MAT7500 W14 Lecture Notes

Bröcker and Jänich, Chapter VII: Embedding

The goal of this chapter is two-fold: to show every smooth m-manifold

- (1) immerses in \mathbb{R}^n when $n \geq 2m$ and
- (2) embeds in \mathbb{R}^n when $n \geq 2m + 1$.

In fact, we will establish a good deal more: we will show that if $f: M \to \mathbb{R}^n$ is an smooth map, then there are immersions which are arbitrarily close to f in a suitable topology on $C^{\infty}(M;\mathbb{R}^n)$ (when $n \geq 2m$). A similar statement for approximating maps into \mathbb{R}^n by enabled things one**to-one immersions** also holds for $n \geq 2m+1$ (recall that if M is compact a one-to-one immersion is an embedding).

Digression: the jet space. Suppose M^m and N^n are smooth manifolds and choose points $x \in M, y \in N$. Consider smooth maps $f: M \to N$ such that f(x) = y. Define an equivalence relation on such maps by $f \sim g$ if and only if $T_x f = T_x g$. Let $J^1(M,N)_{x,y}$ be the set of such equivalence classes We usually denote an equivalence class by [f], but if confusion arises we sometimes write $[f]_x$. Set

$$J(M,N) := \bigcup_{(x,y)\in M\times N} J^1(M,N)_{x,y}.$$

Notice that a map $f: M \to N$ gives rise to a function

$$j^1 f \colon M \to J^1(M,N)$$

defined by $x \mapsto [f]_x$.

Lemma. $J^1(M,N)$ has the structure of a smooth manifold of dimension m+n+mn.

Proof. Let $U \subset M$ and $V \subset N$ be open. Then $J^1(U,V) \subset J^1(M,N)$, as U and V vary, define a subbasis for a topology.

If we choose U and V to charts, we will show that $J^1(U,V)$ is also a chart. Without loss in generality, we may assume $U \cong \mathbb{R}^m$ and $V \cong \mathbb{R}^n$. Then $J^1(U,V)$ is in bijection with $J^1(\mathbb{R}^m,\mathbb{R}^n)$. Define a function

$$J^1(\mathbb{R}^m, \mathbb{R}^n) \to \mathbb{R}^m \times \mathbb{R}^n \times \text{hom}(\mathbb{R}^m, \mathbb{R}^n)$$

by

$$[f]_x \mapsto (x, f(x), T_x f)$$
.

This is clearly well-defined and is a bijection. To complete the argument we need to know how this behaves with respect to transition maps. I will omit this part of the argument (it's not very difficult). \square

Consider the projection

$$J^1(M,N) \to M \times N$$

given by $[f] \mapsto (x,y)$ where $[f] \in J^1(M,N)_{x,y}$. It is also not a stretch of the imagination to conclude from the above argument that this gives a *vector bundle* over $M \times N$ of rank mn. However, we will not need to know this fact.

Notice that $f \in C^{\infty}(M, N)$ defines a continuous map

$$j^1 f \colon M \to J^1(M,N)$$

by sending x to $[f]_x$.

The C^1 -topology. Given an open subset $V \subset J^1(M,N)$, let

$$M(V) := \{ f \in C^{\infty}(M, N) | \operatorname{image}(j^1 f) \subset V \}.$$

Note that $M(V \cap W) = M(V) \cap M(W)$.

Definition. The Whitney C^1 -topology on $C^{\infty}(M, N)$ is the topology having basis $\{M(V)\}_V$ where $V \subset J^1(M, N)$ varies throughout the open subsets.

In order to understand this definition, let's try to make it more concrete. Since manifolds are metrizable, let's choose a metric space structure d^1 on $J^1(M, N)$ compatible with its topology. Let $\delta \colon M \to (0, \infty)$ be any continuous map. Define

$$B_{\delta}(f): \{g \in C^{\infty}(M, N) | d(j^{1}f(x), j^{1}g(x)) < \delta(x)\}$$

Then $B_{\delta}(f)$ is an open set and as δ varies, we obtain a neighborhood basis on f in the Whitney C^1 -topology.

Intuitively, $d(j^1f(x), j^1g(x)) < \delta(x)$ means that f(x) and g(x) are "close" and moreover, $T_x f$ and $T_x g$ are "close."

