Machine Learning Modeling Pipelines in Production

This is a compilation of resources including URLs and papers appearing in lecture videos. If you wish to dive more deeply into the topics covered this week, feel free to check out these optional references.

Overall resources:

Towards ML Engineering - History of TFX:

https://arxiv.org/abs/2010.02013

Challenges in Deploying ML:

https://arxiv.org/abs/2011.09926

Week 1: Neural Architecture Search

Neural Architecture Search:

https://arxiv.org/pdf/1808.05377.pdf

Bayesian Optimization:

https://distill.pub/2020/bayesian-optimization/

Neural Architecture Search with Reinforcement Learning:

https://arxiv.org/pdf/1611.01578.pdf

Progressive Neural Architecture Search:

https://arxiv.org/pdf/1712.00559.pdf

Network Morphism:

https://arxiv.org/abs/1603.01670

Amazon SageMaker Autopilot https://aws.amazon.com/sagemaker/autopilot Microsoft Azure Automated Machine Learning https://azure.microsoft.com/en-in/services/machine-learning/automatedml/ Google Cloud AutoML https://cloud.google.com/automl Week 2: Model Resource Management Techniques High dimensional spaces visualization: https://colab.research.google.com/drive/1GTBYAcMsiKDDQeDpyOli_DGuPVleJAf0?usp=sharing Word embeddings: https://heartbeat.fritz.ai/coreml-with-glove-word-embedding-and-recursive-neural-network-part-2d72c1a66b028 Curse of dimensionality: https://builtin.com/data-science/curse-dimensionality https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/ Sparsity: https://www.kdd.org/exploration_files/parsons.pdf

https://quantdare.com/what-is-the-difference-between-feature-extraction-and-feature-selection/

https://machinelearningmastery.com/discover-feature-engineering-how-to-engineer-features-and-

PCA:

Feature engineering:

how-to-get-good-at-it/

https://scikit-learn.org/stable/modules/decomposition.html

https://www.coursera.org/lecture/machine-learning/principal-component-analysis-problem-formulation-GBFTt

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues/140579#140579

https://elitedatascience.com/dimensionality-reduction-algorithms

ICA:

https://scikit-learn.org/stable/modules/decomposition.html

https://scikit-learn.org/stable/auto_examples/decomposition/plot_ica_vs_pca.html

NMF:

https://scikit-learn.org/stable/modules/decomposition.html#non-negative-matrix-factorization-nmf-or-nnmf

Mobile model deployment:

https://developers.google.com/ml-kit

https://www.tensorflow.org/lite

Quantization:

https://www.qualcomm.com/news/ong/2019/03/12/heres-why-quantization-matters-ai

https://petewarden.com/2016/05/03/how-to-quantize-neural-networks-with-tensorflow/

https://arxiv.org/abs/1712.05877

https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimization-toolkit.html

https://www.tensorflow.org/lite/performance/best_practices

Post-training quantization:

https://medium.com/tensorflow/introducing-the-model-optimization-toolkit-for-tensorflow-254aca1ba0a3 Quantization aware training: https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimizationtoolkit.html Pruning: https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html http://yann.lecun.com/exdb/publis/pdf/lecun-90b.pdf https://towardsdatascience.com/can-you-remove-99-of-a-neural-network-without-losing-accuracy-915b1fab873b https://arxiv.org/abs/1803.03635 https://numenta.com/blog/2019/08/30/case-for-sparsity-in-neural-networks-part-1-pruning https://www.tensorflow.org/model_optimization/guide/pruning Week 3: High Performance Modeling Distribution strategies: https://www.tensorflow.org/guide/distributed_training Changes in data parallelism: https://arxiv.org/abs/1806.03377 Pipeline parallelism: https://ai.googleblog.com/2019/03/introducing-gpipe-open-source-library.html

https://github.com/tensorflow/lingvo/blob/master/lingvo/core/gpipe.py

GPipe:

https://arxiv.org/abs/1811.06965
GoogleNet:
https://arxiv.org/abs/1409.4842
Knowledge distillation:
https://ai.googleblog.com/2018/05/custom-on-device-ml-models.html
https://arxiv.org/pdf/1503.02531.pdf
https://nervanasystems.github.io/distiller/knowledge_distillation.html
DistilBERT:
https://blog.tensorflow.org/2020/05/how-hugging-face-achieved-2x-performance-boost-question-answering.html
Two-stage multi-teacher distillation for Q & A:
https://arxiv.org/abs/1910.08381
EfficientNets:
https://arxiv.org/abs/1911.04252
Week 4: Model Performance Analysis
TensorBoard:
https://blog.tensorflow.org/2019/12/introducing-tensorboarddev-new-way-to.html
Model Introspection:
https://www.kaggle.com/c/dogs-vs-cats/data
Optimization process:
https://cs231n.github.io/neural-networks-3/

TFMA architecture:
https://www.tensorflow.org/tfx/model_analysis/architecture
TFMA:
https://blog.tensorflow.org/2018/03/introducing-tensorflow-model-analysis.html
Aggregate versus slice metrics:
https://blog.tensorflow.org/2018/03/introducing-tensorflow-model-analysis.html
What-if tool:
https://pair-code.github.io/what-if-tool/
https://www.google.com/url?q=https://www.youtube.com/playlist?list%3DPLlivdWyY5sqK7Z5A2-sftWLlbVSXuyclr&sa=D&source=editors&ust=1620676474220000&usg=AFQjCNEF_ONMs8YkdUtgUp2-stfKmDdWtA
Partial Dependence Plots:
https://github.com/SauceCat/PDPbox
https://github.com/AustinRochford/PyCEbox
Adversarial attacks:
http://karpathy.github.io/2015/03/30/breaking-convnets/
https://arxiv.org/pdf/1707.08945.pdf
Informational and behavioral harms:
https://fpf.org/wp-content/uploads/2019/09/FPF WarningSigns Report.pdf
Clever Hans:
https://github.com/cleverhans-lab/cleverhans
Foolbox:

https://foolbox.jonasrauber.de/
Defensive distillation:
https://arxiv.org/abs/1511.04508
Concept Drift detection for Unsupervised Learning:
https://arxiv.org/pdf/1704.00023.pdf
Cloud providers:
https://cloud.google.com/ai-platform/prediction/docs/continuous-evaluation
https://aws.amazon.com/sagemaker/model-monitor
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-monitor-datasets
Fairness:
https://www.tensorflow.org/responsible_ai/fairness_indicators/guide
Model Remediation:
https://www.tensorflow.org/responsible_ai/model_remediation
AIF360:
http://aif360.mybluemix.net/
Themis ML:
https://github.com/cosmicBboy/themis-ml
LFR:
https://arxiv.org/pdf/1904.13341.pdf

Fooling DNNs:

Week 5: Explainability

https://arxiv.org/pdf/1607.02533.pdf https://arxiv.org/pdf/1412.6572.pdf XAI: http://www.cs.columbia.edu/~orb/papers/xai_survey_paper_2017.pdf Interpretable models https://christophm.github.io/interpretable-ml-book/ https://www.tensorflow.org/lattice Dol bear law: https://en.wikipedia.org/wiki/Dolbear%27s_law TensorFlow Lattice: https://www.tensorflow.org/lattice https://jmlr.org/papers/volume17/15-243/15-243.pdf PDP: https://github.com/SauceCat/PDPbox https://scikit-learn.org/stable/auto_examples/inspection/plot_partial_dependence.html Permutation Feature Importance: http://arxiv.org/abs/1801.01489 Shapley values: https://en.wikipedia.org/wiki/Shapley value SHAP: https://github.com/slundberg/shap

TCAV:
https://arxiv.org/pdf/1711.11279.pdf
LIME:
https://github.com/marcotcr/lime
Google Cloud XAI
https://storage.googleapis.com/cloud-ai-whitepapers/AI%20Explainability%20Whitepaper.pdf
Integrated gradients:

https://arxiv.org/pdf/1703.01365.pdf