PRCMP – EXAME TEÓRICO – Época normal (versão online)

Data: 2021-02-11 Duração 45 minutos

NOTE BEM:

- Uma questão com uma resposta incorreta é classificada 1 valor.
- Uma questão com uma resposta incorreta é classificada com 0 valores.
- Uma questão com resposta é classificada com 0 valores.
- Dado o carácter online do exame, é admitida a consulta de bibliografia.

•	Seja responsavei e integro.
1.	O assembler tem como função □ traduzir um programa em assembly para linguagem-máquina. □ traduzir um programa em linguagem de alto-nível para linguagem-máquina. □ traduzir um programa em linguagem de alto-nível para assembly. □ interpretar e executar as instruções em assembly de um programa.
2.	O <i>linker</i> é um utilitário que
	 resolve todas as referências a símbolos, substituindo-as pelos seus endereços.
	☐ transforma as instruções em <i>assembly</i> para linguagem-máquina.
	☐ liga as instruções aos dados de um programa, em tempo de execução.
	☐ carrega um ficheiro executável para memória.
3.	De acordo com a arquitectura de Von Neumann
	o subsistema de entrada-saída (I/O) inclui todos os periféricos de
	entrada, periféricos de saída e o armazenamento em massa.
	armazenamento em massa.
	o subsistema de entrada-saída (I/O) inclui a memória principal.
	 o subsistema de memória é utilizado para guardar somente os dados dos programas.
4.	Relativamente à memória principal de um computador
	 uma operação de escrita elimina o valor anteriormente armazenado no endereço acedido.
	uma operação de leitura elimina o valor lido do endereço acedido.
	as operações de leitura e de escrita não são destrutivas.
	☐ as operações de leitura e de escrita são destrutivas.

5.		Um dos principais objetivos de um sistema operativo é			
		permitir às aplicações o acesso ao hardware exclusivamente através dos seus serviços.			
		permitir às aplicações coordenarem entre si a utilização dos recursos partilhados.			
		disponibilizar às aplicações uma interface que é específica à arquitetura do sistema.			
		permitir às aplicações o acesso direto ao hardware.			
6.	O prod	essamento por lotes (batch processing)			
		é caracterizado pelo tempo necessário para completar o lote de programas ser predominantemente determinado pelo tempo			
	П	necessário para realizar as operações de I/O. é apropriado para programas interativos.			
		necessita que o operador carregue manualmente cada programa, após o programa anterior terminar.			
		é caracterizado por uma boa utilização da capacidade de processamento.			
7.	Um pr	ocesso			
	=	é uma instância de um programa (ou parte de um programa) em execução.			
		é um espaço de endereçamento que contém exclusivamente as instruções de um programa.			
		é um espaço de endereçamento que contém exclusivamente os dados de um programa.			
		é uma estrutura lógica que contém os dados de controlo de um			
		programa necessários para o sistema operativo gerir os programas em execução.			
8.	Um sis	stema operativo multitarefa visa gerir a execução de processos de modo			
		maximizar a utilização do processador.			
		maximizar a utilização dos dispositivos de I/O.			
		maximizar a utilização de memória. minimizar o tempo utilizado nas operações de I/O.			

