Class 13: Mini-Project RNA-Seq

Parsa Sazegar

Section 1. Differential Expression Analysis

library(DESeq2)

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

findMatches

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

windows

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds,

colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars

rowWeightedSds, rowWeightedVars Loading required package: Biobase Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. Attaching package: 'Biobase' The following object is masked from 'package: MatrixGenerics': rowMedians The following objects are masked from 'package:matrixStats': anyMissing, rowMedians Warning: replacing previous import 'S4Arrays::read_block' by 'DelayedArray::read_block' when loading 'SummarizedExperiment' metaFile <- "GSE37704_metadata.csv"</pre> countFile <- "GSE37704_featurecounts.csv"</pre> # Import metadata and take a peak colData = read.csv(metaFile, row.names=1)

head(colData)

```
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
               hoxa1 kd
SRR493369
SRR493370
               hoxa1_kd
SRR493371
               hoxa1 kd
  # Import countdata
  countData = read.csv(countFile, row.names=1)
  head(countData)
                length SRR493366 SRR493367 SRR493368 SRR493369 SRR493370
ENSG00000186092
                   918
                               0
                                          0
                                                    0
                                                              0
                                                                        0
ENSG00000279928
                   718
                               0
                                         0
                                                   0
                                                              0
                                                                        0
ENSG00000279457
                  1982
                              23
                                         28
                                                   29
                                                             29
                                                                       28
ENSG00000278566
                  939
                               0
                                          0
                                                   0
                                                              0
                                                                        0
ENSG00000273547
                   939
                               0
                                          0
                                                    0
                                                              0
                                                                        0
ENSG00000187634
                                        123
                  3214
                             124
                                                  205
                                                            207
                                                                       212
                SRR493371
ENSG00000186092
ENSG00000279928
                        0
                       46
ENSG00000279457
ENSG00000278566
                        0
ENSG00000273547
                        0
ENSG00000187634
                      258
```

Q1. Complete the code below to remove the troublesome first column from countData

```
# Note we need to remove the odd first $length col
countData <- as.matrix(countData[, -1])
head(countData)</pre>
```

condition

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Q2. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

```
remove <- rowSums(countData) == 0
countData <- countData[!remove, ]

to_keep <- rowSums(countData)>0
countData <- countData[to_keep, ]</pre>
```

Running DESeq2

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

dds
```

```
class: DESeqDataSet
dim: 15975 6
metadata(1): version
assays(4): counts mu H cooks
rownames(15975): ENSG00000279457 ENSG00000187634 ... ENSG00000276345
  ENSG00000271254
rowData names(22): baseMean baseVar ... deviance maxCooks
colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371
colData names(2): condition sizeFactor
  res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
Q3. Call the summary() function on your results to get a sense of how many genes are up
or down-regulated at the default 0.1 p-value cutoff.
  summary(res)
out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)
                    : 4349, 27%
                   : 4396, 28%
LFC < 0 (down)
outliers [1]
                    : 0, 0%
low counts [2]
                   : 1237, 7.7%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
  plot( res$log2FoldChange, -log(res$padj) )
```


Q4. Improve this plot by completing the below code, which adds color and axis labels

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01

# and absolute fold change more than 2
inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(</pre>
```


Adding gene annotation

Q5. Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENE-NAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

```
columns(org.Hs.eg.db)
```

```
[1] "ACCNUM"
                                     "ENSEMBL"
                     "ALIAS"
                                                     "ENSEMBLPROT"
                                                                     "ENSEMBLTRANS"
 [6] "ENTREZID"
                     "ENZYME"
                                     "EVIDENCE"
                                                     "EVIDENCEALL"
                                                                     "GENENAME"
[11] "GENETYPE"
                     "GO"
                                     "GOALL"
                                                     "IPI"
                                                                     "MAP"
                     "ONTOLOGY"
                                     "ONTOLOGYALL"
                                                     "PATH"
                                                                     "PFAM"
[16] "OMIM"
[21] "PMID"
                     "PROSITE"
                                     "REFSEQ"
                                                     "SYMBOL"
                                                                     "UCSCKG"
[26] "UNIPROT"
```

```
res$symbol <- mapIds(org.Hs.eg.db,</pre>
                       keys = row.names(res),
                       keytype = "ENSEMBL",
                       column = "SYMBOL",
                       multiVals = "first")
'select()' returned 1:many mapping between keys and columns
  res$entrez <- mapIds(org.Hs.eg.db,</pre>
                       keys = row.names(res),
                       keytype = "ENSEMBL",
                       column = "ENTREZID",
                       multiVals = "first")
'select()' returned 1:many mapping between keys and columns
  res$name <- mapIds(org.Hs.eg.db,
                     keys = row.names(res),
                     keytype = "ENSEMBL",
                     column = "GENENAME",
                     multiVals = "first")
'select()' returned 1:many mapping between keys and columns
  head(res, 10)
log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns
                   baseMean log2FoldChange
                                               lfcSE
                                                                     pvalue
                                                           stat
                                 <numeric> <numeric> <numeric>
                  <numeric>
                                                                  <numeric>
                  29.913579
                                 0.1792571 0.3248216
                                                       0.551863 5.81042e-01
ENSG00000279457
ENSG00000187634 183.229650
                                 0.4264571 0.1402658
                                                       3.040350 2.36304e-03
ENSG00000188976 1651.188076
                              -0.6927205 0.0548465 -12.630158 1.43990e-36
```

