ROTATIONSYTOR

Rotationsyta är en yta som uppstår genom att en plan kurva roterar ett varv runt en given axel i det tredimensionella rummet.

Här betraktar vi rotationer runt z-axeln.

Fall 1. En kurva definierad för **positiva x** roterar kring z-axeln.

i) En yta som uppstår då kurvan i xz planet z = f(x), $x \ge 0$ (eller kurvan z = f(y), $y \ge 0$ i yz planet) **roterar kring z axeln** har ekvationen

$$z = f(\sqrt{x^2 + y^2})$$

Rotationsytans nivåkurvor är cirklar.

I cylindriska koordinater $x = r\cos\varphi$, $x = r\sin\varphi$, $r = \sqrt{x^2 + y^2}$,

har en rotationsyta ekvationen

$$z = f(r)$$

dvs z beror endast av r och inte av φ .

ii) Omvänt, om en yta har ekvationen i cylindriska koordinater som ej beror av φ ,

$$z = f(r)$$
, [dvs $z = f(\sqrt{x^2 + y^2})$ i rektangulära koordinater)]

då är ytans nivåkurvor cirklar (eftersom $z = konstant \Rightarrow r = konstant$) och därmed är ytan en rotationsyta.

Uppgift 1. Bestäm ekvationen och rita den rotationsyta som uppstår då nedanstående plankurva roterar kring z-axeln. Kurvorna i a), b) ligger i xz-planet, dvs i planet y=0; medan kurvan i c) ligger i yz-planet, dvs i planet x=0.

- a) då $z = 1 + e^x$, $x \ge 0$ (y=0 för punkter i xz-planet)
- **b**) z = 3 x, $x \ge 0$ (y=0)
- c) $z = -1 + 2y^2$, $y \ge 0$ (x=0 för punkter i yz-planet)

Lösning:

- **a)** Vi ersätter x med $\sqrt{x^2 + y^2}$
- i ekvationen $z = 1 + e^x$

och får rotationsytans ekvation

$$z = 1 + e^{\sqrt{x^2 + y^2}}$$

- **b)** Vi ersätter x med $\sqrt{x^2 + y^2}$
- i ekvationen z = 3 x

och får rotationsytans ekvation

$$z = 3 - \sqrt{x^2 + y^2}$$

(En kon med spetsen i punkten P (0,0,3).)

- c) Den här gången ersätter vi $y \text{ med } \sqrt{x^2 + y^2}$
- i ekvationen $z = -1 + 2y^2$

och får
$$z = -1 + 2(\sqrt{x^2 + y^2})^2$$

Råtationsytans ekvation är alltså

$$z = -1 + 2(x^2 + y^2)$$
.

Fall 2. En kurva definierad för negativa x roterar kring z-axeln.

Låt z = f(x) vara en kurva i xz planet som är definierad för **negativa** x, dvs för x < 0, som roterar kring z-axeln och bildar en rotationsyta. (Anmärkning. Vi kan inte i det här fallet direkt ersätta negativt x-värde med positivt $r = \sqrt{x^2 + y^2}$)

På grund av symmetri, **samma rotationsyta** uppstår om kurvan g(x) = f(-x), x > 0 roterar kring z-axeln.

Därför har rotationsytan följande ekvation

$$z = g(\sqrt{x^2 + y^2}) = f(-\sqrt{x^2 + y^2})$$

Uppgift 2. Bestäm ekvationen och rita den yta som uppstår då kurvan, (som ligger i xzplanet)

$$z = 1 + e^x, \quad x \le 0$$

roterar kring z-axeln.

Lösning: Samma rotationsyta uppstår om den symetriska funktionen

$$g(x) = f(-x) = 1 + e^{-x}$$
, $x \ge 0$ roterar kring z-axeln.

Därför har ytan följande ekvation $1 + e^{-\sqrt{x^2 + y^2}}$

Svar:

$$z = 1 + e^{-\sqrt{x^2 + y^2}}$$

Fall 3. En kurvan definierad för både **negativa och positiva x** roterar kring zaxeln.

Låt z = f(x) vara en kurva i xz-planet som är definierad för både negativa och positiva x-värden.

Om kurvan **inte är symmetrisk** kring z-axeln [dvs $f(-x) \neq f(x)$ } då uppstår **två** funktionsytor vid kurvans rotation:

$$z = f(\sqrt{x^2 + y^2})$$
) vid rotationen av $z = f(x), x \ge 0$,

$$z = f(-\sqrt{x^2 + y^2})$$
 vid rotationen av $z = f(x), x < 0$

Uppgift 3. Bestäm ekvationerna och rita de rotationsytor som uppstår då nedanstående kurva (som ligger i xz-planet, y=0) roterar kring z-axeln:

$$z = 2 + x$$
, $-2 \le x \le 1$ (y=0 i xz-planet)

Lösning:

Rotationen av z = 2 + x, $0 \le x \le 1$

ger ekvationen

$$z = f(\sqrt{x^2 + y^2}) = 2 + \sqrt{x^2 + y^2}$$
$$z = f(\sqrt{x^2 + y^2}) = 2 + \sqrt{x^2 + y^2}$$
där $0 \le \sqrt{x^2 + y^2} \le 1$

Rotationen av den delen av kurvan som svarar mot negativa x ger ytan

(vi ersätter x med – r dvs med – $\sqrt{x^2 + y^2}$)

$$z = f(-\sqrt{x^2 + y^2}) = 2 - \sqrt{x^2 + y^2}$$
 där

$$-2 \le -\sqrt{x^2 + y^2} \le 0$$
 (eller $0 \le x^2 + y^2 \le 4$

Uppgift 4. Rita (skissera) följande ytor:

a)
$$z = 2 + \sqrt{x^2 + y^2}$$

a)
$$z = 2 + \sqrt{x^2 + y^2}$$
 b) $z = e^{2(\sqrt{x^2 + y^2})}$ c) $z = x^2 + y^2$

Lösning:

Alla tre funktioner är av typ $z = f(\sqrt{x^2 + y^2})$) och är därmed rotationsytor. Enklast sätt att skissera rotationsytor är att bestämma skärningskurvan mellan ytan och en av koordinatplan; xz (eller yz) genom att substituera y=0 (eller x=0).

a)
$$z = 2 + \sqrt{x^2 + y^2}$$

Skärningspunkter mellan ytan och xz-planet:

$$z = 2 + \sqrt{x^2 + y^2}$$
 och y=0 ger $z = 2 + \sqrt{x^2} \Rightarrow z = 2 + |x|$

Ytan uppstår genom att låta kurvan z = 2 + |x| rotera kring z-axeln i 3D-rummet.

Alternativt, på grund av symmetrin, kan vi uppfatta att ytan uppstår genom att kurvan

$$z=2+x\,,\quad x\geq 0$$

roterar kring z axeln.

Vi ritar ytan som en kon med spetsen i punkten P(0,0,2)

b)
$$z = e^{2(\sqrt{x^2 + y^2})}$$

$$y = 0 \Rightarrow z = e^{2(\sqrt{x^2})} \Rightarrow z = e^{2|x|}$$

Ytan uppstår då plankurvan $z = e^{2|x|}$ roterar kring z-axeln

c)
$$z = x^2 + y^2$$

Ytan uppstår då plankurvan

$$z = x^2$$

roterar kring z-axeln.

