Казначеев М.А.

Лабораторная работа №6

Изучение законов прямолинейного равноускоренного движения на машине Атвуда

Содержание

Ι	Teo	ретические сведения	2
ΙΙ	Cxe	ема установки	5
II	ГРез	ультаты измерений и обработка данных	5
	1	Проверка формулы для пути, пройденного телом при прямолинейном	
		равноускоренном движении	5
	2	Проверка второго закона Ньютона	8
ΙV	Вы	вод	8
\mathbf{V}	Кон	нтрольные вопросы	9

Аннотация

Цель работы: проверить формулы для пути, пройденного телом при прямолинейном равноускоренном движении; проверить второй закон Ньютона.

В работе используются: машина Атвуда, перегрузки различной массы.

I Теоретические сведения

Если на концах нити машины Атвуда висят грузы одинаковой массы, то система находится в равновесии: движения грузов не происходит. Однако если между массами грузов существует разница (этого можно добиться, например, за счёт укладывания перегрузков на основные грузы), то они будут двигаться равноускоренно в противоположных вертикальных направлениях. Рассмотрим этот процесс детальнее с точки зрения динамики.

Направим ось абсцисс Ox вертикально вниз, ось ординат Oy — горизонтально влево, а ось аппликат Oz — перпендикулярно плоскости рисунка от наблюдателя (рис. 1). Таким образом мы получим правую систему координат. Пусть грузы имеют массы m_1 и m_2 , и при этом $m_2 > m_1$. Пренебрегая силами сопротивления воздуха, запишем уравнения движения грузов:

$$m_1 \vec{a}_1 = m_1 \vec{g} + \vec{T}_1,$$
 (1)

$$m_2 \vec{a}_2 = m_2 \vec{g} + \vec{T}_2,$$
 (2)

где \vec{a}_i — ускорение груза массы m_i ($i \in \{1,2\}$), \vec{g} — ускорение свободного падения, \vec{T}_i — сила натяжения нити, приложенная к грузу массы m_i . Будем считать, что нить нерастяжима, а значит,

Рис. 1. Блок массой

$$\vec{a}_1 = -\vec{a}_2, \quad a_1 = a_2 = a.$$
 (3) m_0 с грузами

При этом ускорения грузов не имеют составляющих по координатным осям, кроме оси абсцисс. Их проекции на последнюю совпадают по модулю, но противоположны по знаку:

$$-a_{1x} = a_{2x} = a. (4)$$

Для проекций прочих величин выполняются следующие соотношения:

$$q_x = q, \quad T_{1x} = -T_1, \quad T_{2x} = -T_2.$$
 (5)

Исключим проскальзывание нити по блоку. По третьему закону Ньютона, $\vec{F}=-\vec{N}$, где \vec{F} — сила давления на ось блока, \vec{N} — сила реакции его оси. Значит.

$$F_{\rm TD} = \mu N, \tag{6}$$

где $F_{\text{тр}}$ — равнодействующая сил трения, μ — коэффициент трения между блоком и осью. Силы, действующие на блок, взаимно уравновешиваются, а значит,

$$m_0 \vec{g} + \vec{T}_1' + \vec{T}_2' + \vec{N} + \vec{F}_{\rm TP} = 0,$$
 (7)

где \vec{T}_1' и \vec{T}_2' — силы натяжения нитей, приложенные в точках A_1 и A_2 соответсвенно. Из уравнений (6) и (7) следует

$$F_{\rm TP} = \frac{\mu}{\sqrt{1+\mu^2}} \left(T_1' + T_2' + m_0 g \right) \approx \mu \left(T_1' + T_2' + m_0 g \right), \tag{8}$$

поскольку в нашем случае $\mu < 0,1.$ Силы натяжения нитей, а так же $\vec{F}_{\text{тр}}$ и \vec{N} остаются неизменными в ходе опыта.

