

(13

## RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree in Health Promotion
First Year - Semester II Examination – October/November 2017

## **BIO 1208 – STATISTICAL METHODS IN BIOLOGY I**

Time: Two (02) hours

## Answer ALL questions.

1. The life expectancy (in months) for two hypothetical species of birds in captivity are as follows

Species A 36, 34, 39, 37, 41, 40, 43, 42, 79 Species B 45, 43, 44, 34, 36, 40, 39, 37, 41, 42

- a) Calculate the mean and median for the two species.
- b) Calculate the range, variance and standard deviation for the two species and comment on your answers.

(25 marks)

- 2. a) A normal distribution of sucrose concentrations has a  $\mu = 65$  mg/100 ml and  $\sigma = 25$  mg/100 ml. Calculate the proportion of the population,
  - i. greater than 85 mg/100 ml
  - ii. less than 45 mg/100 ml
  - iii. between 45 and 85 mg/100 ml.
  - b) A national survey sampled 1400 voters after each had cast a vote in a national election. Of these voters, 742 claimed that they had voted for candidate A and 658 for candidate B. Assume that there are only two candidates in the race. Assuming that each sampled voter actually voted as claimed and the sample is a random sample from the population of all voters, is there enough evidence to predict the winner of the election? Base your decision on the 95% confidence interval.

c) A sports agent claims that there is no difference in the salaries of Indian and Australian international cricketers. A survey of 15 Indian cricketers found an average salary of \$501,580 while a survey of 15 Australian cricketers found an average of \$513, 360. If the standard deviations of the two samples are \$20,000 and \$18,000 respectively, is the agent correct? Use α= 0.05.

(25 marks)

3. The following has been summarized from the IUCN Red Data Book. At  $\alpha$ = 0.05, is there an association between the class of vertebrate and whether it is endangered or threatened?

| Class of vertebrate |        |      |         |           |      |
|---------------------|--------|------|---------|-----------|------|
|                     | Mammal | Bird | Reptile | Amphibian | Fish |
| Endangered          | 68     | 76   | 14      | 13        | 76   |
| Threatened          | 13     | 15   | 23      | 10        | 61   |

(25 marks)

4. The average daily temperature (in degrees Fahrenheit) and the average monthly precipitation (in inches) of a hypothetical city is given in the table below. Use the table to answer the following questions.

| Avg. daily temp. (°F) | Avg. mo. precip. (inches) |
|-----------------------|---------------------------|
| 86                    | 3.4                       |
| 81                    | 1.8                       |
| 83                    | 3.5                       |
| 89                    | 3.6                       |
| 80                    | 3.7                       |
| 74                    | 1.5                       |
| 64                    | 0.2                       |

- a) Construct a scatter plot for the data and comment on the relationship between the two variables.
- b) Compute the value of r.
- c) Is r significant at  $\alpha = 0.05$ ?
- d) Find the linear regression equation.
- e) Find the average monthly precipitation when the average daily temperature is 70°F.

(25 marks)

## **Equation sheet**

$$s^{2} = \frac{\Sigma(X - \overline{X})^{2}}{n - 1}$$

$$z = \frac{X - \mu}{\sigma'}$$

$$\overline{X} - z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}}\right) < \mu < \overline{X} + z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}}\right)$$

$$\overline{X} - t_{\alpha/2} \left(\frac{s}{\sqrt{n}}\right) < \mu < \overline{X} + t_{\alpha/2} \left(\frac{s}{\sqrt{n}}\right)$$

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}\hat{q}}{n}} 
$$z = \frac{\hat{p} - p}{\sqrt{pq/n}}$$

$$z = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$

$$t = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}}$$

$$(\overline{X}_{1} - \overline{X}_{2}) - z_{\alpha/2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}} < \mu_{1} - \mu_{2} < (\overline{X}_{1} - \overline{X}_{2}) + z_{\alpha/2} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$

$$(\overline{X}_{1} - \overline{X}_{2}) - t_{\alpha/2} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}} < \mu_{1} - \mu_{2} < (\overline{X}_{1} - \overline{X}_{2}) + t_{\alpha/2} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}}$$

$$(\overline{X}_{1} - \overline{X}_{2}) - t_{\alpha/2} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}} < \mu_{1} - \mu_{2} < (\overline{X}_{1} - \overline{X}_{2}) + t_{\alpha/2} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}}$$$$

$$r = \frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{\sqrt{[n(\Sigma x^2) - (\Sigma x)^2][n(\Sigma y^2) - (\Sigma y)^2]}}$$

$$t = r\sqrt{\frac{n-2}{1-r^2}}$$

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

$$a = \frac{(\sum y)(\sum x^2) - (\sum x)(\sum xy)}{n(\sum x^2) - (\sum x)^2}$$

$$b = \frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{n(\Sigma x^2) - (\Sigma x)^2}$$