CAPACITANCE & DIELECTRICS

Dr Muhammad Adeel

CAPACITORS

Capacitors—devices that store electric charge. Capacitors are commonly used in a variety of electric circuits. For instance, they are used to

- tune the frequency of radio receivers,
- as filters in power supplies,
- to eliminate sparking in automobile ignition systems, and
- as energy-storing devices in electronic flash units.

Consider two conductors carrying charges of equal magnitude but of opposite sign, as shown in Figure. Such a combination of two conductors is called a capacitor. The conductors are called *plates*.

A potential difference V exists between the conductors due to the presence of the charges.

The **capacitance** *C* of a capacitor is defined as the ratio of the magnitude of the charge on either conductor to the magnitude of the potential difference between the conductors:

$$C \equiv \frac{Q}{\Delta V}$$

-Q +Q

CALCULATING CAPACITANCE

Parallel-Plate Capacitors

Two parallel metallic plates of equal area A are separated by a distance d,

as shown in Fig.

One plate carries a charge -Q, and the other carries a charge +Q.

The value of the electric field between the plates is

$$E = \frac{\sigma}{\epsilon_0} = \frac{Q}{\epsilon_0 A}$$

$$\Delta V = Ed = \frac{Qd}{\epsilon_0 A}$$

$$C = \frac{Q}{\Delta V} = \frac{Q}{Qd/\epsilon_0 A}$$

$$C = \frac{\epsilon_0 A}{d}$$

the capacitance of a parallel-plate capacitor is proportional to the area of its plates and inversely proportional to the plate separation.

The Cylindrical Capacitor

A solid cylindrical conductor of radius a and charge Q is coaxial with a cylindrical shell of negligible thickness, radius b > a, and charge -Q

First calculate the potential difference between the two cylinders,

$$V_b - V_a = -\int_a^b \mathbf{E} \cdot d\mathbf{s} \qquad E_r = 2k_e \lambda / r$$

$$V_b - V_a = -\int_a^b E_r dr = -2k_e \lambda \int_a^b \frac{dr}{r} = -2k_e \lambda \ln\left(\frac{b}{a}\right)$$

$$C = \frac{Q}{\Delta V} = \frac{Q}{2k_e Q} \ln\left(\frac{b}{a}\right) = \frac{\ell}{2k_e \ln\left(\frac{b}{a}\right)}$$
Gaussian surface

$$\frac{C}{\ell} = \frac{1}{2k_e \ln(\frac{b}{a})}$$

the capacitance per unit length (

The Spherical Capacitor

A spherical capacitor consists of a spherical conducting shell of radius b and charge -Q concentric with a smaller conducting sphere of radius a and charge Q

$$\begin{split} V_b - V_a &= -\int_a^b E_r \, dr = -\, k_e Q \int_a^b \frac{dr}{r^2} = \, k_e Q \left[\frac{1}{r} \right]_a^b \\ &= k_e Q \left(\frac{1}{b} - \frac{1}{a} \right) \end{split}$$

$$\Delta V = |V_b - V_a| = k_e Q \frac{(b-a)}{ab}$$

$$C = \frac{Q}{\Delta V} = -\frac{ab}{k_e(b-a)}$$

COMBINATIONS OF CAPACITORS

Parallel Combination

The individual potential differences across capacitors connected in parallel are all the same and are equal to the potential difference applied across the combination.

The total charge Q stored by the two capacitors is

$$Q = Q_1 + Q_2$$

$$Q_1 = C_1 \Delta V$$
 $Q_2 = C_2 \Delta V$ $Q = C_{eq} \Delta V$

$$C_{\text{eq}} \Delta V = C_1 \Delta V + C_2 \Delta V$$

$$C_{\text{eq}} = C_1 + C_2 \qquad \begin{pmatrix} \text{parallel} \\ \text{combination} \end{pmatrix}$$

$$C_{\text{eq}} = C_1 + C_2 + C_3 + \cdots$$
 (parallel combination)

