (n+1) p \rfloor$$
 o $\lceil (n+1) p \rceil$

1.4.3. Mediana

$$\lfloor np \rfloor$$
 o $\lceil np \rceil$

1.5. Medidas de dispersión

1.5.1. Varianza

$$V(Y_i) = E(Y_i^2) - [E(Y_i)^2] = p - p^2 = p(1 - p) = pq$$

$$V(X) = V\left[\sum_{i=1}^n Y_i\right] = \sum_{i=1}^n V(Y_i) = \sum_{i=1}^n pq = npq$$

1.5.2. Desvió estándar

$$\sigma_X = \sqrt{npq}$$

1.6. Ejemplos

1.6.1. Lanzamiento de monedas

 \mathcal{E} : «Se tira una moneda y se observa el resultado».

- $\bullet S = \{\odot, \otimes\}. \ \#S = 2.$
- $A = \{ \text{Salio cara} \} = \{ \odot \}. \ \#A = 1. \ P(A) = \frac{1}{2}.$

- 9
- X: «Cantidad de caras en 3 repeticiones independientes de \mathcal{E} ».
 - $X \sim Bi(3, \frac{1}{2}).$
 - $X(x_1, x_2, x_3) = \sum_{i=1}^{3} Y(x_i) = Y(x_1) + Y(x_2) + Y(x_3).$

- $P(X = x) = \binom{3}{x} \left(\frac{1}{2}\right)^x \left(\frac{1}{2}\right)^{3-x}$. $X(\otimes, \otimes, \otimes) = 0$. $X(\otimes, \otimes, \odot) = 1$. $X(\odot, \otimes, \odot) = 1$. $X(\odot, \otimes, \odot) = 2$.

• $X(\otimes, \odot, \otimes) = 1$.

• $X(\odot, \odot, \otimes) = 2$.

• $X(\otimes, \odot, \odot) = 2$.

- $X(\odot, \odot, \odot) = 3$.
- 1. ¿Cual es la probabilidad de que salgan 2 caras en 3 repeticiones del experimento?
 - a) $P(X=2) = \binom{3}{2} \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^{3-2} = 3 \cdot \frac{1}{4} \cdot \frac{1}{2} = \frac{3}{8}$.
 - b) Probabilidad clásica:
 - $S' = \{(x_1, x_2, x_3) / x_i \in S\}. \#S' = 2^3 = 8.$
 - $B = \{\text{Salieron exactamente 2 caras}\} = \{(\otimes, \odot, \odot), (\odot, \otimes, \odot), (\odot, \odot, \otimes)\}.$
 - $P(B) = \frac{\#B}{\#S'} = \frac{3}{8}$.

2. ¿Cual es la probabilidad de que salgan al menos 2 caras en 3 repeticiones del experimento?

a)
$$P(X \ge 2) = p(2) + p(3) = \frac{3}{8} + {3 \choose 3} \left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^{3-3} = \frac{3}{8} + 1 \cdot \frac{1}{8} \cdot 1 = \frac{4}{8}$$
.

- b) Probabilidad clásica:
 - $C = \{\text{Salieron exactamente 3 caras}\} = \{(\odot, \odot, \odot)\}. \#C = 1.$
 - $D = \{ \text{Salieron al menos 2 caras} \} = B \cup C$. #D = 3 + 1 = 4.
 - $P(D) = \frac{\#D}{\#S'} = \frac{4}{8}.$
- 3. ¿Cuantas caras se espera que salgan en 4 repeticiones del experimento?

a)

$$\begin{split} E\left(X'\right) &= \sum_{i=0}^{n} i \binom{n}{i} p^{i} q^{n-i} = \\ &= 0 + 1 \cdot 4 \cdot \left(\frac{1}{2}\right)^{1} \cdot \left(\frac{1}{2}\right)^{3} + 2 \cdot 6 \cdot \left(\frac{1}{2}\right)^{2} \cdot \left(\frac{1}{2}\right)^{2} + 3 \cdot 4 \cdot \left(\frac{1}{2}\right)^{3} \cdot \left(\frac{1}{2}\right)^{1} + 4 \cdot 1 \cdot \left(\frac{1}{2}\right)^{4} \cdot 1 = \\ &= 0 + \frac{1}{4} + \frac{3}{4} + \frac{3}{4} + \frac{1}{4} = 2 \end{split}$$

b)
$$E(X') = 4 \cdot \frac{1}{2} = 2$$
.

1.6.2. Apuestas a la ruleta

 \mathcal{E} : «Se tira la bolilla y se observa el resultado».

- $S = \{0, \dots, 36\}. \#S = 37.$
- $A = \{ \text{Sale un numero negro} \}. \#A = 18. P(A) = \frac{18}{37}.$
- X: «Cantidad de números negros en 4 repeticiones independientes de \mathcal{E} ».
 - $X \sim Bi\left(4, \frac{18}{37}\right)$.
 - $P(X = x) = {4 \choose x} \left(\frac{18}{37}\right)^x \left(\frac{19}{37}\right)^{4-x}$.
 - $R_X = \{0, \dots, 4\}.$

CAPÍTULO 1. DISTRIBUCIÓN BINOMIAL

11

1. ¿Cual es la probabilidad de que la mayoría sean negros?

a)
$$P(X > 2) = p(3) + p(4) = {4 \choose 3} \left(\frac{18}{37}\right)^3 \left(\frac{19}{37}\right)^{4-3} + {4 \choose 4} \left(\frac{18}{37}\right)^4 \left(\frac{19}{37}\right)^{4-4} = \frac{16399584}{69343957} + \frac{104976}{1874161} \approx 0,2925.$$

- b) Probabilidad clásica:
 - $\#S' = 37^4 = 1874161$.
 - $B = \{\text{Hay exactamente 3 numeros negros}\}. \#B = 4 \cdot 19 \cdot 18^3 = 443232.$
 - $C = \{\text{Hay exactamente 4 numeros negros}\}. \#C = 18^4 = 104976.$
 - $D = \{\text{La mayoria son negros}\} = B \cup C$. #D = 548208.
 - $P(D) = \frac{\#D}{\#S'} = \frac{548208}{1874161} \approx 0,2925.$
- 2. ¿Cual es la probabilidad de que todos sean rojos?

a)
$$P(X=0) = \binom{4}{0} \left(\frac{18}{37}\right)^0 \left(\frac{19}{37}\right)^{4-0} = 1 \cdot 1 \cdot \left(\frac{19}{37}\right)^4 \approx 0,0695.$$

- b) Probabilidad clásica:
 - $E = \{\text{No hay ning\'un n\'umero negro}\}. \#E = 19^4 = 130321.$ $P(E) = \frac{\#E}{\#S'} = \frac{130321}{1874161} \approx 0,0695.$
- 3. ¿Cuantos números negros se esperan en 37 repeticiones del experimen-

$$E(X') = 37 \cdot \frac{18}{37} = 18$$

Capítulo 2

Distribución Geométrica

2.1. Descripción

La distribución geométrica es una distribución de probabilidad discreta que cuenta el número repeticiones independientes necesarias hasta que ocurra un determinado evento.

Es decir, sean \mathcal{E} un experimento, S el espacio muestral asociado a tal experimento y A un suceso del espacio con probabilidad p, entonces X: «Numero de repeticiones independientes de \mathcal{E} hasta que ocurre A por primera vez» es una variable aleatoria con distribución geométrica.

- $X \sim G(p)$.
- $\blacksquare R_X = \mathbb{N}.$

2.2. Función de Probabilidad

La probabilidad de que una variable aleatoria $X \sim G(p)$ sea x es:

$$P\left(X=x\right) = q^{x-1}p$$

Demostración El resultado es trivial ya que X = x si y solo si las primeras x-1 repeticiones de \mathcal{E} resultaron \overline{A} mientras que la restante da por resultado A.

2.3. Condición de Cierre

2

 $\sum_{i \in R_X} P(X = i) = \sum_{i=1}^{\infty} q^{i-1} p = \sum_{i=0}^{\infty} q^i p \underbrace{=}_{2} \frac{p}{1-q} = \frac{p}{p} = 1$

²Convergencia de series geométricas (q < 1)

2.4. Medidas de tendencia central

2.4.1. Esperanza

$$E(X) = \sum_{i \in R_X} iP(X = i) = \sum_{i=1}^{\infty} iP(X = i) = \sum_{i=1}^{\infty} iq^{i-1}p = p\sum_{i=0}^{\infty} iq^{i} = p\left[\frac{d}{dp}\left(\sum_{i=0}^{\infty} q^{i}\right)\right] = p\left[\frac{d}{dp}\left(-\frac{1}{p}\right)\right] = p\frac{1}{p^2} = \frac{1}{p}$$

2.4.2. Moda

1

2.4.3. Mediana

$$\left[-\frac{1}{\log_2\left(1-1\right)} \right]$$

2.5. Medidas de dispersión

2.5.1. Varianza (COMPLETAR)

$$V\left(X\right) = \frac{q}{p^2}$$

2.5.2. Desvió estándar

$$\sigma_X = \frac{\sqrt{q}}{p}$$

2.6. Ejemplos

2.6.1. Juego de poker

 \mathcal{E} : «Se reparte una mano de poker».

