

CS 247 – Scientific Visualization Lecture 10: Scalar Fields, Pt.6 [preview]

Markus Hadwiger, KAUST

Reading Assignment #5 (until Feb 28)

Read (required):

Gradients of scalar-valued functions

```
https://en.wikipedia.org/wiki/Gradient
```

Critical points

```
https://en.wikipedia.org/wiki/Critical_point_(mathematics)
```

Multivariable derivatives and differentials

Dot product, inner product (more general)

```
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Inner product space
```

From 2D to 3D (Domain)

2D - Marching Squares Algorithm:

- 1. Locate the contour corresponding to a user-specified iso value
- 2. Create lines

3D - Marching Cubes Algorithm:

- 1. Locate the surface corresponding to a user-specified iso value
- 2. Create triangles
- 3. Calculate normals to the surface at each vertex
- 4. Draw shaded triangles

Marching Cubes

- For each cell, we have 8 vertices with 2 possible states each (inside or outside).
- This gives us 2⁸ possible patterns = 256 cases.
- Enumerate cases to create a LUT
- Use symmetries to reduce problem from 256 to 15 cases.

Explanations

- Data Visualization book, 5.3.2
- Marching Cubes: A high resolution 3D surface construction algorithm, Lorensen & Cline, ACM SIGGRAPH 1987

Contours of 3D scalar fields are known as isosurfaces. Before 1987, isosurfaces were computed as

- contours on planar slices, followed by
- "contour stitching".

The marching cubes algorithm computes contours directly in 3D.

- Pieces of the isosurfaces are generated on a cell-by-cell basis.
- Similar to marching squares, a 8-bit number is computed from the 8 signs of $\tilde{f}(x_i)$ on the corners of a hexahedral cell.
- The isosurface piece is looked up in a table with 256 entries.

How to build up the table of 256 cases?

Lorensen and Cline (1987) exploited 3 types of symmetries:

- rotational symmetries of the cube
- reflective symmetries of the cube
- sign changes of $\tilde{f}(x_i)$

They published a reduced set of 14^{*)} cases shown on the next slides where

- white circles indicate positive signs of $\tilde{f}(x_i)$
- the positive side of the isosurface is drawn in red, the negative side in blue.

^{*)} plus an unnecessary "case 14" which is a symmetric image of case 11.

Do the pieces fit together?

- The correct isosurfaces of the trilinear interpolant would fit (trilinear reduces to bilinear on the cell interfaces)
- but the marching cubes polygons don't necessarily fit.

Example

- case 10, on top of
- case 3 (rotated, signs changed)

have matching signs at nodes but polygons don't fit.

Summary of marching cubes algorithm:

Pre-processing steps:

- build a table of the 28 cases
- derive a table of the 256 cases, containing info on
 - intersected cell edges, e.g. for case 3/256 (see case 2/28):
 (0,2), (0,4), (1,3), (1,5)
 - triangles based on these points, e.g. for case 3/256:
 (0,2,1), (1,3,2).

Loop over cells:

- find sign of $\tilde{f}(x_i)$ for the 8 corner nodes, giving 8-bit integer
- use as index into (256 case) table
- find intersection points on edges listed in table, using linear interpolation
- generate triangles according to table

Post-processing steps:

- connect triangles (share vertices)
- compute normal vectors
 - by averaging triangle normals (problem: thin triangles!)
 - by estimating the gradient of the field $f(x_i)$ (better)

Triangle Mesh Data Structure (1)

Store list of vertices; vertices shared by triangles are replicated

Render, e.g., with OpenGL immediate mode, ...

Redundant, large storage size, cannot modify shared vertices easily Store data values per face, or separately

Triangle Mesh Data Structure (2)

Indexed face set: store list of vertices; store triangles as indexes

Render using separate vertex and index arrays / buffers

Less redundancy, more efficient in terms of memory

Easy to change vertex positions; still have to do (global) search for shared edges (local information)

Orientability (2-manifold embedded in 3D)

Orientability of 2-manifold:

Possible to assign consistent normal vector orientation

not orientable

Moebius strip (only one side!)

Triangle meshes

- Edges
 - Consistent ordering of vertices: CCW (counter-clockwise) or CW (clockwise) (e.g., (3,1,2) on one side of edge, (1,3,4) on the other side)
- Triangles
 - Consistent front side vs. back side
 - Normal vector; or ordering of vertices (CCW/CW)
 - See also: "right-hand rule"

Iso-Surface / Volume Illumination

What About Volume Illumination?

Crucial for perceiving shape and depth relationships

this is a scalar volume (3D distance field)!

Local Illumination in Volumes

Interaction between light source and point in the volume Local shading equation; evaluate at each point along a ray

Use color from transfer function as material color; multiply with light intensity

This is the new "emissive" color in the emission/absorption optical model

Composite as usual

Local Illumination Model: Phong Lighting Model 🤏

$$\mathbf{I}_{\mathrm{Phong}} = \mathbf{I}_{\mathrm{ambient}} + \mathbf{I}_{\mathrm{diffuse}} + \mathbf{I}_{\mathrm{specular}}$$

Local Illumination Model: Phong Lighting Model 🤏

$$\mathbf{I}_{\mathrm{Phong}} = \mathbf{I}_{\mathrm{ambient}} + \mathbf{I}_{\mathrm{diffuse}} + \mathbf{I}_{\mathrm{specular}}$$

Local Shading Equations

Standard volume shading adapts surface shading

Most commonly Blinn/Phong model

But what about the "surface" normal vector?

specular reflection

The Dot Product (Scalar / Inner Product)

Cosine of angle between two vectors times their lengths

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^n a_i b_i$$

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$$

(standard inner product in Cartesian coordinates)

Many uses:

Project vector onto another vector, project into basis, project into tangent plane,

Local Illumination Model: Phong Lighting Model 🧩

$$\mathbf{I}_{\mathrm{Phong}} = \mathbf{I}_{\mathrm{ambient}} + \mathbf{I}_{\mathrm{diffuse}} + \mathbf{I}_{\mathrm{specular}}$$

$$\mathbf{I}_{\mathrm{ambient}} = k_a \, \mathbf{M}_a \, \mathbf{I}_a$$

Local Illumination Model: Phong Lighting Model 🥦

$$\mathbf{I}_{\mathrm{Phong}} = \mathbf{I}_{\mathrm{ambient}} + \mathbf{I}_{\mathrm{diffuse}} + \mathbf{I}_{\mathrm{specular}}$$

$$\mathbf{I}_{\text{diffuse}} = k_d \, \mathbf{M}_d \, \mathbf{I}_d \cos \varphi \quad \text{if } \varphi \leq \frac{\pi}{2}$$
$$= k_d \, \mathbf{M}_d \, \mathbf{I}_d \max((\mathbf{n} \cdot \mathbf{l}), 0)$$

Local Illumination Model: Phong Lighting Model 🥦

 $I_{Phong} = I_{ambient} + I_{diffuse} + I_{specular}$

$$\mathbf{I}_{\mathrm{specular}} = k_s \, \mathbf{M}_s \, \mathbf{I}_s \cos^n \rho \,, \quad \mathrm{if} \ \rho \leq \frac{\pi}{2}$$

$$= k_s \, \mathbf{M}_s \, \mathbf{I}_s \, (\mathbf{r} \cdot \mathbf{v})^n$$
must also clamp!

Local Illumination Model: Phong Lighting Model 🥦

$$\mathbf{I}_{\mathrm{Phong}} = \mathbf{I}_{\mathrm{ambient}} + \mathbf{I}_{\mathrm{diffuse}} + \mathbf{I}_{\mathrm{specular}}$$

$$\mathbf{I}_{\mathrm{specular}} \approx k_s \, \mathbf{M}_s \, \mathbf{I}_s \, (\mathbf{h} \cdot \mathbf{n})^n$$

$$\mathbf{h} = rac{\mathbf{v} + \mathbf{l}}{\|\mathbf{v} + \mathbf{l}\|}$$
 must also clamp! half-way vector

The Gradient as Normal Vector

Gradient of the scalar field gives direction+magnitude of fastest change

$$\mathbf{g} = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)^{\mathbf{T}} \quad \text{(only correct in Cartesian coordinates [see later lectures])}$$

Local approximation to isosurface at any point: tangent plane = plane orthogonal to gradient

Normal of this isosurface: normalized gradient vector (negation is common convention)

$$\mathbf{n} = -\mathbf{g}/|\mathbf{g}|$$

Gradient and Directional Derivative

Gradient $\nabla f(x, y, z)$ of scalar function f(x, y, z):

(in Cartesian coordinates)

$$\nabla f(x, y, z) = \left(\frac{\partial f(x, y, z)}{\partial x}, \frac{\partial f(x, y, z)}{\partial y}, \frac{\partial f(x, y, z)}{\partial z}\right)^{T}$$

Directional derivative in direction **u**:

$$D_{\mathbf{u}}f(x,y,z) = \nabla f(x,y,z) \cdot \mathbf{u}$$

And therefore also:

$$D_{\mathbf{u}}f(x,y,z) = ||\nabla f|| \, ||\mathbf{u}|| \, \cos \theta$$

Gradient and Directional Derivative

Gradient $\nabla f(x,y,z)$ of scalar function f(x,y,z):

(in Cartesian coordinates)

$$\nabla f(x, y, z) = \left(\frac{\partial f(x, y, z)}{\partial x}, \frac{\partial f(x, y, z)}{\partial y}, \frac{\partial f(x, y, z)}{\partial z}\right)^{T}$$

(Cartesian vector components; basis vectors not shown)

But: always need basis vectors! With Cartesian basis:

$$\nabla f(x, y, z) = \frac{\partial f(x, y, z)}{\partial x} \mathbf{i} + \frac{\partial f(x, y, z)}{\partial y} \mathbf{j} + \frac{\partial f(x, y, z)}{\partial z} \mathbf{k}$$

What about the Basis?

