MPG Analysis - Regression Models Project

Executive Summary

In this project, we conduct analysis for for *Motor Trend* automobile industry magazine, to evaluate MPG (miles per gallon) model based on R's mtcars dataset. Specifically, the analysis tries to answer the following question:

- "Is an automatic or manual transmission better for MPG?"
- "Quantify the MPG difference between automatic and manual transmissions"

The analysis result shows that there is indeed MPG difference between Manual and Automatic transmission; the value is about 1.8 more MPG for Manual compared to Automatic. However, transmissions is not the only significant factor affecting MPG.

Explaratory Data Analyses

Load Data

Load mtcars dataset, and convert the following variables into Factor: cyl, vs, gear, carb, am.

Null Hypothesis

Assuming the dataset are normally distributed, t-test is performed on Null Hypothesis that there is no difference between Manual and Automatic transmission on MPG - which is rejected, as follow:

```
t.test(mpg ~ am, data = mtcars)[c('p.value', 'conf.int')]

## $p.value
## [1] 0.001373638
##

## $conf.int
## [1] -11.280194 -3.209684
## attr(,"conf.level")
## [1] 0.95
```

Pair Plots and Initial Regression

Figure 1 in Appendix shows relationships between variables in pair.

MPG (mpg) and Transmission (am) has the following linear regression property:

```
fit0 <- lm(mpg ~ am, data=mtcars)
summary(fit0)$coefficients</pre>
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.147368 1.124603 15.247492 1.133983e-15
## ammanual 7.244939 1.764422 4.106127 2.850207e-04
```

The above $(mpg \sim am)$ will be our first model.

Linear Regression Analysis

Best Model Selection

We make use of function **bestmodel** to fit multiple models automatically. **bestmodel** uses Akaike information criterion (AIC) as the measure of quality of the models.

```
fit1 <- lm(mpg ~ ., data=mtcars)</pre>
bestmodel <- step(fit1, direction = "both")</pre>
summary(bestmodel)[c('call', 'coefficients', 'r.squared')]
## $call
## lm(formula = mpg ~ cyl + hp + wt + am, data = mtcars)
##
## $coefficients
##
                  Estimate Std. Error
                                         t value
                                                      Pr(>|t|)
## (Intercept) 33.70832390 2.60488618 12.940421 7.733392e-13
## cyl6
               -3.03134449 1.40728351 -2.154040 4.068272e-02
## cyl8
               -2.16367532 2.28425172 -0.947214 3.522509e-01
               -0.03210943 0.01369257 -2.345025 2.693461e-02
## hp
## wt
               -2.49682942 0.88558779 -2.819404 9.081408e-03
## ammanual
                1.80921138 1.39630450 1.295714 2.064597e-01
##
## $r.squared
## [1] 0.8658799
```

The finding $(mpg \sim cyl + hp + wt + am)$ is our **second** model. To confirm that the confounders cyl, hp, wt, am are indeed significant in estimating mpg, we perform the ANOVA:

```
anova(fit0, bestmodel)
## Analysis of Variance Table
##
## Model 1: mpg ~ am
## Model 2: mpg ~ cyl + hp + wt + am
##
    Res.Df
              RSS Df Sum of Sq
                                         Pr(>F)
## 1
        30 720.90
## 2
        26 151.03 4
                        569.87 24.527 1.688e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Model Diagnostics

Figure 2 in Appendix display the diagnostics plot of the chosen model. The Residuals vs. Fitted plot shows randomly scattered points indicating independence condition. The points on Normal Q-Q plot mostly fall on the line indicating that the residuals are normally distributed. The points on Scale-Location plot are scattered in a constant band pattern, indicating constant variance. Some distinct points of interest on Residuals vs Leverage plot (top & right) may indicate increased leverage of outliers.

Conclusion

- The ANOVA model confirms the **second model** (mpg ~ cyl + hp + wt + am) explaining about ~85% MPG variation.
- Manual transmission gives better MPG with 1.809 more miles per gallon with $\sim\!20\%$ error within the model.

Figure 1: mtcars Pair Plot

Appendix

```
# Pair Plots:
pairs(mpg ~ ., data=mtcars)

# Best Model Diagnostics:
layout(matrix(1:4,2,2))
plot(bestmodel)
```


Figure 2: Diagnostics of model: mpg = cyl + hp + wt + am