1 Аффинное пространство

1.1 Аффинное преобразование

Лем 1. Однородная часть аффинного преобразования является невырожденным линейным оператором.

Док-во. Пусть φ — однородная часть афф. преобразования f. Для произвольных \overrightarrow{u} , \overrightarrow{v} из равенства $\varphi(\overrightarrow{u}) = \varphi(\overrightarrow{v})$ следует $f(M+\overrightarrow{u}) = f(M)+\varphi(\overrightarrow{u}) = f(M)+\varphi(\overrightarrow{v}) = f(M+\overrightarrow{v})$ для любой точки M. Но f — биекция, значит $M+\overrightarrow{u}=M+\overrightarrow{v}$ по определению афф. пространства. Отсюда $\overrightarrow{u}=\overrightarrow{v}$, то есть φ — инъективен.

След 1. Однородная часть аффинного преобразования является биективным линейным оператором.

Док-во. Если пространство конечномерно, то невырожденный оператор всегда сюръективен. Действительно, если \overrightarrow{e}_1 , \overrightarrow{e}_2 , ..., \overrightarrow{e}_n — базис линейного пространства V, то $\varphi(\overrightarrow{e}_1)$, $\varphi(\overrightarrow{e}_2)$, ..., $\varphi(\overrightarrow{e}_n)$ — базис образа этого оператора: из $\alpha_1 \varphi(\overrightarrow{e}_1) + \alpha_2 \varphi(\overrightarrow{e}_2) + ... + \alpha_n \varphi(\overrightarrow{e}_n) = \overrightarrow{0}$ следует $\varphi(\alpha_1 \overrightarrow{e}_1 + \alpha_2 \overrightarrow{e}_2 + ... + \alpha_n \overrightarrow{e}_n) = \varphi(\overrightarrow{0})$, по инъективности $\alpha_1 \overrightarrow{e}_1 + \alpha_2 \overrightarrow{e}_2 + ... + \alpha_n \overrightarrow{e}_n = \overrightarrow{0}$, поэтому $\alpha_1 = \alpha_2 = ... = \alpha_n = 0$. То есть образ оператора совпадает со всем пространством.

Но покажем явно, без учета невырожденности. Для любого \overrightarrow{u} возьмем точку M и обозначим $M+\overrightarrow{u}=N$. Для точек M и N существуют прообразы M' и N' при f. Тогда $N'=M'+\overrightarrow{M'N'}$, а значит $N=f(N')=f(M')+\varphi(\overrightarrow{M'N'})=M+\varphi(\overrightarrow{M'N'})$. По определению, $\varphi(\overrightarrow{M'N'})=\overrightarrow{u}$, то есть для \overrightarrow{u} нашелся прообраз.

Заметим, что для всякого вектора \overrightarrow{MN} , так как $M+\overrightarrow{MN}=N$, и $f(M)+\varphi(\overrightarrow{MN})=f(N)$, получается $\varphi(\overrightarrow{MN})=\overline{f(M)f(N)}$.

Teop 1. Для любых двух точек O и O' и для любого невырожденного линейного оператора φ существует единственное аффинное преобразование f, такое, что f(O) = O' и φ — его однородная часть.

Док-во. Зададим отображение f для любой точки X через $f(X) = O' + \varphi(\overrightarrow{OX})$.

Обозначим $M+\overrightarrow{m}=N$, тогда $f(M+\overrightarrow{m})=O'+\varphi(\overrightarrow{ON})=O'+\varphi(\overrightarrow{OM}+\overrightarrow{m})=O'+\varphi(\overrightarrow{OM})+\varphi(\overrightarrow{m})=f(M)+\overrightarrow{m}$, то есть отображение f- аффинное.

Выполнено $f(O) = O' + \varphi(\overrightarrow{OO}) = O' + \overrightarrow{0} = O'$.

Инъективность f: из f(X) = f(Y) следует $O' + \varphi(\overrightarrow{OX}) = O' + \varphi(\overrightarrow{OY})$, значит $\varphi(\overrightarrow{OX}) = \varphi(\overrightarrow{OY})$, и $\overrightarrow{OX} = \overrightarrow{OY}$ по Лем. 1, то есть X = Y.

Сюръективность f: для произвольной точки X имеем $f(O + \varphi^{-1}(\overrightarrow{O'X})) = f(O) + \varphi(\varphi^{-1}(\overrightarrow{O'X})) = O' + \overrightarrow{O'X} = X$.

Если существует афф. отображение g с теми же условиями, то для любой точки X получается $g(X) = g(O + \overrightarrow{OX}) = g(O) + \varphi(\overrightarrow{OX}) = O' + \varphi(\overrightarrow{OX}) = f(X)$.

Опр. Пусть A, B и C — точки аффинного пространства над полем P, $A \neq B$ и $\overrightarrow{AC} = \lambda \overrightarrow{CB}$ для $\lambda \in P$. Тогда λ называется простым отношением трех точек A, B и C, и обозначается (AB, C).

Теор 2 (Свойства).

- 1. При аффинном преобразовании сохраняется простое отношение трех точек
- 2. Для всякого аффинного преобразования существует обратное
- 3. При аффинном преобразовании образом k-мерной плоскости является k-мерная плоскость
- 4. При аффинном преобразовании сохраняется взаимное расположение плоскостей (совпадение, включение, пересечение, параллельность, скрещивание)

Док-во. 1. Из $\overrightarrow{AC} = \lambda \overrightarrow{CB}$ следует $\varphi(\overrightarrow{AC}) = \varphi(\lambda \overrightarrow{CB}) = \lambda \varphi(\overrightarrow{CB})$, а значит $\overrightarrow{f(A)f(C)} = \lambda \overrightarrow{f(C)f(B)}$.

