Introduction to Computing (CS 101)

Introduction to Binary Number System & **Arithmetic**

T. Venkatesh & John Jose

Department of Computer Science & Engineering Indian Institute of Technology Guwahati

Introduction to Binary Storage

- Hardware performance refers to the amount of data a computer can store and how fast it can process the data.
- Bit (Binary digit)— On or off state of electric current; considered the basic unit of information; represented by 1s and 0s (binary numbers).
- Byte— Eight bits grouped together to represent a character (an alphabetical letter, a number, or a punctuation symbol); 256 different combinations.

Why Binary Arithmetic?

$$3 + 5$$

= 8

$$0011 + 0101$$

= 1000

Why Binary Arithmetic?

- Hardware can only deal with binary digits, 0 and 1.
- Must represent all numbers, integers or floating point, positive or negative, by binary digits, called bits.
- Can devise electronic circuits to perform arithmetic operations: add, subtract, multiply and divide, on binary numbers.

Positive Integers

Decimal system: made of 10 digits, {0,1,2, . . . , 9}

$$41 = 4 \times 10^{1} + 1 \times 10^{0}$$
$$255 = 2 \times 10^{2} + 5 \times 10^{1} + 5 \times 10^{0}$$

• Binary system: made of two digits, {0,1}

00101001 =
$$0 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 0 \times 2^4$$

 $+1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$
 = $32 + 8 + 1 = 41$

11111111 = 255, largest number with 8 binary digits

Base or Radix

- ❖ For decimal system, 10 is called the base or radix.
- ❖ Decimal 41 is also written as 41₁₀ or 41_{ten}
- ❖ Base (radix) for binary system is 2.

$$41_{ten}$$
 = 101001_2 or 101001_{two}
 111_{ten} = 1101111_{two}
 111_{two} = 7_{ten}

Number Systems

- Representation of positive numbers same in most systems
- Major differences are in how negative numbers are represented
- Three major schemes:
 - sign and magnitude
 - ones complement
 - twos complement

Sign and Magnitude Representation

- Use fixed length binary representation
- Use left-most bit (called most significant bit or MSB) for sign:
 - 0 for positive
 - 1 for negative

• Example:
$$+18_{ten} = 00010010_{two}$$

 $-18_{ten} = 10010010_{two}$

Sign and Magnitude Representation

- High order bit is sign: 0 = positive (or zero), 1 = negative
- Three low order bits is the magnitude: 0 (000) thru 7 (111)
- Number range for n bits = \pm /- 2^{n-1} -1
- Two representations for 0

Difficulties with Signed Magnitude

- Sign and magnitude bits should be differently treated in arithmetic operations.
- Addition and subtraction require different logic circuits.
- Overflow is difficult to detect.
- "Zero" has two representations:

•
$$+ O_{ten} = 00000000_{two}$$

$$- O_{ten} = 10000000_{two}$$

Signed-integers are not used in modern computers.

Addition and Subtraction of Numbers

Sign and Magnitude Form

result sign bit is the same as the operands' sign

Integers With Sign – Two Ways

- Use fixed-length representation, but no explicit sign bit:
 - 1's complement: To form a negative number, complement each bit in the given number.
 - 2's complement: To form a negative number, start with the given number, subtract one, and then complement each bit,
 - or first complement each bit, and then add 1.
- 2's complement is the preferred representation.

Ones Complement

- Subtraction implemented by addition & 1's complement
- ❖ Still two representations of 0! This causes some problems

1's Complement Numbers

Negation rule: invert bits.

Problem: $0 \neq -0$

Decimal	Binary number	
magnitude	Positive	Negative
0	0000	1111
1	0001	1110
2	0010	1101
3	0011	1100
4	0100	1011
5	0101	1010
6	0110	1001
7	0111	1000

Addition and Subtraction of Numbers

Ones Complement Calculations

Twos Complement

like 1's comp except shifted one position clockwise

- Only one representation for 0
- One more negative number than positive number

2's Complement Numbers

Negation rule: invert bits and add 1

Decimal	Binary number		
magnitude	Positive	Negative	
0	0000		
1	0001	1111	
2	0010	1110	
3	0011	1101	
4	0100	1100	
5	0101	1011	
6	0110	1010	
7	0111	1001	
8		1000	

2's Complement Numbers

$$N^* = 2^n - N$$

Example: Twos complement of 7

$$2^4 = 10000$$

sub 7 = 0111
 $1001 = \text{repr. of -7}$

Example: Twos complement of -7

$$2^4 = 10000$$
sub $-7 = 1001$
0111 = repr. of 7

Shortcut method:

Twos complement = bitwise complement + 1

0111 -> 1000 + 1 -> 1001 (representation of -7)

1001 -> 0110 + 1 -> 0111 (representation of 7)

Addition and Subtraction of Numbers

Twos Complement Calculations

	4	0100	-4	1100
If carry-in to sign =	+ 3	0011	+ (-3)	1101
carry-out then ignore carry	7	0111	-7	11001
if carry-in differs from				
carry-out then overflow	4	0100	-4	1100
	- 3	1101	+ 3	0011
	1	10001	-1	1111

Simpler addition scheme makes twos complement the most common choice for integer number systems within digital systems

Three Systems (n = 4)

1's complement integers

2's complement integers

Signed magnitude

Three Representations

Sign-magnitude	1's complement	2's complement
000 = +0	000 = +0	000 = +0
001 = +1	001 = +1	001 = +1
010 = +2	010 = +2	010 = +2
011 = +3	011 = +3	011 = +3
100 = - 0	100 = - 3	100 = - 4
101 = - 1	101 = - 2	101 = - 3
110 = - 2	110 = - 1	110 = - 2
111 = - 3	111 = - 0	111 = - 1

Overflow Conditions

- Add two positive numbers to get a negative number
- Add two negative numbers to get a positive number

Overflow: An Error

Examples: Addition of 3-bit integers (range - 4 to +3)

Overflow rule: If two numbers with the same sign bit (both positive or both negative) are added, the overflow occurs if and only if the result has the opposite sign.

100

Overflow

Overflow and Finite Universe

Forbidden fence

Overflow Conditions

5	0 1 1 1 0 1 0 1	-7	1 0 0 0 1 0 0 1
3	0011	-2	1110
-8	1000	7	10111
	Overflow	Overflov	V
5	0 0 0 0 0 1 0 1	-3	1 1 1 1 1 1 0 1
_2	0010	<u>-5</u>	1011
7	0 1 1 1	-8	11000
No overflow		No ove	rflow

Overflow when carry in to sign does not equal carry out

Overflow - Practice Questions

Consider the following cases of arithmetic operations to be done on 5 bit 2-complement system. How do you identify if there is an overflow or not?

- 10 + 12
- -6 + -8
- 8 -10
- -12 + 8
- -13 5

[Hint: Add 2's complement for carrying out subtraction]

Overflow – Practice Questions

10 + 12	-6 + -8	$810 \rightarrow 8 + 10$
$10 \rightarrow 01010$	1 <mark>000</mark> -6→ 11010	8→ 01000
12 → 01100	-8 → 11000	10 → 01010
+ 10110	110010 (-14)	10010
Cin ≠ Cout	Cin = Cout	Cin ≠ Cout

NO OVERFLOW OVERFLOW

OVERFLOW

Overflow – Practice Questions

$$-12 + 8$$
 0000
 $-12 \rightarrow 10100$

NO OVERFLOW

$$-13 - 5 \rightarrow -13 + 2C \{5\}$$

0011
-13 \rightarrow 10011

OVERFLOW

Thanks