الإسقاط

القدرات المنتظرة

الترجمة المتجهية لمبرهنة طاليس.

1- مسقط نقطة على مستقيم

ليكن (D) و (Δ) مستقيمين متقاطعين و M نقطة من المستر

M يوجد مستقيم وحيد مار من M و يوازي

M' هذا المستقيم يقطع (D) في نقطة وحيدة

 (Δ) النقطة 'M تسمى مسقط M على (D) بتواز مع

نعريف

ليكن (D) و (Δ) مستقيمين متقاطعين و M نقطة من المستوى

مسقط النقطة M على D بتواز مع Δ هو نقطة تقاطع Δ مع المستقيم الموازي للمستقيم Δ و المار من Δ

ملاحظة: إذا كانت $M\in (D)$ فان مسقط M على $M\in (D)$ بتواز مع

2- الإسقاط على مستقيم بتواز مع آخر

أ- تعريف

و (D') مستقیمان متقاطعان (D')

الطريقة التي تربط كل نقطة M من المستوى بمسقطها M على المستقيم M بتواز مع المستقيم Δ تسمى الإسقاط على Δ بتواز مع Δ بتواز مع Δ

ب- الإسقاط العمودي على مستقيم

تعریف1

(D) الإسقاط على مستقيم (D) بتواز مع مستقيم عمودي عليه يسمى الإسقاط العمودي على

تعریف2

مسقط النقطة M على المستقيم ig(Dig) بتواز مع مستقيم عمودي عليه يسمى المسقط العمودي للنقطة M على ig(Dig)

3- خاصيات أولية

أ- خاصية1

- (Δ) منطبقة مع مسقطها على (D) بتواز مع کل نقطة من
- ig(Dig) كل نقطة منطبقة مع مسقطها على على الك على كل نقطة منطبقة الك الك الك -

مفردات

- انقول إن M القطة M هي نفسها على (D) بتواز مع (Δ) نقول إن M الإسقاط (Δ) بتواز مع (Δ) بتواز مع (Δ) .
 - (Δ) المستقيم (D) المستقيم الإسقاط على (D) بتواز مع

نعبر عن الخاصية 1 بالتعبير التالي:

(D) مجموعة النقط الصامدة بالاسقاط على (D) بتواز مع

ب- خاصية2

A لتكن A نقط من مستقيم

A مجموعة النقط التي لها نفس المسقط A على D بتواز مع Δ هي المستقيم المار من و الموازي للمستقيم Δ

ج- خاصية3

(D) إذا كان مستقيم (Δ') يوازي (Δ) فان الإسقاط على (D) بتواز مع (Δ') هو الإسقاط على إذا كان مستقيم (Δ')

نقول إن الإسقاط على $ig(\Delta ig)$ بتواز مع $ig(\Delta ig)$ لا يتغير بتعويض $ig(\Delta ig)$ بمستقيم له نفس الاتجاه.

4- مسقط شكل

أ- تعريف

(D) ليكن (F') و (Δ) مستقيمين متقاطعين و (F) شكلا من المستوى و (F') جزء من المستقيم نقول إن (F') مسقط الشكل (F) إذا وفقط إذا تحقق:

- (F') مسقط کل نقطة من (F) علی (D) بتواز مع
- . (Δ) هي مسقط نقطة على الأقل من (F) على (F') بتواز مع (F')

خاصية) مقبولة (

 (Δ) بتواز مع مستقیم (B) بتواز مع مستقیم (B) بتواز مع مستقیم (B) بتواز مع مستقیم (A'B'] هو (A'B'] هو (A'B']

ملاحظة:

[A'A'] فان A'=B' ومنه مسقط و A'=B' فان $(AB)//(\Delta)$

ج- مسقط منتصف قطعة

خاصية

إذا كان 'A و 'B مسـقطي النقطتين A و B على مسـتقيم (D) بتواز مع مسـتقيم (Δ) بالتوالي فان: مسـقط منتصف القطعة [AB] هو منتصف [AB].

نعبر عن هذا بقولنا: الإسقاط على (D) بتواز مع (Δ) يحافظ على المنتصف.

