Analisi Matematica B Soluzioni prova scritta parziale n. 1

Laurea in Fisica, a.a. 2022/23 Università di Pisa

17 dicembre 2022

1. (a) Al variare di $x \in \mathbb{R}, x \neq -1$ calcolare

$$\lim_{n \to +\infty} \frac{1 + x^n}{(1 + x)^n}.$$

(b) Al variare di $x \in \mathbb{R}$, $x \neq -1$ calcolare

$$\lim_{n \to +\infty} \frac{1 - x^n}{(1 + x)^n}.$$

(c) Al variare di $x \in \mathbb{R}$, $x \neq 1$ calcolare

$$\lim_{n \to +\infty} \frac{1 + x^n}{(1 - x)^n}.$$

(d) Al variare di $x \in \mathbb{R}$, $x \neq 1$ calcolare

$$\lim_{n \to +\infty} \frac{1 - x^n}{(1 - x)^n}.$$

Soluzione. Variante (a). Sia $a_n = \frac{1+x^n}{(1+x)^n}$. Per x>1 il numeratore $1+x^n$ è asintoticamente equivalente a x^n dunque $a_n \sim \left(\frac{x}{1+x}\right)^n$ che tende a zero essendo $\frac{x}{x+1} < 1$ quando x>1. Per x=1 si ha $a_n = \frac{2}{2^n} \to 0$. Per 0 < x < 1 si ha $1+x^n \to 1$ e $(1+x)^n \to +\infty$ quindi $a_n \to 0$. Per x=0 si ha $a_n=1 \to 1$. Per -1 < x < 0 si ha $1+x^n \to 1$ e $(1+x)^n \to 0^+$ dunque $a_n \to +\infty$. Per x<-1 si ha $1+x^n \sim x^n$ e dunque $a_n \sim \left(\frac{x}{1+x}\right)^n$. Ma $\frac{x}{1+x} = 1 + \frac{1}{-x-1} > 1$ e dunque $a_n \to +\infty$.

Variante (b). Sia $a_n = \frac{1-x^n}{(1+x)^n}$. Per x > 1 si ha $\frac{1-x^n}{(1+x)^n} \sim -\left(\frac{x}{1+x}\right)^n$ dunque, essendo $0 < \frac{x}{x+1} < 1$ si ha $a_n \to 0$. Per x = 1 si ha $a_n = 0 \to 0$.

Per 0 < x < 1 si ha $1 - x^n \to 1$ e $(1 + x)^n \to +\infty$ dunque $a_n \to 0$. Per x = 0 si ha $a_n = 1 \to 1$. Per -1 < x < 0 si ha $1 - x^n \to 1$ e $(1 + x)^n \to 0^+$ dunque $a_n \to +\infty$. Per x < -1 si ha $1 - x^n \sim -x^n$ e dunque $a_n \sim -\left(\frac{x}{1+x}\right)^n$ dove $\frac{x}{1+x} = \frac{-x}{-x-1} > 1$ (per x < -1) e quindi $a_n \to -\infty$.

Variante (c). Sia $a_n = \frac{1+x^n}{(1-x)^n}$. Per x > 1 si ha $1 + x^n \sim x^n$ da cui $a_n \sim \left(\frac{x}{1-x}\right)^n$. Ma $\frac{x}{1-x} = -\frac{x}{x-1} < -1$ e dunque a_n non ha limite. Per 0 < x < 1 si ha $1 + x^n \to 1$ e $(1-x)^n \to 0^+$ dunque $a_n \to +\infty$. Per x = 0 si ha $a_n = 1 \to 1$. Per -1 < x < 0 si ha $1 + x^n \to 1$ e $(1-x)^n \to +\infty$ dunque $a_n \to 0$. Per x = -1 si ha $0 < 1 + x^n < 2$ mentre $(1-x)^n \to +\infty$ dunque $a_n \to 0$. Per x < -1 si ha $1 + x^n \sim x^n$ dunque $a_n \sim \left(\frac{x}{1-x}\right)^n$ che tende a 0 in quanto $\frac{x}{1-x} = \frac{-x}{-x+1} \in (0,1)$ se x < -1.

