Testing the Rasch Model

Testing the Rasch Model

Testing the RM – Overview

RM allows to evaluate the quality of measurement crucial assumptions empirically testable aim: find set of items that conform to the RM ('data fit model')

various classification of tests possible:

- according to assumptions of the RM
- types of statistics used (Pearson, LR, Wald)
- mathematical properties (distribution of test statistic)
- item/person oriented tests
- graphical procedures

we follow implementations in eRm

Psychometric Methods 2010/11

1

Psychometric Methods 2010/11

Andersen's Likelihood Ratio Test

Andersen's Likelihood Ratio Test (Andersen, 1973)

Part 5: Testing the Rasch Model (I)

Goodness-of-Fit and some Diagnostics

- 'global' test (all items investigated simultaneously)
- powerful against violations of sufficiency and monotonicity
- can detect DIF (also called item bias):

Differential item functioning (DIF) occurs when individuals at the same level of an underlying trait differ in their responses to a specific item depending on certain characteristics (like age or gender)

basic idea:

consistent item parameter estimates ('invariance') can be obtained from a sample of any subgroup of population where the model holds

Andersen's Likelihood Ratio Test

Andersen's Likelihood Ratio Test (cont'd)

divide the sample into J-1 groups according to their total score $r,\ r=1,\ldots,J-1$ obtain J-1 likelihoods of the form

$$L_c^{(r)} = \exp(-\sum_j \beta_j s_j^{(r)})/\gamma(r; \beta_1, \dots, \beta_J)^{n_r}$$

 $\boldsymbol{s}_{j}^{(r)}$...number of correct responses to item j in scoregroup r.

the total likelihood is $L_c = \prod_r L_c^{(r)}$

ther

$$\Lambda = \frac{L_c}{\prod_r L_c^{(r)}} = 1$$
, only if the RM holds

Andersen's Likelihood Ratio Test (cont'd)

Andersen (1973) proved that

$$Z = -2 \ln \Lambda = 2 \sum_{r} \ln L_c^{(r)} - 2 \ln L_c$$

is asymptotically χ^2 -distributed with df = (J-2)(J-1), if $n_r \to \infty$ for all r.

practical problem:

- -n often too small compared to number of different r's way out:
- use ranges of r (2 or three subgroups)

test can be used for any partition of the sample according to extraneous variables (e.g., gender, age, ...)

Psychometric Methods 2010/11

5

Andersen's Likelihood Ratio Test

using eRm: LRtest()

```
> load("stress.RData")
> rmod <- RM(stress)
> lr <- LRtest(rmod)
> 1r
Andersen LR-test:
LR-value: 6.448
Chi-square df: 5
p-value: 0.265
factors as split criteria
```

```
> sex <- rep(c("male", "female"), each = 50)</pre>
> LRtest(rmod, splitcr = sex)
```

more than two groups (e.g., based on rawscores)

```
> gr3 <- cut(rowSums(stress), 3)
> LRtest(rmod, splitcr = gr3)
```

Psychometric Methods 2010/11

6

Wald Test

Wald Test

allows for testing single items

idea is again: sample into subgroups (usually 2) as before, the item parameters should be invariant

for any partition of the sample into 2 groups: using separate estimates $\hat{\beta}_j^{(1)}$ and $\hat{\beta}_j^{(2)}$ (and $\hat{\sigma}_{\beta_j}^{(1)}$, $\hat{\sigma}_{\beta_j}^{(2)}$, we obtain

$$S_j = \frac{\widehat{\beta}_j^{(1)} - \widehat{\beta}_j^{(2)}}{\sqrt{\widehat{\sigma}_{\beta}^{(1)} + \widehat{\sigma}_{\beta}^{(2)}}} \approx N(0, 1)$$

problem: statistics are not independent but: allows for detecting DIF in single items Wald Test

using eRm: Waldtest()

> wt <- Waldtest(rmod)

```
Wald test on item level (z-values):
      z-statistic p-value
beta I1 -0.045 0.964
beta I2
          0.189 0.850
beta I3
          -0.564 0.573
beta I4
          -0.892 0.372
beta I5
          -0.660 0.509
beta I6
          2.463 0.014
```

factors as split criteria (only for 2 levels)

> Waldtest(rmod, splitcr = sex)

both LRtest() and Waldtest() require objects obtained from RM()

