SVM 实验

代东洋 计算机系

简介

本次实验使用SVM对手写数字进行分类。代码使用Python3,代码依赖numpy库。实验数据在digits文件夹下。

- 涉及的算法包括:
 - 。 实现简化版SMO算法
 - 。实现完整版SMO算法
 - 。对SMO加入核方法

本次实验中实现的SVM是二分类器,而手写数字分类是多分类问题(10分类)。因此,需要把多分类问题转化为二分类问题。本次实验中,实行的是 one-to-one 策略。具体而言,把10分类问题分成 $C_{10}^2=45$ 个二分类问题,训练出45个分类器。然后分别用这45个分类器对测试数据进行分类,综合这45个分类器的分类结果,属于哪个类别分类结果最多,测试数据就是哪个类。

算法原理

设核函数为 $K(x_i,y_i)=\phi(x_i)\cdot\phi(x_j)$,当没有使用核函数的时候,可以认为 $K(x_i,x_j)=x_i\cdot x_j$,径向基核函数为 $K(x_i,x_j)=\exp(-\gamma||x_i-x_j||^2)$ 。方便起见, 本文档中的公式均表示使用核函数的情况。当没有使用核函数时, $K(x_i,x_j)=x_i\cdot x_j$,可以看作是使用核函数的一种特例。

SVM

原最优化问题为(其中C是一个大于0的超参)

$$egin{aligned} \min_{w,b,\xi} & rac{1}{2} ||w||^2 + C \sum_i^N \xi_i \ s.\,t. & y_i(w\phi(x_i) + b) \geq 1 - \xi_i \ arxie \xi_i > 0 \end{aligned}$$

其拉格朗日对偶形式的最优化问题是

$$egin{aligned} \min_a & rac{1}{2} \sum_i^N \sum_j^N a_i a_j y_i y_j K(x_i, x_j) - \sum_i^N a_i \ & s.t. & \sum_i^N a_i y_i = 0 \ & 0 \leq a_i \leq C \end{aligned}$$

原始约束问题是凸的二次规划问题,解满足KKT条件,即:

$$w^* - \sum_i^N a_i^* y_i \phi(x_i) = 0$$
 $\sum_i^N a_i^* y_i = 0$
 $C - a_i^* - \mu_i^* = 0$
 $a_i^* (y_i (w^* \phi(x_i) + b^*) - 1 + \xi_i^*) = 0$
 $\mu_i^* \xi_i^* = 0$
 $y_i (w^* \phi(x_i) + b^*) - 1 + \xi_i^* \ge 0$
 $\xi_i^* \ge 0$
 $a_i^* \ge 0$
 $\mu_i^* \ge 0$

假设预测函数为h(x),则 $h(x)=sign(w^*\phi(x)+b)$,令 $f(x)=w^*\phi(x)+b, h(x)=sign(f(x))$ 而

$$egin{aligned} w^* &= \sum_i^N a_i^* y_i \phi(x_i) \ dots &= \sum_i^N a_i^* y_i \phi(x_i) \cdot \phi(x) + b \ f(x) &= \sum_i^N a_i^* y_i K(x_i, x) + b \end{aligned}$$

所以可以不用计算 $\phi(x)$ 也能对测试样本进行预测(只要计算 $K(x_i,x)$ 就可以了)。

根据上面式子,我们可以得到KKT的等价条件(只有变量a和b的情况)。

$$egin{aligned} a_i^*0 &\leftrightarrow y_i f(x_i) \geq 1 \ 0 < a_i^* < C &\leftrightarrow y_i f(x_i) = 1 \ a_i^*C &\leftrightarrow y_i f(x_i) \leq 1 \end{aligned}$$

而一旦已知所有的 a, 我们便可以根据公式 $0 < a_i^* < C \leftrightarrow y_i f(x_i) = 1$, $f(x_i) = \sum_j^N a_j^* y_j K(x_j, x_i) + b$ 计算出 b, 进而计算出 f(x) 。一旦计算出 f(x) 便可以对新的样本进行分类。

