Link-uri utile

- Grup tutoriat
- Cursurile de la Băețica
- Cursurile de anul acesta de la Mincu
- Cursurile de an trecut de la Mincu

Exerciții

Exercițiul 1. Determinați toate morfismele de monoizi de la $(\mathbb{N}, +)$ la (\mathbb{N}, \max) .

Demonstrație. Fie $f: \mathbb{N} \to \mathbb{N}$ un morfism. Atunci f are proprietatea că f(0) = 0 și $f(a+b) = \max(f(a), f(b))$.

Putem scrie f(2) ca

$$f(2) = f(1+1) = \max(f(1), f(1)) = \max(f(1)) = f(1)$$

Notând $f(1) = a \in \mathbb{N}$, ajungem la concluzia că

$$f(0) = 0$$

 $f(n) = \max(\underbrace{f(1), \dots, f(1)}_{n \text{ ori}}) = f(1) = a$

Deci toate morfismele sunt de forma

$$f(x) = \begin{cases} 0, & \text{dacă } x = 0 \\ a, & \text{altfel} \end{cases}$$

pentru un $a \in \mathbb{N}$.

Exercițiul 2. Determinați $Hom(\mathbb{Z}_8,\mathbb{Q})$, adică mulțimea morfismelor de la $(\mathbb{Z}_8,+)$ la $(\mathbb{Q},+)$.

Demonstrație. Fie $f:\mathbb{Z}_8\to\mathbb{Q}$ un morfism de grupuri. Din proprietățile morfismelor, știm că

$$f(\hat{0}) = 0$$
$$f(\hat{a} + \hat{b}) = f(\hat{a}) + f(\hat{b})$$

Să luăm de exemplu $f(\hat{3})$. Acesta poate fi scris ca

$$f(\hat{3}) = f(\hat{1} + \hat{1} + \hat{1}) = f(\hat{1}) + f(\hat{1}) + f(\hat{1}) = 3f(\hat{1})$$

Pe același principiu, pentru orice $\hat{k} \in \mathbb{Z}_8$ avem că

$$f(\hat{k}) = kf(\hat{1})$$

Să luăm acum două clase din \mathbb{Z}_8 care adunate dau $\hat{\mathbf{0}}$, cum ar fi $\hat{\mathbf{3}}$ și $\hat{\mathbf{5}}$:

$$f(\hat{3} + \hat{5}) = f(\hat{0}) = 0$$

$$f(\hat{3} + \hat{5}) = 3f(\hat{1}) + 5f(\hat{1}) = 8f(\hat{1})$$

Deci $8f(\hat{1}) = 0$. De aici obținem că $f(\hat{1}) = 0$, și de fapt că $f(\hat{k}) = 0$, $\forall \hat{k} \in \mathbb{Z}_8$. Singurul morfism de la \mathbb{Z}_8 la \mathbb{Q} este morfismul nul.

Model de examen rezolvat

Subjectul 1

Considerăm grupul diedral $D_5=\left\{1,\rho,\rho^2,\rho^3,\rho^4,\sigma,\rho\sigma,\rho^2\sigma,\rho^3\sigma,\rho^4\sigma\right\}$. Se știe că în el au loc relațiile $\rho^5=1,\,\sigma^2=1,\,\sigma\rho=\rho^4\sigma$.

Grupul diedral de ordin n se referă la simetriile unui poligon regulat cu n laturi. În acest caz, D_5 se referă la simetriile unui pentagon regulat. ρ reprezintă o rotație, iar σ este pentagonul "oglindit".

- (a) **Teorie**: Constructia grupului factor
- (b) Arătați că $\{1, \rho^3 \sigma\} \leq D_5$.

Demonstrație. Notăm mulțimea cu $A = \{1, \rho^3 \sigma\}$.

Oricum am compune între ele elementele, rămânem în mulțime:

$$1 \cdot 1 = 1 \in A$$

$$1 \cdot \rho^{3} \sigma = \rho^{3} \sigma \in A$$

$$\rho^{3} \sigma \cdot 1 = \rho^{3} \sigma \in A$$

$$(\rho^{3} \sigma) \cdot (\rho^{3} \sigma) = \rho^{3} (\sigma \rho) \rho^{2} \sigma = \rho^{3} \rho^{4} \sigma \rho^{2} \sigma$$

$$= \rho^{7} (\sigma \rho) \rho \sigma$$

$$= \rho^{11} (\sigma \rho) \sigma$$

$$= \rho^{15} \sigma^{2} = (\rho^{5})^{3} \cdot 1$$

$$= 1 \in A$$

Pentru fiecare element, inversul elementului este conținut în mulțime:

$$1 \cdot 1 = 1 \iff 1^{-1} = 1 \in A$$
$$(\rho^{3}\sigma) \cdot (\rho^{3}\sigma) = 1 \iff (\rho^{3}\sigma)^{-1} = \rho^{3}\sigma \in A$$

(c) Arătați că $\langle \rho \rangle \leq D_5$.

