TPN°7: Vuelta atrás Backtracking

Algoritmos y Estructuras de Datos II

BACKTRACKING

BACKTRACKING

Estudio exhaustivo de posibles soluciones

М

BACKTRACKING

BACKTRACKING

→ No utilizan estrategia en la búsqueda de las soluciones

Proceso de prueba y error en el cual se construye gradualmente una solución

Similar al recorrido en profundidad

ALGORITMO dfs (v)

P1. visitado (v) ← verdadero

P2. ESCRIBIR (v)

P3. PARA cada vértice w adyacente a v HACER SI NOT visitado (w) ENTONCES

dfs (w)

P3. FIN

BACKTRACKING

BACKTRACKING

PROBLEMA

SOLUCION → VECTOR de componentes (x1, x2, ..., xn)

xi : se elige en cada etapa de entre un conjunto finito de valores

BACKTRACKING

BACKTRACKING Mochila Múltiple

```
Función mochila (i, M): tipo x peso → beneficio

// globales: n, b y p

// entrada: elementos de tipos i a n y con peso máximo M.

// salida: bmax el beneficio de la mejor carga.

Examina posibilidades dentro del nivel k

Para k=i hasta n hacer

si p(k) ≤ M entonces

bmax← max (bmax, b(k)+mochila(k, M-p(k))

retorna bmax
```

Baja un nivel en el árbol

BACKTRACKING Mochila 0/1

¿Cómo modificamos el algoritmo del problema de la Mochila Múltiple para adaptarlo al problema de la Mochila 0/1?

```
Función mochila (i, M): tipo x peso → beneficio

// globales: n, b y p

// entrada: elementos de tipos i a n y con peso máximo M.

// salida: bmax el beneficio de la mejor carga.

bmax←0

Para k=i hasta n hacer

si p(k) ≤ M entonces

bmax← max (bmax, b(k)+mochila(k, M-p(k))

retorna bmax
```

Mochila 0/1

BACKTRACKING Mochila 0/1

¿Cómo modificamos el algoritmo del problema de la Mochila Múltiple para adaptarlo al problema de la Mochila 0/1?

```
Función mochila (i, M): tipo x peso → beneficio

// globales: n, b y p

// entrada: elementos de tipos i a n y con peso máximo M.

// salida: bmax el beneficio de la mejor carga.

bmax←0

Para k=i hasta n hacer

si p(k) ≤ M entonces

bmax← max (bmax, b(k)+mochila(k, M-p(k))

retorna bmax
```


Expresión aritmética de valor M

Dado un número entero M y un vector V de n números naturales, se quiere determinar si existe una forma de insertar entre los n números del vector (en el mismo orden en que están colocados en el vector) operadores de suma y resta de forma tal que se obtenga una expresión aritmética con el valor de M como resultado final. Se quiere comprobar si es posible llegar a una solución, y en ese caso mostrar la o las expresiones de suma M.

DATOS:

$$M = 7$$

n = 4

V = [7,2,5,3]

POSIBLES EXPRESIONES

$$7 + 2 + 5 + 3 = 17 X$$

 $7 + 2 + 5 - 3 = 11 X$
 $7 + 2 - 5 - 3 = 1 X$
 $7 - 2 + 5 - 3 = 7 \checkmark$

DATOS:

$$M = 7$$

$$n = 4$$

$$V = [7,2,5,3]$$

(-,,)R=5 k=1

(-,-,)

R=0 k=2

(+,+,)R=14 k=2

(+,-,)

R=4 k=2

(-,+,)R=10 k=2

(-,-,+)R=3 k=3

Expresión aritmética

de valor M (+,+,-)R=11 k=3

(+,+,+)

R=17 k=3

SALIDA

$$7 + 2 - 5 + 3$$

$$7 - 2 + 5 - 3$$

SUMA MINIMA TRIANGULO

Variables Globales

Filas

(niveles)

Columnas

8	8	8	8	8
8	2	8	8	8
8	5	4	8	8
8	1	4	7	8
8	8	6	9	6

0 1 2 3 4

∞	∞	8	8	8
8	2	8	8	8
8	8	8	8	∞
8	∞	8	8	8
8	8	8	8	8

SUMA MINIMA TRIANGULO

```
2
```


1 4 7

8 (6) 9 6

FUNCION minSumTriangulo(n): entero≥1 → entero

```
SI (n = 1) ENTONCES
    RETORNA T[1][1]
SINO
    minimo ← ∞
HACER n VECES (i = 1,..n)
        minimo ← min(minimo, MSD(n, i))
RETORNA minimo
```


SUMA MINIMA TRIANGULO

1) 4 7

8 (6) 9 6

FUNCION MSD(fila, col): ent. $\geq 0 \times \text{ent.} \geq 0 \rightarrow \text{ent.}$

// COMPLETAR

Preguntas... ...y a practicar...

