3.3. Carthesian Product

Definisi 3.3.1. Jika A dan B himpunan *yang tidak kosong*, maka Carthesian Product dari A dan B dilambangkan dengan A x B adalah himpunan *pasangan* urut (a,b) dengan $a \in A$ dan $b \in B$.

Secara simbolik: $\mathbf{A} \times \mathbf{B} = \{(\mathbf{a}, \mathbf{b}) \mid \mathbf{a} \in \mathbf{A} \wedge \mathbf{b} \in \mathbf{B}\}\$

Contoh:

Kesimpulan: $\mathbf{A} \times \mathbf{B} \neq \mathbf{B} \times \mathbf{A} \operatorname{dan} \mathbf{P} \times \mathbf{Q} \neq \mathbf{Q} \times \mathbf{P}$

3.4. Relasi

Definisi 3.4.1.Diberikan dua himpunan $A \neq \phi$ dan $B \neq \phi$, suatu relasi R dari A ke B adalah himpunan *pasangan urut* yang elemen-elemen pertama dari setiap pasangan urutnya berasal dari elemen A dan elemen-elemen kedua dari setiap pasangan urutnya berasal dari elemen B yang merupakan himpunan bagian dari A x B. Jika A = B, maka suatu relasi R pada A x A disebut relasi dalam A.

Secara simbolik:
$$R = \{(a,b) \mid a \in A \land b \in B\} \subseteq A \times B$$

Definisi 3.4.2. Jika $R \subseteq A \times B$ adalah suatu relasi pada himpunan $A \times B$, maka himpunan semua elemen pertama dalam pasangan urut $(a,b) \in R$ disebut *daerah definisi* (daerah asal/domain) dari relasi R dan himpunan semua elemen kedua dalam pasangan urut $(a,b) \in R$ disebut *daerah nilai* (daerah hasil/jelajah/range) dari relasi R. Daerah definisi dari relasi R dilambangkan dengan $D_{(R)}$, dan daerah hasil dari relasi R dilambangkan dengan $R_{(R)}$. Daerah definisi dan daerah hasil dari relasi R, secara simbolik dinyatakan sebagai berikut

$$D_{(R)} = \{a \in A \mid (a,b) \in R, R \text{ relasi pada } A \times B\}$$

$$R_{(R)} = \{b \in B \mid (a,b) \in R, R \text{ relasi pada } A \times B\}$$

Contoh:

1. Misal $A = \{1,2,3\}$ dan $B = \{a,b\}$, maka

 $R = \{(1,a), (2,b), (3,a), (3,b)\}$ merupakan suatu relasi karena $R \subseteq A \times B$.

Pada relasi ini $(1,b) \in R$ dan $(2,a) \in R$.

$$D_{(R)} = \{1,2,3\} \text{ dan } R_{(R)} = \{a,b\}$$

2. Misal $W = \{1,2,3\}$, maka

 $R = \{(1,1), (1,2), (2,1), (2,3), (3,3)\}$ merupakan **relasi dalam** W.

Pada relasi ini $(1,3) \in R$, $(2,2) \in R$, $(3,1) \in R$ dan $(3,2) \in R$.

$$D_{(R)} = \{1,2,3\} \text{ dan } R_{(R)} = \{1,2,3\}$$

3. $R = \{(x,y) | (x, y \in R, y < x)\}$ merupakan relasi dalam R.

$$D_{(R)} = \{x \mid x \in R\} \text{ dan } R_{(R)} = \{y \mid y < x, x \in R\}$$

4. Diberikan $A = \{1,2,3,4\}$ dan $B = \{3,4,5,6,7\}$, R suatu relasi dari A ke B yang didefinisikan sebagai berikut

$$(a,b) \in R$$
 (3a < b, a \in A dan b \in B).

Tentukan daerah definisi dan daerah hasil/nilai dari R.

Penyelesaian:

$$R = \{(1,4),(1,5),(1,6),(1,7),(2,7)\}$$

$$D_{(R)} = \{1,2\} \text{ dan } R_{(R)} = \{4,5,6,7\}$$

Inversi suatu Relasi

Definisi 3.4.3. Setiap relasi R dari A ke B mempunyai suatu inversi (R⁻¹) dari B ke A yang didefinisikan dengan

$$(R^{-1}) = \{(b,a) \mid (a,b) \in R\}.$$

Contoh:

1. Diberikan $A = \{1,2,3\}$ dan $B = \{a,b\}$ dan $R = \{(1,a), (2,b), (3,a)\}$ merupakan relasi dalam $A \times B$, maka

$$R^{-1} = \{(a,1), (b,2), (a,3)\}$$

2. Diberikan $W = \{a,b,c\}$ dan $R = \{(a,a), (a,b), (b,b), (c,b), (c,c)\}$ adalah relasi dalam W, maka

$$R^{-1} = \{(a,a), (b,a), (b,b), (b,c), (c,c)\}$$

Relasi Refleksif

Definisi 3.4.4. Misal R adalah suatu relasi dalam A ($R \subseteq A \times A$). Relasi R disebut relasi refleksif, jika *untuk setiap a elemen A* berlaku (a,a) $\in R$.

