Теоретическое решение дифференциального уравнения.

Линейная задача.

Решаем уравнение $u_t + \frac{u_x}{2} = 0$, с начальными условиями

$$u_0(x)=\left\{egin{array}{ll} 0 & ext{, если } \mathbf{x}\leqslant 0 \ 1 & ext{, если } \mathbf{x}>0 \end{array}
ight.$$

Запишем характеристическую систему уравнений:

$$\left\{\begin{array}{l} \dot{t}=1\\ \dot{x}=\frac{1}{2} \end{array}\right.\Rightarrow 2x-t=const-$$
 уравнение характеристик.

Вспомним утверждение:

u- решение дифференциального уравнения $\iff u-$ первый интеграл системы характеристик.

Иначе говоря, общее решение уравнения примет вид: u=f(2x-t). С учетом начальных условий имеем разрывное решение (см. рис. 1) $u(t,x)=\begin{cases} 1 & \text{, если } \{t>0\}\cap\{2x-t>0\} \\ 0 & \text{, если } \{t>0\}\cap\{2x-t\leqslant0\} \end{cases}$

Нелинейная задача.

Решаем уравнение $u_t + u \cdot u_x = 0$, с теми же начальными условиями. Запишем характеристическую систему уравнений:

$$\begin{cases} \dot{t} = 1 \\ \dot{x} = u \Rightarrow x = u_0 t + x_0 - \text{уравнение характеристик.} \\ \dot{u} = 0 \end{cases}$$

Видим, что имеется область Ω (см. рис. 2), которая не покрывается характеристиками, поэтому в этой области ищется автомодельное решение $u=v(\frac{x}{t})$, что приводит к $v(\frac{x}{t})=\frac{x}{t}$.

Таким образом получаем решение, суть которого передана рисунком 3.

Рис. 1:

Рис. 2:

Рис. 3:

1 Линейная задача.

Итак, решаем $v_t + \frac{v_x}{2} = 0$ в области $Q_T = \{(t,x)|0 < t \leqslant 1, -1 \leqslant x \leqslant 1\} = \{(k_1\tau,k_2h), k_1 \in (0 \div N), k_2 \in (0 \div M_h)\}$. Начальные условия $v_0(x) = \begin{cases} 0 & \text{, если } x \leqslant 0 \\ 1 & \text{, если } x > 0 \end{cases}$. Из теоретического решения знаем, что граничные условия примут вид: v(t,1) = 1 , v(t,-1) = 0

1.1 Явная схема.

$$v_m^{(1)} = v_m^n - \frac{\tau}{h}(F_{m+1}^n - F_m^n); \quad v_m^{n+1} = \frac{1}{2}\left(v_m^n + v_m^{(1)} - \frac{\tau}{h}(F(v_m^{(1)}) - F(v_{m-1}^{(1)}))\right)$$

из чего получаем разностную схему $(F(v) = \frac{v}{2})$

$$S := \frac{v_m^{n+1} - v_m^n}{\tau} + \frac{v_{m+1}^n - v_m^n}{4h} + \frac{v_m^{(1)} - v_{m-1}^{(1)}}{4h} = 0$$

1.1.1 Аппроксимация

Используя выражения

$$\begin{split} v_m^{n+1} &= v + \dot{v}\tau + \frac{\ddot{v}}{2}\tau^2 + \frac{\dddot{v}}{6}\tau^3 + O(\tau^4) \\ v_m^n &= v \\ v_{m+1}^n &= v + v'h + \frac{v''}{2}h^2 + \frac{v'''}{6}h^3 + O(h^4) \\ v_{m-1}^n &= v - v'h + \frac{v''}{2}h^2 - \frac{v'''}{6}h^3 + O(h^4) \\ v_m^{(1)} &= v_m^n - \frac{\tau}{2h}(v_{m+1}^n - v_m^n) \\ v_{m-1}^{(1)} &= v_{m-1}^n - \frac{\tau}{2h}(v_m^n - v_{m-1}^n) \\ \dot{v} &+ \frac{1}{2}v' &= 0 \\ \ddot{v} &- \frac{1}{4}v'' &= 0 \end{split}$$

Получим

$$S = \frac{\ddot{v}}{6}\tau^2 + \frac{v'''}{12}h^2 + O(\tau^3 + h^3)$$

Из чего делаем вывод, что порядок аппроксимации равен 2-ум.

1.1.2 Дифференциальное приближение

$$0 = \dot{v} + \frac{v'}{2} + \frac{\tau}{2}(\ddot{v} - \frac{v''}{4}) + \frac{\dddot{v}}{6}\tau^2 + \frac{v'''}{12}h^2 + O(\tau^3 + h^3)$$

$$\dot{v} + \frac{v'}{2} = -\frac{\tau}{2}(\ddot{v} - \frac{v''}{4}) - \frac{\dddot{v}}{6}\tau^2 - \frac{v'''}{12}h^2 + O(\tau^3 + h^3)$$

$$\begin{cases} \ddot{v} + \frac{\dot{v'}}{2} = -\frac{\tau}{2}(\ddot{v} - \frac{\dot{v''}}{4}) + O(\tau^2 + h^2) \\ \ddot{v}' + \frac{v''}{2} = -\frac{\tau}{2}(\ddot{v}' - \frac{v'''}{4}) + O(\tau^2 + h^2) \end{cases} \Rightarrow \ddot{v} = \frac{v''}{4} - \frac{\tau}{2}(\ddot{v} - \frac{\dot{v}''}{4} - \frac{\ddot{v}'}{2} + \frac{v'''}{8}) + O(\tau^2 + h^2)$$

$$\dot{v} + \frac{v'}{2} = \frac{\ddot{v}}{12}\tau^2 - \frac{\dot{v}''}{16}\tau^2 - \frac{\ddot{v}'}{8}\tau^2 + \frac{v'''}{32}\tau^2 - \frac{v'''}{12}h^2 + O(\tau^3 + h^3)$$

$$\begin{cases} \ddot{v} = \frac{\dot{v}''}{4} + O(\tau + h) & \ddot{v}' = -\frac{v'''}{8} + O(\tau + h) \\ \dot{v}'' = -\frac{v'''}{2} + O(\tau + h) & \Rightarrow \dot{v}'' = -\frac{v'''}{2} + O(\tau + h) & \Rightarrow \\ \ddot{v}' = -\frac{\dot{v}''}{2} + O(\tau + h) & \ddot{v}' = \frac{v'''}{4} + O(\tau + h) \end{cases}$$

$$\Rightarrow \dot{v} + \frac{v'}{2} = \frac{v'''}{48}(\tau^2 - 4h^2) + O(\tau^3 + h^3)$$

1.1.3 Спектральная устойчивость.