■
$$C = \{(x,y)/x \in \{A,2,\ldots,10,J,Q,K\} \land y \in \{\clubsuit,\heartsuit,\spadesuit,\diamondsuit\}\}. \#C = 52.$$

•
$$S = \{X \in \mathcal{P}(C) / |X| = 5\}. \#S = {52 \choose 5} = 2598960.$$

•
$$A = \{Poker\}. \#A = 13 \cdot 48 = 624. P(A) = \frac{624}{2598960}.$$

• X: «Cantidad de manos necesarias hasta que sale poker».

•
$$X \sim G\left(\frac{624}{2598960}\right)$$
.

•
$$R_X = \mathbb{N}$$
.

•
$$P(X = x) = \left(\frac{2598336}{2598960}\right)^{x-1} \left(\frac{624}{2598960}\right)$$

1. ¿Cual es la probabilidad de conseguir un poker en una partida de 15 manos?

$$P(X \le 15) = \sum_{i=0}^{15} \left(\frac{2598336}{2598960}\right)^{i-1} \left(\frac{624}{2598960}\right) \approx 0,0036$$

2. ¿Cuantas manos deben jugarse para que lo mas probable sea haber recibido un poker?

$$P\left(X \leq x\right) > \frac{1}{2} \iff \sum_{i=1}^{x} pq^{i-1} > \frac{1}{2} \iff p\frac{1-q^{x}}{1-q} > \frac{1}{2} \iff$$

$$\iff 1 - q^{x} > \frac{1}{2} \iff \frac{1}{2} > q^{x} \iff \log_{\frac{2598336}{2598960}}\left(\frac{1}{2}\right) \leq x$$

Deben jugarse 2887 manos.

3. ¿Luego de cuantas manos se espera recibir un poker?

$$E(X) = \frac{1}{p} = \frac{2598960}{624} = 4165$$

2.6.2. Reproducción Humana

 \mathcal{E} : «Se realiza el acto sexual en el día de ovulación».

 $p=\frac{30}{100}$: Probabilidad de quedar embarazada a los 25 años, teniendo sexo en el día de la ovulación.

- X: «Cantidad de relaciones sexuales durante la ovluación necesarias hasta quedar embarazada».
 - $X \sim G\left(\frac{30}{100}\right)$.
 - $R_X = \mathbb{N}$.
 - $P(X = x) = \left(\frac{70}{100}\right)^{x-1} \left(\frac{30}{100}\right)$.

1. ¿Cual es la probabilidad de que sea necesario tener 13 relaciones durante la ovluación para quedar embarazada a los 25 años?

$$P(X = 13) = \left(\frac{70}{100}\right)^{13-1} \left(\frac{30}{100}\right) \approx 0,004$$

2. ¿Cuantas relaciones sexuales durante la ovulación se esperan sean necesarias para quedar embarazada a los 25 años?

$$E(X) = \frac{1}{p} = \frac{100}{30} \approx 3,33$$

Capítulo 3

Distribución Hipergeométrica

3.1. Descripción

La distribución hipergeométrica es una distribución de probabilidad discreta que cuenta el número de elementos que pertenecen a una determinada categoría en una muestra simple sin reemplazo de una determinada población.

Sea S la población en estudio y A un subconjunto de S, entonces X: «Numero de elementos de A en una muestra simple sin reemplazos de n elementos» es una variable aleatoria con distribución hipergeométrica.

- $X \sim H(\#S, \#A, n)$.
- $R_X = \{ \max(0, n + \#A \#S), \dots, \min(n, \#A) \}$

Observación Nótese que si el tamaño de la muestra es considerablemente menor al tamaño poblacional $(n \ll N)$, el hecho de remover un elemento de la categoría A, prácticamente no modifica la probabilidad de volver a elegir otro de dicha categoría.

Por esta razón la distribución hipergeométrica puede aproximarse (bajo el supuesto mencionado) por una distribución binomial, esto es:

$$X \approx Bi\left(n, \frac{\#A}{\#S}\right)$$

3.2. Función de Probabilidad

La probabilidad de que una variable aleatoria $X \sim H\left(\#S, \#A, n\right)$ sea x es:

$$P\left(X=x\right) = \frac{\binom{\#A}{x} \cdot \binom{\#S-\#A}{n-x}}{\binom{\#S}{n}}$$

Demostración Observemos que si X=x entonces nuestra muestra contiene x elementos de la categoría A. La cantidad de formas diferentes de extraerlos es $\binom{\#A}{x}$. Por cada una de ellas habrá $\binom{\#S-\#A}{n-x}$ formas de elegir los restantes elementos de la categoría complementaria. En total hay $\binom{\#A}{x} \cdot \binom{\#S-\#A}{n-x}$ formas de componer una muestra con x elementos de la categoría A.

La cantidad de muestras diferentes de n elementos de un total de #S elementos es $\binom{\#S}{n}$.

Luego, calculando el cociente entre los casos favorables y los posibles, logramos derivar la función de probabilidad.

- 3.3. Condición de Cierre (COMPLETAR)
- 3.4. Medidas de tendencia central
- 3.4.1. Esperanza (COMPLETAR)

$$E(X) = n \cdot \frac{\#A}{\#S}$$

3.4.2. Moda

$$\left| \frac{(n+1)(\#A+1)}{\#S+2} \right|$$

- 3.5. Medidas de tendencia central
- 3.5.1. Varianza (COMPLETAR)
- 3.5.2. Desvío estándar (COMPLETAR)
- 3.6. Ejemplos (COMPLETAR)
- 3.6.1. Mundial de futbol

 $S = \{ \text{Jugadores convocados} \}. \#S = 23.$

 $A = \{ \text{Defensores convocados} \}. \#A = 7.$

n = 6: Jugadores lesionados.

- X: «Cantidad de defensores lesionados, de un total de n jugadores lesionados».
 - $X \sim H(23, 7, 6)$.
 - $R_X = \{0, 1, 2, 3, 4, 5, 6\}.$
 - $P(X = x) = \frac{\binom{7}{x} \cdot \binom{16}{6-x}}{100947}$.

1. ¿Que probabilidad hay de tener que jugar con 2 defensores o menos, si se lesionan 6 jugadores?

 ${\bf COMPLETAR.}$

- 2. ¿Que probabilidad hay de que no haya defensores lesionados? COMPLETAR.
- 3. COMPLETAR.

3.6.2. COMPLETAR

Capítulo 4

Distribución de Pascal (COMPLETAR)

4.1. Descripción

La distribución de Pascal es una distribución de probabilidad discreta que cuenta el número repeticiones independientes de un ensayo de Bernoulli necesarias, hasta que un suceso ocurra por r-ésima vez.

Es decir, sean \mathcal{E} un experimento, S el espacio muestral asociado a tal experimento y A un suceso del espacio con probabilidad p, entonces X: «Numero repeticiones independientes de \mathcal{E} hasta lograr r ocurrencias de A» es una variable aleatoria con distribución de Pascal.

- $X \sim Pa(r, p).$
- $R_X = \{r, \ldots\}.$

Observaciones

- Debe ser evidente que si r = 1, X tiene distribución de probabilidad geométrica.
- La distribución de Pascal se utiliza cuando prefijamos el numero r de éxitos que deseamos obtener y luego anotamos el numero de repeticiones del experimento necesarias hasta lograrlo; en cambio la distribución binomial es necesaria cuando consideramos un numero n fijo de repeticiones del experimento y anotamos la cantidad de veces que ocurre el evento de interés.

- 4.2. Función de Probabilidad (COMPLETAR)
- 4.3. Condición de Cierre (COMPLETAR)
- 4.4. Esperanza (COMPLETAR)
- 4.5. Varianza y desvió estándar (COMPLETAR)
- 4.6. Ejemplos (COMPLETAR)

Capítulo 5

Distribución de Poisson (COMPLETAR)

5.1. Descripción

La distribución de Poisson es una distribución de probabilidad discreta que expresa, a partir de una frecuencia de ocurrencia media λ , la probabilidad de que ocurra un determinado número de eventos durante cierto período de tiempo.