Contoh:

1. Misal $V = \{1,2,3,4\}$ dan

$$R = \{(1,1), (1,4), (2,2), (2,4), (3,3), (3,4), (4,4)\}$$

Relasi R disebut refleksif, karena setiap $(a,a) \in R$.

2. Misal T adalah himpunan segitiga-segitiga pada bidang Euclides.

Relasi R dalam T didefinisikan dengan kalimat terbuka "x sebangun dengan y". Relasi R ini jelas merupakan relasi refleksif, karena setiapsegitiga dalam T sebangun dengan dirinya sendiri.

3. Misal R adalah suatu relasi dalam bilangan real ${\bf R}$ yang didefinisikan dengan kalimat terbuka " x < y".

Relasi ini <u>bukan relasi refleksif</u>, karena setiap bilangan real x tidak akan kurang dari atas dirinya.

4. Misal A adalah power set dari himpunan A. R suatu relasi dalam A yang didefinisikan dengan "x subset dari y". Relasi R adalah relasi refleksif arena setiap himpunan dalam A merupakan subset atas dirinya sendiri.

Relasi Simetrik

Definisi 3.4.5. Misal R adalah suatu relasi dalam A ($R \subseteq A \times A$). Relasi R disebut relasi simetrik, jika $(a,b) \in R$ mengakibatkan $(b,a) \in R$ berarti jika a direlasikan dengan b, maka b juga direlasikan dengan a.

Contoh:

1. Misal $S = \{1,2,3,4\}$ dan

 $R = \{(1,1), (1,2), (2,1), (2,4), (3,3), (4,2)\}$ adalah relasi simetrik,

karena setiap a direlasikan dengan b, maka b juga direlasikan dengan a.

2. Misal T adalah himpunan segitiga-segitiga pada bidang Euclides.

Relasi R dalam T didefinisikan dengan kalimat terbuka "x kongruen dengan y". Relasi R ini jelas merupakan relasi simetrik, karena setiap segitiga dalam

T kongruen dengan dirinya sendiri.

3. Misal R adalah relasi dalam bilangan asli A, yang didefinisikan dengan "x pembagi y".

Relasi R ini *bukan simetrik*, karena x yang membagi y belum tentu y pembagi x. Misal $(2,4) \in R$ tetapi $(4,2) \notin R$.

Akibat: Karena $(a,b) \in R$ mengakibatkan $(b,a) \in R$, maka R adalah relasi simetrik jika dan hanya jika R = R

Relasi Anti Simetrik

Definisi 3.4.6. Misal R adalah suatu relasi dalam A (R⊆ (A x A). Relasi R disebut relasi anti simetrik, jika $(a,b) \in R$ dan $(b,a) \in R$ mengakibatkan a = b.

Contoh:

- Misal R adalah relasi dalam bilangan asli A, yang didefinisikan dengan "x pembagi y". relasi ini adalah relasi anti simetri, karena a pembagi b dan b pembagi a mengakibatkan a = b.
- Misal A adalah power set dari himpunan A. R suatu relasi dalam A yang didefinisikan dengan "x subset dari y". Relasi R adalah relasi anti simetrik, karena x ⊂ y dan y ⊂ x mengakibatkan x = y.
- 3. Misal W = $\{1,2,3,4\}$ dan R = $\{(1,2), (2,1), (2,2), (3,3), (4,4)\}$ bukan relasi anti simetrik, walaupun $(1,2) \in R$ dan $(2,1) \in R$ secara fakta $1 \neq 2$.

Relasi Transitif

Definisi 3.4.7. Suatu relasi R dalam himpunan A disebut relasi transitif, jika $(a,b) \in R$ dan $(b,c) \in R$, maka $(a,c) \in R$.

Dengan kata lain, jika a direlasikan dengan b dan b direlasikan dengan c, maka a direlasikan dengan c.

Contoh:

1. Misal R adalah relasi dalam \mathbf{R} , yang didefinisikan dengan "x > y".

Sebagaimana definisi di atas x > y dan y > z mengakibatkan x > z. Jadi, R adalah relasi transitif.

2. Misal W = $\{a,b,c\}$ dan R = $\{(a,a), (a,b), (a,c), (b,c), (c,a), (b,a), (c,b), (b,b), (c,c)\}.$

R adalah relasi transitif, karena $(a,b) \in R$ dan $(b,c) \in R$ maka $(a,c) \in R$. Demikian halnya, $(a,c) \in R$ dan $(c,a) \in R$ maka $(a,a) \in R$.

- 4. Misal A adalah power set dari himpunan A. R suatu relasi dalam A yang didefinisikan dengan "x subset dari y". Relasi R adalah relasi transitif, karena x ⊂ y dan y ⊂z, maka x ⊂ z.
- 5. Misal M adalah himpunan mahasiswa Universitas Muhammadiyah Surabaya dan R adalah relasi yang didefinisikan dengan "x mencintai y".

R bukan relasi transitif, karena x mencintai y dan y mencintai z belum tentu x mencitai z.

