범주형자료분석팀

2팀 정희철 김민서 이주형 심수현

INDEX

- 1. 일반화 선형 모형
- 2. 유의성 검정
- 3. 로지스틱 회귀 모형
- 4. 다범주 로짓 모형
- 5. 포아송 회귀 모형

1

일반화 선형 모형

일반화선형모형(GLM)

일반화 선형 모형

연속형/범주형 반응변수에 대한 모형들을 모두 포함한 모형의 집합

랜덤성분의 분포

랜덤성분의 **함수**

일반화선형모형(GLM)

GLM의 필요성

반응변수가 **범주형 자료**이거나 **도수자료**일 때는 오차항이 정규분포를 따르지 않기 때문에 일반선형회귀를 사용할 수 없음

분할표는 독립성 검정으로 범주형 **변수 간의 연관성**만을 파악하지만, GLM은 변수 간의 연관성 뿐만 아니라 **반응변수에 대해 예측** 가능

일반화선형모형(GLM)

GLM의 필요성

반응변수가 **범주형 자료**이거나 **도수자료**일 때는 오차항이 정규분포를 따르지 않기 때문에 일반선형회귀를 사용할 수 없음

분할표는 독립성 검정으로 범주형 변수 간의 연관성만을 파악하지만, GLM은 변수 간의 연관성 뿐만 아니라 반응변수에 대해 예측 가능

GLM의 구성성분

Generalized Linear Model

$$g(\mu) = \alpha + \beta_1 x_1 + \dots + \beta_k x_k$$

GLM의 구성성분

랜덤성분 *μ* 연결 함수 $g(\cdot)$

체계적 성분 $\alpha + \beta_1 x_1 + \dots + \beta_k x_k$

GLM의 구성성분

랜덤성분 Random Component

반응변수 Y에 대해 가정한 분포의 **기대값**

반응변수	확률분포	표기	
이진형	이항분포	$\pi(x)$	
연속형	정규분포	μ	
도수자료	포아송분포	λ	

GLM의 구성성분

체계적 성분

설명변수 X들의 선형결합 :
$$\alpha + \beta_1 x_1 + \cdots + \beta_k x_k$$

회귀분석과 마찬가지로

체계적 성분에는 **교호작용**을 설명하는 항이나 **곡선효과**를 나타내는 항을 넣을 수 있음

교호작용

$$x_i = x_a x_b$$

곡선효과

$$x_i = x_a^2$$

GLM의 구성성분

체계적 성분

설명변수 X들의 선형결합 : $\alpha + \beta_1 x_1 + \cdots + \beta_k x_k$

회귀분석과 마찬가지로,

체계적 성분에는 교호작용을 설명하는 항이나 **곡선효과**를 나타내는 항을 넣을 수 있음

교호작용

$$x_i = x_a x_b$$

곡선효과

$$x_i = x_a^2$$

GLM의 구성성분

연결함수 Link Function

랜덤성분과 **체계적 성분**의 범위를 맞춰주는 역할

종류	반응변수	표기	
항등 연결 함수 (Identity Link)	연속형	$g(\mu) = \mu$	
로그 연결 함수 (Log Link)	도수자료	$g(\mu) = \log(\mu)$	
로짓 연결 함수 (Logit Link) 확률, 비율		$g(\mu) = \log(\frac{\mu}{1-\mu})$	

GLM의 구성성분

연결함수 Sunction 연결함수 원교 원교 원교 의 유명한 보고 있다.

체계적 성분은 범위에 아무런 제약이 없어					
	నె≓ (−∞,	∞) 사이의 값을 ?	갖지만, ^{표기}		
	랜 <mark>엄정분으로</mark> 모	에 따라 범위에 저	약이,있기 때문에		
		이를 맞춰줘야 함 ^{도수자료}			
	TEOG EIIII				
	, ,				

① 선형관계식 유지

 $g(\mu)$ 와 $\alpha + \beta_1 x_1 + \cdots + \beta_k x_k$ 가 **선형관계식**을 갖기 때문에 해석 용이

② 다양하 보고 가저 가느

오자항의 녹립성만 만속하면 됨 → **다양한 분포 가정** 가능 ② 독립성 가정만 필요

오차항의 독립성만 만족하면 적용가능

④ 다양한 반응변수 사용 가능

연결함수: 양변 범위 맞줘수는 역할

→ **다양한 반응변수에 적용** 가능

① 선형관계식 유지

$g(\mu)$ 와 $\alpha + \beta_1 x_1 + \cdots + \beta_k x_k$ 가

선형관계식을 갖기 때문에 해석 용이

② 독립성 가정만 필요

오차항의 독립성만 만족하면 적용가능

③ 다양한 분포 가정 가능

오차항의 독립성만 만족하면 됨 → **다양한 분포 가정** 가능 ④ 다양한 반응변수 사용 가능

선걸암수: 앙면 멈위 맞춰수는 역알 → **다양하 반응병수에 전용** 가능

① 선형관계식 유지

 $g(\mu)$ 와 $\alpha + \beta_1 x_1 + \cdots + \beta_k x_k$ 가 **선형관계식**을 갖기 때문에 해석 용이

② 독립성 가정만 필요

오차항의 독립성만 만족하면 적용가능

③ 다양한 분포 가정 가능

오차항의 독립성만 만족하면 됨 → **다양한 분포 가정** 가능 ④ 다양한 반응변수 사용 가능

연결암수: 양면 범위 맞춰수는 역알

① 선형관계식 유지

 $g(\mu)$ 와 $\alpha + \beta_1 x_1 + \cdots + \beta_k x_k$ 가 **선형관계식**을 갖기 때문에 해석 용이

② 독립성 가정만 필요

오차항의 독립성만 만족하면 적용가능

③ 다양한 분포 가정 가능

오차항의 독립성만 만족하면 됨 → **다양한 분포 가정** 가능 ④ 다양한 반응변수 사용 가능

연결함수: 양변 범위 맞춰주는 역할

→ **다양한 반응변수에 적용** 가능

GLM의 종류

GLM	랜덤성분	연결함수	체계적 성분
로지스틱	이항 자료		
기준범주	다하 나그	로짓	
누적 로짓	다항 자료		승상성
포아송	ㄷᄉ ᅚᄓ		혼합형
음이항	도수 자료	로그	
율자료 포아송	비율 자료		

GLM의 모형 적합

MLE, 즉 최대가능도 추정법을 사용하여 모형적합

BUT, closed form으로 나오지 않는 경우가 대부분

→ 알고리즘으로 추정!

