T.D. 14: Séries numériques

- 1. Déterminer la nature de la série de terme général u_n dans les cas suivants :
 - i) $u_n = \sin\left(\frac{1}{n^2}\right)$
 - ii) $u_n = \frac{1}{n} \operatorname{Arc} \tan \left(\frac{1}{n} \right)$
 - iii) $u_n = e^{\cos(n)}$
 - $iv) u_n = \left(\frac{1+n}{1+n^2}\right)^n$
 - $v) u_n = \sqrt[n]{n+1} \sqrt[n]{n}$
 - vi) $u_n = e \left(1 + \frac{1}{n}\right)^n$
 - vii) $u_n = a^{\sqrt{n}}$ (en fonction du réel strictement positif a)
 - viii) $u_n = n^{-\cos\frac{1}{n}}$
 - ix) $u_n = n^{-\left(1 + \frac{1}{n}\right)}$
 - $(x) u_n = 1 \sqrt[n]{\frac{n}{n+1}}$
- 2. Soient $\sum u_n$ et $\sum v_n$ deux séries convergentes à termes strictement positifs.

Montrer que les séries suivantes sont également convergentes :

- i) $\sum max(u_n; v_n)$
- ii) $\sum \sqrt{u_n v_n}$
- iii) $\sum \frac{u_{_{n}}v_{_{n}}}{u_{_{n}}+v_{_{n}}}$