L'objectif de ce devoir est de vous amener à calculer trois « belles » limites :

•
$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$$

(zêta de Riemann en 2)

•
$$\lim_{n \to +\infty} \frac{\sqrt{n}}{2^{2n}} \binom{2n}{n} = \frac{1}{\sqrt{\pi}}$$

(formule de Wallis)

•
$$\lim_{n \to +\infty} \frac{1}{n!} \left(\frac{n}{\rho} \right)^n \sqrt{2n\pi} = 1$$

(formule de Stirling)

Partie I: Préliminaires

Pour tout $n \in \mathbb{N}$, on pose : $a_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt$ (intégrales de Wallis).

- 1. (a) Calculer a_0 et a_1 , puis montrer que pour tout $n \in \mathbb{N}$: $a_n > 0$.
 - (b) Montrer que pour tout $n \in \mathbb{N}$: $a_{n+2} = \frac{n+1}{n+2}a_n$.

Partie II : Calcul de la valeur en 2 de la fonction zêta de Riemann

Pour tout $n \in \mathbb{N}$, on pose: $b_n = \int_0^{\frac{\pi}{2}} t^2 \cos^{2n}(t) dt$.

- 2. (a) Montrer que pour tout $t \in \left[0, \frac{\pi}{2}\right]$: $t \leqslant \frac{\pi}{2} \sin(t)$.
 - (b) En déduire que pour tout $n \in \mathbb{N}$: $0 \le b_n \le \frac{\pi^2}{4} (a_{2n} a_{2n+2})$.
 - (c) En déduire enfin la limite : $\lim_{n \to +\infty} \frac{b_n}{a_{2n}} = 0$.
- 3. (a) Montrer que pour tout $n \in \mathbb{N}$: $a_{2n+2} = (2n+2) \int_0^{\frac{\pi}{2}} t \sin(t) \cos^{2n+1}(t) dt$.