

Lineare Algebra 1: Zusammenfassung

LA1 für die Fachrichtung Informatik – Wintersemester 23/24 Jonatan Ziegler | 17. November 2024

Disclaimer

KIT

Dieser Foliensatz wurde von einem Tutor erstellt und ist damit **kein** offizielles Dokument und hat insbesondere keine Vollständigkeitsansprüche. Ebenso kann nicht für Fehlerfreiheit garantiert werden.

Der Foliensatz orientiert sich an den Skripten und den zugehörigen Vorlesungen von PD Dr. Stefan Kühnlein und Dr. Rafael Dahmen.

Das Teilen und Weiterverbreiten des Foliensatzes in seiner urspünglichen Form ist ausdrücklich **erlaubt**.

Feedback oder Fehler können gerne an jonatan.ziegler@student.kit.edu gemeldet werden.

Inhalt

1. Aussagenlogik	10 D I	22. Summe von VR		
2. Mengen3. Beweise	14. Komplexe Zahlen	23. Rechentechniken VR24. Faktorraum		
4. Abbildungen5. Graphen	15. Lineare Gleichungssysteme	25. Lineare Fortsetzung 26. Dualraum		
6. Relationen7. Gruppen	16. Matrizen 17. Invertierbare Matrizen	27. Basiswechsel		
8. Untergruppen 9. Homomorphismen	18. Gauß-Algorithmus 19. Vektorraum	28. Affine Räume 29. Algebren		
10. Ringe	20. Lineare Abbildungen	30. Determinanten31. Endomorphismen		

11. RSA-Verschlüsselung 21. Basen von VR

32. Eigenräume

Aussagenlogik

4/182 WS 22/23 Jonatan Ziegler: LA 1 Info KIT

Aussagen

A: "Es schneit nicht." $\leadsto wahr$

 $B: 1 = 2 \leadsto falsch$

Wahr oder Falsch

Junktoren

Ko n junktion	U n D	\wedge
Disjunktion	ODER	\vee
Negation	NICHT	\neg
Implikation	"FOLGT"	\Longrightarrow
Äquivalenz	"GLEICH"	\iff

6/182 WS 22/23 Jonatan Ziegler: LA 1 Info

Quantoren

Existenzquantor

 $\exists x \in M : \mathsf{Aussage}$

Allquantor

 $\forall x \in M$: Aussage

Negation

 $\neg \exists x \in M : A(x) \iff \forall x \in M : \neg A(x)$

 $\neg \forall x \in M : A(x) \iff \exists x \in M : \neg A(x)$

"Datentypen"	Gleichheit mit	
Natürliche Zahlen N		
Reelle Zahlen ${\mathbb R}$		
$Mengen\ \mathcal{P}(M)$	=	
Abbildungen ${\cal B}^A$		
Aussagen $\{w,f\}$	\iff	

Mengen

9/182 WS 22/23 Jonatan Ziegler: LA 1 Info KIT

Mengen

Sammlung an Dingen

 $\mathsf{Bsp:}\left\{Apfel,3,x\mapsto x^2\right\}$

Leere Menge $\emptyset = \{\}$

Natürliche Zahlen $\mathbb{N} = \{1, 2,\}$

Natürliche Zahlen mit 0 $\mathbb{N}_0 = \{0, 1, 2,\}$

Ganze Zahlen $\mathbb{Z} = \{0,1,2,\ldots\} \cup \{-1,-2,\ldots\}$

Rationale Zahlen $\mathbb{Q}=\left\{rac{a}{b}\mid a\in\mathbb{Z},b\in\mathbb{N}
ight\}$

Reelle Zahlen \mathbb{R}

Komplexe Zahlen $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$

Es gilt:

$$\emptyset \subset \mathbb{N} \subset \mathbb{N}_0 \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$

Seien A, B, M Mengen.

		formale Definition	$A = \{1, 2, 3\}, B = \{3, 4\}$
Element	$x \in A$		$3 \in A$
nicht Element	$x \not\in A$		$4 \not\in A$
Teilmenge	$A \subseteq M$	$\forall x: x \in A \implies x \in M$	gilt für $M = \{1, \dots, 4\}$
Obermenge	$A \supseteq M$	$\forall x : x \in M \implies x \in A$	gilt für $M = \{2\}$
Vereinigung	$A \cup B$	$x \in A \cup B :\iff x \in A \lor x \in B$	$= \{1, 2, 3, 4\}$
(Durch-)Schnitt	$A \cap B$	$x \in A \cap B :\iff x \in A \land x \in B$	$= \{3\}$
Differenz	$A \backslash B$	$x \in A \backslash B : \iff x \in A \land x \notin B$	$= \{1, 2\}$
Kartesisches Produkt	$A \times B$		$= \{(1,3), (1,4), (2,\dots\}$
Mehrfaches Kart. Prod.	$A^n, n \in \mathbb{N}$	$A^n = \underbrace{A \times A \times \dots \times A}_{}$	
Potenzmenge	$\mathcal{P}(B)$	$M \in \mathcal{P}(B) : \stackrel{n \text{ mal}}{\Longleftrightarrow} M \subseteq B$	$= \{\emptyset, \{3\}, \{4\}, \{3, 4\}\}$

KIT

Operation	inkl. Gleichheit?
	Uneindeutig, meist Ja
\subseteq	Ja
Ç	Nein
$\overline{}$	Uneindeutig, meist Ja
\supseteq	Ja
\supseteq	Nein

13/182 WS 22/23 Jonatan Ziegler: LA 1 Info

Mengenabstraktion

{Element ∈ Grundmenge | mit wahrer Aussage}

Ohne Grundmenge ist jedes denkbare Element möglich (z.B. Apfel, \mathbb{Q} , $x\mapsto x^2$, ...) Einschrenkungen durch Aussage: "filtert" alle möglichen Elemente

Bsp.:

- $\{x \in \mathbb{N} \mid x \le 10\} = \{1, 2, ..., 9, 10\}$
- $a \mid a \in \mathbb{R}, \sqrt{a^2} = a$

',' bedeutet UND

Weiteres

Große Operatoren

$$\bigcup_{n \in \mathbb{N}_0} \{-n, n\} = \mathbb{Z}$$
$$\bigcap_{n \in \mathbb{N}} \{0, n\} = \{0\}$$

Mächtigkeit

Anzahl der Elemente

$$|\{0,1,2\}| = 3 \quad |\emptyset| = 0 \quad |\mathbb{N}| = \infty$$

Beweise

16/182 WS 22/23 Jonatan Ziegler: LA 1 Info

Allgemeiner Aufbau

Beh.:

Was will ich Zeigen?

Bew.:

Annahmen / Vorrausbedingungen annehmen. Schritte der logischen Folgerung die zur Aussage führen.

q.e.d. oder QED oder \rightarrow

quod erat demonstrandum (lat. für "was zu beweisen war")

Variablen

Jede Variable muss gebunden sein.

Bindungskonstrukte

Einführen einer **gebunden** Variable *x*:

- Sei $x \in \dots$
- $x := \dots$
- $\exists x : \dots, \forall x : \dots$
- $\sum_{x=\dots}^{\dots}$

- Wenn eher Nebensächlich: $(x \in ...)$ Bsp: $... \in \mathbb{R}^x$ $(x \in \mathbb{N})$

Zusammenhang und roter Faden

Jede Gleichung und Aussage hat irgendeine Bedeutung oder Zusammenhang. Dieser muss explizit erwähnt werden.

Bsp.:

Sei
$$x \in \mathbb{N}$$

 $\implies x > 0$
 $\iff 0 > -x$

Sei
$$x, y \in A = \dots$$

Gelte $f(x) = f(y)$
 $\implies x = y$

Es gilt
$$1 = 1$$

 $\iff 1 = \frac{x}{x} \quad (x \in \mathbb{R} \setminus \{0\})$
 $\iff 1 - \frac{x}{x} = 0$

Beweismuster: Äquivalenz

Beh.: $A \iff B$

Bew.:

 $\overset{\text{Gelte }A}{\Longrightarrow} \text{Mathemagie...}$

 $\implies B$

 $\mathsf{Gelte}\,B$

 \implies Mathemagie...

 $\implies A$

Beweismuster: Mengengleichheit

Beh.: M=N

Bew.:

 \subseteq

Sei $x \in M$

 $\implies \text{Mathemagie...}$

 $\implies x \in N$

 \bigcirc

 $\mathbf{Sei}\;x\in N$

 \implies Mathemagie...

