From the 2D plane stress case, we found that the normal and shear stress components acting on an inclined plane with normal  $\underline{n}$  (inclined at an angle  $\underline{0}$  with  $\underline{e}_i$ ) are given by

$$\overline{U}_{n} = \frac{\overline{U}_{11} + \overline{U}_{22}}{2} + \frac{\overline{U}_{11} - \overline{U}_{22}}{2} \cos 20 + \overline{U}_{12} \sin 20$$

$$T_n = -\left(\frac{\sigma_{11} - \sigma_{22}}{2}\right) \sin 2\theta + T_{12} \cos 2\theta$$

Now, let us define a scalar 
$$R = \sqrt{\left(\frac{\sigma_{11} - \sigma_{22}}{2}\right)^2 + \tau_{12}^2}$$

We will think of this R as the magnitude of the hypotenuse of a right-angled triangle with base as  $\frac{\sigma_{11}-\sigma_{22}}{2}$  and height as  $\tau_{12}$ 



From trigonometry, you can see that  $\frac{Z_{12}}{R}$   $\Rightarrow \cos 2\phi = \frac{Z_{12}}{R}$ 

Using R, we can rewrite on and Tn as:

$$\overline{O_n} = \underline{O_{11} + O_{22}} + R\left(\cos 2\phi \cos 2\theta + \sin 2\phi \sin 2\theta\right)$$

$$\Rightarrow \sigma_n = \frac{\sigma_{11} + \sigma_{22}}{2} + R \cos(2\phi - 2\Theta)$$

$$T_n = R \left( -\cos 2\phi \sin 2\theta + \sin 2\phi \cos 2\theta \right)$$

$$\Rightarrow$$
  $T_n = R \sin(2\phi - 20)$ 

## Mohr's circle

Based on these formulas, lets try to obtain the locus of  $\sigma_n$  and  $\tau_n$  for all values of  $\Theta$ .

Let us think of a  $\sigma$ - $\tau$  plane and plot  $\sigma_n$  and  $\tau_n$  for each value of  $\theta$  in this plane. The plane has  $\sigma$  on x-axis and  $\tau$  on the y-axis.

From the above relations, one can figure out that the centre of the circle on the  $\sigma$ -axis will be at  $\left(\frac{\sigma_{11}+\sigma_{22}}{a}\right)$ . We can



place on and ozz on the o-axis

and  $T_{12}$  on the T-axis. Then, we plot the point  $(T_{11}, T_{12})$  which corresponds to  $\underline{e}_1$ -plane. If you join this point wi the center, the line obtained will give us the radius of the circle, which turns out to be R.

Once we obtain the radius and center of the circle, we can draw the complete  $T_{12}$  circle  $\longrightarrow$  is called the Mohr's circle



The 2D Mohr's circle can be used to find the 2D state of stress on any plane.

$$\sigma_n = \frac{\sigma_{i_1} + \sigma_{i_2}}{2} + R \cos(2\phi - 2\Theta)$$

$$\tau_n = R \sin(2\phi - 2\Theta)$$

While we can use the above equations for finding of and of on any arbitrary plane at an angle 0. For using the Mohr's



circle, we note the angle in the cosine and sine terms is 29-20 So the radial line from the center to the point corresponding to the O-plane on the Mohr's circle should be at an angle of (29-20) from the  $\underline{c}_1$ -plane. In other words, we can obtain the point corresponding to the O-plane on Mohr's circle by going in the clockwise direction by angle 20 from the  $\underline{c}_1$ -plane point. So the radial line from the center to the point

Steps for drawing Mohr's circle and for finding the point corresponding to O-plane

- 1. Draw the center of the circle at  $\left(\frac{\sigma_{11} + \sigma_{22}}{a}, o\right)$
- 2. Draw  $(\sigma, z)$  for  $e_1$ -plane, i.e., the point  $(\sigma_{11}, \tau_{12})$
- 3. Draw a line joining the center and the point  $(\sigma_{11}, \tau_{12})$  to get the radius of the circle
- 4. With the center and radius known, draw the Mohr's circle
- 5. To find (0, 7) for O-plane, rotate the radial line of e,-plane by 20 clockwise

Notice that the normal to the O-plane is at angle O with  $\underline{e}_1$  in counterclockwise direction. But on the Mohr's circle, we draw that point by rotating 20 in clockwise direction from the point corresponding to  $\underline{e}_1$ -plane. This is because we have 20 with a minus sign in the argument of trigonometric functions

## Sign Convention while using Mohr's circle

Once we have determined the point on Mohr's circle corresponding to  $\underline{e}_1$ -plane, we can obtain the  $(\underline{e}_-z)$  corresponding to the  $\underline{e}_2$ -plane by rotating  $2\times90^\circ$  in the clockwise direction from  $\underline{e}_1$ -plane. Thus we get the  $\underline{e}_2$ -plane at the diametrically opposite point  $\underline{w}\cdot r\cdot t$ . the  $\underline{e}_1$ -plane.



The point for  $e_2$ -plane has coordinates  $(\sigma_{22}, -\tau_{12})$ . However, we know the shear stress on the  $e_2$ -plane is  $\tau_{12}$ . So why are we getting  $-\tau_{12}$  from the Mohr's circle? This is because of our convention for the sign of  $\tau_{1}$  is taken as the if  $\tau_{12}$  or  $\tau_{12}$  is acting 90° ccw direction

from its plane normal n.

For  $\underline{e}_2$ -plane, if we go 90° in the CCW direction from its plane normal  $\underline{e}_2$ , we would be pointing towards  $-\underline{e}_1$ . So, Mohr's circle is giving us  $\mathbb{Z}$  on  $\underline{e}_2$ -plane along  $-\underline{e}_1$  direction, whereas  $\mathbb{Z}_{12}$ , by definition, is the shear component along  $+\underline{e}_1$ -direction. Therefore, Mohr's circle gives us  $-\mathbb{Z}_{12}$  for shear traction on  $\underline{e}_2$ -plane.

## Other conclusions that can be drawn using Mohr's circle

We can get the maximum and minimum values of T and T

- The maximum/minimum values of  $\sigma$  are plotted on  $\sigma$ -axis itself. The maximum value of  $\sigma$  will correspond to the principal stress  $\lambda_1$  and the min value of  $\sigma$  to  $\lambda_2$ 



$$\lambda_1 = \frac{\sigma_{11} + \sigma_{22}}{2} + R \quad , \quad \lambda_2 = \frac{\sigma_{11} + \sigma_{22}}{2} - R$$

This allows us to get the values of principal stress components directly from the Mohr's circle. One can also write the center and radius of the circle in terms of principal stresses  $\lambda_1$  and  $\lambda_2$ 

Center = 
$$\left(\frac{\lambda_1 + \lambda_2}{2}, 0\right)$$
, Radius =  $\frac{\lambda_1 - \lambda_2}{2}$ 

- The max/min values of shear are equal to the radius of the Mohr's circle