- 18. Seja P uma distribuição de probabilidade conjunta no conjunto $S \times T$, onde $S = \{s_1, \ldots, s_M\}$ e $T = \{t_1, \ldots, t_N\}$. A informação mútua de P é $I_M(P) = D(P,Q)$, onde $Q(s_i, t_j) = P_S(s_i)P_T(t_j)$ é a distribuição combinada das distribuições marginais de P.
 - (a) Calcule $I_M(P)$ para $M=2, N=3, P(s_1,t_1)=1/2, P(s_1,t_2)=1/4, P(s_1,t_3)=1/8, P(s_2,t_1)=1/16$ e $P(s_2,t_2)=P(s_2,t_3)=1/32$.
 - (b) Mostre que $I_M(P) = \sum_{i=1}^{M} \sum_{j=1}^{N} P(s_i, t_j) \log \frac{P(s_i | t_j)}{P_S(s_i)}$.
- 19. Uma matriz quadrada A não negativa diz-se redutitel se existir uma matriz de permutação P tal que PAP^T tem a seguinte forma por blocos $\begin{pmatrix} B & C \\ 0 & D \end{pmatrix}$ onde B e D são matrizes quadradas. Caso contrário, A diz-se irredutivel.
 - (a) Seja A uma matriz não negativa irredutível e seja x uma matriz coluna não negativa. Mostre que, se Ax=0, então x=0.
 - (b) Seja A uma matriz não negativa irredutível $n \times n$, com $n \ge 2$, e seja y uma matriz $n \times 1$ não negativa com precisamente k entradas positivas, onde $1 \le k \le n-1$. Mostre que $(I_n+A)y$ tem mais do que k entradas positivas. [Sugestão: seja P uma matriz de permutação tal que as primeiras k entradas de x = Py são positivas. Note que o número de entradas positivas de $(I_n + A)y$ não pode ser inferior ao de y. Se for o mesmo, deduza que as entradas positivas de PAP^Tx são as k primeiras e que as entradas nas últimas n k linhas das primeiras k colunas de PAP^T são nulas, o que contradiz a irredutibilidade de A.]
 - (c) Mostre que uma matriz quadrada não negtiva A é irredutível se e só se $(I_n + A)^{n-1}$ for positiva.
 - (d) Mostre que todo o vetor próprio não negativo duma matriz não negativa irredutível tem de ser positivo.
 - (e) Seja $A = (a_{ij})$ uma matriz quadrada não negativa. Represente por $a_{ij}^{(k)}$ a entrada (i,j) da matriz A^k . Mostre que é A irredutível se e só se, para todo o par de índices (i,j), existir k tal que $a_{ij}^{(k)} > 0$. [Por outras palavras, A é irredutível se e só se o grafo D_A do Exercício 10 for fortemente conexo.]
- 20. Seja $\mathbb{R}_{\geq 0}$ o conjuntos dos números reais não negativos e seja E^n o conjunto dos n-uplos (x_1, \ldots, x_n) de $\mathbb{R}_{\geq 0}$ tais que $\sum_{i=1}^n x_i = 1$. Dada uma matriz irredutível $n \times n$ não negativa, a função $f_A : \mathbb{R}^n_{\geq 0} \to \mathbb{R}_{\geq 0}$ definida por

$$f_A(x) = \min_{x_i \neq 0} \frac{(Ax)_i}{x_i}$$

diz-se a função de Collatz-Wielandt associada a A.

- (a) Mostre que $f_A(tx) = f_A(x)$ para todo o t > 0.
- (b) Seja $0 \neq x \in \mathbb{R}^n_{\geq 0}$. Mostre que $f_A(x)$ é o maior número real ρ tal que $Ax \rho x \geq 0$.
- (c) Seja $0 \neq x \in \mathbb{R}^n_{>0}$ e seja $y = (I_n + A)^{n-1}x$. Mostre que $f_A(y) \geq f_A(x)$.
- (d) Mostre que a função f_A é limitada. [Sugestão: mostre que é majorada pelo máximo das somas das colunas de A.]
- (e) Mostre que f_A atinge um valor máximo no conjunto E^n . [Sugestão: comece por notar que a restrição de f_A a $\mathbb{R}^n_{>0}$ é uma função contínua e que o conjunto $G = (I_n + A)^{n-1}E^n$ é compacto. Logo, f_A atinge o máximo em algum ponto y de G. Mostre que f_A atinge o máximo no ponto x de E^n que se obtém de y dividindo pela soma das suas entradas.]

