Tópicos Especiais em Engenharia Elétrica A (75H)

Utilização de Algoritmos *Random Forest* e *XGBoost* para a Predição de Resultados Esportivos.

Aluno Lucas Peres de Medeiros Professor Lucian Soares Schiavon

Instituto Federal de Educação, Ciência e tecnologia Sul-rio-grandense

Campus Pelotas

Pelotas, dezembro de 2019

Motivação

► Evolução do universo de investimentos com o acesso universal à internet.

► Mais de R\$ 7.000.000.000,00 movimentados em apostas esportivas APENAS EM 2018. *

Possibilidade de utilização da "Inteligência Computacional" como ferramentas de redução de riscos.

Random Forest

- Algoritmo Flexível
 - ► Combinação de Árvores de Decisão

XGBoost

- Algoritmo de aprendizado de máquina baseado em árvore de decisão.
 - ▶ Utiliza uma estrutura aprimorada de *Gradient boosting*.
- Numa média geral o algoritmo tem sido o mais vitorioso no Kaggle.
- Suporte para as principais linguagens de programação
 - ▶ Python, C++, R, Julia, etc., independente de S.O.

XGBoost

Dataset Base

- "Historical Football Results and Betting Odds Data" da Premier League 2018/2019.
 - Estatísticas por jogo.
 - Dados de casas de apostas.
 - Etc.

► PROBLEMA:

As estatísticas só são conhecidas após a partida, impedindo a utilização das mesmas como elementos de entrada para a predição.

Dataset Desenvolvido

- Média até o momento da partida:
 - Pontos conquistados por confronto
 - ► Gols marcados por confronto
 - ► Finalizações por confronto
 - ► Finalizações no gol por confronto
 - Mais de um gol e meio por confronto
 - ► Mais de dois gols e meio por confronto

Dataset Desenvolvido

- Possíveis saídas
 - ► Equipe vencedora (Mandante, empate, visitante)
 - ► Equipe mandante ganhou? (Sim / Não)
 - ► Equipe visitante ganhou? (Sim / Não)
 - ► Houve mais de um gol e meio? (Sim / Não)
 - ► Houve mais de dois gols e meio? (Sim / Não)

Aplicação

- Dados lidos nos algoritmos
 - Random Forest: Desenvolvido pelo autor
 - ► XGBoost: Aplicação para Python
- Predição:
 - ► Validação cruzada: *K-fold* (k = 10)

RESULTADOS Equipe Vencedora

Random Forest: 63,1 %

XGBoost: 64,74 %

RESULTADOS Mandante ganha?

Random Forest: 74,74 %

XGBoost: 75,26 %

RESULTADOS Visitante ganha?

Random Forest: 78,42 %

XGBoost: 80,26 %

RESULTADOS Over 1,5 gols

Random Forest: 79,02 %

XGBoost: 80,52 %

RESULTADOS Over 2,5 gols

Random Forest: 54,41 %

XGBoost: 73,42 %

Quadro Comparativo

	Quesito				
Algoritmo	Vencedor	V. Mandante	V. Visitante	Over 1.5	Over 2.5
Random Forest	63,10%	74,74%	78,42%	79,20%	54,21%
XGBoost	64,70%	75,03%	80,26%	80,52%	73,42%
Diferença	1,60%	0,29%	1,84%	1,32%	19,21%

Considerações Finais e próximos passos

- Resultados
 - ► Ligeira vantagem do XGBoost
 - ▶ Bons resultados em ambos os algoritmos
- Aprimoramento do dataset
 - Mais informações e maior validade
- Estudo sobre a auto calibração do XGBoost
 - ► Melhor resultados

Referências

ANICETO, Maria. Classificadores Ensemble, tipos Bagging e Boosting. 2017. Disponível em: https://lamfo-unb.github.io/2017/09/27/BaggingVsBoosting/. Acesso em: 15 dez. 2019.

Pedregosa et al. Scikit-learn: Machine Learning in Python. JMLR 12, pp. 2825-2830, 2011.

J. D. Hunter. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, vol. 9, no. 3, pp. 90-95, 2007.

SILVA, Josenildo Costa da. Aprendendo em uma floresta aleatória. Machina Sapiens. 2018. Disponível em: https://medium.com/machina-sapiens/o-algoritmo-da-floresta-aleat%C3%B3ria-3545f6babdf8. Acesso em: 14 dez. 2019.

Tópicos Especiais em Engenharia Elétrica A (75H)

Utilização de Algoritmos *Random Forest* e *XGBoost* para a Predição de Resultados Esportivos.

Obrigado!

Pelotas, dezembro de 2019

