Problem Set 8: Math 454 Spring 2017 Due Thursday April 6

March 28, 2017

Do the problems below. Please write neatly, especially your name! Show all your work and justify all your steps. Write in complete, coherent sentences. I expect and openly encourage you to collaborate on this problem set. I will insist that you list your collaborators on the handed in solutions (list them on the top of your first page).

Problem 1. Let E/F be an extension and $H \leq \operatorname{Aut}_{F-\operatorname{alg}}(E)$ be a subgroup. For $\alpha \in E$, define

$$\text{Eval}_{H,\alpha}: H \longrightarrow E$$

to be $\operatorname{Eval}_{H,\beta}(\sigma) = \sigma(\beta)$. Prove that $L_H : E \to \operatorname{Fun}(H,E)$ defined by $L_H(\beta) = \operatorname{Eval}_{H,\beta}$ is an K_H -linear function.

Problem 2. Let E/F be an extension of fields and $H \leq \operatorname{Aut}_{F-\operatorname{alg}}(E)$ be a finite subgroup.

(a) Prove that if $\lambda \in E$, then

$$\alpha_{\lambda} \stackrel{\text{def}}{=} \sum_{\sigma \in H} \sigma(\lambda)$$

is invariant under H. That is, for each $\sigma' \in H$, we have $\sigma'(\alpha_{\lambda}) = \alpha_{\lambda}$.

(b) Prove that if $\lambda \in E$ and $\lambda \neq 0$, then there exists $\lambda' \in E$ such that

$$\sum_{\sigma \in H} \sigma(\lambda'\lambda) \neq 0.$$

Problem 3. Let E/F be a finite extension with $F \le K \le E$.

- (a) Prove that $[E:F]_s$ divides [E:F].
- (b) Prove that $[E : F]_s = [K : F]_s [E : K]_s$.

Problem 4. Let K_1/F , K_2/K_1 , and E/K_2 be algebraic extensions with K_2/K_1 is finite.

(a) Prove that

$$\left|\operatorname{Hom}_{K_1-\operatorname{alg}}(K_2,E)\right| \leq [K_2:K_1].$$

(b) Prove that

$$|\text{Hom}_{K_1-\text{alg}}(K_2,E)| = [K_2:K_1]_s.$$

Problem 5. Let E/F be a separable extension and $F \le K \le E$. Prove that E/K and K/F are separable extensions.

Problem 6. Prove that if F is a field with char(F) = p with $p \neq 0$, then F if perfect if and only if for every $\alpha \in F$, there exists $\beta \in F$ such that $\beta^p = \alpha$.

Problem 7. Prove that if E/F is a normal extension and $F \le K \le E$, then E/K is normal.

Problem 8. Prove that if E/F is algebraic, then $\{e\} \in \mathscr{L}^{\operatorname{closed}}_{\operatorname{sub}}(E/F)$.

Problem 9. Let E/F be Galois and K/F an extension. Prove that EK/K is Galois.

Problem 10. Let E/F be a normal extension, $\beta \in E$, and $\mathscr{O}_{\beta} = \{\sigma(\beta) : \sigma \in \operatorname{Aut}_{F-\operatorname{alg}}(E)\}$. Define

$$Q(t) = \prod_{eta' \in \mathscr{O}_{eta}} (t - eta') = \sum_{i=0}^{\left|\mathscr{O}_{eta}\right|} lpha_i t^i.$$

Prove that for each $\sigma \in \operatorname{Aut}_{F-\operatorname{alg}}(E)$ and each α_i , we have $\sigma(\alpha_i) = \alpha_i$. Deduce that $\alpha_i \in F$ for each i and so $Q \in F[t]$.