МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ) ФИЗТЕХ-ШКОЛА ЭЛЕКТРОНИКИ, ФОТОНИКИ И МОЛЕКУЛЯРНОЙ ФИЗИКИ

Лабораторная работа № 4.7.1

Двойное лучепреломление

выполнил студент 2 курса группы Б04-006 **Белостоцкий Артемий Вовк Дмитрий**

Цель работы

Изучение зависимости показателя преломления необыкновенной волны от направления в двоякопреломляющем кристалле; определение главных показателей преломления по обыкновенной и пе — необыкновенной волны в кристалле; наблюдение эффекта полного внутреннего отражения.

В работе используются

- гелий-неоновый лазер
- вращающийся столик с неподвижным лимбом
- призма из исландского шпата
- поляроид

Теоретические сведения

При падении световой волны на границу изотропной среды в этой среде от границы распространяется одна волна. Если среда анизотропна, то в ней в общем случае возникают две волны, распространяющиеся от границы в разных направлениях и с разными скоростями. Это явление называется двойным лучепреломлением

Плоские волны в кристаллах

Фундаментальные уравнения Максвелла справедливы без всяких изменений и в кристаллических средах.

В отсутствие электрических зарядов и токов они имеют вид

$$\operatorname{rot} \vec{H} = \frac{1}{c} \frac{\partial \vec{D}}{\partial t}, \quad \operatorname{rot} \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$
 (1)

Если среды прозрачны и однородны, то в них могут распространяться плоские монохроматические волны. Запишем такую волну в комплексном виде:

$$\vec{E} = \vec{E}_0 e^{i(\omega t - \vec{k}\vec{r})}; \quad \vec{B} = \vec{H} = \vec{H}_0 e^{i(\omega t - \vec{k}\vec{r})}; \quad \vec{D} = \vec{D}_0 e^{i(\omega t - \vec{k}\vec{r})}$$

Заметим, что $\frac{\partial \vec{D}}{\partial t} = i\omega \vec{D}$, т.е. операция дифференцирования сводится к умножению на $i\omega$. Аналогично дифференцирование по координатам x, y, z сводится к умножению на $-ik_x, -ik_y, -ik_z$.

$$\operatorname{rot} \vec{H} = \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ H_x & H_y & H_z \end{vmatrix} = -i \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ k_x & k_y & k_z \\ H_x & H_y & H_z \end{vmatrix} = -i[\vec{k}\vec{H}]$$

и аналогично для $\cot \vec{E}$. В результате (1) перейдут в

$$[\vec{k}\vec{H}] = -\frac{\omega}{c}\vec{D}; \quad [\vec{k}\vec{E}] = \frac{\omega}{c}\vec{B}.$$

Введем единичный вектор нормали \vec{N} к фронту волны и скорость распространения фронт а в направлении этой нормали v. Тогда $\vec{k} = \frac{\omega}{v} \vec{N}$ и предыдущие соотношения перейдут в

$$\vec{D} = -\frac{c}{v}[\vec{N}\vec{H}]; \quad \vec{B} = \frac{c}{v}[\vec{N}\vec{E}]$$
 (2)

Отсюда видно, что векторы $\vec{D}, \vec{H}, \vec{N}$ взаимно перпендикулярны. Значит, плоские волны в кристалле поперечны в отношении векторов \vec{D} и \vec{H} . Однако в общем случае они не поперечны в отношении вектора \vec{E}

Благодаря тензорной связи между \vec{D} и \vec{E} направления этих векторов в кристаллах, вообще говоря, не совпадают. Плоскость (\vec{E}, \vec{H}) обладает тем свойством,что перпендикуляр к ней определяет направление вектора Пойнтинга $\vec{S} = \frac{c}{4\pi} \left[\vec{E}, \vec{H} \right]$

Оптически одноосные кристаллы

В оптически одноосном кристалле, каковым является исландский шпат, эллипсоид диэлектрической проницаемости представляет собой эллипсоид вращения. В нем оптическая ось совпадает с осью вращения эллипсоида диэлектрических проницаемостей. Для главных значений диэлектрических прони-

Рис. 1: Расположение векторов $\vec{D}, \vec{E}, \vec{N}, \vec{S}$ в анизотропной среде

цаемостей приняты обозначения: $\varepsilon_z = \varepsilon_{||}$ и $\varepsilon_x = \varepsilon_y = \varepsilon_{\perp}$.В дальнейшем нам потребуется связь между проекциями векторов \vec{D} и \vec{E} на оптическую ось кристалла $(\vec{D}_{||}$ и $\vec{E}_{||})$ и на плоскость перпендикулярную оси $(\vec{D}_{\perp}$ и $\vec{E}_{\perp})$:

$$\vec{D}_{||} = \varepsilon_{||} \vec{E}_{||}, \qquad \vec{D}_{\perp} = \varepsilon_{\perp} \vec{E}_{\perp} \tag{3}$$

Волну, распространяющуюся в одноосном кристалле, можно разделить на две линейно поляризованные волны: обыкновенную, вектор электрической индукции \vec{D}_o которой перпендикулярен главному сечению, и необыкновенную, с вектором электрической индукции \vec{D}_e , лежащим в главном сечении (рис. 2).Главным сечением кристалла называется плоскость, в которой лежит оптическая ось кристалла и нормаль к фронту волны

Для обыкновенной волны материальное уравнение имеет такой же вид, как и в изотропной среде, а скорость распространения и ее показатель преломления не зависят от направления распространения:

$$v_o = \frac{c}{\sqrt{\varepsilon_\perp}}$$
 и $n_o = \frac{c}{v_o} = \sqrt{\varepsilon_\perp}$

Рис. 2: Расположение векторов \vec{D}, \vec{N} в анизотропной среде

Для необыкновенной волны ε и соответственно скорость распространения и показатель преломления зависят от угла между оптической осью кристалла и направлением распространения волны.

$$\frac{1}{[n(\theta)]^2} = \frac{\sin^2 \theta}{n_e^2} + \frac{\cos^2 \theta}{n_o^2} \tag{4}$$

При $n_o - n_e \ll n_0$ и n_e (4) можно упростить: $n(\theta) \approx n_e + (n_o - n_e) \cos^2 \theta$

Двойное лучепреломление в призме из исландского шпата.

Рассмотрим, как по преломлению лучей в кристаллической призме можно определить показатели преломления для обыкновенной и необыкновенной волны. В работе исследуетс я одна из двух призм, составляющих поляризатор (рис. 3).

Рис. 3: а) Исследуемая призма из исландского шпата. Штриховкой указано направление оптической оси кристалла. б) Ход лучей в поляризационной призме

В исследуемой призме ось кристалла лежит в плоскости, параллельной верхней грани призмы, причем она параллельна входной грани призмы (длинному катету). При этом в обыкновенной волне вектор \vec{D}_o перпендикулярен верхней грани призмы, а в необыкновенной волне вектор D_e параллелен верхней грани

Волну, падающую на входную грань призмы, можно представить в виде суммы двух ортогональных линейно поляризованных волн. Преломление этих двух волн на грани призмы можно рассматривать независимо. Волна, в которой вектор D направлен вертикально (перпендикулярно верхней грани и оси кристалла), внутри кристалла будет распространяться как обыкновенная. Для этой волны выполняется закон Снеллиуса, а показатель преломления призмы для нее равен $n_o = \sqrt{\varepsilon_\perp}$.Волна, в которой вектор \vec{D} направлен горизонтально, в кристалле будет распространяться как необыкновенная. Для этой волны также будет выполняться закон Снеллиуса, но с тем отличием, что показатель преломления призмы для нее будет зависеть от угла между осью кристалла и волновой Рис. 4: Ход лучей в призме

