

Airlines Delay

Supervised Learning

Artificial Intelligence 2022/2023 3LEIC10 Group 27

Daniela Tomás up202004946 Diogo Nunes up202007895 João Veloso up202005801

Work Specification

The task at hand is a binary classification problem, to predict whether a given flight will be delayed, given the information of the scheduled departure.

Dataset attributes:

- Flight Flight ID
- **Time** Time of departure
- Length Length of Flight
- Airline Airline ID
- AirportFrom Which airport the flight flew from
- AirportTo Which airport the flight flew to
- DayOfWeek Day of the week of the flight
- Class Delayed (1) or not (0)

Tools and Algorithms

- Programming language: Python
- Python libraries: Pandas, Seaborn, Scikit-Learn, ...
- **Development environment:** Jupyter Notebook / VSCode
- Machine learning algorithms: Decision Trees, K-Nearest Neighbours, Support Vector Machine, ...

Work Already Done

The dataset has been analysed and pre-processed. The following conclusions were drawn:

- There are 539382 rows and 8 cols in the dataset
- There are 216618 duplicates
- There are no null values
- Length has some outliers

Attribute	Туре	Properties	Discrete vs Continuous
Flight	Nominal	Distinctness	Discrete
Time	Interval	Distinctness, order, and meaningful differences	Continuous
Length	Ratio	Distinctness, order, meaningful differences, and ratios are meaningful	Continuous
Airline	Nominal	Distinctness	Discrete
AirportFrom	Nominal	Distinctness	Discrete
AirportTo	Nominal	Distinctness	Discrete
DayOfWeek	Ordinal	Distinctness and order	Discrete
Class	Nominal	Distinctness	Discrete

Data Pre-processing

Our dataset presented to be ready to use as:

- There are no null values
- Although there are duplicate values, we decided not to remove them because... (they could represent flights with the same delay time or flights with multiple delays).
- There are some outliers in 'Length' but they don't represent errors since most likely we will be removing the exact object of our analysis

Developed Algorithms

Decision Tree

- To classify this model, DecisionTreeClassifier relative to the sklearn.tree module was used.
- max_depth = 5

K-Nearest Neightbours

- To classify this model, KNeighborsClassifier relative to the sklearn.neighbors module was used.
- n_neighbors = 5

Support Vector Machine

- The sklearn module svm was used.
- We use a smaller subset of the data to train the model faster. If we didn't, the model would not execute in doable time.
- kernel = 'rbf'

Neural Networks

- This model was based on the implementation of the MLPClassifier relative to the sklearn.neural_network module.
- hidden_layer_sizes=(100,)
- max_iter: 1000

Developed Algorithms

- DT has a slightly higher precision score (65.4%) than the other algorithms.
- KNN has the highest recall (55.51%) and accuracy (64.06%) scores.
- DT and KNN models also have the higher **F-1** scores (48.97% and 58.0%, respectively).
- In terms of **training time**, DT was the fastest (1.29s) and NN the slowest (1643.99s ≈ 27 min).
- In terms of **testing time**, DT was once again the fastest (0.02s) and SVM was by far the slowest (443.29s ≈ 7 min).
- But we must consider that the train size of SVM (10%) was smaller than the others (30%).

Decision Tree

SVM

Algorithms

KNN

Comparison of the time spent to train the models

Conclusion

With this project, we have learned to work with various Machine Learning models directed at Supervised Learning.

Overall, **Decision Tree** and **K-Nearest Neighbors** models performed relatively better than **Support Vector Machine** and **Neural Network** in predicting flight delays. They achieved higher evaluation metrics scores and by far the fastest train/test times.

References

- IART classes slides and exercises
- https://www.kaggle.com/datasets/ulrikthygepedersen/airlinesdelay?datasetId=2859795&sortBy=dateRun&tab=bookmarked