Def let ν be a signed meas on (X, M), μ a pos meas on (X, M). Say ν is absolutely its with $(\nu \ll \mu)$ with if $\mu(E) = 0 \Rightarrow \nu(E) = 0$. $(E \mu - null \rightarrow E \nu - mull)$.

Eg $f \in L'(X_1R, M)$, $V(E) := \int_E f d\mu$ $(d\nu = f d\mu)$. $V \ll M$. (or f ext μ -Joh).

Exercise: 1) TFAE:

- 6 V << M
- (b) v_± « M
- @ 1V1<</
- (1) V << M & VIM => V=0.

1001: Suppose v is a finite signed measure on (X,M) and u is a pos meas. TFAE:

② \$50 35>0 s.t. |V(E)|< € whenever µ(E)< 8.

If since $V \ll \mu$ iff $|V| \ll \mu$, and since $|V(E)| \leq |V|(E)$, we may assume V positive. Clearly $@\Rightarrow 0$. And $\neg @\Rightarrow \neg @$: suppose $\exists E > 0$ s.t. $\forall n \in \mathbb{N}$ $\exists E_n \in \mathbb{M}_{w_i}, \mu(E_n) < 2^{-h}$ and $V(\widehat{E}_n) \geq E$. Set $F = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n$. Since $\mu(\bigcup_{n=k}^{\infty} E_n) \leq \sum_{n=k}^{\infty} 2^{-n} = 2^{-k+1}, \mu(F) = 0$. but since V is finite, $V(F) = \lim_{k \to \infty} V(\bigcup_{n=k}^{\infty} F_n) \geq \lim_{k \to \infty} V(E_n) \geq E$.

Example: $(\chi, m) = (N, P(N))$. $\mu(E) = \sum_{n \in E} \frac{1}{2^n}$, $\nu(E) = \sum_{n \in E} 2^n$.

Then $\mu \ll \nu$ and $\nu \ll \mu$. But @ fails since $\nu(N) = \infty$.

Lemma: Suppose μ , ν finite pos meas on (x,m), either $\nu \perp \mu$ or $\exists \varepsilon > 0$ a $\exists \varepsilon = m$ s.t. $\mu(\varepsilon) > 0$ and $\nu > \varepsilon \mu$ on ε (ε is positive for $\nu - \varepsilon \mu$, the signed measure). If let $X = P_n \coprod P_n^c$ be a Hahn decomp for $\nu - \frac{1}{n}\mu$.

Set $P = UP_n$ and observe $P^c = \bigcap P_n^c$. Then P^c is negative for $\nu - \frac{1}{n}\mu$ for $\nu - \frac{1}{n}\mu$ for $\nu - \frac{1}{n}\mu$ for $\nu - \frac{1}{n}\mu$ for $\nu = 0$. If $\mu(P) = 0$, then $\nu \perp \mu$.

If $\mu(P) > 0$, Then $\mu(P_n) > 0$ for some n, and P_n is positive for $\nu - \frac{1}{n}\mu$.

Thus (Lebesgue - Rodon - Nikodym): Let ν be a σ -finite signed measure and μ a σ -finite positive measure on (X, M). $\exists ! \sigma$ -finite signed measures λ , ρ on (X, M) s.t.

Moreover, $\exists .$ extended μ -file function f s.t. $d\rho = f d\mu$.

If ν is called the Radon-Nikodym derivative.

If ν is positive or finite, so are $\lambda \neq p$, and $f \in L^+$ or L^+ eff (uniqueness): Suppose λ , λ' are σ -finite signed measures sit. λ , $\lambda' \perp \mu$ and f, $f' \in L^+$ are extended μ -fb μ sit. $d\nu = d\lambda + f d\mu = d\lambda' + f' d\mu$.

Then $d(\lambda-\lambda') = (f'-f) d\mu$ as signed measures. Also $\lambda-\lambda' \perp \mu$.

And f'-f du «du, so both sides are zero. Conclude \= \lambda', f=f'\in \lambda'

(Existence): case 1, v & u are finite positive measures.

Let A= ffel'(X, u, [0, w]) | feftu « v(E) & Fem]. OEA.

And if figeA tun frg & A [Set G = fg>f]. then Y E & M,

If vg du = Ig du + If du & V(EnG) + V(E(G) = V(E).]

Set m=sup { | fdp | feA}. m < v(x) < 0.

Choose $(f_n) \subset A$ s.t. If $n \neq m$. Set $g_n = \max\{f_1, \dots, f_n\} \in A$.

And let f=supgn. Then Ifndu < Igndu > m.

Since $g_n \wedge f$ ptwise, by MCT, $\int_E f d\mu = \lim_{n \to \infty} \int_E g_n d\mu \leq V(E) \quad \forall E \in \mathcal{M}$.

So feA, and Ifdu = m.

Claim: $\lambda(E) := \nu(E) - \int_{E} f d\mu \ge 0$ is singular wit μ .

50 $\lambda \perp \mu$, $\beta \leftarrow \mu$, $\nu = \lambda + \beta$, $d\nu = d\lambda + f d\mu$

ef of claim: If not, by the lemma above, FEEM & \$>0

5.t. μ(E)>02 λ≥ εμ on E. But then, ∀F∈M,

$$\int_{F} f + \chi_{E} d\mu = \int_{F} f d\mu + \epsilon \mu(F \cap F) \leq \int_{F} f d\mu + \lambda(F \cap F)$$

$$= \int_{F} f d\mu + \nu(F \cap F) - \int_{F} f d\mu$$

$$= \int_{F} f d\mu + \nu(F \cap F) - \int_{F} f d\mu$$

 $\leq V(F \setminus E) + V(E \cap F) = V(F).$

tlence $f + e \chi_{E} \in A$ but $\int (f + \epsilon \chi_{E}) d\mu = m + \epsilon \mu(E) > m$ $\frac{1}{4}$

Case? : Suppose ma v are o-finite measures.

write $X = \coprod X_n$ site $\mu(X_n), \nu(X_n) < \infty$. Set $\mu_n(E) = \mu(E_n X_n), \nu_n(E) = \nu(E_n X_n)$.

By case 1, I pos mens & Lun & fn & I' (Xn,Mn) s.t. d vn = dln + fndun.

Since $\mu_n(x_n^c) = \nu_n(x_n^c) = 0$, $\lambda(x_n^c) = \nu_n(x_n^c) - \iint_{v_n^c} d\mu_n = 0$.

So we may extend for to X by $f|_{X^c} = 0$.

Let $\lambda = \sum \lambda_n$ and $f = \sum f_n \in \mathcal{L}$.

Then $\lambda \perp \mu$, $d\lambda \neq f d\mu$ are σ -finite, and $d\nu = d\lambda + f d\mu$.

(Uniqueness is a little trienier have: have to restrict to Xis...)

Case3: mo-finite « positive, » o-finite « signed.

use Jordan Lecomp to write $V = V_+ - V_- w V_+ \perp v_-$

Then V_+ , V_- are σ -finite. Apply case 2 to V_+ , V_- separately, Subtract results.

Know how to prove this for final!