

Máquina de Turing

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Maquina de Turing

Creada por

Alan Turing en 1936

Publicado en

"On computable numbers with an application to the entscheidungsproblem"

https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf

Llamada en el paper como

"Automatic machine" (o "a-machine")

El "Entscheidungsproblem" ("problema de decisión")

Es el reto en lógica simbólica de encontrar un algoritmo general que decidiese si una fórmula del cálculo de primer orden es un teorema Propuesto por David Hilbert en 1928

Alan Turing

Matemático, lógico, informático teórico, criptógrafo, filósofo,

biólogo teórico

Británico

Vivió entre 1912-1954

Algunos hitos

Criptografía: Bombe

Máquina de Turing

Test de Turing (IA)

1er programa de jugador de ajedrez

Características

Similar a un autómata finito

Pero con memoria infinita

Utiliza una cinta infinita dividida en celdas

Donde tiene el input inicial a computar (y el resto en blanco)

Puede leer o grabar en cada secuencia

1 símbolo en la celda donde está ubicado

Y moverse luego 1 celda a la derecha o izquierda

Características (cont.)

Tiene un conjunto finito de estados

Desde cada estado se puede transicionar a otros según lo leído en la cinta y una función de transición

Existen estados especiales (Halting) que al llegar a ellos finaliza el computo

"aceptación"

"rechazo"

El computo podría no llegar nunca a finalizar

Si no se llega a un estado de finalización

Definición formal

Una máquina de turing M es una 7-tupla (Q, Σ , Γ , δ , q_0 , q_{accept} , q_{reject}) donde:

Q: set finito de "estados"

Σ: alfabeto de entrada (sin contener el símbolo "blanco" _)

 Γ : alfabeto de la cinta, donde $\rightarrow \quad \subseteq \Gamma$ y $\Sigma \in \Gamma$

δ: Q x Γ → Q x Γ x {L,R} es la función de transición (L:mover cabezal a la izquierda, R: moverlo a la derecha)

 $q_0 \in Q$ estado inicial

q_{accept} ∈ Q estado de aceptación

 $q_{reject} \in Q$ estado de rechazo $(q_{reject} \neq q_{accept})$

Ejemplo

Queremos construir un TM

que acepte el siguiente lenguaje $L(M) = \{ w \in \{0,1\} / w = 01*0 \}$

El lenguaje del input

$$\Sigma = \{0,1\}$$

El lenguaje de la cinta

$$\Gamma = \{0,1,_\}$$

Ejemplo (cont.)

Diagrama de estados

Configuración

Mientras una TM computa se modifican

El contenido de la cinta

La posición del "cabezal"

El estado actual

Se conoce como Configuración

Al estado de los 3 elementos anteriores de una TM en un determinado momento del cómputo

Configuración (cont)

Podemos representar la configuración

Como 2 strings u y v que separan el contenido de la cinta donde se encuentra

el cabezal

Entre u y v se coloca el estado actual

En el ejemplo

La configuración actual es 01q₂00

Configuración inicial y finales

La configuración inicial

Es el estado inicial más el input de la TM: q₀w₀w₁w₂...

Una configuración de aceptación

Es aquella donde el estado es q_{accept}

Una configuración de rechazo

Es aquella donde el estado es q_{reject}

Sucesión de configuraciones

Una configuración c_x cambia a c_y en un paso

De acuerdo a la función de transición.

Podemos, entonces, ver la función de transición como

Una acción sobre una configuración que determina una nueva configuración

Modifica (o no) la celda y moviendo el cabezal a la derecha o a la izquierda

Para una TM determinada diremos

Que la configuración C_i produce la configuración C_i,

si dada la función de transición, la MT puede pasar de C_i a C_j en un solo paso.

Computo

Una maquina de Turing M

Acepta un input w

Si

Una secuencia de configuraciones C1,C2,...,Ck existe

Donde

C1 es la configuración inicial de M con el input w

Cada configuración Ci determina a Ci+1

Ck es una configuración de aceptación

Lenguajes turing reconocibles

La colección de string que M acepta

Es el lenguaje reconocido de M

Lo denotaremos como L(M)

Un lenguajes es Turing reconocible

Si existe algún TM que lo reconoce

Loop en una Turing Machine

Cuando se computa un input en una TM, pueden pasar 3 cosas

Acepta

Rechaza

Loopea (nunca termina)

A veces determinar

si una TM loopea o está tardando en aceptar/rechazar es difícil

Lenguajes turing decidibles

Llamamos decidores a aquellos TM

Que no loopea ante ningún input posible

Es decir que siempre acepta o rechaza

Un lenguajes es Turing decidible

Si existe algún TM que lo decide

Un lenguaje Turing decidible

Es también un lenguaje Turing reconocible

Presentación realizada en Julio de 2020