1. 1965 35 - 1765

RADA/* W02 87-008526/02 * DE 3603-098-A Resonance circuit preventing attenuation of received signal - has coils magnetic field of signal transmitter with inclined axes enclosing angle for best directional orientation

RADAKOVICS 03.02.85-CH-000480

(08.01.87) H04b-05

01.02.86 as 603098 (391GT)

The signal loss to be prevented may be caused by the directional characteristies of the transmit and receiver coils, using a transmission magnetic field. Several receiver coils are used for the reception of the signal transmitting magnetic field, with a suitable angle between their geometric axes. Each receiver coil forms at least a partial inductance of a resource circuit, tuned to the receiver frequency.

Thus a signal voltage in induced with arbitrarily arranged axes of the receiver and transmit coils, either spatially or in a plane in at least one resonance circuit. The signal voltage in tapped from each resonance circuit by a signal amplifier, independently of all other resonance circuits.

ADVANTAGE - Simple operation reducing direction orientation time. (14pp Dwg.No 9/14)
N87-006184

© 1987 DERWENT PUBLICATIONS LTD.

128, Theobalds Road, London WC1X 8RP, England
US Office: Derwent Inc. Suite 500, 6845 Elm St. McLean, VA 22101

Unauthorised copying of this abstract not permitted.

19 BUNDESREPUBLIK

Offenlegungsschrift

₀ DE 3603098 A1

(9) Int. Cl. 4: H 04 B 5/00

DEUTSCHLAND

(1) Aktenzeichen:

P 36 03 098.8

② Anmeldetag:

1. 2.86

4 Offenlegungstag:

8. 1.87

DEUTSCHES

PATENTAMT

Mit Einverständnis des Anmelders offengelegte Anmeldung gemäß § 31 Abs. 2 Ziffer 1 PatG

① Unionspriorität: ② ③ ③

03.02.85 CH 00 480/85-3

(1) Anmelder:

Radakovic, Svätopluk, Zürich, CH

Wertreter:

Raeck, W., Dipl.-Ing., Pat.-Anw., 7000 Stuttgart

(72) Erfinder:

gleich Anmelder

. (S) Eine Einrichtung mit mehreren Empfangsspulen zur Vermeidung eines Empfangsverlustes durch die Richtcharakteristiken der Sende- und Empfangsspule bei einer Signalübertragung mit magnetischem Feld**

Diese Einrichtung verwendet zum Empfang des signalübertragenden magnetischen Feldes mehrere aber mindestens zwei Empfangsspulen mit einem bestimmten Winkelzwischen ihren geometrischen Achsen und in einer oder
zwei gegenseitig senkrechten Ebenen in einer bestimmten
Weise geordnet, so daß die Richtungen ihrer geometrischen
Achsen und auch die Richtung der Achse der Sendespule
dürfen entweder in einer Ebene oder auch im Raum beliebig
sein. Diese Empfangsspulen sind gleichzeitig Induktivitäten
der Empfangsresonanzkreise, und von jedem solchen Resonanzkreis wird während eines sich periodisch wiederholenden Empfangszyklus mindestens einmal Signalspannung
abgenommen.

In Fig. 9 dargestellte Einrichtung hat drei Empfangsspulen »Lxx, »Lyx, «Lzx gegenseitig senkrechten Achsen, Richtungen dieser Achsen und auch der Achse der Sendespule dürfen im Raum beliebig sein. Zur Ergänzung auf einen Resonanzkreis ist ein gemeinsamer Kondensator »C« verwendet, zu diesem und gleichzeitig zum Signalverstärker »A« werden die Empfangsspulen während jedes Empfangszyklus nacheinander mit elektronischen Schalter »Sch.X«, »Sch.Y«, »Sch.X«, welche mit einer Steuerung (070) betätigt werden, angeschlossen. Diese Einrichtung ist für eine Induktive- und eine Signalübertragung im Nahbereich geeignet.

Patentansprüche

1. Eine Einrichtung zur Vermeidung eines Signalverlustes durch die Richtcharakteristiken der Sende- und Empfangsspule bei einer Signalübertragung mit magnetischem Feld dadurch gekennzeichnet, daß zum Empfang des signalübertragenden magnetischen Feldes mehrere aber mindestens zwei Empfangsspulen die einen geeigneten Winkel zwischen ihren geometrischen Achsen haben, ver- 10 wendet sind und jede Empfangsspule ist auch Induktivität, entweder ganze oder nur eine Teilinduktivität, eines eigenen auf die Empfangsfrequenz abgestimmten Resonanzkreises so daß auch bei einer im Raum oder mindestens in einer Ebene beliebi- 15 gen Richtung der geometischen Achsen der Empfangsspulen und der Sendespule mindestens in einem solchen Resonanzkreis eine Signalspannung induziert wird und diese Signalspannung von jedem Resonanzkreis unabhängig und getrennt von allen 20 anderen Resonanzkreisen mit einem Signalverstärker abgenommen wird.

2. Eine Einrichtung nach Patentanspruch (1) dadurch gekennzeichnet, daß zum Empfang des signalübertragenen magnetischen Feldes zwei Empfangsspulen mit gegenseitig senkrechten geometrischen Achsen verwendet sind.

3. Eine Einrichtung nach Patentanspruch (1) dadurch gekennzeichnet, daß zum Empfang des signalübertragenden magnetischen Feldes drei Empfangsspulen mit gegenseitig senkrechten geometischen Achsen verwendet sind.

4. Eine Einrichtung nach Patentanspruch (1) dadurch gekennzeichnet, daß zum Empfang des signalübertragenden magnetischen Feldes drei Empfangsspulen welcher geometrische Achsen oder Projektionen dieser in einer Ebene liegen verwendet sind und der Winkel zwischen den geometrischen Achsen zwei benachbarten Empfangsspulen beträgt 60°.

5. Eine Einrichtung nach Patentanspruch (1) dadurch gekennzeichnet, daß die geometrischen Achsen der zum Empfang des signalübertragenden magnetischen Feldes verwendeten Empfangsspulen in zwei gegenseitig senkrechten Ebenen geordnet 45 sind.

6. Eine Einrichtung nach Patentanspruch (1) (5) dadurch gekennzeichnet, daß zum Empfang des signalübertragenden magnetischen Feldes in jeder Ebene drei Empfangsspulen verwendet sind, wobei eine Empfangsspule welcher geometrischen Achse in der Schnittgerade beider Ebenen liegt für beide Ebenen gemeinsam ist und der Winkel zwischen den geometrischen Achsen zwei in einer Ebene benachbarten Empfangsspulen beträgt 60°.

7. Eine Einrichtung nach Patentanspruch (1) dadurch gekennzeichnet, daß die zum Empfang des signalübertragenden magnetischen Feldes verwendete Empfangsspulen Spulen mit Ferritkernen sind.

8. Eine Einrichtung nach Patentanspruch (1) dadurch gekennzeichnet, daß die zum Empfang des signalübertragenden magnetischen Feldes verwendete Empfangsspulen Rahmantennen sind.

9. Eine Einrichtung nach Patentanspruch (1) dadurch gekennzeichnet, daß zum Empfang des sies gnalübertragenden magnetischen Feldes drei Empfangsspulen mit gegenseitig senkrechten geometrischen Achsen verwendet sind, wobei zwei Emp

fangsspulen Ferritantennen sind und die dritte Empfangsspule eine Rahmantenne ist.

10. Eine Einrichtung nach Patentanspruch (1) (10) dadurch gekennzeichnet, daß der Schnittpunkt der geometrischen Achse der Rahmantenne mit der Ebene, in welcher die geometrischen Achsen der zwei Ferritantennen liegen sich in dem Winkel zwischen den geometrischen Achsen beider Ferritantennen befindet.

11. Eine Einrichtung nach Patentanspruch (1) dadurch gekennzeichnet, daß die induzierte Signalspannung von jedem Resonanzkreis mit einem getrennten Verstärker abgenommen wird.

12. Eine Einrichtung nach Patentanspruch (1) dadurch gekennzeichnet, daß die empfangene Signalspannung von den mit Trenngliedern entkoppelten und parallel geschalteten Ausgängen aller Verstärker abgenommen wird.

13. Eine Einrichtung nach Patentanspruch (1) (13) dadurch gekennzeichnet, daß die demodulierte Signalspannung von den mit Trenngliedern entkoppelten und parallel geschalteten Signalgleichrichter aller Verstärker abgenommen wird.

14. Eine Einrichtung nach Patentanspruch (1) dadurch gekennzeichnet, daß jeder von den mit den
Empfangsspulen gebildeten Resonanzkreisen während eines Empfangszyklus mindestens einmal in
einem und nur einem Resonanzkreis zugeordneten
Zeitpunkt und während eines Zeitabschnittes gegebener Länge zur Abnahme der induzierten Signalspannung mit einem elektronischen Schalter zu einem gemeinsamen Signalverstärker angeschlossen
wird.

15. Eine Einrichtung nach Patentanspruch (1) (16) dadurch gekennzeichnet, daß die zu dem Signalverstärker gerade nicht angeschlossenen Resonanzkreise mit elektronischen Schaltern kurzgeschlossen oder mindestens verstimmt werden.

16. Eine Einrichtung nach Patentanspruch (1) (15) dadurch gekennzeichnet, daß alle mit den Empfangsspulen gebildeten Resonanzkreise einen gemeinsamen Abstimmkondensator haben zu welchem während eines Empfangszyklus jede Empfangsspule als Induktivität eines solchen Resonanzkreises mit einem elektronischen Schalter mindestens einmal angeschlossen wird.

17. Eine Einrichtung nach Patentanspruch (1) (17) dadurch gekennzeichnet, daß der gemeinsame Abstimmkondensator entweder direkt oder mit einem Koppelglied zu dem Eingang eines gemeinsamen Signalverstärkers angeschlossen ist.

18. Eine Einrichtung nach Patentanspruch (1) (15) (16) (17X18) dadurch gekennzeichnet, daß als elektronische Schalter Feldessekttransistoren verwendet sind.

19. Eine Einrichtung nach Patentanspruch (1) dadurch gekennzeichnet, daß zur Übertragung eines Informationsinhaltes einer bestimmten Länge wird dieser Informationsinhalt in seinem vollen Umfang mehrmals aber mindestens mit einem Doppelprodukt der Anzahl der Empfangsspulen, die verwendet sind, einem Hochfrequenzimpuls einer geeigneten Länge aufmoduliert.

20. Eine Einrichtung nach Patentanspruch (1) dadurch gekennzeichnet, daß zur Übertragung eines bestimmten Informationsinhaltes dieser Informationsinhalt mit einer Anzahl von Hochfrequenzimpulsen wiederholt übertragen wird und jeder von

diesen Hochfrequenzimpulsen überträgt diesen Informationsinhalt vollständig und in seinem vollen Umfang und die Anzahl dieser Hochfrequenzimpulse ist gleich mindestens dem Doppelprodukt der Anzahl der verwendeten Emplangsspulen.

Beschreibung

Zur Vermeidung eines Empfangsverlustes durch die Richtcharakteristiken der Sende- und Empfangsspule 10 bei einer Signalübertragung mit magnetischem Feld sind als Maßnahmen eine drehbare Sendespule oder drehbare Empfangsspule oder ein Kreuzrahmen oder eine Verwendung mehrerer Sendespulen bekannt.

Nachteil der drehbaren Sende- oder Empfangsspule 15 ist eine komplizierte mechanische Ausführung, Notwendigkeit einer Bedienung und die zur Einstellung der Achse der Spule notwendige Zeit, eine schnelle und kurzzeitige Signalübertragung ist meistens nicht möglich. Bei einer Signalübertragung im Fernseld müssen 20 die Richtungen der geometrischen Achsen bei beiden Spulen einstellbar sein und Positionen beider Spulen müssen bekannt sein, weil auch die Richtdiagramme der Sendespule zwei Kreise mit einer Null und mit einem Bereich einer Nullausstrahlung wie bei einem Dipol 25

Eine Verwendung mehrerer Sendespulen mit zugelassenen beliebigen Richtungen ihrer Achsen im Raum, aber mit gegenseitig unterschiedlichen und sest gegebenen Richtungen ihrer geometrischen Achsen, so daß das 30 signalübertragende magnetische Feld von mindestens einer Sendespule in der Empfangsspule bei einer beliebigen Richtung ihrer elektrischen Achse eine Signalspannung induzieren muß, hat einige solche Nachteile nicht, aber die Information muß mit jeder Sendespule 35 mindestens einmal ausgestrahlt werden und Zeitaufwand ist auch größer als für nur eine Ausstrahlung der Information notwendig ist und es muß für die mehrere Sendespulen notwendiger Raum vorhanden sein.

Diese Nachteile hat die Einrichtung, die hier beschrie- 40 ben wird und die für eine induktive Signalübertragung oder für eine Signalübertragung im Nachbereich geeignet ist, nicht.