Relasi Ekivalensi

Definisi 3.4.8. Suatu relasi R dalam himpunan A merupakan relasi ekivalensi, jika memenuhi tiga syarat berikut

- i. R adalah relasi refleksif, yaitu $a \in A$ berlaku $(a,a) \in R$,
- ii. R adalah relasi simetrik, yaitu $(a,b) \in R$, maka $(b,a) \in R$,
- iii. R adalah relasi transitif, yaitu $(a,b) \in R$, $(b,c) \in R$, maka $(a,c) \in R$

Contoh:

Misal T adalah himpunan segitiga-segitiga pada bidang Euclides. Relasi R dalam T didefinisikan dengan kalimat terbuka "x sebangun dengan y". Relasi R ini jelas merupakan relasi refleksif, simetrik dan transitif.

Jadi, R adalah relasi ekivalensi. Segitiga dalam T sebangun dengan dirinya sendiri.

2. Misal A adalah power set dari himpunan A. R suatu relasi dalam A yang didefinisikan dengan "x = y".

Relasi R adalah relasi refleksif, simetrik dan transitif. Jadi, R adalah relasi ekivalensi.

3.5. Fungsi

Definisi 3.5.1. Jika A dan B adalah himpunan (tidak perlu keduanya berbeda) Suatu fungsi f dari A ke B adalah himpunan pasangan urut dalam A x B yang memenuhi sifat jika (a,b) dan (a, b') merupakan elemen-elemen dari f, maka b = b'. Secara simbolik: $f: \{(a,b) \in A \times B \mid (a,b), (a,b') \in f \Rightarrow b = b'$.

Himpunan elemen-elemen dari A yang merupakan elemen-elemen pertama pada pasangan urut dalam f disebut Domain dari f dan dilambangkan dengan $D_{(f)}$.

Himpunan elemen-elemen dari B yang merupakan elemen-elemen kedua pada pasangan urut dalam f disebut Range dari f dan dilambangkan dengan $R_{(f)}$.

Jika
$$(a,b) \in f$$
, maka $b = f(a)$ atau $f : a \Rightarrow b$.

Contoh:

1. Misal $W = \{1,2,3,4\}$. Perhatikan relasi-relasi berikut

$$R_1 = \{(1,2), (2,3), (3,4), (4,1)\}$$

 $R_2 = \{(1,1), (1,2), (1,3), (1,4)\}$

$$R_3 = \{(1,1), (2,1), (3,1), (4,1)\}$$

$$R_4 = \{(1,2), (3,4), (4,1)\}$$

$$R_5 = \{(2,1), (2,3), (3,1), (4,4)\}$$

Nyatakan apakah relasi-relasi di atas merupakan fungsi?

Penyelesaian:

Suatu relasi R dalam W merupakan fungsi jika dan hanya jika $\forall a \in W$ muncul sekali dan hanya sekali sebagai elemen pertama dalam pasangan urut (a, R(a)). Berdasar kriteria ini, maka

- a. R merupakan fungsi, karena $\forall x \in W$ muncul sekali sebagai elemen pertamadalam pasangan urut R.
- b. R bukan fungsi, karena $1 \in W$ muncul lebih dari satu kali sebagai elemen pertama pada himpunan pasangan pasangan urut dalam R .
- c. R merupakan fungsi. (Why?)
- d. R merupakan fungsi. (Why?)

- e. R bukan fungsi, karena $2 \in W$ muncul lebih dari satu kali sebagai elemen pertama pada himpunan pasangan pasangan urut dalam R.
 - 3. Misal $A = \{ \text{Ibukota Negara-negara Asean} \} \text{ dan } B = \{ \text{Negera-negara Asean} \}$

Relasi f dari A ke B yang didefinisikan dengan "X ibukota negara Y",relasi f jelas merupakan fungsi sebab tidak mungkin Ibukota Negara dimiliki lebih dari satu negara dan tidak mungkin Ibukota Negara tidak memiliki Negara.

- 3. Misal $A = \{1,2,3,4,5\}$ dan $B = \{1,3,5,7,9\}$. Misal g suatu relasi dari A ke B yang didefinisikan dengan "a banyaknya faktor dari b". Relasi ini bukan fungsi, karena $4 \in A$ dan $5 \in A$ tidak mempunyai pasangan dengan anggota B dan $2 \in A$ mucul lebih dari satu kali sebagai elemen pertama dari g $g = \{(1,1),(2,3),(2,5),(2,7),(3,9)\}$).
- 4. Misal h adalah relasi dalam A yang didefinisikan dengan "x dikawankan dengan x ". Relasi h adalah fungsi (why?).

Macam-macam Fungsi

Dari cari peninjauannya, terdapat bermacam-macam fungsi.

Ditinjau dari banyaknya peubah bebas yang berhubungan dengan peubah tak bebas , fungsi dibedakan atas:

1. Fungsi dengan satu peubah bebas, jika nilai peubah tak bebas y = f(x), hanya tergantung pada nilai peubah bebas x yang mungkin.

Secara simbolik dinyatakan dengan: y = f(x).

Contoh: a.
$$f(x) = x - 3$$

b. $f(x) = x^2 + 2x + 2$
c. $f(x) = 3x^3 + 2x^2 + x - 10$

2. Fungsi dengan dua peubahbebas, jika nilai peubah tak bebas z = f(x,y), tergantung pada tiap nilai dari dua peubah bebas x dan y yang mungkin. Secara simbolik dinyatakan dengan: z = f(x,y).

Contoh: a.
$$z = x^2 + y^2 - 25$$

b. $z = x^2 - y^2 - 16$
c. $z = x^2 + y^2 + 2x - 4y - 20$.