- 21. [Teorema de Perron-Frobenius para matrizes irredutíveis] Seja A uma matriz irredutível não negativa.
 - (a) Mostre que A possui um valor próprio r tal que $r \ge |\lambda|$ para todo o valor próprio λ de A e que há algum vetor próprio positivo pertencente a r. [Sugestão: seja x^0 um ponto onde f_A assume um máximo em E^n (cf. Exercício 20) e verifique que $r = f_A(x^0)$ tem as propriedades pretendidas.]
 - (b) Mostre que o valor próprio r da alínea anterior é um zero simples do seu polinómio caraterístico. [Sugestão: comece por observar que um vetor próprio pertencente a r não pode ter componentes nulas. Deduza que o espaço próprio pertencente a r tem dimensão 1. Considere o polinómio caraterístico $\Delta(\lambda) = \det(\lambda I_n A)$ e observe que basta mostrar que $\Delta'(r) \neq 0$. Mostre que $\Delta'(\lambda) = \operatorname{tr}(B(\lambda))$, onde $B(\lambda) = \operatorname{adj}(\lambda I_n A)$. Considerando A e A^T , mostre que cada coluna e cada linha de B(r) positiva, negativa ou nula e deduza que B(r) é positiva ou negativa.]
 - (c) Mostre que A tem exatamente um vetor próprio em E^n .
- 22. [Teorema de Perron-Frobenius para matrizes não negativas] Seja A uma matriz quadrada não negativa. Mostre que A possui um valor próprio r tal que $r \geq |\lambda|$ para todo o valor próprio λ de A e que há algum vetor próprio não negativo pertencente a r. [Sugestão: considere a matriz positiva $A_{\varepsilon} = A + \varepsilon B$, onde $\varepsilon > 0$ e B é uma matriz positiva fixada. Pelo Exercício 21, A_{ε} tem um valor próprio r_{ε} tal que $r_{\varepsilon} \geq |\lambda^{(\varepsilon)}|$ para todo o valor próprio $\lambda^{(\varepsilon)}$ de A_{ε} e existe $x^{(\varepsilon)} \in E^n$ tal que $A_{\varepsilon}x^{(\varepsilon)} = r_{\varepsilon}x^{(\varepsilon)}$. Faça $\varepsilon \to 0^+$.]
- 23. Dado $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$, seja $\|\mathbf{x}\| = \sum_{i=1}^n |x_i|$. Seja $\Delta = \{\mathbf{x} \in \mathbb{R}^n : (\forall i) \, x_i \geq 0, \|\mathbf{x}\| = 1\}$. Considere uma matriz quadrada $A \in M_n(\mathbb{R})$ não nula, com entradas não negativas e defina a função $f : \Delta \to \Delta$ por

$$f(\mathbf{x}) = \frac{A\mathbf{x}}{\|A\mathbf{x}\|}.$$

Uma combinação convexa dos pontos $\mathbf{x}_1, \dots, \mathbf{x}_m$ de um espaço vectorial é um ponto da forma $\sum_i t_i \mathbf{x}_i$ com os coeficientes $t_i \geq 0$ e $\sum_i t_i = 1$; a combinação convexa diz-se não-trivial, se tiver pelo menos dois coeficientes não nulos. O fecho convexo de um conjunto S num espaço vectorial é o conjunto de todas as combinações convexas de subconjuntos finitos de S. Um polítopo é o fecho convexo de um conjunto finito de pontos. Um ponto extremo de um conjunto convexo S é um ponto $\mathbf{x} \in S$ que não admite nenhuma expressão como combinação convexa não-trivial de pontos de S.

- (a) Mostre que qualquer polítopo tem somente um número finito de pontos extremos e que é o fecho convexo do conjunto dos seus pontos extremos.
- (b) Seja $\Delta^m = f^m(\Delta)$, o resultado de aplicar sucessivamente m vezes a função f a partir do conjunto Δ , e seja $\Delta^\infty = \bigcap_{m=0}^\infty \Delta^m$. Mostre que Δ^∞ é um polítopo.
- (c) Mostre que $f(\Delta^{\infty}) = \Delta^{\infty}$.
- (d) Seja E o conjunto dos pontos extremos de Δ^{∞} . Mostre que f(E) = E.
- (e) Por cálculo directo, mostre que toda a matriz da forma

$$\begin{bmatrix} 0 & a_1 & 0 & \cdots & 0 \\ 0 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{k-1} \\ a_k & 0 & 0 & \cdots & 0 \end{bmatrix},$$

com $a_i > 0$, tem algum valor próprio positivo.

