回溯與河枝

日月卦長

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

5	M	4	6	7	8	9	1	2
6	7	2	1	9	5	M	4	8
1	9	8	ന	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

- 每一列的數字均須包含 1~9, 不能缺少,也不能重複。
- 每一宮(粗黑線圍起來的區域, 通常是 3*3 的九宮格) 的數字均須包含 1~9, 不能缺少,也不能重複。

Sudoku 數獨

Input

Output

Yes

Input

Output

No

輸入資料

```
#include <iostream>
#include <string>
using namespace std;
int grid[9][9];
void input() {
  for (int r = 0; r < 9; ++r) {
    string buffer;
    cin >> buffer;
    for (int c = 0; c < 9; ++c) {
      grid[r][c] = buffer[c] - '0';
```

判斷 row

bool row[9][10]

0	1	2	3	4	5	6	7	8	9
row[3]		true	true		true		true		true

判斷 column

7

		-	7	1	7.
		1	1	3	78
		/	A	5	
		V	A	7	P
		V	A	9	0
		N	1		y.
			5		0
			1		Y
					1

bool col[9][10]

CO[[7]	1	2	3	4	5	6	7	8	9
COILAT	true		true		true		true		true

判斷 subgrid

1

		_			The state of the s	-
					7 4	7
					1 4	8
				1	2	
				/	8	
				1	2	U
				1	- YB	-
		3	2	6	5 4	h.
		7	5		4,	Y
					4	1
·	·	·	·			4

bool subgrids[3][3][10];

subgrids[2][1] 0 1 2 3 4 5 6 7 8 9 true true true true true

2

判斷+更新資料

```
bool row[9][10], col[9][10];
bool subgrids[3][3][10];
bool illegal(int r, int c, int num) {
  return row[r][num] || col[c][num] || subgrids[r / 3][c / 3][num];
void update(int r, int c, int num, bool val) {
  row[r][num] = val;
  col[c][num] = val;
  subgrids[r / 3][c / 3][num] = val;
```

判斷數獨

```
bool check() {
  for (int r = 0; r < 9; ++r) {
    for (int c = 0; c < 9; ++c) {
      if (grid[r][c] == 0) continue; // 伏筆
      if (illegal(r, c, grid[r][c]))
        return false;
      update(r, c, grid[r][c], true);
  return true;
int main() {
 input();
  cout << (check() ? "Yes\n" : "No\n");</pre>
 return 0;
```

數獨求解(輸出最小字典序)

Input

1....478 7...314956

Output

輸入資料

```
int grid[9][9];
void input() {
  for (int r = 0; r < 9; ++r) {
    string buffer;
    cin >> buffer;
    for (int c = 0; c < 9; ++c) {
      if (isdigit(buffer[c]))
        grid[r][c] = buffer[c] - '0';
      else
        grid[r][c] = 0;
```

印出答案

```
void print() {
  for (int r = 0; r < 9; ++r) {
    for (int c = 0; c < 9; ++c)
      cout << grid[r][c];</pre>
    cout << '\n';</pre>
```

幫每個格子編號

•
$$R = 6$$

$$57 = R \times 9 + C$$
$$= 6 \times 9 + 3$$

•
$$R = [57/9] = 6$$

•
$$C = 57\%9 = 3$$

	75.		IV.		/_	200			
din	0	1	2	3	4/	5	6	7	8
0	0	象	2	3	4	5	6	7	8
ZŽŽŽ	9	10	11	12	13	14	15	16	17
2	18	19	20	21	22	23	24	25	26
3	27	28	29	30	31	32	33	34	35
4	36	37	38	39	40	41	42	43	44
252	45	46	47	48	49	50	51	52	53
6	54	55	56	57	58	59	60	61	62
17	63	64	65	66	67	68	69	70	71
8	72	73	74	75	76	77	78	79	80

```
bool dfs(int idx) {
  if (idx == 81) {
    memset(row, 0, sizeof(row));
    memset(col, 0, sizeof(col));
    memset(subgrids, 0, sizeof(subgrids));
    return check();
  int r = idx / 9, c = idx % 9;
  if (grid[r][c]) return dfs(idx + 1);
  for (int num = 1; num <= 9; ++num) {</pre>
    grid[r][c] = num;
    if (dfs(idx + 1)) return true;
  grid[r][c] = 0;
  return false;
```

