- Associated point group: No. 19 C_{3v} 3m1 (3m1 setting) [trigonal]
- Generation condition
 - model type: tight_binding
 - time-reversal type: electric
 - irrep: [A1]
 - spinful
- Unit cell:

$$a=1.0,\ b=1.0,\ c=1.0,\ \alpha=90.0,\ \beta=90.0,\ \gamma=120.0$$

• Lattice vectors:

$$\boldsymbol{a}_1 = \begin{pmatrix} 1.0 & 0 & 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -0.5 & 0.86602540378444 & 0 \end{pmatrix}$$

$$\mathbf{a}_3 = \begin{pmatrix} 0 & 0 & 1.0 \end{pmatrix}$$

• Plus sets:

$$+(0 \quad 0 \quad 0)$$

$$+\left(\frac{2}{3} \ \frac{1}{3} \ \frac{1}{3}\right)$$

$$+\begin{pmatrix} \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix} \\ +\begin{pmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \end{pmatrix}$$

Table 1: High-symmetry line: Γ -X.

symbol	position	symbol	position		
Γ	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	X	$\begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix}$		

• Kets: dimension = 54

Table 2: Hilbert space for full matrix.

No.	ket								
1	(p_x,\uparrow) @A ₁	2	(p_x,\downarrow) @A ₁	3	(p_y,\uparrow) @A ₁	4	(p_y,\downarrow) @A ₁	5	(p_z,\uparrow) @A ₁
6	(p_z,\downarrow) @A ₁	7	(p_x,\uparrow) @A ₂	8	(p_x,\downarrow) @A ₂	9	(p_y,\uparrow) @A ₂	10	(p_y,\downarrow) @A ₂
11	(p_z,\uparrow) @ A_2	12	(p_z,\downarrow) @A ₂	13	(p_x,\uparrow) @A ₃	14	(p_x,\downarrow) @A ₃	15	(p_y,\uparrow) @A ₃
16	(p_y,\downarrow) @A ₃	17	(p_z,\uparrow) @A ₃	18	(p_z,\downarrow) @A ₃	19	(p_x,\uparrow) @B ₁	20	(p_x,\downarrow) @B ₁
21	(p_y,\uparrow) @B ₁	22	(p_y,\downarrow) @B ₁	23	(p_z,\uparrow) @B ₁	24	(p_z,\downarrow) @B ₁	25	(p_x,\uparrow) @B ₂
26	(p_x,\downarrow) @B ₂	27	(p_y,\uparrow) @B ₂	28	(p_y,\downarrow) @B ₂	29	(p_z,\uparrow) @B ₂	30	(p_z,\downarrow) @B ₂
31	(p_x,\uparrow) @B ₃	32	(p_x,\downarrow) @B ₃	33	(p_y,\uparrow) @B ₃	34	(p_y,\downarrow) @B ₃	35	(p_z,\uparrow) @B ₃
36	(p_z,\downarrow) @B ₃	37	(p_x,\uparrow) @ \mathbf{B}_4	38	(p_x,\downarrow) @B ₄	39	(p_y,\uparrow) @B ₄	40	(p_y,\downarrow) @B ₄
41	(p_z,\uparrow) @ \mathbf{B}_4	42	(p_z,\downarrow) @B ₄	43	(p_x,\uparrow) @B ₅	44	(p_x,\downarrow) @B ₅	45	(p_y,\uparrow) @B ₅
46	(p_y,\downarrow) @B ₅	47	(p_z,\uparrow) @B ₅	48	(p_z,\downarrow) @B ₅	49	(p_x,\uparrow) @B ₆	50	(p_x,\downarrow) @B ₆
51	(p_y,\uparrow) @B ₆	52	(p_y,\downarrow) @B ₆	53	(p_z,\uparrow) @B ₆	54	(p_z,\downarrow) @B ₆		

• Sites in (primitive) unit cell:

Table 3: Site-clusters.

	site	position	mapping
S ₁ [9b: .m]	A_1	$\begin{pmatrix} \frac{1}{6} & \frac{5}{6} & \frac{1}{3} \end{pmatrix}$	[1,6]
	A_2		[2,5]
	A_3	$ \begin{pmatrix} \frac{1}{6} & \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{5}{6} & \frac{1}{3} \end{pmatrix} $	[3,4]
S ₂ [18c: 1]	B_1	$\begin{pmatrix} \frac{5}{6} & 0 & \frac{2}{3} \end{pmatrix}$	[1]
	B_2	$\left(0 \frac{5}{6} \frac{2}{3}\right)$	[2]
	B_3	$\begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{2}{3} \end{pmatrix}$	[3]
	B_4	$\begin{pmatrix} \frac{1}{6} & 0 & \frac{2}{3} \end{pmatrix}$	[4]
	B_5	$\left(\begin{array}{ccc} \frac{5}{6} & \frac{5}{6} & \frac{2}{3} \end{array}\right)$	[5]
	B_6	$\left(0 \frac{1}{6} \frac{2}{3}\right)$	[6]

• Bonds in (primitive) unit cell:

Table 4: Bond-clusters.

	bond	tail	head	n	#	b@c	mapping
B ₁ [18c: 1]	b_1	B_1	A_1	1	1	$\begin{pmatrix} 0 & -\frac{1}{6} & 0 \end{pmatrix} @ \begin{pmatrix} \frac{5}{6} & \frac{1}{12} & \frac{2}{3} \end{pmatrix}$	[1]
	b_2	B_2	A_2	1	1	$ \left(\begin{array}{ccc} \frac{1}{6} & \frac{1}{6} & 0 \end{array}\right) @ \left(\begin{array}{ccc} \frac{11}{12} & \frac{3}{4} & \frac{2}{3} \end{array}\right) $	[2]
	b_3	B_3	A_3	1	1	$ \left(-\frac{1}{6} 0 0 \right) @ \left(\frac{1}{4} \frac{1}{6} \frac{2}{3} \right) $	[3]
	b_4	B_4	A_3	1	1	$\left(-\frac{1}{6} -\frac{1}{6} 0 \right) @ \left(\frac{1}{4} \frac{1}{12} \frac{2}{3} \right)$	[4]
	b_5	B_5	A_2	1	1	$ \left(0 \frac{1}{6} 0\right) @ \left(\frac{5}{6} \frac{3}{4} \frac{2}{3}\right) $	[5]
	b_6	В6	A_1	1	1	$ \left(\begin{array}{ccc} \frac{1}{6} & 0 & 0 \end{array}\right) @ \left(\begin{array}{ccc} \frac{11}{12} & \frac{1}{6} & \frac{2}{3} \end{array}\right) $	[6]

• SAMB:

No. 1
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_1 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_1(\boldsymbol{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 2
$$\hat{\mathbb{Q}}_2^{(A_1)}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_2 = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_1)}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_2(\mathbf{k}) = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 3
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_3 = \frac{\sqrt{2}\mathbb{X}_7[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{Y}_2[\mathbb{Q}_{2,0}^{(s,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_8[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{Y}_3[\mathbb{Q}_{2,1}^{(s,E,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{3}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E,2)}]}{2}$$

No. 4
$$\hat{\mathbb{G}}_{3}^{(A_1)}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_4 = \frac{\sqrt{2}\mathbb{X}_5[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{Y}_2[\mathbb{Q}_{2,0}^{(s,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_6[\mathbb{Q}_{2,1}^{(a,E,1)}] \otimes \mathbb{Y}_3[\mathbb{Q}_{2,1}^{(s,E,2)}]}{2}$$

$$\hat{\mathbb{Z}}_4(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_5[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_2[\mathbb{Q}_{2,0}^{(s,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_6[\mathbb{Q}_{2,1}^{(a,E,1)}] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E,2)}]}{2}$$

No. 5
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,1)$$
 [M₁,S₁]

$$\hat{\mathbb{Z}}_5 = \mathbb{X}_3[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_5(\mathbf{k}) = \mathbb{X}_3[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 6
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,-1)$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_6 = \mathbb{X}_4[\mathbb{Q}_2^{(a,A_1)}(1,-1)] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_{6}(\mathbf{k}) = \mathbb{X}_{4}[\mathbb{Q}_{2}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]$$

No. 7
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,-1)$$
 [M₁,S₁]

$$\hat{\mathbb{Z}}_7 = \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{Y}_2[\mathbb{Q}_{2,0}^{(s,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{Y}_3[\mathbb{Q}_{2,1}^{(s,E,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{7}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E,2)}]}{2}$$

No. 8
$$\hat{\mathbb{G}}_3^{(A_1)}(1,-1)$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_8 = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{Y}_3[\mathbb{Q}_{2,1}^{(s,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_9[\mathbb{Q}_{2,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{Y}_2[\mathbb{Q}_{2,0}^{(s,E,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{8}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E,2)}]}{2}$$

No. 9
$$\hat{\mathbb{G}}_3^{(A_1)}(1,0)$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_9 = -\frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{Y}_2[\mathbb{Q}_{2,0}^{(s,E,2)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E)}(1,0)] \otimes \mathbb{Y}_3[\mathbb{Q}_{2,1}^{(s,E,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{9}(\textbf{\textit{k}}) = -\frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E,2)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E)}(1,0)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E,2)}]}{2}$$

No. 10
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{10} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_{10}(\boldsymbol{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_4[\mathbb{Q}_0^{(s,A_1)}]$$

No. 11
$$\hat{\mathbb{Q}}_2^{(A_1)}$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{11} = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_1)}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_{11}(\boldsymbol{k}) = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_1)}] \otimes \mathbb{U}_4[\mathbb{Q}_0^{(s,A_1)}]$$

No. 12
$$\hat{\mathbb{Q}}_1^{(A_1)}$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{12} = \frac{\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(s,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{6}[\mathbb{Q}_{2,1}^{(a,E,1)}] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(s,E)}]}{2}$$

$$\hat{\mathbb{Z}}_{12}(\mathbf{k}) = \frac{\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1,0}^{(s,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{6}[\mathbb{Q}_{2,1}^{(a,E,1)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1,1}^{(s,E)}]}{2}$$

No. 13
$$\hat{\mathbb{Q}}_3^{(A_1,2)}$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{13} = -\frac{\sqrt{2}\mathbb{X}_7[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{Y}_5[\mathbb{Q}_{1,0}^{(s,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_8[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{Y}_6[\mathbb{Q}_{1,1}^{(s,E)}]}{2}$$

$$\hat{\mathbb{Z}}_{13}(\textbf{\textit{k}}) = -\frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1,0}^{(s,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1,1}^{(s,E)}]}{2}$$

No. 14
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{14} = \frac{\sqrt{2}\mathbb{X}_7[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{Y}_7[\mathbb{Q}_{2,0}^{(s,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_8[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{Y}_8[\mathbb{Q}_{2,1}^{(s,E,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{14}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{7}[\mathbb{Q}_{2,0}^{(s,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{2,1}^{(s,E,2)}]}{2}$$

No. 15
$$\hat{\mathbb{G}}_{3}^{(A_1)}$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{15} = \frac{\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,0}^{(s,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{6}[\mathbb{Q}_{2,1}^{(a,E,1)}] \otimes \mathbb{Y}_{8}[\mathbb{Q}_{2,1}^{(s,E,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{15}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{7}[\mathbb{Q}_{2,0}^{(s,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{6}[\mathbb{Q}_{2,1}^{(a,E,1)}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{2,1}^{(s,E,2)}]}{2}$$

No. 16
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,1)$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{16} = \mathbb{X}_3[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_{16}(\mathbf{k}) = \mathbb{X}_3[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{U}_4[\mathbb{Q}_0^{(s,A_1)}]$$

No. 17
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,-1)$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{17} = \mathbb{X}_4[\mathbb{Q}_2^{(a,A_1)}(1,-1)] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_{17}(\mathbf{k}) = \mathbb{X}_4[\mathbb{Q}_2^{(a,A_1)}(1,-1)] \otimes \mathbb{U}_4[\mathbb{Q}_0^{(s,A_1)}]$$

No. 18
$$\hat{\mathbb{Q}}_{1}^{(A_{1})}(1,-1)$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{18} = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(s,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(s,E)}]}{2}$$

$$\hat{\mathbb{Z}}_{18}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1,1}^{(s,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1,0}^{(s,E)}]}{2}$$

No. 19
$$\hat{\mathbb{Q}}_3^{(A_1,2)}(1,-1)$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{19} = -\frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)]\otimes\mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(s,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E,2)}(1,-1)]\otimes\mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(s,E)}]}{2}$$

$$\hat{\mathbb{Z}}_{19}(\boldsymbol{k}) = -\frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1,0}^{(s,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1,1}^{(s,E)}]}{2}$$

No. 20
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,-1)$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{20} = \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)]\otimes\mathbb{Y}_{7}[\mathbb{Q}_{2,0}^{(s,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E,2)}(1,-1)]\otimes\mathbb{Y}_{8}[\mathbb{Q}_{2,1}^{(s,E,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{20}(\mathbf{k}) = \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{Q}_{2,0}^{(s,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{Q}_{2,1}^{(s,E,2)}]}{2}$$

No. 21
$$\hat{\mathbb{G}}_{3}^{(A_1)}(1,-1)$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{21} = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{Y}_{8}[\mathbb{Q}_{2,1}^{(s,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,0}^{(s,E,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{21}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{Q}_{2,1}^{(s,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{Q}_{2,0}^{(s,E,2)}]}{2}$$

No. 22
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,0)$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{22} = \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(s,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E)}(1,0)] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(s,E)}]}{2}$$

$$\hat{\mathbb{Z}}_{22}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1,0}^{(s,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E)}(1,0)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1,1}^{(s,E)}]}{2}$$

No. 23
$$\hat{\mathbb{G}}_3^{(A_1)}(1,0)$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{23} = -\frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,0}^{(s,E,2)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E)}(1,0)] \otimes \mathbb{Y}_{8}[\mathbb{Q}_{2,1}^{(s,E,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{23}(\textbf{\textit{k}}) = -\frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E)}(1,0)]\otimes\mathbb{U}_{7}[\mathbb{Q}_{2,0}^{(s,E,2)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E)}(1,0)]\otimes\mathbb{U}_{8}[\mathbb{Q}_{2,1}^{(s,E,2)}]}{2}$$

