Platforma PyAge – sprawozdanie Miron Markowski

1. Wstęp

Problem komiwojażera (TSP) jest NP-trudny, z tego powodu do jego rozwiązania często używa się algorytmów heurystycznych. Do takich właśnie należą algorytmy genetyczne, których dwa modele: EMAS i ewolucyjny zastosowałem do implementacji rozwiązania tego problemu.

2. Dane wejściowe

Zmienna	Oznaczenie	Wartość
Ilość miast	N	100
Prawdopodobieństwo mutacji	ξ	{0.03, 0.1, 0.2}
Liczba iteracji	k	1000

3. Rozwiązanie

W algorytmie ewolucyjnym ustalane były:

Genotyp - permutacja wszystkich miast

Mutacje – Zaimplementowane były dwa sposoby mutowania: losowe zamienienie miejscami dwoch miast i zamienienie dwoch kolejnych miast na liscie

Krzyżowanie – wybór odpowiedniego sposobu był najtrudniejszy, ponieważ ograniczał nas fakt, że nowym genotypie muszą się znaleźć wszystkie miasta. Wybieramy fragment permutacji pierwszego genotypu losowej długości, i usuwamy te miasta z drugiego genotypu. Następnie sklejamy te dwa genotypy.

4. Wykresy

Oznaczenia:

EW: algorytm ewolucyjny EMAS: algorytm EMAS ML: mutowanie losowe

MZ: mutowanie metodą zamieniania

EW, ML, $\xi = 0.03$

EW, MZ, $\xi = 0.03$

EW, ML, $\xi = 0.1$

EW, MZ, $\xi = 0.1$

EW, ML, $\xi = 0.2$

EW, MZ, $\xi = 0.2$

EMAS, ML, $\xi = 0.03$

EMAS, MZ, $\xi = 0.03$

EMAS, ML, $\xi = 0.1$

EMAS, MZ, $\xi = 0.1$

EMAS, ML, $\xi = 0.2$

EMAS, MZ, $\xi = 0.2$

5. **Kod**

Kod znajduje się w repozytorium https://github.com/MajronMan/pyageTSP

6. Wnioski

Model EMAS zbiegał wolniej niż klasyczny, zaś w obu przypadkach wzrost prawdopodobieństwa poprawiał wynik, choć nieznacznie. Mutacja losowa dawała również lepsze wyniki niż mutacja z zamienianiem.