Table 3.1 Basic properties of one-sided Laplace transforms		
Causal functions and constants	$\alpha f(t), \beta g(t)$	$\alpha F(s), \beta G(s)$
Linearity	$\alpha f(t) + \beta g(t)$	$\alpha F(s) + \beta G(s)$
Time-shifting	$f(t-\alpha)u(t-\alpha)$	$e^{-\alpha s}F(s)$
Frequency shifting	$e^{\alpha t}f(t)$	$F(s-\alpha)$
Multiplication by t	t f(t)	$-\frac{dF(s)}{ds}$
Derivative	$\frac{df(t)}{dt}$	sF(s) - f(0-)
Second derivative	$\frac{d^2f(t)}{dt^2}$	$s^2F(s) - sf(0-) - f^{(1)}(0)$
Integral	$\int_{0-}^{t} f(t')dt'$	$\frac{F(s)}{s}$
Expansion/contraction	, , , ,	$\frac{1}{ \alpha }F\left(\frac{s}{\alpha}\right)$
Initial value	$f(0-) = \lim_{s \to \infty} s F(s)$	
Derivative Duality	$\frac{df(t)}{dt}$	sF(s)
Integration Duality	$\int_{0-}^{t} f(\tau)d\tau$	$-\frac{dF(s)}{ds}$ $F(s)/s$
	f(t)/t	$\int_{-\infty}^{-s} F(-\rho) d\rho$
Time and Frequency Duality	•	$F(s)e^{-\alpha s}$
	$f(t)e^{-\alpha t}u(t)$	$F(s+\alpha)$
Time Scaling Duality		$(1/ \alpha)F(s/\alpha)$
	$(1/ \alpha) f(t/\alpha) u(t)$	$F(\alpha s)$
Convolution	10 03()	F(s)G(s)
Initial value	$f(0-) = \lim_{s \to \infty} sF(s)$	