Step-1

We have to prove that $||x||_{\infty} \le ||x|| \le ||x||_{1}$.

Step-2

We know that the ℓ^1 norm is defined by $\|x\|_1 = |x_1| + |x_2| + ... + |x_n|$ and the ℓ^∞ norm is defined by $\|x\|_\infty = \max\{|x_i|: 1 \le i \le n, x = (x_1, x_2, ..., x_n)\}$

Also, the hilbert norm is $||x|| = \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$

Suppose $\max\{|x_i|: 1 \le i \le n, x = (x_1, x_2, ..., x_n)\} = x_j$

Then $\|x\|_{\infty} = |x_j|$

On the other hand, for any scalar x_i , we have $x_i^2 \ge 0$ and so, $|x_j| = |\sqrt{x_j^2 + \sum_{i=1,j-1}^{j-1,n} x_i^2}$ where $\sqrt{x_j^2 + \sum_{i=1,j-1}^{j-1,n} x_i^2} = ||x||$

Therefore, $||x||_{\infty} \le ||x||$ $\hat{a} \in |\hat{a} \in [1, 1]$

Step-3

Now

$$|x_1|^2 + |x_2|^2 + \dots + |x_n|^2 \le (|x_1| + |x_2| + |x_3| + \dots + |x_n|)^2$$

Applying the positive square root on both sides, we get

$$\sqrt{{x_1}^2 + {x_2}^2 + ... + {x_n}^2} \le |x_1| + |x_2| + ... + |x_n|$$

Therefore, $||x|| \le ||x||$, $\hat{a} \in |\hat{a} \in (2)$

From (1) and (2), we get $||x||_{\infty} \le ||x|| \le ||x||_{1}$

Step-4

Now we have to show that the ratios $\frac{\|x\|_{1}}{\|x\|_{\infty}}$ and $\frac{\|x\|_{1}}{\|x\|}$ are never larger than \sqrt{n} from the Schwartz inequality.

If $x = (x_1, x_2, ..., x_n)$ is a vector, then we have by Schwarz $\hat{\mathbf{a}} \in \text{``inequality that } |x^T x| \leq ||x||^2$

$$\begin{split} \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2} &\leq \sqrt{x_j^2 + x_j^2 + x_j^2 + \ldots + x_j^2} \quad (n \text{ times}) \text{ where } \|x\|_{\infty} = \left|x_j\right|, \text{ the maximum of all } x_i \text{ 's }. \\ \Rightarrow \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2} &\leq \sqrt{nx_j^2} \\ &\leq \sqrt{n} \left|x_j\right| \\ \Rightarrow \frac{\sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}}{\left|x_j\right|} &\leq \sqrt{n} \\ \Rightarrow \frac{\|x\|}{\|x\|_{\infty}} &\leq \sqrt{n} \end{split}$$

In other words, $\frac{\|x\|}{\|x\|_{\infty}}$ is not greater than \sqrt{n} $\hat{a} \in \hat{a} \in (3)$

Step-5

If
$$x = (x_1, x_2)$$
, then

$$\frac{\left\|\left(x_{1}, x_{2}\right)\right\|_{1}^{2}}{\left\|\left(x_{1}, x_{2}\right)\right\|^{2}} = \frac{\left\{\left|x_{1}\right| + \left|x_{2}\right|\right\}^{2}}{\left(\sqrt{x_{1}^{2} + x_{2}^{2}}\right)^{2}}$$

$$=\frac{{x_1}^2 + {x_2}^2 + 2x_1x_2}{{x_1}^2 + {x_2}^2}$$

$$\leq \frac{4x_j^2}{2x_j^2}$$
 where $x_j = \max\{|x_1|, |x_2|\}$

$$\frac{\left\| (x_1, x_2) \right\|_1}{\left\| (x_1, x_2) \right\|} \le \sqrt{2}$$
Therefore,
$$\frac{\left\| (x_1, x_2) \right\|}{\hat{a} \in \hat{a} \in \hat{a} \in \hat{a} (4)}$$

Step-6

If
$$x = (x_1, x_2, x_3)$$
, then

$$\frac{\left\|\left(x_{1}, x_{2}, x_{3}\right)\right\|_{1}^{2}}{\left\|\left(x_{1}, x_{2}\right)\right\|^{2}} = \frac{\left\{\left|x_{1}\right| + \left|x_{2}\right| + \left|x_{3}\right|\right\}^{2}}{\left(\sqrt{x_{1}^{2} + x_{2}^{2} + x_{3}^{2}}\right)^{2}}$$

$$=\frac{{{x_{1}}^{2}}+{{x_{2}}^{2}}+{{x_{3}}^{2}}+2{{x_{1}}{{x_{2}}}}+2{{x_{2}}{{x_{3}}}}+2{{x_{3}}{{x_{1}}}}{{{x_{1}}^{2}}+{{x_{2}}^{2}}+{{x_{3}}^{2}}}$$

$$\leq \frac{9x_j^2}{3x_j^2}$$
 where $x_j = \max\{|x_1|, |x_2|, |x_3|\}$

$$\frac{\|(x_1, x_2, x_3)\|_1}{\|(x_1, x_2, x_3)\|} \le \sqrt{3}$$
Therefore,
$$\frac{\|(x_1, x_2, x_3)\|_1}{\|(x_1, x_2, x_3)\|} \le \sqrt{3}$$

Step-7

Continuing (4), (5) with the help of mathematical induction, we confirm that $\frac{\|x\|_1}{\|x\|} \le \sqrt{n}$

In other words, $\frac{\|x\|_{_{\parallel}}}{\|x\|}$ is not greater than \sqrt{n} $\hat{\mathbf{a}} \in \hat{\mathbf{a}} \in [\hat{\mathbf{a}} \in [\hat{\mathbf{a}})]$

Hence from (3) and (6), we get the required result.