REC'D 0 1 JUL 2004

WIPO

JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 6月13日

出 願 Application Number:

特願2003-170095

[JP2003-170095]

[ST. 10/C]:

出 願 人 Applicant(s):

第一サントリーファーマ株式会社 株式会社第一サントリー生物医学研究所

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 6月 7日

【書類名】

特許願

【整理番号】

DSP389

【あて先】

特許庁長官殿

【発明者】

【住所又は居所】 大阪府三島郡島本町若山台一丁目1番1号 株式会社第

一サントリー生物医学研究所内

【氏名】

井上 英和

【発明者】

【住所又は居所】

大阪府三島郡島本町若山台一丁目1番1号 株式会社第

一サントリー生物医学研究所内

【氏名】

村藤 秀宣

【発明者】

【住所又は居所】

大阪府三島郡島本町若山台一丁目1番1号 株式会社第

一サントリー生物医学研究所内

【氏名】

林 靖浩

【特許出願人】

【識別番号】

503062312

【氏名又は名称】 第一サントリーファーマ株式会社

【特許出願人】

【識別番号】

500422182

【氏名又は名称】

株式会社第一サントリー生物医学研究所

【代理人】

【識別番号】

100083301

【弁理士】

【氏名又は名称】

草間 攻

【手数料の表示】

【予納台帳番号】

053958

【納付金額】

21,000円

【物件名】 明細書 1

【物件名】 要約曹 1

【包括委任状番号】 0307917

【包括委任状番号】 0307940

【プルーフの要否】 要

【書類名】

明細書

【発明の名称】

PDE 7 阻害作用を有するイミダゾトリアジノン誘導体

【特許請求の範囲】

一般式(IA)または(IB): 【請求項1】

【化1】

$$\mathbb{R}^2$$
 \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^2 \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^2 \mathbb{R}^3 \mathbb{R}^3

Aは、NまたはCR4を示し、

Bは、NまたはCHを示し、

 R^{1} は、置換されていてもよいシクロアルキル基、またはtert-ブチル基を示 し、

 R^2 は、水素原子、 $C_{1\sim6}$ のアルキル基を示し、

R3は、水素原子、ハロゲン原子、ニトロ基、シアノ基、ヘテロアリール基、 置換されていてもよい $C_{1\sim6}$ のアルキル基、置換されていてもよい $C_{2\sim6}$ の アルケニル基、または置換されていてもよい飽和若しくは不飽和のヘテロシクロ アルキル基、基:-NR⁵R⁶、-C(O)R⁷、-SO₂R⁷、-OR⁸、-N R⁸COR⁷、-NR⁸SO₂R⁷、を示し、

 ${\bf R}^{4}$ は、水素原子、または必要に応じて ${\bf 1}$ つ以上のフッ素原子で置換された ${\bf C}$ $1 \sim 3$ のアルコキシ基を示し、

 R^{5} および R^{6} は、同一または異なって、水素原子、置換されていてもよいC1~6のアルキル基、置換されていてもよいアシル基、置換されていてもよいへ テロシクロアルキル基を示し、

R 7 は、水素原子、置換されていてもよい $^{\mathrm{C}}$ 1 \sim 6 $^{\mathrm{O}}$ アルキル基、置換されて いてもよいヘテロシクロアルキル基、OH、-OR8または-NR5R6を示し R^{8} は、水素原子、置換されていてもよい $C_{1\sim6}$ のアルキル基、または置換されていてもよいヘテロシクロアルキル基を示す。)

で表されるイミダゾトリアジノン誘導体、その塩、またはその溶媒和物。

【請求項2】 一般式(IA)で表される請求項1に記載の化合物。

【請求項3】 一般式(IB)で表される請求項1に記載の化合物。

【請求項4】 R 1 が置換されていてもよいC $_3\sim_8$ のシクロアルキル基である請求項 $_1$ 、 $_2$ または $_3$ に記載の化合物。

【請求項 5 】 R^{1} がシクロペンチル基、シクロヘキシル基、シクロヘプチル基からなる群から選択される請求項 4 に記載の化合物。

【請求項6】 $AがCR^4$ であり、 R^4 がメトキシ基またはエトキシ基である請求項1ないし5のいずれか1項に記載の化合物。

【請求項7】 BがCHである請求項1ないし6のいずれか1項に記載の化合物。

【請求項8】 R^2 がメチル基である請求項1ないし7のいずれか1項に記載の化合物。

【請求項9】 R^3 が水素原子、ハロゲン原子、飽和もしくは不飽和のヘテロシクロアルキル基、基: $-NR^5R^6$ 、 $-C(=O)R^7$ 、 $-SO_2R^7$ からなる群から選択される基であり、 R^7 がOH、 $-OR^8$ 、 $-NR^5R^6$ または置換されていてもよいヘテロシクロアルキル基である請求項1ないし8のいずれか1項に記載の化合物。

【請求項10】 請求項1ないし9のいずれかに記載の化合物、その薬理学的に許容される塩、またはその溶媒和物を有効成分として含有する医薬組成物。

【請求項11】 請求項1ないし9のいずれかに記載の化合物、その薬理学的に許容される塩、またはその溶媒和物を有効成分として含有するPDE7阻害剤。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、選択的なPDE7 (VII型ホスホジエステラーゼ) 阻害作用を有

するイミダゾトリアジノン誘導体、その薬理学的に許容される塩またはその溶媒 和物に関する。これらの化合物は、アレルギー疾患や炎症・免疫疾患を含む様々 な治療分野の疾患に対して、有効な化合物である。

[0002]

【従来の技術】

細胞内セカンドメッセンジャーである c AMPもしくは c GMPは、ホスホジエステラーゼ(PDE1~11)によって分解され、不活化される。このうちのPDE7は、選択的に c AMPを分解するものであり、同じく c AMPを分解するPDE4の選択的阻害剤であるロリプラムによって阻害されない酵素として、特徴付けられている。

[0003]

PDE7は、T細胞の活性化に重要な役割を果たしていることが示唆されてお り (Beavoら; Science, 283 (1999) 848) 、また、T細胞の活性化が様々なアレ ルギー疾患や炎症・免疫疾患、例えば、気管支喘息、慢性気管支炎、慢性閉塞性 肺疾患、アレルギー性鼻炎、乾癬、アトピー性皮膚炎、結膜炎、変形性関節症、 慢性関節リウマチ、多発性硬化症、全身性エリテマトーデス、炎症性腸炎、肝炎 、膵炎、脳脊髄炎、敗血症、クローン病、移植における拒絶反応、GVH病、血 管形成術後の再狭窄などに対する疾患における病態の増悪化に関与していること が知られている (J. Allergy Clin. Immunol., 2000 Nov; 106(5 Suppl):S221-6 ; Am. J. Respir. Crit. Care Med., 1996 Feb;153(2): 629-32; Am. J. Respir . Crit. Care Med., 1999 Nov; 160(5 Pt 2):S33-7; Clin. Exp. Allergy, 2000 Feb; 30(2):242-54; Hosp. Med., 1998 Jul; 59(7):530-3; Int. Arch. Allerg y Immunol., 1998 Mar; 115(3): 179-90; J. Immunol., 1991 Feb 15; 146(4):1 169-74; Osteoarthritis Cartilage, 1999 Jul; 7(4):401-2; Rheum. Dis. Clin . North Am., 2001 May; 27(2):317-34; J. Autoimmun., 2001 May; 16(3):187-92; Curr. Rheumatol. Rep., 2000 Feb; 2(1):24-31; Trends Immunol., 2001 J an; 22(1):21-6: Curr. Opin. Immunol., 2000 Aug; 12(4):403-8; Diabetes Ca re, 2001 Sep; 24(9):1661-7; J. Neuroimmunol., 2000 Nov 1; 111(1-2):224-8 ; Curr. Opin. Immunol., 1997 Dec; 9(6):793-9; JAMA, 1999 Sep 15; 282(11)

:1076-82; Semin. Cancer Biol., 1996 Apr; 7(2):57-64; J. Interferon Cytok ine Res., 2001 Apr; 21(4):219-21)。したがって、PDE 7 阻害活性を有する化合物は、T細胞が関与する様々なアレルギー疾患や炎症・免疫疾患に対して有用であると考えられる。

[0004]