MLE에 대한 설명은 회귀팀 1주차 클린업 참고!

2

유의성 검정

유의성 검정

모형의 **모수 추정값이 통계적으로 유의한지**에 대한 검정 **축소 모형의 적합도가 좋은지**에 대한 검정 또한 가능

왈드 검정 (Wald Test)

$$Z = \frac{\widehat{B}}{SE} \sim N(0,1), \qquad Z^2 = \left(\frac{\widehat{B}}{SE}\right)^2 \sim x_1^2$$
$$Z \ge |Z_{\alpha}|, \quad Z^2 \ge x_{\alpha}^2$$

검정통계량 계산 시 **계수값**과 **표준오차**만 사용하여 간단함

가능도비 검정

$$G^{2} = -2\log\left(\frac{L_{0}}{L_{1}}\right) = -2(l_{0} - l_{1}) \sim x_{df}^{2}$$
$$G^{2} \ge x_{\alpha,df}^{2}$$

귀무가설 하에서 계산되는 로그가능도 함수 l_0 과 MLE에 의해 계산되는 로그가능도 함수 l_1 의 차이

검정 Flow

 l_0 와 함수 l_1 의 차이가 크다

1

검정통계량이 크다

1

P-value 값이 작다

1

귀무가설 기각,

적어도 하나의 β 는 00 아님

L

모형의 모수 추정값 유의

가능도비 검정

$$G^{2} = -2\log\left(\frac{L_{0}}{L_{1}}\right) = -2(l_{0} - l_{1}) \sim x_{df}^{2}$$
$$G^{2} \ge x_{\alpha,df}^{2}$$

지유도 H_0 무 모형의 차원의 차이 H_1 의 모수의 개수 차이

검정 Flow

 l_0 와 함수 l_1 의 차이가 크다

1

검정통계량이 크다

J

P-value 값이 작다

1

귀무가설 기각,

적어도 하나의 β 는 00 아님

1

모형의 모수 추정값 유의

[※]가능도비 검정

검정 Flow

가능도비검정
$$G^2 = -2\log(\frac{1}{l_1}) + \frac{1}{l_2} + \frac{1}{l_1} + \frac{1}{l_2} + \frac{1}{l_2} + \frac{1}{l_2} + \frac{1}{l_2} + \frac{1}{l_2} + \frac{1}{l_1} + \frac{1}{l_2} + \frac{1}{l_1} + \frac{1}{l_1} + \frac{1}{l_2} + \frac{1}{l_1} + \frac{1}{l_2} + \frac{1}{l_1} + \frac{1}{l_2} + \frac{1}{l_1} + \frac{1}{l_2} + \frac{1}{l_1} + \frac{1}{l_1}$$

-: 왈드 검정에 비해 검정<mark>력과 신뢰모</mark>무기설기각,

LE에 의해 계= H_0 과 H_1 의 모수의 개수 차이

적어도 하나의 β 는 0이 아님

모형의 모수 추정값 유의

관심모형 (M)

우리가 관심있는 모형, 유의성 검정을 진행할 모형

시험점수
$$(Y) = \beta_0 + \beta_1 \times 공부시간(x_1) + \beta_2 \times 시험난이도(x_2)$$

포화모형 (S)

주어진 관측값들에 대해 **완벽하게 자료에 적합**하는 모형

시험점수
$$(Y) = \beta_0 + \beta_1 \times 공부시간(x_1) + \beta_2 \times 시험난이도(x_2) +$$

$$\beta_3 \times \overline{S}$$
학시간 $(x_3) + \beta_4 \times \overline{P}$ 수면시간 (x_4)

이탈도

포화모형과 관심모형을 비교하기 위한 가능도비 통계량

$$-2\log\left(\frac{L_M}{L_S}\right) = -2(l_M - l_S)$$

 L_M : 관심모형에서 얻은 로그 가능도 함수의 최댓값

 L_S : 포화모형에서 얻은 로그 가능도 함수의 최댓값

→ 두 모형의 가능도 함수의 최댓값을 이용!

이탈도는 포화모형에는 있지만 <mark>관심모형에는 없는</mark> 포화모형과 관심모형을 비교하기 위한 가능도비 통계량 계수들이 0인지의 여부를 확인하는 것

$$-2\log\left(\frac{L_M}{L_S}\right) = -2(l_M - l_S)$$

 L_M : 관심모형에서 얻은 로그 가능도 함수의 최댓값

 L_S : $\frac{\mathbf{F}}{\mathbf{F}}$ 모화모형에서 얻 \mathbf{F} 로그 가능도 함수의 최댓값

관심모형은 포화모형에 <mark>내포된(nested)</mark> 관계여야 함!

→ 두 모형의 가능도 함수의 최댓값을 이용!

