Multi-Dimensional Array related problems (Total 15 questions)

SL	Problem statement	Difficulty	l
		levels	l

Sample input 9 8 7 6 5 4 3 2 1	Sample output 987	-
	307	
	6 5 4	
	321	
111222333	111	
	2 2 2	
	3 3 3	
VAP that will take (m x n) integers	into a <i>m by n</i> array (2D) and print them both row-wise	*
nd column-wise.		
Sample input (m,n)	Sample output	1
2 3	Row-wise: 1 2 3 6 5 4	
123	Column-wise: 1 6 2 5 3 4	
6 5 4		
3 3	Row-wise: 1 1 1 2 2 2 3 3 3	1
111	Column-wise: 1 2 3 1 2 3 1 2 3	
2 2 2		
3 3 3		
/AP that will take inputs of a 3 hy	3 matrix into a 2D array. Now find the determinant of	*
	com/algebra/matrix-determinant.html	
Sample input	Sample output	1
1 2 3	0	1
456		
7 8 9		
		1 1

4.	WAP that will take inputs of a n sized square matrix into a 2D array. Now show all the elements of its two diagonals. Reference: http://en.wikipedia.org/wiki/Main_diagonal		
	Sample input	Sample output	
	5	Major diagonal: 1 4 2 9 4	
	1 2 3 4 5	Minor diagonal: 5 2 2 7 1	
	54321	Willor diagonal. 3 2 2 7 1	
	22222		
	67890		
	19374		
5.	1	atrix from the user and generate the identity erence: http://en.wikipedia.org/wiki/Identity matrix	*
	Sample input	Sample output	
	5	10000	
		01000	
		00100	
		00010	
		00001	
6.	WAP that will take inputs of two $m \times n$ sized Now do C = A + B. Finally display all the eler	I matrix into two 2D array, suppose A and B. nents from matrix / 2D array C.	*
6.	Now do C = A + B. Finally display all the eler	nents from matrix / 2D array C.	*
6.	-	nents from matrix / 2D array C. Sample output	*
6.	Now do C = A + B. Finally display all the eler Sample input 2 3	Sample output 2 3 4	*
6.	Now do C = A + B. Finally display all the eler Sample input 2 3 1 2 3	nents from matrix / 2D array C. Sample output	*
6.	Now do C = A + B. Finally display all the elements Sample input 2 3 1 2 3 2 3 4	Sample output 2 3 4	*
6.	Now do C = A + B. Finally display all the eler Sample input 2 3 1 2 3 2 3 4 1 1 1	Sample output 2 3 4	*
6.	Now do C = A + B. Finally display all the elements Sample input 2 3 1 2 3 2 3 4	Sample output 2 3 4	*
6.	Now do C = A + B. Finally display all the eler Sample input 2 3 1 2 3 2 3 4 1 1 1	Sample output 2 3 4	*
7.	Now do C = A + B. Finally display all the elements 2 3 1 2 3 2 3 4 1 1 1 2 2 2	Sample output 2 3 4 4 5 6 matrix into two 2D array, suppose A and B. Now	***
	Sample input 2 3 1 2 3 2 3 4 1 1 1 2 2 2 WAP that will take inputs of two 3 x 3 sized	Sample output 2 3 4 4 5 6 matrix into two 2D array, suppose A and B. Now	
	Sample input 2 3 1 2 3 2 3 4 1 1 1 2 2 2 WAP that will take inputs of two 3 x 3 sized do C = A * B (multiplication). Finally display	Sample output 2 3 4 4 5 6 matrix into two 2D array, suppose A and B. Now all the elements from matrix / 2D array C.	
	Sample input 2 3 1 2 3 2 3 4 1 1 1 2 2 2 WAP that will take inputs of two 3 x 3 sized do C = A * B (multiplication). Finally display Sample input	Sample output 2 3 4 4 5 6 matrix into two 2D array, suppose A and B. Now all the elements from matrix / 2D array C. Sample output	
	Sample input 2 3 1 2 3 2 3 4 1 1 1 2 2 2 WAP that will take inputs of two 3 x 3 sized do C = A * B (multiplication). Finally display Sample input 1 2 3	matrix into two 2D array, suppose A and B. Now all the elements from matrix / 2D array C. Sample output 2 3 4 4 5 6 Matrix into two 2D array, suppose A and B. Now all the elements from matrix / 2D array C. Sample output 9 9 9	
	Sample input 23 123 234 111 222 WAP that will take inputs of two 3 x 3 sized do C = A * B (multiplication). Finally display Sample input 123 456	matrix into two 2D array, suppose A and B. Now all the elements from matrix / 2D array C. Sample output 9 9 9 24 24 24	
	Sample input 2 3 1 2 3 2 3 4 1 1 1 2 2 2 WAP that will take inputs of two 3 x 3 sized do C = A * B (multiplication). Finally display Sample input 1 2 3 4 5 6 7 8 9	matrix into two 2D array, suppose A and B. Now all the elements from matrix / 2D array C. Sample output 9 9 9 24 24 24	
	Sample input 23 123 234 111 222 WAP that will take inputs of two 3 x 3 sized do C = A * B (multiplication). Finally display Sample input 123 456 789 222	matrix into two 2D array, suppose A and B. Now all the elements from matrix / 2D array C. Sample output 9 9 9 24 24 24	