これまでにPDE 7を選択的に阻害する化合物として、イミダゾピリジン誘導体(特許文献 1)、ジヒドロプリン誘導体(特許文献 2)、ピロール誘導体(特許文献 3)、ベンゾチオピラノイミダゾロン誘導体(特許文献 4)、複素環化合物(特許文献 5、特許文献 6)、キナゾリンおよびピリドピリミジン誘導体(特許文献 7)、スピロ三環系誘導体(特許文献 8)、チアゾールおよびオキサヂアゾール誘導体(特許文献 9)、スルホンアミド誘導体(特許文献 1 0)、ヘテロビアリルスルホンアミド誘導体(特許文献 1 1)、ジヒドロイソキノリン誘導体(特許文献 1 2)、グアニン誘導体(非特許文献 1)、ベンゾチアジアジン、ベンゾチエノチアジアジン誘導体(非特許文献 2、3)等が提供されているが、当該酵素の阻害作用を主薬効メカニズムとする治療薬は開発されていない。

[0005]

一方、イミダゾトリアジノン骨格を有する化合物(特許文献 $13\sim25$)が知られているが、本明細書中の一般式の R^1 がシクロアルキル基、またはtert-ブチル基を示す化合物はなく、また、PDE7阻害活性については何ら示唆されていない。

[0006]

【特許文献1】

特許国際公報WO 01/34601号公報

【特許文献2】

特許国際公報WO 00/68203号公報

【特許文献3】

特許国際公開WO 01/32618号公報

【特許文献4】

ドイツ特許第19950647号

【特許文献5】

特許国際公開WO 02/88080号公報

【特許文献6】

特許国際公開WO 02/87513号公報

【特許文献7】

特許国際公開WO 02/102315号公報

【特許文献8】

特許国際公開WO 02/74754号公報

【特許文献9】

特許国際公開WO 02/28847号公報

【特許文献10】

特許国際公開WO 01/98274号公報

[0007]

【特許文献11】

特許国際公開WO 01/74786号公報

【特許文献12】

特許国際公開WO 02/40450号公報

【特許文献13】

特許国際公開WO 01/47928号公報

【特許文献14】

特許国際公開WO 02/98880号公報

【特許文献15】

特許国際公開WO 02/98879号公報

【特許文献16】

特許国際公開WO 02/98873号公報

【特許文献17】

特許国際公開WO 02/79203号公報

【特許文献18】

特許国際公開WO 02/74774号公報

【特許文献19】

特許国際公開WO 02/68423号公報

【特許文献20】

特許国際公開WO 02/64593号公報

【特許文献21】

特許国際公開WO 02/50078号公報

【特許文献22】

特許国際公開WO 01/64677号公報

【特許文献23】

ヨーロッパ特許公開1092719号公報

【特許文献24】

特許国際公開WO 99/67244号公報

【特許文献25】

特許国際公開WO 99/24433号公報

【非特許文献1】

Bioorg. Med.Chem. Lett., 11 (2001) 1081

【非特許文献2】

J. Med. Chem., 43 (2000) 683

【非特許文献3】

Eur. J. Med. Chem., 36 (2001) 333

[0008]

【発明が解決しようとする課題】

本発明は、PDE 7 阻害活性を有する新たな化合物、および当該化合物を有効成分とするPDE 7 阻害剤を提供することを目的とする。

[0009]

本発明により提供される化合物は、PDE7を選択的に阻害することにより、 細胞内cAMPレベルが高まり、さらにはT細胞の活性化を阻害することによっ て、様々なアレルギー疾患、炎症・免疫疾患に対して有用な化合物である。

[0010]

具体的には、気管支喘息、慢性気管支炎、慢性閉塞性肺疾患、アレルギー性鼻炎、乾癬、アトピー性皮膚炎、結膜炎、変形性関節症、慢性関節リウマチ、多発性硬化症、全身性エリテマトーデス、炎症性腸炎、肝炎、膵炎、脳脊髄炎、敗血症、クローン病、移植における拒絶反応、GVH病、血管形成術後の再狭窄などに対する疾患の予防または治療剤として有用である。

[0011]

本発明者らは、優れたPDE7阻害作用を有する化合物を開発するべく、鋭意研究を進めた結果、後記する一般式(IA)または(IB)で示されるイミダゾトリアジノン骨格を有する化合物に、強力なPDE7阻害作用および優れたPDE7阻害選択性が存在することを新たに見出し、本発明を完成させるに至った。

[0012]

すなわち、本発明に従えば、下記一般式 (IA) または (IB):

[0013]

[化2]

(式中、

Aは、NまたはCR4を示し、

Bは、NまたはCHを示し、

 R^{1} は、置換されていてもよい $C_{3\sim7}$ のシクロアルキル基、またはtert-ブチル基を示し、

 R^{2} は、水素原子、 $C_{1\sim6}$ のアルキル基を示し、

 R^3 は、水素原子、ニトロ基、シアノ基、ハロゲン原子、ヘテロアリール基、置換されていてもよい $C_1\sim 6$ のアルキル基、置換されていてもよい $C_2\sim 6$ のアルケニル基、または置換されていてもよい飽和若しくは不飽和のヘテロシクロ

アルキル基、基:-NR5R6、-C(O)R7、 $-SO_2R7$ 、-OR8、-NR8COR7、 $-NR8SO_2R7$ 、を示し、

 R^4 は、水素原子、または必要に応じて1つ以上のフッ素原子で置換されたC1~3のアルコキシ基を示し、

 R^5 および R^6 は、同一または異なって、水素原子、置換されていてもよい C^6 0アルキル基、置換されていてもよいアシル基、置換されていてもよいへテロシクロアルキル基を示し、

 R^7 は、水素原子、置換されていてもよい $C_{1\sim6}$ のアルキル基、置換されていてもよいへテロシクロアルキル基、OH、 $-OR^8$ または $-NR^5R^6$ を示し

 R^{8} は、水素原子、置換されていてもよい $C_{1\sim6}$ のアルキル基、または置換されていてもよいヘテロシクロアルキル基を示す。)

で表されるイミダゾトリアジノン誘導体、その薬理学的に許容される塩、または その溶媒和物を提供する。

[0015]

また本発明は、上記で提供されたイミダゾトリアジノン誘導体、その薬理学的 に許容される塩、またはその溶媒和物を有効成分として含有するPDE7阻害剤 を提供するものでもある。

[0016]

【発明の実施の形態】

以下に本発明を詳細に説明していく。

[0017]

本明細書において、「 $C_1 \sim 6$ のアルキル基」とは、炭素数1から6個までの直鎖または分岐状のアルキル基である。「 $C_2 \sim 6$ のアルケニル基」とは、炭素数2から6個までの直鎖または分枝状のアルケニル基である。「シクロアルキル基」とは、炭素数 $3 \sim 8$ のシクロアルキル基であり、具体例としては、シクロプロピル、シクロブチル、シクロペンチル、シクロペナシル、シクロペプチル、シクロオクチル基などをあげることができる。「ヘテロシクロアルキル基」とは、酸素原子、窒素原子あるいは硫黄原子からなるヘテロ原子を1個ないし4個含有

する3ないし7員環であり、具体例としては、ピペリジニル、ピロリジニル、ピペラジニル、テトラヒドロフリル、テトラヒドロピラニル、モルホニル、アゼチジニル基、ホモピペラジニル基などをあげることができる。

[0018]

また、「ヘテロアリール基」とは、炭素数が2ないし8個であり、酸素原子、窒素原子あるいは硫黄原子からなるヘテロ原子を1個ないし4個含有する5ないし7員環からなる単環もしくはそれらの同一または異なる2以上の単環が融合した多環のヘテロアリール基、例えばピロール、フリル、チエニル、イミダゾリル、チアゾリル、ピラジル、インドリル、キノリル、イソキノリル、テトラゾリル、ピリジニル、ピラゾリル、ピリダジニル、ピリミジニル基などをあげることができる。さらに、「ハロゲン原子」とは、塩素、フッ素、臭素、ヨウ素原子である。

[0019]