이탈도

포화모형과 **관심모형을** 비교하기 위한 **가능도비 통계량**

$$-2\log\left(\frac{L_M}{L_S}\right) = -2(l_M - l_S)$$

검정 Flow

두 가능도 함수의 최댓값 차이가 크다

이탈도가 크다

1

P-value 값이 작다

1

기무가설 기각, 관심모형에 속하지 않는 모수 중 적어도 하나는 0이 아님

관심모형 M 사용 불가능!

이탈도와 가능도비 검정의 관계

 M_0 의 가능도비 - M_1 의 가능도비 = $-2(l_0 - l_S) - \{-2(l_1 - l_S)\} = -2(l_0 - l_1)$

 M_0 : 단순한 형태의 관심모형, M_1 : 복잡한 형태의 관심모형

S: 두 모형을 모두 포함하는 포화모형

두 모형 간 로그가능도비의 차 = 이탈도 검정 통계량

이탈도 활용 \rightarrow 모형 M_0 은 모형 M_1 에 내포된 모형이어야 함

이탈도와 가능도비 검정의 관계

$$M_0$$
의 가능도비 - M_1 의 가능도비 = $-2(l_0 - l_S) - \{-2(l_1 - l_S)\} = -2(l_0 - l_1)$

 M_0 : 단순한 형태의 관심모형, M_1 : 복잡한 형태의 관심모형

S: 두 모형을 모두 포함하는 포화모형

여러 모형을 비교하고 싶지만 **내포되지 않은 경우**

이탈도 카 AIC, BIC 등을 활용해서 모형 비교 등이어야 함

이탈도와 가능도비 검정의 관계

 M_0 의 가능도비 - M_1 의 가능도비

$$-2(l_0 - l_S) - \{-2(l_1 - l_S)\}$$
$$= -2(l_0 - l_1)$$

검정 Flow

관심모형 간 이탈도의 차이가 작다

가능도비 검정 통계량이 작다

P-value 값이 크다

L

귀무가설 기각 못함, M_0 에 포함되지

않는 모수들이 모두 0이다

1

간단한 관심모형 M_0 이 더 적합

3

로지스틱 회귀 모형

로지스틱 회귀 모형

반응변수가 이항자료일 때 사용하는 회귀 모형

$$\pi(x) = P(Y = 1 | X = x) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

작변 범위: $(0,1)$ 우변 범위: $(-\infty, \infty)$

로지스틱 회귀 모형

반응변수가 이항자료일 때 사용하는 회귀 모형

① 좌변을 오즈로 설정

$$\int \frac{\pi(x)}{1-\pi(x)} = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

좌변 범위: (0,∞)

우변 범위: (-∞, ∞)

여전히

범위가 같지 않음!

로지스틱 회귀 모형

로지스틱 회귀 모형

반응변수가 이항자료일 때 사용하는 회귀 모형

② 오즈에 로그 취하기

$$logit[\pi(x)] = log \frac{\pi(x)}{1 - \pi(x)} = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

생 범위가 같음!

좌변 범위: (-∞, ∞)

우변 범위: (-∞, ∞)

로지스틱 회귀 모형

반응변수가 **이항자료**일 때 사용하는 회귀 모형

② 오즈에 로그 취하기

$$logit[\pi(x)] = log \frac{\pi(x)}{1 - \pi(x)} = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

로짓 연결 함수로 좌변과 우변의 범위 맞춤

좌변 범구 (로지스틱 회귀 모형 본 범위: (-∞) ∞)

로지스틱 회귀 모형

확률을 따르는 S자 곡선의 함수 $\pi(x)$ 와 x의 비선형 관계 나타냄

로지스틱 회귀 모형

특징

① 양변의 범위 일치시킴

$$0 \le \pi(x) \le 1, 0 \le 1 - \pi(x) \le 1$$

$$0 \le \frac{\pi(x)}{1 - \pi(x)} \le \infty$$

$$\infty \le \log \frac{\pi(x)}{1 - \pi(x)} \le \infty$$

로지스틱 회귀 모형

특징

② 가정으로부터 자유로움

정규성, 등분산성, 선형성 가정 필요 X 독립성 가정만 만족하면 됨

회귀계수 β의 해석

 $\beta\pi(x)[1-\pi(x)]$

로지스틱 회귀 모형의 접선의 기울기

회귀계수 β 가 양수이면 상향 곡선, 음수면 하향 곡선 |β| 증가 → 변화율 증가

확률에 기초한 해석

$$\pi(x) = \frac{\exp(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p)}{1 + \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p)}$$

x값을 대입해 특정 범주에 속할 확률을 알 수 있음 확률값이 cutoff point보다 크면 Y=1, 작으면 Y=0으로 예측

확률에 기초한 해석

$$\pi(x) = \frac{\exp(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p)}{1 + \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p)}$$

x값을 대입해 특정 범주에 속할 확률을 알 수 있음 확률값이 cutoff point보다 크면 Y=1, 작으면 Y=0으로 예측

일반적으로 0.5 사용

3주차 클린업에서 다룰 예정!

오즈비를 이용한 해석

$$\log \left[\frac{\pi(x+1)}{1-\pi(x+1)} \right] - \log \left[\frac{\pi(x)}{1-\pi(x)} \right] = \left[\beta_0 + \beta(x+1) \right] - \left[\beta_0 + \beta x \right]$$

$$\log \left[\frac{\pi(x+1)/[1-\pi(x+1)]}{\pi(x)/[1-\pi(x)]} \right] = \beta$$

$$\frac{\pi(x+1)/[1-\pi(x+1)]}{\pi(x)/[1-\pi(x)]} = e^{\beta}$$

로지스틱 회귀 모형에 각각 x와 x+1을 대입한 후 빼주기

오즈비를 이용한 해석

$$\frac{\pi(x+1)/[1-\pi(x+1)]}{\pi(x)/[1-\pi(x)]} = e^{\beta}$$

다른 설명변수가 모두 고정되어 있을 때,

x가 한 단위 증가하면 Y=1일 오즈가 e^{β} 배 만큼 증가

Ex) 학점에 따른 합격유무에 관한 로지스틱 회귀 모형

오즈비를 이용한 해석

$$\log\left[\frac{\pi(x)}{1-\pi(x)}\right] = 4 + 3x$$

Y = 1: 합격, Y = 1: 불합격, x =학점

x가 한 단위 증가하면

Y = 1(합격)일 오즈가 e^3 배, 즉 20.086배 만큼 증가

Ex) 학점에 따른 합격유무에 관한 로지스틱 회귀 모형

확률을 이용한 해석

$$\frac{\exp(4+3\times4.5)}{1+\exp(4+3\times4.5)} - \frac{\exp(4+3\times2.5)}{1+\exp(4+3\times2.5)} = 0.00001$$

학점이 2.5에서 4.5로 증가할 때

Y = 1(합격)일 확률이 0.00001만큼 증가

4

다범주 로짓 모형

다범주 로짓 모형

다범주 로짓 모형

랜덤성분이 **다항분포**를 따르고 연결함수가 **로짓 연결함수**인 GLM

반응변수의 범주기

3개 이상

자료가 **명목형인지 순서형인지 구분**해야 함

적용하는 모델이 달라지기 때문

보고 <mark>로지스틱 회귀 모형 vs 다범주 로짓모형</mark>

	랜덤성분이	다항분보지스틱 회귀모형 수가	로자범추보짓모형	
반동	공 <mark>통</mark> 점 응변수의 범주		연결함수 지 순서형인지 구분해야	함
	3개 이상 차이점	반응변수 자료의 의항북폰 모	↓ ^의 존류에 따라 <mark>한응변수 말라항분포</mark> 델이 달라지기 때문!	

다범주 로짓 모형

다범주 로짓 모형

랜덤성분이 **다항분포**를 따르고 연결함수가 **로짓 연결함수**인 GLM

반응변수의 범주가

3개 이상

자료가 **명목형인지 순서형인지 구분**해야 함

적용하는 모델이 달라지기 때문!

기준 범주 로짓 모형

기준 범주 로짓 모형

반응변수가 J개 범주를 가지는 <mark>명목형 변수</mark>일 때 사용하는 모형 기준 범주를 선택한 후 기준범주와 타 범주를 짝지어 로짓 정의

$$\log\left(\frac{\pi_{j}}{\pi_{J}}\right) = \log\left(\frac{P(Y=j|X=x)}{P(Y=J|X=x)}\right) = \alpha_{j} + \beta_{j}^{A} x_{1} + \dots + \beta_{j}^{K} x_{K}$$

$$j = 1, \dots, J-1$$

마지막 범주 J가 기준이 될 때의 기준범주 로짓 -> 기존범주 J에 비해 **i범주일 확률의 오즈**

기준 범주 로짓 모형

기준 범주 로짓 모형

반응변수가 J개 범주를 가지는 <mark>명목형 변수</mark>일 때 사용하는 모형 기준 범주를 선택한 후 기준범주와 타 범주를 짝지어 로짓 정의

$$\log\left(\frac{\pi_j}{\pi_J}\right) = \log\left(\frac{P(Y=j|X=x)}{P(Y=J|X=x)}\right) = \alpha_j + \beta_j^A x_1 + \dots + \beta_j^K x_K$$

$$j = 1, \dots, J-1$$

범주 J가 기준이 될 때의 기준범주 로짓

-> 기준범주 J에 비해 j범주일 확률의 오즈

기준 범주 로짓 모형

기준 범주 로짓 모형

반응변수가 J개 범주를 가지는 <mark>명목형 변수</mark>일 때 사용하는 모형 기준 범주를 선택한 후 기준범주와 타 범주를 짝지어 로짓 정의

$$\log\left(\frac{\pi_{j}}{\pi_{J}}\right) = \log\left(\frac{P(Y=j|X=x)}{P(Y=J|X=x)}\right) = \alpha_{j} + \beta_{j}^{A} x_{1} + \dots + \beta_{j}^{K} x_{K}$$

$$j = 1, \dots, J-1$$

J : 기준 범주

j : 범주에 대한 첨자

 $A \sim K$: 설명 변수 x에 대한 첨자

기준 범주 로짓 모형

기준 범주 로짓 모형

반응변수가 J개 범주를 가지는 <mark>명목형 변수</mark>일 때 사용하는 모형 기준 범주를 선택한 후 기준범주와 타 범주를 짝지어 로짓 정의

$$\log\left(\frac{\pi_j}{\pi_J}\right) = \log\left(\frac{P(Y=j|X=x)}{P(Y=J|X=x)}\right) = \alpha_j + \beta_j^A x_1 + \dots + \beta_j^K x_K$$

$$j = 1, \dots, J-1$$

. J-1개의 로짓방정식으로 구성 -> 각 식마다 다른 모수들을 가짐

J=2인 경우 이항 반응변수에 대한 로지스틱 회귀!

기준 범주 로짓 모형

기준 범주 로짓 모형

반응변수가 J개 범주를 가지는 **명목형 변수**일 때 사용하는 모형 기준 범주를 선택한 후 기준범주와 타 범주를 짝지어 로짓 정의

$$\alpha_j + \beta_j^A x_1 + \cdots + \beta_j^K x_K$$
 에서 $\boldsymbol{j} = \boldsymbol{1}, \dots \boldsymbol{J} - \boldsymbol{1}$ 이기 때문에

$$\log \left(\frac{\pi_j}{\pi_J}\right) = \log \left(\frac{P(Y=j|J-1)}{P(Y=J|X=x)}\right) = \frac{2}{\alpha_j} + \frac{2}{\beta_j} \frac{2}{\alpha_j} + \frac{2}{\beta_j} \frac{2}{\alpha_j} + \frac{2}{\alpha_j} \frac{2}{\alpha_j} + \frac{2}{\beta_j} \frac{2}{\alpha_j} \frac{2}{\alpha_j} \frac{2}{\alpha_j} + \frac{2}{\beta_j} \frac{2}{\alpha_j} \frac{2}{\alpha_$$

J-1개의 로짓방정식.♀로 구성 -> 각 식마다 다른 모수들을 가짐

J=2인 경우 이항 반응변수에 대한 로지스틱 회귀!

기준 범주 로짓 모형

기준 범주 로짓 모형

반응변수가 J개 범주를 가지는 <mark>명목형 변수</mark>일 때 사용하는 모형 기준 범주를 선택한 후 기준범주와 타 범주를 짝지어 로짓 정의

$$\log\left(\frac{\pi_j}{\pi_J}\right) = \log\left(\frac{P(Y=j|X=x)}{P(Y=J|X=x)}\right) = \alpha_j + \beta_j^A x_1 + \dots + \beta_j^K x_K$$

$$\pi_{j} = \frac{e^{\alpha_{j} + \beta_{j}^{A} x_{1} + \dots + \beta_{j}^{K} x_{K}}}{\sum_{i=1}^{J} e^{\alpha_{j} + \beta_{j}^{A} x_{1} + \dots + \beta_{j}^{K} x_{K}}} \qquad j = 1, \dots, J - 1$$

▼ 모형 공식을 변형하여 j<mark>범주에 속할 확률을</mark> 구할 수 있음 !

기준 범주 로짓 모형

기준 범주 로짓 모형

반응변수가 J개 범주를 가지는 <mark>명목형 변수</mark>일 때 사용하는 모형 기준 범주를 선택한 후 기준범주와 타 범주를 짝지어 로짓 정의

① 명목형 범주를 다루기 때문에 순서 고려X ② 오즈와 기준 범주를 사용해 해석 가능

기준 범주 로짓 모형 - 해석

① 기준 범주에 비해 j범주일 로그 오즈를 보고 해석할 경우

$$j = 1, ..., J - 1$$

$$\log\left(\frac{\pi_{j}(x+1)}{\pi_{J}(x+1)}\right) - \log\left(\frac{\pi_{j}(x)}{\pi_{J}(x)}\right) = \left[\alpha_{j} + \beta(x+1)\right] - \left[\alpha_{j} + \beta(x)\right]$$

$$\log\left(\frac{\pi_{j}(x+1)/\pi_{J}(x+1)}{\pi_{j}(x)/\pi_{J}(x)}\right) = \beta$$

$$\frac{\pi_{j}(x+1)/\pi_{J}(x+1)}{\pi_{j}(x)/\pi_{J}(x)} = e^{\beta}$$

기준 범주 로짓 모형에 각각 x와 x+1을 대입한 후 빼주기

기준 범주 로짓 모형 - 해석

① 기준 범주에 비해 j범주일 로그 오즈를 보고 해석할 경우

$$j = 1, ..., J - 1$$

$$\frac{\pi_j(x+1)/\pi_J(x+1)}{\pi_j(x)/\pi_J(x)} = e^{\beta}$$

X가 x일때보다 x + 1일 때의 오즈가 e^{β} 배 높음

기준 범주 로짓 모형 - 해석

① 기준 범주에 비해 j범주일 로그 오즈를 보고 해석할 경우

$$\frac{\pi_j(x+1)/\pi_J(x+1)}{\pi_j(x)/\pi_J(x)} = e^{\beta}$$
 $j = 1, ..., J-1$

다른 설명 변수가 고정되어 있을 때

x가 한 단위 증가하면 J범주 대신 j범주일 오즈가 e^{β} 배 증가

기준 범주 로짓 모형 - 해석

② 기준 범주가 아닌 또 다른 범주끼리의 관계를 해석할 경우

$$log\left(\frac{\pi_2}{\pi_1}\right) = log\left(\frac{\pi_2/\pi_J}{\pi_1/\pi_J}\right) = log\left(\frac{\pi_2}{\pi_J}\right) - log\left(\frac{\pi_1}{\pi_J}\right)$$
$$= [\alpha_2 - \alpha_1] + [(\beta_2^A - \beta_1^A)x_1 + \dots + (\beta_2^K - \beta_1^K)x_K]$$

다른 설명 변수가 고정되어 있을 때

x가 한 단위 증가하면 1범주 대신 2범주일 오즈가 $e^{\beta_2-\beta_1}$ 배 증가

순서형 다범주 로짓 모형

순서형 다범주 로짓 모형

순서형 반응변수에 대한 로짓모형 **순서 정보를 고려**하여 기준범주를 정하고 범주끼리 비교

	이웃 범주 로짓 모형 (Adjacent-Categories Model)
순서형	연속비 로짓 모형 (Continuation-ratio Logit Model)
	누적 로짓 모형 (Cumulative Logit Model)

순서형 다범주 로짓 모형

순서형 다범주 로짓 모형

순서형 반응변수에 대한 로짓모형

순서 정보를 고려하여 기준범주를 정하고 범주끼리 비교

순서대로 정렬 후 두 덩어리로 나누는 collapse 과정 필요

-> collapse하는 기준인 cut point에 따라 모형 결정

순서형 다범주 로짓 모형

순서형 다범주 로짓 모형

순서형 반응변수에 대한 로짓모형

순서 정보를 고려하여 기준범주를 정하고 범주끼리 비교

이웃범주 로짓 모형

연속비 로짓 모형

누적 로짓 모형

소형	중형	대형	초 대형
소형	중형	대형	초 대형
소형	중형	대형	초 대형

소형	중형	대형	초 대형
소형	중형	대형	초 대형
소형	중형	대형	초 대형

소형	중형	대형	초 대형
소형	중형	대형	초 대형
소형	중형	대형	초 대형

순서형 다범주 로짓 모형

순서형 다범주 로짓 모형

순서형 반응변수에 대한 로짓모형

순서 정보를 고려하여 기준범주를 정하고 범주끼리 비교

누적 로짓 모형

성	<i>중</i>	대형	초 대형
성	<i>등</i>	대형	초 대형
성	중	대형	초 대형

누적 로짓 모형-모형

누적 로짓 모형

누적확률에 로짓 연결함수를 씌운 형태

$$logit[P(Y \le j | X = x)] = \alpha_j + \beta_1 x_1 + \dots + \beta_p x_p$$

누적확률

 $P(Y \le j | X = x) = \pi_1(x) + \pi_2(x) + \cdots \pi_j(x), \ j = 1, ..., J$ -> 첫번째 범주부터 j번째 범주까지의 누적확률 -> i번째 범주 아래의 확률을 모두 더한 것

누적 로짓 모형-모형

누적 로짓 모형

누적확률에 로짓 연결함수를 씌운 형태

$$logit[P(Y \le j | X = x)] = \alpha_j + \beta_1 x_1 + \dots + \beta_p x_p$$

누적확률

$$P(Y \le j | X = x) = \pi_1(x) + \pi_2(x) + \cdots + \pi_j(x), \quad j = 1, \dots, J$$

- → 첫번째 범주부터 j번째 범주까지의 누적확률
 - → j번째 범주까지의 확률을 모두 더한 것

누적 로짓 모형-모형

누적 로짓 모형

누적확률에 로짓 연결함수를 씌운 형태

$$logit[P(Y \le j | X = x)] = \alpha_j + \beta_1 x_1 + \dots + \beta_p x_p$$

Step 1. 누적확률을 오즈의 형태로 변환

$$P(Y \le j | X = x) = \pi_1(x) + \pi_2(x) + \cdots + \pi_j(x), \quad j = 1, \dots, J$$

$$\longrightarrow \log \left(\frac{P(Y \le j | X = x)}{1 - P(Y \le j | X = x)} \right)$$

누적 로짓 모형 - 모형

누적 로짓 모형

누적확률에 로짓 연결함수를 씌운 형태

$$logit[P(Y \le j | X = x)] = \alpha_j + \beta_1 x_1 + \dots + \beta_p x_p$$

Step 2. 변환한 식에 로그를 씌우기

$$log\left(\frac{P(Y \leq j \mid X = x)}{1 - P(Y \leq j \mid X = x)}\right) = log\left(\frac{\pi_1(x) + \pi_2(x) + \cdots \pi_j(x)}{\pi_{j+1}(x) + \pi_{2j+2}(x) + \cdots \pi_j(x)}\right)$$

$$= log\left(\frac{P(Y \le j|X = x)}{P(Y > j|X = x)}\right) = logit[P(Y \le j|X = x)]$$

누적 로짓 모형 - 모형

누적 로짓 모형

누적확률에 로짓 연결함수를 씌운 형태

$$logit[P(Y \le j | X = x)] = \alpha_j + \beta_1 x_1 + \dots + \beta_p x_p$$

Step 3. 누적 로짓 모형의 최종 형태

$$logit[P(Y \le j | X = x)] = \alpha_j + \beta_1 x_1 + \dots + \beta_p x_p$$

$$j = 1, \dots, J$$

기준범주 로짓 모형 vs 누적 로짓 모형

	기준범주 로짓 모형	누적 로짓 모형
공통점	기준점을 두고 이분화된 두 받 → J-1개의 로짓	
차이점	$lpha_j+eta_j^Ax_1+\cdots+eta_j^Kx_K$ $ ightarrowlpha$ 와 회귀계수에 모두 첨자 j	$lpha_j+eta_1x_1+\cdots+eta_px_p$ $ ightarrow$ 회귀계수에선 첨자 j 사라짐

기준범주 로짓 모형 vs 누적 로짓 모형

	기준범주 로짓 모형	누적 로짓 모형	
공통점		을 두고 이분화된 두 범위의 확률을 비교하는 방식 → J-1개의 로짓 방정식으로 구성	
차이점	$lpha_j+eta_j^Ax_1+\cdots+eta_j^Kx_K$ $ ightarrowlpha$ 와 회귀계수에 모두 첨자 j	$lpha_j+eta_1x_1+\cdots+eta_px_p$ $ ightarrow$ 회귀계수에선 첨자 j 사라짐	

4 다범주 로짓 모형

기준범주 로짓 모형 vs 누적 로짓 모형

	로짓 방정식에 대한 β의 효과가 나고 가정하기 때문 (비례오즈 가정)
$\alpha_j + \beta_j^A x_1 + \dots + \beta_j^K x_k$ $\rightarrow \alpha$ 와 회귀계수에 모두 첨자 j	$\alpha_j + \beta_1 x_1 + \dots + \beta_p x_p$ \rightarrow 회귀계수에선 첨자 j 사라짐

기준범주 로짓 모형 vs 보기 모형 비례오즈 가정

J-1개의 로짓 방정식에 대해 α 만 방정식에 따라 변할 뿐

모든 로짓 방정식은 <mark>동일한 β값</mark>을 지님

= 절편, α 값만 변화, 기울기 β 값은 변하지 않음!

