CLAIMS:

15

25

- 1. A bacteriochlorophyll derivative containing at least one, preferably two or three, negatively charged groups and/or acidic groups that are converted to negatively charged groups at the physiological pH, excluding pentacyclic bacteriochlorophyll derivatives having a free CH₂CH₂COOH or a CH₂CH₂COO group at position 17, and tetracyclic bacteriochlorophyll derivatives devoid of a central metal atom and having a -CH₂CH₂COOH group at position 17, a -CH₂COOH or -COOH group at position 15, a -COOH group at position 13, methyl groups at the positions 2, 7, 12, 18, and ethyl groups at the positions 3 and 8.
 - 2. A bacteriochlorophyll derivative according to claim 1 containing two negatively charged groups.
 - 3. A bacteriochlorophyll derivative according to claim 1 containing three negatively charged groups.
- 4. A bacteriochlorophyll derivative according to any one of claims 1 to 3 wherein said negatively charged groups are selected from the group consisting of COO, COS, SO₃, and/or PO₃².
 - 5. A bacteriochlorophyll derivative according to claim 1 wherein said acidic groups that are converted to negatively charged groups at the physiological pH are selected from the group consisting of COOH, COSH, SO₃H, and/or PO₃H₂.
 - 6. A bacteriochlorophyll derivative according to any one of claims 1 to 5 derived from a natural or synthetic derivative of bacteriochlorophyll, including compounds in which the central Mg atom has been deleted or replaced by other metal atoms.

7. A bacteriochlorophyll derivative according to claim 1 of the formula I or II:

$$R_{3}$$
 R_{3}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{7}
 R_{10}
 R_{10}

wherein

10

15

20

M represents 2H or a metal atom selected from divalent Pd, Pt, Co, Sn, Ni, Cu, Zn and Mn, and trivalent Fe, Mn and Cr;

R₁, R₂, and R₄ each independently is Y-R₅;

Y is O, S or NR₅R₆;

 R_3 is selected from $-CH=CH_2$, $-C(=O)-CH_3$, -C(=O)-H, $-CH=NR_7$, $-C(CH_3)=NR_7$, $-CH_2-OR_7$, $-CH_2-SR_7$, $-CH_2-NR_7R_7$, $-CH(CH_3)-OR_7$, $-CH(CH_3)-SR_7$, $-CH(CH_3)-NR_7R_7$, $-CH(CH_3)+A$, $-CH_2-A$, $-CH_2-A$, $-CH_2-A$, $-CH_3-A$,

 R_5 , R_6 , R_7 and $R^\prime{}_7$ each independently is H or selected from the group consisting of:

- (a) C₁-C₂₅ hydrocarbyl optionally containing one or more heteroatoms, carbocyclic or heterocyclic moieties, and/or optionally substituted by one or more functional groups selected from the group consisting of halogen, oxo, OH, SH, CHO, NH₂, CONH₂, a negatively charged group, and an acidic group that is converted to a negatively charged group at the physiological pH;
 - (b) a residue of an amino acid, a peptide or of a protein; and
 - (c) when Y is O or S, R_5 may further be R_8^+ ;

m is 0 or 1; and

R₈⁺ is H⁺ or a cation;

provided that:

10

15

20

25

30

- (i) at least one, preferably two, of R₅, R₆, R₇ and R'₇ is a hydrocarbon chain as defined in (a) above substituted by a negatively charged group or by an acidic group that is converted to a negatively charged group at the physiological pH; or
 - (ii) at least one, preferably two, of R_1 , R_2 , and R_4 is OH, SH, O R_8^+ or S R_8^+ ; or
- (iii) at least one of R_1 , R_2 , and R_4 is OH, SH, O R_8^+ or S R_8^+ and at least one of R_5 , R_6 , R_7 and R_7 is a hydrocarbon chain substituted by a negatively charged group or by an acidic group that is converted to a negatively charged group at the physiological pH; or
- (iv) at least one of R₁, R₂, and R₄ is OH, SH, O R₈⁺ or S R₈⁺ and at least one of R₅, R₆, R₇ and R'₇ is a residue of an amino acid, a peptide or of a protein; or
- (v) at least one of R₅, R₆, R₇ and R'₇ is a hydrocarbon chain substituted by a negatively charged group or by an acidic group that is converted to a negatively charged group at the physiological pH and at least one of R₅, R₆, R₇ and R'₇ is a residue of an amino acid, a peptide or of a protein;

but excluding the compounds of formula I wherein M is as defined, R_3 is -C(=O)CH₃, R_1 is OH or OR_8^+ and R_2 is -OCH₃, and the compound of formula II wherein M is 2H, R_3 is -C(=O)CH₃, R_1 , R_2 and R_4 are OH, and m is 0 or 1.

