The where Clause

- The where clause specifies conditions that the result must satisfy
 - Corresponds to the selection predicate of the relational algebra.
- To find all instructors in Comp. Sci. dept

```
select name
from instructor
where dept_name = 'Comp. Sci.'
```

- Comparison results can be combined using the logical connectives and, or, and not
 - To find all instructors in Comp. Sci. dept with salary > 80000

```
select name
from instructor
where dept_name = 'Comp. Sci.' and salary > 80000
```

Comparisons can be applied to results of arithmetic expressions.

The from Clause

- The from clause lists the relations involved in the query
 - Corresponds to the Cartesian product operation of the relational algebra.
- Find the Cartesian product instructor X teaches

select *
from instructor, teaches

- generates every possible instructor teaches pair, with all attributes from both relations.
- For common attributes (e.g., *ID*), the attributes in the resulting table are renamed using the relation name (e.g., *instructor.ID*)
- Cartesian product not very useful directly, but useful combined with where-clause condition (selection operation in relational algebra).

Cartesian Product

instructor

teaches

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
2045		T31 · -	07000

ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2009
10101	CS-315	1	Spring	2010
10101	CS-347	1	Fall	2009
12121	FIN-201	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009

Inst.ID	name	dept_name	salary	teaches.ID	course_id	sec_id	semester	year
10101	Srinivasan	Comp. Sci.	65000	10101	CS-101	1	Fall	2009
10101	Srinivasan	Comp. Sci.	65000	10101	CS-315	1	Spring	2010
10101	Srinivasan	Comp. Sci.	65000	10101	CS-347	1	Fall	2009
10101	Srinivasan	Comp. Sci.	65000	12121	FIN-201	1	Spring	2010
10101	Srinivasan	Comp. Sci.	65000	15151	MU-199	1	Spring	2010
10101	Srinivasan	Comp. Sci.	65000	22222	PHY-101	1	Fall	2009
(*)**	•••		• • •		•••			
14.4.4			•	• • •				•••
12121	Wu	Finance	90000	10101	CS-101	1	Fall	2009
12121	Wu	Finance	90000	10101	CS-315	1	Spring	2010
12121	Wu	Pinance	90000	10101	CS-347	1	Fall	2009
12121	Wu	Pinance	90000	12121	FIN-201	1	Spring	2010
12121	Wu	Finance	90000	15151	MU-199	1	Spring	2010
12121	Wu	Pinance	90000	22222	PHY-101	1	Fall	2009
•••	•••	•••	•••	•••	•••	•••	•••	
• • •		•••	• • •	•••	•••		•••	

Examples

- Find the names of all instructors who have taught some course and the course_id
 - select name, course_id
 from instructor, teaches
 where instructor.ID = teaches.ID
- Find the names of all instructors in the Art department who have taught some course and the course_id
 - select name, course_id
 from instructor, teaches
 where instructor.ID = teaches.ID and instructor. dept_name = 'Art'

The Rename Operation

- The SQL allows renaming relations and attributes using the **as** clause: old-name **as** new-name
- Find the names of all instructors who have a higher salary than some instructor in 'Comp. Sci'.
 - select distinct T.name
 from instructor as T, instructor as S
 where T.salary > S.salary and S.dept_name = 'Comp. Sci.'
- Keyword **as** is optional and may be omitted instructor **as** $T \equiv instructor T$

Cartesian Product Example

Relation emp-super

person	supervisor
Bob	Alice
Mary	Susan
Alice	David
David	Mary

- Find the supervisor of "Bob"
- Find the supervisor of the supervisor of "Bob"
- Find ALL the supervisors (direct and indirect) of "Bob

String Operations

- SQL includes a string-matching operator for comparisons on character strings. The operator **like** uses patterns that are described using two special characters:
 - percent (%). The % character matches any substring.
 - underscore (_). The _ character matches any character.
- Find the names of all instructors whose name includes the substring "dar".

select name from instructor where name like '%dar%'

Match the string "100%"

like '100 \%' escape '\'

in that above we use backslash (\) as the escape character.

String Operations (Cont.)

- Patterns are case sensitive.
- Pattern matching examples:
 - 'Intro%' matches any string beginning with "Intro".
 - '%Comp%' matches any string containing "Comp" as a substring.
 - '_ _ _' matches any string of exactly three characters.
 - '_ _ _ %' matches any string of at least three characters.
- SQL supports a variety of string operations such as
 - concatenation (using "II")
 - converting from upper to lower case (and vice versa)
 - finding string length, extracting substrings, etc.

Ordering the Display of Tuples

List in alphabetic order the names of all instructors

select distinct name from instructor order by name

- We may specify desc for descending order or asc for ascending order, for each attribute; ascending order is the default.
 - Example: order by name desc
- Can sort on multiple attributes
 - Example: order by dept_name, name

Where Clause Predicates

- SQL includes a between comparison operator
- Example: Find the names of all instructors with salary between \$90,000 and \$100,000 (that is, $\ge $90,000$ and $\le $100,000$)
 - select namefrom instructorwhere salary between 90000 and 100000
- Tuple comparison
 - select name, course_id
 from instructor, teaches
 where (instructor.ID, dept_name) = (teaches.ID, 'Biology');

Duplicates

- In relations with duplicates, SQL can define how many copies of tuples appear in the result.
- **Multiset** versions of some of the relational algebra operators given multiset relations r_1 and r_2 :
 - 1. $\sigma_{\theta}(r_1)$: If there are c_1 copies of tuple t_1 in r_1 , and t_1 satisfies selections σ_{θ} , then there are c_1 copies of t_1 in $\sigma_{\theta}(r_1)$.
 - 2. $\Pi_A(r)$: For each copy of tuple t_1 in r_1 , there is a copy of tuple $\Pi_A(t_1)$ in $\Pi_A(r_1)$ where $\Pi_A(t_1)$ denotes the projection of the single tuple t_1 .
 - 3. $r_1 \times r_2$: If there are c_1 copies of tuple t_1 in r_1 and c_2 copies of tuple t_2 in t_2 , there are $c_1 \times c_2$ copies of the tuple t_1 . t_2 in $t_1 \times t_2$

Duplicates (Cont.)

Example: Suppose multiset relations r_1 (A, B) and r_2 (C) are as follows:

$$r_1 = \{(1, a) (2,a)\}$$
 $r_2 = \{(2), (3), (3)\}$

- Then $\Pi_B(r_1)$ would be $\{(a), (a)\}$, while $\Pi_B(r_1) \times r_2$ would be $\{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)\}$
- SQL duplicate semantics:

select
$$A_{1}, A_{2}, ..., A_{n}$$
 from $r_{1}, r_{2}, ..., r_{m}$ **where** P

is equivalent to the *multiset* version of the expression:

$$\prod_{A_1,A_2,\ldots,A_n} (\sigma_P(r_1 \times r_2 \times \ldots \times r_m))$$

Set Operations

Find courses that ran in Fall 2009 or in Spring 2010

```
(select course_id from section where sem = 'Fall' and year = 2009)
union
(select course_id from section where sem = 'Spring' and year = 2010)
```

Find courses that ran in Fall 2009 and in Spring 2010 (select course_id from section where sem = 'Fall' and year = 2009) intersect (select course_id from section where sem = 'Spring' and year = 2010)

Find courses that ran in Fall 2009 but not in Spring 2010

```
(select course_id from section where sem = 'Fall' and year = 2009)
except
(select course_id from section where sem = 'Spring' and year = 2010)
```

Set Operations (Cont.)

- Find the salaries of all instructors that are less than the largest salary.
 - select distinct T.salary
 from instructor as T, instructor as S
 where T.salary < S.salary
- Find all the salaries of all instructors
 - select distinct salaryfrom instructor
- Find the largest salary of all instructors.
 - (select "second query")except (select "first query")

Set Operations (Cont.)

- Set operations union, intersect, and except
 - Each of the above operations automatically eliminates duplicates
- To retain all duplicates use the corresponding multiset versions union all, intersect all and except all.
- Suppose a tuple occurs m times in r and n times in s, then, it occurs:
 - m + n times in runion all s
 - min(m,n) times in r intersect all s
 - $\max(0, m-n)$ times in r except all s

Null Values

- It is possible for tuples to have a null value, denoted by *null*, for some of their attributes
- null signifies an unknown value or that a value does not exist.
- The result of any arithmetic expression involving null is null
 - Example: 5 + null returns null
- The predicate is null can be used to check for null values.
 - Example: Find all instructors whose salary is null.

select name from instructor where salary is null

Null Values and Three Valued Logic

- Three values *true*, *false*, *unknown*
- Any comparison with *null* returns *unknown*
 - Example:5 < null or null ⇔ null or null = null</p>
- Three-valued logic using the value unknown:
 - OR: (unknown or true) = true,
 (unknown or false) = unknown
 (unknown or unknown) = unknown
 - AND: (true and unknown) = unknown, (false and unknown) = false, (unknown and unknown) = unknown
 - NOT: (not unknown) = unknown
 - "P is unknown" evaluates to true if predicate P evaluates to unknown
- Result of where clause predicate is treated as false if it evaluates to unknown

Aggregate Functions

■ These functions operate on the multiset of values of a column of a relation, and return a value

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

Aggregate Functions (Cont.)

- Find the average salary of instructors in the Computer Science department
 - select avg (salary)
 from instructor
 where dept_name='Comp. Sci.';
- Find the total number of instructors who teach a course in the Spring 2010 semester
 - select count (distinct ID)
 from teaches
 where semester= 'Spring' and year= 2010;
- Find the number of tuples in the *course* relation
 - select count (*) from course;

Aggregate Functions – Group By

- Find the average salary of instructors in each department
 - select dept_name, avg (salary) as avg_salary
 from instructor
 group by dept_name;

ID	name	dept_name	salary
76766	Crick	Biology	72000
45565	Katz	Comp. Sci.	75000
10101	Srinivasan	Comp. Sci.	65000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000
12121	Wu	Finance	90000
76543	Singh	Finance	80000
32343	El Said	History	60000
58583	Califieri	History	62000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
22222	Einstein	Physics	95000

dept_name	avg_salary
Biology	72000
Comp. Sci.	77333
Elec. Eng.	80000
Finance	85000
History	61000
Music	40000
Physics	91000

Aggregation (Cont.)

- Attributes in select clause outside of aggregate functions must appear in group by list
 - /* erroneous query */
 select dept_name, ID, avg (salary)
 from instructor
 group by dept_name;

Aggregate Functions – Having Clause

Find the names and average salaries of all departments whose average salary is greater than 42000

```
select dept_name, avg (salary)
from instructor
group by dept_name
having avg (salary) > 42000;
```

Note: predicates in the **having** clause are applied after the formation of groups whereas predicates in the **where** clause are applied before forming groups

Null Values and Aggregates

Total all salaries

select sum (salary) **from** instructor

- Above statement ignores null amounts
- Result is null if there is no non-null amount
- All aggregate operations except count(*) ignore tuples with null values on the aggregated attributes
- What if collection has only null values?
 - count returns 0
 - all other aggregates return null