10/541, 188 Priority ECC) CT/JP 2004/011728

日本国特許庁 JAPAN PATENT OFFICE

10. 8. 2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 8月15日

出 願 番 号 Application Number:

特願2003-293666

[ST. 10/C]:

[JP2003-293666]

出 願 人 Applicant(s):

キヤノン株式会社

REC'D 24 SEP 2004

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 9月10日

() · (!)

出証番号 出証特2004-3081597

ページ: 1/E

【書類名】 特許願 【整理番号】 252618 【提出日】 平成15年 8月15日 【あて先】 特許庁長官殿 【国際特許分類】 GO2B 6/42 G06F 15/00 H01L 27/00 H01L 27/15 H01L 21/82 HO4B 9/00 【発明者】 【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【氏名】 内田 達朗 【特許出願人】 【識別番号】 000001007 【氏名又は名称】 キヤノン株式会社 【代表者】 御手洗 富士夫 【代理人】 【識別番号】 100086483 【弁理士】 【氏名又は名称】 加藤 一男 【電話番号】 04-7191-6934 【手数料の表示】 【予納台帳番号】 012036 【納付金額】 21,000円 【提出物件の目録】

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 9704371

【請求項1】

光路を変化させるための光路変換構造体と光素子とを備える光素子装置であって、該光路 変換構造体は、該光素子が形成される構成部材を加工して構成されていることを特徴とす る光素子装置。

【請求項2】

前記構成部材は、前記光素子から或いは光素子への伝播光を吸収しない材料から成る請求 項1記載の光素子装置。

【請求項3】

前記構成部材は、前記光素子を形成する半導体層の成長基板である請求項1または2記載 の光素子装置。

【請求項4】

前記構成部材は、前記光素子を形成する半導体層の上に形成された層である請求項1また は2記載の光素子装置。

【請求項5】

請求項1乃至4のいずれかに記載の光素子装置と、光素子から或いは光素子への光を伝播する様に光路変換構造体と光学的に結合された二次元光導波路層とを有することを特徴とする二次元光導波路素子。

【請求項6】

複数の光素子が同一の構成部材上に配置されている請求項1乃至4のいずれかに記載の光素子装置を有し、該構成部材は二次元光導波路層として構成されていることを特徴とする 二次元光導波路素子。

【請求項7】

前記光路変換構造体の形状が球形状、楔形形状、円錐形状、或いは多角錐形状をなしており、該光路変換構造体が発光素子である光素子からの出射光が結合するように該発光素子の近傍に形成され、該発光素子はその放射角を変化させ得る様に構成され、さらに該光路変換構造体は、これに結合した発光素子からの出射光をビーム光、或いは放射角に対応した広がり角を持つ拡散光として二次元光導波層内部に伝播するように光路変換する請求項5または6記載の二次元光導波路素子。

【請求項8】

請求項1乃至4のいずれかに記載の光素子装置の製造方法であって、該光素子装置の構成 部材に光路変換構造体を形成する工程において、反応性イオンビームが構成部材の面に対 して傾斜した方向より照射されることを特徴とする光素子装置の製造方法。

【請求項9】

請求項1乃至4のいずれかに記載の光素子装置の製造方法であって、該光素子装置の構成部材に光路変換構造体を形成する工程において、反応性イオンビームを用いたドライエッチングを行うことを特徴とする光素子装置の製造方法。

【諸求項10】

請求項5乃至7のいずれかに記載の二次元光導波路素子を電気回路基板と電気的接続が得られるように形成した光電融合配線基板であって、該電気回路基板の信号の一部または全てを該二次元光導波路素子を用いた光信号の授受によって配線させる様に構成されたことを特徴とする光電融合配線基板。

【曹類名】明細曹

【発明の名称】光素子装置、それを用いた二次元光導波路素子及び光電融合配線基板 【技術分野】

[0001]

本発明は、光素子装置(発光素子及び受光素子の少なくとも一方を含む素子)、及びその 光素子装置を用いた二次元光導波路素子、及び電気配線層と光配線層が混載された光電融 合配線基板に関するものである。

【背景技術】

[0002]

今日の携帯電話や個人情報端末の急速な普及に伴い、機器の更なる小型・軽量化また高機能化が求められている。しかし、小型・軽量化また高機能化により回路基板の高速化と高集積化が進み、信号遅延、EMI(Electromagnetic Interference:電磁干渉ノイズ)の発生などの問題への対応が急務となっている。これらの問題を解決する手段として、従来の電気配線において問題となっていた信号遅延、信号劣化、及び配線から放射される電磁干渉ノイズが克服ないし低減され、かつ高速伝送が可能である光配線技術が期待されている。この光配線の利点を用いた装置として次の様なものがある。

