Curso avanzado sobre Arduino: Sensores

ElCacharreo.com

Introducción a Arduino: Presente

Introducción a Arduino: Presente

José Antonio Vacas Martínez

Sensores

Existen multitud de sensores:

Cada uno diseñado para medir una magnitud física distinta.

A partir de esa medida generará un voltaje que mediremos con nuestro Arduino conectándolos habitualmente a una entrada analógica

Sensores: Referencia externa

A veces nuestro montaje necesita medir con voltajes diferentes de los 5V habituales. Para ello podemos usar la función

```
analogReference(valor);
```

con valor pudiendo ser

- DEFAULT: el valor por defecto (5V en placas de 5 y 3.3V en las de 3.3)
- INTERNAL: 1.1V en ATmega168 or ATmega328 y 2.56V en ATmega8
- INTERNAL1V1: 1.1V (Sólo Arduino Mega)
- INTERNAL2V56: 2.56V (Sólo Arduino Mega)
- EXTERNAL: el voltaje de AREF pin (0 to 5V)

Ejemplo muy documentado en Arduteka

Sensores: LDR (Luz)

Sensores: Temperatura

LM35 Especificación // Ejemplo en http://fritzing.org/projects/digital-thermometer-with-lm35/ int analogPin = 0; // Pin analogico 0 de Arduino int temperature = 0; int lm35read; void setup() Serial.begin(9600); void loop () lm35read = analogRead(analogPin); $+V_S$ temperature = (5.0 * Im35read * 100.0)/1024.0; Serial.print(temperature); Serial.println("C"); LM35 delay(5000);

Sensores: Temperatura

TMP36

Especificación

Ejemplo

Temp in $^{\circ}$ C = [(Vout in mV) - 500] / 10

Conectaremos el pin central a una entrada analogica

Sensores: DHTxx Temperatura y humedad

Existen sensores que implementan protocolos de comunicaciones como este DHT11 Podéis ver los detalles en mi blog

Sensores: NTC (temperaturas altas)

Detalles

Sensores: NTC (Temperaturas)

Este montaje es muy típico de muchos sensores y se llama divisor de tensión.

Conectaremos Vout a la entrada de la señal analógica

Sensores: DS18x20

Protocolo propietario de Dallas (Maxim-IC)

Único hilo ID único Capacidad parásita

Sensores: Humedad y Lluvia

Basta con leer el valor analógico

Sensores: Acelerómetro

Sensores: Mando de la Wii

Dentro del mando de la wii

Detalles

Sensores: Corriente

Miden la potencia (relacionada con la cantidad de energía) que se consume en un momento dado. Como la mayoría de los sensores se conectará a las entradas analógicas.

Sensores: Midiendo distancias

Ping Sensor NewPing library

Sensores: Midiendo distancias (IR)

IR Sensor

Sensores: Efecto Hall

Existen sensores digitales (umbral) y analógicos

Medidor de presión casero

Foam (espuma de embalar)

Fuentes

arduino arduino programing notebook freeduino

Conclusiones

Gracias por vuestra atención

