Learning Based Sampling For RRT* Algorithm

EECS 545 - Final Project Li Chen, Yue Du, Yeyang Fang, Daiyao Yi, Xuran Zhao

Introduction

- Traditional RRT* path planning includes uniform sample in the planning space. This results in long converge time.
- We proposed a learning based sampling method for RRT* planning to get a faster planning performance.

Data generation

We used hybrid A* to generate the training data. It can generate a smooth path in a given 2-D space for vehicles.

Data generation

We considered four scenarios to generate the training dataset of the network.

No.	Obstacle?	Dimension	Scenario	Trajectory Generated	Data Generated
1	No	20m x 30m	Reverse Parking	154	2310
2	No	13m x 30m	Parallel Parking	138	2055
3	Yes	35m x 60m	Reverse Parking	1001	15015
4	Yes	35m x 60m	Reverse Parking	507	7605

Conditional Variational Autoencoder (CVAE)

- Contains encoder Q(z|X,c) and decoder P(X,z|c)
 - o z latent space variables
 - \circ X sampling points ($X = \begin{bmatrix} x & y & \theta & \dot{x} & \dot{y} & \dot{\theta} \end{bmatrix}$)
 - o c conditions, in our case maps and initial/end points

• Maximizing:

$$||x - f(z, y)||^2 - D_{KL}(\mathcal{N}(\mu(x, y), \Sigma(x, y)) || \mathcal{N}(0, I))$$

Loss Function: $L = L_{recon} + \omega L_{KL}$ (ω - weighting parameter)

Sampling Learning - Orientation Improvements

$$X = \begin{bmatrix} x & y & \theta & 0 & 0 & 0 \end{bmatrix}$$

$$X = \begin{bmatrix} x & y & 0 & cos(\theta) & sin(\theta) & 0 \end{bmatrix}$$

Sampling Learning - Weighted Loss

Sampling Learning - Weighted Loss

Simple map

CVAE

• Average forward time: 0.0127s

	# nodes	# nodes		elapsed(s)		path_len (x0.1m)	
	random	learnt	random	learnt	random	learnt	
RRT*	251.5629	244.4267	3.6873	3.5150	265.2073	221.5089	
	(119.9123)	(90.5567)	(3.8788)	(2.5824)	(28.8045)	(10.4951)	
biRRT* (o)	93.03	48.57	0.2290	0.0819	257.7198	228.9368	
	(23.6036)	(5.2093)	(0.1084)	(0.01397)	(20.3302)	(6.8773)	

Complex map

• CVAE

• Average forward time: 0.0127s

	# nodes	# nodes		elapsed(s)		path_len (x0.1m)	
	random	learnt	random	learnt	random	learnt	
RRT*	492.23	135.2	28.0249	2.4032	317.2249	260.7166	
	(137.0647)	(28.8119)	(16.4521)	(0.9523)	(37.1870)	(9.1753)	
biRRT* (σ)	156.32	70.56	1.7625	0.5296	340.8630	280.5843	
	(45.5480)	(11.7760)	(0.9827)	(0.1635)	(55.2340)	(11.2468)	

Thank you! Q&A

EECS 545 - Final Project Li Chen, Yue Du, Yeyang Fang, Daiyao Yi, Xuran Zhao