 $\implies x \in M$


```
Beh.: A
Bew.:

Ann.: \neg A

\implies \dots (\neg A \text{ darf verwendet werden})

\implies \text{"falsche Aussage"} \notin

Ann. \text{falsch}

\implies A \text{ gilt (aka. } \neg A \text{ gilt nicht )}
```


Induktionseigenschaft: Aussage für $n \rightsquigarrow$ Aussage für n+1Häufig für Beweise über \mathbb{N} oder $\{n \in \mathbb{N} \mid n \leq m\}$

Beh.: Aussage A_n gilt für alle $n \in \mathbb{N}$

Bew.:

Induktionsanfang (IA): n = 1 A_1 gilt (da ...).

Induktionsvorraussetzung (IV):

Aussage A_n gilt für festes aber beliebiges $n \in \mathbb{N}$.

Induktions schluss /-schritt (IS): $n \rightsquigarrow n+1$

 A_{n+1} umformen zu etwas mit A_n .

Wir dürfen einfach annehmen, dass A_n gilt (wegen IV), müssen nur noch den Rest zeigen.

 $\implies A_{n+1}$ gilt

Abbildungen

25/182 WS 22/23 Jonatan Ziegler: LA 1 Info KIT

Abbildung

$$f: A \to B, \quad x \mapsto f(x) = \dots$$

Eigenschaften

$$f:A\to B$$

jedes Element in B wird ...getroffen

injektiv höchstens einmal

surjektiv mindestens einmal

bijektiv (injektiv ∧ surjektiv) **genau** einmal

Quiz

	injektiv	surjektiv
$f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$	8	8
$f: \mathbb{R} \to [0, \infty), x \mapsto x^2$	8	
$f:[0,\infty)\to\mathbb{R},x\mapsto x^2$		8
$f:[0,\infty)\to[0,\infty), x\mapsto\sqrt{x}$		
$f:(0,\infty)\to\mathbb{R}, x\mapsto x-\frac{1}{x}$		

Beweise

$$f, g: A \to B$$

Gleichheit
$$f = g$$

f surjektiv

f bijektiv

$$\forall a \in A : f(a) = g(a)$$

$$\forall a_1, a_2 \in A : f(a_1) = f(a_2) \implies a_1 = a_2$$

$$\forall b \in B \ \exists a \in A : f(a) = b$$

f injektiv $\wedge f$ surjektiv

(Ur-)Bildfunktion

$$f: A \to B$$

 $\Longrightarrow f_*: \mathcal{P}(A) \to \mathcal{P}(B), \quad M \mapsto \{f(x) \mid x \in M\}$

$$\implies f_*^{-1}: \mathcal{P}(B) \to \mathcal{P}(A), \quad N \mapsto \{x \in A \mid f(x) \in N\}$$

Wenn bijektiv:

$$\implies f^{-1}: B \to A$$
$$f^{-1} \circ f = id_A \quad f \circ f^{-1} = id_B$$

Graphen nicht Klausurrelevant

31/182 WS 22/23 Jonatan Ziegler: LA 1 Info

Graphen nicht Klausurrelevant

$$\Gamma = (E, K)$$
 heißt Graph $\iff E$ Menge, $K \subseteq \{M \subseteq E \mid |M| = 2\}$

Seien $\Gamma = (E, K), \tilde{\Gamma} = (\tilde{E}, \tilde{K})$ Graphen.

Isomorphismus $f: E \to \tilde{E}$ wenn $\{x,y\} \in K \iff \{f(x),f(y)\} \in \tilde{K}$.

Wenn $E = \tilde{E}$ und der gleiche Graph: Automorphismus

Relationen

33/182 WS 22/23 Jonatan Ziegler: LA 1 Info KIT

Relation

R Relation

$$R \subseteq M \times M$$

Schreibweise: $x, y \in R$: $xRy \iff (x, y) \in R$

- "billige Abbildung"
- Bsp:
 - $M = \mathbb{N}, R = \{(x, y) \in \mathbb{N}^2 \mid x \le y\}$
 - $M = \mathbb{N}, R = \{(x, y) \in \mathbb{N}^2 \mid x = y\}$

Eigenschaften

 $x, y, z \in M$

reflexiv xRxsymmetrisch $xRy \iff yRx$ antisymmetrisch $xRy \wedge yRx \implies x = y$ transitiv $xRy \wedge yRz \implies xRz$

Aufgabe

Welche der Eigenschaften haben die folgenden Relationen?

- 1 Zwei Tutanden sitzen nebeneinander
- 2 Zwei Tutanden sitzen in der selben Reihe
- 3 Ein:e Tutand:in sitzt weiter vorne als ein:e andere:r
- (4) Eine Tutandenreihe sitzt nicht weiter vorne als eine andere
- 5 Zwei Tutanden sitzen in der gleichen Reihe oder Spalte

Gibt es eine symmetrisch und transitive Relation, die nicht reflexiv ist?

36/182 WS 22/23 Jonatan Ziegler: LA 1 Info KIT

Äquivalenzrelation

- 1 reflexiv
- 2 symetrisch
- 3 transitiv

Bsp:

- "="
- "Weglassen von Informationen" (Gleiches Bild)
- Kongruenz modulo

Kongruenz modulo n


```
a, b \in \mathbb{Z}, n \in \mathbb{N} : a \equiv b \bmod n
```

 $\iff a, b \text{ mit gleichem Rest durch } n \text{ teilbar}$

 $\iff n|(a-b)$ aka. n teilt a-b

 $:\iff \exists k\in\mathbb{Z}: (a-b)=k\cdot n$

 $\iff \exists k \in \mathbb{Z} : a = b + k \cdot n$

Äquivalenzklassen

Sei \sim Äquivalenzrelation auf M.

- $[x]_{\sim} = \{ y \in M \mid x \sim y \}$
- Disjunkte Zerlegung
- Quotientenmenge $M/\sim = \{[x]_{\sim} \mid x \in M\}$

$\mathbb{Z}/n\mathbb{Z}$


```
\mathbb{Z}/n\mathbb{Z} = \{[0], [1], \dots, [n-1]\} wobei
[0] = \{0, n, -n, 2n, -2n, \dots\}
[1] = \{1, n+1, -n+1, 2n+1, -2n+1, \dots\}
```


Gruppen

41/182 WS 22/23 Jonatan Ziegler: LA 1 Info KIT

Verknüpfung (binäre Operation)

$$*: M \times M \to M$$

Mögliche Eigenschaften:

assoziativ
$$(x*y)*z = x*(y*z)$$

kommutativ $x*y = y*x$

Bsp:

- \blacksquare +, · auf \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R}
- lacksquare auf $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$
- \blacksquare : auf \mathbb{Q}, \mathbb{R} ?

Wichtig

Immer zeigen, dass $a * b \in M$!

Halbgruppen

Gruppe (S, *)

Monoid (S, *)

Halbgruppe (S, *)

- $(1) *: S \times S \to S \quad (a * b \in$ $S \quad \forall a, b \in S$
- (2) * assoziativ

(3) \exists Neutrales Element $e \in S$: $x * e = e * x = x \quad (\forall x \in S)$

(4) $\forall x \in S \exists$ Inverses Element $y = x^{-1} \in S$: x * y = y * x = e

Weiteres

Sei S Monoid.

- lacksquare S^{\times} **Einheitengruppe** aller invertierbaren Elemente
- Abelsche Gruppe (G, *): \iff G Gruppe und * kommutativ

Halbgruppe	Monoid	Gruppe
		8
		8
		8
8	8	8
	8	8
	8	8
		8
	♥♥♥♥♥♥	

Symmetrische Gruppe

Sei X Menge.

- **Symmetrische Gruppe** $S(X) := (X^X, \circ)^{\times} = (\{f : X \to X \mid f \text{ bijektiv}\}, \circ)$
- $\bullet \quad \mathsf{F\"{u}r} \ X = \{1, \dots, n\} : \mathcal{S}(n) := \mathcal{S}(X) \quad (n \in \mathbb{N})$
- Permutationen $\sigma \in \mathcal{S}(n)$: $\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$

Untergruppen

47/182 WS 22/23 Jonatan Ziegler: LA 1 Info

Erinnerung: Gruppen

Gruppe (S, *)

Monoid (S, *)

Halbgruppe (S, *)

- $(1) *: S \times S \to S \quad (a * b \in$ $S \quad \forall a, b \in S$
- (2) * assoziativ

(3) \exists Neutrales Element $e \in S$: $x * e = e * x = x \quad (\forall x \in S)$

(4) $\forall x \in S \exists$ Inverses Element $y = x^{-1} \in S$: x * y = y * x = e

Untergruppe

Sei (G, *) Gruppe

Gruppe (H, *) Untergruppe von $(G, *) : \iff H \subseteq G$.

Untergruppe (H, *)

- $e_G \in H$
- $g * h \in H \quad (\forall g, h \in H)$
- $g^{-1} \in H \quad (\forall g \in H)$

Homomorphismen

50/182 WS 22/23 Jonatan Ziegler: LA 1 Info KIT

Gruppenhomomorphismen

"Strukturerhaltende Abbildungen"

Seien $(G,*),(H,\bullet)$ Gruppen.

Gruppenhomomorphismus $f:G\to H\in \mathsf{Hom}(G,H)$

$$f(x * y) = f(x) \bullet f(y) \quad (\forall x, y \in G)$$

Eigenschaften

Sei $f \in \mathsf{Hom}(G, H)$

- \bullet $f(e_G) = e_h$
- $f(g^{-1}) = f(g)^{-1}$
- $lackbox{U}$ UGR von $G \implies f(U)$ UGR H
- f injektiv \iff Kern $f := f^{-1}(\{e_H\}) = \{e_G\}$

Kern

Sei $f \in Hom(G, H)$

"Alle Elemente aus G die auf e_H abgebildet werden"

$$Kern f := f^{-1}(\{e_H\}) = \{g \in G : f(g) = e_H\}$$

Der Kern ist eine Untergruppe von G.

Homomorphismen

Ringe

55/182 WS 22/23 Jonatan Ziegler: LA 1 Info KIT

Errinnerung: Gruppe

Gruppe (S, *)

Monoid (S,*)

Halbgruppe (S, *)

- $(1) *: S \times S \to S \quad (a * b \in$ $S \quad \forall a, b \in S$
- (2) * assoziativ
- **(4)** $\forall x \in S \exists$ Inverses Element $y = x^{-1} \in S$: x * y = y * x = e

(3) \exists Neutrales Element $e \in S$: $x * e = e * x = x \quad (\forall x \in S)$

56/182 WS 22/23 Jonatan Ziegler: LA 1 Info

Ring

$$(R,+,\cdot)$$

- (1) (R, +) ist abelsche Gruppe (mit neutralem Element 0_R)
- (2) (R, \cdot) ist Monoid (mit neutralem Element 1_R)
- $x \cdot (y+z) = (x \cdot y) + (x \cdot z)$ (3) Distributivgesetze $\forall x, y, z \in R$: $(y+z) \cdot x = (y \cdot x) + (z \cdot x)$

R kommutativ : \iff · kommutativ

Aufgabe: Ringe?

$$(\mathbb{Z}, +, \cdot) \qquad (\mathbb{Z}, +, \cdot) \qquad (\{a + \sqrt{2}b \mid a, b \in \mathbb{Z}\}, +, \cdot) \qquad (\{a + \frac{1}{2}b \mid a, b \in \mathbb{Z}\}, +, \cdot) \qquad (\mathbb{R}_{>0}, \cdot, (a, b) \mapsto a^b) \qquad (\{0\}, +, \cdot) \qquad (\{0\}$$

 $(\{aX^2 + bX + c \mid a, b, c \in \mathbb{R}\}, +, \cdot)$

Ringhomomorphismus

$$(R, +_R, \cdot_R), (S, +_S, \cdot_s)$$
 Ringe

Ringhomomorphismus $\Phi: R \to S$

 $\forall x, y \in R$:

- $\Phi(x +_R y) = \Phi(x) +_S \Phi(y)$
- $\Phi(x \cdot_R y) = \Phi(x) \cdot_S \Phi(y)$
- $\Phi(1_R) = 1_S$

Kern $\Phi := \Phi^{-1}(\{0_S\})$

Homomorphismen

60/182 WS 22/23 Jonatan Ziegler: LA 1 Info

RSA-Verschlüsselung nicht Klausurrelevant

61/182 WS 22/23 Jonatan Ziegler: LA 1 Info

RSA-Verschlüsselung nicht Klausurrelevant

- ① Wähle Primzahlen $p \neq q \in \mathbb{N}$ und $e \in \mathbb{N}$ zu (p-1)(q-1) teilerfremd.
- ② Veröffentliche $N:=pq,\ e$ (Public Key), berechne f sodass $f\cdot e\equiv 1 \bmod (p-1)(q-1)$ (Private Key)
- 3 Andere Sender kodieren Nachricht als $a\in \mathbb{Z}/N\mathbb{Z}$ und verschlüsseln als $m:=a^e\in \mathbb{Z}/N\mathbb{Z}$
- **4** Ich **Empfänger** bekomme m und entschlüssele $a=m^f\in\mathbb{Z}/N\mathbb{Z}$

Körper

63/182 WS 22/23 Jonatan Ziegler: LA 1 Info

Errinnerung: Ring

$$(R,+,\cdot)$$

- (1) (R, +) ist abelsche Gruppe (mit neutralem Element 0_R)
- (2) (R, \cdot) ist Monoid (mit neutralem Element 1_R)
- $x \cdot (y+z) = (x \cdot y) + (x \cdot z)$ (3) Distributivgesetze $\forall x, y, z \in R$: $(y+z) \cdot x = (y \cdot x) + (z \cdot x)$

R **kommutativ**: \iff · kommutativ

Körper (Field)

$$(K,+,\cdot)$$

- (1) (K,+) ist abelsche Gruppe
- (2) $(K \setminus \{0_K\}, \cdot)$ ist abelsche Gruppe
- **Distributivgesetz** $\forall x, y, z \in K$: $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$

Alternativ:

$$(K,+,\cdot) \text{ ist Ring mit } K^\times = K \backslash \{0_K\}$$

Wichtige Körper

- Q Rationalen Zahlen
- \mathbb{R} Reellen Zahlen
- \mathbb{C} Komplexen Zahlen

 $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}, \ p \in \mathbb{N}$ prim Restklassenkörper

Polynomring

67/182 WS 22/23 Jonatan Ziegler: LA 1 Info

Polynome

kommutativer Ring R

$$p = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0 \in R[X]$$

$$a_i \in R \quad (i \in \{0, \dots, n\}, a_n \neq 0, n \in \mathbb{N}_0)$$

- grad p = n (grad $p = -\infty$ falls p = 0)
- lacktriangleq R[X] ist Ring und R-Algebra falls R Körper
- Alternative Vorstellung: endliche Folge an Koeffizienten
- Einsetzabbildung: $f \in R[X] \mapsto f : R \to R$ ersetzen von X durch ein Element aus R

Nullstellen

Nullstellen von
$$f \in R$$
: $\{x \in R \mid f(x) = 0\}$

Zerlegung in Linearfaktoren:

$$f = (X - x_0) \cdot p$$
 $p \in R[X], x_0$ Nullstelle

mögl. p erneut zerlegen...

Max. grad f Nullstellen \implies max. grad f Linearfaktoren (wenn nullteilerfrei)

Komplexe Zahlen

70/182 WS 22/23 Jonatan Ziegler: LA 1 Info

Komplexe Zahlen $\mathbb C$

$$\mathbb{C}:=\{a+bi\mid a,b\in\mathbb{R}\}=\mathbb{R}+i\mathbb{R}\cong\mathbb{R}^2$$
 i imaginäre Einheit mit $i^2=-1$

Sei $w=a+bi, z=c+di\in\mathbb{C}$

- w + z = (a + bi) + (c + di) := (a + c) + (b + d)i
- \blacksquare ($\mathbb{C},+,\cdot$) ist Körper

Vorstellung

$$a := 2 + i$$
$$b := \frac{3}{2}i$$

$$a+b=2+\frac{5}{2}i$$

$$a \cdot b = -\frac{3}{2} + 3i$$

Weitere Operationen

Sei
$$z = a + bi \in \mathbb{C}$$

- **Realteil** Re z = a
- Imaginärteil Im $z = b \in \mathbb{R}$
- **komplex Konjugierte** $\bar{z} := a bi$
- Betrag $|z| := \sqrt{a^2 + b^2} = \sqrt{z\overline{z}}$ (Radius)
- Keine Ordnung (≤)
- mehrere Wurzeln (z.B. $1 = 1^4 = (-1)^4 = i^4 = (-i)^4$)

Polarkoordinaten

$$w = x + iy = r \cdot (\cos \phi + i\sin \phi) = re^{i\phi}$$

Additionstheoreme

$$\sin(x \pm y) = \sin x \cdot \cos y \pm \cos x \cdot \sin y$$
$$\cos(x \pm y) = \cos x \cdot \cos y \mp \sin x \cdot \sin y$$

LGS

76/182 WS 22/23 Jonatan Ziegler: LA 1 Info

LGS

p Gleichungen, q Unbekannte x_i

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1q}x_q = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \cdots + a_{2q}x_q = b_2$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{p1}x_1 + a_{p2}x_2 + \cdots + a_{pq}x_q = b_p$$

$$a_{ij}, b_i \in \mathbb{R} \quad (i \in \{1, \dots, p\}, j \in \{1, \dots, q\})$$

Merkregel für Indizes

Zeile (Gleichung) zuerst, Spalte (Unbekannte) später

Homogene LGS

Homogen wenn $\forall i: b_i = 0$

Matrizen

78/182 WS 22/23 Jonatan Ziegler: LA 1 Info

Matrix

Wichtigen Daten eines LGS

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1q} \\ a_{21} & a_{22} & \cdots & a_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pq} \end{pmatrix} = (a_{ij})_{i,j} \in R^{p \times q} \quad a_{ij} \in R$$

Merkregel für Indizes

Zeile zuerst, Spalte später

Rechnen mit Matrizen

$$A = (a_{ij})_{i,j}, B = (b_{ij})_{i,j} \in R^{p \times q} \quad C = (c_{jk})_{j,k} \in R^{q \times r}$$

$$A+B = (a_{ij})_{i,j} + (b_{ij})_{i,j} = (a_{ij}+b_{ij})_{i,j}$$

$$\lambda A = \lambda \cdot (a_{ij})_{i,j} = (\lambda a_{ij})_{i,j} \qquad \qquad \lambda \in R$$
 transponiert: $A^{\top} = (a_{ij})_{i,j}^{\top} = (a_{ji})_{i,j} \in R^{q \times p}$ gespiegelt
$$A \cdot C = (a_{ij})_{i,j} \cdot (c_{jk})_{i,k} = (\sum_{i=1}^q a_{ij}c_{jk})_{i,k} \in R^{p \times r}$$
 Spalten A = Zeilen C

LGS und Matrizen

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1q} \\ a_{21} & a_{22} & \cdots & a_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pq} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_q \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_p \end{pmatrix}$$

$$Ax = b$$

$$(\lambda A)^{\top} = \lambda A^{\top} \quad A \in \mathbb{R}^{m \times n}, \lambda \in \mathbb{R}$$
$$(A+B)^{\top} = A^{\top} + B^{\top} \quad A, B \in \mathbb{R}^{m \times n}$$
$$(AB)^{\top} = B^{\top} A^{\top} \quad A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times r}$$
$$(A^{\top})^{\top} = A \quad A \in \mathbb{R}^{m \times n}$$

Achtung!

$$AB \neq BA$$

Invertierbare Matrizen

83/182 WS 22/23 Jonatan Ziegler: LA 1 Info KIT

Inverse Matrix

Quadratische Matrizen bilden Ring, aber keinen Körper

$$A \in R^{p \times p}$$
 invertierbar oder regulär $\iff \exists B \in R^{p \times p} : AB = BA = I_p$
$$GL_p(R) \text{ invertierbare Matrizen aus } R^{p \times p}$$

Kriterien für Invertierbarkeit

Sei $A \in K^{n \times n}$, $n \in \mathbb{N}$.

Folgende Aussagen sind Äquivalent

- A ist invertierbar
- $\blacksquare A^{\top}$ ist invertierbar
- $\blacksquare \exists B \in K^{n \times n} : AB = \mathbb{K}_n$
- $\ker A = \{0\}$
- $ightharpoonup \operatorname{rg} A = n$

- $lackbox{} \varphi_A: K^{n\times n} \to K^{n\times n}, x \mapsto Ax \text{ ist injektiv}$
- $lackbox{} \varphi_A: K^{n imes n} o K^{n imes n}, x \mapsto Ax ext{ ist surjektiv}$
- $lackbox{} \varphi_A: K^{n\times n} \to K^{n\times n}, x \mapsto Ax \text{ ist bijektiv}$

Besondere Matrizen

Elementarmatrizen
$$E_{kl} = \begin{pmatrix} 1 & \text{falls } i = k \land j = l \\ 0 & \text{sonst} \end{pmatrix}_{i,j}$$
 i.A. **nicht** invertierbar

Diagonalmatrizen
$$\operatorname{diag}(a_1,\ldots,a_p) = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & 0 & \ddots & 0 \\ 0 & 0 & \cdots & a_a \end{pmatrix}$$
 invertierbar, wenn a_1,\ldots,a_p invertierbar

Gauß-Algorithmus

87/182 WS 22/23 Jonatan Ziegler: LA 1 Info KIT

Gauß-Algorithmus

Eingabe $Ax = b \implies (A|b)$ über Ring R

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1q} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2q} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pq} & b_p \end{pmatrix} \begin{pmatrix} 1 \\ b_2 \\ \vdots \\ b_p \end{pmatrix} \begin{pmatrix} 1 \\ (i) \\ (p) \end{pmatrix}$$

Erlaubte Operationen

- Zeile (i) $s \in R$ mal auf Zeile (j) addieren
- Zeile (i) mit $s \in R^{\times}$ skalieren
- Zeile (i) und (j) vertauschen

Optimale Form

$$\begin{pmatrix} 1 & 0 & \cdots & 0 & b'_1 \\ 0 & 1 & \cdots & 0 & b'_2 \\ \vdots & & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & b'_p \end{pmatrix}$$

Ergebnis

$$x_1 = b'_1, \ x_2 = b'_2, \ \dots, \ x_p = b'_p$$

Vorgehen

Spalte für Spalte in gewünschte Form bringen, dazu im k-ten Durchlauf:

- 1 Zeile (k) mit $\frac{1}{a_{kk}}$ skalieren
- 2 Auf alle andern Zeilen $(j) -a_{jk}$ mal Zeile (k) addieren

Probleme

 a_{kk} nicht invertierbar (= 0) \implies wenn möglich, mit Zeile weiter unten tauschen, sonst aktuelle Spalte ignorieren und fortsetzen

keine weitere Zeile übrig \Longrightarrow **fertig** (aber noch nicht gewünsch-

te Form)

Gauß-Normalform

$$\begin{pmatrix} 0 & 1 & 0 & * & 0 & * & | & * \\ 0 & 0 & 1 & * & 0 & * & | & * \\ 0 & 0 & 0 & 0 & 1 & * & | & * \\ 0 & 0 & 0 & 0 & 0 & 0 & | & * \end{pmatrix}$$

Anzahl Lösungen

In Gauß-Normalform:

keine Lösung Zeile $(0 \cdots 0 | b \neq 0)$

eine Lösung Matrix in "optimaler Form" (S. 88)

manche Spalten können nicht "aufgelöst" werden mehrere Lösungen

(ohne andere zu zerstören)

Ablesen mehrerer Lösungen – eine Lösung

Eine Lösung

blaue $x_j = 0$ ("falsche Spalten") restliche x_j ablesen (b_i' in entsprechender Zeile)

$$\implies x_0 = \begin{pmatrix} b_1' \\ b_2' \\ 0 \\ b_3' \\ \vdots \\ b_r' \\ 0 \end{pmatrix}$$

Ablesen mehrerer Lösungen – alle homogenen Lösungen

KIT

Fundamentallösung $F^{(\cdot)}$ pro Spalte k:

Setze $x_k = 1$, für andere Spalten j: $x_i = 0$

-1-mal durch **1** markierter Eintrag in Spalte k

$$\implies F^{(1)} = \begin{pmatrix} -c_1 \\ -c_2 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, F^{(2)} = \begin{pmatrix} -d_1 \\ -d_2 \\ 0 \\ -d_3 \\ \vdots \\ -d_r \\ 1 \end{pmatrix}$$

WS 22/23

$$\mathcal{L} = \{ x_0 + s \cdot F^{(1)} + t \cdot F^{(2)} + \dots \mid s, t, \dots \in K \}$$

$$\begin{pmatrix} 1 & 2 & | & 0 \\ & & 1 & | & 0 \end{pmatrix} \qquad \mathcal{L} = LH(\begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix})$$

$$\begin{pmatrix} 1 & | & 2 \\ | & 0 \end{pmatrix} \qquad \mathcal{L} = \{2\}$$

$$\begin{pmatrix} 1 & 3 & | & 1 \\ & 1 & 2 & | & 1 \\ & & & | & 1 \end{pmatrix} \qquad \mathcal{L} = \emptyset$$

$$\begin{pmatrix} 1 & 3 & | & 2 \\ & 1 & 2 & | & 1 \\ & & & | & 0 \end{pmatrix} \qquad \mathcal{L} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + LH(\begin{pmatrix} -3 \\ -2 \\ 1 \end{pmatrix})$$

$$\begin{pmatrix} 1 & 1 & 2 & | & -1 \\ & 1 & 2 & | & 1 \end{pmatrix} \qquad \mathcal{L} = \begin{pmatrix} -1 & 0 & 1 & 0 \end{pmatrix}^{\top} + LH(\begin{pmatrix} -1 & 1 & 0 & 0 \end{pmatrix}^{\top}, \begin{pmatrix} -2 & 0 & -2 & 1 \end{pmatrix}^{\top})$$

Begriffe

$$\begin{pmatrix} 1 & 0 & c_1 & 0 & \cdots & 0 & d_1 & b'_1 \\ 0 & 1 & c_2 & 0 & \cdots & 0 & d_2 & b'_2 \\ 0 & 0 & 0 & 1 & \ddots & 0 & d_3 & b'_3 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & d_r & b'_r \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \end{pmatrix}$$

Rang

Anzahl der Stufen (1en)

Stufenindizes

Spaltennummern der 1en

Fundamentallösungen $F^{(\cdot)}$ siehe vorhin

Eingeschaften des Rang

Sei
$$A \in \mathbb{R}^{p \times q}$$
, $\Phi_A : \mathbb{R}^q \to \mathbb{R}^p$, $x \mapsto Ax$.

Rang
$$A = \dim \text{Bild } A = \dim \{Ax \mid x \in R^q\}$$

LGS
$$Ax = b$$
 keine Lösung \iff Rang $(A) \neq$ Rang $(A|b)$

Anzahl Fundamentallösungen
$$= q - \text{Rang}(A)$$

$$\Phi_A$$
 injektiv \iff Rang $(A) = q$

$$\Phi_A$$
 surjektiv \iff Rang $(A) = p$

$$B \in R^{p \times p}$$
 invertierbar \iff Rang $(B) = p$

Invertieren einer Matrix

Mit Gauß-Verfahren (I Einheitsmatrix):

$$(A|I) \leadsto (I|X) \implies X = A^{-1}$$

Vektorraum

Erinnerung: Körper

$$(K,+,\cdot)$$

- (L,+) ist abelsche Gruppe
- **2** $(K \setminus \{0_K\}, \cdot)$ ist abelsche Gruppe
- **3** Distributivgesetz $\forall x, y, z \in K: \quad x \cdot (y+z) = (x \cdot y) + (x \cdot z)$

Alternativ:

$$(K,+,\cdot)$$
 ist Ring mit $K^{\times}=K\backslash\{0_K\}$

Vektorraum

V K-Vektorraum (K-VR)

- K Körper
- \bullet (V, +) abelsche Gruppe
- Skalarmultiplikation

$$\cdot: K \times V \to V$$

Mit $(u, v \in V, \lambda, \mu \in K)$:

- $1_K \cdot v = v$

- $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$

Untervektorraum

Sei V K-VR, $U \subset V$ Untervektorraum von V:

U ist K-VR mit selber Verknüpfung und Skalarmultiplikation.

Untervektorraumkriterium

- $0 \in U$
- $v + w \in U \quad (v, w \in U)$

Aufgabe: Vektorraum?

K Körper, $n, m \in \mathbb{N}$, (als K-VR, mit komponentenweise Addition, Skalarmult.)

- $\sim K^n$
- $K \times \{1\}$
- \swarrow $K^{n\times m}$
- **8**
- **②** {0}
- $\mathbb{Q}^{n\times n}$ als \mathbb{R} -VR

- $K^K := \{f \mid f : K \to K\}$ punktweise Addition, Skalarmult.
- $igcup \mathbb{C}^n$ als $\mathbb{R} ext{-VR}$
- $\operatorname{\mathsf{GL}}_n(K)$ (invertierbare Matrizen)

Lineare Abbildungen

Lineare Abbildungen aka. Vektorraumhomomorphismen

Sei V, W K-VR

K-lineare Abbildung $\Phi: V \to W \in \mathsf{Hom}_K(V, W)$

- $\Phi(x+y) = \Phi(x) + \Phi(y) \quad (\forall x, y \in V)$
- $\Phi(\lambda x) = \lambda \Phi(x) \quad (\forall x \in V, \lambda \in K)$

Homomorphismen

107/182 WS 22/23 Jonatan Ziegler: LA 1 Info KIT

Aufgabe: Lineare Abbildung?

Über Körper \mathbb{R} wenn nicht anders angegeben.

$$\checkmark$$
 $K^m \to K^n$

$$\checkmark K^m \to K^n, \qquad x \mapsto Ax \quad A \in K^{n \times m}$$

Körper
$$K$$

$$\mathbb{R} \to \mathbb{R}$$
,

$$x \mapsto 2x + 1$$

$$\mathbb{R} \to \mathbb{R}, \qquad x \mapsto x^3$$

$$\mathbf{Q} \quad \mathbb{R}^{\mathbb{R}} \to \mathbb{R},$$

$$f \mapsto f(1)$$

$$\mathbb{R}^n \to \mathbb{R}$$
,

$$(x_i)_{1 \le i \le n} \mapsto \max_{1 \le i \le n} x_i \quad (n \in \mathbb{N})$$

$$C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R}), \quad f \mapsto f'$$

$$f \mapsto f'$$

Körper $\mathbb{Z}/3\mathbb{Z}$

Weiteres

Sei K Körper, V, W K-VR, $\Phi \in \mathsf{Hom}_K(V, W)$.

Kern ⊕

$$\mathsf{Kern}(\Phi) := \{ v \in V \mid \Phi(v) = 0 \}$$

 $Kern(\Phi)$ ist Untervektorraum

$$Kern(\Phi) = \{0\} \iff \Phi \text{ injektiv}$$

$\mathsf{Hom}_K(V,W)$ als VR

 $\mathsf{Hom}_K(V,W)$ ist selbst **Vektorraum**

$$\mathsf{Hom}_K(K^p,K^q)\cong K^{q\times p}$$

Basen von VR

Erinnerung: Vektorraum

V K-Vektorraum (K-VR)

- K Körper
- \bullet (V, +) abelsche Gruppe
- Skalarmultiplikation

$$\cdot: K \times V \to V$$

Mit $(u, v \in V, \lambda, \mu \in K)$:

- $1_K \cdot v = v$

- $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$

Linearkombinationen

KIT

Sei
$$V$$
 K -VR, $M\subseteq V$
Sein $n\in\mathbb{N},\ v_1,\ldots,v_n\in M,\ \lambda_1,\ldots,\lambda_n\in K$

Linearkombination
$$\sum_{i=1}^{n} \lambda_i \cdot v_i \in V$$

Achtung!

Linearkombinationen werden immer nur aus endlich vielen Vektoren gebildet.

Lineare Hülle

Sei V K-VR, $M \subseteq V$.

Lineare Hülle

 $LH(M) := \{\sum_{i=1}^n \lambda_i, v_i \mid n \in \mathbb{N}_0, v \in M, \lambda_i \in K(i \in \{,..,n\})\}$ ="Menge aller Linearkombinationen aus M"

- \blacksquare LH(M) ist der kleinste **Untervektorraum**, der M enthält
- lacktriangleq M heißt Erzeugendensystem von LH(M)

Kombinieren von UVR

VK-VR U, W < V

- $U \cap W$ ist K-VR
- Summe: $U + W := LH(U \cup W) = \{u + w \mid u \in U, w \in W\}$ ist K-VR

ACHTUNG!

 $U \cup W$ ist i.A. **kein** VR!