3. Fungsi dengan tiga peubahbebas, jika nilai peubah tak bebas w = f(x,y,z), tergantung pada tiap nilai dari tiga peubah bebas x, y dan z yang mungkin. Secara simbolik dinyatakan dengan: w = f(x,y,z).

Contoh: a.
$$w = x + y - 3yz + 10$$

b. $w = 2xy + \sqrt{x^2 + y^2}$

- II. Ditinjau dari *penyajian rumus fungsinya* fungsi terbagi atas:
 - 1. Fungsi eksplisit, yaitu jika peubah-peubah x dan y dalam ruas yang berbeda (biasanya y di ruas kiri danx di ruas kanan) dan dilambangkan dengan y = f(x).

Contoh: a.
$$y = x^2 - x + 3$$

b.
$$y = g(\log x + 2)$$

c.
$$y = 3x^3 + x^2 + 5x + 10$$

2.Fungsi implisit, yaitu jika peubah-peubah x dan y dalam ruas yang sama dan dilambangkan dengan f(x,y) = 0.

Contoh: a.
$$x^2y - 3xy^2 + 2 = 0$$

b.
$$xy - 9 = 0$$

c.
$$4x^2 + 9y^2 - 36 = 0$$

3. Fungsi Parameter. jika hubungan peubah-peubah x dan y dinyatakan oleh fungsi-fungsi dengan peubahlain yang disebut parameter dan dilambangkan dengan x = f(t) dan y = g(t), t sebagai parameter.

Contoh.
$$x = 2t dan y = 4t + 1$$

$$x = 2t \iff t = 1/2 x$$

$$\Leftrightarrow$$
 y = 4.(1/2 x) + 1

$$\Leftrightarrow$$
 y = 2x + 1

- III. Ditinjau atas objek/materi, fungsi terdiri atas:
 - a) Fungsi aljabar. Suatu fungsi f disebut fungsi aljabar, jika rumus fungsi dioperasikan dengan operasi-operasi aljabaryaitu penjumlahan, pengurangan, perkalian, pembagian atau penarikan akar dari peubah bebasnya.

Fungsi aljabar yang menggunakan penarikan akar pada peubah bebasnya disebut *fungsi irasional*.

Contoh:
$$f(x) = 2x^2 - \sqrt{x}$$
; $\forall x \ge 0, x \in \mathbf{R}$

$$g(x) = \frac{x^2 + 4}{\sqrt{x}}; \quad \forall x \ge 0, x \in \mathbf{R}$$

$$h(x) = \sqrt{\frac{x-2}{x+2}}; \quad \forall x \ge 0, x \in \mathbf{R}$$

Fungsi aljabar yang tidak menggunakan penarikan tanda akar pada peubah bebasnya disebut *fungsi rasional*. Fungsi rasional terdiri atas fungsi rasional bulat dan fungsi rasional pecah. Fungsi **rasional bulat** disebut juga fungsi polinom. Secara umum fungsi polinom dinyatakan dalam bentuk

 $f(x)=a_0x^n+a_1x^{n\text{-}1}+a_2x^{n\text{-}2}+\ldots+a_{n\text{-}1}x+a_n\,;\,\,a_0\neq0\,\,dan\,\,n\in \!\!\mathbf{A}\,\,,\,n\,\,merupakan\,\,derajat\,\,dari\,\,\text{polinom}\,\,tersebut.$

Contoh: $f(x) = x^2 - 3x + 4$ adalah polinom berderajat dua

$$g(x) = 2x^3 + 4x^2 + 3x - 10$$
 adalah polinom berderajat tiga.

Fungsi **rasional pecah** adalah fungsi yang merupakan hasil bagi dari dua bentuk polinom.

Contoh:
$$h(x) = \frac{2x+1}{3x^2+2x+1}$$

2. Fungsi transendal:

Suatu fungsi f dikatakan fungsi transendal bila fungsi f bukan fungsi aljabar. Fungsi-fungsi transendalantara lain:

a. fungsi pangkat

Contoh : $y = x^a$ dengan a bilangan irasional

b. fungsi eksponen

Contoh: $f(x) = 2e^x$

c. fungsi logaritma

Contoh
$$f(x) = 2x^3 + \log x$$

d. fungsi trigonometri

Contoh
$$f(x) = \sin 2x$$

e. fungsi hiperbolik

Contoh $f(x) = \cosh 3x$

f. fungsi siklometri

Contoh f(x) = arc tan x

IV. Ditinjau dari kesamaan nilai fungsinya, fungsi terdiri atas:

1. Fungsi genap

Misal f suatu fungsi dengan daerah asal D(f), dikatakan fungsi genap, jika $\forall x \in D(f)$ berlaku f(-x) = f(x)

Contoh:
$$f(x) = x^4 + 3 x^2$$

 $g(x) = x^2 - 2 \cos x$

2. Fungsi ganjil

Misal g suatu fungsi dengan daerah asal D(g), dikatakan fungsi ganjil, jika $\forall x \in D(g) \ \text{berlaku } f(\text{-}x) = \text{-} \ f(x)$

