ECUACIONES DIFERENCIALES 2015 - RECUPERATORIO SEGUNDO PARCIAL

NOMBRE: CARRERA:

EJERCICIO 1:

a) Considere la ecuación de coeficientes constantes ay'' + by' + cy = f(x). Elija una función entre las opciones siguientes para la que sea aplicable el método de coeficientes indeterminados. Fundamente su elección.

i)
$$f(x) = e^x \ln x$$

ii)
$$f(x) = (sen x)/x^2$$

iii)
$$f(x) = e^{2x}\cos 3x$$

iv)
$$f(x) = 2x^{-2}e^x$$

v)
$$f(x) = (x-1)sen x + (x+1)cos x$$

b) Considere ahora que, las constantes del ítem a) valen a = 0, b = 1, c = -5 y f(x) es v). Halle una solución particular para este caso y luego la solución general.

EJERCICIO 2:

Un circuito RCL, con $R = 6\Omega$, $C = 0.02 \,\mathrm{F}$ y $L = 0.1 \,\mathrm{H}$, tiene un voltaje aplicado $E(t) = 6 \,V$. Suponiendo que no hay corriente inicial y no hay carga inicial para cuando se aplica el voltaje por primera vez, halle la carga resultante en el condensador y la corriente en el circuito.

Ayuda: Recuerde que la ecuación que rige la cantidad de carga eléctrica q(t) en el condensador es $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = E(t)$ y que I(t) = dq/dt.

EJERCICIO 3:

- a) Utilice un teorema de traslación para hallar la transformada de $f(t) = e^{-at}\cos bt$.
- b) Enuncie y demuestre el teorema de traslación que utilizó en a).
- c) Resuelva el PVI por el método de Transformadas $y'' y' = e^t \cos t$ con y(0) = y'(0) = 0.

EJERCICIO 4:

- a) Describa la forma de las soluciones de Frobenius para los tres casos según el tipo de raíces indiciales.
- b) ¿En cuáles de los casos del ítem a) se ubica la ecuación $8x^2y'' + 10xy' + (x-1)y = 0$.
- c) Halle la solución general de la ecuación del ítem anterior cerca de x = 0.

EJERCICIO 5:

Considere el sistema
$$\begin{cases} \frac{dx_1}{dt} - x_1 = 0 \\ -8x_1 + \frac{dx_2}{dt} = e^t - 2x_2 \end{cases}$$

- a) Escriba el sistema en matricial.
- b) Pruebe que $X(t) = \frac{-1}{5}e^t \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ es una solución particular del sistema.
- c) Encuentre la solución general del sistema.