THIN FILM MAGNETIC HEAD FOR PERPENDICULAR MAGNETIC RECORDING AND MANUFACTURE

Patent Number JP63029311
Publication date: 1988-02-08

Inventor(s): NAKAJIMA HIROMI; others: 01

Applicant(s): ALPS ELECTRIC CO LTD

Requested Patent: JP63029311

Application Number: JP19860172543 19860722

Priority Number(s):

IPC Classification: G11B5/31; G11B5/127

EC Classification:

Equivalents:

Abstract

PURPOSE:To minimize sufficiently the thickness and length of the tip thin film part of a main magnetic pole and to improve a reproducing efficiency by forming the opposite surface of the auxiliary magnetic pole of the main magnetic pole as a flat surface.

CONSTITUTION:Onto a substrate 16, an insulating film 22 such as SiO2 and Al2O3 is stuck, a recessed part 2 is formed by a photoprocess, a magnetic film 24 with the thickness of the level difference or above of a recessed part 23 is formed by a sputtering, etc., further, a charging film 25 such as resist polyimide is spin-coated and the surface is flattened. By the means such as dry etching and grinding, a thin film-forming surface including the charging film 25 is flattened and the magnetic film 24 except the recessed part 23 is cut out. Onto the flattened thin film forming surface 26, a magnetic film 27 is stuck and formed, the thin film part protruded from the magnetic film 24 is formed, the thin film part comes to be a tip thin film part 21a of a main magnetic pole 21 and the laminating body of the magnetic film 24 and the magnetic thin film 27 comes to be the same rear part thick film part 21b. Thus, the control of thickness and length is facilitated, the thickness is 0.3mum or below and made thinner and even then, a good magnetic characteristic is obtained.

Data supplied from the esp@cenet database - 12

@公開特許公報(A)

昭63-29311

⑤Int Cl.*

識別記号

厅内整理番号

砂公開 昭和63年(1988)2月8日

G 11 B 5/31 5/127

A - 7426 - 5D 6538 - 5D

審査請求 未請求 発明の数 2 (全5頁)

9発明の名称 垂直磁気記録用薄膜磁気ヘッドおよびその製造方法

②特 顋 昭61-172543

会出 願 昭61(1986)7月22日

60条 明 者 中 嶋 啓 視

東京都大田区雪谷大塚町1番7号 アルブス電気株式会社

内

切碎 明 者 石 橋

直周

東京都大田区雪谷大塚町1番7号 アルプス電気株式会社

内

⑪出 願 人 アルプス電気株式会社

東京都大田区雪谷大塚町1番7号

20代 理 人 弁理士 三浦 邦夫 外1名

1. 発明の名称

垂直磁気記録用薄膜磁気ヘッド およびその製造方法

2. 特許請求の範囲

3. 発明の詳細な説明

「技術分野」

本発明は、垂直磁気記録用薄膜磁気ヘッドおよびその製造方法に関する。

「従来技術およびその問題点」

高密度記録を行なうことができる垂直磁気記録 方式は、反面、再生効率が低いという問題点があ る。記録再生を行なう主磁極と、この主磁極と閉 磁路を構成する補助磁極とを有する薄膜磁気ヘッ ドにおいても、再生効率を高めるための種々の提 客がなされている。

第3図は従来の垂直磁気記録用薄膜磁気ヘッドの構造を示すものである。主磁協11は、垂直磁気記録媒体10との対向部を先端薄膜部11aとしており、この主磁値11上に、コイル12および地縁層13を挟んで補助磁値14が形成されている。コイル12は、先端薄膜部11aの後方に中心を有し、補助磁極14は、主磁極11と閉磁気回路を構成する。15は保護膜で、これらの各

概以、萎坂16上に薄膜形成技術によって形成される。

主磁値11の垂直磁気記録媒体10との対向部 を先端薄膜部11.aとするのは、高再生分解能を 得るためで、具体的にはこの先端薄膜部11aの 厚さaは0.30 um 以下とされる。このため記録再 生性能を上げるには、後部を厚膜部11bは、一般に 2~6 um とされている。さらに再生効率を上げるには、先端薄膜部11aの長さcを小さくする 公要がある。第5図(b) はこの長さcと再生効率 E(長さcが5 um ときの効率を1とする相対 値)の関係を示すグラフで、5 um 以下で、再生 効率が急カープで向上する。

また主磁幅1.1 と補助磁径1.4 の間網 b 、および補助磁径1.4 先端の主磁径1.1 先端からの後退量1.5 先端には、ある小さい寸法にしなければならない。すなわち第5図(a) は、この間隔 b と再生効率 E (間隔 b が 8 u m ときの効率を1.とする相対値)の関係を示

優の先端薄膜部の厚さおよび長さを十分小さくでき、再生効率を向上させることができる垂道磁気 記録用薄膜磁気ヘッドを得ることを目的とする。 「発明の概要」

本発明は、従来品における上記問題点は、主磁磁の後部厚膜部を補助磁極側に突出させているため、つまり補助磁極との対向面を、先端薄をもとを登せているとの分析に基づき、これを改良しているとの分析に基づきの対向面を平均ちたとので、主磁極の補助磁極との対向面を平均ちなりで、大端薄膜部と後部厚膜部間の段差面が、時は、先端薄膜部と後部厚膜部間の段差面が、時は、先端薄膜部と後部厚膜部間の段差面が、時は、

また本発明方法は、この薄膜磁気ヘッドを簡単 確実に製造するとともに、特に先端頭膜部の厚さ 管理を容易にするもので、基板上に形成した絶話 膜上にまず凹部を形成して、この凹部中に主磁値 の後部摩膜部を形成した後、この後部厚膜部を含 む薄膜形成面を平坦に加工し、次にこの平坦面上 し、同様に同図(c) は後退量 d と再生効率 E (後退量 d が 8 u n ときの効率を 1 とする相対値)の関係を示している。