- 假設 $0 \sim idx 1$ 的格子都填好了
- 依序枚舉所有填滿 *idx~80* 的所有可能
- 若找到合法解則回傳 true

```
bool dfs(int idx) {
  if (idx == 81) {
    memset(row, 0, sizeof(row));
    memset(col, 0, sizeof(col));
    memset(subgrids, 0, sizeof(subgrids));
    return check();
  int r = idx / 9, c = idx % 9;
  if (grid[r][c]) return dfs(idx + 1);
  for (int num = 1; num <= 9; ++num) {
    grid[r][c] = num;
    if (dfs(idx + 1)) return true;
  grid[r][c] = 0;
  return false;
```

• 所有格子都填滿了

• 回傳是否是合法數獨

```
bool dfs(int idx)
  if (idx == 81) {
   memset(row, 0, sizeof(row));
    memset(col, 0, sizeof(col));
   memset(subgrids, 0, sizeof(subgrids));
    return check();
  int r = idx / 9, c = idx % 9;
  if (grid[r][c]) return dfs(idx + 1);
  for (int num = 1; num <= 9; ++num) {
    grid[r][c] = num;
    if (dfs(idx + 1)) return true;
  grid[r][c] = 0;
  return false;
```

• 如果格子已經有數字了

• 就直接跳過枚舉下一個格子

```
bool dfs(int idx) {
  if (idx == 81) {
    memset(row, 0, sizeof(row));
    memset(col, 0, sizeof(col));
    memset(subgrids, 0, sizeof(subgrids));
    return check();
  int r = idx / 9, c = idx % 9;
  if (grid[r][c]) return dfs(idx + 1);
  for (int num = 1; num <= 9; ++num) {
    grid[r][c] = num;
    if (dfs(idx + 1)) return true;
  grid[r][c] = 0;
  return false;
```

• 枚舉數字 1~9 依序填入格子中

由於由小到大枚舉 一旦找到解那就會是 字典序最小的解

```
bool dfs(int idx) {
 if (idx == 81) {
   memset(row, 0, sizeof(row));
   memset(col, 0, sizeof(col));
   memset(subgrids, 0, sizeof(subgrids));
   return check();
 int r = idx / 9, c = idx % 9;
 if (grid[r][c]) return dfs(idx + 1);
  grid[r][c] = num;
   if (dfs(idx + 1)) return true;
  grid[r][c] = 0;
  return false;
```

為了讓當前的函數不 影響其他正在遞迴的 函數

結束遞迴時一定要把 所有修改都復原

```
bool dfs(int idx) {
  if (idx == 81) {
    memset(row, 0, sizeof(row));
    memset(col, 0, sizeof(col));
    memset(subgrids, 0, sizeof(subgrids));
    return check();
  int r = idx / 9, c = idx % 9;
  if (grid[r][c]) return dfs(idx + 1);
  for (int num = 1; num <= 9; ++num) {
    grid[r][c] = num;
    if (dfs(idx + 1)) return true;
  grid[r][c] = 0;
  return false;
```

```
int main() {
  input();
  if (check() && dfs(0))
    print();
  else
    cout << "No answer\n";
  return 0;
}</pre>
```

更難的測資

Input

...7...5.

.1....9 ...3..8..124.. 7.3.... 5..... 8..6.... ...4..2.