说明,上面所有的 $i \in \{1, 2, \dots, N\}$,其中N表示训练集样本的数量。

SMO

原问题转化为,结合KKT的等价条件,求解最优化问题:

$$egin{aligned} \min_a & rac{1}{2} \sum_i^N \sum_j^N a_i a_j y_i y_j K(x_i, x_j) - \sum_i^N a_i \ s.t. & \sum_i^N a_i y_i = 0 \ 0 \leq a_i \leq C \end{aligned}$$

该问题由SMO算法求解。SMO算法为一种启发算法,每次迭代过程中,选择两个变量 a_{k_1}, a_{k_2} 作为自由变量,假定其它变量是固定的。更改 a_{k_1}, a_{k_2} 是目标函数 $\frac{1}{2}\sum_i^N\sum_j^N a_i a_j y_i y_j K(x_i, x_j) - \sum_i^N a_i$ 尽可能降低。

SMO每一步的操作

不失一般性,我们设所选定的两个变量为 a_1,a_2 。设 $E_i=f(x_i)-y_i$ 。

由于 $y_1a_1+y_2a_2=-\sum_{i=3}^Ny_ia_i$ 为一固定的值, 当 a_2 确定时, a_1 也确定了。所以目标函数是关于 a_2 的二次函数。假设 $L\leq a_2\leq H$ 其中:

$$egin{aligned} if & y_1 == y_2: \ & L = max(0, a_1 + a_2 - C) \ & H = min(C, a_1 + a_2) \ if & y_1
eq y_2: \ & L = max(0, C + a_2 - a_1) \ & H = min(C, a_2 - a_1) \end{aligned}$$

每次迭代过程中,新的 a_2 的值在满足约束的条件下,尽可能使目标函数最小。假设迭代前后的 a_1, a_2 分别为 $a_1^{old}, a_2^{old}, a_1^{new}, a_2^{new}$ 。 由于目标函数 $\frac{1}{2} \sum_i^N \sum_j^N a_i a_j y_i y_j K(x_i, x_j) - \sum_i^N a_i$ 是关于 a_2 的二次函数,经过一番计算后,可以得到 a_2 的迭代公式如下:

$$a_2^{unlimit} = a_2^{old} - rac{y_2(E_1 - E_2)}{2K(x_1, x_2) - K(x_1, x_1) - K(x_2, x_2)} \ a_2^{new} = \left\{egin{array}{cc} H, & a_2^{unlimit} > H \ a_2^{unlimit}, & L \leq a_2^{unlimit} \leq H \ L, & a_2^{unlimit} < L \end{array}
ight.$$

然后按照等式 $y_1a_1^{new} + y_2a_2^{new} = y_1a_1^{old} + y_2a_2^{old}$ 更新 a_1 。

根据条件 $0 < a_i < C \leftrightarrow y_i f(x_i) = 1$, $f(x_i) = \sum_j^N a_j y_j K(x_j, x_i) + b$,我们可以得到b的迭代公式:

$$b_1^{new} = -E_1 - y_1 K(x_1, x_2) (a_1^{new} - a_1^{old}) - y_2 K(x_1, x_2) (a_2^{new} - a_2^{old}) + b^{old}$$

或

$$b_2^{new} = -E_2 - y_1 K(x_1, x_2) (a_1^{new} - a_1^{old}) - y_2 K(x_2, x_2) (a_2^{new} - a_2^{old}) + b^{old}$$

当 a_1^{new}, a_2^{new} 都满足 $0 < a_i < C$ 时, $b_1^{new} = b_2^{new}$, 令 $b^{new} = b_1^{new}$ 。

当 a_1^{new}, a_2^{new} 中只有一个 a_k ,k=1,2满足 $0 < a_i < C$ 时, 令 $b^{new} = b_k^{new}$ 。

