Step-1

$$A = LU = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

Given that

The objective is to solve Ax = b by solving the triangular systems Lc = b and Ux = c.

$$c = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$
Let

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \quad U = \begin{bmatrix} 2 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}.$$
We have

Step-2

Solve the equation Lc = b.

$$Lc = b$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} c_1 \\ 4c_1 + c_2 \\ c_1 + c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

From this, we get $c_1 = 0$, $4c_1 + +c_2 = 0$, $c_1 + c_3 = 1$

Solving these equations, we get $c_1 = 0$, $c_2 = 0$, $c_3 = 1$

$$c = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Therefore,

Step-3

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
Let

Solve the equation Ux = c

$$Ux = c$$

$$\begin{bmatrix} 2 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 2x_1 + 2x_2 + 4x_3 \\ x_2 + 3x_3 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

From this, we get $2x_1 + 2x_2 + 4x_3 = 0$, $x_2 + 3x_3 = 0$ and $x_3 = 1$

Substitute $x_3 = 1$ in $x_2 + 3x_3 = 0$, then

$$x_2 + 3(1) = 0 \Rightarrow x_2 = -3$$

Substitute $x_3 = 1$ and $x_2 = -3$ in $2x_1 + 2x_2 + 4x_3 = 0$

$$2x_1 + 2(-3) + 4(1) = 0$$
$$2x_1 - 6 + 4 = 0$$
$$2x_1 - 2 = 0$$
$$x_1 = 1$$

$$x = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$

Therefore,

$$x = \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}$$

Hence, the solution to the given system is

Step-4

$$b = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Notice that we have

Since the last entry of b is non-zero, we can find last column of the matrix A^{-1} for this vector b.

This implies that,

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
$$A = \begin{bmatrix} 2 & 2 & 4 \\ 8 & 9 & 19 \\ 2 & 2 & 5 \end{bmatrix}$$

Find the inverse of A

$$A^{-1} = \begin{pmatrix} \frac{7}{2} & -1 & 1\\ -1 & 1 & -3\\ -1 & 0 & 1 \end{pmatrix}$$

That is

$$x = \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}$$

Notice that last column of A^{-1} is same as the value of the

Therefore, **las column of** A^{-1} has found with this particular b.