离散数学

Discrete Mathematics

第10章 谓词逻辑

所有的人都是会犯错误的。

张三是人,

所以张三是会犯错误的。

第10章 谓词逻辑

在命题演算中,**原子命题是基本研究单位**,不能再进行分解,研究由原子命题和联结词所组成的复合命题。具有局限性,如:

所有的人都是要死的。

张三是人,

所以张三是要死的。

但用命题推理理论却得不出来。

又如,

李芳是大学生。

张岗是大学生。

在命题逻辑种只能用两个命题来表示,但这样不能表示出两个命题的联系。

在谓词逻辑中,将原子命题分解为<mark>谓词</mark>和个体; '李芳'是个体, '是大学生'为谓词。

10.1 谓词、个体和量词

定义 10-1 可以独立存在的物体称为**个体**(它可以是抽象的,也可以是具体的)。 在谓词逻辑中,个体通常在一个命题里表示思维对象。

定义 10-2 用来刻画个体的性质或关系的词称为谓词。刻画一个个体性质的词称为一元谓词;刻画n个个体之间关系的词称为n元谓词。

例如,"张三是人","是人"为一元谓词;

"张明和张亮是兄弟", "...和...是兄弟"是二元谓词。

用大写字母表示谓词, 小写字母表示个体。

例如,Q表示谓词"是大学生",a和b分别表示"李芳"和"张岗",则命题"李芳是大学生"和"张岗是大学生"分别可以写成Q(a)和Q(b)。

一般地,<u>一个由n个个体和n元谓词所组成的命题可表示为G(a1, a2, ..., an)</u>,n个个体的排列次序有时是重要的。

以命题逻辑中引入的联结词,在这里仍然可以用来构成复合命题。

例如,用Q(a)表示"李芳是大学生";G(b,c)表示"张琦比小红高"

则 Q(a) ∧ G(b, c) 李芳是大学生 且 张琦比小红高

 $Q(a) \vee G(b, c)$ 李芳是大学生 **或则** 张琦比小红高

 $Q(a) \rightarrow G(b, c)$ 如果李芳是大学生 则 张琦比小红高

 $Q(a) \leftrightarrow G(b, c)$ 李芳是大学生 **当且仅当** 张琦比小红高

个体常元: 具体的确定的个体。

个体变元: 抽象的或泛指的(或者说取值不确定的)个体。

例如,Q(x)表示"x是大学生"。

定义10-3 由一个<u>谓词</u>和若干个<u>个体变元</u>组成的表达式称为<mark>简单命题函数</mark>。 $P(x_1, x_2, ..., x_n)$ 。由一个或若干个<u>简单命题函数</u>以及<u>逻辑联结词</u>组成的命题形式称为**复合命题函数**。 $P(x_1, x_2, ..., x_n) \wedge Q(y_1, y_2, ..., y_n)$

简单命题函数和复合命题函数统称为命题函数。 Q(x) ∧ G(y, z)

可将不带个体变元的谓词称为0元谓词。

例如, Q(a), G(b, c); 当Q, G表示具体的性质或关系时, 0元谓词为命题。

命题逻辑中的命题可表示为0元谓词,可看成特殊的谓词。

<u>命题函数并不是一个命题</u>,只有当其中所有的**个体变元**都分别代之以**确定的个体** 才表示一个命题。

定义10-4 在命题函数中,个体变元的取值范围称为个体域。

实际上就是命题函数的定义域,命题函数一般需指明个体域。

例如,P(x)表示 $x^2+1=0$,若x的个体域为实数集,则这是矛盾式;若x的个体域为复数集,则除了P(i)和P(-i)是真值为真的命题外,其余情形均为真值为假的命题。

谓词也有谓词常元和谓词变元:

谓词常元——有确定意义的谓词;

谓词变元——未赋予确定意义的谓词。在下面的讨论中一般是谓词常元。

量词: 在命题里表示数量的词。有全称量词、存在量词和存在唯一量词。

全称量词——表示对所有个体,用符号" $\forall x$ "表示,用来表示"所有的""对任一个""凡是""一切";

例如,B(x): x是圆的。

 $\forall x \ B(x)$ (个体域为球的集合)

存在量词——表示对某些个体,用符号"∃x"表示,用来表示"有某一个""至少存在一个""某些";

例如,S(x): x是红的。

 $\exists x \ S(x)$ (个体域为苹果的集合)

存在唯一量词——表示对唯一个体,用符号"∃!x"表示,用来表示"存在着唯一的一个""恰有一个";

例如, P(x): x是素数; T(x): x是偶数

 $\exists ! x (P(x) \land T(x))$ (个体域为整数集合)

含有量词的命题表达式的含义和真值与个体域的指定有关。

定义10-5 所有的个体聚集在一起所构成的集合,称为**全总个体域**。实际上就是一切事物构成的集合。

在下面的讨论中,均使用全总个体域。

而对于个体变化的真正取值范围,用**特性谓词**加以限制:

<u>对于全称量词,特性谓词常作为蕴含的前件</u>; $\forall x (\mathbf{A}(\mathbf{x}) \rightarrow \mathbf{B}(\mathbf{x}))$

<u>对于存在量词,此特性谓词常作为合取项</u>。 $\exists x (\mathbf{A}(\mathbf{x}) \wedge \mathbf{B}(\mathbf{x}))$

例如: (1) 人总要犯错误的。(2) 有的人用左手写字。

特性谓词M(x): x是人;

