This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- CÓLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 26 April 2001 (26.04.2001)

PCT

(10) International Publication Number WO 01/28601 A1

- (51) International Patent Classification?: A61B 17/06
- A61L 17/00,
- (21) International Application Number: PCT/GB00/04049
- (22) International Filing Date: 20 October 2000 (20.10.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 9924694.4

20 October 1999 (20.10.1999) GB

- (71) Applicant (for all designated States except US): GILTECH LIMITED [GB/GB]; 9/12 North Harbour Estate, Ayr KA8 8BN (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): HEALY, David, Michael [IE/GB]; Midton House, By Alloway, Ayr KA7 4EG (GB). GILCHRIST, Thomas [GB/GB]; 67 Midton Road, Ayr KA7 2TW (GB).

- (74) Agent: MURGITROYD & COMPANY; 373 Scotland
 Street, Glasgow G5 8QA (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

With international search report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: SUTURE MATERIAL

(57) Abstract: A surgical suture material having either an external surface at least partially coated with an antimicrobial composition or an anti-microbial agent incorporated therein. Preferably the anti-microbial agent is a water-soluble metal ion-releasing glass in particle form.

WO 01/28601 A1

1	SUTURE MATERIAL
2	·
3	The present invention relates to a suture material
4	having antimicrobial characteristics.
5	
6	Sutures are the threads or wires used to stitch two
7	bodily surfaces together. Typically, sutures are
8	required to close surgical incisions and to treat deep
9	lacerations inflicted on a patient.
10	
11	Suture types fall into two main categories; absorbable
12	and non-absorbable. Additionally, the sutures can be
13	of monofilament or multifilament structure, with the
14	multifilament sutures being braided or twisted. A
15	variety of sizes of sutures are available. Typical
16	commercially available suture types are listed below:
L 7	
18	Non-absorbable:
L 9	
0 2	Silk twisted, braided & multifilament
21	Nylon polyamide monofilament
	·

1	Polypropylene	monofilament
2	Polyester	braided multifilament
3	PTFE	monofilament
4	PVDF	monofilament
5	Stainless steel	monofilament
6	Linen	multifilament
7		•
8	Absorbable:	
9		
10	PGA	monofilament & multifilaments
11	PLA	monofilament & multifilaments
12	Lactide/Glycolide	•
13	Copolymers	monofilaments & multifilaments
14	Catgut	monofilament
15	Collagen	monofilament
16		
17	In general braided	multifilaments have a smoother
18	surface than the al	ternative twisted multifilaments and
19	so remain more cohe	sive when stitched. Monofilaments,
20	being formed from a	single fibre, cannot unravel and
21	thus lose cohesiven	ess.
22		
23	To improve the lubra	ication along the surface of the
24	suture and to provid	de friction to improve knot
25	strength, the suture	es may be coated. Conventionally
26 .	however monofilament	sutures are not coated. Coatings
27	which may be applied	d include 100% beeswax BP,
8	Silicone, PTFE (e.g.	. Teflon), PVP, polylactic acid
9	(PLA), polyglycolact	ide (PLG), polycaprolactones and
0	copolymers thereof.	Often the coatings will

3

1 incorporate detergents or other lubricating substances, e.g. calcium stearate. 2 3 4 However, sutures used for surgical wound closure are associated with increased bacterial infectivity. 5 6 Sutures draw contaminants into the wound closure and provide a surface along which micro-organisms can track as a biofilm. Contamination of the wound via the 9 suture can arise from the local environment 10 (particularly in gut surgery), the closure area around 11 the wound, inappropriate handling of the suture or from contaminated suture stock. 12 13 14 It is an object of the present invention to reduce the risk of infection due to suturing a wound, by providing 15 16 sutures having antimicrobial characteristics. 17 18 Thus, in one aspect, the present invention provides a 19 surgical suture material having either: 20 21 an external surface at least partially coated with 22 an anti-microbial composition comprising an anti-23 microbial agent; or 24 25 b) an anti-microbial agent incorporated therein. 26 27 The surgical suture material may be formed from any suitable substance and may be absorbable or non-28 29 absorbable. Mention may be made of silk, polyester, nylon, polypropylene, polyvinylidenefluoride, linen, 30 31 steel wire, catgut (beef serosa or ovine submucosa),

4

1 polyglycolactide, polyamide (e.g. polyamide nylon), 2 fibroin, polyglycolic acid and copolymers thereof. 3 sutures may be monofilament or may be braided or 4 twisted multifilament yarns. 5 6 The anti-microbial composition if to be applied as a 7 coating may be applied to the suture surface in the 8 same way as a conventional coating. Indeed, a 9 conventional coating material admixed with or including 10 an anti-microbial agent is suitable for use in the 11 present invention. 12 13 Preferably the anti-microbial agent is biodegradable 14 over a period of time compatible with the timescale of wound healing. A slow-release of the anti-microbial 15 16 active ingredient of the agent over a period of weeks 17 or months is thus desirable. 18 19 A preferred anti-microbial agent is a water-soluble 20 metal ion-releasing glass, especially in particle (e.g. 21 fine powder) form that may be simply admixed with a 22 conventional coating and applied to the suture 23 material. Advantageously the metal released by the 24 glass is silver. 25 Thus we have found that by incorporating a comminuted 26 27 anti-microbial water soluble glass either into the 28 suture material itself or coated onto the external 29 surface thereof, the infectivity of a wound site is 30 reduced, whilst the handling characteristics 31 (knotability and insertion lubricity) are maintained.

5

Phosphorous pentoxide (P_2O_5) is preferably used as the 2 glass former of the biodegradable glass used in the 3 coating. 4 5 Generally the mole percentage of phosphorous pentoxide 6 in the glass composition is less than 85%, preferably 7 less than 60% and especially between 30-60%. 8 9 Alkali metals, alkaline earth metals and lanthanoid 10 oxides or carbonates are preferably used as glass 11 modifiers. Generally, the mole percentage of alkali 12 metals, alkaline earth metals and lanthanoid oxides or 13 carbonates is less than 60%, preferably between 40-60%. 14 15 Boron containing compounds (eg B2O3) are preferably used as glass additives. Generally, the mole percentage of 16 17 boron containing compounds is less than 15% or less, 18 preferably less than 5%. 19 20 Other compounds may also be added to the glass to 21 modify its properties, for example SiO₂, Al₂O₃, SO₃, sulphate ions (SO₄²), transition metal compounds (eg. 22 23 first row transition metal compounds) or mixtures 24 thereof. 25 Typically the soluble glasses used in this invention 26 27 comprise phosphorus pentoxide (P_2O_5) as the principal 28 glass-former, together with any one or more 29 glass-modifying non-toxic materials such as sodium 30 oxide (Na_2O), potassium oxide (K_2O), magnesium oxide

(MgO), zinc oxide (ZnO) and calcium oxide (CaO) or

6

- 1 mixtures thereof. The rate at which the glass
- 2 dissolves in fluids is determined by the glass
- 3 composition, generally by the ratio of glass-modifier
- 4 to glass-former and by the relative proportions of the
- 5 glass-modifiers in the glass. By suitable adjustment
- 6 of the glass composition, the dissolution rates in
- 7 water at 38°C ranging from substantially zero to
- 8 25mg/cm²/hour or more can be designed. However, the
- 9 most desirable dissolution rate R of the glass is
- 10 between 0.01 and 2.0mg/cm²/hour.

11

- 12 The water-soluble glass is preferably a phosphate
- 13 glass, and preferably comprises a source of silver ions
- 14 which may advantageously be introduced during
- 15 manufacture as silver orthophosphate (Ag₃PO₄). The
- 16 glass preferably enables controlled release of silver
- 17 or other metal ions, for example Zn, Cu, Mg, Ce, Mn,
- 18 Bi, Se, Cs and mixtures thereof (preferably Ag, Cu, Zn
- 19 and Mg and mixtures thereof) and other constituents in
- 20 the glass and the content of these additives can vary
- 21 in accordance with conditions of use and desired rates
- 22 of release, the content of silver generally being up to
- 23 5 mole %. While we are following convention in
- 24 describing the composition of the glass in terms of the
- 25 mole % of oxides, of halides and of sulphate ions, this
- 26 is not intended to imply that such chemical species are
- 27 present in the glass nor that they are used for the
- 28 batch for the preparation of the glass.

- 30 The optimum rate of release of the metal ions (eg Ag,
- 31 Cu, Zn or Mg, or any of the other metal ions mentioned

1 .	above) into an aqueous environment may be selected by
2	circumstances and particularly by the specific function
3	of the released metal ion. The invention provides a
4	means of delivering metal ions to an aqueous medium at
5	a rate which will maintain a concentration of metal
6	ions in said aqueous medium of not less than 0.01 parts
7	per million and not greater than 10 parts per million.
8	In some cases, the required rate of release may be such
9	that all of the metal added to the system is released
10	in a short period of hours or days and in other
11	applications it may be that the total metal be released
12	slowly at a substantially uniform rate over a period
13	extending to months or even years. In particular cases
14	there may be additional requirements, for example it
15	may be desirable that no residue remains after the
16	source of the metal ions is exhausted or, in other
17	cases, where the metal is made available it will be
18	desirable that any materials, other than the metal
19	itself, which are simultaneously released should be
20	physiologically harmless. In yet other cases, it may
21	be necessary to ensure that the pH of the resulting
22	solution does not fall outside defined limits.
23	
24	Generally, the mole percentage of these additives in
25	the glass is less than 25%, preferably less than 10%.
26	
27	In a preferred embodiment the biodegradable glass
28	comprises 20-35 mole% Na ₂ O; 18-30 mole% CaO and 45-60
29	mole% P ₂ O ₅ .
30	

1	1 It is a further object	of the invention to provide a
2	2 method of reducing the	risk of infection and provide
3	3 faster and more efficient	ent healing of the wound by using
4	4 the suture material of	the invention to close the
5	5 wound.	
6	6	
7	7 The present invention v	will now be further described by
8	8 reference to the follow	wing, non-limiting, examples and
9	9 to figures, in which:	
10	0	•
11	l Fig. 1: shows the	ne template used in the example
12	2 to facil	litate regular application of the
13	3 suture :	lengths on the plates.
14		
15	-	gitally generated photographic
16		showing the results of Example 2.
L7 		
18	· · · · · · · · · · · · · · · · · · ·	ing Preparation
19		
20	· ·	according to Table 1.
21 22		
23		
24		
25		
26		
27		
28		
29		
30	0	
31		

9

1 Table 1

2

Annealed Solution Rate Mg.cm. ⁻² hr ⁻¹	Mode µm		Comp	osition		Code
		Na ₂ O	CaO	P ₂ O ₅	Ag ₂ O	1
0.14	23.71	22	26.5	47.0	4.5	01
1.42	19.44	33.	16.5	47.0	3.0	02
0.27	19.96	27.5	22	47.0	3.5	03
1.42	6.50	33	16.5	47.0	3.0	04
16.05	14.02	30	10	47.5	6.5	05
6.02	12,.64	36	13	47.5	3.5	06
3.48	25.44	34.5	14.5	47.5	3.5	07
11.28	12.20	36	11.5	47.5	5.0	08

3

4 These glasses were prepared as powders (mode size given

5 in μm in Table 1 above) for incorporation into a suture

6 coating.

7 8

Testing

9

Physical/Mechanical

10 11

12 It is important that addition of silver ion releasing

13 glass into the coating does not compromise the physical

14 or mechanical properties of the suture. The smoothness

15 of the coating is essential in ensuring smooth

16 insertion of the suture. The coating should not slough

17 off on insertion and the knot properties should not be

10

reduced. Test samples show that up to 2.5% wt/wt 1 (final dry weight of coating) of glass powder could be 2 3 added to the coating without affecting these properties and up to 5% wt/wt may be possible with some samples. 4 5 6 <u>Samples</u> 7 Glass samples 01 and 04 were applied to 8 9 glycolide/lactide copolymer braided multifilament 10 sutures in a glycolide/caprolactone coating at various 11 weights. The coat weight applied was 2% wt/wt dry 12 weight coating onto the suture. Samples G1 to G10 13 contain glass 01 from 0.25-2.5% wt/wt dry weight in the 14 coating. G11 to G20 contain glass 04 at 0.25 to 2.5% 15 wt/wt dry weight in the coating. G21 is a nylon 16 monofilament with 2% wt/wt coating containing 2.5% 17 wt/wt of 04. This coating did not bond well with the 18 suture G22 and G23 and control copolymer and control 19 nylon sutures respectively. 20 21 **EXAMPLE 2:** Anti-microbial Activity 22 23 G1 to G23 were screened against 17 test organisms. 24 25 Suture Material 26 27 G1 to G20-Violet Polysorb size 0 sutures 28 G21-Dacron suture size 2/0 29 G22-Violet Polysorb control 30 G23-Dacron control 31

