

□ (+1) 989-390-1413 | **≥** kylemay@umich.edu

## Summary.

### **Computer Systems Researcher**

STRONGLY INTERESTED AND INVOLVED WITH COMPUTER ARCHITECTURE RESEARCH

- Primarily interested in, but not limited to, general purpose hardware accelerators, microarchitecture, hardware-software co-design, heterogeneous architectures, and resource-constrained computing
- · Currently in final year of undergraduate degree
- Pursuing a PhD program that encourages the exploration of computer architecture, motivated by my drive to do research in industry and eventually return to academia to become a professor

### Education

University of Michigan Ann Arbor, MI

B.S.E. IN COMPUTER ENGINEERING

Sept. 2015 - Exp. Apr. 2019

- Current Research Area: 'Reconfigurable Software-Defined Hardware Architectures'
- Mentor: Dr. Trevor Mudge
- **GPA:** 3.965 / 4.000
- Relevant Coursework: Advanced Topics in Computer Architecture (EECS 573), Computer Architecture (EECS 470), Introduction to Operating Systems (EECS 482), Data Structures and Algorithms (EECS 281)

## Research Experience

### **University of Michigan - College of Engineering**

Ann Arbor

Undergraduate Research Assistant: Dr. Trevor Mudge

Feb. 2018 - Present

- · Developing a flexible, reconfigurable hardware architecture capable of supporting irregular workloads
- Tailoring an existing architectural simulator to model our proposed architecture
- Leading development of a flexible hardware prefetcher for the architecture in order to support both regular and irregular workloads
- · Conducting literature surveys in order to fully understand prior work, in order to develop a novel prefetching framework
- Leveraging architectural simulator frameworks to quickly validate underlying assumptions and to further hone in on creating a high performance design
- Gaining experience working with popular benchmark suites and adapting the suites to work with our development environment, like the Lonestar benchmark suite
- Analyzing irregular workloads and their memory characteristics to fully understand what is required from the memory system to deliver high performance

#### **University of Michigan - College of Engineering**

Ann Arbor

Undergraduate Research Assistant: Dr. Trevor Mudge

May 2018 - June 2018

- Explored novel compiler techniques to efficiently execute sparse matrix-matrix and sparse matrix-vector operations on CPU architectures, trading off memory usage for simpler control flow
- Analyzed the compiler techniques on real hardware and an architectural simulator to determine implications of the compiler technique on the memory system and to analyze our solution
- Developed the compiler framework in order to generate efficient linear algebra operations
- Examined the scalability of the compiler technique on multi-core systems, modeling the interactions of multiple cores and their shared caches
- · Learned about the gem5 architectural simulator, experimenting with the simulator while working on this project

#### **University of Michigan - College of Engineering**

Ann Arbor

Undergraduate Research Assistant : Dr. Robert Dick

Feb. 2017 - Present

- Creating a sensing module that can interface with both analog and digital sensors, provide signal processing capabilities, and transmit data to the cloud to further research in remote, battery-powered sensing applications
- · Designed and prototyped analog signal conditioning circuitry to provide high levels of accuracy and precision in sensing applications
- Developed and debugged C and C++ code for interfacing with the data acquisition system, utilizing serial protocols such as SPI and I2C, to provide an intuitive and efficient interface between the hardware and software
- Produced a printed circuit board design that preserves the integrity of sensitive analog signal paths, as well as a board design that could be
  developed at scale
- Created and tested calibration algorithms to compensate for errors introduced by signal conditioning circuitry to improve the absolute accuracy of the data acquisition system
- · Worked in an extremely independent capacity, while still collaborating with other students to solve major design issues
- Currently, mentoring students that continued the project after me, helping them overcome design and implementation obstacles and become comfortable with the uncertainty that comes with the research environment

# **Notable Projects**

### University of Michigan - College of Engineering

**EECS 470** 

**OUT OF ORDER PROCESSOR DESIGN AND IMPLEMENTATION** 

Winter 2018

- · Tasked with the design of a fully out of order processor microarchitecture implementing a subset of the Alpha ISA
- · Heavily involved with design and verification of all major components of the processor (front-end, back-end, memory hierarchy, etc.), gaining valuable insight into the intricate details of implementing a processor design in SystemVerilog
- · Constrained by physical implications by synthesizing our design, ensuring that our design worked at an aggressive clock period (9.1ns)
- Implemented advanced features in our design, including (almost) arbitrary way superscalar execution, non-blocking data caches, an advanced load-store unit, and non-trivial branch prediction algorithms
- Optimized critical execution loop, allowing for a pipelined wake-up, select, issue logic to the functional units without losing the ability to issue dependent instructions back-to-back
- · Acted in a leadership role to organize a team of 5 to meet deadlines and to efficiently produce the design and verification results needed

### **University of Michigan - College of Engineering**

EECS 573

GENERAL PURPOSE PROGRAMMABLE PREFETCHER

Fall 2018

- Tasked with a semester long, novel computer architecture research project
- · Conducted in-depth surveys of recent literature in data and instruction prefetching to find a unexplored idea within the problem space
- · Created simple experiments to test initial assumptions to quickly validate the basis of the project
- · Gained experience with useful, common resources like gem5, Intel Pin, and benchmark suites like Lonestar, and used these tools throughout the project
- Currently designing and developing an architectural model of the proposed prefetching system, using the gem5 architectural simulator framework

### University of Michigan - College of Engineering

**EECS 482** 

DESIGN AND IMPLEMENTATION OF CORE COMPONENTS OF AN OPERATING SYSTEM

- · Designed and implemented a multi-threaded disk scheduler in C++ to gain experience in standard monitor-style multi-threaded programming • From simple primitives like spin locks, created a user-level thread library that implemented mutual exclusion locks, condition variables, and a POSIX-style thread interface
- · Learned how to use modern language constructs to efficiently implement kernel-level multi-threaded code
- · Designed and developed a virtual memory pager, capable of implementing Linux-like system calls, such as fork and map
- · Constructed a concurrent distributed file server application, focusing on concurrency and reliability

## Skills

**Programming Languages and Tools** C/C++, Verilog/SystemVerilog, gem5, Intel Pin, git, Python, Matlab

**Operating Systems** Linux, MacOS, Windows

Miscellaneous SMT Soldering, Arduino-based prototyping, Mixed-signal circuit design, PCB design

# **Honors & Awards**

**UNIVERSITY OF MICHIGAN** 

James B. Angell Scholar, 2017, 2018 **University Honors**, 2016, 2017, 2018 Dean's List, 2015, 2016, 2017, 2018 Most Active Electee: HKN-IEEE, 2017

## **Extracurriculars**

### Eta Kappa Nu - Beta Epsilon

**EECS HONOR SOCIETY** Sept. 2017 - PRESENT

- · Joined a volunteering- and professional-orient student organization to become more involved in the University of Michigan community.
- Participated in mentor-ship opportunities, holding office hours for introductory electrical engineering and computer science courses.
- Volunteered at the local nature preserves to help remove invasive species that were threatening local species.