Sample input	Sample output	
3 3	Max: 9	
123	Location: [2][1]	
456		
292		
2 3	Max: 9	
987	Location: [0][0]	
3 4 5		
M/AD that will take (n x n) integ	er inputs into a square matrix of dimension n (wh	oro n must **
be an odd number). Then calcu	late sum of the integers at first row, last row and use see the sample input-output.	
Sample input	Sample output	
5	52	
1 2 3 4 5 2 3 4 1 6 3 4 9 6 7 4 2 6 7 8 5 4 3 2 1		
7 111111 111111	23	
1111111 1111111 1111111 1111111		
1111111		
111111		

Sample input	Sample output
5 1 2 3 4 5 2 3 4 1 6 3 4 9 6 7 4 2 6 7 8 5 4 3 2 1	71
7 1111111 111111 111111 111111 111111 1111	25

**

11. WAP that will take (n x n) integer inputs into a square matrix of dimension n (where n must be an odd number). Then calculate sum of the integers based on following position pattern (consider only the boxed position during the sum). Please see the input-output.

Sample input Sample output 65 12345 23416 3 4 9 6 7 42678 5 4 3 2 1 33 1 1 1 1 1 1 1 1111111 1 1 1 1 1 1 1 1111111 1 1 1 1 1 1 1 1111111

12. WAP that will take (m x n) integer inputs into a matrix of dimension m x n. Now reverse that matrix within itself and display it. Reversal means swap 1st column with the nth column, swap 2nd column with the (n-1)th column and so on... Sample input Sample output 3 3 321 123 654 456 292 292 26 654321 123456 456789 987654 WAP that will take (n x n) integer inputs into a square matrix of dimension n. Now **13**. determine whether the matrix is symmetric or not. Reference: http://en.wikipedia.org/wiki/Symmetric matrix Sample input Sample output Yes 1 7 3 7 4 5 3 5 6 2 No 1 3 4 2 14. WAP that will take (m x n) positive integer inputs into a matrix of dimension m x n. Now replace all the duplicate integers by -1 in that matrix. Finally display it. Sample input Sample output 3 3 1 7 3 1 7 3 -1 4 5 7 4 5 -1 -1 6 3 5 6 26 2 -1 -1 -1 -1 -1 6 5 4 3 - 1 1 2 2 2 2 2 2 6 5 4 3 2 1

15. WAP that will take (m x n) integer inputs into a matrix of dimension m x n. Now just simply add all the integers in that matrix and show the result.

Sample input	Sample output	
3 3	41	
1 7 3		
7 4 5		
3 5 6		
2 6	33	
2 2 2 2 2 2		
6 5 4 3 2 1		