

Claims

1. A process for producing an optically active 3-(4-hydroxyphenyl)propionic acid of the formula (6):

5

wherein R² is an alkyl group, R⁵ to R⁸ are each independently a hydrogen atom or a substituent; and the symbol * is a chiral carbon atom,

or a salt thereof, which comprises reacting a benzaldehyde of
10 the formula (1):

wherein R¹ is a protective group; and R⁵ to R⁸ are each the same as defined above,

with a glycolic acid derivative of the formula (2):

15

wherein R³ is a hydrocarbon group, and R² is the same as defined above,

hydrolyzing the resulting product to give a cinnamic acid of the formula (4):

wherein R^1 , R^2 , and R^5 to R^8 are each the same as defined above, or a salt thereof, and subjecting the cinnamic acid (4) or a salt thereof to asymmetric hydrogenation to give an optically active phenylpropionic acid of the formula (5):

wherein all the symbols are each the same as defined above, or a salt thereof, followed by deprotection.

10 2. A process for producing an optically active 3-(4-hydroxyphenyl)propionic acid of the formula (6):

wherein R^2 is an alkyl group; R^5 to R^8 are each independently a hydrogen atom or a substituent; and the symbol * is a chiral carbon atom,

15 or a salt thereof, which comprises reacting a benzaldehyde of the formula (1):

wherein R^1 is a protective group; and R^5 to R^8 are each the same as defined above,

with a glycolic acid derivative of the formula (2):

5

wherein R^3 is a hydrocarbon group, and R^2 is the same as defined above, followed by hydrolysis to give a cinnamic acid of the formula (4):

10 wherein R^1 , R^2 , and R^5 to R^8 are each the same as defined above, or a salt thereof, and subjecting the cinnamic acid (4) or a salt thereof to asymmetric hydrogenation.

15 3. A process for producing an optically active 3-(4-hydroxyphenyl)propionic acid of the formula (6):

wherein R² is an alkyl group; R⁵ to R⁸ are each independently a hydrogen atom or a substituent; and the symbol * is a chiral carbon atom,

- or a salt thereof, which comprises reacting a
 5 4-hydroxybenzaldehyde of the formula (7):

wherein R⁵ to R⁸ are each the same as defined above, with a glycolic acid derivative of the formula (2):

- 10 wherein R³ is a hydrocarbon group; and R² is the same as defined above, followed by hydrolysis to give a 4-hydroxycinnamic acid of the formula (9):

- wherein R², and R⁵ to R⁸ are each the same as defined above,
 15 or a salt thereof, and subjecting the 4-hydroxycinnamic acid (9) or a salt thereof to asymmetric hydrogenation.

4. The process according to any one of claims 1 to 3, wherein the asymmetric hydrogenation is carried out in the presence of a chiral catalyst.
 20

5. The process according to any one of claims 1 to 4,
wherein the chiral catalyst is a transition metal complex.

5 6. The process according to claim 5, wherein the
transition metal complex is a complex of the metal of Groups
8 to 10 in the periodic table.

10 7. A process for producing an optically active
carboxylic acid of the formula (12):

15 wherein R¹¹ and R¹² are each independently a hydrogen atom or
a substituent; R¹³ is a hydrogen atom, an optionally substituted
hydrocarbon group or a metal atom; R¹⁴ is a hydrogen atom or
a protective group; and the symbol * is an chiral carbon atom,
or a salt thereof, which comprises subjecting an
α,β-unsaturated carboxylic acid of the formula (11):

20 wherein R¹¹ to R¹⁴ are each the same as defined above,
or a salt thereof, to asymmetric hydrogenation in the presence
of a transition metal complex, provided that when the transition
metal complex is rhodium, the protective group represented by
R¹⁴ in the above formula (11) is a group other than acyl.

8. The process according to claim 7, wherein the transition metal complex is a complex of the metal of Groups 8 to 10 in the periodic table.

5

9. The process according to claim 1 or 3, wherein the chiral catalyst is a mixture of a chiral ligand and a transition metal compound.