No. 24
$$\hat{\mathbb{Q}}_3^{(A_1,2)}(1,0)$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{24} = \mathbb{X}_{36}[\mathbb{G}_1^{(a,A_2)}(1,0)] \otimes \mathbb{Y}_9[\mathbb{Q}_3^{(s,A_2)}]$$

$$\hat{\mathbb{Z}}_{24}(\mathbf{k}) = \mathbb{X}_{36}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{3}^{(s,A_{2})}]$$

No. 25
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{25} = \mathbb{X}_1[\mathbb{Q}_0^{(a, A_1)}] \otimes \mathbb{Y}_{10}[\mathbb{Q}_0^{(b, A_1)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{25}(\boldsymbol{k}) &= \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{6} + \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} \\ &- \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{12} - \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} + \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{20}[\mathbb{T}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{4} - \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{21}[\mathbb{T}_{3}^{(u,A_{2})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{2})}]}{6} \\ &+ \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{17}[\mathbb{T}_{3}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{17}[\mathbb{T}_{3}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(u,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{U}_{17}[\mathbb{T}_{3}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(u,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,1}^{(u,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,1}^{(u,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,1}^{(u,E,2)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,E,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{1,1}^{(u,E,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{1,1}^{(u,E,2)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,E,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{1,1}^{(u,E,2)}]}{12} \otimes \mathbb{F$$

No. 26
$$\hat{\mathbb{Q}}_2^{(A_1)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{26} = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_1)}] \otimes \mathbb{Y}_{10}[\mathbb{Q}_0^{(b,A_1)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{26}(\pmb{k}) &= \frac{\sqrt{6}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1})}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{6} + \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1})}] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1})}] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{6}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1})}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{6}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1})}] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} \\ &- \frac{\sqrt{6}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1})}] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{12} - \frac{\sqrt{6}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} + \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1})}] \otimes \mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1})}] \otimes \mathbb{U}_{20}[\mathbb{T}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{4} - \frac{\sqrt{6}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1})}] \otimes \mathbb{U}_{21}[\mathbb{T}_{3}^{(u,A_{2})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{2})}]}{6} \\ &+ \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1})}] \otimes \mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1})}] \otimes \mathbb{U}_{17}[\mathbb{T}_{3}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(u,E)}]}{12} \\ &+ \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(u,A_{1})}] \otimes \mathbb{U}_{17}[\mathbb{T}_{3}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{3}^{(u,E)}]}{12} \\ &+ \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(u,A_{1})}] \otimes \mathbb{U}_{17}[\mathbb{T}_{3}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{3}^{(u,E)}]}{12} \\ &+ \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(u,A_{1})}] \otimes \mathbb{U}_{17}[\mathbb{T}_{3}^{(u,E)}] \otimes \mathbb{T}_{3}[\mathbb{T}_{3}^{(u,E)}]}{12} \\ &+ \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(u,A_{1})}] \otimes \mathbb{U}_{17}[\mathbb{T}_{3}^{(u,E)}]}{1$$

No. 27
$$\hat{\mathbb{Q}}_{1}^{(A_{1})}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{27} = \frac{\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{Y}_{11}[\mathbb{Q}_{1,0}^{(b,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{6}[\mathbb{Q}_{2,1}^{(a,E,1)}] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{1,1}^{(b,E)}]}{2}$$

$$\hat{\mathbb{Z}}_{27}(k) = \frac{\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_1)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{4} + \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{24} \\ - \frac{\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{24} - \frac{\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{8} \\ - \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,A_2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} - \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,0}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} \\ - \frac{\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,A_2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} + \frac{\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{15}[\mathbb{T}_{2,0}^{(u,A_1)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} \\ - \frac{\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,A_2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_2)}]}{12} - \frac{\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{15}[\mathbb{T}_{2,0}^{(u,A_1)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} \\ - \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,E,2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_2)}]}{12} - \frac{\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{15}[\mathbb{T}_{3}^{(u,A_2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} \\ + \frac{\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,E,2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E)}]}{12} + \frac{\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,E,1)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,E,1)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,E,1)}]}{12} \\ + \frac{\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{X}_{15}[\mathbb{Q}_{3}^{(u,E,1)}] \otimes \mathbb{X}_{15}[\mathbb{Q}_{3}^{(u,E,1)}]}{12} \\ + \frac{\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{X}_{15}[\mathbb{Q}_{3}^{(u,E,1)}] \otimes \mathbb{X}_{15}[\mathbb{Q}_{3}^{(u,E,1)}]}{12} \\ + \frac{\mathbb{X}_{5}[\mathbb{Q}_{3,0}^{(a,E,1)}] \otimes \mathbb{X}_{15}[\mathbb{Q}_{3}^{(u,E,1)}] \otimes \mathbb{X}_{15}[\mathbb{Q}_{3}^{(u,E,1)}]}{12} \\ + \frac{\mathbb{X}_{5}[\mathbb{Q}_{3,0}^{(a,E,1)}] \otimes \mathbb{X}_{15}[\mathbb{Q}_{3}^{(u,E,1)}]}{12}$$

No. 28
$$\hat{\mathbb{Q}}_3^{(A_1,2)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{28} = -\frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{Y}_{11}[\mathbb{Q}_{1,0}^{(b,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{1,1}^{(b,E)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{28}(k) &= -\frac{\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_1)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{4} - \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{24} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{8} + \frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,0}^{(u,E,E)}]}{8} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,A_2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,0}^{(k,E)}]}{8} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,0}^{(u,E,E)}]}{12} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,0}^{(u,E,E)}]}{12} + \frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{1,0}^{(u,E,E)}]}{8} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,0}^{(u,E,E)}]}{12} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,0}^{(u,E,E)}]}{12} + \frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{1,0}^{(u,E,E)}]}{12} \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,0}^{(u,E,E)}]}{12} \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,0}^{(u,E,E)}]}{12} \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,0}^{(u,E,E)}]}{12} \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,E,2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,0}^{(u,E,E)}]}{12} \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,E,2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,0}^{(u,E,E)}]}{12} \otimes \mathbb{E}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,E,E)}] \otimes \mathbb{E}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} \otimes \mathbb{E}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,E,E)}] \otimes \mathbb{E}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} \otimes \mathbb{E}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} \otimes \mathbb{E}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{3}\mathbb{E}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} \otimes \mathbb{$$

No. 29
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{29} = \frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2,0}^{(b,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{29}(k) = \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} - \frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{8} \\ + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{24} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ + \frac{\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} + \frac{\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,E,2)}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{1,0}^{(k,E)}]}{4} \\ + \frac{\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,1}^{(u,E)}]}{4} \\ + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,1}^{(u,E)}]}{4} \\ + \frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ + \frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,1}^{(u,E)}]}{8} \\ + \frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ + \frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,1}^{(k,E)}]}{8} \\ + \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,1}^{(u,E)}]}{8} \\ + \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F$$

No. 30
$$\hat{\mathbb{G}}_3^{(A_1)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{30} = \frac{\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2,0}^{(b,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{6}[\mathbb{Q}_{2,1}^{(a,E,1)}] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E,2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{30}(k) &= \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} - \frac{\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{8} + \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{24} + \frac{\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]}{24} \\ &+ \frac{\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{18}[\mathbb{T}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} + \frac{\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{16}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{18}[\mathbb{T}_{1,1}^{(u,E)}]}{4} \\ &+ \frac{\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{18}[\mathbb{T}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{24} - \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{18}[\mathbb{T}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{20}[\mathbb{T}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{10} - \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{18}[\mathbb{T}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{8} \\ &+ \frac{\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{20}[\mathbb{T}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{10} - \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{18}[\mathbb{T}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{8} \\ &+ \frac{\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,0}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{10} \\ &+ \frac{\sqrt{3}\mathbb{X}_{6}[\mathbb{Q}_{2,1}^{(a,E,1)}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,0}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]}{10} \\ &+ \frac{\sqrt{3}\mathbb{X}_{6}[\mathbb{Q}_{2,1}^{(a,E,1)}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,0}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]}{10} \\ &+ \frac{\sqrt{2}\mathbb{X}_{6}[\mathbb{Q}_{2,1}^{(a,E,1)}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,0}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]$$

No. 31
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{31} = \mathbb{X}_3[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{Y}_{10}[\mathbb{Q}_0^{(b,A_1)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{31}(\pmb{k}) &= \frac{\sqrt{6}\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{6} + \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{6}\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{6}\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} \\ &- \frac{\sqrt{6}\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{12} - \frac{\sqrt{6}\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{18}[\mathbb{T}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} + \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{20}[\mathbb{T}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} - \frac{\sqrt{6}\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{21}[\mathbb{T}_{3}^{(u,A_{2})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{2})}]}{6} \\ &+ \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{6}\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{19}[\mathbb{T}_{3}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{19}[\mathbb{T}_{3}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{19}[\mathbb{T}_{3}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,A_{1})}(1,1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,A_{1})$$

No. 32
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{32} = \mathbb{X}_4[\mathbb{Q}_2^{(a,A_1)}(1,-1)] \otimes \mathbb{Y}_{10}[\mathbb{Q}_0^{(b,A_1)}]$$

$$\begin{split} \hat{\mathbf{Z}}_{32}(k) &= \frac{\sqrt{6}\mathbb{X}_{4}[Q_{2}^{(a,A_{1})}(1,-1)] \otimes \mathbf{U}_{13}[Q_{2}^{(a,B_{1})}] \otimes \mathbf{F}_{1}[Q_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbf{U}_{13}[Q_{2}^{(a,A_{1})}(1,-1)] \otimes \mathbf{U}_{13}[Q_{2}^{(a,A_{1})}(1,-1)] \otimes \mathbf{U}_{13}[Q_{2}^{(a,B_{1})}] \\ &+ \frac{\sqrt{6}\mathbb{X}_{4}[Q_{2}^{(a,A_{1})}(1,-1)] \otimes \mathbf{U}_{13}[Q_{2}^{(a,B_{1})}] \otimes \mathbf{F}_{2}[Q_{3}^{(a,B_{1})}]}{12} + \frac{\sqrt{6}\mathbb{X}_{4}[Q_{2}^{(a,A_{1})}(1,-1)] \otimes \mathbf{U}_{13}[Q_{2}^{(a,B_{1})}] \otimes \mathbf{F}_{3}[Q_{3}^{(a,B_{1})}]}{12} + \frac{\sqrt{6}\mathbb{X}_{4}[Q_{2}^{(a,A_{1})}(1,-1)] \otimes \mathbf{U}_{13}[Q_{2}^{(a,B_{1})}] \otimes \mathbf{F}_{3}[Q_{3}^{(a,B_{1})}]}{12} + \frac{\sqrt{2}\mathbb{X}_{4}[Q_{2}^{(a,A_{1})}(1,-1)] \otimes \mathbf{U}_{13}[Q_{2}^{(a,B_{1})}] \otimes \mathbf{F}_{3}[Q_{3}^{(a,B_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{4}[Q_{2}^{(a,A_{1})}(1,-1)] \otimes \mathbf{U}_{13}[Q_{2}^{(a,B_{1})}] \otimes \mathbf{F}_{3}[Q_{3}^{(a,B_{1})}] \otimes$$

$$\begin{split} & \underbrace{\begin{bmatrix} \mathbf{No. 34} \end{bmatrix}}_{334} = -\frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,k,2)}(1,-1)] \otimes \mathbb{Y}_{11}[\mathbb{Q}_{1,0}^{(b,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{1,1}^{(a,E)}]}{2} \\ & \underbrace{\hat{Z}_{34}(k) = -\frac{\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(a,E,1)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(b,E)}]}{24} - \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{V}_{12}[\mathbb{Q}_{1,0}^{(a,E,2)}]}{24} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{V}_{12}[\mathbb{Q}_{1,0}^{(a,E,2)}]}{24} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{V}_{12}[\mathbb{Q}_{1,0}^{(a,E,2)}]}{24} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)]}{24} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)]}{8} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)]}{24}}{24} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)]}{8} \otimes \mathbb{I}_{1,0}^{(a,E,2)}(1,-1)}{8} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)]}{2}}{24} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)]}{2}}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)]}{2}}{2} \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,1}^{(a,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)]}{2} \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,1}^{(a,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)]}{2} \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,1}^{(a,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{2,0}^{(a,E,2)}]}{2} \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,1}^{(a,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{2,0}^{(a,E,2)}]}{2} \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,0}^{(a,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{2,0}^{(a,E,2)}]}{2} \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,0}^{(a,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{$$

$$\begin{split} & \boxed{\text{No. 35}} \quad \hat{\mathbb{Q}}_0^{(A_1)}(1,-1) \; [M_1,B_1] \\ & \hat{\mathbb{Z}}_{35} = \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2,0}^{(b,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E,2)}]}{2} \end{split}$$

$$\begin{split} \hat{Z}_{35}(k) &= \frac{\sqrt{3} \mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_1)}] \otimes \mathbb{P}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} \\ &= \frac{\sqrt{2} \mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{P}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{8} \\ &= \frac{\sqrt{2} \mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{P}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{8} \\ &+ \frac{\sqrt{6} \mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{P}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{24} \\ &+ \frac{\sqrt{3} \mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{P}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ &+ \frac{\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,A_2)}] \otimes \mathbb{P}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{6} \mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,E,2)}] \otimes \mathbb{P}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{6} \mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,E,2)}] \otimes \mathbb{P}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{6} \mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{P}_{4}[\mathbb{Q}_{1,0}^{(k,E)}]}{24} \\ &+ \frac{\sqrt{6} \mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{P}_{5}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{2} \mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,0}^{(u,E,2)}] \otimes \mathbb{P}_{5}[\mathbb{P}_{1,1}^{(k,E)}]}{24} \\ &+ \frac{\sqrt{2} \mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,0}^{(u,E,2)}] \otimes \mathbb{P}_{5}[\mathbb{P}_{1,1}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{2} \mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,0}^{(u,E,2)}] \otimes \mathbb{P}_{5}[\mathbb{P}_{1,1}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{2} \mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,0}^{(u,E,2)}] \otimes \mathbb{P}_{5}[\mathbb{P}_{1,1}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{2} \mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,0}^{(u,E,2)}] \otimes \mathbb{P}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{2} \mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,0}^{(u,E,2)}] \otimes \mathbb{P}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{2} \mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,0}^{(u,E,2)}] \otimes \mathbb{P}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{2} \mathbb{X}_{11}[\mathbb{Q$$