[0003]

1つの光回路基板では、光配線部と電気配線部を分離し、電子機器からの電圧信号により基体上に設けられた光スイッチ或いは光変調器を駆動させて前記基体上に設けられた光導波路を伝播する光を変調し、こうして電気信号を光信号に変換して伝送し、さらに前記基体或いは他の基体上に設けられた受光素子により光信号を電気信号に変換して、他の電子機器または同一の電子機器に信号を伝達する(特許文献 1 参照)。また、他の光導波装置においては、光導波路に対して垂直に出入射される光を効率よく結合させるために、線状のポリマー導波路に45度傾いたミラーを形成している(特許文献 2 参照)。

【特許文献1】特開平9-96746号公報

【特許文献 2】特開2000-199827号公報

【発明の開示】

【発明が解決しようとする課題】

[0004]

上記特許文献1の方法は、電気配線における問題点を光配線で補ったものであるが、光配線が伝送線路(線状のポリマー導波路)であるため、電気/光信号変換或いは光/電気信号変換を行う場所が規定されてしまう。また、上記特許文献2の方法では、端部に45度傾いたミラーを有した線状光導波路に光信号が効率よく結合するように発光素子を実装すること、及び線状光導波路を伝播してきた光信号を効率よく受光するように受光器を実装することは、高度なアライメント精度が要求され、困難である。また、線状の光導波路であるため、複数の光導波路を形成する場合には、発光素子及び受光素子の位置が制限されて設計の自由度が少ない。

【課題を解決するための手段】

[0005]

上記課題に鑑み、本出願に係る第1の発明は、光路を変化させるための光路変換構造体と光素子とを備える光素子装置であって、該光路変換構造体は、該光素子が形成される構成部材を加工して構成されていることを特徴とする。この構成では、光素子と光路変換構造体の光学的なアライメントが容易に行えて、この光素子装置の光導波路への光結合も容易に行える様になる。すなわち、光導波路層に効率よく光を結合させるための光デバイス実装時の高精度な位置合わせは必要なく、実装を容易に行うことができる。また、光導波路として二次元光導波路層を用いることにより、電気信号を光信号に変換するための発光素子や光信号を電気信号に変換するための受光素子を有する本光素子装置の配置があまり制限されることがなくなり、かつ二次元光導波路層全域を使い柔軟に光信号伝送を再構成できる二次元光導波路素子や光電融合配線基板を容易に実現できる。

[0006]

上記基本構成に基づいて、以下の様な態様の光素子装置が可能である。 前記構成部材は、光素子(発光素子)から或いは光素子(受光素子)への伝播光を吸収しない材料から成る。また、前記光素子は、単一でも、複数でも(代表的にはアレイ状)配置され得る。また、アレイ状光素子は、発光素子、または受光素子、または発光素子と受光素子両方を有し得る。

[0007]

また、前記構成部材は、光素子を形成する半導体層の成長基板であったり、光素子を形成する半導体層の上に形成された層であったりする。後者の層は、CVDなどで形成される酸化シリコン層等であったりする。また、後者の層は、厚さなどの点であまり制限されることがない。光路変換構造体を、光素子を作製する際に用いた成長基板を加工することにより形成する場合、光素子の形成プロセス(半導体プロセス)で光路変換構造体を形成することにより、光素子と光路変換構造体との位置合わせがフォトリングラフィー技術及び精度で行うことができ、結合損を容易に抑制できる。

[0008]

また、上記課題に鑑み、本出願に係る第2の発明は、二次元光導波路素子であって、上記の光素子装置と、光素子から或いは光素子へ光を伝播する様に光路変換構造体と光学的に結合された二次元光導波路層とを有することを特徴とする。或いは、複数の光素子が同一の構成部材上に配置されている上記の光素子装置を有し、構成部材は二次元光導波路層として構成されていることを特徴とする。より具体的には、光路を変化させることのできる光路変換構造体と発光部とが集積された発光素子装置と、光路を変化させることのできる光路変換構造体と受光部とが集積された受光素子装置と、発光素子装置より出射された出射光及び受光素子装置への入射光を伝播する光導波路層とを備え、前記光路変換構造体が前記発光素子装置及び前記受光素子装置の構成部材を加工することにより形成されている。前記発光素子及び受光素子と前記光路変換構造体が同一基板(同一構成部材)上に形成されている場合、発光素子から出射された光を光導波路層に光結合する際、ないしは光導波路を伝播してきた光を受光素子に結合する際には、光導波路層に効率よく光を結合させるための光デバイス実装時の高精度な位置合わせは必要なく、実装が容易である。

[0009]

さらに具体的には、前記光路変換構造体の形状が球形状、楔形形状、円錐形状、或いは多 角錐形状をなしており、該光路変換構造体が発光素子である光素子からの出射光が結合す るように該発光素子の近傍に形成され、該発光素子はその放射角を変化させ得る様に構成 され、さらに該光路変換構造体は、これに結合した発光素子からの出射光をビーム光、或 いは放射角に対応した広がり角を持つ拡散光として二次元光導波層内部に伝播するように 光路変換する様にできる。

[0010]

また、上記課題に鑑み、本出願に係る第3の発明は、上記の光素子装置の製造方法であって、該光素子装置の構成部材に光路変換構造体を形成する工程において、反応性イオンビームが構成部材の面に対して傾斜した方向より照射されることを特徴とする。或いは、上記の光素子装置の製造方法であって、該光素子装置の構成部材に光路変換構造体を形成する工程において、反応性イオンビームを用いたドライエッチングを行うことを特徴とする。これらの製造方法において、前記光路変換構造体は、光素子の作製プロセスと同時的に形成することが可能であり、光路変換構造体と発光素子ないしは光路変換構造体と受光素子との位置合わせをフォトリングラフィー技術及び精度で行うことが可能である。

[0011]

また、上記課題に鑑み、本出願に係る第4の発明は、上記の二次元光導波路素子を電気回路基板と電気的接続が得られるように形成した光電融合配線基板であって、該電気回路基板の信号の一部または全てを該二次元光導波路素子を用いた光信号の授受によって配線させる様に構成されたことを特徴とする。

【発明の効果】

[0012]

以上に説明した本発明による光路変換構造体を備える発光素子と受光素子の少なくとも一 方を含む光素子装置を用いることにより、光素子を効率よく光導波路に光結合でき、また 二次元光導波路層にも容易に実装が可能となる。また、本発明による光素子装置を用いた L次元光導波路素子の光信号伝送において、光信号伝送領域の再構成が容易に可能となる

【発明を実施するための最良の形態】

[0013]

以下に、添付図面を参照し、実施例を挙げて本発明の実施の形態を具体的に説明する。 【実施例1】

[0014]

図1は実施例1による面型発光素子を含む発光素子を示した断面図である。図1において、1 00は発光素子装置の機能部である面型発光素子(VCSEL: Vertical

Cavity Surface Emitting Laser: 面発光レーザ) 部、102は成長基板、104は光路変換構 造体、106は光路変換構造体104の金属膜(ミラー)、及び108は半導体層である。発光素 子装置の機能部である面型発光素子100と光路変換構造体106の金属膜106は、面型発光素 子100より出射された光が光路変換構造体106に結合し、90度光路を変換できるような位置 関係にある。

[0015]

次に、光路変換構造体を集積した発光素子装置の作製方法を説明する。図2は、光路変換 構造体と集積された面型発光素子(VCSEL)の作製方法を説明する模式図である。同図に おいて、200は半導体層、202は成長基板、204は面型発光素子、206はレジストパターン、 208は光路変換構造体、及び210は金属膜(ミラー)である。

[0016]

まず、図2(a)に示すように、980nm帯VCSELとして機能するために必要な半導体層(DBR層 、活性層、電流狭窄層など)200をMOCVD(Metalorganic

Chemical Vapor Deposition:有機金属気相成長)法により成長基板202に成長する。この とき成長基板202はGaAs (100)を使用した。次に、図2(b)に示すように、フォトリソグラフ ィー技術、エッチング技術、成膜技術などを用いてVCSEL204を形成する。次に、図2(c)に 示すように、GaAs基板202を100mmまで研磨する。次に、図2(d-1)に示すように、光路変換 構造体208を形成するためのレジストパターン206をフォトリソグラフィー技術により、Ga As基板202のVCSEL204が形成されている面とは反対側の面に形成する。なお、図2(d-2)は 、VCSEL204が形成されている面の反対側の面からGaAs基板202を見た図である。図2(d-2) に示されるようにレジストパターン206を形成する。次に、図2(e)に示すように、H2SO4系 のエッチャントを用いてウエットエッチングすることにより光路変換構造体208を形成す る。このとき、[110]方向に沿って傾斜角45度の順メサが形成される(すなわち、(111)面 が露出する)。次に、図2(f)に示すように、レジストパターン206を剥離後、金属膜210と してCr/Auを電子ビーム蒸着により成膜する。

[0017]

図2(a)~図2(f)はVCSEL204及び光路変換構造体208の部分のみを拡大して示したが、光路 変換構造体を集積したVCSELは、同時にウエハに多数形成でき、図2(f)の金属膜210成膜後 、ウエハをダイシング或いは劈開することにより、単一の光路変換構造体208と集積され たVCSEL204を含む発光素子装置として作製することができる。また、単一の光路変換構造 体208に対して複数のVCSELを並べたアレイ状のもの、或いは各光路変換構造体208に対し て各VCSELを並べたアレイ状のものであってもよい。

[0018]

本実施例において、面型発光素子は980nm帯VCSELを用いたが、これに限定されるものでは なく、成長基板が発光波長を吸収しない(発光波長に対して透明)のであれば、1300nm帯 の発光波長に対してGaAs或いはSiを成長基板として用いるなどの組み合わせであってもよ

[0019]

また、本実施例では、光路変換構造体形成のためにH2SO4系のエッチャントを用いたが、 これに限定されるものではなく、Br-メタノールなどのエッチャントであってもよい。

[0020]

また、本実施例では、ウエットエッチングにより光路変換構造体を形成したが、これに限 定されるものではない。例えば、図3(a)に示すように、反応性イオンビーム300を基板面 に対して傾斜させて、照射するドライエッチングをすることにより、光路変換構造体302 を形成してもよい。この際、傾斜の角度は、適宜選択することができるが、好ましくは、 45度とすることができる。また、レーザ加工で光路変換構造体を形成してもよい。

[0021]

さらには、図3(b)に示すように、光路変換構造体310を形成してもよい。すなわち、まず 基板裏面に円形状の穴が形成されるようにレジスト (AZ9260) パターン304を形成する。 その後、パターン304を高温でリフローすることにより、エッジのなまったレジストパタ ーン306を形成する。続いて、反応性イオンビーム308を基板面に対して垂直に照射し、ド ライエッチングを行う。その結果、レジストの後退により、半球状の光路変換構造体310 が形成される。

[0022]

また、本実施例では、光路変換構造体の形として、傾斜角45度形状の楔形を示したが、こ れに限定されるものではなく、円錐形状、多角錐形状、半球形状(図3(b)参照)などであ ってもよい。これにより、面型発光素子(VCSEL)からの出射光の光路変換構造体への結 合の仕方により、出射光を拡散光或いは指向性を持った光として伝播させられる。

[0023]

また、本実施例では、VCSELを形成してから光路変換構造体を形成したが、光路変換構造 体を先に形成してからVCSELを形成してもよい。

[0024]

さらに、図4(a)に示すように、傾斜角45度である順メサ光路変換構造体400の二つの斜面 に、二つのVCSEL402、404からそれぞれ出射されたレーザ光406,408が結合するように、二 つのVCSELを同時に形成してもよい。このように配置することで、同一の信号を二方向に 伝播したり、或いは異なる信号を二方向に伝播したりすることができる。また、図4(b)に 示すように、VCSEL410より出射される放射角の大きいレーザ光412が光路変換構造体414全 域に結合するように配置することで、レーザ光をより広い範囲に伝播することもできる。

[0025]

ここまで発光素子について述べたが、基本的に受光素子についても同様である。光路変換 構造体500と同じ或いはそれ以上の大きさの受光面を有した受光素子502を、図5に示すよ うな位置関係で作製することにより、光路変換構造体500に結合した伝播光を光路変換さ せ受光することができる。図5(a)に示すように、楔形形状の光路変換構造体500を用いる ことにより、二つの方向から伝播してきた光を受光することができる。また、図5(b)に示 すように、半球状の光路変換構造体500を用いることで、あらゆる方向から伝播してきた 光を受光することができる。

【実施例2】

[0026]

図6は、本発明による光路変換構造体と集積された面型発光素子装置と受光素子装置を用 いた二次元光導波路素子を示した断面図である。図6において、600は面型発光素子(VCSE L)、602、612は成長基板、604、614は光路変換構造体、606、616は金属膜(ミラー)、6 08、618は半導体層、610は受光素子、620は第1のクラッド層、622はコア層、624は第2の クラッド層、及び626はレーザ光である。二次元光導波路は、屈折率の異なる材料の組み 合わせによりコア層622とそれを挟む第1及び第2のクラッド層620、624より構成される。 本実施例においては、コア層622に屈折率1.59のZ型ポリカーボネート (PCZ) 50 ㎜を用い、第1のクラッド層620として屈折率1.53のガラス基板、第2のクラッド層624とし て屈折率1.53のノルボルネン樹脂(アートン)15 mmを用いた。