- 8. A bacteriochlorophyll derivative of the formula I or II according to claim 7 wherein said negatively charged groups are selected from the group consisting of COO, COS, SO₃, and/or PO₃.
 - 9. A bacteriochlorophyll derivative of the formula I or II according to claim 7 wherein said acidic groups that are converted to negatively charged groups at the physiological pH are selected from the group consisting of COOH, COSH, SO₃H, and/or PO₃H₂.
 - 10. A bacteriochlorophyll derivative of the formula I or II according to claim 7 wherein R_1 is Y- R_5 ; Y is O, S or NH; and R_5 is a hydrocarbon chain substituted by functional groups selected from OH, SH, SO₃H, NH₂, CONH₂, COOH, COSH, PO₃H₂.

- A bacteriochlorophyll derivative of the formula I or II according to claim 7 11. wherein R₅ is the residue of an amino acid, a peptide or a protein.
- A bacteriochlorophyll derivative of the formula I or II according to claim 1 12. containing a central Pd metal atom. 5
 - A bacteriochlorophyll derivative of the formula I according to claim 7 13. wherein:

M is Pd;

30

35

 $R_{1} \text{ is -NH-}(CH_{2})_{n} - SO_{3} - R_{8}^{+}, -NH-(CH_{2})_{n} - COO - R_{8}^{+}; -NH-(CH_{2})_{n} - PO_{3}^{-2} - (R_{8}^{+})_{2};$ 10 R₂ is methoxy;

 R_3 is -C(=O)-CH₃;

 R_8^+ is a monovalent cation such as K^+ , Na^+ , Li^+ , NH_4^+ ; and

n is an integer from 1 to 10, preferably 2 or 3. 15

> A bacteriochlorophyll derivative of the formula II according to claim 7 14. wherein:

M represents 2H, divalent Pd, Cu, or Zn or trivalent Mn;

 R_1 is $-O^*R_8^+$, $-NH-(CH_2)_n-SO_3^*R_8^+$, $-NH-(CH_2)_n-COO^*R_8^+$; $-NH-(CH_2)_n-PO_3^{2-}$ 20 $(R_8^+)_2$; or Y-R₅ wherein Y is O, S or NH and R₅ is the residue of an amino acid, a peptide or a protein;

R₂ is C₁-C₆ alkoxy such as methoxy, ethoxy, propoxy, butoxy, more preferably methoxy;

 R_3 is $-C(=O)-CH_3$, $-CH=N-(CH_2)_n-SO_3^ R_8^+$; $-CH=N-(CH_2)_n-COO^ _8^+$; $-CH=N-(CH_2)_n-COO^ N-(CH_2)_n-PO_3^{2-}(R_8^+)_2$; $-CH_2-NH-(CH_2)_n-SO_3^-R_8^+$; $-NH-(CH_2)_n-COO^-R_8^+$; or $-NH-(CH_2)_n-PO_3^{2-}(R_8^+)_2$; $-CH_2-NH-(CH_2)_n-SO_3^-R_8^+$; $-NH-(CH_2)_n-COO^-R_8^+$; or $-NH-(CH_2)_n-PO_3^-R_8^+$; or $-NH-(CH_2)_n-PO_3^-R_8^+$; $-NH-(CH_2)_n-PO_3^-R_8^+$; or $-NH-(CH_2)_n-PO_3^-R_8^+$; $-NH-(CH_2)_n-PO_3^-R_8^+$; $-NH-(CH_2)_n-PO_3^-R_8^+$; $-NH-(CH_2)_n-PO_3^-R_8^+$; $-NH-(CH_2)_n-PO_3^-R_8^+$; $-NH-(CH_2)_n-PO_3^-R_8^+$; or $-NH-(CH_2)_n-PO_3^-R_8^+$; $-NH-(CH_2)_n-PO_3^-R_8^ (CH_2)_n - PO_3^{2-} (R_8^+)_2;$

 $R_4 \text{ is-NH-}(CH_2)_n - SO_3^- R_8^+; -NH-(CH_2)_n - COO^- R_8^+; -NH-(CH_2)_n - PO_3^{2-} (R_8^+)_2;$ R₈⁺ is a monovalent cation such as K⁺, Na⁺, Li⁺, NH₄⁺, more preferably K⁺; and

m is 1, and n is an integer from 1 to 10, preferably 2 or 3.