Уравнение моментов для блока имеет вид

$$J\vec{\beta} = \vec{M}_1 + \vec{M}_2 + \vec{M}_{\text{TD}},$$
 (9)

где J — момент инерции блока, $\vec{\beta}$ — угловое ускорение блока, $\vec{M}_{\rm rp}$ — момент сил трения в его оси, \vec{M}_1 и M_2 — моменты сил натяжения нитей \vec{T}_1' и \vec{T}_2' . При этом

$$\vec{M}_1 = \begin{bmatrix} \vec{r}_1, \vec{T}_1' \end{bmatrix}, \quad \vec{M}_2 = \begin{bmatrix} \vec{r}_2, \vec{T}_2' \end{bmatrix},$$
 (10)

где \vec{r}_1 и \vec{r}_2 — составляющие радиус-векторов точек A_1 и A_2 , перпендикулярные к оси вращения блока. Момент \vec{M}_2 направлен по оси аппликат, а \vec{M}_1 — в противоположную сторону:

$$M_{1z} = -M_1 = -rT_1', \quad M_{2z} = M_2 = rT_2',$$
 (11)

где $r = r_1 = r_2$ — радиус блока.

Момент сил трения вычисляется по формуле

$$\vec{M}_{\rm Tp} = \left[\vec{r}_0, \vec{F}_{\rm Tp} \right] = \text{const}, \tag{12}$$

где r_0 — перпендикулярная к оси вращения блока составляющая радиус-вектора точки B приложения сил $\vec{F}_{\rm Tp}$ и \vec{N} . Поскольку угловое ускорение блока направлено по оси Oz, а момент сил трения — в противоположную сторону, то

$$\beta_z = \beta, \quad M_{\text{Tp}z} = -M_{\text{Tp}}.$$
 (13)

Заметим также, что

$$J = \alpha m_0 r^2, \tag{14}$$

где $0 < \alpha < 1$.

Будем считать нить невесомой. Исходя из третьего закона Ньютона,

$$\vec{T}_1' = -\vec{T}_1, \quad \vec{T}_2' = -\vec{T}_2.$$

На основании записанных выше данных, получим систему

$$\begin{cases}
-m_1 a = m_1 g - T_1 \\
m_2 a = m_2 g - T_2 \\
\alpha m_0 r^2 \beta = r(T_2 - T_1) - M_{\text{TP}}
\end{cases}$$
(15)

Учитывая соотношение

$$a = \beta r \tag{16}$$

при решении системы (15), придём к следующему:

$$a = \frac{(m_2 - m_1)g - \frac{M_{\rm TP}}{r}}{m_1 + m_2 + \alpha m_0} = \text{const.}$$
 (17)

Если выполнены условия

$$m_1 + m_2 \gg \alpha m_0, \tag{18}$$

$$(m_2 - m_1)rg \gg M_{\rm TD},\tag{19}$$

Рис. 2. Машина Атвуда

то

$$a \approx \frac{(m_2 - m_1)g}{m_1 + m_2}. (20)$$

Последние допущения приводят к увеличению теоретического значения ускорения.

В том случае, если движение грузов начинается из состояния покоя, то путь h пройденный каждым из грузов за время t, определяется формулой

$$h = \frac{at^2}{2}. (21)$$

Если на одном из грузов находится перегрузок массой $m_1^\prime,$ а на другом — $m_2^\prime > m_1^\prime,$ то

$$m_1 = m + m_1', \quad m_2 = m + m_2',$$
 (22)

где m — масса свободного от них груза. Тогда, с учётом названных выше приближений,

$$a = \frac{(m_2' - m_1') g}{2m + m_1' + m_2'}. (23)$$

Если же перегрузки установлены так, что

$$m_1 = m, \quad m_2 = m + m_1' + m_2',$$
 (24)

то имеем

$$a' = \frac{(m_1' + m_2') g}{2m + m_1' + m_2'}. (25)$$

В конечном счёте, получаем

$$\frac{a}{a'} = \frac{m_2' - m_1'}{m_1' + m_2'}. (26)$$

II Схема установки

На рисунке 2 приведена схема машины Атвуда. На основании 2 машины закреплен миллисекундомер 10 и стойка 1. На последней расположены три кронштейна: нижний 3, средний 4, верхний 5, на котором крепится блок с узлом подшипников, через который перекинута нить с одинаковыми грузами 6. Так же там расположен электромагнит 7, удерживающий систему в состоянии покоя.

