PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-012439

(43) Date of publication of application: 19.01.1999

(51)Int.CI.

CO8L 63/00 CO8G 59/32

CO8G 59/62

(21)Application number: 09-163585

(71)Applicant: NEC CORP

(22)Date of filing:

20.06.1997

(72)Inventor: ICHI MASATOSHI

(54) FLAME-RETARDANT THERMOSETTING RESIN COMPOSITION

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a composition which has a crosslinking structure to improve flame retardancy and is excellent in heat resistance and absorption resistance by using as essential ingredients an epoxy resin having a specific structure and a phenolic resin analogue comprising primarily a structure in which a hydroxyl group is bonded to an aromatic hydrocarbon. SOLUTION: The epoxy resin is illustrated by formula I. It embraces epoxy resins including tetrakis (glycidyloxyphenyl)ethane, tetrakis(glycidyloxyphenyl) pentance, etc. The phenolic resin analogue includes preferably phenolic novolak resins of formula II. In the formula, X is H, a glycidyl ether, a 1-10C hydrocarbon group, a glycidyloxyphenyl group, or a glycidyloxyphenyl group in which R2 is bonded to a phenyl group; R1 is a 1-10C hydrocarbon group; R2 is H or a 1-10C hydrocarbon group; R3 is an upto 100C hydrocarbon comprising essentially a naphthalene group and a biphenyl group; and n1 is 0-20.

Щ.

I.

LEGAL STATUS

[Date of request for examination]

20.06.1997

[Date of sending the examiner's decision of

22.08.2000

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-12439~

(43)公開日 平成11年(1999)1月19日

(51) Int.Cl.6

識別記号

FΙ

В

C08L 63/00 C08G 59/32

59/62

C08L 63/00 C08G 59/32

59/62

審査請求 有 請求項の数10 OL (全 10 頁)

(21)出願番号

特願平9-163585

(22)出願日

平成9年(1997)6月20日

(71)出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 位地 正年

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 弁理士 京本 直樹 (外2名)

(54) 【発明の名称】 難燃性熱硬化性樹脂組成物

(57) 【要約】

【課題】 低環境負荷で難燃性の高い熟硬化性樹脂組成物を提供する。

【解決手段】

【化1】

(Xは水素、炭素数1から10の炭化水素基、グリシジルオキシフェニル基、またはR2がフェニル基についたグリシジルオキシフェニル基、R1は炭素数1から10の炭化水素、R2は水素または炭素数1から10の炭化水素)式1で示されるエポキシ樹脂と、ナフタレン基、ピフェニル基を必須成分とする炭化水素と水酸基を有する、下記式2で示されるフェノール樹脂類緑体として含むエポキシ樹脂組成物を混合する。

[化2]

(R3 はナフタレン基、ピフェニル基を必須成分とし、 さらにフェニル基及び又は、炭化水素基が結合したもの を含有する炭素数100までの炭化水素、nは0から2 0)

さらにノボラック樹脂系硬化剤中の水酸基の量が、式1 記載のエポキシ樹脂中のエポキシ基の量に対して、水酸 基がエポキシ基と反応する化学当量よりも過剰であり、 具体的には化学当量の1.25倍以上から、硬化反応が 起こり得るまでの範囲となるような配合比とする。 1

【特許請求の範囲】

【請求項1】エポキシ樹脂と、芳香族炭化水素に水酸基 が結合した構造を主体とするフェノール樹脂類緑体を必 須成分とする難燃性樹脂組成物であり、前記エポキシ樹 脂が、下記式1であることを特徴とする熱硬化性樹脂組成物。

2

【化1】

式1

 $(X_1$ は、水素、グリシジルエーテル、炭素数 1 から 1 0 の炭化水素基、グリシジルオキシフェニル基、または R_2 がフェニル基についたグリシジルオキシフェニル基 である。 R_1 は炭素数 1 から 1 0 の炭化水素、 R_2 は水素または炭素数 1 から 1 0 の炭化水素。)

