Constructive Category Theory and Applications in Algebraic Geometry

Sebastian Gutsche

Universität Siegen

Siegen, August 31, 2017

Outline

Constructive category theory

Outline

Constructive category theory

Applications to Algebraic Geometry

Constructive category theory

Addition of two numbers: Assembly

Data type: int

```
addi:
movl %edi, -4(%rsp)
movl %esi, -8(%rsp)
movl -4(%rsp), %esi
addl -8(%rsp), %esi
movl %esi, %eax
ret
```

Data type: float

Addition of two numbers: Assembly

Data type: int

```
addi:
movl %edi, -4(%rsp)
movl %esi, -8(%rsp)
movl -4(%rsp), %esi
addl -8(%rsp), %esi
movl %esi, %eax
ret
```

Data type: float

```
addf:
movss %xmm0, -4(%rsp)
movss %xmm1, -8(%rsp)
movss -4(%rsp), %xmm0
addss -8(%rsp), %xmm0
ret
```


Addition of two numbers: C

Data type: int

Data type: float

Addition of two numbers: C

Data type: int

Data type: float

Addition of two numbers: GAP or Julia

Data type: int

```
function( a, b )
    return a + b;
end;
```

Data type: float

Addition of two numbers: GAP or Julia

Data type: int

```
function( a, b )
    return a + b;
end;
```

Data type: float

```
function( a, b )
    return a + b;
end;
```

Addition of two numbers: GAP or Julia

```
Data type: int, float
function(a, b)
   return a + b;
end;
```

Addition of two numbers: GAP or Julia

```
Data type: int, float
function( a, b )
    return a + b;
end;
```

High language leads to generic code!

Computing the intersection of two subobjects

Computing the intersection of two subobjects

Vector spaces

$$\langle v_1, v_2 \rangle, \langle w_1, w_2 \rangle \leq V$$
:

Computing the intersection of two subobjects

Vector spaces

$$\langle v_1, v_2 \rangle, \langle w_1, w_2 \rangle \leq V$$
: Solution of

$$x_1 v_1 + x_2 v_2 = y_1 w_1 + y_2 w_2$$

Computing the intersection of two subobjects

Vector spaces

$$\langle v_1, v_2 \rangle, \langle w_1, w_2 \rangle \leq V$$
: Solution of

$$x_1 v_1 + x_2 v_2 = y_1 w_1 + y_2 w_2$$

Ideals of $\mathbb Z$

Computing the intersection of two subobjects

Vector spaces

$$\langle v_1, v_2 \rangle, \langle w_1, w_2 \rangle \leq V$$
: Solution of

$$x_1 v_1 + x_2 v_2 = y_1 w_1 + y_2 w_2$$

Ideals of \mathbb{Z}

$$\langle x \rangle, \langle y \rangle \leq \mathbb{Z}$$
:

Computing the intersection of two subobjects

Vector spaces

$$\langle v_1, v_2 \rangle, \langle w_1, w_2 \rangle \leq V$$
: Solution of

$$x_1 v_1 + x_2 v_2 = y_1 w_1 + y_2 w_2$$

Ideals of $\ensuremath{\mathbb{Z}}$

$$\langle x \rangle$$
, $\langle y \rangle \leq \mathbb{Z}$: Euclidean algorithm:

$$\langle \operatorname{lcm}(x,y) \rangle$$

Computing the intersection of two subobjects

Vector spaces

$$\langle v_1, v_2 \rangle, \langle w_1, w_2 \rangle \leq V$$
: Solution of

$$x_1 v_1 + x_2 v_2 = y_1 w_1 + y_2 w_2$$

Ideals of \mathbb{Z}

$$\langle x \rangle$$
, $\langle y \rangle \leq \mathbb{Z}$: Euclidean algorithm:

$$\langle \operatorname{lcm}(x,y) \rangle$$

Generic algorithm for both cases?

Computing the intersection of two subobjects

Vector spaces

$$\langle v_1, v_2 \rangle, \langle w_1, w_2 \rangle \leq V$$
: Solution of

$$x_1 v_1 + x_2 v_2 = y_1 w_1 + y_2 w_2$$

Ideals of $\mathbb Z$

$$\langle x \rangle$$
, $\langle y \rangle \leq \mathbb{Z}$: Euclidean algorithm:

$$\langle \operatorname{lcm}(x,y) \rangle$$

Generic algorithm for both cases? Category theory!