11

1 . Test Organisms 2 3 A panel of "wild-type" clinical isolates was used 4 except for organism 5, Staph epidermidis NCTC 11047. 5 This organism is a reference organism noted to be 6 sensitive to test sutures utilised in a previous 7 experiment. 8 9 · Gram-positive Isolates 10 11 1. Enterococcus faecalis 12 Staphylococcus aureus Enterococcus faecalis - vancomycin resistant (VRE 13 14 - VanA genotype) 15 Methicillin-resistant Staphylococcus aureus (MRSA 16 - epidemic type 15) 17 Staphylococcus epidermidis NCTC 11047. 5. 18 6. Streptococcus agalactiae (Group B streptococcus) 19 20 Gram-negative Isolates 21 22 7. Stenotrophomonas maltophilia (formerly Xanthomonas 23 maltophilia) 24 Pseudomonas aeruginosa - strain 1 25 Pseudomonas aeruginosa - strain 2 26 10. Serratia marcescens 27 11. Enterobacter cloacae 28 12. Morganella morganii 29 13. Escherichia coli 30 14. Klebsiella pneumoniae

31

15. Acinetobacter sp.

12

1 <u>Yeasts</u> 2 3 16. Candida albicans 4 17. Candida glabrata 5 6 <u>Method</u> 7 8 Media - 9 cm plates of Oxoid Iso-sensitest agar were 9 used for all organisms except the candida isolates 10 which were plated on Yeast Morphology Agar. 11 12 Inoculum - Overnight plate cultures of the test organisms were emulsified in physiological saline to 13 14 achieve a semi-confluent growth on the agar plates. 15 16 Inoculum procedure - The plates were pre-dried at 37°C 17 for 2 hours. The inoculum was applied using a sterile 18 swab using a cross-streaking technique. 19 20 Suture application - The suture was cut into 21 approximate 1 cm lengths using sterile instruments. 22 Where possible, straight sections of suture were used. 23 A template was constructed to facilitate regular application of the suture lengths. Each plate of test 24 25 organism had the series of 21 test and 2 control sutures applied, with a replicate of suture G1 as an 26 27 internal control on the far side of the plate (see 28 Figure 1 for template). Each suture was pressed down 29 with sterile forceps to optimise contact with the agar 30 surface.

13

Incubation - 37°C for 18 hours. The plates were 1 reassessed after a further 24 hours. 2 3 Recording of results - The maximum width of the zone of 4 5 inhibition at right angles to the suture length was recorded to nearest 0.5 mm (the maximum width was 6 7 recorded to avoid skewing of results due to incomplete 8 contact of parts of the suture with the agar surface, 9 resulting in irregular zones - see photographic 10 results). 11 12 Results 13 See digitally generated photographic images provided as 14 15 Figs. 2 to 6 and Table 2. 16 17 Conclusions 18 19 G21-Dacron suture: 20 Zones of inhibition were seen with all test organisms 21 except Candida albicans (organism 16). 22 23 G23-Dacron control suture: 24 No demonstrable activity. 25 26 G1-G20-violet Polysorb suture: 27 There was a general trend towards increasing activity 28 with the higher Polysorb suture numbers, with zone 29 sizes plateauing with G14, 15 and 16 followed by a 30 slight decline.

14

1 Activity was seen against most organisms in the panel.

- 2 No zones were seen with two candida isolates (organisms
- 3 16 and 17) and the zones for Stenotrophomonas
- 4 maltophilia (organism 7) and Enterobacter cloacae
- 5 (organism 11) tended to be smaller, or absent compared
- 6 to the other Gram-negative isolates.

7

- 8 Activity against the staphylococcal isolates (organisms
- 9 2, 4 and 5) was seen with virtually all sutures. This
- 10 is of note given the particular importance of
- 11 staphylococci in the aetiology of stitch abscesses.

12

- 13 The enterococci and streptococci (organisms 1, 3 and 6)
- 14 demonstrated the largest zones of inhibition.
- 15 Interestingly, the control suture (G22) also yielded
- 16 significant zones for all three organisms, indicating
- 17 that one of the constituents of the suture has
- 18 antimicrobial activity in its own right. This
- 19 constituent must be released from the suture and be
- 20 able to diffuse through the agar. There is apparent
- 21 interaction with the components of the test sutures -
- 22 G2 consistently gave zones smaller than the control.

- 24 As will be seen from the digital images (Figs. 2 to 6)
- 25 the inoculum ranged from semi-confluent to near
- 26 confluent growth. The Gram-negative organisms tended
- 27 to a heavier inoculum. Despite the significant
- 28 challenge, zones of inhibition were seen. At this
- 29 stage the duration of activity of the test sutures
- 30 cannot be stated however, transient contact with the

```
surface of the agar (duration less than 5 seconds)
 1
    resulted in a small zone of inhibition.
 2
 3
 4
    EXAMPLE 3: Anti-microbial Activity
 5
 6
    Protocol
 7
 8
    As for Example 2.
 9
10
    The experiment was performed to confirm the results
11
    from the previous experiment, in particular the
12
    activity of the G22 control suture against the
    enterococci and streptococci, and the effect of a lower
13
    inoculum on the results from the Gram-negative
14
15
    organisms.
16
17
    Results
18
19
    See Table 3.
20
21
22
23
24
25
26
27
28
29
30
31
```

16

1 Table 3: Maximum width of zone of inhibition measured

2 at right angles to the suture (millimetres)

3

	ORGANISM			
	1 Enterococcus	5 Staph 11047	6 Gp B strept	13 E Coli
Suture				·
G4	9 m	2 m	8 m '	O m
G9	9 m	2.5 m	9 m	1 m
G11	8 m	2.5 m	10 m	1.5m
G14	7.5 m	3.5 m	9 m	2 m
G17	8 m	2.5 m	8 m	2 m
G22	9 m	0 m	12 m	0 m

Key: m - microcolonies present within zone of inhibition

5

Conclusions

7

- 8 Zone sizes were similar to the results from Example 2.
- 9 Control suture G22 again demonstrated activity against
- 10 both enterococci and Gp B streptococci. The zone sizes
- 11 for the E coli using a lighter inoculum were similar to
- 12 previous results.

13

14 EXAMPLE 4: Controlled Release

15 16

Suture Material

- 18 Gll previously noted to yield a small zone of
- 19 inhibition with NCTC 11047.