【請求項2】前記フェノール樹脂類緑体が、疎水基を含むことを特徴とする請求項1記載の熱硬化性樹脂組成物。

【請求項3】前記疎水基が水酸基が結合していない芳香 族炭化水素であることを特徴とする請求項2記載の熱硬 化性樹脂組成物。

【請求項4】前記エポキシ樹脂がテトラキス (グリシジルオキシフェニル) エタン、テトラキス (グリシジルオ

キシメチルフェニル) エタン、テトラキス (グリシジル オキシフェニル) メタン、トリキス (グリシジルオキシ フェニル) エタン、トリキス (グリシジルオキシフェニ ル) メタン、トリキスグリシジルオキシフェニルメチル エタン、トリキスグリシジルオキシフェニルメチル パンまたはテトラキス (グリシジルオキシフェニル) ペ ンタンを含むことを特徴とする請求項1記載の熱硬化性 20 樹脂組成物。

【請求項5】前記フェノール樹脂類縁体は、下記式2で 示されるフェノールノボラック樹脂であることを特徴と する請求項1記載の熱硬化性樹脂組成物。

[{k2}

OH OH OH OH
$$R_3 - CH_2 + R_3 - CH_2 + R_3$$
 $\sharp 2$

(R_3 は、ナフタレン基とピフェニル基を必須成分とし、これら単独又はさらにこれにフェニル基及び又は炭化水素が結合した炭素数100までの炭化水素、 n_1 は $0\sim20$)

【請求項6】前記フェノール樹脂類縁体は、ナフトールノボラック、ナフトールアラルキル樹脂、あるいはフェノールピフェニル樹脂を含む3価以上のフェノールノボラック樹脂類縁体、または4-4′ピフェノール又はナフタレンジオールと、ピスフェノールA、ピスフェノールF、ピスフェノールS、ハイドロキノン、レゾルシ

30 ン、又はカテコールとを、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒドあるいはpーヒドロキシベンズアルデヒドの縮合剤によって合成される多価フェノール性化合物であることを特徴とする請求項1記載の熱硬化性樹脂組成物。

【請求項7】前記フェノール樹脂が式3,式4,又は式5で示されるものを含むことを特徴とする請求項1記載の熱硬化性樹脂組成物。

【化3】

$$\begin{array}{c|c}
OH & OH \\
\hline
CH_2 & O+CH_2 & OH \\
R_4 & R_4
\end{array}$$

$$\begin{array}{c}
CH_2 & OH \\
R_4 & CH_2 & O+CH_2 & OH \\
R_4 & R_4
\end{array}$$

$$\begin{array}{c}
CH_2 & OH \\
R_4 & OH \\
R_4 & OH \\
R_4 & OH \\
\end{array}$$

式 3

[化4]

3

OH

$$CH_2$$
 R_4
 R_4

【化5】

$$\begin{array}{c|c}
OH & OH \\
OO O CH_2 & OH \\
R_4 & R_4
\end{array}$$

$$\begin{array}{c|c}
OH \\
R_5 & CH_2
\end{array}$$

(R₄ は水素、または炭素数1から6の炭化水素、n₂, n₃ は0から20の整数、n₄, n₅ は0から20の整数。)

【請求項8】前記フェノール樹脂中の前記水酸基が前記 エポキシ樹脂中の前記エポキシ基に反応する化学当量比 よりも過剰であることを特徴とする請求項1又は6記載 の熱硬化性樹脂組成物。

【請求項9】前記フェノール樹脂中の前記水酸基が前記 エポキシ樹脂中の前記エポキシ基に反応する化学当量比 よりも過剰であり、化学当量の1.25倍以上3.0倍 以下となるような配合比であることを特徴とする請求項 1又は6記載の熟硬化性樹脂組成物。

【請求項10】前記フェノール樹脂中の前記水酸基が前記エポキシ樹脂中の前記エポキシ基に反応する化学当量比よりも過剰であり、化学当量の1.6倍以上3.0倍以下となるような配合比であることを特徴とする請求項1又は6記載の熱硬化性樹脂組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は低環境負荷で難燃性 の高い熱硬化性樹脂組成物に関する。

[0002]

【従来の技術】熱硬化性樹脂組成物、特にこの中でもエ ポキシ樹脂組成物は良好な絶縁性、耐熱性および強度の ため、電気絶縁材料や建材用として広く使用されている が、一般的に難燃性が不十分であるため、これらの用途 では難燃剤が添加されている場合が多い。難燃剤として は通常、臭素や塩素などのハロゲンを含む化合物やリン を含む化合物が広く使用されている。しかし、前者の場 合には、これらを含む樹脂製品の火災時や廃棄後の焼却 時には毒性の高いハロゲン系ガスが発生し、また後者の 場合は、これらを含む樹脂製品の燃焼時には有害ガスは 発生しにくいものの、廃棄され埋立て処分された際には 有害なリン化合物が溶出しやすく、いずれも環境負荷が 大きいという問題がある。これに対して水酸化アルミの 水和物などの低環境負荷の無機物の水和物も難燃効果が あることが知られているが、樹脂に大量に添加する必要 があるため、成形性や他の特性への悪影響から汎用的で はない。

【0003】そこで低環境負荷の難燃化として、エポキ シ樹脂組成物の架橋構造を検討して、樹脂自体の難燃性 を向上させることが考えられる。通常のプラスチックス の燃焼は、プラスチックスが熱分解し、可燃性の分解物 が発生し、これに着火して進行すると考えられている (英 一太、プラスチックスの難燃化、1978年6月 26日発行、p39-41、日刊工業新聞社)。そして エポキシ樹脂組成物の場合、構造中に芳香族類を含むも のや、架橋密度の大きいものほど加熱時の残存率(残炭 率) が高くて、耐熱分解性すなわち耐熱性が高いことが 報告されている(新保 正樹,エポキシ樹脂ハンドブッ ク、1987年12月25日、P368-369、日刊 工業新聞社)。そこでこれまでは、難燃性を向上させよ うとする場合、このような耐熱性を向上させることが主 要な手段とされており、エポキシ樹脂と硬化剤の組み合 わせは芳香族を含むものを選択するとともに、それぞれ 30 の反応性官能基を、化学当量で、すなわち1:1の反応 が起こるようにこれらを過不足なく配合することによっ て、硬化物のガラス転移温度を指標とする架橋密度を最 大にするのが通例であった。

式4

【0004】しかしながら、芳香族を用い、さらに主剤の樹脂と硬化剤を当量配合して架橋密度を上げ耐熱性を向上させても、難燃性は不十分である場合が多かった。例えば、熱硬化性樹脂の中では、芳香族類で、かつガラス転移温度が高く耐熱性が最も良好なものの一つであるクレゾールノボラック型エポキシ樹脂とフェノールノボ ラック硬化剤の組み合わせ系でも難燃性は不十分であり、通常、臭素化合物が添加されている(宮坂 啓象、プラスチックス事典、1992年3月1日、P273、朝倉書店)。

【0005】これは、樹脂の難燃性が、規定の評価方法では、着火後の自己消火性(UL94による燃焼試験法)や、燃焼させるための必要酸素量(JIS-K-7201による酸素指数法)によって評価されるために、樹脂の耐熱性だけでなく、グラファイトに代表される不燃構造の形成性などの他の要因も大きく影響するためと50考えられる。

【0006】以上のように、ニポキシ樹脂と硬化剤の組 み合わせによる架橋構造と難燃性の関係についてはあま り知られていないのが現状である。

[0007]

【発明が解決しようとする課題】従来よりエポキシ樹脂 組成物の難燃性を向上させるために使用されているハロ ゲンやリン系の難燃剤では、上記の様に環境負荷が大き くて問題がある。

【0008】また、難燃剤を添加せずに樹脂自体の難燃 性を向上させようとした場合、従来では耐熱性(耐熱分 解性)を向上させることが難燃性を向上させる唯一の手 段とされてきたが、耐熱性の高い樹脂が必ずしも十分な

式 1

【0012】 (X_1 は、水素、グリシジルエーテル、炭 素数1から10の炭化水素基、グリシジルオキシフェニ ル基、またはR₂ がフェニル基についたグリシジルオキ シフェニル基である。R1 は炭素数1から10の炭化水 素、R2 は水素または炭素数1から10の炭化水素。) ここで言う、フェノール樹脂類縁体とはフェノール又は ナフトールを含む樹脂を言う。

【0013】具体的には、テトラキス(グリシジルオキ シフェニル) エタン、テトラキス (グリシジルオキシメ チルフェニル) エタン、テトラキス (グリシジルオキシ フェニル) メタン、トリキス (グリシジルオキシフェニ ル) エタン、トリキス (グリシジルオキシフェニル) メ タン、トリキスグリシジルオキシフェニルメチルエタ ン、トリキスグリシジルオキシフェニルメチルプロパン

$$R_3 - CH_2 + R_3 - CH_2 + R_3$$
[化7]
OH
OH
R3 - CH2 + R3 式2

【0017】 (R3 はナフタレン基とピフェニル基を必 須成分とし、これら単独又はさらにこれにフェニル基及 び又は炭化水素基が結合した炭素数100までの炭化水 素、n1は0~20。)