[0027]

本実施例においては、光路変換構造体604と集積された面型発光素子600として980nm帯VCS ELを用い、二次元導波路に埋め込むように実装を行っている。このとき、VCSELの成長基 板602に光路変換構造体604を形成しているため、コア層622への結合損が小さく、かつ位 置合わせ不要の実装が可能となる。同様に、光路変換構造体614と集積された受光素子も 、コア層622を伝播してきたレーザ光626を小さい結合損で受光素子610へ結合でき、かつ 実装が容易である。VCSEL600より出射されたレーザ光626は、光路変換構造体604の金属膜 606によって90度光路変換され、コア層622中を伝播する。そして、コア層622を伝播して きたレーザ光626は、金属膜616を備える光路変換構造体614と集積された受光素子610へ結 合し、光信号が伝送される。

[0028]

本実施例においても、面型発光素子は980nm帯VCSELを用いているが、これに限定されるも のではなく、発光波長を吸収しない(発光波長に対して透明な)成長基板であれば、1300 nm帯の発光波長に対してGaAs或いはSiを成長基板として用いるなどの組み合わせであって もよい。

[0029]

次に、二次元導波路素子の作製方法を説明する。図7は二次元導波路素子の製造方法を説 明する模式断面図である。同図において、700は第1のクラッド層、702はコア層、704は第 2のクラッド層、706はエッチングマスク、708は光素子の実装穴、710は光路変換構造体が 集積された発光素子(VCSEL)、及び712は光路変換構造体が集積された受光素子である。

まず、図7(a)に示すように、第1のクラッド層700としてのガラス基板上に、ガラス基板よ りも屈折率の大きいポリカーポネート樹脂を塗布し硬化させて膜厚50

mmのコア層702を形成する。次に、図7(b)に示すように、コア層702よりも屈折率の小さい ノルボルネン樹脂を塗布し硬化させて、膜厚15

mmの第2のクラッド層704を形成する。次に、図7(c)に示すように、第2のクラッド層704及 びコア層702に実装穴708を形成するためのエッチングマスク706を形成する。このエッチ ングマスク706は、フォトリソグラフィー技術、成膜技術を用いてTi膜で形成する。次に 、図7(d)に示すように、第2のクラッド層704及びコア層702を0₂ガスによるドライエッチ ングをすることにより、実装穴708を形成する。続いて、図7(e)に示すように、エッチン グマスク706を除去する。次に、図7(f)に示すように、図2或いは図3に示した方法などで 作製した光路変換構造体が集積されたVCSEL710及び光路変換構造体が集積された受光素子 712を実装穴708に挿入し実装する。

[0031]

本実施例において、コア層、第1及び第2のクラッド層としてそれぞれ2型ポリカーボネー ト、ガラス及びノルボルネン樹脂を用いたが、これに限定されるものではなく、コア層材 料の屈折率が第1及び第2のクラッド層材料と比較して大きい値の材料であれば、ポリイミ ド樹脂やアクリル樹脂などを用いた組み合わせであってもよい。また、それぞれの層の厚 さも本実施例の値に限定されるものではなく、ガラス基板700の代わりに樹脂フィルムを 用いて二次元光導波層の厚みを数十mmとすることにより、フレキシブルに扱うことも可能 となる。また、必ずしも第1のクラッド層及び第2のクラッド層は必要ではない。

[0032]

また、本実施例では、実装穴708の形成をドライエッチングで行ったが、これに限定され るものではなく、感光性を有したコア層材料やクラッド層材料を用いて、フォトリソグラ フィー技術により形成してもよいし、レーザ加工により形成してもよい。

【実施例3】

[0033]

実施例3は、光路変換構造体が集積された面型発光素子及び受光素子が同一成長基板に形 成され、かつ面型発光素子から出射された光が成長基板を光導波路層として伝播し、伝播 した光が受光素子に結合されて光信号伝送を行うことを特徴とする二次元光導波路素子で

出証特2004-3081597

ある。図8は、本実施例の二次元光導波路素子を示した断面図である。図8において、800 は面型発光素子、802は成長基板、804及び812は光路変換構造体、806及び814は金属膜(ミラー)、808は半導体層、及び810は受光素子である。

[0034]

面型発光素子800と光路変換構造体804は、面型発光素子 (VCSEL) 800より出射された光が 光路変換構造体804に結合して90度光路を変換できるような位置関係にあり、また受光素 子810と光路変換構造体812は、VCSEL800より出射された光が光路変換構造体812により90 度光路変換されて受光素子810に結合できるような位置関係にある。こうして、VCSEL800 より出射されたレーザ光は、光路変換構造体804により90度光路変換されて成長基板802中 を伝播し、光路変換構造体812により再び90度光路変換されて受光素子810へ結合し、光信 号が伝送される。このとき、VCSEL800からの出射光が成長基板802に吸収されることなく 伝播され、成長基板802自体を導波路として使用することが可能となる。

[0035]

次に、光路変換構造体と集積された面型発光素子及び受光素子が同一成長基板上に形成さ れた二次元光導波路素子の作製方法を説明する。図9は、この二次元光導波路素子の作製 方法を説明する模式断面図である。同図において、900は成長基板、902は半導体層、904 は面型発光素子(VCSEL)、906は受光素子、908はレジストパターン、910及び912は光路 変換構造体、914及び916は金属膜(ミラー)である。

[0036]

まず、図9(a)に示すように、VCSEL及び受光素子として機能するために必要な半導体層902 をMOCVD法により成長基板900に成長する。このとき、成長基板900はGaAs(100)を使用した 。次に、図9(b)に示すように、フォトリソグラフィー技術、エッチング技術、成膜技術な どを用いてVCSEL904及び受光素子906を形成する。次に、図9(c)に示すように、GaAs基板9 00を100mmまで研磨する。次に、図9(d)に示すように、光路変換構造体910及び912を形成 するためのレジストパターン908をフォトリソグラフィー技術により、GaAs基板900のVCSE L904及び受光素子906が形成されている面とは反対側の面に形成する。次に、図9(e)に示 すように、H₂SO4系のエッチャントを用いてウエットエッチングをすることにより光路変 換構造体910及び912を形成する。このとき、[110]方向に沿って傾斜角45度の順メサが形 成される (すなわち、(111)面が露出する)。次に、図9(f)に示すように、レジストパタ ーン908を剥離後、金属膜914及び916としてCr/Auを電子ビーム蒸着により成膜する。

図9(a)~図9(f)はVCSEL、受光素子及び光路変換構造体の部分のみを拡大して示したが、 光路変換構造体が集積されたVCSEL及び受光素子は、同時にウエハに多数形成でき、図9(f)の金属膜914及び916成膜後、ウエハをダイシング或いは劈開することにより、所望の数 の光路変換構造体が集積されたVCSEL及び光路変換構造体が集積された受光素子を有した 二次元光導波路素子として作製することもできる。

[0038]

本実施例でも、光路変換構造体形成のためにH2SO4系のエッチャントを用いたが、これに 限定されるものではなく、Br-メタノールなどのエッチャントであってもよい。また、本 実施例でもウエットエッチングにより光路変換構造体を形成したが、これに限定されるも のではなく、図3(a)に示すように反応性イオンビーム300を基板面に対して45度傾けた方 向から照射するドライエッチングをすることにより、光路変換構造体302を形成してもよ い。また、レーザ加工で光路変換構造体を形成してもよい。さらに、図3(b)に示すように 、半球状の光路変換構造体310を形成してもよい。

[0039]

また、実施例1のところで説明したように、光路変換構造体の形として傾斜角45度形状の 楔形を示したがこれに限定されるものではなく、円錐形状、多角錐形状、半球形状などで あってもよく、面型発光素子 (VCSEL) からの出射光の結合の仕方により、出射光を拡散 光或いは指向性を持った光として二次元光導波路内へ伝播させることができる。ここでも 、VCSELを形成してから光路変換構造体を形成したが、光路変換構造体を先に形成してか

出証特2004-3081597

らVCSELを形成してもよい。

[0040]

また、実施例1のところで図4を用いて説明したような構成にもできる。さらに、ここまで 発光素子について述べたが、基本的に受光素子についても同様であり、実施例1のところ で図5を用いて説明したような構成にもできる。

【実施例4】

[0041]

