$$7.(a)$$
 $47_{10} = 101111_2 : factors = (1,47)$

Gbits

$$09^{47-1} = 5^{46} \pmod{47} = 1$$

$$GF(47) = \{0,1,2,...,46\}$$
 g is a primitive element of $GF(p)$ if $GF(p)$ if $GF(p)$ if $GF(p)$ $GF(p)$

② only need to check
$$g^{-} \neq 1$$
 for $r = 2,23$
since $g^{+6} = g^{2 \times 23}$ $\implies 5^{2} \pmod{47} = 25 \neq 1$
 $5^{23} \pmod{47} = 46 \neq 1$

$$5^{23} \pmod{47} = 23 \neq 1$$
 $5^{23} \pmod{47} = 46 \neq 1$

$$g=5$$
 is a primitive element in $GF(p=47)$

(b)
$$pk_A = g_{x_B}^{x_A} = 5^3 \pmod{47} = 31$$

 $pk_B = g_{x_C}^{x_B} = 5^1 \pmod{47} = 13$
 $pk_C = g_{x_C}^{x_C} = 5^1 \pmod{47} = 11$

(c) AB:
$$9^{2AXB} = 5^{33} \pmod{47} = 35$$

AC: $9^{XAXC} = 5^{21} \pmod{47} = 15$
BC: $9^{XBXC} = 5^{77} \pmod{47} = 29$