- **2.** Пусть f преобразование с однородной частью φ . Так как отображение f биективное, то существует обратное отображение f^{-1} . Оператор φ тоже биективный (След. 1). Обратное отображение φ^{-1} является линейным оператором. Покажем, что f^{-1} является аффинным отображением. Возьмем любую точку M и вектор \overrightarrow{m} . Из того, что $f(f^{-1}(M) + \varphi^{-1}(\overrightarrow{m})) = f(f^{-1}(M)) + \varphi(\varphi^{-1}(\overrightarrow{m})) = M + \overrightarrow{m}$, получается $f^{-1}(M + \overrightarrow{m}) = f^{-1}(M) + \varphi^{-1}(\overrightarrow{m})$.
- 3. Образом k-мерной плоскости $M+V^k$ очевидно будет $f(M)+\varphi(V^k)$. Нужно показать, что $\dim \varphi(V^k)=k$. Проверим, что если $\overrightarrow{e}_1,\ldots,\overrightarrow{e}_k$ базис V^k , то $\varphi(\overrightarrow{e}_1),\ldots,\varphi(\overrightarrow{e}_k)$ будет базисом $\varphi(V^k)$. Из $\alpha_1\varphi(\overrightarrow{e}_1)+\ldots+\alpha_n\varphi(\overrightarrow{e}_k)=\overrightarrow{0}$ следует $\varphi(\alpha_1\overrightarrow{e}_1+\ldots+\alpha_n\overrightarrow{e}_k)=\overrightarrow{0}=\varphi(\overrightarrow{0})$, но φ невырожден и $\ker \varphi=\{\overrightarrow{0}\}$, поэтому $\alpha_1\overrightarrow{e}_1+\ldots+\alpha_n\overrightarrow{e}_k=\overrightarrow{0}$, и $\alpha_1=\ldots=\alpha_n=0$. Также нетрудно видеть, $\varphi(\overrightarrow{e}_1),\ldots,\varphi(\overrightarrow{e}_k)$ порождает $\varphi(V^k)$.
- **4.** Пусть даны плоскости $\alpha = A + V_{\alpha}$ и $\beta = B + V_{\beta}$. Если α содержится в β , то образ $f(\alpha)$ при преобразовании f очевидно будет содержаться в $f(\beta)$.

Если $\alpha \cap \beta - k$ -мерная плоскость, то $f(\alpha \cap \beta)$ тоже k-мерная плоскость, как показано выше. Но, так как f инъективно, $f(\alpha) \cap f(\beta) = f(\alpha \cap \beta)$.

Если α параллельна β , то $V_{\alpha}\subseteq V_{\beta}$. Но $f(\alpha)=f(A)+\varphi(V_{\alpha})$ и $f(\beta)=f(A)+\varphi(V_{\beta})$, причем $\varphi(V_{\alpha})\subseteq\varphi(V_{\beta})$. То есть $f(\alpha)$ параллельна $f(\beta)$.

Если α и β скрещиваются, то $\alpha \cap \beta = \emptyset$ и $V_{\alpha} \cap V_{\beta} = \{\overrightarrow{0}\}$. Как и выше нетрудно установить $f(\alpha) \cap f(\beta) = \emptyset$ и $\varphi(V_{\alpha}) \cap \varphi(V_{\beta}) = \{\overrightarrow{0}\}$.

Теор 3 (Формулы аффинного преобразования). Пусть $\mathcal{R}(O, \sigma)$ — аффинная система координат u f — аффинное преобразование. Тогда, если O' = f(O), M' = f(M), C — матрица однородной части преобразования f u $O'(a_1, \ldots, a_n)_{\mathcal{R}}$, $M(x_1, \ldots, x_n)_{\mathcal{R}}$, $M'(x_1', \ldots, x_n')_{\mathcal{R}}$, то верны формулы

$$\begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix} = C \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$

Док-во. Можно записать $M'=O'+\overrightarrow{O'M'}=O'+\varphi(\overrightarrow{OM})$, а $\varphi(\overrightarrow{OM})$ вычисляется с помощью матрицы оператора. Разложим \overrightarrow{OM} по базису σ : $\overrightarrow{OM}=x_1\overrightarrow{e}_1+\ldots+x_n\overrightarrow{e}_n$. Тогда $\varphi(\overrightarrow{OM})=x_1\varphi(\overrightarrow{e}_1)+\ldots+x_n\varphi(\overrightarrow{e}_n)=(x_1c_{11}+\ldots+x_nc_{1n})\overrightarrow{e}_1+\ldots+(x_1c_{n1}+\ldots+x_nc_{nn})\overrightarrow{e}_1$.

Teop 4 (Основная теорема аффинной геометрии). Биективное отображение f аффинного пространства на себя является аффинным преобразованием тогда и только тогда, когда

- 1. для любых точек A, B и C принадлежащих одной прямой, точки f(A), f(B) и f(C) принадлежат одной прямой
- 2. ƒ сохраняет простое отношение трех точек.

Док-во. По Теор. 2 (Свойства) получаем необходимость условий.

Покажем достаточность. Зададим φ по правилу $\varphi(\overrightarrow{AB}) = \overline{f(A)f(B)}$ для любой пары точек A и B, и покажем, что это линейный оператор для f.

Для произвольных \overrightarrow{u} и \overrightarrow{v} можно выбрать $\overrightarrow{u} = \overrightarrow{AB}$ и $\overrightarrow{v} = BC$. Тогда $\varphi(\overrightarrow{u} + \overrightarrow{v}) = \varphi(\overrightarrow{AB} + \overrightarrow{BC}) = \varphi(\overrightarrow{AC}) = \overrightarrow{f(A)f(C)} = \overrightarrow{f(A)f(B)} + \overrightarrow{f(B)f(C)} = \varphi(\overrightarrow{u}) + \varphi(\overrightarrow{v})$.

Возьмем произвольно \overrightarrow{u} и элемент поля λ . Если $\lambda = 0$, то сразу $\varphi(\lambda \overrightarrow{u}) = \overrightarrow{0} = \lambda \varphi(\overrightarrow{u})$, поэтому рассмотрим $\lambda \neq 0$. Зафиксируем некоторую точку A и обозначим $A + \overrightarrow{u} = C$ и $C + \lambda \overrightarrow{u} = B$. Заметим, что простое отношение $(AB, C) = \lambda^{-1}$ так как $\overrightarrow{AC} = \lambda^{-1} \overrightarrow{CB}$.

Точки A, B и C принадлежат одной прямой, а значит f(A), f(B) и f(C) также принадлежат одной прямой по условию. По условию, простое отношение $(f(A)f(B), f(C)) = \lambda^{-1}$, то есть $\overrightarrow{f(A)f(C)} = \lambda^{-1}\overrightarrow{f(C)f(B)}$. Получаем $\varphi(\lambda\overrightarrow{u}) = \varphi(\overrightarrow{CB}) = \overrightarrow{f(C)f(B)} = \lambda \overrightarrow{f(A)f(C)} = \lambda \varphi(\overrightarrow{AC}) = \lambda \varphi(\overrightarrow{u})$.

Показано, что φ — линейный оператор. Проверим, что φ невырожденный оператор, а именно $\ker \varphi = \{\overrightarrow{0}\}$. Пусть $\varphi(\overrightarrow{AB}) = \overrightarrow{0}$ для некоторых A и B. По определению φ пишем $\overrightarrow{f(A)f(B)} = \overrightarrow{0}$, что означает f(A) = f(B). Но f — биекция, A = B и $\overrightarrow{AB} = \overrightarrow{0}$.

Так как невырожденный оператор в данном случае биективен (см. Док-во След. 1), то осталось проверить, что $f(M+\overrightarrow{m})=f(M)+\varphi(\overrightarrow{m})$ для любой точки M

и любого \overrightarrow{m} . Обозначив $M+\overrightarrow{m}=N$, видим $f(M+\overrightarrow{m})=f(N)=f(M)+\overrightarrow{f(M)}f(N)=f(M)+\varphi(\overrightarrow{MN})=f(M)+\varphi(\overrightarrow{m})$.

1.2 Группа аффинных преобразований и ее подгруппы

Teop 5. Множество GA всех аффинных преобразований данного аффинного пространства \mathcal{A} образует группу относительно операции композиции отображений.

Док-во. Пусть f и g — аффинные преобразования с однородными частями φ и ψ . Проверим замкнутость. Тогда $f \circ g(M+\overrightarrow{m}) = f(g(M+\overrightarrow{m})) = f(g(M)+\psi(\overrightarrow{m})) = f(g(M)+\varphi(\overrightarrow{m})) = f \circ g(M) + \varphi \circ \psi(\overrightarrow{m})$. Композиция двух (невырожденных) линейных операторов есть (невырожденный) линейный оператор, поэтому $f \circ g$ — аффинное преобразование с однородной частью $\varphi \circ \psi$.

Композиция отображений ассоциативна. Существование единицы очевидно (тождественное преобразование), существование обратного показано в Теор. 2 (Свойства).

Teop 6. Множество Т всех сдвигов аффинного пространства является подгруппой в группе аффинных преобразований.

След 2. Группа сдвигов T изоморфна аддитивной группе (V, +) векторного пространства V.

Teop 7. Множество всех гомотетий с фиксированным центром О является подгруппой группы аффинных преобразований.

Опр. Аффинное преобразование называется центроаффинным с центром в точке O, если при этом преобразовании точка O отображается на себя.

Прим 1. Гомотетия.

Teop 8. Пусть О – фиксированная точка аффинного пространства. Тогда любое аффинное преобразование f единственным образом представляется в виде композиции некоторого сдвига и некоторого центроаффинного преобразования с центром O.

Док-во. Обозначим через φ однородную часть f и O' = f(O). По Теор. 1 существует единственное аффинное преобразование g, переводящее O в O и с однородной частью φ . Преобразование g центроаффинное.

Покажем, что $t_{\overrightarrow{OO'}} \circ g = f$. Для любой точки X получаем $t_{\overrightarrow{OO'}} \circ g(X) = t_{\overrightarrow{v}} \circ g(O + \overrightarrow{OX}) = t_{\overrightarrow{v}}(O + \varphi(\overrightarrow{OX})) = (O + \varphi(\overrightarrow{OX})) + \overrightarrow{OO'} = O' + \varphi(\overrightarrow{OX}) = f(O) + \varphi(\overrightarrow{OX}) = f(X)$. Если $t_{\overrightarrow{v}} \circ h = f$ для некоторого $h \in GA$, h(O) = O, то $t_{\overrightarrow{v}} \circ h(O) = t_{\overrightarrow{v}}(O) = f(O) = O'$. Поэтому $\overrightarrow{v} = \overrightarrow{OO'}$, то есть $t_{\overrightarrow{v}} = t_{\overrightarrow{OO'}}$. Умножим $t_{\overrightarrow{v}} \circ h = t_{\overrightarrow{OO'}} \circ g$ слева на $t_{-\overrightarrow{OO'}}$ и получим h = g. Единственность доказана.

2 Евклидово пространство

2.1 Евклидово линейное пространство

Опр. Линейное пространство V над полем \mathbb{R} называется евклидовым, если на нем определено отображение $V \times V \to \mathbb{R}$ (называется скалярным произведением), удовлетворяющее свойствам:

1.
$$\overrightarrow{a}\overrightarrow{b} = \overrightarrow{b}\overrightarrow{a}$$

3.
$$\overrightarrow{a}(\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a}\overrightarrow{b} + \overrightarrow{a}\overrightarrow{c}$$

2.
$$(\alpha \overrightarrow{a})\overrightarrow{b} = \alpha(\overrightarrow{a}\overrightarrow{b})$$

4.
$$ec\pi u \overrightarrow{a} \neq \overrightarrow{0}$$
, $mo \overrightarrow{a} \overrightarrow{a} > 0$

для любых \overrightarrow{a} , $\overrightarrow{b} \in V$ и $\alpha \in \mathbb{R}$.

Опр. Длиной вектора \overrightarrow{a} евклидового линейного пространства называется число $|\overrightarrow{a}| = \sqrt{\overrightarrow{a} \ \overrightarrow{a}}$.

Опр. Углом между векторами \overrightarrow{a} и \overrightarrow{b} евклидового линейного пространства называется любое число φ такое, что $\cos \varphi = \frac{\overrightarrow{a} \ \overrightarrow{b}}{\|\overrightarrow{a}\| \ \overrightarrow{b}\|}$.

Такое число существует, то есть определение корректно, так как $-1 \leq \frac{\overrightarrow{a} \ \overrightarrow{b}}{|\overrightarrow{a}|| \ \overrightarrow{b}|} \leq 1$. В самом деле, $0 \leq \left(\frac{\overrightarrow{a}}{|\overrightarrow{a}|} \pm \frac{\overrightarrow{b}}{|\overrightarrow{b}|}\right)^2 \leq \left(\frac{\overrightarrow{a}}{|\overrightarrow{a}|}\right)^2 \pm 2\frac{\overrightarrow{a} \ \overrightarrow{b}}{|\overrightarrow{a}|| \ \overrightarrow{b}|} + \left(\frac{\overrightarrow{b}}{|\overrightarrow{b}|}\right)^2 = 2 \pm 2\frac{\overrightarrow{a} \ \overrightarrow{b}}{|\overrightarrow{a}|| \ \overrightarrow{b}|}$ и поэтому $-1 \leq \pm \frac{\overrightarrow{a} \ \overrightarrow{b}}{|\overrightarrow{a}|| \ \overrightarrow{b}|}$.

2.2 Евклидово пространство

Опр. Аффинное пространство \mathcal{A} над полем \mathbb{R} называется евклидовым, если евклидовым является линейное пространство, над которым рассматривается \mathcal{A} .

Опр. Расстоянием между точками A и B еквлидового пространства называется длина вектора \overrightarrow{AB} .

Опр. Аффинная система координат $\mathcal{R}(O,\delta)$ называется ортонормированной, если базис δ является ортонормированным.

Легко проверить, что скалярное произведение векторов равно сумме произведений их соответствующих координат в некотором ортонормированном базисе.

Teop 9. Коэффициенты в общем уравнении k-мерной плоскости в ортонормированной системе координат являются координатами векторов, ортогональных данной плоскости.

Док-во. Любой вектор направляющего пространства плоскости является решением однородной системы, соответствующей системе линейных уравнений, которая задает плоскость: если вектор \overrightarrow{v} принадлежит направляющему пространству, то в плоскости найдутся такие точки $A(a_1, \ldots, a_n)$ и $B(b_1, \ldots, b_n)$, что \overrightarrow{v} будет иметь координаты $(b_1 - a_1, \ldots, b_n - a_n)$. Отсюда скалярное произведение любого направляющего вектора плоскости и вектора, чьи координаты являются коэффициентами одного из уравнений системы, есть ноль.

Опр. Ортогональной проекцией точки M на плоскость $\pi = M_0 + V^k$ называется такая точка $P \in \pi$, что \overrightarrow{MP} перпендикулярен любому вектору из V^k .

Teop 10. Ортогональная проекция любой точки на любую плоскость существует и единственна.

Док-во. Пусть даны плоскость $\pi = M_0 + V^k$ и точка $M \notin \pi$ в n-мерном евклидовом пространстве. По Теор. 9 и Теор. об общем уравнении существует n-k линейно независимых векторов, перпендикулярных V^k . Обозначим линейное пространство, порожденное этими векторами через W^{n-k} . Тогда $V^k \cap W^{n-k} = \{\overrightarrow{0}\}$: возьмем $\overrightarrow{v} \in V^k \cap W^{n-k}$, запишем его разложение по некоторому ортонормированному базису V^k и базису W^{n-k} следующим образом $\alpha_1 \overrightarrow{e}_1 + \ldots + \alpha_k \overrightarrow{e}_k = \beta_1 \overrightarrow{w}_1 + \ldots + \beta_{n-k} \overrightarrow{w}_{n-k}$, это равенство будем по очереди скалярно умножать на \overrightarrow{e}_i , получая в результате равенства $\alpha_i = 0$ для всех $i = 1, \ldots, k$.

