Probabilidade e Estatística Aula 1 – Medida e Probabilidade

Luis A. F. Alvarez

15 de janeiro de 2025

FORMALIZANDO A NOÇÃO DE INCERTEZA

- A Estatística está fundamentalmente associada à tomada de decisão sob incerteza.
 - Qual a "melhor" estimativa para o salário médio de uma população, com base em uma amostra dessa população?
 - Como quantificar minha incerteza acerca de uma projeção da taxa de inflação futura?
- A linguagem formal para se expressar a incerteza é aquela das probabilidades.
 - Probabilidades são funções matemáticas que quantificam a "confiança" que possuímos sobre diferentes eventos e que respeitam certos axiomas.
- A definição rigorosa das probabilidades e o estudo de suas propriedades são um pré-requisito operacional para a Estatística.
 - Ocuparemo-nos com o estudo formal da teoria das probabilidades na primeira parte do curso.

σ -ÁLGEBRA E ESPAÇO MENSURÁVEL

No que segue, seja Ω um espaço genérico.

Definição

Uma σ -álgebra em Ω é uma família Σ de subconjuntos de Ω , i.e. $\Sigma \subseteq 2^{\Omega}$, que satisfaz as seguintes propriedades:

- 1. $\emptyset, \Omega \in \Sigma$.
- 2. Se $A \in \Sigma$, então $A^{\complement} \in \Sigma$.
- 3. Se $(A_n)_{n\in\mathbb{N}}\in\Sigma^{\mathbb{N}}$, então $\cup_{n\in\mathbb{N}}A_n\in\Sigma$.
 - Uma σ -álgebra é uma família de conjuntos de Σ fechada sob complementação e uniões enumeráveis de elementos de Σ .
 - Também fechada por intersecções enumeráveis.
 - Exemplos de σ -álgebras: $\{\emptyset, \Omega\}$ e 2^{Ω} .
 - O par (Ω, Σ) é conhecido como espaço mensurável.

σ -ÁLGEBRA GERADA E σ -ÁLGEBRA DE BOREL

- De modo geral, σ -álgebras são objetos difíceis de serem manipulados.
- Por esse motivo, dado um subconjunto "tratável" $\mathcal{I}\subseteq\Omega$, definimos como $\sigma(\mathcal{I})$ a menor (no sentido da relação de inclusão \subseteq) σ -álgebra em Ω que contém \mathcal{I} .
 - Isto, é, se $\mathcal A$ é qualquer outra σ -álgebra que contém $\mathcal I$, então $\sigma(\mathcal I)\subseteq$
 - Objeto está sempre bem-definido, visto que:

$$\sigma(\mathcal{I}) = \cap_{\mathcal{A} \subseteq 2^{\Sigma}: \mathcal{A} \text{ \'e } \sigma\text{-\'algebra}} \mathcal{A} \neq \emptyset.$$

- Se Ω é um espaço topológico (i.e. espaço munido da noção de aberto ou fechado), denotamos por $\mathcal{B}(\Omega)$, a menor σ -álgebra que contém os conjuntos abertos de Ω , também conhecida como σ -álgebra de Borel.
 - $\mathcal{B}(\mathbb{R}^d)$ é a menor σ -álgebra que contém os abertos em \mathbb{R}^d (abertos induzidos pela distância Euclidiana).

LEMA

Seja
$$\mathcal{I} = \{\prod_{j=1}^d (\infty, c_j] : c \in \mathbb{R}^d \}$$
, então: $\sigma(\mathcal{I}) = \mathcal{B}(\mathbb{R}^d)$.

Medida e espaço de medida

Definição

Seja (Ω, Σ) um espaço mensurável. Uma função $\mu : \Sigma \mapsto [0, \infty]$ é uma medida sobre (Ω, Σ) se:

- $-\mu(\emptyset) = 0.$
- Seja $(A_n)_{n\in\mathbb{N}}\in\Sigma^\mathbb{N}$ tal que $A_i\cap A_j=\emptyset$ para todo $i\neq j$, então:

$$\mu\left(\cup_{n\in\mathbb{N}}A_n\right)=\sum_{n=1}^{\infty}\mu(A_n)$$

- Tripla (Ω, Σ, μ) é conhecida como espaço de medida.
- Medida é dita **finita** se $\mu(\Omega) < \infty$.
- Medida é dita σ -finita se $\Omega = \bigcup_{n=1}^{\infty} A_n$, com $\{A_n \in \Sigma : n \in \mathbb{N}\}$ disjuntos e $\mu(A_n) < \infty$ para todo $n \in \mathbb{N}$.