A bacteriochlorophyll derivative of formula II in claim 7 wherein: 15. M is divalent Pd;

30

35

 R_1 is $-O^-R_8^+$, -NH- $(CH_2)_n$ - $SO_3^-R_8^+$, or Y- R_5 wherein Y is O, S or NH and R_5 is the residue of an amino acid, a peptide or a protein;

R₂ is C₁-C₆ alkoxy, preferably methoxy;

- $R_{3} \text{ is -C(=O)-CH}_{3}, \text{-CH= N-(CH}_{2})_{n}\text{-SO}_{3}^{-}R_{8}^{+}; \text{ or -CH}_{2}\text{-NH-(CH}_{2})_{n}\text{-SO}_{3}^{-}R_{8}^{+}; \\ R_{4} \text{ is-NH-(CH}_{2})_{n}\text{-SO}_{3}^{-}R_{8}^{+}; \text{NH-(CH}_{2})_{n}\text{-COO}^{-}R_{8}^{+}; \text{NH-(CH}_{2})_{n}\text{-PO}_{3}^{2-}(R_{8}^{+})_{2}; \\ R_{8}^{+} \text{ is a monovalent cation, preferably } K^{+}; \\ \text{m is 1, and n is 2 or 3.}$
- 10 16. A bacteriochlorophyll derivative of the formula I according to claim 13, consisting of the compound Palladium bacteriopheophorbide a 17³-(3-sulfopropyl)amide potassium salt.
- 17. A bacteriochlorophyll derivative of the formula II according to claim 15, consisting of the compounds:

Palladium 3¹-oxo-15-methoxycarbonylmethyl-rhodobacteriochlorin 13¹-(2-sulfoethyl) amide dipotassium salt;

3¹-oxo-15-methoxycarbonylmethyl-rhodobacteriochlorin 13¹-(2-sulfoethyl) amide dipotassium salt;

Palladium 3¹-oxo-15-methoxycarbonylmethyl-rhodobacteriochlorin 13¹,17³-di(3-sulfopropyl)amide dipotassium salt;

Palladium 3¹-(3-sulfopropylimino)-15-methoxycarbonylmethyl-rhodobacteriochlorin 13¹.17³-di(3-sulfopropyl)amide tripotassium salt;

Copper(II) 3¹-oxo-15-methoxycarbonylmethyl-rhodobacteriochlorin 13¹-(2-sulfoethyl) amide dipotassium salt;

Zinc 3¹-oxo-15-methoxycarbonylmethyl-rhodobacteriochlorin 13¹-(2-sulfoethyl) amide dipotassium salt;

Manganese(III) 3¹-oxo-15-methoxycarbonylmethyl-rhodobacteriochlorin 13¹-(2-sulfoethyl)amide dipotassium salt;

Palladium 3¹-oxo-15-methoxycarbonylmethyl-rhodobacteriochlorin 13¹-(2-sulfoethyl) amide, 17³-(N-immunoglobulin G) amide potassium salt;

Palladium 3¹-oxo-15-methoxycarbonylmethyl-rhodobacteriochlorin 13¹-(2-carboxy-ethyl)amide dipotassium salt;

Palladium 3¹-oxo-15-methoxycarbonylmethyl-rhodobacteriochlorin 13¹-(3-phosphopropyl)amide tripotassium salt; and

30

Palladium 3¹-(3-sulfopropylamino)-15-methoxycarbonylmethyl-rhodobacteriochlorin 13¹,17³-di(3-sulfopropyl)amide tripotassium salt.

