CSCE 421: Machine Learning

Deep Learning New Trends

Texas A&M University

Outline

- Attention, Transformer, Feedback
- Deep Generative Models
- Automatic Deep Models
- Explainable Al
- Conversational Al

Attention

• Attention mechanism: addressing

Attention

- Visual Attention Model
 - Extract feature vectors with a feed-forward network
 - Use a recurrent network to iteratively update the attention for each output word (the bright regions)
 - Obtain meaningful correspondences between words and attentions

Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with visual attention." International conference on machine learning. 2015.

Self-Attention

Source: https://jalammar.github.io/illustrated-transformer/

Self-Attention

Transformer

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

Feedback Networks

Zamir, Amir R., et al. "Feedback networks." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2017.

Feedback Networks

Design

Resources: http://feedbacknet.stanford.edu

Outline

- Attention, Transformer, Feedback
- Deep Generative Models
- Automatic Deep Models
- Explainable Al
- Conversational Al

- Main idea: Learn to understand data through generation
- Setup:
 - Generative models:
 - Generate new data instances.
 - Recover the joint probability p(X, Y), or p(X) from given n examples X.
 - Discriminative models:
 - Discriminate between different kinds of data instances.
 - capture the conditional probability $p(Y \mid X)$.
 - Maximum-likelihood objective: $\prod_i p_{\theta}(x) = \sum_i \log p_{\theta}(x)$
 - Generation: sampling from $p_{\theta}(x)$.

Autoregressive Models

• Generate: sample one step at a time, conditioned all the previous steps

• Factorize the joint distribution over the *n*-dimensions:

$$p(x) = \prod_{i=1}^{n} p(x_i|x_1, x_2, \dots, x_{i-1}) = \prod_{i=1}^{n} p(x_i|x_{< i})$$

- Discrete x: produce a probability for each possible value.
- Continuous x: produce parameters of a simple distribution.

Autoregressive Models

• Example: RNNs for Autoregressive Language Modeling

Autoregressive Models

- PixelRNN
 - Apply language modeling on images.
 - 2-d images: grid LSTM

PixelCNN (old): has bland spot

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks." arXiv preprint arXiv:1601.06759 (2016).

Autoregressive Models

- PixelCNN
 - Overcome blind spot problem

1	1	1	1	1
1	1	1	1	1
1	1	0	0	0
0	0	0	0	0
0	0	0	0	0

Van den Oord, Aaron, et al. "Conditional image generation with pixelcnn decoders." Advances in neural information processing systems. 2016.

Autoregressive Models

WaveNet

Visualization of a stack of causal convolutional layers

Visualization of a stack of dilated causal convolutional layers.

Autoencoder

- Idea: compression as implicit generative modeling
- Output: reconstructed data
- Label: input data
- Loss: $L = (x \hat{x})^2$
- Latent space: encoded features

Autoencoder

- The encoder-decoder architecture only ensures the main structured part of the information can go through and be reconstructed
- The dimension of the latent space and the depth of autoencoders need to be carefully controlled
 - Dimensionality reduction purpose: reduce this number of dimensions and keep the major data structure information in the reduced representations.
 - Need interpretable and exploitable structures in the latent space.

Variational Autoencoder (VAE)

Variational Autoencoder (VAE)

• Similar idea as variational Bayesian and graphical model

- Problem: $p_{\theta}(z|x)$ cannot be calculate
- Solution: approximate $p_{\theta}(z|x)$ with $q_{\phi}(z|x)$:

$$q_{\phi}(z|x) = \mathcal{N}(z; \mu_z(x), \sigma_z(x))$$

Train: maximize a lower bound on log probabilities

$$\log p(x) \geq \mathbb{E}_{z \sim q(z|x)}[\log p(x|z) + \log p(z) - \log q(z)]$$

Variational Autoencoder (VAE)

- Problems:
 - Encoder and decoder's output distributions are typically limited (diagonal-covariance Gaussian or similar)
 - This prevents the model from capturing fine details and leads to blurry generations

Generative Adversarial Networks (GAN)

Two networks competing

 Discriminator: distinguishes real data and generated images from generator

 Generator: turns random noise (input) to imitations of data

Generative Adversarial Networks (GAN)

• Success: Small Size, Limited Scene, Simple Background ...

Generative Adversarial Networks (GAN)

- Challenges
 - Training is notoriously difficult and unstable
 - Easily biased towards either Generator or Discriminator
 - Few "decisive" success in generating "real-scale" complicated images
- GAN failure
 - The state-of-the-art GANs seem to learn "parts", but not the correct combination way (anatomy).
 - Little success in training GANs, e.g. on ImageNet scale.