- $X \sim Po(\lambda)$.
- $\blacksquare R_X = \mathbb{N}_0.$

5.2. Función de Probabilidad (COMPLETAR)

5.3. Condición de Cierre

$$\sum_{i \in R_X} P\left(X = i\right) = \sum_{i=0}^{\infty} \frac{e^{-\lambda} \lambda^i}{i!} = e^{-\lambda} \sum_{i=0}^{\infty} \lambda^i \frac{1}{i!} = e^{-\lambda} e^{\lambda} = 1$$

5.4. Esperanza

$$E(X) = \sum_{i \in R_X} iP(X = i) = \sum_{i=0}^{\infty} iP(X = i) = \sum_{i=0}^{\infty} i\frac{e^{-\lambda}\lambda^i}{i!} = e^{-\lambda}\sum_{i=1}^{\infty} i\frac{\lambda^i}{i!} = e^{-\lambda}\sum_{i=1}^{\infty} i\frac{\lambda^i}{i!} = e^{-\lambda}\sum_{i=1}^{\infty} \frac{\lambda^i}{i!} = \lambda e^{-\lambda}\sum_{i=1}^{\infty} \lambda^i \frac{1}{i!} = \lambda e^{-\lambda}e^{\lambda} = \lambda$$

5.5. Varianza y desvió estándar

$$\begin{split} E\left(X^2\right) &= \sum_{i \in R_X} i^2 P\left(X=i\right) = \sum_{i=0}^\infty i^2 P\left(X=i\right) = \sum_{i=0}^\infty i^2 \frac{e^{-\lambda} \lambda^i}{i!} = \sum_{i=1}^\infty i^2 \frac{e^{-\lambda} \lambda^i}{i!} = \\ &= \sum_{i=1}^\infty i \frac{e^{-\lambda} \lambda^i}{(i-1)!} = \sum_{i=0}^\infty \left(i+1\right) \frac{e^{-\lambda} \lambda \lambda^i}{i!} = \sum_{i=0}^\infty \left[i \frac{e^{-\lambda} \lambda \lambda^i}{i!} + \frac{e^{-\lambda} \lambda^i}{i!}\right] = \\ &= \sum_{i=0}^\infty \left[\lambda \left(i \frac{e^{-\lambda} \lambda^i}{i!} + \frac{e^{-\lambda} \lambda^i}{i!}\right)\right] = \lambda \sum_{i=0}^\infty \left[i \frac{e^{-\lambda} \lambda^i}{i!} + \frac{e^{-\lambda} \lambda^i}{i!}\right] = \\ &= \lambda \left[\sum_{i=0}^\infty i \frac{e^{-\lambda} \lambda^i}{i!} + \sum_{i=0}^\infty \frac{e^{-\lambda} \lambda^i}{i!}\right] = \lambda^2 + \lambda \end{split}$$

$$V(X) = E\left(X^2\right) - \left[E\left(X\right)\right]^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$$

$$\sigma_X = \sqrt{\lambda}$$

5.6. Ejemplos (COMPLETAR)

Parte II Variables aleatorias continuas

Capítulo 6 Distribución Uniforme

Capítulo 7 Distribución Normal

Capítulo 8 Distribución Exponencial Capítulo 9 Distribución de Erlang

Apéndice A

Resumen de distribuciones discretas

Distribución	R_X	$p\left(x\right)$	$E\left(X\right)$	$V\left(X\right)$	\approx
Be(p)	{0,1}	p^xq^{1-x}	p	pq	-
Bi(n,p)	$\{0,\ldots,n\}$	$\binom{n}{x} p^x q^{n-x}$	np	npq	$Po\left(np\right)$
$Pa\left(r,p\right)$	$\{r,\ldots\}$	$\binom{x-1}{r-1}p^rq^{x-r}$	$\frac{r}{p}$	$\frac{rq}{p^2}$	
$G\left(p\right)$	N	$q^{x-1}p$	$\frac{1}{p}$	$\frac{q}{p^2}$	Pa(1,p)
$H\left(N,d,n\right)$		$\frac{\binom{d}{x} \cdot \binom{N-d}{n-x}}{\binom{N}{n}}$	np	$npq\frac{N-n}{N-1}$	$Bi\left(n, \frac{d}{N}\right)$
$Po\left(\lambda\right)$	\mathbb{N}_0	$\frac{e^{-\lambda}\lambda^x}{x!}$	λ	λ	

Apéndice B

Resumen de distribuciones continuas

COMPLETAR.

Apéndice C

Tablas de Distribución

C.1. Binomial

C.1.1. Puntual

	p = .01	p = .05	p = .1	p = .15	p = .2	p = .3	p = .35	p = .4	p = .45	p = .49	p = .5
p(0)	0.9801	0.9025	0.8100	0.7225	0.6400	0.4900	0.4225	0.3600	0.3025	0.2601	0.2500
p(1)	0.0198	0.0950	0.1800	0.2550	0.3200	0.4200	0.4550	0.4800	0.4950	0.4998	0.5000
p(2)	0.0001	0.0025	0.0100	0.0225	0.0400	0.0900	0.1225	0.1600	0.2025	0.2401	0.2500
p(0)	0.9703	0.8574	0.7290	0.6141	0.5120	0.3430	0.2746	0.2160	0.1664	0.1327	0.1250
p(1)	0.0294	0.1354	0.2430	0.3251	0.3840	0.4410	0.4436	0.4320	0.4084	0.3823	0.3750
p(2)	0.0003	0.0071	0.0270	0.0574	0.0960	0.1890	0.2389	0.2880	0.3341	0.3674	0.3750
p(3)	0.0000	0.0001	0.0010	0.0034	0.0080	0.0270	0.0429	0.0640	0.0911	0.1176	0.1250
p(0)	0.9606	0.8145	0.6561	0.5220	0.4096	0.2401	0.1785	0.1296	0.0915	0.0677	0.0625
p(1)	0.0388	0.1715	0.2916	0.3685	0.4096	0.4116	0.3845	0.3456	0.2995	0.2600	0.2500
p(2)	0.0006	0.0135	0.0486	0.0975	0.1536	0.2646	0.3105	0.3456	0.3675	0.3747	0.3750
p(3)	0.0000	0.0005	0.0036	0.0115	0.0256	0.0756	0.1115	0.1536	0.2005	0.2400	0.2500
p(4)	0.0000	0.0000	0.0001	0.0005	0.0016	0.0081	0.0150	0.0256	0.0410	0.0576	0.0625
p(0)	0.9510	0.7738	0.5905	0.4437	0.3277	0.1681	0.1160	0.0778	0.0503	0.0345	0.0313
p(1)	0.0480	0.2036	0.3281	0.3915	0.4096	0.3602	0.3124	0.2592	0.2059	0.1657	0.1563
p(2)	0.0010	0.0214	0.0729	0.1382	0.2048	0.3087	0.3364	0.3456	0.3369	0.3185	0.3125
p(3)	0.0000	0.0011	0.0081	0.0244	0.0512	0.1323	0.1811	0.2304	0.2757	0.3060	0.3125
p(4)	0.0000	0.0000	0.0005	0.0022	0.0064	0.0284	0.0488	0.0768	0.1128	0.1470	0.1563
$p\left(5\right)$	0.0000	0.0000	0.0000	0.0001	0.0003	0.0024	0.0053	0.0102	0.0185	0.0282	0.0313
p(0)	0.9415	0.7351	0.5314	0.3771	0.2621	0.1176	0.0754	0.0467	0.0277	0.0176	0.0156
p(1)	0.0571	0.2321	0.3543	0.3993	0.3932	0.3025	0.2437	0.1866	0.1359	0.1014	0.0938
p(2)	0.0014	0.0305	0.0984	0.1762	0.2458	0.3241	0.3280	0.3110	0.2780	0.2436	0.2344
p(3)	0.0000	0.0021	0.0146	0.0415	0.0819	0.1852	0.2355	0.2765	0.3032	0.3121	0.3125
p(4)	0.0000	0.0001	0.0012	0.0055	0.0154	0.0595	0.0951	0.1382	0.1861	0.2249	0.2344
p(5)	0.0000	0.0000	0.0001	0.0004	0.0015	0.0102	0.0205	0.0369	0.0609	0.0864	0.0938
p(6)	0.0000	0.0000	0.0000	0.0000	0.0001	0.0007	0.0018	0.0041	0.0083	0.0138	0.0156
	p = .01	p = .05	p = .1	p = .15	p = .2	p = .3	p = .35	p = .4	p = .45	p = .49	p = .5

	p = .01	p = .05	p = .1	p = .15	p = .2	p = .3	p = .35	p = .4	p = .45	p = .49	p = .5
p(0)	0.9321	0.6983	0.4783	0.3206	0.2097	0.0824	0.0490	0.0280	0.0152	0.0090	0.0078
p(1)	0.0659	0.2573	0.3720	0.3960	0.3670	0.2471	0.1848	0.1306	0.0872	0.0604	0.0547
p(2)	0.0020	0.0406	0.1240	0.2097	0.2753	0.3177	0.2985	0.2613	0.2140	0.1740	0.1641
p(3)	0.0000	0.0036	0.0230	0.0617	0.1147	0.2269	0.2679	0.2903	0.2918	0.2786	0.2734
p(4)	0.0000	0.0002	0.0026	0.0109	0.0287	0.0972	0.1442	0.1935	0.2388	0.2676	0.2734
p(5)	0.0000	0.0000	0.0002	0.0012	0.0043	0.0250	0.0466	0.0774	0.1172	0.1543	0.1641
$p\left(6\right)$	0.0000	0.0000	0.0000	0.0001	0.0004	0.0036	0.0084	0.0172	0.0320	0.0494	0.0547
p(7)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	0.0006	0.0016	0.0037	0.0068	0.0078
p(0)	0.9227	0.6634	0.4305	0.2725	0.1678	0.0576	0.0319	0.0168	0.0084	0.0046	0.0039
p(1)	0.0746	0.2793	0.3826	0.3847	0.3355	0.1977	0.1373	0.0896	0.0548	0.0352	0.0313
p(2)	0.0026	0.0515	0.1488	0.2376	0.2936	0.2965	0.2587	0.2090	0.1569	0.1183	0.1094
p(3)	0.0001	0.0054	0.0331	0.0839	0.1468	0.2541	0.2786	0.2787	0.2568	0.2273	0.2188
p(4)	0.0000	0.0004	0.0046	0.0185	0.0459	0.1361	0.1875	0.2322	0.2627	0.2730	0.2734
p(5)	0.0000	0.0000	0.0004	0.0026	0.0092	0.0467	0.0808	0.1239	0.1719	0.2098	0.2188
$p\left(6\right)$	0.0000	0.0000	0.0000	0.0002	0.0011	0.0100	0.0217	0.0413	0.0703	0.1008	0.1094
$p\left(7\right)$	0.0000	0.0000	0.0000	0.0000	0.0001	0.0012	0.0033	0.0079	0.0164	0.0277	0.0313
p(8)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0002	0.0007	0.0017	0.0033	0.0039
p(0)	0.9135	0.6302	0.3874	0.2316	0.1342	0.0404	0.0207	0.0101	0.0046	0.0023	0.0020
p(1)	0.0830	0.2985	0.3874	0.3679	0.3020	0.1556	0.1004	0.0605	0.0339	0.0202	0.0176
p(2)	0.0034	0.0629	0.1722	0.2597	0.3020	0.2668	0.2162	0.1612	0.1110	0.0776	0.0703
p(3)	0.0001	0.0077	0.0446	0.1069	0.1762	0.2668	0.2716	0.2508	0.2119	0.1739	0.1641
$p\left(4\right)$	0.0000	0.0006	0.0074	0.0283	0.0661	0.1715	0.2194	0.2508	0.2600	0.2506	0.2461
$p\left(5\right)$	0.0000	0.0000	0.0008	0.0050	0.0165	0.0735	0.1181	0.1672	0.2128	0.2408	0.2461
$p\left(6\right)$	0.0000	0.0000	0.0001	0.0006	0.0028	0.0210	0.0424	0.0743	0.1160	0.1542	0.1641
$p\left(7\right)$	0.0000	0.0000	0.0000	0.0000	0.0003	0.0039	0.0098	0.0212	0.0407	0.0635	0.0703
$p\left(8\right)$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0004	0.0013	0.0035	0.0083	0.0153	0.0176
p(9)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0003	0.0008	0.0016	0.0020
$p\left(0\right)$	0.9044	0.5987	0.3487	0.1969	0.1074	0.0282	0.0135	0.0060	0.0025	0.0012	0.0010
$p\left(1\right)$	0.0914	0.3151	0.3874	0.3474	0.2684	0.1211	0.0725	0.0403	0.0207	0.0114	0.0098
p(2)	0.0042	0.0746	0.1937	0.2759	0.3020	0.2335	0.1757	0.1209	0.0763	0.0494	0.0439
p(3)	0.0001	0.0105	0.0574	0.1298	0.2013	0.2668	0.2522	0.2150	0.1665	0.1267	0.1172
$p\left(4\right)$	0.0000	0.0010	0.0112	0.0401	0.0881	0.2001	0.2377	0.2508	0.2384	0.2130	0.2051
$p\left(5\right)$	0.0000	0.0001	0.0015	0.0085	0.0264	0.1029	0.1536	0.2007	0.2340	0.2456	0.2461
$p\left(6\right)$	0.0000	0.0000	0.0001	0.0012	0.0055	0.0368	0.0689	0.1115	0.1596	0.1966	0.2051
$p\left(7\right)$	0.0000	0.0000	0.0000	0.0001	0.0008	0.0090	0.0212	0.0425	0.0746	0.1080	0.1172
p(8)	0.0000	0.0000	0.0000	0.0000	0.0001	0.0014	0.0043	0.0106	0.0229	0.0389	0.0439
p(9)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0005	0.0016	0.0042	0.0083	0.0098
p(10)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0003	0.0008	0.0010
	p = .01	p = .05	p = .1	p = .15	p = .2	p = .3	p = .35	p = .4	p = .45	p = .49	p = .5

C.1.2. Acumulada

	p = .01	p = .05	p = .1	p = .15	p = .2	p = .3	p = .35	p = .4	p = .45	p = .49	p = .5
F(0)	0.9801	0.9025	0.8100	0.7225	0.6400	0.4900	0.4225	0.3600	0.3025	0.2601	0.2500
F(1)	0.9999	0.9975	0.9900	0.9775	0.9600	0.9100	0.8775	0.8400	0.7975	0.7599	0.7500
F(2)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F(0)	0.9703	0.8574	0.7290	0.6141	0.5120	0.3430	0.2746	0.2160	0.1664	0.1327	0.1250
F(1)	0.9997	0.9928	0.9720	0.9393	0.8960	0.7840	0.7183	0.6480	0.5748	0.5150	0.5000
F(2)	1.0000	0.9999	0.9990	0.9966	0.9920	0.9730	0.9571	0.9360	0.9089	0.8824	0.8750
F(3)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F(0)	0.9606	0.8145	0.6561	0.5220	0.4096	0.2401	0.1785	0.1296	0.0915	0.0677	0.0625
$F\left(1\right)$	0.9994	0.9860	0.9477	0.8905	0.8192	0.6517	0.5630	0.4752	0.3910	0.3276	0.3125
F(2)	1.0000	0.9995	0.9963	0.9880	0.9728	0.9163	0.8735	0.8208	0.7585	0.7023	0.6875
F(3)	1.0000	1.0000	0.9999	0.9995	0.9984	0.9919	0.9850	0.9744	0.9590	0.9424	0.9375
$F\left(4\right)$	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F(0)	0.9510	0.7738	0.5905	0.4437	0.3277	0.1681	0.1160	0.0778	0.0503	0.0345	0.0313
$F\left(1\right)$	0.9990	0.9774	0.9185	0.8352	0.7373	0.5282	0.4284	0.3370	0.2562	0.2002	0.1875
F(2)	1.0000	0.9988	0.9914	0.9734	0.9421	0.8369	0.7648	0.6826	0.5931	0.5187	0.5000
F(3)	1.0000	1.0000	0.9995	0.9978	0.9933	0.9692	0.9460	0.9130	0.8688	0.8248	0.8125
F(4)	1.0000	1.0000	1.0000	0.9999	0.9997	0.9976	0.9947	0.9898	0.9815	0.9718	0.9688
F(5)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$F\left(0\right)$	0.9415	0.7351	0.5314	0.3771	0.2621	0.1176	0.0754	0.0467	0.0277	0.0176	0.0156
$F\left(1\right)$	0.9985	0.9672	0.8857	0.7765	0.6554	0.4202	0.3191	0.2333	0.1636	0.1190	0.1094
F(2)	1.0000	0.9978	0.9842	0.9527	0.9011	0.7443	0.6471	0.5443	0.4415	0.3627	0.3438
F(3)	1.0000	0.9999	0.9987	0.9941	0.9830	0.9295	0.8826	0.8208	0.7447	0.6748	0.6563
$F\left(4\right)$	1.0000	1.0000	0.9999	0.9996	0.9984	0.9891	0.9777	0.9590	0.9308	0.8997	0.8906
F(5)	1.0000	1.0000	1.0000	1.0000	0.9999	0.9993	0.9982	0.9959	0.9917	0.9862	0.9844
F(6)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$F\left(0\right)$	0.9321	0.6983	0.4783	0.3206	0.2097	0.0824	0.0490	0.0280	0.0152	0.0090	0.0078
$F\left(1\right)$	0.9980	0.9556	0.8503	0.7166	0.5767	0.3294	0.2338	0.1586	0.1024	0.0693	0.0625
F(2)	1.0000	0.9962	0.9743	0.9262	0.8520	0.6471	0.5323	0.4199	0.3164	0.2433	0.2266
F(3)	1.0000	0.9998	0.9973	0.9879	0.9667	0.8740	0.8002	0.7102	0.6083	0.5219	0.5000
F(4)	1.0000	1.0000	0.9998	0.9988	0.9953	0.9712	0.9444	0.9037	0.8471	0.7895	0.7734
F(5)	1.0000	1.0000	1.0000	0.9999	0.9996	0.9962	0.9910	0.9812	0.9643	0.9438	0.9375
F(6)	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	0.9994	0.9984	0.9963	0.9932	0.9922
F(7)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	p = .01	p = .05	p = .1	p = .15	p = .2	p = .3	p = .35	p = .4	p = .45	p = .49	p = .5

	p = .01	p = .05	p = .1	p = .15	p = .2	p = .3	p = .35	p = .4	p = .45	p = .49	p = .5
F(0)	0.9227	0.6634	0.4305	0.2725	0.1678	0.0576	0.0319	0.0168	0.0084	0.0046	0.0039
F(1)	0.9973	0.9428	0.8131	0.6572	0.5033	0.2553	0.1691	0.1064	0.0632	0.0398	0.0352
F(2)	0.9999	0.9942	0.9619	0.8948	0.7969	0.5518	0.4278	0.3154	0.2201	0.1581	0.1445
F(3)	1.0000	0.9996	0.9950	0.9786	0.9437	0.8059	0.7064	0.5941	0.4770	0.3854	0.3633
F(4)	1.0000	1.0000	0.9996	0.9971	0.9896	0.9420	0.8939	0.8263	0.7396	0.6584	0.6367
F(5)	1.0000	1.0000	1.0000	0.9998	0.9988	0.9887	0.9747	0.9502	0.9115	0.8682	0.8555
F(6)	1.0000	1.0000	1.0000	1.0000	0.9999	0.9987	0.9964	0.9915	0.9819	0.9690	0.9648
F(7)	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9993	0.9983	0.9967	0.9961
F(8)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F(0)	0.9135	0.6302	0.3874	0.2316	0.1342	0.0404	0.0207	0.0101	0.0046	0.0023	0.0020
F(1)	0.9966	0.9288	0.7748	0.5995	0.4362	0.1960	0.1211	0.0705	0.0385	0.0225	0.0195
F(2)	0.9999	0.9916	0.9470	0.8591	0.7382	0.4628	0.3373	0.2318	0.1495	0.1001	0.0898
F(3)	1.0000	0.9994	0.9917	0.9661	0.9144	0.7297	0.6089	0.4826	0.3614	0.2740	0.2539
F(4)	1.0000	1.0000	0.9991	0.9944	0.9804	0.9012	0.8283	0.7334	0.6214	0.5246	0.5000
F(5)	1.0000	1.0000	0.9999	0.9994	0.9969	0.9747	0.9464	0.9006	0.8342	0.7654	0.7461
$F\left(6\right)$	1.0000	1.0000	1.0000	1.0000	0.9997	0.9957	0.9888	0.9750	0.9502	0.9196	0.9102
F(7)	1.0000	1.0000	1.0000	1.0000	1.0000	0.9996	0.9986	0.9962	0.9909	0.9831	0.9805
F(8)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9992	0.9984	0.9980
F(9)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F(0)	0.9044	0.5987	0.3487	0.1969	0.1074	0.0282	0.0135	0.0060	0.0025	0.0012	0.0010
$F\left(1\right)$	0.9957	0.9139	0.7361	0.5443	0.3758	0.1493	0.0860	0.0464	0.0233	0.0126	0.0107
F(2)	0.9999	0.9885	0.9298	0.8202	0.6778	0.3828	0.2616	0.1673	0.0996	0.0621	0.0547
F(3)	1.0000	0.9990	0.9872	0.9500	0.8791	0.6496	0.5138	0.3823	0.2660	0.1888	0.1719
$F\left(4\right)$	1.0000	0.9999	0.9984	0.9901	0.9672	0.8497	0.7515	0.6331	0.5044	0.4018	0.3770
F(5)	1.0000	1.0000	0.9999	0.9986	0.9936	0.9527	0.9051	0.8338	0.7384	0.6474	0.6230
$F\left(6\right)$	1.0000	1.0000	1.0000	0.9999	0.9991	0.9894	0.9740	0.9452	0.8980	0.8440	0.8281
$F\left(7\right)$	1.0000	1.0000	1.0000	1.0000	0.9999	0.9984	0.9952	0.9877	0.9726	0.9520	0.9453
F(8)	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9995	0.9983	0.9955	0.9909	0.9893
F(9)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9992	0.9990
F(10)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	p = .01	p = .05	p = .1	p = .15	p = .2	p = .3	p = .35	p = .4	p = .45	p = .49	p = .5

C.2. Poisson

C.2.1. Puntual

		0.2.1	. I u	muai									
	p(0)	p(1)	p(2)	p(3)	$p\left(4\right)$	$p\left(5\right)$	$p\left(6\right)$	$p\left(7\right)$	p(8)	p(9)	p(10)	p(11)	p(12)
$\lambda = 0.1$	0.9048	0.0905	0.0045	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\lambda = 0.2$	0.8187	0.1637	0.0164	0.0011	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\lambda = 0.3$	0.7408	0.2222	0.0333	0.0033	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\lambda = 0.4$	0.6703	0.2681	0.0536	0.0072	0.0007	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\lambda = 0.5$	0.6065	0.3033	0.0758	0.0126	0.0016	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\lambda = 0.6$	0.5488	0.3293	0.0988	0.0198	0.0030	0.0004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\lambda = 0.7$	0.4966	0.3476	0.1217	0.0284	0.0050	0.0007	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\lambda = 0.8$	0.4493	0.3595	0.1438	0.0383	0.0077	0.0012	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\lambda = 0.9$	0.4066	0.3659	0.1647	0.0494	0.0111	0.0020	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\lambda = 1.0$	0.3679	0.3679	0.1839	0.0613	0.0153	0.0031	0.0005	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
$\lambda = 1.1$	0.3329	0.3662	0.2014	0.0738	0.0203	0.0045	0.0008	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
$\lambda = 1.2$	0.3012	0.3614	0.2169	0.0867	0.0260	0.0062	0.0012	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000
$\lambda = 1.3$	0.2725	0.3543	0.2303	0.0998	0.0324	0.0084	0.0018	0.0003	0.0001	0.0000	0.0000	0.0000	0.0000
$\lambda = 1.4$	0.2466	0.3452	0.2417	0.1128	0.0395	0.0111	0.0026	0.0005	0.0001	0.0000	0.0000	0.0000	0.0000
$\lambda = 1.5$	0.2231	0.3347	0.2510	0.1255	0.0471	0.0141	0.0035	0.0008	0.0001	0.0000	0.0000	0.0000	0.0000
$\lambda = 1.6$	0.2019	0.3230	0.2584	0.1378	0.0551	0.0176	0.0047	0.0011	0.0002	0.0000	0.0000	0.0000	0.0000
$\lambda = 1.7$	0.1827	0.3106	0.2640	0.1496	0.0636	0.0216	0.0061	0.0015	0.0003	0.0001	0.0000	0.0000	0.0000
$\lambda = 1.8$	0.1653	0.2975	0.2678	0.1607	0.0723	0.0260	0.0078	0.0020	0.0005	0.0001	0.0000	0.0000	0.0000
$\lambda = 1.9$	0.1496	0.2842	0.2700	0.1710	0.0812	0.0309	0.0098	0.0027	0.0006	0.0001	0.0000	0.0000	0.0000
$\lambda = 2.0$	0.1353	0.2707	0.2707	0.1804	0.0902	0.0361	0.0120	0.0034	0.0009	0.0002	0.0000	0.0000	0.0000
$\lambda = 2.2$	0.1108	0.2438	0.2681	0.1966	0.1082	0.0476	0.0174	0.0055	0.0015	0.0004	0.0001	0.0000	0.0000
$\lambda = 2.4$	0.0907	0.2177	0.2613	0.2090	0.1254	0.0602	0.0241	0.0083	0.0025	0.0007	0.0002	0.0000	0.0000
$\lambda = 2.6$	0.0743	0.1931	0.2510	0.2176	0.1414	0.0735	0.0319	0.0118	0.0038	0.0011	0.0003	0.0001	0.0000
$\lambda = 2.8$	0.0608	0.1703	0.2384	0.2225	0.1557	0.0872	0.0407	0.0163	0.0057	0.0018	0.0005	0.0001	0.0000
$\lambda = 3.0$	0.0498	0.1494	0.2240	0.2240	0.1680	0.1008	0.0504	0.0216	0.0081	0.0027	0.0008	0.0002	0.0001
$\lambda = 3.2$	0.0408	0.1304	0.2087	0.2226	0.1781	0.1140	0.0608	0.0278	0.0111	0.0040	0.0013	0.0004	0.0001
$\lambda = 3.4$	0.0334	0.1135	0.1929	0.2186	0.1858	0.1264	0.0716	0.0348	0.0148	0.0056	0.0019	0.0006	0.0002
$\lambda = 3.6$	0.0273	0.0984	0.1771	0.2125	0.1912	0.1377	0.0826	0.0425	0.0191	0.0076	0.0028	0.0009	0.0003
$\lambda = 3.8$	0.0224	0.0850	0.1615	0.2046	0.1944	0.1477	0.0936	0.0508	0.0241	0.0102	0.0039	0.0013	0.0004
$\lambda = 4.0$	0.0183	0.0733	0.1465	0.1954	0.1954	0.1563	0.1042	0.0595	0.0298	0.0132	0.0053	0.0019	0.0006
$\lambda = 5.0$	0.0067	0.0337	0.0842	0.1404	0.1755	0.1755	0.1462	0.1044	0.0653	0.0363	0.0181	0.0082	0.0034
$\lambda = 6.0$	0.0025	0.0149	0.0446	0.0892	0.1339	0.1606	0.1606	0.1377	0.1033	0.0688	0.0413	0.0225	0.0113
$\lambda = 7.0$	0.0009	0.0064	0.0223	0.0521	0.0912	0.1277	0.1490	0.1490	0.1304	0.1014	0.0710	0.0452	0.0263
$\lambda = 8.0$	0.0003	0.0027	0.0107	0.0286	0.0573	0.0916	0.1221	0.1396	0.1396	0.1241	0.0993	0.0722	0.0481
$\lambda = 9.0$	0.0001	0.0011	0.0050	0.0150	0.0337	0.0607	0.0911	0.1171	0.1318	0.1318	0.1186	0.0970	0.0728
$\lambda = 10.0$	0.0000	0.0005	0.0023	0.0076	0.0189	0.0378	0.0631	0.0901	0.1126	0.1251	0.1251	0.1137	0.0948
$\lambda = 15.0$	0.0000	0.0000	0.0000	0.0002	0.0006	0.0019	0.0048	0.0104	0.0194	0.0324	0.0486	0.0663	0.0829
$\lambda = 20.0$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0002	0.0005	0.0013	0.0029	0.0058	0.0106	0.0176
$\lambda = 25.0$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0004	0.0008	0.0017
$\lambda = 30.0$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001
$\lambda = 50.0$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	p(0)	p(1)	p(2)	p(3)	p(4)	p(5)	p(6)	p(7)	p(8)	p(9)	p(10)	p(11)	p(12)

