Solution - HW 2 - Types, Expressions, States, Quantified Predicates

CS 536: Science of Programming, Fall 2019

Lecture 3: Types, Expressions, and Arrays

- 1. (Expression syntax & type)
 - a. (x < y? x: F) is illegal: The types of the two clauses of the conditional don't match (x is an int, F is a boolean.)
 - b. b[0] + b[1][1] is illegal: b[0] needs one more index, since b is 2-dimensional
 - c. match(b1, b2, n) is legal. From the comment, match returns a boolean.
- 2. (Well-formed states?)
 - a. $\{x = (2), y = 4\}$ is well-formed (b is an array of length 1)
 - b. $\{u = (3, 4), v = 0, w = u[1]\}\$ is ill-formed; we need w = value but u[1] is an expression.
 - c. $\{r = one, s = four, t = r + s\}$ is ill-formed; the bindings of r and s are okay, but the binding t = the expression r+s is illegal. (Even if we don't write it in this font, r+s has to be an expression because using r = value, s = value implies that r and s are expression variables.)
- 3. (Array representations) We have $\sigma = \{x = 2, b = \beta\}$ where $\beta = (five, two plus two, 6)$.
 - a. $\sigma = \{x = 2, b = (5, 4, 6)\}$ is one way; writing $\{..., b = (five, two plus two, 6)\}$ is okay too, since five, and two plus two must stand for semantic values.
 - b. $\sigma = \{x = 2, b[0] = 5, b[1] = 4, b[2] = 6\}$ is one way.
- 4. (State satisfying predicate) $\varphi = \mathbf{x} = \mathbf{y}^* \mathbf{z} \land \mathbf{y} = \mathbf{3}^* \mathbf{z} \land \mathbf{z} = \mathbf{b}[0] + \mathbf{b}[2] \land 3 < \mathbf{b}[1] < \mathbf{b}[2] < 6$ We're to expand $\sigma = \{\mathbf{x} = \underline{}, \mathbf{y} = \underline{}, \mathbf{z} = 5, \mathbf{b} = \underline{}, \mathbf{z} = 5, \mathbf{b} = \mathbf{z} = 5, \mathbf{z}$
- 5. (State and result for expression.) For a state to be proper for 0 *b[b[j]], it has to have j = an integer and b = an array value. For the expression to use valid indexes for b, we need the values of j and b[j] to be legal indexes for b.
 - a. $\{j=0, b=(3, 2, 5, 4), c=(3), d=8\}$ is well-formed, proper, and evaluates yields zero.

c. $\{j=0, b=0\}$ is well-formed, but not proper. (We need b=an array value. If b[0] is supposed to have the value 0, then we need b=(0) or b[0]=0.)

Lecture 4: State Updates, Satisfaction of Quantified Predicates

- 6. (State updates) We have $\sigma = \{x = 2, y = 4, b = (-1, 0, 4, 2)\}.$
 - a. $\sigma[z \mapsto 1] = \sigma \cup \{(z, 1)\}$ by definition because $\sigma(z)$ is undefined.
 - b. $\sigma[\mathbf{x} \mapsto 5] = \{ \mathbf{x} = 2, \mathbf{y} = 4, \mathbf{b} = (-1, 0, 4, 2) \} [\mathbf{x} \mapsto 5] = \{ \mathbf{x} = 5, \mathbf{y} = 4, \mathbf{b} = (-1, 0, 4, 2) \} [\mathbf{x} \mapsto 5]$ because $\sigma(\mathbf{x})$ is defined. On the other hand, $\sigma \cup \{(\mathbf{x}, 5)\} = \{ \mathbf{x} = 2, \mathbf{y} = 4, \mathbf{b} = (-1, 0, 4, 2), \mathbf{x} = 5 \}$, which has two bindings for \mathbf{x} , so it is ill-formed.
- 7. $(Q \times \cdot \phi \text{ satisfaction})$
 - a. Let $\sigma = \{x=4, y=6, b=(4,2,8)\}$, then $\sigma \models (\exists x.\exists j. b[j] < x < y)$ using j=0 and x=5. The state $\sigma[j \mapsto 0] [x \mapsto 5] = \{x=5, y=6, b=(4,2,8), j=0\}$ satisfies b[j] < x < y, since it reduces to 4 < 5 < 6. It's important to remember that updating σ so that x=5 replaces the x=4 binding of σ .

We can also use j = 1 as a witness value: it works with x = 3, 4, or 5.

- b. Let $\tau = \{ \mathbf{x} = 0, \ \mathbf{y} = 7, \ \mathbf{b} = (4,2,8) \}$, then $\tau \not\models (\forall \mathbf{x} \cdot \forall \mathbf{k} \cdot 0 < \mathbf{k} < 3 \rightarrow \mathbf{x} < \mathbf{b}[\mathbf{k}])$ because to satisfy $\forall \mathbf{x} \cdot \forall \mathbf{k} \cdot \mathbf{...}$, the value $\tau(\mathbf{x}) = 0$ is irrelevant. From $0 < \mathbf{k} < 3$ we know $\mathbf{k} = 1$ or 2, but either way there are plenty of possible x values that are not $\langle \tau(\mathbf{b})(1) = 4$ or not $\langle \tau(\mathbf{b})(2) = 8$. (Note to show $\tau \not\models (\forall \mathbf{x} \cdot \forall \mathbf{k} \cdot \mathbf{...})$, we have to show that there is at least one set of counterexamples. I.e., for some x there is some k such that the body is not satisfied. The bindings $\mathbf{x} = 3$ and $\mathbf{k} = 1$ work: $\tau[\mathbf{x} \mapsto 3][\mathbf{k} \mapsto 1] \not\models 0 < \mathbf{k} < 3 \rightarrow \mathbf{x} < \mathbf{b}[\mathbf{k}]$.
- 8. (Invalid $Q \times \cdot \varphi$)
 - a. $otin (\forall \mathbf{x} \in U \cdot (\exists \mathbf{y} \in V \cdot P(\mathbf{x}, \mathbf{y})))$ holds when there is some state σ and some value $\alpha \in U$ for \mathbf{x} where for every value $\beta \in V$ for \mathbf{y} , the body $P(\mathbf{x}, \mathbf{y})$ is not satisfied. I.e., $\sigma[\mathbf{x} \mapsto \alpha] [\mathbf{y} \mapsto \beta] \not\models P(\mathbf{x}, \mathbf{y})$. Note that if no variables with bindings in σ are used in $P(\mathbf{x}, \mathbf{y})$, then we can take $\sigma = \emptyset$.
 - b. $\forall y . ((\exists x \in U \cdot P(x, y)) \rightarrow (\exists y \in U \cdot Q(x, y)))$ means $\forall y . (p_1 \rightarrow p_2)$ where $p_1 \equiv \exists x \in U \cdot P(x, y)$ and $p_2 \equiv \exists y \in U \cdot Q(x, y)$. For $\forall y . (p_1 \rightarrow p_2)$, we need a state σ and a value α such that $\sigma[y \mapsto \alpha] \models p_1$ but also $\sigma[y \mapsto \alpha] \not\models p_2$.

For $\sigma[y \mapsto \alpha] \models p_1 \equiv \exists \ x \in U \cdot P(x, y)$, we need a $\beta \in U$ such that $\sigma[y \mapsto \alpha][x \mapsto \beta] \models P(x, y)$. (I.e., P is true on values β and α for x and y.)

For $\sigma[y \mapsto \alpha] \not\models p_2 \equiv \exists \ y \in U \cdot Q(x, y)$, we need that for all $\delta \in U$, $\sigma[y \mapsto \alpha][y \mapsto \delta] \not\models Q(x, y)$. Since $\sigma[y \mapsto \alpha][y \mapsto \delta] = \sigma[y \mapsto \delta]$, we're saying that Q is false about values $\sigma(x)$ and δ . (The reason we use δ instead of $\sigma(y)$ for y is that the y in $p_2 \equiv \exists y$... hides the y in the outer $\forall y \in A$.)

- 9. (Predicate function) To make life easier, first I'll define a helper predicate R(x, y) that is true if both x and y are legal indexes for b: $R(x, y) \equiv 0 < x < n \land 0 < y < n$.

 Then we can define $P(b, c, d, s, t) \equiv R(c, d) \land R(s, t) \land \forall c \leq i < d.\exists s \leq j < t.b[i] < b[j]$.
 - In English, this says that c and d are legal indexes, r and s are legal indexes, and for all indexes i between c and d, there is some index j between s and t such that b[i] < b[j].