17

G16 - previously noted to yield a large zone of 1 inhibition with NCTC 11047. 3 4 Test organism 5 6 Staphylococcus epidermidis NCTC 11047. 7 . 8 Method 9 A single plate of Oxoid Iso-sensitest agar (Plate 1) 10 was seeded with the test organism to achieve a semi-11 12 confluent growth. Four G11 sutures were applied to one side of the plate, with four G16 sutures on the 13 opposite side. Each suture had been bent to yield a 90° 14 15 kink in the middle. After 24 hours incubation at 37°C the zones of inhibition at right angles to the sutures 16 were recorded and the sutures were transferred to a 17 freshly seeded Iso-sensitest plate (Plate 2). The kink 18 in the suture ensured that the same aspect of the 19 20 suture was in contact with the agar surface on each 21 occasion. The new plate was incubated for a further 24 22 hours and the sutures were removed prior to assessment 23 of zones of inhibition. 24 25 Results 26 27 Plate 1 - Each of the G11 sutures yielded a zone of inhibition 1.5 mm in (maximum) width. The G16 sutures 28 29 yielded zones 2.0 mm in width. 30

1	Plate 2 - After transfer to Plate 2, zones of
2	inhibition were not seen for either suture. On removal
3	of the sutures it was observed that there was confluent
4	growth of the test organism under the G11 sutures, but
5	there was inhibition of growth under G16.
6	
7	Conclusions
8	
9	After 24 hours in contact with the agar surface of
10	Plate 1, suture G11 had no demonstrable activity
11	against the test organism on Plate 2. Suture G16
12	demonstrated marginal activity on Plate 2, with
13	inhibition of growth directly underneath the suture
14	material.
15	
16	EXAMPLE 5: Controlled Release
17	
18	Suture material
19	
20	G15 - previously noted to yield a large zone of
21	inhibition with NCTC 11047.
22	
23	Test organism
24	
25	Staphylococcus epidermidis NCTC 11047.
26	<u>Method</u>
27	
28	A single plate of Oxoid Iso-sensitest agar was seeded
29	to yield a semi-confluent growth of NCTC 11047.
30	Sixteen sutures were applied with sterile forceps and
31	the plate was incubated at 37°C. At various time

WO 01/28601

1 intervals sutures were removed. Two sutures were 2 assessed for each time_except for "24 hours" where 4 3 sutures were used. At the end of the 24-hour period 4 the zones of inhibition were assessed and the plate was 5 photographed. 6 7 Results and Conclusions 8 Suture G15 exhibited activity against the test organism 9 10 when in contact with the agar surface for only 5 11 minutes. Activity increases up to the 3 hour point, 12 after which no increased activity is seen. 13 14 **EXAMPLE 6**: Duration of Anti-microbial effect 15 16 Suture 17 18 G16. 19 20 Test organism 21 22 Staphylococcus epidermidis NCTC 11047. 23 24 Method 25 26 An Oxoid Iso-sensitest agar plate was seeded with the test organism to achieve a semi-confluent growth. Six 27 28 G16 sutures were applied with sterile forceps and the 29 plate was incubated for 24 hours at 37°C. An uninoculated Iso-sensitest plate was also incubated as 30 31 the Control.

After the initial incubation period each suture was 1 2 surrounded by a zone of inhibition. Three of the six sutures were then removed. Each zone of inhibition was 3 4 challenged using a calibrated loop to apply a drop of 5 standardised suspension of test organism. Each drop 6 contained approximately 104 colony forming units. identical drop was applied to the Control plate. Both 7 8 plates were then incubated for a further 24 hours and the zones were challenged again, and a further drop was 9 10 added to the Control plate. The procedure was repeated 11 on a daily basis. The end point of the experiment was when growth appeared in the original zones of 12 13 inhibition following challenge, or when the Control plate lost the ability to support organism growth due 14 15 to progressive dehydration. (This was minimised by 16 incubating the plates in an atmosphere with high .17 humidity.) 18 19 Results 20 Over the thirteen days of the experiment, no growth was 21 22 seen in any of the zones of inhibition. There was no difference between the zones where the suture remained 23 24 in place and the zones where the suture had been removed. The experiment was terminated at the 13 day 25 26 point even though the Control plate continued to 27 support growth of the challenge organism. This was

because the test plate appeared to be dehydrating more

rapidly, presumably because of the influence of the

30 lawn of growth of NCTC 11047 on its surface.
31

28

the suture is released in the first 24 hours. Experiment 2 showed that activity is present with: minutes of contact with the agar. Experiment 3 illustrates that even though the suture may be depleted, the surrounding area returns antimicrob: activity over a period in excess of one week. EXAMPLE 7: Cytotoxity 1 1. Objective To determine the cytotoxity of a series of suture samples using a standard extraction/elution test, ISO 10993 part 5. 2. Scope The test procedure applies to all suture samples were received sterile. 3. Equipment and Materials 3.1 Equipment 3.1.1 Laminar air flow hood.	Τ.	Conclusions
the suture is released in the first 24 hours. Experiment 2 showed that activity is present with: minutes of contact with the agar. Experiment 3 illustrates that even though the suture may be depleted, the surrounding area returns antimicrob: activity over a period in excess of one week. EXAMPLE 7: Cytotoxity 12 13 1. Objective 14 15 To determine the cytotoxity of a series of suture 16 samples using a standard extraction/elution test, 17 ISO 10993 part 5. 18 19 2. Scope 20 21 The test procedure applies to all suture samples were received sterile. 23 24 3. Equipment and Materials 25 3.1 Equipment 26 3.1.1 Laminar air flow hood. 27 3.1.2 Incubator maintained at 37°C/5% car dioxide. 29 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	2	
Experiment 2 showed that activity is present with minutes of contact with the agar. Experiment 3 illustrates that even though the suture may be depleted, the surrounding area returns antimicrob: activity over a period in excess of one week. EXAMPLE 7: Cytotoxity 1 1. Objective 14 15 To determine the cytotoxity of a series of suture samples using a standard extraction/elution test, ISO 10993 part 5. 18 19 2. Scope 20 21 The test procedure applies to all suture samples were received sterile. 23 24 3. Equipment and Materials 25 3.1 Equipment 26 3.1.1 Laminar air flow hood. 27 3.1.2 Incubator maintained at 37°C/5% car dioxide. 29 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	3	Experiment 1 demonstrated that much of the activity of
minutes of contact with the agar. Experiment 3 illustrates that even though the suture may be depleted, the surrounding area returns antimicrob: activity over a period in excess of one week. EXAMPLE 7: Cytotoxity 12 13 1. Objective 14 15 To determine the cytotoxity of a series of suture samples using a standard extraction/elution test, 17 ISO 10993 part 5. 18 19 2. Scope 20 21 The test procedure applies to all suture samples were received sterile. 23 24 3. Equipment and Materials 25 3.1 Equipment 26 3.1.1 Laminar air flow hood. 27 3.1.2 Incubator maintained at 37°C/5% car dioxide. 29 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	4	the suture is released in the first 24 hours.
illustrates that even though the suture may be depleted, the surrounding area returns antimicrob: activity over a period in excess of one week. EXAMPLE 7: Cytotoxity 12 13 1. Objective 14 15 To determine the cytotoxity of a series of suture samples using a standard extraction/elution test, 17 ISO 10993 part 5. 18 19 2. Scope 20 21 The test procedure applies to all suture samples were received sterile. 23 24 3. Equipment and Materials 25 3.1 Equipment 26 3.1.1 Laminar air flow hood. 27 3.1.2 Incubator maintained at 37°C/5% car dioxide. 29 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	5	Experiment 2 showed that activity is present within 5
depleted, the surrounding area returns antimicrobe activity over a period in excess of one week. EXAMPLE 7: Cytotoxity 12 13 1. Objective 14 15 To determine the cytotoxity of a series of suture samples using a standard extraction/elution test, ISO 10993 part 5. 18 19 2. Scope 20 21 The test procedure applies to all suture samples were received sterile. 23 24 3. Equipment and Materials 25 3.1 Equipment 26 3.1.1 Laminar air flow hood. 27 3.1.2 Incubator maintained at 37°C/5% car dioxide. 29 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	6	minutes of contact with the agar. Experiment 3
9 activity over a period in excess of one week. 10 11 EXAMPLE 7: Cytotoxity 12 13 1. Objective 14 15 To determine the cytotoxity of a series of suture 16 samples using a standard extraction/elution test, 17 ISO 10993 part 5. 18 19 2. Scope 20 21 The test procedure applies to all suture samples were received sterile. 23 24 3. Equipment and Materials 25 3.1 Equipment 26 3.1.1 Laminar air flow hood. 27 3.1.2 Incubator maintained at 37°C/5% car dioxide. 29 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	7	illustrates that even though the suture may be
10 11 EXAMPLE 7: Cytotoxity 12 13 1. Objective 14 15 To determine the cytotoxity of a series of suture 16 samples using a standard extraction/elution test, 17 ISO 10993 part 5. 18 19 2. Scope 20 21 The test procedure applies to all suture samples was were received sterile. 23 24 3. Equipment and Materials 25 3.1 Equipment 26 3.1.1 Laminar air flow hood. 27 3.1.2 Incubator maintained at 37°C/5% car dioxide. 29 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	8	depleted, the surrounding area returns antimicrobial
11 EXAMPLE 7: Cytotoxity 12 13 1. Objective 14 15 To determine the cytotoxity of a series of suture 16 samples using a standard extraction/elution test, 17 ISO 10993 part 5. 18 19 2. Scope 20 21 The test procedure applies to all suture samples was were received sterile. 23 24 3. Equipment and Materials 25 3.1 Equipment 26 3.1.1 Laminar air flow hood. 27 3.1.2 Incubator maintained at 37°C/5% car dioxide. 29 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	9	activity over a period in excess of one week.
12 13 1. Objective 14 15 To determine the cytotoxity of a series of suture 16 samples using a standard extraction/elution test, 17 ISO 10993 part 5. 18 19 2. Scope 20 21 The test procedure applies to all suture samples was were received sterile. 23 24 3. Equipment and Materials 25 3.1 Equipment 26 3.1.1 Laminar air flow hood. 27 3.1.2 Incubator maintained at 37°C/5% car dioxide. 29 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	10	
13 1. Objective 14 15 To determine the cytotoxity of a series of suture 16 samples using a standard extraction/elution test, 17 ISO 10993 part 5. 18 19 2. Scope 20 21 The test procedure applies to all suture samples was were received sterile. 23 24 3. Equipment and Materials 25 3.1 Equipment 26 3.1.1 Laminar air flow hood. 27 3.1.2 Incubator maintained at 37°C/5% car dioxide. 29 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	. 11	EXAMPLE 7: Cytotoxity
To determine the cytotoxity of a series of suture samples using a standard extraction/elution test, ISO 10993 part 5. B 2. Scope The test procedure applies to all suture samples were received sterile. 3. Equipment and Materials 3.1 Equipment 3.1.1 Laminar air flow hood. 7 3.1.2 Incubator maintained at 37°C/5% car dioxide. 9 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	12	
To determine the cytotoxity of a series of suture samples using a standard extraction/elution test, ISO 10993 part 5. 18 19 2. Scope 20 21 The test procedure applies to all suture samples were received sterile. 23 24 3. Equipment and Materials 25 3.1 Equipment 26 3.1.1 Laminar air flow hood. 27 3.1.2 Incubator maintained at 37°C/5% car dioxide. 28 dioxide. 29 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	13	1. Objective
samples using a standard extraction/elution test, ISO 10993 part 5. 18 19 2. Scope 20 21 The test procedure applies to all suture samples was were received sterile. 23 24 3. Equipment and Materials 25 3.1 Equipment 26 3.1.1 Laminar air flow hood. 27 3.1.2 Incubator maintained at 37°C/5% car dioxide. 28 dioxide. 29 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	14	
17 ISO 10993 part 5. 18 19 2. Scope 20 21 The test procedure applies to all suture samples was were received sterile. 23 24 3. Equipment and Materials 25 3.1 Equipment 26 3.1.1 Laminar air flow hood. 27 3.1.2 Incubator maintained at 37°C/5% car dioxide. 28 dioxide. 29 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	15	To determine the cytotoxity of a series of suture
18 19 2. Scope 20 21 The test procedure applies to all suture samples was were received sterile. 23 24 3. Equipment and Materials 25 3.1 Equipment 26 3.1.1 Laminar air flow hood. 27 3.1.2 Incubator maintained at 37°C/5% care dioxide. 28 dioxide. 29 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	16	samples using a standard extraction/elution test, after
19 2. Scope 20 21 The test procedure applies to all suture samples was were received sterile. 23 24 3. Equipment and Materials 25 3.1 Equipment 26 3.1.1 Laminar air flow hood. 27 3.1.2 Incubator maintained at 37°C/5% car dioxide. 28 dioxide. 29 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	17.	ISO 10993 part 5.
The test procedure applies to all suture samples were received sterile. 3	18	
The test procedure applies to all suture samples were received sterile. 3. Equipment and Materials 3.1 Equipment 3.1.1 Laminar air flow hood. 3.1.2 Incubator maintained at 37°C/5% car dioxide. 3.1.3 Refrigerator at 4°C. 3.1.4 Freezer at -18°C.	19	2. Scope
were received sterile. 3. Equipment and Materials 3.1 Equipment 3.1.1 Laminar air flow hood. 3.1.2 Incubator maintained at 37°C/5% car dioxide. 3.1.3 Refrigerator at 4°C. 3.1.4 Freezer at -18°C.	20	
23 24 3. Equipment and Materials 25 3.1 Equipment 26 3.1.1 Laminar air flow hood. 27 3.1.2 Incubator maintained at 37°C/5% car 28 dioxide. 29 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	21	The test procedure applies to all suture samples which
3. Equipment and Materials 3.1 Equipment 26 3.1.1 Laminar air flow hood. 27 3.1.2 Incubator maintained at 37°C/5% car 28 dioxide. 29 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	22	were received sterile.
25 3.1 Equipment 26 3.1.1 Laminar air flow hood. 27 3.1.2 Incubator maintained at 37°C/5% car 28 dioxide. 29 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	23	
26 3.1.1 Laminar air flow hood. 27 3.1.2 Incubator maintained at 37°C/5% car dioxide. 29 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	24	3. Equipment and Materials
27 3.1.2 Incubator maintained at 37°C/5% car dioxide. 29 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	25	3.1 Equipment
28 dioxide. 29 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	26	3.1.1 Laminar air flow hood.
29 3.1.3 Refrigerator at 4°C. 30 3.1.4 Freezer at -18°C.	27	3.1.2 Incubator maintained at 37°C/5% carbon
30 3.1.4 Freezer at -18°C.	28	dioxide.
	29	3.1.3 Refrigerator at 4°C.
31 3.1.5 Vacuum source.	30	3.1.4 Freezer at -18°C.
	31	3.1.5 Vacuum source.

