强化训练

A 组 夯实基础

1. (2024 • 辽宁朝阳模拟)

函数 $f(x) = \log_3(x^2 - 1)$ 的定义域为 ()

- A. $(-\infty,1)$
- В. **R**
- C. $(0,+\infty)$
- D. $(-\infty, -1) \bigcup (1, +\infty)$
- 1. D

解析: 令 $x^2-1>0$ 得 $x^2>1$,所以 x<-1 或 x>1, 故函数 f(x) 的定义域是 $(-\infty,-1)\cup(1,+\infty)$.

2. (2024 • 贵州贵阳模拟)

已知 $a = \log_{0.3} 2$, $c = 0.3^{0.3}$, 则 ()

- A. b < c < a
- B. c < a < b
- C. a < b < c
- D. b < a < c
- 2. A

解析: $a = \log_2 3 > \log_2 2 = 1$, $b = \log_{0.3} 2 < \log_{0.3} 1 = 0$, 又 $0 < 0.3^{0.3} < 0.3^{0}$,所以 0 < c < 1,故 b < c < a.

3. (2024 • 四川成都模拟)

已知 $a = \log_3 0.2$, $b = 3^{0.2}$, $c = 0.3^{0.2}$, 则 ()

- A. a < b < c
- B. c < a < b
- C. a < c < b
- D. b < c < a
- 3. C

解析: $a = \log_3 0.2 < 0$, b, c 都大于 0, 所以 a 最小,

注意到 b, c 指数相同, 故可构造幂函数比较大小,

设 $f(x) = x^{0.2}$,则 f(x) 在 $(0,+\infty)$ 上 \nearrow ,

又 0.3 < 3 , 所以 f(0.3) < f(3) , 从而 $0.3^{0.2} < 3^{0.2}$, 故 c < b ,

结合 a 最小可得 a < c < b.

4. (2024 · 山西大同模拟)

函数 $f(x) = \lg(4-|x|)$ 的单调递增区间为 ()

- A. (-4,0)
- B. $(-\infty,0)$
- C. (0,4)
- D. $(0,+\infty)$
- 4. A

解析:函数 y=f(x) 由 $y=\lg u$ 和 u=4-|x| 复合而成,可由同增异减准则分析单调性,下面先求定义域,

由 4-|x|>0 可得 |x|<4, 所以 -4< x<4,

故 f(x) 的定义域是 (-4,4),

函数 u = 4 - |x| 在 (-4,4) 上的图象如图,由图可知,

 $u = 4 - |x| 在 (-4,0) 上 / , 在 (0,4) 上 \sqrt{},$

又外层函数 $y = \lg u$ 在 u 的范围内始终 \nearrow , 所以由同增异减准则, f(x) 在 (-4,0) 上 \nearrow , 在 (0,4) 上 \searrow , 故选 A.

B组 强化能力

5. (2023 • 上海模拟)

若函数 $f(x) = \log_a(x+b)$ 的大致图象如图,其中 a, b 为常数,则函数 $g(x) = a^x + b$ 的大致图象是 ()

5. B

解析:由所给图象可知 $f(0) = \log_a b = 0$,所以 b = 1,

从而 $f(x) = \log_a(x+1)$, $g(x) = a^x + 1$, 故 $g(0) = a^0 + 1 = 2$,

所以g(x)的图象过点(0,2),排除选项C、D;

再看选项 A、B,主要差别是单调性,要判断 g(x) 的单调性,需要知道 a 与 1 的大小,可由 f(x) 的单调性来分析,

y=f(x) 由 $y=\log_a u$ 和 u=x+1 复合而成,因为 u=x+1 在 $(-1,+\infty)$ 上 \nearrow ,而由图可知 y=f(x) 在 $(-1,+\infty)$ 上 \searrow ,所以由同增异减准则, $y=\log_a u$ 在 u 的取值范围内 \searrow ,

故0 < a < 1,所以 $g(x) = a^x + 1$ 在 \mathbf{R} 上 \searrow ,排除A,选B.

6. (2024 • 上海闵行模拟)

函数 $y = \log_{\frac{1}{2}}(x+2) - x^2$, $x \in [2,6]$ 的最大值为_____.

6. -6

解析: 欲求最大值,先判断单调性,可拆分成 $y = \log_{\frac{1}{2}}(x+2)$ 和 $y = -x^2$ 两部分分别判断, $y = \log_{\frac{1}{2}}u$ 在 u 的范围内 \searrow , u = x + 2 在 [2,6] 上 \nearrow ,

所以由同增异减准则, $y = \log_{1}(x+2)$ 在[2,6]上 \searrow ,

又
$$y = -x^2$$
 在 [2,6] 上也 〉,所以 $y = \log_{\frac{1}{2}}(x+2) - x^2$ 在 [2,6] 上 〉,故 $y_{\text{max}} = \log_{\frac{1}{2}}(2+2) - 2^2 = \log_{\frac{1}{2}}4 - 4 = -2 - 4 = -6$.

7. (2024 • 广西南宁模拟)

已知函数
$$f(x) = \log_{\frac{1}{2}}(-x^2 + 2x + 7)$$
,则 $f(x)$ 的值域是_____.

7. $[-3, +\infty)$

解析: 令
$$u = -x^2 + 2x + 7$$
,则 $f(x) = \log_{\frac{1}{2}} u$,

$$u = -x^2 + 2x + 7 = -(x-1)^2 + 8 \le 8$$
,

结合在
$$y = \log_{\frac{1}{2}} u + u > 0$$
 可得 $0 < u \le 8$,

函数
$$y = \log_{\frac{1}{2}} u$$
 在 $(0,8]$ 上〉,所以 $\log_{\frac{1}{2}} u \ge \log_{\frac{1}{2}} 8 = -3$,

故函数 f(x) 的值域是 $[-3,+\infty)$.

8. (2024 • 天津南开一模)

已知
$$a = 2^{-1.1}$$
 , $b = \log_{\frac{1}{4}} \frac{1}{3}$, $c = \log_2 3$, 则 (

A.
$$a < b < c$$

B.
$$c < b < a$$

C.
$$b < a < c$$

D.
$$b < c < a$$

8. A

解析: 涉及指对混合比较大小, 先对数据进行整数级估算, 数学一本通

因为 $y = 2^x$ 在 **R** 上 \nearrow , 所以 $0 < a = 2^{-1.1} < 2^0 = 1$,

又
$$y = \log_{\frac{1}{4}} x$$
 在 $(0,+\infty)$ 上〉,所以 $\log_{\frac{1}{4}} 1 < \log_{\frac{1}{4}} \frac{1}{3} < \log_{\frac{1}{4}} \frac{1}{4}$,

故
$$0 < b < 1$$
, 因为 $y = \log_2 x$ 在 $(0, +\infty)$ 上 \nearrow ,

所以
$$\log_2 2 < \log_2 3 < \log_2 4$$
,故 $1 < c < 2$,

于是c最大, a, b都在(0,1)上, 可再把它们与 $\frac{1}{2}$ 比较,

因为
$$a = 2^{-1.1} = \frac{1}{2^{1.1}} < \frac{1}{2^1} = \frac{1}{2}$$
,所以 $0 < a < \frac{1}{2}$,

怎样比较 b 与 $\frac{1}{2}$ 的大小? 可将 $\frac{1}{2}$ 化为与 b 同底的对数来看,

因为
$$\frac{1}{2} = \log_{\frac{1}{4}} \frac{1}{2}$$
,而 $\log_{\frac{1}{4}} \frac{1}{3} > \log_{\frac{1}{4}} \frac{1}{2}$,所以 $b > \frac{1}{2}$,

从而
$$\frac{1}{2} < b < 1$$
,故 $0 < a < \frac{1}{2} < b < 1 < c < 2$,所以 $a < b < c$.

9. (2024 · 湖南衡阳模拟)

设
$$a = \log_3 2$$
, $b = \ln 2$, $c = e^{0.1}$, $d = \frac{1}{2}$, 则 a , b , c , d 的大小关系是())

A.
$$a > b > c > d$$

B.
$$b > a > c > d$$

C.
$$c > b > a > d$$

D.
$$d > a > b > c$$

9. C

解析: 涉及指对混合比较大小, 先进行整数级估算,

因为 $y = \log_3 x$ 在 $(0,+\infty)$ 上 \nearrow , 所以 $\log_3 1 < \log_3 2 < \log_3 3$,

故0 < a < 1,因为 $y = \ln x$ 在 $(0,+\infty)$ 上 \nearrow ,

所以 $\ln 1 < \ln 2 < \ln e$,故0 < b < 1,

因为 $y=e^x$ 在**R**上之,所以 $c=e^{0.1}>e^0=1$,

结合 $d=\frac{1}{2}$ 可知 c 最大,再比较 a, b, d, 由于 d 的数值很清晰,不妨把 a 和 b 与 d 比较,

因为 $\log_3 2 > \log_3 \sqrt{3} = \frac{1}{2}$,所以 $a > \frac{1}{2} = d$,

又 4 > e , 所以 2 > \sqrt{e} , 故 $\ln 2 > \ln \sqrt{e} = \frac{1}{2}$, 即 $b > \frac{1}{2} = d$,

于是a, b, d中d最小, 还需比较a和b, 怎么比? 观察发现它们的真数相同, 故可用公式 $\log_m n = \frac{1}{\log m}$ 化同底,

$$a = \log_3 2 = \frac{1}{\log_2 3}$$
, $b = \ln 2 = \frac{1}{\log_2 e}$,

由 $y = \log_2 x$ 在 $(0,+\infty)$ 上 \nearrow 可得 $\log_2 3 > \log_2 e > \log_2 1 = 0$,

所以
$$\frac{1}{\log_2 3} < \frac{1}{\log_2 e}$$
,故 $a < b$,

综合以上比较结果可知 c > b > a > d.

10. (2024 • 天津南开一模)

函数
$$f(x) = \frac{1}{x^2 + 1}$$
, 记 $a = f\left(-\frac{1}{2}\right)$, $b = f(3^{-0.5})$, $c = f\left(\log_5 \frac{1}{2}\right)$, 则 ()

A.
$$a < b < c$$

B.
$$b < a < c$$

C.
$$c < a < b$$

D.
$$c < b < a$$

一数• 高中数学

10. B

解析: a, b, c 都是函数值, 代解析式计算再比较显然比较麻烦, 考虑用单调性处理,

$$f(x)$$
 的定义域为 **R**,且 $f(-x) = \frac{1}{(-x)^2 + 1} = \frac{1}{x^2 + 1} = f(x)$,

所以 f(x) 为偶函数, 当 $x \in [0,+\infty)$ 时, $f(x) \setminus$,

观察发现 a, b, c 的自变量不都在 $[0,+\infty)$ 上,故先由 f(x) 为偶函数把它们化到 $[0,+\infty)$ 上来,便于用单调性比较,

由题意,
$$a = f\left(-\frac{1}{2}\right) = f\left(\frac{1}{2}\right)$$
, $b = f(3^{-0.5})$,

$$c = f\left(\log_5 \frac{1}{2}\right) = f(\log_5 2^{-1}) = f(-\log_5 2) = f(\log_5 2)$$
,

故只需比较 $\frac{1}{2}$, $3^{-0.5}$, $\log_5 2$ 的大小, $\frac{1}{2}$ 的数值很清晰,故尝试把另外两个与它比较,

$$3^{-0.5} = \frac{1}{3^{0.5}} = \frac{1}{\sqrt{3}} > \frac{1}{2}$$
, $\log_5 2 < \log_5 \sqrt{5} = \frac{1}{2}$,

所以 $3^{-0.5} > \frac{1}{2} > \log_5 2$,结合 f(x) 在 $[0,+\infty)$ 上 \ 可得

$$f(3^{-0.5}) < f\left(\frac{1}{2}\right) < f(\log_5 2)$$
, $\forall b < a < c$.