この式でR3 に結合する水酸基は1から6まである。具 体的には、ナフトールノボラック、ポリビニルフェノー ル、ナフトールアラルキル樹脂、あるいはフェノールビ フェニル樹脂を含む3価以上のフェノールノボラック類 緑体、または4-4′ピフェノール又はナフタレンジオ ールと、ビスフェノールA、ピスフェノールF、ピスフ ェノールS、ハイドロキノン、レゾルシン、又はカテコ ールとを、ホルムアルデヒド、アセトアルデヒド、ベン 50 難燃性を示すわけではなかった。

【0009】そこで、本発明では難燃性そのものを向上 させるような架橋構造を持ち、さらに他の必要特性であ る耐熱性や耐吸収性も良好なエポキシ樹脂組成物を提供 することを目的としている。

[0010]

【課題を解決するための手段】本発明の熟硬化性樹脂組 成物は、エポキシ樹脂と、芳香族炭化水素に水酸基が結 合したフェノール樹脂類縁体を必須成分とする難燃性樹 脂組成物であり、エポキシ樹脂が下配式2である。

[0011]

【化6】

またはテトラキス (グリシジルオキシフェニル) ペンタ ンを含むことを特徴とするエポキシ樹脂が用いられる。

【0014】このエポキシ樹脂は他の種類のエポキシ樹 脂と併用して用いても効果があり、具体的にはビスフェ ノールA、ピフェニル、ナフタレン、およびこれらの類 縁体等の結晶性の骨格を有するエポキシ樹脂との併用が 特に効果的である。この際のこれらのエポキシ樹脂の式 1のエポキシ樹脂への添加率は、エポキシ樹脂の総量に 対して70重量%が好ましい。これ以上であると、難燃 30 化の特徴を発揮できない場合がある。

【0015】前述のフェノール樹脂は、下記式3で示さ れるフェノールノボラック樹脂類縁体が好ましい。

[0016]

ズアルデヒドあるいはpーヒドロキシベンズアルデヒド 40 の縮合剤によって合成される多価フェノール性化合物で ある。ここで言うフェノールアラルキル樹脂はフェノー ルとα, α′ ジメトキシパラキシレンを、ナフトールア ラルキル樹脂はナフトールと α , α' ジメトキシパラキ シレンをフリーデルクラフト縮合することにより合成で

【0018】特に、フェノール樹脂が式3, 式4, 又は 式5で示されるものを含むものが適している。

[0019]

【化8】

(5)

[0020]

W

b4W?i (0021)

式 5

【0022】 (R₄ は水素、または炭素数1から6の炭化水素、n₂, n₃ は0から20の整数、n₄, n₅ は0から20の整数。)

【0023】これらの硬化剤はお互いに混合しても、一般的なフェノール樹脂を併用、また他の硬化剤、例えば、アミン類や水酸基含有有機物等と併用して用いることができる。特にフェノールノボラック樹脂との組み合わせが好ましい。他と併用する際、これらの硬化剤の、本発明の硬化剤への添加率は、硬化剤の総量に対して70重量%未満が好ましい。これ以上であると、難燃化の特徴を発揮できない場合がある。

【0024】フェノール樹脂中の水酸基は、前記エポキシ樹脂中の前記エポキシ基に反応する化学当量比よりも過剰であり、化学当量の1.25倍以上3.0倍以下となるような配合比であることが望ましい。特に、1.6倍以上3.0倍以下となるような配合比が望ましい。

【0025】本組成物においては、硬化剤中の水酸基が、エポキシ樹脂中のエポキシ基に対して、化学当量より過剰になるように配合された場合のほうが、大幅に難燃性が向上する。具体的には水酸基量が、エポキシ基量に対して、化学当量の1.25倍以上である場合に、特に難燃性には有効である。しかしながら水酸基の量を心臓がしまずで、硬化反応が不十分になると、難燃性への悪影響は少ないものの、離型性や硬化性などの成形性、耐熱性、強度特性、耐吸収性などの他の物性に悪影響があり、本来のエポキシ樹脂組成物としての使用に支障をきたすので、水酸基量は硬化反応が起こり得る範囲のとする。過剰の上限としては、エポキシ基に対して、3.0倍以下が好ましい。これらを越えると、成型時に硬化しにくくなり、その結果、成形性や硬化物の耐熱性、強度等の物性に悪影響がある。

【0026】本組成物において、必要に応じて添加される成分としては、シリカ粉、アルミナ粉、ガラス繊維などの無機充填剤、トリフェニルフォスフィンなどのリン化合物や各種アミン化合物などの硬化促進剤、カルナバワックスやステアリン酸塩などの離型剤、シランカップリング剤などの無機充填材の表面処理剤、各種の有機溶媒などの希釈剤、およびカーボンなどの着色剤、等が挙げられる。さらに、必要に応じては、通常の難燃剤、例えばハロゲン系、リン系等のものを添加しても、難燃効果は損なわれず、一層向上させることができる。

30 【0027】これらの組成物は、必要に応じて各構成材料をリボンブレンダーやヘンシェルミキサーなどで予備混合後、加熱ロール、ニーダー、回分式混合機などを用いて混合することで製造できる。そして、必要に応じて有機溶媒や水分を脱気してから、トランスファー成形機や加熱プレス成型機によって所定の成形条件で加熱して、架橋反応を起こさせ硬化させることで、高度な難燃性を有する硬化成形体を得ることができる。

【0028】このように、本組成物では、硬化剤をエポキシ樹脂より化学当量より過剰に配合することで、硬化40物の架橋密度が下がり、耐熱性が低下した場合のほうが難燃性が向上することから、明らかに耐熱性だけの要因で難燃性が決まっておらず、これは本組成物の硬化物に特有な難燃性の高い架橋構造の形成によるものと考える。

【0029】(作用)本発明による難燃性熱硬化性樹脂 組成物の難燃メカニズムを以下に示す。

【0030】本発明のエポキシ樹脂とフェノール樹脂類 緑体との組み合わせによる樹脂組成物では、高い難燃性 が得られるが、この理由は、それぞれの樹脂に芳香族化 50 合物が多く含まれ、さらにこれらの組み合わせに特有な 独自な架橋構造を形成できるために、燃焼時に難燃性の 多芳香族化合物であるグラファイトの前駆体が形成しや すくなり、高い難燃性が得られたと考える。

【0031】さらに、本発明のフェノール樹脂類縁体水 酸基(フェノール性水酸基)がエポキシ樹脂のエポキシ 基に対して過剰になるように、エポキシ樹脂とフェノー ル樹脂類緑体を配合し、図1のように、架橋構造中にフ ェノール性水酸基が残余していた方が難燃性は、大幅に 向上する。このように、架橋密度が低下した方が難然性 である。この難燃性向上の理由としては、残余している フェノール性水酸基が図2や図3のように、燃焼時に脱 水一縮合反応することによって、上記のグラファイト前 駆体の形成が、より効率的に行われたことによると考え る。

【0032】フェノール樹脂類縁体は、水酸基が結合し た芳香族と疎水基とを含むことが好ましい。疎水基が存 在することによって、水酸基が動きやすくなり、縮合反 応を起こしやすくなるからである。特に、疎水基は、水 酸基が結合した芳香族と水酸基が結合した他の芳香族と の間に存在するのが望ましく、水酸基が結合していない 芳香族であることが望ましい。その結果、燃焼時には脱 水一縮合反応が起き易く、難燃性は最も向上する。

[0033]

【発明の実施の形態】以下、本発明の実施の形態を実施 例により説明する。

(実施例1~7) 式2のエポキシ樹脂として、R2 がエ

[0034]

【実施例】

ル基のエポキシ樹脂 {テトラキス (グリシジルオキシフ ェニル) エタン、エポキシ当量;197、以後エポキシ 樹脂Aとする。}と、フェノール樹脂としては、式3で 示される化合物 (R4 が水素、数平均分子量 (Mn) が 450、水酸基当量が210、軟化点が86℃のもの (以後硬化剤Aとする。)、他の硬化剤として、トリフ QWwフォスフィン全体の fl. 5 重量%- カルナバワッ … クス0. 5重量%、シリカ粉(平均粒径25ミクロンの 溶融シリカ) 68.0重量%となるような配合比で、へ が100~110℃で5分間混練し、冷却プレスで冷却 した後、乳鉢で解砕し6メッシュの篩を通して成形材料 を作成した。ここでエポキシ樹脂Aと硬化剤Aの組成物 中の含有率(重量%)は、エポキシ樹脂Aのエポキシ基 量と硬化剤Aの水酸基量が、当量比で表1に示す割合に なるものであり、これらも表1に示す。