$$\begin{array}{l}
\boxed{\text{No. 36}} \quad \hat{\mathbb{G}}_{3}^{(A_{1})}(1,-1) \ [M_{1},B_{1}] \\
\\
\hat{\mathbb{Z}}_{36} = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2,0}^{(b,E,2)}]}{2} \\
\end{array}$$

$$\begin{split} & \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(a,A_1)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} - \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(a,E)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,1}^{(k,E)}]}{8} + \frac{\sqrt{6}\mathbb{X}_{10}[\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E)}]}{6} \\ & - \frac{\sqrt{6}\mathbb{X}_{10}[\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,1}^{(k,E)}]}{24} + \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,$$

$$\begin{split} & \boxed{\text{No. } 37} \quad \hat{\mathbb{Q}}_{1}^{(A_{1})}(1,0) \; [\text{M}_{1},\text{B}_{1}] \\ & \hat{\mathbb{Z}}_{37} = \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{Y}_{11}[\mathbb{Q}_{1,0}^{(b,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E)}(1,0)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{1,1}^{(b,E)}]}{2} \end{split}$$

$$\hat{\mathbb{Z}}_{37}(k) = \frac{\mathbb{X}_{13}[G_{1,0}^{(a,E)}(1,0)] \otimes U_{10}[Q_{0}^{(u,A_1)}] \otimes \mathbb{F}_{2}[Q_{1,0}^{(k,E)}]}{4} + \frac{\sqrt{3}\mathbb{X}_{13}[G_{1,0}^{(a,E)}(1,0)] \otimes U_{11}[Q_{1,0}^{(u,E)}] \otimes \mathbb{F}_{1}[Q_{0}^{(k,A_1)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{13}[G_{1,0}^{(a,E)}(1,0)] \otimes U_{12}[Q_{1,1}^{(u,E)}] \otimes \mathbb{F}_{2}[Q_{1,0}^{(k,E)}]}{24} + \frac{\sqrt{3}\mathbb{X}_{13}[G_{1,0}^{(a,E)}(1,0)] \otimes U_{13}[Q_{2,0}^{(u,E)}] \otimes \mathbb{F}_{3}[Q_{1,0}^{(k,E)}]}{8} - \frac{\sqrt{2}\mathbb{X}_{13}[G_{1,0}^{(a,E)}(1,0)] \otimes U_{13}[Q_{1,0}^{(u,E)}] \otimes \mathbb{F}_{3}[Q_{1,1}^{(k,E)}]}{24} + \frac{\sqrt{3}\mathbb{X}_{13}[G_{1,0}^{(a,E)}(1,0)] \otimes U_{13}[Q_{1,0}^{(u,E)}] \otimes \mathbb{F}_{3}[Q_{1,0}^{(k,E)}]}{8} - \frac{\sqrt{2}\mathbb{X}_{13}[G_{1,0}^{(a,E)}(1,0)] \otimes U_{15}[Q_{2,1}^{(u,E)}] \otimes \mathbb{F}_{3}[Q_{1,1}^{(k,E)}]}{24} + \frac{\sqrt{3}\mathbb{X}_{13}[G_{1,0}^{(a,E)}(1,0)] \otimes U_{16}[T_{0,0}^{(u,A_1)}] \otimes \mathbb{F}_{4}[T_{1,0}^{(k,E)}]}{24} + \frac{\sqrt{2}\mathbb{X}_{13}[G_{1,0}^{(a,E)}(1,0)] \otimes U_{16}[T_{0,0}^{(u,A_1)}] \otimes \mathbb{F}_{5}[T_{1,1}^{(k,E)}]}{24} + \frac{\sqrt{2}\mathbb{X}_{13}[G_{1,0}^{(a,E)}(1,0)] \otimes U_{16}[T_{0,0}^{(u,A_1)}] \otimes \mathbb{F}_{5}[T_{1,1}^{(k,E)}]}}{24} + \frac{\sqrt{2}\mathbb{X}_{13}[G_{$$

No. 38
$$\hat{\mathbb{G}}_3^{(A_1)}(1,0)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{38} = -\frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E)}(1,0)]\otimes\mathbb{Y}_{13}[\mathbb{Q}_{2,0}^{(b,E,2)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E)}(1,0)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,E,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{38}(k) = -\frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_1)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{1,1}^{(u,E)}]}{8} + \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{1,1}^{(u,E)}]}}{8} + \frac{\sqrt{2$$

No. 39
$$\hat{\mathbb{Q}}_3^{(A_1,2)}(1,0)$$
 [M₁, B₁]
 $\hat{\mathbb{Z}}_{39} = \mathbb{X}_{36}[\mathbb{G}_1^{(a,A_2)}(1,0)] \otimes \mathbb{Y}_{15}[\mathbb{Q}_3^{(b,A_2)}]$

$$\begin{split} \hat{\mathbb{Z}}_{39}(\textbf{\textit{k}}) &= -\frac{\sqrt{6}\mathbb{X}_{36}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} + \frac{\sqrt{6}\mathbb{X}_{36}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{2}\mathbb{X}_{36}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{36}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{36}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,A_{2})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{36}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{2})}]}{6} - \frac{\sqrt{2}\mathbb{X}_{36}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{36}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{18}[\mathbb{T}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} \\ &- \frac{\sqrt{6}\mathbb{X}_{36}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} + \frac{\sqrt{6}\mathbb{X}_{36}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{20}[\mathbb{T}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} \\ &- \frac{\sqrt{6}\mathbb{X}_{36}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} + \frac{\sqrt{6}\mathbb{X}_{36}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{20}[\mathbb{T}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{12} \\ &- \frac{\sqrt{6}\mathbb{X}_{36}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{36}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{20}[\mathbb{T}_{2,1}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{36}[\mathbb{T}_{1,1}^{(u,E)}] \otimes \mathbb{T}_{10}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{T}_{10}[\mathbb{T}_{1,0}^{(u,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{36}[\mathbb{T}_{1,1}^{(u,E)}] \otimes \mathbb{T}_{10}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{T}_{10}[\mathbb{T}_{1,0}^{(u,E)}]}{12} \otimes \mathbb{T}_{10}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{T}_{10}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{T}_{10}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{T}_{10}[\mathbb{T}_{1,0}^{(u,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{36}[\mathbb{T}_{1,1}^{(u,E)}] \otimes \mathbb{T}_{1$$

$$\begin{split} & \boxed{ \text{No. 40} } & \hat{\mathbb{Q}}_{1}^{(A_{1})} \left[\mathbf{M}_{1}, \mathbf{B}_{1} \right] \\ & \hat{\mathbb{Z}}_{40} = \frac{\sqrt{2} \mathbb{X}_{16} \left[\mathbb{M}_{1,0}^{(a,E)} \right] \otimes \mathbb{Y}_{17} \left[\mathbb{T}_{1,0}^{(b,E)} \right]}{2} + \frac{\sqrt{2} \mathbb{X}_{17} \left[\mathbb{M}_{1,1}^{(a,E)} \right] \otimes \mathbb{Y}_{18} \left[\mathbb{T}_{1,1}^{(b,E)} \right]}{2} \end{aligned}$$

$$\hat{\mathbb{Z}}_{40}(k) = \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(a,A_1)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(a,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{8} + \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(a,E)}] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(a,E)}] \otimes \mathbb{U}_{14}[\mathbb{Q}_{1,1}^{(k,E)}]}{8} \\ - \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(a,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(a,E)}] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(a,E)}] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(k,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{17}[\mathbb{U}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(a,A_2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{4} \\ + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(k,E)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_1)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{17}[\mathbb{U}_{1,0}^{(a,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{4} \\ + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{17}[\mathbb{U}_{1,0}^{(k,E)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,0}^{(k,A_1)}]}{2} - \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{17}[\mathbb{U}_{1,0}^{(a,E)}] \otimes \mathbb{F}_{5}[\mathbb{U}_{1,1}^{(k,E)}]}{4} \\ + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{17}[\mathbb{U}_{1,0}^{(k,A_1)}]}{8} \otimes \mathbb{F}_{5}[\mathbb{U}_{1,0}^{(k,A_1)}]}{2} - \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{17}[\mathbb{U}_{1,0}^{(a,E)}] \otimes \mathbb{F}_{5}[\mathbb{U}_{1,0}^{(k,E)}]}{2} \\ - \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{17}[\mathbb{U}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{17}[\mathbb{U}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{17}[\mathbb{U}_{1,0}^{(a,E)}]}{2} \\ - \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{17}[\mathbb{U}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{17}[\mathbb{U}_{1,0}^{(a,E)}]}{2} \\ + \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1,1}^{(a,E)}] \otimes \mathbb{U}_{17}[\mathbb{U}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{17}[\mathbb{U}_{1,0}^{(a,E)}]}{2} \\ + \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{M}_{1,1}^{(a,E)}] \otimes \mathbb{U}_{17}[\mathbb{U}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{17}[\mathbb{U}_{1,0}^{(a,E)}]}{2} \\ + \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1,1}^{(a,E)}] \otimes \mathbb{U}_{18}[\mathbb{U}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{17}[\mathbb{U}_{1,0}^{(a,E)}]}}{2} \\ + \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1,1}^{(a,E)}] \otimes \mathbb{U}_{17}[\mathbb{U}_{1,0}^{(a,E)}] \otimes \mathbb{U$$

No. 41
$$\hat{\mathbb{G}}_3^{(A_1)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{41} = -\frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{Y}_{19}[\mathbb{T}_{2,0}^{(b,E,2)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1,1}^{(a,E)}] \otimes \mathbb{Y}_{20}[\mathbb{T}_{2,1}^{(b,E,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{41}(k) = \frac{\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_1)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(u,E)}]}{24} + \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{24} \\ + \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_2)}]}{8} + \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{8} \\ + \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{8} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,A_2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} \\ + \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{8} + \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,A_2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} \\ - \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{8} + \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,A_2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{8} \\ - \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{19}[\mathbb{T}_{2,u,E,2}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{24} + \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,A_2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,A_1)}]}{6} \\ - \frac{\mathbb{X}_{16}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{19}[\mathbb{T}_{2,u,E,2}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} + \frac{\mathbb{X}_{17}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{19}[\mathbb{Q}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{4} \\ + \frac{\mathbb{X}_{17}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{11}[\mathbb{Q}_{3}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ + \frac{\mathbb{X}_{17}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ + \frac{\mathbb{X}_{17}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{19}[\mathbb{U}_{1,0}^{(u,E)}] \otimes \mathbb{U}_{19}[\mathbb{U}_{3}^{(u,E,2)}]}{4} \\ + \frac{\mathbb{X}_{17}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{19}[\mathbb{U}_{3}^{(u,E,2)}] \otimes \mathbb{U}_{19}[\mathbb{U}_{3}^{(u,E,2)}]}{4} \\ + \frac{\mathbb{X}_{17}[\mathbb{M}_{1,0}^{(u,E)}] \otimes \mathbb{U}_{19$$

$$\hat{\mathbb{Z}}_{42}(\boldsymbol{k}) = \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{2})}]}{6} + \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{4} - \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} \\ + \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{12} - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} \\ + \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} \\ - \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{20}[\mathbb{T}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{21}[\mathbb{T}_{3}^{(u,A_{2})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{6} \\ - \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{20}[\mathbb{T}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{21}[\mathbb{T}_{3}^{(u,A_{2})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{20}[\mathbb{T}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{21}[\mathbb{T}_{3}^{(u,A_{2})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(u,E)}] \otimes \mathbb{V}_{20}[\mathbb{M}_{1}^{(u,E)}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(u,E)}] \otimes \mathbb{V}_{20}[\mathbb$$

$$\begin{split} & \boxed{\text{No. 43}} \quad \hat{\mathbb{Q}}_{1}^{(A_{1})}(1,1) \ [M_{1},B_{1}] \\ & \hat{\mathbb{Z}}_{43} = \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{Y}_{17}[\mathbb{T}_{1,0}^{(b,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{23}[\mathbb{M}_{1,1}^{(a,E)}(1,1)] \otimes \mathbb{Y}_{18}[\mathbb{T}_{1,1}^{(b,E)}]}{2} \end{split}$$

$$\hat{\mathbb{Z}}_{43}(k) = \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{8} + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E)}]}{8} + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E)}]}{8} + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E)}]}{8} + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E)}]}{8} + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E)}]}{24} + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E)}]}{4} + \frac{\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E)}]}{4} + \frac{\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E)}]}{4} + \frac{\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,A_{2})}]}{4} + \frac{\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,E)}]}{4} + \frac{\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{X}_{15}[\mathbb{Q}_{3}^{(u,E)}]}{4} + \frac{\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(u,E)}]}{4} + \frac{\mathbb{X}_{22}[\mathbb{M}$$

$$\hat{\mathbb{Z}}_{44} = -\frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{2,0}^{(b,E,2)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{23}[\mathbb{M}_{1,1}^{(a,E)}(1,1)] \otimes \mathbb{Y}_{20}[\mathbb{T}_{2,1}^{(b,E,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{44}(k) = \frac{\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_1)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{24} \\ - \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_2)}]}{6} + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{8} \\ + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{8} + \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,A_2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{8} \\ + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{8} + \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,A_2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{1} \\ - \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{8} + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,A_2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{1} \\ - \frac{\sqrt{6}\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{1} \\ + \frac{\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{1} \\ + \frac{\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{1} \\ + \frac{\mathbb{X}_{22}[\mathbb{M}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T$$

