

Cannabis Data Science

Saturday Morning Statistics #18

April 2nd, 2022

1/8

Question and Hypothesis

Question of the day.

 What can producers do to minimize their risk of quality control testing?

Citrobacter freundii, one member of the family **Enterobacteriaceae** – bile tolerant gram negative bacteria (BTGN).

Methodology: Probit Models

Given a latent variable representation of the **probit model**:

$$z_i = x_i \beta + \epsilon_i, \qquad \epsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, 1),$$
 $y_i = \begin{cases} 1 & \text{if } z_i > 0 \\ 0 & \text{if } z_i \leq 0 \end{cases}$

You can estimate the parameters using the likelihood function

$$L(\beta) = \prod_{i=1}^{n} \Phi(x_{i}\beta)^{y_{i}} [1 - \Phi(x_{i}\beta)]^{1-y_{i}}.$$

Methodology: Tobit Models

Tobit models incorporate the <u>unequal sampling probability</u> for each observation depending on whether the latent dependent variable fell above or below the determined <u>threshold</u>.

• Censored from below at y_L when the latent variable $y_j^* \leq y_L$

$$I(y) = \begin{cases} 0 \text{ if } y \leq y_L, \\ 1 \text{ if } y > y_L \end{cases}$$

• Censored from above at y_U when the latent variable $y_i^* \ge y_U$

$$I(y) = \begin{cases} 0 \text{ if } y \ge y_U, \\ 1 \text{ if } y < y_U \end{cases}$$

Estimating Tobit Models

A **Tobit model** modifies the <u>likelihood function</u> to reflect the unequal sampling probability

$$\mathcal{L}(\beta,\sigma) = \prod_{j=1}^{N} \left(\frac{1}{\sigma} \phi \left(\frac{y_j - X_j \beta}{\sigma} \right) \right)^{I(y_j)} \left(1 - \Phi \left(\frac{X_j \beta - y_L}{\sigma} \right) \right)^{1-I(y_j)},$$

where ϕ is the **standard normal PDF** and Φ is the **standard normal CDF**.

Interpreting Tobit Models

- Tobit models allow for consistent parameter estimation. If y_i is regressed on x_i alone, then the parameter β is inconsistent (β̂ does not converge in probability to β).
- The parameter β is interpreted as
 - The change in y_i of those above the limit, weighted by the probability of being above the limit;
 - ② The change in the probability of being above the limit, weighted by the expected value of y_i if above the limit.

Types of Tobit Models

Type 1 Tobit models censor at a value different from zero

$$y_{i} = \begin{cases} y_{i}^{*} & \text{if } y_{L} < y_{i}^{*} < y_{U}, \\ y_{L} & \text{if } y_{i}^{*} \leq Y_{L}, \\ y_{U} & \text{if } y_{i}^{*} \geq y_{U}. \end{cases}$$

Type 2 Tobit models (**Heckman selection models**), introduce a second latent variable to allow the process of participation (selection) and the outcome of interest to be independent

$$y_{2i} = \begin{cases} y_{2i}^* \text{ if } y_{1i}^* > 0, \\ 0 \text{ if } y_{1i}^* \le 0. \end{cases}$$

Type 3, **Type 4**, **Type 5** Tobit models introduce additional cases for additional latent variables.

Insight of the Day

 Asking the right question is of utmost importance.

8/8