Assignment 3

Due Date: 2019/04/17, 1:30 PM

- 1. Find int A, A' and \overline{A} for the following sets and prove your answer:
- (1) $A = \{(x, y) \in \mathbb{R}^2 : xy \ge 1\}$
- (2) $A = \left\{ (-1)^n \frac{n}{n+1} : n \in \mathbb{N} \right\}$
- (3) $A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 < 1, z = 0\}$
- **(4)** $A = \left\{ \left(\frac{m}{n}, \frac{1}{n} \right) : m, n \in \mathbb{N} \right\}$
- (5) $A = \{(x, y) \in \mathbb{R}^2 : |x| \le 1, |x + y| < 1\}$.
- **2.** Prove or disprove (by a counter example) the following properties for $A \subset \mathbb{R}^d$:
- (1) int $\overline{A} = \operatorname{int} A$
- (2) $\overline{\text{int } A} = A \text{ if } A \text{ is a closed set.}$
- (3) int $A \cap \overline{A^c} = \emptyset$
- (4) int $A \cup \overline{A^c} = \mathbb{R}^n$
- **3.** (1) Suppose that $\sum_{n=1}^{\infty} a_n$ converges absolutely in \mathbb{R} , and $\langle b_n \rangle$ is a Cauchy sequence in \mathbb{R} . Prove that $\sum_{n=1}^{\infty} a_n b_n$ converges.
- (2) Determine whether the infinite series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ converges or not (and prove your answer).
- **4.** Suppose that A is a bounded set in \mathbb{R}^d . Prove that \overline{A} is a compact set.

5. Find an open cover of the following set $A \subset \mathbb{R}^2$ that does not have finite subcover, and demonstrate your answer.

$$A = \{|x| + 2|y| < 1\}$$

6. Let $\langle a_n \rangle$ be a sequence in \mathbb{R}^d and let $a \in \mathbb{R}^d$. Suppose that every subsequence of $\langle a_n \rangle$ has a further subsequence that converges to a. Prove that $\lim a_n = a$.

Select only one problem out of the following two problems.

- 7. The following is an alternative proof of Bolzano-Weierstrass Theorem (Theorem 2.3.4 of the textbook): Suppose that $\langle a_n \rangle$ is a bounded sequence in \mathbb{R} . We say that $\ell \in \mathbb{N}$ is a **peak** of the sequence $\langle a_n \rangle$ if we have $a_{\ell} > a_m$ for all $m > \ell$.
- (1) If $\langle a_n \rangle$ has infinitely many peaks, then prove that $\langle a_n \rangle$ has a decreasing subsequence.
- (2) If $\langle a_n \rangle$ has finitely many peaks, then prove that $\langle a_n \rangle$ has an increasing subsequence.
- (3) Prove Theorem 2.3.4 for sequences in \mathbb{R} .
- (4) Prove Theorem 2.3.4 for sequences in \mathbb{R}^d .
- **8.** Suppose that $\langle a_n \rangle$ is a positive sequence in \mathbb{R} , and that there exist c > 1 and $N \in \mathbb{N}$ such that

$$\frac{a_{n+1}}{a_n} \le 1 - \frac{c}{n} \text{ for all } n \ge N .$$

Prove that $\sum_{n=1}^{\infty} a_n$ converges.