Outline

- Attention, Transformer, Feedback
- Deep Generative Models
- Automatic Deep Models
- Explainable Al
- Conversational Al

Automatic Deep Models

Neural Architecture Search (NAS)

NAS with RL

Zoph, Barret, and Quoc V. Le. "Neural architecture search with reinforcement learning." arXiv preprint arXiv:1611.01578 (2016).

- Few-shot learning: n-shot, k-way
 - Discriminate between N classes with K examples of each.
 - Support set (known) v.s. query set (unseen)
 - Determine which of the support set classes the query sample belongs to.

Automatic Deep Models

Meta-learning

MAML

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: **while** not done **do**
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
- 6: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 7: end for
- 8: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$
- 9: end while

Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." *arXiv preprint arXiv:1703.03400* (2017).

Visual Query Answering (VQA)

 VQA: raise a question for details of objects, or high-level understanding of the scene over images.

Xiong, Peixi, et al. "Visual query answering by entity-attribute graph matching and reasoning." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2019.

Visual Query Answering (VQA)

- Analyze the question with the parser
- Determine the basic computational units which are needed to answer the question
- Determine the relationships between the modules
- Assemble the modules and train the network jointly

Visual Query Answering (VQA)

Outline

- Attention, Transformer, Feedback
- Deep Generative Models
- Automatic Deep Models
- Explainable Al
- Conversational Al

Goals:

- Understand the behaviors of Machine Learning algorithms.
- Model results trustworthiness.
- Explain how a model arrives at a particular decision.

–

Tools:

- Mimic cognitive science
- Relate black box models with simpler models
- Statistical analysis of results
- Visualization

- Du, Mengnan, Ninghao Liu, and Xia Hu. "Techniques for interpretable machine learning." *Communications of the ACM* 63.1 (2019): 68-77.
- Lipton, Zachary C. "The mythos of model interpretability." Queue 16.3 (2018): 31-57.

Explaining individual predictions

- Decision of the black-box model: cannot be approximated well by a compact functional.
- LIME: samples instances, gets predictions, and weighs them by the proximity to the instance being explained (by size).
- Red across: the instance being explained.
- The dashed line: the learned explanation that is locally (but not globally) faithful

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should I trust you?" Explaining the predictions of any classifier." *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining*. 2016.

LIME: Local Interpretable Model-agnostic Explanations

Model

- Interpretable Data Representations
- Fidelity-Interpretability Trade-off
- Sampling for Local Exploration
- Sparse Linear Explanations

Explaining individual predictions sneeze **Explainer** sneeze (LIME) weight headache headache no fatigue no fatigue age **Data and Prediction**

Explanation

Human makes decision

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should I trust you?" Explaining the predictions of any classifier." *Proceedings* of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016.

LIME: Local Interpretable Model-agnostic Explanations

- Decision of the black-box model: cannot be approximated well by a compact functional.
- LIME: samples instances, gets predictions, and weighs them by the proximity to the instance being explained (by size).
- Red across: the instance being explained.
- The dashed line: the learned explanation that is locally (but not globally) faithful.

LIME: Local Interpretable Model-agnostic Explanations

Figure 4: Explaining an image classification prediction made by Google's Inception neural network. The top 3 classes predicted are "Electric Guitar" (p = 0.32), "Acoustic guitar" (p = 0.24) and "Labrador" (p = 0.21)

(a) Husky classified as wolf

(b) Explanation

Stacked What-Where Autoencoders

- "What":
 - fed to the next layer
 - the content with incomplete information about position.
- "Where":
 - fed to the corresponding layer
 - where interesting (dominant) features are located

Evaluating Explanation Without Ground Truth

Yang, Fan, Mengnan Du, and Xia Hu. "Evaluating explanation without ground truth in interpretable machine learning." *arXiv preprint arXiv:1907.06831* (2019).

Evaluating Explanation Without Ground Truth

- Evaluation on Generalizability
- Evaluation on Fidelity
- Evaluation on Persuasibility
- Evaluation on Other Properties

Conversational AI

- Recent conversational interfaces/assistants:
 - Amazon Alexa, Apple's Siri, Google Assistant
- Goal:
 - Identify where you'll have the greatest conversational impact.
 - Understand your audience.
 - Build complete experiences.
- Data:
 - Content enables conversations.
 - Capture user context.