EECS16A Touchscreen 2

Resistive touchscreen

- Investigate a resistive touchscreen
 - Something that actually was used for a long time!
- Use voltage as a signal to determine position of touch
 - O How?

Resistive touchscreen

- Physical touch results in physical contact between top and bottom layers
- Voltage dividers allow us to compute touch location

EX: Nokia N900, Nokia N97 Mini, LG Optimus, LG GW620, Nintendo DS

Tools for today:

- Launchpad measuring device & providing power
- Voltage dividers
 - How we will detect location
- Falstad
 - Circuit simulation, has virtual Power
 Supplies and Multimeters

Touchscreen theory (Note 13/14)

What's the voltage at the top?

What's the voltage at the bottom?

Voltage at u2?

Touchscreen theory (Note 13/14)

$$u_2 = V_S * \frac{kR_1}{kR_1 + R_1}$$

$$u_2 = V_S * \frac{R_1(k)}{R_1(k+1)}$$

 $u_2 = V_S * \frac{\kappa}{k+1}$

Independent of the value of R!

Building it up

 What are the voltages at u2 and u3?

$$u_2 = V_S * \frac{k}{k+1}$$

$$u_3 = V_S * \frac{k}{k+1}$$

What's the voltage difference?

The Rs cancel out! All the matters is the proportion between the top and bottom resistors.

In fact, u3 and u2 are at the SAME VOLTAGE

Building it up

- We know that u2-u3=0
- How much current goes through R3?

$$u_2 = V_S * \frac{k}{k+1}$$

$$u_3 = V_S * \frac{k}{k+1}$$

Building it up

- Add one more resistor divider...
- We get our touchscreen!

Resistive touchscreen - 2 layers

Bottom Layer: Resistive Layer

Resistive touchscreen - 2 layers

Top Layer:

Flexible Resistive Layer

What's the difference?

- Nothing
 - The ink is a bunch of resistors
 - The resistor values don't matter because we showed only the proportions matter for this circuit
 - Their circuit diagrams are the same
- One is flexible so we can actually move it to make contact
- We use two so that we can measure with one and apply voltage to the other without changing our circuit

- Measure some voltages, compute location based on value
- Can you find any two horizontal locations that would output the same voltage?
- What about vertical?

- We can only determine vertical position
- What about the other orientation?

What if we turned it sideways?

- Let's turn it sideways
 - Apply voltage so we power the horizontal direction
 - Find "vertical"
 location in horizontal
 orientation
- This gives horizontal location

- If we take two readings, one in each dimension can uniquely determine our location in 2D
- More on this in the lab notebook

Taking the limit

- 9 touch points is kinda... meh
- How do we get more?

Taking the limit

Add more resistors!

Taking the limit

- But what if I don't want to increase the size of the circuit?
 - Add more, but make the resistors smaller!
- What happens as the resistors approach infinitely small sizes?
 - Isn't that just a resistive sheet?
 - This is how all resistive touchscreens work
 - Review lecture <u>note 12</u>, <u>note 13</u>, <u>note 14</u>

Simulating touchscreens

- Falstad simulator (https://tinyurl.com/y7wtssb9)
 - Will be used in this lab to simulate resistive dividers in upper and bottom plates

