НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КПІ імені ІГОРЯ СІКОРСЬКОГО»

Кафедра Автоматизованих Систем Обробки Інформації та Управління

Спеціальні розділи математики

Лабораторна робота № 3

Розв'язання систем лінійних алгебраїчних рівнянь (СЛАР) ітераційними методами. Метод простої ітерації. Метод Зейделя

3міст

1 Теоретичні відомості	2
2 Завдання	3
3 Варіанти завдань	3
4 Вимоги до звіту	
5 Література	

1 Теоретичні відомості

Ітераційними методами ε такі, що навіть у припущенні, що обчислення ведуться без округлень, дозволяють отримати розв'язок системи лише із заданою точністю. До таких методів відносяться метод простої ітерації (метод Якобі) та метод Зейделя.

Будемо розглядати системи вигляду

$$Ax = b, (1)$$

де $A(n \times n)$ - матриця системи, b - вектор правої частини, x - вектор розв'язку.

Метод простої ітерації.

Систему Ax = b приводять до вигляду

$$x = Cx + d, (2)$$

де C - деяка матриця, для якої виконується

$$\alpha = \max_{i} \sum_{j=1}^{n} |c_{ij}| < 1 \text{ ado } \alpha = \max_{j} \sum_{i=1}^{n} |c_{ij}| < 1 \text{ ado } \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij}^{2} < 1$$
 (3)

d - вектор-стовпець.

Умова (3) буде виконана, якщо матриця А ϵ матрицею з діагональною перевагою, для якої $|a_{ii}| > \sum_{i \neq i} |a_{ij}|$ або $|a_{jj}| > \sum_{i \neq i} |a_{ij}|$

Розглянемо спосіб зведення (1) до (2). Запишемо (1) у розгорнутій формі:

$$-\sum_{i=1}^{n} a_{ij} x_{j} + b_{i} = 0, i = \overline{1, n}$$
(4)

Якщо $a_{ii}\neq 0$ для всіх i, то можна (4) зобразити у вигляді

$$x_{i} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_{j} - \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} x_{j} + \frac{b_{i}}{a_{ii}}, i = \overline{1, n}$$
(5)

Звідси отримуємо значення елементів матриці C та вектору d:

$$c_{ij} = \begin{cases} -\frac{a_{ij}}{a_{ii}}, i \neq j \\ 0, i = j \end{cases} d_i = \frac{b_i}{a_{ii}}, i = \overline{1, n}$$

Запишемо розв'язок у матричному вигляді. Нехай матрицю A задано у вигляді:

$$A = A_1 + D + A_2,$$

де A_1 — нижня трикутна матриця з нульовою головною діагоналлю; D — діагональна матриця з a_{ii} на головній діагоналі; A_2 — верхня трикутна матриця з нульовою головною діагоналлю.

За припущенням $a_{ij}\neq 0$ для всіх i, існує D^{-1} . Тоді зображенню у формі (5) відповідає

$$x = -D^{-1}A_1x - D^{-1}A_2x + D^{-1}b$$

або

$$x = -D^{-1}(A_1 + A_2)x + D^{-1}b.$$

Якщо матриця A не забезпечує виконання (3), тобто не є матрицею з діагональною перевагою, її приводять до такої за допомогою еквівалентних перетворень.

Виходячи з довільного вектора $x^{(0)}$ (можна взяти вектор b, або вектор b, поділений на діагональ матриці A) будують ітераційний процес:

$$x^{(k+1)} := Cx^{(k)} + d$$

або

$$x^{(k+1)} = -D^{-1}(A_1 + A_2)x^{(k)} + D^{-1}b$$

Критерій закінчення ітераційного процесу:

$$\max_{j} |x_{j}^{k+1} - x_{j}^{k}| < \varepsilon.$$

Метод Зейделя.

Цей метод – модифікація методу простої ітерації. В цьому методі вже знайдені компоненти беруть у правій частині співвідношення з (n+1)-го наближення, а іншні – з n-го наближення:

$$x_i^{(k+1)} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^{(k+1)} - \sum_{j=i+1}^n \frac{a_{ij}}{a_{ii}} x_j^{(k)} + \frac{b_i}{a_{ii}}, i = \overline{1, n}.$$

Або у матричному вигляді:

$$x^{(k+1)} = -D^{-1}A_1x^{(k+1)} - D^{-1}A_2x^{(k)} + D^{-1}b.$$

Умови застосування методу Зейделя, критерій закінчення ітерацій такі самі, як для методу простої ітерації.