На среднем кронштейне 4 укреплён фотоэлектрический датчик 8, который останавливает счёт времени при падении груза с достаточной высоты. Нижний кронштейн 3 является площадкой с резиновым амортизатором. На стойке укреплена металлическая линейка 9.

III Результаты измерений и обработка данных

Упражнение 1. Проверка формулы для пути, пройденного телом при прямолинейном равноускоренном движении

После проведения ряда подготовительных действий, перейдём к измерениям. В таблице 1 приведены массы перегрузков (m'_1, m'_2, m'_3) , а так же левого и правого грузов $(m_b$ и m_a соответсвенно). Доверительную вероятность будем считать равной 95%:

$$P = 0.95$$
.

Величина	Значение
m_a	$80,720 \pm 0,005$ г
m_b	$80,950 \pm 0,005$ г
m_1'	$2,\!56 \pm 0,\!01$ г
m_2'	$4,00 \pm 0,01$ г
m_3'	$4,12 \pm 0,01$ г

Таблица 1. Массы грузов и перегрузков

На левый груз положим перегрузок массой m_1' , а на правый — перегрузки массами m_2' и m_3' . Расстояние от нижнего среза правого груза до индекса среднего кронштейна составляет

$$h_1 = 0.3500 \pm 0.0007 \text{ M},$$

учитывая, что приборная погрешность линейки равна половине цены деления:

$$\Delta h_{\mathrm{np}} = \frac{0,001}{2} = 0,0005 \text{ M},$$

а так же

$$\Delta h_{\text{случ}} = 0$$
 м, $\Delta h_{\text{окр}} = P \cdot \Delta h_{\text{пр}} \approx 0{,}0005$ м.

k	h_k ,	$\varepsilon_{h_k},$ $\%$	i	$t_{ki},$ c	$ar{t}_k,$ c	$\Delta t_{ki},$ c	$S_{ar{t}},$ c	Δt_k , c	$\varepsilon_{t_k}, \%$	a_k , M/c^2	$\varepsilon_{a_k},$ %	Δa_k , $_{\rm M/c^2}$
1	0,35	0,20	1 2 3	1,590 1,597 1,679	1,622	0,032 0,025 0,057	0,029	0,125	7,71	0,266	15,42	0,041
2	0,40	0,18	1 2 3	1,772 1,811 1,850	1,811	0,039 0 0,039	0,023	0,099	5,47	0,244	10,94	0,027
3	0,45	0,15	1 2 3	1,865 1,824 1,836	1,842	0,023 0,018 0,006	0,012	0,052	2,82	0,265	5,64	0,015

Таблица 2. Результаты первого опыта

и, как следствие,

$$\Delta h = \sqrt{\Delta h_{\text{случ}}^2 + \Delta h_{\text{пр}}^2 + \Delta h_{\text{окр}}^2} \approx 0,0007 \text{ M}.$$

После сброса груза, он преодолел расстояние h_1 за

$$t_{11} = 1.590 \pm 0.001 \text{ c},$$

с учётом погрешностей электронного миллисекундомера:

$$\Delta t_{\text{случ}} = 0 \text{ c}, \quad \Delta t_{\text{пр}} = 0,0010 \text{ c}, \quad \Delta t_{\text{пр}} = P \cdot \frac{\Delta t_{\text{пр}}}{2} \approx 0,0005 \text{ c},$$

$$\Delta t = \sqrt{\Delta t_{\text{случ}}^2 + \Delta t_{\text{пр}}^2 + \Delta t_{\text{окр}}^2} \approx 0,001 \text{ c}$$

(для одного измерения полная погрешность совпадает с систематической). Повторим этот опыт ещё два раза. При этом величина \bar{t}_k , где k — номер серии измерений вычисляется по формуле

$$\bar{t}_k = \frac{\sum_{i=1}^n t_{ki}}{3},$$

а Δt_{ki} — по формуле

$$\Delta t_{ki} = |\bar{t}_k - t_{ki}|$$

(эта величина не является погрешностью, а лишь расхождением i-го измерения времени со средним значением для k-й серии).

Затем, дважды поменяем положение фотодатчика и проведём аналогичные серии измерений для каждого из положений. Запишем результаты в таблицу 2.

Для каждой серии измерений относительная погрешность вычислений высоты падения груза составляет

$$\varepsilon_{h_k} = \frac{\Delta h}{h_k} = \frac{0,0007}{h_k} \cdot 100\%.$$

Средняя ошибка для времени составляет

$$S_{\bar{t}} = \sqrt{\frac{\sum_{i=1}^{3} \Delta t_{ki}^2}{3(3-1)}} = \sqrt{\frac{\sum_{i=1}^{3} \Delta t_{ki}^2}{6}}.$$

k	h_k ,	$\varepsilon_{h_k}, \%$	i	$\begin{bmatrix} t_{ki}, \\ \mathbf{c} \end{bmatrix}$	$ar{t}_k, \ { m c}$	$\Delta t_{ki},$ c	$S_{ar{t}},$ c	$\Delta t_k,$ c	$\varepsilon_{t_k},$ %	a'_k , M/c^2	$\varepsilon_{a_k'}, \ \%$	$\Delta a_k',$ _{M/c²}
1	0,35	0,20	1 2	1,157 1,176	1,172	0,015	0,008	0,034	2,90	0,510	5,80	0,030
1			3	1,183		0,011						
2	0,40	0,18	$\frac{1}{2}$	1,284	1,270	0,014 $0,004$	0,007	0,030	2,36	0,496	4,72	0,023
			3	1,259		0,011						
3	0,45	0,15	$\frac{1}{2}$	1,321 $1,357$	1,340	0,019 $0,017$	0,010	0,043	3,21	0,501	6,42	0,032
	, 		3	1,341	,	0,001	,	,	,	,	,	,

Таблица 3. Результаты второго опыта

В таком случае, полная погрешность трёх измерений составляет

$$\Delta t_k = \sqrt{\left(t_P(n) \cdot S_{\bar{t}}\right)^2 + \Delta t^2},$$

где $t_P(n)$ — коэффициент Стьюдента:

$$t_P(n) = 4.30,$$

при количестве измерений n=3. Полная абсолютная погрешность для времени вычисляется по формуле

$$\varepsilon_{t_k} = \frac{\Delta t_k}{\bar{t}_k} \cdot 100\%.$$

Ускорение выражается через уже известные нам величины:

$$a_k = \frac{2h_k}{\bar{t}_k^2},$$

а относительная и абсолютная ошибки высчитываются по формулам

$$\varepsilon_{a_k} = \sqrt{\varepsilon_{h_k}^2 + 4\varepsilon_{t_k}^2}, \quad \Delta a_k = \frac{\varepsilon_{a_k}}{100} \cdot a_k.$$

Повторим всё вышеописанное, но теперь на левый груз не станем класть перегрузки, а на правый — пложим все у нас имеющиеся. Результаты занесём в таблицу 3.

Интервалы $(a_k - \Delta a_k; a_k + \Delta a_k)$ для k = 1, k = 2, k = 3 соотвественно имеют следующий вид:

$$(0,225;0,307), (0,217;0,271), (0,250;0,280),$$

a
$$(a'_k - \Delta a'_k; a'_k + \Delta a'_k)$$
 —

$$(0,480;0,540), (0,473;0,519), (0,469;0,533).$$

Как в первом, так и во втором случае общие точки имеют все три интервала.

