

АКЦИОНЕРНОЕ ОБЩЕСТВО «НАУЧНО-ПРОИЗВОДСТВЕННАЯ КОРПОРАЦИЯ «КОСМИЧЕСКИЕ СИСТЕМЫ МОНИТОРИНГА, ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ КОМПЛЕКСЫ» имени А. Г. ИОСИФЬЯНА»

УТВЕРЖДАЮ Главный конструктор направления

УТВЕРЖДАЮ Главный конструктор космических систем и комплексов

АО «Российские космические

системы»

А.Н. Ершов

201 г.

АО «Қорпорация «ВНИИЭМ»

А.Н. Запорожцев

«03» 03 20<u>Р</u>О г.

ПРОТОКОЛ №3РЛЦИ-В/МКА-2020

Протокол информационно-логического сопряжения РЛЦИ-В и ОБК (БЦК) по МКПД 1 МКА.

От АО «Российские космические системы»

Bul Transl

От АО «Корпорация «ВНИИЭМ»

2020

СОДЕРЖАНИЕ

1		3
•		
2	ОПИСАНИЕ ИНФОРМАЦИОННОГО ОБМЕНА	4
2.1	Командное слово	4
2.2	Ответное слово	
2.3	Алгоритм процедуры обмена	
2.4	Анализ ответного слова	6
3	ОПИСАНИЕ ИНФОРМАЦИОННОГО ОБМЕНА	
3.1	Виды информационного обмена	7
Табл	ТИЦА 3.1 ВИДЫ ИНФОРМАЦИОННОГО ОБМЕНА	8
3.2	РАСПРЕДЕЛЕНИЕ ПОДАДРЕСОВ ОУ	8
3.3	Передача управляющих воздействий (УВ)	
3.4	ПЕРЕДАЧА МАССИВОВ ДАННЫХ (МД) ОХ, ОХ	
3.5	Передача групповых управляющих воздействий (ГУВ)	11
3.6	ПЕРЕДАЧА ДИАГНОСТИЧЕСКОЙ ИНФОРМАЦИИ (ДИ)	11
3.7	АЛГОРИТМ ОБМЕНА КШ – ОУ	
3.8	ЛЕЙСТВИЯ ПРИ НЕШТАТИКУ СИТУАНИЯУ (НППС)	12

1 ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1 Настоящий протокол определяет логику, порядок взаимодействия и объём передаваемой информации при обмене между бортовым центральным контроллером (БЦК) и блоком автоматики (БА) системы РЛЦИ-В.
- 1.2 Информационный обмен осуществляется по мультиплексному каналу передачи данных (МКПД), в соответствии с ГОСТ Р 52070-2003 «Магистральный последовательный интерфейс». При обмене используются форматы 1, 2, 4, 7 основных сообщений по ГОСТ Р 52070-2003.
- 1.3 Обмен информацией выполняется по дублированной магистрали информационного обмена. За основную магистраль принята магистраль А (ЛПИ А), за резервную магистраль Б (ЛПИ Б).
- 1.4 Функции контроллера (КШ) на основной и резервной ЛПИ выполняет БЦК. Переход с ЛПИ А на ЛПИ Б осуществляет БЦК согласно п. 8 ГОСТ Р 52070-2003 на основании анализа обмена или в целях контроля работоспособности оконечных устройств на обеих ЛПИ.
- 1.5 Функцию оконечного устройства (ОУ) выполняет блок автоматики (БА) РЛЦИ-В. На основной и резервной ЛПИ БА РЛЦИ присвоен адрес: $10_{\rm dec}$ $01010_{\rm bin}$
- 1.6 Подключение КШ и ОУ к шине МКПД осуществляется в соответствии с протоколом № 2РЛЦИ-В/МКА-2019. Электрические характеристики устройств интерфейса (КШ и ОУ) и магистрали соответствуют требованиям ГОСТ Р 52070-2003.
- 1.7 Вместе с настоящим протоколом следует руководствоваться протоколом №4РЛЦИ-В/МКА-2019 и №5РЛЦИ-В/МКА-2019.
- 1.8 Протокол может изменяться и уточняться в ходе отработки программного обеспечения (ПО), проведения отладки и испытаний БЦК и БА РЛЦИ-В по взаимному согласованию сторон.

and the same state of the same of the same

The general section of the second section is a second seco

2 ОПИСАНИЕ ИНФОРМАЦИОННОГО ОБМЕНА

2.1 Командное слово

Соответствие номеров разрядов 16-ти разрядных слов БЦК (КШ) номерам разрядов слов по ГОСТ 52070 – 2003 для командного слова следующие:

4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	ГОСТ
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	БЦК
Адрес ОУ					Pen	Под	цадр упра		RNI				СД/ ианд			
MSB					0										LSB	

Содержимое 4 - 8 разрядов (ГОСТ Р 52070-2003) в командном слове должно соответствовать адресу ОУ.

Команды управления интерфейсом передаются с кодом подадреса 11111 (см.раздел 4 ГОСТ Р 52070-2003). В ОУ 10 разряд командного слова используется в качестве 5 разряда поля «подадрес/режим управления» командного слова. ОУ выполняет команды управления интерфейсом в соответствии с разделом 4 ГОСТ Р 52070-2003.

2.2 Ответное слово

Соответствие номеров разрядов 16-ти разрядных слов КШ номерам разрядов слов по ГОСТ Р 52070-2003 для ответного слова (ОС) следующее:

	•												`			
4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	ГОСТ
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	БЦК
	Адр	ec O	У		х	0	х	0	0	0	0	Х	0	0	х	
MSB															LSB	

Содержимое 4 - 8 разрядов (ГОСТ Р 52070-2003) в командном слове должно соответствовать адресу ОУ.

Признак ОС «Ошибка в сообщении» — 9 разряд (ГОСТ Р 52070-2003) формируется ОУ в соответствии с разделом 4 ГОСТ Р 52070-2003.

Единичное значение признака «Абонент занят» — 16 разряд (ГОСТ Р 52070-2003) устанавливается в режиме самотестирования после старта/рестарта ПО ОУ и говорит о том, что в данный момент времени (т.е. в момент поступления данного командного слова), ОУ занят и не может получить/передать слова данных. В этом случае:

 при приеме командного слова в формате 1 ОУ должно игнорировать полученные данные, при этом предыдущая команда (информация) не должна теряться (раздел 4 ГОСТ Р 52070-2003);

with the commentation of the contraction of the con

ПРОТОКОЛ №3РЛЦИ-В/МКА-2020

Acres Same and the same were secretaries in the same

 при приеме командного слова в формате 2 ОУ должен передать только ответное слово и не передавать слова данных (раздел 4 ГОСТ Р 52070-2003).

Единичное значение признака «Неисправность ОУ» — 19 разряд (ГОСТ Р 52070-2003) — программа самоконтроля ОУ зафиксировала неисправность ОУ.

Единичное значение признака «Запрос на обслуживание» — 11 разряд (ГОСТ Р 52070-2003) — формируется при наличии критических отказов в контроллере ОУ.

Остальные признаки ОС ОУ – «Передача ОС», «Неисправность абонента», «Принято управление интерфейсом» – не используются и штатно должны быть равны 0.

Одновременное формирование в ответном слове двух и более признаков «Ошибка в сообщении», «Абонент занят», «Неисправность ОУ», «Запрос на обслуживание» - не допускается.

2.3 Алгоритм процедуры обмена

При каждом обращении КШ к ОУ осуществляется контроль выполнения обмена. При обмене КШ формирует «Ошибку обмена» при наличии любого из условий:

- отсутствие ОС;

1

- принято недостоверное ОС;
- принято недостоверное СД или массив СД;
- принято неверное количество слов;
- нарушение формата сообщений;
- обнаружена ощибка эхо-контроля;
- единичное значение любого из разрядов «Ошибка в сообщении», «Передача ОС», «Резерв», «Принята групповая команда», «Принято управление интерфейсом» в ответном слове ОУ.

Обмен информацией по МКПД производится по выбранной магистрали (основной или резервной), при исправных магистралях – по магистрали А.

В случае ошибки в «ОС» или отсутствия «ОС» обмен повторяется по той же магистрали дважды. При двукратном наличии признака ошибки обмен осуществляется по резервной линии передач (ЛПИ Б) с формированием соответствующего признака в диагностическую информацию. Время смены ЛПИ А на ЛПИ Б не должно превышать 100 мкс.

Примечание: В случае ощибки в «ОС» или отсутствия «ОС» БЦК формирует разные диагностические признаки и записывает их в собственный

والمراجع والمنابع المنابع المنابع والمنابع والمن

кадр диагностической информации.

В случае состоявшегося обмена ЛПИ Б становится активной, и работа продолжается по ЛПИ Б в соответствии с циклограммой обмена КШ – ОУ.

При двукратном наличии ошибки обмена по двум магистралям (ЛПИ А и ЛПИ Б) включенный канал считается неисправным и КШ формирует признак НШС (в случае ошибки в «ОС», свой / в случае отсутствия «ОС», свой), обмен прекращается до дальнейшего принятия решения с наземного комплекса управления (НКУ).