Example. Consider the case and $N=\mathbb{R}^n$ and $M=U\subset\mathbb{R}^m$ is an open set. Then we have a canonical diffeomorphism

$$J^1(U,\mathbb{R}) \cong U \times \mathbb{R}^n \times \text{hom}(\mathbb{R}^m,\mathbb{R}^n) \subset \mathbb{R}^{m+n+mn}$$

And we can equip $J^1(U,\mathbb{R})$ with the max norm coming from \mathbb{R}^{m+n+mn} .

For example let m = 1 = n. Then $B_{\delta}(f)$ consists of the smooth functions $g: U \to \mathbb{R}$ such that

$$|f(x) - g(x)| + |f'(x) - g'(x)| < \delta(x)$$

for all $x \in U$. So f and g are "close" in the C^1 -topology if and only if there are pointwise as well as in their derivatives "close" in a way controlled by δ .

The Whitney Immersion Theorem.

Let $I(M^m, \mathbb{R}^n) \subset C^{\infty}(M, \mathbb{R}^n)$ consist of all immersions $M \to \mathbb{R}^n$.

¹Urysohn's Metrization Theorem says that a topological space is separable and metrizable if and only if it is regular, Hausdorff and second-countable. So any manifold is metrizable.

Theorem. Assume $n \geq 2m$. Then $I(M^m, \mathbb{R}^n) \subset C^{\infty}(M, \mathbb{R}^n)$ is dense in the C^1 -topology.

As a first step, we need to analyse certain subspaces of the space of matrices. Let V and W be vector spaces of dimensions m and n respectively, where m < n. If $S: V \to W$ is a linear transformation, we define

$$\operatorname{corank}(S) := m - \operatorname{rank}(S)$$
.

Let $L^r(V, W) \subset \text{hom}(V, W)$ be the subset of those S such that corank(S) = r.

Proposition. $L^r(V,W) \subset \text{hom}(V,W)$ is a submanifold of codimension (n-m+r)r.

Proof. Let $S \in L^r(V, W)$ and set k = m - r = rank(S). Choose bases of V and W so that the matrix of

$$S = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

is such that A is a $k \times k$ invertible matrix. Choose an open neighborhood U of S in hom(V, W) such that for all S' in U,

$$S' = \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix}$$

is such that A' is invertible $k \times k$. The neighborhood U exists because the det $A \neq 0$ implies det $A' \neq 0$ for all matrices sufficiently close to A. Now consider the smooth map

$$f: U \to \text{hom}(\mathbb{R}^{m-k}, \mathbb{R}^{n-k})$$

given by $f(U) = D' - C'(A')^{-1}B'$. If we fix A, B, C, then the map

$$g: \text{hom}(\mathbb{R}^{m-k}, \mathbb{R}^{n-k}) \to \text{hom}(\mathbb{R}^{m-k}, \mathbb{R}^{n-k})$$

given by $g(D) = f(S) = D - CA^{-1}B$ is a diffeomorphism. In particular, $Tg_D = Tf_S$ is surjective, so the map f is a submersion. Then

$$f^{-1}(0) = L^r(V, W) \cap U$$

is a submanifold of codimension (n-k)(m-k).

Proposition. Let $S_r \subset J^1(M,N)$ be the subset of $[f] \in J^1(M,N)$, $[f]: T_xM \to T_yN$ say, such that $\operatorname{corank}(f) = r$. Then S_r is a submanifold of codimension r(n-m+r).

Proof. It's enough to consider the case $M = \mathbb{R}^m$ and $N = \mathbb{R}^n$. Then $J^1(\mathbb{R}^m, \mathbb{R}^n) \cong \mathbb{R}^m \times \mathbb{R}^n \times \text{hom}(\mathbb{R}^m, \mathbb{R}^n)$. With respect to this diffeomorphism, we have $S_r \cong \mathbb{R}^m \times \mathbb{R}^n \times L^r(\mathbb{R}^m, \mathbb{R}^m)$. The previous proposition then gives the result. \square

As preparation for the proof for the Whitney Immersion Theorem we first establish the result in the following special case:

Proposition. Let $f: U \to \mathbb{R}^n$ be a smooth map, $U \subset \mathbb{R}^m$ open and $n \geq 2m$. Let $\epsilon > 0$. Then there is an immersion $g: U \to \mathbb{R}^n$ such that $||f - g||_{C^1} < \epsilon$.