При замене $v_m^n = \lambda^n e^{im\varphi}$ получаем $(\nu = \frac{\tau}{h})$:

$$\lambda(\varphi)=1+\frac{\nu^2}{4}\cos\varphi-\frac{\nu^2}{4}-\frac{\nu}{2}\sin\varphi\;i$$
 , положим $\lambda=x+i\;y$, тогда

$$\frac{16(x-1+\frac{\nu^2}{4})^2}{\nu^4} + \frac{4y^2}{\nu^2} = 1$$

- что является эллипсом, правый край которого лежит в точке (0.1). Заметим, что левый край эллипса, лежащий в точке $(1-\frac{\nu^2}{2},0)$, находится внутри окружности радиуса 1. Из геометричесских свойств эллипса и окружности, чтобы эллипс целиком лежал в единичной окружности, достаточно того, что в точке касания эллипса и окружности, эллипс оказался "вогнутее" окружности. Выразим для этого правые половины фигур, как функции переменной y ($x_1(y)$ - окружность, $x_2(y)$ - эллипс.), и разложим их в ряд Тейлора в нуле. Получим:

$$x_1(y) = 1 - \frac{y^2}{2} - \frac{y^4}{8} + O(y^6),$$

 $x_2(y) = 1 - \frac{y^2}{2} - \frac{y^4}{2y^2} + O(y^6).$

Откуда видно, что при ограничении $\nu < 2$ желаемое выполнено, а значит эллипс лежит целиком в единичной окружности. При $\nu = 2$ эллипс совпадет с окружностью.

Итак, при $\nu\leqslant 2$ имеем $\max_{\varphi}|\lambda(\varphi)|\leqslant 1$. При $\nu>2$: $\max_{\varphi}|\lambda(\varphi)|=2\nu-1$. Необходимо выполнение $2\nu-1\leqslant 1+C\tau$ \Rightarrow $C\geqslant \frac{2(\tau-h)}{\tau h}\geqslant \frac{2}{\tau}$ - что противоречит независимости константы C от параметров сетки.

Таким образом доказали, что при $\nu \leqslant 2$ имеем условную спектральную устойчивость.

1.1.4 Численное решение задачи.

Граничные условия примут вид: $v(t,-1)=0 \Rightarrow v_0^n=0 \ \forall \ n \in (0 \div N)$, $v(t,1)=1 \Rightarrow v_{M_h}^n=0 \ \forall \ n \in (0 \div N)$.

Тогда $\{v_m^{n+1}\}$ считается по набору $\{v_m^n\}$ согласно системе линейных уравнений:

$$v_m^{n+1} = v_m^n - \frac{\nu}{4}(v_{m+1}^n - v_{m-1}^n) + \frac{\nu^2}{8}(v_{m+1}^n - 2v_m^n + v_{m-1}^n),$$
 где $m \in (1 \div M_h - 1).$

Тогда расчеты дают следующие результаты:

τ	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_1,h}$	$\delta(v)_{C_h}$	$\delta(v)_{L_1,h}$
0.100	0.100	4.562959e-01	1.165588e-01	4.562959e-01	2.087832e-01
0.010	0.100	5.235515 e-01	2.231802e-01	5.235515e-01	3.388837e-01
0.001	0.100	5.281042e-01	2.518680e-01	5.281042e-01	3.664916e-01
0.100	0.010	$7.079067\mathrm{e}{+15}$	$3.989613\mathrm{e}{+14}$	$1.000000\mathrm{e}{+00}$	$1.000000\mathrm{e}{+00}$
0.010	0.010	5.758615 e- 01	2.985708e-02	5.758615e-01	5.782227e-02
0.001	0.010	6.024730 e-01	5.499514e-02	6.024730 e-01	1.018212e-01
0.100	0.001	$8.667438\mathrm{e}{+35}$	$4.873056\mathrm{e}{+33}$	$1.000000\mathrm{e}{+00}$	$1.000000\mathrm{e}{+00}$
0.010	0.001	$2.953740\mathrm{e}{+167}$	$5.230919\mathrm{e}{+165}$	$1.000000\mathrm{e}{+00}$	$1.000000\mathrm{e}{+00}$
0.001	0.001	6.263008 e-01	7.563841e-03	6.263008 e-01	1.498940e-02

Теперь рассмотрим случай равномерного дробления сетки, при исходных данных $\tau=0.1$, h=0.1. Причем $\tau_k=\frac{\tau}{2^k}$ и $h_k=\frac{h}{2^k}$. $\Delta(v,v^k)_\alpha=\|v-v^k\|_\alpha$ и $\delta(v,v^k)_\alpha=\frac{\|v-v^k\|_\alpha}{\|v\|_\alpha}$.

	$ au_k$	\mathbf{h}_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
v^1	0.050000	0.050000	1.623536e-01	7.117751e-02	1.623536e-01	1.274951e-01
v^2	0.025000	0.025000	2.538785e-01	1.031411e-01	2.538785e-01	1.847491e-01
v^3	0.012500	0.012500	2.172151e-01	8.127450e-02	2.172151e-01	1.455811e-01
v^4	0.006250	0.006250	2.190073e-01	8.846131e-02	2.190073e-01	1.584543e-01
u	0.100000	0.100000	4.562959e-01	1.165588e-01	4.562959e-01	2.087832e-01

При исходных данных $\tau = 0.01, \, h = 0.01.$

	$ au_k$	\mathbf{h}_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
V^1	0.005000	0.005000	2.872700 e-01	2.038365e-02	2.872700e-01	3.947568e-02
v^2	0.002500	0.002500	4.182928e-01	2.551242e-02	4.182928e-01	4.940824e-02
v^3	0.001250	0.001250	4.969920e-01	2.570726e-02	4.969920e-01	4.978559e-02
v^4	0.000625	0.000625	6.390749e-01	2.660494e-02	6.390749e-01	5.152407e-02
u	0.010000	0.010000	5.758615e-01	2.985708e-02	5.758615e-01	5.782227e-02

Таким образом имеем следующие графики:

1.2 Неявная схема.

$$S := v_t + \frac{1}{2} (F(\hat{v}))_x + \frac{1}{2} (F(v))_{\overline{x}=0}$$

Схема примет вид $(F(v) = \frac{v}{2})$:

$$S = \frac{v_m^{n+1} - v_m^n}{\tau} + \frac{v_{m+1}^{n+1} - v_m^{n+1}}{4h} + \frac{v_m^n - v_{m-1}^n}{4h} = 0$$

1.2.1 Аппроксимация

Используя выражения

$$\begin{split} v_m^{n+1} &= v + \dot{v}\tau + \frac{\ddot{v}}{2}\tau^2 + \frac{\ddot{v}\cdot}{6}\tau^3 + O(\tau^4) \\ v_m^n &= v \\ v_{m-1}^n &= v - v'h + \frac{v''}{2}h^2 - \frac{v'''}{6}h^3 + O(h^4) \\ v_{m+1}^{n+1} &= v + \dot{v}\tau + v'h + \frac{\ddot{v}}{2}\tau^2 + \dot{v}'\tau h + \frac{v''}{2}h^2 + \frac{\ddot{v}\cdot}{6}\tau^3 + \frac{\ddot{v}'}{2}\tau^2 h + \frac{\dot{v}''}{2}\tau h^2 + \frac{v'''}{6}h^3 + O(h^4 + \tau^4) \\ \dot{v} + \frac{1}{2}v' &= 0 \\ \ddot{v} + \frac{1}{2}\dot{v}' &= 0 \end{split}$$

Получим

$$S = \dot{v} + \frac{v'}{2} + \tau(\frac{\dot{v}'}{4} + \frac{\ddot{v}}{2}) + (\frac{\ddot{v}'}{8} + \frac{\ddot{v}'}{6})\tau^2 + \frac{\dot{v}''}{8}\tau h + \frac{v'''}{12}h^2 + O(\tau^3 + h^3) = -\frac{\dddot{v}}{12}\tau^2 + \frac{\dot{v}''}{8}\tau h + \frac{v'''}{12}h^2 + O(h^3 + \tau^3)$$

Получили, что порядок апроксимации равен 2-ум.

