Introduction to Bayes factors

Jeffrey R. Stevens

https://osf.io/h38sx/

9 May 2019

Disclaimers

- 1 I am not a Bayesian statistics expert.
- This introduction is not meant to accurately reflect the data analysis process; it is only meant to illustrate general techniques for calculating Bayes factors.
- 3 Please read the software documentation and Bayes factor literature to learn how to properly implement these techniques.

Questions

- What is a Bayes factor?
- Why use Bayes factors?
- When to use Bayes factors?
- How to present Bayes factors?
- How to calculate Bayes factors?

Section 1

What is a Bayes factor?

What are we as scientists trying to do?

What are we as scientists trying to do?

What are we as scientists trying to do?

 $^{^{1}(\}mathsf{Wasserstein}\ \&\ \mathsf{Lazar},\ 2016,\ \mathit{American}\ \mathit{Statistician})$

What is a p-value?

 The probability under a specified statistical model that a statistical summary of the data would be equal to or more extreme than its observed value¹

^{1 (}Wasserstein & Lazar, 2016, American Statistician)

- The probability under a specified statistical model that a statistical summary of the data would be equal to or more extreme than its observed value¹
- Probability of obtaining results at least as extreme as those observed given that the null hypothesis is true

^{1 (}Wasserstein & Lazar, 2016, American Statistician)

- The probability under a specified statistical model that a statistical summary of the data would be equal to or more extreme than its observed value¹
- Probability of obtaining results at least as extreme as those observed given that the null hypothesis is true
 - Based on hypothetical outcomes more extreme than the ones observed

⁽Wasserstein & Lazar, 2016, American Statistician)

- The probability under a specified statistical model that a statistical summary of the data would be equal to or more extreme than its observed value¹
- Probability of obtaining results at least as extreme as those observed given that the null hypothesis is true
 - Based on hypothetical outcomes more extreme than the ones observed
 - Gives probability of data given null hypothesis P(data|hypothesis) rather than probability of alternative hypothesis given data P(hypothesis|data)

^{1 (}Wasserstein & Lazar, 2016, American Statistician)

"You might just as well say," added the March Hare, "that 'I like what I get' is the same thing as 'I get what I like'!" (Lewis Carroll, Alice in Wonderland)

 $P(data|hypothesis) \neq P(hypothesis|data)$

"You might just as well say," added the March Hare, "that 'I like what I get' is the same thing as 'I get what I like'!"
(Lewis Carroll, Alice in Wonderland)

 $P(data|hypothesis) \neq P(hypothesis|data)$

"You might just as well say," added the March Hare, "that 'I like what I get' is the same thing as 'I get what I like'!"
(Lewis Carroll, Alice in Wonderland)

$P(data|hypothesis) \neq P(hypothesis|data)$

Bayesian inference

Based on Bayes theorem

$$P(H|D) = \frac{P(D|H)P(H)}{P(D)}$$

Bayesian inference

Based on Bayes theorem

$$P(H|D) = \frac{P(D|H)P(H)}{P(D)}$$

- Bayesian parameter estimation
- Bayesian hypothesis testing

Bayesian hypothesis testing

Assessing the relative plausibilities of competing hypotheses H_0 and H_1 :

$$\underbrace{\frac{P(H_1|D)}{P(H_0|D)}}_{\text{Posterior odds}} = \underbrace{\frac{P(H_1)}{P(H_0)}}_{\text{Prior odds}} \times \underbrace{\frac{P(D|H_1)}{P(D|H_0)}}_{\substack{\text{Likelihood ratio} \\ \text{(Bayes factor)}}}$$

²(Wagenmakers, 2007, *Psychonomic Bulletin & Review*)

Bayesian hypothesis testing

Assessing the relative plausibilities of competing hypotheses H_0 and H_1 :

$$\underbrace{\frac{P(H_1|D)}{P(H_0|D)}}_{\text{Posterior odds}} = \underbrace{\frac{P(H_1)}{P(H_0)}}_{\text{Prior odds}} \times \underbrace{\frac{P(D|H_1)}{P(D|H_0)}}_{\substack{\text{Likelihood ratio} \\ \text{(Bayes factor)}}$$