Proof. A smooth map $f: U \to \mathbb{R}^n$ is an immersion iff an only if the map

$$U \to \text{hom}(\mathbb{R}^m, \mathbb{R}^n) = \mathbb{R}^{mn}$$

given by $x \mapsto T_x f$ has image disjoint from $L^r(\mathbb{R}^m, \mathbb{R}^n)$ for $r = 1, 2, \ldots$ But the codimension of $L^r(\mathbb{R}^m, \mathbb{R}^n) \subset \text{hom}(\mathbb{R}^m, \mathbb{R}^n)$ is $\geq m + 1$.

Hence for almost all $A \in \text{hom}(\mathbb{R}^m\mathbb{R}^n)$, the the map given by $x \mapsto T_x f + A$ misses $L^r(\mathbb{R}^m, \mathbb{R}^n)$ for $r \geq 1$. Let $g \colon U \to \mathbb{R}^n$ be given by g(x) = f(x) + Ax. Then $Tg_x = T_x f + A$. \square

The above statement can be *localized*. We need only consider a special case. Let $B_s \subset \mathbb{R}^m$ be the ball of radius s centered at the origin.

Addendum. With $U = B_3$, assume that $f \in C^{\infty}(B_3, \mathbb{R}^n)$. Then there is an $h \in C^{\infty}(B_3, \mathbb{R}^n)$ which is an immersion on B_1 such that $||h - f||_{C^1} < \epsilon$ and h = f on $B_3 \setminus B_2$.

Proof. Let g be as in the proposition. Choose a smooth map $\phi: B_3 \to [0,1] \subset \mathbb{R}$ such that $\phi \equiv 1$ on B_1 and $\phi \equiv 0$ off B_2 (see the next Lemma for some details) Now define

$$h(x) = f(x) + \phi(x)(q(x) - f(x))$$
. \square

Support Lemma. There is a smooth function $\phi \colon \mathbb{R}^m \to \mathbb{R}$ such that $\phi \equiv 1$ on B_a , $\phi \equiv 0$ on $\mathbb{R}^m \setminus B_b$, and $\phi(x) \in (0,1)$ for a < ||x|| < b.

Proof. consider the function $f: \mathbb{R}^1 \to \mathbb{R}^1$ given by

$$f(x) = \begin{cases} e^{-1/x^2}, & x > 0 \\ 0 & x \le 0. \end{cases}$$

Then f is smooth. Consider the function

$$g(x) = f(x - a)f(b - x).$$

Then q(x) smooth, is positive on (a, b), and is zero elsewhere.

Next, consider the function

$$h(x) = \frac{\int_{-\infty}^{x} g \, dx}{\int_{-\infty}^{\infty} g \, dx}$$

Then h is smooth, h(x) = 0 for x < a and h(x) = 1 for x > b. Furthermore, 0 < h(x) < 1 for $x \in (a, b)$.

Finally, define the function $\phi \colon \mathbb{R}^m \to \mathbb{R}$ by

$$\phi(x) = 1 - h(||x||)$$
.

Then ϕ is smooth, and $\phi(x) = 1$ for $x \in B_a$, $\phi(x) = 0$ for $x \notin B_b$, and $0 < \phi(x) < 1$ for a < ||x|| < b. \square

We also need to relativize the addendum:

Proposition. In the setting of previous proposition, assume $F \subset B_3$ is closed and $f_{|F|}$ is already an immersion. Then we may find $h \in C^r(B_3, \mathbb{R}^n)$ which is an immersion on $\bar{B}_1 \cup F$, where $||h - f||_{C^1} < \epsilon$ and h = f on $F \cup (B_3 \setminus B_2)$.

Proof. (Sketch). Set $K = F \cap \bar{B}_2$. Then K is compact in B_3 and it suffices to prove the statement for K in place of F. Let $V \subset B_3$ be an open neighbborhood of K whose closure is compact. Since being an immersion is an open condition, we can chose V so that f is an immersion on \bar{V} . Then

$$\bar{B}_1 \cup K \subset (\bar{B}_1 \setminus V) \cup \bar{V}$$
.

