





#### **General Description**

The SX1301 digital baseband chip is a massive digital signal processing engine specifically designed to offer breakthrough gateway capabilities in the ISM bands worldwide. It integrates the LoRa concentrator IP.

The LoRa concentrator is a multi-channel high performance transmitter/receiver designed to simultaneously receive several LoRa packets using random spreading factors on random channels. Its goal is to enable robust connection between a central wireless data concentrator and a massive amount of wireless end-points spread over a very wide range of distances.

The SX1301 is targeted at smart metering fixed networks and Internet of Things applications with up to 5000 nodes per km2 in moderately interfered environment.

#### **Ordering Information**

| Part Number  | Conditioning         |
|--------------|----------------------|
| SX1301IMLTRC | Tape & Reel          |
|              | 3,000 parts per reel |
| SX1301IMLT   | Trays                |

#### **Key product features**

- Up to -142.5 dBm sensitivity with SX1257 or SX1255 Tx/Rx front-end
  - -140 dBm with included ref design
- 70 dB CW interferer rejection at 1 MHz offset
- Able to operate with negative SNR
  - CCR up to 9 dB
- Emulates 49x LoRa demodulators and 1x (G)FSK demodulator
- Dual digital Tx & Rx radio front-end interfaces
- 10 programmable parallel demodulation paths
- Dynamic data-rate adaptation (ADR)
- True antenna diversity or simultaneous dual-band operation

### **Applications**

- Smart Metering
- Security Sensors Network
- Agricultural Monitoring
- Internet of Things (IoT)

V2.01 June 2014





# Datasheet

## Contents

| 1      | PIN CONFIGURATION                                       | 7          |
|--------|---------------------------------------------------------|------------|
| 1.1    | Pins placement and circuit marking                      |            |
| 1.2    | Pins description                                        |            |
| 2      | ELECTRICAL CHARACTERISTICS                              | 1.0        |
| 2      | Absolute maximum ratings                                | _          |
| 2.1    | S .                                                     |            |
|        | Constraints on external                                 |            |
| 2.3    | Operating conditions                                    |            |
| 2.4    | Electrical specifications                               |            |
| 2.5    | Timing specifications                                   | 11         |
| 3      | CIRCUIT OPERATION                                       | 12         |
| 3.1    | General Presentation                                    | 12         |
| 3.2    | Power-on                                                | 12         |
| 3.2.1  | Power-up sequence                                       | 12         |
| 3.2.2  | Setting the circuit is low-power mode                   | 12         |
| 3.3    | Clocking                                                | 13         |
| 3.4    | SPI Interface                                           | 14         |
| 3.5    | Rx I/Q Interface                                        | 15         |
| 3.5.1  | I/Q generated on clock rising edge                      | 15         |
| 3.5.2  | I/Q generated on clock falling edge                     | 15         |
| 3.6    | GPIO mapping                                            | 16         |
| 3.6.1  | GPIO output configuration                               | 16         |
| 3.6.2  | GPIO input configuration                                | 16         |
| 3.7    | RX mode block diagram, reception paths characteristics  | 17         |
| 3.7.1  | Block diagram                                           |            |
| 3.7.2  | Reception paths characteristics                         | 17         |
| 3.8    | Packet engine and data buffers                          | 19         |
| 3.8.1  | Receiver Packet engine                                  | 19         |
| 3.8.2  | Transmitter packet engine                               | 21         |
| 3.9    | Receiver IF frequencies configuration                   | <b>2</b> 3 |
| 3.9.1  | Configuration using 2 x SX1257 radios                   | <b>2</b> 3 |
| 3.9.2  | Two SX1255 : 433 MHz band                               | 25         |
| 3.9.3  | One SX1257 and one SX1255                               | 25         |
| 3.10   | Connection to RF front-end                              | 26         |
| 3.10.1 | Connection to Semtech SX1255 or SX1257 components       | 26         |
| 3.10.2 | SX1301 RX operation using a third party RF front-end    | 27         |
| 3.10.3 | Radio calibration                                       | 29         |
| 3.10.4 | SX1301 connection to RF front-end for TX operation      | 29         |
| 3.11   | Reference application                                   | 30         |
| 3.12   | SX1301 sensitivity performance in reference application | 31         |
| 3.13   | SX1301 sensitivity vs data rate in LoRa mode            | 31         |
| 3.13.1 | 125kHz mode: IF8, IF[0 to 7] paths                      | 31         |
| 3.13.2 | 250 & 500 kHz mode: IF8 only                            | 32         |
| 3.14   | SX1301 interference rejection                           |            |
| 3.15   | Hardware Abstraction Layer (HAL)                        |            |
| 3.15.1 | Introduction                                            |            |
| 3.15.2 | Abstraction presented to the gateway host               | 34         |
|        |                                                         |            |







| - |     | -   | $\overline{}$ | _ |     |      | _ | _ |     |     |     | _ |       |    |      |  |
|---|-----|-----|---------------|---|-----|------|---|---|-----|-----|-----|---|-------|----|------|--|
| м | ι.ν | 4 1 | Ю             |   | LES | 1 91 | 9 |   | 419 | 110 |     |   | N. W. | ин | W.   |  |
| м | и.  |     | ĸ             | - |     |      |   |   | M - |     | - 4 |   |       |    | 11/1 |  |
| • | 7 W |     | пΛ            |   | 7   | ~ .  | _ |   |     |     |     |   |       |    | М.   |  |

| 3.15.3  | Composition of the software library                                   | 36                         |
|---------|-----------------------------------------------------------------------|----------------------------|
| 3.15.4  |                                                                       |                            |
| 3.15.5  | Important HAL functions                                               | 39                         |
| 4       | MEMORY MAP                                                            | 40                         |
| 4.1     | Registers list                                                        | 40                         |
| 4.2     | Registers Description                                                 | 43                         |
| 4.2.1   | All pages registers                                                   | 43                         |
| 4.2.2   | Page 0 registers                                                      |                            |
| 4.2.3   | Page 1 registers                                                      |                            |
| 4.2.4   | Page 2 registers                                                      | 51                         |
| 5       | EXTERNAL COMPONENTS                                                   | 54                         |
| 6       | PCB LAYOUT CONSIDERATIONS                                             | 55                         |
| 7       | PACKAGING INFORMATION                                                 | 58                         |
| 7.1     | Package Outline Drawing                                               | 58                         |
| 7.2     | Thermal impedance of package                                          |                            |
| 7.3     | Land Pattern Drawing                                                  | 59                         |
| 8       | REVISION INFORMATION                                                  | 60                         |
| Figure: | s  1 Top view of SX1301 package with 64 pins and exposed ground page. | ddle (bottom of package).7 |
| _       | 2 Power-up sequence                                                   |                            |
| Figure  | 3 SPI Timing Diagram (single access)                                  | 14                         |
| Figure  | 4 I/Q on clock rising edge                                            | 15                         |
| _       | 5 I/Q on clock falling edge                                           |                            |
| _       | 6 SX1301 digital baseband chip block diagram                          |                            |
| _       | 7 Access FIFO and data buffer                                         |                            |
| _       | 8 SX1255/57 digital I/Q power spectral density                        |                            |
| _       | 9 Radio spectrum                                                      |                            |
| _       | 11 Radio spectrum                                                     |                            |
| _       | 12 Dual band operation                                                |                            |
| _       | 13 SX1301 with third party frontend                                   |                            |
|         | 14 Digital interface for third party radio                            |                            |
| _       | 15 Transmission schematics                                            |                            |
| Figure  | 16 Reference application                                              | 30                         |
|         | 17 CW interferer rejection @ SF7                                      |                            |
|         | 18 CW interferer rejection @ SF12                                     |                            |
| _       | 19 EPCOS B3117 SAW filter transfer function                           |                            |
| _       | 20 PCB layout example                                                 |                            |
| _       | 21 Package dimensions                                                 |                            |
| Figure  | 22 Land pattern drawing                                               | 59                         |
| Tables  |                                                                       |                            |
|         | 1 Pins name and description                                           |                            |
| rable 2 | 2 Absolute maximum ratings                                            |                            |





| Table 3 Externals                                           | 10 |
|-------------------------------------------------------------|----|
| Table 4 Operating conditions for electrical specifications  | 10 |
| Table 5 Electrical specifications                           | 11 |
| Table 6 Timing specifications                               | 11 |
| Table 7 GPIO output configuration                           | 16 |
| Table 8 GPIO input configuration                            | 16 |
| Table 9 Packet data fields                                  | 21 |
| Table 10 Packet structure for transmission                  | 23 |
| Table 11 IF frequencies set                                 | 24 |
| Table 12 IF frequency used                                  | 25 |
| Table 13 SX1301 performance in reference application        | 31 |
| Table 14 Sensitivity with 125 kHz mode                      | 31 |
| Table 15 Sensitivity with 250 kHz mode                      | 32 |
| Table 16 Sensitivity with 500 kHz mode                      | 32 |
| Table 17 HAL main data structures                           | 39 |
| Table 18 HAL main functions                                 | 39 |
| Table 19 List of registers that are accessed without paging | 40 |
| Table 20 List of registers on page 0                        | 41 |
| Table 21 List of registers on page 1                        | 42 |
| Table 22 List of registers on page 2                        | 43 |
| Table 23 RegPage definition                                 | 43 |
| Table 24 RegVer definition                                  | 43 |
| Table 25 RegRdbal definition                                | 43 |
| Table 26 RegRdbah definition                                | 43 |
| Table 27 RegRdbd definition                                 | 43 |
| Table 28 RegTdba definition                                 | 44 |
| Table 29 RegTdbd definition                                 | 44 |
| Table 30 RegMpd definition                                  | 44 |
| Table 31 RegRpns definition                                 | 44 |
| Table 32 RegRpapl definition                                |    |
| Table 33 RegRpaph definition                                |    |
| Table 34 RegRps definition                                  |    |
| Table 35 RegRpps definition                                 | 44 |
| Table 36 RegGen definition                                  | 44 |
| Table 37 RegCken definition                                 | 44 |
| Table 38 RegGpsi definition                                 | 44 |
| Table 39 RegGpso definition                                 | 45 |
| Table 40 RegGpmode definition                               | 45 |
| Table 41 RegGpregi definition                               | 45 |
| Table 42 RegGprego definition                               | 45 |
| Table 43 RegAgcsts definition                               |    |
| Table 44 RegArbsts definition                               | 45 |
| Table 45 Regld definition                                   |    |
| Table 46 Reglqcfg definition                                |    |
| Table 47 RegDeccfg definition                               |    |
| Table 48 RegChrs definition                                 |    |
| Table 49 RegIfOl definition                                 |    |
| Table 50 RegIf0h definition                                 |    |
| Table 51 RegIf1I definition                                 | 45 |





| Table 52 RegIf1h definition               | 46 |
|-------------------------------------------|----|
| Table 53 RegIf2I definition               | 46 |
| Table 54 RegIf2h definition               | 46 |
| Table 55 RegIf3I definition               | 46 |
| Table 56 RegIf3h definition               | 46 |
| Table 57 RegIf4l definition               | 46 |
| Table 58 RegIf4h definition               | 46 |
| Table 59 RegIf5l definition               | 46 |
| Table 60 RegIf5h definition               | 46 |
| Table 61 RegIf6l definition               |    |
| Table 62 RegIf6h definition               |    |
| Table 63 RefIf7l definition               | 46 |
| Table 64 RegIf7h definition               |    |
| Table 65 RegIf8l definition               |    |
| Table 66 RegIf8h definition               |    |
| Table 67 RegIf9I definition               |    |
| Table 68 RegIf9h definition               |    |
| Table 69 RegCoreOdeten definition         |    |
| Table 70 RegCore1deten definition         |    |
| Table 71 RegCore2deten definition         |    |
| Table 72 RegCore3deten definition         |    |
| Table 73 RegCore4deten definition         |    |
| Table 74 RegCore5deten definition         |    |
| Table 75 RegCore6deten definition         |    |
| Table 76 RegCore7deten definition         |    |
| Table 77 RegAmso124h definition           |    |
| Table 78 RegTimtrak2 definition           |    |
| Table 79 RegPrsymbnbl definition          |    |
| Table 80 RegSymbnbh definition            |    |
| Table 81 RegMisc_cfg2 definition          |    |
| Table 82 RegHeader_cfg1 definition        |    |
| Table 83 RegHeader_cfg2 definition        |    |
| Table 84 RegMcu_ctrl definition           |    |
| Table 85 RegChann_select_rssi definition  |    |
| Table 86 RegTrig definition               |    |
| Table 87 RegTx_offset_i definition        |    |
| Table 88 RegTx_offset_q definition        |    |
| Table 89 RegBhimpcfg1 definition          |    |
| Table 90 RegBhimpcfg2 definition          |    |
| Table 91 RegBhsyncpos definition          |    |
| Table 92 RegBhprsymnbl definition         |    |
| Table 93 RegMbwssf_misc_cfg1 definition   |    |
| Table 94 RegMbwssf_misc_cfg2 definition   |    |
| Table 95 RegMbwssf_misc_cfg3 definition   |    |
| Table 96 RegMbwssf_misc_cfg4 definition   |    |
| Table 97 RegTx_status definition          |    |
| Table 98 RegFsx_cfg definition            |    |
| Table 99 RegFsk_cfg2 definition           |    |
| Table 100 RegFsk_error_osr_tol definition | 50 |







| Table 101 RegFsk_br_ratiol definition               | 50  |
|-----------------------------------------------------|-----|
| Table 102 RegFsk_br_ratioh definition               | 50  |
| Table 103 RegFsk_ref_pattern_0 definition           |     |
| Table 104 RegFsk_ref_pattern_1 definition           |     |
| Table 105 RegFsk_ref_pattern_2 definition           |     |
| Table 106 RegFsk_ref_pattern_3 definition           | 50  |
| Table 107 RegFsk_ref_pattern_4 definition           |     |
| Table 108 RegFsk_ref_pattern_5 definition           | 50  |
| Table 109 RegFsk_ref_pattern_6 definition           |     |
| Table 110 RegFsk_ref_pattern_7 definition           | 50  |
| Table 111 RegFsk_pkt_length definition              | 50  |
| Table 112 RegFsk_aafc definition                    | 50  |
| Table 113 RegFsk_pattern_timeout_cfg definition     | 50  |
| Table 114 RegFsk_pattern_timeout_cfg definition     | 51  |
| Table 115 RegRadio_a_spi_1 definition               |     |
| Table 116 RegRadio_a_spi_2 definition               |     |
| Table 117 RegRadio_a_spi_3 definition               |     |
| Table 118 RegRadio_a_spi_4 definition               |     |
| Table 119 RegRadio_b_spi_1 definition               |     |
| Table 120 RegRadio_b_spi_2 definition               |     |
| Table 121 RegRadio_b_spi_3 definition               |     |
| Table 122 RegRadio_b_spi_4 definition               |     |
| Table 123 RegRadio_cfg definition                   |     |
| Table 124 RegPa_gain definition                     |     |
| Table 125 RegFe_a_ctrl_lut definition               |     |
| Table 126 RegFe_b_ctrl_lut definition               |     |
| Table 127 RegValid_header_counter_mbwssf definition |     |
| Table 128 RegValid_header_counter_fsk definition    |     |
| Table 129 RegValid_packet_counter_mbwssf definition |     |
| Table 130 RegValid_packet_counter_fsk definition    |     |
| Table 131 RegChann_rssi definition                  |     |
| Table 132 RegBb_rssi definition                     |     |
| Table 133 RegDec_rssi definition                    |     |
| Table 134 RegTimestamp_0 definition                 | 52  |
| Table 135 RegTimestamp_1 definition                 |     |
| Table 136 RegTimestamp_2 definition                 |     |
| Table 137 RegTimestamp_3 definition                 |     |
| Table 138 RegSpi_master_cfg definition              |     |
| Table 139 RegGps_cfg definition                     | 53  |
| Table 1/10 Recommended external components          | 5/1 |



**Datasheet** 

# 1 Pin Configuration

#### 1.1 Pins placement and circuit marking



Figure 1 Top view of SX1301 package with 64 pins and exposed ground paddle (bottom of package).

The ground paddle must be connected to ground potential through a large conductive plane that also serves for temperature dissipation.