Probabilidade e espaço de probabilidade

DEFINIÇÃO

Seja (Ω, Σ) um espaço mensurável. Uma função $\mathbb{P}: \Sigma \mapsto [0,1]$ é uma medida de probabilidade sobre (Ω, Σ) se:

- $\mathbb{P}(\emptyset) = 0$ e $\mathbb{P}(\Omega) = 1$.
- Seja $(A_n)_{n\in\mathbb{N}}\in\Sigma^\mathbb{N}$ tal que $A_i\cap A_j=\emptyset$ para todo $i\neq j$, então:

$$\mathbb{P}\left(\cup_{n\in\mathbb{N}}A_n\right)=\sum_{n=1}^{\infty}\mathbb{P}(A_n)$$

- Uma probabilidade nada mais é do que uma medida finita com a normalização $\mathbb{P}[\Omega]=1.$
- Tripla $(\Omega, \Sigma, \mathbb{P})$ é conhecida como espaço de probabilidade.

Interpretação e o porquê da construção

- Em Probabilidade, o espaço Σ é usualmente conhecido como espaço amostral.
 - Espaço onde mora a incerteza do problema em questão.
- Natureza ou acaso sorteia um ponto $\omega \in \Omega$ de acordo com a lei de probabilidade $\mathbb{P}.$
 - Elementos $E \in \Sigma$ são os eventos, aos quais prescrevemos uma probabilidade $\mathbb{P}[E]$ de que o sorteio resulte em $\omega \in \Omega$.
- Uma dúvida que pode restar é por que não definimos a probabilidade sobre 2^{Ω} . Em outras palavras, por que temos de fazer recurso ao conceito de σ -álgebra?
 - Embora, em espaços simples (por exemplo, quando Ω é finito), possamos definir uma probabilidade sobre a σ -álgebra 2^{Ω} , este não é o caso para espaços mais complexos, como (0,1].
 - Nesses casos, **não** é possível definir uma probabilidade de forma consistente sobre todos os subconjuntos de (0, 1].

Propriedades básicas de medidas

Proposição

Seja (Ω, Σ, μ) um espaço de medida. Então:

- 1. Se $A, B \in \Sigma$, com $A \subseteq B$, então, $\mu(A) \le \mu(B)$.
- Além disso, se $\mu(A) < \infty$, $\mu(B \setminus A) = \mu(B) \mu(A)$.
- 2. Seja $A_1, \ldots, A_n \in \Sigma$, então $\mu(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n \mu(A_i)$.
- 3. Seja $(F_n)_{n\in\mathbb{N}}\in\Sigma^{\mathbb{N}}$, com $F_i\subseteq F_{i+1}$ para todo $i\in\mathbb{N}$, então $\mu(F_n)\uparrow\mu(\cup_{i\in\mathbb{N}}F_i)$.
- 4. Seja $(F_n)_{n\in\mathbb{N}}\in\Sigma^{\mathbb{N}}$, com $F_i\supseteq F_{i+1}$ para todo $i\in\mathbb{N}$ e $\mu(F_1)<\infty$, então $\mu(F_n)\downarrow\mu(\cap_{i\in\mathbb{N}}F_i)$.
- 5. Seja $(A_n)_{n\in\mathbb{N}}\in\Sigma^{\mathbb{N}}$, então $\mathbb{P}[\cup_{n\in\mathbb{N}}A_n]\leq\sum_{n=1}^{\infty}\mathbb{P}[A_n]$.

π -SISTEMA

- Seja (Ω, Σ) um espaço mensurável, e μ_1 e μ_2 duas medidas sobre Σ .
- Em alguns casos, estamos interessados em verificar se $\mu_1=\mu_2.$
 - No entanto, verificar se $\mu_1(A) = \mu_2(A)$ para todo $A \in \Sigma$ pode ser complicado.
- O resultado abaixo nos mostra que é suficiente verificar a igualdade em um subconjunto menor de eventos.

