2022-2023学年春夏学期数学分析(甲)II(H)第一次小测

1. 下述陈述错误的是().

多选题(10分)

A. 设级数

$$\sum_{n=1}^{+\infty}u_n(x)$$
 在区间 I 上一致收敛,且 $g(x)$ 是 I 上的有界函数,则级数 $\sum_{n=1}^{+\infty}g(x)u_n(x)$ 在 I 上一致收敛。

B.
$$\bigotimes \sum_{n=1}^{+\infty} u_n(x)$$
 在区间 I 上 绝对收敛,则 $\sum_{n=1}^{+\infty} u_n(x)$ 在 I 上一致收敛.

C. 级数
$$\sum_{n=1}^{+\infty} \frac{1}{1+n^2x^2}$$
 在 $(0,1)$ 内一致收敛.

D. 设
$$a_n>0$$
,且 $\displaystyle\sum_{n=1}^{+\infty}a_n$ 收敛,则存在 $N>0$,当 $n>N$ 时,有 $a_n<rac{1}{n}.$

2. 函数列 $\{f_n(x)\}$ 在区间I上不一致收敛于函数f(x)的定义是().

单选题(10分)

A.
$$\exists \epsilon_0 > 0, orall N \in \mathbb{Z}^+$$
,当 $n > N$ 时, $\exists x \in I,$ 使得 $|f_n(x) - f(x)| \geq \epsilon_0$.

B.
$$\exists \epsilon_0 > 0, orall N \in \mathbb{Z}^+$$
, $\exists n > N$, $\exists x \in I,$ 使得 $|f_n(x) - f(x)| \geq \epsilon_0$

C.
$$\exists \epsilon_0 > 0, \forall N \in \mathbb{Z}^+, \exists x \in I, \ \exists n > N$$
时,有 $|f_n(x) - f(x)| \geq \epsilon_0$.

D.
$$\exists \epsilon_0 > 0, \forall N \in \mathbb{Z}^+, \exists n > N, \ \forall x \in I,$$
 使得 $|f_n(x) - f(x)| \geq \epsilon_0$

3. 设
$$f(x) = \begin{cases} x, & 0 \leq x < \frac{1}{2} \\ 5 - 3x, & \frac{1}{2} < x \leq 1 \end{cases}$$
, $S(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos n\pi x \ (x \in \mathbb{R})$,其中 $a_n = 2 \int_0^1 f(x) \cos n\pi x dx \ (n \in \mathbb{N})$,则 $S(-\frac{9}{2}) = ($).

单选题(10 分)

- A. 2
- B. 1
- C. 1/2
- D. 7/2

4. 设幂级数
$$\sum_{n=1}^{+\infty}a_n(x-1)^n$$
的收敛半径是 1 ,则级数 $\sum_{n=1}^{+\infty}(2^na_n)$ ().

单选题(10分)

- A. 绝对收敛
- B. 的敛散性无法确定
- C. 发散
- D. 条件收敛

5. 幂级数
$$\sum_{n=1}^{+\infty} nx^{n+1}$$
 的和函数是().

单选题(10分)

A.
$$-\left(\frac{x}{1-x}\right)^2, x \in (-1,1).$$

B.
$$\frac{x^2}{1-x}, \ x \in (-1,1).$$

C.
$$-\frac{x^2}{1-x}$$
, $x \in (-1,1)$.

D.
$$\left(\frac{x}{1-x}\right)^2, \ x \in (-1,1)$$

6. 若 $\{f_n(x)\}$ 与 $\{g_n(x)\}$ 都在 \mathbb{R} 上一致收敛,那么以下说法正确的是()

多选题(10分)

- A. 当 $\{f_n(x)\}$ 与 $\{g_n(x)\}$ 都在 \mathbb{R} 上一致有界时, $\{f_n(x)\cdot g_n(x)\}$ 在 \mathbb{R} 上一致收敛.
- B. $\{f_n(x)+g_n(x)\}$ 在 \mathbb{R} 上一致收敛
- C. 当 $\{f_n(x)\}$ 与 $\{g_n(x)\}$ 中的其中一个函数列在 \mathbb{R} 上一致有界时, $\{f_n(x)\cdot g_n(x)\}$ 在 \mathbb{R} 上一致收敛.
- D. $\{f_n(x)\cdot g_n(x)\}$ 在 \mathbb{R} 上-致收敛.
- 7. 下列函数项级数在区间[0,1]上一致收敛的是().

单选题(10分)

$$^{\wedge}\sum_{n=1}^{+\infty}(1-x)x^{n}$$

$$\sum_{n=1}^{+\infty} (-1)^n (1-x) x^n.$$

C.
$$\sum_{n=1}^{+\infty} \frac{x^2}{(1+x^2)^n}$$

$$\sum_{n=1}^{+\infty} x e^{-nx^2}$$

8. 已知级数 $\sum_{n=1}^{+\infty} a_n$ 收敛,则下述结论一定成立的是().

单选题(10分)

$$\stackrel{\mathsf{A}}{\underset{n=1}{\sum}} (a_n)^3$$
 收敛.

B.
$$\sum_{n=1}^{+\infty} a_n \cdot a_{n+1}$$
 收敛.

$$\sum_{n=1}^{C} (-1)^n a_n$$
 收敛.

$$D.\sum_{n=1}^{+\infty} \frac{a_n + a_{n+1}}{2}$$
收敛.

9. 已知 f(x) 是**R** 上的以 2π 为周期的周期函数,且 对 $\forall x \in [0,2\pi), f(x) = x^2$. 又设 $g(x) = \begin{cases} \frac{\ln(1+x)}{x}, & x \in (0,1] \\ 1, & x = 0 \end{cases}$. 则下述命题正确的有().

多选题(10分)

A. f 的Fourier级数在IR 上处处收敛.

$$\mathsf{B.} \int_0^1 g(x) dx = \frac{\pi^2}{12}.$$

$$\sum_{n=1}^{C.} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{8}.$$

D.
$$f(x) \sim \frac{4\pi^2}{3} + 4\sum_{n=1}^{+\infty} \left(\frac{1}{n^2}\cos(nx) - \frac{\pi}{n}\sin(nx)\right)$$
.

10. 已知
$$a_n < b_n (n=1,2,\cdots)$$
,若级数 $\displaystyle \sum_{n=1}^{+\infty} a_n$ 与 $\displaystyle \sum_{n=1}^{+\infty} b_n$ 均收敛,则" $\displaystyle \sum_{n=1}^{+\infty} a_n$ 绝对收敛" 是" $\displaystyle \sum_{n=1}^{+\infty} b_n$ 绝对收敛"的().

单选题(10分)

A. 既非充分也非必要条件.

- B. 充分必要条件
- C 充分不必要条件
- D. 必要不充分条件