Примечание: при возникновении НШС во время выполнения маршрутного полетного задания (МПЗ) БЦК прекращает его дальнейшее исполнение и выдает команду на отключение шин питания БА РЛЦИ-В согласно циклограмме выключения.

При положительных результатах обмена магистраль не меняется, и работа продолжается в соответствии с циклограммой обмена КШ - ОУ.

ОУ осуществляет контроль передачи информации в соответствии с разделом 5 ГОСТ Р 52070-2003.

2.4 Анализ ответного слова

Информационный обмен начинается по основной линии передачи информации (ЛПИ А).

При отсутствии ОС от ОУ на интервале более 14 мкс, БЦК выставляет признак «Ошибка: нет ОС» и через время не менее чем 4 мкс повторяет информационный обмен.

Если в ОС присутствует признак «Абонент занят», то БЦК повторяет информационный обмен в следующем цикле. Повторное наличие признака «Абонент занят» означает, что ОУ находится в режиме самотестирования длительностью не более 5 с. Если время занятости абонента превышает 5 с, то контроллер ОУ следует считать отказавшим.

При наличии ОС от ОУ, БЦК анализирует поля признаков «Неисправность ОУ», «Запрос на обслуживание», а также на наличие единичных резервных бит, БЦК выставляет признак «Ошибка: структуры ОС» повторяет обмен через время не менее чем 4 мкс.

При повторном наличие признака «Ошибка: нет ОС» или «Ошибка: структуры ОС» БЦК переходит на резервную линию передачи информации (ЛПИ Б) и повторяет информационный обмен. При двукратном неудачном информационном обмене по резервной линии, БЦК выставляет признак «НШС» и прекращает обмен с ОУ до УВ с НКУ. При удачном обмене счетчик ошибок ЛПИ обнуляется.

3 ОПИСАНИЕ ИНФОРМАЦИОННОГО ОБМЕНА

3.1 Виды информационного обмена

Информационный обмен по шине МКПД1 подразделяется на:

- управляющие воздействия (УВ) 5 СД МКПД;
- массивы данных (МД) 32 СД МКПД;

УВ подразделяются на частные и групповые. Частые УВ передаются от КШ к ОУ по формату 1 в соответствии с п. 4.5 ГОСТ Р 52070-2003. Групповые УВ передаются от КШ к ОУ по формату 7 в соответствии с п. 4.5 ГОСТ Р 52070-2003.

К частным УВ РЛЦИ-В относятся:

1

- команды включения и выключения приборов;
- команды управления режимами работы приборов системы;
- команды управления локальной магистралью RS485 системы;
- команды управления драйверами двигателей (запуска/остановки);

к групповым УВ относятся:

- код БШВ, передаваемый в широковещательном режиме в бортовую аппаратуру с частотой не чаще 1 Гц.
- Аварийный сигнал отключения нагрузки (OH1), передаваемый в широковещательном режиме в бортовую аппаратуру перед отключение в случае ухудшения энергетики МКА.

and proceedings and the company of the procedure of the first tenter of the contract of the co

Таблица 3.1 виды информационного обмена.

1º

Номер массива	Наименование массива	Направле ние передачи	Формат сообщения МКПД	Подадрес	Количест во СД
1	Управляющие воздействия (УВ)	КШ - ОУ	1	1	5
2	Массив данных (МД) управления приводом по ОХ	КШ - ОУ	1	4	32
2	Массив данных (МД) управления приводом по OZ	КШ - ОУ	1	5	32
5	EIIIB	КШ - ОУ	7	29	5
6	OH1	КШ - ОУ	7	30	5
7	Диагностическая информация	ОУ - КШ	2	1	64

Ĭ

- 3.2 Распределение подадресов ОУ.
- 3.2.1 Согласно ГОСТ Р 52070-2003 контроллер ОУ имеет адресное пространство размерностью 32*64 байта на прием информации по формату 1 и 32*64 байта на считывание информации по формату 2. Каждый из 32 регистров размерностью по 64 байта в терминологии ГОСТ Р 52070-2003 носит наименование подадрес (ПА) ОУ.
- 3.2.2 Распределение подадресов ОУ применительно к РЛЦИ-В согласно таблице 3.2.2. Каждый вид информационного обмена согласно таблице 3.1 применим к определенному подадресу (ПА) ОУ.