当
$$a_1^{new}, a_2^{new}$$
 都不满足 $0 < a_i < C$ 时, 令 $b^{new} = rac{b_1^{new} + b_2^{new}}{2}$ 。

另外值得注意的是,公式可能出现 $2K(x_1,x_2)-K(x_1,x_1)-K(x_2,x_2)$ 为0的情况,这种情况下, a_2 的迭代公式无意义,这时我们不更新变量,直接进入下一步迭代。

以上SMO算法中每一步的操作。

选择自由变量 a_{k_1}, a_{k_2}

SMO算法每次选取两个变量 a_{k_1}, a_{k_2} 作为自有变量,假定其他变量为固定的,迭代变量 a_{k_1}, a_{k_2} 。选取变量的过程分为两个循环,外循环和内循环。外循环选取第一个变量 TeX parse error: Extra open brace or missing close brace, 内循环选取第二个变量 a_{k_2} 。按照选取变量的策略不同,SMO算法分为简单版SMO算法和完整版SMO算法。

简单版SMO算法

简单版SMO算法, 外循环从所有的 a 的序列 $\{a_1,a_2,\ldots,a_N\}$ 中依次选出一个变量,作为 a_{k_1} 。 内循环中随机选择一个不是 a_{k_1} 的变量作为 a_{k_2} 。 循环的停止条件为外循环 a_{k_1} 把序列 $\{a_1,a_2,\ldots,a_N\}$ 从头到尾迭代了一遍后,也没有 a_i 变量发生改变。

完整版SMO算法

外循环先在序列 $\{a_i,0 < a_i < C\}$ 中依次选择一个变量,作为 a_{k_1} 。如果把序列 $\{a_i,0 < a_i < C\}$ 从头到尾迭代一遍后也没有 a_i 变量发生改变,则外循环下一步从所有的 a 的序列 $\{a_1,a_2,\ldots,a_N\}$ 中依次选出一个变量作为 a_{k_1} 。如果把序列 $\{a_1,a_2,\ldots,a_N\}$ 从头到尾迭代了一遍后,也没有 a_i 变量发生改变,则循环终止,否则下一步从序列 $\{a_i,0 < a_i < C\}$ 中依次选择一个变量,作为 a_{k_1} 。

内循环选取使得 $|E_{k_1}-E_k|$ 取得最大值的 a_k 作为 a_{k_2} 。 当有多个 a_k 使得 $|E_{k_1}-E_k|$ 取得最大值时, 代码实现中提供了两种方式选取 a_{k_2} 。

- 若 config.py 的 is_max_e_rnd 为 True ,则从这些 a_k 中随机选取一个,作为 a_{k_2} 。
- 若 config.py 的 is_max_e_rnd 为 False , 则从这些 a_k 中选取下标最小的作为 a_{k_2} 。

代码及实验过程描述

进入到项目文件夹下,输入指令 python main.py 即可执行代码。代码共有 config.py, load_data.py, my_svm.py,和 main.py。

- load_data.py 主要负责从文件中读取数据。
- my_svm.py 是SVM分类器的实现(使用SMO算法)。其中 inner_l() 函数是实现SMO算法内循环的函数。 smo() 函数是实现完整版SMO算法外循环的函数。 $sim_smo()$ 函数是实现简单版SMO算法的外循环。 $select_j()$ 函数用于完整版SMO算法中选择第二个自有变量,其具体的选择策略前面已经介绍过了。 predict() 函数用于预测新样本(或者说测试样本)的类别。代码中使用一个矩阵维持着经过核函数计算的值,这样做有两个好处(1)方便调用numpy库,加速运算。(2)缓存了 $K(x_i,x_j)$ 的值,避免了训练过程中的重复计算。
- main.py 把手写字识别的多分类问题转换为二分类问题,使用了 one-to-one 的策略。把一个10分类任务分成了45个二分类。然后综合45个二分类的结果,判断测试样本属于哪个类别。具体来说就是,45个分类结果中,