Output

回朔 = 暴力枚舉 + 剪枝 (Backtracking)

進入遞迴前就發現走下去永遠找不到解就直接跳過這次遞迴

- 4	-		-	400	-	M. Fr	-	200
9	8	7	6	5	4	3	2	1
2	4	6	¥	N	ന	9	8	5
3	5	17	9	2		0	28	2
18	222	222	2	X	A	100	m	3
1 6	27	商	施	m	SA	11	ME	3 1
2	3	F	2	B.	0	É	B	0
C	1	B	33	M	3.50	9	1	Q-
h	3	11.	3	u	1	1	1	1
A	7	5	9	U	N	1	Y.	7
	M1	170	August 1		- 4	1	~	

8 5
980 B
man 3
JAB 1
1 60
9 6
IVE
8
The same of the sa

continue

5	58		AW	Printeger .	-	-	5	6	Th.	8	9
3		3	8	9 8		3	7	1	6	4	2
2	3	3	2	9	5	2	2	9	4	5	3
3	3	3	777	m	B			2	222	2277	8
3 1	3	3	g/E	1	d .	5	m	ST.	图	27	Y
0	0	C	4	De	Y V	3	B	2	9	3	2
2	2	Q-	-	\$	2	100	B	27	9	1	0
1	1	1	V	1		2	77	all	11	1	X
9	9	9	1	1	N	1	l	4	5	n	V
		The same of the sa	が見る	からからい	1 N N N N N N N N N N N N N N N N N N N	1 S	1 Samuel I	A WAR	がきるのし	のころの	100

continue

9	8	7	6	5	4	3	2	1	
2	4	6	\mathbb{Z}	1	ო	9	8	5	5
3	5	17	9	2	8	0	3		
18	222	222	2	X	E	277	m	3	2
1 4	23	南	领	m	S	11	14/8	3 !	
2	S	F	2	B.	Di	ST.	B	0	5
C	1	B	33	M	3.48	5	1	Ŷ	1
h	3	11.	ATT.	m	7	1	1	1	7
Z	n	٥,	9	U	2	1	X	h	

dfs(idx+1)

dfs(idx)

14	7	3	9
9	2		300

1	9	2	1	
6	1	7	3	9

 1
 7
 3
 9

 9
 2
 8

dfs(idx+1)

Y	7	3	9
9	2	8	7

使用 Backtracking

• 如果 grid[r][c] = num 時 就可以直接判斷是非法解

• 就沒必要針對 num 遞迴 直接跳過 (continue)

```
bool dfs(int idx) {
 if (idx == 81) return true;
 int r = idx / 9, c = idx % 9;
 if (grid[r][c]) return dfs(idx + 1);
 for (int num = 1; num <= 9; ++num) {
   if (illegal(r, c, num)) continue;
   grid[r][c] = num;
   update(r, c, num, true);
   if (dfs(idx + 1)) return true;
   update(r, c, num, false);
  grid[r][c] = 0;
  return false;
```

使用 Backtracking

• 進入遞迴前紀錄當前格子 填入 num

• 若沒找到答案 離開遞迴後把紀錄刪除

```
bool dfs(int idx) {
 if (idx == 81) return true;
 int r = idx / 9, c = idx % 9;
 if (grid[r][c]) return dfs(idx + 1);
 for (int num = 1; num <= 9; ++num) {</pre>
    if (illegal(r, c, num)) continue;
    grid[r][c] = num;
    update(r, c, num, true);
    if (dfs(idx + 1)) return true;
    update(r, c, num, false);
  grid[r][c] = 0;
  return false;
```

使用 Backtracking

• 由於每次遞迴前都有判斷合法性

· 當 81 個格子都填完後 答案一定是合法的

• 直接 return true

```
bool dfs(int idx)
 if (idx == 81) return true;
 int r = idx / 9, c = idx % 9;
 if (grid[r][c]) return dfs(idx + 1);
 for (int num = 1; num <= 9; ++num) {</pre>
    if (illegal(r, c, num)) continue;
    grid[r][c] = num;
    update(r, c, num, true);
    if (dfs(idx + 1)) return true;
    update(r, c, num, false);
  grid[r][c] = 0;
  return false;
```

輸入資料記得 update

```
int grid[9][9];
void input() {
  for (int r = 0; r < 9; ++r) {
    string buffer;
    cin >> buffer;
    for (int c = 0; c < 9; ++c) {
      if (isdigit(buffer[c])) {
        grid[r][c] = buffer[c] - '0';
        update(r, c, grid[r][c], true);
      } else
        grid[r][c] = 0;
```

再難一點?

