Exercise 11: Bayes rule, Decision-tree, Probability, Outlier Detection

Exercise 11-1: Bayes rule

Consider a discrete random variable θ with a sample space $\{a,b\}$ and a probability mass function with $Pr(\theta = a) > 0.5$. Also consider a likelihood function

$$Pr(X|\theta) = \theta^X (1-\theta)^{(1-X)}$$

which is applied to the data set $\mathcal{D} = \{X_1 = 0, X_2 = 1, X_3 = 1\}$. Compute the posterior probability $Pr(\theta = a|\mathcal{D})$ using the Bayes rule.

Exercise 11-2: Decision-tree

ID	X_1	X_2	X_3	Y
1	A	C	E	-1
2	A	C	F	+1
3	A	D	E	-1
4	A	D	F	+1
5	A	C	F	-1
6	B	C	E	-1
7	В	D	E	+1
8	B	C	E	+1
9	В	D	F	+1
10	B	C	F	-1

A decision tree is being trained on the above data set. As root of the tree, the attribute X_1 was already selected. Which attributes are selected as test nodes at the next level based on the Gini index and Information Gain?

- (a) For the branch of $X_1 = A$.
- (b) For the branch of $X_1 = B$.

Exercise 11-3: Probability

Consider two independent random variables

$$X \in \{1, 2, 3, 4, 5, 6\}$$
 and
$$Y \in \{1, 2, 3, 4, 5, 6, 7, 8\}$$

with probability distribution Pr[X=k]=1/6 for all $k\in\{1,2,3,4,5,6\}$ and Pr[Y=k]=1/8 for all $k\in\{1,2,3,4,5,6,7,8\}$. Calculate the following probability statements about the random variable Z=X+Y?

- (a) Pr[Z = 4]
- (b) Pr[Z > 5]
- (c) Pr[Z < 7]
- (d) Pr[Z = 7]

University of Southern Denmark - IMADA DM566: Data Mining and Machine Learning

Exercise 11-4: Tools: Outlier Detection (LOF, OPTICS)

- (a) Load python packages: make-classification, metrics, pyplot. Then load quantile, where from numpy, finally load LocalOutlierFactor from sklearn.neighbors and OPTICS from sklearn.cluster.
- (b) Make a random dataset with 200 samples and two number of classes, plot the dataset.
- (c) Fit the Local Outlier Factor(LOF) algorithm on the dataset and check behaviour with different neighbourhood sizes. Extract negative outputs of model and put them as outlier.
- (d) Visualize both abnormal and normal data with different colors.
- (e) Run OPTICS algorithm on the same dataset. Find the distance of each sample from core using core-distances-, put 2 percent of data with highest distance from core as outlier.
- (f) Visualize both abnormal and normal data with different colors.