Cgsm User's Guide : An Overture Solver for the Solving the Equations of Solid Mechanics,

William D. Henshaw

Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, www.overtureFramework.org

June 13, 2014

June 13, 2014

Contents

1	Nomenclature		1
2	Introduction 2.1 Basic steps		2 2
3	Sample command files for running c	gsm	2
4	Options and parameters		2
5	User defined functions		2
6	Hints for running		2
7	Frequently ask questions		2
8	Governing Equations 8.1 Boundary conditions		2 2
1	Nomenclature		
	ho der	sity	(1)
	$u_i = \mathrm{dis}_{\mathrm{I}}$	placement vector	(2)
	$\epsilon_{ij} = \mathrm{str}$	in tensor	(3)
	$ au_{ij} = ext{stre}$	ess tensor	(4)
	λ she	ar modulus, Lamé constant	(5)
	μ Lar	né constant	(6)

- $\mathbf{2}$ Introduction
- 2.1 Basic steps
- Sample command files for running cgsm 3
- Options and parameters 4
- User defined functions 5
- Hints for running 6
- Frequently ask questions 7
- Governing Equations 8

The equations of linear elasticity for a homogeneous isotropic material are governed by

$$\rho \partial_t^2 u_i = \partial_{x_i} \tau_{ij} + \rho f_i \tag{7}$$

$$\tau_{ij} = \lambda \partial_{x_k} u_k \delta_{ij} + 2\mu \epsilon_{ij} \tag{8}$$

$$\epsilon_{ij} = \frac{1}{2} (\partial_{x_j} u_i + \partial_{x_i} u_j) \tag{9}$$

or

$$\rho \partial_t^2 u_i = (\lambda + \mu) \partial_{x_i} \partial_{x_k} u_k + \mu \partial_{x_k}^2 u_i + \rho f_i$$

$$\rho \mathbf{u}_{tt} = (\lambda + \mu) \nabla (\nabla \cdot \mathbf{u}) + \mu \Delta \mathbf{u} + \rho \mathbf{f}$$
(10)

$$\rho \mathbf{u}_{tt} = (\lambda + \mu) \nabla (\nabla \cdot \mathbf{u}) + \mu \Delta \mathbf{u} + \rho \mathbf{f}$$
(11)

Boundary conditions 8.1

References

[1] D. APPELÖ, J. W. BANKS, W. D. HENSHAW, AND D. W. SCHWENDEMAN, Numerical methods for solid mechanics on overlapping grids: Linear elasticity, J. Comput. Phys., 231 (2012), pp. 6012-6050. publications/AppeloBanksHenshawSchwendemanSmog2012.pdf.