Set Theory HW #2

Ozaner Hansha

September 19, 2019

Problem 1

Exercises 5,7,10 from page 26 in the textbook.

Exercise 5: Assume that every member of A is a subset of B. Show that $\bigcup A \subseteq B$.

Solution: Consider an arbitrary set a, by the axiom of union we have:

$$a \in \bigcup A \implies \exists b \in A (a \in b)$$

And by the question's assumption, b is a subset of B. Putting these two together we have:

$$((a \in b) \land (b \subseteq B)) \implies a \in B$$
 (def. of subset)

And thus we have shown that for any $a \in \bigcup A$, the set a must also be an element of B. By the definition of subset, we have $\bigcup A \subseteq B$.

Exercise 7: Show that for any two sets A and B the following holds:

- a) $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$
- b) $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$. Under what conditions does equality hold?

Solution: a) Consider an arbitrary set x and note the following chain of logical equivalences:

$$x \in \mathcal{P}(A) \cap \mathcal{P}(B) \iff x \in \mathcal{P}(A) \land x \in \mathcal{P}(B)$$
 (def. of intersection)
 $\iff x \subseteq A \land x \subseteq B$ (def. power set)
 $\iff x \subseteq A \cap B$ (def. of intersection)
 $\iff x \in \mathcal{P}(A \cap B)$ (def. power set)

And so, by extensionality, we have $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

b) Consider an arbitrary set x and note the following chain of implications:

$$x \in \mathcal{P}(A) \cup \mathcal{P}(B) \iff x \in \mathcal{P}(A) \lor x \in \mathcal{P}(B)$$
 (def. of union)
 $\iff x \subseteq A \lor x \subseteq B$ (def. power set)
 $\implies x \subseteq A \cup B$ (def. of union)
 $\iff x \in \mathcal{P}(A \cap B)$ (def. power set)

And so, by the definition of subset, we have $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$. You'll notice that on line 3 we have an implication rather than an iff. We can only make this an iff, and thus establish equality of the two sets, if we assume that $A \subseteq B$ or $B \subseteq A$.

Exercise 10: Prove that if $a \in B$, then $\mathcal{P}(a) \in \mathcal{P}(\mathcal{P}()) \cup B$.

Solution: Consider an arbitrary set a and note the following:

$$a \in B \implies \forall t(t \in a \implies t \in \bigcup B) \qquad \text{(axiom of union)}$$

$$\implies a \subseteq \bigcup B \qquad \text{(def. of subset)}$$

$$\implies (a \subseteq \bigcup B) \land \forall t(t \in \mathcal{P}(a) \implies t \subseteq a) \qquad \text{(def. of powerset)}$$

$$\implies \forall t(t \in \mathcal{P}(a) \implies t \subseteq \bigcup B) \qquad \text{(transitivity of subset)}$$

$$\implies \forall t(t \in \mathcal{P}(a) \implies t \in \mathcal{P}(\bigcup B)) \qquad \text{(def. of power set)}$$

$$\implies \mathcal{P}(a) \subseteq \mathcal{P}(\bigcup)B \qquad \text{(def. of subset)}$$

$$\implies \mathcal{P}(a) \in \mathcal{P}(\mathcal{P}(\bigcup B)) \qquad \text{(def. of power set)}$$

Problem 2

Exercises 12,20,22,35 from pages 32-33 in the textbook.

Exercise 12: Verify the following identity:

$$C \setminus (A \cup B) = (C \setminus A) \cup (C \setminus B)$$

Solution: For the following set of equalities, the complement is taken with respect to the universe $A \cup B \cup C$:

$$\begin{split} C \setminus (A \cap B) &= C \cap (A \cap B)^{\complement} & \text{(relative complement)} \\ &= C \cap (B^{\complement} \cup A^{\complement}) & \text{(DeMorgan's Law)} \\ &= (C \cap B^{\complement}) \cup (C \cap A^{\complement}) & \text{(distributivity of intersction)} \\ &= (C \setminus B) \cup (C \setminus A) & \text{(relative complement)} \end{split}$$

Exercise 20: Let A, B and C be sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$. Show that B = C.

Solution: Consider an $x \in B$. There are two cases which exhaust all possibilities:

$$x \in A \implies x \in A \cap B$$

$$\iff x \in A \cap C$$

$$\implies x \in C$$
(assumption)

and the other case:

$$x \not\in A \implies x \in A \cup B$$

$$\iff x \in A \cup C$$
 (assumption)
$$\implies x \in C$$

This gives us $x \in B \implies x \in C$, and by replacing all occurrences of B with C we have an argument for the reverse direction. Putting these together we have B = C.

Exercise 22: Show that if A and B are nonempty sets, then $\bigcap (A \cup B) = \bigcap A \cap \bigcap B$.

Solution: Note that by the axiom of union we have:

$$x \in \bigcap (A \cup B) \implies (\forall y \in A \cup B) \, x \in y$$
 (def. of arbitrary intersection)
$$\implies (\forall y \in A) \, x \in y$$
 (A $\subseteq A \cup B$)
$$\iff x \in \bigcap A$$
 (def. of arbitrary intersection)

Similarly we have:

$$x \in \bigcap (A \cup B) \implies (\forall y \in A \cup B) \, x \in y$$
 (def. of arbitrary intersection)
 $\implies (\forall y \in B) \, x \in y$ ($B \subseteq A \cup B$)
 $\iff x \in \bigcap B$ (def. of arbitrary intersection)

Putting these together we have:

$$x \in \bigcap (A \cup B) \implies x \in \bigcap A \land x \in \bigcap B$$

$$\implies x \in \bigcap A \cap \bigcap B \qquad \text{(def. of intersection)}$$

This proves one direction. The other direction can be proved by first recalling that:

$$\begin{split} x \in \bigcap A \cap \bigcap B &\implies x \in \bigcap A \land x \in \bigcap B \\ &\implies (\forall y \in A) \, x \in y \land (\forall y \in B) \, x \in y \\ &\implies (\forall y \in A) \, x \in y \lor (\forall y \in B) \, x \in y \end{split}$$

This allows us to state the following:

And with both sides of the implication proved, the equality holds true.

Exercise 35: Assume that $\mathcal{P}(A) = \mathcal{P}(B)$. Prove that A = B.

Solution: Consider an arbitrary set x and note the following chain of implications:

$$x \in A \iff \{x\} \subseteq A$$
 (def. of subset)
 $\iff \{x\} \in \mathcal{P}(A)$ (def. of powerset)
 $\iff \{x\} \in \mathcal{P}(B)$ (assumption)
 $\iff \{x\} \subseteq B$ (def. of powerset)
 $\iff x \in B$ (def. of subset)

And so by extensionality we have A = B.

Problem 3

Exercises 32,33,36 from pages 33-34 in the textbook.

Exercise 32: Let S be the set $\{\{a\}, \{a,b\}\}$. Evaluate and simplify:

- a) $\bigcup \bigcup S$
- b) $\bigcap S$
- c) $\bigcap \bigcup S \cup (\bigcup \bigcup S \setminus \bigcup \bigcap S)$

Solution: For a) we have:

$$\bigcup \bigcup S = \bigcup \bigcup \{\{a\}, \{a, b\}\}$$
$$= \bigcup \{a, b\}$$
$$= a \cup b$$

For b) we have:

$$\bigcap S = \bigcap \{\{a\}, \{a, b\}\}\$$

$$= \bigcap \{a\}\$$

$$= a$$

For c) we have:

$$\bigcap \bigcup S \cup \left(\bigcup \bigcup S \setminus \bigcup \bigcap S\right) = \bigcap \{a, b\} \cup \left(\bigcup \{a, b\} \setminus \bigcup \{a\}\right)$$

$$= (a \cap b) \cup ((a \cup b) \setminus a)$$

$$= (a \cap b) \cup (b \setminus a)$$

$$= b$$

Exercise 33: With S as in the preceding exercise, evaluate $\bigcup(\bigcup S \setminus \bigcap S)$ when $a \neq b$ and when a = b.

Solution: Evaluating the expression we arrive at:

$$\bigcup \left(\bigcup S \setminus \bigcap S\right) = \bigcup \left(\{a,b\} \setminus \{a\}\right)$$

For the case that $a \neq b$ we have:

$$\bigcup (\{a,b\} \setminus \{a\}) = \bigcup \{b\} = b$$

For the case that a = b we have:

$$\bigcup \left(\{a,b\}\setminus\{a\}\right)=\bigcup \left(\{a\}\setminus\{a\}\right)=\bigcup \varnothing=\varnothing$$

Exercise 36: Verify that for all sets A and B the following are correct:

a)
$$A \setminus (A \cap B) = A \setminus B$$

b)
$$A \setminus (A \setminus B) = A \cap B$$

Solution: For both a) an b) the complement is taken with respect to the universe $A \cup B$. For a) we have:

$$A \setminus (A \cap B) = A \cap (A \cap B)^{\complement}$$
 (relative complement)
 $= A \cap (A^{\complement} \cup B^{\complement})$ (DeMorgan's Law)
 $= (A \cap A^{\complement}) \cup (A \cap B^{\complement})$ (distributivity of intersection)
 $= (A \setminus A) \cup (A \setminus B)$ (relative complement)
 $= \varnothing \cup (A \setminus B)$
 $= A \setminus B$

For b) we have:

$$A \setminus (A \setminus B) = A \cap (A \setminus B)^{\complement}$$
 (relative complement)
 $= A \cap (A \cap B^{\complement})^{\complement}$ (relative complement)
 $= A \cap (A^{\complement} \cup B)$ (DeMorgan's Law)
 $= (A \cap A^{\complement}) \cup (A \cap B)$ (distributivity of intersection)
 $= \varnothing \cup (A \cap B)$
 $= A \cap B$