実施例4は、実施例2に示した二次元導波路素子と電気回路基板を組み合わせて作製した 光電融合基板であり、これを図10に示す。図10において、1200はCPU、1202、1204、1206 及び1208はRAM、1210及び1212は電子デバイス(LSI)、1214は1×2VCSELアレイ、1216は 受光素子、1218は伝送線路(電気配線)、1220はビーム光、1222は拡散光、1224は二次元 光導波路層、1226及び1228は電気回路基板である。図10(a)は、図10(b)の光電融合基板を 矢印の方向から見た図であり、図10(a)においては二次元光導波路層1224及び電気回路基 板1228は図示していない。

[0042]

図11は、CPUと接続されたVCSELアレイ近傍の光電融合基板の断面図である。CPU1300は電 気回路基板1302上にハンダボール1304を用いてフリップチップボンディングされている。 二次元光導波路層1306に内蔵された光路変換構造体が集積されたVCSEL1308とCPU1300との 接続は、電気回路基板1302に形成された内部配線1310を通して行われている。二次元光導 波路層1306は電気回路基板1302で挟まれている。

[0043]

従来の電気配線基板では、低速でのデータ転送においては問題とならないが、大容量・高 速での伝送が必要となる場合には、EMIの影響や配線遅延などにより、常に安定したデー タ転送をすることに困難が生じる場合がある。このような場合に、図10に示したような光 電融合基板を用いることで、安定した大容量・高速伝送が可能となる。例えば、CPUから の電気信号をVCSELを介して光信号に変換し、その信号をRAMやLSIと電気的に接続された 受光器へ伝送する信号伝送方法を説明する。図10に示すように、CPU1200に接続された光 路変換構造体を集積した1×2VCSELアレイ1214は二次元導波路層内に埋め込まれており、 それぞれのVCSELから出射されたレーザ光が光路変換構造体(図示せず)に結合して二次 元光導波路層内を伝播する。このとき、それぞれのVCSELの注入電流を制御することによ り、指向性を有したビーム光伝播或いは拡散光伝播、または両方の伝播を選択できる。こ のようにして、二次元光導波路層内を伝播したレーザ光は受光素子近傍に設けられた光路 変換構造体(図示せず)に結合し、受光素子へと導かれる。受光素子は、それぞれのRAM やLSIと接続されており、光信号を電気信号へと変換する。

[0044]

図10においては、1×2VCSELアレイ1214のそれぞれのVCSELの注入電流を制御することによ り、RAM1202へは高速の信号をビーム光1220の伝播で送信し、またRAM1204、RAM1206、RAM 1208へは拡散光1222の伝播として3つのRAMへ同時に伝送している。図示していないが、注 入電流を制御することで、拡散光伝播の広がり角をさらに広げ、LSI1210及びLSI1212へも 信号を伝送することができる。なお、CPU、RAM及びLSIはそれぞれVCSEL及び受光素子と接 続されており、それぞれが互いに光信号で送受信を行えるようになっている。

[0045]

本実施例において、1×2面発光レーザアレイを用いたが、これに限定されるものではなく 、より多くの面発光レーザをアレイ化したものを用いてもよい。また、本実施例では二次 元光導波路層は単層であったが、多層としてもよい。さらに、本実施例では、光電融合基 板は光配線層が電気配線層に挟まれた形状で構成されているが、これに限定されるもので はなく、光配線層が電気配線層の上部或いは下部、または電気配線層を光配線層で挟む形 状であってもよい。

[0046]

なお、信号は必ず光により伝送する必要はなく、電気配線を介しても伝送できるように、 出証特2004-3081597 選択の柔軟性を持たせてある。信号を光または電気で伝送するかは伝送を管理するデバイ スが決定する。

[0047]

このように二次元光導波路層を用いることにより、従来の信号線で問題となっていた配線 自身がアンテナとなりコモンモードノイズ輻射による回路の誤動作などを生じていた電磁 放射ノイズを大幅に低減でき、EMIの問題を改善することができる。

[0048]

また、VCSELへの注入電流を制御することにより、ビーム光伝播と拡散光伝播のいずれか を選択することが可能となり、ビーム光伝播においては光パワーロスを抑制して高速伝送 が可能となり、拡散光伝播では注入電流を変えることにより拡散光伝播の広がり角を変え られ、光信号伝送領域の再構成が可能となる。

【実施例5】

[0049]

実施例5は、実施例3に示した二次元光導波路素子と電気回路基板を組み合わせて作製した 光電融合基板である。これを図12に示す。図12において、1400はCPU、1402はRAM、1404は 電気回路基板、1406はハンダボール、1408は二次元光導波路素子全体、1410はVCSEL、141 2は受光素子、1414は二次元光導波路層、及び1416は内部電気配線層である。

