Conjuntos invariantes

Sean $-\infty \leq \alpha < \beta \leq +\infty$, $A:(\alpha,\beta) \to \mathcal{M}_d(\mathbb{R})$ continua y $b:(\alpha,\beta) \to \mathbb{R}^d$ continua. Se considera la ecuación diferencial lineal:

$$(*) x' = A(t)x + b(t)$$

Se dice que un conjunto $S \subset \mathbb{R}^d$ es un conjunto *invariante* para la ecuación (*) si verifica la siguiente propiedad: para toda función $\varphi: (\alpha,\beta) \to \mathbb{R}^d$ que es solución de (*) y es tal que existe $t_0 \in (\alpha,\beta)$ tal que $\varphi(t_0) \in S$ entonces

$$\varphi(t) \in S$$
 $\forall t \in (\alpha, \beta).$

De manera análoga se pueden definir:

- Conjunto positivamente invariante:
 - $\varphi(t_0) \in S \quad \Rightarrow \quad \varphi(t) \in S \quad \forall t \in [t_0, \beta)$
- Conjunto negativamente invariante: $\varphi(t_0) \in S \implies \varphi(t) \in S \quad \forall t \in (\alpha, t_0].$

Órbitas

Consideramos una ecuación lineal autónoma

$$(*) \qquad x' = Ax + b$$

donde $A \in \mathcal{M}_d(\mathbb{R})$ y $b \in \mathbb{R}^d$.

Para cada $x_0 \in \mathbb{R}^d$ se define la *órbita* que pasa por el punto x_0 como la imagen de la solución del PVI

$$(*)\begin{cases} x' = Ax + b \\ x(0) = x_0 \end{cases}$$

Es decir, si $\varphi : \mathbb{R} \to \mathbb{R}^d$ es la única solución del PVI (P), entonces la *órbita* que pasa por el punto x_0 es el conjunto

$$\Gamma(x_0) = \{ \varphi(t) : t \in \mathbb{R} \}$$

De manera análoga se pueden definir:

- Semiórbita positiva: $\Gamma^+(x_0) = \{\varphi(t) : t \in [0, +\infty)\}$
- Semiórbita negativa: $\Gamma^-(x_0) = \{ \varphi(t) : t \in (-\infty, 0] \}$

Estabilidad de ecuaciones lineales

Propiedades

- **1** La órbita $\Gamma(x_0)$ es el mínimo conjunto invariante que contiene a x_0 .
- **2** Si $x_1 \in \Gamma(x_0)$ entonces $\Gamma(x_1) = \Gamma(x_0)$.
- **Q** El conjunto de órbitas forman una partición de \mathbb{R}^d (unión disjunta).
- Si $Ax_0 + b = O$ entonces $\Gamma(x_0) = \{x_0\}$. En tal caso, x_0 recibe el nombre de *punto de equilibrio*.
- **9** Si x_0 no es un punto de equilibrio, entonces $\Gamma(x_0)$ se suele representar como una curva orientada.

Diagrama de fases

Un diagrama de fases es una representación gráfica de las órbitas de una ecuación diferencial.

Ejemplo 1

Representa un diagrama de fases de la EDO escalar x' = x.

Ejemplo 2

Representa un diagrama de fases de la EDO escalar x' = -x + 1.

Ejemplo 3

Representa un diagrama de fases de la EDO escalar $x' = \lambda x + b$ donde $\lambda \neq 0$.

Ejemplo 4

Representa un diagrama de fases del sistema plano $\begin{cases} x_1' = x_2 \\ x_2' = -x_1 \end{cases}$

Ejemplo 5

Representa un diagrama de fases del sistema plano $\begin{cases} x_1' = x_1 \\ x_2' = -x_2 \end{cases}$

$$\begin{cases} x_1' = x_1 \\ x_2' = -x \end{cases}$$