3.7 Ensembles remarquables

Définition Soit E un espace topologique, $A \subset E$ et $x \in E$. On dit que :

— x est adhérent à A si

$$\forall V \in \mathcal{V}(x), V \cap A \neq \emptyset$$

— x est un point isolé de A si

$$\exists V \in \mathcal{V}(x), V \cap A = \{x\}$$

— x est un point d'accumulation de A si

$$\forall V \in \mathcal{V}(x), V \cap A \setminus \{x\} \neq \emptyset$$

L'ensemble des points adhérents à A se note \overline{A} , c'est l'adhérence (attention aux notations, il arrive que \overline{A} soit utilisé pour désigner le complémentaire de A dans d'autres contextes).

Exemple:

Considérons $E = \mathbb{R}$ avec la topologie usuelle. Soit $A = \{1\} \cup [2; 3]$, alors

1 est adhérent à A, isolé, mais pas d'accumulation

2 est adhérent à A, pas isolé mais d'accumulation

2.1 est adhérent à A

3 est adhérent à A

4 n'est pas adhérent à A, pas isolé, pas d'accumulation.

 $\overline{A} = \{1\} \cup [2;3]$

Remarque $\liminf u_n$ est la plus petite valeur d'adhérence de (u_n)

 $\limsup u_n$ est la plus grande valeur d'adhérence de (u_n)

Définition Soit E un espace topologique, $A \subset E$ et $x \in A$. On dit que x est intérieur à A si A voisinage de x. On note A l'ensemble des points intérieurs à A.

Exemple:

Dans l'exemple précédent, $\mathring{A} =]2, 3[$

Proposition \overline{A} est le plus petit fermé contenant A et \mathring{A} est le plus petit ouvert contenu dans A.

Démonstration :

Laissée en exercice ■

Corollaire Soit E un espace topologique et $A \subset E$.

 $A = \mathring{A} \iff A \text{ est fermé.}$

 $A = \overline{A} \Leftrightarrow A \text{ est ouvert.}$

Définition Soit E un espace topologique et $A \subset E$. On appelle Frontière de A et on note ∂A l'ensemble $\overline{A} \setminus \mathring{A}$

Exemple:

Dans l'exemple précédent, $\partial A = \{1, 2, 3\}$