Definição

Um π -sistema em Ω é uma família $\mathcal I$ de subconjuntos de Ω , i.e. $\mathcal I\subseteq 2^\Omega$, que satisfaz:

$$I_1, I_2 \in \mathcal{I} \implies I_1 \cap I_2 \in \mathcal{I}$$

Lema

(Lema do π -sistema) Seja (Ω, Σ) um espaço mensurável, μ_1 e μ_2 duas medidas sobre Σ , e \mathcal{I} um π -sistema tal que $\Sigma = \sigma(\mathcal{I})$. Se $\mu_1(I) = \mu_2(I)$ para todo $I \in \mathcal{I}$ e $\mu_1(\Omega) = \mu_2(\Omega) < \infty$, então:

$$\mu_1 = \mu_2$$

O ESPAÇO DE PROBABILIDADE $((0,1],\mathcal{B}(0,1],\mathsf{Leb})$

- Um espaço de probabilidade bastante importante é aquele em que o espaço amostral é (0,1], dotado da σ -álgebra de Borel $\mathcal{B}(0,1]$, e a medida de probabilidade é a medida uniforme ou de Lebesgue em (0,1], que é caracterizada por:

$$\mathsf{Leb}(0,c] = c, \quad c \in \mathbb{R}$$
.

- Note que, pelo lema do π -sistema, é suficiente conhecer Leb no conjunto de intervalos $\mathcal{I}=\{(0,c],c\in\mathbb{R}\}$ para caracterizá-la, visto que qualquer outra medida de probabilidade que coincida nesse conjunto, coincidirá em $\mathcal{B}(0,1]=\sigma(\mathcal{I})$.
- Existência do espaço ((0, 1], $\mathcal{B}(0, 1]$, Leb) será demonstrada por vocês na lista.

QUASE CERTAMENTE E INFINITAMENTE FREQUENTE

- Seja $(\Omega, \Sigma, \mathbb{P})$ um espaço de probabilidade.
- Dizemos que uma afirmação $a:\Omega\mapsto\{V,F\}$ vale \mathbb{P} -quase certamente se $S_a:=\{\omega\in\Omega:a(\omega)=V\}$ é mensurável (i.e. $S_a\in\Sigma$) e:

$$\mathbb{P}[S_a]=1$$

- Seja $(E_n)_{n\in\mathbb{N}}\in\Sigma^{\mathbb{N}}$ uma sequência de eventos. Damos o nome E_n inifinitamente frequente ao evento

$$\limsup_{n\to\infty} E_n := \cap_{n\in\mathbb{N}} \cup_{k\geq n} E_k$$

- De onde vem o nome? Observe que:

$$\omega \in \cap_{n \in \mathbb{N}} \cup_{k \geq n} E_k \iff \forall n \in \mathbb{N}, \exists k \geq n, \omega \in E_k$$

LEMA

Seja $(E_n)_{n\in\mathbb{N}}\in\Sigma^{\mathbb{N}}$ uma sequência de eventos.

- 1. Se $\mathbb{P}[E_n] = 1$ para todo $n \in \mathbb{N}$, $\mathbb{P}[\cap_{n \in \mathbb{N}} E_n] = 1$.
- 2. (Primeiro lema de Borel-Cantelli) Se $\sum_{n=1}^{\infty} \mathbb{P}[E_n] < \infty$, $\mathbb{P}[\limsup_{n \to \infty} E_n] = 0$.

Função mensurável e variável aleatória

Sejam (Ω_1, Σ_1) e (Ω_2, Σ_2) espaços mensuráveis. Uma função $f: \Omega_1 \mapsto \Omega_2$ é dita Σ_1/Σ_2 -mensurável se:

$$f^{-1}(B) \in \Sigma_1, \quad \forall B \in \Sigma_2$$

Nesse contexto, dizemos que uma função $X:\Omega_1\mapsto\mathbb{R}$ é uma variável aleatória (real) se ela for $\Sigma_1/\mathcal{B}(\mathbb{R})$ -mensurável, isto é:

$$X^{-1}(B) \in \Sigma_1, \quad \forall B \in \mathcal{B}(\mathbb{R})$$

Além disso, dizemos que uma função com valores na reta estendida $Y:\Omega_1\mapsto\mathbb{R}\cup\{\infty,-\infty\}$ é uma variável aleatória (real) estendida se ela for $\Sigma_1/\mathcal{B}(\mathbb{R}\cup\{\infty,-\infty\})$ -mensurável, isto é:

$$Y^{-1}(B) \in \Sigma_1, \quad \forall B \in \mathcal{B}(\mathbb{R} \cup \{\infty, -\infty\})$$

