

COMP20008 Elements of Data Processing

Classification Methodologies

Announcements

- Project marking
 - We expect to release marks + feedback for Phase 1 by Thursday 13th April
- Phase 2A (Concept formulation and preliminary investigation):
 Due 25th April
 - In workshops next week (10-13th April) Half of the time will be devoted to discussion regarding Phase 2A of the project

- Phase 2B (peer feedback): Due 28th April
 - In lecture on Monday 24th April, we will discuss strategies for giving peer feedback

- Introduction to classification
 - Decision tree classification
 - k nearest neighbor classification (on Monday)

Classification

Predicting disease from microarray data

Gene 1	Gene 2	Gene 3		Gene n	Cancer
2.3	1.1	0.3		2.1	1
3.2	0.2	1.2		1.1	1
1.9	3.8	2.7		0.2	0
2.8	3.1	2.5		3.4	0
	2.3	2.3 1.1 3.2 0.2 1.9 3.8	2.3 1.1 0.3 3.2 0.2 1.2 1.9 3.8 2.7 2.8 3.1 2.5	2.3 1.1 0.3 3.2 0.2 1.2 1.9 3.8 2.7	2.3 1.1 0.3 2.1 3.2 0.2 1.2 1.1 1.9 3.8 2.7 0.2 2.8 3.1 2.5 3.4

	Gene 1	Gene 2	Gene 3	Gene n
Person m+1	2.1	0.9	0.6	 1.9

Classification example

Animal classification

Name	Body	Skin	Gives	Aquatic	Aerial	Has	Hiber-	Class
	Temperature	Cover	Birth	Creature	Creature	Legs	nates	Label
human	warm-blooded	hair	yes	no	no	yes	no	mammal
python	cold-blooded	scales	no	no	no	no	yes	reptile
salmon	cold-blooded	scales	no	yes	no	no	no	fish
whale	warm-blooded	hair	yes	yes	no	no	no	$_{ m mammal}$
frog	cold-blooded	none	no	semi	no	yes	yes	amphibian
komodo	cold-blooded	scales	no	no	no	yes	no	reptile
dragon								
bat	warm-blooded	hair	yes	no	yes	yes	yes	$_{ m mammal}$
pigeon	warm-blooded	feathers	no	no	yes	yes	no	bird
cat	warm-blooded	fur	yes	no	no	yes	no	mammal
leopard	cold-blooded	scales	yes	yes	no	no	no	fish
shark								
turtle	cold-blooded	scales	no	semi	no	yes	no	reptile
penguin	warm-blooded	feathers	no	semi	no	yes	no	bird
porcupine	warm-blooded	quills	yes	no	no	yes	yes	$_{ m mammal}$
eel	cold-blooded	scales	no	yes	no	no	no	fish
salamander	cold-blooded	none	no	semi	no	yes	yes	amphibian

Test data

Name	Body	Skin	Gives	Aquatic	Aerial	Has	Hiber-	Class
	Temperature	Cover	Birth	Creature	Creature	Legs	nates	Label
gila monster	cold-blooded	scales	no	no	no	yes	yes	?

https://www-users.cs.umn.edu/~kumar/dmbook/ch4.pdf

Classification example

Banking: classifying borrower

binary categorical continuous

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training set for predicting borrowers who will default on loan payments.

Test data

Tid	Home	Marital	Annual	Defaulted
	Owner	status	Income	Borrower
11	No	Single	55K	?

Classification example

Detecting tax fraud

categorica continuou

	G	O ²	C	•
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Test data

Tid	Refund	Marital Status	Taxable Income	Cheat
11	Yes	Married	125K	?

Classification: Definition

- Given a collection of records (*training set*)
 - Each record contains a set of attributes, one of the attributes is the class.
- Find a *model* for class attribute as a function of the values of other attributes.

$$y = f(x_1, x_2, ..., x_n)$$

- y: discrete value, target variable
- $-x_1...x_n$: attributes, predictors
- Goal: <u>previously unseen</u> records should be assigned a class as accurately as possible.
 - A test set is used to determine the accuracy of the model. Usually, the given data set is divided into training and test sets, with training set used to build the model and test set used to validate it.

Classification framework

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

- Given a collection of records (training set)
 - Each record contains a set of attributes, one of the attributes is the target variable.
- Learn predictive model from data

$$y = f(x_1, x_2, ..., x_n)$$

- y: continuous real value, target variable
- $x_1 \dots x_n$: attributes, predictors

Predicting ice-creams consumption from temperature: y = f(x)

• Predicting ice-creams consumption from temperature: y = f(x)

Predicting activity level of a target gene

	Gene 1	Gene 2	Gene 3	Gene n
Person 1	2.3	1.1	0.3	 2.1
Person 2	3.2	0.2	1.2	 1.1
Person 3	1.9	3.8	2.7	 0.2
	Gene 1	Gene 2	Gene 3	Gene n
Person m+1	2.1	0.9	0.6	 1.9

Gene n+1
3.2
1.1
0.2
0.9

Classification and Regression

- What is Classification and Regression?
- Classification algorithms:
 - Decision tree (today)
 - K-Nearest Neighbor Classifier (K-NN) (tomorrow)

Example of a Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

Another Example of Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Decision Tree Classification Task

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Start from the root of tree.