F(x): x犯错误; G(x): x用左手写字。

则: (1) $\forall x (M(x) \rightarrow F(x))$ (2) $\exists x (M(x) \land G(x))$

10.2 谓词逻辑公式及解释

为在谓词逻辑(也称一阶逻辑)中进行演算和推理,还必须给出<u>谓词逻辑中公</u> <u>式的抽象定义及解释</u>。为此,首先给出一阶语言的概念:用于一阶逻辑的形式语言。

定义10-6一阶语言F的字母表定义如下:

- (1) **个体变元:** x, y, z, ..., x_i, y_i, ..., i≥1.
- (2) **个体常元:** a, b, c, ..., a_i, b_i, ..., i≥1.
- (3) **函数**符号: f, g, h, ..., f_i, g_i, h_i, ..., i≥1.
- (4) **谓词**符号: F, G, H, ..., F_i, G_i, H_i, ..., i≥1.
- (5) 量词符号: ∀ , ∃ ,∃!
- (6) 连接词符号: ¬, ∨, ∧, →, ↔
- (7) 逗号和圆括号。,()
- 一个符号化的命题是由这些符号所组成的表达式,

但并不是任意一个由此类符号组成的表达式就是命题。

定义10-7 **F的项**的定义如下:

- (1) 任何一个个体变元或常元是项.
- (2) 若f是任意的**n元函数**, $t_1, t_2, ..., t_n$ 是任意的n个项,则 $f(t_1, t_2, ..., t_n)$ 是项。
- (3) 所有的项都是有限次使用(1)(2)得到的。

例如, x, a, b, f(x, a), f(g(a, b), h(x))都是项。

其中,f,g是二元函数,h是一元函数;而h(x,a)不是二元函数。

定义10-8 设P是F的任意n元谓词, $t_1, t_2, ..., t_n$ 是F的任意n个项,则P($t_1, t_2, ..., t_n$)是<u>原</u>子公式,也称为谓词演算中的<u>原子谓词公式</u>。

一个命题或一个命题变元也称为谓词演算中的原子谓词公式。也就是说, 原子谓词公式是不包含联结词和量词的命题函数。

n=0时, $P(t_1, t_2, ..., t_n)$ 也称为<u>原子命题P</u>.

谓词公式(合式公式)的递归定义:

定义10-9

- (1)每个原子谓词公式都是谓词公式.
- (2) 如果A是谓词公式,则¬A也是谓词公式。
- (3) 如果A和B是谓词公式,则($A \lor B$),($A \to B$),($A \leftrightarrow B$)也是谓词公式。
- (4) 如果A是谓词公式,x是A中的个体变元,则∀xA和∃xA也是谓词。
- (5) 只有由使用上述四条规则有限次而得到的才是谓词公式。

个体变元有自由变元和约束变元之分。

自由变元:没有确定值的个体变元;

约束变元:被量词所约束的个体变元。

例如, "x是整数"是一命题函数。

"x>y"也不是命题,而是一个命题函数。

∀ x (如果x是苹果,则x是红的)

∃ x (x是偶数 ∧ x>101)

定义10-10 在谓词公式 $\forall x A(x)$ 和 $\exists x A(x)$ 中,x称为量词的指导变元(作用元),而公式A(x)称为量词的辖域(作用域)。在 $\forall x$ 和 $\exists x$ 的辖域中,x的所有出现都称为约束出现,且x称为约束变元,A(x)中不是约束出现的其他变元的出现均称为自由出现,且称x为自由变元。

对于**约束变元**改名,须符合

换名规则:

- (1) 约束变元换名时,该变元在量词及其辖域中的所有出现均须同时更改,公式的其余部分不变; e.g. $\forall x(x>y \land x<z) \lor A \rightarrow \forall m(m>y \land m<z) \lor A$ (2) 换名时一定要更改为该量词辖域中没有出现过的符号。最好是公式中未
- 出现过的符号。

对于自由变元,

代入规则:

- (1) 对于谓词公式中的自由变元,可以代入,代入时须对该自由变元的<u>所有</u> 出现同时进行代入;
- (2) 代入时所选用的变元符号与原公式中所有变元的符号不能相同。 e.g. $(x>y \land x<z) \lor A \rightarrow (m>y \land m<z) \lor A \qquad (A>y \land A<z) \lor A ×$

在谓词公式中,如果没有自由变元出现,则该公式就成为一个命题。 定义10-11 设A是任意的公式,若A中不含自由变元,则A为闭式。

10.3 谓词演算的永真公式

定义10-13:设A为一公式,若A在任何解释下的值总为真,则称A为永真公式(简称 永真式);若A在任何解释下的值总为假,则称A为矛盾式(永假公式);如果至少 存在一个解释使A的值为真,则称A为可满足的公式(简称可满足式)。

定义10-14 若A(P_1 , P_2 , ..., P_n)是含命题变元 (P_1 , P_2 , ..., P_n)的命题公式, **B**(M_1 , M_2 , ..., M_n)是以一阶公式 M_1 , M_2 , ..., M_n 分别代替 P_1 , P_2 , ..., P_n 在A中的所有出现后得到的谓词公式,则称B是A的一个代换实例。

定理10-2 重言式的代换实例都是永真式,矛盾式的代换实例都是矛盾式。

定义10-15 设A和B是公式,若 $A \leftrightarrow B \leftrightarrow 1$,则称A与B等值,记作 $A \leftrightarrow B$,A \leftrightarrow B称为<u>等值(关系)式</u>。

定义10-6 对于公式A和B,若A \rightarrow B \Leftrightarrow 1 ,则称公式A蕴含公式B,记作 A=>B, A=>B称为<u>蕴含(关系)式</u>。

当个体域是有限集合的时候,原则上来说,可以用真值表的方法来验证一个公式是否为永真公式,或者验证两个公式是否等值。

例如,设个体域 $E = \{a_1, a_2, \dots, a_n\}$,则包含有全称量词的谓词公式 $\forall x A(x)$ 表示 a_1 有性质 A, a_2 有性质 A,…, a_n 有性质 A. 因此

$$\forall x A(x) \iff A(a_1) \land A(a_2) \land \cdots \land A(a_n)$$
.