Плоскости π и $M+W^{n-k}$ пересекаются в единственной точке P так как $V^k \cap W^{n-k} = \{\overrightarrow{0}\}$ и $M \in V^k + W^{n-k}$. Точка P очевидно является проекцией M на π .

Для любой проекции P' точки M на π вектор $\overrightarrow{MP'}$ ортогонален V^k и поэтому принадлежит W^k . Следовательно, прямая MP' лежит в $M+W^{n-k}$ и имеет только одну точку пересечения с π , которая совпадает с P.

Опр. Расстоянием от точки M до k-мерной плоскости $\pi = M_0 + V^k$ в евклидовом пространстве называется расстояние между M и ее ортогональной проекцией на π .

Теор 11. Пусть в ортонормированной системе координат R гиперплоскость π задана уравнением $a_1x_1+a_2x_2+\ldots+a_nx_n=b$. Тогда расстояние от точки $M(y_1,y_2,\ldots,y_n)_R$ до π равно $\frac{|a_1y_1+a_2y_2+\ldots+a_ny_n-b|}{\sqrt{a_1^2+a_2^2+\ldots+a_n^2}}$.

Док-во. Пусть M — точка, не лежащая на плоскости π , а $M'(y_1', y_2', \dots, y_n')$ — проекция M на π . Вектор $\overrightarrow{n}(a_1, a_2, \dots, a_n)$ перпендикулярен π и коллинеарен $\overrightarrow{M'M}$.

Если векторы \overrightarrow{n} и $\overrightarrow{M'M}$ коллинеарны, то $\overrightarrow{M'M} = \lambda \overrightarrow{n}$ и $|\overrightarrow{M'M}| = |\lambda||\overrightarrow{n}|$ для подходящего λ . Тогда $\overrightarrow{n}\overrightarrow{M'M} = \overrightarrow{n}(\lambda \overrightarrow{n}) = \lambda(\overrightarrow{n}\overrightarrow{n}) = \lambda|\overrightarrow{n}|^2 = \pm|\overrightarrow{n}||\overrightarrow{M'M}|$

Отсюда имеем $\overrightarrow{n} \overrightarrow{M'M} = \pm |\overrightarrow{n}| |\overrightarrow{M_0 M}| = a_1(y_1 - y_1') + a_2(y_2 - y_2') + ... + a_n(y_n - y_n')$. Выра-

жаем
$$|\overrightarrow{M_0M}| = \pm \frac{a_1(y_1-y_1')+a_2(y_2-y_2')+...+a_n(y_n-y_n')}{\sqrt{a_1^2+a_2^2+...+a_n^2}} = \pm \frac{a_1y_1+a_2y_2+...+a_ny_n-b}{\sqrt{a_1^2+a_2^2+...+a_n^2}}$$
, отсюда расстояние равно $\frac{|a_1y_1+a_2y_2+...+a_ny_n-b|}{\sqrt{a_1^2+a_2^2+...+a_n^2}}$.

2.3 Движение евклидова пространства

Опр. Биекцию евклидова аффинного пространства на себя называют движением, если она сохраняет расстояние между любыми двумя точками.

Прим 2. Сдвиг.

Док-во. Однородная часть сдвига — тождественный оператор, поэтому
$$t_{\overrightarrow{v}}(Y) = t_{\overrightarrow{v}}(X) + \overrightarrow{XY}$$
 и $|\overrightarrow{XY}| = |t_{\overrightarrow{v}}(X)t_{\overrightarrow{v}}(Y)|$ для любых точек X, Y .

Опр. Линейный оператор φ называется ортогональным, если для любых векторов \overrightarrow{x} и \overrightarrow{y} верно \overrightarrow{x} \overrightarrow{y} = $\varphi(\overrightarrow{x})\varphi(\overrightarrow{y})$ (сохраняется скалярное произведение).

Теор 12 (Свойства).

- 1. Движение является аффинным преобразованием.
- 2. Множество всех движений образует группу относительно операции композиции отображений.
- 3. Линейный оператор, соответствующий движению является ортогональным.

Док-во. 1. Пусть f— движение евклидова аффинного пространства \mathcal{A} , связанного с линейным пространством V. Обозначим $\varphi:V\to V$, заданное равенством $\varphi(\overrightarrow{XY})=\overrightarrow{g(X)g(Y)}$ для любых точек X и Y. Установим, что φ — линейный оператор и подходит в качестве однородной части f.

Сначала проверим, что φ сохраняет скалярное произведение. Для произвольных $\overrightarrow{x} = \overrightarrow{AB}$ и $\overrightarrow{y} = \overrightarrow{BC}$ выполняется $|\overrightarrow{x} + \overrightarrow{y}| = |\overrightarrow{AB} + \overrightarrow{BC}| = |\overrightarrow{AC}| = *$ g сохраняет расстояние $* = |\overrightarrow{g(A)g(C)}| = |\overrightarrow{g(A)g(B)} + \overrightarrow{g(B)g(C)}| = |\varphi(x) + \varphi(y)|$. Возведем в квадрат начало и конец: $|\overrightarrow{x} + \overrightarrow{y}|^2 = (\overrightarrow{x} + \overrightarrow{y})^2 = |\overrightarrow{x}|^2 + 2\overrightarrow{x}\overrightarrow{y} + |\overrightarrow{y}|^2$ с одной стороны и $|\varphi(\overrightarrow{x}) + \varphi(\overrightarrow{y})|^2 = |\varphi(\overrightarrow{x})|^2 + 2\varphi(\overrightarrow{x})\varphi(\overrightarrow{y}) + |\varphi(\overrightarrow{y})|^2$ с другой. Подставляя $\overrightarrow{y} = \overrightarrow{0}$, с учетом $\varphi(\overrightarrow{0}) = \varphi(\overrightarrow{XX}) = \overrightarrow{g(X)g(X)} = \overrightarrow{0}$, получим $|\varphi(\overrightarrow{x})| = |\overrightarrow{x}|$ для любого \overrightarrow{x} . Используя это, окончательно получаем $\overrightarrow{x}\overrightarrow{y} = \varphi(\overrightarrow{x})\varphi(\overrightarrow{y})$.

Теперь проверим, что φ — линейный оператор. Пусть $\overrightarrow{e}_1, \ldots, \overrightarrow{e}_n$ — ортонормированный базис V. Тогда $\varphi(\overrightarrow{e}_1), \ldots, \varphi(\overrightarrow{e}_n)$ — также ортонормированный базис V, так как φ сохраняет длину векторов и их перпендикулярность. Согласно Теор. о сущ. и ед. линейного оператора, существует единственный оператор, переводящий векторы $\overrightarrow{e}_1, \ldots, \overrightarrow{e}_n$ в векторы $\varphi(\overrightarrow{e}_1), \ldots, \varphi(\overrightarrow{e}_n)$: для произвольного $\overrightarrow{x} = \alpha_1 \overrightarrow{e}_1 + \ldots + \alpha_n \overrightarrow{e}_n$ такой оператор задается по правилу $\overrightarrow{x} \mapsto$

 $\alpha_1 \varphi(\overrightarrow{e}_1) + \dots + \alpha_n \varphi(\overrightarrow{e}_n)$. Но *i*-ая координата $\varphi(x)$ в базисе $\varphi(e_1), \dots, \varphi(e_n)$ равна $\varphi(\overrightarrow{x}) \varphi(\overrightarrow{e}_i) = *$ используем сохранение скалярного произведения $*=\overrightarrow{x} \overrightarrow{e}_i = \alpha_i$, то есть φ делает так же, как этот оператор, значит это он и есть.

Осталось убедиться, что $g(M + \overrightarrow{m}) = g(M) + \varphi(\overrightarrow{m})$ для любых M и \overrightarrow{m} . Обозначим $M + \overrightarrow{m} = N$. Тогда $g(M) + \varphi(\overrightarrow{MN}) = g(M) + \varphi(\overrightarrow{ON} - \overrightarrow{OM}) = g(M) + \varphi(\overrightarrow{ON}) - \varphi(\overrightarrow{OM}) = g(M) + \varphi(\overrightarrow{ON}) - \varphi(\overrightarrow{ON}) - \varphi(\overrightarrow{OM}) = g(M) + \varphi(\overrightarrow{ON}) - \varphi(\overrightarrow{ON}) -$

2. Замкнутость относительно композиции очевидна. Обратное отображение для движения также очевидно является движением.

Teop 13. Линейный оператор сохраняет длину векторов тогда и только тогда, когда он ортогональный.

Док-во. Если φ сохраняет длину векторов, то $|\overrightarrow{x}|^2 + 2\overrightarrow{x}\overrightarrow{y} + |\overrightarrow{y}|^2 = |\overrightarrow{x} + \overrightarrow{y}|^2 = |\varphi(\overrightarrow{x} + \overrightarrow{y})|^2 = |\varphi(\overrightarrow{x}) + \varphi(\overrightarrow{y})|^2 = |\varphi(\overrightarrow{x})|^2 + 2\varphi(\overrightarrow{x})\varphi(\overrightarrow{y}) + |\varphi(\overrightarrow{y})|^2 = |\overrightarrow{x}|^2 + 2\varphi(\overrightarrow{x})\varphi(\overrightarrow{y}) + |\overrightarrow{y}|^2.$ Что влечет $\overrightarrow{x}\overrightarrow{y} = \varphi(\overrightarrow{x})\varphi(\overrightarrow{y})$.

Если φ ортогонален, то $|\overrightarrow{x}|^2 = \overrightarrow{x} \overrightarrow{x} = \varphi(\overrightarrow{x})\varphi(\overrightarrow{x}) = |\varphi(\overrightarrow{x})|^2$.

Teop 14. Для того, чтобы преобразование евклидова пространства было движением, необходимо и достаточно, чтобы оно было аффинным и его однородная часть была ортогональным оператором.

Док-во. Необходимость доказана в Теор. 12 (Свойства). Если же однородная часть сохраняет длины векторов, то само преобразование — расстояние между точками. □

Teop 15. Для любых двух точек O и O' в евклидовом пространстве и для любого ортогонального линейного оператора φ существует единственное движение f такое, что f(O) = O' и φ — его однородная часть.

