A Review of Time-to-Event Data Methods

Thomas Braun

Department of Biostatistics University of Michigan School of Public Health BIOSTAT 699: Design and Analysis of Biostatistical Investigations

- Commonly used names:
 - Survival data
 - Censored data
 - Time-to-event data
 - Failure time data
- Numerous applications in biomedicine as well as engineering
- Outcome of interest: T, which is the span of time from entry into a study until the occurrence of some event (death, disease recurrence, implant failure, stroke, etc.)

- T is a continuous random variable, but is restricted to be positive
 - Assuming normality of T seems implausible
 - Inference about means seems less useful
- More often we are interested in (cumulative) probabilities, i.e.
 - what is the probability that a cancer patient relapses within one year of chemotherapy?
 - does this probability vary by the stage of cancer?

- In order to compute cumulative probabilities, we need to estimate the entire distribution of T
- Parametric approaches:
 - Exponential
 - Weibull
 - Log-normal
- Non-parametric approaches:
 - No assumed form for distribution of T
 - Most common approach

- There are five functions that characterize a survival distribution:
 - (1) Cumulative distribution function (CDF)

$$F(t) = \Pr(T \le t)$$

= probability that event occurs by time t

(2) Probability density function (PDF)

$$\begin{array}{ll} f(t) & = & \lim_{\Delta \to 0} \frac{F(t+\Delta) - F(t)}{\Delta} \\ & = & \text{instantaneous probability that event} \\ & \text{occurs at time } t \end{array}$$

(3) Survival function

$$\begin{split} S(t) &= & \mathsf{Pr}(T > t) \\ &= & 1 - \mathsf{Pr}(T \le t) \\ &= & 1 - F(t) \\ &= & \mathsf{probability} \ \mathsf{of} \ \mathsf{no} \ \mathsf{event} \ \mathsf{by} \ \mathsf{time} \ t \end{split}$$

(4) Hazard function (force of mortality)

$$\lambda(t) = \lim_{\Delta \to 0} \frac{\Pr(t \le T < t + \Delta \mid T \ge t)}{\Delta}$$

$$= f(t)/S(t)$$

$$= \text{ instantaeous event rate at time } t$$
given event-free up to time t

(5) Cumulative hazard function

$$\Lambda(t) = \int_0^t \lambda(s) ds$$

- If we know any one of f(t), F(t), S(t), $\lambda(t)$ or $\Lambda(t)$, we know the other four
- We are most interested in S(t), which tells us the probability that a subject makes it to time t without the event

An important relationship is

$$-\frac{d}{dt}log\{S(t)\} = \frac{dS(t)/dt}{S(t)}$$
$$= \frac{f(t)}{S(t)}$$
$$= \lambda(t)$$

so that

$$log\{S(t)\} = -\int_0^t \lambda(u)du$$

$$S(t) = exp\{-\Lambda(u)du\}$$

• Thus, regression methods for survival data focus upon modeling $\lambda(t)$ as a function of covariates and then getting S(t) indirectly from $\lambda(t)$

- The major challenge with time-to-event outcomes is that many subjects will be not be followed long enough to observe when the outcome occurred
 - We have missing data!
 - We refer to missing outcomes as being (right) censored
 - For these subjects, we do not have an event time, but have an amount of time followed without the event
- With censoring, we make a crucial assumption that censoring is independent of the times-to-event, conditional on covariates
 - In other words, censored individuals are representative of individuals still under observation at the same time
 - Non-independent censoring can lead to severe biases, but it is difficult in most situations to gauge the magnitude or direction of the biases
 - We need to model the censoring distribution do we have the right model?

Estimating the Survival Function S(t)

Parametric Approach

• Each subject i = 1, 2, ... n has two data points:

$$t_i = \text{amount of time followed}$$

 $\delta_i = \begin{cases} 0 & \text{if no event at } t_i \text{ (censored)} \\ 1 & \text{if event at } t_i \text{ (not censored)} \end{cases}$

Suppose we assume event times have a Weibull distribution:

$$\lambda(t; \theta, \alpha) = \alpha \theta(\theta t)^{\alpha - 1}$$

$$S(t; \theta, \alpha) = exp\{-(\theta t)^{\alpha}\}$$

• We can estimate θ and α via maximum likelihood; our likelihood is:

$$L(\theta, \alpha | t_1, \dots, t_n; \delta_1, \dots, \delta_n) = \prod_i \left\{ f(t_i; \theta, \alpha)^{\delta_i} \times S(t_i; \theta, \alpha)^{1 - \delta_i} \right\}$$

Non-Parametric Approach

- To motivate this approach, we start with a simple set of data:
 - We have four subjects whose cancer returned 10, 13, 14, and 23 weeks, respectively after treatment
 - We have one subject who was cancer-free at 14 weeks and then was lost to follow-up
- The first step is to identify and order the unique times among the subjects with an event
 - For our example, there are J=4 values: $t_1=10$, $t_2=13$, $t_3=14$, and $t_4=23$
 - These times define J = 4 non-overlapping intervals:

$$[10, 13), [13, 14), [14, 23), [23, \infty]$$

• For each interval, we compute p_j , the probability of surviving through the entire interval, given being in the study (at risk) at the beginning at the interval

• For the j^{th} interval, j = 1, 2, ...J, we have:

$$p_j = 1 - \frac{\text{\# of events at } t_j}{\text{\# of subjects at risk just prior to } t_j}$$

$$= 1 - \frac{d_j}{n_j}$$

$$= \frac{n_j - d_j}{n_j}$$

$$= \frac{s_j}{n_j}$$

 Note that if any subject is censored at the same time when an event occurs, we assume the censoring occurs after the event

- We assume that each of these intervals is independent of the others
- Thus, the probability of surviving to the end of interval j* is simply the product of the probability of all intervals prior to and including interval j*
- For example:

```
Prob(surviving to end of third interval = Prob(surviving first interval \times Prob(surviving second interval \times Prob(surviving third interval )
```

• This concept defines the (Kaplan-Meier) KM estimate of S(t):

$$\widehat{S}(t) = \prod_{j: t_j \le t} \left(1 - \frac{d_j}{n_j} \right) = \prod_{j: t_j \le t} \frac{n_j - d_j}{n_j} = \prod_{j: t_j \le t} \frac{s_j}{n_j}$$

- In words, the Kaplan-Meier estimate of survival to time t is the product of surviving each interval that occurs before or includes t
- For our example, the estimated survival to t=20 would be the product of surviving the intervals [10,13),[13,14), and [14,23)

For our example, we rewrite the data as:

Index	Event Time	Number at Risk	Number of Events	Number of Non-Events
j	t_j	n_j	d_{j}	s_j
1	10	5	1	4
2	13	4	1	3
3	14	3	1	2
4	23	1	1	0

• Using this table, we can compute the KM estimate:

For t in	$\widehat{S}(t)$
(0, 10)	1
[10, 13)	$1 \times 4/5 = 0.8$
[13, 14)	$1 \times 4/5 \times 3/4 = 0.6$
[14, 23)	$1 \times 4/5 \times 3/4 \times 2/3 = 0.4$
$[23,\infty)$	$1 \times 4/5 \times 3/4 \times 2/3 \times 0/1 = 0.0$

Kaplan-Meier Plot

• These estimates of survival are displayed in a Kaplan-Meier plot:

• The variance for $\widehat{S}(t)$ was derived by Greenwood:

$$\widehat{Var}\{\widehat{S}(t)\} = \widehat{S}(t)^2 \left\{ \sum_{t_j: t_j \le t} \frac{d_j}{n_j(n_j - d_j)} \right\}$$

• However, the standard 95% CI for S(t)

$$\widehat{S}(t) \pm 1.96\sqrt{\widehat{Var}\{\widehat{S}(t)\}}$$

is not restricted to have values inside [0, 1].

- An alternative approach:
 - Transform S(t) to $\log[-\log\{S(t)\}]$, which ranges over $(-\infty,\infty)$
 - Compute CI for $\log[-\log\{S(t)\}]$
 - Transform back to find CI for S(t)
 - This confidence interval will be guaranteed to lie in [0, 1]
- This is similar to what we do when finding a confidence interval for an odds ratio or rate ratio:
 - We first found a CI for the log-odds and then transformed back

• The variance of $\log[-\log\{\widehat{S}(t)\}]$ is

$$\widehat{Var}\left(\log[-\log\{\widehat{S}(t)\}]\right) = \frac{1}{\log\widehat{S}(t)} \left\{ \sum_{t_j: t_j \le t} \frac{d_j}{n_j(n_j - d_j)} \right\}$$

• A 95% CI for $\log[-\log S(t)]$ is

$$\log[-\log\{\widehat{S}(t)\}] \pm 1.96\sqrt{\widehat{Var}\left(\log[-\log\{\widehat{S}(t)\}]\right)}$$

• Thus, a 95% CI for S(t) is

$$\widehat{S}(t) \times \exp \left\{ 1.96 \sqrt{\widehat{Var} \left(\log[-\log{\{\widehat{S}(t)\}}] \right)} \right\}$$

• For the example, we have:

			95% Cont int		
Time	$\widehat{S}(t)$	$SE\{\widehat{S}(t)\}$	Lower Bound	Upper Bound	
10	0.80	0.18	0.52	1.00	
13	0.60	0.22	0.29	1.00	
14	0.40	0.22	0.14	1.00	
23	0.00	n/a	n/a	n/a	

Estimating the Hazard Function

Recall our definition of the hazard:

$$\lambda(t) = \lim_{\Delta \to 0} \frac{1}{\Delta} \mathsf{Pr}(t \le T \le t + \Delta \mid T \ge t).$$

• For t in $[t_i, t_{i+1})$, we estimate $\lambda(t)$ as

$$\widehat{\lambda}(t) = \frac{d_j/n_j}{t_{j+1} - t_j},$$

which takes the probability of an event in the whole interval (d_j/n_j) and derives the probability of an event per unit time

Estimating the Hazard Function

Using our data:

Index	Event Time	Number at Risk	Number of Events	Number of Non-Events
j	t_j	n_j	d_{j}	s_j
1	10	5	1	4
2	13	4	1	3
3	14	3	1	2
4	23	1	1	0

we estimate the hazard to be:

For
$$t$$
 in $\widehat{\lambda}(t)$
 $[0, 10)$ 0
 $[10, 13)$ $\frac{1/5}{13-10} = 1/15$
 $[13, 14)$ $\frac{1/4}{14-13} = 1/4$
 $[14, 23)$ $\frac{1/3}{23-14} = 1/27$
 $[23, \infty)$ n/a

Estimating the Cumulative Hazard Function

Recall our definition of the CHF:

$$\Lambda(t) = \int_0^t \lambda(s) ds$$

• Thus, we define our estimate of $\Lambda(t)$ to be

$$\widehat{\Lambda}(t) = \sum_{t_j:t_j \leq t} \widehat{\lambda}(t_j)(t_{j+1} - t_j)$$

$$= \sum_{t_j:t_j \leq t} \frac{d_j}{n_j(t_{j+1} - t_j)}(t_{j+1} - t_j)$$

$$= \sum_{t_i:t_i \leq t} \frac{d_j}{n_j}$$

This is known as the Nelson-Aalen cumulative hazard estimator

Using Nelson-Aalen to Estimate S(t)

- Recall that $S(t) = e^{-\Lambda(t)}$
- Using the Nelson-Aalen estimate of $\Lambda(t)$, we have another estimate (Breslow) of survival:

$$\widehat{S}(t) = exp \left\{ -\sum_{t_j: t_j \le t} \frac{d_j}{n_j} \right\}$$

Compare this to the Kaplan-Meier estimate:

$$\widehat{S}(t) = \prod_{j: l_i \le t} \frac{s_j}{n_j} = \prod_{j: l_i \le t} \left(1 - \frac{d_j}{n_j} \right)$$

Using Nelson-Aalen to Estimate S(t)

Both of these estimates are quite similar because

$$exp(-x) \approx (1-x)$$

for "small" values of x

Thus we have

$$\widehat{S}(t) = exp \left\{ -\sum_{t_j: t_j \le t} \frac{d_j}{n_j} \right\} = \prod_{j: t_j \le t} exp \left\{ -\frac{d_j}{n_j} \right\}$$

$$\approx \prod_{j: t_j \le t} \left(1 - \frac{d_j}{n_j} \right) = \prod_{j: t_j \le t} \frac{s_j}{n_j}$$

Comparing Survival Functions

Comparing Two Survival Functions

- Suppose we have follow-up data from two groups
- Group 1 consists of n_1 subjects; Group 2 consists of n_2 subjects
- For subject $i = 1, ..., n_1$ in Group 1, we have:

 Y_i = length of follow-up for subject i

$$\delta_i = \begin{cases} 1 & \text{if had event at } Y_i \\ 0 & \text{if censored at } Y_i \end{cases}$$

Comparing Two Survival Functions

• For subject $j = 1, ..., n_2$ in Group 2, we have:

$$Y_j$$
 = length of follow-up for subject j

$$\delta_j = \begin{cases} 1 & \text{if had event at } Y_j \\ 0 & \text{if censored at } Y_j \end{cases}$$

• Our goal is to compare $S_1(t)$ to $S_2(t)$ and to formally test

$$H_0: S_1(t) = S_2(t)$$

versus

$$H_a: S_1(t) \neq S_2(t)$$

$S_1(t)$ and $S_2(t)$ at a Specific t

- We are only interested in comparing survival probabilities at a single time (e.g. t = 5 years)
- We look at $\widehat{S}_1(t) \widehat{S}_2(t)$ at that single time, divide by a standard error estimate and compare to 1.96
- This approach does not allow us to compare whether the two entire survival curves are the same

Comparing $S_1(t)$ and $S_2(t)$ at Every t

- Recall that if $S_1(t) \neq S_2(t)$, then $\Lambda_1(t) \neq \Lambda_2(t)$, which implies $\lambda_1(t) \neq \lambda_2(t)$
 - Comparing survival functions is the same as comparing hazard functions
- Thus, our hypotheses are equivalently

$$H_0: \lambda_1(t) = \lambda_2(t)$$

versus

$$H_a: \lambda_1(t) \neq \lambda_2(t)$$

This alternative hypothesis is too vague to be tested

Proportional Hazards Model

• We choose to use the specific alternative hypothesis:

$$H_a: \lambda_1(t) = c\lambda_2(t),$$

which is known as the assumption of proportional hazards

 The alternative hypothesis states that the two hazard functions are not equal and that

$$\frac{\lambda_1(t)}{\lambda_2(t)} \equiv c$$

at every time t, i.e. the hazard functions of the two groups are proportional to each other

Proportional Hazards Model

Thus, we can rewrite our hypotheses again as

$$H_0: c = 1$$

versus

$$H_a: c \neq 1$$
,

where c is the ratio of the two hazards (hazard ratio)

 Notice the similarity between these hypotheses and those used with binary outcomes

$$H_0: OR = 1$$

versus

$$H_a: OR \neq 1$$
,

where OR is a ratio of odds rather than hazards

Proportional Hazards Model

 Note that the assumption of proportional hazards does not mean the survival functions are proportional to each other, i.e.

$$\lambda_1(t) = c\lambda_2(t) \Rightarrow S_1(t) = \{S_2(t)\}^c$$

- For example, if one hazard is 50% of the other hazard, one survival function is the square root of the other survival function
- The important property of proportional hazards is that the resulting survival functions never intersect each other, i.e. one survival curve is always higher than the other.

Two-sample Log-rank Test

- To test a difference in hazard (survival) functions, we use a log-rank test
- The construction of the test statistic is based upon a series of 2 × 2 tables like those used in a chi-squared test of association
- We first pool both groups together, then identify and order the unique event times (those of non-censored subjects)
 - We label these times $t_1 < t_2 < \cdots < t_J$

Two-sample Log-rank Test

• At each time t_i (j = 1, ..., J), we create a 2×2 table

	Group		
	1	2	
# events at t_j	d_{1j}	d_{2j}	d_j
# at risk beyond t_j	s_{1j}	s_{2j}	s_j
Total	n_{1j}	n_{2j}	n_j

- If the event rate (hazard) is the same in the two groups:
 - The total number of events at t_j (d_j) should be divided equally among the two groups in relation to the number at risk at t_j in each group (n_{1j} and n_{2j})
 - Allocate $d_i(n_{1i}/n_i)$ events to Group 1
 - Allocate $d_j(n_{1j}/n_j)$ events to Group 1

- We then focus upon one of the groups (we'll use Group 1) and express the values in terms we used with the chi-squared test of association:
 - Observed events in Group 1 at t_j:

$$O_j = d_{1j}$$

Expected events in Group 1 if H₀ is true:

$$E_j = \frac{n_{1j}d_j}{n_j}$$

- The squared difference $(O_j E_j)^2$ tells us how valid the null hypothesis is at t_j
 - The bigger the difference, the more likely H_0 is false

Forming the typical Pearson statistic for t_j:

$$\frac{(O_j-E_j)^2}{E_j},$$

we combine the results for all event times $t_1 < t_2 < \cdots < t_J$ into a single statistic:

$$\chi_{L}^{2} = \sum_{j=1}^{J} \frac{(O_{j} - E_{j})^{2}}{E_{j}}$$

- However, we have one problem:
 - This formula assumes the number of events at each t_j are independent of each other (i.e. the 2 × 2 tables are independent)

- Although slight, there is some dependence between the 2×2 tables, as the number of events at one time point restricts how many events can happen later
 - Thus, the statistic just shown is only an approximation for the actual statistic
- The log-rank statistic used by all statistical packages is

$$\chi_L^2 = \frac{\left[\sum_{j=1}^J (O_j - E_j)\right]^2}{\sum_{j=1}^J V_j},$$

where

$$V_j = \frac{n_{1j} n_{2j} d_j s_j}{n_i^2 (n_j - 1)}$$

- Under H_0 (no difference in survival functions), χ_L has approximately a chi-squared distribution with 1 df
 - Thus a value of $\chi_L \ge 4$ is evidence to reject H_0 (gives p-value less than 0.05)
- These concepts can be extended to comparisons of G groups (G > 2)
 - In general, χ_L has a chi-squared distribution with (G-1) df

Suppose we have the following data:

For this data, we have:

$$\sum_{j=1}^{J} (O_j - E_j) = \left(1 - \frac{4 \times 1}{8}\right) + \left(0 - \frac{3 \times 1}{7}\right) + \left(1 - \frac{2 \times 1}{4}\right) + \left(0 - \frac{0 \times 1}{1}\right)$$

$$= 0.5 - 0.429 + 0.5$$

$$= 0.571$$

• The denominator is computed as:

$$\sum_{j=1}^{J} V_{j} = \frac{4 \times 4 \times 1 \times 7}{8 \times 8 \times 7} + \frac{3 \times 4 \times 1 \times 6}{7 \times 7 \times 6} + \frac{2 \times 2 \times 1 \times 3}{4 \times 4 \times 3}$$

$$= 0.25 + 0.;2449 + 0.25$$

$$= 0.7449$$

Therefore, we find:

$$\chi_L^2 = \frac{\left[\sum_{j=1}^J (O_j - E_j)\right]^2}{\sum_{j=1}^J V_j} = \frac{0.571^2}{0.7449} = 0.438,$$

yielding a p-value of 0.51 based on a $\chi^2_{(1)}$ distribution

Visually Displaying Results

This is an example of an excellent Kaplan-Meier plot:

The CMO17 study is well described by Brahmer and colleagues. ¹⁸ Per the O'Brien-Fleming boundary, ¹⁹ the significance level for the interim overall survival analysis with 199 deaths was 2-sided P = .03.

Assessing Proportional Hazards

- We can visually assess whether proportional hazards is a reasonable assumption
- If we plot $\log\{-\log \widehat{S}_1(t)\}$ and $\log\{-\log \widehat{S}_2(t)\}$ against $\log(t)$ for each group and proportional hazards holds, the two lines should be roughly parallel to each other
- Why?

$$\begin{split} \lambda_1(t) &= c\lambda_0(t) & \Rightarrow & \Lambda_1(t) = c\Lambda_0(t) \\ & \Rightarrow & -\log S_1(t) = c[-\log S_0(t)] \\ & \Rightarrow & \log\{-\log S_1(t)\} \\ & = \log c + \log\{-\log S_0(t)\} \end{split}$$

Non-proportional Hazards

- If the hazards are not proportional, we use a weighted log-rank statistic:
 - (1) Wilcoxon Test

$$\chi_W^2 = \frac{\left[\sum_{j=1}^J n_j (O_j - E_j)\right]^2}{\sum_{j=1}^J n_j^2 V_j}$$

- This test gives more weight to early event times (when n_j is big) and less weight to late event times (when n_i is small)
- (2) Generalized Wilcoxon (GW) Test

$$\chi_{GW}^2 = \frac{\left[\sum_{j=1}^{J} w_j (O_j - E_j)\right]^2}{\sum_{j=1}^{J} w_j^2 V_j}$$

- The weights can be chosen to emphasize a particular time or range of times and is most powerful under certain situations
- Note that if $w_i = 1$ for all j, GW test reduces to the log-rank test

Regression Models for Comparing Survival Functions

Proportional Hazards Regression (Non-parametric)

• Outcome variable: (T_i, δ_i) (i = 1, ..., n), where T_i is the observed survival time for the *i*th individual, and

$$\delta_i = egin{cases} 1 & ext{event observed} \\ 0 & ext{event censored} \end{cases}$$

- Covariates: $X_{1i}, X_{2i}, \dots, X_{pi}$ for the *i*th subject $(i = 1, \dots, n)$
- Idea: Model the hazard function of the event at a particular time
 t as a function of covariates

Proportional Hazards Regression

We use the typical regression model

$$\log \lambda(t) = \log \lambda_0(t) + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$
$$= \log \lambda_0(t) + \sum_{j=1}^p \beta_j X_j$$

However, the model is more commonly written as

$$\lambda(t) = \lambda_0(t)e^{\beta_1X_1 + \beta_2X_2 + \dots + \beta_pX_p}$$
$$= \lambda_0(t)e^{\sum_{j=1}^p \beta_jX_j}$$

and is called a Cox regression model

Proportional Hazards Regression

- In the Cox regression model $\lambda(t) = \lambda_0(t)e^{\sum_{j=1}^p \beta_j X_j}$:
 - $\lambda_0(t)$ is known as the baseline hazard, which measures the risk of an event for the reference group, i.e. subjects with all covariates equal to zero
 - We do not make any assumption on the actual functional form of $\lambda_0(t)$
 - There is no intercept term β_0 in the exponent
 - Our baseline hazard serves as our intercept (on the log scale)
 - ullet The hazard ratio is $\lambda(t)/\lambda_0(t) = exp\left\{\sum_{j=1}^p eta_j X_j
 ight\}$
 - A covariate works to proportionally increase the hazard in reference to the baseline hazard
 - This proportion is constant over time, meaning the hazard ratio is constant over time

Proportional Hazards Regression

- Deriving the interpretation of β_k :
 - We compare two randomly chosen individuals
 - One subject has covariate values $(X_1, \ldots, X_k, \ldots, X_p)$
 - One subject has covariate values $(X'_1, \dots, X'_k + 1, \dots, X'_p)$
 - Then we have:

$$\frac{\lambda(t \mid X_1, \dots, X_k + 1, \dots, X_p)}{\lambda(t \mid X_1, \dots, X_k, \dots, X_p)} =$$

$$\beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k (X_k + 1) + \dots + \beta_p X_p$$

$$\frac{\lambda_0(t)exp^{\beta_1X_1+\beta_2X_2+\cdots+\beta_k(X_k+1)+\cdots+\beta_pX_p}}{\lambda_0(t)e^{\beta_1X_1+\beta_2X_2+\cdots+\beta_k(X_k)+\cdots+\beta_pX_p}} = e^{\beta_k}$$

 Again, the association fof X_k with the time-to-event is assumed to be constant over time

Proportional Hazards Regression: Example

- We have data from a 10-year double-blinded trial in 312 patients with primary cirrhosis of the liver (PBC) who were randomized to either the drug D-penicillamine (DPCA) or placebo
- Available covariates: age, albumin, bilirubin, edema, prothrombin time
- Our current example focuses on a model with variables age, edema and drug (1: DPCA, 0: placebo), in which

$$\text{edema} = \begin{cases} 0 & \text{no edema and no diuretic therapy} \\ 1/2 & \text{edema present w/o or resolved by diuretics} \\ 1 & \text{edema despite diuretic therapy} \end{cases}$$

