Niveau: Première année de PCSI

COLLE 18 = Probabilités sur un espace fini et espaces euclidiens

Probabilités sur un espace fini

Exercice 1.

Dans les barres de chocolat, on trouve des images équitablement réparties de cinq grands mathématiciens, une image par tablette. On veut avoir l'image de Denis Poisson : combien dois-je acheter de barres pour que la probabilité d'avoir la figurine attendue dépasse 80%? Même question pour être sûr à 90%.

Exercice 2.

En cas de migraine trois patients sur cinq prennent de l'aspirine (ou équivalent), deux sur cinq prennent un médicament M présentant des effets secondaires : Avec l'aspirine, 75% des patients sont soulagés. Avec le médicament M, 90% des patients sont soulagés.

- 1. Quel est le taux global de personnes soulagées?
- 2. Quel est la probabilité pour un patient d'avoir pris de l'aspirine sachant qu'il est soulagé?

Exercice 3.

On jette 3 fois un dé à 6 faces, et on note a, b et c les résultats successifs obtenus. On note $Q(x) = ax^2 + bx + c$. Déterminer la probabilité pour

- 1. Q ait deux racines réelles distinctes.
- Q ait une racine réelle double.
- 3. Q n'ait pas de racines réelles.

Exercice 4.

Quelle est la probabilité p_n pour que dans un groupe de n personnes choisies au hasard, deux personnes au moins aient le même anniversaire (on considèrera que l'année a toujours 365 jours, tous équiprobables). Montrer que pour $n \geq 23$, on a $p_n \geq \frac{1}{2}$.

Exercice 5.

Un professeur oublie fréquemment ses clés. Pour tout n, on note : E_n l'événement «le jour n, le professeur oublie ses clés», $P_n = P(E_n)$, $Q_n = P(\overline{E_n})$. On suppose que : $P_1 = a$ est donné et que si le jour n il oublie ses clés, le jour suivant il les oublie avec la probabilité $\frac{1}{10}$; si le jour n il n'oublie pas ses clés, le jour suivant il les oublie avec la probabilité $\frac{4}{10}$. Montrer que $P_{n+1} = \frac{1}{10}P_n + \frac{4}{10}Q_n$. En déduire une relation entre P_{n+1} et P_n Quelle est la probabilité de l'événement «le jour n, le professeur oublie ses clés» ?

Exercice 6.

Soient Ω un ensemble fini, $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$) un espace probabilisé et $A_1, ..., A_n$ des événements. Démontrer que :

$$\mathbb{P}(A_1 \cap \dots \cap A_n) \ge \left(\sum_{i=1}^n \mathbb{P}(A_i)\right) - (n-1)$$

Espaces Euclidiens:

Exercice 7.

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$, on définit :

$$\langle A|B\rangle = Tr(^tAB)$$

- 1. Démontrer que cette formule définit un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$
- 2. En déduire que, pour tous $A, B \in \mathcal{S}_n(\mathbb{R})$, on a

$$(Tr(AB))^2 \le Tr(A^2)Tr(B^2)$$

Exercice 8.

Soit E un espace vectoriel euclidien et x, y deux éléments de E. Montrer que x et y sont orthogonaux si et seulement si $||x + \lambda y|| \ge ||x||$ pour tout $\lambda \in \mathbb{R}$.

Exercice 9.

Sur $\mathbb{R}[X]$, on pose $\langle P|Q\rangle=\int_0^1P(t)Q(t)\ dt$. Existe-t-il A élément de $\mathbb{R}[X]$ tel que $\forall P\in\mathbb{R}[X],\ \langle P|A\rangle=P(0)$?

Exercice 10.

Dans \mathbb{R}^4 muni du produit scalaire usuel, on pose : $V_1=(1,2,-1,1)$ et $V_2=(0,3,1,-1)$. On pose $F=\mathrm{Vect}(V_1,V_2)$. Déterminer une base orthonormale de F et un système d'équations de F^{\perp} .

Exercice 11.

Pour $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R}), \ N(A) = \sqrt{\text{Tr}({}^tAA)}$. Montrer que N est une norme vérifiant de plus $N(AB) \leq N(A)N(B)$ pour toutes matrices carrées A et B. N est-elle associée à un produit scalaire?

Exercice 12.

Soit E un espace préhilbertien et soit $B=\{x\in E; \|x\|\leq 1\}$. Démontrer que B est strictement convexe, c'est-à-dire que, pour tous $x,y\in B,\,x\neq y$ et tout $t\in]0,1[,\,\|tx+(1-t)y\|<1.$