7

Graphical Procedure

underlying idea again subgroup homogeneity, plot $\hat{\beta}^{(1)}$ vs $\hat{\beta}^{(2)}$

Psychometric Methods 2010/11

using eRm: plotGOF()

plot on last page:

> plotGOF(lr)

requires object obtained from LRtest()

many options (see ?plotGOF), two important are

conf= ...draws confidence ellipsoids ctrline= ... draws confidence bands

both options require LRtest() to be calculated using se=TRUE

```
> lr <- LRtest(rmod, se = T)
> plotGOF(lr, conf = list(), xlim = c(-1.5, 1.5), ylim = c(-1.5, 1.5))
> plotGOF(lr, ctrline = list(), xlim = c(-1.5, 1.5), ylim = c(-1.5, 1.5))
```

Psychometric Methods 2010/11

10

11

using eRm: plotGOF()

Person/Item Fit

Person/Item Fit - Raw Data

objective is to detect noticeable patterns

- improbable patterns given a certain IRT model
- or too probable patterns (e.g., the deterministic Guttman Scale)

consider data

	I1	I2	I3	Ι4	I5	I6	sum
Α	1	0	1	1	0	1	4
В	0	0	0	0	0	1	1
C	0	1	1	0	0	1	3
D	1	1	1	1	0	1	5
E	0	1	1	0	0	1	3
F	0	0	1	0	0	0	1
G	0	1	1	1	0	1	4
Н	0	0	1	1	0	1	3
I	0	1	1	1	1	1	5
J	0	0	0	1	0	1	2
sum	2	5	8	6	1	9	

Person/Item Fit - sorted data

noticeable patterns for persons

	I6	Ι3	I4	I2	T1	I5	\overline{r}
D	1	1	1	1	1	0	5
Ι	1	1	1	1	0	1	5
Α	1	1	1	0	1	0	4
G	1	1	1	1	0	0	4
C	1	1	0	1	0	0	3
Ε	1	1	0	1	0	0	3
Н	1	1	1	0	0	0	3
J	1	0	1	0	0	0	2
В	1	0	0	0	0	0	1
F	0	1	0	0	0	0	1
s	9	8	6	5	2	1	

noticeable patterns for items

	Ι6	I3	I4	I2	I1	I5	r
D	1	1	1	1	1	0	5
I	1	1	1	1	0	1	5
Α	1	1	1	0	1	0	4
G	1	1	1	1	0	0	4
C	1	1	0	1	0	0	3
Ε	1	1	0	1	0	0	3
Н	1	1	1	0	0	0	3
J	1	0	1	0	0	0	2
В	1	0	0	0	0	0	1
F	0	1	0	0	0	0	1
s	9	8	6	5	2	1	_

Person/Item Fit

Person/Item Fit

Expected response: $\pi_{vi} = \exp(\theta_v - \beta_i)/(1 + \exp(\theta_v - \beta_i))$

Residuals: $e_{vi} = x_{vi} - \pi_{vi}$

Outfit MSQ: (unweighted mean-square)

for persons: $u_v = \frac{1}{k} \sum_i \frac{e_{vi}^2}{\pi_{vi}(1-\pi_{vi})}$

for items: $u_i = \frac{1}{n} \sum_v \frac{e_{vi}^2}{\pi_{vi}(1 - \pi_{vi})}$

sensitive to unexpected rare extremes

Psychometric Methods 2010/11

13

Psychometric Methods 2010/11

14

Person/Item Fit

Person/Item Fit (cont'd)

Infit MSQ: (information-weighted mean-square)

for persons: $w_v = \frac{1}{k} \frac{\sum_i e_{vi}^2}{\sum_i \pi_{vi} (1 - \pi_{vi})}$

for items: $w_i = \frac{1}{n} \frac{\sum_v e_{vi}^2}{\sum_v \pi_{vi} (1 - \pi_{vi})}$

sensitive to irregular inlying patterns

all have expectation 1, values $\neq 1$ indicate lack of fit test statistics, e.g., nu_i^2 , are χ^2 with corresponding df

Person/Item Fit

Interpreting Infit/Outfit

Responses to Items:	Diagnosis of Pattern	Outfit	Infit
111 0110110100 000	Modelled/Ideal	1.0	1.1
111 1111 <mark>10</mark> 0000 000	Guttman/Deterministic	0.3	0.5
000 0000 01 11 11 11 11 11 11 11 11 11 1	Miscode	12.6	4.3
011 1111110000 000	Carelessness/Sleeping	3.8	1.0
111 1111000000 00 <mark>1</mark>	Lucky Guessing	3.8	1.0
1 <mark>0</mark> 1 0101010101 0 <mark>1</mark> 0	Response set/Miskey	4.0	2.3
111 1000011110 000	Special knowledge	0.9	1.3
111 <mark>0101010101</mark> 000	Low discrimination	1.5	1.6
111 <mark>1110101</mark> 000000	High discrimination	0.5	0.7
111 1111 <mark>01</mark> 0000 000	Very high discrimination	0.3	0.5

source: http://www.rasch.org/rmt/rmt82a.htm

items are arranged from easy to hard vertical lines indicate zones where infit or outfit is more sensitive

Person/Item Fit

Interpreting Infit/Outfit

Interpretation of parameter-level mean-square fit statistics: (rule of thumb)

>2.0	Distorts or degrades the measurement
	system
1.5 - 2.0	Unproductive for construction of mea-
	surement, but not degrading
0.5 - 1.5	Productive for measurement
<0.5	Less productive for measurement, but
	not degrading.
	May produce misleadingly good relia-
	bilities and separations

Person/Item Fit

Residuals, Infit and Outfit:

	I6	I3	I4	I2	I1	I5	Infit	Outfit
D	0.06	0.09	0.20	0.27	0.72	-0.93	0.58	0.25
I	0.06	0.09	0.20	0.27	-1.38	1.07	1.22	0.53
Α	0.13	0.20	0.43	-1.74	1.53	-0.44	1.55	0.97
G	0.13	0.20	0.43	0.57	-0.65	-0.44	0.28	0.20
C	0.26	0.39	-1.20	1.11	-0.34	-0.23	0.85	0.51
E	0.26	0.39	-1.20	1.11	-0.34	-0.23	0.85	0.51
Н	0.26	0.39	0.83	-0.90	-0.34	-0.23	0.51	0.32
J	0.48	-1.39	1.56	-0.48	-0.18	-0.12	1.28	0.81
В	0.96	-0.69	-0.32	-0.24	-0.09	-0.06	0.56	0.26
F	-1.04	1.45	-0.32	-0.24	-0.09	-0.06	1.20	0.56
Infit	0.63	0.96	0.99	0.99	0.97	0.60		
Outfit	0.25	0.50	0.67	0.71	0.56	0.26		

the blue areas indicate the noticeable patterns for items and persons, as already displayed in the sorted raw data

Psychometric Methods 2010/11

17

Psychometric Methods 2010/11

18

19

using eRm: itemfit(),personfit()

- > personfit(pp) > itemfit(pp)
- both require objects obtained from person.parameter()
- > pp <- person.parameter(rmod)</pre>
- > itemfit(pp)

Itemfit Statistics:

	Chisq	df	p-value	Outfit MSQ	Infit MSQ	Outfit t	Infit t
I1	78.028	85	0.691	0.907	0.948	-1.12	-0.78
12	86.465	85	0.435	1.005	0.992	0.11	-0.08
13	77.243	85	0.713	0.898	0.918	-1.19	-1.23
Ι4	87.174	85	0.414	1.014	1.005	0.19	0.11
15	73.947	85	0.798	0.860	0.863	-1.10	-1.74
16	106.633	85	0.056	1.240	1.190	2.80	2.83

Pathway Map

Graphical Procedure: plotPWmap()

underlying idea: plot item/personparameters vs. infit statistics

Psychometric Methods 2010/11

20


```
using eRm: plotPWmap()
```

plot on last page:

> plotPWmap(rmod)

can plot item and/or person locations
requires object obtained from RM(), or from person.parameter()

again many options (see ?plotPWmap), some important are:

imap= ... draws item map (default), subsets can be specified
pmap= ... draws person map, subsets possible

itemCI= ...confidence intervals for item locations
personCI= ...confidence intervals for item locations

different colours, plotting symbols etc. possible

Psychometric Methods 2010/11

21

Pathway Map

Item/Person Map

Psychometric Methods 2010/11

22