Keep it Simple Unsupervised Text Simplification

Philippe Laban, Tobias Schnabel, Paul Bennett, Marti A. Hearst UC Berkeley, Microsoft

ACL2021 Recorded Presentation

Research

Text Simplification (Example)

10th Grade

A rat named Magawa is being **honored** with one of the highest awards in the animal world. He has potentially saved **numerous** lives for clearing **landmines** from fields in Cambodia.

4th Grade

A rat in Cambodia has a very special job. He helps make **things safer** for people. The rat's name is Magawa. He received a **gold medal** for his work. It is the highest award in the animal world. He has possibly saved **many** lives.

Example credit: <u>USA Today</u> and <u>Newsela</u> (2020/08/11).

What is so difficult

with text simplification?

What is so difficult?

Existing datasets:

O Simple Wikipedia (large but noisy)

https://simple.wikipedia.org/

What is so difficult?

Existing datasets:

- O Simple Wikipedia (large but noisy)
- O Newsela (high-quality, small, hard to align)

What is so difficult?

Existing datasets:

- O Simple Wikipedia (large but noisy)
- O Newsela (high-quality, small, hard to align)

Supervised seq2seq is limited.

Do we really need data?

Keep it Simple

What if we approach Text Simplification in an unsupervised way:

1. Define a "text simplification" reward

2. Train a pre-trained language model to optimize the reward.

Talk Outline

1. Reward Design

2. Optimization

3. Evaluation

Keep it Simple

Adapting the Summary Loop to the domain of *Text Simplification*

Keep it Simple: Salience

Objective: The generated text should contain the same information as the original text.

Keep it Simple: Salience

Key Idea: Adapting the Coverage model from the Summary Loop (ACL 2020) to text simplification.

<u>**Objective**</u>: The generated text should be grammatical and be in fluent English.

Fluency Component 1: Pretrained-Language Model

Fluency Component 1: Pretrained-Language Model

Problem: the fluency model is static (it does not change during training).

The generator can learn *common patterns* to artificially score high on the fluency metric.

Fluency Component 1: Pretrained-Language Model

Fluency Component 2: Dynamic Discriminator (Adversarial)

Train dynamically (every 2,000 generated samples)

Alls in Dane

Keep it Simple: Simplicity

Objective: The generated text should be *simpler* than the original text, both *syntactically* and *lexically*.

Keep it Simple: Simplicity

Syntactic Simplicity: S_{Score}

We use the standard Flesch-Kincaid Grade Level (FKGL)

```
FKGL("A rat named Magawa is being honored...") = 9.5 FKGL("A rat in Cambodia has a very special job...") = 4.1
```


During training: target a fixed amount of drop (e.g., 2 grade levels). Ramp score based on how close the model gets to the target.

Keep it Simple: Simplicity

Syntactic Simplicity: S_{Score}

Lexical Simplicity: L_{Score}

Words added in the generated text should be *more common* than **words removed** from the original text.

Words Removed

commonness(honored) = 4.0
commonness(potentially) = 4.3
commonness(numerous) = 4.7
commonness(landmines) = 2.7

Words Added

commonness(very) = 6.0
commonness(possibly) = 4.7
commonness(many) = 5.9
commonness(things) = 5.7

Optimization

Combining Reward Components

1. Salience
2. Fluency
3. Simplicity

Language Model

Discriminator

Syntactic

Each of the 5 components is **normalized** between [0,1]

The total score is the **product** of component scores.

Self-Critical Sequence Training Recap

- 1. Generate 2 candidates (1 argmax and 1 sampled)
- 2. Compute each candidate's total reward
- 3. Train model to increase likelihood of highest-reward candidate

$$L = (\hat{R} - R^S) \sum_{i=0}^{N} \log p(w_i^S | w_1^S ... w_{i-1}^S, P)$$

Self-Critical Sequence Training Recap

- 1. Generate 2 candidates (1 argmax and 1 sampled)
- 2. Compute each candidate's total reward
- 3. Train model to increase likelihood of highest-reward candidate

$$L = (\hat{R} - R^S) \sum_{i=0}^{N} \log p(w_i^S | w_1^S ... w_{i-1}^S, P)$$

If both candidates have similar scores, loss is close to zero, no learning in the sample. In practice can happen with >30% of samples.

Contribution: k-SCST modification

- 1. Generate k candidates (all sampled, for example k=6)
- 2. Compute each candidate's total reward
- Train model to increase likelihood of candidates with higher than average total reward

$$L = \sum_{j=1}^{k} (\bar{R^S} - R^{Sj}) \sum_{i=0}^{N} \log p(w_i^{Sj} | w_1^{Sj} ... w_{i-1}^{Sj}, P)$$

As k increases, likelihood of good performing candidates increases.

k-SCST modification

Training the KiS model, each configuration run with **6 runs**. Increasing k leads to faster, more stable training.

Automatic Results

Keep it Simple achieves state-of-the-art on news simplification (even outperforming supervised models)

Supervised	Method	SARI	% Lexile
	Reference	-	79
	Finetune Baseline	0.470	52
	ACCESS (Martin et al. 2020)	0.666	63
	ACCESS 90	0.674	64
Onsub.	Unsup. NTS (Surya et al. 2019)	0.677	57
	Keep It Simple (ours)	0.709	72

SARI is an n-gram overlap measure with hand-written simplified references.

% Lexile is the percentage of generated texts that achieve higher readability than the input, according to the Lexile measure (gold standard)

Designing human evaluation for text simplification.

What does success mean for simplification?

Designing human evaluation for text simplification.

Hypothesis 1: Increasing Accessibility

Can a broader audience understand the simplified text

than the original text?

Designing human evaluation for text simplification.

Hypothesis 1: Increasing Accessibility Can a broader audience understand the simplified text than the original text?

Hypothesis 1 would require a study with a large and diverse population.

Designing human evaluation for text simplification.

Hypothesis 2: Decrease Cognitive Load Does the simplified text lead to a similar level of understanding in less time?

Designing human evaluation for text simplification.

Hypothesis 2: Decrease Cognitive Load Does the simplified text lead to a similar level of understanding in less time?

We design a **Human Comprehension Study** to investigate Hypothesis 2.

Original
Short News Article (~200 words)

Generate 5 comprehension questions.

4 candidate simplifications (1 human, 3 systems)


```
1. Who manages....? A/B/C/D/
2. Why is....? A/B/C/
3. How did ...? A/B/C/
4. What is ...? A/B/C/D/
5. When did ...? A/B/
```

Generate 4 candidate simplifications

Participants are randomly assigned to a text version

A/B/C/

A/B/

3. How did ... ? A/B/C/ 4. What is ... ? A/B/C/D/

2. Why is.... ?

5. When did ... ?

Participants re-submit questionnaire until correct

__

90 participants; 4 documents; 244 total submissions

Hypothesis 2: Confirmed. Simplified text leads to faster completion.

Method	Completion Time (sec.)		
Original Text	174.0		
Newsela References	163.3		
ACCESS (Martin et al. 2020)	188.5		
Finetune Baseline	161.0		
Keep It Simple (ours)	142.6*		

3 / 4 methods lead to drop in completion time KiS stat. significant drop (p < 0.05) compared to original

Thanks

See you at the Q&A!

Keep It Simple:Unsupervised Text Simplification Laban, Schnabel, Bennet, Hearst Code on Github:

https://github.com/tingofurro/keep_it_simple

Contact:

phillab@berkeley.edu

<u>CREDITS</u>: This presentation template was created by **Slidesgo**, and includes **Flaticon** icons.