Joint part-of-speech and dependency projection from multiple sources

Anders Johannsen*

Željko Agić*

Anders Søgard

(formerly)* University of Copenhagen

Parallel corpora

Parallel corpora

transfer annotation from source to target

Parallel corpora

transfer annotation from source to target

may have multiple sources

Parallel corpora

transfer annotation from source to target

may have multiple sources

evaluate by leave-one-out

Parallel corpora

The many languages of the world

cross-lingual parsing suffers a little from EUROPARLalism

The many languages of the world

cross-lingual parsing suffers a little from EUROPARLalism

This work extends Agić (2016):

train models for hundreds of languages

evaluate on 26 languages

Our corpora

Our corpora

 $score_{\mathrm{DE}}$ $score_{\mathrm{DA}}$ AN FAN 6 WORT BEGYNDELSEN ORDET AUX N ADP DET Abp Aux $a(\cdot, \cdot)$ BEGINNING WAS THE

 $score_{
m DE}$ $score_{DA}$ AN FAN 6 WORT ORDET AUX ADP DET N Aux $a(\cdot, \cdot)$ THE BEGINNING WAS THE

$$\mathop{\arg\max}_y \sum_{(i,j) \in y} \mathrm{score}_{\mathrm{T}}(i,j) \quad \text{s.t. y is a tree}$$

$$\mathop{\arg\max}_y \sum_{(i,j) \in y} \mathrm{score}_{\mathrm{T}}(i,j) \quad \text{s.t. y is a tree}$$

$$rg \max_{y} \sum_{(i,j) \in y} \mathrm{score}_{\mathrm{T}}(i,j)$$
 s.t. y is a tree

$$score_{T}(word, was) = score_{DA}(ordet, var)$$

y

 $(i,j) \in y$

 $score_{T}(word, was) = score_{DA}(ordet, var) a(var, was) a(ordet, word)$

 $score_{T}(word, was) = score_{DA}(ordet, var) a(var, was) a(ordet, word) + score_{DE}(wort, war) a(war, was) a(wort, word)$

 $(i,j) \in y$

Example gone bad

 $score_{T}(the, was) = score_{DA}(ordet, var) a(var, was) a(ordet, word)$

Example gone bad

 $score_{T}(the, was) = score_{DA}(ordet, var) a(var, was) a(ordet, word)$

Yes, but only if "was" is AUX and "the" is N

$$\displaystyle rg \max_{y} \sum_{(i,k,j,l) \in y} \operatorname{score}_{\mathrm{T}}(i,k,j,l)$$
 s.t. y is a tree

the edge (i, j)

$$rg \max_{y} \sum_{(i,k,j,l) \in y} \mathrm{score}_{\mathrm{T}}(i,k,j,l)$$
 s.t. y is a tree

the edge (i, j)

tags for i and j

the edge (i, j)

ILP model

Edges
$$e_{i,k,j,l} \in \{0,1\}$$

Vertices $v_{i,k} \in \{0,1\}$
Flow $\phi_{i,k,j,l} \in \mathbb{R}^+$

Maximize
$$\sum_{i,k,j,l} e_{i,k,j,l} w_{i,k,j,l}$$

One parent per token

$$\sum_{i,k,l} e_{i,k,j,l} = 1 \qquad \forall j \neq 0$$

The root token (index 0) sends n flow

$$\sum_{j,l} \phi_{0,0,j,l} = n$$

Each token consumes one unit of flow

$$\sum_{i,k,l} \phi_{i,k,x,l} - \sum_{k,j,l} \phi_{x,k,j,l} = 1 \qquad \forall x \neq 0$$

One POS per token

$$\sum_{k} v_{i,k} = 1 \qquad \forall i \neq 0$$

Active edges choose token POS

$$v_{i,k} \ge e_{i,k,j,l}$$
 $\forall i \ne 0, j, k, l$ $v_{i,l} \ge e_{i,k,j,l}$ $\forall i, j, k, l$

Above, i, j, and x are token indices, while k and l refer to POS. Quantification over these symbols in the equations are always with respect to a given target graph.

Root produces *n* flow

Each node consumes one flow

Results

	Approach		
Predicted POS	ILP	DCA	DELEX
EBC	51.62 (18)	48.39 (8)	42.44 (1)
WTC	53.58 (20)	48.40 (0)	47.35 (3)
Gold POS			
EBC	65.43 (25)	59.94 (2)	64.13 (-)
WTC	66.51 (23)	55.73 (0)	66.68 (-)

POS tagging

EBC WTC 69.40 73.05

Conclusion

We extended Agić (2016) to project multiple layers of annotation jointly.

Approach stays simple and heuristics-free.

The initial experiments show promising results.

Future work

Project higher/lower layers of annotation, or larger tree parts.

Penalise inconsistent structures instead of disallowing.

Questions?