1.2.2 Дифференциальное приближение

Из равенства S=0 имеем

$$\dot{v} + \frac{v'}{2} = -\frac{\tau}{4}(2\ddot{v} + \dot{v}') + \frac{\ddot{v}'}{12}\tau^2 - \frac{\dot{v}''}{8}\tau h - \frac{v'''}{12}h^2 + O(\tau^3 + h^3)$$

А далее, дифференцируя последнее уравнение, имеем:

$$\begin{cases} \ddot{v} + \frac{\dot{v}'}{2} = -\frac{\tau}{4}(2\,\ddot{v}' + \ddot{v}') + O(\tau^2 + h^2) \\ \dot{v}' + \frac{v''}{2} = -\frac{\tau}{4}(2\ddot{v}' + \dot{v}'') + O(\tau^2 + h^2) \end{cases} \Rightarrow \\ \dot{v} + \frac{v'}{2} = \frac{\ddot{v}}{3}\tau^2 + \frac{\ddot{v}'}{8}\tau^2 - \frac{\dot{v}''}{8}\tau h - \frac{v'''}{12}h^2 + O(\tau^3 + h^3) \\ \begin{cases} \ddot{v}' + \frac{\ddot{v}''}{2} = O(\tau + h) \\ \ddot{v}' + \frac{\dot{v}''}{2} = O(\tau + h) \end{cases} \Rightarrow \begin{cases} \ddot{v}' = -\frac{v'''}{8} + O(\tau + h) \\ \ddot{v}'' = \frac{v'''}{4} + O(\tau + h) \end{cases} \Rightarrow \\ \dot{v}'' + \frac{v'''}{2} = O(\tau + h) \end{cases} \dot{v}'' = -\frac{v'''}{2} + O(\tau + h)$$

1.2.3 Спектральная устойчивость.

При замене $v_m^n = \lambda^n e^{im\varphi}$ получаем $(\nu = \frac{\tau}{h})$:

$$\lambda(\varphi) = \frac{1 - \frac{\nu}{4}(1 - e^{-i\varphi})}{1 + \frac{\nu}{4}(e^{i\varphi} - 1)} = \frac{(1 - \frac{\nu}{4}) + \frac{\nu}{4}e^{-i\varphi}}{(1 - \frac{\nu}{4}) + \frac{\nu}{4}e^{i\varphi}} = \frac{a + i b}{a - i b} \Rightarrow$$

$$|\lambda(\varphi)| = \left\| \frac{a + i b}{a - i b} \right\| = \frac{|a + i b|}{|a - i b|} = \frac{\sqrt[3]{a^2 + b^2}}{\sqrt[3]{a^2 + b^2}} = 1$$

Таким образом независимо от значения $\nu > 0$ имеем $\max_{\varphi} |\lambda(\varphi)| = 1$, а значит имеем абсолютную спектральную устойчивость.

1.2.4 Численное решение задачи.

Схему

$$\frac{v_m^{n+1} - v_m^n}{\tau} + \frac{v_{m+1}^{n+1} - v_m^{n+1}}{4h} + \frac{v_m^n - v_{m-1}^n}{4h} = 0$$

перепишем в виде:

$$\frac{v_{m+1}^{n+1}}{4h} + (\frac{1}{\tau} - \frac{1}{4h})v_m^{n+1} = \frac{v_m^n}{\tau} - \frac{v_m^n - v_{m-1}^n}{4h} \Rightarrow v_{m+1}^{n+1}\tau + v_m^{n+1}(4h - \tau) = 4v_m^n h - (v_m^n - v_{m-1}^n)\tau$$

Граничные условия примут вид: $v(t,-1)=0 \Rightarrow v_0^n=0 \ \forall \ n \in (0 \div N)$, $v(t,1)=1 \Rightarrow v_M^n=0 \ \forall \ n \in (0 \div N)$.

Тогда $\{v_m^{n+1}\}$ вычисляется по набору $\{v_m^n\}$ согласно системе линейных уравнений:

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ \tau & 4h - \tau & 0 & \cdots & 0 & 0 & 0 \\ 0 & \tau & 4h - \tau & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 4h - \tau & 0 & 0 \\ 0 & 0 & 0 & \cdots & \tau & 4h - \tau & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_{M_h}^{n+1} \\ v_{M_h-1}^{n+1} \\ v_{M_h-2}^{n+1} \\ \vdots \\ v_{N_h-2}^{n+1} \\ v_{1}^{n+1} \\ v_{1}^{n+1} \\ v_{0}^{n+1} \end{pmatrix} = \begin{pmatrix} 1 \\ 4hv_{M_h-1}^{n} - (v_{M_h-1}^{n} - v_{M_h-2}^{n})\tau \\ 4hv_{M_h-2}^{n} - (v_{M_h-2}^{n} - v_{M_h-3}^{n})\tau \\ \vdots \\ 4hv_{N_h-2}^{n} - (v_{N_h-2}^{n} - v_{N_h-3}^{n})\tau \\ 4hv_{N_h-1}^{n} - (v_{N_h-2}^{n} - v_{N_h-3}^{n})\tau \\ 4hv_{N_h-1}^{n} - (v_{N_h-1}^{n} - v_{N_h-1}^{n})\tau \\ 0 \end{pmatrix}$$

Видно, что система с нижнетреугольной матрицей, и ее решение легко можно будет найти по формулам:

$$v_m^{n+1} = \frac{4v_m^n - \nu(v_m^n - v_{m-1}^n + v_{m+1}^{n+1})}{4 - \nu},$$
где $m \in \{1 \div M_h - 1\}$ и $\nu = \frac{\tau}{h}$.

Тогда расчеты дают следующие результаты:

τ	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_1,h}$	$\delta(v)_{C_h}$	$\delta(v)_{L_1,h}$
0.100	0.100	4.556059e-01	2.160589e-01	4.556059 e-01	3.225173e-01
0.010	0.100	5.235504e-01	2.564115e-01	5.235504e-01	3.698176e-01
0.001	0.100	5.281041e-01	2.558158e-01	5.281041e-01	3.700260e-01
0.100	0.010	7.752484e + 37	$1.867161\mathrm{e}{+36}$	$1.000000\mathrm{e}{+00}$	1.000000e+00
0.010	0.010	5.753680e-01	7.875579e-02	5.753680e-01	1.386420e-01
0.001	0.010	6.024725e-01	8.856575e-02	6.024725 e-01	1.542827e-01
0.100	0.001	1.621677e + 30	$3.562936\mathrm{e}{+28}$	$1.000000\mathrm{e}{+00}$	$1.000000\mathrm{e}{+00}$
0.010	0.001	inf	nan	nan	nan
0.001	0.001	6.260301e-01	2.700860e-02	6.260301 e-01	5.147762e-02

Теперь рассмотрим случай равномерного дробления сетки, при исходных данных $\tau=0.1$, h=0.1. Причем $\tau_k=\frac{\tau}{2^k}$ и $h_k=\frac{h}{2^k}$. $\Delta(v,v^k)_\alpha=\|v-v^k\|_\alpha$ и $\delta(v,v^k)_\alpha=\frac{\|v-v^k\|_\alpha}{\|v\|_\alpha}$.

	$ au_k$	\mathbf{h}_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
v^1	0.050000	0.050000	3.403615e-01	1.766466e-01	3.403615e-01	2.636854e-01
v^2	0.025000	0.025000	$1.280047\mathrm{e}{+00}$	$1.109502\mathrm{e}{+00}$	$1.280047\mathrm{e}{+00}$	$1.656185\mathrm{e}{+00}$
v^3	0.012500	0.012500	$1.316483\mathrm{e}{+00}$	$1.073060\mathrm{e}{+00}$	$1.316483\mathrm{e}{+00}$	$1.601788\mathrm{e}{+00}$
v^4	0.006250	0.006250	$1.395049\mathrm{e}{+00}$	$1.088086\mathrm{e}{+00}$	$1.395049\mathrm{e}{+00}$	1.624217e+00
u	0.100	0.100	4.556059e-01	2.160589e-01	4.556059e-01	3.225173e-01

При исходных данных $\tau = 0.01, \, h = 0.01.$

	$ au_k$	\mathbf{h}_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
v^1	0.005000	0.005000	$1.293786\mathrm{e}{+00}$	$1.032774\mathrm{e}{+00}$	$1.293786\mathrm{e}{+00}$	$1.818100\mathrm{e}{+00}$
v^2	0.002500	0.002500	$1.381531\mathrm{e}{+00}$	$1.031504\mathrm{e}{+00}$	$1.381531\mathrm{e}{+00}$	$1.815864\mathrm{e}{+00}$
v^3	0.001250	0.001250	$1.575901\mathrm{e}{+00}$	$1.032167\mathrm{e}{+00}$	$1.575901\mathrm{e}{+00}$	$1.817031\mathrm{e}{+00}$
v^4	0.000625	0.000625	$1.445724\mathrm{e}{+00}$	$1.026851\mathrm{e}{+00}$	1.445724e + 00	$1.807673\mathrm{e}{+00}$
u	0.010	0.010	5.753680e-01	7.875579e-02	5.753680e-01	1.386420e-01

Таким образом имеем следующие графики:

2 Нелинейная задача.

Итак, решаем $v_t+vv_x=0$ в области $Q_T=\{(t,x)|0< t\leqslant 1,-1\leqslant x\leqslant 1\}$. Граничные условия $v_0(x)=\left\{\begin{array}{ll} 0 & \text{, если } x\leqslant 0\\ 1 & \text{, если } x>0 \end{array}\right.$. Из теоретического решения знаем, что граничные условия примут v(t,1)=1 , v(t,-1)=0

2.1 Явная схема.

$$v_m^{(1)} = v_m^n - \frac{\tau}{h}(F_{m+1}^n - F_m^n); \quad v_m^{n+1} = \frac{1}{2}\left(v_m^n + v_m^{(1)} - \frac{\tau}{h}(F(v_m^{(1)}) - F(v_{m-1}^{(1)}))\right)$$

из чего получаем разностную схему $(F(v) = \frac{v^2}{2})$

$$S := \frac{v_m^{n+1} - v_m^n}{\tau} + \frac{(v_{m+1}^n)^2 - (v_m^n)^2}{4h} + \frac{(v_m^{(1)})^2 - (v_{m-1}^{(1)})^2}{4h} = 0$$

2.1.1 Аппроксимация

Используя выражения

$$\begin{split} v_m^{n+1} &= v + \dot{v}\tau + \frac{\ddot{v}}{2}\tau^2 + \frac{\dddot{v}}{6}\tau^3 + O(\tau^4) \\ v_m^n &= v \\ v_{m+1}^n &= v + v'h + \frac{v''}{2}h^2 + \frac{v'''}{6}h^3 + O(h^4) \\ v_{m-1}^n &= v - v'h + \frac{v''}{2}h^2 - \frac{v'''}{6}h^3 + O(h^4) \\ v_m^{(1)} &= v_m^n - \frac{\tau}{2h}((v_{m+1}^n)^2 - (v_m^n)^2) \\ v_{m-1}^{(1)} &= v_{m-1}^n - \frac{\tau}{2h}((v_m^n)^2 - (v_{m-1}^n)^2) \\ \dot{v} + vv' &= 0 \\ \ddot{v} - 2v(v')^2 - v^2v'' &= 0 \end{split}$$

Получим следующее выражение:

$$S = \frac{\tau^2}{6} (3vv'((v')^2 + vv'') + \ddot{v}) + \frac{\tau h}{4} ((v')^3 + 2vv'v'') + \frac{h^2}{6} (3v'v'' + vv''') + O(\tau^3 + h^3)$$

Из чего делаем вывод, что порядок аппроксимации равен 2.

2.1.2 Численное решение.

Преобразуем нашу схему к виду:

$$v_m^{n+1} = v_m^n - \frac{\nu}{4}((v_{m+1}^n)^2 - (v_m^n)^2) - \frac{\nu}{4}(v_m^n - v_{m-1}^n - \frac{\nu}{2}((v_{m+1}^n)^2 - 2(v_m^n)^2 + (v_{m-1}^n)^2))(v_m^n + v_{m-1}^n - \frac{\nu}{2}((v_{m+1}^n)^2 + (v_{m-1}^n)^2)) + \frac{\nu}{4}(v_m^n - v_{m-1}^n - \frac{\nu}{2}((v_{m+1}^n)^2 - 2(v_m^n)^2 + (v_{m-1}^n)^2))(v_m^n + v_{m-1}^n - \frac{\nu}{2}((v_{m+1}^n)^2 - 2(v_m^n)^2 + (v_{m+1}^n)^2))(v_m^n + v_{m-1}^n - \frac{\nu}{2}((v_m^n)^2 - 2(v_m^n)^2 + (v_m^n)^2))(v_m^n + v_{m-1}^n - \frac{\nu}{2}((v_m^n)^2 - 2(v_m^n)^2 + (v_m^n)^2))(v_m^n + v_m^n - 2(v_m^n)^2 + (v_m^n)^2)(v_m^n + v_m^n - 2(v_m^n)^2 + (v_m^n)^2 + (v_m^n)^2)(v_m^n + v_m^n - 2(v_m^n)^2 + (v_m^n)^2 +$$

Граничные условия примут вид: $v(t,-1)=0 \Rightarrow v_0^n=0 \ \forall \ n \in (0 \div N)$, $v(t,1)=1 \Rightarrow v_{M_h}^n=0 \ \forall \ n \in (0 \div N)$.

Тогда $\{v_m^{n+1}\}$ вычисляются по набору $\{v_m^n\}$ согласно выше описанной системе линейных уравнений.

Тогда расчеты дают следующие результаты:

τ	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_1,h}$	$\delta(v)_{C_h}$	$\delta(v)_{L_1,h}$
0.100	0.100	8.498309e-01	4.534411e-01	8.498309e-01	4.540809e-01
0.010	0.100	v5.804220e-01	2.321695e-01	5.804220 e-01	3.029365e-01
0.001	0.100	5.674904e-01	2.175393e-01	5.674904e-01	2.901153e-01
0.100	0.010	inf	nan	nan	nan
0.010	0.010	8.872534e-01	4.803884e-01	8.872534e-01	4.880325e-01
0.001	0.010	7.092497e-01	2.648744e-01	7.092497e-01	3.451246e-01
0.100	0.001	inf	nan	nan	nan
0.010	0.001	inf	nan	nan	nan
0.001	0.001	8.895742e-01	4.830139e-01	8.895742e-01	4.911672e-01

Теперь рассмотрим случай равномерного дробления сетки, при исходных данных $\tau=0.1$, h=0.1. Причем $\tau_k=\frac{\tau}{2^k}$ и $h_k=\frac{h}{2^k}$. $\Delta(v,v^k)_\alpha=\|v-v^k\|_\alpha$ и $\delta(v,v^k)_\alpha=\frac{\|v-v^k\|_\alpha}{\|v\|_\alpha}$.

	$ au_k$	\mathbf{h}_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
v^1	0.050000	0.050000	3.692220 e-01	7.059167e-02	3.692220 e-01	7.069128e-02
v^2	0.025000	0.025000	6.746718e-01	1.038319e-01	6.746718e-01	1.039784e-01
v^3	0.012500	0.012500	4.889888e-01	8.394065e-02	4.889888e-01	8.405909e-02
v^4	0.006250	0.006250	5.053363e- 01	8.653917e-02	5.053363e-01	8.666127e-02
u	0.100	0.100	8.498309e-01	4.534411e-01	8.498309e-01	4.540809e-01

При исходных данных $\tau = 0.01, \, h = 0.01.$

	$ au_k$	\mathbf{h}_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
v^1	0.005000	0.005000	4.814581e-01	9.148894e-03	4.814581e-01	9.294473e-03
v^2	0.002500	0.002500	2.711793e-01	7.243046e-03	2.711793e-01	7.358298e-03
v^3	0.001250	0.001250	2.969553e-01	7.737691e-03	2.969553e-01	7.860815e-03
V^4	0.000625	0.000625	2.980227e-01	7.748339e-03	2.980227e-01	7.871632e-03
u	0.010	0.010	8.872534e-01	4.803884e-01	8.872534e-01	4.880325e-01

Таким образом имеем следующие графики:

Видим, что графики показывают решение, отличное от истинного. Пойдем следующим путем, возьмем непрерывные начальные условия вида:

$$u_0(x) = \left\{ \begin{array}{l} 0 \;, \; \text{при} \; x < 0 \\ 1 \;, \; \text{при} \; x > \theta \\ \frac{x}{\theta} \;, \; \text{при} \; 0 < x < \theta \end{array} \right.$$

Тогда если мы устремим $h \to 0$, то начальное условие $u_0(x)$ будет сходится к исходному разрывному начальному условию. Так как мы рассматриваем решение в ограниченной области, и это решение определяется характеристиками, которые непрерывно зависят от начальных условий, то и наше решение в области непрерывно зависит от начальных условий. Поэтому решение должно стремится к истинному решению задачи.

Ниже указан результат для шагов $\tau=0.01,\ h=0.01$ и уменьшающегося шага θ (указан на рисунке):

Видим, что при уменьшении параметра θ у нуля получаем разрыв. Решением этого становится

пропорциональное уменьшение шагов сетки. Например, если в качестве начальных данных взять $\tau = 0.01, \ h = 0.01, \ \theta = 0.1$, и уменьшать все вдвое, получим следующие данные:

au	h	θ	$\Delta(v)_{C_h}$	$\Delta(v)_{L_1,h}$	$\delta(v)_{C_h}$	$\delta(v)_{L_1,h}$
1.000000e-02	1.000000e-02	1.000000e-01	9.090909e-02	4.631973e-02	1.000000e-01	1.007706e-01
5.000000e-03	5.000000e-03	5.000000e-02	4.761905e-02	2.441394e-02	5.000000e-02	5.094394e-02
2.500000e-03	2.500000e-03	2.500000e-02	3.804298e-02	1.276872e-02	3.899405 e-02	2.607521e-02
1.250000e-03	1.250000e-03	1.250000e-02	3.917822e-02	6.783361e-03	3.966795e-02	1.370053e-02
6.250000e-04	6.250000e-04	6.250000e- 03	3.595207e-02	3.733617e-03	3.617677e-02	7.499207e-03
3.125000e-04	3.125000e- 04	3.125000e- 03	3.477184e-02	2.198689e-03	3.488051e-02	4.403913e-03
1.562500e-04	1.562500 e-04	1.562500 e-03	3.480186e-02	1.427949e-03	3.485624e-02	2.856152e-03
7.812500e-05	7.812500 e-05	7.812500 e-04	3.444687e-02	1.042245e-03	3.447378e-02	2.083217e-03
3.906250e-05	3.906250 e-05	3.906250e- 04	3.413119e-02	8.491674e-04	3.414452e-02	1.696704e-03
1.953125e-05	1.953125e-05	1.953125e-04	3.379066e-02	7.525779e-04	3.379726e-02	1.503447e-03

Тогда уже для данных последней строки таблицы имеем график:

Как ниже будет показано, схема обладает устойчивостью, поэтому приведем таблицу , где для фиксированного θ показаны результаты уменьшения шага (выберем $\theta=0.001$, чтобы иметь достаточное приближение к начальным условиям, но и чтобы не было необходимости работы с

очень мелким разбиением сетки):

τ	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_1,h}$	$\delta(v)_{C_h}$	$\delta(v)_{L_1,h}$
1.000000e-04	1.000000e-04	3.491224e-02	1.150314e-03	3.494715e-02	2.299675e-03
6.896552e-05	6.896552e-05	2.345893e-02	8.057257e-04	2.348239e-02	1.611958e-03
4.756243e-05	4.756243e-05	1.659960 e-02	6.434882e-04	1.661620e-02	1.287827e-03
3.280194e-05	3.280194e-05	1.147719e-02	5.676639e-04	1.148867e-02	1.136270e-03
2.262239e-05	2.262213e-05	9.990010e-04	4.995020e-04	1.000000e-03	9.999802e-04
1.560184e-05	1.560148e-05	1.000303e- 03	4.995063e-04	1.001303e-03	9.999958e-04
1.075998e-05	1.075969e-05	1.001043e- 03	4.995036e-04	1.002044e-03	9.999953e-04
7.420710e-06	7.420489e-06	2.824629 e-03	5.029432e-04	2.827454e-03	1.006878e-03
5.117733e-06	5.117589e-06	9.990010e-04	4.995020e-04	1.000000e-03	9.999979e-04