C.2.2. Acumulada

	F(0)	F(1)	F(2)	F(3)	F(4)	F(5)	$F\left(6\right)$	F(7)	F(8)	F(9)	F(10)	F(11)	F(12)
$\lambda = 0.1$	0.9048	0.9953	0.9998	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$\lambda = 0.2$	0.8187	0.9825	0.9989	0.9999	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$\lambda = 0.3$	0.7408	0.9631	0.9964	0.9997	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$\lambda = 0.4$	0.6703	0.9384	0.9921	0.9992	0.9999	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$\lambda = 0.5$	0.6065	0.9098	0.9856	0.9982	0.9998	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$\lambda = 0.6$	0.5488	0.8781	0.9769	0.9966	0.9996	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$\lambda = 0.7$	0.4966	0.8442	0.9659	0.9942	0.9992	0.9999	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$\lambda = 0.8$	0.4493	0.8088	0.9526	0.9909	0.9986	0.9998	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$\lambda = 0.9$	0.4066	0.7725	0.9371	0.9865	0.9977	0.9997	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$\lambda = 1.0$	0.3679	0.7358	0.9197	0.9810	0.9963	0.9994	0.9999	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$\lambda = 1.1$	0.3329	0.6990	0.9004	0.9743	0.9946	0.9990	0.9999	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$\lambda = 1.2$	0.3012	0.6626	0.8795	0.9662	0.9923	0.9985	0.9997	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$\lambda = 1.3$	0.2725	0.6268	0.8571	0.9569	0.9893	0.9978	0.9996	0.9999	1.0000	1.0000	1.0000	1.0000	1.0000
$\lambda = 1.4$	0.2466	0.5918	0.8335	0.9463	0.9857	0.9968	0.9994	0.9999	1.0000	1.0000	1.0000	1.0000	1.0000
$\lambda = 1.5$	0.2231	0.5578	0.8088	0.9344	0.9814	0.9955	0.9991	0.9998	1.0000	1.0000	1.0000	1.0000	1.0000
$\lambda = 1.6$	0.2019	0.5249	0.7834	0.9212	0.9763	0.9940	0.9987	0.9997	1.0000	1.0000	1.0000	1.0000	1.0000
$\lambda = 1.7$	0.1827	0.4932	0.7572	0.9068	0.9704	0.9920	0.9981	0.9996	0.9999	1.0000	1.0000	1.0000	1.0000
$\lambda = 1.8$	0.1653	0.4628	0.7306	0.8913	0.9636	0.9896	0.9974	0.9994	0.9999	1.0000	1.0000	1.0000	1.0000
$\lambda = 1.9$	0.1496	0.4337	0.7037	0.8747	0.9559	0.9868	0.9966	0.9992	0.9998	1.0000	1.0000	1.0000	1.0000
$\lambda = 2.0$	0.1353	0.4060	0.6767	0.8571	0.9473	0.9834	0.9955	0.9989	0.9998	1.0000	1.0000	1.0000	1.0000
$\lambda = 2.2$	0.1108	0.3546	0.6227	0.8194	0.9275	0.9751	0.9925	0.9980	0.9995	0.9999	1.0000	1.0000	1.0000
$\lambda = 2.4$	0.0907	0.3084	0.5697	0.7787	0.9041	0.9643	0.9884	0.9967	0.9991	0.9998	1.0000	1.0000	1.0000
$\lambda = 2.6$	0.0743	0.2674	0.5184	0.7360	0.8774	0.9510	0.9828	0.9947	0.9985	0.9996	0.9999	1.0000	1.0000
$\lambda = 2.8$	0.0608	0.2311	0.4695	0.6919	0.8477	0.9349	0.9756	0.9919	0.9976	0.9993	0.9998	1.0000	1.0000
$\lambda = 3.0$	0.0498	0.1991	0.4232	0.6472	0.8153	0.9161	0.9665	0.9881	0.9962	0.9989	0.9997	0.9999	1.0000
$\lambda = 3.2$	0.0408	0.1712	0.3799	0.6025	0.7806	0.8946	0.9554	0.9832	0.9943	0.9982	0.9995	0.9999	1.0000
$\lambda = 3.4$	0.0334	0.1468	0.3397	0.5584	0.7442	0.8705	0.9421	0.9769	0.9917	0.9973	0.9992	0.9998	0.9999
$\lambda = 3.6$	0.0273	0.1257	0.3027	0.5152	0.7064	0.8441	0.9267	0.9692	0.9883	0.9960	0.9987	0.9996	0.9999
$\lambda = 3.8$	0.0224	0.1074	0.2689	0.4735	0.6678	0.8156	0.9091	0.9599	0.9840	0.9942	0.9981	0.9994	0.9998
$\lambda = 4.0$	0.0183	0.0916		0.4335	0.6288	0.7851	0.8893	0.9489	0.9786	0.9919	0.9972	0.9991	0.9997
$\lambda = 5.0$	0.0067	0.0404	0.1247	0.2650	0.4405	0.6160	0.7622	0.8666	0.9319	0.9682	0.9863	0.9945	0.9980
$\lambda = 6.0$	0.0025	0.0174	0.0620	0.1512	0.2851	0.4457	0.6063	0.7440	0.8472	0.9161	0.9574	0.9799	0.9912
$\lambda = 7.0$	0.0009	0.0073	0.0296	0.0818	0.1730	0.3007	0.4497	0.5987	0.7291	0.8305	0.9015	0.9467	0.9730
$\lambda = 8.0$	0.0003	0.0030	0.0138	0.0424	0.0996	0.1912	0.3134	0.4530	0.5925	0.7166	0.8159	0.8881	0.9362
$\lambda = 9.0$	0.0001	0.0012	0.0062	0.0212	0.0550	0.1157	0.2068	0.3239	0.4557	0.5874	0.7060	0.8030	0.8758
$\lambda = 10.0$	0.0000	0.0005	0.0028	0.0103	0.0293	0.0671	0.1301	0.2202	0.3328	0.4579	0.5830	0.6968	0.7916
$\lambda = 15.0$	0.0000	0.0000	0.0000	0.0002	0.0009	0.0028	0.0076	0.0180	0.0374	0.0699	0.1185	0.1848	0.2676
$\lambda = 20.0$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0003	0.0008	0.0021	0.0050	0.0108	0.0214	0.0390
$\lambda = 25.0$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0002	0.0006	0.0014	0.0031
$\lambda = 30.0$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0002
$\lambda = 50.0$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	$F\left(0\right)$	F(1)	F(2)	F(3)	$F\left(4\right)$	F(5)	$F\left(6\right)$	$F\left(7\right)$	F(8)	F(9)	F(10)	F(11)	F(12)