Док-во. Ортогональный линейный оператор сохраняет длину, поэтому является невырожденным. По Теор. сущ. и ед. аффинного преобразования, есть аффинное преобразование f с однородной частью φ и f(O) = O'. Применяем Теор. 14.

Teop 16. В ортонормированной аффинной системе координат формулы движения совпадают с формулами аффинного преобразования, кроме того матрица однородной части является ортогональной.

Док-во. Движение есть аффинное преобразование и в матрице C однородной части записаны координаты базисных векторов, а значит координаты векторов некоторого ортонормированного базиса. Поэтому $C^t \cdot C = E$. \Box

2.4 Классификация движений

Лем 2. В линейном пространстве над полем \mathbb{R} всякий линейный оператор имеет одномерное или двумерное инвариантное пространство.

Док-во. Покажем, что существует минимальный многочлен, аннулирующий оператор φ , то есть такой многочлен $t^n + \alpha_1 t^{n-1} + ... + \alpha_{n-1} t + \alpha_n$, что в алгебре линейных операторов над полем $\mathbb R$ рассматриваемого линейного пространства оператор $\varphi^n + \alpha_1 \varphi^{n-1} + ... + \alpha_{n-1} \varphi + \alpha_n \varepsilon$ является нулевым.

Алгебра линейных операторов конечномерна, поэтому возможно выбрать максимальный линейно независимый набор операторов вида ε , φ , φ^2 , ..., φ^{n-1} , начатый с тождественного оператора. Тогда φ^n линейно выражается через них, а значит $\varphi^n + \alpha_1 \varphi^{n-1} + ... + \alpha_{n-1} \varphi + \alpha_n \varepsilon$ — нулевой оператор для подходящих коэффициентов α_i . Видим, что многочлен $t^n + \alpha_1 t^{n-1} + ... + \alpha_{n-1} t + \alpha_n$ аннулирует φ . Если бы нашелся многочлен $\beta_0 t^m + \beta_1 t^{m-1} + ... + \beta_{n-1} t + \beta_n$ степени m меньшей n и аннулирующий φ , или иначе $\beta_0 \varphi^m + \beta_1 \varphi^{m-1} + ... + \beta_{n-1} \varphi + \beta_n \varepsilon$ — нулевой оператор и $\beta_0 \neq 0$, получилось бы противоречие с линейной независимостью операторов ε , φ , φ^2 , ..., φ^{m-1} .

Заметим далее, что любой аннулирующий φ многочлен делится на этот минимальны без остатка в кольце многочленов над полем $\mathbb R$.

Пусть f(t) — минимальный многочлен, аннулирующий оператор φ .

Если у f есть действительный корень α , то $f(t) = (t - \alpha)g(t)$ для некоторого многочлена $g(t) \in \mathbb{R}[x]$. Многочлен g не аннулирует φ , поэтому существует \overrightarrow{u} для которого $g(\varphi)(\overrightarrow{u}) \neq \overrightarrow{0}$. Обозначим $\overrightarrow{v} = g(\varphi)(\overrightarrow{u})$. Получаем $\overrightarrow{0} = f(\varphi)(\overrightarrow{u}) = (\varphi - \alpha \varepsilon)g(\varphi)(\overrightarrow{u}) = \varphi g(\varphi)(\overrightarrow{u}) - \alpha g(\varphi)(\overrightarrow{u}) = \varphi(\overrightarrow{v}) - \alpha \overrightarrow{v}$. Отсюда $\varphi(\overrightarrow{v}) = \alpha \overrightarrow{v}$, а значит \overrightarrow{v} — собственный вектор.

Если же у f нет действительных корней, тогда у φ нет собственных векторов. Но у f найдется пара сопряженных комплексных корней, поэтому можно записать $f(t)=(t^2-\alpha t-\beta)g(t)$ для некоторого многочлена g(t). Многочлен g не аннулирует φ , поэтому $\overrightarrow{v}=g(\varphi)(\overrightarrow{u})\neq \overrightarrow{0}$ для некоторого \overrightarrow{u} . Имеем $\overrightarrow{0}=f(\varphi)(\overrightarrow{u})=(\varphi^2-\alpha\varphi-\beta\varepsilon)g(\varphi)(\overrightarrow{u})=\varphi^2g(\varphi)(\overrightarrow{u})-\alpha\varphi g(\varphi)(\overrightarrow{u})-\beta g(\varphi)(\overrightarrow{u})=\varphi^2(\overrightarrow{v})-\alpha\varphi(\overrightarrow{v})-\beta\overrightarrow{v}$, а значит $\varphi^2(\overrightarrow{v})=\alpha\varphi(\overrightarrow{v})+\beta\overrightarrow{v}$ принадлежит $L(\varphi(\overrightarrow{v}),\overrightarrow{v})$. Линейная оболочка $L(\varphi(\overrightarrow{v}),\overrightarrow{v})$ образует двухмерное пространство, так как $\varphi(\overrightarrow{v})\neq\lambda\overrightarrow{v}$ ни для какого λ , и инвариантна относительно φ : любой элемент $\overrightarrow{x}\in L(\varphi(\overrightarrow{v}),\overrightarrow{v})$ можно представить как $\gamma\overrightarrow{v}+\delta\varphi(\overrightarrow{v})$, а значит $\varphi(\gamma\overrightarrow{v}+\delta\varphi(\overrightarrow{v}))=\gamma\varphi(\overrightarrow{v})+\delta\varphi^2(\overrightarrow{v})\in L(\varphi(\overrightarrow{v}),\overrightarrow{v})$.