Datasheet

# 1.2 Pins description

The table below gives the description of the pins of the circuit.

| Pin | Pin Name     | Туре        | Description                                                         |  |  |  |
|-----|--------------|-------------|---------------------------------------------------------------------|--|--|--|
| 0   | VSS          | Power (GND) | Ground paddle – must be connected to ground for thermal dissipation |  |  |  |
| 1   | RESET        | Input       | Global asynchronous reset                                           |  |  |  |
| 2   | HOST_SCK     | Input       | HOST SPI clock (max 10 MHz clock)                                   |  |  |  |
| 3   | HOST_MISO    | Output      | HOST SPI Interface                                                  |  |  |  |
| 4   | HOST_MOSI    | Input       | HOST SPI Interface                                                  |  |  |  |
| 5   | HOST_CSN     | Input       | HOST SPI Interface                                                  |  |  |  |
| 6   | SCANMODE     | Input       | Scanmode signal (tied to 0 in normal mode)                          |  |  |  |
| 7   | VSS          | Power (GND) | Ground                                                              |  |  |  |
| 8   | VCC18        | Power (VDD) | Logic core supply                                                   |  |  |  |
| 9   | GPS_IN       | Input       | GPS 1 pps input                                                     |  |  |  |
| 10  | VSS          | Power (GND) | Ground                                                              |  |  |  |
| 11  | VSS          | Power (GND) | Ground                                                              |  |  |  |
| 12  | VCC18        | Power (VDD) | Logic core supply                                                   |  |  |  |
| 13  | RADIO_A_EN   | Output      | Radio A global enable                                               |  |  |  |
| 14  | LNA_A_CTRL   | Output      | LNA A enable                                                        |  |  |  |
| 15  | PA_A_CTRL    | Output      | PA A enable                                                         |  |  |  |
| 16  | NC           |             | No connected – tie to VSS                                           |  |  |  |
| 17  | PA_GAIN[1]   | Output      | PA gain control of both radio A/B                                   |  |  |  |
| 18  | PA_GAIN[0]   | Output      | PA gain control of both radio A/B                                   |  |  |  |
| 19  | RADIO_B_CS   | Output      | Radio B SPI interface                                               |  |  |  |
| 20  | RADIO_B_MOSI | Output      | Radio B SPI interface                                               |  |  |  |
| 21  | RADIO_B_MISO | Input       | Radio B SPI interface                                               |  |  |  |
| 22  | RADIO_B_SCK  | Output      | Radio B SPI interface                                               |  |  |  |
| 23  | VCC18        | Power (VCC) | Logic core supply                                                   |  |  |  |
| 24  | VSS          | Power (GND) | Ground                                                              |  |  |  |
| 25  | RADIO_RST    | Output      | Radio A/B global reset                                              |  |  |  |
| 26  | PA_B_CTRL    | Output      | PA B enable                                                         |  |  |  |
| 27  | LNA_B_CTRL   | Output      | LNA B enable                                                        |  |  |  |
| 28  | RADIO_B_EN   | Output      | Radio B global enable                                               |  |  |  |
| 29  | VCC33        | Power (VCC) | Logic IO supply                                                     |  |  |  |
| 30  | VSS          | Power (GND) | Ground                                                              |  |  |  |
| 31  | VSS          | Power (GND) | Ground                                                              |  |  |  |
| 32  | NC           |             | No connected – tie to VSS                                           |  |  |  |
| 33  | NC           |             | No connected – tie to VSS                                           |  |  |  |
| 34  | SP_VALID     | Input       | Radio C sample valid                                                |  |  |  |
| 35  | B_IQ_RX      | Input       | Radio B 1 bit I/Q Rx samples                                        |  |  |  |
| 36  | B_QI_RX      | Input       | Radio B 1 bit Q/I Rx samples                                        |  |  |  |
| 37  | B_IQ_TX      | Output      | Radio B 1 bit I/Q Tx samples                                        |  |  |  |
| 38  | B_QI_TX      | Output      | Radio B 1 bit Q/I Tx samples                                        |  |  |  |
| 39  | SP_CLK_OUT   | Output      | Radio C clock out (32 MHz)                                          |  |  |  |





Datasheet

| Pin | Pin Name     | Туре        | Description                      |  |  |  |
|-----|--------------|-------------|----------------------------------|--|--|--|
| 40  | GND          | Power (GND) | Ground                           |  |  |  |
| 41  | GND          | Power (GND) | Ground                           |  |  |  |
| 42  | VCC18        | Power (VCC) | Logic core supply                |  |  |  |
| 43  | CLK32M       | Input       | 32 MHz clock from radios crystal |  |  |  |
| 44  | A_IQ_RX      | Input       | Radio A 1 bit I/Q Rx samples     |  |  |  |
| 45  | A_QI_RX      | Input       | Radio A 1 bit Q/I Rx samples     |  |  |  |
| 46  | A_IQ_TX      | Output      | Radio A 1 bit I/Q Tx samples     |  |  |  |
| 47  | A_QI_TX      | Output      | Radio A 1 bit Q/I Tx samples     |  |  |  |
| 48  | NC           |             | No connected – tie to VSS        |  |  |  |
| 49  | NC           |             | No connected – tie to VSS        |  |  |  |
| 50  | VSS          | Power (GND) | Ground                           |  |  |  |
| 51  | VSS          | Power (GND) | Ground                           |  |  |  |
| 52  | VCC33        | Power (VCC) | Logic IO supply                  |  |  |  |
| 53  | CLKHS        | Input       | High speed digital clock         |  |  |  |
| 54  | GPIO[4]      | In/Out      | General purpose GPIO[4]          |  |  |  |
| 55  | GPIO[3]      | In/Out      | General purpose GPIO[3]          |  |  |  |
| 56  | GPIO[2]      | In/Out      | General purpose GPIO[2]          |  |  |  |
| 57  | GPIO[1]      | In/Out      | General purpose GPIO[1]          |  |  |  |
| 58  | GPIO[0]      | In/Out      | General purpose GPIO[0]          |  |  |  |
| 59  | VSS          | Power (GND) | Ground                           |  |  |  |
| 60  | VCC18        | Power (VCC) | Logic core supply                |  |  |  |
| 61  | RADIO_A_SCK  | Output      | Radio A SPI interface            |  |  |  |
| 62  | RADIO_A_MISO | Input       | Radio A SPI interface            |  |  |  |
| 63  | RADIO_A_MOSI | Output      | Radio A SPI interface            |  |  |  |
| 64  | RADIO_A_CS   | Output      | Radio A SPI interface            |  |  |  |

Table 1 Pins name and description



**Datasheet** 

#### 2 Electrical Characteristics

#### 2.1 Absolute maximum ratings

Stresses above the values listed below may cause permanent device failure. Exposure to absolute maximum ratings for extended periods may affect device reliability. Operation outside the parameters specified in the Operating Conditions section is not implied.

| Parameter                        | Symbol                     | Conditions            | Value                   |
|----------------------------------|----------------------------|-----------------------|-------------------------|
| IO power supply to VSS           | V <sub>DDIO,ABSMAX</sub>   |                       | -0.5 V to 4.0 V         |
| Core power supply to VSS         | V <sub>DDCORE,ABSMAX</sub> |                       | -0.5 V to 2.0 V         |
| Storage temperature              | T <sub>J,STORE</sub>       |                       | -50 °C to 150 °C        |
| Ambient operating temperature    | T <sub>J,ABSMAX</sub>      |                       | -40 °C to 125 °C        |
| Pin voltage on IO and Clock pins | V <sub>DPIN,ABSMAX</sub>   |                       | -0.3 V to VDDIO + 0.3 V |
| Peak reflow temperature          | T <sub>PKG</sub>           |                       | 260 °C                  |
| Latchup                          | I <sub>LUP</sub>           | JESD78D, class I      | +/-100 mA               |
| Humidity                         | H <sub>R</sub>             |                       | 0 – 95 %                |
| ESD                              | HBM                        | Human Body Model      | 2 kV                    |
|                                  |                            | JESD22-A114 CLASS 2   |                         |
|                                  | CDM                        | Charged Device Model  | 300 V                   |
|                                  |                            | JESD22-C101 CLASS III |                         |

Table 2 Absolute maximum ratings

#### 2.2 Constraints on external

Circuit is expected to be used with the following external conditions.

| Parameter                                   | Symbol      | Conditions                       | Min         | Тур | Max | Unit |  |  |
|---------------------------------------------|-------------|----------------------------------|-------------|-----|-----|------|--|--|
| Radio ADC samples clock input               | XTAL32F     | Clock for data communication     |             | 32  |     | MHz  |  |  |
| frequency                                   |             | with Tx <sup>†</sup>             |             |     |     |      |  |  |
| ADC sample clock frequency                  | XTAL32T     |                                  | -10         |     | +10 | ppm  |  |  |
| tolerance                                   |             |                                  |             |     |     |      |  |  |
| High speed processing clock                 | HSC_F       | Clock for data processing        | 130         | 133 | 150 | MHz  |  |  |
| Load on IO pins                             | CLOP        |                                  | 0           |     | 25  | pF   |  |  |
| Notes:                                      |             |                                  |             |     |     |      |  |  |
| <sup>†</sup> The data communication IOs are | A I RX, A Q | RX, B X RX, B Q RX and clock sig | gnal is CLK | 32M |     |      |  |  |

**Table 3 Externals** 

#### 2.3 Operating conditions

The circuit will operate full specs within the following operating conditions.

| Parameter <sup>†</sup> | Symbol         | Conditions                   | Min  | Тур | Max  | Unit |
|------------------------|----------------|------------------------------|------|-----|------|------|
| Digital IO supply      | $V_{DDIO}$     | Operating Conditions for     | 3.0  |     | 3.6  | V    |
|                        |                | Electrical Specification     |      |     |      |      |
| Digital core supply    | $V_{DDCORE}$   | Operating Conditions for     | 1.75 |     | 1.85 | V    |
|                        |                | Electrical Specification     |      |     |      |      |
| Operating temperature  | T <sub>J</sub> | With chip paddle soldered to | -40  |     | 85   | °C   |
|                        |                | PCB ground plan with         |      |     |      |      |
|                        |                | minimum 100 cm2 air          |      |     |      |      |
|                        |                | exposed area and heat sink   |      |     |      |      |

**Table 4 Operating conditions for electrical specifications** 

V2.01 June 2014



**Datasheet** 

## 2.4 Electrical specifications

The table below gives the specifications of the circuit within the Operating Conditions as indicated in 2.3 unless otherwise specified.

| Parameter                  | Symbol                    | Conditions                                        | Min                     | Тур | Max                     | Unit |
|----------------------------|---------------------------|---------------------------------------------------|-------------------------|-----|-------------------------|------|
| Current Consumption        |                           |                                                   |                         |     |                         |      |
| Current in idle mode       | I <sub>VDDCORE,IDLE</sub> | 1.8V supply current in Idle mode <sup>1</sup>     |                         | 120 | 3000                    | uA   |
|                            | I <sub>VDDIO,IDLE</sub>   | 3.3V supply current in idle mode                  |                         | 1   | 2                       | uA   |
| Current in medium active   | I <sub>VDDCORE,MED</sub>  | 1.8V supply current with 4 active paths           |                         | 330 | 550                     | mA   |
|                            | I <sub>VDDIO,MED</sub>    | 3.3V supply current with 4 active paths – no load |                         | 5   | 10                      | mA   |
| Current in full active     | I <sub>VDDCORE,FULL</sub> | 1.8V supply current with 8 active paths           |                         | 550 | 750                     | mA   |
|                            | I <sub>VDDIO,FULL</sub>   | 3.3V supply current with 8 active paths – no load |                         | 5   | 10                      | mA   |
| IO Pins levels             |                           |                                                   |                         |     |                         |      |
| Logic low input threshold  | VIL                       | "0" logic input                                   | 0.4                     |     |                         | V    |
| Logic high input threshold | VIH                       | "1" logic input                                   |                         |     | V <sub>DDIO</sub> - 0.4 | V    |
| Logic low output level     | VOL                       | "0" logic output, 2 mA sink                       | VSS                     |     | VSS + 0.4               | V    |
| Logic high output level    | VOH                       | "1" logic output, 2 mA source                     | V <sub>DDIO</sub> – 0.4 |     | V <sub>DDIO</sub>       | V    |

**Table 5 Electrical specifications** 

# 2.5 Timing specifications

The table below gives the specifications of the circuit within the Operating Conditions as indicated in 2.3 unless otherwise specified. See chapters 3.4 and 3.5 for timing diagrams and symbol definitions.

| Parameter                          | Symbol              | Conditions                                                  | Min | Тур | Max | Unit |
|------------------------------------|---------------------|-------------------------------------------------------------|-----|-----|-----|------|
| SPI                                |                     |                                                             |     | "   |     |      |
| SCK frequency                      | F <sub>SCK</sub>    |                                                             | -   | -   | 10  | MHz  |
| SCK high time                      | t <sub>ch</sub>     |                                                             | 50  | -   | -   | ns   |
| SCK low time                       | t <sub>cl</sub>     |                                                             | 50  | -   | -   | ns   |
| SCK rise time                      | t <sub>rise</sub>   |                                                             | -   | 5   | -   | ns   |
| SCK fall time                      | t <sub>fall</sub>   |                                                             | -   | 5   | -   | ns   |
| MOSI setup time                    | t <sub>setup</sub>  | From MOSI change to SCK rising edge.                        | 10  | -   | -   | ns   |
| MOSI hold time                     | t <sub>hold</sub>   | From SCK rising edge to MOSI change.                        | 20  | -   | -   | ns   |
| CSN setup time                     | t <sub>nsetup</sub> | From CSN falling edge to SCK rising edge                    | 10  | -   | -   | ns   |
| CSN hold time                      | t <sub>nhold</sub>  | From SCK falling edge to<br>CSN rising edge, normal<br>mode | 40  | -   | -   | ns   |
| NSS high time between SPI accesses | t <sub>nhigh</sub>  |                                                             | 40  | -   | -   | ns   |
| Clock to Rx I-Q data               |                     |                                                             |     |     |     |      |
| Rx IQ hold and setup time          | t <sub>IQ</sub>     |                                                             | 2   | -   | -   | ns   |

**Table 6 Timing specifications** 

V2.01 June 2014

<sup>&</sup>lt;sup>1</sup> Idle current is reached following procedure indicated in application part of datasheet (chapter 3.2.2)



**Datasheet** 

## 3 Circuit Operation

This chapter is for information only.

#### 3.1 General Presentation

The SX1301 is a smart baseband processor for long range ISM communication. In the receiver part, it receives I and Q digitized bitstream from one or two receivers (SX1257 as an example), demodulates these signals using several demodulators, adapting the demodulators settings to the received signal and stores the received demodulated packets in a FIFO to be retrieved from a MCU. In the transmitter part, the packets are modulated using a programmable (G)FSK/LoRa modulator and sent to one transmitter (SX1257 as an example). Received packets can be time-stamped using a GPS input.

The SX1301 has an internal control block that receives microcode from the MCU. The microcode is provided by Semtech as a binary file to load in the SX1301 at power-on (see Semtech application support for more information).

The control of the SX1301 by the MCU is made using a Hardware Abstraction Layer (HAL). The Hardware Abstraction Layer source code is provided by Semtech and can be adapted by the MCU developers. It is recommended to fully re-use the latest HAL as provided by Semtech on <a href="https://github.com/Lora-net/lora">https://github.com/Lora-net/lora</a> gateway.

#### 3.2 Power-on

#### 3.2.1 Power-up sequence

Power-up sequence must follow the timing indicated in the figure below.



Figure 2 Power-up sequence

#### 3.2.2 Setting the circuit is low-power mode

At power up, the circuit is in a general low-power state but some registers linked to the memory are in undefined state. To set the circuit in low-power mode, the following instructions and clocks must be provided to the circuit.

```
// Setting circuit in low-power mode after power-up
// spi_write(x, y) is a write of data "y" on address "x" on HOST SPI bus
spi_write(0,128); Reset On
spi_write(0,0); Reset Off
// provide at least 16 cycles on CLKHS and 16 cycles CLK32M
spi_write(18,1); BIST 1
// provide at least 4 cycles on CLKHS and 32 cycles CLK32M and 4 cycles on HOST_SCK
spi write(18,2); BIST 2
```





**Datasheet** 

```
// provide at least 4 cycles CLK32M and 4 cycles on HOST_SCK
spi_write(0,128); Reset On
spi_write(0,0); Reset Off
```

Idle mode sequence after power-up

#### 3.3 Clocking

The SX1301 gateway requires two clocks.

- A 32MHz clock synchronous with the ADC samples. This clock is used to internally sample
  the ADC samples and clock all the decimation filters. When the SX1301 is used with a
  Semtech S1257 or SX1255 RF front-end, this clock is provided by the radio. This clock uses
  CMOS levels (0 3.3 V). If a third party radio front-end is used, this must be the clock that
  also clocks the ADCs and serves as a reference for the radio PLLs.
- A high speed clock whose frequency can be anywhere in the range 130 150 MHz. This clock uses CMOS level and must be provided from an external Oscillator. There is no constraint on this clock jitter. This clock is used for most of the demodulation blocks and data processing. This clock is never used by any of the analog/radio blocks.

V2.01 June 2014



**Datasheet** 

#### 3.4 SPI Interface

The SPI interface gives access to the configuration register via a synchronous full-duplex protocol. Only the slave side is implemented.

Three access modes to the registers are provided:

- SINGLE access: an address byte followed by a data byte is sent for a write access whereas an address byte is sent and a read byte is received for the read access. The NSS pin goes low at the beginning of the frame and goes high after the data byte.
- BURST access: the address byte is followed by several data bytes. The address is automatically incremented internally between each data byte. This mode is available for both read and writes accesses. The CSN pin goes low at the beginning of the frame and stay low between each byte. It goes high only after the last byte transfer.
- FIFO access: if the address byte corresponds to the address of the FIFO, then succeeding data byte will address the FIFO. The address is not automatically incremented but is memorized and does not need to be sent between each data byte. The NSS pin goes low at the beginning of the frame and stay low between each byte. It goes high only after the last byte transfer.

The figure below shows a typical SPI single access to a register.



Figure 3 SPI Timing Diagram (single access)

MOSI is generated by the master on the falling edge of SCK and is sampled by the slave (i.e. this SPI interface) on the rising edge of SCK. MISO is generated by the slave on the falling edge of SCK.

A transfer is always started by the CSN pin going low. MISO is high impedance when NSS is high.

The first byte is the address byte. It is comprises:

- one wnr bit, which is "1" for write access and "0" for read access.
- then seven bits of address, MSB first.

The second byte is a data byte, either sent on MOSI by the master in case of a write access or received by the master on MISO in case of read access. The data byte is transmitted MSB first.

Proceeding bytes may be sent on MOSI (for write access) or received on MISO (for read access) without a rising CSN edge and re-sending the address. In FIFO mode, if the address was the FIFO address then the bytes will be written / read at the FIFO address. In Burst mode, if the address was not the FIFO address, then it is automatically incremented for each new byte received.

The frame ends when CSN goes high. The next frame must start with an address byte. The SINGLE access mode is therefore a special case of FIFO / BURST mode with only 1 data byte transferred.





**Datasheet** 

During the write access, the byte transferred from the slave to the master on the MISO line is the value of the written register before the write operation.

#### 3.5 Rx I/Q Interface

The Rx I/Q bit stream has to be generated relative to the radio clock (32 MHz).

The SX1301 can manage I/Q generated on both clock rising and falling edges.

### 3.5.1 I/Q generated on clock rising edge

To relax the constraint on setup and hold time, it is recommended to use the falling edge of the clock.

To avoid internal setup and hold violation, it is mandatory to avoid I/Q change in a range of +/- 2 ns around clock falling edge



Figure 4 I/Q on clock rising edge

#### 3.5.2 I/Q generated on clock falling edge

To relax the constraint on setup and hold time, it is recommended to use the rising edge of the clock

To avoid internal setup and hold violation, it is mandatory to avoid I/Q change in a range of +/-2 ns around clock rising edge



Figure 5 I/Q on clock falling edge





**Datasheet** 

#### 3.6 GPIO mapping

There are 5 general purposes I/O which can be separately configured as inputs or outputs.

The 2 registers GPIO\_SELECT\_OUTPUT and GPIO\_SELECT\_INPUT are used to define the GPIO mappings.

The 5 bits register GPIO\_MODE defines the direction (input or output) for each GPIO (1 means output and 0 means input).

#### 3.6.1 GPIO output configuration

The GPIOs configured as outputs can be driven by various internal signals. The following table gives the possible combinations selected by the GPIO SELECT OUTPUT register.

| select | gpio[4]          | gpio[3]    | gpio[2]             | gpio[1]         | gpio[0]             |
|--------|------------------|------------|---------------------|-----------------|---------------------|
| 0      | tx_on            | fsk_pkt    | bh_pkt              | sensor_pkt      | rx_buffer_not_empty |
| 1      | 1'b0             | 1'b0       | 1'b0                | clk_160_div     | clk_32_div          |
| 2      |                  |            | dbg_mcu_ago         | _to_gpio        |                     |
| 3      |                  |            | dbg_mcu_arb         | _to_gpio        |                     |
| 4      | 1'b0             | 1'b0       | sensor_0_header_val | sensor_0_sync   | sensor_0_detect     |
| 5      | 1'b0             | 1'b0       | bh_header_val       | bh_sync         | bh_detect           |
| 6      | 1'b0             | 1'b0       | fsk_header_val      | fsk_sync        | fsk_detect          |
| 7      | radio_a_i        | radio_a_q  | radio_b_i           | radio_b_q       | 1'b0                |
| 8      | host_reg_to_gpio |            |                     |                 |                     |
| 9      | 1'b0             | 1'b0       | 1'b0                | bist_1_finished | bist_0_finished     |
| 10     | tx_on            | fsk/bh_pkt | gps_hpps            | sensor_pkt      | rx_buffer_not_empty |

Table 7 GPIO output configuration

## 3.6.2 GPIO input configuration

GPIOs configured as inputs can be connected to various internal block ports. The following table gives the possible combinations selected by the GPIO\_SELECT\_INPUT register. NC means not connected.

| SELECT | GPIO[4]  | GPIO[3]     | GPIO[2]             | GPIO[1]                   | GPIO[0]       |
|--------|----------|-------------|---------------------|---------------------------|---------------|
| 0      | NC       | NC          | NC                  | NC                        | NC            |
| 1      | NC       | NC          | NC                  | NC                        | NC            |
| 2      | DB       | G_MCU_AGC_I | FROM_GPIO, connects | GPIOs to an input port of | f the AGC MCU |
| 3      | DB       | G_MCU_ARB_I | FROM_GPIO, connects | GPIOs to an input port of | f the ARB MCU |
| 4      | NC       | NC          | NC                  | NC                        | NC            |
| 5      | NC       | NC          | NC                  | NC                        | NC            |
| 6      | NC       | NC          | NC                  | NC                        | NC            |
| 7      | NC       | NC          | NC                  | NC                        | NC            |
| 8      | Reserved |             |                     |                           |               |
| 9      | NC       | NC          | NC                  | NC                        | NC            |
| 10     | NC       | NC          | NC                  | NC                        | NC            |

**Table 8 GPIO input configuration** 

V2.01 June 2014



**Datasheet** 

#### 3.7 RX mode block diagram, reception paths characteristics

#### 3.7.1 Block diagram



Figure 6 SX1301 digital baseband chip block diagram

All chip functionalities can be accessed through a single high speed SPI interface.

The chip integrates two dedicated micro-controllers.

- 1. A radio AGC MCU. Handling the real time automatic gain control of the entire chain. For this purpose this MCU can control the two radio front-ends through a dedicated SPI master interface. This MCU also handles radio calibration and RX<->TX radio switch
- A packet arbiter MCU. Assigning the available LoRa modems to the various reception paths.
   This arbiter can be configured to follow different priority rules based on parameters like data rate of the incoming packet, channel, radio path or signal strength of the incoming packet.

The firmware of those 2 MCUs can be fully programmed at any time through the HOST SPI interface. This firmware is embedded in the Hardware Abstraction Layer provided by Semtech and does not need to be developed by the user.

#### 3.7.2 Reception paths characteristics

The SX1301 digital baseband chip contains 10 programmable reception paths. Those paths have differentiated levels of programmability and allow different use cases. It is important to understand the differences between those demodulation paths to make the best possible use from the system.





**Datasheet** 

#### IF8 LoRa channel

This channel can be connected to Radio A or B using any arbitrary intermediate frequency within the allowed range. This channel is LoRa only. The demodulation bandwidth can be configured to be 125, 250 or 500 kHz. The data rate can be configured to any of the LoRa available data rates (SF7 to SF12) but, as opposed to IFO to 7, <u>ONLY</u> the configured data rate will be demodulated. This channel is intended to serve as a high speed backhaul link to other gateways or infrastructure equipment. This demodulation path is compatible with the signal transmitted by the SX1272 & SX1276 chip family. Chapter 3.13 gives a brief overview of the expected system sensitivity in LoRa mode

#### IF9 (G)FSK channel

Same as previous except that this channel is connected to a GFSK demodulator. The channel bandwidth and bitrate can be adjusted. This demodulator offers a very high level of configurability, going well beyond the scope of this document. The demodulator characteristics are essentially the same than the GFSK demodulator implemented on the SX1232 and SX1272 Semtech chips.

This demodulation path can demodulate any legacy FSK or GFSK formatted signal.

#### IFO to IF7 LoRa channels

Those channels can be connected individually to Radio A or B. The channel bandwidth is 125 kHz and cannot be modified or configured. Each channel IF frequency can be individually configured. On each of those channels any data rate can be received without prior configuration. Several packet using different data rates may be demodulated simultaneously even on the same channel. Those channels are intended to be used for a massive asynchronous star network of 10000's of sensor nodes. Each sensor may use a random channel (amongst IFO to 7) and a different data rate for any transmission.

Typically sensor located near the gateway will use the highest possible data rate in the fixed 125 kHz channel bandwidth (e.g. 6 kbit/s) while sensors located far away will use a lower data rate down to 300 bit/s (minimum LoRa data rate in a 125 kHz channel).

The SX1301 digital baseband chip scans the 8 channels (IFO to IF7) for preambles of all data rates at all times. The chip is able to demodulate simultaneously up to 8 packets. Any combination of up to 8 packets is possible (e.g. one SF7 packet on IF0, one SF12 packet on IF7 and one SF9 packet on IF1 simultaneously).

The SX1301 can detect simultaneously preambles corresponding to all data rates on all IFO to IF7 channels. However it cannot demodulate more than 8 packets simultaneously. This is because the SX1301 architecture separates the preamble detection and acquisition task from the demodulation process. The number of simultaneous demodulation (in this case 8) is an arbitrary system parameter and may be set to any value for a customer specific circuit.

The unique multi data-rate multi-channel demodulation capacity of channels 0 to 7 allow innovative network architecture to be implemented:

- End-point nodes can change frequency with each transmission in a random pattern. This
  provides vast improvement of the system in term of interferer robustness and radio channel
  diversity
- End-point nodes can dynamically perform link rate adaptation based on their link margin without adding to the protocol complexity. There is no need to maintain a table of which end point uses which data rate, because all data rates are demodulated in parallel.
- True antenna diversity can be achieved on the gateway side. Allows better performance for mobile nodes in difficult multi-path environments.





**Datasheet** 

#### 3.8 Packet engine and data buffers

#### 3.8.1 Receiver Packet engine

Each time any of the demodulators decodes a packet, it is tagged with some additional information and stored in a shared data buffer (the data buffer size is 4096 bytes). For this purpose a specific data buffer management block reserves a segment with the necessary length in the data buffer and at the same time, stores the start address and the length of the packet field in a small FIFO type structure (named the access FIFO). The FIFO can contain up to 16 (start\_addr, length) pairs.

A status register contains at any moment the number of packets currently stored in the data buffer (and in the access FIFO).

To retrieve a packet, the host micro-controller first advances 1 step in the access FIFO by writing 1 to the 'next' bit. Then reads the (start\_addr, length) information. The host micro-controller can now retrieve in one SPI burst operation the entire packet and associated meta-data by reading 'length'+16 bytes starting at address 'start\_addr' in the data buffer .. To do so, first position the HOST address pointer to 'start-addr', then read 'length' + 16 bytes from the 'packet\_data' register . At the end of each byte the HOST address pointer is automatically incremented.

V2.01 June 2014



**Datasheet** 



Figure 7 Access FIFO and data buffer

The packet data is organized as follows:

# Packet buffer data organization

| Offset from start pointer | Data stored            | Comment                                              |
|---------------------------|------------------------|------------------------------------------------------|
| 0                         |                        |                                                      |
|                           |                        |                                                      |
|                           | PAYLOAD                | PAYLOAD DATA                                         |
|                           | PATEOAD                | FAILOAD DATA                                         |
|                           |                        |                                                      |
| payload_size-1            |                        |                                                      |
| payload_size              | CHANNEL                | 1 to 10 as described by block diagram                |
| 1+payload_size            | SF[3:0],CR[2:0],CRC_EN |                                                      |
| 2+payload_size            | SNR AVERAGE            | averaged SNR in dB on the packet length              |
| 3+payload_size            | SNR MIN                | minimum SNR (dB) recorded during packet<br>length    |
| 4+payload_size            | SNR MAX                | maximum SNR recorded during packet length            |
| 5+payload_size            | RSSI                   | channel signal strength in dB averaged during packet |
| 6+payload_size            | TIMESTAMP[7:0]         | 32 bits time stamp , 1 us step                       |





**Datasheet** 

| 7+payload_size  | TIMESTAMP[15:8]      |                             |
|-----------------|----------------------|-----------------------------|
| 8+payload_size  | TIMESTAMP[23:16]     |                             |
| 9+payload_size  | TIMESTAMP[31:24]     |                             |
| 10+payload_size | CRC_VALUE[7:0]       | value of the computed CDC16 |
| 11+payload_size | CRC_VALUE[15:8]      | value of the computed CRC16 |
| 12+payload_size | MODEM ID             |                             |
| 13+payload_size | RX_MAX_BIN_POS[7:0]  | Correlation neal nesition   |
| 14+payload_size | RX_MAX_BIN_POS[15:8] | Correlation peak position   |
| 15+payload_size | RX_CORR_SNR          | Detection correlation SNR   |
| 16+payload_size | Reserved             |                             |
| 17+payload_size | Reserved             |                             |

**Table 9 Packet data fields** 

This means that the host micro-processor has to read 16 additional bytes on top of each packet to have access to all the meta-data. If the host is only interested in the payload itself + the channel and the data rate used , then payload + 2bytes is enough.

#### 3.8.2 Transmitter packet engine

The SX1301 gateway transmitter can be used to send packets. The following parameters can be dynamically programmed with each packet:

- Radio channel
- FSK or LoRa modulation
- Bandwidth ,data rate, coding rate (in LoRa mode) , bit rate and Fdev (in FSK mode)
- RF output power
- Radio path (A or B)
- Time of departure (immediate or differed based on the gateway hardware clock with 1us accuracy)

All those dynamic parameter fields are sent alongside the payload in the same data buffer.

The data buffer can only hold a single packet at a time (next packet to be sent). The scheduling and ordering task is let to the host micro-processor.

The host micro-processor can program the exact time of departure of each packet relative to the gateway hardware clock. The same clock is used to tag each packet received with a 32bits timestamp. The same 32bits time stamp principle is used in TX mode to indicate when to transmit exactly. This removes the real time constraint from the host micro-processor and allows very precise protocol timing.( For example, if the protocol running on the end point expects and acknowledge exactly one sec after the end of each packet of its uplink). The host micro-processor pulls the uplink packet from the RX packet engine , realizes that it must send an acknowledge, takes the uplink packet time stamp, simply increments it by 1 sec and uses that value to program the time of departure of the acknowledge packet. Exactly one second (+/- 1us) after the uplink packet was received, the gateway will transmit the desired acknowledge packet. This allows very tight reception interval windows on the battery powered end points hence improved battery life.



Datasheet

The packet structure for transmission is as follow:

| Byte | Subfield | Description       | comment                         |
|------|----------|-------------------|---------------------------------|
| 0    | 23:16    |                   |                                 |
| 1    | 15:8     | Channel frequency | Fchan/32MHz*2^19                |
| 2    | 7:0      |                   |                                 |
| 3    | 31:24    |                   |                                 |
| 4    | 23:16    | Start time        | Value of the timer at which the |
| 5    | 15:8     | Start time        | modem has to start (in us)      |
| 6    | 7:0      |                   |                                 |
|      | 7:6      | Reserved          |                                 |
| 7    | 5:5      | Radio select      | Select radio A (0) or B (1)     |
| /    | 4:4      | Modulation type   | 0:LoRa, 1:FSK                   |
|      | 3:0      | Tx power          | >7: 20dBm, otherwise 14dBm      |
| 8    |          | Reserved          |                                 |

## LoRa:

|    | 7:7  | Payload CRC16 enable   | Enables CRC16                     |
|----|------|------------------------|-----------------------------------|
| 9  | 6:4  | Coding rate            | Coding rate = 4/(4+CR)            |
|    | 3:0  | SF                     | 6 to 12                           |
| 10 | 7:0  | Payload length         | number of bytes                   |
|    | 7:3  | Reserved               |                                   |
| 11 | 2:2  | Implicit header enable |                                   |
|    | 1:0  | Modulation bandwidth   | 2:500, 1:250, 0:125 kHz           |
| 12 | 15:8 | Droamble symbol number | Number of symbols in the preamble |
| 13 | 7:0  | Preamble symbol number | Number of symbols in the preamble |
| 14 |      | Reserved               |                                   |
| 15 |      | Reserved               |                                   |

## FSK:

| 9  | 7:0  | FSK frequency deviation | Frequency deviation in KHz            |  |
|----|------|-------------------------|---------------------------------------|--|
| 10 | 7:0  | Payload length          | number of bytes                       |  |
|    | 0    | Packet Mode             | 0 -> fixed length                     |  |
|    | O    | Packet Mode             | 1 -> variable length                  |  |
|    | 1    | CRC enable              | 0 -> No CRC                           |  |
|    | 1    | CRC enable              | 1 -> CRC                              |  |
| 11 |      | 3:2 Dcfree Enc          | 00 -> DC free encoding off            |  |
| 11 |      |                         | 01 -> Manchester encoding             |  |
|    |      |                         | 10 -> Whitening Encoding              |  |
|    |      |                         | 11 -> reserved                        |  |
|    | 4    | Crc IBM                 | 0 -> CCITT CRC                        |  |
|    | 4    | CIC IBIVI               | 1 -> IBM CRC                          |  |
| 12 | 15:8 | FSK Preamble Size       | The number of preamble bytes sent     |  |
| 13 | 7:0  | FSK Preamble Size       | over the air before the sync pattern. |  |
| 14 | 15:8 | FSK bit rate            | Dit rate = 2206 //ESK bit rate)       |  |
| 15 | 7:0  | FSK bit rate            | Bit rate = 32e6/(FSK bit rate)        |  |



**Datasheet** 

| 16 | Payload first byte | up to 128 bytes |
|----|--------------------|-----------------|
|    |                    |                 |
|    |                    |                 |
|    |                    |                 |

**Table 10 Packet structure for transmission** 

For words of more than 1 byte, MSBs are sent first.

Bytes 9 to 15 vary depending whether the FSK or the LoRa TX modem is being used.

The user payload starts at byte 16. This is the first byte that will be received by the end point. Bytes 0 to 15 are not transmitted and are just used to dynamically configure the gateway prior to emission.

#### 3.9 Receiver IF frequencies configuration

Each IF path intermediate frequency can be programmed independently from -2 to +2 MHz. the following sections give a few programming example for various use cases.

#### 3.9.1 Configuration using 2 x SX1257 radios

The SX1257 RX PLLs can be configured to any frequency inside the 868/900 MHz ISM band with a 61 Hz step. The SX1257 streams I/Q samples through a 2 wire digital interface. The bits stream corresponds directly to the I/Q sigma delta ADCs outputs sampled at 32 MSps. This delta sigma stream must be low-passed and decimated to recover the available 80dB dynamic of the ADCs. After decimation the usable spectrum bandwidth is ±400 kHz centered on the RX PLL carrier frequency.

The following plot gives the spectral power content of the I/Q bit stream.



Figure 8 SX1255/57 digital I/Q power spectral density





**Datasheet** 

The quantization noise raises sharply outside the -400 to +400 kHz range. For more details on the SX1257/55 radio specifications please consult the specific product datasheet.

The following plot represents a possible use case where

- Radio A PLL is set to 867.0 MHz
- Radio B PLL is set to 868.4 MHz
- The system uses 8 separate 125 kHz LoRa channels for star connection to sensors
- One high speed 250 kHz LoRa channel for connection to a relay
- One high speed 200 kHz GFSK channel for meshing



Figure 9 Radio spectrum

In the previous example the various IF frequencies would be set as follow:

| IF8 | A: -125kHz   | Lora backhaul , fixed data-rate |
|-----|--------------|---------------------------------|
| IF9 | B: 0kHz      | GFSK backhaul                   |
| IF0 | A: -312.5kHz | LoRa multi-data rate channel    |
| IF1 | A: 62.5kHz   | и                               |
| IF2 | A: 187.5kHz  | и                               |
| IF3 | A: 312.5kHz  | u                               |
| IF4 | B: -312.5kHz | u                               |
| IF5 | B: -187.5kHz | и                               |
| IF6 | B: 187.5kHz  | u                               |
| IF7 | B: 312.5kHz  | и                               |
|     |              |                                 |

Table 11 IF frequencies set

If for example, 8 contiguous 125 kHz LoRa channels are desired the following configuration may be used:

- Radio A PLL is set to 867 MHz
- Radio B PLL is set to 876.5 MHz

The two radio baseband spectrum overlap a little bit.



**Datasheet** 



Figure 10 Radio spectrum

The following IF frequencies are used:

| IF8 | A: 0 kHz      | Loro backbaul fixed data rate   |
|-----|---------------|---------------------------------|
| IFŏ | A: U KHZ      | Lora backhaul , fixed data-rate |
| IF9 | Not used      | GFSK backhaul                   |
| IF0 | B: -187.5 kHz | LoRa multi-data rate channel    |
| IF1 | B: -62.5 kHz  | и                               |
| IF2 | B: 62.5 kHz   | u u                             |
| IF3 | B: 187.5 kHz  | и                               |
| IF4 | A: -187.5 kHz | u u                             |
| IF5 | A: -62.5 kHz  | u                               |
| IF6 | A: 62.5 kHz   | u                               |
| IF7 | A: 187.5 kHz  | "                               |

Table 12 IF frequency used

Note: As shown in this example the 500 or 250 kHz IF1 LoRa channel may overlap with the multidata rate IF3 to 10 channels. Transmissions happening in the IF7 to 10 channels will be noise like for the IF1 LoRa demodulator and reciprocally. It is however better from a performance point of view to separate as much as possible different channels mainly when the associated signal powers are very different (like between a backhaul link which usually enjoys line-of-sight attenuation and sensor link with very low signal levels).

#### 3.9.2 Two SX1255: 433 MHz band

The circuit will behave exactly as described in the previous section except that everything can be transposed in the 433 MHz ISM band using SX1255 front-end radios instead of SX1257.

#### 3.9.3 One SX1257 and one SX1255

In that case dual band simultaneous reception is possible. The following configuration is a typical example of the possible system configuration.



**Datasheet** 



Figure 11 Radio spectrum

- Radio A is an SX1255 configured on 433.6 MHz
- Radio B is a SX1257 configured on 866.4 MHz
- 4 multi data-rates 125 kHz LoRa channel in the low –band
- 4 multi data-rates 125 kHz LoRa channel in the high –band
- One 250 kHz LoRa fixed data-rate channel superposed with a 200 kHz GFSK channel in the high band

As can be seen the system is extremely flexible and allows any arbitrary set of channel configuration.

#### 3.10 Connection to RF front-end

#### 3.10.1 Connection to Semtech SX1255 or SX1257 components

The SX1301 digital baseband chip is designed to be preferably interfaced with either:

- 1. 2x SX1257 radio front-ends for the 868 MHz band with antenna diversity support
- 2. 2x SX1255 radio front-ends for the 433 MHz band with antenna diversity support
- 3. 1x SX1257 & 1x SX1255, enabling simultaneous dual-band operation

All modems Intermediate Frequencies may be adjusted independently within the allowed radio baseband bandwidth, e.g. ±400 kHz. Optimized firmware is provided to optimally setup the SX1257 / 1255 radios and perform real time automatic gain control.



**Datasheet** 



Figure 12 Dual band operation

### 3.10.2 SX1301 RX operation using a third party RF front-end

In that case a third party RF front-end may be used. The digitized I/Q stream must be adapted to the specific format required by the SX1301 digital baseband using an FPGA/CPLD or any other suitable programmable component.

In that mode the SX1301 expects a stream of 4 bits samples at a 32 MSps rate. The "Sample valid" input should pulse every 8 clock cycles to delimit packets of 8 samples. From those 8 samples representing 32 bits, the first 24 MSB are kept as I/Q 12bits sample information and fed to the internal sample 4 MSps sample bus.

All modems Intermediate Frequencies may be adjusted independently within the allowed radio baseband bandwidth up to 2 MHz (third party radio and FPGA/CPLD digital filtering dependent)

The 32MHz clock input is not represented for the sake of clarity.



**Datasheet** 



Figure 13 SX1301 with third party frontend

The digital interface to third party radio works as follow:



Figure 14 Digital interface for third party radio

The RF front-end must provide a 32 MHz clock. "Sample valid" and data bits must change state on the rising edge of the clock. They are sampled internally in the SX1301 digital IC on the falling edge of the 32 MHz clock.

The "sample valid" signal signals the start of a new I/Q sample. The I/Q 'bits chunks are time interleaved.

When the SX1301 digital baseband chip is connected to a third party radio front-end, the firmware running on the AGC MCU can be changed to perform dynamic gain adaptation of the external radio chip through an SPI interface. The radio SPI interface must fulfill the following conditions:

- 1. 7 bits address width and 1 W/R bit
- 2. 8 bits data width

The "Chip select" signal polarity is programmable.



**Datasheet** 

#### 3.10.3 Radio calibration

All calibrations required are performed by uploading the calibration firmware to the integrated radio controller MCU. This specific firmware runs entirely on the SX1301 gateway without intervention of the host micro-processor and performs the following calibrations on both radio channels:

- Carrier leakage cancellation in TX mode
- IQ gain (better than 0.1 dB) and phase imbalance (better than 1 deg) in RX mode

All corrections are applied digitally inside the SX1301 gateway at the appropriate place in the TX & RX processing chains.

During the duration of the calibration (500 ms), no RX or TX operation is possible.

#### 3.10.4 SX1301 connection to RF front-end for TX operation

In TX mode, the SX1301 digital baseband must be connected either to:

- 1. At least one SX1255 or SX1257
- 2. Any combination of both radios

Third party radios are not supported for TX operations. Any LoRa or (G)FSK packet may be transmitted on any of the two radios. Only a single packet may be transmitted at any given time. Transmit operation interrupts all current reception operations.

The digital radio interfaces are separated between RX & TX, therefore the SX1301 may accommodate a third party radio front-end for RX operations and any combination of SX1255/57 for TX operation without problem.



Figure 15 Transmission schematics

# 3.11 Reference application

SEMTECH



Figure 16 Reference application



**Datasheet** 

#### 3.12 SX1301 sensitivity performance in reference application

Sensitivities are given for 32 bytes payload, 10% PER.

| Symbol      | Descriptions                                             | Conditions                                              | Тур        | Unit |
|-------------|----------------------------------------------------------|---------------------------------------------------------|------------|------|
| RFS_SF12_0  | LoRa sensitivity at SF12 : IF8 path                      | BW = 125 kHz                                            | -140       | dBm  |
|             |                                                          | BW = 250 kHz                                            | -137       |      |
|             |                                                          | BW = 500 kHz                                            | -134       |      |
| RFS_SF12_07 | LoRa sensitivity at SF12 : IF0 to 7 paths                | BW = 125 kHz                                            | -140       | dBm  |
| ACR_SF12_1M | Receiver CW interferer rejection at 1 MHz offset at SF12 | BW = 125 kHz                                            | +80        | dB   |
| CCR_SF12    | Co-channel rejection at SF12                             | Wanted signal 10 dB above sensitivity                   | +25*       | dB   |
| RFS_SF7     | LoRa sensitivity at SF7: IF8 path                        | BW = 125 kHz                                            | -126       | dBm  |
|             |                                                          | BW = 250 kHz                                            | -123       |      |
|             |                                                          | BW = 500 kHz                                            | -120       |      |
| RFS_SF7     | LoRa sensitivity at SF7: IF0 to 7 paths                  | BW = 125 kHz                                            | -126       | dBm  |
| ACR_SF7_1M  | Receiver CW interferer rejection at 1 MHz offset         | BW = 125 kHz                                            | +70        | dB   |
| CCR_SF7     | Co-channel rejection at SF7                              | Wanted signal 10 dB above sensitivity                   | +9*        | dB   |
| RFS_F       | FSK sensitivity                                          | FDA = 50 kHz , BT = 100 kb/s                            | -103       | dBm  |
| BRF         | Bit rate FSK                                             | Programmable : limited by<br>SSB: FDA + BRF/2 < 250 kHz | 1.2 to 100 | kb/s |
| FDA         | Frequency deviation, FSK                                 | Programmable                                            | 0.6 to 200 | kHz  |

Note: \* CCR>0 means that interferer level is greater than wanted signal level. LoRa modulation works with a negative S(N+I)R

#### Table 13 SX1301 performance in reference application

## 3.13 SX1301 sensitivity vs data rate in LoRa mode

The data rates and sensitivities are only function of the modulation bandwidth and the spreading factor. They are not function of the carrier frequency (868 or 433 MHz)

The sensitivities given are typical measurements done around 867 MHz using a SX1257 front-end with an external low-noise amplifier, SAW filter, and TRX switch as described in the "reference design" section.

#### 3.13.1 125kHz mode: IF8, IF[0 to 7] paths

| SF | Data rate (bit/sec) | Sensitivity (dBm) |
|----|---------------------|-------------------|
| 7  | 5469                | -130.0            |
| 8  | 3125                | -132.5            |
| 9  | 1758                | -135.0            |
| 10 | 977                 | -137.5            |
| 11 | 537                 | -140.0            |
| 12 | 293                 | -142.5            |

Table 14 Sensitivity with 125 kHz mode



**Datasheet** 

#### 3.13.2 250 & 500 kHz mode: IF8 only

| SF | Data rate (bit/sec) | Sensitivity (dBm) |
|----|---------------------|-------------------|
| 7  | 10938               | -127.0            |
| 8  | 6250                | -129.5            |
| 9  | 3516                | -132.0            |
| 10 | 1953                | -134.5            |
| 11 | 1074                | -137.0            |
| 12 | 586                 | -139.5            |

Table 15 Sensitivity with 250 kHz mode

| SF | Data rate (bit/sec) | Sensitivity (dBm) |
|----|---------------------|-------------------|
| 7  | 21875               | -124.0            |
| 8  | 12500               | -126.5            |
| 9  | 7031                | -129.0            |
| 10 | 3906                | -131.5            |
| 11 | 2148                | -134.0            |
| 12 | 1172                | -136.5            |

Table 16 Sensitivity with 500 kHz mode

#### 3.14 SX1301 interference rejection

The following graphs show typical measurement results at 870 MHz with 125 kHz bandwidth measured on the SX1301 with the documented front-end "reference design".

The frequency asymmetry in the interferer rejection comes from the SAW filter transfer function. This measure is taken on the upper-most channels of the design; therefore the SAW filter starts to attenuate interferences above the wanted signal frequencies. The interferer rejection is arbitrarily limited to 100dB by the measurement setup.



**Datasheet** 



Figure 17 CW interferer rejection @ SF7



Figure 18 CW interferer rejection @ SF12



**Datasheet** 



Figure 19 EPCOS B3117 SAW filter transfer function

#### 3.15 Hardware Abstraction Layer (HAL)

#### 3.15.1 Introduction

The Semtech SX1301 is an all-digital half-duplex radio modem capable of receiving multiple modulations, multiple radio channels, and multiple data rates simultaneously. This SX1301 is highly configurable.

Because of the variable number (and types) of radio channels, modems and transceivers, and because the different hardware implementations can be quite different (typically, not the same register mapping, naming and various features), presenting a unified hardware abstraction to the user can greatly simplify writing an application and porting an application between different hardware.

The first chapter of this document describes the Lora gateway abstraction presented to the user and what functions can the user use to interact with it.