$$\begin{array}{|c|c|} \hline \text{No. } 45 & \hat{\mathbb{Q}}_3^{(A_1,2)}(1,1) \ [M_1,B_1] \\ \\ \hat{\mathbb{Z}}_{45} = \mathbb{X}_{18} [\mathbb{M}_1^{(a,A_2)}(1,1)] \otimes \mathbb{Y}_{21} [\mathbb{T}_3^{(b,A_2)}] \\ \end{array}$$

$$\begin{split} \hat{\mathbb{Z}}_{45}(\textbf{\textit{k}}) &= \frac{\sqrt{6}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{2})}]}{6} + \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{4} - \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{6}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} - \frac{\sqrt{6}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{12} \\ &- \frac{\sqrt{6}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{18}[\mathbb{T}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{20}[\mathbb{T}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{21}[\mathbb{T}_{3}^{(u,A_{2})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{6} \\ &- \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{20}[\mathbb{T}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{21}[\mathbb{T}_{3}^{(u,A_{2})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{20}[\mathbb{T}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{21}[\mathbb{T}_{3}^{(u,A_{2})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{20}[\mathbb{T}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(u,E,2)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(u,A_{2})}(1,1)] \otimes \mathbb{U}_{20}[\mathbb{T}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(u,E,2)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(u,E,2)}] \otimes \mathbb{T}_{2,0}^{(u,E,2)}}{4} \\ &- \frac{\mathbb{X}_{18}[\mathbb{M}_{1}^{(u,E,2)}] \otimes \mathbb{X}_{2}[\mathbb{M}_{1}^{(u,E,2)}]}{4} \\ &- \frac{\mathbb{X}_{18}[\mathbb{M}_{1}^{$$

$$\begin{split} & \boxed{\text{No. } 46} \quad \hat{\mathbb{Q}}_{1}^{(A_{1})}(1,-1) \; [\text{M}_{1},\text{B}_{1}] \\ & \hat{\mathbb{Z}}_{46} = \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{Y}_{17}[\mathbb{T}_{1,0}^{(b,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{Y}_{18}[\mathbb{T}_{1,1}^{(b,E)}]}{2} \end{split}$$

$$\begin{split} \hat{\mathbb{Z}}_{46}(k) &= \frac{\sqrt{3}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_1)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{8} \\ &- \frac{\sqrt{6}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{24} + \mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} \\ &- \frac{\sqrt{3}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E)}]}{4} + \mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,A_2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{3}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_1)}]}{6} + \mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{3}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_1)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{T}_{1,0}^{(u,E,E)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{6} - \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,1}^{(k,E)}]}{8} \\ &+ \frac{\sqrt{3}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{1,0}^{(u,E,E)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{6} + \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{1,0}^{(u,E,E)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]}{8} \\ &+ \frac{\sqrt{3}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E)}]}{8} + \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{8} \\ &+ \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E)}]}{8} + \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{8} \\ &+ \frac{\sqrt{3}\mathbb{$$

$$\begin{array}{l}
\boxed{\text{No. } 47} \quad \hat{\mathbb{G}}_{3}^{(A_{1})}(1,-1) \ [M_{1},B_{1}] \\
\\
\hat{\mathbb{Z}}_{47} = -\frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{2,0}^{(b,E,2)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{Y}_{20}[\mathbb{T}_{2,1}^{(b,E,2)}]}{2} \\
\end{array}$$

$$\begin{split} \hat{\mathbb{Z}}_{47}(k) &= \frac{\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_1)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{24} + \frac{\sqrt{6}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,Z)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{24} \\ &- \frac{\sqrt{3}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{8} + \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,Z)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{8} \\ &+ \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{8} - \frac{\sqrt{3}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{2,0}^{(u,E,Z)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{8} \\ &- \frac{\sqrt{3}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{2,0}^{(u,E,Z)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{8} \\ &- \frac{\sqrt{3}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{2,0}^{(u,E,Z)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{8} \\ &- \frac{\sqrt{6}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{2,0}^{(u,E,Z)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{8} \\ &- \frac{\sqrt{6}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{2,0}^{(u,E,Z)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,0}^{(k,E)}]}{8} \\ &- \frac{\sqrt{6}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{2,0}^{(u,E,Z)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{8} \\ &- \frac{\sqrt{6}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{2,0}^{(u,E,Z)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{8} \\ &- \frac{\sqrt{6}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{2,0}^{(u,E,Z)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{8} \\ &+ \frac{\sqrt{6}\mathbb{X}_{24}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{2,0}^{(u,E,Z)}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{1,0}^{(k,E)}]}{8} \\ &+ \frac{\sqrt{6}\mathbb{X}_{25}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{2,0}^{(u,E,Z)}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{1,0}^{(k,E)}]}{8} \\ &+ \frac{\sqrt{6}\mathbb{X}_{25}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{2,0}^{(u,E,Z)}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{1,0}^{(k,E)}]}{8} \\ &+ \frac{\sqrt{6}\mathbb{X}_{25}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{2,0}^{(u,E,Z)$$

No. 48
$$\hat{\mathbb{Q}}_{3}^{(A_{1},2)}(1,-1)$$
 [M₁, B₁] $\hat{\mathbb{Z}}_{48} = \mathbb{X}_{19} [\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{Y}_{21} [\mathbb{T}_{3}^{(b,A_{2})}$

$$\begin{split} \hat{\mathbb{Z}}_{48}(\textbf{\textit{k}}) &= \frac{\sqrt{6}\mathbb{X}_{19}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{2})}]}{6} + \frac{\sqrt{2}\mathbb{X}_{19}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{4} \\ &- \frac{\sqrt{6}\mathbb{X}_{19}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{19}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} \\ &- \frac{\sqrt{6}\mathbb{X}_{19}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{6}\mathbb{X}_{19}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{19}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{18}[\mathbb{T}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{2}\mathbb{X}_{19}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{19}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{20}[\mathbb{T}_{3}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{19}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{21}[\mathbb{T}_{3}^{(u,A_{2})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{6} \end{aligned}$$

No. 49
$$\hat{\mathbb{G}}_3^{(A_1)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{49} = \mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_1)}(1,-1)] \otimes \mathbb{Y}_{16}[\mathbb{T}_{0}^{(b,A_1)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{49}(\textbf{\textit{k}}) &= \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} \\ &- \frac{\sqrt{2}\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} - \frac{\sqrt{2}\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,A_{2})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{2})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{6} \\ &+ \frac{\sqrt{2}\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{18}[\mathbb{T}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{20}[\mathbb{T}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} \end{split}$$

No. 50
$$\hat{\mathbb{Q}}_3^{(A_1,1)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{50} = \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{Y}_{17}[\mathbb{T}_{1,0}^{(b,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{27}[\mathbb{M}_{3,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{Y}_{18}[\mathbb{T}_{1,1}^{(b,E)}]}{2}$$

$$\hat{Z}_{50}(k) = \frac{\sqrt{3} X_{20}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes U_{10}[\mathbb{Q}_{0}^{(u,A_1)}] \otimes F_4[\mathbb{T}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{2} X_{20}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes U_{12}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes F_4[\mathbb{T}_{1,0}^{(k,E)}]}{8} + \frac{\sqrt{2} X_{20}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes U_{12}[\mathbb{Q}_{1,1}^{(u,E,2)}] \otimes F_4[\mathbb{T}_{1,0}^{(k,E)}]}{2} - \frac{\sqrt{2} X_{20}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes U_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes F_5[\mathbb{T}_{1,1}^{(k,E)}]}{2} + \frac{\sqrt{2} X_{20}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes U_{14}[\mathbb{Q}_{2,1}^{(u,E,2)}] \otimes F_4[\mathbb{T}_{1,0}^{(k,E)}]}{2} - \frac{\sqrt{2} X_{20}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes U_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes F_5[\mathbb{T}_{1,1}^{(k,E)}]}{2} + \frac{\sqrt{2} X_{20}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes U_{14}[\mathbb{Q}_{2,1}^{(u,E,2)}] \otimes F_5[\mathbb{T}_{1,1}^{(k,E)}]}{2} + \frac{\sqrt{2} X_{20}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes U_{15}[\mathbb{Q}_{1,0}^{(a,E,1)}] \otimes F_5[\mathbb{Q}_{1,0}^{(k,E)}]}{2} + \frac{\sqrt{2} X_{20}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes U_{17}[\mathbb{T}_{1,0}^{(u,E,2)}] \otimes F_3[\mathbb{Q}_{1,1}^{(k,E)}]}{2} - \frac{\sqrt{2} X_{20}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes U_{18}[\mathbb{T}_{1,1}^{(u,E,2)}] \otimes F_2[\mathbb{Q}_{1,0}^{(k,E)}]}{2} + \frac{\sqrt{2} X_{20}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes U_{18}[\mathbb{T}_{1,1}^{(u,E,2)}] \otimes F_2[\mathbb{Q}_{1,0}^{(k,E)}]}{2} + \frac{\sqrt{2} X_{20}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes U_{18}[\mathbb{T}_{1,1}^{(u,E,2)}] \otimes F_2[\mathbb{Q}_{1,0}^{(k,E)}]}{2} + \frac{\sqrt{2} X_{20}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes U_{10}[\mathbb{Q}_{0}^{(u,E,2)}] \otimes F_2[\mathbb{Q}_{1,0}^{(k,E)}]}{2} + \frac{\sqrt{2} X_{20}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes U_{10}$$

$$\begin{array}{c} \boxed{\text{No. 51}} \quad \hat{\mathbb{Q}}_{3}^{(A_{1},2)}(1,-1) \ [M_{1},B_{1}] \\ \\ \hat{\mathbb{Z}}_{51} = \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{Y}_{17}[\mathbb{T}_{1,0}^{(b,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{M}_{3,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{Y}_{18}[\mathbb{T}_{1,1}^{(b,E)}]}{2} \\ \end{array}$$

$$\begin{split} \hat{Z}_{21}(k) &= \frac{\sqrt{3}\chi_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes U_{10}[\mathbb{Q}_{1,1}^{(u,A_1)}] \otimes \mathbb{F}_4[\mathsf{T}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{2}\chi_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes U_{12}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F}_4[\mathsf{T}_{1,0}^{(k,E)}]}{8} + \frac{\sqrt{2}\chi_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes U_{12}[\mathbb{Q}_{1,1}^{(u,E,2)}] \otimes \mathbb{F}_4[\mathsf{T}_{1,0}^{(k,E)}]}{8} - \frac{\sqrt{2}\chi_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes U_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_5[\mathsf{T}_{1,1}^{(k,E)}]}{8} \\ & - \frac{\sqrt{6}\chi_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes U_{14}[\mathbb{Q}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_4[\mathsf{T}_{1,0}^{(k,E)}]}{24} + \frac{\chi_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes U_{15}[\mathbb{Q}_{3}^{(u,E,2)}] \otimes \mathbb{F}_5[\mathsf{T}_{1,1}^{(k,E)}]}{4} \\ & - \frac{\chi_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes U_{15}[\mathbb{Q}_{3}^{(u,E,2)}] \otimes \mathbb{F}_5[\mathsf{T}_{1,1}^{(k,E)}]}{4} \\ & - \frac{\chi_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes U_{15}[\mathbb{Q}_{3}^{(u,E,2)}] \otimes \mathbb{F}_5[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ & - \frac{\chi_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes U_{15}[\mathbb{Q}_{3}^{(u,E,2)}] \otimes \mathbb{F}_5[\mathbb{Q}_{1,0}^{(k,E)}]}{4} \\ & + \frac{\chi_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes U_{15}[\mathbb{Q}_{3}^{(u,E,2)}] \otimes \mathbb{F}_5[\mathbb{Q}_{1,0}^{(u,E)}]}{4} \\ & + \frac{\chi_{28}[\mathbb{M}_{3,$$

No. 52
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{52} = -\frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)]\otimes\mathbb{Y}_{19}[\mathbb{T}_{2,0}^{(b,E,2)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{M}_{3,1}^{(a,E,2)}(1,-1)]\otimes\mathbb{Y}_{20}[\mathbb{T}_{2,1}^{(b,E,2)}]}{2}$$

$$\tilde{\mathbb{Z}}_{32}(k) = \frac{\mathbb{X}_{32}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(a,A_1)}] \otimes \mathbb{E}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(a,E)}]}{24} + \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(a,E)}]}{24} \otimes \mathbb{E}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{24} \\ + \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(a,E)}]} \otimes \mathbb{E}_{6}[\mathbb{T}_{3}^{(k,A_2)}]}{8} + \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(a,E,2)}]} \otimes \mathbb{E}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{8} \\ + \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(a,E,2)}]} \otimes \mathbb{E}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{8} + \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3,1}^{(a,E,2)}]} \otimes \mathbb{E}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{8} \\ + \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,1}^{(a,E)}]} \otimes \mathbb{E}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} \\ + \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,1}^{(a,E)}]} \otimes \mathbb{E}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{8} + \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3,1}^{(a,E,2)}]} \otimes \mathbb{E}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} \\ + \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3,1}^{(a,E,2)}]} \otimes \mathbb{E}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} + \frac{\mathbb{X}_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3,1}^{(a,E,2)}]} \otimes \mathbb{E}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} \\ + \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3,1}^{(a,E,2)}]} \otimes \mathbb{E}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} + \frac{\mathbb{X}_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3,1}^{(a,E,2)}]} \otimes \mathbb{E}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} \\ + \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3,1}^{(a,E,2)}]} \otimes \mathbb{E}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} \\ + \frac{\mathbb{X}_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3,1}^{(a,E,2)}]} \otimes \mathbb{E}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} \\ + \frac{\mathbb{X}_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3,1}^{(a,E,2)}]} \otimes \mathbb{E}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} \\ + \frac{\mathbb{X}_{28}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3,1}^{(a,E,2)}]} \otimes \mathbb{E}_{$$

$$\begin{split} & \boxed{ \text{No. 53} } \quad \hat{\mathbb{G}}_{3}^{(A_{1})}(1,-1) \ [M_{1},B_{1}] \\ & \hat{\mathbb{Z}}_{53} = \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{2,0}^{(b,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{27}[\mathbb{M}_{3,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{Y}_{20}[\mathbb{T}_{2,1}^{(b,E,2)}]}{2} \end{split}$$

$$\begin{split} \hat{b}_{53}(k) &= -\frac{\mathbb{X}_{26}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(a,A_1)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{24} - \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(a,E)}]} \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{24} \\ &+ \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(a,E)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_2)}]}{6}}{6} - \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(a,E,1)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,A_2)}]}{8} - \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{8} \\ &+ \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{0}^{(a,E,1)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} - \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{0}^{(a,E,1)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{0,0}^{(a,E,1)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{0}^{(a,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{0,0}^{(a,E,1)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{0}^{(a,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} - \frac{\mathbb{X}_{27}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{T}_{0,0}^{(a,E,1)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]} \\ &+ \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{0,0}^{(a,E,1)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} - \frac{\mathbb{X}_{27}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{0,0}^{(a,E,1)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,1}^{(k,E)}]} \\ &+ \frac{\sqrt{2}\mathbb{X}_{27}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{0,0}^{(a,E,1)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,1}^{(k,E)}]} \\ &+ \frac{\sqrt{2}\mathbb{X}_{27}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{0,0}^{(a$$