11. (2024 • 四川成都开学考试) (多选)

已知函数 $f(x) = \log_2(x+2) - \log_2(2-x)$,则下列说法正确的有(

- A. 函数 f(x) 的定义域为(-2,2)
- B. 函数 f(x) 的值域为 $(-\infty,0]$
- C. 函数 f(x) 是定义域上的奇函数
- D. 函数 f(x) 是定义域上的偶函数

11. AC

解析: A 项, 由
$$\begin{cases} x+2>0 \\ 2-x>0 \end{cases}$$
 可得 $-2 < x < 2$,所以 $f(x)$ 的定义域为 $(-2,2)$,故 A 项正确;

B
$$\mathfrak{I}\mathfrak{J}$$
, $f(x) = \log_2 \frac{x+2}{2-x} = \log_2 \frac{4+(x-2)}{2-x} = \log_2 \left(\frac{4}{2-x}-1\right)$,

因为
$$-2 < x < 2$$
 ,所以 $0 < 2 - x < 4$,从而 $\frac{4}{2 - x} > 1$,

故
$$\frac{4}{2-x}$$
-1>0,所以 $\log_2\left(\frac{4}{2-x}-1\right) \in \mathbf{R}$,

从而 f(x) 的值域为 **R**, 故 B 项错误;

C 项,
$$f(-x) = \log_2(-x+2) - \log_2[2-(-x)]$$

$$= \log_2(2-x) - \log_2(x+2) = -f(x) ,$$

所以 f(x) 为奇函数,故 C 项正确;

D 项, f(x) 是奇函数, 不是偶函数, 故 D 项错误.

酒驾是严重危害交通安全的违法行为. 为保障交通安全,根据国家有关规定: 100mL 血液中酒精含量达到 $20\sim79mg$ 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车. 假设某驾驶员饮酒后,其血液中的酒精含量上升到了 0.6mg/mL,若停止喝酒,则他血液中酒精含量会以每小时 30%的速度减少,那么他至少经过几个小时才能驾驶? (结果取整数,参考数据: $\lg 3 \approx 0.48$, $\lg 7 \approx 0.85$)()

- **A.** 1
- B. 2
- C. 3
- D. 4

12. D

解析: 由题意,该驾驶员饮酒后每 100mL 血液中酒精含量为 $0.6 \times 100 = 60$ mg ,经过 x 个小时后,他每 100mL 血液中酒精含量为 $60 \times (1-30\%)^x = 60 \times 0.7^x$ mg,

令
$$60 \times 0.7^x < 20$$
 可得 $0.7^x < \frac{1}{3}$,

参考数据中给的都是一些常用对数值,于是考虑将上式两端取常用对数,

所以
$$\lg 0.7^x < \lg \frac{1}{3}$$
,故 $x \lg 0.7 < -\lg 3$,

又
$$\lg 0.7 < 0$$
,所以 $x > -\frac{\lg 3}{\lg 0.7} = -\frac{\lg 3}{\lg \frac{7}{10}} = -\frac{\lg 3}{\lg 7 - 1} = \frac{\lg 3}{1 - \lg 7}$

 $pprox rac{0.48}{1-0.85} = 3.2$, 题干说结果取整数,但需注意,由于交通法规要求,这里不能四舍五入,只能向上取整,

所以该驾驶员至少经过4小时才能驾驶.

13. (2024 • 辽宁葫芦岛开学考试) (多选)

已知函数 $f(x) = \lg(x^2 + ax - a - 1)$,则下列说法正确的有()

- A. 当 a = 0 时,函数 f(x) 的定义域为 $(-\infty, -1) \cup (1, +\infty)$
- B. 函数 f(x) 有最小值
- C. 当 a=0 时,函数 f(x) 的值域为 **R**
- D. 若 f(x) 在区间[2,+ ∞) 上单调递增,则实数 a 的取值范围是[-4,+ ∞)

13. AC

解析: A 项, 当 a = 0 时, $f(x) = \lg(x^2 - 1)$,

从而 f(x) 的定义域为 $(-\infty,-1)\cup(1,+\infty)$, 故 A 项正确;

B 项,f(x) 有最小值意味着 $u = x^2 + ax - a - 1$ 有最小值,可以想象, $x^2 + ax - a - 1$ 在 f(x) 定义域内的取值范围可能是 $(0, +\infty)$,