5- مبرهن طاليس المباشرة و العكسية متجهيا – الإسقاط ومعامل الاستقامية لمتجهتين أ- نشاط1

لیکن (Δ) و (Δ) مستقیمین متقاطعین

 $A \neq B$ نقط من المستوى حيث D ; C ; B ; A

. (Δ) بتواز مع (D') بتواز مع (D') بتواز مع (D') بتواز مع

 $\overrightarrow{AC} = \lambda \overrightarrow{AB}$ حيث حيث C ; B ; A أن -1

 $\overrightarrow{A'C'} = \lambda \overrightarrow{A'B'}$ بين أن $\frac{AC}{AB} = \frac{A'C'}{A'B'}$ و أن

 $\overrightarrow{A'B'} = \overrightarrow{C'D'}$ بين أن $\overrightarrow{C'D'} = \alpha \overrightarrow{A'B'}$ بين أن

 $\overrightarrow{AB} = \overrightarrow{CD}$ لنفترض أن -2

 $\overrightarrow{CD} = \alpha \overrightarrow{AB}$ بين -3

تذكير لمبرُهْنة طاليس المباشرة في المثلث

 $egin{aligned} \left(AB
ight)$ ليكن ABC مثلثا و M و ABC على التوالي AC

$$\frac{AM}{AB} = \frac{AN}{AC}$$
 فان $(BC)//(MN')$ إذا كان

<u>تصحيح النشاط</u>

$$\overrightarrow{A'C'} = \lambda \overrightarrow{A'B'}$$
 و $\frac{AC}{AB} = \overline{\frac{A'C'}{A'B'}}$ 1-1

نعتبر المستقيم المار من A' و الموازي لـ AB ويقطع A'

F و E عل التوالي في (CC') و (BB')

(CF) باعتبار المثلث A'BE و التوازي (BE) مع

$$\frac{A'F}{A'E} = \frac{A'C'}{A'B'}$$
 وتطبیق خاصیة طالیس نحصل علی

و
$$ACFA'$$
 و $ACFA'$ متوازيا الأضلاع $A'E = AB$; $A'F = AC$ و منه $\frac{AC}{AB} = \frac{A'C'}{A'B'}$

$$\frac{AC}{AB} = \frac{A'C'}{A'B'} = |\lambda|$$
 فان $\overrightarrow{AC} = \lambda \overrightarrow{AB}$ نا

 $A'C' = |\lambda|A'B'$ ومنه

 $\overrightarrow{AC}=\lambda \overrightarrow{AB}$ و حيث أن النقط C ; B ; A في نفس الترتيب و C ; B ; A في نفس الترتيب و فان $\overrightarrow{A'C'}=\lambda \overrightarrow{A'B'}$

 $\overrightarrow{A'B'} = \overrightarrow{C'D'}$ نبین أن -2

 $\overrightarrow{C'D'} = \alpha \overrightarrow{A'B'}$ نبین أن -3

 $\overrightarrow{AB} = \overrightarrow{CE}$ نعتبر E حيث $\overrightarrow{CD} = \alpha \overrightarrow{AB}$ لدينا $\overrightarrow{CD} = \alpha \overrightarrow{CE}$ نعتبر $\overrightarrow{CD} = \alpha \overrightarrow{CE}$ ومنه $\overrightarrow{A'B'} = \overrightarrow{C'E'}$ نستنتج $\overrightarrow{C'D'} = \alpha \overrightarrow{C'E'}$ و $\overrightarrow{C'D'} = \alpha \overrightarrow{C'E'}$ و $\overrightarrow{C'D'} = \alpha \overrightarrow{A'B'}$

ب- مبرهنة طاليس المباشرة متجهيا

 $A \neq B$ ليكن C ; B ; A نقط مستقيمية حيث $A \neq B$ ليكن $A \neq B$ مستقيمية ركان و $A \neq B$ مساقط $A \neq B$ بيواز مع $A \neq B$ بيواز مع $A \neq B$ مساقط $A \neq B$ بيواز مع $A \neq B$ بيواز مع $A \neq B$ فان $A \neq B$ فان $A \neq B$ مساقط $A \neq B$ نان $A \neq B$ فان $A \neq B$ فان $A \neq B$ فان $A \neq B$

ج- الإسقاط و تساوي متجهتين

مبرهنة

ر مساقطها بالتوالي D ; C ; B ; A ، مساقطها بالتوالي \overline{C} ; \overline{D} ، \overline{C} ; \overline{B} ; \overline{A} هساقطها بالتوالي إذا كان \overline{CD} = \overline{AB} فان \overline{CD} = \overline{AB}

د- الإسقاط ومعامل الاستقامية لمتجهتين

مبرهنة

على مستقيم D ; C ; B ; A نقط من المستوى و D ; C ; B ; A مساقطها بالتوالي على مستقيم D بتواز مع مستقيم D فان $\overline{CD} = \alpha \overline{A'B'}$ فان $\overline{CD} = \alpha \overline{A'B'}$ فان غير عن هذا بقولنا الإسقاط يحافظ على معامل استقامية متجهتين