Zur Erregung des signalübertragenden magnetischen chend der Kombination der verwendeten Empfangsspulen kann die Richtung ihrer Achse im Raum oder mindestens in einer Ebene beliebig sein dürfen. Zum Emplang ihres Feldes werden mehrere aber mindestens zwei Empfangsspulen mit einem bestimmten durch die An- 50 zahl der Empfangsspulen und Verwendungszweck der Einrichtung gegebenen festen Winkel α zwischen ihren geometrischen Achsen aber einer beliebigen Richtung ihrer Achsen im Raum oder mindestens in einer Ebene

Die in einer Emplangsspule induzierte Spannung *U" ist eine Funktion des Winkels øzwischen der Senkrechte durch die Mitte der Empfangsspule zu ihrer Ebene der elektrischen Achse und der Richtung des magnetischen Feldes und ist $U = A \cdot \cos \varphi$ und ist maximal bei 60

Die Senkrechte durch die Mitte der Empfangsspule zu ihrer Ebene der elektrischen Achse ist identisch mit der geometrischen Achse der Empfangsspule, die Konstante "A" ist abhängig von der Intensität des magne- 65 tischen Feldes durch die Emplangsspule und von ihrer Ausführung.

Die Anzahl der Emplangsspulen und der Winkel α

zwischen ihren geometrischen Achsen sind so gewählt, daß bei einer gewünschten beliebigen Richtung der Achse der Sendespule entweder in einer Ebene oder im Raum die Ebene der elektrischen Achse bei mindestens s einer Empfangspule gegenüber dem signalübertragendem magnetischen Feld solche Richtung hat, daß in ihr cine Signalspannung induziert werden muß.

In Fig. 1 ist ein Beispiel zwei Empfangsspulen Lx. Ly welcher geometrische Achsen "xg" und "yg" in horizontaler Ebene liegen und der Winkel zwischen ihren geometrischen Achsen beträgt α=90°. Diese Einordnung ermöglicht wie in Fig. 3 und Fig. 4 dargestellt ist, einen Signalempsang bei einer beliebigen Richtung der geometrischen Achse der Sendespule in der horizontalen Ebene und einer beliebigen Richtung der geometrischen Achsen der Empfangsspulen in horizontaler Ebene. Dies ist im Bereich der induktiven Obertragung und im Nahbereich möglich, weil das signalübertragende magnetische Feld der Sendespule "Ls" ist gleich oder sich mindestens dem Feld eines Solenoides nähert. Der Winkel $\varphi x = 0^{\circ}$ und ist minimal zwischen der Tangente zu einer Feldlinie "t," und der geometrischen Achse "xg" der Empfangsspule Lx und die Signalspannung wird nur in der Spule "Lx" induziert, bei der Spule "Ly" ist der Winkel $\varphi y = 90^{\circ}$ und die induzierte Signalspannung U = 0. Bei einer um 90° gedrehten geometrischen Achse *5gder Sendespule "Ls" wie in Fig. 4 dargestellt, beträgt der Winkel $\varphi y = 0^\circ$ zwischen der Tangente "ty" und der der geometrischen Achse "yg" der Empfangsspule "Ly", die Signalspannung wird nur in der Empfangsspule Ly induziert und U=0 in der Spule "Lx". Jede Empfangsspule ist Induktivität eines auf die Sendefrequenz abgestimmten Resonanzkreises von welchem dann die Signalspannung abgenommen wird. Beide Resonanzkreise sind galwanisch entkoppelt, jeder Resonanzkreis ist zu einem eigenen Verstärker "A" angeschlossen. Die magnetische Kopplung zwischen den Resonanzkreisen muß auch klein sein, die Resonanzkreise dürsen sich nicht beeinflussen. Wenn die Phasenunterschiede beider induzierten Signalspannungen klein sind, dann kann auf den durch die Widerstände "R" entkoppelten und parallel geschalteten Ausgänge beider Verstärker "A" die Signalspannung abgenommen werden.

In Fig. 2 ist Schema einer Einordnung drei Empfangs-Feldes wird eine Sendespule verwendet und entspre- 45 spulen "Lx". "Ly". "Lz" mit gegenseitig senkrechten geometrischen Achsen, dann kann die Richtung der geometrischen Achse der Sendespule im Raum beliebig sein dürfen. Jede Empfangsspule ist Induktivität eines auf die Senderfrequenz abgestimmten Resonanzkreises und jeder Resonanzkreis ist zu einem eigenen Signalverstärker "A" angeschlossen. Es ist gleichzeitig Beispiel eines Falles wo die in Resonanzkreisen induzierten Signalspannungen verschiedene Phasen haben und erst die mit Widerständen "R" entkoppelten Ausgänge der Signalgleichrichter "G" können parallel geschaltet und dort kann die demodulierte Signalspannung abgenommen