Лем 3. Пусть U — инвариантное подпространство относительно ортогонального оператора φ в V. Тогда ортогональное дополнение U^{\perp} к U в V также инвариантно относительно φ .

Док-во. Возьмем произвольно $\overrightarrow{v} \in U^{\perp}$. Для любого $\overrightarrow{u} \in U$ есть прообраз $\overrightarrow{u}' \in U$ при φ , так как φ невырожденный. Поэтому $\overrightarrow{u}\varphi(\overrightarrow{v}) = \varphi(\overrightarrow{u}')\varphi(\overrightarrow{v}) = \overrightarrow{u}'\overrightarrow{v} = 0$, то есть $\varphi(\overrightarrow{v}) \in U^{\perp}$.

По Лем. 2 и 3 линейное пространство V над полем $\mathbb R$ можно разложить в прямую сумму одномерных и двухмерных (неразложимых в одномерные, то есть без инвариантных подпространств) инвариантных подпространств: $V = V_1 \oplus V_2 \oplus ... \oplus V_n$ Выберем в каждом подпространстве ортонормированные базисы, объединив которые получим базис всего пространства. Матрица оператора в этом базисе будет иметь вид

$$\begin{pmatrix} C_1 & O & O \\ O & C_2 & O \\ & \ddots & \\ O & O & C_n \end{pmatrix}$$

где C_i — матрица ограничения оператора φ на подпространство V_i , а O — нулевые матрицы соответствующих размеров. Каждое ограничение является ортогональным оператором на пространстве одномерном, либо двухмерном пространстве без (нетривиальных) инвариантных подпространств.

Если V_i размерности 1, то $C_i = (\pm 1)$.

Если размерность V_i равна 2, то пусть $C=C_i=\begin{pmatrix}c_{11}&c_{12}\\c_{21}&c_{22}\end{pmatrix}$. Обозначив выбранный в V_i базис $(\overrightarrow{e}_1,\overrightarrow{e}_2)$, получим элемент $c_{ij}=\varphi(\overrightarrow{e}_j)\overrightarrow{e}_i=\cos\varphi_{ij}$ — косинус угла между $\varphi(\overrightarrow{e}_j)$ и \overrightarrow{e}_i . Матрица ортогональная, поэтому $|C|=\pm 1$. Но в случае с |C|=-1 характеристический многочлен $\lambda^2-\lambda(c_{11}+c_{22})+c_{11}c_{22}-c_{12}c_{21}=\lambda^2-\lambda(c_{11}+c_{22})-1$ оператора на V_i имеет пару действительных корней, а оператор имеет одномерное инвариантное подпространство, что противоречит неразложимости V_i . Значит |C|=1. Теперь можно вычислить обратную матрицу $\begin{pmatrix}c_{22}&-c_{12}\\-c_{21}&c_{11}\end{pmatrix}=C^{-1}=C^t=\begin{pmatrix}c_{11}&c_{21}\\c_{12}&c_{22}\end{pmatrix}$. Кроме того, $c_{11}^2+c_{21}^2=1$ и с учетом $c_{11}=\cos\varphi$ получаем $c_{21}=\pm\sqrt{1-\cos^2\varphi}=\pm\sin\varphi$. Следовательно, $C=\begin{pmatrix}c_{11}&-c_{21}\\c_{21}&c_{11}\end{pmatrix}=\begin{pmatrix}\cos\varphi-\sin\varphi\\\sin\varphi\cos\varphi\end{pmatrix}$, где φ — угол между \overrightarrow{e}_1 и $\varphi(\overrightarrow{e}_1)$, либо $\varphi=2\pi-\psi$ где ψ — угол между \overrightarrow{e}_1 и $\varphi(\overrightarrow{e}_1)$.

Teop 17. Для любого движения п-мерного евклидова пространства существует ортонормированная система координат, в которой это движение задается формулами вида:

$$\begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix} = \begin{pmatrix} \pm 1 & O & O \\ O & R_2 & O \\ & & \ddots & \\ O & O & R_k \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}, \quad \partial e R_i = \begin{pmatrix} \cos \varphi_i & -\sin \varphi_i \\ \sin \varphi_i & \cos \varphi_i \end{pmatrix}.$$

Teop 18. Любое движение двухмерного евклидова пространства (плоскости) есть движение одного из следующих видов:

1. тождественное преобразование,

- 2. параллельный перенос (сдвиг на вектор),
- 3. поворот вокруг точки,
- 4. симметрия относительно прямой (осевая симметрия),
- 5. симметрия относительно прямой и сдвиг вдоль нее (скользящая симметрия).

Док-во. Формулы имеют вид $\begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = C \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$. Матрица C однородной части движения может быть одной из матрица

1.
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, 2. $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, 3. $\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$.

В первом случае получается тождественное преобразование и сдвиг.

Во втором случае $\begin{cases} x_1' = -x_1 + a_1 \\ x_2' = x_2 + a_2 \end{cases}$ перейдем к новой системе координат формулами $\begin{cases} x_1 = x + a_1/2 \\ x_2 = y \end{cases}$ получим $\begin{cases} x' = -x \\ y' = y + a_2 \end{cases}$, а это симметрия относительно прямой y = 0 и сдвиг на вектор (0, a

В третьем случае перейдем к новому началу (a_1, a_2) координат, которое является неподвижной точкой, и получим формулы поворота вокруг начала координат.