Variante (d). Sia $a_n = \frac{1-x^n}{(1-x)^n}$. Per x > 1 si ha $1-x^n \sim -x^n$ da cui $a_n \sim -(-1)^n \left(\frac{x}{x-1}\right)^n$ che non ha limite (ma $|a_n| \to +\infty$). Per 0 < x < 1 si ha $1-x^n \to 1$ e $(1-x)^n \to 0^+$ dunque $a_n \to +\infty$. Per x=0 si ha $a_n=1 \to 1$. Per -1 < x < 0 si ha $1-x^n \to 1$ e $(1-x)^n \to +\infty$ dunque $a_n \to 0$. Per x=-1 si ha $0 \le 1-x^n \le 2$ mentre $(1-x)^n \to +\infty$ dunque $a_n \to 0$. Per x < -1 si ha $1-x^n \sim -x^n$ da cui $a_n \sim -\left(\frac{x}{1-x}\right)^n \to 0$ in quanto $\frac{x}{1-x} = -\frac{-x}{-x+1} \in (-1,0)$ se x < -1.

2. (a) Determinare per quali $x \in \mathbb{R}$ è convergente la serie

$$\sum_{n=1}^{+\infty} \frac{n+2}{n^2+n} x^n.$$

Qual è la somma della serie quando $x = \frac{1}{2}$?

(b) Determinare per quali $x \in \mathbb{R}$ è convergente la serie

$$\sum_{n=1}^{+\infty} \frac{2n+3}{n^2+n} x^n.$$

Qual è la somma della serie quando $x = \frac{1}{3}$?

(c) Determinare per quali $x \in \mathbb{R}$ è convergente la serie

$$\sum_{n=1}^{+\infty} \frac{3n+4}{n^2+n} x^n.$$

Qual è la somma della serie quando $x = \frac{1}{4}$?

(d) Determinare per quali $x \in \mathbb{R}$ è convergente la serie

$$\sum_{n=1}^{+\infty} \frac{4n+5}{n^2+n} x^n.$$

Qual è la somma della serie quando $x = \frac{1}{5}$?

Soluzione. Variante (a). Sia $a_n=\frac{n+2}{n^2+n}x^n$ il termine generico della serie. Essendo $n+2\sim n$ e $n^2+n\sim n^2$ per $n\to\infty$, si ha

$$|a_n| \sim \frac{|x|^n}{n}$$

e quindi

$$\frac{|a_{n+1}|}{|a_n|} \sim \frac{|x|^{n+1}}{|x|^n} \cdot \frac{n}{n+1} \to |x| \quad \text{per } n \to +\infty.$$

Per il criterio del rapporto se |x|<1 deduciamo che la serie $\sum a_n$ è assolutamente convergente e dunque è convergente. Se invece |x|>1 il criterio del rapporto ci dice $|a_n|\to +\infty$ e quindi non può essere $a_n\to 0$ e la serie non è convergente. Studiamo a parte il caso |x|=1. Se x=1 si osserva che $a_n\sim \frac{1}{n}$ e visto che la serie $\sum \frac{1}{n}$ è divergente anche la serie data è divergente (possiamo applicare il criterio di confronto asintotico perché in questo caso la serie è a termini positivi). Se x=-1 si ha $a_n=(-1)^n\frac{n+2}{n^2+n}$. La serie è a segni alterni e possiamo applicare il criterio di Leibniz. Chiaramente $|a_n|\to 0$ perché $|a_n|\sim \frac{1}{n}$. Inoltre $|a_n|=\frac{n+2}{n^2+n}=\frac{1}{n+1}+\frac{2}{n^2+n}$ è decrescente perché somma di successioni decrescenti. Dunque per il criterio di Leibniz la serie è convergente (anche se non assolutamente convergente). Abbiamo quindi mostrato che la serie converge se e solo se $-1\leq x<1$.

Nel caso $x = \frac{1}{2}$ si ha

$$a_n = \frac{n+2}{(n^2+n)\cdot 2^n} = \frac{1}{n\cdot 2^{n-1}} - \frac{1}{(n+1)\cdot 2^n} = b_n - b_{n+1}$$

con $b_n = \frac{1}{n \cdot 2^{n-1}}$. Dunque

$$\sum_{n=1}^{N} a_n = \sum_{n=1}^{N} b_n - \sum_{n=2}^{N+1} b_n = b_1 - b_{N+1} \to b_1 = 1$$

per $N \to +\infty$. La serie data ha quindi somma 1.

Le altre varianti hanno uno svolgimento sostanzialmente identico. Le risposte sono le stesse. $\hfill\Box$

3. (a) Si consideri la successione a_n definita ricorsivamente da

$$\begin{cases} a_1 = \alpha, \\ a_{n+1} = \frac{3a_n + 8}{a_n + 1}. \end{cases}$$

- i. per $\alpha=0$ determinare se la successione ha limite e nel caso calcolarlo;
- ii. fare lo stesso nel caso $\alpha = -\frac{5}{2}$;
- iii. se a_n è la successione definita nel caso $\alpha = 0$, determinare il carattere della serie

$$\sum_{n=1}^{+\infty} \frac{a_n - 4}{a_n + 1}.$$

(b) Si consideri la successione a_n definita ricorsivamente da

$$\begin{cases} a_1 = \alpha, \\ a_{n+1} = \frac{2a_n + 9}{a_n + 2}. \end{cases}$$

- i. per $\alpha = 0$ determinare se la successione ha limite e nel caso calcolarlo;
- ii. fare lo stesso nel caso $\alpha = -\frac{7}{2}$;
- iii. se a_n è la successione definita nel caso $\alpha=0,$ determinare il carattere della serie

$$\sum_{n=1}^{+\infty} \frac{a_n - 3}{a_n + 1}.$$

(c) Si consideri la successione a_n definita ricorsivamente da

$$\begin{cases} a_1 = \alpha, \\ a_{n+1} = \frac{a_n + 8}{a_n + 3}. \end{cases}$$

- i. per $\alpha=0$ determinare se la successione ha limite e nel caso calcolarlo;
- ii. fare lo stesso nel caso $\alpha = -\frac{9}{2}$;
- iii. se a_n è la successione definita nel caso $\alpha = 0$, determinare il carattere della serie

$$\sum_{n=1}^{+\infty} \frac{a_n - 2}{a_n + 1}.$$

(d) Si consideri la successione a_n definita ricorsivamente da

$$\begin{cases} a_1 = \alpha, \\ a_{n+1} = \frac{5a_n}{a_n - 1}. \end{cases}$$

- i. per $\alpha = 2$ determinare se la successione ha limite e nel caso calcolarlo;
- ii. fare lo stesso nel caso $\alpha = -\frac{1}{2}$;
- iii. se a_n è la successione definita nel caso $\alpha = 2$, determinare il carattere della serie

$$\sum_{n=1}^{+\infty} \frac{a_n - 6}{a_n + 1}.$$

Dimostrazione. Svolgimento. Variante (a). La successione soddisfa la relazione ricorsiva $a_{n+1} = f(a_n)$ se scegliamo $f(x) = \frac{3x+8}{x+1}$. Per capire l'andamento della funzione f conviene svolgere la divisione così da ottenere $f(x) = 3 + \frac{5}{x+1}$. La funzione f è quindi una iperbole con asintoto verticale la retta x = -1 e asintoto orizzontale y = 3. Determiniamo i punti fissi di f:

$$x = \frac{3x+8}{x+1}$$
$$x^{2} + x = 3x+8$$
$$x^{2} - 2x - 8 = 0$$
$$x_{1,2} = 1 \pm \sqrt{1+8}$$

Dunque abbiamo due punti fissi $x_1 = 4$ e $x_2 = -2$. Nell'intervallo $I = (-1, +\infty)$ la funzione è strettamente decrescente e l'intervallo I è invariante, in quanto f(x) > 3 sull'intervallo e dunque $f(x) \in (3, +\infty) \subset (-1, +\infty)$. Dunque visto che $\alpha \in I$ si ha $a_n \in I$ per ogni n. Siccome f è decrescente su I risulta che le successioni a_{2n} e a_{2n+1} sono entrambe monotone, una crescente e l'altra decrescente. Osserviamo che sull'intervallo (-1, 4] si ha f(x) > 4 mentre sull'intervallo $[4, +\infty)$ si ha f(x) < 4. Dunque l'intervallo (-1, 4] viene mandato in $[4, +\infty)$ e viceversa l'intervallo $[4, +\infty)$ viene mandato in (-1, 4]. Dunque visto che $a_1 = \alpha = 0 \le 4$ si ha $a_2 \ge 4$, $a_3 \le 4$ e così via. . Significa che $a_{2n+1} \le 4$ per ogni n mentre $a_{2n} \ge 4$. Essendo monotone, entrambe le successioni hanno limite: $a_{2n+1} \to \ell_1$ $a_{2n} \to \ell_2$, e dovrà essere $\ell_1 \in [-1, 4]$, $\ell_2 \in [4, +\infty)$. Non può essere $\ell_1 = -1$ altrimenti si avrebbe $a_{2n+2} = f(a_{2n+1}) \to +\infty$ e $a_{2n+3} = f(a_{2n+2}) \to 3$. Ma a_{2n+3} e