θ	τ	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_1,h}$	$\delta(v)_{C_h}$	$\delta(v)_{L_1,h}$
	0.010	0.010	8.872534e-01	$\frac{-(5)E_{1},n}{4.804875e-01}$	8.961259e-01	4.881822e-01
	0.001	0.010	7.092497e-01	2.649560e-01	7.163422e-01	3.452676e-01
	0.0001	0.010	7.831323e-01	2.507228e-01	7.909636e-01	3.329498e-01
	0.010	0.001	inf	nan	nan	nan
0.01	0.001	0.001	3.876085e-02	5.560928e-03	3.914846e-02	1.120687e-02
	0.0001	0.001	2.220997e-02	5.024782e-03	2.243207e-02	1.013466e-02
	0.010	0.0001	inf	nan	nan	nan
	0.001	0.0001	inf	nan	nan	nan
	0.0001	0.0001	9.900990e-03	4.956962e-03	1.000000e-02	1.001194e-02
	0.010	0.010	8.872534e-01	4.803984e-01	8.881407e-01	4.880476e-01
	0.001	0.010	7.092497e-01	2.648844e-01	7.099590e-01	3.451421e-01
	0.0001	0.010	7.831323e-01	2.506540 e-01	7.839154e-01	3.328281e-01
	0.010	0.001	inf	nan	nan	nan
0.001	0.001	0.001	8.895742e-01	4.830149e-01	8.904638e-01	4.911687e-01
	0.0001	0.001	6.797345e-01	2.674826e-01	6.804142e-01	3.484362e-01
	0.010	0.0001	inf	nan	nan	nan
	0.001	0.0001	inf	nan	nan	nan
	0.0001	0.0001	3.491224e-02	1.150314e-03	3.494715e-02	2.299675e-03
	0.010	0.010	8.872534e-01	4.803894e-01	8.873421e-01	4.880340e-01
	0.001	0.010	7.092497e-01	2.648754e-01	7.093206e-01	3.451263e-01
	0.0001	0.010	7.831323e-01	2.506453e-01	7.832106e-01	3.328126e-01
	0.010	0.001	inf	nan	nan	nan
0.0001	0.001	0.001	8.895742e-01	4.830140e-01	8.896631e-01	4.911673e-01
	0.0001	0.001	6.797345e-01	2.674819e-01	6.798025e-01	3.484349e-01
	0.010	0.0001	inf	nan	nan	nan
	0.001	0.0001	inf	nan	nan	nan
	0.0001	0.0001	8.419044e-01	4.832747e-01	8.419886e-01	4.914759e-01

2.1.3 Устойчивость

Воспользуемся методом замороженных коэффициентов. Схема имеет вид:

$$v_m^{n+1} = v_m^n - \frac{\tau}{2h} (F(v_{m+1}^n) - F(v_m^n)) - \frac{\tau}{2h} (F(v_m^{(1)}) - F(v_{m-1}^{(1)}))$$

Запишем это уравнение в вариациях, получим:

$$\delta_m^{n+1} = \delta_m^n - \frac{\tau}{2h} (v_{m+1}^n \delta_{m+1}^n - v_m^n \delta_m^n) - \frac{\tau}{2h} (v_m^{(1)} \delta_m^{(1)} - v_{m-1}^{(1)} \delta_{m-1}^{(1)})$$

Учитывая, что

$$\begin{split} \delta_m^{(1)} &= \delta_m^n - \frac{\tau}{h} (v_{m+1}^n \delta_{m+1}^n - v_m^n \delta_m^n) \\ \delta_{m-1}^{(1)} &= \delta_{m-1}^n - \frac{\tau}{h} (v_m^n \delta_m^n - v_{m-1}^n \delta_{m-1}^n) \\ v_{m-1}^{(1)} &= v_m^n + O(\tau + h) = a + O(\tau + h) \; ; \; v_m^{(1)} = v_m^n + O(\tau + h) = a + O(\tau + h) \\ v_{m-1}^n v_m^n + O(\tau + h) &= a + O(\tau + h) \; ; \; v_m^n = a \; ; \; v_{m+1}^n v_m^n + O(\tau + h) = a + O(\tau + h) \end{split}$$

имеем $(\nu = \frac{\tau}{h})$

$$\delta_m^{n+1} = \delta_m^n - \frac{\nu a}{2} (\delta_{m+1}^n - \delta_m^n) - \frac{\nu^2 a^2}{2} (\delta_{m+1}^n - 2\delta_m^n + \delta_{m-1}^n)$$

Тогда

$$\lambda = 1 + \nu^2 a^2 (\cos \varphi - 1) - \nu a \sin \varphi \cdot i = x + y \cdot i \Rightarrow$$

$$\left(\frac{x - 1 + \nu^2 a^2}{\nu^2 a^2}\right)^2 + \left(\frac{y^2}{\nu a}\right)^2 = 1$$

Как минимум требуем, чтобы $\nu^2 a^2 \leqslant 1$, иначе эллипс лежит вне единичного круга, и условие спектральной устойчивости заведомо не будет выполнено. Тогда, как и в линейной задаче, из геометричесских свойств эллипса и окружности, чтобы эллипс целиком лежал в единичном круге, достаточно того, что в точке касания эллипса и окружности, эллипс оказался "вогнутее" окружности. Выразим для этого правые половины фигур, как функции переменной y ($x_1(y)$ - окружность, $x_2(y)$ - эллипс.), и разложим их в ряд Тейлора в нуле. Получим:

$$x_1(y) = 1 - \frac{y^2}{2} - \frac{y^4}{8} + O(y^6),$$

$$x_2(y) = 1 - \frac{y^2}{2} - \frac{y^4}{8 v^2 a^2} + O(y^6).$$

Откуда видно, что при $\nu^2 a^2 \leqslant 1$ желаемое выполнено, то есть имеем условную сходимость.

2.2 Неявная схема.

$$S := v_t + \frac{1}{2}(F(\hat{v}))_x + \frac{1}{2}(F(v))_{\overline{x}=0}$$

Схема примет вид $(F(v) = \frac{v^2}{2})$:

$$S = \frac{v_m^{n+1} - v_m^n}{\tau} + \frac{(v_{m+1}^{n+1})^2 - (v_m^{n+1})^2}{4h} + \frac{(v_m^n)^2 - (v_{m-1}^n)^2}{4h} = 0$$

2.2.1 Аппроксимация

Используя выражения

$$\begin{split} v_m^{n+1} &= v + \dot{v}\tau + \frac{\ddot{v}}{2}\tau^2 + \frac{\dddot{v}}{6}\tau^3 + O(\tau^4) \\ v_m^n &= v \\ v_{m-1}^n &= v - v'h + \frac{v''}{2}h^2 - \frac{v'''}{6}h^3 + O(h^4) \\ v_{m+1}^{n+1} &= v + \dot{v}\tau + v'h + \frac{\ddot{v}}{2}\tau^2 + \dot{v}'\tau h + \frac{v''}{2}h^2 + \frac{\dddot{v}}{6}\tau^3 + \frac{\ddot{v}'}{2}\tau^2 h + \frac{\dot{v}''}{2}\tau h^2 + \frac{v'''}{6}h^3 + O(h^4 + \tau^4) \\ \dot{v} + vv' &= 0 \\ \ddot{v} + v'\dot{v} + v\dot{v}' &= 0 \end{split}$$

Получим

$$S = -\frac{\ddot{v}}{12}\tau^2 - \frac{\ddot{v}'}{4}\tau h - \frac{\dot{v}''}{6}h^2 + O(h^3 + \tau^3)$$

Получили, что порядок апроксимации равен 2-ум.

2.2.2 Численное решение.

Преобразуем нашу схему в виде:

$$(v_m^{n+1})^2 - \frac{4}{\nu}v_m^{n+1} + \frac{4}{\nu}v_m^n - ((v_m^n)^2 - (v_{m-1}^n)^2 + (v_{m+1}^{n+1})^2) = 0$$

Граничные условия примут вид: $v(t,-1)=0 \Rightarrow v_0^n=0 \ \forall \ n \in (0 \div N)$, $v(t,1)=1 \Rightarrow v_{M_h}^n=0 \ \forall \ n \in (0 \div N)$.