1		3.1.6	Phase contrast microscope.
2			
3	3.2	Materials	
4		3.2.1	Sterile plastic-ware pipettes.
5		3.2.2	Sterile glass pipettes.
6		3.2.3	24 well sterile dishes.
7		3.2.4	Surgical grade forceps.
8		3.2.5	Surgical grade scissors.
9	-	3.2.6	Sterile Universal containers.
10		3.2.7	L929 cell culture line (ATCC NCTC Clone
11			929).
12		3.2.8	TCPS negative control.
13		3.2.9	Natural rubber latex control.
14		3.2.10	Other control samples were supplied in
15			suture form.
16			
17	4. P	rocedure	
18			
19	4.1	Test samp	le preparation
20.	í	4.1.1	Test samples and controls were cut to
21		,	the appropriate size (see Section
22			4.2.1).
23		4.1.2	Tissue culture polystyrene was employed
24			as a negative control. Natural rubber
25			latex was employed as a positive
26			control. The controls were not in the
27			same physical form as the test material
28			
29	4.2	Extraction	n/elution method
30			

WO 01/28601

2		flow.	خي ر
3	•	4.2.1	Sutures were prepared to provide a
4			surface area equivalent to 120 cm sq.
5			for each 20 mL of extracting medium.
6		4.2.2	Suture samples (typically 6 cm in
7			length) were transferred to Sterile
8			Universal containers.
9		4.2.3	Each container was labelled with the
10		,	test material code number.
11		4.2.4	20 mL of mammalian cell culture medium
12			(199) was added to each container.
13		4.2.5	The containers were placed in the
14			incubator 37°C/5% carbon dioxide for 24
15		,	hours.
16			•
L7	4.3	Cell pre	paration
18		4.3.1	A cell subculture was prepared on the
19			same day the extracts were initiated.
20		4.3.2	Cells were plated into 24 well dishes at
21			a cell concentration of approximately 1
22			x 10 ⁵ cells mL. Enough wells were
23			prepared to allow four wells per test
24			sample. 2 mL of serum supplemented
25			medium was added to each well.
26		4.3.3	The 24-well plates were incubated for 24
27			hours at 37°C/5% carbon dioxide.
8.8			
9	4.4	Test pro	cedure
0		4.4.1	After 24 hours all 24 well plates were
1			examined by phase-contrast microscope

1			(x20 objective lens) to ensure healthy
2			monolayer of >80% confluence.
3		4.4.2	The culture medium is aspirated.
4		4.4.3	The Universal containers are removed
5			from the extraction conditions, the pH
6			monitored using phenol red indicator.
7		4.4.4	2 mL of extracted medium is placed in
8			each well and the plates re-incubated
9			for a 48-hour period.
LO			
Ll	4.5	Interpre	tation of results
L2		4.5.1	At the conclusion of the incubation
L3			period the plates are removed from the
L 4		•	incubator and examined under phase
L 5			contrast microscope using x10 and x20
. 6			objective lenses.
L7		4.5.2	Each test and control material was
8.			evaluated using the scoring system
L 9			detailed below.

Reacti	vity Response	Table
Grade	Reactivity	Conditions of all cultures
0	None	Discrete intracytoplasmic granules; no cell lysis
1	Slight	No more than 20% of the cells are round, loosely attached and without intracytoplasmic granules; occasional lysed cells are present
2	Mild	No more than 50% of the cells are round and devoid of intracytoplasmic granules; extensive cell lysis and empty areas between cells
3	Moderate	No more than 70% of the cell layers contain rounded cells and/or are lysed
4	Severe	Nearly complete destruction of the cell layers

25

1 4.6 Results

2

The following table (Table 4) highlights the results obtained following two separate tests:

Two readings were taken at each test. In all cases negative control (TCPS) provided a 0 grade and positive control provided a 2 grade.

8

9 Table 4

Material Code	Grad Test	_	Te	st 2	Material Code	Grad		Tes	st 2	Material Code	Grad Tes		Tes	st 2
G1	0	0	0	0	G9	0	0	0	0	G17	1	0	0	0
G2	0	0	0	0	G10	0	0	0	0	G18	1	0	0	0
G3	0	0	0	o	G11	0	0	0	0	G19	1	1	0	0
G4	0	0	0	0	G12	0	1	0	0	G20	1	1	0	0
G5 ·	0	0	0	0	G13	1	1	0	0	G21	1	1	0	0
G6	0	1	0 .	0	G14	1	1	0	0	G22	2	1	0	1
G7	0	0	0	0	G15	1	1	0	0	G23	1	1	0	0
G8	0	0	0	0	G16	1	1	0	0					\vdash

10 11

<u>Comments</u>

- 13 The results as detailed provide a very subjective
- 14 assessment of material cytotoxity. Where a grade 0 is
- 15 shown, there was no evidence of toxicity and a
- 16 confluent healthy monolayer of cells was present.
- 17 Where there was any evidence of floating cells or
- 18 morphological abnormality or sub-confluent growth a
- 19 grade 1 was allocated. It should be noted that
- 20 floating cells do not necessarily indicate toxicity.
- 21 It should also be noted that the test 2 indicated less
- 22 evidence of toxicity than test 1. The extracts (with

- 1 suture material removed) had been maintained in a
- 2 frozen state for 72 hours before re-testing.