不一定有最小值,故此项错误,下面举个例子,

当 a = 0 时, $f(x) = \lg(x^2 - 1)$, 定义域为 $(-\infty, -1) \cup (1, +\infty)$,

此时 $x^2 - 1 \in (0, +\infty)$, 所以 $\lg(x^2 - 1) \in \mathbb{R}$, 从而 f(x) 的值域为 \mathbb{R} , f(x) 没有最小值,故 B 项错误;

C 项, 由 B 项的分析过程可知 C 项正确;

D项, f(x)由 $y=\lg u$ 和 $u=x^2+ax-a-1$ 复合而成,可用同增异减准则分析单调性,

 $y = \lg u$ 在 u 的范围内 \nearrow ,由同增异减准则,要使 f(x) 在 $[2,+\infty)$ 上 \nearrow ,应有 $u = x^2 + ax - a - 1$ 在 $[2,+\infty)$ 上 \nearrow ,

如图,应有x=2在对称轴的右侧(或恰好在对称轴处),

所以 $-\frac{a}{2} \le 2$,解得: $a \ge -4$,

结束了吗? 还没有! f(x)在 $[2,+\infty)$ 上 \nearrow 隐含了 f(x)在 $[2,+\infty)$ 上有定义,所以还需考虑这一点,

由题意, f(x)在[2,+∞)上有定义,所以 $u=x^2+ax-a-1$

>0在[2,+∞)上恒成立,

由下图可知 $u = x^2 + ax - a - 1 > 0$ 在 $[2, +\infty)$ 上 \nearrow ,

所以 $u_{\min} = 2^2 + a \cdot 2 - a - 1 = a + 3$, 故 a + 3 > 0, 故 a > -3,

所以a的取值范围是 $(-3,+\infty)$,故D项错误.

14. (2024 • 浙江杭州期末)

已知函数 $f(x) = \log_2(ax^2 + 2x - 1)$, $a \in \mathbf{R}$.

- (1) 若 f(x) 过点 (1,2), 求 f(x) 的单调递减区间;
- (2) 若 f(x) 的值域为 \mathbf{R} , 求 a 的取值范围.
- 14. **解**: (1) 因为 f(x) 过点 (1,2), 所以 $f(1) = \log_2(a+1) = 2$,

从而
$$a+1=2^2$$
 ,故 $a=3$, $f(x)=\log_2(3x^2+2x-1)$,

由
$$3x^2 + 2x - 1 > 0$$
 得 $(x + 1)(3x - 1) > 0$,故 $x < -1$ 或 $x > \frac{1}{3}$,

所以
$$f(x)$$
 的定义域是 $(-\infty,-1)$ $\cup \left(\frac{1}{3},+\infty\right)$,

函数 y = f(x) 由 $y = \log_2 u$ 和 $u = 3x^2 + 2x - 1$ 复合而成,

 $y = \log_2 u$ 在 u 的范围内始终单调递增, $u = 3x^2 + 2x - 1$ 在 $(-\infty, -1)$ 上单调递减,在 $\left(\frac{1}{3}, +\infty\right)$ 上单调递增,

所以由同增异减准则, f(x) 的单调递减区间是 $(-\infty, -1)$.

(2) $\Rightarrow t = ax^2 + 2x - 1$, $\bigcup f(x) = \log_2 t$,

(函数 $f(x) = \log_2 t$ 的值域为 \mathbf{R} 意味着 t 能取遍所有正数,那要翻译为 $t = ax^2 + 2x - 1 > 0$ 恒成立吗?不是的,这里需要的是 t 取遍所有正数,至于负数和 0 能否取到,其实无所谓,因为即使能取到,定义域也会自动把这部分排除掉. 注意到 t 的取值情况受 a 的正负影响,故讨论)

当 a > 0 时, $\Delta = 2^2 - 4a \cdot (-1) = 4 + 4a > 4 > 0$,如图 1,t 能取遍所有正数,满足 f(x) 的值域为 **R**;

当a=0时,t=2x-1,如图 2,t能取遍所有正数,满足 f(x) 的值域为 \mathbf{R} ;

当a < 0时,二次函数 $t = ax^2 + 2x - 1$ 开口向下,t不可能取遍所有正数,不满足 f(x) 的值域为 \mathbf{R} ;

综上所述,a的取值范围是 $[0,+\infty)$.

C 组 拓展提升

15. (2024 · 云南模拟)

15. -1

解法 1: 根据奇函数求参,可考虑用 f(-x)+f(x)=0 处理,

因为 f(x) 为奇函数, 所以 f(-x) + f(x) =

$$\ln\left(1 + \frac{2}{-x+b}\right) + \ln\left(1 + \frac{2}{x+b}\right) = \ln\frac{b+2-x}{b-x} + \ln\frac{b+2+x}{b+x}$$

$$= \ln\left(\frac{b+2-x}{b-x} \cdot \frac{b+2+x}{b+x}\right) = \ln\frac{(b+2)^2 - x^2}{b^2 - x^2} = 0,$$

从而
$$\frac{(b+2)^2-x^2}{b^2-x^2}=1$$
 ,故 $(b+2)^2=b^2$,解得: $b=-1$,

此时
$$f(x) = \ln\left(1 + \frac{2}{x-1}\right) = \ln\frac{x+1}{x-1}$$
, 满足 $f(x)$ 为奇函数.

解法 2: 根据奇函数求参,也可考虑从定义域出发分析,

由題意,
$$f(x) = \ln\left(1 + \frac{2}{x+b}\right) = \ln\frac{x+b+2}{x+b}$$
,

令
$$\frac{x+b+2}{x+b} > 0$$
 可得 $(x+b)(x+b+2) > 0$,

所以 x < -b-2 或 x > -b,

故 f(x) 的定义域是 $(-\infty, -b-2) \cup (-b, +\infty)$,

奇函数的定义域关于原点对称,所以-b-2=-(-b),

解得: b=-1, 经检验, 满足 f(x) 为奇函数.

16. (2024 • 全国模拟)

设 $a = \log_{0.3} 0.4$, $b = \log_{3} 0.4$,则下列不等关系正确的是(

A.
$$ab < a + b < 0$$

B.
$$a + b < ab < 0$$

C.
$$ab < 0 < a + b$$

D.
$$a + b < 0 < ab$$

16. A

解析:由对数判正负的口诀"同正异负"可知a>0,

b < 0,所以ab < 0,

怎样比较 ab 与 a+b , 以及 a+b 与 0 的大小? 观察发现 a , b 的真数相同, 故可考虑用 $\log_m n = \frac{1}{\log_m m}$ 来化同底分析,

因为
$$a = \log_{0.3} 0.4 = \frac{1}{\log_{0.4} 0.3}$$
,所以 $\frac{1}{a} = \log_{0.4} 0.3$,

因为
$$b = \log_3 0.4 = \frac{1}{\log_{0.4} 3}$$
 ,所以 $\frac{1}{b} = \log_{0.4} 3$,

所以
$$\frac{1}{a} + \frac{1}{b} = \log_{0.4} 0.3 + \log_{0.4} 3 = \log_{0.4} (0.3 \times 3) = \log_{0.4} 0.9$$
,

因为
$$y = \log_{0.4} x$$
 在 $(0, +\infty)$ 上〉,且 $0.4 < 0.9 < 1$,

所以
$$\log_{0.4} 0.4 > \log_{0.4} 0.9 > \log_{0.4} 1$$
,即 $1 > \log_{0.4} 0.9 > 0$,

所以
$$1 > \frac{1}{a} + \frac{1}{b} > 0$$
,同时乘以 ab 可得 $ab < a + b < 0$.

17. (2024 • 全国模拟)

已知函数 $f(x) = \log_a(x^2 - ax + 1)$ 在区间 $\left(\frac{1}{4}, 2\right)$ 上有最大值或最小值,则实数 a 的取值范围为(

A.
$$\left(\frac{1}{4},2\right)$$

A.
$$\left(\frac{1}{4}, 2\right)$$
 B. $\left(\frac{1}{2}, 1\right) \cup (1, 2)$

C.
$$\left(\frac{1}{2},1\right) \cup (1,4)$$
 D. $\left(\frac{1}{4},1\right) \cup (1,2)$

D.
$$\left(\frac{1}{4},1\right) \cup (1,2)$$

17. B

解析: 令 $u = x^2 - ax + 1$, 则 $f(x) = \log_a u$, a > 0且 $a \ne 1$,

f(x) 在 $\left(\frac{1}{4},2\right)$ 上有最大值或最小值意味着 u 在 $x \in \left(\frac{1}{4},2\right)$ 时有最大值或最小值. 由于 $u=x^2-ax+1$ 开口向上,所以它在任意开