In Fig. 5 ist dargestellt eine Einordnung fünf Empfangsspulen deren geometrische Achsen in zwei gegenseitig senkrechten Ebenen liegen, in der horizontalen Ebene "X" und in der vertikalen Ebene "Y". Die geometrische Achse der Sendespule "Ls" darf dann im Raum eine beliebige Richtung haben und ein Vorteil dieser Einordnung der Empfangsspulen sind kleinere Schwankungen der am Ausgang der Einrichtung abgegebenen Signalspannung als Funktion der Richtung der geometrischen Achse der Sendespule "Ls". In jeder Ebene sind für Signalempfang drei Empfangsspulen verwendet, in

der Ebene "X" sind es "Lxi", "Lxy", in der Ebene "Y" sind es Empfangsspulen "Ly1", "Ly2", "Lxy". Die Empsangsspule "Lxy" ist gemeinsam für beide Ebenen. Der Winkel a zwischen zwei in einer Ebene liegenden geometrischen Achsen zwei benachbarten Empfangsspulen beträgt $\alpha = 60^\circ$. Es sind nur die Richtungen der geometrischen Achsen der Empfangsspulen gegenüber der Richtung der Ausbreitung des signalübertragenden magnetischen Feldes wichtig und diese bleiben beibehalten auch wenn sich die "Lx" Empfangsspulen zum Beispiel in 10 einer Linie besinden wie in Fig. 6 dargestellt oder wenn sich auch die "Ly" Empfangsspulen, also alle Empfangsspulen in der horizontalen Ebene befinden Fig. 6, Fig. 7.

In Einrichtungen, wo die Empfangsspulen aus Raumden müssen und ihre gegenseitige induktive Kopplung kann nicht eliminiert werden, aber die Resonanzkreise dürfen sich nicht beeinflussen, dort ist es möglich, diese Schwierigkeiten damit umzugehen, daß in einem Zeitpunkt und während eines Zeitabschnittes Länge "te" 20 wird die Signalspannung nur von einem Resonanzkreis abgenommen und nur dieser wird mit einem elektronischen Schalter zu dem Signalverstärker angeschlossen, die übrigen Resonanzkreise können dann mit elektronischen Schaltern kurzgeschlossen oder mindestens ver- 25 stimmt werden.

In Fig. 8 ist Beispiel einer Einrichtung mit zwei Empfangsspulen "Lx", "Ly" mit gegenseitig senkrechten geometrischen Achsen "xg" und "yg", die in horizontaler Ebene liegen, die Richtung der geometrischen Achse 30 "sg" der Sendespule "Ls" kann dann in horizontaler Ebene beliebig sein dürfen. Der elektronische Schalter "Sch.X" zum Anschließen des Resonanzkreises mit der Empfangsspule "Lx" während einer Empfangszeit "te" zu dem Signalverstärker "A" oder zum kurzschließen 35 k-Empfangszyklen notwendig. dieses Resonanzkreises und der elektronische Schalter "Sch.Y" mit ähnlicher Funktion zu dem Resonanzkreis mit der Empfangsspule sind mit der Schaltersteuerung (070) betätigt. Die Signalspannung wird von den Resonanzkreisen in einem sich periodisch wiederholenden 40 Empfangszyklus abgenommen und jeder Resonanzkreis wird während dieses Empfangszyklus mit seinem elektronischen Schalter in einem nur ihm zugeordneten Zeitpunkt und während einer Empfangszeit "te" zu einem Signalverstärker "A" einmal angeschlossen. Dieses Empfangszyklus wiederholt sich periodisch, nach der Abnahme der Signalspannung von dem letzten Resonanzkreis wird die Signalspannung wieder von dem ersten Resonanzkreis abgenommen. Die Länge "ler" eines Empfangszyklus ist abhängig von der Art der ausgestrahlten Information und von der Art der Ausstrahlung dieser Information. In Fig. 11 sind die Impulsdiagramme der Einrichtung von Fig. 8, die Information wird in Form eines nichtmodulierten HF Impulses von einer det sich in einer Lage bei welcher " φ_* "=0° und die in ihr induzierte Spannung " U_* " ist maximal, die Emplangsspule "Ly" muß sich gleichzeitig in einer Lage bei welcher "v,"=90° besinden und die in ihr induzierte Spannung "U" ist gleich Null, U=0.

