Sage 快速参考

William Stein (based on work of P. Jipsen) GNU Free Document License, extend for your own use

Notebook

执行单元: 〈shift-enter〉

执行单元并新建单元: (alt-enter)

分割单元: ⟨control-;⟩

合并单元: 〈control-backspace〉 插入数学单元: 点击单元间的蓝线

插入文本/HTML 单元: shift-点击单元间的蓝线

删除单元: 删除内容后退格 (backspace)

命令行

com(tab) 自动完成 command
bar? 列出所有包含 "bar" 的命令
command?(tab) 显示文档
command??(tab) 显示源代码
a.(tab) 显示对象a 的方法 (或 dir(a))
a._(tab) 显示对象 a 的隐藏方法
search_doc("string or regexp") 文档全文搜索
search_src("string or regexp") 搜索源代码
_ 前一项输出

数

整数: $\mathbf{Z} = ZZ$ 例 -2 -1 0 1 10^100 有理数: $\mathbf{Q} = QQ$ 例 1/2 1/1000 314/100 -2/1实数: $\mathbf{R} \approx RR$ 例 .5 0.001 3.14 1.23e10000 复数: $\mathbf{C} \approx CC$ 例 CC(1,1) CC(2.5,-3)双精度: RDF = CDF 例 CDF(2.1,3)

模 n 剩余类: $\mathbf{Z}/n\mathbf{Z} = \text{Zmod}$ 例 Mod(2,3) Zmod(3)(2)

有限域: $\mathbf{F}_q = \mathsf{GF}$ 例 $\mathsf{GF(3)(2)}$ $\mathsf{GF(9,"a").0}$

多项式: R[x,y] 例 S.<x,y>=QQ[] x+2*y^3

幂级数: R[[t]] 例 S.<t>=QQ[[]] 1/2+2*t+0(t^2)

p 进整数: $\mathbf{Z}_p \approx \mathsf{Zp}$, $\mathbf{Q}_p \approx \mathsf{Qp}$ 例 2+3*5+0(5^2)

代数闭包: $\overline{\mathbf{Q}} = QQbar$ 例 $QQbar(2^{(1/5)})$

区间算术: RIF 例 sage: RIF((1,1.00001))

数域: R.<x>=QQ[];K.<a>=NumberField(x^3+x+1)

算术

$$\begin{array}{lll} ab = \texttt{a*b} & \frac{a}{b} = \texttt{a/b} & a^b = \texttt{a^b} & \sqrt{x} = \texttt{sqrt(x)} \\ \sqrt[n]{x} = \texttt{x^(1/n)} & |x| = \texttt{abs(x)} & \log_b(x) = \log(\texttt{x,b}) \end{array}$$

和:
$$\sum_{i=k}^n f(i) = \operatorname{sum}(\mathbf{f(i)} \text{ for i in (k..n)})$$

积:
$$\prod_{i=k} f(i) = \operatorname{prod}(f(i) \text{ for i in (k..n)})$$

常数与函数

常数: $\pi=\mathrm{pi}$ $e=\mathrm{e}$ $i=\mathrm{i}$ $\infty=\mathrm{oo}$ $\phi=\mathrm{golden_ratio}$ $\gamma=\mathrm{euler_gamma}$ π 近似值: $\mathrm{pi.n}(\mathrm{digits=18})=3.14159265358979324$ 函数: sin cos tan sec csc coth log ln exp ... Python 函数: def $\mathrm{f(x)}$: return x^2

交互函数

把 @interact 放在函数前 (vars determine controls) @interact

def f(n=[0..4], s=(1..5), c=Color("red")):
 var("x"); show(plot(sin(n+x^s),-pi,pi,color=c))

符号式

微积分

2D 作图

line([(x_1,y_1),...,(x_n,y_n)], options)
polygon([(x_1,y_1),...,(x_n,y_n)], options)
circle(((x,y),r, options)
text("txt",(x,y), options)
options 与 plot.options 用法相同, 例 thickness=pixel, rgbcolor=(r,g,b), hue=h 其中 $0 \le r$,b,g, $h \le 1$ show(graphic, options)
使用 figsize=[w,h] 调整大小
使用 aspect_ratio=number 调整纵横比
plot(f(x),(x, x_{\min} , x_{\max}), options)
parametric_plot((f(t),g)),(t, t_{\min} , t_{\max}), options)
polar_plot(f(t),(t, t_{\min} , t_{\max}), options)
结合: circle((1,1),1)+line([(0,0),(2,2)])
animate(list of graphics, options).show(delay=20)

3D 作图

line3d([$(x_1,y_1,z_1),\ldots,(x_n,y_n,z_n)$], options)

sphere((x,y,z), r, options)

text3d("txt", (x,y,z), options)

tetrahedron((x,y,z), size, options)

cube((x,y,z), size, options)

octahedron((x,y,z), size, options)

dodecahedron((x,y,z), size, options)

icosahedron((x,y,z), size, options)

plot3d(f(x,y), (x,x_b,x_e) , (y,y_b,y_e) , options)

parametric_plot3d($(f(y,y),(x,y_b,y_e),y_e)$), options)

parametric_plot3d($(f(y,y),(x,y_b,y_e),y_e)$), options)

options: aspect_ratio=[1,1,1], color="red"

opacity=0.5, figsize=6, viewer="tachyon"

