Claims:

BCS 03-1027

1. A process for preparing N-disubstituted N'-[4-haloalkylpyri(mi)dinyl]carbonyl ureas of the formula (I),

$$\begin{array}{c|c}
R^1 & O & O \\
N & C & NR^3R^4 \\
N & R^2 & (I)
\end{array}$$

5

where

 R^3

A is CH or N;

 R^1 is (C_1-C_4) -haloalkyl;

 R^2 is H or M;

10 M is an organic or inorganic cation;

is (C_1-C_8) -alkyl, (C_3-C_6) -alkenyl, (C_3-C_6) -alkynyl, (C_1-C_8) -alkoxy, (C_3-C_6) -alkenyloxy, (C_3-C_6) -alkynyloxy, (C_3-C_8) -cycloalkyl, (C_3-C_8) -cycloalkyl- (C_1-C_6) -alkyl, O-CH₂- (C_3-C_8) -cycloalkyl, where the last nine groups mentioned are unsubstituted or substituted by one or more R^5 radicals, or is aryl, heterocyclyl, aryloxy, heterocyclyloxy, -CH₂-aryl, -O-CH₂-aryl, -CH₂-heterocyclyl, -O-CH₂-heterocyclyl, where the last eight radicals mentioned are unsubstituted or substituted by one or more R^6 radicals;

Ŕ

20

is (C₁-C₈)-alkyl, (C₃-C₆)-alkenyl, (C₃-C₆)-alkynyl, (C₃-C₈)-cycloalkyl, (C₃-C₈)-cycloalkyl-(C₁-C₆)-alkyl, where the last five groups mentioned are unsubstituted or substituted by one or more R⁵ radicals, or is aryl, heterocyclyl, -CH₂-aryl, -CH₂-heterocyclyl, where the last four groups mentioned are unsubstituted or substituted by one or more R⁶ radicals;

or

10

R³ and R⁴ together with the adjacent N atom form a 3 - 8 membered saturated, unsaturated or aromatic heterocyclic ring which optionally comprises up to three further heteroatoms from the group of N, S and O and which is unsubstituted or substituted by one or more (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl or R⁵ radicals;

is halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, $S(O)_n$ - (C_1-C_6) -alkyl, $S(O)_n$ - (C_1-C_6) -haloalkyl, CN, $COO(C_1-C_6)$ -alkyl, NO_2 , $N[(C_1-C_6)$ -alkyl]₂, phenoxy, unsubstituted or substituted by one or more radicals from the group of (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl and halogen;

 R^6 is R^5 , (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl; m is 0 or 1, and

n is 0, 1 or 2,

by reacting a 4-haloalkylpyri(mi)dinylcarboxamide of the formula (II),

$$\begin{array}{c|c}
R^1 & O \\
 & | \\
 & C \\
 & N \\
 & (O)_m
\end{array}$$
(II)

in which A, R¹, R² and m have the meaning indicated for formula (I),

in the presence of a base with a compound of the formula (III),

in which

is unsubstituted or mono- or polyhalo, preferably F and/or CI,
-substituted (C₁-C₆)-alkyl or (C₃-C₆)-alkenyl, phenyl or benzyl,
particularly preferably CH₃, C₂H₅, i-C₃H₇, -CH₂-CH=CH₂, -CH₂-CF₃,
CH₂-CF₂-CF₂H, CCl₃, phenyl or benzyl, in particular CH₃ or C₂H₅.

R³, R⁴ have the meanings indicated for formula (I).

2. The process as claimed in claim 1, where the symbols and indices in the formulae (I) have the following meanings:

10 A is CH;

15

20

 R^4

 R^1 is CF_3 ;

 R^2 is M or H;

M is Li, Na, K, Cs, $Ca^{2+}/_2$, N[(C₁-C₄)-Alkyl]₄, such as N(CH₃)₄, N(C₂H₅)₄; R³ is (C₁-C₈)-alkyl, (C₃-C₆)-alkenyl, (C₃-C₆)-alkynyl, (C₁-C₈)-alkoxy,

is (C₁-C₈)-alkyl, (C₃-C₆)-alkenyl, (C₃-C₆)-alkynyl, (C₁-C₈)-alkoxy, (C₃-C₆)-alkenyloxy, (C₃-C₆)-alkynyloxy, (C₃-C₈)-cycloalkyl, (C₃-C₈)-cycloalkyl, (C₁-C₆)-alkyl, O-CH₂-(C₃-C₈)-cycloalkyl, where the last nine groups mentioned are unsubstituted or substituted by one or more R⁵ radicals, or is aryl, heterocyclyl, aryloxy, heterocyclyloxy, -CH₂-Aryl, -O-CH₂-aryl, -CH₂-heterocyclyl, -O-CH₂-heterocyclyl, where the last eight groups mentioned are unsubstituted or substituted by one or more R⁶ radicals;

is (C_1-C_8) -alkyl, (C_3-C_6) -alkenyl, (C_3-C_6) -alkynyl, (C_3-C_8) -cycloalkyl, (C_3-C_8) -cycloalkyl- (C_1-C_6) , (C_1-C_6) -alkyl, where the last five groups mentioned are unsubstituted or substituted by one or more \mathbb{R}^5 radicals,

or is aryl, heterocyclyl, -CH₂-aryl, -CH₂-heterocyclyl, where the last four groups mentioned are unsubstituted or substituted by one or more R⁶ radicals;

 R^5 is halogen, (C_1-C_6) -alkoxy or (C_1-C_6) -haloalkoxy; R^6 is R^5 , (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl; m is 0;

is 0, 1 or 2.

3. The process as claimed in claim 1 or 2, where the symbols in the formula (III) have the following meanings:

X is O-R⁷ and

R⁷ is unsubstituted or mono- or polyhalo, preferably F and/or CI,
-substituted (C₁-C₆)-alkyl or (C₃-C₆)-alkenyl, phenyl or benzyl.

- 15 4. The process as claimed in one or more of claims 1 to 3, where the molar ratio of amide of the formula (II) to compound (III) is 1:1 1.1.
- 5. The process as claimed in one or more of claims 1 to 4, where from 1 to 1.1 equivalents (based on the amide of the formula (II) of a base from the group of the hydroxides and (C₁-C₄)-alcoholates of the alkali metal and alkaline earth metals, alkyllithium compounds, metal hydrides, carbonates and acetates of the alkali metals and alkaline earth metal, tertiary amines having C₁-C₄-alkyl radicals and sterically hindered nitrogen bases are employed.
- 25 6. A compound of the formula (la),

$$\begin{array}{c|c}
CF_3 & O & O \\
N & C & H \\
N & C & N - C - NR^3R^4 \\
N & H \\
(O)_m
\end{array}$$
(Ia)

where

 ${\ensuremath{\mathsf{R}}}^3,\,{\ensuremath{\mathsf{R}}}^4$ and m have the meanings indicated in claim 1 for formula (I).

5 7. A compound of the formula (lb),

$$\begin{array}{c|c}
R^{11} & O & O \\
 & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow$$

where

10

 R^{11} is (C_1-C_4) -haloalkyl with the exception of CF_3 ; and

A, R^3 , R^4 , m have the meanings indicated in claim 1 for formula (I).

8. A compound of the formula (Ic),

$$\begin{array}{c|c}
R^1 & O & O \\
\hline
 & N - C - R^3 R^4 \\
\hline
 & N & M
\end{array}$$
(Ic)

in which

M is an organic or inorganic cation; and

- A, R^1 , R^3 , R^4 and m have the meanings indicated in claim 1 for formula (I).
 - 9. A composition for controlling harmful arthropods and helminths, comprising an

effective amount of at least one compound of the formula (la), (lb) or (lc) as claimed in claim 6, 7 or 8, together with additives or auxiliaries customary for these applications.

- 5 10. The composition as claimed in claim 9, comprising at least one further arthropodicidal and/or helminthicidal active compound.
 - 11. The use of a compound as claimed in any of claims 6 to 8 or of a composition as claimed in claim 9 or 10 for controlling harmful arthropods and/or helminths.
 - 12. A method for controlling harmful arthropods and/or helminths, where the pests are brought directly or indirectly into contact with a compound as claimed in any of claims 6 to 8 or with a composition as claimed in claim 9 or 10.
- 15 13. Seed material coated with or comprising an arthropodicidally and/or helminthicidally effective amount of a compound as claimed in any of claims 6 to 8 or of a composition as claimed in claim 9 or 10.
- 14. The use of a compound as claimed in any of claims 6 to 8 for producing aveterinary medicinal product.