

INSTITUTE OF TECHNOLOGY BLANCHARDSTOWN

Year	Year 2	
Semester	Semester 1	
Date of Examination	Tuesday 10 January 2012	
Time of Examination	12.30pm — 2.30pm	

Prog Code	BN002	Prog Title	Higher Certificate in Science in Computing in information Technology	Module Code	COMP H2028
Prog Code	BN013	Prog Title	Bachelor of Science in Computing in Information Technology	Module Code	COMP H2028
Prog Code	BN104	Prog Title	Bachelor of Science (Honours) in Computing	Module Code	COMP H2028

Module Title	Operating Systems (Client)
	. ,

Internal Examiner(s):

Dr. Kevin Farrell

External Examiner(s):

Dr. Richard Studdert

Instructions to candidates:

- 1. Question One in Section A is COMPULSORY.
- 2. Candidates should attempt ALL parts of Question One in Section A
- 3. Candidates should attempt ONE question from Section B, and ONE question from Section C
- 4. This paper is worth 100 marks.
- 5. Question One is worth 40 marks, and all other questions are worth 30 marks each.

DO NOT TURN OVER THIS PAGE UNTIL YOU ARE TOLD TO DO SO

SECTION A: COMPULSORY QUESTION

Question 1: Answer ALL parts of this question (4 marks for each part)

- a) Distinguish between the concept of a *soft real-time operating system* and a hard real-time operating system.
- b) With reference to memory management, consider a paging system with the page table stored in memory.
 - i. If a memory reference takes **200 ns**, how long does a paged memory reference take?
 - ii. Consider the addition of a *translation look-aside buffer (TLB)*. If **85%** of all page-table references are found in the *TLB*, and if finding a page-table entry in the *TLB* takes **zero time** (if the entry is there), what is the *effective access time (EAT)*?
- c) Explain the concept of *multiprogramming* in an operating system.
- d) Briefly describe **two** possible rules of thumb when determining the *time* quantum in a round robin scheduling scheme.
- e) List **four** objectives of a good *process scheduling policy* for an operating system.
- f) Describe the difference between a process and a thread. Give one advantage of threads over processes.

Question 1 is continued on the next page

- g) Why is it considered bad practice to log directly into a Linux GUI-based system as *root*?
- h) Consider the situation where a user downloads the source-code *tarball* of an application they wish to install on their Linux system. Using the *tar* command, the user has extracted the files from the *tarball* into their home directory, and now wishes to install the application. List the steps that the user must type to *configure*, *compile* and *install* the software on their system. For each step, provide the command prompt symbol to indicate whether an ordinary user or root should type the command.
- i) Consider the situation where a user has just purchased a **third** Serial-ATA hard disk drive for their Linux system. They install the disk, boot up their computer, log in as an ordinary user and run a *konsole* terminal window. Provide the commands, required by the user, to run a command-line partitioning tool which will allow them to start the procedure of partitioning the new disk. (You **do not** have to provide the partitioning tool options for actually creating partitions).
- j) In relation to Linux, distinguish between an absolute pathname and a relative pathname.

(40 Marks Total)

SECTION B: ANSWER QUESTION 2 or QUESTION 3

a)	Distinguish between user mode and kernel mode in an operating system.
	(4 marks)
b)	Explain by what mechanism, and for what reasons, the switch from <i>user</i> mode to kernel mode takes place. (8 marks)
c)	Describe, with the aid of a diagram, the <i>UNIX System V Release 4</i> Process State Model, indicating the transitions between states, and the reasons for those transitions.
	(14 marks)
d)	Briefly explain why the UNIX System V Release 4 operating system is not suitable for real-time processing.
	(4 marks)
	(30 Marks Total)

a)	In relation to memory management, explain the following terms: logical address, physical address, process loading, swapping
	(4 marks)
b)	Describe a simple method which allows memory to be addressed as a set of pages each containing a fixed number of displacements.
	(4 marks)
c)	Explain the term page replacement, and why it is needed. (4 marks)
d)	Describe any two of the following page replacement algorithms: Least Recently Used (LRU), Not Recently Used (NRU), First-In First-Out (FIFO) and Clock.
	(8 marks)
e) (i)	In relation to <i>virtual memory</i> based on paging, explain the constraints regarding storing the <i>page table</i> of every process in <i>real memory</i> .
	(6 marks)
(ii)	In relation to <i>virtual memory</i> based on <i>paging</i> , briefly explain how the location of the <i>page table</i> of the currently running process is located.
	(4 marks)
	(30 Marks Total)

SECTION C: ANSWER QUESTION 4 or QUESTION 5

a)	Consider the situation of a Linux System Administrator who has forgotten the <i>root</i> password. Propose a solution to this problem. (4 marks)
b)	Explain in detail, the purpose and contents of the /etc/group file. (8 marks)
c)	With reference to the Linux Operating System, describe the /etc/passwd and the /etc/shadow files under the following headings:
	 i. Their purpose. ii. The type of information they contain. iii. The differences between them. (6 marks)
d)	How many fields are used on each line in both the /etc/passwd and the /etc/shadow files? Describe the purpose of the different fields in each case.
	(12 marks)
	(30 Marks Total)

a)	Distinguish between automatic and manual booting in Linux.	
	(2 marks)	
b)	List and describe the six distinct phases involved in bootstrapping a Linux Operating System.	
	(12 marks)	
c)	Briefly describe six tasks, which are generally performed by <i>start-up</i> scripts during the bootstrapping of a Linux Operating System.	
	(6 marks)	
d)	With reference to Linux:	
(i)	Explain the concept of a <i>run-level</i> . (2 marks)	
(ii)	State how many <i>run-levels</i> are supported in Linux, and how many are actually defined.	
	(2 marks)	
(iii	Describe each of the defined <i>run-levels</i> .	
	(30 Marks Total)