C.3. Geométrica

C.3.1. Puntual

	p = .01	p = .05	p = .1	p = .15	p = .2	p = .3	p = .35	p = .4	p = .45	p = .49	p = .5
p(1)	0.0100	0.0500	0.1000	0.1500	0.2000	0.3000	0.3500	0.4000	0.4500	0.4900	$\frac{1}{0.5000}$
p(2)	0.0099	0.0475	0.0900	0.1275	0.1600	0.2100	0.2275	0.2400	0.2475	0.2499	0.2500
p(3)	0.0098	0.0451	0.0810	0.1084	0.1280	0.1470	0.1479	0.1440	0.1361	0.1274	0.1250
p(4)	0.0097	0.0429	0.0729	0.0921	0.1024	0.1029	0.0961	0.0864	0.0749	0.0650	0.0625
p(5)	0.0096	0.0407	0.0656	0.0783	0.0819	0.0720	0.0625	0.0518	0.0412	0.0331	0.0313
p(6)	0.0095	0.0387	0.0590	0.0666	0.0655	0.0504	0.0406	0.0311	0.0226	0.0169	0.0156
p(7)	0.0094	0.0368	0.0531	0.0566	0.0524	0.0353	0.0264	0.0187	0.0125	0.0086	0.0078
p(8)	0.0093	0.0349	0.0478	0.0481	0.0419	0.0247	0.0172	0.0112	0.0069	0.0044	0.0039
p(9)	0.0092	0.0332	0.0430	0.0409	0.0336	0.0173	0.0112	0.0067	0.0038	0.0022	0.0020
p(10)	0.0091	0.0315	0.0387	0.0347	0.0268	0.0121	0.0072	0.0040	0.0021	0.0011	0.0010
p(11)	0.0090	0.0299	0.0349	0.0295	0.0215	0.0085	0.0047	0.0024	0.0011	0.0006	0.0005
p(12)	0.0090	0.0284	0.0314	0.0251	0.0172	0.0059	0.0031	0.0015	0.0006	0.0003	0.0002
p(13)	0.0089	0.0270	0.0282	0.0213	0.0137	0.0042	0.0020	0.0009	0.0003	0.0002	0.0001
p(14)	0.0088	0.0257	0.0254	0.0181	0.0110	0.0029	0.0013	0.0005	0.0002	0.0001	0.0001
p(15)	0.0087	0.0244	0.0229	0.0154	0.0088	0.0020	0.0008	0.0003	0.0001	0.0000	0.0000
p(16)	0.0086	0.0232	0.0206	0.0131	0.0070	0.0014	0.0005	0.0002	0.0001	0.0000	0.0000
p(17)	0.0085	0.0220	0.0185	0.0111	0.0056	0.0010	0.0004	0.0001	0.0000	0.0000	0.0000
p(18)	0.0084	0.0209	0.0167	0.0095	0.0045	0.0007	0.0002	0.0001	0.0000	0.0000	0.0000
p(19)	0.0083	0.0199	0.0150	0.0080	0.0036	0.0005	0.0002	0.0000	0.0000	0.0000	0.0000
p(20)	0.0083	0.0189	0.0135	0.0068	0.0029	0.0003	0.0001	0.0000	0.0000	0.0000	0.0000
p(21)	0.0082	0.0179	0.0122	0.0058	0.0023	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000
p(22)	0.0081	0.0170	0.0109	0.0049	0.0018	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000
p(23)	0.0080	0.0162	0.0098	0.0042	0.0015	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
p(24)	0.0079	0.0154	0.0089	0.0036	0.0012	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
p(25)	0.0079	0.0146	0.0080	0.0030	0.0009	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
p(26)	0.0078	0.0139	0.0072	0.0026	0.0008	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
p(27)	0.0077	0.0132	0.0065	0.0022	0.0006	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
p(28)	0.0076	0.0125	0.0058	0.0019	0.0005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
p(29)	0.0075	0.0119	0.0052	0.0016	0.0004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
p(30)	0.0075	0.0113	0.0047	0.0013	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
p(31)	0.0074	0.0107	0.0042	0.0011	0.0002	0.0000	0.0000 0.0000	0.0000 0.0000	0.0000	0.0000	0.0000
p(32)	0.0073	0.0102	0.0038	0.0010	0.0002	0.0000			0.0000	0.0000	$0.0000 \\ 0.0000$
p(33)	$\begin{bmatrix} 0.0072 \\ 0.0072 \end{bmatrix}$	$0.0097 \\ 0.0092$	0.0034 0.0031	$0.0008 \\ 0.0007$	0.0002 0.0001	$0.0000 \\ 0.0000$	0.0000 0.0000	0.0000 0.0000	$0.0000 \\ 0.0000$	$0.0000 \\ 0.0000$	0.0000
p(34) $p(35)$	0.0072 0.0071	0.0092 0.0087	0.0031 0.0028	0.0007 0.0006	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
p(33) $p(40)$	0.0071	0.0068	0.0028 0.0016	0.0003	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
p(40) $p(45)$	0.0064	0.0052	0.0010	0.0003 0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
p(40) $p(50)$	0.0061	0.0032 0.0040	0.0010	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
p(100)	0.0037	0.0003	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
F (100)	p = .01	p = .05	p = .1	p = .15	p = .2	p = .3	p = .35	p = .4	p = .45	p = .49	p = .5

C.3.2. Acumulada

	p = .01	p = .05	p = .1	p = .15	p = .2	p = .3	p = .35	p = .4	p = .45	p = .49	p = .5
F(1)	0.0100	0.0500	0.1000	0.1500	0.2000	0.3000	0.3500	0.4000	0.4500	0.4900	0.5000
F(2)	0.0199	0.0975	0.1900	0.2775	0.3600	0.5100	0.5775	0.6400	0.6975	0.7399	0.7500
F(3)	0.0297	0.1426	0.2710	0.3859	0.4880	0.6570	0.7254	0.7840	0.8336	0.8673	0.8750
F(4)	0.0394	0.1855	0.3439	0.4780	0.5904	0.7599	0.8215	0.8704	0.9085	0.9323	0.9375
F(5)	0.0490	0.2262	0.4095	0.5563	0.6723	0.8319	0.8840	0.9222	0.9497	0.9655	0.9688
$F\left(6\right)$	0.0585	0.2649	0.4686	0.6229	0.7379	0.8824	0.9246	0.9533	0.9723	0.9824	0.9844
$F\left(7\right)$	0.0679	0.3017	0.5217	0.6794	0.7903	0.9176	0.9510	0.9720	0.9848	0.9910	0.9922
F(8)	0.0773	0.3366	0.5695	0.7275	0.8322	0.9424	0.9681	0.9832	0.9916	0.9954	0.9961
F(9)	0.0865	0.3698	0.6126	0.7684	0.8658	0.9596	0.9793	0.9899	0.9954	0.9977	0.9980
F(10)	0.0956	0.4013	0.6513	0.8031	0.8926	0.9718	0.9865	0.9940	0.9975	0.9988	0.9990
F(11)	0.1047	0.4312	0.6862	0.8327	0.9141	0.9802	0.9912	0.9964	0.9986	0.9994	0.9995
F(12)	0.1136	0.4596	0.7176	0.8578	0.9313	0.9862	0.9943	0.9978	0.9992	0.9997	0.9998
F(13)	0.1225	0.4867	0.7458	0.8791	0.9450	0.9903	0.9963	0.9987	0.9996	0.9998	0.9999
F(14)	0.1313	0.5123	0.7712	0.8972	0.9560	0.9932	0.9976	0.9992	0.9998	0.9999	0.9999
F(15)	0.1399	0.5367	0.7941	0.9126	0.9648	0.9953	0.9984	0.9995	0.9999	1.0000	1.0000
F(16)	0.1485	0.5599	0.8147	0.9257	0.9719	0.9967	0.9990	0.9997	0.9999	1.0000	1.0000
F(17)	0.1571	0.5819	0.8332	0.9369	0.9775	0.9977	0.9993	0.9998	1.0000	1.0000	1.0000
F(18)	0.1655	0.6028	0.8499	0.9464	0.9820	0.9984	0.9996	0.9999	1.0000	1.0000	1.0000
F(19)	0.1738	0.6226	0.8649	0.9544	0.9856	0.9989	0.9997	0.9999	1.0000	1.0000	1.0000
F(20)	0.1821	0.6415	0.8784	0.9612	0.9885	0.9992	0.9998	1.0000	1.0000	1.0000	1.0000
F(21)	0.1903	0.6594	0.8906	0.9671	0.9908	0.9994	0.9999	1.0000	1.0000	1.0000	1.0000
F(22)	0.1984	0.6765	0.9015	0.9720	0.9926	0.9996	0.9999	1.0000	1.0000	1.0000	1.0000
F(23)	0.2064	0.6926	0.9114	0.9762	0.9941	0.9997	1.0000	1.0000	1.0000	1.0000	1.0000
F(24)	0.2143	0.7080	0.9202	0.9798	0.9953	0.9998	1.0000	1.0000	1.0000	1.0000	1.0000
F(25)	0.2222	0.7226	0.9282	0.9828	0.9962	0.9999	1.0000	1.0000	1.0000	1.0000	1.0000
F(26)	0.2300	0.7365	0.9354	0.9854	0.9970	0.9999	1.0000	1.0000	1.0000	1.0000	1.0000
F(27)	0.2377	0.7497	0.9419	0.9876	0.9976	0.9999	1.0000	1.0000	1.0000	1.0000	1.0000
F(28)	0.2453	0.7622	0.9477	0.9894	0.9981	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F(29)	0.2528	0.7741	0.9529	0.9910	0.9985	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F(30)	0.2603	0.7854	0.9576	0.9924	0.9988	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F(31)	0.2677	0.7961	0.9618	0.9935	0.9990	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F(32)	0.2750	0.8063	0.9657	0.9945	0.9992	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F(33)	0.2823	0.8160	0.9691	0.9953	0.9994	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F(34)	0.2894	0.8252	0.9722	0.9960	0.9995	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F(35)	0.2966	0.8339	0.9750	0.9966	0.9996	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F(40)	0.3033	0.8407	0.9766	0.9969	0.9996	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F(45)	0.3097	0.8459	0.9776	0.9970	0.9996	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F(50)	0.3158	0.8500	0.9782	0.9970	0.9996	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F(100)	0.3195	0.8503	0.9782	0.9970	0.9996	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	p = .01	p = .05	p = .1	p = .15	p = .2	p = .3	p = .35	p = .4	p = .45	p = .49	p = .5

