Problem Set 7 MATH 20410

7 Functions of Several Variables III

From Rudin (1976).

Chapter 9

- 3/2: **9.** If **f** is a differentiable mapping of a *connected* open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m , and if $\mathbf{f}'(\mathbf{x}) = 0$ for every $\mathbf{x} \in E$, prove that **f** is constant in E.
 - **13.** Suppose \mathbf{f} is a differentiable mapping of \mathbb{R}^1 into \mathbb{R}^3 such that $|\mathbf{f}(t)| = 1$ for every t. Prove that $\mathbf{f}'(t) \cdot \mathbf{f}(t) = 0$. Interpret this result geometrically.
 - 14. Define

$$f(x,y) = \begin{cases} 0 & (x,y) = (0,0) \\ \frac{x^3}{x^2 + y^2} & (x,y) \neq (0,0) \end{cases}$$

- (a) Prove that D_1f and D_2f are bounded functions in \mathbb{R}^2 . (Hence f is continuous.)
- (b) Let **u** be any unit vector in \mathbb{R}^2 . Show that the directional derivative $(D_{\mathbf{u}}f)(0,0)$ exists, and that its absolute value is at most 1.
- (c) Let γ be a differentiable mapping of \mathbb{R}^1 into \mathbb{R}^2 (in other words, γ is a differentiable curve in \mathbb{R}^2), with $\gamma(0) = (0,0)$ and $|\gamma'(0)| > 0$. Put $g(t) = f(\gamma(t))$ and prove that g is differentiable for every $t \in \mathbb{R}^1$. If $\gamma \in C^1$, prove that $g \in C^1$.
- (d) In spite of this, prove that f is not differentiable at (0,0). (Hint: The formula $(D_{\mathbf{u}}f)(\mathbf{x}) = \sum_{i=1}^{n} (D_{i}f)(\mathbf{x})u_{i}$ fails.)
- **16.** Show that the continuity of \mathbf{f}' at the point \mathbf{a} is needed in the inverse function theorem, even in the case n=1: If

$$f(t) = \begin{cases} t + 2t^2 \sin\frac{1}{t} & t \neq 0\\ 0 & t = 0 \end{cases}$$

then f'(0) = 1 and f' is bounded in (-1,1), but f is not one-to-one in any neighborhood of 0.