No. 54
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,-1)$$
 [M₁, B₁]
 $\hat{\mathbb{Z}}_{54} = -\mathbb{X}_{21}[\mathbb{M}_3^{(a,A_2,2)}(1,-1)] \otimes \mathbb{Y}_{21}[\mathbb{T}_3^{(b,A_2)}]$

$$\begin{split} \hat{\mathbb{Z}}_{54}(\boldsymbol{k}) &= -\frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)]\otimes\mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{2})}]}{6} - \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)]\otimes\mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(u,E)}]\otimes\mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)]\otimes\mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(u,E)}]\otimes\mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} - \frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)]\otimes\mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}]\otimes\mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)]\otimes\mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E,2)}]\otimes\mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)]\otimes\mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)]\otimes\mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E,2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)]\otimes\mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E,2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)]\otimes\mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E,2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{M}_{3}^{(u,A_{2},2)}(1,-1)]\otimes\mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E,2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{M}_{3}^{(u,A_{2},2)}(1,-1)]\otimes\mathbb{U}_{19}[\mathbb{T}_{3}^{(u,A_{2},2)}(1,-1)]\otimes\mathbb{U}_{19}[\mathbb{T}_{3}^{(u,A_{2},2)}(1,-1)]\otimes\mathbb{U}_{19}[\mathbb{T}_{3}^{(u,A_{2},2)}(1,-1)]\otimes\mathbb{U}_{19}[\mathbb{T}_{3}^{(u,A_{2},2)}(1,-1)]\otimes\mathbb{T}_{3}[\mathbb{T}_{3}^{(u,A_{2},2)}(1,-1)]\otimes\mathbb{T}_{3}[\mathbb{T}_{3}^{(u,A_{2},2)}(1,-1)]\otimes\mathbb{T}_{3}[\mathbb{T}_{3}^{(u,A_{2},2)}(1,-1)]\otimes\mathbb{T}_{3}[\mathbb{T}_{3}^{(u,A_{2},2)}(1,-1)]\otimes\mathbb{T}_{3}[\mathbb{T}_{3}^{(u,A_{2},2)}(1,-1)]\otimes\mathbb{T}$$

No. 55
$$\hat{\mathbb{Q}}_{3}^{(A_{1},2)}(1,-1) [M_{1},B_{1}]$$

 $\hat{\mathbb{Z}}_{55} = -\mathbb{X}_{20}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)] \otimes \mathbb{Y}_{21}[\mathbb{T}_{3}^{(b,A_{2})}]$

$$\begin{split} \hat{\mathbb{Z}}_{55}(\boldsymbol{k}) &= -\frac{\sqrt{6}\mathbb{X}_{20}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)]\otimes\mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{2})}]}{6} - \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)]\otimes\mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(u,E)}]\otimes\mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)]\otimes\mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(u,E)}]\otimes\mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} - \frac{\sqrt{6}\mathbb{X}_{20}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)]\otimes\mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}]\otimes\mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{20}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)]\otimes\mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} \\ &- \frac{\sqrt{6}\mathbb{X}_{20}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)]\otimes\mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} \\ &+ \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)]\otimes\mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E,2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)]\otimes\mathbb{U}_{20}[\mathbb{T}_{2,1}^{(u,E,2)}]\otimes\mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{4} - \frac{\sqrt{6}\mathbb{X}_{20}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)]\otimes\mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E,2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{20}[\mathbb{M}_{3}^{(u,A_{2},1)}(1,-1)]\otimes\mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E,2)}]\otimes\mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(u,E)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{20}[\mathbb{M}_{3}^{(u,A_{2},1)}(1,-1)]\otimes\mathbb{U}_{3}[\mathbb{T}_{3}^{(u,A_{2},1)}(1,-1)]\otimes\mathbb{U}_{3}[\mathbb{T}_{3}^{(u,A_{2},1)}(1,-1)]\otimes\mathbb{U}_{3}[\mathbb{T}_{3}^{(u,A_{2},1)}(1,-1)]\otimes\mathbb{U}_{3}[\mathbb{T}_{3}^{(u,A_{2},1)}(1,-1)]\otimes\mathbb{U}_{3}[\mathbb{T}_{3}^{(u,A_{2},1)}(1,-1)]\otimes\mathbb{U}_{3}[\mathbb{T}_{3}^{(u,A_{2},1)}(1,-1)]\otimes\mathbb{U}_{3}[\mathbb{$$

No. 56
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,0)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{56} = \mathbb{X}_{35}[\mathbb{T}_2^{(a,A_1)}(1,0)] \otimes \mathbb{Y}_{16}[\mathbb{T}_0^{(b,A_1)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{56}(\textbf{\textit{k}}) &= \frac{\sqrt{6}\mathbb{X}_{35}[\mathbb{T}_{2}^{(a,A_{1})}(1,0)] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{6}\mathbb{X}_{35}[\mathbb{T}_{2}^{(a,A_{1})}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{12} - \frac{\sqrt{2}\mathbb{X}_{35}[\mathbb{T}_{2}^{(a,A_{1})}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} \\ &- \frac{\sqrt{6}\mathbb{X}_{35}[\mathbb{T}_{2}^{(a,A_{1})}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{35}[\mathbb{T}_{2}^{(a,A_{1})}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,A_{2})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,A_{2})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{35}[\mathbb{T}_{2}^{(a,A_{1})}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{6} + \frac{\sqrt{2}\mathbb{X}_{35}[\mathbb{T}_{2}^{(a,A_{1})}(1,0)] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{35}[\mathbb{T}_{2}^{(a,A_{1})}(1,0)] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{4} \\ &+ \frac{\sqrt{6}\mathbb{X}_{35}[\mathbb{T}_{2}^{(a,A_{1})}(1,0)] \otimes \mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{6}\mathbb{X}_{35}[\mathbb{T}_{2}^{(a,A_{1})}(1,0)] \otimes \mathbb{U}_{20}[\mathbb{T}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{35}[\mathbb{T}_{2}^{(a,A_{1})}(1,0)] \otimes \mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} + \frac{\sqrt{6}\mathbb{X}_{35}[\mathbb{T}_{2}^{(a,A_{1})}(1,0)] \otimes \mathbb{U}_{20}[\mathbb{T}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{35}[\mathbb{T}_{2}^{(a,A_{1})}(1,0)] \otimes \mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{35}[\mathbb{T}_{2}^{(a,A_{1})}(1,0)] \otimes \mathbb{U}_{19}[\mathbb{T}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{35}[\mathbb{T}_{2}^{(a,A_{1})}(1,0)] \otimes \mathbb{U}_{20}[\mathbb{T}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(u,E)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{35}[\mathbb{T}_{2}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(u,E,2)}]}{12} \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(u,E,2)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{35}[\mathbb{T}_{2}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(u,E,2)}]}{12} \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,$$

$$\begin{split} \widehat{\mathbb{N}}_{0..} & = \widehat{\mathbb{V}}_{0..}^{(A^{1})}(1,0) & = \mathbb{N}_{0..} \\ \widehat{\mathbb{I}}_{0..}^{(A^{1})}(1,0) & = \mathbb{N}_{0..} \\$$

$$\begin{split} & \boxed{\text{No. 58}} \quad \hat{\mathbb{Q}}_{3}^{(A_{1},2)}(1,0) \ [M_{1},B_{1}] \\ & \hat{\mathbb{Z}}_{58} = -\frac{\sqrt{2}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{Y}_{17}[\mathbb{T}_{1,0}^{(b,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2,1}^{(a,E,2)}(1,0)] \otimes \mathbb{Y}_{18}[\mathbb{T}_{1,1}^{(b,E)}]}{2} \end{split}$$

$$\begin{split} \hat{\mathbb{Z}}_{58}(\pmb{k}) &= -\frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{12} - \frac{\sqrt{2}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{8} \\ &+ \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{24} + \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E,2)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{2,1}^{(u,E,2)}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E,2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{4} + \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,E,2)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{6} \\ + \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{3}^{(u,E,2)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{1,1}^{(k,E)}]}{4} \\ + \frac{\sqrt{2}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{17}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{8} \\ + \frac{\sqrt{3}\mathbb{X}_{33}[\mathbb{T}_{2,1}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{2,0}^{(u,A)}] \otimes \mathbb{F}_{1}[\mathbb{T}_{1,1}^{(k,E)}]}{8} \\ + \frac{\sqrt{3}\mathbb{X}_{33}[\mathbb{T}_{2,1}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{2,0}^{(u,E)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,0}^{(k,E)}]}{8} \\ + \frac{\sqrt{3}\mathbb{X}_{33}[\mathbb{T}_{2,1}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{2,0}^{(u,E)}] \otimes \mathbb{F}_{2}[\mathbb{$$

$$\hat{\mathbb{Z}}_{59} = \frac{\sqrt{2}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{2,0}^{(b,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2,1}^{(a,E,2)}(1,0)] \otimes \mathbb{Y}_{20}[\mathbb{T}_{2,1}^{(b,E,2)}]}{2}$$

$$\hat{\mathbb{Z}}_{50}(k) = -\frac{\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_1)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{4} - \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1,0}^{(u,E)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{24} - \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E)}]}{24} + \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(u,E)}]}{6} \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]} + \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{8} + \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{1,0}^{(u,E,E)}]}{8} + \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{T}_{2,0}^{(u,E,2)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E)}]}{8} + \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{T}_{2,0}^{(u,E,2)}]}{8} + \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{T}_{2,0}^{(u,E,2)}]}{8} + \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{T}_{2,0}^{(u,E,2)}]}{8} + \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{T}_{2,0}^{(u,E,2)}]}{8} \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]} + \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{T}_{2,0}^{(u,E,2)}]}{8} + \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{T}_{2,0}^{(u,E,2)}]}{8} \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]} + \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{T}_{2,0}^{(u,E,2)}]}{8} \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]} + \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{T}_{2,0}^{(u,E,2)}]}{8} \otimes \mathbb{F}_{5}[\mathbb{Q}_{1,0}^{(k,E)}]} + \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{T}_{2,0}^{(u,E,2)}]}{8} \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(u,E)}]} + \frac{\sqrt{3}\mathbb{X}_{32$$

$$\begin{split} & \boxed{\text{No. 60}} \quad \hat{\mathbb{G}}_{3}^{(A_{1})}(1,0) \ [M_{1},B_{1}] \\ & \hat{\mathbb{Z}}_{60} = \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{T}_{2,0}^{(a,E,1)}(1,0)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{2,0}^{(b,E,2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{31}[\mathbb{T}_{2,1}^{(a,E,1)}(1,0)] \otimes \mathbb{Y}_{20}[\mathbb{T}_{2,1}^{(b,E,2)}]}{2} \end{split}$$

$$\begin{array}{l} \frac{1}{2} \delta_{0}(\mathbf{k}) = -\frac{1}{2} \frac{1}{3} \delta_{0} \left[\frac{1}{2} \delta_{0}^{(a,E,1)}(1,0) \right] \otimes U_{10} \left[\mathbb{Q}_{0}^{(u,A_{1})} \right] \otimes \mathbb{F}_{4} \left[\mathbb{T}_{1,0}^{(k,E)} \right]}{4} - \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \left[\mathbb{T}_{1,0}^{(a,E,1)}(1,0) \right] \otimes U_{11} \left[\mathbb{Q}_{1,0}^{(u,E)} \right] \otimes \mathbb{F}_{5} \left[\mathbb{T}_{1,1}^{(k,E)} \right]}{1} - \frac{1}{2} \frac{1}$$

Table 5: Atomic SAMB group.

group	bra	ket		
M_1	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$		

Table 6: Atomic SAMB.

symbol	type	group	form
\mathbb{X}_1	$\mathbb{Q}_0^{(a,A_1)}$	M ₁	$\begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} \end{pmatrix}$
\mathbb{X}_2	$\mathbb{Q}_2^{(a,A_1)}$	$ m M_1$	$\begin{pmatrix} -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & 0\\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0\\ 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0\\ 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{3} & 0\\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{3} \end{pmatrix}$
\mathbb{X}_3	$\mathbb{Q}_0^{(a,A_1)}(1,1)$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{3} & 0 \\ 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & 0 & 0 & \frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}}{6} & 0 \\ \frac{\sqrt{3}i}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} \\ 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & -\frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 \\ \frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & -\frac{\sqrt{6}}{12} \\ 0 & 0 & 0 & \frac{\sqrt{6}i}{6} & \frac{\sqrt{6}i}{12} & 0 \\ 0 & \frac{\sqrt{6}i}{6} & 0 & 0 & 0 & \frac{\sqrt{6}i}{12} \\ 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & 0 & \frac{\sqrt{6}i}{12} & 0 \\ 0 & \frac{\sqrt{6}i}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 \\ -\frac{\sqrt{6}i}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_4	$\mathbb{Q}_2^{(a,A_1)}(1,-1)$	$ m M_1$	$\begin{pmatrix} 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & -\frac{\sqrt{6}}{12} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}i}{6} & \frac{\sqrt{6}}{12} & 0 \\ \frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{6}i}{12} \\ 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & \frac{\sqrt{6}i}{12} & 0 \\ 0 & \frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 \\ -\frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{5}	$\mathbb{Q}_{2,0}^{(a,E,1)}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$

