Exercise 7. Let V be an inner product space, and for each y in V define $F_y: V \to \mathbb{R}$ by $F_y(x) = (x, y)$.

- (a) Show that F_y belongs to V^* and satisfies $||F_y|| = ||y||$. (Hint: use the Cauchy-Schwarz inequality; see exercise 3.2.7. To check that $||F_y||$ is equal to (rather than less than) ||y||, consider $F_y(y)$.)
- (b) Show that if $y \neq y'$, then $F_y \neq F_{y'}$.
- (c) Show that if the inner product space V is a Hilbert space and if F belongs to V^* , then there is an element y of V such that $F = F_y$. (Hint: let y = 0 if F = 0. Otherwise choose a nonzero element v of V such that (u, v) = 0 holds whenever F(u) = 0 (see exercise 3.2.12), and check that a suitable multiple of v works.)

Proof.

(a) Let K be \mathbb{R} or \mathbb{C} , the field on which V is defined, and let $y \in V$. For all $x, z \in V$ and $\alpha \in K$, we have

$$F_y(x+z) = (y, x+z) = (y, x) + (y, z) = F_y(x) + F_y(z)$$

 $F_y(\alpha \cdot x) = (y, \alpha \cdot x) = \alpha \cdot (y, x) = \alpha \cdot F_y(x)$

so that F_y is linear; since the inner product is defined from $V \times V$ to $K, F_y(x) \in K$ for all $x \in V$. Using Cauchy-Schwarz inequality, we get

$$|F_y(x)| = |(y, x)| \le ||y|| \cdot ||x||$$

from which we deduce that F_y is bounded. Therefore $F_y \in V^*$, and $||F_y|| \le ||y||$. Moreover, we have

$$|F_y(y)| = |(y,y)| = ||y||^2$$

so there exists an element $x \in V$ such that $|F_y(x)| = ||y|| \cdot ||x||$. From this we deduce that $||F_y|| \ge ||y||$, and, combining both inequalities, that $||F_y|| = ||y||$.

(b) Let y, y' be distinct elements of V. We have

$$|F_y(y - y') - F_{y'}(y - y')| = |(y, y - y') - (y', y - y')|$$

= |(y - y', y - y')| = ||y - y'||² > 0

 F_y and $F_{y'}$ take different values on the vector y - y', and are therefore different.

(c) If F = 0, then $F = F_0$. Otherwise, there exists $w \in V$ such that $F(w) \neq 0$.

The set $k_F = \{u \in V \mid F(u) = 0\}$ is nonempty (it contains the null vector), and, by linearity of F, is a K-vector space. As a Hilbert space, V is complete, and hence closed; let $\{u_n\}_{n\in\mathbb{N}}$ be a sequence of elements of k_F that converges to some $u \in V$. We have

$$|F(u)| \le |F(u) - F(u_n)| + |F(u_n)|$$

 $\le ||F|| \cdot ||u - u_n||$

since $F(u_n) = 0$ and F is continuous. From this we deduce that for all $\varepsilon > 0$, $|F(u)| \le \varepsilon$, so that F(u) = 0 and $u \in k_F$. k_F is then a closed subspace of V.

From exercise 3.2.12, we deduce the existence of a vector $h \in k_F$ satisfying $||w - h|| = \inf\{||w - x||, x \in k_F\}$, and such that w - h is orthogonal to k_F . Note that F(w - h) = F(w) - F(h) = F(w), so that $w - h \notin k_F$.

Let $v = \frac{w-h}{F(w-h)}$, for all $x \in V$, we have

$$F(x) = F(x) \cdot F(v) = F(F(x) \cdot v)$$

so that $x - F(x) \cdot v = z \in k_F$. Moreover,

$$(x, v) = (F(x) \cdot v + z, v) = F(x) \cdot (v, v) + (z, v)$$

= $F(x) \cdot ||v||^2$

since v is orthogonal to k_F . From this we deduce that

$$F = F_y$$
 with $y = \frac{v}{\|v\|^2}$