Упражнение 2. Проверка второго закона Ньютона

Вычислим средние экспериментальные значения ускорений грузов в машине Атвуда:

$$a = \frac{a_1 + a_2 + a_3}{3} \approx 0.258 \text{ m/c}^2, \quad a' = \frac{a'_1 + a'_2 + a'_3}{3} \approx 0.502 \text{ m/c}^2.$$

При этом

$$\Delta a = \frac{1}{3} \cdot \sqrt{\Delta a_1^2 + \Delta a_2^2 + \Delta a_3^2} \approx 0.017 \text{ m/c}^2, \quad \varepsilon_a = \frac{\Delta a}{a} \cdot 100\%, \approx 6.59\%,$$

а также

$$\Delta a' = \frac{1}{3} \cdot \sqrt{\Delta a_1'^2 + \Delta a_2'^2 + \Delta a_3'^2} \approx 0.017 \text{ m/c}^2, \quad \varepsilon_{a'} = \frac{\Delta a'}{a'} \cdot 100\%, \approx 3.39\%.$$

Отношение вычисленных значений ускорений составляет

$$\frac{a}{a'} \approx 0.514,$$

а абсолютная ошибка —

$$\Delta\left(\frac{a}{a'}\right) = \frac{a}{a'} \cdot \frac{\sqrt{\varepsilon_a^2 + \varepsilon_{a'}^2}}{100} \approx 0.038.$$

По формуле (26) вычислим теоретическое значение отношения ускорений:

$$\left(\frac{a}{a'}\right)_{\text{reop}} = \frac{m_2' + m_3' - m_1'}{m_1' + m_2' + m_3'} \approx 0,521.$$

При этом последняя величина попадает в интервал

$$\left(\frac{a}{a'} - \Delta\left(\frac{a}{a'}\right); \frac{a}{a'} + \Delta\left(\frac{a}{a'}\right)\right) = (0.476; 0.552).$$

IV Вывод

Полученные в первом упражнении результаты свидетельствуют о том, что движение грузов в машине Атвуда при любом расположении перегрузков с неравными массами является прямолинейным и равноускоренным, а путь, пройденный каждым грузом из состояния покоя за любое время t, вычисляется по формуле

$$h = \frac{at^2}{2}.$$

Об этом говорит совпадение вычисленных по этой формуле значений ускорений в пределах погрешностей с хорошей точностью.

Во втором упражнении мы замечаем совпадение теоретического и экспериментального значений величины

 $\frac{a}{a'}$

в пределах погрешности. Поскольку посылкой к формуле (26), является второй закон Ньютона, мы можем интерпретировать результаты этого упражнения, как одно из экспериментальных подтверждений справедливости второго закона Ньютона.

V Контрольные вопросы

1) Оба груза в машине Атвуда будут двигаться с равными по модулю ускорениями, если нить, на которой они подвешены, является нерастяжимой.

- 2) При выводе системы уравнений (15) мы условились считать силу сопротивления воздуха пренебрежимо малой, нить нерастяжимой и невесомой, а проскальзывание нити по блоку исключённым.
 - 3) Выведем пошагово уравнение (17) из системы (15) и уравнения (16):

$$\begin{cases}
(15) \\
(16) \Rightarrow
\end{cases}
\begin{cases}
T_{1} = m_{1}(g + a) \\
T_{2} = m_{2}(g - a) \\
\alpha m_{0}r^{2} \cdot \frac{a}{r} = r(T_{2} - T_{1}) - M_{\text{Tp}}
\end{cases}$$

$$\Rightarrow a\alpha m_{0}r = r(m_{2}(g - a) - m_{1}(g + a)) - M_{\text{Tp}} \Leftrightarrow \\
\Leftrightarrow a(m_{1} + m_{2} + \alpha m_{0})r = (m_{2} - m_{1})gr - M_{\text{Tp}} \Leftrightarrow \\
a = \frac{(m_{2} - m_{1})g - \frac{M_{\text{Tp}}}{r}}{m_{1} + m_{2} + \alpha m_{0}} \Leftrightarrow (17).$$

