Mathe C2

Felix Leitl

11. August 2023

Inhaltsverzeichnis

Stetige Funktionen	3
$\mathbb Q$ ist dicht in $\mathbb R$	3
Eigenschaften stetiger Funktionen	3
Komposition stetiger Funktionen	4
Zwischenwertsatz	4
Satz über Nullstellen	4
Satz von Minimum und Maximum	4
Metrik in normierten Räumen	5
	5
ϵ -Umgebung	5
Umgebungen	5
Innere Punkte	о 6
Randpunkte	-
Offene und abgeschlossene Mengen	6
Konvergenz in \mathbb{R}	6
Konvergenzkriterien	6
Äquivalente Normen	7
Äquivalente Normen und ihre Umgebungen	7
Konvergenz und äquivalente Normen	7
Konvergenz in \mathbb{R}^n	7
Abgeschlossene Mengen und Konvergenz	8
Grenzwertsätze in normierten Räumen	8
Cauchey-Folgen	8
Konvergenz von Chauchey-Folgen	9
Konvergenz und Teilfolgen	9
Stetigkeit in normierten Räumen	9
Stetigkeit auf Unterräumen	9
	10
	10
	10
-	10
ŭ .	10
	11

Differenzierbare Funktionen	11
Differenzierbarkeit	11
Stetigkeit und Differenzierbarkeit	11
Differenzierbarkeit und lineare Approximation	12
Monotone Funktionen	13
Ableitung der Umkehrfunktion	13
Globale und lokale Extrema	13
Einseitige Funktionsgrenzen	13
Optimalitätsbedingung	14
Satz von Rolle	14
Mittelwertsatz	14
Anwendung: Monotonie und Ableitung	15
Anwendung: Lipschitz-Stetigkeit und Ableitung	15
Raum der stetig differenzierbaren Funktionen	15
Höhere Ableitung	16
Konvexität	16
Punktweise Konvergenz	17
Gleichmäßige Konvergenz	17
Folgen und Reihen	17
Taylor-Formel	17
Reihen	18
Konvergenz von Reihen	18
Geometrische Reihen	19
Absolute Konvergenz	19
Reihen als unendliche Summen	19
Cauchey-Kriterium	19
Beschränkungskriterium	20
Majorantenkriterium	20
Quotientenkriterium	20
Leibnitz-Kriterium	20
Häufungspunkte	21
Wurzelkriterium	21
Potenzreihen	21
Satz von de l'Hospital	22
T 1 1*	00
Integration Treppenfunktion	22
Eigenschaften des Integrals von Treppenfunktionen	$\frac{23}{23}$
Unter- und Obersumme	$\frac{25}{24}$
Riemann-integrierabe Funktionen	
Einschließung zwischen Treppenfunktionen	24
Integriebarkeit stetiger Funktionen	24

Stetige Funktionen

Definition 1: Stetig

Def:

Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine Funktion

- f heißt stetig im Punkt $x \in I$, wenn gilt: Für jede Folge (X_n) in I mit $x_n \to x$ gilt auch $f(x_n) \to f(x)$
- f heißt stetig, wenn f in jedem Punkt $x \in I$ stetig ist

Anschaulich:

- " f stetig in x " bedeutet, dass f in x nicht springt
- " f stetig " bedeutet, dass f nirgendwo springt

\mathbb{O} ist dicht in \mathbb{R}

Lemma 1:

Zu jeder reellen Zahl $r\in\mathbb{R}$ und jedem $\epsilon>0$ existiert eine rationale Zahl $q\in\mathbb{Q}$ mit $|r-q|<\epsilon$

Lemma 2:

Zu jeder reellen Zahl $r\in\mathbb{R}$ und jedem $\epsilon>0$ existiert eine rationale Zahl $r\in\mathbb{R}\setminus\mathbb{Q}$ mit $|r-q|<\epsilon$

Lemma 3:

Zu jeder reellen Zahl $x \in \mathbb{R}$ existiert eine Folge (x_n) in \mathbb{Q} mit $x_n \to x$ Zu jeder rationalen Zahl $x \in \mathbb{Q}$ existiert eine Folge (x_n) in $\mathbb{R} \setminus \mathbb{Q}$ mit $x_n \to x$

Eigenschaften stetiger Funktionen

Satz 1:

Sei I ein Intervall, $x \in I$ und $f,g:I \to \mathbb{R}$ Funktionen, die stetig in x sind. Dann gilt:

- f + g ist stetig in x
- f g ist stetig in x
- $f \cdot g$ ist stetig in x
- Falls $g(y) \neq 0, \forall y \in I$, so ist $\frac{f}{g}$ stetig in x

Komposition stetiger Funktionen

Satz 2:

Seien I,J Intervalle, $f:I\to\mathbb{R}$ und $g:J\to\mathbb{R}$ und $f(I)\subset J$ Ferner sei f stetig in $x\in I$ und g stetig in y=f(x) Dann ist $g\circ f:I\to\mathbb{R}$ stetig in x

Zwischenwertsatz

Satz 3: Zwischenwertsatz

Sei $f:[a,b]\to\mathbb{R}$ stetig auf dem abgeschlossenen Intervall [a,b]. Dann nimmt f in (a,b) jeden beliebigen Wert y zwischen f(a) und f(b) an

Satz 4: Variante des Zwischenwertsatz

Sei $f:[a,b]\to\mathbb{R}$ stetig auf dem abgeschlossenen Intervall [a,b]. Dann nimmt f in [a,b] jeden beliebigen Wert

$$y \in [\min_{x \in [a,b]} f(x), \max_{x \in [a,b]} f(x)]$$

an

Satz über Nullstellen

Satz 5: Nullstellen

Sei $f:[a,b]\to\mathbb{R}$ stetig auf dem abgeschlossenen Intervall [a,b] und es gelte f(a)<0< f(b) oder f(a)>0>f(b). Dann hat f in (a,b) mindestens eine Nullstelle, d.h. es existiert ein $x\in(a,b)$ mit f(x)=0

Satz von Minimum und Maximum

Satz 6: Minimum und Maximum

Sei $f:[a,b]\to\mathbb{R}$ stetig auf dem abgeschlossenen Intervall [a,b]. Dann nimmt f in [a,b] Maximum und Minimum an, d.h. es existieren $x_{\min},x_{\max}\in[a,b]$ mit

$$f(x_{\min}) \le f(x) \le f(x_{\max}, \forall x \in [a, b]$$

Insbesondere gilt für x_{\min} und x_{\max}

$$f(x_{\min}) = \inf_{x \in [a,b]} f(x) = \min_{x \in [a,b]} f(x)$$

$$f(x_{\text{max}}) = \sup_{x \in [a,b]} f(x) = \max_{x \in [a,b]} f(x)$$

Definition 2: Schreibweisen

Sei (x_n) eine reelle Folge. Wir schreiben $x_n \to \infty$, wenn gilt

$$\forall C \in \mathbb{R} \exists n_0 \in \mathbb{N} \forall n \geq n_0 : x_n \geq C$$

Analog schreiben wir $x_n \to -\infty$, wenn gilt

$$\forall C \in \mathbb{R} \exists n_0 \in \mathbb{N} \forall n \ge n_0 : x_n \le C$$

Metrik in normierten Räumen

Definition 3: Metrik

Ist $(V, ||\cdot||)$ ein normierter Raum. Dann heißt die Abbildung

$$d: V \times V \to \mathbb{R}, \quad d(x,y) := ||x - y||$$

die zur Norm $||\cdot||$ gehörige Metrik

ϵ -Umgebung

Definition 4: ϵ -Umgebung

Sei $(V, ||\cdot||)$ ein normierter Raum. Für einen Punt $x \in V$ und $\epsilon > 0$ heißt die Menge

$$B_{\epsilon}(x) := \{d(x, y) < \epsilon\} = \{y \in V : ||x - y|| < \epsilon\}$$

eine $\epsilon\textsc{-}\mathrm{Umgebung}$ von x. Man spricht von der offenen Kugel mit Radius ϵ um x

Umgebungen

Definition 5: Umgebung

Sei $(V, ||\cdot||)$ ein normierter Raum und $x \in V$ ein Punkt in V. Dann heißt eine Teilmenge $U \subset V$ eine Umgebung von x, wenn sie eine ϵ -Umgebung von x enthält, d.h. wenn $\epsilon > 0$ existiert mit $B_{\epsilon}(x) \subset U$

Innere Punkte

Definition 6: Innerer Punkt

Sei $M \subset V$. Ein Punkt $x \in M$ heißt innerer Punkt von M, falls ein $\epsilon > 0$ mit $B_{\epsilon}(x) \subset M$ existiert.

Die Menge aller inneren Punkte von Mheißt das Innere von Mund wird mit \mathring{M} bezeichnet

Randpunkte

Definition 7: Randpunkt

Sei $M \subset V$. Ein Punkt $x \in V$ heißt Randpunkt von M, falls in jeder Umgebung $B_{\epsilon}(x)$ ein Punkt aus M und aus $V \setminus M$ ist.

Die Menge aller Randpunkte von M heißt der Rand von M und wird mit ∂M bezeichnet.

Die Menge $\overline{M}:=M\cup\partial M$ heißt der Abschluss von M

Offene und abgeschlossene Mengen

Definition 8: Offene Menge

Eine Teilmenge $O \subset V$ heißt offen, wenn zu jedem $x \in O$ ein $\epsilon > 0$ mit $B_{\epsilon}(x) \subset O$ existiert, d.h., wenn O Umgebung aller ihrer Punkte $x \in O$ ist.

Definition 9: Abgeschlossene Menge

Eine Teilmenge $A \subset V$ heißt abgeschlossen, wenn $V \setminus A$ offen ist

Konvergenz in \mathbb{R}

Definition 10: Konvergenz

Eine reelle Folge (x_n) konvergiert gegen $x \in \mathbb{R}$, wenn gilt:

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n \ge n_0 : |x_n - x| < \epsilon$$

Mit Hilfe der Metrik d(x,y) = |x-y| können wir dies auch formulieren als

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n > n_0 : d(x_n, x) < \epsilon$$

und mit ϵ -Umgebung als

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n \geq n_0 : \quad x_n \in B_{\epsilon}(x)$$

Konvergenzkriterien

Lemma 4:

Sei $(V, ||\cdot||)$ ein normierter Raum (x_n) eine Folge in V und $x \in V$. Dann sind äquivalent:

- 1. (x_n) konvergiert gegen x, d.h. $x_n \to x$
- 2. $||x_n x||$ ist Nullfolge, d.h. $||x_n x|| \to 0$
- 3. Es gilt $||x_n x|| \ge y_n$ für eine reelle Nullfolge (y_n)

