6.S096: Number Theory

Due: January 29, 2024

Problem Set 2— Arithmetic and Group Theory

A. Anas Chentouf, M. Wacyl Meddour, Mohammed Ali Othman

Scribe:

Instructions: Solve any combination of problems 1-6 that sums to 93 points, then complete the survey problem 0 (worth 7 points), whose results will help shape future problem sets and lectures.

For full score, you will have to solve problem 1, two of problems 2-4, and one of problem 5-6, and finally, the survey problem.

Collaboration is allowed (in fact, encouraged), but please list your sources and collaborators. If there are none write "Sources consulted: none" at the top of your solutions. Note that each student is expected to write their own solutions; it is fine to discuss the problems with others, but your writing must be your own.

The first person to report each non-trivial typo/error in any of the problem sets or lecture notes will receive 1-5 points of extra credit (depending on the severity).

Problem 1. Properties in Group Theory (10 points)

Let G_1, G_2 be groups and $\phi: G_1 \to G_2$ be a group homomorphism. Let m be your MIT ID. Prove parts

$$\{2^{m+i} \bmod 13 : 0 \le i \le 5\}$$

of this problem.

- 1. The identity element of G_1 is unique.
- 2. If xy = xz for elements $x, y, z \in G_1$, then y = z.
- 3. The relation $(xy)^{-1} = y^{-1}x^{-1}$ holds for all $x, y \in G_1$.
- 4. G_1 has at least two subgroups, $\{e_{G_1}\}$ and G_1 itself. itself. 1
- 5. If $H \leq G_1$ and $x \in H$, then $\langle x \rangle \leq H$.
- 6. The product (G_1, G_2) under the operation (*, *') is also a group.
- 7. The intersection of two subgroups of G is also a subgroup of G. Is the same true for the union?

¹Groups with only these two subgroups are called *simple*, and can be thought of as building blocks of groups. Does this remind you of anything?

- 8. Let x be an element of a group G. The maps $\phi_g: G \to G$ sending $x \mapsto gx$ and $\phi^g: G \to G$ sending $x \mapsto xg$ are bijections.
- 9. If $x_1, \dots x_n$ are elements of G_1 then $\phi(x_1 \dots x_n) = \phi(x_1) \dots \phi(x_n)^2$.
- 10. The homomorphism sends the identity element to the identity element $\phi(e_{G_1}) = e_{G_2}$.
- 11. The homomorphism respects inversion:

$$\phi(x^{-1}) = \phi(x)^{-1}.$$

12. The kernel and the image are subgroups of G_1 and G_2 , respectively.

Here, $x_1 \cdots x_n$ is the product under the G_1 group operation and $\phi(x_1) \cdots \phi(x_n)$ is the product under the G_2 group operation.

Problem 2. Results about Groups (24 points)

This is a collection of results in elementary group theory.

- 1. Let x, y be elements of a group G. Show that xy and yx have the same order in G.
- 2. Let H be a subgroup of G, and let $g \in G$. If |g| = n and $g^m \in H$ where n and m are co-prime integers, then show that $g \in H$.
- 3. Let a and b be elements of a group G. Assume that a has order 7 and that $a^3b = ba^3$. Prove that ab = ba.
- 4. An *n*th root of unity is a complex number z such that $z^n = 1$. Prove that the *n* th roots of unity form a cyclic subgroup of the multiplicative complex numbers of order *n*.
- 5. Determine the product of all the nth roots of unity. '
- 6. Let G be an abelian group written multiplicatively. Show that in any finite group

$$\prod_{g \in G} g^2 = 1.$$

We have just generalized Wilson's theorem.

Problem 3. Quadratic Residues (24 points)

Let p be an odd prime.

- 1. Prove that there exists a prime less than p which is a quadratic nonresidue modulo p. That is, there exists q such that $\left(\frac{q}{p}\right) = -1$.
- 2. Show that the smallest quadratic nonresidue modulo p (when considered in the set $\{1, \dots, p-1\}$) must be a prime.

In fact, we will now prove that this q can be chosen to be less than $\sqrt{p} + 1$.

3. Consider the smallest quadratic nonresidue r and suppose for the sake of contradiction that $r \ge \sqrt{p} + 1$. Notice this means that $r \cdot (r-1) > (r-1)^2 \ge p$. Now consider the following numbers $\{r, 2r, \dots, (r-1)r\}$

We know that the first number r is less than p and that the last number in the set (r-1)r is greater than p. Let a be the smallest positive integer such that ra > p, which is the same as saying r(a-1) .

Think of two different ways of finding the Legendre symbol $\left(\frac{ra}{p}\right)$ and arrive at a contradiction.

Problem 4. Modular Arithmetic (24 points)

Let p be a prime and let q be a prime that divides p-1.

- 1. Let $a \in \mathbb{F}_p^*$ and let $b = a^{(p-1)/q}$. Prove that either b = 1 or else b has order q.
- 2. Suppose that we want to find an element of \mathbb{F}_p^* of order q. Using part (a), we can randomly choose a value of $a \in \mathbb{F}_p^*$ and check whether $b = a^{(p-1)/q}$ satisfies $b \neq 1$. How likely are we to succeed? In other words, compute the value of the ratio

$$\frac{\#\{a \in \mathbb{F}_p : a^{(p-1)/q} \neq 1\}}{\#\mathbb{F}_p^{\times}}.$$

3. Let p be a prime such that $q = \frac{1}{2}(p-1)$ is also prime. Suppose that g is an integer satisfying $g \not\equiv \pm 1 \pmod{p}$ and $g^q \not\equiv 1 \pmod{p}$. Prove that g is a primitive root modulo p.

Problem 5. Some Cryptography (35 points)

Alice and Bob create a symmetric cipher as follows. Their private key k is a large integer and their messages (plaintexts) are d-digit integers $M = \{m \in \mathbb{Z} : 0 \le m < 10^d\}$. To encrypt a message, Alice computes α as the square root of k to d decimal places, throws away the part to the left of the decimal point, and keeps the remaining d digits. Let α be this d-digit number. (For example, if k = 87 and d = 6, then $\alpha = 327379$.)

Alice encrypts a message m as

$$c \equiv m + \alpha \pmod{10^d}$$
.

Since Bob knows k, he can also find α , and then he decrypts c by computing $m \equiv c - \alpha \pmod{10^d}$.

- 1. Alice and Bob choose the secret key k=11 and use it to encrypt 6-digit integers (i.e., d=6). Bob wants to send Alice the message m=328973. What is the ciphertext that he sends?
- 2. Alice and Bob use the secret key k=23 and use it to encrypt 8-digit integers. Alice receives the ciphertext c=78183903. What is the plaintext m?
- 3. Show that the number α used for encryption and decryption is given by the formula

$$\alpha = \lfloor 10^d (\sqrt{k} - \lfloor \sqrt{k} \rfloor) \rfloor,$$

where |t| denotes the greatest integer that is less than or equal to t.

- 4. (Bonus Problem: 10 points) If Eve steals a plaintext/ciphertext pair (m, c), then it is clear that she can recover the number α , since $\alpha \equiv c m \pmod{10^d}$. If 10^d is large compared to k, can she also recover the number k? This might be useful, for example, if Alice and Bob use some of the other digits of subsequent messages.
- 5. Alejandro and Bilal use a different cryptosystem one in which their private key is a (large) prime k and their plaintexts and ciphertexts are integers. Bilal encrypts a message m by computing the product c = km. Eve intercepts the following two ciphertexts: $c_1 = 12849217045006222$ and $c_2 = 6485880443666222$. Find Bilal and Alejandro's private key.

Problem 6. Birthday Attacks against Discrete Logarithms (35 points)

- 1. Assuming no leap years and uniform distribution of birthdays, as well as independence. Prove that in a room of 23 people, there exists at least 2 with the same birthday with a probability greater than 50%.
- 2. Generalize this by computing P(N, k) that exact probability that at least one collision occurs when N elements are uniformly and independently distributed across k bins. ³ You may assume that $N \leq k$.

In the following parts, you may find it useful to use the fact that

$$(1 - e^{-1})x \le 1 - e^{-x} \le x$$

when $x \in [0, 1]$.

3. Show that this probability can can bounded as

$$1 - \exp\left(\frac{-N(N-1)}{2k}\right) \le P(N,k) \le \frac{N(N-1)}{2k}.$$

4. By slightly adjusting your estimate, show that when $N \leq \sqrt{2k}$, we have that

$$P(N,k) \ge (1 - e^{-1}) \frac{N(N-1)}{2k}.$$

5. Implement this birthday attack against the discrete logarithm. That is, write a program which, given a prime p, some primitive root g modulo p and a value y, finds the discrete logarithm x such that $g^x \equiv y \pmod{p}$, assuming that x is small (at most 45 bits).

Use g = 3, p = 1223439062505387810550553, and y = 928594445087275299406553.

³So the previous problem would be with N=23 people distributed across k-365 bins.

⁴This assumption is important and crucial.

Problem 0. Survey (7 points)

Complete the following survey by rating each of the problems you solved on a scale of 1 to 10 according to how interesting you found the problem (1 = "mind numbing," 10 = "mind blowing"), and how difficult you found the problem (1 = "trivial," 10 = "brutal"). Also estimate the amount of time you spent on each problem to the nearest half hour. ⁵

	Interest	Difficulty	Time Spent
Problem 1			
Problem 2			
Problem 3			
Problem 4			
Problem 5			
Problem 6			

Please rate each of the following lectures/sessions that you attended on a scale of 1 to 10, according to the quality of the material (1="pointless", 10="priceless"), the quality of the presentation (1="epic fail", 10="perfection"), the pace (1="watching paint dry", 10="head still spinning"), and the novelty of the material (1="old hat", 10="all new").

Date	Lecture Topic	Material	Presentation	Pace	Novelty
01/23	Quadratic Residues and Primitive Roots				
01/24	Group Theory				
01/25 More Group Theory/Cryptography					

Feel free to record any additional comments you have on the problem sets or lectures; in particular, how you think they could be improved (which they surely can!).

 $^{^5{\}rm This}$ survey, as well the template of the Pset, is copied from Andrew Sutherland's 18.783 problem sets.