Так, в первую очередь в третьем уравнении системы (15) избавляются от величины β , а в первых двух выражают силы натяжения нитей. Результат последних действий подставляют в третье уравнение, после чего все члены, содержащие ускорение a, переносят в одну сторону. Последним действием выражают величину a. Формулы для сил натяжения нитей принимают следующий вид:

$$T_1 = m_1 \left(g + \frac{(m_2 - m_1)g - \frac{M_{\text{TP}}}{r}}{m_1 + m_2 + \alpha m_0} \right) = m_1 \cdot \frac{(2m_2 + \alpha m_0)g - \frac{M_{\text{TP}}}{r}}{m_1 + m_2 + \alpha m_0},$$

$$T_2 = m_2 \left(g - \frac{(m_2 - m_1)g - \frac{M_{\text{TP}}}{r}}{m_1 + m_2 + \alpha m_0} \right) = m_2 \cdot \frac{(2m_1 + \alpha m_0)g + \frac{M_{\text{TP}}}{r}}{m_1 + m_2 + \alpha m_0}.$$

4) Массой блока можно пренебречь в том случае, если она существенно меньше суммы масс грузов. Если момент сил трения значительно меньше величины

$$(m_2 - m_1)rq$$
,

где m_1 и m_2 — массы левого и правого груза соотвественно, то можно пренебречь и трением в оси блока.

- **5)** Различием сил натяжения нитей, действующих на грузы, можно пренебречь, если в условиях эксперимента нить считается невесомой.
 - 6) Уравнения движения грузов в машине Атвуда выглядят следующим образом:

$$\begin{cases} m_1 \vec{a}_1 = m_1 \vec{g} + \vec{T}_1 \\ m_2 \vec{a}_2 = m_2 \vec{g} + \vec{T}_2 \end{cases}.$$

Проецируя последнее на ось Ox, получим

$$\begin{cases} m_1 a_{1x} = m_1 g - T_1 \\ m_2 a_{2x} = m_2 g - T_2 \end{cases}.$$

Так как нить не растяжима, то $a = -a_{1x} = a_{2x}$, а значит,

$$\begin{cases} -m_1 a = m_1 g - T_1 \\ m_2 a = m_2 g - T_2 \end{cases}.$$

Далее, так же, как описано в теоретических сведениях, прийдём к системе уравнений (15), а затем, повторяя третий контрольный вопрос — к уравнению (17). Ввиду невесомости блока и отсутствием трения в его оси (см. контрольный вопрос 4, а так же уравнения (18) \div (19)), заключим, что

$$a \approx \frac{(m_2 - m_1)g}{m_1 + m_2}.$$

Модули сил натяжения нитей также вычисляются аналогично контрольному вопросу 3 и, благодаря тем же допущениям, принимают вид

$$T_1 = \frac{2m_1m_2}{m_1 + m_2} \cdot g,$$

$$T_2 = \frac{2m_1 m_2}{m_1 + m_2} \cdot g,$$

поскольку

$$\begin{cases} 2m_2 \approx m_1 + m_2 \gg \alpha m_0 \\ 2m_1 \approx m_1 + m_2 \gg \alpha m_0 \\ 2m_2 rg \gg (m_2 - m_1) rg \gg M_{\rm TP} \end{cases}.$$

7) Получим из формулы (6) и уравнения (7) уравнение (8). Обозначим угол между векторами \vec{N} и $\vec{r_2}$ через α , а между векторами $\vec{F}_{\rm TP}$ и $\vec{r_1}$ — через β . Запишем уравнение (7) в проекциях на оси Ox и Oy:

$$Ox: m_0g + T_1' + T_2' - N\sin\alpha - F_{\text{Tp}}\sin\beta = 0,$$

 $Oy: -N\cos\alpha + F_{\text{Tp}}\cos\beta = 0.$

Заметим, что векторы $\vec{F}_{\text{тр}}$ и \vec{N} ортогональны, а значит

$$\alpha + \beta + \frac{\pi}{2} = \pi \Leftrightarrow \beta = \frac{\pi}{2} - \alpha.$$