Category theory

Category theory

abstracts mathematical structures

Category theory

- abstracts mathematical structures
- defines a language to formulate theorems and algorithms for different structures at the same time

Category theory

- abstracts mathematical structures
- defines a language to formulate theorems and algorithms for different structures at the same time

CAP - Categories, Algorithms, and Programming

Category theory

- abstracts mathematical structures
- defines a language to formulate theorems and algorithms for different structures at the same time

CAP - Categories, Algorithms, and Programming

CAP implements a categorical programming language

Definition

A category \mathcal{A} contains the following data:

Definition

A category A contains the following data:

ullet Obj $_{\mathcal{A}}$

Δ

В

С

Definition

A category A contains the following data:

- ullet Obj $_{\mathcal{A}}$
- $Hom_{\mathcal{A}}(A, B)$

A

В

C

Definition

A category A contains the following data:

- ullet Obj $_{\mathcal{A}}$
- $Hom_{\mathcal{A}}(A, B)$

$$A \longrightarrow B$$

 \mathcal{C}

Definition

A category A contains the following data:

- ullet Obj $_{\mathcal{A}}$
- $Hom_{\mathcal{A}}(A, B)$

$$A \longrightarrow B \longrightarrow C$$

Definition

A category A contains the following data:

- \bullet Obj_A
- $Hom_A(A, B)$
- ullet \circ : $\operatorname{\mathsf{Hom}}_{\mathcal{A}}(B,C) \times \operatorname{\mathsf{Hom}}_{\mathcal{A}}(A,B) \to \operatorname{\mathsf{Hom}}_{\mathcal{A}}(A,C)$ (assoz.)

$$A \longrightarrow B \longrightarrow C$$

Definition

- \bullet Obj_A
- $Hom_{\mathcal{A}}(A, B)$
- ullet \circ : $\operatorname{\mathsf{Hom}}_{\mathcal{A}}(B,C) \times \operatorname{\mathsf{Hom}}_{\mathcal{A}}(A,B) \to \operatorname{\mathsf{Hom}}_{\mathcal{A}}(A,C)$ (assoz.)

Definition

- \bullet Obj_A
- $Hom_{\mathcal{A}}(A, B)$
- ullet \circ : $\operatorname{\mathsf{Hom}}_{\mathcal{A}}(B,C) imes \operatorname{\mathsf{Hom}}_{\mathcal{A}}(A,B) o \operatorname{\mathsf{Hom}}_{\mathcal{A}}(A,C)$ (assoz.)
- Neutral elements: $id_A \in Hom_A(A, A)$

Definition

- \bullet Obj_A
- $Hom_A(A, B)$
- ullet \circ : $\operatorname{\mathsf{Hom}}_{\mathcal{A}}(B,C) \times \operatorname{\mathsf{Hom}}_{\mathcal{A}}(A,B) o \operatorname{\mathsf{Hom}}_{\mathcal{A}}(A,C)$ (assoz.)
- Neutral elements: $id_A \in Hom_A(A, A)$

Definition

- Obj_A
- $Hom_A(A, B)$
- ullet \circ : $\operatorname{\mathsf{Hom}}_{\mathcal{A}}(B,C) \times \operatorname{\mathsf{Hom}}_{\mathcal{A}}(A,B) o \operatorname{\mathsf{Hom}}_{\mathcal{A}}(A,C)$ (assoz.)
- Neutral elements: $id_A \in Hom_A(A, A)$

A category becomes computable through

A category becomes computable through

• data structures for objects and morphisms

A category becomes computable through

- data structures for objects and morphisms
- algorithms to compute the composition of morphisms

A category becomes computable through

- data structures for objects and morphisms
- algorithms to compute the composition of morphisms and identity morphisms of objects

A category becomes computable through

- data structures for objects and morphisms
- algorithms to compute the composition of morphisms and identity morphisms of objects

A category becomes computable through

- data structures for objects and morphisms
- algorithms to compute the composition of morphisms and identity morphisms of objects

A category becomes computable through

- data structures for objects and morphisms
- algorithms to compute the composition of morphisms and identity morphisms of objects

Finitely generated Q-vector spaces (skeletal)

1

2

1

A category becomes computable through

- data structures for objects and morphisms
- algorithms to compute the composition of morphisms and identity morphisms of objects

Finitely generated Q-vector spaces (skeletal)

1

2

1

A category becomes computable through

- data structures for objects and morphisms
- algorithms to compute the composition of morphisms and identity morphisms of objects

$$1 \xrightarrow{\qquad \qquad \qquad } 2 \xrightarrow{\qquad \qquad \qquad } 1$$

A category becomes computable through

- data structures for objects and morphisms
- algorithms to compute the composition of morphisms and identity morphisms of objects

$$1 \xrightarrow{\qquad \qquad } 2 \xrightarrow{\qquad \qquad } 1$$

A category becomes computable through

- data structures for objects and morphisms
- algorithms to compute the composition of morphisms and identity morphisms of objects

A category becomes computable through

- data structures for objects and morphisms
- algorithms to compute the composition of morphisms and identity morphisms of objects

A category becomes computable through

- data structures for objects and morphisms
- algorithms to compute the composition of morphisms and identity morphisms of objects

A category becomes computable through

- data structures for objects and morphisms
- algorithms to compute the composition of morphisms and identity morphisms of objects

Some categorical operations in abelian categories

Zero morphisms

- Zero morphisms
- Addition and subtraction of morphisms

- Zero morphisms
- Addition and subtraction of morphisms
- Direct sums

- Zero morphisms
- Addition and subtraction of morphisms
- Direct sums
- Kernels and cokernels of morphisms

- Zero morphisms
- Addition and subtraction of morphisms
- Direct sums
- Kernels and cokernels of morphisms
- ...

Let $\varphi \in \text{Hom}(A, B)$.

Let
$$\varphi \in \text{Hom}(A, B)$$
.

$$A \stackrel{\varphi}{\longrightarrow} B$$

Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

$$A \stackrel{\varphi}{\longrightarrow} B$$

Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

 \dots one needs an object $\ker \varphi$,

 $\ker \varphi$

$$A \stackrel{\varphi}{\longrightarrow} B$$

Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

... one needs an object $\ker \varphi$, its embedding $\kappa = \text{KernelEmbedding}(\varphi)$,

$$\ker \varphi \xrightarrow{\kappa} A \xrightarrow{\varphi} B$$

Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

... one needs an object $\ker \varphi$, its embedding $\kappa = \text{KernelEmbedding}(\varphi)$, and for every test morphism τ

Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

```
... one needs an object \ker \varphi, its embedding \kappa = \operatorname{KernelEmbedding}(\varphi), and for every test morphism \tau a unique morphism \lambda = \operatorname{KernelLift}(\varphi, \tau)
```


Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

```
... one needs an object \ker \varphi, its embedding \kappa = \operatorname{KernelEmbedding}(\varphi), and for every test morphism \tau a unique morphism \lambda = \operatorname{KernelLift}(\varphi, \tau), such that
```


Implementation of the kernel: Q-vector spaces

Obj :=
$$\mathbb{Z}_{\geq 0}$$
, Hom $(m, n) := \mathbb{Q}^{m \times n}$

Implementation of the kernel: Q-vector spaces

Obj :=
$$\mathbb{Z}_{\geq 0}$$
, Hom $(m, n) := \mathbb{Q}^{m \times n}$

$$A \xrightarrow{\varphi} B$$

Implementation of the kernel: Q-vector spaces

Obj :=
$$\mathbb{Z}_{\geq 0}$$
, Hom $(m, n) := \mathbb{Q}^{m \times n}$

 $\ker \varphi$

$$A \xrightarrow{\varphi} B$$

Obj :=
$$\mathbb{Z}_{>0}$$
, Hom $(m, n) := \mathbb{Q}^{m \times n}$

 $\ker \varphi$

$$A \xrightarrow{\varphi} B$$

Compute

• $\ker \varphi$ as $\dim(A) - \operatorname{rank}(\varphi)$

Obj :=
$$\mathbb{Z}_{\geq 0}$$
, Hom $(m, n) := \mathbb{Q}^{m \times n}$

$$\ker \varphi \xrightarrow{\kappa} A \xrightarrow{\varphi} B$$

Compute

• $\ker \varphi$ as $\dim(A) - \operatorname{rank}(\varphi)$

Obj :=
$$\mathbb{Z}_{>0}$$
, Hom $(m, n) := \mathbb{Q}^{m \times n}$

$$\ker \varphi \xrightarrow{\kappa} A \xrightarrow{\varphi} B$$

- $\ker \varphi$ as $\dim(A) \operatorname{rank}(\varphi)$
- κ by solving $X \cdot \varphi = 0$

Obj :=
$$\mathbb{Z}_{\geq 0}$$
, Hom $(m, n) := \mathbb{Q}^{m \times n}$

- $\ker \varphi$ as $\dim(A) \operatorname{rank}(\varphi)$
- κ by solving $X \cdot \varphi = 0$

Obj :=
$$\mathbb{Z}_{\geq 0}$$
, Hom $(m, n) := \mathbb{Q}^{m \times n}$

- $\ker \varphi$ as $\dim(A) \operatorname{rank}(\varphi)$
- κ by solving $X \cdot \varphi = 0$

Obj :=
$$\mathbb{Z}_{\geq 0}$$
, Hom $(m, n) := \mathbb{Q}^{m \times n}$

- $\ker \varphi$ as $\dim(A) \operatorname{rank}(\varphi)$
- κ by solving $X \cdot \varphi = 0$
- λ by solving $X \cdot \kappa = \tau$

CAP - Categories, Algorithms, and Programming

CAP - Categories, Algorithms, and Programming

CAP is a framework to implement computable categories and provides

CAP - Categories, Algorithms, and Programming

CAP is a framework to implement computable categories and provides

specifications of categorical operations,

CAP - Categories, Algorithms, and Programming

CAP is a framework to implement computable categories and provides

- specifications of categorical operations,
- generic algorithms based on basic categorical operations,

CAP - Categories, Algorithms, and Programming

CAP is a framework to implement computable categories and provides

- specifications of categorical operations,
- generic algorithms based on basic categorical operations,
- a categorical programming language having categorical operations as syntax elements.

Let $M_1 \subseteq N$ and $M_2 \subseteq N$ subobjects.

Let $M_1 \hookrightarrow N$ and $M_2 \hookrightarrow N$ subobjects.

Let $M_1 \hookrightarrow N$ and $M_2 \hookrightarrow N$ subobjects. Compute their intersection $\gamma : M_1 \cap M_2 \hookrightarrow N$.

 $M_1 \oplus M_2$ M_2 N

Let $M_1 \hookrightarrow N$ and $M_2 \hookrightarrow N$ subobjects. Compute their intersection $\gamma : M_1 \cap M_2 \hookrightarrow N$.

• $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$

Let $M_1 \hookrightarrow N$ and $M_2 \hookrightarrow N$ subobjects. Compute their intersection $\gamma : M_1 \cap M_2 \hookrightarrow N$.

• $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$

- $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$
- $\bullet \varphi := \iota_1 \circ \pi_1 \iota_2 \circ \pi_2$

- $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$
- $\bullet \varphi := \iota_1 \circ \pi_1 \iota_2 \circ \pi_2$

- $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$
- $\bullet \varphi := \iota_1 \circ \pi_1 \iota_2 \circ \pi_2$
- $\kappa := \text{KernelEmbedding}(\varphi)$

- $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$
- $\kappa := \text{KernelEmbedding}(\varphi)$

- $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$
- $\bullet \varphi := \iota_1 \circ \pi_1 \iota_2 \circ \pi_2$
- $\kappa := \text{KernelEmbedding}(\varphi)$
- $\bullet \ \gamma := \iota_1 \circ \pi_1 \circ \kappa$

$$\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$$

$$\varphi := \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2$$

$$\kappa := \text{KernelEmbedding}(\varphi)$$

$$\gamma := \iota_1 \circ \pi_1 \circ \kappa$$

```
\begin{split} \pi_i &:= \operatorname{ProjectionInFactorOfDirectSum}\left(\left(\textit{M}_1, \textit{M}_2\right), i\right), i = 1, 2 \\ & \text{pil} := \operatorname{ProjectionInFactorOfDirectSum}\left(\left[\begin{array}{c} \operatorname{M1}, \ \operatorname{M2} \end{array}\right], \ 1 \right); \\ & \text{pi2} := \operatorname{ProjectionInFactorOfDirectSum}\left(\left[\begin{array}{c} \operatorname{M1}, \ \operatorname{M2} \end{array}\right], \ 2 \right); \\ & \varphi := \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2 \\ \\ & \kappa := \operatorname{KernelEmbedding}\left(\varphi\right) \\ \\ & \gamma := \iota_1 \circ \pi_1 \circ \kappa \end{split}
```

```
\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2
  pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
  pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
\varphi := \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2
  lambda := PostCompose( iotal, pil );
   phi := lambda - PostCompose( iota2, pi2 );
\kappa := \text{KernelEmbedding}(\varphi)
\gamma := \iota_1 \circ \pi_1 \circ \kappa
```

```
\pi_i := \operatorname{ProjectionInFactorOfDirectSum}\left(\left(M_1, M_2\right), i\right), i = 1, 2

\operatorname{pil} := \operatorname{ProjectionInFactorOfDirectSum}\left(\left[\begin{array}{c} \operatorname{M1}, \operatorname{M2} \right], 1 \right);

\operatorname{pi2} := \operatorname{ProjectionInFactorOfDirectSum}\left(\left[\begin{array}{c} \operatorname{M1}, \operatorname{M2} \right], 2 \right);

\varphi := \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2

\operatorname{lambda} := \operatorname{PostCompose}\left(\operatorname{iota1}, \operatorname{pi1}\right);

\operatorname{phi} := \operatorname{lambda} - \operatorname{PostCompose}\left(\operatorname{iota2}, \operatorname{pi2}\right);

\kappa := \operatorname{KernelEmbedding}\left(\varphi\right)

\operatorname{kappa} := \operatorname{KernelEmbedding}\left(\operatorname{phi}\right);

\gamma := \iota_1 \circ \pi_1 \circ \kappa
```

```
\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2
  pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
  pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
\varphi := \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2
  lambda := PostCompose( iotal, pil );
  phi := lambda - PostCompose( iota2, pi2 );
\kappa := \text{KernelEmbedding}(\varphi)
  kappa := KernelEmbedding( phi );
\gamma := \iota_1 \circ \pi_1 \circ \kappa
  gamma := PostCompose( lambda, kappa );
```

```
pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );

lambda := PostCompose( iotal, pi1 );
phi := lambda - PostCompose( iota2, pi2 );

kappa := KernelEmbedding( phi );

gamma := PostCompose( lambda, kappa );
```

```
pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
lambda := PostCompose( iotal, pil );
phi := lambda - PostCompose( iota2, pi2 );
kappa := KernelEmbedding( phi );
gamma := PostCompose( lambda, kappa );
```

```
Schnitt := function( iotal, iota2 )
```

```
pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
lambda := PostCompose( iotal, pil );
phi := lambda - PostCompose( iota2, pi2 );
kappa := KernelEmbedding( phi );
gamma := PostCompose( lambda, kappa );
```

```
Schnitt := function( iotal, iota2 )
 M1 := Source(iota1);
 M2 := Source(iota2);
 pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
  pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
  lambda := PostCompose( iotal, pil );
  phi := lambda - PostCompose( iota2, pi2 );
  kappa := KernelEmbedding( phi );
  gamma := PostCompose( lambda, kappa );
```

```
Schnitt := function( iotal, iota2 )
 M1 := Source(iota1);
 M2 := Source(iota2);
 pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
  pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
  lambda := PostCompose( iotal, pil );
  phi := lambda - PostCompose( iota2, pi2 );
  kappa := KernelEmbedding( phi );
  gamma := PostCompose( lambda, kappa );
  return gamma;
end:
```

```
Schnitt := function( iotal, iota2 )
  local M1, M2, pi1, pi2, lambda, phi, kappa, gamma;
 M1 := Source(iota1);
 M2 := Source(iota2);
 pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
 pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
  lambda := PostCompose( iotal, pil );
  phi := lambda - PostCompose( iota2, pi2 );
  kappa := KernelEmbedding( phi );
  gamma := PostCompose( lambda, kappa );
  return gamma;
end:
```

Computing the intersection: Q-vector space

Compute the intersection of

Computing the intersection: Q-vector space

Compute the intersection of

```
gap> gamma := Schnitt( iotal, iota2 );
<A morphism in the category of matrices over Q>
```

Computing the intersection: Q-vector space

Compute the intersection of

```
gap> gamma := Schnitt( iota1, iota2 );
<A morphism in the category of matrices over Q>
gap> Display( gamma );
[ [ 1,  1,  0  ] ]
```

A morphism in the category of matrices over Q

Applications to Algebraic Geometry

Let *K* be an algebraically closed field.

Let *K* be an algebraically closed field.

Affine space

• Affine space: $\mathbb{A}^n = K^n$

Let *K* be an algebraically closed field.

Affine space

- Affine space: $\mathbb{A}^n = K^n$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \dots, x_n]$

Let *K* be an algebraically closed field.

Affine space

- Affine space: $\mathbb{A}^n = K^n$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \dots, x_n]$

Let *K* be an algebraically closed field.

Affine space

- Affine space: $\mathbb{A}^n = K^n$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁,...,x_n]

In the language of category theory:

Equivalence of categories

$$S$$
-mod $\stackrel{\sim}{\longrightarrow} \mathfrak{Coh}(\mathbb{A}^n)$

Projective space

Projective space

• Projective space $\mathbb{P}^{n-1} = (K^n/K^*) - \overline{\{0\}}$,

Projective space

• Projective space $\mathbb{P}^{n-1} = (K^n/K^*) - \overline{\{0\}},$

Projective space

- Projective space $\mathbb{P}^{n-1} = (K^n/K^*) \overline{\{0\}},$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \dots, x_n]$

Projective space

- Projective space $\mathbb{P}^{n-1} = (K^n/K^*) \overline{\{0\}},$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁,...,x_n]

Projective space

- Projective space $\mathbb{P}^{n-1} = (K^n/K^*) \overline{\{0\}},$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁, ..., xₙ]

$$\mathfrak{Coh}\left(\mathbb{P}^{n-1}\right)$$

Projective space

- Projective space $\mathbb{P}^{n-1} = (K^n/K^*) \overline{\{0\}},$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \dots, x_n]$

In the language of category theory:

S-mod

$$\mathfrak{Coh}\left(\mathbb{P}^{n-1}\right)$$

Projective space

- Projective space $\mathbb{P}^{n-1} = (K^n/K^*) \overline{\{0\}},$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁, ..., xₙ]

$$\mathfrak{Coh}\left(\mathbb{P}^{n-1}\right)$$

Projective space

- Projective space $\mathbb{P}^{n-1} = (K^n/K^*) \overline{\{0\}},$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \dots, x_n]$ with a \mathbb{Z} -grading

$$\mathfrak{Coh}\left(\mathbb{P}^{n-1}\right)$$

Projective space

- Projective space $\mathbb{P}^{n-1} = (K^n/K^*) \overline{\{0\}}, K^* \cong \operatorname{Hom}(\mathbb{Z}, K^*)$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \dots, x_n]$ with a \mathbb{Z} -grading

$$\mathfrak{Coh}\left(\mathbb{P}^{n-1}\right)$$

Projective space

- Projective space $\mathbb{P}^{n-1} = (K^n/K^*) \overline{\{0\}}, K^* \cong \operatorname{Hom}(\mathbb{Z}, K^*)$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \dots, x_n]$ with a \mathbb{Z} -grading

$$S$$
-gr $mod_{\mathbb{Z}}$

$$\mathfrak{Coh}\left(\mathbb{P}^{n-1}\right)$$

Projective space

- Projective space $\mathbb{P}^{n-1} = (K^n/K^*) \overline{\{0\}}, K^* \cong \operatorname{Hom}(\mathbb{Z}, K^*)$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \dots, x_n]$ with a \mathbb{Z} -grading

$$S$$
-gr $mod_{\mathbb{Z}}$

$$\mathfrak{Coh}\left(\mathbb{P}^{n-1}\right)$$

Projective space

- Projective space $\mathbb{P}^{n-1} = (K^n/K^*) \overline{\{0\}}, K^* \cong \operatorname{Hom}(\mathbb{Z}, K^*)$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \ldots, x_n]$ with a \mathbb{Z} -grading modulo modules that are only supported on $\{0\}$.

$$S$$
-gr $mod_{\mathbb{Z}}$

$$\mathfrak{Coh}\left(\mathbb{P}^{n-1}\right)$$

Projective space

- Projective space $\mathbb{P}^{n-1} = (K^n/K^*) \overline{\{0\}}, K^* \cong \operatorname{Hom}(\mathbb{Z}, K^*)$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \dots, x_n]$ with a \mathbb{Z} -grading modulo modules that are only supported on $\{0\}$.

$$S$$
-grmod $_{\mathbb{Z}}/S$ -grmod $_{\mathbb{Z}}^{0}$

$$\mathfrak{Coh}\left(\mathbb{P}^{n-1}\right)$$

Projective space

- Projective space $\mathbb{P}^{n-1} = (K^n/K^*) \overline{\{0\}}, K^* \cong \operatorname{Hom}(\mathbb{Z}, K^*)$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \ldots, x_n]$ with a \mathbb{Z} -grading modulo modules that are only supported on $\{0\}$.

In the language of category theory:

Equivalence of categories

$$S$$
-grmod $_{\mathbb{Z}}/S$ -grmod $_{\mathbb{Z}}^{0}$

$$\mathfrak{Coh}\left(\mathbb{P}^{n-1}\right)$$

Projective space

- Projective space $\mathbb{P}^{n-1}=(K^n/K^*)-\overline{\{0\}},\,K^*\cong \operatorname{Hom}\left(\mathbb{Z},K^*\right)$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \dots, x_n]$ with a \mathbb{Z} -grading modulo modules that are only supported on $\{0\}$.

In the language of category theory:

Equivalence of categories

$$S$$
-gr $mod_{\mathbb{Z}}/S$ -gr $mod_{\mathbb{Z}}^0 \xrightarrow{\sim} \mathfrak{Coh}(\mathbb{P}^{n-1})$

Projective space

- Projective space $\mathbb{P}^{n-1}=(K^n/K^*)-\overline{\{0\}},\,K^*\cong \operatorname{Hom}\left(\mathbb{Z},K^*\right)$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \dots, x_n]$ with a \mathbb{Z} -grading modulo modules that are only supported on $\{0\}$.

$$S\operatorname{-grmod}_{\mathbb{Z}}/S\operatorname{-grmod}_{\mathbb{Z}}^{0}\overset{\sim}{-\!\!\!-\!\!\!\!-\!\!\!\!-} \mathfrak{Coh}\left(\mathbb{P}^{n-1}
ight)$$

Normal toric variety (smooth)

- Projective space $\mathbb{P}^{n-1}=(K^n/K^*)-\overline{\{0\}},\,K^*\cong \operatorname{Hom}\left(\mathbb{Z},K^*\right)$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \ldots, x_n]$ with a \mathbb{Z} -grading modulo modules that are only supported on $\{0\}$.

$$S\operatorname{-grmod}_{\mathbb{Z}}/S\operatorname{-grmod}_{\mathbb{Z}}^{0}\overset{\sim}{-\!\!\!-\!\!\!\!-\!\!\!\!-} \mathfrak{Coh}\left(\mathbb{P}^{n-1}
ight)$$

Normal toric variety (smooth)

- Toric variety $X = (K^n/K^*) \overline{\{0\}}, K^* \cong \operatorname{Hom}(\mathbb{Z}, K^*)$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \dots, x_n]$ with a \mathbb{Z} -grading modulo modules that are only supported on $\{0\}$.

$$S\operatorname{-grmod}_{\mathbb{Z}}/S\operatorname{-grmod}_{\mathbb{Z}}^{0}\overset{\sim}{-\!\!\!-\!\!\!\!-\!\!\!\!-} \mathfrak{Coh}\left(\mathbb{P}^{n-1}
ight)$$