Contoh:
$$f(x) = 2x + 3 \sin x$$

 $g(x) = 3x + 2 \tan x$
 $h(x) = x^3 + x$

3. Fungsi periodik.

Misal f suatu fungsi dengan daerah asal D(f), dikatakan fungsi periodik, jika $\forall x \in D(f) \exists p \in D(f)$ sehingga f(x + p) = f(x)

Contoh: $f(x) = \sin x$ adalah fungsi periodik dengan periode $p = 2k\pi$, $k \in \mathbf{B}$

$$f(x) = \sin x \Leftrightarrow f(x + 2\pi) = \sin x$$
, untuk $k = 1$

 $g(x) = \cos x$ adalah fungsi periodik dengan periode $p = 2k\pi, k \in \mathbf{B}$

$$g(x) = \cos x \Leftrightarrow f(x + 4\pi) = \cos x$$
, untuk $k = 2$

 $h(x) = \tan(x)$ adalah fungsi periodik dengan periode $p = k\pi$, $k \in \mathbf{B}$ $h(x) = \tan x \Leftrightarrow f(x + 3\pi) = \tan x$, untuk k = 3

V. Ditinjau dari domain/daerah asal fungsi terbagi atas fungsi restriksi dan fungsi extensi.

Jika f suatu fungsi dengan domain $D_{(f)}$ dan $D_{(f)} \subseteq D_{(f)}$ merupakan domain dari fungsi baru f_1 dan f_1 $(x) = f(x) \ \forall x \in D_{(f1)}$, maka f_1 disebut fungsi *restriksi* domain $D_{(f)}$ dipersempitmenjadi $D_{(f1)}$.

Secara simbolik : $f_1 := \{(a,b) \in f \mid a \in D_{(f_1)}\}$

Jika g suatu fungsi dengan domain D(g) dan $D_{(g2)} \supseteq D_{(g)}$ merupakan domain dari fungsi baru g_2 dan g_2 $(x) = g(x) \forall x \in D_{(g2)}$, maka g_2 disebut fungsi *extensi* domain $D_{(g2)}$ merupakan perluasan dari domain $D_{(g)}$.

Secara simbolik : g_2 := $\{(a,b) \in g | a \in D_{(g2)}\}$

Fungsi Tersusun

Definisi 3.5.2. Jika f adalah fungsi dengan domain $D_{(f)}$ pada A dan Range $R_{(f)}$ pada B dan g adalah fungsi dengan domain $D_{(g)}$ pada B dan Range $R_{(g)}$ pada C.

Perhatikan gambar berikut

Komposisi g o f adalah fungsi dari A ke C, yang didefinisikan dengan g o f = $\{(a,c) \in A \times C \mid \exists b \in B \ni (a,b) \in f \land (b,c) \in g\}$.

Jika f dan g adalah fungsi dan $x \in D(f)$, maka pada pasangan urut pada g ditentukan oleh elemen f(x) dan $f(x) \in D(g)$. Dengan demikian jelas bahwa

Domain dari g o f (D(gof)) = $\{x \in D(f) \mid f(x) \in D(g)\}.$

Untuk $x \in (D(gof))$, maka nilai g o f pada x ditentukan dengan $(g \circ f)(x) = g(f(x))$.

Sedangkan Range dari g o f adalah himpunan $(R(gof)) = \{ g(f(x)) \mid x \in D(gof) \}.$

Contoh:

1. Misal fungsi-fungsi $f: \mathbf{R} \mapsto \mathbf{R}$ dan $g: \mathbf{R} \mapsto \mathbf{R}$ yang didefinisikan dengan f(x) = x + 1 dan $g(x) = x^2$. Tentukan suatu rumus yang mendefinisikan g o f dan f o g.

Penyelesaian:

Sebelum menyelesaikan soal ini terlebih dahulu fahami bahwa g o f berarti fungsi f dilanjutkan dengan fungsi g, sedangkan f o g berarti fungsi g dilanjutkan dengan fungsi f.

Dengan menggunakan definisi di atas maka

$$g \circ f = g(f(x))$$

$$= g(x + 1)$$

$$= (x + 1)^{2} \text{ atau}$$

$$= x^{2} + 2x + 1, \text{ sedangkan}$$

$$f \circ g = f(g(x))$$

$$= f(x)$$

$$= x + 1$$

Ternyata g o $f \neq f$ o g.

2. Misal f dan g adalah fungsi dalam R yang didefinisikan dengan

$$f(x) = x^2 + 2x - 3 dan g(x) = 3x - 4.$$

- a. Tentukan rumus fungsi dari g o f dan f o g.
- b. Selidiki apakah (g o f)(2) = g(f(2)) dan (f o g)(2) = f(g(2)).

Penyelesaian:

a. g o f = g(f(x))
=
$$g(x^2 + 2x - 3)$$

= $3(x^2 + 2x - 3) - 4$
= $3x^2 + 6x - 13$
f o g = f(g(x))
= $f(3x - 4)$
= $(3x - 4)^2 + 2(3x - 4) - 3$
= $9x^2 - 24x + 16 + 6x - 8 - 3$
= $9x^2 - 18x + 5$
g o f(2) = $3.2^2 + 6.2 - 13$
= $12 + 12 - 13$
= 11
g(f(2)) = $g(2 + 2.2 - 3)$

= g(5)= 3.5 - 4= 11Jadi, $g \circ f(2) = g(f(2))$

Definisi 3.5.4. Jika f adalah fungsi dengan domain $D_{(f)}$ pada A dan Range $R_{(f)}$ pada B, f dikatakan fungsi *injektif atau satu-satu* jika (a,b) dan (a',b) elemen dari f, maka a = a'.

Jika f fungsi injektif disebut juga f adalah injeksi.

Dengan kata lain f adalah fungsi injektif jika dan hanya jika dua relasi f(a) = b dan

$$f(a') = b$$
, maka $a = a'$.

Alternatif yang lain, f adalah fungsi *injektif* jika dan hanya jika a, a' elemen $D_{(f)}$ dan a \neq a', maka $f(a) \neq f(a')$.

Contoh:

- Misal A = {2,4,6,8} dan B = {1,2,3,4}. Misal f suatu fungsi dari A ke B yang didefinisikan dengan "a dua kali b". Fungsi f ini adalah fungsi injektif, Karena 2 ∈ A dan 4 ∈ A (2 ≠ 4) berpasangan dengan 1 ∈ B dan 2 ∈ B (1 ≠ 2) (dua elemen berbeda di A berpasangan dengan dua elemen berbeda di B).
- 2. Misal $f: \mathbf{A} \mapsto \mathbf{A}$ yang didefisikan dengan rumus $f(x) = x^2$. Fungsi f adalah fungsi satu-satu/injektif sebab dua elemen berbeda di \mathbf{A} daerah domain berpasangan dengan dua elemen berbeda di daerah jelajah \mathbf{A} .
- 3. Misal $f : \mathbf{R} \mapsto \mathbf{R}$ yang didefisikan dengan rumus $f(x) = x^2$. Fungsi f bukan fungsi satu-satu/injektif (why?).
- 4. Misal $f : \mathbf{R} \mapsto \mathbf{R}$ yang didefisikan dengan rumus $f(x) = x^3$. Fungsi f adalah fungsi satu-satu/injektif (why?).

Definisi 3.5.5. Jika f adalah injeksi dengan domain $D_{(f)}$ pada A dan Range $R_{(f)}$ pada B. Dibangun fungsi $g = \{(b,a) \in B \ x \ A \mid (a,b) \in f \}$ dan g juga injeksi dengan domain $D_{(g)} = R_{(f)}$ pada B dan Range $R_{(g)} = D_{(f)}$ pada A.

Fungsi g disebut fungsi *inversi* dari f dan dilambangkan dengan f⁽⁻¹⁾.

Contoh:

1. Misal $f: \mathbb{R} \to \mathbb{R}$ adalah fungsi yang didefinisikan dengan f(x) = 2x - 3. Tentukan rumus fungsi inversi $f^{(-1)}$.

Penyelesaian:

Relasi f adalah fungsi injektif (why?)

Tinggal menunjukkan f (-1) apakah juga injektif!

Untuk menentukan rumus f⁽⁻¹⁾ ditempuh langkah-langkah sebagai berikut

Misal y adalah bayangan dari x atas fungsi f, sehingga

$$y = f(x) = 2x - 3$$
 i)

Akibatnya, x merupakan bayangan dari y atas fungsi f⁽⁻¹⁾, yaitu

$$x = f^{(-1)}(y)$$
 ii)

Dari pers. i), ditentukan x dalam y diperoleh

$$\mathbf{x} = \frac{y+3}{2}$$

Berdasar pers. ii), diperoleh

$$f^{-1}(y) = \frac{y+3}{2}$$

Rumus fungsi $f^{-1}(y) = \frac{y+3}{2}$ ini dapat diubah dalam bentuk

$$f^{1}(x) = \frac{x+3}{2} \text{ dengan } x \in R_{(f)0} = D_{(f}^{-1})$$

Jika f⁻¹ ini merupakan fungsi injektif, maka f⁻¹ merupakan fungsi inversi dari

Dari rumus fungsi $f^{-1}(x) = \frac{x+3}{2}$, jelas f^{-1} merupakan fungsi injektif (why?).

Dengan demikian, $f^{-1}(x) = \frac{x+3}{2}$ merupakan rumus fungsi inversi dari f.

2. Misal $f : \mathbf{A} \rightarrow \mathbf{A}$ yang didefinisikan dengan $f(x) = x^2$. Tentukan rumus fungsi inversi f^{-1} .

Penyelesaian:

f.

Relasi f adalah fungsi injektif (why?)

Tinggal menunjukkan f⁻¹ apakah juga injektif!

Untuk menentukan rumus f⁻¹ ditempuh langkah-langkah sebagai berikut

Misal y adalah bayangan dari x atas fungsi f, sehingga

$$y = f(x) = x^2 i)$$

Akibatnya, x merupakan bayangan dari y atas fungsi f⁽⁻¹⁾, yaitu

$$x = f^{(-1)}(y)$$
 ii)

Dari pers. i), ditentukan x dalam y dan diperoleh

$$x = \sqrt{y}$$

Berdasar pers. ii) bentuk ini $(x = \sqrt{y})$ diubah menjadi

$$f^{(-1)}(y) = \sqrt{y}$$
 bentuk ini dapat diubah menjadi

$$f^{(-1)}(x) = \sqrt{y} \text{ dengan } x \in R_{(f)} = D_{(f}^{(-1)})$$

Relasi f (-1) jelas fungsi injektif (why?).

Jadi, rumus fungsi inversi dari f yang diminta adalah $f^{(-1)}(x) = \sqrt{y}$

Definisi 2.5.7. Jika f adalah fungsi dengan domain $D_{(f)} \subseteq A$ dan Range $R_{(f)} \subseteq B$, f dikatakan fungsi surjektif atau memetakan Aonto B bila $R_{(f)} = B$.

Jika f fungsi surjektif, dapat dikatakan f surjeksi.

Contoh:

1. Misal $P = \{Penduduk kota Surabaya\} dan U = \{ukuran sepatu\}$

Misal f adalah fungsi yang didefinisikan "p ukuran sepatunya adalah u".

Fungsi f merupakan fungsi surjektif, karena setiap penduduk kota Surabaya mempunyai satu ukuran sepatu dan semua ukuran sepatu berpasangan dengan semua penduduk kota Surabaya.

2. Misal A = [-1,1]. Misal g adalah fungsi dalam A yang didefinisikan dengan $g(x) = x^3$.

Jelas g adalah fungsi surjektif/onto, karena g(A) = A.

2. Misal B = [-1,1]. Misal h adalah fungsi dalam B yang didefinisikan dengan $h(x) = x^2$.

Jelas h bukan fungsi surjektif, karena tidak terdapat elemen-elemen negatif dalam B yang muncul sebagai range dari h.

Definisi 3.5.8. Fungsi f dengan domain $D_{(f)}\subseteq A$ dan Range $R_{(f)}\subseteq B$ dikatakan fungsi bijektif bila fungsi f

- 1. injektif dan
- 2. surjektif.

Jika f fungsi bijektif, dapat dikatakan f bijeksi.

Contoh:

Misal f: R→R adalah fungsi yang didefinisikan dengan f(x) = x.
 Jelas f adalah fungsi injektif dan surjektif, karena setiap elemen dipasangkan atas dirinya sendiri.

2. Misal A = {Negara-negara Asean} dan B = {Ibukota negara-negara Asean}

Jika relasi f didefinisikan dengan "a beribukota b", maka relasi f adalah

fungsi bijektif, karena setiap negara mempunyai satu ibukota negara dan

tidak mungkin satu negara mempunyai lebih dari satu ibukota negara.

Definisi 3.5.9. Jika $E \subseteq A$, maka bayangan langsung (direct image) atas f adalah $f(E) \subseteq B$ dan ditunjukkandengan

$$f(E) = \{ f(x) | x \in E \}.$$

Jika $H \subseteq B$, maka bayangan inversi atas f dari H adalah

 $f^{(-1)}(H) \subset A$ dan ditunjukkan dengan

$$f^{(-1)}(H) = \{ x \mid f(x) \in H \}$$

Contoh:

Jika $f: E \subseteq \mathbb{R}$ ditentukan dengan $E = \{x \mid -1 < x < 2\}$, maka direct image dari E dalam fyaitu $f(E) = \{y \mid 1 < y < 10\}$.

Misal
$$y = f(x)$$
, maka $y = 3x + 4$

$$\Leftrightarrow$$
 3x = y - 4

$$\Leftrightarrow$$
 x = $\frac{y-4}{3}$ atau

$$\Leftrightarrow f^{1}(x) = \frac{x-4}{3}$$

Jika ditetapkan H \subseteq **R** (codomain) yaitu H = {y | -2 \le y \le 7}, maka didapat $f^{(-1)}(H) = \{ |x| | -2 \le |x| \le 1 \}$

LATIHAN 3.2

- 1. Misal R relasi dalam A, yang didefinisikan dengan "2x + y = 10". Tentukan
 - a) Domain dari R,
 - b) Range dari R,
 - c) R.
- 2. Misal R relasi dalam \mathbf{R} , yang didefinisikan dengan "x + y= 16". Tentukan
 - a. Domain dari R,
 - b. Range dari R,
 - c. R
- 3. R suatu relasi dalam R, nyatakan suatu syarat agar R bukan relasi refleksif
- 4. Misal $W = \{1,2,3,4\}$ dan

$$R = \{(1,1), (1,2), (2,1), (2,3), (3,3), (3,4), (4,4)\}$$

Apakah R refleksif? Jelaskan.

5.Berikut diberikan kalimat terbuka yang mendefinisikan relasi R dalam bilangan asli **A**.

Apakah relasinya refleksif?

- a. "x kurang dari atau sama dengan y"
- b. "x membagi y"
- c. "x + y = 10"
- 6. R suatu relasi dalam **R**, nyatakan suatu syarat agar R bukan relasi simetris.
- 7. Misal $V=\{1,2,3,4\}$ dan $R=\{(1,1), (1,2), (2,1), (3,3), (4,4)\}$

Apakah R simetris? Jelaskan.

- 8. Berikut diberikan kalimat terbuka yang mendefinisikan relasi R dalam bilangan asli **A**. Apakah relasinya simetris?
- a. "x kurang dari atau sama dengan y"
 - b. "x membagi y"
 - c. "x + y = 10"
- 9. R suatu relasi dalam **R**, nyatakan suatu syarat agar R bukan relasi anti simetris.