区间上都没有最大值, 只可能有最小值, 且最小值在对称轴处取得, 如图,

由 u 在 $\left(\frac{1}{4},2\right)$ 上有最小值得 $\frac{1}{4} < \frac{a}{2} < 2 \Rightarrow \frac{1}{2} < a < 4$

结合 a > 0 且 $a \ne 1$ 可得 $\frac{1}{2} < a < 1$ 或 1 < a < 4 ①,

结束了吗?没有,到此只能保证二次函数 $u=x^2-ax+1$ 在 $\left(\frac{1}{4},2\right)$ 内存在最小值,但若 $u_{\min}\leq 0$,则 $\log_a u_{\min}$ 没有意义,也不满 足题意,故还应补充该最小值大于0,

曲
$$u_{\min} = \left(\frac{a}{2}\right)^2 - a \cdot \frac{a}{2} + 1 = 1 - \frac{a^2}{4} > 0$$
 可得 $-2 < a < 2$,

结合①得
$$\frac{1}{2}$$
< a <1或1< a <2,

所以 a 的取值范围是 $\left(\frac{1}{2},1\right)$ \cup (1,2).

18. (2024 • 河南周口模拟)

已知函数 $f(x) = \ln(ae^{2x} - 2e^x + 1) - x$ 是定义在 $(-\infty)$

- 0) ∪(0,+∞) 上的偶函数.
- (1) 求实数 a 的值;
- (2)请问是否存在正数 m, n, 使得当 $x \in [m,n]$ 时, 函数 f(x) 的值域为[2m,2n]? 若存在这样的正数 m, n, 请求出 m, n 的值;若不存在,请说明理由.

18. 解: (1) 解法 1: (已知 f(x) 是定义在 $(-\infty,0) \cup (0,+\infty)$ 上

的偶函数, 可通过取特值建立方程求 a, 再检验)

由题意, f(-1) = f(1), 所以 $\ln(ae^{-2} - 2e^{-1} + 1) + 1 = \ln(ae^{2} - 2e^{-1} + 1)$

2e+1)-1,
$$\mbox{M}_{\overline{m}} \ln(ae^2-2e+1) - \ln(ae^{-2}-2e^{-1}+1) = 2$$
,

故
$$\ln \frac{ae^2 - 2e + 1}{ae^{-2} - 2e^{-1} + 1} = 2 = \ln e^2$$
,所以 $\frac{ae^2 - 2e + 1}{ae^{-2} - 2e^{-1} + 1} = e^2$,

故
$$ae^2 - 2e + 1 = a - 2e + e^2$$
, 化简得: $(a-1)(e^2 - 1) = 0$,

所以
$$a=1$$
, 此时 $f(x) = \ln(e^{2x} - 2e^x + 1) - x$

$$= \ln(e^{2x} - 2e^x + 1) - \ln e^x = \ln \frac{e^{2x} - 2e^x + 1}{e^x}$$

$$= \ln\left(e^{x} + \frac{1}{e^{x}} - 2\right) = \ln(e^{x} + e^{-x} - 2),$$

因为
$$e^x + e^{-x} - 2 \ge 2\sqrt{e^x \cdot e^{-x}} - 2 = 0$$
, 当且仅当 $e^x = e^{-x}$,

即 x = 0 时取等号,所以当 $x \in (-\infty,0) \cup (0,+\infty)$ 时,

$$e^{x} + e^{-x} - 2 > 0$$
,满足 $f(x)$ 的定义域是 $(-\infty, 0) \cup (0, +\infty)$,

又
$$f(-x) = \ln(e^{-x} + e^{x} - 2) = f(x)$$
, 满足 $f(x)$ 为偶函数,

所以a=1满足题意.