Normal toric variety (smooth)

- Toric variety $X = (K^n/G') \overline{\{0\}}, G' \cong \operatorname{Hom}(G, K^*)$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \dots, x_n]$ with a \mathbb{Z} -grading modulo modules that are only supported on $\{0\}$.

$$S\operatorname{-grmod}_{\mathbb{Z}}/S\operatorname{-grmod}_{\mathbb{Z}}^{0}\overset{\sim}{-\!\!\!-\!\!\!\!-\!\!\!\!-} \mathfrak{Coh}\left(\mathbb{P}^{n-1}
ight)$$

Normal toric variety (smooth)

- Toric variety $X = (K^n/G') Z$, $G' \cong \text{Hom}(G, K^*)$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \dots, x_n]$ with a \mathbb{Z} -grading modulo modules that are only supported on $\{0\}$.

$$S\operatorname{-grmod}_{\mathbb{Z}}/S\operatorname{-grmod}_{\mathbb{Z}}^{0}\overset{\sim}{-\!\!\!-\!\!\!\!-\!\!\!\!-} \mathfrak{Coh}\left(\mathbb{P}^{n-1}\right)$$

Normal toric variety (smooth)

- Toric variety $X = (K^n/G') Z$, $G' \cong \text{Hom}(G, K^*)$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \dots, x_n]$ with a *G*-grading modulo modules that are only supported on $\{0\}$.

$$S\operatorname{-grmod}_{\mathbb{Z}}/S\operatorname{-grmod}_{\mathbb{Z}}^{0}\overset{\sim}{-\!\!\!-\!\!\!-\!\!\!\!-}\mathfrak{Coh}\left(\mathbb{P}^{n-1}\right)$$

Normal toric variety (smooth)

- Toric variety $X = (K^n/G') Z$, $G' \cong \text{Hom}(G, K^*)$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \dots, x_n]$ with a *G*-grading modulo modules that are only supported on \mathbb{Z} .

$$S\operatorname{-grmod}_{\mathbb{Z}}/S\operatorname{-grmod}_{\mathbb{Z}}^{0}\overset{\sim}{-\!\!\!-\!\!\!\!-\!\!\!\!-} \mathfrak{Coh}\left(\mathbb{P}^{n-1}\right)$$

Normal toric variety (smooth)

- Toric variety $X = (K^n/G') Z$, $G' \cong \text{Hom}(G, K^*)$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁,...,x_n] with a G-grading modulo modules that are only supported on Z.

$$S\operatorname{-grmod}_{\mathbb{Z}}/S\operatorname{-grmod}_{\mathbb{Z}}^0 \stackrel{\sim}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-} \mathfrak{Coh}\left({\color{red}X}\right)$$

Normal toric variety (smooth)

- Toric variety $X = (K^n/G') Z$, $G' \cong \text{Hom}(G, K^*)$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \dots, x_n]$ with a *G*-grading modulo modules that are only supported on \mathbb{Z} .

$$S$$
-grmod_G/ S -grmod_G $\stackrel{\sim}{\longrightarrow}$ $\mathfrak{Coh}(X)$

Normal toric variety (smooth)

- Toric variety $X = (K^n/G') Z$, $G' \cong \text{Hom}(G, K^*)$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \dots, x_n]$ with a *G*-grading modulo modules that are only supported on \mathbb{Z} .

$$S$$
-grmod_G/ S -grmod_G $\stackrel{\sim}{\longrightarrow}$ $\mathfrak{Coh}(X)$

Normal toric variety

- Toric variety $X = (K^n/G') Z$, $G' \cong \text{Hom}(G, K^*)$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \ldots, x_n]$ with a G-grading modulo modules that are only supported on Z.

$$S$$
-gr mod_G/S -gr $mod_G^0 \xrightarrow{\sim} \mathfrak{Coh}(X)$

Normal toric variety

- Toric variety $X = (K^n/G') Z$, $G' \cong \text{Hom}(G, K^*)$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \ldots, x_n]$ with a G-grading modulo modules that sheafify to zero.

$$S$$
-grmod_G/ S -grmod_G $\stackrel{\sim}{\longrightarrow}$ $\mathfrak{Coh}(X)$

Normal toric variety

- Toric variety $X = (K^n/G') Z$, $G' \cong \text{Hom}(G, K^*)$
- Coherent sheaves correspond to f. g. modules over $S := K[x_1, \ldots, x_n]$ with a G-grading modulo modules that sheafify to zero.

In the language of category theory: Equivalence of categories

$$S$$
-gr mod_G/S -gr $mod_G^0 \xrightarrow{\sim} \mathfrak{Coh}(X)$

Computability of S-grmod_G/S-grmod_G⁰?

Serre quotient

Serre quotient

Let A be an abelian category and C a thick subcategory.

