7. előadás

INTEGRÁLSZÁMÍTÁS 2.

Az integrálfüggvény

A határozott integrál értelmezésével és tulajdonságai ismeretében már érdemben tudunk foglalkozni a területmérő függvénnyel, két apró megjegyzéssel. Az egyik, hogy az $\int\limits_a^b f$ integrált érdemes az $a \geq b$ esetekre is értelmezni a következő módon:

$$\int_{a}^{a} f := 0, \quad \text{és} \quad \int_{a}^{b} f := -\int_{b}^{a} f, \quad \text{ha } a > b.$$

Ezzel értelmeztük a területmérést "visszafelé" is. A másik, hogy a területmérő elnevezést már nem fogjuk többet használni.

1. Definíció. Tegyük fel, hogy $f \in R[a, b]$ és $x_0 \in [a, b]$. Az

$$F(x) := \int_{x_0}^{x} f(t) dt \qquad (x \in [a, b])$$

 $f\ddot{u}ggv\acute{e}nyt$ az f függv $\acute{e}ny$ x_0 pontban eltűnő integrálfüggv $\acute{e}ny\acute{e}nek$ $nevezz\ddot{u}k$.

Megjegyzések.

- 1. F jól értelmezett, mert azt tanultuk, hogy $f \in R[a,b] \implies f \in R[x_0,x]$.
- 2. az " x_0 pontban eltűnő" kifejezés arra utal, hogy $F(x_0) = 0$.
- 1. Tétel (Az integrálfüggvény folytonossága). Legyen $f \in R[a,b]$, $x_0 \in [a,b]$ és F az f függvény x_0 pontban eltűnő integrálfüggvénye. Ekkor $F \in C[a,b]$.

Bizonyítás. Mivel f korlátos függvény, hiszen $f \in R[a, b]$, így $\exists K > 0$, hogy

$$|f(x)| \le K$$
 $(x \in [a, b]).$

Legyen $x \in [a, b]$ egy tetszőleges pont és $(x_n) \colon \mathbb{N} \to [a, b]$ olyan sorozat, hogy $\lim(x_n) = x$. Tegyük fel, hogy $x_n \ge x \pmod n$. Ekkor a határozott integrál tulajdonságai alapján

$$\left| F(x_n) - F(x) \right| = \left| \int_{x_0}^{x_n} f(t) dt - \int_{x_0}^{x} f(t) dt \right| = \left| \int_{x}^{x_n} f(t) dt \right| \le \int_{x}^{x_n} |f(t)| dt \le \int_{x}^{x_n} |f(t)| dt$$

1

Ezért az átviteli elv szerint F jobbról folytonos az x pontban.

Hasonlóan igazolható, hogy F balról folytonos az x pontban. Ezzel a tétel állítását igazoltuk.

2. Tétel (Az integrálfüggvény deriválthatósága). Legyen $f \in R[a,b]$, $x_0 \in [a,b]$ és F az f függvény x_0 pontban eltűnő integrálfüggvénye. Tegyük fel, hogy $x \in (a,b)$ olyan pont, amire $f \in C\{x\}$ teljesül. Ekkor $F \in D\{x\}$ és F'(x) = f(x).

 ${\bf \it Bizony\'it\'as.}$ Legyen h>0olyan szám, amire x+h< bteljesül. Ekkor a határozott integrál tulajdonságai alapján

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} \left(\int_{x_0}^{x+h} f(t) dt - \int_{x_0}^{x} f(t) dt \right) = \frac{1}{h} \int_{x}^{x+h} f(t) dt$$

Mivel x egy rögzített szám, így

$$\frac{1}{h} \int_{x}^{x+h} f(x) dt = f(x) \cdot \frac{1}{h} \cdot \int_{x}^{x+h} 1 dt = f(x) \cdot \frac{1}{h} \cdot (x+h-x) = f(x).$$

Ezért az integrál linearitása alapján

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} \int_{x}^{x+h} f(t) dt - f(x) + f(x) = \frac{1}{h} \int_{x}^{x+h} f(t) dt - \frac{1}{h} \int_{x}^{x+h} f(x) dt + f(x) = \frac{1}{h} \int_{x}^{x+h} (f(t) - f(x)) dt + f(x).$$

Mivel $f \in C\{x\}$, így a definíció szerint

$$\forall \varepsilon > 0$$
-hoz $\exists \delta > 0$, hogy $\forall t \in [a, b], |t - x| < \delta : |f(t) - f(x)| < \varepsilon$.

Ekkor a fentiek alapján, ha $h < \delta,$ akkor minden $x \leq t < x + h$ szám esetén

$$\left| \frac{F(x+h) - F(x)}{h} - f(x) \right| = \left| \frac{1}{h} \int_{x}^{x+h} \left(f(t) - f(x) \right) dt \right| \le \frac{1}{h} \int_{x}^{x+h} \left| f(t) - f(x) \right| dt < \frac{1}{h} \int_{x}^{x+h} \varepsilon dt = \frac{1}{h} \cdot \varepsilon \cdot (x+h-x) = \varepsilon \implies \exists F'_{+}(x) = f(x).$$

Hasonlóan igazolható, hogy létezik F bal oldali deriváltja az x pontban, és $F'_{-}(x) = f(x)$. Ezzel a tétel állítását igazoltuk.

Megjegyzések.

1. Az előző állításokat így foglalhatjuk össze: az integrálfüggvény minden pontban folytonos, és olyan pontokban differenciálható, ahol az eredeti függvény folytonos. Ezekben a pontokban az integrálfüggvény deriváltja az eredeti függvény értékével egyenlő.

2. Következmény: minden nyílt intervallumon értelmezett folytonos függvénynek van primitív függvénye.

Példa. Ha $f: [-1,1] \to \mathbb{R}$,

$$f(x) := \begin{cases} 0, & \text{ha } -1 \le x < 0, \\ 1, & \text{ha } 0 \le x \le 1, \end{cases}$$

akkor az $x_0 = 0$ pontban eltűnő integrálfüggvény

$$F(x) := \begin{cases} 0, & \text{ha } -1 \le x < 0, \\ x, & \text{ha } 0 \le x \le 1. \end{cases}$$

A határozott integrál kiszámítása

Az előzőek szerint, ha $f \in C[a,b]$, akkor tetszőleges $x_0 \in [a,b]$ pontban eltűnő F integrálfüggvényre igaz, hogy $F \in C[a,b]$, $F \in D(a,b)$ és F'(x) = f(x) minden $x \in (a,b)$ esetén. Az ilyen függvényekre érdemes külön elnevezést bevezetni.

2. Definíció. Legyen $[a,b] \subset \mathbb{R}$ korlátos és zárt intervallum. A $F:[a,b] \to \mathbb{R}$ függvény az $f:[a,b] \to \mathbb{R}$ függvény egy **primitív függvénye az** [a,b] intervallumon, ha

- $F \in C[a,b]$,
- $F \in D(a,b)$ és F'(x) = f(x) $(x \in (a,b))$.

A következő rendkívül fontos tételt a kalkulus alaptételének is nevezik.

3. Tétel (Newton–Leibniz-formula). Tegyük fel, hogy

- $f \in R[a,b]$ és
- $\bullet \ \ az \ f \ f\"{u}ggv\'{e}nynek \ van \ primit\'{i}v \ f\"{u}ggv\'{e}nye \ az \ [a,b] \ intervallumon.$

Ekkor

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a) =: \left[F(x) \right]_{a}^{b},$$

3

ahol F az f függvény egy primitív függvénye.

Bizonyítás. Legyen $n \in \mathbb{N}^+$, és tekintsük az [a,b] intervallum egy tetszőlegesen megválasztott $\tau = \{a = x_0 < x_1 < \dots < x_n = b\}$ felosztását. A Lagrange-féle középértéktétel szerint minden $i = 0, 1, \dots, n-1$ indexre van olyan $\xi_i \in (x_i, x_{i+1})$ pont, amelyre

$$F(x_{i+1}) - F(x_i) = F'(\xi_i) (x_{i+1} - x_i) = f(\xi_i) (x_{i+1} - x_i)$$

teljesül. Ha ezeket az egyenlőtlenségeket összeadjuk minden i = 0, 1, ..., n - 1 indexre, akkor a bal oldalon minden tag kiesik, kivéve az $F(x_n) = F(b)$ és az F(0) = F(a) tagokat. Így azt kapjuk, hogy

$$F(b) - F(a) = \sum_{i=0}^{n-1} f(\xi_i) (x_{i+1} - x_i).$$

Mivel $\inf_{x \in [x_i, x_{i+1}]} f(x) \le f(\xi_i) \le \sup_{x \in [x_i, x_{i+1}]} f(x)$ (i = 0, 1, ..., n-1), ezért a

$$s(f,\tau) \le F(b) - F(a) \le S(f,\tau)$$

egyenlőtlenség minden $\tau \in \mathcal{F}[a,b]$ felosztásra teljesül. Következésképpen

$$I_*(f) = \sup_{\tau \in \mathcal{F}[a,b]} s(f,\tau) \le F(b) - F(a) \le \inf_{\tau \in \mathcal{F}[a,b]} S(f,\tau) = I^*(f).$$

Az $f \in R[a,b]$ (azaz az $I_*(f) = I^*(f))$ feltételünkből így az következik, hogy

$$F(b) - F(a) = I_*(f) = I^*(f) = \int_a^b f(x) dx.$$

Megjegyzés. A Newton–Leinbiz-formula feltételei közül egyik sem hagyható el. Belátható, hogy ezek egymástól függetlenek (egyikből sem következik a másik): Létezik ui. olyan integrálható függvény, amelynek nincs primitív függvénye (ilyen pl. a szignum függvény a [-1,1] intervallumon). Jóval nehezebb annak a megmutatása, hogy van olyan nem integrálható függvény, amelynek van primitív függvénye.

Példa. Számítsuk ki a

$$\int_{0}^{\pi} \sin x \, dx$$

határozott integrált! Világos, hogy a sin x ($x \in [0, \pi]$) függvényre teljesülnek a Newton–Leibnizformula feltételei, és $F(x) = -\cos x$ ($x \in [0, \pi]$) a sin függvény egy primitív függvénye $[0, \pi]$ -n. Így

$$\int_{0}^{\pi} \sin x \, dx = \left[-\cos x \right]_{0}^{\pi} = \left(-\cos \pi \right) - \left(-\cos 0 \right) = 1 - (-1) = 2.$$

Ezzel megkaptuk a $\sin_{[0,\pi]}$, függvény grafikonja alatti síkidom területét.

A HATÁROZOTT INTEGRÁL NÉHÁNY ALKALMAZÁSA

Ebben a pontban a határozott integrál néhány geometriai alkalmazását mutatjuk be.

Síkidom terülte

Emlékeztetünk arra, hogy ha a korlátos $f:[a,b]\to\mathbb{R}$ függvény Riemann-integrálható az [a,b] intervallumon és $f(x)\geq 0$ ($x\in[a,b]$), akkor az f grafikonja alatti

$$A := \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, \ 0 \le y \le f(x)\}\$$

síkidom területét így értelmeztük:

$$T(A) := \int_{a}^{b} f(x) dx.$$

Két $f,g\colon [a,b]\to\mathbb{R}$ korlátos és Riemannintegrálható függvény esetében, ha $g(x)\leq f(x)$ minden $x\in [a,b]$ esetén, akkor a függvények az x=a és x=b egyenesekkel által közrezárt

$$B = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, \ g(x) \le y \le f(x)\}$$

síkidom területét a

$$T(B) = \int_{a}^{b} (f(x) - g(x)) dx$$

határozott integrállal célszerű értelmezni.

Ez könnyen látható, ha $g \ge 0$, hiszen ekkor az f függvény grafikonja alatti A_f síkidom tartalmazza a g függvény grafikonja alatti A_g síkidomot, azaz $A_g \subseteq A_f$, és így

$$T(B) = T(A_f \setminus A_g) = T(A_f) - T(A_g) = \int_a^b f(x) \, dx - \int_a^b g(x) \, dx = \int_a^b (f(x) - g(x)) \, dx.$$

Ha a $g \ge 0$ feltétel nem teljesül, akkor a függvény korlátossága miatt $\exists c > 0$ szám, hogy $f(x) + c \ge g(x) + c \ge 0$ minden $x \in [a, b]$ esetén. Ezzel feltoltuk a B síkidomot az x tengely fölé, amit az f + c, g + c függvények az x = a és x = b egyenesekkel zárnak közre. Ezért területe

$$T(B) = \int_a^b f(x) + c \, dx - \int_a^b g(x) + c \, dx = \int_a^b \left(f(x) + c - (g(x) + c) \right) dx = \int_a^b \left(f(x) - g(x) \right) dx.$$

Példa (A kör területe). Helyezzük el az R > 0 sugarú körlapot a koordináta-rendszerben úgy, hogy az origó legyen a körlap középpontja. Ekkor a körvonal egyenlete $x^2 + y^2 = R^2$. Világos, hogy elég a felső félsíkba eső félkörlap területét meghatározni. A körvonal felső félsíkba eső része az

$$f(x) := \sqrt{R^2 - x^2} \quad (x \in [-R, R])$$

függvény grafikonja.

Mivel az f függvény folytonos, ezért Riemann-integrálható az [a, b] intervallumon, következésképpen a szóban forgó félkörlapnak van területe, és az egyenlő a következő határozott integrállal:

$$\int_{-R}^{R} \sqrt{R^2 - x^2} \, dx.$$

A Newton–Leibniz-tétel szerint először az integrandus egy primitív függvényét kell meghatározni. Ez létezik, mert a szóban forgó függvény folytonos.

Mivel

$$\int \sqrt{1-x^2} \, dx = \frac{1}{2} \cdot \arcsin x + \frac{1}{2} \cdot x \sqrt{1-x^2} + c \quad \left(x \in (-1,1) \right),$$

ezért lineáris helyettesítéssel

$$\int \sqrt{R^2 - x^2} \, dx = R \int \sqrt{1 - \left(\frac{x}{R}\right)^2} \, dx = R \cdot \frac{1}{\frac{1}{R}} \left(\frac{1}{2} \arcsin \frac{x}{R} + \frac{1}{2} \cdot \frac{x}{R} \sqrt{1 - \left(\frac{x}{R}\right)^2}\right) + c =$$

$$= \frac{R^2}{2} \cdot \arcsin \frac{x}{R} + \frac{Rx}{2} \sqrt{1 - \left(\frac{x}{R}\right)^2} + c \qquad \left(x \in (-R, R)\right).$$

