

Description

The VSM75N06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 60V, I_D = 75A$ $R_{DS(ON)} < 11.5m\Omega @ V_{GS} = 10V$ (Typ:9.1m Ω)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible Power Supply

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM75N06-T2	VSM75N06	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	60	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	75	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	50	А	
Pulsed Drain Current	I _{DM}	300	А	
Maximum Power Dissipation	P _D	110	W	
Derating factor		0.73	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	450	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	$R_{ heta JC}$	1.36	°C/W
---	----------------	------	------

Shenzhen VSEEI Semiconductor Co., Ltd

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	60	68	-	V
Zero Gate Voltage Drain Current	Orain Current I _{DSS} V _{DS} =60V,V _{GS} =0V		-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =250μA	2	3	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =30A	-	9.1	11.5	mΩ
Forward Transconductance	g FS	V _{DS} =25V,I _D =30A	20	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	\/ -25\/\/ -0\/	-	2350	-	PF
Output Capacitance	Coss	V_{DS} =25V, V_{GS} =0V, F=1.0MHz	-	237	-	PF
Reverse Transfer Capacitance	C _{rss}	Γ-1.UIVIΠZ	-	205	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	16	-	nS
Turn-on Rise Time	t _r	V_{DD} =30V, I_D =2A, R_L =15 Ω	-	10	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{G} =2.5 Ω	-	45	-	nS
Turn-Off Fall Time	t _f		-	12	-	nS
Total Gate Charge	Qg	V 20VI 20A	-	50	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS}=30V,I_{D}=30A,$ $V_{GS}=10V$	-	12	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} -10V	-	16	-	nC
Drain-Source Diode Characteristics			•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =30A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	75	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =75A	-	28		nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	49		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300μ s, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** E_{AS} condition : Tj=25 $^{\circ}\text{C}$,V_{DD}=30V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

2 1.8 0.8 0.6 -50 -25 0 25 50 75 100 125 150 175

Figure 4 Rdson-JunctionTemperature

T_J-Junction Temperature(°C)

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance