

材料力学

第二章 拉伸、压缩与剪切

主讲人: 吕杭原

邮箱: lvhy@mail.neu.edu.cn

办公室:新机械楼319

QQ: 494489092

- 1、拉压杆的力学特征:
 - 受力——大小相等,方向相反,外力或合力作用线与轴线重合。
 - 变形—— 沿轴线伸长或缩短。

2、内力: 拉力和压力

内力的合力作用线与杆件的轴线重合,称为轴力。

求法: 截、取、代、平

3、轴力图

4. 应力: 横截面仅存在均匀分布正应力

符号规定: 拉应力为正, 压应力为负。

5、斜截面上应力确定

$$p_{\alpha} = \frac{F_{N\alpha}}{A_{\alpha}} = \frac{F}{A/\cos\alpha} = \frac{F}{A}\cos\alpha = \sigma\cos\alpha$$

正应力

$$\sigma_{\alpha} = p_{\alpha} \cos \alpha = \sigma \cos^2 \alpha$$

切应力

$$\tau_{\alpha} = p_{\alpha} \sin \alpha = \frac{\sigma}{2} \sin 2\alpha$$

6、斜截面上最大应力值的确定

(1)
$$\alpha = 0^0$$
时, $\sigma_{\text{max}} = \sigma$

(2)
$$a = 45^{\circ}$$
时, $\tau_{\text{max}} = \sigma/2$

7、杆件的变形

一、纵向和横向线应变:

$$\varepsilon = \frac{\Delta I}{I} \qquad \varepsilon' = \frac{\Delta b}{b}$$

二、泊松比:

$$\mu = \left| \frac{\varepsilon'}{\varepsilon} \right|$$

三、杆件伸长:

$$\Delta l = \frac{F_N l}{EA}$$

- § 2-6 材料拉伸时的力学性能
- § 2-7 材料压缩时的力学性能
- § 2-8 失效、安全因素和强度计算

§ 2-6 材料拉伸时的力学性能

截至目前,我们知道如何计算轴向拉压杆的应力和应变,接下来的问题就是:

杆件在此应力作用下是否会破坏? 安全

我们是否可以用更小一点的杆来承担 经济 同样大小的载荷?

§ 2-6 材料拉伸时的力学性能

你会选择哪个篮子?

什么信息来帮助你作此决定?

§ 2-6 材料拉伸时的力学性能

要知道杆件能承受的载荷,需要知道制成杆件的材料能承担的应力。

力学性能:材料在受力后的表现出的变形和破坏特性。
不同的材料具有不同的力学性能

材料的力学性能可通过实验得到。

——常温静载下的拉伸压缩试验

§ 2-6 材料拉伸时的力学性能

一、拉伸试验—试验机

万能试验机

§ 2-6 材料拉伸时的力学性能

拉伸试验 一标准试件

1、圆棒

$$L_0 = 5 d_0$$
 或 $L_0 = 10 d_0$

Lo: 标距

2、狗骨型

§ 2-6 材料拉伸时的力学性能

二、拉伸应力应变曲线

低碳钢拉伸时的力学性能

以伸长量为横坐标,以拉力为纵坐标

应力应变曲线

§ 2-6 材料拉伸时的力学性能

1、弹性阶段ob

$$\sigma_P$$
 一比例极限 $\sigma = E\varepsilon$

$$\sigma_e$$
 一 弹性极限 $E = \frac{\sigma}{\varepsilon} = \tan \alpha$

2、屈服阶段*bc*(失去抵 抗变形的能力,滑移线)

 σ_s 一 屈服极限

3、强化阶段*ce*(恢复抵抗变形的能力)

 $\sigma_{\!\scriptscriptstyle b}$ 一 强度极限

4、局部变形阶段ef(颈缩)

§ 2-6 材料拉伸时的力学性能

I. 弹性阶段 ob

卸载后恢复到初始形状

应力与应变之间是线性关系

弹性极限 σ_e

比例极限 σ_P

$$\frac{\sigma}{\varepsilon} = E$$

$$E = \tan \alpha$$

E的单位: 力/面积

§ 2-6 材料拉伸时的力学性能

II. 屈服阶段

应力仅在一个较小的范围内波动,而应变显著增加

材料拉伸时的力学性能 § 2-6

III. 强化阶段 ce

载荷增加,变形随之增大

极限强度(Ultimate stress)

自D点卸载:

 $D \longrightarrow D^*$, $DD^* // OA^*$

stress

卸载定律:

若加载到强化阶段的某一点D 停止加载, 并逐渐卸载,在卸载过程中,应力和应 变按直线规律变化,荷载与试样伸长量 之间遵循直线关系的规律称为材料的卸 载定律

§ 2-6 材料拉伸时的力学性能

III. 强化阶段 ce

自D点卸载:

 $D \longrightarrow D^*$, $DD^* // OA^*$

自D*点重新加载:

$$\mathbf{p}^* \to \mathbf{p} \to e \to f$$

冷作硬化

在常温下将材料拉伸到强化阶段, 卸载后短期内又继续加载,材料的 比例极限提高而塑性变形降低的现 象,称为*冷作硬化。*

工程上常利用冷作硬化来提高材料强度

§ 2-6 材料拉伸时的力学性能

IV. 颈缩阶段 ef 载荷下降,变形增加,试件的某一横截 面发生明显的变形,直至发生断裂

问题: 到达e点后, 颈缩处横截面上的应力真的降低了吗?

§ 2-6 材料拉伸时的力学性能

注意:

- 1. 低碳钢的 σ_s , σ_b 都还是以相应的抗力除以试样横截面的原面积所得,实际上此时试样直径已显著缩小,因而它们是名义应力。
- 2. 低碳钢的强度极限 σ_{b} 是试样拉伸时最大的名义 应力,并非断裂时的应力。
- 3. 低碳钢的 σ_{s} , σ_{b} 是衡量材料强度的两个重要指标。

§ 2-6 材料拉伸时的力学性能

三、塑性及衡量指标

1、塑性: 材料破坏前的变形能力

2、断后伸长率: $\delta = (l_1 - l_0)/l_0 \times 100\%$

§ 2-6 材料拉伸时的力学性能

3、断面收缩率

$$\Psi = (A_1 - A_0)/A_0 \times 100\%$$

A0 一试验段横截面原面积 A_1 一断口的横截面面积(缩颈处最小横截面面积)

4、塑性与脆性材料

塑性材料: $\delta \geq 5\%$ 例如结构钢与硬铝等

脆性材料: $\delta < 5\%$ 例如灰口铸铁与陶瓷等

§ 2-6 材料拉伸时的力学性能

断后伸长率

$$\delta = \varepsilon_{\rm b}$$
?

$$= \varepsilon_{\rm p}$$

冷作加工后材料的延伸率:

$$\varepsilon_p^* < \varepsilon_p$$

即塑性变形能力降低

§ 2-6 材料拉伸时的力学性能

例: 试在图上标出D点的 $\varepsilon_{\rm e}$ 、 $\varepsilon_{\rm p}$ 及材料的伸长率 δ

§ 2-6 材料拉伸时的力学性能

四. 其它材料拉伸时的力学性能

塑性材料 (d ≥ 5 %)

材料	锰钢	强铝	退火球墨 铸铁
弹性阶段	√	√	√
屈服阶段	×	×	×
强化阶段	√	√	~
局部变形 阶段	×	√	√
伸长率	> 5%	> 5%	> 5%

§ 2-6 材料拉伸时的力学性能

四. 其它材料拉伸时的力学性能

对于没有明显<mark>屈服阶段</mark>的塑性材料,用名义屈服极限 σ_{0.2}来 表示。

产生0. 2% 塑性应变时所对应的应力值,记做 $\sigma_{0.2}$

§ 2-6 材料拉伸时的力学性能

四. 其它材料拉伸时的力学性能

脆性材料:铸铁 (δ <5 %)

特点: (1)没有屈服、强化和局部变形阶段、应力应变都较小且不成比例;

(2) 在较小应变时即发生拉伸破坏。

σ_b—拉伸强度极限(约为 140MPa)。它是衡量脆性材料 (铸铁)拉伸的唯一强度指标。

E一 取总应变为0.1%时的割线斜率作为弹性模量E

铸铁的应力应变曲线

§ 2-6 材料拉伸时的力学性能

§ 2-7 材料压缩时的力学性能

压缩试件—很短的圆柱型: h = (1.5 - 3.0)d

- 1.屈服阶段以前,试样的拉压曲线 基本重合,两者的弹性模量基本相 同;
- 2.在屈服阶段,试样拉压时的屈服 极限基本相同;
- 3.屈服阶段以后,试样被越压越扁, 得不到压缩时的抗压强度 σ_{bc}

§ 2-7 材料压缩时的力学性能

- 1、拉、压曲线形状相似,但 受压时的极限强度远大于受拉 时 的极限强度, $\sigma_{by} > \sigma_{bL}$ 。
- 2、破坏面发生在与载荷作用 线成45-55°的斜面上。

铸铁适合受压构件,而不用作受拉构件。

§ 2-7 材料压缩时的力学性能

材料在拉伸与压缩时力学指标:

- (1) 比例极限 σ_P , $\sigma \leq \sigma_P$ 虎克定律;
- (2) 屈服极限 σ_s , $\sigma \geq \sigma_s$, 出现屈服现象;
- (3) 强度极限 σ_b , $\sigma \geq \sigma_b$, 出现破坏现象
 - (4) 弹性模量E
- (5)延伸率**δ**截面收缩 率 *ψ*

§ 2-7 材料压缩时的力学性能

材料在拉伸与压缩时力学性质特点:

- 1. 塑性材料的抗拉强度极限比脆性材料高,适合作受拉构件
- 2. 脆性材料的抗压强度极限远大于其抗拉强度极限, 适合作受压构件

§ 2-7 材料压缩时的力学性能

思考题: 用这三种材料制成同尺寸拉杆,请回答如下问题:

三种材料的应力 应变曲线如图,

哪种强度最好?

