Start with $y'' = -300000 / y^2$.

With the substitution, this becomes $v * v' = -300,000 / y^2$

Integrate both sides and we get $v^2 = 600,000 / y + C$

Using v(6400) = 9, we can solve for C:

In[28]:= 9 ^ 2 - 600 000 / 6400

Out[28]=
$$-\frac{51}{4}$$

In[29]:= **N[%]**

 $\mathsf{Out}[\mathsf{29}] = -12.75$

So
$$(y')^2 = 600,000 / y - 12.75$$

In solving (b), we know that y' = 0 at the maximum, so solving for y we get:

In[30]:= 4 * 600 000 / 51

Out[30]=
$$\frac{800000}{17}$$

In[31]:= **N[%]**

Out[31]= 47058.8

We know y' > 0 before the maximum value of y. Thus $y' = \operatorname{sqrt}((600,000 - 12.75 * y) / y)$

Then y' * sqrt(y / (600,000 - 12.75 y)) = 1.

We integrate both sides with respect to t from t = 0 to $t = t_0$, where t_0 is the time where the squirrel is furthest. Using substitution, the left hand side is then integrated from y = 6400 to y = 47,058, and the righthand side is equal to t_0 :

ln[46]:= Integrate [Sqrt[y / (600000 - 51 * y / 4)], {y, 6400, 800000 / 17}]

Out[46]=
$$\frac{12\,800}{867} \left(306 + 125\,\sqrt{51}\,\,\mathrm{ArcSec}\left[\,5\,\sqrt{\frac{5}{17}}\,\,\right] \right)$$

In[47]:= **N[%]**

Out[47]= 20241.6