Serre quotient

Serre quotient

Let \mathcal{A} be an abelian category and \mathcal{C} a thick subcategory. The **Serre quotient** \mathcal{A}/\mathcal{C} is an abelian category with

• $Obj_{\mathcal{A}/\mathcal{C}} := Obj_{\mathcal{A}}$

Serre quotient

- $Obj_{\mathcal{A}/\mathcal{C}} := Obj_{\mathcal{A}}$
- $\operatorname{\mathsf{Hom}}_{\mathcal{A}/\mathcal{C}}(A,B) :=$

Serre quotient

- $Obj_{\mathcal{A}/\mathcal{C}} := Obj_{\mathcal{A}}$
- $\operatorname{\mathsf{Hom}}_{\mathcal{A}/\mathcal{C}}(A,B) :=$

Serre quotient

- $Obj_{\mathcal{A}/\mathcal{C}} := Obj_{\mathcal{A}}$
- $\operatorname{\mathsf{Hom}}_{\mathcal{A}/\mathcal{C}}(A,B) :=$

$$\operatorname{\mathsf{coker}} (\psi) \in \mathcal{C} \ arphi \left(\operatorname{\mathsf{ker}} (\psi)
ight) \in \mathcal{C}$$

Serre quotient

- $Obj_{\mathcal{A}/\mathcal{C}} := Obj_{\mathcal{A}}$
- $\operatorname{\mathsf{Hom}}_{\mathcal{A}/\mathcal{C}}(A,B) :=$

Composition in the Serre quotient \mathcal{A}/\mathcal{C}

Composition in the Serre quotient A/C

FiberProduct: Algorithm for intersection

Composition in the Serre quotient A/C

Composition only by computations in A!

Theorem (Barakat, Lange-Hegermann)

Is A computable abelian and C decidable,

Theorem (Barakat, Lange-Hegermann)

Is \mathcal{A} computable abelian and \mathcal{C} decidable, then \mathcal{A}/\mathcal{C} is computable abelian.

Theorem (Barakat, Lange-Hegermann)

Is \mathcal{A} computable abelian and \mathcal{C} decidable, then \mathcal{A}/\mathcal{C} is computable abelian.

$$S$$
-grmod _{G} / S -grmod _{G} $\cong \mathfrak{Coh}(X)$?

Theorem (Barakat, Lange-Hegermann)

Is \mathcal{A} computable abelian and \mathcal{C} decidable, then \mathcal{A}/\mathcal{C} is computable abelian.

$$S$$
-gr mod_G/S -gr $mod_G^0 \cong \mathfrak{Coh}(X)$?

Theorem (G.)

Let *X* be a normal toric variety without torus factors.

Theorem (Barakat, Lange-Hegermann)

Is $\mathcal A$ computable abelian and $\mathcal C$ decidable, then $\mathcal A/\mathcal C$ is computable abelian.

$$S$$
-gr mod_G/S -gr $mod_G^0 \cong \mathfrak{Coh}(X)$?

Theorem (G.)

Let X be a normal toric variety without torus factors. Then the thick subcategory S-gr mod_G^0 of f. g. G-graded modules over S which sheafify to zero

Theorem (Barakat, Lange-Hegermann)

Is \mathcal{A} computable abelian and \mathcal{C} decidable, then \mathcal{A}/\mathcal{C} is computable abelian.

$$S$$
-gr mod_G/S -gr $mod_G^0 \cong \mathfrak{Coh}(X)$?

Theorem (G.)

Let X be a normal toric variety without torus factors. Then the thick subcategory S-grmod $_G^0$ of f. g. G-graded modules over S which sheafify to zero is decidable.

Theorem (Barakat, Lange-Hegermann)

Is \mathcal{A} computable abelian and \mathcal{C} decidable, then \mathcal{A}/\mathcal{C} is computable abelian.

$$S$$
-gr mod_G/S -gr $mod_G^0 \cong \mathfrak{Coh}(X)$?

Theorem (G.)

Let X be a normal toric variety without torus factors. Then the thick subcategory S-grmod $_G^0$ of f. g. G-graded modules over S which sheafify to zero is decidable.

So $\mathfrak{Coh}(X)$ is computable abelian!

We can apply algorithms for abelian categories to coherent sheaves over toric varieties:

Intersection

So $\mathfrak{Coh}(X)$ is computable abelian!

- Intersection
- Homology

So $\mathfrak{Coh}(X)$ is computable abelian!

- Intersection
- Homology
- Diagram chases

So $\mathfrak{Coh}(X)$ is computable abelian!

- Intersection
- Homology
- Diagram chases
- Spectral sequences

So $\mathfrak{Coh}(X)$ is computable abelian!

- Intersection
- Homology
- Diagram chases
- Spectral sequences
- Purity filtration

So $\mathfrak{Coh}(X)$ is computable abelian!

- Intersection
- Homology
- Diagram chases
- Spectral sequences
- Purity filtration
- ...