0.7297556 0.1318599 5.534326 3.12428e-08

0.0405765 0.2718928 0.149237 8.81366e-01

0.5428105 0.5215598 1.040744 2.97994e-01

ENSG00000187961 209.637938

ENSG00000187583 47.255123

ENSG00000187642 11.979750

```
ENSG00000188290 108.922128
                                 2.0570638 0.1969053 10.446970 1.51282e-25
ENSG00000187608 350.716868
                                 0.2573837 0.1027266 2.505522 1.22271e-02
ENSG00000188157 9128.439422
                                 0.3899088 0.0467163
                                                      8.346304 7.04321e-17
ENSG00000237330
                                 0.7859552 4.0804729
                                                        0.192614 8.47261e-01
                   0.158192
                       padj
                                 symbol
                                             entrez
                                                                       name
                  <numeric> <character> <character>
                                                                <character>
ENSG00000279457 6.86555e-01
                                     NA
ENSG00000187634 5.15718e-03
                                 SAMD11
                                             148398 sterile alpha motif ...
ENSG00000188976 1.76549e-35
                                  NOC2L
                                              26155 NOC2 like nucleolar ..
ENSG00000187961 1.13413e-07
                                 KLHL17
                                             339451 kelch like family me..
ENSG00000187583 9.19031e-01
                                PLEKHN1
                                              84069 pleckstrin homology ...
ENSG00000187642 4.03379e-01
                                              84808 PPARGC1 and ESRR ind..
                                  PERM1
ENSG00000188290 1.30538e-24
                                   HES4
                                              57801 hes family bHLH tran..
ENSG00000187608 2.37452e-02
                                  ISG15
                                                9636 ISG15 ubiquitin like...
ENSG00000188157 4.21963e-16
                                   AGRN
                                             375790
                                                                      agrin
ENSG00000237330
                         NA
                                 RNF223
                                             401934 ring finger protein ...
```

Q6. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res <- res[order(res$padj), ]
write.csv(res, file = "deseq_results.csv")</pre>
```

Section 2. Pathway Analysis

```
# Run in your R console (i.e. not your Rmarkdown doc!)
BiocManager::install( c("pathview", "gage", "gageData") )

Bioconductor version 3.17 (BiocManager 1.30.20), R 4.3.0 (2023-04-21 ucrt)

Warning: package(s) not installed when version(s) same as or greater than current; use `force = TRUE` to re-install: 'pathview' 'gage' 'gageData'

Installation paths not writeable, unable to update packages path: C:/Program Files/R/R-4.3.0/library packages:
    class, KernSmooth, MASS, Matrix, nnet
```

```
Old packages: 'BiocParallel', 'cachem', 'DelayedArray', 'DT', 'emmeans', 'evaluate', 'knitr', 'markdown', 'RcppArmadillo', 'rlang', 'sass', 'sys'
```

```
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

library(gage)

```
library(gageData)
  data(kegg.sets.hs)
  data(sigmet.idx.hs)
  # Focus on signaling and metabolic pathways only
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  # Examine the first 3 pathways
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
           "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
             "1066"
                       "10720" "10941" "151531" "1548"
                                                           "1549"
                                                                    "1551"
                                "1806"
 [9] "1553"
             "1576"
                       "1577"
                                         "1807"
                                                  "1890"
                                                           "221223" "2990"
[17] "3251"
             "3614"
                      "3615"
                                "3704"
                                         "51733" "54490"
                                                           "54575"
                                                                    "54576"
```

```
[25] "54577"
               "54578"
                         "54579"
                                  "54600"
                                            "54657"
                                                      "54658"
                                                                "54659"
                                                                          "54963"
[33] "574537"
               "64816"
                         "7083"
                                  "7084"
                                            "7172"
                                                      "7363"
                                                                "7364"
                                                                          "7365"
                                            "7378"
                                                                          "83549"
[41] "7366"
               "7367"
                         "7371"
                                  "7372"
                                                      "7498"
                                                                "79799"
[49] "8824"
               "8833"
                         "9"
                                  "978"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                          "10606"
                                   "10621"
                                             "10622"
                                                       "10623"
                                                                 "107"
                                                                           "10714"
  [9] "108"
                "10846"
                          "109"
                                    "111"
                                             "11128"
                                                       "11164"
                                                                 "112"
                                                                           "113"
 [17] "114"
                "115"
                          "122481" "122622"
                                             "124583"
                                                       "132"
                                                                 "158"
                                                                           "159"
                "171568" "1716"
                                    "196883" "203"
                                                       "204"
                                                                 "205"
 [25] "1633"
                                                                           "221823"
 [33] "2272"
                "22978"
                          "23649"
                                    "246721"
                                             "25885"
                                                       "2618"
                                                                 "26289"
                                                                           "270"
 [41] "271"
                "27115"
                          "272"
                                    "2766"
                                             "2977"
                                                       "2982"
                                                                 "2983"
                                                                           "2984"
 [49] "2986"
                "2987"
                                                                 "318"
                                                                           "3251"
                          "29922"
                                    "3000"
                                             "30833"
                                                       "30834"
 [57] "353"
                "3614"
                          "3615"
                                    "3704"
                                             "377841" "471"
                                                                 "4830"
                                                                           "4831"
 [65] "4832"
                "4833"
                          "4860"
                                             "4882"
                                                       "4907"
                                                                 "50484"
                                                                           "50940"
                                    "4881"
                                                                 "5139"
 [73] "51082"
                "51251"
                          "51292"
                                    "5136"
                                             "5137"
                                                       "5138"
                                                                           "5140"
 [81] "5141"
                "5142"
                          "5143"
                                    "5144"
                                             "5145"
                                                       "5146"
                                                                 "5147"
                                                                           "5148"
 [89] "5149"
                "5150"
                          "5151"
                                    "5152"
                                             "5153"
                                                       "5158"
                                                                 "5167"
                                                                           "5169"
 [97] "51728"
                "5198"
                          "5236"
                                    "5313"
                                             "5315"
                                                       "53343"
                                                                 "54107"
                                                                           "5422"
                                                                 "5432"
[105] "5424"
                "5425"
                          "5426"
                                    "5427"
                                             "5430"
                                                       "5431"
                                                                           "5433"
[113] "5434"
                "5435"
                          "5436"
                                    "5437"
                                             "5438"
                                                       "5439"
                                                                 "5440"
                                                                           "5441"
[121] "5471"
                "548644" "55276"
                                    "5557"
                                             "5558"
                                                       "55703"
                                                                 "55811"
                                                                           "55821"
                "5634"
[129] "5631"
                          "56655"
                                    "56953"
                                             "56985"
                                                       "57804"
                                                                 "58497"
                                                                           "6240"
[137] "6241"
                "64425"
                          "646625" "654364"
                                             "661"
                                                       "7498"
                                                                 "8382"
                                                                           "84172"
[145] "84265"
                "84284"
                          "84618"
                                    "8622"
                                             "8654"
                                                       "87178"
                                                                 "8833"
                                                                           "9060"
[153] "9061"
                "93034"
                          "953"
                                    "9533"
                                             "954"
                                                       "955"
                                                                 "956"
                                                                           "957"
[161] "9583"
                "9615"
  foldchanges = res$log2FoldChange
  names(foldchanges) = res$entrez
  head(foldchanges)
     1266
               54855
                           1465
                                    51232
                                                 2034
                                                           2317
-2.422719
           3.201955 -2.313738 -2.059631 -1.888019 -1.649792
  # Get the results
  keggres = gage(foldchanges, gsets=kegg.sets.hs)
  attributes(keggres)
```

\$names

```
[1] "greater" "less" "stats"
```

```
# Look at the first few down (less) pathways
head(keggres$less)
```

```
p.geomean stat.mean
hsa04110 Cell cycle
                                   8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                   9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                    1.375901e-03 -3.028500 1.375901e-03
hsa03440 Homologous recombination
                                    3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis
                                    3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                          q.val set.size
                                                                exp1
hsa04110 Cell cycle
                                    0.001448312 121 8.995727e-06
hsa03030 DNA replication
                                    0.007586381
                                                    36 9.424076e-05
                                    0.073840037
hsa03013 RNA transport
                                                   144 1.375901e-03
hsa03440 Homologous recombination 0.121861535
                                                    28 3.066756e-03
                                                  102 3.784520e-03
hsa04114 Oocyte meiosis
                                    0.121861535
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                    53 8.961413e-03
```

```
pathview(gene.data=foldchanges, pathway.id="hsa04110")
```

