Inferencia Conformal

Mauro Loprete y Maximiliano Saldaña

1/1/22

Tabla de contenidos

	Introducción		_
	1.1	Inferencia conformal	3
	1.2	Aplicación	3
	1.3	Conclusión	3
	1.4	Bibliografía	3
2	Ane	xo	4

1 Introducción

En Lei et al. (2016) los autores plantean un marco general para realizar inferencia predictiva sin supuestos distribucionales en un contexto de regresión, empleando la *inferencia conformal*. Mediante la metodología planteada se pueden obtener intervalos de confianza con validez en muestra finitas (no asintótica) para una variable de respuesta, empleando cualquier estimador de la función de regresión.

El problema se plantea de la siguiente manera: Se considera $Z_1,\ldots,Z_n\sim F$ i.i.d., donde $Z_i=(X_i,Y_i)$ es una variable aleatoria en $\mathbb{R}^d\times\mathbb{R},\,Y_i$ es la variable de respuesta y $X_i=X_i(1)\ldots,X_i(d)$ son las covariables. Se tiene tiene la función de regresión:

$$\mu(x) = E(Y|X=x), \quad x \in \mathbb{R}^d$$

Es de interés predecir la nueva respuesta Y_{n+1} a las covariables X_{n+1} , sin hacer supuestos sobre μ o F. Dado un nivel de cobertura α el objetivo es construir un intervalo de predicción $C \subseteq \mathbb{R}^d \times \mathbb{R}$ basado en Z_1, \ldots, Z_n que cumpla:

$$P(Y_{n+1} \in C(X_{n+1})) \ge 1 - \alpha$$

En esta expresión se supone que $Z_{n+1}=(X_{n+1},Y_{n+1})$ proviene también de la distribución F y $C(x)=\{y\in\mathbb{R}:(x,y)\in C\},\ x\in\mathbb{R}^d$

1.1 Inferencia conformal

1.2 Aplicación

1.3 Conclusión

1.4 Bibliografía

Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. J., & Wasserman, L. (2016). Distribution-Free Predictive Inference For Regression. arXiv. https://doi.org/10.48550/ARXIV.1604.04173

2 Anexo