Согласно шаблону, мы используем в нашей схеме набор точек: $\{(n,m), (n,m-1), (n+1,m), (n+1,m+1)\}$. Но из граничных условий мы для крайнего положения знаем значение в точке $(n+1,M_h)$, и тогда по схеме можем получить значение в точке $(n+1,M_h-1)$ как решение выше описанного квадратного уравнения. Аналогичные рассуждения проведем для точки $(n+1,M_h-2)$, и так далее итеративно рассчитаем весь ряд.

Остается решить проблему, какой корень выбрать. Пусть $v_m^n = v$, считаем $v_{m+1}^{n+1} = v + O(\tau) + O(h)$, $v_{m-1}^n = v + O(h)$, $v_m^n = v$. Из соображений непрерывности решения, потребуем, чтобы корень квадратного уравнения имел вид: $v + O(\tau) + O(h)$.

$$\frac{D}{4} = \frac{4}{\nu^2} - \frac{4}{\nu} v + v^2 + O(\tau) + O(h) = \left(\frac{2}{\nu} - v\right)^2 + O(\tau) + O(h) \Rightarrow$$

$$v_m^{n+1} = \frac{2}{\nu} \pm \sqrt{\left(\frac{2}{\nu} - v\right)^2 + O(\tau) + O(h)} = \frac{2}{\nu} \pm \left| \left(\frac{2}{\nu} - v\right) \right| + O(\tau) + O(h)$$

Поэтому корень будем выбирать по принципу:

$$\left\{ \begin{array}{l} \mathbf{v}_m^{n+1} = \frac{2}{\nu} - \sqrt{\frac{D}{4}} = \frac{2}{\nu} - \sqrt{\frac{4}{\nu^2} - \frac{4}{\nu} v_m^n + ((v_m^n)^2 - (v_{m-1}^n)^2 + (v_{m+1}^{n+1})^2)}, \text{ если } \frac{2}{\nu} - v_m^n \geqslant 0 \\ \mathbf{v}_m^{n+1} = \frac{2}{\nu} + \sqrt{\frac{D}{4}} = \frac{2}{\nu} + \sqrt{\frac{4}{\nu^2} - \frac{4}{\nu} v_m^n + ((v_m^n)^2 - (v_{m-1}^n)^2 + (v_{m+1}^{n+1})^2)}, \text{ если } \frac{2}{\nu} - v_m^n \leqslant 0 \end{array} \right.$$

Тогда $\{v_m^{n+1}\}$ рассчитаем по набору $\{v_m^n\}$ согласно выше описанной системе линейных уравнений.

Расчеты дают следующие результаты:

au	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_1,h}$	$\delta(v)_{C_h}$	$\delta(v)_{L_1,h}$
0.100	0.100	4.768202e-01	3.155235e-01	4.768202e-01	5.575204e-01
0.010	0.100	5.370815e-01	4.315899e-01	5.370815e-01	5.980116e-01
0.001	0.100	5.623037e-01	4.515290e-01	5.623037e-01	6.058267e-01
0.100	0.010	$1.371363\mathrm{e}{+00}$	9.600960e-01	$1.000000\mathrm{e}{+00}$	6.575568e-01
0.010	0.010	4.980405e-01	3.140581e-01	4.980405e-01	5.576327e-01
0.001	0.010	7.605155e-01	4.717831e-01	7.605155e-01	6.502340 e - 01
0.100	0.001	1.391977e + 00	9.932151e-01	$1.000000\mathrm{e}{+00}$	6.651521 e-01
0.010	0.001	$1.464911\mathrm{e}{+00}$	9.212901e-01	$1.000000\mathrm{e}{+00}$	6.482069e-01
0.000	0.000	4.999803e-01	3.125607e-01	4.999803e-01	5.556130e-01

Теперь рассмотрим случай равномерного дробления сетки, при исходных данных $\tau=0.1$, h=0.1. Причем $\tau_k=\frac{\tau}{2^k}$ и $h_k=\frac{h}{2^k}$. $\Delta(v,v^k)_\alpha=\|v-v^k\|_\alpha$ и $\delta(v,v^k)_\alpha=\frac{\|v-v^k\|_\alpha}{\|v\|_\alpha}$.

	$ au_k$	\mathbf{h}_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
v^1	0.050000	0.050000	1.302024e-01	4.675061 e-02	1.302024e-01	8.260689e-02
v^2	0.025000	0.025000	3.074147e + 00	$2.332509\mathrm{e}{+00}$	$3.074147\mathrm{e}{+00}$	4.121472e+00
v^3	0.012500	0.012500	$2.935753\mathrm{e}{+00}$	$2.719528e{+00}$	$2.935753\mathrm{e}{+00}$	$4.805321\mathrm{e}{+00}$
v^4	0.006250	0.006250	$2.986898\mathrm{e}{+00}$	$2.606632\mathrm{e}{+00}$	$2.986898\mathrm{e}{+00}$	4.605837e+00
u	0.010	0.010	4.980405e-01	3.140581e-01	4.980405e-01	5.576327e-01

При исходных данных $\tau = 0.01, \, h = 0.01.$

	$ au_k$	\mathbf{h}_k	$\Delta(v,\cdot)_{C_h}$	$\Delta(v,\cdot)_{L_1,h}$	$\delta(v,\cdot)_{C_h}$	$\delta(v,\cdot)_{L_1,h}$
v^1	0.005000	0.005000	$3.162270\mathrm{e}{+00}$	$2.347001\mathrm{e}{+00}$	$3.162270\mathrm{e}{+00}$	$4.167270\mathrm{e}{+00}$
v^2	0.002500	0.002500	$3.866018\mathrm{e}{+00}$	$2.317555\mathrm{e}{+00}$	$3.866018\mathrm{e}{+00}$	$4.114986\mathrm{e}{+00}$
v^3	0.001250	0.001250	$2.928915\mathrm{e}{+00}$	$2.235609\mathrm{e}{+00}$	$2.928915\mathrm{e}{+00}$	$3.969485\mathrm{e}{+00}$
v^4	0.000625	0.000625	$3.115215\mathrm{e}{+00}$	$2.345264\mathrm{e}{+00}$	3.115215e+00	$4.164184\mathrm{e}{+00}$
u	0.010	0.010	4.980405e-01	3.140581e-01	4.980405e-01	5.576327e-01

Таким образом имеем следующие графики:

Также, как и с задачей выше, перейдем к непрерывной постановке. С учетом того, что шаги должны уменьшатся пропорционально параметру θ , получим следующую таблицу:

au	h	θ	$\Delta(v)_{C_h}$	$\Delta(v)_{L_1,h}$	$\delta(v)_{C_h}$	$\delta(v)_{L_1,h}$
1.000000e-02	1.000000e-02	2.000000e-01	5.748999e-01	2.918486e-01	6.898799e-01	6.930964e-01
5.000000e-03	5.000000e-03	1.000000e-01	5.408532e-01	2.728740e- 01	5.949385e-01	5.971017e-01
2.500000e-03	2.500000e-03	5.000000e-02	5.213990e-01	2.620570e-01	5.474690e-01	5.487538e-01
1.250000e-03	1.250000e-03	2.500000e-02	5.109604e-01	2.562514e-01	5.237344e-01	5.244858e-01
6.250000e-04	6.250000e- 04	1.250000e-02	5.055478e-01	2.532426e-01	5.118672e-01	5.123300e-01
3.125000e-04	3.125000e- 04	6.250000 e-03	5.027912e-01	2.517082e-01	5.059336e-01	5.062443e-01
1.562500e-04	1.562500 e-04	3.125000 e-03	5.013999e-01	2.509357e-01	5.029668e-01	5.032017e-01
7.812500e-05	7.812500e-05	1.562500e-03	5.007011e-01	2.505466e- 01	5.014834e-01	5.016791e-01