Let $\xi : : B_3 \to [0,1]$ be a smooth function such that $\phi \equiv 1$ on $\bar{B}_1 \setminus V$ and $\xi \equiv 0$ on $K \cup (\bar{B}_3 \setminus B_2)$. Set

$$h = f + \xi(g - f).$$

Then h satisfies the conclusion. \square

As a final preparation will need to find a sufficiently nice atlas for M.

Lemma. There exists a locally finite smooth atlas $\{(h_i, U_i)\}_{i>1}$ for M such that

- (1) $U_i = h_i^{-1}(B_3);$
- (2) $U_i^{(1)} = h_i^{-1}(B_1)$ is a covering of M.

Proof. Every point $x \in M$ has a chart $h: (U, x) \to (\mathbb{R}^m, 0)$ whose image is B_3 . If we define $U^{(1)} := h^{-1}(B_1)$ then $(h, U^{(1)})$ is still a chart at x. Assume first that M is compact. Then we can choose such a chart for each $x \in M$, and then appeal to compactness to select finitely many such charts. This gives the result when M is compact.

In the general case, we can choose a countable covering $\{C_i\}$ of M by compact subsets (local compactness guarantees this). Set $A_1 := C_1$, and inductively define A_j as a compact neighborhood of $A_{j-1} \cup C_j$. Then $A_j \subset \operatorname{int}(A_{j+1})$ and $\cup_i A_i = M$.

For each i, choose finitely many charts $h_{ik} \colon U_{ik} \to B_3$ for $1 \le k \le s$ (where s depends on i), such that $U_{ik} \subset \operatorname{int}(A_{i+2}) - A_{i-1}$. If we set $U_{ik}^1 := h_{ik}^{-1}(B_1)$, then we can arrange it so that U_{ik}^1 forms an open covering of $A_{i+1} \setminus \operatorname{int}(A_i)$. This is because, $A_{i+1} \setminus \operatorname{int}(A_i)$ is compact and has $\operatorname{int}(A_{i+2}) \setminus A_{i-1}$ as an open neighborhood. The proof is completed by reindexing. \square

Proof of the Whitney Immersion Theorem. For $j \geq 1$, let

$$M_j = \bigcup_{i=1}^j U_i^{(1)},$$

where $U_i^{(1)}$ is as in the Lemma.

then $M_j \subset M$ is an open set and therefore a submanifold. Given f, we can assume by induction that it has been modified to a C^{∞} -map $f_j \colon M \to \mathbb{R}^n$ so that f_j is an immersion on \overline{M}_j and

$$||f - f_i||_{C^1} \le \frac{\epsilon}{2^i}$$

as functions on $U_i^{(1)}$ for i = 1, ..., n. Set $U := U_{j+1} = U_{j+1}^{(3)}$. We will show how to modify f_j to f_{j+1} with $f_{j+1} = f_j$ off $U^{(2)}$.

By the last proposition, there's an $h \in C^{\infty}(U^{(3)}, \mathbb{R}^n)$ such that

- (1) h is an immersion on $\bar{U}^{(1)} \cup (\bar{M}_i \cap \bar{U}^{(3)})$ (since $h = f_i$ on $\bar{M}_i \cap \bar{U}^{(3)}$);
- (2) $h = f_i$ on $U^{(3)} \setminus U^{(2)}$;
- (3) $||h f_j||_{C^1} < \frac{\epsilon}{2^{j+1}}$ on $U^{(1)}$.

Define $f_{j+1} \in C^{\infty}(M, \mathbb{R}^n)$ by setting $f_{j+1} = h$ on $U^{(3)}$ and $f_{j+1} = f_j$ on $M \setminus U^{(2)}$. Then f_{j+1} is an immersion on $M_{j+1} = M_j \cup U^{(1)}$ and $||f_{j+1} - f_j||_{C^1} < \frac{\epsilon}{2^{j+1}}$ as functions on on $U^{(1)}$. Repeating this construction gives defines a sequence f_1, f_2, \ldots We set

$$g(p) = \lim_{j} f_j(p) .$$

This is a pointwise limit, but at each $x \in M$ it's a limit of a finite sequence, by the local finiteness property. This implies the limit is C^{∞} -uniform on compact sets in M and g is smooth as well as an immersion. By construction $||f - g||_{C^1} < \epsilon$. \square .