解法 2: (已知 f(x) 为偶函数,也可考虑直接用定义处理)

$$f(x) = \ln(ae^{2x} - 2e^x + 1) - x = \ln(ae^{2x} - 2e^x + 1) - \ln e^x$$
$$= \ln\frac{ae^{2x} - 2e^x + 1}{e^x} = \ln(ae^x + e^{-x} - 2),$$

因为 f(x) 为偶函数,所以 f(-x) = f(x) 恒成立,

从丽
$$\ln(ae^{-x} + e^{x} - 2) = \ln(ae^{x} + e^{-x} - 2)$$
,

故
$$ae^{-x} + e^{x} - 2 = ae^{x} + e^{-x} - 2$$
, 所以 $(a-1)(e^{x} - e^{-x}) = 0$,

因为当 $x \in (-\infty,0) \cup (0,+\infty)$ 时, $e^x - e^{-x} \neq 0$,所以要使上式恒成立,只能a-1=0,故a=1.

(2) (分析 $x \in [m,n]$ 时 f(x) 的值域需要 f(x) 的单调性, f(x) 是复合函数,我们先来看内层函数的单调性)

由(1)可得
$$f(x) = \ln(e^x + e^{-x} - 2)$$
,

设
$$g(x) = e^x + e^{-x} - 2$$
,任取 $0 < x_1 < x_2$, $g(x_1) - g(x_2) =$

$$e^{x_1} + e^{-x_1} - 2 - (e^{x_2} + e^{-x_2} - 2) = e^{x_1} - e^{x_2} + \frac{1}{e^{x_1}} - \frac{1}{e^{x_2}}$$

$$= e^{x_1} - e^{x_2} + \frac{e^{x_2} - e^{x_1}}{e^{x_1} \cdot e^{x_2}} = (e^{x_1} - e^{x_2}) \left(1 - \frac{1}{e^{x_1 + x_2}}\right),$$

因为 $0 < x_1 < x_2$,所以 $e^{x_1} < e^{x_2}$,故 $e^{x_1} - e^{x_2} < 0$,

且
$$e^{x_1+x_2} > e^0 = 1$$
,所以 $\frac{1}{e^{x_1+x_2}} < 1$,故 $1 - \frac{1}{e^{x_1+x_2}} > 0$,

所以
$$g(x_1) - g(x_2) = (e^{x_1} - e^{x_2}) \left(1 - \frac{1}{e^{x_1 + x_2}}\right) < 0$$
,

从而 $g(x_1) < g(x_2)$, 故 g(x) 在 $(0,+\infty)$ 上单调递增,

又 $f(x) = \ln g(x)$, 所以由同增异减准则可知,

f(x)在 $(0,+\infty)$ 上单调递增,

假设存在正数 m, n 使 f(x) 在 [m,n] 上的值域为 [2m,2n],

則
$$\begin{cases} f(m) = 2m \\ f(n) = 2n \end{cases}$$
, 即 $\begin{cases} \ln(e^m + e^{-m} - 2) = 2m \\ \ln(e^n + e^{-n} - 2) = 2n \end{cases}$,

所以
$$\begin{cases} \ln(e^m + e^{-m} - 2) = \ln e^{2m} \\ \ln(e^n + e^{-n} - 2) = \ln e^{2n} \end{cases}, \quad \text{从而} \begin{cases} e^m + e^{-m} - 2 = e^{2m} \\ e^n + e^{-n} - 2 = e^{2n} \end{cases},$$

故
$$\left\{ egin{aligned} & e^{2m} - e^m + 2 - e^{-m} = 0 & \boxed{1} \\ & e^{2n} - e^n + 2 - e^{-n} = 0 & \boxed{2} \end{aligned} \right.$$

由m是正数可得2m > m,所以 $e^{2m} > e^m$,故 $e^{2m} - e^m > 0$,

又
$$e^m > e^0 = 1$$
 , 所以 $e^{-m} = \frac{1}{e^m} < 1$, 故 $2 - e^{-m} > 2 - 1 = 1 > 0$,

所以
$$e^{2m} - e^m + 2 - e^{-m} > 0$$
, 同理, $e^{2n} - e^n + 2 - e^{-n} > 0$,

这与方程①②矛盾,所以不存在正数 m, n 使 f(x) 在 [m,n] 上的值域为 [2m,2n].

一数•高中数学一本通