属于哪个类别分类结果最多,测试数据就是哪个类。

- config.py 是配置文件。其中:
 - o is_simple = True ,则代表使用简化版的SMO算法, is_simple=False 则代表使用完整版的SMO算法。
 - 。 c 代表参数C的值。
 - 。 k_{tup} 代表核函数及其参数。 k_{tup} 是一个元组 Tuple 。 k_{tup} [0] 是字符串类型,代表核函数的类型。若 k_{tup} [0] == 'lin' 或 k_{tup} [0] == 'line' ,代表不使用核函数。这时核函数的参数 k_{tup} [1] 没有被使用(因 为这时候没有所谓的核函数的参数)。若 k_{tup} [0]=='rbf' ,则使用径向基核函数,这时第二个参数 k_{tup} [0] 代表参数 γ ,其中 $K(x_i,x_j)=exp(-\gamma||x_i-x_j||^2)$ 。
 - o max iter 代表外循环的最大次数。
 - o log_level 代表程序运行过程中输出信息的程度, log_level 越大,输出的信息越多。当 log_level== 0 时,程序只输出运行结果。

下图是 log level == 0 时,程序的运行结果。

```
dai@d:svm$ python main.py
complete smo
C: 2
k_tup: ('lin', None)
training time: 10.845s
training set test time: 2.260s
training set accuracy: 0.903826266805
training set error rate: 0.0961737331954
test set test time: 1.205s
test set accuracy: 0.889006342495
test set error rate: 0.110993657505
dai@d:svm$
```

关于实验过程,为了方便实验,我又写了一个脚本,遍历不同的参数组合下的程序运行时间、以及错误率(网状遍 历)。

其关键部分代码如下(其中 run() 函数代表执行一种参数组合的实验):

```
t1 = time.time()
    Cs = [1e-1, 1, 10]
    gammas = [1e-3, 1e-2, 1e-1, 1, 10]
    is_simples = [False, True]
# lin
for is_simple in is_simples:
    for C in Cs:
        # line
        k_tup = ('lin', 1)
        run(C, k_tup, is_simple)

# rbf
for gamma in gammas:
        k_tup = ('rbf', gamma)
```

```
run(C, k_tup, is_simple)
t2 = time.time()
print('total time %.3fs' % (t2 - t1))
```

实验电脑系统为Ubuntu 16.04, CPU为 8 Intel(R) Core(TM) i7-4820K CPU @ 3.70GHz ,内存为32G。在项目文件夹下,执行 python experiment.py 即可进行实验。跑完所有3*5*2=30种参数组合所用的时间为 7574.387 ,实验结果的文件 expirement_result.txt 随代码附上。

实验结果及分析

简化版SMO与完整版SMO

下面是使用 rbf 核函数 $\gamma = 0.01$ 的对比结果

С	0.1	1	10	0.1	1	10
train time	59.946	71.454	43.671	29.333	38.599	22.469
train set error	0.032	0.001	0.0	0.038	0.023	0.0
test set error	0.049	0.10	0.008	0.067	0.045	0.014
	sim	sim	sim	complete	complete	somplete

可以看出,完整版SMO速度更快,但错误率更高。

rbf核函数不同参数下错误率的对比

下面表格中,每个单元格,逗号左边代表训练集错误率,逗号右边代表测试集错误率。可以看出,当 γ 取0.01左右时,分类器效果比较好。下面的错误率均是指多分类情况下的错误率。

C\gamma	0.001	0.01	0.1	1	10
0.1	0.157,0.159	0.038,0.067	0.0,0.753	0.001,0.220	0.025,0.587
1	0.161,0.153	0.023,0.045	0.0,0.889	0.0,0.504	0.024, 0.747
10	0.043,0.064	0.0,0.014	0.0,0.882	0.0, 0.905	0.0, 0.905