离散数学

 $\lfloor x \rfloor = \mathrm{floor}(\mathbf{x})$ $\lceil x \rceil = \mathrm{ceil}(\mathbf{x})$ n 除以 k 的余数 = n%k $k \mid n$ iff n%k==0 $n! = \mathrm{factorial}(n)$ $\binom{x}{m} = \mathrm{binomial}(\mathbf{x}, \mathbf{m})$ $\phi(n) = \mathrm{euler_phi}(n)$ 字符串: 例 $\mathbf{s} = \mathrm{"Hello"} = \mathrm{"He"+'llo'}$ $\mathbf{s} = \mathrm{[0]} = \mathrm{"H} = \mathrm{[0]} =$

图论

图: $G = Graph(\{0:[1,2,3], 2:[4]\})$

有向图: DiGraph(dictionary)

图族: graphs. ⟨tab⟩

不变量: G.chromatic_polynomial(), G.is_planar()

路径: G.shortest_path()

可视化: G.plot(), G.plot3d()

自同构: G.automorphism_group(),

G1.is_isomorphic(G2), G1.is_subgraph(G2)

组合学

整数序列: sloane_find(list), sloane. \(\tab \)

分划: P=Partitions(n) P.count()

组合: C=Combinations(list) C.list()

笛卡尔积: CartesianProduct(P,C)

Tableau: Tableau([[1,2,3],[4,5]])

字: W=Words("abc"); W("aabca")

偏序集: Poset([[1,2],[4],[3],[4],[]])

根系: RootSystem(["A",3])

Crystals: CrystalOfTableaux(["A",3], shape=[3,2])
Lattice Polytopes: A=random_matrix(ZZ,3,6,x=7)

L=LatticePolytope(A) L.npoints() L.plot3d()

矩阵代数

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \text{matrix}(QQ,2,3,[1,2,3,4,5,6])$$

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \text{det(matrix(QQ,[[1,2],[3,4]]))}$$

 $Av = A*v \quad A^{-1} = A^{-1} \quad A^t = A.transpose()$

求解 Ax = v: A\v 或 A.solve_right(v)

求解 xA = v: A.solve_left(v)

约化行阶梯型: A.echelon_form()

秩与零度: A.rank() A.nullity()

Hessenberg 型: A.hessenberg_form()

特征多项式: A.charpoly() 特征值: A.eigenvalues()

特征向量: A.eigenvectors_right() (also left)

Gram-Schmidt 正交化: A.gram_schmidt()

可视化: A.plot()

LLL 约化: matrix(ZZ,...).LLL()

Hermite 型: matrix(ZZ,...).hermite_form()

线性代数

向量空间 $K^n = K^n$ 例 QQ^3 RR^2 CC^4

子空间: span(vectors, field)

例, span([[1,2,3], [2,3,5]], QQ)

核: A.right_kernel() (also left)

和与交: V + W and V.intersection(W)

基: V.basis()

基矩阵: V.basis_matrix()

矩阵限制在子空间: A.restrict(V)

向量在基下的坐标: V.coordinates(vector)

数值计算

包: import numpy, scipy, cvxopt 最小化: var("x y z") minimize(x^2+x*y^3+(1-z)^2-1, [1,1,1])

数论

素数: prime_range(n,m), is_prime, next_prime 素因数分解: factor(n), qsieve(n), ecm.factor(n) Kronecker 符号: $\left(\frac{a}{b}\right) = \text{kronecker_symbol}(a,b)$ 连分数: continued_fraction(x) Bernoulli 数: bernoulli(n), bernoulli_mod_p(p) 椭圆曲线: EllipticCurve($[a_1,a_2,a_3,a_4,a_6]$) Dirichlet 特征: DirichletGroup(N) 模形式: ModularForms(level, weight) Modular symbols: ModularSymbols(level, weight, sign)

群论

G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])
SymmetricGroup(n), AlternatingGroup(n)
交换群: AbelianGroup([3,15])
矩阵群: GL, SL, Sp, SU, GU, SO, GO

函数: $G.sylow_subgroup(p)$, $G.character_table()$,

G.normal_subgroups(), G.cayley_graph()

Brandt 模: BrandtModule(level, weight)

Modular abelian 簇: JO(N), J1(N)

非交换环

四元数: Q.<i,j,k> = QuaternionAlgebra(a,b) 自由代数: R.<a,b,c> = FreeAlgebra(QQ, 3)

Python 模块

import $module_name$ module_name. $\langle tab \rangle \stackrel{L}{\to} help(module_name)$

分析与调试

time command: 显示时间信息
timeit("command"): 精确时间控制
t = cputime(); cputime(t): CPU 运行时间
t = walltime(); walltime(t): 系统时间
%pdb: 开启交互调试 (仅在命令行)
%prun command: 配置命令 (仅在命令行)