Problem k-minimalnego drzewa rozpinającego

Gabriel Budziński 254609

May 23, 2023

1 Wprowadzenie

Weźmy graf nieskierowany G=(V,E) o n wierzchołkach $w\in V$, nieujemnych kosztach c_e krawędzi $e\in E$ oraz liczbę $k\in \mathbb{N}$. Problem k-minimalnego drzewa rozpinającego (ang. kMST - k-minimal spanning tree, MSkT - minimal spanning k-tree) polega na poszukiwaniu drzewa w G o minimalnym koszcie, w które wchodzi co najmniej k wierzchołków G. Problem ten jest NP-trudny nawet dla V należących do płaszczyzny Euklidejskiej. Problem ten jest silnie związany z innym, występującym we wcześniejszych latach w literaturze [?] - minimum weight k-cardinality tree, którego rozwiązaniem jest znalezienie w grafie G poddrzewa o k krawędziach.

2 k-cardinality tree

2.1 Opis problemu

Weźmy graf G=(V,E) ze zbiorem wierzchołków V i krawędzi E. Moce zbiorów V i E to odpowiednio n=|V| oraz m=|E|. Dla każdej krawędzi $e\in E$ dana jest waga $w(e)\in \mathbb{R}$, a waga zbioru $E'\subseteq E$ jest definiowana jako $\sum_{e\in E'} w(e)$.

Drzewem w G jest podgraf T=(V(T),E(T)) taki, że T nie zawiera cykli i jest spójny. Będziemy używać notacji w(T) opisując w(E(T)). Moc |T| zbioru T jest mocą E(T). Dla zadanego k, gdzie $1 \le k \le n-1$ k-cardinality tree jest drzewem T o mocy |T|=k. Jeśli k=n-1 to T jest drzewem rozpinającym G. Zadane jest znalezienie takiego T, że $w(T)=\min_{T'\subseteq G}w(T')$. Dla k=n-1 takim T jest minimalne drzewo rozpinające, które można znaleźć w czasie wielomianowym algorytmem zachłannym (Kruskal [?], Prim [?]). Dla ustalonego k problem jest różnież rozwiązywalny przez wyliczenie możliwych drzew.

2.2 Zastosowania w praktyce

Powyższy problem pojawia się w najmie pól naftowych [?]. Rząd ma następującą regułę "50%" obejmującą morskie pola naftowe: jeśli firma najęła pole naftowe ma ona ustaloną liczbę lat, dajmy na to 5, aby eksploatować to pole. Po upływie tego czasu firma ma obowiązek zwrócić co najmniej 50% najętego pola. Ponadto, oddawana część pola musi być spójna. Oczywistym celem z punktu widzenia firmy jest zwrot częsci o najmniejszej wartości (i zachowanie części o wartości największej). W pracy [?] pola naftowe mają postać prostokąta podzielonego na mniejsze kwadraty. Firma, która najmuje pole ma 5 lat na zebranie informacji o wartości w_i każdego z podkwadratów. Część pola, którą firma odda odpowiada podzbiorowi co najmniej 50% podkwadratów, który jest spójny i ma najmniejszą całkowitą wartość wszystkich w_i . Aby zamodelować spójność weźmy graf dualny do oczekiwanego, który jest grafem kratowym.

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15

Author	Title	
Knuth	The TEXbook	
Lamport	$ ext{IAT}_{ ext{EX}}$	

Figure 1: A figure

Figure 2: A table

3 k-spanning tree

References

- [1] M. Fischetti, H. W. Hamacher, K. Jornsten, and F. Maffioli, Weighted k-cardinality trees: Complexity and polyhedral structure. PhD thesis, Universität Kaiserslautern, 1992.
- [2] J. B. Kruskal, "On the shortest spanning subtree of a graph and the traveling salesman problem," *Proceedings of the American Mathematical Society*, vol. 7, 1956.
- [3] R. Prim, "Shortest connection networks and some generalizations," *Bell System Technical Journal*, vol. 36, 1957.
- [4] H. W. Hamacher and K. Jörnsten, "Optimal relinquishment according to the norwegian petroleum law: A combinatorial optimization approach," *Energy, Natural Resources and Environmental Economics*, 1993.