本発明において、「置換されていてもよい」で表される置換基の具体例としては、メチル、エチル、プロピル、イソプロピル、nーブチル、tーブチル、シクロヘキシル、シクロヘプチルなどの置換されてもよい直鎖状、分岐状または環状のアルキル基;水酸基;シアノ基;メトキシ、エトキシなどの置換されていてもよいアルコキシ基;アミノ、メチルアミノ、エチルアミノ、ジメチルアミノなどの置換されていてもよいアシノ基;アセチル、プロピオニルなどの置換されていてもよいアシル基;カルボキシル基;置換されていてもよいアリール基;置換されていてもよいアリール基;置換されていてもよいカルバモイル基;置換されていてもよいスルホン基;置換されていてもよいスルホン基;置換されていてもよいスルホン基;置換されていてもよいスルホン基;置換されていてもよいスルホニルアミド基;オキソ基;ウレア基;エテニル、プロペニル、シクロヘキセニルなどの置換されていてもよい直鎖状、分岐状、または環状のアルケニル基などをあげることができる。

[0020]

本発明が提供する一般式(IA)および(IB)の化合物において、好ましい化合物の群は、 R^1 がシクロペンチル基、シクロヘキシル基またはシクロヘプチ

ル基であり、R 2 がメチル基であり、R 3 が水素原子、ハロゲン原子、ヘテロアリール基、置換されていてもよいC $_1$ $_{-6}$ のアルキル基、置換されていてもよい C $_2$ $_{-6}$ のアルケニル基、または置換されていてよい飽和若しくは不飽和のヘテロシクロアルキル基、基: $_{-N}$ R $_{5}$ R $_{6}$ であり、R $_{5}$ R $_{6}$ は置換されていてもよいヘテロシクロアルキル基であり、AがC R $_{4}$ であり、R $_{4}$ がメトキシ基、エトキシ基であり、BがC H である化合物である。

[0021]

なお、一般式(IA)および(IB)の化合物は、互変異性体の形で存在してもよく、個々の互変異性体および、個々の互変異性体の混合物として存在してもよい。さらに、一般式(IA)および(IB)の化合物の放射能標識した誘導体も、本発明に含まれる。

[0022]

また、本発明が提供する化合物は、1個ないし複数個の不斉炭素原子を有するものも含み、これに基づく(R)体、(S)体の光学異性体、ラセミ体、ジアステレオマーなどが存在する。また、置換基の種類によっては二重結合を有するので、(Z)体、(E)体などの幾何異性体も存在する。本発明が提供する化合物には、これらの異性体の分離されたもの、あるいは異性体の混合物であるもののいずれの場合も包含する。

[0023]

本発明が提供する化合物は、各種の酸により塩を形成することができるものがある。かかる塩としては、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸などの鉱酸や、ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、乳酸、リンゴ酸、クエン酸、酒石酸、安息香酸、ピクリン酸、メタンスルホン酸、トルエンスルホン酸、ベンゼンスルホン酸、トリクロロ酢酸、トリフルオロ酢酸、アスパラギン酸、グルタミン酸などの有機酸との酸付加塩をあげることができる。

[0024]

また、本発明が提供する化合物は、さらに、金属、特にアルカリ金属、アルカリ土類金属と共に薬理学的に許容される金属塩を形成することができる。そのよ

うな塩の例としては、ナトリウム塩、カリウム塩、カルシウム塩などをあげることができる。さらに、本発明の化合物は、水和物、エタノール、イソプロパノールなどの溶媒和物や、結晶多形の物質も含むことができる。

[0025]

本発明が提供する一般式(IA)または(IB)で示されるイミダゾトリアジノン誘導体のなかで、特に好ましい具体例としては、以下のものを例示することができる。

[0026]

 $6-シクロへキシルー2-(2-メトキシフェニル)-8-メチルイミダゾ [1 , 5-a] [1, 3, 5] トリアジンー4 <math>(3 \, \mathrm{H})$ ーオン:

6-シクロヘキシルー2-[2-メトキシー4-(1-ピペラジニル) フェニル] <math>-8-メチルイミダゾ [1, 5-a] [1, 3, 5] トリアジンー4 (3 H) -オン;

6-シクロヘキシルー2-[2-メトキシー4-(4-メチル-1-ピペラジニル) フェニル] <math>-8-メチルイミダゾ $\begin{bmatrix} 1 & 5-a \end{bmatrix}$ $\begin{bmatrix} 1 & 3 & 5 \end{bmatrix}$ トリアジンー4 $\begin{pmatrix} 3 & H \end{pmatrix}$ -オン;

2-[4-(4-rミノー1-ピペリジニル)-2-メトキシフェニル]-6ーシクロヘキシル-8-メチルイミダゾ[1,5-a][1,3,5]トリアジン-4(3 H) -オン;

6-シクロヘキシル-2-|2-メトキシ-4-[4-(メチルアミノ)-1-ピペリジニル]フェニル]-8-メチルイミダゾ[1,5-a][1,3,5]トリアジン-4(3H)-オン;

 $6-シクロヘキシル-2-\{4-[4-(ジメチルアミノ)-1-ピペリジニル]-2-メトキシフェニル<math>\}$ -8-メチルイミダゾ [1, 5-a] [1, 3, 5]トリアジン-4 (3H)-オン;

 $6-シクロヘキシル-2-[4-(1, 4-ジアゼパン-1-イル)-2-メトキシフェニル]-8-メチルイミダゾ <math>\begin{bmatrix} 1, 5-a \end{bmatrix}$ $\begin{bmatrix} 1, 3, 5 \end{bmatrix}$ トリアジン-4 $\begin{pmatrix} 3 & H \end{pmatrix}$ -オン;

6-シクロヘキシルー2-[2-メトキシー4-(4-メチルー1, 4-ジア

ゼパン-1-イル) フェニル] -8-メチルイミダゾ [1, 5-a] [1, 3, 5] トリアジン-4 (3 H) -オン;

6-シクロヘキシルー2-[4-(4-ヒドロキシ-1-ピペリジニル)-2ーメトキシフェニル]-8-メチルイミダゾ[1,5-a][1,3,5]トリアジンー4(3H)-オン;

 $6-シクロヘキシルー2- \{4-[(4-ヒドロキシー1-ピペリジニル) スルホニル] <math>-2-$ メトキシフェニル $\}$ -8-メチルイミダゾ [1, 5-a] [1, 3, 5] トリアジンー4 (3 H) -オン;

[0027]

6-シクロヘキシルー2-[2-メトキシー4-(1-ピペラジニルスルホニル) フェニル] <math>-8-メチルイミダゾ[1,5-a] [1,3,5] トリアジン-4 (3 H) -オン;

6-シクロヘキシルー $2-\{2-メ$ トキシー4-[(4-メチルー1-ピペラジニル)スルホニル] フェニル $\}$ -8-メチルイミダゾ [1,5-a] [1,3,5] トリアジンー4 (3 H) -オン;

6-シクロヘキシルー2-[4-(1, 4-ジアゼパンー1ーイルスルホニル) -2-メトキシフェニル] <math>-8-メチルイミダゾ [1, 5-a] [1, 3, 5] トリアジンー4 (3 H) -オン;

 $6-シクロヘキシルー2-{2-メトキシー4-[(4-メチルー1, 4-ジアゼパンー1ーイル) スルホニル] フェニル<math>|-8-$ メチルイミダゾ [1, 5-a] [1, 3, 5] トリアジンー4 (3 H) ーオン;

5-シクロヘキシルー2-(2-メトキシフェニル)-7-メチルイミダゾ [5,1-f] [1,2,4] トリアジンー4(3H)-オン;

5-シクロヘキシルー2-[2-メトキシー4-(4-メチルー1ーピペラジニル) フェニル] <math>-7-メチルイミダゾ[5, 1-f] [1, 2, 4] トリアジンー4 (3H) -オン;

5-シクロヘキシルー2-[2-メトキシー4-(1-ピペラジニル) フェニル] -7-メチルイミダゾ <math>[5, 1-f] [1, 2, 4] トリアジンー4 (3 H) ーオン;

 $2-[4-(4-r \in J-1-l^2 \wedge l) \cup 2-x + 2 \cup 2-z \cup 1-1 \cup 2-x + 2 \cup 2-z \cup 1-1 \cup 1-1 \cup 2-x + 2 \cup 2-z \cup 1-1 \cup 1-1 \cup 2-x + 2 \cup 2-z \cup 1-1 \cup 2-x + 2 \cup 2-x \cup 1-1 \cup 1$

5-シクロヘキシルー2ー $\{4-[4-(ジメチルアミノ)-1-ピペリジニル]-2-メトキシフェニル<math>\}$ - 7-メチルイミダゾ[5, 1-f] [1, 2, 4] トリアジンー4 (3H) -オン;