С учётом этого, а так же формулы (6), преобразуем проекцию уравнения (7) на ось ординат:

$$(7)_{Ou} \Leftrightarrow -N \cos \alpha + \mu N \sin \alpha = 0 \Leftrightarrow \operatorname{ctg} \alpha = \mu \Leftrightarrow \alpha = \operatorname{arcctg} \mu.$$

Теперь займёмся проекцией на ось абсцисс:

$$(7)_{Ox} \Leftrightarrow m_0 g + T_1' + T_2' - \frac{F_{\text{Tp}}}{\mu} \sin \alpha - F_{\text{Tp}} \cos \alpha = 0 \Leftrightarrow$$

$$\Leftrightarrow F_{\text{Tp}} \left(\frac{1}{\mu} \sin \alpha + \cos \alpha \right) = T_1' + T_2' + m_0 g \Leftrightarrow$$

$$\Leftrightarrow F_{\text{Tp}} \left(\frac{1}{\mu} \sin \operatorname{arcctg} \mu + \cos \operatorname{arcctg} \mu \right) = T_1' + T_2' + m_0 g \Leftrightarrow$$

$$\Leftrightarrow F_{\text{Tp}} \left(\frac{1}{\mu \sqrt{1 + \mu^2}} + \frac{\mu}{\sqrt{1 + \mu^2}} \right) = T_1' + T_2' + m_0 g \Leftrightarrow$$

$$\Leftrightarrow F_{\text{Tp}} = \frac{\mu}{\sqrt{1 + \mu^2}} \left(T_1' + T_2' + m_0 g \right) \approx \mu \left(T_1' + T_2' + m_0 g \right)$$

(учтено, что $\mu \ll 1$).

8) Выведем формулу пути h, пройденного телом при свободном падении за время t. Пусть x — координата положения тела по оси, сонаправленной движению:

$$x = x(t)$$
.

Нам известно, что

$$\frac{dx}{dt} = v$$

И

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = a,$$

где v — скорость. тела, a — ускорение тела. Выразим скорость через ускорение:

$$dv = a dt \Rightarrow \int dv = \int a dt \Rightarrow v = at + v_0.$$

Аналогично выразим координату через скорость:

$$dx = v dt = (at + v_0) dt \Rightarrow \int dx = \int at dt + \int v_0 dt \Rightarrow x = \frac{at^2}{2} + v_0 t + x_0.$$

Очевидно, что

$$h = x - x_0 = \frac{at^2}{2} + v_0 t,$$

а поскольку $v_0 = 0$, то

$$h = \frac{at^2}{2}.$$

9) Второй закон Ньютона формулируется следующим образом: в инерциальной системе отсчёта производная импульса материальной точки по времени равна действующей на неё силе (Сивухин Д.В. Общий курс физики. Т.1: Механика). Так, уравнение движения материальной точки в соответсвии с этим законом принимает вид

$$\frac{d\vec{p}}{dt} = \vec{F}.$$

10) Описание методик содержится в разделе "Результаты измерений и обработка данных" и "Вывод".

11) В том случае, если трение в оси блока незначительно, однако мы всё равно не можем пренебречь его моментом инерции, то формула (17) примет вид

$$a = \frac{(m_2 - m_1)g}{m_1 + m_2 + \alpha m_0}.$$

Как следствие, формула (26) будет справедлива. Вспоминим, что для вычисления величины a мы используем значения $m_1 = m + m'_1$ и $m_2 = m + m'_2$:

$$a = \frac{(m_2' - m_1')g}{2m + m_1' + m_2' + \alpha m_0},$$

а для вычисления a' — значения $m_1=m, m_2=m+m_1'+m_2'$:

$$a' = \frac{(m_1' + m_2')g}{2m + m_1' + m_2' + \alpha m_0}.$$

Тогда

$$\frac{a}{a'} = \frac{(m_2' - m_1')g}{(m_1' + m_2')g}.$$

12) Ответ на вопрос о том, почему результаты эксперимента можно рассматривать, как доказательство справедливости второго закона Ньютона, дан в выводе.