Posterior odds are the relative plausibility of models after observing data. The change from prior to posterior odds brought about by the data is the **Bayes factor**.²

²(Wagenmakers, 2007, Psychonomic Bulletin & Review)

Extent to which the data sway our relative belief from one hypothesis to the other³

12/39

³(Wagenmakers, 2007, *Psychonomic Bulletin & Review*; Etz et al., 2018, *Psychonomic Bulletin & Review*)

^{4 (}Wagenmakers, 2007, Psychonomic Bulletin & Review)

⁽Wagenmakers, 2007, Psychonomic Bulletin & Review; Rouder et al., 2018, Psychonomic Bulletin & Review)

- Extent to which the data sway our relative belief from one hypothesis to the other³
- Strength of evidence from data about the hypotheses⁴

12/39

³(Wagenmakers, 2007, *Psychonomic Bulletin & Review*; Etz et al., 2018, *Psychonomic Bulletin & Review*)

⁽Wagenmakers, 2007, Psychonomic Bulletin & Review)

⁽Wagenmakers, 2007, Psychonomic Bulletin & Review, Rouder et al., 2018, Psychonomic Bulletin & Review)

- Extent to which the data sway our relative belief from one hypothesis to the other³
- Strength of evidence from data about the hypotheses⁴
- Relative predictive accuracy of one hypothesis over another⁵

³⁽Wagenmakers, 2007, Psychonomic Bulletin & Review, Etz et al., 2018, Psychonomic Bulletin & Review)

^{4 (}Wagenmakers, 2007, Psychonomic Bulletin & Review)

⁵ (Wagenmakers, 2007, Psychonomic Bulletin & Review, Rouder et al., 2018, Psychonomic Bulletin & Review)

• BF_{10} is the Bayes factor giving the evidence for H_1 over H_0

$$\frac{P(D|H_1)}{P(D|H_0)}$$

• BF_{10} is the Bayes factor giving the evidence for H_1 over H_0

$$\frac{P(D|H_1)}{P(D|H_0)}$$

• Whereas BF_{01} is evidence for H_0 over H_1

$$\frac{P(D|H_0)}{P(D|H_1)}$$

• BF_{10} is the Bayes factor giving the evidence for H_1 over H_0

$$\frac{P(D|H_1)}{P(D|H_0)}$$

• Whereas BF_{01} is evidence for H_0 over H_1

$$\frac{P(D|H_0)}{P(D|H_1)}$$

• $BF_{10} = 1/BF_{01}$

• BF_{10} is the Bayes factor giving the evidence for H_1 over H_0

$$\frac{P(D|H_1)}{P(D|H_0)}$$

• Whereas BF_{01} is evidence for H_0 over H_1

$$\frac{P(D|H_0)}{P(D|H_1)}$$

- $BF_{10} = 1/BF_{01}$
- BF_{10} =8 means that there is 8 times more evidence for H_1 than H_0 (and is equivalent to a $BF_{01} = 1/8 = 0.125$)

• BF_{10} is the Bayes factor giving the evidence for H_1 over H_0

$$\frac{P(D|H_1)}{P(D|H_0)}$$

• Whereas BF_{01} is evidence for H_0 over H_1

$$\frac{P(D|H_0)}{P(D|H_1)}$$

- $BF_{10} = 1/BF_{01}$
- BF_{10} =8 means that there is 8 times more evidence for H_1 than H_0 (and is equivalent to a $BF_{01} = 1/8 = 0.125$)
- ullet Bayes factors range from 0 to ∞

Bayes factor cutoffs

BF_{10}	Interpretation
> 100	Extreme evidence for H_1
30 - 100	Very strong evidence for H_1
10 - 30	Strong evidence for H_1
3 - 10	Moderate evidence for H_1
1 - 3	Anecdotal evidence for H_1
1	Equal evidence for H_1 and H_0
1/3 - 1	Anecdotal evidence for H_0
1/10 - 1/3	Moderate evidence for H_0
1/30 - 1/10	Strong evidence for H_0
1/100 - 1/30	Very strong evidence for H_0
< 1/100	Extreme evidence for H_0

Relationship between Bayes factors and p-values

Take home

Bayes factors provide the relative evidence for one model/hypothesis over another

Section 2

Why use Bayes factors?

