

Soutenance de Thèse de Doctorat

Complexité scalaire des algorithmes de type Chudnovsky de multiplication dans les corps finis

présenté par

Thanh-Hung Dang

25 mai 2020

Membres du Jury

Rapporteur.euse: Laurent-Stéphane DIDIER

Sihem MESNAGER

Examinateurs.trice: Daniel AUGOT

Nadia EL-MRABET

Serge VLADUTS

Directeur de thèse: Alexis BONNECAZE Co-directeur de thèse: Stéphane BALLET

-directeur de these: Stephane BALLE I

Table of Contents

- Chudnovsky² multiplication algorithm in finite fields (CCMA)
- Optimization of scalar complexity for CCMA
- Computational experiment in a specific case of finite field

Multiplication in $\mathbb{F}_{q^n}/\mathbb{F}_q$

Let $\mathbb{F}_{q^n} = \mathbb{F}_q[x]/\langle P(x) \rangle$ and β is a root of P(x). Let

$$A = \sum_{i=0}^{n-1} a_i \beta^i$$
 and $B = \sum_{i=0}^{n-1} b_i \beta^i$

- 1. Product of two polynomials
- 2. Reduction modulo $P(\beta)$

Elementary operations over \mathbb{F}_q

- 1. Addition
- 2. Scalar multiplication $(a_i \mapsto \alpha \cdot a_i \text{ where } \alpha, a_i \in \mathbb{F}_q, \text{ and } \alpha \text{ is a constant not equal to } \mathbf{0} \text{ and } \mathbf{1})$
 - \leadsto Scalar Complexity $\mu_q^s(n)$
- 3. Bilinear multiplication $((a_i, b_j) \mapsto a_i \cdot b_j)$ where $a_i, b_j \in \mathbb{F}_q$ depend on the elements A and B of \mathbb{F}_{q^n} which are multiplied) \longrightarrow Bilinear Complexity $\mu_a^b(n)$

$\begin{array}{c} \textbf{Chudnovsky}^2 \ \textbf{multiplication algorithm} \\ \textbf{(CCMA)} \end{array}$

Algorithm of Chudnovsky²

Multiplication in \mathbb{F}_{q^n} :

David and Gregory Chudnovsky, 1988 \longrightarrow Interpolation on algebraic curves of genus g

Advantages:

- Bilinear complexity in O(n);
- Use of matrices favoring parallelism

Problem

Scalar Complexity of Chudnovsky² algorithm?

Description

Theorem

Let

- F/IF_q be an algebraic function field defined over IF_q ,
- Q be a place of degree n,
- $\mathcal{P} = \{P_1, \dots, P_N\}$ be a set of places of degree one of F/\mathbb{F}_q ,
- D be a divisor such that supp $D \cap \{Q, P_1, \dots, P_N\} = \emptyset$.

lf

- (i) the first evaluation map $\operatorname{Ev}_Q: \mathscr{L}(\mathcal{D}) \longrightarrow \operatorname{F}_Q \cong \operatorname{I\!F}_{q^n}$ is surjective, $f \longmapsto f(Q)$
- (ii) the second evaluation map $\operatorname{Ev}_{\mathcal{P}}: \mathscr{L}(2D) \longrightarrow \mathbb{F}_q^N$ $f \longmapsto (f(P_1), \dots, f(P_N))$ is injective.

□ > 9 a C

then there exists an algorithm of multiplication ${\mathcal U}$ such that

(1) For any two elements x, y in \mathbb{F}_{q^n} , we have:

$$xy = E_Q \circ (Ev_{\mathcal{P}}^{-1})_{|_{ImEv_{\mathcal{P}}}} \left(E_{\mathcal{P}} \circ Ev_Q^{-1}(x) \odot E_{\mathcal{P}} \circ Ev_Q^{-1}(y) \right) \tag{1}$$

where

- $E_Q: \mathcal{O}_Q \to \mathcal{O}_Q/\langle Q \rangle = F_Q$,
- $E_{\mathcal{P}}$: the extension of $Ev_{\mathcal{P}}$ on the valuation ring \mathcal{O}_Q ,
- ①: the Hadamard product (element-wise multiplication) .
- (2) Then we have:

$$\mu_q^b(\mathcal{U}) \leqslant N.$$

with equality if $N = dim \mathcal{L}(2D)$

$$\mu_q^s(\mathcal{U}) \leqslant ??$$

Sufficient conditions to apply the algorithm

S. Ballet (1999) introduced simple numerical conditions on algebraic curves giving a sufficient condition for the application of CCMA.

Let N_k be the number of places of degree k in an algebraic function field F/\mathbb{F}_q .

Theorem 2

If there exists an algebraic function field F/\mathbb{F}_q of genus g satisfying the conditions

- 1. $N_n > 0$ (which is always the case if $2g + 1 \le q^{\frac{n-1}{2}}(q^{\frac{1}{2}} 1)$),
- 2. $N_1 \ge 2n + 2g 1$,

then there exists a divisor D of degree n+g-1 and a place Q of degree n such that:

- (i) The evaluation map Ev_Q is an isomorphism of vector spaces over \mathbb{F}_q .
- (ii) There exist places $P_1,...,P_N$ such that the evaluation map $Ev_{\mathbb{P}}$ is an isomorphism of vector spaces over \mathbb{F}_q with N=2n+g-1.

Computational route for CCMA-based multiplication

Construction

Fixed a place Q of degree n, an effective divisor D of degree n+g-1 for given a function field F/\mathbb{F}_q .

Problem

Seek the best possible representation of spaces

$$\mathcal{L}(D)$$
, F_Q , $\mathcal{L}(2D)$ and \mathbb{F}_q^N

i.e. the best possible bases, respectively

$$\mathcal{B}_D, \mathcal{B}_Q, \mathcal{B}_{2D}$$
 and $\mathcal{B}_{\mathbb{F}_q^N}$

such that the scalar complexity $\mu_q^s(\mathcal{U})$ is the best possible.

Let us denote \mathcal{B}_Q a basis of $F_Q = \mathcal{O}_Q/\langle Q \rangle \cong \mathbb{F}_{q^n}$.

Basis \mathcal{B}_D of Riemann-Roch space $\mathcal{L}(D)$. Then

$$\mathfrak{B}_D = E v_Q^{-1}(\mathfrak{B}_Q),$$

or

$$\mathcal{B}_Q = E v_Q(\mathcal{B}_D).$$

Basis \mathfrak{B}_{2D} of $\mathcal{L}(2D) = \mathcal{L}(D) \oplus M$:

$$\mathfrak{B}_{2D}=\mathfrak{B}_D\cup\mathfrak{B}_D^c$$

 \mathfrak{B}^{c}_{D} denotes the basis of complementary subspace M of $\mathcal{L}(D)$ in $\mathcal{L}(2D)$.

 $\mathcal{B}^c_{\mathbb{F}^N}$ is the canonical basis of vector space \mathbb{F}^N_q .

Matrices

The basis of Riemann-Roch space $\mathcal{L}(2D)$ is $\mathcal{B}_{2D} = \{f_1, ..., f_N\}$ for N = 2n + g - 1.

• T_{2D} is the matrix of $Ev_{\mathcal{P}}: \mathcal{L}(2D) \to \mathbb{F}_q^N$:

$$T_{2D} := \begin{pmatrix} f_1(P_1) & f_2(P_1) & \cdots & f_N(P_1) \\ f_1(P_2) & f_2(P_2) & \cdots & f_N(P_2) \\ \vdots & \vdots & \vdots & \vdots \\ f_1(P_N) & f_2(P_N) & \cdots & f_N(P_N) \end{pmatrix}$$

- T_D is the matrix of $Ev_P|_{\mathcal{L}(D)}$. (i.e. T_D is the matrix of the first n columns of T_{2D})
- C is the matrix of $E_Q|_{\mathcal{L}(2D)}$:

$$C := \begin{pmatrix} c_1^1 & \cdots & c_N^1 \\ c_1^2 & \cdots & c_N^2 \\ \vdots & \vdots & \vdots \\ c_1^n & \cdots & c_N^n \end{pmatrix}$$

Algorithm

Algorithm 1 Chudnovsky² Multiplication in \mathbb{F}_{q^n} (CCMA)

INPUT:
$$x = \sum_{i=1}^{n} x_i E v_Q(f_i)$$
 and $y = \sum_{i=1}^{n} y_i E v_Q(f_i)$ $//x_i, y_i \in \mathbb{F}_q$

OUTPUT:
$$z = xy = \sum_{i=1}^{n} z_i E v_Q(f_i)$$

1.
$$X := \begin{pmatrix} X_1 \\ \vdots \\ X_N \end{pmatrix} \leftarrow T_D \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \text{ and } Y := \begin{pmatrix} Y_1 \\ \vdots \\ Y_N \end{pmatrix} \leftarrow T_D \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}.$$

2.
$$(Z_1, ..., Z_N)^t \leftarrow (X_1Y_1, ..., X_NY_N)^t =: X \odot Y$$

3.
$$(z_1,\ldots,z_n)^t \leftarrow C^t T_{2D}^{-1} \cdot \begin{pmatrix} Z_1 \\ \vdots \\ Z_N \end{pmatrix}$$

Optimization of scalar complexity for CCMA

Framework

We call $\mathcal{U}_{D,Q,\mathcal{P}}^{F,n}:=(\mathcal{U}_{D,Q,\mathcal{P}}^A,\mathcal{U}_{D,Q,\mathcal{P}}^R)$ the Chudnovsky² multiplication algorithm of type

$$xy = E_Q \circ Ev_{\mathbb{P}}^{-1} \left(Ev_{\mathbb{P}} \circ Ev_{Q}^{-1}(x) \odot Ev_{\mathbb{P}} \circ Ev_{Q}^{-1}(y) \right)$$

- $\mathcal{U}_{D,Q,\mathcal{P}}^{A} := E v_{\mathcal{P}} \circ E v_{\mathcal{Q}}^{-1} \qquad \rightsquigarrow "Aller Phase"$
- $\mathcal{U}_{D,Q,\mathcal{P}}^R := E_Q \circ E v_{\mathcal{P}}^{-1}$ \rightsquigarrow "Retour Phase"

satisfying the assumption of Theorem 2.

We will say that two algorithms $\mathcal{U}_{D,Q,\mathcal{P}}^{F,n}=\mathcal{U}_{D',Q',\mathcal{P}'}^{F,n}$ if

$$\mathcal{U}_{D,Q,\mathcal{P}}^A = \mathcal{U}_{D',Q',\mathcal{P}'}^A$$
 and $\mathcal{U}_{D,Q,\mathcal{P}}^R = \mathcal{U}_{D',Q',\mathcal{P}'}^R$.

Remark: If we choose the construction of $\mathcal{U}_{D,Q,\mathcal{P}}^{F,n}$ as above, then

$$\mu_q^b(\mathcal{U}_{D,Q,\mathcal{P}}^{F,n}) = N = 2n + g - 1 \text{ (optimal)}.$$

Optimization of Scalar Complexity

First case study, the scalar multiplication is computed with respect to the number of zeros of matrices.

Number of scalar multiplications of $\mathcal{U}_{D,Q,\mathcal{P}}^{F,n}$:

$$N_s = 3n(2n + g - 1) - N_z, (2)$$

where N_z is the number of zeros in CCMA, is computed by:

$$N_z = 2N_{zero}(T_D) + N_{zero}(C^t T_{2D}^{-1}).$$
 (3)

Aim

To improve the scalar complexity $\mu_q^s(\mathcal{U}_{D,Q,\mathcal{P}}^{F,n})$, we seek to maximize N_z .

Analysis on CCMA

Given an algebraic function field F/\mathbb{F}_q , we fix an effective divisor D, a place Q and $\mathcal{P} = \{P_1, ..., P_N\}$. Fixing the bases: \mathcal{B}_Q of $F_Q \cong \mathbb{F}_{q^n}$ and $\mathcal{B}^c_{\mathbb{F}^N_q}$ of \mathbb{F}^N_q .

Aller-Phase: $\mathcal{U}_{D,Q,\mathcal{P}}^{A} = Ev_{\mathcal{P}} \circ Ev_{Q}^{-1} = Ev_{\mathcal{P}}|_{\mathcal{L}(D)} \circ Ev_{Q}^{-1}$

 \Rightarrow Matrix T_D of $\mathcal{U}_{D,Q,\mathcal{P}}^A$ is <u>invariant</u> under the action of $\sigma \in GL_{\mathbb{F}_q}(n)$ on the basis \mathcal{B}_D .

15/31

Analysis on CCMA

Retour-Phase:
$$\mathcal{U}_{D,Q,\mathcal{P}}^R = E_Q \circ Ev_{\mathcal{P}}^{-1} = E_Q|_{\mathcal{L}(2D)} \circ Ev_{\mathcal{P}}^{-1}$$

 \Rightarrow Matrix $C^tT_{2D}^{-1}$ of $\mathcal{U}_{D,Q,\mathcal{P}}^R$ is <u>invariant</u> under the action of $\sigma \in GL_{\mathbb{F}_q}(2n+g-1)$ on the basis \mathcal{B}_{2D} .

Results

Fixed appropriate triplet (D, Q, P) for a given algebraic function field F/\mathbb{F}_q of genus g.

Proposition 1 [Ballet, Bonnecaze and D. (2019)]

Let us consider a algorithm $\mathcal{U}_{D,Q,\mathcal{P}}^{F,n}$ such that D is an effective divisor, D-Q is non-special divisor of degree g-1, $|\mathcal{P}|=\dim(\mathcal{L}(2D))=2n+g-1$.

Then, we can choose the basis $\mathcal{B}_{2D}=\mathcal{B}_D\cup\mathcal{B}_D^c$, and for any $\sigma\in GL_{\mathbb{F}_q}(2n+g-1)$, we have

$$\mathfrak{U}^{F,n}_{\sigma(D),Q,\mathcal{P}}=\mathfrak{U}^{F,n}_{D,Q,\mathcal{P}}$$

where $\sigma(D)$ denotes the action of σ on the basis \mathcal{B}_D in $\mathcal{U}_{D,Q,\mathcal{P}}^{F,n}$, with a fixed \mathcal{B}_Q and $\mathcal{B}_{\mathbb{F}_q^{2n+g-1}}^c$. In particular, $N_{zero}(C^tT_{2D}^{-1})$ is constant under this action.

Consequence

Idea of the scalar complexity optimization:

- 1. Starting from the initial basis $\mathcal{B}_{D,0} = Ev_Q^{-1}(\mathcal{B}_Q)$, by the action of $\sigma \in GL_{\mathbb{F}_q}(n)$ we vary this basis to $\mathcal{B}_{D,i}$ for $i=1,...,|GL_{\mathbb{F}_q}(n)|$.
- 2. For each new basis $\mathcal{B}_{D,i}$ of $\mathcal{L}(D)$, we have $\mathcal{B}_{Q,i} = Ev_Q(\mathcal{B}_{D,i})$. Fixing bases $\mathcal{B}_{Q,i}$ and $\mathcal{B}^c_{\mathbb{F}_q^{2n+g-1}}$, the matrix $C^tT_{2D}^{-1}$ of Retour-Phase is always invariant under any action of $\sigma \in GL_{\mathbb{F}_q}(2n+g-1)$
- 3. The variation of $\mathcal{B}_{D,i}$ reaches $\mathcal{B}_{D,max}$ such that the parameter $N_{zero}(T_D)$ is maximal.

<u>Fact</u>: With respect to the basis $\mathcal{B}_{2D,i} = \mathcal{B}_{D,i} \cup \mathcal{B}_{D,i}^c$

- both C and T_{2D} vary,
- $C^{t}T_{2D}^{-1}$ is invariant.

Results (with respect to the number of zeros)

Proposition 2 [Ballet, Bonnecaze and D. (2019)]

The optimal scalar complexity $\mu^{s,o}(\mathcal{U}_{D,Q,\mathcal{P}}^{F,n})$ of $\mathcal{U}_{D,Q,\mathcal{P}}^{F,n}$ is reached for the set $\{\mathcal{B}_{D,max},\mathcal{B}_Q\}$ such that $\mathcal{B}_{D,max}$ is the basis of $\mathcal{L}(D)$ satisfying

$$N_{zero}(T_{D,max}) = \max_{\sigma \in GL_{\mathbb{F}_{\sigma}}(n)} N_{zero}(T_{\sigma(D)})$$

where: $\sigma(D)$ denotes the action of σ on \mathfrak{B}_D in $\mathfrak{U}_{D,Q,\mathcal{P}}^{F,n}$; $T_{D,max}$ is the matrix of $Ev_{\mathcal{P}}|_{\mathcal{L}(D)}$ equipped with the bases $\mathfrak{B}_{D,max}$ and $\mathfrak{B}_Q = Ev_Q(\mathfrak{B}_{D,max})$. In particular,

$$\mu^{s,o}(\mathcal{U}_{D,Q,\mathcal{P}}^{F,n}) = \min_{\sigma \in GL_{\mathbb{F}_q}(n)} \{\mu_q^s(\mathcal{U}_{\sigma(D),Q,\mathcal{P}}^{F,n}) \mid \sigma(\mathcal{B}_D) \text{ is the basis of } \mathcal{L}(D)$$

and
$$\mathcal{B}_Q = E v_Q(\mathcal{B}_D)$$

$$=3n(2n+g-1)-(2N_{zero}(T_{D,max})+N_{zero}(T_{2D,n}^{-1})),$$

where C and T_{2D} are defined with respect to $\mathcal{B}_Q = E_{V_Q}(\mathcal{B}_{D,max})$, and $\mathcal{B}_{2D} = \mathcal{B}_{D,max} \cup \mathcal{B}_D^c$ with \mathcal{B}_D^c a basis of the kernel of $E_Q|_{\mathcal{L}(2D)}$.

Setup algorithm for the scalar complexity optimization

Algorithm 2 Setup algorithm for the scalar complexity optimization

INPUT: F/\mathbb{F}_q , Q, D, $\mathfrak{P} = \{P_1, \dots, P_{2n+g-1}\}$. **OUTPUT:** $\mathcal{B}_{2D} = \mathcal{B}_D \cup \mathcal{B}_D^c$, \mathcal{T}_{2D} and $\mathcal{T}_{2D,n}^{-1}$.

- (i) Check the function field F/\mathbb{F}_q , the place Q, the divisor D are such that Conditions (i) and (ii) in Theorem 2 are satisfied.
- (ii) Go through the set of bases \mathfrak{B}_D of $\mathcal{L}(D)$.
- (iii) Choose a basis $\mathcal{B}_D := (f_1, \dots, f_n)$ such that $N_{zero}(T_D)$ is the largest.
- (iv) Construct a basis $\mathcal{B}_D^c := (f_{n+1}, ..., f_{2n+g-1})$ of the complementary space $\mathcal{M} := Ker E_Q|_{\mathcal{L}(2D)}$ of $\mathcal{L}(D)$ in $\mathcal{L}(2D)$.
- (v) Compute T_{2D} , $T_{2D,n}^{-1}$ in the basis $\mathcal{B}_{2D} = \mathcal{B}_D \cup \mathcal{B}_D^c$.
- (vi) Set $\mathcal{B}_Q := Ev_Q(\mathcal{B}_D)$.

AG code & CCMA

Recall the definition of algebraic geometry code (AG code) given by V.D. Goppa. Let

- F/\mathbb{F}_q be an algebraic function field of genus g,
- $P_1, ..., P_N$ are pairwise distinct places of F/\mathbb{F}_q of degree one,
- $-G=P_1+\cdots+P_N,$
- D are divisors of F/\mathbb{F}_q such that $suppG \cap suppD = \emptyset$.

The AG code $C_{\mathcal{L}}(G, D)$ associated with the divisors G and D is defined as

$$C_{\mathcal{L}}(G,D) := \{(f(P_1),...,f(P_N))| f \in \mathcal{L}(D)\} \subseteq \mathbb{F}_q^N.$$

Then $C_{\mathcal{L}}(G, D)$ is an [N, k, d] code with parameters:

- dimension $k = \dim \mathcal{L}(D) \dim \mathcal{L}(D G)$
- minimum distance $d \ge N \deg D$.

< □ > 40 0 0 0

If $\{f_1, ..., f_n\}$ is a basis of $\mathcal{L}(D)$, the matrix

$$M := \begin{pmatrix} f_1(P_1) & \cdots & f_1(P_N) \\ f_2(P_1) & \cdots & f_2(P_N) \\ \vdots & \vdots & \vdots \\ f_n(P_1) & \cdots & f_n(P_N) \end{pmatrix}$$

is a generator matrix for $C_{\mathcal{L}}(G, D)$.

Observation

In our construction of CCMA,

We observe that:

- $Ev_{\mathcal{P}}(\mathcal{L}(D))$ is an AG code $C_{\mathcal{L}}(G, D) = [N, n, d]$
- The matrix of the restriction of $Ev_{\mathbb{P}}$ on $\mathcal{L}(D)$ is $T_{D} = M^{t}$

< □ > 40 Q C

Upper-bound of $N_{zero}(T_D)$

We have

$$N_{zero}(T_D) = n \cdot N - N_{nz}(T_D),$$

where $N_{nz}(T_D)$ denotes the number of non-zero entries of T_D .

By the definition of minimum distance and its lower bound in AG code, we obtain:

$$N_{zero}(T_D) \leqslant n \cdot \deg D$$

If N = 2n + g - 1, in practical construction, we take the divisor D as a place of degree n + g - 1, then

$$N_{zero}(T_D) \leqslant n(n+g-1)$$

Improved setup algorithm

We proposed a new setup algorithm for an efficient optimization of scalar complexity.

Algorithm 3 New setup algorithm for scalar complexity optimization (D. 2020)

INPUT: F/\mathbb{F}_q , Q, D, $\mathfrak{P} = \{P_1, \dots, P_{2n+g-1}\}$. **OUTPUT:** $\mathcal{B}_{2D} = \mathcal{B}_D \cup \mathcal{B}_D^c$, \mathcal{T}_{2D} and $\mathcal{T}_{2D,n}^{-1}$.

- (i) Check that the function field F/\mathbb{F}_q the place Q, the divisor D such that Conditions (i) and (ii) in Theorem 2 are satisfied.
- (ii) Construct a basis $\mathfrak{B}_D^c := (f_{n+1}, ..., f_{2n+g-1})$ of the complementary space $Ker E_Q|_{\mathcal{L}(2D)}$ of $\mathcal{L}(D)$ in $\mathcal{L}(2D)$.
- (iii) Go through the set S of bases \mathcal{B}_D of $\mathcal{L}(D)$, set $mB_D := \{\mathcal{B}_D \in S \mid N_{zero}(T_D) = \frac{n(n+g-1)}{n}\}$.
- (iv) Search in mB_D a basis $opt\mathcal{B}_D := (f_1, \ldots, f_n)$ such that $\underbrace{N_{zero}(T_{2D,n}^{-1})}$ (with respect to $\mathcal{B}_{2D} := opt\mathcal{B}_D \cup \mathcal{B}_D^c$) be the largest.
- (v) Set $\mathcal{B}_Q := E v_Q(opt\mathcal{B}_D)$.

Upper-bound of $N_{zero}(T_D)$

Remark 1

(i) The upper-bound depends on deg D, not depend on the choice of a divisor among all effective divisors D such that D - Q non-special.

(ii)
$$N_{zero}(T_{2D,n}^{-1}) \le ?? < n(2n + g - 1)$$

Theorem [D. (2020)]

Let $\mathfrak{U}^{F,n}_{D,Q,\mathcal{P}}$ be a Chudnovsky² multiplication algorithm in a finite field \mathbb{F}_{q^n} such that D is an effective divisor, D-Q is non-special divisor of degree g-1, $|\mathcal{P}|=\dim(\mathcal{L}(2D))=2n+g-1$. Then

$$\mu_q^s(\mathcal{U}_{D,Q,\mathcal{P}}^{F,n}) > 2n^2$$

Other Strategies

Optimization strategies based on variations of the appropriate triplet (D, Q, \mathcal{P}) .

1. Fixing a divisor D and a place Q, we change $\mathcal{P}=\{P_1,...,P_N\}$ of F/\mathbb{F}_q .

Specific case: Permuting the order of interpolation points P_i , for i = 1, ..., N.

Proposition 3 [D. (2020)]

Let us consider an algorithm $\mathcal{U}_{D,Q,\mathcal{P}}^{F,n}$ such that D is an effective divisor, D-Q a non-special divisor of degree g-1, and $|\mathcal{P}|=\dim\mathcal{L}(2D)=N$. For any π in S_N where S_N is the symmetric group on the set $\{1,2,...,N\}$, then the quantities $N_{zero}(T_D)$ and $N_{zero}(T_{2D,n}^{-1})$ are constants under the action π .

~ 20 C

Optimization of scalar complexity of the elliptic CCMA

Experiment of Baum-Shokrollahi over an elliptic function field

Consider the multiplication in \mathbb{F}_{256} over $\mathbb{F}_4 = \mathbb{F}_2(\omega)$ (q = 4 and n = 4) using the maximal elliptic curve $(\mathscr{C}): y^2 + y = x^3 + 1$.

Let function field F/\mathbb{F}_4 associated to \mathscr{C} over \mathbb{F}_4 .

Then

$$N_1(\mathsf{F}) = q + 1 + 2gq^{\frac{1}{2}} = 9.$$

Check the conditions of Theorem 2 for using the algorithm of CCMA on F/\mathbb{F}_4 to multiply in \mathbb{F}_{4^4} :

•
$$N_n > 0$$
 $\left(\Leftarrow 2g + 1 \leqslant q^{\frac{n-1}{2}} (q^{\frac{1}{2}} - 1) \right)$

•
$$N_1 \ge 2n + 2g - 1 \iff n \le \frac{1}{2}(N_1 - 2g + 1)$$

Consequence: the multiplication in the extension of degree n=4 of \mathbb{F}_4 is possible with the curve \mathscr{C}/\mathbb{F}_4 .

We obtain

$$\mu_q^b(\mathscr{C}/\mathbb{F}_4) = 2n + g - 1 = 8$$
 (optimal)

Applying Algorithm 3 and using computations in Magma, we gave an improved basis $\mathcal{B}_{2D} = (f_1, f_2, ..., f_8)$ of $\mathcal{L}(2D)$, where

$$\begin{split} f_1 &= \frac{y + \omega x + \omega^2}{x^2 + x + \omega}, \\ f_2 &= \frac{y + \omega^2 x + \omega}{x^2 + x + \omega}, \\ f_3 &= \frac{\omega x^2 + \omega^2 x}{x^2 + x + \omega}, \\ f_4 &= \frac{\omega y}{x^2 + x + \omega}, \\ f_5 &= \frac{(\omega x^2 + \omega x)y + \omega^2 x^4 + \omega x^3 + x^2 + x + \omega}{x^4 + x^2 + \omega^2}, \\ f_6 &= \frac{\omega^2 x^2 y + \omega x^4 + \omega x^3 + x^2 + \omega x}{x^4 + x^2 + \omega^2}, \\ f_7 &= \frac{(x^2 + \omega^2 x)y + \omega x^4 + \omega x^2}{x^4 + x^2 + \omega^2}, \\ f_8 &= \frac{(\omega x + \omega)y + \omega x^4}{x^4 + x^2 + \omega^2}. \end{split}$$

Matrices in CCMA of kernel-type construction

$$T_{2D} = \begin{pmatrix} 0 & 0 & \omega & 0 & \omega^2 & \omega & \omega & \omega \\ \omega^2 & 0 & 0 & \omega & \omega^2 & 0 & 0 & 1 \\ 0 & \omega^2 & 0 & \omega^2 & \omega^2 & 0 & 0 & \omega \\ \omega^2 & \omega^2 & \omega^2 & 0 & 1 & 1 & 0 & \omega^2 \\ 0 & 0 & \omega^2 & 1 & 1 & 0 & \omega^2 & \omega^2 \\ 0 & 1 & 0 & 0 & 0 & \omega^2 & 1 & \omega \\ \omega & \omega^2 & 0 & \omega^2 & 1 & \omega & 0 & 1 \\ \omega^2 & 0 & \omega & 0 & \omega & 0 & 1 & \omega^2 \end{pmatrix}$$

$$N_{zero}(T_D) = 16 = n(n+g-1) = maximal$$

$$T_{2D,4}^{-1} = \begin{pmatrix} 1 & 0 & 0 & \omega^2 & \omega & 0 & \omega^2 & \omega^2 \\ 1 & 1 & \omega^2 & 0 & 0 & \omega^2 & 0 & 1 \\ 0 & 1 & \omega & 1 & \omega^2 & \omega & 0 & 0 \\ \omega^2 & \omega & \omega^2 & 0 & \omega & 0 & \omega^2 & 0 \end{pmatrix}$$

$$N_{zero}(T_{2D,4}^{-1}) = 12$$

□ > 10 0 0

29/31

Comparison

Method	$N_{zero}(T_D)$	$N_{zero}(T_{2D,4}^{-1})$	Nz	Ns
Baum-Shokrollahi	10	5	25	71
Our construction	16	12	44	52

We have a gain of 27% over Baum and Shokrollahi¹'s method.

30/31

 $^{^1}$ Ulrich Baum and Amin Shokrollahi. "An optimal algorithm for multiplication in $\mathbb{F}_{256}/\mathbb{F}_4$ ". In: Applicable Algebra in Engineering, Communication and Computing 2.1 (1991), pp. 15–20. □ □ □ □ □ ○ ○ ○

Merci pour votre attention!