

SUMMARY

CHARACTERIZATION OF DISTRIBUTED SYSTEMS

Introduction

Examples of distributed systems

Trends in distributed systems

Focus on resource sharing

Challenges

INTRODUCTION

- Distributed system
 - Hardware or software components
 - Located at networked computers
 - Communicate and coordinate their actions only by passing messages.
- Characteristics
 - Concurrency
 - No global clock
 - Independent failures
 - Share resources

HISTORY: REVOLUTION - EVOLUTION

- Until 1985 large and expensive stand-alone computers
- Powerful microprocessors (price/performance increase of 10¹² in 50 years)
- High-speed computer networks (LAN/WAN)
- Composition of computing systems of large numbers connected through high-speed networks – Clusters - Supercomputers
- Wireless Mobile computing Cloud Computing
- Integration at large to allow for ubiquitous access/use of infrastructures and devices

THE COMPLETE INTERNET IN 1969

THE ARPA NETWORK

DEC 1969

INTERNET GROWTH

INTERNET GROWTH

WORLD INTERNET USAGE AND POPULATION STATISTICS JUNE 30, 2016 - Update

World Regions	Population (2016 Est.)	Population % of World	Internet Users 30 June 2016	Penetration (% Population)	Growth 2000-2016	Users % of Table
<u>Africa</u>	1,185,529,578	16.2 %	339,283,342	28.6 %	7,415.6%	9.4 %
<u>Asia</u>	4,052,652,889	55.2 %	1,792,163,654	44.2 %	1,467.9%	49.6 %
Europe	832,073,224	11.3 %	614,979,903	73.9 %	485.2%	17.0 %
Latin America / Caribbean	626,054,392	8.5 %	384,751,302	61.5 %	2,029.4%	10.7 %
Middle East	246,700,900	3.4 %	132,589,765	53.7 %	3,936.5%	3.7 %
North America	359,492,293	4.9 %	320,067,193	89.0 %	196.1%	8.9 %
Oceania / Australia	37,590,704	0.5 %	27,540,654	73.3 %	261.4%	0.8 %
WORLD TOTAL	7,340,093,980	100.0 %	3,611,375,813	49.2 %	900.4%	100.0 %

Internet Users in the World by Regions June 2016

Source: Internet World Stats - www.internetworldstats.com/stats.htm Basis: 3,611,375,813 Internet users on June 30, 2016 _Copyright © 2016, Miniwatts Marketing Group

DISTRIBUTED SYSTEMS

Definitions

- "A system in which hardware or software components located at networked computers communicate and coordinate their actions only by message passing." [Coulouris]
- "A system that consists of a collection of two or more independent computers which coordinate their processing through the exchange of synchronous or asynchronous message passing."
- "A distributed system is a collection of independent computers that appear to the users of the system as a single computer." [Tanenbaum]
- "A distributed system is a collection of autonomous computers linked by a network with software designed to produce an integrated computing facility."
- "A distributed system is one in which the failure of a machine you have never heard of can cause your own machine to become unusable". [Lamport]
 - They have in common:
 - Distributed hardware and/or
 - Distributed data and/or
 - Distributed control
 - Computers connected through some network

DISTRIBUTED SYSTEMS

Computer Networks vs. Distributed Systems vs. Parallel computers

- Computer Networks: the autonomous computers are explicitly visible and must be specifically addressed
- Distributed systems: the multiple autonomous computers and components are transparent to the user
- Parallel computers: single system view without physical separation
- Many problems are however in common:
 - Scheduling
 - Load balancing
 - Resource and data sharing/distribution
- Networks are in some sense also distributed systems (e.g. name services)
 and every distributed system relies on services provided by a network
- Distributed systems may serve the same purpose as parallel computers:
 high performance

Key application sectors using distributed systems technology

- Finance and commerce
- The information society
- Creative industries and entertainment
- Healthcare
- Education
- Transport and logistics
- Science
- Environmental management

WEB SEARCH

Current leader in web search technology

- Owns the largest and most complex distributed system in the history of computing
- Underlying physical infrastructure
 - Very large numbers of networked computers
 - Located at data centres all around the world;
- Distributed file system
 - Very large files
 - Heavily optimized for search
- Distributed storage system
 - Fast access to very large datasets
- Coordination service
- Programming model
- Large parallel and distributed computations

MASSIVELY MULTIPLAYER ONLINE GAMES

Large numbers of users interact through the Internet with a persistent virtual world.

- Largest online game
 - Client-server architecture with a single centralised copy of the state of the world
 - Optimized network protocols and ensure a rapid response
 - Load is partitioned in a clusters
- Other MMOGs
 - The universe is partitioned
 - Users are dynamically allocated a server
 - Usage patterns, network delays
- Nice new ideas
 - Completely decentralized approaches
 - Peer-to-peer technology

FINANCIAL TRADING

- Distributed event-based systems
- Complex Event Processing

Instructor's Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Distributed systems' influential trends of change

- Pervasive networking technology
- Ubiquitous computing
 - Desire to support the user
- Mobility
- Demand for multimedia services
- Distributed systems as a utility

PERVASIVE NETWORKING AND THE MODERN INTERNET

Internet Domain Survey Host Count

Source: Internet Systems Consortium (www.isc.org)

MOBILE AND UBIQUITOUS COMPUTING

Mobile computing

- Computing while on the move
 - Unusual environment
- Still provided with access to home resources
 - Continue to access the Internet
- Access to local resources
 - Location-aware or context-aware computing
- Challenges
 - deal with variable connectivity and disconnection
 - maintain operation in the face of device mobility

UBIQUITOUS COMPUTING

- Harnessing of many small, cheap computational devices
- Present in users' physical environments
 - Eventually become so pervasive: won't be noticed anymore
- Behaviour is transparently and intimately tied to a physical function
- Only useful if they can communicate with one another
- Ubiquitous and mobile computing overlap

... MEANS:

- The disappearing computer: from fixed to mobile to wearable
- It is about the Computer in the World and NOT the World in the Computer: bridging the gap between virtual and real world
- Context- and location-aware, diverse and numerous, human-centric
- Smart devices with spontaneous network capabilities that have access to any information or provide access to any service "on the net"

Vision: everyday objects become smart and interconnected; they

communicate and cooperate

Much technology driven: Moore's law

DISTRIBUTED COMPUTING AS A UTILITY

- Resources
 - Physical resources as storage and processing
 - Software services
- Available to networked computers
- Across the global Internet
- Cloud computing
- Implemented on cluster computers
 - Provide the necessary scalability

FOCUS ON RESOURCE SHARING

- Resource sharing
 - Users share hardware to reduce costs.
 - Share more elaborated resources to collaborate
- Sharing patterns vary widely
 - No cooperation search engine
 - Computer-supported cooperative work (CSCW)

SERVICE

- Distinct part of a computer system
- Manages a collection of related resources
- Offers functionality to users and applications
 - Ex. data storage, printing, electronic payment
- Accessed via a defined set of operations
- Resources are inside computers
 - Only accessed from others through communication
 - Each resource is managed by a program
 - Communication interface enables access and update
 - Reliably and consistently

CLIENT-SERVER COMPUTING

- Server: a running program (a process)
 - On a networked computer
- Accepts requests
 - From programs running on other computers
- Performs a service
 - Responds appropriately
- Client: the requesting processes

REMOTE INVOCATION

- Requests are sent in messages
 - From client to server
- Replies are sent in messages
 - From the server to clients
- Invoke an operation
 - Client sends a request
- Remote invocation
 - Complete operation
 - Request and reply

CLIENT AND SERVER ROLES

- Clients are active
 - Make requests
 - Last as long as their applications
- Servers are passive
 - Run continuously
 - Wake up when they receive requests
- Same process may be both a client and a server
 - Servers sometimes invoke operations on other servers
- Terms 'client' and 'server' apply only to the roles played in a single request

CLOUD COMPUTING

 "Cloud computing is a paradigm of computing in which dynamically scalable and often virtualized resources are provided as a service over the Internet. " (W)

laaS : Infrastructure as a Service

PaaS : Platform as a Service

SaaS: Software as a Service

CHALLENGES

- Heterogeneity
- Openness
- Security
- Scalability
- Failure handling
- Concurrency
- Transparency
- Quality of service

HETEROGENEITY

- Variety, difference
 - In hardware and in software
- Middleware: a software layer
 - Provides a programming abstraction
 - Masks underlying heterogeneity
 - Implemented over the Internet protocols
 - Provides a uniform computational model
 - Used by the programmers of servers and distributed applications
 - Example:
 - Library to invoke a method of an object in a remote computer
 - Hiding the fact that messages are passed over a network

OPENNESS

- Open systems
 - Their key interfaces are published
 - A uniform communication mechanism is provided
 - Constructed from heterogeneous hardware and software, possibly from different vendors.
 - To work correctly
 - Careful test the conformance of each component

SECURITY

- Shared resources often have a high intrinsic value
 - Security is of considerable importance
- Three principle components:
 - Confidentiality
 - Integrity
 - Availability
- Including:
 - User authentication
 - Access control
 - Secure communication
 - Data integrity
 - Resource usage control
 - Availability
 - Privacy

SCALABILITY

- Scalability: system remains effective with
 - Significant increase in the number of resources
 - Significant increase in the number of users
- Challenges:
 - Controlling the cost of physical resources
 - Controlling the performance loss
 - Preventing software resources running out
 - Avoiding performance bottlenecks

FAILURE HANDLING

- Techniques for dealing with failures
 - Detecting failures
 - Masking failures
 - Tolerating failures
 - Recovery from failures
 - Redundancy
- Distributed systems provide a high degree of availability
 - Proportion of time that it is available

CONCURRENCY

- In a concurrent environment
 - Any object that represents a shared resource
 - Must ensure that it still operates correctly
- Implementation not intended for use in a distributed system usually need modification
 - Operations must be synchronized, so its data remains consistent
 - Consistent scheduling of concurrent activities (preservation of dependencies)
 - Avoidance of deadlock and livelock problems
 - Standard techniques
 - Ex. semaphores (operating systems)

TRANSPARENCY

Transparency

Access

hide differences in data representation and how a resource is accessed

Location

hide where a resource is located

Migration

hide that a resource may move to another location

Relocation

hide that a resource may be moved to another location while in use

Replication

hide that a resource is replicated

Concurrency

hide that a resource may be shared by several competitive users

Failure

hide failure about the recovery of a resource

Persistence

hide whether a (software) resource is in memory or on disk

- The network is reliable
- Latency is zero
- Bandwidth is infinite
- The network is secure
- Topology doesn't change
- There is one administrator
- Transport cost is zero
- The network is homogeneous