Examen Parcial I. Optimización

Fecha: 16 de Marzo del 2021

Nombre: _

Nota Importante:

- Escriba su nombre y numere cada hoja usada para responder el examen.
- Por favor, no mezclar las respuestas de diferentes preguntas en la misma hoja.

Problemas

Problema 1

[4 puntos]

a) Sea $f: \mathbb{R}^n \to \mathbb{R}$ una función convexa. Definamos la función $g: \mathbb{R}^m \to \mathbb{R}$ como sigue

$$g(\boldsymbol{x}) = f(\boldsymbol{x}_0 + \boldsymbol{D}\boldsymbol{x})$$

donde $\boldsymbol{x} \in \mathbb{R}^m$, $\boldsymbol{x}_0 \in \mathbb{R}^n$, $\boldsymbol{D} \in \mathbb{R}^{n \times m}$. Muestra que la función $g(\boldsymbol{x})$ es convexa.

b) Muestra que la función $h(x) = ||x||^2$, con $x \in \mathbb{R}^n$, es convexa

Problema 2

[4 puntos]

Sea la función $f: \mathbb{R}^m \to \mathbb{R}$ definida a continuación

$$f(x) = \frac{1}{2} ||Ax - b||^2 + \frac{\lambda}{2} ||Dx||^2,$$

con $\lambda > 0$, $\boldsymbol{x} \in \mathbb{R}^m$, $\boldsymbol{b} \in \mathbb{R}^n$, $\boldsymbol{D} \in \mathbb{R}^{p \times m}$ y $\boldsymbol{A} \in \mathbb{R}^{n \times m}$ una matriz de rango completo.

- a) f(x) es una función convexa?. Fundamente su respuesta
- b) Calcula y clasifica los puntos críticos de f(x). Argumente su respuesta

Problema 3

[2 puntos]

Sea $f(x) = \frac{1}{2}x^TQx - b^Tx$ donde Q > 0, i.e., Q es positiva definida. Si se usa un algoritmo de búsqueda en línea con tamaño de paso exacto, muestra que se satisface la siguiente condición de Goldstein:

$$f(\boldsymbol{x}_{k+1}) \leq f(\boldsymbol{x}_k) + c\alpha_k \nabla f(\boldsymbol{x}_k)^T \boldsymbol{d}_k$$

donde $0 < c < \frac{1}{2}$, d_k es la dirección de descenso en el punto x_k y α_k es el tamaño de paso exacto.