2 Завдання

Якщо матриця не є матрицею із діагональною перевагою, привести систему до еквівалентної, у якій є діагональна перевага (письмово). Можна, наприклад, провести одну ітерацію метода Гауса, зкомбінувавши рядки з метою отримати нульовий недіагональний елемент у стовпчику. Розробити програму, що реалізує розв'язання за ітераційним методом, який відповідає заданому варіанту. Обчислення проводити з з кількістю значущих цифр m = 6. Для кожної ітерації розраховувати нев'язку r = b - Ax, де x - отриманий розв'язок.

Розв'язати задану систему рівнянь за допомогою програмного забезпечення Mathcad. Навести результат перевірки: вектор нев'язки $r = b - Ax_m$, де x_m - отриманий у Mathcad розв'язок.

Порівняти корені рівнянь, отримані у Mathcad, із власними результатами за допомогою методу середньоквадратичної похибки.

3 Варіанти завдань

Система має вигляд (1). Метод розв'язання визначається так: метод простої ітерації для парних варіантів та метод Зейделя для непарних варіантів.

№	Матриця системи А	Вектор правої частини <i>b</i>
вар.		
1-4	$(5,18+\alpha 1,12 0,95 1,32 0,83)$	$\left(6,19+\beta\right)$
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3,21
	0.95 2.12 $6.13 + \alpha$ 1.29 1.57	$ 4,28-\beta $
	$\begin{vmatrix} 1,32 & 0,57 & 1,29 & 4,57-\alpha & 1,25 \end{vmatrix}$	6,25
	$\begin{pmatrix} 0.83 & 0.91 & 1.57 & 1.25 & 5.21 + \alpha \end{pmatrix}$	$(4,95+\beta)$
	$\alpha = 0.25k, k = N_2 \epsilon ap - 1$	$\beta = 0.35k, \ k = N_{2} \beta ap - 1$
5-9	$(3,81 0,25 1,28 0,75+\alpha)$	(4,21)
	$\begin{bmatrix} 2,25 & 1,32 & 4,58+\alpha & 0,49 \end{bmatrix}$	$ 6,47 + \beta $
	$\begin{bmatrix} 5,31 & 6,28+\alpha & 0,98 & 1,04 \end{bmatrix}$	2,38
	$9,39 + \alpha$ 2,45 3,35 2,28	$(10,48+\beta)$
	$\alpha = 0.5k, k = N_2 \epsilon ap - 5,$	$\beta = 0.5k$, $k = N_2 \epsilon ap - 5$
10	(2,12 0,42 1,34 0,88)	(11,172)
	0,42 3,95 1,87 0,43	0,115
	1,34 1,87 2,98 0,46	0,009
	(0,88 0,43 0,46 4,44)	(9,349)

