

Management großer Softwareprojekte

Prof. Dr. Holger Schlingloff

Humboldt-Universität zu Berlin, Institut für Informatik

Fraunhofer Institut für Rechnerarchitektur und Softwaretechnik FIRST

4.2 Schätzverfahren

1. empirische Schätzverfahren

- durch die Zielfunktion
- Expertenschätzung
- Delphi-Methode

2. algorithmische Schätzverfahren

- Function-point-Methode
- CoCoMo, CoCoMo II

3. wissensbasierte Schätzwerkzeuge

4.2.1 empirische Schätzverfahren

- durch die Zielfunktion
 - Zeit, Geld, Kostenvergleich

Schlingloff, Management großer Softwareprojekte

- Expertenschätzung
 - Analogieverfahren
 - 3-Zeiten-Verfahren
 - Extrapolation
- Delphi-Methode

Zielfunktion

Wie viel Zeit steht zur Verfügung?

(Parkinson's Gesetz; Schätzung und Messung sind nicht unabhängig; Beispiel: Wenn die SW in 12 Monaten geliefert werden muss und 5 MA verfügbar sind, wird der Aufwand auf 60 PM geschätzt.)

Wie viel ist der Kunde bereit zu bezahlen?

(v.a. bei strategisch bedeutsamen Projekten; "Pricing to win": Die Kosten werden nach dem zur Verfügung stehenden Budget des Kunden geschätzt und die Anforderungen werden dem Budget angepasst.)

Wie viel kosten vergleichbare Produkte?

Expertenschätzung

- "educated guess"
- bislang kein allgemeingültiges Verfahren für Kostenvorhersage von Software etabliert

Faustregel: $\pi * Daumen$

Geschätzte Programmgröße geteilt durch geschätzte Produktivität der Mitarbeiter mal Anzahl MA

- oftmals: Analogieschluss
- prozentuale Verteilung über Phasen

Analogieverfahren (vgl. oben)

- basiert auf Aufzeichnungen von Ist-Werten vergleichbarer, abgewickelter Projekte desselben Unternehmens
- Ist-Werte mit entsprechenden Korrekturfaktoren multipliziert
- besonders geeignet
 - wenn neues System zum Großteil aus existierenden Komponenten besteht und/oder Analogien zu ähnlichen Projekten hergestellt werden können;
 - vor Beginn bzw. im Anfangsstadium eines Projektes

Projekt-Erfahrungsdatenbank

- Aufgabenstellung, Lastenheft, Use Cases
- Besonderheiten
- Anzahl Module, Objekte, Anweisungen, LOC
- Dokumentation, Hilfe, Unterlagen
- Aufwand (Projekttage PT oder Personenmonate PM)
- Hilfsmittel und Werkzeuge, CASE-tools
- Umgebung, Betriebssystem, Hardware
- Kosten je Einheit

Drei-Zeiten-Verfahren ("PERT-Methode")

 Für jede Tätigkeit wird deren optimistische-, häufigste und pessimistische Dauer geschätzt:

der Erwartungswert für die mittlere Zeitdauer (MD) beträgt nach der Näherungsformel (Annahme: Normalverteilung):

$$MD = (OD + 4HD + PD) / 6$$

H. Schlingloff, Management großer Softwareprojekte

4. Aufwandschätzung

4.12.2002

 bei stark innovativen Verfahren, bei welchen der Aufwand nur ungenau bestimmt werden kann Berechnungsbeispiel:

	Tätigkeit	OD	HD	PD	MD
A	Erstellen der Vorstudie	3	8	10	7,5
В	Erstellen des Konzeptes	8	13	15	12,5
C	Erstelen des Pflichtenheftes	6	10	22	11,3
D	Erstellen der Detailstudie	10	17	22	16,7
E	Realisieren	12	22	26	21
F	Testen	9	18	32	18,8
G	Einführen	10	10	14	12,7
					100,5

Prozentsatzverfahren (Extrapolation)

- basiert auf definierter Vorgehensweise; für die einzelne Phasen müssen prozentuale Anteilswerte vorliegen.
- aus den Aufwendungen für die einzelnen Phasen aus früheren Projekten werden durch Extrapolation die Aufwendungen für neue Projekte geschätzt
- Voraussetzungen
 - möglichst umfassende Vergangenheitswerte (dokumentiert)
 - das verwendete Extrapolationsverfahren muss in der Lage sein, zufällige Schwankungen einer Zeitreihe zu glätten
 - weitgehende Stabilität der Umweltbedingungen

