

Table of Contents

- **Engineer New Features**
- 2 Data Preprocessing
- **3** Feature Selection
- **Build and Evaluate Machine Learning Models**
- 5 Final Four and Championship Prediction

Instead of analyzing the stats of each team....

Transform the features into DIFFERENCE and QUOTIENT in each of 63 games and predict the probability

Current Log Loss 0.53

Model Accuracy **79.10%**

PIPELINE

FEATURE ENGINEERING DATA PREPROCESSING

FEATURE SELECTION MODEL COMPARISON

TOOLS USED

Python

Data Preprocessing
Feature Engineering
Model Construction
Data Visualization

Excel

Log Loss Calculation
Data Preview
Prediction Submission

6

Step 1: FEATURE ENGINEERING

VARIABLE DIFFERENCES ARE CONSIDERED

Contrast the variable differences between 2 teams in each game, instead of analyzing each individual team

TRANSFORMATION OF FEATURES

Transform all the features of 2 teams in each game into Difference and Quotient.

Difference = Team 1 Feature n - Team 2 Feature n

Quotient = $\frac{\text{Team 1 Feature n}}{\text{Team 2 Feature n}}$

SIMILAR FEATURES ELIMINATED

Ignore the similar features of each team such as Team1_blockpct, Team2_blockpct, etc. because those are irrelevant in this method.

1. Shuffle and Switch

Original Dataset	How We Processed the Data
Sorted by year	Shuffle the year
Team 1 is always the winning team	Switch Team 1 and Team 2 data

2. Replace NULL values in 'ap_ranking' with 45

Each team has four ranking variables where only the top 25 teams will have a value. We assigned teams with NULL value a rank of 45.

3. Replace all 0 with 0.1

Each team has 10 variables that include 0 value. We replaced 0 with 0.1 to avoid those being considered as null in further statistical analysis.

Step 3: FEATURE SELECTION

Positive

Negative

Feature Selection

REMOVING CORRELATED VARIABLES

Figure 1. Correlation Matrix of All Variables

- Calculated a correlation matrix
- Removed variables that have a correlation higher than 0.9.
- As a result, 30 variables were dropped

This was done in order to avoid multicollinearity problem.

Feature Engineering Data Preprocessing

Step 3: FEATURE SELECTION – CON'T

USING RANDOM FOREST TO PERFORM FEATURE SELECTION

Use Random Forest to select top 11 variables with the highest predictor importance as input variables.

	Selected Variables	Explanation
1	d_team_seed	Team seed in the tournament [difference]
2	q_team_seed	Team seed in the tournament [quotient]
3	q_ap_final	The final AP Poll ranking of each team (top 25 only) 16 [quotient]
4	d_ap_preseason	The preseason AP Poll ranking of each team (top 25 only) [difference]
5	q_ap_preseason	The preseason AP Poll ranking of each team (top 25 only) 16 [quotient]
6	d_coaches_before_final	The most recent Coaches Poll rankings before the final [difference]
7	q_coaches_before_final	The most recent Coaches Poll rankings before the final 16 [quotient]
8	d_oppfg3pct	Opponent's shooting percentage on 3 point field goals [difference]
9	d_oe	Points scored per 100 offensive possessions [difference]
10	d_adjoe	An estimate of the offensive efficiency (points scored per 100 possessions) a team would have against the average D-I defense [difference]
11	d_adjde	An estimate of the defensive efficiency (points allowed per 100 possessions) a team would have against the average D-I offense [difference]

Figure 2. Table Showing
11 Selected Variables
With Explanation

Step 4: BUILD & EVALUATE DIFFERENT MODELS

Figure 3. Table Comparing The Performance Of Four Models

Random Forest Classifier is the most optimal model:

- Accuracy: 79.10%

- Log Loss: 0.5252

- 5-fold Cross Validation Score: 0.7420

- F-1 Score: 0.76 (Team 2 Wins) 0.82 (Team 1 Wins)

Figure 4. Confusion Matrix for Random Forest Classifier

Step 5: FINAL FOUR AND CHAMPIONSHIP PREDICTION

CHAMPION PREDICTION BASED ON ACTUAL CURRENT FINAL FOUR AS OF MARCH 2019

Only .02 percent of people correctly predicted the 2019 Final Four in the NCAA Bracket Challenge Game

WHO THE WORLD PICKED TO BE THE FINAL FOUR

CORRECT FINAL FOUR PICKS	PERCENT
0	43.75%
1	45.07%
2	10.32%
3	0.84%
4	0.02%

YEAR	PERCENT OF BRACKETS WITH PERFECT FINAL FOUR
2011	0.0
2012	0.31
2013	0.0
2014	0.006
2015	1.61
2016	0.09
2017	0.003
2018	0.003
2019	0.02

Figure 5. Data Based on Brackets Entered Into NCAA's Bracket Challenge Game

Limitations & Further Suggestions

LIMITATIONS

- **Upsets happen** every season and that could easily mess with your log loss
- Model is based heavily on features team seed, AP Ranking and Coach Ranking. There should be **a random noise feature added** to account for upsets, especially in the last few matches
- **Bias in machine learning model**: Models are black boxes. By assessing several ways to evaluate a model only then can we commit to reduce biases.

FURTHER SUGGESTIONS FOR IMPROVEMENT

- Spend more time **tuning the hyperparameters** using Grid Search and other methods.
- Collect and quantify alternative data
 points: sports betting data, expert
 opinion, fan polls
- Use PCA and other dimension reduction methods to predict considering sports analytics data always a vast amount of variables but maybe fewer rows

