

Universidad Tecnológica de la Mixteca 00048

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA			
Dibujo Asistido por Computadora			

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Cuarto	172042	101 .

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Otorgar al estudiante el conocimiento de las normas, métodos y técnicas del dibujo asistido por computadora, para representar formas geométricas, diagramas, conceptos de ingeniería e interpretación y evaluación de dibujos de uso en la industria.

TEMAS Y SUBTEMAS

1. Conceptos básicos de dibujo técnico.

- 1.1. Introducción.
- 1.2. Normas mexicanas de simbología, dimensionamiento y tolerancias.
- 1.3. Sistema europeo y americano.
- 1.4. Normalización del papel.
- 1.5. Representación de vistas ortogonales.

2. Modelado básico en dos dimensiones.

- 2.1. Configuración de herramientas.
- 2.2. Entidades básicas de CAD.
- 2.3. Generación y edición de geometrías.
- 2.4. Normalización de planos.
- 2.5. Impresión y presentación gráfica.

3. Modelado en tres dimensiones.

- 3.1. Características de los sistemas 3D.
- 3.2. Operaciones de modelado para sólidos.
- 3.3. Edición de geometrías.
- 3.4. Definición de materiales, apariencias y propiedades físicas.
- 3.5. Anotación gráfica de modelos.
- 3.6. Impresión y presentación visual de modelos.

4. Representación de vistas auxiliares.

- 4.1. Vistas auxiliares y proyectadas.
- 4.2. Vistas de sección parcial y estándar.
- 4.3. Vistas de detalle y del modelo.
- 4.4. Vistas de rotura y posición alternativa.
- 4.5. Anotación en vistas.

5. Ensambles.

- 5.1. Configuración y relación de las piezas de montaje.
- 5.2. Unión permanente y dispositivos de sujeción.
- 5.3. Vista explosionada y montaje.
- 5.4 Anotación y lista de materiales.
- 5.5. Presentación de montaje.

Universidad Tecnológica de la Mixteca 00049

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

ACTIVIDADES DE APRENDIZAJE

Exposición del profesor, haciendo uso de equipo de cómputo y software especializado, así como de documentos impresos; validando los conocimientos a través de evaluaciones teóricas y prácticas.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación, que debe comprender tres evaluaciones parciales que tienen una equivalencia del 50% y un examen final equivalente al 50%, la suma de estos dos porcentajes dará la

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

- 1. Fundamentos de Dibujo en Ingeniería, Luzadder W.J., Duff, M.J. Prentice Hall, 11ª Ed., 1994.
- 2. Dibujo para Ingeniería, Giesecke F., Mitchell A., Spencer H., Hill I.L, R. Loving, Mc Graw Hill, 1986.
- 3. Dibujo y Diseño en Ingeniería, Cecil J., Jay D.H., Dennos R.S, Mc Graw-Hill.
- 4. Dibujo Industrial, Chevalier A., Limusa, 2008.
- El Gran Libro de SolidWorks, Gómez González S., Alfaomega, 2ª Ed., 2015.

Consulta:

- 1. Fundamentos de Dibujo en Ingeniería, Warren J.L., CECSA, 1981.
- Dibujo Técnico, Támez E., Esparza, Limusa, 2009.
- 3. Dibujo de Ingeniería, French T.E., Charles J.V., Mc. Graw Hill.
- 4. Manuales y/o libros designados por el profesor, para aprender el software a utilizar, para el modelado de sólidos, superficies, etc. Por ejemplo, AutoCAD, Solidworks, NX, VisiCad, Catia, etc.

PERFIL PROFESIONAL DEL DOCENTE

Maestría en Ciencias con algún postgrado afín en ingeniería industrial, mecánica, civil o diseño industrial, con conocimientos en Dibujo Técnico; con experiencia en la industria sobre el desarrollo, ingeniería y diseño de productos, y proyectos industriales.

ALECCIO TO THE PROPERTY OF THE

ALOMÓN GONZÁLEZ**JEMA**TÚNAZDE CARRERA JEFE DE CARRERA INGENIERIA EN FÍSICA APLICADA

AUTORIZÓ

DR. AGUSTIN SANTIAGO VICE-RECTOR ACADÉMICO ACADEMICA