We define the homomorphism $\varphi \colon A \to A/\mathfrak{a} \times A/\mathfrak{b}$ by

$$\varphi(x) = (\overline{x}_{\mathfrak{a}}, \overline{x}_{\mathfrak{b}}),$$

where $\overline{x}_{\mathfrak{a}}$ is the equivalence class of x modulo \mathfrak{a} (resp. $\overline{x}_{\mathfrak{b}}$ is the equivalence class of x modulo \mathfrak{b}). Recall that the ideal \mathfrak{a} defines the equivalence relation $\equiv_{\mathfrak{a}}$ on A given by

$$x \equiv_{\mathfrak{a}} y$$
 iff $x - y \in \mathfrak{a}$,

and that A/\mathfrak{a} is the quotient ring of equivalence classes $\overline{x}_{\mathfrak{a}}$, where $x \in A$, and similarly for A/\mathfrak{b} . Sometimes, we also write $x \equiv y \pmod{\mathfrak{a}}$ for $x \equiv_{\mathfrak{a}} y$.

Clearly, the kernel of the homomorphism φ is $\mathfrak{a} \cap \mathfrak{b}$. If we assume that $\mathfrak{a} + \mathfrak{b} = A$, then $\operatorname{Ker}(\varphi) = \mathfrak{a} \cap \mathfrak{b} = \mathfrak{a}\mathfrak{b}$, and because φ has a constant value on the equivalence classes modulo $\mathfrak{a}\mathfrak{b}$, the map φ induces a quotient homomorphism

$$\theta \colon A/\mathfrak{ab} \to A/\mathfrak{a} \times A/\mathfrak{b}$$
.

Because $\operatorname{Ker}(\varphi) = \mathfrak{ab}$, the homomorphism θ is injective. The Chinese Remainder Theorem says that θ is an isomorphism.

Theorem 32.14. Given a commutative ring A, let \mathfrak{a} and \mathfrak{b} be any two ideals of A such that $\mathfrak{a} + \mathfrak{b} = A$. Then, the homomorphism $\theta \colon A/\mathfrak{a}\mathfrak{b} \to A/\mathfrak{a} \times A/\mathfrak{b}$ is an isomorphism.

Proof. We already showed that θ is injective, so we need to prove that θ is surjective. We need to prove that for any $y, z \in A$, there is some $x \in A$ such that

$$x \equiv y \pmod{\mathfrak{a}}$$

 $x \equiv z \pmod{\mathfrak{b}}.$

Since $\mathfrak{a} + \mathfrak{b} = A$, there exist some $a \in \mathfrak{a}$ and some $b \in \mathfrak{b}$ such that

$$a + b = 1$$
.

If we let

$$x = az + by$$

then we have

$$x \equiv_{\mathfrak{a}} by \equiv_{\mathfrak{a}} (1-a)y \equiv_{\mathfrak{a}} y - ay \equiv_{\mathfrak{a}} y,$$

and similarly

$$x \equiv_{\mathfrak{b}} az \equiv_{\mathfrak{b}} (1-b)z \equiv_{\mathfrak{b}} z - bz \equiv_{\mathfrak{b}} z,$$

which shows that x = az + by works.

Theorem 32.14 can be generalized to any (finite) number of ideals.