Info: Working in directory C:/Users/parsa/OneDrive/Desktop/Class 13/Class 13

Info: Writing image file hsa04110.pathview.png

^{&#}x27;select()' returned 1:1 mapping between keys and columns

A different PDF based output of the same data
pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)

'select()' returned 1:1 mapping between keys and columns

Warning: reconcile groups sharing member nodes!

```
[,1] [,2]
[1,] "9" "300"
[2,] "9" "306"
```

Info: Working in directory C:/Users/parsa/OneDrive/Desktop/Class 13/Class 13

Info: Writing image file hsa04110.pathview.pdf

```
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres$greater)[1:5]

# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids</pre>
```

[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"

pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")

Q7. Can you do the same procedure as above to plot the pathview figures for the top 5 down-reguled pathways?

```
keggrespathways <- rownames(keggres$less)[1:5]
keggresids <- substr(keggrespathways, start = 1, stop = 8)
pathview(gene.data = foldchanges, pathway.id = keggresids, species = "hsa")</pre>
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/parsa/OneDrive/Desktop/Class 13/Class 13

Info: Writing image file hsa04110.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/parsa/OneDrive/Desktop/Class 13/Class 13

Info: Writing image file hsa03030.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/parsa/OneDrive/Desktop/Class 13/Class 13

Info: Writing image file hsa03013.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/parsa/OneDrive/Desktop/Class 13/Class 13

Info: Writing image file hsa03440.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/parsa/OneDrive/Desktop/Class 13/Class 13

Info: Writing image file hsa04114.pathview.png

Section 3. Gene Ontology (GO)

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

```
p.geomean stat.mean p.val
G0:0007156 homophilic cell adhesion 8.519724e-05 3.824205 8.519724e-05
G0:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04
G0:0048729 tissue morphogenesis 1.432451e-04 3.643242 1.432451e-04
G0:0007610 behavior 1.925222e-04 3.565432 1.925222e-04
G0:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
G0:0035295 tube development 5.953254e-04 q.val set.size exp1
```

```
GO:0007156 homophilic cell adhesion
                                                        113 8.519724e-05
                                         0.1951953
GO:0002009 morphogenesis of an epithelium 0.1951953
                                                        339 1.396681e-04
GO:0048729 tissue morphogenesis
                                                        424 1.432451e-04
                                          0.1951953
GO:0007610 behavior
                                                        426 1.925222e-04
                                         0.1967577
GO:0060562 epithelial tube morphogenesis 0.3565320
                                                        257 5.932837e-04
GO:0035295 tube development
                                                        391 5.953254e-04
                                         0.3565320
$less
                                           p.geomean stat.mean
                                                                      p.val
GO:0048285 organelle fission
                                        1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                        4.286961e-15 -7.939217 4.286961e-15
GD:0007067 mitosis
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                        2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                        1.729553e-10 -6.695966 1.729553e-10
                                               q.val set.size
                                                                      exp1
GO:0048285 organelle fission
                                        5.841698e-12
                                                          376 1.536227e-15
GO:0000280 nuclear division
                                        5.841698e-12
                                                          352 4.286961e-15
GO:0007067 mitosis
                                        5.841698e-12
                                                          352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                          362 1.169934e-14
GO:0007059 chromosome segregation
                                       1.658603e-08
                                                          142 2.028624e-11
GO:0000236 mitotic prometaphase
                                        1.178402e-07
                                                           84 1.729553e-10
$stats
                                         stat.mean
                                                       exp1
GO:0007156 homophilic cell adhesion
                                          3.824205 3.824205
GO:0002009 morphogenesis of an epithelium 3.653886 3.653886
GO:0048729 tissue morphogenesis
                                          3.643242 3.643242
```

Section 4. Reactome Analysis

GO:0035295 tube development

GO:0060562 epithelial tube morphogenesis

GD:0007610 behavior

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

3.565432 3.565432

3.261376 3.261376

3.253665 3.253665

[1] "Total number of significant genes: 8147"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quo
```

Q8: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

Cell cycle Mitotic

No it does not match

Different gene sets and database