누적 로짓 모형 - 해석

기준 범주 로짓 모형처럼 오즈를 이용하여 해석

$$\log\left(\frac{P(Y \le j | X = x)}{P(Y > j | X = x)}\right) = \alpha_j + \beta_1 x_1 + \dots + \beta_p x_p, j = 1, \dots, J$$

다른 설명 변수가 고정되어 있을 때 x가 한 단위 증가하면

Y > j 에 비해 $Y \le j$ 일 오즈가 e^{β} 만큼 증가

5

포아송 회귀 모형

포아송 분포

모수 λ값(=평균)이 <mark>작을수록 오른쪽</mark>으로 치우친 분포 작은 건수로 많은 관측치가 몰리는 현상 발생

포아송 분포

모수 λ값(=평균)이 <mark>작을수록 오른쪽</mark>으로 치우친 분포 작은 건수로 많은 관측치가 몰리는 현상 발생

 λ 가 10미만으로 작은 경우 <mark>정규성</mark> 가정 만족 X

── 일반 선형회귀모형 사용시 **표준오차 및 유의성 수준이 편향**되는 문제 발생!

포아송 회귀 모형

반응변수 Y가 **도수자료**인 경우 사용하는 회귀모형 랜덤성분이 **포아송 분포**를 따르고 연결함수가 **GLM**인 회귀모형

$$log(\mu) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

-

음수가 아닌 정수값을 가지는 도수자로 μ 를

체계적 성분의 범위와 맞춰주기 위해 연결함수로 로그 사용

포아송 회귀 모형

반응변수 Y가 **도수자료**인 경우 사용하는 회귀모형 랜덤성분이 **포아송 분포**를 따르고 연결함수가 **GLM**인 회귀모형

$$log(\mu) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

음수가 아닌 정수값을 가지는 도수자료 μ 를 **체계적 성분의 범위와 맞춰주기 위해** 연결함수로 <mark>로그</mark> 사용

포아송 회귀 모형 - 해석

$$log(\mu) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

↓ μ에 관한 식으로 정리

$$\mu = \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p)$$

① 도수를 통한 해석

추정된 회귀 계수를 대입하면

μ에 대한 예측값(=기대도수)을 얻을 수 있음 !

포아송 회귀 모형 - 해석

$$\log(\mu(x+1)) - \log(\mu(x)) = \log\left(\frac{\mu(x+1)}{\mu(x)}\right) = \beta$$

$$\frac{\mu(x+1)}{\mu(x)} = e^{\beta}$$

② 차이를 통한 해석

추정된 회귀 계수를 대입하면

μ에 대한 예측값(=기대도수)을 얻을 수 있음 !

포아송 회귀 모형 - 해석

$$\log(\mu(x+1)) - \log(\mu(x)) = \log\left(\frac{\mu(x+1)}{\mu(x)}\right) = \beta$$

$$\frac{\mathbf{J}}{\mu(x)}$$

$$\frac{\mu(x+1)}{\mu(x)} = e^{\beta}$$

다른 설명 변수가 고정되어 있을 때,

x가 한 단위 증가하면 기대도수 μ 가 $e^{oldsymbol{eta}}$ 배만큼 증가!

5 포아송 회귀 모형

율자료 포아송 회귀 모형

지역의 범죄 발생 건수

지역의 인구 수에 큰 영향을 받음

특정 사건이 **다른 크기의 지표(ex**: **인구, 시간)**에 걸쳐 발생

-> 비율 자료를 사용해야 정확한 크기 판단 가능

율자료 포아송 회귀 모형

반응변수 Y가 **비율자료**인 경우 사용하는 회귀모형 랜덤성분이 **포아송 분포**를 따르고 연결함수가 **GLM**인 회귀모형

$$\log\left(\frac{\mu}{t}\right) = \log(\mu) - \log(t) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

t: 지표값. 수정항(offset)으로 지칭.

-> 비율을 구할 때 **분모에 들어가는 값** !

ex) 범죄 발생 비율 -> 지표값 = 그 지역 인구의 모집단

율자료 포아송 회귀 모형

반응변수 Y가 **비율자료**인 경우 사용하는 회귀모형 랜덤성분이 **포아송 분포**를 따르고 연결함수가 **GLM**인 회귀모형

$$\log\left(\frac{\mu}{t}\right) = \log(\mu) - \log(t) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

t: 지표값, 수정항(offset)으로 지칭.

→ 비율을 구할 때 분모에 들어가는 값!

ex) 범죄 발생 비율 -> 지표값 = 그 지역 인구의 모집단

율자료 포아송 회귀 모형

반응변수 Y가 **비율자료**인 경우 사용하는 회귀모형 랜덤성분이 **포아송 분포**를 따르고 연결함수가 **GLM**인 회귀모형

$$log\left(\frac{\mu}{t}\right) = log(\mu) - log(t) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

$$\mathbf{J}$$

$$\mu = t \times \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p)$$

'포아송 회귀 모형처럼 <mark>도수</mark>(μ)에 대한 식으로 표현 가능 !

율자료 포아송 회귀 모형 : 해석

$$\log\left(\frac{\mu(x+1)}{t}\right) - \log\left(\frac{\mu(x)}{t}\right) = \log\left(\mu(x+1)\right) - \log\left(\mu(x)\right) = \log\left(\frac{\mu(x+1)}{\mu(x)}\right) = \beta$$

$$\frac{\mu(x+1)}{\mu(x)} = e^{\beta}$$

다른 설명 변수가 고정되어 있을 때,

x가 한 단위 증가하면 기대도수 μ 가 e^{β} 배만큼 증가!

포아송 회귀 모형의 문제점: 과대산포 문제

포아송 분포

평균과 분산이 같다는 특징을 가짐

등산포 가정

랜덤 성분이 **포아송 분포**를 따른다고 가정할 때 반응변수인 **도수 자료의 평균과 분산이 같다**는 가정

5 포아송 회귀 모형

포아송 회귀 모형의 문제점 : 과대산포 문제

<mark>등산포 가정</mark>을 만족하는 데이터가 매우 적다!

포아송 분포

일반적인 데이터: 분산이 평균보다 크게 나타남

→ 과대산포 문제 1

과대산포 문제를 무시하고 포아송 모형을 적합시 회귀 계수 추정량의 표준오차가 편향되어 작아짐 반응변수인 도수 자료의 평균과 분산이 같다는 가정

음이항 회귀 모형

음이항 회귀 모형

음이항 랜덤성분과 로그 연결함수로 구성된 GLM

$$log(\mu) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

$$E(Y) = \mu$$
, $Var(Y) = \mu + D\mu^2$

2

D: 산포모수. 음이항 분포에서 분산이 평균과 큰 값을 갖도록 만드는 요소

음이항 분포의 분산 : 포아송 분포와 달리 분산에 $D\mu^2$ 가 더해진 형태

음이항 회귀 모형

음이항 회귀 모형

음이항 랜덤성분과 로그 연결함수로 구성된 GLM

$$log(\mu) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

$$E(Y) = \mu, \qquad Var(Y) = \mu + D\mu^2$$

D: 산포모수. 음이항 분포에서 분산이 평균과 큰 값을 갖도록 만드는 요소

lacksquare음이항 분포의 분산 : 포아송 분포와 달리 분산에 $D\mu^2$ 가 더해진 형태 !

음이항 회귀 모형

음이항 회귀 모형

음이항 랜덤성분과 로그 연결함수로 구성된 GLM

 $log(\mu) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$

. 포아송 분포가 가지는 <mark>등산포 가정을 완화</mark>하기 위해서

랜덤성분으로 음이항 분포를 사용해 <mark>과대산포 문제 해결</mark> 가능!

D: 산포모수. 음이항 분포에서 분산이 평균과 큰 값을 갖도록 만드는 요소

음이항 분포의 분산 : 포아송 분포와 달리 **분산에 D\mu^2 가 더해진 형태** !

5 포아송 회귀 모형

포아송 회귀 모형의 문제점: 과대영 문제

과대영 문제

특정 평균을 갖는 포아송 분포에서 나타나는 0보다

표본 도수 자료가 더 많은 0을 갖는 경우

포아송 회귀 모형의 문제점: 과대영 문제

과대영 문제

특정 평균을 갖는 포아송 분포에서 나타나는 0보다

표본 도수 자료가 더 많은 0을 갖는 경우

포아송 회귀 모형의 문제점: 과대영 문제

과대영 문제

특정 평균을 갖는 포아송 분포에서 나타나는 0보다

표본 도수 자료가 더 많은 0을 갖는 경우

과대영 문제가 발생한 그래프

↓
일반적인 포아송 분포보다

0의 발생횟수가 훨씬 많음

영과잉 포아송 분포

영과잉 포아송 분포

0의 값만을 갖는 점 확률 분포와 포아송 분포의 혼합분포 구조

$$Y = \begin{cases} 0, & with probability \phi_i \\ g(y_i), & with probability $1 - \phi_i \end{cases}$$$

 $Y \sim Bern(\phi_i)$, 베르누이 확률분포를 따름

영과잉 포아송 분포

영과잉 포아송 분포

0의 값만을 갖는 점 확률 분포와 포아송 분포의 혼합분포 구조

$$Y = \begin{cases} 0, & with \ probability \ \phi_i \\ g(y_i), & with \ probability \ 1 - \phi_i \end{cases}$$

Y가 0의 값을 가질 확률 ←

Y가 0이외의 값을 가질 확률

영과잉 포아송 분포

영과잉 포아송 분포

0의 값만을 갖는 점 확률 분포와 포아송 분포의 혼합분포 구조

 $egin{aligned} igg\downarrow \ Y = \ 0 \ , & with probability <math>\phi_i \ Y = \ g(y_i)$ 영과잉 포와송분포를 사용하여 $ty \ 1 - \phi_i \$ 영과잉 포아송 회귀 모형, 영과잉 음이항 회귀 모형

으로 과대영 문제 해결 가능!

영과잉 포아송 회귀모형

영과잉 포아송 회귀모형

영과잉 포아송 분포를 사용하여 만든 GLM

$$log\left(\frac{\phi_i}{1 - \phi_i}\right) = \alpha_0 + \alpha_1 x_1 + \dots + \alpha_p x_p$$
$$log(\lambda) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

영과잉 포아송 회귀모형

영과잉 포아송 회귀모형

영과잉 포아송 분포를 사용하여 만든 GLM

$$\log\left(rac{\phi_i}{1-\phi_i}
ight) = lpha_0 + lpha_1 x_1 + \cdots + lpha_p x_p$$
 $\log(\lambda) = eta_0 + eta_1 x_1 + \cdots + eta_p x_p$ 베르누이 분포의 성공확률 (ϕ_i) 에 대한 로짓연결 함수

영과잉 포아송 회귀모형

영과잉 포아송 회귀모형

영과잉 포아송 분포를 사용하여 만든 GLM

$$\log\left(\frac{\phi_i}{1-\phi_i}\right) = \alpha_0 + \alpha_1 x_1 + \dots + \alpha_p x_p$$

$$\log(\lambda) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

 포아송 분포의 평균(λ)에 대한 로그 연결함수

다음 주 예고

혼동행렬

ROC 곡선

샘플링

인코딩

대응짝 검정 방법