Access Control

Eike Ritter

Computer Security and Networks

Today's Lecture

- Access control models
 - Access Control Matrix
 - Access Control Lists
- Linux/Unix access control
- Confused Deputy Problem

• Files on VM

Principal (subject)

Principal

(subject) e.g. a user or program.

Principal

(subject) e.g. a user or program.

Principal

(subject) e.g. a user or program.

	Operating System	Accounts Program	Accounting Data	Audit Trial
Alice (manager)				
Bob (auditor)				
Accounts Program				
Sam (sys admin)				

Permissions: x: execute, r: read, w: write

	Operating System	Accounts Program	Accounting Data	Audit Trial
Alice (manager)	X	X	-	-
Bob (auditor)	rx	r	r	r
Accounts Program	X	r	rw	W
Sam (sys admin)	rwx	rw	-	-

Permissions: x: execute, r: read, w: write

- ACM is a matrix of all principals and objects.
- The matrix entries describe the permissions.

- ACM is a matrix of all principals and objects.
- The matrix entries describe the permissions.
- Problem: maintaining such a matrix can be difficult.
- If the matrix is corrupted then all controls is lost.

Access Control Lists (ACLs)

- We don't want to store one massive matrix.
- Instead we can store each column of the matrix with the object it refers to. e.g.

Access Control Lists (ACLs)

- We don't want to store one massive matrix.
- Instead we can store each column of the matrix with the object it refers to. e.g.

```
(Accounts data, [(Sam,r), (Bob,r), (Accounts program, rw)])
```

Access Control in Unix/Linux

- Unix/Linux/Mac use ACL, with groups.
- "uid" set when you log on.
- Linux Kernel then dynamically enforces the ACLS.
- Is -I displays files with their ACL
- root owns everything ("get root" = control the system)

Ls –I on laptop

The UNIX Access Control List

UNIX File Permissions

Permissions:

r: read permission

w: write permission

x: execution permission

-: no permissions

File Type:

- : file

d: directory

b/c: device file

Access Control for Directories

For directories

- "r" is read only for directory contents
- "x" is permission to traverse, e.g. switch to, run.

No "x": I can't run any commands inside the directory

No "r": I can't list the files in the directory

Access Control for Process

-r-sr-xr-x 1 root wheel 70352 19 Jun 2009 passwd

The "x" permission controls who can run a process

• in the case of passwd: anyone.

The "s" permission indicates that the process runs with the permission of its owner.

Different user identifiers

- Have different user identifiers (uids):
 - real uid (ruid) owner of process.
 - effective uid (euid): used for access checks (except filesystem)
 - file system uid (fsuid): used for access checks and ownership of files (usually equal to effective uid)
 - saved user uid (suid): when the euid is changed, the old euid is saved as suid.
 Unprivileged process may change euid only to ruid or suid.
- provides flexibility for granting higher privileges temporarily
 - eg daemons: start as root (to bind to ports < 1024), then set ruid, euid and suid to unprivileged values. Cannot gain root privileges afterwards
 - Program run as privileged user may set euid to unprivileged value, then execute non-privileged operations, and gain root privileges afterwards

- Shadow
- passwd
- bash set to suid root

The Confused Deputy Problem

Users can run programs with more privileges

If there was a mistake in the passwd program we could use it do root only actions.

The Confused Deputy Problem, when a low level attacker gets a high level process to misusing its authority.

Particular problem: race conditions in code like if can_access file then perform_operations on file

Make sure process have as low a level as possible.

Windows Password Hashes

 Windows stores its password hashes in: system32/config/SAM

This file requires Admin level to read.

It is locked and encrypted with a key, based on other key values.

This adds no real security

Getting windows pass

- Boot into linux,
- Get SAM file.

Password crackers

- John the Ripper
 - Most common brute force cracker
 - Open source
- Hashcat
 - Claims to be the fastest/best.
- Ophacrack
 - State of the art, free, rainbow table software.

Getting windows pass

- Boot into linux,
- Get SAM file.
- Use password cracker

Password Injection

- Want access to the system without cracking the password?
- Have access to the hard disk?
- Add your own account, or replace the hash with one you know.

Better Security: BIOS

- Set a password in the BIOS to stop the computer booting from anything but the hard disk.
- It's very hard to brute force the BIOS.
- Work around: remove the hard disk from the computer or reset BIOS password.

Resetting the BIOS password

• BIOS password can be reset by opening the box.

Computer Jumper

Open

1-2 Jumped

2-3 Jumped

http://www.computerhope.com

CMOS Battery

http://www.computerhope.com

Best Security

- Encryption of important file.
- Whole disk encryption
 - Encrypt the whole hard drive
 - Key can be brute forced
 - Not safe if the computer is in sleep mode.
- E.g. BitLocker, FileVault, Luks

Password Hashes in Windows

- In a Windows Domain, passwords hashes are used to authenticate users on hosts in the domain
- Password hashes are cached to avoid asking for the password
- Gives rise to devastating attack (Pass-the-Hash)
 - Obtain user credentials for one host in the domain (eg phishing)
 - Exploit vulnerability to become local administrator
 - Install process which waits for domain administrator to login into this machine
 - Extract cached hash for domain administrator
 - Login as domain administrator
- Defence mechanism exist but are painful to use
- ssh much better: public key on untrusted machine, private key on trusted machine

Further Study

- Security Engineering, Ross Anderson
 - Access Control Chapter

http://www.cl.cam.ac.uk/~rja14/Papers/SE-04.pdf

• Exercise 2.