Инструкция по монтажу Радиоканал CilexRF

CilexRF v2.0

FW: 2.9

Версия инструкции 1.5

Оглавление

Введение	3
Технические характеристики	3
Внешний вид платы	4
Схема подключения 1	5
Подключение источника питания	6
Подключение СКД	6
Подключение датчиков проезда.	6
Подключение антенны	6
Логика работы приёмника	7
Схема подключения 2	8
Схема подключения 3	9
Подключение источника питания	11
Подключение СКД	11
Подключение датчиков проезда.	11
Подключение синхронизации.	11
Подключение антенны	12
Логика работы	12
Схема подключения 4(упрощенная).	12
Подключение источника питания	13
Подключение СКД	13
Подключение антенны	13
Логика работы	13
Настройка режимов радиоканала	13
Приложение 1. Размеры пластикового корпуса радиоканала	14
Припожение 2. Эквивалентные счемы вуолов/вычолов	15

Введение.

Радиоканал CilexRF предназначен для организации пропускного режима на основе радиобрелоков. Радиоканал используется совместно с системой контроля доступа. Данные передаются по протоколу Wiegand26/Wiegand40. Радиоканал может быть использован для модернизации уже существующих систем, т.к. может работать не только с брелоками CilexKF1, но и с брелоками Came(TOP-432), Ditec(GOL4C) и GateTX*. Следует иметь ввиду, что из всех перечисленных брелоков только брелоки CilexKF1 имеют уникальный идентификатор, передающийся с помощью динамического кода, поэтому для надежной работы рекомендуется использовать только брелоки CilexKF1.

Радиоканал поставляется в герметичном корпусе. Подразумевается использование гермовводов для подключения.

*Поддержка дополнительных брелоков (Came(TOP-432), Ditec(GOL4C) и GateTX) – опционально.

Технические характеристики.

Номинальное напряжение питания: 12В

Сила тока(среднее значение при номинальном напряжении): 0,02А

Чувствительность приёмника: -114 дБм

Частота настройки радиоприемника: 433МГц

Дальность приёма (в условиях прямой видимости): до 100м

Интерфейс подключения СКД: Wiegand26/Wiegand40

Поддержка дополнительных брелоков*: Came(TOP-432), Ditec(GOL4C) и GateTX

*Поддержка дополнительных брелоков (Came(TOP-432), Ditec(GOL4C) и GateTX) – опционально.

Размеры герметичного пластикового корпуса ШВГ (см. приложение 1): 115мм 40мм 65мм.

Внешний вид платы

Рис. 1. Внешний вид платы радиоканала CilexRF

Подключение всех проводов осуществляется посредством съёмных клемников. Ниже расписаны функциональные назначения всех контактов:

- 1. "+12" подключение плюсового провода питания
- 2. "GND" подключение минусового провода питания
- 3. "Data0", "Data1" контакты интерфейса Wiegand26/Wiegand40. Подключаются как считыватель1 системы контроля доступа.
- 4. "Data0_2", "Data1_2" контакты интерфейса Wiegand26/Wiegand40. Подключаются как считыватель2 системы контроля доступа.
- 5. "PH1", "PH2" ИК датчики проезда. Датчики устанавливаются с двух сторон от шлагбаума или ворот. Сигнал будет передаваться в СКД на считыватель1/считыватель2 когда перекрыт PH1/PH2.
- 6. "ANT", "Antenna GND" контакты для подключения внешней антенны.
- 7. "READY_BUSY" сигнал синхронизации в случае использования двух радиоканалов, либо сигнал стробирования ДП в обычном режиме.
- 8. "OUT1" и "OUT2" силовые выходы(до 1A) с открытым стоком. Дублируют сигналы "PH1" и "PH2". Эти входы используются для формирования сигналов проезда.

Эквивалентные схемы входов смотри в приложении 2.

Схема подключения 1.

Рассмотрим несколько вариантов подключения:

Рис. 2. Схема применения 1. Одна полоса въезда/выезда

Рис. 3. Электрическая схема подключения 1.

X1 – радиоканал Cilex RF

X2 – блок питания

Х3 – система контроля доступа

Х4, Х5 – датчики проезда

X6 – дополнительное внешнее монтажное реле (в комплект не входи т) для "развязки" сигнала управления шлагбаумом

Также используются два дополнительных диода. D2 — для замыкания бросков тока при отключении реле X6. Если управляющие выходы СКД рассчитаны на управление обмоткой реле, то установка D2 не требуется. **D1** устанавливается обязательно. Он защищает приёмник от напряжений более 5В.

Если использование датчиков прохода в СКД не планируется, то D1 и дополнительное реле X6 использовать не нужно.

Подключение источника питания

Подключите источник постоянного тока напряжением 12 Вольт к контактам "+12" и "GND".

