Discovering Statistical Properties for Query Optimization

Presented by Han Fei

Part I - Introduction to Query Optimization

The Process of Query Optimization

- Enumerate all possible plans by transformation rules (Cascade Optimzier)
- Get the ordinary table/columns cardinality by simple predicate
- Derive cardinality for every subplan
- Estimate the cost of plan and choose the best one

Most Common Statistics: Histogram

- Bucket Scheme
 - Equi-Width
 - Equi-Depth
 - Max Diff
 - V-Optimial
- Estimation Scheme
 - Continuous Spread Assumption
 - Four Level Tree

What do We Need More for Modern Databases?

- Correlation Discovery
- 'soft' Functional Dependency
- Algebraic constraints
- Holes in joins
- Workload-aware Methods
- Incremental Maintance

Part II - Proactive Methods

How do we estimate multiple predicates?

- attribute value independece assumption
 - the distributions of individual attributes are independent of each other
- join uniformity assumption
 - a tuple from one relation is equally likely to join with any tuple from the second relation

Automated Correlation Discovery

- Consider a table with tree attributes:
 - Education
 - Income
 - Home-holder
- some of the correlations between attributes might be indirect ones, mediate by others.
 - a high-school dropout who owns a successful Internet startup is more likely to own a home than a highly educated beach bum.

E	I	Н	P(E,I,H)
h	l	f	0.27
h	1	t	0.03
h	m	f	0.105
h	m	t	0.045
h	h	f	0.005
h	h	t	0.045
C	1	f	0.135
C	1	t	0.015
C	m	f	0.063
C	m	t	0.027
C	h	f	0.006
C	h	t	0.054
a	1	f	0.018
a	1	t	0.002
a	m	f	0.042
a	m	t	0.018
a	h	f	0.012
a	h	t	0.108

Conditionally Independent

- $P(H = h \mid E = e, I = i) = P(H = h \mid I = i)$
- We just need hold some marginal distribution
 - o **P(E)**
 - P(I | E)
 - P(H | I)
- Then P(H, E, I) = P(E) P(I | E) P(H | I)

E	P(E)
h	0.5
C	0.3
a	0.2

Ι	E	$P(I \mid E)$
1	h	0.6
m	h	0.3
h	h	0.1
1	C	0.5
m	C	0.3
h	C	0.2
1	a	0.1
m	a	0.3
h	a	0.6

H	I	$P(H \mid I)$
t	1	0.1
f	1	0.9
t	m	0.3
f	m	0.7
t	h	0.9
f	h	0.1

Use Graphical Model to detect correlation

- We can build a Bayesian network which consists of two component
 - o a DAG whose nodes correspond to A_1, ..., A_n, edges denote a direct dependency of A_i on its parents(A_i)
 - conditional probability distribution

PingCAP **(1)** TIDB

Part III - Reactive Methods

Feedback based Histogram

- monitor queries on specified column gathering estimated and actual cardinalities
- create/refine maximum-entropy distribution at given condition

Max Entropy Principle

- We define every bucket as $\{l_i, r_i, f_i\}$, of which f_i is relative frequency.
- $H(R) = -sum(m_i / ln (m_i / h_i))$
- Use this principle to determine the boundaries

Meeting a Space Budget - Prunning

Figure 6: Set of bins before pruning

$$h_1 = 4$$
 $m_1 = 0.2$
 $h_2 = 2$ $m_2 = 0.1$
 $h_3 = 3$ $m_3 = 0.1$
 $h_4 = 2$ $m_4 = 0.2$
 $h_5 = 3$ $m_5 = 0.3$
 $h_6 = 4$ $m_6 = 0.05$
 $h_7 = 3$ $m_7 = 0.05$
 $max = 5$ $k = 7$

Meeting a Space Budget - Prunning

$$err(r_x, r_{x+1}) = h_x \left| \frac{m_x}{h_x} - \left(\frac{m_x + m_{x+1}}{h_x + h_{x+1}} \right) \right| + h_{x+1} \left| \frac{m_{x+1}}{h_{x+1}} - \left(\frac{m_x + m_{x+1}}{h_x + h_{x+1}} \right) \right|$$
 (6)

The error equals zero if and only if two bins imply uniformity. In this example merging bins 1,2 and 4,5 minimizes the error because:

$$err(r_1, r_2) = 4(\left|\frac{0.2}{4} - \frac{0.2 + 0.1}{4 + 2}\right|) + 2(\left|\frac{0.1}{2} - \frac{0.2 + 0.1}{4 + 2}\right|) = 0$$

$$err(r_4, r_5) = 2(\left|\frac{0.2}{2} - \frac{0.2 + 0.3}{2 + 3}\right|) + 3(\left|\frac{0.3}{3} - \frac{0.2 + 0.3}{2 + 3}\right|) = 0$$

Thank You!

