1 Linear Equations in Linear Algebra

1.1 Systems of Linear Equations

Learning Objectives:

- Identify linear equations and linear systems
- Use matrices and row operations to solve linear systems
- Identify if a system is consistent and if solutions are unique

As is suggested in the name, linear algebra is a branch of mathematics concerning linear equations and linear functions. For the beginning of this course, we will first learn some useful techniques for representing systems of linear equations and investigate the possible scenarios that can occur in finding solutions to such systems.

sucii systems.	
Definition 1. A written in the form	in the variables x_1, x_2, \ldots, x_n is an equation that can be
where b and the integer.	a_1, a_2, \ldots, a_n are real numbers. The subscript n can be any positive
Example 1. An ex	ample of a linear equation is
	$3x_1 + 2x_2 = 6$

Another example is

$$4(x_1 - x_4) = \sqrt{2}x_2 + 1$$

since it can be written in the form:

Here, $a_1 = \boxed{}, a_2 = \boxed{}, a_3 = \boxed{}, a_4 = \boxed{}$ and $b = \boxed{}$.

Some examples of equations that are **not** linear are

$$x_1 x_2 = 5$$
 and $x_1^2 + 2x_2 = 1$

since they cannot be rewritten in the form above.

Note 1. You are familiar with the linear equation

u	=	mx	+	b
м		11000	- 1	•

However, renaming the variables x and y to x_1 and x_2 respectively, we get
and rearranging gives
so, in two variables, the familiar definition of a linear equation is equivalent to this "new" definition with $a_1 = \boxed{}$ and $a_2 = \boxed{}$.
Definition 2. A is a collection of one or more linear equations using the same variables, say x_1, \ldots, x_n .
Example 2. An example of a system of linear equations is
Definition 3. A of a system is a list (s_1, \ldots, s_n) of numbers that makes each equation a true statement when the values s_1, \ldots, s_n are substituted for the variables x_1, \ldots, x_n respectively. The set of all solutions is called the of the linear system. Two systems are called if they have the exact same solution set.
Example 3. In the system above, is a solution since

In two variables, we can represent linear systems graphically, by making the identification $(x, y) = (x_1, x_2)$.

$$x_1 - x_2 = 1$$

$$x_1 - x_2 = 1$$

$$x_1 - x_2 = 1$$

$$x_1 - 2x_2 = 1$$

$$x_1 - x_2 = 0$$

$$x_1 - x_2 = 0 -2x_1 + 2x_2 = -2$$

Fact 1. A system of linear equations either has

Definition 4. A system of linear equations is said to be if it has either one solution or infinitely many solutions. If a system has no solutions it is

Matrix Notation

The crucial information in a linear system can be represented succinctly using a rectangular array of real numbers called a

Given the linear system

$$3x_1 - 2x_2 + 3x_3 = 4$$

 $x_1 + x_3 = \pi$
 $2x_2 - \sqrt{2}x_3 = 100$

We can record the the coefficients of each variable aligned in columns in the
We can also include the values on the right hand side of the equation in the
Often, a (dotted) line is drawn in to separate the coefficients from the other values. The
•

Example 4. Here, we will solve the system below by working both with the equations and with the augmented matrix side-by-side.

$$x_1 + x_2 = 7$$

 $-2x_1 + x_2 = -2$

Manipulating the equations using the three allowable options corresponds to the following operations on rows of the augmented matrix associated to the system.

Definition 5. The	that can be performed on a matrix are
1.	
2.	
3.	
Two matrices are said to be other one be a sequence of elementary	if one of the matrices can be turned into the row operations.
Note that each elementary row operation unchanged via row operations, we can	
Existence and Uni	dueness
	here are three possibilities as to its solution set: it can have,
, or	solutions. Thus, there are two fundamental questions we can ask
about a system:	
1.	
2.	

These two questions will appear frequently throughout the course, in many different situations.

Exercise 1. Determine if the system below is consistent:

$$3x_1 - x_2 = 10$$

$$x_1 - 2x_2 = 0$$

Exercise 2. Determine if the following system is consistent: