www.daerema.eom

Matematica del discreto

I gruppi ciclici

Sia dato un gruppo (A, @) e un suo elemento a.

Consideriamo gli elementi:

a, a @a, a @ a @ a, a @ a @ a @ a, ...

cioè le potenze di a che indicheremo con i simboli

 a^1 , a^2 , a^3 , a^4 , ...

Inoltre poniamo per definizione

 $a^0 = u a^{-n} = (a^{-1})^n = (a^n)^{-1}$

dove con ${\rm a}^{-1}$ indichiamo l'inverso di ${\rm a}$. Abbiamo così definito tutte le potenze di a ad esponente intero e non solo naturale.

Esempi:

• in (Z,+), posto a=5, e poiché $a^{-1}=-5$, risulta: ..., $a^{-2} = -10$, $a^{-1} = -5$, $a^{0} = 0$, $a^{1} = 5$, $a^{2} = 10$, $a^{3} = 15$, ...

• in (Z^*_{7}, \times) , posto a = 2, risulta:

 $a^0 = 1$, $a^1 = 2$, $a^2 = 4$, $a^3 = 1$, $a^4 = 2$, ... e, poiché $a^{-1} = 4$ (infatti $[4] \times [2] = [1]$): $\alpha^{-1} = 4$, $\alpha^{-2} = 2$, $\alpha^{-3} = 1$, $\alpha^{-4} = 4$, ...

Dato un elemento a∈(A, @), l'insieme di tutte le potenze di a in A è un sottogruppo di A

DEFINIZIONE. Un gruppo (A, @) si dice ciclico se tutti i suoi elementi si possono esprimere come potenze di uno stesso elemento aÎA.

Si dice che l'elemento a è un *generatore* del gruppo A, oppure che A è generato da a.

(Z,+) è un gruppo ciclico infinito generato da +1 I gruppi (Zn,+) sono tutti gruppi ciclici generati dall'elemento 1. Ogni gruppo ciclico può avere più di un generatore: Il gruppo $(Z*5,x) = \{1, 2, 3, 4\}$ è un gruppo ciclico generato da:

2: $2^{1} = 2$ $2^{2} = 4$ $2^{3} \equiv 3$ $2^{4} \equiv 1$ oppure da 3: $3^{1} = 3$, $3^{2} \equiv 4$, $3^{3} \equiv 2$, $3^{4} \equiv 1$ ma non da 4: $4^{1} = 4$, $4^{2} \equiv 1$

```
ESERCIZI
   Trovare un generatore diverso da 1 nel gruppo (Z_6,+)=\{0, 1, 2, 3, 4, 5\}.
   1 2 3 4 5 6
a a a a a a
   240
                    NO
   3 0
                    NO
   4 2 0
                    NO
   543210

    Trovare un generatore diverso da 1 nel gruppo (Z<sub>8</sub>,+) = {0, 1, 2, 3, 4, 5, 6, 7}

   2460
                           NO
   36147250
                           Sì
   4 0
                           NO
   52741630
                           Sì
   6420
                           NO
   7 ....
                           Sì ..... sono generatori gli elementi primi con 8
```

TEOREMA. Ogni gruppo ciclico è abeliano.

Quindi qualunque gruppo non abeliano non è un gruppo ciclico.

TEOREMA. L'insieme B di tutte le potenze g^n di un elemento di un gruppo (A,@) formano un sottogruppo (ciclico) di A.

TEOREMA. Se l'ordine di un gruppo finito (A,@) è un numero primo p, allora A è un gruppo ciclico (e quindi abeliano).

TEOREMA. Un gruppo ciclico può avere solo sottogruppi ciclici. (Se un gruppo non è ciclico può avere sia sottogruppi ciclici che non ciclici.)

Dimostrazione.

Sia (G,@) un gruppo ciclico generato da un suo elemento g e sia H un suo sottogruppo di G.

```
(G,@) = \{g, g^2, .... g^n = u\} se è finito
```

 $(G,@) = \{..., g^{-2}, g^{-1}, u, g, g^2, ..., g^n ...\}$ se è infinito.

