מבוא לחבורות תרגיל בית מס׳ 9

- 1 (1 2) של S_4 של S_4 הנוצרת ע"י (1 2) איז מת-החבורה S_4 של S_4 הנוצרת ע"י (1 2) ווהניחו כי תת-החבורה S_4 של S_4 איז מורפית לחבורה S_4 של S_4 איז מורפית לחבורה S_4 איז מורפית לחבורה S_4
- - $S_4 = \langle (1\ 2\ 3\ 4), (1\ 2\ 4\ 3) \rangle$ הוכיחו כי .3
 - הנוצרת ע"י שתי המטריצות $GL_2(\mathbb{C})$ הנוצרת ע"י שתי המטריצות .4

$$Q_8$$
 איזומורפית לחבורת הקווטרניונים איזומורפית איזומורפית $egin{pmatrix} \sqrt{-1} & 0 \ 0 & -\sqrt{-1} \end{pmatrix}, \begin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix}$

- $C_2 \times C_2$ או ל- C_4 איזומורפית איזומורפית מסדר 5 אולי.
- 6. הראו כי חבורת המספרים הרציונליים החיוביים נוצרת ע"י קבוצת המספרים הראשוניים (החיוביים).
 - D_{10} ציירו את סריג תת-החבורות של .7
- 9. תהי G חבורה, G חבורה, G הוכיחו כי ההעתקה $x\mapsto x^{-1}$ שולחת כל קוסט שמאלי של G ב-G לקוסט ימני של G ב-G ונותנת התאמה חח"ע בין קוסטים שמאליים וקוסטים ימניים של G ב-G, ולכן מספר הקוסטים השמאליים שווה למספר הקוסטים הימניים (של G ב-G).
- .10 תהי G חבורה, G:H=[G:K][K:H] הוכיחו כי $H \leq K \leq G$, כאשר G:H שווה למספר הקוסטים הימניים של G:H ב- G:H (או מספר הקוסטים השמאליים של G:H ב- G:H לפי התרגיל הקודם).