$$g_n = 0.404$$
;
 $B0 = 2.35$;
 $h = 6.626070040 * 10^{(-34)}$;
 $\frac{\pi}{n} = h / (2 * \pi)$;
 $q_p = 1.6021766208 * 10^{(-19)}$;
 $q_n = 7 * q_p$;
 $m_p = 1.6726219 * 10^{(-27)}$;
 $m_n = 14 * m_p$;
 $E2[B_] := \frac{\frac{\pi}{n} * g_n * q_n * B^2}{4 * m_n * B0}$;
 $\omega_0 = \frac{g_n * q_n * B0}{2 * m_n}$;
 $E0[B_] := \omega_0 * \pi$;
 $Plot[\{E2[B], E0[B]\}, \{B, 0, 10\}]$
 $2. \times 10^{-26}$
 $1. \times 10^{-26}$
 $1. \times 10^{-26}$
 $5. \times 10^{-27}$

This calculation shows the sensitivity of the perturbation method as we see once we reach a neighborhood of field strengths near B0, the energy of the correction crosses the zeroth order energy. Below is the plot including the energy of each state to second order:

