Homework 5

Early problem due on Gradescope at 11:59 pm on Tuesday, February 21st. Due on Gradescope at 11:59 pm on Friday, February 24th.

(1) (Early problem)

(a) Let $X = \mathbb{R}$. Prove that the following set defines a topology on X:

$$\tau = \{(-x, x) \mid x \in \mathbb{R}_{>0}\} \cup \{\emptyset, \mathbb{R}\}.$$

(b) Does the following set define a topology on *X*?

$$\tau' = \{(a,b) \mid a,b \in \mathbb{R}\} \cup \{\emptyset,\mathbb{R}\}.$$

Prove that it does or show why not.

- (2) Let (X, τ_i) be a topological space with the indiscrete topology. Let (Y, τ_Y) be any topological space with the property that for any two points $y_1 \neq y_2$ of Y, there exists an open subset of Y containing one of the points y_1, y_2 but not the other. What are the continuous functions $f: (X, \tau_i) \to (Y, \tau_Y)$? Prove that your answer is correct.
- (3) Recall that the Sierpinski space is the topological space (S, τ) with set of points $S = \{1, 2\}$ and topology $\tau = \{\emptyset, \{1\}, \{1, 2\}\}$. Prove that if X is any topological space, the set of continuous functions $f: X \to S$ is in bijection with the set of open subsets of X. That is, find a bijection

$$\phi_X : \{f : X \to S \mid f \text{ is continuous}\} \longrightarrow \{U \subseteq X \mid U \text{ is open }\}.$$

- (4) Consider \mathbb{Q} , the set of rational numbers, as a subset of \mathbb{R} with the usual topology. Prove or disprove: The subspace topology on \mathbb{Q} is the discrete topology.
- (5) Recall that a polynomial in the variables x,y is a function $f:\mathbb{R}^2\to\mathbb{R}$ given by a finite sum

$$f(x,y) = \sum_{i=0}^{n} \sum_{j=0}^{m} c_{i,j} x^{i} y^{j}.$$

The *zero locus* of a set of polynomials $\{f_i(x,y)\}_{i\in I}$ is the set

$$Z(\{f_i\}) \coloneqq \{(x,y) \in \mathbb{R}^2 \mid f_i(x,y) = 0 \text{ for all } i \in I\}.$$

A subset V of \mathbb{R}^2 is a (real) *algebraic variety* in \mathbb{R}^2 if it is the zero locus of some set of polynomials.

- (a) Show that circles are algebraic varieties in \mathbb{R}^2 .
- (b) Show that
 - (i) \emptyset , \mathbb{R}^2 are algebraic varieties in \mathbb{R}^2 ;
 - (ii) If $\{V_i\}_{i\in I}$ are algebraic varieties in \mathbb{R}^2 , then $\bigcap_{i\in I} V_i$ is an algebraic variety in \mathbb{R}^2 too;
 - (iii) If V_1, \ldots, V_n are algebraic varieties, then $\bigcup_{i=1}^n V_i$ are algebraic varieties in \mathbb{R}^2 too. (Hint: to avoid frightening notation, prove this for n=2, then use induction.)

(c) Conclude that the set

$$\tau_{\text{Zariski}} = \{ U \subseteq \mathbb{R}^2 \mid U^c \text{ is an algebraic variety} \}$$

defines a topology on \mathbb{R}^2 . This is called the *Zariski topology*.

- (d) Show that algebraic varieties are closed subsets in the usual topology on \mathbb{R}^2 . (Hint: polynomials are continuous functions in the usual topology.)
- (e) Conclude that the usual topology on \mathbb{R}^2 is finer than the Zariski topology.

Remark. Algebraic geometry is the study of algebraic varieties (though usually we have \mathbb{C}^n instead of \mathbb{R}^2). The Zariski topology is the preferred topology for algebraic geometers, because it plays well with polynomial functions and makes sense in any field (not just \mathbb{C} or \mathbb{R} , but also weirder number systems like finite fields and the p-adic numbers...). Being "closed" has a strong meaning in the Zariski topology: it means that you can describe a subset using only polynomial equations.