嵌入式ARM开发

基于S3C2440的WAV Player实现

北京亚嵌教育研究中心 网络课堂 (http://www.akaedu.org)

中国嵌入式技术的黄埔军校

开场介绍

- 本次课程讲什么?
 - 如何在嵌入式裸板上实现音频播放
 - S3C2440主芯片+UDAI34I音频芯片
 - 无os,加电后运行的代码全部自己写
- 本次课程谁来讲?
 - limingth@akaedu.org
- 本次课程谁适合听?
 - 对嵌入式开发有兴趣的初学者

课程收获

- 了解嵌入式系统的"裸板"编程
- 了解嵌入式ARM开发的基本工具
- 了解S3C2440芯片启动全过程
- 了解WAV音频文件播放原理
- 了解该项目开发的渐进式过程

目标平台

- 核心板+底板
- NandFlash 64M
- SDRAM 64M
- SRAM 8K

开发环境

- Windows XP
- ADS I.2 开发套件安装 (tools\ADSI.2)
 - 选择 Full 安装
 - 安装 Licence 文件 (crack\license.dat)
 - armasm, armcc, armlink, fromelf 工具链
- make 工具 (tools\make.exe)
 - 复制到program files\ARM\ADSvI_2\Bin下
- Audio + mic

课前准备

- 硬件原理图和芯片手册
 - 开发板原理图(核心板和底板)
 - 芯片手册 (resource\datasheet)
 - S3C2440, UDAI341, K9F1208
- WAV音频格式资料 (resource\wav-format)
- 测试用音频文件 (wav-files*)

目标和任务

- 目标:实现多种WAV文件的播放
 - 任务1: 实现基本的音频播放功能
 - 任务2:实现WAV文件的下载,固化和播放
 - 任务3:实现各类WAV格式分析和驱动
 - 任务4: 性能优化和功能增强

硬件工作原理

工作分解

- WAV音频格式学习
- S3C2440芯片启动代码学习
- IIS总线工作原理学习
- UDAI34I驱动代码学习
- L3总线工作原理学习

WAV音频格式

The Canonical WAVE file format

WAV 数据 存储

S3C2440 芯片

Figure 1-1. S3C2440A Block Diagram

IIS总线

Figure 21-2. IIS-Bus and MSB (Left)-justified Data Interface Formats

IIS总线信号

■ IIS的信号:

- I.串行时钟SCLK,也叫位时钟(BCLK),即对应数字音频的每一位数据,SCLK都有I个脉冲。SCLK的频率=通(声)道数×采样频率×采样位数
- 2.帧时钟LRCK,用于切换左右声道的数据。比如:LRCK为"I"表示正在传输的是左声道的数据,为"0"则表示正在传输的是右声道的数据。在S3C2440中,又IISMOD控制。LRCK的频率等于采样频率。
- 3.串行数据SDATA,就是用二进制补码表示的音频数据。
- 4.CDCLK 为UDAI34I 芯片提供系统的同步时钟,也称为编解码时钟,即提供UDAI34I 芯片进行音频的A/D,D/A 采样时的采样时钟

UDAI34I 芯片

липрэ эсинсопичасоть година эресписацоги

Economy audio CODEC for MiniDisc (MD) home stereo and portable applications

UDA1341TS

5 BLOCK DIAGRAM

UDAI34I 芯片

Philips Semiconductors Product specification

Economy audio CODEC for MiniDisc (MD) home stereo and portable applications

UDA1341TS

6 PINNING

SYMBOL	PIN	DESCRIPTION
Vssa(adc)	1	ADC analog ground
VINL1	2	ADC1 input left
V _{DDA(ADC)}	3	ADC analog supply voltage
VINR1	4	ADC1 input right
V _{ADCN}	5	ADC negative reference voltage
VINL2	6	ADC2 input left
V _{ADCP}	7	ADC positive reference voltage
VINR2	8	ADC2 input right
OVERFL	9	decimation filter overflow output
V_{DDD}	10	digital supply voltage
V _{SSD}	11	digital ground
SYSCLK	12	system clock 256f _s , 384f _s or 512f _s
L3MODE	13	L3-bus mode input
L3CLOCK	14	L3-bus clock input

SYMBOL	PIN	DESCRIPTION
L3DATA	15	L3-bus data input and output
BCK	16	bit clock input
WS	17	word select input
DATAO	18	data output
DATAI	19	data input
TEST1	20	test control 1 (pull-down)
TEST2	21	test control 2 (pull-down)
AGCSTAT	22	AGC status
QMUTE	23	quick mute input
VOUTR	24	DAC output right
V _{DDA(DAC)}	25	DAC analog supply voltage
VOUTL	26	DAC output left
V _{SSA(DAC)}	27	DAC analog ground
V _{ref}	28	ADC and DAC reference voltage

L3总线地址传输

Fig.5 Timing address mode.

L3总线数据传输

Fig.6 Timing for data transfer mode.

软件模块

- S3C2440启动代码模块
- IIS总线驱动模块
- L3总线驱动模块
- DMA驱动模块
- 中断功能模块

源码分析

开发流程I

- Stagel: 实现开发板的基本输入输出功能
 - S3C2440芯片启动
 - 关闭看门狗
 - 驱动串口(输出调试信息)
 - Shell 交互程序
 - Command 命令解析

- Stage2: 实现外部文件的下载固化功能
 - 基于串口X-Modem协议实现下载
 - 配置NandFlash控制器(设置寄存器)
 - 根据NandFlash芯片时序实现驱动
 - read
 - erase
 - program

- Stage3: 实现WAV文件的播放功能
 - ●ⅡS总线驱动
 - L3总线驱动
 - UDAI34I驱动
 - WAV音频数据的播放

- Stage4: 实现各类WAV格式分析和驱动
 - 分析WAV文件的格式信息
 - 采样率
 - 声道数
 - 采样位数
 - 通过L3总线配置UDAI34I芯片控制器

- Stage5: 性能优化和功能增强
 - 通过DMA驱动IIS总线
 - 实现Interrupt中断方式控制DMA
 - 通过L3总线驱动UDAI34I
 - 音量 (volume)
 - 静音 (mute)
 - 录音 (record)

Demo

技术细节

- S3C2440芯片启动
 - 时钟频率
 - 串口驱动
 - 芯片管脚功能复用
- WAV音频文件
 - 2个字节偏移

难点剖析

- UDAI34I驱动
 - L3总线模拟
 - L3DATA, L3MODE, L3CLOCK
 - 内部寄存器配置
- NandFlash芯片驱动
 - 时序 (read, erase, program)

课程回顾

- ●目标
- 任务
- 工作分解和学习
- 开发流程
- 技术细节
- 难点剖析