4. Für jede Umgebung U von x:

$$\exists n_0 \in \mathbb{N} \forall n \ge n_0 : x_n \in U$$

Äquivalente Normen

Definition 11: Äquivalente Normen

Sei V ein \mathbb{K} -Vektorraum und $||\cdot||_{\alpha}$ und $||\cdot||_{\beta}$ zwei Normen auf V. Dann heißen $||\cdot||_{\alpha}$ und $||\cdot||_{\beta}$ äquivalent, wenn Konstanten $\alpha, \beta > 0$ existieren mit

$$\alpha ||x||_{\alpha} \le ||x||_{\beta} \le \beta ||x||_{\alpha} \quad \forall x \in V$$

Satz 7:

 $||\cdot||_1, ||\cdot||_2, ||\cdot||_{\infty}$ sind äquivalent auf \mathbb{R}^n

Satz 8:

Sei V ein endlichdimensionaler Vektorraum. Dann sind alle Normen auf V äquivalent

Äquivalente Normen und ihre Umgebungen

Satz 9:

Sei $V, ||\cdot||_{\alpha}$ ein normierter Raum und $U \subset V$ eine Umgebung von x bezüglich $||\cdot||_{\alpha}$. Dann ist U auch Umgebung bezüglich jeder zu $||\cdot||_{\alpha}$ äquivalenten Norm $||\cdot||_{\beta}$

Konvergenz und äquivalente Normen

Satz 10:

Sei V ein \mathbb{K} -Vektorraum, $||\cdot||_{\alpha}$ und $||\cdot||_{b}$ eta zwei äquivalente Normen. Dann sind für eine Folge (x_n) in V und $x\in V$ äquivalent:

- (x_n) konvergiert gegen x bezüglich $||\cdot||_{\alpha}$
- (x_n) konvergiert gegen x bezüglich $||\cdot||_{\beta}$

Konvergenz in \mathbb{R}^n

Satz 11:

Sei $||\cdot||$ eine Norm auf \mathbb{R}^n , $(x^{(n)})_{n\in\mathbb{N}}$ eine Folge in \mathbb{R}^m und $x\in\mathbb{R}^m$. Dann

konvergiert (x(n)) genau dann gegen x, wenn gilt

$$x_k^{(n)} \xrightarrow[n \to \infty]{} x_k \quad k = 1, ..., m$$

Abgeschlossene Mengen und Konvergenz

Satz 12:

Sei $A \subset V$ eine Teilmenge eines normierten Raums, dann sind äquivalent:

- 1. A ist abgeschlossen
- 2. Für jede konvergente Folge (x_n) mit $x_n \in A$ für alle n gilt auch $\lim_{n \to \infty} x_n \in A$

Grenzwertsätze in normierten Räumen

Satz 13:

Der Grenzwert einer in V konvergenten Folge ist eindeutig bestimmt

Satz 14:

Konvergente Folgen sind beschränkt

Satz 15:

Sei V ein normierter Raum, (a_n) und (b_n) Folgen in V und (λ_n) eine Folge in $\mathbb K$ mit

$$a_n \to a \in V, \quad b_n \to b \in V, \quad \lambda_n \to \lambda \in \mathbb{K}$$

Dann gilt:

- $a_n + b_n \to a + b$
- $a_n b_n \rightarrow a b$
- $\lambda_n a_n \to \lambda a$

Cauchey-Folgen

Definition 12: Cauchey-Folge

Eine Folge (a_n) in V heißt Cauchey-Folge, wenn gilt:

$$\forall \epsilon \exists n_0 \in \mathbb{N} \forall n, m \ge n_0 : ||a_n - a_m|| < \epsilon$$

Satz 16:

Jede Cauchey-Folge in V ist beschränkt

Satz 17:

Jede konvergente Folge in V ist eine Cauchey-Folge

Konvergenz von Chauchey-Folgen

Definition 13:Vollständig

Ein normierter Raum heißt vollständig, wenn jede Chauchey-Folge in V konvergiert

Satz 18:

 \mathbb{R} ist vollständig

Satz 19:

Sei V endlichdimensional. Dann ist V vollständig

Konvergenz und Teilfolgen

Satz 20:

Eine Folge $(a_n)_{n\in\mathbb{N}}$ in V konvergiert genau dann gegen a, wenn jede Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$ gegen a konvergiert

Satz 21: Bolzano-Weierstrass

Sei V endlichdimensional. Dann besitzt jede beschränkte Folge in V eine konvergente Teilfolge

Stetigkeit in normierten Räumen

Satz 22:

Sind $f,g:D\to Y$ sowie $h:D\to\mathbb{R}$ für $D\subset Y$ stetig, dann sind auch $f+g:D\to Y, f-g:D\to Y$ und $hf:D\to Y$ stetig

Stetigkeit auf Unterräumen

Satz 23:

Sei $f:X\to Y$ stetig und $D\subset X$ eine Teilmenge von X. Dann sind auch die Einschränkungen $f|_D:D\to Y$ stetig

ϵ - δ -Kriterium

Satz 24:

Eine Funktion $f:D\to Y$ ist genau dann steig im Punkt x/inD, wenn gilt:

$$\forall \epsilon > 0 \exists \delta > 0: \quad ||x - y||_X < \delta \Rightarrow ||f(x) - f(y)||_Y < \epsilon \quad \forall y \in D$$

Gleichmäßig stetig

Definition 14: Gleichmäßigkeit

Eine Funktion $f: D \to Y$ heißt gleichmäßig stetig, wenn gilt:

$$\forall \epsilon > 0 \exists \delta > 0 \forall x, y \in D: \quad ||x - y||_X < \delta \Rightarrow ||f(x) - f(y)||_Y < \epsilon \quad \forall y \in D$$

Lipschitz-Stetigkeit

Definition 15: Lipschitz-stetig

Eine Abbildung $f:D\to Y$ auf $D\subset X$ heißt Lipschitz-stetig, wenn ein $L\geq 0$ existiert mit

$$||f(x) - f(y)||_Y \le L||x - y||_X \quad \forall x, y \in X$$

Satz 25:

Jede Lipschitz-stetige Abbildung ist gleichmäßig stetig

Stetigkeit linearer Abbildungen

Satz 26:

Sei $A \in \mathbb{R}^{m \times n}$ und $f : \mathbb{R}^n \to \mathbb{R}^m$ mit f(x) = Ax. Dann ist f Lipschitzstetig und somit insbesondere gleichmäßig stetig und stetig

Steigung von Funktionen

Es scheint zu gelten, dass eine Funktion mit Lipschitz-Konstante L maximal die Steigung L haben kann

Funktionsgrenzwerte

Definition 16:

Sei $f: D \to Y$ eine Funktion und $x \in D$. Wir schreiben

$$f(y) \xrightarrow[y \to x]{} C,$$

wenn für jede Folge (x_n) in D mit $x_n \neq x$ gilt:

$$x_n \xrightarrow[n \to \infty]{} x \quad \Rightarrow \quad f(x_n) \xrightarrow[n \to \infty]{} C$$

Differenzierbare Funktionen

Differenzierbarkeit

Definition 17: Differenzierbar im Punkt

Eine Funktion $f:(a,b)\to\mathbb{R}$ heißt differenzierbar im Punkt $x\in(a,b)$, wenn der Grenzwert

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

existiert. In diesem Fall nennen wir den Grenzwert die Ableitung von f im Punkt x und schreiben dafür f'(x)

Definition 18: Differenzierbar

Eine Funktion $f:(a,b)\to\mathbb{R}$ heißt differenzierbar, wenn sie in allen Punkten $x\in(a,b)$ differenzierbar ist. In diesem Fall heißt die Funktion $f':(a,b)\to\mathbb{R}$ mit $x\mapsto f'(x)$ die Ableitung von f

Definition 19: Stetig differenzierbar

Eine Funktion $f:(a,b)\to\mathbb{R}$ heißt stetig differenzierbar, wenn sie differenzierbar und die Ableitung $f':(a,b)\to\mathbb{R}$ stetig ist

Stetigkeit und Differenzierbarkeit

Satz 27:

Seien $f:U\to\mathbb{R}$ differenzierbar in $x\in U$. Dann ist f auch stetig in x

Satz 28: Linearität

Seien $f:U\to\mathbb{R}$ und $g:U\to\mathbb{R}$ in $x\in U$ differenzierbar und $\lambda\in\mathbb{R}$. Dann gilt:

- 1. $\lambda f: U \to \mathbb{R}$ ist in x differenzierbar mit $(\lambda f)'(x) = \lambda f'(x)$
- 2. $f+g:U\to\mathbb{R}$ ist in x differenzierbar mit (f+g)'(x)=f'(x)+g'(x)

Satz 29: Produktregel

Seien $f: U \to \mathbb{R}$ und $g: U \to \mathbb{R}$ in $x \in U$ differenzierbar. Dann ist auch $fg: U \to \mathbb{R}$ in x differenzierbar mit (fg)'(x) = f'(x)g'(x)

Satz 30:

Seien $p: \mathbb{R} \to \mathbb{R}$ ein Polynom vom Grad n > 0, dann ist p stetig differenzierbar und p' ist ein Polynom vom Grad n - 1. Insbesondere gilt:

$$p(x) = \sum_{k=0}^{n} a_k x^k \quad \Rightarrow \quad p'(x) = \sum_{k=1}^{n} a_k k x^{k-1}$$

Satz 31: Quotientenregel

Sieein $f:U\to\mathbb{R}$ und $g:U\to\mathbb{R}$ differenzierbar in $x\in U$ und $g(x)\neq 0$. Dann gilt auch $\frac{f}{g}:U\to\mathbb{R}$ differenzierbar in x mit

$$(\frac{f}{g})'(x) = \frac{f'(x)g(x) - g'(x)f(x)}{g(x)^2}$$

Satz 32: Kettenregel

Seien $U, W \subset \mathbb{R}$ offen, $f: U \to \mathbb{R}$ differenzierbar in $x \in U$, $f(U) \subset W$ und $g: W \to \mathbb{R}$ differenzierbar in $y = f(x) \in W$. Dann ist auch $g \circ f: U \to \mathbb{R}$ differenzierbar in x mit

$$(g \circ f)'(x) = g'(f(x))f'(x)$$

Differenzierbarkeit und lineare Approximation

Satz 33:

Eine Funktion $f:U\to\mathbb{R}$ ist genau dann differenzierbar in $x\in U$ mit Ableitung f'(x), wenn

$$f(x+h) = f(x) + hf'(x) + r(h)$$

mit $\lim_{h\to 0}\frac{r(h)}{h}=0$ gilt. (bzw. unter Verwendung der Landau-Symbole: $r\in o(h))$

Differenzierbarkeit heißt, dass sich f lokal gut durch eine lineare Funktion approximieren lässt

Monotone Funktionen

Definition 20: Monoton

Sei $D \subset \mathbb{R}$ und $f: D \to \mathbb{R}$. Dann heißt f

- monoton wachsend, wenn $x \leq y \Rightarrow f(x) \leq f(y) \quad \forall x, y \in D$
- monoton fallend, wenn $x \leq y \Rightarrow f(x) \geq f(y) \quad \forall x, y \in D$
- streng monoton wachsend, wenn $x \le y \Rightarrow f(x) < f(y) \quad \forall x, y \in D$
- streng monoton fallend, wenn $x \leq y \Rightarrow f(x) > f(y) \quad \forall x, y \in D$

Satz 34:

Sei $f: D \to \mathbb{R}$ streng monoton. Dann ist $f: D \to W = f(D)$ invertierbar, d.h. es existiert eine Umkehrfunktion $f^{-1}: W \to \mathbb{R}$ mit

$$f^{-1} \circ f = Id: D \to D, \quad f \circ f^{-1} = Id: W \to W$$

Ableitung der Umkehrfunktion

Satz 35:

Sei $f: U \to \mathbb{R}$ stetig und streng monoton. Ferner sei f differenzierbar im Punkt $x \in U$ mit $f'(x) \neq 0$. Dann ist $f^{-1}: W = f(U) \to \mathbb{R}$ differenzierbar in y = f(x) und es gilt:

$$(f^{-1})(y) = \frac{1}{f'(x)} = \frac{1}{f'(f^{-1}(y))}$$

Globale und lokale Extrema

Definition 21: Extrema

Sei $f: D \to \mathbb{R}$ und $x \in D$. Dann hat f in x ein

- globales Minimum, wenn $f(x) \le f(y) \quad \forall y \in D$
- globales Maximum, wenn $f(x) \ge f(y) \quad \forall y \in D$
- lokales Minimum, wenn ein $\epsilon > 0$ existiert mit $f(x) \leq f(y) \quad \forall y \in B_{\epsilon}(x) \cap D$
- lokales Maximum, wenn ein $\epsilon>0$ existiert mit $f(x)\geq f(y) \quad \forall y\in B_\epsilon(x)\cap D$

Einseitige Funktionsgrenzen

Definition 22: Einseitige Funktionsgrenzen

Sei $D \subset \mathbb{R}$, $f: D \to Y$. Wir schreiben:

$$f(y) \xrightarrow{y \searrow x}$$
bzw. $\lim_{y \searrow x} f(y) = C$

wenn für jede Folge x_n in D mit $x_n > x$ gilt:

$$x_n \xrightarrow[n \to \infty]{} x \quad \Rightarrow \quad f(x_n) \xrightarrow[n \to \infty]{} C$$

Wir schreiben

$$f(y) \xrightarrow{y \nearrow x} C$$
 bzw. $\lim_{y \nearrow x} f(y) = C$

wenn für jede Folge (x_n) in D mit $x_n < x$ gilt:

$$x_n \xrightarrow[n \to \infty]{} x \quad \Rightarrow \quad f(x_n) \xrightarrow[n \to \infty]{} C$$

Optimalitätsbedingung

Satz 36:

Sei $D \subset \mathbb{R}$ und $f: D \to \mathbb{R}$ und $x \in D$ ein innerer Punkt. Die Funktion f habe ein lokales Extremum in x und sei differenzierbar in x. Dann gilt f'(x) = 0

Satz 37:

Sei $f:(a,b)\to\mathbb{R}$ differ
nzierbar und im Punkt $x\in(a,b)$ zweimal differenzierbar mit

$$f'(x) = 0$$
 und $f''(x) > 0$ (bzw. $f''(x) < 0$)

Dann nimmt f in x ein lokales Minimum (bzw. Maximum) an.

Satz von Rolle

Satz 38: Rolle

Sei a < b und $f : [a, b] \to \mathbb{R}$ stetig mit f(a) = f(b). Ferner sei f differenzierbar in (a, b). Dann existiert ein $\xi \in (a, b)$ mit $f'(\xi) = 0$

Anschaulich: Wenn f(a)=f(b), dann gibt es mindestens einen Punkt mit horizontaler Tangente

Mittelwertsatz

Satz 39: Mittelwert

Sei $a < b, f: [a,b] \to \mathbb{R}$ stetig und f differenzierbar in (a,b). Dann existiert ein $\xi \in (a,b)$ mit

$$f'(\xi)\frac{f(b) - f(a)}{b - a}$$

Anschaulich: es gibt mindestens einen Punkt bei dem die Tangentensteigung der Sekantensteigung auf [a,b] entspricht

Anwendung: Monotonie und Ableitung

Satz 40:

Sei $f:(a,b)\to\mathbb{R}$ differenzierbar. Dann gilt:

- 1. $f'(x) \ge 0$ für alle $x \in (a, b) \implies f$ ist monoton wachsend
- 2. $f'(x) \leq 0$ für alle $x \in (a, b) \implies f$ ist monoton fallend
- 3. f'(x) > 0 für alle $x \in (a, b) \Rightarrow f$ ist streng monoton wachsend
- 4. f'(x) < 0 für alle $x \in (a, b) \Rightarrow f$ ist streng monoton fallend

Anwendung: Lipschitz-Stetigkeit und Ableitung

Satz 41:

Sei $f(a,b) \to \mathbb{R}$ differenzierbar. Dann gilt

$$|f(x) - f(y)| \le L|x - y| \quad \forall x, y \in (a, b)$$

mit $L=\sup_{\xi\in(a,b)}|f'(\xi)|$. Ferner ist dies das kleinste L, für das die Abschätzung gilt. Achtung: Es kann $L=\infty$ gelten

Raum der stetig differenzierbaren Funktionen

Definition 23: Fortsetzbar

Wir sagen, dass eine Funktion $f:U\to\mathbb{R}$ stetig (auf \overline{U}) fortsetzbar ist, wenn eine stetige Funktion $\hat{f}:\overline{U}\to\mathbb{R}$ mit $\hat{f}|_U=f$ existiert

Satz 42:

Sei U offen und beschränkt. Dann ist $C^1(\overline{U})$ ein Untervektorraum von $C(\overline{U})$ und ein vollständig normierter Raum mit der Norm

$$||f||_{\infty,1} := ||f||_{\infty} + ||f'||_{\infty}$$

Satz 43:

Sei $f \in C^1([a,b])$ und f'(x) = 0 für alle $x \in (a,b)$. Dann ist f konstant

Höhere Ableitung

Definition 24: Zweite Ableitung

Eine Funktion $f:U\to\mathbb{R}$ heißt zweimal differenzierbar, wenn f differenzierbar ist und auch $f':U\to\mathbb{R}$ differenzierbar ist. Dann heißt $f''=(f')':U\to\mathbb{R}$ die zweite Ableitung

Definition 25: k-te Ableitung

Allgemein heißt eine Funktion $f: U \to \mathbb{R}$ k-mal differenzierbar mit $k \geq 1$, wenn f(k-1)-mal differenzierbar und die (k-1)-te Ableitung wieder differenzierbar ist. Wir schreiben dann f(k) für die k-te Ableitung von f

Konvexität

Definition 26: Konvex

Eine Funktion $f: D \to \mathbb{R}$ heißt konvex, wenn

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

für alle $x,y\in D$ und $\lambda\in(0,1)$ gilt. fheißt strikt konvex, falls für $x\neq y$ sogar < gilt

Satz 44:

Sei $f:(a,b)\to\mathbb{R}$ differenzierbar und konvex mit f'(x)=0 für ein $x\in(a,b)$. Dann nimmt f in x ein globales Minimum an

Lemma 5:

Sei $f:(a,b)\to\mathbb{R}$ differenzierbar und konvex. Dann gilt für alle $x,y\in(a,b)$

$$f(x) + f'(x)(y - x) \le f(y)$$

Satz 45:

Sei $f:(a,b)\to\mathbb{R}$ differenzierbar. Dann sind äquivalent:

- f ist konvex
- Für alle $x, y \in (a, b)$ gilt $f(x) + f'(x)(y x) \le f(y)$

Punktweise Konvergenz

Definition 27: Punktweise Konvergenz

Sei (f_n) eine Folge von Funktionen $f_n: D \to \mathbb{R}$ auf dem gleichen Definitionsbereich D. Wir sagen f_n konvergiert punktweise gegen $f: D \to \mathbb{R}$, wenn für jedes $x \in D$ gilt:

$$f_n(x) \to f(x)$$

Wir schreiben $f_n \xrightarrow[n \to \infty]{pw} f$

Gleichmäßige Konvergenz

Definition 28: Gleichmäßige Konvergenz

Sei (f_n) eine Folge von Funktionen $f_n: D \to \mathbb{R}$ auf dem gleichen Definitionsbereich D. Wir sagen f_n konvergiert gleichmäßig, gegen $f: D \to \mathbb{R}$, wenn gilt;

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n \geq n_0 \forall x \in D : |f_n(x) - f(x)| < \epsilon$$

Wir schreiben dann $f_n \xrightarrow[n \to \infty]{glm} f$

Satz 46:

Sei (f_n) eine Folge stetiger Funktionen, die gleichmäßig gegen f konvergiert. Dann ist auch f stetig

Folgen und Reihen

Taylor-Formel

Satz 47:

Sei $f:[a,b]\to\mathbb{R}$ n-mal stetig differenzierbar und $x\in[a,b]$. Dann gilt

$$f(y) = T_n[f, x](y) + R_n(y - x)$$

mit dem Taylor-Polynom

$$T_n[f, x] = \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} (y - x)^k$$

und es gilt für das Restglied $R_n(h) \in o(h^n)$, d.h.

$$\frac{R_n(h)}{h^n} \xrightarrow[h \to 0]{} 0$$

Definition 29: Analytischer Punkt

Falls für die Funktion f

$$T_n[f, x(y)] = \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} (y - k)^k = \xrightarrow[n \to \infty]{} f(y)$$

in einer Umgebung $B_{\epsilon}(x)$ gilt, so heißt f analytischer Punkt x

Satz 48:

Sei $f:(a,b)\to\mathbb{R}$ une
ndlich oft differenzierbar. Ferner existiert ein $C<\infty$ mit

$$||f^{(n)}||_{\infty} = \sup_{x \in (a,b)} |f^{(n)}(x)| \le C \quad \forall n \in \mathbb{N}$$

Dann ist f in (a,b) analytisch. Ist ferner das Intervall (a,b) beschränkt, dann gilt $T_n[f,x]\xrightarrow[n\to\infty]{glm} f$ für jede festes $x\in(a,b)$

Reihen

Definition 30: Reihe

Sei (a_n) eine Folge in \mathbb{R} , dann nennen wir die Folge von endlichen Summen

$$(s_n)_{n\in\mathbb{N}} = (\sum_{k=1}^n a_k)_{n\in\mathbb{N}}$$

die zu (a_n) gehöhrige Reihe und die s_n Partialsummen der Reihe. Für die Reihe schreiben wir auch $\sum_{n=1}^{\infty}a_n$. Der Startindex muss nicht immer 1 sein. (Oft ist er 0)

Konvergenz von Reihen

Definition 31: Konvergente Reihen

Eine Reihe $\sum_{n=0}^{\infty} a_n$ heißt konvergent, wenn die Folge der Partialsummen

konvergiert. In deisem Fall schreiben wir

$$\sum_{n=0}^{\infty} = \lim_{n \to \infty} \sum_{k=0}^{n} a_k$$

Geometrische Reihen

Satz 49:

Für $q \in [0,1)$ konvergiert die geometrische Reihe gegen

$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$$

Absolute Konvergenz

Definition 32: Absolute Konvergenz

Eine Reihe $\sum_{n=0}^{\infty}a_n$ heißt absolut konvergent, wenn die Reihe $\sum_{n=0}^{\infty}|a_n|$ konvergent ist

Reihen als unendliche Summen

Definition 33: Umordnung

Unter einer Umordnung einer Reihe $\sum_{n=0}^{\infty}a_n$ verstehen wir eine Reihe $\sum_{n=0}^{\infty}a_{\pi(n)}$ wobei $\pi:\mathbb{N}\to\mathbb{N}$ bijektiv ist

Satz 50: Umordnungssatz

Für eine absolut konvergente Reihe konvergiert jede Umordnung gegen den gleichen Grenzwert

Satz 51:

Ist eine Reihe konvergent aber nicht absolut konvergent, so existiert zu jeder Zahl $z\in\mathbb{R}$ eine Umordnung, die gegen z konvergiert. Ferner existierten Umordnungen die divergieren

Cauchey-Kriterium

Satz 52: Cauchey-Kriterium

Eine Reihe $\sum_{n=0}^{\infty}$, konvergiert genau dann, wenn gilt

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n, m \ge n_0 : |\sum_{k=m}^n a_k| < \epsilon$$

Beschränkungskriterium

Satz 53:

Eine Reihe $\sum_{n=0}^{\infty} a_n$ mit $a_n \geq 0$ konvergiert genau dann, wenn die Folge (s_n) der Partialsummen beschränkt ist

Majorantenkriterium

Satz 54:

Sei $\sum_{n=0}^{\infty} c_n$ eine konvergente Reihe mit $c: n \geq 0$ und $|a_n| \leq c_n \quad \forall n \in \mathbb{N}$.

Dann konvergiert die Reihe $\sum_{n=0}^{\infty} a_n$ absolut

Quotientenkriterium

Satz 55:

Sei $\sum_{n=1}^{\infty} a_n$ eine Reihe. Es existiert $n_0 \in \mathbb{N}$ und $\theta \in (0,1)$ mit

$$a_n \neq \text{ und } \left| \frac{a_{n+1}}{a_n} \right| \leq \theta \quad \forall n \geq n_0$$

Dann konvergiert die Reihe $\sum_{n=1}^{\infty}a_n$ absolut

Leibnitz-Kriterium

Satz 56:

Sei (a_n) eine monoton fallende oder monoton wachende Nullfolge. Dann

konvergiert die alternierende Reihe

$$\sum_{n=1}^{\infty} (-1)^n a_n$$

Häufungspunkte

Definition 34: Häufungspunkt

Ein Punkt a heißt Häufungspunkt einer Folge (a_n) , wenn eine Teilfolge (a_{k_n}) existiert, die gegen a konvergiert

Definition 35: Limes Superior und Inferior

Der Limes Superior und Limes Inferior einer reellen Folge (a_n) sind gegeben durch:

$$\limsup_{n\to\infty} = \inf_{n\in\mathbb{N}} \sup_{k\geq n} a_k, \quad \liminf_{n\to\infty} = \sup_{n\in\mathbb{N}} \inf_{k\geq n} a_k$$

Wurzelkriterium

Satz57

Sei $\sum_{n=1}^{\infty} a_n$ und $C = \limsup_{n \to \infty} \sqrt[n]{|a_n|}.$ Dann gilt:

- Falls C < 1: Die Reihe konvergiert absolut
- Falls C > 1: Die Reihe divergiert
- Falls C=1 und $\sqrt[n]{|a_n|} \ge 1$ für alles bis auf endlich viele n: Die Reihe divergiert

Potenzreihen

Definition 36: Potenzreihen

Eine Potenzreihe ist eine Reihe der Form

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

Im Folgenden sei $x_0 \in \mathbb{R}$ fest gewählt und R>0 der Konvergenzradius der Potenzreihe.

- Für $|x-x_0| < R$ konvergiert die Reihe absolut
- Für $|x-x_0| > R$ divergiert die Reihe

• Für $|x - x_0| = R$ wissen wir nichts

Satz 58:

Die Potenzreihe

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n = \lim_{n \to \infty} f_n(x) \text{ mit } f_n(x) = \sum_{k=0}^n a_k (x - x_0)^k$$

haben den Konvergenzradius R > 0. Dann ist f auf $I = (x_0 - R, x_0 + R)$ unendlich oft differenzierbar mit

$$f'(x) = \lim_{n \to \infty} f'_n(x) = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1}$$
$$f^{(m)}(x) = \lim_{n \to \infty} f_n^{(m)}(x)$$

und die Potenzreihen der Ableitungen konvergieren ebenfalls in I absolut sowie gleichmäßig auf $I_r = [x_0 - e, x_0 + r]$ für jedes 0 < r < R. Ferner stimmt die Potenzreihe mit der Taylor-Reihe überein

