Machine Learning Notes

•••

Spring 2019

Learning Materials

- Andrew Ng's Machine Learning Course coursera.org
- The Hundred-Page Machine Learning Book Andriy Burkov
- Machine Learning Guice Podcast OCDevel LLC
-

Machine Learning

- Subfield of CS and AI
- Solving a practical problem with a statistical model
 - 1. Gathering dataset
 - 2. Algorithmically building a statistical model of the data
- Supervised
 - $\circ Y = f(x)$
- Unsupervised
 - Model data structure
- Semi-supervised
 - Mixture
- Reinforcement

Supervised Learning

Regression

- **Target** Prediction.
- Map input variables (features) to some continuous function (hypothesis).

Classification

- **Label** assignment.
- Map **features** into discrete categories or **classes**.

Multivariate Linear Regression

- Dataset comprised of several features.
- Use the features to model a function describing the data.
 - Similar goal of univariate regression
 - Numeric guess.
- Requirements:
 - Cost function, gradient descent
 OR normal equation

How it works

Hypothesis function:

$$h_{ heta}(x) = heta_0 + heta_1 x_1 + heta_2 x_2 + \ldots + heta_n x_n$$

Continuous function to model the data

Loss function:

$$J_{ heta_n}(x,y) = rac{1}{2m} \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)})^2$$

Prediction & actual deviation

Gradient Descent or Normal Equation:

$$rac{\partial J_{ heta_n}}{\partial heta_0}, rac{\partial J_{ heta_n}}{\partial heta_{n
eq 0}} \qquad heta = (X^TX)^{-1}X^TY$$

Minimize loss function