Tema 12 : MobileNet

Convolution

Depthwise Separable Convolution

1. Depthwise Convolution: Filtering Stage

Depthwise Separable Convolution

2. Pointwise Convolution: Filtering Stage

Mults once =
$$D_K^2$$

Mults 1 Channel = $D_G^2 \times D_K^2$
DC Mults = $M \times D_G^2 \times D_K^2$

Mults once = MMults 1 Kernel = $D_G \times D_G \times M$ PC Mults = $N \times D_G \times D_G \times M$

Total = DC Mults + PC Mults

$$M \times D_G^2 \times D_K^2 + N \times D_G^2 \times M$$

 $M \times D_G^2 (D_K^2 + N)$

Depthwise Separable Convolution

1. Depthwise Convolution: Filtering Stage

Depthwise Separable Convolution

2. Pointwise Convolution: Filtering Stage

Comparison Standard Vs. Depthwise

$$\frac{No.Mults\ in\ Depthwise\ Separable\ Conv}{No.Mults\ in\ Standard\ Conv} = \frac{M\times D_G^2\ (\ D_K^2 + N)}{N\ \times D_G\times D_G\times D_K\times D_K\times M}$$

$$\frac{\textit{No. Mults in Depthwise Separable Conv}}{\textit{No. Mults in Standard Conv}} = \frac{D_K^2 + N}{(D_K^2 \times N)} = \frac{1}{N} + \frac{1}{D_K^2}$$

$$N = 1,024$$
 $D_K = 3$

$$\frac{\textit{No. Mults in Depthwise Separable Conv}}{\textit{No. Mults in Standard Conv}} = \frac{1}{1024} + \frac{1}{3^2} = 0.112$$

Comparación modelo clásico vs Implementación MobileNets

Figure 3. Left: Standard convolutional layer with batchnorm and ReLU. Right: Depthwise Separable convolutions with Depthwise and Pointwise layers followed by batchnorm and ReLU.

Table	14.	Mol	oileN	Vet	Distilled	from	FaceNet	

Model	1e-4	Million	Million	
	Accuracy	Mult-Adds	Parameters	
FaceNet [25]	83%	1600	7.5	
1.0 MobileNet-160	79.4%	286	4.9	
1.0 MobileNet-128	78.3%	185	5.5	
0.75 MobileNet-128	75.2%	166	3.4	
0.75 MobileNet-128	72.5%	108	3.8	

Table 13. COCO object detection results comparison using different frameworks and network architectures. mAP is reported with COCO primary challenge metric (AP at IoU=0.50:0.05:0.95)

Framework	Model	mAP	Billion	Million
Resolution			Mult-Adds	Parameters
	deeplab-VGG	21.1%	34.9	33.1
SSD 300	Inception V2	22.0%	3.8	13.7
	MobileNet	19.3%	1.2	6.8
Faster-RCNN	VGG	22.9%	64.3	138.5
300	Inception V2	15.4%	118.2	13.3
	MobileNet	16.4%	25.2	6.1
Faster-RCNN	VGG	25.7%	149.6	138.5
600	Inception V2	21.9%	129.6	13.3
	Mobilenet	19.8%		6.1

Table 12. Face attribute classification using the MobileNet architecture. Each row corresponds to a different hyper-parameter setting (width multiplier α and image resolution).

Width Multiplier /	Mean	Million	Million
Resolution	AP	Mult-Adds	Parameters
1.0 MobileNet-224	88.7%	568	3.2
0.5 MobileNet-224	88.1%	149	0.8
0.25 MobileNet-224	87.2%	45	0.2
1.0 MobileNet-128	88.1%	185	3.2
0.5 MobileNet-128	87.7%	48	0.8
0.25 MobileNet-128	86.4%	15	0.2
Baseline	86.9%	1600	7.5

Things to Remember

1. Depthwise Sep. Conv. reduces computation time, parameters

2. Depthwise Sep. Conv. = Depthwise Conv + Poinwise Conv

3. Used in recent architectures (MultiModel Nets, Xception, MobileNets).

Better Models, Across Multiple Modalities/Domains

NASNet-A

ResNet-34

10

15

20

FLOPS (Billions)

Tan et al. EfficientNet: Rethinking Model Scaling for Deep Convolutional Neural Networks, ICML 2019, arxiv.org/abs/1905.11946

30

35

40

Referencias

- MobileNets: https://arxiv.org/pdf/1704.04861.pdf