- 5 18. Palladium 3¹-oxo-15-methoxycarbonylmethyl-rhodobacteriochlorin 13¹-(2-sulfoethyl) amide dipotassium salt.
 - 19. A pharmaceutical composition comprising a bacteriochlorophyll derivative according to any one of claims 1 to 18, and a pharmaceutically acceptable carrier.
 - 20. The pharmaceutical composition according to claim 19 for photodynamic therapy.
- 21. The pharmaceutical composition according to claim 20 for vascular-targeting photodynamic therapy.
 - 22. The pharmaceutical composition according to claim 20 or 21 for photodynamic therapy of tumors, including metastatic tumors.
- 20 23. The pharmaceutical composition according to claim 22 for photodynamic therapy of melanoma, colon, breast, lung, or prostate cancer.
 - 24. The pharmaceutical composition according to claim 20 or 21 for photodynamic therapy of age-related macular degeneration.
- 25. The pharmaceutical composition according to claim 20 or 21 for photodynamic therapy of benign prostate hypertrophy.
 - 26. The pharmaceutical composition according to claim 19 for tumor diagnosis.
 - 27. A pharmaceutical composition according to claim 19 for killing cells or infectious agents comprising bacteria and viruses.

25

- 28. The pharmaceutical composition according to claim 27 for *in vitro* killing of cells or infectious agents comprising bacteria and viruses in a biological product upon illumination of said product.
- 5 29. The pharmaceutical composition according to claim 28 wherein said biological product is blood.
 - 30. Use of a compound according to any one of claims 1 to 18 for the manufacture of a pharmaceutical composition for use in photodynamic therapy.
 - 31. The use according to claim 30 for photodynamic therapy of tumors, including metastatic tumors.
- 32. The use according to claim 31 for photodynamic therapy of melanoma, colon, breast, lung, or prostate cancer.
 - 33. The use according to claim 30 for photodynamic therapy of age-related macular degeneration.
- 20 34. Use of a compound according to any one of claims 1 to 18 for the manufacture of a pharmaceutical composition for diagnosis of tumors.
 - 35. Use of a compound according to any one of claims 1 to 18 for the manufacture of a pharmaceutical composition for killing cells or infectious agents comprising bacteria and viruses.
 - 36. A method for tumor photodynamic therapy which comprises:
 - (a) administering to an individual in need a compound according to any one of claims 1 to 18; and
 - (b) irradiating the local of the tumor.
 - 37. A method for photodynamic therapy of age-related macular degeneration which comprises: (a) administering to an individual in need a compound according to any one of claims 1 to 18; and (b) irradiating the local of the macular degeneration.

15

20

- 38. A method for tumor diagnosis which comprises:
- (a) administering to a subject suspected of having a tumor, a compound according to any one of claims 1 to 18; and
- (b) irradiating the subject by standard procedures and measuring the fluorescence of the suspected area, wherein a higher fluorescence indicates tumor sites.
- 39. In a method for photodynamic therapy using a photosensitizer, the improvement wherein said photosensitizer is a bacteriochlorophyll derivative according to any one of claims 1 to 18.
 - 40. In a method for diagnosis of tumors using a photosensitizer, the improvement wherein said photosensitizer is a bacteriochlorophyll derivative according to any one of claims 1 to 18.
 - 41. In an in vitro method for killing of cells or infectious agents comprising bacteria and viruses, using a photosensitizer, the improvement wherein said photosensitizer is a bacteriochlorophyll derivative according to any one of claims 1 to 18.
 - 42. The compound Palladium bacteriopheophorbide a 17³-(3-sulfo-1-oxysuccinimide) ester sodium salt, as an intermediate.
 - 25 43. A method for the preparation of compounds of formula II In claim 7 wherein R₁ is -O⁻R₈⁺; R₂ is -OCH₃; R₃ is acetyl; R₄ is a group -NH-(CH₂)_n-SO₃⁻R₈⁺; R₈⁺ is a monovalent cation; m is 1 and n is 1 to 10, which comprises:
 - (i) reacting the corresponding M-bacteriopheophorbide of formula I wherein R_1 is OH with an aminosulfonic acid of the formula H_2N -(CH_2)_n- SO_3H in a R_8 ⁺-buffer; and
 - (ii) isolating the desired compound of formula II.