Vorteile:

- Bereits sehr früh anwendbar
- gute Korrekturmöglichkeiten
- Schwächen:
 - Hochrechnung mit relativ kleinen Werten (5%)
 - Verschiebungen der prozentualen Anteile aufgrund von Faktoren wie Projektgröße, Projekttyp, Komplexität, etc.
- primärer Einsatz:
 - Schnellanalyse von Projektaufwendungen
 - Aufwand-Frühwarnsysteme: Prüfung, ob Aufwand den vorgegebenen Prozentwerten entspricht
 - nach Abschluss der ersten Phase

Prozentualer Aufwand

	Manageme nt	Werkzeuge	Installation	Test und QS	Implementi erung	Entwurf	Definition
■ konventionell	5	5	5	40	30	10	5
□ modern	10	10	5	25	25	15	10
■ ideal	10	10	15	20	20	15	10

nochmal als Torte

Delphi - Methode

systematische Befragung von mehreren Experten

- zwei Varianten:
 - Standard Delphi-Verfahren: Befragung anonym
 - Breitband Delphi-Verfahren: Schätzergebnisse werden gegenseitig bekannt gegeben, damit Resultate diskutiert und ggf. korrigiert werden können

Ablauf Delphi-Verfahren

1. Projektleiter schildert Projektvorhaben und übergibt Formular mit Aufgabenpaketen

evtl. gemeinsame Vorbesprechung der Experten für gleiches Verständnis

2. Jeder Experte füllt Formular aus

Fragen dürfen lediglich mit dem Projektleiter besprochen werden

3. Projektleiter analysiert die Angaben

Falls Schätzwerte eines Paketes stark von einander abweichen, werden diese mit Kommentar auf neuem Formular erfasst

Ablauf Delphi-Verfahren (2)

- 4. (Breitband-Delphi:) moderierte Diskussion über die Abweichungen
- 5. Neues Formular wird erneut zur selbständigen Überarbeitung an die Experten gereicht
- 6. Schritte 2-5 werden so lange wiederholt, bis die gewünschte Annäherung der Ergebnisse erreicht ist

Durchschnittswert der letzten Überarbeitung der Ergebnisse stellt endgültiges Schätzergebnis dar

Übung: "Pizzaservice-Bestellsystem"

Lastenheft "Bestellsystem für Pizzaservice"

1. Zielbestimmung

 Der Pizzaservice "Rapido" soll in die Lage versetzt werden, Kundendaten und telefonische Bestellungen mit einem EDV System zu verarbeiten.

2. Produkteinsatz

 Das Produkt dient zur Verwaltung von Kunden und Bestellungen. Zielgruppe sind die Mitarbeiter des Pizzaservice.

3. Produktumfang

 An einem Einzelarbeitsplatz erfasst ein Mitarbeiter telefonisch Bestellungen und, bei Neukunden, Adress- und Lieferdaten. Kundendaten von Neukunden werden in einem XML-Austauschformat gespeichert. Das System kennt eine Menge von Standardprodukten und ist in der Lage, Sonderbestellungen aufzunehmen. Die Aufträge werden automatisch an den Backdienst weitergeleitet, und es erfolgt ein automatischer Rechnungs- und Lieferscheinausdruck.

Beispiel: Lutz Michaelsen

Übung: "Pizzaservice-Bestellsystem"

4. Produktfunktionen

- /LF10/ Erfassung, Änderung und Löschen von Kundendaten
- /LF20/ Erfassung, Änderung und Löschen von Produktdaten
- /LF30/ Abfrage der relevanten Kundendaten
- /LF40/ Erfassung eines Bestellvorgangs
- /LF50/ Ausgabe von Backauftrag, Lieferauftrag und Rechnung

Produktdaten

- /LD10/ Relevante Kundendaten sind zu speichern
- /LD20/ Relevante Produktdaten sind zu speichern
- /LD30/ Relevante Bestelldaten sind zu speichern

6. Produktleistungen

- /LL10/ Die Funktionen /LF30/ und /LF50/ sollen jeweils maximal 5 Sekunden in Anspruch nehmen.
- /LL20/ Es sollen maximal 1000 Kunden und 200 Produkte verwaltet werden.