[0050]

本実施例で用いた二次元導波路素子1408は、光路変換構造体が集積されたVCSEL1410及び 受光素子1412が各1ずつからなり、そのVCSEL1410と受光素子1412間では、レーザ光が指向 性を有したビーム伝播されて高速な光信号伝送が可能である。

図示はしていないが、二次元光導波路層1414に、実施例1や実施例3のところで変形例とし て説明した構成と同じように光路変換構造体を有したVCSEL及び受光素子を埋め込むこと により、光伝送形態(ビーム伝播と拡散伝播)の選択性を増すことが可能である。

[0052]

本実施例では、二次元導波路素子は、光路変換構造体が集積されたVCSEL及び受光素子が 各1ずつからなるものを用いたが、これに限定されるものではなく、複数のVCSELまたは受 光素子が集積されたものを用いてもよい。その他の点は実施例3と同様である。

【図面の簡単な説明】

[0053]

- 【図1】本発明の実施例1による光路変換構造体と集積された面型発光素子を含む光 素子装置を説明する断面図である。
- 【図2】本発明の実施例1による光素子装置の製造方法を説明する図である。
- 【図3】本発明の実施例1による光素子装置の変形例の作製方法を説明する図である
- 【図4】本発明の実施例1または実施例3による光素子装置の変形例における光結合の 様子を説明する図である。
- 【図 5】 本発明の実施例1または実施例3による光素子装置の変形例における受光素子 への光結合の様子を説明する図である。
- 【図6】光路変換構造体と集積された面型発光素子及び受光素子をそれぞれ含む光素 子装置を用いた本発明の実施例2による二次元導波路素子を説明する断面図である。
- 【図7】本発明の実施例2による二次元導波路素子の製造方法を説明する図である。
- 【図8】光路変換構造体と集積された面型発光素子と受光素子を同一成長基板上に有 した本発明の実施例3による二次元導波路素子を説明する断面図である。
- 【図9】本発明の実施例3による二次元導波路素子の製造方法を説明する図である。
- 【図10】本発明の実施例4による光電融合基板を説明する図である。
- 【図11】本発明の実施例4による光電融合基板の内部を説明する断面図である。
- 【図12】本発明の実施例5による光電融合基板の内部を説明する断面図である。

【符号の説明】

- [0054]
- 100、204、402、404、410、600、800、904、1308、1410:面型発光素子(VCSEL)
- 102、202、602、612、802、900:成長基板
- 104、208、302、310、400、414、500、604、614、804、812、910、912:光路変換構造体
- 106、210、606、616、806、814、914、916:金属膜(ミラー)
- 108、200、608、618、808、902:半導体層
- 206、304、908: レジストパターン
- 300、308: 反応性イオンビーム
- 306:エッジのなまったレジストパターン
- 406、408、412、626:レーザ光
- 502、610、810、906、1216、1412:受光素子。
- 620、700:第1のクラッド層
- 622、702:コア層
- 624、704:第2のクラッド層
- 706:エッチングマスク
- 708: 実装穴
- 710: 光路変換構造体と集積されたVCSEL
- 712:光路変換構造体と集積された受光素子
- 1200、1300、1400: CPU
- 1202、1204、1206、1208、1402:RAM
- 1210、1212:電子デバイス (LSI)
- 1214:1×2VCSELアレイ
- 1218: 伝送線路 (電気配線)
- 1220:ビーム光
- 1222:拡散光
- 1224、1306、1414:二次元光導波路層
- 1226、1228、1302、1404:電気回路基板
- 1304、1406:ハンダボール
- 1310、1416:内部配線
- 1408:二次元光導波路素子全体

【書類名】図面【図1】

【図2】

特願2003-293666

【図3】

【図9】

【図10】

[図11]

[図12]

【要約】

【課題】光素子と光路変換構造体の光学的なアライメントが容易に行えて、光導波路への 光結合も容易に行える光素子装置を提供することである。

【解決手段】光路を変化させるための光路変換構造体104と光素子100とが集積された光素 子装置である。光路変換構造体104が、光素子100と共に一括的なプロセスの中で準備され る構成部材102を加工して形成されている。

図 1 【選択図】

特願2003-293666

出願人履歴情報

識別番号

[000001007]

1. 変更年月日 [変更理由]

1990年 8月30日

新規登録

住 所氏 名

東京都大田区下丸子3丁目30番2号

名 キヤノン株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.