The second chapter describes how the HAL manipulates the hardware. That chapter assumes that the hardware has the following characteristics:

- SX1301 based board
- Two SX1257 radios
- A native SPI link between the gateway host and the SX1301 LoRa concentrator

### 3.15.2 Abstraction presented to the gateway host

The system composed of a SX1301 and one or more radio transceivers is represented to the user as the following entities:

- 1 or more radio chains,
- 1 or more RX modems with a settable Intermediate Frequency (IF),
- A unified RX packet buffer,





**Datasheet** 

A single TX chain.

The link between the SX1301 and the gateway host is transparent for the user.

#### Radio chain

A radio chain selects and amplifies a limited portion of the RF spectrum, and digitizes it to be used by the modem chains.

A radio chain is characterized by its bandwidth, maximum and minimum allowed RF frequency in RX, maximum and minimum allowed RF frequency in TX.

For each radio chain, the settings are:

- Enabled or disabled: a radio chain must be enabled to receive or send packets through it.
- Center RF frequency: the portion of the RF spectrum available for RX modems will be [Fc -(BW/2); Fc + (BW/2)] if Fc is the center frequency and BW is the radio bandwidth.

The user configures the radio chains by calling the lgw\_rxrf\_setconf function one time for each chain with parameters contained in a lgw conf rxrf s structure.

The present Lora gateway abstraction has 2 radio chains, numbered starting from 0.

#### Modem chain

A modem chain demodulates a small portion (a RF channel) of the RF spectrum digitized by a radio chain. Each modem chain RF channel can be placed individually inside the bandwidth of a radio using the IF (for Intermediate Frequency) setting, that's why they are designated in the abstraction as "IF+modem" chains.

The modem demodulates packets according to it intrinsic capabilities (e.g. the modulations it can process) and user-selected settings (e.g. what is the channel bandwidth for modems that supports multiple bandwidths) and send the receive packets to the RX buffer.

An IF+modem chain is characterized by its type (e.g. Lora "multi", FSK "standard"). That type define chat sort of signal can be demodulated and how the settings are interpreted.

For each IF+modem, the settings are:

- Enable or disabled.
- Source radio chain & IF frequency: selects from which radio chain the digitized RF spectrum will come. The center frequency of the demodulated RF channel is the sum of the center frequency of the selected radio chain and the IF. The IF can be positive or negative.
- Bandwidth: for modems that supports multiple channel bandwidth.
- Data rate: for modems that supports multiple data rates. It can be a combination for modems that supports multiples data rates simultaneously.

The user configures the IF+modem chains by calling the lgw\_rxif\_setconf function one time for each chain with parameters contained in a lgw\_conf\_rxif\_s structure.

The present gateway has 4 Lora "simultaneous multi data rate" modem chain, and one Lora "standard" modem chain.

#### **RX** buffer

Packets that are received by all the modem chains are stored in the RX packet buffer until the gateway host come and fetch them.

There is no setting for that entity.





**Datasheet** 

The user get packets stored in the RX buffer by calling the lgw\_receive function that fill an array of lgw\_pkt\_rx\_s structure for the packet metadata and allocate dynamic memory space to chain the packets payloads.

The present gateway can store up to 8 packets in its RX buffer.

#### TX chain

The TX chain is composed of a single multi-standard, multi-bandwidth, multi-data-rate modem and is used to send the single packet waiting in the TX packet buffer through one of the radio chains.

The settings are:

- Center channel frequency: must be in the range supported by the selected radio chain.
- TX Mode: to send the packet immediately, or to synchronize the sending with a specific event.
- Destination radio chain: selects through which radio chain the packet will be sent.
- The RF power at which the packet will be sent.
- The modulation used and several parameters that are shared by all modulations (e.g. the data rate) and parameters that are modulation-specific (e.g. the frequency deviation for FSK).
- The size and the content of the payload.

There is no need to configure the TX chain before starting the Lora gateway IP, all the settings to send a packet are contained in a lgw\_pkt\_tx\_s structure and can be changed for each packet.

#### 3.15.3 Composition of the software library

#### **Configuration functions**

Two functions are used to configure system:

- lgw\_rxrf\_setconf to configure the radio chains
- lgw rxif setconf to configure the modems and their Ifs

The other parts of the system are either not configurable or configured indirectly (using elements from the radio, IF and modem configuration).

The configuration is committed to the hardware when it is started. The hardware must be stopped before changing the configuration using the two functions.

#### **Start and stop functions**

Two functions are used to start and stop the hardware:

- lgw\_start to initialize the hardware, configure it, load the firmware, and get it ready to send and receive packets.
- lgw\_stop to stop the hardware, clear the configuration and put back the hardware to the post-reset state.

When the hardware is stopped (its initial state) the configuration functions can be called. Any attempt to send or receive packets will return an error.

Once the hardware is started, packets can be sent and received. Any attempt to alter the configuration will return an error.





**Datasheet** 

#### Send and receive functions

The lgw\_receive function is used to receive up to N packets. If there are no packet available in the RX packet buffer the function returns immediately indicating that 0 packets have be retrieved.

If there are packets waiting in the RX buffer, the function returns up to N packets. Every packet returned by the function is removed from the RX packet buffer, but if the function returns N packets (the maximum number allowed), and that number is less than the size of the RX packet buffer, there might still be packets left in the buffer after the function returns. The function can be called repeatedly to empty the RX packet buffer.

The lgw\_send function is used to put a packet in the TX packet buffer. Only one packet can be in that buffer, being sent immediately or waiting for a triggered event to send it.

#### 3.15.4 Interaction with the Lora hardware

This chapter describes the interaction between the different software components of the Lora gateway Hardware Abstraction Layer library and the hardware components that constitute the Lora gateway.

#### Configuration phase

During the configuration phase, the user program calls the two configuration functions lgw\_rxrf\_setconf and lgw\_rxif\_setconf any number of times.

Each time they are called, the two configuration functions:

- Check that the hardware is not started,
- Check the parameters sent by the user program are correct,
- If the parameters are within the range supported by the hardware, they are stored in a set of static variables in the HAL.

### **Initialization phase**

After configuration, when the lgw start function is called, the following actions are taken:

- The connection to the hardware is initialized and version is checked,
- The hardware is resetted,
- All radios are configured according to user settings,
- Some calibration parameters and static parameters are configured,
- All IF and modems are configured according to user settings,
- The firmware is loaded and controllers are started.

### **Receiving packets**

After initialization, the Lora gateway will receive all the packets it is configured to receive and will put them in the RX packet buffer. Even packets that are received with corrupted data (error during the CRC checking) are available in the RX buffer.

When the lwg\_receive function is called by the user program to get packet from the RX packet buffer, it first checks that the hardware is started and that the parameters are correct. After that, the following actions are taken:

- The function try to fetch a packet from the FIFO,
- If the FIFO is empty, the function returns nothing,
- If there was a packet in the FIFO, the function get the packet metadata and payload using the address that was in the FIFO,
- The payload is stored in a dynamically allocated memory space,





**Datasheet** 

- The metadata are stored in a lgw\_pkt\_rx\_s structure that was allocated by the user program,
- The FIFO is advanced to the next step,
- All the following steps are repeated until the FIFO is empty or the maximum number of packet to fetch has been reached.

When a packet is emitted, reception is automatically suspended. Reception is resumed when TX is finished without any intervention of the host. Packets that were being received at the beginning of the TX will be lost or their data will be corrupted.

#### Sending packets

When the lwg\_send function is called by the user program to send a packet, it first checks that the hardware is started. After that, the following actions are taken:

- The function check that the parameters contained in the lgw\_pkt\_tx\_s structure are correct,
- It then use the parameters in the structure to encode the metadata,
- It then copy the metadata and the payload to the TX packet buffer,
- Finally, it initializes the TX cycle and returns.

Depending on the settings, the packets might be sent immediately, or after a trigger event.

### Stopping the gateway

When the lgw\_stop function is called, the hardware is first resetted, and then the connection is closed.





**Datasheet** 

# 3.15.5 Important HAL functions

HAL (Hardware Abstraction Layer software) can be found on GitHub at the following address:

https://github.com/Lora-net/lora\_gateway

| Function name   | Used by function | Variables of the structure                                                                              |
|-----------------|------------------|---------------------------------------------------------------------------------------------------------|
| lgw_conf_rxrf_s | lgw_rxrf_setconf | Configuration for an RF chain: center frequency, and whether it's enabled or not (disabled by default). |
| lgw_conf_rxif_s | lgw_rxif_setconf | Configuration for an IF chain and associated modem: center                                              |
|                 |                  | frequency, RF chain selection, and modem parameters.                                                    |
| lgw_pkt_rx_s    | lgw_receive      | Full payload of a received packet (contained in an byte array) and                                      |
|                 |                  | all the metadata this is available regarding this packet.                                               |
| lgw_pkt_tx_s    | lgw_send         | All the parameters needed to send a packet (including frequency,                                        |
|                 | _                | modem parameters, etc) and the content of the packet payload.                                           |

Table 17 HAL main data structures

| Function name                     | Function group     | Parameters                                                                                      | Effect                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------|--------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lgw_rxrf_setconf lgw_rxif_setconf | Configuration      | Chain number & configuration structure.                                                         | Check user-provided configuration for a given RF chain, and commit it to an internal configuration data structure if correct.  The configuration is not applied to hardware directly.  Check user-provided configuration for a given IF chain (+modem), and commit it to an internal configuration data structure if correct.  The configuration is not applied to hardware directly. |
| lgw_start                         | Hardware           | None.                                                                                           | Connect with a SX1301-based concentrator board and apply the internal configuration.                                                                                                                                                                                                                                                                                                  |
| lgw_stop                          | management         | None.                                                                                           | Stop the hardware, to save power or to be able to reconfigure it.                                                                                                                                                                                                                                                                                                                     |
| lgw_send                          | Packet<br>handling | Max number of packets to retrieve, and pointer to an array of RX metadata & payload structures. | Retrieve up to a certain number of packets from the RX FIFO. Function is non-blocking and will return with as much packets as possible if less than the maximum are availables.                                                                                                                                                                                                       |
| lgw_receive                       |                    | TX payload & parameters structure.                                                              | Attempt to send a single packet using the user-provided parameters.                                                                                                                                                                                                                                                                                                                   |

Table 18 HAL main functions





**Datasheet** 

### 4 Memory map

The circuit registers are managed by the HAL software. The following register list and description is not exhaustive. It is presented here for information only, to support customers modifying the HAL for specific purposes.

Bits and registers that are not documented are reserved. They may include calibration values. It is important not to modify these bits and registers. If specific bits must be changed in a register with reserved bits, the register must be read first, specific bits modified while masking reserved bits and then the register can be written.

### 4.1 Registers list

The registers are paginated. Some registers are accessed independently on the page selection. These are listed on Table 19. Paginated registers are on Table 20, Table 21 and Table 22.

| Page | Address | Name      |
|------|---------|-----------|
| All  | 0x00    | RegPage   |
| All  | 0x01    | RegVer    |
| All  | 0x02    | RegRdbal  |
| All  | 0x03    | RegRdbah  |
| All  | 0x04    | RegRdbd   |
| All  | 0x05    | RegTdba   |
| All  | 0x06    | RegTdbd   |
| All  | 0x0A    | RegMpd    |
| All  | 0x0B    | RegRpns   |
| All  | 0x0C    | RegRpapl  |
| All  | 0x0D    | RegRpaph  |
| All  | 0x0E    | RegRps    |
| All  | 0x0F    | RegRpps   |
| All  | 0x10    | RegGen    |
| All  | 0x11    | RegCken   |
| All  | 0x1B    | RegGpsi   |
| All  | 0X1C    | RegGpso   |
| All  | 0X1D    | RegGpmode |
| All  | 0x1E    | RegGpregi |
| All  | 0x1F    | RegGprego |
| All  | 0x20    | RegAgcsts |
| All  | 0x7D    | RegArbsts |
| All  | 0x7F    | Regld     |

Table 19 List of registers that are accessed without paging





Datasheet

| Page | Address | Name                 |
|------|---------|----------------------|
| 0x00 | 0x21    | Reglqcfg             |
| 0x00 | 0x22    | RegDeccfg            |
| 0x00 | 0x23    | RegChrs              |
| 0x00 | 0x24    | RegIf0I              |
| 0x00 | 0x25    | RegIf0h              |
| 0x00 | 0x26    | Reglf1l              |
| 0x00 | 0x27    | RegIf1h              |
| 0x00 | 0x28    | RegIf2I              |
| 0x00 | 0x29    | RegIf2h              |
| 0x00 | 0x2A    | Reglf3I              |
| 0x00 | 0x2B    | RegIf3h              |
| 0x00 | 0x2C    | RegIf4I              |
| 0x00 | 0x2D    | RegIf4h              |
| 0x00 | 0x2E    | RegIf5I              |
| 0x00 | 0x2F    | RegIf5h              |
| 0x00 | 0x30    | RegIf6I              |
| 0x00 | 0x31    | Reglf6h              |
| 0x00 | 0x32    | RegIf7I              |
| 0x00 | 0x33    | RegIf7h              |
| 0x00 | 0x34    | RegIf8I              |
| 0x00 | 0x35    | RegIf8h              |
| 0x00 | 0x36    | Reglf9l              |
| 0x00 | 0x37    | RegIf9h              |
| 0x00 | 0x41    | RegCor0deten         |
| 0x00 | 0x42    | RegCor1deten         |
| 0x00 | 0x43    | RegCor2deten         |
| 0x00 | 0x44    | RegCor3deten         |
| 0x00 | 0x45    | RegCor4deten         |
| 0x00 | 0x46    | RegCor5deten         |
| 0x00 | 0x47    | RegCor6deten         |
| 0x00 | 0x48    | RegCor7deten         |
| 0x00 | 0x54    | RegAmso124h          |
| 0x00 | 0x5D    | RegTimtrak2          |
| 0x00 | 0x60    | RegPrsymbnbl         |
| 0x00 | 0x61    | RegPrsymbnbh         |
| 0x00 | 0x64    | RegMisc_cfg2         |
| 0x00 | 0x65    | RegHeader_cfg1       |
| 0x00 | 0x66    | RegHeader_cfg2       |
| 0x00 | 0x6A    | RegMcu_ctrl          |
| 0x00 | 0x6B    | RegChann_select_rssi |

Table 20 List of registers on page 0





Datasheet

| Page | Address | Name                        |
|------|---------|-----------------------------|
| 0x01 | 0x21    | RegTxtrig                   |
| 0x01 | 0x27    | RegTx_offset_i              |
| 0x01 | 0x28    | RegTx_offset_q              |
| 0x01 | 0x2B    | RegBhimpcfg1                |
| 0x01 | 0x2C    | RegBhimpcfg2                |
| 0x01 | 0x2E    | RegBhsyncpos                |
| 0x01 | 0x2F    | RegBhprsymnbl               |
| 0x01 | 0x3A    | RegMbwssf_misc_cfg1         |
| 0x01 | 0x3B    | RegMbwssf_misc_cfg2         |
| 0x01 | 0x3C    | RegMbwssf_misc_cfg3         |
| 0x01 | 0x3D    | RegMbwssf_misc_cfg4         |
| 0x01 | 0x3E    | RegTx_status                |
| 0x01 | 0x3F    | RegFsk_cfg1                 |
| 0x01 | 0x40    | RegFsk_cfg2                 |
| 0x01 | 0x41    | RegFsk_error_osr_tol        |
| 0x01 | 0x42    | RegFsk_br_ratiol            |
| 0x01 | 0x43    | RegFsk_br_ratioh            |
| 0x01 | 0x44    | RegFsk_ref_pattern_0        |
| 0x01 | 0x45    | RegFsk_ref_pattern_1        |
| 0x01 | 0x46    | RegFsk_ref_pattern_2        |
| 0x01 | 0x47    | RegFsk_ref_pattern_3        |
| 0x01 | 0x48    | RegFsk_ref_pattern_4        |
| 0x01 | 0x49    | RegFsk_ref_pattern_5        |
| 0x01 | 0x4A    | RegFsk_ref_pattern_6        |
| 0x01 | 0x4B    | RegFsk_ref_pattern_7        |
| 0x01 | 0x4C    | RegFsk_pkt_length           |
| 0x01 | 0x52    | RegFsk_aafc                 |
| 0x01 | 0x53    | RegFsk_pattern_timeout_cfgl |
| 0x01 | 0x54    | RegFsk_pattern_timeout_cfgh |

Table 21 List of registers on page 1





**Datasheet** 

| Page | Address | Name                        |
|------|---------|-----------------------------|
| 0x02 | 0x21    | RegRadio_a_spi_1            |
| 0x02 | 0x22    | RegRadio_a_spi_2            |
| 0x02 | 0x23    | RegRadio_a_spi_3            |
| 0x02 | 0x25    | RegRadio_a_spi_4            |
| 0x02 | 0x26    | RegRadio_b_spi_1            |
| 0x02 | 0x27    | RegRadio_b_spi_2            |
| 0x02 | 0x28    | RegRadio_b_spi_3            |
| 0x02 | 0x2A    | RegRadio_b_spi_4            |
| 0x02 | 0x2B    | RegRadio_cfg                |
| 0x02 | 0x2C    | RegPa_gain                  |
| 0x02 | 0x2D    | RegFe_a_ctrl_lut            |
| 0x02 | 0x2E    | RegFe_b_ctrl_lut            |
| 0x02 | 0x38    | RegValid_header_counter_m_  |
|      |         | wssf                        |
| 0x02 | 0x39    | RegValid_header_counter_fsk |
| 0x02 | 0x3A    | RegValid_packet_counter_mb_ |
|      |         | ssf                         |
| 0x02 | 0x3B    | RegValid_packet_counter_fsk |
| 0x02 | 0x3C    | RegChann_rssi               |
| 0x02 | 0x3D    | RegBb_rssi                  |
| 0x02 | 0x3E    | RegDec_rssi                 |
| 0x02 | 0x46    | RegTimestamp_0              |
| 0x02 | 0x47    | RegTimestamp_1              |
| 0x02 | 0x48    | RegTimestamp_2              |
| 0x02 | 0x49    | RegTimestamp_3              |
| 0x02 | 0x52    | RegSpi_master_cfg           |
| 0x02 | 0x59    | RegGps_cfg                  |

Table 22 List of registers on page 2

# 4.2 Registers Description

Next tables list the detail content of each registers. Bit mode signification is r: read only, w: write only, rw: read/write. Reserved bits should be written with their reset state, they may be read different states.