Gli elementi di H sono particolari potenze di g, di cui almeno una ha esponente positivo (perché se $g^{-k} \in H$, con k>0, anche $g^k \in H$, poiché H è un gruppo).

 $H=\{ ... g^{-s}, g^{-r}, g^{-k}, u, g^{k}, g^{r}, g^{s}, ... \}$

Mettiamo in ordine crescente tutte le potenze positive di g in H. Avremo: g^k , g^r , g^s ... con k < r < s ... Il teorema è dimostrato se mostriamo che r = 2k, poiché poi lo stesso ragionamento porta a dire che g^k è generatore di H. Poiché k < r può essere:

k < r <2k oppure

r = 2k oppure

r > 2k.

Mostriamo che la opzione centrale è quella vera, mostrando che le altre due sono false. La terza è falsa perché H è un gruppo, quindi se contiene g^k contiene anche g^{2k} , quindi ci sarebbe una potenza di g tra g^k e g^r contro quanto detto. Se fosse vera la prima, poiché H è un gruppo, anche g^{r-k} \in H, mentre abbiamo detto che k è il più piccolo esponente positivo.

Con (Zn^*, x) se n è <u>primo</u>, (Zp^*, x) ha come elementi $\{1, ..., p-1\}$, quindi ha ordine p-1. È sempre ciclico; generatori sono tutti i k tali che <u>MCD</u> (p-1,k)=1. Se n non è primo ci sono diversi casi, vediamo qualche esempio:

gruppo	Elementi	ord	Ciclico?	generatori	Sottogruppi non banali
Z4*,×	(1, 3)	2	Sì	3 → 3,1	
Ζ6*,×	(1, 5)	2	Sì	5 → 5,1	
Z8*,×	(1, 3, 5, 7)	4	Νο		(3, 1), (5,1), (7, 1)
Ζ9*,×	(1, 2, 4, 5, 7, 8)	6	Si		(8, 1) (4, 7, 1)
Z ₁₀ *,×	(1, 3, 7, 9)	4	Sì	3 → 3,9,7,1 7 → 7,9,3,1	(9, 1)
Z ₁₂ *,×	(1, 5, 7, 11)	4	Νο	100 MS 100	(5, 1), (7, 1), (11, 1)
Z ₁₄ *,×	(1, 3, 5, 9, 11, 13)	6	Si	3 →3,9,13,11,5,1 5 →5,11,13,9,3,1	(1, 13) (1, 9, 11),
Z ₁₅ *,×	(1,2,4,7,8,11,13,14)	8	Nο		(2,4,8,1),(7,4,13,1), (4,1),(11,1),(14,1), (11,14,4,1) non ciclico
Z ₁₆ *,×	(1,3,5,7,9,11,13,15)	8	No		(3,9,11,1),(5,9,13,1), (7,1),(9,1),(15,1), (7,15,9,1) non ciclico
Z ₁₈ *,×	(1,5,7,11,13,17)	6	Sì		(17,1) (7,13,1),
Z ₂₀ *,×	{1,3,7,9,11,13,17,19}	8	No		(3,9,7,1),(13,9,17,1), (11,1),(9,1),(19,1), (11,9,19,1) non ciclico
Z22*,×	{1, 3, 5, 7, 9, 13, 15, 17, 19, 21}	10	Sì	7 → 7,5,13,3,21,15,17 , 9,19,1	(3,9,5,15,1) (21,1)

Tutto quanto riportato in questa pagina è a puro scopo informativo personale. Se non ti trovi in accordo con quanto riportato nella pagina, vuoi fare delle precisazioni, vuoi fare delle aggiunte o hai delle proposte e dei consigli da dare, puoi farlo mandando un <u>email</u>. Ogni indicazione è fondamentale per la continua crescita del sito.

3 of 3 1/17/23, 10:50