VARIÁVEL ALEATÓRIA: INTERPRETAÇÃO

- Uma variável aleatória real é tão somente uma transformação mensurável do espaço onde mora a incerteza para os números reais.
 - Requerimento de mensurabilidade é o mínimo que precisamos para calcularmos probabilidades aos eventos associados com esta variável.
 - Variáveis aleatórias reais estendidas são importantes quando trabalhamos com limites.
- Dado um espaço mensurável (Ω, Σ) , denotaremos o espaço de variáveis aleatórias reais com domínio em Ω e Σ -mensuráveis por $m(\Sigma)$.

Verificação da mensurabilidade

LEMA

Sejam (Ω_1, Σ_1) e (Ω_2, Σ_2) espaços mensuráveis. Considere uma função $f: \Omega_1 \mapsto \Omega_2$. Se $f^{-1}(I) \in \Sigma$ para todo $I \in \mathcal{I}$, com $\sigma(I) = \Omega_2$, então f é mensurável.

Corolário

Um mapa $X : \Omega \mapsto \mathbb{R}$ é uma variável aleatória real se:

$$X^{-1}(-\infty,c] = \{\omega : X(w) < c\} \in \Sigma, \quad \forall c \in \mathbb{R}.$$

MENSURABILIDADE: PROPRIEDADES

LEMA

Considere um espaço mensurável (Ω, Σ) :

- 1. Sejam $X_1, X_2 \in m(\Sigma)$ e $\lambda \in \mathbb{R}$, então $\lambda X_1, X_1 + X_2, X_1 \cdot X_2 \in m(\Sigma)$.
- 2. Seja $Y \in m(\Sigma)$, $f \in m(\mathcal{B}(\mathbb{R}))$, então $f \circ Y \in m(\Sigma)$.
- 3. Seja $(X_n)_{n\in\mathbb{N}}$ uma sequência de elementos de m Σ , então:

$$\inf_{n\in\mathbb{N}}X_n, \liminf_{n\to\infty}X_n, \limsup_{n\to\infty}X_n$$

são variáveis aleatórias reais estendidas.

σ -ÁLGEBRA GERADA

- Seja (Ω, Σ) um espaço mensurável, e X uma variável aleatória.
- Definimos a σ -álgebra gerada por X, denotada por $\sigma(X)$, como a menor sub- σ -álgebra de Σ tal que X é $\sigma(X)$ -mensurável.
 - Fácil mostrar que $\sigma(X) = \{X^{-1}(B) : B \in \mathcal{B}(\mathbb{R})\}.$
- De modo mais geral, dada uma coleção de variáveis aleatórias $\{X_{\theta}: \theta \in \Theta\}$ com domínio em Ω , denotamos por $\sigma(\{X_{\theta}: \theta \in \Theta\})$ a menor σ -álgebra contida em Σ tal que cada X_{θ} , $\theta \in \Theta$, é mensurável.

Proposição

Sejam $X_1, \ldots, X_n \in m(\Sigma)$. Então $Y \in m(\sigma(X_1, \ldots, X_n))$ se, e somente se, existir uma $f : \mathbb{R}^n \mapsto \mathbb{R} \ \mathcal{B}(\mathbb{R}^n)/\mathcal{B}(\mathbb{R})$ -mensurável tal que $Y = f(X_1, \ldots, X_n)$.