§ 2-8 失效、安全系数和强度计算

一、概念

1、失效: 断裂或出现塑性变形。

2、极限应力(危险应力/失效应力):

杆件中的应力达到某一极限值时,材料将会发生破坏或产生过 大变形而不能安全工作,此极限值称为极限应力或危险应力。

塑性材料极限应力: σ_s

脆性材料极限应力: σ_{b}

§ 2-8 失效、安全系数和强度计算

- 一、概念
- 3、许用应力 $[\sigma]$: 构件工作时允许达到的最大应力值。

$$[\sigma] = \frac{\sigma_{jx}}{n} \quad (\sigma_{jx})$$
 为极限应力, n 为安全系数, $n > 1$

塑性材料 安全因数— n_s (1.25~2.5)

许用应力—
$$[\sigma] = \frac{\sigma_s}{n_s}$$

脆性材料 安全因数— n_b (2.5~3.0) 许用应力— $[\sigma] = \frac{\sigma_b}{n_b}$

§ 2-8 失效、安全系数和强度计算

二、强度条件:最大工作应力小于等于许用应力

$$\sigma_{\max} = \frac{F_{N\max}}{A} \le [\sigma]$$

强度条件的应用: (解决三类问题)

(1) 强度校核:
$$\sigma_{\text{max}} = \frac{F_{\text{N,max}}}{A} \leq [\sigma]$$

(2) 截面选择:
$$A \geq \frac{F_{N,max}}{\lceil \sigma \rceil}$$

(3) 许可荷载的确定: $F_{N,max} \leq A [\sigma]$

例1 已知一圆杆受拉力P = 25 k N,许用应力 $[\sigma] = 170 MPa$,直径 d = 14 mm,校核此杆强度。

解: ① 轴力: $F_N = P = 25 \text{kN}$

②应力:
$$\sigma_{\text{max}} = \frac{F_N}{A} = \frac{4 \times 25 \times 10^3}{3.14 \times 14^2} = 162 \text{MPa}$$

③强度校核: $\sigma_{\text{max}} = 162\text{MPa} < [\sigma]$

④结论:此杆满足强度要求,能够正常工作。

例2 已知简单构架: 杆1、2截面积 $A_1=A_2=100~\mathrm{mm}^2$,材料的许用拉应力 $[\sigma_t]=200~\mathrm{MPa}$,许用压应力 $[\sigma_c]=150~\mathrm{MPa}$ 。

试求:载荷F的许用值 [F]?

解: 1. 轴力分析

$$F_{\rm N1} = \sqrt{2}F$$
 (拉伸)

$$F_{N2} = F$$
 (压缩)

2. 利用强度条件确定[F]

 $(A_1 = A_2 = 100 \text{ mm}^2$,许用拉应力 $[s_t] = 200 \text{ MPa}$,许用压应力

$$[s_{c}] = 150 \text{ MPa}$$

$$\frac{F_{N1}}{A_{1}} \leq [\sigma_{t}], \frac{\sqrt{2}F}{A_{1}} \leq [\sigma_{t}]$$

$$F \leq \frac{A_1[\sigma_t]}{\sqrt{2}} = 14.14 \,\mathrm{kN}$$

$$\frac{F}{A_{\rm o}} \leq [\sigma_{\rm c}]$$

$$F \leq A_2[\sigma_{\rm c}] = 15.0 \,\mathrm{kN}$$

$$[F] = 14.14 \text{ kN}$$

例3 刚性杆ACB有圆杆CD悬挂在C点,B端作用集中力 F=25kN,已知CD杆的直径d=20mm,许用应力 $[\sigma]$ =160MPa,

- (1) 试校核CD杆的强度,
- (2) 结构的许可荷载[F];
- (3) 若F=50kN,设计CD杆的直径。

解: (1) 求 *CD*杆受力

$$\sum M_A = 0 \qquad F_{NCD} = \frac{3}{2}F$$

$$\sigma = \frac{F_{\text{NCD}}}{A} = \frac{3F/2}{\pi d^2/4} =$$

119MPa $< [\sigma]$

(2) 结构的许可荷载[F]

得
$$F_{NCD} \leq [\sigma]A = \frac{3F}{2}$$

(3) 若F=50kN,设计CD杆的直径

$$A \ge \frac{F_{\text{NCD}}}{[\sigma]} = \frac{3F/2}{[\sigma]}$$