Figura 1: Diagramma a ragnatela dell'esercizio 3

 a_{2n+1} devono avere lo stesso limite quindi questo è assurdo. Dunque $\ell_1 \in (-1,4]$ è un punto in cui la funzione f è definita e continua perciò ℓ_1 deve essere un punto fisso della iterata seconda (si passi al limite nell'eguaglianza $a_{2n+3} = f(f(a_{2n+1}))$) ovvero deve risolvere l'equazione: f(f(x)) = x:

$$x = 3 + \frac{5}{3 + \frac{5}{x+1} + 1}$$
$$x = 3 + \frac{5x + 5}{4x + 9}$$
$$x \cdot (4x + 9) = 3(4x + 9) + 5x + 5.$$

Si tratta di una equazione di secondo grado che potremmo risolvere facilmente. Ma a questo punto non serve neanche risolverla perché già sappiamo che i punti fissi di f sono anche punti fissi di $f \circ f$ in quanto f(f(x)) = f(x) = x se x = f(x). Sappiamo quindi che x_1 e x_2 sono soluzioni di questa equazione e non ci possono essere altre soluzioni perché una equazione di secondo grado ha al massimo due soluzioni distinte. L'unica soluzione che sta nell'intervallo (-1,3) è $x_1 = 4$ e dunque possiamo affermare che $\ell_1 = 4$. Ma allora $a_{2n+2} = f(a_{2n+1}) \rightarrow f(4) = 4$ e quindi $\ell_2 = \ell_1 = 4$. L'intera successione converge al limite 4.

Nel caso $\alpha = -\frac{5}{2}$ è sufficiente calcolare i primi termini della successione

(lo si intuisce facendo un diagramma a ragnatela):

$$a_1 = -\frac{5}{2}$$
, $a_2 = f(a_1) = -\frac{1}{3}$, $a_3 = f(a_2) = \frac{21}{2} \in [4, +\infty)$.

Sappiamo già che allora $a_4 \in (-1, 4]$ e si può ripetere il ragionamento precedente (termini pari e dispari risultano scambiati ma il risultato non cambia). La successione converge anche in questo caso al limite 4.

Consideriamo ora la serie al punto iii. Possiamo provare a studiare la convergenza assoluta mediante il criterio del rapporto. Posto

$$b_n = \frac{a_n - 4}{a_n + 1}$$

si ha

$$\frac{|b_{n+1}|}{|b_n|} = \begin{vmatrix} \frac{a_{n+1}-4}{a_{n+1}+1} \\ \frac{a_n-4}{a_n+1} \end{vmatrix} = \begin{vmatrix} \frac{a_{n+1}+1}{a_{n+1}+1} - \frac{5}{a_{n+1}+1} \\ \frac{a_n-4}{a_n+1} \end{vmatrix}
= \begin{vmatrix} 1 - \frac{5(a_n+1)}{3a_n+8} \\ \frac{a_n-4}{a_n+1} \end{vmatrix} = \begin{vmatrix} -a_n+4 \\ 4a_n+9 \end{vmatrix} \cdot \frac{a_n+1}{a_n-4} \end{vmatrix} = \begin{vmatrix} \frac{a_n+1}{4a_n+9} \end{vmatrix}
\rightarrow \begin{vmatrix} \frac{4+1}{16+9} \end{vmatrix} = \frac{1}{5}.$$

Visto che il rapporto tende ad un limite minore di uno, la serie $\sum |b_k|$ è convergente e dunque (criterio di convergenza assoluta) la serie data $\sum b_k$ è convergente.

Le varianti (b), (c) e (d) sono simili alla (a) e si possono risolvere seguendo gli stessi passi. Nel caso (b) la successione tende a 3, nel caso (c) tende a 2 e nel caso (d) tende a 6. \Box