<u>تمرىن</u>

لیکن $\overrightarrow{AF} = \frac{1}{4}\overrightarrow{AC}$; $\overrightarrow{AE} = \frac{1}{4}\overrightarrow{AB}$ نعتبر (Δ) مستقیم یقطع ABC نعتبر (Δ) مستقیم یقطع BC و لا یوازی (Δ) لتکن ' Δ و ' Δ و ' Δ المساقط العمودیة بالتوالی Δ و ' Δ و ' Δ و ' Δ المساقط Δ و ' Δ و ' Δ المساقط Δ و ' Δ المساقط العمودیة بالتوالی Δ و ' Δ و ' Δ المساقط العمودیة بالتوالی Δ و ' Δ و ' Δ و ' Δ المساقط العمودیة بالتوالی Δ و ' Δ المساقط العمودیة بالتوالی Δ و ' Δ و ' Δ المساقط العمودیة بالتوالی و ' Δ و ' Δ المساقط العمودیة بالتوالی و ' Δ و ' Δ المساقط العمودیة بالتوالی و ' Δ و ' Δ المساقط العمودیة بالتوالی و ' Δ و ' Δ المساقط العمودیة بالتوالی و ' Δ و ' Δ المساقط العمودیة بالتوالی و ' Δ و ' Δ المساقط العمودیة بالتوالی و ' Δ و ' Δ و ' Δ و ' Δ المساقط العمودیة بالتوالی و ' Δ و ' Δ المساقط العمودیة بالتوالی و ' Δ و ' Δ المساقط العمودیة بالتوالی و ' Δ و ' Δ المساقط العمودیة بالتوالی و ' Δ و ' Δ المساقط العمودیة بالتوالی و ' Δ و ' Δ المساقط العمودیة بالتوالی و ' Δ المساقط العمودیة بالتوالی و ' Δ المساقط العمودیة بالتوالی و ' Δ و ' Δ المساقط العمودیة بالتوالی و ' Δ و ' Δ المساقط العمودی و ' Δ المساقط العمودی و ' Δ المساقط المساقط العمودی و ' Δ المساقط المساق

<u>تمرين</u>

 $\overrightarrow{AF} = \frac{3}{4}\overrightarrow{AC}$ و $\overrightarrow{AE} = \frac{-1}{4}\overrightarrow{AB}$ دیث عادی \overrightarrow{ABC} و BC العتبر BC دعتبر BC العتبر BC و BC و BC و BC و BC و BC العتبر BC العتبر BC و BC و BC و BC و BC و BC العتبر BC العتبر BC و B

$$\overrightarrow{AJ} = \frac{3}{4}\overrightarrow{AC}'$$
 و $\overrightarrow{AJ} = \frac{-1}{4}\overrightarrow{AB}'$ -2

 \overrightarrow{AJ} و استنتج \overrightarrow{AI} بدلالة \overrightarrow{AI} عين أن $\overrightarrow{AI} = \overrightarrow{AB}' + \overrightarrow{AC}'$ و استنتج -3

ذ- نتائج الإسقاط و المسافة

نتبحة

 $A \neq B$ ليكن C ; B ; A نقط مستقيمين متقاطعين و A نقط مستقيمية حيث $A \neq B$ و $A \neq B$ لا يوازي $A \neq B$ لا يوازي $A \neq B$

$$(\Delta)$$
 بتواز مع (D) بتواني على (D) بتواز مع (D) بتواز مع (D) بتواز مع (D) بتواز مع (D) فان (D)

 $oldsymbol{a}$ ملاحظة يمكن أن يكون B' + A' + A' نعبر عن هذا بقولنا الإسقاط لا يحافظ على المسافة $oldsymbol{l}$ الإسقاط و المحور

نشاط

لیکن D و D مستقیمین متقاطعین و D محور حیث D محور خیث D غیر متوازیین و D مستقطی D و D بتواز مع D بتواز مع D و D مستقطی D التوالی علی D بتواز مع D

 (Δ) و M' مسقطها على (D) بتواز مع M في المحور L(O;I) و M

 $\Delta(O';I')$ حدد M' في المحور

نتبحة

لیکن D و D مستقیمین متقاطعین و D محور حیث D محور D غیر متوازیین و D مستقطی D و D بتواز مع D بتواز مع D و D مستقطی D التوالی علی D بتواز مع D التوالی علی التوالی التوالی علی التوالی التوالی

. (Δ) و M' مسقطها على (D) بتواز مع M

 $\Delta(O';I')$ فان X أفصول M في المحور L(O;I) فان X هو أفصول النقطة M في المحور إذا كان