ところが選展は、構造上、先端薄膜の11aの長さにすると、構造上、先端薄膜の11aの長さにをできることが困難であり、再生生物の長さにをいる。また11にをいるとなっている。また11にをのから、生産のは、第4回のように厚くようには、第4回のように厚くようには、第4回のように厚け、10のように厚け、10のように厚け、10のように厚け、10のないののののはでは、10のないのののののででは、10のないののののででは、10のないののでは、10のないのでは、10のないのでは、10のないのはでは、10のないのはでは、10のないのはできるが、肝心なののないのは、10のないのはできるが、肝心なの、磁気特性が悪化するため、磁気特性が悪化するため、磁気特性が悪化するため、磁気特性が悪化するため、る。

「鬼明の目的」

本発明は、以上の従来の問題点を解決し、主磁

に、磁性薄膜を形成して上記被郵厚履部に適なる 主磁極の先端薄膜部を形成し、この後この主磁模 上に、コイルおよび補助磁極を形成するようにし たことを特徴としている。

「発明の実施例」

以下図示実施例について本義明を説明する。第 1 図は、本発明による薄膜磁気ヘッドの実施例を示すものである。本発明の特徴は上述のように、 主題を2 1 の形状にあり、これ以外の部分は、従 来例と同一である。同一部分には同一符号を付し てある。

主磁優21は、その補助磁極14との対向面 21cが平坦面とされ、基板16側に、先端薄膜 部21aと後部厚腐部21bの段差が形成されて いる。このように、補助磁優14との対向面 21cを平坦面とすると、補助磁優14と主磁極 11との間隔bを小さくすることと、先端薄膜部 21aの長さcを小さくすることとの間に、加工 上の影響がなくなり、薄膜形成技術による協限 迄、このり、こ寸法を小さく形成し、再生効率を 高めることができる。

١,

次に、この薄膜磁気ヘッドを製造する本発明方 法を第2回について説明する。この製造方法は、 特に主磁極21の先端薄膜部21aの厚さaおよ び長さcの管理を容易に行なうことができるもの である。基板16上にまずスパッタリング等によ り SiO t , Al 2 O a 等の絶縁腰 2 2 を付着させ、これ に周知のフォトプロセスにより凹部23を形成す る((a),(b)), 次にこの凹部23および絶縁層 2.2 上に、スパッタリング等の薄膜形成技術によ り凹部23の投差以上の厚さの磁性層24を形成 し、さらにレジスト・ポリイミド等の充填膜25 をスピンコートし、表面を平担化する((c),: (d))。次にドライエッチング、研磨等の手段によ。 り、この充填膜25を含む薄膜形成函を平坦にす るとともに凹部23以外の磁性層24を切除する ((a))。 このようにして平担化された薄膜形成 面26に対し、次に磁性薄膜27を付着形成し て、磁性膜24から突出する薄膜部を形成する ((f))。すると、この薄膜部が主磁極21の先端

極を、その補助磁極との対向面を平担面として形成したので、主磁極と補助磁極の関隔を小さくすると同時に、その先端薄膜部の長さを明方法について助けがない。また本発明方法にごされて、先端薄膜部を平坦な薄膜形成面に形成であり、ため、その厚さおよび長さの管理が容易であり、できることができる。さらに主磁極の補助磁極との対向面が平損であるため、この上に形成するの対向面が補助磁極の製造が容易となり、歩留りが向上する。

4. 図面の簡単な説明

第1図は本発明による垂直磁気記録用環膜磁気ヘッドの実施例を示す縦断面図、第2図(a) ないし(f) は本発明による製造方法の要部を示す模式断面図、第3図は従来の薄膜磁気ヘッドの縦断面図、第4図(a).(b) は従来の主磁極の形成方法を示す断面図、第5図(a).(b).(c) は薄膜磁気ヘッドの各寸法と再生効率の関係を示すグラフであ

薄膜部21aとなり、磁性膜24と磁性薄膜27 の積層体が周後部厚膜部21bとなる。

以後は、従来品と同様の薄膜技術およびエッチング技術により、この磁性薄膜27上に、絶縁膜13、コイル12、補助磁極14および保護膜15を形成すれば、本発明の垂直磁気記録用薄膜磁気へッドが得られる。特に上記方法によると、磁性薄膜27の厚さ、つまり先端薄膜部21aの厚さ B を十分小さくすることができ、しかもこの磁性薄膜27は平坦な薄膜形成面26に形成するから、均一で特性の優れた主磁機が得られる。

なお先端薄膜部21aを形成する磁性薄膜27と、後部厚膜部21bを形成する磁性膜24とは、磁気的に接続される材料であれば、同一材料でも異種材料でもよい。例えばパーマロイ、Fe-Al-Si系合金、Coアモルファス等を用いることができる。

「発明の効果」

以上のように本発明の垂直磁気記録用薄履磁気へッドは、先端薄膜部と後部厚膜部を有する主磁

ቆ.

10 ··· 垂面磁気記録媒体、12 ··· コイル、14 ··· 補助磁極、21 ··· 主磁極、21 a ··· 先端藻膜部、21 b ··· 後部厚原部、21 c ··· 補助磁極対向面、22 ··· 凹部、23 ··· 磁性膜、26 ··· 藻膜形成面、27 ··· 磁性藻膜。

特許出願人 アルプス電気株式会社 同代理人 三 浦 邦 夫 同 松 井 茂

第 1 図

; ,

