1a. A series of experimental measurements by Holligan *et al* 1984 (*Marine Ecology Progress Series* 17:201) suggest that the vertical flux of nutrients through the thermocline in the ocean follows an exponential relation:

$$F_N = (K_V) N / Z^{3/4}$$

Dimensions

were F_N is the vertical flux of nutrients (milligram-atoms m¹² s¹¹)

) Z is the thickness of the thermocline (metres)

 K_V is the vertical eddy diffusivity (10 $^{\! 1.4}$ m^2 $s^{\! 1.1})$

) N is the nitrate difference across the thermocline (mg-atoms)

In the blank spaces above and to the right, fill in the dimensions for $F_N \quad \ \ \, \textbf{)} \; Z$

What units does " have ? _____

1b. Convert an eddy diffusivity of $K_V = 3.6 \times 10^{14} \text{ m}^2 \text{ s}^{11}$ to units of mm² hour¹

2. Another series of experiments by Holligan *et al* suggest that nutrient flux depends upon the temperature gradient across the thermocline.

$$F_N \ = \ \$ \ (\) \ T/\) \ Z)^{! \ 1/3}$$

)
$$T/$$
) $Z = {}^{\circ}C/metre$

2a. Compute the nutrient flux across a gradient of 10 $^{\rm o}C$ over 2 metres, assuming \$ = 1.5.

2b. Write a data equation for an observed value of $F_N=0.80$ milligram-atoms $m^{1/2}$ s^{1/1} measured across a temperature gradient of 10 °C over 2 metres.