 $continued\ \dots$

Table 6

symbol	type	group	form
\mathbb{X}_6	$\mathbb{Q}_{2,1}^{(a,E,1)}$	M_1	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{X}_7	$\mathbb{Q}_{2,0}^{(a,E,2)}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 \\ -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$
\mathbb{X}_8	$\mathbb{Q}_{2,1}^{(a,E,2)}$	$ m M_1$	$\begin{pmatrix} -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
\mathbb{X}_9	$\mathbb{Q}_{2,0}^{(a,E,1)}(1,-1)$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0\\ 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0\\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4}\\ 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 \end{pmatrix}$
\mathbb{X}_{10}	$\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)$	$ m M_1$	$\begin{pmatrix} 4 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 \\ 0 & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & -\frac{\sqrt{2}i}{4} \\ 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

 $continued \dots$

Table 6

symbol	type	group	form
\mathbb{X}_{11}	$\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 \\ \frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{12}	$\mathbb{Q}_{2,1}^{(a,E,2)}(1,-1)$	$ m M_1$	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 \\ 0 & -\frac{\sqrt{2}}{4} & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 \\ \frac{\sqrt{2}}{4} & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 \end{pmatrix} $
\mathbb{X}_{13}	$\mathbb{G}_{1,0}^{(a,E)}(1,0)$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0\\ 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & \frac{\sqrt{2}i}{4} & 0\\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4}\\ 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 \end{pmatrix}$
\mathbb{X}_{14}	$\mathbb{G}_{1,1}^{(a,E)}(1,0)$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}i}{4} & 0\\ 0 & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & \frac{\sqrt{2}i}{4}\\ 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0\\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0\\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0\\ 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{15}	$\mathbb{M}_{1}^{(a,A_{2})}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & -\frac{i}{2} & 0 & 0 & 0 \\ 0 & 0 & -\frac{i}{2} & 0 & 0 & 0 \\ \frac{i}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{i}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$

Table 6

symbol	type	group	form
\mathbb{X}_{16}	$\mathbb{M}_{1,0}^{(a,E)}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & -\frac{i}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{i}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$
\mathbb{X}_{17}	$\mathbb{M}_{1,1}^{(a,E)}$	$ m M_1$	$egin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 &$
\mathbb{X}_{18}	$\mathbb{M}_1^{(a,A_2)}(1,1)$	$ m M_1$	$\begin{pmatrix} -\frac{\sqrt{30}}{30} & 0 & 0 & 0 & 0 & \frac{\sqrt{30}}{20} \\ 0 & \frac{\sqrt{30}}{30} & 0 & 0 & \frac{\sqrt{30}}{20} & 0 \\ 0 & 0 & -\frac{\sqrt{30}}{30} & 0 & 0 & -\frac{\sqrt{30}i}{20} \\ 0 & 0 & 0 & \frac{\sqrt{30}}{30} & \frac{\sqrt{30}i}{20} & 0 \\ 0 & \frac{\sqrt{30}}{20} & 0 & -\frac{\sqrt{30}i}{20} & \frac{\sqrt{30}}{15} & 0 \\ \frac{\sqrt{30}}{20} & 0 & \frac{\sqrt{30}i}{20} & 0 & 0 & -\frac{\sqrt{30}}{15} \end{pmatrix}$
\mathbb{X}_{19}	$\mathbb{M}_{1}^{(a,A_{2})}(1,-1)$	$ m M_1$	$\begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{6} \end{pmatrix}$
\mathbb{X}_{20}	$\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)$	$ m M_1$	$\begin{pmatrix} -\frac{\sqrt{5}}{10} & 0 & 0 & 0 & 0 & -\frac{\sqrt{5}}{10} \\ 0 & \frac{\sqrt{5}}{10} & 0 & 0 & -\frac{\sqrt{5}}{10} & 0 \\ 0 & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 & \frac{\sqrt{5}i}{10} \\ 0 & 0 & 0 & \frac{\sqrt{5}}{10} & -\frac{\sqrt{5}i}{10} & 0 \\ 0 & -\frac{\sqrt{5}}{10} & 0 & \frac{\sqrt{5}i}{10} & \frac{\sqrt{5}}{5} & 0 \\ -\frac{\sqrt{5}}{10} & 0 & -\frac{\sqrt{5}i}{10} & 0 & 0 & -\frac{\sqrt{5}}{5} \end{pmatrix}$

Table 6

Table 6			
symbol	type	group	form
\mathbb{X}_{21}	$\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)$	$ m M_1$	$\begin{pmatrix} 0 & -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0\\ \frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0\\ 0 & \frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} & 0 & 0\\ \frac{\sqrt{2}}{4} & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 &$
\mathbb{X}_{22}	$\mathbb{M}_{1,0}^{(a,E)}(1,1)$	$ m M_1$	$\begin{pmatrix} 0 & -\frac{\sqrt{30}i}{30} & 0 & -\frac{\sqrt{30}}{20} & 0 & 0\\ \frac{\sqrt{30}i}{30} & 0 & -\frac{\sqrt{30}}{20} & 0 & 0 & 0\\ 0 & -\frac{\sqrt{30}}{20} & 0 & \frac{\sqrt{30}i}{15} & -\frac{\sqrt{30}}{20} & 0\\ -\frac{\sqrt{30}}{20} & 0 & -\frac{\sqrt{30}i}{15} & 0 & 0 & \frac{\sqrt{30}}{20}\\ 0 & 0 & -\frac{\sqrt{30}i}{20} & 0 & 0 & -\frac{\sqrt{30}i}{30}\\ 0 & 0 & 0 & \frac{\sqrt{30}}{20} & \frac{\sqrt{30}i}{30} & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & \frac{\sqrt{30}}{15} & 0 & -\frac{\sqrt{30}i}{20} & \frac{\sqrt{30}i}{20} & 0\\ 0 & 0 & -\frac{\sqrt{30}i}{20} & \frac{\sqrt{30}i}{20} & \frac{\sqrt{30}i}{20} & 0\\ 0 & 0 & 0 & -\frac{\sqrt{30}i}{20} & \frac{\sqrt{30}i}{20} & 0 \end{pmatrix}$
\mathbb{X}_{23}	$\mathbb{M}_{1,1}^{(a,E)}(1,1)$	M_1	$\begin{bmatrix} \frac{\sqrt{30}}{15} & 0 & \frac{\sqrt{30}i}{20} & 0 & 0 & -\frac{\sqrt{30}}{20} \\ 0 & -\frac{\sqrt{30}i}{20} & 0 & -\frac{\sqrt{30}}{30} & 0 & 0 \\ \frac{\sqrt{30}i}{20} & 0 & -\frac{\sqrt{30}}{30} & 0 & 0 & 0 \\ \frac{\sqrt{30}}{20} & 0 & 0 & 0 & 0 & -\frac{\sqrt{30}}{30} \\ 0 & -\frac{\sqrt{30}}{20} & 0 & 0 & -\frac{\sqrt{30}}{30} & 0 \end{bmatrix}$
\mathbb{X}_{24}	$\mathbb{M}_{1,0}^{(a,E)}(1,-1)$	$ m M_1$	$\begin{pmatrix} 0 & \frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}i}{6} & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}i}{6} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 \end{pmatrix}$
\mathbb{X}_{25}	$\mathbb{M}_{1,1}^{(a,E)}(1,-1)$	$ m M_1$	$\begin{pmatrix} 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \end{pmatrix}$

Table 6

symbol	type	group	form
X ₂₆	$\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)$	M_1	$\begin{pmatrix} 0 & -\frac{\sqrt{30}i}{60} & 0 & \frac{\sqrt{30}}{60} & 0 & 0\\ \frac{\sqrt{30}i}{60} & 0 & \frac{\sqrt{30}}{60} & 0 & 0 & 0\\ 0 & \frac{\sqrt{30}}{60} & 0 & -\frac{\sqrt{30}i}{20} & -\frac{\sqrt{30}}{15} & 0\\ \frac{\sqrt{30}}{60} & 0 & \frac{\sqrt{30}i}{20} & 0 & 0 & \frac{\sqrt{30}i}{15}\\ 0 & 0 & -\frac{\sqrt{30}i}{20} & 0 & 0 & \frac{\sqrt{30}i}{20} \end{pmatrix}$
\mathbb{X}_{27}	$\mathbb{M}_{3,1}^{(a,E,1)}(1,-1)$	$ m M_1$	$ \begin{pmatrix} 0 & -\frac{\sqrt{30}}{20} & 0 & \frac{\sqrt{30}i}{60} & \frac{\sqrt{30}}{15} & 0\\ -\frac{\sqrt{30}}{20} & 0 & -\frac{\sqrt{30}i}{60} & 0 & 0 & -\frac{\sqrt{30}}{15}\\ 0 & \frac{\sqrt{30}i}{60} & 0 & -\frac{\sqrt{30}}{60} & 0 & 0\\ -\frac{\sqrt{30}i}{60} & 0 & -\frac{\sqrt{30}}{60} & 0 & 0 & 0\\ \frac{\sqrt{30}}{15} & 0 & 0 & 0 & 0 & \frac{\sqrt{30}}{15}\\ 0 & -\frac{\sqrt{30}}{15} & 0 & 0 & 0 & \frac{\sqrt{30}}{15} & 0 \end{pmatrix} $
\mathbb{X}_{28}	$\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)$	$ m M_1$	$\begin{pmatrix} \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}}{6} & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}i}{6} \\ 0 & 0 & 0 & \frac{\sqrt{3}}{6} & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & \frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 \\ \frac{\sqrt{3}}{6} & 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{29}	$\mathbb{M}_{3,1}^{(a,E,2)}(1,-1)$	$ m M_1$	$\begin{pmatrix} 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}i}{6} \\ 0 & 0 & 0 & \frac{\sqrt{3}}{6} & -\frac{\sqrt{3}i}{6} & 0 \\ -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}}{6} \\ 0 & \frac{\sqrt{3}i}{6} & 0 & 0 & -\frac{\sqrt{3}}{6} & 0 \\ 0 & \frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 \\ -\frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 \end{pmatrix}$
\mathbb{X}_{30}	$\mathbb{T}_{2,0}^{(a,E,1)}(1,0)$	$ m M_1$	$\begin{pmatrix} 0 & \frac{\sqrt{6}i}{6} & 0 & \frac{\sqrt{6}}{12} & 0 & 0\\ -\frac{\sqrt{6}i}{6} & 0 & \frac{\sqrt{6}}{12} & 0 & 0 & 0\\ 0 & \frac{\sqrt{6}}{12} & 0 & 0 & -\frac{\sqrt{6}}{12} & 0\\ \frac{\sqrt{6}}{12} & 0 & 0 & 0 & \frac{\sqrt{6}}{12}\\ 0 & 0 & -\frac{\sqrt{6}}{12} & 0 & 0 & -\frac{\sqrt{6}i}{6}\\ 0 & 0 & 0 & \frac{\sqrt{6}}{12} & \frac{\sqrt{6}i}{6} & 0 \end{pmatrix}$

Table 6

symbol	type	group	form
ay iii bol	туре	group	
\mathbb{X}_{31}	$\mathbb{T}_{2,1}^{(a,E,1)}(1,0)$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{6}i}{12} & \frac{\sqrt{6}}{12} & 0\\ 0 & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 & -\frac{\sqrt{6}}{12}\\ 0 & \frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{6} & 0 & 0\\ -\frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0\\ \frac{\sqrt{6}}{12} & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{6}\\ 0 & -\frac{\sqrt{6}}{12} & 0 & 0 & -\frac{\sqrt{6}}{6} & 0 \end{pmatrix}$
\mathbb{X}_{32}	$\mathbb{T}_{2,0}^{(a,E,2)}(1,0)$	$ m M_1$	$\begin{pmatrix} -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{12} \\ 0 & \frac{\sqrt{6}}{6} & 0 & 0 & \frac{\sqrt{6}}{12} & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & \frac{\sqrt{6}i}{12} \\ 0 & 0 & 0 & -\frac{\sqrt{6}}{6} & -\frac{\sqrt{6}i}{12} & 0 \\ 0 & \frac{\sqrt{6}}{12} & 0 & \frac{\sqrt{6}i}{12} & 0 & 0 \\ \frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{33}	$\mathbb{T}_{2,1}^{(a,E,2)}(1,0)$	$ m M_1$	$\begin{pmatrix} 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & \frac{\sqrt{6}i}{12} \\ 0 & 0 & 0 & -\frac{\sqrt{6}}{6} & -\frac{\sqrt{6}i}{12} & 0 \\ \frac{\sqrt{6}}{6} & 0 & 0 & 0 & -\frac{\sqrt{6}}{12} \\ 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & -\frac{\sqrt{6}}{12} & 0 \\ 0 & \frac{\sqrt{6}i}{12} & 0 & -\frac{\sqrt{6}}{12} & 0 & 0 \\ -\frac{\sqrt{6}i}{12} & 0 & -\frac{\sqrt{6}}{12} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{34}	$\mathbb{M}_{3}^{(a,A_{1})}(1,-1)$	$ m M_1$	$\begin{pmatrix} 12 & 12 & 12 & \sqrt{2}i & 0 & 0 \\ 0 & \frac{\sqrt{2}}{4} & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0$
\mathbb{X}_{35}	$\mathbb{T}_2^{(a,A_1)}(1,0)$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 \end{pmatrix}$

Table 6

symbol	type	group	$_{ m form}$
X36	$\mathbb{G}_1^{(a,A_2)}(1,0)$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & 0 \\ 0 & -\frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 \end{pmatrix}$

Table 7: Cluster SAMB.

symbol	type	cluster	form
\mathbb{Y}_1	$\mathbb{Q}_0^{(s,A_1)}$	S_1	$\left(\frac{\sqrt{3}}{3} \frac{\sqrt{3}}{3} \frac{\sqrt{3}}{3} \right)$
\mathbb{Y}_2	$\mathbb{Q}_{2,0}^{(s,E,2)}$	S_1	$\left(-\frac{\sqrt{2}}{2} 0 \frac{\sqrt{2}}{2}\right)$
\mathbb{Y}_3	$\mathbb{Q}_{2,1}^{(s,E,2)}$	S_1	$\left(\frac{\sqrt{6}}{6} - \frac{\sqrt{6}}{3} - \frac{\sqrt{6}}{6}\right)$
\mathbb{Y}_4	$\mathbb{Q}_0^{(s,A_1)}$	S_2	$ \begin{pmatrix} \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} \end{pmatrix} $
\mathbb{Y}_5	$\mathbb{Q}_{1,0}^{(s,E)}$	S_2	$ \begin{pmatrix} \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} \end{pmatrix} \\ \begin{pmatrix} -\frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{6} \end{pmatrix} $
\mathbb{Y}_6	$\mathbb{Q}_{1,1}^{(s,E)}$	S_2	$\left(-\frac{1}{2} 0 \frac{1}{2} -\frac{1}{2} 0 \frac{1}{2} \right)$
\mathbb{Y}_7	$\mathbb{Q}_{2,0}^{(s,E,2)}$	S_2	$\left(-\frac{1}{2} 0 \frac{1}{2} \frac{1}{2} 0 -\frac{1}{2} \right)$
\mathbb{Y}_8	$\mathbb{Q}_{2,1}^{(s,E,2)}$	S_2	$\left(\begin{array}{cccc} \sqrt{3} & -\sqrt{3} & \sqrt{3} & \sqrt{3} & \sqrt{3} & -\sqrt{3} & \sqrt{3} \\ 6 & & 6 & & 6 & & 6 \end{array}\right)$
\mathbb{Y}_9	$\mathbb{Q}_3^{(s,A_2)}$	S_2	$ \begin{pmatrix} \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{6} \end{pmatrix} $
\mathbb{Y}_{10}	$\mathbb{Q}_0^{(b,A_1)}$	B_1	
\mathbb{Y}_{11}	$\mathbb{Q}_{1,0}^{(b,E)}$	B_1	
\mathbb{Y}_{12}	$\mathbb{Q}_{1,1}^{(b,E)}$	B_1	$\begin{pmatrix} -\frac{1}{2} & 0 & \frac{1}{2} & -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$
\mathbb{Y}_{13}	$\mathbb{Q}_{1,1}^{(b,E,2)}$ $\mathbb{Q}_{2,0}^{(b,E,2)}$	B_1	$\begin{pmatrix} -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} & 0 & -\frac{1}{2} \end{pmatrix}$
\mathbb{Y}_{14}	(0, E, 2)	B_1	$\begin{pmatrix} \frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{6} \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{6} \end{pmatrix}$
\mathbb{Y}_{15}	$\mathbb{Q}_{3}^{(b,A_{2})}$	B_1	$\begin{pmatrix} \sqrt{6} & \sqrt{6} & \sqrt{6} & \sqrt{6} & -\frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{6} \end{pmatrix}$
\mathbb{Y}_{16}	$\mathbb{T}_0^{(b,A_1)}$	B_1	$\left(\begin{array}{ccc} \sqrt{6}i & \sqrt{6}i & \sqrt{6}i & \sqrt{6}i & \sqrt{6}i & \sqrt{6}i \\ 6 & 6 & 6 & 6 \end{array}\right)$
\mathbb{Y}_{17}	$\mathbb{T}_{1,0}^{(b,E)}$	B_1	$\left(-\frac{\sqrt{3}i}{6} \frac{\sqrt{3}i}{3} -\frac{\sqrt{3}i}{6} \frac{\sqrt{3}i}{6} -\frac{\sqrt{3}i}{3} \frac{\sqrt{3}i}{6}\right)$

Table 7

symbol	type	cluster	form
\mathbb{Y}_{18}	$\mathbb{T}_{1,1}^{(b,E)}$	B_1	$\left(-rac{i}{2} 0 rac{i}{2} -rac{i}{2} 0 rac{i}{2} ight)$
\mathbb{Y}_{19}	$\mathbb{T}_{2,0}^{(b,E,2)}$	B_1	$\left(-rac{i}{2} 0 rac{i}{2} rac{i}{2} 0 -rac{i}{2} ight)$
\mathbb{Y}_{20}	$\mathbb{T}_{2,1}^{(b,E,2)}$	B_1	$\left(\begin{array}{cccc} \sqrt{3}i & -\sqrt{3}i & \sqrt{3}i & \sqrt{3}i & \sqrt{3}i & -\sqrt{3}i & \sqrt{3}i \\ 6 & -\sqrt{3}i & \sqrt{3}i & \sqrt{3}i & 6 \end{array}\right)$
\mathbb{Y}_{21}	$\mathbb{T}_3^{(b,A_2)}$	B_1	$ \begin{pmatrix} \sqrt{6}i & \sqrt{6}i & \sqrt{6}i & -\sqrt{6}i & -\sqrt{6}i & -\sqrt{6}i & -\sqrt{6}i \end{pmatrix} $

Table 8: Uniform SAMB.

symbol	type	cluster				forr	n				
			$\sqrt{\frac{\sqrt{3}}{3}}$	0	0	0	0	0	0	0	0)
			0	$\frac{\sqrt{3}}{3}$	0	0	0	0	0	0	0
			0	0	$\frac{\sqrt{3}}{3}$	0	0	0	0	0	0
			0	0	0	0	0	0	0	0	0
\mathbb{U}_1	$\mathbb{Q}_0^{(s,A_1)}$	S_1	0	0	0	0	0	0	0	0	0
			0	0	0	0	0	0	0	0	0
			0	0	0	0	0	0	0	0	0
			0	0	0	0	0	0	0	0	0
			0 /	0	0	0	0	0	0	0	0)
			$\left(-\frac{\sqrt{2}}{2}\right)$	0	0	0	0	0	0	0	0
			0	0	0	0	0	0	0	0	0
			0	0	$\frac{\sqrt{2}}{2}$	0	0	0	0	0	0
	>		0	0	0	0	0	0	0	0	0
\mathbb{U}_2	$\mathbb{Q}_{2,0}^{(s,E,2)}$	S_1	0	0	0	0	0	0	0	0	0
			0	0	0	0	0	0	0	0	0
			0	0	0	0	0	0	0	0	0
			0	0	0	0	0	0	0	0	0
			0	0	0	0	0	0	0	0	0)

symbol	type	cluster			fo	orm			
\mathbb{U}_3	$\mathbb{Q}_{2,1}^{(s,E,2)}$	S_1	$\begin{pmatrix} \frac{\sqrt{6}}{6} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$ \begin{array}{c} 0 \\ -\frac{\sqrt{6}}{3} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ \sqrt{6} \\ 6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0
\mathbb{U}_4	$\mathbb{Q}_0^{(s,A_1)}$	S_2	$\begin{pmatrix} 0 & 0 \\ 0 $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \frac{\sqrt{6}}{6} \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \frac{\sqrt{6}}{6} \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{ccc} 0 & & & & \\ 0 & & & & \\ 0 & & & & \\ 0 & & & & \\ \frac{\sqrt{6}}{6} & & & \\ 0 & & & & \\ \end{array} $	$ \begin{array}{ccc} 0 & & & \\ 0 & & & \\ 0 & & & \\ 0 & & & \\ \frac{\sqrt{6}}{6} & & \\ 0 & & & \\ \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \frac{\sqrt{6}}{6} \end{array} $
\mathbb{U}_5	$\mathbb{Q}_{1,0}^{(s,E)}$	S_2	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	$ \begin{array}{ccc} 0 & & & & & \\ 0 & & & & & \\ 0 & & & & \\ -\frac{\sqrt{3}}{6} & & & \\ 0 & & & & \\ 0 & & & & \\ 0 & & & & \\ 0 & & & & \\ 0 & & & & \\ \end{array} $	$ \begin{array}{ccc} 0 & & & & & \\ 0 & & & & & \\ 0 & & & & & \\ \frac{\sqrt{3}}{3} & & & & \\ 0 & & & & & \\ 0 & & & & & \\ 0 & & & & & \\ \end{array} $	$ \begin{array}{ccc} 0 & & & & & \\ 0 & & & & & \\ 0 & & & & & \\ -\frac{\sqrt{3}}{6} & & & \\ 0 & & & & \\ 0 & & & & \\ 0 & & & & \\ \end{array} $	$ \begin{array}{ccc} 0 & & & & & & \\ 0 & & & & & & \\ 0 & & & & & \\ 0 & & & & & \\ \frac{\sqrt{3}}{6} & & & & \\ 0 & & & & & \\ \end{array} $	$ \begin{array}{ccc} 0 & 0 & \\ 0 & 0 & \\ 0 & 0 & \\ -\frac{\sqrt{3}}{3} & 0 & \\ \end{array} $	$ \begin{array}{c} 0\\0\\0\\0\\0\\0\\0\\0\\\frac{\overline{3}}{6} \end{array} $

Table 8

symbol	type	cluster	form
\mathbb{U}_6	$\mathbb{Q}_{1,1}^{(s,E)}$	S_2	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
\mathbb{U}_7	$\mathbb{Q}_{2,0}^{(s,E,2)}$	S_2	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
\mathbb{U}_8	$\mathbb{Q}_{2,1}^{(s,E,2)}$	S_2	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $

symbol	type	cluster						form					
			(0	0	0	0	0	0	0	0	0 \		
			0	0	0	0	0	0	0	0	0		
			0	0	0	0	0	0	0	0	0		
			0	0	0	$\frac{\sqrt{6}}{6}$	0	0	0	0	0		
\mathbb{U}_9	$\mathbb{Q}_3^{(s,A_2)}$	S_2	0	0	0	0	$\frac{\sqrt{6}}{6}$	0	0	0	0		
			0	0	0	0	0	$\frac{\sqrt{6}}{6}$	0	0	0		
			0	0	0	0	0	0	$-\frac{\sqrt{6}}{6}$	0_	0		
				0	0	0	0	0	0	0	$-\frac{\sqrt{6}}{6}$	0	
			/0	0	0	0	0	0	0	0	$-\frac{\sqrt{6}}{6}$		
			()	0	0	$\frac{\sqrt{3}}{6}$	0	0		$0 - \frac{\sqrt{3}}{6}$	١	
		()	0	0	0	$\frac{\sqrt{3}}{6}$	0_	0 2	$\frac{\sqrt{3}}{6}$ 0			
			(0	0	0	0	$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$	0 0		
	, , ,		$\frac{}{6}$	<u>3</u>	0_	0	0	0	0	0	0 0		
\mathbb{U}_{10}	$\mathbb{Q}_0^{(u,A_1)}$	B_1	()	$\frac{\sqrt{3}}{6}$	0_	0	0	0	0	0 0		
			()	0	$\frac{\frac{\sqrt{3}}{6}}{\frac{\sqrt{3}}{6}}$	0	0	0	0	0 0		
			(0_	$\frac{\sqrt{3}}{6}$	0	0	0	0	0 0	İ	
) .	$\frac{\sqrt{3}}{6}$	0	0	0	0	0	0 0		
			$\sqrt{\frac{}{6}}$	3	0	0	0 _	0	0	0	0 0,	/	
			$\begin{pmatrix} 0 \end{pmatrix}$	0		0	$-\frac{\sqrt{6}}{12}$	0	0	0	0	$\frac{\sqrt{6}}{12}$	
			0	0		0	0	$\frac{\sqrt{6}}{6}$	0	0	$-\frac{\sqrt{6}}{6}$	0	
			0	0		0	0	0	$-\frac{\sqrt{6}}{12}$		0	0	
	$\mathbb{Q}_{1,0}^{(u,E)}$		$-\frac{\sqrt{6}}{12}$	0		0	0	0	0	0	0	0	
\mathbb{U}_{11}		$^{E)}$ B_1	0	$\frac{\sqrt{6}}{6}$		0	0	0	0	0	0	0	
			0	0		$ \begin{array}{c} -\frac{\sqrt{6}}{12} \\ \frac{\sqrt{6}}{12} \end{array} $	0	0	0	0	0	0	
			0	0	<u>-</u>	$\frac{\sqrt{6}}{12}$	0	0	0	0	0	0	
			0	$-\frac{\sqrt{6}}{6}$	<u>b</u>	0	0	0	0	0	0	0	
			$\sqrt{\frac{\sqrt{6}}{12}}$	0		0	0	0	0	0	0	0 /	