【0035】この際のエポキシ樹脂と硬化剤の組成物に 対する添加率は次の計算式を解くことによって求め、以 後の実施例と比較例の場合も同様である。

エポキシ樹脂添加率 (重量%) = α

硬化剤添加率(重量%) $= \beta$

水酸基のエポキシ基に対する当量比=v/xとすると $\alpha = \beta$ ・エポキシ樹脂のエポキシ当量/(硬化剤の水酸 基当量・y/x)

 $\alpha + \beta = 31.0$

この成形材料を用いて、トランスファー成型機で175 ℃で6分間の成形条件で成形した。この際の成形性とし て、金型からの離型性と成形体の硬化性(硬さ)の結果 を表1に示す。この成形体をさらに175℃で6時間加 は向上できることは、従来全く知られていなかった事実 10 熱して硬化させた後、所定の大きさに切断して試験片を 作成した。そして、この試験片の難燃性を酸素指数法 (JIS-K-7201)で評価し、さらに熱機械分析 (TMA) によってガラス転移温度を測定した。 (試料 長さ;10~11mm、雰囲気;空気中、昇温速度;5 ℃/分、荷重;2g、温度範囲;室温~300℃)これ らの結果も表1に示す。さらに上記の難燃テスト試験片 を使用して、純水中で24時間100℃で煮沸した際の 重量増加率から吸水率を測定した。

> 【0036】(実施例8~14)本発明のエポキシ樹脂 20 として、エポキシ樹脂Aと、本発明のフェノール樹脂類 としては、式4の化合物で、R4 が水素で、数平均分子 量(Mn)が500、水酸基当量が198、軟化点が7 3℃、のもの(以後硬化剤Bとする。)をさらに実施例 1~7と同様な添加剤と、同様に混練、成形、評価し た。この際、組成物中のこれらの樹脂の合計の含有率、 及び他の添加剤の含有率は実施例1~7と同じである。 これらの酸素指数とガラス転移温度、吸水率の結果を表 2に示す。

【0037】(実施例15~21)本発明のエポキシ樹 タンで、R3 が水素で、X1 がグリシジルオキシフェニ 30 脂としてエポキシ樹脂Aと、本発明のフェノール樹脂類 として、式5で示されるR4 がメチル基で、数平均分子 量(Mn)が430、水酸基当量が136、軟化点が1 01℃、のもの(以後硬化剤 Cとする。)を、さらに実 施例1~7と同様な添加剤と同様な比率で、同様に混 練、成形、評価した。この際、組成物中のこれらの樹脂 の合計の含有率、及び他の添加剤の含有率は実施例1~ 7と同じである。これらの酸素指数とガラス転移温度、" 吸水率の結果を表3に示す。

【0038】(実施例22~28)本発明のポキシ樹脂 ンシェルミキサーで混合した後、加熱ロールで樹脂温度 40 としてエポキシ樹脂Aと、式1以外のエポキシ樹脂とし 4′-ジグリシジルエーテル及びピフェニルー4,4′ ージグリシジルエーテルの50重量%ずつの混合物(エ ポキシ当量170、軟化点104℃、数平均分子量4.6 O、以下エポキシ樹脂Bとする。)とを重量比で5:5 に混合したものと、本発明のフェノール樹脂類として硬 化剤Aと、式3,4,5以外のフェノール樹脂としてフ ェノールノボラック樹脂(数平均分子量Mn;500、 水酸基当量;107、軟化点;90℃、で以後硬化剤D 50 とする。) を重量比6:4で混合したものとを、混合し

て樹脂成分とし、さらに実施例1~7と同様な添加剤と 一緒に、これらの実施例と同様混合・混練し、成形して 評価した。この際、組成物中のこれらの樹脂の合計の含 有率、及び他の添加剤の含有率は実施例1~7と同じで ある。これらの酸素指数、ガラス転移温度、吸水率の結 果を表4に示す。

【0039】(実施例29~35)本発明の式2のエポ キシ樹脂として、 R_1 がメタンで、 X_1 が水素で、 R_2 がメチル基のエポキシ樹脂トリキス(グリシジルオキシ メチルフェニル)メタン (エポキシ当量;164、以後 エポキシ樹脂Cとする)と、本発明のフェノール樹脂類 としては硬化剤Bと、さらに実施例1~7と同様な添加 剤と同様な比率で、同様に混練、成形、評価した。この 際、組成物中のこれらの樹脂の合計の含有率、及び他の 添加剤の含有率は実施例1~7と同じである。これらの 酸素指数とガラス転移温度、吸水率の結果を表5に示 す。

【0040】(実施例36~42)本発明の式2のエポ キシ樹脂として、R₁ がプロパンで、X₁ がメチル基 キシフェニル) メチルプロパン (エポキシ当量;16 4、以後エポキシ樹脂Dとする)と、本発明のフェノー ル樹脂類としては硬化剤Aと、さらに実施例1~7と同 様な添加剤と同様な比率で、同様に混練、成形、評価し

た。この際、組成物中のこれらの樹脂の合計の含有率、 及び他の添加剤の含有率は実施例1~7と同じである。 これらの酸素指数とガラス転移温度、吸水率の結果を表 6に示す。

12

【0041】 (比較例1~6) 本発明のエポキシ樹脂以 外の代表的な多官能エポキシ樹脂として、オルソクレゾ ールノボラック型エポキシ樹脂(エポキシ当量;19 4、軟化点;80℃、以後エポキシ樹脂Eとする)と、 硬化剤 A を、表 7 に示す割合で、さらに実施例 1 ~ 7 と 10 同様な添加剤と一緒に、同様に混練、成形、評価した。 この際、組成物中のこれらの樹脂の合計の含有率、及び 他の添加剤の含有率は実施例1~7と同じである。これ らの酸素指数とガラス転移温度、吸水率の結果を表7に 示す。

【0042】(比較例7~12)本発明以外のエポキシ 樹脂としてエポキシ樹脂Eと、本発明以外のフェノール 樹脂として硬化剤Dとを、表8に示す割合で、さらに実 施例1~7と同様な添加剤と一緒に、同様に混練、成 形、評価した。この際、組成物中のこれらの樹脂の合計 で、R2 が水素のエポキシ樹脂トリキス(グリシジルオ 20 の含有率、及び他の添加剤の含有率は実施例1~7と同 じである。これらの酸素指数とガラス転移温度、吸水率 の結果を表8に示す。

[0043]

【表1】

	夹 斑 例	実施の 2	実施例 3	実 返 例 4	実 施 例 5	实施例 6	爽 施 例 7
y/x *	0.75	1.0	1. 25	1.6	2.0	3.0	3.5
酸素要求量 (%)	51. 4	52. 2	55. 7	57.5	61.4	65. 6	65.9
が分転移温度 (℃)	167	170	158	142	tů	105	100
双水平(%)	0.46	0. 42	0.34	-0.31	0.35	C. 39	0.44
雄型位**	0	0	0	0	0	0	Δ
硬化性***	0	0	0	0	0	0	Δ

y/x; エポキシ樹脂中のエポキシ基に対する硬化剤中の水酸基の当量比

** 離型性:○良好,△不良,×離型不可能 ***硬化性;○完全硬化 △軟らかい, × 未硬化

[0044]

【表2】

	実施例 8	実施例 9	夹施例 10	奥施例	実施例 12	実 施 例 13	実施例 14
y/x	0.75	1.0	1. 25	1.6	2. 0	3.0	3. 5
酸素要求量 (%)	60. 9	51.8	64. 7	67. 0	68. 9	70. 8	72. 0
か ヲス転移温度 (°C)	159	165	154	140	108	100	98
吸水率(%)	0.49	0.44	0.37	0.35	0.37	0.40	0.41
離型性	0	0	0	0	0	0	Δ
硬化性	0	0	0	0	Q	0	Δ

[0045]

【表3】

14

	宴 施 例	実 施 例	実 施 例				突 施 例
	15	16	17	18	19	20	21
y/x	0.75	1.0	1. 25	1.6	2.0	3. 0	3, 5
酸紫要求量 (%)	48. 5	49. 0	53. 1	55. 1	56. 8	58. 0	59. 3
カ゚ラス転移温度 (℃)	155	169	156	141	113	104	.98
吸水率(%)	0.48	0. 44	0.36	0. 33	0.36	0.42	0.47
醛型性	0	0	0	0	0	0	
硬化性	0	0	0	0	0	Ö	Δ

[0046]

