We denote the minimum number of queens required to dominate all squares of a chessboard of size $n \times n$ as $\gamma(Q_n)$, we may sometimes refer to this as $\gamma(n)$ for convenience. If n is understood from the context, we may simply use γ .

A theorem states that $\gamma(n) \geq \left\lceil \frac{(n-1)}{2} \right\rceil$. Moreover, a fundamental fact about this problem is that $\gamma(n) = \gamma(n-1) + (0 \ or \ 1)$. Armed with these two facts, the optimization variant of the problem can often be reduced to determining whether $\left\lceil \frac{(n-1)}{2} \right\rceil$ or $\left\lceil \frac{(n-1)}{2} \right\rceil + 1$.

In the formulas/sat_unsat/cnf folder, CNF formulas are generated for certain values of n. While the method described above would be used in a real-world scenario to solve an open case, the primary goal of this part of the work is to evaluate the performance of different SAT solvers with respect to different encodings. Consequently, we sometimes approximate the search process as follows:

If we know the optimal value of queens for a given n (i.e., it has been solved by other researchers and verified by a SAT solver), we reverse the approach described above. For instance, if we know $\gamma(n)$ is k, we first encode the problem to verify $\gamma(n)=k$ and pass it to the SAT solver, where we expect a SAT result. We then encode $\gamma(n)=k-1$, which we know is UNSAT, but this still serves as a useful benchmark to monitor SAT solvers' performance on UNSAT instances of the problem.

In addition to simply passing CNF formulas to SAT solvers, we also assess whether using the well-known technique of Cube-and-Conquer with the tool March can improve CPU time. For this purpose, we generated and stored cubes of formulas available in formulas/sat_unsat/cnf within formulas/sat_unsat/icnf. The cubes stored here are the result of calling March once with its default parameters.

Another scenario of interest arises when, after determining the correct value of $\gamma(n)$, we also want to count the number of solutions of that size. CNF formulas for this scenario have also been generated for some values of n and are stored in the formulas/model_enum folder.

All the code discussed is located in the code/ folder. Within that folder, you'll find several Python files. Each file contains a brief, high-level description at the top, outlining the purpose of the code.

Below is a summary of the results.

SAT instances without cube and conquer

n	Gamma	At Most	At Least	Finding a Satisfying		Model Enumeration	
				Assignment (Seconds)		(Seconds)	
				CaDiCaL	MapleSAT	CaDiCaL	MapleSAT
10	5	✓		0.8281	6.2031	16.6093	49.5000
10	5	✓	✓	2.6875	10.0546	11.8593	45.5937
11	5	✓		0.1718	9.9687	15.6875	95.2343
11	5	✓	✓	14.875	20.7968	19.1406	116.4062
12	6	✓		29.3281	51.4062	823.0468	Time Out
12	6	✓	✓	48.1562	17.6562	728.2031	6688.2500
13	7	✓		34.2500	37.2187	Time Out	Time Out
13	7	✓	✓	115.7656	43.1406	Time Out	Time Out
14	8	✓		165.6406	79.5937	Time Out	Time Out
14	8	√	✓	727.3125	40.2812	Time Out	Time Out
15	9	✓		18.4062	183.0937	Time Out	Time Out
15	9	√	✓	35.5937	34.8593	Time Out	Time Out

UNSAT instances without cube and conquer

n	Gamma	At Most	At Least	Time (Seconds)		UNSAT Proof (Kilobyte)	
				CaDiCaL	MapleSAT	CaDiCaL	MapleSAT
10	4	✓		1.2656	3.4375	11,829	10,583
10	4	✓	✓	1.0156	3.4843	8,629	11,526
11	4	✓		2.0000	6.3125	20,401	21,240
11	4	✓	✓	1.4687	6.2187	13,340	21,239
12	5	✓		38.7500	213.9375	316,788	1,093,642
12	5	✓	✓	34.7187	150.4218	227,103	691,765
13	6	✓		1662.4062	Time out	7,366,352	N/A
13	6	✓	✓	1910.9375	Time out	7,398,906	N/A

With cube and conquer

n	γ	Inc.	At	At	Cube	Time (Seconds)		UNSAT Proof (Kilobyte)	
	'		Most	Least	Generation	CaDiCaL	MapleSAT	CaDiCaL	MapleSAT
					Time (Seconds)				
10	4		✓		0.0700	1.0468+0.0156	0.9687+0.0000	8,372+1	6,090+1
10	4	✓	✓		0.0700	0.8594 +0.0156	1.6250 +0.0000	158,714+ 1	122,391+1
10	4		✓	✓	0.0500	1.0625+0.0000	1.5468 +0.0000	9,728+1	7,897+1
10	4	✓	✓	✓	0.0500	0.6562+0.0000	2.9219 +0.0000	25,749+1	115,662+1
11	4		✓		0.1100	1.7656+0.0156	1.5625+0.0000	14,262+1	9,506+1
11	4	✓	✓		0.1100	1.1719 +0.0156	2.8750+ 0.0000	334,859+1	335,428+1
11	4		✓	✓	0.1100	1.7187+0.0000	1.8906+ 0.0156	15,343+1	11,161+1
11	4	✓	✓	✓	0.1100	1.0938+0.0000	2.8750+0.0156	76,884+1	88,213+1
12	5		✓		0.3600	33.3593+0.0000	95.4531+ 0.0000	308,236+1	387,960+1
12	5	✓	✓		0.3600	33.0312+0.0000	63.1250+ 0.0000	7,420,959+1	9,937,242+1
12	5		✓	✓	0.3700	36,2031+0.0000	91.8593+ 0.0000	336,617+9	381,587+1
12	5	✓	✓	✓	0.3700	36.2344+0.0000	54.0938+ 0.0000	3,904,861+9	5,685,134+ 1
13	6		✓		4.7200	905.8438 +0.0312	5225.6406+ 0.0156	7,075,706 +184	23,428,492+ 89
13	6	✓	✓		4.7200	TimeOut+0.0312	Time Out+ 0.0156	N/A+184	N/A+ 89
13	6		✓	✓	0.7600	962.5156+0.0000	2583.3750+0.0156	7,464,258+17	16,894,558+17
13	6	✓	✓	✓	0.7600	TimeOut+ 0.0000	Time Out+0.0156	N/A+17	N/A+17
14	7		✓		2.1800	9219.5312+0.0312	+0.0156	46,633,413+185	+5
14	7	✓	✓		2.1800	+0.0312	+0.0156	+185	+5
14	7		✓	✓	2.2500	+0.0156	+0.0000	+60	+53
14	7	✓	✓	✓	2.2500	+0.0156	+0.0000	+60	+53
15	8		✓		28.1500	45,053.5487+0.1718	+0.0937	92,243,508+2,919	+468
15	8	✓	✓		28.1500	+0.1718	+0.0937	+2,919	+468
15	8		✓	✓	3.5000	+ 0.0156	+0.0156	+124	+121
15	8	✓	✓	✓	3.5000	+ 0.0156	+0.0156	+124	+121