Input

....3.85 ...1.2....

..4...1..

.9**.**

5.....73

..2.1....

....4...9

Output

987654321

246173985

351928746

128537694

634892157

795461832

519286473

472319568

863745219

就是0和1

true \rightarrow 1

false

0

為什麼不用二進位存?

bool row[9][10], col[9][10];
bool subgrids[3][3][10],

int row[9], col[9];
int subgrids[3][3];

→ 長度是 10 的 01 陣列

int: 一般電腦上是 32 個 bit 組成

→ 長度是 32 的 01 陣列

二進位表示法

		make former to
	二進位	十進位
1	000000010	3 883
2	000000100	4
3	0000001000	8
4	0000010000	16
5	0000100000	32
6	0001000000	64
7	0010000000	128
8	0100000000	256
9	100000000	512

```
int lg(int x) {
  switch(x){
   case 2: return 1;
   case 4: return 2;
   case 8: return 3;
    case 16: return 4;
   case 32: return 5;
    case 64: return 6;
    case 128: return 7;
    case 256: return 8;
   case 512: return 9;
  return -1;
```

```
cout << lg(1 << 8) << endl;
cout << __lg(1 << 8) << endl;</pre>
```

輸入資料

```
int grid[9][9];
void input() {
  for (int r = 0; r < 9; ++r) {
    string buffer;
    cin >> buffer;
    for (int c = 0; c < 9; ++c) {
      if (isdigit(buffer[c])) {
        grid[r][c] = 1 << (buffer[c] - '0');
        update(r, c, grid[r][c], true);
      } else
        grid[r][c] = 0;
```

輸出答案

```
void print() {
  for (int r = 0; r < 9; ++r) {
     for (int c = 0; c < 9; ++c)
  cout << __lg(grid[r][c]);</pre>
     cout << '\n';
```

判斷+更新資料

```
int row[9], col[9];
int subgrids[3][3];
bool illegal(int r, int c, int num) {
  return (row[r] | col[c] | subgrids[r / 3][c / 3]) & num;
void update(int r, int c, int num) {
  row[r] ^= num;
  col[c] ^= num;
  subgrids[r / 3][c / 3] ^= num;
```

透過二進位紀錄用過的數字

• 整體上沒太大差別

• 記得枚舉數字時要用二進位

```
bool dfs(int idx) {
  if (idx == 81) return true;
  int r = idx / 9, c = idx % 9;
  if (grid[r][c]) return dfs(idx + 1);
 for (int num = (1 << 1); num <= (1 << 9); num <<= 1) {
   if (illegal(r, c, num)) continue;
    grid[r][c] = num;
    update(r, c, num);
    if (dfs(idx + 1)) return true;
    update(r, c, num);
  grid[r][c] = 0;
  return false;
```


使用 lowbit 減少枚舉數量

lowbit 優化

不能用的數字集合

•紅色區域計算後的數字 若第 k 個 bit 是 1 ,表示數字 k 不能被使用

```
bool illegal(int r, int c, int num) {
  return (row[r] | col[c] | subgrids[r / 3][c / 3]) & num;
}
```

可以用的數字集合


```
const int MASK = (1 << 10) - 2;
int S = MASK & ~(row[r] | col[c] | subgrids[r / 3][c / 3]);</pre>
```

可以用的數字集合

```
const int MASK = (1 << 10) - 2;
bool dfs(int idx) {
  if (idx == 81) return true;
  int r = idx / 9, c = idx % 9;
  if (grid[r][c]) return dfs(idx + 1);
  int S = MASK \& \sim (row[r] \mid col[c] \mid subgrids[r / 3][c / 3]);
 for (int num = (1 << 1); num <= (1 << 9); num <<= (1 << 9)
   if ((num & S) == 0) continue;
    grid[r][c] = num;
    update(r, c, num);
    if (dfs(idx + 1)) return true;
    update(r, c, num);
  grid[r][c] = 0;
  return false;
```

重要函數 lowbit(x)

• lowbit(x): 非負整數 x 在二進位表示時,最靠右邊的 1 所對應的值。

• 範例:

$$20_{(10)} = 10100_{(2)}$$

其中的兩個 bit 分別表示 24 和 22, 因此

$$lowbit(20) = 2^2 = 4$$

lowbit(x) 計算

```
補數的-x
              int lowbit(int x) { return x & (~x + 1); }
                              not
  0
      1 0
           0
                       0
               and
             0
...| 0 |
      0 0
```

int lowbit(int x) { return x & -x; }

Unspecific
Behavior
(before C++20)

枚舉所有是1的bit

計算 32 次

```
#include <bitset>
#include <iostream>
using namespace std;
int main() {
  int S = 0b100011000;
  cout << bitset<32>(S) << endl;</pre>
  for (int i = 0; i < 32; ++i) {
    if (S & (1 << i))
      cout << bitset<32>(1 << i) << endl;</pre>
  return 0;
```

計算 3(是 1 的 bit 數) 次

```
#include <bitset>
#include <iostream>
using namespace std;
int lowbit(int x) { return x & -x; }
int main() {
  int S = 0b100011000;
  cout << bitset<32>(S) << endl;</pre>
  for (int num = 0; S; S ^= num) {
    num = lowbit(S);
    cout << bitset<32>(num) << endl;</pre>
  return 0;
```

lowbit 優化

```
const int MASK = (1 << 10) - 2;
int lowbit(int x) { return x & -x; }
bool dfs(int idx) {
 if (idx == 81) return true;
 int r = idx / 9, c = idx % 9;
  if (grid[r][c]) return dfs(idx + 1);
  int S = MASK \& \sim (row[r] \mid col[c] \mid subgrids[r / 3][c / 3]);
  for (int num = 0; S; S ^= num) {
    num = lowbit(S);
    grid[r][c] = num;
    update(r, c, num);
    if (dfs(idx + 1)) return true;
    update(r, c, num);
  grid[r][c] = 0;
  return false;
```


n皇后問題

- 在n x n的棋盤上,擺上n個皇后
- 皇后能「吃掉」的範圍是米字形,如上圖
- 問你這些皇后有幾種擺法使得他們不會互相「吃掉」
- 右圖是8皇后的其中一組解

輸出n皇后的原 Input Output 8

需要判斷的東西

需要判斷的東西

```
#include <iostream>
using namespace std;

const int MAXN = 20;

bool column_has_queen[MAXN];
bool LD_RU_Diagonal[MAXN * 2 - 1];
bool LU_RD_Diagonal[MAXN * 2 - 1];
```

對角線的表?

```
int n = 5;
auto LD_RU_Diagonal = [&](int y, int x)
  { return (y + x); };
auto LU_RD_Diagonal = [&](int y, int x)
  { return n - 1 + (y - x); };
void show_table(auto callback) {
  for (int y = 0; y < n; ++y) {
    for (int x = 0; x < n; ++x)
      cout << callback(y, x) << ' ';</pre>
    cout << '\n';</pre>
  cout << '\n';</pre>
show_table(LD_RU_Diagonal);
show_table(LU_RD_Diagonal);
```

```
4 5 6 7 8
4 3 2 1 0
```

判斷+更新資料

```
int n; // input
void update(int y, int x, bool val) {
  column_has_queen[x] = val;
  LD_RU_Diagonal[y + x] = val;
  LU_RD_Diagonal[n - 1 + (y - x)] = val;
bool isValidQueenPosition(int y, int x) {
  if (column_has_queen[x])
    return false;
  if (LD_RU_Diagonal[y + x])
    return false;
  if (LU_RD_Diagonal[n - 1 + (y - x)])
    return false;
  return true;
```