Can quantify evidence for H_1 vs. H_0^6

• With frequentist statistics, data that are unlikely under H_0 may lead to its rejection, even though these data are just as unlikely under H_1 .

⁽Wagenmakers et al., 2018, Psychonomic Bulletin & Review)

Can quantify evidence for H_1 vs. H_0^6

• With frequentist statistics, data that are unlikely under H_0 may lead to its rejection, even though these data are just as unlikely under H_1 .

• Bayes factors give relative evidence for H_1 .

^{6 (}Wagenmakers et al., 2018, Psychonomic Bulletin & Review)

Can quantify evidence in favor of H_0^7

• With frequentist statistics, you cannot accept the null hypothesis.

^{7 (}Wagenmakers, 2007, *Psychonomic Bulletin & Review*)

Can quantify evidence in favor of H_0^7

- With frequentist statistics, you cannot accept the null hypothesis.
- Bayes factors allow you to directly test the null hypothesis (relative to models under consideration).
 - Sometimes you want to test the null
 - Sometimes your alternative is not supported

⁷ (Wagenmakers, 2007, Psychonomic Bulletin & Review)

Can quantify evidence in favor of H_0^7

- With frequentist statistics, you cannot accept the null hypothesis.
- Bayes factors allow you to directly test the null hypothesis (relative to models under consideration).
 - Sometimes you want to test the null
 - Sometimes your alternative is not supported

⁷ (Wagenmakers, 2007, *Psychonomic Bulletin & Review*)

Allows evidence to be monitored as data accumulate⁸

⁸(Rouder, 2014, *Psychonomic Bulletin & Review*)

⁽Simmons et al., 2011, Psychological Science)

Allows evidence to be monitored as data accumulate⁸

- With frequentist statistics, you must collect data on exactly the sample size established before data collection
 - Cannot stop early or collect more data after analyzing it⁹

⁸(Rouder, 2014, *Psychonomic Bulletin & Review*)

⁽Simmons et al., 2011, Psychological Science)

Allows evidence to be monitored as data accumulate⁸

- With frequentist statistics, you must collect data on exactly the sample size established before data collection
 - Cannot stop early or collect more data after analyzing it⁹

Psychonomic Bulletin & Review)

⁽Simmons et al., 2011, Psychological Science)

Allows evidence to be monitored as data accumulate 10

- With Bayesian statistics, you can compute sequential Bayes factors¹¹
 - Check priors
 - Set pre-determined BF thresholds (e.g., 10 or 1/10)
 - Start with at least 20 samples per group
 - Adjust based on prior knowledge

^{10 (}Rouder, 2014, Psychonomic Bulletin & Review)

^{11 (}Schönbrodt et al., 2017, Psychological Methods)

^{12 (}Schönbrodt & Wagenmakers, 2018, Psychonomic Bulletin & Review)

Allows evidence to be monitored as data accumulate 10

- With Bayesian statistics, you can compute sequential Bayes factors¹¹
 - Check priors
 - Set pre-determined BF thresholds (e.g., 10 or 1/10)
 - Start with at least 20 samples per group
 - Adjust based on prior knowledge
- It is possible to conduct something like a Bayesian power analysis 12

^{10 (}Rouder, 2014, Psychonomic Bulletin & Review)

^{11 (}Schönbrodt et al., 2017, Psychological Methods)

^{12 (}Schönbrodt & Wagenmakers, 2018, Psychonomic Bulletin & Review)

• Rely on same assumptions as frequentist statistics

- Rely on same assumptions as frequentist statistics
- Results can be sensitive to priors

- Rely on same assumptions as frequentist statistics
- Results can be sensitive to priors
- Still use cutoffs

- Rely on same assumptions as frequentist statistics
- Results can be sensitive to priors
- Still use cutoffs
- Not accepted in the field

- Rely on same assumptions as frequentist statistics
- Results can be sensitive to priors
- Still use cutoffs
- Not accepted in the field
- Multiple comparisons

- Rely on same assumptions as frequentist statistics
- Results can be sensitive to priors
- Still use cutoffs
- Not accepted in the field
- Multiple comparisons
- What if they conflict with p-values?

Take home

Bayes factors compare multiple hypotheses, can test null hypotheses, and allow for optional stopping

Section 3

When to use Bayes factors?

Testing hypotheses of no effect

- Binomial tests
- Contingency tables
- T-tests
- ANOVAs
- ANCOVAs
- Correlations
- Linear regressions

Let's say you are interested in comparing two models in a regression: H_1 and H_2 . First, you will compare them to an intercept-only model H_0 to generate their Bayes factors:

$$BF_{10} = \frac{P(D|H_1)}{P(D|H_0)}$$
 and $BF_{20} = \frac{P(D|H_2)}{P(D|H_0)}$

Let's say you are interested in comparing two models in a regression: H_1 and H_2 . First, you will compare them to an intercept-only model H_0 to generate their Bayes factors:

$$BF_{10} = \frac{P(D|H_1)}{P(D|H_0)}$$
 and $BF_{20} = \frac{P(D|H_2)}{P(D|H_0)}$

Then, you can divide the Bayes factors of two models (compared to null) to find the Bayes factor comparing those two models:

$$\frac{BF_{10}}{BF_{20}} = \frac{P(D|H_1)}{P(D|H_2)} = BF_{12}$$

Likelihood ratio test

Model		BF
$\overline{Condition}$	1	2
Condition	2	1
Condition	$1 + Condition\ 2$	14
Condition	1 * Condition 2	16

Likelihood ratio test

Model	BF
Condition 1	2
Condition 2	1
Condition $1 + Condition 2$	14
Condition 1 * Condition 2	16

$$BF_{interaction} = \frac{16}{14} = 1.14$$

Approximation from GLMs

- Currently, the BayesFactor package does not run on Generalized Linear Models (GLMs).
- But there is an approximation for Bayes factors using the BIC calculated by GLMs¹³

$$BF = e^{\frac{BIC_{null} - BIC_{alternative}}{2}}$$

^{13 (}Wagenmakers, 2007, Psychonomic Bulletin & Review)

Estimating from existing test statistics

- You can calculate Bayes factors from existing analyses (e.g., if the full data are not available) with test statistics and sample sizes
 - Binomial tests
 - T-tests
 - One-way ANOVAs
 - Correlations
 - Regressions

Take home

Bayes factors can be calculated directly for standard t-tests, ANOVAs, ANCOVAs, correlations, and linear regressions and can be estimated for other situations

Section 4

How to present Bayes factors?

Presenting Bayes factors

- Methods
 - Define Bayes factor (I cite Wagenmakers, 2007)
 - Describe cutoffs for evidence (I cite Wagenmakers et al., 2018)
 - Describe priors/assumptions (I cite journal articles cited by packages)

^{14 (}van Doorn et al., 2019, PsyArXiv)

Presenting Bayes factors

- Methods
 - Define Bayes factor (I cite Wagenmakers, 2007)
 - Describe cutoffs for evidence (I cite Wagenmakers et al., 2018)
 - Describe priors/assumptions (I cite journal articles cited by packages)
- Results
 - Clarify direction (alternative/null)
 - Describe effect in "levels of evidence" terms
 - "There is moderate evidence for a difference between ..."
 - "There is very strong evidence for no difference between ..."
 - "There is no evidence for a difference between ..."
 - Give Bayes factors as you would p-values (use 1-2 decimal places for > 1; 2-3 decimal for < 1; cutoffs for > 100, < 0.01)

^{14 (}van Doorn et al., 2019, PsyArXiv)

Presenting Bayes factors

- Methods
 - Define Bayes factor (I cite Wagenmakers, 2007)
 - Describe cutoffs for evidence (I cite Wagenmakers et al., 2018)
 - Describe priors/assumptions (I cite journal articles cited by packages)
- Results
 - Clarify direction (alternative/null)
 - Describe effect in "levels of evidence" terms
 - "There is moderate evidence for a difference between ..."
 - "There is very strong evidence for no difference between ..."
 - "There is no evidence for a difference between ..."
 - Give Bayes factors as you would p-values (use 1-2 decimal places for > 1; 2-3 decimal for < 1; cutoffs for > 100, < 0.01)
- Supplementary materials
 - Assumption checks
 - JASP produces robustness plots
- JASP Guidelines for Conducting and Reporting a Bayesian Analysis¹⁴

¹⁴(van Doorn et al., 2019, PsyArXiv)

Take home

Introduce Bayes factors in Methods, provide values in Results, cover your bases in Supplementary Materials

Section 5

How to calculate Bayes factors?

Take home

With both JASP and R, Bayes factors are as easy as frequentist—and you can convert between them!

Section 6

Resources

References

- Etz, A., Gronau, Q. F., Dablander, F., Edelsbrunner, P. A., & Baribault, B. (2018). How to become a Bayesian in eight easy steps: An annotated reading list. *Psychonomic Bulletin & Review*, 25(1), 219–234. https://doi.org/10.3758/s13423-017-1317-5
- Rouder, J. N. (2014). Optional stopping: No problem for Bayesians. Psychonomic Bulletin & Review, 21(2), 301–308. https://doi.org/10.3758/s13423-014-0595-4
- Rouder, J. N., Haaf, J. M., & Vandekerckhove, J. (2018). Bayesian inference for psychology, part IV: parameter estimation and Bayes factors. Psychonomic Bulletin & Review, 25(1), 102–113. https://doi.org/10.3758/s13423-017-1420-7
- Schönbrodt, F. D., & Wagenmakers, E.-J. (2018). Bayes factor design analysis: Planning for compelling evidence.
 Psychonomic Bulletin & Review, 25(1), 128–142. https://doi.org/10.3758/s13423-017-1230-y
- Schönbrodt, F. D., Wagenmakers, E.-J., Zehetleitner, M., & Perugini, M. (2017). Sequential hypothesis testing with Bayes factors: Efficiently testing mean differences. Psychological Methods, 22(2), 322–339. https://doi.org/10.1037/met0000061
- Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant. *Psychological Science*, 22(11), 1359–1366. https://doi.org/10.1177/0956797611417632
- van Doorn, J., van den Bergh, D., Bohm, U., Dablander, F., Derks, K., Draws, T., ... Wagenmakers, E.-J. (2019). The
 JASP guidelines for conducting and reporting a Bayesian analysis. PsyArXiv. https://doi.org/10.31234/osf.io/yqxfr
- Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14(5), 779–804. https://doi.org/10.3758/BF03194105
- Wagenmakers, E.-J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Love, J., ... Morey, R. D. (2018). Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications. *Psychonomic Bulletin & Review*, 25(1), 35–57. https://doi.org/10.3758/s13423-017-1343-3
- Wasserstein, R. L., & Lazar, N. A. (2016). The ASA's statement on p-values: Context, process, and purpose. American Statistician, 70(2), 129–133. https://doi.org/10.1080/00031305.2016.1154108

Resources

- Psychonomic Bulletin & Review special issue on Bayesian methods for advancing psychological science
- BayesFactor package
- JASP statistical software
- Bayesian Spectacles blog
- Understanding Bayes blog
- Anderson, D. R. (2008). Model Based Inference in the Life Sciences.
 New York: Springer.
- Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian Data Analysis (Third Edition). Boca Raton, FL: CRC Press.
- Kruschke, J. K. (2015). Doing Bayesian Data Analysis (Second Edition). New York: Academic Press.