Satz von de l'Hospital

Satz 59: Regel von de l'Hospital

Sei I=(a,b) ein Intervall mit $-\infty \leq a < b \leq +\infty$ und $f,g:I\to \mathbb{R}$ zwei differenzierbare Funktionen. Ferner gelte $g'(x)\neq 0$ für alle $x\in I$ und es existiere der Grenzwert

$$\lim_{x \nearrow b} \frac{f'(x)}{g'(x)} \in \mathbb{R}$$

1. Fall: $\lim_{x\nearrow b}g(x)=0=\lim_{x\nearrow b}f(x).$ Dann gilt $g(x)\neq 0$ für alle $x\in I$ und

$$\lim_{x \nearrow b} \frac{f(x)}{g(x)} = \lim_{x \nearrow b} \frac{f'(x)}{g'(x)}$$

2. Fall: $\lim_{x \nearrow b} g(x) = \infty$. Dann gilt $g(x) \neq 0$ für alle $x \geq x_0$ und $x_0 \in I$ und

$$\lim_{x \nearrow b} \frac{f(x)}{g(x)} = \lim_{x \nearrow b} \frac{f'(x)}{g'(x)}$$

Analoges gilt für $x \searrow a$ sowie $x \to \infty$ und $x \to -\infty$

Integration

Treppenfunktion

Definition 37: Treppenfunktion

Eine Funktion $f[a,b] \to \mathbb{R}$ heißt Treppenfunktion, wenn es eine Unterteilung

$$a = t_0 < t_1 < \dots < t_n = b$$

und Konstanten $c_1, ..., c_n \in \mathbb{R}$ gibt mit $f(x) = c_k$ falls $x \in (t_{k-1}, t_k)$ bzw.

$$f|_{t_{k-1},t_k} = c_k \quad k = 1,...,n$$

Im Folgenden sei $\tau[a,b]$ die Menge aller Treppenfunktionen, d.h.

$$\tau[a,b] := \{f : [a,b] \to \mathbb{R} | f \text{ ist Treppen funktion} \}$$

Satz 60:

Die Menge aller Treppenfunktionen $\tau[a,b]$ ist ein Unterraum von $\mathbb{R}^{[a,b]}$

Satz 61:

Ein Integral einer Treppenfunktion ist unabhängig von der Unterteilung und damit wohldefiniert

Eigenschaften des Integrals von Treppenfunktionen

Satz 62:

Das Integral $\int_a^b(\cdot)dx:\tau[a,b]\to\mathbb{R}$ ist linear und monoton, d.h.

$$\int_{a}^{b} (f+g)(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx \qquad \forall f, g \in \tau[a, b]$$

$$\int_{a}^{b} (\lambda f)(x)dx = \lambda \int_{a}^{b} f(x)dx \qquad \forall f \in \tau[a, b], \lambda \in \mathbb{R}$$

$$\int_{a}^{b} f(x)dx \leq \int_{a}^{b} g(x)dx \qquad \forall f, g \in \tau[a, b] \text{ mit } f \leq g$$

Unter- und Obersumme

Definition 38: Unter- und Obersumme

Für beschränktes $f:[a,b]\to\mathbb{R}$ definieren wir die Unter- und Obersumme

durch:

$$\int_{a*}^{b} f(x)dx := \sup\{\int_{a}^{b} \varphi(x)dx | \varphi \in \tau[a,b], \varphi \le f\},$$
$$\int_{a*}^{b*} f(x)dx := \inf\{\int_{a}^{b} \psi(x)dx | \psi \in \tau[a,b], f \le \psi\}$$

Riemann-integrierabe Funktionen

Definition 39: Riemann-integrierbar

Eine beschränkte Funktion $f:[a,b]\to\mathbb{R}$ heißt Riemann-integrierbar, wenn Unter- und Obersummen übereinstimmen, d.h. wenn

$$\int_{a*}^{b} f(x)dx = \int_{a}^{b*} f(x)dx$$

gilt. In diesem Fall setzen wir

$$\int_{a}^{b} f(x)dx := \int_{a*}^{b} f(x)dx = \int_{a}^{b*} f(x)dx$$

Einschließung zwischen Treppenfunktionen

Satz 63:

Eine Funktion $f:[a,b]\to\mathbb{R}$ ist genau dann Riemann-integrierbar, wenn zu jedem $\epsilon>0$ Treppenfunktionen $\varphi,\psi\in\tau[a,b]$ existieren mit

$$\varphi \leq f \leq \psi \text{ und } \int_{a}^{b} \psi(x) dx - \int_{a}^{b} \varphi(x) dx \leq \epsilon$$

Integriebarkeit stetiger Funktionen

Satz 64:

Jede stetige Funktion $f:[a,b]\to\mathbb{R}$ ist Riemannintegrierbar

Satz 65:

Sei $f:[a,b]\to\mathbb{R}$ gleichmäßig stetig. Dann existieren zu jedem $\epsilon>0$ Treppenfunktionen $\varphi,\psi\in\tau[a,b]$ mit

$$\varphi \leq f \leq \psi$$
 und $||\varphi - \psi||_{\infty} \leq \epsilon$

Satz 66:

Jede stetige Funktion $f:[a,b]\to\mathbb{R}$ auf einem kompakten Intervall[a,b]ist gleichmäßig stetig