[0028]

5-シクロヘキシル-2-[4-(1,4-ジアゼパン-1-イル)-2-メトキシフェニル]-7-メチルイミダゾ <math>[5,1-f] [1,2,4]トリアジン-4 (3 H)-オン;

5-シクロヘキシルー2ー [2-メトキシー4ー(4-メチルー1, 4-ジアゼパンー1-イル)フェニル]-7-メチルイミダゾ[5, 1-f][1, 2, 4]トリアジンー4(3 H)-オン;

5-シクロヘキシル-2-[4-(4-ヒドロキシ-1-ピペリジニル)-2ーメトキシフェニル]-7-メチルイミダゾ[5,1-f][1,2,4]トリアジン-4(3H)-オン;

 $5-シクロヘキシルー2-{4-[(4-ヒドロキシー1-ピペリジニル) スルホニル] -2-メトキシフェニル<math>} -7-メチルイミダゾ[5, 1-f][1, 2, 4]$ トリアジンー4(3H)-オン;

5-シクロヘキシルー2-[2-メトキシー4-(1-ピペラジニルスルホニル) フェニル] <math>-7-メチルイミダゾ[5, 1-f][1, 2, 4]トリアジン-4(3H)-オン;

 $5-シクロヘキシルー2-{2-メトキシー4-[(4-メチルー1-ピペラジニル) スルホニル] フェニル<math>}$ -7-メチルイミダゾ [5, 1-f] [1, 2, 4] トリアジンー4 (3 H) -オン;

5-シクロヘキシルー2-[4-(1,4-ジアゼパンー1ーイルスルホニル)-2-メトキシフェニル]-7-メチルイミダゾ<math>[5,1-f][1,2,4

]トリアジンー4 (3 H) ーオン;

 $5-シクロヘキシルー2-\{2-メトキシー4-[(4-メチルー1, 4-ジアゼパンー1ーイル) スルホニル] フェニル<math>\}$ -7-メチルイミダゾ [5, 1-f] [1, 2, 4] トリアジンー4 (3H) -オン:

6-シクロヘキシルー2-(2-エトキシフェニル) -8-メチルイミダゾ [1,5-a] [1,3,5] トリアジンー4 <math>(3 H) -オン;

6-シクロヘキシルー2-[2-エトキシ4-(1-ピペラジニル) フェニル] <math>-8-メチルイミダゾ [1, 5-a] [1, 3, 5] トリアジンー4 (3 H) ーオン;

[0029]

6-シクロヘキシルー2ー [2-xトキシ4-(4-xチルー1-ピペラジニル) フェニル]-8-xチルイミダゾ [1, 5-a] [1, 3, 5] トリアジンー4(3H) ーオン;

 $6-シクロヘキシルー2-{2-エトキシ4-[4-(メチルアミノ)-1-ピペリジニル] フェニル<math>} -8-$ メチルイミダゾ[1, 5-a] [1, 3, 5]トリアジンー4(3H)-オン;

 $6-シクロヘキシル-2- \{4-[4-(ジメチルアミノ)-1-ピペリジニル]-2-エトキシフェニル<math>\}$ -8-メチルイミダゾ[1,5-a][1,3,5] トリアジン-4 (3 H) -オン:

6-シクロヘキシルー2-[4-(1, 4-ジアゼパンー1ーイル) -2-エトキシフェニル] <math>-8-メチルイミダゾ [1, 5-a] [1, 3, 5] トリアジンー4 (3H) ーオン;

6-シクロヘキシルー2-[2-エトキシ4-(4-メチルー1, 4-ジアゼパンー1ーイル) フェニル] <math>-8-メチルイミダゾ [1, 5-a] [1, 3, 5] トリアジンー4 (3 H) -オン;

6-シクロヘキシルー2ー [4-(4-ヒドロキシー1-ピペリジニル) -2

-エトキシフェニル]-8-メチルイミダゾ[1, 5-a][1, 3, 5]トリアジン-4(3H)-オン;

6-シクロヘキシルー2ー $\{4-[(4-ヒ$ ドロキシー1-ピペリジニル)スルホニル]-2-エトキシフェニル $\}-8-$ メチルイミダゾ[1,5-a][1,3,5]トリアジンー4(3H)-オン;

6-シクロヘキシルー 2-[2-xトキシ4-(1-ピペラジニルスルホニル) フェニル] -8-メチルイミダゾ [1, 5-a] [1, 3, 5] トリアジンー 4(3H) -オン;

[0030]

6-シクロヘキシルー2ー $\{2-X$ トキシ4ー [(4-)3+)ルー1ーピペラジニル) スルホニル] フェニル $\{2-X$ 0 ー8ーメチルイミダゾ [1, 5-a] [1, 3, 5] トリアジンー4 (3H) ーオン;

6-シクロヘキシルー 2-[4-(1, 4-ジアゼパンー1-イルスルホニル)-2-エトキシフェニル]-8-メチルイミダゾ[1, 5-a][1, 3, 5]トリアジンー 4(3H)-オン;

6-シクロヘキシルー2ー $\{2-x$ トキシ4ー [(4-x)+1) (4ージアゼパンー1ーイル) スルホニル] フェニル $\{-8-x+1\}$ $\{-8-x+1\}$

5-シクロヘキシルー2ー (2ーエトキシフェニル) -7-メチルイミダゾ [5, 1-f] [1, 2, 4] トリアジンー4 (3 H) -オン;

5-シクロヘキシルー2-[2-エトキシ4-(4-メチルー1ーピペラジニル) フェニル] -7-メチルイミダゾ <math>[5, 1-f] [1, 2, 4] トリアジンー4 (3H) -オン;

5-シクロヘキシルー2-[2-エトキシ4-(1-ピペラジニル) フェニル] -7-メチルイミダゾ <math>[5, 1-f] [1, 2, 4] トリアジンー4 (3 H) ーオン;

2-[4-(4-アミノー1-ピペリジニル)-2-エトキシフェニル]-5 ーシクロヘキシルー7ーメチルイミダゾ[5, 1-f][1, 2, 4]トリアジンー4(3H)ーオン;

 $5-シクロヘキシルー2- \{2-エトキシ4- [4-(メチルアミノ)-1-ピペリジニル] フェニル<math>\}$ -7-メチルイミダゾ [5, 1-f] [1, 2, 4]トリアジンー4 (3 H) -オン;

5-シクロヘキシルー $2-\{4-\{4-\{3+1\}\}\}\}$ -1-ピペリジニル-2-エトキシフェニル-7-メチルイミダゾ[5,1-f] [1,2,4] トリアジンー 4 (3H) -オン;

5-シクロヘキシルー2ー [4-(1, 4-ジアゼパンー1-イル)-2-エトキシフェニル]-7-メチルイミダゾ[5, 1-f][1, 2, 4]トリアジンー4(3H)-オン;

[0031]

5-シクロヘキシルー2-[2-エトキシ4-(4-メチルー1, 4-ジアゼパンー1ーイル) フェニル] <math>-7-メチルイミダゾ[5, 1-f] [1, 2, 4] トリアジンー4(3H) ーオン;

5-シクロヘキシルー2-[4-(4-ヒドロキシー1-ピペリジニル)-2-エトキシフェニル]-7-メチルイミダゾ<math>[5,1-f][1,2,4]トリアジンー4(3H)-オン;

5-シクロヘキシルー $2-\{4-[(4-ヒ$ ドロキシー1-ピペリジニル) スルホニル] -2-エトキシフェニル $\}$ -7-メチルイミダゾ [5, 1-f] [1, 2, 4] トリアジンー4 (3 H) -オン;

5-シクロヘキシルー2-[2-エトキシ4-(1-ピペラジニルスルホニル) フェニル] <math>-7-メチルイミダゾ[5, 1-f][1, 2, 4]トリアジンー4(3H)-オン;

5-シクロヘキシルー2-[4-(1, 4-ジアゼパンー<math>1-イルスルホニル)-2-エトキシフェニル]-7-メチルイミダゾ[5, 1-f][1, 2, 4]

] トリアジンー4 (3 H) ーオン;

 $5-シクロヘキシル-2-\{2-エトキシ4-[(4-メチル-1,4-ジア$

[0032]

本発明に係る式(IA)の化合物は、たとえば以下に示す方法によって合成することができる。

[0033]

[化3]

[0034]