10

10. The process according to any one of claims 1 to 3, wherein the optically active phenylpropionic acid of the formula (5) or a salt thereof obtained by the method according to any one of claims 1 to 3 is crystallized from a solvent.

15

11. The process according to claim 10, wherein the solvent used for the crystallization is a member selected from the group consisting of hydrocarbons, alcohols, ketones and water, and a mixture thereof.

20

12. The process according to any one of claims 1 to 3, wherein the optically active 3-(4-hydroxyphenyl)propionic acid of the formula (6) or a salt thereof obtained by the method according to any one of claims 1 to 3 is crystallized from a solvent.

25

13. The process according to claim 12, wherein the solvent used for the crystallization is a member selected from the group consisting of aromatic hydrocarbons, aliphatic hydrocarbons, alcohols and water, and a mixture thereof.

14. A process for producing an optically active phenylpropionic acid of the formula (5):

5 wherein R^1 is a protective group; R^2 is an alkyl group; R^5 to R^8 are each independently a hydrogen atom or a substituent; and the symbol * is an chiral carbon atom,

or a salt thereof

which comprises subjecting a cinnamic acid of the formula (4):

10

wherein R^1 , R^2 , and R^5 to R^8 are each the same as defined above, or a salt thereof, to asymmetric hydrogenation.

15 15. A process for producing an optically active 3-(4-hydroxyphenyl)propionic acid of the formula (6):

wherein R² is an alkyl group; R⁵ to R⁸ are each independently a hydrogen atom or a substituent; and the symbol * is a chiral carbon atom,
or a salt thereof, which comprises subjecting a cinnamic acid
5 of the formula (4):

wherein R¹, R², and R⁵ to R⁸ are each the same as defined above, or a salt thereof, to asymmetric hydrogenation.

10 16. A process for producing an optically active 3-(4-hydroxyphenyl)propionic acid of the formula (6):

wherein R² is an alkyl group; R⁵ to R⁸ are each independently a hydrogen atom or a substituent; and the symbol * is a chiral carbon atom,
15 or a salt thereof,
which comprises subjecting a 4-hydroxycinnamic acid of the formula (9):

wherein R^2 , and R^5 to R^8 are each the same as defined above,
or a salt thereof to asymmetric hydrogenation.

- 5 17. A process for producing an optically active 3-(4-hydroxyphenyl)propionic acid of the formula (6):

- wherein R^2 is an alkyl group; R^5 to R^8 are each independently
a hydrogen atom or a substituent; and the symbol * is a chiral
10 carbon atom,
or a salt thereof, and an optically active phenylpropionic acid
of the formula (5):

- wherein R^1 is a protective group; and R^2 , R^5 to R^8 and the symbol
15 * are each the same as defined above,
or a salt thereof, which comprises subjecting a cinnamic acid
of the formula (4):

wherein R^1 , R^2 , and R^5 to R^8 are each the same as defined above, or a salt thereof, to asymmetric hydrogenation.

- 5 18. A process for producing an optically active
3-(4-hydroxyphenyl)propionic acid of the formula (6):

- wherein R^2 is an alkyl group, R^5 to R^8 are each independently a hydrogen atom or a substituent; and the symbol * is a chiral
10 carbon atom,
or a salt thereof, which comprises reacting a benzaldehyde of
the formula (1):

- wherein R^1 is a protective group; and R^5 to R^8 are each the same
15 as defined above,
with a glycolic acid derivative of the formula (2):

wherein R^3 is a hydrocarbon group, and R^2 is the same as defined above,

hydrolyzing the resulting product to give a cinnamic acid of
5 the formula (4):

wherein R^1 , R^2 , and R^5 to R^8 are each the same as defined above, or a salt thereof, and subjecting the cinnamic acid (4) or a salt thereof to asymmetric hydrogenation to give an optically active phenylpropionic acid of the formula (5):

wherein all the symbols are each the same as defined above, or a salt thereof, and an optically active 3-(4-hydroxyphenyl)propionic acid of the formula (6):

15 wherein all the symbols are each the same as defined above, or a salt thereof, followed by deprotection.