- (f) Mostre que f tem algum ponto fixo (i.e., \mathbf{x} tal que $f(\mathbf{x}) = \mathbf{x}$).
- (g) Deduza que toda a fonte de Markov tem alguma distribuição estacionária.

- 24. Considere um canal binário que transmite corretamente um 0 (como um 0) com frequência dupla daquela com que o transmite incorretamente (como um 1) e transmite corretamente um 1 três vezes mais frequentemente do que o transmite incorretamente. A fonte de entrada do canal é suposta ser equiprovável.
 - (a) Determine a matriz do canal e esboce o diagrama do canal.
 - (b) Determine as probabilidades P(b) das saídas do canal.
 - (c) Calcule a "probabilidade para trás" P(a|b).
- 25. O agente secreto 101 comunica com a sua fonte de informação através do telefone, mas através duma língua estrangeira com uma ligação com muitas interferências. O agente 101 coloca questões que requerem da sua fonte somente respostas sim/não. Devido às interferências e à barreira da língua, o agente 101 ouve e interpreta corretamente somente 75% das respostas, não entendendo 10%, e interpretando incorretamente 15%. Antes de formular uma questão, o agente 101 tem a expectativa de 80% de respostas afirmativas.
 - (a) Esboce o diagrama do canal de comunicação entre o agente 101 e a sua fonte.
 - (b) Antes de receber a resposta a uma questão, qual é a incerteza média do agente 101 sobre a resposta?
 - (c) Suponha que o agente 101 interpreta a resposta a uma sua questão como sendo negativa. Qual é a sua incerteza média acerca da resposta? A sua incerteza é maior ou menor do que a incerteza sobre a resposta face à interpretação que deu à resposta?
 - (d) Suponha agora que o agente 101 interpreta a resposta como sendo afirmativa e responda a questões idênticas às da alínea anterior.
- 26. Calcule o equívoco H(A|B) de A em relação a B para o canal de comunicação do Exercício 25. Calcule a informação mútua do canal I(A;B) = H(A) H(A|B). Verifique que I(A;B) = H(B) H(B|A). O que pode dizer sobre o canal face às respostas às alíneas (c) e (d) daquele exercício?
- 27. Considere um canal de comunicação binário, digamos por fibra óptica, com probabilidade de troca do sinal $q_{\rm BSC}$ e um canal binário, digamos sem fios, com probabilidade de apagamento $q_{\rm BEC}$.
 - (a) Calcule a informação mútua para cada canal supondo que a fonte binária em ambos os casos tem a mesma probabilidade para ambos os símbolos.
 - (b) Qual dos canais transmite mais informação quando $q_{BSC} = q_{BEC}$?
 - (c) Qual dos canais permite o maior valor de q para a mesma informação mútua?
- 28. Conhecidos H(B|A) = 0.83, H(A) = 0.92 e H(A|B) = 0.73, determine H(B), H(A,B) e I(A;B).
- 29. Mostrámos que o valor mínimo de I(A; B) é zero. Qual é o valor máximo?
- 30. Mostre que, para um BEC com probabilidades na fonte $(\omega, \bar{\omega})$ e probabilidade p de transmisão correta de cada bit, tem-se $I(A; B) = p(\omega \log \frac{1}{\omega} + \bar{\omega} \log \frac{1}{\bar{\omega}})$.
- 31. Um amigo acaba de ver os resultados dum seu exame e telefonou-lhe para lhe comunicar se passou ou reprovou. Infelizmente, a qualidade da ligação era tão má que 3 em cada 10 vezes que lhe dizia "passaste", percebia que lhe tinha dito "reprovaste" e 1 ema cada 10 vezes que lhe dizia "reprovaste", percebia "passaste". Antes de falar com o amigo, estava convito que probabilidade de ter passado no exame era 60%. Com que grau de confiança julga ter passado no exame ao ter percebido que o seu amigo lhe disse que passou?