C.4. Normal Estandarizada

C.4.1. Negativas

	-0.00	-0.01	-0.02	-0.03	-0.04	-0.05	-0.06	-0.07	-0.08	-0.09
-4.0	0.00003	0.00003	0.00003	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00005
-3.9	0.00005	0.00005	0.00005	0.00005	0.00006	0.00006	0.00006	0.00006	0.00007	0.00007
-3.8	0.00007	0.00008	0.00008	0.00008	0.00008	0.00009	0.00009	0.00010	0.00010	0.00010
-3.7	0.00011	0.00011	0.00012	0.00012	0.00013	0.00013	0.00014	0.00014	0.00015	0.00015
-3.6	0.00016	0.00017	0.00017	0.00018	0.00019	0.00019	0.00020	0.00021	0.00022	0.00022
-3.5	0.00023	0.00024	0.00025	0.00026	0.00027	0.00028	0.00029	0.00030	0.00031	0.00032
-3.4	0.00034	0.00035	0.00036	0.00038	0.00039	0.00040	0.00042	0.00043	0.00045	0.00047
-3.3	0.00048	0.00050	0.00052	0.00054	0.00056	0.00058	0.00060	0.00062	0.00064	0.00066
-3.2	0.00069	0.00071	0.00074	0.00076	0.00079	0.00082	0.00084	0.00087	0.00090	0.00094
-3.1	0.00097	0.00100	0.00104	0.00107	0.00111	0.00114	0.00118	0.00122	0.00126	0.00131
-3.0	0.00135	0.00139	0.00144	0.00149	0.00154	0.00159	0.00164	0.00169	0.00175	0.00181
-2.9	0.00187	0.00193	0.00199	0.00205	0.00212	0.00219	0.00226	0.00233	0.00240	0.00248
-2.8	0.00256	0.00264	0.00272	0.00280	0.00289	0.00298	0.00307	0.00317	0.00326	0.00336
-2.7	0.00347	0.00357	0.00368	0.00379	0.00391	0.00402	0.00415	0.00427	0.00440	0.00453
-2.6	0.00466	0.00480	0.00494	0.00508	0.00523	0.00539	0.00554	0.00570	0.00587	0.00604
-2.5	0.00621	0.00639	0.00657	0.00676	0.00695	0.00714	0.00734	0.00755	0.00776	0.00798
-2.4	0.00820	0.00842	0.00866	0.00889	0.00914	0.00939	0.00964	0.00990	0.01017	0.01044
-2.3	0.01072	0.01101	0.01130	0.01160	0.01191	0.01222	0.01255	0.01287	0.01321	0.01355
-2.2	0.01390	0.01426	0.01463	0.01500	0.01539	0.01578	0.01618	0.01659	0.01700	0.01743
-2.1	0.01786	0.01831	0.01876	0.01923	0.01970	0.02018	0.02068	0.02118	0.02169	0.02222
-2.0	0.02275	0.02330	0.02385	0.02442	0.02500	0.02559	0.02619	0.02680	0.02743	0.02807
-1.9	0.02872	0.02938	0.03005	0.03074	0.03144	0.03216	0.03288	0.03362	0.03438	0.03515
-1.8	0.03593	0.03673	0.03754	0.03836	0.03920	0.04006	0.04093	0.04182	0.04272	0.04363
-1.7	0.04457	0.04551	0.04648	0.04746	0.04846	0.04947	0.05050	0.05155	0.05262	0.05370
-1.6	0.05480	0.05592	0.05705	0.05821	0.05938	0.06057	0.06178	0.06301	0.06426	0.06552
-1.5	0.06681	0.06811	0.06944	0.07078	0.07215	0.07353	0.07493	0.07636	0.07780	0.07927
-1.4	0.08076	0.08226	0.08379	0.08534	0.08691	0.08851	0.09012	0.09176	0.09342	0.09510
-1.3	0.09680	0.09853	0.10027	0.10204	0.10383	0.10565	0.10749	0.10935	0.11123	0.11314
-1.2	0.11507	0.11702	0.11900	0.12100	0.12302	0.12507	0.12714	0.12924	0.13136	0.13350
-1.1	0.13567	0.13786	0.14007	0.14231	0.14457	0.14686	0.14917	0.15151	0.15386	0.15625
-1.0	0.15866	0.16109	0.16354	0.16602	0.16853	0.17106	0.17361	0.17619	0.17879	0.18141
-0.9	0.18406	0.18673	0.18943	0.19215	0.19489	0.19766	0.20045	0.20327	0.20611	0.20897
-0.8	0.21186	0.21476	0.21770	0.22065	0.22363	0.22663	0.22965	0.23270	0.23576	0.23885
-0.7	0.24196	0.24510	0.24825	0.25143	0.25463	0.25785	0.26109	0.26435	0.26763	0.27093
-0.6	0.27425	0.27760	0.28096	0.28434	0.28774	0.29116	0.29460	0.29806	0.30153	0.30503
-0.5	0.30854	0.31207	0.31561	0.31918	0.32276	0.32636	0.32997	0.33360	0.33724	0.34090
-0.4	0.34458	0.34827	0.35197	0.35569	0.35942	0.36317	0.36693	0.37070	0.37448	0.37828
-0.3	0.38209	0.38591	0.38974	0.39358	0.39743	0.40129	0.40517	0.40905	0.41294	0.41683
-0.2	0.42074	0.42465	0.42858	0.43251	0.43644	0.44038	0.44433	0.44828	0.45224	0.45620
-0.1	0.46017	0.46414	0.46812	0.47210	0.47608	0.48006	0.48405	0.48803	0.49202	0.49601
	-0.00	-0.01	-0.02	-0.03	-0.04	-0.05	-0.06	-0.07	-0.08	-0.09

C.4.2. Positivas

	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.99180	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.99430	0.99446	0.99461	0.99477	0.99492	0.99506	0.99520
2.6	0.99534	0.99547	0.99560	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.99720	0.99728	0.99736
2.8	0.99744	0.99752	0.99760	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.99900
3.1	0.99903	0.99906	0.99910	0.99913	0.99916	0.99918	0.99921	0.99924	0.99926	0.99929
3.2	0.99931	0.99934	0.99936	0.99938	0.99940	0.99942	0.99944	0.99946	0.99948	0.99950
3.3	0.99952	0.99953	0.99955	0.99957	0.99958	0.99960	0.99961	0.99962	0.99964	0.99965
3.4	0.99966	0.99968	0.99969	0.99970	0.99971	0.99972	0.99973	0.99974	0.99975	0.99976
3.5	0.99977	0.99978	0.99978	0.99979	0.99980	0.99981	0.99981	0.99982	0.99983	0.99983
3.6	0.99984	0.99985	0.99985	0.99986	0.99986	0.99987	0.99987	0.99988	0.99988	0.99989
3.7	0.99989	0.99990	0.99990	0.99990	0.99991	0.99991	0.99992	0.99992	0.99992	0.99992
3.8	0.99993	0.99993	0.99993	0.99994	0.99994	0.99994	0.99994	0.99995	0.99995	0.99995
3.9	0.99995	0.99995	0.99996	0.99996	0.99996	0.99996	0.99996	0.99996	0.99997	0.99997
4.0	0.99997	0.99997	0.99997	0.99997	0.99997	0.99997	0.99998	0.99998	0.99998	0.99998
	-0.00	-0.01	-0.02	-0.03	-0.04	-0.05	-0.06	-0.07	-0.08	-0.09