Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis

Citrus mealybug $Planococcus\ citri$ has two bacterial endosymbionts with an unusual nested arrangement: the γ -proteobacterium $Moranella\ endobia$ lives in the cytoplasm of the β -proteobacterium Trem- $blaya\ princeps$. To test the stability of this three-way symbiosis, host and symbiont genomes for five diverse $mealybug\ species\ were\ sequenced$. β -proteobacterial genomes from diverse mealybug species are Trem- $blaya\ with\ similar\ genome\ sizes$, while γ -proteobacteria are from different clades with different genome $mealybug\ species\ mealybug\ species\ are\ Trem$ $mealybug\ species\ were\ sequenced$. β -proteobacteria are from different clades with different genome $mealybug\ species\ mealybug\ species\ are\ Trem$ $mealybug\ species\ mealybug\ species\ mealybug\ species\ are\ Trem$ $mealybug\ species\ species\$

Three scenario of the order and timing of the γ -proteobacterial infections are proposed. In idosyncratic scenario, there was a single γ -proteobacterial acquisition in the ancestor of the Pseudococcinae that
has evolved idiosyncratically as mealybugs diversified over time, leading to seemingly unrelated genome
structures and coding capacities. In independent scenario, the γ -proteobacterial infections occurred independently, each establishing symbioses inside Tremblaya in completely unrelated and separate events.
In replacement scenario, there was a single γ -proteobacterial acquisition in the Pseudococcinae ancestor
that has been replaced in some mealybug lineages over time.

The idosyncratic scenario can be discarded as phylogenetics of γ -proteobacterial symbionts reveals that they have originated from clearly distinct and well-supported bacterial lineages. The independent and replacement scenarios are more difficult to tell apart. Under the independent scenario, Tremblaya may experience two rounds of genome corruption: one after association with mealybug ancestor, and one after infection of γ -proteobacteria. Therefore, one should expect diverse genome sizes in β - and γ -proteobacteria. Conserved genome sizes of β -proteobacteria and diverse sizes of γ -proteobacterial genomes favor the replacement scenario.

16

17

18

19

21

22

Two reasons why γ -proteobacteria end with living inside β -proteobacteria are proposed. The first is that it was easier to use the established transport system between the insect cell and *Tremblaya* than to evolve a new one. The second is that the insect immune system likely does not target *Tremblaya* cells,

26	and so	the	Tremblaya o	cytoplasm is	s an ideal	hiding plac	e for a newl	y arrived sy	mbiont.	