### 4.2.1 All pages registers

All pages registers apply independently of the selected page.

| Bits  | Name       | Mode | Reset | Description                                       |
|-------|------------|------|-------|---------------------------------------------------|
| [1:0] | PAGE_REG   | RW   | 0x00  | select the page of registers : valid range 0 to 2 |
| [7]   | SOFT_RESET | W    | 0x00  | do a soft reset of all chip                       |

Table 23 RegPage definition

| Bits  | Name    | Mode | Reset | Description                 |
|-------|---------|------|-------|-----------------------------|
| [7:0] | VERSION | RW   | 0x67  | Version of the current chip |

### **Table 24 RegVer definition**

| Bits  | Name             | Mode | Reset | Description                                       |
|-------|------------------|------|-------|---------------------------------------------------|
| [7:0] | RX_DATA_BUF_ADDR | RW   | 0x00  | Memory address pointer in the RX data buffer, The |
|       |                  |      |       | databuffer is 4096 byte long                      |

### **Table 25 RegRdbal definition**

| Bits  | Name             | Mode | Reset | Description |
|-------|------------------|------|-------|-------------|
| [7:0] | RX_DATA_BUF_ADDR | RW   | 0x00  | (MSB)       |

### Table 26 RegRdbah definition

| Bits  | Name             | Mode | Reset | Description                                               |
|-------|------------------|------|-------|-----------------------------------------------------------|
| [7:0] | RX_DATA_BUF_DATA | RW   | 0x00  | Rx data buffer word. Each read operation on this register |
|       |                  |      |       | increments the RX DATA BUF ADDR register.                 |

### Table 27 RegRdbd definition





# **Datasheet**

| Bits  | Name             | Mode | Reset | Description                           |
|-------|------------------|------|-------|---------------------------------------|
| [7:0] | TX_DATA_BUF_ADDR | RW   | 0x00  | Address pointer in the TX data buffer |

### Table 28 RegTdba definition

| Bits  | Name             | Mode | Reset | Description                                                |
|-------|------------------|------|-------|------------------------------------------------------------|
| [7:0] | TX_DATA_BUF_DATA | RW   | 0x00  | Tx data buffer word. Each write operation on this register |
|       |                  |      |       | increments the TX_DATA_BUF_ADDR register. Readback of      |
|       |                  |      |       | data is also possible                                      |

### Table 29 RegTdbd definition

| Bits  | Name          | Mode | Reset | Description                                     |
|-------|---------------|------|-------|-------------------------------------------------|
| [7:0] | MCU_PROM_DATA | RW   | 0x00  | data word to the MCU program memory. Each write |
|       |               |      |       | operation increments MCU_PROM_ADDR register     |

### Table 30 RegMpd definition

| Bits  | Name                    | Mode | Reset | Description                                                  |
|-------|-------------------------|------|-------|--------------------------------------------------------------|
| [7:0] | RX_PACKET_DATA_FIFO_NUM | RW   | 0x00  | number of packets available in the Rx data buffer. Any write |
|       | _STORED                 |      |       | operation on this registers updates the value of :           |
|       |                         |      |       | RX_PACKET_DATA_FIFO_ADDR_POINTER,RX_PACKET_DATA              |
|       |                         |      |       | _FIFO_STATUS and RX_PACKET_DATA_FIFO_PAYLOAD_SIZE            |
|       |                         |      |       | to point to the next packet in rx data buffer                |

### **Table 31 RegRpns definition**

| Bits  | Name                    | Mode | Reset | Description                                               |
|-------|-------------------------|------|-------|-----------------------------------------------------------|
| [7:0] | RX_PACKET_DATA_FIFO_ADD | R    | 0x00  | Start address of the current packet in the Rx data buffer |
|       | R_POINTER               |      |       | (LSB)                                                     |

### **Table 32 RegRpapl definition**

| Bits  | Name                    | Mode | Reset | Description                                               |
|-------|-------------------------|------|-------|-----------------------------------------------------------|
| [7:0] | RX_PACKET_DATA_FIFO_ADD | R    | 0x00  | Start address of the current packet in the Rx data buffer |
|       | R_POINTER               |      |       | (MSB). Reading this register will automaticaly set the    |
|       |                         |      |       | RX_DATA_BUF_ADDR pointer to                               |
|       |                         |      |       | RX_PACKET_DATA_FIFO_ADDR_POINTER value                    |

#### **Table 33 RegRpaph definition**

| Bits  | Name                     | Mode | Reset | Description                                              |
|-------|--------------------------|------|-------|----------------------------------------------------------|
| [7:0] | RX_PACKET_DATA_FIFO_STAT | R    | 0x00  | CRC Status of the current packet. 1 -> packet valid, 3-> |
|       | US                       |      |       | packet with payload CRC error                            |

### Table 34 RegRps definition

| Bits  | Name                     | Mode | Reset | Description                                                  |
|-------|--------------------------|------|-------|--------------------------------------------------------------|
| [7:0] | RX_PACKET_DATA_FIFO_PAYL | R    | 0x00  | Size of the current packet payload in byte. To read the full |
|       | OAD_SIZE                 |      |       | packet + attached metadata, the user will have to read       |
|       |                          |      |       | RX PACKET DATA FIFO PAYLOAD SIZE+16 bytes                    |

### **Table 35 RegRpps definition**

| Bits | Name                  | Mode | Reset | Description                             |
|------|-----------------------|------|-------|-----------------------------------------|
| [0]  | MBWSSF_MODEM_ENABLE   | RW   | 0x00  | Enables backhaul Lora rx modem          |
| [1]  | CONCENTRATOR_MODEM_EN | RW   | 0x00  | enables the 8 sensor Lora rx modems     |
|      | ABLE                  |      |       |                                         |
| [2]  | FSK_MODEM_ENABLE      | RW   | 0x00  | enables the FSK rx modem                |
| [3]  | GLOBAL_EN             | RW   | 0x00  | Enables everything else (except modems) |

### **Table 36 RegGen definition**

| Bits | Name      | Mode | Reset | Description                              |
|------|-----------|------|-------|------------------------------------------|
| [0]  | CLK32M_EN | RW   | 0x01  | enables 32 MHz radio clock input         |
| [1]  | CLKHS_EN  | RW   | 0x01  | enables the correlators fast clock input |

# Table 37 RegCken definition

| Bits  | Name              | Mode | Reset | Description                                                  |
|-------|-------------------|------|-------|--------------------------------------------------------------|
| [3:0] | GPIO_SELECT_INPUT | RW   | 0x00  | defines the routing of GPIO inputs to chip blocks : see GPIO |
|       |                   |      |       | mapping paragraph                                            |

# Table 38 RegGpsi definition





# **Datasheet**

| Bits  | Name               | Mode | Reset | Description                                              |
|-------|--------------------|------|-------|----------------------------------------------------------|
| [3:0] | GPIO_SELECT_OUTPUT | RW   | 0x00  | defines signals routed to GPIO outpus : see GPIO mapping |
|       |                    |      |       | paragraph                                                |

### **Table 39 RegGpso definition**

| Bits  | Name      | Mode | Reset | Description                                                  |
|-------|-----------|------|-------|--------------------------------------------------------------|
| [4:0] | GPIO_MODE | RW   | 0x00  | Sets GPIO direction: bit0=1 => GPIO0 is an output, bit0=0 => |
|       |           |      |       | GPIOO is an input                                            |

### **Table 40 RegGpmode definition**

| Bits  | Name            | Mode | Reset | Description                                           |
|-------|-----------------|------|-------|-------------------------------------------------------|
| [4:0] | GPIO_PIN_REG_IN | R    | 0x00  | allows to readback the gpio pin value thought the SPI |
|       |                 |      |       | interface. A GPIO defined as output will read as 0    |

### **Table 41 RegGpregi definition**

| Bits  | Name             | Mode | Reset | Description                                       |
|-------|------------------|------|-------|---------------------------------------------------|
| [4:0] | GPIO_PIN_REG_OUT | RW   | 0x00  | sets the 5 gpio pins output value. Only active if |
|       |                  |      |       | GPIO SELECT OUTPUT = 8                            |

### Table 42 RegGprego definition

| Bits  | Name           | Mode | Reset | Description                                           |
|-------|----------------|------|-------|-------------------------------------------------------|
| [7:0] | MCU_AGC_STATUS | R    | 0x00  | AGC MCU status , this status value is provided by the |
|       |                |      |       | running AGC firmware loop                             |

### **Table 43 RegAgcsts definition**

| Bits  | Name           | Mode | Reset | Description                                   |
|-------|----------------|------|-------|-----------------------------------------------|
| [7:0] | MCU_ARB_STATUS | R    | 0x00  | ARB MCU status , provided by the ARB firmware |

### **Table 44 RegArbsts definition**

| Bits  | Name    | Mode | Reset | Description    |
|-------|---------|------|-------|----------------|
| [7:0] | CHIP_ID | RW   | 0x01  | chip_id number |

### **Table 45 Regld definition**

# 4.2.2 Page 0 registers

| Bits | Name           | Mode | Reset | Description                                                  |
|------|----------------|------|-------|--------------------------------------------------------------|
| [3]  | RX_EDGE_SELECT | RW   | 0x00  | Selects the clock edge used to sample the 1bit I/Q samples   |
|      |                |      |       | from the SX1257 0: falling edge, 1: rising edge              |
| [4]  | MISC_RADIO_EN  | RW   | 0x00  | Selects the radio interface, 0: SX1255/7 are used, 1: third- |
|      |                |      |       | party radio interface used                                   |

### **Table 46 Reglqcfg definition**

| Bits  | Name        | Mode | Reset | Description                                                 |
|-------|-------------|------|-------|-------------------------------------------------------------|
| [3:0] | FILTER_GAIN | RW   | 0x07  | Decimation filter gain in forced mode, 0: max gain, 15: min |
|       |             |      |       | gain. each step equal to a -6dB atten                       |

### **Table 47 RegDeccfg definition**

| Bits  | Name         | Mode | Reset | Description                                                   |
|-------|--------------|------|-------|---------------------------------------------------------------|
| [7:0] | RADIO_SELECT | RW   | 0xF0  | selects radio source for each channel : LSB = channel 0 , MSB |
|       |              |      |       | = channel7 : bit = 0: source is RADIO A , 1: RADIO B          |

# Table 48 RegChrs definition

| Bits  | Name      | Mode | Reset | Description                                       |
|-------|-----------|------|-------|---------------------------------------------------|
| [7:0] | IF_FREQ_0 | RW   | 0x80  | define the IF frequency of sensor channel 0 (LSB) |
|       |           |      |       | if_freq_Hz = (IF_FREQ_0/2^13)x4MHz                |

### Table 49 RegIfOl definition

| Bits  | Name      | Mode | Reset | Description                          |
|-------|-----------|------|-------|--------------------------------------|
| [4:0] | IF_FREQ_0 | RW   | 0x1E  | (MSB), this is a 13bit signed number |

### Table 50 RegIf0h definition

| Bits  | Name      | Mode | Reset | Description            |
|-------|-----------|------|-------|------------------------|
| [7:0] | IF_FREQ_1 | RW   | 0x80  | Channel 1 if_frequency |

Table 51 RegIf1l definition





Datasheet

| Bits              | Name                         | Mode       | Reset         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------|------------------------------|------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [4:0]             | IF_FREQ_1                    | RW         | 0x1F          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Table 52 F        | RegIf1h definition           |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bits              | Name                         | Mode       | Reset         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [7:0]             | IF FREQ 2                    | RW         | 0x80          | Channel 2 if_frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | RegIf2l definition           |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bits              | Name                         | Mode       | Reset         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [4:0]             | IF FREQ 2                    | RW         | 0x00          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   | RegIf2h definition           | 11.00      | ОХОО          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                              |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bits              | Name                         | Mode       | Reset         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [7:0]             | IF_FREQ_3                    | RW         | 0x80          | Channel 3 if_frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| rable 55 i        | RegIf3I definition           |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bits              | Name                         | Mode       | Reset         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [4:0]             | IF_FREQ_3                    | RW         | 0x01          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Table 56 F        | RegIf3h definition           |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bits              | Name                         | Mode       | Reset         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [7:0]             | IF_FREQ_4                    | RW         | 0x80          | Channel 4 if_frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Table 57 F        | RegIf4l definition           |            | ·             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bits              | Name                         | Mode       | Reset         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [4:0]             | IF FREQ 4                    | RW         | 0x1E          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   | RegIf4h definition           |            | UNIL          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                              |            |               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Bits              | Name                         | Mode       | Reset         | Description Characteristic for a second control of the second cont |
| [7:0]             | IF_FREQ_5                    | RW         | 0x80          | Channel 5 if_frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| rable 59 i        | RegIf5I definition           |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bits              | Name                         | Mode       | Reset         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [4:0]             | IF_FREQ_5                    | RW         | 0x1F          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Table 60 F        | RegIf5h definition           |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bits              | Name                         | Mode       | Reset         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [7:0]             | IF_FREQ_6                    | RW         | 0x80          | Channel 6 if_frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Table 61 F        | RegIf6l definition           |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dito              | Nama                         | Mode       | Poset         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>Bits</b> [4:0] | Name<br>IF FREQ 6            | Mode<br>RW | Reset<br>0x00 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   | RegIf6h definition           | IVV        | UAUU          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                              |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bits              | Name                         | Mode       | Reset         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [7:0]             | IF_FREQ_7                    | RW         | 0x80          | Channel 7 if_frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| rabie 63 F        | RefIf7I definition           |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bits              | Name                         | Mode       | Reset         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [4:0]             | IF_FREQ_7                    | RW         | 0x01          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Table 64 F        | RegIf7h definition           |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bits              | Name                         | Mode       | Reset         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [7:0]             | IF_FREQ_8                    | RW         | 0x00          | LoRa backhaul Channel if frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                   | RegIf8I definition           |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                              | No ala     | Dogst         | Descript:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bits              | Name                         | Mode       | Reset         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [4:0]             | IF_FREQ_8 RegIf8h definition | RW         | 0x00          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                              |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bits              | Name                         | Mode       | Reset         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [7:0]             | IF_FREQ_9                    | RW         | 0x00          | FSK chanel if_frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Table 67 F        | RegIf9I definition           |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 67 RegIf9l definition