Table 8

Table 8			
symbol	type	cluster	form
			$\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} \end{pmatrix}$
			0 0 0 0 0 0 0 0
		B_1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	(u E)		$\begin{bmatrix} -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
\mathbb{U}_{12}	$\mathbb{Q}_{1,1}^{(u,E)}$		0 0 0 0 0 0 0 0 0
			$0 0 \frac{\sqrt{2}}{4} 0 0 0 0 0$
			$0 0 -\frac{\sqrt{2}}{4} 0 0 0 0 0$
			$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
			$\begin{pmatrix} \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0$
			$ \begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0$
			$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
			$\begin{bmatrix} 0 & 0 & 0 & 0 & \sqrt{2} & \sqrt{2} & 0 & 0 \\ \sqrt{2} & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
\mathbb{U}_{13}	$\mathbb{Q}_{2,0}^{(u,E,2)}$	В1	$\begin{bmatrix} -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
€13	$\mathbb{Q}_{2,0}$		$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
			$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
			$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$
			$ \begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{6}}{12} & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{12} \end{pmatrix} $
			$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
			$ \begin{bmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{12} & \frac{\sqrt{6}}{12} & 0 & 0 \end{bmatrix} $
			$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{12} & \frac{\sqrt{6}}{12} & 0 & 0 \\ \frac{\sqrt{6}}{12} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
\mathbb{U}_{14}	$\mathbb{Q}_{2,1}^{(u,E,2)}$	B_1	$ \begin{bmatrix} 12 & & & & & \\ 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} $
	₹2,1	_	$\begin{bmatrix} 0 & 0 & \sqrt{6} \\ 0 & 0 & \frac{12}{12} & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
			$\begin{bmatrix} 0 & 0 & \frac{\sqrt{6}}{12} & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
			$\begin{bmatrix} 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
			$\begin{pmatrix} \frac{\sqrt{6}}{12} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

symbol	type	cluster					form				
\mathbb{U}_{15}	$\mathbb{Q}_3^{(u,A_2)}$	В1		$ \begin{array}{ccc} 0 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 6 & 0 \end{array} $	$ \begin{array}{cccc} 0 & 0 & 0 \\ \frac{3}{2} & 0 & \frac{\sqrt{3}}{6} & 0 \\ \frac{\sqrt{3}}{6} & 0 & 0 \end{array} $	$ \frac{\sqrt{3}}{6} $ 0 0 0 0 0 0 0 0 0	$ \begin{array}{ccc} 0 & & \\ \sqrt{3} & & \\ 0$	$\begin{array}{ccc} 0 & & & \\ 0 & & & \\ \frac{\sqrt{3}}{6} & & \\ 0 & & \\ 0 & & \\ 0 & & \\ 0 & & \\ 0 & & \\ \end{array}$	$ \begin{array}{ccc} 0 & & & \\ 0 & & -\frac{\sqrt{3}}{6} & \\ 0 & & \\ 0 & & \\ 0 $	$ \begin{array}{ccc} 0 & -\frac{\sqrt{3}}{6} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} $	$ \begin{pmatrix} -\frac{\sqrt{3}}{6} \\ 0$
\mathbb{U}_{16}	$\mathbb{T}_0^{(u,A_1)}$	В1	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ \frac{\sqrt{3}i}{6} \\ 0 \\ 0 \\ 0 \\ \frac{\sqrt{3}i}{6} \\ 0 \end{pmatrix}$	$0 \\ 0 \\ 0 \\ \frac{\sqrt{3}i}{6} \\ 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 <i>i</i> 3 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ -\frac{\sqrt{3}i}{6} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{matrix} 0 \\ -\frac{\sqrt{3}i}{6} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix}$	
\mathbb{U}_{17}	$\mathbb{T}_{1,0}^{(u,E)}$	В1	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ -\frac{\sqrt{6}i}{12} \\ 0 \\ 0 \\ \frac{\sqrt{6}i}{12} \end{pmatrix}$	0 0 0 $\frac{\sqrt{6}i}{6}$ 0 0 $-\frac{\sqrt{6}i}{6}$	$0 \\ 0 \\ 0 \\ 0 \\ -\frac{\sqrt{6}i}{12} \\ \frac{\sqrt{6}i}{12} \\ 0$	$ \frac{\sqrt{6}i}{12} $ 0 0 0 0 0 0	$ \begin{array}{c} 0 \\ -\frac{\sqrt{6}i}{6} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ \sqrt{6}i \\ 12 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} 0 \\ 0 \\ -\frac{\sqrt{6}i}{12} \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$	$ \begin{array}{c} 0 \\ \sqrt{6}i \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$ -\frac{\sqrt{6}}{12} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $

symbol	type	cluster						form	L				
			-	0	0	0	$\frac{\sqrt{2}i}{4}$	0	0	0	0	$-\frac{\sqrt{2}i}{4}$	
			1	0	0	0	0	0	0	0	0	0	
				0	0	0	0	0	$-\frac{\sqrt{2}i}{4}$	$\frac{\sqrt{2}i}{4}$	0	0	
				$-\frac{\sqrt{2}i}{4}$	0	0	0	0	0	0	0	0	
\mathbb{U}_{18}	$\mathbb{T}_{1,1}^{(u,E)}$	B_1		0	0	0	0	0	0	0	0	0	
	,			0	0	$\frac{\sqrt{2}i}{4}$	0	0	0	0	0	0	
				0	0	$-\frac{\sqrt{2}i}{4}$	0	0	0	0	0	0	
			i	0	0	0	0	0	0	0	0	0	
			($\frac{\sqrt{2}i}{4}$	0	0	0	0	0	0	0	0 /	
				(0	0	0	$\frac{\sqrt{2}i}{4}$	0	0	0	0	$\frac{\sqrt{2}i}{4}$	
				0	0	0	0	0	0	0	0	0	
				0	0	0	0	0	$-\frac{\sqrt{2}i}{4}$	$-\frac{\sqrt{2}i}{4}$	0	0	
				$-\frac{\sqrt{2}i}{4}$	0	0	0	0	0	0	0	0	
\mathbb{U}_{19}	$\mathbb{T}_{2,0}^{(u,E,2)}$	B_1		0	0	0	0	0	0	0	0	0	
	,-			0	0	$\frac{\sqrt{2}i}{4}$	0	0	0	0	0	0	
				0	0	$\frac{\sqrt{2}i}{4}$	0	0	0	0	0	0	
				0	0	0	0	0	0	0	0	0	
				$-\frac{\sqrt{2}i}{4}$	0	0	0	0	0	0	0	0 /	
			/ 0	0	0	_	$\frac{\sqrt{6}i}{12}$	0	0	0	(0 –	$\frac{\sqrt{6}i}{12}$
			0	0	0	1	0	$\frac{\sqrt{6}i}{6}$	0	0	\checkmark	$\frac{\sqrt{6}i}{6}$	0
			0	0	0	1	0	0	$-\frac{\sqrt{6}i}{12}$	$-\frac{\sqrt{6}i}{12}$	(0	0
			$\frac{\sqrt{6}i}{12}$	0	0	1	0	0	0	0		0	0
\mathbb{U}_{20}	$\mathbb{T}_{2,1}^{(u,E,2)}$	B_1	0	$-\frac{\sqrt{6}i}{6}$	0	1	0	0	0	0	(0	0
			0	0	$\frac{\sqrt{6}}{1}$	$\frac{\overline{3}i}{2}$	0	0	0	0	(0	0
			0	0	$\frac{\sqrt{6}}{12}$	$\frac{3}{2}i$	0	0	0	0	(0	0
			0	$-\frac{\sqrt{6}i}{6}$	0		0	0	0	0	(0	0
			$\sqrt{\frac{\sqrt{6}i}{12}}$	0	0		0	0	0	0		0	0

$_{\text{symbol}}$	type	cluster				f	orm				
			(0	0	0	$-\frac{\sqrt{3}i}{6}$	0	0	0	0	$\frac{\sqrt{3}i}{6}$
			0	0	0	0	$-\frac{\sqrt{3}i}{6}$	0	0	$\frac{\sqrt{3}i}{6}$	0
			0	0	0	0	0	$-\frac{\sqrt{3}i}{6}$	$\frac{\sqrt{3}i}{6}$	0	0
			$\frac{\sqrt{3}i}{6}$	0	0	0	0	0	0	0	0
\mathbb{U}_{21}	$\mathbb{T}_3^{(u,A_2)}$	B ₁	0	$\frac{\sqrt{3}i}{6}$	0	0	0	0	0	0	0
			0	0	$\frac{\sqrt{3}i}{6}$	0	0	0	0	0	0
			0	0	$-\frac{\frac{\sqrt{3}i}{6}}{\frac{\sqrt{3}i}{6}}$	0	0	0	0	0	0
			0	$-\frac{\sqrt{3}i}{6}$	0	0	0	0	0	0	0
			$-\frac{\sqrt{3}i}{6}$	0	0	0	0	0	0	0	0

Table 9: Structure SAMB.

symbol	type	cluster	form
\mathbb{F}_1	$\mathbb{Q}_0^{(k,A_1)}$	B_1	$\frac{\sqrt{6}c_{001}}{3} + \frac{\sqrt{6}c_{002}}{3} + \frac{\sqrt{6}c_{003}}{3}$
\mathbb{F}_2	$\mathbb{Q}_{1,0}^{(k,E)}$	B_1	$-c_{001} + c_{002}$
\mathbb{F}_3	$\mathbb{Q}_{1,1}^{(k,E)}$	B_1	$-\frac{\sqrt{3}c_{001}}{3} - \frac{\sqrt{3}c_{002}}{3} + \frac{2\sqrt{3}c_{003}}{3}$
\mathbb{F}_4	$\mathbb{T}_{1,0}^{(k,E)}$	B_1	$\frac{\sqrt{3}s_{001}}{3} + \frac{\sqrt{3}s_{002}}{3} - \frac{2\sqrt{3}s_{003}}{3}$
\mathbb{F}_5	$\mathbb{T}_{1,1}^{(k,E)}$	B_1	$-s_{001} + s_{002}$
\mathbb{F}_6	$\mathbb{T}_3^{(k,A_2)}$	B_1	$\frac{\sqrt{6}s_{001}}{3} + \frac{\sqrt{6}s_{002}}{3} + \frac{\sqrt{6}s_{003}}{3}$

Table 10: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A_1)}$	0	A_1	_	_	1

Table 10

No.	symbol	rank	innon	mul.	aomn	form
110.	symbol	Tank	irrep.	mui.	comp.	101111
2	$\mathbb{Q}_{1,0}^{(E)}$	1	E	_	0	x
3	$\mathbb{Q}_{1,1}^{(E)}$	1	E	_	1	y
4	$\mathbb{Q}_2^{(A_1)}$	2	A_1	_	_	$-\frac{x^2}{2} - \frac{y^2}{2} + z^2$
5	$\mathbb{Q}_{2,0}^{(E,1)}$	2	E	1	0	$\sqrt{3}xz$
6	$\mathbb{Q}_{2,1}^{(E,1)}$	2	E	1	1	$\sqrt{3}yz$
7	$\mathbb{Q}_{2,0}^{(E,2)}$	2	E	2	0	$-\sqrt{3}xy$
8	$\mathbb{Q}_{2,1}^{(E,2)}$	2	E	2	1	$-\frac{\sqrt{3}(x-y)(x+y)}{2}$
9	$\mathbb{Q}_3^{(A_2)}$	3	A_2	_	_	$\frac{\sqrt{10}x(x^2-3y^2)}{4}$

Table 11: Axial harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{G}_1^{(A_2)}$	1	A_2	_	_	Z
2	$\mathbb{G}_{1,0}^{(E)}$	1	E	_	0	-Y
3	$\mathbb{G}_{1,1}^{(E)}$	1	E	_	1	X
4	$\mathbb{G}_3^{(A_1)}$	3	A_1	_	_	$\frac{\sqrt{10}X(X^2-3Y^2)}{4}$
5	$\mathbb{G}_3^{(A_2,1)}$	3	A_2	1	_	$-\frac{Z(3X^2+3Y^2-2Z^2)}{2}$
6	$\mathbb{G}_3^{(A_2,2)}$	3	A_2	2	_	$\frac{\sqrt{10}Y(3X^2-Y^2)}{4}$
7	$\mathbb{G}_{3,0}^{(E,1)}$	3	E	1	0	$\frac{\sqrt{6}Y(X^2+Y^2-4Z^2)}{4}$
8	$\mathbb{G}_{3,1}^{(E,1)}$	3	E	1	1	$-\frac{\sqrt{6}X(X^{2}+Y^{2}-4Z^{2})}{4}$
9	$\mathbb{G}_{3,0}^{(E,2)}$	3	E	2	0	$\frac{\sqrt{15}Z(X-Y)(X+Y)}{2}$
10	$\mathbb{G}_{3,1}^{(E,2)}$	3	E	2	1	$-\sqrt{15}XYZ$

 \bullet Group info.: Generator = $\{3^+_{\ 001}|0\},\ \{m_{110}|0\}$

Table 12: Conjugacy class (point-group part).

rep. SO	symmetry operations
{1 0}	{1 0}
$\{3^{+}_{001} 0\}$	$\{3^{+}_{001} 0\}, \{3^{-}_{001} 0\}$
$\{m_{100} 0\}$	$\{m_{100} 0\}, \{m_{010} 0\}, \{m_{110} 0\}$

Table 13: Symmetry operations.

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
1	$\{1 0\}$	2	$\{3^{+}_{001} 0\}$	3	$\{3^{-}_{001} 0\}$	4	$\{m_{100} 0\}$	5	$\{m_{010} 0\}$
6	$\{m_{110} 0\}$								

Table 14: Character table (point-group part).

	1	3^{+}_{001}	m_{100}
$\overline{A_1}$	1	1	1
A_2	1	1	-1
E	2	-1	0

Table 15: Parity conversion.

\leftrightarrow	\leftrightarrow	\leftrightarrow
$A_1 (A_2)$	$A_2(A_1)$	E(E)

Table 16: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A_1	A_2	E
A_1	A_1	A_2	E
A_2		A_1	E
E			$A_1 + E$

Table 17: Anti-symmetric product, $[\Gamma \otimes \Gamma]_-$.

A_1	A_2	E
_	_	A_2

Table 18: Virtual-cluster sites.

No.	position	No.	position	No.	position	No.	position
1	$\begin{pmatrix} -1 & -1 & 0 \end{pmatrix}$	2	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$	3	$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$	4	$\begin{pmatrix} 0 & -1 & 0 \end{pmatrix}$
5	$\begin{pmatrix} -1 & 0 & 0 \end{pmatrix}$	6	$\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$				

Table 19: Virtual-cluster basis.

symbol	1	2	3	4	5	6
$\mathbb{Q}_0^{(A_1)}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$
$\mathbb{Q}_{1,0}^{(E)}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{3}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{3}$	$\frac{\sqrt{3}}{6}$
$\mathbb{Q}_{1,1}^{(E)}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$
$\mathbb{Q}_{2,0}^{(E,2)}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$

Table 19

symbol	1	2	3	4	5	6
$\mathbb{Q}_{2,1}^{(E,2)}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{3}$	$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{3}$	$\frac{\sqrt{3}}{6}$
$\mathbb{Q}_3^{(A_2)}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{6}$