LEI DE PROBABILIDADE INDUZIDA E FUNÇÃO DE DISTRIBUIÇÃO

- Seja $(\Omega, \Sigma, \mathbb{P})$ um espaço de probabilidade, e X uma variável aleatória.
- Observe que X induz uma medida de probabilidade \mathcal{L}_X sobre $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, dada por $\mathcal{L}_X(B) := \mathbb{P}[\{\omega \in \Omega : X(\omega) \in B\}] = \mathbb{P}[X^{-1}(B)]$, $B \in \mathcal{B}(\mathbb{R})$.
 - A essa medida de probabilidade costumamos dar o nome de lei (de probabilidade) de X
- Pelo lema do π -sistema, para conhecer \mathcal{L}_X , basta conhecermos as probabilidades associadas aos eventos $\mathcal{L}_X(-\infty,c]$, $c\in\mathbb{R}$.
 - À função $F_X(c) = \mathcal{L}_X(-\infty, c]$, $c \in \mathbb{R}$ damos o nome de função de distribuição de X.

Proposição

Seja F_X uma função de probabilidade de uma variável aleatória X definida num espaço de probabilidade. Então:

- 1. $F_X(c) \in [0,1] \ \forall c \ e \ c \le c' \implies F_X(c) \le F_X(c')$.
- 2. $\lim_{c \to -\infty} F_X(c) = 0$ e $\lim_{c \to -\infty} F_X(c) = 1$.
- 3. F_X é contínua à direita e os limites à esquerda existem.

Construção reversa

- A proposição anterior nos mostra que a função de distribuição de uma variável aleatória X satisfaz as propriedades 1-3 discutidas anteriormente
- Uma pergunta reversa é se, dada uma função F com as propriedades
 1-3 anteriores, é possível definir um espaço de probabilidade e uma variável aleatória X com função de distribuição F.
 - Afirmação é verdadeira, e sua construção é conhecida como representação de Skorokhod.
 - Construção depende da capacidade do espaço de probabilidade ([0,1], $\mathcal{B}[0,1]$, Leb).

Independência

- Seja $(\Omega, \Sigma, \mathbb{P})$ um espaço de probabilidade.
- Uma coleção $\{\mathcal{G}_j\}_{j\in\mathcal{C}}$ de sub- σ -álgebras de Σ é dita independente se, para toda coleção de eventos $G_j \in \mathcal{G}_j$, $j \in \mathcal{C}$, e quaisquer $j_1, j_2, \ldots, j_k \in \mathcal{C}$ distintos, com $k < \infty$:

$$\mathbb{P}[G_{j_1} \cap G_{j_2} \cap \ldots \cap G_{j_k}] = \prod_{l=1}^k \mathbb{P}[G_{j_l}],$$

- Uma coleção de variáveis aleatórias $\{\mathcal{X}_j\}_{j\in\mathcal{C}}$ é independente se $\{\sigma(X_j)\}_{j\in\mathcal{C}}$ são independentes.
- Uma coleção de eventos $\{E_j\}_{j\in\mathcal{C}}$ é independente se a sequência de σ -álgebras "simples" $\{\{\emptyset,E_j,E_j^\complement\}\}_{j\in\mathcal{C}}$ é independente.
 - Essa definição concorda com a nossa noção "básica" de independência.

Verificação da Independência

LEMA

Sejam $\mathcal I$ e $\mathcal J$ dois π -sistemas. Se

$$\mathbb{P}[I \cap J] = \mathbb{P}[I]\mathbb{P}[J], \quad \forall I \in \mathcal{I}, J \in \mathcal{J},$$

então $\sigma(\mathcal{I})$ e $\sigma(\mathcal{J})$ são independentes.

Corolário

Variáveis aleatórias $(X_i)_{i=1}^n$ são independentes se, para todo $c_i, c_2, \ldots, c_n \in \mathbb{R}$:

$$\mathbb{P}[\bigcap_{i=1}^n \{\omega \in \Omega : X_i(\omega) \le c\}] = \prod_{i=1}^n \mathbb{P}[\{\omega \in \Omega : X_i(\omega) \le c_i\}]$$

Segundo Lema de Borel-Cantelli

LEMA

Sejam E_1, E_2, \ldots uma sequência de eventos independentes. Se:

 $\sum_{i=1}^{\infty} \mathbb{P}[E_i] = \infty \ \ \ \ \ \ \ \mathbb{P}[\limsup_n E_n] = 1.$