Fourier Synthese

AUTOR A samuel.haefs@tu-dortmund.de

Durchführung: 22.10.2019 Abgabe: 29.10.2019

AUTOR B

 $\max.koch@tu-dortmund.de$

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie	3		
2	Fourier-Zerlegung der Funktion sin(x)			
	2.1 B	3		
	2.2 Tabelle	4		
	2.3 Plot	5		

1 Theorie

Jede periodische Funktion läßt sich in eine Reihe aus sin- und cos-Termen entwickeln (Fourierreihe)

$$f(t) = \sum_{i=0}^{\infty} (A_k \cdot cos(\omega_k t) + B_k \cdot sin(\omega_k t)) \tag{1}$$

mit

$$\omega_k = \frac{2\pi k}{T} \tag{2}$$

2 Fourier-Zerlegung der Funktion |sin(x)|

2.1 Berechnung der Integrale

Im folgenden soll die Funktion f(x) = |sin(x)| mit einer Fourierreihe angenähert werden. Die Koeffizienten sind definiert als

$$A_k = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cdot \cos(\omega_k \cdot t) \, \mathrm{d}t \tag{3}$$

$$B_k = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cdot \sin(\omega_k \cdot t) \, \mathrm{d}t \tag{4}$$

Die Funktion |sin(x)| erfüllt die Eigenschaft f(-x)=f(x) und ist somit eine gerade Funktion. Somit ist unser $B_k=0$. Zunächst wählen wir $T=2\pi$. Somit ist $\omega_k=k$. Daraus folgt für A_k

$$A_k = \frac{1}{\pi} \int_{-\pi}^{\pi} |\sin(t)| \cdot \cos(\omega_k \cdot t) \, \mathrm{d}t \tag{5}$$

Die Funktion |sin(x)| ist π -periodisch und hat bei x=0 eine Nullstelle. Wir integrieren nun über eine, statt wie zuvor über zwei Perioden. Es gilt $\int_{-\pi}^{0} f(x) \, \mathrm{d}x = \int_{0}^{\pi} f(x) \, \mathrm{d}x$ erhalten wir zusätlich einen Faktor 2.

$$A_k = \frac{2}{\pi} \int_0^{\pi} |\sin(t)| \cdot \cos(\omega_k \cdot t) \, \mathrm{d}t \tag{6}$$

Es gilt |sin(x)| = sin(x) im Intervall $I = [0, \pi]$, so können wir unser Integral vereinfachen

$$A_k = \frac{2}{\pi} \int_0^{\pi} \sin(t) \cdot \cos(\omega_k \cdot t) \, \mathrm{d}t \tag{7}$$

$$\Rightarrow A_k = \frac{2}{\pi} \left[\frac{\cos((\omega_k - 1)t)}{2(w - 1)} - \frac{\cos((\omega_k + 1)t)}{2(\omega_k^2 + 1)} \right]_0^{\pi} \tag{8}$$

mit ω_k und Grenzen eingesetzt erhalten wir (2)

$$A_k = \frac{2}{\pi} \left(\frac{\cos(2k\pi - \pi)}{4k - 2} - \frac{\cos(2k\pi + \pi)}{4k + 2} - \frac{\cos(0)}{4k - 2} + \frac{\cos(0)}{4k + 2} \right) \tag{9}$$

$$\Leftrightarrow A_k = \frac{2}{\pi} \left(\frac{-1}{4k-2} + \frac{1}{4k+2} - \frac{1}{4k-2} + \frac{1}{4k+2} \right) \tag{10}$$

$$\Leftrightarrow A_k = \frac{2}{\pi} \left(\frac{-8}{(4k-2)(4k+2)} \right) \tag{11}$$

$$\Leftrightarrow A_k = \frac{4}{-4k^2\pi + \pi} \tag{12}$$

2.2 Tabelle

Für das online-Experiment werden 17 Koeffizienten benötigt um die Regler einzustellen

\overline{k}	A_k
	1.27323954e+00
1	-4.24413182e-01
2	-8.48826363e-02
3	-3.63782727e-02
4	-2.02101515e-02
5	-1.28610055e-02
6	-8.90377304e-03
7	-6.52943356e-03
8	-4.99309625e -03
9	-3.94191810e-03
10	-3.19107655e-03
11	-2.63610672e-03
12	-2.21432964e-03
13	-1.88628081e-03
14	-1.62610414e-03
15	-1.41628425e-03
16	-1.24461344e-03
17	-1.10237190e-03

2.3 Plot

Wir erhalten als Ergebnis auf der Website folgende Grafik

Abbildung 1: Fouriersynthese von |sin(x)|