ر- مبرهنة طاليس العكسية متجهيا

نشاط

(L) مستقیمین متقاطعین و (Δ) نقط من مستقیم (Δ) و (D) نقط من مستقیم (Δ) و (Δ) بتواز مع (Δ) و $\overline{AC} = \lambda \overline{AB}$ و $\overline{AC} = \lambda \overline{AB}$

 (Δ) مسقط C على على (D) بتواز مع

 $C_1 = C'$ بين أن

المبرهنة العكسية

 $A \neq B$ ليكن C ; B ; A و مستقيمين متقاطعين و $A \neq B$ و مستقيمية حيث $A \neq B$ و كان $A \neq B \neq B$ و كان $A \neq B$ و كان $A \neq B$ و كان $A \neq B$ و كا

6- الإسقاط و مجموع متجهتين

نشاط

لیکن (D) و (Δ) مستقیمین متقاطعین

$$\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{EF}$$
 نقط من المستوى حيث F ; E ; D ; C ; B ; A (Δ) بتواز مع (D) بتواز مع (

$$(\Delta)$$
 لتكن S نقطة حيث $\overrightarrow{CD} = \overrightarrow{BS}$ و ' S مسقطها على S نقطة حيث

$$\overrightarrow{E'F'} = \overrightarrow{A'S'}$$
 و $\overrightarrow{C'D'} = \overrightarrow{B'S'}$ -1

$$\overrightarrow{A'B'} + \overrightarrow{C'D'} = \overrightarrow{E'F'}$$
 استنتج أن -2

مبرهنة

انقط من F ; E ; D ; C ; B ; A نقط من (Δ) و (D) مستقیمین متقاطعین و (Δ) بتواز مع (Δ) بتواز مع (Δ) بتواز مع (Δ) فان (D) خان (D)

7- أفصول المسقط العمودي لنقطة على محور

خاصىة

إذا كان H المسقط العمودي لنقطة M على المحور D(O;I) حيث D(O;I) و Ω قياس الزاوية

:فان أفصول H هو $\left(\widehat{IOM}
ight)$

$$0 \le \alpha \le 90^{\circ}$$
 إذا كان $OM \cos \alpha$ -*

$$90^{\circ} \prec \alpha \leq 180^{\circ}$$
 إذا كان $-OM\cos(180^{\circ} - \alpha)$ -*

<u>تمارىن</u> ----

ليكن F متوازي الأضلاع $\left[\widehat{DAB}\right]$ زاوية منفرجة) و E و ABCD ليكن

$$\overrightarrow{AF} = \frac{2}{3}\overrightarrow{AD}$$
 $\overrightarrow{AE} = -\frac{1}{3}\overrightarrow{AB}$ حيث

ig(EFig)لیکن B تقاطع ig(ACig) و تعتبر ' B و' مسقطا B و B نعتبر ' B و الکن B

ين أن igl[ACigr] و igl[B'D'igr] لهما نفس المنتصف -1

$$\overrightarrow{AK} = \frac{2}{3}\overrightarrow{AD}$$
' $\overrightarrow{AK} = -\frac{1}{3}\overrightarrow{AB}$ ' بین أن -2

 \overrightarrow{AK} عبر عن \overrightarrow{AC} بدلالة

<u>تمرىن2</u>

منحرف قاعدتیه $\begin{bmatrix} AB \end{bmatrix}$ و CD = 2AB حیث ABCD و T تقاطع قطریه.

ig(ADig) نعتبر I علی I علی I بتواز مع I و I مسقط I علی I بتواز مع

$$\overrightarrow{BI} = \frac{1}{3}\overrightarrow{BD}$$
 و $\overrightarrow{AI} = \frac{1}{3}\overrightarrow{AC}$ 1- بین أن -1

بين أن $\overrightarrow{EC} = \overrightarrow{DF}$ استنتج أن [EF] و [EF] لهما نفس المنتصف -2

<u>تمرىن3</u>

ليكن ABC مثلثا و M نقطة بحيث $M=\alpha\cdot \overrightarrow{AB}$ و ABC و ABC يعتبر ABC ليكن ABC مشقط ABC بتواز مع ABC و ABC المسقط العمودي للنقطة ABC على ABC

$$\left(AH
ight)$$
 و $\left(MN
ight)$ لیکن I تقاطع

$$\overrightarrow{AI} = lpha \cdot \overrightarrow{AH}$$
 و $\overrightarrow{MN} = lpha \cdot \overrightarrow{BC}$ -1

على التوالي ABC و AMN و ABC على التوالي -2