GEL-2005Systèmes et commande linéaires

Mini-test #1

Lundi 23 septembre 2019, 9h30-10h20

Document permis: aucun

Professeur: André Desbiens, Département de génie électrique et de génie informatique

Question 1 (20%)

Quel est le dénominateur de la transformée de Laplace du signal $f(t) = 6(1+2t)e^{-3t}\cos(4t+5)$?

Réponse : $[(s + 3)^2 + 16]^2$

Question 2 (20% - Correction binaire : 0% ou 20%)

La fonction de transfert du système est $\frac{Y(s)}{U(s)} = \frac{-3}{0.2+s}$. La condition initiale est $y(0^+) = 4$. Le signal d'entrée est illustré à la figure 1. Que vaut y(3), la sortie du système à t = 3?

Suite à vos calculs, inscrivez votre réponse ici : y(3) =

y(3) =

Réponse : -24.88

Question 3 (20%)

La transformée de Laplace de la réponse d'un système à des conditions initiales nulles et à l'entrée $u(t) = 4\sin(2t)u_e(t)$ est $Y(s) = \frac{24}{(1+5s)(s^2+4)}$. Quelle est l'équation différentielle du système?

Réponse:
$$y(t) + 5 \frac{dy(t)}{dt} = 3u(t)$$

Question 4 (20% - Correction binaire pour chacune des sous-questions : 0% ou 5%)

Les nombres complexes $z_1(x) = \frac{3e^{-j4x}}{-1+i5x}$ et $z_2(x) = \frac{-2jx}{1+i3x}$ sont des fonctions de la variable réelle

 $x \ge 0$. On demande:

- a) le module de z_1 lorsque x = 0,
- b) l'argument de z_1 en radians lorsque x = 0,
- c) le module de z_2 lorsque x = 1,
- d) l'argument de z_2 en radians lorsque x tend vers l'infini.

Suite à vos calculs, inscrivez vos réponses ici : a) $|z_1(0)| =$ b) $\angle z_1(0) =$ c) $|z_2(1)| =$ d) $\angle z_2(\infty) =$

a)
$$|z_1(0)| =$$
 b) $\angle z_1(0) =$

c)
$$/z_2(1)/=$$

d)
$$\angle z_2(\infty) =$$

Réponses : a) 3 b) π ou $-\pi$ c) 0.633 d) $-\pi$ ou π

Question 5(10% + 10% = 20%)

- a) La fonction de transfert du système est $\frac{Y(s)}{U(s)} = \frac{-2}{s}$. La condition initiale est nulle et l'entrée est $u(t) = 4u_{e}(t)$. Peut-on calculer $y(\infty)$? Si oui, donnez sa valeur. Si non, expliquez pourquoi.
- b) Quelle est la transformée de Laplace du signal f(t) tracé à la figure 2 (la rampe continue à l'infini)?

Réponses: a) Non car y(t) est une rampe et donc augmente continullement b) $F(s) = \frac{-2e^{-2s}}{s^2}$