Таблица 3.2.2 – Значения поля «Подадрес»

Пода	дрес (ПА)	On VIII P OV (Francy)	Om OV p VIII (Fym «V» –1)
dec	bin	От <mark>КІШ в ОУ (Бит</mark> «К»=0)	От ОУ в КШ (Бит « K » =1)
1	00001	УВ	массив ДИ
2	00010	резерв под УВ	резерв под массив ДИ
3	00011	резерв под УВ	резерв под массив ДИ
4	00100	МД управления приводом по ОХ	резерв под массив ДИ
5	00101	МД управления приводом по OZ	резерв под массив ДИ
6	00110	резерв под МД	резерв под массив ДИ
7	00111	резерв под МД	резерв под массив ДИ
8	01000	резерв под МД	резерв под массив ДИ
9	01001	резерв под МД	резерв под массив ДИ
10	01010	резерв под МД	резерв под массив ДИ
11	01011	резерв под МД	резерв под массив ДИ
12	01100	резерв под МД	резерв под массив ДИ
13	01101	резерв под МД	резерв под массив ДИ
14	01110	резерв под МД	резерв под массив ДИ
15	01111	резерв под МД	резерв под массив ДИ
16	10000	резерв под МД	резерв под массив ДИ
17	10001	резерв под МД	резерв под массив ДИ
18	10010	резерв под МД	резерв
28	11100	ТМД (тестовый МД)	ТМД (тестовый МД)
29	11101	БШВ	резерв
30	11110	OH1	резерв

Примечание: тестовый массив данных (ТМД) используется при наземной отладке РЛЦИ-В при обмене между КШ и ОУ по форматам 1, 2, 7.

- 3.3 Передача управляющих воздействий (УВ)
- 3.3.1 УВ передаются в РЛЦИ-В согласно циклограмме обмена по формату 1 ГОСТ Р 52070-2003 между КШ и ОУ. БЦК выдает КС и пять СД, содержащие код УВ (рисунок 3.3.1)

КШ - ОУ КС СД1 . . . СД5
$$\leftarrow$$
 t1 — ОС \leftarrow t2 — КС \downarrow Рисунок 3.3.1 — Передача УВ от КШ в ОУ

- 3.3.2 РЛЦИ-В, получив КС и 5 СД, выдает ОС и осуществляет исполнение УВ в соответствие с их назначением. Полный перечень УВ и их формат для РЛЦИ-В приведен в протоколе №5РЛЦИ-В/МКА-2019.
- 3.3.3 После прихода в БЦК ОС от РЛЦИ-В он производит его анализ на достоверность согласно пункту 2.3 данного протокола. При возникновении ошибок обмена БЦК действует согласно пункту 2.4 данного протокола.
- 3.3.4 Для контроля выполнения УВ переданного от БЦК, в ДИ РЛЦИ-В содержится параметр «номер последней принятой команды», после прихода очередного УВ параметру присваивается номер данной УВ. При следующем цикле обмена ОУ КШ, БЦК анализирует изменение параметра «номер последней принятой команды».
 - 3.4 Передача массивов данных (МД) ОХ, ОZ
- 3.4.1 МД передаются в РЛЦИ-В согласно циклограмме обмена по формату 1 ГОСТ Р 52070-2003 между КШ и ОУ. БЦК выдает КС и 32 СД, содержащие массивы данных управления приводом (рисунок 3.4.1)

Рисунок 3.4.1 – Передача МД от КШ в ОУ

von anatoka kalendari eta 1800 kilonia eta

3.4.2 РЛЩИ-В после получения массивов выдает ОС и сохраняет полученные данные в своей внутренней памяти.

- 3.5 Передача групповых управляющих воздействий (ГУВ)
- 3.5.1 ГУВ передаются в РЛЦИ-В согласно циклограмме обмена по формату 7 ГОСТ Р 52070-2003 между КШ и группой ОУ. БЦК выдает КС и пять СД, содержащие код ГУВ (рисунок 3.3.1)

КШ - ОУ
$$| KC | CД1 | \cdots | CД5 | \leftarrow t1 \longrightarrow | OC | \leftarrow t2 \longrightarrow | KC |$$

Рисунок 3.3.1 – Передача ГУВ от КШ в ОУ

3.5.2 КГУВ относятся:

į

- Код бортовой шкалы времени (БШВ) выдается БЦК раз в секунду, безусловно.
- Сигнал аварийного отключения нагрузки (ОН) выдается БЦК раз в секунду, безусловно в случае ухудшения энергетики МКА.
- 3.5.3 РЛЦИ-В, получив КС и 5 СД, выдает ОС и осуществляет исполнение УВ в соответствие с их назначением.
 - 3.6 Передача диагностической информации (ДИ)
- 3.6.1 ДИ передается от РЛЦИ-В в БЦК согласно циклограмме обмена по формату 2 ГОСТ Р 52070-2003 между КШ и ОУ. БЦК выдает КС, в ответ РЛЦИ-В формирует и выдает ОС и 32 СД, содержащие массив ДИ (рисунок 3.6.1) Частота опроса ДИ не менее 1 Гц.

OУ - КШ
$$KC$$
 \leftarrow t1 \rightarrow OC $CД1$ · · · $CД32$ \leftarrow t2 \rightarrow KC

Рисунок 3.6.1 – Передача ДИ от ОУ в КШ

- 3.6.2 БЦК, получив массив ДИ сохраняет его в долговременную память для последующей передачи в сеансе связи на НКУ. Полный перечень ДИ и формат массива ДИ для РЛЦИ-В приведен в протоколе №4РЛЦИ-В/МКА-2019.
 - 3.7 Алгоритм обмена КШ ОУ
- 3.7.1 После подачи электропитания на БА РЛЦИ-В согласно протоколу №1РЛЦИ-В/МКА-2019 РЛЦИ-В переходит в рабочий режим (не более 60 с).

akingga at ing a tangga at ang at

3.7.2 БЦК согласно циклограмме обмена по формату 2 ГОСТ Р 52070-2003 между КШ и ОУ начинает периодический запрос ДИ РЛЦИ-В с частотой не менее 1 Гц. Передача ДИ осуществляется массивом данных размерностью 32 слова данных (64 байта). Незначащие байты МД ДИ заполняются «0».

... **1**

:

- 3.7.3 После получения массива ДИ, БЦК согласно циклограмме обмена по формату 7 ГОСТ Р 52070-2003 между КШ и ОУ выдает групповое управляющие воздействие (ГУВ) «БШВ».
- 3.7.4 РЛЦИ-В получает «БШВ» и синхронизирует свой внутренний таймер.
- 3.7.5 После синхронизации времени РЛЦИ-В готов к приему МД, содержащих данные для управления приводом и УВ. Выдача УВ осуществляется в соответствии с циклограммой маршрутного полетного задания.
 - 3.8 Действия при нештатных ситуациях (НШС)
- 3.8.1 В случае ошибки в «ОС» или отсутствия «ОС» от ОУ после двукратного обмена по каждой ЛПИ (ЛПИ А и ЛПИ Б), БЦК формирует соответствующий ДИ параметр, прекращает выполнение МПЗ и снимает питание с аппаратуры РЛЦИ-В в соответствии со штатной циклограммой.
- 3.8.2 При ухудшении энергетики МКА БЦК формирует признак «аварийное отключение напрузки» и выдает его по формату 7 ГОСТ Р 52070-2003 бортовой аппаратуре, далее БЦК осуществляет отключение нагрузок в соответствии со штатной циклограммой.

· man A de la company de la co

СПИСОК СОКРАЩЕНИЙ

CRC - cyclic redundancy check;

АСН – аппаратура спутниковой навигации;

БА – бортовая аппаратура

БА КИС-Р – бортовая аппаратура командно-измерительной радиолинии;

БАУ — бортовая аппаратура управления; БСК — бортовой служебный комплекс;

БЦК – бортовой центральный контроллер;

БШВ — бортовая шкала времени;

ГУВ – групповое управляющее воздействие;

ДИ – диагностическая информация;

ИК – импульсные команды;

КВИТ – массив квитанций;

КИР – контроллер измерений и регулирования;

КПДУ — контролдер пиросредств и двигательной установкой;

КПТ – коммутатор питания; КС – командное слово;

КСО – контролдер ориентации;

КСП – контроллер питания;

КСР – коробка соединительная;

КШ – контроллер шины;КШ – контроллер шины;

ЛПИ – линия передачи информации;ЛПИ – линия передачи информации;

МД – массивы данных;МК – микроконтроллер;

МКА – малый космический аппарат;

МКПД — мультиплексный канал передачи данных; МРОД — модуль регистрации и обработки данных;

МУВ – массив управляющих воздействия;НКУ – наземный комплекс управления;

НШО – признак нештатного обмена с ОУ (запрос ДИ 1Гц)

and the state of t

НШС – нештатная ситуация;

ОН – сигнал отключения нагрузки;

ОС - ответное слово;

ОУ – оконечное устройство;ОУ – оконечное устройство;

ПА – подадрес;

ПО – массивы программного обеспечения;

РЛЦИ-В – высокоскоростная радиолиния передачи целевой

информации;

СД – слово данных;

УВ – управляющее воздействие;

Walter Butter Branchis

Commence of the Commence of th