Basis

V K-VR

$$B \subseteq V$$
 Basis

- 1 V = LH(B)
- 2 jedes $v \in V$ lässt sich eindeutig durch B darstellen (\Longrightarrow linear unabhängig)

Lineare Unabhänigkeit

Wann ist die Darstellung eindeutig?

$$V$$
 K -VR, $M = \{m_1, \dots, m_n\} \subseteq V$

M linear unabhänig

$$\sum_{i=1}^{n} \lambda_i m_i = 0 \iff \forall i : \lambda_i = 0 \quad (\lambda_i \in K)$$

 $(\Leftarrow trivial)$

KIT

Sei V K-VR Folgende Aussagen sind äquivalent ($B \subset V$):

- B ist Basis
- B ist maximal linear unabhänig
- *B* ist minimales Erzeugendensystem
- *B* ist linear unabhänig und Erzeugendensystem

Existenz einer Basis (ZFC)

- Jeder Vektorraum besitzt eine Basis
- Jede linear unabhänige Menge lässt sich zu einer Basis erweitern
- Jedes Erzeugendensystem lässt sich zu einer Basis reduzieren
- Jede Basis hat gleich viele Elemente

Dimension

B Basis von V K-VR

Dimension
$$dim(V) = |B|$$

Monotonie der Dimension

Sei U UVR von V, es gilt:

- lacksquare $\dim(U) \leq \dim(V)$
- \bullet dim $(U) = \dim(V) \iff U = V$

Achtung!

Die Dimension ist abhängig vom Körper des VR!

Isomorphismen von Basen

KIT

Seien V, W K-VR, $\Phi \in \text{Hom}(V, W)$.

Es gilt:

- $M \subseteq V$ Erzeugendensystem von V, Φ surjektiv $\Longrightarrow \Phi(M)$ Erzeugendensystem
- $lacktriangleq L \subseteq V$ linear Unabhäning, Φ injektiv $\implies \Phi(L)$ linear Unabhäning
- $B \subseteq V$ Basis von V, Φ bijektiv $\implies \Phi(B)$ Basis von W

Koordinatendarstellung

Sei V endl. dim. K-VR

$$V \cong K^{\dim V}$$

Durch Wahl einer Basis $B = b_1, \ldots, b_n$:

Isomorphismus
$$\Lambda_B: K^n \to V: \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \mapsto \sum_{i=1}^n \lambda_i b_i$$

Interessant für "komische" Vektorräume

Summe von VR

Direkte Summe

Sei U, W UVR von V, V K-VR

$$U \oplus W = U + W \iff U \cap W = \{0\}$$

Darstellung von $v \in U \oplus W$ als $v = u + w, u \in U, w \in W$ eindeutig.

Achtung!

Bei der direkten Summe **mehrerer** UVR gilt das Kriterium nicht mehr so einfach. Stattdessen ist folgendes nötig:

$$\sum_{i=1}^{m} U_i = \bigoplus_{i=1}^{m} U_i$$

$$\iff \forall j \in \{1, \dots, m\} : U_j \cap \sum_{i=1, i \neq j}^m U_i = \{0\}$$

Dimensions formeln

$$U, W < V, V K$$
-VR

$$\dim(U+W) = \dim(U) + \dim(W) - \dim(U \cap W)$$

Komplement

Sein
$$U < V$$
, $V K$ -VR

W ist Komplement von
$$U \iff U \oplus W = V$$

$$\dim(U) + \dim(W) = \dim(V)$$

Achtung!

Das Komplement ist i.A. nicht eindeutig!

Rechentechniken VR

Häufige Aufgabe

Gegeben:

$$U = \left\langle \begin{pmatrix} 1\\1\\2\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3\\2 \end{pmatrix}, \begin{pmatrix} 2\\-1\\1\\-1 \end{pmatrix} \right\rangle, W = \left\langle \begin{pmatrix} 1\\2\\1\\4 \end{pmatrix}, \begin{pmatrix} 0\\1\\2\\2 \end{pmatrix}, \begin{pmatrix} 2\\3\\4\\6 \end{pmatrix} \right\rangle$$

Gesucht:

Basis und Dimension von $U, W, U \cap W, U + W$

(Klausur WS 16/17)

lineare Unabhänigkeit, Dimension, Basis

Option 1: Spalten

Löse LGS
$$\lambda_1 v_1 + \cdots + \lambda_m v_m = 0$$

$$(v_1 \ldots v_m \mid 0) \leadsto \mathsf{GNF}$$

Option 2: Zeilen

Gauß macht Linearkombinationen

$$\begin{pmatrix} v_1^\top \\ \vdots \\ v_m^\top \end{pmatrix} \leadsto \mathsf{GNF}$$

 $\begin{array}{c} \textbf{linear unabhänig} \iff \mathsf{Rang} = m \\ \textbf{Dimension} = \mathsf{Rang} \end{array}$

Basis: Vektoren mit 1en in jew. GNF Spalte

Extra: lin. Abhängigkeiten unter Vektoren

Basis: Zeilen $\neq 0$

Extra: besonders einfache Basis

Summe, Schnitt, Komplement

Summe

(vereinfachte) Spannvektoren vereinigen, dann vorherige Folie

Schnitt
$$\langle v_1,\ldots,v_m\rangle\cap\langle w_1,\ldots,w_n\rangle$$

Ansatz: $\lambda_1v_1+\ldots\lambda_mv_m=\mu_1w_1+\mu_nw_n$
 $\iff \lambda_1v_1+\ldots\lambda_mv_m-\mu_1w_1-\mu_nw_n=0$
LGS lösen, Lösung für λ_i in $\lambda_1v_1+\ldots\lambda_mv_m$ einsetzen, vereinfachen

Komplement

Einfache Basis mit Standartbasisvektoren erweitern

Faktorraum

130/182 WS 22/23 Jonatan Ziegler: LA 1 Info

Erinnerung: Äquivalenzrelation

- \bigcirc reflexiv xRx
- 2 symmetrisch $xRy \iff yRx$
- (3) transitiv $xRy \wedge yRz \implies xRz$

Bsp:

- "="
- "Weglassen von Informationen" (Gleiches Bild)
- Kongruenz modulo

Sei V K-VR, U UVR von V

$$v \sim w : \iff v - w \in U$$

 \sim ist Äquivalenzrelation

Faktorraum $V/U:=V/\sim$ = Menge der ÄQ-Klassen von \sim

• V/U ist ein K-VR mit $[v] + [w] := [v + w], \ \lambda[v] := [\lambda v]$

Homomorphiesatz

KIT

 $\mathsf{Hom}(V,W) \ni \Phi: V \to W$

"Zwischenstufe" $V/{\sf Kern}\ \Phi$

$$\pi: V \to V/\mathsf{Kern}\ \Phi,\ v \mapsto [v]\ \mathsf{(surrj.)}$$

$$\tilde{\Phi}:V/{\sf Kern}\;\Phi\to W,\;[v]\mapsto\Phi(v)$$
 (inj.)

$$\Phi = \tilde{\Phi} \circ \pi$$

$$V/\mathsf{Kern}\ \Phi\cong\mathsf{Bild}\ \Phi:=\Phi(V)$$

Basis Faktorraum

Basis B_V von V mit Basis von U: $B_U = \{b_1, \dots, b_k\} \subseteq B_V$

$$B_V = \{\underbrace{b_1, \dots, b_k}_{B_U}, \underbrace{b_{k+1}, \dots, b_n}_{\text{wird zu Basis von }V/U}\}$$

Basis von
$$V/U$$
 $B_{V/U} = \{[b_{k+1}], \dots, [b_n]\}$

$$\dim V/U = \dim V - \dim U$$

Rang

Sei
$$\Phi \in \mathsf{Hom}(V,W)$$

Rang $\Phi := \dim \operatorname{Bild} \Phi$

 $\dim V = \operatorname{Rang} \Phi + \dim \operatorname{Kern} \Phi = \dim \operatorname{Bild} \Phi + \dim \operatorname{Kern} \Phi$

Lineare Fortsetzung

Lineare Fortsetzung

Sei V, W K-VR, B Basis von V

 $\Phi \in \operatorname{Hom}(V,W)$ ist durch $\Phi|_{B}$ eindeutig definiert

Dualraum nicht Klausurrelevant

138/182 WS 22/23 Jonatan Ziegler: LA 1 Info

Linearformen

Sei *V*, *W K*-VR, Erinnerung:

Hom(V, W) ist **Vektorraum**

• $W = K^1 = K$ ist auch K-VR

Elemente aus Hom(V, K) heißen **Linearformen**

Vorstellung

"Messwerkzeuge", um Vektoren zu messen

Dualraum

Sei V K-VR

 $V^* = \mathsf{Hom}(V, K)$ heißt **Dualraum** von V

Duale Basis

Sei
$$B_V = \{b_1, \dots, b_n\}$$
 Basis von V

Zu B_V duale Basis von V^* :

$$B_{V^*} = \{b_1^*, \dots, b_n^*\} \text{ mit } b_i^*(b_j) := \begin{cases} 1 & i = j \\ 0 & \text{sonst} \end{cases}$$

 b_i^* "misst" den b_i -Anteil eines Vektors zur Basis B_V

$$v = \sum_{i=1}^{n} b_i^*(v) \cdot b_i \quad (\forall v \in V)$$

Duale Abbildung

Seien V, W K-VR, $\Phi \in \mathsf{Hom}(V, W)$

Wie können wir "Messwerkzeuge" aus W^* in "Messwerkzeuge" in V^* umwandeln?

$$\Phi^*: W^* \to V^*, \alpha \mapsto \alpha \circ \Phi$$

142/182 WS 22/23

Bidualraum

Sei V K-VR. V^* ist VR.

$$(V^*)^* := V^{**}$$
 heißt **Bidualraum** von V

$$\beta \in V^{**} : \alpha = \underbrace{(v \mapsto \alpha(v))}_{\alpha} \mapsto \beta(\alpha)$$

"Messwerkzeuge", um "Messwerkzeuge" zu messen

Beispiel: $V = K^2$

$$B_V = \{(1,0), (0,1)\} \implies (x,y) \in V, \quad x,y \in K$$

$$B_{V^*} = \{(x, y) \mapsto x, (x, y) \mapsto y\} \implies (x, y) \mapsto ax + by \in V^*, \quad a, b \in K$$

$$B_{V^{**}} = \{((x,y) \mapsto ax + by) \mapsto a, ((x,y) \mapsto ax + by) \mapsto b\}$$

$$\implies ((x,y) \mapsto ax + by) \mapsto \alpha a + \beta b \in V^{**}, \quad \alpha, \beta \in K$$

Wie kann man "Messwerkzeuge" aus dem (Bi-)Dualraum herstellen?

Dualraum ($V \rightarrow V^*$)

Man muss eine **Basis ("Maßskala")** wählen, dann bekommt man ein "Messwerkzeug" **für jeden Basisvektor** (Duale Basis).

Bidualraum ($V \rightarrow V^{**}$)

Man kann sein "Messwerkzeug" messen/testen, indem man einen einen fixen

Referenz-Vektor wählt und schaut was darauf rauskommt.

Basiswechsel

146/182 WS 22/23 Jonatan Ziegler: LA 1 Info

Basisdarstellung

Sei V K-VR, $\mathsf{B} = (b_1, \ldots, b_n)$ geordnete Basis

- Basisdarstellung eindeutig $V \ni v = \sum_i \lambda_i b_i$
- Isomorphismus $(\cdot)_B: V \to K^n, v \mapsto (\lambda_1, \dots, \lambda_n) = (b_1^*(v), \dots, b_n^*(v))$ (also auch rückwärts)

Geordnete Basis

Mengen haben keine Reihenfolge. Für die Basisdarstellung ist diese jedoch wichtig.

Geordnete Basis $B = (b_1, \ldots, b_n)$ von $V \iff B = \{b_1, \ldots, b_n\}$ **Basis** von V

Abbildungsmatrix

Bekannt

$$\forall \Phi \in \mathsf{Hom}(K^n, K^m) \; \exists \mathbf{A} \in K^{m \times n} : \quad \Phi(v) = \mathbf{A} \cdot v \quad (v \in K^n)$$

Erweiterung

Sei V, W K-VR mit $\mathsf{B} = (b_1, \dots, b_n)$ Basis von V, $\mathsf{C} = (c_1, \dots, c_m)$ Basis von W

$$\forall \Phi \in \mathsf{Hom}(V, W) \; \exists M_{\mathsf{CB}}(\Phi) \in K^{m \times n} :$$
$$(\Phi(v))_{\mathsf{C}} = M_{\mathsf{CB}}(\Phi) \cdot (v)_{\mathsf{B}} \quad (v \in V)$$

Basiswechsel

Sei V K-VR mit $\mathsf{B} = (b_1, \dots, b_n)$, $\mathsf{C} = (c_1, \dots, c_n)$ Basis von V

Wie $(v)_B \rightsquigarrow (v)_C$?

$$(v)_{\mathsf{C}} = M_{\mathsf{CB}}(id_V) \cdot (v)_{\mathsf{B}} \quad (v \in V)$$

Hinweis

Die Indizes von M werden von **rechts nach links** gelesen (wie bei Verkettung). M_{CB} : von B nach C

Regeln

Sei V, W, T K-VR mit je B, C, F geordnete Basis

Sei $\Phi \in \mathsf{Hom}(V,W), \Psi \in \mathsf{Hom}(W,T)$

$$M_{\mathsf{FB}}(\Psi \circ \Phi) = M_{\mathsf{FC}}(\Psi) \cdot M_{\mathsf{CB}}(\Phi)$$

$$M_{\rm BC}(\Phi^{-1}) = M_{\rm CB}(\Phi)^{-1}$$

Konstruktion

KIT

Sei V, W K-VR mit $B = (b_1, \dots, b_n)$ geordnete Basis von V, C g. Basis von W

$$M_{\mathsf{CB}}(\Phi) = \left((\Phi(b_1))_{\mathsf{C}} | \cdots | (\Phi(b_n))_{\mathsf{C}} \right)$$

Trick für Basiswechselmatrix

Für $V = K^n$, E Standartbasis

$$M_{\mathsf{CB}}(id) = M_{\mathsf{CE}}(id) \cdot M_{\mathsf{EB}}(id) = M_{\mathsf{EC}}(id)^{-1} \cdot M_{\mathsf{EB}}(id)$$

mit $M_{\mathsf{EX}}(id) = (x_1 | \dots | x_n)$ (diese lassen sich am einfachsten bestimmen)

Äquivalenz von Matrizen

Sei $A, B \in K^{m \times n}$

A, B äquivalent

$$\exists T \in \mathsf{GL}_m(K), S \in \mathsf{GL}_n(K) : B = TAS$$

$$A, B$$
 äquivalent \iff Rang $A =$ Rang B

Affine Räume

153/182 WS 22/23 Jonatan Ziegler: LA 1 Info KIT

Affiner Unterraum

Affiner Unterraum

Sei U UVR, Fußpunkt $p \in \mathbb{R}^n$:

$$R = p + U := \{p + x \mid x \in U\}$$

"Verschobener Vektorraum"

Affine Kombinationen

Sein
$$n \in \mathbb{N}, v_1, \ldots, v_n \in \mathbb{R}^{\kappa}, \lambda_1, \ldots, \lambda_n \in \mathbb{R}$$

Affinkombination
$$\sum_{i=1}^{n} \lambda_1 v_1 \in V$$
 mit $\sum_{i=1}^{n} \lambda_i = 1$

Eingeschaften

Folgendes ist äquivalent:

- \blacksquare R ist affiner Unterraum von \mathbb{R}^n
- $ightharpoonup R = q + U ext{ mit } q \in \mathbb{R}^n$, $U ext{ } UVR$
- $ightharpoonup R
 eq \emptyset \text{ und } x + \lambda(y z) \in R \text{ für } x, y, z \in R, \ \lambda \in \mathbb{R}$
- $ightharpoonup R
 eq \emptyset$ und R ist abgeschlossen bzgl. Affinkombinationen

Algebren

Algebren

Sei K Körper.

$(A,+,ullet,\cdot)$ Algebra (assoziative Algebra mit Eins)

- $(A, +, \cdot)$ K-Vektorraum
- $(A, +, \bullet)$ Ring
- $(3) (\lambda \cdot a) \bullet b = a \bullet (\lambda \cdot b) = \lambda \cdot (a \bullet b) \quad (\forall \lambda \in K, a, b \in A)$

U.A. folgende Begriffe werden geerbt:

- Ring: kommutativ
- VR: Dimension
- VR und Ring: Unteralgebra, Algebra-Homom.

Quiz: Algebra?

Sei K Körper.

