Оптика ФМХФ МФТИ

4.4.1

Амплитудная дифракционная решетка

Егор Берсенев

1 Цель работы

Знакомство с настройкой и работой гониометра, определение спектральных характеристик амплитудной решетки.

2 Оборудование

Гониометр Г5, дифракционная решетка, ртутная лампа.

3 Теоретическое введение

Амплитудную решетку можно представить в виде непрозрачного экрана, в котором прорезано большое число N параллельных щелей — штрихов. Постоянство расстояний между штрихами d и ширина штриха b должны выдерживаться с большой точностью. При наблюдении спектра амплитуда и интенсивность световой волны определяются углом φ между нормалью к решетке и направлением дифрагировавших лучей. Будем считать, что амплитуды всех волн одинаковы, т.е. фиксирована амплитуда падающей волны и постоянна площадь всех штрихов. Интенсивность дифрагированного света для углов φ_m , при которых волны, приходящие в точку наблюдения от всех щелей оказываются в фазе:

$$d\sin\varphi_m = m\lambda\tag{1}$$

Величина m называется порядком спектра.

Угловая дисперсия $D(\lambda)$ характеризует угловое рассеяние между близкими спектральными линиями:

$$D(\lambda) = \frac{\mathrm{d}\varphi}{\mathrm{d}\lambda} \tag{2}$$

Для угловой дисперсии решетки получаем:

$$D(\lambda) = \frac{\mathrm{d}\varphi}{\mathrm{d}\lambda} = \frac{m}{\sqrt{d^2 - m^2 \lambda^2}} \tag{3}$$

С увеличением порядка спектра угловая дисперсия будет возрастать. Для малых углов дифракции угловая дисперсия пропорциональна порядку спектра: $D \simeq m/d$.

4 Ход работы

Проведем юстировку гониометра согласно инструкции на установке. Угол $\varphi_0 = 191^{\circ}13'3''$. Проведем измерения спектра ± 1 порядка. Знак минус у номера спектральной линии обозначает спектр -1 порядка.

Построим график $\sin \Delta \varphi(\lambda)$. По наклона графика оценим шаг решетки.

Егор Берсенев 1

Оптика ФМХФ МФТИ

таоинда т. спентр первого поридна						
λ_{th}	φ	$\varphi - \varphi_0$	$\sin\left(\varphi-\varphi_0\right)$	Яркость	Цвет	
579.1	208° 10′ 16″	0.296	0.292	10	желтый	
577.0	208° 5′ 38″	0.295	0.290	8	желтый	
546.1	207° 3′ 50″	0.277	0.273	10	зеленый	
491.6	205° 25′ 58″	0.248	0.246	4	голубой	
435.8	204° 0′ 0″	0.223	0.221	4	синий	

0.289

0.289

0.272

10

8

10

желтый

желтый

зеленый

Таблица 1: Спектр первого порядка

Для оценки погрешности результат будем считать, что гониометр позволяет измерять углы с точностью не менее, чем 5 угловых секунд. Тогда

-0.294

-0.293

-0.275

$$\sigma(\sin \Delta \varphi) \le |\cos \Delta \varphi| \, \sigma(\Delta \varphi) \le \sigma(\Delta \varphi)$$

Оценим приборную погрешность:

174° 23′ 46″

174° 26′ 54″

175° 26′ 42″

 $N_{\overline{0}}$

1

2

3

4

5

-1

-2

579.1

577.0

546.1

$$\sigma(\Delta\varphi) \simeq \frac{5}{3600} \simeq 1.3 \cdot 10^{-3} \ll \sigma_{rand}$$

Таким образом, шаг решетки равен $d=488\pm 9\, \frac{\text{штрихов}}{\text{мм}}$, что практически в пределах погрешности сходится с фактическим значением в $500\, \frac{\text{штрихов}}{\text{мм}}$.

Рис. 1: График зависимости $\sin \varphi$ от λ

Исследуем угловую дисперсию. Для этого выразим $D=\frac{\mathrm{d} \varphi}{\mathrm{d} \lambda}$ в угловых секундах на ангстрем полученный для спектральных линий одного порядка и рассчитанную теоретически. Опытные точки на графике обозначим черными квадратами, теоретические красными кругами.

2 Егор Берсенев

Оптика ФМХФ МФТИ

Таблица 2: Угловая дисперсия для двух желтых линий

$\Delta \varphi$, "	D_{ex} , "/Å	D_{th} , "/Å
278	13.24	10.77
188	8.95	10.77
552	26.29	25.28
2400	114.29	62.09
	278 188 552	278 13.24 188 8.95 552 26.29

Рис. 2: Угловая дисперсия для спектров разного порядка

5 Вывод

Гониометр, как прибор для точного измерения углов, позволяет работать со спектральными приборами с высокой точностью, и определять неизвестные параметры. Амплитудная дифракционная решетка, как дифракционный прибор позволяет получать достаточно яркие спектры вплоть до третьего порядка.

Егор Берсенев 3