Test Data

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

NO

Apply Model to Test Data

YES

Start from the root of tree.

Test Data

Refund		Taxable Income	Cheat
No	Single	100K	?

Decision Trees

- Decision tree
 - A flow-chart-like tree structure
 - Internal node denotes a test on an attribute
 - Branch represents an outcome of the test
 - Leaf nodes represent class labels or class distribution

Decision Tree Classification Task

Model

Test Set

Large

No

?

67K

Decision Tree Creation

- Many Algorithms:
 - We will look at a representative one (Hunt's algorithm)

General Structure of Hunt's Algorithm

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
 - If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets.
 Recursively apply the procedure to each subset.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets.
Recursively apply the procedure to each subset.

Tid Refund Marital

Yes

Yes

Yes

Status

Single

Married

Divorced 220K

Taxable

Income

125K

120K

Cheat

No

No

No

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Example

	D _t
	Refund
'es	

Ia	Ketuna	Status	Income	Cheat
2	No	Married	100K	No
3	No	Single	70K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Stopping condition: leaf node

 If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t

If D_t is an empty set, then t is a leaf node labeled by the

default class, y_d

Refund	
Yes	√No

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
4	Yes	Married	120K	No
7	Yes	Divorced	220K	No

Model: Decision Tree

Tree Induction (creation)

- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting
 - When node has only a single class of instances

Tree Induction

- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to Specify Test Condition?

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

Splitting Based on Ordinal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

What about this split?

Splitting Based on Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
 - Binary Decision: (A < v) or (A ≥ v)
 - consider all possible splits and finds the best cut
 - can be more compute intensive

Splitting Based on Continuous Attributes

(i) Binary split

(ii) Multi-way split

Tree Induction

- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to determine the Best Split

Before Splitting: 10 records of class 0, 10 records of class 1

Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

C0: 5

C1: 5

Non-homogeneous,

High degree of impurity

C0: 9

C1: 1

Homogeneous,

Low degree of impurity

Measures of Node Impurity

- Entropy
 - We have seen entropy in the feature correlation section, where it was used to measure the amount of uncertainty in an outcome
 - Entropy can also be viewed as an impurity measure
 - The set {A,B,C,A,A,A,A,A} has low entropy: low uncertainty and high purity
 - The set {A,B,C,D,B,E,A,F} has high entropy: high uncertainty and low purity

Node Impurity Criteria based on Entropy

Entropy (H) at a given node t:

$$H(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- Measures homogeneity of a node.
 - Maximum (log n_c) when records are equally distributed among all classes
 - Minimum (0.0) when all records belong to one class

Examples for computing Entropy

$$H(t) = -\sum_{j} p(j \mid t) \log_2 p(j \mid t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Entropy =
$$-0 \log_2 0 - 1 \log_2 1 = -0 - 0 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropy =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$$

?

Examples for computing Entropy

$$H(t) = -\sum_{j} p(j \mid t) \log_2 p(j \mid t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Entropy = -0$) $log_2 0 - 1$) $log_2 1 = -0 - 0 = 0$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropy =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy =
$$-(2/6) \log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92$$

How good is a Split?

- Compare the impurity (entropy) of parent node (before splitting)
- With the impurity (entropy) of the children nodes (after splitting)

$$Gain = H(Parent) - H(Parent|Child)$$

$$= H(Parent) - \sum_{j=1}^{k} \frac{N(v_j)}{N} H(v_j)$$

- H(v_i): impurity measure of node v_i
- j: children node index
- N(v_j): number of data points in child node v_j
- N: number of data points in parent node
- The larger the gain, the better

How good is a Split?

$$Gain = H(Parent) - H(Parent|Child)$$

$$= H(Parent) - \sum_{j=1}^{k} \frac{N(v_j)}{N} H(v_j)$$

- Note: the information gain is equivalent to the mutual information between the class feature and the feature being split on
- Thus splitting using the information gain is to choose the feature with highest information shared with the class variable

How to determine the Best Split?

Before Splitting: 10 records of class 0, 10 records of class 1

Which test condition is the best?

- Compute the gain of all splits
- Choose the one with largest gain

Question 2c) from 2016 exam

Given a dataset with two classes, A and B, suppose the root node of a decision tree has 50 instances of class A and 150 instances of class B. Consider a candidate split of this root node into two children, the first with (25 class A and 25 class B), the second with (25 class A and 125 class B). Write a formula to measure the utility of this split using the entropy criterion. Explain how this formula helps measure split utility

Points to remember from this lecture

- Understand what is meant by the terms classification and regression and why it is useful to build models for these tasks
- Understand how a decision tree may be used to make predictions about the class of a test instance
- Understand the key steps in building a decision tree
 - How to split the instances, how to specify the attribute test condition, how to determine the best split and how to decide when to stop splitting
- Understand the use of entropy as a node impurity measure for decision tree node splitting. Understand the benefits of entropy for this task and why it is effective for assessing the goodness of a split

References and Acknowledgement

This lecture was prepared using some material adapted from:

- https://www-users.cs.umn.edu/~kumar/dmbook/ch4.pdf
- CS059 Data Mining -- Slides
- http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/ chap4_basic_classification.ppt