- 10. Berikut diberikan kalimat terbuka yang mendefinisikan relasi R dalam bilangan asli A. Apakah relasinya anti simetris?
 - a. "x kurang dari atau sama dengan y"
 - b. "x membagi y"
 - $_{c.}$ " $_{x} + _{y} = 10$ "
- 11. Misal $f(x) = x^2$ dan terdefinisi pada [-2,8] Tentukan a. f(4), b. f(-3), c. f(-2)
- 12. Misal $f: \mathbf{R} \to \mathbf{R}$ dan didefinisikan sebagai berikut

$$f(x) = \begin{cases} 1 \text{ jika } x \text{ rasional} \\ 0 \text{ jika } x \text{ irasional} \end{cases}, \text{ tentukan}$$

- a. f(1/2),
- b. $f(\pi)$, c. f(2,1313...),
- d. $f(\sqrt{2})$
- 13. Misal A-= $\{a,b,c,d\}$ danB = $\{0,1\}$. Berapa banyak fungsi yang terjadi pada relasi dari A ke B. Tunjukkan.
- 14. Misal A=[-1,1], B=[1,3] dan C=[-3,-1]. Misal fungsi-fungsi
- $f: A \rightarrow \mathbf{R}, f: B \rightarrow \mathbf{R}, f: C \rightarrow \mathbf{R}$ yang didefinisikan dengan "tiap-tiap bilangan dipasangkan dengan kuadratnya". Diantara ketiga fungsi tersebut mana yang tergolong fungsi injektif.
- 15. Misal A =[-1,1], B=[1,3] dan C =[-3,-1]. Misal fungsi-fungsi $f: A \rightarrow R$, $f: B \rightarrow R$, $f: C \rightarrow R$ yang didefinisikan dengan "tiap-tiap bilangan dipasangkan dengan pangkat tiganya". Diantara ketiga fungsi tersebut mana yang tergolong fungsi injektif
- 16. Tentukan $D_{(f)}$, dari $f(x) = x^2$ agar fungsi ini merupakan fiingsi injektif.
- 17. Berikan suatu syarat agar fungsi konstanta merupakan fungsi injektif?
- 18. Dari soal 17. adakah fungsi-fungsi di atas merupakan fungsi injektif?
- 19. Misal $f: A \to B$ adalah fungsi. Tentukan f(A) agar f merupakan fungsi surjektif.
- 20. Misal A = [-1, 1] fungsi f,g dan h dalam A didefenisikan sebagai berikut:

 - a. $f(x) = x^2$ b. $g(x) = x^3$ c. $h(x) = x^5$

Dari ketiga fungsi ini, mana yang tergolong fungsi surjektif?

- 21. Tentukan suatu syarat agar fungsi konstanta merupakan fungsi surjektif.
- 22. Misal f(a) = a, jika f fungsi dalam R apakah f fungsi surjektif?
- 23. Misal $A = \{1,2,3,4,5\}$ dan fungsi-fungsi f: $A \rightarrow A$ dan g: $A \rightarrow A$ yang difenisikan sebagai berikut:

$$f(1)=3$$
, $f(2)=5$, $f(3)=3$, $f(4)=1$,

$$f(3)=3$$
.

$$f(4)=1, f(5)=2$$

$$g(1) = 4$$
, $g(2) = 5$, $g(3) = 3$, $g(4) = 1$, $g(5) = 2$

$$g(3) = 3$$

$$g(4) = 1, g(5) = 2$$

Tentukan g o f dan f o g.

- 24. Jika f: A \rightarrow B dan g: B \rightarrow C adalah fungsi-fungsi surjektif, tunjukkan bahwa
- $(g \circ f) : A \rightarrow C$ juga fungsi surjektif.
- 25. Misal $f: A \rightarrow B,g: B \rightarrow C dan h: C \rightarrow D$. Buktikan bahwa (h o g) o f = h o(g o f).
- 26. Beri contoh dua fungsi f dan g yang memenuhi f o g= g o f.
- 27. Misal f dan g adalah fungsi yang memenuhi

$$g \circ f(x) = x; \forall x \in D_{(f)},$$

fog(y) = y;
$$\forall y \in D_{(g)}$$
.

Tunjukkan bahwa $g = f^{(-1)}$

- 28. Jika f fungsi injektif dari A ke B, tunjukkan bahwa f $^{(-1)}$ = {(b,a) | (a,b \in f) juga fungsi.
- 29. Misal $f: \mathbf{R} \to \mathbf{R}$ yang didefinisikan dengan f(x) = x + 5. Tentukan suatu syarat agar fungsi f mempunyai fungsi inversi.
- 30. Misal $A = \mathbb{R} \{3\}$ dan $B = \mathbb{R} \{1\}$. Misal fungsi $f : A \to B$ yang didefinisikan dengan $f(x) = \frac{x-2}{x-3}$

Apakah f mempunyai fungsi inversi? Jelaskan.

31. Misal A=[1, $+\infty$]dan B= [-4, $+\infty$]. Misal fungsi f: A \rightarrow B yang didefinisikan dengan $f(x) = x^2 - 2x - 3$ Apakah f mempunyai fungsi inversi? Jelaskan.