Logic Control

Prof. Dr. Ping Zhang WS 2017/2018

Organizational issues

Prof. Dr. Ping Zhang > Lecture:

Email: pzhang@eit.uni-kl.de

Office: 12/474

Appointment through Ms. Monika Kunz

Email: mkunz@eit.uni-kl.de

Office: 12/476

> Exercise: Dipl.-Ing. Anna Nehring

Email: nehring@eit.uni-kl.de

> Language of the course: English

> Scope: 3 SWS (2V 1Ü)

Script: available on the OLAT (password: Automatisierungstechnik)

> Examination: written examination, 90 min.

The lab "Control of a production line with PLC" is supervised by Ms. Anna Nehring.

Literature

- L. Litz. Grundlagen der Automatisierungstechnik, Chapter 3, Oldenbourg Verlag, 2013.
- > J. Lunze. Automatisierungstechnik, Teil 3, Oldenbourg Verlag, 2013.
- > C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems, Springer, 2009.
- > Frey, G.: Design and formal Analysis of Petri Net based Logic Control Algorithms. Shaker Verlag, Aachen, 2002.
- > John, K.-H. and M. Tiegelkamp. IEC 61131-3: Programming Industrial Automation Systems. Springer, 2001.

Overview of the course

- Introduction
- Modeling of logic control systems
 - Boolean algebra
 - Finite state automata
 - > Petri nets, SIPN
- Analysis of logic control systems
- Design of logic control systems
- Verification and validation
- Online diagnosis of logic control systems
- Implementation of logic control systems
 - > PLC
 - Programming languages (IEC 61131-3)
 - Automatic code generation
- Distributed control (optional)

Study goal

- Know typical logic control systems
- Be able to model logic control systems
- Be able to analyze and evaluate the behavior of logic control systems
- Be able to design logic control systems
- Be able to implement simple logic control systems on PLC
- Be able to verify/validate logic control algorithms
- Know how to organize industrial projects related to logic control systems

Chapter 1 Introduction

Review: General structure of feedback control systems

Review: Feedback control of water level in a tank

Typical specification: The water level in the tank should track the given setpoint signal.

Problem formulation: Control of a mixed tank system

Specifications:

- If the **button START** is pressed, **open** Valve 1 and Valve 2 to fill in, respectively, the liquid A and B.
- When the tank level reaches Level 2, close both Valve 1 and Valve 2 and start the motor of the mixer.
- After 10 minutes, turn off the motor of the mixer and open Valve 3.
- When the tank is empty, close Valve 3.
- If the **button STOP** is pressed at any time, stop the process immediately.

Problem solution: Control of a mixed tank system

General structure of logic control systems

Example 1: Air chamber (Litz, 2012)

Specifications:

- If Pressure > 6.1 bar, no motor should run.
- If Pressure < 6.1 bar, one motor should run.
- If Pressure < 5.9 bar, both motor should run.
- The two motors should run alternatively.
- If one motor is defect, the other one should take over its work.

Example 1: Air chamber (Litz, 2012)

Example 2: Sorting system

See, for instance, the following website for a demo of a similar sorting system: http://www.kahlert.com/web/steuerungsortieranlage.php

Example 3: Gate S5 Limit switch control Wireless S2 Key-operated switch Receiver K2 open close **⊗** H1 Remote control Light barrier Key-operated switch Limit switch

Specifications:

- The gate can be opened and closed by controlling the electric motor. The rotary direction of the electric motor (clockwise rotation or anticlockwise rotation) is controlled by two contactors.
- The gate can be opened from outside or inside by the key-operated switches, or by a remote control unit.
- For safety reasons, a **light barrier** is mounted. If the light barrier senses an object, the gate should not be closed.
- Two limit switches notify the states of the gate (i.e. "gate is opened" or "gate is closed").
- The completely opened gate should be automatically closed after 20 seconds waiting time.
- A red flashing light should notify the opening and closing of the rolling gate on both sides.

Logic Control vs. Feedback Control

	Logic control	Feedback control
Comparison unit	No	Yes
Stability	not relevant	important
Value range of input/ output signals	discrete (often 0/1)	continuous
Specifications	No standard formulation	Standard formulation: 1. guarantee stability 2. track setpoints 3. suppress disturbances
Number of input / output signals	quite a lot	limited
Robustness to unknown disturbances	only known disturbances can be handled	considered
Models	Boolean algebra, Automata, Petri nets	Differential / Difference equation

Applications of logic control

Home

Building

Manufacturing industry

Transport

Process industry

Development procedure of logic control systems

Conventional development procedure

Development procedure of logic control systems

Formal methods

Advantages:

- Clear (unambiguous) specification
- Systematic solution
- Find out problems earlier
- Reduce implementation efforts

Professional communities

- VDI/VDE GMA (Gesellschaft der Mess- und Automatisierungstechnik) Technical Committee 1.50 "Methoden der Steuerungstechnik"
- NAMUR (International User Association of Automation Technology in Process Industries) Working Group 2.1 "PLC and DCS"
- IFAC (International Federation of Control) TC (Technical Committee) 1.3 "Discrete Event and Hybrid Systems"
- IEC (International Electrotechnical Commission) TC (Technical Committee) 65 "Industrial-process measurement, control and automation"
- PLCopen International Not-For-Profit organization that promotes the propagation of IEC 61131 programming standard.