Így a Newton-Leibniz-tétel szerint

$$\int_{-R}^{R} \sqrt{R^2 - x^2} \, dx = \left[\frac{R^2}{2} \cdot \arcsin \frac{x}{R} + \frac{Rx}{2} \sqrt{1 - \left(\frac{x}{R}\right)^2} \right]_{-R}^{R} =$$

$$= \frac{R^2}{2} \cdot \arcsin 1 - \frac{R^2}{2} \cdot \arcsin(-1) = \frac{R^2}{2} \cdot \frac{\pi}{2} - \frac{R^2}{2} \cdot \left(-\frac{\pi}{2}\right) = \frac{R^2\pi}{2},$$

vagyis az R sugarú félkörlap területe $R^2\pi/2$. Ezzel megkaptuk az R sugarú körlap területének ismert képletét: $R^2\pi$.

Síkbeli görbe ívhossza

Az ívhossz problémájánál a terület definíciója során megismert gondolatmenetet követjük. A görbét egy felosztáshoz tartozó törtvonallal közelítjük. A szemléletre hivatkozva azt várjuk, hogy egy "elég finom" beírt törtvonal annyira megközelíti a görbét, hogy a hosszúsága is közel lesz a görbe hosszához. Mindezekből azt szűrhetjük le, hogy a görbe ívhossza egyenlő a beírt törtvonal hosszainak a szuprémumával. Ezt a megállapítást fogjuk definícióként elfogadni.

A definíciót csak függvénygrafikonokra fogalmazzuk meg. Legyen valamilyen korlátos és zárt [a,b]intervallum esetén adott az $f:[a,b] \to \mathbb{R}$ függvény. Emlékeztetünk arra, hogy a

[a, b] 7 it ruggveny. Emickezietunk arra, nogy a

$$\Gamma_f := \left\{ \left(x, f(x) \right) \mid x \in [a, b] \right\}$$

síkbeli halmazt (görbét) neveztük f grafikonjának.

Tetszőleges $\tau = \{a = x_0 < x_1 < \dots < x_n = b\} \in \mathcal{F}[a, b]$ felosztás esetén (alkalmas $n \in \mathbb{N}^+$ mellett) tekintsük az

$$(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))$$

pontokat összekötő szakaszokat; ezt nevezzük az f függvénygrafikon τ felosztáshoz tartozó **beírt törtvonalának**. Világos, hogy ennek hossza a következő összeg:

$$\ell_f(\tau) = \sum_{i=0}^{n-1} \sqrt{\left(x_{i+1} - x_i\right)^2 + \left(f(x_{i+1}) - f(x_i)\right)^2}.$$

Az előzőek alapján elég természetes a következő definíció.

3. Definíció. Legyen $a,b \in \mathbb{R},\ a < b$ és $f:[a,b] \to \mathbb{R}$ adott függvény. Azt mondjuk, hogy a

$$\Gamma_f := \left\{ \left(x, f(x) \right) \mid x \in [a, b] \right\}$$

függvénygrafikon **rektifikálható** (vagy más szóval **van ívhossza**), ha

$$\ell(\Gamma_f) := \sup \{\ell_f(\tau) \mid \tau \in \mathcal{F}[a,b]\} < +\infty.$$

Ezt a valós számot a szóban forgó függvénygrafikon **ívhosszának** nevezzük.

A terület problémájához hasonlóan a következő kérdéseket is felvetjük:

- 1. Milyen Γ_f görbének van ívhossza?
- 2. Hogyan lehet ℓ_f -et kiszámolni?

A válaszok motiválásához az egyszerűség kedvéért tegyük fel azt, hogy az f függvény folytonosan deriválható az [a,b] intervallumon (röviden $f \in C^1[a,b]$), és tekintsük az $\ell_f(\tau)$ összeg i-edik tagját:

$$\ell_i = \sqrt{\left(x_{i+1} - x_i\right)^2 + \left(f(x_{i+1}) - f(x_i)\right)^2} = (x_{i+1} - x_i)\sqrt{1 + \left(\frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}\right)^2}.$$

A Lagrange-féle középértéktétel szerint van olyan $\xi_i \in (x_i, x_{i+1})$ pont, amelyre

$$f(x_{i+1}) - f(x_i) = f'(\xi_i)(x_{i+1} - x_i)$$

teljesül, ezért

$$\ell_i = (x_{i+1} - x_i)\sqrt{1 + [f'(\xi_i)]^2}.$$

Így az f függvény grafikonjához közel eső törtvonal hossza

$$\sum_{i=0}^{n-1} \ell_i = \sum_{i=0}^{n-1} \sqrt{1 + \left[f'(\xi_i)\right]^2} \cdot (x_{i+1} - x_i).$$

Vegyük észre, hogy a jobb oldal a $\varphi(x) := \sqrt{1 + [f'(x)]^2} \ (x \in [a,b])$ függvény egy integrálközelítő összege. Várható tehát az, hogy a szóban forgó görbének van ívhossza, és az egyenlő az $\int_a^b \sqrt{1 + [f'(x)]^2} \, dx$ határozott integrállal.

A részletek mellőzésével itt csak azt jegyezzük meg, hogy az imént vázolt gondolatmenet precíz formában is "végigvihető", ezért igaz a következő állítás.

4. Tétel. Legyen $a, b \in \mathbb{R}$ a < b és tegyük fel, hogy $f \in C^1[a, b]$. Ekkor az f függvény

$$\Gamma_f := \left\{ \left(x, f(x) \right) \mid x \in [a, b] \right\}$$

grafikonjának van ívhossza, és az egyenlő az

$$\ell(\Gamma_f) = \int_a^b \sqrt{1 + \left[f'(x)\right]^2} \, dx$$

határozott integrállal.

Példa (<u>A kör kerülete</u>). Az alábbi ábrán jelzett negyedkör ívhosszát fogjuk kiszámolni. Legyen

$$f(x) := \sqrt{R^2 - x^2} \qquad \left(|x| \le \frac{R}{\sqrt{2}} \right)$$

Világos, hogy $f \in C^1\left[-\frac{R}{\sqrt{2}}, \frac{R}{\sqrt{2}}\right]$ és

$$f'(x) = \frac{1}{2\sqrt{R^2 - x^2}} \cdot (-2x) \quad (|x| < R)$$

Így

$$\sqrt{1 + \left[f'(x)\right]^2} = \sqrt{1 + \frac{x^2}{R^2 - x^2}} = \frac{R}{\sqrt{R^2 - x^2}} = \frac{1}{\sqrt{1 - \left(\frac{x}{R}\right)^2}}.$$

Az előző tétel szerint a Γ görbének van ívhossza és

(1)
$$\ell(\Gamma) = \int_{-R/\sqrt{2}}^{R/\sqrt{2}} \sqrt{1 + \left[f'(x)\right]^2} \, dx = \int_{-R/\sqrt{2}}^{R/\sqrt{2}} \frac{1}{\sqrt{1 - \left(\frac{x}{R}\right)^2}} = \left[R \arcsin \frac{x}{R}\right]_{-R/\sqrt{2}}^{R/\sqrt{2}} = \left[R \arccos \frac{x}{R}\right]_{-R/\sqrt{2}}^{R/\sqrt{2}} = \left[R \cos \frac{x}{R$$

(2)
$$= R\left(\arcsin\frac{1}{\sqrt{2}} - \arcsin\left(-\frac{1}{\sqrt{2}}\right)\right) = R\left(\frac{\pi}{4} - \left(-\frac{\pi}{4}\right)\right) = R \cdot \frac{\pi}{2}.$$

Az R sugarú kör kerülete tehát $4 \cdot R \cdot \frac{\pi}{2} = 2R\pi$.

Megjegyzés. A középiskolában a π számot az egységsugarú kör kerületének a felével értelmeztük. A 4. előadáson a (hatványsor összegfüggvényeként bevezetett) cos függvény első pozitív zérushelyének a kétszeresével definiáltuk a π számot. A fentiek alapján a két definíció ekvivalens. Ebből az is következik, hogy a középiskolában bevezetett sin, illetve cos függvény valóban egyenlő az Analízis I. tantárgyban definiált sin, illetve cos függvénnyel.

Forgástest térfogata

A Riemann-integrál eszköztárát a térfogat problémájának a vizsgálatánál is felhasználhatjuk. A továbbiakban csak forgástesteket (vagyis olyan térrészt amelyet egy függvénygrafikon alatti tartomány x tengely körüli megforgatásával kapunk) fogunk vizsgálni. A terület és az ívhossz problémájánál alkalmazott gondolatmenetet követjük: a forgástestet beírt és körülírt hengerekkel (ezek térfogatát ismertnek tekintjük) közelítjük.

Tekintsünk egy nemnegatív f függvényt a korlátos és zárt [a,b] intervallumon. Ekkor az

$$A_f := \{(x, y, z) \in \mathbb{R}^3 \mid a \le x \le b, \ y^2 + z^2 \le f^2(x) \}$$

halmazt az f függvény által meghatározott forgástestnek nevezzük.

Ha $n \in \mathbb{N}$ és $\tau = \{a = x_0 < x_1 < \dots < x_n = b\}$ az [a, b] intervallum egy felosztása, akkor legyen

$$m_i := \inf_{x \in [x_i, x_{i+1}]} f(x)$$
 és $M_i := \sup_{x \in [x_i, x_{i+1}]} f(x)$ $(i = 0, 1, \dots, n-1).$

Α

$$h_i = \{(x, y, z) \in \mathbb{R}^3 \mid x_i \le x \le x_{i+1}, \ y^2 + z^2 \le m_i^2 \}$$

beírt hengerekre, illetve a

$$H_i = \{(x, y, z) \in \mathbb{R}^3 \mid x_i \le x \le x_{i+1}, \ y^2 + z^2 \le M_i^2 \}$$

körülírt hengerekre nyilvánvalóan fennáll, hogy

$$\bigcup_{i=0}^{n-1} h_i \subset A_f \subset \bigcup_{i=0}^{n-1} H_i.$$

Jelöljük V(B)-vel a $B \subset \mathbb{R}^3$ test térfogatát. Az r alapsugarú és m magasságú henger térfogata $r^2\pi \cdot m$, ezért

$$V\left(\bigcup_{i=0}^{n-1} h_i\right) = \pi \sum_{i=0}^{n-1} m_i^2 \cdot (x_{i+1} - x_i) = \pi s(f^2, \tau),$$

illetve

$$V\left(\bigcup_{i=0}^{n-1} H_i\right) = \pi \sum_{i=0}^{n-1} M_i^2 \cdot (x_{i+1} - x_i) = \pi S(f^2, \tau).$$

Ha tehát az A_f forgástestnek is akarunk a $V(A_f)$ -fel jelölt térfogatot tulajdonítani, akkor fenn kell állnia az alábbi egyenlőtlenségeknek:

$$\pi \cdot s(f^2, \tau) \le V(A_f) \le \pi \cdot S(f^2, \tau) \quad (\tau \in \mathcal{F}[a, b])$$

Abban az esetben, ha f Riemann-integrálható az [a,b] intervallumon, akkor $f^2 \in R[a,b]$ is teljesül, azaz

$$I_*(f^2) = \sup_{\tau \in \mathcal{F}[a,b]} s(f^2, \tau) = \inf_{\tau \in \mathcal{F}[a,b]} S(f^2, \tau) = \int_a^b f^2.$$

Az előzőek alapján kézenfekvő az alábbi értelmezés.

4. Definíció. Legyen $0 \le f \in R[a,b]$. Ekkor f grafikonjának az x tengely körüli megforgatásával adódó

$$A_f := \{(x, y, z) \in \mathbb{R}^3 \mid a \le x \le b, \ y^2 + z^2 \le f^2(x) \}$$

forgástestnek van térfogata, és az egyenlő a

$$\pi \int_{a}^{b} f^{2}(x) dx$$

integrállal.

P'elda (A gömb t\'erfogata). Tekintsük valamilyen R > 0 mellett az

$$f(x) := \sqrt{R^2 - x^2} \quad \left(x \in [-R, R] \right)$$

függvényt. Mivel f folytonos, ezért Riemann-integrálható [-R,R]-en. Az A_f forgástest egy R sugarú gömb. A fenti definíció szerint ennek van térfogata, és a Newton–Leibniz-formula felhasználásával a térfogata

$$\pi \int_{a}^{b} f^{2}(x) dx = \pi \int_{-R}^{R} \left(R^{2} - x^{2}\right) dx = \pi \left[R^{2}x - \frac{x^{3}}{3}\right]_{-R}^{R} =$$

$$= \pi \left(\left(R^{2} \cdot R - \frac{R^{3}}{3}\right) - \left(R^{2} \cdot (-R) - \frac{(-R)^{3}}{3}\right)\right) = \pi \left(\frac{2R^{3}}{3} - \left(-\frac{2R^{3}}{3}\right)\right) = \frac{4R^{3}\pi}{3}.$$

Az R sugarú gömb térfogata tehát $4R^3\pi/3$, és ez megegyezik a korábbi tanulmányokban gyakran használt képlettel.

Forgástest felszíne

Felületek felszínének a problémája (még forgásfelület esetén is) jóval bonyolultabb, mint a terület vagy a térfogat problémája. A továbbiakban azonban az alkalmazások szempontjából jól használható eredményt fogunk ismertetni.

Legyen f a korlátos és zárt [a,b] intervallumon értelmezett nemnegatív függvény. Jelöljük \mathcal{A}_f -fel f grafikonjának az x tengely körüli megfogatásával kapott halmazt:

$$\mathcal{A}_f := \{(x, y, z) \in \mathbb{R}^3 \mid a \le x \le b, \ y^2 + z^2 = f^2(x) \ (y, z \in \mathbb{R}) \},$$

amit az f függvény által meghatározott forgásfelületnek nevezünk.

Kézenfekvő az a feltételezés, hogy \mathcal{A}_f felszínét megközelítik az f grafikonjába beírt törtvonalak megforgatásával kapott halmazok (ezek $csonkakúp\ palástok$ egyesítései) felszínei.

Tekintsük az [a,b] intervallum egy τ felosztását, és jelöljük Φ_{τ} -val a szóban forgó csonkakúp palástok felszíneinek (ezt ismertnek tekintjük) az összegét. Mivel f grafikonjának ívhossza (ha létezik) egyenlő kell hogy legyen a beírt törtvonalak ívhosszai halmazának a szuprémumával, ezért első gondolatunk az lehetne, hogy az \mathcal{A}_f halmaz felszíne egyenlő kell hogy legyen a Φ_{τ} értékek ($\tau \in \mathcal{F}[a,b]$) szuprémumával. Ez azonban már egészen egyszerű függvények esetében sem igaz. Tekintsük például az |x| függvényt a [-1,1] intervallumon. Ekkor \mathcal{A}_f két egybevágó kúppalást egyesítése, ezért a felszíne $2 \cdot (2\pi \cdot \sqrt{2}/2) = 2\sqrt{2}\pi$. Ha azonban a τ felosztás csupán a -1 és 1 osztópontokból áll, akkor $\Phi_{\tau} = 2\pi \cdot 2 = 4\pi$, ami nagyobb, mint \mathcal{A}_f felszíne.

Ez a példa a helyes definíciót is sugallja. A technikai nehézségeket elkerülendő azt az egyszerűbb utat választjuk, hogy az imént jelzett okoskodás végeredményeképpen kapott integrállal definiáljuk a felszínt.

5. Definíció. Legyen $a,b \in \mathbb{R}$, a < b és tegyük fel, hogy $0 \le f \in C^1[a,b]$. Ekkor f grafikonjának az x-tengely körüli forgatásával adódó

$$\mathcal{A}_f = \{(x, y, z) \in \mathbb{R}^3 \mid a \le x \le b, \ y^2 + z^2 = f^2(x) \ (y, z \in \mathbb{R}) \}$$

forgásfelületnek van felszíne, és értéke

$$2\pi \int_{a}^{b} f(x) \cdot \sqrt{1 + \left[f'(x)\right]^{2}} dx.$$

Példa (A gömb felszíne). Az origó középpontú és R sugarú gömbfelületet az

$$f(x) = \sqrt{R^2 - x^2} \quad \left(x \in [-R, R]\right)$$

függvény grafikonjának az x tengely körüli megforgatásával kapjuk. Legyen 0 < r < R és tekintsük az

$$f_r(x) = \sqrt{R^2 - x^2} \quad (x \in [-r, r]).$$

Ekkor $f_r \in C^1[-r, r]$ és

$$f'_r(x) = -\frac{x}{\sqrt{R^2 - x^2}} \quad (x \in [-r, r]),$$

továbbá

$$1 + \left[f'(x)\right]^2 = 1 + \frac{x^2}{R^2 - r^2} = \frac{R^2}{R^2 - r^2} \quad \left(x \in [-r, r]\right).$$

Ezért az f_r által a fentiekben meghatározott és \mathcal{A}_r -rel jelölt forgásfelület felszíne

$$F_r := 2\,\pi \int\limits_{-r}^r \sqrt{R^2-x^2} \cdot \sqrt{\frac{R^2}{R^2-x^2}}\,dx = 2\,\pi\,R\int\limits_{-r}^r 1\,dx = 4\,R\,r\,\pi.$$

A "szemlélet alapján" könnyen elfogadható (az egzakt meggondolásokat nem részletezve), hogy az $r \to R$ határátmenettel $\mathcal{A}_r \to \mathcal{A}_R$, ahol \mathcal{A}_R az R sugarú gömb felszíne. Ugyanakkor

$$\lim_{r \to R} F_r = \lim_{r \to R} 4 R r \pi = 4 R^2 \pi,$$

ami valóban nem más, mint az R sugarú gömb felszíne.

Improprius integrálok

A Riemann-integrál értelmezésénél a kiindulópontunk az volt, hogy csak olyan f függvényeket tekintettünk, amelyekre a következő két feltétel teljesül:

- a) f értelmezési tartománya egy korlátos és zárt [a, b] intervallum,
- b) az f függvény korlátos [a, b]-n.

Felvethető az a **probléma**, hogy ezeket a feltételeket nem kielégítő függvényekre vajon értelmezhetőe az integrál fogalma. Egyfajta kiterjesztést tesznek lehetővé az ún. **improprius integrálok**. **6. Definíció.** Legyen $-\infty \le a < b < +\infty$ és $f:(a,b] \to \mathbb{R}$. Tegyük fel, hogy $f \in R[x,b]$ minden $x \in (a,b)$ esetén. Vezessük be a

$$G(x) := \int_{x}^{b} f(t) dt$$
 $\left(x \in (a, b)\right)$

függvényt. Azt mondjuk, hogy az f függvény **impropriusan integrálható**, ha $\exists \lim_a G \in \mathbb{R}$ véges határérték. Ekkor az

$$\int_{a}^{b} f := \lim_{x \to a} G(x)$$

számot az f improprius integráljának nevezzük.