On the previous slide, this actually meant

$$\nabla f(x, y, z) = \frac{\partial f(x, y, z)}{\partial x} \mathbf{i}(x, y, z) + \frac{\partial f(x, y, z)}{\partial y} \mathbf{j}(x, y, z) + \frac{\partial f(x, y, z)}{\partial z} \mathbf{k}(x, y, z)$$

It's just that the Cartesian basis vectors are the same everywhere...

But this is not true for many other coordinate systems:

Cartesian coordinates

polar coordinates

What about the Basis?

On the previous slide, this actually meant

$$\nabla f(x, y, z) = \frac{\partial f(x, y, z)}{\partial x} \mathbf{i}(x, y, z) + \frac{\partial f(x, y, z)}{\partial y} \mathbf{j}(x, y, z) + \frac{\partial f(x, y, z)}{\partial z} \mathbf{k}(x, y, z)$$

It's just that the Cartesian basis vectors are the same everywhere...

But this is not true for many other coordinate systems:

Cartesian coordinates

polar coordinates

The Gradient as a Differential Form

The gradient as a *differential* (differential 1-form) is the "primary" concept (also "total differential" or "total derivative")

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz$$

A differential 1-form is a scalar-valued linear function that takes a (direction) vector as input, and gives a scalar as output

Each of the 1-forms df, dx, dy, dz takes direction vector as input, gives scalar output

In the expression of the gradient df above, all 1-forms on the right-hand side get the same vector as input

df is simply a linear combination of the coordinate differentials dx, dy, dz

The Gradient as a Differential Form

The gradient as a *differential* (differential 1-form) is the "primary" concept (also "total differential" or "total derivative")

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz$$

The directional derivative and the gradient vector

$$D_{\mathbf{u}}f = df(\mathbf{u})$$
$$df(\mathbf{u}) = \nabla f \cdot \mathbf{u}$$

The gradient vector is then *defined*, such that:

$$\nabla f \cdot \mathbf{u} := df(\mathbf{u})$$

Gradient Vectors and Differential 1-Forms

from Wikipedia (for **u** a unit vector), the function here is $f(x,y) = x^2 + y^2$ $\nabla f(x,y) = 2x\mathbf{i} + 2y\mathbf{j}$

Gradient Vectors and Differential 1-Forms

from Wikipedia (for u a unit vector),

the function here is
$$f(x,y) = x^2 + y^2$$

$$\nabla f(x,y) = 2x\,\mathbf{e}_x + 2y\,\mathbf{e}_y$$

$$df(x,y) = 2x dx + 2y dy$$

Gradient Vectors and Differential 1-Forms

how about in polar coordinates?

Gradient Vectors and Differential 1-Forms

how about in polar coordinates?

Gradient Vectors and Differential 1-Forms

different 1-forms evaluated in some direction

1-form (field) df

from Wikipedia (for \mathbf{u} a unit vector), the function here is $f(r,\theta)=r^2$ $\nabla f(r,\theta)=2r\mathbf{e}_r+0\frac{1}{r^2}\mathbf{e}_\theta=2r\mathbf{e}_r$ $df(r,\theta)=2rdr+0d\theta=2rdr$

Interlude: Tensor Calculus

In tensor calculus, first-order tensors can be

- Contravariant $\mathbf{v} = v^i \, \mathbf{e}_i$
- Covariant $\mathbf{\omega} = v_i \, \mathbf{\omega}^i$

The gradient vector is a contravariant vector $\mathbf{v} = v^i \boldsymbol{\partial}_i$ The gradient 1-form is a covariant vector (a covector) $df = \frac{\partial f}{\partial x^i} dx^i$

Very powerful; necessary for non-Cartesian coordinate systems
On (intrinsically) curved manifolds (sphere, ...):
Cartesian coordinates not even possible

Interlude: Tensor Calculus

In tensor calculus, first-order tensors can be

- Contravariant $\mathbf{v} = v^i \, \mathbf{e}_i$
- Covariant $\mathbf{\omega} = v_i \, \mathbf{\omega}^i$

The gradient vector is a contravariant vector
$$\mathbf{v} = v^i \boldsymbol{\partial}_i$$

The gradient 1-form is a covariant vector (a covector) $df = \frac{\partial f}{\partial x^i} dx^i$

This is also the fundamental reason why in graphics a normal vector transforms differently: as a covector, not as a vector!