Overview of the course

- Introduction
- **Modeling of logic control systems**
 - Boolean algebra
 - Finite state automata
 - > Petri nets, SIPN
- Analysis of logic control systems
- Design of logic control systems
- Verification and validation
- Online diagnosis of logic control systems
- Implementation of logic control systems
 - > PLC
 - Programming languages (IEC 61131-3)
 - Automatic code generation
- Distributed control (optional)

Chapter 2 Modelling of logic control systems

Boolean Algebra

- Defined for binary variables
- Basic operations: AND, OR, NOT

Operation	Logic diagram	Symbol	Truth table
NOT	$E \longrightarrow 1 \bigcirc A$	$A = \overline{E} = \neg E$	E A 0 1 1 0
AND (conjunction)	E_1 & A	$A = E_1 E_2 = E_1 \wedge E_2$	E2 E1 A 0 0 0 0 1 0 1 0 0 1 1 1
OR (disjunction)	E_1 ≥ 1 A	$A = E_1 + E_2 = E_1 \lor E_2$	E2 E1 A 0 0 0 0 1 1 1 0 1 1 1 1

Laws of Boolean Algebra

Complements: $a \wedge \bar{a} = 0$, $a \vee \bar{a} = 1$

Identity: $a \wedge 1 = a$, $a \vee 0 = a$

Commutativity: $a \wedge b = b \wedge a$, $a \vee b = b \vee a$

Associativity: $a \wedge b \wedge c = (a \wedge b) \wedge c = a \wedge (b \wedge c)$

 $a \lor b \lor c = (a \lor b) \lor c = a \lor (b \lor c)$

Distributivity: $a \land (b \lor c) = (a \land b) \lor (a \land c)$

 $a \lor (b \land c) = (a \lor b) \land (a \lor c)$

Idempotence: $a \wedge a = a$, $a \vee a = a$

Absorption: $a \lor (a \land b) = a$, $a \land (a \lor b) = a$

De Morgan's Law: $\overline{a \wedge b} = \overline{a} \vee \overline{b}, \qquad \overline{a \vee b} = \overline{a} \wedge \overline{b}$

Specifications:

- The gate can be opened and closed by controlling the electric motor. The rotary direction of the electric motor (clockwise rotation or anti-clockwise rotation) is controlled by two contactors.
- The gate can be opened from outside or inside by the key-operated switches, or by a remote control unit.
- For safety reasons, a **light barrier** is mounted. If the light barrier senses an object, the gate should not be closed.
- Two limit switches notify the states of the gate (i.e. "gate is opened" or "gate is closed").
- The completely opened gate should be automatically closed after 20 seconds waiting time.
- A red flashing light should notify the opening and closing of the rolling gate on both sides.

Signals	I/O	Symbol	Logic assignment
Key-operated switch (outside)	I	S 1	Operated S1=1
Key-operated switch (inside)	1	S2	Operated S2=1
Wireless receiver	1	S 3	Code received S3=1
Limit switch (gate opened)	1	S4	Gate is opened S4=1
Limit switch (gate closed)	1	S 5	Gate is closed S5=1
Light barrier	1	L1	Interrupted L1=0
Flash light	0	H1	Light on H1=1
Contactor (opening gate)	0	K1	Contactor activated K1=1
Contactor (closing gate)	0	K2	Contactor activated K2=1

The model can also be expressed in form of logic diagrams:

Example 2: Control of Belt conveyor

Specifications:

- The motor that drives the belt conveyor runs when the funnel is not empty and the tank is not full
- The motor that drives the bet conveyor runs when the button "INSPECTION" is pressed.
- If the tank is full, an indicator lamp lights up

Signals	I/O	Symbol	Logic assignment
Button "inspection"	1	S 1	S1=1, if the button is pressed
Level in funnel	1	S2	S2=1, if the level is not empty
Level in tank	1	S 3	S3=1, if the level is full
Indictor lamp	0	Н	The lamp lights up, if H=1
Motor	0	K	Motor runs, if K=1

$$K = S_1 \lor (S_2 \bar{S}_3)$$

$$H = S_3$$

Normal Forms of Boolean Algebra

- Two popular normal forms:
 - **Disjunction normal form (DNF)**: Disjunctions of conjunctions
 - Conjunction normal form (CNF): Conjunctions of disjunctions

Truth table

Inputs			Output
E ₁	E_2	E_3	K
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

DNF:

$$K = (\overline{E}_1 \overline{E}_2 E_3) \vee (\overline{E}_1 E_2 \overline{E}_3) \vee (\overline{E}_1 E_2 E_3)$$

Normal Forms of Boolean Algebra

- Two popular normal forms:
 - **Disjunction normal form (DNF)**: Disjunctions of conjunctions
 - Conjunction normal form (CNF): Conjunctions of disjunctions

Truth table

Inputs			Output
E ₁	E_2	E_3	K
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

CNF:

$$K = (E_1 \vee E_2 \vee E_3)$$

$$\wedge (\overline{E}_1 \vee E_2 \vee E_3)$$

$$\wedge (\overline{E}_1 \vee E_2 \vee \overline{E}_3)$$

$$\wedge (\bar{E}_1 \vee \bar{E}_2 \vee E_3)$$

$$\wedge \ (\bar{E}_1 \vee \bar{E}_2 \vee \bar{E}_3)$$

Obtain Normal Forms by Karnough Map

Simplified DNF/CNF forms can be obtained by applying Karnough Map.

Truth Table

	nput	Output	
E ₁	E_2	E_3	K
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Karnough Map

DNF:

$$K = (\overline{E}_1 E_2) \vee (\overline{E}_1 E_3)$$

Obtain Normal Forms by Karnough Map

Truth Table

	nput	Output	
E ₁	E_2	E_3	K
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Karnough Map

CNF:

$$K = \bar{E}_1 \wedge (E_2 \vee E_3)$$