7. Gewünschte Qualität

- Zuverlässigkeit: sehr gut
- Funktionalität, Benutzbarkeit: gut
- Effizienz, Änderbarkeit : normal
- Portierbarkeit: irrelevant

Hausaufgabe Teil 1

- Schätzen Sie den Aufwand für dieses System!
- Aufgabenpakete:
 - Kundendatenpflege
 - Produktdatenpflege
 - Vorgangsbearbeitung

4.2 Schätzverfahren

- 1. empirische Schätzverfahren
 - durch die Zielfunktion
 - Expertenschätzung
 - Delphi-Methode
- 2. algorithmische Schätzverfahren
 - Function-point-Methode
 - CoCoMo, CoCoMo II
- 3. wissensbasierte Schätzwerkzeuge

Function-Point-Methode

- ISO Standard, de-facto-Standardmethode
- "eine der besten verfügbaren Methoden" (IFPUG, DASMA); 1200 Unternehmen in 30 Ländern
- Aufwandsermittlung aus Produktanforderungen
- fünf Kategorien:

Transaktionen

- Eingabedaten
 - z.B. Eingabemasken, Knöpfe, Werte, ...
- Ausgabedaten
 - alles was an Bildschirm, Drucker etc. geht (veränderlich)
- Abfragen
 - Rückfragen vom System an den Benutzer, Konfig-Dialoge
- Datenbestände (internal logical files)
 - z.B. Entitäten und Relationen in DB, Basis-Datentypen etc.
- Referenzdateien (external interface files)
 - Schnittstellen zu anderen Anwendungen

Beispiel Ein/ Ausgabe-Punkte

12 Eingabedatenpunkte

10 Ausgabedatenpunkte

	Activity Level b	y Day of the We	ek	
	Day	Hits	% of Total Hits	User Sessions
1	Sun	1004	8.73%	111
2	Mon	1887	16.41%	201
3	Tue	1547	13.45%	177
4	Wed	1975	17.17%	195
5	Thu	1591	13.83%	191
6	Fri	2209	19.21%	200
7	Sat	1286	11.18%	121
	Total Weekdays	9209	80.08%	964
	Total Weekend	2290	19.91%	232

ILF, EIF

- ILF: alle internen Datenstrukturen,
 EIF: alle extern verwalteten Datenbestände
- Gewichtung
 - wie viele Datenelemente kommen vor
 - wie sind sie strukturiert
 - von welchen Datenstrukturen verwendet
- Gewichtungsfaktoren von 3-10

Detailinformationen: www.ifpug.com/freemanual.htm (lesen!!!)

Gewichtung nach Struktur und Größe

Internal logical files		Datenelementtypen			
		1-19	20-50	51+	
Gru I eler	<2	7	7	10	
iruppen v Daten- ementty	2-5	7	10	15	
von 1- ypen	>5	10	15	15	

External interface files		Daten	elementt	ypen	
		1-19	20-50	51+	
elen	Gruppen v Daten- elementtyl		5	5	7
nentty			5	7	10
/pen) von	>5	7	10	10

	External Inputs		Datenelementtypen				
Inp			5-15	16+			
Da refe	<2	3	3	4			
ateityp ferenz	2	3	4	6			
)en jert	>2	4	6	6			

Exte	External Outputs		Datenelementtypen			
Outp			6-19	20+		
Date refer		4	4	5		
iteityp erenz	2-3 eferenz		5	7		
)en iert	>3	5	7	7		

Im Beispiel

- Eingaben: Kundendaten, Produktdaten, Bestelldaten
- Ausgaben: Backauftrag, Lieferschein, Rechnung
- Abfragen: Kundendaten
- Datenbestände: Kunden-, Produkt-, Bestell-Listen
- Referenzdateien: z.B. Schnittstelle zu DB oder Webserver (nicht im Lastenheft!)

