Mathematics Methods Units 1 and 2 2018 Solutions

Calculator-assumed Solutions

11. (a) The number of phones she is given to repair for the week. (b) She fixes 23 per day, for 4 days
$$2.3 \times 4 = 92$$
 phones (c) She fixes 23 per day, for 4 days $2.3 \times 4 = 92$ phones (c) $\frac{108}{23} = 4.69665 \times 8 = 5.6652$ hours $\frac{108}{2} = 5.6652$ hours $\frac{108}{2} = \frac{108}{2} =$

[9]

13. (a) 5.1 seconds v(t) = -9.8t + 25

(b) v(0) = 25

✓✓

✓✓

(c) Maximum height is 31.89 m when t = 2.55 sec

$$\frac{31.89 \times 2}{2.55 \times 2} = 12.5 \text{ m/s}$$

[5]

$$\frac{(2+x+h)^2-(2+x)^2}{2}=2x+4$$

14. (a) $f(x) = (2 + x)^2 = 4 + 4x + x^2$ $\lim_{h \to 0} \frac{(2 + x + h)^2 - (2 + x)^2}{h} = 2x + 4$ (b) (i) -7.5(ii) 18(c) $p'(x) = 3x^2 - 3a$ $0 = 3(\sqrt{2})^2 - 3a$ a = 2

 $-\sqrt{2} = (\sqrt{2})^3 - 3(2)(\sqrt{2}) + b$ b = $3\sqrt{2}$

[7]

[10]

15. (a)

(a)
$$x = -2$$
 or $x = 2$

(b)

		-2		2	
y'	+	0		0	+
У	1	-	1	-	1

x = -2 Maximum

x = 2 Minimum

(c)
$$y = x^3 - 11x + \frac{4}{x} + c$$

 $c = 13$

$$y = x^3 - 11x + \frac{4}{x} + 13$$

(d)

© WATP

9TAW

[3]	<i>></i>	Stets OZ	(p)	
	<i>^^</i>	$1, 3, 7, 15,$ $T_{n+1} = T_n + 2^n$ $T_1 = 1$	(a)	.02
[9]	•	K = 0.6 = Pr (Υ) 0.5+ K − 0.8 = 0.5k		
		$\Gamma \in L(X) = K$		
	<i>,</i>	Pr(X U Y) = Pr(X) + Pr(Y) - Pr(X n Y) Pr(X) + Pr(Y) - Pr(X U Y) = Pr(X) x Pr(Y)		
	<i>)</i> -	$Pr(X \cap Y) = Pr(X) \times Pr(Y)$ if independent	(p)	
	<i>*</i>	0.3	(c)	
	<i>^</i>	2.0 5.0	(p) (s)	.61
	,			Οı
[9]	<i>^</i>	$\lambda = \frac{2}{x - 3} + \frac{2}{x + 4}$ $\lambda = -3 \cdot \frac{1}{x + 4}$ $\lambda = \frac{2}{x} + \frac{2}{x} + \frac{2}{x}$	(c)	
	<i>^</i>	A + X = -X = X	(p)	
	<i>^</i>	Z-X-X	(a)	18.
		$V = \frac{1}{100} + 2$		
[9]	,	The tea will cool at a decreasing rate as it approaches room temperature which is 22° .		
	,	SS = V eyomptote $SS = V$	(c)	
	<i>^</i>	snim 24.7 srofed bns anim 21.4 raftAr $4.12 \le 1.2 \le 1.4$	(q)	
	// /	22°C (room temp)	(20)	
	^	92°C (initial temp of tea)	(a)	'ΖΤ
[8]	<i>^</i>	$2SC = n$ $2L = {}_{\perp}T \qquad {}_{n}T \stackrel{\Gamma}{=} {}_{\perp+n}T \qquad (i)$ $3l = \frac{1}{1} \qquad = \infty S \qquad (ii)$		
		91 = 1 = ∞S		
	<i>^</i>	$\Delta L = LT \qquad T_{n+1} = LZ $ (i)	(q)	
	,	08Z = <i>u</i>		
	•	$367980 = \frac{n}{2}(23 + 2634)$		
	<i>,</i>	7 T6 =	(22)	
	^	(i) $T_{\perp 00} = 23 + (99)(9)$	(9)	.91

3

2018 Solutions

Mathematics Methods Units 1 & 2

2018 Solutions

[7]

111

y = 16 - 6 - w

21. (a) (i) y = 10 - w

(ii) $y^2 = 36 + w^2 - 12w \cos Y$

 $(10 - w)^2 = 36 + w^2 - 12w \cos Y$ $64 - 20w = -12w \cos Y$

 $\therefore \cos Y = \frac{5w - 16}{1}$

 $A = \frac{6w \sin Y}{2} = 3w$ $- = 3w \sin Y$ $A^2 = 9w^2 \sin^2 Y$

 $9w^2\sin^2 Y = 9w^2(1-\cos^2 Y)$

 $A^2 = -16w^2 + 160w - 256$

 $A = \sqrt{-16w^2 + 160w - 256}$ A' = 0 when w = 5

Maximum area = 12 units2 y = 10 - w = 5

The triangle is isosceles. [12]

22. $y' = 3x^2 - 12x + k$ $b^2 - 4ac = 0$ for one solution 144 - 4(3)k = 0k = 12[3]

23. (a) $W = W_0 (1.085)^t$ $R = R_0 (0.95)^t$ $10W_0 = R_0$ $W_0(1.085)^t = 10 \times W_0(0.95)^t$ $(1.085)^t = 10(0.95)^t$ t = 17.329 yearsAfter 18 years there will be more wallabies.

(b) $W_{n+1} = 1.085 W_n W_0 = 655$ [5] $W_5 = 985$

24. (a) n = 9.003

∴ 10 terms

(b) $T_5 = a + 4d$ and $T_7 = a + 6d$ $\therefore 2a + 10d = 38 \text{ (eq 1)}$ $S_{15} = 375 = \frac{15}{2}(2a + 14d)$ (eq 2) a = 4 d = 3 $S_{30} = 15(2(4) + 29(3)) = 1425$

Sum of next 15 terms = $S_{30} - S_{15} = 1050$

25. (a)

(i) 0.5323 0.2726 (ii) (iii) 0.51 [7] (iv) 0.8026

5

26. The particle's initial displacement is 5 m to the right of the origin. $v = 3t^2 - 12t$... Initial velocity = 0 [2]