(typical graphics rule: **n** transforms with transpose of inverse matrix)

Metric Tensor (Field)

Symmetric second-order tensor field: *Defines* inner product

$$\langle \mathbf{v}, \mathbf{w} \rangle := \mathbf{g}(\mathbf{v}, \mathbf{w}) = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta$$

$$\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle$$

$$= \mathbf{g}(\mathbf{v}, \mathbf{v})$$

$$= g_{ij} v^i v^j$$

$$= \mathbf{v}^T \mathbf{g} \mathbf{v}$$

Symmetric second-order tensor field: *Defines* inner product

$$\langle \mathbf{v}, \mathbf{w} \rangle := \mathbf{g}(\mathbf{v}, \mathbf{w}) = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta$$

$$\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle$$

$$= \mathbf{g}(\mathbf{v}, \mathbf{v})$$

$$= g_{ij} v^i v^j$$

$$= \mathbf{v}^T \mathbf{g} \mathbf{v}$$

$$\mathbf{g} = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \tag{2D}$$

$$\|\mathbf{v}\|^2 = \begin{bmatrix} v^1 & v^2 \end{bmatrix} \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \begin{bmatrix} v^1 \\ v^2 \end{bmatrix}$$

Metric Tensor (Field)

Symmetric second-order tensor field: *Defines* inner product

$$\langle \mathbf{v}, \mathbf{w} \rangle := \mathbf{g}(\mathbf{v}, \mathbf{w}) = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta$$

$$\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle$$

$$= \mathbf{g}(\mathbf{v}, \mathbf{v})$$

$$= g_{ij} v^i v^j$$

$$= \mathbf{v}^T \mathbf{g} \mathbf{v}$$

Cartesian coordinates:

$$\mathbf{g} = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \tag{2D}$$

$$\|\mathbf{v}\|^2 = \begin{bmatrix} v^1 & v^2 \end{bmatrix} \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \begin{bmatrix} v^1 \\ v^2 \end{bmatrix}$$

$$\mathbf{g} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\|\mathbf{v}\|^2 = \begin{bmatrix} v^1 & v^2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v^1 \\ v^2 \end{bmatrix} = \mathbf{v}^T \mathbf{v}$$

Components referred to coordinates

$$g_{ij} := \langle \mathbf{e}_i, \mathbf{e}_j \rangle$$

A second-order tensor field is bi-linear, i.e., linear in each (vector) argument separately

Therefore, we immediately get:

$$\mathbf{g}(\mathbf{v}, \mathbf{v}) = \mathbf{g}(v^i \mathbf{e}_i, v^j \mathbf{e}_j)$$
$$= v^i v^j \mathbf{g}(\mathbf{e}_i, \mathbf{e}_j)$$
$$= g_{ij} v^i v^j$$

Tensor Calculus

Highly recommended:

Very nice book, complete lecture on Youtube!

Introduction to Tensor Analysis and the Calculus of Moving Surfaces

Springer

(Numerical) Gradient Reconstruction

We need to reconstruct the derivatives of a continuous function given as discrete samples

Central differences

Cheap and quality often sufficient (2*3 neighbors in 3D)

Discrete convolution filters on grid

• Image processing filters; e.g. Sobel (3³ neighbors in 3D)

- Derived continuous reconstruction filters
- E.g., the cubic B-spline and its derivatives (4³ neighbors)

Finite Differences

Obtain first derivative from Taylor expansion

$$f(x_0 + h) = f(x_0) + \frac{f'(x_0)}{1!}h + \frac{f''(x_0)}{2!}h^2 + \dots$$
$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!}h^n.$$

Forward differences / backward differences

$$f(x_0)' = \frac{f(x_0 + h) - f(x_0)}{h} + o(h)$$
$$f(x_0)' = \frac{f(x_0) - f(x_0 - h)}{h} + o(h)$$

Finite Differences

Central differences

$$f(x_0 + h) = f(x_0) + \frac{f'(x_0)}{1!}h + \frac{f''(x_0)}{2!}h^2 + o(h^3)$$

$$f(x_0 - h) = f(x_0) - \frac{f'(x_0)}{1!}h + \frac{f''(x_0)}{2!}h^2 + o(h^3)$$

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} + o(h^2)$$

Central Differences

Need only two neighboring voxels per derivative

Thank you.

Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama