Satisfiability Checking 24 The cylindrical algebraic decomposition method I

Prof. Dr. Erika Ábrahám

RWTH Aachen University Informatik 2 LuFG Theory of Hybrid Systems

WS 22/23

Reminder: Real arithmetic (NRA)

Syntax

```
Polynomials: p ::= const | x | (p+p) | (p \cdot p) | Constraints: c ::= p = 0 | p < 0 | p > 0 | Formulas: \varphi ::= c | \neg \varphi | \varphi \land \varphi | \exists x. \varphi
```

where $const \in \mathbb{Q}$ is a constant and x a real-valued variable.

- Syntactic sugar: \neq , \leq , \geq , \forall , \vee , \rightarrow , ...
- Normal form: $p = a_1 x_1^{e_{1,1}} \cdots x_n^{e_{1,n}} + \cdots + a_k x_1^{e_{k,1}} \cdots x_n^{e_{k,n}}$
- deg(p) := max; {\frac{1,...k}{\frac{1,..
 - Though CAD can be applied to general NRA formulas, for simplicity, here we consider only the satisfiability check of quantifier-free formulas (existential fragment of NRA).

Reminder: Connection to SMT

24 The cylindrical algebraic decomposition method I

1 What is a cylindrical algebraic decomposition?

2 Computing cylindrical algebraic decompositions for $\mathbb R$

3 Computing cylindrical algebraic decompositions for \mathbb{R}^n (next lecture)

NRA solution space (1)

解集
Solution set
$$\mathcal{S}$$

$$\begin{pmatrix} p_1 \sim_1 & 0 \\ \vdots \\ p_m \sim_m & 0 \end{pmatrix} = \{ \mathbf{a} \in \mathbb{R}^n \mid p_i(\mathbf{a}) \sim_i 0 \text{ for all } 1 \leq i \leq m \},$$
能满足所有constraint的变量取值

where $p_i \in \mathbb{Q}[x_1,\ldots,x_n]$, $\sim_i \in \{\leq,<,=,\neq,>,\geq\}$ for $1 \leq i \leq m$.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University)

NRA solution space (2)

Solution set:
$$\mathcal{S}\left(\begin{array}{c} p_1 \sim_1 0 \\ \vdots \\ p_m \sim_m 0 \end{array}\right) = \{a \in \mathbb{R}^n \mid p_i(a) \sim_i 0 \text{ for all } 1 \leq i \leq m\},$$
 where $p_i \in \mathbb{Q}[x_1, \dots, x_n], \sim_i \in \{\leq, <, =, \neq, >, \geq\}$ for $1 \leq i \leq m$.

Example (two-dimensional)

$$S\begin{pmatrix} (x-2)^2 + \\ (y-2)^2 - 1 = 0 \\ x - y = 0 \end{pmatrix}$$

$$= \left\{ \left(2 - \frac{\sqrt{2}}{2}, 2 - \frac{\sqrt{2}}{2}\right), \\ \left(2 + \frac{\sqrt{2}}{2}, 2 + \frac{\sqrt{2}}{2}\right) \right\}$$

Sign-invariant regions

Region

A region of \mathbb{R}^n is a non-empty, connected subset of \mathbb{R}^n .

Example

- For $a, b \in \mathbb{R}$, the set defined by the interval $(a, b) \subseteq \mathbb{R}$ and the point set $\{a\} \subseteq \mathbb{R}$ are regions of \mathbb{R} .
- If R and R' are regions of \mathbb{R} then $R \times R'$ is a region of \mathbb{R}^2 .

Sign of a polynomial

We define
$$\mathrm{sgn}:\mathbb{R} \to \{-1,0,1\}$$
 by

$$\underline{\operatorname{sgn}}(a) := \begin{cases} -1, & a < 0, \\ 0, & a = 0, \\ 1, & a > 0. \end{cases}$$
 P. 多项式 的正负保持不变

Let $P = \{p_1, \dots, p_m\} \subset \mathbb{Q}[x_1, \dots, x_n]$. A region $\mathbb{R} \subseteq \mathbb{R}^n$ is \mathbb{R}^n is $\mathbb{R$ if $\operatorname{sgn}(p_i(a)) = \operatorname{sgn}(p_i(b))$ for all $i \in \{1, ..., m\}$ and $a, b \in R$. 即在变量取值的某一region上,所有constraint的正负保持不变

Example: Sign-invariant regions

$$P = \{x^{2} - 1, 1 - x\}$$

$$\operatorname{sgn}(x^{2} - 1) \qquad 1 \qquad 0 \qquad -1 \qquad 0 \qquad 1$$

$$\operatorname{sgn}(1 - x) \qquad 1 \qquad 1 \qquad 0 \qquad -1$$

The cylindrical algebraic decomposition method

- decomposes \mathbb{R}^n into finitely many P-sign-invariant regions,
- selects a sample from each region and
- checks whether the constraints are satisfied by any sample.

Example: Sign-invariant regions

$$P = \{(x-2)^2 + (y-2)^2 - 1 = 0, x - y = 0\}$$

Cylindrical algebraic decomposition

Definition

- A decomposition of \mathbb{R}^n ($n \ge 1$) is a finite set \mathcal{C} of pairwise disjoint regions in \mathbb{R}^n with $\bigcup_{C \in \mathcal{C}} C = \mathbb{R}^n$.
- A decomposition \mathcal{C} of \mathbb{R}^n is semi-algebraic if each $C \in \mathcal{C}$ can be constructed by finite union intersection and complementation of solution sets of polynomial constraints $p \sim 0$, $p \in \mathbb{Q}[x_1, \dots, x_n]$.
- A decomposition \mathcal{C} of \mathbb{R}^n is cylindrical if either n=1 or the set of the projections of the regions in \mathcal{C} to the first n=1 dimensions is a cylindrical decomposition of \mathbb{R}^{n-1} . Projection either induction of \mathbb{R}^{n-1} .
- A cylindrical algebraic decomposition (CAD) of \mathbb{R}^n is a cylindrical and semi-algebraic decomposition of \mathbb{R}^n . We call $C \in \mathcal{C}$ a cell.
- A CAD for $P \subset \mathbb{Q}[x_1, ..., x_n]$ $(m \ge 1)$ is a CAD of \mathbb{R}^n whose cells are all P-sign-invariant.

2. T. Hat We . T. & cylindrical water

Example: CAD with 47 cells

$$P = \begin{pmatrix} (x-2)^2 + \\ (y-2)^2 - 1, \\ x - y \end{pmatrix}$$

The projected CAD cells in $\mathbb R$ are:

$$(-\infty, \xi_1), \{\xi_1\}, (\xi_1, \xi_2), \{\xi_2\}, (\xi_2, \xi_3), \{\xi_3\}, (\xi_3, \xi_4), \{\xi_4\}, (\xi_4, \infty)$$

Reminder

A CAD for P is a

- **decomposition** of \mathbb{R}^n
- which is cylindrical,

- semi-algebraic,
- and its cells are P-sign-invariant.

24 The cylindrical algebraic decomposition method I

1 What is a cylindrical algebraic decomposition?

2 Computing cylindrical algebraic decompositions for $\mathbb R$

3 Computing cylindrical algebraic decompositions for \mathbb{R}^n (next lecture)

Real roots (zeros) of univariate polynomials

The sign of a polynomial changes only at its (real) roots.

Remark

A polynomial $p \in \mathbb{Q}[x]$ has between 0 and deg(p) real roots.

Example

- $x^3 6x^2 + 11x 6$ has rational roots: 1, 2 and 3.
- $x^3 x^2 2x + 2$ has one rational and two irrational roots: 1, $-\sqrt{2}$ and $\sqrt{2}$.
- $x^5 3x^4 + x^3 x^2 + 2x 2$ has only one real root ≈ 2.70312 , not representable by radicals.

根基,多用于代数领域,=root

Representing real roots (real algebraic numbers)

Interval representation

An interval representation (of a real root) is a pair (p, l) of a univariate polynomial p with rational coefficients and a non-empty open interval $I = (\ell, r) \subseteq \mathbb{R}, \ \ell, r \in \mathbb{Q} \cup \{-\infty, \infty\}$ such that I contains exactly one real root of p. !! open interval !! 如果为closed interval. 则错误

$$(\underbrace{p,}_{\in \mathbb{Q}[x]} \underbrace{(\ell, r)}_{\text{exactly one re.}})$$

exactly one real root of p in the interval (ℓ, r)

Example

Cauchy bound

水出的色所有桃的艺图

Cauchy bound

Assume a univariate polynomial

$$p = a_k x^k + a_{k-1} x^{k-1} + \ldots + a_1 x^1 + a_0 x^0 \in \mathbb{Q}[x]$$

with $a_k \neq 0$. If $\xi \in \mathbb{R}$ is a (real) root of p (i.e. $p(\xi) = 0$) then ai: 常数项a0也包含在内

$$|\xi| \le 1 + \max_{i=0,\dots,k-1} \frac{|a_i|}{|a_k|} := C$$
 (called the Cauchy bound of p).

Example

- $x^2 1 \sim C = 2$
- $x^2-2 \Rightarrow C=3$
- $5 \cdot (x^2 2) = 5x^2 10$ \Rightarrow C = 3
- $(x-3) \cdot (x-5) = x^2 8x + 15 \xrightarrow{|x| \text{ in } \{1/8\}} C = 16$

WS 22/23

Sturm sequence

A Sturm sequence for p allows us to count the real roots of p in an interval.

Sturm's theorem

Assume a square-free (no square factors, i.e., no repeated roots) univariate polynomial $p = a_k x^k + a_{k-1} x^{k-1} + \ldots + a_1 x^1 + a_0 x^0 \in \mathbb{Q}[x]$ with $a_k \neq 0$. For the Sturm sequence p_0, p_1, \ldots, p_l with

- $p_0 = p$
- $p_1 = p'$ (where p' is the derivative of p)
- $p_i = -rem(p_{i-2}, p_{i-1})$ for i = 2, ..., I (where rem is the remainder of the polynomial division of p_{i-2} by p_{i-1}) $rac{1}{r} = rem$ is the remainder of the polynomial division of p_{i-2} by p_{i-1}) $rac{1}{r} = rem$ is the remainder of the polynomial division of p_{i-2} by p_{i-1})
- $rem(p_{l-1}, p_l) = 0$ 如果余数=0,则暂停

let $\sigma(\xi)$ denote the number of sign changes (<u>ignoring zeroes</u>) in the sequence

$$p_0(\xi), p_1(\xi), p_2(\xi), \ldots, p_l(\xi)$$
.

Then for each $a, b \in \mathbb{R}$ with a < b, the number of distinct real roots of p in (a, b) is $\sigma(a) - \sigma(b)$.

Online tools

If you like you can experiment with the online Sturm sequence calculator

https://planetcalc.com/7719/

Sturm sequence: Example

$$p = x^2 + x + 1$$
 with Cauchy bound $C = 2$, $p(-2) \neq 0$ \rightarrow all real roots are in $(-2, 2]$

values at		
-2	2	
+3	+7	
-3	+5	
$-\frac{3}{4}$	$-\frac{3}{4}$	
1	1	
	-2	

Thus this polynomial has 1-1=0 real roots (in (-2,2]).

18 / 27

Sturm sequence: Example

$$p = (x+1)(x+2)(x+3) = x^3 + 6x^2 + 11x + 6$$
, $C = 12$

Sturm sequence	values at				5年安元县
	-12	-3	-2	-1	12
$p_0 = x^3 + 6x^2 + 11x + 6$	_	0	(0)	(0)	+
$p_1 = 3x^2 + 12x + 11$	+	+		+	+
$p_2 = \frac{2}{3}x + \frac{4}{3}$	_	_	(0)	+	+
$p_3 = 1$	+	+	-	+	+
# sign changes $\sigma(\cdot)$	3	2	1	0	0

(对于 sign change 来遊

Sturm sequence: Example

$$p = (x+1)(x+2)(x+3) = x^3 + 6x^2 + 11x + 6$$
, $C = 12$

Sturm sequence	values at				
	-12	-3	-2	-1	12
$p_0 = x^3 + 6x^2 + 11x + 6$	_	0	0	0	+
$p_1 = 3x^2 + 12x + 11$	+	+	_	+	+
$p_2 = \frac{2}{3}x + \frac{4}{3}$	_	_	0	+	+
$p_3 = 1$	+	+	+	+	+
# sign changes	3	2	1	0	0

We can count real roots also for right-open intervals:

- $\sigma(-12) \sigma(12) = 3 0 = 3$ real roots in (-12, 12] $p(12) > 0 \Rightarrow \text{ there are } 3 0 = 3 \text{ real roots in } (-12, 12)$
- $\sigma(-12) \sigma(-1) = 3 0 = 3$ real roots in (-12, -1] $p(-1) = 0 \Rightarrow$ there are 3 - 1 = 2 real roots in (-12, -1)

CAD for univariate polynomials

Assume a set $P = \{p_1 \sim_1 0, \dots, p_k \sim_k 0\}$ of univariate polynomial constraints with $p_i \in \mathbb{Q}[x]$ and $\sim_i \in \{<, \leq, =, \neq, \geq, >\}$.

Real root isolation:

- Cauchy bounds $\rightsquigarrow I = [-C, C]$ contains all real roots of p_1, \ldots, p_k .
- Split \rightarrow [-C-C], (-C, C), [C, C]
- Sturm sequence \sim count the real roots of each p_i in each interval.
- Split each sub-interval that contains either more then one real root of the same polynomial or two different roots of two different polynomials (no check for this introduced here): for (a,b) choose $a < c < b \rightarrow$ sub-intervals (a,c), [c,c], [c,b)

CAD for \mathbb{R} with respect to P:

 $[(p_i, l_j), (p_i, l_j)]$ for each l_j containing a real root of a p_i and open intervals between them.

CAD for univariate polynomials: Example

$$x^2 - 2 > 0$$

- Cauchy bound: C = (-3, 3) contains all real roots of p_1
- Sturm sequence \rightarrow Number of real roots of p_1 in (-3,3): 2
- Split (-3,3) into (-3,0), [0,0], (0,3) strum \Rightarrow () #4 **

 Number of real roots of p_1 in $I_1 = (-3,0)$: 1
- Number of real roots of p_1 in $I_2 = [0,0]$: 0
- Number of real roots of p_1 in $I_3 = (0,3)$: 1

CAD for univariate polynomials: Example

$$x^2 - 2 > 0$$

- $I_1 = (-3,0), I_3 = (0,3)$
- CAD: $[(p_1, l_1), (p_1, l_1)], [(p_1, l_3), (p_1, l_3)], (-\infty, (p_1, l_1)), ((p_1, l_1), (p_1, l_3)), ((p_1, l_3), \infty)$
- Take a sample point from each CAD cell and test the constraints.
- $[(p_1,(-3,0)),(p_1,(-3,0))]$: sample point $(p_1,(-3,0))$, sign 0
- $[(p_1,(0,3)),(p_1,(0,3))]$: sample point $(p_1,(0,3))$, sign 0
- $-(-\infty, (p_1, (-3, 0)))$: sample point -4, sign 1
- $((p_1, (-3, 0)), (p_1, (0, 3)))$: sample point 0, sign -1
- $((p_1, (0,3)), \infty)$: sample point 4, sign 1

CAD for univariate polynomials: Incrementality

- The original method is not incremental.
- We achieve incrementality by refining the CAD.
- Previous split: $I_1 = (-3, 0), I_2 = [0, 0], I_3 = (0, 3)$
- New constraint: $x^2 x 1 > 0$
- Cauchy bound (maximum for p_1 and p_2): $C_2 = (-3,3)$
- Number of real roots of p_2 in $I_1 = (-3,0)$: 1 $(p_1, l_1) \neq (p_2, l_1) \Rightarrow \text{split}$
- Number of real roots of p_2 in $I_2 = [0, 0]$: 0
- Number of real roots of p_2 in $I_3 = (0,3)$: 1 $(p_1, l_3) \neq (p_2, l_3) \Rightarrow \text{split}$

CAD for univariate polynomials: Infeasible subsets

- The original method cannot generate infeasible subsets.
- For \mathbb{R} we collect for each CAD interval one constraint which is not satisfied by the interval.
- The multivariate case is more involved, but the basic idea is still similar.

25 / 27

24 The cylindrical algebraic decomposition method I

1 What is a cylindrical algebraic decomposition?

2 Computing cylindrical algebraic decompositions for $\mathbb R$

3 Computing cylindrical algebraic decompositions for \mathbb{R}^n (next lecture)

Learning target

- What is a cylindrical algebraic decomposition for a set of polynomials?
- How to compute it for the univariate case?
- How to compute it for the multivariate case?
- Given a graphical representation of the real roots of some polynomials, how to illustrate their CAD graphically?