Outils et Logique (OL4) CC1 NOM: PRENOM: Numéro d'étudiant:

Utilisez uniquement les espaces encadrées prévues pour répondre.

1 On considère la fonction taille(p) qui étant donnée une formule propositionnelle p désigne sa taille (en nombre de nœuds, y compris les feuilles) de l'arbre syntaxique correspondant. Par exemple $taille((u \vee (\neg u \wedge y))) = 6$ et $taille(\neg u) = 2$.

On considère également la fonction hauteur(p) qui étant donnée une formule propositionnelle p désigne la hauteur de l'arbre syntaxique correspondant. Par exemple, $hauteur(((\neg u \land e) \lor u)) = 4$ et $hauteur((u \lor (\neg u \land e))) = 4$ et $hauteur(\neg u) = 2$. Complétez les définitions récursives suivantes :

$$- \ taille((p \land q)) = \boxed{\hspace{2cm}}, \ hauteur((p \land q)) = \boxed{\hspace{2cm}}$$

$$- \ taille(u) = \boxed{\hspace{2cm}}, \ hauteur(u) = \boxed{\hspace{2cm}}$$

$$- \ taille(\neg p) = \boxed{\hspace{2cm}}, \ hauteur(\neg p) = \boxed{\hspace{2cm}}$$

$$- \ taille((p \lor q)) = \boxed{\hspace{2cm}}, \ hauteur((p \lor q)) = \boxed{\hspace{2cm}}$$

- 2 Formalisez les phrases suivantes en logique propositionnelle (vous pouvez utiliser l'implication). Indiquez pour chaque variable propositionnelle que vous utilisez à quoi elle correspond.
 - 1 h
 - 2. Si Paris est belle, alors Berlin est belle.
 - 3. e
 - 4. a
 - 5. d
 - 6. c
 - 7. Si Berlin n'est pas belle, alors ni Paris ni Rome sont belles.
 - 8. Paris est belle.
 - 9. f
 - 10. g
- 3 On considère l'affectation v=[], qui associe à chaque variable la valeur de vérité 0. Montrer par induction structurelle sur les formules que pour toute formule p qui ne contient pas \neg , on a $[\![p]\!]v=0$. N.B. : dans la preuve le cas $\neg p$ n'est pas considéré.

4 On considère les affectations suivantes : $v_1 = [b \mapsto 1]$ $v_2 = [b \mapsto 1, g \mapsto 1]$ $v_3 = [g \mapsto 1, z \mapsto 1]$. Remplissez le tableau suivant (0 ou 1 dans les trois premières colonnes et vrai ou faub dans le reste) :

Formule p	$[p]v_1$	$[p]v_2$	$\llbracket p \rrbracket v_3$	p valide?	p satisfaisable?	p contradictoire?
$((\neg b \lor g) \land b)$						
$(\neg g \land (z \land (b \land g)))$						
$((b \land z) \lor ((\neg b \land z) \lor \neg z))$						