TABLE 2: Maximum width of zone of inhibition measured at right angles to the suture (millimetres)

		ORGANI	SM			
	1 Enterococcus	2 Staphylococcus	VRB	4 MRSA	5 Staph 11047	6 Gp B Strep
Suture					1101/	Jerep
G1	6m (7m)	0 (0)	8 (9)	0 (1)	1 (0)	9 (8)
				İ		1
G2	3.5m	0	3	1	1	1.5
G3	5m	1	7	1.5	1	7
G4	7m	1	8.5	1.5	1.5	7
G 5	3.5m	1	7.5	1.5	1.5	9
G6	5m	2	8	1.5	1.5	3
G7	6.5m	2	8	1.5	2	7
G8	6.5m	2	8	2	2.5	8
G9	7m ·	2	9	1.5	1.5	8
G10	7m	2	8	1	1.5	7
G11	6m	2m	8	2m	1.5	7
G12	2m	2m	7	2m	2	8
G13	5m	2.5m	7.5	2m	1.5m	8
G14	6m	2.5m	7	1.5m	2.5m	3.5
G15	6m	2.5m	8	2m	2.5	8.5
G16	7m	2.5m	8	2.5m	2.5	8.5
G17	5.5m	2	9	1.5	2	7.5
G18	7m	2	9	1.5	1.5	7
G19	8m	1.5	12	1.5	1.5	8
G20	8m	1.5	13	1	1.5	8
G21	1.5m	2m	2	2m	1.5	2.5
G22	8 m	0	9	0	0	12
Control						
G23	0	0	0	0	0	0
Control						

TABLE 2 (CONT'D): Maximum width of zone of inhibition measured at right angles to the suture (millimetres)

			ORGAN	ISM		
	7 Steno Malto	8 Pyo 1	9 Pyo 2	Serr	11 Enter cloacae	Morg
Suture			ļ	marcescens	Cloacae	morganii
G1	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	
G2	0 (0)	0 (0)	1	0 (0)	0 (0)	0 (0)
	0	L.		L	I	`
G3		1	1	0	0	1
G4	0	1	1	1	0	0
G 5	0	1	1.5	1	0	1
G6	0	1.5	1.5	1.5	0	1.5
G7	0	1.5	2	1.5	1	2
G8	0	1.5	2	1.5	0	2
G9	0	1	1	1.5	0	1.5
G10	0	1	1	1.5	0	1.5
G11	0	0	1	1.5	0	1.5
G12	0	0	1.5	1.5	0	0
G13	1	2	1.5	1	0	2
G14	1	0	2	2	1	1
G15	1	2	2	2	1	2.5
G16	1	1.5	2.5	2	1	2.5
G17	1	1	1.5	1.5	1	2
G18	0	0	1.5	1	0	1.5
G19	0	0	1.5	0	Ö	1.5
G20	0	1	1	1	0	1
G21	1	1.5	1	1.5	1	2
G22	0	0	0	0	0	0
Control						
G23 Control	0	0	0	0	0	0

TABLE 2 (CONT'D): Maximum width of zone of inhibition measured at right angles to the suture (millimetres)

		,,	ORGANISM		
	13	14	15	16	17
	B Coli	Kl pneumoniae	Acinetobacter sp	C albicans	C glabrata
Suture					
G1	1 (0)	0 (0)	0 (0)	0 (0)	0 (0)
G2	0	0	0	0	0
G3	0 .	1	0 ,	0	0
G4	1.	1	0	0	0
G5	1	1	1	0	0
G6	1.5	1.5	1.5	0	0
G7	1.5	1.5	0	0	0
G8	1.5	1.5 ,	1.5	0	0
G9	1	1	1	0	0
G10	1.5	1	1	0	0
G11	1.5	1.5	1	0	0
G12	1	1	1	0	0
G13	1.5	2m	1.5m	0	0
G14	2m	2m	2m	0	0
G15	2m	2m	2m	0	0
G16	2m	2m	2m	0	0
G17	1.5	1.5	1.5	0	0
G18	1	1	1.5	0	0
G19	0	1	1.5	0	0
G20	1.5	1	1	0	0
G21	1.5	1.5	1.5m	0	1
G22	0.	0	0	0	0
Control					
G23	0	0	0	0	0
Control					

Key:

^{() -} G1 Replicate result

 $[\]ensuremath{\text{m}}$ - microcolonies present within zone of inhibition

1	Clai	ms:
2		•
3	1.	A surgical suture material having either:
4		
5		a) an external surface at least partially coated
6		with an anti-microbial composition comprising
7		an anti-microbial agent; or
8		b) an anti-microbial agent incorporated therein.
9		
10	2.	The suture material as in Claim 1, wherein said
11		material is selected from silk, polyester, nylon,
12		polypropylene, polyvinylidenefluoride, linen,
13		steel wire, catgut, polyglycolactide, polyamide,
14		fibroin, polyglycolic acid and copolymers thereof.
15		
16	3.	The suture material as claimed in Claim 1 or 2,
17		wherein said material is selected from
18		monofilament, braided multi-filament and twisted
19		multifilament yarns.
20	•	
21	4.	The suture material as claimed in any one of
22		Claims 1 to 3, wherein said anti-microbial
23		composition is coated on the suture surface.
24		
25	5.	The suture material as claimed in any one of
26		Claims 1 to 4, wherein said anti-microbial agent
27		is biodegradable.
28		
29	6.	The suture material as claimed in any one of
30		Claims 1 to 5, wherein said anti-microbial agent
31		is admixed with a coating material.

1	7.	The suture material as claimed in any one of
2		Claims 1 to 6, wherein said anti-microbial agent
3		is a water-soluble metal ion-releasing glass.
4		
5	8.	The suture material as claimed in Claim 7, wherein
6		said glass is in particle form.
7		
8	9.	The suture material as claimed in Claim 7 or 8,
9		wherein said glass enables controlled release of
10		metal ions selected from Ag, Zn, Cu, Mg, Ce, Mn,
11		Bi, Se, Cs and mixtures thereof.
12		
13	10.	The suture material as claimed in Claim 9, wherein
14	-	said glass enables controlled release of metal
15		ions selected from Ag, Cu, Zn, Mg and mixtures
16		thereof.
17		
18	11.	The suture material as claimed in any one of
19		Claims 7 to 10, wherein said glass releases silver
20		ions.
21		
22	12.	The suture material as claimed in any one of
23		Claims 7 to 11, wherein said glass comprises a
24		source of silver ions which is introduced during
25		manufacture as silver orthophosphate (Ag ₃ PO ₄).
26		
27	13.	The suture material as claimed in any one of
28		Claims 7 to 12, wherein said glass comprises up to
29		5 mole % of silver.
30		