Példa. Legyen

$$f(x) := \frac{1}{\sqrt{x}} \quad (x \in (0,1]) \quad \text{és} \quad g(x) := \frac{1}{x} \quad (x \in (0,1]).$$

Tekintsük a következő ábrákat:

Ekkor

$$\int_{0}^{1} \frac{1}{\sqrt{x}} dx = \lim_{t \to 0+0} \int_{t}^{1} \frac{1}{\sqrt{x}} dx = \lim_{t \to 0+0} \left[2\sqrt{x} \right]_{t}^{1} = \lim_{t \to 0+0} \left(2 - 2\sqrt{t} \right) = 2,$$

$$\int_{0}^{1} \frac{1}{x} dx = \lim_{t \to 0+0} \int_{1}^{1} \frac{1}{x} dx = \lim_{t \to 0+0} \left[\ln x \right]_{t}^{1} = \lim_{t \to 0+0} \left(\ln 1 - \ln t \right) = +\infty.$$

Megjegyzések.

- 1. Vigyázat! Az improprius integrál jelöléseiből nem derül ki, hogy nem a szokásos határozott integrálról van szó.
- 2. Nem nehéz meggondolni, hogy ha $f \in R[a,b]$ akkor az improprius integrál megegyezik a szokásos határozott integrállal. Ennek oka, hogy ekkor az integrálfüggvény tulajdonságai szerint G folytonos lesz az a pontban.
- 3. Az improprius integrállal bizonyos nem korlátos síkidomok területét is értelmezhetjük.

Analóg módon értelmezhető $-\infty < a < b \le < +\infty$ esetén az $f \colon [a,b) \to \mathbb{R}$ függvény improprius integrálja az

$$\int_{a}^{b} f := \lim_{x \to b} G(x), \qquad G(x) := \int_{a}^{x} f(t) dt \qquad \left(x \in (a, b)\right)$$

összefüggéssel.

Példa. Legyen

$$f(x) := \frac{1}{x^2} \qquad \left(x \in [1, +\infty)\right).$$

Ekkor

$$\int_{1}^{+\infty} \frac{1}{x^2} dx = \lim_{t \to +\infty} \int_{1}^{t} \frac{1}{x^2} dx = \lim_{t \to +\infty} \left[-\frac{1}{x} \right]_{1}^{t} = \lim_{t \to +\infty} \left(-\frac{1}{t} - (-1) \right) = 1.$$

Még egy harmadik eset marad, ahol szükséges értelmezni az improprius integrált.

7. Definíció. Legyen $-\infty \le a < b \le +\infty$ és $f:(a,b) \to \mathbb{R}$. Tegyük fel, hogy $f \in R[x,y]$ minden a < x < y < b esetén. Azt mondjuk, hogy az f függvény impropriusan integrálható, ha minden $c \in (a,b)$ esetén $f_{|(a,c]}$ és $f_{|[c,b)|}$ impropriusan integrálható. Ekkor

$$\int_{a}^{b} f := \int_{a}^{c} f + \int_{c}^{b} f.$$

Megjegyzés. Nem nehéz meggondolni, hogy a c értéke nem befolyásolja az $\int_a^b f$ eredményét. P'elda. Legyen

$$f(x) := \frac{1}{1 + x^2} \qquad \left(x \in (-\infty, +\infty) \right).$$

Igaz, hogy

$$\int_{0}^{+\infty} \frac{1}{1+x^2} \, dx = \lim_{t \to +\infty} \int_{0}^{t} \frac{1}{1+x^2} \, dx = \lim_{t \to +\infty} \left[\arctan \operatorname{tg} x \right]_{0}^{t} = \lim_{t \to +\infty} (\arctan \operatorname{tg} t - 0) = \frac{\pi}{2}.$$

Hasonlóan

$$\int_{-\infty}^{0} \frac{1}{1+x^2} \, dx = \lim_{t \to -\infty} \int_{t}^{0} \frac{1}{1+x^2} \, dx = \lim_{t \to -\infty} \left[\arctan \operatorname{tg} x \right]_{t}^{0} = \lim_{t \to -\infty} (0 - \arctan \operatorname{tg} t) = \frac{\pi}{2}.$$

Ezért

$$\int_{-\infty}^{+\infty} \frac{1}{1+x^2} \, dx = \int_{-\infty}^{0} \frac{1}{1+x^2} \, dx + \int_{0}^{+\infty} \frac{1}{1+x^2} \, dx = \frac{\pi}{2} + \frac{\pi}{2} = \pi.$$

Az egyik legfontosabb eredmény az improprius integrálok körében az, hogy

$$\int_{-\infty}^{+\infty} e^{-x^2} \, dx = \sqrt{\pi},$$

ami a valószínűségszámításban játszik fontos szerepet. Mivel $\int e^{-x^2} dx$ nem elemi függvényekből áll, így nem tudjuk a Newton–Leibniz-formulával kiszámítani a fenti improprius integrál értékét. Egy későbbi előadáson, teljesen más eszközökkel megmutatjuk ennek az állításnak a bizonyítását.