Тогда уже для данных последней строки таблицы имеем график:

Как ниже будет показано, схема обладает устойчивостью, поэтому приведем таблицу , где для фиксированного θ показаны результаты уменьшения шага (выберем $\theta=0.001$, чтобы иметь

достаточное приближение к начальным условиям, но и чтобы не было необходимости работы с очень мелким разбиением сетки):

au	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_1,h}$	$\delta(v)_{C_h}$	$\delta(v)_{L_1,h}$
1.000000e-04	1.000000e-04	5.003971e-01	2.508752e-01	5.008975e-01	5.015727e-01
6.896552e-05	6.896552e-05	5.004291e-01	2.505374e-01	5.009295e-01	5.012532e-01
4.756243e-05	4.756243e-05	5.004752e-01	2.503914e-01	5.009757e-01	5.011174e-01
3.280194e-05	3.280194e-05	5.004992e-01	2.503161e-01	5.009997e-01	5.010500e-01
2.262239e-05	2.262213e-05	$1.284168\mathrm{e}{+02}$	$5.936790\mathrm{e}{+00}$	$1.000000\mathrm{e}{+00}$	$1.091807 \mathrm{e}{+00}$
1.560184e-05	1.560148e-05	5.004955e-01	2.502498e-01	5.009960e-01	5.009923e-01
1.075998e-05	1.075969e-05	$4.514705\mathrm{e}{+02}$	$5.579026\mathrm{e}{+00}$	$1.000000\mathrm{e}{+00}$	$1.098354\mathrm{e}{+00}$
7.420710e-06	7.420489e-06	5.004921e-01	2.502532e-01	5.009926e-01	5.009997e-01
5.117733e-06	5.117589e-06	$7.149301\mathrm{e}{+02}$	$5.588583\mathrm{e}{+00}$	$1.0000000\mathrm{e}{+00}$	$1.098235\mathrm{e}{+00}$

θ	τ	h	$\Delta(v)_{C_h}$	$\Delta(v)_{L_1,h}$	$\delta(v)_{C_h}$	$\delta(v)_{L_1,h}$
	0.010	0.010	4.980405e-01	3.141079e-01	5.030209 e-01	5.577704e-01
	0.001	0.010	7.605155e-01	4.718589e-01	7.681207e-01	6.504066e-01
	0.0001	0.010	7.907147e-01	4.937037e-01	7.986218e-01	6.600859e-01
	0.010	0.001	$2.024141\mathrm{e}{+00}$	$1.025022\mathrm{e}{+00}$	$1.000000\mathrm{e}{+00}$	1.372072e+00
0.1	0.001	0.001	5.039357e-01	2.530951e-01	5.089750e-01	5.100903e-01
	0.0001	0.001	5.038431e-01	2.524766e-01	5.088815e-01	5.093368e-01
	0.010	0.0001	$2.252021\mathrm{e}{+00}$	$1.068472\mathrm{e}{+00}$	$1.000000\mathrm{e}{+00}$	$1.726594\mathrm{e}{+00}$
	0.001	0.0001	$1.509266\mathrm{e}{+01}$	$1.310483\mathrm{e}{+00}$	$1.000000\mathrm{e}{+00}$	$1.300448\mathrm{e}{+00}$
	0.0001	0.0001	5.048512e-01	2.524815e-01	5.098998e-01	5.099550e-01
	0.010	0.010	4.980405e-01	3.140631e-01	4.985385e-01	5.576466e-01
	0.001	0.010	7.605155e-01	4.717925e-01	7.612760 e-01	6.502556e-01
	0.0001	0.010	7.907147e-01	4.936355e-01	7.915054e-01	6.599345e-01
	0.010	0.001	$1.464911\mathrm{e}{+00}$	9.821714e-01	$1.000000\mathrm{e}{+00}$	$1.363353\mathrm{e}{+00}$
0.01	0.001	0.001	4.998035e-01	3.125741e-01	5.003033e- 01	5.557090e-01
	0.0001	0.001	7.701925e-01	4.753552e-01	7.709627e-01	6.550593e-01
	0.010	0.0001	$1.431703\mathrm{e}{+00}$	9.901849e-01	$1.000000\mathrm{e}{+00}$	$1.759950\mathrm{e}{+00}$
	0.001	0.0001	$1.772640\mathrm{e}{+00}$	$1.109660\mathrm{e}{+00}$	$1.000000\mathrm{e}{+00}$	$1.364084\mathrm{e}{+00}$
	0.0001	0.0001	5.003971e-01	2.508752e-01	5.008975e-01	5.015727e-01
	0.010	0.010	4.980405e-01	3.140586e-01	4.980903 e-01	5.576341e-01
	0.001	0.010	7.605155e-01	4.717840e-01	7.605916e-01	6.502362e-01
	0.000	0.010	7.907147e-01	4.936268e-01	7.907937e-01	6.599152e-01
	0.010	0.001	$1.464911\mathrm{e}{+00}$	9.738558e-01	$1.000000\mathrm{e}{+00}$	$1.336384\mathrm{e}{+00}$
0.001	0.001	0.001	4.998035e-01	3.125736e-01	4.998534e-01	5.557078e-01
	0.000	0.001	7.701925e-01	4.753545e-01	7.702695e-01	6.550578e-01
	0.010	0.0001	$1.407253\mathrm{e}{+00}$	9.669379e-01	$1.0000000\mathrm{e}{+00}$	$1.721481\mathrm{e}{+00}$
	0.001	0.0001	$1.464911\mathrm{e}{+00}$	$1.012735\mathrm{e}{+00}$	$1.0000000\mathrm{e}{+00}$	$1.410059\mathrm{e}{+00}$
	0.0001	0.0001	4.999803e-01	3.125608e-01	5.000303e- 01	5.556130e-01

2.2.3 Устойчисвость

Проводя аналогичные рассуждения, что и в задаче выше, получаем уравнение в вариациях $(\nu = \frac{\tau}{2h})$:

$$\delta_m^{n+1} - \delta_m^n = a\nu(\delta_{m+1}^{n+1} - \delta_m^{n+1} + \delta_m^n - \delta_{m-1}^n)$$

Тогда

$$\lambda = \frac{1 + a\nu - a\nu e^{-i\varphi}}{1 + a\nu - a\nu e^{i\varphi}} = \frac{1 + a\nu - a\nu\cos\varphi + a\nu\sin\varphi \cdot i}{1 + a\nu - a\nu\cos\varphi - a\nu\sin\varphi \cdot i} \quad \Rightarrow |\lambda| \equiv 1$$

То есть имеем безусловную устойчивость.