TD - Automates

I Algorithmes de déterminisation

1.

2. $L = a((b|a)bb^*a)^*$

II Clôture des langages reconnaissables

1. Soit $A = (\Sigma, Q, I, F, \delta)$ tq L = L(A)Soit $A' = (\Sigma, Q, F, I\delta')$ où $\delta'(q, a) = \{q | \delta(q', a) = q\}$

- Mq: $m \in L(\tilde{A}) \Leftrightarrow ... \Leftrightarrow m \in \widetilde{L(A)}$
 - $m = m_1...m_n \in L(\tilde{A})$
 - $\Leftrightarrow \exists \text{ chemin } q_0 \leftarrow q_1 ... \leftarrow q_n \text{ dans } \tilde{A}$
 - $\Leftrightarrow \exists \text{ chemin } q_0 \to q_1 \dots \to q_n \text{ dans } A$
 - $\Leftrightarrow m_1...m_n \in L(A)$
 - $\Leftrightarrow \tilde{m} \in L(A)$
 - $\Leftrightarrow \in \widetilde{L(A)}$
- 2. Soit $A = (\Sigma, Q, I, F, \delta)$ to L = L(A)

Soit $A' = (\Sigma, Q, I, F', \delta)$ où F' est l'ensembles des états co-accessibles dans A,

$$m \in L(A') \Leftrightarrow m \in Pref(L)$$

Soit $A'' = (\Sigma, Q, I', F, \delta)$ où I' est l'ensembles des états accessibles dans A

Soit
$$A''' = (\Sigma, Q, I', F', \delta)$$

- 3. H_n : "Si e est une expression rationnelle de taille n alors il existe une expression rationnelle pour Pref(e)"
 - H_1 , $e = \emptyset$, ε , $a \in \Sigma$

$$Pref(\varnothing) = \varnothing, Pref(\varepsilon) = \varepsilon, Pref(a) = \varepsilon | a$$

- Soit $n \in \mathbb{N}^*$, supposons H_k , $\forall k \leq n$

Soit e expression rationnelle de taille n + 1:

- (a) Si $e = e_1|e_2$: $Pref(e) = Pref(e_1)|Pref(e_2)$, une expression rationnelle
- (b) Si $e = e_1e_2$: $Pref(e) = Pref(e_1)|e_1Pref(e_2)$, une expression rationnelle
- (c) Si $e = e_1^*$: $Pref(e) = e_1^* Pref(e_1)$, une expression rationnelle
- $Suff(L) = Pref(\tilde{L})$, or \tilde{L} est rationnelle d'après cours, donc $Pref(\tilde{L})$ est également rationnelle d'après ce que l'on vient de démontrer.
- Fact(L) = Suff(Pref(L))

III Reconnaissable ou non?

1.

Ainsi, il existe un automate A_1 tel que $L(A_1) = L_1$ donc L_1 est reconnaissable.

2.

De même, il existe un automate A_2 tel que $L(A_2)=L_2$ donc L_2 est reconnaissable.

3. Même démo que pour $\{a^nb^n|n\in\mathbb{N}\}$:

$$\{a^nb^n|n\in\mathbb{N}\}=L_3\cap a^*b^*\implies L_3$$
 non reconnaissable.

4.

5. Supposons L_5 reconnaissable,

Soit n l'entier donné par le Lemme de l'Étoile,

Il existe p, nombre premier supérieur à n

Soit $u = a^p$. $u \in L_5$ et $|u| \ge n$ donc :

$$\exists x,y,z \in \Sigma^* \text{ tq } u = xyz, \, |xy| \leq n, \, y \neq \varepsilon$$

$$\exists i, jk \text{ tq } x = a^i, y = a^j, z = a^k$$

$$xy^{i+k}z = a^i a^{j(i+k)} a^k = a^{(i+k)(1+j)} \notin L_5 \text{ car } k \ge 2$$

Absurde, donc L_5 non reconnaissable.

IV Algorithmes sur les automates

- V Oral ENS info
- VI Algorithme KMP
- VII Résiduel