MULTIPLEXER:

(many inputs; one output)

No. of input lines = 27

No. of output line = 1.

n=no.of select lines.

- the but combination of selection lines will at any point will determine the input lines.

* 2x1 Mux: No. of input = 2 No. of select lines = 1 No. of 0/P = 1

- i) use 8 XI MUX
- 11) Uze 4x1 MVX. *

i) 8 x 1 M | UX :

ii) No. of sellet line = 3. (for eximux)

For 4X1 MUX :

let n2 y lee select lines.

Mar P

1) 8 ×1 MUX

1) UXI MUX

i) 8x1 mux:

ii) 4x1 MUX:

Let no of select lines for 8x1 MUX=3

" " " 4x1 MUX=2

Let x and y be select lines

To I, I₂ I₃

Z 0 2 4 6

Z (1) 3 (5) (7)

U U U U U Z+Z=1

Q Solve veing enitable MUX as implementing following function:

Ans. Method-1 (Using 16 XI MUX)

A COLUMN

Method-2: (Using 8x1 Mux)

let a, le, c lue select lines;

	70	I,	\mathbb{T}_2	T_3	Ty	Is	工	T ₄
d	0	2	4	Ĺ	8-	10	12	19
d	1	(3)	5	7	٩		(13)	(15)
	1	*	1	*	1	1	*	1/2
	d	d	0	0	Ō	d	d+d=1	d+d=1

B. Design Full adder neing smitable MUX. B C Sum Carry 0 0 0 1 0 Scem = [m (1, 2, 4, 2) Carel = 5 w (3' 2' 2' 2') i) using two 8x1 Mux: 8x1 2111 8×1

ii) two 4x1 MUX; Let alle lee input lines. I_2 I_3 1 To I, 6 I, 1, 12 0 0 cte=1 421 4 1/ MUX

6

Q. Design XOR gate using

$$F = \sum_{m} \left(\stackrel{1}{a}, 2 \right).$$

ii) 2×1 MUX: Let of be input line.

116

Q. Derign or gate vering) i) 4x1 MUX.

Any	4	B	F	
	0	D	0	
	0	1	1	
	l	0	1	
	l	1)	

$$f = \sum m(1, 2, 3)$$

ii) Using 4x1 MUX!

ii) using 2x1 MUX: Let A lee the input line.

Design 8x1 MUX using two 4x1 MUX and one 2x1 MUX.

g. Use 8x1 MVX veing two 2x1 mux and one 4x1 MVX.

Q Use $4 \times 1 \text{ MUX to implement the function}$ $F(w, x, y, z) = \sum_{m} (1, 2, 3, 6, 2, 14) + d(8, 9, 15)$

Any.

(P.T.0)

* using single 4×1 MUX: Let 100 2 The lee icaput lines; y 2 z be select lines.

		Lo	I	12	\mathfrak{I}_3
-	wz	Э		2	(3)
Ū	ν×,	4	5	6	(7)
	wx	8	9	01	11
4	w ×.	12	13	(14)	15
		0	シャズ	Datwater Datwater	ジボナジン
W	n	y	Z		
0	0	o o	0	0	
ð	0	0			
0	0	1	0	1	
ō	0)			
0		0	0	0	
0	t	0	1	©	
0	1	1	0		
0		1	1	Ø	
1	0	0	0	×	
)	0	0	1	×	
1	0)	0	0	
1	0	1		0	
1-	1	0	0	0	
1	1	0	1	0	
1		1	0	1	
	1	1	Í	*	

$$f_{1} = 0$$

$$f_{1} = 0$$

$$f_{2} = 0$$

$$f_{2} = 0$$

$$f_{3} + 0$$

$$f_{4} = 0$$

$$f_{4} = 0$$

$$f_{5} + 0$$

$$f_{7} + 0$$

$$f_{8} = 0$$

$$f_{1} = 0$$

$$f_{1} = 0$$

$$f_{2} = 0$$

$$f_{3} + 0$$

$$f_{4} = 0$$

$$f_{5} + 0$$

$$f_{7} = 0$$

$$f_{8} = 0$$

$$f_{8} + 0$$

$$f_{8} = 0$$

$$f_{8$$

