به نام خدا

LATEX

فاطمه علیملکی امیررضا جهانگیری محمدحسین چهکندی مهدی حقوردی خدیجه نظری

فهرست مطالب

مقدمه

معماری کامپیوتر - دیروز تا امروز

اجزا

معماريهاي مختلف

معماری کامپیوتر در آینده

هوش مصنوعی و معماری کامپیوتر

\\$/\

مقدمه

- در این ارائه به بررسی معماری کامپیوتر میپردازیم
- ابتدا سرگذشت و روند تکاملی معماری را بررسی میکنیم،
 - سپس به معرفی اجزای اصلی یک کامپیوتر میپردازیم،
- پس از آن به داخل CPU میرویم و معماریهای متفاوت آن را میبینیم،
 - سپس در مورد آیندهی معماری کامپیوتر صحبت میکنیم
- و در آخر، تاثیر هوش مصنوعی به روی معماری کامپیوتر را بررسی میکنیم.

معماری کامپیوتر - دیروز تا امروز

تكامل معماري كامپيوتر

- در دنیای امروزی کامپیوترها برای اهداف زیاد و توسط افراد زیادی استفاده میشوند،
- کارها و اتفاقاتی که زمانی غیر قابل تصور بود، برای جامعهی ما بسیار بدیهی و مرسوم است،
- تکنولوژی معماری کامپیوتر در طول سالیان متمادی، عمدتا به دلیل پیشرفتهای تکنولوژی ساخت قطعات الکترونیکی، پیشرفت علوم کامپیوتر و نیازهای افراد پیشرفت کرده است.

نسل اول كامپيوترها

- در سال ۱۹۳۷، اولین کامپیوتر با استفاده از لامپهای خلاء توسط پروفسور ایکن اختراع شد.
- در سال ۱۹۴۷، دانشگاه پنسیلوانیا کامپیوتری به نام ENIAC را طراحی کرد که از مبنای دودویی برای نمایش اطلاعات استفاده می کرد.
- معماری کامپیوترهای این دوره (و تمام دورهها،) بر اساس مدل Von Neumann بود (و هست،) که شامل
 - ۲. واحد پردازش،
 - ۰۳ واحد کنترل و
 - ۴. واحد ورود*ی/خروجی*
 - مىشود.

نسل دوم كامپيوترها

- در دههی ۱۹۵۰، ترانزیستورها به جای لامپهای خلاء در کامپیوترها استفاده شدند،
 - این باعث کاهش حجم و افزایش سرعت کامپیوترها شد.
 - در این دوره کامپیوترهای دیجیتال و مینیکامپیوترها شروع به ظهور کردند

نسل سوم كامپيوترها

- در دههی ۱۹۶۰، مدارهای مجتمع (IC) جایگزین ترانزیستورها شدند.
- استفاده از ICها باعث افزایش قابلیت پیچیدگی و کارای کامپیوترها شد.
- این به این معنیست که تعداد بیشتری ترانزیستورها را در یک تراشه کوچکتر قرار دادند و این امر به کامپیوتر امکان انجام محاسبات پیچیدهتر و سریعتر را میداد.
 - کامپیوترهای این دوره (و دورههای بعدی) از معماری مجموعه دستورات Instruction Set) Architecture)
 - معماری کامپیوتر 1BM 360 از معماریهای مشهور این دوره است.

نسل چهارم كامپيوترها

- در دهه ۱۹۷۰، ریزیردازندهها به جای ICها استفاده شدند.
- این باعث افزایش قابلیت انعطاف پذیری و کاهش هزینهی ساخت کامپیوترها شد.
 - در این دوره معماری کامپیوترها شخصی و کامپیوترهای قابل حمل توسعه یافت.

نسل پنجم كامپيوترها

- در دورهی نسل پنجم کامپیوترها که از دههی ۱۹۸۰ شروع شد، تحولات مهمی در معماری کامیپوتر رخ داد.
- در این دوره کامپیوترهای موازی که قدرت پردازش با با استفاده از چندین واحد پردازشگر به صورت همزمان را داشتند، طراحی و ساخته شدند.
 - کامپیوترهای برداری، یکی دیگر از پیشرفتها این دوره بود. این کامپیوترها مجهز به پردازندههایی بودند که مخصوص انجام عملیات به روی بردارها و ماتریسها بودند و برای برنامههای علمی و مهندسی که با این دادهها سر و کار داشتند بسیار مناسب بودند.
 - در این دوره استفاده از ICهای فوق بزرگ IC و ICهای فوق بزرگ IC نیز رایج شد.
 - در این دوره شاهد ظهور کامپیوترهای شخصی (Personal Computer) و سیستمهای توزیع شده (Distributed Systems)

اجزا

معماريهاي مختلف

معماري كامپيوتر در آينده

هوش مصنوعي و معماري كامپيوتر

مقدمه

- در دهههای ۸۰ و ۹۰ میلادی، کامپیوترها هر ۱۸ تا ۲۴ ماه (قانون مور) سریعتر میشدند.
- این یعنی اگر شما امسال یک کامپیوتر میخریدید و دوستان شما یک سال بعد از شما کامپیوتر جدیدی می خریدند، کامپیوتر آنها بسیار سریعتر میبود
 - اما امروزه، تنها راه پیشرفت در معماری کامپیوتر ساخت سختافزار برای یک کاربرد خاص است.
- برای مثال پردازندهها گرافیکی (GPU) برای انجام محاسبات گرافیکی بسیار کارامد هستند. آنها میتوانند میلیونها ضرب ماتریس در یک هر ثانیه انجام بدهند.

پردازندهی TPU

- با رخ دادن انقلابی در هوش مصنوعی به نام یادگیری ماشین که به ضرب ماتریسی متکی بود، نیاز به پردازندههای مخصوص ضرب تانسورها برای اجرا سریعتر و دقیقتر الگوریتمها یادگیری ماشین احساس می شد،
- واحد پردازش تانسور (Tensor Processing Unit (TPU)) شتاب دهنده ی یادگیری ماشین است که توسط گوگل طراحی شده است. TPUها برای ضرب ماتریسها بسیار کارامند هستند که برای آموزش شبکههای عصبی ANN ضروریست.