UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ÁLGEBRA Y ÁLGEBRA LINEAL 520142

Práctica 20. Espacios Vectoriales: bases.

Problema 1. Encuentre una base de los siguientes subespacios:

1.1) $\{p \in \mathcal{P}_3(\mathbb{R}) : p \text{ es par}\}$ 1.3) $\{(x, y, z) \in \mathbb{R}^3 : ax + by + cz = 0\}$ 1.5) $\{A \in \mathcal{M}_3(\mathbb{R}) : A \text{ es antisimétrica}\}$ 1.6) $\{x, y, z \in \mathbb{R}^3 : ax = by = cz\}$ 1.7) $\{A \in \mathcal{M}_3(\mathbb{R}) : A \text{ es simétrica}\}$ [En práctica 1.3 y 1.5]

Problema 2. Encontrar un conjunto linealmente dependiente de tres vectores de \mathbb{R}^3 tal que cualquier subconjunto de dos vectores sea linealmente independiente.

Problema 3. Dados los conjuntos:

En práctica.

$$S_{1} = \left\{ \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}, \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 3 & -2 \end{pmatrix} \right\} \quad \mathbf{y}$$

$$S_{2} = \left\{ \begin{pmatrix} -2 & 1 \\ 3 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 4 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \right\}.$$

- **3.1)** Muestre que los espacios $\langle S_1 \rangle$, $\langle S_2 \rangle$, generados por S_1 y S_2 son iguales.
- **3.2)** Encuentre una base para $S = \langle S_1 \rangle = \langle S_2 \rangle$.

Problema 4. Sean $S_1 = \{p_1(x), p_2(x), p_3(x)\}$ y $S_2 = \{q_1(x), q_2(x), q_3(x)\}$ con

$$p_1(x) = 1 + 2x + 5x^2 + 3x^3 + 2x^4,$$

$$p_2(x) = 3 + x + 5x^2 - 6x^3 + 6x^4,$$

$$p_3(x) = 1 + x + 3x^2 + 2x^4$$

$$q_1(x) = 2 + x + 4x^2 - 3x^3 + 4x^4,$$

$$q_2(x) = 3 + x + 3x^2 - 2x^3 + 2x^4,$$

$$q_3(x) = 9 + 2x + 3x^2 - 3x^3 - 2x^4.$$

- 4.1) Defina los subespacios W_1 y W_2 generados por S_1 y S_2 respectivamente.
- **4.2)** Encuentre una base de los subespacios $W_1 + W_2$ y $W_1 \cap W_2$. En práctica.

Problema 5. En este problema estudiaremos una clase particular de matrices, llamadas **Matrices Mágicas**. Definamos el vector $\mathbf{1} = (1, 1, 1..., 1) \in \mathbb{R}^n$. Una matriz, $M = (m_{ij}) \in$

1

 $\mathcal{M}_n(\mathbb{R})$, se dice mágica si y sólo si existe $\lambda \in \mathbb{R}$ tal que se tienen las siguientes cuatro propiedades:

i)
$$M\mathbf{1}^t = \lambda \mathbf{1}^t$$
 ii) $\mathbf{1}M = \lambda \mathbf{1}$ iii) $tr(M) = \lambda$ iv) $\sum_{i=1}^n m_{i(n-i+1)} = \lambda$

En palabras más simples, M es mágica si al sumar sus filas, sus columnas y sus dos diagonales se obtiene siempre el mismo número: λ . Por ejemplo, la siguiente matriz es mágica:

$$\left(\begin{array}{ccccc}
16 & 3 & 2 & 13 \\
5 & 10 & 11 & 8 \\
9 & 6 & 7 & 12 \\
4 & 15 & 14 & 1
\end{array}\right)$$

- **5.1)** Muestre que el conjunto de las matrices mágicas es un subespacio vectorial del espacio de las matrices cuadradas reales.
- **5.2)** Encuentre una matriz mágica en $\mathcal{M}_n(\mathbb{R})$ distinta de θ .

En lo que sigue restringiremos nuestro estudio a las matrices mágicas de 3x3. Sea M_G el conjunto de matrices mágicas de 3x3. Hay una matriz mágica muy simple:

$$C = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right)$$

Considere los siguientes subespacios: $M_0 = \{M \in M_G : M\mathbf{1}^t = 0\}$ y $M_1 = <\{C\}$

5.3) Demuestre que $M_0 \oplus M_1 = M_G$.

Considere el espacio U de las matrices simétricas y el espacio W de las matrices antisimétricas.

5.4) Muestre que $W \cap M_G \subset M_0$.

Sean
$$S = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$
 y $A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$

- **5.5)** Muestre que $(W \cap M_0) = \langle \{A\} \rangle$. [En práctica.]
- **5.6)** Muestre que $(U \cap M_0) = \langle \{S\} \rangle$.
- **5.7)** Usando que $W \oplus U = \mathcal{M}_3(\mathbb{R})$, concluya que $M_G = \langle \{S, A, C\} \rangle$. [En práctica.]

22/09/2003. FChH/AGS/fchh/ags.