Max.Marks: 40

COURSE CODE: MTH166 COURSE TITLE: DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

Read the following instructions carefully before attempting the question paper.

- 1. Match the Paper Code shaded on the OMR Sheet with the Paper code mentioned on the question paper and
- 2. This paper contains 40 questions of 1 mark each. 0.25 marks will be deducted for each wrong answer.
- 3. Do not write or mark anything on the question paper except your registration no. on the designated space.
- 4. Submit the question paper and the rough sheet(s) along with the OMR sheet to the invigilator before leaving

Q1. The general solution of the equation $y'' - 5y' + 9y = \sin 3x$ is

(a)
$$y = Ae^{-x} + Be^{-4x} + 15\cos 2x$$

(b)
$$y = Ae^x + Be^{4x} + 15 \sin 2x$$

(c)
$$y = Ae^{-x} + Be^{-x} + 15 \sin 2x$$

(d)
$$y = Ae^x + Be^{4x} + \frac{1}{15}\cos 2x$$

Q2. The P.I. of the differential equation $(D^3 + 6D + 9)y = 5e^{-x}$ is

(a)
$$\frac{e^{-x}}{2}$$

(b)
$$\frac{5e^{-x}}{2}$$

(c)
$$-\frac{e^{-x}}{2}$$

(d)
$$-\frac{5e^{-x}}{2}$$

Q3. The trial solution for finding the P.I. of the differential equation $(D^2 + 3D + 1)y = x^2 + 1$

(a)
$$C_0 + C_1 x$$

(b)
$$C_0 + C_1 x + C_3 x$$

(c)
$$C_0 + C_1 x + C_3 x^2$$

(d)
$$C_0x + C_1x^2 + Cx^3$$

Q4. The general solution of the equation $y'' + 16y = x^2$ is

(a) A cos x + B sin x +
$$4x^2$$

(b) A cos 4x + B sin 4x +
$$4x^2 - \frac{1}{2}$$

(c) A
$$\cos 4x + B \sin 4x + 4x$$

(d) None of these

Q5. Particular integral solution of $(2D^3 - 3D^2 + 5)y = 6e^{3x}$ will be $(d)e^{x}/32$

$$(a)e^x/6$$

(b)
$$3e^{x}/16$$

$$(c)6e^x$$

$$(d)e^{x}/32$$

Q6. Solution of differential equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = 0$ is (a) $c_1x + c_2$ (b) $c_1 \log x + c_2$ (c) $c_1x^2 + c_2$ (d) $c_1 + \frac{c_2}{x}$

(a)
$$c_1 x + c_2$$

(b)
$$c_1 \log x + c_2$$

c)
$$c_1 x^2 + c_2$$
 (d) $c_1 +$

Q7. The roots of the Auxiliary equation of the differential equation
$$2x^2y''+3xy'-3y=0$$
, are (b) -1 3/2 (c) -1,-3/2 (d) 1,3/2

(b)
$$-1,3/2$$

Q33. The differential equation M(x, y)dx + N(x, y)dy = 0 is called exact diff. equation if

(a)
$$\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = 0$$

(b)
$$\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = 0$$

(a)
$$\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = 0$$
 (b) $\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = 0$ (c) $\frac{\partial M}{\partial x} - \frac{\partial N}{\partial y} = 0$

(d)
$$\frac{\partial N}{\partial x} + \frac{\partial M}{\partial y} = 0$$

Q34. Which of the following equations is an exact differential equation?

(a)
$$(x^2 + 2y)dx - xydy = 0$$

$$(b) \quad xdy + (2x+3y)dx = 0$$

(c)
$$x^2ydy - ydx = 0$$

(d)
$$2xy^2dx + (1+2x^2y)dy = 0$$

Q35. The possible integrating factor of $ydx - xdy + \log ydy = 0$ is

(a)
$$\frac{1}{xy}$$

(b)
$$\frac{1}{x^2 + y^2}$$

(c)
$$\frac{1}{x^2}$$
 (d) $\frac{1}{y^2}$

(d)
$$\frac{1}{v^2}$$

Q36. If the non-exact differential equation M(x,y)dx + N(x,y)dy = 0 is of the form $f_1(xy)ydx + f_2(xy)xdy = 0$, then the I.F is

(a)
$$\frac{1}{Mx - Ny}$$
, $Mx - Ny \neq 0$

(b)
$$Mx - Ny$$

(c)
$$Mx + Ny$$

(d)
$$\frac{1}{Mx + Ny}$$
, $Mx + Ny \neq 0$

Q37. The possible integrating factor of $(x^2 + y^2 + 2x)dx + 2ydy = 0$ is

(a)
$$\frac{1}{x^2 + v^2}$$

(d)
$$e^x$$

Q38. The solution of differential equation $xdy - ydx - 2y^3dy = 0$ is

(a)
$$x + y^3 = c$$

(b)
$$x + y^3 - cy = 0$$

(c)
$$x + y^3 + cy = 0$$

(d) none of these

Q39. The solution of differential equation $p^2 - 6p + 9 = 0$ is

(a)
$$(x+y+c)(3x-y+c) = 0$$

(b)
$$(3x-y+c)(x-y+c) = 0$$

(c)
$$(x+y+c)(3x+y+c) = 0$$

(d)
$$(x-2y+c)(x-3y+c) = 0$$

Q40. The general solution of differential equation (y-xp)(p-1)=p where $p=\frac{dy}{dx}$ is given by

(a)
$$y = cx + \frac{c}{c-1}$$
 (b) $y = cx - \frac{c}{c-1}$ (c) $y = c + \frac{cx}{c-1}$ (d) none of these

(b)
$$y = cx - \frac{c}{c - 1}$$

$$(c) y = c + \frac{cx}{c - 1}$$

-- End of Question Paper --