Demonstrație. Trebuie să scriem subgrupul generat de ρ :

$$\langle \rho \rangle = \left\{ \rho, \rho^2, \rho^3, \rho^4, \rho^5 = 1 \right\}$$

Deoarece $\rho^5 = 1$, orice putere mai mare a lui ρ este conținută în această listă.

Pentru a arăta că este subgrup normal, cel mai simplu este să observăm că $\langle \rho \rangle$ are exact 5 elemente, iar D_5 are 10. Deci $\langle \rho \rangle$ are indice $2 = \frac{10}{5}$. Ne folosim de o proprietate din curs care zice că orice subgrup de indice 2 al unui grup este normal.

Dacă nu ținem minte această observație, trebuie să calculăm toate clasele de resturi la stânga $1H, \rho H, \dots, \sigma H$ și toate clasele de resturi la dreapta $H1, H\rho, \dots, H\sigma$, și să arătăm că au același număr și corespund unu-la-unu.

(d) Descrieți grupul factor $D_5/\langle \rho \rangle$.

Demonstrație. Notăm $H = \langle \rho \rangle$. Clasele de resturi obținute ar fi 1H, ρ H, ρ^2 H, ..., σ H, ..., $\rho^4 \sigma$ H. Unele dintre acestea sunt echivalente:

$$H = \rho H = \dots = \rho^{4} H$$
$$\sigma H = \dots = \rho^{4} \sigma H$$

Legea de compoziție pe subgrup:

$$H \cdot H = H$$

$$H \cdot \sigma H = \sigma H$$

$$\sigma H \cdot H = \sigma H$$

$$\sigma H \cdot \sigma H = H$$

Acest grup factor este izomorf cu (\mathbb{Z}_2 , +): H este elementul neutru $\hat{0}$, iar σH este $\hat{1}$.

Subjectul 2

- (a) **Teorie**: Definiția morfismului și izomorfismul de grupuri
- (b) Elementele de ordin 8 din $\mathbb{Z}_{10} \times \mathbb{Z}_{36}$

Demonstrație. Ordinul grupului este $10 \cdot 36 = 360$.

Fie (\hat{a}, \tilde{b}) un element arbitrar din grup, cu $\hat{a} \in \mathbb{Z}_{10}$ și $\tilde{b} \in \mathbb{Z}_{36}$. Din teorema lui Lagrange trebuie ca ordinul lui (\hat{a}, \tilde{b}) să dividă 360, și ord $\hat{a} \mid 10$, ord $\tilde{b} \mid 36$.

Știm că

$$\operatorname{ord}_{\mathbb{Z}_{10} \times \mathbb{Z}_{36}}(\hat{a}, \tilde{b}) = [\operatorname{ord}_{\mathbb{Z}_{10}} \hat{a}, \operatorname{ord}_{\mathbb{Z}_{36}} \tilde{b}]$$

unde $[\cdot, \cdot]$ reprezintă c.m.m.c.-ul celor două ordine.

Din ipoteză, $\operatorname{ord}_{\mathbb{Z}_{10}\times\mathbb{Z}_{36}}(\hat{a},\hat{b})$ trebuie să fie 8. Pentru a obține acest c.m.m.m.c. ar trebui ca unul dintre \hat{a}, \tilde{b} să aibă ordin 8.

Deoarece 8 ∤ 10 și 8 ∤ 36, nu există soluții.

(c) Elementele de ordin 20 din $\mathbb{Z}_{10} \times \mathbb{Z}_{36}$

Demonstrație. Asemănător exercițiului precedent, ajungem la concluzia că pentru a avea c.m.m.m.c.-ul 20, trebuie ca ordinele elementelor să fie 5 și 4 sau 10 și 4.

Ne folosim de faptul că în \mathbb{Z}_n :

ord
$$\hat{x} = \frac{n}{(x, n)}$$

unde (\cdot, \cdot) reprezintă c.m.m.d.c.-ul celor două numere.

Rearanjând obținem

ord
$$\hat{x} \cdot (x, n) = n$$

Înlocuim în expresie valorile noastre:

$$5 \cdot (x, 10) = 10 \iff (x, 10) = 2$$

 $10 \cdot (x, 10) = 10 \iff (x, 10) = 1$
 $4 \cdot (x, 36) = 36 \iff (x, 36) = 9$

Elementele de ordin 5 în \mathbb{Z}_{10} sunt $\{\hat{2},\hat{4},\hat{6},\hat{8}\}$, iar de ordin 10 sunt $\hat{1},\hat{3},\hat{7},\hat{9}$. Elementele de ordin 4 în \mathbb{Z}_{36} sunt $\{\tilde{9},\widetilde{27}\}$.

Deci elementele de ordin 20 sunt toate combinațiile posibile:

$$\left\{\ (\hat{2},\tilde{9}),\ldots,(\hat{8},\widetilde{27}),(\hat{1},\tilde{9}),\ldots,(\hat{9},\widetilde{27})\ \right\}$$

Subjectul 3

- (a) **Teorie**: Definiți ce este o transpoziție. Demonstrați că orice transpoziție este permutare impară.
- (b) Fie $\sigma = \left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 4 & 5 & 6 & 7 & 8 & 9 & 11 & 12 & 3 & 13 & 1 & 2 & 10 \end{smallmatrix}\right) \in S_{13}$

Trebuie descompusă în produs de ciclii disjuncți, găsit inversul permutării, calculat σ^2 , calculat ordinul permutării, calculat σ^{2019} .

Demonstrație. Descompunem permutarea în produs de ciclii disjuncți:

$$\sigma = (1, 4, 7, 11)(2, 5, 8, 12)(3, 6, 9)(10, 13)$$

Putem calcula σ^2 mai usor folosindu-ne de această reprezentare:

$$\sigma^2 = (1,7)(4,11)(2,8)(5,12)(3,9,6)$$

Orice ciclu de lungime 4 s-a spart în doi ciclii de lungime 2. Ciclul de lungime 2 a dispărut complet.

Pentru σ^{-1} , putem inversa ordinea fiecărui ciclu:

$$\sigma^{-1} = (11, 7, 4, 1)(12, 8, 5, 2)(9, 6, 3)(13, 10)$$

Ordinul permutării este c.m.m.m.c.-ul lungimilor ciclului. Deci este [4, 4, 3, 2], adică 12.

Pentru a calcula σ^{2019} , ne folosim de faptul că de fiecare dată când compunem permutarea cu ea însăși de 12 ori (ordinul ei), obținem permutarea identică. Deci

$$\sigma^{2019} = \sigma^{168 \cdot 12 + 3} = (\sigma^{12})^{168} \sigma^3 = \sigma^3$$

Răspunsul este

$$\sigma^{2019} = \sigma^3 = (1, 11, 7, 4)(2, 12, 8, 5)(10, 13)$$

Subiectul de la restantă la Mincu, pentru cei care vor să-si testeze cunostintele:

1. a) Fie $m,n\in\mathbb{N}^*$. Arătați că grupul $\mathbb{Z}_m\times\mathbb{Z}_n$ este izomorf cu grupul \mathbb{Z}_{mn} dacă și numai dacă m și n sunt prime între ele.

b) Determinați Hom(Z₈, Q).

- c) Notând cu S¹ mulţimea numerelor complexe de modul 1, arătați că are loc izomorfismul de grupuri $\frac{\mathbb{C}^*}{\mathbb{R}^*} \simeq S^1$.
 - 2. a) Indicele unui subgrup.
- b) Arătați că $\widehat{9}\mathbb{Z}_{36} \times 7\mathbb{Z}$ este subgrup al lui $\mathbb{Z}_{36} \times \mathbb{Z}$ și determinați-i
- c) Determinați elementele de ordin 56 din grupul \mathbb{Z}_{840}
- 3. a) În contextul grupurilor de permutări, definiți noțiunile: ordinul unei permutări, ciclu.

 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 3 & 13 & 5 & 6 & 7 & 8 & 9 & 4 & 11 & 10 & 1 & 12 & 14 & 15 & 2 \end{pmatrix} \in \mathcal{S}_{is}$ Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați σ^4 , σ^{-1} , $\varepsilon(\sigma)$, ord (σ) și σ^{2019} .