t-tests

Recap: t distribution

If $X_1,\ldots,X_n\stackrel{iid}{\sim}N(\mu,\sigma^2)$, then

$$rac{\sqrt{n}(\overline{X}_n - \mu)}{s} \sim t_{n-1}$$

Definition: Let $Z \sim N(0,1)$ and $V \sim \chi^2_d$ be independent. Then

$$T=rac{Z}{\sqrt{V/d}}\sim t_d$$

t-distribution

Cochran's theorem

Let $Z_1,\dots,Z_n\stackrel{iid}{\sim}N(0,1)$, and let $Z=[Z_1,\dots,Z_n]^T$. Let $A_1,\dots,A_k\in\mathbb{R}^{n\times n}$ be symmetric matrices such that $Z^TZ=\sum_{i=1}^k Z^TA_iZ$, and let $r_i=rank(A_i)$. Then the following

are equivalent:

- $r_1 + \cdots + r_k = n$
- lacktriangle The $Z^T A_i Z$ are independent
- lacktriangle Each $Z^TA_iZ\sim\chi^2_{r_i}$

Application to t-tests

Global F tests for linear regression

Test for a population mean

Suppose $Y_1,\ldots,Y_n\stackrel{iid}{\sim} Bernoulli(p)$. We want to test

$$H_0: p=p_0 \quad H_A: p
eq p_0$$

Wald test:

Why is a t-test not appropriate?

Test for logistic regression

$$Y_i \sim Bernoulli(p_i) \quad \logigg(rac{p_i}{1-p_i}igg) = eta^T X_i.$$

We want to test

$$H_0:Ceta=\gamma_0 \hspace{0.5cm} H_A:Ceta
eq \gamma_0$$

Why is a t-test not appropriate?

Philosophical question

- If X_1,\ldots,X_n are iid from a population with mean μ and variance σ^2 , then $\frac{\sqrt{n}(\overline{X}_n-\mu)}{s}\stackrel{d}{\to} N(0,1)$
- ullet If $X_1,\ldots,X_n\stackrel{iid}{\sim} N(\mu,\sigma^2)$, then $rac{\sqrt{n}(X_n-\mu)}{s}\sim t_{n-1}$
- **Position 1:** For any reasonable sample size, the test statistic is approximately normal. And we never really have data from a normal distribution, so the t distribution is an approximation anyway. So always use the normal distribution
- ♣ Position 2: We always have a finite sample size, so our test statistic is never truly normal. And the t distribution is more conservative than the normal (heavier tails). So always use the t distribution

With which position do you agree?