Ablauf der Function-Point-Methode

- 1. Schritt: Einteilung der Anforderungen in die fünf Kategorien
- 2. Schritt: Bewertung der Anforderungen als "einfach", "mittel" oder "komplex" Eintragen in Berechnungsformular
- 3. Schritt: Einflussfaktoren festlegen Verflechtung, Logik, Wiederverwendbarkeit, ...
- 4. Schritt: Bewertete Function Points in Personenmonate umwandeln
 - Wertetabelle laut Firmenstatistik

Tabelle zur Bewertung

Kategorie	Anzahl	Klassifizierung	Gewichtung	Zeilensumme
Eingabedaten		einfach	x 3	=
		mittel	x 4	=
		komplex	x 6	=
Abfragen		einfach	x 3	(=)
		mittel	x 4	=
		komplex	x 6	=
Ausgaben		einfach	x 4	=
		mittel	x 5	=
		komplex	x 7	=
Datenbestände		einfach	x 7	=
	W	mittel	x 10	=
		komplex	x 15	=
Referenzdaten	*_ 1	einfach	x 5	=
		mittel	x 7	=
		komplex	x 10	=
Summe			E 1	=

Summe	E 1	=
Einflussfaktoren (ändern den <i>Function Point</i> -Wert	1 Verflechtung mit anderen Anwendungssystemen (0-5)	=
um ± 30%)	2 Dezentrale Daten, dezentrale Verarbeitung (0-5)	= "
	3 Transaktionsrate (0-5)	- = 1 p. (0.5)
	4 Verarbeitungslogik	
	a Rechenoperationen (0-10)	- =
	b Kontrollverfahren (0-5)	=
	c Ausnahmeregelungen (0-10)	=
	d Logik (0-5)	=
	5 Wiederverwendbarkeit (0-5)	=
	6 Datenbestands- Konvertierungen (0-5)	=
	7 Anpassbarkeit (0-5)	=
Summe der 7 Einflüsse	E2	-
Faktor Einflussbewertung	Francisco Milane Brendin	HELDSHIT III THE
= E2 / 100 + 0.7	E3	=
Bewertete Function		
Points: E1 * E3		_

Quelle: /IBM 85, S. 12

H. Schlingloff, Management großer Softwareprojekte

4.12.2002

Ein etwas komfortableres Werkzeug

Umrechnung in Personenmonate

zwei Möglichkeiten

- linearer Faktor (etwa 10)
- Tabelle oder Funktion

firmenspezifische Erfahrungswerte! (1 FP = 1000 €) in beiden Fällen ergibt sich Problem der Aktualisierung (a) Erweiterung der bestehenden Datenbank ergibt ständig sinkende Abweichungen

(b) Ersetzung des ältesten Eintrags

berücksichtigt Technologieanpassung

Beispiel für Zuordnung FP - PM

Function P.	IBM-MM	Function P.	IBM-MM	Function P.	IBM-MM
50	5	700	52	1700	142
100	8	750	56	1800	153
150	11	800	60	1900	164
200	14	850	64	2000	175
250	17	900	68	2100	188
300	20	950	72	2200	201
350	24	1000	76	2300	215
400	28	1100	85	2400	230
450	32	1200	94	2500	245
500	36	1300	103	2600	263
550	40	1400	112	2700	284
600	44	1500	122	2800	307
650	48	1600	132	2900	341

Merkregeln Function-Point-Methode

- Setzt frühestens beim Lastenheft ein
- betrachtet das gesamte Produkt
- Sichtweise des Auftraggebers
- Bewertung durch Produktexperten
- Ist-Aufwand muss ermittelt werden
- Unternehmensspezifische Faktoren

Kritik an Function Point Methode

- + Quasistandard, akzeptiert
- + basiert auf Produktanforderungen
- + iteratives Verfahren, anpassbar
- + früh einsetzbar (Lastenheft)
- dominiert durch Interessenverband
- wenig objektive Werte, Schätzerabhängig
- umfangreiche empirische Datenbasis
 - neigt zur Unterschätzung in frühen Phasen

weitere Kritikpunkte

- berücksichtigt nicht OO-Paradigma
- Mischung von Produkt- und Prozesseigenschaften
- mangelnde theoretische Basis

Weiterentwicklung: "Object Points"

Hausaufgabe Teil2

 Bestimmen Sie die bewerteten Function Points für das Pizza-Beispiel!