## Светашева Юлия ИУ5-64Б

## 17 вариант РК-2

Задание. Для заданного набора данных (по Вашему варианту) постройте модели классификации или регрессии (в зависимости от конкретной задачи, рассматриваемой в наборе данных). Для построения моделей используйте методы 1 и 2 (по варианту для Вашей группы). Оцените качество моделей на основе подходящих метрик качества (не менее двух метрик). Какие метрики качества Вы использовали и почему? Какие выводы Вы можете сделать о качестве построенных моделей? Для построения моделей необходимо выполнить требуемую предобработку данных: заполнение пропусков, кодирование категориальных признаков, и т.д.

• Для студентов групп ИУ5-61Б, ИУ5-62Б, ИУ5-63Б, ИУ5-64Б, ИУ5-65Б, РТ5-61Б номер варианта = номер в списке группы.

 
 Группа
 Метод №1
 Метод №2

 ИУ5-64Б, ИУ5Ц-84Б
 Линейная/логистическая регрессия
 Градиентный бустинг

Используемый набор данных: Predict FIFA 2018 Man of the Match | Kaggle

## Результат:







Out[8]:

|    | Date                 | Team            | Opponent        | Goal<br>Scored | Ball<br>Possession<br>% | Attempts | On-<br>Target | Off-<br>Target | Blocked | Corners | <br>Yellow<br>Card | Yellow<br>& Red | Red | Man<br>of the<br>Match | 1st<br>Goal | Round           | PSO | Goals<br>in<br>PSO | ٤ |
|----|----------------------|-----------------|-----------------|----------------|-------------------------|----------|---------------|----------------|---------|---------|--------------------|-----------------|-----|------------------------|-------------|-----------------|-----|--------------------|---|
|    | 14-<br>0 06-<br>2018 | Russia          | Saudi<br>Arabia | 5              | 40                      | 13       | 7             | 3              | 3       | 6       | <br>0              | 0               | 0   | Yes                    | 12.0        | Group<br>Stage  | No  | 0                  |   |
|    | 14-<br>1 06-<br>2018 | Saudi<br>Arabia | Russia          | 0              | 60                      | 6        | 0             | 3              | 3       | 2       | <br>0              | 0               | 0   | No                     | NaN         | Group<br>Stage  | No  | 0                  |   |
|    | 15-<br>2 06-<br>2018 | Egypt           | Uruguay         | 0              | 43                      | 8        | 3             | 3              | 2       | 0       | <br>2              | 0               | 0   | No                     | NaN         | Group<br>Stage  | No  | 0                  |   |
|    | 15-<br>3 06-<br>2018 | Uruguay         | Egypt           | 1              | 57                      | 14       | 4             | 6              | 4       | 5       | <br>0              | 0               | 0   | Yes                    | 89.0        | Group<br>Stage  | No  | 0                  |   |
|    | 15-<br>4 06-<br>2018 | Morocco         | Iran            | 0              | 64                      | 13       | 3             | 6              | 4       | 5       | <br>1              | 0               | 0   | No                     | NaN         | Group<br>Stage  | No  | 0                  |   |
|    |                      |                 |                 |                |                         |          |               |                |         |         | <br>               |                 |     |                        |             |                 |     |                    |   |
| 12 | 11-<br>3 07-<br>2018 | England         | Croatia         | 1              | 46                      | 11       | 1             | 6              | 4       | 4       | <br>1              | 0               | 0   | No                     | 5.0         | Semi-<br>Finals | No  | 0                  |   |
| 12 | 14-<br>4 07-<br>2018 | Belgium         | England         | 2              | 43                      | 12       | 4             | 3              | 5       | 4       | <br>1              | 0               | 0   | Yes                    | 4.0         | 3rd<br>Place    | No  | 0                  |   |
| 12 | 14-<br>5 07-<br>2018 | England         | Belgium         | 0              | 57                      | 15       | 5             | 7              | 3       | 5       | <br>2              | 0               | 0   | No                     | NaN         | 3rd<br>Place    | No  | 0                  |   |
| 12 | 15-<br>07-<br>2018   | France          | Croatia         | 4              | 39                      | 8        | 6             | 1              | 1       | 2       | <br>2              | 0               | 0   | Yes                    | 18.0        | Final           | No  | 0                  |   |
| 12 | 15-<br>7 07-<br>2018 | Croatia         | France          | 2              | 61                      | 15       | 3             | 8              | 4       | 6       | <br>1              | 0               | 0   | No                     | 28.0        | Final           | No  | 0                  |   |

128 rows × 27 columns









```
Jupyter RK-2 Svetasheva Yuliya IU5-64B Last Checkpoint: час назад (autosaved)
File
       Edit
              View
                     Insert
                             Cell
                                    Kernel
                                           Widgets
                                                       Help
                                                                                                                    Trusted
A code
A code
A code
A code
                                                           ~
     In [47]: def print_metrics(y_test, y_pred):
                  print(f"R^2: {r2_score(y_test, y_pred)}")
                  print(f"MSE: {mean_squared_error(y_test, y_pred)}")
                  print(f"MAE: {mean_absolute_error(y_test, y_pred)}")
     In [41]: import warnings
              warnings.filterwarnings('ignore')
              model_logistic = LogisticRegression()
              model_logistic.fit(x_train, y_train)
    Out[41]: LogisticRegression()
     In [43]: targ logistic = model logistic.predict(x test)
     In [44]: | mae = mean_absolute_error(y_test,targ_logistic)
              mape = mean_absolute_percentage_error(y_test,targ_logistic)
              mse = mean_squared_error(y_test,targ_logistic)
              print('MAE:' + str(round(mae,3)) + ' MAPE:' + str(round(mape,3)) + ' MSE:' + str(round(mse,3)))
              MAE:5.564 MAPE:0.43 MSE:45.513
     In [49]: #Градиентный брустинг
              XGB_model = XGBRegressor()
              mape = -cross_val_score(XGB_model,x_train,y_train,cv=4,scoring='neg_mean_absolute_percentage_error').mean()
              mae = -cross_val_score(XGB_model,x_train,y_train,cv=4,scoring='neg_mean_absolute_error').mean()
              mse = -cross_val_score(XGB_model,x_train,y_train,cv=4,scoring='neg_mean_squared_error').mean()
              print('SVM Errors')
              print('MAE:' + str(round(mae,3)) + ' MAPE:' + str(round(mape,3)) + ' MSE:' + str(round(mse,3)))
              SVM Errors
              MAE:4.361 MAPE:0.355 MSE:30.424
     In [50]: XGB_model.fit(x_train,y_train)
              mae = mean_absolute_error(y_test,XGB_model.predict(x_test))
              mape = mean_absolute_percentage_error(y_test,XGB_model.predict(x_test))
              mse = mean_squared_error(y_test,XGB_model.predict(x_test))
              print('MAE:' + str(round(mae,3)) + ' MAPE:' + str(round(mape,3)) + ' MSE:' + str(round(mse,3)))
              MAE:5.732 MAPE:0.416 MSE:45.084
 In [62]: #Сравнение моделей
```

Видим, что модель Градиентный брустинг показал себя лучше, чем логистическая регрессия