ONE-TO-ONE IMMERSIONS

A one-to-one immersion is not necessarily an embedding—we saw examples a while back. Here is another example:

Example. Let $f: \mathbb{R} \coprod \mathbb{R} \to \mathbb{R}^2$ be defined on the first summand by $x \mapsto (x,0)$ and on the second by $y \mapsto (0, e^y)$. Then f is a one-to-one immersion but not an embedding, since the image of f is the union of the x axis with the positive y axis. This is clearly not a submanifold.

Theorem. Let $f: M^m \to \mathbb{R}^n$ be a smooth map $n \geq 2m + 1$. Then for f can be arbitrarily approximated by a one-to-one immersion $g: M \to \mathbb{R}^n$. In other words, the one-to-one immersions are dense in all smooth maps.

Proof. As usual, the "arbitary approximation" of the theorem means we are choosing a map $\delta \colon M \to \mathbb{R}$. By the Immersion Theorem, we can assume f is an immersion. By the Rank Theorem, f is a local embedding.

Choose a countable open covering $\{U_i\}$ of M such that $f \colon U_\alpha \to \mathbb{R}^n$ is an embedding for all α . We can assume that this covering is an atlas of the kind we used in the proof of the Immersion Theorem. Let $\phi_i \colon M \to \mathbb{R}$ be a support function for $U_i = U_i^{(3)}$, where ϕ_i is supported on $U_i^{(2)}$. Inductively define a sequence of immersions $g_i \colon M \to \mathbb{R}^n$ where $g_0 = f$ and

$$g_j(x) = g_{j-1}(x) + \phi_j(x) \cdot b_j$$

where $b_j \in \mathbb{R}^n$ is has sufficiently small norm (this guarantees that g_j is an immersion). In fact, we may choose b_j so that

$$||g_j(x) - g_{j-1}(x)|| < \frac{\delta(x)}{2^j}$$

This will guarantee that all the g_j as weak as $g := \lim_j g_j$ are all immersions that lie in a prescribed neighborhood of f.

Let $N \subset M \times M$ be the set of points (x, y) such that $\phi_j(x) \neq \phi_j(y)$. Then N is an open set, so it's a manifold of dimension 2m. We have a smooth map

$$G \colon N \to \mathbb{R}^n$$

given by

$$(x,y) \mapsto \frac{-((g_{j-1}(x) - g_{j-1}(y)))}{\phi_j(x) - \phi_j(y)}$$

Since 2m < n, Sard's theorem implies the image of G (which consists entirely of critical values) has measure zero. So we can choose b_j to not be in this image. Then

$$g_j(x) = g_j(y) \iff g_{j-1}(x) - g_{j-1}(y) = -(\phi_j(x) - \phi_j(y))b_j$$
.

Since b_j is a regular value for G, this can only happen if $(x,y) \notin N$. Hence,

$$g_j(x) = g_j(y) \iff \phi_j(x) = \phi_j(y)$$
,

and therefore $g_{j-1}(x) = g_{j-1}(y)$.

Suppose g(x) = g(y). Then since $g(x) = g_j(x)$ for large j, it follows that $g_j(x) = g_j(y)$ for large j, and therefore $\phi_{j-1}(x) = \phi_{j-1}(y)$. By downward induction we get

$$\phi_j(x) = \phi_j(y)$$
 and $g_j(x) = g_j(y)$ for all $j \ge 0$.

In particular, it follows that f(x) = f(y) so x and y lie in different chart domains (since f is an embedding on each U_j). If for example $x \in U_j^{(1)}$ and $y \notin U_j$ then

$$\phi_j(x) = 1 \neq 0 = \phi_j(y)$$

from which we get a contradiction. \square

EMBEDDINGS

Let $E(M, \mathbb{R}^n) \subset C^{\infty}(M, \mathbb{R}^n)$ be the subset given by all smooth embeddings $M \to \mathbb{R}^n$. Assume $n \geq 2n+1$. Then it's not necessarily true that this subset is dense. In the compact case it is true, so to construct a counterexample, we have to use non-compact manifolds. The text gives a sequence of exercises how to construct such a counterexample (Chap. 7, Ex. 8). However, I do not know how to do these exercises!

However, we do have the following:

Whitney Embedding Theorem. Any smooth m-manifold embeds in \mathbb{R}^n if $n \geq 2m + 1$.

The proof of this result is based on the following fact which we prove later:

Lemma. (Existence of Proper Maps). On any smooth manifold M there is a proper map $\rho: M \to \mathbb{R}$.

Proof of Whitney Embedding Theorem. Since there is a proper map $\rho: M \to \mathbb{R}$, there is also a proper map $f: M \to \mathbb{R}^n$ (for example $(\rho, \rho, \dots, \rho)$). Approximate this by a one-to-one immersion $g: M \to \mathbb{R}^n$ so that $||g - f||_{C^1} \le 1$.

Let $K \subset \mathbb{R}^n$ be compact. Then $K \subset \bar{B}_s$ for s sufficiently large. Then $g^{-1}(K) \subset f^{-1}(\bar{B}_{s+1})$ is an inclusion of a closed subset of a compact space. Hence $g^{-1}(K)$ is compact. So g is a proper one-to-one immersion. But this implies that g is a smooth embedding by the Corollary to the Closed Map Lemma (cf. below).

The proof of the Proper Map Lemma is based on the existence of a *smooth partition of unity* which we now describe, but not prove.

Lemma. (Existence of Smooth Partition of Unity). Let M be a smooth manifold equipped with open covering $\mathcal{U} := \{U_{\alpha}\}$. Then there exists a partition of unity $\{\psi_i\}$ subordinate to \mathcal{U} , such that $\psi_i \colon M \to [0,1]$ is smooth for all i.

Proof of Proper Map Lemma. Let $\mathcal{U} := \{U_{\alpha}\}$ be an open cover of M such that \bar{U}_{α} is compact. Let $\{\psi_i\}$ be a smooth partition of unity subordinate to \mathcal{U} , Set

$$\rho = \sum_{k=1}^{\infty} k \psi_k$$

Then ρ is smooth. If $\rho(x) \leq j$ then at least one of the first j-functions $\psi_1, \dots \psi_j$ must be non-zero at x, Hence $\rho^{-1}([-j,j])$ is a subset of

$$\bigcup_{i=1}^{j} \{x | \psi_i(x) \neq 0\} = \bigcup_{i=1}^{j} \operatorname{supp}(\psi_i)$$

But supp (ψ_i) is a closed set in one of the \bar{U}_{α} (by the definition of partition of unity) so it is compact. Hence the displayed set is also compact. Also $\rho^{-1}([-j,j])$, which is a closed subset of a compact set is also compact. But every compact subset $K \subset \mathbb{R}$ is contained in some [-j,j]. So the closed set $\rho^{-1}(K)$ is a closed subset of the compact set $\rho^{-1}([-j,j])$. Hence $\rho^{-1}(K)$ is also compact. \square

Recall that a space Z is locally compact if every point $x \in Z$ is contained in a compact set C which contains an open set that contains x. Observe that if Z is Hausdorff and locally compact, then the condition amounts to the existence of an open set U around x so that its closure is compact (one calls U precompact in this instance). Note too that any smooth manifold is locally compact (indeed, if $x \in M$ and $h: (U,x) \to (U',0)$ is a diffeomorphism, where U is a neighborhood of x and x and x are ineighborhood of x are ineighborhood of x are ineighborhood of x and x are ineighborhood of x are ineighborhood of x are ineighborhood of x are ine

Closed Map Lemma. Let $f: X \to Y$ be a proper continuous map, where Y is Hausdorff and locally compact. Then f is a closed map, i.e., the image of any closed set is closed.

Proof. Let $K \subset X$ be closed. It's enough to show that f(K) is closed. Let $y \in Y$ be a limit point for f(K). Let U be a neighborhood of y such that the closure of U is compact and such that y is a limit point for $f(K) \cap \bar{U}$. As f is proper, $f^{-1}(\bar{U})$ is compact. Consequently, $K \cap f^{-1}(\bar{U})$ is also compact. Since f is continuous, $f(K \cap f^{-1}(\bar{U})) = f(K) \cap \bar{U}$ is also compact hence closed. Therefore $y \in f(K) \cap \bar{U} \subset f(K)$. So f(K) is closed. \square

Corollary. If $f: M \to N$ is a proper one-to-one immersion, then f is an embedding.

Proof. By the Closed Map Lemma, $f: M \to N$ is closed map and $f: M \to f(M)$ is a continuous bijection. Hence f is a homeomorphism and the notes from Chapter 5 imply that f is also an embedding.

The Limit Set. The following criterion may be helpful in distinguishing between one-to-one immersions and embeddings into euclidean space.

The *limit set* of a map $f: M^m \to \mathbb{R}^n$ is

 $L(f) := \{ y \in \mathbb{R}^n | y = \lim_{k \to \infty} f(x_k), \text{ where } \{x_k\} \text{ is a sequence in } M \text{ which having no limit point} \}$

Lemma. (1). If $f: M \to \mathbb{R}^p$ is smooth, then f(M) is closed if and only if $L(f) \subset f(M)$. (2). A one-to-one immersion $f: M \to \mathbb{R}^n$ is an embedding if and only if $f(M) \cap L(f) = \emptyset$.

Proof. (1). Suppose f(M) is closed, and let $y \in L(f)$. Then $y = \lim_i f(x_i)$. But $f(x_i) \in f(M)$. Therefore $\lim_i f(x_i) \in f(M)$ since f(M) is closed.

Conversely, suppose $L(f) \subset f(M)$. Let y be a point in the closure of f(M). Then for each n there is an $x_n \in M$ such that $f(x_n)$ lies in the ball of radius 1/n centered at y. Set $x = \lim_i x_i$ if the limit exists. Then

$$f(x) = \lim_{i} f(x_i) = y$$

which implies that $y \in f(M)$. If the limit $\lim_i x_i$ doesn't exist, then $y \in L(f) \subset f(M)$. Hence, in either case $y \in f(M)$, so f(M) is closed.

(2). Suppose $f(M) \cap L(f) = \emptyset$. Let $C \subset M$ be a closed set. If f(C) isn't closed, then there's a point $y \notin f(C)$ such that y is a limit point of f(C) in f(M). Hence, $y \in L(f) \cap f(M)$, so we obtain a contradiction.

Conversely, suppose f is an embedding $y \in f(M) \cap L(f)$ then y = f(x). Write $y = \lim_i f(x_i)$, where the sequence $\{x_i\}$ has no limit point. Since $M \to f(M)$ is a diffeomorphism it follows that $x = \lim_i x_i$, giving a contradiction. \square

Example. We saw in Chapter I that the figure eight curve $f:(-1,1)\to\mathbb{R}^2$, given by

$$f(t) = (\sin \pi t, \sin 2\pi t)$$

is a one-to-one immersion. The limit point set L(f) is given by f(0) = (0,0). Consequently, $f((-1,1)) \cap L(f) \neq \emptyset$, so f is not an embedding.

Example. According to an exercise in the book (we will try to solve it in class) there is a smooth map $f: \mathbb{R} \to \mathbb{R}^3$ such that

$$\mathbb{Q}^3 \subset f([n,\infty))$$

for $n = 0, 1, \ldots$ Then $\mathbb{Q}^3 \subset L(f) \cap f(\mathbb{R})$.

Let $\epsilon \colon \mathbb{R} \to (0, \infty)$ be a continuous map which tends to 0 when $t \to \pm \infty$. Suppose there were an embedding $g \colon \mathbb{R} \to \mathbb{R}^3$ such that $||f - g||_{C^1} < \epsilon$. Then it is straightforward to check that L(g) = L(f) so $\mathbb{Q}^3 \subset L(g)$. Moreover, since g is an embedding we have $L(g) \cap g(\mathbb{R}^3) = \emptyset$. We infer that

$$\mathbb{R}^3 \setminus \mathbb{Q}^3 \subset g(\mathbb{R}) \subset \mathbb{R}^3$$

This implies $g(\mathbb{R}) \subset \mathbb{R}^3$ is everywhere dense. But this will contradict the submanifold property, since the latter inclusion corresponds locally to the standard inclusion of $\mathbb{R} \subset \mathbb{R}^3$ and the latter inclusion is nowhere dense. So we obtain a contradiction. We conclude that there's no embedding g that is ϵ -close to f in the C^1 -topology on $C^{\infty}(\mathbb{R}, \mathbb{R}^3)$.

Hence, the embeddings do not form a dense subset, even though we are in the Whitney range $3 \ge 2 \cdot 1 + 1$. This should be contrasted with the statement that one-to-one immersions do form a dense subset. This example shows that there's a great deal of difference in the behavior of smooth embeddings as compared with one-to-one immersions.