нормалью/

Значение показателя преломления и угол, под которым преломилась волна в призме, можно найти, измерив угол падения на входную грань призмы φ_1 и угол φ_2 на выходе призмы (рис. 4)

$$n = \frac{1}{\sin A} \sqrt{\sin^2 \varphi_1 + \sin^2 \varphi_2 + 2\sin \varphi_1 \sin \varphi_2 \cos A}$$

$$\cos \theta = \frac{\sin \varphi_1}{n}$$
(5)

Показатель преломления призмы из изотропного материала удобно находить по углу наименьшего отклонения луча от первоначального направления. Угол отклонения луча призмой (ψ на рис. 4) минимален для симметричного хода лучей, т.е. когда $\varphi_1 = \varphi_2$. Тогда показатель преломления можно рассчитать по формуле

$$n = \frac{\sin\left(\frac{\psi_m + A}{2}\right)}{\sin\left(\frac{A}{2}\right)} \tag{6}$$

где ψ_m – угол наименьшего отклонения

Экспериментальная установка

Схема экспериментальной установки изображена на рис. 5. Источником излучения служит He-Ne лазер (λ = 0,63 мкм). Излучение лазера поляризовано линейно за счет наличия брюстеровских окошек в кювете лазера. Направление вектора \vec{E} в луче можно изменять с помощью поляроида, установленного на выходе лазера. Исследуемая призма из исландского шпат а закреплена в центре поворотного столик а с неподвижным лимбом для отсчета углов

Рис. 5: Схема экспериментальной установки

Ход работы

Определим угол A при вершине призмы: вначале нужно добиться, чтобы луч, отражённый от входной грани (длинного катета), шёл точно назад, заметим положение отсчётной риски на лимбе ($\varphi_1=320^\circ$), а затем повторим эту операцию для второй рабочей грани (гипотенузы) ($\varphi_2=180^\circ$). Тогда угол $A=180-(\varphi_1-\varphi_2)=38^\circ$.

Определим разрешенное направление поляризатора, глядя через него на отраженный свет и добиваясь минимума интенсивности.

Получим на лимбе изображение преломленных лучей так, как показано на рис.5. Установим поляризатор в луче перед призмой. Вращая поляризатор, определим какой луч соответствует вертикальной поляризованному свету, а какой горизонтально поляризованному (обыкновенный и необыкновенный лучи).

Вращая столик с призмой, снимем зависимость углов отклонения на выходе из призмы для обыкновенной и необыкновенной волн от угла падения луча на призму. Данные занесем в Таблицу 1.

$2\varphi_1$	ψ_o	φ_{2o}	ψ_e	φ_{2e}
10	36	70	24	58
20	32,5	61,5	22	51
40	38	57	20,5	39,5
60	27	36	20,5	29,5
80	27,5	26,5	22	21
100	29,5	18,5	25	14
120	33	12	28,5	7,5
140	38,5	7,5	35	4

Таблица 1: Зависимость углов отклонения от угла падения

На компьютере в программе SIGMA PLOT по полученным данным построим зависимость $n(\cos^2 \theta)$:

Рис. 6: Зависимость $n(\cos^2 \theta)$ для обыкновенной и необыкновенной волны

Из графика – $n_e = 1,478 \pm 0.003, n_o = 1,641 \pm 0.005.$

Установим призму так, чтобы были видны оба преломленных луча, затем, уменьшая угол падения, добьемся для каждого из лучей полного внутреннего отражения. Определим соответствующие углы: $\varphi_{1e}=2^\circ,\, \varphi_{1o}=-7,5^\circ$

Тогда по формуле (5) показатели преломления: $n_e = 1,463, n_o = 1,669$

Выводы

- 1.В результате работы двумя способами были получены показатели преломления для обыкновенной и необыкновенной волн для исландского щпата.
- 2. Для обыкновенной волны показатели преломления отличаются на 5%,а для необыкновенной на 1%