Отчёт по лабораторной работе №8

Дисциплина: Архитектура компьютера

Кузьмина Мария Константиновна

Содержание

1	Задание													
2														
3	В Выполнение лабораторной работы	6												
	3.1 Реализация циклов в NASM	. 6												
	3.2 Обработка аргументов командной строки	. 9												
	3.3 Выполнение заданий для самостоятельной работы	. 12												
4	I Выводы	16												

Список иллюстраций

3.1	снимок экран	a.				•	•	•	•					•	•		•	•	•	6
3.2	снимок экран	a.																		7
3.3	снимок экран	a.																		7
3.4	снимок экран	a.																		8
3.5	снимок экран	a.																		8
3.6	снимок экран	a.																		9
3.7	снимок экран	a.																		9
3.8	снимок экран	a.																		10
3.9	снимок экран	a.																		10
3.10	снимок экран	a.																		11
3.11	снимок экран	a.																		11
3.12	снимок экран	a.																		12
3.13	снимок экран	a.																		12
3.14	снимок экран	a.																		13
3.15	снимок экран	а.																		15

1 Цель работы

Приобретение навыков написания программ с использованием циклов и обработкой аргументов командной строки.

2 Задание

- 1. Реализация циклов в NASM
- 2. Обработка аргументов командной строки
- 3. Выполнение заданий для самостоятельной работы.

3 Выполнение лабораторной работы

3.1 Реализация циклов в NASM

Создаем директорию с помощью mkdir, переходим в нее и создаем файл lab8-1.asm (рис. 3.1):

```
mkkuzjmina@VirtualBox:~$ mkdir ~/work/arch-pc/lab08
mkkuzjmina@VirtualBox:~$ cd ~/work/arch-pc/lab08
mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$ touch lab8-1.asm
mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$
```

Рис. 3.1: снимок экрана

Вводим в файл lab8-1.asm текст программы из листинга 8.1 (рис. 3.2):

```
; Программа вывода значений регистра 'есх'
%include 'in_out.asm'
SECTION .data
msg1 db 'Введите N: ',0h
SECTION .bss
N: resb 10
SECTION .text
global _start
_start:
; ----- Вывод сообщения 'Введите N: '
mov eax,msg1
call sprint
; ----- Ввод 'N'
mov ecx, N
mov edx, 10
call sread
; ----- Преобразование 'N' из символа в число
mov eax,N
call atoi
mov [N],eax
; ----- Организация цикла
mov ecx,[N] ; Счетчик цикла, `ecx=N`
label:
mov [N],ecx
mov eax,[N]
```

Рис. 3.2: снимок экрана

Создаем исполняемый файл и запускаем его. Результат работы данной программы будет следующим (рис. 3.3):

```
mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$ nasm -f elf lab8-1.asm
mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-1 lab8-1.o
mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$ ./lab8-1
Введите N: 8
8
7
6
5
4
3
2
1
```

Рис. 3.3: снимок экрана

Изменяем текст программы, добавив изменение значение регистра есх в цикле: (рис. 3.4):

```
mov eax,N
call atoi
mov [N],eax
; ----- Организация цикла
mov ecx,[N]; Счетчик цикла, `ecx=N`
label:
sub ecx,1 ; `ecx=ecx-1`
mov [N],ecx
mov eax,[N]
call iprintLF; Вывод значения `N`
loop label; `ecx=ecx-1` и если `ecx` не '0'
; переход на `label`
call quit
```

Рис. 3.4: снимок экрана

Создаем исполняемый файл и запускаем его. Видим, что вывод чисел происходит с шагом 1, количество проходов цикла уменьшается в 2 раза. (рис. 3.5):

```
mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$ nasm -f elf lab8-1.asm
mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-1 lab8-1.o
mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$ ./lab8-1
Введите N: 8
7
5
3
1
```

Рис. 3.5: снимок экрана

Измененяем текст программы добавив команды push и рор для сохранения значения счетчика цикла loop: (рис. 3.6):

```
mov [N],eax
; ----- Организация цикла
mov ecx,[N]; Счетчик цикла, `ecx=N`
label:
push ecx ; добавление значения ecx в стек
sub ecx,1 ; `ecx=ecx-1`
mov [N],ecx
mov eax,[N]
call iprintLF; Вывод значения `N`
pop ecx
loop label; `ecx=ecx-1` и если `ecx` не '0'
; переход на `label`
call quit
```

Рис. 3.6: снимок экрана

Создаем исполняемый файл и проверяем его работу. Видим, что число проходов цикла соответствует введенному с клавиатуры числу. (рис. 3.7):

```
mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$ nasm -f elf lab8-1.asm
mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-1 lab8
-1.o
mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$ ./lab8-1
Введите N: 8
7
6
5
4
3
2
1
0
```

Рис. 3.7: снимок экрана

3.2 Обработка аргументов командной строки

Создаем файл lab8-2.asm в каталоге и вводим в него текст программы из листинга 8.2. (рис. 3.8):

```
; Обработка аргументов командной строки
%include 'in_out.asm'
SECTION .text
global start
_start:
рор есх ; Извлекаем из стека в `есх` количество
; аргументов (первое значение в стеке)
pop edx ; Извлекаем из стека в `edx` имя программы
; (второе значение в стеке)
sub ecx, 1; Уменьшаем `ecx` на 1 (количество
; аргументов без названия программы)
next:
стр есх, 0 ; проверяем, есть ли еще аргументы
jz end ; если аргументов нет выходим из цикла
; (переход на метку `_end`)
рор еах ; иначе извлекаем аргумент из стека
call sprintLF ; вызываем функцию печати
loop next; переход к обработке следующего
; аргумента (переход на метку `next`)
end:
call quit
```

Рис. 3.8: снимок экрана

Создаем исполняемый файл и запускаем его, указав аргументы (аргумент1 аргумент 2 'аргумент 3') притом количество аргументов оставалось таким же, как и было введено: (рис. 3.9):

```
mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$ nasm -f elf lab8-2.asm
mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-2 lab8-2.o

mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$ ./lab8-2 ргумент1 аргумент 2 'аргумент 3'
ргумент1
аргумент
2
аргумент 3
```

Рис. 3.9: снимок экрана

Создаем файл lab8-3.asm в каталоге и вводим в него текст программы из листинга 8.3 (рис. 3.10) и запускаем его (рис. 3.11)

```
%include 'in_out.asm'
SECTION .data
msg db "Результат: ",0
SECTION .text
global _start
start:
рор есх ; Извлекаем из стека в `есх` количество
; аргументов (первое значение в стеке)
pop edx ; Извлекаем из стека в `edx` имя программы
; (второе значение в стеке)
sub ecx,1 ; Уменьшаем `ecx` на 1 (количество
; аргументов без названия программы)
mov esi, 0 ; Используем `esi` для хранения
; промежуточных сумм
next:
cmp ecx,0h ; проверяем, есть ли еще аргументы
jz end ; если аргументов нет выходим из цикла
; (переход на метку `_end`)
рор еах ; иначе извлекаем следующий аргумент из стека
call atoi ; преобразуем символ в число
add esi,eax ; добавляем к промежуточной сумме
; след. apгумент `esi=esi+eax`
loop next ; переход к обработке следующего аргумента
end:
mov eax, msg ; вывод сообщения "Результат: "
call sprint
mov eax, esi ; записываем сумму в регистр `eax`
call iprintLF ; nevath pesynhtata
```

Рис. 3.10: снимок экрана

```
mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$ nasm -f elf lab8-3.asm
mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-3 lab8-3.o
mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$ ./lab8-3 12 13 7 10 5
Результат: 47
```

Рис. 3.11: снимок экрана

Изменяем текст программы из листинга 8.3 для вычисления произведения аргументов командной строки. (рис. 3.12) и запускаем его (рис. 3.13)

```
%include 'in_out.asm'
SECTION .data
msq db "Результат: ",0
SECTION .text
global _start
start:
рор есх ; Извлекаем из стека в `есх` количество
; аргументов (первое значение в стеке)
pop edx ; Извлекаем из стека в `edx` имя программы
; (второе значение в стеке)
sub ecx,1 ; Уменьшаем `ecx` на 1 (количество
; аргументов без названия программы)
mov esi, 1
next:
cmp ecx,0h ; проверяем, есть ли еще аргументы
jz end ; если аргументов нет выходим из цикла
; (переход на метку `_end`)
рор еах ; иначе извлекаем следующий аргумент из стека
call atoi ; преобразуем символ в число
mul esi
mov esi, eax
loop next; переход к обработке следующего аргумента
end:
mov eax, msg ; вывод сообщения "Результат: "
call sprint
mov eax, esi ; записываем сумму в регистр `eax`
call iprintLF; печать результата
```

Рис. 3.12: снимок экрана

```
mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$ nasm -f elf lab8-3.asm
mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-3 lab8-3.o
mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$ ./lab8-3 5 8
Результат: 40
```

Рис. 3.13: снимок экрана

3.3 Выполнение заданий для самостоятельной работы.

Пишем программу, которая находит сумму значений функции для нескольких x, т.е. программа должна выводить значение f(x1) + f(x2) + ... + f(xn). Вид функции f(x) выбраем из таблицы 8.1 вариантов заданий в соответствии с вариантом (15),

полученным при выполнении лабораторной работы № 7 (рис. 3.14). Создаем исполняемый файл и проверяем его работу на нескольких наборах x (рис. 3.15):

```
%include 'in_out.asm'
SECTION .data
msg_func db "Функция: f(x) = 6x + 13", 0
msg_result db "Результат: ", 0
SECTION .text
GLOBAL _start
_start:
mov eax, msg_func
call sprintLF
pop ecx
pop edx
sub ecx, 1
mov esi, 0
next:
cmp ecx, 0
jz _end
pop eax
call atoi
mov ebx, 6
mul ebx
add eax, 13
add esi, eax
loop next
```

Рис. 3.14: снимок экрана

```
%include 'in_out.asm'

SECTION .data
msg_func db "Функция: f(x) = 6x + 13", 0
msg_result db "Результат: ", 0

SECTION .text
```

```
GLOBAL _start
_start:
mov eax, msg_func
call sprintLF
pop ecx
pop edx
sub ecx, 1
mov esi, 0
next:
cmp ecx, 0
jz _end
pop eax
call atoi
mov ebx, 6
mul ebx
add eax, 13
add esi, eax
loop next
_end:
mov eax, msg_result
call sprint
mov eax, esi
```

call iprintLF

call quit

```
mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$ nasm -f elf lab8-4.asm
mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-4 lab8-4.o
mkkuzjmina@VirtualBox:~/work/arch-pc/lab08$ ./lab8-4 1 2 3 4
Функция: f(x) = 6x + 13
Результат: 112
```

Рис. 3.15: снимок экрана

4 Выводы

В результате выполнения лабораторной программы были приобретены навыки написания программ с использованием циклов и обработкой аргументов командной строки.