COMBINATIONS OF CAPACITORS

Series Combination

$$\Delta V = \Delta V_1 + \Delta V_2$$

$$\Delta V_1 = \frac{Q}{C_1} \qquad \Delta V_2 = \frac{Q}{C_2} \qquad \Delta V = \frac{Q}{C_{eq}}$$

$$\frac{Q}{C_{eq}} = \frac{Q}{C_1} + \frac{Q}{C_2}$$

$$\frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2}$$
 (series combination)

$$\frac{1}{C_{\rm eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots \qquad \begin{pmatrix} \text{series} \\ \text{combination} \end{pmatrix}$$

This demonstrates that the equivalent capacitance of a series combination is always less than any individual capacitance in the combination.

Example:

Figure, shows a system of four capacitors, where the potential difference across ab is 50.0 V. (C_1 =13.0 μ F, C_2 =3.0 μ F, C_3 =8.5 μ , and C_4 =3.0 μ F) (a) Find the equivalent capacitance of this system between a and b.

Here we see that the capacitor $C_2=3.0~\mu F~and~~C_3=8.5~\mu F$ are in parallel.

Thus we have the equivalent capacitance of them equal to $C_{eq1} = (3+8.5)~\mu F = 11.5~\mu F$.

Now we have the capacitor $C_1=13~\mu F$, $C_{eq1}=11.5~\mu F$ and $C_3=3.0~\mu F$ are in series.

Thus, we get the equivalent capacitance of the overall circuit as

$$egin{aligned} rac{1}{C_{eq}} &= rac{1}{C_1} + rac{1}{C_{eq1}} + rac{1}{C_3} \ &= rac{1}{13} + rac{1}{11.5} + rac{1}{3} \end{aligned}$$

$$C_{eq}=2~\mu F\Rightarrow (Answer)$$

(b) How much charge is stored by this combination of capacitors?

$$egin{aligned} Q &= C_{eq} V \ &= 2 imes 50 \; \mu C \ &= 100 \; \mu C \Rightarrow (Answer) \end{aligned}$$

- (c) How much charge is stored in each of the 13 μ F and the 3 μ F capacitors?
 - ullet Thus, we have the charge on the $C_1=13~\mu F$ capacitor as $100~\mu C\Rightarrow (Answer)$.

The voltage drop across the $C_{eq1}=11.5~\mu F$. capacitor is given by

$$Q=C_{eq1}V_2 \ 100\mu=11.5\mu imes V_2 \ V_2=8.7~V$$

This is the potential across the capacitor C_2 as they are in parallel.

Thus we have the charge in C_2 given by

$$Q_2 = C_2V_2$$

= $3\mu \times 8.7 C$
= $26.1 \mu C \Rightarrow (Answer)$.

Example:

For the circuit in Figure, find:

- (a) the equivalent capacitance
- (b) the charge and potential difference for each capacitor. (V = 9V, C1 = C2 = $30 \,\mu\text{F}$, C3=C4 = $15 \,\mu\text{F}$)

Figure depicts a system of capacitors. The pair C_3 and C_4 are in parallel.

Since C_3 and C_4 are in parallel, we replace them with an equivalent capacitance $C_{34} = C_3 + C_4 = 30 \ \mu\text{F}$. Now, C_1 , C_2 , and C_{34} are in series, and all are numerically 30 μF , we observe that each has one-third the battery voltage across it. Hence, 3.0 V is across C_4 .

The charge on capacitor 4 is $q_4 = C_4V_4 = (15 \,\mu\text{F})(3.0 \,\text{V}) = 45 \,\mu\text{C}$.

Alternatively, one may show that the equivalent capacitance of the arrangement is given by

$$\frac{1}{C_{1234}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_{34}} = \frac{1}{30 \ \mu\text{F}} + \frac{1}{30 \ \mu\text{F}} + \frac{1}{30 \ \mu\text{F}} = \frac{1}{10 \ \mu\text{F}}$$

or $C_{1234} = 10 \mu F$. Thus, the charge across C_1 , C_2 , and C_{34} are

$$q_1 = q_2 = q_{34} = q_{1234} = C_{1234}V = (10 \ \mu\text{F})(9.0 \ \text{V}) = 90 \ \text{nC}.$$

Now, since C_3 and C_4 are in parallel, and $C_3 = C_4$, the charge on C_4 (as well as on C_3) is $q_3 = q_4 = q_{34}/2 = (90 \ \mu\text{F})/2 = 45 \ \mu\text{F}$.

0/2024

Class Activity:

For the circuit in Fig-5, find the equivalent capacitance and the charge on $20\mu F$ capacitor.

11/30/2024 12

Example:

From a supply of identical capacitors rated 8 μ F, 250 V, the minimum number of capacitors required to form a composite 16 μ F,1000 V capacitor is:

The required voltage is 1000 V and the capacitors are parallel as 250 V.

$$rac{1}{C_{
m eq}} = rac{1}{8\mu F} + rac{1}{8\mu F} + rac{1}{8\mu F} + rac{1}{8\mu F} = rac{1}{2\mu F}$$

$$\Rightarrow C_{eq} = 2\mu F$$

So, number of capacitors required will be 4 i.e., $250 \times 4 = 1000$ in series.

Now example of four capacitor in series will be equal $2\mu f$,

but the equivalent capacitance required is given as 16µf

So, there must be 8 series of parallel arrange capacitors each of capacitor 2 micro farad hence total number of capacitor = $4 \times 8 = 32$

1/30/2024 13

ENERGY STORED IN A CHARGED CAPACITOR

Suppose that q is the charge on the capacitor at some instant during the charging process. At the same instant, the potential difference across the capacitor is $\Delta V = q/C$. The work necessary to transfer an increment of charge dq from the plate carrying charge -q to the plate carrying charge q (which is at the higher electric potential) is

$$dW = \Delta V dq = \frac{q}{C} dq$$

$$W = \int_0^Q \frac{q}{C} dq = \frac{1}{C} \int_0^Q q dq = \frac{Q^2}{2C}$$

$$U = \frac{Q^2}{2C} = \frac{1}{2}Q\Delta V = \frac{1}{2}C(\Delta V)^2$$

Energy stored in a parallel-plate capacitor

$$U = \frac{1}{2} \frac{\epsilon_0 A}{d} (E^2 d^2) = \frac{1}{2} (\epsilon_0 A d) E^2$$

energy per unit volume $u_E = U/V = U/Ad$,

$$u_E = \frac{1}{2} \epsilon_0 E^2$$

Energy density in an electric field

energy density in any electric field is proportional to the square of the magnitude of the electric field at a given point.

CAPACITORS WITH DIELECTRICS

A dielectric is a non conducting material, such as rubber, glass, or waxed paper.

When a dielectric is inserted between the plates of a capacitor, the capacitance increases.

If the dielectric completely fills the space between the plates, the capacitance increases by a dimensionless factor κ , which is called the dielectric constant.

$$\Delta V = \frac{\Delta V_0}{\kappa} \qquad C = \frac{Q_0}{\Delta V} = \frac{Q_0}{\Delta V_0 / \kappa} = \kappa \frac{Q_0}{\Delta V_0}$$

$$C = \kappa \frac{\epsilon_0 A}{d}$$

advantages:

- Increase in capacitance
- Increase in maximum operating voltage
- Possible mechanical support between the plates, which allows the plates to be close together without touching, thereby decreasing d and increasing C

 $C = \kappa C_0$

Types of Capacitors

Figure 26.15 Three commercial capacitor designs. (a) A tubular capacitor, whose plates are separated by paper and then rolled into a cylinder. (b) A high-voltage capacitor consisting of many parallel plates separated by insulating oil. (c) An electrolytic capacitor.

Dr Muhammad Adeel 11/30/2024

AN ATOMIC DESCRIPTION OF DIELECTRICS

the field in the presence of a dielectric is

$$\mathbf{E} = \frac{\mathbf{E}_0}{\kappa}$$

(a)Polar molecules are randomly oriented in the absence of an external

electric field.

(b) When an external field is applied, the molecules partially align with the field.