		·
1	14.	The suture material as claimed in any one of
2		Claims 7 to 13, wherein said glass comprises
3		phosphorous pentoxide (P_2O_5) as a glass former.
4		
5	15.	The suture material as claimed in Claim 14,
6		wherein the mole percentage of phosphorous
7		pentoxide in the glass composition is less than
8		85%, preferably less than 60% and especially
9		between 30 and 60%.
LO		
Ll	16.	The suture material as claimed in any one of
L2		Claims 7 to 15, wherein said glass comprises a
L3		glass modifier selected from alkali metals,
14		alkaline earth metals, lanthanoid oxides,
15		lanthanoid carbonates and mixtures thereof.
16		
17	17.	The suture material as claimed in any one of
18		Claims 14 to 16, wherein said glass comprises a
19		glass modifier selected from sodium oxide (Na_2O),
20		potassium oxide (K_2O) , magnesium oxide (MgO) , zinc
21		oxide (ZnO), calcium oxide (CaO) and mixtures
22		thereof.
23		
24	18.	The suture material as claimed in Claims 16 or 17,
25		wherein the mole percentage of said glass modifier
26		is less than 60%, preferably between 40 and 60%.
27		
28	19.	The suture material as claimed in any one of
29		Claims 7 to 18, wherein said glass comprises a
30		boron containing compound.
31		

1	20.	The suture material as claimed in Claim 19,
2		wherein the mole percentage of said boron
3		containing compound is less than 15%, preferably
4		less than 5%.
5		
6	21.	The suture material as claimed in any one of
7		Claims 7 to 20, wherein said glass comprises an
8		additive compound selected from SiO ₂ , Al ₂ O ₃ , SO ₃ ,
9		sulphate ions (SO ₄ ²⁻), transition metal compounds
10	•	and mixtures thereof.
11		
12	22.	The suture material as claimed in any one of
13		Claims 7 to 21, wherein said glass has a
14		dissolution rate in water at 38°C in the range from
15		substantially zero to 25mg/cm²/hour.
16		
17	23.	The suture material claimed in Claim 22, wherein
18		said dissolution rate is in the range from 0.01 to
19		2.0 mg/cm ² /hour.
20		
21	24.	The suture material as claimed in any one of
22		Claims 7 to 23 wherein said glass comprises 20-35
23		mole % Na_2O , 18-30 mole % CaO and 45-60 mole %
24		P ₂ O ₅ .

Fig. 1

2/6

Enterococcus faecalis

Staphylococcus aureus

VRE

MRSA

Fig. 2

Staphylococcus epidermidis NCTC 11047

Streptococcus agalactiae

Stenotrophomonas maltophilia Pseudomonas aeruginosa -

strain1

Fig. 3

4/6

Pseudomonas aeruginosa - strain 2

Serratia marcescens

Enterobacter cloacae

Morganella morganii

Fig. 4

Escherichia coli

Klebsiella pneumoniae

Acinetobacter sp

Fig. 5

6/6

Fig. 6

Candida glabrata

INTERNATIONAL SEARCH REPORT

nal Application No

PCT/GB 00/04049 A. CLASSIFICATION OF SUBJECT MATTER IPC 7 A61L17/00 A61B Ä61B17/06 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) A61L A61B IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the International search (name of data base and, where practical search terms used) EPO-Internal, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. EP 0 633 032 A (SUMITOMO ELECTRIC 1-11 INDUSTRIES, LTD.) 11 January 1995 (1995-01-11) the whole document X EP 0 328 421 A (THE TRUSTEES OF COLUMBIA 1-11 UNIVERSITY IN THE CITY OF MEW YORK) 16 August 1989 (1989-08-16) the whole document X US 5 413 788 A (EDWARDS ET AL.) 6-13.21 9 May 1995 (1995-05-09) abstract column 1, line 5-15 column 3, line 40-63 column 5, line 44-51 column 5, line 61 -column 6, line 31 Further documents are listed in the continuation of box C. Patent family members are listed in annex. X Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

	tring date
٠r.	document which may throw doubts on priority claim(s) or
	which is cited to establish the publication date of another
	citation or other special reason (as specified)
.0.	document referring to an oral disclosure, use, exhibition or

other means

document published prior to the international filing date but later than the priority date claimed

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"A" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report 25 January 2001 31/01/2001 Authorized officer

Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016

Giménez Burgos, R

Form PCTASA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Interi^{®Li}or sal Application No PCT/GB 00/04049

	ntion) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
ategory *	Citation of document, with Indication, where appropriate, of the relevant passages	THEOTOIR IS SEEN 170.
(US 5 744 151 A (CAPELLI) 28 April 1998 (1998-04-28) column 1, line 10-15; example 22	1-4,6
	US 5 534 288 A (GRUSKIN ET AL.) 9 July 1996 (1996-07-09) the whole document	1-3,6-11
	·	
		ļ

INTERNATIONAL SEARCH REPORT

incormation on patent family members

Interr withal Application No
PCT/GB 00/04049

·			•		
Patent document cited in search report		. Publication date		Patent family member(s)	Publication date
EP 0633032	A	11-01-1995	JP	7067895 A	14-03-1995
EL 0033032	^		AU	692445 B	11-06-1998
		. 14		6596094 A	05-01-1995
		, .	CA	2126608 A	26-12-1994
		•	US	5584877 A	17-12-1996
EP 0328421	A	16-08-1989	US .	5019096 A	28-05-1991
			AT	88096 T	15-04-1993
			AU	2989589 A	17-08-1989
			AU	636767 B	06-05-1993
			AU	7922991 A	03-10-1991
			DE	68905939 D	19-05-1993
			DE	68905939 T	05-08-1993
			JP	2017071 A	22-01-1990
			JP	7090039 B	04-10-1995
			ÜS	5133090 A	28-07-1992
			US	5616338 A	01-04-1997
US 5413788	A	09-05-1995	AT	87794 T	15-04-1993
			AU	599995 B	02-08-1990
			AU	7505487 A	07-01-1988
			· DE	3785253 D	13-05-1993
		,	DE	3785253 T	12-08-1993
		·	EP	0251783 A	07-01-1988
	•		ES	2054673 T	16-08-1994
•			FI	872964 A,B,	04-01-1988
		,	JP	8005767 B	24-01-1996
			JP	63088109 A	19-04-1988
			NO	174732 B	21-03-1994
			NZ	220918 A	28-11-1989
			US	4906466 A	06-03-1990
US 5744151	A	28-04-1998	AU	6398796 A	05-02-1997
			CA	2225808 A	23-01-1997
			ĒΡ	0896541 A	17-02-1999
			WO	9702038 A	23-01-1997
US 5534288	A	09-07-1996	CA	2133686 A	09-04-1995
			EP	0647452 A	12-04-1995