(式中、A、B、 R^1 、 R^2 および R^3 は前記定義のとおりであり、Lは $C_1\sim 3$ のアルキル基であり、Yは水酸基またはハロゲン原子、好ましくは塩素原子であり、Zはハロゲン原子好ましくはヨウ素原子である。)

[0035]

本方法を実施するには、公知方法に従い、先ず、化合物(VII)から化合物(V)を得る。この反応はアミン化合物(VII)とカルボン酸成分(VIII)から酸アミドを合成する方法であり、多くの方法で実施することができる。例えば、Yがハロゲン原子(好ましくは塩素原子)の場合には、不活性溶媒、例えばジクロロメタン中、0 \mathbb{C} $\mathbb{$

用いて、場合により触媒、例えば4ージメチルアミノピリジンの存在下実施する ことができる。

[0036]

また、Yが水酸基の場合には、不活性溶媒、例えばジクロロメタン中、0 \mathbb{C} ~室温にて、化合物(VII)に対し1 \mathbb{C} 1.5 当量、好ましくは1.2 当量の縮合剤、例えば1 \mathbb{C} 1.5 当量、好ましくは1.2 当量の縮合剤、例えば1 \mathbb{C} 1.5 当量、好ましくは1.2 当量の化合物(VII)に対し1 \mathbb{C} 1.5 当量、好ましくは1.2 当量の化合物(VIII)を用いて、場合により触媒、例えば4 \mathbb{C} 1.2 当量の化合物(VIII)を用いて、場合により無体することができる。反応終了後、水と混和しない有機溶媒にて希釈した後、水、飽和食塩水にて順次洗浄し、溶媒を留去することによって目的化合物(V)を得ることができる。なお、必要であれば、カラムクロマトグラフィーなどで精製することができる。

[0037]

出発原料である化合物(VII)は、市販または公知の化合物を使用することができる。また、本反応で使用される化合物(VIII)にあっても、市販の化合物または公知の化合物を用いることができる。

[0038]

次いで、上記で得られた化合物(V)から公知の方法に従って、化合物(III)を得ることができる。反応は、エタノールやメタノールなどのアルコール溶媒中、0 \mathbb{C} \mathbb{C}

[0039]

得られた化合物(III)から、公知方法に従って化合物(II)を得る。この反応は、メタノール、エタノールなどのアルコール溶媒中、室温~還流温度に

て、化合物(III)に対し0.3~2当量、好ましくは0.5当量の化合物(IV)を作用させることにより実施することができる。反応終了後、水を加え、水と混和しない有機溶媒で抽出し、抽出した有機溶媒を水、飽和食塩水で順次洗浄し、溶媒を留去することにより目的化合物(II)を得ることができる。なお、必要であれば、カラムクロマトグラフィーなどで精製することができる。

[0040]

次いで、得られた化合物(II)にイミダゾトリアジノン環形成を行い、本発明の目的化合物(IA)を得る。本反応は,公知の環化方法(例えば、J. Org. Chem., 1981, 46, 3681–3685)を用いて実施することができる。具体的には、化合物(II)をピリジン中、 $1\sim5$ 当量、好ましくは3 当量のクロロトリメチルシランを加え攪拌し、次に $1\sim5$ 当量、好ましくは3 当量のヘキサメチルジシラザンを用い、室温~還流温度にて反応させることにより実施できる。

[0041]

反応終了後、反応液を留去し、残渣にメタノールやエタノールなどのアルコール溶媒を加え攪拌し、次に溶媒を留去し、残渣に水を加え、水と混和しない有機溶媒で抽出し、抽出した有機溶媒を水、飽和食塩水で順次洗浄し、溶媒を留去することにより目的化合物(IA)を得ることができる。なお、必要であれば、カラムクロマトグラフィーなどで精製することができる。

[0042]

上記反応は、すべて一般的なものであり、これらの実施のための適当な試薬および条件は、標準的教科書および後述の実施例を参考することにより直ちに確立することができる。したがって、化合物 (IA) で定義される化合物を調製することのできる別法および変法もまた、当業者であれば明らかである。

[0043]

本発明にかかる式 (IB) の化合物は、例えば、以下に示す方法によって合成することができる。

[0044]

【化4】

[0045]

(式中、A、B、R 1 、R 2 および R 3 は前記定義のとおりであり、L は C $_1$ \sim $_3$ の低級アルキル基であり、Z , はハロゲン原子、好ましくは塩素原子である。)

[0046]

本方法を実施するには、公知方法(例えば、特表2001-522851)に従い、目的化合物(IB)を得ることができる。具体的には、化合物(XI)にテトラヒドロフランなどのエーテル類溶媒中、ピリジンやトリエチルアミンなどの有機塩基および触媒、例えば4-ジメチルアミノピリジンの存在下、0℃~還流温度にて、化合物(XIV)と作用させることにより、化合物(X)を得る。また、化合物(XIII)のエタノールなどのアルコール溶媒中、0℃~還流温度にてヒドラジン水和物を作用させることにより化合物(XII)が得られる。続いて、エタノールなどのアルコール溶媒中、化合物(X)と化合物(XII)を室温~還流温度にて反応させることにより化合物(IX)を得る。化合物(IX)を1、2-ジクロロエタン、クロロホルムなどのハロゲン化炭化水素溶媒中、オキシ塩化リンを用いる反応で実施することができる。

[0047]

反応終了後、炭酸水素ナトリウムなどの無機塩基の水溶液で中和し、水と混和 しない有機溶媒で抽出し、抽出した有機溶媒を水、飽和食塩水で順次洗浄し、溶 媒を留去することにより目的化合物(IB)を得ることができる。なお、出発原

料である化合物(XI)、化合物(XIV)および化合物(XIII)は市販または公知の化合物を用いることができる。また、化合物(XIII)は公知方法(例えば、特表2001-522851)に従い合成することもできる。

[0048]

上記反応は、すべて全く一般的なものであり、これらの実施のための適当な試薬および条件は、標準的教科書および後述の実施例を参考することにより直ちに確立することができる。化合物(IB)で定義されるすべての化合物を調製することのできる別法および変法もまた、当業者であれば明らかである。

[0049]

【実施例】

以下に試験例、実施例により、本発明を更に詳細に説明する。

[0050]

本発明の化合物の合成、およびそこで用いるための中間体を、後述する実施例 で詳しく説明する。

[0051]

また、実施例で製造された本発明化合物およびその中間体の化学構造、および その同定データは、後記の表中にまとめて示した。なお、実施例における各化合 物は、後記する表中において対応する実施例番号と対応している。

[0052]

本発明の範囲は、これらの試験例、実施例によって限定されるものではないことはいうまでもない。

[0053]

後記する実施例で製造された本発明化合物のPDE7(VII型ホスホジエステラーゼ)阻害活性は、以下に示す試験例により確認された。

[0054]

試験例1. PDE7阻害活性測定法

PDE7 (VII型ホスホジエステラーゼ) を抑制する本発明化合物の能力を 評価するために、Biochemical. Pharmacol. 48(6), 1219-1223 (1994)の方法を 一部改変して、以下のアッセイを用いた。

[0055]

1) PDE7(VII型ホスホジエステラーゼ)活性画分を得た。すなわち、ヒト急性リンパ芽球様リンパ腫 T細胞株であるMOLT-4(ATCCから、ATCC番号CRL-1582として購入できる)を、10%ウシ胎児血清を含むRPMI1640培地で培養し、 5×108 個のMOLT4を得た。遠心分離により細胞を回収し、10m1の緩衝液A(25mMトリスーHC1、5mM2ーメルカプトエタノール、2mMベンズアミジン、2mM EDTA、0.1mM4-(2-アミノエチル)ベンゼンスルホニルヒドロクロリド、pH=7.5)に懸濁した。ポリトロンホモジナイザーにより細胞をホモジナイズし、遠心分離(4 $\mathbb C$ 、25, 000 $\mathbb G$, 10 $\mathbb O$ $\mathbb O$

[0056]

2)緩衝液Aで平衡化されたHiTrapQカラム($5m1\times2$)に、得られた可溶性画分を充填した。 $0\sim0$.8 M塩化ナトリウムの線形勾配液を含有する緩衝液A300mlを用いてホスホジエステラーゼを溶離し、5m1分画60本を回収した。各分画をcAMP代謝ホスホジエステラーゼ活性について検査した。各分画中cAMPの代謝活性を有し、かつ 10μ Mロリプラム(IV型ホスホジエステラーゼ選択的阻害薬)および 10μ Mミルリノン(III型ホスホジエステラーゼ選択的阻害薬)および 10μ Mミルリノン(III型ホスホジエステラーゼ選択的阻害薬)により代謝活性を消失しない分画のうち、350mM塩化ナトリウム付近を中心とする活性ピークとして溶出される分画を集め、PDE7阻害活性を検査するための貯蔵溶液として使用した。

[0057]

3)試験化合物は所望の濃度を $20\,\mathrm{mM}$ トリスーHCl ($\mathrm{pH7.5}$)、 $1\,\mathrm{mM}$ MgCl 2、 $100\,\mu\mathrm{M}$ EDTA、 $330\,\mu\mathrm{g/m}$ lウシ血清アルブミン、 $4\,\mu\mathrm{g/m}$ l 5'ーヌクレオチダーゼ、 $0.1\,\mu\mathrm{Ci}$ $3\,\mathrm{H-c\,AMP}$ ($0.064\,\mu\mathrm{M}$ cAMP)、 $10\,\mu\mathrm{M}$ ロリプラム及びVII型ホスホジエステラーゼ 貯蔵溶液の含有している反応混合液中で $25\,\mathrm{C}2$ 時間反応させた。反応液に $10\,\mathrm{mM}$ へペスーNa ($\mathrm{pH=7.0}$) に懸濁したQAEーセファデックスを加え $5\,\mathrm{mM}$

分間静置した後、上清を得てさらにQAEーセファデックスを加え5分間静置した後得られた上清中にある放射活性を測定した。

[0058]

4) IC_{50} はPDE 7の代謝活性を 50%阻害する試験化合物濃度として、各化合物について算出した。

[0059]

各化合物のPDE 7阻害活性

上記測定法により測定され、ホスホジエステラーゼ阻害活性の I C $_{5~0}$ 値が I $_{\mu}$ M以下を示した実施例番号の化合物を示す。

化合物 8: I C $_{50} = 0$. $34 \mu M$ 、

化合物 $11:IC_{50}=0.055 \mu M$ 、

化合物 $12:IC_{50}=0.49 \mu M$

[0060]

上記ホスホジエステラーゼ阻害活性試験の結果、本発明によるイミダゾトリアジノン誘導体は、極めて良好なPDE7阻害効果を示すことが確認された。

[0061]

本発明化合物は、PDE 7に選択的な阻害剤であり、PDE 7との類似性が高いPDE 4 (IV型ホスホジエステラーゼ)に対し10倍以上の選択性を有していたことから、PDE 4に起因する副作用は少ないであろうことが予想される。

[0062]

すなわち、本発明化合物のPDE4(IV型ホスホジエステラーゼ)に対する 阻害活性の選択性は、以下に示す試験により確認された。

[0063]

<u>試験例2. PDE4阻害活性測定法</u>

PDE 7を抑制する本発明化合物のPDE 4 抑制を評価するために、Biochemi cal. Pharmacol. 48(6), 1219-1223 (1994)の方法を一部改変して、以下のアッセイを用いた。

[0064]

1) PDE4活性画分を得た。すなわち、3匹のBalb/cマウス(雌、12

週齢)(日本クレアより購入できる)より得た肝臓を、30m1の緩衝液B(20mMビスートリス、5mM 2-メルカプトエタノール、<math>2mMベンズアミジン、2mM EDTA、0.1mM 4-(2-アミノエチル) ベンゼンスルホニルヒドロクロリド、50mM酢酸ナトリウム、pH=6.5)に懸濁した。ポリトロンホモジナイザーにより肝臓をホモジナイズし、遠心分離($4\mathbb{C}$ 、25,000G,10分間)後の上清をさらに超遠心分離($4\mathbb{C}$ 、100,000G,60分間)することにより得られた上清を $0.2\mu m$ フィルターで濾過することにより可溶性画分を得た。

[0065]

2)緩衝液Bで平衡化された 1×10 cm DEAEセファロースカラムに、得られた可溶性画分を充填した。 $0.05 \sim 1$ M酢酸ナトリウムの線形勾配液を含有する緩衝液B 120 m 1 を用いてホスホジエステラーゼを溶離し、5 m 1 分画 24 本を回収した。各分画を cAMP代謝ホスホジエステラーゼ活性について検査した。各分画中 cAMPの代謝活性を有し、かつ 30 μ Mロリプラム(PDE4選択的阻害薬)により代謝活性を消失した分画のうち、620 m M m m m で 1 かから付近を中心とする活性ピークとして溶出される分画を集め、PDE4阻害活性を検査するための貯蔵溶液として使用した。

[0066]

3) 試験化合物は所望の濃度を20mMトリスーHC1(pH7.5)、1mM MgCl2、100μM EDTA、330μg/mlウシ血清アルブミン、4μg/ml 5'ーヌクレオチダーゼ、0.1μCi 3HーcAMP(0.064μM cAMP)及びPDE4貯蔵溶液の含有している反応混合液中で25℃2時間反応させた。反応液に10mMへペスーNa(pH=7.0)に懸濁したQAEーセファデックスを加え5分間静置した後、上清を得てさらにQAEーセファデックスを加え5分間静置した後得られた上清中にある放射活性を測定した。

[0067]

4) I C 5 0 は P D E 4 の代謝活性を 5 0 % 阻害する試験化合物濃度として、各化合物について算出した。

上記試験の結果、本発明化合物のPDE4に対するIC50は、同一化合物のPDE7阻害作用に比べ、10倍以上弱い阻害活性であった。

[0068]

本発明が提供する化合物は、PDE7を選択的に阻害することにより、細胞内 c AMP レベルが高まり、さらにはT細胞の活性化を阻害することによって様々 なアレルギー疾患、炎症・免疫疾患に有用である。すなわち、気管支喘息、慢性 気管支炎、慢性閉塞性肺疾患、アレルギー性鼻炎、乾癬、アトピー性皮膚炎、結膜炎、変形性関節症、慢性関節リウマチ、多発性硬化症、全身性エリテマトーデス、炎症性腸炎、肝炎、膵炎、脳脊髄炎、敗血症、クローン病、移植における拒絶反応、G V H病、血管形成術後の再狭窄などに対する疾患の予防または治療剤として有用である。

[0069]

本発明の有効成分を医薬組成物またはPDE7阻害剤として使用するには、本発明の化合物を1種類もしくは2種類以上を配合して、常法にしたがって投与方法に応じた剤形に製剤して用いればよい。例えば、経口投与には、カプセル剤、剤、顆粒剤、細粒剤、シロップ剤、ドライシロップ剤等の剤形が例示され、非経口投与には、注射剤の他、坐薬、膣坐薬等の坐剤、噴霧剤等の経鼻投与剤、軟膏、経皮吸収性のテープ等の経皮吸収剤が例示される。

[0070]

本発明の化合物の臨床投与量は、投与する患者の症状、重症度、年齢、合併症の有無等によって異なり、また製剤によっても異なるが、経口投与の場合は、有効成分として、通常成人1日当り0.1~1000mg、好ましくは0.1~500mg、より好ましくは1~100mg、非経口投与の場合は、経口投与の場合の10分の1量~2分の1量を投与すればよい。これらの投与量は、患者の年齢、症状等により適宜増減することが可能である。

[0071]

更に、本発明化合物の毒性は低いものであり、これらの化合物の安全性は高い と予想される。

[0072]

[製造例および実施例]

本発明の化合物の合成およびそこで用いるための中間体を、以下の製造例および実施例により説明する。

[0073]

なお、以下の製造例および実施例における化合物の化学構造および同定データ は、後記の表中にまとめて示した。製造例および実施例の化合物は、表中の化合 物番号と対応している。

[0074]

製造例1 (化合物1)

4-ブロモー2-メトキシベンズアミド

4-プロモー2-メトキシベンズアミド12.59g(54.5mmol)の1,2-ジクロロエタン70ml懸濁液に、塩化チオニル11.9ml(163.5mmol)を加え、2時間加熱還流し、減圧下、溶媒を留去し、酸クロリドを得た。次に28%アンモニア水125mlに0 $\mathbb C$ で、酸クロリドのアセトン80ml 溶液を滴下し、析出固体を濾過で集めることによって、標記化合物9.2g(74%) を得た。

[0075]

製造例2 (化合物2)

4-ブロモー2-メトキシベンゾニトリル

実施例1で得た化合物 9. 2 2 g(4 0. 1 mm o 1)の無水ジクロロメタン $200 \,\mathrm{m}\,1$ 溶液に、 $0\,\mathrm{C}$ でトリエチルアミン $11.17\,\mathrm{m}\,1$ (8 0. 2 mm o 1)、無水トリフルオロメタンスルホン酸 8. $09\,\mathrm{m}\,1$ (4 8. $1\,\mathrm{mm}\,\mathrm{o}\,1$)を加え、 $0\,\mathrm{C}$ で $30\,\mathrm{G}$ 、室温で $1\,\mathrm{b}$ 間攪拌した。次に反応液に水を加え、ジクロロメタンで抽出し、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム)にて精製し、標記化合物 7. $84\,\mathrm{g}$ (9 2 %)を得た。

[0076]

製造例3 (化合物3)

4-ブロモー2-メトキシベンズアミジン 塩酸塩

塩化アンモニウム 5. 349g(100 mm o l)のトルエン 200 m l 懸濁

液に、0 ℃で、1 Mトリメチルアルミニウムのヘキサン溶液1 0 0 m m o 1) を滴下し、室温で 1. 5 時間攪拌した。次に反応液に、実施例 2 で得た化合物 8. 4 8 g(4 0 m m o 1)を加え、8 0 ℃で 2 4 時間加熱攪拌した。次に反応液を氷冷し、シリカゲル 3 0 g、クロロホルム 3 0 0 m 1 を加え、室温で 3 0 分攪拌し、セライト濾過、残渣をメタノール 4 0 0 m 1 で洗浄した。母液を濃縮し、残渣にクロロホルム/メタノール 9 / 1 の溶液 2 0 0 m 1 を加え、濾過し、母液を濃縮した。残渣をエーテルで洗浄することによって、標記化合物 3 . 4 7 g(3 3 %)を得た。

[0077]

製造例4 (化合物4)

(R) - (アセチルアミノ) (シクロヘキシル) 酢酸

(R) - (アセチルアミノ) (1, 4-シクロヘキサジエン-1-イル) 酢酸 15 gのメタノール 5 00 m 1 溶液に、酸化白金 5 00 m g を加え、水素雰囲気下、室温で 4 時間攪拌した。次に、反応液を濾過し、母液を濃縮した。残渣をエタノールで再結晶し、標記化合物 11. 4 g (7 5%) を得た。

[0078]

製造例5 (化合物5)

エチル シアノ「(シクロヘキシルカルボニル) アミノ] アセテート

エチル アミノアセテート 18.3 g(143 mm o 1)の無水ジクロロメタン500 m 1 溶液に、トリエチルアミン30 m 1(214 mm o 1)、シクロヘキサンカルボニルクロリド23 m 1(171 mm o 1)を加え、0℃で3時間攪拌した。次に反応液に、飽和炭酸水素ナトリウム水溶液を加え、ジクロロメタンで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。残渣に酢酸エチルを加え、固体を濾取した。濾液を減圧下留去し、残渣に酢酸エチルを加え個体を濾取取した。この操作をさらに繰り返し、濾液をシリカゲルカラムクロマトグラフィー(ジクロロメタン/メタノール=50:1)にて精製し、得られた粗結晶をエーテル洗浄し、上記固体をすべてあわせ、標記化合物 24.3 g(71%)を得た。

[0079]

製造例6(化合物6)

<u>エチル 2-シアノー2ー [(シクロヘキシルカルボニル) アミノ] プロパノエート</u>

エタノール $150 \, \mathrm{ml}$ にナトリウム $2.3 \, \mathrm{g}$ ($102 \, \mathrm{mmol}$)を加え、ナトリウムエトキシドを調整した。この溶液を $0 \, \mathrm{C}$ にし、実施例 $5 \, \mathrm{c}$ で得た化合物 $24.2 \, \mathrm{g}$ ($102 \, \mathrm{mmol}$)のエタノール $150 \, \mathrm{ml}$ 懸濁液を加え、反応液が完全に溶解するまで攪拌した。次にヨウ化メチル $6.32 \, \mathrm{ml}$ ($102 \, \mathrm{mmol}$)を加え、室温で $4 \, \mathrm{時間攪拌}$ した。次に反応液に $1 \, \mathrm{M}$ 塩酸水溶液を加え酸性とし、反応液を減圧下留去した。残渣に水を加え、ジクロロメタンで抽出し、有機層を水、飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後減圧下溶媒を留去した。残渣に酢酸エチル/ヘキサン= 1/1 の混合液を加え、固体を濾取した。濾液を減圧下留去し、さらに酢酸エチル/ヘキサン= 1/1 の混合液を加え、固体を濾取した。濾液を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサ/ン酢酸エチル= 2/1)にて精製し、上記固体とあわせ、標記化合物 $22.8 \, \mathrm{g}$ (8.8%)を得た。

[0080]

<u> 製造例7(化合物7)</u>

N- [6-アミノ-2- (2-メトキシフェニル) -5-メチル-4-オキソー 4.5-ジヒドロ-5-ピリミジニル]シクロヘキサンカルボキサミド

エタノール16mlにナトリウム117mg (5.10mmol)を加えナトリウムエトキシドを調整した。この溶液に2ーメトキシベンズアミジン865mg (4.64mmol)を加え、室温で45分間攪拌した。次に不溶物を濾取して除き、濾液に実施例6で得た化合物2.34g (9.27mmol)のエタノール25ml溶液を加え20時間加熱還流した。次に反応液を室温にし、析出した固体を濾取した。濾液を減圧下留去し、残渣に水を加え、ジクロロメタンで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。残渣と濾取した上記固体を合わせ、エタノールから再結晶し、さらに母液をシリカゲルカラムクロマトグラフィー(ジクロロメタン/メタノール=20/1~10/1)にて精製することにより、標記化合物343mg(

21%)を得た。

[0081]

実施例1 (化合物 8)

6-シクロヘキシル-2-(2-メトキシフェニル) -8-メチルイミダゾ <math>[1. 5-a [1, 3, 5] トリアジンー4 (3 H) -オン

製造例 7 で得た化合物 $320 \,\mathrm{mg}$ (0.90 mm o 1) のピリジン $15 \,\mathrm{mlm}$ 濁液にクロロトリメチルシラン 0.34 ml (2.7 mm o 1) を加え、室温で $30 \,\mathrm{fl}$ 間 担 た。次にこの反応液にヘキサメチルジシラザン 0.57 ml (2.7 mm o 1) を加え $5 \,\mathrm{fl}$ 間 加熱 還流した。反応液を室温にし、減圧下溶媒を留 去した。残渣にメタノールを加え $1 \,\mathrm{fl}$ 間 攪拌した。次に反応液を留去し、残渣を シリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル= 1/1) にて精 製し、標記化合物 $20 \,\mathrm{mg}$ (7%) を得た。

[0082]

製造例8 (化合物9)

N- [6-アミノー2-(4-ブロモー2-メトキシフェニル) -5-メチルー 4-オキソー4, 5-ジヒドロー5-ピリミジニル] シクロヘキサンカルボキサ ミド

製造例7において2ーメトキシベンズアミジンの代わりに製造例3で得た化合物を用いた他は同様に反応を行い、標記化合物439mg(9%)を得た。

[0083]

実施例2(化合物10)

2-(4-プロモ-2-メトキシフェニル) -6-シクロヘキシル-8-メチル イミダゾ「<math>1, 5-a] 「1, 3, 5] トリアジン-4(3H) -オン

実施例1において、製造例7で得た化合物の代わりに製造例9で得た化合物を 用いた他は同様に反応を行い、標記化合物14mg(3%)を得た。

[0084]

実施例3 (化合物11)

6-シクロヘキシル-2-[2-メトキシ-4-(4-メチル-1-ピペラジニル) フェニル] <math>-8-メチルイミダゾ「1、5-a] [1、3、5] トリアジン

<u>-4 (3H) -オン</u>

アルゴン気流下、実施例 2 で得た化合物 1 2 mg(0. 0 2 9 mm o 1)のトルエン 2 m 1 溶液に、N - メチルピペラジン 1 0 μ 1 (0. 0 8 6 mm o 1)、 t e r t - ブトキシナトリウム 5. 5 mg(0. 0 5 8 mm o 1)、トリ t e r t - ブチルホスフィン 0. 6 mg(0. 0 0 2 9 mm o 1)、酢酸パラジウム(I I)0. 3 mg(0. 0 0 1 4 mm o 1)を加え、1 1 0 C で 4 時間撹拌した。次に反応液を室温にし、水で希釈後、酢酸エチルで抽出し、有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/メタノール=3 0 / 1 \sim 1 0 / 1)にて精製し、標記化合物 3 mg(2 4 %)を得た。

[0085]

実施例4 (化合物12)

5-シクロヘキシル-2-(2-メトキシフェニル) -7-メチルイミダゾ <math>[5-1-f] [1, 2, 4] トリアジン-4(3H) -オン

[0086]

上記実施例で製造された化合物の化学構造及び同定データを、下記表中にまとめて示す。

[0087]

【表1】

		T		
MS(ESI) (M+1) ⁺	230	212	229	200
'H-NMR	CDCl ₃ 3.97(3H, s), 5.74(1H, brs), 7.13(1H, d, J=1.6Hz), 7.22(1H, dd, J=1.6 and 9.3Hz), 7.57(1H, brs), 8.06(1H, d, J=9.3Hz)	CDCl ₃ 3.93(3H, s), 7.12(1H, d, J=1.7Hz), 7.16(1H, dd, J=1.7 and 8.2Hz), 7.40(1H, d, J=8.2Hz)	DMSO—d ₆ 3.89(3H, s), 7.33–7.37(1H, m), 7.44–7.51(2H, m), 9.04(3H, brs)	CDCl ₃ 0.92-1.26(5H, m), 1.50-1.70(6H, m), 1.83(3H, s), 4.08(1H, dd, J=6.2 and 8.4Hz), 7.93(1H, dd, J=8.4Hz), 12.45(1H, brs)
性状 融点(で) (再結晶溶媒)	微黄固体 138~139	微黄固体 134-137	無色固体 230(分解)	無色結晶 (215~216 (EtOH) 1
	B O O	N - m	H ₂ N NH HCI	HO ₂ C NHAc
化合物 番号	ţ	2	m	4

[8800]

【表2】

	T	γ		
MS(ESI) (M+1) ⁺	239	253	357	339
'H-NMR	CDCI ₃ 1.15-1.52(5H, m), 1.35(3H, t, J=7.1Hz), 1.63-1.71(1H, m), 1.73-1.93(4H, m), 2.17-2.27(1H, m), 4.34(2H, q, J=7.1Hz), 5.52(1H, d, J=7.7Hz), 6.25(1H, brd, J=7.7Hz)	CDCl ₃ 1.14-1.30(3H, m), 1.34(3H, t, J=7.1Hz), 1.39-1.52(2H, m), 1.60-1.70(1H, m), 1.75-1.92(4H, m), 1.85(3H, s), 2.11-2.21(1H, m), 4.32(2H, d, J=7.1Hz), 6.13(1H, brs)	CDCl ₃ 1.13–1.33(3H, m), 1.39–1.87(5H, m), 1.70(3H, s), 1.89–2.00(2H, m), 2.18–2.29(1H, m), 3.99(3H, s), 6.38(1H, brs), 6.97–7.04(1H, m), 7.08–7.15(1H, m), 7.49–7.59(1H, m), 8.36–8.48(1H, m),	CDCl ₃ 1.20-1.35(1H, m), 1.39-1.76(5H, m), 1.79-1.90(2H, m), 2.01-2.11(2H, m), 2.44(3H, s), 3.54-3.67(1H, m), 4.03(3H, s), 7.00-7.07(1H, m), 7.43-7.51(1H, m), 8.36-8.41(1H, m), 10.03(1H, brs)
性状 融点(で) (再結晶溶媒)	無色固体 141-144	無色固体 114.5–116	淡黄色固体 192-195 (エタノールー 水)	淡黄色固体 228-230
			D N N N N N N N N N N N N N N N N N N N	O HN N
化合物番号	rs.	9	2	∞

[0089]

		性状		
化学構造 配	世	融点(°C) (再結晶溶媒)	1H-NMR	MS(ESI) (M+1)+
B N NH2	*-	淡黄色固体 190~192	DMSO-d ₆ 1.05–1.29(5H, m), 1.40(3H, s), 1.53–1.82(5H, m), 2.18–2.28(1H, m), 3.78(3H, s), 7.12–19(1H, m), 7.28(1H, m), 7.39–7.49(1H, m), 8.62(1H, brs)	435
N N N N N N N N N N N N N N N N N N N	liπ' ←	黄色固体 143-146	CDCl ₃ 1.21–1.34(1H, m), 1.38–1.77(5H, m), 1.79–1.89(2H, m), 2.01–2.10(2H, m), 2.42(3H, s), 3.53–3.66(1H, m), 4.03(3H, s), 7.18(1H, d, J=1.6Hz), 7.27(1H, dd, J=1.6 and 8.6Hz), 8.25(1H, d, J=8.6Hz), 9.84(1H, brs)	417
MAN NA N	華黎	黄色固体 184-189.5	CDCl ₃ 1.21–1.77(6H, m), 1.80–1.89(2H, m), 2.01–2.11(2H, m), 2.36(3H, s), 2.41(3H, s), 2.51–2.61(4H, m), 3.32–3.40(4H, m), 3.54–3.68(1H, m), 4.00(3H, s), 6.40(1H, d, J=2.1Hz), 6.62(1H, dd, J=2.1 and 9.0Hz), 8.25(1H, d, J=9.0Hz), 10.02(1H, brs)	437
N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.	复細	微黄固体 n 7	CDCl ₃ 1.15–1.93(10H, m), 2.64(3H, s), 3.24–3.34(1H, m), 4.00(3H, s), 7.04–7.08(1H, m), 7.11–7.16(1H, m), 7.48–7.55(1H, m), 8.13–8.18(1H, m), 9.65(1H, brs)	339

[0090]

【発明の効果】

本発明のイミダゾトリアジノン誘導体は、PDE7を選択的に阻害する作用を有し、これによって、細胞内 c AMPレベルが高まり、さらにはT細胞の活性化を阻害することによって様々なアレルギー疾患、炎症・免疫疾患の予防および治療に有用である。また、PDE7を選択的に阻害するため、他のPDEに対する影響が少なく、医薬として使用した場合の副作用の低減が期待される。

ページ: 1/E

【書類名】

要約書

【要約】

【課題】 PDE7を選択的に阻害する作用を有し、これによって、細胞内 c A MPレベルが高まり、さらにはT細胞の活性化を阻害することによって様々なアレルギー疾患、炎症・免疫疾患の予防および治療に有用である化合物の提供。

【解決手段】 下記の式 (IA) または (IB):

【化1】

で示されるイミダゾトリアジノン誘導体であって、特に式中、R 1 がシクロヘキシル基であり、R 2 がメチル基であり、R 3 が水素原子、ニトロ基、シアノ基、ハロゲン原子、基:-NR 5 R 6 、-C(=O)R 7 、-SO $_2$ R 7 、-OR 8 、-NR 8 COR 7 、-NR 8 SO $_2$ R 7 、-Fロアリール基、置換されていてもよいC $_1$ -6のアルキル基、置換されていてもよいC $_1$ -6のアルケニル基、または置換されていてよい飽和若しくは不飽和のヘテロシクロアルキル基であり、AがCR 4 であり、BがCHであるイミダゾトリアジノン誘導体。

【選択図】

なし

ページ: 1/E

認定・付加情報

特許出願の番号

特願2003-170095

受付番号

50300997650

書類名

特許願

担当官

第一担当上席 0090

作成日

平成15年 6月16日

<認定情報・付加情報>

【提出日】

平成15年 6月13日

特願2003-170095

出願人履歴情報

識別番号

[503062312]

1. 変更年月日 [変更理由]

2003年 2月14日

· 文 垤 田 」 住 所 新規登録

住 所 氏 名 東京都千代田区麹町五丁目7番地2 第一サントリーファーマ株式会社 特願2003-170095

出願人履歴情報

識別番号

[500422182]

1. 変更年月日 [変更理由]

2003年 3月17日 名称変更

住所氏名

大阪府三島郡島本町若山台1丁目1番1号 株式会社第一サントリー生物医学研究所