Datasheet

| Bits                              | Name                           | Mode | Reset | Description                                                   |  |  |
|-----------------------------------|--------------------------------|------|-------|---------------------------------------------------------------|--|--|
| [4:0]                             | IF_FREQ_9                      | RW   | 0x00  |                                                               |  |  |
| Table 6                           | 58 RegIf9h definition          |      |       |                                                               |  |  |
| Bits                              | Name                           | Mode | Reset | Description                                                   |  |  |
| [6:0]                             | CORRO_DETECT_EN                | RW   | 0x00  | Selects active spreading factors for sensor channel 0 , LSB = |  |  |
|                                   |                                |      |       | SF6, MSB = SF12, bit: 0-> SF disabled, 1-> SF enabled         |  |  |
| Table 6                           | 59 RegCoreOdeten definition    |      |       |                                                               |  |  |
| Bits                              | Name                           | Mode | Reset | Description                                                   |  |  |
| [6:0]                             | CORR1_DETECT_EN                | RW   | 0x00  | Selects active spreading factors for sensor channel 1         |  |  |
| Table 7                           | 70 RegCore1deten definition    |      |       |                                                               |  |  |
| Bits                              | Name                           | Mode | Reset | Description                                                   |  |  |
| [6:0]                             | CORR2_DETECT_EN                | RW   | 0x00  | idem channel 2                                                |  |  |
| Table 7                           | 71 RegCore2deten definition    |      |       |                                                               |  |  |
| Bits                              | Name                           | Mode | Reset | Description                                                   |  |  |
| [6:0]                             | CORR3_DETECT_EN                | RW   | 0x00  | idem channel 3                                                |  |  |
| Table 72 RegCore3deten definition |                                |      |       |                                                               |  |  |
| Bits                              | Name                           | Mode | Reset | Description                                                   |  |  |
| [6:0]                             | CORR4_DETECT_EN                | RW   | 0x00  | idem channel 4                                                |  |  |
| Table 7                           | 73 RegCore4deten definition    |      |       |                                                               |  |  |
| Bits                              | Name                           | Mode | Reset | Description                                                   |  |  |
| [6:0]                             | CORR5_DETECT_EN                | RW   | 0x00  | idem channel 5                                                |  |  |
| Table 7                           | 74 RegCore5deten definition    |      |       |                                                               |  |  |
| Bits                              | Name                           | Mode | Reset | Description                                                   |  |  |
| [6:0]                             | CORR6_DETECT_EN                | RW   | 0x00  | idem channel 6                                                |  |  |
| Table 7                           | 75 RegCore6deten definition    |      |       |                                                               |  |  |
| Bits                              | Name                           | Mode | Reset | Description                                                   |  |  |
| [6:0]                             | CORR7_DETECT_EN                | RW   | 0x00  | idem channel 7                                                |  |  |
| Table 7                           | 76 RegCore7deten definition    |      |       |                                                               |  |  |
| Bits                              | Name                           | Mode | Reset | Description                                                   |  |  |
| [3:0]                             | ADJUST_MODEM_START_OFF         | RW   | 0x0F  | do not change it                                              |  |  |
|                                   | SET_SF12_RDX4                  |      |       |                                                               |  |  |
| Table 7                           | 77 RegAmso124h definition      |      |       |                                                               |  |  |
| Bits                              | Name                           | Mode | Reset | Description                                                   |  |  |
| [5:0]                             | FREQ_TO_TIME_DRIFT             | RW   | 0x09  | Converts frequency offset into XTAL offset , depends on the   |  |  |
|                                   |                                |      |       | frequency band used ,Should be 19 for 433MHz operation,       |  |  |
|                                   |                                |      |       | and 17 for 470Mhz , exact value is round(8092/Frf)            |  |  |
| Table 7                           | 78 RegTimtrak2 definition      |      |       |                                                               |  |  |
| Bits                              | Name                           | Mode | Reset | Description                                                   |  |  |
| [7:0]                             | PREAMBLE_SYMB1_NB              | RW   | 0x0A  | Max preamble symbol number expected (MSB), a longer           |  |  |
| Table 7                           | <br>79 RegPrsymbnbl definition |      |       | preamble will trig a Header Error , reception will be dropped |  |  |
| Bits                              | Name                           | Mode | Reset | Description                                                   |  |  |
| [7:0]                             | PREAMBLE_SYMB1_NB              | RW   | 0x00  |                                                               |  |  |
|                                   | 30 RegSymbnbh definition       | I.   |       |                                                               |  |  |
| Bits                              | Name                           | Mode | Reset | Description                                                   |  |  |
|                                   |                                |      |       | 2.2.3.18.2.2.3                                                |  |  |

Table 81 RegMisc\_cfg2 definition

PPM\_OFFSET

[6:0]

V2.01 June 2014 47

0x00

Selects reduced encoding for the various SF on sensor channels, LSB=SF6, MSB=SF12, a 1 means reduced encoding is used, must match the encoding used by the transmitter

RW





**Datasheet** 

| Bits  | Name            | Mode | Reset | Description                                               |
|-------|-----------------|------|-------|-----------------------------------------------------------|
| [7:0] | MAX_PAYLOAD_LEN | RW   | 0xFF  | Sets the maximum payload length expected on the sensor rx |
|       |                 |      |       | modem. longer packets will be dropped                     |

### Table 82 RegHeader\_cfg1 definition

| Bits | Name        | Mode | Reset | Description                                              |
|------|-------------|------|-------|----------------------------------------------------------|
| [0]  | ONLY_CRC_EN | RW   | 0x01  | 0-> no CRC_EN filtering performed, 1-> only packets with |
|      |             |      |       | CRC enabled are accepted                                 |

### Table 83 RegHeader\_cfg2 definition

| Bits | Name                   | Mode | Reset | Description                                                |
|------|------------------------|------|-------|------------------------------------------------------------|
| [0]  | MCU_RST_0              | RW   | 0x01  | Puts the ARB MCUs in reset , write 0 to restart            |
| [1]  | MCU_RST_1              | RW   | 0x01  | Puts the AGC MCUs in reset , write 0 to restart            |
| [2]  | MCU_SELECT_MUX_0       | RW   | 0x00  | Enables ARB MCU program RAM upload through the SPI         |
|      |                        |      |       | interface                                                  |
| [3]  | MCU_SELECT_MUX_1       | RW   | 0x00  | Enables AGC MCU program RAM upload through the SPI         |
|      |                        |      |       | interface                                                  |
| [4]  | MCU_CORRUPTION_DETECTE | R    | 0x00  | Status, 1 if a program memory parity error occured on the  |
|      | D_0                    |      |       | ARB MCU, this means that the code ram content is incorrect |
| [5]  | MCU_CORRUPTION_DETECTE | R    | 0x00  | Status, 1 if a program memory parity error occured on the  |
|      | D_1                    |      |       | AGC MCU, this means that the code ram content is incorrect |

### Table 84 RegMcu\_ctrl definition

| Bits  | Name              | Mode | Reset | Description                                         |
|-------|-------------------|------|-------|-----------------------------------------------------|
| [7:0] | CHANN_SELECT_RSSI | RW   | 0x01  | Selects the channel RSSI to monitor : values 0 to 7 |

Table 85 RegChann\_select\_rssi definition

# 4.2.3 Page 1 registers

| Bits | Name              | Mode | Reset | Description                                                    |
|------|-------------------|------|-------|----------------------------------------------------------------|
| [0]  | TX_TRIG_IMMEDIATE | W    | 0x00  | A 1 written on this register trigs an immediate transmission , |
|      |                   |      |       | this registers automatically resets to 0                       |
| [1]  | TX_TRIG_DELAYED   | W    | 0x00  | A 1 written on this register trigs a time triggered            |
|      |                   |      |       | transmission, the transmission will start at the               |
|      |                   |      |       | programmed time                                                |
| [2]  | TX_TRIG_GPS       | W    | 0x00  | A 1 written on this register trigs a transmission on the next  |
|      |                   |      |       | rising edge of the GPS PPS signal                              |

### Table 86 RegTrig definition

| Bits  | Name        | Mode | Reset | Description                                 |
|-------|-------------|------|-------|---------------------------------------------|
| [7:0] | TX_OFFSET_I | RW   | 0x00  | Transmiter carrier leakage cancellation : I |

# Table 87 RegTx\_offset\_i definition

| Bits  | Name        | Mode | Reset | Description                                 |
|-------|-------------|------|-------|---------------------------------------------|
| [7:0] | TX_OFFSET_Q | RW   | 0x00  | Transmiter carrier leakage cancellation : Q |

### Table 88 RegTx\_offset\_q definition

| Bits  | Name                    | Mode | Reset | Description                                          |
|-------|-------------------------|------|-------|------------------------------------------------------|
| [0]   | MBWSSF_IMPLICIT_HEADER  | RW   | 0x00  | Enables implict header mode for the backhaul lora RX |
|       |                         |      |       | modem                                                |
| [1]   | MBWSSF_IMPLICIT_CRC_EN  | RW   | 0x00  | Sets CRC in implicit header mode                     |
| [4:2] | MBWSSF_IMPLICIT_CODING_ | RW   | 0x00  | Sets coding rate in implicit header mode             |
|       | RATE                    |      |       |                                                      |

# Table 89 RegBhimpcfg1 definition

| Bits  | Name                    | Mode | Reset | Description                                 |
|-------|-------------------------|------|-------|---------------------------------------------|
| [7:0] | MBWSSF_IMPLICIT_PAYLOAD | RW   | 0x00  | Sets payload length in implicit header mode |
|       | _LENGHT                 |      |       |                                             |

Table 90 RegBhimpcfg2 definition





**Datasheet** 

| Bits  | Name                  | Mode | Reset | Description                               |
|-------|-----------------------|------|-------|-------------------------------------------|
| [3:0] | MBWSSF_FRAME_SYNCH_PE | RW   | 0x01  | Reserved: End of preamble marker position |
|       | AK1_POS               |      |       |                                           |
| [7:4] | MBWSSF_FRAME_SYNCH_PE | RW   | 0x02  | Reserved: End of preamble marker position |
|       | AK2_POS               |      |       |                                           |

### Table 91 RegBhsyncpos definition

| Bits  | Name                  | Mode | Reset | Description                                          |
|-------|-----------------------|------|-------|------------------------------------------------------|
| [7:0] | MBWSSF_PREAMBLE_SYMB1 | RW   | 0x0A  | Sets the preamble maximum symbol number expected , a |
|       | _NB                   |      |       | longer preamble will trigger a header error ,        |
|       |                       |      |       | demoudulation will be dropped                        |

#### Table 92 RegBhprsymnbl definition

| Bits  | Name                   | Mode | Reset | Description                                                               |
|-------|------------------------|------|-------|---------------------------------------------------------------------------|
| [1:0] | MBWSSF_MODEM_BW        | RW   | 0x00  | Sets the LoRa RX backhaul modem bandwidth , 0 =125kHZ, 1=250kHZ, 2=500kHz |
| [2]   | MBWSSF_RADIO_SELECT    | RW   | 0x00  | Selects the radio source for the backhaul modem                           |
| [3]   | MBWSSF_RX_CHIRP_INVERT | RW   | 0x01  | Reserved: inverts chirp slope                                             |

### Table 93 RegMbwssf\_misc\_cfg1 definition

| Bits  | Name               | Mode | Reset | Description                                            |
|-------|--------------------|------|-------|--------------------------------------------------------|
| [3:0] | MBWSSF_LLR_SCALE   | RW   | 0x08  | Reserved: same as SX1272                               |
| [5:4] | MBWSSF_SNR_AVG_CST | RW   | 0x03  | Reserved: same as SX1272                               |
| [6]   | MBWSSF_PPM_OFFSET  | RW   | 0x00  | Enables reduced encoding for improoved timing tracking |
|       |                    |      |       | robustness , should match transmitter                  |

### Table 94 RegMbwssf\_misc\_cfg2 definition

| Bits  | Name               | Mode | Reset | Description                             |
|-------|--------------------|------|-------|-----------------------------------------|
| [3:0] | MBWSSF_RATE_SF     | RW   | 0x07  | sets backhaul spreading factor: 7 to 12 |
| [4]   | MBWSSF ONLY CRC EN | RW   | 0x01  | filters out packets without CRC field   |

### Table 95 RegMbwssf\_misc\_cfg3 definition

| Bits  | Name                  | Mode | Reset | Description                                                   |
|-------|-----------------------|------|-------|---------------------------------------------------------------|
| [7:0] | MBWSSF_MAX_PAYLOAD_LE | RW   | 0xFF  | filters out packet with payload length longer than this value |
|       | N                     |      |       |                                                               |

### Table 96 RegMbwssf\_misc\_cfg4 definition

| Bits  | Name      | Mode | Reset | Description                                              |
|-------|-----------|------|-------|----------------------------------------------------------|
| [7:0] | TX_STATUS | R    | 0x80  | contains the Transmit modem status : {receiving,tx_modem |
|       |           |      |       | running,ramping,tx trigger armed,0,0,waiting for         |
|       |           |      |       | GPS, waiting for timer }                                 |

# Table 97 RegTx\_status definition

| Bits  | Name            | Mode | Reset | Description                                             |
|-------|-----------------|------|-------|---------------------------------------------------------|
| [2:0] | FSK_CH_BW_EXPO  | RW   | 0x00  | FSK channel bandwidth SSB = 32MHz/(16 *                 |
|       |                 |      |       | 2^(2+ch_bw_expo) ,0 forbidden , 1=+/-250kHz , 7=+/-     |
|       |                 |      |       | 3.9kHz                                                  |
| [5:3] | FSK_RSSI_LENGTH | RW   | 0x00  | RSSI average window length : window length =            |
|       |                 |      |       | 2^(1+fsk_rssi_length)                                   |
| [6]   | FSK_RX_INVERT   | RW   | 0x00  | Inverts FSK modem I/q samples                           |
| [7]   | FSK_PKT_MODE    | RW   | 0x00  | 0=fixed length packet , length is set by FSK_PKT_LENGTH |
|       |                 |      |       | register, 1=packet length is contained in header        |

### Table 98 RegFsx\_cfg definition

| Bits  | Name             | Mode | Reset | Description                                               |
|-------|------------------|------|-------|-----------------------------------------------------------|
| [2:0] | FSK_PSIZE        | RW   | 0x00  | length of the Sync pattern is 1+FSK_PSIZE bytes           |
| [3]   | FSK_CRC_EN       | RW   | 0x00  | Enables CRC16 calculation✓                                |
| [5:4] | FSK_DCFREE_ENC   | RW   | 0x00  | Encoding mode: 00=dc free encoding, 01=Manchester         |
|       |                  |      |       | 10=Whitening 11=forbiden                                  |
| [6]   | FSK_CRC_IBM      | RW   | 0x00  | defines CRC type : 0=CCITT CRC16 , 1=IBM CRC as in CC1100 |
| [7]   | FSK_PREAMBLE_SEQ | RW   | 0x00  | Reserved: unknown ??                                      |

Table 99 RegFsk\_cfg2 definition





**Datasheet** 

| Bits  | Name              | Mode | Reset | Description                                                |
|-------|-------------------|------|-------|------------------------------------------------------------|
| [4:0] | FSK_ERROR_OSR_TOL | RW   | 0x00  | number of tolerated chip error during preamble correlation |
| [7]   | FSK_RADIO_SELECT  | RW   | 0x00  | Selects the FSK modem sample radio source, 0=radio A ,     |
|       |                   |      |       | 1=radio B                                                  |

### Table 100 RegFsk\_error\_osr\_tol definition

| Bits  | Name             | Mode | Reset | Description                                              |
|-------|------------------|------|-------|----------------------------------------------------------|
| [7:0] | FSK_BR_RATIO[70] | RW   | 0x00  | defines the FSK bitrate , bitrate = 32MHz/br_ratio (LSB) |

### Table 101 RegFsk\_br\_ratiol definition

| Bits  | Name              | Mode | Reset | Description |
|-------|-------------------|------|-------|-------------|
| [7:0] | FSK_BR_RATIO[158] | RW   | 0x00  | (MSB)       |

### Table 102 RegFsk\_br\_ratioh definition

| Bits  | Name                | Mode | Reset | Description                                                |
|-------|---------------------|------|-------|------------------------------------------------------------|
| [7:0] | FSK_REF_PATTERN[70] | RW   | 0x00  | 8 LSBs of the programmable sync word , sync word is sent   |
|       |                     |      |       | MSB first in the air, should match the transmitter setting |

### Table 103 RegFsk\_ref\_pattern\_0 definition

| Bits  | Name                 | Mode | Reset | Description |
|-------|----------------------|------|-------|-------------|
| [7:0] | FSK_REF_PATTERN[158] | RW   | 0x00  |             |

### Table 104 RegFsk\_ref\_pattern\_1 definition

| Bits  | Name                  | Mode | Reset | Description |
|-------|-----------------------|------|-------|-------------|
| [7:0] | FSK_REF_PATTERN[2316] | RW   | 0x00  |             |

### Table 105 RegFsk\_ref\_pattern\_2 definition

| Bits  | Name                  | Mode | Reset | Description |
|-------|-----------------------|------|-------|-------------|
| [7:0] | FSK REF PATTERN[3124] | RW   | 0x00  |             |

### Table 106 RegFsk\_ref\_pattern\_3 definition

| Bits  | Name                  | Mode | Reset | Description |
|-------|-----------------------|------|-------|-------------|
| [7:0] | FSK_REF_PATTERN[3932] | RW   | 0x00  |             |

### Table 107 RegFsk\_ref\_pattern\_4 definition

| Bits  | Name                  | Mode | Reset | Description |
|-------|-----------------------|------|-------|-------------|
| [7:0] | FSK_REF_PATTERN[4740] | RW   | 0x00  |             |

# Table 108 RegFsk\_ref\_pattern\_5 definition

| Bits  | Name                  | Mode | Reset | Description |
|-------|-----------------------|------|-------|-------------|
| [7:0] | FSK REF PATTERN[5548] | RW   | 0x00  |             |

### Table 109 RegFsk\_ref\_pattern\_6 definition

| Bits  | Name                  | Mode | Reset | Description                                                       |
|-------|-----------------------|------|-------|-------------------------------------------------------------------|
| [7:0] | FSK_REF_PATTERN[6356] | RW   | 0x00  | first byte of sync word , if a single byte is used as sync word , |
|       |                       |      |       | it will be matched to this register                               |

# Table 110 RegFsk\_ref\_pattern\_7 definition

| Bits  | Name           | Mode | Reset | Description                                                   |
|-------|----------------|------|-------|---------------------------------------------------------------|
| [7:0] | FSK_PKT_LENGTH | RW   | 0x00  | length of the packet in byte in fixed packet length mode , in |
|       |                |      |       | variable length mode this register is used to filter out      |
|       |                |      |       | packet payloads longer than FSK_PKT_LENGTH                    |

### Table 111 RegFsk\_pkt\_length definition

| Bits | Name            | Mode | Reset | Description                                                |
|------|-----------------|------|-------|------------------------------------------------------------|
| [0]  | FSK_AUTO_AFC_ON | RW   | 0x01  | enables Automatic frequency offset compensation, active by |
|      |                 |      |       | default                                                    |

### Table 112 RegFsk\_aafc definition

| Bits  | Name                    | Mode | Reset | Description                                             |
|-------|-------------------------|------|-------|---------------------------------------------------------|
| [7:0] | FSK_PATTERN_TIMEOUT_CFG | RW   | 0x00  | time out following preamble detection expressed in bits |
|       |                         |      |       | (LSB). If no sync word is found after                   |
|       |                         |      |       | FSK_PATTERN_TIMEOUT_CFG bit periods , the modem         |
|       |                         |      |       | goes back in preamble search & AFC                      |

### Table 113 RegFsk\_pattern\_timeout\_cfg definition





**Datasheet** 

| Bits  | Name                    | Mode | Reset | Description |
|-------|-------------------------|------|-------|-------------|
| [1:0] | FSK_PATTERN_TIMEOUT_CFG | RW   | 0x00  | (MSB)       |

Table 114 RegFsk\_pattern\_timeout\_cfg definition

### 4.2.4 Page 2 registers

| Bits  | Name            | Mode | Reset | Description                                               |
|-------|-----------------|------|-------|-----------------------------------------------------------|
| [7:0] | SPI_RADIO_ADATA | RW   | 0x00  | Data sent to radio A SPI interface when HOST controls the |
|       |                 |      |       | radio SPI interface directly                              |

### Table 115 RegRadio\_a\_spi\_1 definition

| Bits  | Name                  | Mode | Reset | Description                                               |
|-------|-----------------------|------|-------|-----------------------------------------------------------|
| [7:0] | SPI_RADIO_ADATA_READB | R    | 0x00  | Byte read from radio A during a SPI transaction when HOST |
|       | ACK                   |      |       | controls the radio SPI interface directly                 |

# Table 116 RegRadio\_a\_spi\_2 definition

| Bits  | Name            | Mode | Reset | Description                                                |
|-------|-----------------|------|-------|------------------------------------------------------------|
| [7:0] | SPI_RADIO_AADDR | RW   | 0x00  | Addr word sent to radio A SPI interface when HOST controls |
|       |                 |      |       | the radio SPI interface directly                           |

### Table 117 RegRadio\_a\_spi\_3 definition

| Bits | Name          | Mode | Reset | Description                                               |
|------|---------------|------|-------|-----------------------------------------------------------|
| [0]  | SPI_RADIO_ACS | RW   | 0x00  | A rising edge on this register triggers a single byte SPI |
|      |               |      |       | transaction on the radio A SPI interface                  |

### Table 118 RegRadio\_a\_spi\_4 definition

| Bits  | Name            | Mode | Reset | Description |
|-------|-----------------|------|-------|-------------|
| [7:0] | SPI_RADIO_BDATA | RW   | 0x00  | idem        |

### Table 119 RegRadio\_b\_spi\_1 definition

| Bits  | Name                  | Mode | Reset | Description |
|-------|-----------------------|------|-------|-------------|
| [7:0] | SPI_RADIO_BDATA_READB | R    | 0x00  | idem        |
|       | ACK                   |      |       |             |

### Table 120 RegRadio\_b\_spi\_2 definition

| Bits  | Name             | Mode | Reset | Description |
|-------|------------------|------|-------|-------------|
| [7:0] | SPI RADIO B ADDR | RW   | 0x00  | idem        |

# Table 121 RegRadio\_b\_spi\_3 definition

| Bits | Name           | Mode | Reset | Description      |
|------|----------------|------|-------|------------------|
| [0]  | SPI RADIO B CS | RW   | 0x00  | idem for radio B |

### Table 122 RegRadio\_b\_spi\_4 definition

| Bits | Name       | Mode | Reset | Description                                               |
|------|------------|------|-------|-----------------------------------------------------------|
| [0]  | RADIO_A_EN | RW   | 0x00  | Drives the Enable pin of the Radio A                      |
| [1]  | RADIO_B_EN | RW   | 0x00  | Drives the Enable pin of the Radio A                      |
| [2]  | RADIO_RST  | RW   | 0x01  | Drive the RST pin of both radios                          |
| [3]  | LNA_A_EN   | RW   | 0x00  | when controlled by the HOST ,used to control the external |
|      |            |      |       | LNA&PA state, used as index LSB of control logic LUT, see |
|      |            |      |       | LNA_A_CTRL_LUT&PA_A_CTRL_LUT                              |
| [4]  | PA_A_EN    | RW   | 0x00  | used as MSB of control logic LUT , only active when HOST  |
|      |            |      |       | directly controls external front-end                      |
| [5]  | LNA_B_EN   | RW   | 0x00  | idem                                                      |
| [6]  | PA_B_EN    | RW   | 0x00  | idem                                                      |

### Table 123 RegRadio\_cfg definition

| Bits  | Name    | Mode | Reset | Description                               |
|-------|---------|------|-------|-------------------------------------------|
| [1:0] | PA_GAIN | RW   | 0x00  | External PA optionnal gain control signal |

Table 124 RegPa\_gain definition





**Datasheet** 

| Bits  | Name           | Mode | Reset | Description                                                                                                            |
|-------|----------------|------|-------|------------------------------------------------------------------------------------------------------------------------|
| [3:0] | LNA_A_CTRL_LUT | RW   | 0x02  | LNA_A_CTRL pin state is                                                                                                |
|       |                |      |       | LNA_A_CTRL_LUT({pa_a_en,lna_a,en}), allows arbitrary logic contorl of any external RF Front-end with 2 wires interface |
| [7:4] | PA_A_CTRL_LUT  | RW   | 0x04  | PA_A_CTRL pin state is PA_A_CTRL_LUT({pa_a_en,lna_a,en})                                                               |

### Table 125 RegFe\_a\_ctrl\_lut definition

| Bits  | Name           | Mode | Reset | Description                   |
|-------|----------------|------|-------|-------------------------------|
| [3:0] | LNA_B_CTRL_LUT | RW   | 0x02  | idem for radio B RF front-end |
| [7:4] | PA_B_CTRL_LUT  | RW   | 0x04  | idem for radio B RF front-end |

### Table 126 RegFe\_b\_ctrl\_lut definition

| Bits  | Name                   | Mode | Reset | Description                                             |
|-------|------------------------|------|-------|---------------------------------------------------------|
| [7:0] | VALID_HEADER_COUNTER_M | R    | 0x00  | Number of valid header received by the LoRa backhaul RX |
|       | BWSSF                  |      |       | modem, wraps to 0 when it reaches 255                   |

### Table 127 RegValid\_header\_counter\_mbwssf definition

| ı | Bits  | Name                    | Mode | Reset | Description                                            |
|---|-------|-------------------------|------|-------|--------------------------------------------------------|
|   | [7:0] | VALID_HEADER_COUNTER_FS | R    | 0x00  | Number of valid header received by the FSK backhaul RX |
| L |       | К                       |      |       | modem                                                  |

### Table 128 RegValid\_header\_counter\_fsk definition

| Bits  | Name                   | Mode | Reset | Description                                             |
|-------|------------------------|------|-------|---------------------------------------------------------|
| [7:0] | VALID_PACKET_COUNTER_M | R    | 0x00  | Number of valid packet received by the LoRa backhaul RX |
|       | BWSSF                  |      |       | modem                                                   |

### Table 129 RegValid\_packet\_counter\_mbwssf definition

| Bits  | Name                    | Mode | Reset | Description                                            |
|-------|-------------------------|------|-------|--------------------------------------------------------|
| [7:0] | VALID_PACKET_COUNTER_FS | R    | 0x00  | Number of valid header received by the FSK backhaul RX |
|       | K                       |      |       | modem                                                  |

### Table 130 RegValid\_packet\_counter\_fsk definition

| Bits  | Name       | Mode | Reset | Description                                                  |  |
|-------|------------|------|-------|--------------------------------------------------------------|--|
| [7:0] | CHANN_RSSI | R    | 0x00  | Instant RSSI measured in the digital channelizer, channel is |  |
|       |            |      |       | selected with the CHANN_SELECT_RSSI register                 |  |

### Table 131 RegChann\_rssi definition

| Bits  | Name    | Mode | Reset | Description                                                 |
|-------|---------|------|-------|-------------------------------------------------------------|
| [7:0] | BB_RSSI | R    | 0x00  | Instant RSSI measured after the first decimation stage with |
|       |         |      |       | ~8MHz bandwidth, detects analog ADC saturation              |

# Table 132 RegBb\_rssi definition

| Bits  | Name     | Mode | Reset | Description                                                  |
|-------|----------|------|-------|--------------------------------------------------------------|
| [7:0] | DEC_RSSI | R    | 0x00  | Instant RSSI measured at the output of the decimation filter |
|       |          |      |       | with bandwidth = +/-2MHz                                     |

### Table 133 RegDec\_rssi definition

| Bits  | Name          | Mode | Reset                                                         | Description                                                 |  |
|-------|---------------|------|---------------------------------------------------------------|-------------------------------------------------------------|--|
| [7:0] | TIMESTAMP[70] | R    | 0x00                                                          | 32bits time counter clocked at 1Mhz , this value is latched |  |
|       |               |      | on the falling edge of SPI CSN signal, the 32bits (4bytes) of |                                                             |  |
|       |               |      |                                                               | this register should be read in 1 single burst              |  |

### Table 134 RegTimestamp\_0 definition

| Bits  | Name           | Mode | Reset | Description |
|-------|----------------|------|-------|-------------|
| [7:0] | TIMESTAMP[158] | R    | 0x00  |             |

### Table 135 RegTimestamp\_1 definition

| Bits  | Name            | Mode | Reset | Description |
|-------|-----------------|------|-------|-------------|
| [7:0] | TIMESTAMP[2316] | R    | 0x00  |             |

### Table 136 RegTimestamp\_2 definition





Datasheet

| Bits  | Name            | Mode | Reset | Description |
|-------|-----------------|------|-------|-------------|
| [7:0] | TIMESTAMP[3124] | R    | 0x00  |             |

# Table 137 RegTimestamp\_3 definition

| Bits | Name                     | Mode | Reset | Description                                                |
|------|--------------------------|------|-------|------------------------------------------------------------|
| [0]  | SPI_MASTER_CHIP_SELECT_P | RW   | 0x00  | Selects the polarity of the radio SPI master to accomodate |
|      | OLARITY                  |      |       | third party radios if required : 0 = active low            |
| [1]  | SPI_MASTER_CPOL          | RW   | 0x00  | Radio SPI master Clock Polarity , by default ok for SX1257 |
| [2]  | SPI_MASTER_CPHA          | RW   | 0x00  | Radio SPI master CPHA parameter , by default ok for SX1257 |

# Table 138 RegSpi\_master\_cfg definition

| Bits | Name    | Mode | Reset | Description                                                                                                                                 |
|------|---------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------|
| [0]  | GPS_EN  | RW   | 0x00  | Selects the GPS input to sample the integrated time counter , if 0 the current value is read , if 1 the value at the last GPS pulse is read |
| [1]  | GPS_POL | RW   | 0x01  | Selects on which edge of the GPS PPS signal the time counter should be sampled: 1 means rising edge                                         |

Table 139 RegGps\_cfg definition





Datasheet

# 5 External components

A decoupling capacitor (Cdec) is required to minimize the ripple on the power lines.

| Component | Value         | Manufacturer | Part number        | Package            |
|-----------|---------------|--------------|--------------------|--------------------|
| Cdec      | 100 nF, 10 V  | TDK          | C0603X5R1A104KT    | 0201 (0603 metric) |
|           | 100 nF, 6.3 V | Taiyo Yuden  | EMK063AC6104MP-F   | 0201 (0603 metric) |
|           | 100 nF, 6.3 V | Murata       | GRM033R60J104ME19D | 0201 (0603 metric) |

**Table 140 Recommended external components** 





Datasheet

# 6 PCB Layout Considerations

The bottom ground paddle must be soldered to a ground plate. The ground plate must be large enough to support SX1301 power dissipation.

The PCB layout must minimize distances between the IC and the decoupling capacitors.



Top layer - signals





**Datasheet** 



Second layer - shield



Third layer - power



Datasheet



Figure 20 PCB layout example



**Datasheet** 

# 7 Packaging Information

### 7.1 Package Outline Drawing



Figure 21 Package dimensions

### 7.2 Thermal impedance of package

Thermal impedance with natural convection is 16.4 °C/W. Thermal impedance with heat sink on package bottom is 0.18 °C/W.



**Datasheet** 

# 7.3 Land Pattern Drawing



| DIMENSIONS |        |             |
|------------|--------|-------------|
| DIM        | INCHES | MILLIMETERS |
| С          | (.352) | (8.95)      |
| G          | .319   | 8.10        |
| Н          | .287   | 7.30        |
| K          | .287   | 7.30        |
| Р          | .020   | 0.50        |
| Х          | .012   | 0.30        |
| Υ          | .033   | 0.85        |
| Z          | .386   | 9.80        |

#### NOTES:

- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.
   CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR
   COMPANY'S MANUFACTURING GUIDELINES ARE MET.
- 3. THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD SHALL BE CONNECTED TO A SYSTEM GROUND PLANE. FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR FUNCTIONAL PERFORMANCE OF THE DEVICE.
- 4. SQUARE PACKAGE DIMENSIONS APPLY IN BOTH " X " AND " Y " DIRECTIONS.

Figure 22 Land pattern drawing





Datasheet

# 8 Revision Information

| Revision | Information            |
|----------|------------------------|
| V2.0     | First released version |





**Datasheet** 

#### © Semtech 2014

All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. Semtech assumes no responsibility or liability whatsoever for any failure or unexpected operation resulting from misuse, neglect improper installation, repair or improper handling or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified range.

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

#### **Contact information**

Semtech Corporation
Wireless & Sensing Products Division
200 Flynn Road, Camarillo, CA 93012

Phone: (805) 498-2111 Fax: (805) 498-3804

www.semtech.com