Подключение СКД

Подключите контакты "Data0", "Data1" и "Data0_2", "Data1_2" вместо считывателя 1 и считывателя 2 соответственно.

Подключение датчиков проезда.

Подключите датчик проезда с одной стороны к контакту "РН1". Датчик с другой стороны — к контакту "РН2". Датчики могут быть как нормальнозамкнуты так и нормальноразомкнуты. Логика их работы выбирается DIP — переключателем см. раздел "Настройка режимов радиоканала". Для фиксации фактов проезда в СКД подключите выходы OUT1 и OUT2 в соответствии со схемой на Рис. 3. Электрическая схема подключения 1.Сигналы проезда будут передаваться радиоканалом в СКД только тогда, когда замкнут один из управляющих выходов СКД, т.е. только во время разрешения проезда. Это исключает появление в СКД сообщений вида "несанкционированные проезд" или "проезд со взломом".

Положение ползунков: 1. ON/OFF, 2. OFF, 3. OFF, 4,5,6. ON/OFF

Подключение антенны

В данном устройстве возможно несколько вариантов подключения антенны:

1. К разъёму X8. Этот разъём стандарта SMA. Существует как масса готовых антенн с таким разъёмом так и масса готовых кабелей. Этот

разъём обеспечивает наилучший приём, так как позволяет использовать антенны и кабели изготовленные в заводский условиях. При использовании этого подключения **HE устанавливать** джампера X13.

- 2. Если нет возможности использовать антенны и кабели с разъёмами SMA, то следует использовать контакты "Ant" и "Antenna GND". При этом важно установить джампер на нижние два контакта (положение 1) разъёма X13 (Рис. 4.).
- 3. В некоторых случаях будет достаточно антенны разведённой на плате. Для этого установите джампер на разъём X13 в положение 2 (Рис. 4.).

Рис. 4.

Внимание! Не подключайте к приёмнику две антенны одновременно, это может ухудшить приём. Если используете кабель для удаленной установки антенны, то выбирайте коаксиальный кабель с волновым сопротивлением 50 Ом.

Логика работы приёмника

В обычном режиме приёмник находится в режиме ожидания и никаких сигналов от радиобрелоков в СКД не передаёт. При подъезде автомобиля перекрывается один из датчиков проезда. После этого сигнал от брелока будет передан в СКД когда пользователь нажмёт кнопку. При этом если перекрыт датчик подключенный к контакту PH1 то код радиобрелока будет передан на контакты "Data0" и "Data1", если PH2 – "Data0_2" и "Data1_2". В случае, когда перекрыты оба датчика сразу, сигнал будет передан только на контакты "Data0" и "Data1". Сигналы проезда будут передаваться радиоканалом в СКД только тогда, когда замкнут один из управляющих выходов СКД, т.е. только во время разрешения проезда. Это исключает появление в СКД сообщений вида "несанкционированные проезд" или "проезд со взломом".

Схема подключения 2.

Рис. 5. Схема применения 2. Раздельные полосы въезда/выезда.

Рис. 6. Электрическая схема подключения 2

Один датчик проезда устанавливается у одного шлагбаума на въезде, второй – у другого шлагбаума на выезде. Один шлагбаум будет использоваться только на въезд, а второй только на выезд. Подключение и логика работы при этом практически такие же, как и в предыдущем случае. Следует отметить, что при одновременном подъезде двух автомобилей, сначала сможет проехать тот который перекроет датчик РН1.

Положение ползунков: 1. ON/OFF, 2. OFF, 3. OFF, 4,5,6. ON/OFF

Схема подключения 3.

Эта схема имеет недостатки, поэтому, её использование имеет смысл только когда НЕТ ВОЗМОЖНОСТИ реализовать ЛЮБУЮ ДРУГУЮ СХЕМУ подключения из этого описания.

Рис. 7. Схема применения 3. Раздельные полосы въезда/выезда.

Рис. 8. Электрическая схема подключения 3.

X1 – радиоканал Cilex RF (РК1)

X2 – радиоканал Cilex RF(РК2)

ХЗ – блок питания

Х4 – система контроля доступа

Х5, Х6 – датчики проезда

X7, X8, X9, X10 – дополнительные внешние монтажные реле (в комплект не входят) для правильного формирования сигналов проезда и управления

Если нет возможности установить датчики проезда как в случае схемы подключения 2, то возможно установить обе пары датчиков на выезде. При этом для нормальной работы системы потребуются два радиоканала и СКД с функцией AntiPassBack. Один шлагбаум будет использоваться только на въезд, а второй только на выезд. Датчики проезда в этом случае обязательно должны быть подключены не только к радиоканалу, но и к СКД через дополнительные реле (для корректной работы функции AntiPassBack). В этом варианте подключения обязательно установить переключатель 3 в положение ON. Подключение в этом случае осуществляется следующим образом:

Подключение источника питания

Подключите источник постоянного тока напряжением 12 Вольт к контактам "+12" и "GND".

Подключение СКД

Подключите контакты "Data0", "Data1" радиоканала РК2 к соответствующим контактам считывателя1 у СКД. Подключите контакты "Data0", "Data1" радиоканала РК1 к соответствующим контактам считывателя2 у СКД.

Подключение датчиков проезда.

Подключите датчик проезда на выезде к контакту "PH1" радиоканала РК1. Датчик может быть как нормально замкнут так и нормально разомкнут. Логика их работы выбирается DIP — переключателем см. раздел "Настройка режимов радиоканала". Подключать датчик проезда на въезде к РК2 не нужно. Оба датчика проезда должны быть подключены к СКД. Для этого используется контакт "OUT1" радиоканала РК1 и дополнительное реле X10, а второй датчик подключается непосредственно к СКД через дополнительное реле X7.

Подключение синхронизации.

Для того, чтобы система функционировала корректно, необходимо подключить между радиоканалами сигнал синхронизации "READY_BUSY"

и установить 4-ый ползунок DIP-переключателя в положение ON у радиоканала РК1(X2 на рис. 8).

Положение ползунков X1: 1. ON/OFF, 2. OFF, 3. ON, 4. OFF, 5,6. ON/OFF Положение ползунков X2: 1. ON/OFF, 2. OFF, 3. ON, 4. ON, 5,6. ON/OFF

Подключение антенны.

Так же как и в случае "Схема подключения 1".

Логика работы

Водитель на въезде нажимает кнопку — посылка получается обоими радиоканалами. Т.к. датчик проезда (5) не перекрыт, то код по Wiegand будет передан только от радиоканала 2. Если в базе СКД данный код обозначен как "на выезде", то СКД разрешит въезд. Если код уже записан как "въехавший", то СКД въезд не разрешит.

Водитель на выезде подъезжает к шлагбауму и, перекрыв датчик проезда, нажимает кнопку. Код брелока будет передан в СКД от обоих радиоканалов, с некоторой задержкой (задержка обеспечивается подключением сигнала READY_BUSY). В случае одновременного прихода кода от обоих радиоканалов алгоритм работы СКД не предсказуем(зависит от используемого СКД). СКД разрешит выезд если код в базе записан как "въехавший".

Датчики проезда должны быть заведены на СКД для того чтобы СКД мог определять въехал или выехал конкретный брелок.

Схема подключения 4(упрощенная).

Рис. 9. Схема применения 4.

В этом случае не используются и не подключаются датчики проезда.

Подключение источника питания

Подключите источник постоянного тока напряжением 12 Вольт к контактам "+12" и "GND".

Подключение СКД

Подключите контакты "Data0", "Data1" к СКД вместо считывателя 1.

Подключение антенны.

Так же как и в случае "Схема подключения 1".

Логика работы

Функция AntiPassBack в данном случае не реализуема. Каждый раз нажимая на кнопку код передаётся в СКД, а СКД открывает или не открывает шлагбаум.

Настройка режимов радиоканала.

Режим работы радиоканала выбирается с помощью DIP-переключателя (X14 рис. 1). Ниже расписано назначение каждого ползунка:

- 1. Вкл(положение ON)/выкл(положение OFF) дополнительные брелоки*.
- 2. Не используется, OFF!!!
- 3. Положение ON схема подключения 3. Положение OFF все другие режимы.
- 4. Приоритет посылки по Wiegand26/Wiegand40. Используется при синхронизации в случае Схемы подключения 3.
- 5. Выбор режима работы Wiegand26(положение OFF), Wiegand40 (положение ON).
- 6. Нормальнозамкнутые(положение OFF)/нормальноразомкнутые(положение ON) датчики проезда.

*Поддержка дополнительных брелоков (Came(TOP-432), Ditec(GOL4C) и GateTX) – опционально.

Приложение 1. Размеры пластикового корпуса радиоканала.

Рис. 10. Габариты пластикового корпуса.

Приложение 2. Эквивалентные схемы входов/выходов.

Bходы Data0, Data1, Data0_2, Data1_2

Рис. 11. Эквивалентная схема выходов DataX.

Входы РН1, РН2

Рис. 12. Эквивалентная схема входов РН1, РН2.

Выходы OUT1, OUT2.

Рис. 13. Эквивалентная схема выходов OUT1, OUT2

Выходы OUT1 и OUT2 могут быть подключены как непосредственно к СКД, так и могут управлять обмоткой реле или другой нагрузкой до 1А. При этом не требуется подключение диодов при индуктивной нагрузке, т.к. они уже есть в схеме. Рекомендуется использовать дополнительные реле для формирования сигналов проезда только в моменты открывания шлагбаума/ворот.