【表4】

	哭 施 例 22	夹 施 例 23	英施例 24	実施例 25	実施例 26	実施例 27	実施例 28	
y/x	0. 75	1.0	1. 25	1.6	2. 0	3, 0	3. 5	
酸紫要求量 (%)	47.3	47.4	51.0	53. 2	55.9	57.7	57.9	
ガラス転移温度 (℃)	143	153	144	130	101	95	91-	
及水率(%)	0.51	0. 47	0.44	0.46	0.48	0. 54	0. 59	
難型性	0	0	0	0	0	0	Δ	
硬化性	0	0	0	0	0	0	Δ	

[0047]

【表5】

	突 施 例 29					実施 纫 34	実施例 35
y/x *	0.75	1.0	1. 25	1.6	2.0	3.0.	3. 5
酸素要求量 (%)	\$9. 2	60. 0	63. 4	66. 1	67. 5	68. 8	69. 7
ガラス転移温度 (℃)	158	161	149	146	105	97	95
公太率(%)	0.47	0. 43	0. 35	0. 32	0. 35	0. 39	0. 42
機関性++	0	0	0	0	0	0	Δ
硬化性***	0	. 0	0	0	0	0	Δ

[0048]

【表6】

	実施例 35		1	突 施 例 39		安施例 41	夹 施 例 42
y/x *	0.75	1.0	1. 25	1.6	2.0	3. 0	3.5
量次要素類 (%)	49. 1	50. 3	54. 8	58. 6	57. 9	59. 1	60. 1
カ゚ラス転移温度 (℃)	154	162	153	138	105	100	96
吸水率(%)	0.50	0.46	0. 38	0.37	. 0. 38	0.42	0.45
離型性**	0	0	0	0	0	0	Δ
硬化性***	0	0.	0	0	0	0	Δ

【表7】

[0049]

10						10
	比較例	比較例	比較例	比較例	比較例	比較例
	1	2	3 ·	4	5	6 .
y/x	0.75	1.0	1, 6	2.0	3. 0	3.5
酸素要求量	32. 9	33. 8	34.0	34.5	35.3	35.8
(%)						
ガラス転移温度	142	165	148	116	92	83
(T)						
吸水率(%)	0.32	0. 28	0.31	0.41	0, 45	0. 53
雌型性	0	0	0	0	0	Δ.
硬化性	0	0	0	0	0	

[0050]

【表	8	1
----	---	---

	比較例 7	比較例 8	比較例 9	比較例 10	比較例 11	比較例 12
y/x	0.75	1.0	1.5	2. 0	3.0	3. 5
酸素要求量(%)	28. 5	28. 7	28.3	28. 8	29. 7	30. 2
カ゚ラス転移温度 (℃)	148	175	153	125	98	89
吸水率(%)	0. 35	0. 33	0.36	0.47	0. 53	0.59
離型性	Ö	0	0	0	0	Δ
硬化性	0	0	0	0	Δ	Δ

【0051】以上、実施例で示したように、本発明のエポキシ樹脂と硬化剤の組み合わせ系は、比較例に示すガラス転移温度が高くて耐熱性が良好なオルソクレゾールノボラック型エポキシ樹脂やフェノール樹脂との組み合のもせ系よりも、高い難燃性を示し、さらにガラス転移温度に代表される耐熱性や耐吸湿性も良好であることがわかる。さらに、本発明の硬化剤が、本発明のエポキシ樹脂類に対して、化学当量より過剰で水酸基/エポキシ基の当量比が1.25倍以上に配合され、ガラス転移温度が下がり、架橋密度が低下した時に、良好な難燃性を示すことがわかる。特に、当量比が1.6倍以上の時に難燃性が向上する。ただし、これらの当量比が3.0倍を越えると、難燃性には影響しないものの、離型性や硬化性で代表される成形性が低下し、さらに耐熱性や耐吸湿を低いている。

[0052]

【発明の効果】本発明の効果は、従来の環境負荷の大き

な難燃剤を添加することなく、それ自体が高い難燃性、 および耐熱性と耐吸湿性を有するエポキシ樹脂組成物に 代表される熱硬化性樹脂組成物を提供できることであ る。

【図面の簡単な説明】

【図1】本発明による難燃性熟硬化性樹脂を示す概念図である。

【図2】本発明による難燃性熱硬化性樹脂の難燃メカニ ズムを示す図である。

【図3】本発明による難燃性熱硬化性樹脂の難燃メカニズムを示す図である。

【符号の説明】

- 1 残余しているフェノール水酸基
- 40 2 エポキシ樹脂
 - 3 フェノール樹脂
 - 4 フェニルエーテル化合物

[図1]

硬化物架橋構造

【図3】

【図2】