11-	$(8,30 2,62 + \alpha 4,10 1,90)$	$(-10,65 + \beta)$
15	$\begin{bmatrix} 3,92 & 8,45 & 8,78-\alpha & 2,46 \end{bmatrix}$	12,21
	$\begin{bmatrix} 3,77 & 7,21+\alpha & 8,04 & 2,28 \end{bmatrix}$	$ 15,45-\beta $
	$\left[\begin{array}{cccc} 2,21 & 3,65-\alpha & 1,69 & 6,99 \end{array}\right]$	-8,35
		,
	$\alpha = 0.2k, k = N_{2} \epsilon a p - 11$	$\beta = 0.2k, k = N_{2}eap - 11$
16	$\begin{bmatrix} 1,00 & 0,42 & 0,54 & 0,66 \end{bmatrix}$	$\left(0,3\right)$
	0,42 1,00 0,32 0,44	0,5
	0,54 0,32 1,00 0,22	0,7
	(0,66 0,44 0,22 1,00)	(0,9)
17	(5,5 7,0 6,0 5,5)	$\left \begin{pmatrix} 23 \end{pmatrix} \right $
	7,0 10,5 8,0 7,0	32
	6,0 8,0 10,5 9	33
	(5,5 7 9 10,5)	(31)
18	$\left(\begin{array}{cccccc} 6,59 & 1,28 & 0,79 & 1,195 & -0,21 \end{array}\right)$	$\left(\begin{array}{c}2,1\end{array}\right)$
	0,92 3,83 1,3 -1,63 1,02	0,36
	1,15 -2,46 5,77 2,1 1,483	3,89
	1,285 0,16 2,1 5,77 -18	11,04
10	(0,69 -1,68 -1,217 9 -6)	(-0,27)
19	(3,81 0,25 1,28 1,75)	$\begin{pmatrix} 4.21 \\ 2.27 \end{pmatrix}$
	2,25 1,32 5,58 0,49	8,97
	5,31 7,28 0,98 1,04	2,38
20	(10,39 2,45 3,35 2,28)	(12,98)
20	$\begin{bmatrix} 6,92 & 1,28 & 0,79 & 1,15 & -0,66 \\ 0.02 & 2.5 & 1.2 & 1.62 & 1.02 \end{bmatrix}$	$\begin{pmatrix} 2,1\\0.72 \end{pmatrix}$
	0,92 3,5 1,3 -1,62 1,02	0,72
	1,15 -2,46 6,1 2,1 1,483	3,87
	$\begin{bmatrix} 1,33 & 0,16 & 2,1 & 5,44 & -18 \\ 1,14 & -1,68 & -1,217 & 9 & -3 \end{bmatrix}$	13,8
21		(-1,08)
21	$ \begin{bmatrix} 7,03 & 1,22 & 0,85 & 1,135 & -0,81 \\ 0,98 & 3,39 & 1,3 & -1,63 & 0,57 \end{bmatrix} $	$\begin{pmatrix} 2,1\\0,84 \end{pmatrix}$
	1,09 -2,46 6,21 2,1 1,033	2,58
	1,345 0,16 2,1 5,33 -12	11,96
	$\begin{bmatrix} 1,345 & 0,10 & 2,1 & 3,33 & -12 \\ 1,29 & -1,23 & -0,767 & 6 & 1 \end{bmatrix}$	$\begin{pmatrix} 11,70\\-1,47 \end{pmatrix}$
22-	$(8,30 \ 2,62+\alpha \ 4,10 \ 1,90)$	$(-10,65+\beta)$
25	$\begin{bmatrix} 3,30 & 2,02+\alpha & 4,10 & 1,50 \\ 3,92 & 8,45 & 8,78-\alpha & 2,46 \end{bmatrix}$	$\begin{vmatrix} -10,03 + \beta \\ 12,21 \end{vmatrix}$
	$\begin{bmatrix} 3,72 & 3,43 & 3,76 & \alpha & 2,46 \\ 3,77 & 7,21+\alpha & 8,04 & 2,28 \end{bmatrix}$	$\begin{vmatrix} 12,21\\15,45-\beta \end{vmatrix}$
	$\begin{bmatrix} 3,77 & 7,21+\alpha & 6,64 & 2,26 \\ 2,21 & 3,65-\alpha & 1,69 & 6,99 \end{bmatrix}$	$\begin{pmatrix} 13,43 & \beta \\ -8,35 \end{pmatrix}$
	(-,-2 2,52 55 2,52)	(5,55)
	$\alpha = 0.2k, k = N_0 \epsilon ap - 22$	$\beta = 0.2k, k = \mathcal{N}_{2} \beta ap - 22$

4 Вимоги до звіту

Звіт має містити:

- постановку задачі;
- вихідну систему рівнянь;
- письмовий етап приведення матриці до діагональної переваги (якщо таке необхідно);
- проміжні результати та кінцевий результат;
- результати перших трьох та останньої ітерацій методу, на кожній ітерації потрібно навести вектор нев'язки
- копія розв'язку задачі у Mathcad; вектор нев'язки для цього розв'язку;
- порівняння власного розв'язку та розв'язку, отриманого у Mathcad; лістинг програми.

5 Література

- 1. Самарский А.А., Гулин А.В. Численные методы. М., Наука, 1989.
- 2. Волков Е.А., Численные методы. М., Наука, 1987.
- 3. Демидович В.П., Марон И.А. Основы вычислительной математики. Наука, 1986.
- 4. Березин И.С., Жидков Н.П. Методы вычислений. Т.1., М., Наука, 1966; Т.2., М., Физматгиз, 1960.
- 5. Кузнецов В.М., Жданова О.Г., Галицька І.Є. Методи розв'язання систем лінійних і нелінійних рівнянь та їх систем. Проблема власних значень. Методичні вказівки до виконання розрахунково-графічної роботи з дисципліни "Числові методи". "Політехніка", НТУУ "КПІ", 2001.