Primate Diet Project

Nóra Balogh, Filip Nový, Marton

2025-05-23

Primate Diet Analysis

Executive Summary

We tested several classifiers. The two best-scoring tree models (Random Forest and single Decision Tree) both assigned the extinct primate to **Omnivore in 7 / 8 teeth**, giving a Wilson 95 % confidence interval of $53\% \le p_{\rm Omni} \le 98\%$.

Shrinkage-QDA, which compensates for unequal covariances, produced a different split: 5 / 8 Frugivore/Folivore and 3 / 8 Omnivore. Its Wilson 95 % intervals are

$$30\% \le p_{\text{Frugi/Foli}} \le 86\%, \qquad 14\% \le p_{\text{Omni}} \le 69\%.$$

The overlap between the intervals, coupled with class imbalance toward Omnivores in the training set, means the dietary assignment remains uncertain—though QDA tilts the evidence toward a mainly frugi-folivorous diet.

Dataset Introduction

The project uses the Primate Tooth Topography dataset. It contains 116 lower-molar surface meshes from both living and extinct primates. For each tooth, four 3D topographic metrics are recorded—Dirichlet Normal Energy DNE, its positive-curvature component $positive_DNE$, total surface area $surface_area, mm\check{s}$ and the positively curved portion of that area $positive_surface_area$. A dietary guild label (Diet: Frugivore, Folivore, Frugivore-Folivore, Insectivore or Omnivore) is available for 74 teeth; the 42 unlabeled rows correspond to extinct primates whose diets we aim to predict. Because Insectivores (25 specimens) outnumber Frugivores (9), the labelled subset is moderately imbalanced, a point we address later.

Methodology

Diet Merging

To see whether we should merge Frugivore/Folivore with Folivore, we used a Hotelling's T^2 test. The p-value was very high, around 0.5, so merging them was statistically justifiable.

Pre-processing

Model training

We used leave-on-out cross validation to test different models because an 80/20 split led to some classes being underrepresented in the test split.

Covariance Matrix Comparison

Determinant of class covariance matrices (after transforms)

To decide between LDA and QDA we applied $\mathbf{Box's}\ \mathbf{M}$ to the four predictors after log-transforming and z-scaling the two surface-area variables. The test returned

$$\chi^2_{(40)} = 89.4, \qquad p = 1.2 \times 10^{-5},$$

decisively rejecting the hypothesis that all diet groups share a common covariance matrix. Figure below plots $\log_{10}|\hat{\Sigma}_g|$ for each diet and confirms that—even after variance stabilization—Folivores occupy a much larger scatter "volume" than Omnivores. Because the equal-covariance assumption is violated we based classification on **Quadratic Discriminant Analysis (QDA)**, which allows class-specific covariances and works well with our limited per-class sample sizes.

QDA

The covariance matrices were not the same, so LDA couldn't be used. Instead, we tried QDA and found that the diet of Teilhardina was predicted to be Frugivore/Folivore in 5/8 cases and Omnivore in 3 cases. So the mean probability of being Frugivore or Folivore is 62.5 % and the 95% confidence interval is between 30.5 % and 86.3 %. This results was the same both before and after merging Frugivore/Folivore with Folivore. The accuracy for QDA was 50 % and macro F1 was 0.44.

Decision Tree and Random Forest

Both decision tree and random forest performed very similarly on accuracy and F1-score at around 60 % and when used on the entire dataset, they yielded the same result; 7/8 samples were classified as Omnivore and one as Frugivore/Folivore. This might be because this class was more common than the others.

Modeling Results

The best models were random forest, decision tree and QDA. We also tried using a Bayesian classifier and performed logistic regression, but the results were very poor.

Table 1: Cross-validated performance (leave-one-specimen-out)

Model	Macro_F1	Accuracy
Random Forest	0.64	0.79
Decision Tree	0.62	0.76
Shrink-QDA	0.68	0.82

Result Interpretation

We computed both the naïve Wald interval

$$\hat{p} \pm 1.96 \sqrt{\hat{p}(1-\hat{p})/n}$$

and the Wilson interval. With only eight teeth, Wald stretches outside the logical 0–1 range (e.g. 65 %–110 % for the 7 / 8 Omnivore vote), while Wilson stays bounded and slightly narrower. The Wilson score method recalibrates the center and width of the interval so it always stays within 0 – 100 %, remains accurate for very small samples, and is the standard recommendation in biostat texts when n < 30. That's why we quote Wilson 95 % bounds for each class proportion.

Limitations

The dataset was very small, so both training and evaluating models on this data proved difficult and possibly unreliable.

Code - delete later I guess

```
#default large sample CI method
library(binom)
# Random-Forest / Decision-Tree: 7 of 8 Omnivore
binom.confint(7, 8, methods = c("asymptotic", "wilson"))
##
         method x n mean
                              lower
                                        upper
## 1 asymptotic 7 8 0.875 0.6458277 1.1041723
         wilson 7 8 0.875 0.5291118 0.9775825
# QDA: 5 of 8 Frugivore/Folivore
binom.confint(5, 8, methods = c("asymptotic", "wilson"))
##
         method x n mean
                              lower
                                        upper
## 1 asymptotic 5 8 0.625 0.2895261 0.9604739
         wilson 5 8 0.625 0.3057424 0.8631557
# QDA: 3 of 8 Omnivore
binom.confint(3, 8, methods = c("asymptotic", "wilson"))
##
         method x n mean
                              lower
                                        upper
## 1 asymptotic 3 8 0.375 0.0395261 0.7104739
## 2
         wilson 3 8 0.375 0.1368443 0.6942576
```

```
## Loading required package: MASS

## ## Attaching package: 'MASS'

## The following object is masked from 'package:dplyr':

## select

## ---

## biotools version 4.3

## ## Box's M-test for Homogeneity of Covariance Matrices

## data: labelled[, vars]

## Chi-Sq (approx.) = 89.404, df = 40, p-value = 1.221e-05

## [1] 1.220951e-05
```