因为 $A(a_i)$ ($i=1,2,\dots,n$)中都没有个体变元,也没有量词,所以上一合取式实际上是命题演算中的命题公式。

包含有存在量词的谓词公式 $\exists x A(x)$ 表示 a_1 有性质 A_2 ,或者 a_2 有性质 A_3 …,或者 a_3 有性质 A_4 。因此

$$\exists x A(x) \Longleftrightarrow A(a_1) \bigvee A(a_2) \bigvee \cdots \bigvee A(a_n).$$

同样地,这一析取式也是命题演算中的命题公式。

命题逻辑中的重言式的代换实例都是谓词逻辑中的永真公式,因此命题逻辑中的等值式和蕴含式,也是谓词逻辑的。

例如,在 $P \bigvee \neg P$ 和 $(P \rightarrow Q) \longleftrightarrow (\neg P \bigvee Q)$ 中,若用 $\forall x P(x)$ 代替 P,用 $\exists x Q(x)$ 代替 Q,就得到永真公式 $\forall x P(x) \bigvee \neg \forall x P(x),$ $(\forall x P(x) \rightarrow \exists x Q(x)) \longleftrightarrow (\neg \forall x P(x) \bigvee \exists x Q(x)).$

若将每一命题变元分别代换为不包含联结词的原子谓词公

式,则又可得到谓词演算中的一类永真公式。例如

 $(A(x) \rightarrow B(x, y)) \longleftrightarrow (\rightarrow A(x) \bigvee B(x, y)),$ $(A(x) \bigvee B(x, y)) \longleftrightarrow (B(x, y) \bigvee A(x)),$ $\rightarrow (\rightarrow C(x, y)) \longleftrightarrow C(x, y).$

公式中出现的全称量词和存在量词,可相互转换。

$$\neg \exists x A(x) \Leftrightarrow \forall x \neg A(x)$$

 $\neg \forall x A(x) \Leftrightarrow \exists x \neg A(x)$

量词转换律

还有一些常用的等价和蕴含关系式。

$$\exists x (A(x) \lor B(x)) \leftrightarrow \exists x A(x) \lor \exists x B(x)$$

$$\forall x (A(x) \land B(x)) \leftrightarrow \forall x A(x) \land \forall x B(x)$$

$$\forall x A(x) \lor \forall x B(x) \rightarrow \forall x (A(x) \lor B(x))$$

$$\exists x (A(x) \land B(x)) \rightarrow \exists x A(x) \land \exists x B(x)$$

$$\forall x (A \lor B(x)) \leftrightarrow A \lor \forall x B(x)$$

$$\exists x (A \land B(x)) \leftrightarrow A \land \exists x B(x)$$

$$\forall x A(x) \rightarrow B \leftrightarrow \exists x (A(x) \rightarrow B)$$

$$\exists x A(x) \rightarrow B \leftrightarrow \forall x (A(x) \rightarrow B)$$

$$\exists x A(x) \Rightarrow B \leftrightarrow \forall x (A \Rightarrow B(x))$$

$$A \rightarrow \exists x B(x) \leftrightarrow \exists x (A \rightarrow B(x))$$

量词分配律

量词分配蕴含律

量词辖域的扩张和收缩律

定义10-17: 设A是不含联结词" \rightarrow "和" \leftrightarrow "的谓词公式,则在其中以联结词 \land 、 \lor 分别代换 \lor 、 \land ,以量词 \exists 、 \forall 分别代换 \forall 、 \exists ,以常量0、1分别代换 \downarrow 1、 \downarrow 0后所得到的公式称为 \downarrow A的对偶公式,记作 \downarrow AD。

定理10-3(对偶定理)设A、B是两个不含联结词" \rightarrow "和" \leftrightarrow "的谓词公式,若A \Leftrightarrow B,则A^D \Leftrightarrow B^D。

10.5 谓词演算的推理理论

利用谓词公式间的各种**等值关系和蕴含关系**,通过一些**推理规则**,从一些谓词 公式推出另一些谓词公式,这就是**谓词演算中的推理。**

要进行正确的推理,也<u>必须构造一个结构严谨的形式证明</u>,依据一些相应的推理规则。命题演算中的推理规则,都可应用于谓词演算的推理。

还有与量词相关的推理规则:

1. US(全称特定化规则)

$$\forall x A(x) \Rightarrow A(y)$$

这里自由变元y也可写成个体常元c

2. ES (存在特定化规则)

$$\exists x A(x) \Rightarrow A(c)$$

但是,公式中有其他自由变元出现,且x是随其他自由个体变元的值而变,那么就不存在唯一的c使得A(c)对自由变元的任意值都是成立的,不能应用ES。例如, $\exists x (x = y)$, $x \times y$ 的个体域是实数。

3. UG(全称一般化规则)

$$A(x) \Rightarrow \forall y A(y)$$

这里要求x必须是自由变元,并且y不出现在A(x)中。

2. EG(存在一般化规则)

$$A(c) \Rightarrow \exists y A(y)$$

这里要求y不出现在A(c)中。

例 1 证明 $\forall x(P(x) \rightarrow Q(x)) / P(c) \Rightarrow Q(c)$

证明

 $(1) \quad \forall x (P(x) \to Q(x))$

(2) $P(c) \rightarrow Q(c)$ (1), US

(3) P(c) 前提

(4) Q(c) (2), (3), I_{11}

这就是逻辑中的"三段论方法"。例如,"所有的人都是要死的,张三是人,所以张三是要死的"。

前提

例 2	证明 $\exists x(P(x) \land Q(x)$	$)\Rightarrow \exists xP(x) \land \exists xQ(x)$
证明		
(1)	$\exists x (P(x) \land Q(x))$	前提
(2)	$P(c) \wedge Q(c)$	(1), ES
(3)	P (c)	$(2)_{1} I_{1}$
(4)	Q (c)	(2), I;
(5)	$\exists x P(x)$	(3), EG
(6)	$\exists x Q(x)$	(4); EG
(7)	$\exists x P(x) \land \exists x Q(x)$	(5), (6), I ₆

在使用US、ES、UG、EG这四条规则时,要注意严格按照它们的规定去使用,并且,从整体上考虑个体变元和常元符号的选择,

尤其对EG和ES规则的应用,要

避免选择已在前面公式中出现过的符号进行取代。

例如,指出下面推理的错误之处:

例如 要求证明 ∃xP(x) △∃x	$Q(x) \Rightarrow \exists x (P(x) \land Q(x))$			
我们作如下推导:				
$(1) \exists x P(x) \land \exists x Q(x)$	前提			
$(2) \exists x P(x)$	$(1)_1 I_1$			
$(3) \ \exists x Q(x)$	$(1)_1 l_2$			
(4) P(c)	(2), ES			
(5) Q(c)	(3), ES			
(6) $P(c) \land Q(c)$	(4), (5), I.			
(7) $\exists x (P(x)/Q(x))$	(6) , EG			

例 3 证明 $\forall x (P(x) \lor Q(x)), \forall x \rightarrow P(x) \Rightarrow \exists x Q(x)$

证明 用反证法,假设一 $\exists xQ(x)$ 成立。

(2)
$$\neg P(y)$$
 (1), US

(4)
$$\forall x \to Q(x)$$
 (3); E_{20}

(5)
$$-Q(y)$$
 (4), US

(6)
$$-P(y) \land -Q(y)$$
 (2), (5), I_{\bullet}

(7)
$$\rightarrow (P(y) \setminus Q(y))$$
 (6), E_{10}

(8)
$$\forall x (P(x)) \lor Q(x)$$
) 前提

(9)
$$P(y) \bigvee Q(y)$$
 (8), US

$$(10) (P(y) \bigvee Q(y)) \bigwedge \rightarrow (P(y) \bigvee Q(y)) \qquad (7), \quad (9), \quad I_{\bullet}$$

因为 $(P(y) \lor Q(y)) \land \neg (P(y) \lor Q(y))$ 是永假公式,所以 $\forall x (P(x) \lor Q(x)), \forall x \neg P(x) \Rightarrow \exists x Q(x).$

作业

5(1)(2), 9(2)(3), 10(1)(4), 14(1), 15(1)(3), 16(1)

内容提要

1. 基本论述

- 个体、谓词、量词;
- 命题函数、个体域、全总个体域、特性谓词.

2. 谓词公式的有关概念

- •原子公式(原始公式)、谓词公式;
- •量词的辖域、约束变元、自由变元;
- 换名规则、代入规则;
- 谓词公式、谓词公式的指派;
- 永真公式、永假公式、可满足公式.

3. 谓词公式间的关系

- 谓词公式间的等值关系(A⇔B);
- 谓词公式间的蕴涵关系 $(A \Rightarrow B)$;
- 等值定律,即一些基本的等值式;
- 推理定律,即一些基本的蕴涵式.

4. 谓词演算的推理理论

在谓词演算中,命题演算的推理理论仍然成立,另外还用到与量词有关的推理规则.

- ·全称特定化规则(US);
- · 存在特定化规则(ES);
- ·全称一般化规则(UG);
- ·存在一般化规则(EG).

```
\rightarrow (\forall x A(x)) \Leftrightarrow \exists x (\rightarrow A(x));
                                                                       量词转换律
          \rightarrow (\exists x A(x)) \Leftrightarrow \forall x (\rightarrow A(x));
E_{20}
           \forall x (A(x) \land B) \Leftrightarrow \forall x A(x) \land B;
                                                                        量词辖域
           \forall x (A(x) \lor B) \Leftrightarrow \forall x A(x) \lor B;
E_{21}
                                                                        的扩张与
           \exists x (A(x) \land B) \Leftrightarrow \exists x A(x) \land B;
           \exists x (A(x) \lor B) \Leftrightarrow \exists x A(x) \lor B;
           \forall x (A(x) \land B(x)) \Leftrightarrow \forall x A(x) \land \forall x B(x);
E_{24}
                                                                                         量词分配律
E_{25}
           \exists x (A(x) \lor B(x)) \Leftrightarrow \exists x A(x) \lor \exists x B(x);
E_{26}
           \exists x (A(x) \rightarrow B) \Leftrightarrow \forall x A(x) \rightarrow B;
E_{27}
           \forall x (A(x) \rightarrow B) \Leftrightarrow \exists x A(x) \rightarrow B;
           \exists x (A \rightarrow B(x)) \Leftrightarrow A \rightarrow \exists x B(x);
E_{28}
E_{29}
           \forall x (A \rightarrow B(x)) \Leftrightarrow A \rightarrow \forall x B(x);
           \exists x (A(x) \rightarrow B(x)) \Leftrightarrow \forall x A(x) \rightarrow \exists x B(x).
以上各式中的 B 表示任意一个不含有约束变元 x 的公式.
```

多个量词连续出现,它们之间无括号分隔时,后面的量词在前面量词的辖域之中,且量词对变元的约束与量词的次序有关,一般不能随意调动,但也有例外,两个量词间的排列次序有如下常用公式:

 $E_{31} \quad \forall x \, \forall y A(x,y) \Leftrightarrow \forall y \, \forall x A(x,y);$

 $E_{32} \quad \exists x \, \exists y A(x,y) \Leftrightarrow \exists y \, \exists x A(x,y);$

 $I_{18} \quad \forall x \, \forall y A(x,y) \Rightarrow \exists y \, \forall x A(x,y);$

 $I_{19} \quad \forall x \, \exists y A(x,y) \Rightarrow \exists y \, \exists x A(x,y);$

 $I_{20} \quad \exists y \, \forall x A(x,y) \Rightarrow \forall x \, \exists y A(x,y).$

注意 由 E_{31} 和 E_{32} 知相同量词的次序可以任意调动.

例题讲解

例 10-1 用个体、谓词表示下列命题:

- (1) 武汉位于重庆与上海之间;
- (2) 如果王英坐在李红的后面,则王英比李红高.

解 (1) 个体 a,b,c 分别表示武汉、重庆和上海,谓词 P(x,y,z)表示 x 位于 y 与 z 之间,则命题(1)可表示为 P(a,b,c).

(2) 令 a:王英;b:李红;P(x,y):x 坐在 y 的后面;G(x,y):x 比 y 高. 于是(2) 可表示为 $P(a,b) \rightarrow G(a,b)$.

例 10-2 将下列命题符号化:

- (1) 每个母亲都爱自己的孩子;
- (2) 有某些实数是有理数;
- (3) 对任何整数 x,y, 若 xy=0,则 x=0 或 y=0.

解 (1) 令 L(x):x 爱自己的孩子.x 的个体域为全体母亲组成的集合,于是 (1)可表示为 $\forall \times L(x)$.

- (2) 令 Q(x):x 是有理数. x 的个体域为实数集,则(2)可表示为 $\exists x Q(x)$.
- (3) 令 $Z(x)_{:}x=0_{;}E(x,y,z)_{:}x \cdot y=z,$ 其中 x,y,z 的个体域为整数集. 这样 (3)可表示为

$$\forall x \, \forall y (\, \exists z (E(x,y,z) \land Z(z)) \rightarrow (Z(x) \lor Z(y))).$$

对例 10-2 中命题使用全总个体域,引入相应的特性谓词M(x):x 是母亲; R(x):x 是实数; I(x):x 是整数. 于是前面的命题可表示为

- (1) $\forall x (M(x) \rightarrow L(x));$
- (2) $\exists x (R(x) \land Q(x));$
- (3) $\forall x \forall y ((I(x) \land I(y)) \rightarrow \exists z ((I(z) \land E(x,y,z) \land Z(z)) \rightarrow (Z(x) \lor Z(y)))).$

例 10-5 设 x,y 的个体域为自然数集合,定义其中的原子公式如下:P(x):x 是素数;E(x):x 是偶数;O(x):x 是奇数;D(x,y):x 可以整数 y. 试将下列各式译成自然语言:

- (1) $\exists x (E(x) \land D(x,6));$
- (2) $\forall x (O(x) \rightarrow \forall y (P(x) \rightarrow D(x,y)).$

解 (1) 有某个偶数能整除 6.

(2) 任何奇数不能整除每个素数.

例 10-8 对公式 $\forall x(P(x,y) \land \exists yQ(y) \land M(x,y)) \land (\forall xR(x) \rightarrow Q(x))$ 中的约束变元进行换名,使每个变元在公式中只呈一种出现形式(即约束出现或自由出现).

解 在该公式中,将 P(x,y)和 M(x,y)中的约束变元 x 换名为 z, R(x)中的 x 换名为 v, Q(y)中的 y 换名为 u, 换名后为

$$\forall z (P(z,y) \land \exists u Q(u) \land M(z,y))$$
$$\land (\forall v R(v) \rightarrow Q(x)).$$

注意 若将公式换名为 $\forall z(P(z,y) \land \exists uQ(u) \land M(x,y)) \land (\forall vR(v) \rightarrow Q(x))$ 则是错误的,这是因为它未将 $\forall x$ 辖域 $(P(x,y) \land \exists yQ(y) \land M(x,y))$ 中 x 的所有出现同时换名.

例 10-9 对公式($\exists y A(x,y) \rightarrow (\forall x B(x,z) \land C(x,y,z))$) $\land \exists x \forall z C(x,y,z)$ 中的自由变元进行代入,使每个变元在公式中只呈一种出现形式.

解 将该公式中的自由变元 x 用 t 代入,y 用 u 代入,z 用 v 代入,代入后变为 ($\exists y A(t,y) \rightarrow (\forall x B(x,v) \land C(t,u,v))) \land \exists x \forall z C(x,u,z).$

注意 (1) 若将公式代入成

$$(\exists y A(t,y) \rightarrow (\forall x B(x,z) \land C(x,u,v))) \land \exists x \forall z C(x,u,z)$$

则是错误的,这是因为这一代入过程<u>未将公式中x和z的所有自由出现同时进</u>行代入.

(2) 若将公式代入成

$$(\exists y A(t,y) \rightarrow (\forall x B(x,x) \land C(t,x,v))) \land \exists x \forall z C(x,x,z)$$

也是错误的,这是因为在代入过程中选用了公式中约束出现的变元符号,改变了原公式的含义.

例 10-14 证明下列等值式:

- (1) $\forall x A(x) \land \forall x (\neg B(x)) \Leftrightarrow \neg \exists x (A(x) \rightarrow B(x));$
- (2) $\forall x \forall y (P(x) \rightarrow Q(y)) \Leftrightarrow (\exists x P(x) \rightarrow \forall y Q(y)).$

分析 同证明命题演算中的等值式一样,证明两个公式等值时,可以从其中任一公式开始进行演算,一般从较复杂的公式开始. 另外,还可以对两个公式 F_1 和 F_2 分别进行等值演算,如果能将公式 F_1 和 F_2 都等值演算为同一公式 F_3 ,那么由等值关系的传递性,即可知 $F_1 \Leftrightarrow F_2$.

证	(1) 因 $ \rightarrow \exists x (A(x) \rightarrow B(x)) $	
	$\Leftrightarrow \forall x \rightarrow (A(x) \rightarrow B(x))$	$E_{\scriptscriptstyle 19}$
	$\Leftrightarrow \forall x \neg (\neg A(x) \lor B(x))$	E_{11}
	$\Leftrightarrow \forall x (A(x) \land \neg B(x))$	$E_{\scriptscriptstyle 10}$
	$\Leftrightarrow \forall x A(x) \land \forall x (\neg B(x)),$	$E_{\scriptscriptstyle 24}$
故∖	$\forall x A(x) \land \forall x (\neg B(x)) \Leftrightarrow \neg \exists x (A(x) \neg B($	(x)).

(2) 因
$$\forall x \forall y (P(x) \rightarrow Q(y))$$

 $\Leftrightarrow \forall x \forall y (\rightarrow P(x) \lor Q(y))$ E_{11}
 $\Leftrightarrow \forall x (\forall y Q(y) \lor \rightarrow P(x))$ E_{1}, E_{21}
 $\Leftrightarrow \forall x (\rightarrow P(x)) \lor \forall y Q(y)$ E_{1}, E_{21}
 $\Leftrightarrow \rightarrow \exists x P(x) \lor \forall y Q(y)$ E_{19}
 $\Leftrightarrow \exists x P(x) \rightarrow \forall y Q(y)$, E_{11}

例 10-17 下列蕴涵关系是否成立? 若成立,给出证明,否则给出反例.

- (1) $\exists x A(x) \rightarrow B \Rightarrow \forall x A(x) \rightarrow B$;
- (2) $\forall x \exists y P(x,y) \Rightarrow \exists y \forall x P(x,y)$.

解 (1) 假定后件假,即 $\forall x A(x) \rightarrow B$ 为假,则 $\forall x A(x)$ 为真, B 为假. 于是 $\exists x A(x)$ 也为真,从而 $\exists x A(x) \rightarrow B$ 为假,所以, $\exists x A(x) \rightarrow B \Rightarrow \forall x A(x) \rightarrow B$.

(2) 此蕴涵式不成立.

反例,设 x,y 的个体域均为自然数集 N,P(x,y):x<y. 因为对于任何 x,总有 y=x+1,使 P(x,y)为真,所以, $\forall x$ $\exists y P(x$,y)为真. 但是在 N 中不存在一个 y_0 ,使得对任意的 x 均有 x<y(如 x_1 = y_0 +1,就不满足 $P(x_1$, y_0)),从而 $\exists y \forall x P(x,y)$ 为假,因此蕴涵式不成立.

例 10-20 用形式证明的方法证明:

- (1) $\exists x A(x) \rightarrow \forall x B(x) \Rightarrow \forall x (A(x) \rightarrow B(x));$
- (2) $\forall x (P(x) \rightarrow Q(x)), \forall x (Q(x) \lor R(x)), \exists x \rightarrow R(x) \Rightarrow \exists x \rightarrow P(x).$

证 (1) 其推导过程如表 10-8 所示.

表 10-8

 编 号	公 式	依 据
(1)	$\exists x A(x) \rightarrow \forall x B(x)$	 前提
(2)	$\rightarrow \forall x (A(x) \rightarrow B(x))$	附加前提
(3)	$\exists x \rightarrow (A(x) \rightarrow B(x))$	(2); E_{18}
(4)	$\rightarrow (A(c) \rightarrow B(c))$	(3);ES
(5)	$A(c) \land \neg B(c)$	(4) ; E_{11} , E_{10}
(6)	A(c)	$(5);I_1$
(7)	$\exists x A(x)$	(6);EG
(8)	$\forall x B(x)$	$(7),(1);I_{11}$
(9)	B(c)	(8);US
(10)	$\rightarrow B(c)$	(5); I_2
(11)	$B(c) \land \neg B(c)$	(9),(10);I ₉ (矛盾)

(2) 方法一 其推导过程如表 10-9 所示.

表 10-9

编号	公 式	依 据
(1)	$\forall x (P(x) \rightarrow \neg Q(x))$	前提
(2)	$\rightarrow \exists x \rightarrow P(x)$	附加前提
(3)	$\forall x P(x)$	$(1); E_{19}$ (2)
(4)	$\forall x (Q(x) \lor R(x))$	前提
(5)	$\exists x \rightarrow R(x)$	前提
(6)	$\rightarrow R(c)$	(5);ES
(7)	$Q(c) \vee R(c)$	(4);US
(8)	Q(c)	$(6), (7); I_{10}$
(9)	P(c)	(3);US
(10)	$P(c) \rightarrow \rightarrow Q(c)$	(1);US
(11)	$\rightarrow Q(c)$	$(9),(10);I_{11}$
(12)	$Q(c) \land \neg Q(c)$	(8),(11);I9(矛盾)

方法二 其推导过程如表 10-10 所示.

表 10-10

编号	公 式	依 据
(1)	$\forall x (Q(x) \ \forall R(x))$	前提
(2)	$\exists x \rightarrow R(x)$	前提
(3)	$\rightarrow R(c)$	(2);ES
(4)	$Q(c) \ \forall \ R(c)$	(1);US
(5)	Q(c)	(3),(4); I_{10}
(6)	$\forall x (P(x) \rightarrow \neg Q(x))$	前提
(7)	$P(c) \rightarrow \rightarrow Q(c)$	(6);US
(8)	$\rightarrow P(c)$	$(5),(7);I_{12}$
(9)	$\exists x \rightarrow P(x)$	(8);EG

例 10-24 下述推导是否正确,若不正确,请指出其推理过程中的错误. (1) 其推导过程如表 10-11 所示.

因此, $\exists x (A(x) \rightarrow B(x)) \Rightarrow \exists x A(x) \rightarrow \exists x B(x)$.

表 10-11

_	编号	公 式	依 据
	(1)	$\exists x (A(x) \rightarrow B(x))$	前提
	(2)	$\exists x A(x)$	附加前提
	(3)	A(c)	(2);ES
	(4)	$A(c) \rightarrow B(c)$	(1);ES
	(5)	B(c)	$(3),(4);I_{11}$
	(6)	$\exists x B(x)$	(5);EG

(2) 其推导过程如表 10-12 所示.

表 10-12

编号	公 式	依据
(1)	$\forall x (A(x) \rightarrow B(x))$	前提
(2)	$\forall x A(x) \rightarrow \forall x B(x)$	$(1);I_{17}$
(3)	$A(c) \rightarrow \forall x B(x)$	(2);US
(4)	$\exists x A(x) {\longrightarrow} \forall x B(x)$	(3);EG

因此, $\forall x (A(x) \rightarrow B(x)) \Rightarrow \exists x A(x) \rightarrow \forall x B(x)$.

解 (1) 推理不正确.

若x的个体域为自然数集 N,A(x):x 是奇数; $B(x):x<0,则 \exists x(A(x)\to B(x))$ 为真(如 $2\in N,A(2)$ 假, $A(2)\to B(2)$ 为真),却推出了假命题 $\exists xA(x)\to \exists xB(x)$ (其前件真,后件总假).其出错原因是在第(3)步已引入个体常元c,而在第(4)步应用 ES 时,又引入个体常元c,结果由真前件,推出了假命题.

(2) 推理不正确.

若x的个体域为实数集 \mathbf{R} ,A(x):x 是整数;B(x):x 是有理数.那么, $\forall x$ ($A(x) \rightarrow B(x)$)为真, $\exists x A(x)$ 也为真,但 $\forall x B(x)$ 为假,于是 $\exists x A(x) \rightarrow \forall x B(x)$ 为假,即由真前件推出了假命题.其出错原因是在第(3),(4)步对部分公式错误地使用 US 和 EG.

10:38

例 10-25 证明下列各式:

- (1) $\forall x (P(x) \lor Q(x)), \forall x (Q(x) \rightarrow R(x)) \Rightarrow \forall x R(x) \rightarrow \forall x P(x);$
- (2) $\forall x((P(x) \land Q(x)) \rightarrow \exists y(R(y) \land S(x,y))) \Rightarrow \rightarrow \exists yR(y) \rightarrow \rightarrow \exists x(P(x) \land Q(x)).$

分析 由于命题演算中的推理理论在谓词演算中均成立,故此类结论为蕴涵形式表达式的形式证明,通常采用蕴涵规则,即 CP.

10:38

证 (1) 其推导过程如表 10-13 所示.

表 10-13

编 号	公 式	依 据
(1)	$\forall x R(x)$	附加前提
(2)	$\forall x (Q(x) \rightarrow R(x))$	前提
(3)	R(c)	(1);US
(4)	$Q(c) \rightarrow R(c)$	(2);US
(5)	$\rightarrow Q(c)$	$(3),(4);I_{12}$
(6)	$\forall x (P(x) \lor Q(x))$	前提
(7)	$P(c) \vee Q(c)$	(6);US
(8)	P(c)	$(5),(7);I_{10}$
(9)	$\forall x P(x)$	(8);UG
(10)	$\forall x R(x) \rightarrow \forall x P(x)$	(1),(9);CP

(2) 方法一 其推导过程如表 10-14 所示.

说明 (1) 不能直接对第(4) 步中的公式使用 ES, 因为那样是将对部分公式使用 ES.

- (2) 不是对任意的个体变元均能使用 UG,这里第(11)步中的c原本是在第(4)步用 US得到的,即它对个体域中的每个个体均成立,所以在第(12)步可以使用 UG.
 - (3) 若将此题的结论先作一等值变换,可使推理过程简化.

编号	公 式	依据
(1)	$\rightarrow \exists y R(y)$	附加前提
(2)	$\forall y \rightarrow R(y)$	(1); E_{19}
(3)	$\forall x ((P(x) \land Q(x)) \rightarrow \exists y (R(y) \land S(x,y)))$	前提
(4)	$(P(c) \land Q(c)) \rightarrow \exists y (R(y) \land S(c,y))$	(3);US
(5)	$\rightarrow (P(c) \land Q(c)) \lor \exists y (R(y) \land S(c,y))$	$(4); E_{11}$
(6)	$\exists y (\neg (P(c) \land Q(c)) \lor (R(y) \land S(c,y)))$	(5); E_{23}
(7)	$\rightarrow (P(c) \land Q(c)) \lor (R(d) \land S(c,d))$	(6);ES
(8)	$\rightarrow R(d)$	(2);US
(9)	$\rightarrow R(d) \lor \rightarrow S(c,d)$	(8); I_3
(10)	$\rightarrow (R(d) \land S(c,d))$	(9); E_{10}
(11)	$\rightarrow (P(c) \land Q(c))$	$(7),(10);I_{10}$
(12)	$\forall x \rightarrow (P(x) \land Q(x))$	(11);UG
(13)	$\rightarrow \exists x (P(x) \land Q(x))$	$(12); E_{19}$
(14)	$\rightarrow \exists y R(y) \rightarrow \rightarrow \exists x (P(x) \land Q(x))$	(1),(13);CP

方法二
因
$$\rightarrow \exists y R(y) \rightarrow \rightarrow \exists x (P(x) \land Q(x))$$

 $\Leftrightarrow \exists x (P(x) \land Q(x)) \rightarrow \exists y R(y)$,
故原命题转化为证明
 $\forall x ((P(x) \land Q(x)) \rightarrow \exists y (R(y) \land S(x,y)))$
 $\Rightarrow \exists x (P(x) \land Q(x)) \rightarrow \exists y R(y)$.

其推导过程如表 10-15 所示.

编号	公 式	依据
(1)	$\exists x (P(x) \land Q(x))$	附加前提
(2)	$P(c) \wedge Q(c)$	(1);ES
(3)	$\forall x ((P(x) \land Q(x)) \rightarrow \exists y (R(y) \land S(x,y)))$	前提
(4)	$(P(c) \land Q(c)) \rightarrow \exists y (R(y) \land S(c,y))$	(3);US
(5)	$\exists y (R(y) \land S(c,y))$	$(2),(4);I_{11}$
(6)	$\exists y R(y) \land \exists y S(c,y)$	(5); I_{15}
(7)	$\exists y R(y)$	(6); I_1
(8)	$\exists x (P(x) \land Q(x)) \rightarrow \exists y R(y)$	(1),(7);CP
(9)	$\rightarrow \exists y R(y) \rightarrow \rightarrow \exists x (P(x) \land Q(x))$	(8); E_{15}

例 10-27 用构造推理过程的方法证明 $\exists x F(x), \exists x (R(x) \land \neg T(x)), \forall z ((F(z) \land \forall x \exists y Q(x,y)))$ $\rightarrow \forall y (R(y) \rightarrow T(y))) \Rightarrow \forall y \exists x \rightarrow Q(x,y).$

证 其推导过程如表 10-20 所示.

编号	公 式	依据
(1)	$\exists x F(x)$	前提
(2)	F(c)	(1);ES
(3)	$\exists x (R(x) \land \neg T(x))$	前提
(4)	$R(d) \land \neg T(d)$	(3);ES
(5)	$\neg (\neg R(d) \lor T(d))$	(4); E_{10}
(6)	$\rightarrow (R(d) \rightarrow T(d))$	(5); E_{11}
(7)	$\exists y \rightarrow (R(y) \rightarrow T(y))$	(6);EG
(8)	$\rightarrow \forall y (R(y) \rightarrow T(y))$	(7); E_{18}
(9)	$\forall z ((F(z) \land \forall x \exists y Q(x,y))$	前提
(3)	$\rightarrow \forall y (R(y) \rightarrow T(y)))$	刊证
(10)	$(F(c) \land \forall x \exists y Q(x,y)) \rightarrow \forall y (R(y) \rightarrow T(y))$	(9);US

编号	公 式	依 据
(1)	$\exists x F(x)$	前提
(2)	F(c)	(1);ES
(3)	$\exists x (R(x) \land \neg T(x))$	前提
(4)	$R(d) \land \neg T(d)$	(3);ES
(5)	$\neg (\neg R(d) \lor T(d))$	$(4); E_{10}$
(6)	$\rightarrow (R(d) \rightarrow T(d))$	(5); E_{11}
(7)	$\exists y \rightarrow (R(y) \rightarrow T(y))$	(6);EG
(8)	$\rightarrow \forall y (R(y) \rightarrow T(y))$	(7); E_{18}
(9)	$\forall z ((F(z) \land \forall x \exists y Q(x, y)))$ $\rightarrow \forall y (R(y) \rightarrow T(y)))$	前提
(10)	$(F(c) \land \forall x \exists y Q(x,y)) \rightarrow \forall y (R(y) \rightarrow T(y))$	(9);US

(10)	$(F(c) \land \forall x \exists y Q(x,y)) \rightarrow \forall y (R(y) \rightarrow T(y))$	(9);US
(11)	$\rightarrow (F(c) \land \forall x \exists y Q(x,y))$	(8),(10); I_{12}
(12)	$\rightarrow F(c) \lor \rightarrow \forall x \exists y Q(x,y)$	$(11); E_{10}$
(13)	$\rightarrow \forall x \exists y Q(x,y)$	(2),(12); I_{10}
(14)	$\exists x \rightarrow (\exists y Q(x,y))$	(13); E_{18}
(15)	$\rightarrow \exists y Q(e,y)$	(14);ES
(16)	$\forall y \rightarrow Q(e, y)$	(15); E_{19}
(17)	$\exists x \forall y \rightarrow Q(x,y)$	(16);EG
(18)	$\forall y \exists x \rightarrow Q(x,y)$	$(17);I_{20}$