Partial Likelihood

- Recall that Kaplan-Meier first divided the data by the unique event times
 - Used product of interval probabilities to estimate the distribution of event times
- Estimation of regression parameters β in Cox regression is done in a similar way
- Cox referred to his approach as "partial likelihood" in 1975; the rigorous theory came in 1981 (Tsiatis) and 1982 (Anderson & Gill)
 - Because the baseline hazard is not specified and is nuisance, we would like to remove it when estimating β
 - We condition the risk of each subject with an event (based on their covariate) on the total risk all subjects

Partial Likelihood

 Thus, instead of the exact likelihood, we attempt to maximize the partial likelihood:

$$PL(\boldsymbol{\beta}; \boldsymbol{X}) = \prod_{t_k=t_1}^{t_d} \frac{exp\{\boldsymbol{X}(t_k)\boldsymbol{\beta}\}}{\sum_{i \in R_k} exp(\boldsymbol{X}_i\boldsymbol{\beta})}$$

in which

 t_1, \ldots, t_d = unique event times

 $X(t_k)$ = covariate vector for subject with event at t_k

 R_k = group of subjects at risk for event from $(t_{k-1}, t_k]$

Proportional Hazards Regression: Example

• The resulting fitted model from SAS (code not shown) is:

$$\lambda(t) = \lambda_0(t) exp\{0.035age + 2.23edema - 0.11drug\}$$

- $e^{-0.11}=0.89$ is the HR comparing DPCA to placebo adjusted for age and edema status
- The estimated HR comparing a patient with age = 50, edema
 = 0.5, drug = 1 to a patient with age = 40, edema = 0 and drug
 = 1

$$= e^{0.035(50-40)+2.23(0.5-0)-0.11(1-1)}$$

= 4.33

Assessing Proportional Hazards for One Covariate

- We have assumed that a one-unit change in a covariate *X* leads to a shift in the log-hazard, i.e. hazards are proportional
- If *X* is categorical, then we plot $\log\{-\log \widehat{S}(t)\}$ against $\log(t)$ for each value of X
 - Proportional hazards holds if the curves are roughly parallel to each other
- If X is continuous, then divide subjects into (four, five?) equally sized groups and fit model using categorical X
 - Use same process as above to assess proportional hazards for X
- Assessing PH gets harder with multiple covariates

Estimating the Baseline Survival Function

Recall that our model is

$$\lambda(t) = \lambda_0(t)e^{\beta_1X_1+\beta_2X_2+\cdots+\beta_pX_p}$$

= $\lambda_0(t)e^{\sum_{j=1}^p\beta_jX_j}$

and we have made no attempt to estimate $\lambda_0(t)$

- Thus, we can compare the risk of two subjects relative to each other (hazard ratio)
- We cannot estimate the individual risks (hazard) of each subject
- There are methods for estimating $\lambda_0(t)$; most statistical packages are programmed with these methods

Time-Varying Covariates

Cox regression allows using covariates that change over time:

$$\lambda(t) = \lambda_0(t) exp \left\{ \sum_{j=1}^p \beta_j X_j(t) \right\}$$

But, this impacts our estimation:

$$PL(\boldsymbol{\beta}; \boldsymbol{X}) = \prod_{t_k=t_1}^{t_d} \frac{exp\{\boldsymbol{X}(t_k)\boldsymbol{\beta}\}}{\sum_{i \in R_k} exp(\boldsymbol{X}_i(t_k)\boldsymbol{\beta})}$$

- At each event time t_k, we need covariate values for every subject in the risk set R_k, not just the subject with the event
- If missing, some suggest using X_i(t_k) as the covariate value measured closest in time to t_k (if reasonably close in time to t_k)

Accelerated Failure Time Model

- A contemporary alternative to Cox regression is a parametric regression model known as the Accelerated Failure Time (AFT) model
 - We assume a baseline distribution \mathcal{F}_0 for event times
 - For a subject with covariates X, their observed event time is $T=e^{\beta X}T_0$, where $T_0\sim \mathcal{F}_0$
 - This is a simple parametric regression model

$$log(T) = \beta X + \epsilon,$$

with $\epsilon \sim \mathcal{F}_0$

- \mathcal{F}_0 is often parametric, i.e. Normal or Logistic, with mean=0 and variance= σ^2
- \mathcal{F}_0 can be non-parametric much harder problem to solve

Residual Diagnostics with Cox Regression

• See supplementary slides based on lecture by P. Breheny