9. Num s	istema distribuído			
	múltiplos processadores partilham dispositivos através de um			
	barramento comum e comunicam entre si, mas cada processador tem a			
	sua memória privada.			
	múltiplos processadores partilham recursos através de um barramento comum.			
П	diversos computadores comunicam entre si e partilham recursos			
	através de uma rede de comunicação, cooperando para executar um programa.			
	vários computadores são ligados entre si através de uma rede local de			
	alto débito, sendo a computação gerida de forma centralizada.			
	ess Control Block (PCB) de um processo mantém o registo sobre			
	a identificação do processo, o estado do processador (aquando da			
	última comutação do processo) e informação de controlo do processo.			
	o estado do processador e informação de controlo do processo.			
	o estado do processo e identificação do sistema operativo em que o			
	processo está a correr.			
	identificação do processador e identificação do processo.			
11. No ciclo fetch-decode-execute				
	decode é a fase em que a unidade de controlo determina a operação realizar, a partir do opcode atual.			
	decode é a fase em que a unidade de controlo determina o endereço físico da RAM para executar uma operação de leitura.			
	fetch é a fase em que a unidade de controlo lê dados do programa a			
	partir da memória.			
	execute é a fase em que a unidade de controlo incrementa o program counter.			
	ica de swaping			
	permite transferir da memória principal para o armazenamento em			
	massa um processo (ou parte dele) que se encontre em estado Waiting.			
	permite retirar da CPU um processo para executar outro processo			
	Ready com maior prioridade.			
	permite retirar da CPU um processo que pediu uma operação de I/O,			
	para executar outro processo <i>Ready</i> .			
	permite transferir da memória principal para o armazenamento em			
	massa um processo (ou parte dele) que se encontre em estado <i>Ready</i> .			

13. Quando ocorre uma mudança de contexto		
 o SO salvaguarda o estado do processo em execução e o estado do processador. 		
☐ o SO salvaguarda somente o estado do processo em execução.		
☐ o SO salvaguarda somente o estado do processador.		
☐ o SO recupera o processo do armazenamento em massa para a		
memória principal.		
14. Num sistema com escalonamento sem preempção		
☐ o SO pode pausar a execução do processo na CPU para tratar uma		
interrupção de <i>hardware</i> .		
☐ um processo no estado <i>Running</i> pode passar para o estado <i>Ready</i> .		
☐ um processo no estado <i>Ready</i> pode passar para o estado <i>Waiting</i> .		
o SO pode interromper o processo em execução para executar outro)	
processo de maior prioridade.		
15. Os sistemas de tempo-real		
requerem que os resultados calculados sejam funcionalmente corre	ctos	
e disponibilizados dentro de prazos definidos.		
caracterizam-se pela elevada interatividade com o utilizador.		
implementam-se sobretudo em computadores de alto-desempenho		
são utilizados predominantemente em simulações (meteorologia,		
farmacêutica, etc.).		
16. Uma das contribuições principais para o surgimento de sistemas interativo foi	S	
o <i>terminal remoto</i> com ecrã e teclado.		
☐ a utilização de unidades de fita magnética como meio de		
armazenamento em massa.		
a adoção da arquitetura de Von Neumann.		
☐ o <i>monitor residente</i> , capaz de carregar-e-executar automaticamente		
diversos programas em sequência.		
17. Quando termina uma operação de I/O, o estado do processo que a invoco		
	u	
passa a ☐ Ready.		
,		
☐ Waiting.		
☐ Running.		
☐ Terminated.		
18. Sobre termos "multiprogramação" e "paralelismo"	-	
☐ é possível ter multiprogramação num computador com uma única C	۲U.	
☐ têm o mesmo significado.		
é possível ter paralelismo num computador com uma única CPU.		
é possível ter multiprogramação e paralelismo num computador cor	n	
uma única CPU.		

19. Num Sistema multiprogramado, o Sistema Operativo e responsavei pelo				
escalonamento do conjunto de processos ativos.				
	O escalonador de curto prazo determina qual o próximo processo a ser executado pelo processador.			
	O escalonador de longo prazo determina qual o próximo processo a ser executado pelo processador.			
	O escalonador de curto prazo determina quando um processo deve entrar para o conjunto de processos ativos.			
	O escalonador de longo prazo é executado muito frequentemente.			
20. Os periféricos de entrada e saída (I/O devices)				
	têm um controlador incorporado que opera o dispositivo autonomamente do processador.			
	são habitualmente tão rápidos quanto os processadores. são habitualmente tão rápidos quanto a memória. nunca podem comunicar diretamente com a memória.			
_				