Die Länge "ter" eines Empfangszyklus ist gegeben mit der Anzahl "a" der Empfangsspulen, mit der Empfangszeit "te" notwendigen zum sicheren Empfang der mit dem HF Impuls übertragenen Informationen mit einer beliebigen Emplangsspule und bei einer beliebigen Po- 65 sition des HF Impulses gegenüber dem Emplangszyklus. und mit der Zeit "loc" was die Zeit ohne Empfang ist und das ist die Zeit zwischen zwei nacheinander folgenden

Empfangszeiten "te" zwei Empfangsspulen. Die minimal notwendige Länge eines Empfangszyklus ist dann $t_{cv} = a \cdot t_{cmin} + (a-1)t_{oc}$ Die minimal notwendige Empfangszeit mit einer beliebigen Empfangsspule ist: temin = 2 · temin + too wobei temin ist die zum sicheren Emplang der übertragenen Information mit einer beliebigen Empfangsspule minimal notwendige Zeit Diese Zeit "temin" ist bestimmt mit der übertragenen Information, mit den Schaltzeiten der elektronischen Schalter und Ansprechzeiten des Verstärkers "A". Die Empfangszeit "¿min" muß dann die Länge: temin = 2 · temin + techaben weil, wie in Fig. 11 Zeile "Ind Spannung in Spule und Zyklus" in dem Zyklus "n" und in dem Zyklus "n+1" dargestellt, die "temin" muß gründen sich in kleinen Distanzen nebeneinander befin- 15 auch bei einer ungünstigsten Position des HF Impulses zu den Empfangszyklen gesichert bleiben. Aus den Impulsdiagrammen in Fig. 11 ist auch sichtbar, daß jeder in einem beliebigen Zeitpunkt gesendete HF Impuls mit mindestens einem Empfangszyklus "ter" empfangen wird und jedesmal in dem Resonanzkreis mit der Empfangsspule "Lx" eine Signalspannung während eines Zeitabschnittes Länge: lind = liemin induziert wird. Die Länge des HF Impulses ist: $t_i = t_{cc}$ Wenn ein ausgestrahlter HF Impuls während zu zwei nacheinander folgenden Empfangszyklen gehörenden Empfangszeiten "te" eines Resonanzkreises empfangen wird, wird während dieses HF Impulses Länge "1," die Signalspannung in diesem Resonanzkreis zweimal induziert. In Fig. 11 ist das der Fall bei dem HF Impuls "m" der während des n-ten und (n+1)-ten Empfangszyklus empfangen wird. Mit einem HF Impuls einer bestimmten Länge "t," kann nur ein Informationsinhalt einer bestimmten Länge "i," übertragen werden, zur Übertragung eines Informationsinhaltes einer Länge $k \cdot t_i$ sind mindestens k-HF Impulse und

Eine Einrichtung mit drei Empfangsspulen "Lx". "Ly". "Lz", gegenseitig senkrechter geometrischer Achsen "xg". "yg". "zg" die eine Signalübertragung bei einer beliebigen Richtung der geometrischen Achse "sg" der Sendespule "Ls" im Raum ermöglicht ist in Fig. 9 dargestellt. Die Induktivitäten "Lx", "Ly", "Lz" der drei Resonanzkreise haben einen gemeinsamen Abstimmkondensator "C", zu diesem und gleichzeitig zu dem Verstärker "A" werden während eines Empfangszyklus die Empfangsspulen mit elektronischen Schaltern "Sch - X". "Sch · Y", "Sch · Z" in einzelnen jeweils nur einer Empfangsspule zugeordneten Zeitpunkten angeschlossen, die Resonanzkreise werden gebildet und die Signalspannung wird abgenommen. Da durch die Empfangsspulen ein Zirkulationsstrom der Resonanzkreise fließt, sind als Schalter Feldeffekttransistoren verwendet. Die Empfangsspule "Lz" ist eine Rahmantenne und ihre Induktivität wird mit der Abgleichspule "La" auf die Resonanzfrequenz abgeglichen. In Fig. 10 sind die Emp-Länge ""," ausgestrahlt. Die Empfangsspule "Lx" befin- ss fangsspulen abgebildet, "Lx" und "Ly" sind Ferritantennen und die "Lz" eine Rahmantenne, diese Kombination ist flach und ermöglicht auch eine flache Ausführung eines Gerätes was besonders bei tragbaren und Taschengeräten Vorteil ist. In Fig. 12 sind die zu der Einordnung von Fig. 9 gehörenden Impulsdiagramme.

Eine Vorraussetzung bei einem Empfang mit dem Ablauf wie in den Impulsdiagrammen Fig. 11 und Fig. 12 dargestellt ist einer während der ganzen Zeit "1," der Ausstrahlung des HF Impulses sich nicht ändernde Informationsinhalt, so daß mit einer beliebigen Empfangsspule während einer Emplangszeit "Lemin" in einem beliebigen Abschnitt des HF Impulses immer der vollständige Informationsinhalt empfangen wird.

Wenn sich der Informationsinhalt während einer Ausstrahlungszeit "t;" ändern wird und muß während seiner ganzen Ausstrahlungszeit Länge 7," ohne Unterbruch und vollständig empfangen werden, dann muß dieser Informationsinhalt während mindestens eines Empfangszyklus mit mindestens einer Empfangsspule vollständig und während seiner ganzen Länge "t," ohne Unterbruch emplangen werden. Das ist mit vorgeschlagener Einrichtung möglich, wenn während des HF Impulses dieser Informationsinhalt w-mal wiederholt ausge- 10 strahlt wird. Impulsdiagramme solches Ablaufes einer Ausstrahlung eines solchen Informationsinhaltes "ti" sind in Fig. 13 und Fig. 14 dargestellt und beziehen sich auf die Einrichtung in Fig. 9. Zur Vereinfachung ist in dem Impulsdiagramm Fig. 13 ein Idealfall angenommen, 15 daß die Ansprech-und Abfallzeiten "L" der elektronischen Schalter vernachlässigbar klein sind, dagegen in Fig. 14 sind diese Zeiten berücksichtigt.

Die Anzahl "a" der Empfangsspulen ist auch in diesem Fall mit den gesorderten und zugelassenen Änderungen 20 der Richtungen der geometrischen Achsen der Empsangsspulen und der Sendespule "Ls" und mit den zugelassenen Schwankungen der in den Empfangsspulen in-

duzierten Signalspannung bestimmt.

Es gelten dieselben Regeln wie in dem vorher be- 25 schriebenen Fall einer Übertragung mit einem nicht modulierten oder mit einem sich nicht ändernden Informationsinhalt modulierten HF Impuls einer Länge "1,". Daß einer sich ändernder Informationsinhalt einer Länge "ti" w=2a, ausgestrahlt werden muß ist aus der Fig. 14 sichtbar. In dem Beispiel in der Fig. 14 lediglich bei der Empfangsspule "Lx" befindet sich die geometrische Achse "xg" gegen dem signalübertragenden magne- 35 tischen Feld in solcher Richtung, daß in der Empfangsspule "Lx" eine Signalspannung induziert wird. Der HF Impuls einer Länge "," in der Zeile 4. befindet sich gegen den Empfangszyklen (n-1), n, und (n+1) Zeile 5 in einer ungünstigsten Position. Der mit dem HF Impuls 40 "t," (1) übertragene Informationsinhalt "t;" wird bei seiner (1) Ausstrahlung während des zu dem n-ten Empfangszyklus gehörenden Einschalten und bei seiner (6) Wiederholung während des zu dem (n+1) Empfangszyklus gehörenden Einschalten der Spule "Lx" in seiner 45 vollständigen Länge "t;" empfangen, Zeilen 5, 6. Während des n-ten Empfangszyklus Zeile 5, 6 empfängt die Empfangsspule "Lx" vollständig auch die (6) Wiederholung des mit dem HF Impuls "((0)" übertragenen Informationsinhaltes. Während des (n+1) Empfangszyklus so elektronischen Schalters vernachlässigbar kurz sind und empfängt die "Lx" Spule vollständig auch die (1) Ausstrahlung des mit dem HF Impuls "((2)" übertragenen Informationsinhaltes. Bei einer Verschiebung des HF Impulses "(1)" noch weiter nach rechts, wird der mit ihm übertragene Informationsinhalt bei seiner (1) Aus- 55 strahlung nicht mehr vollständig emplangen, wird aber während seiner (6) Wiederholung in demselben HF Impuls "((1)" und während des (n+1) Empfangszyklus mit der Spule "Lx" vollständig empfangen.

Es muß weiter die zu einem sicheren Empfang eines 60 ausgestrahlten Informationsinhaltes einer Länge "ti" und bei einer gegebenen Anzahl "a" der Empfangsspulen mit einer beliebigen Empfangsspule und bei einer beliebigen Position des HF Impulses zu den Empfangszyklen

Die Länge "1," des HF Impulses bei einer w-mal wie-

derholten Ausstrahlung eins Informationsinhaltes Länge "t," besteht aus der "w · t," langen Ausstrahlungszeit der Information und aus einer (w-1) · lo langen Zeit ohne Ausstrahlung der Information und 5 $t_i = w + t_i + (w-1) + t_{or}$ Die Zeit t_i angenommen. die Zeit "to ohne Ausstrahlung einer Information ist die Zeit zwischen zwei benachbarten Ausstrahlungen der Information und auch die Zeit zwischen zwei benachbarten HF Impulsen. Die Zeit "Loi" hat eine mit der Konzeption des Senders bedingte minimale Lange, die nicht unterschritten werden kann, aber oberhalb dieser Grenze ist sie frei wählbar und wird zur Anpassung der Länge "i," des HF Impulses auf seine notwendige Lange verwendet.

Die Länge ℓ_{er} eines Empfangszyklus ist: $\ell_{er} = a \cdot \ell_e + (a-1) \cdot \ell_{\infty}$ wo die Zeit ℓ_e ist die bei einer gegebenen gegebenen Zeit "i," und "i," minimal notwendige Empfangszeit mit einer beliebigen Empfangsspule und bei einer beliebigen Position des HF Impulses zu den Empfangszyklen zu einem vollständigen Empfang des ausgestrahlten Informationsinhaltes Länge "ti". Die Zeit "toe" ist die Zeit ohne Empfang und das ist die Zeit zwischen zwei benachbarten Empfangszeiten "te" zwei Empfangsspulen. Die minimal notwendige Emplangszeit "te" mit einer beliebigen Emplangsspule ist, wie in Fig. 14 Zeile 1 "HF Impulse". Zeile 2 "Empfangszyklen" und Zeile 3 "Induzierte Spannung in Spule während Zyklus" sichtbar, gegeben mit einer zu einem einsachen und einzigen Empfang des ausgestrahlten Inwährend eines HF Impulses einer Länge "1," w-mal wie- 30 formationsinhaltes einer Länge "1," notwendigen Empfangszeit "tie" und diese ist: tie = tie wobei die längste noch erwartete Zeit "ti" eingesetzt wird, weiter mit der Länge des Zeites "to," und mit den Ansprech- und Abfallzeiten "i," des verwendeten elektronischen Schalters. Die minimal notwendige Emplangszeit "te" mit einer Empfangsspule ist dann: $t_c = 2t_{ic} + t_{oi} + 2t_{s}$ Die notwendige Zeit "loi" ist: loi = 214 + loc Als "loc" wird die längste tatsächliche Zeit "toe" eingesetzt, diese beeinflußt die Länge "t," des HF Impulses und wird so kurz wie möglich gehalten. Die notwendige Länge "le"des HF Impulses beträgt: $t_i = w \cdot t_i + (w - t_i) \cdot t_{oi}$ und die "lei" eines Empfangszyklus $l_{ee} = a \cdot l_e + (a-1) \cdot l_{\infty}$ Bei einer Ausstrahlung eines kürzeren Informationsinhaltes "t;" als maximal vorgesehen muß die Zeit "to:" verlängert werden, damit die Länge "i," des HF Impulses-unverändert bleibt oder muß auch die Länge "let" des Emplangszyklus neu bestimmt werden. In den Impulsdiagrammen in Fig. 13 ist dann ist: Loi - Loc.

Statt eines HF Impulses einer Länge ""," mit einem w-mal aufmodulierten Informationsinhalt einer Länge "ti" können auch "w" HF Impulse jeder einer Länge "ti" mit jeweils einmal aufmodulierten demselben Informationsinhalt einer Länge "i," verwendet werden und die Zeit "loi" zwischen zwei benachbarten HF Impulsen bleibt gleicher Länge wie die Zeit "loi" zwischen zwei benachbarten Aufmodulierungen des Informationsinhaltes bei einer Übertragung mit einem HF Impuls Län-

Die beschriebene Einrichtung ermöglicht bei einer Signalübertragung ausschließlich mit magnetischem minimal notwendige Lange "1," des HF Impulses und die 65 gung und einer Übertragung im Nahbereich, auch wenn die Richtung der Achse der Sendespule nicht bekannt ist und muß beliebig sein dürsen und auch wenn die Richtungen der Achsen der Empfangsspulen können nicht

frei bestimmt werden einen zuverlässigen Signalempfang, so daß auch in solchen Bedingungen ist es möglich, die Vorteile dieser Signalübertragung auszunützen.

5

Nummer:

Int. Cl.4; Anmeldetag: Offenlegungstag: 36 03 098 H 04 B 5/00 I. Februar 1986

8. Januar 1987

Fig. 9

Fig. 10.

Fig. 11.

Fig.13.