遞迴找出所有答案

```
int ans;
void dfs(int y) {
  if (y == n) {
    ++ans;
    return;
  for (int x = 0; x < n; ++x) {
    if (!isValidQueenPosition(y, x))
      continue;
    update(y, x, true);
    dfs(y + 1);
    update(y, x, false);
```

```
int main() {
   cin >> n;
   dfs(0);
   cout << ans << endl;
   return 0;
}</pre>
```

解的表示法

n 皇后的解會是某個 $0\sim n-1$ 的全排列

row = [4, 1, 3, 6, 2, 7, 5, 0]

遞迴印出所有解

```
int row[MAXN], m;
void dfs(int y) {
 if (y == n) {
   print();
   return;
  for (int x = 0; x < n; ++x) {
    if (!isValidQueenPosition(y, x))
      continue;
   update(y, x, true);
   row[m++] = x;
   dfs(y + 1);
    update(y, x, false);
    --m;
```

不能放的區域能不能用二進位表示?

不能放的區域能不能用二進位表示?

不能放的區域能不能用二進位表示?

利用 shift 操作

```
#include <bitset>
#include <iostream>
using namespace std;
int main() {
  int L = 0, M = 0, R = 0;
  L = M = R = 1 << 12;
  for (int i = 0; i < 20; ++i) {
    cout << bitset<32>(L | M | R) << endl;</pre>
    L <<= 1;
    R >>= 1;
  return 0;
```

000000000000000000<mark>1</mark>0000000000000 000000000000000000<mark>111</mark>00000000000 00000000000000000<mark>10101</mark>000000000000 000000000000000<mark>1</mark>000<mark>1</mark>000<mark>1</mark>000000000 00000000000000<mark>1</mark>0000<mark>1</mark>0000<mark>1</mark>0000000 0000000000000<mark>1</mark>00000<mark>1</mark>00000<mark>1</mark>000000 000000000000<mark>1</mark>000000<mark>1</mark>000000<mark>1</mark>00000 00000000000<mark>1</mark>0000000<mark>1</mark>0000000<mark>1</mark>0000 0000000000<mark>1</mark>00000000<mark>1</mark>000000000<mark>1</mark>000 000000000<mark>1</mark>000000000<mark>1</mark>0000000000<mark>1</mark>00 0000000<mark>1</mark>000000000<mark>1</mark>00000000000<mark>1</mark>0 0000000<mark>1</mark>00000000000<mark>1</mark>000000000000 000000<mark>1</mark>000000000000<mark>1</mark>00000000000000 00000<mark>1</mark>0000000000000<mark>1</mark>00000000000000 0000<mark>1</mark>00000000000000<mark>1</mark>0000000000000 000<mark>1</mark>000000000000000<mark>1</mark>0000000000000 00<mark>1</mark>0000000000000000<mark>1</mark>0000000000000 0<mark>1</mark>00000000000000000<mark>1</mark>00000000000000 <mark>1</mark>000000000000000000<mark>1</mark>0000000000000

位元運算加速

```
#include <iostream>
 using namespace std;
 int MASK;
 int ans;
 void dfs(int M, int L, int R);
int main() {
   int n = 0;
   cin >> n;
   MASK = (1 << n) - 1;
   dfs(0, 0, 0);
   cout << ans << endl;</pre>
   return 0;
```

位元運算加速

```
int lowbit(int x) { return x & -x; }
void dfs(int M, int L, int R) {
   if (M == MASK) {
        ++ans;
        return;
   }
   int Legal = MASK & ~(M | L | R);
   for (int num = 0; Legal; Legal ^= num) {
        num = lowbit(Legal);
        dfs(M | num, (L | num) << 1, (R | num) >> 1);
   }
}
```