- $igotimes (K^{n\times m},+,((a_{ij}),(b_{ij}))\mapsto (a_{ij}b_{ij}),\mathsf{Skalar-}\cdot)$
- $(K^{n\times n}, +, Matrix-\cdot, Skalar-\cdot)$
- $(\mathbb{R}^3, +, Kreuzprodukt \times, Skalar-\cdot)$

Determinanten

160/182 WS 22/23 Jonatan Ziegler: LA 1 Info

Determinanten

Sei K Körper, $n \in \mathbb{N}$ $v_1, \ldots, v_n, w \in K^n, \alpha \in K$

Determinantenform $D: (K^n)^n \to K$

- 1 $D(e_1, \ldots, e_n) = 1$ $(e_i \text{ Standartbasisvektoren})$

KIT

Es gibt genau eine Determinantenform auf K^n

Eigenschaften

Sei D Determinantenform auf K^n $v_1, \ldots, v_n \in K^n$

- D ist multilinear (linear in jedem Argument)
- Linearkombinationen

$$D(v_1, \dots, v_{i-1}, v_i + \alpha v_j, v_{i+1}, \dots, v_n) = D(v_1, \dots, v_n) \quad (1 \le j \le n)$$

■ Vertauschen zweier Vektoren: $D(v_1, \ldots, v_i, \ldots, v_i, \ldots, v_n) = -D(v_1, \ldots, v_n)$

Sei
$$A = (v_1 | \dots | v_n) \in K^{n \times n}$$

$$\det A = D(v_1, \dots, v_n)$$

Sei $M, N \in K^{n \times n}$

- lacksquare det $M^{\top} = \det M$
- det $M \neq 0 \iff M \in GL_n(K)$ (invertierbar) Dann gilt: det $(M^{-1}) = (\det M)^{-1}$
- $\bullet \det(M \cdot N) = \det M \cdot \det N$

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc \quad (a, b, c, d \in K)$$

$$\det \begin{pmatrix} a_1 & * & \cdots & * \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & a_n \end{pmatrix} = a_1 \cdot \cdots \cdot a_n \quad (a_1, \dots, a_n \in K)$$

Seien $A, B \in K^{n \times n}$

$A \rightsquigarrow B$ mit Gaußoperation

Z1 +
$$\alpha$$
Z2 det $A = \det B$
 α Z det $A = \frac{1}{\alpha} \det B$

 $Z1 \leftrightarrow Z2 \quad \det A = -\det B$

Auf Zeilen und Spalten möglich!

Determinante berechnen - Entwickeln

Entwickeln nach der k-ten Zeile/Spalte $(A = (a_{ij})_{ij} \in K^{n \times n})$

$$\det A = \sum_{i=1}^{n} (-1)^{i+k} \cdot a_{ik} \cdot \det A_{ik} = \sum_{j=1}^{n} (-1)^{k+j} \cdot a_{kj} \cdot \det A_{kj} \quad (1 \le k \le n)$$

$$A_{ii} \in K^{n-1 \times n-1}$$

A ohne i-te Zeile und j-te Spalte

$$\begin{pmatrix} + & - & + & \cdots \\ - & + & - & \cdots \\ + & - & + & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & - \\ & & \cdots & - & + \end{pmatrix}$$

Determinante berechnen – Vorgehen

1 Solange wie möglich mit Gauß vereinfachen

Ziel: Dreiecksmatrix oder **Zeile/Spalte mit vielen Nullen** (Es sind auch **Spaltenoperationen** möglich)

- (2) Wenn nicht weiter möglich, nach passender Zeile/Spalte entwickeln
- 3 Wiederholen bis "Zielform" anwendbar

Cramersche Regel

Sei $A \in K^{n \times n}, n \in \mathbb{N}$.

Adjunkte A^{\sharp}

$$A^{\sharp} = (\alpha_{ij})_{1 \le i, j \le n}$$

mit $\alpha_{ij} = (-1)^{i+j} \det A_{ji}$ (Achtung! Indizes vertauscht), A_{ij} ist A ohne i-te Zeile und j-te Spalte.

Cramersche Regel

$$A^{-1} = \frac{1}{\det A} A^{\sharp}$$

Endomorphismen

170/182 WS 22/23 Jonatan Ziegler: LA 1 Info

Erinnerung: Äquivalenz von Matrizen

Sei $A, B \in K^{m \times n}$

A, B äquivalent

$$\exists T \in \mathsf{GL}_m(K), S \in \mathsf{GL}_n(K) : B = TAS$$

$$A, B$$
 äquivalent \iff Rang $A =$ Rang B

Ähnlichkeit von Matrizen

Sei $A, B \in K^{n \times n}$ (quadratisch)

A, B ähnlich

$$\exists S \in \mathsf{GL}_n(K) : B = SAS^{-1}$$

Ähnlichkeitsinvarianten

Ähnlich ⇒ "gleich"

- Rang
- Determinante
- Spur
- Spektrum (Eigenwerte)
- Charakteristisches Polynom

Achtung!

Definitionen

Spur

$$\operatorname{tr} A = \operatorname{Spur} A = \sum_{i=1}^{n} a_{ii} \quad (A = (a_{ij})_{ij} \in K^{n \times n})$$

Determinante Endomorphismus

 $\det \Phi := \det D_{BB}(\Phi) = \det D_{CC}(\Phi) \quad (\Phi \in \mathsf{Hom}(V, V), \ B, C \ \mathsf{Basis} \ \mathsf{von} \ V)$

Invarianter UVR

 $U \Phi$ -invariant $\iff \Phi(U) \subseteq U \quad (\Phi \in \mathsf{Hom}(V,V), U \leq V)$

Eigenräume

Eigen*

Sei $\Phi \in \mathsf{Hom}(V,V)$

```
v \in V \setminus \{0\} \ \text{Eigenvektor von} \ \Phi \qquad \Longleftrightarrow \ \Phi(v) = \lambda v \quad (\lambda \in K) \lambda \in K \ \text{heißt Eigenwert von} \ \Phi \qquad \Longleftrightarrow \ \exists \ \text{Eigenvektor} \ v \ \text{mit} \ \Phi(v) = \lambda v \text{Eigenraum Eig}(\Phi, \lambda) \qquad \text{Menge aller Eigenvektoren zum Eigenwert} \ \lambda \ \text{(und 0)} \text{Eig}(\Phi, \lambda) = \text{Kern}(\Phi - \lambda \cdot \text{Id}_V)
```

Menge aller **Eigenwerte**

Ebenfalls für quadratische Matrizen $A \in K^{n \times n}$ mit $\Phi_A : K^n \to K^n, x \mapsto Ax$

Spektrum Spec (Φ)

Eigenschaften von Eigenvektoren

- Summe von Eigenräumen ist direkt
- $|\operatorname{Spec}(\Phi, \lambda)| \leq \dim V \quad (\Phi \in \operatorname{Hom}(V, V))$
- Eigenvektoren zu unterschiedlichen Eigenwerten sind linear unabhänig

Charakteristisches Polynom

Sei $\Phi \in \text{Hom}(V, V)$, B Basis von V

Idee: Einfaches finden von Eigenwerten

$$\mathsf{CP}_{\Phi}(X) := \mathsf{det}(XI_n - D_{BB}(\Phi))$$

Unabhängig von gewählter Basis ${\it B}$

$$CP_{\Phi}(\lambda) = 0 \iff \lambda \text{ Eigenwert von } \Phi$$

Diagonalisierbarkeit

$\Phi \in \mathsf{Hom}(V,V)$ diagonalisierbar

- \exists Basis B sodass $D_{BB}(\Phi)$ in **Diagonalform** (falls dim $V < \infty$)
- lacktriangleq V hat **Basis aus Eigenvektoren** von Φ
- V ist Summe der Eigenräume
- Charakteristisches Polynom zerfällt in Linearfaktoren und geometrische und algebraische Vielfachheiten stimmen überein

Vielfachheiten

Sei $\Phi \in \text{Hom}(V, V), \ \lambda \in \text{Spec}(\Phi)$

geometrische Vielfachheit

$$\mu_g(\Phi,\lambda) := \dim(\mathsf{Eig}(\Phi,\lambda))$$

algebraische Vielfachheit

 $\mu_a(\Phi,\lambda) :=$ "Häufigkeit der Nullstelle λ in $CP_{\Phi}(X)$ "

Für $\lambda \in \operatorname{Spec}(\Phi)$ gilt: $1 \le \mu_q(\Phi, \lambda) \le \mu_a(\Phi, \lambda) \le \dim V \quad (\Phi \in \operatorname{Hom}(V, V))$

Satz von Cayley-Hamilton

Sei $\Phi \in \mathsf{Hom}(V,V)$

$$CP_{\Phi}(\Phi) = 0$$

Viel Freude beim Lernen und

Viel Erfolg bei der Klausur!