20

25

- 44. The method according to claim 43 for preparation of palladium 3¹-oxo-15-methoxycarbonylmethyl-rhodobacteriochlorin 13¹-(2-sulfoethyl) amide dipotassium salt which comprises: (i) reacting Pd-bacteriopheophorbide a with taurine of the formula H₂N-(CH₂)₂-SO₃H in a K⁺-buffer; and (ii) isolating the title compound.
- 45. A method for the preparation of compounds of formula II In claim 7 wherein R_1 is -O $^-R_8^+$; R_2 is -OCH₃; R_3 is acetyl; R_4 is a group -NH-(CH₂)_n-COO $^-R_8^+$; R_8^+ is a monovalent cation; m is 1 and n is 1 to 10, which comprises:
- (i) reacting the corresponding M-bacteriopheophorbide of formula I wherein R₁ is OH with an aminocarboxylic acid of the formula H₂N-(CH₂)_n-COOH in a R₈⁺-buffer; and
 - (ii) isolating the desired compound of formula II.
- 46. A method for the preparation of compounds of formula II in claim 7 wherein R₁ is -O⁻R₈⁺; R₂ is -OCH₃; R₃ is acetyl; R₄ is a group -NH-(CH₂)_n-PO₃²⁻(R₈⁺)₂; R₈⁺ is a monovalent cation; m is 1 and n is 1 to 10, which comprises:
 - (i) reacting the corresponding M-bacteriopheophorbide of formula I wherein R_1 is OH with an aminophosphonic acid of the formula H_2N -(CH_2)_n- PO_3H_2 in a R_8 -buffer; and
 - (ii) isolating the desired compound of formula II.
 - 47. A method for the preparation of compounds of formula II in claim 7 wherein R₁ and R₄ contain the same negatively charged group, which comprises:
 - (i) reacting the corresponding M-bacteriopheophorbide with an excess of the aminosulfonic, aminocarboxylic or aminophosphonic acid in a R₈⁺-buffer; and
 - (ii) isolating the desired 13,17-disubstituted derivative of formula II.
 - 48. A method for the preparation of compounds of formula II in claim 7 wherein R₁ and R₄ are each a group -NH-(CH₂)_n-SO₃⁻R₈⁺; R₂ is -OCH₃; R₃ is acetyl; R₈⁺ is a monovalent cation; m is 1 and n is 1 to 10, which comprises:
 - (i) coupling the corresponding M-bacteriopheophorbide of formula I wherein R₁ is OH with N-hydroxy-sulfosuccinimide (sulfo NHS)in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC);

15

25

- (ii) reacting the resulting M-bacteriopheophorbide- 17^3 -N-hydroxy-sulfosuccinimide ester with an excess of an aminosulfonic acid of the formula H_2N_1 - $CH_2)_n$ - SO_3H in a R_8^+ -buffer, thus obtaining a compound of formula I having a sole negatively charged group at position 17;
- (iii) reacting the product of step (ii) with an excess of H_2N -(CH_2)_n- SO_3H in a R_8^+ -buffer; and
 - (iv) isolating the desired compound of formula II.
- 49. A method for the preparation of compounds of formula II in claim 7 wherein R₁ and R₄ are each a group -NH-(CH₂)_n-COO R₈⁺; R₂ is -OCH₃; R₃ is acetyl; R₈⁺ is a monovalent cation; m is 1 and n is 1 to 10, which comprises:
 - (i) coupling the corresponding M-bacteriopheophorbide of formula I wherein R₁ is OH with N-hydroxy-sulfosuccinimide (sulfo NHS) in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC);
 - (ii) reacting the resulting M-bacteriopheophorbide- 17^3 -N-hydroxy-sulfosuccinimide ester with an excess of an aminocarboxylic acid of the formula H_2N -(CH_2)_n-COOH in a R_8^+ -buffer, thus obtaining a compound of formula I having a sole negatively charged group at position 17;
 - (iii) reacting the product of step (ii) with an excess of H₂N-(CH₂)_n-COOH in a 20 R₈⁺-buffer; and (iv) isolating the desired compound of formula II.
 - 50. A method for the preparation of compounds of formula II in claim 7 wherein R₁ and R₄ are each a group –NH-(CH₂)_n-PO₃²⁻R₈⁺; R₂ is -OCH₃; R₃ is acetyl; R₈⁺ is a monovalent cation; m is 1 and n is 1 to 10, which comprises:
 - (i) coupling the corresponding M-bacteriopheophorbide of formula I wherein R₁ is OH with N-hydroxy-sulfosuccinimide (sulfo NHS)in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC);
 - (ii) reacting the resulting M-bacteriopheophorbide- 17^3 -N-hydroxy-sulfosuccinimide ester with an excess of an aminophosphonic acid of the formula $H_2N-(CH_2)_n-PO_3H_2$ in a R_8^+ -buffer, thus obtaining a compound of formula I having a sole negatively charged group at position 17;
 - (iii) reacting the product of step (ii) with an excess of H_2N -(CH_2)_n- PO_3H_2 in a R_8^+ -buffer; and (iv) isolating the desired compound of formula II.